(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 2 October 2003 (02.10.2003)

PCT

(10) International Publication Number WO 03/080795 A2

(51) International Patent Classification7:

C12N

- (21) International Application Number: PCT/US02/25485
- (22) International Filing Date: 9 August 2002 (09.08.2002)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/311,261

9 August 2001 (09.08.2001) US

- (71) Applicant (for all designated States except US): HYSEQ, INC. [US/US]; 670 Almanor Avenue, Sunnyvalle, CA 94085 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): TANG, Y., Tom [US/US]; 4230 Ranwick Court, San Jose, CA 95118 (US). YANG, Yonghong [CN/US]; 4230 Ranwick Court, San Jose, CA 95118 (US). WANG, Zhiwei [CN/US]; 836 Alturas Ave #B36, Sunnyvale, CA 94085 (US). WENG, Gezhi [US/US]; 415 Moraga Avenue, Piedmont, CA 94611 (US). MA, Yunqing [CN/US]; 280 W. California Avenue #206, Sunnyvale, CA 94086 (US).
- (74) Agents: RIN-LAURES, Li-Hsien et al.; Hyseq, Inc., 670 Almanor Avenue, Sunnyvale, CA 94085 (US).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CII, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished upon receipt of that report

with sequence listing part of description published separately in electronic form and available upon request from the International Bureau

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

3/080795 A2

(54) Title: NOVEL NUCLEIC ACIDS AND SECRETED POLYPEPTIDES

(57) Abstract: The present invention provides novel nucleic acids, novel polypeptide sequences encoded by these nucleic acids and uses thereof.

NOVEL NUCLEIC ACIDS AND SECRETED POLYPEPTIDES

1. CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part application of U.S. Application Serial No. 5 09/552,317 filed April 25, 2000 entitled "Novel Contigs Obtained from Various Libraries", Attorney Docket No. 784CIP, which in turn is a continuation-in-part application of U.S. Application Serial No. 09/488,725 filed January 21, 2000 entitled "Novel Contigs Obtained from Various Libraries", Attorney Docket No. 784; U.S. Application Serial No. 09/491,404 filed January 25, 2000 entitled "Novel Contigs Obtained from Various Libraries", Attorney 10 Docket No. 785; U.S. Application Serial No. 09/560,875 filed April 27, 2000 entitled "Novel Contigs Obtained from Various Libraries", Attorney Docket No. 787CIP, which in turn is a continuation-in-part application of U.S. Application Serial No. 09/496,914 filed February 03, 2000 entitled "Novel Contigs Obtained from Various Libraries", Attorney Docket No. 787; U.S. Application Serial No. 09/577,409 filed May 18, 2000 entitled "Novel Contigs 15 Obtained from Various Libraries", Attorney Docket No. 788CIP, which in turn is a continuation-in-part application of U.S. Application Serial No. 09/515,126 filed February 28, 2000 entitled "Novel Contigs Obtained from Various Libraries", Attorney Docket No. 788; U.S. Application Serial No. 09/574,454 filed May 19, 2000 entitled "Novel Contigs Obtained from Various Libraries", Attorney Docket No. 789CIP which in turn is a 20 continuation-in-part application of U.S. Application Serial No. 09/519,705 filed March 07, 2000 entitled "Novel Contigs Obtained from Various Libraries", Attorney Docket No. 789; U.S. Application Serial No. 09/649,167 filed August 23, 2000 entitled "Novel Contigs Obtained from Various Libraries", Attorney Docket No. 790CIP, which in turn is a continuation-in-part application of U.S. Application Serial No. 09/540,217 filed March 31, 25 2000 entitled "Novel Contigs Obtained from Various Libraries", Attorney Docket No. 790; U.S. Application Serial No. 09/770,160 filed January 26, 2001 entitled "Novel Contigs Obtained from Various Libraries", Attorney Docket No. 791CIP, which is in turn a continuation-in-part application of U.S. Application Serial No. 09/552,929 filed April 18, 2000 entitled "Novel Contigs Obtained from Various Libraries", Attorney Docket No. 791; 30 and U.S. Application Serial No. 09/577,408 filed May 18, 2000 entitled "Novel Contigs Obtained from Various Libraries", Attorney Docket No. 792; all of which are incorporated herein by reference in their entirety.

WO 03/080795 PCT/U

2. BACKGROUND OF THE INVENTION

2.1 TECHNICAL FIELD

5

10

15

20

30

The present invention provides novel polynucleotides and proteins encoded by such polynucleotides, along with uses for these polynucleotides and proteins, for example in therapeutic, diagnostic and research methods.

2

2.2 BACKGROUND

Technology aimed at the discovery of protein factors (including e.g., cytokines, such as lymphokines, interferons, circulating soluble factors, chemokines, and interleukins) has matured rapidly over the past decade. The now routine hybridization cloning and expression cloning techniques clone novel polynucleotides "directly" in the sense that they rely on information directly related to the discovered protein (i.e., partial DNA/amino acid sequence of the protein in the case of hybridization cloning; activity of the protein in the case of expression cloning). More recent "indirect" cloning techniques such as signal sequence cloning, which isolates DNA sequences based on the presence of a now well-recognized secretory leader sequence motif, as well as various PCR-based or low stringency hybridization-based cloning techniques, have advanced the state of the art by making available large numbers of DNA/amino acid sequences for proteins that are known to have biological activity, for example, by virtue of their secreted nature in the case of leader sequence cloning, by virtue of their cell or tissue source in the case of PCR-based techniques, or by virtue of structural similarity to other genes of known biological activity.

Identified polynucleotide and polypeptide sequences have numerous applications in,
for example, diagnostics, forensics, gene mapping; identification of mutations responsible
for genetic disorders or other traits, to assess biodiversity, and to produce many other types
of data and products dependent on DNA and amino acid sequences.

3. SUMMARY OF THE INVENTION

The compositions of the present invention include novel isolated polypeptides, novel isolated polynucleotides encoding such polypeptides, including recombinant DNA molecules, cloned genes or degenerate variants thereof, especially naturally occurring variants such as allelic variants, antisense polynucleotide molecules, and antibodies that specifically recognize

10

15

20

25

30

one or more epitopes present on such polypeptides, as well as hybridomas producing such antibodies.

The compositions of the present invention additionally include vectors, including expression vectors, containing the polynucleotides of the invention, cells genetically engineered to contain such polynucleotides and cells genetically engineered to express such polynucleotides.

The present invention relates to a collection or library of at least one novel nucleic acid sequence assembled from expressed sequence tags (ESTs) isolated mainly by sequencing by hybridization (SBH), and in some cases, sequences obtained from one or more public databases. The invention relates also to the proteins encoded by such polynucleotides, along with therapeutic, diagnostic and research utilities for these polynucleotides and proteins. These nucleic acid sequences are designated as SEQ ID NO: 1-1041, or 2083-2534 and are provided in the Sequence Listing. In the nucleic acids provided in the Sequence Listing, A is adenine; C is cytosine; G is guanine; T is thymine; and N is any of the four bases or unknown. In the amino acids provided in the Sequence Listing, * corresponds to the stop codon.

The nucleic acid sequences of the present invention also include, nucleic acid sequences that hybridize to the complement of SEQ ID NO: 1-1041, or 2083-2534 under stringent hybridization conditions; nucleic acid sequences which are allelic variants or species homologues of any of the nucleic acid sequences recited above, or nucleic acid sequences that encode a peptide comprising a specific domain or truncation of the peptides encoded by SEQ ID NO: 1-1041, or 2083-2534. A polynucleotide comprising a nucleotide sequence having at least 90% identity to an identifying sequence of SEQ ID NO: 1-1041, or 2083-2534 or a degenerate variant or fragment thereof. The identifying sequence can be 100 base pairs in length.

The nucleic acid sequences of the present invention also include the sequence information from the nucleic acid sequences of SEQ ID NO: 1-1041, or 2083-2534. The sequence information can be a segment of any one of SEQ ID NO: 1-1041, or 2083-2534 that uniquely identifies or represents the sequence information of SEQ ID NO: 1-1041, or 2083-2534.

A collection as used in this application can be a collection of only one polynucleotide. The collection of sequence information or identifying information of each sequence can be provided on a nucleic acid array. In one embodiment, segments of sequence information are provided on a nucleic acid array to detect the polynucleotide that contains the segment. The

10

15

20

25

30

array can be designed to detect full-match or mismatch to the polynucleotide that contains the segment. The collection can also be provided in a computer-readable format.

This invention also includes the reverse or direct complement of any of the nucleic acid sequences recited above; cloning or expression vectors containing the nucleic acid sequences; and host cells or organisms transformed with these expression vectors. Nucleic acid sequences (or their reverse or direct complements) according to the invention have numerous applications in a variety of techniques known to those skilled in the art of molecular biology, such as use as hybridization probes, use as primers for PCR, use in an array, use in computer-readable media, use in sequencing full-length genes, use for chromosome and gene mapping, use in the recombinant production of protein, and use in the generation of anti-sense DNA or RNA, their chemical analogs and the like.

In a preferred embodiment, the nucleic acid sequences of SEQ ID NO: 1-1041, or 2083-2534 or novel segments or parts of the nucleic acids of the invention are used as primers in expression assays that are well known in the art. In a particularly preferred embodiment, the nucleic acid sequences of SEQ ID NO: 1-1041, or 2083-2534 or novel segments or parts of the nucleic acids provided herein are used in diagnostics for identifying expressed genes or, as well known in the art and exemplified by Vollrath et al., Science 258:52-59 (1992), as expressed sequence tags for physical mapping of the human genome.

The isolated polynucleotides of the invention include, but are not limited to, a polynucleotide comprising any one of the nucleotide sequences set forth in SEQ ID NO: 1-1041, or 2083-2534; a polynucleotide comprising any of the full length protein coding sequences of SEQ ID NO: 1-1041, or 2083-2534; and a polynucleotide comprising any of the nucleotide sequences of the mature protein coding sequences of SEQ ID NO: 1-1041, or 2083-2534. The polynucleotides of the present invention also include, but are not limited to, a polynucleotide that hybridizes under stringent hybridization conditions to (a) the complement of any one of the nucleotide sequences set forth in SEQ ID NO: 1-1041, or 2083-2534; (b) a nucleotide sequence encoding any one of the amino acid sequences set forth in SEQ ID NO: 1-1041, or 2083-2534; (c) a polynucleotide which is an allelic variant of any polynucleotides recited above; (d) a polynucleotide which encodes a species homolog (e.g. orthologs) of any of the proteins recited above; or (e) a polynucleotide that encodes a polypeptide comprising a specific domain or truncation of any of the polypeptides comprising an amino acid sequence set forth in SEQ ID NO: 1042-2082, or 2535-2986, or Tables 3, 5, 6, or 8.

10

15

20

25

30

5

The isolated polypeptides of the invention include, but are not limited to, a polypeptide comprising any of the amino acid sequences set forth in the Sequence Listing; or the corresponding full length or mature protein. Polypeptides of the invention also include polypeptides with biological activity that are encoded by (a) any of the polynucleotides having a nucleotide sequence set forth in SEQ ID NO: 1-1041, or 2083-2534; or (b) polynucleotides that hybridize to the complement of the polynucleotides of (a) under stringent hybridization conditions. Biologically active variants of any of the polypeptide sequences in the Sequence Listing, and "substantial equivalents" thereof (e.g., with at least about 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98% or 99% amino acid sequence identity) that preferably retain biological activity are also contemplated. The polypeptides of the invention may be wholly or partially chemically synthesized but are preferably produced by recombinant means using the genetically engineered cells (e.g. host cells) of the invention.

The invention also provides compositions comprising a polypeptide of the invention. Polypeptide compositions of the invention may further comprise an acceptable carrier, such as a hydrophilic, e.g., pharmaceutically acceptable, carrier.

The invention also provides host cells transformed or transfected with a polynucleotide of the invention.

The invention also relates to methods for producing a polypeptide of the invention comprising growing a culture of the host cells of the invention in a suitable culture medium under conditions permitting expression of the desired polypeptide, and purifying the polypeptide from the culture or from the host cells. Preferred embodiments include those in which the protein produced by such processes is a mature form of the protein.

Polynucleotides according to the invention have numerous applications in a variety of techniques known to those skilled in the art of molecular biology. These techniques include use as hybridization probes, use as oligomers, or primers, for PCR, use for chromosome and gene mapping, use in the recombinant production of protein, and use in generation of anti-sense DNA or RNA, their chemical analogs and the like. For example, when the expression of an mRNA is largely restricted to a particular cell or tissue type, polynucleotides of the invention can be used as hybridization probes to detect the presence of the particular cell or tissue mRNA in a sample using, e.g., in situ hybridization.

In other exemplary embodiments, the polynucleotides are used in diagnostics as expressed sequence tags for identifying expressed genes or, as well known in the art and

10

15

20

25

30

exemplified by Vollrath et al., Science 258:52-59 (1992), as expressed sequence tags for physical mapping of the human genome.

The polypeptides according to the invention can be used in a variety of conventional procedures and methods that are currently applied to other proteins. For example, a polypeptide of the invention can be used to generate an antibody that specifically binds the polypeptide. Such antibodies, particularly monoclonal antibodies, are useful for detecting or quantitating the polypeptide in tissue. The polypeptides of the invention can also be used as molecular weight markers, and as a food supplement.

Methods are also provided for preventing, treating, or ameliorating a medical condition which comprises the step of administering to a mammalian subject a therapeutically effective amount of a composition comprising a polypeptide of the present invention and a pharmaceutically acceptable carrier.

In particular, the polypeptides and polynucleotides of the invention can be utilized, for example, in methods for the prevention and/or treatment of disorders involving aberrant protein expression or biological activity.

The present invention further relates to methods for detecting the presence of the polynucleotides or polypeptides of the invention in a sample. Such methods can, for example, be utilized as part of prognostic and diagnostic evaluation of disorders as recited herein and for the identification of subjects exhibiting a predisposition to such conditions. The invention provides a method for detecting the polynucleotides of the invention in a sample, comprising contacting the sample with a compound that binds to and forms a complex with the polynucleotide of interest for a period sufficient to form the complex and under conditions sufficient to form a complex and detecting the complex such that if a complex is detected, the polynucleotide of interest is detected. The invention also provides a method for detecting the polypeptides of the invention in a sample comprising contacting the sample with a compound that binds to and forms a complex with the polypeptide under conditions and for a period sufficient to form the complex and detecting the formation of the complex such that if a complex is formed, the polypeptide is detected.

The invention also provides kits comprising polynucleotide probes and/or monoclonal antibodies, and optionally quantitative standards, for carrying out methods of the invention. Furthermore, the invention provides methods for evaluating the efficacy of drugs, and monitoring the progress of patients, involved in clinical trials for the treatment of disorders as recited above.

PCT/US02/25485 WO 03/080795

7

The invention also provides methods for the identification of compounds that modulate (i.e., increase or decrease) the expression or activity of the polynucleotides and/or polypeptides of the invention. Such methods can be utilized, for example, for the identification of compounds that can ameliorate symptoms of disorders as recited herein. Such methods can include, but are not limited to, assays for identifying compounds and other substances that interact with (e.g., bind to) the polypeptides of the invention. The invention provides a method for identifying a compound that binds to the polypeptides of the invention comprising contacting the compound with a polypeptide of the invention in a cell for a time sufficient to form a polypeptide/compound complex, wherein the complex drives expression of a reporter gene sequence in the cell; and detecting the complex by detecting the reporter gene sequence expression such that if expression of the reporter gene is detected the compound that binds to a polypeptide of the invention is identified.

The methods of the invention also provide methods for treatment which involve the administration of the polynucleotides or polypeptides of the invention to individuals exhibiting symptoms or tendencies. In addition, the invention encompasses methods for treating diseases or disorders as recited herein comprising administering compounds and other substances that modulate the overall activity of the target gene products. Compounds and other substances can affect such modulation either on the level of target gene/protein expression or target protein activity.

The polypeptides of the present invention and the polynucleotides encoding them are also useful for the same functions known to one of skill in the art as the polypeptides and polynucleotides to which they have homology (set forth in Table 2); for which they have a signature region (as set forth in Table 3); or for which they have homology to a gene family (as set forth in Table 4). If no homology is set forth for a sequence, then the polypeptides and polynucleotides of the present invention are useful for a variety of applications, as described herein, including use in arrays for detection.

4. DETAILED DESCRIPTION OF THE INVENTION

4.1 DEFINITIONS

5

10

15

20

25

30

It must be noted that as used herein and in the appended claims, the singular forms "a", "an" and "the" include plural references unless the context clearly dictates otherwise.

WO 03/080795 PCT/US02/25485

8

The term "active" refers to those forms of the polypeptide which retain the biologic and/or immunologic activities of any naturally occurring polypeptide. According to the invention, the terms "biologically active" or "biological activity" refer to a protein or peptide having structural, regulatory or biochemical functions of a naturally occurring molecule. Likewise "immunologically active" or "immunological activity" refers to the capability of the natural, recombinant or synthetic polypeptide to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

The term "activated cells" as used in this application are those cells which are engaged in extracellular or intracellular membrane trafficking, including the export of secretory or enzymatic molecules as part of a normal or disease process.

10

15

20

25

30

The terms "complementary" or "complementarity" refer to the natural binding of polynucleotides by base pairing. For example, the sequence 5'-AGT-3' binds to the complementary sequence 3'-TCA-5'. Complementarity between two single-stranded molecules may be "partial" such that only certain portion(s) of the nucleic acids bind or it may be "complete" such that total complementarity exists between the single stranded molecules. The degree of complementarity between the nucleic acid strands has significant effects on the efficiency and strength of the hybridization between the nucleic acid strands.

The term "embryonic stem cells (ES)" refers to a cell that can give rise to many differentiated cell types in an embryo or an adult, including the germ cells. The term "germ line stem cells (GSCs)" refers to stem cells derived from primordial stem cells that provide a steady and continuous source of germ cells for the production of gametes. The term "primordial germ cells (PGCs)" refers to a small population of cells set aside from other cell lineages particularly from the yolk sac, mesenteries, or gonadal ridges during embryogenesis that have the potential to differentiate into germ cells and other cells. PGCs are the source from which GSCs and ES cells are derived. The PGCs, the GSCs and the ES cells are capable of self-renewal. Thus these cells not only populate the germ line and give rise to a plurality of terminally differentiated cells that comprise the adult specialized organs, but are able to regenerate themselves.

The term "expression modulating fragment," EMF, means a series of nucleotides which modulates the expression of an operably linked ORF or another EMF.

As used herein, a sequence is said to "modulate the expression of an operably linked sequence" when the expression of the sequence is altered by the presence of the EMF. EMFs include, but are not limited to, promoters, and promoter modulating sequences

PCT/US02/25485 WO 03/080795

9

(inducible elements). One class of EMFs are nucleic acid fragments which induce the expression of an operably linked ORF in response to a specific regulatory factor or physiological event.

5

10

15

20

25

30

The terms "nucleotide sequence" or "nucleic acid" or "polynucleotide" or "oligonucleotide" are used interchangeably and refer to a heteropolymer of nucleotides or the sequence of these nucleotides. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA) or to any DNA-like or RNA-like material. In the sequences herein A is adenine, C is cytosine, T is thymine, G is guanine and N is A, C, G, or T (U) or unknown. It is contemplated that where the polynucleotide is RNA, the T (thymine) in the sequences provided herein is substituted with U (uracil). Generally, nucleic acid segments provided by this invention may be assembled from fragments of the genome and short oligonucleotide linkers, or from a series of oligonucleotides, or from individual nucleotides, to provide a synthetic nucleic acid which is capable of being expressed in a recombinant transcriptional unit comprising regulatory elements derived from a microbial or viral operon, or a eukaryotic gene.

The terms "oligonucleotide fragment" or a "polynucleotide fragment", "portion," or "segment" or "probe" or "primer" are used interchangeably and refer to a sequence of nucleotide residues which are at least about 5 nucleotides, more preferably at least about 7 nucleotides, more preferably at least about 9 nucleotides, more preferably at least about 11 nucleotides and most preferably at least about 17 nucleotides. The fragment is preferably less than about 500 nucleotides, preferably less than about 200 nucleotides, more preferably less than about 100 nucleotides, more preferably less than about 50 nucleotides and most preferably less than 30 nucleotides. Preferably the probe is from about 6 nucleotides to about 200 nucleotides, preferably from about 15 to about 50 nucleotides, more preferably from about 17 to 30 nucleotides and most preferably from about 20 to 25 nucleotides. Preferably the fragments can be used in polymerase chain reaction (PCR), various hybridization procedures or microarray procedures to identify or amplify identical or related parts of mRNA or DNA molecules. A fragment or segment may uniquely identify each polynucleotide sequence of the present invention. Preferably the fragment comprises a sequence substantially similar to any one of SEQ ID NO: 1-1041, or 2083-2534.

Probes may, for example, be used to determine whether specific mRNA molecules are present in a cell or tissue or to isolate similar nucleic acid sequences from chromosomal

10

15

20

25

30

DNA as described by Walsh et al. (Walsh, P.S. et al., 1992, PCR Methods Appl 1:241-250). They may be labeled by nick translation, Klenow fill-in reaction, PCR, or other methods well known in the art. Probes of the present invention, their preparation and/or labeling are elaborated in Sambrook, J. et al., 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, NY; or Ausubel, F.M. et al., 1989, Current Protocols in Molecular Biology, John Wiley & Sons, New York NY, both of which are incorporated herein by reference in their entirety.

The nucleic acid sequences of the present invention also include the sequence information from the nucleic acid sequences of SEQ ID NO: 1-1041, or 2083-2534. The sequence information can be a segment of any one of SEQ ID NO: 1-1041, or 2083-2534 that uniquely identifies or represents the sequence information of that sequence of SEQ ID NO: 1-1041, or 2083-2534, or those segments identified in Tables 3, 5, 6, and 8. One such segment can be a twenty-mer nucleic acid sequence because the probability that a twenty-mer is fully matched in the human genome is 1 in 300. In the human genome, there are three billion base pairs in one set of chromosomes. Because 4²⁰ possible twenty-mers exist, there are 300 times more twenty-mers than there are base pairs in a set of human chromosomes. Using the same analysis, the probability for a seventeen-mer to be fully matched in the human genome is approximately 1 in 5. When these segments are used in arrays for expression studies, fifteen-mer segments can be used. The probability that the fifteen-mer is fully matched in the expressed sequences is also approximately one in five because expressed sequences comprise less than approximately 5% of the entire genome sequence.

Similarly, when using sequence information for detecting a single mismatch, a segment can be a twenty-five mer. The probability that the twenty-five mer would appear in a human genome with a single mismatch is calculated by multiplying the probability for a full match $(1 \div 4^{25})$ times the increased probability for mismatch at each nucleotide position (3 x 25). The probability that an eighteen mer with a single mismatch can be detected in an array for expression studies is approximately one in five. The probability that a twenty-mer with a single mismatch can be detected in a human genome is approximately one in five.

The term "open reading frame," ORF, means a series of nucleotide triplets coding for amino acids without any termination codons and is a sequence translatable into protein.

The terms "operably linked" or "operably associated" refer to functionally related nucleic acid sequences. For example, a promoter is operably associated or operably linked with a coding sequence if the promoter controls the transcription of the coding sequence.

10

15

20

25

While operably linked nucleic acid sequences can be contiguous and in the same reading frame, certain genetic elements e.g. repressor genes are not contiguously linked to the coding sequence but still control transcription/translation of the coding sequence.

The term "pluripotent" refers to the capability of a cell to differentiate into a number of differentiated cell types that are present in an adult organism. A pluripotent cell is restricted in its differentiation capability in comparison to a totipotent cell.

The terms "polypeptide" or "peptide" or "amino acid sequence" refer to an oligopeptide, peptide, polypeptide or protein sequence or fragment thereof and to naturally occurring or synthetic molecules. A polypeptide "fragment," "portion," or "segment" is a stretch of amino acid residues of at least about 5 amino acids, preferably at least about 7 amino acids, more preferably at least about 9 amino acids and most preferably at least about 17 or more amino acids. The peptide preferably is not greater than about 200 amino acids, more preferably less than 150 amino acids and most preferably less than 100 amino acids. Preferably the peptide is from about 5 to about 200 amino acids. To be active, any polypeptide must have sufficient length to display biological and/or immunological activity.

The term "naturally occurring polypeptide" refers to polypeptides produced by cells that have not been genetically engineered and specifically contemplates various polypeptides arising from post-translational modifications of the polypeptide including, but not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation and acylation.

The term "translated protein coding portion" means a sequence which encodes for the full-length protein which may include any leader sequence or any processing sequence.

The term "mature protein coding sequence" means a sequence which encodes a peptide or protein without a signal or leader sequence. The "mature protein portion" means that portion of the protein which does not include a signal or leader sequence. The peptide may have been produced by processing in the cell which removes any leader/signal sequence. The mature protein portion may or may not include the initial methionine residue. The methionine residue may be removed from the protein during processing in the cell. The peptide may be produced synthetically or the protein may have been produced using a polynucleotide only encoding for the mature protein coding sequence.

The term "derivative" refers to polypeptides chemically modified by such techniques as ubiquitination, labeling (e.g., with radionuclides or various enzymes), covalent polymer attachment such as pegylation (derivatization with polyethylene glycol) and insertion or

10

15

20

25

30

substitution by chemical synthesis of amino acids such as ornithine, which do not normally occur in human proteins.

The term "variant" (or "analog") refers to any polypeptide differing from naturally occurring polypeptides by amino acid insertions, deletions, and substitutions, created using, e.g., recombinant DNA techniques. Guidance in determining which amino acid residues may be replaced, added or deleted without abolishing activities of interest, may be found by comparing the sequence of the particular polypeptide with that of homologous peptides and minimizing the number of amino acid sequence changes made in regions of high homology (conserved regions) or by replacing amino acids with consensus sequence.

Alternatively, recombinant variants encoding these same or similar polypeptides may be synthesized or selected by making use of the "redundancy" in the genetic code. Various codon substitutions, such as the silent changes which produce various restriction sites, may be introduced to optimize cloning into a plasmid or viral vector or expression in a particular prokaryotic or eukaryotic system. Mutations in the polynucleotide sequence may be reflected in the polypeptide or domains of other peptides added to the polypeptide to modify the properties of any part of the polypeptide, to change characteristics such as ligand-binding affinities, interchain affinities, or degradation/turnover rate.

Preferably, amino acid "substitutions" are the result of replacing one amino acid with another amino acid having similar structural and/or chemical properties, *i.e.*, conservative amino acid replacements. "Conservative" amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues involved. For example, nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine; polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine; positively charged (basic) amino acids include arginine, lysine, and histidine; and negatively charged (acidic) amino acids include aspartic acid and glutamic acid. "Insertions" or "deletions" are preferably in the range of about 1 to 20 amino acids, more preferably 1 to 10 amino acids. The variation allowed may be experimentally determined by systematically making insertions, deletions, or substitutions of amino acids in a polypeptide molecule using recombinant DNA techniques and assaying the resulting recombinant variants for activity.

Alternatively, where alteration of function is desired, insertions, deletions or non-conservative alterations can be engineered to produce altered polypeptides. Such

10

15

20

25

30

alterations can, for example, alter one or more of the biological functions or biochemical characteristics of the polypeptides of the invention. For example, such alterations may change polypeptide characteristics such as ligand-binding affinities, interchain affinities, or degradation/turnover rate. Further, such alterations can be selected so as to generate polypeptides that are better suited for expression, scale up and the like in the host cells chosen for expression. For example, cysteine residues can be deleted or substituted with another amino acid residue in order to eliminate disulfide bridges.

The terms "purified" or "substantially purified" as used herein denotes that the indicated nucleic acid or polypeptide is present in the substantial absence of other biological macromolecules, e.g., polynucleotides, proteins, and the like. In one embodiment, the polynucleotide or polypeptide is purified such that it constitutes at least 95% by weight, more preferably at least 99% by weight, of the indicated biological macromolecules present (but water, buffers, and other small molecules, especially molecules having a molecular weight of less than 1000 daltons, can be present).

The term "isolated" as used herein refers to a nucleic acid or polypeptide separated from at least one other component (e.g., nucleic acid or polypeptide) present with the nucleic acid or polypeptide in its natural source. In one embodiment, the nucleic acid or polypeptide is found in the presence of (if anything) only a solvent, buffer, ion, or other component normally present in a solution of the same. The terms "isolated" and "purified" do not encompass nucleic acids or polypeptides present in their natural source.

The term "recombinant," when used herein to refer to a polypeptide or protein, means that a polypeptide or protein is derived from recombinant (e.g., microbial, insect, or mammalian) expression systems. "Microbial" refers to recombinant polypeptides or proteins made in bacterial or fungal (e.g., yeast) expression systems. As a product, "recombinant microbial" defines a polypeptide or protein essentially free of native endogenous substances and unaccompanied by associated native glycosylation. Polypeptides or proteins expressed in most bacterial cultures, e.g., E. coli, will be free of glycosylation modifications; polypeptides or proteins expressed in yeast will have a glycosylation pattern in general different from those expressed in mammalian cells.

The term "recombinant expression vehicle or vector" refers to a plasmid or phage or virus or vector, for expressing a polypeptide from a DNA (RNA) sequence. An expression vehicle can comprise a transcriptional unit comprising an assembly of (1) a genetic element or elements having a regulatory role in gene expression, for example, promoters or

WO 03/080795

enhancers, (2) a structural or coding sequence which is transcribed into mRNA and translated into protein, and (3) appropriate transcription initiation and termination sequences. Structural units intended for use in yeast or eukaryotic expression systems preferably include a leader sequence enabling extracellular secretion of translated protein by a host cell.

14

Alternatively, where recombinant protein is expressed without a leader or transport sequence, it may include an amino terminal methionine residue. This residue may or may not be subsequently cleaved from the expressed recombinant protein to provide a final product.

10

15

20

25

30

The term "recombinant expression system" means host cells which have stably integrated a recombinant transcriptional unit into chromosomal DNA or carry the recombinant transcriptional unit extrachromosomally. Recombinant expression systems as defined herein will express heterologous polypeptides or proteins upon induction of the regulatory elements linked to the DNA segment or synthetic gene to be expressed. This term also means host cells which have stably integrated a recombinant genetic element or elements having a regulatory role in gene expression, for example, promoters or enhancers. Recombinant expression systems as defined herein will express polypeptides or proteins endogenous to the cell upon induction of the regulatory elements linked to the endogenous DNA segment or gene to be expressed. The cells can be prokaryotic or eukaryotic.

The term "secreted" includes a protein that is transported across or through a membrane, including transport as a result of signal sequences in its amino acid sequence when it is expressed in a suitable host cell. "Secreted" proteins include without limitation proteins secreted wholly (e.g., soluble proteins) or partially (e.g., receptors) from the cell in which they are expressed. "Secreted" proteins also include without limitation proteins that are transported across the membrane of the endoplasmic reticulum. "Secreted" proteins are also intended to include proteins containing non-typical signal sequences (e.g. Interleukin-1 Beta, see Krasney, P.A. and Young, P.R. (1992) Cytokine 4(2): 134-143) and factors released from damaged cells (e.g. Interleukin-1 Receptor Antagonist, see Arend, W.P. et. al. (1998) Annu. Rev. Immunol. 16:27-55)

Where desired, an expression vector may be designed to contain a "signal or leader sequence" which will direct the polypeptide through the membrane of a cell. Such a sequence may be naturally present on the polypeptides of the present invention or provided from heterologous protein sources by recombinant DNA techniques.

10

15

20

25

30

The term "stringent" is used to refer to conditions that are commonly understood in the art as stringent. Stringent conditions can include highly stringent conditions (i.e., hybridization to filter-bound DNA in 0.5 M NaHPO₄, 7% sodium dodecyl sulfate (SDS), 1 mM EDTA at 65°C, and washing in 0.1X SSC/0.1% SDS at 68°C), and moderately stringent conditions (i.e., washing in 0.2X SSC/0.1% SDS at 42°C). Other exemplary hybridization conditions are described herein in the examples.

In instances of hybridization of deoxyoligonucleotides, additional exemplary stringent hybridization conditions include washing in 6X SSC/0.05% sodium pyrophosphate at 37°C (for 14-base oligonucleotides), 48°C (for 17-base oligonucleotides), 55°C (for 20-base oligonucleotides), and 60°C (for 23-base oligonucleotides).

As used herein, "substantially equivalent" or "substantially similar" can refer both to nucleotide and amino acid sequences, for example a mutant sequence, that varies from a reference sequence by one or more substitutions, deletions, or additions, the net effect of which does not result in an adverse functional dissimilarity between the reference and subject sequences. Typically, such a substantially equivalent sequence varies from one of those listed herein by no more than about 35% (i.e., the number of individual residue substitutions, additions, and/or deletions in a substantially equivalent sequence, as compared to the corresponding reference sequence, divided by the total number of residues in the substantially equivalent sequence is about 0.35 or less). Such a sequence is said to have 65% sequence identity to the listed sequence. In one embodiment, a substantially equivalent, e.g., mutant, sequence of the invention varies from a listed sequence by no more than 30% (70% sequence identity); in a variation of this embodiment, by no more than 25% (75% sequence identity); and in a further variation of this embodiment, by no more than 20% (80% sequence identity) and in a further variation of this embodiment, by no more than 10% (90% sequence identity) and in a further variation of this embodiment, by no more that 5% (95% sequence identity). Substantially equivalent, e.g., mutant, amino acid sequences according to the invention preferably have at least 80% sequence identity with a listed amino acid sequence, more preferably at least 85% sequence identity, more preferably at least 90% sequence identity, more preferably at least 95% sequence identity, more preferably at least 98% sequence identity, and most preferably at least 99% sequence identity. Substantially equivalent nucleotide sequence of the invention can have lower percent sequence identities, taking into account, for example, the redundancy or degeneracy of the genetic code. Preferably, the nucleotide sequence has at least about 65% identity, more preferably at least

WO 03/080795

16

about 75% identity, more preferably at least about 80% sequence identity, more preferably at least 85% sequence identity, more preferably at least 90% sequence identity, more preferably at least about 95% sequence identity, more preferably at least 98% sequence identity, and most preferably at least 99% sequence identity. For the purposes of the present invention, sequences having substantially equivalent biological activity and substantially equivalent expression characteristics are considered substantially equivalent. For the purposes of determining equivalence, truncation of the mature sequence (e.g., via a mutation which creates a new stop codon) should be disregarded. Sequence identity may be determined, e.g., using the Jotun Hein method (Hein, J. (1990) Methods Enzymol. 183:626-645). Identity between sequences can also be determined by other methods known in the art, e.g. by varying hybridization conditions.

The term "totipotent" refers to the capability of a cell to differentiate into all of the cell types of an adult organism.

The term "transformation" means introducing DNA into a suitable host cell so that the DNA is replicable, either as an extrachromosomal element, or by chromosomal integration. The term "transfection" refers to the taking up of an expression vector by a suitable host cell, whether or not any coding sequences are in fact expressed. The term "infection" refers to the introduction of nucleic acids into a suitable host cell by use of a virus or viral vector.

As used herein, an "uptake modulating fragment," UMF, means a series of nucleotides which mediate the uptake of a linked DNA fragment into a cell. UMFs can be readily identified using known UMFs as a target sequence or target motif with the computer-based systems described below. The presence and activity of a UMF can be confirmed by attaching the suspected UMF to a marker sequence. The resulting nucleic acid molecule is then incubated with an appropriate host under appropriate conditions and the uptake of the marker sequence is determined. As described above, a UMF will increase the frequency of uptake of a linked marker sequence.

Each of the above terms is meant to encompass all that is described for each, unless the context dictates otherwise.

4.2 NUCLEIC ACIDS OF THE INVENTION

Nucleotide sequences of the invention are set forth in the Sequence Listing.

25

5

10

15

20

10

15

20

25

30

The isolated polynucleotides of the invention include a polynucleotide comprising the nucleotide sequences of SEQ ID NO: 1-1041, or 2083-2534; a polynucleotide encoding any one of the peptide sequences of SEQ ID NO: 1-1041, or 2083-2534; and a polynucleotide comprising the nucleotide sequence encoding the mature protein coding sequence of the polynucleotides of any one of SEQ ID NO: 1-1041, or 2083-2534. The polynucleotides of the present invention also include, but are not limited to, a polynucleotide that hybridizes under stringent conditions to (a) the complement of any of the nucleotides sequences of SEQ ID NO: 1-1041, or 2083-2534; (b) nucleotide sequences encoding any one of the amino acid sequences set forth in the Sequence Listing, or Table 8; (c) a polynucleotide which is an allelic variant of any polynucleotide recited above; (d) a polynucleotide which encodes a species homolog of any of the proteins recited above; or (e) a polynucleotide that encodes a polypeptide comprising a specific domain or truncation of the polypeptides of SEQ ID NO: 1042-2082, or 2535-2986 (for example, as set forth in Tables 3, 5, 6, or 8). Domains of interest may depend on the nature of the encoded polypeptide; e.g., domains in receptor-like polypeptides include ligand-binding, extracellular, transmembrane, or cytoplasmic domains, or combinations thereof; domains in immunoglobulin-like proteins include the variable immunoglobulin-like domains; domains in enzyme-like polypeptides include catalytic and substrate binding domains; and domains in ligand polypeptides include receptor-binding domains.

The polynucleotides of the invention include naturally occurring or wholly or partially synthetic DNA, e.g., cDNA and genomic DNA, and RNA, e.g., mRNA. The polynucleotides may include entire coding region of the cDNA or may represent a portion of the coding region of the cDNA.

The present invention also provides genes corresponding to the cDNA sequences disclosed herein. The corresponding genes can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include the preparation of probes or primers from the disclosed sequence information for identification and/or amplification of genes in appropriate genomic libraries or other sources of genomic materials. Further 5' and 3' sequence can be obtained using methods known in the art. For example, full length cDNA or genomic DNA that corresponds to any of the polynucleotides of SEQ ID NO: 1-1041, or 2083-2534 can be obtained by screening appropriate cDNA or genomic DNA libraries under suitable hybridization conditions using any of the polynucleotides of SEQ ID NO: 1-1041, or 2083-2534 or a portion thereof as a probe. Alternatively, the polynucleotides of

10

15

20

25

30

SEQ ID NO: 1-1041, or 2083-2534 may be used as the basis for suitable primer(s) that allow identification and/or amplification of genes in appropriate genomic DNA or cDNA libraries.

The nucleic acid sequences of the invention can be assembled from ESTs and sequences (including cDNA and genomic sequences) obtained from one or more public databases, such as dbEST, gbpri, and UniGene. The EST sequences can provide identifying sequence information, representative fragment or segment information, or novel segment information for the full-length gene.

The polynucleotides of the invention also provide polynucleotides including nucleotide sequences that are substantially equivalent to the polynucleotides recited above. Polynucleotides according to the invention can have, e.g., at least about 65%, at least about 70%, at least about 75%, at least about 80%, 81%, 82%, 83%, 84%, more typically at least about 85%, 86%, 87%, 88%, 89%, more typically at least about 90%, 91%, 92%, 93%, 94%, and even more typically at least about 95%, 96%, 97%, 98%, 99% sequence identity to a polynucleotide recited above.

Included within the scope of the nucleic acid sequences of the invention are nucleic acid sequence fragments that hybridize under stringent conditions to any of the nucleotide sequences of SEQ ID NO: 1-1041, or 2083-2534, or complements thereof, which fragment is greater than about 5 nucleotides, preferably 7 nucleotides, more preferably greater than 9 nucleotides and most preferably greater than 17 nucleotides. Fragments of, e.g. 15, 17, or 20 nucleotides or more that are selective for (i.e. specifically hybridize to) any one of the polynucleotides of the invention are contemplated. Probes capable of specifically hybridizing to a polynucleotide can differentiate polynucleotide sequences of the invention from other polynucleotide sequences in the same family of genes or can differentiate human genes from genes of other species, and are preferably based on unique nucleotide sequences.

The sequences falling within the scope of the present invention are not limited to these specific sequences, but also include allelic and species variations thereof. Allelic and species variations can be routinely determined by comparing the sequence provided in SEQ ID NO: 1-1041, or 2083-2534, a representative fragment thereof, or a nucleotide sequence at least 90% identical, preferably 95% identical, to SEQ ID NO: 1-1041, or 2083-2534 with a sequence from another isolate of the same species. Furthermore, to accommodate codon variability, the invention includes nucleic acid molecules coding for the same amino acid sequences as do the specific ORFs disclosed herein. In other words, in the coding region of an ORF, substitution of one codon for another codon that encodes the same amino acid is expressly contemplated.

10

15

20

25

30

The nearest neighbor or homology results for the nucleic acids of the present invention, including SEQ ID NO: 1-1041, or 2083-2534 can be obtained by searching a database using an algorithm or a program. Preferably, a BLAST (Basic Local Alignment Search Tool) program is used to search for local sequence alignments (Altshul, S.F. J Mol. Evol. 36 290-300 (1993) and Altschul S.F. et al. J. Mol. Biol. 21:403-410 (1990)). Alternatively a FASTA version 3 search against Genpept, using FASTXY algorithm may be performed.

Species homologs (or orthologs) of the disclosed polynucleotides and proteins are also provided by the present invention. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source from the desired species.

The invention also encompasses allelic variants of the disclosed polynucleotides or proteins; that is, naturally-occurring alternative forms of the isolated polynucleotide which also encode proteins which are identical, homologous or related to that encoded by the polynucleotides.

The nucleic acid sequences of the invention are further directed to sequences which encode variants of the described nucleic acids. These amino acid sequence variants may be prepared by methods known in the art by introducing appropriate nucleotide changes into a native or variant polynucleotide. There are two variables in the construction of amino acid sequence variants: the location of the mutation and the nature of the mutation. Nucleic acids encoding the amino acid sequence variants are preferably constructed by mutating the polynucleotide to encode an amino acid sequence that does not occur in nature. These nucleic acid alterations can be made at sites that differ in the nucleic acids from different species (variable positions) or in highly conserved regions (constant regions). Sites at such locations will typically be modified in series, e.g., by substituting first with conservative choices (e.g., hydrophobic amino acid to a different hydrophobic amino acid) and then with more distant choices (e.g., hydrophobic amino acid to a charged amino acid), and then deletions or insertions may be made at the target site. Amino acid sequence deletions generally range from about 1 to 30 residues, preferably about 1 to 10 residues, and are typically contiguous. Amino acid insertions include amino- and/or carboxyl-terminal fusions ranging in length from one to one hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues. Intrasequence insertions may range generally from about 1 to 10 amino residues, preferably from 1 to 5 residues. Examples of terminal insertions include the heterologous signal sequences necessary for secretion or for

WO 03/080795 PCT/US02/25485

intracellular targeting in different host cells and sequences such as FLAG or poly-histidine sequences useful for purifying the expressed protein.

5

10

15

20

25

30

In a preferred method, polynucleotides encoding the novel amino acid sequences are changed via site-directed mutagenesis. This method uses oligonucleotide sequences to alter a polynucleotide to encode the desired amino acid variant, as well as sufficient adjacent nucleotides on both sides of the changed amino acid to form a stable duplex on either side of the site of being changed. In general, the techniques of site-directed mutagenesis are well known to those of skill in the art and this technique is exemplified by publications such as, Edelman et al., DNA 2:183 (1983). A versatile and efficient method for producing site-specific changes in a polynucleotide sequence was published by Zoller and Smith, Nucleic Acids Res. 10:6487-6500 (1982). PCR may also be used to create amino acid sequence variants of the novel nucleic acids. When small amounts of template DNA are used as starting material, primer(s) that differs slightly in sequence from the corresponding region in the template DNA can generate the desired amino acid variant. PCR amplification results in a population of product DNA fragments that differ from the polynucleotide template encoding the polypeptide at the position specified by the primer. The product DNA fragments replace the corresponding region in the plasmid and this gives a polynucleotide encoding the desired amino acid variant.

A further technique for generating amino acid variants is the cassette mutagenesis technique described in Wells et al., *Gene* 34:315 (1985); and other mutagenesis techniques well known in the art, such as, for example, the techniques in Sambrook et al., supra, and *Current Protocols in Molecular Biology*, Ausubel et al. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be used in the practice of the invention for the cloning and expression of these novel nucleic acids. Such DNA sequences include those which are capable of hybridizing to the appropriate novel nucleic acid sequence under stringent conditions.

Polynucleotides encoding preferred polypeptide truncations of the invention could be used to generate polynucleotides encoding chimeric or fusion proteins comprising one or more domains of the invention and heterologous protein sequences.

The polynucleotides of the invention additionally include the complement of any of the polynucleotides recited above. The polynucleotide can be DNA (genomic, cDNA, amplified, or synthetic) or RNA. Methods and algorithms for obtaining such

10

15

20

25

polynucleotides are well known to those of skill in the art and can include, for example, methods for determining hybridization conditions that can routinely isolate polynucleotides of the desired sequence identities.

In accordance with the invention, polynucleotide sequences comprising the mature protein coding sequences corresponding to any one of SEQ ID NO: 1-1041, or 2083-2534, or functional equivalents thereof, may be used to generate recombinant DNA molecules that direct the expression of that nucleic acid, or a functional equivalent thereof, in appropriate host cells. Also included are the cDNA inserts of any of the clones identified herein.

A polynucleotide according to the invention can be joined to any of a variety of other nucleotide sequences by well-established recombinant DNA techniques (see Sambrook J et al. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, NY). Useful nucleotide sequences for joining to polynucleotides include an assortment of vectors, e.g., plasmids, cosmids, lambda phage derivatives, phagemids, and the like, that are well known in the art. Accordingly, the invention also provides a vector including a polynucleotide of the invention and a host cell containing the polynucleotide. In general, the vector contains an origin of replication functional in at least one organism, convenient restriction endonuclease sites, and a selectable marker for the host cell. Vectors according to the invention include expression vectors, replication vectors, probe generation vectors, and sequencing vectors. A host cell according to the invention can be a prokaryotic or eukaryotic cell and can be a unicellular organism or part of a multicellular organism.

The present invention further provides recombinant constructs comprising a nucleic acid having any of the nucleotide sequences of SEQ ID NO: 1-1041, or 2083-2534 or a fragment thereof or any other polynucleotides of the invention. In one embodiment, the recombinant constructs of the present invention comprise a vector, such as a plasmid or viral vector, into which a nucleic acid having any of the nucleotide sequences of SEQ ID NO: 1-1041, or 2083-2534 or a fragment thereof is inserted, in a forward or reverse orientation. In the case of a vector comprising one of the ORFs of the present invention, the vector may further comprise regulatory sequences, including for example, a promoter, operably linked to the ORF. Large numbers of suitable vectors and promoters are known to those of skill in the art and are commercially available for generating the recombinant constructs of the present invention. The following vectors are provided by way of example: Bacterial: pBs, phagescript, PsiX174, pBluescript SK, pBs KS, pNH8a, pNH16a, pNH18a, pNH46a (Stratagene), pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia); Eukaryotic:

15

20

25

30

22

pWLneo, pSV2cat, pOG44, PXTI, pSG (Stratagene) pSVK3, pBPV, pMSG, pSVL (Pharmacia).

The isolated polynucleotide of the invention may be operably linked to an expression control sequence such as the pMT2 or pED expression vectors disclosed in Kaufman et al., Nucleic Acids Res. 19, 4485-4490 (1991), in order to produce the protein recombinantly. Many suitable expression control sequences are known in the art. General methods of expressing recombinant proteins are also known and are exemplified in R. Kaufman, Methods in Enzymology 185, 537-566 (1990). As defined herein "operably linked" means that the isolated polynucleotide of the invention and an expression control sequence are situated within a vector or cell in such a way that the protein is expressed by a host cell which has been transformed (transfected) with the ligated polynucleotide/expression control sequence.

Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include lacI, lacZ, T3, T7, gpt, lambda PR, and trc. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein-I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art. Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of E. coli and S. cerevisiae TRP1 gene, and a promoter derived from a highly expressed gene to direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes such as 3phosphoglycerate kinase (PGK), a-factor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a fusion protein including an amino terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product. Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or more phenotypic

WO 03/080795 PCT/US02/25485

selectable markers and an origin of replication to ensure maintenance of the vector and to, if desirable, provide amplification within the host. Suitable prokaryotic hosts for transformation include *E. coli*, *Bacillus subtilis*, *Salmonella typhimurium* and various species within the genera *Pseudomonas*, *Streptomyces*, and *Staphylococcus*, although others may also be employed as a matter of choice.

As a representative but non-limiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM 1 (Promega Biotech, Madison, WI, USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed. Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter is induced or derepressed by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period. Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification.

Polynucleotides of the invention can also be used to induce immune responses. For example, as described in Fan et al., Nat. Biotech 17, 870-872 (1999), incorporated herein by reference, nucleic acid sequences encoding a polypeptide may be used to generate antibodies against the encoded polypeptide following topical administration of naked plasmid DNA or following injection, and preferably intra-muscular injection of the DNA. The nucleic acid sequences are preferably inserted in a recombinant expression vector and may be in the form of naked DNA.

25

30

5

10

15

20

4.3 ANTISENSE

Another aspect of the invention pertains to isolated antisense nucleic acid molecules that are hybridizable to or complementary to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO: 1-1041, or 2083-2534, or fragments, analogs or derivatives thereof. An "antisense" nucleic acid comprises a nucleotide sequence that is complementary to a "sense" nucleic acid encoding a protein, e.g., complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence. In specific aspects, antisense nucleic acid molecules are provided that comprise a

15

20

25

30

sequence complementary to at least about 10, 25, 50, 100, 250 or 500 nucleotides or an entire coding strand, or to only a portion thereof. Nucleic acid molecules encoding fragments, homologs, derivatives and analogs of a protein of any of SEQ ID NO: 1-1041, or 2083-2534 or antisense nucleic acids complementary to a nucleic acid sequence of SEQ ID NO: 1-1041, or 2083-2534 are additionally provided.

In one embodiment, an antisense nucleic acid molecule is antisense to a "coding region" of the coding strand of a nucleotide sequence of the invention. The term "coding region" refers to the region of the nucleotide sequence comprising codons which are translated into amino acid residues. In another embodiment, the antisense nucleic acid molecule is antisense to a "noncoding region" of the coding strand of a nucleotide sequence of the invention. The term "noncoding region" refers to 5' and 3' sequences that flank the coding region that are not translated into amino acids (i.e., also referred to as 5' and 3' untranslated regions).

Given the coding strand sequences encoding a nucleic acid disclosed herein (e.g., SEQ ID NO: 1-1041, or 2083-2534, antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick or Hoogsteen base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of an mRNA, but more preferably is an oligonucleotide that is antisense to only a portion of the coding or noncoding region of an mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of an mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length. An antisense nucleic acid of the invention can be constructed using chemical synthesis or enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used.

Examples of modified nucleotides that can be used to generate the antisense nucleic acid include: 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine,

15

20

25

30

1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).

The antisense nucleic acid molecules of the invention are typically administered to a subject or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a protein according to the invention to thereby inhibit expression of the protein, e.g., by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule that binds to DNA duplexes, through specific interactions in the major groove of the double helix. An example of a route of administration of antisense nucleic acid molecules of the invention includes direct injection at a tissue site. Alternatively, antisense nucleic acid molecules can be modified to target selected cells and then administered systemically. For example, for systemic administration, antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface, e.g., by linking the antisense nucleic acid molecules to peptides or antibodies that bind to cell surface receptors or antigens. The antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred.

In yet another embodiment, the antisense nucleic acid molecule of the invention is an α -anomeric nucleic acid molecule. An α -anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual α -units, the strands run parallel to each other (Gaultier *et al.* (1987) *Nucleic Acids Res* 15:

6625-6641). The antisense nucleic acid molecule can also comprise a 2'-o-methylribonucleotide (Inoue et al. (1987) Nucleic Acids Res 15: 6131-6148) or a chimeric RNA -DNA analogue (Inoue et al. (1987) FEBS Lett 215: 327-330).

4.4 RIBOZYMES AND PNA MOIETIES

5

10

20

25

30

In still another embodiment, an antisense nucleic acid of the invention is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes (described in Haselhoff and Gerlach (1988) Nature 334:585-591)) can be used to catalytically cleave mRNA transcripts to thereby inhibit translation of an mRNA. A ribozyme having specificity for a nucleic acid of the invention can be designed based upon the nucleotide sequence of a DNA disclosed herein (i.e., SEQ ID NO: 1-1041, or 2083-2534). For example, a derivative of Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a mRNA. See, e.g., Cech et al. U.S. Pat. No. 4,987,071; and Cech et al. U.S. Pat. No. 5,116,742. Alternatively, mRNA of the invention can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel et al., (1993) Science 261:1411-1418.

Alternatively, gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region (e.g., promoter and/or enhancers) to form triple helical structures that prevent transcription of the gene in target cells. See generally, Helene. (1991) Anticancer Drug Des. 6: 569-84; Helene. et al. (1992) Ann. N.Y. Acad. Sci. 660:27-36; and Maher (1992) Bioassays 14: 807-15.

In various embodiments, the nucleic acids of the invention can be modified at the base moiety, sugar moiety or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids (see Hyrup et al. (1996) Bioorg Med Chem 4: 5-23). As used herein, the terms "peptide nucleic acids" or "PNAs" refer to nucleic acid mimics, e.g., DNA mimics, in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained. The neutral backbone of PNAs has been shown to allow for specific hybridization to DNA and RNA under conditions of low ionic strength. The

synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols as described in Hyrup et al. (1996) above; Perry-O'Keefe et al. (1996) PNAS 93: 14670-675.

5

10

15

20

25

30

PNAs of the invention can be used in therapeutic and diagnostic applications. For example, PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, e.g., inducing transcription or translation arrest or inhibiting replication. PNAs of the invention can also be used, e.g., in the analysis of single base pair mutations in a gene by, e.g., PNA directed PCR clamping; as artificial restriction enzymes when used in combination with other enzymes, e.g., S1 nucleases (Hyrup B. (1996) above); or as probes or primers for DNA sequence and hybridization (Hyrup et al. (1996), above; Perry-O'Keefe (1996), above).

In another embodiment, PNAs of the invention can be modified, e.g., to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras can be generated that may combine the advantageous properties of PNA and DNA. Such chimeras allow DNA recognition enzymes, e.g., RNase H and DNA polymerases, to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity. PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleobases, and orientation (Hyrup (1996) above). The synthesis of PNA-DNA chimeras can be performed as described in Hyrup (1996) above and Finn et al. (1996) Nucl Acids Res 24: 3357-63. For example, a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry, and modified nucleoside analogs, e.g., 5'-(4-methoxytrityl)amino-5'-deoxy-thymidine phosphoramidite, can be used between the PNA and the 5' end of DNA (Mag et al. (1989) Nucl Acid Res 17: 5973-88). PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5' PNA segment and a 3' DNA segment (Finn et al. (1996) above). Alternatively, chimeric molecules can be synthesized with a 5' DNA segment and a 3' PNA segment. See, Petersen et al. (1975) Bioorg Med Chem Lett 5: 1119-11124.

In other embodiments, the oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al., 1989, Proc. Natl. Acad. Sci. U.S.A.

86:6553-6556; Lemaitre et al., 1987, Proc. Natl. Acad. Sci. 84:648-652; PCT Publication No. W088/09810) or the blood-brain barrier (see, e.g., PCT Publication No. W089/10134). In addition, oligonucleotides can be modified with hybridization triggered cleavage agents (See, e.g., Krol et al., 1988, BioTechniques 6:958-976) or intercalating agents. (See, e.g., Zon, 1988, Pharm. Res. 5: 539-549). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, a hybridization triggered cross-linking agent, a transport agent, a hybridization-triggered cleavage agent, etc.

4.5 HOSTS

10

15.

20

25

30

The present invention further provides host cells genetically engineered to contain the polynucleotides of the invention. For example, such host cells may contain nucleic acids of the invention introduced into the host cell using known transformation, transfection or infection methods. The present invention still further provides host cells genetically engineered to express the polynucleotides of the invention, wherein such polynucleotides are in operative association with a regulatory sequence heterologous to the host cell which drives expression of the polynucleotides in the cell.

Knowledge of nucleic acid sequences allows for modification of cells to permit, or increase, expression of endogenous polypeptide. Cells can be modified (e.g., by homologous recombination) to provide increased polypeptide expression by replacing, in whole or in part, the naturally occurring promoter with all or part of a heterologous promoter so that the cells express the polypeptide at higher levels. The heterologous promoter is inserted in such a manner that it is operatively linked to the encoding sequences. See, for example, PCT International Publication No. WO94/12650, PCT International Publication No. WO92/20808, and PCT International Publication No. WO91/09955. It is also contemplated that, in addition to heterologous promoter DNA, amplifiable marker DNA (e.g., ada, dhfr, and the multifunctional CAD gene which encodes carbamyl phosphate synthase, aspartate transcarbamylase, and dihydroorotase) and/or intron DNA may be inserted along with the heterologous promoter DNA. If linked to the coding sequence, amplification of the marker DNA by standard selection methods results in co-amplification of the desired protein coding sequences in the cells.

The host cell can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic host cell, such as a yeast cell, or the host cell can be a prokaryotic cell, such as a bacterial cell. Introduction of the recombinant construct into the host cell can be effected by

calcium phosphate transfection, DEAE, dextran mediated transfection, or electroporation (Davis, L. et al., Basic Methods in Molecular Biology (1986)). The host cells containing one of the polynucleotides of the invention, can be used in conventional manners to produce the gene product encoded by the isolated fragment (in the case of an ORF) or can be used to produce a heterologous protein under the control of the EMF.

5

10

15

20

25

30

Any host/vector system can be used to express one or more of the ORFs of the present invention. These include, but are not limited to, eukaryotic hosts such as HeLa cells, Cv-1 cell, COS cells, 293 cells, and Sf9 cells, as well as prokaryotic host such as E. coli and B. subtilis. The most preferred cells are those which do not normally express the particular polypeptide or protein or which expresses the polypeptide or protein at low natural level. Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described by Sambrook, et al., in Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, New York (1989), the disclosure of which is hereby incorporated by reference.

Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described by Gluzman, Cell 23:175 (1981). Other cell lines capable of expressing a compatible vector are, for example, the C127, monkey COS cells, Chinese Hamster Ovary (CHO) cells, human kidney 293 cells, human epidermal A431 cells, human Colo205 cells, 3T3 cells, CV-1 cells, other transformed primate cell lines, normal diploid cells, cell strains derived from in vitro culture of primary tissue, primary explants, HeLa cells, mouse L cells, BHK, HL-60, U937, HaK or Jurkat cells. Mammalian expression vectors will comprise an origin of replication, a suitable promoter and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early promoter, enhancer, splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements. Recombinant polypeptides and proteins produced in bacterial culture are usually isolated by initial extraction from cell pellets, followed by one or more salting-out, aqueous ion exchange or size exclusion chromatography steps. Protein refolding steps can be used,

10

15

20

25

30

30

as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps. Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents.

Alternatively, it may be possible to produce the protein in lower eukaryotes such as yeast or insects or in prokaryotes such as bacteria. Potentially suitable yeast strains include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces strains, Candida, or any yeast strain capable of expressing heterologous proteins. Potentially suitable bacterial strains include Escherichia coli, Bacillus subtilis, Salmonella typhimurium, or any bacterial strain capable of expressing heterologous proteins. If the protein is made in yeast or bacteria, it may be necessary to modify the protein produced therein, for example by phosphorylation or glycosylation of the appropriate sites, in order to obtain the functional protein. Such covalent attachments may be accomplished using known chemical or enzymatic methods.

In another embodiment of the present invention, cells and tissues may be engineered to express an endogenous gene comprising the polynucleotides of the invention under the control of inducible regulatory elements, in which case the regulatory sequences of the endogenous gene may be replaced by homologous recombination. As described herein, gene targeting can be used to replace a gene's existing regulatory region with a regulatory sequence isolated from a different gene or a novel regulatory sequence synthesized by genetic engineering methods. Such regulatory sequences may be comprised of promoters, enhancers, scaffold-attachment regions, negative regulatory elements, transcriptional initiation sites, and regulatory protein binding sites or combinations of said sequences. Alternatively, sequences which affect the structure or stability of the RNA or protein produced may be replaced, removed, added, or otherwise modified by targeting. These sequence include polyadenylation signals, mRNA stability elements, splice sites, leader sequences for enhancing or modifying transport or secretion properties of the protein, or other sequences which alter or improve the function or stability of protein or RNA molecules.

The targeting event may be a simple insertion of the regulatory sequence, placing the gene under the control of the new regulatory sequence, e.g., inserting a new promoter or enhancer or both upstream of a gene. Alternatively, the targeting event may be a simple deletion of a regulatory element, such as the deletion of a tissue-specific negative regulatory

15

20

25

30

element. Alternatively, the targeting event may replace an existing element; for example, a tissue-specific enhancer can be replaced by an enhancer that has broader or different cell-type specificity than the naturally occurring elements. Here, the naturally occurring sequences are deleted and new sequences are added. In all cases, the identification of the targeting event may be facilitated by the use of one or more selectable marker genes that are contiguous with the targeting DNA, allowing for the selection of cells in which the exogenous DNA has integrated into the host cell genome. The identification of the targeting event may also be facilitated by the use of one or more marker genes exhibiting the property of negative selection, such that the negatively selectable marker is linked to the exogenous DNA, but configured such that the negatively selectable marker flanks the targeting sequence, and such that a correct homologous recombination event with sequences in the host cell genome does not result in the stable integration of the negatively selectable marker. Markers useful for this purpose include the Herpes Simplex Virus thymidine kinase (TK) gene or the bacterial xanthine-guanine phosphoribosyl-transferase (gpt) gene.

The gene targeting or gene activation techniques which can be used in accordance with this aspect of the invention are more particularly described in U.S. Patent No. 5,272,071 to Chappel; U.S. Patent No. 5,578,461 to Sherwin et al.; International Application No. PCT/US92/09627 (WO93/09222) by Selden et al.; and International Application No. PCT/US90/06436 (WO91/06667) by Skoultchi et al., each of which is incorporated by reference herein in its entirety.

4.6 POLYPEPTIDES OF THE INVENTION

The isolated polypeptides of the invention include, but are not limited to, a polypeptide comprising: the amino acid sequences set forth as any one of SEQ ID NO: 1042-2082, or 2535-2986 or an amino acid sequence encoded by any one of the nucleotide sequences SEQ ID NO: 1-1041, or 2083-2534 or the corresponding full length or mature protein. Polypeptides of the invention also include polypeptides preferably with biological or immunological activity that are encoded by: (a) a polynucleotide having any one of the nucleotide sequences set forth in SEQ ID NO: 1-1041, or 2083-2534 or (b) polynucleotides encoding any one of the amino acid sequences set forth as SEQ ID NO: 1042-2082, or 2535-2986 or (c) polynucleotides that hybridize to the complement of the polynucleotides of either (a) or (b) under stringent hybridization conditions. The invention also provides biologically active or immunologically active variants of any of the amino acid sequences set forth as

WO 03/080795

32

SEQ ID NO: 1042-2082, or 2535-2986 or the corresponding full length or mature protein; and "substantial equivalents" thereof (e.g., with at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, 86%, 87%, 88%, 89%, at least about 90%, 91%, 92%, 93%, 94%, typically at least about 95%, 96%, 97%, more typically at least about 98%, or most typically at least about 99% amino acid identity) that retain biological activity. Polypeptides encoded by allelic variants may have a similar, increased, or decreased activity compared to polypeptides comprising SEQ ID NO: 1042-2082, or 2535-2986.

Fragments of the proteins of the present invention which are capable of exhibiting biological activity are also encompassed by the present invention. Fragments of the protein may be in linear form or they may be cyclized using known methods, for example, as described in H. U. Saragovi, et al., Bio/Technology 10, 773-778 (1992) and in R. S. McDowell, et al., J. Amer. Chem. Soc. 114, 9245-9253 (1992), both of which are incorporated herein by reference. Such fragments may be fused to carrier molecules such as immunoglobulins for many purposes, including increasing the valency of protein binding sites. Fragments are also identified in Tables 3, 5, 6, and 8.

10

15

20

25

30

The present invention also provides both full-length and mature forms (for example, without a signal sequence or precursor sequence) of the disclosed proteins. The protein coding sequence is identified in the sequence listing by translation of the disclosed nucleotide sequences. The predicted signal sequence is set forth in Table 6. The mature form of such protein may be obtained and confirmed by expression of a full-length polynucleotide in a suitable mammalian cell or other host cell and sequencing of the cleaved product. One of skill in the art will recognize that the actual cleavage site may be different than that predicted in Table 6. The sequence of the mature form of the protein is also determinable from the amino acid sequence of the full-length form. Where proteins of the present invention are membrane bound, soluble forms of the proteins are also provided. In such forms, part or all of the regions causing the proteins to be membrane bound are deleted so that the proteins are fully secreted from the cell in which they are expressed.

Protein compositions of the present invention may further comprise an acceptable carrier, such as a hydrophilic, e.g., pharmaceutically acceptable, carrier.

The present invention further provides isolated polypeptides encoded by the nucleic acid fragments of the present invention or by degenerate variants of the nucleic acid fragments of the present invention. By "degenerate variant" is intended nucleotide

10

15

20

25

30

fragments which differ from a nucleic acid fragment of the present invention (e.g., an ORF) by nucleotide sequence but, due to the degeneracy of the genetic code, encode an identical polypeptide sequence. Preferred nucleic acid fragments of the present invention are the ORFs that encode proteins.

A variety of methodologies known in the art can be utilized to obtain any one of the isolated polypeptides or proteins of the present invention. At the simplest level, the amino acid sequence can be synthesized using commercially available peptide synthesizers. The synthetically-constructed protein sequences, by virtue of sharing primary, secondary or tertiary structural and/or conformational characteristics with proteins may possess biological properties in common therewith, including protein activity. This technique is particularly useful in producing small peptides and fragments of larger polypeptides. Fragments are useful, for example, in generating antibodies against the native polypeptide. Thus, they may be employed as biologically active or immunological substitutes for natural, purified proteins in screening of therapeutic compounds and in immunological processes for the development of antibodies.

The polypeptides and proteins of the present invention can alternatively be purified from cells which have been altered to express the desired polypeptide or protein. As used herein, a cell is said to be altered to express a desired polypeptide or protein when the cell, through genetic manipulation, is made to produce a polypeptide or protein which it normally does not produce or which the cell normally produces at a lower level. One skilled in the art can readily adapt procedures for introducing and expressing either recombinant or synthetic sequences into eukaryotic or prokaryotic cells in order to generate a cell which produces one of the polypeptides or proteins of the present invention.

The invention also relates to methods for producing a polypeptide comprising growing a culture of host cells of the invention in a suitable culture medium, and purifying the protein from the cells or the culture in which the cells are grown. For example, the methods of the invention include a process for producing a polypeptide in which a host cell containing a suitable expression vector that includes a polynucleotide of the invention is cultured under conditions that allow expression of the encoded polypeptide. The polypeptide can be recovered from the culture, conveniently from the culture medium, or from a lysate prepared from the host cells and further purified. Preferred embodiments include those in which the protein produced by such process is a full length or mature form of the protein.

15

20

25

30

In an alternative method, the polypeptide or protein is purified from bacterial cells which naturally produce the polypeptide or protein. One skilled in the art can readily follow known methods for isolating polypeptides and proteins in order to obtain one of the isolated polypeptides or proteins of the present invention. These include, but are not limited to, immunochromatography, HPLC, size-exclusion chromatography, ion-exchange chromatography, and immuno-affinity chromatography. See, e.g., Scopes, Protein Purification: Principles and Practice, Springer-Verlag (1994); Sambrook, et al., in Molecular Cloning: A Laboratory Manual; Ausubel et al., Current Protocols in Molecular Biology. Polypeptide fragments that retain biological/immunological activity include fragments comprising greater than about 100 amino acids, or greater than about 200 amino acids, and fragments that encode specific protein domains.

The purified polypeptides can be used in *in vitro* binding assays which are well known in the art to identify molecules which bind to the polypeptides. These molecules include but are not limited to, for e.g., small molecules, molecules from combinatorial libraries, antibodies or other proteins. The molecules identified in the binding assay are then tested for antagonist or agonist activity in *in vivo* tissue culture or animal models that are well known in the art. In brief, the molecules are titrated into a plurality of cell cultures or animals and then tested for either cell/animal death or prolonged survival of the animal/cells.

In addition, the peptides of the invention or molecules capable of binding to the peptides may be complexed with toxins, e.g., ricin or cholera, or with other compounds that are toxic to cells. The toxin-binding molecule complex is then targeted to a tumor or other cell by the specificity of the binding molecule for SEQ ID NO: 1042-2082, or 2535-2986.

The protein of the invention may also be expressed as a product of transgenic animals, e.g., as a component of the milk of transgenic cows, goats, pigs, or sheep which are characterized by somatic or germ cells containing a nucleotide sequence encoding the protein.

The proteins provided herein also include proteins characterized by amino acid sequences similar to those of purified proteins but into which modification are naturally provided or deliberately engineered. For example, modifications, in the peptide or DNA sequence, can be made by those skilled in the art using known techniques. Modifications of interest in the protein sequences may include the alteration, substitution, replacement, insertion or deletion of a selected amino acid residue in the coding sequence. For example, one or more of the cysteine residues may be deleted or replaced with another amino acid to

WO 03/080795 PCT/US02/25485

35

alter the conformation of the molecule. Techniques for such alteration, substitution, replacement, insertion or deletion are well known to those skilled in the art (see, e.g., U.S. Pat. No. 4,518,584). Preferably, such alteration, substitution, replacement, insertion or deletion retains the desired activity of the protein. Regions of the protein that are important for the protein function can be determined by various methods known in the art including the alanine-scanning method which involved systematic substitution of single or strings of amino acids with alanine, followed by testing the resulting alanine-containing variant for biological activity. This type of analysis determines the importance of the substituted amino acid(s) in biological activity. Regions of the protein that are important for protein function may be determined by the eMATRIX program.

5

10

15

20

25

30

Other fragments and derivatives of the sequences of proteins which would be expected to retain protein activity in whole or in part and are useful for screening or other immunological methodologies may also be easily made by those skilled in the art given the disclosures herein. Such modifications are encompassed by the present invention.

The protein may also be produced by operably linking the isolated polynucleotide of the invention to suitable control sequences in one or more insect expression vectors, and employing an insect expression system. Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, e.g., Invitrogen, San Diego, Calif., U.S.A. (the MaxBat™ kit), and such methods are well known in the art, as described in Summers and Smith, Texas Agricultural Experiment Station Bulletin No. 1555 (1987), incorporated herein by reference. As used herein, an insect cell capable of expressing a polynucleotide of the present invention is "transformed."

The protein of the invention may be prepared by culturing transformed host cells under culture conditions suitable to express the recombinant protein. The resulting expressed protein may then be purified from such culture (i.e., from culture medium or cell extracts) using known purification processes, such as gel filtration and ion exchange chromatography. The purification of the protein may also include an affinity column containing agents which will bind to the protein; one or more column steps over such affinity resins as concanavalin A-agarose, heparin-toyopearlTM or Cibacrom blue 3GA SepharoseTM; one or more steps involving hydrophobic interaction chromatography using such resins as phenyl ether, butyl ether, or propyl ether; or immunoaffinity chromatography.

Alternatively, the protein of the invention may also be expressed in a form which will facilitate purification. For example, it may be expressed as a fusion protein, such as those of

WO 03/080795 PCT/US02/25485

36

maltose binding protein (MBP), glutathione-S-transferase (GST) or thioredoxin (TRX), or as a His tag. Kits for expression and purification of such fusion proteins are commercially available from New England BioLab (Beverly, Mass.), Pharmacia (Piscataway, N.J.) and Invitrogen, respectively. The protein can also be tagged with an epitope and subsequently purified by using a specific antibody directed to such epitope. One such epitope ("FLAG®") is commercially available from Kodak (New Haven, Conn.).

5

10

15

20

25

30

Finally, one or more reverse-phase high performance liquid chromatography (RP-HPLC) steps employing hydrophobic RP-HPLC media, e.g., silica gel having pendant methyl or other aliphatic groups, can be employed to further purify the protein. Some or all of the foregoing purification steps, in various combinations, can also be employed to provide a substantially homogeneous isolated recombinant protein. The protein thus purified is substantially free of other mammalian proteins and is defined in accordance with the present invention as an "isolated protein."

The polypeptides of the invention include analogs (variants). This embraces fragments, as well as peptides in which one or more amino acids has been deleted, inserted, or substituted. Also, analogs of the polypeptides of the invention embrace fusions of the polypeptides or modifications of the polypeptides of the invention, wherein the polypeptide or analog is fused to another moiety or moieties, e.g., targeting moiety or another therapeutic agent. Such analogs may exhibit improved properties such as activity and/or stability. Examples of moieties which may be fused to the polypeptide or an analog include, for example, targeting moieties which provide for the delivery of polypeptide to pancreatic cells, e.g., antibodies to pancreatic cells, antibodies to immune cells such as T-cells, monocytes, dendritic cells, granulocytes, etc., as well as receptor and ligands expressed on pancreatic or immune cells. Other moieties which may be fused to the polypeptide include therapeutic agents which are used for treatment, for example, immunosuppressive drugs such as cyclosporin, SK506, azathioprine, CD3 antibodies and steroids. Also, polypeptides may be fused to immune modulators, and other cytokines such as alpha or beta interferon.

4.6.1 DETERMINING POLYPEPTIDE AND POLYNUCLEOTIDE **IDENTITY AND SIMILARITY**

Preferred identity and/or similarity are designed to give the largest match between the sequences tested. Methods to determine identity and similarity are codified in computer programs including, but are not limited to, the GCG program package, including GAP

25

30

(Devereux, J., et al., Nucleic Acids Research 12(1):387 (1984); Genetics Computer Group, University of Wisconsin, Madison, WI), BLASTP, BLASTN, BLASTX, FASTA (Altschul, S.F. et al., J. Molec. Biol. 215:403-410 (1990), PSI-BLAST (Altschul S.F. et al., Nucleic Acids Res. vol. 25, pp. 3389-3402, herein incorporated by reference), eMatrix software (Wu et al., J. Comp. Biol., Vol. 6, pp. 219-235 (1999), herein incorporated by reference), eMotif software (Nevill-Manning et al, ISMB-97, Vol. 4, pp. 202-209, herein incorporated by reference), Pfam software (Sonnhammer et al., Nucleic Acids Res., Vol. 26(1), pp. 320-322 (1998), herein incorporated by reference) and the Kyte-Doolittle hydrophobocity prediction algorithm (J. Mol Biol, 157, pp. 105-31 (1982), incorporated herein by reference). 10 polypeptide sequences were examined by a proprietary algorithm, SeqLoc that separates the proteins into three sets of locales: intracellular, membrane, or secreted. This prediction is based upon three characteristics of each polypeptide, including percentage of cysteine residues, Kyte-Doolittle scores for the first 20 amino acids of each protein, and Kyte-Doolittle scores to calculate the longest hydrophobic stretch of the said protein. Values of 15 predicted proteins are compared against the values from a set of 592 proteins of known cellular localization from the Swissprot database (http://www.expasy.ch/sprot). Predictions are based upon the maximum likelihood estimation.

The BLAST programs are publicly available from the National Center for Biotechnology Information (NCBI) and other sources (BLAST Manual, Altschul, S., et al. NCBI NLM NIH Bethesda, MD 20894; Altschul, S., et al., J. Mol. Biol. 215:403-410 (1990).

4.7 CHIMERIC AND FUSION PROTEINS

The invention also provides chimeric or fusion proteins. As used herein, a "chimeric protein" or "fusion protein" comprises a polypeptide of the invention operatively linked to another polypeptide. Within a fusion protein the polypeptide according to the invention can correspond to all or a portion of a protein according to the invention. In one embodiment, a fusion protein comprises at least one biologically active portion of a protein according to the invention. In another embodiment, a fusion protein comprises at least two biologically active portions of a protein according to the invention. Within the fusion protein, the term "operatively linked" is intended to indicate that the polypeptide according to the invention and the other polypeptide are fused in-frame to each other. The polypeptide can be fused to the N-terminus or C-terminus, or to the middle.

For example, in one embodiment a fusion protein comprises a polypeptide according to the invention operably linked to the extracellular domain of a second protein.

38

In another embodiment, the fusion protein is a GST-fusion protein in which the polypeptide sequences of the invention are fused to the C-terminus of the GST (i.e., glutathione S-transferase) sequences.

5

10

15

In another embodiment, the fusion protein is an immunoglobulin fusion protein in which the polypeptide sequences according to the invention comprise one or more domains fused to sequences derived from a member of the immunoglobulin protein family. The immunoglobulin fusion proteins of the invention can be incorporated into pharmaceutical compositions and administered to a subject to inhibit an interaction between a ligand and a protein of the invention on the surface of a cell, to thereby suppress signal transduction in vivo. The immunoglobulin fusion proteins can be used to affect the bioavailability of a cognate ligand. Inhibition of the ligand/protein interaction may be useful therapeutically for both the treatment of proliferative and differentiative disorders, e.g., cancer as well as modulating (e.g., promoting or inhibiting) cell survival. Moreover, the immunoglobulin fusion proteins of the invention can be used as immunogens to produce antibodies in a subject, to purify ligands, and in screening assays to identify molecules that inhibit the interaction of a polypeptide of the invention with a ligand.

A chimeric or fusion protein of the invention can be produced by standard 20 recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, e.g., by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic 25 ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers that give rise to complementary overhangs between two consecutive gene fragments that can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, for example, Ausubel et al. (eds.) 30 CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide). A nucleic acid encoding a polypeptide of the invention can be

10

15

20

25

30

cloned into such an expression vector such that the fusion moiety is linked in-frame to the protein of the invention.

4.8 GENE THERAPY

Mutations in the polynucleotides of the invention gene may result in loss of normal function of the encoded protein. The invention thus provides gene therapy to restore normal activity of the polypeptides of the invention; or to treat disease states involving polypeptides of the invention. Delivery of a functional gene encoding polypeptides of the invention to appropriate cells is effected ex vivo, in situ, or in vivo by use of vectors, and more particularly viral vectors (e.g., adenovirus, adeno-associated virus, or a retrovirus), or ex vivo by use of physical DNA transfer methods (e.g., liposomes or chemical treatments). See, for example, Anderson, Nature, supplement to vol. 392, no. 6679, pp.25-20 (1998). For additional reviews of gene therapy technology see Friedmann, Science, 244: 1275-1281 (1989); Verma, Scientific American: 68-84 (1990); and Miller, Nature, 357: 455-460 (1992). Introduction of any one of the nucleotides of the present invention or a gene encoding the polypeptides of the present invention can also be accomplished with extrachromosomal substrates (transient expression) or artificial chromosomes (stable expression). Cells may also be cultured ex vivo in the presence of proteins of the present invention in order to proliferate or to produce a desired effect on or activity in such cells. Treated cells can then be introduced in vivo for therapeutic purposes. Alternatively, it is contemplated that in other human disease states, preventing the expression of or inhibiting the activity of polypeptides of the invention will be useful in treating the disease states. It is contemplated that antisense therapy or gene therapy could be applied to negatively regulate the expression of polypeptides of the invention.

Other methods inhibiting expression of a protein include the introduction of antisense molecules to the nucleic acids of the present invention, their complements, or their translated RNA sequences, by methods known in the art. Further, the polypeptides of the present invention can be inhibited by using targeted deletion methods, or the insertion of a negative regulatory element such as a silencer, which is tissue specific.

The present invention still further provides cells genetically engineered *in vivo* to express the polynucleotides of the invention, wherein such polynucleotides are in operative association with a regulatory sequence heterologous to the host cell which drives expression of

WO 03/080795 PCT/US02/25485

40

the polynucleotides in the cell. These methods can be used to increase or decrease the expression of the polynucleotides of the present invention.

5

10

15

20

25

30

Knowledge of DNA sequences provided by the invention allows for modification of cells to permit, increase, or decrease, expression of endogenous polypeptide. Cells can be modified (e.g., by homologous recombination) to provide increased polypeptide expression by replacing, in whole or in part, the naturally occurring promoter with all or part of a heterologous promoter so that the cells express the protein at higher levels. The heterologous promoter is inserted in such a manner that it is operatively linked to the desired protein encoding sequences. See, for example, PCT International Publication No. WO 94/12650, PCT International Publication No. WO 92/20808, and PCT International Publication No. WO 91/09955. It is also contemplated that, in addition to heterologous promoter DNA, amplifiable marker DNA (e.g., ada, dhfr, and the multifunctional CAD gene which encodes carbarnyl phosphate synthase, aspartate transcarbamylase, and dihydroorotase) and/or intron DNA may be inserted along with the heterologous promoter DNA. If linked to the desired protein coding sequence, amplification of the marker DNA by standard selection methods results in co-amplification of the desired protein coding sequences in the cells.

In another embodiment of the present invention, cells and tissues may be engineered to express an endogenous gene comprising the polynucleotides of the invention under the control of inducible regulatory elements, in which case the regulatory sequences of the endogenous gene may be replaced by homologous recombination. As described herein, gene targeting can be used to replace a gene's existing regulatory region with a regulatory sequence isolated from a different gene or a novel regulatory sequence synthesized by genetic engineering methods. Such regulatory sequences may be comprised of promoters, enhancers, scaffold-attachment regions, negative regulatory elements, transcriptional initiation sites, regulatory protein binding sites or combinations of said sequences. Alternatively, sequences which affect the structure or stability of the RNA or protein produced may be replaced, removed, added, or otherwise modified by targeting. These sequences include polyadenylation signals, mRNA stability elements, splice sites, leader sequences for enhancing or modifying transport or secretion properties of the protein, or other sequences which alter or improve the function or stability of protein or RNA molecules.

The targeting event may be a simple insertion of the regulatory sequence, placing the gene under the control of the new regulatory sequence, e.g., inserting a new promoter or enhancer or both upstream of a gene. Alternatively, the targeting event may be a simple

WO 03/080795 PCT/US02/25485

41

deletion of a regulatory element, such as the deletion of a tissue-specific negative regulatory element. Alternatively, the targeting event may replace an existing element; for example, a tissue-specific enhancer can be replaced by an enhancer that has broader or different cell-type specificity than the naturally occurring elements. Here, the naturally occurring sequences are deleted and new sequences are added. In all cases, the identification of the targeting event may be facilitated by the use of one or more selectable marker genes that are contiguous with the targeting DNA, allowing for the selection of cells in which the exogenous DNA has integrated into the cell genome. The identification of the targeting event may also be facilitated by the use of one or more marker genes exhibiting the property of negative selection, such that the negatively selectable marker is linked to the exogenous DNA, but configured such that the negatively selectable marker flanks the targeting sequence, and such that a correct homologous recombination event with sequences in the host cell genome does not result in the stable integration of the negatively selectable marker. Markers useful for this purpose include the Herpes Simplex Virus thymidine kinase (TK) gene or the bacterial xanthine-guanine phosphoribosyl-transferase (gpt) gene.

The gene targeting or gene activation techniques which can be used in accordance with this aspect of the invention are more particularly described in U.S. Patent No. 5,272,071 to Chappel; U.S. Patent No. 5,578,461 to Sherwin et al.; International Application No. PCT/US92/09627 (WO93/09222) by Selden et al.; and International Application No. PCT/US90/06436 (WO91/06667) by Skoultchi et al., each of which is incorporated by reference herein in its entirety.

4.9 TRANSGENIC ANIMALS

10

15

20

In preferred methods to determine biological functions of the polypeptides of the 25 invention in vivo, one or more genes provided by the invention are either over expressed or inactivated in the germ line of animals using homologous recombination [Capecchi, Science 244:1288-1292 (1989)]. Animals in which the gene is over expressed, under the regulatory control of exogenous or endogenous promoter elements, are known as transgenic animals. Animals in which an endogenous gene has been inactivated by homologous recombination are referred to as "knockout" animals. Knockout animals, preferably non-human mammals, 30 can be prepared as described in U.S. Patent No. 5,557,032, incorporated herein by reference. Transgenic animals are useful to determine the roles polypeptides of the invention play in biological processes, and preferably in disease states. Transgenic animals are useful as model WO 03/080795

systems to identify compounds that modulate lipid metabolism. Transgenic animals, preferably non-human mammals, are produced using methods as described in U.S. Patent No 5,489,743 and PCT Publication No. WO94/28122, incorporated herein by reference.

42

Transgenic animals can be prepared wherein all or part of a promoter of the polynucleotides of the invention is either activated or inactivated to alter the level of expression of the polypeptides of the invention. Inactivation can be carried out using homologous recombination methods described above. Activation can be achieved by supplementing or even replacing the homologous promoter to provide for increased protein expression. The homologous promoter can be supplemented by insertion of one or more heterologous enhancer elements known to confer promoter activation in a particular tissue.

5

10

15

20

25

30

The polynucleotides of the present invention also make possible the development, through, e.g., homologous recombination or knock out strategies, of animals that fail to express polypeptides of the invention or that express a variant polypeptide. Such animals are useful as models for studying the in vivo activities of polypeptide as well as for studying modulators of the polypeptides of the invention.

In preferred methods to determine biological functions of the polypeptides of the invention in vivo, one or more genes provided by the invention are either over expressed or inactivated in the germ line of animals using homologous recombination [Capecchi, Science 244:1288-1292 (1989)]. Animals in which the gene is over expressed, under the regulatory control of exogenous or endogenous promoter elements, are known as transgenic animals. Animals in which an endogenous gene has been inactivated by homologous recombination are referred to as "knockout" animals. Knockout animals, preferably non-human mammals, can be prepared as described in U.S. Patent No. 5,557,032, incorporated herein by reference. Transgenic animals are useful to determine the roles polypeptides of the invention play in biological processes, and preferably in disease states. Transgenic animals are useful as model systems to identify compounds that modulate lipid metabolism. Transgenic animals, preferably non-human mammals, are produced using methods as described in U.S. Patent No 5,489,743 and PCT Publication No. WO94/28122, incorporated herein by reference.

Transgenic animals can be prepared wherein all or part of the polynucleotides of the invention promoter is either activated or inactivated to alter the level of expression of the polypeptides of the invention. Inactivation can be carried out using homologous recombination methods described above. Activation can be achieved by supplementing or even replacing the homologous promoter to provide for increased protein expression. The

WO 03/080795

43

homologous promoter can be supplemented by insertion of one or more heterologous enhancer elements known to confer promoter activation in a particular tissue.

4.10 USES AND BIOLOGICAL ACTIVITY

5

10

15

20

25

30

The polynucleotides and proteins of the present invention are expected to exhibit one or more of the uses or biological activities (including those associated with assays cited herein) identified herein. Uses or activities described for proteins of the present invention may be provided by administration or use of such proteins or of polynucleotides encoding such proteins (such as, for example, in gene therapies or vectors suitable for introduction of DNA). The mechanism underlying the particular condition or pathology will dictate whether the polypeptides of the invention, the polynucleotides of the invention or modulators (activators or inhibitors) thereof would be beneficial to the subject in need of treatment. Thus, "therapeutic compositions of the invention" include compositions comprising isolated polynucleotides (including recombinant DNA molecules, cloned genes and degenerate variants thereof) or polypeptides of the invention (including full length protein, mature protein and truncations or domains thereof), or compounds and other substances that modulate the overall activity of the target gene products, either at the level of target gene/protein expression or target protein activity. Such modulators include polypeptides, analogs, (variants), including fragments and fusion proteins, antibodies and other binding proteins; chemical compounds that directly or indirectly activate or inhibit the polypeptides of the invention (identified, e.g., via drug screening assays as described herein); antisense polynucleotides and polynucleotides suitable for triple helix formation; and in particular antibodies or other binding partners that specifically recognize one or more epitopes of the polypeptides of the invention.

The polypeptides of the present invention may likewise be involved in cellular activation or in one of the other physiological pathways described herein.

4.10.1 RESEARCH USES AND UTILITIES

The polynucleotides provided by the present invention can be used by the research community for various purposes. The polynucleotides can be used to express recombinant protein for analysis, characterization or therapeutic use; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in disease states); as molecular weight markers on WO 03/080795 PCT/US02/25485

44

gels; as chromosome markers or tags (when labeled) to identify chromosomes or to map related gene positions; to compare with endogenous DNA sequences in patients to identify potential genetic disorders; as probes to hybridize and thus discover novel, related DNA sequences; as a source of information to derive PCR primers for genetic fingerprinting; as a probe to "subtract-out" known sequences in the process of discovering other novel polynucleotides; for selecting and making oligomers for attachment to a "gene chip" or other support, including for examination of expression patterns; to raise anti-protein antibodies using DNA immunization techniques; and as an antigen to raise anti-DNA antibodies or elicit another immune response. Where the polynucleotide encodes a protein which binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, for example, that described in Gyuris et al., Cell 75:791-803 (1993)) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.

The polypeptides provided by the present invention can similarly be used in assays to determine biological activity, including in a panel of multiple proteins for high-throughput screening; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its receptor) in biological fluids; as markers for tissues in which the corresponding polypeptide is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of course, to isolate correlative receptors or ligands. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction.

Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E. F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S. L. and A. R. Kimmel eds., 1987.

30

5

10

15

20

25

4.10.2 NUTRITIONAL USES

Polynucleotides and polypeptides of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or

amino acid supplement, use as a carbon source, use as a nitrogen source and use as a source of carbohydrate. In such cases the polypeptide or polynucleotide of the invention can be added to the feed of a particular organism or can be administered as a separate solid or liquid preparation, such as in the form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the polypeptide or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.

4.10.3 CYTOKINE AND CELL PROLIFERATION/DIFFERENTIATION **ACTIVITY**

5

10

15

20

25

30

A polypeptide of the present invention may exhibit activity relating to cytokine, cell proliferation (either inducing or inhibiting) or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor-dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of cytokine activity. The activity of therapeutic compositions of the present invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+(preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7e, CMK, HUVEC, and Caco. Therapeutic compositions of the invention can be used in the following:

Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Bertagnolli et al., J. Immunol. 145:1706-1712, 1990; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Bertagnolli, et al., I. Immunol. 149:3778-3783, 1992; Bowman et al., I. Immunol. 152:1756-1761, 1994.

Assays for cytokine production and/or proliferation of spleen cells, lymph node cells or thymocytes include, without limitation, those described in: Polyclonal T cell stimulation, Kruisbeek, A. M. and Shevach, E. M. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto. 1994; and Measurement of

mouse and human interleukin-γ, Schreiber, R. D. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.

Assays for proliferation and differentiation of hematopoietic and lymphopoietic cells include, without limitation, those described in: Measurement of Human and Murine 5 Interleukin 2 and Interleukin 4, Bottomly, K., Davis, L. S. and Lipsky, P. E. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; deVries et al., J. Exp. Med. 173:1205-1211, 1991; Moreau et al., Nature 336:690-692, 1988; Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Measurement of mouse and human interleukin 6--Nordan, R. In Current Protocols in 10 Immunology, J. E. Coligan eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et al., Proc. Natl. Aced. Sci. U.S.A. 83:1857-1861, 1986; Measurement of human Interleukin 11--Bennett, F., Giannotti, J., Clark, S. C. and Turner, K. J. In Current Protocols in Immunology, J. E. Coligan eds. Vol 1 pp. 6.15.1 John Wiley and Sons, Toronto. 1991; Measurement of mouse and human Interleukin 9--Ciarletta, A., Giannotti, J., Clark, S. C. and Turner, K. J. In Current Protocols in Immunology. J. E. Coligan eds. Vol 1 pp. 6.13.1, 15 John Wiley and Sons, Toronto. 1991.

Assays for T-cell clone responses to antigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include, without limitation, those described in:

Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, *In Vitro* assays for Mouse Lymphocyte Function; Chapter 6, Cytokines and their cellular receptors; Chapter 7, Immunologic studies in Humans); Weinberger et al., Proc. Natl. Acad. Sci. USA 77:6091-6095, 1980; Weinberger et al., Eur. J. Immun. 11:405-411, 1981; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.

4.10.4 STEM CELL GROWTH FACTOR ACTIVITY

30

A polypeptide of the present invention may exhibit stem cell growth factor activity and be involved in the proliferation, differentiation and survival of pluripotent and totipotent stem cells including primordial germ cells, embryonic stem cells, hematopoietic stem cells and/or germ line stem cells. Administration of the polypeptide of the invention to stem cells in vivo or ex vivo is expected to maintain and expand cell populations in a totipotential or

WO 03/080795 PCT/US02/25485

47

pluripotential state which would be useful for re-engineering damaged or diseased tissues, transplantation, manufacture of bio-pharmaceuticals and the development of bio-sensors. The ability to produce large quantities of human cells has important working applications for the production of human proteins which currently must be obtained from non-human sources or donors, implantation of cells to treat diseases such as Parkinson's, Alzheimer's and other neurodegenerative diseases; tissues for grafting such as bone marrow, skin, cartilage, tendons, bone, muscle (including cardiac muscle), blood vessels, cornea, neural cells, gastrointestinal cells and others; and organs for transplantation such as kidney, liver, pancreas (including islet cells), heart and lung.

5

10

15

20

25

30

It is contemplated that multiple different exogenous growth factors and/or cytokines may be administered in combination with the polypeptide of the invention to achieve the desired effect, including any of the growth factors listed herein, other stem cell maintenance factors, and specifically including stem cell factor (SCF), leukemia inhibitory factor (LIF), Flt-3 ligand (Flt-3L), any of the interleukins, recombinant soluble IL-6 receptor fused to IL-6, macrophage inflammatory protein 1-alpha (MIP-1-alpha), G-CSF, GM-CSF, thrombopoietin (TPO), platelet factor 4 (PF-4), platelet-derived growth factor (PDGF), neural growth factors and basic fibroblast growth factor (bFGF).

Since totipotent stem cells can give rise to virtually any mature cell type, expansion of these cells in culture will facilitate the production of large quantities of mature cells. Techniques for culturing stem cells are known in the art and administration of polypeptides of the invention, optionally with other growth factors and/or cytokines, is expected to enhance the survival and proliferation of the stem cell populations. This can be accomplished by direct administration of the polypeptide of the invention to the culture medium. Alternatively, stroma cells transfected with a polynucleotide that encodes for the polypeptide of the invention can be used as a feeder layer for the stem cell populations in culture or in vivo. Stromal support cells for feeder layers may include embryonic bone marrow fibroblasts, bone marrow stromal cells, fetal liver cells, or cultured embryonic fibroblasts (see U.S. Patent No. 5,690,926).

Stem cells themselves can be transfected with a polynucleotide of the invention to induce autocrine expression of the polypeptide of the invention. This will allow for generation of undifferentiated totipotential/pluripotential stem cell lines that are useful as is or that can then be differentiated into the desired mature cell types. These stable cell lines can also serve as a source of undifferentiated totipotential/pluripotential mRNA to create

cDNA libraries and templates for polymerase chain reaction experiments. These studies would allow for the isolation and identification of differentially expressed genes in stem cell populations that regulate stem cell proliferation and/or maintenance.

5

10

15

20

25

30

Expansion and maintenance of totipotent stem cell populations will be useful in the treatment of many pathological conditions. For example, polypeptides of the present invention may be used to manipulate stem cells in culture to give rise to neuroepithelial cells that can be used to augment or replace cells damaged by illness, autoimmune disease, accidental damage or genetic disorders. The polypeptide of the invention may be useful for inducing the proliferation of neural cells and for the regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders which involve degeneration, death or trauma to neural cells or nerve tissue. In addition, the expanded stem cell populations can also be genetically altered for gene therapy purposes and to decrease host rejection of replacement tissues after grafting or implantation.

Expression of the polypeptide of the invention and its effect on stem cells can also be manipulated to achieve controlled differentiation of the stem cells into more differentiated cell types. A broadly applicable method of obtaining pure populations of a specific differentiated cell type from undifferentiated stem cell populations involves the use of a celltype specific promoter driving a selectable marker. The selectable marker allows only cells of the desired type to survive. For example, stem cells can be induced to differentiate into cardiomyocytes (Wobus et al., Differentiation, 48: 173-182, (1991); Klug et al., J. Clin. Invest., 98(1): 216-224, (1998)) or skeletal muscle cells (Browder, L. W. In: Principles of Tissue Engineering eds. Lanza et al., Academic Press (1997)). Alternatively, directed differentiation of stem cells can be accomplished by culturing the stem cells in the presence of a differentiation factor such as retinoic acid and an antagonist of the polypeptide of the invention which would inhibit the effects of endogenous stem cell factor activity and allow differentiation to proceed.

In vitro cultures of stem cells can be used to determine if the polypeptide of the invention exhibits stem cell growth factor activity. Stem cells are isolated from any one of various cell sources (including hematopoietic stem cells and embryonic stem cells) and cultured on a feeder layer, as described by Thompson et al. Proc. Natl. Acad. Sci, U.S.A., 92: 7844-7848 (1995), in the presence of the polypeptide of the invention alone or in combination with other growth factors or cytokines. The ability of the polypeptide of the

WO 03/080795 PCT/US02/25485

invention to induce stem cells proliferation is determined by colony formation on semi-solid support e.g. as described by Bernstein et al., Blood, 77: 2316-2321 (1991).

49

4.10.5 HEMATOPOIESIS REGULATING ACTIVITY

5

10

15

20

25

30

A polypeptide of the present invention may be involved in regulation of hematopoiesis and, consequently, in the treatment of myeloid or lymphoid cell disorders. Even marginal biological activity in support of colony forming cells or of factor-dependent cell lines indicates involvement in regulating hematopoiesis, e.g. in supporting the growth and proliferation of erythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to stimulate the production of erythroid precursors and/or erythroid cells; in supporting the growth and proliferation of myeloid cells such as granulocytes and monocytes/macrophages (i.e., traditional CSF activity) useful, for example, in conjunction with chemotherapy to prevent or treat consequent myelo-suppression; in supporting the growth and proliferation of megakaryocytes and consequently of platelets thereby allowing prevention or treatment of various platelet disorders such as thrombocytopenia, and generally for use in place of or complimentary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the above-mentioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantation, including, without limitation, aplastic anemia and paroxysmal nocturnal hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either in-vivo or ex-vivo (i.e., in conjunction with bone marrow transplantation or with peripheral progenitor cell transplantation (homologous or heterologous)) as normal cells or genetically manipulated for gene therapy.

Therapeutic compositions of the invention can be used in the following:

Suitable assays for proliferation and differentiation of various hematopoietic lines are cited above.

Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence embryonic differentiation hematopoiesis) include, without limitation, those described in: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

WO 03/080795 PCT/US02/25485

50

Assays for stem cell survival and differentiation (which will identify, among others, proteins that regulate lympho-hematopoiesis) include, without limitation, those described in: Methylcellulose colony forming assays, Freshney, M. G. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New York, N.Y. 1994; 5 Hirayama et al., Proc. Natl. Acad. Sci. USA 89:5907-5911, 1992; Primitive hematopoietic colony forming cells with high proliferative potential, McNiece, I. K. and Briddell, R. A. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss, Inc., New York, N.Y. 1994; Neben et al., Experimental Hematology 22:353-359, 1994; Cobblestone area forming cell assay, Ploemacher, R. E. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 1-21, Wiley-Liss, Inc., New York, N.Y. 1994; Long term 10 bone marrow cultures in the presence of stromal cells, Spooncer, E., Dexter, M. and Allen, T. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York, N.Y. 1994; Long term culture initiating cell assay, Sutherland, H. J. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 139-162, Wiley-Liss, Inc.,

4.10.6 TISSUE GROWTH ACTIVITY

15

20

25

30

New York, N.Y. 1994.

A polypeptide of the present invention also may be involved in bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as in wound healing and tissue repair and replacement, and in healing of burns, incisions and ulcers.

A polypeptide of the present invention which induces cartilage and/or bone growth in circumstances where bone is not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Compositions of a polypeptide, antibody, binding partner, or other modulator of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery.

A polypeptide of this invention may also be involved in attracting bone-forming cells, stimulating growth of bone-forming cells, or inducing differentiation of progenitors of bone-forming cells. Treatment of osteoporosis, osteoarthritis, bone degenerative disorders, or periodontal disease, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast

10

15

20

25

30

51

activity, etc.) mediated by inflammatory processes may also be possible using the composition of the invention.

Another category of tissue regeneration activity that may involve the polypeptide of the present invention is tendon/ligament formation. Induction of tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament tissue. De novo tendon/ligament-like tissue formation induced by a composition of the present invention contributes to the repair of congenital, trauma induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions of the present invention may provide environment to attract tendon- or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, induce differentiation of progenitors of tendon- or ligament-forming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. The compositions of the invention may also be useful in the treatment of tendinitis, carpal tunnel syndrome and other tendon or ligament defects. The compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

The compositions of the present invention may also be useful for proliferation of neural cells and for regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More specifically, a composition may be used in the treatment of diseases of the peripheral nervous system, such as peripheral nerve injuries, peripheral neuropathy and localized neuropathies, and central nervous system diseases, such as Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome. Further conditions which may be treated in accordance with the present invention include mechanical and traumatic disorders, such as spinal cord disorders, head trauma and cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from

WO 03/080795 PCT/US02/25485

52

chemotherapy or other medical therapies may also be treatable using a composition of the invention.

Compositions of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds, and the like.

5

10

15

20

25

30

Compositions of the present invention may also be involved in the generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring may allow normal tissue to regenerate. A polypeptide of the present invention may also exhibit angiogenic activity.

A composition of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.

A composition of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

Therapeutic compositions of the invention can be used in the following:

Assays for tissue generation activity include, without limitation, those described in: International Patent Publication No. WO95/16035 (bone, cartilage, tendon); International Patent Publication No. WO95/05846 (nerve, neuronal); International Patent Publication No. WO91/07491 (skin, endothelium).

Assays for wound healing activity include, without limitation, those described in: Winter, Epidermal Wound Healing, pps. 71-112 (Maibach, H. I. and Rovee, D. T., eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).

4.10.7 IMMUNE STIMULATING OR SUPPRESSING ACTIVITY

A polypeptide of the present invention may also exhibit immune stimulating or immune suppressing activity, including without limitation the activities for which assays are described herein. A polynucleotide of the invention can encode a polypeptide exhibiting such activities. A protein may be useful in the treatment of various immune deficiencies and

10

15

20

25

30

disorders (including severe combined immunodeficiency (SCID)), e.g., in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. These immune deficiencies may be genetic or be caused by viral (e.g., HIV) as well as bacterial or fungal infections, or may result from autoimmune disorders. More specifically, infectious diseases causes by viral, bacterial, fungal or other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpes viruses, mycobacteria, Leishmania spp., malaria spp. and various fungal infections such as candidiasis. Of course, in this regard, proteins of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.

Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, autoimmune pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes mellitis, myasthenia gravis, graft-versus-host disease and autoimmune inflammatory eye disease. Such a protein (or antagonists thereof, including antibodies) of the present invention may also to be useful in the treatment of allergic reactions and conditions (e.g., anaphylaxis, serum sickness, drug reactions, food allergies, insect venom allergies, mastocytosis, allergic rhinitis, hypersensitivity pneumonitis, urticaria, angioedema, eczema, atopic dermatitis, allergic contact dermatitis, erythema multiforme, Stevens-Johnson syndrome, allergic conjunctivitis, atopic keratoconjunctivitis, venereal keratoconjunctivitis, giant papillary conjunctivitis and contact allergies), such as asthma (particularly allergic asthma) or other respiratory problems. Other conditions, in which immune suppression is desired (including, for example, organ transplantation), may also be treatable using a protein (or antagonists thereof) of the present invention. The therapeutic effects of the polypeptides or antagonists thereof on allergic reactions can be evaluated by in vivo animals models such as the cumulative contact enhancement test (Lastbom et al., Toxicology 125: 59-66, 1998), skin prick test (Hoffmann et al., Allergy 54: 446-54, 1999), guinea pig skin sensitization test (Vohr et al., Arch. Toxocol. 73: 501-9), and murine local lymph node assay (Kimber et al., J. Toxicol. Environ. Health 53: 563-79).

Using the proteins of the invention it may also be possible to modulate immune responses, in a number of ways. Down regulation may be in the form of inhibiting or blocking an immune response already in progress or may involve preventing the induction of

10

15

20

25

30

an immune response. The functions of activated T cells may be inhibited by suppressing T cell responses or by inducing specific tolerance in T cells, or both. Immunosuppression of T cell responses is generally an active, non-antigen-specific, process which requires continuous exposure of the T cells to the suppressive agent. Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigen-specific and persists after exposure to the tolerizing agent has ceased. Operationally, tolerance can be demonstrated by the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.

Down regulating or preventing one or more antigen functions (including without limitation B lymphocyte antigen functions (such as, for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will be useful in situations of tissue, skin and organ transplantation and in graft-versus-host disease (GVHD). For example, blockage of T cell function should result in reduced tissue destruction in tissue transplantation.

Typically, in tissue transplants, rejection of the transplant is initiated through its recognition as foreign by T cells, followed by an immune reaction that destroys the transplant. The administration of a therapeutic composition of the invention may prevent cytokine synthesis by immune cells, such as T cells, and thus acts as an immunosuppressant. Moreover, a lack of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte antigen-blocking reagents may avoid the necessity of repeated administration of these blocking reagents. To achieve sufficient immunosuppression or tolerance in a subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

The efficacy of particular therapeutic compositions in preventing organ transplant rejection or GVHD can be assessed using animal models that are predictive of efficacy in humans. Examples of appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4Ig fusion proteins in vivo as described in Lenschow et al., Science 257:789-792 (1992) and Turka et al., Proc. Natl. Acad. Sci USA, 89:11102-11105 (1992). In addition, murine models of GVHD (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of therapeutic compositions of the invention on the development of that disease.

WO 03/080795 PCT/US02/25485

55

Blocking antigen function may also be therapeutically useful for treating autoimmune diseases. Many autoimmune disorders are the result of inappropriate activation of T cells that are reactive against self-tissue and which promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate disease symptoms. Administration of reagents which block stimulation of T cells can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking reagents may induce antigen-specific tolerance of autoreactive T cells which could lead to long-term relief from the disease. The efficacy of blocking reagents in preventing or alleviating autoimmune disorders can be determined using a number of well-characterized animal models of human autoimmune diseases. Examples include murine experimental autoimmune encephalitis, systemic lupus erythmatosis in MRL/lpr/lpr mice or NZB hybrid mice, murine autoimmune collagen arthritis, diabetes mellitus in NOD mice and BB rats, and murine experimental myasthenia gravis (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856).

5

10

15

20

25

30

Upregulation of an antigen function (e.g., a B lymphocyte antigen function), as a means of up regulating immune responses, may also be useful in therapy. Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting an initial immune response. For example, enhancing an immune response may be useful in cases of viral infection, including systemic viral diseases such as influenza, the common cold, and encephalitis.

Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the transfected cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to, and thereby activate, T cells in vivo.

WO 03/080795 PCT/US02/25485

56

A polypeptide of the present invention may provide the necessary stimulation signal to T cells to induce a T cell mediated immune response against the transfected tumor cells. In addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient mounts of MHC class I or MHC class II molecules, can be transfected with nucleic acid encoding all or a portion of (e.g., a cytoplasmic-domain truncated portion) of an MHC class I alpha chain protein and β₂ microglobulin protein or an MHC class II alpha chain protein and an MHC class II beta chain protein to thereby express MHC class I or MHC class II proteins on the cell surface. Expression of the appropriate class I or class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding an antisense construct which blocks expression of an MHC class II associated protein, such as the invariant chain, can also be cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific immunity. Thus, the induction of a T cell mediated immune response in a human subject may be sufficient to overcome

5

10

15

30

tumor-specific tolerance in the subject.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for thymocyte or splenocyte cytotoxicity include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., I. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bowman et al., J. Virology 61:1992-1998; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Brown et al., J. Immunol. 153:3079-3092, 1994.

Assays for T-cell-dependent immunoglobulin responses and isotype switching (which will identify, among others, proteins that modulate T-cell dependent antibody responses and that affect Th1/Th2 profiles) include, without limitation, those described in: Maliszewski, J. Immunol. 144:3028-3033, 1990; and Assays for B cell function: In vitro

PCT/US02/25485 WO 03/080795

antibody production, Mond, J. J. and Brunswick, M. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 3.8.1-3.8.16, John Wiley and Sons, Toronto. 1994.

57

Mixed lymphocyte reaction (MLR) assays (which will identify, among others, proteins that generate predominantly Th1 and CTL responses) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol. 149:3778-3783, 1992.

5

10

15

20

25

30

Dendritic cell-dependent assays (which will identify, among others, proteins expressed by dendritic cells that activate naive T-cells) include, without limitation, those described in: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology 154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., Journal of Virology 67:4062-4069, 1993; Huang et al., Science 264:961-965, 1994; Macatonia et al., Journal of Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 1990.

Assays for lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those described in: Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood 84:111-117, 1994; Fine et al., Cellular Immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995; Toki et al., Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.

4.10.8 ACTIVIN/INHIBIN ACTIVITY

10

15

20

A polypeptide of the present invention may also exhibit activin- or inhibin-related activities. A polynucleotide of the invention may encode a polypeptide exhibiting such characteristics. Inhibins are characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activins and are characterized by their ability to stimulate the release of follicle stimulating hormone (FSH). Thus, a polypeptide of the present invention, alone or in heterodimers with a member of the inhibin family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals. Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, the polypeptide of the invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, U.S. Pat. No. 4,798,885. A polypeptide of the invention may also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as, but not limited to, cows, sheep and pigs.

The activity of a polypeptide of the invention may, among other means, be measured by the following methods.

Assays for activin/inhibin activity include, without limitation, those described in: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.

4.10.9 CHEMOTACTIC/CHEMOKINETIC ACTIVITY

A polypeptide of the present invention may be involved in chemotactic or chemokinetic activity for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Chemotactic and chemokinetic receptor activation can be used to mobilize or attract a desired cell population to a desired site of action. Chemotactic or chemokinetic compositions (e.g. proteins, antibodies, binding partners, or modulators of the invention) provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment of localized infections. For example, attraction of lymphocytes, monocytes or neutrophils to

WO 03/080795

59

tumors or sites of infection may result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.

Therapeutic compositions of the invention can be used in the following:

Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E.

Coligan, A. M. Kruisbeek, D. H. Marguiles, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al Eur. J. Immunol. 25:1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153:1762-1768, 1994.

20

25

15

5

10

4.10.10 HEMOSTATIC AND THROMBOLYTIC ACTIVITY

A polypeptide of the invention may also be involved in hemostatis or thrombolysis or thrombosis. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Compositions may be useful in treatment of various coagulation disorders (including hereditary disorders, such as hemophilias) or to enhance coagulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes. A composition of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke).

30

Therapeutic compositions of the invention can be used in the following:

Assay for hemostatic and thrombolytic activity include, without limitation, those described in: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al., Thrombosis

10

15

20

25

30

Res. 45:413-419, 1987; Humphrey et al., Fibrinolysis 5:71-79 (1991); Schaub, Prostaglandins 35:467-474, 1988.

4.10.11 CANCER DIAGNOSIS AND THERAPY

Polypeptides of the invention may be involved in cancer cell generation, proliferation or metastasis. Detection of the presence or amount of polynucleotides or polypeptides of the invention may be useful for the diagnosis and/or prognosis of one or more types of cancer. For example, the presence or increased expression of a polynucleotide/polypeptide of the invention may indicate a hereditary risk of cancer, a precancerous condition, or an ongoing malignancy. Conversely, a defect in the gene or absence of the polypeptide may be associated with a cancer condition. Identification of single nucleotide polymorphisms associated with cancer or a predisposition to cancer may also be useful for diagnosis or prognosis.

Cancer treatments promote tumor regression by inhibiting tumor cell proliferation, inhibiting angiogenesis (growth of new blood vessels that is necessary to support tumor growth) and/or prohibiting metastasis by reducing tumor cell motility or invasiveness. Therapeutic compositions of the invention may be effective in adult and pediatric oncology including in solid phase tumors/malignancies, locally advanced tumors, human soft tissue sarcomas, metastatic cancer, including lymphatic metastases, blood cell malignancies including multiple myeloma, acute and chronic leukemias, and lymphomas, head and neck cancers including mouth cancer, larynx cancer and thyroid cancer, lung cancers including small cell carcinoma and non-small cell cancers, breast cancers including small cell. carcinoma and ductal carcinoma, gastrointestinal cancers including esophageal cancer, stomach cancer, colon cancer, colorectal cancer and polyps associated with colorectal neoplasia, pancreatic cancers, liver cancer, urologic cancers including bladder cancer and prostate cancer, malignancies of the female genital tract including ovarian carcinoma, uterine (including endometrial) cancers, and solid tumor in the ovarian follicle, kidney cancers including renal cell carcinoma, brain cancers including intrinsic brain tumors, neuroblastoma, astrocytic brain tumors, gliomas, metastatic tumor cell invasion in the central nervous system, bone cancers including osteomas, skin cancers including malignant melanoma, tumor progression of human skin keratinocytes, squamous cell carcinoma, basal cell carcinoma, hemangiopericytoma and Karposi's sarcoma.

Polypeptides, polynucleotides, or modulators of polypeptides of the invention

WO 03/080795

10

15

20

25

30

61

(including inhibitors and stimulators of the biological activity of the polypeptide of the invention) may be administered to treat cancer. Therapeutic compositions can be administered in therapeutically effective dosages alone or in combination with adjuvant cancer therapy such as surgery, chemotherapy, radiotherapy, thermotherapy, and laser therapy, and may provide a beneficial effect, e.g. reducing tumor size, slowing rate of tumor growth, inhibiting metastasis, or otherwise improving overall clinical condition, without necessarily eradicating the cancer.

The composition can also be administered in therapeutically effective amounts as a portion of an anti-cancer cocktail. An anti-cancer cocktail is a mixture of the polypeptide or modulator of the invention with one or more anti-cancer drugs in addition to a pharmaceutically acceptable carrier for delivery. The use of anti-cancer cocktails as a cancer treatment is routine. Anti-cancer drugs that are well known in the art and can be used as a treatment in combination with the polypeptide or modulator of the invention include: Actinomycin D, Aminoglutethimide, Asparaginase, Bleomycin, Busulfan, Carboplatin, Carmustine, Chlorambucil, Cisplatin (cis-DDP), Cyclophosphamide, Cytarabine HCl (Cytosine arabinoside), Dacarbazine, Dactinomycin, Daunorubicin HCl, Doxorubicin HCl, Estramustine phosphate sodium, Etoposide (V16-213), Floxuridine, 5-Fluorouracil (5-Fu), Flutamide, Hydroxyurea (hydroxycarbamide), Ifosfamide, Interferon Alpha-2a, Interferon Alpha-2b, Leuprolide acetate (LHRH-releasing factor analog), Lomustine, Mechlorethamine HCl (nitrogen mustard), Melphalan, Mercaptopurine, Mesna, Methotrexate (MTX), Mitomycin, Mitoxantrone HCl, Octreotide, Plicamycin, Procarbazine HCl, Streptozocin, Tamoxifen citrate, Thioguanine, Thiotepa, Vinblastine sulfate, Vincristine sulfate, Amsacrine, Azacitidine, Hexamethylmelamine, Interleukin-2, Mitoguazone, Pentostatin, Semustine, Teniposide, and Vindesine sulfate.

In addition, therapeutic compositions of the invention may be used for prophylactic treatment of cancer. There are hereditary conditions and/or environmental situations (e.g. exposure to carcinogens) known in the art that predispose an individual to developing cancers. Under these circumstances, it may be beneficial to treat these individuals with therapeutically effective doses of the polypeptide of the invention to reduce the risk of developing cancers.

In vitro models can be used to determine the effective doses of the polypeptide of the invention as a potential cancer treatment. These in vitro models include proliferation assays of cultured tumor cells, growth of cultured tumor cells in soft agar (see Freshney, (1987)

WO 03/080795

Culture of Animal Cells: A Manual of Basic Technique, Wily-Liss, New York, NY Ch 18 and Ch 21), tumor systems in nude mice as described in Giovanella et al., J. Natl. Can. Inst., 52: 921-30 (1974), mobility and invasive potential of tumor cells in Boyden Chamber assays as described in Pilkington et al., Anticancer Res., 17: 4107-9 (1997), and angiogenesis assays such as induction of vascularization of the chick chorioallantoic membrane or induction of vascular endothelial cell migration as described in Ribatta et al., Intl. J. Dev. Biol., 40: 1189-97 (1999) and Li et al., Clin. Exp. Metastasis, 17:423-9 (1999), respectively. Suitable tumor cells lines are available, e.g. from American Type Tissue Culture Collection catalogs.

62

10

15

20

25

5

4.10.12 RECEPTOR/LIGAND ACTIVITY

A polypeptide of the present invention may also demonstrate activity as receptor, receptor ligand or inhibitor or agonist of receptor/ligand interactions. A polynucleotide of the invention can encode a polypeptide exhibiting such characteristics. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors involved in cell-cell interactions and their ligands (including without limitation, cellular adhesion molecules (such as selectins, integrins and their ligands) and receptor/ligand pairs involved in antigen presentation, antigen recognition and development of cellular and humoral immune responses. Receptors and ligands are also useful for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. A protein of the present invention (including, without limitation, fragments of receptors and ligands) may themselves be useful as inhibitors of receptor/ligand interactions.

The activity of a polypeptide of the invention may, among other means, be measured by the following methods:

Suitable assays for receptor-ligand activity include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 7.28.1-7.28.22), Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987; Bierer et al., J. Exp. Med. 168:1145-1156, 1988; Rosenstein et al., J. Exp. Med. 169:149-160 1989; Stoltenborg et al., J. Immunol. Methods 175:59-68, 1994; Stitt et al., Cell 80:661-670, 1995.

10

15

20

25

30

By way of example, the polypeptides of the invention may be used as a receptor for a ligand(s) thereby transmitting the biological activity of that ligand(s). Ligands may be identified through binding assays, affinity chromatography, dihybrid screening assays, BIAcore assays, gel overlay assays, or other methods known in the art.

Studies characterizing drugs or proteins as agonist or antagonist or partial agonists or a partial antagonist require the use of other proteins as competing ligands. The polypeptides of the present invention or ligand(s) thereof may be labeled by being coupled to radioisotopes, colorimetric molecules or a toxin molecules by conventional methods. ("Guide to Protein Purification" Murray P. Deutscher (ed) Methods in Enzymology Vol. 182 (1990) Academic Press, Inc. San Diego). Examples of radioisotopes include, but are not limited to, tritium and carbon-14. Examples of colorimetric molecules include, but are not limited to, fluorescent molecules such as fluorescamine, or rhodamine or other colorimetric molecules. Examples of toxins include, but are not limited, to ricin.

4.10.13 DRUG SCREENING

This invention is particularly useful for screening chemical compounds by using the novel polypeptides or binding fragments thereof in any of a variety of drug screening techniques. The polypeptides or fragments employed in such a test may either be free in solution, affixed to a solid support, borne on a cell surface or located intracellularly. One method of drug screening utilizes eukaryotic or prokaryotic host cells which are stably transformed with recombinant nucleic acids expressing the polypeptide or a fragment thereof. Drugs are screened against such transformed cells in competitive binding assays. Such cells, either in viable or fixed form, can be used for standard binding assays. One may measure, for example, the formation of complexes between polypeptides of the invention or fragments and the agent being tested or examine the diminution in complex formation between the novel polypeptides and an appropriate cell line, which are well known in the art.

Sources for test compounds that may be screened for ability to bind to or modulate (i.e., increase or decrease) the activity of polypeptides of the invention include (1) inorganic and organic chemical libraries, (2) natural product libraries, and (3) combinatorial libraries comprised of either random or mimetic peptides, oligonucleotides or organic molecules.

Chemical libraries may be readily synthesized or purchased from a number of commercial sources, and may include structural analogs of known compounds or compounds that are identified as "hits" or "leads" via natural product screening.

10

15

20

25

30

The sources of natural product libraries are microorganisms (including bacteria and fungi), animals, plants or other vegetation, or marine organisms, and libraries of mixtures for screening may be created by: (1) fermentation and extraction of broths from soil, plant or marine microorganisms or (2) extraction of the organisms themselves. Natural product libraries include polyketides, non-ribosomal peptides, and (non-naturally occurring) variants thereof. For a review, see *Science 282*:63-68 (1998).

Combinatorial libraries are composed of large numbers of peptides, oligonucleotides or organic compounds and can be readily prepared by traditional automated synthesis methods, PCR, cloning or proprietary synthetic methods. Of particular interest are peptide and oligonucleotide combinatorial libraries. Still other libraries of interest include peptide, protein, peptidomimetic, multiparallel synthetic collection, recombinatorial, and polypeptide libraries. For a review of combinatorial chemistry and libraries created therefrom, see Myers, Curr. Opin. Biotechnol. 8:701-707 (1997). For reviews and examples of peptidomimetic libraries, see Al-Obeidi et al., Mol. Biotechnol, 9(3):205-23 (1998); Hruby et al., Curr Opin Chem Biol, 1(1):114-19 (1997); Dorner et al., Bioorg Med Chem, 4(5):709-15 (1996) (alkylated dipeptides).

Identification of modulators through use of the various libraries described herein permits modification of the candidate "hit" (or "lead") to optimize the capacity of the "hit" to bind a polypeptide of the invention. The molecules identified in the binding assay are then tested for antagonist or agonist activity in *in vivo* tissue culture or animal models that are well known in the art. In brief, the molecules are titrated into a plurality of cell cultures or animals and then tested for either cell/animal death or prolonged survival of the animal/cells.

The binding molecules thus identified may be complexed with toxins, e.g., ricin or cholera, or with other compounds that are toxic to cells such as radioisotopes. The toxin-binding molecule complex is then targeted to a tumor or other cell by the specificity of the binding molecule for a polypeptide of the invention. Alternatively, the binding molecules may be complexed with imaging agents for targeting and imaging purposes.

4.10.14 ASSAY FOR RECEPTOR ACTIVITY

The invention also provides methods to detect specific binding of a polypeptide e.g. a ligand or a receptor. The art provides numerous assays particularly useful for identifying previously unknown binding partners for receptor polypeptides of the invention. For example, expression cloning using mammalian or bacterial cells, or dihybrid screening

PCT/US02/25485 WO 03/080795

65

assays can be used to identify polynucleotides encoding binding partners. As another example, affinity chromatography with the appropriate immobilized polypeptide of the invention can be used to isolate polypeptides that recognize and bind polypeptides of the invention. There are a number of different libraries used for the identification of compounds, and in particular small molecules, that modulate (i.e., increase or decrease) biological activity of a polypeptide of the invention. Ligands for receptor polypeptides of the invention can also be identified by adding exogenous ligands, or cocktails of ligands to two cells populations that are genetically identical except for the expression of the receptor of the invention: one cell population expresses the receptor of the invention whereas the other does not. The responses of the two cell populations to the addition of ligands(s) are then compared. Alternatively, an expression library can be co-expressed with the polypeptide of the invention in cells and assayed for an autocrine response to identify potential ligand(s). As still another example, BIAcore assays, gel overlay assays, or other methods known in the art can be used to identify binding partner polypeptides, including, (1) organic and inorganic chemical libraries, (2) natural product libraries, and (3) combinatorial libraries comprised of random peptides, oligonucleotides or organic molecules.

5

10

15

20

25

30

The role of downstream intracellular signaling molecules in the signaling cascade of the polypeptide of the invention can be determined. For example, a chimeric protein in which the cytoplasmic domain of the polypeptide of the invention is fused to the extracellular portion of a protein, whose ligand has been identified, is produced in a host cell. The cell is then incubated with the ligand specific for the extracellular portion of the chimeric protein, thereby activating the chimeric receptor. Known downstream proteins involved in intracellular signaling can then be assayed for expected modifications i.e. phosphorylation. Other methods known to those in the art can also be used to identify signaling molecules involved in receptor activity.

4.10.15 ANTI-INFLAMMATORY ACTIVITY

Compositions of the present invention may also exhibit anti-inflammatory activity. The anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cell-cell interactions (such as, for example, cell adhesion), by inhibiting or promoting chemotaxis of cells involved in the inflammatory process, inhibiting or promoting cell extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an

inflammatory response. Compositions with such activities can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation intimation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of cytokines such as TNF or IL-1. Compositions of the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material. Compositions of this invention may be utilized to prevent or treat conditions such as, but not limited to, sepsis, acute pancreatitis, endotoxin shock, cytokine induced shock, rheumatoid arthritis, chronic inflammatory arthritis, pancreatic cell damage from diabetes mellitus type 1, graft versus host disease, inflammatory bowel disease, inflamation associated with pulmonary disease, other autoimmune disease or inflammatory disease, an antiproliferative agent such as for acute or chronic mylegenous leukemia or in the prevention of premature labor secondary to intrauterine infections.

4.10.16 LEUKEMIAS

Leukemias and related disorders may be treated or prevented by administration of a therapeutic that promotes or inhibits function of the polynucleotides and/or polypeptides of the invention. Such leukemias and related disorders include but are not limited to acute leukemia, acute lymphocytic leukemia, acute myelocytic leukemia, myeloblastic, promyelocytic, myelomonocytic, monocytic, erythroleukemia, chronic leukemia, chronic myelocytic (granulocytic) leukemia and chronic lymphocytic leukemia (for a review of such disorders, see Fishman et al., 1985, Medicine, 2d Ed., J.B. Lippincott Co., Philadelphia).

25

30

5

10

15

20

4.10.17 NERVOUS SYSTEM DISORDERS

Nervous system disorders, involving cell types which can be tested for efficacy of intervention with compounds that modulate the activity of the polynucleotides and/or polypeptides of the invention, and which can be treated upon thus observing an indication of therapeutic utility, include but are not limited to nervous system injuries, and diseases or disorders which result in either a disconnection of axons, a diminution or degeneration of neurons, or demyelination. Nervous system lesions which may be treated in a patient (including human and non-human mammalian patients) according to the invention include

but are not limited to the following lesions of either the central (including spinal cord, brain) or peripheral nervous systems:

traumatic lesions, including lesions caused by physical injury or associated (i) with surgery, for example, lesions which sever a portion of the nervous system, or compression injuries;

5

10

15

20

25

30

- ischemic lesions, in which a lack of oxygen in a portion of the nervous system (ii) results in neuronal injury or death, including cerebral infarction or ischemia, or spinal cord infarction or ischemia;
- infectious lesions, in which a portion of the nervous system is destroyed or (iii) injured as a result of infection, for example, by an abscess or associated with infection by human immunodeficiency virus, herpes zoster, or herpes simplex virus or with Lyme disease, tuberculosis, syphilis;
- degenerative lesions, in which a portion of the nervous system is destroyed or (iv) injured as a result of a degenerative process including but not limited to degeneration associated with Parkinson's disease, Alzheimer's disease, Huntington's chorea, or amyotrophic lateral sclerosis;
- lesions associated with nutritional diseases or disorders, in which a portion of (v) the nervous system is destroyed or injured by a nutritional disorder or disorder of metabolism including but not limited to, vitamin B12 deficiency, folic acid deficiency, Wernicke disease, tobacco-alcohol amblyopia, Marchiafava-Bignami disease (primary degeneration of the corpus callosum), and alcoholic cerebellar degeneration;
- neurological lesions associated with systemic diseases including but not limited to diabetes (diabetic neuropathy, Bell's palsy), systemic lupus erythematosus, carcinoma, or sarcoidosis;
- lesions caused by toxic substances including alcohol, lead, or particular neurotoxins; and
- (viii) demyelinated lesions in which a portion of the nervous system is destroyed or injured by a demyelinating disease including but not limited to multiple sclerosis, human immunodeficiency virus-associated myelopathy, transverse myelopathy or various etiologies, progressive multifocal leukoencephalopathy, and central pontine myelinolysis.

Therapeutics which are useful according to the invention for treatment of a nervous system disorder may be selected by testing for biological activity in promoting the survival

PCT/US02/25485 WO 03/080795

68

or differentiation of neurons. For example, and not by way of limitation, therapeutics which elicit any of the following effects may be useful according to the invention:

increased survival time of neurons in culture; (i)

5

10

15

20

25

30

- increased sprouting of neurons in culture or in vivo; (ii)
- increased production of a neuron-associated molecule in culture or in vivo, (iii) e.g., choline acetyltransferase or acetylcholinesterase with respect to motor neurons; or
 - decreased symptoms of neuron dysfunction in vivo.

Such effects may be measured by any method known in the art. In preferred, non-limiting embodiments, increased survival of neurons may be measured by the method set forth in Arakawa et al. (1990, J. Neurosci. 10:3507-3515); increased sprouting of neurons may be detected by methods set forth in Pestronk et al. (1980, Exp. Neurol. 70:65-82) or Brown et al. (1981, Ann. Rev. Neurosci. 4:17-42); increased production of neuron-associated molecules may be measured by bioassay, enzymatic assay, antibody binding. Northern blot assay, etc., depending on the molecule to be measured; and motor neuron dysfunction may be measured by assessing the physical manifestation of motor neuron disorder, e.g., weakness, motor neuron conduction velocity, or functional disability.

In specific embodiments, motor neuron disorders that may be treated according to the invention include but are not limited to disorders such as infarction, infection, exposure to toxin, trauma, surgical damage, degenerative disease or malignancy that may affect motor neurons as well as other components of the nervous system, as well as disorders that selectively affect neurons such as amyotrophic lateral sclerosis, and including but not limited to progressive spinal muscular atrophy, progressive bulbar palsy, primary lateral sclerosis, infantile and juvenile muscular atrophy, progressive bulbar paralysis of childhood (Fazio-Londe syndrome), poliomyelitis and the post polio syndrome, and Hereditary Motorsensory Neuropathy (Charcot-Marie-Tooth Disease).

4.10.18 OTHER ACTIVITIES

A polypeptide of the invention may also exhibit one or more of the following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites; effecting (suppressing or enhancing) bodily characteristics, including, without limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body part size or shape (such as, for example, breast augmentation or diminution,

change in bone form or shape); effecting biorhythms or circadian cycles or rhythms; effecting the fertility of male or female subjects; effecting the metabolism, catabolism, anabolism, processing, utilization, storage or elimination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, co-factors or other nutritional factors or component(s); effecting behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), depression (including depressive disorders) and violent behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth of embryonic stem cells in lineages other than hematopoietic lineages; hormonal or endocrine activity; in the case of enzymes, correcting deficiencies of the enzyme and treating deficiency-related diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulin-like activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.

15

20

25

30

10

5

4.10.19 IDENTIFICATION OF POLYMORPHISMS

The demonstration of polymorphisms makes possible the identification of such polymorphisms in human subjects and the pharmacogenetic use of this information for diagnosis and treatment. Such polymorphisms may be associated with, e.g., differential predisposition or susceptibility to various disease states (such as disorders involving inflammation or immune response) or a differential response to drug administration, and this genetic information can be used to tailor preventive or therapeutic treatment appropriately. For example, the existence of a polymorphism associated with a predisposition to inflammation or autoimmune disease makes possible the diagnosis of this condition in humans by identifying the presence of the polymorphism.

Polymorphisms can be identified in a variety of ways known in the art which all generally involve obtaining a sample from a patient, analyzing DNA from the sample, optionally involving isolation or amplification of the DNA, and identifying the presence of the polymorphism in the DNA. For example, PCR may be used to amplify an appropriate fragment of genomic DNA which may then be sequenced. Alternatively, the DNA may be subjected to allele-specific oligonucleotide hybridization (in which appropriate oligonucleotides are hybridized to the DNA under conditions permitting detection of a single base mismatch) or to a single nucleotide extension assay (in which an oligonucleotide that

WO 03/080795 PCT/US02/25485

70

hybridizes immediately adjacent to the position of the polymorphism is extended with one or more labeled nucleotides). In addition, traditional restriction fragment length polymorphism analysis (using restriction enzymes that provide differential digestion of the genomic DNA depending on the presence or absence of the polymorphism) may be performed. Arrays with nucleotide sequences of the present invention can be used to detect polymorphisms. The array can comprise modified nucleotide sequences of the present invention in order to detect the nucleotide sequences of the present invention. In the alternative, any one of the nucleotide sequences of the present invention can be placed on the array to detect changes from those sequences.

Alternatively a polymorphism resulting in a change in the amino acid sequence could also be detected by detecting a corresponding change in amino acid sequence of the protein, e.g., by an antibody specific to the variant sequence.

4.10.20 ARTHRITIS AND INFLAMMATION

5

10

15

20

25

30

The immunosuppressive effects of the compositions of the invention against rheumatoid arthritis is determined in an experimental animal model system. The experimental model system is adjuvant induced arthritis in rats, and the protocol is described by J. Holoshitz, et at., 1983, Science, 219:56, or by B. Waksman et al., 1963, Int. Arch. Allergy Appl. Immunol., 23:129. Induction of the disease can be caused by a single injection, generally intradermally, of a suspension of killed Mycobacterium tuberculosis in complete Freund's adjuvant (CFA). The route of injection can vary, but rats may be injected at the base of the tail with an adjuvant mixture. The polypeptide is administered in phosphate buffered solution (PBS) at a dose of about 1-5 mg/kg. The control consists of administering PBS only.

The procedure for testing the effects of the test compound would consist of intradermally injecting killed Mycobacterium tuberculosis in CFA followed by immediately administering the test compound and subsequent treatment every other day until day 24. At 14, 15, 18, 20, 22, and 24 days after injection of Mycobacterium CFA, an overall arthritis score may be obtained as described by J. Holoskitz above. An analysis of the data would reveal that the test compound would have a dramatic affect on the swelling of the joints as measured by a decrease of the arthritis score.

4.11 THERAPEUTIC METHODS

WO 03/080795

71

The compositions (including polypeptide fragments, analogs, variants and antibodies or other binding partners or modulators including antisense polynucleotides) of the invention have numerous applications in a variety of therapeutic methods. Examples of therapeutic applications include, but are not limited to, those exemplified herein.

5

10

15

20

4.11.1 EXAMPLE

One embodiment of the invention is the administration of an effective amount of the polypeptides or other composition of the invention to individuals affected by a disease or disorder that can be modulated by regulating the peptides of the invention. While the mode of administration is not particularly important, parenteral administration is preferred. An exemplary mode of administration is to deliver an intravenous bolus. The dosage of the polypeptides or other composition of the invention will normally be determined by the prescribing physician. It is to be expected that the dosage will vary according to the age, weight, condition and response of the individual patient. Typically, the amount of polypeptide administered per dose will be in the range of about 0.01µg/kg to 100 mg/kg of body weight, with the preferred dose being about 0.1µg/kg to 10 mg/kg of patient body weight. For parenteral administration, polypeptides of the invention will be formulated in an injectable form combined with a pharmaceutically acceptable parenteral vehicle. Such vehicles are well known in the art and examples include water, saline, Ringer's solution, dextrose solution, and solutions consisting of small amounts of the human serum albumin. The vehicle may contain minor amounts of additives that maintain the isotonicity and stability of the polypeptide or other active ingredient. The preparation of such solutions is within the skill of the art.

25

30

PHARMACEUTICAL FORMULATIONS ROUTES AND **OF** 4.12 **ADMINISTRATION**

A protein or other composition of the present invention (from whatever source derived, including without limitation from recombinant and non-recombinant sources and including antibodies and other binding partners of the polypeptides of the invention) may be administered to a patient in need, by itself, or in pharmaceutical compositions where it is mixed with suitable carriers or excipient(s) at doses to treat or ameliorate a variety of disorders. Such a composition may optionally contain (in addition to protein or other active ingredient and a carrier) diluents, fillers, salts, buffers, stabilizers, solubilizers, and other

WO 03/080795

5

10

15

20

25

30

72

materials well known in the art. The term "pharmaceutically acceptable" means a non-toxic material that does not interfere with the effectiveness of the biological activity of the active ingredient(s). The characteristics of the carrier will depend on the route of administration. The pharmaceutical composition of the invention may also contain cytokines, lymphokines, or other hematopoietic factors such as M-CSF, GM-CSF, TNF, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IFN, TNF0, TNF1, TNF2, G-CSF, Meg-CSF, thrombopoietin, stem cell factor, and erythropoietin. In further compositions, proteins of the invention may be combined with other agents beneficial to the treatment of the disease or disorder in question. These agents include various growth factors such as epidermal growth factor (EGF), platelet-derived growth factor (PDGF), transforming growth factors (TGF-α and TGF-β), insulin-like growth factor (IGF), as well as cytokines described herein.

The pharmaceutical composition may further contain other agents which either enhance the activity of the protein or other active ingredient or complement its activity or use in treatment. Such additional factors and/or agents may be included in the pharmaceutical composition to produce a synergistic effect with protein or other active ingredient of the invention, or to minimize side effects. Conversely, protein or other active ingredient of the present invention may be included in formulations of the particular clotting factor, cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent to minimize side effects of the clotting factor, cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent (such as IL-1Ra, IL-1 Hy1, IL-1 Hy2, anti-TNF, corticosteroids, immunosuppressive agents). A protein of the present invention may be active in multimers (e.g., heterodimers or homodimers) or complexes with itself or other proteins. As a result, pharmaceutical compositions of the invention may comprise a protein of the invention in such multimeric or complexed form.

As an alternative to being included in a pharmaceutical composition of the invention including a first protein, a second protein or a therapeutic agent may be concurrently administered with the first protein (e.g., at the same time, or at differing times provided that therapeutic concentrations of the combination of agents is achieved at the treatment site). Techniques for formulation and administration of the compounds of the instant application may be found in "Remington's Pharmaceutical Sciences," Mack Publishing Co., Easton, PA, latest edition. A therapeutically effective dose further refers to that amount of the compound

PCT/US02/25485 WO 03/080795

73

sufficient to result in amelioration of symptoms, e.g., treatment, healing, prevention or amelioration of the relevant medical condition, or an increase in rate of treatment, healing, prevention or amelioration of such conditions. When applied to an individual active ingredient, administered alone, a therapeutically effective dose refers to that ingredient alone. When applied to a combination, a therapeutically effective dose refers to combined amounts of the active ingredients that result in the therapeutic effect, whether administered in combination, serially or simultaneously.

In practicing the method of treatment or use of the present invention, a therapeutically effective amount of protein or other active ingredient of the present invention is administered to a mammal having a condition to be treated. Protein or other active ingredient of the present invention may be administered in accordance with the method of the invention either alone or in combination with other therapies such as treatments employing cytokines, lymphokines or other hematopoietic factors. When co- administered with one or more cytokines, lymphokines or other hematopoietic factors, protein or other active ingredient of the present invention may be administered either simultaneously with the cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or anti-thrombotic factors, or sequentially. If administered sequentially, the attending physician will decide on the appropriate sequence of administering protein or other active ingredient of the present invention in combination with cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or anti-thrombotic factors.

4.12.1 ROUTES OF ADMINISTRATION

5

10

15

20

25

30

Suitable routes of administration may, for example, include oral, rectal, transmucosal, or intestinal administration; parenteral delivery, including intramuscular, subcutaneous, intramedullary injections, as well as intrathecal, direct intraventricular, intravenous, intraperitoneal, intranasal, or intraocular injections. Administration of protein or other active ingredient of the present invention used in the pharmaceutical composition or to practice the method of the present invention can be carried out in a variety of conventional ways, such as oral ingestion, inhalation, topical application or cutaneous, subcutaneous, intraperitoneal, parenteral or intravenous injection. Intravenous administration to the patient is preferred.

Alternately, one may administer the compound in a local rather than systemic manner, for example, via injection of the compound directly into a arthritic joints or in WO 03/080795

fibrotic tissue, often in a depot or sustained release formulation. In order to prevent the scarring process frequently occurring as complication of glaucoma surgery, the compounds may be administered topically, for example, as eye drops. Furthermore, one may administer the drug in a targeted drug delivery system, for example, in a liposome coated with a specific antibody, targeting, for example, arthritic or fibrotic tissue. The liposomes will be targeted to and taken up selectively by the afflicted tissue.

The polypeptides of the invention are administered by any route that delivers an effective dosage to the desired site of action. The determination of a suitable route of administration and an effective dosage for a particular indication is within the level of skill in the art. Preferably for wound treatment, one administers the therapeutic compound directly to the site. Suitable dosage ranges for the polypeptides of the invention can be extrapolated from these dosages or from similar studies in appropriate animal models. Dosages can then be adjusted as necessary by the clinician to provide maximal therapeutic benefit.

15

20

25

30

10

5

4.12.2 COMPOSITIONS/FORMULATIONS

Pharmaceutical compositions for use in accordance with the present invention thus may be formulated in a conventional manner using one or more physiologically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. These pharmaceutical compositions may be manufactured in a manner that is itself known, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes. Proper formulation is dependent upon the route of administration chosen. When a therapeutically effective amount of protein or other active ingredient of the present invention is administered orally, protein or other active ingredient of the present invention will be in the form of a tablet, capsule, powder, solution or elixir. When administered in tablet form, the pharmaceutical composition of the invention may additionally contain a solid carrier such as a gelatin or an adjuvant. The tablet, capsule, and powder contain from about 5 to 95% protein or other active ingredient of the present invention, and preferably from about 25 to 90% protein or other active ingredient of the present invention. When administered in liquid form, a liquid carrier such as water, petroleum, oils of animal or plant origin such as peanut oil, mineral oil, soybean oil, or sesame oil, or synthetic oils may be added. The liquid form of the pharmaceutical

WO 03/080795 PCT/US02/25485

composition may further contain physiological saline solution, dextrose or other saccharide solution, or glycols such as ethylene glycol, propylene glycol or polyethylene glycol. When administered in liquid form, the pharmaceutical composition contains from about 0.5 to 90% by weight of protein or other active ingredient of the present invention, and preferably from about 1 to 50% protein or other active ingredient of the present invention.

5

10

15

20

25

30

When a therapeutically effective amount of protein or other active ingredient of the present invention is administered by intravenous, cutaneous or subcutaneous injection, protein or other active ingredient of the present invention will be in the form of a pyrogen-free, parenterally acceptable aqueous solution. The preparation of such parenterally acceptable protein or other active ingredient solutions, having due regard to pH, isotonicity, stability, and the like, is within the skill in the art. A preferred pharmaceutical composition for intravenous, cutaneous, or subcutaneous injection should contain, in addition to protein or other active ingredient of the present invention, an isotonic vehicle such as Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, Lactated Ringer's Injection, or other vehicle as known in the art. The pharmaceutical composition of the present invention may also contain stabilizers, preservatives, buffers, antioxidants, or other additives known to those of skill in the art. For injection, the agents of the invention may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer. For transmucosal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

For oral administration, the compounds can be formulated readily by combining the active compounds with pharmaceutically acceptable carriers well known in the art. Such carriers enable the compounds of the invention to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a patient to be treated. Pharmaceutical preparations for oral use can be obtained from a solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PVP). If desired,

WO 03/080795

10

15

20

25

30

disintegrating agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate. Dragee cores are provided with suitable coatings. For this purpose, concentrated sugar solutions may be used, which may optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.

76

Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. The push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols. In addition, stabilizers may be added. All formulations for oral administration should be in dosages suitable for such administration. For buccal administration, the compositions may take the form of tablets or lozenges formulated in conventional manner.

For administration by inhalation, the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebuliser, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit may be determined by providing a valve to deliver a metered amount. Capsules and cartridges of, e.g., gelatin for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch. The compounds may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampules or in multi-dose containers, with an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents.

Pharmaceutical formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such

WO 03/080795 PCT/US02/25485

as ethyl oleate or triglycerides, or liposomes. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Optionally, the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.

The compounds may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or 10 other glycerides. In addition to the formulations described previously, the compounds may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the compounds may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.

15

20

25

A pharmaceutical carrier for the hydrophobic compounds of the invention is a cosolvent system comprising benzyl alcohol, a nonpolar surfactant, a water-miscible organic polymer, and an aqueous phase. The co-solvent system may be the VPD co-solvent system. VPD is a solution of 3% w/v benzyl alcohol, 8% w/v of the nonpolar surfactant polysorbate 80, and 65% w/v polyethylene glycol 300, made up to volume in absolute ethanol. The VPD co-solvent system (VPD:5W) consists of VPD diluted 1:1 with a 5% dextrose in water solution. This co-solvent system dissolves hydrophobic compounds well, and itself produces low toxicity upon systemic administration. Naturally, the proportions of a co-solvent system may be varied considerably without destroying its solubility and toxicity characteristics. Furthermore, the identity of the co-solvent components may be varied: for example, other low-toxicity nonpolar surfactants may be used instead of polysorbate 80; the fraction size of polyethylene glycol may be varied; other biocompatible polymers may replace polyethylene glycol, e.g. polyvinyl pyrrolidone; and other sugars or polysaccharides may substitute for dextrose. Alternatively, other delivery systems for hydrophobic pharmaceutical compounds may be employed. Liposomes and emulsions are well known examples of delivery vehicles 30 or carriers for hydrophobic drugs. Certain organic solvents such as dimethylsulfoxide also may be employed, although usually at the cost of greater toxicity. Additionally, the compounds may be delivered using a sustained-release system, such as semipermeable

WO 03/080795 PCT/US02/25485

78

matrices of solid hydrophobic polymers containing the therapeutic agent. Various types of sustained-release materials have been established and are well known by those skilled in the art. Sustained-release capsules may, depending on their chemical nature, release the compounds for a few weeks up to over 100 days. Depending on the chemical nature and the biological stability of the therapeutic reagent, additional strategies for protein or other active ingredient stabilization may be employed.

5

10

15

20

25

30

The pharmaceutical compositions also may comprise suitable solid or gel phase carriers or excipients. Examples of such carriers or excipients include but are not limited to calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin, and polymers such as polyethylene glycols. Many of the active ingredients of the invention may be provided as salts with pharmaceutically compatible counter ions. Such pharmaceutically acceptable base addition salts are those salts which retain the biological effectiveness and properties of the free acids and which are obtained by reaction with inorganic or organic bases such as sodium hydroxide, magnesium hydroxide, ammonia, trialkylamine, dialkylamine, monoalkylamine, dibasic amino acids, sodium acetate, potassium benzoate, triethanol amine and the like.

The pharmaceutical composition of the invention may be in the form of a complex of the protein(s) or other active ingredient(s) of present invention along with protein or peptide antigens. The protein and/or peptide antigen will deliver a stimulatory signal to both B and T lymphocytes. B lymphocytes will respond to antigen through their surface immunoglobulin receptor. T lymphocytes will respond to antigen through the T cell receptor (TCR) following presentation of the antigen by MHC proteins. MHC and structurally related proteins including those encoded by class I and class II MHC genes on host cells will serve to present the peptide antigen(s) to T lymphocytes. The antigen components could also be supplied as purified MHC-peptide complexes alone or with co-stimulatory molecules that can directly signal T cells. Alternatively antibodies able to bind surface immunoglobulin and other molecules on B cells as well as antibodies able to bind the TCR and other molecules on T cells can be combined with the pharmaceutical composition of the invention.

The pharmaceutical composition of the invention may be in the form of a liposome in which protein of the present invention is combined, in addition to other pharmaceutically acceptable carriers, with amphipathic agents such as lipids which exist in aggregated form as micelles, insoluble monolayers, liquid crystals, or lamellar layers in aqueous solution. Suitable lipids for liposomal formulation include, without limitation, monoglycerides,

WO 03/080795 PCT/US02/25485

79

diglycerides, sulfatides, lysolecithins, phospholipids, saponin, bile acids, and the like. Preparation of such liposomal formulations is within the level of skill in the art, as disclosed, for example, in U.S. Patent Nos. 4,235,871; 4,501,728; 4,837,028; and 4,737,323, all of which are incorporated herein by reference.

5

10

15

20

25

30

The amount of protein or other active ingredient of the present invention in the pharmaceutical composition of the present invention will depend upon the nature and severity of the condition being treated, and on the nature of prior treatments which the patient has undergone. Ultimately, the attending physician will decide the amount of protein or other active ingredient of the present invention with which to treat each individual patient. Initially, the attending physician will administer low doses of protein or other active ingredient of the present invention and observe the patient's response. Larger doses of protein or other active ingredient of the present invention may be administered until the optimal therapeutic effect is obtained for the patient, and at that point the dosage is not increased further. It is contemplated that the various pharmaceutical compositions used to practice the method of the present invention should contain about 0.01 ug to about 100 mg (preferably about 0.1 µg to about 10 mg, more preferably about 0.1 µg to about 1 mg) of protein or other active ingredient of the present invention per kg body weight. For compositions of the present invention which are useful for bone, cartilage, tendon or ligament regeneration, the therapeutic method includes administering the composition topically, systematically, or locally as an implant or device. When administered, the therapeutic composition for use in this invention is, of course, in a pyrogen-free, physiologically acceptable form. Further, the composition may desirably be encapsulated or injected in a viscous form for delivery to the site of bone, cartilage or tissue damage. Topical administration may be suitable for wound healing and tissue repair. Therapeutically useful agents other than a protein or other active ingredient of the invention which may also optionally be included in the composition as described above, may alternatively or additionally, be administered simultaneously or sequentially with the composition in the methods of the invention. Preferably for bone and/or cartilage formation, the composition would include a matrix capable of delivering the protein-containing or other active ingredient-containing composition to the site of bone and/or cartilage damage, providing a structure for the developing bone and cartilage and optimally capable of being resorbed into the body. Such matrices may be formed of materials presently in use for other implanted medical applications.

WO 03/080795

5

10

15

20

25

30

The choice of matrix material is based on biocompatibility, biodegradability, mechanical properties, cosmetic appearance and interface properties. The particular application of the compositions will define the appropriate formulation. Potential matrices for the compositions may be biodegradable and chemically defined calcium sulfate, tricalcium phosphate, hydroxyapatite, polylactic acid, polyglycolic acid and polyanhydrides. Other potential materials are biodegradable and biologically well-defined, such as bone or dermal collagen. Further matrices are comprised of pure proteins or extracellular matrix components. Other potential matrices are nonbiodegradable and chemically defined, such as sintered hydroxyapatite, bioglass, aluminates, or other ceramics. Matrices may be comprised of combinations of any of the above-mentioned types of material, such as polylactic acid and hydroxyapatite or collagen and tricalcium phosphate. The bioceramics may be altered in composition, such as in calcium-aluminate-phosphate and processing to alter pore size. particle size, particle shape, and biodegradability. Presently preferred is a 50:50 (mole weight) copolymer of lactic acid and glycolic acid in the form of porous particles having diameters ranging from 150 to 800 microns. In some applications, it will be useful to utilize a sequestering agent, such as carboxymethyl cellulose or autologous blood clot, to prevent the protein compositions from disassociating from the matrix.

A preferred family of sequestering agents is cellulosic materials such as alkylcelluloses (including hydroxyalkylcelluloses), including methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropyl-methylcellulose, and carboxymethylcellulose, the most preferred being cationic salts of carboxymethylcellulose (CMC). Other preferred sequestering agents include hyaluronic acid, sodium alginate, poly(ethylene glycol), polyoxyethylene oxide, carboxyvinyl polymer and poly(vinyl alcohol). The amount of sequestering agent useful herein is 0.5-20 wt %, preferably 1-10 wt % based on total formulation weight, which represents the amount necessary to prevent desorption of the protein from the polymer matrix and to provide appropriate handling of the composition, yet not so much that the progenitor cells are prevented from infiltrating the matrix, thereby providing the protein the opportunity to assist the osteogenic activity of the progenitor cells. In further compositions, proteins or other active ingredients of the invention may be combined with other agents beneficial to the treatment of the bone and/or cartilage defect, wound, or tissue in question. These agents include various growth factors such as epidermal growth factor (EGF), platelet

WO 03/080795 PCT/US02/25485

81

derived growth factor (PDGF), transforming growth factors (TGF-α and TGF-β), and insulin-like growth factor (IGF).

The therapeutic compositions are also presently valuable for veterinary applications. Particularly domestic animals and thoroughbred horses, in addition to humans, are desired patients for such treatment with proteins or other active ingredients of the present invention. The dosage regimen of a protein-containing pharmaceutical composition to be used in tissue regeneration will be determined by the attending physician considering various factors which modify the action of the proteins, e.g., amount of tissue weight desired to be formed, the site of damage, the condition of the damaged tissue, the size of a wound, type of damaged tissue (e.g., bone), the patient's age, sex, and diet, the severity of any infection, time of administration and other clinical factors. The dosage may vary with the type of matrix used in the reconstitution and with inclusion of other proteins in the pharmaceutical composition. For example, the addition of other known growth factors, such as IGF I (insulin like growth factor I), to the final composition, may also effect the dosage. Progress can be monitored by periodic assessment of tissue/bone growth and/or repair, for example, X-rays, histomorphometric determinations and tetracycline labeling.

Polynucleotides of the present invention can also be used for gene therapy. Such polynucleotides can be introduced either in vivo or ex vivo into cells for expression in a mammalian subject. Polynucleotides of the invention may also be administered by other known methods for introduction of nucleic acid into a cell or organism (including, without limitation, in the form of viral vectors or naked DNA). Cells may also be cultured ex vivo in the presence of proteins of the present invention in order to proliferate or to produce a desired effect on or activity in such cells. Treated cells can then be introduced in vivo for therapeutic purposes.

25

30

5

10

15

20

4.12.3 EFFECTIVE DOSAGE

Pharmaceutical compositions suitable for use in the present invention include compositions wherein the active ingredients are contained in an effective amount to achieve its intended purpose. More specifically, a therapeutically effective amount means an amount effective to prevent development of or to alleviate the existing symptoms of the subject being treated. Determination of the effective amount is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein. For any compound used in the method of the invention, the therapeutically effective dose can be

WO 03/080795 PCT/US02/25485

82

estimated initially from appropriate in vitro assays. For example, a dose can be formulated in animal models to achieve a circulating concentration range that can be used to more accurately determine useful doses in humans. For example, a dose can be formulated in animal models to achieve a circulating concentration range that includes the IC50 as determined in cell culture (i.e., the concentration of the test compound which achieves a half-maximal inhibition of the protein's biological activity). Such information can be used to more accurately determine useful doses in humans.

5

10

15

20

25

30

A therapeutically effective dose refers to that amount of the compound that results in amelioration of symptoms or a prolongation of survival in a patient. Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED₅₀ (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio between LD₅₀ and ED₅₀. Compounds which exhibit high therapeutic indices are preferred. The data obtained from these cell culture assays and animal studies can be used in formulating a range of dosage for use in human. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED₅₀ with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. The exact formulation, route of administration and dosage can be chosen by the individual physician in view of the patient's condition. See, e.g., Fingl et al., 1975, in "The Pharmacological Basis of Therapeutics", Ch. 1 p.1. Dosage amount and interval may be adjusted individually to provide plasma levels of the active moiety which are sufficient to maintain the desired effects, or minimal effective concentration (MEC). The MEC will vary for each compound but can be estimated from in vitro data. Dosages necessary to achieve the MEC will depend on individual characteristics and route of administration. However, HPLC assays or bioassays can be used to determine plasma concentrations.

Dosage intervals can also be determined using MEC value. Compounds should be administered using a regimen which maintains plasma levels above the MEC for 10-90% of the time, preferably between 30-90% and most preferably between 50-90%. In cases of local administration or selective uptake, the effective local concentration of the drug may not be related to plasma concentration.

.83

An exemplary dosage regimen for polypeptides or other compositions of the invention will be in the range of about 0.01 µg/kg to 100 mg/kg of body weight daily, with the preferred dose being about 0.1 µg/kg to 25 mg/kg of patient body weight daily, varying in adults and children. Dosing may be once daily, or equivalent doses may be delivered at longer or shorter intervals.

The amount of composition administered will, of course, be dependent on the subject being treated, on the subject's age and weight, the severity of the affliction, the manner of administration and the judgment of the prescribing physician.

4.12.4 PACKAGING

5

10

15

20

25

30

The compositions may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active ingredient. The pack may, for example, comprise metal or plastic foil, such as a blister pack. The pack or dispenser device may be accompanied by instructions for administration. Compositions comprising a compound of the invention formulated in a compatible pharmaceutical carrier may also be prepared, placed in an appropriate container, and labeled for treatment of an indicated condition.

4.13 ANTIBODIES

Also included in the invention are antibodies to proteins, or fragments of proteins of the invention. The term "antibody" as used herein refers to immunoglobulin molecules and immunologically active portions of immunoglobulin (Ig) molecules, i.e., molecules that contain an antigen-binding site that specifically binds (immunoreacts with) an antigen. Such antibodies include, but are not limited to, polyclonal, monoclonal, chimeric, single chain, F_{ab}, F_{ab} and F_{(ab)2} fragments, and an F_{ab} expression library. In general, an antibody molecule obtained from humans relates to any of the classes IgG, IgM, IgA, IgE and IgD, which differ from one another by the nature of the heavy chain present in the molecule. Certain classes have subclasses as well, such as IgG1, IgG2, and others. Furthermore, in humans, the light chain may be a kappa chain or a lambda chain. Reference herein to antibodies includes a reference to all such classes, subclasses and types of human antibody species.

An isolated related protein of the invention may be intended to serve as an antigen, or a portion or fragment thereof, and additionally can be used as an immunogen to generate antibodies that immunospecifically bind the antigen, using standard techniques for

PCT/US02/25485 WO 03/080795

84

5

10

15

20

25

30

polyclonal and monoclonal antibody preparation. The full-length protein can be used or, alternatively, the invention provides antigenic peptide fragments of the antigen for use as immunogens. An antigenic peptide fragment comprises at least 6 amino acid residues of the amino acid sequence of the full length protein, such as an amino acid sequence shown in SEQ ID NO: 1042-2082, or 2535-2986, or Tables 3, 5, 6, or 8, and encompasses an epitope thereof such that an antibody raised against the peptide forms a specific immune complex with the full length protein or with any fragment that contains the epitope. Preferably, the antigenic peptide comprises at least 10 amino acid residues, or at least 15 amino acid residues, or at least 20 amino acid residues, or at least 30 amino acid residues. Preferred epitopes encompassed by the antigenic peptide are regions of the protein that are located on its surface; commonly these are hydrophilic regions.

In certain embodiments of the invention, at least one epitope encompassed by the antigenic peptide is a surface region of the protein, e.g., a hydrophilic region. A hydrophobicity analysis of the human related protein sequence will indicate which regions of a related protein are particularly hydrophilic and, therefore, are likely to encode surface residues useful for targeting antibody production. As a means for targeting antibody production, hydropathy plots showing regions of hydrophilicity and hydrophobicity may be generated by any method well known in the art, including, for example, the Kyte Doolittle or the Hopp Woods methods, either with or without Fourier transformation. See, e.g., Hopp and Woods, 1981, Proc. Nat. Acad. Sci. USA 78: 3824-3828; Kyte and Doolittle 1982, J. Mol. Biol. 157: 105-142, each of which is incorporated herein by reference in its entirety. Antibodies that are specific for one or more domains within an antigenic protein, or derivatives, fragments, analogs or homologs thereof, are also provided herein.

A protein of the invention, or a derivative, fragment, analog, homolog or ortholog thereof, may be utilized as an immunogen in the generation of antibodies that immunospecifically bind these protein components.

The term "specific for" indicates that the variable regions of the antibodies of the invention recognize and bind polypeptides of the invention exclusively (i.e., able to distinguish the polypeptide of the invention from other similar polypeptides despite sequence identity, homology, or similarity found in the family of polypeptides), but may also interact with other proteins (for example, S. aureus protein A or other antibodies in ELISA techniques) through interactions with sequences outside the variable region of the antibodies, and in particular, in the constant region of the molecule. Screening assays to determine

10

15

20

25

30

binding specificity of an antibody of the invention are well known and routinely practiced in the art. For a comprehensive discussion of such assays, see Harlow et al. (Eds), Antibodies A Laboratory Manual; Cold Spring Harbor Laboratory; Cold Spring Harbor, NY (1988), Chapter 6. Antibodies that recognize and bind fragments of the polypeptides of the invention are also contemplated, provided that the antibodies are first and foremost specific for, as defined above, full-length polypeptides of the invention. As with antibodies that are specific for full length polypeptides of the invention, antibodies of the invention that recognize fragments are those which can distinguish polypeptides from the same family of polypeptides despite inherent sequence identity, homology, or similarity found in the family of proteins.

Antibodies of the invention are useful for, for example, therapeutic purposes (by modulating activity of a polypeptide of the invention), diagnostic purposes to detect or quantitate a polypeptide of the invention, as well as purification of a polypeptide of the invention. Kits comprising an antibody of the invention for any of the purposes described herein are also comprehended. In general, a kit of the invention also includes a control antigen for which the antibody is immunospecific. The invention further provides a hybridoma that produces an antibody according to the invention. Antibodies of the invention are useful for detection and/or purification of the polypeptides of the invention.

Monoclonal antibodies binding to the protein of the invention may be useful diagnostic agents for the immunodetection of the protein. Neutralizing monoclonal antibodies binding to the protein may also be useful therapeutics for both conditions associated with the protein and also in the treatment of some forms of cancer where abnormal expression of the protein is involved. In the case of cancerous cells or leukemic cells, neutralizing monoclonal antibodies against the protein may be useful in detecting and preventing the metastatic spread of the cancerous cells, which may be mediated by the protein.

The labeled antibodies of the present invention can be used for *in vitro*, *in vivo*, and *in situ* assays to identify cells or tissues in which a fragment of the polypeptide of interest is expressed. The antibodies may also be used directly in therapies or other diagnostics. The present invention further provides the above-described antibodies immobilized on a solid support. Examples of such solid supports include plastics such as polycarbonate, complex carbohydrates such as agarose and Sepharose®, acrylic resins and such as polyacrylamide and latex beads. Techniques for coupling antibodies to such solid supports are well known

10

15

20

25

30

WO 03/080795 PCT/US02/25485

. 86

in the art (Weir, D.M. et al., "Handbook of Experimental Immunology" 4th Ed., Blackwell Scientific Publications, Oxford, England, Chapter 10 (1986); Jacoby, W.D. et al., Meth. Enzym. 34 Academic Press, N.Y. (1974)). The immobilized antibodies of the present invention can be used for *in vitro*, *in vivo*, and *in situ* assays as well as for immuno-affinity purification of the proteins of the present invention.

Various procedures known within the art may be used for the production of polyclonal or monoclonal antibodies directed against a protein of the invention, or against derivatives, fragments, analogs homologs or orthologs thereof (see, for example, Antibodies: A Laboratory Manual, Harlow E, and Lane D, 1988, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, incorporated herein by reference). Some of these antibodies are discussed below.

4.13.1 POLYCLONAL ANTIBODIES

For the production of polyclonal antibodies, various suitable host animals (e.g., rabbit, goat, mouse or other mammal) may be immunized by one or more injections with the native protein, a synthetic variant thereof, or a derivative of the foregoing. An appropriate immunogenic preparation can contain, for example, the naturally occurring immunogenic protein, a chemically synthesized polypeptide representing the immunogenic protein, or a recombinantly expressed immunogenic protein. Furthermore, the protein may be conjugated to a second protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. The preparation can further include an adjuvant. Various adjuvants used to increase the immunological response include, but are not limited to, Freund's (complete and incomplete), mineral gels (e.g., aluminum hydroxide), surface-active substances (e.g., lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, dinitrophenol, etc.), adjuvants usable in humans such as Bacille Calmette-Guerin and Corynebacterium parvum, or similar immunostimulatory agents. Additional examples of adjuvants that can be employed include MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate).

The polyclonal antibody molecules directed against the immunogenic protein can be isolated from the mammal (e.g., from the blood) and further purified by well known techniques, such as affinity chromatography using protein A or protein G, which provide primarily the IgG fraction of immune serum. Subsequently, or alternatively, the specific

10

15

20

25

30

antigen which is the target of ine immune specific antibody by immunoaffinity chromatography. Purification of immunoglobulins is discussed, for example, by D. Wilkinson (The Scientist, published by The Scientist, Inc., Philadelphia PA, Vol. 14, No. 8 (April 17, 2000), pp. 25-28).

4.13.2 MONOCLONAL ANTIBODIES

The term "monoclonal antibody" (MAb) or "monoclonal antibody composition", as used herein, refers to a population of antibody molecules that contain only one molecular species of antibody molecule consisting of a unique light chain gene product and a unique heavy chain gene product. In particular, the complementarity determining regions (CDRs) of the monoclonal antibody are identical in all the molecules of the population. MAbs thus contain an antigen-binding site capable of immunoreacting with a particular epitope of the antigen characterized by a unique binding affinity for it.

Monoclonal antibodies can be prepared using hybridoma methods, such as those described by Kohler and Milstein, Nature, 256, 495 (1975). In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes can be immunized in vitro.

The immunizing agent will typically include the protein antigen, a fragment thereof or a fusion protein thereof. Generally, either peripheral blood lymphocytes are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, Academic Press, (1986) pp. 59-103). Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells can be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas

10

15

20

25

30

typically will include hypoxanthine, aminopterin, and thymidine ("HAT medium"), which substances prevent the growth of HGPRT-deficient cells.

88

Preferred immortalized cell lines are those that fuse efficiently, support stable high level expression of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. More preferred immortalized cell lines are murine myeloma lines, which can be obtained, for instance, from the Salk Institute Cell Distribution Center, San Diego, California and the American Type Culture Collection, Manassas, Virginia. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, J. Immunol., 133:3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications, Marcel Dekker, Inc., New York, (1987) pp. 51-63).

The culture medium in which the hybridoma cells are cultured can then be assayed for the presence of monoclonal antibodies directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by the hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA). Such techniques and assays are known in the art. The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson and Pollard, Anal. Biochem., 107, 220 (1980). Preferably, antibodies having a high degree of specificity and a high binding affinity for the target antigen are isolated.

After the desired hybridoma cells are identified, the clones can be subcloned by limiting dilution procedures and grown by standard methods. Suitable culture media for this purpose include, for example, Dulbecco's Modified Eagle's Medium and RPMI-1640 medium. Alternatively, the hybridoma cells can be grown in vivo as ascites in a mammal.

The monoclonal antibodies secreted by the subclones can be isolated or purified from the culture medium or ascites fluid by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.

The monoclonal antibodies can also be made by recombinant DNA methods, such as those described in U.S. Patent No. 4,816,567. DNA encoding the monoclonal antibodies of the invention can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells of the invention serve as

10

15

20

25

30

a preferred source of such DNA. Once isolated, the DNA can be placed into expression vectors, which are then transfected into host cells such as simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. The DNA also can be modified, for example, by substituting the coding sequence for human heavy and light chain constant domains in place of the homologous murine sequences (U.S. Patent No. 4,816,567; Morrison, Nature 368, 812-13 (1994)) or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide. Such a non-immunoglobulin polypeptide can be substituted for the constant domains of an antibody of the invention, or can be substituted for the variable domains of one antigen-combining site of an antibody of the invention to create a chimeric bivalent antibody.

4.13.3 HUMANIZED ANTIBODIES

The antibodies directed against the protein antigens of the invention can further comprise humanized antibodies or human antibodies. These antibodies are suitable for administration to humans without engendering an immune response by the human against the administered immunoglobulin. Humanized forms of antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab')₂ or other antigen-binding subsequences of antibodies) that are principally comprised of the sequence of a human immunoglobulin, and contain minimal sequence derived from a non-human immunoglobulin. Humanization can be performed following the method of Winter and co-workers (Jones et al., Nature, 321, 522-525 (1986); Riechmann et al., Nature, 332, 323-327 (1988); Verhoeyen et al., Science, 239, 1534-1536 (1988)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. (See also U.S. Patent No. 5,225,539). In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies can also comprise residues that are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the framework regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion

PCT/US02/25485 WO 03/080795

90

of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin (Jones et al., 1986; Riechmann et al., 1988; and Presta, Curr. Op. Struct. Biol., 2, 593-596 (1992)).

4.13.4 HUMAN ANTIBODIES

5

10

15

20

25

30

Fully human antibodies relate to antibody molecules in which essentially the entire sequences of both the light chain and the heavy chain, including the CDRs, arise from human genes. Such antibodies are termed "human antibodies", or "fully human antibodies" herein. Human monoclonal antibodies can be prepared by the trioma technique; the human B-cell hybridoma technique (see Kozbor, et al., 1983 Immunol Today 4: 72) and the EBV hybridoma technique to produce human monoclonal antibodies (see Cole, et al., 1985 In: Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96). Human monoclonal antibodies may be utilized in the practice of the present invention and may be produced by using human hybridomas (see Cote, et al., 1983. Proc Natl Acad Sci USA 80, 2026-2030) or by transforming human B-cells with Epstein Barr Virus in vitro (see Cole, et al., 1985 In: Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96).

In addition, human antibodies can also be produced using additional techniques, including phage display libraries (Hoogenboom and Winter, J. Mol. Biol., 227, 381 (1991); Marks et al., J. Mol. Biol., 222:581 (1991)). Similarly, human antibodies can be made by introducing human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, for example, in U.S. Patent Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, and in Marks et al. (Bio/Technology 10, 779-783 (1992)); Lonberg et al. (Nature 368, 856-859 (1994)); Morrison (Nature 368, 812-13 (1994)); Fishwild et al, (Nature Biotechnology 14, 845-51 (1996)); Neuberger (Nature Biotechnology 14, 826 (1996)); and Lonberg and Huszar (Intern. Rev. Immunol. 13, 65-93 (1995)).

Human antibodies may additionally be produced using transgenic nonhuman animals that are modified so as to produce fully human antibodies rather than the animal's endogenous antibodies in response to challenge by an antigen. (See PCT publication WO94/02602). The endogenous genes encoding the heavy and light immunoglobulin chains

10

15

20

25

30

in the nonhuman host have been incapacitated, and active loci encoding human heavy and light chain immunoglobulins are inserted into the host's genome. The human genes are incorporated, for example, using yeast artificial chromosomes containing the requisite human DNA segments. An animal which provides all the desired modifications is then obtained as progeny by crossbreeding intermediate transgenic animals containing fewer than the full complement of the modifications. The preferred embodiment of such a nonhuman animal is a mouse, and is termed the XenomouseTM as disclosed in PCT publications WO 96/33735 and WO 96/34096. This animal produces B cells that secrete fully human immunoglobulins. The antibodies can be obtained directly from the animal after immunization with an immunogen of interest, as, for example, a preparation of a polyclonal antibody, or alternatively from immortalized B cells derived from the animal, such as hybridomas producing monoclonal antibodies. Additionally, the genes encoding the immunoglobulins with human variable regions can be recovered and expressed to obtain the antibodies directly, or can be further modified to obtain analogs of antibodies such as, for example, single chain Fv molecules.

An example of a method of producing a nonhuman host, exemplified as a mouse, lacking expression of an endogenous immunoglobulin heavy chain is disclosed in U.S. Patent No. 5,939,598. It can be obtained by a method including deleting the J segment genes from at least one endogenous heavy chain locus in an embryonic stem cell to prevent rearrangement of the locus and to prevent formation of a transcript of a rearranged immunoglobulin heavy chain locus, the deletion being effected by a targeting vector containing a gene encoding a selectable marker; and producing from the embryonic stem cell a transgenic mouse whose somatic and germ cells contain the gene encoding the selectable marker.

A method for producing an antibody of interest, such as a human antibody, is disclosed in U.S. Patent No. 5,916,771. It includes introducing an expression vector that contains a nucleotide sequence encoding a heavy chain into one mammalian host cell in culture, introducing an expression vector containing a nucleotide sequence encoding a light chain into another mammalian host cell, and fusing the two cells to form a hybrid cell. The hybrid cell expresses an antibody containing the heavy chain and the light chain.

In a further improvement on this procedure, a method for identifying a clinically relevant epitope on an immunogen, and a correlative method for selecting an antibody that

10

15

20

25

30

binds immunospecifically to the relevant epitope with high affinity, are disclosed in PCT publication WO 99/53049.

4.13.5 FAB FRAGMENTS AND SINGLE CHAIN ANTIBODIES

According to the invention, techniques can be adapted for the production of single-chain antibodies specific to an antigenic protein of the invention (see e.g., U.S. Patent No. 4,946,778). In addition, methods can be adapted for the construction of F_{ab} expression libraries (see e.g., Huse, et al., 1989 Science 246, 1275-1281) to allow rapid and effective identification of monoclonal F_{ab} fragments with the desired specificity for a protein or derivatives, fragments, analogs or homologs thereof. Antibody fragments that contain the idiotypes to a protein antigen may be produced by techniques known in the art including, but not limited to: (i) an $F_{(ab)/2}$ fragment produced by pepsin digestion of an antibody molecule; (ii) an F_{ab} fragment generated by reducing the disulfide bridges of an $F_{(ab)/2}$ fragment; (iii) an F_{ab} fragment generated by the treatment of the antibody molecule with papain and a reducing agent and (iv) F_{v} fragments.

4.13.6 BISPECIFIC ANTIBODIES

Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens. In the present case, one of the binding specificities is for an antigenic protein of the invention. The second binding target is any other antigen, and advantageously is a cell-surface protein or receptor or receptor subunit.

Methods for making bispecific antibodies are known in the art. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy-chain/light-chain pairs, where the two heavy chains have different specificities (Milstein and Cuello, Nature, 305, 537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of ten different antibody molecules, of which only one has the correct bispecific structure. The purification of the correct molecule is usually accomplished by affinity chromatography steps. Similar procedures are disclosed in WO 93/08829, published 13 May 1993, and in Traunecker et al., 1991 EMBO J., 10, 3655-3659.

Antibody variable domains with the desired binding specificities (antibody-antigen combining sites) can be fused to immunoglobulin constant domain sequences. The fusion

10

15

20

25

30

preferably is with an immunoglobulin heavy-chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light-chain binding present in at least one of the fusions. DNAs encoding the immunoglobulin heavy-chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are cotransfected into a suitable host organism. For further details of generating bispecific antibodies see, for example, Suresh et al., Methods in Enzymology, 121, 210 (1986).

According to another approach described in WO 96/27011, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers that are recovered from recombinant cell culture. The preferred interface comprises at least a part of the CH3 region of an antibody constant domain. In this method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g. tyrosine or tryptophan). Compensatory "cavities" of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g. alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.

Bispecific antibodies can be prepared as full-length antibodies or antibody fragments (e.g. F(ab')₂ bispecific antibodies). Techniques for generating bispecific antibodies from antibody fragments have been described in the literature. For example, bispecific antibodies can be prepared using chemical linkage. Brennan et al., Science 229, 81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab')₂ fragments. These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab' fragments generated are then converted to thionitrobenzoate (TNB) derivatives. One of the Fab'-TNB derivatives is then reconverted to the Fab'-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab'-TNB derivative to form the bispecific antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes.

Additionally, Fab' fragments can be directly recovered from E. coli and chemically coupled to form bispecific antibodies. Shalaby et al., J. Exp. Med. 175, 217-225 (1992) describe the production of a fully humanized bispecific antibody F(ab')₂ molecule. Each Fab' fragment was separately secreted from E. coli and subjected to directed chemical

10

15

20

25

30

coupling in vitro to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the ErbB2 receptor and normal human T cells, as well as trigger the lytic activity of human cytotoxic lymphocytes against human breast tumor targets.

Various techniques for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny et al., J. Immunol. 148(5), 1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab' portions of two different antibodies by gene fusion. The antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The "diabody" technology described by Hollinger et al., Proc. Natl. Acad. Sci. USA 90, 6444-6448 (1993) has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a heavy-chain variable domain (V_H) connected to a light-chain variable domain (VL) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the V_H and V_L domains of one fragment are forced to pair with the complementary V_L and V_H domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See, Gruber et al., J. Immunol. 152, 5368 (1994).

Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. Tutt et al., J. Immunol. 147, 60 (1991).

Exemplary bispecific antibodies can bind to two different epitopes, at least one of which originates in the protein antigen of the invention. Alternatively, an anti-antigenic arm of an immunoglobulin molecule can be combined with an arm which binds to a triggering molecule on a leukocyte such as a T-cell receptor molecule (e.g. CD2, CD3, CD28, or B7), or Fc receptors for IgG (Fc\gammaR), such as Fc\gammaRI (CD64), Fc\gammaRII (CD32) and Fc\gammaRIII (CD16) so as to focus cellular defense mechanisms to the cell expressing the particular antigen. Bispecific antibodies can also be used to direct cytotoxic agents to cells which express a particular antigen. These antibodies possess an antigen-binding arm and an arm which binds a cytotoxic agent or a radionuclide chelator, such as EOTUBE, DPTA, DOTA, or TETA. Another bispecific antibody of interest binds the protein antigen described herein and further binds tissue factor (TF).

10

15

20

25

30

4.13.7 HETEROCONJUGATE ANTIBODIES

Heteroconjugate antibodies are also within the scope of the present invention. Heteroconjugate antibodies are composed of two covalently joined antibodies. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Patent No. 4,676,980), and for treatment of HIV infection (WO 91/00360; WO 92/200373; EP 03089). It is contemplated that the antibodies can be prepared in vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents. For example, immunotoxins can be constructed using a disulfide exchange reaction or by forming a thioether bond. Examples of suitable reagents for this purpose include iminothiolate and methyl-4-mercaptobutyrimidate and those disclosed, for example, in U.S. Patent No. 4,676,980.

4.13.8 EFFECTOR FUNCTION ENGINEERING

It can be desirable to modify the antibody of the invention with respect to effector function, so as to enhance, e.g., the effectiveness of the antibody in treating cancer. For example, cysteine residue(s) can be introduced into the Fc region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus generated can have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., J. Exp Med., 176, 1191-1195 (1992) and Shopes, J. Immunol., 148, 2918-2922 (1992). Homodimeric antibodies with enhanced anti-tumor activity can also be prepared using heterobifunctional cross-linkers as described in Wolff et al. Cancer Research, 53, 2560-2565 (1993). Alternatively, an antibody can be engineered that has dual Fc regions and can thereby have enhanced complement lysis and ADCC capabilities. See Stevenson et al., Anti-Cancer Drug Design, 3, 219-230 (1989).

4.13.9 IMMUNOCONJUGATES

The invention also pertains to immunoconjugates comprising an antibody conjugated to a cytotoxic agent such as a chemotherapeutic agent, toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate).

Chemotherapeutic agents useful in the generation of such immunoconjugates have been described above. Enzymatically active toxins and fragments thereof that can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the tricothecenes. A variety of radionuclides are available for the production of radioconjugated antibodies. Examples include ²¹²Bi, ¹³¹In, ⁹⁰Y, and ¹⁸⁶Re.

Conjugates of the antibody and cytotoxic agent are made using a variety of bifunctional protein-coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al., Science, 238: 1098 (1987). Carbon-14-labeled 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See WO94/11026.

In another embodiment, the antibody can be conjugated to a "receptor" (such streptavidin) for utilization in tumor pretargeting wherein the antibody-receptor conjugate is administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a "ligand" (e.g., avidin) that is in turn conjugated to a cytotoxic agent.

25

30

5

10

15

20

4.14 COMPUTER READABLE SEQUENCES

In one application of this embodiment, a nucleotide sequence of the present invention can be recorded on computer readable media. As used herein, "computer readable media" refers to any medium which can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media. A skilled artisan can readily appreciate how any of the

WO 03/080795 PCT/US02/25485

97

presently known computer readable mediums can be used to create a manufacture comprising computer readable medium having recorded thereon a nucleotide sequence of the present invention. As used herein, "recorded" refers to a process for storing information on computer readable medium. A skilled artisan can readily adopt any of the presently known methods for recording information on computer readable medium to generate manufactures comprising the nucleotide sequence information of the present invention.

5

10

15

20

25

30

A variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon a nucleotide sequence of the present invention. The choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the nucleotide sequence information of the present invention on computer readable medium. The sequence information can be represented in a word processing text file, formatted in commercially-available software such as WordPerfect and Microsoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybase, Oracle, or the like. A skilled artisan can readily adapt any number of data processor structuring formats (e.g. text file or database) in order to obtain computer readable medium having recorded thereon the nucleotide sequence information of the present invention.

By providing any of the nucleotide sequences SEQ ID NO: 1-1041, or 2083-2534 or a representative fragment thereof; or a nucleotide sequence at least 95% identical to any of the nucleotide sequences of SEQ ID NO: 1-1041, or 2083-2534 in computer readable form, a skilled artisan can routinely access the sequence information for a variety of purposes. Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer readable medium. The examples which follow demonstrate how software which implements the BLAST (Altschul et al., J. Mol. Biol. 215:403-410 (1990)) and BLAZE (Brutlag et al., Comp. Chem. 17:203-207 (1993)) search algorithms on a Sybase system is used to identify open reading frames (ORFs) within a nucleic acid sequence. Such ORFs may be protein-encoding fragments and may be useful in producing commercially important proteins such as enzymes used in fermentation reactions and in the production of commercially useful metabolites.

As used herein, "a computer-based system" refers to the hardware means, software means, and data storage means used to analyze the nucleotide sequence information of the present invention. The minimum hardware means of the computer-based systems of the

15

20

25

30

present invention comprises a central processing unit (CPU), input means, output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based systems are suitable for use in the present invention. As stated above, the computer-based systems of the present invention comprise a data storage means having stored therein a nucleotide sequence of the present invention and the necessary hardware means and software means for supporting and implementing a search means. As used herein, "data storage means" refers to memory which can store nucleotide sequence information of the present invention, or a memory access means which can access manufactures having recorded thereon the nucleotide sequence information of the present invention.

As used herein, "search means" refers to one or more programs which are implemented on the computer-based system to compare a target sequence or target structural motif with the sequence information stored within the data storage means. Search means are used to identify fragments or regions of a known sequence which match a particular target sequence or target motif. A variety of known algorithms are disclosed publicly and a variety of commercially available software for conducting search means are and can be used in the computer-based systems of the present invention. Examples of such software includes, but is not limited to, Smith-Waterman, MacPattern (EMBL), BLASTN and BLASTA (NPOLYPEPTIDEIA). A skilled artisan can readily recognize that any one of the available algorithms or implementing software packages for conducting homology searches can be adapted for use in the present computer-based systems. As used herein, a "target sequence" can be any nucleic acid or amino acid sequence of six or more nucleotides or two or more amino acids. A skilled artisan can readily recognize that the longer a target sequence is, the less likely a target sequence will be present as a random occurrence in the database. The most preferred sequence length of a target sequence is from about 10 to 300 amino acids, more preferably from about 30 to 100 nucleotide residues. However, it is well recognized that searches for commercially important fragments, such as sequence fragments involved in gene expression and protein processing, may be of shorter length.

As used herein, "a target structural motif," or "target motif," refers to any rationally selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration which is formed upon the folding of the target motif.

There are a variety of target motifs known in the art. Protein target motifs include, but are not limited to, enzyme active sites and signal sequences. Nucleic acid target motifs include,

10

15

20

25

30

but are not limited to, promoter sequences, hairpin structures and inducible expression elements (protein binding sequences).

4.15 TRIPLE HELIX FORMATION

In addition, the fragments of the present invention, as broadly described, can be used to control gene expression through triple helix formation or antisense DNA or RNA, both of which methods are based on the binding of a polynucleotide sequence to DNA or RNA. Polynucleotides suitable for use in these methods are preferably 20 to 40 bases in length and are designed to be complementary to a region of the gene involved in transcription (triple helix-see Lee et al., Nucl. Acids Res. 6, 3073 (1979); Cooney et al., Science 15241, 456 (1988); and Dervan et al., Science 251, 1360 (1991)) or to the mRNA itself (antisense-Olmno, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the sequences of the present invention is necessary for the design of an antisense or triple helix oligonucleotide.

4.16 DIAGNOSTIC ASSAYS AND KITS

The present invention further provides methods to identify the presence or expression of one of the ORFs of the present invention, or homolog thereof, in a test sample, using a nucleic acid probe or antibodies of the present invention, optionally conjugated or otherwise associated with a suitable label.

In general, methods for detecting a polynucleotide of the invention can comprise contacting a sample with a compound that binds to and forms a complex with the polynucleotide for a period sufficient to form the complex, and detecting the complex, so that if a complex is detected, a polynucleotide of the invention is detected in the sample. Such methods can also comprise contacting a sample under stringent hybridization conditions with nucleic acid primers that anneal to a polynucleotide of the invention under such conditions, and amplifying annealed polynucleotides, so that if a polynucleotide is amplified, a polynucleotide of the invention is detected in the sample.

10

15

20

25

30

In general, methods for detecting a polypeptide of the invention can comprise contacting a sample with a compound that binds to and forms a complex with the polypeptide for a period sufficient to form the complex, and detecting the complex, so that if a complex is detected, a polypeptide of the invention is detected in the sample.

In detail, such methods comprise incubating a test sample with one or more of the antibodies or one or more of the nucleic acid probes of the present invention and assaying for binding of the nucleic acid probes or antibodies to components within the test sample.

Conditions for incubating a nucleic acid probe or antibody with a test sample vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the nucleic acid probe or antibody used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification or immunological assay formats can readily be adapted to employ the nucleic acid probes or antibodies of the present invention. Examples of such assays can be found in Chard, T., An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G.R. et al., Techniques in Immunocytochemistry, Academic Press, Orlando, FL Vol. 1 (1982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, P., Practice and Theory of immunoassays: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1985). The test samples of the present invention include cells, protein or membrane extracts of cells, or biological fluids such as sputum, blood, serum, plasma, or urine. The test sample used in the above-described method will vary based on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing protein extracts or membrane extracts of cells are well known in the art and can be readily be adapted in order to obtain a sample which is compatible with the system utilized.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the assays of the present invention. Specifically, the invention provides a compartment kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the probes or antibodies of the present invention; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of a bound probe or antibody.

In detail, a compartment kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers or strips of plastic or paper. Such containers allows one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not cross-contaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains the antibodies used in the assay, containers which contain wash reagents (such as phosphate buffered saline, Tris-buffers, etc.), and containers which contain the reagents used to detect the bound antibody or probe. Types of detection reagents include labeled nucleic acid probes, labeled secondary antibodies, or in the alternative, if the primary antibody is labeled, the enzymatic, or antibody binding reagents which are capable of reacting with the labeled antibody. One skilled in the art will readily recognize that the disclosed probes and antibodies of the present invention can be readily incorporated into one of the established kit formats which are well known in the art.

4.17 MEDICAL IMAGING

The novel polypeptides and binding partners of the invention are useful in medical imaging of sites expressing the molecules of the invention (e.g., where the polypeptide of the invention is involved in the immune response, for imaging sites of inflammation or infection). See, e.g., Kunkel et al., U.S. Pat. NO. 5,413,778. Such methods involve chemical attachment of a labeling or imaging agent, administration of the labeled polypeptide to a subject in a pharmaceutically acceptable carrier, and imaging the labeled polypeptide *in vivo* at the target site.

25

30

5

10

15

20

4.18 SCREENING ASSAYS

Using the isolated proteins and polynucleotides of the invention, the present invention further provides methods of obtaining and identifying agents which bind to a polypeptide encoded by an ORF corresponding to any of the nucleotide sequences set forth in SEQ ID NO: 1-1041, or 2083-2534, or bind to a specific domain of the polypeptide encoded by the nucleic acid. In detail, said method comprises the steps of:

(a) contacting an agent with an isolated protein encoded by an ORF of the present invention, or nucleic acid of the invention; and

WO 03/080795 PCT/US02/25485

102

determining whether the agent binds to said protein or said nucleic acid. (b) In general, therefore, such methods for identifying compounds that bind to a polynucleotide of the invention can comprise contacting a compound with a polynucleotide of the invention for a time sufficient to form a polynucleotide/compound complex, and detecting the complex, so that if a polynucleotide/compound complex is detected, a compound that binds to a polynucleotide of the invention is identified.

5

10

15

20

25

30

Likewise, in general, therefore, such methods for identifying compounds that bind to a polypeptide of the invention can comprise contacting a compound with a polypeptide of the invention for a time sufficient to form a polypeptide/compound complex, and detecting the complex, so that if a polypeptide/compound complex is detected, a compound that binds to a polynucleotide of the invention is identified.

Methods for identifying compounds that bind to a polypeptide of the invention can also comprise contacting a compound with a polypeptide of the invention in a cell for a time sufficient to form a polypeptide/compound complex, wherein the complex drives expression of a receptor gene sequence in the cell, and detecting the complex by detecting reporter gene sequence expression, so that if a polypeptide/compound complex is detected, a compound that binds a polypeptide of the invention is identified.

Compounds identified via such methods can include compounds which modulate the activity of a polypeptide of the invention (that is, increase or decrease its activity, relative to activity observed in the absence of the compound). Alternatively, compounds identified via such methods can include compounds which modulate the expression of a polynucleotide of the invention (that is, increase or decrease expression relative to expression levels observed in the absence of the compound). Compounds, such as compounds identified via the methods of the invention, can be tested using standard assays well known to those of skill in the art for their ability to modulate activity/expression.

The agents screened in the above assay can be, but are not limited to, peptides, carbohydrates, vitamin derivatives, or other pharmaceutical agents. The agents can be selected and screened at random or rationally selected or designed using protein modeling techniques.

For random screening, agents such as peptides, carbohydrates, pharmaceutical agents and the like are selected at random and are assayed for their ability to bind to the protein encoded by the ORF of the present invention. Alternatively, agents may be rationally selected or designed. As used herein, an agent is said to be "rationally selected or designed"

WO 03/080795 PCT/US02/25485

103

when the agent is chosen based on the configuration of the particular protein. For example, one skilled in the art can readily adapt currently available procedures to generate peptides, pharmaceutical agents and the like, capable of binding to a specific peptide sequence, in order to generate rationally designed antipeptide peptides, for example see Hurby et al., Application of Synthetic Peptides: Antisense Peptides," In Synthetic Peptides, A User's Guide, W.H. Freeman, NY (1992), pp. 289-307, and Kaspczak et al., Biochemistry

28:9230-8 (1989), or pharmaceutical agents, or the like.

5

10

15

20

25

30

In addition to the foregoing, one class of agents of the present invention, as broadly described, can be used to control gene expression through binding to one of the ORFs or EMFs of the present invention. As described above, such agents can be randomly screened or rationally designed/selected. Targeting the ORF or EMF allows a skilled artisan to design sequence specific or element specific agents, modulating the expression of either a single ORF or multiple ORFs which rely on the same EMF for expression control. One class of DNA binding agents are agents which contain base residues which hybridize or form a triple helix formation by binding to DNA or RNA. Such agents can be based on the classic phosphodiester, ribonucleic acid backbone, or can be a variety of sulfhydryl or polymeric derivatives which have base attachment capacity.

Agents suitable for use in these methods preferably contain 20 to 40 bases and are designed to be complementary to a region of the gene involved in transcription (triple helix see Lee et al., Nucl. Acids Res. 6, 3073 (1979); Cooney et al., Science 241, 456 (1988); and Dervan et al., Science 251, 1360 (1991)) or to the mRNA itself (antisense-Okano, J. Neurochem. 56, 560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the sequences of the present invention is necessary for the design of an antisense or triple helix oligonucleotide and other DNA binding agents.

Agents which bind to a protein encoded by one of the ORFs of the present invention can be used as a diagnostic agent. Agents which bind to a protein encoded by one of the ORFs of the present invention can be formulated using known techniques to generate a pharmaceutical composition.

10

15

20

25

30

104

4.19 USE OF NUCLEIC ACIDS AS PROBES

Another aspect of the subject invention is to provide for polypeptide-specific nucleic acid hybridization probes capable of hybridizing with naturally occurring nucleotide sequences. The hybridization probes of the subject invention may be derived from any of the nucleotide sequences SEQ ID NO: 1-1041, or 2083-2534. Because the corresponding gene is only expressed in a limited number of tissues, a hybridization probe derived from any of the nucleotide sequences SEQ ID NO: 1-1041, or 2083-2534 can be used as an indicator of the presence of RNA of cell type of such a tissue in a sample.

Any suitable hybridization technique can be employed, such as, for example, in situ hybridization. PCR as described in US Patents Nos. 4,683,195 and 4,965,188 provides additional uses for oligonucleotides based upon the nucleotide sequences. Such probes used in PCR may be of recombinant origin, may be chemically synthesized, or a mixture of both. The probe will comprise a discrete nucleotide sequence for the detection of identical sequences or a degenerate pool of possible sequences for identification of closely related genomic sequences.

Other means for producing specific hybridization probes for nucleic acids include the cloning of nucleic acid sequences into vectors for the production of mRNA probes. Such vectors are known in the art and are commercially available and may be used to synthesize RNA probes *in vitro* by means of the addition of the appropriate RNA polymerase as T7 or SP6 RNA polymerase and the appropriate radioactively labeled nucleotides. The nucleotide sequences may be used to construct hybridization probes for mapping their respective genomic sequences. The nucleotide sequence provided herein may be mapped to a chromosome or specific regions of a chromosome using well-known genetic and/or chromosomal mapping techniques. These techniques include in situ hybridization, linkage analysis against known chromosomal markers, hybridization screening with libraries or flow-sorted chromosomal preparations specific to known chromosomes, and the like. The technique of fluorescent in situ hybridization of chromosome spreads has been described, among other places, in Verma et al (1988) Human Chromosomes: A Manual of Basic Techniques, Pergamon Press, New York NY.

Fluorescent in situ hybridization of chromosomal preparations and other physical chromosome mapping techniques may be correlated with additional genetic map data.

Examples of genetic map data can be found in the 1994 Genome Issue of Science (265:1981f). Correlation between the location of a nucleic acid on a physical chromosomal

10

15

20

25

30

map and a specific disease (or predisposition to a specific disease) may help delimit the region of DNA associated with that genetic disease. The nucleotide sequences of the subject invention may be used to detect differences in gene sequences between normal, carrier or affected individuals.

4.20 PREPARATION OF SUPPORT BOUND OLIGONUCLEOTIDES

Oligonucleotides, i.e., small nucleic acid segments, may be readily prepared by, for example, directly synthesizing the oligonucleotide by chemical means, as is commonly practiced using an automated oligonucleotide synthesizer.

Support bound oligonucleotides may be prepared by any of the methods known to those of skill in the art using any suitable support such as glass, polystyrene or Teflon. One strategy is to precisely spot oligonucleotides synthesized by standard synthesizers. Immobilization can be achieved using passive adsorption (Inouye & Hondo, (1990) J. Clin. Microbiol. 28(6), 1469-72); using UV light (Nagata *et al.*, 1985; Dahlen *et al.*, 1987; Morrissey & Collins, (1989) Mol. Cell Probes 3(2) 189-207) or by covalent binding of base modified DNA (Keller *et al.*, 1988; 1989); all references being specifically incorporated herein.

Another strategy that may be employed is the use of the strong biotin-streptavidin interaction as a linker. For example, Broude *et al.* (1994) Proc. Natl. Acad. Sci. USA 91(8), 3072-6, describe the use of biotinylated probes, although these are duplex probes, that are immobilized on streptavidin-coated magnetic beads. Streptavidin-coated beads may be purchased from Dynal, Oslo. Of course, this same linking chemistry is applicable to coating any surface with streptavidin. Biotinylated probes may be purchased from various sources, such as, e.g., Operon Technologies (Alameda, CA).

Nunc Laboratories (Naperville, IL) is also selling suitable material that could be used. Nunc Laboratories have developed a method by which DNA can be covalently bound to the microwell surface termed Covalink NH. CovaLink NH is a polystyrene surface grafted with secondary amino groups (>NH) that serve as bridgeheads for further covalent coupling. CovaLink Modules may be purchased from Nunc Laboratories. DNA molecules may be bound to CovaLink exclusively at the 5'-end by a phosphoramidate bond, allowing immobilization of more than 1 pmol of DNA (Rasmussen *et al.*, (1991) Anal. Biochem. 198(1) 138-42).

The use of CovaLink NH strips for covalent binding of DNA molecules at the 5'-end has been described (Rasmussen et al., (1991). In this technology, a phosphoramidate bond is employed (Chu et al., (1983) Nucleic Acids Res. 11(8) 6513-29). This is beneficial as immobilization using only a single covalent bond is preferred. The phosphoramidate bond joins

WO 03/080795 PCT/US02/25485

106

the DNA to the CovaLink NH secondary amino groups that are positioned at the end of spacer arms covalently grafted onto the polystyrene surface through a 2 nm long spacer arm. To link an oligonucleotide to CovaLink NH via an phosphoramidate bond, the oligonucleotide terminus must have a 5'-end phosphate group. It is, perhaps, even possible for biotin to be covalently bound to CovaLink and then streptavidin used to bind the probes.

5

10

15

20

25

30

More specifically, the linkage method includes dissolving DNA in water (7.5 ng/µl) and denaturing for 10 min. at 95°C and cooling on ice for 10 min. Ice-cold 0.1 M 1methylimidazole, pH 7.0 (1-MeIm₇), is then added to a final concentration of 10 mM 1-MeIm₇. A ss DNA solution is then dispensed into CovaLink NH strips (75 µl/well) standing on ice.

Carbodiimide 0.2 M 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC), dissolved in 10 mM 1-MeIm₇, is made fresh and 25 µl added per well. The strips are incubated for 5 hours at 50°C. After incubation the strips are washed using, e.g., Nunc-Immuno Wash; first the wells are washed 3 times, then they are soaked with washing solution for 5 min., and finally they are washed 3 times (where in the washing solution is 0.4 N NaOH, 0.25% SDS heated to 50°C).

It is contemplated that a further suitable method for use with the present invention is that described in PCT Patent Application WO 90/03382 (Southern & Maskos), incorporated herein by reference. This method of preparing an oligonucleotide bound to a support involves attaching a nucleoside 3'-reagent through the phosphate group by a covalent phosphodiester link to aliphatic hydroxyl groups carried by the support. The oligonucleotide is then synthesized on the supported nucleoside and protecting groups removed from the synthetic oligonucleotide chain under standard conditions that do not cleave the oligonucleotide from the support. Suitable reagents include nucleoside phosphoramidite and nucleoside hydrogen phosphorate.

An on-chip strategy for the preparation of DNA probe for the preparation of DNA probe arrays may be employed. For example, addressable laser-activated photodeprotection may be employed in the chemical synthesis of oligonucleotides directly on a glass surface, as described by Fodor et al. (1991) Science 251(4995), 767-73, incorporated herein by reference. Probes may also be immobilized on nylon supports as described by Van Ness et al. (1991) Nucleic Acids Res., 19(12) 3345-50; or linked to Teflon using the method of Duncan & Cavalier (1988) Anal. Biochem. 169(1), 104-8; all references being specifically incorporated herein.

To link an oligonucleotide to a nylon support, as described by Van Ness et al. (1991), requires activation of the nylon surface via alkylation and selective activation of the 5'-amine of oligonucleotides with cyanuric chloride.

One particular way to prepare support bound oligonucleotides is to utilize the light-generated synthesis described by Pease et al., (1994) Proc. Nat'l. Acad. Sci., USA 91(11), 5022-6, incorporated herein by reference). These authors used current photolithographic techniques to generate arrays of immobilized oligonucleotide probes (DNA chips). These methods, in which light is used to direct the synthesis of oligonucleotide probes in high-density, miniaturized arrays, utilize photolabile 5'-protected N-acyl-deoxynucleoside phosphoramidites, surface linker chemistry and versatile combinatorial synthesis strategies. A matrix of 256 spatially defined oligonucleotide probes may be generated in this manner.

PREPARATION OF NUCLEIC ACID FRAGMENTS

5

10

15

20

25

30

The nucleic acids may be obtained from any appropriate source, such as cDNAs, genomic DNA, chromosomal DNA, microdissected chromosome bands, cosmid or YAC inserts, and RNA, including mRNA without any amplification steps. For example, Sambrook et al. (1989) describes three protocols for the isolation of high molecular weight DNA from mammalian cells (p. 9.14-9.23).

DNA fragments may be prepared as clones in M13, plasmid or lambda vectors and/or prepared directly from genomic DNA or cDNA by PCR or other amplification methods. Samples may be prepared or dispensed in multiwell plates. About 100-1000 ng of DNA samples may be prepared in 2-500 ml of final volume.

The nucleic acids would then be fragmented by any of the methods known to those of skill in the art including, for example, using restriction enzymes as described at 9.24-9.28 of Sambrook et al. (1989), shearing by ultrasound and NaOH treatment.

Low pressure shearing is also appropriate, as described by Schriefer et al. (1990) Nucleic Acids Res. 18(24), 7455-6, incorporated herein by reference). In this method, DNA samples are passed through a small French pressure cell at a variety of low to intermediate pressures. A lever device allows controlled application of low to intermediate pressures to the cell. The results of these studies indicate that low-pressure shearing is a useful alternative to sonic and enzymatic DNA fragmentation methods.

One particularly suitable way for fragmenting DNA is contemplated to be that using the two base recognition endonuclease, CviII, described by Fitzgerald et al. (1992) Nucleic Acids Res. 20(14) 3753-62. These authors described an approach for the rapid fragmentation and fractionation of DNA into particular sizes that they contemplated to be suitable for shotgun cloning and sequencing.

108

The restriction endonuclease *Cvi*JI normally cleaves the recognition sequence PuGCPy between the G and C to leave blunt ends. Atypical reaction conditions, which alter the specificity of this enzyme (*Cvi*JI**), yield a quasi-random distribution of DNA fragments form the small molecule pUC19 (2688 base pairs). Fitzgerald *et al.* (1992) quantitatively evaluated the randomness of this fragmentation strategy, using a *Cvi*JI** digest of pUC19 that was size fractionated by a rapid gel filtration method and directly ligated, without end repair, to a lac Z minus M13 cloning vector. Sequence analysis of 76 clones showed that *Cvi*JI** restricts pyGCPy and PuGCPu, in addition to PuGCPy sites, and that new sequence data is accumulated at a rate consistent with random fragmentation.

As reported in the literature, advantages of this approach compared to sonication and agarose gel fractionation include: smaller amounts of DNA are required (0.2-0.5 μ g instead of 2-5 μ g); and fewer steps are involved (no preligation, end repair, chemical extraction, or agarose gel electrophoresis and elution are needed).

Irrespective of the manner in which the nucleic acid fragments are obtained or prepared, it is important to denature the DNA to give single stranded pieces available for hybridization. This is achieved by incubating the DNA solution for 2-5 minutes at 80-90°C. The solution is then cooled quickly to 2°C to prevent renaturation of the DNA fragments before they are contacted with the chip. Phosphate groups must also be removed from genomic DNA by methods known in the art.

4.22 PREPARATION OF DNA ARRAYS

5

10

15

20

25

30

Arrays may be prepared by spotting DNA samples on a support such as a nylon membrane. Spotting may be performed by using arrays of metal pins (the positions of which correspond to an array of wells in a microtiter plate) to repeated by transfer of about 20 nl of a DNA solution to a nylon membrane. By offset printing, a density of dots higher than the density of the wells is achieved. One to 25 dots may be accommodated in 1 mm², depending on the type of label used. By avoiding spotting in some preselected number of rows and columns, separate subsets (subarrays) may be formed. Samples in one subarray may be the same genomic segment of DNA (or the same gene) from different individuals, or may be different, overlapped genomic clones. Each of the subarrays may represent replica spotting of the same samples. In one example, a selected gene segment may be amplified from 64 patients. For each patient, the amplified gene segment may be in one 96-well plate (all 96 wells containing the same sample). A plate for each of the 64 patients is prepared. By using a 96-pin device, all samples may be spotted on one 8 x 12 cm membrane. Subarrays may contain 64 samples, one from each patient.

WO 03/080795 PCT/US02/25485

109

Where the 96 subarrays are identical, the dot span may be 1 mm² and there may be a 1 mm space between subarrays.

Another approach is to use membranes or plates (available from NUNC, Naperville, Illinois) which may be partitioned by physical spacers e.g. a plastic grid molded over the membrane, the grid being similar to the sort of membrane applied to the bottom of multiwell plates, or hydrophobic strips. A fixed physical spacer is not preferred for imaging by exposure to flat phosphor-storage screens or x-ray films.

The present invention is illustrated in the following examples. Upon consideration of the present disclosure, one of skill in the art will appreciate that many other embodiments and variations may be made in the scope of the present invention. Accordingly, it is intended that the broader aspects of the present invention not be limited to the disclosure of the following examples. The present invention is not to be limited in scope by the exemplified embodiments which are intended as illustrations of single aspects of the invention, and compositions and methods which are functionally equivalent are within the scope of the invention. Indeed, numerous modifications and variations in the practice of the invention are expected to occur to those skilled in the art upon consideration of the present preferred embodiments. Consequently, the only limitations which should be placed upon the scope of the invention are those which appear in the appended claims.

All references cited within the body of the instant specification are hereby incorporated by reference in their entirety.

5.0 **EXAMPLES**

10

15

20

5.1 **EXAMPLE 1**

Novel Nucleic Acid Sequences Obtained From Various Libraries

A plurality of novel nucleic acids were obtained from cDNA libraries prepared from various human tissues and in some cases isolated from a genomic library derived from human 25 chromosome using standard PCR, SBH sequence signature analysis and Sanger sequencing techniques. The inserts of the library were amplified with PCR using primers specific for the vector sequences which flank the inserts. Clones from cDNA libraries were spotted on nylon membrane filters and screened with oligonucleotide probes (e.g., 7-mers) to obtain signature sequences. The clones were clustered into groups of similar or identical sequences. 30 Representative clones were selected for sequencing.

WO 03/080795 PCT/US02/25485

110

In some cases, the 5' sequence of the amplified inserts was then deduced using a typical Sanger sequencing protocol. PCR products were purified and subjected to fluorescent dye terminator cycle sequencing. Single pass gel sequencing was done using a 377 Applied Biosystems (ABI) sequencer to obtain the novel nucleic acid sequences.

5 5.2 EXAMPLE 2

10

15

20

25

Assemblage of Novel Contigs

The contigs of the present invention, designated as SEQ ID NO: 2083-2534 were assembled using an EST sequence as a seed. Then a recursive algorithm was used to extend the seed EST into an extended assemblage, by pulling additional sequences from different databases (i.e., Hyseq's database containing EST sequences, dbEST, gb pri, and UniGene, and exons from public domain genomic sequences predicated by GenScan) that belong to this assemblage. The algorithm terminated when there were no additional sequences from the above databases that would extend the assemblage. Further, inclusion of component sequences into the assemblage was based on a BLASTN hit to the extending assemblage with BLAST score greater than 300 and percent identity greater than 95%.

Table 8 sets forth the novel predicted polypeptides (including proteins) encoded by the novel polynucleotides (SEQ ID NO: 2083-2534) of the present invention, and their corresponding translation start and stop nucleotide locations to each of SEQ ID NO: 2083-2534. Table 8 also indicates the method by which the polypeptide was predicted. Method A refers to a polypeptide obtained by using a software program called FASTY (available from http://fasta.bioch.virginia.edu) which selects a polypeptide based on a comparison of the translated novel polynucleotide to known polynucleotides (W.R. Pearson, Methods in Enzymology, 183:63-98 (1990), herein incorporated by reference). Method B refers to a polypeptide obtained by using a software program called GenScan for human/vertebrate sequences (available from Stanford University, Office of Technology Licensing) that predicts the polypeptide based on a probabilistic model of gene structure/compositional properties (C. Burge and S. Karlin, J. Mol. Biol., 268:78-94 (1997), incorporated herein by reference). Method C refers to a polypeptide obtained by using a Hyseq proprietary software program that translates the novel polynucleotide and its complementary strand into six possible amino acid 30 sequences (forward and reverse frames) and chooses the polypeptide with the longest open reading frame.

PCT/US02/25485 WO 03/080795

111

5.3 EXAMPLE 3

Novel Nucleic Acids

20

25

30

The novel nucleic acids of the present invention SEQ ID NO: 1-1041 were assembled from Hyseq 's proprietary EST sequences as described in Example 1 and human genome sequences that are available from the public databases (http://www.ncbi.nlm.nih.gov/). 5 Exons were predicted from human genome sequences using GenScan (http://genes.mit.edu/GENSCANinfo.html); HMMgene (http://www.cbs.dtu.dk/services/HMMgene/hmmgene1 1.html); and GenMark.hmm (http://genemark.biology.gatech.edu/GeneMark/whmm info.html). The Hyseq proprietary EST sequences and the predicted exons were assembled based on a BLASTN hit to the 10 extending assemblage with BLAST score greater than 300 and percent identity greater than 95%. Then, the predicted genes were analyzed using Neural Network SignalP V1.1 program (from Center for Biological Sequence Analysis, The Technical University of Denmark) for presence of a signal peptide. These sequences were further analyzed for absence of a transmembrane region using the TMpred program 15 (http://www.ch.embnet.org/software/TMPRED form.html).

Table 1 shows the various tissue sources of SEQ ID NO: 1-1041.

homologues for SEO ID NO: 1042-2082 from Genpept 124 are shown in Table 2.

The homologs for polypeptides SEQ ID NO: 1042-2082, that correspond to nucleotide sequences SEQ ID NO: 1-1041 were obtained by a BLASTP version 2.0al 19MP-WashU searches against Genpept release 124 using BLAST algorithm. The results showing

Using eMatrix software package (Stanford University, Stanford, CA) (Wu et al., J. Comp. Biol., Vol. 6, 219-235 (1999), http://motif.stanford.edu/ematrix-search/ herein incorporated by reference), all the polypeptide sequences were examined to determine whether they had identifiable signature regions. Scoring matrices of the eMatrix software package are derived from the BLOCKS, PRINTS, PFAM, PRODOM, and DOMO databases. Table 3 shows the accession number of the homologous eMatrix signature found in the indicated polypeptide sequence, its description, and the results obtained which include accession number subtype; raw score; p-value; and the position of signature in amino acid sequence.

Using the Pfam software program (Sonnhammer et al., Nucleic Acids Res., Vol. 26(1) pp. 320-322 (1998) herein incorporated by reference) all the polypeptide sequences were examined for domains with homology to certain peptide domains. Table 4 shows the

PCT/US02/25485 WO 03/080795

112

name of the Pfam model found, the description, the e-value and the Pfam score for the identified model within the sequence. Further description of the Pfam models can be found at http://pfam.wustl.edu/.

The GeneAtlas™ software package (Molecular Simulations Inc. (MSI), San Diego, CA) was used to predict the three-dimensional structure models for the polypeptides encoded by SEQ ID NO 1-1041 (i.e. SEQ ID NO: 1042-2082). Models were generated by (1) PSI-BLAST which is a multiple alignment sequence profile-based searching developed by Altschul et al, (Nucl. Acids. Res. 25, 3389-3408 (1997)), (2) High Throughput Modeling (HTM) (Molecular Simulations Inc. (MSI) San Diego, CA,) which is an automated sequence and structure searching procedure (http://www.msi.com/), and (3) SeqFold™ which is a fold recognition method described by Fischer and Eisenberg (J. Mol. Biol. 209, 779-791 (1998)). This analysis was carried out, in part, by comparing the polypeptides of the invention with the known NMR (nuclear magnetic resonance) and x-ray crystal three-dimensional structures as templates. Table 5 shows: "PDB ID", the Protein DataBase (PDB) identifier given to template structure; "Chain ID", identifier of the subcomponent of the PDB template structure; "Compound Information", information of the PDB template structure and/or its subcomponents; "PDB Function Annotation" gives function of the PDB template as annotated by the PDB files (http://www.rcsb.org/PDB/); start and end amino acid position of the protein sequence aligned; PSI-BLAST score, the verify score, the SeqFold score, and the Potential(s) of Mean Force (PMF). The verify score is produced by GeneAtlas™ software (MSI), is based on Dr. Eisenberg's Profile-3D threading program developed in Dr. David Eisenberg's laboratory (US patent no. 5,436,850 and Luthy, Bowie, and Eisenberg, Nature, 356:83-85 (1992)) and a publication by R. Sanchez and A. Sali, Proc. Natl. Acad. Sci. USA, 95:13597-12502. The verify score produced by GeneAtlas normalizes the verify score for proteins with different lengths so that a unified cutoff can be used to select good models as follows:

10

15

20

25

30

Verify score (normalized) = (raw score - 1/2 high score)/(1/2 high score)

The PFM score, produced by GeneAtlas™ software (MSI), is a composite scoring function that depends in part on the compactness of the model, sequence identity in the alignment used to build the model, pairwise and surface mean force potentials (MFP). As given in table 5, a verify score between 0 to 1.0, with 1 being the best, represents a good

WO 03/080795 PCT/US02/25485

113

model. Similarly, a PMF score between 0 to 1.0, with 1 being the best, represents a good model. A SeqFold™ score of more than 50 is considered significant. A good model may also be determined by one of skill in the art based all the information in Table 5 taken in totality.

5

10

15

20

Table 6 shows the position of the signal peptide in each of the polypeptides and the maximum score and mean score associated with that signal peptide using Neural Network SignalP V1.1 program (from Center for Biological Sequence Analysis, The Technical University of Denmark). The process for identifying prokaryotic and eukaryotic signal peptides and their cleavage sites are also disclosed by Henrik Nielson, Jacob Engelbrecht, Soren Brunak, and Gunnar von Heijne in the publication "Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites" Protein Engineering, Vol. 10, no. 1, pp. 1-6 (1997), incorporated herein by reference. A maximum S score and a mean S score, as described in the Nielson et al reference, was obtained for the polypeptide sequences.

Table 7 correlates each of SEQ ID NO: 1-1041 to a specific chromosomal location. Table 9 is a correlation table of the novel polynucleotide sequences SEQ ID NO: 1-1041, their corresponding polypeptide sequences SEQ ID NO: 1042-2082, their corresponding priority contig nucleotide sequences SEQ ID NO: 2083-2534, their corresponding priority contig polypeptide sequences SEQ ID NO: 2535-2986, and the US serial number of the priority application in which the contig sequence was filed.

Table 10 is a correlation table of the novel polynucleotide sequences SEQ ID NO: 1-1041, the novel polypeptide sequences SEQ ID NO: 1042-2082, and the corresponding SEQ ID NO in which the sequence was filed in priority US application 60/311,261.

114 Table 1

`Tissue Origin	RNA/Tissue Source	Library Name	SEQ ID NO:
adrenal gland	Clontech	ADR002	13 23 34 45 77 111 115 122 187
automi gana	Siomeon .	11011002	194 210-211 249-250 255 290
·	·		320 357-358 362 420 443 451
			492 499 551 577 630 698 702
			713 718 805 808 819 841-843
			845 861 896 899 909 924 937
			949 985 1037
adult bladder	Invitrogen	BLD001	9 87 189 320-321 358 563 768
adult bladdel	mvidogen	PLLDOOL	840 970
adult brain	Clontech	ABR001	184-186 277 282 352 558 849
adult oralli	Cioniech	ABROOT	871 898 958
adult brain	Clontech	ABR006	30 45 170 199 210 226 260 292-
adult oralli	Ciontech	ABROOD	294 340 357 413 443-444 478
			499 551-552 579 582 584-588
			632-637 646 654-655 676 683
			731-732 755-756 777 813-827
			861 872 874 880 883 1002 1012
adult brain	Clontech	ABR008	15 45 54 61 67 81 87 101 106
	Ciontecn	ABRUU	108 122-123 143-144 170 181-
	İ		183 195-209 215 222 245-248
			261-270 283-289 292-293 296
	•		306 308-310 327 340 358 370
			394-407 409 421 428 440 442
			459 477-478 496 531-547 551-
			552 556 565-566 578-579 606
			618 620-621 629-630 651 653-
			655 664 667-668 707 713-714
,	1		729 745 750 753 756 772 779
			788 790 793-794 799-800 802
			808 812 823 826-827 849-850
			859 862 872 883 885 898 917
	1		919 921 930 935-936 947 974
			985-986 992 1002 1006 1012
	1		1028 1030 1036 1039
adult brain	Clontech	ABR011	1012
adult brain	GIBCO	AB3001	23 57-58 67 85 296 492 499 579
addit orani	GEEC	ABSOUT	853 898-899 950 1012
adult brain	GIBCO	ABD003	45 59-62 67 72 82 85-88 156
addit otam	GEO	/IBD003	179-180 182 296 299 355-356
			440 458 474 483 499 563 823
			840 852 860 885 898 992 999
•			1012
adult brain	Invitrogen	ABR014	45 115 238 470 599 653 974-976
adult brain	Invitrogen	ABR015	45 600 885 1012
adult brain	Invitrogen	ABR016	599 1012
adult brain	Invitrogen	ABT004	34 45 54 74 84 118 138-143 170-
	III TILLOGOII	1.007	171 180-181 208 255 277 359
			379 428 438 499 501 536 715
			731 783 793 799 805 809 824
			862 898 912 977 998 1012
adult cervix	BioChain	CVX001	23 26 48 54 57 67 77 118 121
addit COLVIA	DioCham	CVAUUI	177 183 238 255 271-272 296
			303 311-319 325 352 361-362
	İ		411-412 419-420 424 428 440
			447 478 541 567 569 599-600
			622 699 793 805 813 831 836-
			837 839 844-845 848 863 872
	l		03/ 037 044-043 048 003 0/2

115 Table 1

`Tissue Origin	RNA/Tissue Source	Library Name	SEQ ID NO:
			913 928-929 944 958 965 970
			973 1001 1004
adult colon	Invitrogen	CLN001	250 322-325 429 630 788 970 985
adult heart	GIBCO	AHR001	28-30 45 61 67 90-94 118 122
addit itoart	GEO	7 HIKOU7	150-151 183 193 250-251 279
			349-351 369-370 410 419 474
			483 485 490 493 552 563 719
			773 835-836 853 861 961 976
			1030
adult kidney	GIBCO	AKD001	24 31-34 44-46 48 55 62 67 81
			121 144 151 162 176-178 183
			251 255 258 277 352 358 369-
			370 386 408 420 429 483 490
			536 546 579 599-600 602 645
) T/70000	698 793 805 874 898 913
adult kidney	Invitrogen	AKT002	32 53-54 67 85 177 251 260 341 386 408 419-420 431-436 478
			490 493 507 561 582 596-599
			698 728 788 805 819 837 844-
			848 885 898 969 989 1013
adult liver	Clontech	ALV003	101 121 193 579 638-639 729
addit iivoi	Cionicon	125,005	890-893 919 1007 1017
adult liver	Invitrogen	ALV002	75 157 173 183 212-214 236 240
			263 292 323 335 386 408 415
			495-499 552 577 589 599 727
			782 858 869 898-900 924 968
adult lung	GIBCO	ALG001	67 77 152 369 386 419 443 483
			583 732 849 907
adult ovary	Invitrogen	AOV001	5 26 34 43 45 48 55 61-62 64-67
			77 87 101-102 105 115 118 122-
			129 143 151 155-163 170 174- 175 177 181-183 193 251-252
			286 292 338 347 353-354 369
			381 410 415 420 424 451 458
		•	483 489 497 499 515 536 541
			546 552 577 579 595 599-600
]		604 647 658 661 665 699 744
			782-783 800 805-806 814 831
•			835 839-840 844 853 874 895
			898-899 913 924 929 941-942
			949 973 977 994 1004 1007 1012
			1016 1031 1037
adult placenta	Clontech	APL001	67 419 688 728 848 930
adult spleen	Clontech	SPLc01	82 101 187 255 260 358 370 447 483 489 579 586 648 768 835
			845 848 853-857 863 885 913
			917 962 986
adult spleen	GIBCO	ASP001	87 105 108 122 158 172 215 299
op.ovin			380 492 499 552 599 622 785
			830 840 850 889
adult testis	GIBCO	ATS001	68-69 106 183 251 301 360 386
			520 541 570 753 788 832 840
			890 916
bone marrow	Clontech	BMD001	10-12 16-19 24-26 35 46 48 58
L			77 85 95-96 98-99 122 156 164

116 Table 1

`Tissue Origin	RNA/Tissue Source	Library Name	SEQ ID NO:
1133de Origin	IC WE T ISSUE COLLEGE		172 187 222 251 385 424 429
			458 478 483 489 519 568-569
			599 622-623 630-631 696 700
			758 765 794 844 914 919 924
			944 971 985 992 1001 1017
bone marrow	GF	BMD002	23 45 81-82 104-105 115 136
bone marrow	0.		144 156 170 172-173 181 183
			247 287 292 306 319-320 327
			362 370 418 478-483 489 492
			536 548-552 565 569-570 572
			579 596 599 614-622 630 640-
			641 643 653 668 691 699 708
			715-718 726 743 756 758 772
			789 841 889 917 920 947 958
		1	994 1006 1010 1037 1039
cultured preadipocytes	Stratagene	ADP001	121 255 400 490-494 511 629
cultured preadipolytes	Drambers		689 758 793 835 861 913 944
			949 984
endothelial cells	Stratagene	EDT001	34 45 54 58 67 120-122 144 151-
endomenai cens	Dumagono		154 183 193 299 385 440 451
			458 483 490 499 515 552 563
			569 577 579 599 622-623 752
			793 800 844-845 898-899 942
			944 949
fetal brain	Clontech	FBR001	139 168 356 599 702 712 831
letar brain	Cionicon		845 850 872-873 898 921 1037
fetal brain	Clontech	FBR004	138 168 250 363 873-875 882
fetal brain	Clontech	FBR006	14 29 45 51 81 87 101 104 118
ictal Gram	Cionicon		131 143-144 157 171 177 206
			208-209 215 229 238 251 261
			273 279 283 291-293 326-332
			358 362 370-371 397 400 402
			413 419 428 461 472 485 551-
1			560 568-569 579 618 620 629-
			630 653-657 659-661 663-673
\			675 700 714 739-742 744-746
			766 779 793 809 815 819 822
			840 850 859 862 872 875-885
			930 958 972 995 1002 1006 1028
			1030-1031 1038
fetal brain	GIBCO	HFB001	13-15 54-57 62 67 70-72 84 121
101112 021112			174 177 180 183 410 417 424
1			485 518 520 542 552 578-579
			599 785 793 805 831-832 840
			858 871 883 898-899 977 1012
fetal brain	Invitrogen	FBT002	7 45 49 144-149 157 180 255 263
			356 493 501 600 630 707 748
			832 845 858 913 1012
fetal heart	Invitrogen	FHR001	24 45 81-82 104 114-115 118
			121 144 152 181 239 247 288
			292 327 362 370 381 419 428
			444 453 458 478 486 493 503
		I	569 571 576 582,596 618 640
	•		668 674-688 719-722 731 744
			753 762 772 784 794 819 823
			836 850 885 914 944 949 957-
			958 1017

117 Table 1

`Tissue Origin	RNA/Tissue Sour	ce Library Name	SEQ ID NO:
fetal kidney	Clontech	FKD001	82 107 208 458 483 485 536 758
			760 819 836 894 1017
fetal kidney	Clontech	FKD002	61 101 105 183 189 238 247 263
			292 327 340 370 405 416 419
			517 569 586 620 648 668 689-
			691 731 746-752 763 771-772
			787-788 819 840 842 854 861
			872 944 958 961 969
fetal kidney	Invitrogen	FKD007	116
fetal liver	Clontech	FLV002	410 429 454 692-695 704 781
24442			805 894-895 1017
fetal liver	Clontech	FLV004	67 107 115 118 151 187 241 255
2002.27.72			287 370 466 478 492 518 548
			552 569 582 589 630 653 668
			696-699 752-757 784 789 805
			885 908 985
fetal liver	Invitrogen	FLV001	45 101 130-137 157 222 240 337
			386 428-429 492 552 589 693
			727 840
fetal liver-spleen	Columbia	FLS001	1-9 18 20-23 27 34 36-38 45 55
roun nvor oprovi	University		67 70 83 89 94 118 122 158 164
			172-173 177 183 219 238 240
			246 251 292 299 323 335 338
			358 369 376 385-386 397 408
•			416 419 421-422 429 451 456-
			460 466 472 478 483 489-490
			493 516 536 543 546 551 569-
			573 579 586 588-589 593-595
			599-603 619 622 668 676 691
		į	699 702 724 731 734 743 787
			789 794 800 805 834-835 840
			848 853 874 880 885 890-891
			899 908 910 923 926-927 930
			939-940 944 949 958 973 980
			992 999 1004 1007 1009 1013
fetal liver-spleen	Columbia	FLS002	3 8 17 22 36-37 46 55 61 63 70
	University		72 85 89-90 94 106 122 148 156
			158 165 172 177 181 194 213
			215 219 246 251 292 299 304-
			307 323-324 338 346 355 366
			371 374 380-381 386 392 397
			410 417 421 440 455 462-464
į			466-468 489-490 492-493 507-
			521 536 552 565-566 569 571-
	ļ		576 592 596 599 619 630 650
			655 661 688 698-699 712 718
	[723-729 731 735-737 753 767
1			783 824 831 834 840 845 871
			885 891 894 899 902 906-909
1			913 923-930 940 943 949 958
			973 980 992 999 1003 1007 1017
			1032 1040-1041
fetal liver-spleen	Columbia	FLS003	23 67 106 150 158 193 338 374
	University		376 411 443 478 493 546 565
			569-570 582 589 609-613 630
			661 699 724 727-734 767 809
			812 834-835 845 880 890 910

118 Table 1

'Tissue Origin	RNA/Tissue Source	Library Name	SEQ ID NO:
Tissue Oligin	72.12.710320.002.00		929-930 958 973 980 985 1013
fetal lung	Clontech	FLG001	728 824 1008
fetal lung	Clontech	FLG004	115 668
fetal lung	Invitrogen	FLG003	120 183 322 333-336 476 516
Total rang	2		691 831 835 850 1012
fetal muscle	Invitrogen	FMS001	45 338-339 365 369 386 429 431
ictal mascic	m.raogen		496-497 789 793 856 970 1008
			1019 1033 1035
fetal muscle	Invitrogen	FMS002	45 115 171 247 327 365 370 405
iciai muscic	Invite og on		536 642-652 668 710-711 719
			726 758-761 765 836 899 901
			907 913 948 965 1037
fetal skin	Invitrogen	FSK001	29 57 67 74 81 118 152 177 180
iciai skiii	Invittogen	1 512001	193 294 340-342 345 375 397
			419 437-443 445-451 454 475
			532 541 546 565 598 604 630
			650 668 728 742 772 789 793
			804-805 823 828-830 837 840
			849 899 901 922 958 970 1007
			1022 1033
641.11.	Invitrogen	FSK002	34 45 77 81 85 115 173 200 279
fetal skin	mvinogen	TOROUZ	292-293 360 370 381 419 428-
			429 451 466 490 551 569-570
			579 600 604 630 647 668 698
			700-706 729 731 746 750 758
			762-766 768-773 780 794 840
			850 859 861 885 901 911 913
			957 961 965 973 1038
C1 11 /	Statement	LFB001	55 72 143 255 490 502-505 587
fibroblast	Stratagene	LIBUUI	599 627 861 863 885 984 1037
	States	NTD001	30 82 111 124 181 206 356 392
induced neuron-cells	Stratagene	NIDOOI	410 417 484-488 578 831-834
			898 977 1036 1039
	0.1.1:-	IB2002	18 21 45 66 73-75 100-103 118
infant brain	Columbia	182002	152 168-171,177 180 241-242
	University		252 292-295 340 345 366-367
			413 438 454 499 501 542 561-
			562 578-580 599 668 702 728-
			729 745 765 768 772 793 796-
			799 823-824 863 874 887 899
			948-949 967 975 977 981 983
	1		992 995 1012
		TD2002	81 101 113 118 177 180 241 252
infant brain	Columbia	IB2003	293 340 345 367 371 379 381
	University		400 417 499-501 536 562 578
			580-581 629-630 702 713 745
			796-805 824 831 837 840 845
			874 885 967 977 981 985 1012
,			
	 	IDM(002	1030
infant brain	Columbia	IBM002	168 358 413-414 913
<u> </u>	University	PDG001	. 415 417 522 501 007 000 077
infant brain	Columbia	TBS001	415 417 533 581 886-888 977
	University		77 (10 000 040
leukocyte	Clontech	LUC003	77 619 889 949
leukocyte	GIBCO	LUC001	34 36 38-42 50-52 55 67 77 81-
			83 85 121 137 144 158 172 183

119 Table 1

		Table 1	SEQ ID NO:
`Tissue Origin	RNA/Tissue Source	Library Name	223 226 251 254 258 291 324
			368-374 378 424 429 443 483
			492 536 552 564 600 602 732
			760 768 782 785 805 838 844-
•			845 848 850 889 898 905 908
			946 973 992
lung	55 72 143 255 490		-
	502-505 587 599		
	627 861 863 885		
•	984 1037		
lung tumor	Invitrogen	LGT002	55 61 65 77-79 82 102 105 115
			156-157 165-167 170 182-183
			197 243-244 251 253 296-297
			325 370 386 418-419 421-425
			478 483 492 499 520 531 533
			541 569 577 582 600 788 844-
			845 848 874 899 911 913 916-
		·	918 939 944 949 956 970 976
1 1 1-	Clontech	ALN001	47 63 104-105 183 483 492 691
lymph node	Cioniecii	TELL TOO	894 1017
1 1	ATCC	LPC001	45 53 77 158 193 251 392 421
lymphocytes	AICC	Di Otti	455 469-474 483 507 536 546
		,	579 581 618 621 640 765 780-
•			787 793 838 845 875 924 968
			978 999
		HMP001	122 147 157 183 251 255 493
macrophage	Invitrogen	HIMPOUL	738 898-899 903-905
		10.60001	45 64 67 83-84 101 113 143 148
mammary gland	Invitrogen	MMG001	152 158 164 177 181-183 189
			216-218 253 255 258 263 274
			299 336 419 421 423 426-430
			440 466 478 490 520 533 536
			564 569 579 582 630 646 753
,			768 782 789 800 835 840 848
			850 883 912-913 944 950 958
melanoma from-cell-line-	Clontech	MEL004	62 158 181 298 362 364 402 419
ATCC-#CRL-1424			515 536 896-897 958 973 1004
			1008
*Mixture of 16 tissues -	Various Vendors	CGd010	353 358 823 942 982 1020
mRNA			
*Mixture of 16 tissues -	Various Vendors	CGd011	569 630 944 955 999
mRNA			
*Mixture of 16 tissues -	Various Vendors	CGd012	9 38 59 63 80 85 122-123 152
mRNA			154 177 195 217 232 246 250
			296 300 306 323-324 381 427
	1	ł	434 438-439 478 489 499 507
		[517 538 558 565 571 575 630
		1	657 681 701 736 762 792 800
			802 823-824 861 871-872 899
1		1	929 941 955 968 974 985-1003
			1006 1011-1012 1033
*Minture of 16 tigmes	Various Vendors	CGd013	232 434 748 956-958 992
*Mixture of 16 tissues -	ASTIONS ACTIONS	1 33333	
mRNA	Various Vendors	CGd015	18 69 115 324 335 548 551 569
*Mixture of 16 tissues -	A STIONS A CHOOLS	100000	582 600 622 731 819 899 911
mRNA			944 957-958 1012 1017-1018
			7777777777

120 Table 1

`Tissue Origin	RNA/Tissue Source	Library Name	SEQ ID NO:
*Mixture of 16 tissues -	Various Vendors	CGd016	46 172 183 323 371 481 493 565
mRNA	1 22000		569 571 596 599 630 654 698
IIICI VA			745 762 786 849 907 944 1004-
		1	1013 1037 1039
neuronal cells	Stratagene	NTU001	7 33 45 107 113 121 150 183 286
neuronal cells	Stratagene	1410001	385 440 478 483 485 487 489
			536 569 582 756 768 772 819
	Į.		836 944 958 966 1001
	Clontech	PIT004	158 222 255 345 356 370 379
pituitary gland	Cioniech	F11004	569 579 819 831 861-862 885
	,		898 922 1017
	Classach	PLA003	7 36 61 279 419 478 489 582 586
placenta	Clontech	PLA003	599 641 647 668 681 707-711
			774-779 1001
		A DT 000	57 173 536 728 793 800
placenta	Invitrogen	APL002	26 219-222 229 412 599 665 762
prostate	Clontech	PRT001	
	 	D T COOL	835 837 860 878 951 1031
rectum	Invitrogen	REC001	9 292 343-346 431 546 714 800
		1	863 918
retinoic acid-induced-	Stratagene	NTR001	112 400 478 569 582 629 756
neuronal-cells			758 800 819 831 835-836 850
			906 944 958
salivary gland	Clontech	SAL001	58 61 77 118 150 158 294 347-
			348 483 492-493 546 752 830
			915
skeletal muscle	Clontech	SKM001	80 118 247 365 483 719 805 812
			823
small intestine	Clontech	SIN001	34 37 45 52 60 93 106 119 121
			138 144 177 180 208 223-225
			238 247 294 323 335-336 343
			362 370 380 386 397 409-411
			416 420 440 451 455 478 489
	·		493 536 571 577 579 590 602
			604-608 614 622 624-628 655
			668 688 700 714 805-812 831
			841 872 894 899 914 924 926
	Ì		929 958 961 965 973 991 998
		•	1017
spinal cord	Clontech	SPC001	51 164 182-183 190 226-228
1			255-257 275-277 286 296 299
			451 454 542 552 579 591 728
			753 770 786 790 831 835 849-
			852 898 907 958 1000 1012
stomach	Clontech	STO001	72 222 232 247 258 366 645
thalamus	Clontech	THA002	45 49 113 155 164 180 183 191-
			192 208 229-232 238 345 417
			443 512 551 558 592 630 728
			800 823 840 858-860 885 898
		1	976 1012
thymus	Clontech	THM001	45 141 160 183 258 360 378-379
			418 451 460 569 602 619 731
			788-790 819 835 845 958 965
			1004
thymus	Clontech	THMc02	47 108 115 121 144 157 173 247
111111111111111111111111111111111111111	Cionicoa		259-260 300 327 340 358 362
	}		375-393 409 453 455 461 478-
1	1		

121 Table 1

`Tissue Origin	RNA/Tissue Source	Library Name	SEQ ID NO:
			479 489 551 565 569-570 579
			582 615 630 640 653 668 708
			744 752 758 766 790-795 810
			819 823 835-836 845 850 853
			861 885 911 919 938 958 962
			994 1001 1027
thyroid gland	Clontech	THR001	46 58 67 80 82 144 160 177 183
			193-194 233-235 251 255 263
			268 278-280 286 299 301-303
			324 358 370 386 397 408 410
			420 440 474 483 493 506 519-
			520 533 594 599-600 602 658
			661 719 758 772 785 788 793
			830 851 853 864-867 898 904
			909 924 929 961 973 991 998
			1001 1009
trachea	Clontech	TRC001	45 154 236 238 281 323 416 571
	•		602 868-869 913
umbilical cord	BioChain	FUC001	34 45 54 58 67 70 85 152 154
			177 180 188 208 251 299 370
			409 415 419 434 451-455 483
			596 599 647 661 733 742 793
	Ì		808 839-840 845 849-850 861
			888 911 913 992
uterus	Clontech	UTR001	177 237-239 255 258 417 493
			520 567 599 604 646 844 870
			874 898 973
young liver	GIBCO	ALV001	45 419 440 443 490 653 732 753
			805 845 898 904

*The 16 tissue/mRNAs and their vendor sources are as follows: 1) Normal adult brain mRNA (Invitrogen), 2) Normal adult kidney mRNA (Invitrogen), 3) Normal fetal brain mRNA (Invitrogen), 4) Normal adult liver mRNA (Invitrogen), 5) Normal fetal kidney mRNA (Invitrogen), 6) Normal fetal liver mRNA (Invitrogen), 7) normal fetal skin mRNA (Invitrogen), 8) human adrenal gland mRNA (Clontech), 9) Human bone marrow mRNA (Clontech), 10) Human leukemia lymphoblastic mRNA (Clontech), 11) Human thymus mRNA (Clontech), 12) human lymph node mRNA (Clontech), 13) human so\spinal cord mRNA (Clontech), 14) human thyroid mRNA (Clontech), 15) human esophagus mRNA (BioChain), 16) human conceptional umbilical cord mRNA (BioChain).

122 Table 2

070	A	Cassian	Description	Score	%
SEQ ID	Accession No.	Species	Dadipion		Identity
NO: 1044	AAB32400	Homo sapiens	HUMA- Human secreted protein sequence encoded by gene 30 SEQ ID NO:86.	339	100
1044	AAM74711	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 35017.	335	100
1044	AAM61909	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 34014.	335	100
1045	gi3859599	Arabidopsis thaliana	similar to class I chitinases (Pfam: PF00182, E=1.2e-142, N=1)	74	27
1045	gi15292107	Drosophila melanogaster	LD38671p	74	33
1045	gi2258324	Fusarium oxysporum f. sp. ciceris	yellowing-associated protein	73	32
1046	gi17428204	Ralstonia solanacearum	CONSERVED HYPOTHETICAL PROTEIN	74	32
1046	gi4314432	Homo sapiens	similar to phosphatidylinositol (4,5)bisphosphate 5-phosphatase; match to PID:g1399105	71	30
1046	gi 17545909 ref[NP_5193 11.1	Ralstonia solanacearum	CONSERVED HYPOTHETICAL PROTEIN	74	32
1047	gi9756017	Actinoplanes sp. 50/110	alpha-amylase	69	38
1047	gi 6572499 g b AAF17291	Homo sapiens	LHX3 protein	67	26
1047	gi 18572988 ref XP_0291 70.2	Homo sapiens	LIM homeobox protein 3	67	26
1048	AAY28474	Homo sapiens	UYJO Human Capon protein.	721	99
1048	gi2895555	Homo sapiens	carboxyl-terminal PDZ ligand of neuronal nitric oxide synthase	721	99
1048	gi2895557	Rattus norvegicus	carboxyl-terminal PDZ ligand of neuronal nitric oxide synthase	654	92
1049	gi19713721	Fusobacterium nucleatum subsp. nucleatum ATCC 25586	GTP-binding protein era	66	28
1050	gi31291	Homo sapiens	fumarylacetoacetase (AA 1-349)	175	70
1050	gi182393	Homo sapiens	fumarylacetoacetate hydrolase	175	70
1050	gi12803409	Homo sapiens	fumarylacetoacetate	175	70
1052	gi4680089	Human immunodeficienc y virus type 1	envelope glycoprotein	79	26
1052	gi3868997	Ephydatia fluviatilis	EFPDE2	74	20
1052	gi4679590	Human immunodeficienc y virus type 1	envelope glycoprotein	74	25
1054	gi3844648	Mycoplasma genitalium	glycerol kinase (glpK)	71	28

123 Table 2

			Table 2	Carre	0/
SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
1054	gi18448155	Ipomoea leaf curl virus	AC3	70	27
1054	gi 12044888 ref[NP_0726 98.1	Mycoplasma genitalium	glycerol kinase (glpK)	71	28
1056	AAM56747	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 28852.	229	72
1056	AAM67067	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 27373.	224	69
1056	AAM54664	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 26769.	224	69
1058	gi 13310191 gb AAK181 89.1 AF331 500_1	multiple sclerosis associated retrovirus element	recombinant envelope protein	228	79
1058	gi 21103962 gb AAM331 41.1	Homo sapiens	enverin-2	209	77
1058	gi 8272468 g b AAF74215 .1 AF15696	Homo sapiens	envelope protein	198	75
1059	gi20380199	Homo sapiens	Similar to LOC168246	251	100
1059	gi 8388692 e mb CAB940 42.1	Leishmania major	probable DNA-binding protein	67	46
1060	gi 21292780 gb EAA049 25.1	Anopheles gambiae str. PEST	agCP4203	70	39
1061	gi330862	Equine herpesvirus 1	membrane glycoprotein	179	30
1061	gi17221106	Equine herpesvirus 1	glycoprotein gp2	178	34
1061	AAE03643	Homo sapiens	INCY- Human extracellular matrix and cell adhesion molecule-7 (XMAD-7).	175	29
1062	gi 11037117 gb AAG274 85.1 AF194 537_1	Homo sapiens	NAG13	334	66
1062	gi 1335205 e mb CAA364 80.1	Homo sapiens	ORFII	332	
1063	gi21323402	Corynebacterium glutamicum ATCC 13032	ABC-type transporter, periplasmic component	70	36
1063	gi 19551869 ref[NP_5998 71.1	Corynebacterium glutamicum	COG1464:ABC-type uncharacterized transport systems, periplasmic component	70	36
1063	gi 17551878 ref NP_4990	Caenorhabditis elegans	TPR Domain	67	37

124 Table 2

SEQ	Accession	Species	Description	Score	%
\mathbf{D}	No.				Identity
NO:					ļ
	90.1			-	
1064	gi2308977	Aspergillus nidulans	chitin synthase	66	29
1065	gi18076958	Yarrowia lipolytica	Opt1 protein	74	30
1065	gi786145	Walleye dermal sarcoma virus	envelope polyprotein	73	28
1065	gi2801522	Walleye dermal	gPr env	73	28
1066	gi9294279	sarcoma virus Arabidopsis thaliana	Tall-like non-LTR retroelement protein-like; CHP-rich zinc finger protein-like	67	32
1066	gi 20848817 ref XP_1380 10.1	Mus musculus	similar to HEAT SHOCK COGNATE PROTEIN 80	83	69
1069	AAM77637	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 37943.	96	65
1069	AAM64901	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 37006.	96	65
1069	gi 17473741 ref XP_0623 80.1	Homo sapiens	similar to Meningioma-expressed antigen 6/11 (MEA6) (MEA11)	112	56
1070	gi296288	Homo sapiens	histone H1	77	44
1070	gi5923857	Artemisia annua	squalene synthase	75	35
1070	AAO08837	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 22729.	73	39
1071	gi21483554	Drosophila melanogaster	SD02058p	72	29
1071	gi8515845	Homo sapiens	hepatocellular carcinoma associated protein TD26	71	38
1071	gi 21483554 gb AAM527 52.1	Drosophila melanogaster	SD02058p	72	29
1072	gi5902896	Streptomyces avermitilis	type I polyketide synthase AVES 4	74	50
1072	gi 21301752 gb EAA138 97.1	Anopheles gambiae str. PEST	agCP8235	70	34
1073	AAV30916_ aa1	Homo sapiens	GEMY Human secreted protein AR415_4 cDNA.	99	66
1073	ABB89113	Homo sapiens	HUMA- Human polypeptide SEQ ID NO 1489.	99	66
1073	AAB90679	Homo sapiens	GEMY Human AR415_4 protein sequence SEQ ID 35.	99	66
1074	AAG99338	Homo sapiens	TAKE Human atypical tachykinin protein fragment SEQ ID NO: 20.	380	92
1074	AAG99336	Homo sapiens	TAKE Human atypical tachykinin protein fragment SEQ ID NO: 13.	329	91
1074	AAG99333	Homo sapiens	TAKE Human atypical tachykinin protein fragment SEQ ID NO: 3.	324	91
1075	gi17945760	Drosophila melanogaster	RE33302p	305	29

125 Table 2

	Accession	Species	Description	Score	%
SEQ ID NO:	No.	Species	Description	50010	Identity
1075	gi1039447	Saccharomyces cerevisiae	Lpb1p	91	25
1075	AAB64777	Homo sapiens	HUMA- Human secreted protein sequence encoded by gene 5 SEQ ID NO:63.	78	77
1076	AAB50261	Homo sapiens	CORI- Human breast cancer associated B726P-20 protein.	308	39
1076	AAB50244	Homo sapiens	CORI- Human breast cancer associated B726P-79 protein.	308	39
1076	AAB84702	Homo sapiens	CORR Amino acid sequence of a human cancer associated antigen.	308	39
1077	gi2529735	Gorilla gorilla	glycophorin B/E precursor	71	31
1077	AAB74724	Homo sapiens	INCY- Human membrane associated protein MEMAP-30.	70	31
1077	gi4164424	Schizosaccharom yces pombe	similar to yeast cytoskeleton control protein Bnilp	70	24
1078	gi18145107	Clostridium perfringens	probable transcriptional regulator	71	28
1078	gi 9581801 e mb CAC005 46.1	Plasmodium falciparum	guanylyl cyclase	69	24
1078	gi 16805032 ref NP_4730 61.1	Plasmodium falciparum	Ser/Thr protein kinase	69	26
1079	gi 20886321 ref XP_1406 14.1	Mus musculus	similar to olfactory receptor, family 5, subfamily V, member 1; olfactory receptor, family 5, subfamily V member 1	72	34
1081	gi9650824	Petroselinum crispum	common plant regulatory factor 5	76	28
1081	gi559695	Hydrolagus colliei	This CDS feature is included to show the translation of the corresponding C_region. Presently translation qualifiers on C_region features are illegal	74	31
1081	gi476622	Hydrolagus colliei	immunoglobulin light chain	74	31
1082	AAM39205	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 2350.	363	71
1082	AAO07159	Homo supiens	HYSE- Human polypeptide SEQ ID NO 21051.	357	76
1082	AAM40991	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 5922.	343	79
1083	gi 17229222 ref[NP_4857 70.1	Nostoc sp. PCC 7120	similar to HetF protein	72	30
1084	gi17221628	Felis catus	T-lymphocyte surface CD2 antigen	76	38
1084	gi18565073	Crimean-Congo hemorrhagic fever virus	envelope glycoprotein precursor	74	29 .
1084	gi 17221628 dbj BAB784 75.1	Felis catus	T-lymphocyte surface CD2 antigen	76	38
1085	gi17430213	Ralstonia	PUTATIVE HEMAGGLUTININ-	74	26
	1 0	1	1		

126 Table 2

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
		solanacearum	RELATED PROTEIN		
1087	gi2323287	multiple sclerosis associated retrovirus	polyprotein	618	79
1087	gi 4996596 d bj BAA7854 9.1	Human endogenous retrovirus W	polyprotein	317	74
1087	gi 9630708 r ef NP_0472 55.1	Feline leukemia virus	gag-pol precursor polyprotein gPr80	293	38
1088	gi15075953	Sinorhizobium meliloti	PUTATIVE MOLYBDENUM TRANSPORT SYSTEM PERMEASE ABC TRANSPORTER PROTEIN	70	56
1088	gi2288880	Arthrobacter nicotinovorans	transmembrane protein	67	56
1088	gi17298547	Bradyrhizobium japonicum	ModB	67	56
1089	AAY95660	Homo sapiens	ZYMO Human Zntr2 protein.	231	61
1089	AAU83682	Homo sapiens	GETH Human PRO protein, Seq ID No 182.	210	59
1089	AAY99386	Homo sapiens	GETH Human PRO1305 (UNQ671) amino acid sequence SEQ ID NO:153.	210	59
1090	gi7688355	Solanum tuberosum	Dof zinc finger protein	70	31
1090	gi4389445	Drosophila melanogaster	transcription factor	67	32
1090	gi 7688355 e mb CAB898 31.1	Solanum tuberosum	Dof zinc finger protein	70	31
1092	AAG78884	Homo sapiens	BIOW-Human ribosomal protein s5-17.	90	44
1092	AAM91239	Homo sapiens	HUMA- Human immune/haematopoietic antigen SEQ ID NO:18832.	72	53
1092	AAM95026	Homo sapiens	HUMA- Human reproductive system related antigen SEQ ID NO: 3684.	72	48
1094	gi18676450	Homo sapiens	FLJ00122 protein	69	38
1094	gi18073428	Homo sapiens	stabilin-2	69	38
1094	gi 20806091 ref NP_0600 34.8	Homo sapiens	stabilin-2; CD44-like precursor FELL	69	38
1095	gi20906397	Methanosarcina mazei Goe1	conserved protein	76	44
1095	gi 21299784 gb EAA119 29.1	Anopheles gambiae str. PEST	agCP6531	75	30
1095	gi 17549046 ref NP_5223 86.1	Ralstonia solanacearum	CONSERVED HYPOTHETICAL PROTEIN	73	32
1096	AAB58317	Homo sapiens	ROSE/ Lung cancer associated polypeptide sequence SEQ ID 655.	678	100
1096	gi862600	Drosophila melanogaster	male-specific lethal-1 protein	176	25

127 Table 2

SEQ ID	Accession No.	Species	Description	Score	% Identity
NO: 1096	gi601930	Oryctolagus	neurofilament-H	115	24
1070		cuniculus		7/	0.5
1097	AAU83109	Homo sapiens	ZYMO Novel secreted protein Z701935G4P.	76	85
1097	gi 20348496 ref XP_1117 12.1	Mus musculus	similar to RIKEN cDNA 9030605E16	72	57
1098	gi18031887	Mus musculus	Fanconi anemia complementation group G	77	29
1098	gi12002137	Mus musculus	Fanconi anemia group G protein	77	29
1098	AAB72381	Homo sapiens	LEEM/ Human hairy and enhancer of Split homologue amino acid sequence.	75	28
1099	gi8217648	Homo sapiens	dJ579F20.1 (high-mobility group (nonhistone chromosomal) protein 1- like 1)	159	70
1099	gi5815432	Gallus gallus	high mobility group protein HMG1	154	70
1099	gi4140289	Gallus gallus	high mobility group 1 protein	154	70
1100	ABB11527	Homo sapiens	HYSE-Human apolipoprotein B receptor homologue, SEQ ID NO:1897.	84	26
1100	gi487347	Homo sapiens	breakpoint cluster region protein	81	32
1100	gi144050	Bordetella pertussis	filamentous hemagglutinin	78	30
1102	AAM68946	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 29252.	327	81
1102	AAM79768	Homo sapiens	HYSE- Human protein SEQ ID NO 3414.	324	80
1102	AAM78784	Homo sapiens	HYSE- Human protein SEQ ID NO 1446.	324	80
1103	AAZ11186_ aa1	Homo sapiens	SAGA Gene encoding transmembrane domain containing protein clone HP02239.	143	68
1103	AAD31079_ aa1	Homo sapiens	INCY- Human cornichon protein (CORN) cDNA.	143	68
1103	AAA88439_ aa1	Homo sapiens	GETH Antitumour PRO181 cDNA clone DNA23330-1390.	143	68
1104	ABB07527	Homo sapiens	INCY- Human drug metabolizing enzyme (DME) (ID: 5643401CD1).	562	100
1104	ABB07515	Homo sapiens	INCY- Human drug metabolizing enzyme (DME) (ID: 8097779CD1).	562	100
1104	gi13161409	Mus musculus	family 4 cytochrome P450	431	76
1107	gi13542874	Mus musculus	Similar to CGI-67 protein	677	64
1107	AAU81978	Homo sapiens	INCY- Human secreted protein SECP4.	665	65
1107	AAU77137	Homo sapiens	MILL- Human alpha/beta hydrolase 38618 polypeptide.	665	65
1108	gi13620885	Homo sapiens	mitochondrial ribosomal protein S6	323	100
1108	gi13620887	Mus musculus	mitochondrial ribosomal protein S6	284	82
1108	gi19713140	Fusobacterium nucleatum subsp. nucleatum ATCC 25586	Fusobacterium outer membrane protein family	79	28
1109	gi18378673	Homo sapiens	PATE	607	89
1109	gi5305193	Rattus norvegicus	sperm protein 10	108	30

128 Table 2

SEQ	Accession	Species	Description	Score	%
m	No.	•			Identity
NO:					
1109	gi969103	Mus musculus	mSP-10	107	27
1110	gi2462979	Bos taurus	Tenascin-X	119	34
1110	gi3413958	Homo sapiens	LDL receptor related protein 105	110	27
1110	gi13938519	Homo sapiens	low density lipoprotein receptor-related protein 3	110	27
1111	gi17981053	Mus musculus	transcription factor NFAT5	82	32
1111	gi15425825	Mus musculus	tonicity-responsive enhancer binding protein	82.	32
1111	gi6911148	Mus musculus	transcription factor NFAT5 isoform b	82	32
1112	gi6634473	Metarhizium anisopliae var. anisopliae	adenylate cyclase, ACY	73 .	30
1113	AAU19759	Homo sapiens	HUMA- Human novel extracellular matrix protein, Seq ID No 409.	900	70
1113	gi3171934	Mus musculus	neuronal-STOP protein	886	52
1113	gi2769587	Mus musculus	STOP protein	885	52
1114	gi18652188	Oenococcus oeni	OppF	72	41
1115	gi9119	Drosophila sp.	fos-related antigen	69	37
1115	gi7769652	Drosophila melanogaster	Fos-related antigen	69	37
1115	gi17862946	Drosophila melanogaster	SD04477p	69	37
1116	gi21212948	Mus musculus	peroxisomal protein (PeP)	243	83
1116	gi2347114	Mus musculus	CC chemokine receptor-5	72	28
1116	gi2431976	Mus musculus	CCR5	72	28
1117	gi 20825251 ref[XP_1319 98.1	Mus musculus	similar to RE1-silencing transcription factor; neuron restrictive silencer factor; repressor binding to the X2 box	77	40
1117	gi 15597871 ref NP_2513 65.1	Pseudomonas aeruginosa	probable type II secretion system protein	69	41
1118	gi 3860513 e mb CAA135 74.1	Mus famulus	reverse transcriptase	303	82
1118	gi 3860536 e mb CAA135 77.1	Mus saxicola	reverse transcriptase	303	81
1118	gi 3860510 e mb CAA135 73.1	Mus dunni	reverse transcriptase	298	63
1119	AAO04758	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 18650.	234	59
1119	AAM69569	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 29875.	220	63
1119	AAM67717	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 28023.	219	49
1120	gi21107877	Xanthomonas axonopodis pv. citri str. 306	cytochrome C	78	27
1120	gi15292331	Drosophila melanogaster	LD47230p	77	42
1120	gi15072444	Avian	phosphoprotein	72	38

129 Table 2

SEQ	Accession	Species	Description	Score	%
ID NO:	No.				Identity
		paramyxovirus 6			
1121	AAB44126	Homo sapiens	HUMA- Human cancer associated protein sequence SEQ ID NO:1571.	150	83
1121	gi550015	Homo sapiens	ribosomal protein L21	150	83
1121	gi619788	Homo sapiens	L21 ribosomal protein	150	83
1122	AAU74448	Homo sapiens	OULU- Human protein sequence of lysyl hydroxylase 1 (LH1).	125	100
1122	gi190074	Homo sapiens	lysyl hydroxylase	125	100
1122	gi5817297	Homo sapiens	lysyl hydroxylase 1	125	100
1123	gi21281601	Caenorhabditis elegans	C. elegans PQN-44 protein (corresponding sequence F55A12.9c)	78	34
1123	gi14578225	Caenorhabditis elegans	C. elegans PQN-44 protein (corresponding sequence F55A12.9b)	76	38
1123	gi2088669	Caenorhabditis elegans	C. elegans PQN-44 protein (corresponding sequence F55A12.9a)	76	38
1125	AAU17301	Homo sapiens	HUMA- Novel signal transduction pathway protein, Seq ID 866.	344	88
1125	AAE11776	Homo sapiens	INCY- Human kinase (PKIN)-10 protein.	344	88
1125	AAU17304	Homo sapiens	HUMA- Novel signal transduction pathway protein, Seq ID 869.	340	86
1126	AAM41712	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 6643.	152	96
1126	AAM39926	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 3071.	152	96
1126	AAM79067	Homo sapiens	HYSE- Human protein SEQ ID NO 1729.	152	96
1127	AAE02938	Homo sapiens	MILL- Human adenylate cyclase 25678.	252	98
1127	AAB02006	Homo sapiens	TEXA Adenylyl cyclase type II-C2 C2 alpha domain.	252	98
1127	gi202752	Rattus norvegicus	adenylyl cyclase type II	252	98
1128	AAA94860_ aa1	Homo sapiens	TEXA Human caspase activator Smac coding sequence.	96	100
1128	AAU78447	Homo sapiens	UYJE- Inhibitor of apoptosis (IAP) protein Smac.	96	100
1128	AAB26210	Homo sapiens	TEXA Human caspase activator Smac.	96	100
1129	gi3874765	Caenorhabditis elegans	Similarity to Drosophila acetylcholine receptor protein (SW:ACH1_DROME), contains similarity to Pfam domain: PF00065 (Neurotransmitter-gated ion-channel), Score=296.9, E-value=5e-86, N=3	97	30
1129	gi6681597	Yaba monkey tumor virus	similar to vaccinia G8R	72	28
1129	gi 17548199 ref NP_5099 32.1	Caenorhabditis elegans	acetylcholine receptor	97	30
1130	gi 17564116 ref NP_5064 84.1	Caenorhabditis elegans	tyrosine-protein kinase	73	29
1131	gi13925613	Homo sapiens	insulinoma-associated protein IA-6	88	27
1131	gi158485	Drosophila	son of sevenless protein	85	24

130 Table 2

SEQ ID	Accession No.	Species	Description	Score	% Identity
NO:	No.				Identity
		melanogaster		L	
1131	gi7287782	05-Feb-1998	symbol=Sos; synonym=BG:DS00941.4; match=method:"sim4", score:"1000.0", desc:"GenBank::M83931:Drosophila melanogaster son of sevenless (Sos) mRNA, complete cds. CDS:3465133; PID:g158485.", species:"Drosophila melanogaster"; match=method:"BLASTX", version:"2.0a19MP-WashU [Build sol2.5-ultra 01:47:30	85	24
1132	gi9696	Mytilus edulis	polyphenolic adhesive protein	75	25
1134	gi13562016	Plectreurys tristis	fibroin 2	72	29
1134	gi1129074	Bacillus subtilis	beta-N-acetylglucosaminidase	69	28
1134	gi2636104	Bacillus subtilis	N-acetylglucosaminidase (major autolysin) (CWBP90)	69	28
1135	AAB58870	Homo sapiens	HUMA- Breast and ovarian cancer associated antigen protein sequence SEQ ID 578.	72	80
1135	gi11595476	Homo sapiens	RPB11b1beta protein	72	80
1135	AAB44840	Homo sapiens	HUMA- Human secreted protein encoded by gene 11.	69	45
1137	gi206985	Rattus norvegicus	troponin I	70	46
1137	gi16945895	Takifugu rubripes	SUN-like 1	70	31
1137	gi 8394466 r ef NP_0588 81.1	Rattus norvegicus	troponin I, skeletal, fast 2	70	46
1140	AAO04998	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 18890.	277	96
1140	gi19917538	Methanosarcina acetivorans str. C2A] [Methanosarcina acetivorans C2A	mttA/Hcf106 protein	80	28
1140	gi4959705	Mus musculus	fibulin-2	76	28
1141	gi10141010	Vesicular exanthema of swine virus	non-structural polyprotein	91	31
1141	gi6566147	Drosophila melanogaster	large Forked protein	85	30
1141	gi2317953	murid herpesvirus 4	glycoprotein 150	79	28
1142	AAB54067	Homo sapiens	HUMA- Human pancreatic cancer antigen protein sequence SEQ ID NO:519.	218	56
1142	gi1710365	Mus musculus	noggin	89	29
1142	gi21105761	Equus caballus	noggin	89	29
1143	gi 21295753 gb EAA078 98.1	Anopheles gambiae str. PEST	agCP1560	69	26
1144	gi505094	Homo sapiens	similar to an actin bundling protein,	127	35

131 Table 2

SEQ ID NO:	Accession No.	Species	. Description	Score	% Identity
			dematn.		
1144	gi2337952	Homo sapiens	actin-binding double-zinc-finger protein	122	36
1144	gi21304227	Oryza sativa	ovule development aintegumenta-like protein BNM3	76	29
1145	gi 21298336 gb EAA104 81.1	Anopheles gambiae str. PEST	agCP2121	68	37
1146	AAW22049	Homo sapiens	INCY- Interferon gamma inducing factor-2 (IGIF-2) alternate transcript variant.	221	100
1146	AAV05368_ aa1	Homo sapiens	SCHE cDNA encoding human interleukin-1-gamma.	167	84
1146	AAH78060_ aa1	Homo sapiens	STRD Nucleotide sequence of human interleukin 18 (IL-18).	167	84
1147	AAY57937	Homo sapiens	INCY- Human transmembrane protein HTMPN-61.	123	100
1147	gi 20345904 ref XP_1098 23.1	Mus musculus	similar to delta-like homolog (Drosophila)	105	86
1148	gi19069293	Encephalitozoon cuniculi	similarity to ADP/ATP CARRIER PROTEIN	75	32
1148	gi8978336	Arabidopsis thaliana	contains similarity to CHP-rich zinc finger protein~gene_id:K23F3.4	74	26
1148	gi19716318	Aspergillus flavus	antigenic cell wall protein MP1	74	32
1149	gi5456699	Emericella nidulans	ATP-binding cassette multidrug transport protein ATRC	70	35
1149	gi 20898840 ref XP_1393 87.1	Mus musculus	similar to HSPC038 protein	69 .	31
1150	gi3883128	Arabidopsis thaliana	arabinogalactan-protein	96	32
1150	gi17429208	Ralstonia solanacearum	CONSERVED HYPOTHETICAL PROTEIN	92	26
1150	gi4063766	Emericella nidulans	chitinase	91	27
1151	gi13561058	Homo sapiens	dJ1108D11.1 (novel protein similar to C. elegans T22C1.7)	107	31
1151	gi21105299	Mytilus galloprovincialis	precollagen-NG	105	26
1151	gi14164347	Oncorhynchus mykiss	collagen a1(I)	96	28
1152	gi18479434	Mus musculus	olfactory receptor MOR188-1	76	33
1152	gi2653915	Oran virus	glycoprotein G1 and G2 precursor; envelope glycoprotein precursor	72	46
1152	gi18479436	Mus musculus	olfactory receptor MOR188-2	72	33
1153	gi3403167	Homo sapiens	GBAS	161	86
1153 1153	gi12804791 AAB57149	Homo sapiens Homo sapiens	glioblastoma amplified sequence ROSE/ Human prostate cancer antigen protein sequence SEQ ID NO:1727.	134	86
1154	gi17742234	Agrobacterium tumefaciens str. C58 (U.	histidase	87	35

132 Table 2

SEQ	Accession	Species	Description	Score	%
ID NO:	No.				Identity
		Washington)			
1154	gi15159496	Agrobacterium tumefaciens str. C58 (Cereon)	AGR_L_1400GMp	87	35
1154	gi158521	Drosophila melanogaster	seven-up protein type 2	80	32
1155	gi 10441551 gb AAG170 99.1 AF189 115_1	Cryptotermes domesticus	cytochrome b	65	28
1156	AAO12089	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 25981.	475	98
1156	gi20147787	Xenopus laevis	nuclear receptor corepressor	74	25
1156	gi19881705	Oryza sativa	Putative transposable element	72	32
1157	gi9963851	Homo sapiens	HT019	80	34
1157	AAB93530	Homo sapiens	HELI- Human protein sequence SEQ ID NO:12884.	77	34
1157	gi1040970	Homo sapiens	fus-like protein	77	42
1158	gi9795254	Sepia officinalis	GABA-A receptor beta subunit	71	27
1158	gi15026157	Clostridium acetobutylicum	amidase, germination specific (cwlC/cwlD B.subtilis ortholog)	68	34
1158	gi 9795254 g b AAF97816 .1	Sepia officinalis	GABA-A receptor beta subunit	71	27
1159	AAB93423	Homo sapiens	HELI- Human protein sequence SEQ ID NO:12641.	336	100
1159	gi13097768	Homo sapiens	Similar to RIKEN cDNA 2900073H19 gene	336	100
1159	gi20071708	Mus musculus	RIKEN cDNA 2900073H19 gene	334	96
1160	AAM72558	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 32864.	274	100
1160	AAM59959	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 32064.	274	100
1161	AAB07704	Homo sapiens	INMR Protein encoded by the endogenetic fragment of HERV-W.	139	36
1161	gi8272464	Homo sapiens	gag	139	36
1161	gi 5726238 g b AAD4837 5.1 AF1238 81_1	multiple sclerosis associated retrovirus element	gag polyprotein	131	35
1162	AAU25448	Homo sapiens	INCY- Human mddt protein from clone LG:1083264.1:2000MAY19.	346	79
1162	AAU11265	Homo sapiens	BODE- Human zinc finger protein 51.	319	65
1162	AAB95637	Homo sapiens	HELI- Human protein sequence SEQ ID NO:18371.	314	67
1163	gi14189950	Homo sapiens	connexin 58	536	84
1163	gi9957542	Homo sapiens	connexin 59	536	84
1163	gi10946367	Danio rerio	connexin 55.5	485	81
1164	gi755700	Bombyx mori	sericin1B	76	27
1164	gi19569861	Dictyostelium discoideum	RTOA protein (Ratio-A).	76	28

133 . Table 2

SEQ	Accession	Species	Description	Score	%
D	No.				Identity
NO:					
1164	gi10580635	Halobacterium sp. NRC-1	Vng1087c	76	25
1165	gi19915386	Methanosarcina acetivorans str. C2A] [Methanosarcina acetivorans C2A	WD-domain containing protein	89	28
1165	gi5639663	Homo sapiens	WD repeat protein WDR3	83	28
1165	gi11544739	Homo sapiens	dJ776P7.2 (WD repeat domain 3)	83	28
1166	AAM69338	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 29644.	72	31
1166	AAM56953	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 29058.	72	31
1166	gi20197507	Arabidopsis thaliana	expressed protein	67	39
1167	gi5802812	Homo sapiens	Gag protein	83	30
1167	gi7160650	Bordetella bronchiseptica	pertactin (P.68)	79	31
1167	gi13173444	Bordetella bronchiseptica	pertactin	79	31
1168	gi1495029	Danio rerio	protein kinase CK2 alpha'	84	24
1168	gi643443	Penicillium chrysogenum	PHOG	82	32
1168	gi 18858419 ref NP_5713 15.1	Danio rerio	casein kinase 2 alpha 2	84	24
1169	gi206716	Rattus norvegicus	salivary proline-rich protein	90	31
1169	gi15029903	Mus musculus	Similar to proline-rich protein BstNI subfamily 2	89	36
1169	gi53182	Mus musculus	proline rich protein	81	34
1170	gi 17553370 ref NP_4983 18.1	Caenorhabditis elegans	F40H6.5.p	78	33
1170	gi 15215731 gb AAK914 11.1	Arabidopsis thaliana	AT4g36780/C7A10_580	73	30
1171	gi340446	Homo sapiens	zinc finger protein 7 (ZFP7)	218	61
1171	AAB43928	Homo sapiens	HUMA- Human cancer associated protein sequence SEQ ID NO:1373.	216	58
1171	AAB21040	Homo sapiens	INCY- Human nucleic acid-binding protein, NuABP-44.	213	48
1172	AAE04368	Homo sapiens	INCY- Human kinase (PKIN)-9.	120	85
1172	AAM79153	Homo sapiens	HYSE- Human protein SEQ ID NO 1815.	120	85
1172	AAE10614	Homo sapiens	CURA- Human novel STE20-like protein, NOV-3d.	120	85
1173	gi218572	Pan troglodytes	prot GOR	74	29
1173	gi243898	Pan	GOR	74	29
1173	gi1666473	Mus musculus	NOV protein	71	50
1174	gi5901830	Drosophila melanogaster	BcDNA.GH07910	74	31

134 Table 2

SEQ	Accession	Species	Description	Score	%
ID	No.				Identity
NO:					
1174	AAM80237	Homo sapiens	HYSE- Human protein SEQ ID NO 3883.	71	38
1174	ABB11528	Homo sapiens	HYSE- Human secreted protein homologue, SEQ ID NO:1898.	71	38
1175	gi 12054759 emb CAC20	Podospora anserina	catalase A	65	33
1176	748.1 AAM93289	Homo sapiens	HELI- Human polypeptide, SEQ ID NO: 2777.	145	100
1176	gi17431512	Ralstonia solanacearum	PUTATIVE OUTER MEMBRANE CHANNEL LIPOPROTEIN TRANSMEMBRANE	71	26
1176	gi15823991	Streptomyces avermitilis	modular polyketide synthase	70	51
1177	AAM41939	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 6870.	84	61
1177	gi870751	Homo sapiens	N-acetylgalactosamine 6-sulfate sulfatase (GALNS)	84	61
1177	gi618426	Homo sapiens	N-acetylgalactosamine 6-sulphatase	84	61
1178	gi435855	Mus sp.	CREB-binding protein; CBP	89	22
1178	AAW40058	Homo sapiens	USSH Cellular transcriptional factor CBP.	87	22
1178	gi17944308	Drosophila - melanogaster	RE12101p	86	26
1179	AAM25814	Homo sapiens	HYSE- Human protein sequence SEQ ID NO:1329.	73	93
1179	AAM25290	Homo sapiens	HYSE- Human protein sequence SEQ ID NO:805.	73	93
1179	AAM79441	Homo sapiens	HYSE- Human protein SEQ ID NO 3087.	73	93
1180	AAB88388	Homo sapiens	HELI- Human membrane or secretory protein clone PSEC0131.	719	97
1180	gi20810493	Homo sapiens	Similar to RIKEN cDNA 2810417M05 gene	716	96
1180	AAD30543_ aa1	Homo sapiens	MILL- Human B7RP-2 DNA.	83	38
1181	ABB14686	Homo sapiens	HUMA- Human nervous system related polypeptide SEQ ID NO 3343.	190	97
1181	gi14329731	Secale cereale	high molecular weight glutenin subunit x	88	27
1181	gi14329761	Triticum aestivum	high molecular weight glutenin subunit x	84	26
1182	gi11692645	Mus musculus	aspartly beta-hydroxylase	74	28
1182	gi11878112	Mus musculus	aspartyl beta-hydroxylase 6.6 kb transcript	74	28
1182	gi11878110	Mus musculus	aspartyl beta-hydroxylase 4.5 kb transcript	74	28
1183	gi15485622	Homo sapiens	Q9H4T4 like	80	25
1183	gi19714949	Fusobacterium nucleatum subsp. nucleatum ATCC 25586	TonB protein	78	32
1183	gi7717375	Homo sapiens	human CHD2-52 down syndrome cell adhesion molecule	71	23

135 Table 2

WO 03/080795

678.0	A	Species	Description	Score	%
SEQ	Accession	Species	Description	Score	Identity
m	No.				lucinity
NO:			CONTRACT DOOR OF CONTRACT	388	100
1184	AAU83667	Homo sapiens	GETH Human PRO protein, Seq ID No 152.		
1184	AAG89161	Homo sapiens	GEST Human secreted protein, SEQ ID NO: 281.	388	100
1184	AAY99348	Homo sapiens	GETH Human PRO1194 (UNQ607) amino acid sequence SEQ ID NO:29.	388	100
1185	AAB93506	Homo sapiens	HELI- Human protein sequence SEQ ID NO:12830.	543	100
1185	AAB87570	Homo sapiens	GETH Human PRO1268.	426	95
1185	AAY78808	Homo sapiens	PROT- Hydrophobic domain containing protein clone HP10537 protein sequence.	426	95
1187	gi15823978	Streptomyces avermitilis	modular polyketide synthase	75	41
1187	AAB66657	Homo sapiens	HSCR- Human elastin protein without signal peptide.	71	39
1187	AAY69137	Homo sapiens	UNSY Amino acid sequence of a human tropoelastin derivative.	71	39
1188	gi6907090	Oryza sativa (japonica cultivar-group)	Similar to Oryza sativa root-specific RCc3 mRNA. (L27208)	76	30
1188	AAY36063	Homo sapiens	GEST Extended human secreted protein sequence, SEQ ID NO. 448.	74	26
1188	AAY35971	Homo sapiens	GEST Extended human secreted protein sequence, SEQ ID NO. 220.	73	26
1189	gi9827989	Leishmania major	possible CG12797 protein	72	36
1189	gi 13625467 gb AAK350 68.1	Leishmania donovani	LACK protective antigen	68	27
1190	gi17027071	Xiphocentron sp. UMSP00002937 2-Costa Rica	elongation factor-1 alpha	107	27
1190	gi310665	Strongylocentrot us purpuratus	Nf-Y-A subunit	88	24
1190	gi21743	Triticum aestivum	high molecular weight glutenin subunit 1Ax1	86	23
1191	gi16878287	Homo sapiens	Similar to C-terminal modulator protein	167	.96
1191	gi15866714	Homo sapiens	C-terminal modulator protein	167	96
1191	AAO06984	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 20876.	132	83
1192	AAD05496_ aa1	Homo sapiens	HUMA- Human secreted protein- encoding gene 5 cDNA clone HHBCS39, SEQ ID NO:15.	859	100
1192	AAE01707	Homo sapiens	HUMA- Human gene 5 encoded secreted protein HHBCS39, SEQ ID NO:119.	859	100
1192	AAE01676	Homo sapiens	HUMA- Human gene 5 encoded secreted protein HHBCS39, SEQ ID NO:88.	859	100
1193	gi18650588	Homo sapiens	retinoic acid early transcript 1	1312	99
1193	AAB15540	Homo sapiens	INCY- Human immune system molecule from Incyte clone 3402252.	1283	97
1193	ABB84887	Homo sapiens	GETH Human PRO791 protein	1234	94
	1	1 -romo ombiomo	1		

136 Table 2

SEQ ID	Accession No.	Species	Description	Score	% Identity
NO:			sequence SEQ ID NO:142.		
1195	gi1196427	Homo sapiens	gag 2 protein	248	50
1195	gi1780975	Human endogenous retrovirus K	gag protein	248	50
1195	gi1556397	Human endogenous retrovirus K	gag	248	50
1196	gi556256	Leishmania donovani	G protein alpha subunit	72	22
1197	AAY07237	Homo sapiens	ISTF Wild type monocyte chemotactic protein 2.	121	100
1197	AAY05300	Homo sapiens	ISTF C-C chemokine, MCP2.	121	100
1197	AAW42072	Homo sapiens	INCY- Human MC proprotein.	121	100
1198	ABB57423	Homo sapiens	HUMA- Human secreted protein encoding polypeptide SEQ ID NO 69.	187	79
1198	ABB57394	Homo sapiens	HUMA- Human secreted protein encoding polypeptide SEQ ID NO 40.	187	79
1198	AAY59757	Homo sapiens	META- Human normal ovarian tissue derived protein 34.	187	79
1199	AAY72603	Homo sapiens	INCY- Human Electron Transfer Protein, ETRN-1.	155	100
1199	AAB88465	Homo sapiens	HELI- Human membrane or secretory protein clone PSEC0259.	155	100
1199	AAE03926	Homo sapiens	HUMA- Human gene 29 encoded secreted protein HTADC63, SEQ ID NO:89.	155	100
1200	gi6458884	Deinococcus radiodurans	chorismate mutase/prephenate dehydratase	73	42
1201	gi20803920	Mesorhizobium loti	HYPOTHETICAL PROTEIN	68	32
1201	gi 17545158 ref NP_5185 60.1	Ralstonia solanacearum	PUTATIVE LIPASE/ESTERASE PROTEIN	66	31
1202	AAM67586	. Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 27892.	69	30
1202	AAM55191	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 27296.	69	30
1202	gi849219	Saccharomyces cerevisiae	Pro1p: Glutamate 5-kinase (Swiss Prot. accession number P32264)	69	33
1203	gi18676554	Homo sapiens	FLJ00174 protein	269	84
1203	gi 20913341 ref XP_1267 63.1	Mus musculus	similar to FLJ00174 protein	125	81
1203	gi 20850247 ref XP_1366 64.1	Mus musculus	similar to proline-rich protein	121	33
1204	AAM68056	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 28362.	140	84
1204	AAM55676	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID	140	84

137 Table 2

SEQ	Accession	Species	Description	Score	% Identity
ID	No.				Identity
NO:			NO: 27781.		
1205	gi541624	Drosophila	pdm2	71	39
1203	g1541024	virilis	P		
1205	gi9955855	Aspergillus	RNA polymerase II largest subunit	69	38
	<i>B</i> -2-1-1-1	oryzae			
1205	gi662296	Rattus	MIBP1	68	32
		norvegicus			<u> </u>
1206	ABB50703	Homo sapiens	HUMA- Human secreted protein	260	94
			encoded by gene 52 SEQ ID NO:651.	260	94
1206	AAW88802	Homo sapiens	HUMA-Polypeptide fragment encoded	200	94
1006	ADD 50706	II	by gene 52. HUMA- Human secreted protein	143	96
1206	ABB50706	Homo sapiens	encoded by gene 52 SEQ ID NO:654.	143	30
1207	AAM79588	Homo sapiens	HYSE- Human protein SEQ ID NO	72	41
1207	AAWI75366	Tromo sapiens	3234.		
1207	AAM78604	Homo sapiens	HYSE- Human protein SEQ ID NO	72	41
1207	122/1/000	1101110 04410110	1266.		
1207	AAB58944	Homo sapiens	HUMA- Breast and ovarian cancer	72	41
		-	associated antigen protein sequence		
			SEQ ID 652.		
1208	AAE03429	Homo sapiens	HUMA- Human gene 3 encoded	575	64
			secreted protein HETDB76, SEQ ID		-
			NO: 112.		
1208	gi19110438	Homo sapiens	polycystin-1L1	575	64
1208	AAE03463	Homo sapiens	HUMA- Human gene 3 encoded	185	97
			secreted protein HETDB76, SEQ ID]	1
	16750015		NO: 146.	1114	85
1209	gi6760015	Homo sapiens	brain protein	151	31
1209	gi1747306	Mus musculus	SDR2	151	31
1209	gi20381292	Mus musculus	stromal cell derived factor receptor 2 Similar to RIKEN cDNA 4931428F04	460	89
1211	gi14043211	Homo sapiens	gene	400	07
1211	gi190508	Homo sapiens	salivary proline-rich protein precursor	113	28
1211		Homo sapiens	WDC146	102	28
1212	gi12862320 AAO14407	Homo sapiens	FARB Human 11 beta-hydroxysteroid	291	63
1212	AAO14407	Homo sapiens	dehydrogenase 1-like enzyme.		
1212	AAM79592	Homo sapiens	HYSE- Human protein SEQ ID NO	217	45
1212	AAMITTI	110mo sapicias	3238.	1	
1212	gi4581319	Homo sapiens	dJ28O10.3(HSD11B1 (hydroxysteroid	217	45
1212	611301313		(11-beta) dehydrogenase 1)		
1213	AAR06514	Homo sapiens	STRI Natural human Platelet Factor-	238	64
			4var1 encoded by EcoRi fragment.	l	
1213	gi292390	Homo sapiens	platelet factor 4	238	64
1213	AAZ28361_	Homo sapiens	SMIK Platelet factor-4 (PF-4)	200	56
	aal		nucleotide sequence.		ļ
1214	AAD12580_	Homo sapiens	SAGA Human protein having	162	82
	aal		hydrophobic domain encoding cDNA		
	1		clone HP10753.	ļ. <u>.</u> .	ļ
1214	AAD08193_	Homo sapiens	HUMA- Human secreted protein-	162	82
	aal		encoding gene 3 cDNA clone		}
			HNTAC64, SEQ ID NO:13.	1.6	1.00
1014	AAD05544	Homo sapiens	HUMA- Human secreted protein-	162	82
1214	aal	1 -	encoding gene 12 cDNA clone	I.	

138 Table 2

SEQ	Accession	Species	Description	Score	%
Ю	No.				Identity
NO:	:01400004	2 12	T 770004	254	49
1215	gi21429094	Drosophila	LD38004p	354	49
1015	:15000155	melanogaster	LD40717p	354	49
1215	gi15292155	Drosophila melanogaster	LD40/1/p	334	1 43
1015	AAG75596	Homo sapiens	HUMA- Human colon cancer antigen	294	50
1215	AAG/3390	Homo sapiens	protein SEQ ID NO:6360.	234	1 30
1216	gi7248894	Xenopus laevis	Arg protein-tyrosine kinase	84	35
1216		Mus musculus	HNF-3beta	80	26
1216	gi402191 gi404764	Mus musculus	fork head related protein	80	26
	AAM39205	Homo sapiens	HYSE- Human polypeptide SEQ ID	559	74
1218			NO 2350.		
1218	AAO03505	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 17397.	502	81
1218	AAM40991	Homo sapiens	HYSE- Human polypeptide SEQ ID	467	66
			NO 5922.		
1220	AAO01188	Homo sapiens	HYSE- Human polypeptide SEQ ID	248	86
		F	NO 15080.		
1220	AAY73334	Homo sapiens	INCY- HTRM clone 1805061 protein	79	35
		•	sequence.		
1220	gi20249	Oryza sativa	gt-2	77	32
1221	gi4519619	Haliotis discus	collagen pro alpha-chain	90	28
1221	gi7380690	Neisseria	UDP-N-acetylglucosamineN-	90	37
	~	meningitidis	acetylmuramyl-(pentape		-
		Z2491	pyrophosphoryl-undecaprenol N-		Ì
			acetylglucosamine transferase		ļ
1221	gi7225645	Neisseria	UDP-N-acetylglucosamineN-	90	37
		meningitidis	acetylmuramyl-(pentapeptide)		
		MC58	pyrophosphoryl-undecaprenol N-		
			acetylglucosamine transferase		<u> </u>
1222	ABA05334_	Homo sapiens	MILL- Human fucosyltransferase	2154	99
	aal		family member 32132 coding		
			sequence.		<u> </u>
1222	AAM47905	Homo sapiens	MILL- Human fucosyltransferase	2154	99
			family member 32132.		
1222	ABA05333_	Homo sapiens	MILL- Human fucosyltransferase	2154	99
	aal		family member 32132 encoding cDNA.		
1223	AAY21852	Homo sapiens	INCY- Human signal peptide-	150	100
			contianing protein (SIGP) (clone ID		
			2652271).		
1223	AAY48563	Homo sapiens	META- Human breast tumour-	150	100
			associated protein 24.		ļ
1223	AAW75103	Homo sapiens	HUMA- Human secreted protein	150	100
			encoded by gene 47 clone HMCBP63.		
1224	AAM67078	Homo sapiens	MOLE- Human bone marrow	517	99
			expressed probe encoded protein SEQ		
	ļ	_	ID NO: 27384.	L	<u> </u>
1224	AAM54676	Homo sapiens	MOLE- Human brain expressed single	517	99
			exon probe encoded protein SEQ ID		
			NO: 26781.	L	
1224	gi17467358	Sus scrofa	MIF2 suppressor	184	80
1225	gi9454237	Cochliobolus	DNA binding protein MAT-1	73	30
		sativus			
1225	gi21428792	Drosophila	GH03582p	72	38
		melanogaster	1	1	

139 Table 2

SEQ	Accession	Species	Description	Score	%
ID	No.	Pocio			% Identity
NO:					
1225	gi6633838	Arabidopsis thaliana	F2K11.15	70	31
		thaliana			ļ
1226	gi21430124	Drosophila	HL01222p	76	28
					Į į
					
		 			
			1		1
]	
		_			
		1			
					<u> </u>
			}		
					
			Ì		
			_		
					
				ŀ	
	İ				
					
	_			 	
					•
				+	
					i
		 			
				_	
					4
					4
	1				
		1	-		
	1				
		1			
	1	1			
		<u> </u>		<u> </u>	

140 Table 2

SEQ	Accession	Species	Description	Score	%
ID NO:	No.		2 333, F. 33		Identity
			656.	 	
1235	AAU18012	Homo sapiens	HUMA- Human immunoglobulin polypeptide SEQ ID No 157.	178	83
1235	ABB89226	Homo sapiens	HUMA- Human polypeptide SEQ ID NO 1602.	78	82
1236	gi10566951	Rattus norvegicus	s-gicerin/MUC18	85	45
1236	gi10566949	Rattus norvegicus	l-gicerin/MUC18	85	45
1236	AAB90798	Homo sapiens	NOJI/ Human shear stress-response protein SEQ ID NO: 96.	84	42
1238	gi21464300	Drosophila melanogaster	GH20068p	95	36
1238	gi3868879	Xenopus laevis	Zic-related-2	88	35
1238	gi1841756	Mus musculus	GATA-5 cardiac transcription factor	87	52
1239	gi17946266	Drosophila melanogaster	RE61793p	96	40
1239	gi15636898	Gallus gallus	formin binding protein 11-related protein	91	27
1239	gi780454	African swine fever virus	pB407L	88	30
1240	AAE05302	Homo sapiens	MILL- Human TANGO 457 protein.	1331	100
1240	AAE05303	Homo sapiens	MILL-Human mature TANGO 457 protein.	1207	100
1240	AAE05305	Homo sapiens	MILL-Human TANGO 457 protein cytoplasmic domain.	1201	100
1241	gi5640111	Lycopersicon esculentum	RAD23 protein	84 ·	25
1241	gi17131739	Nostoc sp. PCC 7120	polyketide synthase type I	76	33
1241	gi 5640111 e mb CAB515 44.1	Lycopersicon esculentum	RAD23 protein	84	25
1242	AAG03496	Homo sapiens	GEST Human secreted protein, SEQ ID NO: 7577.	67	39
1242	gi 13876270 gb AAK260 55.1	Mus musculus	protocadherin alpha 8	66	35
1243	AAE16665	Homo sapiens	MILL Human calcium channel family member, 21784 protein.	196	87
1243	AAB62248	Homo sapiens	WARN Human calcium channel alpha2delta subunit.	196	87
1243	AAY92320	Homo sapiens	WARN Human alpha-2-delta-C calcium channel subunit polypeptide.	196	87
1244	gi 4102990 g b AAD0163 7.1	Aspergillus nidulans	DNA polymerase epsilon homolog	70	30
1245	gi5917666	Zea mays	extensin-like protein	94	26
1245	gi19481644	shrimp white spot syndrome virus	WSSV052	89	36
1245	gi17016928	shrimp white spot syndrome virus	wsv001	89	36

141 Table 2

SEQ ID	Accession No.	Species	Description	Score	% Identity
NO:			HYSE- Human polypeptide SEQ ID	169	69
1246	AAO12623	Homo sapiens	NO 26515.		
1246	AAO12822	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 26714.	153	75
1246	AAO02255	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 16147.	123	65
1247	gi1653353	Synechocystis sp. PCC 6803	nodulation protein	75	28
1247	gi4468626	Mus musculus	TEF-5	74	26
1247	gi17430764	Ralstonia solanacearum	SKWP PROTEIN 5	74	23
1248	gi15139973	Sinorhizobium meliloti	CONSERVED HYPOTHETICAL PROTEIN	77	47
1249	gi7191078	Leishmania major	L712.2	99	29
1249	gi17384256	Homo sapiens	mucin 5	85	31
1249	gi5821153	Homo sapiens	RNA binding protein	83	33
1250	AAY36495	Homo sapiens	HUMA- Fragment of human secreted protein encoded by gene 27.	124	86
1250	AAO12122	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 26014.	123	91
1250	AAB95063	Homo sapiens	HELI- Human protein sequence SEQ ID NO:16901.	121	90
1252	gi 15839838 ref NP_3348 75.1	Mycobacterium tuberculosis CDC1551	membrane protein, MmpL family	68	27
1254	AAG00399	Homo sapiens	GEST Human secreted protein, SEQ ID NO: 4480.	328	100
1254	gi21428466	Drosophila melanogaster	LD22609p	85	24
1254	gi19914274	Methanosarcina acetivorans str. C2A	sensory transduction histidine kinase [Methanosarcina	85	26
1256	gi14161094	Choloepus didactylus	von Willebrand Factor	80	24
1256	gi14161092	Cyclopes didactylus	von Willebrand Factor	78	23
1256	gi13872552	Acomys	von Willebrand Factor	77	23
1258	gi7008025	Callithrix jacchus	prochymosin	715	64
1258	gi11990126	Camelus dromedarius	chymosin	634	57
1258	gi491952	synthetic construct	preprochymosin	618	56
1259	gi 21402709 ref NP_6586 94.1	Bacillus anthracis A2012	AMP-binding, AMP-binding enzyme [Bacillus anthracis	72	34
1260	gi 4505431 r ef NP_0025 10.1	Homo sapiens	nuclear protein, ataxia-telangiectasia locus; NPAT gene; E14 gene	64	33
1260	gi 15309894 ref XP_0408 46.2	Homo sapiens	similar to nuclear protein, ataxia- telangiectasia locus; NPAT gene; E14 gene	64	33

142 Table 2

SEQ	Accession	Species	Description	Score	% Identite
D	No.				Identity
NO:	1120411414		NPAT	64	33
1260	gi 1304114 d bj BAA1186 1.1	Homo sapiens	NFA1		
1261	gi4519535	Homo sapiens	Leukotriene B4 omega-hydroxylase	133	49
1261	gi1857022	Homo sapiens	leukotriene B4 omega-hydroxylase	133	49
1261	gi18266446	Homo sapiens	cytochrome P450, subfamily IVF, polypeptide 2	133	49
1262	gi13363530	Escherichia coli O157:H7	cell division protein HflB/FtsH protease	79	26
1262	gi746401	Escherichia coli	ATP-binding protein	79	26
1262	gi146028	Escherichia coli	ftsH	79	26
1263	AAW67859	Homo sapiens	HUMA- Human secreted protein encoded by gene 53 clone HBMCL41.	283	100
1264	gi11066248	Helix lucorum	presenilin	85	21
1264	gi 19115422 ref NP_5945 10.1	Schizosaccharom yces pombe	ribonuclease II RNB family protein; dis3-like	69	30
1264	gi 14720912 ref XP_0382 04.1	Homo sapiens	similar to Matrin 3	69	32
1265	gi5757703	Mus musculus	syntrophin-associated serine-threonine protein kinase	82	38
1265	gi4996035	Human herpesvirus 6	69.8% identical to U47 gene of strain U1102 of HHV-6	76	42
1265	gi330951	Gallid herpesvirus 1	ICP4	76	36
1266	gi 17511177 ref NP_4933 24.1	Caenorhabditis elegans	ZK1053.3.p	75	40
1266	gi 17538077 ref[NP_4951 59.1	Caenorhabditis elegans	ZK1248.2.p	69	34
1267	gi915540	Ovis aries	pregnancy-specific antigen	85	25
1267	gi6179989	Capra hircus	pregnancy-associated glycoprotein-2	84	25
1267	gi9798658	Rhinolophus ferrumequinum	pepsinogen A	80	23
1268	gi 15789526 ref[NP_2793 50.1	Halobacterium sp. NRC-1	serine proteinase; HtrA	69	30
1269	gi9988674	Influenza A virus (A/Swine/Wisco nsin/14094/99(H 3N2))	hemagglutinin protein .	70	24
1269	gi6552676	Influenza A virus (A/Bangkok/1/97 (H3N2))	hemagglutinin	70	25
1269	gi6552638	Influenza A virus (A/Trinidad/51/9 6(H3N2))	hemagglutinin	70	24
1270	gi3378527	Zea mays	anther specific protein	87	41
1270	AAW15787	Homo sapiens	PENN- Human metastasis suppressor KiSS-1.	85	28
1270	gi21410770	Homo sapiens	Similar to RIKEN cDNA 1500005K14 gene	84	46

143 Table 2

SEQ ID	Accession No.	Species	Description	Score	% Identity
NO: 1271	gi1335527	Human poliovirus 1	reading frame VP3	75	38
1271	gi61253	Human poliovirus 1	polyprotein	75	38
1271	gi 17453412 ref XP_0631 32.1	Homo sapiens	similar to 60S ribosomal protein L7A (Surfeit locus protein 3)	76	40
1272	AAU87081	Homo sapiens	BRIM Sialic acid-binding Ig-related lectin, Siglec-11.	69	43
1272	AAU87077	Homo sapiens	BRIM Sialic acid-binding Ig-related lectin, Siglec-BMS-L3d.	69	43
1272	AAU87076	Homo sapiens	BRIM Sialic acid-binding Ig-related lectin, Siglec-BMS-L3c.	69	43
1273	AAA09121_ aa1	Homo sapiens	CURA- Clone 2355875 cDNA (update), encodes syncollin homologue.	720	100
1273	AAY92233	Homo sapiens	CURA- Clone 2355875f - syncollin homologue.	720	100
1273	AAB54267	Homo sapiens	HUMA- Human pancreatic cancer antigen protein sequence SEQ ID NO:719.	715	100
1274	gi15559064	Mus musculus	SNAG1	198	59
1274	AAU17435	Homo sapiens	HUMA- Novel signal transduction pathway protein, Seq ID 1000.	131	62
1274	AAW99023	Homo sapiens	MOUN 17G2 peptide sequence.	131	62
1275	gi 6753732 r ef NP_0342 43.1	Mus musculus	epidermal growth factor	65	30
1275	gi 50801 em b CAA2411 5.1	Mus musculus	polyprotein	65	30
1275	gi 20341089 ref XP_1093 85.1	Mus musculus	epidermal growth factor	65	30
1276	AAM39205	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 2350.	447	78
1276	AAM40991	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 5922.	424	74
1276	AAO07159	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 21051.	401	75
1277	gi13905120	Mus musculus	RIKEN cDNA 0610013I17 gene	134	35
1277	gi13936283	Mus musculus	TRH3	134	35
1277	AAB92625	Homo sapiens	HELI- Human protein sequence SEQ ID NO:10921.	127	35
1279	AAM66940	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 27246.	362	85
1279	AAM54534	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 26639.	362	85
1279	gi 208153 gb AAA73184.	synthetic construct	crystal toxin	79	40
1280	AAE05187	Homo sapiens	INCY- Human drug metabolising enzyme (DME-18) protein.	484	100

144 Table 2

			Table 2		
SEQ ID	Accession No.	Species	Description	Score	% Identity
NO: 1280	AAU12266	Homo sapiens	GETH Human PRO5780 polypeptide	484	100
1280	AAY91631	Homo sapiens	HUMA- Human secreted protein sequence encoded by gene 24 SEQ ID NO:304.	484	100
1281	AAH46856_ aa1	Homo sapiens	HUMA- Human serine/threonine phosphatase encoding cDNA (clone ID HLDOO20).	238	100
1281	AAG77801	Homo sapiens	HUMA- Human HLDOO20 serine/threonine phosphatase protein sequence.	238	100
1281	AAB85476	Homo sapiens	HUMA- Human serine/threonine phosphatase (clone ID HLDOO20).	238	100
1282	gi 14762786 ref XP_0478 71.1	Homo sapiens	GS2 gene	70	30
1283	gi3860165	Arabidopsis thaliana	disease resistance protein RPP1-WsB	69	38
1283	AAO09033	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 22925.	68	38
1283	gi6967115	Arabidopsis thaliana	disease resistance protein homlog	68	38
1285	gi1055252	Rattus norvegicus	pheromone receptor VN5	78	32
1285	gi2746733	Drosophila virilis	circadian clock protein	73	26
1285	gi2641617	Drosophila virilis	TIM	73	26
1286	gi6013135	Rattus norvegicus	coxsackie-adenovirus-receptor homolog	86	67
1286	AAV50429_ aa1	Homo sapiens	UYNY Human coxsackievirus and Ad2 and Ad5 receptor (HCAR) cDNA.	83	75
1286	AAV28845_	Homo sapiens	DAND Human coxsackievirus and adenovirus receptor encoding DNA.	83	75
1287	AAU83224	Homo sapiens	ZYMO Novel secreted protein Z930757G12P.	642	100
1287	AAY70692	Homo sapiens	DAND Human soluble attractin-2.	84	54
1287	AAY70691	Homo sapiens	DAND Human membrane attractin-2.	84	54
1288	AAW70326	Homo sapiens	GEMY Secreted protein DU123_1.	1655	99
1288	ABB12473	Homo sapiens	HYSE-Human bone marrow expressed protein SEQ ID NO: 312.	547	. 72
1288	gi5689736	Homo sapiens	Myopodin protein	475	100
1289	gi4103543	Tomato chlorosis	heat shock protein 70	73	29
1289	gi12247413	Cristatella mucedo	cytochrome b	72	30
1289	gi 4103543 g b AAD0179 0.1	Tomato chlorosis virus	heat shock protein 70	73	29
1291	AAB94128	Homo sapiens	HELI- Human protein sequence SEQ ID NO:14383.	520	98
1291	AAY85576	Homo sapiens	JANC Hs-UNC-53/1 fragment/GFP fusion insert of plasmid pGI3150.	520	98
1291	AAY85564	Homo sapiens	JANC Human homologue of UNC-53	520	98

145 Table 2

SEQ	Accession	Species	Description	Score	%
ID NO:	No.	•			Identity
21.07			(Hs-UNC-53/1) sequence.		
1292	AAY01413	Homo sapiens	HUMA- Secreted protein encoded by gene 31 clone HHBAG64.	207	97
1292	AAY05324	Homo sapiens	GEMY Human secreted protein ij167 5.	207	97
1292	gi15157864	Agrobacterium tumefaciens str. C58 (Cereon)	AGR_C_4816p	71	34
1294	AAB12146	Homo sapiens	PROT- Hydrophobic domain protein from clone HP10672 isolated from Thymus cells.	219	100
1295	gi 17228767 ref NP_4853 15.1	Nostoc sp. PCC 7120	probable glycogen phosphorylase	78	34
1295	gi 10835203 ref NP_0011 27.1	Homo sapiens	advanced glycosylation end product- specific receptor	65	58
1295	gi 190846 gb AAA03574.	Homo sapiens	receptor for advanced glycosylation end products	65	58
1296	gi17511816	Homo sapiens	Similar to RIKEN cDNA 1110032022 gene	1268	99
1296	AAB88440	Homo sapiens	HELI- Human membrane or secretory protein clone PSEC0222.	688	100
1296	gi7211438	Homo sapiens	golgin-67	94	30
1298	gi18314436	Homo sapiens	Similar to RIKEN cDNA 4921511C04 gene	481	79
1298	gi1872546	Mus musculus	NIK	86	25
1298	gi5533305	Homo sapiens	somatostatin receptor interacting protein splice variant a	85	29
1299	gi1334643	Xenopus laevis	APEG precursor protein	105	27
1299	gi17428053	Ralstonia solanacearum	PROBABLE RIBONUCLEASE E (RNASE E) PROTEIN	100	32
1299	gi6690017	Herpesvirus papio	NTR	96	25
1300	AAB87346	Homo sapiens	HUMA- Human gene 5 encoded secreted protein HDPIE85, SEQ ID NO:87.	586	74
1300	AAB44298	Homo sapiens	GETH Human PRO706 (UNQ370) protein sequence SEQ ID NO:385.	586	74
1300	AAY41742	Homo sapiens	GETH Human PRO706 protein sequence.	586	74
1301	gi218572	Pan troglodytes	prot GOR	1344	62
1301	gi243898	Pan	GOR	1040	68
1301	gi17862570	Drosophila melanogaster	LD38414p	486	45
1302	gi13276598	Homo sapiens	dJ614O4.7 (Novel protein)	260	28
1302	gi13397804	Homo sapiens	dJ616B8.3 (novel gene)	230	30
1302	AAB56641	Homo sapiens	ROSE/ Human prostate cancer antigen protein sequence SEQ ID NO:1219.	226	30
1303	gi603989	Drosophila melanogaster	salivary gland glue protein	149	23
1303	gi13324584	Borrelia burgdorferi	LMP1	129	17

146 Table 2

SEQ	Accession No.	Species	Description	Score	% Identity
ID NO:				128	13
1303	gi161956	Trypanosoma cruzi	surface antigen		
1304	gi13569248	Human immunodeficienc y virus type 1	gag protein	81	34
1304	gi4324832	Human immunodeficienc y virus type 1	gag-pol polyprotein	80	29
1304	gi11691875	Mus musculus	ADP-ribosylation factor 1 GTPase activating protein	79	22
1305	AAO06469	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 20361.	191	100
1305	gi3608368	Xenopus laevis	origin recognition complex associated protein p81	69	30
1305	ABB15196	Homo sapiens	HUMA- Human nervous system related polypeptide SEQ ID NO 3853.	68	36
1306	AAE03657	Homo sapiens	INCY- Human extracellular matrix and cell adhesion molecule-21 (XMAD-21).	109	27
1306	ABB11890	Homo sapiens	HYSE- Human protocadherin Flamingo 1 homologue, SEQ ID NO:2260.	109	27
1306	gi3449298	Homo sapiens	MEGF2	109	27
1308	gi9294050	Arabidopsis thaliana	protein kinase-like protein	84	32
1308	gi15983765	Arabidopsis thaliana	AT3g24550/MOB24_8	84	32
1308	gi13877617	Arabidopsis thaliana	protein kinase-like protein	84	32
1309	AAU00375	Homo sapiens	BERN/ Human stem cell growth factor receptor.	127	54
1309	AAE07145	Homo sapiens	SALK Human Kit/stem cell factor receptor kinase insert region.	127	54
1309	gi3236223	Equus caballus	tyrosine kinase receptor homolog	127	50
1310	gi21449343	Actinosynnema pretiosum subsp. auranticum	polyketide synthase	77	46
1310	gi21114513	Xanthomonas campestris pv. campestris str. ATCC 33913	transcriptional regulator	75	36
1310 .	gi13364364	Escherichia coli O157:H7	acetylglutamate kinase	73	36
1311	gi20146220	Oryza sativa (japonica cultivar-group)	similar to splicing factor/activator protein	110	33
1311	gi206712	Rattus norvegicus	salivary proline-rich protein	104	27
1311	AAY84592	Homo sapiens	UNIW Amino acid sequennce of a human artemin polypeptide.	103	34
1312	gi2065210	Mus musculus	Pro-Pol-dUTPase polyprotein	530	69
1312	gi 10834720 gb AAG237 90.1 AF258	Homo sapiens	PP565	249	66

147 Table 2

SEQ	Accession	Species	Description	Score	%
ID ID	No.	Opecies	200		Identity
NO:	110.				
110.	587 1				
1312	gi 13194728	Gallus gallus	pol-like protein ENS-3	115	21
1312	gb AAK155	Canus ganus	por-tike protein Ervo-5	1.25	
	26.1 AF329				
	451 1				
1313	AAW03515	Homo sapiens	SHKJ Human DOCK180 protein.	147	58
1313		Homo sapiens	DOCK180 protein	147	58
	gi1339910	Homo sapiens	similar to a human major CRK-binding	111	43
1313	gi1504002	Homo sapiens	protein DOCK180.		
1314	gi12007418	Mus musculus	B3 olfactory receptor	76	38
1314	gi18480290	Mus musculus	olfactory receptor MOR260-3	76	38
1314	gi12007432	Mus musculus	B3 olfactory receptor	76	38
1315	gi483581	Mus musculus	Notch 3	82	26
1315	gi18159668	Pyrobaculum	paREP2b	81	29
	8	aerophilum	P		
1315	gi4584086	Spermatozopsis	p210 protein	79	25
10.10	g	similis	Part Provide		
1316	AAM71305	Homo sapiens	MOLE- Human bone marrow	422	98
1310	111111111111111111111111111111111111111	TAOMIO SUPIONO	expressed probe encoded protein SEQ		
			ID NO: 31611.		
1316	AAM58790	Homo sapiens	MOLE- Human brain expressed single	422	98
1310	AAMS	110010 Sapiciis	exon probe encoded protein SEQ ID	722	100
			NO: 30895.		ĺ
1316	gi149490	Lactococcus	sucrose-6-phosphate hydrolase	72	31
1310	g1149490	lactis	sucrose-o-phosphate hydrolase	12	31
1217	-:1620040	Paramecium	Asp-rich	72	28
1317	gi1620040	bursaria	Asp-rich	1'2	20
		Chlorella virus 1			
1317	gi3721615	Cyprinus carpio	MEF2C	71	25
$\overline{}$		Paramecium		72	28
1317	gi 9631936 r	bursaria	Asp-rich	'2	20
	ef[NP_0487	Chlorella virus 1			1
1210	25.1		CD2074	74	35
1318	gi 21291797	Anopheles	agCP3974	/4	33
	gb EAA039	gambiae str.			
1010	42.1	PEST			20
1319	gi21306283	Chlamydomonas	iron transporter Ftr1	74	30
1015		reinhardtii	2001	70	-
1319	AAB60461	Homo sapiens	INCY- Human cell cycle and	73	33
			proliferation protein CCYPR-9, SEQ	ł	}
			ID NO:9.		<u> </u>
1319	gi6013155	Homo sapiens	p35srj	73	33
1320	gi9717245	Mus musculus	cytoplasmic dynein heavy chain	430	94
1320	gi402528	Rattus	cytoplasmic dynein heavy chain	430	94
		norvegicus			
1320	gi294543	Rattus	dynein heavy chain	430	94
		norvegicus			
1323	gi 17221411	Burkholderia	kdo transferase	70	34
	emb CAD12	cepacia		1	
	639.1	•			
1324	gi1698601	Cricetulus	beta-1,6-N-	440	38
		griseus	acetylglucosaminyltransferase		
1324	gi349091	Rattus	N-acetylglucosaminyltransferase V	438	43
132.	32.535.	norvegicus			
1324	gi18997007	Mus musculus	N-acetylglucosaminyltransferase V	438	43
	1 0.20221001	1	1	<u></u>	

148 Table 2

SEQ	Accession	Species	Description	Score	%
ID NO:_	No.	op	•		Identity
1325	AAM70545	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ	115	47
1325	AAM58098	Homo sapiens	ID NO: 30851. MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 30203.	115	47
1325	AAM72994	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 33300.	111	28
1326	gi12724969	Lactococcus lactis subsp. lactis	phenolic acid decarboxylase	77	46
1327	AAB53097	Homo sapiens	GETH Human angiogenesis-associated protein PRO1246, SEQ ID NO:167.	372	63
1327	AAU12416	Homo sapiens	GETH Human PRO1246 polypeptide sequence.	372	63
1327	AAY99377	Homo sapiens	GETH Human PRO1246 (UNQ630) amino acid sequence SEQ ID NO:132.	372	63
1328	gi6014505	Hepatitis GB virus B	polyprotein	76	43
1328	gi765145	Hepatitis GB virus B	polypeptide	68	41
1328	gi 20544059 ref XP_0862 20.4	Homo sapiens	similar to U4/U6-associated RNA splicing factor	294	100
1329	AAV42689_	Homo sapiens	SIBI- DNA encoding human calcium channel alpha-2 subunit.	158	91
1329	AAQ84667_ aa1	Homo sapiens	SALK Human neuronal calcium channel subunit alpha 2c.	158	91
1329	AAQ84664_ aa1	Homo sapiens	SALK Human neuronal calcium channel subunit alpha 2b.	158	91
1330	gi19923	Nicotiana tabacum	pistil extensin like protein, partial CDS	71	38
1330	gi 144429 gb AAA56792.	Cellulomonas fimi	beta-1,4-xylanase	67	30
1331	gi2388676	Mytilus edulis	precollagen P	85	35
1331	gi17862044	Drosophila melanogaster	LD06016p .	75	30
1331	gi13879780	Mycobacterium tuberculosis CDC1551	PE_PGRS family protein	74	30
1333	AAO00015	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 13907.	442	61
1333	AAB82479	Homo sapiens	ZYMO Human RING finger protein Zapop2.	81	31
1333	gi20975274	Homo sapiens	skeletrophin	81	31
1334	ABB11819	Homo sapiens	HYSE- Human secreted protein homologue, SEQ ID NO:2189.	367	82
1334	AAW80398	Homo sapiens	GEMY A secreted protein encoded by clone cw1543_3.	130	67
1334	gi5081693	Samanea saman	pulvinus inward-rectifying channel SPICK2	70	34
1335	ABB89969	Homo sapiens	HUMA- Human polypeptide SEQ ID	142	96

149 Table 2

			Table 2	G -	07
SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
110.			NO 2345.		
1335	AAB38385	Homo sapiens	HUMA- Human secreted protein encoded by gene 18 clone HTLEJ24.	142	96
1335	AAB38338	Homo sapiens	HUMA- Human secreted protein encoded by gene 18 clone HTLFE57.	142	96
1336	gi 14590195 ref[NP_1422 60.1	Pyrococcus horikoshii	asparaginyl-tRNA synthetase	70	37
1337	gi3879419	Caenorhabditis elegans	contains similarity to Pfam domain: PF00102 (Protein-tyrosine phosphatase), Score=51.6, E- value=1.8e-14, N=1	69	29
1337	gi 17563828 ref[NP_5059 65.1	Caenorhabditis elegans	protein tyrosine phosphatase	69	29
1338	gi 2072960 g b AAC5126 8.1	Homo sapiens	p40	138	33
1338	gi 4185940 e mb CAA768 80.1	Human endogenous retrovirus K	env protein	124	75
1338	gi 757872 e mb CAA577 23.1	Human endogenous retrovirus	env	124	75
1340	gi1491979	Molluscum contagiosum virus subtype 1	MC036R	78 .	33
1340	gi 9628968 r ef NP_0439 87.1	Molluscum contagiosum virus	MC036R	78	33
1341	gi18676514	Homo sapiens	FLJ00154 protein	1560	100
1341	AAB84252	Homo sapiens	HUMA- Amino acid sequence of a human cytokine receptor-like protein.	572	63
1341	AAB84251	Homo sapiens	HUMA- Human cytokine receptor-like protein fragment.	572	63
1342	AAY27757	Homo sapiens	HUMA- Human secreted protein encoded by gene No. 47.	152	71
1342	AAB27551	Homo sapiens	MYRI- Human tumour suppressor BRG1 encoded by cDNA mutated at base 1705.	77	32
1342	AAB27550	Homo sapiens	MYRI- Human tumour suppressor BRG1 protein from cell lines DU145 and NCI-H1300.	77	32
1344	gi21464394	Drosophila melanogaster	RE18651p	78	26
1344	AAM39065	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 2210.	77	21
1344	gi338290	Homo sapiens	son3 protein	77	21
1345	gi2202	Canis sp.	Clox	135	37
1345	gi3879551	Caenorhabditis elegans	contains similarity to Pfam domain: PF01391 (Collagen triple helix repeat (20 copies)), Score=56.4, E-value=2e- 13, N=2; PF01484 (Nematode cuticle collagen N-terminal domain),	125	33

150 Table 2

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
			Score=87.2, E-value=1.1e-22, N=1		
1345	gi158695	Drosophila melanogaster	tropomyosin isoform 33 (9C)	118	30
1346	gi7862077	Giardia intestinalis	3-hydroxy-3-methylglutaryl-coenzyme A reductase	90	26
1346	gi1098615	Mycoplasma pneumoniae	adhesin-related 30 kDa protein	87	23
1346	gi20380058	Homo sapiens	Similar to PRAM-1 protein	84	28
1347	gi13905302	Mus musculus	Similar to ATPase, class II, type 9A	736	85
1347	gi17862322	Drosophila melanogaster	LD22119p	633	72
1347	AAM25271	Homo sapiens	HYSE- Human protein sequence SEQ ID NO:786.	572	100
1348	gi456319	Bacteriophage FC1	74kDa protein	75	33
1348	gi1524115	Lycopersicon esculentum	subtilisin-like endoprotease	73	28
1348	gi4200334	Lycopersicon esculentum	P69A protein	73	28
1349	gi21391988	Drosophila melanogaster	HL08052p	78	31
1349	gi20148339	Arabidopsis thaliana	cyclin delta-3	77	25
1349	gi 17647607 ref NP_5234 23.1	Drosophila melanogaster	maroon-like; bronzy; section 5	78	31
1351	gi18676524	Homo sapiens	FLJ00159 protein	164	52
1351	gi21392066	Drosophila melanogaster	RE04357p	139	34
1351	AAB92637	Homo sapiens	HELI- Human protein sequence SEQ ID NO:10953.	81	43
1352	gi19071965	Aspergillus oryzae	chitin synthase	79	28
1352	gi17945592	Drosophila melanogaster	RE26660p	78	41
1352	gi16184663	Drosophila melanogaster	LD28370p	74	22
1353	gi 11037117 gb AAG274 85.1 AF194 537 1	Homo sapiens	NAG13	307	65
1353	gi 1335205 e mb CAA364 80.1	Homo sapiens	ORFII	305	65
1354	gi1388166	Drosophila melanogaster	Bowel	80	32
1354	gi15553187	Scyliorhinus canicula	homeodomain protein Otx1	79	22
1354	AAY85573	Homo sapiens	JANC Hs-UNC-53/3 fragment/GFP fusion insert of plasmid pGI3303.	78	26
1358	gi 21288288 gb EAA006 09.1	Anopheles gambiae str. PEST	agCP9766	71	30
1358	gi 17465558	Homo sapiens	similar to mucin	68	36

151 Table 2

SEQ	Accession	Species	Description	Score	%
ID NO:	No.	Species	-		Identity
	ref[XP_0698 88.1				
1359	gi 21302892 gb EAA150 37.1	Anopheles gambiae str. PEST	agCP5020	70	31
1361	gi15080686	Lentinula edodes	CDC5	79	26
1361	gi495516	Plasmodium vivax	circumsporozoite protein	77	31
1361	gi21070569	Dictyostelium discoideum	VSAE2 (FRAGMENT). 3/101	76	31
1362	gi8953400	Arabidopsis · thaliana	1-D-deoxyxylulose 5-phosphate synthase-like protein	73	23
1362	gi 15239030 ref NP_1966 99.1	Arabidopsis thaliana	1-D-deoxyxylulose 5-phosphate synthase - like protein	73	23
1363	gi2444430	Xenopus laevis	deacetylase	327	81
1363	gi602098	Xenopus laevis	yeast RPD3 homologue	324	80
1363	AAB49954	Homo sapiens	METH- Human histone deacetylase HDAC-1.	323	80
1364	AAM69686	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 29992.	418	55
1364	AAM57281	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 29386.	418	55
1364	gi 1780971 e mb CAA714 16.1	Human endogenous retrovirus K	gag protein	172	37
1365	gi437084	Gallus gallus	vitamin D3 hydroxylase associated protein	510	41
1365	gi2149156	Homo sapiens	fatty acid amide hydrolase	477	38
1365	AAW57783	Homo sapiens	SCRI Human fatty acid amide hydrolase.	468	38
1366	gi3510695	Homo sapiens	DNA polymerase theta	77	21
1366	gi309132	Mus musculus	calnexin	72	22
1366	gi15214567	Mus musculus	Similar to calnexin	72	22
1367	gi 17508849 ref NP_4914 26.1	Caenorhabditis elegans	helicase	73	40
1368	gi5457567	Pyrococcus abyssi	Na+/H+ antiporter (napA-1)	76	33
1368	gi8247211	Candida albicans	She9 protein	69	31
1368	gi 14590079 ref[NP_1421 43.1	Pyrococcus horikoshii	Na(+)/H(+) antiporter	76	30
1369	gi17644260	Homo sapiens	bB206I21.1 (ATPase, Class VI, type 11C)	305	98
1369	AAO14200	Homo sapiens	INCY- Human transporter and ion channel TRICH-17.	166	50
1369	gi5080816	Arabidopsis thaliana	Putative ATPase	166	49
1370	gi 18573281 ref[XP_0959 33.1	Homo sapiens	similar to 40S ribosomal protein S3A	70	38

152 Table 2

SEQ	Accession	Species	Description	Score	%
ID	No.		•		Identity
NO:					
1372	gi6683562	Mus musculus	heparan sulfate 6-sulfotransferase 3	886	91
1372	gi6683558	Mus musculus	heparan sulfate 6-sulfotransferase 2	265	72
1372	ABL39900_ aa1	Homo sapiens	SEGK Human HS6ST2v encoding cDNA SEQ ID NO:1.	262	71
1373	gi 20882231 ref XP_1392 03.1	Mus musculus	similar to LIM domain only 7	76	24
1373	gi 20302988 gb AAM189 48.1 AF498 989_1	Medicago sativa	nodule-specific glycine-rich protein 3	72	26
1373	gi 9965267 g b AAG1000 8.1	infectious hypodermal and hematopoietic necrosis virus	non-structural protein 2	72	24
1374	gi3355835	Rhizobium etli	RBSK	78	32
1374	gi7453560	Polyangium cellulosum	epoD	73	28
1374	gi1749684	Schizosaccharom yces pombe	similar to Saccharomyces cerevisiae porphobilinogen deaminase, SWISS- PROT Accession Number P28789	72	28
1375	gi16973455	Danio rerio	beta-3-galactosyltransferase	1050	63
1375	AAB24035	Homo sapiens	GETH Human PRO4397 protein sequence SEQ ID NO:42.	725	46
1375	AAB88404	Homo sapiens	HELI- Human membrane or secretory protein clone PSEC0159.	709	43
1376	gi7668	Drosophila melanogaster	bsg25D protein	73	33
1376	gi20177037	Drosophila melanogaster	LD21844p	73	33
1376	gi1353669	Caenorhabditis elegans	UNC-24	69	43
1379	AAS16182_ aa1	Homo sapiens	GENA- Human apolipoprotein C1 (APOC1) DNA.	245	67
1379	AAU10534	Homo sapiens	GENA- Human apolipoprotein C1 (APOC1) polypeptide.	245	67
1379	AAS16825_ aa1	Homo sapiens	GENA- Human apolipoprotein C1 (APOC1) DNA coding sequence.	245	67
1380	AAY36290	Homo sapiens	HUMA- Human secreted protein encoded by gene 67.	177	74
1380	gi16551305	Tatianyx arnacites	DNA-directed RNA polymerase beta' subunit 2	71	38
1380	gi3411013	Candida albicans	protein mannosyltransferase 1	68	35
1381	AAM80132	Homo sapiens	HYSE- Human protein SEQ ID NO 3778.	173	66
1381	gi4731867	Dictyostelium discoideum	sterol glucosyltransferase	107	30
1381	AAB74726	Homo sapiens	INCY- Human membrane associated protein MEMAP-32.	89	41
1382	AAB62100	Homo sapiens	WIST- Human bridging integrator-2 (Bin2) protein.	78	27
1382	gi6527168	Homo sapiens	breast cancer associated protein BRAP1	78	27
1382	gi5852834	Homo sapiens	bridging integrator-2	78	27

153 Table 2

SEQ	Accession	Species	Description	Score	%
ID NO:	No.				Identity
1383	gi7670050	Xenopus laevis	type I collagen alpha 1	92	27
1383	AAO01606	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 15498.	85	29
1383	gi17738485	Agrobacterium tumefaciens str. C58 (U. Washington)	biopolymer transport protein	85	28
1384	gi20451261	Caenorhabditis elegans	C. elegans GCY-17 protein (corresponding sequence W03F11.2)	71	26
1384	gi2665714	Agrobacterium tumefaciens	moaC	71	29
1384	gi 20864452 ref XP_1500 76.1	Mus musculus	RIKEN cDNA 2410018E23	130	59
1385	AAY94938	Homo sapiens	GEMY Human secreted protein clone ye78_1 protein sequence SEQ ID NO:82.	103	25
1385	gi12831176	Agelaius phoeniceus	gamma filamin protein	96	29
1385	AAU81998	Homo sapiens	INCY- Human secreted protein SECP24.	87	27
1386	gi10440468	Homo sapiens	FLJ00070 protein	102	41
1386	gi11136912	Danio rerio	RPTP-alpha protein	94	32
1386	gi20377083	Homo sapiens	p78	92	36
1387	AAM40810	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 5741.	190	59
1387	AAM39024	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 2169.	190	59
1387	gi15080474	Homo sapiens	Similar to RIKEN cDNA 1700023O11 gene	190	59
1388	gi12802591	Bovine herpesvirus 4	tegument protein	82	30
1388	gi950226	Saccharomyces cerevisiae	Trf4p	73	26
1388	gi 13095641 ref[NP_0765 56.1	Bovine herpesvirus 4	tegument protein	82	30
1389	AAI67224_ aa1	Homo sapiens	CORI- B511S cDNA sequence.	363	100
1389	AAF85500_ aa1	Homo sapiens	EOSB- Nucleotide sequence of a human breast cancer protein designated BCH1.	363	100
1389	AAA54120_ aa1	Homo sapiens	EOSB- Breast cancer protein BCH1 coding sequence.	363	100
1390	gi184653	Homo sapiens	IFN-alpha responsive transcription factor	74	30
1390	gi 2580453 g b AAB8233 6.1	Xenopus laevis	Xbap	68	47
1391	AAB88456	Homo sapiens	HELI- Human membrane or secretory protein clone PSEC0246.	85	52
1391	AAB62392	Homo sapiens	LEXI- Human LDL receptor family protein (LDLP).	85	52
1392	ABB12009	Homo sapiens	HYSE- Human RAMP1 homologue,	90	100

154 Table 2

SEQ ID	Accession No.	Species	Description	Score	% Identity
NO:					
			SEQ ID NO:2379.		100
1392	gi3171910	Homo sapiens	RAMP1	90	100
1392	gi12653551	Homo sapiens	receptor (calcitonin) activity modifying protein 1	90	100
1394	gi4467343	Drosophila melanogaster	EG:140G11.1	70	27
1394	gi6018879	Drosophila melanogaster	BACN4L24.d	70	27
1394	gi157993	Drosophila melanogaster	developmental protein	70	27
1395	gi4928919	Arabidopsis thaliana	zinc finger protein 2	86	26
1395	gi2702272	Arabidopsis thaliana	expressed protein	86	26
1396	AAM25276	Homo sapiens	HYSE- Human protein sequence SEQ ID NO:791.	729	93
1396	AAE14340	Homo sapiens	INCY- Human protease PRTS-5 protein.	528	33
1396	AAB47561	Homo sapiens	INCY- Protease PRTS-3.	528	33
1397	gi18369843	Infectious salmon anemia virus	P6	89	40
1397	gi4092530	Infectious salmon anemia virus	NS1 protein	87	39
1397	gi14009648	Infectious salmon anemia virus	NSI	87	39
1398	AAW63707	Homo sapiens	UYOR- Human hSK2 protein.	331	91
1398	gi1575663	Rattus , norvegicus	calcium-activated potassium channel rSK2	331	91
1398	gi15082148	Homo sapiens	small-conductance calcium-activated potassium channel	331	91
1399	AAB01381	Homo sapiens	INCY- Neuron-associated protein.	1653	68
1399	gi18157547	Mus musculus	pecanex-like 3	1620	66
1399	gi6650377	Mus musculus	pecanex 1	1277	51
1400	gi 20887681 ref XP_1405 75.1	Mus musculus	similar to melastatin 1	468	91
1400	gi 3243075 g b AAC8000 0.1	Homo sapiens	melastatin 1	355	75
1400	gi 20552333 ref XP_0076 62.9	Homo sapiens	similar to melastatin 1	355	75
1401	AAU15955	Homo sapiens	HUMA- Human novel secreted protein, Seq ID 908.	931	92
1401	gi3978441	Homo sapiens	PITSLRE protein kinase alpha SV9 isoform	95	24
1401	gi1517914	Homo sapiens	monocytic leukaemia zinc finger protein	91	28
1402	gi1289326	Mus musculus	ROR-alpha 1	84	25
1402	gi530878	Chlamydomonas eugametos	amino acid feature: N-glycosylation sites, aa 41 43, 46 48, 51 53, 72	79	32

155 Table 2

SEQ ID NO:	Accession No.	Species	Description Description	Score.	% Identity
			74, 107 109, 128 130, 132 134, 158 160, 163 165; amino acid feature: Rod protein domain, aa 169 340; amino acid feature: globular protein domain, aa 32 168		
1402	gi220763	Rattus norvegicus	HES-3 factor	79	52
1403	gi 20479430 ref XP_1149 55.1	Homo sapiens	similar to olfactory receptor MOR231-	71	32
1403	gi 20480897 ref XP_1150 14.1	Homo sapiens	similar to olfactory receptor MOR234-3	71	32
1404	AAA88548_ aa1	Homo sapiens	SMIK Human CASB616 cDNA.	89	100
1404	AAB19591	Homo sapiens	SMIK Human CASB616.	89	100
1404	gi1100110	Homo sapiens	protein-tyrosine kinase	89	100
1405	gi4206753	Oryctolagus cuniculus	homeodomain-containing protein	74	24
1405	gi13445253	Mus musculus	orphan Gpr37-like protein 1	72	33
1405	gi3080552	Mus musculus	Hoxa-9	71	50
1406	AAM50585	Homo sapiens	NISB Benign prostatic hyperplasia associated protein JT460914.	325	100
1406	gi18031947	Homo sapiens	SOCS box protein ASB-5	325	100
1406	AAU20593	Homo sapiens	HUMA- Human secreted protein, Seq ID No 585.	316	100
1407	AAU83222	Homo sapiens	ZYMO Novel secreted protein Z930005G2P.	895	97
1407	AAY02712	Homo sapiens	HUMA- Human secreted protein encoded by gene 63 clone HBJFV28.	91	56
1407	AAO00641	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 14533.	86	64
1408	ABB17944	Homo sapiens	HUMA- Human nervous system related polypeptide SEQ ID NO 6601.	81	53
1408	AAM77906	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 38212.	72	40
1408	AAM65199	Homo sapiens	MOLE-Human brain expressed single exon probe encoded protein SEQ ID NO: 37304.	72	40
1409	gi5230847	Vitreoscilla sp. C1	glutamine synthetase homolog	68	33
1409	gi8515736	Drosophila melanogaster	highwire	67	35
1409	gi3138797	Sulfolobus shibatae	Ssh7b	65	48
1410	AAW23309	Homo sapiens	EIJI- Human Werner's syndrome WS-2 protein.	151	96
1410	gi1913785	Homo sapiens	Rep-8	151	96
1410	gi18089098	Homo sapiens	reproduction 8	151	96
1411	gi 21297468 gb EAA096 13.1	Anopheles gambiae str. PEST	agCP15537	166	56
1411	gi 20983200	Mus musculus	RIKEN cDNA 1810030007	73	24

156 Table 2

SEQ ID	Accession No.	Species	Description	Score	% Identity
NO:	ref XP_1358 12.1				
1412	gi532572	Hordeum vulgare	lipoxygenase 1	82	28
1412	gi945419	Mus musculus	hepatoma derived growth factor (HDGF)	77	35
1412	gi17932895	stork hepatitis B virus	preC/core antigen	77	26
1413	gi2370143	Homo sapiens	immunoglobulin-like domain- containing 1	169	42
1413	gi2645890	Homo sapiens	IGSF1	169	42
1413	AAB40232	Homo sapiens	HUMA- Human secreted protein sequence encoded by gene 46 SEQ ID NO:142.	162	40
1414	gi21204314	Staphylococcus aureus subsp. aureus MW2	proline-tRNA ligase	78	32
1414	gi14247033	Staphylococcus aureus subsp. aureus Mu50	proline-tRNA ligase	78	32
1414	gi13701063	Staphylococcus aureus subsp. aureus N315	proline-tRNA ligase	78	32
1415	gi9948469	Pseudomonas aeruginosa	probable non-ribosomal peptide synthetase	78	31
1415	AAE19251	Homo sapiens	BIOI- SOS1 protein sequence from PS462.	75	23
1415	AAU84311	Homo sapiens	BAAK/ Protein ABCB2 differentially expressed in breast cancer tissue.	74	30
1416	gi18676710	Homo sapiens	FLJ00254 protein	623	75
1416	gi2065210	Mus musculus	Pro-Pol-dUTPase polyprotein	583	69
1416	gi 18676710 dbj BAB850 07.1	Homo sapiens	FLJ00254 protein	623	75
1417	AAR85785	Homo sapiens	UYNY Human GRB-10.	77	32
1417	gi841210	Mus musculus	growth factor receptor binding protein Grb10	77	32
1417	AAM90963	Homo sapiens	HUMA- Human immune/haematopoietic antigen SEQ ID NO:18556.	74	32
1419	AAM79990	Homo sapiens	HYSE- Human protein SEQ ID NO 3636.	82	100
1419	AAM79006	Homo sapiens	HYSE- Human protein SEQ ID NO 1668.	82	100
1419	AAR28494	Homo sapiens	XIAM/ Sequence encoded by the CAMPATH-1 antigen cDNA.	82	100
1420	AAU01383	Homo sapiens	MILL- Human TANGO 499 form 2, variant 1 amino acid sequence.	828	73
1420	AAU01382	Homo sapiens	MILL- Human TANGO 499 form 2, variant 4 amino acid sequence.	828	73
1420	AAU01380	Homo sapiens	MILL- Human TANGO 499 form 2, amino acid sequence.	828	73
1421	gi19069609	Encephalitozoon cuniculi	PROTEASOME REGULATORY SUBUNIT YTA6 OF THE AAA	76	26

157 Table 2

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
110.			FAMILY OF ATPASES		
1422	AAM66177	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 26483.	199	72
1422	AAM53791	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 25896.	199	72
1422	AAM68472	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 28778.	176	81
1423	gi1800227	Oryza sativa	Bowman-Birk proteinase inhibitor	74	34
1423	gi10141005	San Miguel sea lion virus	non-structural polyprotein	74	26
1423	gi 17490177 ref XP_0623 00.1	Homo sapiens	similar to RING finger protein 18 (Testis-specific ring-finger protein)	76	28
1424	gi461336	Pyrenomonas salina	hsp70 .	75	29
1424	gi13880037	Mycobacterium tuberculosis CDC1551	membrane protein, MmpL family	75	24
1424	gi1449306	Mycobacterium tuberculosis H37Rv	mmpL2	75	24
1425	gi15600	Enterobacteria phage T7	gene 7.3, host range	79	30
1425	gi16198065	Drosophila melanogaster	LD28477p	77	30
1425	gi11870012	Drosophila melanogaster	xnp/atr-x DNA helicase	77	30
1426	gi16185397	Drosophila melanogaster	LD39815p	204	. 44
1426	gi2244793	Arabidopsis thaliana	disease resistance N like protein	86	30
1426	AAU84280	Homo sapiens	BGHM Human endometrial cancer related protein, HERC1.	77	26
1427	AAY36302	Homo sapiens	HUMA- Human secreted protein encoded by gene 79.	183	79
1427	AAB88359	Homo sapiens	HELI- Human membrane or secretory protein clone PSEC0087.	178	80
1427	AAM41635	Homo sapiens	HYSE-Human polypeptide SEQ ID NO 6566.	178	80
1428	AAU82008	Homo sapiens	NCY- Human secreted protein SECP34.	114	64
1428	AAB32391	Homo sapiens	HUMA- Human secreted protein sequence encoded by gene 21 SEQ ID NO:77.	114	
1428	AAY08306	Homo sapiens	FIBR- Human collagen IX alpha-3 chain protein.	74	45
1429	gi2792523	Ralstonia solanacearum	alternative RNA sigma factor RpoS	69	30
1429	gi17428221	Ralstonia solanacearum	RNA POLYMERASE SIGMA S (SIGMA-38) FACTOR TRANSCRIPTION REGULATOR	69	33

158 Table 2

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
110.			PROTEIN		İ
1429	gi 5032313 r ef NP_0040 14.1	Homo sapiens	dystrophin Dp140bc isoform; Dystrophin (muscular dystrophy, Duchenne and Becker types)	73	26
1433	gi9954445	Rattus norvegicus	TEMO	171	62
1433	gi14030260	maize rayado fino virus	polyprotein	79	32
1433	AAB95656	Homo sapiens	HELI- Human protein sequence SEQ ID NO:18419.	77	36
1434	AAR04212	Homo sapiens	CALB- Human 32K alveolar surfactant protein.	391	43
1434	AAP60661	Homo sapiens	KUSH/ Genomic sequence of human alveolar surfactant protein (hASP)encoded by genomic DNA.	386	43
1434	AAB58135	Homo sapiens	ROSE/ Lung cancer associated polypeptide sequence SEQ ID 473.	366	42
1435	gi17224904	Mus musculus	immunoglobulin superfamily member 9	180	48
1435	gi20988778	Homo sapiens	Similar to immunoglobulin superfamily, member 9	173	53
1435	gi14149050	Drosophila melanogaster	turtle protein, isoform 4	114	36
1436	gi1465855	Caenorhabditis elegans	C. elegans PQN-57 protein (corresponding sequence R09F10.7)	85	23
1436	gi1465856	Caenorhabditis elegans	C. elegans PQN-56 protein (corresponding sequence R09F10.2)	85	23
1436	gi17864717	Mus musculus	hornerin	83	26
1437	gi 21292574 gb EAA047 19.1	Anopheles gambiae str. PEST	agCP3449	66	33
1438	ABB10160	Homo sapiens	HUMA- Human cDNA SEQ ID NO: 468.	166	62
1438	gi9657279	Vibrio cholerae	aspartokinase II/homoserine dehydrogenase, methionine-sensitive	71	28
1439	gi4582571	Gallus gallus	Hyperion protein, 419 kD isoform	75	24
1439	gi13165	Oenothera biennis	ATPase alpha-subunit (aa 1-511)	72	26
1439	gi903838	Oenothera berteriana	F-1-ATPase alpha subunit	72	26
1440	gi4558758	Homo sapiens	testis-specific chromodomain Y-like protein	233	62
1440	gi4558762	Mus musculus	testis-specific chromodomain Y-like protein	231	36
1440	gi3342716	Homo sapiens	testis-specific ChromoDomain Y isoform 1	195	36
1441	gi155627	Acanthamoeba castellanii	myosin I heavy chain	118	42
1441	gi13093370	Mycobacterium leprae	initiation factor IF-2	116	33
1441	AAY20289	Homo sapiens	UYRO- Human apolipoprotein E mutant protein fragment 5.	114	39
1442	gi2253707	Mus musculus	Daxx	84	36
1442	gi1934970	Plasmodium falciparum	AARP1 protein	79	65

159 Table 2

CEO	Accession	Species	Description	Score	%
SEQ ID	No.	Species	,		Identity
NO:	110.				
1442	gi4050098	Mus musculus	Fas-binding protein	78	34
1443	gi2425111	Dictyostelium discoideum	ZipA	90	26
1443	AAY06119	Homo sapiens	HARD Human CIITA interacting protein 104 (CIP104).	88	26
1443	gi5420387	Leishmania major	proteophosphoglycan	86	21
1444	gi893355	Acinetobacter baumannii	L-2,4-diaminobutyrate decarboxylase	77	26
1445	ABB55744	Homo sapiens	FECH/ Human polypeptide SEQ ID NO 94.	135	47
1445	AAU39035	Homo sapiens	GEMY Human secreted protein nh328_5.	135	47
1445	AAY28679	Homo sapiens	GEMY Human nh328_5 secreted protein.	135	47
1446	gi19744390	Homo sapiens	retinoic acid inducible in neuroblastoma cells RAINB1d	247	54
1446	gi19744388	Homo sapiens	retinoic acid inducible in neuroblastoma cells RAINB1	247	54
1446	AAY85565	Homo sapiens	JANC Human homologue of UNC-53 (Hs-UNC-53/2) sequence.	240	52
1447	AAU19716	Homo sapiens	HUMA- Human novel extracellular matrix protein, Seq ID No 366.	71	31
1447	gi18025476	cercopithicine herpesvirus 15	BPLF1	71	38
1447	AAS14575_ aal	Homo sapiens	MILL- Human cDNA encoding G protein-coupled receptor, GPCR, 52872.	69	62
1448	gi14027507	Mesorhizobium loti	salicylate hydroxylase	69	31
1449	AAG64798	Homo sapiens	SREH- Human peptide methionine sulphoxide reductase (hPMSR).	192	71
1449	AAB81893	Homo sapiens	SEQU- Human genomic database related protein SEQ ID NO: 38.	192	71
1449	AAM42046	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 6977.	192	71
1450	gi18249657	Mus musculus	NC8	1063	80
1450	gi406748	Mus musculus	zinc finger protein	250	37
1450	AAB43498	Homo sapiens	HUMA- Human cancer associated protein sequence SEQ ID NO:943.	249	37
1451	ABB89331	Homo sapiens	HUMA- Human polypeptide SEQ ID NO 1707.	732	88
1451	gi13421927	Caulobacter crescentus CB15	MaoC family protein	273	42
1451	gi19338616	Methylobacteriu m extorquens	R-specific enoyl-CoA hydratase	261	44
1452	gi 20908171 ref XP_1397 15.1	Mus musculus	similar to NADPH oxidase 3; NADPH oxidase catalytic subunit-like 3	68	30
1452	gi 17533619 ref[NP_4955 16.1	Caenorhabditis elegans	F32A5.8.p	67	42
1453	gi 15614051 ref NP_2423	Bacillus halodurans	sodium-dependent phosphate transporter	65	34

160 Table 2

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
1454	54.1 gi 17551878 ref NP_4990 90.1	Caenorhabditis elegans	TPR Domain	76	29
1455	AAM40727	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 5658.	191	56
1455	AAM38941	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 2086.	191	56
1455	gi19702127	Homo sapiens	P-Rex1 protein	191	56
1456	ABB05666	Homo sapiens	GEHU- Human nucleic acid management protein clone amy2 11n4.	496	91
1456	AAE03372	Homo sapiens	HUMA- Human gene 18 encoded secreted protein fragment, SEQ ID NO:152.	496	91
1456	AAE03371	Homo sapiens	HUMA- Human gene 18 encoded secreted protein fragment, SEQ ID NO:150.	496	91
1457	AAM66940	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 27246.	290	77
1457	AAM54534	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 26639.	290	77
1457	AAM64410	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 36515.	287	77
1458	AAB53445	Homo sapiens	HUMA- Human colon cancer antigen protein sequence SEQ ID NO:985.	335	100
1458	AAY30055	Homo sapiens	ARIA- Amino acid sequence of a FK506-binding protein (FKBP).	165	91
1458	AAQ52277_ aa1	Homo sapiens	VERT-FK506 binding protein (FKBP12A) cDNA.	159	100
1460	AAU20255	Homo sapiens	HUMA- Human novel endocrine antigen, SEQ ID No 312.	104	76
1460	ABB17663	Homo sapiens	HUMA- Human nervous system related polypeptide SEQ ID NO 6320.	94	77
1460	AAO02331	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 16223.	88	61
1461	AAM65951	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 26257.	97	57
1461	AAM53568	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 25673.	97	57
1461	AAU83199	Homo sapiens	ZYMO Novel secreted protein Z891639G1P.	96	38
1463	gi5565687	Homo sapiens	topoisomerase-related function protein	514	75
1463	gi5139669	Homo sapiens	LAK-1	468	75
1463	gi21430468	Drosophila melanogaster	LP06848p	332	51
1464	AAY91421	Homo sapiens	HUMA- Human secreted protein sequence encoded by gene 7 SEQ ID NO:142.	109	35
1464	AAY91396	Homo sapiens	HUMA- Human secreted protein	109	35 .

161 Table 2

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
			sequence encoded by gene 7 SEQ ID NO:117.		
1464	AAY91352	Homo sapiens	HUMA- Human secreted protein sequence encoded by gene 7 SEQ ID NO:73.	109	35
1465	AAU15978	Homo sapiens	HUMA- Human novel secreted protein, Seq ID 931.	575	100
1465	AAU15958	Homo sapiens	HUMA- Human novel secreted protein, Seq ID 911.	575	100
1465	gi16041675	Homo sapiens	joined to JAZF1	575	100
1466	AAO01502	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 15394.	173	66
1466	gi 10947038 ref NP_0652 09.1	Homo sapiens	ankyrin 1, isoform 1; ankyrin-1, erythrocytic; ankyrin-R	74	28
1466	gi 10947036 ref[NP_0652 08.1	Homo sapiens	ankyrin 1, isoform 4; ankyrin-1, erythrocytic; ankyrin-R	74	28
1467	gi19354550	Mus musculus	similar to src homology three (SH3) and cysteine rich domain	842	91
1467	AAU17352	Homo sapiens	HUMA- Novel signal transduction pathway protein, Seq ID 917.	361	98
1467	gi1799566	Mus musculus	stac	302	44
1468	gi13506771	Mus musculus	structural protein FBF1	767	74
1468	gi7549210	Babesia bigemina	200 kDa antigen p200	213	29
1468	gi1747	Oryctolagus cuniculus	trichohyalin	191	30
1469	gi11345048	Homo sapiens	SCAN domain-containing protein 2	86	32
1469	gi11320940	Homo sapiens	SCAND2	86	32
1469	gi14210722	Tupaia herpesvirus	t41	86	30
1470	AAY88278	Homo sapiens	MILL- Human TANGO 188 protein.	1442	100
1470	gi14336711	Homo sapiens	similar to C. Elegans protein F17C8.5	1442	100
1470	AAA39947_ aa1	Homo sapiens	MILL- Human TANGO 188 cDNA.	1438	99
1471	AAE10204	Homo sapiens	HYSE- Human bone marrow derived contig protein, SEQ ID NO: 69.	71	44
1471	AAA23458_ aa1	Homo sapiens	ALPH- cDNA encoding human secreted protein vp15_1, SEQ ID NO:71.	67	46
1471	AAB80228	Homo sapiens	GETH Human PRO269 protein.	67	46
1472	AAB88433	Homo sapiens	HELI- Human membrane or secretory protein clone PSEC0210.	136	86
1472	AAB95155	Homo sapiens	HELI- Human protein sequence SEQ ID NO:17188.	136	86
1472	AAE01745	Homo sapiens	HUMA- Human gene 2 encoded secreted protein HOGCS52 variant, SEQ ID NO:160.	136	86
1473	gi9294201	Arabidopsis thaliana	disease resistance protein	70	24
1474	AAE19157	Homo sapiens	THOR/ Human kinase polypeptide (PKIN-15).	631	9,8
1474	AAM79131	Homo sapiens	HYSE- Human protein SEQ ID NO	494	72

162 Table 2

SEQ	Accession	Species	Description	Score	% Identity
ID NO:	No.		1000		Identity
			1793.	 	-
1474	AAW19920	Homo sapiens	REGC Human Ksr' (kinase suppressor of Ras).	494	72
1475	AAD12609_ aa1	Homo sapiens	SAGA Human protein having hydrophobic domain encoding cDNA clone HP03974.	657	73
1475	AAO14199	Homo sapiens	INCY- Human transporter and ion channel TRICH-16.	657	73
1475	AAE06614	Homo sapiens	SAGA Human protein having hydrophobic domain, HP03974.	657	73
1476	gi13905246	Mus musculus	RIKEN cDNA 2410024K20 gene	71	34
1476	gi 17505208 ref NP_0816 29.1	Mus musculus	CD2 antigen (cytoplasmic tail) binding protein 2; 1500011B02Rik	71	34
1477	gi806491	Rattus norvegicus	guanylyl cyclase	140	65
1477	gi2648066	Canis familiaris	guanylate cyclase E	118	55
1477	gi2623074	Bos taurus	rod outer segment guanylate cyclase precursor	116	55
1478	gi2065210	Mus musculus	Pro-Pol-dUTPase polyprotein	585	73
1478	gi18676710	Homo sapiens	FLJ00254 protein	408	69
1478	AAO04042 .	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 17934.	392	75
1479	AAU05396	Homo sapiens	GEHO Human titin (connectin) protein sequence.	208	29
1479	gi1212992	Homo sapiens	Protein sequence and annotation available soon via Swiss-Prot; available at present via e-mail from LABEIT@EMBL-Heidelberg.DE	208	29
1479	gi17066105	Homo sapiens	Titin	208	29
1480	AAV44685_ aa1	Homo sapiens	TEXA Osteoclast inhibitor protein, OIP-1, coding sequence.	94	41
1480	AAB35287	Homo sapiens	UROG- Human stem call antigen-2.	94	41
1480	AAY99709	Homo sapiens	REGC Human stem cell antigen-2, hSCA-2.	94	41
1481	AAB57094	Homo sapiens	ROSE/ Human prostate cancer antigen protein sequence SEQ ID NO:1672.	122	100
1481	gi32672	Homo sapiens	interferon alpha/beta receptor	122	100
1481	AAQ49625_ aa1	Homo sapiens	EUBI- Human interferon receptor extracellular domain coding sequence.	118	96
1482	AAD17516_ aa1	Homo sapiens	SENO- Human taste receptor, hT1R1 cDNA coding sequence.	890	94
1482	ABB77319	Homo sapiens	INCY- Human G-protein coupled receptor SEQ ID NO 3.	890	94
1482	AAE10372	Homo sapiens	SENO- Human taste receptor, hT1R1 protein.	890	94
1483	gi18376312	Neurospora crassa	related to SSD1 protein	109	39
1483	gi2645173	Schizosaccharom yces pombe	sts5+	99	42
1483	gi2459997	Candida albicans	protein phosphatase Ssd1 homolog	99	40
1484	gi 18569064 ref XP_0953 78.1	Homo sapiens	similar to 40S RIBOSOMAL PROTEIN S3A (V-FOS TRANSFORMATION EFFECTOR	319	96

163 Table 2

			1 auto 2	Coana	%
SEQ ID NO:	Accession No.	Species	Description	Score	Identity
NO:			PROTEIN)		
1484	gi 20539276 ref XP_0952 20.2	Homo sapiens	similar to olfactory receptor MOR145- 2	259	94
1484	gi 21295882 gb EAA080 27.1	Anopheles gambiae str. PEST	agCP1347	68	32
1485	ABB11761	Homo sapiens	HYSE- Human secreted protein homologue, SEQ ID NO:2131.	197	36
1485	gi930259	Woolly monkey sarcoma virus	reverse transcriptase (476 AA)	148	33
1485	gi18076262	porcine endogenous retrovirus	Pol protein	147	38
1486	AAM74887	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 35193.	172	100
1486	AAM62085	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 34190.	172	100
1486	gi152661	Plasmid pSB24.2	neomycin resistance protein	75	26
1487	gi12653493	Homo sapiens	Similar to brain acid-soluble protein 1	75	34
1487	gi17428832	Ralstonia solanacearum	PROBABLE AVRBS3-LIKE PROTEIN	75	33
1487	gi7329672	Arabidopsis thaliana	phosphatidate cytidylyltransferase-like protein	72	46
1488	AAU74754	Homo sapiens	INCY- Human protease PRTS-14 protein sequence.	2042	83
1488	AAU74752	Homo sapiens	INCY- Human protease PRTS-12 protein sequence.	476	39
1488	gi11935122	Mus musculus	papilin	431	40
1489	gi 17543712 ref[NP_4999 76.1	Caenorhabditis elegans	Y55F3C.8.p	72	32
1489	gi 20344600 ref XP_1095 79.1	Mus musculus	RIKEN cDNA 4933431K05	70	30
1489	gi 11692798 gb AAG400 02.1 AF320 125_1	Xenopus laevis	ataxia telangiectasia and Rad3-related protein	69	26
1490	AAB95817	Homo sapiens	HELI- Human protein sequence SEQ ID NO:18817.	256	63
1490	ABB06369	Homo sapiens	BODE- Human neurogenesis related protein 12 SEQ ID NO:2.	173	64
1490	AAB44394	Homo sapiens	HUMA- Gene 10 encoded human secreted protein fragment as BLASTX query sequence.	83	66
1491	gi438795	Mus musculus	serotonin 1A receptor	73	26
1491	gi1066326	Mus musculus	serotonin1A receptor	72	26
1491 .	gi 438795 gb AAA16850. 1	Mus musculus	serotonin 1A receptor	73	26
1492	gi16198083	Drosophila	LD29875p	87	33

164 Table 2

SEQ	Accession	Species	Description	Score	% Identity
ID. NO: _	No.		·		1202,
110.		melanogaster			
1492	gi2327063	Pneumocystis carinii f. sp. carinii	protease 1	75	34
1492	gi20420	Prunus dulcis	extensin	75	34
1493	AAG67087	Homo sapiens	SHAN- Human ATP-dependent serine protein hydrolase 13.	106	67
1493	AAM76636	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 36942.	103	68
1493	AAM63822	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 35927.	103	68
1494	AAY31225	Homo sapiens	AVET Human RNA helicase p135 protein.	73	38
1494	gi3123906	Homo sapiens	pre-mRNA splicing factor	73	38
1494	gi13278975	Homo sapiens	pre-mRNA splicing factor similar to S. cerevisiae Prp16	73	38
1495	gi 17568307 ref NP_5098 37.1	Caenorhabditis elegans	collagen	74	35
1496	gi2065210	Mus musculus	Pro-Pol-dUTPase polyprotein	410	81
1496	gi 10834720 gb AAG237 90.1 AF258 587 1	Homo sapiens	PP565	301	77
1496	gi 6753924 r ef NP_0343 74.1	Mus musculus	Friend virus susceptibility 1	127	37
1497	gi20901968	Caenorhabditis elegans	C. elegans RPL-36 protein (corresponding sequence F37C12.4)	71	34
1497	gi 17554754 ref NP_4985 73.1	Caenorhabditis elegans	Ribosomal protein YL39	71	34
1498	gi5305335	Mycobacterium tuberculosis	proline-rich mucin homolog	102	27
1498	gi330130	human herpesvirus 1	latency associated transcript (LAT) ORF-2	97	37
1498	AAU83682	Homo sapiens	GETH Human PRO protein, Seq ID No 182.	94	30
1499	AAY57937	Homo sapiens	INCY- Human transmembrane protein HTMPN-61.	199	81
1499	AAY36295	Homo sapiens	HUMA- Human secreted protein encoded by gene 72.	151	100
1499	AAG75708	Homo sapiens	HUMA- Human colon cancer antigen protein SEQ ID NO:6472.	141	92
1500	gi21428712	Drosophila melanogaster	SD05267p	165	54
1500	gi20975274	Homo sapiens	skeletrophin	114	40
1500	gi19773434	Mus musculus	skeletrophin	99	52
1501	ABB17830	Homo sapiens	HUMA- Human nervous system related polypeptide SEQ ID NO 6487.	82	37
1501	AAO12929	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 26821.	73	43

165 Table 2

SEQ	Accession	Species	Description Description	Score	%
\mathbf{m}	No.	-			Identity
NO:	-:0779240	Arabidopsis	F15O4.13	77	39
502	gi8778340	thaliana			
503	AAW03515	Homo sapiens	SHKJ Human DOCK180 protein.	144	33
503	gi1339910	Homo sapiens	DOCK180 protein	144	33
503	gi13195147	Mus musculus	HCH	129	25
1505	AAM70790	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 31096.	77	53
1505	AAM58316	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 30421.	77	53
1505	gi 21302711 gb EAA148 56.1	Anopheles gambiae str. PEST	agCP4916	77	30
1506	AAU75102	Homo sapiens	MYRI- Heat shock protein 8 (Hsp8).	592	79
1506	AAB82535	Homo sapiens	UYCO- Human heat shock protein Hsc70.	592	79
1506	AAE12987	Homo sapiens	SRIV/ Human Hsp70 family homologue, Hsc70.	592	79
1507	ABL53627_ aa1	Homo sapiens	GENO- Breast protein-eukaryotic conserved gene 1 (BSTP-ECG1) cDNA.	213	92
1507	ABB75677	Homo sapiens	GENO- Breast protein-eukaryotic conserved gene 1 (BSTP-ECG1) protein.	213	92
1507	AAY99421	Homo sapiens	GETH Human PRO1433 (UNQ738) amino acid sequence SEQ ID NO:292.	213	92
1508	AAW15565	Homo sapiens	UYJO Human intracellular tyrosine kinase Tnk1-alpha.	79	29
1508	gi233062	Gallus gallus	src downstream region	78	33
1508	gi18376366	Neurospora crassa	related to ribosomal protein S15 precursor (mitochondrial)	72	30
1509	gi 21297482 gb EAA096 27.1	Anopheles gambiae str. PEST	agCP15541	68	36
1510	AAM41631	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 6562.	127	37
1510	AAM39845	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 2990.	127	37
1510	AAM79502	Homo sapiens	HYSE- Human protein SEQ ID NO 3148.	127	37
1511	gi21217669	Mus musculus	myosin IIIA	70	28
1511	gi 21302393 gb EAA145 38.1		agCP8799	71	36
1511	gi 20822589 ref XP_1408 54.1		similar to myosin IIIA	70	28
1512	gi6911049	Babesia bovis	p9.6.2-like variant erythrocyte surface antigen-la	82	28
1512	gi6911045	Babesia bovis	p9.6.2 variant erythrocyte surface antigen-1a	82	28
1512	gi6911047	Babesia bovis	p8.4.1 variant erythrocyte surface antigen-1a	81	28

166 Table 2

SEQ	Accession	Species	Description	Score	%
ID NO:	No.	precies	Description		Identity
1513	gi10174843	Bacillus halodurans	maltose transport system (permease)	77	25
1513	gi56312	Rattus norvegicus	Gephyrin	76	31
1513	gi4325371	Arabidopsis thaliana	contains similarity to Medicago truncatula N7 protein (GB:Y17613)	74	28
1514	AAY14196	Homo sapiens	TAKE/T cell receptor zeta chain protein sequence.	95	100
1514	gi623042	Homo sapiens	T-cell receptor zeta chain	95	100
1514	gi4960202	Sus scrofa	CD3 zeta chain	95	100
1515	ABB07508	Homo sapiens	INCY- Human aminoacyl tRNA synthetase (ATRS) polypeptide (ID: 7474756CD1).	726	100
1515	AAB43670	Homo sapiens	HUMA- Human cancer associated protein sequence SEQ ID NO:1115.	604	82
1515	gi1464742	Homo sapiens	threonyl-tRNA synthetase	604	82
1516	gi21109348	Xanthomonas axonopodis pv. citri str. 306	cytochrome B561	77	29
1516	gi21114046	Xanthomonas campestris pv. campestris str. ATCC 33913	cytochrome B561	76	28
1516	gi 21243760 ref[NP_6433 42.1	Xanthomonas axonopodis pv. citri str. 306	cytochrome B561	77	29
1517	ABB11450	Homo sapiens	HYSE- Human neurotoxin homologue, SEQ ID NO:1820.	119	33
1517	gi8809770	Mus musculus	Ly-6I.1	94	30
1517	gi8809768	Mus musculus	lymphocyte antigen LY6I precursor	94	30
1519	gi 59977 em b CAA7866 2.1	Human endogenous retrovirus	tripartite fusion transcript PLA2L	171	67
1519	gi 17826947 dbj BAB792 87.1	Pseudomonas sp. ND137	beta-1,4-xylanase	73	34
1519	gi 21232680 ref[NP_6385 97.1	Xanthomonas campestris pv. campestris str. ATCC 33913	ribonuclease PH	72	30
1520	AAM78023	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 38329.	190	100
1520	AAM65326	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 37431.	190	100
1520	gi13447468	Emericella nidulans	FH1/FH2 protein homolog	121	49
1522	AAG81417	Homo sapiens	ZYMO Human AFP protein sequence SEQ ID NO:352.	287	100
1523	AAY90349	Homo sapiens	SMIK Human fatty acid synthase (FAS) protein sequence.	158	85
1523	AAB43871	Homo sapiens	HUMA- Human cancer associated protein sequence SEQ ID NO:1316.	158	85

167 Table 2

			1 4010 2		07
SEQ ID	Accession No.	Species	Description	Score	% Identity
NO:				150	85
1523	gi915392	Homo sapiens	fatty acid synthase	158 93	100
1525	AAG03819	Homo sapiens	GEST Human secreted protein, SEQ ID NO: 7900.		
525	gi1311466	Homo sapiens	24-kDa subunit of Complex I	93	100
525	gi188852	Homo sapiens	NADH-ubiquinone reductase	93	100
1526	AAD02855_ aa1	Homo sapiens	SUKA Human platelet membrane glycoprotein VI (GPVI) cDNA.	73	31
526	AAB49403	Homo sapiens	MERE Human glycoprotein VI mature protein.	73	31
1526	AAB61257	Homo sapiens	MILL- Mature human TANGO 268 protein.	73	31
527	gi17864896	Mus musculus	protocadherin 18 precursor	81	31
527	gi15980222	Yersinia pestis	aconitate hydratase 1	79	30
527	gi12248353	Fasciola hepatica	NADH dehydrogenase subunit 5	75	56
1528	gi2440214	Trypanosoma brucei brucei	invariant surface glycoprotein 100	83	28
1528	gi10567463	Rhizobium rhizogenes	probable virB1 gene	78	22
1529	gi2231279	Porcine reproductive and respiratory syndrome virus	envelope protein	66	31
1530	gi 199851 gb AAA39757.	Mus musculus	pol protein	257	42
1530	gi 1498648 g b AAB0645 0.1	Mus musculus	Gag-Pol polyprotein	257	42
1530	gi 331995 gb AAB03091.	AKV murine leukemia virus	gag-pol polyprotein (tag amber codon at 2250-2252 inserts Gln in Mo-MuLV)	257	42
1533	gi435698	Homo sapiens	CD44SP	136	100
1533	AAV63461_ aa1	Homo sapiens	GEHO Human CD44 antigen cDNA.	130	100
1533	AAT14724_ aa1	Homo sapiens	GEHO Human haematopoietic CD44 cDNA clone CD44.5.	130	100
1534	gi2622165	Methanothermob acter thermautotrophic us str. Delta H	acetyltransferase	71	29
1534	gi 15679078 ref NP_2761 95.1	Methanothermob acter thermautotrophic us	acetyltransferase	71	29
1535	gi7777	Drosophila melanogaster	protein H	73	28
1535	gi457146	Plasmodium yoelii	rhoptry protein	73	38
1535	gi13195258	Plasmodium yoelii yoelii	235 kDa rhoptry protein	73	38
1536	ABB09740	Homo sapiens	BODE- Amino acid sequence of human protein phosphatase 11.66.	132	43
1536	gi 20830386 ref XP_1456	Mus musculus	similar to importin alpha 1b	72	35

168 Table 2

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
	42.1				
1537	gi14039907	Rattus norvegicus	cytochrome P450 monooxygenase CYP2T1	353	39
1537	gi2920650	Mus musculus	cytochrome P450 CYP2B19	275	44
1537	gi2353336	Capra hircus	cytochrome P450	271	31
1538	AAU83175	Homo sapiens	ZYMO Novel secreted protein Z874015G4P.	282	100
1538	gi6714803	Streptomyces coelicolor A3(2)	integral membrane protein.	77	26
1539	gi12963397	Prunus x yedoensis	ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit	74	32
1539	gi466436	Saccharomyces cerevisiae	BOII	69	31
1539	gi5833897	Besleria affinis	ribulose 1,5-bisphosphate carboxylase large subunit	69	31
1542	AAY32193	Homo sapiens	INCY- Human receptor molecule (REC) encoded by Incyte clone 044150.	73	26
1542	gi7576677	Helicobacter pylori	IceAl	72	44
1542	gi 20841498 ref XP_1315 41.1	Mus musculus	similar to MUF1 protein	73	26
1546	gi14581448	Homo sapiens	FSHD Region Gene 2 protein	73	42
1546	gi15982852	Arabidopsis thaliana	AT5g66850/MUD21_11	71	34
1546	gi 14581448 gb AAK219 77.1	Homo sapiens	FSHD Region Gene 2 protein	73	42
1547	gi18676660	Homo sapiens	FLJ00229 protein	192	92
1547	AAU21409	Homo sapiens	HUMA- Human novel foetal antigen, SEO ID NO 1653.	179	100
1547	AAM42128 .	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 7059.	114	53
1548	AAG64494	Homo sapiens	SHAN- Human natriuretic peptide receptor 18.	539	100
1548	gi18676710	Homo sapiens	FLJ00254 protein	268	77
1548	AAB28764	Homo sapiens	HUMA- Sequence homologous to protein fragment encoded by gene 21.	249	72
1549	AAB67055	Homo sapiens	INCY- Human immune response molecule (IMUN) protein SEQ ID NO: 9.	606	82
1549	AAO01862	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 15754.	404	72
1549	gi 6753924 r ef NP_0343 74.1	Mus musculus	Friend virus susceptibility 1	213	36
1550	gi190129	Homo sapiens	70kDa peroxisomal membrane protein	92	100
1550	gi825711	Homo sapiens	70kD peroxisomal integral membrane protein	92	100
1550	gi220862	Rattus norvegicus	PMP70	89	94
1551	AAM69543	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ	228	100

169 Table 2

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
			ID NO: 29849.		
1551	AAM57148	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 29253.	228	100
1551	AAB93944	Homo sapiens	HELI- Human protein sequence SEQ ID NO:13960.	94	57
1552	gi4884924	Rangiferine herpesvirus 1	glycoprotein C	75	34
1552	gi 18556240 ref XP_0676 28.2	Homo sapiens	similar to Salivary glue protein SGS-3 precursor	78	30
1552	gi 4884924 g b AAD3187 6.1	Rangiferine herpesvirus 1	glycoprotein C	75	34
1553	gi 2193870 d bj BAA2041 9.1	Mus musculus	reverse transcriptase	176	35
1553	gi 2731767 g b AAC5354 2.1	Mus musculus	endonuclease/reverse transcriptase	176	35
1554	ABB08776	Homo sapiens	BODE- Human neuregulin 55 SEQ ID NO 2.	75	29
1554	AAM92816	Homo sapiens	HUMA- Human digestive system antigen SEQ ID NO: 2165.	71	29
1554	gi 6322838 r ef NP_0129 11.1	Saccharomyces cerevisiae	Protein required for cell viability; Ykl014cp	70	27
1555	gi7528184	Drosophila melanogaster	bicoid-interacting protein BIN3	78	28
1555	gi15292595	Drosophila melanogaster	SD09926p	78	28
1555	gi4514620	Mus musculus	Ror2	71	24
1557	ABA91504_ aa1	Homo sapiens	EYEE- Human epidermal growth factor receptor precursor cDNA.	144	93
1557	AAF85332_ aa1	Homo sapiens	NOVS Nucleotide sequence of wild type EGFR1.	144	93
1557	AAM50768	Homo sapiens	EYEE- Human epidermal growth factor receptor precursor.	144	93
1558	AAB99950	Homo sapiens	SHAN- Human alkylated-DNA-protein cysteine methyltransferase 14.	221	100
1558	AAU16267	Homo sapiens	HUMA- Human novel secreted protein, Seq ID 1220.	221	100
1558	ABB11507	Homo sapiens	HYSE- Human secreted protein homologue, SEQ ID NO:1877.	183	97
1559	gi14599730	Spachea correae	maturase	71	28
1559	gi14599648	Blepharandra heteropetala	maturase	71	30
1559	gi14599673	Galphimia gracilis	maturase	70	28
1560	gi2323287	multiple sclerosis associated retrovirus	polyprotein .	340	83
1560	gi 13310191	multiple	recombinant envelope protein	260	70

170 Table 2

SEQ	Accession	Species	Description	Score	%
ID NO:	No.				Identity
1,0,	gb AAK181	sclerosis			
	89.1 AF331	associated			
	500_1	retrovirus element			
1560	gi 21103962	Homo sapiens	enverin-2	248	84
	gb AAM331 41.1				0.5
1561	AAB94698	Homo sapiens	HELI- Human protein sequence SEQ ID NO:15680.	107	95 .
1561	AAU18480	Homo sapiens	HUMA- Human endocrine polypeptide SEQ ID No 435.	107	95
1561	ABB10288	Homo sapiens	HUMA- Human cDNA SEQ ID NO: 596.	107	95
1562	gi969078	Drosophila melanogaster	S-adenosylhomocysteine hydrolase	73	26
1562	gi21064553	Drosophila melanogaster	RE58316p	73	26
1562	AAM41205	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 6136.	72	30
1563	gi1778844	Dictyostelium discoideum	LimA	71	34
1563	gi 20985456 ref XP_1421 11.1	Mus musculus	similar to actin beta chain - human	75	36
1563	gi 1778844 g b AAB4092 9.11	Dictyostelium discoideum	LimA	71	34
1564	gi 9507757 r ef NP_0614 23.1	Plasmid F	resolvase	507	91
1564	gi 148589 gb AAA24900. 1	Plasmid F	Protein D	507	91
1564	gi 10955295 ref[NP_0526 36.1	Escherichia coli	resolvase	501	90
1565	gi7649370	Arabidopsis thaliana	guanine nucleotide-exchange-like protein	77	38
1565	gi1674160	Mycoplasma pneumoniae	involved in cytadherence, see: MPN142	71	35
1565	gi 15229258 ref NP_1899 16.1	Arabidopsis thaliana	guanine nucleotide-exchange - like protein	77	38
1566	gi1799600	SwissProt Accession Number P31458	similar to	1051	99
1566	gi13814506	Sulfolobus solfataricus	Mandelate racemase /muconate lactonizing enzyme related protein (MR/MLE)	286	35
1566	gi10640034	Thermoplasma acidophilum	starvation-sensing protein rspA related	270	35
1567	gi13359972	Escherichia coli O157:H7	acridine efflux pump	573	98
1567	gi1773144	Escherichia coli	probable transmembrane protein AcrE	573	98

171 Table 2

SEQ	Accession	Species	Description	Score	%
ID NO:	No.	Species			Identity
1567	gi532311	Escherichia coli	114 kDa protein	573	98
1569	gi8918871	YccA of plasmid Collb-P9] [Plasmid F	96 pct identical to gp:AB021078_30	288	98
1569	gi 17136976 ref[NP_4770 26.1	Drosophila melanogaster	repo-P1; Antibody RK2	71	33
1569	gi 6502544 g b AAF14351 .1 AF11019 8 1	Glomus intraradices	homeobox protein HB1	70	31
1570	gi13363792	Escherichia coli O157:H7	zinc-transporting ATPase	410	87
1570	gi466605	Escherichia coli	No definition line found	410	87
1570	gi12518128	Escherichia coli O157:H7 EDL933	zinc-transporting ATPase	410	87
1571	AAU83186	Homo sapiens	ZYMO Novel secreted protein Z887014G7P.	1006	100
1571	gi7248459	Zea mays	arabinogalactan protein	85	29
1571	gi3513742	Arabidopsis thaliana	contains similarity to Zea mays embryogenesis transmembrane protein (GB:X97570)	82	35
1572	gi12597465	Caenorhabditis elegans	CED-1	72	44
1572	gi19571666	Caenorhabditis elegans	similar to EGF-like domain	72	44
1572	gi4883938	Drosophila melanogaster	laminin alpha1,2	67	31
1573	ABB12490	Homo sapiens	HYSE- Human bone marrow expressed protein SEQ ID NO: 329.	106	38
1574	gi1478205	Mus musculus	PNG protein	75	41
1574	AAM40148	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 3293.	69	56
1574	AAM79341	Homo sapiens	HYSE- Human protein SEQ ID NO 2987.	69	35
1576	gi 20882651 ref XP_1233 03.1	Mus musculus	ATPase, class 2, member b	234	91
1576	gi 7656918 r ef NP_0566 20.1	Mus musculus	ATPase, class 2, member b; ATPase 9B, class II; ATPase 9B, p type	234	91
1577	gi18143418	Alteromonas sp. O-7	chitinase A	77	39
1577	gi15426105	Leishmania major	probable surface antigen protein	75	24
1578	gi19702241	Homo sapiens	rabconnectin	439	93
1578	gi7452946	Homo sapiens	X-like 1 protein	132	41
1578	gi1279384	Drosophila melanogaster	X	109	. 29
1580	AAE20337	Homo sapiens	HUMA- Human B7-H11 protein mature extracellular domain.	122	23
1580	AAE20336	Homo sapiens	HUMA- Human B7-H11 protein extracellular domain.	122	23

172 Table 2

SEQ	Accession	Species	Description	Score	%
ID	No.				Identity
NO:	:0000000	77	1	122	23
1580	gi2062702	Homo sapiens	butyrophilin INCY- Human G-protein coupled	70	35
1581	AAE18640	Homo sapiens	receptor (GCREC-1).		
1581	gi18369751	Oryza sativa	ethylene responsive protein	70	50
1581	gi15217292	Oryza sativa [Oryza sativa (japonica cultivar-group)	Putative AP2 domain containing protein	70	50
1583	gi6468047	Homo sapiens	Kruppel-like factor	85	73
1583	gi5916096	Homo sapiens	Kruppel-like factor LKLF	85	73
1583	gi4583418	Homo sapiens	Kruppel-like zinc finger transcription factor	85	73
1585	gi2570021	Homo sapiens	paired box containing transcription factor	77	-37
1585	gi3115988	Homo sapiens	dJ394P2·1.1 (PAX-7)	77	37
1585	gi2570015	Homo sapiens	alternative	77	37
1586	gi7861533	Rattus norvegicus	retina specific protein PAL	72	43
1586	gi20977028	Xenopus laevis	mitotic phosphoprotein 39	72	34
1586	AAB58458	Homo sapiens	ROSE/ Lung cancer associated	68	39
2000			polypeptide sequence SEQ ID 796.		
1587	gi5901864	Drosophila melanogaster	BcDNA.LD27873	81	24
1587	gi15458514	Streptococcus pneumoniae R6	Pneumococcal histidine triad protein D	78	27
1587	gi5042400	Homo sapiens	NFI-X3=transcription factor [AA	75	30
1592	gi4210501	Homo sapiens	BC85722 1	253	61
1592	gi14794910	Homo sapiens	capicua protein	253	61
1592	gi14794914	Mus musculus	capicua protein	253	61
1593	gi 8131854 g b AAF73108 .1 AF14795 6 1	Trypanosoma cruzi	antigen JL8	69	34
1595	gi18892729	Pyrococcus furiosus DSM 3638	3-hydroxyisobutyrate dehydrogenase	70	27
1595	gi 20847046 ref XP_1366 21.1	Mus musculus	similar to Transcription factor BTF3 (RNA polymerase B transcription factor 3)	70	28
1595	gi 18977088 ref[NP_5784 45.1	Pyrococcus furiosus DSM 3638	3-hydroxyisobutyrate dehydrogenase	70	27
1597	AAU83621	Homo sapiens	GETH Human PRO protein, Seq ID No 60.	151	42
1597	AAO05826	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 19718.	146	83
1597	AAM41346	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 6277.	102	46
1598	AAM79503	Homo sapiens	HYSE- Human protein SEQ ID NO 3149.	80	35
1598	AAM78519	Homo sapiens	HYSE- Human protein SEQ ID NO 1181.	80	35
1598	gi18676526	Homo sapiens	FLJ00160 protein	80	35
1599	gi2149640	Arabidopsis	Argonaute protein	72	33
	1 0		1 0 Pro		

173 Table 2

		r	Table 2	Cases	%
SEQ ID	Accession No.	Species	Description	Score	Identity
NO:		thaliana			1
1599	gi15027491	respiratory syncytial virus	glycoprotein	71	32
1599	gi 15221177 ref NP_1752 74.1	Arabidopsis thaliana	leaf development protein Argonaute	72	33
1601	gi17130010	Nostoc sp. PCC 7120	WD-40 repeat protein	136	28
1601	gi1653631	Synechocystis sp. PCC 6803	beta transducin-like protein	131	26
1601	gi17135261	Nostoc sp. PCC 7120	WD-40 repeat protein	115	27
1602	gi1103853	Rattus norvegicus	rHAP1-A	89	33
1602	gi1103851	Rattus norvegicus	huntingtin associated protein	89	33
1602	gi14579673	Takifugu rubripes	pericentriolar material 1 protein	87	30
1603	gi537446	Arabidopsis thaliana	AtHSP101	75	31
1603	gi12324908	Arabidopsis thaliana	heat shock protein 101; 13093-16240	75	31
1603	gi6715468	Arabidopsis thaliana	heat shock protein 101	75	31
1604	gi2190531	Vibrio cholerae	methyl accepting chemotaxis protein	71	26
1604	gi9657614	Vibrio cholerae	hemolysin secretion protein HylB	71	26
1604	gi9655306	Vibrio cholerae	heat shock protein GrpE	70	35
1605	gi3912936	Geobacillus stearothermophil us	ornithine carbamoyltransferase	68	31
1606	gi8797	Drosophila melanogaster	CYS3HIS finger protein	678	51
1606	gi15291975	Drosophila melanogaster	LD33756p	617	65
1606	gi6967181	Homo sapiens	c399E4.1 (similar to D.melanogaster unkempt protein.)	549	75
1607	gi 21301783 gb EAA139 28.1	Anopheles gambiae str. PEST	agCP8730	72	35
1607	gi 21361276 ref NP_0060 75.2	Homo sapiens	interferon-stimulated transcription factor 3, gamma (48kD); interferon- stimulated gene factor 3, gamma subunit (48 kD)	68	29
1609	gi2661094	Spinacia oleracea	cold acclimation protein	76	32
1612	gi 1780975 e mb CAA714 18.1	Human endogenous retrovirus K	gag protein	312	34
1612	gi 5802810 g b AAD5179 1.1	Homo sapiens	Gag-Pro-Pol protein	309	34
1612	gi 887448 e mb CAA513 06.1	Human endogenous retrovirus	gag	309	34

174 Table 2

WO 03/080795

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
1613	AAO13889	Homo sapiens	HYSE-Human polypeptide SEQ ID NO 27781.	73	42
1614	gi11065727	Homo sapiens	dJ493F7.1 (similar to murine BET3)	347	100
1614	gi2791806	Mus musculus	bet3	253	69
1614	gi13277654	Mus musculus	Bet3 homolog (S. cerevisiae)	253	69
1615	gi1122901	Saccharomyces cerevisiae	MSP8	77	20
1615	gi825546	Saccharomyces cerevisiae	Cat8p	77	20
1615	gi17978563	Xenopus laevis	Sp1-like zinc-finger protein XSPR-1	75	40
1616	AAY02536	Homo sapiens	ICOS- Human ICAM-6 protein sequence.	458	98
1616	gi12248907	Homo sapiens	TCAM-1	458	98
1616	gi4579740	Rattus norvegicus	testicular cell adhesion molecule 1 (TCAM1)	366	76
1617	AAM67067	Homo sapiens	MOLE-Human bone marrow expressed probe encoded protein SEQ ID NO: 27373.	271	64
1617	AAM54664	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 26769.	271	64
1617	AAM56747	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 28852.	229	69
1618	gi5802814	Homo sapiens	Gag-Pro-Pol-Env protein	532	52
1618	gi1780973	Human endogenous retrovirus K	pol protein	531	52
1618	gi5802821	Homo sapiens	Gag-Pro-Pol protein	531	52
1619	gi2769587	Mus musculus	STOP protein	662	86
1619	gi1370291	Rattus norvegicus	STOP protein	662	92
1619	gi3287265	Rattus norvegicus	E-STOP protein	662	92
1620	AAM65980	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 26286.	266	100
1620	AAM53601	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 25706.	266	100
1620	gi 20270271 ref[NP_6200 82.1	Mus musculus	RIKEN cDNA 1190017O12	198	80
1621	gi11862941	Mus musculus	DDM36E	74	33
1621	gi11862939	Mus musculus	DDM36	74	33
1621	gi7650186	Mus musculus	neighbor of Punc el 1 protein	73	33
1622 1623	gi3157464 gi 59977 em b CAA7866	Thermus sp. A4 Human endogenous	integral membrane protein tripartite fusion transcript PLA2L	129	38 82
1623	2.1 gi 20161147 dbj BAB900 75.1	retrovirus Oryza sativa (japonica cultivar-group)	VsaA -like protein	88	32
1623	gi 17864474	Drosophila	domino	87	41

175 Table 2

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
	ref[NP_5248 33.1]	melanogaster			
1626	AAO00498	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 14390.	99	43
1627	gi14041733	Xenorhabdus nematophila	XptA2 protein	70	23
1627	gi 15641593 ref NP_2312 25.1	Vibrio cholerae	catalase	69	23
1628	gi19888204	Methanopyrus kandleri AV19	Site-specific DNA methylase	80	27
1628	gi6358691	Simian immunodeficienc y virus	Pol protein	78	32
1628	gi 20094956 ref[NP_6148 03.1	Methanopyrus kandleri AV19	Site-specific DNA methylase	80	27
1629	AAB07704	Homo sapiens	INMR Protein encoded by the endogenetic fragment of HERV-W.	594	67
1629	gi8272464	Homo sapiens	gag	594	67
1629	AAB07703	Homo sapiens	INMR Protein encoded by the endogenetic fragment of HERV-W.	590	66
1630	gi32498	Homo sapiens	precursor (AA -23 to 476)	145	100
1630	gi339595	Homo sapiens	triglyceride lipase precursor	145	100
1630	gi386859	Homo sapiens	hepatic lipase	145	100
1631	gi8777465	Rattus norvegicus	cytoplasmic dynein heavy chain	703	77
1631	gi17019507	Tripneustes gratilla	dynein heavy chain isotype 1B	505	53
1631	AAB93815	Homo sapiens	HELI- Human protein sequence SEQ ID NO:13606.	457	71
1632	AAM68837	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 29143.	122	48
1632	AAM56460	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 28565.	122	48
1632	gi17861826	Drosophila melanogaster	GM01964p	90	51
1633	gi 21300783 gb EAA129 28.1	Anopheles gambiae str. PEST	ebiP1105	. 77	33
1633	gi 19880523 gb AAM003 72.1 AF368 053 1	Bactrocera dorsalis	vitellogenin 1 precursor	68	27
1633	gi 21070999 ref NP_0659 11.1	Homo sapiens	stromal interaction molecule 2 precursor	68	39
1637	gi2323287	multiple sclerosis associated retrovirus	polyprotein	289	91
1637	gi 21103962	Homo sapiens	enverin-2	261	82

176 Table 2

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
	gb AAM331 41.1]				
1637	gi 13310191 gb AAK181 89.1 AF331 500_1	multiple sclerosis associated retrovirus element	recombinant envelope protein	259	82
1638	AAR58809	Homo sapiens	UYNY Human RPTP-gamma.	86	26
1638	gi292411	Homo sapiens	receptor-type protein tyrosine phosphatase gamma	86	26
1638	gi1263069	Homo sapiens	receptor tyrosine phosphatase gamma	86	26
1639	gi9857054	Leishmania major	possible CG7055 protein	74	27
1639	gi 20853034 ref XP_1259 62.1	Mus musculus	expressed sequence AI447519	73	35
1639	gi 7008003 d bj BAA9087 4.1	Mus musculus	transcription factor MAZR	73	35
1640	AAG03810	Homo sapiens	GEST Human secreted protein, SEQ ID NO: 7891.	220	95
1640	gi186800	Homo sapiens	ribosomal protein L12	220	95
1640	gi57680	Rattus rattus	ribosomal protein L12	220	95
1641	AAB44286	Homo sapiens	GETH Human PRO1072 (UNQ529) protein sequence SEQ ID NO:303.	1709	100
1641	AAY41730	Homo sapiens	GETH Human PRO1072 protein sequence.	1709	100
1641	gi14602625	Homo sapiens	PAN2 protein	1709	100
1642	gi20147241	Arabidopsis thaliana	ATSg09850/MYH9_6	74	32
1642	gi14329782	Homo sapiens	dJ1121G12.3 (Novel gene)	72	28
1642	gi 16648730 gb AAL255 57.1	Arabidopsis thaliana	AT5g09850/MYH9_6	74	32
1643	gi2952340	Rattus norvegicus	insulin receptor substrate 2	89	31
1643	gi2653351	Bovine herpesvirus type 1.1	product of latency-related gene	83	30
1643	gi4511969	Homo sapiens	insulin receptor substrate-2	82	26
1644	gi9964099	Chlamydia trachomatis	inclusion membrane protein	73	35
1644	gi19171028	Encephalitozoon cuniculi	ATP DEPENDENT DNA BINDING HELICASE (RAD3/XPD SUBFAMILY OF HELICASES)	67	29
1644	gi 9964095 g b AAG0982 1.1 AF2793 62 1	Chlamydia trachomatis	inclusion membrane protein	73	35
1646	gi 10863995 ref NP_0670 11.1	Homo sapiens	clones 23667 and 23775 zinc finger protein	67	42
1647	gi1196425	Homo sapiens	envelope protein	93	39
1647	gi200296	Mus musculus	perlecan	85	26

177 Table 2

			Description	Score	%
SEQ	Accession	Species	Description	Score	Identity
D	No.				luchuty
NO:			'. C!	84	27
1647	gi8131894	Homo sapiens	mitofilin	73	36
1648	gi1573040	Haemophilus	aspartokinase I / homoserine dehydrogenase I (thrA)	/3	30
1.540	:0770706	influenzae Rd Arabidopsis	T25N20.14	73	31
1648	gi8778726	thaliana	125N20.14		
1648	gi[16272063]	Haemophilus	aspartokinase I / homoserine	73	36
	ref NP_4382	influenzae Rd	dehydrogenase I (thrA)		
1649	62.1 gi295642	Saccharomyces	phospholipase C	79	36
1049	g1293042	cerevisiae			
1649	gi7548846	Saccharomyces	delta class phosphoinositide-specific	77	36
	8	cerevisiae	phospholipase C homolog		
1649	gi161104	Schistosoma	engrailed-like homeodomain protein	74	35
	ا	mansoni			
1651	gi 13129464	Oryza sativa]	Polyprotein	66	40
	gb AAK131	[Oryza sativa			
	22.1 AC080	(japonica			
	019_14	cultivar-group)			1.00
1652	AAG81446	Homo sapiens	ZYMO Human AFP protein sequence SEQ ID NO:410.	249	100
1652	gi18032212	Homo sapiens	histone acetyltransferase MOZ2	89	34
1652	AAR34936	Homo sapiens	UYJO CENP-B.	77	35
1653	gi20145484	Bos taurus	SCO-spondin	71	29
1655	AAM86382	Homo sapiens	HUMA- Human	129	55
1033	AAIVIOUSOZ	Homo sapions	immune/haematopoietic antigen SEQ ID NO:13975.		
1655	ABB03887	Homo sapiens	HUMA- Human musculoskeletal	118	62
		•	system related polypeptide SEQ ID NO 1834.		
1655	AAM75964	Homo sapiens	MOLE- Human bone marrow	85	56
1055	1227,550	110210 00,711	expressed probe encoded protein SEQ ID NO: 36270.		
1.000	~:29025	Homo sapiens	p25 protein	110	45
1659 1659	gi38035 gi330915	Equine	IR4 protein	99	28
1029	g1330913	herpesvirus I	IK4 protein		
1659	gi156606	Chironomus	SpId	84	30
1660	gi9654641	Vibrio cholerae	3-deoxy-D-manno-octulosonic-acid	84	23
1000	g19034041	VIOLIO CHOICIAC	transferase	• .	
1660	gi 20835446	Mus musculus	similar to STARP antigen	73	25
1000	refiXP_1444	1,440 2140 4110			
	09.1			-	
1660	gi 15596880	Pseudomonas	probable sugar aldolase	72	26
1000	ref[NP_2503	aeruginosa		Ì	1
	74.1				
1661	gi4062318	Escherichia coli	Heat-responsive regulatory protein	79	36
1661	gi976025	Escherichia coli	HrsA	79	36
1661	gi1786951	Escherichia coli	protein modification enzyme, induction	79	36
L	<u> </u>	K12	of ompC	165	100
1662	AAM68588	Homo sapiens	MOLE-Human bone marrow	155	100
			expressed probe encoded protein SEQ ID NO: 28894.		
1662	AAM56212	Homo sapiens	MOLE- Human brain expressed single	155	100
****	152.25022		exon probe encoded protein SEQ ID		

178 Table 2

		T	7 2010 2	Cana	0/
SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
			NO: 28317.		
1662	gi3845169	Plasmodium falciparum 3D7	phosphatase (acid phosphatase family)	66	52
1663	AAG89215	Homo sapiens	GEST Human secreted protein, SEQ ID NO: 335.	218	100
1663	gi20070921	Mus musculus	RIKEN cDNA 2410008M22 gene	130	55
1663	AAR77602	Homo sapiens	FORS/ Human circulating cytokine CC-1 C-terminal fragment.	92	44
1664	AAE18212	Homo sapiens	CURA- Human MOL4 protein.	75	47
1664	AAM00966	Homo sapiens	HYSE-Human bone marrow protein, SEQ ID NO: 442.	72	35
1665	AAB92828	Homo sapiens	HELI- Human protein sequence SEQ ID NO:11365.	74	93
1665	AAG63852	Homo sapiens	INCY- Amino acid sequence of human GTPase activating protein GTPAP2.	74	93
1665	AAG63851	Homo sapiens	INCY- Amino acid sequence of human GTPase activating protein GTPAP1.	74	93
1666	AAM72897	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 33203.	135	65
1666	AAM60268	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 32373.	135	65
1666	gi4007097	Homo sapiens	dJ1118D24.2 (60S Ribosomal Protein L10 LIKE)	135	65
1667	gi212267	Gallus gallus	cartilage link protein	917	49
1667	gi2010	Sus scrofa	link protein precursor (AA -15 to 339)	913	51
1667	gi459439	Equus caballus	link protein	910 ·	51
1668	gi10443237	Mus musculus	splicing factor 3a, subunit 2	276	36
1668	gi396743	Podocoryne carnea	Pod-EPPT	276	30
1668	gi294131	Plasmodium falciparum	circumsporozoite protein	266	22
1669	AAM49641	Homo sapiens	BOEH Human tumour-associated antigen B345 protein SEQ ID NO 4.	132	65
1669	AAU12252	Homo sapiens	GETH Human PRO5773 polypeptide sequence.	132	65
1669	AAY91592	Homo sapiens	HUMA- Human secreted protein sequence encoded by gene 6 SEQ ID NO:265.	132	65
1670	gi4835383	Homo sapiens	alias DLC1	226	47
1670	gi4704343	Homo sapiens	alias DLC1; candidate tumor suppressor gene	226	47
1670	gi155627	Acanthamoeba castellanii	myosin I heavy chain	118	42
1671	ABB12490	Homo sapiens	HYSE- Human bone marrow expressed protein SEQ ID NO: 329.	237	88
1671	gi6002932	Streptomyces fradiae	glycosyl transferase	67	35
1671	gi 9634613 r ef NP_0381 50.1	Human papillomavirus type 69	L1	65	39
1672	gi13938013	Homo sapiens	Similar to RIKEN cDNA 2610509G12 gene	333	66

179 Table 2

SEQ	Accession	Species	Description	Score	%
ID NO:	No.				Identity
1672	gi2388970	Schizosaccharom yces pombe	tat-binding homolog 7, AAA ATPase family protein	235	41
1672	gi6850321	Arabidopsis thaliana	Contains similarity to YTA7 ATPase gene from Saccharomyces cerevisiae gb X81072, and contains Bromodomain PF 00439, AAA PF 00004, and Sigma-54 PF 00158 transcription factor domains.	214	40
1673	gi11066113	Drosophila melanogaster	Misexpression suppressor of ras 4	71	29
1673	gi 20829387 ref XP_1295 40.1	Mus musculus	RIKEN cDNA 4930455F23	77	27
1673	gi 17647635 ref[NP_5237 75.1	Drosophila melanogaster	Misexpression suppressor of ras 4	71	29
1674	gi 20535935 ref XP_1157 87.1	Homo sapiens	similar to splicing coactivator subunit SRm300; RNA binding protein; AT- rich element binding factor	75	37
1674	gi 17544226 ref[NP_5001 51.1	Caenorhabditis elegans	Y76B12C.4.p	72	34
1674	gi 17559826 ref[NP_5057 99.1	Caenorhabditis elegans	sepB domain	70	26
1675	gi5708067	Oryctolagus cuniculus	hyperpolarization activated cation channel	99	27
1675	gi402558	Canis familiaris	mucin	98	27
1675	gi10636484	Homo sapiens	polyglutamine-containing protein	96	26
1676	AAM95365	Homo sapiens	HUMA- Human reproductive system related antigen SEQ ID NO: 4023.	73	26
1676	AAB56709	Homo sapiens	ROSE/ Human prostate cancer antigen protein sequence SEQ ID NO:1287.	72	34
1676	gi1881288	Bacillus subtilis	FUNCTION UNKNOWN, SIMILAR PRODUCT IN E.COLI, H. INFLUENZAE AND NEISSERIA MENINGITIDIS.	71	30
1677	gi 15892512 ref NP_3602 26.1	EC:2.7.7.41] [Rickettsia conorii	phosphatidate cytidylyltransferase	65	34
1679	gi14231	Saccharomyces cerevisiae	NADH dehydrogenase (ubiquinone)	75	31
1679	gi805022	Saccharomyces cerevisiae	Ndilp	73	31
1679	gi1353352	Chlamydomonas reinhardtii	alanine aminotransferase	70	27
1680	gi1805421	Bacillus subtilis	surfactin production	77	36
1680	gi396482	Bacillus subtilis	srfA2	77	36
1680	gi516360	Bacillus subtilis	surfactin synthetase	77	36
1681	AAG64494	Homo sapiens	SHAN- Human natriuretic peptide receptor 18.	156	80
1681	AAE16275	Homo sapiens	INCY- Human kinase PKIN-21 protein.	154	73
1681	AAM40599	Homo sapiens	HYSE- Human polypeptide SEQ ID	154	73

180 Table 2

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
			NO 5530.		<u> </u>
1682	gi2323287	multiple sclerosis associated retrovirus	polyprotein	1646	75
1682	gi 2351212 d bj BAA2206 4.1	Friend murine leukemia virus	gag-pol polyprotein (precursor protein)	807	40
1682	gi 9626961 r ef NP_0579 33.1	Murine leukemia virus	Pr180	802	40
1683	AAM39205	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 2350.	457	53
1683	gi3033415	Gibbon ape leukemia virus	gag polyprotein	353	38
1683	gi 6524623 g b AAF15097	Phascolarctos cinereus	gag protein	343	38
1684	gi19110438	Homo sapiens	polycystin-1L1	712	98
1684	gi6361629	Periplaneta americana	vitellogenin	81	25
1684	gi3115393	Rana pipiens	guanylate cyclase inhibitory protein	80	35
1686	AAY91542	Homo sapiens	HUMA- Human secreted protein sequence encoded by gene 92 SEQ ID NO:215.	212	84
1686	gi1279841	Bos taurus	glycine transporter	72	36
1686	gi19879917	Oryza sativa	acid phosphatase	70	35
1687	gi12056568	Homo sapiens	MSTP063	212	88
1687	gi13539684	Homo sapiens	zinc finger protein 291	212	88
1687	gi 12056568 gb AAG479 45.1 AF119 814 1	Homo sapiens	MSTP063	212	88
1689	gi5689766	Homo sapiens	zinc finger 2.2	222	91
1689	AAU16267	Homo sapiens	HUMA- Human novel secreted protein, Seq ID 1220.	178	58
1689	AAB99950	Homo sapiens	SHAN- Human alkylated-DNA-protein cysteine methyltransferase 14.	177	60
1690	gi3328880	Chlamydia trachomatis	Protein Export	73	29
1690	gi2832232	Brucella melitensis biovar Abortus	flagellin; FliC	6,7	29
1690	gi17984285	Brucella melitensis	FLAGELLIN	67	29
1692	gi4927443	Haemophilus influenzae	hemoglobin/hemoglobin-haptoglobin binding protein	93	80
1692	gi4204775	Haemophilus influenzae	hemoglobin and hemoglobin- haptoglobin binding protein	93	80
1692	gi3647226	Haemophilus influenzae	hemoglobin binding protein	93	80
1694	AAW95631	Homo sapiens	GEMY Homo sapiens secreted protein gene clone hj968_2.	102	100
1694	gi13162186	Homo sapiens	calsyntenin-3 protein	102	100

181 Table 2

		0	Description	Score	%
SEQ ID NO:	Accession No.	Species	Description	Score	Identity
1695	AAO04205	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 18097.	81	37
1695	gi160180	Plasmodium cynomolgi	circumsporozoite antigen	81	29
1695	gi495522	Plasmodium simiovale	circumsporozoite protein	80	30
1696	AAM80223	Homo sapiens	HYSE- Human protein SEQ ID NO 3869.	252	66
1696	AAM79239	Homo sapiens	HYSE- Human protein SEQ ID NO 1901.	252	66
1696	gi3688394	Homo sapiens	triple LIM domain protein	252	66
1697	gi19887715	Methanopyrus kandleri AV19	Predicted membrane protein	74	28
1698	AAM93184	Homo sapiens	HELI- Human polypeptide, SEQ ID NO: 2552.	269	87
1698	gi18044066	Mus musculus	RIKEN cDNA 5033406L14 gene	226	76
1698	AAB95302	Homo sapiens	HELI- Human protein sequence SEQ ID NO:17538.	194	78
1699	ABB17279	Homo sapiens	HUMA- Human nervous system related polypeptide SEQ ID NO 5936.	110	56
1699	AAO13013	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 26905.	101	71
1699	gi 7650258 g b AAF65960 .1 AF20777 0 1	Hepatitis C virus	polyprotein	74	28
1700	gi12697585	Arabidopsis thaliana	4-(cytidine 5'-phospho)-2-C-methyl-D- erithritol kinase	69	40
1701	gi16740569	Homo sapiens	Similar to thymus expressed gene 3	84	27
1701	gi17940760	Mus musculus	cask-interacting protein 2	79	26
1701	gi17940758	Homo sapiens	cask-interacting protein 1	77	26
1702	gi17385401	Homo sapiens	TPIP alpha lipid phosphatase	234	62
1702	AAU75783	Homo sapiens	INCY- Human protein phosphatase 1 (PP1) protein sequence.	208	57
1702	AAG67638	Homo sapiens	HELI- Amino acid sequence of a human protein.	202	56
1703	AAO07887	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 21779.	246	85
1703	AAO08651	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 22543.	239	83
1703	AAO08732	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 22624.	221	80
1704	AAB94588	Homo sapiens	HELI- Human protein sequence SEQ ID NO:15392.	82	52
1704	gi3288914	Mus musculus	aortic carboxypeptidase-like protein ACLP	82	24
1704	AAM93437	Homo sapiens	HELI- Human polypeptide, SEQ ID NO: 3074.	81	32
1706	AAM86104	Homo sapiens	HUMA- Human immune/haematopoietic antigen SEQ ID NO:13697.	179	100
1706	gi10039425	Equus caballus	ALR protein	120	40
1706	gi20502826	Eimeria maxima	cGMP-dependent protein kinase	115	35
1707	AAM70251	Homo sapiens	MOLE- Human bone marrow	115	78

182 Table 2

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
			expressed probe encoded protein SEQ ID NO: 30557.		
1707	AAM57834	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 29939.	115	78
1707	gi15450860	Arabidopsis thaliana	serine/threonine-protein kinase Mak (male germ cell-associated kinase)-like protein	71	56
1708	gi1620403	Homo sapiens	SF1-Bo isoform	82	41
1708	gi19072991	Hypocrea virens	class III chitinase precursor	82	40
1708	gi18765873	Hypocrea virens	class III chitinase	82	40
1709	AAM52240	Homo sapiens	INCY- Human MFAP4 SEQ ID NO 3.	1384	100
1709	gi790817	Homo sapiens	microfibril-associated glycoprotein 4	1384	100
1709	AAM52239	Homo sapiens	INCY- Human MAG4V SEQ ID NO 1.	1374	100
1710	gi16769882	Drosophila melanogaster	SD07884p	67	27
1710	gi 17545505 ref NP_5189 07.1	Ralstonia solanacearum	CONSERVED HYPOTHETICAL PROTEIN	66	41
1711	AAU82954	Homo sapiens	ANAD- Human homologue of MPT1 protein target for antifungal compound.	111	27
1711	gi2058326	Homo sapiens	subunit of RNA polymerase II transcription factor TFIID	111	27
1711	gi13559031	Homo sapiens	bA11M20.1 (TATA box binding protein (TBP)-associated factor, RNA polymerase II, C1, 130kD)	108	26
1712	AAB65626	Homo sapiens	SUGE- Novel protein kinase, SEQ ID NO: 152.	209	82
1712	AAM25283	Homo sapiens	HYSE- Human protein sequence SEQ ID NO:798.	209	82
1712	AAU17269	Homo sapiens	HUMA- Novel signal transduction pathway protein, Seq ID 834.	176	67
1713	gi18256065	Mus musculus	Similar to ATPase, class II, type 9A	127	67
1713	AAM76495	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 36801.	123	70
1713	AAM63681	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 35786.	123	70
1714	gi8096269	Nicotiana tabacum	KED	149	28
1714	gi1752736	Saccharomýces cerevisiae	gene required for phosphoylation of oligosaccharides/ has high homology with YJR061w	148	30
1714	gi2292986	Rattus norvegicus	cyclic nucleotide-gated channel beta subunit	141	28
1715	AAM72995	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 33301.	158	47
1715	AAM60359	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 32464.	158	47
1715	gi 13539605 emb CAC35	Paramecium tetraurelia	cyclophilin-RNA interacting protein	144	45

183 Table 2

SEQ	Accession	Species	Description	Score	%
ID NO:	No.				Identity
	733.1				
716	AAM71015	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 31321.	251	64
1716	AAM58517	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 30622.	251	64
1716	AAU19766	Homo sapiens	HUMA- Human novel extracellular matrix protein, Seq ID No 416.	161	44
718	gi1420924	Zea mays	IN1	75	27
1718	gi 14521970 ref[NP_1274 47.1	Pyrococcus abyssi	O-sialoglycoprotein endopeptidase	73	35
1719	gi20513851	Hordeum vulgare	BPM	74	35
1719	gi21039126	Cryptosporidium parvum	60 kDa glycoprotein	74	26
1719	gi207158	Rattus norvegicus	big tau	73	36
1720	gi18181943	Caenorhabditis elegans	heparan sulfate GlcNAc transferase-I/II	67	34
1720	gi2058699	Caenorhabditis elegans	multiple exostoses homolog 2	67	34
1720	gi 17554740 ref[NP_4993 68.1	Caenorhabditis elegans	MULTIPLE EXOSTOSES HOMOLOG 2	67	34
1721	AAM69150	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 29456.	200	38
1721	AAM56769	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 28874.	200	38
1721	gi4185947	Human endogenous retrovirus K	pol protein	196	38
1722	gi2065210	Mus musculus	Pro-Pol-dUTPase polyprotein	615	60
1722	gi18676710	Homo sapiens	FLJ00254 protein	592	60
1722	gi 20469453 ref XP_1140 40.1	Homo sapiens	similar to FLJ00254 protein	283	50
1723	gi13881755	Mycobacterium tuberculosis CDC1551	cation efflux system protein	74	30
1724	AAG78866	Homo sapiens	SHAN- Human zinc finger protein 15.	141	68
1724	ABB17928	Homo sapiens	HUMA- Human nervous system related polypeptide SEQ ID NO 6585.	99	53
1724	gi 21295712 gb EAA078 57.1	Anopheles gambiae str. PEST	agCP1631	75	26
1725	gi21104340	Homo sapiens	obscurin	1586	83
1725	gi7024535	Gallus gallus	structural muscle protein titin	207	24
1725	gi1513030	Gallus gallus	connectin/titin	207	24
1727	AAE19162	Homo sapiens	THOR/ Human kinase polypeptide (PKIN-20).	1096	99

184 Table 2

SEQ	Accession	Species -	Description	Score	%
ID	No.	Special	est puo		Identity
NO:					
1727	gi2736151	Rattus norvegicus	mytonic dystrophy kinase-related Cdc42-binding kinase	902	78
1727	gi1695873	Homo sapiens	ser-thr protein kinase PK428	896	77
1728	AAY99411	Homo sapiens	GETH Human PRO1487 (UNQ756) amino acid sequence SEQ ID NO:260.	862	67
1728	gi15617453	Homo sapiens	chondroitin synthase	862	67
1728	AAE15959	Homo sapiens	EUMO- Human 4589624/92-303 protein, member of Fringe and Brainiac family.	761	79
1729	gi 15804980 ref NP_2909 60.1	Escherichia coli O157:H7 EDL933	Uncharacterized conserved protein	71	33
1731	gi14268490	Musca domestica	hunchback	82	33
1731	AAM93401	Homo sapiens	HELI- Human polypeptide, SEQ ID NO: 3002.	76	27
1731	gi2076606	Musca domestica	hunchback zinc finger protein	73	30
1732	AAY91949	Homo sapiens	INCY- Human cytoskeleton associated protein 4 (CYSKP-4).	1047	57
1732	ABB90754	Homo sapiens	UYJO Human Tumour Endothelial Marker polypeptide SEQ ID NO 240.	1043	57
1732	gi619577	Gallus gallus	cardiac muscle tensin	1043	56
1733	gi3090889	Homo sapiens	synapsin IIIa	70	38
1733	gi6572355	Homo sapiens	cE86D10.1 (synapsin III)	70	38
1733	gi 19924105 ref NP_0034 81.2	Homo sapiens	synapsin III, isoform IIIa	70	38
1734	AAB85144	Homo sapiens	HUMA- Human NKCR polypeptide (clone ID HMSOM53).	1506	93
1734	gi4973126	Mus musculus castaneus	high affinity immunoglobulin gamma Fc receptor I	490	39
1734	gi4973124	Mus musculus	high affinity immunoglobulin gamma Fc receptor I	489	39
1735	gi 15597595 ref[NP_2510 89.1	Pseudomonas aeruginosa	pyoverdine synthetase D	69	30
1736	gi14488302	Oryza sativa	Putative transposon protein	81	24
1736	gi3851516	Phytophthora infestans	cyst germination specific acidic repeat protein precursor	72	33
1736	gi 14488302 gb AAK638 83.1 AC074 105_12	Oryza sativa	Putative transposon protein	81	24
1737	AAB85357	Homo sapiens	INCY- Human phosphatase (PP) (clone ID 3402521CD1).	1591	100
1737	gi21205864	Homo sapiens	T-cell activation protein phosphatase 2C; TA-PP2C	1591	100
1737	gi21464366	Drosophila melanogaster	RE06653p	758	52
1738	gi7271811	Drosophila melanogaster	GTPase activating protein	292	38
1738	AAM76430	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 36736.	246	100
1738	AAM63615	Homo sapiens	MOLE- Human brain expressed single	246	100

185 Table 2

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
		-	exon probe encoded protein SEQ ID NO: 35720.		
1739	ABB50365	Homo sapiens	HUMA- Human secreted protein encoded by gene 65 SEQ ID NO:313.	272	87
1739	AAW88598	Homo sapiens	HUMA- Secreted protein encoded by gene 65 clone HFVHY45.	272	87
1739	ABB50764	Homo sapiens	HUMA- Human secreted protein encoded by gene 65 SEQ ID NO:716.	143	92
1740	gi2065210	Mus musculus	Pro-Pol-dUTPase polyprotein	1210	58
1740	gi 10834720 gb AAG237 90.1 AF258 587 1	Homo sapiens	PP565	274	80
1740	gi 385615 gb AAB26708.	Mus sp.	fibulin gene homolog	248	75
1741	ABB90748	Homo sapiens	UYJO Human Tumour Endothelial Marker polypeptide SEQ ID NO 228.	2116	97
1741	gi15987493	Homo sapiens	tumor endothelial marker 6	2116	97
1741	ABB90754	Homo sapiens	UYJO Human Tumour Endothelial Marker polypeptide SEQ ID NO 240.	530	37
1742	ABB11753	Homo sapiens	HYSE- Human NOV/plexin-A1 homologue, SEQ ID NO:2123.	291	90
1742	gi1665757	Mus musculus	plexin 1	291	90
1742	gi6010217	Homo sapiens	NOV/plexin-A1 protein	291	90
1743	AAM79514	Homo sapiens	HYSE- Human protein SEQ ID NO 3160.	149	90
1743	AAM78530	Homo sapiens	HYSE- Human protein SEQ ID NO 1192.	149	90
1743	gi1244510	Homo sapiens	p311 protein	149	90
1744	AAG93324	Homo sapiens	NISC- Human protein HP10370.	83	41
1744	gi21064771	Drosophila melanogaster	RH61467p	83	46
1744	gi18676554	Homo sapiens	FLJ00174 protein	77	41
1745	gi4128039	Homo sapiens	TL132 protein	81	29
1745	gi17983118	Brucella melitensis	METAL DEPENDENT HYDROLASE	74	23
1745	AAU75578	Homo sapiens	UYNA- Human ubiquitin specific protease 10 (USP10).	71	31
1746	gi15074154	Sinorhizobium meliloti	PUTATIVE FATTY ACID/PHOSPHOLIPID SYNTHESIS PROTEIN	76	25
1746	gi1869833	human herpesvirus 2	myristylated tegument protein	75	27
1746	gi20516045	Thermoanaeroba cter tengcongensis	Chemotaxis response regulator CheB, consists of CheY-like receiver domain and a methylesterase (demethylase) domain	69	20
1747	gi18025496	cercopithicine herpesvirus 15	EBNA-1	124	37
1747	gi5821153	Homo sapiens	RNA binding protein	123	29
1747	gi6649242	Homo sapiens	splicing coactivator subunit SRm300	123	29
1748	gi 4321764 g b AAD1581	Mus musculus	MAP kinase kinase 7 alpha 2	65	30

186 Table 2

SEQ ID NO:	Accession No.	Species	Description Description	Score	% Identity
	9.1			-	100
1748	gi 20859704 ref XP_1339 86.1	Mus musculus	mitogen activated protein kinase kinase 7	65	30
1748	gi 4321768 g b AAD1582 1.1	Mus musculus	MAP kinase kinase 7 beta 2	65	30
1749	AAB50964	Homo sapiens	GETH Human PRO1313 protein.	439	89
1749	AAB47290	Homo sapiens	GETH PRO1313 polypeptide.	439	89
1749	AAB24431	Homo sapiens	GETH Human PRO1313 protein sequence SEQ ID NO:216.	439	89
1750	AAU00502	Homo sapiens	MILL- Human TANGO 437 protein.	115	91
1750	gi20384654	Homo sapiens	two-pore calcium channel protein 2	115	91
1750	AAM91059	Homo sapiens	HUMA- Human immune/haematopoietic antigen SEQ ID NO:18652.	93	64
1751	gi10440494	Homo sapiens	FLJ00092 protein	252	97
1751	AAM40956	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 5887.	80	30
1751	gi 10440494 dbj BAB157 80.1	Homo sapiens	FLJ00092 protein	252	97
1752	gi15980036	Yersinia pestis	2-dehydro-3-deoxyphosphooctonate aldolase	77	46
1752	gi11322261	Diceros bicornis	alpha adrenergic receptor 2B	74	26
1752	gi20516240	Thermoanaeroba cter tengcongensis	methylaspartate mutase	73	25
1753	gi19684014	Homo sapiens	similar to brain-specific angiogenesis inhibitor 3 (H. sapiens)	1387	99
1753	AAB88367	Homo sapiens	HELI- Human membrane or secretory protein clone PSEC0101.	1380	99
1753	gi1469936	Mus musculus	FGF-binding protein	158	29
1754	AAB01397	Homo sapiens	INCY- Neuron-associated protein.	435	92
1754	gi21218140	Homo sapiens	rab effector MYRIP	435	92
1754	gi21320161	Mus musculus	exophilin 8	378	77
1755	AAM74815	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 35121.	253	75
1755	AAM62013	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 34118.	253	75
1755	AAM70390	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 30696.	228	62
1756	gi6460201	Deinococcus radiodurans	phenylacetic acid degradation protein PaaA	85	27
1756	gi3309543	Takifugu rubripes	MLL	79	34
1756	AAT10059_ aa1	Homo sapiens	USSH erbB-3 cDNA clone E3-16.	74	31
1757	gi18676406	Homo sapiens	FLJ00021 protein	70	36
1758	gi13423395	Caulobacter crescentus CB15	NADH dehydrogenase I, M subunit	78	37

187 Table 2

WO 03/080795

SEQ	Accession	Species	Description	Score	%
ID	No.	Бресле			Identity
NO:					
1758	gi]17506337	Caenorhabditis	D1007.15.p	82	24
1750	ref[NP_4913	elegans			
	90.1	****			
1758	gi 16126181	Caulobacter	NADH dehydrogenase I, M subunit	78	37
	ref[NP_4207	crescentus CB15			
	45.1				
1759	gi19881193	chimpanzee	transcriptional transactivator TRS1	83	29
		cytomegalovirus			
1759	gi19881161	chimpanzee	transcriptional transactivator IRS1	83	29
		cytomegalovirus			
1759	gi556297	Mus musculus	alpha-1 type IV collagen	81	33
1760	gi18033185	Danio rerio	UNC45-related protein	702	79
1760	AAG77802	Homo sapiens	HUMA- Human HOGEN50	603	65
		-	serine/threonine phosphatase protein		
			sequence.		L
1760	AAM40290	Homo sapiens	HYSE- Human polypeptide SEQ ID	603	65
			NO 3435.		
1761	gi6634123	Drosophila	SoxNeuro	70	24
		melanogaster			
1762	gi 14245700	Giardia	kinesin-like protein 4	69	26
	dbjBAB561	intestinalis			
	42.1]				
1762	gi 165011 gb	Oryctolagus	eucaryotic release factor (eRF)	69	24
	AAA31246.	cuniculus			İ
	1				·
1762	gi 15559188	Homo sapiens	dJ45P21.3 (butyrophilin, subfamily 3,	69	26
	emb CAC03		member A1)		l
	424.2				-
1763	AAM93661	Homo sapiens	HELI- Human polypeptide, SEQ ID	186	80
			NO: 3536.	171	7.0
1763	AAM64398	Homo sapiens	MOLE-Human brain expressed single	154	76
			exon probe encoded protein SEQ ID		ļ
		L	NO: 36503.	72	43
1763	gi 20556958	Homo sapiens	similar to PAM COOH-terminal	73	43
	ref[XP_0615		interactor protein 1		
177.5	62.5		TWD (A. N1-i-well-week-stien	211	87
1764	AAU17223	Homo sapiens	HUMA- Novel signal transduction pathway protein, Seq ID 788.	211	01
1000	-11224546	D. 1	Dod COI i13 grp IB protein	71	37
1765	gi1334546	Podospora	Dod COI 113 grp 18 protein	′¹	3'
1765	gi5679307	anserina	RORgamma t	70	27
1765		Mus musculus	ROR gamma T protein	70	27
1765	gi4186077	Mus musculus	PPAR gamma coactivator-1beta protein	74	26
1766	gi17864081	Mus musculus	polyferredoxin	71	28
1766	gi44795	Methanococcus	polytettedoxin	' [']	20
1766	mi14270670	Voltae	verticillium wilt disease resistance	71	31
1766	gi14279670	Lycopersicon esculentum	protein	'	1
1760	A A EOCESO		SAGA Human protein having	165	100
1768	AAE06588	Homo sapiens	hydrophobic domain, HP10778.	1 103	1.00
1760	A A 3 4 4 0 0 7 0	Uomo conicas	HYSE- Human polypeptide SEQ ID	165	100
1768	AAM40979	Homo sapiens	NO 5910.	105	1 100
1760	A A D 24542	Uomo senione	HUMA- Human secreted protein	73	30
1768	AAB24542	Homo sapiens	sequence encoded by gene 27 SEQ ID	'3	
			NO:168.		1
_	l	l	1110.100.		1

188 Table 2

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
1769	gi6174840	Achromobacter xylosoxidans subsp. xylosoxidans	low-specificity D-threonine aldolase	78	33
1769	gi16769806	Drosophila melanogaster	SD02660p	75	23
1769	gi1098473	Rattus norvegicus	insulin-like growth factor binding protein	73	31
1770	AAP94684	Homo sapiens	CHIL Amino acid sequence encoded by part of human mannose binding protein(hMBP) genomic DNA.	79	56
1770	gi 15790548 ref[NP_2803 72.1	Halobacterium sp. NRC-1	cobyric acid synthase; CbiP	69	36
1770	gi 11467609 ref[NP_0506 61.1	Guillardia theta	Clp protease ATP binding subunit	69	27
1772	gi5532460	Shigella flexneri	ShiF	66	32
1773	gi11544663	Arabidopsis thaliana	PTPKIS1	75	42
1773	gi11595504	Arabidopsis thaliana	PTPKIS1 protein	75	42
1773	gi18389331	Mus musculus	2',5'-oligoadenylate synthetase-like 10	73	42
1774	AAM06519	Homo sapiens	HYSE- Human foetal protein, SEQ ID NO: 250.	414	90
1774	gi 18552248 ref XP_0925 10.1	Homo sapiens	similar to latent transforming growth factor beta binding protein 1; latent TGF beta binding protein	69	37
1775	gi4884924	Rangiferine herpesvirus 1	glycoprotein C	67	60
1775	AAB94152	Homo sapiens	HELI- Human protein sequence SEQ ID NO:14435.	65	34
1775	AAB93253	Homo sapiens	HELI- Human protein sequence SEQ ID NO:12271.	65	34
1776	gi13424176	Caulobacter crescentus CB15	N-carbamyl-L-amino acid amidohydrolase	89	24
1776	gi514267	Homo sapiens	proto-oncogene tyrosine-protein kinase	86	29
1776	gi28237	Homo sapiens	p150 protein (AA 1-1130)	84	28
1777	gi63370	Gallus gallus	dystrophin (AA 1 - 3660)	68	31
1777	gi 3046783 e mb CAA680 33.1	Scyliorhinus canicula	dystrophin	67	29
1777	gi 2342682 g b AAB7040 6.1	Arabidopsis thaliana	Contains similarity to Rattus AMP-activated protein kinase (gb X95577).	67	31
1778	AAE16176	Homo sapiens	INCY- Human G-protein coupled receptor 7 (GCREC-7) protein.	1419	100
1778	AAE18021	Homo sapiens	CURA- Human G-protein coupled receptor-8a (GPCR-8a) protein.	1419	100
1778	AAG72411	Homo sapiens	YEDA Human OR-like polypeptide query sequence, SEQ ID NO: 2092.	1419	100
1779	AAM76040	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 36346.	93	48

189 Table 2

SEQ ID	Accession No.	Species	Description	Score	% Identity
NO: 1779	AAM63227	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 35332.	93	48
1779	gi12620576	Bradyrhizobium japonicum	ID342	87	24
1780	gi2459833	Rattus norvegicus	Maxp1	81	31
1780	AAB65650	Homo sapiens	SUGE- Novel protein kinase, SEQ ID NO: 177.	· 80	35
1780	AAM39805	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 2950.	80	36
1781	gi4877963	Mus musculus	NF-kappaB inducing kinase	69	39
1781	gi15077865	Mus musculus	bullous pemphigoid antigen 1-b	67	35
1781	gi15077863	Mus musculus	bullous pemphigoid antigen 1-a	67	35
1782	gi4138265	Nicotiana tabacum	Avr9 elicitor response protein	76	27
1782	gi12725153	Lactococcus lactis subsp.	50S ribosomal protein L3	75	32
1782	AAB21008	Homo sapiens	INCY- Human nucleic acid-binding protein, NuABP-12.	73	32
1783	gi3947714	Streptococcus agalactiae	initiation factor IF2	86	20
1783	gi9558387	Streptococcus agalactiae	initiation factor 2	86	20
1783	gi9558369	Streptococcus agalactiae	initiation Factor 2	86	20
1786	gi435855	Mus sp.	CREB-binding protein; CBP	75	22
1786	gi2911464	Leishmania tarentolae	sodium stibogluconate resistance protein	75	34
1786	gi19547887	Mus musculus	CREB-binding protein	75	22
1787	gi3747099	Mus musculus	C1q-related factor	616	61
1787	gi14278927	Mus musculus	gliacolin	615	64
1787	gi10566471	Mus musculus	Gliacolin	615	64
1788	gi 21291197 gb EAA033 42.1	Anopheles gambiae str. PEST	agCP7579	71	20
1788	gi 20803964 emb CAD31 541.1	Mesorhizobium loti	HYPOTHETICAL PROTEIN	69	43
1789	AAM41125	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 6056.	. 320	80
1789	AAM39339	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 2484.	320	80
1789	AAM79857	Homo sapiens	HYSE- Human protein SEQ ID NO 3503.	320	80
1790	gi1143585	Paracentrotus lividus	2 alpha fibrillar collagen	69	23
1791	gi9837427	Lytechinus variegatus	embryonic blastocoelar extracellular matrix protein precursor	116	34
1791	gi14089698	Mycoplasma pulmonis	OLIGOPEPTIDE ABC TRANSPORTER PERMEASE PROTEIN	71	23
1791	gi6572111	Bartonella	riboflavin synthase alpha chain	69	29

190 Table 2

SEQ ID	Accession No.	Species	Description	Score	% Identity
NO:				 	
1792	gi 4506023 r ef NP_0027 10.1	quintana Homo sapiens	protein phosphatase 2, regulatory subunit B (B56), gamma isoform	68	39
1793	AAM71170	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 31476.	180	82
1793	AAM58664	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 30769.	180	82
1793	AAM65679	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 37784.	168	71
1794	AAG00072	Homo sapiens	GEST Human secreted protein, SEQ ID NO: 4153.	125	80
1794	AAW34618	Homo sapiens	IMUT- Human C3 protein mutant DV-7N.	125	80
1794	AAW34617	Homo sapiens	IMUT- Human C3 protein mutant DV- 6.	125	80
1795	AAY05069	Homo sapiens	SMIK Human PIGR-2 protein sequence.	1055	85
1795	gi396170	Homo sapiens	CMRF-35 antigen	406	45
1795	gi18490143	Homo sapiens	CMRF35 leukocyte immunoglobulin- like receptor	406	45
1796	gi 6723273 d bj BAA8965 9.1	Baboon endogenous virus strain M7	gag-pol precursor polyprotein	421	41
1796	gi 13940448 gb AAK503 81.1 U43202	Murine leukemia virus	pol precursor protein	421	41
1796	gi 331995 gb AAB03091. 1	AKV murine leukemia virus	gag-pol polyprotein (tag amber codon at 2250-2252 inserts Gln in Mo-MuLV)	421	41
1797	gi21411325	Homo sapiens	Similar to LOC205103	260	73
1797	gi 4835878 g b AAD3028 0.1 AF1348 38_1	Homo sapiens	endocytic receptor Endo180	77	31
1797	gi 16076075 emb CAC94 295.1	Leishmania donovani donovani	trypanothione reductase	70	30
1798	gi927721	Saccharomyces cerevisiae	Sip1p: SNF1 protein kinase substrate; YDR422C; CAI: 0.13	72	34
1798	gi172604	Saccharomyces cerevisiae	protein kinase	72	34
1798	gi 6320630 r ef NP_0107 10.1	Saccharomyces cerevisiae	SNF1 protein kinase substrate; Sip1p	72	34
1799	gi 20839768 ref XP_1303 11.1	Mus musculus	similar to GDP-fucose transporter 1	71	29
1801	gi 17461642 ref XP_0662	Homo sapiens	similar to Ig kappa chain	78	23

191 Table 2

			Description	Score	%
SEQ	Accession	Species	Description	Score	Identity
D	No.				lucinaty
NO:	40.11				
1001	49.1	Saccharomyces	Protein required for cell viability;	76	22
1801	gi 6325342 r	cerevisiae	Ypr085cp	'	1
	ef[NP_0154	Celevisiae	1 produce		İ
1001	10.1	Callid	UL47	74	26
1801	gi 9635081 r	Gallid	01247	'	120
	ef[NP_0578	herpesvirus 2			
1000	09.1	TY	HELI- Human protein sequence SEQ	250	56
1802	AAB94148	Homo sapiens	ID NO:14427.	250	130
1000	11061561	77	SHAN- Human zinc-finger protein 60.	250	56
1802	AAG64564	Homo sapiens	HYSE- Human protein SEQ ID NO	250	56
1802	AAM79356	Homo sapiens		230	130
		**	3002. BOEF Human Fanconi anaemia-	631	85
1803	AAW81754	Homo sapiens	1 · -	031	163
	10.107011		associated gene II protein.	555	74
1803	gi2407911	Homo sapiens	differentially expressed in Fanconi	333	'"
	16040070		anemia	89	24
1803	gi6013073	Mus musculus	HemT-3 protein	1508	90
1805	gi14189735	Homo sapiens	ATP-binding cassette transporter	1508	90
			family A member 12	404	121
1805	gi1943947	Bos taurus	ABC transporter	404	31
1805	AAZ94734_	Homo sapiens	FARB Human ATP binding cassette	395	33
	aal		ABCA1 (ABC1) cDNA.	950	100
1806	AAU12234	Homo sapiens	GETH Human PRO4350 polypeptide	859	100
			sequence.	400	40
1806	AAA96344_	Homo sapiens	GETH cDNA encoding a novel	498	48
	aal		polypeptide designated PRO4357.	498	48
1806	AAU12445	Homo sapiens	GETH Human PRO4357 polypeptide	498	46
			sequence.	76	29
1807	gi190396	Homo sapiens	profilaggrin	74	30
1808	AAB88367	Homo sapiens	HELI- Human membrane or secretory	/4	30
			protein clone PSEC0101.	74	30
1808	gi19684014	Homo sapiens	similar to brain-specific angiogenesis	74	30
			inhibitor 3 (H. sapiens)	74	120
1808	gi 18576362	Homo sapiens	similar to fibroblast growth factor	74	30
	ref XP_0844		binding protein 1		
	81.1	~	Defendance in	126	35
1809	gi530876	Chlamydomonas	amino acid feature: Rod protein	120	33
		reinhardtii	domain, aa 266 468; amino acid feature: globular protein domain, aa 32	Į.	
	1		265	l	
1000	:6570040	26		126	29
1809	gi6578849	Myxococcus	FrgA	120	
1800	-:2420262	xanthus Santalum album	proline rich protein	122	27
1809	gi2429362		PROBABLE CATION-	75	28
1810	gi17428288	Ralstonia	TRANSPORTING ATPASE	"	20
		solanacearum	LIPOPROTEIN TRANSMEMBRANE	1	1
1010	a:01492422	Drosonkila	LD34142p	71 .	29
1810	gi21483422	Drosophila	15D3+142p	''	-
1010	A D DOOD 42	melanogaster	HUMA- Human polypeptide SEQ ID	70	32 .
1810	ABB90042	Homo sapiens		'`	"
1011	-:1000150451	36	NO 2418. similar to Collagen alpha 1(VI) chain	148	74
1811	gi 20915248	Mus musculus	- · · · · · · · · · · · · · · · · · · ·	140	' -
	ref]XP_1451		precursor	İ	
1010	60.1	7	CCA2	1150	90
1812	gi2104558	Rattus	CCA3	11170	170

192 Table 2

SEQ	Accession	Species	Description	Score	% Identity
ID NO:	No.				- Tuentity
		norvegicus		172	37
1812	AAB64963	Homo sapiens	ROSE/ Human secreted protein sequence encoded by gene 24 SEQ ID NO:141.	1/2	
1812	gi12963869	Mus musculus	gene trap ankyrin repeat containing protein	172	37
1813	AAB65201	Homo sapiens	GETH Human PRO1009 (UNQ493) protein sequence SEQ ID NO:194.	208	100
1813	AAY66678	Homo sapiens	GETH Membrane-bound protein PRO1009.	208	100
1813	AAB24068	Homo sapiens	GETH Human PRO1009 protein sequence SEQ ID NO:36.	208	100
1815	AAG89314	Homo sapiens	GEST Human secreted protein, SEQ ID NO: 434.	191	100
1815	gi6460052	Deinococcus radiodurans	dipeptidyl peptidase IV-related protein	66	60
1816	gi1052594	Drosophila melanogaster	trithorax protein trxl	75	26
1816	gi1052593	Drosophila melanogaster	trithorax protein trxII	75	26
1816	gi158818	Drosophila melanogaster	zinc-binding protein	75	26
1817	AAB49765	Homo sapiens	HELI- Human proliferation differentiation factor amino acid sequence.	229	94
1817	AAB88393	Homo sapiens	HELI- Human membrane or secretory protein clone PSEC0137.	229	94
1817	gi18446895	Drosophila melanogaster	AT05866p	73	25
1818	gi6573212	Giardia intestinalis	variant-specific surface protein H7-1	73	32
1818	gi159143	Giardia intestinalis	variant-specific surface protein H7	73	32
1818	gi15144254	Micrurus corallinus	neurotoxin homologue 8	72	32
1819	gi161857	Tetrahymena thermophila	surface antigen	69	35
1821	gi913964	Carcinoscorpius rotundicauda	factor C	80	26
1821	gi217397	Tachypleus tridentatus	limulus factor C precursor	80	26
1821	gi18542425	Tachypleus tridentatus	factor C precursor	80	26
1822	gi9309473	Mus musculus	DNMT1 associated protein-1	74	37
1822	gi1666895	Homo sapiens	CHL1 protein	74	23
1822	gi16923930	Mus musculus	MAT1-mediated transcriptional repressor	74	37
1823	gi9058659	Canis familiaris	skeletal muscle chloride channel ClC-1	73	34
1823	gi433182	Drosophila melanogaster	receptor protein tyrosine phosphatase	72	26
1823	gi20429105	Paracoccus zeaxanthinifacie ns	decaprenyl diphosphate synthase	72	27
1824	gi13374178	Mus musculus	TAFII140 protein	612	88

193 Table 2

SEQ	Accession	Species	Description Description	Score	%
D	No.	-			Identity
NO:				246	10
1824	gi17861888	Drosophila melanogaster	GM10839p	246	49
1824	gi6634096	Drosophila melanogaster	BIP2 protein	242	48
1825	gi16605480	Homo sapiens	G6b-C protein	1159	100
1825	gi16605484	Homo sapiens	G6b-E protein	1009	90
1825	gi5304877	Homo sapiens	immunoglobulin receptor	1003	83
1826	AAB94636	Homo sapiens	HELI- Human protein sequence SEQ ID NO:15515.	105	37
1826	AAU15903	Homo sapiens	HUMA- Human novel secreted protein, Seq ID 856.	105	37
1826	gi21430928	Drosophila melanogaster	SD27341p	93	39
1827	AAR33270	Homo sapiens	WIST- T cell receptor alpha chain clone alpha 1.3.	329	92
1827	gi1806100	Homo sapiens	T cell receptor alpha chain	329	92
1827	gi2358032	Homo sapiens	TCRAV8S3	329	92
1828	gi20513851	Hordeum vulgare	BPM	73	45
1828	AAO01897	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 15789.	70	35
1828	AAE16477	Homo sapiens	OSTE- Human collagen alpha1 (II) protein.	69	31
1829	AAG66837	Homo sapiens	SHAN- Human ATP-dependent serine proteinase 31.	356	100
1829	AAG66838	Homo sapiens	SHAN- Human ATP-dependent serine proteinase 31 N-terminal peptide.	89	100
1829	gi5881591	Gallus gallus	homeodomain protein	77	38
1830	AAB94294	Homo sapiens	HELI- Human protein sequence SEQ ID NO:14745.	951	99
1830	gi10504968	Drosophila melanogaster	rho guanine nucleotide exchange factor 4	180	22
1830	gi16197921	Drosophila melanogaster	LD03170p	180	22
1831	ABB12353	Homo sapiens	HYSE- Human bone marrow expressed protein SEQ ID NO: 107.	199	30
1831	gi20452161	Canis familiaris	retinitis pigmentosa GTPase regulator	143	24
1831	gi2062609	Xenopus laevis	middle molecular weight neurofilament protein NF-M(1)	140	24
1832	AAB29778	Homo sapiens	RHOD- Human MSF-derived tribonectin.	148	18
1832	gi142161.	Anaplasma marginale	surface antigen Amf105	141	25
1832	gi4808177	Drosophila subobscura	largest subunit of the RNA polymerase II complex	141	20
1833	AAM66321	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 26627.	424	51
1833	AAM53933	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 26038.	424	51
1833	gi 6723273 d bj BAA8965 9.1	Baboon endogenous virus strain M7	gag-pol precursor polyprotein	357	47

194 Table 2

OFC	1 1 222222	Species	Description	Score	%
SEQ ID NO:	Accession No.	Species	Description	Score	Identity
1834	AAM88756	Homo sapiens	HUMA- Human immune/haematopoietic antigen SEQ ID NO:16349.	208	100
1834	gi20417	Persea americana	cellulase	77	34
1834	gi153337	Streptomyces tenebrarius	kanamycin-apramycin resistance methylase	69	26
1837	AAY02893	Homo sapiens	HUMA- Fragment of human secreted protein encoded by gene 92.	76	41
1837	AAY99429	Homo sapiens	GETH Human PRO1563 (UNQ769) amino acid sequence SEQ ID NO:317.	73	35
1837	gi6634084	Drosophila melanogaster	malate dehydrogenase (NADP- dependent oxaloacetate decarboxylating), malic enzyme	73	39
1838	gi2865602	Saccharopolyspo ra sp.	SapI M2 methyltransferase	77	37
1838	gi3089358	Rattus norvegicus	MARRLC2A ·	75	33
1838	gi 2865602 g b AAC9718 2.1	Saccharopolyspo ra sp.	SapI M2 methyltransferase	77	37
1839	AAM69149	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 29455.	154	96
1839	AAM56768	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 28873.	154	96
1839	AAW96209	Homo sapiens	SMIK Amyloid precursor protein (APP) C-terminal fragment.	102	78
1840	gi9946563	Pseudomonas aeruginosa	probable type II secretion system protein	81	36
1840	gi21108565	Xanthomonas axonopodis pv. citri str. 306	pseudouridylate synthase	75	35
1840	ABB04714	Homo sapiens	SHAN- Human PP1744 protein SEQ ID NO:23.	74	31
1841	gi1491949	Molluscum contagiosum virus subtype 1	MC006L	85	30
1841	AAM42085	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 7016.	81	27
1841	AAM40299	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 3444.	81	27
1842	gi20381413	Homo sapiens	Similar to LOC160680	216	44
1842	gi13592175	Leishmania major	ppg3	144	24
1842	gi5420387	Leishmania major	proteophosphoglycan	140	23
1843	AAB87181	Homo sapiens	MILL- Human secreted protein MANGO 349 E41D variant, SEQ ID NO:231.	278	42
1843	AAB87128	Homo sapiens	MILL- Human secreted protein MANGO 349, SEQ ID NO:130.	278	42
1843	AAB87179	Homo sapiens	MILL- Human secreted protein MANGO 349 I21K variant, SEQ ID	276	41

195 Table 2

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
			NO:227.		
1844	AAE14341	Homo sapiens	INCY- Human protease PRTS-6 protein.	886	93
1844	gi16768276	Drosophila melanogaster	GH27809p	290	41
1844	gi2655204	Mus musculus	ubiquitin-specific protease	258	35
1846	AAY88300	Homo sapiens	MILL- Human TANGO 187-3 protein.	1334	90
1846	gi13097780	Homo sapiens	Similar to RIKEN cDNA 2810037C14 gene	1326	90
1846	AAY88296	Homo sapiens	MILL- Human TANGO 187-2/3 protein.	1312	87
1847	AAG74984	Homo sapiens	HUMA- Human colon cancer antigen protein SEQ ID NO:5748.	75	32
1847	gi17352449	Rattus norvegicus	ErbB3/Her3 precursor	74	38
1847	gi 20860870 ref XP_1256 64.1	Mus musculus	similar to H4(D10S170) protein	. 75	32
1848	gi3123530	Fowlpox virus	fpI3L, orthologue of vaccinia I3L	75	27
1848	gi5902659	Drosophila melanogaster	ring canal protein	70	27
1848	gi 18110218 ref NP_4765 89.2	Drosophila melanogaster	kel-P2	70	27
1849	gi2065210	Mus musculus	Pro-Pol-dUTPase polyprotein	614	78
1849	AAM65715	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 26021.	548	73
1849	AAM53338	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 25443.	548	73
1850	gi10999071	Lophognathus longirostris	NADH dehydrogenase subunit 2	74	23
1850	gi18537243	Human immunodeficienc y virus type 1	envelope glycoprotein	74	29
1850	gi 10999071 gb AAG006 22.2 AF128 462_2	Lophognathus longirostris	NADH dehydrogenase subunit 2	74	23
1851	gi 17448210 ref[XP_0685 03.1	Homo sapiens	similar to 60 kDa heat shock protein, mitochondrial precursor (Hsp60) (60 kDa chaperonin) (CPN60) (Heat shock protein 60) (HSP-60) (Mitochondrial matrix protein P1) (P60 lymphocyte protein) (HuCHA60)	72	28
1852	gi1164937	Saccharomyces cerevisiae	YOR3160w	74	31
1852	gi3176662	Arabidopsis thaliana	Similar to mannosyl-oligosaccharide glucosidase gb X87237 from Homo sapiens.	73	31
1852	gi13398928	Arabidopsis thaliana	alphá-glucosidase 1	73	31
1853	gi 20889364	Mus musculus	similar to hepatitis A virus cellular	76	36

196 Table 2

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
2,00	ref XP_1384 29.1		receptor 1; T cell immunoglobin domain and mucin doamin protein 1		
1853	gi 21288202 gb EAA005 23.1	Anopheles gambiae str. PEST	agCP9342	71	32
1854	AAB88481	Homo sapiens	HELI- Human membrane or secretory protein clone PSEC0251.	776	99
1854	AAE03835	Homo sapiens	HUMA- Human gene 18 encoded secreted protein HFKHW50, SEQ ID NO: 81.	776	99
1854	AAE03863	Homo sapiens	HUMA- Human gene 18 encoded secreted protein HFKHW50, SEQ ID NO:109.	716	97
1855	gi1663748	Chlamydomonas reinhardtii	dynein heavy chain 7	82	29
1855	gi1663744	Chlamydomonas reinhardtii	dynein heavy chain 5	80	28
1855	gi1663738	Chlamydomonas reinhardtii	dynein heavy chain 2	80	27
1856	gi18032120	Gallus gallus	shal-like voltage-gated potassium channel	75	23
1856	gi1408569	Haemophilus influenzae	adhesion and penetration protein	71	28
1856	gi 18032120 gb AAL566 33.1 AF075 160 1	Gallus gallus	shal-like voltage-gated potassium channel	75	23
1857	AAM67180	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 27486.	129	44
1857	AAM54795	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 26900.	129	44
1857	gi 21040255 ref NP_6319 07.1	Homo sapiens	splicing factor, arginine/serine-rich 12	109	29
1858	gi21392190	Drosophila melanogaster	RE74758p	71	39
1858	gi9954108	Trypanosoma cruzi	RNA binding protein RGGm	68	40
1858	gi20302994	Medicago truncatula	nodule-specific glycine-rich protein 1C	66	32
1859	gi 20536244 ref XP_0605 05.4	Homo sapiens	similar to autoantigen La	72	30
1860	gi 17541362 ref[NP_5024 09.1	Caenorhabditis elegans	K08E7.5.p	103	29
1860	gi 17446900 ref XP_0658 33.1	Homo sapiens	similar to DNA-directed RNA polymerase (EC 2.7.7.6) II largest chain - Mastigamoeba invertens (fragment)	100	34
1860	gi 9628166 r ef NP_0427	African swine fever virus	CD2 homolog	98	30

197 Table 2

SEQ	Accession	Species	Description	Score	%
ID	No.	_	•		Identity
NO:	L				
	52.1				
1861	AAY70691	Homo sapiens	DAND Human membrane attractin-2.	162	40
1861	AAY70690	Homo sapiens	DAND Human membrane attractin-1.	162	40
1861	gi12275390	Rattus	membrane attractin	162	40
	gizzzio	norvegicus		102	"
1862	gi10039425	Equus caballus	ALR protein	81	28
1862	gi13529521	Mus musculus	Similar to elastin microfibril interface	80	32
			located protein		32
1862	AAM40414	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 3559.	79	39
1863	gi 16588389 gb AAL267 87.1 AF304 442_1	Homo sapiens	B lymphocyte activation-related protein BC-1514	247	52
1863	gi 20479028 ref XP_1137 29.1	Homo sapiens	similar to B lymphocyte activation- related protein BC-1514	117	68
1863	gi 21301715 gb EAA138 60.1	Anopheles gambiae str. PEST	agCP8366	85	41
1864	AAU15851	Homo sapiens	HUMA- Human novel secreted protein, Seq ID 804.	1275	78
1864	AAU16312	Homo sapiens	HUMA- Human novel secreted protein, Seq ID 1265.	1123	76
1864	AAG02054	Homo sapiens	GEST Human secreted protein, SEQ ID NO: 6135.	308	91
1865	AAB94953	Homo sapiens	HELI- Human protein sequence SEQ ID NO:16485.	86	29
1865	gi3746787	Homo sapiens	SYT interacting protein SIP	86	29
1865	gi15022507	Homo sapiens	coactivator activator	86	29
1866	gi17133332	Nostoc sp. PCC 7120	preprotein translocase SecY subunit	68	43
1866	gi 13489110 ref[NP_0687 73.1	Homo sapiens	gap junction protein, alpha 3, 46kD (connexin 46)	66	40
1867	gi706930	Rattus norvegicus	cyclic GMP stimulated phosphodiesterase	191	95
1867	AAV54762_ aa1	Homo sapiens	UNIW Human cGS-PDE cDNA DNA sequence.	137	100
1867	AAV36157 aa1	Homo sapiens	UNIW Human cyclic-GMP-nucleotide phosphodiesterase cDNA.	137	100
1868	AAB95695	Homo sapiens	HELI- Human protein sequence SEQ ID NO:18516.	112	27
1868	AAY91447	Homo sapiens	HUMA- Human secreted protein sequence encoded by gene 48 SEQ ID NO:168.	112	27
1868	AAY91393	Homo sapiens	HUMA- Human secreted protein sequence encoded by gene 48 SEQ ID NO:114.	112	27
1870	AAU07886	Homo sapiens	WHED Polypeptide sequence for human hspG15.	1454	94
1870	gi13603891	Homo sapiens	MOV10-like 1	1454	94
1870	gi13603857	Mus musculus	MOV10-like 1	954	77
1871	AAM96652	Homo sapiens	HUMA- Human reproductive system	484	96

198 Table 2

			Table 2	Score	%
SEQ ID	Accession No.	Species	Description	Score	Identity
NO:			related antigen SEQ ID NO: 5310.		
1001	110676650	Ti	FLJ00225 protein	433	95
1871	gi18676652	Homo sapiens Berneuxia	maturase R	70	32
1871	gi21386760	thibetica		73	29
1872	AAQ90304_ aa1	Homo sapiens	NISR Human thryoid peroxidase gene.		
1872	AAW48781	Homo sapiens	RSRR- Thyroid peroxidase.	73	29
1872	AAR75689	Homo sapiens	NISR Human thryoid peroxidase.	73	29
1873	AAG03774	Homo sapiens	GEST Human secreted protein, SEQ ID NO: 7855.	228	90
1873	gi338288	Homo sapiens	preprosomatostatin I	228	90
1873	gi342299	Macaca fascicularis	preprosomatostatin	228	90
1875	AAR30418	Homo sapiens	DAND Nearly complete p107 protein.	76	30
1875	gi347378	Homo sapiens	p107	76	30
1875	gi157871	Drosophila melanogaster	P glycoprotein	76	24
1876	ABB17955	Homo sapiens	HUMA- Human nervous system related polypeptide SEQ ID NO 6612.	186	40
1876	AAS17764_ aa1	Homo sapiens	GENA- Human Genomic DNA for CRYBB1.	167	39
1876	AAO02331	Homo sapiens	HYSE-Human polypeptide SEQ ID NO 16223.	165	42
1877	gi 59977 em b CAA7866 2.1	Human endogenous retrovirus	tripartite fusion transcript PLA2L	224	76
1878	ABB84943	Homo sapiens	GETH Human PRO1556 protein sequence SEQ ID NO:254.	1056	93
1878	AAB31670	Homo sapiens	PROT- Amino acid sequence of a human protein having a hydrophobic domain.	1056	93
1878	AAB47295	Homo sapiens	GETH PRO1556 polypeptide.	1056	93
1879	ABB15861	Homo sapiens	HUMA- Human nervous system related polypeptide SEQ ID NO 4518.	73	36
1880	AAU83117	Homo sapiens	ZYMO Novel secreted protein Z799543G2P.	66	54
1880	gi12723186	Lactococcus lactis subsp. lactis	outer membrane lipoprotein precursor	66	26
1881	gi609624	Vibrio cholerae	EpsC	73	29
1882	gi12667456	Rattus norvegicus	synaptotagmin VIId	86	32
1882	gi12667454	Rattus norvegicus	synaptotagmin VIIc	85	33
1882	gi334072	Pseudorabies virus	ORF-3 protein	83	35
1883	gi1747	Oryctolagus cuniculus	trichohyalin	119	29
1883	gi2072290	Xenopus laevis	XL-INCENP	100	27
1883	gi12584554	Human coxsackievirus B3	polyprotein	96	25
1884	gi 15601413 ref NP_2330	Vibrio cholerae	sucrose-6-phosphate dehydrogenase	65	55

199 Table 2

SEQ	Accession	Species	Description	Score	%
ID	No.	Species .			Identity
NO:					ļ
	44.1				
1885	gi16878287	Homo sapiens	Similar to C-terminal modulator protein	74	35
1885	gi15866714	Homo sapiens	C-terminal modulator protein	74	35
1885	AAO06984	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 20876.	70	60
1887	AAW25939	Homo sapiens	CNRS T-cell receptor V-beta-5.1	601	99
			peptide fragment.	601	99
1887.	gi36973	Homo sapiens	T-cell receptor beta-chain	600	100
1887	gi1552498	Homo sapiens	V segment translation product	198	73
1888	gi18874468	Homo sapiens	partitioning-defective 3-like protein splice variant c		
1888	gi16903870	Homo sapiens	partitioning-defective 3-like protein splice variant b	198	73
1888	gi16903868	Homo sapiens	partitioning-defective 3-like protein splice variant a	198	73
1889	gi21489377	Homo sapiens	MAPA protein	1620	99
1889	gi21489330	Bos taurus	MAPA protein	833	56
1889	gi21489379	Mus musculus	MAPA protein	630	48
1890	AAY10874	Homo sapiens	HUMA- Amino acid sequence of a human secreted protein.	503	100
1890	gi17429674	Ralstonia	PROBABLE LIPOPROTEIN	73	44
1001	-:157021A1	solanacearum Homo sapiens	c349E10.1.1 (novel protein, isoform 1)	180	46
1891	gi15723141	Homo sapiens	HUMA- Breast and ovarian cancer	174	47
1891	AAB59006	riomo sapiens	associated antigen protein sequence SEQ ID 714.		
1001	gi19353342	Mus musculus	RIKEN cDNA 9530058B02 gene	162	47
1891 1892	AAM86086	Homo sapiens	HUMA- Human	95	53
1072	AAWOOOO	110mo suprous	immune/haematopoietic antigen SEQ ID NO:13679.		
1892	AAO05973	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 19865.	94	82
1892	AAO09418	Homo sapiens	HYSE-Human polypeptide SEQ ID NO 23310.	91	70
1893	gi8778607	Arabidopsis thaliana	F5M15.23	71	25
1894	AAM65951	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 26257.	69	38
1894	AAM53568	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 25673.	69	38
1894	gi 20832567 ref[XP_1335 24.1	Mus musculus	similar to Heterogeneous nuclear ribonucleoprotein A3 (hnRNP A3) (D10S102)	163	76
1895	AAM66299	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 26605.	440	83
1895	AAM53913	Homo sapiens.	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 26018.	440	83
1895	gi 6723273 d bj BAA8965 9.1	Baboon endogenous virus strain M7	gag-pol precursor polyprotein	270	45

200 Table 2

			14010 2		0.4
SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
1896	gi4883988	Bartonella clarridgeiae	cell division protein FtsZ	68	28
1897	AAO13209	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 27101.	142	54
1897	AAM66708	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 27014.	124	46
1897	AAM54310	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 26415.	124	46
1898	gi2565268	Drosophila virilis	pore-forming protein MIP family	75	27
1898	gi7453547	Homo sapiens	glioma tumor suppressor candidate region protein 1	75	31
1898	gi3218331	Metarhizium anisopliae	nitrogen response regulator	74	26
1899	gi9656609	Vibrio cholerae	chemotaxis protein CheA	73	32
1899	gi 20908537 ref XP_1274 14.1	Mus musculus	RIKEN cDNA 1700001L19	443	80
1899	gi 15642063 ref[NP_2316 95.1	Vibrio cholerae	chemotaxis protein CheA	73	32
1900	gi 18586105 ref XP_0914 00.1	Homo sapiens	similar to scal	203	84
1900	gi 20888279 ref XP_1465 08.1	Mus musculus	similar to spinocerebellar ataxia type 1	199	82
1901	gi338033	Homo sapiens	serum protein	90	32
1901	gi4808221	Homo sapiens	dJ1177I5.2 (serum constituent protein MSE55)	90	32
1901	gi4098993	Mus musculus	polyhomeotic 2	88	30
1902	AAB19933	Homo sapiens	INCY- Human oxidoreductase OXRD-8.	250	100
1902	gi19713043	Fusobacterium nucleatum subsp. nucleatum ATCC 25586	Iron/zinc/copper-binding protein	73	22
1902	gi 20342079 ref XP_1106 14.1	Mus musculus	RIKEN cDNA 1700003E16	77	25
1903	gi342279	Macaca nemestrina	opiomelanocortin	231	49
1903	gi28342	Homo sapiens	proopiomelanocortin	230	49
1903	gi190183	Homo sapiens	opiomelanocortin	230	49
1904	gi 11037117 gb AAG274 85.1 AF194 537_1	Homo sapiens	NAG13	180	53
1905	gi5360984	Homo sapiens	dJ228H13.1 (similar to Ribosomal protein L21e)	152	72
1905	AAB44126	Homo sapiens	HUMA- Human cancer associated protein sequence SEQ ID NO:1571.	150	83

201 Table 2

SEQ ID	Accession No.	Species	Description	Score	% Identity
NO: 1905	gi550015	Homo sapiens	ribosomal protein L21	150	83
1906	gi2654610	Pseudomonas aeruginosa	arginine/ornithine succinyltransferase AI subunit	79	25
1906	gi17226812	Botryotinia fuckeliana	histidine kinase	72	33
1906	gi16904238	Botryotinia fuckeliana	two-component osmosensing histidine kinase BOS1p	72	33
1908	gi330359	Human herpesvirus 4	nuclear antigen precursor	91	37
1908	gi1632793	Human herpesvirus 4	EBNA3C (EBNA 4B) latent protein	91	37
1908	gi1184677	Candida albicans	hyphal wall protein 1	90	38
1909	gi13177635	Rattus norvegicus	phospholipase C beta-3	72	26
1909	gi1150880	Mus musculus	phospholipase C beta3	71	26
1909	gi17105044	Simian adenovirus 25	10.1 kDa	71	31
1910	gi9857054	Leishmania major	possible CG7055 protein	71	47
1910	gi1617560	Leishmania major	LCFACAS5; L5701.2	67	33
1910	gi 9857054 e mb CAC040 11.1	Leishmania major	possible CG7055 protein	71	47
1911	AAY87278	Homo sapiens	INCY- Human signal peptide containing protein HSPP-55 SEQ ID NO:55.	501	82
1911	AAB18912	Homo sapiens	GETH A novel polypeptide designated PRO1889.	501	82
1911	AAU27659	Homo sapiens	ZYMO Human protein AFP513481.	416	77
1912	gi2065210	Mus musculus	Pro-Pol-dUTPase polyprotein	434	80
1912	gi 18676710 dbj BAB850 07.1	Homo sapiens	FLJ00254 protein	270	64
1913	gi5713196	Caenorhabditis elegans	liprin-alpha homolog SYD-2	479	38
1913	gi930343	Homo sapiens	LAR-interacting protein 1b	467 .	39
1913	gi930341	Homo sapiens	LAR-interacting protein 1a	467	39
1914	gi6651021	Mus musculus	semaphorin cytoplasmic domain- associated protein 3B	274	63
1914	gi6651019	Mus musculus	semaphorin cytoplasmic domain- associated protein 3A	274	63
1914	AAM25720	Homo sapiens	HYSE- Human protein sequence SEQ ID NO:1235.	266	61
1915	gi902214	Zea mays	RNA polymerase beta' subunit-2	72	24
1915	gi12482	Zea mays	RNA polymerase beta-2 subunit (AA 1-1527)	72	24
1915	gi 11467184 ref NP_0430 17.1	Zea mays	RNA polymerase beta' subunit-2	72	24
1916	gi1655432	Mus musculus	plexin 2	1135	58
1916	AAM93435	Homo sapiens	HELI- Human polypeptide, SEQ ID NO: 3070.	1132	57
1916	gi961515	Xenopus laevis	plexin	1126	54

202 Table 2

SEQ	Accession	Species	Description	Score	%
ID NO:	No.				Identity
1917	gi15559064	Mus musculus	SNAG1	86	38
1917	gi 20863586 ref XP_1415 81.1	Mus musculus	similar to dJ551D2.5 (novel protein)	88	30
1917	gi 18644890 ref NP_5706 14.1	Mus musculus	sorting nexin associated golgi protein 1	86	38
1918	gi19528383	Drosophila melanogaster	RE04404p	67	32
1919	AAM77461	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 37767.	189	79
1919	AAM64684	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 36789.	189	79
1919	gi 17477135 ref XP_0634 15.1	Homo sapiens	similar to embryonal stem cell specific gene 1	263	75
1920	gi2623757	Rattus norvegicus	neurabin	172	97
1920	gi2827450	Gallus gallus	KS5 protein	154	88
1920	gi13991829	Xenopus laevis	neurabin	145	83
1923	gi5532302	Heterocapsa triquetra	PSII CP47 apoprotein	75	29
1923	gi1881335	Bacillus subtilis	SIMILAR TO YQFU, YXKD, YTTB OF B. SUBTILIS.	68	38
1923	gi 5532302 g b AAD4470 1.1	Heterocapsa triquetra	PSII CP47 apoprotein	75	29
1924	gi6855429	Leishmania major	possible mucin 1 precursor	77	33
1924	gi5832816	Caenorhabditis elegans	contains similarity to Pfam domain: PF01694 (Rhomboid family), Score=61.7, E-value=5.1e-15, N=1	74	34
1924	AAB51976	Homo sapiens	HUMA- Human secreted protein sequence encoded by gene 48 SEQ ID NO:108.	72	38
1925	AAB51635	Homo sapiens	ROSE/ Human secreted protein sequence encoded by gene 16 SEQ ID NO:75.	205	31
1925	AAB47128	Homo sapiens	INCY- CDIFF-6, Incyte ID No. 2009435CD1.	199	34
1925	ABB55766	Homo sapiens	FECH/ Human polypeptide SEQ ID NO 138.	197	38
1926	AAG89279	Homo sapiens	GEST Human secreted protein, SEQ ID NO: 399.	330	44
1926	AAB70690	Homo sapiens	SREN- Human hDPP protein sequence SEQ ID NO:7.	319	44
1926	gi13182757	Homo sapiens	НТРАР	319	44
1927	gi13177290	Ectocarpus siliculosus virus	EsV-1-8	69	36
1928	gi18700171	Arabidopsis thaliana	AT5g20480/F7C8_70	86	39
1928	gi915207	Sus scrofa	gastric mucin	83	29

203 Table 2

SEQ	Accession	Species	Description	Score	%
ID NO:	No.				Identity
1928	gi532113	Caenorhabditis elegans	homeotic region most like HMPB_DROME: homeotic proboscipedia protein	79	27
1929	ABB12295	Homo sapiens	HYSE- Human secreted protein homologue, SEQ ID NO:2665.	135	59
1929	AAG04080	Homo sapiens	GEST Human secreted protein, SEQ ID NO: 8161.	78	38
1929	gi9279807	Drosophila melanogaster	cortactin	77	27
1930	AAV81204_ aal	Homo sapiens	GEHO Human CD7 cDNA.	872	73
1930	AAB36657	Homo sapiens	IMMV Human CD7 protein sequence SEQ ID NO:2.	872	73
1930	AAU02438	Homo sapiens	GEHO Human lymphocyte cell surface antigen CD7 polypeptide.	872	73
1931	gi2636248	Bacillus subtilis	similar to transaldolase (pentose phosphate)	73	29
1931	gi 21398633 ref NP_6546 18.1	Bacillus anthracis A2012	Transaldolase, Transaldolase [Bacillus	74	29
1931	gi 16080764 ref[NP_3915 92.1	Bacillus subtilis	similar to transaldolase (pentose phosphate)	73	29
1932	AAB43545	Homo sapiens	HUMA- Human cancer associated protein sequence SEQ ID NO:990.	73	46
1932	AAM40234	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 3379.	71	26
1934	gi3129962	Gallus gallus	B locus Lectin like Natural Killer cell surface protein	82	30
1934	AAB93791	Homo sapiens	HELI- Human protein sequence SEQ ID NO:13545.	77	38
1934	gi2541864	Drosophila melanogaster	DAD polypeptide	77	32
1935	gi 4959869 g b AAD3453 6.1	Murine leukemia virus	polymerase	335	52
1935	gi 6524624 g b AAF15098 .1	Phascolarctos cinereus	pol protein	331	52
1935	gi 9630313 r ef NP_0567 90.1	Gibbon ape leukemia virus	pol polyprotein	328	52
1936	gi6562332	Arabidopsis thaliana	diaminopimelate decarboxylase	86	30
1936	gi7573355	Arabidopsis thaliana	diaminopimelate decarboxylase-like protein	86	30
1936	gi15146250	Arabidopsis thaliana	AT5g11880/F14F18_50	86	30
1939	AAU07442	Homo sapiens	GETH Human Wnt1 Upregulated protein 2 (WUP2).	300	100
1939	AAU07441	Homo sapiens	GETH Human Wnt1 Upregulated protein 1 (WUP1).	300	100
1939	AAB56802	Homo sapiens	ROSE/ Human prostate cancer antigen protein sequence SEQ ID NO:1380.	300	100

204 Table 2

SEQ	Accession	Species	Description	Score	%
ID	No.	opecies	Doser puon		Identity
NO:	110.				
1940	gi5802814	Homo sapiens	Gag-Pro-Pol-Env protein	587	57
1940	gi4185939	Human endogenous retrovirus K	pol protein	586	57
1940	gi5802821	Homo sapiens	Gag-Pro-Pol protein	586	57
1941	AAU83088	Homo sapiens	ZYMO Novel secreted protein Z2812G3P.	586	100
1941	AAB20275	Homo sapiens	SCHE Human interleukin DNAX 80.	535	76
1941	AAB20277	Homo sapiens	SCHE Human interleukin DNAX 80 variant.	529	76
1942	AAM06866	Homo sapiens	HYSE- Human foetal protein, SEQ ID NO: 1074.	994	100
1942	gi17426446	Homo sapiens	bA351K23.5 (novel protein)	933	54
1942	gi15099951	Mus musculus	diacylglycerol acyltransferase 2	915	55
1943	AAM06596	Homo sapiens	HYSE-Human foetal protein, SEQ ID NO: 327.	406	98
1943	gi 15640499 ref[NP_2301 26.1	Vibrio cholerae	S-adenosylmethionine synthase	67	51
1945	AAG75561	Homo sapiens	HUMA- Human colon cancer antigen protein SEQ ID NO:6325.	327	100
1945	gi16416764	Homo sapiens	FKSG16	327	100
1945	gi13905212	Mus musculus	RIKEN cDNA 1200006F02 gene	261	79
1946	gi288174	Mus musculus	Oct2b	97	85
1946	gi53490	Mus musculus	Oct2.5 transcription factor	97	85
1946	gi9937478	Drosophila melanogaster	thyroid hormone receptor-associated protein TRAP170	72	39
1947	AAM66980	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 27286.	170	69
1947	AAM54574	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 26679.	170	69
1947	AAM75189	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 35495.	159	86
1948	AAY10874	Homo sapiens	HUMA- Amino acid sequence of a human secreted protein.	100	100
1949	AAA27155_ aa1	Homo sapiens	GENE- Human P2 DNA.	100	100
1949	AAY94475	Homo sapiens	GENE- Predicted translation product of human P2 splice isoform, P2-B.	100	100
1949	AAY94474	Homo sapiens	GENE- Human P2 protein.	100	100
1950	gi9502082	Homo sapiens	tubby super-family protein	80	40
1950	gi9502080	Mus musculus	tubby super-family protein	77	41
1950	gi8118432	Oryza sativa	beta-expansin	73	35
1951	gi4808994	walleye epidermal hyperplasia virus type 1	envelope polyprotein	69	46
1951	gi 15642893 ref[NP_2279 34.1	Thermotoga maritima	ribomucleotide reductase, B12- dependent	66	46
1952	AAB80264	Homo sapiens	GETH Human PRO332 protein.	577	61

205 Table 2

SEQ ID	Accession No.	Species	Description	Score	% Identity
NO:	AAB33425	Homo sapiens	GETH Human PRO332 protein	577	61
		•	UNQ293 SEQ ID NO:57. GETH Amino acid sequence of protein	577	61
1952	AAY13396	Homo sapiens	PRO332.		
1953	gi16648392	Drosophila melanogaster	LD39243p	449	61
1953	AAG73684	Homo sapiens	HUMA- Human colon cancer antigen protein SEQ ID NO:4448.	371	55
1953	AAY48312	Homo sapiens	META- Human prostate cancerassociated protein 9.	371	55
1954	AAU84348	Homo sapiens	BAAK/ Protein MMP2 differentially expressed in breast cancer tissue.	2068	94
1954	ABB90738	Homo sapiens	UYJO Human Tumour Endothelial Marker polypeptide SEQ ID NO 208.	2068	94
1954	AAB84607	Homo sapiens	PFIZ Amino acid sequence of matrix metalloproteinase gelatinase A.	2068	94
1955	gi16769680	Drosophila melanogaster	LD46678p	245	35
1955	AAM66797	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 27103.	148	80 .
1955	AAM54396	Homo sapiens	MOLE-Human brain expressed single exon probe encoded protein SEQ ID NO: 26501.	148	80
1957	AAB80242	Homo sapiens	GETH Human PRO236 protein.	648	97
1957	AAM93378	Homo sapiens	HELI- Human polypeptide, SEQ ID NO: 2955.	648	97
1957	A-AB12157	Homo sapiens	PROT- Hydrophobic domain protein from clone HP03165 isolated from KB cells.	648	97
1958	AAM41696	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 6627.	234	47
1958	AAU17119	Homo sapiens	HUMA- Novel signal transduction pathway protein, Seq ID 684.	229	46
1958	gi16741621	Homo sapiens	Similar to RAB37, member of RAS oncogene family	228	47
1959	gi18025526	cercopithicine herpesvirus 15	LF3	140	30
1959	gi3153821	Mus musculus	plenty-of-prolines-101; POP101; SH3- philo-protein	137	25
1959	gi39255	Actinomyces viscosus	sialidase	129	28
1960	ABB12366	Homo sapiens	HYSE- Human bone marrow expressed protein SEQ ID NO: 120.	400	90
1960	AAO12936	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 26828.	115	95
1960	AAM84898	Homo sapiens	HUMA- Human immune/haematopoietic antigen SEQ ID NO:12491.	113	82
1961	gi19110438	Homo sapiens	polycystin-1L1	190	94
1961	gi3115393	Rana pipiens .	guanylate cyclase inhibitory protein	80	35
1961	gi3462887	Rattus norvegicus	alpha-fodrin	68	31
1962	AAU83130	Homo sapiens	ZYMO Novel secreted protein	1076	100

206 Table 2

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
NO:	 		Z835892G6P.		
1962	gi1890354	Brassica napus	L-ascorbate peroxidase	80	33
1962	gi7529611	Leishmania major	hypoothetical protein L787.06	79	31
1963	AAG78679	Homo sapiens	BODE- Human thrombotic protein 46.	467	86
1963	AAY87347	Homo sapiens	INCY- Human signal peptide containing protein HSPP-124 SEQ ID NO:124.	467	86
1963	AAB01431	Homo sapiens	MILL- Human TANGO 224 (form 2).	467	86
1964	gi3413504	Rattus norvegicus	Bassoon	81	26
1964	gi330452	human herpesvirus 5	DNA polymerase	79	28
1964	AAV69717_ aa1	Homo sapiens	LUDW- Tumour rejection antigen precursor MAGE-C1 cDNA.	73	33
1965	gi 2323287 g b AAB6652 8.1	multiple sclerosis associated retrovirus	polyprotein	286	64
1965	gi 2351212 d bj BAA2206 4.1	Friend murine leukemia virus	gag-pol polyprotein (precursor protein)	179	47
1965	gi 9629516 r ef NP_0447 38.1	Rauscher murine leukemia virus	Pol	179	47
1966	gi 2323287 g b AAB6652 8.1	multiple sclerosis associated retrovirus	polyprotein	476	65
1966	gi 2281588 g b AAB6416 0.1	synthetic construct	Pol	323	51
1966	gi 9626961 r ef NP_0579 33.1	Murine leukemia virus	Pr180	323	51
1967	gi2065210	Mus musculus	Pro-Pol-dUTPase polyprotein	518	73
1967	AAM65715	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 26021.	464	69
1967	AAM53338	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 25443.	464	69
1968	AAG78149	Homo sapiens	BODE- Human polypeptide- cytochrome b5-13.	388	82
1968	gi3150438	Human endogenous retrovirus K	pol-env	345	55
1968	gi1469243	Human endogenous retrovirus K	pol/env	345	55
1969	gi21113108	Xanthomonas campestris pv. campestris str. ATCC 33913	TonB-dependent receptor	78	31

.5

207 Table 2

SEQ ID	Accession No.	Species	Description	Score	% Identity
NO: 1969	gi476274	Homo sapiens	R kappa B	77	23
1969	gi4206769	Acanthamoeba castellanii	myosin I heavy chain kinase	76	27
1970	gi 13310191 gb AAK181 89.1 AF331 500_1	multiple sclerosis associated retrovirus element	recombinant envelope protein	244	77
1970	gi 8272468 g b AAF74215 .1 AF15696 3 1	Homo sapiens	envelope protein	219	81
1970	gi 21103962 gb AAM331 41.1	Homo sapiens	enverin-2	219	77
1971	AAU83621	Homo sapiens	GETH Human PRO protein, Seq ID No 60.	320	100
1971	AAO05826	Homo sapiens	HYSE-Human polypeptide SEQ ID NO 19718.	295	93
1971	AAM39560	Homo sapiens	HYSE-Human polypeptide SEQ ID NO 2705.	194	56
1972	gi6456112	Mus musculus	F-box protein FBX15	128	44
1972	gi21428946	Drosophila melanogaster	GH22104p	74	31
1972	gi 6456112 g b AAF09139	Mus musculus	F-box protein FBX15	128	44
1973	gi148270	Escherichia coli	lambda-integrase	550	94
1973	gi1790244	Escherichia coli K12	site-specific recombinase, acts on cer sequence of ColE1, effects chromosome segregation at cell division	550	94
1973	gi13364217	Escherichia coli O157:H7	site-specific recombinase XerC	544	92
1974	gi1805552	Escherichia coli	FORMATE HYDROGENLYASE TRANSCRIPTIONAL ACTIVATOR.	887	88
1974	gi1616960	Escherichia coli	HyfR	887	88
1974	gi7920396	Salmonella typhimurium	formate hydrogenlyase activator protein	522	54
1975	gi409795	Escherichia coli	No definition line found	1175	99
1975	gi15074592	Sinorhizobium meliloti	HYPOTHETICAL TRANSMEMBRANE PROTEIN	378	33
1975	gi17740718	Agrobacterium tumefaciens str. C58 (U. Washington)	Na+/Pi-cotransporter	372	34
1976	AAB82047	Homo sapiens	IGAK- Human mast cell surface antigen.	163	23
1976	gi12654783	Homo sapiens	Similar to loss of heterozygosity, 11, chromosomal region 2, gene A	163	23
1976	AAZ45690_ aa1	Homo sapiens	REGC cDNA sequence encoding the human minor vault protein p193.	108	25
1977	ABB56523	Homo sapiens	MERI Human NMDA receptor subunit SEQ ID NO 44.	73	28

208 Table 2

			1 able 2	Carre	0/
SEQ ID	Accession No.	Species	Description	Score	% Identity
NO: 1977	AAW87504	Homo sapiens	SIBI- Human N-methyl-D-aspartate receptor subunit encoded by clone NMDA24.	73	28
1978	AAG00471	Homo sapiens	GEST Human secreted protein, SEQ ID NO: 4552.	285	93
1978	gi298489	Papio hamadryas	SP-10	133	34
1978	gi452582	Vulpes vulpes	fox sperm acrosomal protein FSA-Acr.1	132	34
1979	AAB87128	Homo sapiens	MILL- Human secreted protein MANGO 349, SEQ ID NO:130.	490	86
1979	AAB87179	Homo sapiens	MILL- Human secreted protein MANGO 349 I21K variant, SEQ ID NO:227.	488	85
1979	AAB87181	Homo sapiens	MILL- Human secreted protein MANGO 349 E41D variant, SEQ ID NO:231.	487	85
1982	AAM75035	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 35341.	109	67
1982	AAM62231	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 34336.	109	67
1982	gi11967423	Mus musculus	vomeronasal receptor V1RC5	105	76
1983	AAG89276	Homo sapiens	GEST Human secreted protein, SEQ ID NO: 396.	224	46
1983	AAB56565	Homo sapiens	ROSE/ Human prostate cancer antigen protein sequence SEQ ID NO:1143.	99	40
1983	AAY44987	Homo sapiens	INCY- Human epidermal protein-4.	78	28
1984	AAB95089	Homo sapiens	HELI- Human protein sequence SEQ ID NO:17025.	498	97
1984	AAM06608	Homo sapiens	HYSE- Human foetal protein, SEQ ID NO: 339.	495	96
1984	gi497890	unidentified nitrogen-fixing bacteria	alpha subunit of dinitrogenase reductase (Fe protein)	73	24
1985	gi 17455728 ref XP_0635 94.1	Homo sapiens	similar to Zinc-finger protein ubi-d4 (Requiem) (Apoptosis response zinc finger protein)	71	37
1986	gi21428886	Drosophila melanogaster	GH12469p	69	34
1987	gi7767529	Bos taurus	cyclophilin I	364	75
1987	gi8699209	Canis familiaris	cyclophilin A	361	88
1987	gi11641132	Sus scrofa	cyclophilin	361	88
1988	gi15073168	Sinorhizobium meliloti	PROBABLE TRANSLATION INITIATION FACTOR IF-2 PROTEIN	81	37
1988	gi1181352	Paramecium bursaria Chlorella virus 1	Pro-rich protein; PIPG (8X)	78	25
1988	gi493242	Feline herpesvirus l	Feline herpesvirus type 1 immediate early protein	77	20
1989	AAM65707	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 26013.	134	66

209 Table 2

SEQ ID	Accession No.	Species	Description	Score	% Identity
NO: 1989	AAM53330	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID	134	66
1989	gi 20475216	Homo sapiens	NO: 25435.	228	59
	ref[XP_1148 02.1	TIOTHO Bupions			
1990	AAM71181	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 31487.	110	64
1990	AAM58674	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 30779.	110	64
1990	gi21323636	Corynebacterium glutamicum ATCC 13032	Sulfate permease and related transporters (MFS superfamily)	75	26
1991	gi1932813	Xenopus laevis	dsRNA adenosine deaminase	96	34
1991	AAE10203	Homo sapiens	HYSE-Human bone marrow derived contig protein, SEQ ID NO: 68.	83	25
1991	gi3242649	Rana catesbeiana	alpha 1 type I collagen	80	30
1992	gi1181423	Paramecium bursaria Chlorella virus 1	PBCV-1 chitinase	71	41
1992	gi 21300897 gb EAA130 42.1	Anopheles gambiae str. PEST	agCP14405	72	37
1992	gi 9631828 r ef NP_0486 13.1	Paramecium bursaria Chlorella virus 1	PBCV-1 chitinase	71	41
1994	gi8248755	Plasmodium falciparum 3D7	protein phosphatase	72	25
1994	gi4104348	Campylobacter rectus	S-layer-RTX protein	70	38
1994	gi 8248755 e mb CAB628 78.2	Plasmodium falciparum 3D7	protein phosphatase	72	25
1995	gi21324402	Corynebacterium glutamicum ATCC 13032	Uncharacterized ATPase related to the helicase subunit of the Holliday junction resolvase	73	38
1995	gi 19552845 ref[NP_6008 47.1	Corynebacterium glutamicum	COG2256:Uncharacterized ATPase related to the helicase subunit of the Holliday junction resolvase	73	38
1995	gi 17533213 ref[NP_4957 77.1	Caenorhabditis elegans	F14E5.5.p	73	30
1996	gi1871223	Rickettsia typbi	crystalline surface layer protein	92	30
1996	gi6969926	Rickettsia aeschlimannii	ОтрВ	79	25
1996	gi14670347	Rickettsia felis	ОтрВ	78	25
1997	gi 20548733 ref[XP_0556 41.2	Homo sapiens	similar to gag protein	256	58
1997	gi 9739120 g b AAF97916	Bovine leukemia virus	gag	186	34

210 Table 2

SEQ ID	Accession No.	Species	Description	Score	% Identity
NO: 1997	gi 9626226 r ef NP_0568	Bovine leukemia virus	Pr44	185	34
1998	97.1 AAM79834	Homo sapiens	HYSE- Human protein SEQ ID NO 3480.	279	71
1998	AAM78850	Homo sapiens	HYSE- Human protein SEQ ID NO 1512.	279	71
1998	AAM79204	Homo sapiens	HYSE- Human protein SEQ ID NO 1866.	272	71
1999	AAM73176	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 33482.	168	48
1999	AAM60521	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 32626.	168	48
1999	gi 13929148 ref NP_1139 97.1	Rattus norvegicus	cyclic nucleotide-gated channel beta subunit 1	163	47
2000	gi1869859	human herpesvirus 2	very large tegument protein	73	30
2000	gi73,80253	Neisseria meningitidis Z2491	2-keto-4-hydroxyglutarate aldolase	70	37
2000	gi7226633	Neisseria meningitidis MC58	4-hydroxy-2-oxoglutarate aldolase/2-deydro-3-deoxyphosphogluconate aldolase	70	37
2001	gi17016969	Mus musculus	NUANCE	138	36
2001	gi6273778	Homo sapiens	trabeculin-alpha	137	33
2001	gi1675222	Mus musculus	ACF7 neural isoform 1	136	42
2002	AAM39256	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 2401.	81	29
2002	gi840789	Homo sapiens	binding regulatory factor	81	29
2002	gi17028337	Homo sapiens	regulatory factor X, 5 (influences HLA class II expression)	81	29
2003	gi2252814	Mus musculus	FOG	172	64
2003	AAR58815	Homo sapiens	USSH Human c-myc far upstream element (FUSE) binding protein (FBP)variant from HL60 clone 3-1.	103	42
2003	gi3598974	Rattus norvegicus	protein tyrosine phosphatase TD14	103	26
2004	gi11994696	Arabidopsis thaliana	contains similarity to DNA repair protein~gene_id:K7M2.11	77	28
2004	gi7209527	Mus musculus	testis-specific gene	73	24
2004	gi 17451912 ref XP_0710 83.1	Homo sapiens	similar to DNA-binding protein B	234	97
2005	AAE12023	Homo sapiens	INCY- Human G-protein coupled receptor, GCREC-2.	173	100
2005	AAG65832	Homo sapiens	FARB Human G protein-coupled receptor (GPCR).	173	100
2005	AAG68126	Homo sapiens	FARB Human 7TM-GPCR protein sequence SEQ ID NO:6.	105	78
2006	gi20068811	Homo sapiens	Rab-coupling protein	130	43
2006	gi15822596	Homo sapiens	nRip11	104	45

211 Table 2

SEQ	Accession	Species	Description	Score	%
ID NO:	No.	Species			Identity
2006	gi13377897	Homo sapiens	Rab11 interacting protein Rip11a	83	40
2007	gi 17539708 ref NP_5014 89.1	Caenorhabditis elegans	F08B4.5.p	78	42
2008	AAE10350	Homo sapiens	PFIZ Human ADAMTS-J1.4 variant protein.	504	97
2008	AAE10349	Homo sapiens	PFIZ Human ADAMTS-J1.3 variant protein.	504	97
2008	AAE10347	Homo sapiens	PFIZ Human ADAMTS-J1.1 variant protein.	504	97
2009	AAV31720_ aa1	Homo sapiens	MOUN Nucleotide sequence of the PUR-alpha gene.	87	29
2009	AAT99264_ aa1	Homo sapiens	MOUN Human PUR-alpha gene.	87	29
2009	AAQ44800_ aa1	Homo sapiens	MOUN Encodes single-stranded DNA binding (PUR) protein.	87	29
2010	gi170444	Lycopersicon esculentum	extensin (class II)	123	27
2010	gi4662641	Arabidopsis thaliana	expressed protein	116	30
2010	gi188864	Homo sapiens	mucin	115	28
2011	AAY93650	Homo sapiens	HUMA- Amino acid sequence of a human prostacyclin-stimulating factor-2.	1677	100
2011	AAS15723_ aal	Homo sapiens	CURA- DNA encoding insulin-like growth factor family related protein, NOV3.	1673	99
2011	AAE17599	Homo sapiens	INCY- Human extracellular messenger (XMES)-1 protein.	1673	99
2012	gi10440434	Homo sapiens	FLJ00052 protein	336	69
2012	gi20502870	Mus musculus	SDS3	333	68
2012	gi21430678	Drosophila melanogaster	RE74901p	170	36
2013	AAH77293_ aa1	Homo sapiens	MILL- Human ion channel protein IC32391 cDNA coding region.	214	93
2013	AAE13278	Homo sapiens	INCY- Human transporters and ion channels (TRICH)-5.	214	93
2013	AAG77969	Homo sapiens	MILL- Human ion channel protein IC32391.	214	93
2014	gi4894768	Xenopus laevis	ephrin-B2 precursor	78	30
2015	AAU77498	Homo sapiens	INCY- Human lipid metabolism enzyme, LMM-6.	1291	100
2015	ABB08205	Homo sapiens	INCY- Human lipid metabolism enzyme-5 (LME-5).	1122	100
2015	ABB07493	Homo sapiens	INCY- Human lipid metabolism molecule (LMM) polypeptide (ID: 2965233CD1).	864	75
2016	gi 14769015 ref XP_0415 69.1	Homo sapiens	fibrillin3	68	36
2017	gi2313786	Helicobacter pylori 26695	chorismate synthase (aroC)	78	33
2017	gi4155160	Helicobacter pylori J99	CHORISMATE SYNTHASE	72	32

212 Table 2

SEQ	Accession	Species	Description	Score	%
D SEQ	No.	орсска	Description		Identity
NO:					
2017	gi 15645287	Helicobacter	chorismate synthase (aroC)	78	33
	ref[NP_2074	pylori 26695			
	57.1			1000	100
2018	gi15485622	Homo sapiens	Q9H4T4 like	1068	98
2018	ABB14744	Homo sapiens	HUMA- Human nervous system related polypeptide SEQ ID NO 3401.	694	
2018	AAB95100	Homo sapiens	HELI- Human protein sequence SEQ ID NO:17064.	101	24
2019	gi8050556	Gorilla gorilla	carboxyl-ester lipase	223	42
2019	AAU09894	Homo sapiens	MONS Bile Salt Stimulated Lipase (BSSL).	217	39
2019	ABB04676	Homo sapiens	MONS Human milk bile salt- stimulated lipase (BSSL) protein SEQ ID NO:2.	217	39
2020	gi2065210	Mus musculus	Pro-Pol-dUTPase polyprotein	515	74
2020	gi 385615 gb AAB26708.	Mus sp.	fibulin gene homolog	300	75
2020	gi 13194728 gb AAK155 26.1 AF329 451 1	Gallus gallus	pol-like protein ENS-3	170	33
2021	AAM66980	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 27286.	170	75
2021	AAM54574	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 26679.	170	75
2021	AAM75189	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 35495.	159	86
2022	AAD29146_	Homo sapiens	ZYMO Human Zcyto21 consensus cDNA.	649	83
2022	AAU83208	Homo sapiens	ZYMO Novel secreted protein Z908463G2P.	649	83
2022	AAE18311	Homo sapiens	ZYMO Human Zcyto21 consensus protein.	649	83
2024	gi14336750	Homo sapiens	Ce protein similar to Dm Cys3His finger protein	84	34
2024	AAB50363	Homo sapiens	UYSL- Human SRCAP.	83	34
2024	AAB95541	Homo sapiens	HELI- Human protein sequence SEQ ID NO:18149.	83	34
2025	gi18676682	Homo sapiens	FLJ00240 protein	470	45
2025	gi14701866	Dictyostelium discoideum	carmil	221	29
2025	gi1881738	Acanthamoeba castellanii	myosin-I binding protein Acan125	219	29
2026	ABB12490	Homo sapiens	HYSE- Human bone marrow expressed protein SEQ ID NO: 329.	212	78
2027	AAU83147	Homo sapiens	ZYMO Novel secreted protein Z846363G2P.	1153	100
2027	gi 21287755 gb EAA000 76.1	Anopheles gambiae str. PEST	ebiP4780	205	51

213 Table 2

			l able 2		0.4
SEQ ID	Accession No.	Species	Description	Score	% Identity
NO: 2027	gi 17552028 ref NP_4984 07.1	Caenorhabditis elegans	C05D11.8.p	91	38
2028	gi1510143	Homo sapiens	similar to C.elegans protein encoded in cosmid T20D3 (Z68220).	323	57
2028	gi3879942	Caenorhabditis elegans	T20D3.11	124	27
2028	gi5869818	Globodera pallida	NADH-ubiquinone oxidoreductase subunit 6	82	27
2029	AAE13288	Homo sapiens	INCY- Human transporters and ion channels (TRICH)-15.	75	31
2029	gi3252893	Thermotoga neapolitana	ABC transporter	74	37
2029	gi 18403965 ref[NP_5658 26.1	Arabidopsis thaliana	expressed protein	70	29
2030	AAB97908	Homo sapiens	SHAN- Human GTP-binding protein 17 SEQ ID NO:2.	79	27
2030	AAM42129	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 7060.	79	27
2030	gi9971156	Mus musculus	GTP-binding like protein 2	79	27
2031	gi 20864803 ref XP_1308 00.1	Mus musculus	RIKEN cDNA 4930503K02	89	25
2031	gi 21262152 emb CAD32 690.1	Oryza sativa	SMC4 protein	77	28
2031	gi]1507705 g b AAB0656 8.1	Borrelia burgdorferi	outer surface protein	74	33
2032	AAG65898	Homo sapiens	SMIK Amino acid sequence of GSK gene Id 18525.	481	100
2032	AAU83670	Homo sapiens	GETH Human PRO protein, Seq ID No 158.	471	97
2032	ABB84896	Homo sapiens	GETH Human PRO1309 protein sequence SEQ ID NO:160.	471	97
2034	gi6723273	Baboon endogenous virus strain M7	gag-pol precursor polyprotein	687	43
2034	gi18448744	Moloney murine leukemia virus	Pr180 gag-pro-pol polyprotein	685	42
2034	gi2801471	Moloney murine leukemia virus	Pr180	682	42
2035	gi 17554696 ref NP_4976 70.1		R148.7.p	68	32
2035	gi 16127996 ref NP_4145 43.1	Escherichia coli K12	aspartokinase I, homoserine dehydrogenase I	68	43
2035	gi 19548975 gb AAL908 85.1 AF487 900 1	Escherichia coli	aspartokinase I-homoserine dehydrogenase I	68	43
2036	gi13424459	Caulobacter	methyl-accepting chemotaxis protein	72	32

214 Table 2

		Charles	Description	Score	%
SEQ ID NO:	Accession No.	Species	Description		Identity
110.		crescentus CB15	McpI		
2036	gi 16877133 gb AAH168 38.1 AAH16 838	Homo sapiens	carboxypeptidase, vitellogenic-like	69	30
2037	AAB67055	Homo sapiens	INCY- Human immune response molecule (IMUN) protein SEQ ID NO: 9.	532	75
2037	AAO01862	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 15754.	403	67
2037	gi 6753924 r ef NP_0343 74.1	Mus musculus	Friend virus susceptibility 1	240	39
2039	AAB38447	Homo sapiens	HUMA- Fragment of human secreted protein encoded by gene 20 clone HUFBY15.	80	27
2039	gi11527799	Mus musculus	GTP-binding protein like 1	73	30
2039	gi695237	Equine herpesvirus 2	tegument protein	73	33
2040	gi 20544038 ref XP_0896 12.4	Homo sapiens	similar to PER-HEXAMER REPEAT PROTEIN 5	68	41
2042	AAM77922	Homo sapiens	MOLE- Human bone marrow expressed probe encoded protein SEQ ID NO: 38228.	642	85
2042	AAM65219	Homo sapiens	MOLE- Human brain expressed single exon probe encoded protein SEQ ID NO: 37324.	642	85
2042	gi 6723273 d bj BAA8965 9.1	Baboon endogenous virus strain M7	gag-pol precursor polyprotein	139	26
2043	gi48507	Wolinella succinogenes	formate dehydrogenase	80	27
2043	gi12381857	Danio rerio	c-Maf	78	42
2043	gi 18594822 ref[XP_0929 95.1	Homo sapiens	zinc finger protein 21 (KOX 14)	306	100
2044	gi3132272	Sus scrofa	WT1 homologue	99	47
2044	AAG78446	Homo sapiens	MASI Predicted WT1 Wilm's tumour polypeptide of humans.	96	45
2044	AAG62154	Homo sapiens	CORI- Human WT1/PSA fusion protein SEQ ID NO: 357.	96	45
2046	gi21483222	Drosophila melanogaster	AT16994p	86	33
2046	gi21111736	Xanthomonas campestris pv. campestris str. ATCC 33913	cell division protein	79	30
2046	gi12653493	Homo sapiens	Similar to brain acid-soluble protein 1	79	36
2047	ABB12490	Homo sapiens	HYSE- Human bone marrow expressed protein SEO ID NO: 329.	200	83
2047	gi 20837783 ref[XP_1459 21.1	Mus musculus	similar to 40S ribosomal protein S11	73	35

215 Table 2

OFO	1	0	Table 2	Score	%
SEQ ID	Accession No.	Species	Description	Score	Identity
NO:	110.				1 Tuesday
2047	gi 6002932 g	Streptomyces	glycosyl transferase	71	35
2047	b AAF00209	fradiae	grycosyr transferase	' '	33
	.1 AF16496	Hadiac			
	0 5				ŀ
2048	AAB59012	Homo sapiens	HUMA- Breast and ovarian cancer	103	32
			associated antigen protein sequence		
			SEQ ID 720.		1
2048	gi2429362	Santalum album	proline rich protein	99	31
2048	gi17945382	Drosophila	RE17165p	98	25
		melanogaster			
2051	gi15625542	Hepatitis B virus	S antigen	71	31
2051	gi 4884886 g	Hepatitis B virus	surface antigen	68	30
	ЪJAAD3185				
	7.1 AF1341				1
	40_1	•	•		
2052	AAB28764	Homo sapiens	HUMA- Sequence homologous to	693	78
2055	10065515		protein fragment encoded by gene 21.	602	70
2052	gi2065210	Mus musculus	Pro-Pol-dUTPase polyprotein	693	78
2052	AAB73606	Homo sapiens	SHAN- Human dUTP pyrophosphatase	668	77
2052	-:0045002	Pseudomonas	26.	83	34
2053	gi9945983		transcriptional regulator PcaQ	83	34
2053	gi13874427	aeruginosa Homo sapiens	cerebral protein-5	76	35
2053	gi13874427	Homo sapiens	CAAX box 1	76	35
2054	gi21307831	Aplysia	CREB-binding protein	76	26
2034	gi21307031	californica	Oraco-binding protein	"	20
2054	gi16755887	Drosophila	guanine nucleotide exchange factor	76	26
	0	melanogaster	gg.		
2054	gi 21307831	Aplysia	CREB-binding protein	76	26
	gb AAL548	californica		}	
	59.1				
2055	gi16588389	Homo sapiens	B lymphocyte activation-related protein	437	71
			BC-1514	407	-
2055	AAB92981	Homo sapiens	HELI- Human protein sequence SEQ	407	68
2055	4.43.64020.6		ID NO:11698.	200	74
2055	AAM48325	Homo sapiens	SHAN- Human purine receptor 21.23.	398 134	47
2056	gi 2072969 g b AAC5127	Homo sapiens	p40	134	4'
	4.1				
2056	gi 7959889 g	Homo sapiens	PRO2221	123	43
2030	b AAF71115	1101110 04110111			1.2
	.1 AF11672				
	1_95				
2056	gi 2072974 g	Homo sapiens	p40	122	44
	b AAC5127	·			
	7.1				L
2057	gi19171178	Homo sapiens	metalloprotease disintegrin 16 with	518	98
	140151111		thrombospondin type I motif	 	2.5
2057	gi19171150	Homo sapiens	ADAMTS18 protein	168	35
2057	AAM39212	Homo sapiens	HYSE- Human polypeptide SEQ ID	128	76
2050	-:14050050	36	NO 2357.	1226	50
2058	gi 4959869 g	Murine leukemia	polymerase	336	50
	6 11	virus			
	6.1		<u> </u>	L	

216 Table 2

			Table 2	α	0/
SEQ ID	Accession No.	Species	Description	Score	% Identity
NO:				331	46
2058	gi 9630313 r ef NP_0567 90.1	Gibbon ape leukemia virus	pol polyprotein		
2058	gi 6723273 d bj BAA8965	Baboon endogenous virus strain M7	gag-pol precursor polyprotein	329	49
2059	gi 20546404 ref XP_1164 66.1	Homo sapiens	similar to nuclear receptor coactivator 4; RET-activating gene ELE1	179	91
2060	gi 6731237 g b AAF27177 .1 AF18231 7 1	Homo sapiens	myoferlin	112	79
2060	gi 798799 gb AAC37713.	Mus musculus	immunoglobulin heavy chain	72	55
2060	gi 20819487 ref XP_1453 57.1	Mus musculus	similar to LYRIC	72	27
2061	gi415738	Euglena gracilis	PSII D1-polypeptide	75	. 27
2061	gi11491	Euglena gracilis	32 kd protein	75	27
2061	gi11488	Euglena gracilis	32-Kda thylakoid membrane protein	75	27
2062	gi21360549	Arabidopsis thaliana	AT3g01480/F4P13_3	79	29
2062	gi3337366	Arabidopsis thaliana	nodulin-like protein	68	36
2063	gi7959778	Homo sapiens	PRO1546	121	42
2063	AAG02639	Homo sapiens	GEST Human secreted protein, SEQ ID NO: 6720.	119	53
2063	AAG02753	Homo sapiens	GEST Human secreted protein, SEQ ID NO: 6834.	110	45
2064	gi15077406	Antheraea yamamai	fibroin	109	30
2064	AAB82806	Homo sapiens	BOST- Human low density lipoprotein binding protein 2 (LBP-2).	92	24
2064	AAO01059	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 14951.	90	30
2065	gi200964	Mus musculus	serine 2 ultra high sulfur protein	80	30
2065	gi200962	Mus musculus	serine 1 ultra high sulfur protein	80	30
2065	AAM99918	Homo sapiens	HUMA- Human polypeptide SEQ ID NO 34.	75	28
2066	gi544724	Cavia	cholecystokinin A receptor; CCK-A receptor	69	29
2066	gi2541920	Rattus norvegicus	cholecystokinin type-A receptor	69	29
2066	gi2114152	Mus musculus	cholecystokinin type-A receptor	69	29
2067	gi2828586	Pongo pygmaeus	BRCA1	73	22
2068	AAM40813	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 5744.	75	29
2068	AAM39027	Homo sapiens	HYSE- Human polypeptide SEQ ID NO 2172.	75	29
2068	AAY25768	Homo sapiens	HUMA- Human secreted protein encoded from gene 58.	75	29
2070	gi1334150	Mus musculus	unidentified reading frame (first ATG	169	28

217 Table 2

SEQ	Accession	Species	Description	Score	%
ID NO:	No.				Identity
			at pos. 210)		
2070	gi557822	Saccharomyces cerevisiae	mal5, sta1, len: 1367, CAI: 0.3, AMYH_YEAST P08640 GLUCOAMYLASE S1 (EC 3.2.1.3)	133	20
2070	gi1304387	Saccharomyces	glucoamylase	133	20
2070	g11304387	cerevisiae var.			
2071	gi17983056	Brucella melitensis	BETA-HEXOSAMINIDASE A	88	29
2071	gi1573917	Haemophilus influenzae Rd	multidrug resistance protein A (emrA)	81	33
2071	gi17982813	Brucella melitensis	NITROGEN REGULATION PROTEIN NTRB	80	26
2073	gi 17532255 ref NP_4964 31.1	Caenorhabditis elegans	ankyrin and proline rich domains	67	29
2074	gi19919730	Homo sapiens	BTEB5	704	97
2074	gi13195441	Homo sapiens	BTE-binding protein 4	478	64
2074	gi14549656	Mus musculus	dopamine receptor regulating factor	452	76
2076	AAE17482	Homo sapiens	ZYMO Human leucine-rich repeat-7 (ZLRR7) protein.	1326	100
2076	AAU83190	Homo sapiens	ZYMO Novel secreted protein Z887300G2P.	1326	100
2076	ABB11242	Homo sapiens	HYSE- Human SLIT-2 homologue, SEQ ID NO:1612.	568	99
2077	gi18893729	Pyrococcus furiosus DSM 3638	protease iv	74	34
2077	AAB94745	Homo sapiens	HELI- Human protein sequence SEQ ID NO:15792.	71	34
2077	gi16413096	Listeria innocua	lin0656	68	35
2078	gi60675	Beet ringspot virus	polyprotein	75	37
2078	gi 14743288 ref XP_0471 91.1	Homo sapiens	similar to Alu subfamily J sequence contamination warning entry	92	58
2078	gi 20260801 ref NP_6201 13.1	Beet ringspot virus	polyprotein	75	37
2079	gi3834629	Mus musculus	diaphanous-related formin; p134 mDia2	208	67
2079	AAG74400	Homo sapiens	HUMA- Human colon cancer antigen protein SEQ ID NO:5164.	71	36
2079	gi3171906	Homo sapiens	DIA-156 protein	71	36
2080	gi17298315	Homo sapiens	candidate tumor suppressor protein	125	100
2080	gi7861733	Homo sapiens	low density lipoprotein receptor related protein-deleted in tumor	125	100
2080	gi8926243	Mus musculus	low density lipoprotein receptor related protein LRP1B/LRP-DIT	90	63
2081	gi4574224	Fundulus heteroclitus	multidrug resistance transporter homolog	343	55
2081	gi16304396	Pseudopleuronec tes americanus	multidrug resistance transporter-like protein	340	52
2081	gi3355757	Gallus gallus	ABC transporter protein	328	53

WO 03/080795 PCT/US02/25485

218

Table 2

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
2082	gi7532975	bacteriophage phi-8	P10	67	27

Printed from Mimosa 05/11/28 15:53:44 Page: 219

219

Table 3

SEQ ID	Database	Description	*Results
NO:	entry ID		DT 00240TI 15 70 0 710- 00 9 45
1059	BL00349	CTF/NF-I proteins.	BL00349H 15.70 9.710e-09 8-45
1061	DM00215	PROLINE-RICH PROTEIN 3.	DM00215 19.43 6.143e-10 29-61 DM00215 19.43 8.322e-09 40-72
		the state of the s	DM00215 19.43 8.322e-09 40-72 DM01354U 12.24 6.092e-12 80-99
1062	DM01354	kw TRANSCRIPTASE REVERSE II ORF2.	
1063	PR00944	COPPER ION BINDING PROTEIN SIGNATURE	PR00944E 9.18 7.132e-09 33-46
1076	PD00078	REPEAT PROTEIN ANK NUCLEAR ANKYR.	PD00078B 13.14 9.217e-09 23-35
1089	PR00308	TYPE I ANTIFREEZE PROTEIN SIGNATURE	PR00308C 3.83 8.754e-10 16-25
1089	PR00456	RIBOSOMAL PROTEIN P2 SIGNATURE	PR00456E 3.06 9.658e-09 16-30
1089	PR00341	PRION PROTEIN SIGNATURE	PR00341E 3.32 9.898e-09 24-43
1099	PR00886	HIGH MOBILITY GROUP (HMG1/HMG2) PROTEIN SIGNATURE	PR00886C 11.84 1.141e-12 28-46
1107	PR00833	POLLEN ALLERGEN POA PI SIGNATURE	PR00833H 2.30 3.077e-09 51-65
1118	BL00472	Small cytokines (intercrine/chemokine) C-C subfamily signatur.	BL00472A 7.45 5.655e-09 1-12
1118	PR00655	AUXIN BINDING PROTEIN SIGNATURE	PR00655E 8.06 9.000e-09 88-103
1119	BL00970	Nuclear transition protein 2 proteins.	BL00970C 14.80 8.183e-12 99-136
1119	BL00826	MARCKS family proteins.	BL00826B 12.51 4.279e-09 92-143
1119	BL00348	p53 tumor antigen proteins.	BL00348F 23.19 5.881e-10 93-135 BL00348F 23.19 6.857e-09 91-133
1119	PD01457	RIBOSOMAL PROTEIN 40S ZINC- FINGER METAL.	PD01457A 16.51 8.216e-09 73-117
1119	BL00752	XPA protein.	BL00752B 19.17 7.866e-09 100-143 BL00752B 19.17 8.979e-09 63-106
1119	DM01269	303 kw ACTIVATING RAN GTPASE ISOZYME.	DM01269A 23.35 9.446e-09 109-136
1124	DM01813	EGG-LAYING HORMONE.	DM01813A 15.31 5.215e-09 15-42
1127	BL00452	Guanylate cyclases proteins.	BL00452A 17.52 1.170e-09 6-27
1131	BL00113	Adenylate kinase proteins.	BL00113B 20.49 9.897e-09 157-200
1162	PD01066	PROTEIN ZINC FINGER ZINC- FINGER METAL-BINDING NU.	PD01066 19.43 7.000e-35 24-62
1163	BL00407	Connexins proteins.	BL00407B 14.23 9.775e-30 21-51 BL00407C 14.61 2.500e-24 52-79
1163	PR00206	CONNEXIN SIGNATURE	PR00206B 13.75 1.957e-24 33-55 PR00206A 11.35 6.559e-23 2-26 PR00206C 15.16 7.469e-20 58-78
1171	PD01066	PROTEIN ZINC FINGER ZINC- FINGER METAL-BINDING NU.	PD01066 19.43 8.500e-28 35-73
1177	DM01803	1 HERPESVIRUS GLYCOPROTEIN H.	DM01803C 7.00 7.240e-09 46-55
1190	PR00774	GUANYLIN PRECURSOR SIGNATURE	PR00774A 6.49 8.579e-10 69-81
1195	PD02059	CORE POLYPROTEIN PROTEIN GAG CONTAINS: P.	PD02059C 21.58 8.031e-09 100-140
1197	BL00472	Small cytokines (intercrine/chemokine) C-C subfamily signatur.	BL00472A 7.45 8.000e-14 1-12
1213	PR00437	SMALL CXC CYTOKINE	PR00437C 14.85 1.310e-16 33-51

Table 3

OTO TO	Database	Table 5	*Results
SEQ ID	Database	Description	Results
NO:	entry ID	FAMILY SIGNATURE	
1012	DI 00471		BL00471 23.92 7.960e-10 6-53
1213	BL00471	Small cytokines (intercrine/chemokine) C-x-C	BE00471 25.52 7.5000 10 0 55
		subfamily signat.	
1016	PR00308	TYPE I ANTIFREEZE PROTEIN	PR00308C 3.83 5.208e-09 183-192
1216	PROUSUS	SIGNATURE	1 1005000 5.05 5.2000 05 105 152
1222	PF00852	Fucosyl transferase.	PF00852F 15.97 1.409e-15 195-231
1222		Ubiquitin domain proteins.	BL00299 28.84 6.301e-11 47-98
1224	BL00299	MUSCARINIC M3 RECEPTOR	PR00540A 10.24 7.174e-09 134-153
1230	PR00540	SIGNATURE	
1240	BL00290	Immunoglobulins and major	BL00290A 20.89 7.480e-10 160-182
		histocompatibility complex proteins.	BL00290B 13.17 2.875e-09 226-243
1258	PR00792	PEPSIN (A1) ASPARTIC	PR00792A 11.54 5.500e-18 80-100
		PROTEASE FAMILY SIGNATURE	
1258	BL00141	Eukaryotic and viral aspartyl	BL00141A 12.10 4.789e-15 87-102
		proteases proteins.	BL00141B 12.14 2.929e-10 228-239
1300	BL00616	Histidine acid phosphatases	BL00616A 11.86 1.000e-09 136-143
		phosphohistidine proteins.	
1301	DM01417	6 kw INDUCING XPMC2	DM01417C 12.93 9.325e-12 361-372
		MUSHROOM SPAC22G7.04.	DM01417D 11.08 9.820e-12 400-415
1302 .	PR00049	WILM'S TUMOUR PROTEIN SIGNATURE	PR00049D 0.00 6.067e-11 324-338
1311	BL00926	Lysyl oxidase copper-binding region	BL00926B 13.84 7.453e-09 84-121
		proteins.	
1320	PR00830	ENDOPEPTIDASE LA (LON)	PR00830A 8.41 3.712e-09 29-48
		SERINE PROTEASE (S16)	
	0	SIGNATURE	
1325	BL00048	Protamine P1 proteins.	BL00048 6.39 4.671e-10 58-84
		_	BL00048 6.39 4.908e-10 60-86
			BL00048 6.39 2.913e-09 59-85
			BL00048 6.39 5.950e-09 57-83
1345	PF00424	REV protein (anti-repression	PF00424A 14.34 2.436e-09 184-215
		transactivator protein).	
1345	BL00048	Protamine P1 proteins.	BL00048 6.39 4.553e-10 178-204
			BL00048 6.39 6.513e-09 179-205
1353	DM01354	kw TRANSCRIPTASE REVERSE II	DM01354U 12.24 2.857e-15 82-101
		ORF2.	
1363	PF00850	Histone deacetylase family.	PF00850B 10.13 5.154e-14 95-109
			PF00850C 14.55 9.063e-11 132-148
1389	PR00833	POLLEN ALLERGEN POA PI	PR00833H 2.30 6.423e-09 50-64
		SIGNATURE	
1389	PD00306	PROTEIN GLYCOPROTEIN	PD00306B 5.57 7.000e-09 59-69
		PRECURSOR RE.	
1396	BL00427	Disintegrins proteins.	BL00427 13.93 7.698e-17 260-314
1396	PR00289	DISINTEGRIN SIGNATURE	PR00289A 13.62 5.667e-14 274-293
1416	BL00419	Photosystem I psaA and psaB	BL00419B 22.23 9.489e-09 18-51
		proteins.	
1434	PF00075	RNase H.	PF00075I 16.21 7.375e-11 167-173
1440	BL00598	Chromo domain proteins.	BL00598 14.45 1.500e-15 112-133
1440	PR00504	CHROMODOMAIN SIGNATURE	PR00504B 9.12 5.200e-13 106-120
			PR00504C 11.19 6.510e-09 121-133
1450	PF00622	Domain in SPla and the RYanodine	PF00622B 21.00 2.227e-09 93-114
		Receptor.	
1451	PD02935	FATTY ACID	PD02935C 16.62 4.375e-16 59-86
		OXIDOREDUCTASE BIOSYNT.	
1467	BL00479	Phorbol esters / diacylglycerol	BL00479A 19.86 3.000e-11 130-152

221

Table 3

SEQ ID	Database	Description	*Results
NO:	entry ID		
		binding domain proteins.	BL00479B 12.57 3.340e-10 156-171
1468	PF00992	Troponin.	PF00992A 16.67 5.563e-10 139-173
1468	BL00795	Involucrin proteins.	BL00795C 17.06 3.600e-09 193-237
1468	PR00042	FOS TRANSFORMING PROTEIN SIGNATURE	PR00042D 8.97 7.554e-09 141-162
1474	BL00107	Protein kinases ATP-binding region proteins.	BL00107A 18.39 9.308e-12 62-92
1474	PR00109	TYROSINE KINASE CATALYTIC DOMAIN SIGNATURE	PR00109B 12.27 1.563e-09 62-80
1474	BL00239	Receptor tyrosine kinase class II proteins.	BL00239C 18.75 4.205e-09 49-71
1475	BL00456	Sodium:solute symporter family proteins.	BL00456C 24.55 4.886e-28 15-69
1480	BL00983	Ly-6 / u-PAR domain proteins.	BL00983C 12.69 1.346e-09 36-51
1482	BL00979	G-protein coupled receptors family 3 proteins.	BL00979A 19.66 9.633e-12 74-121
1502	PD02561	DETHIOBIOTIN SYNTHETASE SYNTHASE.	PD02561B 12.71 9.308e-09 176-182
1506	BL00297	Heat shock hsp70 proteins family	BL00297H 15.46 9.625e-23 302-355
		proteins.	BL00297D 11.95 6.063e-21 166-205
			BL00297E 18.56 6.077e-21 226-269
			BL00297C 9.51 9.667e-15 105-156
1506	PR00301	70 KD HEAT SHOCK PROTEIN SIGNATURE	PR00301I 12.76 3.208e-11 320-336
1513	PR00130	DNASE I SIGNATURE	PR00130E 14.66 5.046e-09 237-266
1515	DM01242	3 THREONINETRNA LIGASE.	DM01242A 20.32 5.286e-20 163-206
1517	BL00983	Ly-6 / u-PAR domain proteins.	BL00983B 8.19 5.935e-10 40-49
1520	BL00415	Synapsins proteins.	BL00415P 2.37 3.914e-10 138-173
1520	PR00049	WILM'S TUMOUR PROTEIN SIGNATURE	PR00049D 0.00 3.746e-09 124-138 PR00049D 0.00 1.000e-08 123-137
1530	PF00075	RNase H.	PF00075F 12.87 5.500e-10 127-137
1537	PR00463	E-CLASS P450 GROUP I SIGNATURE	PR00463F 17.63 5.219e-13 288-306 PR00463A 11.40 8.714e-12 52-71 PR00463B 17.50 5.041e-10 76-97
1537	PR00385	P450 SUPERFAMILY SIGNATURE	PR00385C 16.94 6.318e-09 289-300
1538	PR00709	AVIDIN SIGNATURE	PR00709A 4.60 5.585e-09 19-37
1553	DM01354	kw TRANSCRIPTASE REVERSE II ORF2.	DM01354Y 10.69 6.423e-16 113-152
1558	PD01066	PROTEIN ZINC FINGER ZINC- FINGER METAL-BINDING NU.	PD01066 19.43 6.400e-25 70-108
1564	PF00589	Phage integrase family.	PF00589B 16.17 1.621e-11 158-171 PF00589C 14.62 9.609e-10 183-194
1566	BL00908	Mandelate racemase / muconate lactonizing enzyme family signa.	BL00908B 37.71 6.455e-13 191-245
1567	PR00702	ACRIFLAVIN RESISTANCE PROTEIN FAMILY SIGNATURE	PR00702A 14.92 2.421e-25 8-32 PR00702B 12.77 9.690e-18 36-54
1570	BL01047	Heavy-metal-associated domain proteins.	BL01047A 13.50 5.125e-17 75-97
1575	DM01354	kw TRANSCRIPTASE REVERSE II ORF2.	DM01354U 12.24 9.429e-15 80-99
1606	PF00642	Zinc finger C-x8-C-x5-C-x3-H type (and similar).	PF00642 11.59 2.575e-11 197-207
1610	DM01354	kw TRANSCRIPTASE REVERSE II ORF2.	DM01354I 15.55 7.702e-34 348-388 DM01354G 11.57 3.625e-32 277-307 DM01354H 18.00 2.528e-23 308-347

222

Table 3

SEQ ID NO:	Database entry ID	Description	*Results
110.	1		DM01354F 14.56 4.088e-11 241-276
1616	PD02929	ADHESION GLYCOPROTEIN PRECURSOR I.	PD02929A 28.27 2.263e-25 32-85
1627	PR00121	SODIUM/POTASSIUM- TRANSPORTING ATPASE SIGNATURE	PR00121A 6.71 1.000e-08 15-29
1630	PR00824	HEPATIC LIPASE SIGNATURE	PR00824A 7.81 7.214e-22 6-24
1640	BL00359	Ribosomal protein L11 proteins.	BL00359C 22.18 1.155e-11 93-126
1641	PR00080	ALCOHOL DEHYDROGENASE SUPERFAMILY SIGNATURE	PR00080A 9.32 8.839e-10 134-145
1641	PR00081	GLUCOSE/RIBITOL DEHYDROGENASE FAMILY SIGNATURE	PR00081A 10.53 2.000e-12 45-62 PR00081E 17.54 1.783e-10 238-255 PR00081B 10.38 2.227e-09 134-145
1641	BL00061	Short-chain dehydrogenases/reductases family proteins.	BL00061A 9.41 9.053e-10 134-144 BL00061B 25.79 6.860e-09 197-234
1666	BL01257	Ribosomal protein L10e proteins.	BL01257D 18.80 2.973e-15 59-98
1667	BL01241	Link domain proteins.	BL01241 35.81 8.579e-37 180-232 BL01241 35.81 7.835e-14 289-341
1667	BL00086	Cytochrome P450 cysteine hemeiron ligand proteins.	BL00086 20.87 3.377e-09 283-314
1668	PR00671	INHIBIN BETA B CHAIN SIGNATURE	PR00671A 8.36 8.088e-09 4-22
1672	BL00674	AAA-protein family proteins.	BL00674E 15.24 5.680e-15 31-50
1682	PF00075	RNase H.	PF00075A 14.44 4.400e-13 73-89
			PF00075C 11.58 8.442e-09 152-163
1689	PD01066	PROTEIN ZINC FINGER ZINC- FINGER METAL-BINDING NU.	PD01066 19.43 6.471e-27 268-306
1689	PR00788	NITROPHORIN SIGNATURE	PR00788A 9.79 6.108e-09 3-15
1692 1697	BL00299 PR00423	Ubiquitin domain proteins. CELL DIVISION PROTEIN FTSZ SIGNATURE	BL00299 28.84 4.759e-10 32-83 PR00423E 7.36 4.038e-09 20-41
1706	BL00795	Involucrin proteins.	BL00795C 17.06 5.395e-10 185-229
1709	BL00514	Fibrinogen beta and gamma chains C-terminal domain proteins.	BL00514C 17.41 3.618e-25 68-104 BL00514H 14.95 6.745e-16 230-254 BL00514G 15.98 6.566e-14 198-227 BL00514E 14.28 8.286e-14 128-144 BL00514D 15.35 2.915e-12 109-121
1714	PF00878	Cation-independent mannose-6- phosphate receptor repeat proteins.	PF00878T 17.51 3.818e-09 41-67
1715	PF01140	Matrix protein (MA), p15.	PF01140D 15.54 4.872e-09 123-157
1715	PF00992	Troponin.	PF00992A 16.67 6.451e-10 109-143 PF00992A 16.67 3.724e-09 98-132 PF00992A 16.67 6.684e-09 96-130
1718	PD02474	SYNTHASE SMALL SUBUNIT ACETOLACT.	PD02474B 21.08 7.940e-10 92-130
1725	BL00412	Neuromodulin (GAP-43) proteins.	BL00412B 10.60 1.000e-10 46-82
1725	PR00215	NEUROMODULIN SIGNATURE	PR00215C 13.98 6.116e-10 54-74
1725	DM01688	2 POLY-IG RECEPTOR.	DM01688G 16.45 3.160e-09 119-150 DM01688I 14.97 6.885e-09 107-154
1725	PD02870	RECEPTOR INTERLEUKIN-1 PRECURSOR.	PD02870B 18.83 8.564e-09 303-335
1727	BL00107	Protein kinases ATP-binding region proteins.	BL00107A 18.39 7.750e-21 185-215
1727	PR00109	TYROSINE KINASE CATALYTIC DOMAIN SIGNATURE	PR00109B 12.27 7.176e-12 185-203

223

Table 3

SEQ ID	Database	Description	*Results
NO:	entry ID		
1727	BL00239	Receptor tyrosine kinase class II proteins.	BL00239B 25.15 4.387e-09 119-166
1728	BL00415	Synapsins proteins.	BL00415Q 2.23 8.115e-09 52-87
1734	PD01270	RECEPTOR FC	PD01270B 22.18 5.567e-18 75-111
		IMMUNOGLOBULIN AFFIN.	PD01270C 19.54 1.167e-17 118-146
			PD01270A 17.22 4.960e-14 21-60
	i		PD01270D 24.66 4.284e-09 152-187
1736	PD02346	PHOTOSYSTEM II PROTEIN	PD02346A 9.24 8.851e-09 6-17
		PRECURSOR PHOTOSYNTHESIS.	77 00 44 50 0 00 6 777 00 217 252
1741	BL00415	Synapsins proteins.	BL00415Q 2.23 6.777e-09 317-352
1744	BL00479	Phorbol esters / diacylglycerol	BL00479B 12.57 1.000e-08 33-48
		binding domain proteins.	
1750	PR00763	COAGULIN SIGNATURE	PR00763B 8.39 6.457e-09 41-60
1754	PR00276	INSULIN A CHAIN SIGNATURE	PR00276A 11.84 7.840e-09 46-55
1755	PR00042	FOS TRANSFORMING PROTEIN SIGNATURE	PR00042D 8.97 2.565e-09 164-185
1765	DECCOR	Vesiculovirus phosphoprotein.	PF00922A 19.17 5.759e-09 99-132
1755	PF00922	OLFACTORY RECEPTOR	PR00245A 18.03 9.836e-14 59-80
1778	PR00245	SIGNATURE	PR00245A 18.03 9.836c-14 39-80
		SIGNATURE	PR00245B 10.38 2.125e-13 176-190
	DY 0000	C	BL00237A 27.68 1.474e-12 90-129
1778	BL00237	G-protein coupled receptors proteins.	PR00534A 11.49 4.729e-09 51-63
1778	PR00534	MELANOCORTIN RECEPTOR FAMILY SIGNATURE	PR00334A 11.49 4.7256-09 31-03
1778	PR00237	RHODOPSIN-LIKE GPCR	PR00237A 11.48 3.613e-09 26-50
1//0	1100257	SUPERFAMILY SIGNATURE	PR00237C 15.69 7.525e-09 104-126
1787	PR00007	COMPLEMENT CIQ DOMAIN	PR00007B 14.16 5.114e-15 146-165
1767	1100007	SIGNATURE	PR00007A 19.33 7.052e-10 119-145
1787	PR00524	CHOLECYSTOKININ TYPE A	PR00524F 5.36 4.351e-09 70-83
		RECEPTOR SIGNATURE	
1787	DM00250	kw ANNEXIN ANTIGEN PROLINE TUMOR.	DM00250B 13.84 6.595e-09 82-105
1787	BL00415	Synapsins proteins.	BL00415N 4.29 7.372e-09 62-105
1787	BL00413	C1q domain proteins.	BL01113B 18.26 3.786e-23 125-160
1/0/	BLUITIS	Ciq domain proteins.	BL01113A 17.99 7.968e-15 73-99
			BL01113A 17.99 5.091e-14 70-96
	ļ		BL01113A 17.99 5.295e-11 64-90
	Í		BL01113A 17.99 8.568e-11 79-105
	}		BL01113A 17.99 8.977e-11 67-93
i			BL01113A 17.99 4.635e-09 82-108
	1		BL01113A 17.99 6.192e-09 76-102
			BL01113A 17.99 7.750e-09 61-87
1707	BL00420	Speract recentor reneat proteins	BL00420A 20.42 8.691e-11 73-101
1787	BL00420	Speract receptor repeat proteins domain proteins.	BL00420A 20.42 9.673e-11 70-98
		domain proteins.	BL00420A 20.42 2.180e-10 55-83
			BL00420A 20.42 8.062e-09 52-80
1200	DM01030	2 kw FINGER SMCX SMCY	DM01930E 15.41 2.964e-33 45-89
1789	DM01930	YDR096W.	
1795	DM01688	2 POLY-IG RECEPTOR.	DM01688I 14.97 7.480e-10 107-154
			DM01688J 14.69 4.455e-09 60-96
1796	PF00075	RNase H.	PF00075J 15.78 4.115e-13 115-132
1802	PD00066	PROTEIN ZINC-FINGER METAL- BINDI.	PD00066 13.92 4.130e-11 86-98
1802	BL00028	Zinc finger, C2H2 type, domain	BL00028 16.07 1.600e-10 110-126
	= = = = = = = = = = = = = = = = = = =	proteins.	BL00028 16.07 6.100e-10 70-86
1802	PR00048	C2H2-TYPE ZINC FINGER	PR00048B 6.02 9.438e-10 83-92
		SIGNATURE	

. 224

Table 3

SEQ ID NO:	Database entry ID	Description	*Results
1,812	PD00078	REPEAT PROTEIN ANK NUCLEAR ANKYR.	PD00078B 13.14 4.130e-09 157-169
1824	PF00628	PHD-finger.	PF00628 15.84 5.500e-13 78-92
1833	PF00028	RNase H.	PF00075B 12.56 4.732e-10 156-166
1833	PR00939	C2HC-TYPE ZINC-FINGER	PR00939A 8.95 3.045e-09 137-146
1033	FR00939	SIGNATURE	
1842	PR00833	POLLEN ALLERGEN POA PI SIGNATURE	PR00833H 2.30 3.192e-09 244-258
1844	BL00972	Ubiquitin carboxyl-terminal hydrolases family 2 proteins.	BL00972D 22.55 3.348e-11 168-192
1857	PF00424	REV protein (anti-repression transactivator protein).	PF00424A 14.34 8.085e-09 71-102
1860	PR00221	CAULIMOVIRUS COAT PROTEIN SIGNATURE	PR00221H 12.82 2.410e-09 184-197
1864 ·	BL01282	BIR repeat proteins.	BL01282B 30.49 1.136e-10 214-252
1866	BL00155	Cutinase, serine proteins.	BL00155D 26.87 5.337e-09 19-67
1895	PF00075	RNase H.	PF00075F 12.87 7.353e-10 93-103
1911	BL00983	Ly-6 / u-PAR domain proteins.	BL00983C 12.69 6.365e-09 101-116
1911	BL00272	Snake toxins proteins.	BL00272C 8.27 1.000e-08 105-116
1925	PR00308	TYPE I ANTIFREEZE PROTEIN	PR00308A 5.90 6.795e-11 64-78
		SIGNATURE	PR00308C 3.83 2.385e-10 67-76
1925	PR00456	RIBOSOMAL PROTEIN P2 SIGNATURE	PR00456E 3.06 9.4386-10 57-71
1925	PR00833	POLLEN ALLERGEN POA PI SIGNATURE	PR00833H 2.30 6.654e-09 59-73
1930	DM00179	w KINASE ALPHA ADHESION T- CELL.	DM00179 13.97 5.263e-10 107-116
1935	PF00075	RNase H.	PF00075J 15.78 2.309e-12 81-98
1940	PF00075	RNase H.	PF00075F 12.87 3.864e-09 74-84
1952	PR00019	LEUCINE-RICH REPEAT	PR00019B 11.36 3.250e-10 184-197
		SIGNATURE	PR00019A 11.19 5.667e-09 187-200
1954	BL00546	Matrixins cysteine switch.	BL00546A 19.62 8.105e-30 77-106
1954	BL00023	Type II fibronectin collagen-binding domain proteins.	BL00023 24.31 4.682e-35 340-376 BL00023 24.31 2.969e-28 282-318 BL00023 24.31 9.526e-24 224-260
1954	PR00138	MATRIXIN SIGNATURE	PR00138B 15.82 5.500e-18 144-159 PR00138A 15.14 8.773e-16 97-110
1954	BL00024	Hemopexin domain proteins.	BL00024B 21.53 9.591e-33 118-151 BL00024A 11.49 2.800e-13 97-107 BL00024C 22.98 7.796e-11 164-212
1954	PR00013	FIBRONECTIN TYPE II REPEAT SIGNATURE	PR00013C 12.29 1.000e-20 372-387 PR00013C 12.29 3.571e-15 314-329 PR00013C 12.29 7.800e-14 256-271 PR00013A 12.26 5.500e-13 344-353 PR00013B 14.75 1.237e-11 355-367 PR00013B 14.75 4.000e-09 297-309 PR00013A 12.26 5.333e-09 286-295
			PR00013A 12.26 7.833e-09 228-237
1957	BL01182	Glycosyl hydrolases family 35 proteins.	BL01182A 21.39 3.357e-34 77-119
1957	PR00742	GLYCOSYL HYDROLASE FAMILY 35 SIGNATURE	PR00742B 15.52 2.653e-14 78-96 PR00742A 13.75 6.914e-10 57-74
1958	PR00449	TRANSFORMING PROTEIN P21 RAS SIGNATURE	PR00449A 13.20 8.200e-15 214-235
1964	PR00727	BACTERIAL LEADER PEPTIDASE 1 (S26) FAMILY	PR00727A 12.93 7.000e-09 9-25

Table 3

CEO ID	Databasa	Description	*Results
SEQ ID	Database	Description	Kesura
NO:	entry ID	SIGNATURE	
1066	PF00075	RNase H.	PF00075D 10.71 7.188e-09 71-81
1965	PF00075	RNase H.	PF00075C 11.58 9.786e-11 110-121
1966	PF00073	Rivase H.	PF00075B 12.56 1.878e-10 78-88
1000	D) (00000	3 RETROVIRAL PROTEINASE.	DM00892C 23.55 4.082e-11 314-347
1968 1970	DM00892 PF00075	RNase H.	PF00075J 15.78 8.571e-10 335-352
1973	PF00589	Phage integrase family.	PF00589B 16.17 1.450e-14 101-114
1974	BL00675	Sigma-54 interaction domain	BL00675B 24.07 1.000e-24 118-172
1974	BL00073	proteins ATP-binding region A	BL00675C 13.51 6.400e-24 183-210
		proteins.	BL00675D 12.03 1.750e-09 245-254
1987	PR00153	CYCLOPHILIN PEPTIDYL-	PR00153B 11.57 1.500e-17 52-64
1707	1100133	PROLYL CIS-TRANS	PR00153A 12.98 4.255e-10 23-38
		ISOMERASE SIGNATURE	
1987	BL00170	Cyclophilin-type peptidyl-prolyl cis-	BL00170B 20.97 6.250e-33 47-86
1501	BECOLL	trans isomerase signatur.	BL00170A 17.08 2.309e-09 17-43
1998	PD01066	PROTEIN ZINC FINGER ZINC-	PD01066 19.43 7.750e-37 27-65
1330	1201000	FINGER METAL-BINDING NU.	PD01066 19.43 8.863e-11 68-106
1999	PF00992	Troponin.	PF00992A 16.67 3.487e-09 108-142
1999	BL00224	Clathrin light chain proteins.	BL00224B 16.94 7.055c-09 96-148
1999	BL00422	Granins proteins.	BL00422C 16.18 8.059e-09 117-144
2001	BL00019	Actinin-type actin-binding domain	BL00019B 13.34 7.158e-14 261-283
		proteins.	
2001	DM01354	kw TRANSCRIPTASE REVERSE II	DM01354U 12.24 3.500e-13 345-364
		ORF2.	
2008	PD01719	PRECURSOR GLYCOPROTEIN	PD01719A 12.89 3.483e-16 63-90
		SIGNAL RE.	
2011	BL00282	Kazal serine protease inhibitors	BL00282 16.88 6.577e-10 127-149
		family proteins.	
2011	BL00222	Insulin-like growth factor binding	BL00222B 11.09 6.940e-10 74-89
		proteins.	DY 00 (21 4 9 (0 C 472 - 00 5 22
2011	BL00621	Tissue factor proteins.	BL00621A 8.69 6.473e-09 5-22
2012	PD02563	PROTEIN NONSTRUCTURAL C	PD02563C 13.51 9.634e-10 74-128
0010	77700104	VP18.	PR00124A 8.81 5.655e-09 58-77
2013	PR00124	ATP SYNTHASE C SUBUNIT	PR00124A 8.81 3.0336-09 38-77
2012	DD 00797	SIGNATURE MAJOR INTRINSIC PROTEIN	PR00783C 13.54 8.981e-09 48-67
2013	PR00783	FAMILY SIGNATURE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2034	PF00075	RNase H.	PF00075F 12.87 6.523e-09 183-193
2037	BL00326	Tropomyosins proteins.	BL00326D 8.76 9.327e-09 115-155
2048	PR00671	INHIBIN BETA B CHAIN	PR00671B 4.29 8.767e-10 138-157
2040	1100071	SIGNATURE	11000/12 112/01/01/01/01/01
2052	PD02455	ELEMENT TRANSPOSABLE	PD02455C 29.23 5.230e-09 225-276
LUJL	1202733	INSERTION PROTEIN	
		TRANSPOSITION DNA.	
2058	PF00075	RNase H.	PF00075J 15.78 9.000e-10 81-98
2074	PD00066	PROTEIN ZINC-FINGER METAL-	PD00066 13.92 4.000e-13 62-74
		BINDI.	
2074	PR00048	C2H2-TYPE ZINC FINGER	PR00048B 6.02 4.462e-11 59-68
·		SIGNATURE	PR00048B 6.02 1.000e-10 89-98
	1		PR00048A 10.52 9.609e-10 101-114
2074	BL00028	Zinc finger, C2H2 type, domain	BL00028 16.07 9.100e-13 104-120
		proteins.	BL00028 16.07 1.000e-08 46-62
2076	PR00019	LEUCINE-RICH REPEAT	PR00019A 11.19 1.900e-11 106-119
	i	SIGNATURE	

WO 03/080795 PCT/US02/25485

226

Table 3

* Results include in order: Accession No., subtype, e-value, and amino acid position of the signature in the corresponding polypeptide

227

Table 4

SEQ ID NO:	Pfam Model	Description	E-value	Score	No: of Pfam Domains	Position of the Domain
1050	FAA_hydrolase	Fumarylacetoacetate (FAA) hydrolase fam	0.64	-89.1	1	22-143
1066	rubredoxin	Rubredoxin	7.2	-11.1	1	4-37
1076	ank	Ankyrin repeat	0.01	22.5	1	25-57
1076	sodfe_C	Iron/manganese superoxide dismutases, C-term	3.9	-67.9	1	38-124
1076	DUF232	Putative transcriptional regulator	8.1	-29.1	1	134-254
1099	HMG_box	HMG (high mobility group) box	8	-22.4	1	17-61
1109	UPAR LY6	u-PAR/Ly-6 domain	0.21	-6.2	1	34-112
1110	ldl_recept_a	Low-density lipoprotein receptor domain	8.8e-07	36.0	1	196-240
1110	CUB	CUB domain	0.38	-27.8	1	52-161
1118	rvt	Reverse transcriptase	0.95	-46.1	1	38-207
1125	adenylatekinase	Adenylate kinase	0.00037	-77.6	1	13-103
1162	KRAB	KRAB box	1.1e-23	92.1	1	22-62
1163	connexin	Connexin	3.1e-23	90.6	1	1-130
1171	KRAB	KRAB box	6.6e-22	86.2	1	33-73
1193	MHC_I	Class I Histocompatibility antigen, domains	2e-06	1.1	1	29-205
1209	DOMON	DOMON domain	1.9e-12	54.8	1	102-215
1213	IL8	Small cytokines (intecrine/chemokine), inter	0.59	-7.8	1	18-55
1218	cys rich FGFR	Cysteine rich repeat	4.4	-11.0] 1	28-76
1222	Glyco transf_10	Glycosyltransferase family 10	6.6e-06	-54.1	1	1-322
1240	ig	Immunoglobulin domain	1.6e-06	35.1	2	41- 124:156- 230
1258	asp	Eukaryotic aspartyl protease	8e-06	-110.8	1	19-241
1280	DOMON	DOMON domain	8.9	-16.6	1	35-117
1288	PDZ	PDZ domain (Also known as DHR or GLGF)	1.1	0.4	1	7-73
1301	Exonuclease	Exonuclease	3.4e-33	123.7	1	322-479
1311	Gemini_mov	Geminivirus putative movement protein	5.7	-40.5	1	15-79
1341	fn3	Fibronectin type III domain	6.6e-36	132.7	2	109- 200:212- 301
1345	Collagen	Collagen triple helix repeat (20 copies)	7.3	-65.8	1	185-243
1365	Amidase	Amidase	0.017	-178.9	1	68-276
1375	Galactosyl T	Galactosyltransferase	7.1e-44	159.2	1	113-309
1375	Glyco transf 25	Glycosyltransferase family 25	3	-77.1	1	146-293
1381	GRAM	GRAM domain	6.6e-14	59.6	1	65-116
1396	Pep_M12B_prop ep	Reprolysin family propeptide	1.4e-27	105.1	1	75-191
1396	disintegrin	Disintegrin	2.6e-10	47.7	1	243-318
1398	SK_channel	Calcium-activated SK potassium channel	1.8e-06	34.9	1	1-57
1413	ig	Immunoglobulin domain	5.4	9.1	1	29-88
1416	dUTPase	dUTPase	0.00044	9.6	1	111-237
1420	Folate_rec	Folate receptor family	1.7	-111.2	1	14-175
1434	lectin_c	Lectin C-type domain	1.5e-05	28.0	1	233-319
1440	chromo	'chromo' (CHRromatin Organization MOdifier)	4.6e-11	50.2	1	92-133
1449	PMSR	Peptide methionine sulfoxide reductase	0.0089	-65.8	1	4-79
1450	SPRY	SPRY domain	9e-26	99.0	1	109-240

228

Table 4

		. I able 4		т	T-1 -	<u> </u>
SEQ ID	Pfam Model	Description	E-value	Score	No: of Pfam Domains	Position of the Domain
NO:			0.1- 15	64.6	1	31-152
1451	MaoC_dehydrata s	MaoC like domain	2.1e-15			
1463	NTP transf_2	Nucleotidyltransferase domain	2.6e-12	54.3	1	121-234
1467	DAG_PE-bind	Phorbol esters/diacylglycerol binding dom	8.7e-05	27.4	1	130-180
1467	DC1	DC1 domain	0.66	11.2	1	141-172
1470	jmjC	jmjC domain	0.46	-18.2	1	166-262
1474	pkinase	Protein kinase domain	0.0019	-85.7	1	2-187
1475	SSF	Sodium:solute symporter family	0.13	-177.1	1	1-311
1478	dUTPase	dUTPase	7.6	-37.5	1	2-98
1479	fn3	Fibronectin type III domain	1.1e-19	78.9	1	14-100
1485	rnaseH	RNase H	0.36	-28.0	1	59-175
1488	NTR	NTR/C345C module	0.044	-6.1	1	293-398
1506	HSP70	Hsp70 protein	1.6e-13	38.3	1	61-424
1517	UPAR LY6	u-PAR/Ly-6 domain	0.33	-8.2	1	44-106
1530	maseH	RNase H	0.011	-11.7	1	64-155
1537	p450	Cytochrome P450	2.1	-176.6	1	31-316
1537	DNA_ligase_OB	NAD-dependent DNA ligase OB-fold domain	9.2	-42.9	1	200-256
1558	KRAB	KRAB box	1.8e-18	74.8	1	68-108
1564	Phage integrase	Phage integrase family	1.2e-09	45.5	1	39-204
1566	MR_MLE	Mandelate racemase / muconate lactonizing en	0.00079	-24.5	1	153-352
1570	HMA	Heavy-metal-associated domain	6.6e-13	56.3	1	71-131
1580	ig	Immunoglobulin domain	0.99	15.2	1	23-131
1601	WD40 ·	WD domain, G-beta repeat	2e-08	41.5	3	39- 75:83- 118:126- 162
1606	zf-CCCH	Zinc finger C-x8-C-x5-C-x3-H type	0.094	19.3	3	105- 129:141- 173:183- 209
1612	zf-CCHC	Zinc knuckle	2.1e-05	31.4	2	167- 184:202- 219
1618	rnaseH	RNase H	6.3e-14	59.7	1	24-144
1618	Integrase_Zn	Integrase Zinc binding domain	3.8e-07	37.2	1	146-185
1618	DUF224	Domain of unknown function (DUF224)	9.3	-7.0	1	104-186
1641	adh short	short chain dehydrogenase	4.6e-32	119.9	1	42-309
1667	Xlink	Extracellular link domain	2.9e-83	290.0	2	162- 267:273- 364
1667	ig	Immunoglobulin domain	0.0015	25.2	1	61-145
1682	rvt	Reverse transcriptase	3.1e-31	117.2	1	56-238
1683	Gag p30	Gag P30 core shell protein	2.9e-33	124.0	1	8-197
1689	KRAB	KRAB box	4.9e-22	86.6	1	266-306
1692	ubiquitin	Ubiquitin family	0.00061	26.5	1	17-91
1709	fibrinogen_C	Fibrinogen beta and gamma chains, C-term	7.9e-85	295.2	1	37-255
1713	HOK GEF	Hok/gef family	2.4	-7.8	1	7-54
1716	Gag_p30	Gag P30 core shell protein	0.0036	-49.7	1	64-229
1721	maseH	RNase H	0.011	-11.7	1	207-350
	dUTPase	dUTPase	0.37	-22.9	1	93-217

229

Table 4

SEQ ID	Pfam Model	Description 1 able 4	E-value	Score	No: of Pfam Domains	Position of the Domain
NO: 1725	ig	Immunoglobulin domain	4.2e-13	57.0	2	80- 141:259- 320
1725	IQ	IQ calmodulin-binding motif	4.3e-05	30.4	1	49-69
1727	pkinase	Protein kinase domain	3e-21	84.0	1	71-267
1728	Fringe	Fringe-like	5.9	-112.6	1	165-370
1734	ig	Immunoglobulin domain	0.014	22.0	1	117-170
1737	PP2C	Protein phosphatase 2C	0.0067	-50.5	1	37-273
1738	SH3	SH3 domain	1.7e-05	31.7	1	102-159
1740	rnaseH	RNase H	0.0042	-7.3	1	126-270
1744	DAG_PE-bind	Phorbol esters/diacylglycerol binding dom	2.9	-11.1	1	26-55
1744	PHD	PHD-finger	3.3	-14.7	1	9-61
1760	GARS_N	Phosphoribosylglycinamide synthetase, N	8.2	-62.0	1	35-95
1760	Armadillo_seg	Armadillo/beta-catenin-like repeat	9.1	8.7	2	44- 84:131- 171
1778	7tm_1	7 transmembrane receptor (rhodopsin family)	1e-12	55.7	1	41-276
1778	YCF9	YCF9	3.1	-18.5	1	203-258
1787	Clq	C1q domain	1e-05	13.2	1	111-230
1787	Collagen	Collagen triple helix repeat (20 copies)	0.0043	-3.0	1	50-107
1789	jmjC	jmjC domain	0.00078	12.0	1	52-241
1795	ig	Immunoglobulin domain	0.0037	23.9	1	64-141
1796	rve	Integrase core domain	2.6e-28	107.5	1	20-174
1802	zf-C2H2	Zinc finger, C2H2 type	6e-15	63.1	2	68- 90:108- 130
1806	Filamin	Filamin/ABP280 repeat	0.00054	18.6	1	26-131
1812	ank	Ankyrin repeat	3.6e-23	90.4	3	159- 191:205- 237:244- 276
1824	PHD	PHD-finger	1.1e-12	55.6	1	62-110
1826	PAP_assoc	PAP/25A associated domain	1.5e-06	35.2	1	101-155
1827	ig	Immunoglobulin domain	1.6	13.4	1	29-102
1830	RhoGEF	RhoGEF domain	3.3e-06	24.0	1	110-280
1830	PH	PH domain	2.8	6.7	1	356-451
1833	zf-CCHC	Zinc knuckle	2.1e-06	34.7	1	137-154
1833	rvt	Reverse transcriptase	7.7e-06	25.9	1	84-277
1844	UCH-2	Ubiquitin carboxyl-terminal hydrolase family	0.15	-8.5	1	165-238
1846	Armadillo_seg	Armadillo/beta-catenin-like repeat	0.28	17.7	2	50- 91:92- 132
1860	zf-CCHC	Zinc knuckle	3.2e-05	30.8	1	179-196
1864	zf-C3HC4	Zinc finger, C3HC4 type (RING finger)	0.0022	23.3	1	218-256
1887	ig	Immunoglobulin domain	4e-08	40.4	1	35-112
1889	LRR	Leucine Rich Repeat	0.051	20.1	1	62-85
1895	rnaseH	RNase H	3.4e-06	25.8	1	47-177
1899	Brevenin	Brevenin/esculentin/gaegurin/rugosin family	7.5	-2.9	1	1-51
1911	UPAR LY6	u-PAR/Ly-6 domain	1.3e-06	35.4	1	44-117

230

Table 4

	T	1 able 4	E luo	Score	No: of	Position
SEQ	Pfam Model	Description	E-value	Score	Pfam	of the
ID						
NO:				10.5	Domains	Domain
1911	toxin	Snake toxin	3	-19.5	1	66-117
1911	Activin recp	Activin types I and II receptor domain	9.5	-14.0	1	30-118
1912	гур	Retroviral aspartyl protease	7	-26.3	1	42-142
1913	SAM	SAM domain (Sterile alpha motif)	3.9e-13	57.1	2	105-
		,				170:183-
	Ì					247
1916	Sema	Sema domain	1.4e-14	54.6	1	51-434
1926	PAP2	PAP2 superfamily	2.9e-07	37.6	1	48-142
1930		Immunoglobulin domain	2.7e-07	37.6	1	41-116
	ig	Integrase core domain	2.5e-13	57.7	1	1-138
1935	rve	RNase H	1.1e-26	102.0	ī	24-153
1940	rnaseH		4.7e-12	53.5	1	155-194
1940	Integrase_Zn	Integrase Zinc binding domain	0.0027	24.4	1	67-95
1952	LRRNT	Leucine rich repeat N-terminal domain		40.9	1	78-219
1953	UQ_con	Ubiquitin-conjugating enzyme	2.8e-08			
1954	Peptidase_M10	Matrixin	6.7e-86	298.8	1	53-212
1954	fn2	Fibronectin type II domain	1e-79	278.2	3	231-
						272:289-
						330:347-
						388
1958	ras	Ras family	1.9	-132.0	1	215-284
1963	tsp 1	Thrombospondin type 1 domain	0.083	8.0	1	20-63
1966	rvt	Reverse transcriptase	1.5e-05	21.9	1	2-196
1968	G-patch	G-patch domain	0.3	6.0	1	307-352
1968	rvp	Retroviral aspartyl protease	1.4	-19.9	1	274-385
1970	rve	Integrase core domain	0.78	-16.8	1	265-395
1973	Phage_integrase	Phage integrase family	5.7e-08	39.9	1	1-153
1974	Sigma54 activat	Sigma-54 interaction domain	3.1e-37	137.2	1	63-253
1975	Na Pi cotrans	Na+/Pi-cotransporter	0.0085	-99.2	1	1-146
1975		His Kinase A (phosphoacceptor)	7	-7.7	1	85-147
1973	signal	domain	,] '''	1	"
1978	UPAR LY6	u-PAR/Ly-6 domain	1.8	-16.0	1	21-96
1978		Fungal Zn(2)-Cys(6) binuclear cluster	5.1	-5.7	1	21-60
19/8	Zn_clus	domain] 3.1] -3.,	1.	
1007	· · · · · · · · · · · · · · · · · · ·		1.2e-18	75.4	1	4-171
1987	pro_isomerase	Cyclophilin type peptidyl-prolyl cis-tr Zinc knuckle	1.9e-05	31.5	2	181-
1997	zf-CCHC	Zinc knuckie	1.96-05	31.5	2	198:204-
[220
		Transcription initiation factor IID,	7.9	-63.3	1	75-187
1997	TFIID-31		1.9	-05.5	1	/5-10/
	1	31kD su		0.5	1	155-229
1997	Gag_p12	Gag polyprotein, inner coat protein p12	8.9	-9.5		
1998	KRAB	KRAB box	2e-23	91.2	1	27-65
2001	CH_	Calponin homology (CH) domain	0.019	10.8	1	230-330
2001	SAM	SAM domain (Sterile alpha motif)	0.9	6.5	1	248-311
2008	tsp_1	Thrombospondin type 1 domain	0.013	15.1	1	64-98
2011	ig	Immunoglobulin domain	1.7e-05	31.7	1	186-255
2011	kazal	Kazal-type serine protease inhibitor	0.00028	27.6	1	121-168
		domain				ļ
2011	IGFBP .	Insulin-like growth factor binding	0.17	2.5	1	53-113
		protein				
2011	zf-UBR1	Putative zinc finger in N-recognin	8.3	-24.0	1	54-112
2015	PH	PH domain	0.0002	28.1	1	174-281
2015	efhand	EF hand	0.00031	27.5	1	339-367
2018	RPEL	RPEL repeat	1.3	11.8	1	25-50
2034	rnaseH	RNase H	4e-27	103.6	1	122-267
2034	THASCII	10.1000 11		1		

231

Table 4

SEQ ID NO:	Pfam Model	Description	E-value	Score	No: of Pfam Domains	Position of the Domain
	granulin	Granulin	7.7	-17.8	1	62-91
2038		Integrase core domain	2.6e-24	94.2	1	160-314
2052 2057	Pep_M12B_prop	Reprolysin family propeptide	0.44	-29.3	1	179-263
	ер	T. Jamain	8.7e-14	59.2	1	1-140
2058	zf-C2H2	Integrase core domain Zinc finger, C2H2 type	5.5e-22	86.5	3	42- 66:72- 96:102- 124
2074	zf-BED	BED zinc finger	0.94	1.8	1	91-129
2074	TP1	Nuclear transition protein 1	7.5	2.2	1	21-76
2076	LRR	Leucine Rich Repeat	3.2e-20	80.6	5	57- 80:81- 104:105- 128:129- 152:153- 176
0076	LRRNT	Leucine rich repeat N-terminal domain	0.00013	28.8	1	27-55
2076	LRRCT	Leucine rich repeat C-terminal domain	0.047	18.0	1	186-234

				_			_					
1076	3	25		<u></u>	1061	1061		1050	1050	ID No:	SEQ	
lavi		2thv	ımdı	l nam	1cwv	1ciu		199j	199j	D	PDB	
Α	(C	h P	P	>			A	A	ID	CHAIN	
60	,	96	Č	36	50	34		16	16	AA	START	
257		170	į	225	226	172		54	52	AA	END	
3.2e-07		9 6e-12		9.6e-15	9.6e-13	9.6e-11		1.3e-11	3.4e-06	Blast	Psi	
		0.44	i	0.21	0.11	0.02		-0.70	-0.68	score	Verify	
		-0.19		-0.20	-0.19	-0.19		0.42	0.41	score	HME	
61.14										score	GTOADES	COLORY
APOLIPOPROTEIN A-I; CHAIN: A, B, C, D;	STUNT VIRUS 2TBV 4	VIRUS TOMATO BUSHY	GLUCANOTRANSFERASE; CHAIN: A, B;	CYCLODEXTRIN	INVASIN; CHAIN: A;	CYCLODEXIRIN GLYCOSYLTRANSFERASE; 1CIU 6 CHAIN: NULL; 1CIU 7		FUMARYLACETOACETATE HYDROLASE; CHAIN: A, B;	FUMARYLACETOACETATE HYDROLASE; CHAIN: A, B;		Compound	
LIPID TRANSPORT APO A-I; LIPOPROTEIN, LIPID TRANSPORT, CHOLESTEROL METABOLISM, 2 ATHEROSCLEROSIS, HDL, I CAT-ACTIVATION		CALCIUM, SIGNAL	TRANSFERASE, GLYCOSYLTRANSFERASE, CALCUDA STOLAR	GLYCOSYLTRANSFERASE	STRUCTURAL PROTEIN INTEGRIN-BINDING PROTEIN, INV GENE	GLYCOSIDASE CGTASE; 1CIU 8 THERMOSTABLE 1CIU 14		HYDROLASE BETADIKETONASE, FAA; MIXED BETA-SANDWICH ROLL, HYDROLASE	HYDROLASE BETADIKETONASE, FAA; MIXED BETA-SANDWICH ROLL, HYDROLASE		PDB annotation	

1076	1076	1076	1076	1076	Das
lcun	1bu9	1blx	1bd8	lawc	EDB ID
>	A	В		ы	CHAIN
46	19	19	19	19	START AA
259	66	. 66	66	82	AA END
1.4e-05	4.3e-07	2.4e-07	4.8e-07	9.6e-09	Psi Blast
	0.05	-0.32	-0.33	-0.24	Verify score
	0.22	0.27	0.18	0.15	PMF score
72.19					SEQFOLD score
ALPHA SPECTRIN; CHAIN: A, B, C;	CYCLIN-DEPENDENT KINASE 6 INHIBITOR; CHAIN: A;	CYCLIN-DEPENDENT KINASE 6; CHAIN: A; P19INK4D; CHAIN: B;	P19INK4D CDK4/6 INHIBITOR; CHAIN: NULL;	GA BINDING PROTEIN ALPHA; CHAIN: A; GA BINDING PROTEIN BETA 1; CHAIN: B; DNA; CHAIN: D, E;	Compound
STRUCTURAL PROTBIN TWO REPEATS OF SPECTRIN, ALPHA HELICAL LINKER REGION, 22	HORMONE/GROWTH FACTOR P18-INK4C; CELL CYCLE INHIBITOR, P18INK4C, TUMOR, SUPPRESSOR, CYCLIN- 2 DEPENDENT KINASE, HORMONE/GROWTH FACTOR	COMPLEX (INHIBITOR PROTEIN/KINASE) INHIBITOR PROTEIN, CYCLIN-DEPENDENT KINASE, CELL CYCLE 2 CONTROL, ALPHA/BETA, COMPLEX (INHIBITOR PROTEIN/KINASE)	TUMOR SUPPRESSOR TUMOR SUPPRESSOR, CDK4/6 INHIBITOR, ANKYRIN MOTIF	COMPLEX (TRANSCRIPTION REGULATION/DNA) GABPALPHA; GABPBETA1; COMPLEX (TRANSCRIPTION REGULATION/DNA), DNA-BINDING, 2 NUCLEAR PROTEIN, ETS DOMAIN, ANKYRIN REPEATS, TRANSCRIPTION 3 FACTOR	PDB annotation

-				7	=	=	=		Z H	S	
	1089	1089	1089	_	1076	1076	1076			SEQ	
	lawp	law3	laqa		lquu	lqqe	1myo		Ħ	PDB	
	A				Α	Α .	·		Ħ	CHAIN	
	76	76 .	76		38	24	19		AA	START	
	148	146	146		289	284	99		AA	END	
	0.0096	0.0038	0.0048		3.4e-05	0.00096	9.6e-09		Blast	Psi	
	0.47	0.22	0.24				-0.44		score	Verify	
	0.58	0.10	0.15				0.22		score	HW	
					68.38	62.82			score	GTOADES	Table 5
	CYTOCHROME B5; CHAIN: A, B;	CYTOCHROME B5; CHAIN: NULL;	CYTOCHROME B5; CHAIN: NULL;		HUMAN SKELETAL MUSCLE ALPHA-ACTININ 2; CHAIN: A;	VESICULAR TRANSPORT PROTEIN SEC17; CHAIN: A;	MYOTROPHIN; CHAIN: NULL			Compound	
	ELECTRON TRANSPORT CYTOCHROME, ELECTRON TRANSPORT, HEME	ELECTRON TRANSPORT CYTOCHROME B5, PROTEIN RECOGNITION, ELECTRON TRANSPORT, 2 SOLUTION STRUCTURE, PARAMAGNETIC NMR	ELECTRON TRANSPORT CYTOCHROME B5, PROTEIN RECOGNITION, SOLUTION STRUCTURES, 2 SECONDARY STRUCTURES, ELECTRON TRANSPORT		CONTRACTILE PROTEIN TRIPLE-HELIX COILED COIL, CONTRACTILE PROTEIN	PROTEIN TRANSPORT HELIX- TURN-HELIX TPR-LIKE REPEAT, PROTEIN TRANSPORT	ANK-REPEAT MYOTROPHIN, ACETYLATION, NMR, ANK-REPEAT	COILS, STRUCTURAL PROTEIN		PDB annotation	

1102	1102	1099	1099	1089		NO. DES	
lezg	lezg	1 hsm	1hme	1do9		PDB ID	
Α	Α			A		CHAIN ID	
158	146	· E	8	76		START AA	
236	224	61	61	151		END AA	
6.4e-10	3.2e-08	3.2e-21	3.2e-23	0.0048		Psi Blast	
1.04	1.04	-0.83	-0.62	0.11		Verify score	
-0.08	-0.08	1.00	0.98	0.16		PMF score	
						SEQFOLD score	Table 5
THERMAL HYSTERESIS PROTEIN ISOFORM YL-1;	THERMAL HYSTERESIS PROTEIN ISOFORM YL-1; CHAIN: A, B;	DNA-BINDING HIGH MOBILITY GROUP PROTEIN 1 (HMGI) BOX 2, COMPLEXED WITH 1HSM 3 MERCAPTOETHANOL (NMR, MINIMIZED AVERAGE STRUCTURE) 1HSM 4	DNA-BINDING HIGH MOBILITY GROUP PROTEIN FRAGMENT-B (EMGB) (DNA- BINDING 1HME 3 HMG-BOX DOMAIN B OF RAT HMG1) (NMR, 1 STRUCTURE) 1HME 4	CYTOCHROME B5; CHAIN: A;	CYTOCHROME B5 (OXIDIZED) 1CYO 3 ELECTRON TRANSPORT 1CYO 4A	Compound	
ANTIFREEZE PROTEIN,	ANTIFREEZE PROTEIN INSECT ANTIFREEZE PROTEIN, THERMAL HYSTERESIS, TENEBRIO 2 MOLITOR, IODINATION, RIGHT-HANDED BETA-HELIX, TMAFP			ELECTRON TRANSPORT CYTOCHROME, HEME		PDB annotation	

																							_				_			_	
				7011	113					;	1103			_		;	1103						1102					ŠE	3	SES O	
				Szar	1					0	leze					G	1670					Ġ	1628					Ę	3 }	PIIR	
				>	^				•	•	A					;	A						A					ξ	3	CHAIN	
				2/0	37,						263					į	193						180				•	5	٧٧.	START	
				1,00	325						344						270						258					}	A	END	
				0.40-00	646-00						1.6e-10						1.6e-11						1.1e-10						Rlact	Psi	
				1.2.1	131			_			1.13						0.80					,	0.28					500.0	score	Verify	
				9.00	2000						0.10						-0.13						-0.19					000.0	score	PMF	
																													score	SEOFOLD	Table 5
			CHAIN: A. B:	PROTEIN ISOFORM YI-1:	THERMAL HYSTERESIS		٠		CHAIN: A, B;	PROTEIN ISOFORM YL-1;	THERMAL HYSTERESIS				CHAIN: A, B;	PROTEIN ISOFORM YL-1;	THERMAL HYSTERESIS				CHAIN: A, B;	PROTEIN ISOFORM YL-1;	THERMAL HYSTERESIS				CHAIN: A, B;		,	Compound	
BEIA-IEEEA, IIWALL	IODINATION, RIGHT-HANDED	TENEBRIO 2 MOLITOR,	THERMAL HYSTERESIS,	ANTIFREEZE PROTEIN.	ANTIFREEZE PROTEIN INSECT	BETA-HELIX, TMAFP	IODINATION, RIGHT-HANDED	TENEBRIO 2 MOLITOR,	THERMAL HYSTERESIS,	ANTIFREEZE PROTEIN,	ANTIFREEZE PROTEIN INSECT	BETA-HELIX, TMAFP	IODINATION, RIGHT-HANDED	TENEBRIO 2 MOLITOR,	THERMAL HYSTERESIS, .	ANTIFREEZE PROTEIN,	ANTIFREEZE PROTEIN INSECT	BETA-HELIX, TMAFP	IODINATION, RIGHT-HANDED	TENEBRIO 2 MOLITOR,	THERMAL HYSTERESIS,	ANTIFREEZE PROTEIN,	ANTIFREEZE PROTEIN INSECT	BETA-HELIX, TMAFP	IODINATION, RIGHT-HANDED	TENEBRIO 2 MOLITOR,	THERMAL HYSTERESIS,			PDB annotation	

		<u> </u>	_	-	_	z _ 0
1102	1102	1102	1102	1102	1102	NO:
1klo	1klo	lezg	1ezg	1ezg	lezg	РДВ ДД
		A	A	A	*	CHAIN
168	146	359	ង ស &	312	289	START AA
342	301	440	420	392	368	END AA
1.6e-10	3.2e-08	4.8e-08	4.8e-12	1.4e-10	3.2e-09	Psi Blast
0.20	0.02	0.20	0.70	1.07	1.12	Verify score
-0.19	-0.19	-0.17	-0.11	-0.02	-0.11	PMIF score
						SEQFOLD score
LAMININ; CHAIN: NULL;	LAMININ; CHAIN: NULL;	THERMAL HYSTERESIS PROTEIN ISOFORM YL-1; CHAIN: A, B;	THERMAL HYSTERESIS PROTEIN ISOFORM YL-1; CHAIN: A, B;	THERMAL HYSTERESIS PROTEIN ISOFORM YL-1; CHAIN: A, B;	THERMAL HYSTERESIS PROTEIN ISOFORM YL-1; CHAIN: A, B;	Compound
GLYCOPROTEIN GLYCOPROTEIN	GLYCOPROTEIN GLYCOPROTEIN	ANTIFREEZE PROTEIN INSECT ANTIFREEZE PROTEIN, THERMAL HYSTERESIS, TENEBRIO 2 MOLITOR, IODINATION, RIGHT-HANDED BETA-HELIX, TMAFP	ANTIFREEZE PROTEIN INSECT ANTIFREEZE PROTEIN, THERMAL HYSTERESIS, TENEBRIO 2 MOLITOR, IODINATION, RIGHT-HANDED BETA-HELIX, TMAFP	ANTIFREEZE PROTEIN INSECT ANTIFREEZE PROTEIN, THERMAL HYSTERESIS, TENEBRIO 2 MOLITOR, IODINATION, RIGHT-HANDED BETA-HELIX, TMAFP	ANTIFREEZE PROTEIN INSECT ANTIFREEZE PROTEIN, THERMAL HYSTERESIS, TENEBRIO 2 MOLITOR, IODINATION, RIGHT-HANDED BETA-HELIX, TMAFP	PDB annotation

1102 1klo 1102 1klo 1102 9wga A 1102 9wga A 1102 9wga A 1102 9wga A 1102 9wga A
126 142 193 276 276
298 6.4e-12 370 8e-11 438 6.4e-09 187 0.0096
8e-11 6.4e-09 0.0096
0.04
-0.11 -0.15 -0.34
WHEAT GERM AGGLUTININ (ISOLECTIN 2) 9WGA 3 LECTIN (AGGLUTININ) WHEAT GERM AGGLUTININ (ISOLECTIN 2) 9WGA 3 LECTIN (AGGLUTININ) WHEAT GERM AGGLUTININ (ISOLECTIN 2) 9WGA 3 EPOXIDE HYDROLASE; CHAIN: A, B;
EPOXIDE HYDROLASE EH; EPOXIDE HYDROLASE, ALPHA/BETA HYDROLASE

1110	1110	1110	1110	1110	1110	1109	Ş	ŖĦ,	OES
1f5y	1d21	1d2j	1cr8	1ajji	1ajj	1kxi		Ħ	PDB
Α	A	A	Þ			>		Ħ	CHAIN
157	193	197	195	197	197	34		AA	START
233	229	229	240	233	229	111		AA	BE
3.2e-09	2.9e-10	1.4e-09	4.8e-09	9.6e-09	9.6e-10	0.0029		Blast	Psi
0.41	1.00	0.43	0.15	0.04	0.35	-0.03		score	Verify
-0.14	0.49	0.49	0.01	-0.03	0.84	0.04		score	PMF
								score	SEQFOLD
LOW-DENSITY LIPOPROTEIN	LIPOPROTEIN RECEPTOR RELATED PROTEIN; CHAIN: A;	LOW-DENSITY LIPOPROTEIN RECEPTOR; CHAIN: A;	LOW DENSITY LIPOPROTEIN RECEPTOR RELATED PROTEIN; CHAIN: A;	LOW-DENSITY LIPOPROTEIN RECEPTOR; CHAIN: NULL;	LOW-DENSITY LIPOPROTEIN RECEPTOR; CHAIN: NULL;	CARDIOTOXIN V; CHAIN: A, B;	ACETYLCHOLINE 1ABT 4 RECEPTOR (NMR, 4 STRUCTURES) 1ABT 5		Compound
LIPID BINDING PROTEIN LDL	SIGNALING PROTEIN LIGAND BINDING, CALCIUM BINDING, COMPLEMENT-LIKE REPEAT, 2 RECEPTOR, SIGNALING PROTEIN	RECEPTOR, LDLR, CYSTEINE- RICH MODULE, CALCIUM LIGAND-2 BINDING, FAMILIAL HYPERCHOLESTEROLEMIA	LIPID BINDING PROTEIN RECEPTOR, LIGAND BINDING, CALCIUM BINDING, LDLR, LRP, LIPID 2 BINDING PROTEIN	RECEPTOR, CKSTEINE- LDL RECEPTOR, CYSTEINE- RICH MODULE, CALCIUM	RECEPTOR LRS; RECEPTOR, LDL RECEPTOR, CYSTEINE- RICH MODULE, CALCIUM	CYTOTOXIN CIX A5; VENOM, CYTOTOXIN, CARDIOTOXIN, MULTIGENE FAMILY, SIGNAL			PDB annotation

WO 03/080795

		T					=	72	<u>ا بر ځ</u>	2	
1118	1118	1110	1110	1110	1110	1110	1110	2	<u>_</u>	⊣	
1c0t	1c0t	9wga	9wga	9wga	ıldı	1.f5y	1f5y		Ħ	PDB	
В	>	A	A	A		>	Α		Ħ	CHAIN	
47	56	90	40	117	195	88	190		AA	START	
159	175	238	209	274	229	157	254		AA	END	
3.2e-38	3.2e-38	3.2e-18	1.6e-13	3.2e-18	4.8e-10	6.4e-09	4.8e-10		Blast	Psi	
-0.26	-0.01	0.12	0.23		0.52	0.13	0.57		score	Verify	
0.31	0.59	-0.18	-0.19		0.30	-0.20	-0.09		score	PMF	
				54.99					score	SEQFOLD	Table 5
HIV-1 REVERSE TRANSCRIPTASE (A-CHAIN);	HIV-1 REVERSE TRANSCRIPTASE (A-CHAIN); CHAIN: A; HIV-1 REVERSE TRANSCRIPTASE (B-CHAIN); CHAIN: B;	WHEAT GERM AGGLUTININ (ISOLECTIN 2) 9WGA 3	USOLECTIN (AGGLUTININ) (ISOLECTIN 2) 9WGA 3	LECTIN (AGGLUTININ) WHEAT GERM AGGLUTININ (ISOLECTIN 2) 9WGA 3	LOW-DENSITY LIPOPROTEIN RECEPTOR; 1LDL 4 CHAIN: NULL; 1LDL 5	LOW-DENSITY LIPOPROTEIN RECEPTOR; CHAIN: A;	LOW-DENSITY LIPOPROTEIN RECEPTOR; CHAIN: A;	RECEPTOR; CHAIN: A;		Compound	
TRANSFERASE HIV-I KEVEKSE TRANSCRIPTASE, AIDS, NON-	TRANSFERASE HIV-1 REVERSE TRANSCRIPTASE, AIDS, NON- NUCLEOSIDE INHIBITOR, 2 DRUG DESIGN				BINDING PROTEIN LBI; ILDL / LDL RECEPTOR CYSTEINE-RICH REPEAT ILDL 15	RECEPTOR; BETA HAIRPIN, 3-10 HELIX, CALCIUM BINDING	LIPID BINDING PROTEIN LUL RECEPTOR; BETA HAIRPIN, 3-10 HELIX, CALCIUM BINDING	HELIX, CALCIUM BINDING		PDB annotation	

 -				
1118	1118	1118	1118	SEQ SEQ
1har	1с9г	1c9r	1010	PDB ID
	ੁ ਲ	>	В	CHAIN
2	47	56	47	START AA
179	175	175	175	END AA
9.6e-37	1.6c-40	4.8e-38	4.8e-42	Psi Blast
	-0.26	-0.14	-0.47	Verify score
	0.81	0.58	0.54	PMF score
50.82				Table 5 SEQFOLD score
HIV-1 REVERSE	HIV-1 REVERSE TRANSCRIPTASE (CHAIN A); CHAIN: A; HIV-1 REVERSE TRANSCRIPTASE (CHAIN B); CHAIN: B; ANTIBODY (LIGHT CHAIN); CHAIN: L; ANTIBODY (HEAVY CHAIN); CHAIN: H; DNA (5'- CHAIN: T; DNA (5'- CHAIN: P;	HIV-1 REVERSE TRANSCRIPTASE (CHAIN A); CHAIN: A; HIV-1 REVERSE TRANSCRIPTASE (CHAIN B); CHAIN: B; ANTIBODY (LIGHT CHAIN); CHAIN: L; ANTIBODY (HEAVY CHAIN); CHAIN: H; DNA (5'- CHAIN: T; DNA (5'- CHAIN: P;	CHAIN: A; HIV-1 KEVEKSE TRANSCRIPTASE (B-CHAIN); CHAIN: B; HIV-1 REVERSE TRANSCRIPTASE (A-CHAIN); CHAIN: A; HIV-1 REVERSE TRANSCRIPTASE (B-CHAIN); CHAIN: B;	Compound
	TRANSFERASE/IMMUNE SYSTEM/DNA HIV-1 RT; HIV-1 RT; HIV, REVERSE TRANSCRIPTASE, MET184ILE, 3TC, PROTEIN-DNA 2 COMPLEX, DRUG RESISTANCE, M184I, TRANSFERASE/IMMUNE 3 SYSTEM/DNA	TRANSFERASE/IMMUNE SYSTEM/DNA HIV-1 RT; HIV-1 RT; HIV, REVERSE TRANSCRIPTASE, MET184ILE, 3TC, PROTEIN-DNA 2 COMPLEX, DRUG RESISTANCE, M184I, TRANSFERASE/IMMUNE 3 SYSTEM/DNA	DRUG DESIGN TRANSFERASE HIV-1 REVERSE TRANSCRIPTASE, AIDS, NON- NUCLEOSIDE INHIBITOR, 2 DRUG DESIGN	PDB annotation

								1
1119	1118	1118	1118	1118	1118	•	SEQ NO:	
lclg	3hvt	lvrt	lvrt	1rth	1rth		PDB ID	
>	В	В	Α	В	Α		CHAIN	
64	47	47	47	47	47		START AA	
138	175	175	175	175	175		AA END	
2.4e-09	3.2e-42	1.6e-42	1.6e-42	4.8e-43	1.6e-42		Psi Blast	
1.36	-0.04	-0.14	-0.34	-0.21	-0.22		verity score	
-0.18	0.24	0.57	0.81	0.54	0.84		Score	
							SEQFOLD	Table 5
TROPOMYOSIN; CHAIN: A, B, C, D	NUCLEOTIDYLTRANSFERASE REVERSE TRANSCRIPTASE (E.C.2.7.7.49) 3HVT 3	HIV-1 REVERSE TRANSCRIPTASE; IVRT 4 CHAIN: A, B; IVRT 5	HIV-1 REVERSE TRANSCRIPTASE; IVRT 4 CHAIN: A, B; IVRT 5	HIV-1 REVERSE TRANSCRIPTASE; 1RTH 4 CHAIN: A, B; 1RTH 5	HIV-1 REVERSE TRANSCRIPTASE; 1RTH 4 CHAIN: A, B; 1RTH 5	TRANSCRIPTASE (AMINO- TERMINAL HALF) (FINGERS 1HAR 3 AND PALM SUBDOMAINS) (RT216) (E.C.2.7.7.49) 1HAR 4	Compound	
CONTRACTILE PROTEIN TROPOMYOSIN COILED-COIL		NUCLEOTIDYLTRANSFERASE HIV-1 RT; 1VRT 6 HIV-1 REVERSE TRANSCRIPTASE 1VRT 15	NUCLEOTIDYLTRANSFERASE HIV-1 RT; 1VRT 6 HIV-1 REVERSE TRANSCRIPTASE 1VRT 15	NUCLEOTIDYLTRANSFERASE HIV-1 RT; 1RTH 6 HIV-1 REVERSE TRANSCRIPTASE 1RTH 15	NUCLEOTIDYLTRANSFERASE HIV-1 RT; 1RTH 6 HIV-1 REVERSE TRANSCRIPTASE 1RTH 15		г до ашпоганон	DDB amotation

								٦.
1125	1119	1119	1119	1119	1119	1119	NO:	
lak2	lreq	1qun	lqtq	1ez3	1cii	icig	PDB	,,,,
-	*	A	A	A		A	CHAIN	
Ω	64	64	71	64	66	64	AA	
117	152	152	135	157	152	156	A E	
9.6e-22	1.46-11	1.9e-12	2.9e-09	4.8e-15	4.3e-08	9.6e-09	Blast	D
-0.44	0.77	0.59	0.13	0.95	0.70	0.91	score	Vaulfu
0.41	-0.19	-0.20	-0.20	-0.20	-0.20	-0.19	score	1 Ma
							score	SEOFOLD 1 ADIC 2
ADENYLATE KINASE ISOENZYME-2; CHAIN: NULL;	METHYLMALONYL-COA MUTASE; CHAIN: A, B, C, D;	HUMAN SKELETAL MUSCLE ALPHA-ACTININ 2; CHAIN: A;	GLUTAMINYL-TRNA SYNTHETASE; CHAIN: A; TRNA GLN II; CHAIN: B;	SYNTAXIN-1A; CHAIN: A, B, C;	COLICIN IA; CHAIN: NULL;	TROPOMYOSIN; CHAIN: A, B, C, D	Compound	Compound
PHOSPHOTRANSFERASE ATP\:AMP PHOSPHOTRANSFERASE,	ISOMERASE ISOMERASE, MUTASE, INTRAMOLECULAR TRANSFERASE	CONTRACTILE PROTEIN TRIPLE-HELIX COILED COIL, CONTRACTILE PROTEIN	COMPLEX (TRNA SYNTHETASE/TRNA) GLNRS; TRNA SYNTHETASE, GLUTAMINE, TRNAGLN, E. COLL COMPLEX	ENDOCYTOSIS/EXOCYTOSIS SYNAPTOTAGMIN ASSOCIATED 35 KDA PROTEIN, P35A, THREE HELIX BUNDLE	TRANSMEMBRANE PROTEIN COLICIN, BACTERIOCIN, ION CHANNEL FORMATION, TRANSMEMBRANE 2 PROTEIN	CONTRACTILE PROTEIN TROPOMYOSIN COILED-COIL ALPHA-HELICAL, CONTRACTILE PROTEIN	CONTRACTILE PROTEIN	PDB annotation

,								\neg
	1125	1125	1125	1125	1125		NO.	SEO
	lzak	lukz	1459	1e4v	laky		D	PDR
	≯		A	A			Ш	CHAIN
	46	43	44	31	31		AA	START
	117	117	117	116	117		AA	END
	9.6e-15	1.6e-23	6.4e-23	1.6e-20	1.1e-19		Blast	Psi
	-0.45	-0.26	-0.10	-0.55	-0.23		score	Verify
	0.05	0.99	0.41	0.00	0.11		score	PMF
							score	SEOFOLD
	ADENYLATE KINASE; CHAIN: A, B;	TRANSFERASE URIDYLATE KINASE (B.C.2.7.4) COMPLEXED WITH ADP AND AMP 1UKZ 3	URIDYLMONOPHOSPHATE/C YTIDYLMONOPHOSPHATE KINASE; CHAIN: A;	ADENYLATE KĪNASE; CHAIN: A;	ADENYLATE KINASE; 1AKY 4 CHAIN: NULL; 1AKY 5			Compound
	TRANSFERASE ATP:AMP-PHOSPHOTRANSFERASE, TRANSFERASE		KINASE UMP/CMP KINASE; NUCLEOSIDE MONOPHOSPHATE KINASE, NMP KINASE, PHOSPHORYL 2 TRANSFER, TRANSITION STATE ANALOG COMPLEX, TRANSFERASE	TRANSFERASE(PHOSPHOTRAN SFERASE) TRANSFERASE(PHOSPHOTRAN SFERASE)	TRANSFERASE (PHOSPHOTRANSFERASE) ATP\:AMP PHOSPHOTRANSFERASE, MYOKINASE; 1AKY 6 ATP:AMP PHOSPHOTRANSFERASE, MYOKINASE 1AKY 15	MYOKINASE; NUCLEOSIDE MONOPHOSPHATE KINASE, PHOSPHOTRANSFERASE		PDB annotation

1165	1162	1135	1125	1125	1125	SEQ
lerj	lmey	1992	3adk	2ak3	1zin	EDB ID
A	G	Α		A		CHAIN
35	91	7	43	31	31	START AA
114	117	42	117	119	117	END AA
0.0024	1.6e-11	0.0048	3.2e-26	1.6e-19	9.6e-21	Psi Blast
0.55	0.01	-0.79	-0.04	-0.17	-0.57	Verify score
0.80	-0.20	0.11	0.75	0.05	0.15	PMT score
						SEQFOLD score
TRANSCRIPTIONAL REPRESSOR TUP1; CHAIN: A, B, C;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	THIOREDOXIN PEROXIDASE 2; CHAIN: A, B;	TRANSFERASE(PHOSPHOTRA NSFERASE) ADENYLATE KINASE (E.C.2.7.4.3) 3ADK 4	TRANSFERASE (PHOSPHOTRANSFERASE) ADENYLATE KINASE ISOENZYMB-3 (GTP: AMP PHOSPHOTRANSFERASE) 2AK3 3 (E.C.2.7.4.10) 2AK3 4	ADENYLATE KINASE; CHAIN: NULL;	Compound
TRANSCRIPTION INHIBITOR BETA-PROPELLER	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	OXIDOREDUCTASE HEME- BINDING PROTEIN 23 KD, HBP23; THIOREDOXIN FOLD, OXIDOREDUCTASE			PHOSPHOTRANSFERASE ADK; PHOSPHOTRANSFERASE, ZINC FINGER	PDB annotation

1193	1193	1165	1165	NO:	SEQ	
lain	lain	lgot	1got	Ш	PDB	
Α		, w	B	B	CHAIN	
29	29	35	33	AA	START	
243	226	110	127	A	END	
1.6e-91	1.6e-91	0.00024	0.0096	Blast	Psi	
	0.58	0.53	0.21	score	Verify	
	1.00	0.90	0.03	score	PMF	
55.07				score	SEQFOLD	c arde 7
B*3501; CHAIN: A, B; PEPTIDE VPLRPMTY; CHAIN: C;	B*3501; CHAIN: A, B; PEPTIDE VPLRPMTY; CHAIN: C;	GT-ALPHA/GI-ALPHA CHIMERA; CHAIN: A; GT- BETA; CHAIN: B; GT-GAMMA; CHAIN: G;	GIT-ALPHA/GIT-ALPHA CHIMERA; CHAIN: A; GT- BETA; CHAIN: B; GT-GAMMA; CHAIN: G;		Compound	
COMPLEX (ANTIGEN/PEPTIDE) B35; MAJOR HISTOCOMPATIBILITY ANTIGEN, MHC, HLA, HLA- B3501, HIV, 2 NEF, COMPLEX	COMPLEX (ANTIGEN/PEPTIDE) B35; MAJOR HISTOCOMPATIBILITY ANTIGEN, MHC, HLA, HLA- B3501, HIV, 2 NEF, COMPLEX (ANTIGEN/PEPTIDE)	COMPLEX (GIP- BINDING/TRANSDUCER) BETA1, TRANSDUCIN BETA SUBUNIT; GAMMA1, TRANSDUCIN GAMMA SUBUNIT; COMPLEX (GTP-BINDING/TRANSDUCER), G PROTEIN, HETEROTRIMER 2 SIGNAL TRANSDUCTION	BINDING/TRANSDUCER) BETA1, TRANSDUCIN BETA SUBUNIT; GAMMA1, TRANSDUCIN GAMMA SUBUNIT; COMPLEX (GTP-BINDING/TRANSDUCER), G PROTEIN, HETEROTRIMER 2 SIGNAL TRANSDUCTION		PDB annotation	

		—т		T		
1193	1193	1193	1193	1193	1193	NO:
1bx2	laqd	lagd	lagd	1a6z	la6a	PDB ID
В	В	A	>	Α	В	CHAIN
134	121	29	29	29	134	START AA
220	220	243	226	245	220	END
0.00048	0.00032	9.6e-92	9.6e-92	3.2e-64	0.0014	Psi Blast
-0.15	-0.04		0.57		-0.21	Verify score
0.06	0.06		1.00		0.11	PMF score
		61.21		75.13		SEQFOLD score
HLA-DR2; CHAIN: A, D; HLA-	HLA-DR1 CLASS II HISTOCOMPATIBILITY PROTEIN; CHAIN: A, B, D, E, G, H, J, K; HLA-A2; CHAIN: C, F, I, L;	B*0801; CHAIN: A; BETA-2 MICROGLOBULIN; CHAIN: B; HIV-1 GAG PEPTIDE (GGKKKYKL - INDEX PEPTIDE); CHAIN: C;	B*0801; CHAIN: A; BETA-2 MICROGLOBULIN; CHAIN: B; HIV-1 GAG PEPTIDE (GGKKKYKL - INDEX PEPTIDE); CHAIN: C;	HFE; CHAIN: A, C; BETA-2- MICROGLOBULIN; CHAIN: B, D	HLA-DR3; CHAIN: A, B; CLIP; CHAIN: C;	Compound
IMMUNE SYSTEM HLA-DR2,	COMPLEX (MHC PROTEIN/ANTIGEN) DRA, DRB1 01010; COMPLEX (MHC PROTEIN/ANTIGEN), HISTOCOMPATIBILITY ANTIGEN	HISTOCOMPATIBILITY COMPLEX B8; B2M; PEPTIDE HLA B8, HIV, MHC CLASS I, HISTOCOMPATIBILITY COMPLEX	HISTOCOMPATIBILITY COMPLEX B8; B2M; PEPTIDE HLA B8, HIV, MHC CLASS I, HISTOCOMPATIBILITY COMPLEX	MHC CLASS I COMPLEX HFE, HEREDITARY HEMOCHROMATOSIS, MHC CLASS I	COMPLEX (TRANSMEMBRANE/GLYCOPRO TEIN) MHC GLYCOPROTEIN, COMPLEX (TRANSMEMBRANE/GLYCOPRO TEIN)	PDB annotation (ANTIGEN/PEPTIDE)

						1
1193	1193	1193	1193		SEQ ID NO:	
1hoc	lefx	1duz	lcd1		PDB ID	
Α	. >	A	A		CHAIN ID	
29	29	29	53		START AA	
245	226	226	217		AA END	
8c-87	1.6e-91	6.4e-91	1.6e-09		Psi Blast	
	0.49	0.46	-0.31		Verify score	
	1.00	1.00	0.11		PMF score	
64,64				-	SEQFOLD score	Table 5
HISTOCOMPATIBILITY ANTIGEN MURINE CLASS I MAJOR HISTOCOMPATIBILITY COMPLEX CONSISTING IHOC 3 OF H-2D=B=, B2-	HLA-CW3 (HEAVY CHAIN); CHAIN: A; BETA-2- MICROGLOBULIN; CHAIN: B; PEPTIDE FROM IMPORTIN ALPHA-2; CHAIN: C; NATURAL KILLER CELL RECEPTOR KIR2DL2; CHAIN: D, E;	HIA-A*0201; CHAIN: A, D; BETA-2 MICROGLOBULIN; CHAIN: B, E; HTLV-1 OCTAMERIC TAX PEPTIDE; CHAIN: C, F;	CD1; CHAIN: A, B, C, D;	DR2; CHAIN: B, E; HLA-DR2; CHAIN: C, F;	Compound	
	IMMUNE SYSTEM MHC, HLA, CLASS I, KIR, NK CELL RECEPTOR, IMMUNOGLOBULIN 2 FOLD, RECEPTOR/MHC COMPLEX	IMMUNE SYSTEM IMMUNOGLOBULIN FOLD	CD1 MCD1D.1; CD1, IMMUNOLOGY, MHC, TCR, GLYCOPROTEIN, SIGNAL, 2 IMMUNOGLOBULIN FOLD, T- CELL	MYELIN BASIC PROTEIN, MULTIPLE SCLEROSIS, 2 AUTOIMMUNITY, IMMUNE SYSTEM	PDB annotation	

					-		\neg
1193	1193	1193	1193	1193		ğ ə Ş	2
11d9	1hsb	lhsb	1hsa	1hsa		₽Ş	and
Α	Α	۸	A	Α		B	CHAIN
29	29	29	29	29		AA	TGATS
226	245	226	243	226		AA	EST
1.6e-89	1.6e-91	1.6e-91	1.6e-91	1.6e-91		Blast	Pei
0.40		0.50		0.42		score	Verify
1.00		1.00		1.00		score	HME
	59.60		52.86			score	SEOROLD
MHC CLASS I H-2LD HEAVY CHAIN; CHAIN: A; BETA-2 MICROGLOBULIN; CHAIN: B; NANO-PEPTIDE; CHAIN: C;	HISTOCOMPATIBILITY ANTIGEN CLASS I HISTOCOMPATIBILITY ANTIGEN AW68.1 (LEUCOCYTE 1HSB 3 ANTIGEN) 1HSB 4	HISTOCOMPATIBILITY ANTIGEN CLASS I HISTOCOMPATIBILITY ANTIGEN AW68.1 (LEUCOCYTE 1HSB 3 ANTIGEN) 1HSB 4	HISTOCOMPATIBILITY ANTIGEN HUMAN CLASS I HISTOCOMPATIBILITY ANTIGEN 1HSA 3 /HLA- B(ASTERISK)2705\$ 1HSA 4	HISTOCOMPATIBILITY ANTIGEN HUMAN CLASS I HISTOCOMPATIBILITY ANTIGEN 1HSA 3 /HLA- B(ASTERISK)2705\$ 1HSA 4	RESIDUE PEPTIDE 1HOC 4		Compound
MAJOR HISTOCOMPATIBILITY COMPLEX LD; MAJOR HISTOCOMPATIBILITY COMPLEX, LD	·	÷					PDB annotation

WO 03/080795 PCT/US02/25485

1193	1193	1193	1193	1193	NO BEO
1qo3	losz	losz	1mbe	11d9	РДВ
A	Þ	A	>	×	CHAIN
30	29	29	30	29	START AA
226	245	226	246	246	END AA
8e-90	1.6e-87	1.6e-87	4.8e-86	1.6e-89	Psi Blast
0.60		0.66			Verify score
1.00		1.00			PMF score
	60.44		52.55	68.80	SEQFOLD score
MHC CLASS I H-2DD HEAVY	MHC CLASS I H-2KB HEAVY CHAIN; CHAIN: A; BETA-2 MICROGLOBULIN; CHAIN: B; VESICULAR STOMATITIS VIRUS NUCLEOPROTEIN; CHAIN: C;	MHC CLASS I H-2KB HEAVY CHAIN; CHAIN: A; BETA-2 MICROGLOBULIN; CHAIN: B; VESICULAR STOMATITIS VIRUS NUCLEOPROTEIN; CHAIN: C;	HLA CLASS I HISTOCOMPATIBILITY ANTIGEN HLA-E; CHAIN: A, C; BETA-2-MICROGLOBULIN; CHAIN: B, D; PEPTIDE (VMAPRTVLL); CHAIN: P, Q;	MHC CLASS I H-2LD HEAVY CHAIN; CHAIN: A; BETA-2 MICROGLOBULIN; CHAIN: B; NANO-PEPTIDE; CHAIN: C;	Compound
COMPLEX (NK RECEPTOR/MHC	COMPLEX (MHC PERTIDE) VSV-8; MHC/PEPTIDE COMPLEX, TRANSMEMBRANE PROTEIN, THYMIC 2 SELECTION, COMPLEX (MHC I/PEPTIDE)	COMPLEX (MHC JPEPTIDE) VSV-8; MHC/PEPTIDE COMPLEX, TRANSMEMBRANE PROTEIN, THYMIC 2 SELECTION, COMPLEX (MHC JPEPTIDE)	MAJOR HISTOCOMPATIBILITY COMPLEX MHC COMPLEX MHC NONCLASSICAL CHAIN, MHC-E, HLA-E, MHC CLASS HLA-E, HLA E, MAJOR HISTOCOMPATIBILITY COMPLEX, MHC, HLA, 2 BETA 2 MICROGLOBULIN, PEPTIDE, LEADER PEPTIDE, 3 NON- CLASSICAL MHC, CLASS IB MHC	COMPLEX LD; MAJOR HISTOCOMPATIBILITY COMPLEX, LD	PDB annotation

1193	1193	1193		NO. BEO
1zag	ltmc	1qqd		PDB ID
Α	A	Α		CHAIN ID
28	29	30		START AA
244	200	226		END AA
1.6e-57	1.6e-79	1.6e-90		Psi Blast
		0.69		Verify score
		1.00		PMF score
67.63	76.13			SEQFOLD score
ZINC-ALPHA-2- GLYCOPROTEIN; CHAIN: A, B, C, D;	HISTOCOMPATIBILITY ANTIGEN TRUNCATED HUMAN CLASS I HISTOCOMPATIBILITY ANTIGEN HLA-AW68 1TMC 3 COMPLEXED WITH A DECAMERIC PEPTIDE (EVAPPEYHRK) 1TMC 4	HISTOCOMPATIBILITY LEUKOCYTE ANTIGEN (HLA)- CW4 CHAIN: A; BETA-2 MICROGLOBULIN; CHAIN: B; HI.A-CW4 SPECIFIC PEPTIDE; CHAIN: C;	CHAIN; CHAIN: A; BETA-2- MICROGLOBULIN; CHAIN: B; HIV ENVELOPE GLYCOPROTEIN 120 PEPTIDE; CHAIN: P; LY49A; CHAIN: C, D;	Compound
LIPID MOBILIZATION FACTOR ZN-ALPHA-2-GLYCOPROTEIN, ZAG LIPID MOBILIZATION FACTOR, SECRETED MHC CLASS I HOMOLOG		IMMUNE SYSTEM IMMUNOGLOBULIN (IG)-LIKE DOMAIN, ALPHA HELIX, BETA SHEET, 2 IMMUNE SYSTEM	CLASS I) H-2 CLASS I HISTOCOMPATIBILITY ANTIGEN, B2M; NK-CELL SURFACE GLYCOPROTEIN YE1/48, NK CELL, INHIBITORY RECEPTOR, MHC-I, Ç-TYPE LECTIN-LIKE, 2 HISTOCOMPATIBILITY, B2M, LY49, LY-49	PDB annotation

							
1212	1195	1195	1195	1195	1195	1193	NO. DEQ
lael	1913	1em9	1em9	1em9	1d1d	3fru	BUG TO
A	. ш	В	A	Α	A	A	CHAIN
26	86	67	84	57	69	27	START AA
111	139	167	172	167	167	246	AA AA
8e-17	9.6e-07	6.4e-28	1.4e-15	6.4e-30	3.2e-29	3.2e-45	Psi Blast
0.43	0.27	-0.18	-0.15	-0.16	-0.48		Verify score
0.69	0.74	0.33	0.37	0.33	0.10		PMF score
						56.39	SEQFOLD score
TROPINONE REDUCTASE-I; CHAIN: A, B;	HIS TAG; CHAIN: A; HTLV-I CAPSID PROTEIN; CHAIN: B;	PROTEIN P27; CHAIN: A, B;	PROTEIN P27; CHAIN: A, B;	PROTEIN P27; CHAIN: A, B;	CAPSID PROTEIN; CHAIN: A;	NEONATAL FC RECEPTOR; CHAIN: A, C, E; BETA-2- MICROGLOBULIN; CHAIN: B, D, F;	Compound
OXIDOREDUCTASE OXIDOREDUCTASE, TROPANE ALKALOD BIOSYNTHESIS, REDUCTION OF 2 TROPINONE TO TROPINE, SHORT-CHAIN	VIRUS/VIRAL PROTEIN HILV-I, CAPSID PROTEIN, RETROVIRUS, TWO-DOMAIN PROTEIN, 2 ALPHA HELICAL PROTEIN, HETERONUCLEAR NMR SPECTROSCOPY, 3 VIRUS/VIRAL PROTEIN	VIRUS/VIRAL PROTEIN VIRUS/VIRAL PROTEIN	VIRUS/VIRAL PROTEIN	VIRUS/VIRAL PROTEIN VIRUS/VIRAL PROTEIN	VIRUS/VIRAL PROTEIN TWO INDEPENDENT DOMAINS HELICAL BUNDLES, VIRUS/VIRAL PROTEIN	COMPLEX (IMMUNOGLOBULIN/BINDING PROTEIN)	PDB annotation

						
1212	1212	1212	1212	1212	1212	NO:
loaa	1hdc	1 fmc	1cyd	1bdb	lael	PDB
	A	Α	A		В	CHAIN
27	27	21	26	27	26	START AA
106	115	107	109	111	111	END AA
9.6e-10	1.6e-20	6.4e-24	3.2e-12 ·	1.3e-20	8e-17	Psi Blast
0.19	0.53	0.24	0.56	0.02	0.41	Verify score
0.77	0.29	1.00	0.43	0.21	0.63	PMF score
						SEQFOLD score
SEPIAPTERIN REDUCTASE; CHAIN: NULL;	OXIDOREDUCTASE 3-ALPHA, 20-BETA-HYDROXYSTEROID DEHYDROGENASE (E.C.1.1.1.53) 1HDC 3 COMPLEXED WITH CARBENOXOLONE 1HDC 4	7 ALPHA-HYDROXYSTEROID DEHYDROGENASE; CHAIN: A, B;	CARBONYL REDUCTASE; CHAIN: A, B, C, D;	CIS-BIPHENYL-2,3- DIHYDRODIOL-2,3- DEHYDROGENASE; CHAIN: NUILL;	TROPINONE REDUCTASE-I; CHAIN: A, B;	Compound
SEPIAPTERIN REDUCTASE,		OXIDOREDUCTASE SHORT- CHAIN DEHYDROGENASE/REDUCTASE , BILE ACID CATABOLISM	OXIDOREDUCTASE SHORT- CHAIN DEHYDROGENASE, OXIDOREDUCTASE	OXIDOREDUCTASE NAD- DEPENDENT OXIDOREDUCTASE, SHORT- CHAIN ALCOHOL 2 DEHYDROGENASE, PCB DEGRADATION	OXIDOREDUCTASE OXIDOREDUCTASE, TROPANE ALKALOID BIOSYNTHESIS, REDUCTION OF 2 TROPINONE TO TROPINE, SHORT-CHAIN DEHYDROGENASE	PDB annotation DEHYDROGENASE

											$\overline{}$	
1213	1213	1213	1213	1213			1212	1212		ğ Ħ	SEO	
lqnk	1plf	1pfm	1mi2	lmgs			2ae2	1ybv		Ħ	PDB	
Α	>	≯	Þ	A			A	A		Ħ	CHAIN	
25	27	27	25	25			26	25 .		AA	START	
57	57	57	56	57	_		Ε	107		AA	END	
9.6e-12	4.8e-10	1.6e-11	9.6e-12	8e-12			1.1e-15	6.4e-22		Blast	Psi	
-0.85	-0.46	-0.78	-0.82	-0.85			0.61	0.64		score	Verify	
0.28	0.96	0.93	0.01	0.42			0.69	0.90		score	PMF	
										score	SEQFOLD	Table 5
GROB[5-73]; CHAIN: A,B;	PLATELET FACTOR PLATELET FACTOR 4 IPLF 3	PF4-M2 CHIMERA; 1PFM 7 CHAIN: A, B, C, D; 1PFM 8	MACROPHAGE INFLAMMATORY PROTEIN-2; CHAIN: A, B;	CHEMOKINE(GROWTH FACTOR) HUMAN MELANOMA GROWTH STIMULATING ACTIVITY (MGSA/GRO_ALPHA) 1MGS 3 (NMR, 25 STRUCTURES) 1MGS			TROPINONE REDUCTASE-II; CHAIN: A. B:	TRIHYDROXYNAPHTHALENE REDUCTASE; CHAIN: A, B;			Compound	
CHEMORINE CHEMORINE 13-0,	O ST THE WORLD THE WORLD	CYTOKINE PLATELET FACTOR M2; 1PFM 9	NMR, CYTOKINE NMR, CYTOKINE			ALKALOID BIOSYNTHESIS, REDUCTION OF 2 TROPINONE TO PSEUDOTROPINE, SHORT- CHAIN DEHYDROGENASE	OXIDOREDUCTASE, TROPANE	REDUCTASE; OXIDOREDUCTASE	OXIDOREDUCTASE	THE PROPERTY OF THE PARTY OF TH	PDB annotation	

								_	
	1224	1224	1213	1213	1213		Š A	SEQ	
	leuv	la5r	1tvx	1tvx	lrhp		Ħ	PDB	
	យ		В	A	A		₽	CHAIN	
	63	64	25	25	27		AA	START	
ľ	107	107	55	55	57		AA	END	
	3.2c-17	3.2e-18	1.36-11	1.3e-11	1.6e-11		Blast	Psi	
	0.17	-0.43	-0.84	-0.72	-0.46		score	Verify	
	0.46	0.10	0.28	0.37	0.98		score	PMF	
							score	SEQFOLD	Lable 5
	ULP1 PROTEASE; CHAIN: A; UBITQUTIN-LIKE PROTEIN SMT3; CHAIN: B;	SUMO-1; CHAIN: NULL;	NEUTROPHIL ACTIVATING PEPTIDE 2 VARIANT; CHAIN: A, B, C, D;	NEUTROPHIL ACTIVATING PEPTIDE 2 VARIANT; CHAIN: A, B, C, D;	PLATELET FACTOR PLATELET FACTOR 4 (HPF4) (HUMAN RECOMBINANT) 1RHP 3			Compound	
	HYDROLASE SUMO HYDROLASE, UBIQUITIN-LIKE PROTEASE 1, SMT3 HYDROLASE 2 DESUMOYLATING ENZYME, CYSTEINE PROTEASE, SUMO PROCESSING 3 ENZYME, SMT3 PROCESSING ENZYME, NABH4, THIOHEMIACETAL, 4	TARGETING PROTEIN PIC1, GMP1, UBL1, SENTRIN; SUMO-1, POST-TRANSLATIONAL PROTEIN MODIFICATION, 2 UBIQUITIN-LIKE PROTEINS, TARGETING PROTEIN	CYTOKINE NAP-2; CYTOKINE	CYTOKINE NAP-2; CYTOKINE		HUMAN CHEMOKINE GROB[5-73], CXC CHEMOKINE		PDB annotation	

Т				Т			7	S	
1240	1240	1240	1240		1231		NO.	SEQ	
lac6	1ad9	1a 4 j	1a3r		2dli		Ħ	PDB	
T	Г	T	Г		A		Ш	CHAIN	
25	27	25	25		68		AA	START	
248	248	246	248		108		AA	END	
9.6e-64	9.6e-64	1.6e-62	4.8e-65		0.0083		Blast	Psi	
					-0.47		score	Verify	
					0.13		score	PMF	
85.78	83.32	83.80	82.35				score	SEQFOLD	Lable 5
ANTIBODY CTM01; CHAIN: L,	FAB FRAGMENT CTM01; CHAIN: L, H, A, B;	IMMUNOGLOBULIN, DIELS ALDER CATALYTIC ANTIBODY; CHAIN: L, H, A, B;	IGG2A; CHAIN: L, H; HUMAN RHINOVIRUS CAPSID PROTEIN VP2; CHAIN: P;		MHC CLASS I NK CELL RECEPTOR PRECURSOR; CHAIN: A;			Compound	
IMMUNOGLOBULIN	IMMUNOGLOBULIN IMMUNOGLOBULIN, FAB FRAGMENT	IMMUNOGLOBULIN IMMUNOGLOBULIN, ANTIBODY, CATALYTIC ANTIBODY, DIELS ALDER, 2 GERMLINE	COMPLEX (IMMUNOGLOBULINIVIRAL PEPTIDE) ANTIBODY 8F5; IMMUNOGLOBULIN, ANTIBODY, RHINOVIRUS, NEUTRALIZATION, 2 CONTINUOUS EPITOPE, COMPLEX (IMMUNOGLOBULINIVIRAL PEPTIDE)		IMMUNE SYSTEM P58 NATURAL KILLER CELL RECEPTOR; KIR, NATURAL KILLER RECEPTOR, INHIBITORY RECEPTOR, 2 IMMUNOGLOBULIN	COVALENT PROTEASE ADDUCT	מינו דיי שייי אייי איייי איייי אייייי אייייי איייייי	PDB annotation	

						—т-		1
	1240	1240	1240	1240	1240	NO:	D SEO	
	1665	lbaf	1b6d	1b4j	laif		PDB ID	
-	L	Ľ	>	L	I		CHAIN	
	25	28	27	27	25		START	
	244	248	246	248	248		A EN	
-	6.4e-61	1.6e-65	3.2e-62	3.2e-62	3.2e-63		PSI Blast	
		-0.35					score	AT-LIFE:
		0.27					score	awa
		0622	82.05	83.18	81.78		score	C alde I.
	FRAGMENT OF FRAGMENT OF MONOCLONAL ANTIBODY B72.3 1BBJ 3 (MURINE/HUMAN CHIMERA)	IMMUNOGLOBULIN FAB FRAGMENT OF MURINE MONOCLONAL ANTIBODY AN02 COMPLEX IBAF 3 WITH ITS HAPTEN (2,2,6,6- TETRAMETHYL-1- PIPERIDINYLOXY-1BAF 4 DINITROPHENYL) 1BAF 5	IMMUNOGLOBULIN; CHAIN: A, B;	ANTIBODY; CHAIN: L, H;	ANTI-IDIOTYPIC FAB 409.5.3 (IGG2A) FAB; CHAIN: A, B, L, H	Н;		Compound
			IMMUNOGLOBULIN IMMUNOGLOBULIN, KAPPA LIGHT-CHAIN DIMER HBADER	ANTIBODY ENGINEERING, ANTIBODY ENGINEERING, HUMANIZED AND CHIMERIC ANTIBODIES, 2 FAB, X-RAY STRUCTURES, GAMMA- INTERFERON	IMMUNOGLOBULIN IMMUNOGLOBULIN, C REGION, V REGION	IMMUNOGLOBULIN, FAB FRAGMENT, HUMANISATION		PDB annotation

						
1240	1240	1240	1240	1240	1240	OBS SEQ
lcvs	lcly	1cf8	1c12	1bz7	1bj1	PDB
С	L	L	>	A	Г	CHAIN
87	28	28	25	25	27	START AA
231	248	248	248	240	247	END AA
9.6 c -08	4.8e-63	1.6e-65	8e-62	4.8e-57	6.4e-64	Psi Blast
-0.29		-0.18				Verify score
0.12		0.16				PMF score
	83.48		82.69	86.65	83.21	SEQFOLD score
FIBROBLAST GROWTH FACTOR 2; CHAIN: A, B; FIBROBLAST GROWTH FACTOR RECEPTOR 1; CHAIN:	IGG FAB (HUMAN IGG1, KAPPA); CHAIN: L, H;	CATALYTIC ANTIBODY 19A4 (LIGHT CHAIN); CHAIN: L; CATALYTIC ANTIBODY 19A4 (HEAVY CHAIN); CHAIN: H;	ANTIBODY FRAGMENT FAB; CHAIN: A; ANTIBODY FRAGMENT FAB; CHAIN: B;	ANTIBODY R24 (LIGHT CHAIN); CHAIN: A; ANTIBODY R24 (HEAVY CHAIN); CHAIN: B;	FAB FRAGMENT; CHAIN: L, H, I, K; VASCULAR ENDOTHELIAL GROWTH FACTOR; CHAIN: V, W;	Compound
FACTOR RECEPTOR FGF, FGFR, IMMUNOGLOBULIN-LIKE, SIGNAL TRANSDUCTION, 2	IMMUNOGLOBULIN CERSO FAB (IMMUNOGLOBULIN); IMMUNOGLOBULIN, IMMUNOGLOBULIN C REGION, GLYCOPROTEIN, ANTIB	CATALYTIC ANTIBODY, CATALYTIC ANTIBODY, TERPENOID SYNTHASE, CARBOCATION, 2 CYCLIZATION CASCADE	ANTIGEN COMPLEX, SCFV FRAGMENT, CDRH3, MUSK 2 ODORANT, ODORANT SPECIFICITY, IMMUNE SYSTEM	(FAB FRAGMENT), IMMUNE SYSTEM	COMPLEX (ANTIBODY/ANTIGEN) FAB-12; (VEGF; COMPLEX (ANTIBODY/ANTIGEN), ANGIOGENIC FACTOR	PDB annotation

_						
1240	1240	1240	1240	1240		SE Q
1f5w	161	lepf	ld5m	levs		PDB ID
Α	Α	A	W	D		CHAIN ID
40	28	36	. 42	27		START AA
139	246	231	245	231		END AA
9.6e-09	1.6e-65	9.6e-07	1.06-44	9.6e-06		Psi Blast
0.47	-0.05	-0.22	-0.33	0.04		Verify score
0.94	0.53	0.07	0.12	0.45		PMF score
						SEQFOLD score
COXSACKIE VIRUS AND	F124 IMMUNOGLOBULN (KAPPA LIGHT CHAIN); CHAIN: A, C; F124 IMMUNOGLOBULIN (IGG1 HEAVY CHAIN); CHAIN: B, D;	NEURAL CELL ADHESION MOLECULE; CHAIN: A, B, C, D;	HISTOCOMPATIBILITY ANTIGEN; CHAIN: A; HLA CLASS II HISTOCOMPATIBILITY ANTIGEN; CHAIN: B; ENTEROTOXIN TYPE B; CHAIN: C; PEPTIDE INHIBITOR; CHAIN: D;	FIBROBLAST GROWTH FACTOR 2; CHAIN: A, B; FIBROBLAST GROWTH FACTOR RECEPTOR 1; CHAIN: C, D;	C, D;	Compound
VIRUS/VIRAL PROTEIN	IMMUNE SYSTEM IMMUNOGLOBULIN, ANTIBODY, FAB, HEPATITIS B, PRES2	CELL ADHESION NCAM; NCAM, IMMUNOGLOBULIN FOLD, GLYCOPROTEIN	HLA-DR4; SEB, SUPERANTIGEN; COMPLEX (MHC CLASS II/SUPERANTIGEN), IMMUNE SYSTEM	GROWTH FACTOR/GROWTH FACTOR RECEPTOR FGF, FGFR, IMMUNOGLOBULIN-LIKE, SIGNAL TRANSDUCTION, 2 DIMERIZATION, GROWTH FACTOR/GROWTH FACTOR RECEPTOR	DIMERIZATION, GROWTH FACTOR/GROWTH FACTOR RECEPTOR	PDB annotation

_									
	1240	1240	1240	1240	1240		ë a	SEQ	
	1gpo	1ghf	1fvd	1fv1	1flr		Ħ	впа	
	L	Ţ	Α	В	T		Ħ	CHAIN	
	25	27	27	47	28		AA	START	
	244	244	248	245	248		AA	END	
	1.6e-63	3.2e-59	9.6e-63	9.6e-47	1.6e-65		Blast	Psi	
				-0.24	-0.10		score	Verify	
			•	0.04	0.60		score	HMR	
	85.20	85.44	84.25				score	SEQFOLD	Table 5
	ANTIBODY M41; CHAIN: L, H, M, I;	ANTI-ANTI-IDIOTYPE GH1002 FAB FRAGMENT; CHAIN: L, H	IMMUNOGLOBULIN FAB FRAGMENT OF HUMANIZED ANTIBODY 4D5, VERSION 4 1FVD 3	MAJOR HISTOCOMPATIBILITY COMPLEX ALPHA CHAIN; CHAIN: A, D; MAJOR HISTOCOMPATIBILITY COMPLEX BETA CHAIN; CHAIN: B, E; MYBLIN BASIC PROTEIN; CHAIN: C, F;	4-4-20 (IG*G2A=KAPPA=) FAB FRAGMENT; 1FLR 5 CHAIN: L, H; 1FLR 6	ADENOVIRUS RECEPTOR; CHAIN: A, B;		Compound	
	IMMUNOGLOBULIN PROTEIN ENGINEERING, ANTIBODY DESIGN, IMMUNOGLOBULIN 2 STRUCTURE, ANTIGEN- BINDING SITE, CANONICAL CONFORMATION, 3 COMPLEMENTARITY- DETERMINING REGION	ANTIBODY FAB FRAGMENT ·		IMMUNE SYSTEM MHC CLASS II DR2A	IMMUNOGLOBULIN	V DOMAIN FOLD, SYMMETRIC DIMER		PDB annotation	

1240	1240	1240	1240	1240	1240	1240	SEQ NO:
lnca	1mfb	1mcp	1ifh	lieb	liao	1hil	PDB ID
Т	H	T	T	В	В	Α	CHAIN ID
28	27	28	25	74	74	25	START AA
248	234	248	244	243	244	244	END AA
1.4e-65	3.2e-50	6.4e-66	4.8e-65	1.3e-44	6.4e-46	4.8e-65	Psi Blast
-0.10	0.01	-0.19		-0.36	-0.21		Verify score
0.52	0.55	0.21		0.00	0.13		PMF score
		·	83.18			83.07	SEQFOLD score
HYDROLASE(O-GLYCOSYL)	IMMUNOGLOBULIN FAB FRAGMENT (MURINE SE155-4) COMPLEX WITH HEPTASACCHARIDE IMFB 3 B: GAL(1-2)MAN(1-4)RAM(1-3)GAL(1-2)[ABE(1-3)]MAN(1-4)RAM 1MFB 4	IMMUNOGLOBULIN IMMUNOGLOBULIN FAB FRAGMENT (MC/PC\$603) 1MCP 4	IMMUNOGLOBULIN IGG2A FAB FRAGMENT (FAB 17/9) COMPLEX WITH PEPTIDE OF 11FH 3 INFLUENZA HEMAGGLUTININ HA1 (STRAIN X47) (RESIDUES 101- 107) 11FH 4	MHC CLASS II I-EK; CHAIN: A, B, C, D;	MHC CLASS II I-AD; CHAIN: A,	IMMUNOGLOBULIN IGG2A FAB FRAGMENT (FAB 17/9) IHIL 3	Compound
				HISTOCOMPATIBILITY ANTIGEN HISTOCOMPATIBILITY ANTIGEN	A, OVALBUMIN PEPTIDE		PDB annotation

WO 03/080795 PCT/US02/25485

262

						_
1240	1240	1240	1240		NO.	CEO
1r24	1qlr	1nsn	lneu		ID	arta
Α	A	۲			ID	CHAIN
25	28	28	42		AA	TUADT
240	248	247	140		AA	CLNS
6.4e-59	1.6e-65	6.4e-66	1.9e-05		Blast	Pα
	-0.20	-0.07	0.21		score	Varify
	0.16	0.25	60.0		score	3Mg
83.15					score	Table 5
IGG3-KAPPA ANTIBODY (LIGHT CHAIN); CHAIN: A, C; IGG3-KAPPA ANTIBODY	IGM KAPPA CHAIN V-III (KAU COLD AGGLUTININ); CHAIN: A, C; IGM FAB REGION IV- I(H4)-C (KAU COLD AGGLUTININ); CHAIN: B, D;	IGG FAB (IGGI, KAPPA); INSN 4 CHAIN: L, H; INSN 5 STAPHYLOCOCCAL NUCLEASE; INSN 9 CHAIN: S; INSN 10	MYELIN PO PROTEIN; CHAIN: NULL;	N9 NEURAMINIDASE-NC41 (E.C.3.2.1.18) COMPLEX WITH FAB INCA 3	Componia	Compound
PRELIMINARY, IMMUNE SYSTEM	IMMUNOGLOBULIN IMMUNOGLOBULIN, AUTOANTIBODY, COLD AGGLUTININ, HUMAN IGM 2 FAB FRAGMENT	COMPLEX (IMMUNOGLOBULIN/HYDROLA SE) N10 FAB IMMUNOGLOBULIN; INSN 7 STAPHYLOCOCCAL NUCLEASE RIBONUCLEATE, INSN 11 IMMUNOGLOBULIN, STAPHYLOCOCCAL NUCLEASE INSN 25	STRUCTURAL PROTEIN MYELIN, STRUCTURAL PROTEIN, GLYCOPROTEIN, TRANSMEMBRANE, PHOSPHORYLATION, IMMUNOGLOBULIN FOLD, SIGNAL, MYELIN 2 MEMBRANE ADHESION MOLECULE		A D.D. annominon	PDR annatation

1240	1240	1240	1240	1240	1240	1240	NO:
2hmi	2gfb	2fgw	1vge	1sm3	1sbs	1sbs	PDB ID
C	>	Н	L	Ľ	٢	T	CHAIN
27	27	27	27	28	28	25	START AA
248	248	248	248	234	248	248	END AA
8e-61	9.6e-62	3.2e-63	4.8e-63	8e-51	1.1e-66	1.1e-66	Psi Blast
				0.24	-0.28		Verify score
				0.96	0.30		PMF score
84.84	81.62	83.51	83.26			83.76	SEQFOLD score
HIV-1 REVERSE	IMMUNOGLOBULIN IGG2A FAB FRAGMENT (CNJ206) 2GFB 3	IMMUNOGLOBULIN FAB FRAGMENT OF A HUMANIZED VERSION OF THE ANTI-CD18 2FGW 3 ANTIBODY 'HS2' (HUH52-OZ FAB) 2FGW 4	TR1.9 FAB; CHAIN: L, H;	SM3 ANTIBODY; CHAIN: L, H; PEPTIDE EPITOPE; CHAIN: P;	MONOCLONAL ANTIBODY 3A2; CHAIN: H, L;	MONOCLONAL ANTIBODY 3A2; CHAIN: H, L;	Compound
COMPLEX (RI/DNA/FAB) HIV-I			IMMUNOGLOBULIN TRI.9, ANTI-THYROID PEROXIDASE, AUTOANTIBODY, 2 IMMUNOGLOBULIN	COMPLEX (ANTIBODY/PEPTIDE EPITOPE) ANTIBODY, PEPTIDE ANTIGEN, ANTITUMOR ANTIBODY, 2 COMPLEX (ANTIBODY/PEPTIDE EPITOPE)	MONOCLONAL ANTIBODY MONOCLONAL ANTIBODY, FAB-FRAGMENT, REPRODUCTION	MONOCLONAL ANTIBODY MONOCLONAL ANTIBODY, FAB-FRAGMENT, REPRODUCTION	PDB annotation

	7		- 5									7	ワ	· co	1
1258		1247		1240	1240				1240	1240			Ö E	SEQ	
lbtr		lcok		8fab	7fab				6fab	32c2			E	PDB	
P		≻		Α	L				Ľ	A			W	CHAIN	
18		6		29	30				25	28			AA	START	
59		67		236	236		-		248	248			AA	END	
0.00011		0.0048		1.1e-58	3.2e-57		-		3.2e-62	6.4e-66			nearer	Psi	
-0.71		-0.62		0.03	-0.01					-0.19			3001.0	Verify	
0.65		0.04		0.52	0.45					0.42			501.	PMF	
									82.05				2010	SEQFOLD	* 4076
ASPARTYL PROTEASE PROGASTRICSIN		SECOND SPLICE VARIANT P73; CHAIN: A;		IMMUNOGLOBULIN FAB FRAGMENT FROM HUMAN IMMUNOGLOBULIN IGG1 (LAMBDA, HIL) 8FAB 3	IMMUNOGLOBULIN FAB' NEW (LAMBDA LIGHT CHAIN) 7FAB 3	DOTA OLIMA	ANTI-PHENYLARSONATE 6FAB 3 ANTIBODY 36-71, "FAB 36-71" 6FAB 4	FRAGMENT OF THE MURINE	ANTIGEN-BINDING	IGG1 ANTIBODY 32C2; CHAIN: A; IGG1 ANTIBODY 32C2; CHAIN: B;	28; CHAIN: C, D; DNA; CHAIN: E, F;	TRANSCRIPTASE; CHAIN: A,		Compound	
		GENE REGULATION P73 SAM- LIKE DOMAIN, GENE REGULATION								IMMUNE SYSTEM FAB, ANTIBODY, AROMATASE, P450	1 Ob 1 Maria Robert	RT; FAB 28; ADS, HIV-1, RT,		FDB annotation	ממת

П						-		7	S	
	1258	1258	1258	1258	1258	1258		NO:	SEO	
	4pep	3psg	3psg	Зств	lqrp	1 htr		Ш	BUA	
					ਸ਼	P		₿	CHAIN	
	61	19	19	59	61	18		A	START	
	239	239	239	239	239	60		AA	END	
	4.3e-34	1.96-45	1.3e-39	4.8e-34	2.9e-35	2.9e-13		Blast	Psi	
	-0.30	-0.10	-0.29	-0.30 .	-0.34	-0.87		score	Verify	
	0.37	0.95	0.05	0.99	0.19	0.99		score	PMF	
								score	SEQFOLD	lable 5
	HYDROLASE (ACID PROTEINASE) PEPSIN (E.C.3.4.23.1) 4PEP 4	HYDROLASE(ACID PROTEINASE ZYMOGEN) PEPSINOGEN 3PSG 3	HYDROLASE(ACID PROTEINASE ZYMOGEN) PEPSINOGEN 3PSG 3	HYDROLASE (ACID PROTEINASE) CHYMOSIN B (FORMERLY KNOWN AS RENNIN) (E.C.3.4.23.4) MUTANT 3CMS 3 WITH VAL 111 REPLACED BY PHE (/V111F\$) 3CMS 4	PEPSIN 3A; CHAIN: E; IVA- VAL-VAL-LEU(P)-(O)PHE- ALA-ALA-OME; CHAIN: I;	ASPARTYL PROTEASE PROGASTRICSIN (PEPSINOGEN C) (B.C.3.4.23.3) 1HTR 3 1HTR 87	(PEPSINOGEN C) (E.C.3.4.23.3) 1HTR 3 1HTR 87		Compound	
	-				HYDROLASE/HYDROLASE INHIBITOR ASPARTIC PROTEINASE, PHOSPHONATE INHIBITOR, TRANSITION 2 STATE ANALOGUE				PDB annotation	

	 	_,		,		_,			-,				7	
1320	1313		1312		1302		1288		1288		NO.	3 2	250	
1cp2	ljnk		15.		lbyr		3pdz	,	1qlc		1	######################################		
Α					Α		Α		Α			TID ALLY	NI VIII	
25	P		19		75		20		32			AA	TADT	
73	52		70		170		75		75			AA	TINE	
0.0021	0.0086		0.0003		1.7e-05		4.3e-06		3.4e-07			Blast	E C	
-0.67	-0.89		-0.26		-0.14		0.27		-0.01			score	Varify	
0.06	0.19		0.00		0.25		0.78		0.13			score	AME	
												score	U JOHO HS	Lable 5
NITROGENASE IRON PROTEIN; CHAIN: A, B;	C-JUN N-TERMINAL KINASE; CHAIN: NULL;		HYDROLASE(ENDORIBONUC LEASE) RIBONUCLEASE H (E.C.3.1.26.4) 1RIL 3		ENDONUCLEASE; CHAIN: A;		TYROSINE PHOSPHATASE (PTP-BAS, TYPE 1); CHAIN: A;	PROTEIN 95; CHAIN: A;	POSTSYNAPTIC DENSITY	(RESIDUES 77-171); CHAIN: A; NEURONAL NITRIC OXIDE SYNITHASE (RESIDUES 1-130); CHAIN: B;		Compound	Compound	
OXIDOREDUCTASE CP2; OXIDOREDUCTASE,	TRANSFERASE JNK3; TRANSFERASE, JNK3 MAP KINASE, SERINE/THREONINE PROTEIN 2 KINASE				ENDONUCLEASE ENDONUCLEASE, PHOSPHODIESTERASE,		HYDROLASE PDZ DOMAIN, HUMAN PHOSPHATASE, HPTP1E, PTP-BAS, SPECIFICITY 2 OF BINDING	PDZ DOMAIN, NEURONAL NITRIC OXIDE SYNTHASE, NMDA RECEPTOR 2 BINDING	PEPTIDE RECOGNITION PSD-95;	PROTEIN/OXIDOREDUCTASE BETA-FINGER, HETERODIMER		A	PDB annotation	

									_	
1341	1341		1341	1341	1320	1320		<u>.</u>	SEQ	
1cfb	lefb		1bqu	1bpv	2nip	2mip		Ħ	PDB	
			>		В	Α		₽	CHAIN	
106	104		1	212	27	27		AA	START	
312	313		221	314	65	65		AA	END	
1.7e-36	1.7e-36		2.6c-16	8.6e-16	0.00048	0.00048		Blast	Psi	
-0.02				0.19	-0.37	-0.47 ·		score	Verify	
0.12				-0.08	0.46	0.52		score	PMF	
	84.74		50.84					score	SEQFOLD	Table 5
NEURAL ADHESION MOLECULE DROSOPHILA NEUROGLIAN	NEURAL ADHESION MOLECULE DROSOPHILA NEUROGLIAN (CHYMOTRYPTIC FRAGMENT CONTAINING THE 1CFB 3 TWO AMINO PROXIMAL FIBRONECTIN TYPE III REPEATS 1CFB 4 (RESIDUES 610 - 814)) 1CFB 5		GP130; CHAIN: A, B;	TITIN; CHAIN: NULL;	PROTEIN; CHAIN: A, B;	PROTEIN; CHAIN: A, B;			Compound	
		INTERLEUKINE 6 2 RECEPTOR BETA SUBUNIT, SIGNALING PROTEIN	SIGNALING PROTEIN CYTOKINE RECEPTOR, GI YCODEOTEIN 130 GP130	CONNECTIN A71, CONNECTIN; TITIN, CONNECTIN, FIBRONECTIN TYPE III	OXIDOREDUCTASE	OXIDOREDUCTASE	HEADER CONECT LINK		PDB annotation	

					_
1341	1341	1341		N E	
1 f6f	1cfb	1cfb		Œ	addi
В				D CHARL	CHADA
111	6	50		AA	TAL
309	205	207		AA	
3.2e-20	1.1e-23	2.6e-26		Blast	De.
0.13	-0.26	-0.26		score	Varify
-0.01	0.01	0.11		score	PMF.
				score	Table 5
PLACENTAL LACTOGEN; CHAIN: A; PROLACTIN RECEPTOR; CHAIN: B, C;	NEURAL ADHESION MOLECULE DROSOPHILA NEUROGLIAN (CHYMOTRYPTIC FRAGMENT CONTAINING THE 1CFB 3 TWO AMINO PROXIMAL FIBRONECTIN TYPE III REPEATS 1CFB 4 (RESIDUES 610 - 814)) 1CFB 5	NEURAL ADHESION MOLECULE DROSOPHILA NEUROGLIAN (CHYMOTRYPTIC FRAGMENT CONTAINING THE 1CFB 3 TWO AMINO PROXIMAL FIBRONECTIN TYPE III REPEATS 1CFB 4 (RESIDUES 610 - 814)) 1CFB 5	(CHYMOTRYPTIC FRAGMENT CONTAINING THE 1CFB 3 TWO AMINO PROXIMAL FIBRONECTIN TYPE III REPEATS 1CFB 4 (RESIDUES 610 - 814)) 1CFB 5	1	Compound
HORMONE/GROWTH FACTOR/HORMONE RECEPTOR 4-HELICAL BUNDLE, ALPHA HELICAL BUNDLE, TERNARY		·			PDR annotation

	, 	r						1	_
1341	1341	1341	1341	1341	1341	1341		NO E	CHO
1mfn	1mfn	lmfn	1fnh	1 fah	1 finh	1fnf		Ħ	PIDR
			Α	A	A			Ð	CHAIN
112	110	11	15	12	112	13		AA	START
310	310	200	310	300	340	354		AA	EZ J
4.3e-27	4.3e-27	3.2e-17	1.6e-26	1.6e-26	8.6e-26	3.2e-33		Blast	Pci
0.09		-0.08		-0.29	-0.02			score	Verify
0.49		0.30		0.40	0.27			score	AMA.
	54.17		81.90			76.52		score	SECROLD
FIBRONECTIN; CHAIN: NULL;	FIBRONECTIN; CHAIN: NULL;	FIBRONECTIN; CHAIN: NULL;	FIBRONECTIN; CHAIN: A;	FIBRONECTIN; CHAIN: A;	FIBRONECTIN; CHAIN: A;	FIBRONECTIN; 1FNF 6 CHAIN: NULL; 1FNF 7		To the state of th	Compound
ADHESION PROTEIN, RGD,	CELL ADHESION PROTEIN CELL ADHESION PROTEIN, RGD, EXTRACELLULAR MATRIX, 2 HEPARIN-BINDING, GLYCOPROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN, RGD, EXTRACELLULAR MATRIX, 2 HEPARIN-BINDING, GLYCOPROTEIN	HEPARIN AND INTEGRIN BINDING HEPARIN AND INTEGRIN BINDING	HEPARIN AND INTEGRIN BINDING HEPARIN AND INTEGRIN BINDING	HEPARIN AND INTEGRIN BINDING HEPARIN AND INTEGRIN BINDING	CELL ADHESION PROTEIN RGD, EXTRACELLULAR MATRIX 1FNF 18	COMPLEX, FN 2 III DOMAINS, BETA SHEET DOMAINS, CYTOKINE-RECEPTOR COMPLEX		PDR annotation

								7
1341	1341	1341	1341	1341	1341		Ö E Z	CE O
1qg3	1qg3	1qg3	1qg3	lmfn	lmfn		B	PDR
A	Α	Α	Α				Œ	CHAIN
112	111	011	11	49	214		AA	START
310	304	312	158	207	351		AA	END
8.6e-31	3.2e-17	8.6e-31	1.3e-16	4.3 c -18	6.4e-18		Blast	Psi
0.13	0.03		80.0	0.01	-0.37		score	Verify
0.96	0.71		-0.17	0.18	0.03		score	PMF
		96.78					score	SEOFOLD
INTEGRIN BETA-4 SUBUNIT; CHAIN: A, B;	INTEGRIN BETA-4 SUBUNIT; CHAIN: A, B;	INTEGRIN BETA-4 SUBUNIT; CHAIN: A, B;	INTEGRIN BETA-4 SUBUNIT; CHAIN: A, B;	FIBRONECTIN; CHAIN: NULL;	FIBRONECTIN; CHAIN: NULL;		•	Compound
STRUCTURAL PROTEIN INTEGRIN, HEMIDESMOSOME, FIBRONECTIN, CARCINOMA,	STRUCTURAL PROTEIN INTEGRIN, HEMIDESMOSOME, FIBRONECTIN, CARCINOMA, STRUCTURAL 2 PROTEIN	STRUCTURAL PROTEIN INTEGRIN, HEMIDESMOSOME, FIBRONECTIN, CARCINOMA, STRUCTURAL 2 PROTEIN	STRUCTURAL PROTEIN INTEGRIN, HEMIDESMOSOME, FIBRONECTIN, CARCINOMA, STRUCTURAL 2 PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN, RGD, EXTRACELLULAR MATRIX, 2 HEPARIN-BINDING, GLYCOPROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN, RGD, EXTRACELLULAR MATRIX, 2 HEPARIN-BINDING, GLYCOPROTEIN	EXTRACELLULAR MATRIX, 2 HEPARIN-BINDING, GLYCOPROTEIN		PDB annotation

WO 03/080795 PCT/US02/25485

272

1363	1341	1341	1341	1341	1341	NO:
1c3p	2fnb	lqr4	1qr4	1qg3	1qg3	PDB ID
A	Α	Α	A	A	A	CHAIN
91	209	112	111	50	214	START AA
159	303	305	307	209	351	END
4.3e-17	4.3e-15	4.3e-28	4.3e-28	3e-22	8e-24	Psi Blast
-0.34	0.06	0.24	-	-0.11	-0.11	Verify score
0.06	0.30	0,48		0.45	0.48	PMF score
			56.55			SEQFOLD score
HDLP (HISTONE DEACETYLASE-LIKE	FIBRONECTIN; CHAIN: A;	TENASCIN; CHAIN: A, B;	TENASCIN; CHAIN: A, B;	INTEGRIN BETA-4 SUBUNIT; CHAIN: A, B;	INTEGRIN BETA-4 SUBUNIT; CHAIN: A, B;	Compound
LYASE ALPHA/BETA FOLD, LYASE	PROTEIN BINDING ED-B, FIBRONECTIN, TYPEIII DOMAIN, ANGIOGENESIS, PROTEIN 2 BINDING	STRUCTURAL PROTEIN TENASCIN, FIBRONECTIN TYPE-III, HEPARIN, EXTRACELLULAR 2 MATRIX, ADHESION, FUSION PROTEIN, STRUCTURAL PROTEIN	STRUCTURAL PROTEIN TENASCIN, FIBRONECTIN TYPE-III, HEPARIN, EXTRACELLULAR 2 MATRIX, ADHESION, FUSION PROTEIN, STRUCTURAL PROTEIN	STRUCTURAL PROTEIN INTEGRIN, HEMIDESMOSOME, FIBRONECTIN, CARCINOMA, STRUCTURAL 2 PROTEIN	STRUCTURAL 2 PROTEIN STRUCTURAL PROTEIN INTEGRIN, HEMIDESMOSOME, FIBRONECTIN, CARCINOMA, STRUCTURAL 2 PROTEIN	PDB annotation

		 			,		_		 	_			
1379	1379			1364	1364	1364		1364	1363		ÖB	SEQ	
1ioj	1eze		į	lon.	1em9	1em9		ldld	1c3p		D	PDB	
	Α		1	В	В	≯		Α	Α		Ш	CHAIN	
18	20			122	115	107		117	91		AA	START	
74	54			163	163	163		163	162		AA	END	
3.2e-21	2.1e-06			8.6e-06	3.2e-10	6.4e-11		1.1e-09	3.2e-15		Blast	Psi	
	-0.82			-0.13	-0.17	-0.14		-0.19	0.28		score	Verify	
	0.18		,	0.90	0.82	0.48		0.90	0.27		score	PMT	
61.29											score	SEQFOLD	Taolo
APOC-I; CHAIN: NULL;	CHOLESTERYL ESTER TRANSFERASE INHIBITOR PROTEIN; CHAIN: A;		CAPSID PROTEIN; CHAIN: B;	HIS TAG; CHAIN: A; HTLV-I	PROTEIN P27; CHAIN: A, B;	PROTEIN P27; CHAIN: A, B;		CAPSID PROTEIN; CHAIN: A;	HDLP (HISTONE DEACETYLASE-LIKE PROTEIN); CHAIN: A;	PROTEIN); CHAIN: A;		Compound	
APOLIPOPROTEIN APOLIPOPROTEIN, AMPHIPATHIC HELIX, LIPID ASSOCIATION, LCAT 2	TRANSFERASE INHIBITOR CETIP, APOLIPOPROTEIN C-I, APO-C1; AMPHIPATHIC HELIX	HETERONUCLEAR NMR SPECTROSCOPY, 3 VIRUS/VIRAL PROTEIN	CAPSID PROTEIN, RETROVIRUS, TWO-DOMAIN PROTEIN, 2 ALPHA HELICAL PROTEIN,	VIRUS/VIRAL PROTEIN HTLV-I,	VIRUS/VIRAL PROTEIN VIRUS/VIRAL PROTEIN	VIRUS/VIRAL PROTEIN	VIKOS/VICAL FROIEIN	VIRUS/VIRAL PROTEIN TWO INDEPENDENT DOMAINS HELICAL BUNDLES,	LYASE ALPHA/BETA FOLD, LYASE			PDB annotation	

_				 			
1306	1396	1396	1396	1379	1379		NO:
1fv]	1fvl	1dva	Idan	lopp	lioj		PDB ID
		L	I				CHAIN D
245	245	259	259	20	26		START AA
316	313	333	333	55	74		AA
8.6e-24	3.2e-14	9.6e-10	9.6e-10	4.3e-07	3.2e-21		Psi Blast
	0.38	0.20	0.15	-0.64	-0.55		Verify score
	0.95	0.10	0.11	0.12	0.54		PMF score
69.59							SEQFOLD score
FLAVORIDIN; 1FVL 4 CHAIN:	FLAVORIDIN; IFVL 4 CHAIN: NULL 1FVL 5	DES-GLA FACTOR VIIA (HEAVY CHAIN); CHAIN: H, I; DES-GLA FACTOR VIIA (LIGHT CHAIN); CHAIN: L, M; (DPN)-PHE-ARG; CHAIN: C, D; PEPTIDE E-76; CHAIN: X, Y;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L, H; SOLUBLE TISSUE FACTOR; CHAIN: T, U; D-PHE-PHE-ARG- CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C;	APOLIPOPROTEIN C-I; CHAIN: NULL;	APOC-I; CHAIN: NULL;		Compound
BLOOD COAGULATION	BLOOD COAGULATION INHIBITOR GP IIB/IIIA ANTAGONIST 1FVL 9	HYDROLASE/HYDROLASE INHIBITOR PROTEIN-PEPTIDE COMPLEX	BLOOD COAGULATION, SERINE PROTEASE, COMPLEX, COFACTOR, 2 RECEPTOR ENZYME, INHIBITOR, GLA, EGF, 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)	APOLIPOPROTEIN APO-CI; APOLIPOPROTEIN, AMPHIPATHIC HELIX, LIPID ASSOCIATION, LCAT 2	APOLIPOPROTEIN APOLIPOPROTEIN, AMPHIPATHIC HELIX, LIPID ASSOCIATION, LCAT 2 ACTIVATION	ACTIVATION	PDB annotation

	1396 2ech		1396 1kst	1396 1kst	1396 1kst	1396 1klo	 			SEO PI
2ech	ř	œ L		#	#	0				PDB CHAIN
274	273	261	246	245	245	218	246			START
322	322	333	313	314	313	360	318		AA	END
3.4e-18	3.4e-18	9.6e-10	4.3e-23	4.3e-23	4.8e-15	1.3e-11	8.6e-24		Blast	Psi
0.34		0.30	0.54		0.17	0.13	0.30		score	Verify
0.28		-0.15	0.58		0.21	-0.14	0.39		score	PMK
	50.38	,		68.76					score	SEOFOLD
BLOOD COAGULATION INHIBITOR ECHISTATIN ONMR & STRICTIBES CHOOL	BLOOD COAGULATION INHIBITOR ECHISTATIN (NMR, 8 STRUCTURES) 2ECH 3	BLOOD COAGULATION FACTOR XA; CHAIN: L, C;	AGGREGATION INHIBITOR, GP ANTAGONIST KISTRIN (NMR, 8 STRUCTURES) 1KST 3	AGGREGATION INHIBITOR, GP ANTAGONIST KISTRIN (NMR, 8 STRUCTURES) 1KST 3	AGGREGATION INHIBITOR, GP ANTAGONIST KISTRIN (NMR, 8 STRUCTURES) 1KST 3	LAMININ; CHAIN: NULL;	FLAVORIDIN; 1FVL 4 CHAIN: NULL 1FVL 5	NULL 1FVL 5	Сотроина	Compound
		BLOOD COAGULATION FACTOR STUART FACTOR; BLOOD COAGULATION FACTOR, SERINE PROTEINASE, EPIDERMAL 2 GROWTH FACTOR LIKE DOMAIN				GLYCOPROTEIN GLYCOPROTEIN	BLOOD COAGULATION INHIBITOR GP IIB/IIIA ANTAGONIST 1FVL 9	INHIBITOR GP IIB/IIIA ANTAGONIST 1FVL 9	A DD AHIDGAUDII	PDR annotation

	1413	1413	1413	1409	1406	ğ B Ş	CHO
lnkr	Ifil	1fcg	1£2q	1bf4	ldgm	Ħ	and
•	A	A	>	>	A	Ħ	CHAIN
22	33	11	26	45	10	AA	TOATS
109	111	108	108	71	66	AA	CNA
3.2e-29	8.6e-07	8.6e-06	8e-05	0.0086	0.0059	Blast	Dei
-0.16	-0.12	-0.08	-0.18	-0.11	-0.64	score	Varify
89.0	0.13	0.37	0.51	0.17	0.01	score	T.M.
						score	TOTOTO T
P58-CL42 KIR; CHAIN; NULL;	LOW AFFINITY IMMUNOGLOBULIN GAMMA FC REGION CHAIN: A;	FC RECEPTOR FC(GAMMA)RIIA; CHAIN: A;	HIGH AFFINITY IMMUNOGLOBULIN EPSILON RECEPTOR CHAIN: A;	SSO7D; CHAIN: A; DNA; CHAIN: B, C;	ADENOSINE KINASE; CHAIN: A;	Compound	Company
INHIBITORY RECEPTOR KILLER	IMMUNE SYSTEM RECEPTOR BETA SANDWICH, IMMUNOGLOBULIN-LIKE, RECEPTOR	IMMUNE SYSTEM, MEMBRANE PROTEIN CD32; FC RECEPTOR, IMMUNOGLOULIN, LEUKOCYTE, CD32	IMMUNE SYSTEM FC-EPSILON RI-ALPHA; IMMUNOGLOBULIN FOLD, GLYCOPROTEIN, RECEPTOR, IGE-BINDING 2 PROTEIN	COMPLEX (DNA-BINDING PROTEIN/DNA) DNA BINDING PROTEIN, HYPERTHERMOPHILE, ACHAEABACTERIA, 2 COMPLEX (DNA-BINDING PROTEIN/DNA)	TRANSFERASE TOXOPLASMA GONDII, ADENOSINE KINASE, PURINE METABOLISM	PDB annotation	

1415	1413	1413	1413	NO: DEQ
1gdh	2dli	2dli	lnkr	PDB ID
A	>	≯		CHAIN ID
16	6	22	4	START AA
107	108	108	109	END AA
0.0038	1.3e-07	1.1c-27	4.36-12	Psi Blast
0.20	-0.11	-0.05	-0.13	Verify score
0.27	0.27	0.17	0.47	PMF score
				SEQFOLD score
OXIDOREDUCTASE(CHOH (D)-NAD(P)+ (A)) D- GLYCERATE	MHC CLASS I NK CELL RECEPTOR PRECURSOR; CHAIN: A;	MHC CLASS I NK CELL RECEPTOR PRECURSOR; CHAIN: A;	P58-CL42 KIR; CHAIN: NULL;	Compound
	IMMUNE SYSTEM P58 NATURAL KILLER CELL RECEPTOR; KIR, NATURAL KILLER RECEPTOR, INHIBITORY RECEPTOR, 2 IMMUNOGLOBULIN	IMMUNE SYSTEM P58 NATURAL KILLER CELL RECEPTOR; KIR, NATURAL KILLER RECEPTOR, INHIBITORY RECEPTOR, 2 IMMUNOGLOBULIN	INHIBITORY RECEPTOR, NATURAL KILLER CELLS, IMMUNOLOGICAL 2 RECEPTORS, IMMUNOGLOBULIN FOLD INHIBITORY RECEPTOR KILLER CELL INHIBITORY RECEPTOR, INHIBITORY RECEPTOR, NATURAL KILLER CELLS, IMMUNOLOGICAL 2 RECEPTORS, IMMUNOLOGICAL 1	PDB annotation

	 	 			1416 14		NO. DEC	٦.
1a12 A	h A	7d	1euw A	<u> </u>	1dun		D CHAIN	+
16	107	107	102	123	109) AA	_
119	235	214	222	219	230		AA ENE	1
1.3e-12	1.1e-31	4.8e-27	9.6e-26	4.8e-24	4.8e-24		Blast	
0.51	0.28	0.25	0.28	0.16			score	47
0.39	0.29	0.88	0.28	0.98			score	
					54.22		SEQFOLD	Tauto
REGULATOR OF CHROMOSOME CONDENSATION 1; CHAIN: A, B, C;	POL POLYPROTEIN; CHAIN: A;	POL POLYPROTEIN; CHAIN: A, B;	DEOXYURDINE 5'- TRIPHOSPHATE NUCLEOTIDOHYDROLASE; CHAIN: A;	DEOXYURDINE 5'- TRIPHOSPHATE NUCLEODITOHYDROLASE; CHAIN: NULL;	DEOXYURDINE 5'- TRIPHOSPHATE NUCLEODITOHYDROLASE; CHAIN: NULL;	DEHYDROGENASE (APO FORM) (B.C.1.1.1.29) 1GDH 3	Compound	
GUANINE NUCLEOTIDE EXCHANGE FACTOR RCC1; GUANINE NUCLEOTIDE EXCHANGE FACTOR, GEF, RAN, 2 RAS-LIKE NUCLEAR GTP	VIRUS/VIRAL PROTEIN EIGHT STRANDED BETA BARREL PROTEIN	VIRUS/VIRAL PROTEIN EIGHT STRANDED BETA-BARREL	HYDROLASE DUTPASE; JELLY ROLL, MERCURY DERIVATIVE	HYDROLASE DUTPASE, DUTP PYROPHOSPHATASE; HYDROLASE, DUTPASE, EIAV, TRIMERIC ENZYME, ASPARTYL PROTEASE	HYDROLASE DUTPASE, DUTP PYROPHOSPHATASE; HYDROLASE, DUTPASE, ELAV, TRIMERIC ENZYME, ASPARTYL PROTEASE		PDB annotation	,

				_		 			
1449		1440	1435		1434	1426		Š A	SEQ
lfva		1ap0	2fcb		1du8	1a12		A	BUA
Α			A		Α	>		₽	CHAIN
15	•		27		195	32		AA	START
101		155	71		318	121		AA	END
1.1e-29		4.8e-21	3.4e-06		3.2e-38	9.6e-19		Blast	Psi
-0.28		-0.14	-0.89		0.02	0.32		score	Verify
0.00		0.01	0.09		0.78	0.39		score	HMH
								score	SEQFOLD
PEPTIDE METHIONINE SULFOXIDE REDUCTASE; CHAIN: A, B;		MODIFIER PROTEIN 1; CHAIN: NULL;	FC GAMMA RIIB; CHAIN: A;		SURFACTANT PROTEIN A; CHAIN: A;	REGULATOR OF CHROMOSOME CONDENSATION 1; CHAIN: A, B, C;			Compound
OXIDOREDUCTASE OXIDOREDUCTASE		CHROMATIN-BINDING MOMOD1, HETEROCHROMATIN PROTEIN 1; CHROMATIN- BINDING, PROTEIN INTERACTION MOTIF, ALPHA+BETA	IMMUNE SYSTEM CD32; RECEPTOR, FC, CD32, IMMUNE SYSTEM		MEMBRANE PROTEIN SP-A; SP-A:PHOSPHOLIPID MOLOLAYER COMPLEX	GUANINE NUCLEOTIDE EXCHANGE FACTOR RCC1; GUANINE NUCLEOTIDE EXCHANGE FACTOR, GEF, RAN, 2 RAS-LIKE NUCLEAR GTP BINDING PROTEIN HEADER TER	BINDING PROTEIN HEADER TER		PDB annotation

						 	_		_
1463	1463	1463		1458	1458	1456		ğ ə ğ	CES
1kmy	1fa0	15°a		1c9h	1bkf	190j		Œ	ana
Α	Α	A		A		В		B	CUAN
119	85	88		183	183	57		AA	TOATS
2	264	264		210	210	104		AA	3
0.0078	1.3e-28	4.8e-35		4.8e-11	3.2e-11	0.0017		Blast	Þ
-0.70	-0.31	-0.41	•	-0.80	-0.68	0.07		score	Varify
0.17	0.24	0.13		0.78	0.90	0.35		score	#Mg
								score	CEOEOL D
KANAMYCIN	POLY(A)-POLYMERASE; CHAIN: A, B;	POLY(A) POLYMERASE; CHAIN: A;		FKBP12.6; CHAIN: A;	FK506 BINDING PROTEIN; CHAIN: NULL;	UVRB; CHAIN: A, B;		Compound	Compound
TRANSFERASE KNTASE;	TRANSFERASE POLYMERASE, NUCLEOTIDYL TRANSFERASE	TRANSFERASE MRNA PROCESSING, TRANSFERASE, TRANSCRIPTION, RNA- BINDING, 2 PHOSPHORYLATION, NUCLEAR PROTEIN, ALTERNATIVE SPLICING 3 HELICAL TURN MOTIF, NUCLEOTIDYL TRANSFERASE CATALYTIC DOMAIN		IMMUNE SYSTEM CALCINEURIN; FKBP12, RAPAMYCIN, COMPLEX, RYANODINE RECEPTOR	ISOMERASE FKBP; ISOMERASE, ROTAMASE	DNA EXCISION REPAIR NUCLEOTIDE EXCISION REPAIR, X-RAY CRYSTALLOGRAPHY, UVRB 2 PROTEIN, UVRB-C INTERACTION		A DO ALHOLADOR	PDB annotation

Г		_		_				_					_	_											
L	1468		1468				1468					1468			1467					1707	1467			ÖE	SEQ
	lelr		ldnl				lcun					lav1			lptq					herr	333			E	PDB
	A		В				A					A				-	,							A	CHAIN
	82		99				10					23		1	130					130	3			ΑA	START
	228		236				220					228		;	179		_			182	;	1		A	END
	0.00086		1.3e-08				2.1e-13					1.3e-09		1.10.11	1 16-17					4.8e-13				Blast	Psi
	0.26		-0.00											0.00	000					0.05				score	Verify
	0.22		-0.10											0.2.0	23					0.04				score	PMF
						,	52.54					57.74												score	SEOFOLD
CHAIN: A; HSP90-PEPTIDE	TPR2A-DOMAIN OF HOP	I; CHAIN: A; SYNTAXIN IA;	CVITA VILIA DI DI DI DI DI DI DI DI DI DI DI DI DI			B, C;	AI PHA SPECTEDAL CHARLA				A, B, C, D;	APOI IPOPROTEINI A IL CITARI	TYPE; 1PTQ 4	PROTEIN KINASE C DELTA						RAF-1; CHAIN: NULL;		; CHAIN: A, B;	NUCLEOTIDYI TR ANGEER ASE	compound	Command
DOMAIN, PEPTIDE-COMPLEY	CUMPLEX, MULTI-SUBUNIT	ENDOCYTOSIS/EXOCYTOSIS NSEC1; PROTEIN-PROTEIN	COILS, STRUCTURAL PROTEIN	TANDEM 3-HELIX COILED-	HELICAL LINKER REGION, 2 2	REPEATS OF SPECTEDIA TWO	LCAT-ACTIVATION	ATHEROSCLEROSIS, HDL,	METABOLISM, 2	TRANSPORT CHOI ESTEDO	LIPID TRANSPORT APO A-I; LIPOPROTEIN LIPIN			PHOSPHOTRANSFERASE	ESTER BINDING	ZINC, ATP-BINDING PHORBOI	KINASE 2 PROTO-ONCOGENE	SERINE/THREONING PROTECTION	KINASE TRANSFER ASE	SERINE/THREONING PROTEIN		TRANSFERASE PLASMIN	A VITTO TO TO TO TO TO TO TO TO TO TO TO TO	PDB annotation	

1468 1qsa A 34 1468 1quu A 33 1468 1quu A 34 1474 1a06 7 1474 1apm E 9	lqsa A lquu A	lqsa A lquu A	lqsa A	lqsa A	lqsa A			1468 lez3 A		NO: PDB CHAIN	,
						34		107	1	START AA	
	167		234		375	237		229		AA	
	4.8e-33		8.6e-20	0.08-20	6	3e-20		8.6e-10		Psi Blast	
0,00	2		0.03			0.08		2		Verify score	
	0.76		-0.14			-0.19		5 10		PMF score	
				56.44						SEQFOLD score	Lable
TRANSFERASE(PHOSPHOTRA NSFERASE) \$C-/AMP\$- DEPENDENT PROTEIN KINASE (E.C.2.7.1.37) (\$C/APK\$) 1APM 3 (CATALYTIC SUBUNIT) "ALPHA" ISOENZYME	CALCIUM/CALMODULIN- DEPENDENT PROTEIN KINASE; CHAIN: NUILL;		HUMAN SKELETAL MUSCLE ALPHA-ACTININ 2; CHAIN: A;	HUMAN SKELETAL MUSCLE ALPHA-ACTININ 2; CHAIN: A;	TRANSGLYCOSYLASE SLT70; CHAIN: A;	SOLUBLE LYTIC	C;	MEEVD; CHAIN: B;		Compound	
	KINASE KINASE, SIGNAL TRANSDUCTION, CALCIUM/CALMODULIN	CONTRACTILE PROTEIN	CONTRACTILE PROTEIN CONTRACTILE PROTEIN TRIPLE-HELIX COILED COIL	CONTRACTILE PROTEIN TRIPLE-HELIX COILED COIL,	SUPERHELIX, TRANSFERASE	TRANSFERASE ALPHA-	ENDOCYTOSIS/EXOCYTOSIS SYNAPTOTAGMIN ASSOCIATED 35 KDA PROTEIN, P35A, THREE	HELICAL REPEAT, HSP90, 2 PROTEIN BINDING		PDB annotation	

				_																	_
	14/4		1474	1474		14/4	1474					1474			14/4				NO.	SEQ	
	Упфт		1 koh	1koa		1112111	3					lctp			lcmk				Ħ	PDB	
		,	A			C)					H			t×.		_		₩	CHAIN	
		7	5 8	10	-		1					9			9				AA	START	
	161		163	160		191						185			185				AA	END	
	3.2 c-4 3	0.20-01	2 2 21	4 86-31		1.46-40						3.2e-52			3.2e-52				Blast	Psi	
	-0.11	0.00	0.02	003		-0.28	3					0.04			-0.05		•		score	Verify	
	0.39	0.10	010	75 0		0.09	3					0.80			0.89				score	PMF	
																			score	SEQFOLD	Tauto
	PHOSPHORYLASE KINASE; CHAIN: NULL;	I WII CHIIN; CHAIN: A, B;	I WITCHIN; CHAIN: NOLL;	TWITCHINI. CHARLANTI	PROTEIN KINASE PAK- ALPHA: CHAIN: C. D:	KINASE PAK-ALPHA; CHAIN:	SUBUNIT) ICTP 4	1CTP 3 (CATALYTIC	KINASE (E.C.2.7.1.37) (CAPK)	DEPENDENT PROTEIN	NSFERASE) CAMP-	TRANSFERASE(PHOSPHOTRA	1CMK 3 (E.C.2.7.1.37) 1CMK 4	CAMP-DEPENDENT PROTEIN	PHOSPHOTRANSFBRASE	DETERGENT MEGA-8 1APM 6	THE PEPTIDE IAPM 5	(/S139A\$) COMPLEY WITH		Compound	
TRANSFERASE, SERINE/THREONINE-PROTEIN, 2	KINASE RABBIT MUSCLE PHOSPHORYLASE KINASE;	INTRASTERIC REGULATION	INTRASTERIC REGULATION	יייייייייייייייייייייייייייייייייייייי	FRAGMENT, HOMODIMER	TRANSFERASE KINASE DOMAIN, AUTOINHIBITORY										-			-	PDB annotation	

		$\overline{\mathbf{T}}$	7		-									
		1470	+	+	1478		1478		1478		1474		1474	NO. E
	ofo .	1.0	ļ		PLJI		leuw		ldun		1qpc		lpme	₩
			;	D	A		A				A			TD
	10			3	2	·	2		2		70		22	START AA
	113		5	5 5	73		72		73		179		160	AA
	1.6e-19		1.3e-12		4	01-27.7	2 2 10	,	218-13		4.8e-29		6.4e-31	Psi Blast
	0.72		0.36	<u> </u>	007	o.j	72		0 50		0.19		-0.12	Verify score
	0.77		. 0.98	0.93		0.11		000	000		0 55	3	036	PMF score
														SEQFOLD score
	GP130; CHAIN: NUIL;		POL POLYPROTEIN; CHAIN: A;	POL POLYPROTEIN; CHAIN: A, B;	CHAIN: A;	DEOXYURIDINE 5'- TRIPHOSPHATE NUCLEOTIDOHYDROLASE;		TRIPHOSPHATE NUCLEODITOHYDROLASE; CHAIN: NULL;		ECK MINADE; CHAIN; A;	TOW WINTER CHIEF.	BKKZ; CHAIN: NULL;	Canada Carrante	Compound
TRANSMEMBRANE	RECEPTOR RECEPTOR, SIGNAL TRANSDUCER OF IL-6 TYPE CYTOKINES, THIRD 2 N-TERMINAL DOMAIN,	TROIBIN	VIRUS/VIRAL PROTEIN EIGHT STRANDED BETA BARREL	VIRUS/VIRAL PROTEIN EIGHT		HYDROLASE DUTPASE; JELLY ROLL, MERCURY DERIVATIVE	PROTEASE	HYDROLASE DUTPASE, DUTP PYROPHOSPHATASE; HYDROLASE, DUTPASE, EIAV, TRIMERIC ENZYME, ASPARTYL		TRANSFERASE ALPHA BETA FOLD	KINASE, TRANSFERASE	TRANSFERASE MAP KINASE, SERINE/THREONINE PROTEIN	CALMODULIN-BINDING,	PDB annotation

_						
1480	1479	1479	1479	14/9	1479	NO:
1abt	lqg3	linh	lcib	1bqu	1bpv	РДВ ДД
Α	Α	>		≯		CHAIN
14	15	J	10	6	9	START AA
51	187	185	188	115	113	AA AA
0.00013	9.6e-23	3.2e-25	4.8e-26	1.1e-20	3.26-18	Psi Blast
-0.67	0.18	0.01	0.01	0.45		Verify score
0.13	-0.09	-0.11	-0.13	-0.06		PMF score
					54.68	SEQFOLD score
TOXIN ALPHA-	INTEGRIN BETA-4 SUBUNIT; CHAIN: A, B;	FIBRONECTIN; CHAIN: A;	NEURAL ADHESION MOLECULE DROSOPHILA NEUROGLIAN (CHYMOTRYPTIC FRAGMENT CONTAINING THE 1CFB 3 TWO AMINO PROXIMAL FIBRONECTIN TYPE II REPEATS 1CFB 4 (RESIDUES 610 - 814)) 1CFB 5	GP130; CHAIN: A, B;	TITIN; CHAIN: NULL;	Compound
	STRUCTURAL PROTEIN INTEGRIN, HEMIDESMOSOME, FIBRONECTIN, CARCINOMA, STRUCTURAL 2 PROTEIN	HEPARIN AND INTEGRIN BINDING HEPARIN AND INTEGRIN BINDING		SIGNALING PROTEIN CYTOKINE RECEPTOR, GLYCOPROTEIN 130, GP130, INTERLEUKINE 6 2 RECEPTOR BETA SUBUNIT, SIGNALING PROTEIN	CONNECTIN A71, CONNECTIN; TITIN, CONNECTIN, FIBRONECTIN TYPE III	PDB annotation

							-
1485	1482	1482	1480	1480		NO: DEO	
1c0t	2liv	2lbp	2cdx	2abx		PDB ID	
A				A		CHAIN	
87	54	55	15	14		START AA	
128	189	188	51	51		AA AA	
8.6e-05	4.8e-18	8c-19	0.0086	4.3e-05		Psi Blast	
-0.69	0.01	-0.04	-0.70	-0.67		Verify score	
0.16	0.09	0.01	0.04	0.18		PMF score	
						SEQFOLD score	Table 5
HIV-1 REVERSE TRANSCRIPTASE (A-CHAIN); CHAIN: A; HIV-1 REVERSE	PERIPLASMIC BINDING PROTEIN LEUCINE(SLASH)*ISOLEUCIN E(SLASH)*VALINE-BINDING PROTEIN 2LIV 4 (/LIVBP\$) 2LIV 5	PERIPLASMIC BINDING PROTEIN LEUCINE-BINDING PROTEIN (/LBP\$) 2LBP 4	CARDIOTOXIN CARDIOTOXIN CTX I (NMR, 11 STRUCTURES) 2CDX 3	POSTSYNAPTIC NEUROTOXIN ALPHA-*BUNGAROTOXIN 2ABX 4	BUNGAROTOXIN COMPLEXED WITH THE 185 - 196 FRAGMENT OF 1ABT 3 196 FRACHEA-SUBUNIT OF THE TORPEDO NICOTINIC ACETYLCHOLINE 1ABT 4 RECEPTOR (NMR, 4 STRUCTURES) 1ABT 5	Compound	
TRANSFERASE HIV-1 REVERSE TRANSCRIPTASE, AIDS, NON- NUCLEOSIDE INHIBITOR, 2						PDB annotation	

								TAUTE		
S A S	Ħ	D	AA A	AA END	Psi Blast	Verify score	PMF score	SEQFOLD score	Compound	PDB annotation
									TRANSCRIPTASE (B-CHAIN); CHAIN: B;	DRUG DESIGN
1485	122	A	51	143	1.6e-09	-0.29	0.03		RIBONUCLEASE HI; CHAIN: A;	HYDROLASE RNASE H, NUCLEASE, RNASE H*, RIBNUCLEASE H, METAL- BINDING 2 PROTEIN, PROTEIN FOLDING
1485	1hrh	Α	52	157	0.00013	-0.25	0.52		HYDROLASE(ENDORIBONUC LEASE) RIBONUCLEASE H	· Chouse
									DOMAIN OF /HIV-1\$ REVERSE TRANSCRIPTASE 1HRH 3	
1485	leji		48	157	4.8e-09	0.02	0.05		HYDROLASE(ENDORIBONUC LEASE) RIBONUCLEASE H	
									(E.C.3.1.26.4) 1RIL 3	
1485	lnl		87	163	8.6e-06	0.05	0.15		HYDROLASE(ENDORIBONUC LÉASE) RIBONUCLEASE H	
			3						(E.C.3.1.26.4) 1RIL 3	
1485	1rth	>	22	157	9.6e-05	-0.16	0.36		HIV-1 REVERSE TRANSCRIPTASE; 1RTH 4	NUCLEOTIDYLTRANSFERASE HIV-1 RT; 1RTH 6 HIV-1
									CHAIN: A, B; 1RTH 5	REVERSE TRANSCRIPTASE IRTH 15
1485	YI -	A	- 86	157	0.00032	-0.31	0.00		HIV-1 REVERSE	NUCLEOTIDYLTRANSFERASE
									TRANSCRIPTASE; 1VRT 4 CHAIN: A, B; 1VRT 5	HIV-1 RT; 1VRT 6 HIV-1 REVERSE TRANSCRIPTASE
										TVRT 15
1506	lbal		1	315	3.2e-99			139.00	HEAT-SHOCK COGNATE 70KD	HYDROLASE HYDROLASE,
							l		The same of the sa	DCTING OIN VOID

SEQ PDB CHAIN START END Psi DB Psi DB Psi DB Psi DB Psi DB Psi DB Psi DB Psi DB Psi DB Psi DB Psi DB Psi Psi DB Psi			Tauton		
1bail 12 314 1bpr 233 405 1bpr 271 400 1bpr 271 391 1ckr A 271 391 1ckr A 271 391 1ckr A 271 391 1dg4 A 271 357 1dkg D 1 347	Psi Verify Blast score	y PMF e score	SEQFOLD score	Compound	PDB annotation
1bal 12 314 1bpr 233 405 1bpr 271 400 1bpr 271 391 1ckr A 237 391 1ckr A 271 391 1ckr A 271 391 1dg4 A 271 357 1dkg D 1 347					ANHYDRIDES, ATP-BINDING, 2 HEAT SHOCK
1bpr 233 405 1bpr 271 400 1ckr A 237 391 1ckr A 271 391 1ckr A 277 391 1dg4 A 271 357 1dkg D 1 347	3.2e-99 0.21	1.00		HEAT-SHOCK COGNATE 70KD	HYDROLASE HYDROLASE,
1bpr 233 405 1bpr 271 400 1ckr A 237 391 1ckr A 271 391 1ckr A 277 391 1ckr A 271 357 1dg4 A 271 357 1dkg D 1 347				INCIDIN, CIMIN NODE,	ANHYDRIDES, ATP-BINDING, 2 HEAT SHOCK
1bpr 271 400 1ckr A 237 391 1ckr A 271 391 1ckr A 277 391 1ckr A 277 391 1dg4 A 271 357 1dkg D 1 347	1.7e-51		86.63	DNAK; CHAIN: NULL;	MOLECULAR CHAPERONE
1bpr 271 400 1ckr A 237 391 1ckr A 271 391 1ckr A 277 391 1dg4 A 271 357 1dkg D 1 347					MOLECULAR CHAPERONE,
1bpr 271 400 1ckr A 237 391 1ckr A 271 391 1ckr A 277 391 1ckr A 277 391 1dg4 A 271 357 1dkg D 1 347					PROTEIN 2 FOLDING
1ckr A 237 391 1ckr A 271 391 1ckr A 277 391 1dg4 A 271 357 1dkg D 1 347	1.7e-51 -0.42	0.96		DNAK; CHAIN: NULL;	MOLECULAR CHAPERONE
1ckr A 237 391 1ckr A 271 391 1ckr A 277 391 1ckr A 277 391 1dg4 A 271 357 1dkg D 1 347					HSP70, PEPTIDE BINDING
lckr A 237 391 lckr A 271 391 lckr A 277 391 ldg4 A 277 391 ldg4 A 271 357 ldkg D 1 347					PROTEIN 2 FOLDING
1ckr A 271 391 1ckr A 277 391 1dg4 A 271 357 1dkg D 1 347	8.6e-45	•	137.48	HEAT SHOCK SUBSTRATE	CHAPERONE MOLECULAR
1ckr A 271 391 1ckr A 277 391 1dg4 A 271 357 1dkg D 1 347				CHAIN: A;	BINDING, PROTEIN FOLDING
1ckr A 277 391 1dg4 A 271 357 1dkg D 1 347	4.8e-28. 0.04	1.00		HEAT SHOCK SUBSTRATE	CHAPERONE MOLECULAR
1ckr A 277 391 1dg4 A 271 357 1dkg D 1 347				BINDING DOMAIN OF HSC-70;	CHAPERONE, HSP70, PEPTIDE
lckr A 277 391 ldg4 A 271 357 ldkg D 1 347	_			CHAIN: A;	BINDING, PROTEIN FOLDING
A 271 357 D 1 347	8.6e-45 0.03	1.00		HEAT SHOCK SUBSTRATE	CHAPERONE MOLECULAR
A 271 357 D 1 347				CHAIN: A;	BINDING, PROTEIN FOLDING
D 1 347	1.7e-35 0.09	0.71		DNAK; CHAIN: A;	CHAPERONE DNAK,
D 1 347					CHAPERONE, SUBSTRATE
D 1 34/					BINDING DOMAIN
_			103.04	NUCLEOTIDE EXCHANGE	COMPLEX (HSP24/HSP70) HSP70,

	1506 1dox A 272 422 6.4e-24 -0.20	1506 1dkx A 271 424 1.7e-52 0.15	1506 1dkx A 241 424 1.7e-52	1506 1dkg D 82 314 3.2e-81 -0.07		SEQ PDB CHAIN START END Psi Ver ID ID AA AA Blast sco	
241	272	271	241	82			
424	422	424	424	314			
2.6e-53	6.4e-24	1.7e-52	1.7e-52	3.2e-81		Psi Blast	
	-0.20	0.15		-0.07		Verify score	
	1.00	1.00		0.87		PMF score	
80.32			70.76			SEQFOLD score	1 abie 5
DNAK; CHAIN: A, B; PEPTIDE	SUBSTRATE BINDING DOMAIN OF DNAK; CHAIN: A; SUBSTRATE PEPTIDE (7 RESIDUES); CHAIN: B;	SUBSTRATE BINDING DOMAIN OF DNAK; CHAIN: A; SUBSTRATE PEPTIDE (7 RESIDUES); CHAIN: B;	SUBSTRATE BINDING DOMAIN OF DNAK; CHAIN: A; SUBSTRATE PEPTIDE (7 RESIDUES); CHAIN: B;	NUCLEOTIDE EXCHANGE FACTOR GRPE; CHAIN: A, B; MOLECULAR CHAPERONE DNAK; CHAIN: D;	MOLECULAR CHAPERONE DNAK; CHAIN: D;	Compound	
COMPLEX (MOLECULAR	COMPLEX (MOLECULAR CHAPERONE/PEPTIDE) DNAK, HEAT SHOCK PROTEIN 70 KDA (HSP70), COMPLEX 2 (MOLECULAR CHAPERONE/PEPTIDE)	COMPLEX (MOLECULAR CHAPERONE/PEPTIDE) DNAK, HEAT SHOCK PROTEIN 70 KDA (HSP70), COMPLEX 2 (MOLECULAR CHAPERONE/PEPTIDE)	COMPLEX (MOLECULAR CHAPERONEPEPTIDE) DNAK, HEAT SHOCK PROTEIN 70 KDA (HSP70), COMPLEX 2 (MOLECULAR CHAPERONEPEPTIDE)	COMPLEX (HSP24/HSP70) HSP70, GRPE, MOLECULAR CHAPERONE, NUCLEOTIDE EXCHANGE 2 FACTOR, COILED- COIL, COMPLEX (HSP24/HSP70)	CHAPERONE, NUCLEOTIDE EXCHANGE 2 FACTOR, COILED-COIL, COMPLEX (HSP24/HSP70)	PDB annotation .	

				_											_			,			,	
1515		1.506	900					1506						1506					NO:	Ħ,	SEO	
1qf6		1hjo	Injo					1dky					,	1dky					-	Ħ	BUG	
A		Þ	Þ	•				ᅜ						В							CHAIN	
16		82	,					272						271					į	AA	START	
241		316	310					422						424						A !	END	
1.6e-68		4.8c-98	4.86-98					6.4e-24						2.6e-53						Blast	Psi	
0.42		0.03						0.10						0.16						score	Verify	
0.99		1.00						1.00				•		1.00			•			score	PMF	
			120./8																	score	CIOHOES.	Lable 5
THREONYL-TRNA SYNTHETASE; CHAIN: A; THREONINE TRNA; CHAIN: B;		HEAT-SHOCK 70KD PROTEIN; CHAIN: A;	CHAIN: A;				SUBSTRATE; CHAIN: C, D;	DNAK; CHAIN: A, B; PEPTIDE					SUBSTRATE; CHAIN: C, D;	DNAK; CHAIN: A, B; PEPTIDE						()	Compound	
LIGASE/RNA THRRS; TRNA (THR); THREONYL-TRNA SYNTHETASE, TRNA(THR), AMP, ZINC, MRNA, 2 AMINOACYLATION,	HYDROLASE	HYDROLASE ATP-BINDING, CHAPERONE, HEAT SHOCK,	HYDROLASE AIF-BINDING, CHAPERONE, HEAT SHOCK, HYDROLASE	CHAPERONE/PEPTIDE)	(MOLECULAR	(HSP70). COMPLEX 2	CHAPERONE/PEPTIDE) DNAK,	COMPLEX (MOLECULAR	CHAPERONE/PEPTIDE)	(MOLECULAR	(HSP70), COMPLEX 2	HEAT SHOCK PROTEIN 70 KDA	CHAPERONE/PEPTIDE) DNAK,	COMPLEX (MOLECULAR	CHAPERONE/PEPTIDE)	(MOLECULAR	(HSP70), COMPLEX 2	HEAT SHOCK PROTEIN 70 KDA		A D D SAMOON COM	PDR annotation	

PCT/US02/25485

[<u></u>			T					\neg		_		_
1564		1527		1530		1530		1530			S E S	3
1a0p	ido	\downarrow		3.		E		121			Ш	,
	>				;	A		Δ			CHAIN	
		:	8	29	ò	ŝ	8	2			START AA	
206	D.		155	122	143	1/10	Ę	155			AA END	
1.4e-37	1.86-21		7.0e-13	06015	2.00-10	0 62 16	0.26-10	3 3 10			Psi Blast	
0.08	-0.22		-0.10		-0.34	2	-0.22	3			Verify score	
-0.02	1.00		0.31	2	0.04	2	0.10				PMF score	
											SEQFOLD score	T COLO
SITE-SPECIFIC RECOMBINASE XERD; CHAIN; NULL;	CYTOCHROME P450 2C5; CHAIN: A;		HYDROLASE(ENDORIBONUC LEASE) RIBONUCLEASE H (E.C.3.1.26.4) 1RIL 3	IRANSCRIPTASE HIRH 3	HYDROLASE(ENDORIBONUC LEASE) RIBONUCLEASE H DOMAIN OF /HIV-1\$ REVERSE		RIBONUCLEASE HI; CHAIN: A;				Compound	
DNA RECOMBINATION XERD, RECOMBINASE, DNA BINDING,	OXIDOREDUCTASE PROGESTERONE 21- HYDROXYLASE, CYPIICS P450 1, MEMBRANE PROTEIN, PROGESTERONE 21- HYDROXYLASE, BENZO(A) 2 PYRENE HYDROXYLASE, ESTRADIOL 2-HYDROXYLASE, P450, CYP2CS					FOLDING	HYDROLASE RNASE H, NUCLEASE, RNASE H*, RIBNUCLEASE H, METAL. BINDING 2 PROTEIN, PROTEIN		TRANSLATIONAL REGULATION, PROTEIN/RNA		PDB annotation	

								C SIGR I		!
∃ Ž	∄ g	CHAIN	START	END	Psi	Verify	PMF	SEQFOLD	Compound	PDB annotation
NO.	E	E	AA	A	Blast	score	score	score		
										DNA RECOMBINATION
1564	lae9	Α	43	210	3.2e-16	0.07	-0.07		LAMBDA INTEGRASE; CHAIN:	DNA RECOMBINATION DNA
									A, B;	RECOMBINATION, INTEGRASE,
										SITE-SPECIFIC
	,	,		3						RECOMBINATION
1004	lacy	t	43	193	8e-17	0.09	0.12		LAMBDA INTEGRASE; CHAIN:	DNA RECOMBINATION DNA
									** **	SITE-SPECIFIC
									,	RECOMBINATION
1564	laih	A	36.	212	6.4e-26	0.23	-0.02		HP1 INTEGRASE; CHAIN: A, B,	DNA INTEGRATION DNA
									С, Д;	INTEGRATION,
										MOCKEDANTION
1566	1bqg		\$4	339	8e-31	0.22	0.58		D-GLUCARATE	GLUCARATE GLUCARATE TIM
									DEHYDRATASE; CHAIN: NULL;	BARREL, ENOLASE SUPERFAMILY
1566	1chr	A	21	352	3.2e-51			61.26	ISOMERASE	
									CHLOROMUCONATE	
									(E.C.5.5.1.7) 1CHR 3	
1566	1 chr	Α	59	350	3.2e-51	0.44	0.68		ISOMERASE	
									CHLOROMUCONATE	
									CYCLOISOMERASE	
1566	lec7	V	62	339	1.3e-27	0.07	0.54		GLUCARATE DEHYDRATASE;	LYASE GLUCARATE
										DEHYDRATASE ENOLASE
										ENZYME SUPERFAMILY TIM
										BAKKEL 2 (BEI A/ALPHA) / BEI A

	_		_			_		,				,					_	
2	1570		1566			1566		1566		1566		1566		1566	100	1566	NO:	J E
lan	200	1	lone			lmuc		lmdl		lmdl		lmdl	ļ	1fhv	7010		Į.	######################################
			A			Α							:	A	>	>		CHAIN
8		d	40			60		8		5	•	159	1,00	138	100	165	AA	START
138	L	1	333			351		337	, t	252		351	707	227	33/		75	END
8e-23			7000			9.6e-51	i 0 0	3.2e-51		3 20-51		9e-34	17-37.6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9.6e-19		DIASE	Psi
0.44		-0.24	2			0.30	č	035				0.40	0.23	3	0.20		score	Verify
0.22		0.06				0.25	6	78.0			1:00	100	0.31	2	-0.05		score	PME
									10.00	66.01							score	SEQFOLD
MERP; CHAIN: NULL;		ENOLASE; CHAIN: A, B;			ENZYME; CHAIN: A, B;	MIJCONATE I ACTONIZING	CHAIN: NULL;	MANUEL ATT TO THE TOTAL OF	CHAIN: NULL;		CHAIN: NULL;	SYNTHASE; CHAIN: A;	O-SUCCINYLBENZOATE	SYNTHASE; CHAIN: A;	O-SUCCINYLBENZOATE			Compound
MERCURY DETOXIFICATION MERCURIC TRANSPORT PROTEIN; MERCURY DETOXIFICATION, PER IDI ASMIC HE AVAY METAT	ELABE, OF LOCATOR	LYASE 2-PHOSPHO-D- GLYCERATE HYDROLASE; LYASE GLYCOLYSIS	ENZYME	MUCONATE LACTONIZING	MUCONATE	INTER ASE CASE	ISOMERASE ISOMERASE, MANDELATE PATHWAY,	MAGNESIUM	ISOMERASE ISOMERASE, MANDELATE PATHWAY,	MAGNESIUM	ISOMERASE ISOMERASE, MANDELATE PATHWAY,	SUPERFAMILY	OXIDOREDUCTASE ENOLASE	SUPERFAMILY	OXIDOREDUCTASE ENOLASE	BARREL		PDB annotation

_				 					
1592	1592	1592	1592	1570	1570	1570		Ö E	SEO
1ckt	1cg7	laab	laab	1cpz	1cc8	1aw0		Ħ	PDB
Α	A			A	A			Œ	CHAIN
133	126	160	126	 72	66	68		AA	START
192	188	187	192	136	135	138		AA	FND
0.0062	9.6e-08	0.00045	0.0016	1.3e-18	6.4e-10	3.2e-19		Blast	Psi
-0.07	-0.34	-0.62	-0.17	0.67	0.13	0.41		score	Verify
0.25	0.00	0.34	0.10	0.42	0.22	0.64		score	PMF
								score	SEOFOLD
HIGH MOBILITY GROUP 1	NON HISTONE PROTEIN 6 A; CHAIN: A;	HIGH MOBILITY GROUP PROTEIN; 1AAB 5 CHAIN: NULL; 1AAB 6	HIGH MOBILITY GROUP PROTEIN; 1AAB 5 CHAIN: NULL; 1AAB 6	COPZ; CHAIN: A;	METALLOCHAPERONE ATX1; CHAIN: A;	MENKES COPPER- TRANSPORTING ATPASE; CHAIN: NULL;			Company
GENE REGULATION/DNA HMG-	DNA BINDING PROTEIN HMG BOX, DNA BENDING, DNA RECOGNITION, CHROMATIN, NMR, DNA 2 BINDING PROTEIN	DNA-BINDING HMGA DNA- BINDING HMG-BOX DOMAIN A OF RAT HMG1; 1AAB 8 HMG- BOX 1AAB 20	DNA-BINDING HMGA DNA- BINDING HMG-BOX DOMAIN A OF RAT HMG1; 1AAB 8 HMG- BOX 1AAB 20	GENE REGULATION COPPER CHAPERONE, METAL TRANSPORT, GENE REGULATION	METAL TRANSPORT COPPER TRANSPORT, MERCURY COORDINATION, METAL TRANSPORT	HYDROLASE COPPER- TRANSPORTING ATPASE, COPPER-BINDING DOMAIN, HYDROLASE	TRANSPORT, 2 ALPHA-BETA SANDWICH	A D. D. WILLIAM D. D.	PDR annotation

		1				7
1592	1592	1592	1592		NO BEO	
2lef	lhsm	Ihme	lekt	·	PDB	
>			>		CHAIN	
131	133	133	160		START AA	
207	187	187	187		END AA	
3.2e-19	3.2e-06	3.2e-06	0.0018		Psi Blast	
-0.13	0.00	-0.42	-0.73		Verify score	
0.04	0.31	0.17	0.74		PMF score	
					SEQFOLD score	C STOR T
LYMPHOID ENHANCER- BINDING FACTOR; CHAIN: A;	DNA-BINDING HIGH MOBILITY GROUP PROTEIN I (HMG1) BOX 2, COMPLEXED WITH 1HSM 3 MERCAPTOETHANOL (NMR, MINIMIZED AVERAGE STRUCTURE) 1HSM 4	DNA-BINDING HIGH MOBILITY GROUP PROTEIN FRAGMENT-B (HMGB) (DNA- BINDING 1HME 3 HMG-BOX DOMAIN B OF RAT HMG1) (NMR, 1 STRUCTURE) 1HME 4	HIGH MOBILITY GROUP 1 PROTEIN; CHAIN: A; DNA (5'- D(*CP*CP*(IDO) CHAIN: B; DNA (5'- CHAIN: C;	PROTEIN; CHAIN: A; DNA (5'- D(*CP*CP*(IDO) CHAIN: B; DNA (5'- CHAIN: C;	Compound	
GENE REGULATION/DNA LEF-1 HMG; LEF1, HMG, TCR-A	·		GENE REGULATION/DNA HMG- 1, AMPHOTERIN, HEPARIN- BINDING PROTEIN P30; HIGH- MOBILITY GROUP DOMAIN, BENT DNA, PROTEIN-DRUG- DNA 2 COMPLEX, GENE REGULATION/DNA	1, AMPHOTERIN, HEPARIN- BINDING PROTEIN P30; HIGH- MOBILITY GROUP DOMAIN, BENT DNA, PROTEIN-DRUG- DNA 2 COMPLEX, GENE REGULATION/DNA	PDB annotation	

1612		1610	1010	1610			1001	1601	1601		1601		NO.	SEQ
lalt		lbix	i axo				1901		lerj		lcrz		B	PDB
Α							tx	3	Ą	•	A		В	CHAIN
158		209	232						00		7		.AA	START
223		333	334				256		258	0	320		AA	END
3.2e-14		3.2e-05	4.5e-14				4.8e-71		1.6e-66	04-02	0,00		Blast	Psi
0.39		0.46	0.07				0.28		0.37	0.04	2		score	Varify
0.24		0.57	0.21				0.88	1.00	18	0.00	2		score	2Ma
													score	TOTO TO
NUCLEOCAPSID PROTEIN:	CHAIN: NULL;	AP ENDONUCLEASE 1;	EXONUCLBASE III; CHAIN: NULL;			BETA; CHAIN: B; GT-GAMMA; CHAIN: G;	GT-ALPHA/GI-ALPHA CHIMER A: CH'A DI: A: CT	REPRESSOR TUP1; CHAIN: A, B, C:	THE ANICON THE PROPERTY OF THE	TOLB PROTEIN; CHAIN: A;		CHAIN: C;	Compound	
COMPLEY ON ICT BOCK BOTH	ENDONUCLEASE, HAP1, REF-1, ABASIC SITE 2 RECOGNITION	DNA REPAIR DNA REPAIR	NUCLEASE NUCLEASE, EXONUCLEASE, AP-	SIGNAL IRANSDUCTION	GAMMA SUBUNIT; COMPLEX (GTP-BINDING/TRANSDUCER), G PROTEIN, HETEROTRIMER 2	BINDING/TRANSDUCER) BETA1, TRANSDUCIN BETA SUBUNIT; GAMMA1, TRANSDUCIN	COMPLEX (GTP.	TRANSCRIPTION INHIBITOR BETA-PROPELLER	AND ALPHA/BETA FOLD	TOXIN BINDING PROTEIN TWO DOMAINS: BETA PROPELLER	UNIQUEENCE	TRANSCRIPTION FACTOR, DNA BINDING, DNA 2 BENDING, COMPLEX (HMG DOMAIN/DNA), GENE REGIT ATTOMONA	PDB annotation	

			,		γ		_
1612	1612	1612	1612	1612		NO. A SEC	
1dsv	1cl4	1bj6	1bj6	laaf		DB DB	
A	Α	≯	>			CHAIN	
200	201	203	166	158		START AA	
229	228	239	221	223		AA	
4.8e-05	2.7e-09	1.4e-08	3.2e-12	3.2e-14		Psi Blast	
0.39	0.64	0.16	0.37	0.17		Verify score	
0.99	0.88	0.06	0.15	0.12		PMF score	
						SEQFOLD score	2 00 20 0
NUCLEIC ACID BINDING PROTEIN P14; CHAIN: A;	GAG POLYPROTEIN; CHAIN: A;	DNA (ACGCC); CHAIN: D; NUCLEOCAPSID PROTEIN 7; CHAIN: A;	DNA (ACGCC); CHAIN: D; NUCLEOCAPSID PROTEIN 7; CHAIN: A;	NUCLEOCAPSID PROTEIN HIV-1 NUCLEOCAPSID PROTEIN (MN ISOLATE) (NMR, 20 STRUCTURES) 1AAF 3	CHAIN: A; SL3 STEM-LOOP RNA; CHAIN: B;	Compound	
VIRUS/VIRAL PROTEIN CCHC TYPE ZINC FINGER,	VIRAL PROTEIN NUCLEOCAPSID PROTEIN, RNA BINDING PROTEIN, RETROVIRUS, 2 VIRAL PROTEIN	COMPLEX (NUCLEOCAPSID PROTEIN/DNA) (12-53)NCP7; COMPLEX (NUCLEOCAPSID PROTEIN/DNA), NUCLEIC ACID, 2 RETROVIRUS, VIRUS MORPHOGENESIS, ZINC FINGER	COMPLEX (NUCLEOCAPSID PROTEIN/DNA) (12-53)NCP7; COMPLEX (NUCLEOCAPSID PROTEIN/DNA), NUCLEIC ACID, 2 RETROVIRUS, VIRUS MORPHOGENESIS, ZINC FINGER	·	PROTEIN/RNA) NUCLEOCAPSID PROTEIN, COMPLEX (NUCLEOCAPSID PROTEIN/RNA), 2 STEM-LOOP RNA	PDB annotation	

			_			,	,	,	·	
1618	1618	1618		1616	1616		1612		ë A	SEQ
lhrh	1221	laub		1zxq	liam		1dsv		B	BUA
>	>						Α		B	CHAIN
20	25	139		32	19 .		201		AA	START
120	153	183		135	128		228		AA	END
1.3e-24	8e-21	8e-12		6.4e-33	8e-36		4.5e-10		Blast	Psi
-0.19	-0.09	-0.28		0.19	-0.09		0.25		score	Verify
0.03	0.17	0.31		1.00	0.74		1.00		score	HMA
									score	SEQFOLD
HYDROLASE(ENDORIBONUC LEASE) RIBONUCLEASE H	RIBONUCLEASE HI; CHAIN: A;	HIV-2 INTEGRASE; CHAIN: NULL;		INTERCELLULAR ADHESION MOLECULE-2; CHAIN: NULL;	INTERCELLULAR ADHESION MOLECULE-1; CHAIN: NULL;		NUCLEIC ACID BINDING PROTEIN P14; CHAIN: A;			Compound
	HYDROLASE RNASE H, NUCLEASE, RNASE H*, RIBNUCLEASE H, METAL- BINDING 2 PROTEIN, PROTEIN FOLDING	INTEGRASE INTEGRASE, AIDS, POLYPROTEIN		CELL ADHESION ICAM-2; IMMUNOGLOBULIN FOLD, CELL ADHESION, GLYCOPROTEIN, 2 TRANSMEMBRANE, REPEAT, SIGNAL	RHINOVIRUS RECEPTOR ICAM- 1, CD54; RHINOVIRUS RECEPTOR, CELL ADHESION, INTEGRIN LIGAND, 2 GLYCOPROTEIN, LFA-1 LIGAND, IMMUNOGLOBULIN FOLD, 3 TRANSMEMBRANE		VIRUS/VIRAL PROTEIN CCHC TYPE ZINC FINGER, VIRUS/VIRAL PROTEIN	VIRUS/VIRAL PROTEIN	1	PDB annotation

		1		1		Τ	I	
1640	1640	1629		1618	1618		Ö A	SEQ
lmms	1 mms	199		1 wja	1 hzh		百	РДВ
В	>	В	_	A	>		B	CHAIN
89	89	66		139	22		AA	START
125	125	126		182	143		AA	END
0.00048	0.00048	1.3e-05		3.2e-12	4.5e-15		Blast	Psi
0.08	0.08	-0.22		-0.25	-0.25		score	Verify
0.27	0.21	0.00		0.31	0.04		score	PMF
							score	SEOFOLD
RIBOSOMAL PROTEIN L11; CHAIN: A, B; 23S RIBOSOMAL RNA; CHAIN: C, D;	RIBOSOMAL PROTEIN L11; CHAIN: A, B; 23S RIBOSOMAL RNA; CHAIN: C, D;	HIS TAG; CHAIN: A; HTLV-I CAPSID PROTEIN; CHAIN: B;		HIV-1 INTEGRASE; CHAIN: A,	HYDROLASE(ENDORIBONUC LEASE) RIBONUCLEASE H DOMAIN OF /HIV-1\$ REVERSE TRANSCRIPTASE 1HRH 3	DOMAIN OF /HIV-1\$ REVERSE TRANSCRIPTASE 1HRH 3		Compound
RIBOSOME RNA-PROTEIN COMPLEX, RNA, RIBOSOME, TRANSLOCATION, 2 THIOSTREPTON	RIBOSOME RNA-PROTEIN COMPLEX, RNA, RIBOSOME, TRANSLOCATION, 2 THIOSTREPTON	VIRUS/VIRAL PROTEIN HTLV-I, CAPSID PROTEIN, RETROVIRUS, TWO-DOMAIN PROTEIN, 2 ALPHA HELICAL PROTEIN, HETERONUCLEAR NMR SPECTROSCOPY, 3 VIRUS/VIRAL PROTEIN		ZN-BINDING PROTEIN ZN- BINDING PROTEIN, AIDS, POLYPROTEIN, HYDROLASE, ASPARTYL 2 PROTEASE, ENDONUCLEASE				PDB annotation

ë a	Ħ	₽	AA	AA	Blast	score	score	score		
1641	1a7a	A	42	86	0.00048	0.55	00.1		S-ADENOSYLHOMOCYSTEINE HYDROLASE; CHAIN: A, B;	HYDROLASE HYDROLASE, NAD BINDING PROTEIN
1641	lae1	Α	39	297	9.6e-64			79.01	TROPINONE REDUCTASE-I; CHAIN: A; B;	OXIDOREDUCTASE, TROPANE
										ALKALOID BIOSYNTHESIS, REDITCTION OF 2 TROPINGUE.
										TO TROPINE, SHORT-CHAIN
										DEHYDROGENASE
1641	1ae1	Α	39	313	9.6e-64	0.27	1.00		TROPINONE REDUCTASE-I;	OXIDOREDUCTASE
									CHAIN: A, B;	ALKALOD BIOSYNTHESIS,
								-		REDUCTION OF 2 TROPINONE
	•									TO TROPINE, SHORT-CHAIN
164	1001		30	313	3 28-66			74 73	TROPINONE REDITCTASE-I	OXIDOREDIICTASE
		(,		:				CHAIN: A, B;	OXIDOREDUCTASE, TROPANE
										ALKALOID BIOSYNTHESIS,
										REDUCTION OF 2 TROPINONE
	•									DEHYDROGENASE
1641	lael	В	39	313	3.2e-66	0.37	1.00		TROPINONE REDUCTASE-I;	OXIDOREDUCTASE
									CHAIN: A, B;	OXIDOREDUCTASE, TROPANE
										ALKALOID BIOSYNTHESIS,
										REDUCTION OF 2 TROPINONE
										TO TROPINE, SHORT-CHAIN
										DEHYDROGENASE
12	1616	Α	40	255	3.2e-21	0.40	1.00		ALCOHOL DEHYDROGENASE;	OXIDOREDUCTASE

1641	3	1641	1641				1641					1401	2									NO:	3 E	3
1db3	i tyu	2	1cyd				1bdb					1000	11.41											avia
Α	>	>	Α									_								•	-		HAIN	CETATO
4	<u>+</u>	2	40				41					40										į	SIAKI	
258	210	3	311				314					324	3									}	END	1
4e-09	86-03	S	8e-53			***	1.6e-45					1.6e-45										בומטנ	Psi	
0.05	0.47						0.24															SCOLE	Verify	
0.76	1.00	8					1.00															Score	PMF	
			79.57									69.17						•				score	SEQFOLD	C arde 7
GDP-MANNOSE 4,6-	CARBONYL REDUCTASE; CHAIN: A, B, C, D;	CHAIN: A, B, C, D;	CARRONVI REDITOTACE.		NULL;	DIHYDRODIOL-2,3-	CIS-BIPHENYL-2.3-		NULL;	DEHYDROGENASE; CHAIN:	DIHYDRODIOL-2,3-	CIS-BIPHENYL-2,3-									CHAIN: A, B;		Compound	
LYASE DEHYDRATASE, NADP,	OXIDOREDUCTASE SHORT- CHAIN DEHYDROGENASE, OXIDOREDUCTASE	CHAIN DEHYDROGENASE, OXIDOREDUCTASE	DEGRADATION	DEHYDROGENASE, PCB	OXIDOREDUCTASE, SHORT- CHAIN ALCOHOL 2	DEPENDENT	OXIDOREDITOTAGE NATION	DEHYDROGENASE, PCB DEGRADATION	CHAIN ALCOHOL 2	OXIDOREDUCTASE, SHORT-	DEPENDENT	OXIDOREDUCTASE NAD-	3-PENTANONE 4 ADDUCT	ES, TERNARY COMPLEX, NAD-	DEHYDROGENASES/REDUCTAS	SHORT-CHAIN 3	DROSOPHILA LEBANONENSIS,	DEHYDROGENASE,	METABOLISM, ALCOHOL 2	DETOXIFICATION,	OXIDOREDITCTASE		PDB annotation	

1641	1641	1641	1641	1641	1641	1641		NO.
1 fds	1 fds	leq2	leny	leny	1ek6	1 dbr		
		A			A			ŧ
43	42	46	39	38	44	43		3
256	335	263	258	312	242	256		3
2.7e-31	2.7e-31	9e-09	1.3e-29	1.3e-29	3.6e-10	9e-24		Diage
0.29		-0.19	0.29		0.48	0.10		3001.0
1.00		0.49	0.94		1.00	0.36		30016
	67.54			53.65				91016
17-BETA-HYDROXYSTEROID-	17-BETA-HYDROXYSTEROID- DEHYDROGENASE; CHAIN: NULL;	ADP-L-GLYCERO-D- MANNOHEPTOSE 6- EPIMERASE; CHAIN: A, B, C, D, E, F, G, H, I, J;	ENOYL-ACYL CARRIER PROTEIN (ACP) REDUCTASE; 1ENY 4 CHAIN: NULL; 1ENY 5	ENOYL-ACYL CARRIER PROTEIN (ACP) REDUCTASE; 1ENY 4 CHAIN: NULL; 1ENY 5	UDP-GALACTOSE 4- EPIMERASE; CHAIN: A, B;	OXIDOREDUCTASE(ACTING ON NADH OR NADPH) DIHYDROPTERIDINE REDUCTASE (DHPR) (B.C.1.6.99.10) COMPLEX 1DHR 3 WITH NADH 1DHR 4	DEHYDRATASE; CHAIN: A;	
DEHYDROGENASE	DEHYDROGENASE DEHYDROGENASE, 17-BETA- HYDROXYSTEROID	ISOMERASE N-TERMINAL DOMAIN ROSSMANN FOLD, C- TERMINAL MIXED 2 ALPHA/BETA DOMAIN, SHORT- CHAIN DEHYDROGENASE/REDUCTASE FOLD	OXIDOREDUCTASE INHA; 1ENY 6	OXIDOREDUCTASE INHA; 1ENY 6	ISOMERASE EPIMERASE, SHORT-CHAIN DEHYDROGENASE, GALACTOSEMIA		GDP-MANNOSE, GDP-FUCOSE	

$\overline{}$									
1641	1641	1641	1641	1641	1641	1641		NO:	
loaa	11eh	1hdc	1hdc	1 finc	1fmc	1 fds		PDB ID	
	A	>	A	Α	A			CELAIN	
38	40	39	39	40	35	45		START AA	
304	116	318	313	308	310	299		END AA	
2.7e-30	0.0022	6.4e-63	6.4e-63	3.2e-67	3.2e-67	1.4e-26		Psi Blast	
	0.42		0.50	0.40		0.36		Verify score	
	0.24		1.00	1.00		0.89		PMF score	
52.72		69.01			84.94			SEQFOLD score	lable 5
SEPIAPTERIN REDUCTASE;	LEUCINE DEHYDROGENASE; CHAIN: A, B;	OXIDOREDUCTASE 3-ALPHA, 20-BETA-HYDROXYSTEROID DEHYDROGENASE (E.C.1.1.1.53) 1HDC 3 COMPLEXED WITH CARBENOXOLONE 1HDC 4	OXIDOREDUCTASE 3-ALPHA, 20-BETA-HYDROXYSTEROID DEHYDROGENASE (E.C.1.1.1.53) 1HDC 3 COMPLEXED WITH CARBENOXOLONE 1HDC 4	7 ALPHA-HYDROXYSTEROID DEHYDROGENASE; CHAIN: A, B;	7 ALPHA-HYDROXYSTEROID DEHYDROGENASE; CHAIN: A, B;	17-BETA-HYDROXYSTEROID- DEHYDROGENASE; CHAIN: NULL;	DEHYDROGENASE; CHAIN: NULL;	Compound	
OXIDOREDUCTASE	OXIDOREDUCTASE OXIDOREDUCTASE			OXIDOREDUCTASE SHORT- CHAIN DEHYDROGENASE/REDUCTASE , BILE ACID CATABOLISM	OXIDOREDUCTASE SHORT- CHAIN DEHYDROGENASE/REDUCTASE , BILE ACID CATABOLISM	DEHYDROGENASE DEHYDROGENASE, 17-BETA- HYDROXYSTEROID	DEHYDROGENASE, 17-BETA- HYDROXYSTEROID	PDB annotation	

- 1								,			_			_			_				
			1641		1641		1641		1641		1041			1641			1641			NO.	SEQ
			2ae2		lybv		lybv		ludb		lqrr			loaa			loaa			E	PDB
			A		Α		A				A									B	CHAIN
			36		35		22		9		44			45			43			AA	START
			307	·	311		307		336		248			267			291			AA	END
			1.6e-63		%e-61	;	8e-61		4.5e-08		1.4e-08			3.2e-17		٠	2.7c-30			Blast	Psi
					0.56						0.27			0.21			0.30			score	Verify
L					3						0.87			1.00			0.95			score	PMT
			71 59			+ •	72 78	į	56.43						_					score	SEOFOLD
		CHAIN: A, B;	TROBRIONE DESTINATION OF	REDUCTASE; CHAIN: A, B;		REDUCTASE; CHAIN: A, B;		EPIMERASE; CHAIN: NULL;	IIDB CALACTORY	(SQD1) PROTEIN; CHAIN: A;	STIL EOI DIN DIOSTATION		CHAIN: NULL;	SEPIAPTERIN BEDITCHASE		CHAIN: NULL;	QEDIA D'ED DI DEDICE	, and a	CHAIN: NIII I:	Compound	
TO PSEI MOTBORNE SHORE	REDUCTION OF 2 TROPINGUE	OXIDOREDUCTASE OXIDOREDUCTASE, TROPANE	OXIDOREDUCTASE	OXIDOREDUCTASE NAPHTHOL REDUCTASE;	OXIDOREDUCTASE	OXIDOREDUCTASE NAPHTHOL REDUCTASE;	ISOMERASE	GALACTOSE, EPIMERASE, UDP-	SDR HOMOLOG, ISOMERASE	SHORT HYDROGEN BONDS,	OXIDOREDUCTASE	TETRAHYDROBIOPTERIN,	SEPIAPTERIN REDUCTASE	OXIDOREDUCTASE	TETRAHYDROBIOPTERIN,	OXIDOREDUCTASE SEPIAPTERIN REDUCTASE	OXIDOREDUCTASE	TETRAHYDROBIOPTERIN,	CONT. PORTO	PDB annotation	

		_					_
1667	1667	1641	1641	1641		ğ B	SEO
1a4j	1a3r	3hdh	2dld	2ae2		Ħ	PDB
L		С	A	A		D	CHAIN
46	46	48	41	39		AA	START
270	220	107	96	312		AA	ENS
1.3e-50	3.2e-59	0.00096	0.00018	1.6e-63		Blast	Psi
	0.23	0.26	0.47	0.10		score	Verify
	-0.13	0.03	0.31	1.00		score	PMF
50.13	C.					score	SEOROLD
IMMUNOGLOBULIN, DIELS	IGG2A; CHAIN: L, H; HUMAN RHINOVIRUS CAPSID PROTEIN VP2; CHAIN: P;	L-3-HYDROXYACYL COA DEHYDROGENASE; CHAIN: A, B, C;	D-LACTATE DEHYDROGENASE; 2DLD 5 CHAIN: A, B; 2DLD 6	TROPINONE REDUCTASE-II; CHAIN: A, B;		Compound	Compound
IMMUNOGLOBULIN	COMPLEX (IMMUNOGLOBULIN/VIRAL PEPTIDE) ANTIBODY 8F5; IMMUNOGLOBULIN, ANTIBODY, RHINOVIRUS, NEUTRALIZATION, 2 CONTINUOUS EPITOPE, COMPLEX (IMMUNOGLOBULIN/VIRAL PEPTIDE)	OXIDOREDUCTASE SCHAD; OXIDOREDUCTASE, BETA OXIDATION, SCHAD, CATALYTIC ACTIVITY: 2 L-3- HYDROXYACYL-COA + NAD(+) = 3-OXOACYL-COA + NADH	OXIDOREDUCTASE (CHOH(D)- NAD+(A)) R-LACTATE DEHYDROGENASE; 2DLD 7	OXIDOREDUCTASE OXIDOREDUCTASE, TROPANE ALKALOID BIOSYNTHESIS, REDUCTION OF 2 TROPINONE TO PSEUDOTROPINE, SHORT- CHAIN DEHYDROGENASE	CHAIN DEHYDROGENASE	I II D AIII DUANOII	DDB anadation

																								_
		1667			1007	1221								1667			,	1667				NO E	SEC.	3
		1c5c			ıfar									lb2w			į	laxt ·				ш	PDB	1
		H			t									L			į					Ш	CHAIN	
	•	164			40									46			ā	46				AA	START	
		359			202									205			100	282				AA	END	
		3.2e-45			1.1e-5/									1.6e-56			1.707.1	1 46-51				Blast	Psi	
		80.0			0.12									0.06								score	Verify	
		-0.20			-0.11									-0.15								score	PMF]
																	20.20	50.30				score	SEQFOLD	,
	ANTIBODY 21D8; CHAIN: L; CHIMERIC DECARBOXYLASE ANTIBODY 21D8; CHAIN: H;	CHIMERIC DECARBOXYLASE	FACTOR; CHAIN: V, W;	I, K; VASCULAR ENDOTHELIAL GROWTH	FAB FRAGMENT; CHAIN: L, H,							CHAIN); CHAIN: H;	CHAIN: L; ANTIBODY (HEAVY	ANTIBODY (LIGHT CHAIN):		(Case and to any any	CHAIN: I H:	BOARDOI CHIE BITCOS		ANTIBODY; CHAIN: L, H, A, B;	ALDER CATAL YTIC		Compound	
DECARBOXYLASE, HAPTEN COMPLEX	IMMUNOGLOBULIN, CATALYTIC ANTIBODY, CHIMERIC FAB, 2	IMMUNE SYSTEM	(ANTIBODY/ANTIGEN), ANGIOGENIC FACTOR	(ANTIBODY/ANTIGEN) FAB-12; VEGF: COMPLEX	COMPLEX	INTERFERON, IMMUNE SYSTEM	STRYCTURE, GAMMA- 3	THREE-DIMENSIONAL	FAB, 2 X-RAY STRUCTURE.	AND CHIMERIC ANTIBODY,	ENGINEERING, HUMANIZED	IMMUNOGLOBULIN ANTIBODY	IMMUNOGLOBULIN;	IMMUNE SYSTEM	REACTION	EARL CARLINGS LINE AND LEGET	IMMUNOGLOBULIN	GERMLINE	ANTIBODY, DIELS ALDER, 2	ANTIBODY, CATALYTIC	IMMINIOGI OBITI NI		PDB annotation	

1667	1667	1667	1667	1667	SEQ ID
1f3r	ldzb	1dee	1dbb	1clz	PDB ID
В	A	>	L	٢	CHAIN
46	46	46	46	46	START AA
285	286	205	283	286	END AA
3.2e-68	1.1e-85	1.6e-58	1.6e-52	3.2e-52	Psi Blast
0.49	0.46	0.09			Verify score
-0.19	-0.15	-0.09			PMF score
			54.63	50.34	SEQFOLD score
ACETYLCHOLINE RECEPTOR	SCFV FRAGMENT 1F9; CHAIN: A, B; TURKEY EGG-WHITE LYSOZYME C; CHAIN: X, Y;	IGM RF 2A2; CHAIN: A, C, E; IGM RF 2A2; CHAIN: B, D, F; IMMUNOGLOBULIN G BINDING PROTEIN A; CHAIN: G, H;	IMMUNOGLOBULIN FAB' FRAGMENT OF THE DB3 ANTI-STEROID MONOCLONAL ANTIBODY 1DBB 3 (IGG1, SUBGROUP 2A, KAPPA 1) COMPLEX WITH PROGESTERONE 1DBB 4	IGG FAB (IGG3, KAPPA); CHAIN: L, H;	Compound
IMMUNE SYSTEM IG-FOLD,	COMPLEX (ANTIBODY ANTIGEN) 1,4-BETA-N- ACETYLMURAMIDASE C; SINGLE-DOMAIN ANTIBODY, TURKEY EGG-WHITE LYSOZYME, 2 ANTIBODY- PROTEIN COMPLEX, SINGLE- CHAIN FV FRAGMENT	IMMUNE SYSTEM FAB-IBP COMPLEX CRYSTAL STRUCTURE 2.7A RESOLUTION BINDING 2 OUTSIDE THE ANTIGEN COMBINING SITE SUPERANTIGEN FAB VH3 3 SPECIFICITY		IMMUNOGLOBULIN MBR96 FAB (IMMUNOGLOBULIN); IMMUNOGLOBULIN C REGION, GLYCOPROTEIN, TRANSMEMBRANE	PDB annotation

2	1							Table		
ĕ ₽ Ş	ID	D	AA	AA	Psi Blast	verily score	score	SEQFOLD score	Compound	PDB annotation
		٠							ALPHA; CHAIN: A; FV ANTIBODY FRAGMENT;	IMMUNO COMPLEX, ANTIBODY-ANTIGEN, BETA-
1667	1flr	T	46	286	3.2e-54			51.40	4-4-20 (IG*G2A=KAPPA=) FAB	IMMUNOGLOBULIN
1667	2								H; 1FLR 6	
/00/	1 IIIS	t-	46	220	4.8e-56	0.24	-0.03		IMMUNOGLOBULIN NMC-4 IGGI; CHAIN: L:	IMMUNE SYSTEM VON
									IMMUNOGLOBULIN NMC-4 IGG1; CHAIN: H; VON	GLYCOPROTEIN IBA (A:ALPHA) BINDING, 2 COMPLEX
							···		WILLEBRAND FACTOR; CHAIN: A;	(WILLEBRAND/IMMUNOGLOBU
+-	Ė	-								TYPE 3 2B VON WILLEBRAND DISEASE
100,	DATT		.	CO ₂	1.0e-50	0.15	-0.08		FRAGMENT OF HUMANIZED	
+-									ANTIBODY 4D5, VERSION 4 1FVD 3	
/ 001	Igai	Þ	104	339	1.6e-44	0.00	-0.20		CHIMERIC 48G7 FAB; CHAIN:	CATALYTIC ANTIBODY ESTER
									н, L;	HYDROLYSIS, ESTEROLYTIC,
1667	lghf	Ľ	46	283	4.8e-52			51.45	ANTI-ANTI-IDIOTYPE GH1002	ANTIBODY FAB FRAGMENT
1667	3		1	3	5				FAB FRAGMENT; CHAIN: L, H	ANTIBODY FAB FRAGMENT
		t	÷	283	26-98			50.09	ANTIBODY M41; CHAIN: L, H,	IMMUNOGLOBULIN PROTEIN
										DESIGN IMMI MOGI OBITI N 3
	_									STRUCTURE, ANTIGEN-
-			L							BINDING SITE, CANONICAL

								Table 5		
SEQ	1	CHAIN	START	END	Psi	Verify	AMA	SEQFOLD	Compound	
ë E	 B	Ħ	AA	AA	Blast	score	score	score		
1667	7 Ibil	Α	46	220	6.4e-60	0.16	-0.11		IMMUNOGLOBULIN IGG2A FAB FRAGMENT (FAB 17/9) 1HIL 3	
1667	7 1bil	Α	46	283	6.4e-60			51.93	IMMUNOGLOBULIN IGG2A FAB FRAGMENT (FAB 17/9) 1HIL 3	
1667	7 1ifb	L	46	220	6.4e-60	0.22	-0.12		IMMUNOGLOBULIN IGG2A FAB FRAGMENT (FAB 17/9) COMPLEX WITH PEPTIDE OF 1IFH 3 INFLUENZA HEMAGGLUTININ HA1 (STRAIN X47) (RESIDUES 101- 107) 1FH 4	
1667	7 lifh	L	46	283	6.4e-60			52.40	IMMUNOGLOBULIN IGG2A FAB FRAGMENT (FAB 17/9) COMPLEX WITH PEPTIDE OF 11FH 3 INFLUENZA HEMAGGLUTININ HA1 (STRAIN X47) (RESIDUES 101- 107) 11FH 4	
1667	7 ligc	۲	46	286	1.6e-52			50.01	COMPLEX (ANTIBODY/BINDING PROTEIN) IGG1 FAB FRAGMENT COMPLEXED WITH PROTEIN G (DOMAIN	

								,
1667	1667	1667	1667	100	1667		Ö E Ž	SEO
lnqb	lnca	lmcp	lmcp		ligt		Œ	PDB
>	!	<u></u>	Ľ	>	*		D	CHAIN
47	. 46	46	46	. 4	6		AA	START
286	220	286	220	285	286		AA	T L
4.8e-87	1.6e-56	9.6e-62	9.6e-62	1.1e-/6	9.6e-57		Blast	Pri
0.21	0.09		0.28	0.34			score	Verify
-0.18	-0.14		-0.13	-0.15			score	3Mg
		55.95			50.70		score	SEOFOLD.
SINGLE-CHAIN ANTIBODY FRAGMENT; CHAIN: A, C;	HYDROLASE(O-GLYCOSYL) N9 NEURAMINIDASE-NC41 (E.C.3.2.1.18) COMPLEX WITH FAB INCA 3	IMMUNOGLOBULIN IMMUNOGLOBULIN FAB FRAGMENT (MC/PC\$603) 1MCP 4	IMMUNOGLOBULIN IMMUNOGLOBULIN FAB FRAGMENT (MC/PC\$603) 1MCP 4	PHOSPHATIDYLINOSITOL SPECIFIC PHOSPHOLIPASE C DIABODY ILMK 3 SYNONYMS: L5MK16 DIABODY, SINGLE-CHAIN FV DIMER 1LMK 4	IGG2A INTACT ANTIBODY - MAB231; CHAIN: A, B, C, D	III) 1IGC 5 PROTEIN G, STREPTOCOCCUS 1IGC 15	Compound	Compound
IMMUNOGLOBULIN VARIABLE HEAVY (VH) DOMAIN, VARIABLE LIGHT (VL) ANTIBODY FRAGMENT,					IMMUNOGLOBULIN INTACT IMMUNOGLOBULIN V REGION C REGION, IMMUNOGLOBULIN		FUB annotation	מתם

		,				-
1667	1667	1667	1667	1667	NO DE	
2fgw	lsbs	1qok	lplg	lnsn	PDB	
L	T	Α	T	T	CHAIN	
46	46	46	46	46	START AA	
205	220	285	282	220	END	
9.6e-58	8e-63	1.6e-80	6.4e-53	4.8e-57	Psi Blast	
0.42	0.13	0.43		0.21	Verify score	
-0.13	-0.14	-0.13		-0.17	PMF score	
			50.29		SEQFOLD score	lable 5
IMMUNOGLOBULIN FAB FRAGMENT OF A HUMANIZED VERSION OF THE ANTI-CD18 2FGW 3 ANTIBODY 'H52' (HUH52-OZ	MONOCLONAL ANTIBODY 3A2; CHAIN: H, L;	MFE-23 RECOMBINANT ANTIBODY FRAGMENT; CHAIN: A;	IGG2A=KAPPA=; 1PLG 4 CHAIN: L, H; 1PLG 5	IGG FAB (IGG1, KAPPA); INSN 4 CHAIN: L, H; INSN 5 STAPHYLOCOCCAL NUCLEASE; INSN 9 CHAIN: S; INSN 10	Compound	
	MONOCLONAL ANTIBODY MONOCLONAL ANTIBODY, FAB-FRAGMENT, REPRODUCTION	IMMUNOGLOBULIN IMMUNOGLOBULIN, SINGLE- CHAIN FV, ANTI- CARCINOEMBRYONIC 2 ANTIGEN	IMMUNOGLOBULIN	MULTIVALENT ANTIBODY, DIABODY, DOMAIN 2 SWAPPING, IMMUNOGLOBULIN COMPLEX (IMMUNOGLOBULIN/HYDROLA SE) N10 FAB IMMUNOGLOBULIN; INSN 7 STAPHYLOCOCCAL NUCLEASE RIBONUCLEATE, 1NSN 11 IMMUNOGLOBULIN, STAPHYLOCOCCAL NUCLEASE INSN 25	PDB annotation	

								Table 5		
SEQ	BUA	CHAIN	START	END	Psi	Verify	PMF	GEOROLD	Compound	PDB annotation
ö B	₽	D	AA	AA	Blast	score	score	score		
									FAB) 2FGW 4	
1667	32c2	Α	46	220	1.3e-56	0.13	-0.07		IGG1 ANTIBODY 32C2; CHAIN: A; IGG1 ANTIBODY 32C2; CHAIN: B;	IMMUNE SYSTEM FAB, ANTIBODY, AROMATASE, P450
1682	1c0t	A	32	322	1.4e-67	-0.20	0.41		HIV-1 REVERSE TRANSCRIPTASE (A-CHAIN);	TRANSFERASE HIV-1 REVERSE TRANSCRIPTASE, AIDS, NON-
					•	•			CHAIN: A; HIV-1 REVERSE TRANSCRIPTASE (B-CHAIN);	NUCLEOSIDE INHIBITOR, 2 DRUG DESIGN
	╁								CHAIN: B;	
100		t		0.11	1.00		0.00		TRANSCRIPTASE (A-CHAIN);	TRANSCRIPTASE, AIDS, NON-
						•			TRANSCRIPTASE (B-CHAIN)	DRIG DESIGN
									CHAIN: B;	
1682	1c9r	Ά	32	322	4.8e-75	0.10	0.99		HIV-1 REVERSE	TRANSFERASE/IMMUNE
									TRANSCRIPTASE (CHAIN A);	SYSTEM/DNA HIV-1 RT; HIV-1
									TP ANICOPIDTA OF (CHAIN B):	TRANSCRIPTAGE METISATIE
									CHAIN: B; ANTIBODY (LIGHT	3TC, PROTEIN-DNA 2 COMPLEX,
									CHAIN); CHAIN: L; ANTIBODY	DRUG RESISTANCE, M184L
									(HEAVY CHAIN); CHAIN: H;	TRANSFERASE/IMMUNE 3
							·		DNA (5'- CHAIN: T; DNA (5'- CHAIN: P:	SYSTEM/DNA
1682	1c9r	В	12	416	1.3e-82			106.36	HIV-1 REVERSE	TRANSFERASE/IMMUNE
									TRANSCRIPTASE (CHAIN A);	SYSTEM/DNA HIV-1 RT; HIV-1
-									CHAIN: A; HIV-I KEVEKSE	KI; HIV, KEVEKSE
ſ	-									

SEQ	PDB	CHAIN	START	END	Psi	Verify	PMF	Table 5 SEQFOLD		Compound
Ö B	Ħ	В	AA	AA	Blast	score	score	score	Сопроим	rub annotation
									CHAIN: B; ANTIBODY (LIGHT CHAIN); CHAIN: L; ANTIBODY (HEAVY CHAIN); CHAIN: H; DNA (5'- CHAIN: P; DNA (5'- CHAIN: P;	3TC, PROTEIN-DNA 2 COMPLEX, DRUG RESISTANCE, M184I, TRANSFERASE/IMMUNE 3 SYSTEM/DNA
1682	Ісуг	ta.	2	322	1.3e-82	-0.24	0.82		HIV-1 REVERSE TRANSCRIPTASE (CHAIN A); CHAIN: A; HIV-1 REVERSE TRANSCRIPTASE (CHAIN B); CHAIN: B; ANTIBODY (LIGHT CHAIN); CHAIN: L; ANTIBODY (HEAVY CHAIN); CHAIN: H; DNA (5'- CHAIN: T; DNA (5'- CHAIN: P:	TRANSFERASE/IMMUNE SYSTEM/DNA HIV-1 RT; HIV-1 RT; HIV, REVERSE TRANSCRIPTASE, MET184ILE, 3TC, PROTEIN-DNA 2 COMPLEX, DRUG RESISTANCE, M184I, TRANSFERASE/IMMUNE 3 SYSTEM/DNA
1682	lhar		12	219	1.3e-55			71.14	REVERSE TRANSCRIPTASE HIV-1 REVERSE TRANSCRIPTASE (AMINO- TERMINAL HALF) (FINGERS 1HAR 3 AND PALM SUBDOMAINS) (RT216) GC 2 7 7 7 60 (HAR 4	
1682	lhar		32	219	1.3e-55	0.28	0.99		REVERSE TRANSCRIPTASE HIV-1 REVERSE TRANSCRIPTASE (AMINO- TERMINAL HALF) (FINGERS 1HAR 3 AND PALM SUBDOMAINS) (RT216) (E.C.2.7.7.49) 1HAR 4	

								Table 5		
EQ SEQ	E E E	CHAIN	START AA	AA	Psi Blast	Verify score	PMF score	SEQFOLD score	Compound	
NO:										
1682	1mml		pend	239	1.4e-54			190.23	TRANSCRIPTASE; IMML 4	REVERSE TRANSCRIPTASE
1683			3	316	1 /0 5/	0.24	3		CHAIN: NULL; 1MML 5	מונים ב
1682	Imm		32	238	1.4e-54	0.35	1.00		MMLY REVERSE TRANSCRIPTASE; IMML 4 CHAIN: NULL; IMML 5	REVERSE TRANSCRIPTASE
1682	1rth	A	12	416	4.8e-92		·	63.45	HIV-1 REVERSE TRANSCRIPTASE; 1RTH 4	NUCLEOTIDYLTRANSFERASE HIV-1 RT; 1RTH 6 HIV-1
									CHAIN: A, B; 1RTH 5	REVERSE TRANSCRIPTASE 1RTH 15
1682	1rth	≯	32	322	4.8e-92	-0.04	0.99		HIV-1 REVERSE TRANSCRIPTASE; 1RTH 4	NUCLEOTIDYLTRANSFERASE HIV-1 RT; 1RTH 6 HIV-1
									CHAIN: A, B; IRTH S	REVERSE TRANSCRIPTASE 1RTH 15
1682	lrth	₩	16	405	3.2e-87			108.51	HIV-1 REVERSE TRANSCRIPTASE; 1RTH 4	NUCLEOTIDYLTRANSFERASE HIV-1 RT; 1RTH 6 HIV-1
									CHAIN: A, B; 1RTH 5	REVERSE TRANSCRIPTASE 1RTH 15
1682	1rth	В	32	322	3.2e-87	-0.06	0.65		HIV-1 REVERSE TRANSCRIPTASE; 1RTH 4	NUCLEOTIDYLTRANSFERASE HIV-1 RT; 1RTH 6 HIV-1
									CHAIN: A, B; 1RTH 5	REVERSE TRANSCRIPTASE 1RTH 15
1682	1 vrt	Þ	16	416	4.8e-92			69.69	HIV-1 REVERSE TRANSCRIPTASE; 1VRT 4	NUCLEOTIDYLTRANSFERASE HIV-1 RT; 1VRT 6 HIV-1
									CHAIN: A, B; 1VRT 5	REVERSE TRANSCRIPTASE 1VRT 15
1682	lvrt	≻	32	322	4.8e-92	-0.05	1.00		TRANSCRIPTASE: 1VRT 4	NUCLEOTIDYLTRANSFERASE HIV-1 RT: 1VRT 6 HIV-1
									771 - 77 (771- 20 20) 2 7 272 .	1

	r	_				r			_
1683	1683		1682	1682	1682	1682		ğ B	C FS
1913	1925		3hvt	3hvt	lvn	lvrt		Ħ	PDR
В	В		В	ង	В	ਲ		Œ	CHAIN
34	23		32	14	32	16		AA	TART
172			322	395	322	395		AA	
0.00016	1.4e-19	·	4.8e-85	4.8e-85	3.2e-86	3.2e-86		Blast	Pel
-0.05	0.43		-0.18		-0.02			score	Varify
0.65	0.55		0.90		0.89			score	3Mg
				110.25		107.54	-	score	Lable 5
HIS TAG; CHAIN: A; HTLV-I CAPSID PROTEIN; CHAIN: B;	HIS TAG; CHAIN: A; HTLV-I CAPSID PROTEIN; CHAIN: B;		NUCLEOTIDYLTRANSFERASE REVERSE TRANSCRIPTASE (E.C.2.7.7.49) 3HVT 3	NUCLEOTIDYLTRANSFERASE REVERSE TRANSCRIPTASE (B.C.2.7.7.49) 3HVT 3	HIV-1 REVERSE TRANSCRIPTASE; 1VRT 4 CHAIN: A, B; 1VRT 5	HIV-1 REVERSE TRANSCRIPTASE; 1VRT 4 CHAIN: A, B; 1VRT 5	CHAIN: A, B; 1VRT 5	Compound	
VIRUS/VIRAL PROTEIN HTLV-I, CAPSID PROTEIN, RETROVIRUS, TWO-DOMAIN PROTEIN, 2 ALPHA HELICAL PROTEIN,	VIRUS/VIRAL PROTEIN HTLV-I, CAPSID PROTEIN, RETROVIRUS, TWO-DOMAIN PROTEIN, 2 ALPHA HELICAL PROTEIN, HETERONUCLEAR NMR SPECTROSCOPY, 3 VIRUS/VIRAL PROTEIN		,		NUCLEOTIDYLTRANSFERASE HIV-1 RT; 1VRT 6 HIV-1 REVERSE TRANSCRIPTASE 1VRT 15	NUCLEOTIDYLTRANSFERASE HIV-1 RT; 1VRT 6 HIV-1 REVERSE TRANSCRIPTASE 1VRT 15	REVERSE TRANSCRIPTASE 1VRT 15		DND amotation

_						,			
1709	1709	1692	1692	1692	1692	1692		ONO:	
Ideq	1deq	lud7	lubi	1tbe	1c3t	16t0		A A	
В	В	A		В	A	A		CHAIN	
40	38	30	30	30	30	43		START AA	
254	253	90	90	86	90	74		AA	
3.2e-82	1.8e-84	9e-08	9e-08	4.5e-07	4.5e-07	0.0045		Psi Blast	
0.56	0.38	-0.12	-0.15	-0.23	-0.20	-0.60		Verify score	
0.71	0.70	0.55	0.46	0.95	0.45	0.31		PMF score	
	•							SEQFOLD score .	C SIGN I
FIBRINOGEN (ALPHA CHAIN);	FIBRINOGEN (ALPHA CHAIN); CHAIN: A, D, N, Q; FIBRINOGEN (BETA CHAIN); CHAIN: B, E, O, R; FIBRINOGEN (GAMMA CHAIN); CHAIN: C, F, P, S; FIBRINOGEN; CHAIN: M, Z;	UBIQUITIN CORE MUTANT ID7; CHAIN: A;	CHROMOSOMAL PROTEIN UBIQUITIN 1UBI 3	UBIQUITIN TETRAUBIQUITIN 1TBE 3	1D8 UBIQUITIN; CHAIN: A;	UBIQUITIN-LIKE PROTEIN 7, RUB1; CHAIN: A;		Compound	
BLOOD CLOTTING COILED-	BLOOD CLOTTING COILED-	DESIGNED CORE MUTANT			DE NOVO PROTEIN PROTEIN DESIGN, HYDROPHOBIC CORE, PACKING, ROTAMERS, ROC, 2 UBIQUITIN, DE NOVO PROTEIN, UBIQUITIN	SIGNALING PROTEIN RUBI, UBIQUITIN-LIKE PROTEIN, ARABIDOPSIS, SIGNALING PROTEIN	HETERONUCLEAR NMR SPECTROSCOPY, 3 VIRUS/VIRAL PROTEIN	PDB annotation	

_	,			_,		_					,		_						_	
1709		1709		1700	1709						1709						NO:	∃ {	SEO	
lfib		lfib	į	10:3	1ei3						1deq						Ų	∃ {	אַרוק	
			(3	В	,					С								CHAIN	
40		36	,	20	39						39							4	TAAT	
254	,	252	3	736	254				-		254						, , ,	44		
4.8e-90		4.8e-90	1.7000	1 /6-80	1.6e-86						1.6e-89						ar and t	Rlast	Pei	
0.57			0.50	85.0	0.30						0.50						_ 00010	score	Vorify	
1.00			1.00	1 00	0.81						0.94						00020	SCOTE	TM	
		173.33								•••							00010	SEOLE OTTO	d loaoas	Table 5
GAMMA-FIBRINOGEN	CARBOXYL TERMINAL FRAGMENT; CHAIN: NULL;	GAMMA-FIBRINOGEN	FIBRINOGEN; CHAIN: B, E; FIBRINOGEN; CHAIN: C, F;		FIBRINOGEN; CHAIN: A, D; FIBRINOGEN; CHAIN: B, E; FIBRINOGEN; CHAIN: C, F;		CHAIN); CHAIN: C, F, P, S;	CHAIN: B, E, O, R;	FIBRINOGEN (BETA CHAIN);	CHAIN: A, D, N, O;	FIBRINOGEN (ALPHA CHAIN);	FIBRINOGEN: CHAIN: M. Z:	FIBRINOGEN (GAMMA	CHAIN: B, E, O, R;	FIBRINOGEN (BETA CHAIN);	CHAIN: A, D, N, Q;		Compound	Compound	
BLOOD COAGULATION	FACTOR BLOOD COAGULATION, GLYCOPROTEIN, CALCIUM, PLATELET, PLASMA, 2 ALTERNATIVE SPLICING, SIGNAL, DISEASE MUTATION, 3 POLYMORPHISM	BLOOD COAGULATION	FIBRIN FORMING ENTITIES	ALOUD OLULIAND COIL ED	BLOOD CLOTTING COILED COILS, DISULFIDE RINGS, FIBRIN FORMING ENTITIES		-			COIL	BLOOD CLOTTING COILED-					COIL		r DD autotation	DDD canototica	

								7
1709	1709	1709	1709	1709	1709		NO. HO	1
lfzg	1fzd	lfzc	1fzc	1fzc	1fzc		PDB ID	
С	A	С	С .	В	В		CHAIN	
1	77	40	1	40	,		START AA	
252	255	254	252	254	254		END AA	
4.8e-90	6.4e-76	4.8e-90	4.8e-90	1.1e-86	1.1e-86		Psi Blast	
		0.80		0.75			Verify score	
		1.00		1.00			PMF score	
169.27	135.85		163.73		150.56		SEQFOLD score	Taute
FIBRINOGEN; CHAIN: A, B, C, D, E, F, S, T, M, N;	FIBRINOGEN-420; CHAIN: A, B, C, D, E, F, G, H;	FIBRIN; CHAIN: A, B, C, D, E, F, G, H, I, J;	FIBRIN; CHAIN: A, B, C, D, E, F, G, H, I, J;	FIBRIN; CHAIN: A, B, C, D, E, F, G, H, I, J;	FIBRIN; CHAIN: A, B, C, D, E, F, G, H, I, J;	CARBOXYL TERMINAL FRAGMENT; CHAIN: NULL;	Compound	
BLOOD COAGULATION BLOOD COAGULATION, PLASMA, PLATELET, FIBRINOGEN,	BLOOD COAGULATION BLOOD COAGULATION, FIBRINOGEN-420, ALPHAEC DOMAIN, 2 FIBRINOGEN RELATED DOMAIN, GLYCOSYLATED PROTEIN	BLOOD COAGULATION BLOOD COAGULATION, PLASMA PROTEIN, CROSSLINKING	BLOOD COAGULATION BLOOD COAGULATION, PLASMA PROTEIN, CROSSLINKING	BLOOD COAGULATION BLOOD COAGULATION, PLASMA PROTEIN, CROSSLINKING	BLOOD COAGULATION BLOOD COAGULATION, PLASMA PROTEIN, CROSSLINKING	FACTOR BLOOD COAGULATION; GLYCOPROTEIN, CALCIUM, PLATELET, PLASMA, 2 ALTERNATIVE SPLICING, SIGNAL, DISEASE MUTATION, 3 POLYMORPHISM	PDB annotation	1

7									l'able 5		
	S B S	E BUR	CHAIN ID	START AA	AA	Psi Blast	Verify score	PMF score	SEQFOLD score	Compound	PDB annotation
Г											FIBRIN
	1709	lfzg	C	40	254	4.8e-90	0.72	1.00		FIBRINOGEN; CHAIN: A, B, C, D, E, F, S, T, M, N;	BLOOD COAGULATION BLOOD COAGULATION, PLASMA,
	1700	f	7	-	3						PLATELET, FIBRINOGEN, FIBRIN
	60/1	Bzii	tz.	-	253	1.1e-86			155,95	FIBRINOGEN; CHAIN: A, B, C, D, E, F, S, T, M, N;	BLOOD COAGULATION BLOOD COAGULATION, PLASMA,
Т											PLATELET, FIBRINOGEN, FIBRIN
	70/9	gzıı	ţ u	40	254	1.1e-86	0.67	1.00		FIBRINOGEN; CHAIN: A, B, C, D, E, F, S, T, M, N;	BLOOD COAGULATION BLOOD COAGULATION, PLASMA,
											FIBRIN
	1712	1206		3	3	3 25-18	23	0 18		CALCULATION	777771
	:				,	0.7.0	6.50	01.0		CALCIUM/CALMODULIN- DEPENDENT PROTEIN	TRANSDUCTION,
	1712	lapm	Ħ	2	\$	1 46-20	-D 37	0 48		TO A NICERO A CECNILOCAL,	CUTCION CUTINOTOTIN
		•				i	i			NSFERASE) \$C-/AMP\$-	
							_			DEPENDENT PROTEIN KINASE (E.C.2.7.1.37)	
										(\$C/APK\$) 1APM 3	
			<u></u>							"ALPHA" ISOENZYME	
										MUTANT WITH SER 139 1APM	
										4 REPLACED BY ALA	
										(/SI39A\$) COMPLEX WITH	
Γ										THE LEFT THE LAND OF	

PDB CHAIN START END Psi Verity PMF SEQFOLD Compound									l able 5		
Lichy E 2 58 1.4e-20 -0.31 0.70	SEQ	PDB	CHAIN	START	END	Psi	Verify	PMF	SEQFOLD	Compound	PDB annotation
Icmk E 2 58 1.4e-20 -0.31 0.70 DETERGENT REGA-\$ IAPM 6	NO E	Ħ	₽	AA	AA	Blast	score	score	score		
Icmk E 2 58										INHIBITOR PKI(5-24) AND THE DETERGENT MEGA-8 1APM 6	
1ctp E 2 58 1.4e-20 -0.45 0.57	1712	lcmk	trj	2	58	1.4e-20	-0.31	0.70		PHOSPHOTRANSFERASE CAMP-DEPENDENT PROTEIN	
lctp E 2 58 1.4e-20 -0.45 0.57 ICMK 3 (B.C.2.7.1.37) 1CMK 4 Icp E 2 58 1.4e-20 -0.45 0.57 ITAMASE GRASE) CAMP- DEPENDENT PROTEIN KINASE G.C.2.7.1.37) (CAPK) ICTP 3 (CATALYTIC SUBUNIT) ICTP 4 Ikoa 1 57 3.2e-12 -0.71 0.11 TWITCHIN; CHAIN; NULL; Iphk 1 54 3.2e-14 -0.36 0.45 PHOSPHORYLASE KINASE; CHAIN; NULL; Itki A 1 55 9.6e-12 -0.74 0.33 TITIN; CHAIN; A, B; Itki A 1 55 9.6e-12 -0.74 0.33 TITIN; CHAIN; A, B;										KINASE CATALYTIC SUBUNIT	
lctp E 2 58 1.4e-20 -0.45 0.57 TRANSFERASE(PHOSPHOTRA NSFERASE) CAMP-DEPENDENT PROTEIN NSFERASE) CAMP-DEPENDENT PROTEIN lkoa 1 57 8e-13 -0.31 0.28 TWITCHIN; CHAIN; NULL; lkob A 1 57 3.2e-12 -0.71 0.11 TWITCHIN; CHAIN; NULL; lphk 1 54 3.2e-14 -0.36 0.45 PHOSPHORYLASE KINASE; CHAIN; NULL; ltki A 1 55 9.6e-12 -0.74 0.33 TITIN; CHAIN; A, B; ltxi A 101 155 2.2e-08 1.09 -0.19 SYNTAXIN, 1.2. CHAIN; A, B										1CMK 3 (E.C.2.7.1.37) 1CMK 4	
Itki	1712	1 ctp	tu	2	58	1.4e-20	-0.45	0.57		OSPH	
Ikoa 1 57 8e-13 -0.31 0.28										DEPENDENT PROTFIN	
1 1 1 1 1 1 1 1 1 1										KINASE (E.C.2.7.1.37) (CAPK)	
Ikoa 1 57 8e-13 -0.31 0.28 TWITCHIN; CHAIN: NULL; Ikob A 1 57 3.2e-12 -0.71 0.11 TWITCHIN; CHAIN: A, B; Iphk 1 54 3.2e-14 -0.36 0.45 PHOSPHORYLASE KINASE; CHAIN: NULL; Itki A 1 55 9.6e-12 -0.74 0.33 TITIN; CHAIN: A, B; Itki A 101 155 2.2e-08 1.09 -0.19 SYNTAYIN, 1 A: CHAIN: A, B										1CTP 3 (CATALYTIC	
Ikob A 1 57 3.2e-12 -0.71 0.11 TWITCHIN; CHAIN: A, B; lphk 1 54 3.2e-14 -0.36 0.45 PHOSPHORYLASE KINASE; CHAIN: NULL; ltdi A 1 55 9.6e-12 -0.74 0.33 TITIN; CHAIN: A, B; lez3 A 101 155 2.2e-08 1.09 -0.19 SYNTAYIN: A CHAIN: A B	1712	1koa		1	57	8e-13	-0.31	85.0		N: NULL	KINASE KINASE, TWITCHIN,
lkob A 1 57 3.2e-12 -0.71 0.11 TWITCHIN; CHAIN: A, B; lphk 1 54 3.2e-14 -0.36 0.45 PHOSPHORYLASE KINASE; CHAIN: NULL; ltdi A 1 55 9.6e-12 -0.74 0.33 TITIN; CHAIN: A, B; lez3 A 101 155 2.2e-08 1.09 -0.19 SYNTAYIN, 1 A. CHAIN: A, B											INTRASTERIC REGULATION
lphk 1 54 3.2e-14 -0.36 0.45 PHOSPHORYLASE KINASE; CHAIN: NULL; ltdi A 1 55 9.6e-12 -0.74 0.33 TITIN; CHAIN: A, B; lez3 A 101 155 2.2e-08 1.09 -0.19 SYNTAYIN: 1.4. CHAIN: A, B	1712	lkob	Α		57	3.2e-12	-0.71	0.11		TWITCHIN; CHAIN: A, B;	KINASE KINASE, TWITCHIN,
1	1713	1-41-			64	3 3 3 4 4	22.			DIVOCATION OF THE PARTY OF	TATA CALLES CONTROLLES
1tdi A 1 55 9.6e-12 -0.74 0.33 TITIN; CHAIN: A, B;	1/12	lphk			54	3.2e-14	-0.36	0.45		PHOSPHORYLASE KINASE; CHAIN: NULL;	PHOSPHORYLASE KINASE;
1tki A 1 55 9.6e-12 -0.74 0.33 TITIN; CHAIN: A, B;											GLYCOGEN METABOLISM,
1tki A 1 55 9.6e-12 -0.74 0.33 TITIN; CHAIN: A, B;											TRANSFERASE,
1tki A 1 55 9.6e-12 -0.74 0.33 TITIN; CHAIN: A, B; 1ez3 A 101 155 22e-08 109 -0.19 SVNTAYIN: 1A: CHAIN: A B											SERINE/THREONINE-PROTEIN, 2
1tki A 1 55 9.6e-12 -0.74 0.33 TITIN; CHAIN: A, B;											KINASE, ATP-BINDING,
ltici A 1 55 9.6e-12 -0.74 0.33 TITIN; CHAIN: A, B;											CALMODULIN-BINDING
1ez3 A 101 155 226-08 109 -0.19 SYNTAYDJ 1 A CHATIC A B	1712	1tkg	≯	-	55	9.6e-12	-0.74	0.33		TITIN; CHAIN: A, B;	SERINE KINASE SERINE
1ez3 A 101 155 2.2e.08 1.09 -0.19 SYNTAYN, 1A. CHAIN: A B										•	KINASE, TITIN, MUSCLE,
1ez3 A 101 155 22e-08 109 -0.19 SYNTAYIN 1A: CHATIC A B	T										AUTOINHIBITION
	1715	lez3	Α	101	155	2.2e-08	1.09	-0.19		SYNTAXIN-IA: CHAIN: A B	SISOLAJOXE/SISOLAJOUNE

1715		1715	1715	NO. E.C.	CER
2trc	240	1623	3	ID B	
Ā	Н	Þ		EHAIN	
102		8	8	START AA	
156		156		AA	
3.2e-12	2./e-09	4.5e-11		Psi Blast	
0.32	0.24	0.89		Verify score	
-0.19	-0.20	-0.20		PMF score	
				SEQFOLD score	Table 5
TRANSDUCIN; CHAIN: B, G; PHOSDUCIN; CHAIN: P;	TRANSDUCIN; CHAIN: B, G; PHOSDUCIN; CHAIN: P;	SYNTAXIN-1A; CHAIN: A, B, C;	Ċ	Compound	
COMPLEX (TRANSDUCER/TRANSDUCTION) GT BETA-GAMMA; MEKA, PP33; PHOSDUCIN, TRANSDUCIN, BETA-GAMMA, SIGNAL TRANSDUCTION, 2 REGULATION, PHOSPHORYLATION, G PROTEINS THICK PLOYIN 3	COMPLEX (TRANSDUCER/TRANSDUCTION) GT BETA-GAMMA; MEKA, PP33; PHOSDUCIN, TRANSDUCIN, BETA-GAMMA, SIGNAL TRANSDUCTION, 2 REGULATION, PHOSPHORYLATION, G PROTEINS, THIOREDOXIN, 3 VISION, MEKA, COMPLEX (TRANSDUCER/TRANSDUCTION	ENDOCYTOSIS/EXOCYTOSIS SYNAPTOTAGMIN ASSOCIATED 35 KDA PROTEIN, P35A, THREE HELIX BUNDLE	SYNAPTOTAGMIN ASSOCIATED 35 KDA PROTEIN, P35A, THREE HELIX BUNDLE	PDB annotation	

		T	т-			т			1	т	
1777	1722	1722		1716	1716			1716		Ö B	SEO
167d	leuw	ldun		leoq	ldld			1bm4		Ħ	Bad
Α	Þ			>	Α			A		Ħ	CHAIN
101	48	96		169	52			166		AA	START
000	204	203		224	225			196		A	END
1 46-27	4.8c-27	1.1e-25		4.8e-08	8e-23			1.1e-06		Blast	Psi
0.07	0.13	0.14		0.05	0.10			-0.60		score	Verify
080	0.15	0.77		90.0-	-0.06			0.13		score	FW4
										score	SEOROLD
POI POI VERTENIA CHARA	DEOXYURIDINE 5'- TRIPHOSPHATE NUCLEOTIDOHYDROLASE; CHAIN: A:	DEOXYURIDINB 5'- TRIPHOSPHATE NUCLEODITOHYDROLASE; CHAIN: NULL;		GAG POLYPROTEIN CAPSID PROTEIN P27; CHAIN: A;	CAPSID PROTEIN; CHAIN: A;		CHAIN: A;	MOLONEY MURINE		Compound	Compound
MDIIGATID I DOCTOR I GICUT	HYDROLASE DUTPASE; JELLY ROLL, MERCURY DERIVATIVE	HYDROLASE DUTPASE, DUTP PYROPHOSPHATASE; HYDROLASE, DUTPASE, EIAV, TRIMERIC ENZYME, ASPARTYL PROTEASE		VIRUS/VIRAL PROTEIN VIRUS/VIRAL PROTEIN	VIRUS/VIRAL PROTEIN TWO INDEPENDENT DOMAINS HELICAL BUNDLES, VIRUS/VIRAL PROTEIN	MHR, MAJOR HOMOLOGY REGION, VIRUS/VIRAL PROTEIN	CA WHIK PEPTIDE ANALOG; MOLONEY MURINE LEUKEMIA VIRUS CAPSID PROTEIN, WOMEN CAPSID TO CAPSID	VIRUS/VIRAL PROTEIN MOMLV	VISION, MEKA, COMPLEX (TRANSDUCER/TRANSDUCTION)	A DD AHIOCAUCH	DDB caractalian

	17	1725	17	1725	17	NO: DEQ	1
1725 1				 	1722 1	 	
lcvs	lcvs	1bx2	1bih	1bih	1f7r	PDB ID	
o	O	>	Α	A	A	CHAIN	
57	189	211	65	32	101	START AA	
150	<u>အ</u> အ	321	436	146	220	END AA	
1.6e-21	9.6e-24	0.0009	1.1e-22	4.8c-20	4.8e-35	Psi Blast	
0.07	0.05	-0.39		0.08	-0.12	Verify score	
0.54	0.47	0.31		-0.12	0.25	PMF score	
			92.63			SEQFOLD score	Carrer
FIBROBLAST GROWTH FACTOR 2; CHAIN: A, B; FIBROBLAST GROWTH FACTOR RECEPTOR 1: CHAIN:	FIBROBLAST GROWTH FACTOR 2; CHAIN: A, B; FIBROBLAST GROWTH FACTOR RECEPTOR 1; CHAIN: C, D;	HLA-DR2; CHAIN: A, D; HLA-DR2; CHAIN: B, E; HLA-DR2; CHAIN: C, F;	HEMOLIN; CHAIN: A, B;	HEMOLIN; CHAIN: A, B;	B; POL POLYPROTEM; CHAIN: A;	Compound	
GROWTH FACTOR/GROWTH FACTOR RECEPTOR FGF, FGFR, IMMUNOGLOBULIN-LIKE, SIGNAL TRANSDICTION 2	GROWTH FACTOR/GROWTH FACTOR RECEPTOR FGF, FGFR, IMMUNOGLOBULIN-LIKE, SIGNAL TRANSDUCTION, 2 DIMERIZATION, GROWTH FACTOR/GROWTH FACTOR RECEPTOR	IMMUNE SYSTEM HLA-DR2, MYELIN BASIC PROTEIN, MULTIPLE SCLEROSIS, 2 AUTOIMMUNITY, IMMUNE SYSTEM	INSECT IMMUNITY INSECT IMMUNITY, LPS-BINDING, HOMOPHILIC ADHESION	INSECT IMMUNITY INSECT IMMUNITY, LPS-BINDING, HOMOPHILIC ADHESION	STRANDED BETA-BARREL VIRUS/VIRAL PROTEIN EIGHT STRANDED BETA BARREL PROTEIN	PDB annotation	

	;		f					Taule		
Š B Š	D D	D	AA	A END	Psi Blast	Verity score	PMF	SEQFOLD score	Compound	PDB annotation
		5								FACTOR/GROWTH FACTOR RECEPTOR
1/23	1CVS	t	681	335	9.6e-23	-0.07	0.40		FIBROBLAST GROWTH FACTOR 2; CHAIN: A, B; FIBROBLAST GROWTH	GROWTH FACTOR/GROWTH FACTOR RECEPTOR FGF, FGFR, MMITWOGI OBLIT IN 1 1729
									FACTOR RECEPTOR 1; CHAIN:	SIGNAL TRANSDUCTION, 2
									ີ (, b <u>)</u>	DIMERIZATION, GROWTH FACTOR/GROWTH FACTOR
1725	lepf	Α	30	140	1.4e-16	-0.24	0.17		NEURAL CELL ADHESION	CELL ADHESION NCAM: NCAM
									MOLECULE; CHAIN: A, B, C, D;	IMMUNOGLOBULIN FOLD, GLYCOPROTEIN
1725	lev2	t	189	335	1.4e-18	-0.21	0.19		FIBROBLAST GROWTH	GROWTH FACTOR/GROWTH
	•								FACTOR 2; CHAIN: A, B, C, D;	FACTOR RECEPTOR FGF2;
									FACTOR RECEPTOR 2; CHAIN:	(IG)LIKE DOMAINS BELONGING
									E, F, G, H;	TO THE I-SET 2 SUBGROUP
										TREFOIL FOLD
627.1	lev2	ţx.	242	335	6.4e-23	0.32	0.75		FIBROBLAST GROWTH	GROWTH FACTOR/GROWTH
									FACTOR 2; CHAIN: A, B, C, D;	FACTOR RECEPTOR FGF2;
									FIBROBLAST GROWTH	FGFR2; IMMUNOGLOBULIN
									FACTOR RECEPTOR 2; CHAIN:	(IG)LIKE DOMAINS BELONGING
									E, F, G, H;	10 THE I-SET 2 SUBGROUP
										TREFOIL FOLD
62/1	lev2	Т	56	242	6.4e-25	-0.29	0.03			GROWTH FACTOR/GROWTH
									FACTOR 2; CHAIN: A, B, C, D;	FACTOR RECEPTOR FGF2;

	,		,		
1725	1725	1725	1725		SEQ NO:
levt	levt	lev2	lev2		EDB ED
C	C	G	G		CHAIN ID
240	189	242	189		START AA
335	335	335	337		END AA
1.8e-22	4.8e-22	6.4e-23	1.6e-19		Psi Blast
0.19	0.01	0.19	0.00		Verify score
0.55	0.40	0.62	0.47		PMF score
					SEQFOLD score
FIBROBLAST GROWTH FACTOR 1; CHAIN: A, B;	FIBROBLAST GROWTH FACTOR 1; CHAIN: A, B; FIBROBLAST GROWTH FACTOR RECEPTOR 1; CHAIN: C, D;	FIBROBLAST GROWTH FACTOR 2; CHAIN: A, B, C, D; FIBROBLAST GROWTH FACTOR RECEPTOR 2; CHAIN: E, F, G, H;	FIBROBLAST GROWTH FACTOR 2; CHAIN: A, B, C, D; FIBROBLAST GROWTH FACTOR RECEPTOR 2; CHAIN: E, F, G, H;	FIBROBLAST GROWTH FACTOR RECEPTOR 2; CHAIN: E, F, G, H;	Compound
GROWTH FACTOR/GROWTH FACTOR RECEPTOR FGF1;	GROWTH FACTOR/GROWTH FACTOR RECEPTOR FGF1; FGFR1; IMMUNOGLOBULIN (IG) LIKE DOMAINS BELONGING TO THE I-SET 2 SUBGROUP WITHIN IG-LIKE DOMAINS, B-TREFOIL FOLD	GROWTH FACTOR/GROWTH FACTOR RECEPTOR FGF2; FGFR2; IMMUNOGLOBULIN (IG)LIKE DOMAINS BELONGING TO THE I-SET 2 SUBGROUP WITHIN IG-LIKE DOMAINS, B- TREFOIL FOLD	GROWTH FACTOR/GROWTH FACTOR RECEPTOR FGF2; FGFR2; IMMUNOGLOBULIN (IG)LIKE DOMAINS BELONGING TO THE I-SET 2 SUBGROUP WITHIN IG-LIKE DOMAINS, B- TREFOIL FOLD	FGFR2; IMMUNOGLOBULIN (IG)LIKE DOMAINS BELONGING TO THE I-SET 2 SUBGROUP WITHIN IG-LIKE DOMAINS, B- TREFOIL FOLD	PDB annotation

		_		_											 		_
		1725	į	1725		1725	į	1725				1725			S B	SEQ	
		1fv1		1fho	(1fhg	6	1 tha			1491	1			Ħ	PDB	
	· · · · · · · · · · · · · · · · · · ·	A	;	Δ		Α	\$	Δ.			C)			Ħ	CHAIN	
		211	\$	2		237	Ď	327			C#2	2			AA	START	
		321	5	150		338	ວວວ	225			333	355			AA	END	
		0.0009	1.08-24	163	i i	6 46-28	4.56-28	00.00			3.26-22	3			Blast	Psi	
		-0.60	-0.04		, ;	0 51	0.52	0.53			-0.09	8			score	Verify	
		0.18	17.0		9.	200	1.00				0.69				score	PMF	
										•					score	SEOFOLD	Lable 5
CHAIN: A, D; MAJOR HISTOCOMPATIBILITY COMPLEX BETA CHAIN; CHAIN: B, E: MYELIN BASIC	HISTOCOMPATIBILITY COMPLEX ALPHA CHAIN;	MAJOR	TELOKIN; CHAIN: A		TELONIN; CRAIN; A	TET OVAL CITARIA	TELOKIN; CHAIN: A		С, Д;	FACTOR RECEPTOR 1; CHAIN:	FACTOR 1; CHAIN: A, B;		, t;	FACTOR RECEPTOR 1; CHAIN:	Compound	Compound	
	II DR2A	IMMINE CYCTEM MUC CI AGG	CONTRACTILE PROTEIN IMMUNOGLOBULIN FOLD, BETA BARREI	BETA BARREL	IMMUNOGLOBULIN FOLD,	DELA DANNEL	CONTRACTILE PROTEIN IMMUNOGLOBULIN FOLD, BETA BABBBI	TOLD	THE I-SET 2 SUBGROUP WITHIN IG-LIKE DOMAINS, B-TREFOIL	FGFR1; IMMUNOGLOBULIN (IG) LIKE DOMAINS BELONGING TO	GROWTH FACTOR/GROWTH FACTOR RECEPTOR FGF1;	FOLD	THE I-SET 2 SUBGROUP WITHIN	FGFR1; IMMUNOGLOBULIN (IG) LIKE DOMAINS BELONGING TO	r DD annotation	מממ	

	1725	1,720	1725	NO:
, , , , , , , , , , , , , , , , , , ,	Inct	THE STATE OF THE S	1hdm	PDB
		ל	в в	CHAIN
1	239	8	195	START AA
35	336) 3	323	END
2.7e-20	2.7e-26	3.1e-23	0.0013	Psi Blast
			-0.29	Verify score
0.96			0.36	PMF score
	54.97	57.87		SEQFOLD score
IIIIN; CHAIN: NULL;	TITIN; CHAIN: NULL;	INTERLEUKIN-1 BETA; CHAIN: A; TYPE 1 INTERLEUKIN-1 RECEPTOR; CHAIN: B;	CLASS II HISTOCOMPATIBILITY ANTIGEN, M ALPHA CHAIN: A; CLASS II HISTOCOMPATIBILITY ANTIGEN, M BETA CHAIN: B;	Compound
MUSCLE PROTEIN CONNECTIN, NEXTM5; CELL ADHESION, GLYCOPROTEIN, TRANSMEMBRANE, REPEAT, BRAIN, 2 IMMUNOGLOBULIN FOLD, ALTERNATIVE SELICING	MUSCLE PROTEIN CONNECTIN, NEXTM5; CELL ADHESION, GLYCOPROTEIN, TRANSMEMBRANE, REPEAT, BRAIN, 2 IMMUNOGLOBULIN FOLD, ALTERNATIVE SPLICING, SIGNAL, 3 MUSCLE PROTEIN	COMPLEX (IMMUNOGLOBULIN/RECEPTOR) IMMUNOGLOBULIN FOLD, TRANSMEMBRANE, GLYCOPROTEIN, RECEPTOR, 2 SIGNAL, COMPLEX (IMMUNOGLOBULIN/RECEPTOR	DAMUNB SYSTEM RING6, HLA- DMA; RING7, HLA-DMB; HISTOCOMPATIBILITY PROTEIN, IMMUNE SYSTEM	PDB annotation

			_			
	1727	1/2/		1725	, E	SEO
	Iapm	lau6		2fcb 3ncm	Ħ	PDB
	TJ	1		A A	Ħ	CHAIN
	4	62		250	AA	START
	267	266		365	AA	END
	1.4e-83	6.4e-55		8c-09 1.8e-24	Blast	Psi
		-0.05		0.29	score	Verify
	-	0.96		0.19	score	FIME .
	74.69				score	SEOROL D
(/S139A\$) COMPLEX WITH THE PEPTIDE 1APM 5	TRANSFERASE(PHOSPHOTRA NSFERASE) \$C-/AMP\$- DEPENDENT PROTEIN KINASE (B.C.2.7.1.37) (\$C/APK\$) 1APM 3 (CATALYTIC SUBUNIT) "ALPHA" ISOENZYME MUTANT WITH SER 139 1APM	CALCIUM/CALMODULIN- DEPENDENT PROTEIN KINASE; CHAIN: NULL;		FC GAMMA RIIB; CHAIN: A; NEURAL CELL ADHESION MOLECULE, LARGE ISOFORM; CHAIN: A;	Compound	Compound
		KINASE KINASE, SIGNAL TRANSDUCTION, CALCIUM/CALMODULIN		SIGNAL, 3 MUSCLE PROTEIN IMMUNE SYSTEM CD32; RECEPTOR, FC, CD32, IMMUNE SYSTEM CELL ADHESION PROTEIN NCAM MODULE 2; CELL ADHESION, GLYCOPROTEIN, HEPARIN-BINDING, GPI- ANCHOR, 2 NEURAL ADHESION MOLECULE, IMMUNOGLOBULIN FOLD, HOMOPHILIC 3 BINDING, CELL ADHESION PROTEIN	rub annotation	nnn

		, 		
1727	1727	1727	1727	NO:
1сф	1cmk	lcmk	1арт	PDB D
tī	ದ	ш	В	CHAIN ID
39	63	32	63	START AA
267	265	267	265	END AA
1.4e-85	1.4e-85	1.4e-85	1.4e-83	Psi Blast
	0.50		0.55	Verify score
	1.00		1.00	PMF score
81.96		76.30		SEQFOLD score
TRANSFERASE(PHOSPHOTRA NSFERASE) CAMP- DEPENDENT PROTEIN KINASE (E.C.2.7.1.37) (CAPK) 1CTP 3 (CATALYTIC	PHOSPHOTRANSFERASE CAMP-DEPENDENT PROTEIN KINASE CATAL YTIC SUBUNIT ICMK 3 (E.C.2.7.1.37) 1CMK 4	PHOSPHOTRANSFERASE CAMP-DEPENDENT PROTEIN KINASE CATALYTIC SUBUNIT ICMK 3 (E.C.2.7.1.37) ICMK 4	INHIBITOR PKI(5-24) AND THE DETERGENT MEGA-8 1APM 6 TRANSFERASE(PHOSPHOTRA NSFERASE) \$C-/AMP\$- DEPENDENT PROTEIN KINASE (E.C.2.7.1.37) (\$C/APK\$) 1APM 3 (CATALYTIC SUBUNIT) "ALPHA" ISOENZYME MUTANT WITH SER 139 1APM 4 REPLACED BY ALA (/S139A\$) COMPLEX WITH THE PEPTIDE 1APM 5 INHIBITOR PKI(5-24) AND THE DETERGENT MEGA-8 1APM 6	Compound
				PDB annotation

1727 1727 1727 1727	1727	1727		1727	1727		NO E	2 2
1phk	1phk	lkob	1koa	1f3m	1сф		E C	1
		Α		C	स्र		D	
69	68	69	69	68	63		AA	
263	267	262	263	263	265		AA	
4.5e-62	4.5e-62	2.7e-51	2.3e-52	3.1e-51	1.4e-85		Psi Blast	,
0.39		0.03	0.31	0.16	0.46		Verify score	
1.00		1.00	0.99	1.00	1.00		PMF score	
	66.85						SEQFOLD score	Table 5
PHOSPHORYLASE KINASE; CHAIN: NULL;	PHOSPHORYLASE KINASE; CHAIN: NULL;	TWITCHIN; CHAIN: A, B;	TWITCHIN; CHAIN: NULL;	SERINE/THREONINE-PROTEIN KINASE PAK-ALPHA; CHAIN: A, B; SERINE/THREONINE- PROTEIN KINASE PAK- ALPHA; CHAIN: C, D;	TRANSFERASE(PHOSPHOTRA NSFERASE) CAMP- DEPENDENT PROTEIN KINASE (E.C.2.7.1.37) (CAPK) 1CTP 3 (CATALYTIC SUBUNIT) 1CTP 4	SUBUNIT) 1CTP 4	Compound	
KINASE RABBIT MUSCLE PHOSPHORYLASE KINASE; GLYCOGEN METABOLISM, TRANSFERASE, SERINE/THREONINE-PROTEIN 2	KINASE RABBIT MUSCLE PHOSPHORYLASE KINASE; GLYCOGEN METABOLISM, TRANSFERASE, SERINE/THREONINE-PROTEIN, 2 KINASE, ATP-BINDING, CALMODULIN-BINDING	KINASE KINASE, TWITCHIN, INTRASTERIC REGULATION	KINASE KINASE, TWITCHIN, INTRASTERIC REGULATION	TRANSFERASE KINASE DOMAIN, AUTOINHIBITORY FRAGMENT, HOMODIMER			PDB annotation	

		T	T	т-	T	Τ				_
1734	1734	1732	1732		1727		1727		ğ 🖰	SEQ
1clz	lae6	1d5r	1d5r		I tks		lphk		티	PDB
L	Ţ	>	Α		Α				₽	CHAIN
84	86	49	48		69		69		AA	START
291	291	343	343		263		265		AA	END
0.00032	1.4e-05	0	0		9e-54		1.3e-56		Blast	Psi
		0.55			0.08		0.46		score	Verify
		1.00			0.90		1.00		score	PMF
51.55	52.34		143.72						score	SEQFOLD
IGG FAB (IGG3, KAPPA); CHAIN: L, H;	ANTIBODY CTM01; CHAIN: L, H;	PHOSPHOINOSITIDE PHOSPHOTASE PTEN; CHAIN: A;	PHOSPHOINOSITIDE PHOSPHOTASE PTEN; CHAIN: A;		TITIN; CHAIN: A, B;		PHOSPHORYLASE KINASE; CHAIN: NULL;		. '	Сотроин
IMMUNOGLOBULIN MBR96 FAB (IMMUNOGLOBULIN); IMMUNOGLOBULIN C REGION, GLYCOPROTEIN, TRANSMEMBRANE	IMMUNOGLOBULIN IMMUNOGLOBULIN, FAB FRAGMENT, HUMANISATION	HYDROLASE C2 DOMAIN, PHOSPHOTIDYLINOSITOL, PHOSPHOTASE, HYDROLASE	HYDROLASE C2 DOMAIN, PHOSPHOTIDYLINOSITOL, PHOSPHOTASE, HYDROLASE		SERINE KINASE SERINE KINASE, TITIN, MUSCLE, AUTOINHIBITION	TRANSFERASE, SERINE/THREONINE-PROTEIN, 2 KINASE, ATP-BINDING, CALMODULIN-BINDING	KINASE RABBIT MUSCLE PHOSPHORYLASE KINASE; GLYCOGEN METABOLISM,	KINASE, ATP-BINDING, CALMODULIN-BINDING		PDB annotation

1734	1734	1/34		1/34	1734	NO: BEQ
lepf	1dqq	Idbb	lcvs	Ict8	1036	PDB ID
A	A	t		Α	Α	CHAIN ID
107	103	% 4	114	108	23	START AA
269	269	284	285	269	310	AA AA
6.4e-11	3.2e-07	0.00048	1.3e-17	8e-07	9.6e-28	Psi Blast
-0.00	0.25		0.05	-0.13	-0.18	Verify score
-0.02	0.12		0.00	0.40	0.22	PMF score
		53.02				SEQFOLD score
NEURAL CELL ADHESION MOLECULE; CHAIN: A, B, C,	ANTI-LYSOZYME ANTIBODY HYHEL-63 (LIGHT CHAIN); CHAIN: A, C; ANTI- LYSOZYME ANTIBODY HYHEL-63 (HEAVY CHAIN); CHAIN: B, D;	IMMUNOGLOBULIN FAB' FRAGMENT OF THE DB3 ANTI-STEROID MONOCLONAL ANTIBODY IDBB 3 (IGG1, SUBGROUP 2A, KAPPA 1) COMPLEX WITH PROGESTERONE IDBB 4	FIBROBLAST GROWTH FACTOR 2; CHAIN: A, B; FIBROBLAST GROWTH FACTOR RECEPTOR 1; CHAIN: C, D;	7C8 FAB FRAGMENT; SHORT CHAIN; CHAIN: A, C; 7C8 FAB FRAGMENT; LONG CHAIN; CHAIN: B, D	AXONIN-1; CHAIN: A;	Compound
CELL ADHESION NCAM; NCAM, IMMUNOGLOBULIN FOLD,	DAMUNE SYSTEM ANTI- LYSOZYME ANTIBODY, HYHEL-63, HEN EGG WHITE LYSOZYME		GROWTH FACTOR/GROWTH FACTOR RECEPTOR FGF, FGFR, IMMUNOGLOBULIN-LIKE, SIGNAL TRANSDUCTION, 2 DIMERIZATION, GROWTH FACTOR/GROWTH FACTOR RECEPTOR	IMMUNE SYSTEM ABZYME TRANSITION STATE ANALOG, IMMUNE SYSTEM	CELL ADHESION NEURAL CELL ADHESION	PDB annotation

7 23	מתם	711	TE 4 ALC	בוגפ		47	27.44	lable 5		
S E S	Ð	Ħ	AA	AA	Blast	score	score	score	Сопфони	
									D;	1
1734	lepf	A	29	170	1.6e-14	-0.24	0.22		NEURAL CELL ADHESION MOLECULE; CHAIN: A, B, C, D;	
1734	1£2q	A	106	285	1.1e-22	0.21	0.23		HIGH AFFINITY IMMUNOGLOBULIN EPSILON RECEPTOR CHAIN: A;	
1734	1£q	A	22	195	3.2e-47	0.26	1.00		HIGH AFFINITY IMMUNOGLOBULIN EPSILON RECEPTOR CHAIN: A;	
1734	1f6a	>	106	285	3.26-22	-0.17	0.13		HIGH AFFINITY IMMUNOGLOBULIN EPSILON RECEPTOR CHAIN: A; IG EPSILON CHAIN C REGION; CHAIN: B, D;	
1734	1 f6a	A	20	190	8e-47	0.29	0.99		HIGH AFFINITY IMMUNOGLOBULIN BPSILON RECEPTOR CHAIN: A; IG EPSILON CHAIN C REGION; CHAIN: B, D;	

SEQ	75	CHAIN	START	END	Psi	Verify		PMF	50	
ë E	. 8	₽	AA	AA	Blast	score	score	score		
1734	1fcg	Α	105	287	8e-27	0.19	-0.09		FC RECEPTOR FC(GAMMA)RIIA; CHAIN: A;	A; CHAIN: A;
1734	1fcg	≯	19	192	3.2e-51	0.30	0.99		FC RECEPTOR FC(GAMMA)RIIA; CHAIN: A;	4; CHAIN: A;
1734	1flr	ı	84	291	6.4e-06			52.22	4-4-20 (IG*G2A=KAPPA=) FAB FRAGMENT; 1FLR 5 CHAIN: L, H; 1FLR 6	KAPPA=) FAB LR 5 CHAIN: L,
1734	152	≯	114	285	1.1e-26	-0.00	0.22		LOW AFFINITY IMMUNOGLOBULIN GAN FC REGION CHAIN: A;	OLIN GAMMA AIN: A;
1734	1fal	A	19	191	9.6e-49	0.34	1.00		LOW AFFINITY IMMUNOGLOBULIN GAMMA FC REGION CHAIN: A;	ULIN GAMMA AIN: A;
1734	1igf	Ţ	84	291	0.00016			54.97	IMMUNOGLOBULIN IGG FAB' FRAGMENT (B1312) 3	BULIN IGG1 NT (B1312) 1IGF
1734	lith	ㅂ	1	313	4.8e-10			51.11	INTERLEUKIN-1 BETA; CHAIN: A; TYPE 1 INTERLEUKIN-1 RECEP CHAIN: B;	INTERLEUKIN-1 BETA; CHAIN: A; TYPE 1 INTERLEUKIN-1 RECEPTOR; CHAIN: B;

		 -				
	SEQ NO:		1734	1734	1734	1734
	PDB ID		lnkr	1nkr	lnkr	1nkr
	TD CHAIN					
	START AA		104	195	21	22
	END AA		287	301	191	191
	Psi Blast		1.4e-26	1.1e-14	9.6e-30	9.6e-30
	Verify score		-0.12	0.03		-0.40
	PMF score		0.05	-0.15		0.41
Table 5	SEQFOLD score				55.48	
	Compound		P58-CL42 KIR; CHAIN: NULL;	P58-CL42 KIR; CHAIN: NULL;	P58-CL42 KIR; CHAIN: NULL;	P58-CL42 KIR; CHAIN: NULL;
	PDB annotation	(IMMUNOGLOBULIN/RECEPTOR	INHIBITORY RECEPTOR KILLER CELL INHIBITORY RECEPTOR; INHIBITORY RECEPTOR, INATURAL KILLER CELLS, IMMUNOLOGICAL 2 RECEPTORS, IMMUNOGLOBULIN FOLD	INHIBITORY RECEPTOR KILLER CELL INHIBITORY RECEPTOR; INHIBITORY RECEPTOR, INATURAL KILLER CELLS, IMMUNOLOGICAL 2 RECEPTORS, IMMUNOGLOBULIN FOLD	INHIBITORY RECEPTOR KILLER CELL INHIBITORY RECEPTOR; INHIBITORY RECEPTOR, NATURAL KILLER CELLS, IMMUNOLOGICAL 2 RECEPTORS, IMMUNOGLOBULIN FOLD	INHIBITORY RECEPTOR KILLER CELL INHIBITORY RECEPTOR; INHIBITORY RECEPTOR, NATURAL KILLER CELLS, IMMUNOLOGICAL 2

														,
	1737	1734		1734			1734			1734		NO:	OES	
	la6q	2fcb		2dli			2dli			1qok		ID	PDB	
		A		Α			Α			A		ID	CHAIN	
	33	19		20			101			106		AA	START	
	299	193		190			287			267		AA	END	
	4.8e-58	1.4e-52		3.2e-30			9.6e-28			9.6e-09		Blast	Psi	
	0.29	0.18		-0.37			-0.14			0.14		score	Verify	
	0.07	0.98		0.15			0.05			-0.14		score	£W	
												score	GTOADAS	Lable 5
NULL;	PHOSPHATASE 2C; CHAIN:	FC GAMMA RIIB; CHAIN: A;		MHC CLASS I NK CELL RECEPTOR PRECURSOR; CHAIN: A;		CHAIN: A;	MHC CLASS I NK CELL RECEPTOR PRECURSOR;		ANTIBODY FRAGMENT; CHAIN: A;	MFE-23 RECOMBINANT			Compound	
MECHANISM, METALLOENZYME, PROTEIN PHOSPHATASE 2C, 2 SIGNAL TRANSDUCTUIN, X-RAY	HYDROLASE CATALYTIC	IMMUNE SYSTEM CD32; RECEPTOR, FC, CD32, IMMUNE SYSTEM	KILLER RECEPTOR, 1 IMMUNOGLOBULIN	IMMUNE SYSTEM P58 NATURAL KILLER CELL RECEPTOR; KIR, NATURAL	INHIBITORY RECEPTOR, 2 IMMUNOGLOBULIN	RECEPTOR; KIR, NATURAL KILLER RECEPTOR,	IMMUNE SYSTEM P58 NATURAL KILLER CELL	CARCINOEMBRYONIC 2 ANTIGEN	IMMUNOGLOBULIN, SINGLE- CHAIN FV, ANTI-	IMMUNOGLOBULIN FOLD	RECEPTORS,		PDB annotation	

1738	1738	1738	1738	1738		SEQ NO:
3 1fym	3 1e96	3 1bu1	laze	laww		PDB
A	₩.	>	>			CHAIN
100	W	104	104	95		START AA
160	48	160	157	162		END AA
1.3e-16	4.8e-05	9.6e-15	4.8e-15	1.6e-15		Psi Blast
-0.00	-0.25	0.34	-0.25	-0.17		Verify score
0.11	0.16	0.13	0.23	0.11		PMF score
						SEQFOLD score
PHOSPHOTRANSFERASE FYN; CHAIN: A; 3BP-2; CHAIN: B;	RAS-RELATED C3 BOTULINUM TOXIN SUBSTRATE 1; CHAIN: A; NEUTROPHIL CYTOSOL FACTOR 2 (NCF-2) CHAIN: B;	HEMOPOIETIC CELL KINASE; CHAIN: A, B, C, D, E, F;	GRB2; CHAIN: A; SOS; CHAIN: B;	BRUTON'S TYROSINE KINASE; CHAIN: NULL;		Compound
TRANSFERASE PROTO- ONCOGENE TYROSINE KINASE;	SIGNALLING COMPLEX RAC1; P67PHOX; SIGNALLING COMPLEX, GTPASE, NADPH OXIDASE, PROTEIN-PROTEIN 2 COMPLEX, TPR MOTIF	TRANSFERASE TYROSINE- PROTEIN KINASE, TRANSFERASE, SIGNAL TRANSDUCTION, 2 SH3	COMPLEX (ADAPTOR PROTEIN/PEPTIDE) ASH, GROWTH FACTOR RECEPTOR-BOUND PROTEIN 2; COMPLEX (ADAPTOR PROTEIN/PEPTIDE), SH3 DOMAIN, 2 GUANINE-NUCLEOTIDE RELEASING FACTOR	TRANSFERASE ATK, AMGXI, BPK; TYROSINE KINASE, X- LINKED AGAMMAGLOBULINEMIA, XLA, BTK, SH3 2 DOMAIN, TRANSFERASE	CRYSTALLOGRAPHY, HYDROLASE	PDB annotation

1730	1730	1738	1710	SEQ NO:
7.810	i de	bqg		E CT
	>	> >		CHAIN
Ī	104	104		START AA
160	103	157		AA AA
1.66-18	1.be-16	3.2e-16		Psi Blast
0.01	-0.30	-0.03		Verify score
0.70	0.15	0.59		PMF score
	•			SEQFOLD score
ADAPTOR PROTEIN CONTAINING SH2 AND SH3 GROWTH FACTOR RECEPTOR-BOUND PROTEIN 2 (GRB2) IGFC 3 (C-TERMINAL SH3 DOMAIN) (NMR, MINIMIZED MEAN	SIGNAL TRANSDUCTION PROTEIN GROWTH FACTOR RECEPTOR-BOUND PROTEIN 2 (GRB2, N-TERMINAL 1GBR 3 SH3 DOMAIN) COMPLEXED WITH SOS-A PEPTIDE 1GBR 4 (NMR, 29 STRUCTURES) 1GBR 5	GRB2; CHAIN: A; SOS-1; CHAIN: B;		Compound
		COMPLEX (SIGNAL TRANSDUCTION/PEPTIDE) COMPLEX (SIGNAL TRANSDUCTION/PEPTIDE), SH3 DOMAIN	PROTO-ONCOGENE, TRANSFERASE, TYROSINE- PROTEIN KINASE, 2 PHOSPHORYLATION, ATP- BINDING, MYRISTYLATION, SH3 DOMAIN, 3 COMPLEX (PHOSPHOTRANSFERASE/PEPTI DE)	PDB annotation

E CENTRAL PROPERTY OF THE PROP	CHAIN	START	END	Psi	Verify	PMT	SECROLD	Compand	777
	Ħ	AA	AA	Blast	score	score	score	Compound	PDB annotation
+								STRUCTURE) 1GFC 4	
	A	4	160	1.6e-30	-0.53	0.01		GROWTH FACTOR BOUND PROTEIN 2; IGRI 5 CHAIN: A, B: IGRI 6	SIGNAL TRANSDUCTION ADAPTOR SH2, SH3 1GRI 14
1738 1hsq		97	163	8e-17	-0.04	0.76		PHOSPHORIC DIESTER HYDROLASE	
								PHOSPHOLPASE C-GAMMA (SH3 DOMAIN) (E.C.3.1.4.11) 1HSO 3 COMB MINIMIZED	
1738 1 nur		3						MEAN STRUCTURE) 1HSQ 4	
+		5	ē	4.86-15	0.18	0.16	•	ALPHA SPECTRIN; CHAIN: NULL;	CIRCULAR PERMUTANT PWT; CIRCULAR PERMUTANT, SH3 DOMAIN CYTOSKEI FTON
13011	>	102	100	3.2e-19	0.14	0.33		SEM-5; ISEM 3 CHAIN: A, B; ISEM 5 10-RESIDUE PROLINE-	SIGNAL TRANSDUCTION PROTEIN SRC-HOMOLOGY 3
			_					ISEM 8 CHAIN: C, D ISEM 10	(SH3) DOMAIN, PEPTIDE- BINDING PROTEIN, ISEM 18 2
1720 1.16									GUANINE NUCLEOTIDE EXCHANGE FACTOR 1SEM 19
		7		01-90-1	0.03	0.18 —		PHOSPHOTRANSFERASE FYN PROTO-ONCOGENE	
								TYROSINE KINASE	
4_	a	\$						(E.C.2.7.1.112) 1SHF 3 (SH3 DOMAIN) 1SHF 4	
Lycs	b		154	C1-91.1	-0.36	0.33	•	P53; CHAIN: A; 53BP2; CHAIN: B;	COMPLEX (ANTI-
-								-	REPEATS) P53BP2; ANKYRIN REPEATS, SH3. P53. TUMOR

2	,	-						Calder		
NO. E.	₩ EFE	ID CHAIN	AA	AÁ	PSI Blast	veruty score	Score	SEQFOLD score	Compound	-
										SUPPRESSOR, MULTIGENE 2 FAMILY, NUCLEAR PROTEIN, PHOSPHORYLATION, DISEASE MITTATION 3 POI YMOREHISM
										MUTATION, 3 POLYMORPHISM, COMPLEX (ANTI- ONCOGENE/ANKYRIN REPEATS)
1738	4hck		104	161	6.4e-15	0.09	0.16		HEMATOPOIETIC CELL KINASE; CHAIN: NULL;	TRANSFERASE HCK; SH3, PROTEIN TYROSINE KINASE, SIGNAL TRANSDUCTION, 2
1/39	1881		16	72	0.0018	-0.71	0.21		PROTEIN DISULFIDE OXIDOREDUCTASE; CHAIN: NULL;	OXIDOREDUCTASE OXIDOREDUCTASE, PDI, THIOREDOXIN FOLD
1740	1c9r	≯	97	264	1.4e-08	0.12	0.27		HIV-1 REVERSE TRANSCRIPTASE (CHAIN A); CHAIN: A; HIV-1 REVERSE	TRANSFERASE/IMMUNE SYSTEM/DNA HIV-1 RT; HIV-1 RT: HIV. REVERSE
									TRANSCRIPTASE (CHAIN B); CHAIN: B; ANTIBODY (LIGHT	TRANSCRIPTASE, MET184ILE, 3TC, PROTEIN-DNA 2 COMPLEX.
			-						CHAIN); CHAIN: L; ANTIBODY	DRUG RESISTANCE, M1841
									(HEAVY CHAIN); CHAIN: H; DNA (5'- CHAIN: T; DNA (5'-	TRANSFERASE/IMMUNE 3 SYSTEM/DNA
	3								CHAIN: P;	
1740	1121	A	131	225	0.00011	0.21	0.27		RIBONUCLEASE HI; CHAIN: A;	HYDROLASE RNASE H,
										NUCLEASE, RNASE H*
					_					RIBNUCLEASE H. METAL-

2	נונו	744. 444						Lable 5		
S E S	Ħ.	E CELEBRA	AA	AA	PSI Blast	score	score	SEQFOLD	Compound	PDB annotation
1740	3									BINDING 2 PROTEIN, PROTEIN FOLDING
0.00		;	131	204	1.36-16	0.37	0./5		RIBONUCLEASE HI; CHAIN: A;	HYDROLASE RNASE H, NUCLEASE, RNASE H*, RIBNUCLEASE H, METAL- BINDING 2 PROTEIN, PROTEIN FOI DING
1740	lhrh	>	130	264	9e-12	0.03	0.13		HYDROLASE(ENDORIBONUC LEASE) RIBONUCLEASE H DOMAIN OF /HIV-1\$ REVERSE	A () A ()
1740	1ril		131	264	4.5e-17	0.59	0.82		HYDROLASE(ENDORIBONUC LEASE) RIBONUCLEASE H (E.C.3 1 26 4) 1RII. 3	
35										
1/04	dvp	>	49	94	4.8e-14	-0.20	0.28		HEPATOCYTE GROWTH FACTOR-REGULATED TYROSINE CHAIN: A:	TRANSFERASE HRS; HRS, VHS, FYVE, ZINC FINGER, SUPERHELY
1/54	Iptq		47	81	0.004	-0.72	0.07		PROTEIN KINASE C DELTA TYPE; 1PTQ 4	PHOSPHOTRANSFERASE
1/54	lvty	>	42	99	3.2e-11	0.05	0.12		PHOSPHATIDYLINOSITOL-3- PHOSPHATE BINDING FYVE CHAIN: A;	TRANSPORT PROTEIN FYVE DOMAIN, ENDOSOME MATURATION, INTRACELLULAR
1754	1zbd	В	51	105	9.6e-17	-0.33	0.30		RAB-3A: CHAIN: A:	PROTEIN
									RABPHILIN-3A; CHAIN: B;	BINDING/EFFECTOR) RAS-

_																	
	1/60	 -	1760				1760		1760			1760				ë E	SEQ
	3bct		2bct				lial		lec4		1004	153,,				E	PDB
							>		A		, p	Δ				٥	CHAIN
	5		11				4		4			7				AA	START
	194		193				192		194		141	2				AA	END
	1.1e-21		9.6e-23				3.2e-31		4.8e-31		4.86-13	3				Blast	Psi
	0.22		035				0.37		0.14		0.17	3				score	Verify
	0.34		200				0.58		0.78		-0.06					score	PMF
																score	SEQFOLD
NULL;	BETA-CATENIN; CHAIN:	NULL;	DETA CATES TO COLOR			, , , , , , , , , , , , , , , , , , , ,	IMPORTIN ALPHA: CHAIN: A:	CHAIN: A, B; MYC PROTO- ONCOGENE PROTEIN; CHAIN: C. D. F. F.	KARYOPHERIN ALPHA:		PROTEIN PHOSPHATASE PP2A; CHAIN: A, B;					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Compound
ARMADILLO REPEAT BETA	ARMADILIO REPEAT	STRUCTURAL PROTEIN ARMADILLO REPEAT, BETA- CATENIN, STRUCTURAL DE CTENT	INTRASTERIC REGULATION	SIGNAL, 2 ARMADILLO REPEATS, AUTOINHIBITION,	NUCLEAR IMPORT RECEPTOR, NUCLEAR LOCALIZATION	KARYOPHERIN ALPHA;	NIICI PAR IMPORT DECEMPOR	RICH RNA POLYMERASE I SUPPRESSOR PROTEIN; ARM	TRANSPORT PROTEIN SERVICE	PHOSPHORYLATION, HEAT	SCAFFOLD PROTEIN SCAFFOLD PROTEIN, PP2A,		PROTEIN, EFFECTOR, RABCDR, 2 SYNAPTIC EXOCYTOSIS, RAB PROTEIN, RAB3A, RABPHILIN	COMPLEX (GTP- BINDING/EFFECTOR), G	RELATED PROTEIN RAB3A:	r DB annotanon	DDB

	IMMUNOGLOBULIN 3D6 FAB		-0.08	0.38	9.6e-32	162	51	L	Idib	1/95
COMPLEX CRYSTAL COMPLEX CRYSTAL STRUCTURE 2.7A RESOLUTION BINDING 2 OUTSIDE THE ANTIGEN COMBINING SITE SUPERANTIGEN FAB VH3 3 SPECIFICITY	IGM RF 2A2; CHAIN: A, C, E; IGM RF 2A2; CHAIN: B, D, F; IMMUNOGLOBULIN G BINDING PROTEIN A; CHAIN: G, H;		L	6.6	J. E.C.	102				
IMMUNOGLOBULIN IMMUNOGLOBULIN, FAB- FRAGMENT	ASB7 MONOCLONAL ANTIBODY; CHAIN: L, H;		-0.05	0.02	3.2e-31	208	61	A H	Ide Icio	1795
COMPLEX (ANTIBODY/ANTIGEN) FAB-12; VEGF; COMPLEX (ANTIBODY/ANTIGEN), ANGIOGENIC FACTOR	FAB FRAGMENT; CHAIN: L, H, J, K; VASCULAR ENDOTHELIAL GROWTH FACTOR; CHAIN: V, W;		-0.13	0.33	1.4e-32	162)10		1.01	1/93
TAOIEM	ANOTELLY CLEUIS, A, B, C,									
SERUM PROTEIN ACRP30 CIQ TNF TRIMER ALL-BETA, SERUM	30 KD ADIPOCYTE COMPLEMENT-RELATED PROTEIN CHAIN: A B C:	•	0.05	0.46	6.4e-28	220	107	C	1c28	1787
SERUM PROTEIN ACRP30 CIQ TINF TRIMER ALL-BETA, SERUM PROTEIN	30 KD ADIPOCYTE COMPLEMENT-RELATED PROTEIN CHAIN: A, B, C;		-0.02	0.41	1.6e-32	219	107	₩	1c28	1/8/
SERUM PROTEIN ACRP30 C1Q TNF TRIMER ALL-BETA, SERUM PROTEIN	30 KD ADIPOCYTE COMPLEMENT-RELATED PROTEIN CHAIN: A, B, C;		-0.14	0.32	8e-36	240	107	≯	1c28	1787
CATENIN, CYTOSKELETON										
PDB annotation	Compound	score	score	score	Blast	AA	AA	Ð	Œ	S B S
	Company	C DIGOT	T MG	Varify	Pe:	T CENT	START	CHAIN	PDB	OES

				-					· · · · ·		_			
1796	1796	1796		1795		1795		1795			1795		NO D	SEQ
lasu	lasu	lacii		2fgw		lhyx		1fvd			1dq1		ID	PDB
				Ţ		Ħ		>			L		D	CHAIN
21	15	5		51		61		51			51		AA	START
154	129	120		162		208		162			159		AA	END
1.7e-26	8e-24	824		9.6e-32		3.2e-31		3.2e-31			1.3e-31		Blast	Psi
0.03	-0.01	-0.01		0.77		0.10		0.35			0.30		score	Verify
0.89	0.01	001		-0.17		0.04		-0.14			-0.12		score	PMF
													score	SEQFOLD
AVIAN SARCOMA VIRUS INTEGRASE; IASU 7 CHAIN: NUILI; IASU 8	AVIAN SARCOMA VIRUS INTEGRASE; 1ASU 7 CHAIN: NULL; 1ASU 8	AVIAN SARCOMA VIRIIS	HUMANIZED VERSION OF THE ANTI-CD18 2FGW 3 ANTIBODY 'H52' (HUH52-OZ FAR) 2FGW 4	IMMUNOGLOBULIN FAB		IMMUNOGLOBULIN 6D9; CHAIN: L, H;	ANTIBODY 4D5, VERSION 4 1FVD 3	FRAGMENT OF HUMANIZED	IMMUNOGLOBULIN; CHAIN:	IMMUNOGLOBULIN; CHAIN: L; IGM MEZ	IGM MEZ	1DFB 3	•	Compound
DNA INTEGRATION	DNA INTEGRATION	NA INTEGRATION			CATALYTIC ANTIBODY, ESTER HYDROLYSIS, ESTEROLYTIC, FAB, 2 IMMUNOGLOBULIN	CATALYTIC ANTIBODY 6D9				IMMUNOGLOBULIN FOLD, ANTIBODY, IGM, FV	IMMUNE SYSTEM			PDB annotation

_		-,-					_					_							_		_								_
	1/90	2051				1/90	2051				1/90	1			_			06/1	1702	1/90		1/90	1305	04/1	3061	1796	NO.	3 %	CHO
	TCIB					TCOM					TCOM						_	5101	1 1	1691		1601	1505	DYO		169d		∄ [म्राप
	t					A					A						·	C		Α		A		A		Α	E		NIVEC
	24	2				12					16							18	5	24		23	3	28	3	27	3	INVI	TOATO
	129					175	3				129							129		175		129		154		129	3	¥ 1	ENG
	8e-23	2				3.4e-31					3.2e-24							9.6e-31		3.4e-26		3.2e-29		6.8e-22		8e-23	ונאות	TIS1	7.4
	-0.01					0.10					0.07							-0.30		-0.06		-0.51		0.09	3	-0.06	SCOLE	уегцу	17
	0.42					0.49					-0.08							0.33		0.40		0.13		0.13		0.34	score	PIVLE	77
													٠														score	SEQUEDLD	CIT OF THE
	RSV INTEGRASE; CHAIN: A, B;				D;	INTEGRASE; CHAIN: A, B, C,				D,	INTEGRASE; CHAIN: A, B, C,							INTEGRASE; CHAIN: A, B, C;		INTEGRASE; CHAIN: A;		INTEGRASE; CHAIN: A;		INTEGRASE; CHAIN: A;		INTEGRASE; CHAIN: A;		Compound	
VIRUS, HIV, X-RAY	VIRUS/VIRAL PROTEIN	TRANSFERASE	PROTEIN STRUCTURE,	RAY CRYSTALLOGRAPHY, 2	ROUS SARCOMA VIRUS, HIV, X-	TRANSFERASE INTEGRASE,	TRANSFERASE	PROTEIN STRUCTURE,	RAY CRYSTALLOGRAPHY, 2	ROUS SARCOMA VIRUS, HIV, X-	TRANSFERASE INTEGRASE,	(VIRAL)	TRANSFERASE, DNA BINDING 3	POLYNUCLEOTIDYL	ENDONUCLEASE,	POLYPROTEIN, HYDROLASE, 2	INTEGRATION, AIDS,	DNA INTEGRATION DNA	INTEGRATION, TRASFERASE	TRASFERASE DNA	INTEGRATION, TRASFERASE	TRASFERASE DNA	INTEGRATION	TRANSFERASE DNA	INTEGRATION	TRANSFERASE DNA		PDB annotation	

1796	1	17:	5	<u> </u>	17	5	1	NO ID SEC	
1796			 	 	+	 ·	 	-	1
Iqs4	į	1exq	1cz9	lczy	lcxq	ICIa		PDB ID	
Α	>	>	>	A	A	t		CHAIN	
24	3	27	26	26	21	24		START AA	
175	129	129	154	129	154	. 178		END AA	
1e-25	C7-48	1.6e-22	1e-26	1.3e-20	1.7e-26	1.46-25		Psi Blast	
-0.19	-0.29	-0.16	0.23	0.14	0.33	0.16		Verify score	
0.36	0.41	0.16	0.69	0.28	0.80	0.30		PMF score	
								SEQFOLD score	COLUBI
HIV-1 INTEGRASE; CHAIN: A,	HIV-1 INTEGRASE; CHAIN: A, B, C;	POL POLYPROTEIN; CHAIN: A, B;	AVIAN SARCOMA VIRUS INTEGRASE; CHAIN: A;	AVIAN SARCOMA VIRUS INTEGRASE; CHAIN: A;	AVIAN SARCOMA VIRUS INTEGRASE; CHAIN: A;	RSV INTEGRASE; CHAIN: A, B;		Compound	
HYDROLASE DNA	HYDROLASE DNA INTEGRATION, INTEGRASE, HIV, HYDROLASE, ASPARTYL 2 PROTEASE, ENDONUCLEASE	VIRUS/VIRAL PROTEIN HIV-1 INTEGRASE, POLYNUCLEOTIDYL TRANSFERASE, DNA-BINDING 2 PROTEIN, DD35E	TRANSFERASE MIXED BETA- SHEET SURROUNDED BY ALPHA-HELICES	TRANSFERASE MIXED BETA- SHEET SURROUNDED BY ALPHA-HELICES	TRANSFERASE MIXED BETA- SHEET SURROUNDED BY ALPHA-HELICES	VIRUS/VIRAL PROTEIN INTEGRASE, ROUS SARCOMA VIRUS, HIV, X-RAY CRYSTALLOGRAPHY, 2 VIRUS/VIRAL PROTEIN	CRYSTALLOGRAPHY, 2 VIRUS/VIRAL PROTEIN	PDB annotation	

			_			, ,	٠.,		_
1812	1806	1806		1802	1802			NO E	C C
1a5e	1qfh	1ksr		2gli	lmey			EDB ID	מממ
	>			A	C			CHAIN ID	
153	27	29		59	59			SIAKI AA	
270	133	133		130	130			AA	
2.4e-21	2e-11	2e-12		6.8e-23	1e-25			FSI Blast	;
0.23	-0.09	0.16		-0.09	-0.39			verity score	;
0.90	0.53	0.41		0.63	0.34			Score	
								SEQFOLD score	C alde 1
TUMOR SUPPRESSOR P16INK4A; CHAIN: NULL;	GELATION FACTOR; CHAIN: A, B;	GELATION FACTOR; CHAIN: NULL;		ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;			Compound	
ANTI-ONCOGENE CELL CYCLE, ANTI-ONCOGENE, REPEAT, ANK REPEAT	ACTIN BINDING PROTEIN ACTIN BINDING PROTEIN 120; ACTIN BINDING PROTEIN, IMMUNOGLOBULIN, GELATION FACTOR, ABP- 2 120	ACTIN BINDING PROTEIN ABP- 120; ACTIN BINDING PROTEIN, STRUCTURE, IMMUNOGLOBULIN, GELATION 2 FACTOR, ABP-120		COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	i mo i minori, mino otro chimnon	PROTEASE ENDONITO PASE	PDB annotation	

_				
1812	1812	1812	1812	SEQ ID NO:
lawc	lawc	lawc	lawc	PDB W
В	В .	В	В	CHAIN ID
99	76	164	129	START AA
264	225	312	300	END AA
1.4e-33	4.8e-31	1.4e-29	1.6e-36	Psi Blast
0.38	0.14	0.23	0.63	Verify score
0.96	0.45	0.96	0.96	PMF score
				SEQFOLD score
GA BINDING PROTEIN	GA BINDING PROTEIN ALPHA; CHAIN: A; GA BINDING PROTEIN BETA 1; CHAIN: B; DNA; CHAIN: D, E;	GA BINDING PROTEIN ALPHA; CHAIN: A; GA BINDING PROTEIN BETA 1; CHAIN: B; DNA; CHAIN: D, E;	GA BINDING PROTEIN ALPHA; CHAIN: A; GA BINDING PROTEIN BETA 1; CHAIN: B; DNA; CHAIN: D, E;	Compound
COMPLEX (TRANSCRIPTION	COMPLEX (TRANSCRIPTION REGULATION/DNA) REGULATION/DNA) GABPALPHA; GABPBETA1; COMPLEX (TRANSCRIPTION REGULATION/DNA), DNA-BINDING, 2 NUCLEAR PROTEIN, ETS DOMAIN, ANKYRIN REPEATS, TRANSCRIPTION 3 FACTOR	COMPLEX (TRANSCRIPTION REGULATION/DNA) REGULATION/DNA) GABPALPHA; GABPBETA1; COMPLEX (TRANSCRIPTION REGULATION/DNA), DNA-BINDING, 2 NUCLEAR PROTEIN, ETS DOMAIN, ANKYRIN REPEATS, TRANSCRIPTION 3 FACTOR	COMPLEX (TRANSCRIPTION REGULATION/DNA) REGULATION/DNA) GABPALPHA; GABPBETA1; COMPLEX (TRANSCRIPTION REGULATION/DNA), DNA-BINDING, 2 NUCLEAR PROTEIN, ETS DOMAIN, ANKYRIN REPEATS, TRANSCRIPTION 3 FACTOR	PDB annotation

2	Z H				120	<u> </u>		Γ	- 18				-			1812			
Ö	Ö A	_			1812		1812	┼	1812		1812				<u> </u>			_	_
Bad	B				1bd8		lbd8		1bd8		1 blx					1blx			_
CHAIN	B										₩.					В			
START	AA				102		132		75		102					132			
END	A			-	267		303		225		267					303			
Psi	Blast				1.4e-27		1.6e-26		3.2e-21		1.6e-26					4.8e-27			
Verify	score				0.22		0.36		0.02		0.38					0.29			
PMF	score				1.00		0.25		0.17		0.99					0.95			
SEOROI D	score																		
Compound	compound	ALPHA; CHAIN: A; GA BINDING PROTEIN BETA 1; CHAIN: B; DNA; CHAIN: D, E;			P19INK4D CDK4/6 INHIBITOR;	CHAIN: NULL;	P19INK4D CDK4/6 INHIBITOR;		P19INK4D CDK4/6 INHIBITOR;	CHAIN: NULL;	CYCLIN-DEPENDENT KINASE	6; CHAIN: A; P19INK4D;				CYCLIN-DEPENDENT KINASE	6; CHAIN: A; P19INK4D;	CHAIN: B;	
מתם	rub annotation	REGULATION/DNA) GABPALPHA; GABPBETA1; COMPLEX (TRANSCRIPTION	REGULATION/DNA), DNA- BINDING, 2 NUCLEAR PROTEIN, ETS DOMAIN ANTYP N	REPEATS, TRANSCRIPTION 3	TUMOR SUPPRESSOR TUMOR	SUPPRESSOR, CDK4/6 INHIBITOR ANKYRIN MOTIF	TUMOR SUPPRESSOR TUMOR	INHIBITOR, ANKYRIN MOTIF	TUMOR SUPPRESSOR TUMOR	INHIBITOR, ANK YRIN MOTIF	COMPLEX (INHIBITOR	PROTEIN/KINASE) INHIBITOR PROTEIN, CYCLIN-DEPENDENT	KINASE, CELL CYCLE 2	CONTROL, ALPHA/BETA,	PROTEIN/CINASE)	COMPLEX (INHIBITOR	PROTEIN/KINASE) INHIBITOR	PROTEIN, CYCLIN-DEPENDENT	LANVE CELL CACLES

_						_,
1812	1812	1812	1812	1812	NO:	SEO
1d9s	1bu9	1bu9	lbu9	1bu9	ID	प्रतिष
A	>	Α	Α	A	B	CHAIN
149	75	167	129	102	AA	START
271	230	314	305	269	AA	
6.8e-24	1.6e-26	4.8e-25	3.2e-32	1.4e-27	Blast	Pei
0.47	0.12	0.41	0.55	0.49	score	Verify
0.95	0.23	0.06	0.58	0.92	score	AME
					Score	U IUROES
CYCLIN-DEPENDENT KINASE	CYCLIN-DEPENDENT KINASE 6 INHIBITOR; CHAIN: A;	CYCLIN-DEPENDENT KINASE 6 INHIBITOR; CHAIN: A;	CYCLIN-DEPENDENT KINASE 6 INHIBITOR; CHAIN: A;	CYCLIN-DEPENDENT KINASE 6 INHIBITOR; CHÁIN: A;	Сопрота	Compound
SIGNALING PROTEIN HELIX-	HORMONE/GROWTH FACTOR P18-INK4C; CELL CYCLE INHIBITOR, P18INK4C; TUMOR, SUPPRESSOR, CYCLIN- 2 DEPENDENT KINASE, HORMONE/GROWTH FACTOR	HORMONE/GROWTH FACTOR P18-INK4C; CELL CYCLE INHIBITOR, P18INK4C; TUMOR, SUPPRESSOR, CYCLIN-2 DEPENDENT KINASE, HORMONE/GROWTH FACTOR	HORMONE/GROWTH FACTOR P18-INK4C; CELL CYCLE INHIBITOR, P18INK4C; TUMOR, SUPPRESSOR, CYCLIN-2 DEPENDENT KINASE, HORMONE/GROWTH FACTOR	HORMONE/GROWTH FACTOR P18-INK4C; CELL CYCLE INHIBITOR, P18INK4C; TUMOR, SUPPRESSOR, CYCLIN-2 DEPENDENT KINASE, HORMONE/GROWTH FACTOR	CONTROL, ALPHA/BETA, COMPLEX (INHIBITOR PROTEIN/KINASE)	ana anatation

	 _							1
1812	1812	1812	1812	1812	1812		NO BEO	
1ikn	1146	1ihb	1ibb	lihb	1 dcq		EDB D	
מ	>	٨	*	A	A		CHAIN	
76	75	167	129	102	153		START AA	
190	229	314	304	268	276		AA AA	
1.6e-27	1.1e-25	4.8e-25	1.6e-31	6.4e-27	6.8e-22		Psi Blast	
0.07	-0.11	0.16	0.40	0.34	0.25		Verify score	
-0.18	0.63	0.15	0.95	1.00	0.69		PMF	
							SEQFOLD score	T aprox 5
NF-KAPPA-B P65 SUBUNIT; CHAIN: A; NF-KAPPA-B P50D	CYCLIN-DEPENDENT KINASE 6 INHIBITOR; CHAIN: A, B;	CYCLIN-DEPENDENT KINASE 6 INHIBITOR; CHAIN: A, B;	CYCLIN-DEPENDENT KINASE 6 INHIBITOR; CHAIN: A, B;	CYCLIN-DEPENDENT KINASE 6 INHIBITOR; CHAIN: A, B;	PYK2-ASSOCIATED PROTEIN BETA; CHAIN: A;	4 INHIBITOR B; CHAIN: A;	Compound	
TRANSCRIPTION FACTOR P65; P50D; TRANSCRIPTION	CELL CYCLE INHIBITOR P18- INK4C(INK6); CELL CYCLE INHIBITOR, P18-INK4C(INK6), ANKYRIN REPEAT, 2 CDK 4/6 INHIBITOR	CELL CYCLE INHIBITOR P18- INK4C(INK6); CELL CYCLE INHIBITOR, P18-INK4C(INK6), ANKYRIN REPEAT, 2 CDK 4/6 INHIBITOR	CELL CYCLE INHIBITOR P18- INK4C(INK6); CELL CYCLE INHIBITOR, P18-INK4C(INK6), ANKYRIN REPEAT, 2 CDK 4/6 INHIBITOR	CELL CYCLE INHIBITOR P18- INK4C(INK6); CELL CYCLE INHIBITOR, P18-INK4C(INK6), ANKYRIN REPEAT, 2 CDK 4/6 INHIBITOR	METAL BINDING PROTEIN ZINC-BINDING MODULE, ANKYRIN REPEATS, METAL BINDING PROTEIN	TURN-HELIX, ANKYRIN REPBAT	PDB annotation	DDD constation

1812	1812	1812	1812	1812	1812		NO: DE	
lycs	lnfi	lnfi	lmyo	l iku	l ikm		PDB ID	
В	tti	ਸ਼		α	ט		CHAIN	
136	93	76	162	94	86		START AA	
270	300	237	271	300	237		AA AA	
1.4e-22	3.2e-38	1.6e-32	1.4e-22	1.3e-38	3.2e-32		Psi Blast	
0.41	0.18	0.40	0.64	0.15	0.31		Verify score	
0.99	0.43	0.90	88.0	0.22	0.71		PMF score	
							SEQFOLD score	Lable 5
P53; CHAIN: A; 53BP2; CHAIN: B;	NF-KAPPA-B P65; CHAIN: A, C; NF-KAPPA-B P50; CHAIN: B, D; I-KAPPA-B-ALPHA; CHAIN: E, F;	NF-KAPPA-B P65; CHAIN: A, C; NF-KAPPA-B P50; CHAIN: B, D; I-KAPPA-B-ALPHA; CHAIN: E, F;	MYOTROPHIN; CHAIN: NULL	NF-KAPPA-B P65 SUBUNIT; CHAIN: A; NF-KAPPA-B P50D SUBUNIT; CHAIN: C; I-KAPPA- B-ALPHA; CHAIN: D;	NF-KAPPA-B P65 SUBUNIT; CHAIN; A; NF-KAPPA-B P50D SUBUNIT; CHAIN: C; I-KAPPA- B-ALPHA; CHAIN: D;	SUBUNIT; CHAIN: C; I-KAPPA-B-ALPHA; CHAIN: D;	Compound	
COMPLEX (ANTI- ONCOGENE/ANKYRIN REPEATS) P53BP2; ANKYRIN REPEATS, SH3, P53, TUMOR SUPPRESSOR, MULTIGENE 2	COMPLEX (TRANSCRIPTION REG/ANK REPEAT) COMPLEX (TRANSCRIPTION REGULATION/ANK REPEAT), ANKYRIN 2 REPEAT HELIX	COMPLEX (TRANSCRIPTION REG/ANK REPEAT) COMPLEX (TRANSCRIPTION REGULATION/ANK REPEAT), ANKYRIN 2 REPEAT HELIX	ANK-REPEAT MYOTROPHIN, ACETYLATION, NMR, ANK-REPEAT	TRANSCRIPTION FACTOR P65; P50D; TRANSCRIPTION FACTOR, IKB/NFKB COMPLEX	TRANSCRIPTION FACTOR P65; P50D; TRANSCRIPTION FACTOR, IKB/NFKB COMPLEX	FACTOR, IKB/NFKB COMPLEX	PDB annotation	

1825	1824	1812		NO.
1£5w	1zbd	lycs		PDB ID
A	ᇤ	8		CHAIN ID
19	57	162		START AA
123	107	290		END AA
0.0034	0.0038	6.8e-22		Psi Blast
0.56	0.10	0.47		Verify score
0.28	0.15	0.90		PMF score
				SEQFOLD score
COXSACKIE VIRUS AND	RAB-3A; CHAIN: A; RABPHILIN-3A; CHAIN: B;	P53; CHAIN: A; 53BP2; CHAIN: B;		Compound
VIRUS/VIRAL PROTEIN	COMPLEX (GTP-BINDING/EFFECTOR) RAS-RELATED PROTEIN RAB3A; COMPLEX (GTP-BINDING/EFFECTOR), GPROTEIN, EFFECTOR, RABCDR, 2 SYNAPTIC EXOCYTOSIS, RABPROTEIN, RAB3A, RABPHILIN	COMPLEX (ANTI- ONCOGENE/ANKYRIN REPEATS) P53BP2; ANKYRIN REPEATS, SH3, P53, TUMOR SUPPRESSOR, MULTIGENE 2 FAMILY, NUCLEAR PROTEIN, PHOSPHORYLATION, DISEASE MUTATION, 3 POLYMORPHISM, COMPLEX (ANTI- ONCOGENE/ANKYRIN REPEATS)	FAMILY, NUCLEAR PROTEIN, PHOSPHORYLATION, DISEASE MUTATION, 3 POLYMORPHISM, COMPLEX (ANTI-ONCOGENE/ANKYRIN REPEATS)	PDB annotation

1827	1827	1825		NO. IFQ	
1fyt	lacó	1 neu		РДВ Ш	
D	A			CHAIN	
30	26	19		START AA	
124	116	119		END AA	
9.6e-36	4.8e-36	3.4e-05		Psi Blast	
-0.19	0.01	0.74		Verify score	
0.96	0.76	0.57		PMF score	
				SEQFOLD score	Table 5
HIA CLASS II HISTOCOMPATIBILITY ANTIGEN, DR CHAIN: A; HLA CLASS II HISTOCOMPATIBILITY ANTIGEN, DR-1 CHAIN: B; HEMAGGLUTININ HA1 PEPTIDE CHAIN; CHAIN: C; T- CELL RECEPTOR ALPHA CHAIN; CHAIN: D; T-CELL	T-CELL RECEPTOR ALPHA; CHAIN: A, B;	MYELIN PO PROTEIN; CHAIN: NULL;	ADENOVIRUS RECEPTOR; CHAIN: A, B;	Compound	
IMMUNE SYSTEM HLA-DR1, DRA; HLA-DR1, DRB1 0101; TCR HA1.7 ALPHA CHAIN; TCR HA1.7 BETA CHAIN; PROTEIN- PROTEIN COMPLEX, IMMUNOGLOBULIN FOLD	RECEPTOR RECEPTOR, V ALPHA DOMAIN, SITE- DIRECTED MUTAGENESIS, 2 THREB-DIMENSIONAL STRUCTURE, GLYCOPROTEIN, SIGNAL	STRUCTURAL PROTEIN MYELIN, STRUCTURAL PROTEIN, GLYCOPROTEIN, TRANSMEMBRANE, PHOSPHORYLATION, IMMUNOGLOBULIN FOLD, SIGNAL, MYELIN 2 MEMBRANE ADHESION MOLECULE	RECEPTOR IMMUNOGLOBULIN V DOMAIN FOLD, SYMMETRIC DIMER	PDB annotation	

2	בננ	711		1	•					
S E S	Œ	D CHAIR	AA	AA	Blast	score	score	SEQFOLD	Compound	PDB annotation
									RECEPTOR BETA CHAIN; . CHAIN: E;	
1827	ltcr	۸	27	130	4.8c-37	-0.23	0.93	·	ALPHA, BETA T-CELL RECEPTOR CHAIN: A, B;	RECEPTOR TCR; T-CELL, RECEPTOR, TRANSMEMBRANE, GLYCOPROTEIN, SIGNAL
1830	lawe		335	460	1.6e-17	0.45	-0.08		SOS1; CHAIN: NULL;	SIGNAL TRANSDUCTION SIGNAL TRANSDUCTION, SOS,
								÷		PLECKSTRIN HOMOLOGY (PH) DOMAIN
1830	1by1	Þ	98	268	3.4e-26	0.02	0.87		PIX; CHAIN: A;	TRANSPORT PROTEIN RHO-
										TRANSPORT PROTEIN
1830	1dbh	Α	104	408	6.8e-26	0.22	0.94		HUMAN SOS 1; CHAIN: A;	GENE REGULATION SON OF
										SEVENLESS PROTEIN; GUANINE
										FACTOR, GENE REGULATION
1830	1dbh	A	293	460	1.4e-18	0.07	0.12		HUMAN SOS 1; CHAIN: A;	GENE REGULATION SON OF
										SEVENLESS PROTEIN; GUANINE
										FACTOR, GENE REGULATION
1830	XCII	۵	97	262	1e-22	0.58	1.00		RHO-GEF VAV; CHAIN: A;	SIGNALING PROTEIN 11 ALPHA-
1830	fau	>	250	200	06214	2	2		Charles Carrier	HELICES
	.,	,	i	Š	7.00-17	Ş			ONE I; CRAIN: A;	GUANINE NUCLEOTIDE
										EXCHANGE FACTOR AND PH
1030										DOMAIN
1830	1 pms		327	460	4.8e-18	0.23	0.11		SOS I; CHAIN: NULL;	SIGNAL TRANSDUCTION SON

	7							COLORI		
S E S	TD BUR	ID	START AA	AA	Psi Blast	Verify score	PMIF score	SEQFOLD score	Compound	PDB annotation
							_			OF SEVENLESS; PLECKSTRIN, SON OF SEVENLESS, SIGNAL TRANSDITCTION
3										
1833	LCOT	۶	73	313	3.2e-64	0.04	0.45		HIV-1 REVERSE TRANSCRIPTASE (A-CHAIN)	TRANSFERASE HIV-1 REVERSE
			_						CHAIN: A; HIV-1 REVERSE TRANSCRIPTASE (B-CHAIN); CHAIN: B:	NUCLEOSIDE INHIBITOR, 2 DRUG DESIGN
1833	lele	В	74	313	3.2e-73	-0.10	0.36		HIV-1 REVERSE	TRANSFERASE HIV-1 REVERSE
	-								CHAIN: A; HIV-1 REVERSE	NUCLEOSIDE INHIBITOR, 2
1833	100	>	3	313	3 3 5 60	3			CHAIN: B;	
1000	152	>		313	3.2e-08	-0.09	0.93		HIV-1 REVERSE TRANSCRIPTASE (CHAIN A):	TRANSFERASE/IMMUNE SYSTEM/DNA HIV-1 RT: HIV-1
					•				CHAIN: A; HIV-1 REVERSE	RT; HIV, REVERSE
						_			TRANSCRIPTASE (CHAIN B); CHAIN: B; ANTIBODY (LIGHT	TRANSCRIPTASE, MET184ILE,
									CHAIN); CHAIN: L; ANTIBODY	DRUG RESISTANCE, M184I,
									(HEAVY CHAIN); CHAIN: H;	TRANSFERASE/IMMUNE 3
		1							DNA (5'- CHAIN: T; DNA (5'- CHAIN: P;	SYSTEM/DNA
1833	Ichr	t.	772	313	4.8c-78	-0.11	0.46		HIV-1 REVERSE	TRANSFERASE/IMMUNE
	•			_					TRANSCRIPTASE (CHAIN A);	SYSTEM/DNA HIV-1 RT; HIV-1
									CHAIN: A; HIV-1 REVERSE	RT; HIV, REVERSE
							·,		TRANSCRIPTASE (CHAIN B);	TRANSCRIPTASE, MET184ILE,
									CHAIN: B, ANTIBODY (LIGHT	51C, FROIRIN-UNA 2 COMPLEX

	,		r				_
1833	1833	1833	1833	1833		NO: DEQ	
1 rth	lmml	1 mml	lhar	1har	·	РДВ	
>						CHAIN	
72	77	15	72	72		START AA	
313	277	278	258	258		AA	
8e-85	6.4e-49	6.4e-49	3.2e-56	3.2e-56		Psi Blast	
-0.02	0.41		0.27			Verify score	
0.80	1.00		0.90			PMF score	
		121.40		61.15		SEQFOLD score	r ante o
HIV-1 REVERSE TRANSCRIPTASE; 1RTH 4 CHAIN: A, B; 1RTH 5	MMLV REVERSE TRANSCRIPTASE; IMML 4 CHAIN: NULL; 1MML 5	MMLV REVERSE TRANSCRIPTASE; 1MML 4 CHAIN: NULL; 1MML 5	REVERSE TRANSCRIPTASE HIV-1 REVERSE TRANSCRIPTASE (AMINO- TERMINAL HALF) (FINGERS 11HAR 3 AND PALM SUBDOMAINS) (RT216) (E.C.2.7.7.49) 1HAR 4	REVERSE TRANSCRIPTASE HIV-1 REVERSE TRANSCRIPTASE (AMINO- TERMINAL HALF) (FINGERS IHAR 3 AND PALM SUBDOMAINS) (RT216) (E.C.2.7.7.49) 1HAR 4	CHAIN); CHAIN: L; ANTIBODY (HEAVY CHAIN); CHAIN: H; DNA (5'- CHAIN: T; DNA (5'- CHAIN: P;	Compound	
NUCLEOTIDYLTRANSFERASE HIV-1 RT; 1RTH 6 HIV-1 REVERSE TRANSCRIPTASE 1RTH 15	REVERSE TRANSCRIPTASE	REVERSE TRANSCRIPTASE			DRUG RESISTANCE, M184I, TRANSFERASE/IMMUNE 3 SYSTEM/DNA	PDB annotation	

								Coron		
SEQ	PDB	CHAIN	START	END	Psi	Verify	PMF	SEQFOLD	Compound	PDB annotation
NO.	Ш	Ш	AA	AA	Blast	score	score	score		
1833	lrth	В	72	313	4.8e-76	-0.19	0.21		HIV-1 REVERSE TRANSCRIPTASE; 1RTH 4	NUCLEOTIDYLTRANSFERASE HIV-1 RT; 1RTH 6 HIV-1
									CHAIN: A, B; 1RTH 5	REVERSE TRANSCRIPTASE 1RTH 15
1833	lvrt	A	73	313	3.2e-84	-0.09	0.69		HIV-1 REVERSE TRANSCRIPTASE; 1VRT 4	NUCLEOTIDYLTRANSFERASE HIV-1 RT; 1VRT 6 HIV-1
									CHAIN: A, B; 1VRT 5	REVERSE TRANSCRIPTASE 1VRT 15
1833	1vrt	₩	74	313	4.8e-74	-0.10	0.15		HIV-1 REVERSE TRANSCRIPTASE; 1VRT 4	NUCLEOTIDYLTRANSFERASE HIV-1 RT; 1VRT 6 HIV-1
									CHAIN: A, B; 1VRT 5	REVERSE TRANSCRIPTASE 1VRT 15
1833	3hvt	₩	72	313	1.3e-68	-0.29	0.13		NUCLEOTIDYLTRANSFERASE REVERSE TRANSCRIPTASE (E.C.2.7.7.49) 3HVT 3	
1842	1d0s	≯	24	266	6.8e-11	0.00	-0.20		NICOTINATE MONONUCLEOTIDE:5,6- CHAIN: A;	TRANSFERASE DINUCLEOTIDE- BINDING MOTIF, PHOSPHORIBOSYL TRANSFERASE
1846	lee4	>	12	136	1.7e-05	-0.21	0.12		CHAIN: A, B; MYC PROTO-	TRANSPORT PROTEIN SERINE- RICH RNA POLYMERASE I
									ONCOGENE PROTEIN; CHAIN: C, D, E, F;	SUPPRESSOR PROTEIN; ARM REPEAT
1846	lee4	A	55	233	1.7e-11	-0.18	0.42		KARYOPHERIN ALPHA;	TRANSPORT PROTEIN SERINE-
									ONCOGENE PROTEIN; CHAIN:	SUPPRESSOR PROTEIN; ARM

		I		Γ	<u> </u>	,	-[7 _ 0
1849					1846		1846	SEQ NO:
1f7d	1euw	1 dun	1 dun		3bct			рдв Ш
	Α						>	CHAIN
335	330	332	324		61	· ·	^	START AA
401	401	401	401		282	Ç	101	AA AA
1.4e-12	6.4e-08	1.7e-15	8e-11		6.8e-11	,	3 15 11	Psi Blast
-0.88	-0.83	-0.91	-0.53		-0.10	\$ 1	2	Verify score
0.34	0.42	0.45	0.40		0.43	0.10	200	PMF score
								SEQFOLD score
POL POLYPROTEIN; CHAIN: A, B;	DEOXYURDINE 5'- TRIPHOSPHATE NUCLEOTIDOHYDROLASE; CHAIN: A;	DEOXYURIDINE 5'- TRIPHOSPHATE NUCLEODITOHYDROLASE; CHAIN: NULL;	DEOXYURDINE 5'- TRIPHOSPHATE NUCLEODITOHYDROLASE; CHAIN: NULL;		BETA-CATENIN; CHAIN: NULL;	IMI ORTHY ALCHA, CHAIN: A;	C, D, E, F;	Compound
VIRUS/VIRAL PROTEIN EIGHT STRANDED BETA-BARREL	HYDROLASE DUTPASE; JELLY ROLL, MERCURY DERIVATIVE	HYDROLASE DUTPASE, DUTP PYROPHOSPHATASE; HYDROLASE, DUTPASE, EIAV, TRIMERIC ENZYME, ASPARTYL PROTEASE	HYDROLASE DUTPASE, DUTP PYROPHOSPHATASE; HYDROLASE, DUTPASE, EIAV, TRIMERIC ENZYME, ASPARTYL PROTEASE		ARMADILLO REPEAT ARMADILLO REPEAT, BETA- CATENIN, CYTOSKELETON	KARYOPHERIN ALPHA; NUCLEAR IMPORT RECEPTOR, NUCLEAR IMPORT RECEPTOR, NUCLEAR LOCALIZATION SIGNAL, 2 ARMADILLO REPEATS, AUTOINHIBITION, INTRASTERIC REGULATION	REPEAT	PDB annotation

1864	į	106	1864	1864			281		1849		1849	1849	N E
4 1g25	100		1000	lbor	+		┰	+	9 1f7r		5 177	19 1f7d	y o x
A	>	ļ			-				A		<u> </u>	A	
217	-		J.	2			3		3		, l	3	T T
17	190	210	0	210		017	5		339	Ę	325	339	AA
257	2/0	707	263	257		226	25		401	Ş	2	401	A
1e-07	3.2e-09	1.0e-07	16.03	3.4e-10		0.0035			3.4e-15	1.46-12	1	3.4e-14	Blast
-0.57	-0.15	-0.22	3	-0.58		-0.37		6.70	-0.78	6.75	350	-0.63	score
0.43	0.16	0.47		0.11		0.01		ģ	26.0	0.47		0.51	score
													SEQFOLD
CDK-ACTIVATING KINASE	SIGNAL TRANSDUCTION PROTEIN CBL; CHAIN: A; ZAP-70 PEPTIDE; CHAIN: B; UBIQUITIN-CONJUGATING ENZYMB B12-18 KDA UBCH7; CHAIN: C:	VIRUS EQUINE HERPES VIRUS-1 (C3HC4, OR RING DOMAIN) 1CHC 3 (NMR, 1 STRUCTURE) 1CHC 4	FML; CHAIN: NULL;	TRANSCRIPTION FACTOR		TRANSCRIPTION FACTOR PML; CHAIN: NULL;		FOL FOLYFROIBIN; CHAIN: A;	not not vanomint out at	POL POLYPROTEIN; CHAIN: A;	В;	POL POL YPROTEIN: CHAIN: A	Compound
METAL DRIVING PROTERIES	LIGASE CBL, UBCH7, ZAP-70, E2, UBIQUITIN, E3, PHOSPHORYLATION, 2 TYROSINE KINASE, UBIQUITINATION, PROTEIN		PROTO-ONCOGENE, NUCLEAR BODIES (PODS), LEUKEMIA, 2 TRANSCRIPTION REGULATION	TRANSCRIPTION REGULATION	BODIES (PODS), LEUKEMIA, 2 TRANSCRIPTION REGIT ATTOM	TRANSCRIPTION REGULATION PROTO-ONCOGENE MICHEAN		VIRUS/VIRAL PROTEIN EIGHT STRANDED BETA BARREL PROTEIN	PROTEIN	VIRUS/VIRAL PROTEIN EIGHT STRANDED BETA BARREL	STRANDED BETA-BARREL	VIBITED AT THE THE THE THE THE THE THE THE THE TH	PDB annotation

100/	1003	1000	1804	1864		NO:
Toec	I bd2			lrmd		PDB TD
	tr				,	CHAIN
23	2		. 217	201		START AA
138	138		257	304		END
9.6e-48			1.4e-09	4.8e-05		Psi Blast
0.05	0.01		-0.58	-0.67		Verify score
0.12	0.34		0.82	0.05		PMT score
						SEQFOLD score
14.3.D T CELL ANTIGEN RECEPTOR; 1BEC 5 CHAIN: NULL; 1BEC 6	HLA-A 0201; CHAIN: A; BETA- 2 MICROGLOBULIN; CHAIN: B; TAX PEPTIDE; CHAIN: C; T CELL RECEPTOR ALPHA; CHAIN: D; T CELL RECEPTOR BETA; CHAIN: E;		RAG1; CHAIN: NULL;	RAGI; CHAIN: NULL;	ASSEMBLY FACTOR MAT1; CHAIN: A;	Compound
RECEPTOR T CELL RECEPTOR IBEC 14	COMPLEX (MHC/VIRAL PEPTIDE/RECEPTOR) HLA A2 HEAVY CHAIN; COMPLEX (MHC/VIRAL PEPTIDE/RECEPTOR)		DNA-BINDING PROTEIN V(D)J RECOMBINATION ACTIVATING PROTEIN 1; RAG1, V(D)J RECOMBINATION, ANTIBODY, MAD, RING FINGER, 2 ZINC BINUCLEAR CLUSTER, ZINC FINGER, DNA-BINDING PROTEIN	DNA-BINDING PROTEIN V(D)J RECOMBINATION ACTIVATING PROTEIN 1; RAG1, V(D)J RECOMBINATION, ANTIBODY, MAD, RING FINGER, 2 ZINC BINUCLEAR CLUSTER, ZINC FINGER, DNA-BINDING PROTEIN	FINGER PROTEIN MATI; RING FINGER (C3HC4)	PDB annotation

PDB CHAIN START END Psi Verify PMF SEQFOLD ID AA AA Blast score score	CHAIN START END Psi Verify PMF ID AA AA Blast score score
START END Psi Verify PMF AA AA Blast score score 23 177 1.6e-55 -0.12 0.22 20 138 1.6e-45 0.48 1.00	START END Psi Verify PMF SEQFOLD Compound AA AA Blast score score score ALPHA-BETA T CELL RECEPTOR (TCR) (D10); CHAIN: A; 23 177 1.6e-55 -0.12 0.22 ALPHA-BETA T CELL RECEPTOR (TCR) (D10); CHAIN: A; 20 138 1.6e-45 0.48 1.00 N15 ALPHA-BETA T-CEL RECEPTOR; CHAIN: A, B 40 138 1.6e-45 0.48 1.00 N15 ALPHA-BETA T-CEL RECEPTOR; CHAIN: A, B
END Psi Verity PMF AA Blast score score 177 1.6e-55 -0.12 0.22 138 1.6e-45 0.48 1.00 183 1.6e-45 0.48 1.00	END Psi Verify PMF SEQFOLD Compound AA Blast score score score 177 1.6e-55 -0.12 0.22 ALPHA-BETA T CELL RECEPTOR (TCR) (D10); CHAIN: A; 138 1.6e-45 0.48 1.00 N15 ALPHA-BETA T-CEL RECEPTOR; CHAIN: A, B H57 FAB; CHAIN: B, F, G, 183 1.6e-45 N15 ALPHA-BETA T-CEL
Psi Verify PMF Blast score score 1.6e-55 -0.12 0.22 1.6e-45 0.48 1.00 1.6e-45 0.48 1.00	Psi Verify PMF SEQFOLD Compound Blast score score 1.6e-55 -0.12 0.22 ALPHA-BETA T CELL RECEPTOR (TCR) (D10); CHAIN: A; 1.6e-45 0.48 1.00 N15 ALPHA-BETA T-CEL RECEPTOR; CHAIN: A, B H57 FAB; CHAIN: E, F, G, 1.6e-45 N15 ALPHA-BETA T-CEL RECEPTOR; CHAIN: A, B H57 FAB; CHAIN: A, B RECEPTOR; CHAIN: A, B RECEPTOR; CHAIN: A, B
ty PMF score 0.22	1 ADJE 3 14fy PMF SEQFOLD Compound score score 2 0.22 ALPHA-BETA T CELL RECEPTOR (TCR) (D10); CHAIN: A; 1.00 N15 ALPHA-BETA T-CEL RECEPTOR; CHAIN: A, B H57 FAB; CHAIN: E, F, G, H57 FAB; CHAIN: A, B H57 FAB; CHAIN: A,
6 3	SEQFOLD ALPHA-BETA T CELL RECEPTOR (TCR) (D10); CHAIN: A; N15 ALPHA-BETA T-CEL RECEPTOR; CHAIN: A, B H57 FAB; CHAIN: E, F, G, N15 ALPHA-BETA T-CEL RECEPTOR; CHAIN: E, F, G, H57 FAB; CHAIN: E, F, G, MMUNOGLOBULIN FAI
SEQFOLD score	FOLD ALPHA-BETA T CELL RECEPTOR (TCR) (D10); CHAIN: A; N15 ALPHA-BETA T-CEL RECEPTOR; CHAIN: A, B H57 FAB; CHAIN: E, F, G, H57 FAB; CHAIN: E, F, G, IMMUNOGLOBULIN FAI
	Compound ALPHA-BETA T CELL RECEPTOR (TCR) (D10); CHAIN: A; NIS ALPHA-BETA T-CELL RECEPTOR; CHAIN: A, B, C, D; H57 FAB; CHAIN: E, F, G, H NIS ALPHA-BETA T-CELL RECEPTOR; CHAIN: A, B, C, D; H57 FAB; CHAIN: B, F, G, H IMMUNOGLOBULIN FAB 2FB4

		_,																_	_	_			
10,5	1804	1895		7697	1005						CKP1	1005			-	1895	CKOT	1005			NO.	SEC	
	1.	<u>=</u>		1771	3	_					TCSL	\$		•		1c0t	1691	1100			Ħ	PDB	
				*							Þ				;	Α	A				Ħ	CHAIN	
à	26	36		34	2						Ū					7	171				A	START	
1/0	170	5		183							175		_		104	154	205				AA	END	
1e-1/	3.0027	0 66-27		4.8e-33							3.2e-31				1.06-00	16.25	1e-05			1	Blast	Psi	
0.04		010		-0.05				•			0.13				17.0	2	-0.77				score	Verify	
0.68	0.10	212		0.04							-0.13				-0.05	200	0.13			1	score	FIME	
																					score	SEOFOLD	c alde r
HYDROLASE(ENDORIBONUC LEASE) RIBONUCLEASE H	HYDROLASE(ENDORIBONUC LEASE) RIBONUCLEASE H (E.C.3.1.26.4) 1RIL 3	TITOTO CONTRACTOR OF THE PARTY		RIBONUCLEASE HI; CHAIN: A;	CHAIN: P;	DNA (5'- CHAIN); CHAIN: H;	CHAIN); CHAIN: L; ANTIBODY	CHAIN: B; ANTIBODY (LIGHT	TRANSCRIPTASE (CHAIN B)	TRANSCRIPTASE (CHAIN A);	HIV-1 REVERSE	CHAIN: B;	TRANSCRIPTASE /B. CHAIN.	CHAIN: A: HIV I BEVIERSE	HIV-I REVERSE		INTEGRASE; CHAIN: A;		B, D;		Conforma	Compound	
		FOLDING	RIBNUCLEASE, RNASE H*, RIBNUCLEASE H, METAL- BINDING 2 PROTEIN, PROTEIN	HYDROLASE RNASE H,		TRANSFERASE/IMMUNE 3 SYSTEM/DNA	DRUG RESISTANCE, M184I,	3TC. PROTEIN-DNA 2 COMPLEX	TRANSCRIPTASE METICATE	SYSTEM/DNA HIV-1 RT; HIV-1	TRANSFERASE/IMMUNE	DROG DESIGN	DOLLEOSIDE INHIBITOR, 2	TRANSCRIPTASE, AIDS, NON-	TRANSFERASE HIV-1 REVERSE	INTEGRATION, TRASFERASE	TRASFERASE DNA				rub annotation	מממ	

7171		1	101	01 5	01	191		1895	1895	NO E	SEC
poar	+	240%	-	_	+	1 lcod			\$ 	+	PDB
>	┸	>	>	>		+	;	> ;	A	 -	B CHAIN
5/		40	42 4	f f		45		<i>y</i> (y		IN START
129		Ę	1 6	: =		11	5	164	15	 	END
0.00031		1.66-21	0.46-19	1.3e-18		3 26 17	7.05-20	1.00.31	4 02 31	Blast	Psi
0.47		0.02	-0.22	-0.28		93.0	0.01	0.00	3	score	Verify
0.70		0.30	0.03	10.0		0 10	-0.08	6.1		score	TME
										score	T aoie 3
HIV-1 PROTEASE; CHAIN: A, B;		POSTSYNAPTIC NEUROTOXIN ALPHA-*BUNGAROTOXIN 2ABX 4	TOXIN TOXIN ALPHA (NMR, 8 STRUCTURES) INEA 3	TOXIN KAPPA- BUNGAROTOXIN 1KBA 3	COBROTOXIN (NMR, AVERAGE STRUCTURE) 1CODA 2		TRANSCRIPTASE; IVRT 4 CHAIN: A, B; IVRT 5	HIV-I REVERSE TRANSCRIPTASE; 1RTH 4 CHAIN: A, B; 1RTH 5	(E.C.3.1.26.4) 1RIL 3	Compound	
HYDROLASE HYDROLASE, AIDS, POLYPROTEIN, ASPARTYL PROTEASE, ACID 2 PROTEASE, HYDROXYETHYLENE							NUCLEOTIDYLTRANSFERASE HIV-1 RT; 1VRT 6 HIV-1 REVERSE TRANSCRIPTASE 1VRT 15	NUCLEOTIDYLTRANSFERASE HIV-1 RT; IRTH 6 HIV-1 REVERSE TRANSCRIPTASE IRTH 15		PDB annotation	

1712	1912	1912	1912	1912	NO:
1102	Ibvc	Idaz	1 bwb	1bdq	PDB ID
>	>	C	A	A	CHAIN
<i>3.</i> /	37	37	37	43	START AA
129	129	132	129	129	END
0.00068		0.00024	0.00068	0.0085	Psi Blast
0.27	0.10	0.59	0.13	0.43	Verify score
0.35	0.29	0.89	0.45	0.90	PMF score
				·	SEQFOLD
HYDROLASE(ACID PROTEINASE) HUMAN IMMUNODEFICIENCY VIRUS TYPE 2 (HIV-2) PROTEASE IIDA 3 COMPLEXED WITH THE INHIBITOR BILA 1906 CONTAINING THE IIDA 4	HYDROLASE(ACID PROTEASE) HIV-1 PROTEASE (TETHERED DIMER LINKED BY 1HVC 3 GLY-GLY-SER- SER-GLY) COMPLEXED WITH A-76928 1HVC 4	PEPTIDE INHIBITOR; CHAIN: A, B; HIV-1 PROTEASB (RETROPEPSIN); CHAIN: C, D;	HIV-1 PROTEASE; CHAIN: A, B;	HIV-1 PROTEASE; CHAIN: A, B;	Compound
		HYDROLASE HIV-1 PROTEASE, MUTANT, DIMER, INHIBITOR, OCCUPANCY	HYDROLASE HIV-1 PROTEASE, HYDROLASE	SUBSTRATE 3 ANALOGUE INHIBITOR HYDROLASE HYDROLASE, ALDS, POL YPROTEIN, ASPARTYL PROTEASE, ACID 2 PROTEASE, HYDROXYETHYLENE ISOSTERE INHIBITOR, SUBSTRATE 3 ANALOGUE INHIBITOR	PDB annotation

Г					_				_	Т	1			_						_			_	
		1913				1913			1713	1012	\downarrow				1	1912				77.61	013		NO.	NE C
		1h4f			*	150*			XOOT	5					•	lsip				THILL			E	FDB.
		>			-	Δ				<u> </u>										>			E	CHAIN
		107			117	777			11							37				٥/	3		AA	START
		171			7+7	247			1/0						į	133				132			AA	END
	2./6-11	L			3.26-13				1e-05						0.000	0 0068				0.00017			Blast	Psi
	0.53				0.33	3			0.43						0.00	080				0.59			score	Verify
	0.81	2			0.10				0.64						į	73.0				0.45			score	PMF
																							score	SEQFOLD
	EPHB2; CHAIN: A, B, C, D, E, F, G, H;			KINASE; CHAIN: A;	EPHA4 RECEPTOR TYROSINE			KINASE; CHAIN: A;	EPHA4 RECEPTOR TYROSINE		(E.C.3.4.23) 1SIP 4	MAC251-32H ISOLATE)	(SIV) PROTEINASE ISID 3 (SIV	IMMUNODEFICIENCY VIRIS	PROTEINASE(ACID	THE PARTY OF THE P	CHAIN: C;	PEPTIDOMIMETIC INHIBITOR;	PHE-ILE-VAL	HIV-1 PROTEASE; A CYCLIC	DIPEPTIDE ISOSTERE 1IDA 5	TVDBOVETTING NOT		Compound
SIGNAL TRANSDUCTION,	SIGNAL TRANSDUCTION SAM	TRANSFERASE	DIMERIZATION MODULE, 2	TYROSINE KINASE, PROTEIN	TRANSFERASE RECEPTOR	TRANSFERASE	DIMERIZATION MODULE, 2	TYROSINE KINASE, PROTEIN	TRANSFERASE RECEPTOR							INHIBITOR	PROTEINASE, AIDS, PEPTIDE,	PR; HYDROLASE, ASPARTYL	PROTEASE/INHIBITOR) HIV-1	COMPLEX (ASPARTYL				PDR appotation

	т	1		r			
1914	1914		1913	1913	1913	1913	SEQ NO:
1pdr	1be9		1sgg	1sgg	1641	lb4f	E E E
	Α				A	Α	CHAIN
19	19		184	11	270	182	START AA
62	69		249	171	348	249	END AA
8e-12	3.2e-15		8 c- 14	3.4e-06	6.4e-19	9.6e-15	Psi Blast
0.08	-0.21		0.34	0.58	0.28	0.14	Verify score
0.04	0.29		0.52	0.77	0.13	0.37	PMF score
							SEQFOLD score
HUMAN DISCS LARGE PROTEIN; CHAIN: NULL;	PSD-95; CHAIN: A; CRIPT; CHAIN: B;		EPHRIN TYPE-B RECEPTOR 2; CHAIN: NULL;	EPHRIN TYPE-B RECEPTOR 2; CHAIN: NULL;	EPHB2; CHAIN: A, B, C, D, E, F, G, H;	EPHB2; CHAIN: A, B, C, D, E, F, G, H;	Compound
SIGNAL TRANSDUCTION HDLG, DHR3 DOMAIN; SIGNAL	PEPTIDE RECOGNITION PEPTIDE RECOGNITION, PROTEIN LOCALIZATION		TYROSINE-PROTEIN KINASE NMR, RECEPTOR OLIGOMERIZATION, EPH RECEPTORS, TYROSINE 2 PHOSPHORYLATION, SIGNAL TRANSDUCTION, TYROSINE- PROTEIN 3 KINASE	TYROSINE-PROTEIN KINASE NMR, RECEPTOR OLIGOMERIZATION, EPH RECEPTORS, TYROSINE 2 PHOSPHORYLATION, SIGNAL TRANSDUCTION, TYROSINE- PROTEIN 3 KINASE	SIGNAL TRANSDUCTION SAM DOMAIN, EPH RECEPTOR, SIGNAL TRANSDUCTION, OLIGOMER	SIGNAL TRANSDUCTION SAM DOMAIN, EPH RECEPTOR, SIGNAL TRANSDUCTION, OLIGOMER	PDB annotation

SEQ	PDB	CHAIN	START AA	AA	Psi Blast	Verify score	PMF score		
								3	SYNTHASE (BESINITES 1 120)
								H	AIN: B;
1920	lqlc	Þ	135	170	1.4e-05	-0.72	0.94	PRO	POSTSYNAPTIC DENSITY PROTEIN 95; CHAIN: A;
1920	3pdz	≯	129	170	0.0037	-0.79	0.93	Ę₽	TYROSINE PHOSPHATASE (PTP-BAS, TYPE 1); CHAIN: A;
1930	+	'	29	146	3.2e-65	0.38	1.00	> ™	FAB FRAGMENT, ANTIBODY A5B7; CHAIN: A, B, C, D;
1930	162w	ι-	22	146	9.6e-69	0.30	0.98	 00>	ANTIBODY (LIGHT CHAIN); CHAIN: L; ANTIBODY (HEAVY
									,
1020			3						
1930	Dogl	۵	28	146	1.1e-69	0.45	0.98	IMMI A, B;	IMMUNOGLOBULIN; CHAIN: A, B;
1930	1bj1	٦	28	146	1.4e-71	0.40	0.99	ΑŦ	FAB FRAGMENT; CHAIN: L, H,
									of the Contract

			т.																		
	1930	1930					1930			1930							1930			Ö E	SEQ
	lfvd	1dfb				, 400	idee		;	[E]	i						1bvk			B	PDB
	>	T			_	-	Δ		l	F							Α			₽	CHAIN
	28	28				07	2		2	28							27			AA	START
	146	146				140			140	1/4							133			AA	
		9.6e-69				1.6e-/2			1.56-00	132 60			-				1.6e-59	_		Blast	Psi
	_	0.47				0.63			0.40											score	Verify
6.60	000	0.98				0.99			0.99									-		score	PMF
			13														29 69			score	SEOFOLD
IMMUNOGLOBULIN FAB FRAGMENT OF HUMANIZED ANTIBODY 4D5, VERSION 4 IFVD 3	1DFB 3		G, H;	BINDING PROTEIN A; CHAIN:	IGM RF 2A2; CHAIN: B, D, F;	IGM RF 2A2; CHAIN; A, C, E;	PEPTIDE ANTIGEN; CHAIN: P:	IH:HEAVY CHAIN: CHAIN: H:	CAMPATH-1H:LIGHT CHAIN;						· · · · · · · · · · · · · · · · · · ·	I VSOTVAGE CITATI A, B, D, E;	THE TOTAL CITY OF	FACTOR; CHAIN: V, W;	ENDOTHELIAL GROWTH	Compound	Comment
		SPECIFICITY	ANTIGEN COMBINING SITE SUPERANTIGEN FAB VH3 3	BINDING 2 OUTSIDE THE	COMPLEX CRYSTAL	IMMUNE SYSTEM FAR-IRP		ANTIBODY, CD52	ANTIBODY THERAPEUTIC	ANTIBODY/HYDROLASE)	(HUMANIZED	LYSOZYME, 2 COMPLEX	COMPLEY AND I	ANTIBODY ANTIBODY	ANTIBODY/HYDROLASE)	COMPLEX (HUMANIZED	ANGIOGENIC FACTOR	(ANTIBODY/ANTIGEN),	The contract of the contract o	PDB annotation	

			_		,				
1935	1935	1935		1934		1930		ë A	SEQ
1c0m	1613	1b9f		ldld		2fgw	1 vge	Ш	PDB
A	c	A		Þ		L	Ţ	Ħ	CHAIN
1	∞	8		9		28	29	AA	START
132	150	150		69		146	146	AA	END
3.4e-23	4.8e-28	1.4e-25		0.0062		8c-72	1.6e-68	Blast	Psi
0.17	0.25	0.23		-0.64		0.57	0.51	score	Verify
0.86	0.55	0.82		0.22		1.00	1.00	score	PMF
								score	SEQFOLD
INTEGRASE; CHAIN: A, B, C, D;	INTEGRASE; CHAIN: A, B, C;	INTEGRASE; CHAIN: A;		CAPSID PROTEIN; CHAIN: A;		IMMUNOGLOBULIN FAB FRAGMENT OF A HUMANIZED VERSION OF THE ANTI-CD18 2FGW 3 ANTIBODY 'H52' (HUH52-OZ FAB) 2FGW 4	TR1.9 FAB; CHAIN: L, H;		Compound
TRANSFERASE INTEGRASE, ROUS SARCOMA VIRUS, HIV, X- RAY CRYSTALLOGRAPHY, 2	DNA INTEGRATION DNA INTEGRATION, AIDS, POLYPROTEIN, HYDROLASE, 2 ENDONUCLEASE, POLYNUCLEOTIDYL TRANSFERASE, DNA BINDING 3 (VIRAL)	TRASFERASE DNA INTEGRATION, TRASFERASE		VIRUS/VIRAL PROTEIN TWO INDEPENDENT DOMAINS HELICAL BUNDLES, VIRUS/VIRAL PROTEIN			IMMUNOGLOBULIN TR1.9, ANTI-THYROID PEROXIDASE, AUTOANTIBODY, 2 IMMUNOGLOBULIN		PDB annotation

								Table 5		
S E S	Œ	D D	AA AA	AA	Psi Blast	Verity score	score	SEQFOLD score	Compound	PDB annotation
										PROTEIN STRUCTURE, TRANSFERASE
1935	TCOB	Þ	ν.	126	3.2e-20	0.04	0.58		INTEGRASE; CHAIN: A, B, C, D;	TRANSFERASE INTEGRASE, ROUS SARCOMA VIRUS, HIV. X-
										RAY CRYSTALLOGRAPHY, 2 PROTEIN STRUCTURE.
1035		J	1							TRANSFERASE
1933	ICIA	b	-	131	1.4e-20	0.28	0.92		RSV INTEGRASE; CHAIN: A, B;	VIRUS/VIRAL PROTEIN INTEGRASE. ROUS SARCOMA
								-		VIRUS, HIV, X-RAY
										CRYSTALLOGRAPHY, 2 VIRUSVIR AL PROTEIN
LYSS	ICIA	ե	2	131	1.6e-20	0.19	0.96		RSV INTEGRASE; CHAIN: A, B;	VIRUS/VIRAL PROTEIN
										INTEGRASE, ROUS SARCOMA
										CRYSTALLOGRAPHY, 2
1035	1070	>	3 	3	3 45 31	2				VIRUS/VIRAL PROTEIN
Ç	7027	.		021	3.46-21	0.1.	0.86		INTEGRASE; CHAIN: A;	TRANSFERASE MIXED BETA- SHEET SURROUNDED BY
1035	lovA	>	0	166	64-24	3				ALPHA-HELICES
1955	YCXH	>	0	100	0.46-24	-0.09	0.45		INTEGRASE; CHAIN: A, B;	VIRUS/VIRAL PROTEIN SH3-
										DNA BINDING BETA SHEET.
1035	1					L				CIS- 2 PROLINE
1900	Texd	>	•	ויי	0.46-21	0.04	0.40		POL POLYPROTEIN; CHAIN: A,	VIRUS/VIRAL PROTEIN HIV-1
_									œ	INTEGRASE,
										POLYNUCLEOTIDYL
										7 DAILOLEVANDE, DIAM-DIADINO 7

										_
1940	1940	1940	1940	1940	1940	·	1935		ğ Ħ	SEO
lvrt	lril	lhrh	lbrh	1c0t	laub		1qs4		₽ Ş	PDR
A		Α	Α	>			A		Œ	CHAIN
	24	22	21	_	148		∞		AA	START
125	156	152	123	125	192		150		AA	TUN
4.8e-18	6.8e-14	3.4e-17	3.2e-15	1.4e-20	9.6e-09		3.2e-23		Blast	Pel
-0.11	0.10	0.07	0.00	-0.30	-0.02		-0.09		score	Varify
0.13	0.39	0.17	0.41	0.00	0.58		0.63		score	HMd
									score	CEOEULU
HIV-1 REVERSE TRANSCRIPTASE; IVRT 4 CHAIN: A, B; IVRT 5	HYDROLASE(ENDORIBONUC LEASE) RIBONUCLEASE H (E.C.3.1.26.4) 1RIL 3	HYDROLASE(ENDORIBONUC LEASE) RIBONUCLEASE H DOMAIN OF /HIV-1\$ REVERSE TRANSCRIPTASE 1HRH 3	HYDROLASE(ENDÓRIBONUC LEASE) RIBONUCLEASE H DOMAIN OF /HIV-1\$ REVERSE TRANSCRIPTASE 1HRH 3	HIV-1 REVERSE TRANSCRIPTASB (A-CHAIN); CHAIN: A; HIV-1 REVERSE TRANSCRIPTASE (B-CHAIN); CHAIN: B;	HIV-2 INTEGRASE; CHAIN: NULL;		HIV-1 INTEGRASE; CHAIN: A, B, C;		Сопропи	Communication
NUCLEOTIDYLTRANSFERASE HIV-1 RT; IVRT 6 HIV-1 REVERSE TRANSCRIPTASE IVRT 15				TRANSFERASE HIV-1 REVERSE TRANSCRIPTASE, AIDS, NON-NUCLEOSIDE INHIBITOR, 2 DRUG DESIGN	INTEGRASE INTEGRASE, AIDS, POLYPROTEIN	PROTEASE, ENDONUCLEASE	HYDROLASE DNA INTEGRATION, INTEGRASE, HTV HYDROLASE ASBABTYL 2	PROTEIN, DD35E	rub annotation	100

SEQ	РДВ	CHAIN	START	END	Psi	Verify	PMF	SEQ	SEQFOLD	PFOLD Compound
NO:	B	Ħ	AA	AA	Blast	score	score	score		Þ
1952	1d0b	Α	157	203	1.3e-05	-0.01	0.93		INTERNA	INTERNALIN B; CHAIN: A;
			i							,
1952	1d0b	Þ	74	200	1.3e-22	0.37	0.05		INTERNAL	INTERNALIN B; CHAIN: A;
7061	Idce	Þ		149	3.2 c- 10	0.24	-0.13		RAB GERANYI	RAB GERANYLGERANYLTRANSFE
									KASE ALPHA SUB CHAIN: A, C; RAB GERANYLGERAN RASE BETA SUBU B. D:	KASE ALPHA SUBUNIT; CHAIN: A, C; RAB GERANYLGERANYLTRANSFE RASE BETA SUBUNIT; CHAIN: B. D:
1952	1dce	A	97	197	1.1e-10	11.0-	0.22		RAB	
									GEKANYLGERAN RASE ALPHA SUB CHAIN: A, C; RAB	GBRANYLGERANYLTRANSFE RASE ALPHA SUBUNIT; CHAIN: A, C; RAB
									GERANYI	GERANYLGERANYLTRANSFE
									RASE BE	B, D;
1952	ldsy	A	70	191	4.8e-09	0.10	0.21		OUTER A	OUTER ARM DYNEIN; CHAIN:
									2	
1952	lds9	A	99	197	6.4e-13	-0.47	0.25		OUTER AR A;	OUTER ARM DYNEIN; CHAIN:

	_ ;	-			<u> </u>		Z V	7
1953	 		 	 			S A S	31
1qcq	lqcq	1042	1042	layz	layz		PDB ID	
>	>	b		S >	Α		CHAIN	
79	77	82	82	78	78		START AA	
220	217	220	218	220	218		A	
4.8e-50	4.8e-50	1.3e-35	1.3e-35	9.6e-46	9.6e-46		Psi Blast	
	0.15		0.17		0.35		Verify score	
	0.99		0.83		0.98		PMF score	
55.68		59.93		54.97			SEQFOLD score	Carrer
UBIQUITIN CONJUGATING ENZYME; CHAIN: A;	UBIQUITIN CONJUGATING ENZYME; CHAIN: A;	UBIQUITIN-PROTEIN LIGASE E3A; CHAIN: A, B, C; UBIQUITIN CONJUGATING ENZYME E2; CHAIN: D;	UBIQUITIN-PROTEIN LIGASE E3A; CHAIN: A, B, C; UBIQUITIN CONJUGATING ENZYME E2; CHAIN: D;	UBIQUITIN-CONJUGATING ENZYME RAD6; CHAIN: A, B, C;	UBIQUITIN-CONJUGATING ENZYME RAD6; CHAIN: A, B, C;		Compound	
LIGASE UBIQUITIN, UBIQUITIN- CONJUGATING ENZYME,	LIGASE UBIQUITIN, UBIQUITIN- CONJUGATING ENZYME, YEAST	LIGASE E6AP; UBCH7; BILOBAL STRUCTURE, ELONGATED SHAPE, E3 UBIQUITIN LIGASE, E2 2 UBIQUITIN CONJUGATING ENZYME	LIGASE E6AP; UBCH7; BILOBAL STRUCTURE, ELONGATED SHAPE, E3 UBIQUITIN LIGASE, E2 2 UBIQUITIN CONJUGATING ENZYME	UBIQUITIN CONJUGATION UBC2; UBIQUITIN CONJUGATION, UBIQUITIN- CONJUGATING ENZYME	UBIQUITIN CONJUGATION UBC2; UBIQUITIN CONJUGATION, UBIQUITIN- CONJUGATING ENZYME	BETA-ALPHA CYLINDER, DYNEIN, 2 CHLAMYDOMONAS, FLAGBLLA	PDB annotation	

3	פרוני	1 7 7 7 7 7	3		!!			Calor		
N E S	Œ	D	AA	AA	Blast	score	score	SEQFOLD	Compound	PDB annotation
1953	lu9a	A	77	219	3.2e-45	0.01	0.37		UBC9; CHAIN: NULL;	UBIQUITIN-CONJUGATING ENZYME UBIQUITIN-
										CONJUGATING ENZYMB; UBIQUITIN-CONJUGATING ENZYME, UBIQUITIN-DIRECTED 2 PROTEOLYSIS; CELL CYCLE CONTROL LIGASE
1953	2aak		77	218	1.6e-49 .	0.17	0.58		UBIQUITIN CONJUGATING ENZYME; CHAIN: NULL;	UBIQUITIN CONJUGATION UBC1; UBIQUITIN
1953	2aak		77	220	1.6e-49			55.30	UBIQUITIN CONJUGATING ENZYME; CHAIN: NULL;	UBIQUITIN CONJUGATION UBC1; UBIQUITIN CONTIGATION LIGASE
1953	. Ze2c			220	6.4e-43			57.76	UBIQUITIN CONJUGATING ENZYMB; CHAIN: NULL;	UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION, UBIQUITIN CARRIER PROTEIN, THIORECTER 2 BOND 11GA ST
1953	2e2c		76	219	6.4e-43	0.24	0.81		UBIQUITIN CONJUGATING ENZYME; CHAIN: NULL;	UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION, UBIQUITIN CARRIER PROTEIN, THIOESTER 2 ROND LIGASE
1953	2ucz		78	219	6.4e-43	0.29	0.66		UBIQUITIN CONJUGATING ENZYME; CHAIN: NULL;	UBIQUITIN CONJUGATION UBC7; UBIQUITIN CONJUGATION, LIGASE, YEAST
1954	1ck7	A	31	435	0	0.92	1.00		GELATINASE A; CHAIN: A;	HYDROLASE MMP-2,72KD TYPE IV COLLAGENASE; HYDROLASE

		-						Table 5		
NO BE	₩ E	CHAIN	START AA	AA AA	Psi Blast	Verify score	PMTF score	SEQFOLD score	Compound	PDB annotation
										(METALLOPROTEASE), FULL- LENGTH,
1052	1	-	2							METALLOPROTEINASE, 2 GELATINASE A
1934	ICK/	Þ	31	445	C			536.83	GELATINASE A; CHAIN: A;	HYDROLASE MMP-2,72KD TYPE IV COLLAGENASE;
										(METALLOPROTEASE), FULL- LENGTH,
1054			327							GELATINASE A
	102.48	٥	67.4	400	3.4e-28			108.03	METALLOPROTEINASE 2;	HYDROLASE COL-2; BETA SHEET, ALPHA HELIX,
1054	Cyw	Δ	3776	32/	16075	1 37	3		CIDALY, A,	HYUKULASE
1951	TCXW	>		4	1.06-23	1.3/	00.1		HUMAN MATRIX METALLOPROTEINASE 2; CHAIN: A:	HYDROLASE COL-2; BETA SHEET, ALPHA HELIX,
1954	lcxw	A	276	334	3.4e-28	1.37	1.00		HUMAN MATRIX	HYDROLASE COL-2; BETA
									CHAIN: A;	HYDROLASE
1958	1zbd	Α	207	281	3.2e-27	-0.01	0.07		RAB-3A; CHAIN: A;	COMPLEX (GTP-
										RELATED PROTEIN RAB3A;
										BINDING/EFFECTOR), G
										PROTEIN, EFFECTOR, RABCDR, 2 SYNAPTIC EXOCYTOSIS RAB
										CONTRACTOR TO TAKE THE PARTY OF

3	2723		-11					Carner		
Ħ۶	H	THALL	AA	A EN	Psi Blast	Vertiy	PMH	SEQFOLD	Compound	PDB annotation
Š										
1050	3									PROTEIN, RAB3A, RABPHILIN
1936	zngr	≯	117	283	3.2c-23	0.04	-0.12		(G25K); CHAIN: A: GTPASE	HYDROLASE CDC42/CDC42GAP;
									ACTIVATING PROTEIN (RHG);	STATE, G-PROTEIN, GAP,
1059	7	•	2	301	3	2	,		CHAIN: B;	CDC42, ALF3., HYDROLASE
1700	DIAD	>	017	197	3.2e-28	10.0	-0.01		RAB3A; CHAIN: A;	HYDROLASE G PROTEIN,
										HYDROLYSIS, RAB 2 PROTEIN,
									•	NEUROTRANSMITTER
										,
1965	100t	>	12	144	3.2e-39	-0.66	0.19		HIV-1 REVERSE	TRANSFERASE HIV-1 REVERSE
									CHAIN: A; HIV-1 REVERSE	NUCLEOSIDE INHIBITOR 2
							-		TRANSCRIPTASE (B-CHAIN);	DRUG DESIGN
1965	1clc	В	12	144	1.1e-41	-0.35	0.19		HIV-1 REVERSE	TRANSFERASE HIV-1 REVERSE
									TRANSCRIPTASE (A-CHAIN);	TRANSCRIPTASE, AIDS, NON-
									TRANSCRIPTASE (B-CHAIN);	DRUG DESIGN
1065	150,	Δ	3	144	100.10	0.40	25.0		CHAIN: B;	
,	10,1	\		<u> </u>	4.00-40	0.40	0.50		TRANSCRIPTASE (CHAIN A);	TRANSFERASE/IMMUNE SYSTEM/DNA HIV-1 RT; HIV-1
	·								CHAIN: A; HIV-1 REVERSE	RT; HIV, REVERSE
									TRANSCRIPTASE (CHAIN B);	TRANSCRIPTASE, MET184ILE,
									CHAIN: B; ANTIBODY (LIGHT	3TC, PROTEIN-DNA 2 COMPLEX,
									CHAIN); CHAIN: L; ANTIBODY	DRUG RESISTANCE, M184I,
									(DEAV & CHAIN); CHAIN: H;	I RANSFERASE/IMMUNE 3

					,				_
3	1965	1965	1965	1965		C961	1065	NO E	SFO
	Ĭ.	<u> </u>	₹	lhar		ІСУГ	\$	Ħ	PDR.
;	A .	D	>			ū		Ð	CHAIN
	13 13	3 6	10	12		12		AA	TUANT
1	1	1	144	103		144		AA	
7.06-40	9.06-42	. 3.00-40	0 60 16	4.8e-36		1.1e-46		FSI Blast	
0.50	-0.41	3	2	-0.43		-0.37		score	47
0.13			3	0.25		0.07		score	
								SEQEOLD	Table 5
TRANSCRIPTASE; 1VRT 4	TRANSCRIPTASE; IRTH 4 CHAIN: A, B; IRTH 5	TRANSCRIPTASE; 1RTH 4 CHAIN: A, B; 1RTH 5	TRANSCRIPTASE (AMINO- TERMINAL HALF) (FINGERS 1HAR 3 AND PALM SUBDOMAINS) (RT216) (E.C.2.7.7.49) 1HAR 4	REVERSE TRANSCRIPTASE HIV-1 REVERSE	TRANSCRIPTASE (CHAIN B); CHAIN: B; ANTIBODY (LIGHT CHAIN); CHAIN: L; ANTIBODY (HEAVY CHAIN); CHAIN: H; DNA (5'- CHAIN: T; DNA (5'- CHAIN: P;	HIV-1 REVERSE TRANSCRIPTASE (CHAIN A); CHAIN: A: HIV-1 REVERSE	DNA (5'- CHAIN: T; DNA (5'- CHAIN: P;	Compound	
NUCLEOTIDYLTRANSFERASE HIV-1 RT; 1VRT 6 HIV-1	NUCLEOTIDYLTRANSFERASE HIV-1 RT; 1RTH 6 HIV-1 REVERSE TRANSCRIPTASE 1RTH 15	NUCLEOTIDYLTRANSFERASE HIV-1 RT; 1RTH 6 HIV-1 REVERSE TRANSCRIPTASE 1RTH 15			TRANSCRIPTASE, MET184ILE, 3TC, PROTEIN-DNA 2 COMPLEX, DRUG RESISTANCE, M184I, TRANSFERASE/IMMUNE 3 SYSTEM/DNA	TRANSFBRASE/IMMUNE SYSTEM/DNA HIV-1 RT; HIV-1	SYSTEM/DNA	PDB annotation	

2F)	alla	TEV DIV	TE 7 IEC	1				Lable 5		
NO E	Œ	D	AA	AA	Blast	score	Score	SEQFOLD score	Compound	PDB annotation
									CHAIN: A, B; 1VRT 5	REVERSE TRANSCRIPTASE
190	1141	b	12	44	9.6e-42	-0.38 _.	0.00		HIV-1 REVERSE TRANSCRIPTASE; 1VRT 4 CHAIN: A, B; 1VRT 5	NUCLEOTIDYLTRANSFERASE HIV-1 RT; 1VRT 6 HIV-1 REVERSE TRANSCRIPTASE
1965	3hvt	₩	12	126	1.6e-38	-0.20	0.13		NUCLEOTIDYLTRANSFERASE	-+-
									REVERSE TRANSCRIPTASE (E.C.2.7.7.49) 3HVT 3	
1986	1cOt	A	35	302	16.51	3				
									TRANSCRIPTASE (A-CHAIN); CHAIN: A; HIV-1 REVERSE TRANSCRIPTASE (B-CHAIN);	TRANSFERASE HIV-1 REVERSE TRANSCRIPTASE, AIDS, NON- NUCLEOSIDE INHIBITOR, 2 DRUG DESIGN
1966	lclc	В	38	205	8e-47	-0.11	0.17		HIV-1 REVERSE	TD ANGEOD A CO TITLE - DESCRIPTION
 									TRANSCRIPTASE (A-CHAIN); CHAIN: A; HIV-1 REVERSE TRANSCRIPTASE (B-CHAIN); CHAIN: R.	TRANSFERASE HIV-1 REVERSE TRANSCRIPTASE, AIDS, NON- NUCLEOSIDE INHIBITOR, 2 DRUG DESIGN
1900	1c9r	>	13	206	1.1e-50	-0.46	0.36		HIV-1 REVERSE	TRANSFERASE/IMMUNE
									TRANSCRIPTASE (CHAIN A); CHAIN: A; HIV-1 REVERSE	SYSTEM/DNA HIV-1 RT; HIV-1 RT; HIV, REVERSE
					· · · · ·				CHAIN: B; ANTIBODY (LIGHT	TRANSCRIPTASE, MET184ILE, 3TC, PROTEIN-DNA 2 COMPLEX
									CHAIN); CHAIN: L; ANTIBODY (HEAVY CHAIN); CHAIN: H;	DRUG RESISTANCE, M184I, TRANSFER ASE/IMMI INF 3
									DNA (5'- CHAIN: T; DNA (5'-	SYSTEM/DNA

Γ.	=1	_	T			_				-										_	т.	7		_
⊢	+	1966					1966					-	26/2								1966		ë E	OES
TIMI		lmm)					1 har					1144	lhar								lc9r		Ħ	PDB
Α																					æ		Ħ	CHAIN
38						16	70					-								,	50		AA	START
205	197	107				//1	111					182	5			_				102	301		AA	END
3.2e-54	y.be-3/	25.30				0.46-38						0.4e-38								7C-30.#	10.53		Blast	Pgi
-0.33						-0.20														-0.22	3		score	Verify
0.89						0.82														0.62			score	4Md
	92.17									***		50.80											score	Table
HIV-1 REVERSE	MMLV REVERSE TRANSCRIPTASE; IMML 4 CHAIN: NULL; IMML 5	(E.C.2.1.1.49) 1HAR 4	16)	TERMINAL HALF) (FINGERS	TRANSCRIPTASE (ANDIO	REVERSE TRANSCRIPTASE	(E.C.2.7.7.49) 1HAR 4	SUBDOMAINS) (RT216)	1HAR 3 AND PALM	TENNICRIPTASE (AMINO-	HIV-1 REVERSE	REVERSE TRANSCRIPTASE	CHAIN: P;	DNA (5'- CHAIN: T: DNA (5'-	(HEAVY CHAIN): CHAIN: H:	CHAIN: B; ANTIBODY (LIGHT	TRANSCRIPTASE (CHAIN B);	CHAIN: A; HIV-I REVERSE	TRANSCRIPTASE (CHAIN A);	HIV-1 REVERSE	CHAIN: P;		Compound	
NUCLEOTIDYLTRANSFERASE	REVERSE TRANSCRIPTASE												SISIEMDNA	CYCLENCE COST	TRANSEED ASSEMBLE, M184I,	3TC, PROTEIN-DNA 2 COMPLEX,	TRANSCRIPTASE, MET184ILE,	RT; HIV, REVERSE	SYSTEM/DNA HIV-1 RT; HIV-1	TRANSFERASE/IMMUNE			PDB annotation	

					-				_						 	
L	1973		1973		1973		1966		1966		1966		1966		ë E	SEQ
	lae9		lae9				3hvt		lvrt		lvrt		ĪŢ.		₽	PDB
	В		A				В		В		Α		B		Ħ	CHAIN
			-				38		38		38	3	38		AA	START
	136		129		3		183		205		205	į	205		AA	F.Y.
<u></u>	1 66-16		1.4e-15	7.06-50	1 00 30		1.6e-48	ā	8e-48		3.2e-54	2.10	3 26.40		Blast	Pei
	0 24		0.09	0.22			-0.26		-0 10		200	6	20.03		score	Varify,
	0 27		045	0.98 	3		0.49		200		002	47.0	22/		score	aMa
															Score	CEOUNT
A, B;		A, B;	I AMBRA DESCRIPTION OF CHILD	XERD; CHAIN: NULL;		REVERSE TRANSCRIPTASE (E.C.2.7.7.49) 3HVT 3	MICI ECTINA TO ANGEED AGE	TRANSCRIPTASE; 1VRT 4 CHAIN: A, B; 1VRT 5	TITLE 1 DAY	TRANSCRIPTASE; 1VRT 4 CHAIN: A, B; 1VRT 5	THE TANKS	TRANSCRIPTASE; 1RTH 4 CHAIN: A, B; 1RTH 5		CHAIN: A, B; 1RTH 5	Compound	
RECOMBINATION DNA	RECOMBINATION	DNA RECOMBINATION DNA RECOMBINATION, INTEGRASE,	DNA RECOMBINATION				TAKT 12	NUCLEOTIDYLTRANSFERASE HIV-1 RT; 1VRT 6 HIV-1 REVERSE TRANSCRIPTASE	IVRT 15	NUCLEOTIDYL TRANSFERASE HIV-1 RT; 1VRT 6 HIV-1 REVERSE TRANSCRIPTASE	1RTH 15	NUCLEOTIDYLTRANSFERASE HIV-1 RT; 1RTH 6 HIV-1 REVERSE TRANSCRIPTASE	IRTH 15	HIV-1 RT; 1RTH 6 HIV-1 REVERSE TRANSCRIPTASE	PDB annotation	

										_						
		1987			1973		1973				1973		1973		Ö. A	CEC
		lawo			Scrx		4crx				2crx		laih		₽	RUB
		A			В		Α				A		A		Ħ	CHAN
		3			-		_			,	-		2		AA	START
		170			127		139			į	130		139		AA	Ž
	1.3e-52	1 22 57			1.3e-09		9.6e-12			1.20.14	3 3 14		8e-22		Blast	Per
					033		0.44			0.20	030	,	011		score	Varie
					2		-0.01			-0.07	202		2002		score	U.V.C.
	127.69														SEQFOLD score	2020
	CYCLOPHILIN A; CHAIN: A; PEPTIDE FROM THE HIV-1 CAPSID PROTEIN; CHAIN: B;			GENE; CHAIN: A, B; DNA (35- MER); CHAIN: C, D;	1	A, B; DNA (35 NUCLEOTIDE CRE RECOGNITION SITE); CHAIN: C, D;	CRE RECOMPRIAGE CITARI		A, B; DNA; CHAIN: C, D;	CRE RECOMBINASE; CHAIN:		C, D;			Compound	
CYCLOPHILIN A. HIV-1 CAPSID	COMPLEX (ISOMERASE/PEPTIDE) COMPLEX (ISOMERASE/PEPTIDE),		RECOMBINATION, 2 PROTEIN- DNA INTERACTION, PROTEIN/DNA	PROTEIN/DNA CRE RECOMBINASE, DNA BENDING, SITE SPECIFIC	PROTEIN/DNA	RECOMBINASE, DNA BENDING, RECOMBINATION, PROTEIN-DNA 2 INTERACTION,	(RECOMBINASE/DNA)	JUNCTION, RECOMBINATION, 2 COMPLEX	(RECOMBINASE/DNA) CRE-HJ2;	COMPLEX	RECOMBINATION	DNA INTEGRATION DNA INTEGRATION	RECOMBINATION	STTR SECUETO	PDB annotation	

					_		_			_	_				_,								
		1999	1999		1999		1999			1999					1987				1007	1087	Š	Ħ,	SEQ
		l ren	lreq		lreq	•	I I			1ez3			-		2rmc				1471	1 Car		Ħ	PDB
	:	>	Α	,	Α		A			>					A				>	>		Ħ	CHAIN
	8	× ×	86	{	28	(8			28					-				U	3		AA	START
	5	3	143		143	· ·	143		į	143					178				182	3		A	ENI
	3.46-09		1e-10		1 46-00		176-10			2 42-10				ì	9 Ge-45				1.1e-45			Blast	Per
	0.02	3	0.55		211		2 81		į	1 20									-			score	Varify
	-0.20		-0.20	·	017	-0.19				2												score	TMU
														97.00	07 55			•	99.73			Score	Table
	METHYLMALONYL-COA MUTASE; CHAIN: A, B, C, D;	MUTASE; CHAIN: A, B, C, D;	METHYLMALONY COA	MUTASE; CHAIN: A, B, C, D;		ALPHA-ACTININ 2; CHAIN: A;			C;			CYCLOSPORIN A 2RMC 3	ESSANT) CYCLOPHILIN C	COMERA SECTION IN OCT TO BE	CHAIN: C; ICYN II	CYCLOSPORIN; 1CYN 10	(CHOLINYL)ALA]8-	CHAIN: A; ICYN 7 [D-	CYCLOPHILIN B; 1CYN 6			Compound	
THE PROPERTY OF THE PROPERTY O	ISOMERASE ISOMERASE, MUTASE, INTRAMOLECULAR TRANSFERDASE	MUTASE, INTRAMOLECULAR TRANSFERASE	IKANSHERASE	ISOMERASE ISOMERASE, MUTASE, INTRAMOLECULAR	CONTRACTILE PROTEIN	CONTRACTILE PROTEIN TRIPLE-HELIX COILED COIL,	HELIX BUNDLE	35 KDA PROTEIN, P35A, THREE	SYNAPTOTAGMIN ASSOCIATED						SIGNAL 1CYN 19	ISOMERASE, ROTAMASE,	SANT) CYCLOSPORIN.	(ISOMERASE/IMMUNOSUPPRES	COMPLEX	2 PSEUDO-SYMMETRY		PDB annotation	

		-							
	1102	201		2001	2001	3001	1999	N E	350
	TEGIT	1		lqag	Idxx		2trc	ID	מתם
	>			Α	>		סי	D	CITATI
	38			237	237		86	AA	The same
	2/0	3		384	53 84 4		143	AA	
	3.2e-28			1.6e-35	4.8e-37		2.76-13	Psi Blast	*
	0.01			-0.21	-0.09		0.50	Verify score	
	-0.15			0.27	0.10		-0.19	PMF	
	-						·	SEQFOLD score	C STOP T
	HEMOLIN; CHAIN: A, B;		REGION; CHAIN: A, B;	TITO OBUINT A CTIME TO THE STATE OF	DYSTROPHIN; CHAIN: A, B, C, D;		TRANSDUCIN; CHAIN: B, G; PHOSDUCIN; CHAIN: P;	Compound	
HOMOPHILIC ADHESION	INSECT IMMUNITY INSECT IMMUNITY, LPS-BINDING,		CALPONIN HOMOLOGY DOMAIN, DOMAIN SWAPPING, ACTIN BINDING, 2 UTROPHIN, DYSTROPHIN, STRUCTURAL PROTEIN	BINDING, UTROPHIN	STRUCTURAL PROTEIN DYSTROPHIN, MUSCULAR DYSTROPHY, CALPONIN HOMOLOGY DOMAIN, 2 ACTIN-		COMPLEX (TRANSDUCER/TRANSDUCTION) GT BETA-GAMMA; MEKA, PP33; PHOSDUCIN, TRANSDUCIN, BETA-GAMMA, SIGNAL TRANSDUCTION, 2 REGULATION, PHOSPHORYLATION, G PROTEINS, THIOREDOXIN, 3 VISION, MEKA, COMPLEX (TRANSDUCER/TRANSDUCTION	PDB annotation	

ļ																		_			
		2011		_	2011						2011						2011	1107	NO	Ħ	SEO
		1cvs			1cvs						lcvs						1cvs	1cs6		Ħ	BUA
		ם			C					•	2						C	Þ		Ð	CHAIN
		170			77					1	43						170	ယ တ		AA	START
		287			270					TOT	161					10,	787	271		A	EN S
		1.6e-16			1.4e-48					1.02-20	16.30					01-00-1	1 66 16	4.8e-40		Blast	D.:
		0.07			0.14		-			0.09	3					0.07	23	0.17		score	W. Jane
		0.47			-0.02					-0.20						0.09	3	-0.18	300.0	PIVLE	
																			3001	SEQFOLD	C SIGN T
ς, υ;	FACTOR 2; CHAIN: A, B; FIBROBLAST GROWTH FACTOR RECEPTOR 1; CHAIN:	FIRPORI ACT CROWN	C, D;	FACTOR 2; CHAIN: A, B; FIBROBLAST GROWTH FACTOR DECURPOR	FIRRORI AST CROWTH		C, D;	FACTOR RECENTOR 1. CITATION IN	FACTOR 2; CHAIN: A, B;	FIBROBLAST GROWTH			C. D:	FACTOR RECEPTOR 1. CHARL	FACTOR 2; CHAIN: A, B;	FIBROBLAST GROWTH		AXONIN-1; CHAIN: A;		Compound	
DIMERIZATION, GROWTH	GROWTH FACTOR/GROWTH FACTOR RECEPTOR FGF, FGFR, IMMUNOGLOBULIN-LIKE, SIGNAL TRANSDUCTION 2	RECEPTOR	SIGNAL TRANSDUCTION, 2 DIMERIZATION, GROWTH FACTOR/GROWTH FACTOR	FACTOR RECEPTOR FGF, FGFR, IMMUNOGLOBULIN-LIKE,	RECEPTOR	FACTOR/GROWTH FACTOR	DIMERIZATION GROWTH	IMMUNOGLOBULIN-LIKE,	FACTOR RECEPTOR FGF, FGFR	GROWTH FACTOR/GROWTH	RECEPTOR	FACTOR/GROWTH FACTOR			FACTOR RECEPTOR FGF, FGFR,	GROWTH FACTOR/GROWTH	ADHESION	CELL ADHESION NEITRAL CELL		PDB annotation	

	Ţ	7				
1107	<u> </u>	2011		2011	2011	NO: SEQ
Tev2		lept		1d5i	1cvs	PDB ID
G	t t	7 A		T	ם	CHAIN
181	ž	83	5	8	77	START AA
289	0/7	254	200	256	270	AA END
1.3e-15	3.26-41	3.2e-21	1.06-1.3		3.2e-45	Psi Blast
-0.17	10.0	0.26	0.14		0 03	Verify score
0.11	-0.11	-0.15	-0.1/		-0.02	PMF
						SEQFOLD score
FIBROBLAST GROWTH FACTOR 2; CHAIN: A, B, C, D; FIBROBLAST GROWTH FACTOR RECEPTOR 2: CHAIN:	FIBROBLAST GROWTH FACTOR 2; CHAIN: A, B, C, D; FIBROBLAST GROWTH FACTOR RECEPTOR 2; CHAIN: E, F, G, H;	NEURAL CELL ADHESION MOLECULE; CHAIN: A, B, C, D;	CHIMERIC GERMLINE PRECURSOR OF OXY-COPE CHAIN: L; CHIMERIC GERMLINE PRECURSOR OF OXY-COPE CHAIN: H	FACTOR 2; CHAIN: A, B; FIBROBLAST GROWTH FACTOR RECEPTOR 1; CHAIN: C, D;		Compound
GROWTH FACTOR/GROWTH FACTOR RECEPTOR FGF2; FGFR2; IMMUNOGLOBULIN	GROWTH FACTOR/GROWTH FACTOR RECEPTOR FGF2; FGFR2; IMMUNOGLOBULIN (IG)LIKE DOMAINS BELONGING TO THE I-SET 2 SUBGROUP WITHIN IG-LIKE DOMAINS, B- TREFOIL FOLD	CELL ADHESION NCAM; NCAM, IMMUNOGLOBULIN FOLD, GLYCOPROTEIN	IMMUNE SYSTEM IMMUNE	GROWTH FACTOR/GROWTH FACTOR RECEPTOR FGF, FGFR, IMMUNOGLOBULIN-LIKE, SIGNAL TRANSDUCTION, 2 DIMERIZATION, GROWTH FACTOR/GROWTH FACTOR RECEPTOR	FACTOR/GROWTH FACTOR RECEPTOR	PDB annotation

BETA BAKKEL	IMMUNOGLOBULIN	51.74			1.1e-08	272	59	W	Imcw	1107
CONTRACTILE PROTEIN IMMUNOGLOBULIN FOLD	TELOKIN; CHAIN: A		0.93	0.55	1.0e-20	2,7	5			
GROWTH FACTOR/GROWTH FACTOR RECEPTOR FGF1; FGFR1; IMMUNOGLOBULIN (IG) LIKE DOMAINS BELONGING TO THE I-SET 2 SUBGROUP WITHIN IG-LIKE DOMAINS, B-TREFOIL FOLD	FIBROBLAST GROWTH FACTOR 1; CHAIN: A, B; FIBROBLAST GROWTH FACTOR RECEPTOR 1; CHAIN: C, D;		-0.20	. 0.06	06-22	270	168		Tho	2011
GROWTH FACTOR/GROWTH FACTOR RECEPTOR FGF1; FGFR1; IMMUNOGLOBULIN (IG) LIKE DOMAINS BELONGING TO THE I-SET 2 SUBGROUP WITHIN IG-LIKE DOMAINS, B-TREFOIL FOLD	FIBROBLAST GROWTH FACTOR 1; CHAIN: A, B; FIBROBLAST GROWTH FACTOR RECEPTOR 1; CHAIN: C, D;		0.19	0.06	3.26-10	161	42	0 (levt	2011
GROWTH FACTOR/GROWTH FACTOR RECEPTOR FGF2; FGFR2; IMMUNOGLOBULIN (IG)LIKE DOMAINS BELONGING TO THE I-SET 2 SUBGROUP WITHIN IG-LIKE DOMAINS, B- TREFOIL FOLD	FACTOR 2; CHAIN: A, B, C, D; FIBROBLAST GROWTH FACTOR RECEPTOR 2; CHAIN: E, F, G, H;		4.0			2007	170	C	levt	2011
TO THE I-SET 2 SUBGROUP WITHIN IG-LIKE DOMAINS, B- TREFOIL FOLD	B, F, G, H;		500	0 03	4.86-45	274	79	G	lev2	2011
PDB annotation	Compound	SEQFOLD score	PMF score	Verify score	Psi Blast	AA	START AA	CHAIN	E E	NO E
		Calori				1			יייי	2

		-	1										
	2011	2011		2011		2011			2011			NO:	SEQ
-	I www	1 wit		ltnm		1tbr			Inct			æ	PDB
	×					R						B	CHAIN
	175	172		173		51		i	172			AA	START
1	273	270		271		170			270			AA	END
17-94-7		3.4e-20		6.4e-17		1e-11		1011	P 0			Blast	Psi
0.23		0.19	į	023				54	041			score	Verify
-0.02		200		000				0.2.0	75.0			score	TME
					10.000	23 60						score	Coron
NERVE GROWTH FACTOR; CHAIN: V, W; TRKA	MODULE; CHAIN: NULL;	WINDLY 18 WILL 4	MODULE MS (CONNECTIN) 1TNM 3 (NMR, MINIMIZED AVERAGE STRUCTURE) 1TNM	Michigan	RHODNIN; CHAIN: R, S;	TIMO OF THE PARTY		ITIIN; CHAIN: NULL;	IMCW 4	HETEROLOGOUS LIGHT CHAIN DIMER IMCW 3 (MCG\$-/WEIR\$ HYBRID)	IMMUNOGLOBULIN	Сопроила	
NERVE GROWTH FACTOR/TRK A COMPLEY	MUSCLE PROTEIN IMMUNOGLOBULIN SUPERFAMILY, I SET, MUSCLE PROTEIN			TYPE INHIBITOR, 2 THROMBIN	COMPLEX (SERINE PROTEASE/INHIBITOR) COMPLEX (SERINE PROTEASE/INHIBITOR), KAZAL-	SIGNAL, 3 MUSCLE PROTEIN	TRANSMEMBRANE, REPEAT, BRAIN, 2 IMMUNOGLOBULIN FOLD, ALTERNATIVE SPLICING,	MUSCLE PROTEIN CONNECTIN, NEXTM5; CELL ADHESION, GLYCOPROTEIN				PDB annotation	

6107	2015	2015	2015	2015		2011		2011		Ö	E Z	SEO
1404		lak8	laj4	1a75		9wga		2mcg				PDR
				Α		Α				1	E	CHAIN
340	7	340	340	334		26		59			AA	TOTAL
381	202	383	381	381		186		277			AA	
0.00014	5.4e-00	34506	0.00014	0.0001		0.00068		6.40-08			Blast	,
0.44	-0.40		0 22	-0.14							Verify score	
0.72	0.42		082	0.16							score	
					10:01	50 51	11.70	55 00			SEQFOLD	1 able 5
CARDIAC N-TROPONIN C;	CALMODULIN; CHAIN: NULL;	EXOPONIN C; CHAIN: NULL;		PARVALBUMIN: CHAIN: A B	WHEAT GERM AGGLUTININ (ISOLECTIN 2) 9WGA 3	ZMCC4	IMMUNOGLOBULIN IMMUNOGLOBULIN LAMBDA LIGHT CHAIN DIMER (IMCG\$) 2MCG 3 (TRIGONAL FORM)		KECEPTOR; CHAIN; X, Y;		Compound	
CALCIUM-BINDING CUTUC	CALCIUM-BINDING PROTEIN CALMODULIN CERIUM TRIC- DOMAIN, RESIDUES 1 - 75; CERIUM-LOADED, CALCIUM- RINDING PROTEIN	MUSCLE PROTEIN CTNC; CARDIAC, MUSCLE PROTEIN, REGULATORY, CALCIUM BINDING	CALCIUM BINDING PROTEIN, MUSCLE PROTEIN	CAT OH IM BRIDGE BROWN			,	IMMUNOGLOBULIN LIKE DOMAIN, NERVE GROWTH FACTOR/TRKA COMPLEX	BETA-NGF; COMPLEX, TRKA RECEPTOR, NERVE GROWTH FACTOR, CYSTEINE KNOT, 2		PDB annotation	

391

	1	2		_				- 2	,	_	2	T		٦.						_	Т			т	
2015	_	2015					_	2015	 	_	2015		C107					2015		2015				ÖΕ	SE C
lej3	_	E E				_		ldjx		-	l cmg		TCTT					1cdm		1br1				E	PDB
A		A						В										≯		В				A	CHAIN
338		340						353			340		340					340		340				AA	START
381		185						382		100	101		382					382		389				AA	END
3.1e-06	41000.0	4		_				1.4e-06		3.46-06	3/2/2		2.4e-06					2.7e-06		1:7e-06				Blast	Psi
-0.07	0.07							0.14		0.46			0.04					0.34		0.74				score	Verify
0.33	0.66			_			1	03		0.76			20.0					0.74	٠./٠	07/		_		score	PMR
						•																		score	SECTOLD
AEQUORIN; CHAIN; A. B:	CARDIAC TROPONIN C;				<u>g</u> ;	PHOSPHOLIPASE C, CHAIN: A,	PHOSPHOINOSITIDE-SPECIFIC	CHAIN: NULL; ICMF 7	(VERTEBRATE); 1CMF 6	CALMODULIN	ICLL 3	CALMODULIN (VERTEBRATE)	CAT CITAL SUNASE II ICUM 4	PROTEIN EDIA SE IL CONT	DOMAIN OF ICDM 3	WITH CALMODULIN-BINDING	CALMODULIN COMPLEXED	r, G, H;	MYOSIN; CHAIN: A, B, C, D, E,			,	CHAIN: NULL:	Compound	
OXIDOR EDUICTA SELECTION OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF T	STRUCTURAL PROTEIN HELIX.	PHOSPHOINOSITIDE SPECIFIC	TRANSDUCER, CALCIUM-	LIPID DEGRADATION, 2	HYDROLASE, HYDROLASE.	PHOSPHORIC DIESTER	LIPID DEGRADATION PLC-DI-	DOMAIN; ICMF 9	CALMODULIN APO TR2C-	CALCIIM-BUILDING BROTES								MUSCLE PROTEIN	MUSCLE PROTEIN MDE:	CONTRACTION	CARDIAC MUSCLE 2	REGULATION TROPONTO	CALCUMATER	PDB annotation	

		2015	2015			2015					2015		2015			2015			NO.	SEQ
		lvrk	1110			lmai					lmai		lfpw			1£71			E	PDB
		A											A			>			 Ш	CHAIN
		340	340			165					165	····	338			340			AA	START
		385	382	·		281				000	280		381			381			AA	END
		6 8-06	0.0001			1.6e-34				1.00-04	1 66-34		1.7e-05			1.4e-06			Blast	Psi
			0.18							1.11			-0.47		0.10	0.20			score	Verify
			0.29							00.1	3		0.00		0.52	3			score	PMF
						63 96													score	SEOFOLD
	CALMODULIN; CHAIN: A; RS20; CHAIN: B;	RAT ONCOMODULIN 1RRO 3	CAI CHIM BRIDGE BE CHES.		CHAIN: NULL;	Tara Cas var iOndsond			CHAIN: NULL;	PHOSPHOLIPASE C DELTA-1;		NCS-1; CHAIN: A;	CALCILIA DIMINISTRA DE CARROLLA		CALMODULIN; CHAIN: A;				Compound	Company
COMPLEX(CALCIUM-BINDING	CALMODULIN, CALCIUM BINDING, HELIX-LOOP-HELIX, SIGNALLING, 2		HYDROLASE	TRISPHOSPHATE, 2 SIGNAL TRANSDUCTION PROTEIN,	SIGNAL TRANSDUCTION PROTEIN PLECKSTRIN, PHOSPHOLIPASE INOSTRO	HYDROLASE	TRANSDUCTION PROTEIN,	TRISPHOSPHOLIPASE, INOSITOL	PROTEIN PLECKSTRIN,	SIGNAL TRANSDUCTION	CALCIUM	YEAST FREOUENIN EF-HAND	FOUR-HELIX BUNDLE	CALCIUM BINDING, EF HAND,	TRANSPORT PROTEIN	COMPLEX	COELENTERAZINE PEROXINE	PROTEIN PROTEIN: 3	PDB annotation	

WO 03/080795	1	PCT/US02/2
2025		
5 1fqv 1fs2	2015 2025	2015 E
A VP	.1wdc	I I
A	A C	
135		B B
35	44 340	11 2
34]		AA AA
<u> </u>	381 381 351	
3.2e-12 8e-10		A END
	6.8e-06 1.3e-41	Psi Blast
0.16		\$ 12.
0.60	-0.16 0.06	Verify score
0.57	0.54	1
	0.05	PMF score
		SEC
C S J X S		Table 5 SEQFOLD score
SKP2; CHAIN: A, C, E, G, I, K, M, O; SKP1; CHAIN: B, D, F, H, I, L, N, P; SKP2; CHAIN: A, C; SKP1; CHAIN: B, D;	SCAL B, C; B, C; RIBONI CHAIN; CHAIN;	
P, D,	SCALLOP MYOSIN; CHAIN: A, B, C; SCALLOP MYOSIN; CHAIN: A, B, C; RIBONUCLEASE INHIBITOR; CHAIN: A, D; ANGIOGENIN; CHAIN: B, E;	
CHAI	P MY P MY F, D; A	
C; E, C; E, SKP1	NGIO SEI NI SO (OSIN, OSIN)	Compound
D, F, J	GENTAL CHARACTER CONTRACTOR CONTR	
SR A A LI CRIBIT	CHAIN: A, CHAIN: A, BITOR; JENIN;	
(INHIBITORNUCLEASE), HYDROLASE 2 MOLECULAR RECOGNITION, BPITOPB REPEATS LIGASE CYCLIN A/CDK2- ASSOCIATED PROTEIN P45; PROTEIN P19; SKP1, SKP2, F- REPEAT, SCF, UBIQUITIN, 2 E3, LIGASE CYCLIN A/CDK2- REPEAT, SCF, UBIQUITIN, 2 E3, LIGASE CYCLIN A/CDK2- ASSOCIATED P45; CYCLIN SKP2, F- REPEAT, SCF, UBIQUITIN, 2 E3, LIGASE CYCLIN A/CDK2- A/CDK2-ASSOCIATED P45; CYCLIN SKP2, F-BOX, LRRS, LEUCINE- LIGASE CYCLIN A/CDK2- A/CDK2-ASSOCIATED P19; SKP1, SKP2, F-BOX, LRRS, LEUCINE-	280 70	\downarrow
(INJUSTICANOCLEASE), HYDROLASE 2 MOLECULAR RECOGNITION, BPITOPE REPEATS LIGASE CYCLIN A/CDK2- ASSOCIATED PROTEIN P45; PCIEN P19; SKP1, SKP2, F- EPEAT, SCF, UBIQUITIN, 2 E3, GASE CYCLIN A/CDK2- SSOCIATED P45; CYCLIN A/CDK2- CDK2-ASSOCIATED OX, LRR, LEUCINE-RICH BIQUITIN PROTEIN LIGASE SSOCIATED P45; CYCLIN CDK2-ASSOCIATED P45; CYCLIN CDK2-ASSOCIATED P19; SKP1, P2, F-BOX, LRRS, LEUCINE- LE	PROTEIN/PEPTIDE) MUSCLE PROTEIN MYOSIN MUSCLE PROTEIN MYOSIN MUSCLE PROTEIN MYOSIN MUSCLE PROTEIN MYOSIN MUSCLE PROTEIN MYOSIN MUSCLE PROTEIN CALCIUM BINDING PROTEIN CALCIUM BINDING PROTEIN COMPLEX (INHIBITOR/NUCLEASE)	
CORAN CRINICAL ASSES FIGURE PROPERTY OF ASSES CONTROL TO THE CONTROL CORN BEAR BY BEAR BY BEAR BY BEAR BY BEAR BY BEAR BY BEAR BY BY BY BY BY BY BY BY BY BY BY BY BY		
ANG) MOLE BPIT CINE CINE ASSO PI, SI IQUII IQUII ICUI ICUI ICUI ICUI ICUI I	PDB annotation PEPTIDE PROTEIN MYOS BINDING PROT ROTEIN MYOSI BINDING PROTI BINDING PROTI ROTEIN ROTEIN ROTEIN ROTEIN ROTEIN	
ASE), ASE), PECUI OPE PRICH PR	NMY VG PR V G PR	
AR AR AR AR AR AR AR AR AR AR AR AR AR A	PDB annotation PROTEIN/PEPTIDE) MUSCIE PROTEIN MYOSIN, MUSCLE PROTEIN MUSCLE PROTEIN MUSCLE PROTEIN MUSCLE PROTEIN MUSCLE PROTEIN CALCIUM BINDING PROTEIN, MUSCLE PROTEIN MUSCLE PROTEIN MUSCLE PROTEIN MUSCLE PROTEIN MUSCLE PROTEIN MUSCLE PROTEIN MUSCLE PROTEIN MUSCLE PROTEIN MUSCLE PROTEIN MUSCLE PROTEIN MUSCLE PROTEIN MUSCLE PROTEIN MUSCLE PROTEIN	

		_,																_						
		2025								6202	3035									2025		NO.	₹	SEO
		lyrg								Lyrg									0	lvre		ŧ	j ģ	PDR
		A								A									;	A		E		CHAIN
		70								67									1.17	147		AA	IMAIC	COT V DO
		375								322									1	344		A	ENE	
	0.45-10	4								1.4e-14									17-37.0	2 2 2 2 1		Blast	PSI	ا ا
	Ç.14									0.23									77.0			score	Verity	
	0.01	2								0.81									0.21	2		score	PMF	
																			-			score	SEQFOLD	1 4010
	GTPASE-ACTIVATING PROTEIN RNA1_SCHPO; CHAIN: A, B;							CHAIN: A, B;	PROTEIN RNA1_SCHPO;	GTPASE-ACTIVATING							CHAIN: A, B;	PROTEIN RNA1_SCHPO;	GTPASE-ACTIVATING				Compound	
ACTIVATING PROTEIN, GAP, RNAIP, RANGAP, LRR	TRANSCRIPTION RNAIP; RANGAP; GTPASE-ACTIVATING PROTEIN FOR SPII. GTPASE-	MEROHEDRY	MEROHEDRAL TWINNING	PROTEIN, TWINNING, HEMHEDRAL TWINNING 3	LEUCINE- 2 RICH REPEAT	RNAIP, RANGAP, LRR.	ACTIVATING PROTEIN, GAP	PROTEIN FOR SPIT GTPASE	RANGAP: GTPASE-ACTIVATING	TO A VISCOUTION I	MERCHEDRAL TWINNING,	HEMIHEDRAL TWINNING, 3	PROTEIN, TWINNING,	LEUCINE- 2 RICH REPEAT	RNAIP, RANGAP, LRR,	ACTIVATING PROTEIN, GAP.	PROTEIN FOR SPI1, GTPASE-	RANGAP; GTPASE-ACTIVATING	TRANSCRIPTION RNAIP:	PROTEIN LIGASE	RICH REPEATS, SCF, 2	A DD amotation	PDR annotation	

			-			_				_				-				_,		_
	2024	2034	100	2034		2034			2034					2025		_			Ö E	SEQ
	Ī I	3.	-			1hrh			1231					2hmh	_				Ħ	PDB
>						A			>										Ħ	CHAIN
		137	22	26		116			23				ť	45					AA	START
144		355	/0/	3		248			757				100	351					AA	END
4.8e-40	27.90	0, 33	1.4e-23	3		6.4e-22		1.00-27	16-27				04-97.6	3 3 3 4 5					Blast	Psi
-0.0/			0.27		į	0.15		i	0 22			•	-0.13	3					score	Verify
0.01	0.29	3	0.96		,	0 50		47:0	2			•	0.05	2					score	PMF
																			score	SEOFOLD
HIV-1 REVERSE TRANSCRIPTASE: 1VRT 4	HYDROLASE(ENDORIBONUC LEASE) RIBONUCLEASE H (E.C.3.1.26.4) IRIL 3	(E.C.3.1.20.4) IKIL 3	HYDROLASE(ENDORIBONUC LEASE) RIBONUCLEASE H	TRANSCRIPTASE 1HRH 3	LEASE) RIBONUCLEASE H	HANDOI VEEDEMONING		KIBONUCLEASE HI; CHAIN: A;				CHAIN: NULL;	RIBONUCLEASE INHIBITOR;						Compound	Compound
NUCLEOTIDYLTRANSFERASE HIV-1 RT: 1VRT 6 HIV-1		-				FOLDING	RIBNUCLEASE H, METAL- BINDING 2 PROTEIN, PROTEIN	HYDROLASE RNASE H, NUCLEASE, RNASE H*.		LEUCINE-RICH REPEATS	INHIBITOR ACETYLATION,	NHIBITOR,	ACETYLATION RNASE	MEROHEDRY	MEROHEDRAL TWINNING.	HENTHED AT THINKS	LEUCINE- 2 RICH REPEAT		rub annotation	DDB

1asu 156 311 1.6e-23 1asu 163 300 1.6e-23 1b9d A 172 299 1.6e-22 1b9f A 172 299 4.8e-27 1bl3 C 157 313 1.6e-29 1c0m A 160 326 8e-27 1c1a B 168 326 3.2e-24	SEQ PDB ID ID	CHAIN ID	START AA	AA AA	Psi Blast		Verify score	Verify PMF score	
lasu 156 311 1.6e-23 lasu 163 300 1.6e-23 lb9d A 172 299 1.6e-22 lb9f A 172 299 4.8e-27 lbl3 C 157 313 1.6e-29 lc0m A 160 326 8e-27 lc1a B 168 326 3.2e-24									
lasu 163 300 1.6e-23 lb9d A 172 299 1.6e-22 lb9f A 172 299 4.8e-27 lbl3 C 157 313 1.6e-29 lc0m A 160 326 8e-27 lc1a B 168 326 3.2e-24			156	311	1.6e-23				60.78
1b9d A 172 299 1.6e-22 1b9f A 172 299 4.8e-27 1bl3 C 157 313 1.6e-29 1c0m A 160 326 8e-27 1c1a B 168 326 3.2e-24			163	300	1.6e-23	0.39	0.78	<u>ಹ</u>	ø.
1b91 A 172 299 4.8e-27 1bl3 C 157 313 1.6e-29 1c0m A 160 326 8e-27 1c1a B 168 326 3.2e-24	1b9d		172	299	1.6e-22	0.46	0.86	5	
1013 C 157 313 1.6e-29 100m A 160 326 8e-27 1c1a B 168 326 3.2e-24	1031		1/2	299	4.8e-27	0.71	0.96		
lc0m A 160 326 8c-27	Ė			213	1.06-29	0.33	0.35		
lc0m A 160 326 8e-27 lc1a B 168 326 3.2e-24									
lcla B 168 326 3.2e-24	lc0m					0.19	0.40		J
	ICIa					0.21	0.84		

	Ţ	Т					_	Γ-		_			_	_	_	_				т-	_		
8007	┰	ļ	7007	2052			2052			1006	2053		2002	3053		7007	2062		7007	3		NO.	SEQ
lasu			- +shī				lexq			1601	1 awA		1029	3		ICZY	3		Lcxq			ш	PDB
			>				A			>	>		>	-		Α			Α			E	CHAIN
2			2/1	3			172			172	170		166			100			164			AA	START
134			313	5			313			CTO	313		299			299	3		300			AA	END
1.1e-22			1.6e-24				8e-22			2.ZE-24	3 3 3 4		6.8e-23			6.8e-23			1.4e-20			Blast	Psi
0.15			0.47				0.37			20.0	2		0.39									score	Verify
0.89			0.94				0.81			0.88			1.00									score	PMF
												•				58.62			51.79			score	SEQFOLD
AVIAN SARCOMA VIRUS INTEGRASE; 1ASU 7 CHAIN: NULL; 1ASU 8		ţ	HIV-1 INTEGRASE; CHAIN: A,			В;	POL POLYPROTEINI CHAINI A			INTEGRASE; CHAIN: A, B;		INTEGRASE; CHAIN: A;	AVIAN SARCOMA VIRUS		INTEGRASE; CHAIN: A;	AVIAN SARCOMA VIRUS		INTEGRASE; CHAIN: A;	AVIAN SARCOMA VIRIUS				Compound
DNA INTEGRATION		HIV, HYDROLASE, ASPARTYL 2 PROTEASE, ENDONUCLEASE	HYDROLASE DNA	PROTEIN, DD35E	POLYNUCLEOTIDYL	INTEGRASE,	ALICAND VI BECARDITUE	CIS- 2 PROT NIE	LIKE DOMAIN, NONSPECIFIC	VIRUS/VIRAL PROTEIN SH3-	ALPHA-HELICES	SHEET SURROUNDED BY	TRANSFERASE MIXED BETA-	ALPHA-HELICES	SHEET SURROUNDED BY	TRANSFERASE MIXED BETA-	ALPHA-HELICES	SHEET SURROUNDED BY	TRANSFIRACE MIVED DETA	VIRUS/VIRAL PROTEIN			PDB annotation

CHO	RUd	CHAIN	TAAT		Dei	Wanifer	CANEG	STOP I	}	
ë e,	Ħ	Ħ	AA	AA	Blast	score	score	score	Compound	PDB annotation
2058	1 b9d	Α	00	138	1.3e-27	-0.03	0.63		INTEGRASE; CHAIN: A;	TRANSFERASE DNA
2050	100									INTEGRATION
8C07	1691	A	00	138	1.6e-33 ·	0.04	0.69		INTEGRASE; CHAIN: A;	TRASFERASE DNA
3050	3									INTEGRATION, TRASFERASE
8007	1013	C	~	132	1.4e-35	0.13	0.98		INTEGRASE; CHAIN: A, B, C;	DNA INTEGRATION DNA
										INTEGRATION, AIDS,
										POLYPROTEIN, HYDROLASE, 2
										ENDONUCLEASE,
										POLYNUCLEOTIDYL
						-				TRANSFERASE, DNA BINDING 3
3205	1202	Δ	-	145	3 42 33	3				(VIRAL)
0	10011	þ	-	7	2.40-27	67.0	0.04		D;	TRANSFERASE INTEGRASE, ROUS SARCOMA VIRUS, HIV. X-
										RAY CRYSTALLOGRAPHY, 2
										PROTEIN STRUCTURE,
2040	120		3	i						TRANSFERASE
000	TCOID	>	_	157	1.6e-26	-0.09	0.72		INTEGRASE; CHAIN: A, B, C,	TRANSFERASE INTEGRASE
									D;	ROUS SARCOMA VIRUS, HIV, X-
										RAY CRYSTALLOGRAPHY, 2
										PROTEIN STRUCTURE,
3058	3		3	163			3			TRANSFERASE
000	ICIA	<u> </u>		15/	1.4e-24	0.24	0.59		RSV INTEGRASE; CHAIN: A, B;	VIRUS/VIRAL PROTEIN
								-		INTEGRASE, ROUS SARCOMA
										VIRUS, HIV, X-RAY
										CRYSTALLOGRAPHY, 2
2050				3						VIRUS/VIRAL PROTEIN
000	1ex4	>		132	9.6e-30	-0.15	0.92		INTEGRASE; CHAIN: A, B;	VIRUS/VIRAL PROTEIN SH3-
										LIKE DOMAIN, NONSPECIFIC

				 		, ,		
2074	2070	2070	2070	2058	2058		Ö B	SEQ
lalh	25c8	losp	1gig	1qs4	lexq		D	PDB
>	H	н	H	Ą	A		Ш	CHAIN
11	74	74	74	œ			AA	START
96	291	290	292	132	132		AA	END
4.8e-27	0.0045	0.0059	0.0045	3.2e-30	1.6e-27		Blast	Psi
-0.03			·	0.14	-0.09		score	Verify
0.88				0.84	0.76		score	FMF
	52.67	57.86	52.34				score	SEQFOLD
QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX	IGG 5C8; CHAIN: L, H;	FAB 184.1; CHAIN: L, H; OUTER SURFACE PROTEIN A; CHAIN: O;	IMMUNOGLOBULIN IGG1 FAB FRAGMENT (HC19) 1GIG 3	HIV-1 INTEGRASE; CHAIN: A, B, C;	POL POLYPROTEIN; CHAIN: A, B;			Compound
COMPLEX (ZINC FINGER/DNA),	CATALYTIC ANTIBODY CATALYTIC ANTIBODY, FAB, RING CLOSURE REACTION	COMPLEX (IMMUNOGLOBULIN/LIPOPROT EIN) OSPA; COMPLEX (IMMUNOGLOBULIN/LIPOPROT EIN), OUTER SURFACE 2 PROTEIN A COMPLEXED WITH FAB184.1, BORRELIA BURGDORFERI 3 STRAIN B31		HYDROLASE DNA INTEGRATION, INTEGRASE, HIV, HYDROLASE, ASPARTYL 2 PROTEASE, ENDONUCLEASE	VIRUS/VIRAL PROTEIN HIV-1 INTEGRASE, POLYNUCLEOTIDYL TRANSFERASE, DNA-BINDING 2 PROTEIN, DD35E	DNA BINDING BETA SHEET, CIS- 2 PROLINE		PDB annotation

2	2	22	2(20	2074		N E	3
2074	2074	2074	2074	2074 1				┨
lmey	lmey	laih	laih	laih	lalh		E E	BOAD
C	C	Α	A	*	Α		D D	CHAIN
39	10	70	40	40	40		AA	TALT
124	96	152	126	124	124		AA	CINE
6.4e-49	1.6e-45	3.2e-33	3.2e-33	1.6e-32	1.4e-32		Blast	Dei
0.27	0.02	0.09		0.44	0.44		score	Varify
1.00	0.95	0.46		1.00	1.00		score	F AM
			84.04				score	SEOROLD SEOROLD
DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C;	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C;	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C;	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C;	OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C;		Compound
COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA), COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA), COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	PROTEIN PROTEIN		PDB annotation

_													,
	20/4		2074			2074			20/4		ÖE	SEQ	
	1		5,113			lmey			Imey		E	РДВ	
	>		Α			C			C		E	CHAIN	
	39		11			69			39		AA	START	
	128		96			152			72		AA	END	
	3.28-24	1	3.2e-23			4.8e-49	•		4.86-49		ыая	Psi	
			0.01			0.41					score	Verify	
			0.35			0.57					score	PMF	
	/3.33								71.42	2	Score	SEQFOLD	Lable 5
	IIA; CHAIN: A; 5S RNA GENE; CHAIN: E, F;		TRANSCRIPTION FACTOR IIIA; CHAIN: A; 5S RNA GENE; CHAIN: E, F;		PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E;	·	PROTEIN; CHAIN: C, F, G;	CONSENSUS ZINC FINGER	מיני מינים זו היינים מינים מינים מינים מינים מינים מינים מינים מינים מינים מינים מינים מינים מינים מינים מינים		Compound	
PROTEIN, LINC FINGER,	REGULATION/DNA) TRIIA; SS GENE; NMR, TFIIIA, PROTEIN, DNA, TRANSCRIPTION FACTOR, SS RNA 2 GENE, DNA BINDING	5S RNA 2 GENE, DNA BINDING PROTEIN, ZINC FINGER, COMPLEX 3 (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) TFIIIA; 5S GENE; NMR, TFIIIA, PROTEIN,	STRUCTURE, COMPLEX (ZINC FINGER/DNA)	INTERACTION, PROTEIN DESIGN 2 CRYSTAL	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA	STRUCTURE, COMPLEX (ZINC FINGER/DNA)	INTERACTION, PROTEIN DESIGN, 2 CRYSTAL	ZINC FINGER, PROTEIN-DNA	FINGER/DNA) COVER STRUCTURE, COMPLEX (ZINC		PDB annotation	

						ı
2074	2074	2074	2074	NO:	SEQ	
1tf6	1tf6	1#6	Ē		EDB ID	
Α	A		Þ		CHAIN	
40	2	13	40		START AA	
168	105	161	124		AA AA	
3.2e-32	3.2e-23	1.6e-38	3.2e-24		Psi Blast	
-0.15	-0.09	0.11	0.36		Verify score	
0.21	0.13	0.13	0.96		PMF	
					SEQFOLD score	Table 5
TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TRANSCRIPTION FACTOR IIIA; CHAIN: A; 5S RNA GENE; CHAIN: E, F;		Compound	
COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) TFIIIA; 5S GENE; NMR, TFIIIA, PROTEIN, DNA, TRANSCRIPTION FACTOR, 5S RNA 2 GENE, DNA BINDING PROTEIN, ZINC FINGER, COMPLEX 3 (TRANSCRIPTION REGULATION/DNA)	COMPLEX 3 (TRANSCRIPTION REGULATION/DNA)	PDB annotation	

2	2	2	7 or
2074	2074	2074	SEQ ID NO:
Iubd	lubd	1tf6	PDB ID
C		A	CHAIN
15	1	9	START AA
124	96	173	END AA
1.3e-36	1.6e-33	1.6e-38	Psi Blast
-0.06	-0.09		Verify score
1.00	0.57	·	PMF
		79.15	Table 5 SEQFOLD score
YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B;	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	Compound
COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATOR ILLEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	ZINC FINGER PROTEIN COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	PDB annotation POLYMERASE III, 2 TRANSCRIPTION INITIATION,

NO:
130
3.2e-16 3.2e-37
56.22 86.26
CHAIN: A, B; CHAIN: A, B; ADRI; CHAIN: NULL; ZINC FINGER PROTEIN GLII;
YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA) TRANSCRIPTION REGULATION TRANSCRIPTION REGULATION, ADR1, ZINC FINGER, NMR COMPLEX (DNA-BINDING

2076	2076	2076	2074		20/4		NO. E	SEQ
1a9n	la9n	1a4y	2gh		2gn		Ф	add
Α	A	Α			>	•	₽	CHAIN
59	40	56	44		4 .		AA	START
145	109	208	181		123		AA	END
3.4e-09	9.6e-08	3.4e-15	4.8e-31		3.2e-37		Blast	Psi
-0.04	0.10	0.08	0.05		0.21		score	Verify
0.47	0.95	0.45	-0.05		0.93		score	PMF
							score	SEQFOLD
U2 RNA HAIRPIN IV; CHAIN:	U2 RNA HAIRPIN IV; CHAIN: Q, R; U2 A'; CHAIN: A, C; U2 B"; CHAIN: B, D;	RIBONUCLEASE INHIBITOR; CHAIN: A, D; ANGIOGENIN; CHAIN: B, E;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;		ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;			Compound
COMPLEX (NUCLEAR	COMPLEX (NUCLEAR PROTEIN/RNA) COMPLEX (NUCLEAR PROTEIN/RNA), RNA, SNRNP RIBONUCLEOPROTEIN	COMPLEX (INHIBITOR/NUCLEASE) COMPLEX (INHIBITOR/NUCLEASE), COMPLEX (RI-ANG), HYDROLASE 2 MOLECULAR RECOGNITION, EPITOPE MAPPING, LEUCINE-RICH 3 REPEATS	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)	GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)	PROTEIN/DNA) FIVE-FINGER	GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)		PDB annotation

	···					···		
2076	2076	2076	2076	2076	2076	2076		NO E
1d0b	1d0b	1a9n 1d0b	1a9n	1a9n	1a9n	1a9n		E F
Α	≯	≯ C	C	С	С	Α		D
66	36	89	66	59	40	66		AA
247	199	200	187	158	109	187		AA
9.6e-24	1.6e-23	1.7e-16	6.8e-22	6.8e-10	9.6e-08	1.7e-22		PSI Blast
0.41	0.57	0.43	0.17	0.18	0.11	0.46		score
0.92	0.66	0.16	0.98	0.63	0.87	1.00		Score
			•					SEQFOLD score
INTERNALIN B; CHAIN: A;	INTERNALIN B; CHAIN: A;	U2 RNA HAIRPIN IV; CHAIN: Q, R; U2 A'; CHAIN: A, C; U2 B"; CHAIN: B, D; INTERNALIN B; CHAIN: A;	U2 RNA HAIRPIN IV; CHAIN: Q, R; U2 A'; CHAIN: A, C; U2 B"; CHAIN: B, D;	U2 RNA HAIRPIN IV; CHAIN: Q, R; U2 A'; CHAIN: A, C; U2 B"; CHAIN: B, D;	U2 RNA HAIRPIN IV; CHAIN: Q, R; U2 A'; CHAIN: A, C; U2 B"; CHAIN: B, D;	U2 RNA HAIRPIN IV; CHAIN: Q, R; U2 A'; CHAIN: A, C; U2 B"; CHAIN: B, D;	Q, R; U2 A'; CHAIN: A, C; U2 B"; CHAIN: B, D;	Compound
REPEAT, CALCIUM BINDING,	CELL ADHESION LEUCINE RICH REPEAT, CALCIUM BINDING, CELL ADHESION	COMPLEX (NUCLEAR PROTEIN/RNA) COMPLEX (NUCLEAR PROTEIN/RNA), RNA, SNRNP,RIBONUCLEOPROTEIN CELL ADHESION LEUCINE RICH	COMPLEX (NUCLEAR PROTEIN/RNA) COMPLEX (NUCLEAR PROTEIN/RNA), RNA, SNRNP.RIBONUCLEOPROTEIN	COMPLEX (NUCLEAR PROTEIN/RNA) COMPLEX (NUCLEAR PROTEIN/RNA), RNA, SNRNP,RIBONUCLEOPROTEIN	COMPLEX (NUCLEAR PROTEIN/RNA) COMPLEX (NUCLEAR PROTEIN/RNA), RNA, SNRNP,RIBONUCLEOPROTEIN	COMPLEX (NUCLEAR PROTEIN/RNA) COMPLEX (NUCLEAR PROTEIN/RNA), RNA, SNRNP,RIBONUCLEOPROTEIN	PROTEIN/RNA) COMPLEX (NUCLEAR PROTEIN/RNA), RNA, SNRNP,RIBONUCLEOPROTEIN	PDB annotation

2076	2076	2076	2076	2076	NO:
1угв	1ds9	1dce	1 dce	1dce	РДВ
Α	≯	>	≯	Α	CHAIN
37		77	57	38	START AA
163	163	208	162	116	END
4.8e-07	3.2e-12	1e-16	1.6e-12	3.2e-11	Psi Blast
-0.05	-0.38	0.35	0.13	0.06	Verify score
0.24	0.31	0.98	0.89	0.84	PMF score
				_	SEQFOLD score
GTPASE-ACTIVATING	OUTER ARM DYNEIN; CHAIN: A;	RAB GERANYLGERANYLTRANSFE RASE ALPHA SUBUNIT; CHAIN: A, C; RAB GERANYLGERANYLTRANSFE RASE BETA SUBUNIT; CHAIN: B, D;	RAB GERANYLGERANYLTRANSFE RASE ALPHA SUBUNIT; CHAIN: A, C; RAB GERANYLGERANYLTRANSFE RASE BETA SUBUNIT; CHAIN: B, D;	RAB GERANYLGERANYLTRANSFE RASE ALPHA SUBUNIT; CHAIN: A, C; RAB GERANYLGERANYLTRANSFE RASE BETA SUBUNIT; CHAIN: B, D;	Compound
TRANSCRIPTION RNA1P;	CONTRACTILE PROTEIN LEUCINE-RICH REPEAT, BETA- BETA-ALPHA CYLINDER, DYNEIN, 2 CHLAMYDOMONAS, FLAGELLA	TRANSFERASE CRYSTAL STRUCTURE, RAB GERANYLGERANYLTRANSFER ASE, 2.0 A 2 RESOLUTION, N- FORMYLMETHIONINE, ALPHA SUBUNIT, BETA SUBUNIT	TRANSFERASE CRYSTAL STRUCTURE, RAB GERANYLGERANYLTRANSFER ASE, 2.0 A 2 RESOLUTION, N- FORMYLMETHIONINE, ALPHA SUBUNIT, BETA SUBUNIT	TRANSFERASE CRYSTAL STRUCTURE, RAB GERANYLGERANYLTRANSFER ASE, 2.0 A 2 RESOLUTION, N- FORMYLMETHIONINE, ALPHA SUBUNIT, BETA SUBUNIT	PDB annotation CELL ADHESION

_				
	2076		NO:	
	lyrg		E PDB	
	>		CHAIN	
	59		START AA	
	186		END AA	
	6.8e-14		Psi Blast	
	-0.06		Verify score	
	0.63		PMF score	
			SEQFOLD score	CALORI
	GTPASE-ACTIVATING PROTEIN RNA1_SCHPO; CHAIN: A, B;	PROTEIN RNA1_SCHPO; CHAIN: A, B;	Compound	
	TRANSCRIPTION RNAIP; RANGAP; GTPASE-ACTIVATING PROTEIN FOR SPII, GTPASE- ACTIVATING PROTEIN, GAP, RNAIP, RANGAP, LRR, LEUCINE- 2 RICH REPEAT PROTEIN, TWINNING, HEMIHEDRAL TWINNING, 3 MEROHEDRAL TWINNING, MEROHEDRY	RANGAP; GIPASE-ACTIVATING PROTEIN FOR SPI1, GIPASE-ACTIVATING PROTEIN, GAP, ACTIVATING PROTEIN, GAP, RNAIP, RANGAP, LRR, LEUCINE- 2 RICH REPEAT PROTEIN, TWINNING, HEMIHEDRAL TWINNING, 3 MEROHEDRAL TWINNING, MEROHEDRY	PDB annotation	

409

Table 6

SEQ ID NO:	Position of Signal Peptide	Maximum score	Average score
1042	28	0.969	0.829
1043	19	0.891	0.574
1044	26	0.953	0.774
1045	13	0.891	0.675
1046	19	0.987	0.941
1047	24	0.969	0.817
1048	11	0.953	0.814
1049	17	0.923	0.602
1050	26	0.977	0.685
1051	39	0.978	0.765
1052	22	0.982	0.918
1053	15	0.989	0.965
1054	24	0.912	0.655
1055	31	0.885	0.603
1056	27	0.924	0.593
1057	14	0.907	0.696
1058	22	0.945	0.759
1059	29	0.917	0.690
1060	21	0.973	0.669
1061	19	0.891	0.574
1062	16	0.924	0.790
1063	16	0.951	0.883
1064	23	0.913	0.702
1065	27	0.948	0.670
1066	17	0.903	0.714
1067	20	0.923	0.683
1068	18	0.987	0.939
1069	16	0.969	0.904
1070	19	0.991	0.955
1071	31	0.969	0.810
1072	17	0.926	0.683
1073	22	0.956	0.916
1074	20	0.989	0.903
1075	15	0.899	0.790
1076	15	0.990	0.963
1077	25	0.901	0.586
1078	13	0.908	0.661
1079	20	0.901	0.669
1080	17	0.963	0.692
1081	13	0.891	0.675
1082	20	0.944	0.831
1083	17	0.961	0.880
1084	34	0.888	0.611
1085	26	0.920	0.700
1086	21	0.948	0.853
1087	28	0.963	0.728
1088	22	0.987	0.828
1089	22	0.979	0.946
1090	26	0.908	0.557
1091	27	0.978	0.831
1092	13	0.971	0.905
1093	19	0.939	0.711
1094	35	0.938	0.657
1095	16	0.909	0.828
1096	18	0.937	0.773

410

Table 6

	Position of Signal	Maximum score	Average score
SEQ ID NO:	Peptide	Mazinium sco. c	. r. o. ago score
1097	21	0.994	0.969
1098	15	0.949	0.849
1099	27	0.903	0.644
1100	21	0.987	0.895
1101	31	0.923	0.626
1102	25	0.986	0.932
1103	33	0.998	0.887
1104	23	0.990	0.932
1105	19	0.936	0.685
1106	27	0.910	0.566
1107	24	0.915	0.567
1108	15	0.937	0.732
1109	21	0.950	0.801
1110	25	0.965	0.890
1111	11	0.953	0.814
1112	33	0.963	0.577
1113	20	0.935	0.834
1114	14	0.938	0.795
1115 -	32	0.942	0.655
1116	23	0.957	0.596
1117	19	0.886	0.594
1118	23	0.994	0.966
1119	26	0.939	0.810
1120	18	0.930	0.656
1121	22	0.967	0.697
1122	18	0.983	0.961
1123	18	0.896	0.737
1124	31	0.932	0.598
1125	23	0.989	0.959
1126	18	0.960	0.753
1127	23	0.965	0.785
1128	33	0.969	0.791
1129	48	0.987	0.614
1130	15	0.975	0.934
1131	20	0.986	0.933
1132	22	0.981	0.883
1133	24	0.941	0.732
1134	18	0.916	0.728
1135	18	0.926	0.701
1136	31	0.971	0.816
1137	33	0.937	0.599
1138	27	0.922	0.559
1139	17	0.948	0.609
1140	24	0.985	0.945
1141	19	0.881	0.618
1142	27	0.932	0.726
1143	24	0.977	0.812
1144	25	0.948	0.848
1145	19	0.973	0.819
1146	20	0.955	0.612
1147	28	0.974	0.846
1148	14	0.944	0.864
1149	40	0.993	0.932
1150	16	0.969	0.912
1151	25	0.927	0.727

411

Table 6

SEQ ID NO:	Position of Signal	Maximum score	Average score
SEQ ID NO:	Peptide		
1152	22	0.939	0.684
1153	32	0.925	0.578
1154	21	0.962	0.823
1155	19	0.944	0.719
1156	14	0.897	0.638
1159	31	0.982	0.594
1160	29	0.880	0.645
1161	19	0.970	0.823
1162	23	0.886	0.627
1163	22	0.983	0.953
1164	18	0.975	0.858
1166	29	0.924	0.661
1167	31	0.953	0.687
1168	23	0.967	0.832
1169	18	0.928	0.698
1170	18	0.968	0.806
1171	21	0.932	0.654
1172	20	0.932	0.660
1173	18	0.952	0.791
1174	16	0.900	0.629
1175	21	0.892	0.786
1176	27	0.979	0.837
1177	23	0.961 0.974	0.663 0.782
1178	23		0.764
1179	40 25	0.921 0.966	0.764
1180 1181	30	0.988	0.676
1183	22	0.942	0.807
1184	22	0.971	0.887
1185	33	0.963	0.851
1187	16	0.993	0.954
1188	17	0.940	0.789
1189	18	0.925	0.784
1190	18	0.965	0.733
1191	23	0.956	0.636
1192	31	0.992	0.803
1193	25	0.991	0.948
1194	20	0.927	0.617
1195	26	0.986	0.895
1196	30	0.889	0.618
1197	23	0.983	0.873
1198	30	0.993	0.815
1199	18	0.985	0.956
1201	6	0.885	0.564
1202	28	0.959	0.730
1203	29	0.916	0.707
1204	22	0.940	0.800
1205	16	0.888	0.646
1206	21	0.908	0.558
1207	27	0.953	0.564
1208	43	0.969	0.757
1209	27	0.965	0.891
1212	19	0.976	0.809
1213	20	0.988	0.872
1214	31	0.987	0.871

Printed from Mimosa 05/11/28 15:58:10 Page: 412

412

Table 6

SEQ ID NO:	Position of Signal Peptide	Maximum score	Average score
1215	18	0.989	0.880
1216	34	0.920	0.550
1218	20	0.957	0.870
1219	25	0.928	0.615
1220	18	0.989	0.955
1221	14	0.892	0.686
1222	21	0.979	0.940
1223	24	0.979	0.930
1224	42	0.983	0.771
1225	22	0.982	0.811
1226	21	0.945	0.794
1227	15	0.969	0.910
1229	16	0.916	0.622
1230	29	0.972	0.769
1232	14	0.945	0.836
1233	30	0.963	0.669
1234	29	0.989	0.867
1234	34	0.977	0.891
1236	36	0.934	0.673
1237	32	0.922	0.720
1238	22	0.950	0.828
1239	22	0.956	0.763
1239	24	0.981	0.938
1240	19	0.891	0.574
1241	32	0.974	0.869
	33	0.890	0.675
1243	25	0.890	0.593
1244 1245	22	0.944	0.709
1245	39	0.940	0.714
1247	29	0.889	0.658
	19	0.883	0.749
1248	24	0.892	0.577
1249	21	0.892	0.662
1250		0.910	0.601
1251	29	0.954	0.741
1252	27	0.888	0.738
1253 1254	28	0.983	0.920
	26	0.985	0.705
1256 1257	19	0.973	0.698
	18	0.961	0.869
1258 1259	41	0.962	0.600
	18	0.962	0.664
1260	18	0.947	0.739
1261	20	0.889	0.739
1262	31	0.889	0.865
1263			0.850
1264	18 14	0.956 0.952	0.875
1265		0.952	0.563
1266	29		0.739
1267	20	0.966	0.688
1268	23	0.953	
1269	38	0.919	0.676
1270	27	0.955	0.826
1271	23	0.913	0.702
1273	21	0.972	0.915
1274	23	0.950	0.578

413

Table 6

	1 able b				
SEQ ID NO:	Position of Signal Peptide	Maximum score	Average score		
1275	20	0.996	0.965		
1276	20	0.976	0.937		
1278	26	0.962	0.752		
1279	38	0.962	0.756		
1280	19	0.991	0.929		
1281	27	0.948	0.670		
1282	22	0.932	0.790		
1283	23	0.962	0.679		
1285	30	0.888	0.573		
1286	15	0.996	0.988		
1287	27	0.992	0.893		
	24	0.952	0.685		
1288	36	0.953	0.605		
1289		0.933	0.649		
1290	32				
1291	24	0.990	0.935		
1292	24	0.973	0.940		
1293	20	0.965	0.811		
1294	18	0.977	0.957		
1296	24	0.987	0.903		
1297	12	0.894	0.780		
1298	29	0.899	0.623		
1299	19	0.882	0.753		
1300	33	0.996	0.905		
1301	21	0.952	0.663		
1302	19	0.984	0.937		
1303	32	0.978	0.885		
1305	18	0.985	0.736		
1306	46	0.991	0.888		
1308	27	0.996	0.933		
1309	24	0.970	0.913		
1310	27	0.930	0.778		
1312	16	0.990	0.959		
1313	18	0.949	0.767		
1314	18	0.896	0.752		
1315	18	0.984	0.888		
1316	21	0.953	0.721		
1317	35	0.923	0.688		
1318	27	0.940	0.796		
1319	26	0.990	0.837		
1320	24	0.972	0.663		
	18	0.972	0.722		
1321	21	0.955	0.722		
1323		0.979	0.709		
1324	21	0.944	0.675		
1325	26		0.569		
1326	29	0.931			
1327	18	0.997	0.955		
1329	24	0.985	0.845		
1330	43	0.901	0.602		
1331	32	0.965	0.699		
1332	15	0.881	0.608		
1334	32	0.896	0.556		
1335	18	0.963	0.807		
1336	19	0.909	0.593		
1337	16	0.885	0.562		
1338	18	0.911	0.688		

414

Table 6

Table 6				
SEQ ID NO:	Position of Signal Peptide	Maximum score	Average score	
1339	24	0.980	0.847	
1340	25	0.943	0.774	
1341	20	0.973	0.778	
1342	27	0.924	0.686	
1343	24	0.914	0.585	
1344	16	0.957	0.773	
1345	15	0.906	0.798	
1346	16	0.971	0.855	
1347	24	0.980	0.901	
1348	23	0.965	0.642	
1349	22	0.899	0.609	
			0.585	
1350	18	0.940		
1351	19	0.985	0.935	
1352	22	0.945	0.718	
1353	20	0.943	0.728	
1354	15	0.887	0.721	
1355	16	0.915	0.737	
1358	21	0.948	0.585	
1360	30	0.911	0.555	
1361	20	0.976	0.851	
1362	19	0.927	0.791	
1364	19	0.947	0.574	
1365	28	0.997	. 0.786	
1366	28	0.979	0.855	
1367	22	0.895	0.577	
1368	19	0.956	0.829	
1369	16	0.929	0.739	
1370	17	0.931	0.745	
1371	30	. 0.950	0.708	
1372	28	0.968	0.856	
1372	26	0.953	0.711	
	32		0.711	
1375		0.983		
1376	19	0.929	0.689	
1377	30	0.899	0.631	
1378	25	0.927	0.775	
1379	19	0.982	0.922	
1380	28	0.940	0.628	
1381	20	0.890	0.610	
1382	28	0.921	0.606	
1383	23	0.881	0.644	
1384	24	0.978	0.911	
1385	21	0.974	0.723	
1386	26	0.980	0.795	
1387	16	0.903	0.654	
1388	20	0.912	0.596	
1389	19	0.981	0.960	
1390	25	0.932	0.790	
1391	15	0.990	0.963	
1395	18	0.942	0.709	
1396	28	0.963	0.844	
1397	19	0.972	0.882	
1398	21	0.966	0.827	
1399	21	0.962	0.752	
1400	25	0.979	0.855	
1400	23	0.913	0.685	
1402		0.513	C80.V	

415

Table 6

Position of Signal Maximum score Average score				
SEQ ID NO:	Position of Signal Peptide	Maximum score		
1403	19	0.935	0.829	
1404	21	0.984	0.958	
1405	27	0.888	0.566	
1406	36	0.945	0.564	
1407	19	0.938	0.755	
1408	22	0.947	0.745	
1409	16	0.909	0.728	
1410	20	0.961	0.866	
1412	22	0.991	0.926	
1413	20	0.911	0.683	
1414	15	0.905	0.737	
1416	13	0.933	0.799	
1417	46	0.956	0.728	
1418	20	0.945	0.782	
1419	19	0.987	0.953	
1420	30	0.976	0.862	
1421	24	0.964	0.796	
1423	23	0.924	0.645	
1425	19	0.913	0.670	
1426	33	0.968	0.774	
1426	22	0.941	0.632	
		0.972	0.935	
1428	18		0.909	
1429	15	0.978	0.713	
1430	26 .	0.926	0.659	
1431	26	0.915	0.790	
1432	21	0.949		
1433	27	0.996	0.854	
1434	26	0.910	0.590	
1436	21	0.983	0.793	
1437	18	0.932	0.643	
1438	21	0.908	0.583	
1439	24	0.925	0.742	
1440	18	0.909	0.736	
1441	30	0.883	0.615	
1442	37	0.960	0.714	
1444	30	0.942	0.586	
1445	24	0.904	0.640	
1446	26	0.950	0.724	
1447	15	0.956	0.757	
1448	30	0.906	0.692	
1449	21	0.933	0.751	
1450	25	0.990	0.855	
1451	20	0.893	0.775	
1452	26	0.952	0.729	
1453	44	0.990	0.654	
1454	20	0.974	0.810	
1455	21	0.960	0.679	
1456	17	0.926	0.629	
1457 .	23	0.982	0.940	
1458	18	0.986	0.938	
1459	22	0.940	0.617	
1460	18	0.939	0.698	
	39	0.997	0.955	
1461				
1461 1462	11	0.989	0.626	

416

Table 6

Table 6 Position of Signal Maximum score Average score				
SEQ ID NO:	Position of Signal Peptide	Maximum score	Average score	
1465	17	0.948	0.855	
1466	13	0.901	0.739	
1467	20	0.960	0.883	
1468	26	0.903	0.585	
1469	18	0.914	0.710	
1470	23	0.972	0.908	
1471	19	0.942	0.626	
1473	25	0.972	0.670	
1474	15	0.917	0.810	
1475	40	0.923	0.825	
1477	21	0.914	0.589	
1478	26	0.964	0.721	
1479	19	0.936	0.624	
1481	22	0.995	0.943	
1482	20	0.995	0.959	
1484	19	0.964	0.755	
1485	15	0.956	0.847	
1485	27	0.963	0.584	
1487	23	0.941	0.781	
		0.969	0.816	
1488	32	0.956	0.742	
1489	29		0.615	
1491	20	0.894		
1492	34	0.923	0.668	
1493	16	0.943	0.809	
1494	19	0.969	0.878	
1495	27	0.944	0.726	
1496	45	0.915	0.688	
1497	45	0.908	0.583	
1499	45	0.987	0.820	
1500	20	0.972	0.790	
1501 .	14	0.881	0.637	
1503	24	0.973	0.786	
1504	16	0.923	0.752	
1505	22	0.965	0.829	
1507	43	0.996	0.907	
1509	21	0.948	0.732	
1510	23	0.962	0.822	
1511	34	0.921	0.646	
1512	19	0.959	0.753	
1513	46	0.962	0.628	
1514	21	0.928	0.717	
1515	16	0.926	0.731	
1516	15	0.885	0.663	
1517	21	0.935	0.795	
1518	21	0.945	0.852	
1519	13	0.881	0.636	
1520	20	0.949	0.704	
1521	21	0.938	0.745	
1522	20	0.977	0.923	
1523	23	0.925	0.619 .	
1524	20	0.933	0.728	
1525	11	0.912	0.784	
1526	29	0.907	0.656	
	1 27			
1527	18	0.962	0.704	

417

Table 6

	Position of Signal	Maximum score	Average score
SEQ ID NO:	Peptide		
1529	37	0.960	0.623
1530	22	0.899	0.649
1532	22	0.943	. 0.663
1533	20	0.970	0.936
1534	28	0.934	0.607
1535	30	0.989	0.890
1536	16	0.984	0.932
1537	22	0.992	0.974
1538	35	0.976	0.622
1539	20	0.901	0.576
1540	28	0.944	0.697
1542	28	0.936	0.667
1543	25	0.891	0.550
1544	21	0.967	0.700
1545	31	0.938	0.649
1546	21	0.883	0.569
1547	29	0.953	0.614
1548	12	0.916	0.815
1549	23	0.955	0.658
1550	21	0.948	0.635
	19	0.956	0.835
1551 1552	18	0.960	0.803
1554	33	0.920	0.577
	24	0.947	0.717
1555	31	0.898	0.658
1556 1557	24	0.960	0.876
1558	23	0.985	0.878
	38	0.919	0.553
1560	12	0.942	0.841
1561	21	0.887	0.568
1562 1563	19	0.990	0.928
	18	0.950	0.814
1564	26	0.970	0.822
1567 1569	14	0.928	0.806
	26	0.998	0.969
1570	18	0.911	0.762
1571 1572	28	0.986	0.924
1574	15	0.935	0.815
1575	18	0.955	0.896
1576	26	0.949	0.697
1577	20	0.945	0.856
1578	24	0.962	0.723
1579	23	0.976	0.716
1580	20	0.903	0.597
1582	19	0.880	0.679
	25	0.984	0.918
1583	22	0.991	0.876
1584	23	0.968	0.710
1585	33	0.894	0.596
1586		0.918	0.721
1587	23	0.918	0.721
1588	19	0.913	0.886
1589	14		0.557
1590 1591	28 26	0.887 0.999	0.337
		1 11 444	i 0.303

418

Table 6

	Position of Signal	Maximum score	Average score
SEQ ID NO:	Peptide		
1593	32	0.962	0.612
1594	22	0.966	0.864
1596	19	0.970	0.823
1597	15	0.917	0.825
1598	32	0.991	0.900
1599	26	0.927	0.693
1600	18	0.896	0.656
1601	16	0.926	0.833
1602	18	0.948	0.883
1603	18	0.977	0.868
1604	34	0.943	0.730
1606	15	0.930	0.640
1607	32	0.967	0.697
1608	21	0.922	0.658
	30	0.881	0.586
1610	30	0.887	0.667
1611	19	0.938	0.565
1612	22	0.938	0.894
1613		0.925	0.725
1614	20	0.923	0.746
1615	25	0.986	0.671
. 1616	30	0.988	0.620
1619	18		0.611
1620	28	0.968	0.613
1621	29	0.925	0.711
1622	48	0.968	
1623	24	0.937	0.586 0.694
1624	19	0.914	
1625	26	0.906	0.685
1626	14	0.962	0.863
1627	28	0.976	0.911
1629	17	0.973	0.938
1630	22	0.962	0.919
1632	31	0.997	0.846
1633	25	0.920	0.607
1634	17	0.982	0.945
1635	17	0.994	0.968
1638	30	0.922	0.705
1639	21	0.952	0.714
1640	21	0.966	0.807
1641	23	0.983	0.821
1642	18	0.953	0.885
1643	16	0.907	0.647
1644	20	0.884	0.650
1645	17	0.959	0.680
1646	18	0.991	0.954
1647	30	0.983	0.786
1648	21	0.886	0.567
1649	24	0.894	0.658
1650	23 .	0.881	0.657
	27	0.932	0.702
1651		0.993	0.885
1652	22	0.990	0.926
1653	17	0.932	0.622
1654	19		0.673
1655	34	0.931	0.909
1656	19	0.966	0.909

419

Table 6

SEQ ID NO:	Position of Signal Peptide	Maximum score	. Average score
1657	17	0.955	0.867
1658	38	0.954	0.594
1659	19	0.920	0.710
1660	37	0.988	0.598
1662	32	0.909	0.675
	16	0.937	0.804
1664	20	0.911	0.621
1665	29	0.981	0.871
1667		0.972	0.869
1668	33	0.968	0.913
1669	22	0.990	0.932
1670	23	0.939	0.716
1672	22		0.865
1673	17	0.963	0.669
1674	38	0.949	0.787
1675	20	0.926	0.785
1677	19	0.938	0.727
1678	20	0.929	
1679	20	0.916	0.604
1680	21	0.967	0.886
1681	20	0.909	0.749
1682	30	0.928	0.776
1683	20	0.916	0.649
1684	21	0.976	0.879
1685	13	0.897	0.645
1686	13	0.994	0.963
1687	17	0.898	0.743
1688	30	0.946	0.638
1689	21	0.996	0.976
1690	18	0.916	0.595
1691	17	0.934	0.754
1692	28	0.899	0.753
1693	20	0.933	0.655
1694	19	0.990	0.920
1695	17	0.945	0.731
1697	18	0.885	0.588
1698	29	0.986	0.937
	26	0.972	0.557
1699 1700	17	0.977	0.946
	17	0.882	0.608
1701	20	0.989	0.952
1702		0.919	0.578
1703	22 31	0.895	0.648
1706		0.893	0.922
1707	22	0.937	0.569
1708	22		0.903
1709	20	0.980	0.903
1710	17	0.972	0.823
1711	27	0.984	0.823
1712	17	0.963	
1713	24	0.977	0.880
1714	17	0.970	0.908
1715	31	0.973	0.843
1716	18	0.931	0.703
1717	18	0.931	0.702
1718	34	0.946	0.628
1719	19	0.973	0.883

420

Table 6

SEQ ID NO:	Position of Signal Peptide	Maximum score	Average score
1720	48	0.980	0.845
1721	28	0.922	0.676
1722	44	. 0.965	0.645
1723	26	0.887	0.730
1724	25	0.939	0.795
	15	0.971	0.942
1725	23	0.923	0.591
1727	23	0.987	0.936
1728	18	0.927	0.814
1729		0.935	0.605
1730	18	0.933	. 0.912
1731	25	0.972	0.726
1732	42		0.798
1733	20	0.952	0.918
1734	17	0.975	0.918
1735	15	0.979	
1736	41	0.933	0.659
1738	17	0.925	0.746
1739	18	0.912	0.764
1741	11	0.953	0.814
1742	23	0.976	0.774
1744	23	0.918	0.606
1746	29	0.915	0.652
1747	15	0.933	0.840
	27	0.903	0.612
1748	29	0.904	0.618
1750	22	0.888	0.670
1751		0.979	0.868
1752	16	0.959	0.884
1753	26	0.954	0.696
1754	22		0.707
1755	20	0.895 0.906	0.703
1756	26		0.587
1757	14	0.888	0.953
1758	15	0.994	0.610
1759	21	0.922	
1760	21	0.942	0.693
1761	19	0.947	0.814
1762	21	0.934	0.655
1763	22	0.940	0.609
1764	23	0.937	0.832
1765	23	0.896	0.677
1766	26	0.909	0.690
1768	18	0.915	0.689
1769	36	0.969	0.602
1770	20	0.880	0.640
1770	20	0.942	0.715
	20	0.947	0.817
1773	16	0.969	0.880
1774	18	0.971	0.859
1775		0.891	0.670
1776	24	0.991	0.747
1777_	27		0.574
1778	40	0.963	0.656
1779	23	0.974	
1780	21	0.899	0.653
1781	25	0.908	0.601
1782	19	0.943	0.678

421

Table 6

	Tab		Average score
SEQ ID NO:	Position of Signal Peptide	Maximum score	
1783	23	0.936	0.634
1784	29	0.949	0.786
1785	44	0.915	0.571
1786	22	0.965	0.885
1787	15	0.974	0.940
1789	· 23	0.952	0.659
1790	16	0.972	. 0.898
1791	21	0.980	0.953
1792	32	0.961	0.668
1793	29	0.907	0.551
	22	0.957	0.934
1794	21	0.990	0.849
1795		0.954	0.893
1796	22	0.942	0.657
1797	16		0.840
1799	25	0.949	0.739
1800	28	0.949	0.767
1801	25	0.938	
1802	15	0.899	0.672
1803	17	0.987	0.956
1804	24	0.941	0.775
1805	26	0.972	0.771
1806	20	0.985	0.957
1807	22	0.932	0.571
1808	16	0.927	0.608
1809	26	0.987	0.770
1810	37	0.955	0.592
1811	28	0.911	0.632
1812	24	0.894	0.698
1813	22	0.906	0.624
1814	34	0.951	0.806
1816	25	0.919	0.578
1817	26	0.980	0.932
1818	19	0.993	0.940
1820	26	0.939	0.810
1821	48	0.967	0.556
1822	19	0.931 .	0.753
1823	36	0.892	0.670
	18	0.903	0.674
1824	17	0.966	0.854
1825	15	0.938	0.849
1826		0.985	0.891
1827	27	0.895	0.665
1828	17		0.620
1829	36	0.916	0.835
1830	22	0.952	0.833
1831 .	17	0.961	
1832	19	0.996	0.982
1833	19	0.918	0.556
1834	37	0.926	0.587
1836	14	0.897	0.787
1837	19	0.960	0.816
1838	31	0.902	0.632
1839	17	0.987	0.955
1840	23	0.988	0.941
1842	26	0.915	0.695
1843	26	0.987	0.926

422

Table 6

SEQ ID NO:	Position of Signal	Maximum score	Average score
	Peptide		Average score
1844	15	0.933	0.731
1845	16	0.942	0.750
1846	20	0.914	0.842
1847	18	0.899	0.695
1848 1849	24	0.988	0.883
1850	26	0.956	0.612
1851	31	0.961	0.568
1853	22	0.966	0.882
1854	30	0.921	0.610
1855	24	0.973	0.922
1856	14	0.938	0.902
1857	19	0.931	0.745
1858	21	0.908	0.556
1859	20	0.933	0.837
1860	23	0.920	0.633
1862	18	0.896	0.737
1863	16	0.887	0.641
1864	21	0.974	0.937
1865	24	0.982	0.899
1867	37	0.997	0.901
1868	19	0.960	0.758
1869	37	0.970	0.851
1870	20	0.950	0.684
1871	18	0.952	0.694
1872	16	0.921	0.724
1873	16	0.908	0.579
1874	33	0.991	0.913
1875	26	0.898	0.689
1876	20	0.904	0.707
1877	18	0.983	0.967
1878	27	0.951	0.739
1879	45	0.971	0.862
1880	16	0.966	0.761
1881	35	0.940	0.778
1882	. 23	0.926	0.704
1883	19	0.882	0.567
1884	26	0.933	0.703
1886	25	0.919 0.911	0.754
1887	21	0.911	0.570
1888	39		0.931
1889	20	0.965 0.967	0.616
1890	23	0.980	0.885
1891	26	0.896	0.871
1892	20	0.882	0.665
1894	16	0.882	0.729
1895	28	0.914	0.741
1896	19	0.899	0.888
1897	17		0.777
1898	19	0.893	0.615
1899	22	0.976	0.821
1900	26	0.952	0.791
1901	16	0.990	0.775
1902	38	0.985	0.958
1903	26	0.912	0.654

Printed from Mimosa 05/11/28 15:58:25 Page: 423

423

Table 6

SEQ ID NO:	Position of Signal	Maximum score	Average score
	Peptide		0.044
1904	25	0.949	0.844 0.718
1905	23	0.945	0.556
1906	18	0.907	0.786
1907	20	0.961	0.752
1908	19	0.907	0.808
1909	17	0.957 0.933	0.808
1910	22	0.988	0.913
1911	22	0.964	0.814
1912	32	0.952	0.784
1913	21	0.932	0.644
1914	24	0.919	0.644
1915	21	0.969	0.912
1916	21		0.681
1917	16	0.962 0.926	0.776
1918	14	0.926	0.897
1919	23	0.987	0.614
1920	48		0.677
1921	23	0.899	0.651
1922	23	0.907	0.706
1923	16	0.921	0.672
1924	20	0.928	
1925	26	0.985	0.942 0.682
1926	27	0.911	
1927	19	0.939	0.700
1928	15	0.887	0.709
1929	15 .	0.980	0.959
1930	25	0.987	0.924
1931	28	0.936	0.745
1932	20	0.958	0.669
1933	21	0.988	0.945
1934	24	0.912	0.699
1935	23	0.909	0.726
1936	20	0.964	0.924
1937	28	0.960	0.813
1938	18	0.971	0.806
1939	20	0.954	0.746
1941	20	0.986	0.933
1942	45	0.976	0.736
1944	18	0.967	0.871
1945	20	0.973	0.759
1947	17	0.954	0.919
1948	21	0.970	0.871
1949	18	0.991	0.976
1950	27	0.893	0.647
1951	19	0.881	0.705
1952	24	0.977	0.830
1953	15	0.957	0.834
1954	29	0.970	0.863
1956	19	0.940	0.835
1957	32	0.992	0.891
1958	22	0.968	0.837
1959	27	0.908	0.725
1960	20	0.941	0.751
1961	21	0.885	0.669
1962	29	0.955	0.797

424

Table 6

SEQ ID NO:	Position of Signal	Maximum score	Average score
1963	Peptide 16	0.974	0.050
1964	21	0.929	0.950
1965	24	0.913	0.745 0.658
1966	45	0.937	0.671
1968	43	0.956	0.581
1969	19	0.956	0.614
1970	46	0.901	0.566
1971	24	0.947	0.768
1972	24	0.900	0.642
1974	22	0.988	0.922
1975	24	0.951	0.710
1976	18	0.932	0.740
1977	18	0.954	0.736
1978	20	0.994	0.967
1979	26	0.987	0.926
1980	22	0.964	0.866
1981	13	0.932	0.870
1982	21	0.949	0.881
1983	23	0.957	0.658
1984	12	0.954	0.910
1985	22	0.990	0.829
1986	31	0.987	0.845
1987	20	0.919	0.721
1988	17	0.985	0.966
1989	24	0.966	0.830
1990	31	0.971	0.816
1991	15	0.935	0.823
1992	21	0.967	0.802
1994	18	0.930	0.650
1995	20	0.902	0.611
1996	23	0.946	0.724
1997	25	0.943	0.787
1998	18	0.921	0.666
1999	13	0.883	0.748
2000	24	0.899	0.579
2001	13	0.918	0.705
2002	18	0.899	0.809
2003	18	0.950	0.647
2004	30	0.981	0.889
2005	17	0.950	0.771
2007	24	0.940	0.800
2009	21	0.980	0.815
2010	43	0.939	0.655
2011	16	0.920	0.698
2012	30	0.978	0.901
2013	19	0.981	0.919
2014	40 20	0.978	0.553
2015		0.994	0.960
2016	18	0.955	0.771
2017	25	0.914	0.769
2017	31 26	0.952	0.776
2019	16	0.985	0.854
2020	22	0.945	0.822
2020		0.973	0.804
2021	17	0.954	0.919

425

Table 6

SEQ ID NO:	Position of Signal	Maximum score	Average score
	Peptide		
2022 .	19	0.993	0.973
2023	18	0.921	0.683
2026	23	0.890	0.604
2027	35	0.943	0.603
2028	25	0.992	0.953
2029	47	0.950	0.846
2030	17	0.914	0.722
2032	18	0.995	0.974
2033	17	0.933	0.828
2034	17	0.934	0.644
2035	26	0.910	0.567
2036	30	0.940	0.690
2037	23	0.908	0.557
2038	18	0.906	0.624
2039	18	0.926	0.768
2040	14	0.934	0.758
2041	18	0.960	0.869
2042	21	0.911	0.716
2043	25	0.896	0.576
2044	27	0.953	0.850
2045	17	0.962	0.863
2046	25	0.924	0.572
2047	. 39	0.955	0.608
2048	38	0.958	0.692
2049	25	0.949	0.803
2050	27	0.932	0.726
2051	15	0.900	0.672
2052	22	0.967	0.703
2053	19	0.960	0.757
2054	20	0.880	0.775
2055	19	0.913	0.721
2057	23	0.955	0.882
2058	23	0.893	0.728
2059	26	0.953	0.619
2060	19	0.935	0.770
2061	44	0.952	0.739
2062	31	0.964	0.894
2063	19	0.924	0.707
2064	18	0.891	0.673
2065	25	0.912	0.764
2067	25	0.954	0.812
2068	20	0.913	0.685
2069	40	0.974	0.686
2070	28	0.991	0.896
2072	18	. 0.956	0.844
2073	26	0.928	0.741
2074	17	0.902	0.678
2075	18	0.965	0.850
2076	27	0.975	0.937
2077	32	0.988	0.863
2078	29	0.922	0.662
2080	20	0.986	0.918
2081	13	0.969	0.953

426

Table 7

1 2 2 5 3 3 4 5 5 115 6 4 7 12 8 4 9 15 10 13 11 6 12 10 13 3 14 6 15 10 16 12q 17 1 19 2 20 X 21 4 23 12 24 11 25 1 26 16 27 8 28 1 29 11 30 3 31 2 28 1 29 11 30 3 31 2 32 1 33 17	SEQ ID NO:	Chromsomal location
4 5 5 115 6 4 7 12 8 4 9 15 10 13 11 6 12 10 13 3 14 6 15 10 16 12q 17 1 19 2 20 X 21 4 23 12 24 11 25 1 26 16 27 8 28 1 29 11 30 3 31 2 28 1 29 11 30 3 31 2 22 1 33 17 34 4 43 4 44 4 <	1	2
4 5 5 115 6 4 7 12 8 4 9 15 10 13 11 6 12 10 13 3 14 6 15 10 16 12q 17 1 19 2 20 X 21 4 23 12 24 11 25 1 26 16 27 8 28 1 29 11 30 3 31 2 28 1 29 11 30 3 31 2 22 1 33 17 34 4 43 4 44 4 <	2	5
5 15 6 4 7 12 8 4 9 15 10 13 11 6 12 10 13 3 14 6 15 10 16 12q 17 1 19 2 20 X 21 4 23 12 24 11 25 1 26 16 27 8 28 1 29 11 30 3 31 2 29 11 30 3 31 2 29 11 30 3 31 2 23 1 29 11 30 3 31 2		3
6 4 7 112 8 4 9 15 10 13 11 6 12 10 13 3 14 6 15 10 16 12q 17 1 19 2 20 X 21 4 23 12 24 11 25 1 26 16 27 8 28 1 1 30 30 3 31 2 29 11 30 3 31 2 32 1 33 17 34 4 4 3 38 2 39 16 41 19 42 4		
7 12 8 4 9 15 10 13 11 6 12 10 13 3 14 6 15 10 16 12q 17 1 19 2 20 X 21 4 23 12 24 11 25 1 26 16 27 8 28 1 29 11 30 3 31 2 32 1 33 17 34 4 43 4 36 X 38 2 39 16 41 19 42 4 43 8 44 4 45 19	5	
8 4 9 15 10 13 11 6 12 10 13 3 14 6 15 10 16 12q 17 1 19 2 20 X 21 4 23 12 24 11 25 1 26 16 27 8 28 1 29 11 30 3 31 2 29 11 30 3 31 2 29 11 30 3 31 2 29 11 30 3 31 2 32 1 33 17 34 4 43 4	7	
9 15 10 13 11 6 12 10 13 3 14 6 15 10 16 12q 17 1 19 2 20 X 21 4 23 12 24 11 25 1 26 16 27 8 28 1 29 11 30 3 31 2 29 11 30 3 31 2 29 11 30 3 31 2 29 11 30 3 31 2 32 1 33 17 34 4 43 4 44 4		
10	9	15
11 6 12 10 13 3 14 6 15 10 16 12q 17 1 19 2 20 X 21 4 23 12 24 11 25 1 26 16 27 8 28 1 29 11 30 3 31 2 32 1 33 17 34 4 43 4 43 8 24 4 43 8 44 4 45 19 46 18 47 6 48 9 49 10 52 11 53 18 54 17 55 17 56 5 5		
12 10 13 3 14 6 15 10 16 12q 17 1 19 2 20 X 21 4 23 12 24 11 25 1 26 16 27 8 28 1 29 11 30 3 31 2 32 1 33 17 34 4 36 X 38 2 39 16 41 19 42 4 43 8 44 4 45 19 46 18 47 6 48 9 49 10 52 11 53 18 54 17 55 5 57 21 59 4 60 10 61 18 63 4 46 11		
13 3 14 6 15 10 16 12q 17 1 19 2 20 X 21 4 23 12 24 11 25 1 26 16 27 8 28 1 29 11 30 3 31 2 32 1 33 17 34 4 43 4 38 2 39 16 41 19 42 4 43 8 44 4 45 19 46 18 47 6 48 9 49 10 52 11 53 18 54 17 55 5 57 21		10
14 6 15 10 16 12q 17 1 19 2 20 X 211 4 23 12 24 11 25 1 26 16 27 8 28 1 29 11 30 3 31 2 32 1 33 17 34 4 36 X 38 2 39 16 41 19 42 4 43 8 44 4 45 19 46 18 47 6 48 9 49 10 52 11 53 18 54 17 55 5 57 21 59 4 60 10 61 18 63 4 64 11		3
16 12q 17 1 19 2 20 X 21 4 23 12 24 11 25 1 26 16 27 8 28 1 29 11 30 3 31 2 32 1 33 17 34 4 36 X 38 2 39 16 41 19 42 4 43 8 44 4 45 19 46 18 47 6 48 9 49 10 52 11 53 18 54 17 55 5 57 21 59 4 <td></td> <td>6</td>		6
17 1 19 2 20 X 21 4 23 12 24 11 25 1 26 16 27 8 28 1 29 11 30 3 31 2 32 1 33 17 34 4 43 8 2 2 39 16 41 19 42 4 43 8 44 4 45 19 46 18 47 6 48 9 49 10 52 11 53 18 54 17 55 5 57 21 59 4 60 10 61 18 63 4 64		
19 2 20 X 21 4 23 12 24 11 25 1 26 16 27 8 28 1 29 11 30 3 31 2 32 1 33 17 34 4 43 2 39 16 41 19 42 4 43 8 44 4 45 19 46 18 47 6 48 9 49 10 52 11 53 18 54 17 55 17 56 5 57 21 59 4 60 10 61 18 63 4 64 11		
20 X 21 4 23 12 24 11 25 1 26 16 27 8 28 1 29 11 30 3 31 2 32 1 33 17 34 4 36 X 38 2 39 16 41 19 42 4 43 8 44 4 45 19 46 18 47 6 48 9 49 10 52 11 53 18 54 17 55 17 56 5 57 21 59 4 60 10 61 18 <td></td> <td>1</td>		1
21 4 23 12 24 11 25 1 26 16 27 8 28 1 29 11 30 3 31 2 32 1 33 17 34 4 43 4 36 X 38 2 39 16 41 19 42 4 43 8 44 4 45 19 46 18 47 6 48 9 49 10 52 11 53 18 54 17 55 17 56 5 57 21 59 4 60 10 61 18 63 4 64 11 <td></td> <td></td>		
23 12 24 11 25 1 26 16 27 8 28 1 29 11 30 3 31 2 32 1 33 17 34 4 43 4 36 X 38 2 39 16 41 19 42 4 43 8 44 4 45 19 46 18 47 6 48 9 49 10 52 11 53 18 54 17 55 17 56 5 57 21 59 4 60 10 61 18 63 4 64 11		X
24 11 25 1 26 16 27 8 28 1 29 11 30 3 31 2 32 1 33 17 34 4 36 X 38 2 39 16 41 19 42 4 43 8 44 4 45 19 46 18 47 6 48 9 49 10 52 11 53 18 54 17 55 17 56 5 57 21 59 4 60 10 61 18 63 4 64 11		12
25 1 26 16 27 8 28 1 29 11 30 3 31 2 32 1 34 4 36 X 38 2 39 16 41 19 42 4 43 8 44 4 45 19 46 18 47 6 48 9 49 10 52 11 53 18 54 17 55 5 57 21 59 4 60 10 61 18 63 4 64 11		
26 16 27 8 28 1 29 11 30 3 31 2 32 1 33 17 34 4 36 X 38 2 39 16 41 19 42 4 43 8 44 4 45 19 46 18 47 6 48 9 49 10 52 11 53 18 54 17 55 17 56 5 57 21 59 4 60 10 61 18 63 4 64 11		
27 8 28 1 29 11 30 3 31 2 32 1 33 17 34 4 36 X 38 2 39 16 41 19 42 4 43 8 44 4 45 19 46 18 47 6 48 9 49 10 52 11 53 18 54 17 55 17 56 5 57 21 59 4 60 10 61 18 63 4 64 11		
28 1 29 11 30 3 31 2 32 1 33 17 34 4 36 X 38 2 39 16 41 19 42 4 43 8 44 4 45 19 46 18 47 6 48 9 49 10 52 11 53 18 54 17 56 5 57 21 59 4 60 10 61 18 63 4 64 11		
30 3 31 2 32 1 33 17 34 4 36 X 38 2 39 16 41 19 42 4 43 8 44 4 45 19 46 18 47 6 48 9 49 10 52 11 53 18 54 17 55 5 57 21 59 4 60 10 61 18 63 4 64 11		
31 2 32 1 33 17 34 4 36 X 38 2 39 16 41 19 42 4 43 8 44 4 45 19 46 18 47 6 48 9 49 10 52 11 53 18 54 17 55 17 56 5 57 21 59 4 60 10 61 18 63 4 64 11		
32 1 33 17 34 4 36 X 38 2 39 16 41 19 42 4 43 8 44 4 45 19 46 18 47 6 48 9 49 10 52 11 53 18 54 17 55 17 56 5 57 21 59 4 60 10 61 18 63 4 64 11		
33 17 34 4 36 X 38 2 39 16 41 19 42 4 43 8 44 4 45 19 46 18 47 6 48 9 49 10 52 11 53 18 54 17 55 17 56 5 57 21 59 4 60 10 61 18 63 4 64 11		
34 4 36 X 38 2 39 16 41 19 42 4 43 8 44 4 45 19 46 18 47 6 48 9 49 10 52 11 53 18 54 17 55 17 56 5 57 21 59 4 60 10 61 18 63 4 64 11	32	
36 X 38 2 39 16 41 19 42 4 43 8 44 4 45 19 46 18 47 6 48 9 49 10 52 11 53 18 54 17 55 17 56 5 57 21 59 4 60 10 61 18 63 4 64 11		
38 2 39 16 41 19 42 4 43 8 44 4 45 19 46 18 47 6 48 9 49 10 52 11 53 18 54 17 55 17 56 5 57 21 59 4 60 10 61 18 63 4 64 11	36	
39 16 41 19 42 4 43 8 44 4 45 19 46 18 47 6 48 9 49 10 52 11 53 18 54 17 55 17 56 5 57 21 59 4 60 10 61 18 63 4 64 11	38	
41 19 42 4 43 8 44 4 45 19 46 18 47 6 48 9 49 10 52 11 53 18 54 17 55 17 56 5 57 21 59 4 60 10 61 18 63 4 64 11	39	
42 4 43 8 44 4 45 19 46 18 47 6 48 9 49 10 52 11 53 18 54 17 55 17 56 5 57 21 59 4 60 10 61 18 63 4 64 11		
43 8 44 4 45 19 46 18 47 6 48 9 49 10 52 11 53 18 54 17 55 17 56 5 57 21 59 4 60 10 61 18 63 4 64 11		
44 4 45 19 46 18 47 6 48 9 49 10 52 11 53 18 54 17 55 17 56 5 57 21 59 4 60 10 61 18 63 4 64 11	43	
46 18 47 6 48 9 49 10 52 11 53 18 54 17 55 17 56 5 57 21 59 4 60 10 61 18 63 4 64 11		
47 6 48 9 49 10 52 11 53 18 54 17 55 17 56 5 57 21 59 4 60 10 61 18 63 4 64 11		
48 9 49 10 52 11 53 18 54 17 55 17 56 5 57 21 59 4 60 10 61 18 63 4 64 11		
49 10 52 11 53 18 54 17 55 17 56 5 57 21 59 4 60 10 61 18 63 4 64 11	47	6
52 11 53 18 54 17 55 17 56 5 57 21 59 4 60 10 61 18 63 4 64 11	48	
53 18 54 17 55 17 56 5 57 21 59 4 60 10 61 18 63 4 64 11	49	10
55 17 56 5 57 21 59 4 60 10 61 18 63 4 64 11	52	11
55 17 56 5 57 21 59 4 60 10 61 18 63 4 64 11	54	18
57 21 59 4 60 10 61 18 63 4 64 11	55	17
57 21 59 4 60 10 61 18 63 4 64 11	56	17
59 4 60 10 61 18 63 4 64 11	57	21
60 10 61 18 63 4 64 11	59	4
61 18 63 4 64 11	60	10
63 4 11	61	18
6411	63	
65 20q11.21-11.23.	64	11
	65	20q11.21-11.23.

Table 7

SEQ ID NO:	Chromsomal location
66	15
68	11
70	14
71	9
72	11
75	1 .
77	2
78	
79	3 7
80	3
81	1
82	13
83	6p11.2-12.3
84	1
85	4
86	5
87	12
88	6
90	2
92	6
95	15
96	10
97	4
98 99	14q31
	1
100 101	5
101	2
103	4 4
104	19
105	19
107	3
109	10
111	X
114	X
. 115	2
116	1
117	5
118	9
120	2
121	19
123	2
124	10
125	5
126	5 X 1
128	1
130	3
131	17
· 135	9
136	16
137	17
138	2
139	2
140	6q16.1-16.3.
140	
142 143	9 20

Table 7

SEQ ID NO:	Chromsomal location
145	8
146	22q13.
147	i
148	6
149	16
151	6
152	6
153	2
155	4
156	17
157	17
158	11
159	11
160	16
161	1
162 163	17
	1
164 165	5
166	15
168	3
169	9
170	6
171	16
172	
174	10
175	8
176	6
177	15
178	6
179	9
180	9.
181	2
182	6
183	2
185	11
186	11
188	18
189	11
190	9
191	10
192	4
193	Xq13.2-21.1
194	10
196	20
197	10
198	6
199	11
201	11 X
203	X
206	8
207	11
208	19
209	15
210	3q
211	6q25.1-26

Table 7

	able /
SEQ ID NO:	Chromsomal location
212	9
214	19
215	20
217	1
218	22q13.31-13.33
219	1
220	2
221	3
222	9
223	15
225	3p
226	18
228	4
229	17
230	17
231	1
232	19
234	11
235	19
238	3
239	6
241	11
242	10
243	15
244	4
245	21
246	19
248	6p12.3-21.2
249	3
250	1
251	20
252	16q24.3
253	19
254	14
255	9
257	2
258	11
259	17
260	19
261	8
262	3
263	8
264 265	16
266	9q34.2-34.3
	10
267	17
268	4
269 270	3p
270	9q13-21.33
	1
272 273	8
	19
275	17
279	3q
280	15
281	6

Table 7

SEQ ID NO:	Chromsomal location
282	17
283	17
285	15
286	5
289	10
290	9
292	7
293	8
294	18
296	4
297	15
298	15
	10
299	7
300	5
301	13
302	
304	1
305	Xq25-26.2
306	18
307	2
308	17
309	11
310	12
311	20
313	18
314	11
315	14
316	6
317	10
318	10
319	19
320	9
321	6
322	10
323	3
324	10
325	1
	16
326 327	6
	X
328	4
330	2
331	14
332	
333	2
334	2
336	21q22.3
337	9
338	19
339	15
340	4
341	9
342	10
343	19
344	5
346	16
349	3

Table 7

	Character Character
SEQ ID NO: 350	Chromsomal location
	17
352	18
353	
354	20
356	3
357	5
358	11
359	9
364	2
365	4
366	7
367	5
369	8
370	4
371	6q15-16.1
372	19
374	2
375	12
376	17
377	1
379	19
380	9
381	6.
382	9
383	18
384	18
385	3
387	1
388	21
389	17
390	17
391 393	4
393	10
395	11
396	11
397	10 16
398	
400	13
	3 2
402	Xq28
406	
407	1 19
408	
409	8 4
410	3
411	4
412	5
413	22q12.3-13.1
414	22q12.3-13.1 8
416	8
417	20p12.2-13
417	10
418	4
420	8
423	11

432

Table 7

SEQ ID NO:	Chromsomal location
424	17
425	17
426	17
427	17
428	4
429	2
430	3
431	19
432	18
433	12
434	17
435	6
436	2
438	1
. 439	8
441	1
442	2
443	11
444	2
446	11
447	19
448	11
449	19
450	3
452	3
453	5
455	17
457	6
459	18
460	18
461	14
462	5
463	11
464	. 3
465	2
466	11
. 467	13
470	19
471	6p24.1-25.3
473	4 .
474	15
475	13
478	8
479	10
480	15
481	9
482	1q23.1-24.1
483	8
484	17
486	15
487	22q11
488	3q
489	1
490	3
492	11
493	1p36.2-36.3

433

Table 7

SEQ ID NO:	Chromsomal location
495	10
496	19
497	18
498	22q13
499	5
501	6
503	1
504	10
505	20
506	3
507	18
508	8
509	1
510	2
513	6q25.2-26
514	6
517	3
518	5
519	12
520	13
521	12
522	15
523	15
524	8
525	15
526	15
528	4
530	8
531	11
532	4
533	17
534	3
535	18
536	18
537	15
538	13
539	8
540	X
542	2 5
543	
544	Xq25.
546	11
547	22q13.2-13.33.
549	13q12-13
550	1
552	6q23
553	19
554	11
555	17
556	7
558	11
559	8
560	12
561	10
563	19
564	10

Table 7

	able /
SEQ ID NO:	Chromsomal location
565	17
566	9
567	1
568	Xq22.2-24
569	3
570	1
571	5
573	6q22.1-22.33
574	15
575	17
576	5
577	5
578	11
581	22q12
582	16
584	6q25.3-26
585	3
586	11
587	2
588	2
589	- 15
590	11
591	11
593	Xp11.3-21.1
594	22 .
595	9
596	11
597	10
598	11
599	12
601	9
602	16
603	12
604	8
605	6
606	11
607	10
608	1
609	3
610	
611	5 3
612	6
613	10
614	17
615	11
616	6
617	16
618	11
620	18
621	17
622	
	17
624	22
625	3
626	19
627	11
629	3

Table 7

SEQ ID NO:	Chromsomal location
630	3
631	17
632	6
634	2
635	10
636 ·	12
637	6
639	8
640	5
641	11
642	4
643	7
644	20p12.1-13.
646	15
647	2
648	16
649	8
650	4
651	13q12.11-12.2
652	10
654	1
655	Xp
	3
656 - 657	13
659	1
660	18
661	22
662	X
663	15
664	18
665	4
666	4
667	5
671	11
672	18
674	19
675	17
676	17
677	10
678	10
679	4.
680	8
681	. 5
682	4
683	6
684	
686	11
687	5
689	. 9
690	4
691	4
692	5
693	1
694	16
695	19
696	12
090	14

Table 7

SEQ ID NO:	Chromsomal location
697	11
698	11
699	10
702	5
704	16
705	3
707	3
708	10p11.21-12.1
709	11
710	10
711	10
712	10
714	3
715	6q25.3-26
716	8
718	X
719	17
721	6
722	16
723	2
724	12
725	16
726	19 .
727	3
728	16
729	6
730	16
731	7
732	11
733	8
734	9q21.11-21.2
735	17
736	5
737	1
738	1
739	1
740	Xq22.3-24
741	17
743	7
744	15
746	12
747	1
748	19
749	5
750	9
751	5
752	9
753	19
754	15
755	8
756	X
757	3
758	1p12-13.3
760	6
761	19
762	8

437

Table 7

SEQ ID NO:	Chromsomal location
763	12
764	2
765	11
766	11
767	15
768	17
769	11
771	11
772	17
773	5
774	18
775	1
777	8
778	16
781	16
782	1
783	21
784	6p21.2-22.1
785	5
787	16
788	7
789	15
790	22
791	6
792	1
793	22
794	8
795	2
796	1 6
799 800	9
802	9
803	17
804	10
805	
806	3 2
807	14
810	6
811	10
812	16
813	1
815	16
817	3
818	15
819	Xq22.3-24.
821	1
822	6q16.1-21.
823	17
825	10
826	15
827	. 3
828	17
829	22q13.33.
830	11
832	15
833	9q31.3-33.2

Table 7

SEQ ID NO:	Chromsomal location
834	15_
835	X
836	11
837	19
838	10
839	2
840	1
841	8
842	4
843	1
845	16
848	19
849	10
851	2
853	10
856	2
857	1
858	5
859	2
860	19
861	3
862	2
863	11
864	3
. 865	3
866	21
867	1q42.11-42.3
868	1
870	8
871	6
872	1 12
873	
874	6q27
876	11
877 878	2 19
880	3
881	1
885	8
886	9
887	5
888	9
891	16.
892	10
893	21
894	5
895	5
896	4
897	13
898	18
899	10
900	16
901	3
902	11
903	1.
904	13 ·
L	<u> </u>

Table 7

SEQ ID NO:	Chromsomal location
905	19
907	10
908	5
909	1
911	1
912	5
913	16
914	1
915	8
916	11
917	17
918	16
919	19
920	7
922	9
924	10
925	11
926	11
928	1
929	1
930	12q
931	. 18
932	15
933	15
934	15
935	1p35,2-36.13.
937	11
938	1
939	15
940	X
942	11
943	1
944	9
946	5
947	4
949	12
951	4 10
952 953	11
956	6
957	19
959	16
960	6
962	16q24.3
963	9
964	6
965	Xq12
966	11
967	11
969	17
970	10
972	10
973	10 Xq12
974	1p36.11-36.33
976	2
977	20
L	<u> </u>

440

Table 7

SEQ ID NO:	Chromsomal location
979	2
980	8
981	19
984	6
985	5
987	18
988	3
989	11
990	3
991	2
992	17
993	10
994	12
995	1p34.1-36.11
996	14
997	20p12.2-13
998	2
1000	12
1001	1
1002	X
1005	17
1006	1p31.2-32.1
1007	15
1008	15
1009	2
1010	13
1011	6
1012	18
1013	1
1015	6
1016	5
1017	12
1018	5
1019	CITB-H1_2291F22
1020	4
1021	18
1022	1
1023	. 11
1024	1
1025	3
1027	19
1028	2
1030	3
1031	4
1032	1
1033	3p
1034	X
1035	1
1036	1
1038	13
1041	3

Table 8

Deginalog nucleotide nucleotide nucleotide location of first amino last			T	Table	Amino acid sequence (X=Unknown, *=Stop
NO: nucleotide location of first amino acid residue of peptide sequence seq		Method		_	and on /=nessible nucleotide
		İ			deletion =possible nucleotide insertion)
1815 1815	NO:	ŀ			ucietion, possible nucleotize many
2535 C 328 546 MMRRPVHCATDKEGILAPKHFQAAAGE RTSTDRSGAQAQRSVTPCQWHSVQDSST SSVVVVVAAAAETL				1	
2535 C 328 346					
2535 C 328 546 MMRRPVHCATDKEGILAFKHFQAAAGE RISTDRSGAQAQRSVTPCQWHSVQDSSI SSVVVVVAAAAEIL		1	**		
2535 C 328					
2536 A 163 699 PADAPSLAAPEGIPPQVTPPYCYPGTQCW PGEGMLLISQTLCLGEQVILGAWLWG RPPRIPTYLCHDEPYTPDINLSVNIKGPC RLGEPIPISKAHEHIFGMVLMMDWSGNY SSVPVKMTGRELGTWGPIKADEWGG RDPRIPTYLCHDEPYTPDINLSVNIKGPC RLGEPIPISKAHEHIFGMVLMMDWSGNY SSVPVKMTGRELGTWGPIKADEWGG RAPPRIPTYLCHDEPYTPDINLSVNIKGPC RLGEPIPISKAHEHIFGMVLMMDWSGNY SSVPVKMTGRELGTWGPIKADEWGG SQVMALPRAVIPTITAINESTIGAAGVDN VSSTG CMTSSSPYQEFLWRMQRGNIDAPSYRS KGTPTFTAHTHMPRNCYHSATLCMHAM HYWTGKMINPSCPGGLGVTVCKTYFTQ MSDGGGVQDQAREKHVKEAISQLTRGF PSPYKGLVLSKLHETLRTHTRLVSLPNIT TGHEVSAQNPTINCWICLPLNFRPYVSIF PEGWNNFSTEINTTSVLVGPLVSNLEITH NILTCVKFSNTTYTINSQCRWVTPPTQN LPSGIFFVCGTSAYRCLNGSSESMCFLSF PPMTIVTEQDLYSYVIS*SPRNKRYPLIP GAGVLGGLGTGIGGITSTIGFYHKLSQE GDMEQVAIDSUVTLQDQLNSLAAVVLQ RRAIDLLTAERGGTCLLLGEECCYYVN GIVTEXVKEIRDRIQRRAEELRNTGPWG SQWMPWILPFLGPLAAIILLLFGPCIFN VNFVSSREAVKLQMEPKMQSKTHYRR ORFASPRSDVNDIKGTPPEEISAAQPLLR SAGSS SQMPPWILPFLGPLAAIILLLFGPCIFN VNFVSSREAVKLQMEPKMQSKTHYRR GGVADSBGAGGGVGAAGSASGGVGRA GGVADSBGAGGGVGAAGSASGGVGRA GGVADSBGAGGGVGAAGSASGGVGRA GGVADSBGAGGGVGAAGSASGGVGRA GGVADSBGAGGGVGAAGSASGGVGRA GGVADSBGAGGGGVGAAGSASGGVGRA GGVADSBGAGGGGVGAAGSASGGVGRA GGVADSBGAGGGGGGAGGGVGAAGSASGGVGRA GGVADSBGAGGGGGAGGGVGAAGSASGGVGRA GGVADSBGAGGGGVGAAGSASGGVGRA GGVADSBGAGGGGVGAAGSASGGVGRA GGVADSBGAGGGGVGAAGSASGGVGRA GGVADSBGAGGGGVGAAGSASGGVGRA GGVADSBGAGGGGVGAAGSASGGGAGGVAACGSTSDGVGRSGGAGGGVAACGSTSDGVGRSGGAGGGVAACGSTSDGVGRSGGGAGGGVAACGSTSDGVGRSGGAGGGVAACGSTSDGVGRSGGAGGGVAACGSTSDGVGRSGGAGGGVAACGSTSDGVGRSGGAGGGVAACGSTSDGVGRSGGAGGGVAACGSTSDGVGRSGGAGGGVAACGSTSDGVGRSGGAGGGGVAACGSTSDGVGRSGGAGGGVAACGSTSDGVGRSGGAGGGVAACGSTSDGVGRSGGAGGGVAACGSTSDGVGRSGGAGGGVAACGSTSDGVGRSGGAGGGVAACGSTSDGVGRSGGAGGGVAACGSTSDGVGRSGGAGGGVAACGSTSDGVGRSGGAGGGVAACGSTSDGVGRSGGAGGGVAACGSTSDGVGRSGGAGGGGVAACGSTSDGVGRSGGAGGGVAACGSTSDGVGRSGGAGGGGVAACGSTSDGVGRSGGAGGGVAACGSTSDGVGRSGGAGGGVAACGSTSDGVGRSGGAGGGVAACGSTSDGVGRSGGAGGGVAACGSTSDGVGRSGGAGGGVAACGSTSDGVGRSGGAGGGVGAACGSTSDGVGRSGGAGGGVAACGSTSDGVGSGGAGGGVAACGSTSDGVGSGGAGGGVAACGST		<u> </u>			MMAPPPVHCATDKEGII APKHFOAAAGEA
SSVVVVVAAAAETL	2535	C	328	340	PTSTDPSGAOAORSVTPCOWHSVODSSTY
2536			}		SCALANA A A A ETT.
PGEGMLLISQTICLGEQVLIGAWILVAILGER RDRPRIPYLCHDEPYIFDNLSVNIKGER RDRPRIPYLCHDEPYIFDNLSVNIKGER RDRPRIPYLCHDEPYIFDNLSVNIKGER RDRPRIPYLCHDEPYIFDNLSVNIKGER RDRPRIPYLCHDEPYIFDNLSVNIKGER RDRPRIPYTGMNIKAEDWCRS GAVMALPRAVTPITRAINESTIGAGVDN VSSTG		 	1.02	600	PADAPSI A A FPGDPOYDPPYCYPGTOCWY
RDPRPLEYLCHDEPYTFDINLSVNILKGE RLGEIPISKAHEHIFGMVLMNDWSGNY SSVPVKMTGKELGTWGNFIKAEDWCRS GAVMALPRAVTPTRAINESTIGAAGVDN VSSTG	2536	A	163	099	PCECMILISOTICI GEOVILGAWLYWGPS
RIGEPPISK AHEHIFGMVLMNDWSGND				1	POPPEI PVI CHOEPVTEDINI SVNLKGPGN
SSYPVKMTGKELGTWGNFIKAEDWCRS GAVMALPRAVTPTRAINESTIGAAGVDN					PL CUDIDISK A HEHIEGMVI MNDWSGNYW
2537 A		1		1	SCYDYKMTCKEI CTWCNEIK AEDWCRSK
VSSTG					GAVMAL DRAVTPTRAINESTIGAAGVDNE
2537 A					
CMTSSSPYQEFLWRMQRPGNIDAPSYRS KGTPTTFAHTHINPRNCYHSATLCMHAN HYWTGKMINPSCPGGLGVTVCRTVFTQ MSDGGGVQDQAREKHVKEAISQLTRGH PSPYKGLVLSKLHETLRTHTRLVSLFNTT TGLHEVSAQNPTNCWICLPLNFRPYVSIB PEQWNNFSTEINTTSVLVGPLVSNLEITH NLTCVKFSNTTYTTNSQCIRWVTPPTQIV LPSGIFFVCGTSAYRCLNGSSESMCFLSF PPMTIYTEQDLYSYVVIS*SFRNKRVPILPI GAGVLGGLGTGIGGITTSTQFYHKLSQE: GDMEQVAIDSLVTLQDQLNSLAAVVIL, RRALDLLTAERGGTCLLLGEECCYYVN GIVTEKVKEIRDRIQRRAEELRNTGPWG SQWMPWILPFLGPLAAIILLLLFGCFFYVN GIVTEKVKEIRDRIQRRAEELRNTGPWG SQWMPWILPFLGPLAAIILLLLFGCFFYVN VNFVSSRIEAVKLQMEPKMQSKTKIYRR DRRASPRSDVNDIKGTPPEEISAAQPLLR SAGSS 2538 B 67 1280 XYCRVPTYFHMTPYEGTTST GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG		<u> </u>	1416	2050	NUK SPMAI PVHIFI FTVI LPSFTI TAPPPCR
KGTPTFTAHTHNPRNCYHSATLCMHAN	2537	A	1415	3030	CMTSSSPYOFFI WRMORPGNIDAPSYRSIS
HYWTGKMINPSCPGGLGVTVCRTYFTO MSDGGGVQDQAREKHVKEAISQLTRGH PSPYKGLVLSKLIETLRTHTRLVSLFNTT TGLHEVSAQNPTNCWICLPLNFRPYVSIF PEQWINFSTEINTTSVLVGPLVSNLEITH NLTCVKFSNTTYTTNSQCIRWVTPPTQIV LPSGIFFVCGTSAYRCLNGSSESMCFLSF PPMTIYTEQDLYSYVUS*SPRNKRVPILP GAGVLGGLGTGIGGITTSTQFYHKLSQE GDMEQVADSU-VTLQDQLNSLAAVVLQ RRALDLLTAERGGTCLLLGEECCYYVN GIVTEKVEBIRDRIQRRAEELRNTGPWG SQWMPWILPFLGPLAAIILLLLFGPCIFNI VNFVSSRIEAVKLQMEPKMQSKTKIYPR DRPASPRSDVNDIKGTPPEEISAAQPLLR SAGSS 2538 B 67		1			KGTPTETAHTHMPRNCYHSATI.CMHANT
MSDGGGVQDQAREKHVKEAISQLTRGH PSPYKGLVLSKLHETLRTHITRLVSLFNTT TGLHEVSAQNPTINCWICLPLNFRPYVSIF PSQWNFSTEINITSVLVGPLVSNLEITH NLTCVKFSNTTYTINSQCRWVTPPTQIV LPSGIFFVCGTSAYRCLNGSSESMCFLSF PPMTIYTEQDLYSYVIS*SPRNKRVPILPI GAGVLGGLGTGIGGITTSTQFYHKLSQE GDMEQVADSLVTLQDQLNSLAAVVLQ RRALDLLTAERGGTCLLLGEECCYYVN GIVTEKVKERDRIQRRAEELRNTGPWG SQWMPWILPFLGPLAAIILLLLFGPCIFNI VNFYSSRIEAVKLQMEPKMQSKTKIYRR DRPASPRSDVNDIKGTPPEEISAAQPLLR SAGSS 2538 B 67 1280 XYCRVPTYFHMTPYEGTTST GGIGRGGAGGGVGAAGSASGGVGRR GGVIADSGAPGGVEGGVGASGGWRE GTSGGVGSGGACGSV/GGSGGAGGGV ACGSTSDGVGRSRGTIGGLGGSGSAGGV ACGSTSDGVGRSRGTIGGLGGGSGSAGGG GACGGASGYVGIRGAGGG GACGGASGYVGIRGAGGG 2540 A 2 370 ARDPLLEQVELPAVASVSASVIKSPSDPS VSVPPPPLLLPAATTRSNTSMHSSIPSIE PPQAIVKPQILTHVIEGFVIQEGLEPFPVS SLLIEQPVKKRPLLDNQVINSVCVQPEL SLLIEQPVKKRPLLDNQVINSVCVQPSL LSVSYPPSLLAAATTRSNTSMHSSIPSIE PPQAIVKPQILTHVIEGFVIQEGLEPFPVS SLLIEQPVKKRPLLDNQVINSVCVQPSL AISLAFKISQILCSVLSAPGKRLISVLWN LKRS* 2542 A 130 3995 HPLDHTIILAAGFLGLRTVGVTKAWRS WLRFPAAMFLYNLTLQRATGISFAIHGM GTKQQEIVVSRGKILELLRPDPNTIGKVI LTVEVFGVIRSLMAFRLTGGTKDYIVVG SGRIVILEYQPSKNMFEKHQETFGKSS SIVPGGFLAVDPKGRAVMISAJEKQKLV LNRDAAARLTISSPLEAHKANTLVYHV			1	-)(-	HVWTGKMINPSCPGGLGVTVCRTYFTOTG
PSPYKGLVLSKLHETLRTHTRLVSLFNTTTGLHEVSAQNPTNCWICLPLNFRPYVSIF PEQWNNFSTENTTSVLVGPLVSNLEITH NLTCVKFSNTTYTTNSQCIRWVTPPTQIV LPSGIFFVCGTSAYRCLNGSSESMCFLSF PPMTIYTEQDLYSYVIS*SPRNKRVPILP GAGVLGGLGTIGIGGTTSTQFYHKLSQE GDMEQVANDSLVTLQDQLNSLAAVVILQ RRALDLLTAERGGTCLLLGECCYYVN GIVTEKVKEIRDRIQRRAEGLRNTGPWG SQWMPWILPFLGPLAAIILLLLFGPCIFNI VNFVSSRIEAVKLQMEPKMQSKTKIVYR DRPASPRSDVNDIKGTPPEEISAAQPLLR SAGSS SAGSS SAGSS SAGSS SAGSS GGVADSGAGGGVGAAGSASGGVGRR GGVIADSGAGGGVGAAGSASGGVGRR GGVIADSGAGGGVGAAGSASGGVGRR GGVIADSGAGGGVGAAGSASGGVGRR GTSGGVGGSGGACGSV/GGSGGAGGGV ACGSTSDGVGRSGTIGGLGGSGSAGGG GACGASGYVGIRGAGGG GACGASGYVGIRGAGGG 2540 A					MSDGGGVODOAREKHVKEAISOLTRGHST
TGLHEVSAQNPTNCWICLPLNFRPYVSIE PEQWNNFSTEINITSVLVGPLVSNLEITH NILTCVKFSNITTSVLVGPLVSNLEITH NILTCVKFSNITTSVLVGPLVSNLEITH NILTCVKFSNITTSVLVGPLVSNLEITH NILTCVKFSNITTSVLVGPLVSNLEITH NILTCVKFSNITTYTINSQCRWVTPFTQIV LPSGIFFVCGTSAYRCLNGSSESMCFLSF PPMTIYTEQDLYSYVIS*SPRNKRVPILP GAGVLGGLGTGIGGITTSTQFYHKLSQE GDMEQVADS\LVTLQDQLNSLAAVVLQ RRALDILITAERGGTCLLLGEECCYYVN GIVTEKVKEIRDRIQRRAEELRNTGPWG SQWMPWILPFLGPLAAIILLLFGPCIFNI VNFVSSRIEAVKLQMEPKMQSKTKIVRF DRPASPRSDVNDIKGTPPEISAAQPLLR SAGSS SAGSS SAGSS SAGSS SAGSS SAGSS SAGSS SAGSS SAGSS SAGSS SAGSONGRAGGGGAGGGVGAAGSASGGVGRMEGGGAGGGGGAGGGVGAAGGAGAGAGGGGGGGGGGGGGG					PSPVKGI VI SKI HETI RTHTRI VSLFNTTL
PEQWNNFSTEINTTSVLVGPLVSNLEITH NLTCVKFSNTTYTINSQCIRWVTPPTQIV LPSGIFFVCGTSAYRCLNGSSESMCFLSF PPMTITYTEQDLYSYVUS*SPRNKRVPILPI GAGVLGGLGTGIGGITTSTQFYHKLSQE GDMEQVAIDSLVTLQDQLNSLAAVVLQ RRALDLLTAERGGTCLLLGEECCYYVNG GIVTEKVKEIRDRIQRRAEELRNTGPWG SQWMPWILPFLGPLAAIILLLLFGPCIFNI VNFVSSRIEAVKLQMEPKMQSKTKIYRR DRPASPRSDVNDIKGTPPEEISAAQPLLR SAGSS 2538 B 67 1280 XYCRVPTYFHMTPYEGTTST 2539 A 393 1 GGIGRGGAGGGVGAAGSASGGVGRRG GGVIADSGAPGGGVEGGVGASGGWRE GTSGGVGSGGACGSV/GGSGGAGGGV ACGSTSDGVGSSGATGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG		1		ļ	TGI HEVSAONPTNCWICLPLNFRPYVSIPV
NLTCVKFSNTTYTTNSQCIRWYTPPTQIV		ì	İ		PEOWNNESTEINTTSVI.VGPI.VSNLEITHTS
LPSGIFFVCGTSAYRCLNGSSESMCFLSF PPMTITYTEQDLYSTVUX*SPRNKRVPILIFI GAGVLGGIGTGIGGITTSTQFYHKLSQE GDMEQVADSUVTI.QDQLNSLAAVVLQ RRALDLLTAERGGTCLLLGEECCYYVNG GIVTEKVKEIRDRIQRRAEELRNTGPWG SQWMPWILPFLGPLAAIILLLLFQCIFNI VNFVSSRIEAVKLQMEPKMQSKTKIYRR DRPASPRSDVNDIKGTPPEEISAAQPLLR SAGSS 2538 B 67 1280 XYCRVPTYFHMTPYEGTTST GGIGRGGGAGGGVGAAGSASGGVGRR GGVIADSGAPGGGVEGGVGASGGWRE GTSGGVGGSGGACGSV/GGSGAGGGV ACGSTSDGVGRSRGTIGGLGGSGSAGGG ACGSTSDGVGRSRGTIGGLGGSGSAGGG GACGASGYVGIRGAGG 2540 A 2 370 ARDPLLEQVELPAVASVSASVIKSPSDPS VSVPPPPLLLPAATTRSNSTSMHSSPSIE PPQAIVKPQILTHVIEGF VIQEGLEPPPV SLLIEQPVKKRPLLDNQVINSVCVQPEL 2541 A 50 247 MWSAHPLAVLSLKLTLFSLTSDWLSSK AISLAFKISQILCSVLSAPGKRLISVLWN LKRS* DEPLOMMENT OF THE PROPORT OF TH					NI TOVKESNITYTINSOCIRWVTPPTOIVC
PPMTIYTEQDLYSYVIS*SPRNKRVPILP! GAGVLIGI.GTIGIGGITTSTQFYHKLSQE GDMEQVA\DS\LVTLQDQLNSLAAVVLQ RRALDLLTAERGGTCLLLGEECCYYVNN GIVTEKVKEIRDRIQRRAEELRNTGPWG SQWMPWILPFLGPLAAIILLLLFGPCIFNI VNFVSSRIEAVKLQMEPKMQSKTKIYRR DRPASPRSDVNDIKGTPPEEISAAQPLLR SAGSS 2538 B 67 1280 XYCRVPTYFHMTPYEGTTST 2539 A 393 1 GGIGRGGAGGGVGAAGSASGGVGRR GGVIADSGAPGGVEGGVGASGGWRE GTSGGVGGSGGAGGSV/GGSGAGGGV ACGSTSDGVGRSRGTIGGLGGSGSAGGGV ACGSTSDGVGRSRGTIGGLGGSGSAGGGV GACGGASGYVGIRGAGGG 2540 A 2 370 ARDPLLEQVELPAVASVSASVIKSPSDPS VSVPPPPLLLPAATTRSNSTSMHSSPSIST PPQAIVKPQILTHVIEGFVIQEGLEPFPVS SLLIEQPVKKRPLLDNQVINSVCVQPEL 2541 A 50 247 MWSAHPLAVLSLKLTLFSLTSDWLSSK AISLAFKISQILCSVLSAPGKRLISVLWN LKRS* LKRS* HPLDIHTILLAAGFLGLRTVGVTKAWRS WLRFFAAMFLYNLTLQRATGISFAHIGN GTKQQEIVVSRGKIL\ELLRPDPNTGKVI LTVEVFGVTRSLMAFFLTGGTKDYIVVC SGRIVILEYQPSKNMFEKHQETFGKSG SIVPGQFLAVDPKGRAVMISAIEKQKLV LNRDAAARLTISSPLEAHKANTLVYHV			1	İ	I PSGIEFVCGTSAVRCI NGSSESMCFLSFLV
GAGVLGGLGTGIGGITTSTQFYHKLSQE GDMEQVAIDSULVITLQDQLNSLAAVVLQ RRALDLLTAERGGTCLLLGEECCYYVM GIVTEKVKEIRDRIQRRAEELRNTGFWG SQWMPWILPFLGPLAAIILLLLFGPCIFNI VNFVSSRIEAVKLQMEPKMQSKTKIYRR DRPASPRSDVNDIKGTPPEEISAAQPLLR SAGSS 2539 A 393 1 GGIGRGGGAGGVGAAGSASGGVGRR GGVIADSGAPGGVEGGVGASGGWRE GTSGGVGSGGACGSV/GGSGGAGGV ACGSTSDGVGRSRGTIGGLGGSGSAGGV ACGSTSDGVGRSRGTIGGLGGSGSAGGV ACGSTSDGVGRSRGTIGGLGGSGSAGGV SVPPPPLLLPAATTRSNSTSMHSSPSIE PPQAIVKPQILTHVIEGFVIQEGLEPFPVS SLLIEQPVKKRPLLDNQVINSVCVQPEL 2541 A 50 247 MWSAHPLAVLSIKLTLFSITSDWLSSKI AISLAFKISQILCSVLSAPGKRLISVLWN LKRS* 2542 A 130 3995 HPLDIHTILLAAGFLGLRTVGVTKAWRS WLRFPAAMFLYNLTLQRATGISFAIHGN GTKQQEIVVSRGKILSELLRPDPNTGKVI LTVEVFGVIRSLMAFRLTGGTKDQTVVS SGRIVILEYQPSKNMFEKIHQETFGKNSG SIVPGQFLAVDPKGRAVMISAJEKQKLV LNRDAAARLTISSPLEAHKANTLVYHV					DDMTIVTEODI VSVV\IS*SPRNKRVPILPEVI
GDMEQVA\DS\LVTLQDQLNSLAAVVLQ RRALDLLTAERGGTCLLLGECCYYVNN GIVTEKVKEIRDRIQRRAEELRNTGPWG SQWMPWILPFLGPLAAIILLLLFGPCIFNI VNFVSSRIEAVKLQMEPKMQSKTKIYRR DRPASPRSDVNDIKGTPPEEISAAQPLLR SAGSS 2538 B 67 1280 XYCRVPTYFHMTPYEGTTST GGIGRGGAGGGVGAAGSASGGVGRR GGVIADSGAPGGVEGGVGASGGWRE GTSGGVGGSGGACGSV/GSGGAGGGW ACGSTSDGVGRSRGTIGGLGGSGSAGGG GACGGASGYVGIRGAGGG 2540 A 2 370 ARDPLLEQVELPAVASVSASVIKSPSDPS VSVPPPPLLLPAATTRSNSTSMHSSIPSIE PPQAIVKPQILTHVIEGFVIQEGLEPFPVS SLLIEQPVKKRPLLDNQVINSVCVQPEL 2541 A 50 247 MWSAHPLAVLSLKLTLFSLTSDWLSSK AISLAFKISQILCSVLSAPGKRLISVLWN LKRS* 2542 A 130 3995 HPLDIHTILLAAGFLGLRTVGVTKAWRS WLRFPAAMFLYNLTLQRATGISFAHGN GTKQQEIVVSRGKILVELLRPDPNTGKVI LTVEVFGVIRSLMAFRLTGGTKDYIVVC SGRIVILEYQPSKNMFEKHQETFGKNSG SIVPGQFLAVDPKGRAVMISAIEKQKLV LNRDAAARLTISSPLEAHKANTLVYHV]	GAGVI GGI GTGIGGITTSTOFYHKLSOELN
RRALDILTAERGGTCLLLGEECCYYVNG GIVTEKVKEIRDRIQRRAEELRNTGFWG SQWMPWILPFLGPLAAIILLLLFGPCIFNI VNFVSSRIEAVKLQMEPKMQSKTKIYRR DRPASPRSDVNDIKGTPPEEISAAQPLLR SAGSS 2538 B 67 1280 XYCRVPTYFHMTPYEGTTST 2539 A 393 1 GGIGRGGAGGGVGAAGSASGGVGRR GGVIADSGAPGGVEGGVGASGGWRE GTSGGVGGSGGACGSV/GGSGGAGGGV ACGSTSDGVGRSRGTIGGLGGSGSAGGG GACGGASGYVGIRGAGGG 2540 A 2 370 ARDPLLEQVELPAVASVSASVIKSPSDPS VSVPPPPLLPAATTRSNSTSMHSSIPSIE PPQAIVKPQILTHVIEGFVQEGLEPFPVS SLLIEQPVKKRPLDNQVINSVCVQPEL 2541 A 50 247 MWSAHPLAVLSLKLTLFSLTSDWLSSKI AISLAFKISQILCSVLSAPGKRLISVLWN LKRS* 2542 A 130 3995 HPLDIHTILLAAGFLGLRTVGVTKAWRS WLRFPAAMFLYNLTLQRATGISFAHIGN GTKQQEIVVSRGKILELLRPDPNTGKVI LTVEVFGVIRSLMAFRLTGGTKDYIVVC SGRIVILEYQPSKNMFEKHQETFGKNSG SIVPGQFLAVDPKGRAVMISAIEKQKLV LNRDAAARLTISSPLEAHKANTLVYHV					GDMEOVA\DS\LVTLODOLNSLAAVVLON
GIVTEKVKEIRDRIQRRAEELRNTGPWG SQWMPWILPFLGPLAAIILLLLFGPCIFNI VNFVSSRIEAVKLQMEPKMQSKTKIYRR DRPASPRSDVNDIKGTPPEEISAAQPLLR SAGSS 2538 B 67 1280 XYCRVPTYFHMTPYEGTTST GGIGRGGGAGGGVGAAGSASGGVGRR GGVIADSGAPGGVEGGVGASGGWRE GTSGGVGGSGGACGSV/GGSGGAGGGV ACGSTSDGVGRSRGTIGGLGGSGSAGGG GACGGASGYVGIRGAGGG 2540 A 2 370 ARDPLLEQVELPAVASVSASVIKSPSDPS VSVPPPPLLLPAATTRSNSTSMHSSIPSIE PPQAIVKPQILTHVIEGFVIQEGLEPFPVS SLLEQPVKKRPLLDNQVINSVCVQPEL 2541 A 50 247 MWSAHPLAVLSLKLTLFSLTSDWLSSKL AISLAFKISQILCSVLSAPGKRLISVLWN LKRS* 2542 A 130 3995 HPLDIHTILLAAGFLGLRTVGVTKAWRS WLRFPAAMFLYNLTLQRATGISFAIHGN GTKQQEIVVSRGKILELRPDPNTGKVI LTVEVFGVIRSLMAFRLTGGTKDYIVV SGRIVILEYQPSKNMFEKIHQETFGKSG SIVPGQFLAVDPKGRAVMISAIEKQKLV LNRDAAARLTISSPLEAHKANTLVYHV			[PRAIDLITAERGGTCLLLGEECCYYVNOS
SQWMPWILPFLGPLAAIILLLLFGPCIFNI VNFVSSRIEAVKLQMEPKMQSKTKIYRR DRPASPRSDVNDIKGTPPEEISAAQPLLR SAGSS 2538 B 67 1280 XYCRVPTYFHMTPYEGTTST 2539 A 393 I GGIGRGGGAGGGVGAAGSASGGVGRR GGVIADSGAPGGGVEGGVGASGGWRE/GTSGGVGGSGGACGSV/GGSGGAGGGV ACGSTSDGVGRSRGTIGGLGGSGSAGGG ACGSTSDGVGRSRGTIGGLGGSGSAGGG ACGSTSDGVGRSRGTIGGLGGSGSAGGG ACGSTSDGVGRSRGTIGGLGGSGSAGGG ACGSTSDGVGRSRGTIGGLGGSGSAGGG ACGGASGYVGIRGAGGG 2540 A 2 370 ARDPLLEQVELPAVASVSASVIKSPSDPS PPQAIVKPQILTHVIEGFVIQEGLEPFPVS SLLIEQPVKKRPLLDNQVINSVCVQPEL SLIEQPVKKRPLLDNQVINSVCVQPEL AISLAFKISQILCSVLSAPGKRLISVLWN LKRS* 2541 A 50 247 MWSAHPLAVLSLKLTLFSLTSDWLSSKI AISLAFKISQILCSVLSAPGKRLISVLWN LKRS* 2542 A 130 3995 HPLDIHTILLAAGFLGLRTVGVTKAWRS WLRFPAAMFLYNLTLQRATGISFAHIGM GTKQQEIVVSRGKILELLRPDPNTGKVV SGRIVILEYQPSKNMFEKIHQETFGKNSG SIVPGQFLAVDPKGRAVMISAIEKQKLV LNRDAAARLTISSPLEAHKANTLVYHV	i	j		1	GIVTEKVKEIRDRIORRAEELRNTGPWGLL
VNFVSSRIEAVKLQMEPKMQSKTKIYRR DRPASPRSDVNDIKGTPPEEISAAQPLLR SAGSS		1		1	SOWMPWILPFLGPLAAIILLLLFGPCIFNLL
DRPASPRSDVNDIKGTPPEEISAAQPLLR SAGSS 2538 B 67 1280 XYCRVPTYFHMTPYEGTTST 2539 A 393 1 GGIGRGGAGGGVGAAGSASGGVGRR GGVIADSGAPGGGVEGGVGASGGWRE GTSGGVGGSGGACGSV/GGSGGAGGGV ACGSTSDGVGRSRGTIGGLGGSGSAGGG GACGGASGYVGIRGAGGG 2540 A 2 370 ARDPLLEQVELPAVASVSASVIKSPSDPS VSVPPPPLLLPAATTRSNSTSMHSSIPSIE PPQAIVKPQILTHVIEGFVIQEGLEPFPVS SLLIEQPVKKRPLLDNQVINSVCVQPEL 2541 A 50 247 MWSAHPLAVLSIKLTLFSLTSDWLSSKI AISLAFKISQILCSVLSAPGKRLISVLWN LKRS* 2542 A 130 3995 HPLDIHTILLAAGFLGLRTVGVTKAWRS WLRFPAAMFLYNLTLQRATGISFAIHGN GTKQQEIVVSRGKILELLRPDPNTGKVI LTVEVFGVIRSLMAFRLTGGTKDYIVVI SGRIVILEYQPSKNMFEKHQETFGKNSG SIVPGQFLAVDPKGRAVMISAIEKQKLV LNRDAAARLTISSPLEAHKANTLVYHV	1	1			VNEVSSRIEAVKLOMEPKMOSKTKIYRRPL
SAGSS		}			DRPASPRSDVNDIKGTPPEEISAAOPLLRPN
2538 B 67	ŀ	1			
2539 A 393 1 GGIGRGGGAGGGVGAAGSASGGVGRRGGVIADSGAPGGGVEGGVGASGGWRE/GTSGGVGGSGGACGSV/GGSGGAGGGVACGSTSDGVGRSRGTIGGLGGSGSAGGGVACGGSTSDGVGRSRGTIGGLGGSGSAGGGGACGGASGGVGRAGGGACGGASGGVGRSRGTIGGLGGSGSAGGGGACGGASGGVGRAGGGGACGGASGGVGRSRGTIGGLGGGSGSAGGGGACGGASGGVGRSRGTIGGLGGGSGSAGGGGACGGASGGVGRSRGTIGGLGGGSGSAGGGGACGGASGGVGRSRGTIGGLGGASGGVGRAGGGGACGGASGGVGRSRGTIGGLGGASGGVGRAGGGGACGGASGGVGRSGGACGGVGAGGGACGGASGGVGRSGGAGGGVGAGGGACGGASGGACGGVGASGGGACGGASGGGACGSV/GGSGGAGGGVACGGASGGGACGGASGGACGGACGGASGGACGGACGGACG	2520	 	67	1280	XYCRVPTYFHMTPYEGTTST
GGVIADSGAPGGGVEGGVGASGGWRE/ GTSGGVGGSGGACGSV/GGSGGAGGGV ACGSTSDGVGRSRGTIGGLGGSGSAGGG GACGGASGYVGIRGAGGG 2540 A 2 370 ARDPLLEQVELPAVASVSASVIKSPSDPS VSVPPPPLLLPAATTRSNSTSMHSSIPSIE PPQAIVKPQILTHVIEGFVIQEGLEPFPVS SLLIEQPVKKRPLLDNQVINSVCVQPEL 2541 A 50 247 MWSAHPLAVLSLKLTLFSLTSDWLSSKI AISLAFKISQILCSVLSAPGKRLISVLWN LKRS* 2542 A 130 3995 HPLDIHTILLAAGFLGLRTVGVTKAWRS WLRFPAAMFLYNLTLQRATGISFAIHGN GTKQQEIVVSRGKIL\ELLRPDPNTGKVI LTVEVFGVIRSLMAFRLTGGTKDYIVVC SGRIVILEYQPSKNMFEKIHQETFGK\SG SIVPGQFLAVDPKGRAVMISAIEKQKLV LNRDAAARLTISSPLEAHKANTLVYHV					GGIGRGGGAGGGVGAAGSASGGVGRRGA
GTSGGVGGSGGACGSV/GGSGGAGGGV ACGSTSDGVGRSRGTIGGLGGSGSAGGG GACGGASGYVGIRGAGGG 2540 A 2 370 ARDPLLEQVELPAVASVSASVIKSPSDPS VSVPPPPLLLPAATTRSNSTSMHSSIPSIE PPQAIVKPQILTHVIEGFVIQEGLEPFPVS SLLIEQPVKKRPLLDNQVINSVCVQPEL 2541 A 50 247 MWSAHPLAVLSLKLTLFSLTSDWLSSKI AISLAFKISQILCSVLSAPGKRLISVLWN LKRS* 2542 A 130 3995 HPLDIHTILLAAGFLGLRTVGVTKAWRS WLRFPAAMFLYNLTLQRATGISFAIHGN GTKQQEIVVSRGKIL\ELLRPDPNTGKVI LTVEVFGVIRSLMAFRLTGGTKDYIVVC SGRIVILEYQPSKNMFEKIHQETFGK\SG SIVPGQFLAVDPKGRAVMISAIEKQKLV LNRDAAARLTISSPLEAHKANTLVYHV	2339	A	1 323	-	GGVIADSGAPGGGVEGGVGASGGWRE/GR
ACGSTSDGVGRSRGTIGGLGGSGSAGGG GACGGASGYVGIRGAGGG 2540 A 2 370 ARDPLLEQVELPAVASVSASVIKSPSDPS VSVPPPPLLLPAATTRSNSTSMHSSIPSIE PPQAIVKPQILTHVIEGFVIQEGLEPFPVS SLLIEQPVKKRPLLDNQVINSVCVQPEL 2541 A 50 247 MWSAHPLAVLSLKLTLFSLTSDWLSSKI AISLAFKISQILCSVLSAPGKRLISVLWN LKRS* 2542 A 130 3995 HPLDIHTILLAAGFLGLRTVGVTKAWRS WLRFPAAMFLYNLTLQRATGISFAIHGN GTKQQEIVVSRGKIL\ELLRPDPNTGKVI LTVEVFGVIRSLMAFRLTGGTKDYIVVC SGRIVILEYQPSKNMFEKIHQETFGK\SG SIVPGQFLAVDPKGRAVMISAIEKQKLV LNRDAAARLTISSPLEAHKANTLVYHV		1			GTSGGVGGSGGACGSV/GGSGGAGGGVG
GACGGASGYVGIRGAGGG 2540 A 2 370 ARDPLLEQVELPAVASVSASVIKSPSDPS VSVPPPPLLLPAATTRSNSTSMHSSIPSIE PPQAIVKPQILTHVIEGFVIQEGLEPFPVS SLLIEQPVKKRPLLDNQVINSVCVQPEL 2541 A 50 247 MWSAHPLAVLSLKLTLFSLTSDWLSSKI AISLAFKISQILCSVLSAPGKRLISVLWN LKRS* 2542 A 130 3995 HPLDIHTILLAAGFLGLRTVGVTKAWRS WLRFPAAMFLYNLTLQRATGISFAIHGN GTKQQEIVVSRGKIL\ELLRPDPNTGKVI LTVEVFGVIRSLMAFRLTGGTKDYIVVC SGRIVILEYQPSKNMFEKIHQETFGK\SG SIVPGQFLAVDPKGRAVMISAIEKQKLV LNRDAAARLTISSPLEAHKANTLVYHV	Ì				ACGSTSDGVGRSRGTIGGLGGSGSAGGGV
2540 A 2 370 ARDPLLEQVELPAVASVSASVIKSPSDPS VSVPPPPLLLPAATTRSNSTSMHSSIPSIE PPQAIVKPQILTHVIEGFVIQEGLEPFPVS SLLIEQPVKKRPLLDNQVINSVCVQPEL 2541 A 50 247 MWSAHPLAVLSLKLTLFSLTSDWLSSKI AISLAFKISQILCSVLSAPGKRLISVLWN LKRS* 2542 A 130 3995 HPLDIHTILLAAGFLGLRTVGVTKAWRS WLRFPAAMFLYNLTLQRATGISFAIHGN GTKQQEIVVSRGKIL\ELLRPDPNTGKVI LTVEVFGVIRSLMAFRLTGGTKDYIVVC SGRIVILEYQPSKNMFEKIHQETFGK\SG SIVPGQFLAVDPKGRAVMISAIEKQKLV LNRDAAARLTISSPLEAHKANTLVYHV		1			GACGGASGYVGIRGAGGG
VSVPPPPLLLPAATTRSNSTSMHSSIPSIE PPQAIVKPQILTHVIEGFVIQEGLEPFPVS SLLIEQPVKKRPLLDNQVINSVCVQPEL 2541 A 50 247 MWSAHPLAVLSLKLTLFSLTSDWLSSKI AISLAFKISQILCSVLSAPGKRLISVLWN LKRS* 2542 A 130 3995 HPLDIHTILLAAGFLGLRTVGVTKAWRS WLRFPAAMFLYNLTLQRATGISFAIHGN GTKQQEIVVSRGKIL\ELLRPDPNTGKVI LTVEVFGVIRSLMAFRLTGGTKDYIVVC SGRIVILEYQPSKNMFEKIHQETFGK\SG SIVPGQFLAVDPKGRAVMISAIEKQKLV LNRDAAARLTISSPLEAHKANTLVYHV	2540	ΙΔ	12	370	ARDPLLEOVELPAVASVSASVIKSPSDPSH
PPQAIVKPQILTHVIEGFVIQEGLEPFPVS SLLIEQPVKKRPLLDNQVINSVCVQPEL 2541 A 50 247 MWSAHPLAVLSLKLTLFSLTSDWLSSKL AISLAFKISQILCSVLSAPGKRLISVLWN LKRS* 2542 A 130 3995 HPLDIHTILLAAGFLGLRTVGVTKAWRS WLRFPAAMFLYNLTLQRATGISFAIHGN GTKQQEIVVSRGKIL\ELLRPDPNTGKVI LTVEVFGVIRSLMAFRLTGGTKDYIVVC SGRIVILEYQPSKNMFEKIHQETFGK\SG SIVPGQFLAVDPKGRAVMISAIEKQKLV LNRDAAARLTISSPLEAHKANTLVYHV	2340	1	1	1	VSVPPPPLLLPAATTRSNSTSMHSSIPSIENK
SLLIEQPVKKRPLLDNQVINSVCVQPEL 2541 A 50 247 MWSAHPLAVLSLKLTLFSLTSDWLSSKL Alslafkisqilcsvlsapgkrlisvlwn LKRS* 2542 A 130 3995 HPLDIHTILLAAGFLGLRTVGVTKAWRS WLRFPAAMFLYNLTLQRATGISFAIHGN GTKQQEIVVSRGKIL\ELLRPDPNTGKVI LTVEVFGVIRSLMAFRLTGGTKDYIVVC SGRIVILEYQPSKNMFEKIHQETFGK\SG SIVPGQFLAVDPKGRAVMISAIEKQKLV LNRDAAARLTISSPLEAHKANTLVYHV			į		PPOAIVKPOILTHVIEGFVIQEGLEPFPVSRS
2541 A 50 247 MWSAHPLAVLSLKLTLFSLTSDWLSSKI AISLAFKISQILCSVLSAPGKRLISVLWN LKRS* 2542 A 130 3995 HPLDIHTILLAAGFLGLRTVGVTKAWRS WLRFPAAMFLYNLTLQRATGISFAIHGN GTKQQEIVVSRGKIL\ELLRPDPNTGKVI LTVEVFGVIRSLMAFRLTGGTKDYIVVC SGRIVILEYQPSKNMFEKIHQETFGK\SG SIVPGQFLAVDPKGRAVMISAIEKQKLV LNRDAAARLTISSPLEAHKANTLVYHV					SLLIEQPVKKRPLLDNQVINSVCVQPEL
AISLAFKISQILCSVLSAPGKRLISVLWN LKRS* 2542 A 130 3995 HPLDIHTILLAAGFLGLRTVGVTKAWRS WLRFPAAMFLYNLTLQRATGISFAIHGN GTKQQEIVVSRGKIL\ELLRPDPNTGKVILTVEVFGVIRSLMAFRLTGGTKDYIVVC SGRIVILEYQPSKNMFEKIHQETFGK\SGSIVPGQFLAVDPKGRAVMISAIEKQKLVLNRDAAARLTISSPLEAHKANTLVYHV	2541		50	247	MWSAHPLAVLSLKLTLFSLTSDWLSSKDM
LKRS* 2542 A 130 3995 HPLDIHTILLAAGFLGLRTVGVTKAWRS WLRFPAAMFLYNLTLQRATGISFAIHGN GTKQQEIVVSRGKIL\ELLRPDPNTGKVI LTVEVFGVIRSLMAFRLTGGTKDYIVVC SGRIVILEYQPSKNMFEKIHQETFGK\SG SIVPGQFLAVDPKGRAVMISAIEKQKLV LNRDAAARLTISSPLEAHKANTLVYHV	2341	^		1	AISLAFKISQILCSVLSAPGKRLISVLWNTSS
2542 A 130 3995 HPLDIHTILLAAGFLGLRTVGVTKAWRS WLRFPAAMFLYNLTLQRATGISFAIHGN GTKQQEIVVSRGKIL\ELLRPDPNTGKVI LTVEVFGVIRSLMAFRLTGGTKDYIVVC SGRIVILEYQPSKNMFEKIHQETFGK\SG SIVPGQFLAVDPKGRAVMISAIEKQKLV LNRDAAARLTISSPLEAHKANTLVYHV				1	LKRS*
WLRFPAAMFLYNLTLQRATGISFAIHGN GTKQQEIVVSRGKIL\ELLRPDPNTGKVI LTVEVFGVIRSLMAFRLTGGTKDYIVVC SGRIVILEYQPSKNMFEKIHQETFGK\SG SIVPGQFLAVDPKGRAVMISAIEKQKLV LNRDAAARLTISSPLEAHKANTLVYHV	2542	A	130	3995	HPLDIHTILLAAGFLGLRTVGVTKAWRSG
GTKQQEIVVSRGKIL\ELLRPDPNTGKVI LTVEVFGVIRSLMAFRLTGGTKDYIVVC SGRIVILEYQPSKNMFEKIHQETFGK\SG SIVPGQFLAVDPKGRAVMISAIEKQKLV LNRDAAARLTISSPLEAHKANTLVYHV	2342	I A	1		WLRFPAAMFLYNLTLQRATGISFAIHGNFS
LTVEVFGVIRSLMAFRLTGGTKDYIVVO SGRIVILEYQPSKNMFEKIHQETFGK\SG SIVPGQFLAVDPKGRAVMISAIEKQKLV LNRDAAARLTISSPLEAHKANTLVYHV	1	İ			GTKQQEIVVSRGKIL\ELLRPDPNTGKVHTL
SGRIVILEYQPSKNMFEKIHQETFGK\SG SIVPGQFLAVDPKGRAVMISAIEKQKLV LNRDAAARLTISSPLEAHKANTLVYHV	1	ļ			LTVEVFGVIRSLMAFRLTGGTKDYIVVGSD
SIVPGQFLAVDPKGRAVMISAIEKQKLV LNRDAAARLTISSPLEAHKANTLVYHV	1			<u> </u>	SGRIVILEYOPSKNMFEKIHQETFGK\SGGR
LNRDAAARLTISSPLEAHKANTLVYHV	i				SIVPGOFLAVDPKGRAVMISAIEKQKLVYI
VDVGFENPMFACLEMDYEEADNDPTG	Ī	l			LNRDAAARLTISSPLEAHKANTLVYHVVG
		1			VDVGFENPMFACLEMDYEEADNDPTGEA
AANTOOTLTFYELDLGLNHVVRKYSEF		1	i		AANTQQTLTFYELDLGLNHVVRKYSEPLE
A A PROCONTINUE OF AND AND AND AND AND AND AND AND AND AND					SIVPGQFLAVDPKGRAVMISAIEKQKLVYI LNRDAAARLTISSPLEAHKANTLVYHVVG VDVGFENPMFACLEMDYEEADNDPTGEA

442

Table 8

-	7.5 (1)	D 31 . 4 . 3	Predicted	Amino acid sequence (X=Unknown, *=Stop
SEQ	Method	Predicted		codon, /=possible nucleotide
ID		beginning	ending	deletion,=possible nucleotide insertion)
NO:		nucleotide	nucleotide	detellon,-possible nucleotide inser non/
		location of	location of	
		first amino	last amino	
		acid residue	acid residue	
		of peptide	of peptide	
		sequence	sequence	THE TOTAL THE TROOPER CONTINUE VIN
			1	EHGNFLITVPGGSDGPSGVLICSENYITYKN
				FGDQPDIRCPIPRRRNDLDDPERGMIFVCSA
				THKTKSMFFFLAQTEQGDIFKITLETDEDM
	l		·	VTEIRLKYFDTVPVAAAMCVLKTGFLFVA
				SEFGNHYLYQIAHLGDDDEEPEFSSAMPLE
				EGDTFFFQPRPLKNLVLVDELDSLSPILFCQ
	ĺ			IADLANEDTPQLYVACGRGPRSSLRVLRH
	1			GLEVSEMAVSELPGNPNAVWTVRRHIEDE
	ł			FDAYIIVSFVNATLVLSIGETVEEVTDSGFL
	i			GTTPTLSCSLLGDDALVQVYPDGIRHIRAD
			1	KRVNEWKTPGKKTIVKCAVNQRQVVIALT
				GGELVYFEMDPSGQLNEYTERKEMSADV
				VCMSLANVPPGEQRSRFLAVGLVDNTVRII
	l ·			SLDPSDCLQPLSM\QA\LPAQPES\LCIVEMG
i		ì		\GT*KQDELGERGSIGFLYLNIGLQNGVLLR
				TVLDPVTGDLSDTRTR\YLGSRPVKLFRVR
	Ì	1		MQGQEAVLAMSSRSWLSYSYQSRF\HLTP
			1	LSYETLEFASGFASEQCPEGIVAISTNTLRIL
				ALEKLGAVFNQVAFPLQ\YTPRK\FVIHPES
	1			NNLIIIETDHNAYTEATK\A\QRKQQMAEE
				MVEAAWEDERDL\AAEMAAAF\LNENLPE
				SIFGAPKAGNGQLASVI\RVMNPIQGEHTW
	ļ			TLSSLEQN\RAAF\SVAVCRFSNTGDDWYV
!	,			LVGVPKDLILNPRSVAGGFVYTYKLVNNG
	1			EKLEFLHKTPVEEVPAALAPFQGRVLIGVG
	ĺ		•	KLLR\VY\DLGKEGSYFRKC*ELRHIANYT\S
	ĺ			GDPDYSGHRVIVSDVQEKFHPGFRYKRKL
				KTKLIIFADDT\YP\RWVHYRPASWDYDTV
				GWGQDKFRPTYVWVRLPTLTPIDEVR/DE
				DPTGNKSPVGTRGLAQMGGLPRKAEVIIEL
				THVG\ET\VLSLQKTT\LIPGRLQNSLVLLPP
				CFGGIG\ILVPF\TSHE\DH\DFFQH\VE\MHLR
				\SEHPP\LCGGGDHL\SFRS\YYFPCEGM*LM
				GDLCE\QFNSM\EPNKQKERLLKELGPEPPP
				RSVPRKFEGYSGTRYGF
2543	A	68	425	SHILPGAPGAPAWWTRWPSTLPEPFPRGRG
				SPAGTSPISRPGLVQSS*ASRGSDSRLPV/GP
		İ		ASCQASGPGPDSRRPPPCTPA\GPHHGSLPS
				AGRVGASAAAAGPPSPAVPLPPAERPAP
2544	A	1	1982	DAERQEALGIVRRIGTDTEAATEPAGATVP
				AAAAARIGTVGPQPPAMPRRKRNAGSSS
	1	1		DGTEDSDFSTDLEHTDSSESDGTSRRSARV
1				TRSSARLSQSSQDSSPVRNLQSFGTEEP\AY
		1		STRRVTRSQQQPTPVTPKKYPLRQTRSSGS
		Ī		ETEQVVDFSDRETKNTADHDESPPRTPTGN
1		1		APSSESDIDISSPNVSHDESIAKDMSLKDSG
	1	· ·		SDLSH\RPKRRRFHESYNFNMKCPTPGCNS
[LGHLTGKHERHFSISGCPLYHNLS\ADECK
1				VRAO\TRDKOIEERMLS\HRQDDNNRH\AT
			1	RHOAPTEROLRYKEKVAELKKKRNSGLSK
1			1	EQKEKYMEHRQTYGNTREPLLENLTSEYD

443

Table 8

SEQ ID NO:	Method	Predicted beginning nucleotide location of first amino acid residue of peptide sequence	Predicted ending nucleotide location of last amino acid residue of peptide sequence	Amino acid sequence (X=Unknown, *=Stop codon, /=possible nucleotide deletion,=possible nucleotide insertion) LDLFRRAQARASEDLEKLRLQGQITEGSN MIKTIAFGRYELDTWYHSPYPEEYARLGRL YMCEFCLKYMKSQTILRRHMAKCVWKHP PGDEIYRKGSISVFEVDGKKNKIYCQNLCL LAKLFLDHKTLYYDVEPFLFYVMTEADNT GCHLIGYFSKEKNSFLNYNVSCILTMPQYM RQGYGKMLIDFSYLLSKVEEKVGSPERPLS DLGLISYRSYWKEVLLRYLHNFQGKEISIK EISQETAVNPVDIVSTLQALQMLKYWKGK HLVLKRQDLIDEWIAKEAKRSNSNKTMDP SCLKWTPPKGT
2545	A	95	719	VWPEVTDPEKFVYEDVAIAAYLLILWEEE RAERGLTARQSFVDLGCGNGLLVHILSSEG HPGRGIDVRRRKIWDMYGPQTQLEEDAITP NDKTLFPDVDWLIGNHSDELTPWIPVIAAR SSYNCRFFVLPCCFFDFIGRYSRRQSKKTQ YREYLDFIKEVGFTCGFHVDEDCLRIPSTTR VCLVGKSRTYPYSIEASVDEKRTQYIKS
2546	В	224	429	XPFLILLLSPVSTDQANTTTAEIHSQLTPRL NLTILSSQGASLQQRVTYHRNHKYGQTHP QKAEIVVG
2547	A	59	335	GLAAGLPETLHISYCMTVFRFESLDSGVWT DDHSEACRNMHVLSVWTASCKAEPNPIWP HHPWLSCATWPCWKGFDLPGICFTALSCP KIYA
2548	A		1605	PMYLFLCPPLALVQCALKDPRSKYSLGGR TTLIITLQGSGKKNNIPHPSSLSERVMTAKD GFVSRCHLLMQPKQQKWSLMYPMEGEVL ENGCWPTLQDSLLCTALVDKLLVFLGRCF CTAVEVVMLVTCRTAAAVSAFLIVGRVSS PVCRAVSVQPWTLTADHTPGRYCLKLVCR QLCLCPSSTPLTEVFCSKEAFFIILDCSNLPH ALLPVDSPKGLSKCSNPREKARRKLQGHY HVASEVSFVPVRRFPKGEIGANQPGTHRKF YHLTHYRQNLKQPDVPHGRIVFDDKDITD WQTAKIMREAVAIVPEGRRVFSRMTVEEN LAMGGFFAERDQFQERIKWVYELFPRLHE RRIQRAGTMSGGEQQMLAIGRALMSNPRL LLLDEPSLGLAPIIIQQIFDTIEQLREQGMTIF LVEQNANQALKLADRGYVLENGHVVLSD TGDALLANEAVRRGDELTEDRSRSLDGELI RSLPCGASYGGLSLRPWSRGHIPQSHQSSE SVRVMFINTSKGASIISSSATMPGPLPKHLG P
2549	В.	1	597	MHVQGKAAILGRHFSISSLLPGALLLTVIK GHTHPEEKSPGAHEKAVTGEPKCLGALPY CDSGGKKATKKKDAGEMRSRIKDGVLVL KCISLQVGLASWIVSWLRTEATGYTFALLP PGTHHTEQTPSKHEQNGAELFCNCVSCFED PCPCQVPGTQPGNRLSEEHQASSQADVTNS SAPKQPHPPPAPCKGVCSHC

444

Table 8

SEQ	Method	Predicted	Predicted	Amino acid sequence (X=Unknown, *=Stop
_	Method			Allino acid sequence (A-Onknown, -Stop
ID		beginning	ending	codon, /=possible nucleotide
NO:		nucleotide	nucleotide	deletion,=possible nucleotide insertion)
		location of	location of	
1		first amino	last amino	
		acid residue	acid residue	
1		of peptide	of peptide	
		sequence	sequence	
2550	Α	278	451	MAGTAQLLGLKQLIGLELLTAQCGQITGY
				RDRREELLPPRFLATGPPSCHPPSQTVP*
2551	A	1	6530	MWGSDRLAGAGGGGAAVTVAFTNARDCF
		-		LHLPRRLVAQLHLLQNQAIEVVWSHQPAF
1				LSWVEGRHFSDQGENVAEINRQVGQKLGL
				SNGGQELHAVSLEQHLLDQIRIVFPKAIFPV
				WVDQQTYIFIQIVALIPAASYGRLETDTKLL
				IOPKTRRAKENTFSKADAEYKKLHSYGRD
				QKGMMKELQTKQLQSNTVGITESNENESEI
				PVDSSSVASLWTMIGSIFSFQSEKKQETSW
				GLTEINAFKNMQSKVVPLDNIFRVCKSQPP
	1			SIYNASATSVFHKHCAIHVFPWDQEYFDVE
				PSFTVTYGKLVKLLSPKQQQSKTKQNVLSP
				EKEKQMSEPLDQKKIRSDHNEEDEKACVL
,				QVVWNGLEELNNAIKYTKNVEVLHLGKV
				~
				WPKDISEEDIKTVFYSWLQQSTTTMLPLVI
1	•	,		SEEEFIKLETKDGPSRSYGKRRKQGVNSLG
				VSSLEHITHSLLGRPLSRQLMSLVAGLRNG
				ALLLTGGKGSGKSTLAKAICKEAFDKLDA
				HVERVDCKALRGKRLENIQKTLEVAFSEA
				VWMQPSVVLLDDLDLIAGLPAVPEHEHSP
Į.				DAVQSQRLAHALNDMIKEFISMGSLVALIA
			·	TSQSQQSLHPLLVSAQGVHIFQCVQHIQPP
				NQEQRCEILCNVIKNKLDCDINKFTDLDLQ
				HVAKETGGFVARDFTVLVDRAIHSRLSRQ
				SISTREKLVLTTLDFQKALRGFLPASLRSVN
	:			LHKPRDLGWDKIGGLHEVRQILMDTIQLP
				AKYPELFANLPIRQRTGILLYGPPGTGKTLL
]				AGVIARESRMNFISVKGPELLSKYIGASEQ
				AVRDIFIRAQAAKPCILFFDEFESIAPRRGH
				DNTGVTDRVVNQLLTQLDGVEGLQGVYV
	Ì			LAATSRPDLIDPALLRPGRLDKCVYCPPPD
				QDGSSSSDSDLSLSSMVFLNHSSGSDDSAG
				DGECGLDQSLVSLEMSEILPDESKFNMYRL
	ł			YFGSSYESELGNGTSSDLEDESMNQPGPIK
]	l			TRLAISQSHLMTALGHTRPSISEDDWKNFA
	ļ			ELYESFQNPKRRKNQSGTMFRPGQKFFDEI
]				TELTYLPSFHHKAAPHQAEPGPNSSSASAP
	l			PPYNPFITSSPHTQSGLQFRSVTSPPPSAQQF
	i			PLKEVAGAKGIVKTALETAPTLALPVSSQP
'				FSLHTAEVQGCAVGILTQGPGPCPVAFLSK
	l			QLDLTVLGSPSCLHAVASAALILLEALKIT
				NYAQLTLYSSHNFQNLFSFSHLTHILSAPRL
	l			LQLYSLFVESPTITILPGPDFNLASHIILDTTP
	İ			DPDDCMSLIYLTFTPFPHISFFSVPHVDHIW
	l			FTDGSSTRPDRHSPAKAGYAIESSTSIIEAT
				ALPPSTTSQQAELIALTRAFTLAKGLHVNIY
		-		TDSKYAFHILHHHAVIWAERGFLTTQGSSII
				NASLIKTLLKAALLPKEAGVTHCKGHQKA
				SDPITLGNAYADKGVRCAPDPARRPLPLPI
	l	·		GLKACHCSCTAKIGGKYRALVGQLKTISV
Ll	l		<u></u>	OLAMOROSCI AMIOGA I KALVOQLA 115V

445

Table 8

SEQ	Method	Predicted	Predicted	Amino acid sequence (X=Unknown, *=Stop
ID		beginning	ending	codon, /=possible nucleotide
NO:		nucleotide	nucleotide	deletion,=possible nucleotide insertion)
		location of	location of	
	İ	first amino	last amino	
İ	ļ	acid residue	acid residue	
	ļ	of peptide	of peptide	
	<u> </u>	sequence	sequence	
				ATGLKTQDRTIDGSSQVIEEKNHNGYSVID
	ļ		1	TGTLVEAELEKLPNNWSPQTCELFALSQAL
	1	ļ		KYLQNQKTISILIQKEPSPALGLTPERKGNV
ļ	l	1		GHAGKGPLESSSPDPFLCGQERREKGCRTA
	į			TSVSITNPINRGPWVVTHPGKELTPEHKGN
	į			VGHAGRDILAKAGAIIHLNIGEGTPVCCPL
	1		1	LEEGINPEVWATEGQYGRAKNARPVQVKL
	İ	1		KDSTSFPYQRQYPLRPKAQQGLQKIVKDL
	1		İ	KAQGLVKPCSNPCSTPILGVQKPNRQWR\T
				LCHQATQALFNFLATCGYMVSKPKAQLCS QQ/RYLGLKLSKGTRALSEEHIQPILAYPHP
				KTLKQLRGFLGVIGFCRKWIPRYGEIARSL
				NTLIKETQKANTHLVRWTTEVEVAFQALT
				QAPVLSLPTGQDFSSYVTEKTGIALGVLTQI
				RGMSLQPVAYLTKEIDVVAKGWPHCLRV
	1			VAAVVVLVSEAVKLIQGRDLTVWTSHDV
	ł			NGILTAKGDLWLSDNHLLKYQALLLEGPV
				LRLCTCATLNPATFLPDNKEKIEHNCQQVI
	į			VOTYAAQGDPLEVPLTDPDLTLCTDGSSFV
				EKGLRKVGYAVVSDNGILESNPLTPGTSAQ
]			}	LAELIALTWALELGEEKRANIYTDSKYAYL
				VLHAHAAIWKEREFLTSERTPIKHQEAIRK
			,	LLLAVQKPKEVAVLHCRGHQKGKEREIEE
	1			NCQADIEAKRAARQDPPLEMLIKQPLV
2552	A	748	1075	ILPTSLFFLFCFVFFVCF*DRVLLLSPG\WSA
				VARSWLYCNLSLRGFKGFSCLSLLSNWDY
				RCTPLRSANFVFL/CRDRVSPCWPTSVSNS*
				PQ\VIHPPWPPKVLGITRV
2553	В	1	766	MRPVDPDGTEHSLFCPLTALRGMVNSRIQ
				KSPGKPSVCDVPLPISPGQSSQLHGKVFGQ
				LNAGKAAEFLKSPPDHQAQAASTSGPQKT
				TLSKRGLRLQPCQLHSAPHSFQLLPLTQKS
	İ	İ		TWDLRGSAPLHAAQTSLSEFSCHRPDVED
1				TLGTKGPDKTQCQSENSTRPQYSPETSQNQ
	1			PVGKGTDLKVTKLGVPSLMAQDGVNYSV
	1	1		KTEAHSTGTTAEPLSSQDRAVRGHNTDSH
0551	 	477	022	VQTPDLGEDTAL WATREIS A FYVI NICOGVSPAKI PHTSWS
2554	A	47	923	KATRFISAAFVVLNKQGVSPAKLPHTSWS WSLQTLSFLFSGDLAEKSLQCFPCSAMLLE
				LIPLLGIHFVLRTARAQSVTQPDIHITVSEG
1				ASLELRCNYSYGATPYLFWMERTVEEAFIL
	1	1	1	LVCLKPWRVASSLEKKEKEDESFQLLLGSR
				YNVLKGSRGETSEGGAESFSSQSPGENQLY
1				SEMQFFYLCEQRAVVPTESWVGLINLFFM
		l	1	ASWMKHSGKLWSKRNSEELCGTLHITAAQ
			l	LKDSGTYFCAVEAQFSQEICSLDPNCSWAC
	1			SPNPFRERGMLPPQYHLHSFGFSD
2555	A	2471	2985	ETSLERERLSFCTGSRTTRSAELKAVGFEA
2333	1"	27/1	1	ALQEVITPEVVPASQSEAYQTLRQNQAQV
	1 .			HNFFFFWGGDSPTLSPRLECSSAISAHCNLR
		1	1	LPGSSNSPTSASRVAGTTGACRHARLIFCIL
		1		I COUNTY TOTAL THE TOTAL CITY OF CITY

446

Table 8

OTEO	Method	Predicted	Predicted	Amino acid sequence (X=Unknown, *=Stop
SEQ	Method			codon, /=possible nucleotide
ID	1	beginning	ending	deletion,=possible nucleotide insertion)
NO:		nucleotide	nucleotide	deletion,=possible nucleotide insertion)
		location of	location of	
		first amino	last amino	
		acid residue	acid residue	
		of peptide	of peptide	
		sequence	sequence	
				VEMGFHRVAQAGRELLSSANPPTSASQSA
				GITGMSHHAQPSSQLLISSCC
2556	A	138	564	YREVMVSES*ETPAGARGRPYYFSAPGTAP
	1			\PAINVHPPPPSLSATPHPPQPQPPPPHQHNA
	1			KARVATIRTKRTSNCRIRSRKVRKSPPEKW
				VGFNRRPKASCPSPPGAARVDVGGETERR
				EQAAAPGEMGKWARPGEEYFHS
2557	A	2	585	AAAAPAGGNPEQRLDYERAAALGGPDGR
2331	1	-	303	AWGGRSPLPPPAP*AQGAPGPRWPPPRAGS
				PAPSPAGCGGGKGGGLVTPGRGGPRAAGR
				EL/RAVRCPCPVRPRPPSKPALGGSLPQPEP
	ľ			AAAPGPSIR/PVLPIQTGS\PWRRPKSLRPVL
]	GTRVGRTPPLPPP/PDPAGPPPLPLPGP\HPS
	1			RPPPPTGPWRPARADGRV
	 		1004	PRVRVQWAQLSQDKKGEMNSMTSTAGPP
2558	A	2	224	
	İ			GSSSAPCATRRNLLQRQHLQRLSGEFKKDP
				ATYSKHLEPLEEERDK
2559	A	43	267	GRLWSAMTPGKLKTLCKIDWPALEVGWP
	1			LEGSLDRSLVSKVWHKVTYKPRNPDQFPY
				RDT*LELVLDPPPPTHSG
2560	A	233	692	DNHPSFPRLPSSRPGTKEVLKEIHISDTTAD
				VIFYPIYRMSEMIFRRIKMPWLWLDLWYL
				MFKEGWEHKKSLKILHTFTNSVIAERANE
				MNANEDCRGDGRGSAPSKNKRRAFLDLLL
	1	1		SVTDDEGNRLSHEDIREEVDTFMFEVLYIV
				RFRYH
2561	A	1993	1379	SLHLSERADWQYSQRAG/DAVEVFFSRTA
				RDNRLGCMFVRCAPSSRYTLLFSHGNAVD
	İ			LGQMCSFYIGLGSRINCNIFSYDYSGYGVS
1.37	CHARGE PER	1 × × ×		SGKPSEKNLYADIDAAWQALRTRYGVSPE
				NIILYGQSIGTVPTVDLASRYECAAVILHSP
ļ		1	İ	LMSGLRVAFPDTRKTYCFDAFPSIDKISKV
	1			TSPVLVIHGTEDEVIDFSHGLAMYERCPRA
				VEPLWVEGAGHNDIELYAQYLERLKQFIS
				HELPNS*RQSK
2562	A	991	308	AAASAFKPGLALSDRAFAAWEPSGAAVSR
2502	1.	1	1	SPLSPPSRPFASREPAGFRAALADPPGMPR
				YELALILKAMQRPETAATLKRTTEALMDR
	1		1	GAIVRDLENLGERALPYRISAHSQQHNRGG
l			1	YFLVDFYAPTAAVESMVEHLSRDIDVIRGN
			1	IVKHPLTQELKEWEGIVPVPLAEKLYSTKK
				RKK*EDSPDFSLICNSFTFGQHGREGRICKF
				GLYISMCCRCCLIFLRYF
2562	 	1	344	MDKSLLLELPILLCCFRALSGSLSMRNDAV
2563	A	1	344	
		1		IEIVQCRMCHLQFPGEKCSRGRGICTATTEE
!				ACMVGRMFKRDGNPWLTFMGCLKNCAD
<u></u>				VKGIRWSVYLVNFRCCRSHDLCNEDL
2564	A	251	386	LQRLECSGTI/SAHCNLCLLGSSNPLASAS*I
L				AGTTGTLTGDVDST
2565	A	1164	1273	EISNIQQADFPGVLATHPAFSRLLPCLHFIP
		\forall		KSANQ

447

CEC		T	1:001e	
SEQ	Method	Predicted	Predicted	Amino acid sequence (X=Unknown, *=Stop
ID	l	beginning	ending	codon, /=possible nucleotide
NO:	i	nucleotide	್ಷಪcleotide	deletion,=possible nucleotide insertion)
1	Ţ	location of	location of	
		first amino	last amino	
		acid residue	acid residue	
1	1	of peptide	of peptide	
2566	- 	sequence	sequence	
2300	A	867	156	PAPVKDEGPMVSASVKDQGPMVSAPVKD
	ļ	1		QGPIVPAPVKGEGPIVPAPVKDEGPMVSAP
]	IKDQDPMVPEHPKDESAMATAPIKNQGSM
1		İ	i	VSEPVKNQGLVVSGPVKDQDVVVPEHAK
			l	VHDSAVVAPVKNQGPVVPESVKNQDPILP
				VLVKDQGPTVLQPPKNQGRIVPEPLKNQV
				PIVPVPLKDQDPLVPVPAKDQGPAVPEPLK
	1			TQGPRDPQLPTVSPLPRVMIPTAPHTEYIES
2567	A	625	182	SP
2307	^	023	182	QQGKNQECIRNQHTRAPGRGASPQQGEGK
1				TWAWVGHPVPHALVIPGLQRGSARGLAW
	ĺ			RQLGRAR*PRPPAPPRACRPEEPPYTPGRR
i				APGRPAPAPRSACGWAASASRWCRRTVFF
2568	A	2	917	SQ
2500	1	2	917	EELLCLDVSENRLERLPEEISGLTSLTDLVIS
	1 .			QNLLETIPDGIGKLKKLSILKVDQNRLTQLP
]			EAVGECESLTELVLTENQLLTLP*SIGKLKK
l				LSNLNADRNKLVSLPKEIGGCCSLTVFCVR
]			DNRLTRIPAEVSQATELHVLDVAGNRLLH
				LPLSLTALKLKALWLSDNQSQPLLTFQTDT
	1			DYTTGEKILTCVLLPQLPSEPTCQENLPRCG ALENLVNDVSDEAWNERAVNRVSAIRFVE
ł			;	DEKDEEDNETRTLLRRATPHPGELKHMKK
	}			TVENLRNDMNAAKGLDSNKNEVNHAIDR
				VTTSV
2569	A	481	1380	TSKQNAAPLVKYFQEKGLIMTFDADRDED
			1000	EVFYDISMAVDNKLFPNKEAAAGSSDLDP
	1 1	1		SMILDTGEIIDTGSDYEDQGDDQLNVFGED
	1 1			TMGGFMEDLRKCKIIFIIGGPGSGKGTQCE
	i 1			KLVEKYGFTHLSTGELLREELAS*SERSKLI
	1 1]	KDIMERGDLVPSGIVLELLKEAMVG\SLGD
		ļ		TRGFLID\GYPRE\VKQGEEF\GRRIWRPHS
	ļ }			WVICME\CSADT\MTNRL\LQRSRSSLPVDD
				TTK\TMAKRLEAYYR\ASIPVIAYYETKTQL
	1			HKINAEGTPEDVFLQLCTS*LTLLFSEGKN
				ACLG
2570	Α	3344	677	GAYHKHLMELALQQTYQDTC\NCIKSRIKL
		Ì		EFEKRQQERLLLSLLPAHIAMEMKAEIIOR
			!	LQGPKAGQMENTNNFHNLYVKRHTNVSIL
			1	YADIVGFTRLASDCSPGELVHMLNELFGKF
]		ì	DQIAKENECMRIKILGDCYYCVSGLPISLPN
		1	ĺ	HAKNCVKMGLDMCEAIKKVRDATGVDIN
	1	i i	ļ	MRVGVHSGNVLCGVIGLQKWQYDVWSH
	1			DVTLANHMEAGGVPGRVHISSVTLEHLNG
Ì		ļ		AYKVEEGDGDIRDPYLKQHLVKTYFVINP
			ł	KGERRSPQHLFRPRHTLDGAKMRASVRMT
.	1	1		RYLESWGAAKPFAHLHHRDSMTTENGKIS
	ĺ]		TTDVPMGQHNFQNRTLRTKSQKKRFEEEL
Í	-	•	1	NERMIQAIDGINAQKQWLKSEDIORISLLF
j	ł			YNKVLEKEYRATALPAFKYYVTCACLIFFC
				IFIVQILVLPKTSVLGISFGAAFLLLAFILFVC

448

Table 8

SEQ ID NO:	Method	Predicted beginning nucleotide location of first amino acid residue of peptide sequence	Predicted ending nucleotide location of last amino acid residue of peptide sequence	Amino acid sequence (X=Unknown, *=Stop codon, /=possible nucleotide deletion, =possible nucleotide insertion) FAGQLLQCSKKASPLLMWLLKSSGIIANRP WPRISLTIITTAIILMMAVFNMFFLSDSEETI PPTANTTNTSFSASNNQVAILRAQILFFLPY FIYSCILGLISCS\VFLRVNYELKMLIMMVA LVGYNTILLHTHAHVLGDYSQVLFERPGI WKDLKTMGSVSLSIFFITLLVLGRQNEYYC RLDFLWKNKFKKEREEIETMENLNRVLLE NVLPAHV\AEHFLARSLKNEELYHQSYDC
2571	A	3222	5798	VCVMFASIPDFKEFYTESDVNKEGLECLRL \LNEIIADF\DDLLSKPKFSGVEKIKTIGSTY MAATGLSAVPSQEHSQEPERQYMHIGTMV \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
23/1	A			HPGWSAVV*P*LTAASNS*\VKQSSHLSLPS SWDNRYAPPRPANYFYYFYFL*RLDLALFP KLLLNCWAQVILPSQPPKVLGL*AQSSEGG IHSGLSLPSPCFLLCNPI
2572	A		666	ASSTPQVTANEEINVTSTDSEVEIVTVGESY RSRSTLGHSRSHWSQGSSSHASRPQEPRNR SRISTVIQPLRQNAAEVVDLTVDEDEPTVV PTTSARMESQATSASINNSNPSTSEQASDT ASAVTSSQPSTVSETSATLTSNSTTGTSIGD DSRRTTSSAVTETGPPAMPRLPSCCPQHSP CGGSSQNHHALGHPHTSCFQQHGHHFQHH HHHHHTPHPCI
2573	A	300	110	PCGPPQEKGADCHLKACPTAPCTTFRASCC SHPASCSRGKQASMSSTSSSATVPLPANEM HSG
2574	A	2	362	QELERSMAQRCVCVLALVAMLLLVFPTVS RSMGPRSGEHQRASRIPSQFSKEERVAMKE ALKVFPTVVSTSFIQHEVVEEYSHLFTIQGS DPSLQPYLLMAHFDVVPAPEEGWEVPPFS G
2575	A	1740	2026	ENGSLRPKPTGIPLSSARGNELSPTRRRRP WTPNPAGETMSSVQQQPPPPRRVTNVGSL LLTPQENESLFTFLGKKCVGAGRGGRAPPS RAAGE
2576	С	363	692	MLLWPLTQAQSSEMSCCRLGACFITSLLHQ IPATALLEGNLDITLTVQLQILDAHNFPYRL CLIDRCICFISSSTYPQIDGLKSSRDIGDKISF VRSNGSINMGKPFNF
2577	A	1	2169	MEGLNWLSLLAFIFLLCWMLSALKHQTPN SSAFGLLDLHQWFATGSRMNKNNKPSSFI AIRNAAFSEVGIGISANAMLLLFHILTCLLK HRTKPADLIVCHVALIHIILLLPTEFIATDIF GSQDSEDDIKHKSVIYRRNRQSQHFHSTNL SPKAPPEKMATQTILLLVSCFVIVYVLDCV VASCSGLVWNSDPVRHRVQMLVDNGYAT

Table 8

Lanc	136 11 1	T 20 11 -	Table	
SEQ	Method	Predicted	Predicted	Amino acid sequence (X=Unknown, *=Stop
l ID	i	beginning	ending	codon, /=possible nucleotide
NO:	ļ	nucleotide	nucleotide	deletion,=possible nucleotide insertion)
		location of	location of	
		first amino	last amino	
		acid residue	acid residue	
		of peptide	of peptide	
		sequence	sequence	
		Sugarane	sequence	ISPSVLPRLTAPNEWRASVYLNDSLNKCSN
			ļ	GRLLCVDRGLDEGPRSVPKCSESETDEDYI
				VLRAPLREDEPKDGGSVGNAALVSPEASA
		ĺ	ł	EEEEEREEGGEACGLERTGAGGEQVDLGE
	ŀ	}		LPDHEEKSNQKVAAATLEDRTQDEPAEES
į		ļ		COIVLEONNCMDNFVTSLTGSPYEFFPTKS
	İ		1	
			1	TSFCRESCSPFSESVKSLESEQAPKLGLCAE
		[EDPVVGALCGQHGPLQDGVAEGPTAPDV
	1			VVLPKEEEKEEVIVDDMLANPYVMGDEGE
				EEEEEFVDDTLANPYVMGVGLPGRGGEEE
				EEEEVVDDTLASLYKMGEEHRHKGLAPL
	[WEGGQKPSQKLPPKKPDLRQVPQPLASEV
	1			PQRRQERAVVTEGRPLEASRALPAKPRAFT
	}			LYPRSFSVEGQEIPVSISVYWEPEGSGLDDH
	1			RIKRKEEHLSVVSGSFSQRNHLPSSGTSTPS
i				SMVDIPPPFDLACITKKPITKSSPSLLIDSDS
]				PDKYKKKKSSFKRFLALMFNKMERPGTM
	[Ì	AHACHPSTLGS
2578	В	1	360	MHLLQAALLLAVPCLLCYVAVGYAFSVLL
	ł			TLLLTAPALLPDDFEGFNIREKTGWYGKKE
				GMVTLSNPQVAREKEQFNDLYFNAKQAE
	1			QKGYLNTARREASLAFKVTETTHNKSGLIT
	<u> </u>			ES
2579	A	1	1036	ATVGGREIYVKGFVHYKVRALFPCEKPPRP
]		1000	TEMSRHHSRFERDYRVGWDRREWSVNGT
				HGTTSICSVTSGAG/ERHSQQPQRPARPPAA
				ARGALPAAHPGYSSCSL/RPPAAARPSPAS
	İ			WPALRLRSPPRLPASPKGTVSPRDWRPASG
İ				GGRRLSISPHPG/ITDEPPSKQMRESDNPGT
				GPW\GPRWPPGTSPP*SHTPMEWPSLPPS\P
				GCERPGPGHWGDPLTASPRGAPAPADARP
[
				L\PLPQPPSQPLSS\GWSTCLPRPCMPALSP
l				WPCPHCPVWGRWPAQDPPLWATATWQG
1				PCCLHRRQPSRPPLSPVVPLPPMGPPQPTRP
2500			1505	TGCRCCGPLAWGSMSSPTRGTPE
2580	A	1	1535	MEEKTNVQLPPGQTEQHVEIHIMNFCSKN
				HHRITPEKPKELTDPFKEAACCCKLYEIDK
				KLYRMAEWIKIHKPSICCLQETHLTHKDSH
				KLKVSITFKDLAVRFSEEEWRLLEEGQREF
			.	YRDVMRENYETLVSVEPGRAVGGGSHAD
			İ	EGQEPAGCG/VSPGPGAAGEGDPRVLVWR
				SQGRYGQPRER\GRGASLDGERASPEAA/D
				GKRALPSPRPAQLPSRRPYQPAPPG\PTPTD
				SSCSSGPTGDGVQGSPLPIRISPGNSPL/PRP
'				HQLSEGNPCAWAPAPRDIPKLLATSP*PGH
				VQANQSRPGAWEPALGRSDQRACSASGSA
	· i		İ	ELCERWPQQAP/APPEEPPPASPHPAAPTG\
	,			PGFWESCGEPGAA\PGKGSAPKPSPLHCLE
	İ			SALRGILP\EGPCASPAWEAPAPAPAPAR
				ASAA/AEGEDPRPEPELWKPLPQERDRLPS
	i			CKPPVPLSPCPGGTPAGSSGGSPGE\APGEQ
				Carryrlsrcrgg1rag55gg5rgevarge(

450

Table 8

SEQ ID NO:	Method	Predicted beginning nucleotide location of first amino acid residue of peptide sequence	Predicted ending nucleotide location of last amino acid residue of peptide sequence	Amino acid sequence (X=Unknown, *=Stop codon, /=possible nucleotide deletion,=possible nucleotide insertion)
				SPGTAAASVQ/VSPAHWPCFS/SPVRYSSGS LPGFSAGEKAQG
2581	A	3	514	PRLLMEAGPHPRPGHCCKPGGRLDMNHGF VHHIRRNQIARDDYDKKVKQAAKEKVRR RHTPAPTRPRKPDLQVYLPRHRDVSAHPR NPDYEESGESSSSGGSELEPSGHQLFCLEYE ADSGEVTSVIVYQGDDPGKVSEKVSAHTP LDPPMREALKLRIQEEIAKRQSQH
2582	A	307	1503	GGSSARPRASSRRMLSRKKTKNEVSKPAE VQGKYVKKETSPLLRNLMPSFIRHGPTIPR RTDICLPDSSPNAFSTSGDGVVSRNQSFLRT PIQRTPHEIMRRESNRLSAPSYLARSLADVP REYGSSQSFVTEVSFAVENGDSGSRYYYSD NFFDGQRKRPLGDRAHEDYRYYEYNHDLF QRMPQNQGRHASGIGRVAATSLGNLTNHG SEDLPLPPGWSVDWTMRGRKYYIDHNTNT THWSHPLEREGLPPGWERVESSEFGTYYV
				DHTNKKAQY\RHPCAPTCTSV*STTSCHI/A S/RQQTERNQSLLVPANPYHTAEIPDWLQV YARAPVKYDHILKWELFQLADLDTYQGM LKLLFMKELEQIVKMYEAYRQALLTELEN RKQRQQWYAQQHGKNF
2583	A	1341	1015	LGTRGCLNMAAPLSVEVEFGGGAELLFDG IKKHRVTLPGQEEPWDIRNLLIWIKKNLLK ERPELFIQGDSVRPGILVLINDADWELLGEL DYQLQDQDSVLFISTLHGG
2584	A	1	741	VRSMSCPPSWPYCAPCPTNIGESTSPLRKTI ETPTLWDPKAPSCSLELPPWVLASPQRSRG TALPFLPSNVLPSLALPSTSFLCRPLLSHLV TSLLAGPGAHDGHLRKEGWRSTPEMTSLP APEHPASPCDSVLCSPDVSMCTLGPAARW DAQAKSAPLPPCCTDCKSFPHLQRPWAQP HTSQATSVDSGEAGTKGMSQFTVWTWWR SRPCETRQGEGIGNWGYSVTPGPPGSQNLP ARLDGQGLAS
2585	A	36	363	NAHSLPIEWAFCKIENLCGKCVYMCMCSQ NKNNQLKFSFIPGRWCASLKMYSKGQRSL MYPCRYHQRMLLVSRYLDTVLLDWDPPG PLPEGRQHSPGRRQRDLASALLC
2586	В	1	1107	MLYWLMPKGKLLWIASFLTRLQGIQHTLP RVEEKSIQSVKDDNIYHPHPRPRIAVVGSSS TVISYSPGEYAFTNGTSRCPSLSLAAGPRLI TNGPWEAHEVQRESTIALMKLLQVLEQKV RLREGHSLGTVKMSKNINPMGHVSNPPTS YPDELITKQVCPGSHPKRPGEVKHNEEVPT SQDRDTCTTQETQYSVRKIISAEDDFTVKN YNHIRNKFTIPSRKGQQAHRAWLNKAIPQP MPTSATSLLAALVRAAKHRNQQPQDLAQS SSHHIYLFITITFGSLRDSELKSKRGPDPQLS LELEMVAKAKAVKPENSRRWFSGNQLGSI INSPKKGSAVLEGTFQEKQKWDARLTKGD

451

Table 8

SEQ ID NO:	Method	Predicted beginning nucleotide location of first amino acid residue of peptide sequence	Predicted ending nucleotide location of last amino acid residue of peptide sequence	Amino acid sequence (X=Unknown, *=Stop codon, /=possible nucleotide deletion,=possible nucleotide insertion) CLATNVLNRV MACRVLQGLPFACLSSPICSHSALTLDHSL LCLNFFFNPYALLPNFYLFGKFQLRIPSSGK
2588	С	1	417	PFLTSEDQDPAGIFELVEVVGNGTYGQVY KVRRMVWKYDLHICRAVLGGVEGSRFLV CRSEGGYGRC MLLPLFLLIHTGIGPSYSASDRAEPRPSPGG RLTARIWIKGVKEDGGTMQGAVDWGEGV ERCAGRITASHKVADKWHSSRNSLGGSPE PGTPAPGPWVGFCHPCLPASPLSWTATGT
2589	В	1	198	AATHAQCAERVHNLCRRAKPS MQAGLARAMVLAAGWSRVASAGAAGDT SPVPRALSDLRITQKCGLLVPKAVSWKSLF LFPITVEL
2590	A	267	614	MAVAVLLCGCIVATVSFFWEESLTQHVAG LLFLMTGIFCTISLCTYAASISYDLNRLPKLI YSLPADVEHGYSWSIFCAWCSLGFIVAAG GLCIAYPFISRTKIAQLKSGRDSTV*
2591	A	5	447	SSAFRSVLLEMRVSSRTCIIDTLQGAVPTYP GSGTPALGEKSGSLGLVAWSFPRPGESSST APRRSPCCCPWSPSHSSPASFPPLRPSAPAT RAPREGLPTPASRAHFPGATAIPKTSGLLIA TASLCWGQTHQPCPLPLARFLGKR
2592	A	508	870	GHCPVLRVVTEKHCRACEKEGMDSSIHLS SLISRHDDEATRTSTSEGLEEGEVEGETLLI VESEDQASVDLSHDQSGDSLNSDEGDVSW MEEQLSYFCDKCQKWIPASKELLNSFDLSI PV
2593	В	20	201	MGRVSGLVPSRFLTLLAHLVVVITLFWSRD SNIQACLPLTFTPEEYDKQDIHALPAVTEM ALFVTVFGLKKKPF
2594	A	79	243	MSFICFLNFVVPTSAIPLRLWNYCGMNSPS RSWDCLCTPLSRQSAPVSHMAKVW*
2595	A	178	1224	RYRAARNVMKDQRLVFHSKVRSSGYASA PHVTMFSPKTNIKSEGKGSSRSRSSCAREA YPVECAVPTKPGPQVAAAPTCTRVCCIQYS GDGQWLACGLANHLLLVFDASLTGTPAVF SGHDGAVNAVCWSQDRRWLLSAARDGTL RMWSARGAELALL\RYKQKSKSKLICRLST TGAVDMTSLSAVNDFYSHIVLAAGRNRTV EVFDLNAGCSAAVIVEAHSRPVHQICQNK GSSFTTQQPQAYNLFLTTAIGDGMRLWDL RTLRCERHFEGHPTRGYPCGIAFSPCGRFA ACGAEDRHAYVYEMGSSTFSHRLAGHTDT VTGVAFNPSAPQLATATLDGKLQLFLAE
2596	A	85	839	RSGSLMAAAAATKILLCLPLLLLLSGWSRA GRADPHSLCYDITVIPKFRPGPRWCAVQGQ VDEKTFLHYDCGNKTVTPVSPLGKKLNVT TAWKAQNPVLREVVDILTEQLRDIQLENY TPKEPLTLQARMSCEQKAEGHSSGSWQFS FDGQIFLLFDSEKRMWTTVHPGARKMKEK

452

Table 8

			Table	
SEQ	Method	Predicted	Predicted	Amino acid sequence (X=Unknown, *=Stop
ID		beginning	ending	codon, /=possible nucleotide
NO:	}	nucleotide	nucleotide	deletion,=possible nucleotide insertion)
110.		location of	location of	,
	1	first amino	last amino	•
	1	acid residue	acid residue	
	1	of peptide	of peptide	
		sequence	sequence	
<u></u>		Joquence	1 504 50000	WENDKVVAMSFHYFSMGDCIGWLEDFLM
				GMDSTLEPSAGAPLAMSSGTTQLRATATT
	İ		i	
	<u> </u>			LILCCLLILLPCFILPGI
2597	A	319	513	IELRAVAQGIAQSLGQLLFTQCPLEKKDLE
				GLFLQNNKEGVQKGRDEPLPPLP*ATALSS
				IQAGIQQAR*EGDLEAWQFPVRIHPPDQQG
				NIIVTFEPFPFKLFKEFKQAVNQYGPGSPFV
}	!			MGLLKNVAVSSWMIPTDWDALTRACLTP
			1	
			·	AQFLQFKTWWADEAGRV
2598	A	1257	877	AVFTFHNHGRTANLYSLHSWLGITTVFLFA
	1			CQRFLGFAVFLLPWASMWLRSLLKPIHVFF
	i			GAAILSLSIASVISGINEKLFFSLKNTTRPYH
	1			SLPSEAVFANSTGMLVVAFGLLVLYILLAS
	ľ			
				SWKRP
2599	A	54	470	CSTMNPSEMQRIAPPRRQRHRSRAPSAHK
				MNRMVMSEEQMKLPSTKKAEPPTWAQLK
	1	İ		KLTQLAKKK\LENTKVTQTPENMLLAALK
				TVSTVSAGVPSSSEESDHRERAMMTTVVL
				SKRRGKCGEKKEISDCYCVYVERS
2600	B	1	939	MALRLVIPALWEAELVGALMLAALSHLHR
				FLLSMWVLPPGTFTDAFPGLLFHFPRRSQK
	Į.			DCLLGLSKSDQRAMACYFGILLIVSATLCF
			-	GMNYYLDEFANLLDELLMKINGLSDSLQL
	1			PLLEKTSNNTGEARTEESPLVDISSYQAAE
1			i e	MVMMARTLATCLQHAQGLGFEACLPILSA
				PHALSHWTLTTCLWQLGFMSAVLILKYTR
			ļ	ALLAQGQFSGPFVIDKGVRLELIGLISRVW
				EVSEQENSKEEVYRHEEGITVISDLLLGRQ
				WQQGHKGICLQLMLPFSRGKHRTSGAFLM
	1			FSLELFTVAQLVPISGS
0.01		1	698	VLNPLGKP*HDTPAWHEEGYPFPTAPPVDP
2601	A	1	098	
	1	1		FAKIKVDDCGKTKGCFRYGKPGCNAETCD
				YFLSYRMIGADVEFELSADTDGWVAVGFS
	İ			SDKKMGGDDVMACVHDDNGRVRIQHFY
				NVGQWAKEIQRNPARDEEGVFENNRVTCR
	1			FKRPVNVPRDETIVDLHLSWYYLFAWGPA
l	}			IQGSITRHDIDSPPASERVVSIYKYEDIFMPS
				AAVOTEGODECI LI DIALTEVI I MCTD
				AAYQTFSSPFCLLLIVALTFYLLMGTP
2602	A	2	319	FYLFILFLFFVFLVETGFHHVGQAGFELLTS
	1			SDPSALASQSARITGMSHHAWPNFCLLSRD
1				QVSPCWPGWS*TPDLR*STFLGLPKC*LQA
		1		*ATVPSAGEPQCGQ
0600		147	772	MGLGARGAWAALLLGTLQVLALLGAAHE
2603	A	147	773	OA ANA A GANTENICCI DIDIOGANICEET OIL
1				SAAMAASANIENSGLPHNSSANSTETLQHV
l	1		1	PSDHTNETSNSTVKPPTSVASDSSNTTVTT
1			1	MKPTAASNTTTPGMVSTNMTSTTLKSTPK
1	1			TTSVSQNTSQISTSTMTVTHNSSVTSAASSV
				TITTTMHSEAKKGSKFDTGSFVGGIVLTLG
l	1	J		
				VLSILYIGCKMYYSRRGIRYRTIDEHDAII*
2604	A	2	331	WVFSSPITARDALGIKHTMVKIRPLSQATR
	J			AAKAKARAYAEFLQPAKERPETSAALARR
L-				

Table 8

SEQ ID NO:	Method	Predicted beginning nucleotide location of first amino acid residue of peptide sequence	Predicted ending nucleotide location of last amino acid residue of peptide sequence	Amino acid sequence (X=Unknown, *=Stop codon, /=possible nucleotide deletion,=possible nucleotide insertion) LVISALGVRSKQSKTEREAELKKLQEARER
				KRLEAKQREDIWEGRDQSTV
2605	A	549	641	CCCCCCLCFGIHSSKGTHSANSDKWPFDP
2606	A	1	517	SCYVCGGTVTGDQWP*EARELVPTDPVPD EFPAQKNHPDNF*VLKVSIIRQYCTAIEGKQ FTHSIGRLSCLRQKLYNGTTKTVTWWNSN YTERNPFSKFPKLQTVWAHPEFHWDWMA PTRLYWICGHRAYAKLPDQWTGSCVISTIK PSFFLLPIKTGELLGFPVYASHEKR
2607	A	2	406	FLVETEFCYVGQAGLELLTSRDPPASASKG AGMTGVSHQVQPQ**S*LWT*/PSSVEAGT SFGLSFLSSSWALSAQEGCLAVPS/SGSRGL LVGALLLWTKPSPQLSPVPASQRLSSLSLM PPLPQPQHLTHTSIET
2608		2264	37	FFFNKNLLFIQKLTPGVFSPIFKKKKKRGGQ GFPSQCP*VNSLAIQGWPSRGVSGKRCQKC GGPGPLRTHSPLLASPLQPPS/WTTRPVGLQ PPGAL\GLTTTRGRAALP*LP*N*MLKPRW EQGDFPPGGWAMEAFSRDSLPLQEGIPGIP TSPPTPSEK\NKVPETPGALV*ETGCQTEKH FRGGDVSTEGDTYACLDVILNVACLDHGK SEHSPKSPSTQSEEQTLRGRGQAVADWPPG AGACPGPSARLCRGTMGMPSASEHLKRAA LGGK/PPLWRGARAAQEAPGSGFCGITAAR GLGRGGGRDRSLPGKL**KWPVSSTPPGPG RAALPAALGW\PGCGPTGM/PGLRSASIPSA KARSHTCGFKPKG/LKGRTMEEGQTHRRG PHA*AQTPSATGQVVQQC/PVPLDQRGKSS LRQRPKESNLT\GKDLPHPLSPKPPC\RSLPQ TPGQSPAEKLQPLVLSPRSPGPAAEQGAD WQGPQRIHPSKWPVKVEPLTPSLQDVGGG GGVTVGPACSPRGLPMNASGGTLGLAECS SQGEQPRSPTRQRHHGRGLPRAGGLLAEG GNRGPKC/PPLKHGLMGC*LCKAAARILDP GLALTVWEAASH\PSLPCARTPSGSQRALK GLGGTRKCCGKGQGVPHD\NSSAGTDPTH QQPRNRGCA/GDSDSPSGCWGQANLTTAS PATGN*TPGLE*HDVGMEKGLQDQ\QPGPP RSADGATETQRGQEAAHNQRARGRTLGS YLWSRVGSHSW
2609	A	1	399	MDGQARWLTPVIPALWEAEVFIEHMLYAL NILRTVLGRARTLSLNHRCRLLLLSLLVLH CVRSVRSWYLFCEAAAEKTLAFAMAEEKP KALSMGQIRFRFDSQPINETDTPVQVEMED IDIIDVFHQQIGGVY
2610	A	1	1641	MGELHMITEEKHQPFMDTQTAAKGTLLEA GPGLDPVCLGHIKKVIQRKFWRYSAPGTVP TTSAIPGETEWGRLPQWSTAWSETAQHGW PAARQSRITVLHQQPQCDPGPEVTSEQLPG VINMLTLKYIKVAAHPHGSWNTRVPCLVA VLLTPTRLSYYISEIQTTFREYYKHLYENKL

454

Table 8

SEQ ID NO:	Method	Predicted beginning nucleotide location of first amino acid residue of peptide sequence	Predicted ending nucleotide location of last amino acid residue of peptide sequence	Amino acid sequence (X=Unknown, *=Stop codon, /=possible nucleotide deletion,=possible nucleotide insertion) ENLEEMDKFLDTYTLPRLNQEEVESLNRP MTSSEIEAVINSLPTKKSPGPDGFTAEFYQR YEEELVPFLLRLFQTIEKEGILPNSFYEASIIL IPKPGRDTTKNENFRPISLMNIDAKTLNKIM ANRIQQHSKKLIHHNQVGFISGMQGWFNIC
				KSINIIHHINRTNDKNHMIISIDAEKAFDKIQ HPFMLKALNKLGIDGTHLKIIRAIFDKPTAN IILNGQKLEAFLLKTDTRQGCPLSPLLFNVV LEVLARAIRQEKEIPAPADTSSLIAHHPSPS YQPWTPVTRTSHSTPTITCYPCLECTPAKW LTSVSTMGGGLLSVPQGTVRVSALNYCFIP QLGGGPLMASSASSDYVPESDESEPLFTFE
2611	A	146	411	LLSPSHPLTAPPPRPPRPPPTRAPGACASSM GPPTSKFPKDLTLPGDAALGCGTPATGGEG ASSRARSETQRARAPTPGRSWGRAGSA
2612	A	2	384	PICLFSRPTLRPSRSKVSLIEGRGANMAAR WRFWCVSVTMVVALLIVCDVPSASAQRK KEMVLSEKVSQLMEWTNKRPVIRMNGDK FRRLVKAPPRNYSVIVMFTALQLHRQCVV CKYELQLRFKIK
2613	A		626	SRVEDFVLHLLRALAQDDVVPYFKTEPGL PQIHLEGNRLVLTCLAEGSWPLEFKWMRD DSELTTYSSEYKYIIPSLQKLDAGFYRCVV RNRMGALLQRKSEVQVAYMGSFMDTDQR KTVSQGRAAILNLLPITSYPRPQVTWFREG HKIIPSNRIAITLENQLVILATTTSDAGAYY VQAVNEKNGENKTSPFIHLSIASFCGNTTQ D
2614	A	412	1	SNLCLGNSWRWRWAKSRHHCIPTVTLSKR SGDIRGSHFSSPQRQRSQRVPGKETARVLR AGKQGRGQIPIPCPWPPPPPPPPPGSPGPGC RQFHQSLEAKARHPASVREMRGKVKMRR ALRRAPASTRASSRQPNPK
2615	A	2	474	TGPTIKNMDGTFNVTSCLKLNSSQEDPGTV YQCVVRHASLHTPLRSNFTLTAARHSLSET EKTDNFSIHWWPISFIGVGLVLLIVLIPWKK ICNKSSSAYTPLKCILKHWNSFDTQTLKKE HLIFFCTRAWPSYQLQDGEAWPPEGSVNIN TYSTTV
2616	A	223	2210	SLSGFTREASFEMAAQRIRAANSNGLPRCK SEGTLIDLSEGFSETSFNDIKVPSPSALLVD NPTPFGNAKEVIAIKDYCPTNFTTLKFSKG DHLYVLDTSGGEWWYAHNTTEMGYIPSS YVQPLNYRNSTLSDSGMIDNLPDSPDEVA KELELLGGWTDDKKVPGRMYSNNPFWNG VQTNPFLNGNVPVMPSLDELNPKSTVDLL LFDAGTSSFTESSSATTNSTGNIFDELPVTN GLHAEPPVRRDNPFFRSKRSYSLSELSVLQ AKSDAPTSSSFFTGLKSPAPEQFQSREDFRT AWLNHRKLARSCHDLDLLGQSPGWGQTQ AVETNIVCKLDSSGGAVQLPDTSISIHVPEG

Table 8

SEQ Method Predicted beginning nucleotide location of first amino acid residue of peptide sequence HVAPGETQJISMKALLDPPLELNSDRSCSIS PVLEVKLSNLEVKTISILEMKVSAEIKNDLF SKSTYGLQCCRSDKEGPVSVPNLNCSCGIS PVLEVKLSNLEVKTISILEMKVSAEIKNDLF SKSTYGLQCCRSDKEGPVSVPNLNCSCGIS PVLEVKLSNLEVKTISILEMKVSAEIKNDLF SKSTYGLQCCRSDKEGPVSVPNLNCSCGIS PVLEVKLSNLEVKTISILEMKVSAEIKNDLF SKSTYGLQCCRSDKEGPVSVPNLNCSCGIS PVLEVKLSNLEVKTISILEMKVSAEIKNDLF SKSTYGLQCCRSDKEGPVSVPNLNCSCGIS PVLEVKLSNLEVKTISILEMKVSAEIKNDLF SKSTYGLQCCRSDKEGPVSVSVPNLNCSCGIS PVLEVKLSNLEVKTISILEMKVSAEIKNDLF SKSTYGLQCCRSDKEGPVSVSVPNLNCSCGIS PVLEVKLSNLEVKTISILEMKVSAEIKNDLF SKSTYGLQCCRSDKEGPVSVSVPNLNCSCGIS PVLEVKLSNLEVKTISILEMKVSAEIKNDLF SKSTYGLQCCRSDKEGPVSVSVPNLNCSCGIS PVLEVKLSNLEVKTISILEMKVSAEIKNDLF SKSTYGLQCCRSDKEGPVSVSVPNLNCSGGITVQAQLHNLEPCMYVAVVAHGPSILVPST VWDPINKKVTVGLIQSPRISIPSSKLVSTV QVKDDQEALLTQFCVQTPQPPFSSAIKPSQ QKRFLKKNEVKCILISPTATITKYPTFQDF VSSLKF QVKEDQEALTQFCVQTPQPPFSSAIKPSQ QKRFLKKNEVKCILISPTATITKYPTFQDF VSSLKF ECIAADDFRIRGLEPNPQYLQGKPTCKPSD ECIAADDFRIRGLEPNPQYLQGKPTCKPSD ECIAADDFRIRGLEPNPQYLQGKPTCKPSD ECIAADDFRIRGLEPNPQYLQGKPTCKPSD ECIAADDFRIRGLEPNPQYLQGKPTCKPSD ECIAADDFRIRGLEPNPQYLQGKPTCKPSD ECIAADDFRIRGLEPNPQYLQGKPTCKPSD ECIAADDFRIRGLEPNPQYLQGKPTCKPSD ECIAADDFRIRGLEPNPQYLQGKPTCKPSD ECIAADDFRIRGLEPNPQYLQGKPTCKPSD ECIAADDFRIRGLEPNPQYLQGKPTCKPSD ECIAADDFRIRGLEPNPQYLQGKPTCKPSD ECIAADDFRIRGLEPNPQYLQGKPTCKPSD ECIAADDFRIRGLEPNPQYLQGKPTCKPSD ECIAADDFRIRGLEPNPQYLQGKPTCKPSD ECIAADDFRIRGLEPNPQYLQGKPTCKPSD ECIAADDFRIRGLEPNPQYLQGKPTCKPSD ECIAADDFRIRGLEPNPQYLQGKPTCKPSD ECIAADDFRIRGLEPNPQYLQGKPTCKPSD ECIAADDFRIRGLEPNPQTTCKPSD ECIAADDFRIRGLEPNPQTTCKPSD ECIAADDFRIRGLEPNPQTTCKPSD ECIAADDFRIRGLEPNPQTTCKPSD ECIAADDFRIRGLEPNPQTTCKPSD ECIAADDFRIRGLEPNPQTTCKPSD ECIAADDFRIRGLEPNPQTTCKPSD ECIAADDFRIRGLEPNPQTTCKPSD ECIAADDFRIRGLEPNPQTTCKPSD ECIAADDFRIRGLEPNPQTTCKPSD ECIAADDFRIRGLEPNPQTTCKPSD ECIAADDFRIRGLEPNPQTTCKPSD ECIAADDFRIRGLEPNPQTTCKPSD ECIAADDFRIRGLEPNPQTTCKPSD ECIAADDFRIRGLEPNPQTTCK	GEO	7.7.12	T=	1 abie	
NO:	_	Method			
location of first amino acid residue of peptide sequence				-	
first amino acid residue of peptide sequence First amino acid residue of peptide sequence	NO:				deletion,=possible nucleotide insertion)
acid residue of peptide sequence Poptide sequence	i				
of peptide sequence Posting	i	1			1
	 	1			1
HVAPGETQQISMKALLDPPLELNEDRSCSIS PYLEVKLSNLEVKTSIILEMKVSAEIKNDLF SKSTYGLQCLRSDSKEGPYVSVPLNCSCGD TVQAQLHNLEPCMYVAVVAHQPSILYPST VWDPINKKKYVGLYGCPKHHPSFKTVVATIF GHDCAPKVTLGSGEVTRQAPNPAPVALQ LPQDLKVCMFSNMTNYEVKASEQAKVVR GPQLKLGKVSRLIPPTTSQNPNELSDFTLRV QVKDDQEAILTQFCVQTPQPPPRSAIKPSG QRFFLKKNEVGKILSFFATTIKYPTFQDRP VSSLKF				of peptide	
PVLEVKISNIEWKYSAERKNDLF SKSTVGLQCLRSDSKEGPYVSVPLNCSCGD TVQAQLNIEPCMYVAVVAHOPSILYPST VWDPINKKVTVGLYGFKHHIPSFKTVVVIIT GHDCAPKVTLLGSGEVTRQAPPIPAPVALQ LPQDLKVCMFSMITNYBVKASEQAKVVR GFQLKLGKVSRLIFPITSQNPNELSDFTLRV QVKDDQEALLTQFCVQTFQPPPKSAIKPSG QRRFLKKNEVGKILSPFATTIKYPTFQDRP VSSLKF VSSLKF SIGNEY SSLKF B 10 462 MSGWLGLVSSLHRLLVSPCPGRTVGLQRR KRLKSGSSRMSFPVTRRPREQTPHPDIVAAI PSGTDDFJQCHRSKEKENWKPMCLNRFILE ECLAADDFRIRGLEPNPQYLQGFPTQVSES LRLLRNDTQDPNIKTRYIMNLAKTIQRSPD K LRLLRNDTQDPNIKTRYIMNLAKTIQRSPD K 2618 B 1 406 MIIIPKNLMCALQSKPESRGFGELSQRGN VKFNVETLCSHQKKISRLSAAHQLDISDIR PLTVLLTLCTILALLMRGAQPGMNSGKEVP RMFIPNSHSDSELMSFQDSVRHRRGGFQTF DCDSQQETFWTWSIX AGREDPSGWTWLLRCAAAACALLLGSQ RGETQLLISHSDPDIEHRVRGPBKTTRW LGVECWRQGVINIETKAQEQLQPKGKKVS SLLTALPGSIDELSLKRDVKESISLPAVPFQT ELLLISKINMQTRLLQLLKTAVAAASSRF NPRPPVIGQLLRGKKSTPWQPDKPIKSPAG VTAATLQAGVGWAEBGSGHCAQVHSLGV DSSCWSPRSGYTYVHHPVHTPTLCALVGS GGERGGGGEKHIGLEEQEPQKRVLIN DSCCWSPRSGYTYVHPPVHTPTLCALVGS GGERGGGGEKHIGLEEQEPQKRVLIN AMPSYELIHTQMKTQEWDNSKSILGVQC EVQKQLKAVTLERRDQLYGSTTISCQQAP KTKKFASSGSVPGKGVKFALKDGRVTTDII SVANEDGRRVAALINHAHYLENLHFTIDG VDTHHYVKPGPSEGDLALGLSGGRTLEN GVNVTVSQNTVLNGRTRRYTDIQLQYGA LCLNTRYGTTLDEEKARVLELSRQRAVRQ AWAREQQRLREGEEGLRAWTEGEKQQVL STGRVQGYDGFFVISVEQYPELSDSANNIH FMRQSEMGRR LCLNTRYGTTLDEEKARVLELSRQRAVRQ AWAREQQRLREGEEGLRAWTEGEKQQVL STGRVQGYDGFFVISVEQYPELSDSANNIH FMRQSEMGRR LTRAPDPDRVGLVADFTLEFFTAKGPVIN APLPQRLRSNTAPIRTLHAPSVHRPTGRS MPRTRLTRARTSPDTTGSDKTPBTRRKTLPI QTRSCADSGKLSGIRKIDDPLQHHLQNQSI QKSVXCCHEQNMFGINVNONKOHFLIKQ DCDTDLHERPLKSNLSFENQKRSSGLKNS AEFNROGKSLFHANHKQPTTEMKFPAIAK PNKSGFIKQQRTHNIENNAHVCSSCGKAFL			sequence	sequence	
SKSTVGLQCLRSIDSKEGPYVSVPLNCSCOG TVQAQLHNLEPCMYVAVVAHGPSILYPST VWDFNKKVTVGLYGPKHHIPSFKTVVVITIF GHDCAPKITLIGSGEVTRQAPNPAPVALU LPQDLKVCMFSNMTMYEVKASEQAKVVR GFQLKLGKVSRLIFPTSQNPNELSPFTLRV QVKDDQEALLTQFCVQTPQPPPKSAIKPSG QRRFLKKNEVGKILISPFATTIKYPTFQDRP VSSLKF 2617 B 10 462 MSGWLGLVSSLHRLLVSPCPGRTVGLQRR KRLKSGSSRMSFPVTRRPREQTPHPDIVAAI PSGTDDFQGHRSKEKEWWKPMCLNRFILE ECLAADDFRIRGLEPNPQYLQGKPTQVSES LRLLRNDTQDPNIKTRYIMNLAKTIQRSPD K 2618 B 1 406 MIIIPKNLNMCALQSKPESRGFGELSQRGN VKFNVETLLSHQKKISRLSAAHQLDISDR PLTVLLTLCTILALLMRGAQPGMNSCKIPY RMFIPNSHSDSELMSFQDSVRHRRGGFQTT DCDSQQDFTFWTWSIX 2619 B 1 789 MGRERDPSGWTWLLRCAAAACALLLGSQ RQETQLLLSEHSDPDIEHVRGEEFKTTTW LGYECWRQSVINIETKAQEQLOPKGKKVS SLLTALPGSIDELSLKRDVKESISLPAVPFGI ELLISKINMQTRLLQPLKFAVAAASSRF NPRPPVIGQLLRGKKSTFWQPDKPIKSPAG VTAATLQAGVGWAEBQSGHCAQVHSLGV DSSCWSPRSGYTYVHHEVHTPTLCALVGS GGERGGGGEGKHIGLEEQEPQKRVIN AMPESYELHTQMKTQEWDNSKSILGVQC EVQKQLKAFVTLERFDQLVGSTTTSCQQAR KTKKFASSGSVFGKGVKFALKDGRVTTDII SVANEDGRRVAAILNBAHYLENLHFTIDG VDTHYFVKPGPSEGDLAILGLSGGRRTLEN GVNTVSQINTVLNGRTRRYTDIQLQYGA LCLNTRYGTTLDEEKARVLELSRQRAVRQ AWAREQQRLBEGEGELRAWTEGEKQQVIL STGRVQGYDGFFVISVEQYPELSDSANNIH FMRQSBMGRR 2621 A 30 2298 LTRAPDPDRVGLVADFLRLFIFTAKGPVIN APLPQRLRSNTAPRTLHARSVIERPTGRES MPRTRLTARATSPDTTGSDKTETHPRYKTLPI QTRSCADSGKLSEIRKIDDPLQHHLQNQSI GSSVKGCHGONMFGNIVNONG GHLLKQ DCDTFDLHEKPLKSNLSFENQKRSSGLKNS AEFINEDGKSLHANHKQFYTEMKRPALKS PINKSGPIKQQRTHENHANHANKQFYTEMKRPALKS PINKSGPIKQQRTHENHANHANKQFYTEMKRPALKS PINKSGPIKQQRTHENHANHANKQFYTEMKRPALKS PINKSGPIKQQRTHENHANHANKQFYTEMKRPALKS PINKSGPIKQQRTHENHANHANKQFYTEMKRPALKS PINKSGPIKQQRTHENHANHANKQFYTEMKRPALKS PINKSGPIKQQRTHENHANHANKQFYTEMKRPALKS PINKSGPIKQQRTHENHANHANKQFYTEMKRPALKS PINKSGPIKQQRTHENHANHANKAPTTEMRAPHANHANHAPHTEMPANHENHANHAPHTEMPANHENHANHAPHTEMPANHENHANHAPHTEMPANHENHANHAPHTEMPANHENHANHAPHTEMPANHENHANHAPHTEMPANHENHANHAPHTEMPANHENHANHAPHTEMPANHENHANHAPHTEMPANHAPHTEMPANHAPHTEMPANHENHAPHTEMPANHENHAPHTEMPANHENHAPHTEMPANHENHAPHTEMPANHENHAPHTEMPANHENHAPHTEMPANHENHAPHTEMPANHENHAPHTEMPANHENHAPHTEMPANHENHAPHTEMPANHENHAPHTEMPANHENHAPHTEMPANHENHAP					HVAPGETQQISMKALLDPPLELNSDRSCSIS
TVQAQLINLEPCMYVA VVABGPSILYPST VWDFINKKVTVGLY YGPKHIPPSKTVVTIT GHDCAPKVITLIGSGEVTRQAPNPAPVALQ LPQDLKVCMFSNMTNYEVKASEQAKVYA GFQLKLGKVSRLIPPTTSQNPNELSDFTLRV QVKDDQEALTQFCVQTPQPPPKSAIKPSG QRRFLKKNEVGKIILSPFATTIK YPTFQDRP VSSLKF 2617 B 10 462 MSGWLGLVSSLHRLLVSPCQRTVGLQRR KRLKSGSSRMSFPVTRRPREQTPHPDIVAAI PSGTDDFQGHRSKEKEWKPMCLNRFILE ECLAADDFRIRGLEPNPQYLQGKPTQVSES LRILRNDTQDPNIKTRYIMNLAKTIQRSPD K 2618 B 1 406 MIIIPKNLNMCALQSKPESRGFGELSQRGN VKFNVETLCSHQKKISRLSAAHQLDISDIR PLTVLLTLCTITALLMRGAQPGMNSGKIPY RMFPRNSHSDSELMSFQDSVTHRRRGGFQTF DCDSQQETFWTWSIX 2619 B 1 789 MGRERDPSGWTWLLRCAAAACALLLGSQ RQETQLLSEHSDPDIEHRVRGGEFRTTRW LGYECWRQGVUNIETKAQEQLQPKGKKVS SLLTALPGSIDELSLKRDVKESISLPAVPFQI ELLLISKINMQTRLLQLPLKPAVAAASSRF NPRPPVIGQLLRGKSSTPWQPDKPIKSPAG VTAATLQAGVGWAEQSGHCAQVHSLGV DSSCWSPRSGYTYVHIEPVHTPTLCALVGS GGERGGEGEKHIOLEFQEPQKRVLN 2620 A 3 913 FMTDVNSWLLTGFQLINNVEGYPRPDMD AMEPSYELHTQMKTQEWDNSKSLIGVQ EVQKQLKAFVTLERFDQLYGSTTTSCQQAP KTKKFASSGSVFGKGVKFALKDGRVTTDII SVANEDGRRVAALINBAHYLENLHFIDG VDTHYFVKPOPSEGDLAILGLSGGRRTLEN GVNVTVSQINTVLNGRTRRYTDIQLQYGA LCLNTRYGTTLDEEKARVLELSRQRAVRQ AWAREQQRLREGEEGLRAWTEGEKQQVL STGRVQGYDGFFVISVEQYPELSDSANNIH FMRQSEMGRR LCLNTRYGTTLDEEKARVLELSRQRAVRQ AWAREQQRLREGEEGLRAWTEGEKQQVL STGRVQGYDGFFVISVEQYPELSDSANNIH FMRQSEMGRR LCLNTRYGTTLDEEKARVLELSRQRAVRQ AWAREQRLREGEBGLRAWTEGEKQQVL STGRVQGYDGFFVISVEQYPELSDSANNIH FMRQSEMGRR ALCHTRYGTTLDEEKARVLELSRGRAVFRO MPTIRLTRARTSPDTTGSDKTTHPTKEPSLPI QTRSCADSGKLSEIRKIDDPLQHILQNOSI GKSVKCQCHEONMFGNIVNONGHFLLKQ DCDTFDLHEKPLKSNLSFENQKRSSGLKNS AEHRNEDKSLSHANHKQFYTEMKFPALK PINKSQFIKQQRTHNIENAHVHPTGRES MPTIRLTRARTSPDTTGSDKTPRPKTLPI QTRSCADSGKLSEIRKIDDPLQHILQNOSI GKSVKCQCHEONMFGNIVNONGHFLLKQ DCDTFDLHEKPLKSNLSFENQKRSSGLKNS AEHRNEDGKSLFANHKGPYTEMKRPALAK PINKSGPIKQQRTHNIENAHVHPTEMKFPALKF PINKSGRIKQDQRTHNIENAHVHPTEMKFPALKF PINKSGRIKQDQRTHNIENAHVHPTEMKFPALKF PINKSGRIKQDQRTHNIENAHVHPTEMKFPALKF PINKSGRIKQDQRTHNIENAHVHPTEMKFPALKF PINKSGRIKQDQRTHNIENAHVHPTTEMKFPALKF PINKSGRIKQDQRTHNIENAHVHPTEMKFPALKF PINKSGRIKQDQRTHNIENAHVHPTEMKFPALKF PINKSGRIKQDQRTHNIENAHVHPTEMKFPALKF	l	1			
VWDFINKEVTVGLYGPKHHIPSKETVATIE GHDCAPKVTLLGSGEVTRQAPNPAVALQ LPQDLKVCMFSNMTNYEVKASSQAKVVR GFQLKLGKVSRLIFPITSQNPNELSDFTLKY QVKDDQPALITQPCVQTQPPPPKSAIKPSQ QRRFLKKNEVGKILSPFATTTKYPTFQDRP VSSLKF 2617 B 10 462 MSGWLGLVSSLHRLLVSFCPGRTVGLQRR KRLKSGSSRMSFPVTRPREQTPHPDIVAAI PSGTDDFQGHRSKEKENWKPMCLNRFILE ECLAADDFRIRGLEPNQTJCQKSPTQVSES LRLLRIDTQDPNIKTRYIMNLAKTIQRSPD K 2618 B 1 406 MIIIPKNLNMCALQSKPESRGFGELSQRGN VKFNVETLCSHQKKISRLSAAHQLDISDIR FLTVLLTLTLLTLLALIMGAQPGMNSGKIPY RMFPNSHDSBLMSFQDSVRHRRGGFQTF DCDSQQETFWTWSIX AUGUST		1			SKSTVGLQCLRSDSKEGPYVSVPLNCSCGD
GHDCAPKITLIGSGEVITRQAPNPAPVAL GFQLKUCMFSNMINYEVKASEQAKVVR GFQLKIGKVSRLIFPITSQNPNELSDFTLRV QVKDDQEALITQFCVQTPQPPFKSAIKPSG QRRFLKKNEVGKIILSPFATTTKYPTFQDRP VSSLKF 2617 B 10 462 MSGWIGLVSSLHRLLVSPCPGRTVGLQRR KRIKSGSRMSFPVTRRPREQTPHPDIVAAI PSGTDDFQGHRSKEKENWKPMCLNRFILE ECIAADDFRIRGLEPNPQYLQGKPTQVSES LRLLRNDTQDPNIKTRYIMNLAKTIQRSPD K 2618 B 1 406 MIIIPKNILNMCALQSKPESRGFGELSQRGN VKFNVETLCSHQKKISRLSAAHQLDISDIR PLTVLLTILGTILALLMRGAQPGMNSGKIPY RMFPRNSISDSELMSFQDSVRHRRGGFQTF DCDSQQETFWTWSIX MGRREDPSGWTWILLRCAAAACALLLGSQ RQETQLLLSEHSDPDIEHRVRGEPKRTTRW LGWCWRQGVINIETKAQEQLQPKGKKVS SILTALPGSIBLEISKRDVKESSILPAVPFQI ELLLISKNMQTRILQPLKFAVAAASSRF NPRPVIGQLLRGKKSTPWQPDKPIKSPA VTAATLQAGVGWABEQSGHCAQVHSLGV DSSCWSPRSGYTYVHIPVHTPTLCALVGS GGRRGGGGEKHGLBEQEPQKVAN AMEPSYELHHTQMKTQEWDNSKSILGVQ EVQKQLKAFVTLERFDQLYGSTTISCQQAP KYTKAFASSGSVFGKGVKFALKDGRVTTDII SVANEDGRRVAAILNHAHYLENLHFTIDG VDTHYFVKPGPSEGDLAILGLSGGRRTLEN GVNVTVSQNTVLNGRTRRYTDIQLQYGA LCLNTRYGTTLDEEKARVLELSRGRAVRQ AWAREQQRLREGEEGLRAWTEGEKQQVL STGRVQGYDGFVISVEQYPELSDSANNIH FMRQSEMGRR LCLNTRYGTTLDEEKARVLELSRGRAVRQ AWAREQGRRREGEEGLRAWTEGEKQQVL STGRVQGYDGFVISVEQYPELSDSANNIH FMRQSEMGRR LCLNTRYGTTLDEEKARVLELSRGRAVFG AWAREGNRAFTLHAPSVHRPTGRES MPTIRLITAARTSPDTTGSDKTFHPRFKTLPI QTRSCADSGKLSEIRKIDDPLQHILQNOGS GKSVKGCHEONMFGNIVNONGHELIKQ DCDTFDLHEKPLKSNLSFENQKRSSGLKNS AEFNRDGKSLFHANHKQFYTEMKFPALKS PINKSQFIKQQRTHNIENAHVCFYTEMKFPALK PINKSQFIKQQRTHNIENAHVCFYTEMKFPALK PINKSQFIKQQRTHNIENAHVCFYTEMKFPALK PINKSQFIKQQRTHNIENAHVCFYTEMKFPALK PINKSQFIKQQRTHNIENAHVCFYTEMKFPALK PINKSQFIKQQRTHNIENAHVCFYTEMKFPALK PINKSQFIKQQRTHNIENAHVCFYTEMKFPALK PINKSGFIKQQRTHNIENAHVCFYTEMKFPALK PINKSGFIKQQRTHNIENAHVCFYTEMKFPALK PINKSGFIKQQRTHNIENAHVCFYTEMKFPALK PINKSGFIKQQRTHNIENAHVCFYTEMKFPALK PINKSGFIKQQRTHNIENAHVCFYTEMKFPALK PINKSGFIKQQRTHNIENAHVCFYTEMKFPALK PINKSGFIKQQRTHNIENAHVCFYTEMKFPALK PINKSGFIKQQRTHNIENAHVCFYTEMKFPALK PINKSGFIKQQRTHNIENAHVCFYTEMKFPALK PINKSGFIKQQRTHNIENAHVCFYTEMKFPALK PINKSGFIKQQRTHNIENAHVCFYTEMKFPALK PINKSGFIKQQRTHNIENAHVCFYTEMKFPALK PINKSGFIKQQRTHNIENAHVCFYTEMKFPALK PINKSGFIKQQRTHNI		ļ			
LIPODLKVCMFSNMTNYEVKASEQAKVVR GFQLKLGKVSRLIFPITSQNPNELSDFTLRV QVKDDQEALITQFCVQTPQPPKSAIKPSG QRRFLKKNEVGKIILSFFATTTKYPTFQDRP VSSLKF 2617 B 10 462 MSGWLGLVSSLHRLLVSPCPGRTVGLQRR KRLKSGSSRMSFPVTRRPREQTPHPDIVAI PSGTDDPGGHRSKEKENWKPMCLNRFILE ECIAADDFRIGLEPNPQYLQGKPTQVSES LRLLRNDTQDPNIKTRYIMNLAKTIQRSPD K 2618 B 1 406 MIIIPKNILMCALQSKPESRGFGELSQRGN VKFNVETLCSHQKKISRLSAAHQLDISDIR PLTVLLTLCITLALLMRGAQPGMNSGKLPY RMFIPNSHSDSELMSFQDSVRHRRGGFQTF DCDSQQETFWTWSIX 2619 B 1 789 MGRERDPSGWTWLLRCAAAACALLLGSQ RQETQLLLSEHSDPDHEHRVRGEPKRTTTRW LGVECWRQGVINHETKAQBCJQPKGKKVS SLLTALPGSIDELSLKRDVKESISLPAVPFQI ELLLISKINMQTRLLQLPLKFAVAAASSRF NRPPVIGQLLRGKKSTPWQPDKPIKSPAG VTAATLQAGVGWAEBQSGHCAQVHSLGV DSSCWSPRSGYTYVHHPVHTPTLCALVGS GGERGGGEGEKHIGLEPQEPQKRVLN 2620 A 3 913 FMTDVNSWLLTTGFQLHNVPGYPKPDMD AMEPSYBLHTQMKTQEWDNSKSLIGVQC EVQKQLKAFVTLERFDQLYGSTITSCQAP KTKKFASSGSVFGKGVKFALKDGRVTTDII SVANEDGRRVAALINHAHVLENLHFTIDG VDTHYFVRGPSEGDLALIGLSGGRRTLEN GVNVTVSQNTVLNGRTRRYTDIQLQYGA LCLNTRYGTTLDEEKARVLELISRQRAVRQ AWAREQQRLREGGEGLRAWTEGEKQQVL STGRVQGYDGFFVISVEQYPELSDSANNIH FMRQSEMGRR 2621 A 30 2298 LTRAPDPDRVGLVADFTLRIFIPTAKGPVIN APLPQRLRSNTAPRTLHAPSVHRPTGRES MPRTRLTRARTSPDTTGSDKTPHPPRKTLPI QTRSCADSGKLSEIKKIDDPLQHHLQNQSI QKSVKQCHEQNMFGINVON,MFGHLIKQ DCDTFDLHEKPLKSNLSFENQKRSSGLKNS AEFNRDGKSLFHANHKOFTEMKFFALAK PINKSQFIKQQTTHIENAHVCSECGKAFL		ı			
GFQLKLGKVSRLIFPITSQNPNELSDFTLRV QVKDDQEAILTQFCVQTPQPPPKSAIKPSG QRRFLKKNEVGKILISPFATTITXYPTFQDRP VSSLKF MSGWLGLVSSLHRLLVSPCPGRTVGLQRR KRLKSGSSRMSFPVTRRPREQTPHPDIVAAI PSGTDDFQGHRSKEKENWKPMCLNFFILE ECIAADDFRIRGLEPNPQVLQGKPTQVSES LRLLRNDTQDPNIKTRYIMNLAKTIQRSPD K 2618 B 1 406 MIIIPKNILNMCALQSKPESRGFGELSQRGN VKFNVETLCSHQKKISRLSAAHQLDISDIR PLTVLLTLCITLALLMRGAQPGMNSGKIPY RMFFPNSHSDSELMSFQDSVRHRRGGFQTF DCDSQQETFWTWSIX 2619 B 1 789 MGRERDPSGWTWLLRCAAACALLLGSQ RQETQLLLSEHSDPDIEHRVAGEPKRTTRW LGVECWRQGVINIETKAQEQLQPKGKKVS SILLTALPGSIDELSLKRDVKESISLPAVPFQI ELLLISKNMQTRLLQLPLKFAVAAASSRF NPRPPVIGGLLRGKKSTPWQPDKPIKSPAG VTAATLQAGVGWAEEQSGHCAQVISLGV DSSCWSPRSGYTYVHHPVHIPPTLCALVGS GGERGGGEGKHIGLEEQEPQKRVLN 2620 A 3 913 FMTDVNSWLLTFGFQLHNVIPGYPKPDMD AMEPSYBLHITQMKTQEWDNSKSILGVQC EVQKQLKAFVTLERFDQLYGSTTITSQQAP KTKKFASSGSVFGGVKFALKDGRVTTDII SVANEDGRRVAAILNHAHYLENLHFTIDG VDTHYFVKPGPSEGDLALIGLSGGRRTLEN GVNVTVSQINTVLNGRTRRYTDIQLYGAA LCLNTRYGTTLDEEKARVLELSRQRAVRQ AWAREQQRLREGGEGLRAWTEGEKQQVL STGRVQGYDGFFVISVEQYPELSDSANNIH FMRQSEMGRR 2621 A 30 2298 LTRAPDPDRVGLVADFLRIFIPTAKGFVIN APLPQRLRSNTAPRRTLHAPSVHRPTGRES MPRTRLTRARTSPDTTGSDKTPHPRPKTLPI QTRSCADSGKLSFEIKIDDPLQHHLQNGI QKSVKQCHEQNMMFGNTVNQNKGHFLLKQ DCDTFDLHEKPLKSNLSFENQKRSSGLKNS AEFNRDGKSLFHANHKQFYTEMKFPALAK PNKSQFIKQQRTENIENAHVCSECGKAFL	İ				G\HDCAPK\TLLGSGE\VTRQAPNPAPVALQ
2617 B 10 462 MSGWLGLVSSLHRLLVSPCPGRTYGLQRR KRLKSGSSRMSFPVTRRPREQTPHPDIVAAI PSGTDDFQGHRSKEKENWKPMCLNRFILE ECLAADDFRRGLEPNPQYLQGKPTQVSES LRLLRNDTQDPNIKTRYIMNLAKTIQRSPD K 2618 B 1 406 MIIIPKNLNMCALQSKPESRGFGELSQRGN VKFNVETLCSHQKKISRLSAAHQLDISDIR PLTVILTLCITLALLMRGAQPGMNSGKIPY RMFIPNSHDSELMSPQDSVRHRRGGFQTF DCDSQQETFWTWSIX 2619 B 1 789 MGRERDPSGWTWLLRCAAAACALLLGSQ RQETQLLLSEHSDPDIEHRVRGEPKRTTRW LGVECWRQGVINIETKAQEQLOPKGKKVS SLLTALPGSIDELSLKRDVKESISLPAVPFQI ELLISKINMQTRLQLPLKFAVAAASSRF NPRPPVIGQLLRGKKSTPWQPDKPKISPAG VTAATLQAGVGWAEEQSGHCAQVHSLGV DSSCWSPRSGYTYVHIPVHTPTLALVGS GGERGGGGGEKHIGLEEQEPQKRVLN 2620 A 3 913 FMTDVNSWLLTTGFQLHNVTEGYPRPDMD AMPESVELHTQMKTQEWDNSKSSLGVQC EVQKQLKAFVTLERFDQLVGSTITSCQQAP KTKKFASSGSVFKKGVKFALKDGRVTIDII SVANEDGRRVAAILNHAHVLENLHFTIDG VDTHTYFVRGPSEGDLALIGLSGGRRTLEN GVNVTVSQINTVLNGRTRRYTDIQLQYGA LCLNTRYGTITLDEKKARVLESRQRAVRQ AWAREQQRLREGGEGLRAWTEGEKQQVL STGRVQGYDGFFVISVEQYPELSSRANNH FMRQSEMGRR 2621 A 30 2298 LTRAPDPDRVGLVADFLRIFIPTAKGFVIN APLPQRLRSNTAPRRTLHAPSVIRPTGRES MPRTRLTRARTSPDTTGSDKTPHPPRKTLPI QTRSCADSGKLSEIKRUDPLQHHLQNQSI QKSVKQCHEQNMIFGINVNQNKGHLLKQ DCDTFDLHEKPLKSNLSFENQKRSSGLKNS AEFNRDGKSLFHANHKOFFYTEMKFPIAKE PNKSQFIKQQRTENIENAHKOFSTECKAFLAK PNKSQFIKQQRTENIENAHKOFFYTEMKFFALAK PNKSQFIKQQRTENIENAHKOFFYTEMKFFALAK PNKSQFIKQQRTENIENAHKOFFYTEMKFFALAK PNKSQFIKQQRTENIENAHKOFFYTEMKFFALAK PNKSQFIKQQRTENIENAHKOFFYTEMKFFALAK PNKSQFIKQQRTENIENAHKOFFYTEMKFFALAK PNKSQFIKQQRTENIENAHKOFFYTEMKFFALAK PNKSQFIKQQRTENIENAHKOFFYTEMKFFALAK PNKSQFIKQQRTENIENAHKOFFYTEMKFFALAK PNKSQFIKQQRTENIENAHKOFFYTEMKFFALAK PNKSQFIKQQRTENIENAHVCSECGKAFL		ļ			LPQDLKVCMFSNMTNYEVKASEQAKVVR
2617 B 10 462 MSGWLGLVSSLHRLLVSPCPGRTVGLQRR KRLKSGSSRMSFPVTRRPREOTPIFDIVAAI PSGTIDDFQGHRSKEKENWKPMCLNRFILE ECIAADDFRIRGLEPNPQYJLQGKPTQVSES LRLLRNDTQDPNIKTRYIMNLAKTIQRSPD K 2618 B 1 406 MIIIPKNLNMCALQSKPESRGFGELSQRGN VKFNVETLCSHQKKISRLSAAHIQLDISDIR PLTVLLTLCITLALLMRGAQPGMNSGKIPY PLTVLLTLCITLALLMRGAQPGMNSGKIPY PLTVLLTLCITLALLMRGAQPGMNSGKIPY PLTVLLTLCITLALLMRGAQPGMNSGKIPY PLTVLLTLCITLALLMRGAQPGMNSGKIPY PLTVLLTLCITLALLMRGAQPGMNSGKIPY PLTVLLTLCITLALLMRGAQPGMNSGKIPY PLTVLLTLCITLALLMRGAQPGMNSGKIPY PLTVLLTLCITLALLMRGAQPGMNSGKIPY PLTVLLTLCITLALLMRGAQPGMNSGKIPY PLTVLLTLCITLALLMRGAQPGMNSGKIPY PLTVLLTLCITLALLMRGAQPGMNSGKIPY PLTVLLTLCITLALLMRGAQPGMNSGKIPY PLTVLLTLCITLALLMRGAQPGMNSGKIPY PLTVLLTLCITLALLMRGAQQPGMNSGKIPY PLTVLLTLCITLALLMRGAQPGMNSGKIPY PLTVLLTLCITLALLMRGAQQPGMNSGKIPY PLTVLLTLTCITLALLMRGAQPGMNSGKIPY PLTVLLTLTCITLALLMRGAQPGMNSGKIPY PLTVLLTLTCITLALLMRGAQPGMNSGKIPY PLTVLLTLTCITLALLMRGAQPGMNSGKIPY PLTVLLTLTCITLALLMRGAQPGFRKTTRW LGVERQGVGNITLALGAQACALLLGSQ RQETQLLLGKSGTTLAVTGGCAGA VATATLQAGVGWAEEQSGHCAQVHSLGV DSSCWSPRSGYTVVHIPVHTPTLCALVGS GGERGGGGGGHKHIGLEQGPQKRVIN PMTVNSWLTLTGFQLHNVIPGYPKPDMD AMEPSYELHTQMKTQEWDNSKSILGVQC EVQKQLKAFVTLERFPQLYGSTITSQQAP KITKKFASSGSVFGKVKFAIKDGRVTIDII SVANEDGRRVAAILNHAHYLENLHFTIDG VDTHYFVKRPGSEGDLAILGLSGGRTLLEN GVNVTVSQINTVLINGETRRYTDIQLQYGA LCLNTRYGTTLDEEKARVLELSRQRAVRQ AWAREQGRREGEEGIRAWTEGEKQQVL STGRVQGVDFFVISVEQYPELSDSANNIH FMRQSEMGRR 2621 A 30 2298 LTRAPDPDRVGLVADFLRLFIPTAKGPVIN APLPQRLRSNTAPRTLHAPSVHRPTGRES MPRTRLTRARTSPDTTGSDKTPFPRFTLIPI QTRSCADSGKLSEIRKIDDPLQHHLQNQSI QKSVKQCHEQNMFGNIVNQNKGHFLLKQ DCDTFDLHERPLKSNLSFENQKRSSGLKNS AEFNRDGKSLFHANHKQFYTEMKFPAIAK PNKSQFTKQQKTHNNENAHVCSECGKAFL	ŀ			Ì	GFQLKLGKVSRLIFPITSQNPNELSDFTLRV
2617 B 10 462 MSGWLGLVSSLHRLLVSPCPGRTVGLQRR KRLKSGSSRMSFPVTRRPREQTPHPDIVAAI PSGTDDFQGHRSKEKENWKPMCLNFILE ECLAADDFRIRGLEPNPQVLQGKPTQVSES LRLLRNDTQDPNIKTRYIMNLAKTIQRSPD K 2618 B 1 406 MIIIPKNLNMCALQSKPESRGFGELSQRGN VKFNVETLCSHQKKISRLSAAHQLDISDIR PLTVLLTLCITLALLMRGAQPGMNSGKIPY RMFIPNSHSDSELMSFQDSVRHRRGGFQTF DCDSQQETFWTWSIX 2619 B 1 789 MGRERDPSGWTWLLRCAAAACALLLGSQ RQETQLLLSEHSDPDIEHRVRGEPKRTTRW LGVECWRQGVNIETKAQEQLQPKGKKVS SLLTALPGSIDELSLKRDVKESISLPAVPFQI ELLLISKINMQTRLLQLPLKFAVAAASSRF NPRPPVIGQLLRGKKSTPWQPDKPPKSPAG VTAATLQAGVGWAEEQSGHCAQVHSLGV DSSCWSPRSGYTYVHHPVHTPTLCALVGS GGERGGGGGGKHIGLEEQEPQKRVLN 2620 A 3 913 FMTDVNSWLLTFGFQLHNVIPGYPKPDMD AMEPSYELHTQMKTQEWDNSKSILGVQC EVQKQLKAPVTLERFDQLYGSTTISCQQAP KTKKFASSGSVPGKVKFALKDGRVTTDII SVANEDGRRVAALINHAHYLENLHFTIDG VDTHFVKRPGSFEGDLALIGLSGGRRTLEN GVNVTVSQINTVLNGRTRRYTDIQLQYGA LCLNTRYGTTLDEEKARVLELSRQRAVRQ AWAREQQRLREGEGEGLARWTGGEKQQVL STGRVQGYDGFFVISVEQYPELSDSANNIH FMRQSEMGRR 2621 A 30 2298 LTRAPDPDRVGLVADFLRLFIPTAKGPVIN APLPQRLRSNTAPRITHAPSVHRPTGRES MPRITRLTRARTSPDTTGSDKTPHEPRFTLPI QTRSCADSGKLSEIRKLDDPLQHHLQNQSI QKSVKQCHEQNMFGNIVNQNKGHFLLKQ DCDTFDLHERPLKSNLSFENQKRSSGLKNS AEFNRDGKSLFHANHKQFYTEMKFPALAK PINKSQFIKQQRTHNIENAHVCSECGKAFL	ŀ	İ			QVKDDQEAILTQFCVQTPQPPPKSAIKPSG
2617 B 10 462 MSGWLGLVSSLHRLLVSPCPGRTVGLQRR KRLKSGSSRMSFPVTRRPRGVTPIPIDIVAAI PSGTDDFQGHRSKEKENWYPMCLNRFILE ECIAADDFRIRGLEPNPQYLQGKPTQVSES LRLLRNDTQDPNIKTRYIMNLAKTIQRSPD K MIIIPKNILNMCALQSKPESRGFGELSQRGN VKFRVETICSHQKKISRLSAAHIQLDISDIR PLTVLITLCITIALIMRGAQPGMNSGKIPY RMFIPNSHSDSELMSFQDSVRHRRGGFQTF DCDSQQETFWTWSIX DCDSQQETFWTWSIX GREEDPSGWTWLIRCAAAACALLLGSQ RQETQLLISEHSDPDIEHRVRGEPKRTTRW LGVECWRQGVINIETKAQEQLQPKGKVS SLLTALPGSIDELSLRDVKESISLPAVPFQI ELLISKINMQTRLLQPLKFAVAAASSRF NPRPPVIGQLLRGKKSTPWQPDKPIKSPAG VTAATLQAGVGWAEEQSGICAQVHSLGV DSSCWSPRSGYTYVHIPVHTPTLCALVGS GGERGGGEGEKHIGLEEQEPQKRVLN GGERGGGEGEKHIGLEEQEPQKRVLN AMEPSYELIHTQMKTQEWDNSKSILGVQC EVQKQLKAFVTLERFDQLYGSTTISCQQAP KTKKFASSGSVFGKGVKFALKDGRVTTDII SVANEDGRRVAAILNHAHYLENLHFTIDG VDTHYFVKPGPSEGDLAILGLSGGRRTLEN GVNVTVSQNTVLNGRTRRYTDIQLQYGA LCLNTRYGTTLDEEKARVLELSRQRAVRQ AWAREQQRLREGEEGLRAWTEGEKQQVL STGRVQGYDGFFVISVEQYPELSDSANNIH FMRQSEMGR LTRAPDPDRVGLVADFLRFIPTAKGPVIN APLPQRLRSNTAPIRTLHAPSVHRPTGRES MPRTRLTRARTSPDTTGSDKTPFPRFKTLPI QTRSCADSGKLSEIRKIDDPLQHHLQNQSI QKSVKQCHEQNMFGNIVNQNKGHFLLKQ DCDTFDLHERPLKSNLSFENQKRSSGLKNS AEFNRDGKSLFHANHKQFYTEMKFPAIAK PNKSQFIKQQRTNNENAHVCSECGKAFL		1	1		
KRLKSGSSRMSFPVTRPREQTPHPDIVAAI PSGTDDFQGHRSKEKENWKPMCLNFILE ECIAADDFRIRGLEPNPQYLQGKPTQVSES LRLLRNDTQDPNIKTRYIMNLAKTIQRSPD K 2618 B 1 406 MIIIPKNLNMCALQSKPESRGFGELSQRGN VKFNVETLCSHQKKISRLSAAHQLDISDIR PLTVLLTLCITLALLMRGAQPGMNSGKIPY RMFIPNSHSDSELMSFQDSVRHRRGGFQTF DCDSQQETFWTWSIX 2619 B 1 789 MGREDPSGWTWLLRCAAAACALLLGSQ RQETQLLLSEHSDPDIEHRVRGEPKTTRW LGVECWRQGVINIETKAQEQLQPKGKKVS SLLTALPGSIDELSLKRDVKESISLPAVPFQI ELLLISKINMQTRLLQLPLKFAVAAASSRF NPRPPVIGQLLRGKKSTWQPDKPIKSPAG VTAATLQAGVGWAEEQSGHCAQVHSLGV DSSCWSPRSGYTYVHHPVHTPTLCALVGS GGERGGGGEGKHIGLEEQEPQKRVLN 2620 A 3 913 FMTDVNSWLLTFGFQLHNVIPGYPKPDMD AMEPSYELHITQMKTQEWDNSKSILGVQC EVQKQLKAFVTLERFDQLYGSTTISCQQAP KTKKFASSGSVFGKGVKFALKDGRVTTDII SVANEDGRRVAALLNHAHYLENLHFTIDG VDTHYFVKFPGSFGDLAILGSGRRTLEN GVNVTVSQINTVLNGRTRRYTDIQLQYGA LCLNTRYGTTLDEEKARVLELSRGRAVRQ AWAREQQRLREGEBGLAAWTEGEKQQVL STGRVQGYDGFFVISVEQYPELSDSANNIH FMRQSEMGRR 2621 A 30 2298 LTRAPDPDRVGLVADFLRIFIPTAKGPVIN APLPQRLRSNTAPIRTLHAPSVHRPTGRES MPRTRLTRARTSPDTTGSDKTPHEPRFKTLPI QTRSCADSGKLSEIRKLDDPLQHHLQNQSI QKSVKQCHEQNMFGNIVNQNKGHFLLKQ DCDTFDLHERPLKSNLSFENQKRSSGLKNS AEFNRDGKSLFHANHKQFYTEMKFPALKK PINKSQFIKQQRTHNIENAHVCSECGKAFL					
PSGTDDFQGHRSKEKENWKPMCLNRFILE ECIAADDFRIRGLEPNPQYLQGKPTQVSES LRLLRNDTQDPNIKTRYIMNIAKTIQRSPD K 2618 B 1 406 MIIIPKNINMCALQSKPESRGFGELSQRGN VKFNVETILCSHQKKISRLSAAHQLDISDIR PLTVILITICITIALLMRGAQPGMNSGKIPY RMFIPNSHSDSELMSFQDSVRHRRGGFQTF DCDSQQETFWTWSIX MGRERDPSGWTWLLRCAAAACALLLGSQ RQETQLLLSEHSDPDIEHRVRGEPKRTTRW LGVECWRQGVNIETKAQEQLQPKGKKVS SLLTALPGSIDELSLKRDVKESISLPAVPFQI ELLLISKINMQTRLLQLPLKFAVAAASSRF NPRPPVIGQLLRGKKSTPWQPDXPHSPAG VTAATLQAGVGWABEQSGHCAQVHSLGV DSSCWSPRSGYTYVHHPVHTPTLCALVGS GGERGGGEGEKHIGLEQEPQKRVLN AMPENSPELHTQMKTQEWDNSKSILGVQC EVQKQLKAFVTLERFDQLYGSTTISCQQAP KTKKFASSGSVFGKGVKFALKDGRVTTDII SVANEDGRRVAAILNHAHYLENLHFTIDG VDTHYFVKPGPSEGDLAILGLSGGRRTLEN GVNVTVSQINTVLNGRTRRYTDDLQVGA AWAREQQRLREGEEGLRAWTEGEKQQVL STGRVQGYDGFFVISVEQYPELSDSANNIH FMRQSEMGRR 2621 A 30 2298 LTRAPDPDRVGLVADFLRIFIPTAKGPVIN APLPQRLRSNTAPRTLHAPSVHRPTGRES MPRTRLTRARTSPDTTGSDKTTPHRPKKTLPI QTRSCADSGKLSSIRKIDDPLQHHLQNQSI QKSVKQCHEQNMFGNIVNQNKGHFLLKQ DCDTFDLHEKPLKSNLSFENQKRSSGLKNS AEFNRDGKSLFHANHKQFYTEMKFPALAK PINKSQFIKQQRTENIEMAHVCSECGKAFL	2617	В	10	462	MSGWLGLVSSLHRLLVSPCPGRTVGLQRR
PSGTDDFQGHRSKEKENWKPMCLNRFILE ECIAADDFRIRGLEPNPQYLQGKPTQVSES LRLLRNDTQDPNIKTRYIMNIAKTIQRSPD K 2618 B 1 406 MIIIPKNINMCALQSKPESRGFGELSQRGN VKFNVETILCSHQKKISRLSAAHQLDISDIR PLTVILITICITIALLMRGAQPGMNSGKIPY RMFIPNSHSDSELMSFQDSVRHRRGGFQTF DCDSQQETFWTWSIX MGRERDPSGWTWLLRCAAAACALLLGSQ RQETQLLLSEHSDPDIEHRVRGEPKRTTRW LGVECWRQGVNIETKAQEQLQPKGKKVS SLLTALPGSIDELSLKRDVKESISLPAVPFQI ELLLISKINMQTRLLQLPLKFAVAAASSRF NPRPPVIGQLLRGKKSTPWQPDXPHSPAG VTAATLQAGVGWABEQSGHCAQVHSLGV DSSCWSPRSGYTYVHHPVHTPTLCALVGS GGERGGGEGEKHIGLEQEPQKRVLN AMPENSPELHTQMKTQEWDNSKSILGVQC EVQKQLKAFVTLERFDQLYGSTTISCQQAP KTKKFASSGSVFGKGVKFALKDGRVTTDII SVANEDGRRVAAILNHAHYLENLHFTIDG VDTHYFVKPGPSEGDLAILGLSGGRRTLEN GVNVTVSQINTVLNGRTRRYTDDLQVGA AWAREQQRLREGEEGLRAWTEGEKQQVL STGRVQGYDGFFVISVEQYPELSDSANNIH FMRQSEMGRR 2621 A 30 2298 LTRAPDPDRVGLVADFLRIFIPTAKGPVIN APLPQRLRSNTAPRTLHAPSVHRPTGRES MPRTRLTRARTSPDTTGSDKTTPHRPKKTLPI QTRSCADSGKLSSIRKIDDPLQHHLQNQSI QKSVKQCHEQNMFGNIVNQNKGHFLLKQ DCDTFDLHEKPLKSNLSFENQKRSSGLKNS AEFNRDGKSLFHANHKQFYTEMKFPALAK PINKSQFIKQQRTENIEMAHVCSECGKAFL					KRLKSGSSRMSFPVTRRPREQTPHPDIVAAI
LRLLRNDTQDPNIKTRYİMNİAKTIQRSPD K 2618 B 1 406 MİİİPKNİLNMCALQSKPESRGFGELSQRĞN VKFNVETLCSHQKKISRLSAAİHQLDISDIR PLTVLİTLCİTLALLMRĞAQPĞMNİSĞKIPY RMFİPNSHSDSELMSFQDSVRHRRĞĞFQTF DCDSQQETFWTWSIX 2619 B 1 789 MĞRERDPSĞWTWLLRCAAAACALLLĞŞQ RQETQLLLSEHSDPDIEHRVRĞBERKTTRW LĞVEÇWRQĞÜNİBETKAQĞĞQLQPKĞKKVS SLLTALPĞSİDELSLKRDVKESİSLPAVPFQİ ELLLİSKINMQTRLLQLPLKFAVAAASSRF NPRPPVİĞQLLRĞKKSTPWQPDKPİKSPAĞ VTAATLQAĞVĞWABEQŞĞHCAQVİSLĞV DSSCWSPRSĞTTYVHHPVHTPTLCALVĞS ĞĞERĞĞĞEĞKHİQLEÇDÇİKRVLN DAMEPSYELİHTQMKTQEWDNİSKSİLĞVQÇ EVQKQLKAFVTLERFDQLYĞSTİTSÇQQAP KTKKAŞASŞÖVFĞKĞVKFALKDĞRVTTDİİ SVANEDĞRRVAALINHAHYLENLHİFTIDĞ VDTHYFVKPĞPSEĞDLALLĞLŞĞĞRRTLEN ĞVVTVYŞQINTVLNĞRTRYTDİQLQYĞA LCLNTRYĞTTLDEEKARVIĞŞİŞÇQVL STĞRVQĞYDĞFFVİSVEQYPELSDSANNİH FMRÇŞEMĞRR 2621 A 30 2298 LTRAPDPDRVĞLVADFLRLFIPTAKĞPVIN APLPQRLRSNTAPIRTLHAPSVİRPTĞRES MPRTLTRARTSPDTTĞSDKTPHPRPKTLPİ QTRSCADSĞKLŞEİRKİDDPLQHHLQNÇSİ QKSVKQCHEQNMFĞNIVNQNKĞHFLLKQ DCDİTPLHEKPLKSNLŞFENQKRSSĞLKNIS AEFNRDĞKSLFHANHKÇFYTEMKFPALAK PINKSQFİKQQRTHNIENAHVCSECĞKAFL]			PSGTDDFQGHRSKEKENWKPMCLNRFILE
K MIIIPKNI.NMCALQSKPESRGFGELSQRGN VKFNVETI.CSHQKKISRI.SAAHQLDISDIR PLTVILIT.CITI.ALLMRGAQPGMNSGKIPY RMFIPNSHSDSELMSFQDSVRHRRGGFQTF DCDSQQETFWTWSIX DCDSQQETFWTWSIX DCDSQQETFWTWSIX GGERQFSGWTWILR.CAAAACALLLGSQ RQETQLLLSEHSDPDIEHRVRGEPKRTTRW LGVECWRQGVINIETKAQEQLQPKGKKVS SLLTALPGSIDELSLKRDVESISLPAVPFQI ELLLISKINMQTRLLQLPLKFAVAAASSRF NPRPPVIGQLLRGKKSTPWQPDKPIKSPAG VTAATIQAGVGWAEEQSGHCAQVHSLGV DSSCWSPRSGYTTYVHPVHTPTI.CALVGS GGERGGGEGKHIGLEEQEPQKRVIN AMEPSYELHHTQMKTQEWDNSKSILGVQC EVQKQLKAPVTLERFDQLYGSTITSCQQAP KTKKFASSGSVFGKGVKFALKDGRVTTDII SVANEDGRRVAAILNHAHVLENLHFTIDG VDTHYFVKPGPSEGDLAILGSGRRTLEN GVNVTVSQINTVLINGRTRRYTDIQLQYGA LCLNTRYGTTLDEEKARVLELSRQRAVRQ AWAREQQRLREGEEGLRAWTEGEKQQVL STGRVQGYDGFFVISVEQYPELSDSANNIH FMRQSEMGRR STGRVQGYDFSTSTSCQVL STGRVQGYDGFFVISVEQYPELSDSANNIH FMRQSEMGRR APLPQRLRSNTAPRTLHAPSVHRPTGRES MPRTRLTRARTSPDTTGSDKTPHPRFKTLPI QTRSCADSGKLSEIRKIDDPLQHHLQNQSI QKSVKQCHEQNMFGNIVNQNKGHFLLKQ DCDTTDLHERPLKSNLSFERQKRSSGLKNS AEFNRDGKSLFHANHKQFYTEMKFPAIAK PINKSQFIKQQRTHNIENAHVCSECGKAFL PINKSQFIKQQRTHNIENAHVCSECGKAFTL PINKSQFIKQPTTSMCFT PINKSQFIKCATAT PINKSQFIKQPTTSMCFT PINCSQFICATAT PINKSQFIKADDAT PINCSQFICATAT PINCSQFICATAT PINCSQFICATA		1	, .	ļ	
K MIIIPKNI.NMCALQSKPESRGFGELSQRGN VKFNVETI.CSHQKKISRI.SAAHQLDISDIR PLTVILIT.CITI.ALLMRGAQPGMNSGKIPY RMFIPNSHSDSELMSFQDSVRHRRGGFQTF DCDSQQETFWTWSIX DCDSQQETFWTWSIX DCDSQQETFWTWSIX GGERQFSGWTWILR.CAAAACALLLGSQ RQETQLLLSEHSDPDIEHRVRGEPKRTTRW LGVECWRQGVINIETKAQEQLQPKGKKVS SLLTALPGSIDELSLKRDVESISLPAVPFQI ELLLISKINMQTRLLQLPLKFAVAAASSRF NPRPPVIGQLLRGKKSTPWQPDKPIKSPAG VTAATIQAGVGWAEEQSGHCAQVHSLGV DSSCWSPRSGYTTYVHPVHTPTI.CALVGS GGERGGGEGKHIGLEEQEPQKRVIN AMEPSYELHHTQMKTQEWDNSKSILGVQC EVQKQLKAPVTLERFDQLYGSTITSCQQAP KTKKFASSGSVFGKGVKFALKDGRVTTDII SVANEDGRRVAAILNHAHVLENLHFTIDG VDTHYFVKPGPSEGDLAILGSGRRTLEN GVNVTVSQINTVLINGRTRRYTDIQLQYGA LCLNTRYGTTLDEEKARVLELSRQRAVRQ AWAREQQRLREGEEGLRAWTEGEKQQVL STGRVQGYDGFFVISVEQYPELSDSANNIH FMRQSEMGRR STGRVQGYDFSTSTSCQVL STGRVQGYDGFFVISVEQYPELSDSANNIH FMRQSEMGRR APLPQRLRSNTAPRTLHAPSVHRPTGRES MPRTRLTRARTSPDTTGSDKTPHPRFKTLPI QTRSCADSGKLSEIRKIDDPLQHHLQNQSI QKSVKQCHEQNMFGNIVNQNKGHFLLKQ DCDTTDLHERPLKSNLSFERQKRSSGLKNS AEFNRDGKSLFHANHKQFYTEMKFPAIAK PINKSQFIKQQRTHNIENAHVCSECGKAFL PINKSQFIKQQRTHNIENAHVCSECGKAFTL PINKSQFIKQPTTSMCFT PINKSQFIKCATAT PINKSQFIKQPTTSMCFT PINCSQFICATAT PINKSQFIKADDAT PINCSQFICATAT PINCSQFICATAT PINCSQFICATA					LRLLRNDTQDPNIKTRYIMNLAKTIQRSPD
VKFNVETICSHQKKISRLSAAIHQLDISDIR PLTVLLTLCITLALLMRGAQPGMNSGKIPY RMFIPNSHSDSELMRFQDSVRHRRGGFQTF DCDSQQETFWTWSIX 2619 B 1 789 MGRERDPSGWTWLLRCAAAACALLLGSQ RQETQLLLSEHSDPDIEHRVRGEPKRTTRW LGVECWRQGVINIETKAQEQLQPKGKVS SLLTALPGSIDELSLKRDVKESISLPAVPFQI ELLLISKINMQTRLLQLPLKFAVAAASSRF NPRPPVIGQLLRGKKSTPWQPDKPIKSPAG VTAATLQAGVGWAEEQSGHCAQVHSLGV DSSCWSPRSGYTYVHHPVHTPTLCALVGS GGERGGGEGEKHIGLEEQEPQKRVLN 2620 A 3 913 FMTDVNSWLLTFGFQLHNVIPGYPKPDMD AMEPSYELHTQMKTGEWDNSKSILGVQC EVQKQLKAFVTLERRDQLYGSTITSCQQAP KTKKFASSGSVFGKGVKFALKDGRVTTDII SVANEDGRRVAAILNHAHYLENLHFITIDG VDTHYFVKPGPSEGDLAILGLSGGRRTLEN GVNVTVSQNTVLNGRTRRYTDIQLQYGA LCLNTRYGTTLDEEKARVLELSRQRAVRQ AWAREQQRLREGEEGLRAWTEGEKQQVL STGRVQGYDGFFVISVEQYPELSDSANNIH FMRQSEMGRR 2621 A 30 2298 LTRAPDPDRVGLVADFLRLFIPTAKGPVIN APLPQRLRSNTAPIRTLHAPSVHRPTGRES MPRTRLTRARTSPDTTGSDKTPHPPRFKTLPI QTRSCADSGKLSEIRKIDDPLQHHLQNQSI QKSVKQCHEQNMFGNTVNQNKGHFLLKQ DCDTFDLHEKPLKSNLSFENQKRSSGLKNS AEFNRDGKSLFHANHKQFYTEMKFPAIAK PINKSQFTKQQRTHNIENAHVCSECGKAFL					
PLTVLLTLCITLALLMRGAQPGMNSGKIPY RMFIPNSHSDSELMSFQDSVRHRRGGFQTF DCDSQQETFWTWSIX 2619 B 1 789 MGRERDPSGWTWLLRCAAAACALLLGSQ RQETQLLLSEHSDPDIEHRVRGEPKRTTRW LGVECWRQGVINIETKAQEQLOPKGKKVS SLLTALPGSIDELSLKRDVKESISLPAVPFQI ELLLISKINMQTRLLQLPLKFAVAAASSRF NPRPPVIGQLLRGKKSTPWQPDKPIKSPAG VTAATLQAGVGWABEQSGHCAQVHSLGV DSSCWSPRSGYTYVHHPVHTPTLCALVGS GGERGGGEGEKHIGLEEQEPQKRVLN 2620 A 3 913 FMTDVNSWLLTFGFQLHNVIPGYPKPDMD AMEPSYELIHTQMKTQEWDNSKSILGVQC EVQKQLKAFVTLERFDQLYGSTTISCQQAP KTKKFASSGSVFGKGVKFALKDGRVTTDII SVANEDGRRVAAILNHAHYLENLHFTIDG VDTHYFVKPGPSEGDLAILGLSGGRRTLEN GVNVTVSQINTVLNGRTRRYTDIQLQYGA LCLNTRYGTTLDEEKARVLELSRQRAVRQ AWAREQQRLREGEGIRAWTEGEKQQVL STGRVQGYDGFFVISVEQYPELSDSANNIH FMRQSEMGRR 2621 A 30 2298 LTRAPDPDRVGLVADFLRLFIPTAKGPVIN APLPQRLRSNTAPIRTLHAPSVHRPTGRES MPRTRLTRARTSPDTTGSDKTPHPRPKTLPI QTRSCADSGKLSEIRKIDDPLQHHLQNQSI QKSVKQCHEQNMFGNIVNQNKGHFLLKQ DCDTFDLHEKPLKSNLSFENQKRSSGLKNS AEFNRDGKSLFHANHKQFYTEMKFPAIAK PINKSQFIKQQRTHNIENAHVCSECGKAFL	2618	В	1	406	MIIIPKNLNMCALQSKPESRGFGELSQRGN
2619 B 1 789 MGRERDPSGWTHRRGGFQTF DCDSQQETFWTWSIX MGRERDPSGWTWLLRCAAAACALLLGSQ RQETQLLLSEHSDPDIEHRVRGEPKRTTRW LGVECWRQGVINIETKAQEQLQPKGKKVS SLLTALPGSIDELSLKRDVKESISLPAVPFQI ELLLISKINMQTRLLQLPLKFAVAAASSRF NPRPPVIGQLLRGKKSTPWQPDKPIKSPAG VTAATLQAGVGWAEEQSGHCAQVHSLGV DSSCWSPRSGYTYVHHPVHTPTLCALVGS GGERGGGEGEKHIGLEEQEPQKRVLN AMEPSYELHTQMKTQEWDNSKSILGVQC EVQKQLKAFVTLERFDQLYGSTTISCQQAP KTKKFASSGSVFGKGVKFALKDGRVTTDII SVANEDGRRVAAILNHAHYLENLHFTIDG VDTHYFVKPGPSEGDLAILGLSGGRRTLEN GVNVTVSQINTVLNGRTRRYTDIQLQYGA LCLNTRYGTTLDEEKARVLELSRQRAVRQ AWAREQQRLREGEEGLRAWTEGEKQQVL STGRVQGYDGFFVISVEQYPELSDSANNIH FMRQSEMGRR 2621 A 30 2298 LTRAPDPDRVGLVADFILFIPTAKGPVIN APLPQRLRSNTAPIRTLHAPSVHRPTGRES MPRTRLTRATSPDTTGSDKTPFIPRPKTLPI QTRSCADSGKLSEIRKIDDPLQHHLQNQSI QKSVKQCHEQNMFGNIVNQNKGHFLLKQ DCDTFDLHEKPLKSNISFENQKRSSGLKNS AEFNRDGKSLFHANHKQFYTEMKFPAIAK PINKSQFIKQQRTHNIENAHVCSECGKAFL					VKFNVETLCSHQKKISRLSAAIHQLDISDIR
2619 B 1 789 MGRERDPSGWTWLLRCAAAACALLLGSQ RQETQLLLSHSDPDIEHRVRGEPKRTTRW LGVECWRQGVINIETKAQEQLQPKGKKVS SLLTALPGSIDELSLKRDVKESISLPAVPFQI ELLLISKINMQTRLLQLPLKFAVAAASSRF NPRPPVIGQLLRGKKSTPWQPDKPPKSPAG VTAATLQAGVGWAEEQSGHCAQVHSLGV DSSCWSPRSGYTYVHHPVHTPTLCALVGS GGERGGEGEKHIGLEEQEPQKRVLN 2620 A 3 913 FMTDVNSWLLTFGFQLHNVIPGYPKPDMD AMEPSYELHITQMKTQEWDNSSLIGVQC EVQKQLKAFVTLERFDQLYGSTITISCQQAP KTKKFASSGSVFGKGVKFALKDGRVTTDII SVANEDGRRVAAILNHAHYLENLHFTIDG VDTHYFVKPGPSEGDLAILGLSGGRRTLEN GVNVTVSQINTVLNGRTRRYTDIQLQYGA LCLNTRYGTTLDEEKARVLELSRQRAVRQ AWAREQQRLREGEEGLRAWTEGEKQQVL STGRVQGYDGFFVISVEQYPELSDSANNIH FMRQSEMGRR 2621 A 30 2298 LTRAPDPDRVGLVADFLRLFIPTAKGPVIN APLPQRLRSNTAPIRTLHAPSVHRPTGRES MPRTRLTRARTSPDTTGSDKTPHPPKTLPI QTRSCADSGKLSEIRKIDDPLQHHLQNQSI QKSVKQCHEQNMFGRNVNQNKGHFLLKQ DCDTFDLHEKPLKSNLSFENQKRSSGLKNS AEFNRDGKSLFHANHKQFYTEMKFPAIAK PINKSQFIKQQRTHNIENAHVCSECGKAFL				1	PLTVLLTLCITLALLMRGAQPGMNSGKIPY
2619 B 1 789 MGRERDPSGWTWLLRCAAAACALLLGSQ RQETQLLLSEHSDPDIEHRVRGEPKRTTRW LGVECWRQGVINIETKAQEQLQPKGKKVS SLLTALPGSIDELSLKRDVKESISLPAVPFQI ELLLISKINMQTRLLQLPLKFAVAAASSRF NPRPPVIGQLLRGKKSTPWQPDKPIKSPAG VTAATLQAGVGWABEQSGHCAQVHSLGV DSSCWSPRSGYTYVHHPVHTPTLCALVGS GGERGGGEGEKHIGLEEQEPQKRVLN AMERSYELHTQMKTQEWDNSKSILGVQC EVQKQLKAFVTLERFDQLYGSTTISCQAP KTKKFASSGSVFGKGVKFALKDGRVTTDII SVANEDGRRVAAILNHAHYLENLHFTIDG VDTHYFVKPGPSEGDLAILGLSGGRRTLEN GVNTVSQINTVLNGRTRRYTDIQLQYGA LCLNTRYGTTLDEEKARVLELSRQAVRQ AWAREQQRLREGEEGLRAWTEGEKQQVL STGRVQGYDGFFVISVEQYPELSDSANNIH FMRQSEMGRR 2621 A 30 2298 LTRAPDPDRVGLVADFLRLFIPTAKGPVIN APLPQRLRSNTAPIRTLHAPSVHRPTGRES MPRTRLTRARTSPDTTGSDKTPHPRPKTLPI QTRSCADSGKLSEIRKIDDPLQHHLQNQSI QKSVKQCHEQNMFGNIVNQNKGHFLLKQ DCDTFDLHEKPLKSNLSFENQKRSSGLKNS AEFNRDGKSLFHANHKQFYTEMKFPAIAK PINKSQFIKQQRTHNIENAHVCSECGKAFL		1			RMFIPNSHSDSELMSFQDSVRHRRGGFQTF
RQETQLLLSEHSDPDIEHRVRGEPKRTTRW LGVECWRQGVINIETKAQEQLQPKGKKVS SLLTALPGSIDELSLKRDVKESISLPAVPFQI ELLLISKINMQTRLLQLPLKFAVAAASSRF NPRPPVIGQLLRGKKSTPWQPDKPIKSPAG VTAATLQAGVGWAEEQSGHCAQVHSLGV DSSCWSPRSGYTYVHHPVHTPTLCALVGS GGERGGGEGKHIGLEQEPQKRVLN GGERGGGEGKHIGLEQEPQKRVLN AMEPSYELHTQMKTQEWDNSKSILGVQC EVQKQLKAFVTLERFDQLYGSTTTSCQQAP KTKKFASSGSVFGKGVKFALKDGRVTTDII SVANEDGRRVAAILNHAHYLENLHFTIDG VDTHYFVKPGPSEGDLAILGLSGGRRTLEN GVNVTVSQINTVLNGRTRRYTDIQLQYGA LCLNTRYGTTLDEEKARVLELSRQRAVRQ AWAREQQRLREGEEGLRAWTEGEKQQVL STGRVQGYDGFFVISVEQYPELSDSANNIH FMRQSEMGRR 2621 A 30 2298 LTRAPDPDRVGLVADFLRLFIPTAKGPVIN APLPQRLRSNTAPIRTLHAPSVHRPTGRES MPRTRLTRARTSPDTTGSDKTPHPRPKTLPI QTRSCADSGKLSEIRKIDDPLQHHLQNQSI QKSVKQCHEQNMFGNIVNQNKGHFLLKQ DCDTFDLHEKPLKSNLSFENQKRSSGLKNS AEFNRDGKSLFHANHKQFYTEMKFPAIAK PINKSQFIKQQRTHNIENAHVCSECGKAFL		<u> </u>			
LGVECWRQGVINIETKAQEQLQPKGKKVS SLLTALPGSIDELSLKRDVKESISLPAVPFQI ELLLISKINMQTRLLQLPLKFAVAAASSRF NPRPPVIGQLLRGKKSTPWQPDKPIKSPAG VTAATLQAGVGWAEEQSGHCAQVHSLGV DSSCWSPRSGYTYVHHPVHTPTLCALVGS GGERGGGEGEKHIGLEEQEPQKRVLN 2620 A 3 913 FMTDVNSWLLTFGFQLHNVIPGYPKPDMD AMERSYELIHTQMKTQEWDNSKSILGVQC EVQKQLKAFVTLEFFDQLYGSTTISCQQAP KTKKFASSGSVFGKGVKFALKDGRVTTDII SVANEDGRRVAAILNHAHYLENLHFTIDG VDTHYFVKPGPSEGDLAILGLSGGRRTLEN GVNVTVSQINTVLNGRTRRYTDIQLQYGA LCLNTRYGTTLDEEKARVLELSRQRAVRQ AWAREQQRLREGEEGLRAWTEGEKQQVL STGRVQGYDGFFVISVEQYPELSDSANNIH FMRQSEMGRR 2621 A 30 2298 LTRAPDPDRVGLVADFLRIFIPTAKGPVIN APLPQRLRSNTAPIRTLHAPSVHRPTGRES MPRTRLTRARTSPDTTGSDKTPHPRFKTLPI QTRSCADSGKLSEIRKIDDPLQHHLQNQSI QKSVKQCHEQNMFGNIVNQNKGHFLIKQ DCDTFDLHEKPLKSNLSFENQKRSSGLKNS AEFNRDGKSLFHANHKQFYTEMKFPAJAK PINKSQFIKQQRTHNIENAHVCSECGKAFL	2619	В	1	789	
SILTALPGSIDELSLKRDVKESISLPAVPFQI ELLLISKINMQTRLLQLPLKFAVAAASSRF NPRPPVIGQLLRGKKSTPWQPDKPIKSPAG VTAATLQAGVGWAEEQSGHCAQVHSLGV DSSCWSPRSGYTYVHHPVHTPTLCALVGS GGERGGEGEKHIGLEEQEPQKRVLN 2620 A 3 913 FMTDVNSWLLTFGFQLHNVIPGYPKPDMD AMEPSYELHTQMKTQEWDNSKSILGVQC EVQKQLKAFVTLERFDQLYGSTITSCQQAP KTKKFASSGVFGKGVKFALKDGRVTTDII SVANEDGRRVAAILNHAHYLENLHFTIDG VDTHYFVKPGPSEGDLAILGLSGGRRTLEN GVNVTVSQINTVLNGRTRRYTDIQLQYGA LCLNTRYGTTLDEEKARVLELSRQRAVRQ AWAREQQRLREGEEGLRAWTEGEKQQVL STGRVQGYDGFFVISVEQYPELSDSANNIH FMRQSEMGRR 2621 A 30 2298 LTRAPDPDRVGLVADFLRLFIPTAKGPVIN APLPQRLRSNTAPIRTLHAPSVHRPTGRES MPRTRLTRARTSPDTTGSDKTPHPRFKTLPI QTRSCADSGKLSEIRKIDDPLQHHLQNQSI QKSVKQCHEQNMFGNIVNQNKGHFLLKQ DCDTFDLHEKPLKSNLSFENQKRSSGLKNS AEFNRDGKSLFHANHKQFYTEMKFPAIAK PINKSQFIKQQRTHNIENAHVCSECGKAFL		ł			RQETQLLLSEHSDPDIEHRVRGEPKRTTRW
ELLLISKINMQTRLLQLPLKFAVAAASSRF NPRPPVIGQLLRGKKSTPWQPDKPIKSPAG VTAATLQAGVGWAEEQSGHCAQVHSLGV DSSCWSPRSGYTYVHHPVHTPTLCALVGS GGERGGEGEKHIGLEEQEPQKRVLN 2620 A 3 913 FMTDVNSWLLTFGFQLHNVIPGYPKPDMD AMEPSYELHTQMKTQEWDNSKSILGVQC EVQKQLKAFVTLERFDQLYGSTITSCQQAP KTKKFASSGSVFGKGVKFALKDGRVTTDII SVANEDGRRVAAILNHAHYLENLHFTIDG VDTHYFVKPGPSEGDLAILGLSGGRRTLEN GVNVTVSQINTVLNGRTRRYTDIQLYGA LCLNTRYGTTLDEEKARVLELSRQRAVRQ AWAREQQRLREGEEGLRAWTEGEKQQVL STGRVQGYDGFFVISVEQYPELSDSANNIH FMRQSEMGRR 2621 A 30 2298 LTRAPDPDRVGLVADFLRLFIPTAKGPVIN APLPQRLRSNTAPIRTLHAPSVHRPTGRES MPRTRLTRARTSPDTTGSDKTPHPRPKTLPI QTRSCADSGKLSEIRKIDDPLQHHLQNQSI QKSVKQCHEQNMFGNIVNQNKGHFLLKQ DCDTTDLHEKPLKSNLSFENQKRSSGLKNS AEFNRDGKSLFHANHKQFYTEMKFPAIAK PINKSQFIKQQRTHNIENAHVCSECGKAFL		i			LGVECWRQGVINIETKAQEQLQPKGKKVS
NPRPPVIGQLLRGKKSTPWQPDKPIKSPAG VTAATLQAGVGWAEEQSGHCAQVHSLGV DSSCWSPRSGYTYVHHPVHTPTLCALVGS GGERGGGEGEKHIGLEEQEPQKRVLN 2620 A 3 913 FMTDVNSWLLTFGFQLHNVIPGYPKPDMD AMEPSYELIHTQMKTQEWDNSKSILGVQC EVQKQLKAFVTLERFDQLYGSTITSCQQAP KTKKFASSGSVFGKGVKFALKDGRVTTDII SVANEDGRRVAAILNHAHYLENLHFTIDG VDTHYFVKPGPSEGDLAILGLSGGRRTLEN GVNVTVSQINTVLNGRTRRYTDIQLQYGA LCLNTRYGTTLDEEKARVLELSRQRAVRQ AWAREQQRLREGEEGLRAWTEGEKQQVL STGRVQGYDGFFVISVEQYPELSDSANNIH FMRQSEMGRR 2621 A 30 2298 LTRAPDPDRVGLVADFLRLFIPTAKGPVIN APLPQRLRSNTAPIRTLHAPSVHRPTGRES MPRTRLTRARTSPDTTGSDKTPHPRPKTLPI QTRSCADSGKLSEIRKIDDPLQHHLQNQSI QKSVKQCHEQNMFGNIVNQNKGHFLLKQ DCDTFDLHEKPLKSNLSFENQKRSSGLKNS AEFNRDGKSLFHANHKQFYTEMKFPAIAK PINKSQFIKQQRTHNIENAHVCSECGKAFL					SLLTALPGSIDELSLKRDVKESISLPAVPFQI
VTAATLQAGVGWAEEQSGHCAQVHSLGV DSSCWSPRSGYTYVHHPVHTPTLCALVGS GGERGGEGEKHIGLEEQEPQKRVLN 2620 A 3 913 FMTDVNSWLLTFGFQLHNVIPGYPKPDMD AMEPSYELIHTQMKTQEWDNSKSILGVQC EVQKQLKAFVTLERFDQLYGSTTISCQQAP KTKKFASSGSVFGKGVKFALKDGRVTTDII SVANEDGRRVAAILNHAHYLENLHFTIDG VDTHYFVKPGPSEGDLAILGLSGGRRTLEN GVNVTVSQINTVLNGRTRRYTDIQLQYGA LCLNTRYGTTLDEEKARVLELSRQRAVRQ AWAREQQRLREGEEGLRAWTEGEKQQVL STGRVQGYDGFFVISVEQYPELSDSANNIH FMRQSEMGRR 2621 A 30 2298 LTRAPDPDRVGLVADFLRLFIPTAKGPVIN APLPQRLRSNTAPIRTLHAPSVHRPTGRES MPRTRLTRARTSPDTTGSDKTPHPRPKTLPI QTRSCADSGKLSEIRKIDDPLQHHLQNQSI QKSVKQCHEQNMFGNIVNQNKGHFLLKQ DCDTFDLHEKPLKSNLSFENQKRSSGLKNS AEFNRDGKSLFHANHKQFYTEMKFPAIAK PINKSQFIKQQRTHNIENAHVCSECGKAFL					ELLLISKINMQTRLLQLPLKFAVAAASSRF
DSSCWSPRSGYTYVHHPVHTPTLCALVGS GGERGGEGEKHIGLEEQEPQKRVLN 2620 A 3 913 FMTDVNSWLLTFGFQLHNVIPGYPKPDMD AMEPSYELIHTQMKTQEWDNSKSILGVQC EVQKQLKAFVTLERFDQLYGSTITSCQQAP KTKKFASSGSVFGKGVKFALKDGRVTTDII SVANEDGRRVAAILNHAHYLENLHFTIDG VDTHYFVKPGPSEGDLAILGLSGGRRTLEN GVNVTVSQINTVLNGRTRRYTDIQLQYGA LCLNTRYGTTLDEEKARVLELSRQRAVRQ AWAREQQRLREGEEGLRAWTEGEKQQVL STGRVQGYDGFFVISVEQYPELSDSANNIH FMRQSEMGRR 2621 A 30 2298 LTRAPDPDRVGLVADFLRLFIPTAKGPVIN APLPQRLRSNTAPIRTLHAPSVHRPTGRES MPRTRLTRARTSPDTTGSDKTPHPRPKTLPI QTRSCADSGKLSEIRKIDDPLQHHLQNQSI QKSVKQCHEQNMFGNIVNQNKGHFLLKQ DCDTFDLHEKPLKSNLSFENQKRSSGLKNS AEFNRDGKSLFHANHKQFYTEMKFPAIAK PINKSQFIKQQRTHNIENAHVCSECGKAFL					NPRPPVIGQLLRGKKSTPWQPDKPIKSPAG
GGERGGEGEKHIGLEEQEPQKRVLN 2620 A 3 913 FMTDVNSWLLTFGFQLHNVIPGYPKPDMD AMEPSYELIHTQMKTQEWDNSKSILGVQC EVQKQLKAFVTLERFDQLYGSTITSCQQAP KTKKFASSGSVFGKGVKFALKDGRVTTDII SVANEDGRRVAAILNHAHYLENLHFTIDG VDTHYFVKPGPSEGDLAILGLSGGRRTLEN GVNVTVSQINTVLNGRTRRYTDIQLQYGA LCLNTRYGTTLDEEKARVLELSRQRAVRQ AWAREQQRLREGEEGLRAWTEGEKQQVL STGRVQGYDGFFVISVEQYPELSDSANNIH FMRQSEMGRR 2621 A 30 2298 LTRAPDPDRVGLVADFLRLFIPTAKGPVIN APLPQRLRSNTAPIRTLHAPSVHRPTGRES MPRTRLTRARTSPDTTGSDKTPHPRPKTLPI QTRSCADSGKLSEIRKIDDPLQHHLQNQSI QKSVKQCHEQNMFGNIVNQNKGHFLLKQ DCDTFDLHEKPLKSNLSFENQKRSSGLKNS AEFNRDGKSLFHANHKQFYTEMKFPAIAK PINKSQFIKQQRTHNIENAHVCSECGKAFL					VTAATLQAGVGWAEEQSGHCAQVHSLGV
2620 A 3 913 FMTDVNSWLLTFGFQLHNVIPGYPKPDMD AMEPSYELIHTQMKTQEWDNSKSILGVQC EVQKQLKAFVTLERFDQLYGSTITSCQQAP KTKKFASSGSVFGKGVKFALKDGRVTTDII SVANEDGRRVAAILNHAHYLENLHFTIDG VDTHYFVKPGPSEGDLAILGLSGGRRTLEN GVNVTVSQINTVLNGRTRRYTDIQLQYGA LCLNTRYGTTLDEEKARVLELSRQRAVRQ AWAREQQRLREGEEGLRAWTEGEKQQVL STGRVQGYDGFFVISVEQYPELSDSANNIH FMRQSEMGRR 2621 A 30 2298 LTRAPDPDRVGLVADFLRLFIPTAKGPVIN APLPQRLRSNTAPIRTLHAPSVHRPTGRES MPRTRLTRARTSPDTTGSDKTPHPRPKTLPI QTRSCADSGKLSEIRKIDDPLQHHLQNQSI QKSVKQCHEQNMFGNIVNQNKGHFLLKQ DCDTFDLHEKPLKSNLSFENQKRSSGLKNS AEFNRDGKSLFHANHKQFYTEMKFPAIAK PINKSQFIKQQRTHNIENAHVCSECGKAFL					DSSCWSPRSGYTYVHHPVHTPTLCALVGS
AMEPSYELIHTQMKTQEWDNSKSILGVQC EVQKQLKAFVTLERFDQLYGSTTTSCQQAP KTKKFASSGSVFGKGVKFALKDGRVTTDII SVANEDGRRVAAILNHAHYLENLHFTIDG VDTHYFVKPGPSEGDLAILGLSGGRRTLEN GVNVTVSQINTVLNGRTRRYTDIQLQYGA LCLNTRYGTTLDEEKARVLELSRQRAVRQ AWAREQQRLREGEEGLRAWTEGEKQQVL STGRVQGYDGFFVISVEQYPELSDSANNIH FMRQSEMGRR 2621 A 30 2298 LTRAPDPDRVGLVADFLRLFIPTAKGPVIN APLPQRLRSNTAPIRTLHAPSVHRPTGRES MPRTRLTRARTSPDTTGSDKTPHPRPKTLPI QTRSCADSGKLSEIRKIDDPLQHHLQNQSI QKSVKQCHEQNMFGNIVNQNKGHFLLKQ DCDTFDLHEKPLKSNLSFENQKRSSGLKNS AEFNRDGKSLFHANHKQFYTEMKFPAIAK PINKSQFIKQQRTHNIENAHVCSECGKAFL	-	L			
EVQKQLKAFVTLERFDQLYGSTTTSCQQAP KTKKFASSGSVFGKGVKFALKDGRVTTDII SVANEDGRRVAAILNHAHYLENLHFTIDG VDTHYFVKPGPSEGDLAILGLSGGRRTLEN GVNVTVSQINTVLNGRTRRYTDIQLQYGA LCLNTRYGTTLDEEKARVLELSRQRAVRQ AWAREQQRLREGEEGLRAWTEGEKQQVL STGRVQGYDGFFVISVEQYPELSDSANNIH FMRQSEMGRR 2621 A 30 2298 LTRAPDPDRVGLVADFLRLFIPTAKGPVIN APLPQRLRSNTAPIRTLHAPSVHRPTGRES MPRTRLTRARTSPDTTGSDKTPHPRPKTLPI QTRSCADSGKLSEIRKIDDPLQHHLQNQSI QKSVKQCHEQNMFGNIVNQNKGHFLLKQ DCDTFDLHEKPLKSNLSFENQKRSSGLKNS AEFNRDGKSLFHANHKQFYTEMKFPAIAK PINKSQFIKQQRTHNIENAHVCSECGKAFL	2620	A	3	913	FMTDVNSWLLTFGFQLHNVIPGYPKPDMD
KTKKFASSGSVFGKGVKFALKDGRVTTDII SVANEDGRRVAAILNHAHYLENLHFTIDG VDTHYFVKPGPSEGDLAILGLSGGRRTLEN GVNVTVSQINTVLNGRTRRYTDIQLQYGA LCLNTRYGTTLDEEKARVLELSRQRAVRQ AWAREQQRLREGEEGLRAWTEGEKQQVL STGRVQGYDGFFVISVEQYPELSDSANNIH FMRQSEMGRR 2621 A 30 2298 LTRAPDPDRVGLVADFLRLFIPTAKGPVIN APLPQRLRSNTAPIRTLHAPSVHRPTGRES MPRTRLTRARTSPDTTGSDKTPHPRPKTLPI QTRSCADSGKLSEIRKIDDPLQHHLQNQSI QKSVKQCHEQNMFGNIVNQNKGHFLLKQ DCDTFDLHEKPLKSNLSFENQKRSSGLKNS AEFNRDGKSLFHANHKQFYTEMKFPAIAK PINKSQFIKQQRTHNIENAHVCSECGKAFL			1		
KTKKFASSGSVFGKGVKFALKDGRVTTDII SVANEDGRRVAAILNHAHYLENLHFTIDG VDTHYFVKPGPSEGDLAILGLSGGRRTLEN GVNVTVSQINTVLNGRTRRYTDIQLQYGA LCLNTRYGTTLDEEKARVLELSRQRAVRQ AWAREQQRLREGEEGLRAWTEGEKQQVL STGRVQGYDGFFVISVEQYPELSDSANNIH FMRQSEMGRR 2621 A 30 2298 LTRAPDPDRVGLVADFLRLFIPTAKGPVIN APLPQRLRSNTAPIRTLHAPSVHRPTGRES MPRTRLTRARTSPDTTGSDKTPHPRPKTLPI QTRSCADSGKLSEIRKIDDPLQHHLQNQSI QKSVKQCHEQNMFGNIVNQNKGHFLLKQ DCDTFDLHEKPLKSNLSFENQKRSSGLKNS AEFNRDGKSLFHANHKQFYTEMKFPAIAK PINKSQFIKQQRTHNIENAHVCSECGKAFL	j				
VDTHYFVKPGPSEGDLAILGLSGGRRTLEN GVNVTVSQINTVLNGRTRRYTDIQLQYGA LCLNTRYGTTLDEEKARVLELSRQRAVRQ AWAREQQRLREGEEGLRAWTEGEKQQVL STGRVQGYDGFFVISVEQYPELSDSANNIH FMRQSEMGRR 2621 A 30 2298 LTRAPDPDRVGLVADFLRLFIPTAKGPVIN APLPQRLRSNTAPIRTLHAPSVHRPTGRES MPRTRLTRARTSPDTTGSDKTPHPRPKTLPI QTRSCADSGKLSEIRKIDDPLQHHLQNQSI QKSVKQCHEQNMFGNIVNQNKGHFLLKQ DCDTFDLHEKPLKSNLSFENQKRSSGLKNS AEFNRDGKSLFHANHKQFYTEMKFPAIAK PINKSQFIKQQRTHNIENAHVCSECGKAFL	ļ]	l	KTKKFASSGSVFGKGVKFALKDGRVTTDII
GVNVTVSQINTVLNGRTRRYTDIQLQYGA LCLNTRYGTTLDEEKARVLELSRQRAVRQ AWAREQQRLREGEEGLRAWTEGEKQQVL STGRVQGYDGFFVISVEQYPELSDSANNIH FMRQSEMGRR 2621 A 30 2298 LTRAPDPDRVGLVADFLRLFIPTAKGPVIN APLPQRLRSNTAPIRTLHAPSVHRPTGRES MPRTRLTRARTSPDTTGSDKTPHPRPKTLPI QTRSCADSGKLSEIRKIDDPLQHHLQNQSI QKSVKQCHEQNMFGNIVNQNKGHFLLKQ DCDTFDLHEKPLKSNLSFENQKRSSGLKNS AEFNRDGKSLFHANHKQFYTEMKFPAIAK PINKSQFIKQQRTHNIENAHVCSECGKAFL					SVANEDGRRVAAILNHAHYLENLHFTIDG
LCLNTRYGTTLDEEKARVLELSRQRAVRQ AWAREQQRLREGEEGLRAWTEGEKQQVL STGRVQGYDGFFVISVEQYPELSDSANNIH FMRQSEMGRR 2621 A 30 2298 LTRAPDPDRVGLVADFLRLFIPTAKGPVIN APLPQRLRSNTAPIRTLHAPSVHRPTGRES MPRTRLTRARTSPDTTGSDKTPHPRPKTLPI QTRSCADSGKLSEIRKIDDPLQHHLQNQSI QKSVKQCHEQNMFGNIVNQNKGHFLLKQ DCDTFDLHEKPLKSNLSFENQKRSSGLKNS AEFNRDGKSLFHANHKQFYTEMKFPAIAK PINKSQFIKQQRTHNIENAHVCSECGKAFL			[
AWAREQQRLREGEEGLRAWTEGEKQQVL STGRVQGYDGFFVISVEQYPELSDSANNIH FMRQSEMGRR 2621 A 30 2298 LTRAPDPDRVGLVADFLRLFIPTAKGPVIN APLPQRLRSNTAPIRTLHAPSVHRPTGRES MPRTRLTRARTSPDTTGSDKTPHPRPKTLPI QTRSCADSGKLSEIRKIDDPLQHHLQNQSI QKSVKQCHEQNMFGNIVNQNKGHFLLKQ DCDTFDLHEKPLKSNLSFENQKRSSGLKNS AEFNRDGKSLFHANHKQFYTEMKFPAIAK PINKSQFIKQQRTHNIENAHVCSECGKAFL					
STGRVQGYDGFFVISVEQYPELSDSANNIH FMRQSEMGRR 2621 A 30 2298 LTRAPDPDRVGLVADFLRLFIPTAKGPVIN APLPQRLRSNTAPIRTLHAPSVHRPTGRES MPRTRLTRARTSPDTTGSDKTPHPRPKTLPI QTRSCADSGKLSEIRKIDDPLQHHLQNQSI QKSVKQCHEQNMFGNIVNQNKGHFLLKQ DCDTFDLHEKPLKSNLSFENQKRSSGLKNS AEFNRDGKSLFHANHKQFYTEMKFPAIAK PINKSQFIKQQRTHNIENAHVCSECGKAFL			!		
FMRQSEMGRR 2621 A 30 2298 LTRAPDPDRVGLVADFLRLFIPTAKGPVIN APLPQRLRSNTAPIRTLHAPSVHRPTGRES MPRTRLTRARTSPDTTGSDKTPHPRPKTLPI QTRSCADSGKLSEIRKIDDPLQHHLQNQSI QKSVKQCHEQNMFGNIVNQNKGHFLLKQ DCDTFDLHEKPLKSNLSFENQKRSSGLKNS AEFNRDGKSLFHANHKQFYTEMKFPAIAK PINKSQFIKQQRTHNIENAHVCSECGKAFL]		
2621 A 30 2298 LTRAPDPDRVGLVADFLRLFIPTAKGPVIN APLPQRLRSNTAPIRTLHAPSVHRPTGRES MPRTRLTRARTSPDTTGSDKTPHPRPKTLPI QTRSCADSGKLSEIRKIDDPLQHHLQNQSI QKSVKQCHEQNMFGNIVNQNKGHFLLKQ DCDTFDLHEKPLKSNLSFENQKRSSGLKNS AEFNRDGKSLFHANHKQFYTEMKFPAIAK PINKSQFIKQQRTHNIENAHVCSECGKAFL					-
APLPQRLRSNTAPIRTLHAPSVHRPTGRES MPRTRLTRARTSPDTTGSDKTPHPRPKTLPI QTRSCADSGKLSEIRKIDDPLQHHLQNQSI QKSVKQCHEQNMFGNIVNQNKGHFLLKQ DCDTFDLHEKPLKSNLSFENQKRSSGLKNS AEFNRDGKSLFHANHKQFYTEMKFPAIAK PINKSQFIKQQRTHNIENAHVCSECGKAFL					
MPRTRLTRARTSPDTTGSDKTPHPRPKTLPI QTRSCADSGKLSEIRKIDDPLQHHLQNQSI QKSVKQCHEQNMFGNIVNQNKGHFLLKQ DCDTFDLHEKPLKSNLSFENQKRSSGLKNS AEFNRDGKSLFHANHKQFYTEMKFPAIAK PINKSQFIKQQRTHNIENAHVCSECGKAFL	2621	Α	30	2298	
QTRSCADSGKLSEIRKIDDPLQHHLQNQSI QKSVKQCHEQNMFGNIVNQNKGHFLLKQ DCDTFDLHEKPLKSNLSFENQKRSSGLKNS AEFNRDGKSLFHANHKQFYTEMKFPAIAK PINKSQFIKQQRTHNIENAHVCSECGKAFL	I]		-
QKSVKQCHEQNMFGNIVNQNKGHFLLKQ DCDTFDLHEKPLKSNLSFENQKRSSGLKNS AEFNRDGKSLFHANHKQFYTEMKFPAIAK PINKSQFIKQQRTHNIENAHVCSECGKAFL	1				
QKSVKQCHEQNMFGNIVNQNKGHFLLKQ DCDTFDLHEKPLKSNLSFENQKRSSGLKNS AEFNRDGKSLFHANHKQFYTEMKFPAIAK PINKSQFIKQQRTHNIENAHVCSECGKAFL	ļ			Ì	
DCDTFDLHEKPLKSNLSFENQKRSSGLKNS AEFNRDGKSLFHANHKQFYTEMKFPAIAK PINKSQFIKQQRTHNIENAHVCSECGKAFL	ŀ			•	
PINKSQFIKQQRTHNIENAHVCSECGKAFL]	į			
)			ł	AEFNRDGKSLFHANHKQFYTEMKFPAIAK
			1		
KLSQFIDHQRVHTGEKPHVCSMCGKAFSR					

Table 8

SEQ	Method	Predicted	Predicted	Amino acid sequence (X=Unknown, *=Stop
ID D	1,20025	beginning	ending	codon. /=possible nucleotide
NO:		nucleotide	nucleotide	deletion,=possible nucleotide insertion)
110.		location of	location of	
		first amino	last amino	·
	1	acid residue	acid residue	
	İ		of peptide	
		of peptide sequence	sequence	
	 	sequence	sequence	KSRLMDHQRTHTELKHYECTECDKTFLKK
		1		SQLNIHQKTHMGGKPYTCSQCGKAFIKKC
				RLIYHHRTHTGEKPHGCSVCGKAFSTKFSL
				TTHQKTHTGEKPYICSECGKGFIEKRRLTA
				HHRTHTGEKPFICNKCGKGFTLKNSLITHQ
				OTHTGEKLYTCSECGKGFSMKHCLMVHQ
				RTHTGEKPYKCNECGKGFALKSPLIRHQRT
			1	HTGEKPYVCTECRKGFTMKSDLIVHQRTH
	ľ			TAEKPYICNDCGKGFTVKSRLIVHQRTHTG
				EKPYVCGECGKGFPAKIRLMGHQRTHTGE
	1			KPYICNECGKGFTEKSHLNVHRRTHTGEKP
				YVCSECGKGLTGKSMLIAHQRTHTGEKPYI
				CNECGKGFTMKSTLSIHQQTHTGEKPYKC
	1			NECDKTFRKKTCLIQHQRFHTGKTSFACTE
	i			CGKFSLRKNDLITHQRIHTGEKPYKCSDCG
	İ	l l		KAFTTKSGLNVHQRKHTGERPYGCSDCGK
			1	AFAHLSILVKHKRIHR
0600	 	1	2034	MKLMETLNQCINAGHEMTKAIAIAQFNDD
2622	В	1	2034	SPEARKITRRWRIGEAADLVGVSSQAIRDA
	1		1	EKAGRLPHPDMEIRGRVEQRVGYTIEQINH
			ļ.	MRDVFGTRLRRAEDVFPPVIGVAAHKENT
		1	1	LLPFYLGEKGDVTYAIKPLAGRGLTYFFLS
				GSARIENELMGKFVERKLATHTTLSFDWPL
				ETTPQLLPPHILSPVFASASPSRCWRVASGK
				YCKVFRGSGFQAQXIPQPTLRDPHYVEDK
	1		1	GHKYLVFEANTGTENGYQGEESLFNKAYY
				GGGTNFFRKESQKLQQSAKKRDAELANGA
				LGIIELNNDYTLKKVMKPLITSNTVTDEIER
				ANVFKMNGKWYLFTDSRGSKMTIDGINSN
				DIYMLGYVSNSLTGPYKPLNKTGLVLQMG
			İ	LDPNDVTFTYSHFAVPQAKGNNVNRFTQF
			-	RLSETKEITNPYAMRLYESLCQYRKPDGSG
	1			IVSLKIDWIIERYQLPQSYQRMPDFRRRFLQ
	ļ			GQFDHAASPVERGHLRKIPFRGGTRESRER
	1			GLSEAGYLPREAGQAQKRRPWTKGPLEKI
				GLETLHCDSRRYPCRSNWVWICTVKEGGR
	1			EGRGGRGRRVQLAAVAGTVAPAAAPKNP
				PPRFRWSVWARDGVKERVPLQAGVGGGQ
				AVQRRETARRSRGWLLRIWDSIGRDRSLG
				GNGFFTTADQRFDFAVLWLVAFRINSDKL
2622	A	513	796	TGTAWTPPPPPLTTGAPCTPPPRCTARGRT/
2623	A	1 313	1,70	PGDSHLGGGPAATAGGPRTSPMSSGGPSAP
		•		GMRPPASSPKRNTTSLLNSGLEPTFSFRITF
	1			GFM
0624	+-		472	MPLLEYARNMLRTWSSLPWTRFRVCLLSL
2624	C	60	412	SLFLWANRLEDSRSCQPNPMSLTTLPGHRL
	1			KEAVWLPAPSRTMSPHLDPNQLGILLRVLR
1	ı		1	KEKEDGDYPDMMATHPSSRYEACSSGITL
	1			AAPPTHGPRPTDPRIGPAP
			1222	MAILPKVIYRFNAIPIKLPVTFFTELGKTTLR
2625	A	1	1322	MAILE ALL VILLE ALL TOPOST LEVEL ALL LOCAL LEVEL
ĺ				FIWNQKRACIGKSVLSQKNKAGGITLPDFK

457

Table 8

beginning ending codon,	cid sequence (X=Unknown, *=Stop
ID Desiriting strong corons,	possible nucleotide
	=possible nucleotide insertion)
1	-possible nucleotide insertion)
first amino last amino	
acid residue acid residue	
of peptide of peptide	
sequence sequence	TVTKTAWYWYQNRDIDQWNRTES
	TYNHLIFDKPDKNKKWGKDSLFNK
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	WLAICRKLKLDPFLTSHTKINSRW
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	VRPKTIKTLEENLGNTIQAIGMGKD
	PKAMATKAKIDKWDLIKLKSFCTA
	LLGRPPALFTASSSVLKQLALEGILI
IDSPAT	LLGFLYEARHSHSNSPNHDAQNAT
SKKNIII	RDGYDKIYRQEQVLARMEEKTLITA
CGNVK	WCSHFRKQIGGQWLTLETKTKTPQ
PESSTS	QISTDKDKGLNPQLLKMDPGHMG
WCPPG	MGIPWQLSSDDRVWVLAAAGSGR
HPGSG	FKSL/PGLLHEGSYGH****S*I*GGN
	GPQCISGEERVFRVVQSI
2626 A 129 329 VSNIVI	PHQTVGLSTQEPGDIFTYSEFDGIL
2020 A 129 SZ9 GIAVE	SLASE*SVPVLDNTMQRHLVAQDL
FSVYM	1
	VGQDGLDLLTS*SAHLGLLKCWDY
RREPPI	RPASDGHY*TDATGSLPSSGTT*IRT
	PASWGLWNLAHHPPRSHPSCPMAN
LICSTL	SSFDGGSPGTGPGGWCPLGLSGSPA
	DSSCSLHPLATGI
	LCNHKGTVTADLQPLPPGLK*ISHL
SLLSSV	VNYRCTPPHPADF*FFVERRSHYVA
*ACLEI	LLCSSDLPALISQRVGITGMSTTPGPI
CLL	
	LAAGVLLVGPGDGGLISEGVVRED
	/WSAGTWSVGTAERCLEKPGALHV
	SWDGPVMPNGPVKNHKGEQQEVP
SKHPQ	MALEICLCLDFLYYPFLRGDASAGP
VTWCI	TSDTIILQQHRTLTSQGVDDFLKAK
	SDFIDALVLSKDLNSGGRMELEIKC
	ELDLEGSGEPWKVLDKGVTVSYVF
	GCLEGVNKSQETREGACGAGLEMA
KEGSC SPG	LDERSSGTVSGYTQVSSELVCSGFL
	PRELAGAAGLTVTSQAVAARRQQP
	RAPAHSLRAALSLASSARSWGAVSR
	PPAIMYQSSNKC
	VLILSPCLVGIEPWEVSPHTNSTSSYE
	YPLGTAAKAASGQSPSTTSPLPETAP
	RGLENVVCSDKDLRQATGYSAAEK
	LCTRAFCPEAIPDAQDWVKCQPLGS
LSALN	
	TKPSVLWKDVNSNLWCRPHDLLT
	YACVHIPSGPLGIPVQCIKPYHGMA
GTOCS	TGNEECEPVGPAAPDNAASSDNTG
PGWGN	
2633 B 56 3476 XGKPE	KFSFGLLDLPFRVGVPFNIPLEFQDE
FGHTS	QLVTDIQPVLEASGLSLHYEEITNGP
NCVIR	GVTAKGPVNSCQGKVAPNLPVYVV
DCSSS	GTSILTGSAIQVQNIKKDQTLKARIEI

458

Table 8

SEQ	Method	Predicted	Predicted	Amino acid sequence (X=Unknown, *=Stop
ID ID		beginning	ending	codon, /=possible nucleotide
NO:		nucleotide	nucleotide	deletion,=possible nucleotide insertion)
110.		location of	location of	duction, possible allowers,
		first amino	last amino	
	}		acid residue	
		acid residue	of peptide	
		of peptide		
 	ļ	sequence	sequence	PSCKDVAPVEKTIKLLPSSHVARLQIFSVEG
				QKAIQIKHQDEVNWIAGDIMHNLIFQMYD
		1		EGEREINITSALAEKIKGLLPDVQVPTSVKD
		1		MRYCQVSFQDDHVSLESAFTVSMLELLQL
1				MVSLKTSNLLNNFRPLPDEPKHLKCEMKG
•		1		GKTVQMGQELQGEVVIIITDQYGNQIQAFS
		Ì		PSSLSSLSIAGVGLDSSNLKTTFQSIPVINGR
	1			DLQNPIIVQLCDQWDNPAPVQHVKISLTKA
	, ·			SNLKVKAIYNKSIIEGPIIKLMILPDPEKPVR
	İ			LNVKYDKDASFLAGGLFTGYVRPVPVPRS
	1			LNSDISYFGVGGKQAVFFVGQSARMISKPA
		1		DSQDVHELVLSKEDFEKKEKNKEAIYSGYI
				RNRKISMFEKGKVPKIVNLREIQDDMQTLY
			i	VNTAADSFEFKAHVEGDGVVEGIIPYHPFL
				YDRETYPDDPCFPSNNFGISFVHSLEVILXL
				KDEDDEDDCFILEKAARGKRPIFECFWNGR
•				LIPYTSVEDRGLAPIECYNRISGALFTNDKF
				QVSTNKLTFMDLELKLKDKNTLFTRILNG
	1		1	QEQRMKIDREFALWLKDCHEKYDKQIKFT
ĺ				LFKGVITRPDLPSKKQGPWATYAAIEWDG
		•		KIYKAGQLEPQALYDEVRTVPIAKLDRTV
İ				AEKAVKKYVEDEMASLWILGYKPVQHMT
				VLSTAGNCNTTFWKKINITVILRCRSLTKV
				LLATERTFETAGVGGLILGQVEEARLKEAQ
				LRNELKIHNIDIPTTQQVPHIEALLKRKLSE
		j		QEELKKKPRRSCTLPNYTKGSGDVLGKGQ
				STGLGPVEVTQSSPSSRTSEYFWLTKFCWL
				EDWASGESLRLLPLMVEGEGEPVYAEIIW
				QKRDETVKDGVTLYLLQSVNQLLLTATKE
				RIDFLPHYDTLVKSGMYEYYASEGQNPLXI
				YTHVGDREAQAALKLGRWSHPRTPNAVG
ļ				APGPPEGAGGGDAVTSQSALLTFSRTRFAS
1				GAHAGAHPVLLRNEEEKGAPALVAPIFSAE
	1			GPTCSLWWTLRPASTAGLKLPARRVHATQ
				PERAH
2634	В	1	384	MLASPLWLQALSLAAGTWRPRLGSGQAG
		1		NSEMRAGFLPGAGSQVRAQLQDRLPKTTE
	1	İ		TKGALWPHTELCGMWSIAPGAENQELQID
ŀ	1			SPLLGQLSNQVWREDGYGKAFRLRTLSSM
		<u> </u>		GITEEANENVLI
2635	A	628	1117	FFISVINGQVSSVQRLSGVGPACLSCGSANP
		1		GPPPGTSPGAGAQRR*\PRADGSGSPQWPR
		1		GARVGGGRLGTGGRGRPGWRQVPRRLSP
		1		GFGR*GGTGPGPVGTSGKRGPSRRRAPAN
		1		DKAACWPRFPGQPAS*TGFRGERGVKGFS
				SWGSGWRAWEDGGTVH
2636	A	70	792	HGLVLDVRGPLSHAAPYWAPYPAATAAA
		1		ARTAPLPPRSAIV*/SGPQPDFQELRKTWPS
				QC/GMARREPLLPITAIPRVVVETTP*GFAK
				QEPSVAGLRCRGSEAPA*LLHGVHRNVS/E
		1		TPGPEMGRPG*GNHRQRPGKQRGIPSSGLP
L	ــــــــــــــــــــــــــــــــــــــ			1 Or Dividid O Grandad Gran

Table 8

	1 = 2 : 5 = 5	Ta	1 able	Amino acid sequence (X=Unknown, *=Stop
SEQ	Method	Predicted	Predicted	Amino acid sequence (A-Unknown, "-Stop
ID	ļ	beginning	ending	codon, /=possible nucleotide deletion,=possible nucleotide insertion)
NO:	ļ	nucleotide	nucleotide	deletion,=possible nucleotide insertion)
		location of	location of	
	1	first amino	last amino	
		acid residue	acid residue	
		of peptide	of peptide	İ
		sequence	sequence	CD CCCCD CDUCGDCOV DUCCTI CCDD CADD
				GRCSGSRGPHSSPGQKPHGSTLSGRRGADP
	ŀ			RPRRRVYLSTPLLCEKKPHHDTILKRKPGM
	ł			GDGNNPCPWNAGLYGQATRFAPLPLCPRR
				RHGAVS
2637	A	571	172	SPLRPLLLALALASVPCAQGACPASADLKH
1	ŀ			SDGTRTCAKLYDKSDPYYENCCGGAELSL
İ	•			ESGADLPYLPSNWANTASSLVVAPRCELT
	Į.			VWSRQGKAGKTHKFSAGTYPRLEEYRRGI
				LGDWSNAISALYCRCS
2638	A	169	1144	INYSLEKHVGALGRVLFSL*RAGCPGMGST
				RERGLYLGKHRGSGGIW*ALAGP*KSRGD
				SVSLTQGHTHVCSRSPR*ADSPPG/SHLSPV
			ĺ	PHSVEVAGHVLVPATRAAVPCSASAGA*Q
		· '		STYRTGVHQGNPTV*TK/PSRRPSGGVAK*
				FLPSAVRGEPGAKPLVDDLLPGWSLATHG
				QPPLVAAPGSGLWGRPADA*GCETAGGSP
				CPRSTSRPSGPSGVQGCPLG*AGSGASASR
	1			SEPPGSTSCCPRAP\T*PAAPCVPDWPAGDQ
ŀ	.}			WRSHGYLPPSREL*G/WMPPSRPATLPQLA
•	1			FARQRQGNRFDAAFESSGEDFHQMPRVGR
				MG
2639	A	1	1461	MRELYSIWLKGYWTEGDWAQSPPRSPREA
	1			LEGIRVHLRCFKAYGIIVLCQCPWNTPLLP
İ	1			VPKPGTKHYEPVQDLRLVNQATVTLHPTV
				PNPYTLLGLLPAEDIWFTHLDLKDAICSIRI
		1		APESQKLFAFQWEDLQSGVTTQYTWNWL
			Ĭ	PQGWVLKRVDALFQHLEDCGYKVPKKKS
	1			QICRQQVRYLGFTIWKGEHSLWSERKQVIC
			İ	SLPEPKTRRQVREFLGAVGFCTLWIPNFAV
				LAKHLYGITKGGNWEPFEWGPLQQQAFLS
				ESPVEHNCVEVLDSVYSSRPDLRDQPWAS
				VDLELYLDGSSFINPQGERCAEYAVVTLDA
				VIETKPLPQGTSAQKAELIALTRALELSEGD CIWIKDCNIAPLRPRWKGPQTVILTTPTAV
				VERTICATIVE DEPLICATIVE DEPLICATIVE
		1	1	KRSIAIGNWQDDEWLPERITQYYGPATWA QYGSWGYYNPIYMLNQMIWLQAVLEITTN
			1	KTGRALTILAWQETQMRNPTYQDRLALDY
}				
	 	 	110	LLAAEGGVCGKFNLTN
2640	A	254	418	MAISWKPTGLPWHSMLQVLLAAWLPGPTP
		J		TPHSALPSFSPPPSLPPKMCLPKCC* ·
2641	A	433	3	ASFFNFSICICKILLEVGPPVGHPAHDDVGG
1			1	RHGPGGR/GSRSPRSLQCAPGGGRRSGCPA
				GSSPASTCPPSPGGSGADRFGPSPPPPSREA
1	1			APTAGAAASSTSSGASCPPVPASSRWGVRS
				RTRSGSGGEREPRDRPSERPRLV
2642	A	2	798	VVEFADVEKKGAGRTEFRYPSYVQHIMGD
				IFSQGFGPFRWVCTSGDPQDLAVTDELATS
	1			VLEEAIADGVKVSVKLQYMDNIRWIREAA
	1			RHRLVVGSQARILYSDQKGRVAIAVAINQ
	I			AIACRRIKAPVVLSRDHHDVSGTDSPFRET
1		İ	I	SNIYDGSAFCADMAVQNFVGDACRGATW

460

Table 8

SEQ ID NO:	Method	Predicted beginning nucleotide location of first amino acid residue of peptide sequence	Predicted ending nucleotide location of last amino acid residue of peptide sequence	Amino acid sequence (X=Unknown, *=Stop codon, /=possible nucleotide deletion,=possible nucleotide insertion) VALHNGGGVGWGEVINGGFGLVLDGTPE AEGRARLMLSWDVSNGVARRCWSGNQK AYEIICQTMQENSTLVVTLPHKVEDERVLQ QALQL
	A .		2504	QISSGRELRVIQESEAGDAGLPRVEVILDCS DRQKTEGCRLQAGKECVDSPVEGGQSEAP PSLVSFAVSSEGTEQGEDPRSEKDHSRPHK HRARHARLRRSESLSEKQVKEAKSKCKSIA LLLTDAPNPNSKGVLMFKKRRRARKYTL VSYGTGELEREADEEEEGDKEDTCEVAFL GASESEVDEELLSDVDDNTQVVNFDWDSG LVDIEKKLNRGDKMEMLPDTTGKGALMF AKRRERMDQITAQKEEDKVGGTPSREQDA AQTDGLRTTTSYQRKEEESVRTQSSVSKSY IEVSHGLGHVPQQNGFSGASETANIQRMVP MNRTAKPFPGSVNQPATPFSPTRNMTSPIA DFPAPPPYSAVTPPPDAFSRGVSSPIAGPAQ PPPWPQPAPWSQPAFYDSSERIASRDERISV PAKRTGILQEAKRRSTTKPMFTFKEPKVSP NPELLSLLQNSEGKRGTGAGGDSGPEEDY LSLGAEACNFMQSSSAKQKTP\PPVAPKPA\ VKSSSSQPVTPVSPVWSPGVAPTQPPAFPTS NPSKGTVVSSIKIAQPSYPPARPASTLNVAG PFKGPQAAVASQNYTPKPTVSTPTVNAVQ PGAVGPSNELPGMSGRGAQLFAKRQSRME KYVVDSDTVQAHAARAQSPTPSLPASWKY SSNVRAPPPVAYNPIHSPSYPLAALKSQPSA AQPSKMGKKKGKPLNALDVMKHQPYQL NASLFTFQPPDAKDGLPQKSSVKVNSALA MKQALPPRPVNAASPTNVQASSVYSVPAY TSPPSFFAEASSPVSASPVPVGIPTSPKQESA SSSYFVAPRPKFSAKKSGVTIQVWKPSVVE
2644	Ā	938	652	RSSDGHAAETSRSCQLH*VSRSRNHPGPQP SGNTLRVRQSLSPPDSRTLASAILAPP/TPLS SFRALALQPQEENRREEEMKEEGQVLGAV PLRTS
2645	В	182	394	MATHPSLLVCQVGLLGAQVPSVRAGMPQS RRQTEGAQGMVRNEEGGSLRLSHHQACK ATHTQQWTLEVTAQ
2646	В	1	591	MTIHILILLLLAFSAQGDLDTAARRGQHQ VPQHRGHVCYLGVCRTHRLAEIIYWIRCLH QGALGEGQPRAPGPLQLWAPPVARGGSPA RFPGFRPAARGLAQCPARWVTSGTARPLL GFSLPIWLQRDMAEAHQAVGFRPSLTSDG AEVELSAPVLQEIYLSGLRSWKRHLSRFW VRSGAGRFPSGDPGFCFRDV
2647	A	1	787	FQEAAVQLYSHAPHVQLRLKISPGHSPPAL GLSFPPGQGRGFSCQLLPASFSWGIPQRPLP QREPPGRTRTPAWSCSWGPAIPPVHTLVPA PSPGPGADRGGSQGPGLLVQGLPLGSLAP*

Table 8

CORO.	37.44.4	Donational	Dundistad	Amino acid sequence (X=Unknown, *=Stop
SEQ	Method	Predicted	Predicted	codon, /=possible nucleotide
ID		beginning	ending	
NO:	İ	nucleotide	nucleotide	deletion,=possible nucleotide insertion)
		location of	location of	
		first amino	last amino	
		acid residue	acid residue	
		of peptide	of peptide	
		sequence	sequence	
	 	Sequence	ведиолее	ALGLPGASADTPVPRRLHSQACCSHGVTG
				*GMG*GDVSPVPVPQGPLGWHLFRVPAGS
				QRSSPIPHQVLGGTRQPLGPGPVRKWTELA
				GDTGDKKEASSPKELVGPQRVGGLAGTVT
		İ	1	LVPHLCCGRRAPPGGLDGAVEIVA
			2225	
2648	Α	2466	3395	KALCPCLPVPLVHGNVEVAGPRSGGACPT
				LGLVVLFNPPGNHAATLRAHGQPCTALWR
				PLKPSPQGYLEGAARGSAAKRPLQRALVS
				LDPGLGVLAATRLPGPVAGGWETQYMCC
ŀ	1			SAAAGSVGCQVAKQHVQDGRKERLEGFV
ł				KTFEKELSGDTHPGIYALDCEMSYTTYGLE
				LTRVTVVDTDVHVVYDTFVKPDNEIVDYN
	•			TRFSGVTEADLADTSVTLRDVQAVLLSMF
	}			SADTILIGHSLESDLLALKVIHSTVVDTSVL
	İ		•	FPHRLGLPYKRSLRNLMADYLRQIIQDNVD
	-		1	GHSSSEDAGACMHLVTWK
2640	 	170	556	QSPQEHFHPECGRRDILCQVRQEIRWPNPG
2649	A	178	330	EVHHLGLEICPVWILQLHLALRTRAPEHPL
				OVHRPGGGAV*RGVPPPLRLLQACDGPEV
	1			
	İ			PAAGRPRPARSSPGQWPP*/PAAVAPPVTE
				RPPTPSAA
2650	A	803	1068	RAMEPLLLGRGLIVYLMFLLLKFSKAIEIPS
				SGKVKTFSAILLSMDSPFQAGGIFGTPPGLG
	4			SRILSPSPMVSLGSCCTHRSPICFSP
2651	В	1	559	MAERAAGGQLPSQGPVQLPSTRKEKDEQT
				ENQQLFFIRQRTESPGKARPPNLETQTSGFQ
				EPQLTGAEPLRGQCHGLELPLMNFWRCHL
	1	ļ		DKTNLRLKEELKAEKKSGFWDNLVLKQNI
				QSKKPDEIEGWEPPKLALEDISADPEDTVG
		ĺ		GHPSWSGWEDDAKGSTKYTSLASSANSSR
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	WSLRAAGKAX
2652	A	1	526	FRLGRKPR*GGVM*PVWSRGEPGSVGAEA
2032	^	1.		G/RS*SAPRRLLHHPAAGLATGLSASGRRS
	1			ARWKMERASGLSPGGGLGATSRQMSPGT
	1			QLANPPDHGDKDCLGRISPGSGKQIQAAG
	1			OLPGPPTSLAPAOGRLRSLTPWGLQTPEHS
	1			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		 	1206	EPEGIGHLQAATEAVLPHSTQNLITKRNLM
2653	A	3	396	AAYTLLHAELLQWSDKPCVPHLLQRDSY
			.	YVYTQQELKEKLYQEIISYFDKGKMWEKA
	1			IKLSKELAETYESKVFDYEGLGNLLKKRAS
1	1			FYENIIKAMSPQPEYFAVGYYGQGFPSFLR
				NKIFIYRGKEYER
2654	С	1	507	MPLTHPNHGPDTLQRWTSSQTPTSLSSKLN
				PEPEADAASILIATSILYKQSDPYLDILARV
	1	1		YGPPTAAEENLKCLKEQGQAHLRHFLLCK
			1	MAAPIAVVLTAAMFENWTHRRQWQVFEP
		1	1	GAREEEKSLKSPRFLALKVLRKGADFQRL
1		1	}	RLYQANMGQAKLPLALFHPLC
2655	- 	170	1206	ALMNKCAVSTGRQRCSVMWARACSVFCV
2655	A	178	1200	LTLRNTGAQKHWLTEGAAKEHCVSDDSE
		1	-	
I	- 1	1	1	HFESWRAAQLFESVDAEPMNMESQLHFIM

Table 8

OTIO	34.44.3	D 12.4. 1	Tauto	Amino acid sequence (X=Unknown, *=Stop
SEQ	Method	Predicted	Predicted	codon, /=possible nucleotide
ID		beginning	ending	deletion,=possible nucleotide insertion)
NO:		nucleotide	nucleotide	deletion,-possible nucleotide insertion)
		location of	location of	
	ł	first amino	last amino	
	1	acid residue	acid residue	
	ì	of peptide	of peptide	
	1	sequence	sequence	
		<u> </u>		PKALRTKKAASDSSKEQVANSRESSPSPKE
	ì		1	VNDSPRAATKSPESQNLIDGTKKPSLKQPD
				SPRNISSDNSSKGTPSSPAGSTTAIPKVRIKT
	<u>}</u>			IKTSSGEIKRTETRVFPEVDLDSGKKPSEQM
				VSVMASVTSLLSSPASAAALSSPPRVPLQS
				AVVTNAVFPAEPTPKQVTIKPVATAFLPVS
	İ		}	AVKTAGSQVINLKLANNTTVKATVIPAAS
	i			VQSASSIIIKAANAIQEQAVMMPASSLANA
		1		KLVPKTVHLANLNLLA
0656	 	215	389	KGAGVLQTFGSSESVFCIDVDRELLIFAYQ
2656	A	215	369	
	ļ			NILLFLKNKRALILETTCFGWVGTVKRT
2657	A	1	737	FRGEIAENLPEQDILIQSVCETMVPKLVAED
	1	1		IPLLFSLLSDVFPGVQYHRGEMTALREELK
	-			KVCQEMYLTYGDGEEVGGMWVEKVLQL
	1	1		YQITQINHGLMMVGPSGSGKSMAWRVLL
	1			KALERLEGVEGVAHIIDPKAISKDHLYGTL
		1 .		DPNTREWTDGLFTHVLRKIIDSVRGELQKR
	1		1	QWIVFDGDVDPEWVENLNSVLDDNKLLTL
				PNGERLSLPPNVRIMFEVQDLKYATLATVS
				RCGMVWFSED
2658	В	41	166	MKIAALLGCMMMAARCGTLSAMRDLSFS
2000		1 '-		DENRRLAVGTAAAA
2659	A	1	894	MPGPMSLWLLLLVLPLSLEHSDLRICFPGQ
2039	17	1 *	0,74	VVSMESSSTGFIWTDVRAWQTSNRHVSSW
				REPRHSRMPPGAGLMERIQAIAQNVSDIAV
				KVDQILRHSLLLHSKVSEGRRDQCEAPSDP
	1			KFPDCSGKVEWMRARWTSDPCYAFFGVD
	1			GTECSFLIYLSEVEWFCPPLPWRNQTAAQR
	1			APKPLPKVQAVFRSNLSHLLDLMGSGKES
	1			LIFMKKRTKRLTAQWALAAQRLAQKLGA
				TQRDQKQILVHIGFLTEESGDVFSPRVLKG
				GPLGEMVQWADILTALYVLGHGLRVTVSL
				KELQR
2660	A	3	14703	AAAVSARRAAAGGSRGAGGWGTADASG
				AMAEGGEGEDEIQFLRTEDEVVLQCIATI
				HKEQRKFCLAAEGLGNRLCFLEPTSEAKYI
	1			PPDLCVCNFVLEQSLSVRALQEMLANTGE
	1		Ì	NGGEGAAQGGGHRTLLYGHAVLLRHSFS
	1			GMYLTCLTTSRSQTDKLAFDVGLREHATG
	1		1	EACWWTIHPASKQRSEGEKVRIGDDLILVS
	1	,	1	VSSERYLHLSVSNGNIQVDASFMQTLWNV
	1	i		HPTCSGSSIEEGYLLGGHVVRLFHGHDECL
	1	1		TIPSTDQNDSQHRRIFYEAGGAGTRARSLW
	1			RVEPLRISWSGSNIRWGQAFRLRHLTTGHY
	1			
	1		1	LALTEDQGLILQDRAKSDTKSTAFSFRASK
	1		1	ELKEKLDSSHKRDIEGMGVPEIKYGDSVCF
	1			VQHIASGLWVTYKAQDAKTSRLGPLKRKV
	1		1	ILHQEGHMDDGLTLQRCQREESQAARIIRN
	1		1	TTALFSQFVSGNNRTAAPITLPIEEVLQTLQ
	1		1	DLIAYFQPPEEEMRHEDKQNKLRSLKNRQ
ĺ	1			NLFKEEGMLALVLNCIDRLNVYNSVAHFA

463

Table 8

SEQ	Method	Predicted	Predicted	Amino acid sequence (X=Unknown, *=Stop
ID		beginning	ending	codon, /=possible nucleotide
NO:		nucleotide	nucleotide	deletion,=possible nucleotide insertion)
1.0.	1	location of	location of	addition, possible madret as indicated
	1	first amino	last amino	
1		acid residue	acid residue	
1		of peptide	of peptide	
l		sequence	sequence	
				GIAREESGMAWKEILNLLYKLLAALIRGNR
	}			NNCAQFSNNLDWLISKLDRLESSSGILEVL
	ŧ			HCILTESPEALNLIAEGHIKSIISLLDKHGRN
İ			1	HKVLDILCSLCLCNGVAVRANQNLICDNL
				LPRRNLLLQTRLINDVTSIRPNIFLGVAEGS
İ	ļ		<u> </u>	AQYKKWYFELIIDQVDPFLTAEPTHLRVG
	İ		1	WASSSGYAPYPGGGEGWGGNGVGDDLYS
	Į			YGFDGLHLWSGRIPRAVASINQHLLRSDD
ĺ				VGKLLPGPRGCPASHSASMGSPCRGCLENF
!			ļ	NTDGLFFPVMSFSAGVKVRFLMGGRHGEF
		1		KFLPPSGYAPCYEALLPKEKMRLEPVKEY
				KRDADGIRDLLGTTQFLSQASFIPCPVDTSQ
		1	1	VILPPHLEKIRDRLAENIHELWGMNKIELG
		1		WTFGKIRDDNKRQHPCLVEFSKLPETEKN
				YNLQMSTETLKTLLTLGCHIAHVNPAAEE
		<u> </u>		DLKKVKLPKNYMMSNGYKPAPLDLSDVK
				LLPPQEILVDKLAENAHNVWAKDRIKQGW
				TYGIQQDLKNKRNPRLVPYALLDERTKKS NRDSLREAVRTFVGYGYNIEPSDQELADSA
				VEKVSIDKIRFFRVERSYPVRSGKWYFEFE
	}	1		VVTGGDMRVGWARPGCRPDVELGADDQ
		İ		AFVFEGNRGQRWHQGSGYFGRTWQPGDV
				VGCMINLDDASMIFTLNGELLITNKGSELA
	İ			FADYEIENGFVPICCLGLSQIGRMNLGTDA
				STFKFYTMCGLQEGFEPFAVNMNRDVAM
				WFSKRLPTFVNVPKDHPHIEVMRIDGTMD
				SPPCLKVTHKTFGTQNSNADMIYCRLSMP
				VECHSSFSHSPCLDSEAFQKRKQMQEILSH
				TTTQCYYAIRIFGGQDPSCVWVGWVTPDY
		ĺ		HLYSEKFOLNKNCTVTVTLGDERGRVHES
				VKRSNCYMVWGGDIVASSQRSNRSNVDL
	1	1		EIGCLVDLAMGMLSFSANGKELGTCYQVE
				PNTKVFPAVFLQPTSTSLFQFELGKLKNAM
				PLSAAIFRSEEENPVPQCPPRLDVQTIQPVL
				WSRMPNSFLKVETERVSERHGWVVQCLEP
	1	i		LQMMALHIPEENRCVDILELCEQEDLMRF
				HYHTLRLYSAVCALGNSRVAYALCSHVDL
		İ		SQLFYAIDNKYLPGLLRSGFYDLLISIHLAS
				AKERKLMMKNEYIIPITSTTRNICLFPDESK
\				RHGLPGVGLRTCLKPGFRFSTPCFVVTGED
				HQKQSPEIPLESLRTKALSMLTEAVQCSGA
		İ		HIRDPVGGSVEFQFVPVLKLIGTLLVMGVF DDDDVRQILLLIDPSVFGEHSAGTEEGAEK
	I		!	
	1		'	EEVTQVEEKAVEAGEKAGKEAPVKGLLQT RLPESVKLQMCELLSYLCDCELQHRVEAIV
	1			AFGDIYVSKLQANQKFRYNELMQALNMS
	1			AALTARKTKEFRSPPQEQINMLLNFQLGEN CPCPEEIREELYDFHEDLLLHCGVPLEEEEE
	1		,	EEEDTSWTGKLCALVYKIKGPPKPEKEQPT
			·	EEEERCPTTLKELISQTMICWAQEDQIQDSE
			i	LVRMMFNLLRRQYDSIGELLQALRKTYTIS
	L	l		LA MANIALIA PER LA PROPERTI A 119

464

Table 8

SEQ	Method	Predicted	Predicted	Amino acid sequence (X=Unknown, *=Stop
D D		beginning	ending	codon, /=possible nucleotide
NO:		nucleotide	nucleotide	deletion,=possible nucleotide insertion)
		location of	location of	
		first amino	last amino	
		acid residue	acid residue	
		of peptide	of peptide	
		sequence	sequence	
				HTSVSDTINLLAALGQIRSLLSVRMGKEEE
				LLMINGLGDIMNNKVFYQHPNLMRVLGM
	1			HETVMEVMVNVLGTEKSQIAFPKMVASCC
				RFLCYFCRISRQNQKAMFEHLSYLLENSSV
				GLASPSMRGSTPLDVAASSVMDNNELALS
			•	LEEPDLEKVVTYLAGCGLQSCPMLLAKGY
				PDVGWNPIEGERYLSFLRFAVFVNSESVEE
				NASVVVKLLIRRPECFGPALRGEGGNGLLA
				AMQGAIKISENPALDLPSQGYKREVSTEDD
				EEEEEIVHMGNAIMSFYSALIDLLGRCAPE MHLIQTGKGEAIRIRSILRSLVPTEDLVGIISI
				PLKLPSLNKDGSVSEPDMAGNFCPDHKAP
				MVLFLDRVYGIKDQTFLLHLLEVGFLPDLR
				ASASLDTVSLSTTEAALALNRYICSAVLPL
				LTRCAPLFGGTEHCTSLIDSTLQTIYRLSKG
				RSLTKAQRDTIEECLLAICNHLRPSMLQQL
				LRRLVFDVPQLNEYCKMPLKLLTNHYEQC
				WKYYCLPSGWGSYGLAVEEELHLTEKLF
				WGIIDSLSHKKYDPDLFRMALPCLSAIAGA
	ŀ			LPPDYLDSRITATLEKQISVDADGNFDPKPI
				NTMNFSLPEKLEYIVTKYAEHSHDKWACD
				KSQSGWKYGISLDENVKTHPLIRPFKTLTE
			1	KEKEIYRWPARESLKTMLAVGWTVERTKE
	İ			GEALVQQRENEKLRSVSQANQGNSYSPAP
	·			LDLSNVVLSRELQGMVEVVAENYHNIWA
				KKKKLELESKGGGSHPLLVPYDTLTAKEK
		1		FKDREKAQDLFKFLQVNGIIVSRGMKDME
				LDASSMEKRFGYKFLKKILKYVDSAQEFIA
				HLEAIVSSGKTEKSPRDQEIKFFAKVLLPLV
				DQYFTSHCLYFLSSPLKPLSSSGYASHKEK
				EMVAGLFCKLAALVRHRISLFGSDSTTMV
	1		1	SCLHILAQTLDTRTVMKSGSELVKAGLRAF
		1	1	FENAAEDLEKTSENLKLGKFTHSRTQIKGV SQNINYTTVALLPILTSIFEHVTQHQFGMDL
	1			LLGDVQISCYHILCSLYSLGTGKNIYVERQ
				RPALGECLASLAAAIPVAFLEPTLNRYNPL
				SVFNTKTPRERSILGMPDTVEDMCPDIPQL
			1	EGLMKEINDLAESGARYTEMPHVIEVILPM
				LCNYLSYWWERGPENLPPSTGPCCTKVTS
	1			EHLSLILGNILKIINNNLGIDEASWMKRIAV
				YAQPIISKARPDLLRSHFIPTLEKLKKKAVK
				TVQEEEQLKADGKGDTQEAELLILDEFAV
				LCRDLYAFYPMLIRYVDNNRSNWLKSPDA
			1	DSDQLFRMVAEVFILWCKSHNFKREEQNF
				VIQNEINNLAFLTGDSKSKMSKAMQVKSG
				GQDQERKKTKRRGDLYSIQTSLIVAALKK
	1			MLPIGLNMCTPGDQELISLAKSRYSHRDTD
				EEVREHLRNNLHLQEKSDDPAVKWQLNL
				YKDVLKSEEPFNPEKTVERVQRISAAVFHL
				EQVEQPLRSKKAVWHKLLSKQRKRAVVA
: 				CFRMAPLYNLPRHRSINLFLHGYQRFWIET

Table 8

SEQ	Method	Predicted	Predicted	Amino acid sequence (X=Unknown, *=Stop
D		beginning	ending	codon, /=possible nucleotide
NO:		nucleotide	nucleotide	deletion,=possible nucleotide insertion)
	j	location of	location of	-
		first amino	last amino	
		acid residue	acid residue	
	1	of peptide	of peptide	
		sequence	sequence	
-	1	Sequence	0.4	EEYSFEEKLVQDLAKSPKVEEEEEEETEKQ
				PDPLHQIILYFSRNALTERSKLEDDPLYTSY
	1			SSMMAKSCQSGEDEEEDEDKEKTFEEKEM
	-			EKQKTLYQQARLHERGAAEMVLQMISAS
				KGEMSPMVVETLKLGIAILNGGNAGVQQK
		•		MLDYLKEKKDAGFFQSLSGLMQSCSVLDL
				NAFERQNKAEGLGMVTEEGTLIVRERGEK
				VLQNDEFTRDLFRFLQLLCEGHNSDFQNFL
			}	RTQMGNTTTVNVIISTVDYLLRLQESISDFY
			ļ	WYYSGKDIIDESGQHNFSKALAVTKQIFNS
				LTEYIQGPCIGNQQSLAHSRLWDAVVGFL
			1	HVFANMQMKLSQDSSQIELLKELLDLLQD
	1		[MVVMLLSLLEGNVVNGTIGKQMVDTLVE
	İ			SSTNVEMILKFFDMFLKLKDLTSSDTFKEY
				DPDGKGIISKKEFQKAMEGQKQYTQSEIDF
				LLSCAEADENDMFNYVDFVDRFHEPAKDI
				GFNVAVLLTNLSEHMPNDSRLKCLLDPAE
				SVLNYFEPYLGRIEIMGGAKKIERVYFEISE
				SSRTQWEKPQVKESKRQFIFDVVNEGGEQ
				EKMELFVNFCEDTIFEMQLASQISESDSAD
				RPEEEEEDEDSSYVLEIAGEEEEDGSLEPAS
				AFAMACASVKRNVTDFLKRATLKNLRKQ
				YRNVKKMTAKELVKVLFSFFWMLFVGLF
				QLLFTILGGIFQILWSTVFGGGLVEGAKNIR
	1			VTKILGDMPDPTQFGIHDDTMEAERAEVM
				EPGITTELVHFIKGEKGDTDIMSDLFGLHPK
				KEGSLKHGPEVGLGDLSEIIGKDEPPTLEST
				VQKKRKAQAAEMKAANEAEGKVESEKAD
				MEDGEKEDKDKEEEQAEYLWTEVTKKKK
				RRCGQKVEKPEAFTANFFKGLEIYQTKLLH
				YLARNFYNLRFLALFVAFAINFILLFYKVTE
	1			EPLEEETEDVANLWNSFNDEEEEEAMVFF
				VLQESTGYMAPTLRALAIIHTIISLVCVVGY
	1			YCLKVPLVVFKREKEIARKLEFDGLYITEQ
	1			PSEDDIKGQWDRLVINTPSFPNNYWDKFV
		,		KRKVINKYGDLYGAERIAELLGLDKNALD
	1			FSPVEETKAEAASLVSWLSSIDMKYHIWKL
				GVVFTDNSFLYLAWYTTMSVLGHYNNFFF
	1			AAHLLDIAMGFKTLRTILSSVTHNGKQLVL
	1	·		TVGLLAVVVYLYTVVAFNFFRKFYNKSED
1	1		1	DDEPDMKCDDMMTCYLFHMYVGVRAGG
l	1			GIGDEIEDPAGDPYEMYRIVFDITFFFFVIVI
1	1			LLAIIQGLIIDAFGELRDQQEQVREDMETK
1	1			CFICGIGNDYFDTTPHGFETHTLQEHNLAN
1	1			YLFFLMYLINKDETEHTGQESYVWKMYQE
1				RCWDFFPAGDCFRKQYEDQLG
2661	С	54	350	MLNSSEQRRPHGVLDSVWPGIHGALCAGR
	1	1		WLRTGQLSWDTRHMLARKMVSSSEPQRP
	1	,		PTSWSWCCLASTVRPLLVDGSGWGSCRGR
l		l .	1	
!				PAACWKEDGQFF SSALLSSNQTASFGSCSLSLPCSARERTPEG

466

Table 8

SEQ ID NO:	Method	Predicted beginning nucleotide location of first amino acid residue of peptide sequence	Predicted ending nucleotide location of last amino acid residue of peptide sequence	Amino acid sequence (X=Unknown, *=Stop codon, /=possible nucleotide deletion,=possible nucleotide insertion) GGWPGGRLSEPLPAMLLLWVSVVAALAL AVLAPGAGEQRRRAAKAPNVVLVVSDSFD GRLTFHPGSQVVKLPFINFMKTRGTSFLNA YTNSPICCPSRAAMWSGLFTHLTESWNNF KGLDPNYTTWMDVMERHGYRTQKFGKL DYTSGHHSIRHSERGSTNQRSEKV
2663	В	44	293	MPVWWRRRRLRARSWALRARPLSLPRAQ RSGRLLRRPKGYAPGAPKAHELSPQAICAV AFX
2664	С	40	495	MVILNALQRRAFLCAANVKIPRLRIKVKTK EASAQVVKEECNKYLLFLLPVPSAGLLPSI MEIADPFSSFGSEDKCYTLTPPLPRHTEKSS DSQEKGHFEAGVEPKSRGSTPGQYPGIGCF ARFREYQIGMRHLTTRPAMHRAQVLFPLS F
2665	A	587	2	FLTRETGDPTGRSSSHANTQSRFFPDDPPG\ PLNNLGNTHGCGRRAGRCPGTGPDGP\AG CGGPRCWPSGHLAATGD*GPSCGRLGANR GEAGPAGFTACSPLSGCRTPYTHHFPASRM SCHLNCASPRTYRSQGNRGCERVAQGSQG AGGERGAKSQVPVPAPARNKDPAKCRKPR NRRPGNSGPVVRAYRRQR
	A	1	1853	RARRLALQCHVCVCALTPGEQSGRRLPGQ TWLMFSCFCFSLQDNSFSSTTVTECDEDPV SLHEDQTDCSSLRDENNKENYPDAGALVE EHAPPSWEPQQQNVEATVLVDSVLRPSMG NFKSRKPKSIFKAESGRSHGESQETEHVVS SQSECQVRAGTPAHESPQNNAFKCQETVR L\QPRIDQRTATSPKDAFETR\QDLNEEEAA QVHGVKDPAPASTQSVLA\DGTDSADPSPV HKDGQNEADSAPEDLHSVGTSRLLL\YHIT DGDNPTAVRHGCSL\FSGQSQRFNLDPESA PSPPSTQQFMMPRSSSRCSCGDGKEPQTIT QLTKHIQSLKRKIRKFEEKFEQEKKYRPSH GDKTSNPEVLKWMNDLAKGRKQLKELKL KLSEEQGSAPKGPPRNLLCEQPTVPRESGK PEAAGPEPSSSGEETPDAALTCLKERREQL PPQEDSKVTKQDKNLIKPLYDRYRIKQILS TPSLIPTIQEEEDSDEDRPQGSQQPSLADPA SHLPVGDHLTYSNETEPVRALLPDEKKEV KPPALSMSNLHEATMPVLLDHLRETRADK KRLRKALREFEEQFFKQTGRSPQKEDRIPM ADEYYEYKHIKAKLRLLAPPAGSYFP
2667	С	147	398	MYKAQFLAASPGRCLGLLAASNHHAKSIH GFRRLVKTMRNRLCSLCQPFPLPKHLLSLS WFGDQGHTSQYFTLSTQRNEAQLQ
2668	A	1	1787	MSKGESRKCNEENVSKSSKVVKVFIVLTPQ FLSRDKDQLTKELQKHVKSVTVSCKSPRK LLSHITRLHPPSKGQGENLTHLVDSIKATIW CQPVWETVEGQRRRVGNCIDFTNGCDLVG SSSLHNMLVCSSYDINRQDTFQKDRTSEKH

467

Table 8

SEQ	Method	Predicted	Predicted	Amino acid sequence (X=Unknown, *=Stop
ID ID	Method	beginning	ending	codon, /=possible nucleotide
NO:		nucleotide	nucleotide	deletion,=possible nucleotide insertion)
NO:		location of	location of	
		first amino	last amino	
	ŀ	acid residue	acid residue	
			of peptide	
		of peptide sequence	sequence	
		sequence	sequence	LLDSVFTALQDSAGQQWPARLHPQRGEEV
			1	ADPRGAPSRHVEPENSSPCQGNGEQAGKA
				GARALCGQARRSPATMPPPLTTRSLCEFAV
	<u> </u>			FLLHWLFPELFHYRKLGEQDSCYGDGGKQ
	İ			ELDPQRLQIICNFTEVYFPHMQEEEAWRQA
				GPGPAEAAD/TSATSRRSTSPTCRRRRPGCS
				GAPSASTTSFRAWGWTQAAKASPPRDNCY
				NSSSLPDDISLFTHDNLHKQHSCSDSLGKK
				QLDPSCIKLIRH*VHLLYLCTKNNRVWTLE
				FMGNLHWNRNRGAPTSSSARSTCWPRV*R
				HEELCNQS*EVQRGV*GSPAAPERSSKDFC
				KIPLDEVVVPH*/DFPVRSPYLLSDKEVCKI
				VQQSLSVGNFAAGLL/LPPRTSSCSTTIFGL/
				DNKKQLDPTQLRLICH*VEAVYPVEKVEE
	!			VWHCECIPSNDEQCHCPNRKKCNILKKAK
				KVEK
2669	A	14	425	RRFREPDAQMLEIPNLTPYTHYRFRMKQV
2009	<u> </u> ^	144	"2"	NIVGPSPYSPSSRVIQTLQAPPDVAPTSVTV
				RTASETSLRLRWVPLPDSQYNGNPESVGY
				RIKYWRSDLQSSAVAQVVSDRLEREFTIEE
				LEEWMEYELQMQAFNAVG
2670	В	1	825	MRALKLQRRKSFWIVVAWEAFVQLVNYE
2070	12	1		CKVGEWKGLAHCVSQNNKYRTTYIIAGVP
				NPOEPGYTAGGQLKGNDLTVLHLLVIEGK
				WEAVRKFPFKKYIVNTAIVKEARKYWVEE
		1		GSSLAKATRSNPGYLQPYMRTGIPVFAPPK
	Ì			LPFGPPCPLSCTHINPKPQAPEADQQLPIHL
				AESHFHHSIKPRIHPSSPCVTRFFLDAEREL
		1		GIQKAVPWSFTLVKKQKSLGLPSVQDFGS
	1			VYKMNIWSDVACCDPQLQQPAASAQTSAI
				SQLSRVTES
2671	В	475	848	XRTERVHLRITPGDDSRKRSSASHYRVAGI
	1			SRLTLSLDREQLYLEQSTEGPEQDKREGKS
				ARSSSREPTGQPRTLLGGMRARKRKTLVL
				GPFPRVISGSNAKMDTLSPACACAFALYGI
				PKPAA
2672	A	3	765	LGTVSYGADTMDEIQSHVRDSYSQMQSQA
		1		GGNNTGSTPLRKAQSSAPKVRKSVSSRIHE
				AVKAIVLCHNVTPVYESRAGVTEETEFAE
	1			ADQDFSDENRTYQASSPDEVALVQWTESV
			1	GLTLVSRDLTSMQLKTPSGQVLSFCILQLFP
1			1	FTSESKRMGVIVRDESTAEITFYMKGADVA
				MSPIVQYNDWLEEECGNMAREGLRTLVV
				AKKALTEEQYQDFEVSRLPGIPSSY/DRCLP
		1	1	YAEISSSCLCMKLELGSL
2673	A	9	413	EPKSLIQIIKQSIVELKLQAEDSFVLKVVQL
				EELLQVRHSVFIVGNAGSGKSQVLTLASNE
			1	RIPLNRTMRLVFEISHLRTATPATVSRAGIL
				YINPADLGWNPVVSSWIERRKVQSEKANL
	<u> </u>			MILFDKYLPTCLDK
2674	Α	379	17	SWGVWYKYQPLDLVRRYFGEKIGLYFAW

468

Table 8

SEQ ID NO:	Method	Predicted beginning nucleotide location of first amino acid residue of peptide sequence	Predicted ending nucleotide location of last amino acid residue of peptide sequence	Amino acid sequence (X=Unknown, *=Stop codon, /=possible nucleotide deletion, =possible nucleotide insertion) LGWYTGMLFPAAFIGLFVFLYGVTTVDHS QVSKEVCQATDIIMCPVCDKYCPFMRLSDS CVYAKVTHLFDNGATVFSAVFMAVWATV
2675	A .		1833	MVDSLIARVGVMARGNAITLPVCGRDVKF TLEVLRGDSVEKTSRVWSGNERDQELLTE DALDDLIPSFLLTGQQTPAFGRRVSGVIEIA DGSRRRKAAALTESDYRVLVGELDDEQM AALSRLGNDYRPTSAYERGQRYASRLQNE FAGNISALADAENISHSDKFDANDPILKDQ TQEWSGSATFTSDGKIRLFYTDYSGKHYG KQSLTTAQVNVSKSDDTLKINGVEDHKTIF DGDGKTYQNVQQFIDEGNYTSGDNHTLRD PHYVEDKGHKYLVFEANTGTENGYQGEES LFNKAYYGGGTNFFRKESQKLQQSAKKRD AELANGALVNTQSTTTRRPGSNSLSHLMW PVDHQKFQSVTEMCGSILSRDFADFGTTIK QDFRLLGQTSVDRLLQLSQGQAVKGNQLL PVSLVKRKTTLAPNTQTASPRALADSLMQ LARQVSRLESGQDFADFGTTIKQDFRLLGQ TSVDRLLQLSQGQAVKGNQLLPVSLVKRK TTLAPNTQTASPRALADSLMQLARQVSRL ESGQDFADFGTTIKQDFRLLGQTSVDRLLQ LSQGQAVKGNQLLPVSLVKRKTTLAPNTQ TASPRALADSLMQLARQVSRLESGQ
2676	В	1	309	MGKAMLQLLIRAHWTVFPCEHEDNAASV SVTLCSDLAGGEVVSAVLTGQSVVQTEKEI DRSSKPPACLVAPQVVFCSEVLRVDESYHR KYPVQLRPVHIAAK
2677	A	2	179	RGKKSVTTVAGPMAQDVESLALCLQALLS EDMYRLDPTVLQMPFREEVKTPFPTPGCSE
2678	A	34	390	MKRRRQLRARVFALALAWSLGPCWALRV AVPKASXTIRGPQRRLLASLLQENTEILGY LLGSVAAFGSWASRIPPLSRICRGKTFPSIH LWTRLLSALAGLLYASAIAAHDRHPEYLL R
2679	. A	568	3	SYYERINRQLIEAKMALQDREEKMEKVFD DIETNMNLIGATAVEDKLQDQAAETIEALH AAGLKVWVLTGDKMETAKSTCYACRLFQ TNTELLELTTKTIEESERKEDRLHELLIEYR KKLLHEFPKSTRSFKKAWTEHQEYGLIIDG STLSLILNSSQDSSSNNYKSIFLQICMKCTA VLCCRMAPL
2680	A	3	394	SSRWAFQVLSPSADSARLPGRAPGDRDCTF QPSAPAPSKPFLLSTPPFYSACCGGSCRRPA SSTAFPREESMLPLLTQDSNSKARRGILRR AVFSEDQRKALEKMFHKQKYISKTDRKKL AINLGLKESQ
2681	A	42	406	EPGDPREGEEEEEEDEPDPEAPENGSLPRFV PRFNFSLKDLTRFVDFNIKGRDVIVFLHIQK TGGTAFGRHLVKNIRLEQPCSCKAGQKKC

Table 8

SEQ ID NO:	Method	Predicted beginning nucleotide location of first amino acid residue of peptide sequence	Predicted ending nucleotide location of last amino acid residue of peptide sequence	Amino acid sequence (X=Unknown, *=Stop codon, /=possible nucleotide deletion,=possible nucleotide insertion) TCHRPGKKETWLFSRFSTGWSCGLHADWT E
2682	A	10	932	LQLCSMWLLRSWVQAEGAVSISDSPFSLH QCWAVLHKAWCVFLQLPGGFTFTLNPLSD NLLGKRVDSAPSWGPLGSAFRGVHMPCV GAAWEGKGPNLLRPSGKLGPSGSRPTPIGQ QQLPEVPRAKGPLGPAAVICQ/HMPAPSTG GKRGSFSGRYLSASLELGGLPMAPTGPSAL SAPPSVSRGAR*STREKPGVYASAT*AAEIR EGQALGG\PRPSRNG/SGGPLGPDFGPNGPK LRRSKAGCPWWHLSSVDAGE*LWKQHST AVFSMPGTQPPWRGLITMPISPRGTEPTAH PGPRSPGLAYSLTA
2683	A		416	NRLTTHSPHSPGPGGRQAPWRRQCRPASC PAKSTTWPVTRAPTRPPAWPPPASAPP/RY LLEEWFQNCYARYHQAFADRDQSERQRH ESQQLATETQALAQRTQQDSTRTVGERLQ DTHSWKSELQREMEALAAETNLLL
2684	A	356	1356	TPTTSGRTRKMWPRPGT*PP/ANCSANINLT HQPWFQVLEPQFRQFLFYRHCRYFPMLLN HPEKCRGDVYLLVVVKSVITQHDRREAIR QTWARAAVRGWGPSAVRTLFLLGTASKQ EERTHYQQLLAYEDALYGDILQWGFLDTF FNLTLKEIHFLKWLDIYCPHVPFIFKGDDD VFVNPTNLLEFLADRQPQENLFVGDVLQH ARPIRRKDNKYYIPGALYGKASYPPYAGG GGFLMAGSLARRLHHACDTLELYPIDDVF LGMCLEVLGVQPTAHEGFKTFGISRNRNSR MNKEPCFFRAMLVVHKLLPPELLAMWGL VHSNLTCSRKLQVL
2685	A	1	741	VRSMSCPPSWPYCAPCPTNIGESTSPLRKTI ETPTLWDPKAPSCSLELPPWVLASPQRSRG TALPFLPSNVLPSLALPSTSFLCRPLLSHLV TSLLAGPGAHDGHLRKEGWRSTPEMTSLP APEHPASPCDSVLCSPDVSMCTLGPAARW DAQAKSAPLPPCCTDCKSFPHLQRPWAQP HTSQATSVDSGEAGTKGMSQFTVWTWWR SRPCETRQGEGIGNWGYSVTPGPPGSQNLP ARLDGQGLAS
2686	A	396	687	TFCPRCGCPSGLAMRLFLSLPVLVVVLSIV LEGPAPA*GAPEVSNPFDGLEELGKTLEDY TREFINRITQSELPAKMWDWFSETFRKVKE KLKTDS
2687	A		3794	PRGPRPGASGSAMWLSPEEVLVANALWVT ERANPFFVLRRRRGHGRGGGLTGLLVGTL DVVLDSSARVAPYRILHQTQDSQVYWTVA CGSSRKEITKHWEWLENNLLQTLSIFDSEE DITTFVKGKIHGIIAEENKNLQPQGDEDPG KFKEAELKMRKQFGMPEGEKLVNYYSCS YWKGRVPRQGWLYLTVNHLCFYSFLLGK EVSLVVQWVDITRLEKNATLLFPESIRVDT

Table 8

CEC	Method	Predicted	Predicted	Amino acid sequence (X=Unknown, *=Stop
SEQ	Method	beginning	ending	codon, /=possible nucleotide
D		nucleotide	nucleotide	deletion,=possible nucleotide insertion)
NO:		1	location of	deletion,-possible naticollab laser treny
		location of		
		first amino	last amino	
		acid residue	acid residue	
	ļ	of peptide	of peptide	4
	L	sequence .	sequence	TO THE THE PROPERTY OF THE AMERICAN AND AMERICAN AMERIC
				RDQELFFSMFLNIGETFKLMEQLANLAMR
	}			QLLDSEGFLEDKALPRPIRPHRNISALKRDL
ľ	İ			DARAKNECYRATFRLPRDERLDGHTSCTL
		1		WTPFNKLHIPGQMFISNNYICFASKEEDAC
	ļ	İ		HLIIPLREVTIVEKADSSSVLPSPLSISTKSK
]		Ì		MTFLFANLKDRDFLVQRISDFLQKTPSKQP
	1			GSIGSRKASVVDPSTESSPAPQEGSEQPASP
	1	Ì		ASPLSSRQSFCAQEAPTASQGLLKLFQKNS
	Ĭ			PMEDLGAKGAKEKMKEESWHIHFFEYGR
Ì				GVCMYRTAKTRALVLKGIPESLRGELWLL
	1			FSGAWNEMVTHPGYYAELVEKSTGKYSL
	ļ.	1		ATEEIERDLHRSMPEHPAFQNELGIAALRR
İ	1			VLTAYAFRNPTIGYCQAMNIVTSVLLLYGS
				EEEAFWLLVALCERMLPDYYNTRVVGAL
	i			VDOGIFEELTRDFLPQLSEKMQDLGVISSIS
			1	LSWFLTLFLSVMPFESAVVIVDCFFYEGIK
	[VILQVALAVLDANMEHLLGCSDEGEAMT
i				MLGRYLDNVVNKQSVSPPIPHLRALLSSSD
		1	!	DPPAEVDIFELLKVSYEKFSSLRAEDIEQMR
			1.	FKQRLKVIQSLEDTAKRSVVRAIPVDIGFSI
			ľ	EELEDLYMVFKAKHLASQYWGCSRTMAG
1	İ			RRDPSLPYLEQYRIDASQFRELFASLTPWA
				CGSHTPLLAGRMFRLLDENKDSLINFKEFV
1				TGMSGMYHGDLTEKLKVLYKLHLPPALSP
İ				E\EAE\SALEATHLFSQRDSSEASPLASDLD
	1			LFLPWEAQEALPQEEQEGSGSEERGEEKGT
	1			SSPDYRHYLRMWAKEKEAQKETIKDLPK
ľ				MNQEQFIELCKTLYNMFSEDPMEQDLYHA
i				IATVASLLLRIGEVGKKFSARTGRKPRDCA
İ			ì	
	i			TEEDEPPAPELHQDAARELQPPAAGDPQA KAGGDTHLGKAPQESQVVVEGGSGEGQG
				SPSQLLSDDETKDDMSMSSYSVVSTGSLQC
	1	1		EDLADDTVLVGGEACSPTARIGGTVDTDW
				CISFEQILASILTESVLVNFFEKRVDIGLKIK
			I	DQKKVERQFSTASDHEQPGVSG
2688	В	119	682	GDKGADEREISGGTDTAAAAQLKIHYWIP
	1			GPSTVQEHKEVFNTKLADGQNGSPSKQASI
1	1			CDRQFVVAGGYHRSLADEAYGDEEDLPK
	1			VVGLVHSTRGPAHPTYLLRPLQKDQDSSL
ł		1	İ	LRASGGGGSPSSSTKSEHSCRQIHIPGPFS
	1			HADITGQKWFPGGVSTEPARNMGFLKPTP
			ļ	TPLLRSPKDFR
2689	В	1	3097	MAGARVGPAAGARTAVPAAGEVPASPAL
		1		TDTQKGTGIGHWVVAVAPTIQTSVWPKPF
Ì				RGNRISVLGFEPHSLVSADPQQSQYPYFLFP
1	1	1		EPPSPKPLSMLEDSYASLKIQASARAPPLSPI
1		1		DMDKQERIKAERKRLRNRIAASQVPQAQA
	ì		1	GAHLAPGKKVKTLKSQNTELASTAACCAS
	1			SSSLVGGSRERVSESGPHICAQRAPPRRAL
	1			ARGRLMPGDTGPRELHRNPSVVVVVCLLV
1	1		1	SLLLIGSVVMAVRFCHRNESKFENLDEVS
L				CONDICTOR A LIMITARIO COMPANION TRANSPORT

Table 8

I om o		·	
SEQ Meth		Predicted	Amino acid sequence (X=Unknown, *=Stop
ID	beginning	ending	codon, /=possible nucleotide
NO:	nucleotide	nucleotide	deletion,=possible nucleotide insertion)
	location of	location of	
	first amino	last amino	
	acid residue	acid residue	
	of peptide	of peptide	
	sequence	sequence	
			MGSVNDRLSFAHHLQEHQFLFPRVAGCRA
i i		1	RGTPATPAALGRCWPWPLRPPCPASQRQK
			VAVGPKRMGPSPFRLAATVRQPERPQAPM
			AVPSCPSTPDYENMFVASQQPSTSGMNKG
			KALPAGILQMVTDTSRPNVGGDESLDCLV
			LNRISYTCRSTLSPRPSFSAPGREESGSVMA
			PDDSMGIMRSLGGLSRLTVAAIVRDVTKFC
			DPGPPHPALQETPQMAPSPGAPQPLNPPAP
	}	•	PRKRNTASAPVHLRAARDDSEAALYPFLQ
.			VSYSLSGHKNNYTYYAWVVGGFRALGYK
		1	HSTDVCSGVTIQEEMWIRHRFLRAAPISQR
] [TRHYHRFLGCSMAGSGCASDLLCCDWRD
1			SCCRCSLSAAQATPLSSPRPRPRSAARLSAR
1 1			GAATTAGSVCSGGGEVAGEPGPRRHHVG
			GAEKWGDVQWTPGDCDNWMNINLREVIC
! !			TSGTGQVLADARVLHPRQHHQYLRIPDEII
1			DMVKEEVGPRAAAAEACSSRSSRKPRHGR
			RWPRCFGALSCCGGRESDSTCCKPLPFADP
			QVLHAPEKGVWEAGSRTRPRERAPRSVCP
1 1	-		GSGPGPGVEATARSCRAGGAEAVEGGTGA
			QASMVNTTGYWARPLQATQGGSAAWQQ WGTREASPDDTTTRGLTGAKPESTNSQNH
2690 A	1007	537	SRKGSSLAAHPLSPSRLSAVPTAGGGGDSE
12000	1007	337	AKPHLVSPGGSEGAIWCGHGQGRGGSGND
1 1			RGGQ\GPGAGGRRGIPTPARGAVIYKTQRR
			EEEGTRGCNQLASLSGPQGATVSPSSGGSS
			PGTCCDRHPLRADTRMMVWGQEPSPSLVC
1			FPKLQPDSL
2691 A	1	1656	METEPSKAKANDPGSAAEGVVFASISSGLG
			EVTFLSLTAFYPRAVISWWSSGTGGAGLLG
			ALSYLGLTQAGLSPQQTLLSMLGIPALLLA
		1	SILRKALDKIAEIKSLLEERRIGHKYLGLRY
			CPPLYVLYTDAFWSVTPYSEVHIAFTILEEV
			SLCDSKLIHIIFVRLAYACPRFTVSAWAASI
			PEYMVRISLLTAQVDMTIIGIAFMPCPRPL
			MPTVAPTAAREMGVHHTGDSAGEKLHRA
[CCGRGRLCREHRVLALPLSSTLPYRDCAPG
			CILHFPPFVHRYEVDDIDEEGKARHTVSLR
			RIIPLTRWKANPETDPEALLVKEKTMFSGC
1			CNLGDSTANTGSLGNTAKWARVPNYTNM
	}		QRLVVAPNVGLRCYLLDTRLKGQGKECES
	'		PPMIGLRSICMHTKKRVSSFRGNKIGLKDVI
		j j	TLRRHVETKVRAKIRKRKVTTKINRHDKIN
			GKRKTARKQLSLSPCSQCLNLVFLLADVW
			FGFLPSIYLVFLIILYEGLLGGAAYVNTFHN
ľ			IALETSDEHREFAMAATCISDTLGISLSGLL
			ALPLHDFLCQLS
2692 B	1	678	MKTLLARASRFLALPRTSFNALSKSHNLLG
1	}		FKDIRSNVEALAQKTQPSVFPKESVQVTPV
			CYTKGDRESVQKCPLIFRSHSATEQVSIRR
)			

472

Table 8

SEQ Method Deginning nucleotide location of first amino acid residue Not not not not not not not not not not n	_ <u>-</u>
NO: nucleotide nucleotide deletion,=possible nucleotide ins location of location of first amino last amino acid residue acid residue	ertion
location of location of first amino last amino acid residue acid residue	ייומוזים:
first amino last amino acid residue acid residue	er cron)
acid residue acid residue	
of peptide of peptide	
sequence sequence	
YETSPLIHTPALRVYYIGEDIA	MEQVTNLA
FPLLYSNSHRVSEPGELGFWG	PGESVMPA
DAVSVPCTCHPGSYGVQPLVI	CRIQGYSGT
GRWISASAMSCIISDRNG	
2693 A 22 334 ALKHFCLCSLIFSVTTMKFLAV	VLVLLGVSIF
LVSAQNP\TTAAPADTVSSLLV	
AETTAAATTATTAAPTTATTA	
PVLPKWVGDLPNR	
2694 A 3 435 RVDPRVRAPRCGDKIKNHMY	KCDCGSLK
DCASDRCCETSCTLSLGSVCN	
KYAAPGVVCRDLGGICDLPEY	
PNDIYIQDGTPCSAVSVCIRGN	
QALFGYQVKDGSPACYRKLN 2695 A 120 1438 TMNSEDTLRONLLMGYROHO	
PRRPAHQSSAEGSLVPCSGMP	
ARQGPAEVSGAGKIPASPKTG	
WKLEKGYSPCAQAGCSKGQG	
LIILGYQA*KGS*FFGPSPPSRK	
PQRRKFS*PRFPEGLN*PDCGP	
CRGLS*VPRSGREKRAMADP*	
GGDFS/*GPEAGRL*VGAQQGI	
SPLLTSS*R/PKARSPDESRGKP	
LLP/RGGPSGPHLGPPLEHLPPA	
GPQSMV\GPHSDFYPLPVSPW0	
LCLPDSKLPGASPPGSAKMAA	
NVAR/PTPPGN*PPSSPPGADPL	
LKWLPSLQFFPKGCGLGCLCP	
LSPAPG\PGLVGVLGEQGVAR*	
2696 A 2 454 SGHGSSSGTKSSKKKNQNIGY	KLGHRRAL
FEKRKRLSDYALIFGMFGIVVN	MVIETELSW
GAYDKASLYSLALKCLISLSTI	ILLGLIIVYH
AREIQLFMVDNGADDWRIAM	TYERIFFICL
EILVCAIHPIPGNYTFTWTARL	
2697 A 506 1317 GRTSSGKAGMWKPGAESWPL	
MWFEKLYAGLQCVEKYLIYPA	
VDAHTVVSHPDKYCFYCRALI	
LLRSAFCCPPQQYLTLAFTVLI	
SOGFLLDYFLMSLLCSKLWDL	
TYIAPWQITWGSAFHAFAQPF	
FVQALLSGLFSTPLNPLLGSAV	
KFWERDYNTKRVDHSNTRLV	
ADDNNLNSIFYEHLTRSLQHTI	
WGNYGPGDCF	JOSE VEGIC
	ATTEES/TESTS
NQVWKFQRYQLIMTFHERPVI	
MTMIFQHLCCRWRKHESDPDI	
ITDDELKKVHDFEEQCIEEYFR	
SNDERIRVTSERVENMSMRLE	i i
MKASLQTVDIRLAQLEDLIGR	
	RLHWPVRA
TGLERAESNKIRSRTSSDCTDA ALTSQEREHLSAPKRGLEPWQ	The state of the s

Table 8

			1 = 10	A in a gold sequence (X=I inknown, *=Nton
SEQ	Method	Predicted	Predicted	Amino acid sequence (X=Unknown, *=Stop codon, /=possible nucleotide
m Č		beginning	ending	codon, /=possible nucleotide insertion)
NO:	l	nucleotide	nucleotide	deletion,=possible nucleotide insertion)
.,		location of	location of	
	1	first amino	last amino	
		acid residue	acid residue	
			of peptide	
		of peptide	sequence	
		sequence	sequence	AASSST*
	ļ.,	13	553	KASVIVHSDVKPFKCKLCGKEFNRMHNLM
2699	A	١٤	1 333	GHMHLHSYSKPFKCLYCPSKFTLKGNLTR
		k		HMKVKHGVMERGLHSQGLGRGRIALAQT
	li .		1	DGVLRSLEQEEPFDLSQKRRAKVPVFQSD
	1		1	GESAQGSHCHEEEEEDNCYEVEPYSPGLAP
	1	Ì	1	QSQQLCTPEDLSTKSEHAPEVLEEACKEEK
				EDASKGEW MTEEEEWKPMDPSKMRCSFFQNGKESEKE
2700	В	123	719	MTEEBEWRPMDPSKWRCSTTQTOKEDDRE KVPTRSLLAQVIIPLVNYRGDGSDATLQNA
				KALIKSTTAGA CELEBBOOK KEARCOBCI MD
	1	İ		DPFVGKAGLGFVDDSPLKEVRCQRGLMD
		1	1	NVHKSVCEKTKKGEAVPALCILILDNPSSC
]			YQPFLAYPRYVKPSSEIPSILPWKENIELGK
	1	İ		QATNNSFTEYMLNCAGLDPCHSMCGSRTK
	1			IIITCELARNAESQAPPHTY
2701	A	185	284	GQARWLMSVIPALWKAEAGGPLEPRSSRP
2/01	A	103	1	AWAT
2700	 	718	305	SEOFPLI GDTPGSREWDILETEEHYKSRWR
2702	A	/10	1 303	STRILLYLTMFLSSVGFSVVMMSIWPYLQKID
				PTADTSFLGWVIASYSLGQMVASPIFGLWS
				NYRPRKEPLIVSILISVAANCLYAYLHIPAS
		`	ł	HNKYYMI.VARGLLGIG
	.		822	DSKAAQDLEKLHGVNGMSVDEKPDSP\MY
2703	A	502	022	VVECTVHCTNILLGLNDORKKDILCDVTLI
	Ì			VERKEFRAHRAVLAACSEYFWQALVGQT
	1			KNDLVVSLPEEVQ*FGLCDC
				RWRQRWFWCLHCLVLFRITPRTFALSQCR
2704	A	313	638	PWDDSRSQDTSMSHSIQWNRMYCNCSMQ
				DEQEADEANGKGPAQVGDRQAWAGR/CR
				DEGEADEANGROPAQ VODROAT ACTOR
				SHRREGTIPGNPHPRAS*RAGWQR MLLHVGTTAHVAVEHLIGGVQDDEDLEM
2705	C	431	838	MLLHVGTTAHVAVEHLIGGVQDDEDLLIM
	1		1	TIGCHGEEMIGDLDKNSFGAGGLCIGERVG
	ł	1		GPGCCEVLIRMTPTEDVGEERSDMKGIQLS
	1	1		MQERTRCRQFPEGRRHQLGHLLQGGLGRG
				EAWKYHQIWEEGHWLLREQ
2706	A	244	375	RGMGRTYRGRHTDSRKSDR**GGRRQKTQ
2700	1"			KPMSCITVQRKHGTS
2707	A	1606	228	GTSGVQQEISRLTNENLDLKELVEKLEKNE
2707	A	1000	1	RKIKKOLKIYMKKAODLEAAQALAQSER
			1	KRHEI NROVTVORKEKDFQGMLEYHKED
1		1		FALLIRNLYTDLKPOMLSGTVPCLPAYILY
				MCIRHA\DYTNDDLKVHSLLTSTINGIKKV
l	ì			I KKHNDDFEMTSFWLSNTC\RLLHCLKQY
				SGDEGEMTONTAKON\EHCLKNFDLTEYK
				QVL\SDLSIQIYQQLIKIAEGVLQPMIVSAM
			1	LEN*SIQGLSGVKPTGSQKHSSSMADEDNS
	1		1	YRLEAIIRQMNAFHTVMCDQGLDPEIILQV
				TKLEAUKUMNAFAT VMODQOEDI EMEQV
		1	1	FKQLFYMINAVTLNDLLLRKDVCSWSTGM
	l			QLRYNISQLEEWLRGRNLHQSGAVQTMER
1	l			LIQAAQLLQLKKKTQEDAEAICSLCTSLST
1	1	1	1	QQIVKILNLYTPLNEFEERVTVAFIRTIQAQ

474

Table 8

Deginning nucleotide location of first amino acid residue of peptide sequence LOERNDPQQLLLDAKHMFPVLFPFNPSSLT MDSHIPACLNLEFLNEV MDSHIPACLNEN MDSHIPACLNLEFLNEV MDSHIPACLNLEFLNEV MDSHIPACLNLEF	SEQ	Method	Predicted	Predicted	Amino acid sequence (X=Unknown, *=Stop
NO:	_	Method			
	MO:	!			deletion,=possible nucleotide insertion)
acid residue of peptide sequence LQERNDPQQLLLDAKHMFPVLFPFNPSSLT	İ				
Of peptide sequence					
			acid residue	acid residue	
	1		of peptide	of peptide	
MDSHIPACINLEFLNEV			sequence	sequence	
2708 B					LQERNDPQQLLLDAKHMFPVLFPFNPSSLT
VVDNOAGTQGQLKVLGANLWWPYLMHE	l				MDSIHIPACLNLEFLNEV
VVDNQAGTQGQLKVLGANLWWPYLMEH	2708	В	1	468	MQGLVNYQISIKCSNQFKLEVCLLNAENK
HPAYLYSWEVRITAQKSLGPILTSTHSLWG SALCPSPRASGMVIAHTKALDPSQPYTFYT NYTYAADKGPLWEVAAPSSSQRASSGVTE LTRVTPVDLQIE					
SALCPSPRASGMVIAHTKALDPSQPYTFVT	ł				
NVTYAADKGPLWEVAAPSSQRÄSSGVTE LTRVTPVDLQIE					
LTRVTPVDLQIE	·				
2719		İ			
SIVMVTIQGFVGPWYRNLFRFLPLFSYITIS LRYNLDMGKAVYGWMMMKDENIPGTVV RTSTIPEELGRVYVJLTDKTGPTTQNEMIF KRLHLGTVSYGADTMYEIHTK 2710 A 1 570 MSAACGQNYTLALMEMGSVFAFGENKMG QLGIGNITDTIPSPAQIYNGQPITKMAFGA EFSMIMDCKGNLYSFGCHEYGQLGHNSDG KFIARARRTDGYGRIGHAEQDEMVPHLVK LFDFPGHRVSQIYTGYTCSTAISEVGGLFFQ GATNTSRESTTYPKAVQDLCGWIIQSLACG KSSIIVATERAP 2711 A 574 737 AWEGAHVFTTSPSSCHSWVRDYARVGLPP LPLPCPQRALLGLWEVWKGAYSPAI 2712 A 175 2 MALRHLALLAGLLVGVASKSMENTDTDV PAPEVLTRSTAGVRGACASQRGALRCLLG P 2713 B 85 591 MERGPVTCTQAQTVRGRTGHRRRFGPGA HGLREEPEFVTARAGESVVLRCDVHPVTG QPPPYVVEWFKFGVPPPIFKFGYYPPHVDP EYABQSCFQAPSPSPSPABELFLVVSARHG LCQALDASWFCTGVQRQPWTQPPTGYHL AQRAGDLYPVGFPKETYFEKV XQCQRRCLETEVKKLSKLQISTKASNRQD RSTFSAPPRKSQLMW*TSLLSYFQKLPQSP QPSATTALISQQPSTLNPQPWGSCPGG 2715 B 1 888 MRRRWSLMFDSVPMCAFYSWAKASRT LKADGLPRRKQWVLVEALAGGGVLGVK QITIQVLFEVLLRRGKESETYTKMYRRLGP ERCRRSKYAGVERIVDKRKNKGKGWEYLI RWKGYGSTEDTWEPEHHLLHCEEFIDEFN GLHMSKDKRKSGRQSSTSKLLRDSRGPSV EKLSHRPSDPGKSKGTSHKRKRINPPLAKP KKGYSGRPSGGDRATKTVSYRTTPSGLQI MPLKKSQNGMENGDAGSEKDERHFRONGS HQPGLDLNDHVGEQDMGECDVNHATLAE NGLGL 2716 A 94 3006 RTRSLTRKAMAEHAPRRCCLGWDFSTQQV KVVAVDAELNVYPESSVHFDRDLPEFGHV LDVHGVHVHKDGLTVTSPVLMWVQALDII LEKMKASGFEFSQVLALSGAGQHGSIYW KAGAQQALTSLSPDLRLHQQLQDCFSISDC	2709	A	410	2	
LRVNILDMGKAVYGWMMMKDENIPGTVV RTSTIPEELGRVVYLLTDKTGPLTQNEMIF KRLHLGTVSYGADTMYEHTK	2,05	1	112	~	
2710 A 1 570 MSAACGQNYTLAIDEMGSVFARGENKMG QLGLGNLTDTIPSPAQIIYNGQPITKMAFGA EFSMIMDCKGNLYSFGCHEYGQLGHNSDG KFIARARRTDGYGRLGHAEQDEMYPHLVK LFDFPGHRVSQIYTGYTCSFAISEVGGLFFQ GATNISRESTTYPKAVQDLCGWIIQSLACG KSSIIVATERAP 2711 A 574 737 AWEGAHVFITSPSSCHSWVRDYARVGLPP LPLPCPQRALLGLWEVWKGAYSPAI 2712 A 175 2 MALRHALLAGLLVGVASKSMENTDTDV PAPEVLIRSTAGVRGACASQRGALRCLLG P MALRHALLAGLLVGVASKSMENTDTDV PAPEVLTRSTAGVRGACASQRGALRCLLG P P MERGPVTCTQAQTVRGRTGHRRRFGPGA HGLREEPEFYTARAGESVVLRCDVHPVTG QPPPVVVEWFKFGVPPIFIKFGYYPPHVDP EYAEQSCQAPSFPSPSPAEELRVVSARHG LCQALDASWFCTGVQRQFWTQPPTGYHL AQRAGDLYPVGFPKETYFEKV KQCQRRCLETEVWKLSKLQISTKASNRQD RSTFSAPPRSSQLMW*TSLLSYFQKLPQSP QPSATTALISQQPSTLNPQFWFGSCPGG RTFSAPPRSSQLMW*TSLLSYFQKLPQSP QPSATTALISQQPSTLNPQFWFGSCPGG RKGRSKYAGVERIVDKRKNKGGKWEYLI RWKGYGSTEDTWEPEHHLLHCEEFIDEFN GLIMMSKDKRRKSGKQSTSTSKLLRDSRGPSV EKLSHRPSDPGKSKGTSHKRKRNPPLAKP KKGYSGTEDTWEPEHHLLHCEEFIDEFN GLIMMSKDKRRKSGKQSTSTSKLLRDSRGPSV EKLSHRPSDPGKSKGTSHKRKRNPPLAKP KKGYSGFSGGATAKTVSYKTTTSGLQI MPLKKSQNGMENGDAGSEKDERHFGNGS HQPGLDLNDHVGEQDMGECDVNHATLAE NGLGI 2716 A 94 3006 RTRSLTRKAMAEHAPRRCCLGWDFSTQQV KVVAVDAELNVFYEESVHFDRDLPEFGHV LDVHGVHVHKDGLTVTSPVLMWVQALDII LEKMKASGFEFSQVLALSAGQQHGSIYW KAGAQQALTSLSPDRLHQQLQDCFSISDC	1				
RRLHLGTVSYGADTMYEIHTK					
2710 A 1 570 MSAACGQNYTLALMEMGSVFAFGENKMG QLGLGNLTDTIPSPAQIIYNGQPITKMAFGA EFSMIMOKGNLYSFGCHEYGQLGHNSDG KFIARARRTDGYGRLGHAEQDEMVPHLVK LFDFFGHRVSQIYTGYTCSFAISEVGGLFFQ GATNTSRESTTYPKAVQDLCGWIIQSLACG KSSIIVATERAP 2711 A 574 737 AWEGAHVFTTSPSSCHSWVRDVARVGLPP LPLPCPQRALLGLWEVWKGAYSPAI MALRHLALLAGILLVGVASKSMENTDTDV PAPEVLTRSTAGVRGACASQRGALRCLLG P 2713 B 85 591 MERGPVTCTQAQTVRGRTGHRRRFGPGA HGLREEPEFVTARAGESVVLRCDVHHVTG QPPPYVVEWFKFGVPIPIFKFGYPPHVDP EYAEQSCFQAPSFPSPPAEELRVVSARHG LCQALDASWFCTGVQRQPWTQPPTGYHL AQRAGDLYPVGPPKETYFEKV KQCQRRCLETEVWKLSKLQISTKASNRQD RSTFSAPPRKSQLMW*TSLLSYFQKLPQSP QPSATTALISQQPSTLNPQPWPGSCPGG RIFKADGLPRRKQWULVEALAGGGVLGVK QITIQVLFEVLLRRGKESETYTKMYRRLGP ERCRRSKYAGVERIVDKRKNKKGKWEYLI RWKGYGSTEDTWEPHILLHCEEFIDEFIN GLHMSKDKRIKSGKQSSTSKLLRDSRGPSV EKLSHRPSDPGKSKGTSHKRKRNPPLAKP KKGYSGKPSSGGDRATKTVSYRTTPSGLQI MPLKKSQNGMENCDAGSEKDERHFGNGS HQPGLDLNDHVGEQDMGECDVNHATLAE NGLGL 2716 A 94 3006 RTRSLTRKAMAEHAPRRCCLGWDFSTQQV KVVAVDAELNVFYEESVHFDRDLPEFGHV LDVHGVHVHKDGLTVTSPVLMWQALDII LEKMKASGFESQVLALSGAGQQHGSIYW KAGAQQALTSLSPDLRLHQQLQDCFSISDC		1		J	
QLGLGNLTDTTPSPAQIIYNGQPITKMAFGA EFSMMDCKGNLYSFGCHEYGQLGHNSDG KFIARARRTDGYGRLGHAEQDEMVPHLVK LFDFFGHRYSQIYTGYTCSFAISEVGGLFFQ GATNTSRESTTYPKAVQDLCGWIIQSLACG KSSIIVATERAP 2711 A 574 737 AWEGAHVFTTSPSSCHSWVRDYARVGLPP LPLPCPQRALLGLWEVWKGAYSPAI 2712 A 175 2 MALRHLALLAGLLVGVASKSMENTDTDV PAPEVLTRSTAGVRGACASQRGALRCLLG P 2713 B 85 591 MERGPVTCTQAQTVRGRTGHRRRFGPGA HGLREEPEFVTARAGESVVLRCDVHHPVTG EYAEQSCFQAPSFPSPSPAEELRVVSARHG LCQALDASWFCTGVQRQPWTQPTGYHL AQRAGDLYPVGFPKETYFEKV 2714 A 1196 1459 KQCQRRCLETEVWKLSKLQISTKASNRQD RSTFSAPPRKSQLMW*TSLLSYFQKLPQSP QPSATTALISQQPSTLNPQPWPGSCPGG QPPPVVEWKFGVPPDFOKPGCPGG QPSATTALISQQPSTLNPQPWPGSCPGG QPSATTALISQQPSTLNPQPWPGSCPGG GRAMSKDKRIKSGKQSTSKLLRDSRGPSV EKLSHRPSDPGKSKGTSHKRKRNPPLAKP KGYGGSTEDTWEBHHILHCEEFIDEFN GLHMSKDKRIKSGKQSSTSKLLRDSRGPSV EKLSHRPSDPGKSKGTSHKRKRNPPLAKP KKGYSGTPDTWEBHHILHCEEFIDEFN GLHMSKDKRIKSGKQSTSHKRKRNPPLAKP KKGYSGTPDTWSPGHTILDCEFIDEFN GLHMSKDKRIKSGKQSTSKLLRDSRGPSV EKLSHRPSDPGKSKGTSHKRKRNPPLAKP KKGYSGTBDTVBCPBHILHCEEFIDEFN GLHMSKDKRIKSGKQSTSKLLRDSRGPSV EKLSHRPSDPGKSKGTSHKRKRNPPLAKP KKGYSGTBDTVBCPBHILHCEEFIDEFN GLHMSKDKRIKSGKQSTSKLLRDSRGPSV EKLSHRPSDPGKSKGTSHKRKRNPPLAKP KKGYSGTPDTVBCPHILHCEEFIDEFN GLHMSKDKRIKSGKQSTSKLLRDSRGPSV EKLSHRPSDPGKSKGTSHKRKRNPPLAKP KKGYSGKPSGGDRATKTVSYRTTPSGLQI MPLKKSQNGMENGDAGSEKDERHFGNGS HQPGLDLNDHVGEQDMGECDVNHATLAE NGLGL 2716 A 94 3006 RTRSLTRKAMAEHAPRRCCLGWDFSTQQV KVVAVDAELNVFYEESVHFDRDLPEFGHV LDVHGVHVHKDGLTVTSPVLMWVQALDDIL LEKMKASGFEFSQVIALSGAGQQHGSIYW KAGAQQALTSLSPDLRLHQQLQDCFSISDC		<u> </u>			
EFSMIMDCKGNLYSFGCHEYGQLGHNSDG KFIARARRTDGYGRLGHAEQDEMVPHLVK LFDFPGHRVSQIYTGYTCSFAISEVGGLFFQ GATNTSRESTTYPKAVQDLCGWIIQSLACG KSSIIVATERAP 2711 A 574 737 AWEGAHVFTTSPSSCHSWVRDYARVGLPP LPLPCPQRALLGLWEVWKGAYSPAI 2712 A 175 2 MALRHLALLAGLLVGVASKSMENTDTDV PAPEVLTRSTAGVRGACASQRGALRCLLG P 2713 B 85 591 MERGPVTCTQAQTVRGRTGHRRRFGPGA HGLREEPEFYTARAGESVVLRCDVIHPVTG QPPPYVVEWFKFGVPPIFIKFGYYPPHVDP EYAEQSCFQAPSFPSPSPAEELRVVSARHG LCQALDASWFCTGVQRQPWTQPPTGYHL AQRAGDLYPVGFPKETYFEKV 2714 A 1196 1459 KQCQRRCLETEVWKLSKLQISTKASNRQD RSTFSAPPRKSQLMW*TSLLSYFQKLPQSP QPSATTALISQQPSTLNPQPWPGSCPGG QPSATTALISQPSTLNPQPWPGSCPGG WRIRRWSLMFDSVWPMCAFYSWAKASRT FLKADGLPRRQWVVLVEALAGGGVLGVK QITIQVLFEVLLRRGKESETYTKMYRRLGP ERCRRSKYAGVERIVDKRKNKKGKWEYLI RWKGYGSTEDTWEPBHHLLHCEEFTDEFN GLHMSKDKRIKSGKQSSTSKLLRDSRGPSV EKLSHRPSDPGKSKGTSHKRRRNPPLAKP KKGYSGKPSSGGDRATKTVSYRTIPSGLQI MPLKKSQNGMENGDAGSEKDERHFGNGS HQPGLDLNDHVGEQDMGECDVNHATLAE NGLGL 2716 A 94 3006 RTRSLTRKAMAEHAPRRCCLGWDFSTQQV KVVAVDAELNVFYEESVHFDRDLPEFGHV LDVHGVHVHKDGLTVTSPVLMWVQALDII LEKMKASGFEFSQVLALSGAGQQHGSIYW KAGAQQALTSLSPDLRLHQQLQDCFSISDC	2710	· A	1	570	
KFIARARRTDGYGRLGHAEQDEMVPHLVK LFDFPGHRVSQIYTGYTCSFAISEVGGLFFQ GATNTSRESTTYPKAVQDLCGWIIQSLACG KSSIIVATERAP		ļ			
LFDFPGHRVSQIYTGYTCSFAISEVGGLFFQ GATNTSRESTITYPKAVQDLCGWIIQSLACG KSSIIVATERAP 2711 A 574 737 AWEGAHVFTTSPSSCHSWVRDYARVGLPP LPLPCPQRALLGLWEVWKGAYSPAI 2712 A 175 2 MALRHLALLAGLLVGVASKSMENTDTDV PAPEVLTRSTAGVRGACASQRGALRCLLG P 2713 B 85 591 MERGPVTCTQAQTVRGRTGHRRRFGFGA HGLREEPEFVTARAGESVVLRCDVIHPVTG QPPPYVVEWFKFGVPIPIFIKFGYYPPHVDP EYAEQSCFQAPSFPSPSPAEELRVVSARHG LCQALDASWFCTGVQRQPWTQPPTGYHL AQRAGDLYPVGFPKETYFEKV 2714 A 1196 1459 KQCQRRCLETEVWKLSKLQISTKASNRQD RSTFSAPPRKSQLMW*TSLLSYFQKLPQSP QPSATTALISQQPSTLNPQPWPGSCPGG RRRRWSLMFDSVWPMCAFYSWAKASRT FLKADGLPRRKQWVLVEALAGGGVLGVK QITIQVLFEVLLRRGKESETYTKMYRRLGP ERCRRSKYAGVERIVDKRKNKKGKWEYLI RWKGYGSTEDTWEPEHHLLHCEEFIDEFN GLHMSKDKRIKSGKQSSTSKLLRDSRGPSV EKLSHRPSDPGKSKGTSHKKRINPPLAKP KKGYSGKPSSGGDRATKTVSYRTTPSGLQI MPLKKSQNGMENGDAGSEKDERHFGNGS HQPGLDLNDHVGEQDMGECDVNHATLAE NGGLGL 2716 A 94 3006 RTRSLTRKAMAEHAPRRCCLGWDFSTQQV KVVAVDAELNVFYEESVHFDRDLPEFGHV LDVHGYHVHKDGLTVTSPVLMWVQALDII LEKMKASGFEFSQVLALSGAGQQHGSIYW KAGAQQALTSLSPDLRLHQQLQDCFSISDC					
2711 A 574 737 AWEGAHVFITSPSSCHSWVRDYARVGLPP LPLPCPQRALLGLWEVWKGAYSPAI 2712 A 175 2 MALRHLALLAGLLVGVASKSMENTDTDV PAPEVLTRSTAGVRGACASQRGALRCLLG P 2713 B 85 591 MERGPVTCTQAQTVRGRTGHRRRFGPGA HGLREEPEFVTARAGESVVLRCDVIHPVTG QPPPYVVEWFKFGVPIPIKFGYYPPHVDP EYAEQSCFQAPSFPSSPAEELRVVSARHG LCQALDASWFCTGVQRQPWTQPPTGYHL AQRAGDLYPVGFPKETYFEKV 2714 A 1196 1459 KQCQRRCLETEVWKLSKLQISTKASNRQD RSTFSAPPRSQLMW*TSLLSYFQKLPQSP QPSATTALISQQPSTLNPQPWPGSCPGG 2715 B 1 888 MRIRRWSLMFDSVWPMCAFYSWAKASRT FLKADGLPRRKQWLVLVEALAGGGVLGVK QITIVVLFEVLLRRGKESETYTKMYRRLGP ERCRRSKYAGVERIVDKRKNKKGKWEYLI RWKGYGSTEDTWEPEHHLLHCEEFIDEFN GLHMSKDKRIKSGKQSSTSKLLRDSRGPSV EKLSHRPSDPGKSKGTSHKRKNNPPLAKP KKGYSGKPSSGGDRATKTVSYRTTPSGLQI MPLKKSQNGMENGDAGSEKDERHFGNGS HQPGLDLNDHVGEQDMGECDVNHATLAE NGLGL 2716 A 94 3006 RTRSLTRKAMAEHAPRRCCLGWDFSTQQV KVVAVDAELNVFYEESVHFDRDLPEFGHV LDVHGVHVHKDGLTVTSPVLMWVQALDII LEKMKASGFEFSQVLALSGAGQQHGSIYW KAGAQQALTSLSPDLRLHQQLQDCFSISDC					KFIARARRTDGYGRLGHAEQDEMVPHLVK
2711 A 574 737 AWEGAHVFITSPSSCHSWVRDYARVGLPP LPLPCPQRALLGLWEVWKGAYSPAI 2712 A 175 2 MALRHLALLAGLLVGVASKSMENTDTDV PAPEVLTRSTAGVRGACASQRGALRCLLG P 2713 B 85 591 MERGPVTCTQAQTVRGRTGHRRRFGPGA HGLREEPEFVTARAGESVVLRCDVIHPVTG QPPPYVVEWFKFGVPIPIKFGYYPPHVDP EYAEQSCFQAPSFPSSPAEELRVVSARHG LCQALDASWFCTGVQRQPWTQPPTGYHL AQRAGDLYPVGFPKETYFEKV 2714 A 1196 1459 KQCQRRCLETEVWKLSKLQISTKASNRQD RSTFSAPPRSQLMW*TSLLSYFQKLPQSP QPSATTALISQQPSTLNPQPWPGSCPGG 2715 B 1 888 MRIRRWSLMFDSVWPMCAFYSWAKASRT FLKADGLPRRKQWLVLVEALAGGGVLGVK QITIVVLFEVLLRRGKESETYTKMYRRLGP ERCRRSKYAGVERIVDKRKNKKGKWEYLI RWKGYGSTEDTWEPEHHLLHCEEFIDEFN GLHMSKDKRIKSGKQSSTSKLLRDSRGPSV EKLSHRPSDPGKSKGTSHKRKNNPPLAKP KKGYSGKPSSGGDRATKTVSYRTTPSGLQI MPLKKSQNGMENGDAGSEKDERHFGNGS HQPGLDLNDHVGEQDMGECDVNHATLAE NGLGL 2716 A 94 3006 RTRSLTRKAMAEHAPRRCCLGWDFSTQQV KVVAVDAELNVFYEESVHFDRDLPEFGHV LDVHGVHVHKDGLTVTSPVLMWVQALDII LEKMKASGFEFSQVLALSGAGQQHGSIYW KAGAQQALTSLSPDLRLHQQLQDCFSISDC		ļ			
KSSIIVATERAP					
2711 A 574 737 AWEGAHVFITSPSSCHSWVRDYARVGLPP LPLPCPQRALLGLWEVWKGAYSPAI 2712 A 175 2 MALRHLALLAGLLVGVASKSMENTDTDV PAPEVLTRSTAGVRGACASQRGALRCLLG P APEVLTRSTAGVRGACASQRGALRCLLG P HERGPVTCTQAQTVRGRTGHRRRFGPGA HGLREEPEFVTARAGESVVLRCDVHHPVTG QPPYVVEWFKGVPPIFIKFGYYPPHVDP EYAEQSCFQAPSFPSPSPAEELRVVSARHG LCQALDASWFCTGVQRQPWTQPPTGYHL AQRAGDLYPVGFPKETYFEKV 2714 A 1196 1459 KQCQRRCLETEVWKLSKLQISTKASNRQD RSTFSAPPRKSQLMW*TSLLSYFQKLPQSP QPSATTALISQQPSTLNPQPWPGSCPGG 2715 B 1 888 MRIRRWSLMFDSVWPMCAFYSWAKASRT FLKADGLPRRKQWVLVEALAGGGVLGVK QITIQVLFEVLLRRGKESETYTKMYRRLGP ERCRRSKYAGVERIVDKRKNKKGKWEYLI RWKGYGSTEDTWEPEHHLLHCEEFIDEFIN GLHMSKDKRIKSGKQSSTSKLLRDSRGPSV EKLSHRPSDPGKSKGTSHKRKRNPPLAKP KKGYSGKPSSGGDRATKTVSYRTTPSGLQI MPLKKSQNGMENGDAGSEKDERHFGNGS HQPGLDINDHVGEQDMGECDVNHATLAE NGLGL 2716 A 94 3006 RTRSLTRKAMAEHAPRRCCLGWDFSTQQV KVVAVDAELNVFYEESVHFDRDLPEFGHV LDVHGVHVHKDGLTVTSPVLMWVQALDII LEKMKASGFEFSQVLALSGAGQQHGSIYW KAGAQQALTSLSPDLRLHQQLQDCFSISDC					
2712 A 175 2 MALRHLALLAGLLVGVASKSMENTDTDV PAPEVLTRSTAGVRGACASQRGALRCLLG P 2713 B 85 591 MERGPVTCTQAQTVRGRTGHRRFGPGA HGLREEPEFVTARAGESVVLRCDVIHPVTG QPPPYVVEWFKFGVPIPIFIKFGYYPPHVDP EYAEQSCFQAPSFPSPSAEELRVVSARHG LCQALDASWFCTGVQRQPWTQPPTGYHL AQRAGDLYPVGFPKETYFEKV 2714 A 1196 1459 KQCQRRCLETEVWKLSKLQISTKASNRQD RSTFSAPPRKSQLMW*TSLLSYFQKLPQSP QPSATTALISQQPSTLNPQPWPGSCPGG QPSATTALISQQPSTLNPQPWPGSCPGG ERCRRSKYAGVENVDKRKNKKGKWEYLI RWKGYGSTEDTWEPEHHLLHCEEFIDEFN GLHMSKDKRIKSGKQSSTSKLLRDSRGPSV EKLSHRPSDPGKSKGTSHKRKNNPPLAKP KKGYSGKPSSGGDRATKTVSYRTTPSGLQI MPLKKSQNGMENGDAGSEKDERHFGNGS HQPGLDLNDHVGEQDMGECDVNHATLAE NGLGL 2716 A 94 3006 RTRSLTRKAMAEHAPRRCCLGWDFSTQQV KVVAVDAELNVFYEESVHPDRDLPEFGHV LDVHGVHVKDGLTVTSPVLMWVQALDII LEKMKASGFEFSQVLALSGAGQQHGSIYW KAGAQQALTSLSPDLRLHQQLQDCFSISDC	2711	Α	574	737	
2712 A 175 2 MALRHLALLAGLLVGVASKSMENTDTDV PAPEVLTRSTAGVRGACASQRGALRCLLG P 2713 B 85 591 MERGPVTCTQAQTVRGRTGHRRRFGPGA HGLREEPEFVTARAGESVVLRCDVHIPVTG QPPPYVVEWFKFGVPIPIFIKFGYYPPHVDP EYAEQSCFQAPSFPSPSPAEELRVVSARHG LCQALDASWFCTGVQRQPWTQPPTGYHL AQRAGDLYPVGFPKETYFEKV 2714 A 1196 1459 KQCQRRCLETEVWKLSKLQISTKASNRQD RSTFSAPPRKSQLMW*TSLLSYFQKLPQSP QPSATTALISQQPSTLNPQPWPGSCPGG 2715 B 1 888 MRIRRWSLMFDSVWPMCAFYSWAKASRT FLKADGLPRRKQWVLVEALAGGVLGVK QITIQVLFEVLLRRGKESETYTKMYRRLGP ERCRRSKYAGVERIVDKRKNKKGKWEYLI RWKGYGSTEDTWEPEHHLLHCEEFIDEFN GLHMSKDKRIKSGKQSTSKLLRDSRGPSV EKLSHRPSDPGKSKGTSHKRRRNPPLAKP KKGYSGKPSSGGRAATKTVSYRTTPSGLQI MPLKKSQNGMENGDAGSEKDERHFGNGS HQPGLDLNDHVGEQDMGECDVNHATLAE NGLGL 2716 A 94 3006 RTRSLTRKAMAEHAPRRCCLGWDFSTQQV KVVAVDAELNVFYSESVHEWVQALDII LEKMKASGFEFSQVLALSGAGQQHGSIYW KAGAQQALTSLSPDLRLHQQLQDCFSISDC			1	1.5.	!
PAPEVLTRSTAGVRGACASQRGALRCLLG P 2713 B 85 591 MERGPVTCTQAQTVRGRTGHRRRFGPGA HGLREEPEFVTARAGESVVLRCDVIHPVTG QPPPYVVEWFKFGVPIPIFIKFGYYPPHVDP EYAEQSCFQAPSFPSPSPAEELRVVSARHG LCQALDASWFCTGVQRQPWTQPPTGYHL AQRAGDLYPVGFPKETYFEKV 2714 A 1196 1459 KQCQRRCLETEVVKLSKLQISTKASNRQD RSTFSAPPRKSQLMW*TSLLSYFQKLPQSP QPSATTALISQQPSTLNPQPWPGSCPGG QPSATTALISQQPSTLNPQPWPGSCPGG QTIQVLFVLLRRGKESETYTKMYRRLGP ERCRSKYAGVERIVDKRKNKKGKWEYLI RWKGYGSTEDTWEPEHHLLHCEEFIDEFN GLHMSKDKRIKSGKQSSTSKLLRDSRGPSV EKLSHRPSDPGKSKGTSHKRKRNPPLAKP KKGYSGKPSSGGDRATKTVSYRTTPSGLQI MPLKKSQNGMENGDAGSEKDERHFGNGS HQPGLDLNDHVGEQDMGECDVNHATLAE NGLGL 2716 A 94 3006 RTRSLTRKAMAEHAPRRCCLGWDFSTQQV KVVAVDAELNVFYEESVHFDRDLPEFGHV LDVHGVHVHKDGLTVTSPVLMWVQALDII LEKMKASGFEFSQVLALSGAGQQHGSIYW KAGAQQALTSLSPDLRLHQQLQDCFSISDC	2712	1 A	175	12	
2713 B 85 591 MERGPVTCTQAQTVRGRTGHRRRFGPGA HGLREEPEFVTARAGESVVLRCDVIHPVTG QPPPVVEWFKFGVPIPIFIKFGYYPPHVDP EYAEQSCFQAPSFPSPSPAEELRVVSARHG LCQALDASWFCTGVQRQPWTQPPTGYHL AQRAGDLYPVGFPKETYFEKV 2714 A 1196 1459 KQCQRRCLETEVWKLSKLQISTKASNRQD RSTFSAPPRKSQLMW*TSLLSYFQKLPQSP QPSATTALISQQPSTLNPQPWPGSCPGG 2715 B 1 888 MRIRRWSLMFDSVWPMCAFYSWAKASRT FLKADGLPRRKQWVLVEALAGGGVLGVK QITIQVLFEVLLRRGKESETYTKMYRRLGP ERCRRSKYAGVERIVDKRKNKKGKWEYLI RWKGYGSTEDTWEPEHHLLHCEEFIDEFN GLHMSKDKRIKSGKQSSTSKLLRDSRGPSV EKLSHRPSDPGKSKGTSHKRKRINPPLAKP KKGYSGRPSSGGDRATKTVSYRTTPSGLQI MPLKKSQNGMENGDAGSEKDERHFGNGS HQPGLDLNDHVGEQDMGECDVNHATLAE NGLGL 2716 A 94 3006 RTRSLTRKAMAEHAPRRCCLGWDFSTQQV KVVAVDAELNVFYEESVHFDRDLPEFGHV LDVHGVHVHKDGLTVTSPVLMWVQALDII LEKMKASGFEFSQVLALSGAGQQHGSIYW KAGAQQALTSLSPDLRLHQQLQDCFSISDC		1 **	1,,,,	12	
B 85 591 MERGPVTCTQAQTVRGRTGHRRFGPGA HGLREEPEFVTARAGESVVLRCDVIHPVTG QPPPYVVEWFKFGVPIPIFIKFGYYPPHVDP EYAEQSCFQAPSFPSPSPAEELRVVSARHG LCQALDASWFCTGVQRQPWTQPPTGHL AQRAGDLYPVGFPKETYFEKV			1	i	
HGLREEPEFVTARAGESVVLRCDVIHPVTG QPPPYVVEWFKFGVPIPIFIKFGYYPPHVDP EYAEQSCFQAPSFPSPSPAEELRVVSARHG LCQALDASWFCTGVQRQPWTQPPTGYHL AQRAGDLYPVGFPKETYFEKV 2714 A 1196 1459 KQCQRRCLETEVWKLSKLQISTKASNRQD RSTFSAPPRKSQLMW*TSLLSYFQKLPQSP QPSATTALISQQPSTLNPQPWPGSCPGG 2715 B 1 888 MRIRRWSLMFDSVWPMCAFYSWAKASRT FLKADGLPRRKQWVLVEALAGGGVLGVK QITIQVLFEVLLRRGKESETYTKMYRRLGP ERCRRSKYAGVERIVDKRKNKKGKWEYLI RWKGYGSTEDTWEPEHHLLHCEEFIDEFN GLHMSKDKRIKSGKQSSTSKLLRDSRGPSV EKLSHRPSDPGKSKGTSHKRKRINPPLAKP KKGYSGKPSSGGDRATKTVSYRTTPSGLQI MPLKKSQNGMENGDAGSEKDERHFGNGS HQPGLDLNDHVGEQDMGECDVNHATLAE NGLGL 2716 A 94 3006 RTRSLTRKAMAEHAPRRCCLGWDFSTQQV KVVAVDAELNVFYEESVHFDRDLPEFGHV LDVHGVHVHKDGLTVTSPVLMWVQALDII LEKMKASGFEFSQVLALSGAGQQHGSIYW KAGAQQALTSLSPDLRLHQQLQDCFSISDC	2713	B	85	501	
QPPPYVVEWFKFGVPIPIFIKFGYYPPHVDP EYAEQSCFQAPSFPSPSAEELRVVSARHG LCQALDASWFCTGVQRQPWTQPPTGYHL AQRAGDLYPVGFPKETYFEKV 2714 A 1196 1459 KQCQRRCLETEVWKLSKLQISTKASNRQD RSTFSAPPRKSQLMW*TSLLSYFQKLPQSP QPSATTALISQQPSTLNPQPWPGSCPGG QPSATTALISQQPSTLNPQPWPGSCPGG 3715 B 1 888 MRIRRWSLMFDSVWPMCAFYSWAKASRT FLKADGLPRRKQWVLVEALAGGGVLGVK QITIQVLFEVLLRGKESETYTKMYRRLGP ERCRRSKYAGVERIVDKRKNKKGKWEYLI RWKGYGSTEDTWEPEHHLLHCEEFIDEFN GLHMSKDKRIKSGKQSSTSKLLRDSRGPSV EKLSHRPSDPGKSKGTSHKRKRINPPLAKP KKGYSGKPSSGGDRATKTVSYRTTPSGLQI MPLKKSQNGMENGDAGSEKDERHFGNGS HQPGLDLNDHVGEQDMGECDVNHATLAE NGLGL 2716 A 94 3006 RTRSLTRKAMAEHAPRRCCLGWDFSTQQV KVVAVDAELNVFYEESVHFDRDLPEFGHV LDVHGVHVHKDGLTVTSPVLMWVQALDII LEKMKASGFEFSQVLALSGAGQQHGSIYW KAGAQQALTSLSPDLRLHQQLQDCFSISDC	2713	1	03	371	
EYAEQSCFQAPSFPSPSPAEELRVVSARHG LCQALDASWFCTGVQRQPWTQPPTGYHL AQRAGDLYPVGFPKETYFEKV 2714 A 1196 1459 KQCQRRCLETEVWKLSKLQISTKASNRQD RSTFSAPPRKSQLMW*TSLLSYFQKLPQSP QPSATTALISQQPSTLNPQPWPGSCPGG 2715 B 1 888 MRIRRWSLMFDSVWPMCAFYSWAKASRT FLKADGLPRRKQWVLVEALAGGGVLGVK QITTQVLFEVLLRRGKESETYTKMYRRLGP ERCRRSKYAGVERIVDKRKNKKGKWEYLI RWKGYGSTEDTWEPEHHLLHCEEFIDEFN GLHMSKDKRIKSGKQSSTSKLLRDSRGPSV EKLSHRPSDPGKSKGTSHKRKRINPPLAKP KKGYSGKPSSGGDRATKTVSYRTTPSGLQI MPLKKSQNGMENGDAGSEKDERHFGNGS HQPGLDLNDHVGEQDMGECDVNHATLAE NGLGL 2716 A 94 3006 RTSSLTRKAMAEHAPRRCCLGWDFSTQQV KVVAVDAELNVFYEESVHFDRDLPEFGHV LDVHGVHVHKDGLTVTSPVLMWVQALDII LEKMKASGFEFSQVLALSGAGQQHGSIYW KAGAQQALTSLSPDLRLHQQLQDCFSISDC		1	ļ		
LCQALDASWFCTGVQRQPWTQPPTGYHL AQRAGDLYPVGFPKETYFEKV 2714 A 1196 1459 KQCQRRCLETEVWKLSKLQISTKASNRQD RSTFSAPPRKSQLMW*TSLLSYFQKLPQSP QPSATTALISQQPSTLNPQPWPGSCPGG 2715 B 1 888 MRIRRWSLMFDSVWPMCAFYSWAKASRT FLKADGLPRRKQWVLVEALAGGGVLGVK QITIQVLFEVLLRRGKESETYTKMYRRLGP ERCRRSKYAGVERIVDKRKNKKGKWEYLI RWKGYGSTEDTWEPEHHLLHCEEFIDEFN GLHMSKDKRIKSGKQSSTSKLLRDSRGPSV EKLSHRPSDPGKSKGTSHKRKRINPPLAKP KKGYSGKPSSGGDRATKTVSYRTTPSGLQI MPLKKSQNGMENGDAGSEKDERHFGNGS HQPGLDLNDHVGEQDMGECDVNHATLAE NGLGL 2716 A 94 3006 RTRSLTRKAMAEHAPRRCCLGWDFSTQQV KVVAVDAELNVFYEESVHFDRDLPEFGHV LDVHGVHVHKDGLTVTSPVLMWVQALDII LEKMKASGFEFSQVLALSGAGQQHGSIYW KAGAQQALTSLSPDLRLHQQLQDCFSISDC		1	ļ		
AQRAGDLYPVGFPKETYFEKV 2714 A 1196 1459 KQCQRRCLETEVWKLSKLQISTKASNRQD RSTFSAPPRKSQLMW*TSLLSYFQKLPQSP QPSATTALISQQPSTLNPQPWPGSCPGG 2715 B 1 888 MRIRRWSLMFDSVWPMCAFYSWAKASRT FLKADGLPRRKQWVLVEALAGGGVLGVK QITIQVLFEVLLRGKESETYTKMYRRLGP ERCRRSKYAGVERIVDKRKNKKGKWEYLI RWKGYGSTEDTWEPEHHLLHCEEFIDEFN GLHMSKDKRIKSGKQSSTSKLLRDSRGPSV EKLSHRPSDPGKSKGTSHKRKINPPLAKP KKGYSGKPSSGGDRATKTVSYRTTPSGLQI MPLKKSQNGMENGDAGSEKDERHFGNGS HQPGLDLNDHVGEQDMGECDVNHATLAE NGLGL 2716 A 94 3006 RTRSLTRKAMAEHAPRRCCLGWDFSTQQV KVVAVDAELNVFYEESVHFDRDLPEFGHV LDVHGVHVHKDGLTVTSPVLMWVQALDII LEKMKASGFEFSQVLALSGAGQQHGSIYW KAGAQQALTSLSPDLRLHQQLQDCFSISDC					EYAEQSCFQAPSFPSPSPAEELRVVSARHG
2714 A 1196 1459 KQCQRRCLETEVWKLSKLQISTKASNRQD RSTFSAPPRKSQLMW*TSLLSYFQKLPQSP QPSATTALISQQPSTLNPQPWPGSCPGG 2715 B 1 888 MRIRRWSLMFDSVWPMCAFYSWAKASRT FLKADGLPRRKQWVLVEALAGGGVLGVK QITIQVLFEVLLRRGKESETYTKMYRRLGP ERCRRSKYAGVERIVDKRKNKKGKWEYLI RWKGYGSTEDTWEPEHHILHCEEFIDEFN GLHMSKDKRIKSGKQSSTSKLLRDSRGPSV EKLSHRPSDPGKSKGTSHKRKRINPPLAKP KKGYSGKPSSGGDRATKTVSYRTTPSGLQI MPLKKSQNGMENGDAGSEKDERHFGNGS HQPGLDLNDHVGEQDMGECDVNHATLAE NGLGL 2716 A 94 3006 RTRSLTRKAMAEHAPRRCCLGWDFSTQQV KVVAVDAELNVFYEESVHFDRDLPEFGHV LDVHGVHVHKDGLTVTSPVLMWVQALDII LEKMKASGFEFSQVLALSGAGQQHGSIYW KAGAQQALTSLSPDLRLHQQLQDCFSISDC		1		1	LCQALDASWFCIGVQRQPWTQPPTGYHL
RSTFSAPPRKSQLMW*TSLLSYFQKLPQSP QPSATTALISQQPSTLNPQPWPGSCPGG 2715 B 1 888 MRIRRWSLMFDSVWPMCAFYSWAKASRT FLKADGLPRRKQWVLVEALAGGGVLGVK QITIQVLFEVLLRRGKESETYTKMYRRLGP ERCRRSKYAGVERIVDKRKNKKGKWEYLI RWKGYGSTEDTWEPEHHILHCEEFIDEFN GLHMSKDKRIKSGKQSSTSKLLRDSRGPSV EKLSHRPSDPGKSKGTSHKRKRINPPLAKP KKGYSGKPSSGGDRATKTVSYRTTPSGLQI MPLKKSQNGMENGDAGSEKDERHFGNGS HQPGLDLNDHVGEQDMGECDVNHATLAE NGLGL 2716 A 94 3006 RTRSLTRKAMAEHAPRRCCLGWDFSTQQV KVVAVDAELNVFYEESVHFDRDLPEFGHV LDVHGVHVHKDGLTVTSPVLMWVQALDII LEKMKASGFEFSQVLALSGAGQQHGSIYW KAGAQQALTSLSPDLRLHQQLQDCFSISDC	0714	- 	1106		
QPSATTALISQQPSTLNPQPWPGSCPGG 2715 B 1 888 MRIRRWSLMFDSVWPMCAFYSWAKASRT FLKADGLPRRKQWVLVEALAGGGVLGVK QITIQVLFEVLLRRGKESETYTKMYRRLGP ERCRRSKYAGVERIVDKRKNKKGKWEYLI RWKGYGSTEDTWEPEHHLLHCEEFIDEFN GLHMSKDKRIKSGKQSSTSKLLRDSRGPSV EKLSHRPSDPGKSKGTSHKRKRINPPLAKP KKGYSGKPSSGGDRATKTVSYRTTPSGLQI MPLKKSQNGMENGDAGSEKDERHFGNGS HQPGLDLNDHVGEQDMGECDVNHATLAE NGLGL 2716 A 94 3006 RTRSLTRKAMAEHAPRRCCLGWDFSTQQV KVVAVDAELNVFYEESVHFDRDLPEFGHV LDVHGVHVHKDGLTVTSPVLMWVQALDII LEKMKASGFEFSQVLALSGAGQQHGSIYW KAGAQQALTSLSPDLRLHQQLQDCFSISDC	2714	A .	1196	1459	
B 1 888 MRIRRWSLMFDSVWPMCAFYSWAKASRT FLKADGLPRRKQWVLVEALAGGGVLGVK QITIQVLFEVLLRRGKESETYTKMYRRLGP ERCRRSKYAGVERIVDKRKNKKGKWEYLI RWKGYGSTEDTWEPEHHLLHCEEFIDEFN GLHMSKDKRIKSGKQSSTSKLLRDSRGPSV EKLSHRPSDPGKSKGTSHKRKRINPPLAKP KKGYSGKPSSGGDRATKTVSYRTTPSGLQI MPLKKSQNGMENGDAGSEKDERHFGNGS HQPGLDLNDHVGEQDMGECDVNHATLAE NGLGL 2716 A 94 3006 RTRSLTRKAMAEHAPRRCCLGWDFSTQQV KVVAVDAELNVFYEESVHFDRDLPEFGHV LDVHGVHVHKDGLTVTSPVLMWVQALDII LEKMKASGFEFSQVLALSGAGQQHGSIYW KAGAQQALTSLSPDLRLHQQLQDCFSISDC					
FLKADGLPRRKQWVLVEALAGGGVLGVK QITIQVLFEVLLRRGKESETYTKMYRRLGP ERCRRSKYAGVERIVDKRKNKKGKWEYLI RWKGYGSTEDTWEPEHHILHCEEFIDEFN GLHMSKDKRIKSGKQSSTSKLLRDSRGPSV EKLSHRPSDPGKSKGTSHKRKRINPPLAKP KKGYSGKPSSGGDRATKTVSYRTTPSGLQI MPLKKSQNGMENGDAGSEKDERHFGNGS HQPGLDLNDHVGEQDMGECDVNHATLAE NGLGL 2716 A 94 3006 RTRSLTRKAMAEHAPRRCCLGWDFSTQQV KVVAVDAELNVFYEESVHFDRDLPEFGHV LDVHGVHVHKDGLTVTSPVLMWVQALDII LEKMKASGFEFSQVLALSGAGQQHGSIYW KAGAQQALTSLSPDLRLHQQLQDCFSISDC		_			QPSATTALISQQPSTLNPQPWPGSCPGG
QITIQVLFEVLLRRGKESETYTKMYRRLGP ERCRRSKYAGVERIVDKRKNKKGKWEYLI RWKGYGSTEDTWEPEHHLLHCEEFIDEFN GLHMSKDKRIKSGKQSSTSKLLRDSRGPSV EKLSHRPSDPGKSKGTSHKRKRINPPLAKP KKGYSGKPSSGGDRATKTVSYRTTPSGLQI MPLKKSQNGMENGDAGSEKDERHFGNGS HQPGLDLNDHVGEQDMGECDVNHATLAE NGLGL 2716 A 94 3006 RTRSLTRKAMAEHAPRRCCLGWDFSTQQV KVVAVDAELNVFYEESVHFDRDLPEFGHV LDVHGVHVHKDGLTVTSPVLMWVQALDII LEKMKASGFEFSQVLALSGAGQQHGSIYW KAGAQQALTSLSPDLRLHQQLQDCFSISDC	2715	B	1	888	MRIRRWSLMFDSVWPMCAFYSWAKASRT
QITIQVLFEVLLRRGKESETYTKMYRRLGP ERCRRSKYAGVERIVDKRKNKKGKWEYLI RWKGYGSTEDTWEPEHHLLHCEEFIDEFN GLHMSKDKRIKSGKQSSTSKLLRDSRGPSV EKLSHRPSDPGKSKGTSHKRKRINPPLAKP KKGYSGKPSSGGDRATKTVSYRTTPSGLQI MPLKKSQNGMENGDAGSEKDERHFGNGS HQPGLDLNDHVGEQDMGECDVNHATLAE NGLGL 2716 A 94 3006 RTRSLTRKAMAEHAPRRCCLGWDFSTQQV KVVAVDAELNVFYEESVHFDRDLPEFGHV LDVHGVHVHKDGLTVTSPVLMWVQALDII LEKMKASGFEFSQVLALSGAGQQHGSIYW KAGAQQALTSLSPDLRLHQQLQDCFSISDC					FLKADGLPRRKQWVLVEALAGGGVLGVK
ERCRRSKYAGVERIVDKRKNKKGKWEYLI RWKGYGSTEDTWEPEHHLLHCEEFIDEFN GLHMSKDKRIKSGKQSSTSKLLRDSRGPSV EKLSHRPSDPGKSKGTSHKRKRINPPLAKP KKGYSGKPSSGGDRATKTVSYRTTPSGLQI MPLKKSQNGMENGDAGSEKDERHFGNGS HQPGLDLNDHVGEQDMGECDVNHATLAE NGLGL 2716 A 94 3006 RTRSLTRKAMAEHAPRRCCLGWDFSTQQV KVVAVDAELNVFYEESVHFDRDLPEFGHV LDVHGVHVHKDGLTVTSPVLMWVQALDII LEKMKASGFEFSQVLALSGAGQQHGSIYW KAGAQQALTSLSPDLRLHQQLQDCFSISDC					
RWKGYGSTEDTWEPEHHLLHCEEFIDEFN GLHMSKDKRIKSGKQSSTSKLLRDSRGPSV EKLSHRPSDPGKSKGTSHKRKRINPPLAKP KKGYSGKPSSGGDRATKTVSYRTTPSGLQI MPLKKSQNGMENGDAGSEKDERHFGNGS HQPGLDLNDHVGEQDMGECDVNHATLAE NGLGL 2716 A 94 3006 RTRSLTRKAMAEHAPRRCCLGWDFSTQQV KVVAVDAELNVFYEESVHFDRDLPEFGHV LDVHGVHVHKDGLTVTSPVLMWVQALDII LEKMKASGFEFSQVLALSGAGQQHGSIYW KAGAQQALTSLSPDLRLHQQLQDCFSISDC					
GLHMSKDKRIKSGKQSSTSKLLRDSRGPSV EKLSHRPSDPGKSKGTSHKRKRINPPLAKP KKGYSGKPSSGGDRATKTVSYRTTPSGLQI MPLKKSQNGMENGDAGSEKDERHFGNGS HQPGLDLNDHVGEQDMGECDVNHATLAE NGLGL 2716 A 94 3006 RTRSLTRKAMAEHAPRRCCLGWDFSTQQV KVVAVDAELNVFYEESVHFDRDLPEFGHV LDVHGVHVHKDGLTVTSPVLMWVQALDII LEKMKASGFEFSQVLALSGAGQQHGSIYW KAGAQQALTSLSPDLRLHQQLQDCFSISDC					
EKLSHRPSDPGKSKGTSHKRKRINPPLAKP KKGYSGKPSSGGDRATKTVSYRTTPSGLQI MPLKKSQNGMENGDAGSEKDERHFGNGS HQPGLDLNDHVGEQDMGECDVNHATLAE NGLGL 2716 A 94 3006 RTRSLTRKAMAEHAPRRCCLGWDFSTQQV KVVAVDAELNVFYEESVHFDRDLPEFGHV LDVHGVHVHKDGLTVTSPVLMWVQALDII LEKMKASGFEFSQVLALSGAGQQHGSIYW KAGAQQALTSLSPDLRLHQQLQDCFSISDC]	
KKGYSGKPSSGGDRATKTVSYRTTPSGLQI MPLKKSQNGMENGDAGSEKDERHFGNGS HQPGLDLNDHVGEQDMGECDVNHATLAE NGLGL 2716 A 94 3006 RTRSLTRKAMAEHAPRRCCLGWDFSTQQV KVVAVDAELNVFYEESVHFDRDLPEFGHV LDVHGVHVHKDGLTVTSPVLMWVQALDII LEKMKASGFEFSQVLALSGAGQQHGSIYW KAGAQQALTSLSPDLRLHQQLQDCFSISDC					
MPLKKSQNGMENGDAGSEKDERHFGNGS HQPGLDLNDHVGEQDMGECDVNHATLAE NGLGL 2716 A 94 3006 RTRSLTRKAMAEHAPRRCCLGWDFSTQQV KVVAVDAELNVFYEESVHFDRDLPEFGHV LDVHGVHVHKDGLTVTSPVLMWVQALDII LEKMKASGFEFSQVLALSGAGQQHGSIYW KAGAQQALTSLSPDLRLHQQLQDCFSISDC		1	1	.	
HQPGLDLNDHVGEQDMGECDVNHATLAE NGLGL 2716 A 94 3006 RTRSLTRKAMAEHAPRRCCLGWDFSTQQV KVVAVDAELNVFYEESVHFDRDLPEFGHV LDVHGVHVHKDGLTVTSPVLMWVQALDII LEKMKASGFEFSQVLALSGAGQQHGSIYW KAGAQQALTSLSPDLRLHQQLQDCFSISDC			1		
2716 A 94 3006 RTRSLTRKAMAEHAPRRCCLGWDFSTQQV KVVAVDAELNVFYEESVHFDRDLPEFGHV LDVHGVHVHKDGLTVTSPVLMWVQALDII LEKMKASGFEFSQVLALSGAGQQHGSIYW KAGAQQALTSLSPDLRLHQQLQDCFSISDC			1	·	HODGI DI MDITI CEODA CEODA DETA CE A S
2716 A 94 3006 RTRSLTRKAMAEHAPRRCCLGWDFSTQQV KVVAVDAELNVFYEESVHFDRDLPEFGHV LDVHGVHVHKDGLTVTSPVLMWVQALDII LEKMKASGFEFSQVLALSGAGQQHGSIYW KAGAQQALTSLSPDLRLHQQLQDCFSISDC			1	. !	NGI GI
KVVAVDAELNVFYEESVHFDRDLPEFGHV LDVHGVHVHKDGLTVTSPVLMWVQALDII LEKMKASGFEFSQVLALSGAGQQHGSIYW KAGAQQALTSLSPDLRLHQQLQDCFSISDC	2716	+	104	2006	
LDVHGVHVHKDGLTVTSPVLMWVQALDII LEKMKASGFEFSQVLALSGAGQQHGSIYW KAGAQQALTSLSPDLRLHQQLQDCFSISDC	2/10	A) ⁹⁴	3006	
LEKMKASGFEFSQVLALSGAGQQHGSIYW KAGAQQALTSLSPDLRLHQQLQDCFSISDC		1]	
KAGAQQALTSLSPDLRLHQQLQDCFSISDC		1			
KAGAQQALTSLSPDLRLHQQLQDCFSISDC				1	LEKMKASGFEFSQVLALSGAGQQHGSIYW
				1	KAGAQQALTSLSPDLRLHQQLQDCFSISDC
		<u> </u>		<u> </u>	

475

Table 8

SEQ	Method	Predicted	Predicted ending	Amino acid sequence (X=Unknown, *=Stop codon, /=possible nucleotide
ID NO:		beginning nucleotide	nucleotide	deletion,=possible nucleotide insertion)
NO:		location of	location of	deletion, possible national interest
		first amino	last amino	
ŀ		acid residue	acid residue	
		of peptide	of peptide	
		sequence	sequence	•
				TGSRAYEFNLVCDRKHLKDTTQSVFMAGL
ŀ				LVGTLMFGPLCDRIGRKATILAQLLLFTLIG
ľ				LATAFVPSFELYMALRFA\GLLPSLDLASA
ł				MSPY*QNGWGPHGGRRPWSWPSATSPSGR
				WCLRDSPTVSATGGSFRSPALRLAYCSS\LL
				LGSARICTLAPDPWEDGRGDTTDPENGLG
	1			Q*AETLPGAHEPAGPREDRPLRECPGSVQT PPAPEGDPDYLLCLVCGQSGVLRPEPPSGG
				LRPGRLSDAAHLWSC*GACPLFQHLHDAE
	1			VWPQVEP/RWGPWSWVA*CVSSSSSSQQIC
				PWWSPCWLWWGKWPQLLPLPSPMCTLPS
				FSPPSSGRQAWGWWASSHGSGASSHHL*S
4				CWESTTLPSPCSSTAASPSWPA/SLCTLLPE
V				THGQGLKDTLQDLELGPHPRSPKSVPSEKE
				TEAKGRTSSPGVAFVSLGTSDTLFLWLQEP
				MPALEGHIFCNPVDSQHYMALLCFKNGSL
				MREKIRNESVSRSWSDFSKALQSTEMGNG
		·		GNLGFYFDVMEITPEIIGRHRFNTENHKYF
	1			KGKGAPGHPMPSLKANFDLLACLRGVGSS
				TLLLWPAVLGAQTRQAGVNEGRSQVADF LRIPVTGCPEQRRNPPSPPAPLGTGGPAEER
				LOFPGVAGSRRGRGRILRAGGIGRASPGEG
				TGAPRPRAGQGRGGPGKPESGGGPVALR
				PGDCTCCVLKSQPRQQRRGACSAMAFRVR
				LRVRQSVRPPRGVIVAALQRPETQGPAPSS
				ARPDCGPESRGGLALWRRLRGYASRDRVL
				CNRRCPHAARFPSKRTPSGSPHLHLMSSW
				AVP
2717	A	1308	369	LRSNHGEDWSQFIGAAQRETTVSLLPMPH
				TWPVSLSTGSCM/TRGTPILPFINNPQLQVH FHR/EDDEHSDIAFHF*VYFGHWVIMNSHE
				C/GAWKCEERSNNMPAEDGRVFELHIIVLD
	1	1		NEYQAMVNG/QSLLHSFAHRLLPGSVKMV
		}		QVWRDVSLNSRCVSSGETVSSSSSFLPPPPP
				PLPLPLLLLPPLPLPDEALFLSLPSHALPSG
				RCGVLSLCGSHYPQPGGLLQSSAGASGRR
			}	GAPGVPWQVLVLLTPRGLQGPPPGMRGRV
				VHKPLLVMELGEQPFSFPSVRTATSSASGK
				APPRCPWPGPRALSPSSVP
2718	A	2	1226	SLGSTISTDWANHYLAKSGHKRLIRDLQQ
				DVTDGVLLAQIIQVVANEKIEDINGCPKNR SQMIENIDACLNFLAAKGINIQGLSAEEIKN
				GNLKAILGLFFSLSRYKQQQQQPQKQHLSS
				PLPPAVSQVAGAPSQCQAGTPQQAPGVPV
				TPQAPCQPHQPAPHQQSKAQAEMQSRLPG
				PTARVSAAGSEAKTRGGSTTANNRRSQSF
				NNYDKSKPVTSPPPPPSSHEKEPLASSASSH
				PGMSDNAPASLESGSSSTPTNCSTYSGIPHS
				GAATKPWRSKSLSVKHSATVSMLSVKPPG
				PEAPRPTPEAMKPAPNNQKSMLEKLKLFN
				SKGGSKAGEGPGSRDTSCERLETLPSFEESE

476

Table 8

SEQ ID NO:	Method	Predicted beginning nucleotide location of first amino acid residue of peptide sequence	Predicted ending nucleotide location of last amino acid residue of peptide sequence	Amino acid sequence (X=Unknown, *=Stop codon, /=possible nucleotide deletion,=possible nucleotide insertion) ELEAASRMLTTVGPASSSPKIALKGIAQRTF SRALTNKKSSLKGNEKGKE
2719	A	103	742	NANTQRARRREGARLDNLWLEQVISVLPG LVTQGFRCHSGPMGRGLEPHPIRGAGAGS CQLSIRGRGGRIPAFLTPRRLAPKGGRDLG FPAPRGTRCLRHSFCRSIARTVT/RTVRGIR GEEARTPGSREMDSVVFEDVDVNFTQEEW ALLDPSQKNLYRDVMQETFRNLASVGKK WKDQKIEDEYKNPRRNLRNYVYHFSLKK WSWSLYARQT
2720	A	1258	586	LLLHSLFPVPRMGNSASNIVSPQEALPGRK EQTPVAAKHHVNGNRTVEPFPEGTQMAVF GMGCFWGAERKFWVLKGVYSTQVGFAG GYTSNPTYKEVCSEKTGHAEVVRVVYQPE HMSFEELLKVFWENHDPTQGMRQGNDHG TQYRSAIYPTSAKQMEAALSSKENYQKVL SEHGFGPITTDIREGQTFYYAEDYHQQYLS KNPNGYCGLGGTGVSCPVGIKK
2721		2806	382	NEIEKQLNAIRDNIKIGEDRAARLDRKMEE QQVRLNEAEQKYKDIQDKLEKISEETNAR APECMALKADVVAKKRAYNEAEVLYNRS LNEYKALKKDDEQLCKRIEELKKSTDQSLE PERLERQKKISWLKERVKAFQNQENSVNQ EIEQFQQAIEKDKEEHGKIKREELDVKHAL SYNQGQLKELKDSKTDRLKRFGPNVPALL EAIDDAYRQGHFTYKPVGPLGACIHLRDPE LALAIESCLKGLLQAYCCHNHADERVLQA LMKRFYLPWTSRPPIIVSECRNEIYDVRHR AAYHPDFPTVLTALEIDNAVAANSLIDMR GIETVLLIKNNSVARAVMQSQKPPKNCRE AFTADGDQVFAGRYYSSENTRPKFLSRDV DSEISDLENEVENKTAQILNLQQHLSALEK DIKHNEELLKRCQLHYKEJKMKIRKNISEI RELENIEEHQSVDIATLEDEAQENKSKMK MVEEHMEQQKENMEHLKSLKIEAENKYD AIKFKINQLSELADPLKDELNLADSEVDNQ KRGKRHYEEKQKEHLDTLNKKKRELDMK EKELEEKMSQARQICPERIEVEKSASILDKE INTLRQKIQAEHASHGDREEIMRQYQEARE TYLDLDSKVRTLKKFIKLLGEIMEHRFKTY QQFRRCLTLRCKLYFDNLLSQRAYCGKMN FDHKNETLSISVQPGEGNKAAFNDMRALS GGERSFSTVCFILSLWSIAESPFRCLDEFDV YMDMVNRRIAMDLILKMADSQRFRQFILL TPQSMSSLPSSKLIRILRMSDPERGQTTLPF RPVTQEEDDDQR
2722	A	1567	1145	AEVLGRAVEPPPGRCWSTPPVAPPARSASA AAMGVQVETISPGDGRTFPKRGQTCVVHY TGMLEDGKKFDSSRDRNKPFKFMLGKQEV IRGWEEGVAQMSVGQRAKLTISPDYAYGA TGHPGIIPPHATLVFDVELLKLE

Table 8

	135	T= 11 . 1	Table	Amino acid sequence (X=Unknown, *=Stop
SEQ	Method	Predicted	Predicted	codon, /=possible nucleotide
ID	Ì	beginning	ending nucleotide	deletion,=possible nucleotide insertion)
NO:	ł	nucleotide	location of	deletion,-possible nucleotide most dony
	}	location of	last amino	
	\	first amino	1	
	1	acid residue	acid residue	
	ł	of peptide	of peptide	
	ļ	sequence	sequence	RRVGCRCFHPSQTGTCT*RPPWNVHH*PAT
2723	A	374	656	CHLAYNRHSWSPHRA/HWHIATAIQLSAH
	į (ļ	[VF/ACHYQQLHHYHQHHHHHHHYRHHHH
				нининуснин
	+	1171	1639	PMALWADGRARHKVGTECECGMHPGLKC
2724	A	1171	1039	SGRTLGSQTMLATTPCDSPT*I/SNKNGLRS
	Ì		Í	V/SYR*CLINALWLFSISPHILVRCGTESS*L
	1			LPSLVPSWLP*LVRVR\PLPTGWC*IPSCLKP
	1		}	VPTWSSHHSPQRLP*NPATLVCLQNGTARS
)		1	HSSTPV
2725	 	8	505	GSFKTGLYLPTSDIDLVVFGKWENLPLWTL
2725	A	8	303	EEALRKHKVADEDSVKVLDKATVPIIKLTD
	1		1	SFTEVKVDISFNVQNGVRAADLIKDFTKKY
	1		1	PVLPYLVLKQFLLQRDLNEVFTGGIGSY
	Ĭ		,	SLFLMAVSFLQLHPREDACIPNTNYGVLLI
				EFFELYGRHFNYLKTG
2726	 	214	32	MTLRMLVPRLLLTRQLVWFFSAATERDPE
2726	A	214	32	MMNGIPRKLMSFPPSSVTSRRSRRGHHLQS
			1	L*
200			40	WNSDQPATR*QVGDTGSLPSRKGQHFVLT
2727	A	2	40	GIDTYSRSGFAFPVRHAPAKTSIRGLTECRT
	İ			YCHGMPHCTASV*GTPFTAKKVW*RAHA
				HGIPRYDHVAHHLEAAGLIRWWNGLLKTP
	1			LQHQLGGDALQGWARVLQEAVYALNQN*
		i		V*GW
2728	A	16	444	TPSPSPCPXPRPLAALKPVRLHSFQEHVFKR
2/20	A	10	1 777	ASPCELCHQLIVGNSKQGLRCKMCKVSVH
	ł	1	Ì	LWCSEEISHQQCPGKTSTSFRRNFSSPLLVH
		ł	\	EPPPVCATSKESPPTGDSGKVDPVYETLRY
	}	}		GTSLALMNRSSFSSTSESPTRS
2729	A	37	655	AEPAAGAGTLAGDCRAVQGGVHAARPRG
2129	A	(3' .	1 055	AKEGHGPADGHGKGGAGTGQERLAGGAE
		1	1	VCHAQVRGGAAAPGCRVGGVLRAAKAE*
1			Į.	GAGRARGRAGIAGGHPAGGHPHQPGQGA
ł	1			G*AEDQGQRAPGRGEAAGSGR/GA/GPGA
ŀ	i			GAAGAAAGEGEDQRHRPACQAPRRGGGE
Ì				HEQGGLREVRGGGAGIARGPAGAGRAAG
]				PVAGGAATAGAA
2730	C	257	498	MQKSEGSGGTQLKNRATGNYDQRTSSSTQ
2130	1	120,	1	LKHRNAVQGSKSSLSTSSPESARKLHPRPS
ĺ)	1	1	DKLNPXTINPVHSDDEVFERG
2731	A	342	665	MALDFVNVLLCQLAEVTLGVLREEGASLL
2/31	I A	372	1 003	VALGSALFPSAAAVGKQGSMGVTSHMQC
	1			PVCQHPRDVLLASPVSHSHACQPQPAGCS
}	Į.	1.		NCHLGHLTRSPPFQGLLPLLQ*
1772	 	+1	825	MKRYSYGSVLFTAFDLGYLDPDEVQQGHE
2732	A	1,	023	IGRLFDGTEPIVLDSLKQHYFIDRDGQMFR
[-	1		YILNFLRTSKLLIPDDFKRTLVFILPLAAPFS
	1	1	1	VGLEACPLAGKRLKGSVCPELEFPLWKKH
	Ì]		RVFSQSLPYKTHAFNEERLQDNKSYIHSVL
		1		QEPREDTDPEGAGAAPDHRSTYKLLSPALS
i	1	i	1	ARITHDIDI DOVOUNT DIMOLLINON LIND

478

Table 8

	T = 2 : 5 -	T	Dundicted	Amino acid sequence (X=Unknown, *=Stop
SEQ	Method	Predicted	Predicted	codon, /=possible nucleotide
ID		beginning	ending	deletion,=possible nucleotide insertion)
NO:		nucleotide	nucleotide	deletton,-possible naciconae insertion,
	1	location of	location of	
	!	first amino	last amino	
	İ	acid residue	acid residue	
		of peptide	of peptide	
		sequence	sequence	LNLGEKNKWLRRYIELLISEREMAAAGSSI
		1	1 .	LNLGEKNKWLKK I IELLISEKEWAAAOSSI
				PSWTSVSIQVKLRKCQLQLLAKEEVATIVL
		•		DETSGVNGIHIEHQLQCLIQVPKLSAPNIAP
				PTPA
2733	A	135	438	GMGYLHAKGILHKDLKSKNVFYDNGKVV
				ITDFGLFSISGVLQAGRREDKLRIQNGWLC
				HLAPEURQLSPDTEEDKLPFSKHSDVFALG
	1			TIWYELHAREWP
2734	Α	74	661	HTHKLVAPRPGLPPTSQWPRDAGRQASGG
				LPSLSTGPPKGPRDGLARGHPAEWLAGSPG
		1		NNSPTQGSLPPQLDLYAGALFVHICLGWNF
				YLSTILTLGITALYTIAGMVPAAGRSTQGT
				CKGVRRPPPPTGPREQPRKWPQQEPQKFLP
				VSLLPGARAPSSNLASTGRGPGCCNLHGRP
	1			ADAHHGGGGCHPDNQR
2735	T _A	40	446	RHLLLSLSAVTGKCSFAPDCGELKLPGAAC
2/33	1 ^	10	1	ACOVVADVSSLLL*LCQMRELRCENVATC
				LGIF\GSLGNLLRKEVLHLDWTFKASLLLD
				LICMRSLPGPGTAELLWTAPELLPGPGRPG
				RRTLTGDIFSTGIILQE
2736	A	1	517	LVDPRVRGEPGPPSDAVFARDPMRPPGLV
2/30	A	1	317	RNLQVTDRSNTSITLSWAGPDTQEGDEAQ
	1			GYVVELCSSNSLOWLPCHVGTVPVTTYTA
				KGLRPGEGYFVRVTAVNEGGQSQPSALDT
	İ	Ì		LVQAMPVTVCPKFLVDSSTKDLLTVKVGD
	ł			TVRVPVSFEHARRPLGPSTCRRTCLGR
0777	 	3	437	NDPRVQKPREEAPAGAAASG*CGR*PGQH
2737	A	3	457	PAAA*\P*SAGPRRAPTALSPPTAEPSLCPA\
				PG*PEQPQCSRRPGGQPRDPVGQHRSQPAV
				GPAAGSPLRPCAWSAQRGSPQPDQLPHTPP
	1			GAAGS*SQLPRPPPSFAQATPSTPP
	+	34	576	EELCVREHVTGGICGGSQMMVVLLGATTL
2738	A	34	370	VLVAVAPWVLSAAAGERRGGESWRRAGG
1	ł			RARSWATGAAMLLGATDAQSGKPSVHFA
				APKIKPDLGSQINQEKVVFWVLSCRLPVAV
	ļ			YGSSGAPGSHPREMAVPELCVEFDSFRETH
1	i i		1	QILLVYFVCGPRQLFFQCGPRKPKRVDTLD
1	1			ADEACR
L			410	CHSTESSSDFILPGDYLLGGLCPLHSGCLQV
2739	A	2	410	\CSFNEHGYHLFQAMRLAVEEINNSTALLP
				NITLGYQLYDVCSDSANVYATLRVLSLPG
	1			QHHIELQGDLLHYSPTVLAVIGPDSTNRAA
		İ		TRAALLEDELYDMILEO
				TTAALLSPFLVPMLLEQ STRPEFPGRAPTGFLKLLADKNSELFRKYA
2740	Α	2	417	SIKEEFUKAPIUTEKLAUNISELKAIA
				LFSPSDHRVPRIYVPLKDCPQDFVARPKDY
				ANTLFICRIVDWKEDCNFALGQLAKSLGQ
1				AGEIEPETEGILTEYGVDFSDFSSEVLECLP
	1			QGLPWTIPPEEFSKRRVV
2741	A	1	312	MAPAADREGYWGPTTSTLDWCEENYSVT
-: '-				WYIAEF\SWLMSGFLPTPSSLRDLTASRWV RSLPPSRSPAGRQPGPAEELPKASPCPWGK
				I DOMESTIC OF THE PROPERTY OF

Table 8

SEQ ID NO:	Method	Predicted beginning nucleotide location of first amino	Predicted ending nucleotide location of last amino	Amino acid sequence (X=Unknown, *=Stop codon, /=possible nucleotide deletion,=possible nucleotide insertion)
		acid residue of peptide sequence	acid residue of peptide sequence	
				SLSRPFASFSASSGPS
2742	A	2	374	FRDLQCALYNGRPVLGTQKTYQWVPFHG APNQCDLNCLAEGHAFYHSFGRVLDGTAC SPGAQGVCVAGRCLSAGCDGLLGSGALED RCGRCGGANDSCLFVQRVFRDAGAFAGY WNVTLIPEGA
2743	В	218	656	MGPVPLVWAMSQLSLSAKMDRRRTGVM MTSTPITWGTLEKTMQEAEKLLERQGQTK TPDSMFLAMEESLNVTFVKNITTQFMVCG FNPYVFLAAKADQLQVVVSHTTTASQER
2744	A	85	396	MILINFREICLKVLHTPLCVSGGCVLLYILA LTCCYTNSLLISHLPPLSLPTETQTHLFMYR VLKVRKDIKNHVFHPTYLVAKETETYGEE LIPLPPCREHQD*
2745	A		3899	NRPSSASSTSSKAPPSSRRNVGMGTTRRLG SSTLGSKSSAAKEGAGAVDEEDFIKAFDDV PVVQIYSSRDLEESINKIREILSDDKHDWEQ RVNALKKIRSLLLAGAAEYDNFFQHLRLL DGAFKLSAKDLRSQVVREA\CITLGHLSSV LGNKFDHGAEAIMPTIFNLIPNS\AKIMATS GVVAVRLIIRHTHIPRLIPVITSNCTSKAVA VRRCFEFLDLLLQEWQTHSLERHISVLAE TIKKGIHDADSEARIEARKCYWGFHSHFSR EAEHLYHTLESSYQKALQSHLKNSDSIVSL PQSDRSSSSSQESLNRPLSAKRSPTGSTTSR ASTVSTKSVSTTGSLQRSRSDIDVNAAASA KSKVSSSSGTTPFSSAAALPPGSYASLDGTT TKAEGRIRTRRQSSGSATNVASTPDNRGRS RAKVVSQSQRSRSANPAGAGSRSSSPGKLL GSGYGGLTGGSSRGPPVTPSSEKRSKIPRSQ GCSRETSPNRIGLARSSRIPRPSMSQGCSRD TSRESSRDTSPARGFPPLDRFGLGQPGRIPG SVNAMRVLSTSTDLEAAVADALKKPVRRR YEPYGMYSDDDANSDASSVCSERSYGSRN GGIPHYLRQTEDVAEVLNHCASSNWSERK EGLLGLQNLLKSQRTLSRVELKRLCEIFTR MFADPHSKRVFSMFLETLVDFIIIHKDDLQ DWLFVLLTQ\LLKKNGEADLLGSVQAKVQ KALDVTRDSFPFDQQFNILMRFIVDQTQTP NLKVKVAILKYIESLARQMDPTDFVNSSET RLAVSRIITWTTEPKSSDVRKAAQIVLISLF ELNTPEFTMLLGALPKTFQDGATKLLHNH LKNSSNTSVGSPSNTIGRTPSRHTSSRTSPL TSPTNCSHGGLSPSRLWGWSADGLAKHPP PFSQPNSIPTAPSHKALRRSYSPSMLDYDTE NLNSEEIYSSLRGVTEAIEKFSFRSQEDLNE PIKRDGKKECDIVSRDGGAASPATEGRGGS EVEGGRTALDNKTSLLNTQPPRAFPGPRAR DYNPYPYSDAINTYDKTALKEAVFDDDME QLRDVPIDHSDLVADLLKELSNHNERVEER

Table 8

SEQ ID NO:	Method	Predicted beginning nucleotide	Predicted ending nucleotide	Amino acid sequence (X=Unknown, *=Stop codon, /=possible nucleotide deletion,=possible nucleotide insertion)
		location of first amino acid residue of peptide sequence	location of last amino acid residue of peptide sequence	·
				LETLGDKDHSIRALALRVLREILRNQPARF KNYAELTIMKTLEAHKDSHKEVVRAAEEA ASTLASSIHPEQCIKVLCPIIQTADYPINLAA IKMQTKVVERIAKESLLQLLVDIIPGLLQGY DNTESSVRKASVFCLVAIYSVIGEDLKPHL AQLTGSKMKLLNLYIKRAQTTNSNSSSSD VSTHS
2746	A	153	1224	RVFSESVCSPVRNLEFLWRFAFPLAPAGRC PPGVPLQTSPRDTDAHRSSPLPPARASPGQ VAAAYRWARCPGCGGRKPRSSGSWQLCR CPTLPPPPRGSRSSGRC/RTWPSPPSCFPHFQ SGPRTTRAPTPSTTVPGYSGSYSSGPGR*GLS PLHAA/VSPPLPPGGP*GSWARAGLGSIASA HSPCPLCRSLIRSRS*QTCTRSPT*NCEVPPS AP*AASPLRTMFALVRTAGLKVHLLPLGY CTTMS*SSSMPQTVPVVVKVSNIPSVHPP*P CCKDCTISRSRSIFTRSPICNPPGFLLPFCSPS TGQ*SL*KEPPLASWTHFRSDVLLLFSVSM NGSTLSLGCPSQKAVIALVQVT
2747	A	1	996	MKIHSCAFVIEQEEKKKTEAHKEGDGVKR ADKILGVTKDPGTIAGLNVVRIINEPTAASI AYGTDKKFGAERHVLIYDLRDEIFDVSVLT LEDEIFEIKSTAGDTHLGEEDFDNQMINHFI AEFKYKHKDSRADIYTSITHAQFEELNAVL FRGTQDPIEIALQDTKLDKLQIHVIVLTQTF TTYPDNQPDVLIQVYEGESAITKDNNLLVI QGKFELTGILPAPFAVPQIKVTCDIDVNSSL NISAVGKSTEKENKIIITNDQGHLSKEDIEN MVQEAEYKAEDEKQKNKVASKNSLDSYA FNMKATEKLQGKINNKDKQKILDKCNKIIN
2748	A	73	1210	IPPPSSPSSPAAAPRAQLGKDALSPLALLIR PRRAYPRPLPTSESLAWGSPPPSRFGPSPAS QPRSPRLSFLVLGVACSAILMYIFCTDCWLI AVLYFTWLVFDWNTPKKGGRRSQWVRN WAVWRYFRDYFPIQLVKTHNLLTTRNYIF GYHPHGIMGLGAFCNFSTEATEVSKKFPGI RPYLATLAGNFRMPVLREYLMSGGICPVS RDTIDYLLSKNGSGNAIIIVVGGAAESLSSM PGKNAVTLRNRKGFVKLALRHGADLVPIY SFGENEVYKQVIFEEGSWGRWVQKKFQK YIGFAPCIFHGRGLFSSDTWGLVPYSKPITT VVGEPITIPKLEHPTQQDIDLYHTMYMEAL VKLFDKHKTKFGLPETEVLEVN
2749	A	351	205	DLYSEKASADHEGAEQFTDEFAKVIADGN LMPEQVYNAVKTSLFWCMVP
2750	A	172	2	MLEQASLWLGRSFLLAGFLVSSSCPSLEQA AKGEGCSPIPCFAHCLDSLVRNFLCHP
2751	A	2	1410	GPLIDLCKGPHETHTGKIKTIQIFTNSSTYW EGNPEMETLQRIYGISFPDNKMMRDWEKF QEEAKNRDHRKIGKEQELFFFHDLSPGSCF FLPRGAFIYNTLTDFIREEYHKRDFTEVLSP

481

Table 8

SEQ ID NO:	Method	Predicted beginning nucleotide location of first amino acid residue of peptide sequence	Predicted ending nucleotide location of last amino acid residue of peptide sequence	Amino acid sequence (X=Unknown, *=Stop codon, /=possible nucleotide deletion,=possible nucleotide insertion) NMYNSKLWEASGHWQHYSENMFTFEIEK DTFALKPMNCPGHCLMFAHRPRSWREMPI RFADFGVLHRNELSGTLSGLTRVRRFQQD DAHIFCTVEQIEEEIKGCLQFLQSVYSTFGF SFQLNLSTRPENFLGEIEMWNEAEKQLQNS LMDFGEPWKMNPGDGAFYGPKIDIKIKDAI
				GRYHQCATIQLDFQLPIRFNLTYVSKDGDD KKRPVIIHRAILGSVERMIAILSENYGGKWP FWLSPRQVMVIPVGPTCEKYALQVSSEFFE EGFMADVDLDHSCTLNKKIRNAQLAQYNF ILVVGEKEKIDNAVNVRTRDNKIHGEILVT SAIDKLKNLRKTRTLNAEEAF MVASFRESRVLLLGLVVRVLTFDFLTQVV
2752	A	319	495	RVGSECGDELVRLYSFTDEKANYLQQGGC R
2753	A	23	1255	LRSIYTTHYRESVPKA/HLTDSFPDLLGLAA ED*HCPIALEAL*TITDAELRVTLTVEGKPV PFLINTEATHSTLPSFQGPVSLASITVVGIDG \QA\SKPLKTPQ\LWCQH*TIRRFKHSFLVIP\ TCQVPLLG\EDTLTKLSASLTIPGLQLYLIAT LLPNPKPPLCPPLV/SPQLNPQV*DISTPSLT TDS
2754	A	277	467	GLGPHDYLYSILSIERSCCC*CCCCCRRRR CCCCC/CV*GCSRFLCSIAESTPSGALRRLR GGR
2755	A	86	593	ASALLFVVGFAESLREFTADCPPYKCPVAP EPLPQPLS\PLQCPGEESTDSPFSLPTVQPVK SRCSPFIEESPRANRSIPAFGSHLECASCSSR SFHGPPPCCLWGLPLSAPSPHVLHPPASAAI GPACCVTSLCPGAPQAQRPRKVDQTSSAP GAGPGTQDGNERPNP
2756	A		3617	YWKERPTQKVIPRATENHGLKSYLQKTKL SIDEAAFLLPDTNLKSELLELLTHWLQVGV PMTPSLGSINLLGWLTELRETHTYICWFIV KETTRDTDEEMCRTEPALACSISHYCDDGC IQMLNTPETLQCSAKDSKHFIPKECSIPGEN RPPSDTGKTVKFLSLNIFNLQLAESTDAEQ RANCILRCFLTETTLNYQKILSVRPGTKLAT ASHVSGLGLQTPPFGLAQHLIRPHAFLAPK DPLTSFTERNSRSGKTRCRSKKCAMRVVK SYSAILPKKRESVLTKTLLVAPTNEQTDPV LRMCCGKTGLKKGAGFTLESRGQRRMRA GCPTLCVRARVTETDPSICSEVTFSWMILM LMDVCQCLGIEEFGIYCSLRSLDLFVPIFLE KVFQVFEGTSSPIMLWFLQTHRGTTLVALD KIQKNSLDYQAETLVLFPYFLPNKWNLSVF AEPPGTGDVVMQAPLWPPPLGLYWALEH YDQHVAKPARQRSLSLWPPPPTAHKGFLQ GHCQCSLKTQRLFSQLMANAARPETQASG QWTPFSPGQIQKCSPRSRNALGTPRACLLL YPTVAELGSTEFNVKPSICCTLPYQGAQSPS

Table 8

SEQ	Method	Predicted	Predicted	Amino acid sequence (X=Unknown, *=Stop
ID	Memon	beginning	ending	codon, /=possible nucleotide
NO:	1	nucleotide	nucleotide	deletion,=possible nucleotide insertion)
NO:		location of	location of	deletion, possible national and and
		1	last amino	
		first amino		
		acid residue	acid residue	
		of peptide	of peptide	
	 	sequence	sequence	LHTLQLRGNGVGGQHQQFKTVSLDPFNAS
			1	FRDMKLKLGKSGISSWFVSIAAAVGDEGL
				VPRSMELYSQKAYDCLCCVMQVVRKVGE
				SWQSQTSPSSHTTQKANLTSTLPPTTALSV
				FPGSGYQEWGTAVKILESMEATLEQDNKT
				RLEQFGGFRRKEDRKMWESLELPRDLWN
	1			DFDQNADSDMDNEVQAEVVSDGDKELVR
				NWSKVWKGNVGLEPRYRVPTGALTSRVV
				RRGPPSFRPQKCRSTDSLHHEPGKAAGTQC
				QPVKDLPKAVGAHSLHQPALDFRQEYLNP
			1	FSKNAKFQYECGNYSGAAENFYFFKGLVP
				ATDRNALSSLWGKLASEILMQNWDAAME
				DLTRLKETIDNNDEKPSFTHVVGKERYLN
	1			AIQTMCPQFFRY/L*LTAVHNKQGIVRKRR
				PRV*KI*LSFIKQE\SYTYKRPNLQNLLECL\
				YVNFDFDGGSRKS*GECEPGLV\NDFFLGG
			i	*S*GFQ*KMPRLFIFETF\CRIPPSVSAIN\ML
				AD\KLNMTPEEAERVDW*NLIRKWQAWM
				PODLIPKLGSCGLWGNNAV\SPLQQVIEKT\
				KSLSFRSPDVGP*IMRKNLNQNSRSE\AP*R
		1		GQLQDSGLLLKNHKEKMKKKNYQRKMK
0050	- 	1	3090	MHKELPALAACGLVADFDPVGEEETADFG
2757	A	1	3090	PLVLDSDSDDSVDRDIEEAIQEYLKVGSSK
	l			DQGSASPVSMSRADSFEQSIRAEIEQFLNEK
	ľ			RQHETQKCDGSVEKKPDTHENSAKSLSKS
				HQEPATKVVHRQGLMGVQKEFAFCRPP\R
				LAKTNVQPRSLRSKVTTTTTQEKEGSTKPA
				TP/TRPSEAVQNKSGIKRSASTARRGKRVTS
				AVQAPEASDSSSDDGIEEAIQLYQVQKTHK
	İ			EADGDPPQRVQLQEERAPAPPAHSTSSATK
	1	İ		SALPETHRKTPSKKKPVPTKTTDPGPGDLD
				ADHSPKIPKETKAPPPTSPASRSKFVEWSSC
	1			QADTSAELI\AVLDIFKTILP/APMEGSDGSL
				SASPLFYSPNVPSRSDGDSSSVDSDDSIEQEI
				WTFLALKGTASEAPGGEGAARVPGDTRTS
				OGOGKTDEARHLDKKKSSEDKSSSLDSDK
			ľ	DLDTAIKDLL/RRVPGPSSQPWLLV*QQQFS
				GQRR*HRTGD*EVFGGKGQGVGSPRPGPA
				LSLEAHTCWRRRTAITGQAGRC\LCYDSQD
				PKCGDLKKPSKKRVKRKPYSTTKVTSGSTF
				NENTRRYAVHTNQCRRPHGSRVKKKRYP
				QEDDFHHTVFSNLERLDKLQPTLEASEESL
1			•	VHKDRGDGERPVNVRVVQVAPLRLESSKY
1	1		Į.	TGITCQENNLDAKKAPHEDTVHDITNEDA
1	1.			THDIANEDTVHDIANEAADKGIANEDAAH
I	1			
l				GIASEDAAHGIASEDAAOGIASEDAAQGIA
				GIASEDAAHGIASEDAAQGIASEDAAQGIA SEDAAQGIAKEDAAQGIANEDAAQGIANE
				SEDAAQGIAKEDAAQGIANEDAAQGIANE
				SEDAAQGIAKEDAAQGIANEDAAQGIANE GAAQGIAKEDAAQGIAKEGAAHGIANEDA
				SEDAAQGIAKEDAAQGIANEDAAQGIANE

Table 8

			Table	Amino acid sequence (X=Unknown, *=Stop
SEQ	Method	Predicted	Predicted	codon, /=possible nucleotide
DO		beginning	ending	deletion,=possible nucleotide insertion)
NO:		nucleotide	nucleotide	deletion,=possible nucleotide hiser don)
		location of	location of	
		first amino	last amino	
		acid residue	acid residue	
	Į	of peptide	of peptide	
		sequence	sequence	TAPYKTSPMRALYTTLLMIPTRHANADTV
				TAPYKISPMKALTITLLMIFTKIAWADIV
			ì	HDIANEDSVYDIANEGAVYDIANDTVQGT
				LTRTLYTTSLMRTPYKASVMRTLYTTSLTR
	i			TPYKPSLTRTLYTTSLMTAPYKTSPMRALY
				TTLLMIPTRHANVDAVHDIANEDTV
2758	Α	1	1026	MTLGPLTNQRKEHLTNFKSVSTPSSESFEC
				FFSTDSSDLSPSPQAARRQAEPGACFKCWK
				SGHWAEECLOPRIPPKLHPICVGPHWKSDC
				PAHLAATPRAAGTLAQGSLTPSQIFLAEWL
				KTDTARSPQKPPGPSQTLWVTLTVEVAAT
				ALILLEALKITSYAPLTLYSSHNFQNLFSSS
				HLTHILSAPKTLQLYSLFVESSTITIVAGPDF
	Į.			NPASHIPDTTPDPHDCISLIHLTFIPFPHISFF
	ì			PVPHPDHTWFIDGSSTRPNRHTPAKAGYAI
	1			VSSTFIEATALPPSTTSQQAKLIALTQALTL
			Į.	AKGLLVNIYTDSKYAFHIQYHHAVIWAER
		İ	•	NFLTT
2759	A	1	383	TRKCGQLPRSVSLPSGPQPLPGSVRHPRPV
2133	A	1		LRRPLPRAOGSSSSFRPRPPFAPDTMDKFW
	Į.		ŀ	WHAAWGLCLVPLSLAOIGECPPQPGQQDG
			,	CGVLSADPAAAPPAESALGDWSQVSCLRS
				ALGSGKOGW
2760	A	1057	1226	ARPSRVEAOMLGARRAASWLWAPWFCPN
2700	^	1057	1220	EG*NQPGQHSETPSLQKVLKPGMVV/HLL
	1			WSOLLGSLRWEDRLSPGD
2761	A	349	1	NOTPFFFFFGGTETTSTTLCS\YGLLILLKY
2/01	A	349	1	PEVA/ESASORDPEWEAAVWRWLEGPGSA
ļ	ļ			QPPSAPAKGQELDPVVGQRPVPSPDDHVQ
	Ì			WPYTNAVLLEIORFISVVKRTLTLDTLY
0760	C	199	531	MTGIVAKONSASVPLPARLVRPTVNRKLL
2762	1	199	331	GAGTGSLPRKEARRERFLDGDQDGDEGPR
	1			QPSMGLPHKQVQNRAMAKVVITFAPTNA
	1			MQLARSPKTLNFMKIIGEMESVLE
0000	 	- 1	1428	MVNPTVFFDTEPLGRISFELFADKFPKTAG
2763	A	1	1420	NFHALSTGEKGFGYKGSCFHRIVPGFMCQ
				GGDFTCHDGTGGKSIYREKFDDKNFIRKHT
	ļ			VSGILSMANAGPNANSSQFFICAAKTEWLD
ļ	1			GKHVVFSKVKEGMNIVETMECFGSRNGKT
	1	ļ		KGAGLAGSHSQRWLAASVCGASQPSRLLS
İ	ł			TACRQQKLQISGRSKGCSRKTSGLEDQGLT
l				KDGTNNTQGIKLQLGEEEHSPRPSSLVPV
				SQLKANGSSSASIACAEDGPARPVPGCQCQ
1				NQGHHQNKRPRTSQLCQMPKTHLVVADA
				RPNISRVFFGLPERESALWSFPRDWLVNLL
				NQCDELGIRNQFEVEVLSYGHLPLAYSARC
1		*		NACHERORIAGE A EAR TOUR TO A LONG TO
				FTARSEDRPKDECETCCIKYPNGRNVLSQE
		}	1	NQQVFVLNGIQTMSGYVYNLGNELASMQ
				GLVDVVRLSPQGTDTFAMLDAFRANENG
1	1	ı		AAPLPLTANSDCNGYWRRLADFECTWAH
			ì	
				SQGCHA MTCGTDGAITFWESLTGHRYIHKPTNPDEP

Table 8

COE A	T	T	1 able	
SEQ	Method	Predicted	Predicted	Amino acid sequence (X=Unknown, *=Stop
ID.		beginning nucleotide	ending nucleotide	codon, /=possible nucleotide deletion,=possible nucleotide insertion)
NO:		location of	location of	deletion,-possible nucleotide insertion)
		first amino	last amino	
	1	acid residue	acid residue	
		of peptide	of peptide	
		sequence	sequence	
	-	begaenee	- Jacquessa	PVAEQPKPLYPYRTIGCVFNHQMFLGNCQ
ĺ				PSDAVETCVFDLNDESKWKPMSEEAIKSV
i	İ			CAPGATTSLPPFPPLCASTIDASVTSNEIEM
			ĺ	QLRLLVSEHRKYTKIHTCPSPTGGPVEPAD
				TKSQPSVCMDFTSHEYRISDPFLVEKNLPK
İ				EKTANTAGHQKEQTGDTLPLRNITGTVRV
	İ			HGFILEVSETKNPPNPGHKTTSISQRPKALV
ŀ				SLGPEVRRGTRGEDEKALEKEGGGRRWEC
}				GGANELCGRPPAFTRVTVHWGKGNDQTF
				QDLLDTGSELTLIPGDPKRHCGPPVKIGAY
-				GGQIINGVLAQVQLTVDAVGPWTHPVVFP
				SARMHNWNRHTQQLAESHIGSLTVHLSSD PKGCHSEWGPEQEKALQEVQAAVQAALIL
	ļ	1 .		EPYDPAGPVVLEVSLADRDAVWSLWQAPI
i	1			GESQQRPLGFWSKALPSSAAIKRVMHSSIP
	ļ			SSNGSGIYMIGLEQVRKAQIVLHDMQPPCE
				NGTASALQPLSRKSLKDSSEGKSSQWAEL
		1 .		RAVHLAVHVAWKEKWPDVRLDTDSWAV
				ANGLARWSGTWKEHDRKIGDKEVWGRGT
				RIELSEWSKTVTIFVSHCFYQDYHPSVGSQ
				NALYTNMVFHTALPLTKALTLRLKNCNSG
		·		LMLTEFTGLTMFPIIQGWGKVLQKAVYAL
				NQRPIYEWKEESCLHTGVADALRGNWAE
				GHREHKALWLGLWSTWSQHPLRSLKTTR
				HHPGLGVLSEDICEAGGATEELSRASGFAT GYGKRKEDTKKHKQHSVSDIM
2765	A	3	662	TRIAETILKKKTKVGGTILSDFKMNKARVL
2,03	**	-	002	EIVWYLWSNRCMNQWNRIEDPETDPQTN
				GALAIGHPQTKQIKLTNRPQSLNLNLRPDM
				KMNSKWIVDLNVKCEAIKTF/EKKTRENLH
			İ	HQKHNLEDNIYKLNFKICSAKSAV/SRIKK
				K/PTA*EKIFANRLSNIGLISREYKQLLKLSS
	1			*KTV*LENGGLAWWLTPVIPSLREAKVDEP
				LEARGSRPAYPTW
2766	A	736	927	SVAHSSCVSHTHMHTLLGRRATINCLFRN
i				GRGQVQWLTSAVPALRKADVGG*LEPRSS
2767	<u> </u>	104	12	RPAWAT
2/0/	A	194	3	MVMLTLAIRLMQFEFRQFFIKVNFRMRGL SKMAMLLLCRARPYSYKKEEGWSVLSGY
			1	FLTAGNF
2768	A	593	230	DFYLYPERKKRGQMMTAVSLTTRPQESVA
2,00	~		~~~	FEDVAVYFITKEWAIMG\PAERALYRDVM
				LENYGGCGPL*CHPTSKPALVFS\LEQGKES
	1		1	CFSPATGSSLSRNDWRAGWIGYLELRRYT
			*	YLS
2769	A	3	4804	KRLENIQKTLEVAFSEAVWMQPSVVLLDD
				LDLIAGLPAVPEHEHSPDAVQSQRLAHALN
	1			DMIKEFISMGSLVALIATSQSQQSLHPLLVS
	1			AQGVHIFQCVQHIQPPNQEQRCEILCNVIK
	1			NKLDCDINKFTDLDLQHVAKETGGFVARD
	1		L	FTVLVDRAIHSRLSRQSISTREKLVLTTLDF

Table 8

SEQ	Method	Predicted	Predicted	Amino acid sequence (X=Unknown, *=Stop
ID		beginning	ending	codon, /=possible nucleotide
NO:		nucleotide	nucleotide	deletion,=possible nucleotide insertion)
• • • • • • • • • • • • • • • • • • • •		location of	location of	
		first amino	last amino	
		acid residue	acid residue	
		of peptide	of peptide	ļ
		sequence	sequence	
				QKALRGFLPASLRSVNLHKPRDLGWDKIG
	İ			GLHEVRQILMDTIQLPAKYPELFANLPIRQ
			·	RTGILLYGPPGTGKTLLAGVIARESRMNFIS
				VKGPELLSKYIGASEQAVRDIFIRAQAAKP
				CILFFDEFESIAPRRGHDNTGVTDRVVNQL
			•	LTQLDGVEGLQGVYVLAATSRPDLIDPALL
	ļ			RPGRLDKCVYCPPPDQDGSSSSDSDLSLSS
				MVFLNHSSGSDDSAGDGECGLDQSLVSLE
				MSEILPDESKFNMYRLYFGSSYESELGNGT
		İ		SSDLEDESMNQPGPIKTRLAISQSHLMTAL
			1	GHTRPSISEDDWKNFAELYESFQNPKRRKN
				QSGTMFRPGQKFFDEITELTYLPSFHHKAA
				PHQAEPGPNSSSASAPPPYNPFITSSPHTQS
				GLQFRSVTSPPPSAQQFPLKEVAGAKGIVK
	i			TALETAPTLALPVSSQPFSLHTAEVQGCAV
	Ì			GILTQGPGPCPVAFLSKQLDLTVLGSPSCL
	Į.			HAVASAALILLEALKITNYAQLTLYSSHNF
				QNLFSFSHLTHILSAPRLLQLYSLFVESPTIT
				ILPGPDFNLASHILDTTPDPDDCMSLIYLTF
ļ				TPFPHISFFSVPHVDHIWFTDGSSTRPDRHS
	1			PAKAGYAIESSTSIIEATALPPSTTSQQAELI ALTRAFTLAKGLHVNIYTDSKYAFHILHHH
				AVIWAERGFLTTQGSSIINASLIKTLLKAAL
				LPKEAGVTHCKGHQKASDPITLGNAYADK
				DRTIDGSSQVIEEKNHNGYSVIDTGTLVEA
				ELEKLPNNWSPQTCELFALSQALKYLQNQ
				KTISILIQKEPSPALGLTPERKGNVGHAGKG
İ			ţ	PLESSSPDPFLCGQERREKGCRTATSVSITN
1				PINRGPWVVTHPGKELTPEHKGNVGHAGR
				DILAKAGAIIHLNIGEGTPVCCPLLEEGINPE
1			1	VWATEGQYGRAKNARPVQVKLKDSTSFP
1	i			YQRQYPLRPKAQQGLQKIVKDLKAQGLV
				KPCSNPCSTPILGVQKPNRQWR\TLCHQAT
				QALFNFLATCGYMVSKPKAQLCSQQ/RYL
	Ì			GLKLSKGTRALSEEHIQPILAYPHPKTLKQL
				RGFLGVIGFCRKWIPRYGEIARSLNTLIKET
	1			QKANTHLVRWTTEVEVAFQALTQAPVLSL
				PTGQDFSSYVTEKTGIALGVLTQIRGMSLQ
			1	PVAYLTKEIDVVAKVVAVAVLVSEAVKIIQ
				GRDLTVWTSHDVNGILTAKGDLWLSDNC
	1,0			LLKCOALLLEGPVLRLCTCATLNPATFLPD
1	İ			NEEKIKHNCQQVISQTYATRGDLLEVPLTD
			1	PDLNLYTDGSSFVEKGLRKVGYAVVSDNG
1				ILESNPLTPGTSAQLAELIALTWALELGEEK
	1		1	RANTYTDSKYAYLVLHAHAAIWKEREFLT
			1	SERTPIKHOEAIRKLLLAVQKPKEVAVLHC
				RGHQKGKEREIEENCQADIEAKRAARQDP
				PLEMLIKQPLV
0550		1	2919	MLLATALRGFLKNGDRGHVDTEEWRSYP
2770	A	1	2919	WAASFGQLRSSQNCPGASASGRTGVPTVL
1	1			VARTDADASDLITSDCDPYDSEFMTGERTS

Table 8

SEQ	Method	Predicted	Predicted	Amino acid sequence (X=Unknown, *=Stop
ID	Method	beginning	ending	codon, /=possible nucleotide
NO:		nucleotide	nucleotide	deletion,=possible nucleotide insertion)
110.	ļ	location of	location of	
		first amino	last amino	
		acid residue	acid residue	
		of peptide	of peptide	
		sequence	sequence	
-		Suquest		EGFFRTHAGIEQAISRGLAYAPYADLVWCE
	· ·			TSTPDLELARRFAQAIHAKYPGKLLAYNCS
	1			PSFNWOKNLDDKTLASFQQQLSDMGYKFQ
	1			FITLAGIHSMWFNMFDLANAYAQGEGMK
				HYVEKVQQPEFAAAKDGYTFVSHQQEVG
				TGYFDKVTTIIQGGTPDKAFTPHPASKPAH
				KPGEOPMKNNPLISIYMPTWNRQQLAIRAI
				KSVLRQDYSNWEMIIVDDCSTSWEQLQQY
				VTALNDPRITYIHNDINSGACAVRNQAIML
				AQGEYITGIDDDDEWTPNRLSVFLAHKQQ
		İ		LVTHAFLYANDYVCQGEVYSQPASLPLYP
				KSPYSRRLFYKRNIIGNQVFTWAWRFKECL
				FDTELKAAQDYDIFLRMVVEYGEPWKVEE
				ATOILAINHGEMPIHSSREHFRVLPFCRSTR
				PFRQARKISRVIVTSTKSDSLYTVGMLALS
				VRAIRCPLYLLTGLISVSKNGLWYCELQVA
			1	LHGRSVTLYEKAFPLSEQCSKKAHDQFLA
			[DLASILPSNTTPLIVSDAGFKVPWYKSVEK
				LGWYWLSRRMQIEETFRDLKSPAYGLGLR
	ł			HSRTSSSERFDIMLLIALMLQLTCWLAGVH
				AQKQGLDLGVYGAPETFLIDGNGIIRYRHA
Į.				GDLNPRVWEEEIKPLWEKYTLATIDVLQF
			1	KDEAQEQQFRQLTEELRCPKCQNNSIADSN
	1			SMIATDLRQKVYELMQEGKSKKEIVDYMV
				ARYGNFVTYDPPLTPLTVLLWVLPVVAIGI
				GGWVTYARSRRRVRVVPEAFPEQSVPEGK
	1			RAGYVVYLPGIVVALIVAGVSYYQTGNYQ
	į.			QVKIWQQATAQAPALLDRALDPKADPLNE
				EEMSRLALGMRTQLQKNPGDIEGWIMLGR
}				VGMALGNASIATDCYATGYRLDRTTVML
				DGDR
2771	В	1	1773	MALGISAPVALQGTAPLLAVLSGCSFPKH
1				MLQTVNGSPFWGLENGGPLLRARLGSAPV
				ETLELFSSLNKILHSYHSSVVKCDLILLGRW
1	İ			TKAWDPLSAGGGCHTGPLPLQVEGNHPTG
				SYRVPNRPQYRSVAWGLGTSGLVNYTFLL
	i			NSGETTYQFLRGNKDFLKNHIKLNYCFLLI
1				EVDNLTLVFVIEKTLGQIFDIPKVELLFSYQ
1				CFPMVENRQKPEGEEDCVIQLSELSCTECS
				KKAWRMEVLHTNKTTNATQCGGPAQLQQ
Ì			1	FNAVLSEKVHIVPSLLRSWNIISHGRFPSFE
1		1		TFNTKNCIAYNPNGNALDESCEDKNRYIW
				LEKPQETYSNDRRESKHIPLRMAAERRRAE
Į.				QKEKYPLIKSSDLGASEAIRQRQSSAAKLR
		•		KSGKESVREPWARVPGALGVAARALIAED
		1		AGLSRVILFHYGESWNLLRADQRLIFAKS
		1		WPRASRYQQGHQDLFILRSDLPSQVFIRDK
		1	1	LMERRNRRTGRTEKARIWEVTDRTVRTWI
1	1		İ	GEAVAAAAADGVTFSVPVTPHTFRHSYAM
		1	1	HMLYAGIPLKVLQSLMGHKSISSTEVYTKV
				FALDVAARHRVQFAMPESDAVAMLKQLS

487

Table 8

SEQ ID NO:	Method	Predicted beginning nucleotide location of first amino acid residue of peptide sequence	Predicted ending nucleotide location of last amino acid residue of peptide sequence	Amino acid sequence (X=Unknown, *=Stop codon, /=possible nucleotide deletion,=possible nucleotide insertion)
2772	С	148	306	MRPCCWWATLCGKHLRMCSHALKMRPN ASAAETEQLNAHSRGLMNSSSRPAP*
2773	A	2874	3062	GNRAGALPGATLLILAGFLPSAHQNRPSRN PVSRPPNTQRVARRKHYALADGYTERRWT NAP
2774	A	1	. 660	MPNFFIDRPIFAWVIAIIMLAGGLAILKLPV AQYPTIAPPAVTISASYPGADAKTVQDTVT QVIEQNMNGIDNLMYMSSNSDSTGTVQIT LTFESG\QVQNKLQLAMP/LLPQEVQQQGV SVEKSSSSFLMVVGVINTDGTMTQEDISDY VAANMKDAISRTSGVGDVQLFGSQYAMRI WMNPNELNKVERNSRRQDVGERDISSGSR KVNKESREDEEVT
2775	A	78	264	PVERSNLGVRLYACCGLLLRPAYPQHFAH GYVDKIPDYPRRAGTLTGLHPMQVCRCRR AREL
2776	В	1	921	MLDDYGGSLSELAREQLPAAEQAALAQLA ARSLAPVPDDTGGAGMSNDTPFDALWQR MLARGWTPVSESRLDDWLTQAPDGVVLL SSDPKRTPEVSDNPVMIGELLREFPDYTWQ VAIADLEQSGRIGDRFGVFRFPATLVFTGG NYRGVLNGIHPLAELINLMRWLVEPQQEL HQPLTTVQNANDCCCDGACSSTPTLSENV SGTRYSWKVSGMDCAACARKVENAVRQL AGVNQVQVLFATEKLVVDADNDIRAQVES ALQKAGYSLRDEQAAEEPQASRLKENLPLI TLIDSSYFPHGTELAF
2777	A	47	275	FPCPPAPHVCGPPPCPRAFPVGQSSSQPQV ATGFP*SPVCPPPRLYWGPGTERHWVETH YRAFLPSQHLSSPVTAA
2778	A	749	1020	VLVRDPSQPAQPFSVSFSPQKHRDEKLYFL PKGVSGGSELRGRPQPYLPCPVSPTLCPWG HLSLAPPSVPPTACESSSELWPSLSWTWAE
2779	A	271	86	MPLHTCLVHVGVSHAARGSPVCPSVLWV WFCVHFQVIHMWAHECVQADVWAHIQD CAQVCV*
2780	A	3	523	AAANRKRAAYYSAAGPRPGADRHGRYQL EDESAHLDEMPLMMSEEGFENEESDYHTL PRARIMQRKRGLEWFVCDGWKFLCTSCCG WLINICRRKKELKARTVWLGCPEKCEEKH PRNSIKNQKYNVFTFIPGVLYEQFKFFLNL YFAVISCSQFVTALKIGYLYTYWAPLGF
2781	A .	2	141	EQFLRRQIASEKEEIERLKAEIAEIQSRQQH GRSETEEYSSLLLQF
2782	A	3	402	GNGGFVVHWLNNKEFHFTSSTEVFMHQLR KLSDKQVDHENDDADREDEEHSQEDRER GLHMKLDHDLSLDRESEAGTGSSEHEDGE REGSPRTYSRLSVPMPLPTVLLDRKIETLLT EWNKNPDMLFTIHPMY
2783	A	333	695	ISVFRSPGQSTSQHDAATWPFLHISGEGPTP SRRKAPPAFHPHTQACPSTCYCHTLASRRG

Table 8

SEQ ID NO:	Method	Predicted beginning nucleotide location of first amino acid residue of peptide sequence	Predicted ending nucleotide location of last amino acid residue of peptide sequence	Amino acid sequence (X=Unknown, *=Stop codon, /=possible nucleotide deletion,=possible nucleotide insertion)
				PCNGRYHRPVYPHPTAMQRDPPAGPRGCQ SPCWHYTPACRHPCGRHYR*HGQHDPPPW Q*HC*FGSPGQSTSQHDAVTWPFLHIPGER PTASRRKAPPAFHPHTQACPSACYCHTLAS RRGPSNGRYHRPGYPHPTAVQRDPPAGPR GCQSPC*HEPPACRHPCGRHYR*HGQHDPP PWQ
2784	A	91	297	MSLVKLFNLLVFSYRRGAVITIKIEVKIKVT YVKCQAHGERLINGHYDYSACHVIKLMFC AEEKKPHQ*
2785	A	2	103 · · ·	TGEKVVPGEVNPPNGPVGDPLSLLFGDVTS LKSFDSLTGCGDIIAEQDMDSMTDSMASG GQRANRDGTKRSSCLVTYQGGGEEMALP DDDDEEEEEEEEVELEEEEEEVKEEEEDDD LEYL*EGSTRRGKPTQWPCGGPTEPLVWG CDIPEKL
2786	A	24	332	QPQYIAPLMANFDPSVSRNSTVRYFDNGT ALVVQWDHVHLQDNYNLGSFTFQATLLM DGRIIFGYKEIPVLVTQISSTNHPVKVGLSD AFVVVHRIQQIPST
2787	A	210	281	FHHKQLHNPVLECHQPAGPCHYL
2788	A	2	1211	WTPPGAPGAKGPRQGGCCSGLLRPPRVSG KTCGARPPWPWRSLSRIPKREGLGEEDTA VAGHELLLPNERSFQNAAKSNNLDLMEKL FEKKVNINVVNNMNRTALHFAVGRNHLS AVDFLLKHKARVDVADKTRMRELLLEIFL TVPRAQFHDLHCLESKLEDCEMRDTLRHM QAVYRETNILTHTVTCVRLGALSYLKTMA CRPQQNILSDKNMDSVLTSYMNLGKLHNL SVLQFLYLKNEDKNSTYVNLILSERIPTLIF QIQKPKYREVMQLAQMLVVLALTLFSFTV VVLNSIRAMVPSERIFKAKDLLSRKIHIHIY DKNIAYESAVPIMPVIPQTGSPTYTSSAALP QCLTPGNTIHSVAIVNGSSWSSALRSQCDH RLHTCSFTLVPQRHPHTQLI FRANRTVKDAHSIHGTNPQYLVEKIIRTRIY
2789	A	1	334	ESKYWKEECFGLTAELVVDKAMELRFVG GVYGGNIKPTPFLCLTLKMLQIQPEKDIIVE FIKNEDFK*VQCSLANIRGMY
2790	A	3	1794	AMIPMELGCGPLPEPLPVGCSRFSLFK*QT CISTVP/GYMVTAQSMSSTPPPPSPSTLPSSP SPPPPLPQPLPPPPPSPPTLSSLSSPSPPRPPL VSPSTLPSPQPSSPQPLLPPSSSPPSLPSPPPP SPPLPSPSPSAIPSLPPPSPQPLPPPPPSSPPPS LPSPLLPPPPLSSSPSSPLSPSPPPPSPPPS

Table 8

	r	T=	Table	Amino acid sequence (X=Unknown, *=Stop
SEQ	Method	Predicted	Predicted	codon, /=possible nucleotide
\mathbf{m}		beginning	ending	codon, /=possible nucleonue
NO:		nucleotide	nucleotide	deletion,=possible nucleotide insertion)
	1	location of	location of	
		first amino	last amino	1
		acid residue	acid residue	<u> </u>
		of peptide	of peptide	
		sequence	sequence	
	 	00400000		VHQAQSLSALCKEQDSSSEKDGRSPNKWD
	1			KDHIWWPMSGGHDLQQAAPGPGRAHQGH
	1			PYQDNWTISQILSERWYTLGPNEMQKYHD
		1		LAFQHMAGEDIASDEEHMVIHEEEGVMVS
		ļ		LLMTALAPLTLISSSRIFGKVYGPTPSSSYT
	İ			YSDASSSTLAPTSFLLGPGAFKAQESGEEA
	İ			EDGLRELETEKALSSSL/RRALDQ/*LALIM
				OT FOATICEELST
			ļ	QLFQAHCFFLST AICDPCYWRMEKSPRMMEKKLSKGMIPD
2791	A	230	2579	AICOPCY W KIVIERS PRIVINGERAL SACIVILE D
				WESRWENKELSTKKDNYDEDSPQTVIIEK
				VVKQSYEFSNSKKNLEYIEKLEGKHGSQV
l	į.			DHFRPAILTSRESPTADSVYKYNIFRSTFHS
				KSTLSEPQKISAEGNSHKYDILKKNLPKKS
	1			VIKNEKVNGGKKLLNSNKSGAAFSQGKSL
				TLPQTCNREKIYTCSECGKAFGKQSILNRH
				WRIHTGEKPYECRECGKTFSHGSSLTRHLI
	ļ .			SHSGEKPYKCIECGKAFSHVSSLTNHQSTH
ļ				TGEKPYECMNCGKSFSRVSHLIEHLRIHTQ
				EKLYECRICGKAFIHRSSLIHHQKIHTGEKP
Į				YECRECGKAFCCSSHLTRHQRIHTMEKQY
i	1	į		ECNKCLKVFSSLSFLVQHQSIHTEEKPFECQ
	1			KCRKSFNQLESLNMHLRNHIRLKCDFYLM
	1			NAIYVGKPLVIGHPCFNITEFILERNLTNVL
1	1			NVGRPSAVVQTLPYIREFILEKSHINVVSVG
1				KLLAKAQILLPIKEYIMERNPIVWEPLQPVV
			ļ	SRQALGHQAGESRGHTQRCKVTRLSSWQ
1		İ]	VLVGAAVPCSGARDRVPVPRHVPQACLQG
				VLVGAAVPCSGARDKVPVPKHVPQACEQU
1				RVQTGRLDWRGHACSASPNAVPTVTFSDV
				AIDFSHEEWACLDSAQRDLYKDVMVQNY
				ENLVSVGLSITKPYVITLLEHGKEPWMVEK
				KLSKGMIPVLEVLARAMRQKNEIKGIQLG
	1			KEEVKLSLFADDMIVYLENPIVSAQNLLKL
[ISNFSKVSEIPKSMYKNHKAFLYTNNRQTE
	1			SQIMSELPFTIASKRIKYLGIQLTRDVKDLF
1		1		KENYKPCSTK
2792	A	154	331	IPAAATCMGSLLGG*ETPGLWARRSVKSR
2/32	^	154	1	GLFPGLPSPSRASVRSLLLLPAWAAFLEGIV
	1	1		DTRPTAWRAFPWTLFLSVFCQFLDFPETSL
1		i		DSQKLSLDTPSF
1	 		116	ILLQRSLGVGGHRAWGIQEPSKVLVSGRRT
2793	A	213	446	EAPSMLQMGRQMWGRTSWRWTRTWRCG
				WPWGGPLAARHVSSCTKQGH
				MLMOOLTWINIA DOONOCO ADBOODIND
2794	A	515	278	IFTLFDKLSSQIPSILRSQYQSCLYDPSQPWP
		- [PPTSDAHDHKHGPHIAPPPPLPCLLGLASPF
1	1	1		RSIQYISARPQLKGPF
2795	Α	1	708	VTAGVPKGHCPRRGTSSAIASCPPYGSPPR
~.,,,	1	1		AECALRAGSTVTT*RRSCCTSYSSGRPPTG
1	1			RRGSWTLVCTSCCASWRRACSRRSSTSSSS
	1			ATARCLRPWDSLRPCSGPSPSTSSGPSSCSE
1	1			AFTVRHWTPSMRCSRMPQRSLASIPYMS/S
	- 1		1	SDQPTPKS*RLLQNVGSSS*DEGIPHVHTPG
L		L		100411110 100411

Table 8

ORO	Method	Predicted	Predicted	Amino acid sequence (X=Unknown, *=Stop
SEQ	Mernon	beginning	ending	codon. /=possible nucleotide
D			nucleotide	deletion,=possible nucleotide insertion)
NO:		nucleotide		deletion, post-
		location of	location of	
	1	first amino	last amino	
		acid residue	acid residue	1
	1	of peptide	of peptide	
		sequence	sequence	
	 	Sequence		GICQPCSGDKAGFRGSRAQPARKPSPTVQR
			,	KONFNGKLVCFIPLGSAGKAVIWV
	<u> </u>		500	FQGRGLAANDGEYLKLQWRAGTLVLAPS
2796	A	2	590	CPLSTLSVLSSPPRELQAMEALQNGQTTVE
				GSIEGQSAGAASHAMIEKILSEEPRWQETA
				GSIEGQSAGAASHAMIEAILSEEI KWQDII
				YVLGNYKTEPCKKPPRLCRQGYACPYYHN
				SKDRRRSPRKHKYRSLG/TQEASHGREEW
l	1			QGRGQAEAAPTGSPGGGEAGPGDDRIASP
				GPRGGHSEDSWTVGAQLHLLHE
0707	A	319	513	TEL RAVAOGIAOSLGOLLFTQCPLEKKDLE
2797	A	319	313	GLFLONNKEGVOKGRDEPLPPLP*ATALSS
	1			IQAGIQQAR*EGDLEAWQFPVRIHPPDQQG
	1			NIIVTFEPFPFKLFKEFKQAVNQYGPGSPFV
	1		ì	MGLLKNVAVSSWMIPTDWDALTRACLTP
ŀ				MGLLKNVAVSSWINI IDVIDALITATOLI
ļ				AQFLQFKTWWADEAGRV
2798	A	1	915	MSTAVVVKVVLCTVAPGRGSAPSLSSCLD
2,,,0				WKVNGAEGSHNKDLFVLTYGALVAQLCK
	İ			DYEKDEDVNQYLDKMGYGIGTRLVEDFL
	,			ARSCVGRCHSYSEIIDIIAQDMERGFCALHI
1	l			DTEGRYEWWTTSTOLOSTLPRAAQCSVYQ
	1			KQPDRKSLTVGQKIEVGNPGIGTEQSPQGL
				VRFATQAFLTTHRAEGLQQSQVKGSVIHL
		-		KSQDKCGEHRFTTNQVETGDPVRESSSQH
			ì	SVGRGGPKDIQIQGANVPVRQCNLLWRITL
1				SVGRGGPKDIQIQOAIVI VRQCIVEDIVIDIO
				GPLETPHLEFSGECSLLAAMEAPEHTWDQ
1				EKSDIPEPPHRSS
2799	A	75	642	EKLLNPQTTSFFLQLLQKKQWYPKSFPCCL
[1 **			PSQGLLPAARVQKCLLVLRNVSGSPFPFLI
				GFPPPILELKESYP\WAGTDIQCEPAQGHVL
1 .				TSPSPTLR\LQGAPDLPAGEPAWLLLTAREE
'	1		1	DDG*NFSC*ASLVVOGORLMKTTVIQLHIL
į	i	1		CEWRPDLSCQNKDYYFPISRELLGQQCFIIT
				VATFFSL
				MVGECGTKLEVMQVHLSNPRDELEGELRS
2800	A	1	1146	IRVTMGQVWALVHSTLEPFHTNEEEEGLY
1				IKALWOOA MATAURI TELEBROOT
	i		1	NKVTEEVTEQVCLPAKAKAAKEGEVHPYP
1			1	SPFPHYFEETEWPDPPDLSFLEDTGGDPSLT
	1	ĺ		SHWQLTKEAEAELQLIEKQVHKAQINRIDP
	l			EKIPDLLIFSTQHSPTGVIVQEQDLVEWLFL
	1			PHTNSWTLTPYLDONATMIGNERTQIVKL
1		1		HGYDPRKIIVLLMKANIQQAFINGLTWQTH
				LANFVVILDNHFPKMKLFQFLKLTNWILPK
1		1	ĺ	ITKFKPIKGAENVFTDGSSNGKASYSGSKG
	1		1	LSQQLIWISSRNLKPYHESDAEEEIPGRTQG
1	1	1		ESQUENTSSKILLE I TESSELSE OKTO
1		· -		TPGCSHVETDTEEDPNCHEQHPLNTATHL
1	1			GTDQEAVTDGGRKPEERGTTSHNE
2801	A	2	926	RPEPSCRPRSEYQPSDAPFERETQYQKDFR
2001	1	1		AWPI.PRRGDHPWIPKPVOISAASQASAPIL
1				GAPKRRPQSQERWPVQAAAEAREQEAAP
				GGAGGLAAGKASGADERDTRRKAGPAW
	1			MVRRAEGLGHEQTPLPAAQAQVQATGPE
	1			MAKWEOTOHEGHE THE WASHA STATES

Table 8

	136.0	D	Predicted	Amino acid sequence (X=Unknown, *=Stop
SEQ	Method	Predicted	L	codon, /=possible nucleotide
ID		beginning	ending	deletion,=possible nucleotide insertion)
NO:	1	nucleotide	nucleotide	deterion, possible national and
		location of	location of	
		first amino	last amino	· 1
	1	acid residue	acid residue	
		of peptide	of peptide	
		sequence	sequence	THE PARTY OF THE P
				AGRGRAAADALNRQIREEVASAVSSSYRN
		Ì		EFRAWTDIKPVKPIKAKPQYKPPDDKMVH
	1			ETSYSAQFKGEASKPTTADNKVIDRRRIRS
	1			LYSEPFKEPPKVEKPSVQSSKPKKTSASHK
				PTRKAKDKQAVSGQAAKKKSAEGPSTTKP
				DDKEQSKEMNNKLAEAKE
2802	A	25	435	TKYWLLLFFLILILPFFFWRRSRSVTQAGG
2002	**			QWHDLGSLQPPPPGFKQFSCLSLPSSWDYR
				RAPLHLANFYIFSRD/MDFTMLARLVSNSR
				SQ/CDPLASASQSAGISGKSQHTRPVLVLLK
				TYTNSH/SF*VKGLGWEFIL
2000	 	1196	1074	TAAARRSSRTSSHRSLLHVPENLATGPSEF
2803	A	1186	10/4	RSPGFLLSRVPSVWDPTENRTVQLTWQPLP
	1			EPLELWPKA/HLTDSFPDLLGLAAED*HCPI
		,		ASEAP*TITDAELRVTLTVEGKPFPFLINTE
				ATHSTLPSFQGPVSLASITVVGIDGQASKPL
	1		1.	KTPQLWCQLRQYSFKHSFLVIPTCPVPVLG
				*DTLTKLSASLTIPGLQLYLIAALLPNPKPPL
		ļ		RPPLVSPDLNPQV*DPHSCPPENKPPLTVIF
	1			RPPLVSPDLNPQV DPHSCFFENKTILIVII
	1			LYLPKSYKTAPPHLPLLTLFSDSARLHPGEI
				NSHVAHTKPVWWSLHTDAHEIWCRHSDR
		1		GTSLGRSIPCPPALCSMRKIHLRPQVLRQTS
		1		PRNISPISNPVSGLFLLSSPTCLTIPQPLSPFN
				LGATLQSLPSLNFNSFHFLVETKETRFICGP
1			-	KTPALVTDWEGSLPLMFNHCRDTSLIHPC
				FQGVRPCRDACLSPSPLAASPAFLGKGQVP
				LNPFFTLSGKSRFSGGGASTPTPSFHVSTPS
	ŀ			LLFWGRGKYPSTPSSPLVASPAFLGKGQVP
				LNPFSFTLSGKSHFPGTGARFN
2804	A	3	810	GVSPCWPGWSRTPDFGSNPKCPPIRASPGA
2004	l A			ELQALSSTVTTPYWGILVTAVFPH*GLRPR
	1 .	Ì		OCRODHPAGROGPGPGEVPEILGQSGCTD
				RTWSKAGGRTOAPGPRSRAGRRVSGQEIR
		ł	ľ	APGPLGCRHGG/VGAPWTPEAASPLTATEP
		1	1	SCPH/LOAPCGYMPLSVSPRRRYRGPAGDQ
Ì				KVKMLKFKAFCLDYWQFLCLQPLHGAYK
			1	RDSDLMTWIWGLLPEVTGAAGTTSPNVHT
	1			SGRFFRACVFCPVHTLVKKEPHPGQQEIIM
			1.	EPSPWSP
			175	FEPLFYLMCLLNLFPLQLPRHPFLFLTVDLV
2805	A	62	475	NTWGCPLPSSPQ*EWLLAAPHRSTPPPLSS
	1	1	1	GFPARRQLEPGAGARGP/HHTQALHLSFFF
				VFLRRSL/DSVAQAGVQWRGLGSLQPLPPG
	-			ALTKOTION AND AND AND AND AND AND AND AND AND AN
				FVILSSPLSLPSLTY
2806	Α	3	4804	KRLENIQKTLEVAFSEAVWMQPSVVLLDD
				LDLIAGLPAVPEHEHSPDAVQSQRLAHALN
	1			DMIKEFISMGSLVALIATSQSQQSLHPLLVS
1	1			AQGVHIFQCVQHIQPPNQEQRCEILCNVIK
1	1			NKLDCDINKFTDLDLQHVAKETGGFVARD
1	ł	i	ı	FTVLVDRAIHSRLSRQSISTREKLVLTTLDF
				QKALRGFLPASLRSVNLHKPRDLGWDKIG

Table 8

SEQ	Method	Predicted	Predicted	Amino acid sequence (X=Unknown, *=Stop
ID ID	Method	beginning	ending	codon, /=possible nucleotide
NO:		nucleotide	nucleotide	deletion,=possible nucleotide insertion)
NO:		location of	location of	
		first amino	last amino	
			acid residue	
		acid residue		·
		of peptide	of peptide sequence]
		sequence	Sequence	GLHEVRQILMDTIQLPAKYPELFANLPIRQ
	ì			RTGILLYGPPGTGKTLLAGVIARESRMNFIS
				VKGPELLSKYIGASEQAVRDIFIRAQAAKP
l .				CILFFDEFESIAPRRGHDNTGVTDRVVNQL
1	İ			LTQLDGVEGLQGVYVLAATSRPDLIDPALL
				RPGRLDKCVYCPPPDQDGSSSSDSDLSLSS
				MVFLNHSSGSDDSAGDGECGLDQSLVSLE
			ļ	MSEILPDESKFNMYRLYFGSSYESELGNGT
				SSDLEDESMNQPGPIKTRLAISQSHLMTAL
		•		GHTRPSISEDDWKNFAELYESFQNPKRRKN
			1	QSGTMFRPGQKFFDEITELTYLPSFHHKAA
1				PHQAEPGPNSSSASAPPPYNPFITSSPHTQS
				GLQFRSVTSPPPSAQQFPLKEVAGAKGIVK
				TALETAPTLALPVSSQPFSLHTAEVQGCAV
	i			TALETAPTLALP VSSQFFSLITAL VQCAV
		1		GILTQGPGPCPVAFLSKQLDLTVLGSPSCL
				HAVASAALILLEALKITNYAQLTLYSSHNF
	1			QNLFSFSHLTHILSAPRLLQLYSLFVESPTTT
	1	1		ILPGPDFNLASHILDTTPDPDDCMSLIYLTF
				TPFPHISFFSVPHVDHIWFTDGSSTRPDRHS
ļ				PAKAGYAIESSTSIIEATALPPSTTSQQAELI
				ALTRAFTLAKGLHVNIYTDSKYAFHILHHH
1		1		AVIWAERGFLTTQGSSIINASLIKTLLKAAL
				LPKEAGVTHCKGHQKASDPITLGNAYADK
				DRTIDGSSQVIEEKNHNGYSVIDTGTLVEA
				ELEKLPNNWSPQTCELFALSQALKYLQNQ
				KTISILIQKEPSPALGLTPERKGNVGHAGKG
Ĭ				PLESSSPDPFLCGQERREKGCRTATSVSITN
	1	1		PINRGPWVVTHPGKELTPEHKGNVGHAGR
]				DILAKAGAIHLNIGEGTPVCCPLLEEGINPE
1	.		1	VWATEGQYGRAKNARPVQVKLKDSTSFP
				YQRQYPLRPKAQQGLQKIVKDLKAQGLV KPCSNPCSTPILGVQKPNRQWR\TLCHQAT
			100	QALFNFLATCGYMVSKPKAQLCSQQ/RYL
				GLKLSKGTRALSEEHIQPILAYPHPKTLKQL
			1	RGFLGVIGFCRKWIPRYGEIARSLNTLIKET
1				QKANTHLVRWTTEVEVAFQALTQAPVLSL
				DECODESSALTERES AT AUTOBONSTO
				PTGQDFSSYVTEKTGIALGVLTQIRGMSLQ PVAYLTKEIDVVAKVVAVAVLVSEAVKIIQ
				GRDLTVWTSHDVNGILTAKGDLWLSDNC
				GRULI V W I SHU V NOILLI AROUL W LSUNC
				LLKCQALLLEGPVLRLCTCATLNPATFLPD
				NEEKIKHNCQQVISQTYATRGDLLEVPLTD
	1			PDLNLYTDGSSFVEKGLRKVGYAVVSDNG
	1			ILESNPLTPGTSAQLAELIALTWALELGEEK
	ı		1	RANIYTDSKYAYLVLHAHAAIWKEREFLT
		1		SERTPIKHQEAIRKLLLAVQKPKEVAVLHC
	1	ì		RGHQKGKEREIEENCQADIEAKRAARQDP
				PLEMLIKQPLV
2807	A	1	591	MTPRGTGGDSEVPFQAAKPLSVKQGVSFR
			1	LWARRPRCDFLRSSRIRVHPTPAASTMPP
			ļ	KFDPNEIKVVYLRCTGGEVGATSALAPKIG
1				PLCLSPKKNRQAQIEVVPSASALIIKALKEP

Table 8

OTO	3.6-43 - 3	Dec. 32, 4 : 3	Dendicted	Amino acid sequence (X=Unknown, *=Stop
SEQ	Method	Predicted	Predicted	Ammo aciu sequence (A—onknown, —stop
ID		beginning	ending	codon, /=possible nucleotide
NO:		nucleotide	nucleotide	deletion,=possible nucleotide insertion)
	ŀ	location of	location of	
		first amino	last amino	<i>'</i>
1		acid residue	acid residue	1.
	1		of peptide	
		of peptide	sequence	
	 	sequence	sequence	PRDRKKQKNIKHSGNITFDEIVNIARQMRH
1	1			RSLARELSGTIKEILGTAQSVGCNVDGRHP
1		1	1	HDIIDDINSGAVECPAS
	 	1004	483	IGCDVLINNAGIFQCPYMKTEDGFEMQFGV
2808	A	1094	483	NHLGHFLLTNLLLGLLKSSAPSRIVVVSSK
			1	
1	1	1	1	LYKYGDINFDDLNSEQSYNKSFCYSRSKLA
Ì				NILFTRELARRLEGTNVTVNVLHPGIVRTN
	1			LGRH\NTFHCWSNHSSIW/WSWAFFKTPVE
l	1			GAQTSIYLASSPEVEGVSGRYFGDCKEEEL
				LPKAMDESVARKLWDISEVMVGLLK
2809	A	1775	1981	HIWQNSLIVLFRGCRSAHAKVHRWKN*LP
				LNLAPLLPRSGSSAPIRPPPSAQARQPMKST
	1			YGVDRRHS
2810	A	272	51	MLLLSSSLLKCGTCQWQVQPAVAGSLEGG
	1			EEESMVSALLISALPFLGTSHVTVETLDVQ
	1		1	YTVFPKLICFLPCE*
2811	A	3	357	FGFNGCSKRIIKLQELSDLEERENEDSMVPL
2011	^	3	337	PKQSLKFFCALEVVLPSCDCRSPGIGLVEEP
				MDKVEEGPLSFLMKRKTAQKLAIQKALSD
				AFQKLLIVVLG/QDCLDHP*STSVSVSK
2012	 	104	3006	RTRSLTRKAMAEHAPRRCCLGWDFSTQQV
2812	A	94	3000	KVVAVDAELNVFYEESVHFDRDLPEFGHV
	1			LDVHGVHVHKDGLTVTSPVLMWVQALDII
1				
	1			LEKMKASGFEFSQVLALSGAGQQHGSIYW
	1			KAGAQQALTSLSPDLRLHQQLQDCFSISDC
	1			PVWMDSSTTAQCRQLEAAVGGAQALSCL
				TGSRAYEFNLVCDRKHLKDTTQSVFMAGL
				LVGTLMFGPLCDRIGRKATILAQLLLFTLIG
	1			LATAFVPSFELYMALRFA\GLLPSLDLASA
	1			MSPY*QNGWGPHGGRRPWSWPSATSPSGR
				WCLRDSPTVSATGGSFRSPALRLAYCSS\LL
				LGSARICTLAPDPWEDGRGDTTDPENGLG
i	1			Q*AETLPGAHEPAGPREDRPLRECPGSVQT
	1			PPAPEGDPDYLLCLVCGQSGVLRPEPPSGG
				LRPGRLSDAAHLWSC*GACPLFQHLHDAE
				VWPQVEP/RWGPWSWVA*CVSSSSSSQQIC
				PWWSPCWLWWGKWPQLLPLPSPMCTLPS
ļ			1	FSPPSSGRQAWGWWASSHGSGASSHHL*S
	1			CWESTTLPSPCSSTAASPSWPA/SLCTLLPE
	1			THGQGLKDTLQDLELGPHPRSPKSVPSEKE
				TEAKGRTSSPGVAFVSLGTSDTLFLWLQEP
		1	1	MPALEGHIFCNPVDSQHYMALLCFKNGSL
].	1		MREKIRNESVSRSWSDFSKALQSTEMGNG
	1	1		GNLGFYFDVMEITPEIIGRHRFNTENHKYF
	1			KGKGAPGHPMPSLKANFDLLACLRGVGSS
				TLLLWPAVLGAQTRQAGVNEGRSQVADF
1	1		1	LRIPVTGCPEQRRNPPSPPAPLGTGGPAEER
			1	LQFPGVAGSRRGRGRILRAGGIGRASPGEG
				LOCA BBBB A COCB CCB CCB CCB CCCCCCB A I B
}		1	1	TGAPRPRAGQGRGGPGKPESGGGPVALR
	1		1	PGDCTCCVLKSQPRQQRRGACSAMAFRVR
				LRVRQSVRPPRGVIVAALQRPETQGPAPSS

Table 8

SEQ ID NO:	Method	Predicted beginning nucleotide location of first amino acid residue of peptide sequence	Predicted ending nucleotide location of last amino acid residue of peptide sequence	Amino acid sequence (X=Unknown, *=Stop codon, /=possible nucleotide deletion,=possible nucleotide insertion) ARPDCGPESRGGLALWRLRGYASRDRVL CNRRCPHAARFPSKRTPSGSPHLHLMSSW AVP
2813	A		897	MTYGVGKGDMVDGTKERGERIESALGTS HIMRVAEPQGSQSWCPDEELRPVGSPATA AQKLPSTPGALGPTHSTECCSIPLDPKAQQ GLQKIVKDLKAQGLVKPCNSPCNTPILGVQ KPNGQWRLVQDLRIINEALVPLYPAVPNPY TLLSQIPEEAEWFTVLGLKDDFFCIPVHPDS QFLFAFEEPSNPTSQLTWTVLPKGFRDSPH LFGQVLAQNLSQFSYLDTLVLRYVDDLLL AARSETLCHQATQALLNFLTTCGYKVSKP KAQLCSQEVTYLGLKLSKGTRALSEERIQP ILA
2814	В	71	2167	XPAEALKDGEERQKNKKKAKKIKARMNF RAKEYESLMETKNSGSDSPYKAKLQRLAK DLLKQVQVQDSGSWANNKVSALDRTLGEI TRILEKENVADQIAFQAAGGLTALEHILQA VVPATNVNTVLRNSSMPQDSYMQCVTLCF AVTGRSYSIFDNNRQDPTGLTAALQATDL AGVLHMLYCVLFHGTILDPSTASPKENYT QNTIQVAIQSLRFFNSFAALHLPAFQSIVGA EGLSLAFRHMASSLLGHCSQVSCESLLHEV IVCVGYFTVNHPDNQGDRAVRPPPHSAAK SSASCPSSISVTHG
2815	A	1	473	EVRWNSPPTDSLSPDGGSIELEFYLAPEPFS MPSLLGAPPYSGLGGVGDPYAPLMVLMCR VCLEDKPIKPLPCCKKAVCEECLKVYLSAQ IQCPTCQFVWCFKCHSPWHEGVNCKEYKK GDKLLRHWASEIEHGQRNAQKCPKCKIHI ORTEGCDHM
2816	A	1	1286	RGAVFPGPEHSVPEESVTFEDVAVVFTDEE WSRLVPIQRDLYKEVMLENYNSIVSLGLPV PQPDVIFQLKRGDKPWMVDLHGSEEREWP ESVSLDWETKPEIHDASDKKSEGSLRECLG RQSPLCPKFEVHTPNGRMGTEKQSPSGETR KKSLSRDKGLRRRSALSREILTKERHQECS DCGKTFFDHSSLTRHQRTHTGEKPYDCRE CGKAFSHRSSLSRHLMSHTGESPYECSVCS KAFFDRSSLTVHQRIHTGEKPFQCNECGKA FFDRSSLTVHQRIHTGESPYECHQCGKAFS QKSILTRHQLIHTGRKPYECNECGKAFYGV SSLNRHQKAHAGDPRYQCNECGKAFFDRS SLTQHQKIHTGDKPYECSECGKAFSQRCRL TRHQRVHTGEKPFECTVCGKVFSSKSSVIQ HQRRYAKQGID
2817	A	94	255 -	MLYIECKSHKLVAPLAVFFALFFLLIFFWV AFSYPFELLFLQLRSRQADIGVQ*
2818	A	551	19	TGTIDKLQGSGPHLLRDWAFHPPWRKICL HCKCPQEEHMVTVMPLEMEKTISKLMFDF QRNSTSDDDSGCALEEYAWVPPGLKPEQV

Table 8

SEQ	Method	Predicted	Predicted	Amino acid sequence (X=Unknown, *=Stop
ID	MECHION	beginning	ending	codon, /=possible nucleotide
NO:	İ	nucleotide	nucleotide	deletion,=possible nucleotide insertion)
110.		location of	location of	, , , , , , , , , , , , , , , , , , ,
	1	first amino	last amino	
	1	acid residue	acid residue	
		of peptide	of peptide	
		sequence	sequence	
	+	sequence	sequence	HQYYSCLPEEKVPYVNSPGEKLRIKQLLHQ
	1			LPPHDNEVRYCNSLDEEEKRELKLFSSQRK
				RENLGRGNVRPFPVTMTGAICEQVSMDSG
	İ			Y
2819	A	236	559	MWLEPMQMGFLHMMEKMAARTSAILD*G
2017	1 **	230		TLK*FHFTLTTSLKALSSHTPIFPGTGELQLP
	<u> </u>			VSPSVCLDQGMQLKPSTSSHLLKTVKPRM
	İ	1		KRQSLLHMKQSFEPKIYL
2820	С	209	592	METETKESGKNKKIPPKHQIENVGVGGLG
2020		203	1 3 3 2	AQDGLNQIGKIPPVLSCSQSRFGTMPAAFP
	ŀ			CVFPPQSLQVSPQMSSKAWEKQSLPLPGLR
				GSPVERKNRNYDLCLPYCLRNIFNCRGKPV
				LFWRKANR
2821	A	381	55	PASLPPCSLISDCCASNQRDSVGVGPSEPGV
2021	1	301		GYSLVVRRFLSRSEKRNIRVGVTRFSRCV/L
		1 ,		SPLSLTQKGNSLTPCASQVRQCLALLRLAH
				GACTHWPAPTVWHSLVR
2822	С	2	166	MQKRHNCKKVHALPPAVLGFQRASGCRF
2022		-	100	ANKRSRITHFGGRRLSLTPASDSAGV
2823	A	164	423	RGPVSRNQPPFTRFPQTRKTTETHVRGQSL
2023	11	104	1 '23	PRPGTQSLQTKAAQVPSPQRLPKNPE*AV
	1			WLTQAPNAHPN*VARETPNCQTKSSTR
2824	A	792	389	PTRPPL\QLQAPRAHLSEDQKRLLLMKQKG
202.	"		1	VMNQPMAYAALPSHGQEQHPVGLPRTTG
			1	PMQSSVPPGSGGMVSGASPAGPGFLGSQP
				QAAIMKQMLIDQRAQLIEQQKQQFLREQR
			1	QQQQQQQILAEQVTCPLA
2825	В	1279	1479	MVPLCQVRVAGVRAGLALVSRTSPLAPNL
				AGVLGSGAPPPPPPGPSCLRALLRLPQQKS
				GPLRELLSAHGSKDGLVVKAPTHFYDHLF
				PRLFVLMKLKF
2826	A	1	412	MKALLALPLLLLLSTPPCAPQVSGIRGDAL
				ERFCLQQPLDCDDIYAQGYQSDGVYLIYPS
	1			GPSVPVPVFCDMTTEGGKWTVFQKRFNGS
				VSFFRGWNDYKLGFGRADGEYWLGLQNM
L				HLLTLKQKYELRVDLEDFEN
2827	A	3	711	KIADFGFSNLFTPGQLLKTWCGSPPYAAPE
				LFEGKEYDGPKVDIWSLGVVLYVLVCGAL
	1			PFDGSTLQNLRARVLSGKFRIPFFMSTECE
	1			HLIRHMLVLDPNKRLSMEQICKHKWMKL
				GDADPNFDRLIAECQQLKEERQVDPLNED
	1			VLLAMEDMGLDKEQTLQSLRSDAYDHYS
				AIYSLLCDRHKRHKTLRLGALPSMPRALGL
				SSTSQYP\AEQAGTAMNISVPQVQLINPENQ
				IV
2828	A	1350	2203	TWRLDPQIISSPKPQPGGTYTLEVVKSSKSK
	1			KVLSPHP*WPPLRLWQR\GGSPEGGTQAPD
				GSLPPPPPRPKSERVGSPKLSGGKR/EGSHP
		1		GGPPHITHP/DGEEKAKSSWFGLREAKDPT
1	I			QKPSPHPVKPLSAAPVEGSPDRKQSRSSLSI
-	1			ALSSGLEKLKTVTSGSIQPVTQAPQAGQM

Table 8

		T=-:	Table	Amino acid sequence (X=Unknown, *=Stop
SEQ	Method	Predicted	Predicted	codon, /=possible nucleotide
ID		beginning	ending	codon, /=possible nucleotide
NO:	1	nucleotide	nucleotide	deletion,=possible nucleotide insertion)
		location of	location of	
		first amino	last amino	
		acid residue	acid residue	
	1	of peptide	of peptide	1
		sequence	sequence	
		sequence	sequence	VDTKRLKDSAVLDQSAKYYHLTHDELISL
	Ì			LLQRERELSQRDEHVQELESYIDRLLVRIM
	į			
	<u> </u>			ETSPTLLQIPPGPPK
2829	A	2	259	WQGGILGSDPTPPLTSPNLLQTACFREERD
	1			V/RRERGQPLGDHSALCLPRRGVPVPCDGL
	1			LCWWGPPDAAEPLRGPSPARAGPVLPG
2830	A	1	1062	MTADAVLIKNGSKDADWEYEEGDKLEEFL
2030	1	1		RSLNSSKPLYLGQTGLGNIEELGKLGLEPG
			•	ENFCMGGPGMIFSREVLRRMVPHIGECLRE
	1			MYTTHEDVEVGRCVRRFGGTQCVWSYEG
				RCSFRVVPDSAIEFSMDFEKILMLDPTLHPL
ł			-	KCSFKV VPDSAIEFSWIDFEALLWEDF TEATL
				CQNLLQRLNTMWKPPNVGLVPSKATAQA
	1]	-	VRWSLLAMARAGAATMPGALSQGCIEVS
	1			RLLKKLPDDEGITMDTVGFAPLCLWQRLT
				LANHQRYFADGPQPVCNHMQPAPHHFAS
				MRSSAASPTSLPAFADPAAVPPLEHVYVW
				TLLLCQRWCTYMYMDSTATTLTKHCCCPP
ļ	1	}		PIPPIGVLLPADWGHIGPSSDSRSENKAMGS
	1			SPST
	ļ			
2831	A	2	238	TKLNPKIMDVGWPELHAPPLDKMCTICKA
				QESWLNSNLQHVVVIHCRGGKGRIGVVISS
				YMHFTNVSAR*DEDVSSLS
2832	Α	3	162	RLHTANLGDSGFLVVRGGEVVHRSDEQQH
				YFNTPFQLSIAPPEAEGVVLSDR
2833	A	1	988	MPAEFFQRCSVIMVQLPWKEAHVERPHGE
2000	1	1		RDYTPDLQPDMWEKFPGLRRALRPVVKTL
				LVQLEYRQAEKCEKRDWPSLPDYIFLLCW
				MLPALEYRTPSSSVLELRLALRAPQPADSL
		İ		LWDLVIVPITSLKSWQTPRGEVEGVTHEEI
				LWDLVIVPII3LKSWQIFKGEVEGVIIILEI
			ł	CASLKSLAVALLSMSDLTVGTPVTQPQTL
				NTMGIIGSRGGRGQVAALNRQRQVPELIIGI
			j	DILSSWQNPHIGSLNGRGYINSLALCHNLIR
	ļ			RDLDRFLLPQDITLVHYIDHIMRLDSVKDK
١.			1	WLHLAPPTTKKEAQCLVGL/FGFWRQHISH
				LETAL/RPVTGLWWKLNI*LWAIKSPCNLN
				CLS
2834	A	4061	2827	EAGPAPLSAAAPGAGRGWPRPLAERRKGR
2034	Ι Δ	7001	12021	GRRQPLRARLNRRRWAAGQGSTVQAATF
				GPAMAAAPLKVCIVGSGNWGSAVAKIIGN
	}		ł	OLVINAVALTY OF A CASUAL MODILA VICTORIA AVITORIA
	1		1	NVKKLQKFASTVKMWVFEETVNGRKLTDI
	1			INNDHENVKYLPGHKLPENVVAMSNLSEA
	1		ļ	VQDADLLVFVIPHQFIHRICDEITGRVPKKA
	1	Į.	1	LGITLIKGIDEGPEGLKLISDIIREKMGIDISV
1			1	LMGANIANEVAAEKFCETTIGSKVMENGL
	1		1	LFKELLQTPNFRITVVDDADTVELCGALKN
	1		1	IVAVGAGFCDGLRCGDNTKAAVIRLGLME
				MIAFARIFCKGQVSTATFLESCGVADLITTC
	1			YGGRNRRVAEAFARTGKTIEELEKEMLNG
	1	1		
ŀ	1	1	1	QKLQGPQTSAEVYRILKQKGLLDKFPLFTA
				VYQICYESRPVQEMLSCLQSHPEHT
2835	A	106	1814	QLLPTDTPTGNSSPSLPHLPFAGACGLSIYN

Table 8

SEQ	Method	Predicted	Predicted	Amino acid sequence (X=Unknown, *=Stop
_	Memon	beginning	ending	codon, /=possible nucleotide
ID		nucleotide	nucleotide	deletion,=possible nucleotide insertion)
NO:			location of	deletion, possible national and and
		location of		
		first amino	last amino	
		acid residue	acid residue	· ·
		of peptide	of peptide	
		sequence	sequence	TARROCKEN PROCECCEN CRICETALVERVERVE
				LVPTQQKRNPSGSSGFILSRICFTNYSPVPPS
				LQMFFRLQLPPVNSEETSHYEIPLPGRRVEL
			1	RYPLRQGTEATDGQVCGNEDMLIRDRVRK
				TRGSAPPPAHNLAPTEVALEDVLRIFTSAW
				RGVDGALEKGGTSCPARAQLPAEPEDPLF
				RCLRVSRLKDREVRGLGLPRQLQGVWSTT
				YPRRHAIAEHAGSPKPLRKREPETWQANK
				KGVIGIQLVVTMVMASVMQKIIPHYSLAR
				WLLCNGRKYNGHIESKPLTIPKDIDLHLET
				KSVTEVDTLALHYFPEYQWLVDFTVAATV
			1	VYLVTEVYYNFMKPTQEMNISLVCKVLFS
				LTTHYFKVEDGGERSVCVTFGFFFVKAM
	l			AVLIVTENYLEFGLETGFTNFSDSAMQFLE
				KQGLESQTLLHINFLAPLFMVLLWVKPITK
				DYIMNPPLGKESIPLMTEATFDTLRLWLIIL
		1		LCALRLAMMRSHLQAYLNLAQKCVDQM
				KKEAGRISTVELQKMVARVFYYLCVIALQ
				YVAPLVMLLHTTLLLKTLGNHSWGYLSRI
	1			YLYLTSG
			774	HSYSHSHGHCGSPAGDTEQGYKPVWPVCS
2836	A	2	774	LFPDGSHPGV*QPIHEPA/QGRGGLPPWGA
			1	A*TPRAWRLA*RPRG*AALPWA*TSPGRPA
				SAPLAHTGSGCPSRPTRAPGPSP/IPIQNIKR
				PYPGEAFVPSRAG\PTVGVTRSFHLAPSLPP
				FPSS*LSPSLPPRTTTSCTRAILTPSS*QKLLY
				PPSRP\VVLLVRRARPPAAAPTSEEPPERSP
	l			WETPHAAPSQLHELHETHSVAQKSDLLPA
				PEAM*PGSVSSRFLLY
2837	A	2	521	CSAAWAPKLQLLSVCRQQLPGNPRARSHS
	1			HHRRTRARCPSGCGQARHSAGSWHKLQFP
	ļ		İ	LCPWKMRSPLKMRSLLKMIPSESRMVVTF
į				LISALESTEQYHGGVYTPCDIDSNIILSPPDI
				SNNITEGVYTPCDIDRHLIPFFLPLDMRLQV
	Ì			LMPLDSGTCTSGFPEALRPSASD
2838	A	14	1256	WPCGAAPGLTHASERMFTLTTMIQALAPV
2030	1	* '		MGWDRKPLKMFSSEEMRGHLHHHHKCLT
				KILKVEGQVPDLPSCLPLTDNTRMLASILIN
		1		MLYDDLRCDPERDHFRKICEEYITGKFDPQ
			1	DMDKNLNAIQTVSGILQGPFDLGNQLLGL
	ŀ			KGVMEMMVALCGSERETDQLVAVEALIH
ł	j			ASTKLSRATFIITNGVSLLKQIYKTTKNEKI
1				KIRTLYGLCKLGSAGGTDYGLRQFAEGSTE
1	ĺ			KLAKQCRKWLCNMSIDTRTRRWAVEGLA
1				YLTLDADVKDDFVQDVPALQAMFELAKT
	1			SDKTILYSVATTLVNCTNSYDVKEVIPELV
I	ł			STATES AND THE STREET OF THE STATES AND THE STREET
	1			QLAKFSKQHVPEEHPKDKKDFIDMRVKRL
1		1		LKAGVISALACMVKADSAILTDQTKELLA
				RVFLALCDNPKDRGTTVAQGGGKALIPLAL
				EGTD.
2839	A	1913	1582	

498

Table 8

SEQ	Method	Predicted	Predicted	Amino acid sequence (X=Unknown, *=Stop
ID	Memod	beginning	ending	codon, /=possible nucleotide
NO:		nucleotide	nucleotide	deletion,=possible nucleotide insertion)
NO:		location of	location of	Joseph January Paragraphy
		first amino	last amino	-
			acid residue	
	}	acid residue		
		of peptide sequence	of peptide sequence	
	 	sequence	sequence	RHTPPYLALFFIFLFLVDM\SFTTVPRPVLNS
				WAQAILPFRPLKVLGLLA
2840	A	44	376	MYMLLOAFWLWQETLKTILLYKFTKPPAN
2040	^ ·			TPVLGVNAQVCHSCLAALRIRKVNGHKRN
				FKAQPPNGKLPLVLGCLCLLTDLIHALGYD
				CRRDFPVSLEYAELVFLFVVAY*
2841	A	522	693	LDFFLVFLQQFLPRPSSSEI*MLPGFPAAAY
2041	A	J22	0,5	GPVAAAAVAAARGSGRKVYGTGDSQA
2842	A	87	439	KTWTPQPRHPPPHPETSKPTPPC*GPVLCSC
2042	A	67	737	LKVMPRPLPP/PP*DLCSPPLLAPGPRRSAG
				GCWACQRRKKMSCLGGAGVCLKQGHGH
				MGLCYDLGLSTLAEPPGSSARRLPARSAL
00.43	+	1	409	MAETAVINHKKRKNSPRIVQSNDLTEAAY
2843	A	1	409	SLSRDQKRMLYLFVDQIRKSDGTLQEHDGI
				CEIHVAKYAEIFGLTSAEASKDIRQALKSFA
	ı			GKEVVFYRPEKDAGDEKGYESFP\WFIKHS
				TNITSLSLWFFSSCTH
			004	MPGPMSLWLLLLVLPLSLEHSDLRICFPGQ
2844	A	1	894	VVSMESSSTGFIWTDVRAWQTSNRHVSSW
				REPRHSRMPPGAGLMERIQAIAQNVSDIAV
				KEPKHSKWPYGAGLWERIQAIAQIVVSDIAV
				KVDQILRHSLLLHSKVSEGRRDQCEAPSDP
	1			KFPDCSGKVEWMRARWTSDPCYAFFGVD
				GTECSFLIYLSEVEWFCPPLPWRNQTAAQR
				APKPLPKVQAVFRSNLSHLLDLMGSGKES
				LIFMKKRTKRLTAQWALAAQRLAQKLGA
				TORDOKQILVHIGFLTEESGDVFSPRVLKG
				GPLGEMVQWADILTALYVLGHGLRVTVSL
				KELQR
2845	A	2	1841	TNDKNHMITSVDGEKAFDKIQQPFMLKTL
				NKLVLEVLARAIRQEKGIKGIQLGKEEVKL
				SLFADDMIVYLENPIVSAQNLLKLISNFNK
				VSGYKINVQKSQAFVYTNNRQTESQIMSEL
				PFTIASKRIKYLGIQLTRDVKDFFKENYKPL
				LNEIKEDTNKWKKIPCSWVGRINIVKMAIL
			1	PKVIYRFNAIPIKLPMTFFTKLEKTTLKFIW
		\		NQKRAHIAKTILSQKNKAGSIALPDFKLYW
	1			KATVTKTAWYWYQNRDIDQWNRIEPSEIIP
				HIYNHLIFDKPDKNKKWGKDSLFNKWCW
	ŀ			ENWLAICRKLKLDPFLTPYTKINSRWIKDL
	1			NVRPKTIKTLEENLGNTIQAMGMGKDFMT
	1		1	ETPKAMATKAKIDKWDLIKLKSFCTAKET
	1			TIRVNRQPTEWEKIFTIYPSDKGLISRIYNEL
1	1	1		KQINKKKSNNPINKWAKDMNRRFSKEDIY
1	ĺ	1		AANRHMKKCSSSLAIREMQIKTTMRYHLT
	1	1.		PVRMAIIKKSGNNRCWRACGEIGTVGYKN
[1			DRQETQRTRKLHNILEDKPYGEINQIFLQV
1 .				GQRKNGYARPQKSCLPCNIFQYVFQKKMK
	1			EKTKKEKKWNLGNTRIKPEKGKENMGGT
		_		VLPPSSPIIWVEYEPPVSSP
2846	A	60	493	EAGKRESSRDKGARCVYTRHGLRASIPAP
	1			GLRSRRGEQGCSGIRPSCGKRLVCPGCRNQ

Table 8

	1		Table	Amino acid sequence (X=Unknown, *=Stop
SEQ	Method	Predicted	Predicted	codon, /=possible nucleotide
ID		beginning	ending	deletion,=possible nucleotide insertion)
NO:		nucleotide	nucleotide	deletion,-possible nacicoade most dony
		location of	location of	
		first amino	last amino	
		acid residue	acid residue	
	ì	of peptide	of peptide	
		sequence	sequence	ENPEGNRGKGAARFTRESASGRGESRSAR
				GSIERSGDMRTYWLHSVWVLGFFLSLFSL
	ì			QGLPVRSVDFNRGTDNITVRQGDTAIL
00.45		395	3	GGQGVTPWPSSCLPGTGSPAPSPTRLLGPT
2847	A	393	13	PRDRAEAIVGPDSATCSQTEGAQEGGRCLP
				PG/MELPAGDGAGRRVGQGGPEGQLGGQQ
				RGKGAGPQPPPQEQPGLAWVGDRLIHPRL
				CLPPTCGHRAGSPGW
2848	A	514	738	MNSLSWGAANAVLLLLLLAWASPTFISINR
2040	^	314	,,,,	GVRVMKGPSAFLSGDDMKFAIPKEKDACC
			ļ	IRESSTRXXRSGSAGL
2849	- A	2	427	HVIKVLHDDWIFTPFIQGP*SM/CSSKNESR
2849	A	*	1.2	HIGS*RVTG*LLEVLKSLL*SFGRLNALNM
				KSL/TSEVOEE*RKLNKTHRVQRDFDKDRK
1	ì			LAVGOSESPGHPTSEKPPSTSSSAGCMLCS
				LHISRGFOLRRKRQLNGKCCPIQ
2850	+A	3	409	ROEGEDSAGSWHSOGPGQCQGRAKAGSG
2830	A			P**/GPATGLGLGQ*QDQSQGKGQSSARPG
İ				*GQAFQGQGQGRTRARSEAGKGQGQDRS
	l			RAGP*HGQGLR*GKGRARAR*GSGPRPG*
		1		GQGKKYGRTRGNAKAKAGPGLT
2851	A	174	446	MWLLPALLLLCLSGCLSLKGPGSVTGTAG
2001				DSLTVWCQYESMYKGYNKYWCRGQYDT
1	ļ			SCESIVETTGEEKGGKEWPRVHQRPPGGSR
				LHCDH
2852	A	1008	1246	INNLSWQDYGESP*ALSNQTS*VVPILRPFIP
		Ì		VFLLLLFHLVFQFIQNRIQAITNHSI*QMFLL
				TTPQYHPLPQDLPSA
2853	В	428	3792	MSFDPNLLHNNGHNGYPNGTSAALRETGV
				IEKLLTSYGFIQCSERQARLFFHCSQYNGNL
1	İ			QDLKVGDDVEFEVSSDRRTGKPIAVKLVKI KQEILPEERMNGQVVCAVPHNLESKSPAA
				PGQSPTGSVCYERNGEVFYLTYTPEDVEG
				NVOLETGDKINFVIDNNKHTGAVSARNIM
{				LLKKKQARCQGVVCAMKEAFGFIERGDV
	l l			VKEIFFHYSEFKGDLETLQPGDDVEFTIKD
			-	RNGKEVATDVRLLPQGTVIFEDISIEHFEGT
1		-		VTKVPKVPSKNQNDPLPGRIKVDFVPKEL
				PFGDKDTKSKVTLLEGDHVRFNISTDRRDK
1	1			LERATNIEVLSNTFQFTNEAREMGVIAAMR
	- 1	j	1	DGFGFIKCVDRDVRMFFHFSEILDGNQLHI
1				ADEVEFTVVPDMLSAQRNHAIRIKKLPKGT
1			ł	VSFHSHSDHRFLGTVEKEATFSNPKTTSPN
1		ļ		KGKEKEAEDGIIAYDDCGVKLTIAFQAKD
				VEGSTSPOIGDKVEFSISDKQRPGQQVATC
				VRLLGRNSNSKRLLGYVATLKDNFGFIETA
				NHDKEIFFHYSEFSGDVDSLELGDMVEYSL
				SKGKGNKVSAEKVNKTHSVNGITEEADPTI
1				YSGKVIRPLRSVDPTQTEYQGMIEIVEEGD
1			1	MKGEVYPFGIVGMANKGDCLQKGESVKF
				QLCVLGQNAQTMAYNITPLRRATVECVKD
L				420,204,4

500

Table 8

SEQ ID NO:	Method	Predicted beginning nucleotide location of first amino acid residue of peptide sequence	Predicted ending nucleotide location of last amino acid residue of peptide sequence	Amino acid sequence (X=Unknown, *=Stop codon, /=possible nucleotide deletion,=possible nucleotide insertion) QFGFINYEVGDSKKLFFHVKEVQDGIELQA GDEVEFSVILNQRTGKCSACNVWRVCEGP
				KAVAAPRPDRLVNRLKNITLDDASAPRLM VLRQPRGPDNSMGFGAERKIRQAGVIDXN WRKQKCFVFTKINGLFTQRSKPQTTRGKIK PPSPTSPELTLVILDKAFSPLARDPVYGQFK KRAKKSDPSIPVI
2854	A	1	747	MRLQRPRQAPAGGRRAPRGGRGSPYRPDP GRGARRLRRFQKGGEGAPRADPPWAPLGT MALLALLLVVALPRVWTDANLTARQRDP EDSQRTDEGDNRVWCHVCERENTFECQNP RRCKWTEPYCVIAAVKIFPRFFMVAKQCS AGCAAMERPKPEEKRFLLEEPMPFFYLKC CKIRYCNL/GGA/NLSTHQ\CSKNMLGAWV RAVVGCGWPSSCCWPPLQPASACLEPRDC HRLSLPEHGLAPDRCHLLH
2855	A	3	1018	FASFPSINLQQMLKEVPKRFGDERGAIVHY TILNNHVYRRSLGKYTDFKMFSDEILLSLT RKVLLPDLEFYVNLGDWPLEHRKVNGTPS PIPIISWCGSLDSRDVVLPTYDITHSMLEAM RGVTNDLLSIQGNTGPSWINKTERAFFRGR DSREERLQLVQLSKENPQLLDA/WNYRIFL FPRERKGA*KAKLMGLLDTCT*RNVDGTV AAYRYPYLMLGDSLVLKQDSPYYEHFYM ALEPWKHYVPIKRNLSDLLEKVKWAKEN DEEAKKIAKEGQLMARDLLQPHRLYCYYY QVLQKYAERQSSKPEVRDGMELVPQPEDS TAICQCHRKKPSREEL
2856		3.	3707	RAGEVVPGWLLAAAAAHPGRPAASLSPGL GAVLGVAGRQVADPRFRRDWFRIPSPPAE SAGPARQAGFAAAPPARAGPALSTMKGTR AIGSVPERSPAGVDLSLTGLPPPVSRRPGSA ATTKPIVRSVSVVTGSEQKRKVLEATGPGG SQAINNLRRSNSTTQVSQPRSGSPRPTEPTD FLMLFEGSPSGKKRPASLSTAPSEKGATWN VLDDQPRGFTLPSNARSSSALDSPAGPRRK ECTVALAPNFTANNRSNKGAVGNCVTTM VHNRYTPSERAPPLKSSNQTAPSLNNIIKAA TCEGSESSGFGKLPKNVSSATHSARNNTGG STGLPRRKEVTEEEAERFIHQVNQAAVTIQ RWYRHQVQRRGAGAARLEHLLQAKREEQ RQRSGEGTLLDLHQQKEAARRKAREEKAR QARRAAIQELQQKRALRAQKASTAERGPP ENPRETRVPGMRQPAQELSPTPGGTAHQA LKANNAGGGLPAAGPGDRCLPTSDSSPEP QQPPEDRTQDVLAQDAAGDNLEMMAPSR GSAKSRGPLEELLHTLQLLEKEPDALPRPR THHRGRYAWASEVTTEDDASSLTADNLEK FGKLSAFPEPPEDGTLLSEAKLQSIMSFLDE MEKSGQDQLDSQQEGWVPEAGPGPLELGS EVSTSVMRLKLEVEEKKQAMLLLQRALAQ

Table 8

Method Prediction beginning nucleotide location of first amino acid residue of peptide sequence Sequence QRDLTARRVKETEKALSRQLQRQKEAYYE ATIQRHLAFIDQLIEDKKVISEKCEAVVAE LKQEDQRCTERVAQAQAQHELEEKKLKEL MSATEKARREKWISEKTKKKEVTVRGEE EIQKLIARHKQEVRILKSLLHEAELLQSDER ASQRCLRQAEELREGQMAQQGRELEEKSLKQELQRAFEEVISEKTKKKKEVTVRGEE EIQKLIARHKQEVRILKSLHEAELLQSDER ASQRCLRQAEELREGQQAARQRAELEERQQGERE RARQRFQQHLEGQWALQQGRQRLYSEV AEERERI.GQQAARQRAELEERQQEESS ALTRALRAEFEKGREEQERERIQMENTIK QQLELERQAWBAGRITKEEAWLLINREQE LREERKGRQEGGMEGQMAQQRAELLINREQE REERIKAGQAARACHLAFTEE RARQRFQHLEGQWALQGRAELYSEV AEERERI.GQQAARQRAELEERQQEESS ALTRALRAEFEKGREEQERRIQMENTIK QQLELERQAWBAGRITKEEAWLLINREQE RREPIKGRQGAARQAAVBCJSSERSNLAQVIRQEFED RUAASEETRQAKABLATIAQRQQLEES RALEDAQAVNEQISSERSNLAQVIRQEFED RUAASEETRQAKABLATIAQRQQLEE VRRWKTALARKEEAVSLITQARQAELE VRRWKTALARKEEAVSLITQARQAELE VRRWKTALARKEEAVSLITQARQAELE VRRWKTALARKEEAVSLITQARQAELE VRRWKTALARKEEAVSLITQARQAELE VRRWKTALARKEEAVSLITQARQAELLEFQGER RAMASEETRQAKABLATIVAGAQQAELE VRRWKTALARKEEAVSLITQARQAELE VRRWKTALARKEEAVSLITQARQAELE VRRWKTALARKEEAVSLITQARQAELE VRRWKTALARKEEAVSLITQARQAELE VRRWKTALARKEEAVSLITQARQAELE VRTWRVITCATTAGARQAELE VRTWRVITTAGARQAELE VRTWRVITCATTAGARQAELE VRTWRVITCATTAGARQAELE VRTWRVITCATTAGARQAELE VRTWRVITCATTAGARQAELE VRTWRVITCATTAGARQAEL	anc	D# - 41 3	Predicted	Predicted	Amino acid sequence (X=Unknown, *=Stop
NO: mucleotide location of first amino acid residue of peptide sequence	SEQ	Method			codon. /=possible nucleotide
location of first amino acid residue of peptide sequence Requence Requence Requence Requence Requence REQUENCEREVAQAQAGELERKIKEL MASTEKAREKUSERTKEKLUSDER ATTORHLATIDQLIENKKVISTEKGEAVVAE LKQEDQRCTERVAQAQAQHELERKIKEL MASTEKAREKWISERTKEKKEVIVTRGEL EIQKILARIKGEVRRLKSLHEAELLQSDER ASQRCLRQABELREQLEREKEKKENEVIVTRGE RARGREQQAARQRAELEREQLEREKEKLEGE RARGREQQAARQRAELEREQLEREKEKALGQGERE RARGREQQAARQRAELEREQLEREKEKLAGQGERE RARGREGERERIGGERERIGGERERERIGGERERIGGERERIGGERERIGGERERIGGERERIGGERERIGGERERIGGERERIGGERERIGGERERIGGERERIGGERERIGGERERIGGERERIGGERERIGGERERIGGERERIGGERERIGGEREGERGERGERGERGERGERGERGERGERGERGERGE					deletion = possible nucleotide insertion)
Inst amino acid residue of peptide sequence QRDLTARRVKETEKALSRQLQRQKEAVYE ATIQRIHAPIDQLIEDKKVISKCEAVVAE LKQEDQRCTERVAQQAQQHELEKKIKEL MASTEKARREKWISEKTKKIKEVTVRGLEP EIQKILARRIQQUERE RAGREQUEREKALAGQQERE RAGREQQHARQELERQLEREKEALAGQQERE RARQREQQHARQEAURAGARAGARAGARAGARAGARAGARAGARAGARAGARA	NO:				deletion, possesses
acid residue of peptide sequence QRDLTARRVKETEKALSRQLQRQKEAVYE ATIQRHLAFIDQLIEDKKVLSEKCBAVVAE LKQEDQRCTERVAQAQAQIELEIKKLKEL LKQEDQRCTERVAQAQAQIELEIKKLKEL LKQEDQRCTERVAQAQAQIELEIKKLKEL LKQEDQRCTERVAQAQAQIELEIKKLKEL MASATEKARREKWISEKKKIKEVYRGLEP EIQKLIARIKQEVRRIKSI.HRABLILQSDER ASQRCLRQAEELREQLERKEALGQQBRE RAQRQQQRQRLYSEV AEBRRI.GQQAARQRAELEELRQQLEBSS ALTRALRAEFEKGREEOERRHQMELNTIK QQLELERQAWBAGRTRKEEAWLLNREQE ILREERKGRGERGERHQHENTIK QQLELERGAWBAGRTRKEEAWLLNREQE ILREERKGRGKEIELVHRIBADMALAKEE SEKAAESRIKRLRDKYBAELSELGQSERKL QERCSELKGQLGAEGERHLQGLVRQKE RALEDAQAVNEQLSSERSNI.AQVIRQEFED RUAASEETRQAKAELATLQARQQLELEE VHRRVKTALARKEEAVSSIRTQHKGSIVK RADHLEELLKQHRRPTPFSTKCPGMPGTLFK NGRQRTKAGRGPRGPQORPPAPHRGWWL RCPRISTCGCILTVKEAVYFSKKKKKGAPF WIRRVKTALARKEEAVSSIRTQHKGSIVK RADHLEELLKQHRRPTPSTKCPGMPGTLFK NGRQRTKAGRGPBGPQGRPPAPHRGWWL RCPRISTCGCILTVKEAVYFSKKKKKGAPF CYSSFRUIDARAATEKFRQDLGFRMINCC RTDLINQALEALGPDGVNTMDDQGMTPLM YACAAGDEAMVQMLLPPLEWHMRVAI TYAEHRRSI.TVDSGDIRQAARLLP/GPEH CYSSFRUIDARAATEKFRQDLGFRMINCC RTDLINQALEALGPDGVNTMDDQGMTPLM YACAAGDEAMVQMLDAGANLDJVPSNS PRHPSHPDSRHWTSLTFAVLHGHISVVQL LLDAGAHVGGSAVNGGEDSYAETPLQLAS AAGNYELVSLLISEGADPLISMILEAHGMG SSLHEDMNCFSHSAAHGHRGIWGLVTLGF LACLEEDHETPSRVYQSSPGGGGTGGQ LRAVLRKLLTQPQQAKADVLSLEELLAEGW EISDASSQGSGSPVRLSRTRYKALQBAM YYSAEHGYVDITMEIRALGVPWKLHIWWE SLRTSFSQSRYSVQSLLRDFSSIREEEYNB ELVTEGLQLMFDILKTSKNDSVQQLATHT HCYGSSPPSPEPERKTLPARLDPHFLNNKE MSDVTFLYGGKLFYAHKVLLVTASNPKT LMTNKSEQDGDSSKTIEISDMKYHLFQMM MQYLYYGGTERSMPTTDILELLSAASLFQ LDALQRRCEILCSQTLSMBSAVNTYKYAKI HNAFELALFCGFFILKMMKALLEQUMPSGS STAAAAAKCRAWHHCRTCRTPWQSACTLS TSPPGSAA 2858 A 1 571 FRFGRAKRAMAVYVGMIRLGRLCAGSS GYLGARAALSRSWQEARLQGVRFLSSREV DRMYSTJEIGGLSYVQGCTKKHINSKTVQQ CLETTAGVPFEREALVHLEDVRLITAQL KEEVDKAASGLLSIGLCKGDRLGMWGPNS YAWVLMQULATAOAGILVSVNPAYQAME LEYVLKKVGCKALVFPRQ				1	
de peptide sequence QRDLTARRVKETEKALSRQLQRQKEANYE ATIQRHAFIDQLIEDKKVLSEKCEAVVAE LKQEDQRCTERVAQAQQIELEIEKKLKEL MASTEKARREKWISEKTKKIKEVTVRGLEP EIGKLIARRIKGEVRRIKSLKIHEALLQSDER ASQRCIRQAELERGLEREKLEL MASTEKARREKWISEKTKKIKEVTVRGLEP EIGKLIARRIKGEVRRIKSLKHEALLQSDER ASQRCIRQAELERGLEREKLELGQUEREE RARQRFQQHILEOGQWALQQQRQKLYSEV AEBERERLGQQAARQRAELEELRQQLEESSS ALTRAIRAEFFEKQREGERHRQMELNTIK QQLELERGQAWEAGRTRKEEAWLLINREQE ILREIBRGGRWEIELVIHRLEADMALAKEE SEKAAESRIKRIRDKYRAELSELGGSERKL QBRCSELKGQLGEAGGENLRLQGLVRQKE RALEDAQAVVEQLSESSRINLQVINQSEE RULAASEETRQAKAELATLQARVQKEE RULAASEETRQAKAELATLQARVQKEE RALEDAQAVVEQLSESSRINLAQVINQSEE RULAASEETRQAKAELATLQARVQKEE VHRYKKTALARREAVSSLTQHKGSVK NGRQRTKAGGRRGPGPGGRPAPAHRGWWL NGRQRTKAGGRRGPGPGGRPAPAHRGWWL NGRQRTKAGGRRGPGPGGRPAPHRGWWL THA GRENTSTCGCULTVERAVYPSKKKKKQAFP THA GRENTSTCGCULTVERAVYPSKKKKKQAFP THA GRENTSTCTGCULTVERAVYPSKKKKKQAFP THA GRENTSTCTGCULTVERAVYPSKKKKKQAFP THA GRENTSTCTGCULTVERAVYPSKKKKKQAFP THA GRENTSTCTGCULTVERAVYPSKKKKKQAFP THA GRENTSTCTGCULTVERAVYPSKKKKKQAFP THA GRENTSTCTGCULTVERAVYPSKKKKKQAFP THA GRENTSTCTGCULTVERAVYPSKKKKKQAFP THA GRENTSTCTGCULTVERAVYPSKKKKKQAFP THA GRENTSTCTGCULTVERAVYPSKKKKKQAFP THA GRENTSTCTGCULTVERAVYPSKKKKKQAFP THA GRENTSTCTGCULTVERAVYPSKKKKKQAFP THA GRENTSTCTGCULTVERAVYPSKKKKKQAFP THA GRENTSTCTGCULTVERAVYPSKKKKKQAFP THA GRENTSTCTGCULTVERAVYPSKKKKAGAFP THA GRENTSTCTGCULTVERAVYPSKKKKAGAFP THA GRENTSTCTGCULTVERAVYPSKKKKAGAFP THA GRENTSTCTGCULTVERAVYPSKKKAGAFP THA GRENTSTCTGCULTVERAVYPSKKKAGGEDSVAGGGGGGAFGCULTTAVATGCULTTATATATATATATATATATATATATATATATATATAT				1	
Sequence Sequence QRDLTARRVKETEKALSRQLQRQKEAVYE ATIQRHLAFIDQLIEDKK VLSEKCEAVVAE LKQEDQRCTERVAQAQAQHELEIKKLKEL MSATEKARREKWISEKTKKIKEVTVRGLEP EIQKLIARHKQEVRRLKSLHEAELLQSDER ASQRCLRQAEELRSQLEREKEALGQQERE RARQRFQQHLEQGQWRQKLYSEV AEERERLGQQAARQAELEKIKQLESSS ALTRALRAEFEKQREGERHQMELNTLK QQLELERQAWEAGRTKKEEAWLLNREQE IREEIRKGRQGGAEGRENLRUGGLVRQKE RARGRFQGHLEGGGWALGQVRQKESSS ALTRALRAEFEKQREGEVERHQMELNTLK QQLELERQAWEAGRTKKEEAWLLNREQE IREEIRKGRQGGAEGRGENLRUGGLVRQKE RALEDAQAVNEQLSSESSILAQVIRQFEED RUAASEEETRQAKAELATUQARQQLELEE VHRRVKTALARKEEAVSSLRTQHKGSVK RADHLEELLKQHRRFTFSTKCFGMPGTLFK NGRQRTKAGGRPGRPGORPPAPHRGWVL RCPR.STCGCLTVKEAVVSSKKKKGAPF CRSSFRRLAAARAEKAGRFRGFGOGPPAPHRGWVL RCPR.STCGCLTVKEAVVSSKKKKGAPF CRSSFRRLDARAATEKFRQDLGFRMUNCG RTDLINQAIEALGPDGVNTMDDQGMTPLM YACAAGBGAMVQMLDAGANLDJOVPSNS PRHPSIHPDSRHWTSLTFAVLHGHISVVQL LLDAGAHVGGSAVNGGEDSVAETPLQLAS AAGNYELVSLLLSRGADPLLSMILEAHGMG SSLHEDMNCFSISAAHGHRGIWGLVTLGF LACLEEDBETFSPRVPSSFSQGGTGGQ LRNVIRKLLTQPQAKADVISLEBLLAEGV EESDASSQGSGGSGFGFVLSRTRKTALQEAM YYSAEHGYVDITMELRALGVPWKLHIWE SLRTSFSQSRYSVVQSLLRDFSSTREETPH HCYGSSPPSPETRKTLPARLDPHFLNNKE MSDVTFLVEGKLFVAHKVLLTVASNIFKT LMTNKSEQDGDSSKTIEISDMKYHIFQMM MQYLYYGGTESMEPTTDILELLSAASLFQ LDALQRRGEILCSGTLSMESAVNTYKYAKI HNAPELALFCGFFILKHMKALLEQWPSGS STSTAAAAKCRAWIHGTKTCRTPWQSACTLS TSPPGSAA 1 S71 FRFGRRAKRAMAVVVGMIRLGRLCAGSS GVLGARAALSRSWQEARLQGVRFLSSREV DRMYSTFIGIGLSVQGCTKKHNSKTVGQ CLETTAGVPEREALVVLHEDWRLTFAQL KEEVDKAASGLISIGLCKGDRIGMWGPNS YAWVLMQULATAOQGILVSVNPAYQAME LEYVLKKVGCKALVFPKQ CLETTAGVPEREALVULHEDWRLTFAQL KEEVDKAASGLISIGLCKGDRIGMWGPNS YAWVLMQULATAOQGILVSVNPAYQAME LEYVLKKVGCKALVFPKQ CLETTAGVPEREALVULHEDWRLTFAQL KEEVDKAASGLISIGLCKGDRIGMWGPNS YAWVLMQULATAOQGILVSVNPAYQAME LEYVLKKVGCKALVFPKQ CLETTAGVPEREALVULHEDWRLTFAQL KEEVDKAASGLISIGLCKGDRIGMWGPNS YAWVLMQULATAOQGILVSVNPAYQAME LEYVLKKVGCKALVFPKQ TRENTY TROTTER TROTTER TROTTER TROTTER TROTTER TROTTER TROTTER TROTTER TROTTER TROTT					
QRDLTARRVKETEKALSRQLQRQKERAYYE ATTORHLAFHOQLIEDKKVISKCRAVYAE LKQEDQRCTERVAQAQAQHELEIKKLKEL MSATEKARREKWISEKTKKKKEVTVRGLEP EIQKLIARRIKQEVRRIKSSLHEAELLQSDER ASQRCLRQAEELREQLEREKEALGQQERE RARQRFQQHLEOEQWALQQQRQKLYSEV AEBRERLGQQAARQRAELEELRQQLEESSS ALTRALRAEFEKGREGERRHQMELNTILK QQLELERGAWEAGRTEKEEAWLLNREQE LREERKGROKEIELVIHRLBADMALAKEE SEKAAESBKRIKDKYKAELSELEGSERKL QERCSELKGQLGEAEGENLRLOGLVRQKE RALEDAQAVVEQLSERSNLAQVIRQEFED RWAASSEETRQAKAELATIQARQQLELEE VHRRYKTALARKEAVSSLRTQHKOSSVK RADHLEELLKQHRRPTPSTKCFGMPGTLFK NGRQRTKAGRGPRGPQGRPPAPHRGWWL RCPRISTCGCILTVKEAVVFSKKKKKGAF MTASIRRYHTCATDGEPDSSVLVGDGDGDL TILLVAALGLDLGLPFMLLPPLMEWMRVAI TVAEHRESITVDSGDIRQAASLLLPGPEH CFSSFRWILDARAATEKFNQDLGFRMINCG RTDLINQAIEALGPDGVATMDDQGMTPLM YACAAGDBAMVQMLDAGANLDIQVPSNS PRHPSHPDSRHWTSLTFAVIHGHISVVQL LLDAGAHVGGSAVNGGDSVAETPLQLAS AAGNYELVSLLISRGADPLISMLEAHGMG SSIHEDMNCFSHSAAHGHGINGLVTLGF LACLEEBHETPSPRVPQSSPSGQEGTGGQ LRNVLRKLLTQPQAKADVISLEBLLAEGV YSAEHGVVDITMELRALGVPWKIHIWIE SIKTSFSGSGSGSGFPYSVVQSLIKPTSSIREETYNE EVTEGLQLMFDILKTSKNDSVIQQLATHFT HCYGSSPPSIPEIRKTLPARLDPHINNKE MSDVTFI-VGGKLFYAHKVLLVTASNRFKT LMTNKSEQDGDSSKTIEISDMKYHIRQMM MQVILYYGGTSSMEDFTDILELISAASIFQ LDALQRHCEILCSQTLSMESAVNTYKYAKI HNAPELALFCGGFFLKHMKALLEQMPSGS SSTAAAAKCRAWHCRTCRTPWGSACTLS TSPPGSAA 1 571 FRFGRRAKRAMAVYYGMIRLGRLCAGSS GVLGARAALSRSWQEARLQGRFLSSREV DRMYSTPIGGLSVVQGCTKKHLNSKTVQQ CLETTAQRVPEREALVLHEDVRLITFAQL KEEVDKAASGLISIGLCKGDRLGMWGPNS YAWVLMQLATAOAGILUSVNPAYQAME LEYVLKKVGCKALVPFRQ					
ATTORHLAFDQLIEDKKVIJSKCBAVVAE LKQEDQRCTERYAQAQQAGHELEKLKLEL MSATEK ARREKWISEKTKKIKEVTVRGLEP EIQKLIARIKQEVYRILKSLHRAELLQSDER ASQRCIRQAEELREQLEREKBAIQQGEE RARQRFQQHLEQEQWALQQQRQKLYSEV AEBRERLGQQAARQRAELEELRQQLEESSS ALTRALRAEFEKGREEQERRHQMELNTIK QQLELERQAWBAGRTRKEEAWLINREQE IREBERKGRUKGUFINIRLBADMALAKEE SEKAAESRIKRLRDKYBAELSELEQSERKL QBRCSELKGQLGEAEGENIRLQGLVRQKE RALEDAQAVNEQLSSERSNLAQVIRQEFED RUAASEETRQAKAELATIQARQQLELEE VHRRYKTALARKEEAVSSIRTQHKGSIVK RADHLEELLKQHRRPTPSTKCPGMPGTLFK NGRQRTKAGRGPRPQPGRPPAPHRGWWI VARAYKTALARKEEAVSSIRTQHKGSIVK RADHLEELLKQHRRPTPSTKCPGMPGTLFK NGRQRTKAGRGPRPQPGRPPAPHRGWWI VARAYKTALARKEEAVSSIRTQHKGSIVK RADHLEELLKQHRRPTPSTKCPGMPGTLFK NGRQRTKAGRGPRPQRQRPPAPHRGWWI VARAYKTALARKEEAVSSIRTQHKGSIVK RADHLEELLKQHRRPTPSTKCPGMPGTLFK NGRQRTKAGRGPRQPQRPPAPHRGWWI VARAYKTALARKEAVSSIRTQHKMRVAI TYAEHRRSLTVDSGDIRQAARLLLPGGPEH CRSSFRRLDARAATEKPNQDLGFRMLNCG RTDLINQAEALGPBGPOSYNTMDDQGMTPLM YACAAGDBAMVOMLDDAGANLDIQVPSNS PRHPSHIPDSRRYMSITAVHLGHISVVQL LLDAGAHVEGSAVNGGEDSVAETPLQLAS AAGNYELVSLLISRGADPLLSPLAEHEAN YASAEHGYVUDILMERALGVYWKLHUW SSLHEDMNCFSHSAAHGHRGIWGLVTLGF LACLEEEDHETTSPRVPQSSPSGQEGTGGQ LRNVLRKLTQPQQAADVLSIEELLAEGV ESDASSQGSGSGPVRLSRTKTKALQBAM YYSAEHGYVUDITMEIRALGVYWKLHTWH ESSTASSQSRYSVVQSLIRDFSSIREEYNE ELVTEGLQLMFPDLKTSKNDSVIQQLATIFT HCYGSSPPSIPERKTLARALPHINKE MSDVTFLVEGKLFYAHKVLLVTASNRFKT LMTNKSEQDGDSSKTIEISDMKYHIFQMM MQVLYYGGTISSMEDTTDLELLSAASAERQ LDALQRICELCSQTLSMESAVNTYKYAKI HNAPELALFCGFFLKHMKALLEGMPGSG SSTAAAASCRAWHCRTCRTPWQSACTLS TSPPGSAA 2858 A 1 571 FRFGRRAKRAMAVYVGMLRLGRLCAGSS GVLGARAALSRSWQBARLQGRFLSSREV DRMVSTPIGGLSYVQGCTKKHINSKTVQ CLETTAQRVPBREALVVHEDVRLTTAQL KEEVDKAASGLISIGLCKGDRIGMWGPNS YAWVLMQLATAOAGILUSVNPAYQAME LEYYLKKVGCKALVPFRQ			sequence	sequence	ORDI TARRVKETEKALSROLOROKEA\YE
LKQEDQRCTERVAQAQAQHELEIKKLKEL MASTEKARREKWISETIKKIKEVTVRGLEP EIQKLIARHKQEVRILKSLHEAELLQSDER ASQRCIRQABELREQLEREKEALGQQBER RARQREQQHILQEQKORQIVSEV AEBERERLGQQAARQRAELBELRQQLERSS ATRALRAEFIEK GREEQERHQMELNTILK QQLELERQAWEAGRTRKEEAWLLNREGE LREERKGRDKEIELVIHRLEADMALAKEE SEKAABSRIKRIRDKYFAELISELEGSEKKL QRECSELKGQLGBAEGENIRLQGLVRQKE RALEDAQAVNFQLSERSNIAQVIRQBFED RVAASEBETRQAKABLATLQARQQLELEE VHRVKTALARKEEAVSSLRTQHKGSVK RAHLBELIKQHRRYPTSTKCFOMPGTLKK NGRQRTKAGRGFRGPQGRPPAPHRGWWI. RCPLISTGGCLITVKEAVYFSKKKKGAPF ATTAHRRSITVDSGDIRQAARLLLPGPEH CRSSTRILDARAATEKFNQDLGFFMILLPG CRTILINQAIBALGPGVNTMDDQGMTPLM YACAAGDBAMVQMLDAGANLDIQVPSNS PRIPSIHPDSGNVTMDDGGMTPLM YACAAGDBAMVQMLDAGANLDIQVPSNS PRIPSIHPDSRHWTSLTFAVLIGHISVVLGC RTDLINQAIBALGPGSVNVGGEDSYAETPLQLAS AAGNYELVSLLISRGADPLISMLBAHGMG SSILEDMNCSHSAAHGHGRIGU-VTLGF LACLEEDHETTSPRVPQSSPSGGFGTGGQ LRNVLRKILLTQPQQAKADVLSLEBILAGGV ESDASSQGSGSEGPVLSRTETKALQEAM YYSAEHGYVDITMELRALGVPWKLHMUB SRITSSSGNYSVVGJLRDFSSTREETYNE ELVTEGLQLMFDILKTSKNDSVIQQLATIFT HCYGSSPPSPPSPEIRKTLRALDFHFINKALLEAGW MYYGGTESMESTYPICHLAGG LACLEEDHETCSQTLSMESAVNTYKYAKI HNAPELALFCEGFFLKHMKALLEQMPPSG SSTAAAAKCRAWHCRTCRTEWQACTLS TSPGSAA 1 571 FRYGRAKARAMAVYVGMIRLGRLCAGSS GVLGARAALSRSWQEARLQGVRFLSSREV CLETTAQRVPBREALVVLHEDVRLITAQL KEEVDKAASGLLSIGLCKGDRLGMVGPNS YAWULMQLATAQGIILVSVNPAYQAMB LEYVLKKVGCKALVPFKQ	1				ATIORHI AFIDOLIEDKKYLSEKCEAVVAE
MSATEKARREKWISEKTIKKEVTVRGLEBE EIQKLIARHKQEVRRLKSLHAELLQSDER ASQRCLRQAELERQLEREKEALGQDERE RARQRPQQHLEGEQWALQQQRQRLYSEV ABERERLGQQARGAELEELRQGQLEESSS ALTRALRABFEKGREGUERHQMELNTLK QQLELERQAWEAGRTRKEEAWLLNTBOE LREERKGRDKEBLVIHRLEADMALAKEE SEKAABSRIKRLRDKYEAELSELGGERKLL QRECSELKGGLGBEGEGENLRLQGLVROKE RALEDAQAVNEQLSSERSILAQVIRQEFED RLAASEETRQAKAELATLQARQQLELEE VHRVKTALARKEEAVSSLRTQHKGSVK RADHLEELLKQHRPFTFSTKCPGMPGTLFK NGRQRTKAGRGPFGQRPPAPHRGWVL RCPRLSTCGCLITVKEAVVFSKKKKKGAPF ATASIRRYHTCATDGEPDSSVLVGGDGDL TLIVAALGIDLGLFFMLLPPLIBEWMRVAI TYAEHRRSLTVDSGDIRQAARLLLP/GPH CFSSFRRLDARAATEKNPODLGFFMLNCG RTDLINQAIEALGPDGVNTMDDQGMTPLM YACAAGBEAMVQMLIDAGANLDQVFSNS PRIPSIFIPDSRHWTSLTFAVLHGHISVVQL LLDAGAFVEGSAVNGGEDSYAETPLQLAS AAGNYELVSLLLSRGADPLISMEAHAMG SSLHEDMNCFSHSAAHGHRGIWGLVTLGP LACLEEEDHETTSPRVPQSSPSGGEGTGGG LRNVLRKLLTQPQQAKADVLSLEBLAEGV EEDASSQGSGEGPVRLSRTRTKALQEAM YYSAEHGYVDITMELRALGVPWKLHJWIE SLRTSFSQSRYSVVQSLLRDFSSIREEEYNE ELVTEGLQLMFDILKTSKNDSVQQLATHLINET HCYGSSSPPSPERFERTLPARLDPHLINTET HCYGSSSPPSPBFBERTLPARLDPHLINTET HCYGSSSPPSPBFBERTLPARLDPHLINTET HCYGSSSPPSPBFBERTLPARLDPHLINTET HCYGSSSPPSPBFBERTLPARLDPHLINTET HCYGSSSPSPSPBFBERTLDARLDFLINTET HCYGSSSPPSPBFBERTLDRALDFLINTET HCYGSSSPPSPBFBERTLDRALDFLINTET HCYGSSSPPSPBFBERTLDRALDFLINTET HCYGSSSPPSPBFBERTLDRALDFLINTET HCYGSSSPPSPBFBERTLDRALDFLINTET HCYGSSSPPSPBFBERTLDRALDFLINTET HCYGSSSPPSPBFBERTLDRALDFLINTET HCYGSSSPPSPBFBERTLDRALDFLINTET HCYGSSSPPSPBFBERTLDRALDFLINTET HCYGSSSPPSPBFBERTLDRALDFLINTET HCYGSSSPPSPBFBERTLDRALDFLINTET HCYGSSSPSPSPBFBERTLDRALDFLINTET HCYGSSSPSPSPBFBERTLDRALDFLINTET HCYGSSSPSPSPBFBERTLDRALDFLINTET HCYGSSSPSPSPBFBERTLDRALDFLINTET HCYGSSSPSPSPBFBERTLDRALDFLINTET HCYGSSSPSPSPBFBERTLDRALDFLINTET HCYGSSSPSPSPBFBERTLDRALDFLINTET HCYGSSSPSPSPBFBERTLDRALDFLINTET HCYGSSSPSPSPBFBERTLDRALDFLINTET HCYGSSSPSPSPBFBGLVAHAMAGAGGLINTETSRV HAPPLALFCEGFFLINMALLEGGRBCGRBGGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGG			1		LKOFDORCTERVAOAOAOHELEIKKLKEL
EIQKLIARHKQEVRILKSLHPAELLQSDER ASQRCLRQAEELREQLEREKEALGQQRRE RARQRPQQHLEQEQWALQQQRQRLYSEV AEBEREALGQQAARQRAELBELRQQLEESSS AITRALRAEFEK GREGVERHHOMBLINTIK QQLELERQAWEAGRTRKEEAWLLNREQE LREERKGRDKEIELVHRLEADMALAKEE SEKAAFSRIKRIRDKYFAELSELEGSERKL QBRCSELKGGLGBAEGENIRLQGLVRQKEE RALEDAQAVNEQLSERSNLAQVIRQEFED RILAASEEETRQAKAELATLQARQQLELEE VHRRVKTALARKEEAVSSLRTQHRGSVK RAHLEELLKQHREPTPSTKCFGMPGTLFK NGRQRTKAGRGPRGPQGRPPAPHRGWWL RCPRISTGGCILITVKEAVVFSKKKKKGAPF MTASIRKYHTCATDGEPDSSVLVYGGDGDL TILVAALGIDJGLPFMILPPLMEWMRVAI TYAEHRRSITVDSGDIRQAARILLPPGBH VHRAUTH YACAAGDBAMVQMIDAGANIDQVPSINS PRHPSHPDSRHWTSLTFAVLEGHISVVQL LIDAGAEVESSAVNGGEDSYAETPLQLAS AGNYELVSLLISRGADPLISMLBAHGMG SSLHEDMNCFSHSAAHGHRGIWGLVTLOP LACLEEDHETPSPRYPQSSPSGEGTGGQ LRNVLRKLLTQPQQAKADVLSLEBILAEGV ESDASSQGSGEGPVRLSRTRTKALQEAM YYSAEHGVVDITMERRALGVPWIKHHWIE SLRTSFSQSRYSVVQSLLRDFSSIREEEYNE ELVTEGLQLMFDILKTSKNDSVIQQLATHET HCYGSSPPSPEBERKTLPARLDPHFLANKE MSDVTFLVEGKLFYAHKVLLVTASNIFKT LIMTMKSEQDGDDSSKTTEISDMKYHIFQMM MQYLYYGGTESMEPTTDILELSAASLPQ LDALQRHCEILCSQTLSMESAVNTYKYAKL HNAPELALFCEGFFLKHMKALLEQMPSGS SSTAAAAKCRAWHCRTCRTPWQSACTLS TSPGSAA 1 571 FRPGRRAKRAMAVYVGMIRLGRLCAGSS GVLGARAALSRSWQEARLQGVRFLSSREV DRMVSTPIGGLSYVQGCTKKHLNSKTVGQ CLETTAQRVPEREALVVLHEDVRLTFAQL KEEVDKAASGLLSIGLCKGDRLGMWOPNS YAWVLUMQLATAQAGIILVSVNPAYQAME LEYVLKKVGCKALVFPKQ		Ì			MSATEKARREKWISEKTKKIKEVTVRGLEP
ASÖRCLRQAEELREQLEREKEALGQQERE RARQRFQHLEQEGWALQQQRQRLYSEV AEERELGQQAARQRAELEELRQQLEESSS ALTRALRAEFEKGREQERRHQMELNTILK QQLELERQAWEAGRTRKEEAWLLNREQE LREERKGRDKEGELVHRLLEADMALAKEE SEKAAESRIKRLRDKYEAELSELEGSERKL QERCSELKGQLGEAEGERIRLQGLVRQKE RALEDAQAVNEQLSSERSINLAQVIRQEFEBE RIVAASEETRQAKAAELATLQAQQLELEE VHRRVKTALARKEEAVSSLRTQHLGSIVK RADHLEELLKQHRPFTPSTKCPGMPGTLFK NGQRTKAGRGPRGQGRPAPHRGWWL RCPRISTCGCILTVKEAVVFSKKKKKGAPT RCPRISTCGCILTVKEAVVFSKKKKKGAPT RCPRISTCGCILTVKEAVVFSKKKKKGAPT RCPRISTCGGLITVKEAVVFSKKKKKGAPT TVAEHRRSILTVDSGDIRQAARLLLP/GPEH CTSSTRRIDARAATEKRYDQLGFFMLNCG RTDLINQAIEALGPDGVNTMDDQGMTPLIN YACAAGDEAMVQMLIDAGANLDIQVPSNS PRIPSHIPDSRHWTSLTTAVLHGHISVVQL LLDAGATVGGSAVNGGEDSYAETPLQLAS AGNYELVSLLLSRGAPPLLSMLEAHGMG SSLHEDMNCFSHSAAHGRGIWGLVTLCP LACLEEEDHETTSPRVPQSPSGQEGTGGQ LRIVLKRILTQPQQAKADVLSLEBLLAEGV EESDASSQGSGEGPVRLSRTRTKALQEAM YYSAEHGYVDITMERAGJVWKLHWIE SLRTSFSQSRYSVVQSLLRDFSSIREEEYNE ELVTEGLQLMFDILKTSKNDSVIQQLATITI HCYGSSSPPSPEREKTLPARLDPHFLNNKE MSDVTFLVEGKLFYAHKVLLVTASNRFKT HCYGSSSPSPSPEREKTLPARLDPHFLNNKE MSDVTFLVEGKLFYAHKVLLVTASNRFKT HCYGSSSPSPSPEREKTLPARLDPHFLNNKE MSDVTFLVEGKLFYAHKVLLVTASNRFKT HCYGSSSPSPSPEREKTLPARLDPHFLNNKE MSDVTFLVEGKLFYAHKVLLVTASNRFKT HCYGSSSPSPSPEREKTLPARLDPHFLNNKE MSDVTFLVEGKLFYAHKVLLVTASNRFKT HCYGSSSPSPSPEREFTLPARLDPHFLNNKE MSDVTFLVEGKLFYAHKVLLVTASNRFKT HCYGSSSPSPSPEREFTLPARLDPHFLNNKE MSDVTFLVEGKLFYAHKVLLVTASNRFKT HCYGSSSPSPSPEREFTLPARLDPHFLNNKE MSDVTFLVEGKLFYAHKVLLVTASNRFKT HCYGSSSPSPSPEREFTLPARLDPHFLNNKE MSDVTFLVEGKLFYAHKVLLVTASNRFKT HCYGSSSPSPSPEREFTLPARLDPHFLNNKE MSDVFFLVEGKLFYAHKVLLVTASNRFKT HCYGSSSPSPSPEREFTLPARLDPHFLNNKE MSDVFFLVEGKLFYAHKVLLVTASNRFKT HCYGSSSPSPSPEREFTLPARLDPHFLNNKE MSDVFFLVEGKLFYAHKVLLVTASNRFKT HCYGSSSPSPSPEREFTLARLDPHFLNNKE MSDVFFLVEGKLFYAHKVLLVTASNRFKT HCYGSSSPSPSPEREFTLARLDPHFLNNKE MSDVFFLVEGKLFYAHKVLLVTASNRFKT HCYGSSSPSPSPSPEREFTLARLDPHFLNNKE MSDVFFLVEGKLFYAHKVLLVTASNRFKT HCYGSSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPS	1	Ì			FIOKI JARHKOEVRRI KSLHEAELLOSDER
RARQRFQQHLEQQQARQRAUSES ALTRALRAEFEKGREGERHQMELNTLK QQLELERQAWEAGRTEKEEAWLLINERGE LREERKGRDKEIEL VIHRLEAMALAKEE SEKAAESRIKRLRDKYEAELSELEGSERKL QERCSELKGQLGEAEGENLRLQGLVRQKE RALEDQAVNEQLSSERSHLAQVIRQEFED RLAASEBETRQAKAELATLQARQUELEE VHRRVKTALARKEEAVSSLRTQHKGSVK NGRQRTKAGRGPRGPQGRPPAPHRGWWL RCPRISTCGCLTVKEAVVFSKKKKKGAPP CFSSFRILDARAATEKPNQDLGFEMINCG RTDLINAGIGLAGARALLLP/GPEH CFSSFRIRLDARAATEKPNQDLGFFMINCG RTDLINQAIEALGPDGVNTMDDQGMTPLM YACAAGDEAMVQMLDAGANLDIQVPSNS PRHPSHPDSRHWTSLTFAVLHGHISVVQL LLDAGAHVEGSAVNGGEDSYAETPLQLAS AAGNYELVSLLSRGADPLLSMLEAHGMG SSLHEDMNCFSHSAAHGHRGIWGLVTLGP LCLEEDHETPSPRVPQSSPSGQEGTGGQ LRNVLRKLLTQPQAKADVISLEBILAEGV EESDASSQGSGSEGPVRLSRTRTKALQEAM YYSAEHGYVDITMELRALGYWKLHWIE SLRTSFSGRSSVVQSLLRDFSSIREETYNE ELVTEGLQLMFDLKTSKNDSVIQQLATIFT HCYGSSPPSIPEIRKTLPARLDPHFLNNKE MSDVTFLVBGKLFYAHKVLLVTASNFKT LIMTNKSEQDGDSSKTHEISDMYHIIGQMM MQYLYYGGTESMEPTTDILELSAASLFQ LDALQRHCEILCSQTLSMESAVNTYLASLFYAKI LIMTNKSEQDGDSSKTHEISDMYHIIGQMM MQYLYYGGTESMEPTTDILELLSAASLFQ LDALQRHCEILCSQTLSMESAVNTYLASLFYAKI LIMTNKSEQDGDSSKTHEISDMYHIIGQMM MQYLYYGGTESMEPTTDILELLSAASLFQ LDALQRHCEILCSQTLSMESAVNTYLASLFYAKI LIMTNKSEQDGDSSKTHEISDMYHIIGQMM MQYLYYGGTESMEPTTDILELLSAASLFQ LDALQRHCEILCSQTLSMESAVNTYLASLFYAKI LIMTNKSEQDGDSSKTHEISDMYHIIGQMM MQYLYYGGTESMEPTTDILELLSAASLFQ LDALQRHCEILCSQTLSMESAVNTYLASL STSPPGSAA 2858 A 1 571 FRPGRRAKRAMAVYVGMLRLGRLCAGSS GYLGARAALSRSWQCBARLQGVRRLSSREV DRMVSTPIGGLSVQGCTKKKHINSKTVGQ CLETTAQRVPEREALVVLHEDVRLTFAQL KEEVVKAASGLLSIGLCKGDRLGMWOPNS YAWVLMQLATAQAGIILVSVNPAYQAMBN YAWVLMQLATAQAGIILVSVNPAYQAMB LEYVLKKVGCKALVPPKQ					A SORCI ROAFFI REOLEREKEALGOOERE
AERRELIGQOAARQRAELEELRQQLEESSS ALTRALRAFFEKGREGERRHOMELNTIK, QQLELERQAWEAGRTRKEEAWLLNREQE LREERKGRDKEIELVIHRLEADMALAKEE SEKAASSRIKRLRAKY KEAELSE GSERKL QERCSELKGQLGEAEGENLRLQGLVRQKE RALEDAQAVNEQLSSERSNLAQVIRQEFED RLAASEBETRQAKAELATI-QARQQLELEE VHRRVKTALARKEEAVSSLRTQHKGSVVK RADHLEELLKQHRRPTPSTKCPGMPGTLFK NGRQRTKAGRGFRGPQGRPPAPHRGWWL RCPRLSTCGCLTVKEAAVFSKKKKKGAPF TILVAALGLDLGLPFMLLPPLMEWMRVAI TYAGHRRSLTVDSGDIRQAARLLLP/GPEH CFSSFRILDARAATEKFNQDLGFRMINCG RTDLINQAIEALGPDGVNTMDDQGMTPLM YACAAGDBEAMVQMLIDAGANLDLQVPSNS PRIPSIPDSRHWYSLTFAVLHGHISVVQL LLDAGAHVEGSAVNGGEDSYAETPLQLAS AAGNYELVSLLLSRGADPLLSMLEAHGMG SSLHEDMNCFSHSAAHGHRGUGLVTLCP LACLEEDHETPSPRVPQSSPSGOGTGGQ LRNVLRKLLTQPQQAKADVLSLEBILAEGV EESDASSQGSGSGFOFVRLSRTRTKTKALQEAM YYSABHGYVDITMELRALGVPWKLHIWIE SLRTSFSQSRYSVVQSLLRDFSSIREEYNE ELVTEGLQLMFDILKTSKNDSVIQQLATIFT HCYGSSPPSIPERKTLPAKLDPHFLNNKE MSDVTFLVEGKLFYAHKVLLYTASNRFKT LMTNKSEQDGDSSKTIEISDMKYHIFQMM MQYLYYGGTESMEPTTDILELLSAASLPQ LDALQRHCEIL CSQTLSMESAVNTYKYAKI HNAPELALFCEGFFLKHMKALLEQWPSGS SSTAAAACRAWHICRTCRTPWQSACTLS TSPPGSAA 1 571 FRPGRRAKRAMAVYVGMLRLGRLCAGSS GVLGARAALSRSWQGARLQGVRFLSSREV DRMVSTPIGGLSYVQGCTKKHINSKTVGQ CLETTAQRVPEREALVVLHEDVRLTFAQL KEEVVBKASGLLAURL LWEDDNICK FEEEV YAWVLMQLATAQAGIILVSVNPAYQAMB LEYVLKKVGCKALVPFKQ			,		PAROPEOOHI FOFOWALOOORORLYSEV
ALTRALRAEFEK GREEG GERRHOMELTILK QUELERQAWEAGRTRKEEA WILLNREGE LEBERKGROWER GREEK GREEK GUERGERK LOGERCSEK GREEK GREEK GEREK G		ŀ			A EERERI GOOA AROR A ELEELROOLEESSS
QQLELERQAWEAGRTRKEEAWILINREQE LREERKGRDKEIELVIHRLEADMALAKEE SEKAAESRIKRLRDKYFAELISELEQSERKL QERCSELKGQLGEAEGENLRLQGLVRQKE RALEDAQAVNEQLSSERSNLAQVIRQEFED RILAASEETRQAKAELATLQARQQLELEE VHRRVKTALARKEEAVSSLRTQHKGSVK RADHLEELLKQHRPPTPSTKCFGMPGTLFK NGRQRTKAGRGPRGPQGRPPAPHRGWWL RCPRISTCGCILTVKEAVVFSKKKKKGAPF MTASTRRYHTCATDGEPDSSVLVGGDGDL TILVAALGLDLGLPFMLLPPLMEWMRVAI TYAEHRRSI.TVDSGDIRQAARLLLF/GPEH CFSSFRRIDARAATEKRNQDLGFRMLNCG RTDLINQAIEALGPDGVNTMDDQGMTPLM YACAAGDEAMVQMLIDAGANLDIQVPSNS PRIPSSHPDSRHWTSLTFAVHGHISVVQL LLDAGAHVEGSAVNGGEDSVAETPLQLAS AAGNYELVSLLISRGADPLLSMLEAHGMG SSLHEDMNCFSHSAAHGHRGIWGLVTLGP LACLEEEDHETPSRVPQSSPSGQEGTGGQ LRNVLRKLLTQPQQAKADVLSLEEILAEGV EESDASSQGSGSEGPVRLSRTRTKALQEAM YYSAEHGYVDITMELRALGYPWKLHIWIE SLRTSFSQSRYSVVQSLLRDFSSREEEYNE ELVTEGLQLMFDILKTSKNDSVIQQLATIFT HCYGSSPPSPEIRKTLPAARLDPHFINNKE MSDVTFLVEGKLFYAHKVLLVTASNRFKT LMTNKSEQDGDSSKTIEISDMKYHIFQMM MQVLYYGGTESMEIPTDILELLSAASLFQ LDALQRHCEEILCSQTLSMESAVNTYKYVAKI HNAPELALFCEGFFLKHMKALLEQIMPSGS SSTAAAAKCRAWIHCRTCRTPWQSACTLS TSPPGSAA 1 571 FRPGRRAKRAMAVVVGMLRLGRLCAGSS GVLGARAALSRSWQEARLQGVRFLSSREV DRMYSTPIGGLSYVQGCTKKHLNSKTVGQ CLETTAQRVPEREALVVLHEDVRLTFAQL KEEVDKAASGLLSIGLCKGDRLGMWGPNS YAWVLMQLATAQAGIILVSVNPAYQAME LEYVLKKVGCKALVFFKQ					AT TRAIR AFFEK GREEOERRHOMELNTLK
LREERKGRDKEIELVHRLEADMALAKEE SEKAAESRIKRLRDKYFAELSELEQSERKL QERCSELKGQLGEAEGENLRLQGLVRQKE RALEDAQAVNEQLSSERSNLAQVIRQFEBD RILAASEETRQAKAELATLQARQQLELEE VHRRWKTALARKEEAVSSLRTQHKGSVK RADHLEELLKQHRPPTFSTKCFGMPGTLFK NGRQRTKAGRGPGGPQGRPPAPHRGWWL RCPRLSTCGCLITVKEAVVFSKKKKGAPF MTASIRRYHTCATDGEPDSSVLVGGDGDL TLLVAALGLDLGLPFMLLPPLMEWMRVAI TYAEHRRSLTVDSGDIRQAARLLLP/GPEH CFSSFRRLDARAATEKNQDLGFFMLNCG RTDLINQAIEALGPDGWNTMDDGGMTPLM YACAAGDEAMVQMLIDAGANLDIQVPSNS PRIPSHIPDSRHWTSLTFAVLHGHISVVQL LLDAGAHVEGSAVNGGEDSVAETPLQLAS AAGNYELVSLLLSRGADPLLSMLEAHGMG SSLHEDMNCFSHSAAHGHRGIWGLVTLCP LACLEEEDHETPSPRVPQSSPSGGETGGQ LRNVLRKLLTQPQQAKADVLSLEEILAEGV EESDASSQGSGEGPVRLSRTRTKALQEAM YYSAEHGYVDITMELRALGVPWKLHIWE SLRTSFSQSRYSVVQSLLRDFSSIREEEYNE ELVTEGLQLMFDILKTSKNDSVIQQLATIFT HCYGSSPPSIPEIRKTLPARLDPHFLNIKE MSDVTFLVEGKLFYAHKVLLVTASNRFKT LMTNKSEQDGDSSKTIEISDMKYHHFQMM MQYLYYGGTESMEIPTDILELLSAASLFQ LDALQRHCEILCSQTLSMESAVNTYKYAKI HNAPELALFCEGFFLKHMKALLEQMPSGS SSTAAAAKCRAWIHCRTCRTPWQSACTLS TSPPGSAA A 1 571 FRPGRRAKRAMAVYVGMLLGGRICGGSS GVLGARAALSRSWQEARLQGVRFLSSREV DRMVSTPIGGLSYVQGCTKKHLNSKTVQQ CLETTAQRVPEREALVVLHEDVRLTFAQL KEEVDKAASGLLSIGLCKGDRLGMWGPNS YAWVLMQLATAQAGIILLVSNPRAYQAME LEYVLKKVGCKALVFPKQ				Ì	OOI ELEROAWEAGRTRKEEAWLLNREOE
SEKAAESRIKRLRDKYTAELISELEGERKL QERCSELKQQLGEAEGENLRLQGLVRQKE RALEDAQAVNEQLSSERSNLAQVIRQEFED RLAASEETRQAKABLATLQARQQLELEE VHRRVKTALARKEEAVSSLRTQHKGSVK RADHLEELLKQHRRPTPSTKCPGMPGTLFK NGRQRTKAGRGPRGPQGRPPAPHRGWWL RCPRLSTCGCILTVKEAVVFKKKKKGAFF 2857 A 1 2064 MTASIRRYHTCATDGEPDSSVLVGGDGDL TLLVAALGLDLGLPFMLLPPLMEWMRVAI TYAEHRRSLTVDSGDIRQARLLLP/GPEH CFSSFRULDARAATEKFNQDLGFRMLNCG RTDLINQAIEALGPDGVNTMDDQGMTPLM YACAAGDEAMVQMLDAGANLDIQVPSNS PRHPSHPDSRHWTSLTFAVLHGHISVVQL LLDAGAHVEGSAVNGGEDSVAETIQLAS AAGNYELVSLLSRGADPLLSMLEAHGMG SSLHEDMNCFSHSAAHGHRGIWGLVTLGP LACLEEEDHETPSPRVPQSSPSGGEGTGGQ LRNVLRKLLTQPQQAKADVISLEBILAEGV EESDASSQGSGSEGPVRLSRTRTKALQEAM YYSAEHGYVDITMERALGVPWKLHTWIE SLRTSFSQSRYSVVQSLLRDFSSIREEEYNE ELVTEGLQLMFDILKTSKNDSVIQQLATIFT HCYGSSPPSTPBIRKTLPARLDFPHFLNNEE MSDVTFLVEGKLFYAHKVLLVTASNRFKT LMTNKSEQDGDSSKTIEISDMKYHIFQMM MQVLYYGGTESMETPTDILELLSAASLFQ LDALQRHCEILCSQTLSMESAVNTYKY AKI HNAPELALFCEGFFLKHMKALLEQNMPSGS SSTAAAAKCRAWHCRTCRTPWQSACTLS TSPPGSAA 2858 A 1 571 FRPGRRAKRAMAVYVGMLRLGRLCAGSS GVLGARAALSRSWQEARLQGVRFLSSREV DRMVSTPIGGLSYVQGCTKKHLNSKTVGQ CLETTAQRVPEREALVVLHEDVRLTFAQL KEEVDKAASGLLSIGLCKGDRLGMWGPNS YAWVLMQLATAQAGIILVSVNPAYQAME LEYVLKKVGCKALVFFKQ		Ī			I DEEDER GROKEIEL VIHRLEADMALAKEE
QERCSELKGQLGEAEGGNIRLQGLYRQEFED RYLAASEESTRQAKAELATLQARQQLELEE VHRRYKTALARKEAVSSLRTQHKGSVK RADHLEELLKQHRRPTPSTKCPGMPGTLFK NGRQRTKAGRGPRGPQGRPAPHRGWWL RCPRLSTCGCILTVKEAVVFSKKKKGAFF ROPELSTCGCILTVKEAVVFSKKKKKGAFF ROPELSTCGCILTVKEAVVFSKKKKKGAFF ROPELSTCGCILTVKAAATEKGAFT ROPELSTCGCILTVKAAVFSKKKKKKGAFF ROPELSTCGCILTVKAAVFSKKKKKKGAFF ROPELSTCGCILTVKAATTEKGAATEKGAFT ROPELSTCGCILTVKAAVFSKKKKKKGAFF ROPELSTCGCILTVKAATTEKGAATEKGAFT ROPELSTCGCILTVKAATTEKGAATEKGATTATTEKGAATTEKGAATTEKGAATEKGATTATTEKGAATTE		1		1	SEK A A ESRIKRI ROK VEA EL SEL EOSERKL
RALEDAQAVNEQLSERSNIAQVIRQEFED R\Laaseetrqakaelatlqarqqlelee R\Laaseetrqakaelatlqarqqlelee R\Laaseetrqakaelatlqarqqlelee H\text{Radhleellkqhrrptpstkcpgmptlkk} Radhleellkqhrrptpstkcpgmptlkk Radhleellkqhrrptpstkcpgmptlkk Radhleellkqhrrptpstkcpgmptlkplrg R\text{Radhleellkqhrrptpstkcpgmptlkpl} RCPRIstcgciltvkeavvfskkkkkgaff RCPRIstcgciltvkeavvfskkkkgaff RTLIvaalgdlglepmillpplkmmkval Tyaehrrsltvdsgddraatllp/gpeh CFSsfrildaraatekpnqdlgrrmlncg RTDLInqaealgpdgvntmddqgmtplm Yacaagdeamvqmlddagnidlqysns RHPSHPdsrhtvslttavleighisvvql Lldagaendqurdlagaavlgebyaetplqlas Aagnyelvslllsrgaddpllsmleahgmg SSIHedmncrshsaahehrgiwglvtlge Lacleedhetpsprvpqsspsgoegfggq Lrnvlrklltqpqqakadvvlsleeilaegv EESDASsqosgssegpvlsrtrkalqeam YYSAEHgyvditmelralgvpwklhiwie Slrtsfsqsrysvvqsllrdfssireetyne ELVTEGlqlmfdlktskndsvyqglatift HCYGSSPPSIPEIRktlparldphflnnke MSDVTFLVegklfyahkvllvtasnrfkt Lmtnkseqdgdssktieisdmkyhifqmm Mqvlyyggfesmepttdlelsaaslfq Ldalqrfeeilcsqtlsmsavntykyaki Hnapelalfcegfflkhmkalleqmpsg SSTAAAAkcrawhicrtcrtpwqsactls TSPPGSAA 1 571 FRPGRakramavyvGmlrlgrlcagse GVLGaraalsrswqearlqgrfflsrsrev DRMvstpigglsyvqgctkkhlnsktvGq CLETTAQRvprrealvvlhedvrltfacl KEEVDkaasgllsiglckgdrigmyGpns Yawvlmqlataqagillvsvnpayqame LEYVlkkvGckalvppkq	[OERCSELKGOLGEAEGENLRLOGLVROKE
RILAASEETRQAKAELATILQARQQLELEE VHRRVKTALARKEEAVSSLTTQHKGS\VK RADHLEELLKQHRRPTPSTKCPGMPGTLFK NGRQRTKAGRGPRGPQGRPPAPHRGWWL RCPRLSTGGCILTVKEAVVFSKKKKGAPF MTASIRRYHTCATDGEPDSSVLVGGDGDL TILVAALGLDLGLPFMLLPPLMEWMRVAI TYAEHRRSLTVDSGDIRQAARLLP/GPFH CFSFRWLDARAATEKPNQDLGFRMLNGG RTDLINQAIEALGPDGVNTMDDQGMTPLM YACAAGDEAMVQMLIDAGANLDIQVPSNS PRHPSHPPDSRPHVSILTTAVLHGHISVVQL LLDAGAHVEGSAVNGGEDSYAETPLQLAS AAGNYELVSLLLSRGADPLLSMLEAHGMG SSLHEDMNCFSHSAAHGHRGIWGLVTLGP LACLEEEDHETPSPRVPQSSPSGQEGTGGQ LRNVLRKLLTQPQQAKADVLSLEEILAEGV EESDASSQGSGEGPVRLSRTRTKALQEAM YYSAEHGYVDITMELRALGVPWKLHIWIE SLRTSFSQSRYSVVQSLLRDFSSIREEEYNE ELVTEGLQLMFDILKTSKNDSVIQQLATIFT HCYGSSPPSIPEIRKTLPARLDPHTLNNKE MSDVTFLVEGKLFYAHKVLLVTASNRFKT LIMTNKSEQDGDSSKTIEISNDSVIQQLATIFT HCYGSSPPSIPEIRKTLPARLDPHTLNNKE MSDVTFLVEGKLFYAHKVLLVTASNRFKT LIMTNKSEQDGDSSKTIEISDSKYHIEQMM MQVLYYGGTESMEIPTTDILELLSAASLFQ LDALQRHCEILCSQTLSMESAVNTYKYYAKI HNAPELALFCEGFFLKHMKALLEQNMPSG SSTAAAAKCRAWHCRTCRTPWQSACTLS TSPPGSAA A 1 571 FRPGRRAKRAMAVYVGMILLGRLCAGSS GVLGARAALSRSWQEARLQGVRFLSSREV DRNYSTPIGGLSYVQGCTKKHLNSKTVGQ CLETTAQRVPBREALVVLHEDVRLTFAQL KEEVDKAASGLLSIGLCKGDRLGMWGPNS YAWVLMQLATAQAGILVSVNPAYQAME LEYVLKKVGCKALVPPKQ		!		1	RAI FDAOAVNEOLSSERSNLAOVIROEFED
VHRRVKTALARKEEAVSSLTTQHKGS\WK RADHLEELLKQHRRPTPSTKCPGMPGTLFK NGRQRTKAGGRGPRGPQGRPPAPHRGWWL RCPRLSTCGCILTVKEAVVFSKKKKKGAFF 2857 A 1 2064 MTASIRRYHTCATDGEPDSSVLVGGDGDL TILLVAALGLDGLFFMLLPPLMEWMRVAI TYAEHRRSLTVDSGDIRQAARLLLP/GPEH CFSSFRIRLDARAATEKFNQDLGFRMINCG RTDLINQAIEALGPDGVNTMDDQGMTPLM YACAAGDEAMVQMLIDAGANLDIQVPSNS PRHPSHPDSRHWTSLTFAVLHGHISVVQL LLDAGAHVEGSAVNGGESVAETPLQLAS AAGNYELVSLLISRGADPLLSMLEAHGMG SSLHEDMNCFSHSAAHGHRGIWGLVTLGP LACLEEEDHETTSPRVPQSSFSQCGTGGQ LRNVLRKLLTQPQQAKADVLSLEEILAEGW YYSAEHGYVDITMELRALGVPWKLHIWIE SLRTSFSQSRYSVVQSLLRDFSSIREEEYNE ELVTEGLQLMFDILKTSKNDSVIQQLATIFT HCYGSSPIPSIPEIRKTLPARLDPHFLINNKE MSDVTFLVEGKLFYAHKVLLVTASNRFKT LMTNKSEQDGDSSKTIEISDMKYHIFQMM MQYLYYGGTESMEIPTTDILELLSAASLFQ LDALQRHCEILCSQTLSMESAVNTYKYAKI HNAPELALFCEGFFLKHMKALLEQMPSGS SSTAAAACRAWHCRTCRTPWQSACTLS TSPPGSAA 2858 A 1 571 FRPGRRAKRAMAVYVGMLRLGRLCAGSS GVLGARAALSRSWQEARLQGVFFLSSREV DRMVSTPIGGLSYVQGCTKKHLNSKTVGQ CLETTAQRVPEREALVVLHEDVRLITFAQL KEEVDKAASGLLSIGLCKGGDRLGMWGPNS YAWVLMQLATAQAGIILVSVNPAYQAME LEYYLKKVGCKALVFPKQ	1				RVI AASEEFTROAKAFLATLOAROOLELEE
RADHLEELLKQHRRPTPSTKCPGMPGTLFK NGRQRTKAGRGPRGPQGRPPAPHRGWWL RCPRLSTCGCLTLYKEAVVFSKKKKGAPF 2857 A 1 2064 MTASIRRYHTCATDGEPDSSVLVGGDGDL TILLVAALGLDLGLPFMLLPPLMEWMRVAI TYAEHRRSLTVDSGDIRQAARLLLP/GPEH CFSSFRIRLDARAATEKFNQDLGFRMLNCG RTDLINQAIEALGPDGVNTMDDQGMTPLM YACAAGDEAMVQMLIDAGANLDIQVPSNS PRHPSIHPDSRHWTSLTFAVLHGHISVVQL LLDAGAHVEGSAVNGGEDSYAETPLQLAS AAGNYELVSLLLSRGADPLLSMLEAHGMG SSLHEDMNCFSHSAAHGHRGIWGLVTLGP LACLEEEDHETTSPRVPQSSPSGQEGTGGQ LRNVLRKLLTQPQQAKADVLSLEBILAEGV EESDASSQGSGSEGPVRLSRTRTKALQEAM YYSAEHGYVDITMELRALGVPWKLHIWIE SLRTSFSQSRYSVVQSLLRDFSSIREEEYNE ELVTEGLQLMFDILKTSKNDSVIQQLATIFT HCYGSSPPSIBEIRKTLPARLDPHFLNNKE MSDVTFLVEGKLFYAHKVILVTASNRFKT LMTNKSEQDGDSSKTIEISDMKYHIFQMM MQYLYYGGTESMEIPTTDILELLSAASLFQ LDALQRHCEILCSQTLSMSAVNTYKYAKI HNAPELALFCEGFFLKHMKALLEQMPSGS SSTAAAAKCRAWIHCRTCRTPWQSACTLS TSPPGSAA 1 571 FRPGRRAKRAMAVYVGMLRLGRLCAGSS GVLGARAALSRSWQEARLQGVRFLSSREV DRMVSTPIGGLSYVQGCTKKHLNSKTVGQ CLETTAQRVPEREALVVLHEDVRLTFAQL KEEVDKAASGLLSIGLCKGDRLGMWGPNS YAWVLMQLATAQAGIILVSVNPAYQAME LEYYLKKVGCKALVFPRQ		6			VHRRVKTALARKEEAVSSLRTOHKGS\VK
NGRQRTKAGRGPGGGRPAPHRGWWL RCPRLSTCGCILTVKEAVVFSKKKKGAPF 2857 A 1 2064 MTASIRRYHTCATDGEPDSSVLVGGDGDL TLLVAALGLDLGLPFMLLPPLMEWMRVAI TYAEHRRSLTVDSGDIRQAARLLLP/GPEH CFSSFRIRLDARAATEKFNQDLGFRMLNCG RTDLINQAIEALGPDGVNTMDDQGMTPLM YACAAGDEAMVQMLIDAGANLDIQVPSNS PRHPSIHPDSRHWTSLTFAVLHGHISVVQL LLDAGAHVEGSAVNGGEDSYAETPLQLAS AAGNYELVSLLLSRGADPLLSMLEAHGMG SSLHEDMNCFSHSAAHGHRGIWGLVTLGP LACLEEDHETPSPRVPQSSPSGGEGTGGQ LRNVLRKLLTQPQQAKADVLSLEEILAEGV EESDASSQGSGEGPVRLSRTRTKALQEAM YYSAEHGYVOTIMELRALGVPWKLHIWIE SLRTSFSQSRYSVVQSLLRDFSSIREEEYNE ELVTEGLQLMFDILKTSKNDSVIQQLATIFT HCYGSSPPSIPEIRKTLPARLDPHFLNNKE MSDVTFLVEGKLFYAHKVLLVTASNRFKT LMTNKSEQDGDSSKTIEISDMKYHIFQMM MQYLYYGGTESMEIPTTDILELLSAASLFQ LDALQRHCEILCSQTLSMSAVNTYKYAKI HNAPELALFCEGFFLKHMKALLEQMPSGS SSTAAAAKCRAWIHCRTCRTPWQSACTLS TSPPGSAA 1 571 FRPGRRAKRAMAVYVGMLRLGRLCAGSS GYLGARAALSRSWQEARLQGVRFLSSREV DRMVSTPIGGLSYVQGCTKKHLNSKTVGQ CLETTAQRVPEREALVVLHEDVRLTFAQL KEEVDKAASGLLSIGLCKGGRLGMWGPNS YAWVLMQLATAQAGIILVSVNPAYQAME LEYYLKKVGCKALVFPRQ				1	PADHLEELLKOHRRPTPSTKCPGMPGTLFK
RCPRLSTCGCILTVKEAVVFSKKKKKGAPF 2857 A 1 2064 MTASIRRYHTCATDGBPDSSVLVGGDGDL TILVAALGI.DLGLPFMLLPPLMEWMRVAI TYAEHRRSLTVDSGDIRQAARLLLP/GPEH CFSSFRILDARAATEKFNQDLGFRMI.NCG RTDLINQAIEALGPDGVNTMDDQGMTPLM YACAAGDEAMVQMLIDAGANLDIQVPSNS PRHPSIHPDSRHWTSLTFAVLHGHISVVQL LLDAGAHVEGSAVNGGEDSYAETPLQLAS AAGNYELVSLLLSRGADPLLSMLEAHGMG SSLHEDMNCFSHSAAHGHRGIWGLVTLGP LACLEEEDHETPSPRVPQSSPSGQEGTGGQ LRNVLRKLLTQPQQAKAAVUSLEEILAEGV EESDASSQGSGSEGPVRLSRTRTKALQEAM YYSAEHGYVDITMELRALGVPWKLHTWIE SLRTSFSQSRYSVVQSLLRDFSSIREEEYNE ELVTEGLQLMFDILKTSKNDSVIQQLATIFT HCYGSSPIPSIPEIRKTLPARLDPHFLNNKE MSDVTFLVEGKLFYAHKVLLVTASNRFKT LMTNKSEQDGDSSKTIEISDMKYHIFQMM MQYLYYGGTESMEIPTTDILELLSAASLFQ LDALQRHCEILCSQTLSMESAVNTYKYAKI HNAPELALFCEGFFLKHMKALLEQMPSGS SSTAAAAKCRAWIHCRTCRTPWQSACTLS TSPPGSAA 1 571 FRFGRRAKRAMAVYVGMLRLGRLCAGSS GVLGARAALSRSWQEARLQGVRFLSSREV DRMVSTPIGGLSYVQGCTKKHLINSKTVGQ CLETTAQRVPEREALVVLHEDVRLTFAQL KEEVDKAASGLLSIGLCKGDRLGMWGPNS YAWVLMQLATAQAGIILVSVNPAYQAME LEYVLKKVGCKALVPFKQ					NGRORTKAGRGPRGPOGRPPAPHRGWWL
2857 A 1 2064 MTASIRRYHTCATDGEPDSSVLVGGDGDL TILVAALGI.DIGLPFMILIPPLMEWMRVAI TYAEHRRSLTVDSGDIRQAARLLLP/GPEH CFSSFRIKLDARAATEKFNQDLGFRMLNCG RTDLINQAIEALGPDGVNTMDDQGMTPLM YACAAGDEAMVQMILIDAGANLDIQVPSNS PRHPSIHPDSRHWTSLTFAVLHGHISVVQL LLDAGAHVEGSAVNGGEDSYAETPLQLAS AAGNYELVSLLLSRGADPLLSMLEAHGMG SSLHEDMNCFSHSAAHGHRGIWGLVTLGP LACLEEEDHETPSPRVPQSSPSGQEGTGGQ LRNVLRKLLTQPQQAKADVLSLEBILAEGV EESDASSQGSGSEGPVRLSRTRTKALQEAM YYSAEHGYVDITMEIRALGVPWKLHIWIE SLRTSFSQSRYSVVQSLLRDFSSIREEEYNE ELVTEGLQLMFDILKTSKNDSVIQQLATIFT HCYGSSPPSIPEIRKTLPARLDPHFLNNKE MSDVTFLVEGKLFYAHKVLLVTASNRFKT LMTIKSEQDGDSSKTIEISDMKYHIFQMM MQVLYYGGTESMEPTTDILELLSAASLFQ LDALQRHCEILCSQTLSMESAVNTYKYAKI HNAPELALFCEGFFLKHMKALLEQMPSGS SSTAAAAKCRAWIHCRTCRTPWQSACTLS TSPPGSAA 1 571 FRFGRRAKRAMAVYVGMLRIGRLCAGSS GVLGARAALSRSWQEARLQGVRFLSSREV DRMVSTPIGGLSYVQGCTKKHLNSKTVGQ CLETTAQRVPEREALVVLHEDVGLYESEEV LYVLKKVGCKALVPFKQ					RCPRISTCGCILTVKEAVVFSKKKKKGAPF
TILVAALGIDLGLPFMLLPPLMEWMRVAI TYAEHRRSITYDSGDIRQAARILLP/GPEH CFSSFR\RLDARAATEKFNQDLGFRMI.NCG RTDLINQAEALGPDGVNTMDDQGMTPLM YACAAGDEAMVQMLIDAGANLDIQVPSNS PRHPSHPDSRHWTSLTFAVLHGHISVVQL LLDAGAHVEGSAVNGGEDSYAETPLQLAS AAGNYELVSLLISRGADPLLSMLEAHGMG SSLHEDMNCFSHSAAHGHRGIWGLVTLGP LACLEEDHETPSPRVYQSSPSGGGTGGQ LRNVLRKLLTQPQQAKADVLSLEBILAEGV EESDASSQGSGSGPVRLSRTRTKALQEAM YYSAEHGYVDITMELRALGVPWKLHIWIE SLRTSFSQSRYSVVQSLLRDFSSIREEEYNE ELVTEGLQLMFDILKTSKNDSVIQQLATIFT HCYGSSPPSIPEIRKTLPARLDPHFLNNKE MSDVTFLVEGKLFYAHKVLLVTASNRFKT LMTNKSEQDGDSSKTIEISDMKYHIFQMM MQYLYYGGTESMEIPTDILELLSAASLFQ LDALQRHCEILCSQTLSMESAVNTYKYAKI HNAPELALFCEGFFLKHMKALLEQMPSGS SSTAAAAKCRAWIHCRTCRTPWQSACTLS TSPPGSAA 1 571 FRPGRRAKRAMAVYVGMLRLGRLCAGSS GVLGARAALSRSWQEARLQGVRFLSSREV DRMVSTPIGGLSVYQGCTKKHLNSKTVGQ CLETTAQRVPEREALVVLHEDVRLTFAQL KEEVDKAASGLLSIGLCKGDRLGMWGPNS YAWVLMQLATAQAGIILVSVNPAYQAME LEYVLKKVGCKALVPFKQ	0057		1,	2064	MTASIRRYHTCATDGEPDSSVLVGGDGDL
TYAEHRRSLTVDSGDIRQAARLLLP/GPEH CFSSFR/RLDARAATEKPRQDLGFFRMLNCG RTDLINQAIEALGPDGVNTMDDQGMTPLM YACAAGDEAMVQMLIDAGANLDIQVPSNS PRHPSIHPDSRHWTSLTFAVLHGHISVVQL LLDAGAHVEGSAVNGGEDSYAETPLQLAS AAGNYELVSLLLSRGADPLLSMLEAHGMG SSLHEDMNCFSHSAAHGHRGIWGLVTLGP LACLEEEDHETPSPRVPQSSPSGQEGTGGQ LRNVLRKLLTQPQQAKADVLSLEBILAEGV EESDASSQGSGSEGPVRLSRTRTKALQEAM YYSAEHGYVDITMELRALGVPWKLHIWIE SILRTSFSQSRYSVVQSLLRDFSSIREEEYNE ELVTEGLQLMFDILKTSKNDSVIQQLATIFT HCYGSSPIPSIPEIRKTLPARLDPHFLNNKE MSDVTFLVEGKLFYAHKVLLVTASNRFKT LMTNKSEQDGDSSKTIEISDMKYHIFQMM MQYLYYGGTESMEIPTTDILELLSAASLFQ LDALQRHCEILCSQTLSMESAVNTYKYAKI HNAPELALFCEGFFLKHMKALLEQMPSGS SSTAAAAKCRAWIHCRTCRTPWQSACTLS TSPPGSAA 1 571 FRPGRRAKRAMAVYVGMLRLGRLCAGSS GVLGARAALSRSWQEARLQGVRFLSSREV DRMVSTPIGGLSYVQGCTKKHLNSKTVGQ CLETTAQRVPEREALVVLHEDVRLTFAQL KEEVDKAASGLLSIGLCKGDRLGMWGPNS YAWVLMQLATAQAGIILVSVNPAYQAME LEYVLKKVGCKALVPFKQ	2857	A	1	2004	TLLVAALGLDLGLPFMLLPPLMEWMRVAI
CFSSFR/RLDARAATEKFNQDLGFRMLNCG RTDLINQAIEALGPDGVNTMDDQGMTPLM YACAAGBEAMVQMLIDAGANLDIQVPSNS PRHPSIHPDSRHWTSLTFAVLHGHISVVQL LLDAGAHVEGSAVNGGEDSYAETPLQLAS AAGNYELVSLLLSRGADPLLSMLEAHGMG SSLHEDMNCFSHSAAHGHRGIWGLVTLGP LACLEEEDHETPSPRVPQSSPSGQEGTGGQ LRNVLRKLLTQPQQAKADVLSLEEILAEGV EESDASSQGSGSEGPVRLSRTRTKALQEAM YYSAEHGYVDITMELRALGVPWKLHIWIE SLRTSFSQSRYSVVQSLLRDFSSIREEEYNE ELVTEGLQLMFDILKTSKNDSVIQQLATIFT HCYGSSPPSIPEIRKTLPARLDPHFLNNKE MSDVTFLVEGKLFYAHKVLLVTASNRFKT LMTNKSEQDGDSSKTIEISDMKYHIFQMM MQYLYYGGTESMEIPTTDILELLSAASLFQ LDALQRHCEILCSQTLSMESAVNTYKYAKI HNAPELALFCEGFFLKHMKALLEQMPSGS SSTAAAAKCRAWIHCRTCRTPWQSACTLS TSPPGSAA 1 571 FRPGRRAKRAMAVYVGMLRLGRLCAGSS GVLGARAALSRSWQEARLQGVRFLSSREV DRMVSTPIGGLSYVQGCTKKHLNSKTVGQ CLETTAQRVPEREALVVLHEDVRLTFAQL KEEVDKAASGLLSIGLCKGDRLGMWGPNS YAWVLMQLATAQAGIILVSVNPAYQAME LEYVLKKVGCKALVFFKQ					TYAEHRRSLTVDSGDIRQAARLLLP/GPEH
RTDLINQAIEALGPDGVNTMDDQGMTPLM YACAAGDEAMVQMLIDAGANLDIQVPSNS PRHPSIHPDSRHWTSLTFAVLHGHISVVQL LLDAGAHVEGSAVNGGEDSYAETPLQLAS AAGNYELVSLLLSRGADPLLSMLEAHGMG SSLHEDMNCFSHSAAHGHRGIWGLVTLGP LACLEEEDHETPSPRVPQSSPSGQEGTGGQ LRNVLRKLLTQPQQAKADVLSLEBILAEGV EESDASSQGSGEGPVRLSRTRTKALQEAM YYSAEHGYVDITMELRALGVPWKLHIWIE SLRTSFSQSRYSVVQSLLRDFSSIREEEYNE ELVTEGLQLMFDILKTSKNDSVIQQLATIFT HCYGSSPIPSIPEIRKTLPARLDPHFLNNKE MSDVTFLVEGKLFYAHKVLLVTASNRFKT LMTNKSEQDGDSSKTIEISDMKYHIFQMM MQYLYYGGTESMEIPTTDILELLSAASLFQ LDALQRHCEILCSQTLSMESAVNTYKYAKI HNAPELALFCEGFFLKHMKALLEQMPSGS SSTAAAAKCRAWIHCRTCRTPWQSACTLS TSPPGSAA 2858 A 1 571 FRPGRRAKRAMAVYVGMLRLGRLCAGSS GVLGARAALSRSWQEARLQGVFFLSSREV DRMVSTPIGGLSYVQGCTKKHLNSKTVGQ CLETTAQRVPEREALVVLHEDVRLTFAQL KEEVDKAASGLLSIGLCKGDRLGMWGPNS YAWVLMQLATAQAGIILVSVNPAYQAME LEYVLKKVGCKALVFFKQ	1		ļ		CFSSFR\RLDARAATEKFNQDLGFRMLNCG
YACAAGDEAMVQMLIDAGANLDIQVPSNS PRHPSIHPDSRHWTSLTFAVLHGHISVVQL LLDAGAHVEGSAVNGGEDSYAETPLQLAS AAGNYELVSLLLSRGADPLLSMLEAHGMG SSLHEDMNCFSHSAAHGHRGIWGLVTLGP LACLEEEDHETPSPRVPQSSPSGQEGTGGQ LRNVLRKLLTQPQQAKADVLSLEEILAEGV EESDASSQGSGSEGPVRLSRTRTKALQEAM YYSAEHGYVDITMELRALGVPWKLHIWIE SLRTSFSQSRYSVVQSLLRDFSSIREEEYNE ELVTEGLQLMFDILKTSKNDSVIQQLATIFT HCYGSSPPSIPEIRKTLPARLDPHFLNNKE MSDVTFLVEGKLFYAHKVLLVTASNRFKT LMTNKSEQDGDSSKTIEISDMKYHIFQMM MQYLYYGGTESMEPTTDILELLSAASLFQ LDALQRHCEILCSQTLSMESAVNTYKYAKI HNAPELALFCEGFFLKHMKALLEQ\MPSGS SSTAAAAKCRAWIHCRTCRTPWQSACTLS TSPPGSAA 2858 A 1 571 FRPGRRAKRAMAVYVGMLRLGRLCAGSS GVLGARAALSRSWQEARLQGVRFLSSREV DRMVSTPIGGLSYVQGCTKKHLNSKTVGQ CLETTAQRVPEREALVVLHEDVRLTFAQL KEEVDKAASGLLSIGLCKGDRLGMWGPNS YAWVLMQLATAQAGIILVSVNPAYQAME LEYVLKKVGCKALVFPKQ	İ	1		ļ	RTDLINOAIEALGPDGVNTMDDQGMTPLM
PRHPSIHPDSRHWTSLTFAVLHGHISVVQL LLDAGAHVEGSAVNGGEDSYAETPLQLAS AAGNYELVSLLSRGADPLLSMLEAHGMG SSLHEDMNCFSHSAAHGHRGIWGLVTLGP LACLEEBDHETPSPRVPQSSPSGQEGTGGQ LRNVLRKLLTQPQQAKADVLSLEEILAEGV EESDASSQGSGSEGPVRLSRTRTKALQEAM YYSAEHGYVDITMELRALGVPWKLHIWIE SLRTSFSQSRYSVVQSLLRDFSSIREEFYNE ELVTEGLQLMFDILKTSKNDSVIQQLATIFT HCYGSSPPSIPEIRKTLPARLDPHFLNNKE MSDVTFLVEGKLFYAHKVLLVTASNRFKT LMTNKSEQDGDSSKTIEISDMKYHHFQMM MQYLYYGGTESMEIPTTDILELLSAASLFQ LDALQRHCEILCSQTLSMESAVNTYKYAKI HNAPELALFCEGFFLKHMKALLEQIMPSGS SSTAAAAKCRAWIHCRTCRTPWQSACTLS TSPPGSAA 2858 A 1 571 FRPGRRAKRAMAVYVGMLRLGRLCAGSS GVLGARAALSRSWQEARLQGVRFLSSREV DRMVSTPIGGLSYVQGCTKKHLNSKTVGQ CLETTAQRVPERFALVVLHEDVRLTFAQL KEEVDKAASGLLSIGLCKGDRLGMWGPNS YAWVLMQLATAQAGIILVSVNPAYQAME LEYVLKKVGCKALVFPKQ					YACAAGDEAMVQMLIDAGANLDIQVPSNS
LLDAGAHVEGSAVNGGEDSYAETPLQLAS AAGNYELVSLLLSRGADPLLSMLEAHGMG SSLHEDMNCFSHSAAHGHRGIWGLVTLGP LACLEEDHETPSPRVPQSSPSGQEGTGGQ LRNVLRKLLTQPQAKADVLSLEEILAEGV EESDASSQGSGEGFVRLSRTRTKALQEAM YYSAEHGYVDITMELRALGVPWKLHIWIE SLRTSFSQSRYSVVQSLLRDFSSIREEEYNE ELVTEGLQLMFDILKTSKNDSVIQQLATIFT HCYGSSPIPSIPEIRKTLPARLDPHFLNNKE MSDVTFLVEGKLFYAHKVLLVTASNRFKT LMTNKSEQDGDSSKTIEISDMKYHIFQMM MQYLYYGGTESMEIPTTDILELLSAASLFQ LDALQRHCEILCSQTLSMESAVNTYKYAKI HNAPELALFCEGFFLKHMKALLEQMPSGS SSTAAAAKCRAWIHCRTCRTPWQSACTLS TSPPGSAA 1 571 FRPGRRAKRAMAVYVGMLRLGRLCAGSS GVLGARAALSRSWQEARLQGVRFLSSREV DRMVSTPIGGLSYVQGCTKKHLNSKTVGQ CLETTAQRVPEREALVVLHEDVRLTFAQL KEEVDKAASGLLSIGLCKGDRLGMWGPNS YAWVLMQLATAQAGIILVSVNPAYQAME LEYYLKKVGCKALVFRQ			1		PRHPSIHPDSRHWTSLTFAVLHGHISVVQL
SSLHEDMNCFSHSAAHGHRGIWGLVTLGP LACLEEEDHETPSPRVPQSSPSGQEGTGGQ LRNVLRKLLTQPQQAKADVLSLEBILAEGV EESDASSQSGSEGPVRLSRTRTKALQEAM YYSAEHGYVDITMELRALGVPWKLHIWIE SLRTSFSQSRYSVVQSLLRDFSSIREEEYNE ELVTEGLQLMFDILKTSKNDSVIQQLATIFT HCYGSSPPSIPEIRKTLPARLDPHFLNNKE MSDVTFLVEGKLFYAHKVLLVTASNRFKT LMTNKSEQDGDSSKTIEISDMKYHIFQMM MQYLYYGGTESMEIPTTDILELLSAASLFQ LDALQRHCEILCSQTLSMESAVNTYKYAKI HNAPELALFCEGFFLKHMKALLEQ\MPSGS SSTAAAAKCRAWIHCRTCRTPWQSACTLS TSPPGSAA 1 571 FRPGRRAKRAMAVYVGMLRLGRLCAGSS GVLGARAALSRSWQEARLQGVRFLSSREV DRMVSTPIGGLSYVQGCTKKHLNSKTVGQ CLETTAQRVPEREALVVLHEDVRLTFAQL KEEVDKAASGLLSIGLCKGDRLGMWGPNS YAWVLMQLATAQAGIILVSVNPAYQAME LEYVLKKVGCKALVFPKQ					LLDAGAHVEGSAVNGGEDSYAETPLQLAS
SSLHEDMNCFSHSAAHGHRGIWGLVTLGP LACLEEEDHETPSPRVPQSSPSGQEGTGGQ LRNVLRKLLTQPQQAKADVLSLEBILAEGV EESDASSQSGSEGPVRLSRTRTKALQEAM YYSAEHGYVDITMELRALGVPWKLHIWIE SLRTSFSQSRYSVVQSLLRDFSSIREEEYNE ELVTEGLQLMFDILKTSKNDSVIQQLATIFT HCYGSSPPSIPEIRKTLPARLDPHFLNNKE MSDVTFLVEGKLFYAHKVLLVTASNRFKT LMTNKSEQDGDSSKTIEISDMKYHIFQMM MQYLYYGGTESMEIPTTDILELLSAASLFQ LDALQRHCEILCSQTLSMESAVNTYKYAKI HNAPELALFCEGFFLKHMKALLEQ\MPSGS SSTAAAAKCRAWIHCRTCRTPWQSACTLS TSPPGSAA 1 571 FRPGRRAKRAMAVYVGMLRLGRLCAGSS GVLGARAALSRSWQEARLQGVRFLSSREV DRMVSTPIGGLSYVQGCTKKHLNSKTVGQ CLETTAQRVPEREALVVLHEDVRLTFAQL KEEVDKAASGLLSIGLCKGDRLGMWGPNS YAWVLMQLATAQAGIILVSVNPAYQAME LEYVLKKVGCKALVFPKQ					AAGNYELVSLLLSRGADPLLSMLEAHGMG
LRNVLRKLLTQPQQAKADVLSLEBILAEGV EESDASSQGSGSEGPVRLSRTRTKALQEAM YYSAEHGYVDITMELRALGVPWKLHIWIE SLRTSFSQSRYSVVQSLLRDFSSIREEEYNE ELVTEGLQLMFDILKTSKNDSVIQQLATIFT HCYGSSPPSIPEIRKTLPARLDPHFLNNKE MSDVTFLVEGKLFYAHKVLLVTASNRFKT LMTNKSEQDGDSSKTIEISDMKYHIFQMM MQYLYYGGTESMEIPTTDILELLSAASLFQ LDALQRHCEILCSQTLSMESAVNTYKYAKI HNAPELALFCEGFFLKHMKALLEQMPSGS SSTAAAAKCRAWIHCRTCRTPWQSACTLS TSPPGSAA 2858 A 1 571 FRPGRRAKRAMAVYVGMLRLGRLCAGSS GVLGARAALSRSWQEARLQGVRFLSSREV DRMVSTPIGGLSYVQGCTKKHLNSKTVGQ CLETTAQRVPEREALVVLHEDVRLTFAQL KEEVDKAASGLLSIGLCKGDRLGMWGPNS YAWVLMQLATAQAGIILVSVNPAYQAME LEYVLKKVGCKALVFPKQ			1		SSLHEDMNCFSHSAAHGHRGIWGLVTLGP
EESDASSQGSGSEGPVRLSRTRTKALQEAM YYSAEHGYVDITMELRALGVPWKLHIWIE SLRTSFSQSRYSVVQSLLRDFSSIREEEYNE ELVTEGLQLMFDILKTSKNDSVIQQLATIFT HCYGSSPIPSIPEIRKTLPARLDPHFLNNKE MSDVTFLVEGKLFYAHKVLLVTASNRFKT LMTNKSEQDGDSSKTIEISDMKYHIFQMM MQYLYYGGTESMEIPTTDILELLSAASLFQ LDALQRHCEILCSQTLSMESAVNTYKYAKI HNAPELALFCEGFFLKHMKALLEQ\MPSGS SSTAAAAKCRAWIHCRTCRTPWQSACTLS TSPPGSAA 2858 A 1 571 FRPGRRAKRAMAVYVGMLRLGRLCAGSS GVLGARAALSRSWQEARLQGVRFLSSREV DRMVSTPIGGLSYVQGCTKKHLNSKTVGQ CLETTAQRVPEREALVVLHEDVRLTFAQL KEEVDKAASGLLSIGLCKGDRLGMWGPNS YAWVLMQLATAQAGIILVSVNPAYQAME LEYVLKKVGCKALVFPKQ					LACLEEEDHETPSPRVPQSSPSGQEGTGGQ
EESDASSQGSGSEGPVRLSRTRTKALQEAM YYSAEHGYVDITMELRALGVPWKLHIWIE SLRTSFSQSRYSVVQSLLRDFSSIREEEYNE ELVTEGLQLMFDILKTSKNDSVIQQLATIFT HCYGSSPIPSIPEIRKTLPARLDPHFLNNKE MSDVTFLVEGKLFYAHKVLLVTASNRFKT LMTNKSEQDGDSSKTIEISDMKYHIFQMM MQYLYYGGTESMEIPTTDILELLSAASLFQ LDALQRHCEILCSQTLSMESAVNTYKYAKI HNAPELALFCEGFFLKHMKALLEQ\MPSGS SSTAAAAKCRAWIHCRTCRTPWQSACTLS TSPPGSAA 2858 A 1 571 FRPGRRAKRAMAVYVGMLRLGRLCAGSS GVLGARAALSRSWQEARLQGVRFLSSREV DRMVSTPIGGLSYVQGCTKKHLNSKTVGQ CLETTAQRVPEREALVVLHEDVRLTFAQL KEEVDKAASGLLSIGLCKGDRLGMWGPNS YAWVLMQLATAQAGIILVSVNPAYQAME LEYVLKKVGCKALVFPKQ		}			LRNVLRKLLTQPQQAKADVLSLEEILAEGV
SLRTSFSQSRYSVVQSLLRDFSSIREEEYNE ELVTEGLQLMFDILKTSKNDSVIQQLATIFT HCYGSSPIPSIPEIRKTLPARLDPHFLNNKE MSDVTFLVEGKLFYAHKVLLVTASNRFKT LMTNKSEQDGDSSKTIEISDMKYHIFQMM MQYLYYGGTESMEIPTTDILELLSAASLFQ LDALQRHCEILCSQTLSMESAVNTYKYAKI HNAPELALFCEGFFLKHMKALLEQ\MPSGS SSTAAAAKCRAWIHCRTCRTPWQSACTLS TSPPGSAA 2858 A 1 571 FRPGRRAKRAMAVYVGMLRLGRLCAGSS GVLGARAALSRSWQEARLQGVRFLSSREV DRMVSTPIGGLSYVQGCTKKHLNSKTVGQ CLETTAQRVPEREALVVLHEDVRLTFAQL KEEVDKAASGLLSIGLCKGDRLGMWGPNS YAWVLMQLATAQAGIILVSVNPAYQAME LEYYLKKVGCKALVFFKQ	1				EESDASSQGSGSEGPVRLSRTRTKALQEAM
ELVTEGLQLMFDILKTSKNDSVIQQLATIFT HCYGSSPIPSIPEIRKTLPARLDPHFLNNKE MSDVTFLVEGKLFYAHKVLLVTASNRFKT LMTNKSEQDGDSSKTIEISDMKYHIFQMM MQYLYYGGTESMEIPTTDILELLSAASLFQ LDALQRHCEILCSQTLSMESAVNTYKYAKI HNAPELALFCEGFFLKHMKALLEQ\MPSGS SSTAAAAKCRAWIHCRTCRTPWQSACTLS TSPPGSAA 2858 A 1 571 FRPGRRAKRAMAVYVGMLRLGRLCAGSS GVLGARAALSRSWQEARLQGVRFLSSREV DRMVSTPIGGLSYVQGCTKKHLNSKTVGQ CLETTAQRVPEREALVVLHEDVRLTFAQL KEEVDKAASGLLSIGLCKGDRLGMWGPNS YAWVLMQLATAQAGIILVSVNPAYQAME LEYVLKKVGCKALVFPKQ					YYSAEHGYVDITMELRALGVPWKLHIWIE
HCYGSSPIPSIPEIRKTLPARLDPHFLNNKE MSDVTFLVEGKLFYAHKVLLVTASNRFKT LMTNKSEQDGDSSKTIEISDMKYHIFQMM MQYLYYGGTESMEIPTTDILELLSAASLFQ LDALQRHCEILCSQTLSMESAVNTYKYAKI HNAPELALFCEGFFLKHMKALLEQWPSGS SSTAAAAKCRAWIHCRTCRTPWQSACTLS TSPPGSAA 2858 A 1 571 FRPGRRAKRAMAVYVGMLRLGRLCAGSS GVLGARAALSRSWQEARLQGVRFLSSREV DRMVSTPIGGLSYVQGCTKKHLNSKTVGQ CLETTAQRVPEREALVVLHEDVRLTFAQL KEEVDKAASGLLSIGLCKGDRLGMWGPNS YAWVLMQLATAQAGIILVSVNPAYQAME LEYVLKKVGCKALVFFKQ	ĺ				SLRTSFSQSRYSVVQSLLRDFSSIREEEYNE
MSDVTFLVEGKLFYAHKVLLVTASNRFKT LMTNKSEQDGDSSKTIEISDMKYHIFQMM MQYLYYGGTESMEIPTTDILELLSAASLFQ LDALQRHCEILCSQTLSMESAVNTYKYAKI HNAPELALFCEGFFLKHMKALLEQVMPSGS SSTAAAAKCRAWIHCRTCRTPWQSACTLS TSPPGSAA 2858 A 1 571 FRPGRRAKRAMAVYVGMLRLGRLCAGSS GVLGARAALSRSWQEARLQGVRFLSSREV DRMVSTPIGGLSYVQGCTKKHLNSKTVGQ CLETTAQRVPEREALVVLHEDVRLTFAQL KEEVDKAASGLLSIGLCKGDRLGMWGPNS YAWVLMQLATAQAGIILVSVNPAYQAME LEYVLKKVGCKALVFPKQ			i		ELVTEGLQLMFDILKTSKNDSVIQQLATIFT
LMTNKSEQDGDSSKTIEISDMKYHIFQMM MQYLYYGGTESMEIPTTDILELLSAASLFQ LDALQRHCEILCSQTLSMESAVNTYKYAKI HNAPELALFCEGFFLKHMKALLEQ\MPSGS SSTAAAAKCRAWIHCRTCRTPWQSACTLS TSPPGSAA 2858 A 1 571 FRPGRRAKRAMAVYVGMLRLGRLCAGSS GVLGARAALSRSWQEARLQGVRFLSSREV DRMVSTPIGGLSYVQGCTKKHLNSKTVGQ CLETTAQRVPEREALVVLHEDVRLTFAQL KEEVDKAASGLLSIGLCKGDRLGMWGPNS YAWVLMQLATAQAGIILVSVNPAYQAME LEYVLKKVGCKALVFPKQ		!			HCYGSSPIPSIPEIRKTLPARLDPHFLNNKE
MQYLYYGGTESMEIPTTDILELLSAASLFQ LDALQRHCEILCSQTLSMESAVNTYKYAKI HNAPELALFCEGFFLKHMKALLEQ\MPSGS SSTAAAAKCRAWIHCRTCRTPWQSACTLS TSPPGSAA 2858 A 1 571 FRPGRRAKRAMAVYVGMLRLGRLCAGSS GVLGARAALSRSWQEARLQGVRFLSSREV DRMVSTPIGGLSYVQGCTKKHLNSKTVGQ CLETTAQRVPEREALVVLHEDVRLTFAQL KEEVDKAASGLLSIGLCKGDRLGMWGPNS YAWVLMQLATAQAGIILVSVNPAYQAME LEYVLKKVGCKALVFPKQ	1				MSDVTFLVEGKLFYAHKVLLVTASNRFKT
LDALQRHCEILCSQTLSMESAVNTYKYAKI HNAPELALFCEGFFLKHMKALLEQ\MPSGS SSTAAAAKCRAWIHCRTCRTPWQSACTLS TSPPGSAA 2858 A 1 571 FRPGRRAKRAMAVYVGMLRLGRLCAGSS GVLGARAALSRSWQEARLQGVRFLSSREV DRMVSTPIGGLSYVQGCTKKHLNSKTVGQ CLETTAQRVPEREALVVLHEDVRLTFAQL KEEVDKAASGLLSIGLCKGDRLGMWGPNS YAWVLMQLATAQAGIILVSVNPAYQAME LEYVLKKVGCKALVFPKQ					LMTNKSEQDGDSSKTIEISDMKYHIFQMM
HNAPELALFCEGFFLKHMKALLEQ\MPSGS SSTAAAAKCRAWIHCRTCRTPWQSACTLS TSPPGSAA 2858 A 1 571 FRPGRRAKRAMAVYVGMLRLGRLCAGSS GVLGARAALSRSWQEARLQGVRFLSSREV DRMVSTPIGGLSYVQGCTKKHLNSKTVGQ CLETTAQRVPEREALVVLHEDVRLTFAQL KEEVDKAASGLLSIGLCKGDRLGMWGPNS YAWVLMQLATAQAGIILVSVNPAYQAME LEYVLKKVGCKALVFPKQ		1			MQYLYYGGTESMEIPTTDILELLSAASLFQ
SSTAAAAKCRAWIHCRTCRTPWQSACTLS TSPPGSAA 2858 A 1 571 FRPGRRAKRAMAVYVGMLRLGRLCAGSS GVLGARAALSRSWQEARLQGVRFLSSREV DRMVSTPIGGLSYVQGCTKKHLNSKTVGQ CLETTAQRVPEREALVVLHEDVRLTFAQL KEEVDKAASGLLSIGLCKGDRLGMWGPNS YAWVLMQLATAQAGIILVSVNPAYQAME LEYVLKKVGCKALVFPKQ	1	1			LDALQRHCEILCSQTLSMESAVNTYKYAKI
TSPPGSAA 2858 A 1 571 FRPGRRAKRAMAVYVGMLRLGRLCAGSS GVLGARAALSRSWQEARLQGVRFLSSREV DRMVSTPIGGLSYVQGCTKKHLNSKTVGQ CLETTAQRVPEREALVVLHEDVRLTFAQL KEEVDKAASGLLSIGLCKGDRLGMWGPNS YAWVLMQLATAQAGIILVSVNPAYQAME LEYVLKKVGCKALVFPKQ	1	1			HNAPELALFCEGFFLKHMKALLEQ\MPSGS
2858 A 1 571 FRPGRRAKRAMAVYVGMLRLGRLCAGSS GVLGARAALSRSWQEARLQGVRFLSSREV DRMVSTPIGGLSYVQGCTKKHLNSKTVGQ CLETTAQRVPEREALVVLHEDVRLTFAQL KEEVDKAASGLLSIGLCKGDRLGMWGPNS YAWVLMQLATAQAGIILVSVNPAYQAME LEYVLKKVGCKALVFPKQ		1		1	
GVLGARAALSRSWQEARLQGVRFLSSREV DRMVSTPIGGLSYVQGCTKKHLNSKTVGQ CLETTAQRVPEREALVVLHEDVRLTFAQL KEEVDKAASGLLSIGLCKGDRLGMWGPNS YAWVLMQLATAQAGIILVSVNPAYQAME LEYVLKKVGCKALVFPKQ			1		TSPPGSAA
GVLGARAALSRSWQEARLQGVRFLSSREV DRMVSTPIGGLSYVQGCTKKHLNSKTVGQ CLETTAQRVPEREALVVLHEDVRLTFAQL KEEVDKAASGLLSIGLCKGDRLGMWGPNS YAWVLMQLATAQAGIILVSVNPAYQAME LEYVLKKVGCKALVFPKQ	2858	A	1	571	FRPGRRAKRAMAVYVGMLRLGRLCAGSS
CLETTAQRVPEREALVVLHEDVRLTFAQL KEEVDKAASGLLSIGLCKGDRLGMWGPNS YAWVLMQLATAQAGIILVSVNPAYQAME LEYVLKKVGCKALVFPKQ					GVLGARAALSRSWQEARLQGVRFLSSREV
KEEVDKAASGLLSIGLCKGDRLGMWGPNS YAWVLMQLATAQAGIILVSVNPAYQAME LEYVLKKVGCKALVFPKQ LEYVLKKVGCKALVFPKQ		1			DRMVSTPIGGLSYVQGCTKKHLNSKTVGQ
YAWVLMQLATAQAGIILVSVNPAYQAME LEYVLKKVGCKALVFPKQ			ļ		CLETTAQRVPEREALVVLHEDVRLTFAQL
LEYVLKKVGCKALVFPKQ					KEEVDKAASGLLSIGLCKGDRLGMWGPNS
NOONWILE AND DEAL WEIDIG! VESTEV	1				
2859 A 2737 2600 MCCWIWFASILLRIFALMFIRDIGLKFSFFV					LEYVLKKVGCKALVFPKQ
	2859	Α	2737	2600	MCCWIWFASILLRIFALMFIRDIGLKFSFFV

Table 8

SEQ ID NO:	Method	Predicted beginning nucleotide location of first amino acid residue of peptide sequence	Predicted ending nucleotide location of last amino acid residue of peptide sequence	Amino acid sequence (X=Unknown, *=Stop codon, /=possible nucleotide deletion,=possible nucleotide insertion) VSLPGFGIRMMLAS*
2860	A	1	1353	MVKLSIVLTPQFLSHDQGQLTKELQQHVK SVTCPCEYLRKVSLLKTIFWSRNGHDGSTD VQQRAWRSNRRRQEGLRSICMHTKKRVSS FRGNKIGLKDVITLRRHVETKVRAKIRKRK VTTKINHHDKINGKRKTARKHTGDCHPGE VVGQAHFVPDSPVHIALHGMAQPLFGIQG GALEPAGRGTGFLDSPVFRPIRKYNVQIPPS ARKALCNWSLLLVCVGKPEIFVAIHYYTPN TKLVPLARPRNSHVPHPPERTTVTQYSTCA LLTALCLLLPVLQETAQSRRMVTSHPEDSP ALARKHGASQPAGLGFPRTQTVTPAFTFQT PTAAEPALLSAWLGRAPETETITDMAGSA AAAPTCEMLRAHGHDDLYFKWEPCASSQ AITVLPKHSGTGGSRQGPAVAHPAAPFPKV RGGEGTYYLHLSVFSDLVDLHLLHVGQRV VQGLRLRL
2861	A	1553	1896	CSSFCFPFPRSRPTAPRPDHRPAEPQRLHSA EGAPEVVGPTSDPHHHPCPGGAPGGTQDP KMAAEAPQQPNSDWAGEISMCRGSTHQL QMAFSETFLSALSGSSRGRPAGKESC
2862	A	262	129	SGLFLFFFPFPPFLPLPLCKHQIRDEWGNQI WICPGCNKPDDGSPMIGCDDCDDWYHWP CVGIMTAPPEEMQWFCPKCANKKKDKKH KKRKHRAH*RDDYKMLFMTYKRKLRIFV RNALSLNT
2863	A	3	520	LVDPRVRAVFLQLLPLLLSRAQGNPGASLD GRPGDRVNLSCGGVSHPIRWVWAPSFPAC KGLSKGRRPILWASSSGTPTVPPLQPFVGR LRSLDSGIRRLELLLSAGDSGTFFCKGRHE DESRTVLHVLGDRTYCKAPGPTHGSVYPQ LLIPLLGAGLVLGLGALGLVWWLH
2864	A	1	553	RTRGRTRGLVIKKWASHHQINDASRGTLSS YSLVLMVLHYLQTLPEPILPSLQKIYPESFS PAIQLHLVHQAPCNVPPYLSKNESNLGDLL LGFLKYYATEFDWNSQMISVREAKAIPRPD GIEWRNKYICVEEPFDGTNTARAVHEKQK FDMIKDQFLKSWHRLKNKRDLNSILPVRA AVLKR
2865	A	516	848	MWSLWIWVDQHQARLIPSPQVLLLLLRET PSTAAAVAGWLVVASMALLQLHAVGGVA LTSSHPFMWATGEELRKPPWQGSAGSASG VEELTGKHSCPGPEEPATVQKAPA*
2866	A	349	1018	TFTQPDPDDLISKPPRTPGGG*YQTQWPSPP DPRRTSPAGRPGPARRPPRRTPRPARGRHP GR*GGPGASRPGGTGAAPAADQTGSPAVS TPSEFGAPGQAEGPQSPIRASARSHLSCTA WLGKPSKPSAQRQPTVGPDGDRDGSSQAP NLSRGQAWRASLASPQNTSATGRVTCHGQ STWPLCRLKSNRRRKSGFA/GNKSEPVGLT RRSKHQPRNPQGQVGI

Table 8

SEQ ID NO:	Method	Predicted beginning nucleotide location of first amino acid residue of peptide sequence	Predicted ending nucleotide location of last amino acid residue of peptide sequence	Amino acid sequence (X=Unknown, *=Stop codon, /=possible nucleotide deletion,=possible nucleotide insertion) MYTVSLLLCLFFKKSDPDPGPFQNNLFHNH
2 007				GTQSQSCMGSKVGDVIPGAARLISETAQRV HTIGQKQKNDQHLRRVQALLSGRQAKGLT SGRWFLRQGWLIVVPTHGEPRPRMFFLFT DVLLMAKPRPTLHLLRSGTFACKALYPMA Q
2868	A	438	2	TORLVISEPDGEILTPGWDTQDRMGVESRT NIQELGNRNQREAGGENLPETQAHMGETQ DQLRCKIDAETQTPEWENQDKNGSEDAVE TQTFEKKDKKEAGEEDGEEIQAQGLGKQG QTGDENGEETQTRVLRALETIPASS
2869	В	1	390	MTPKHDHLGHVLPISLQLLLELSSCLPAAS AVWCAGCNDPWMTGYPDNMHYNYKPML HDRGGSAVTLSASQSWYAGCNAEKSEVN AFPGTQGMRFISAASYKDWVQVLQQKDV SRNMGTKARSASSLKN
2870			3411	MMEGEGGVRMSHDQTGNKRKHGTSGISV CPNLLLQEYQPDYIRAHASGLNLISSSKAL PKYSHVLSGLCKICSFGPRFSLHSDTFFFAL FAHADPEQIRNCETPAPPLQTERKNEMRIK THPSSSPLYDTPGRPAGSDDSSSRGRAGAL STFLEPQRPRTHLSLILHRPSPGPRLSLPLFT KPSFLGSGRREHAEERARGPRETAAVAAR AEQGRGGSHSHSSALGAPRRVAMLPGLAL LLLAAWTARALESLENRSAAGGCRKEMN KGNDNGALAIGGNMVIIWVDDFGWYVDR DTLEQGSPTPSHGQVLVHGLLGTGPHSRST LNIKEQLPRSKISSIGACNIIFQVDINAIFGIL MVPTDGNAGLLAEPQIAMFCGRLNMHMN VQNGKWDSDPSGTKTCIDTKEGILQYCQE VYPELQITINVVEANQPVTIQNWCKRGRKQ CKTHPHFVIPYRCLVGEFVSDALLVPDKCK FLHQERMDVCETHLHWHTVAKETCSEKST NLHDYGMLLPCGIDKFRGVEFVCCPLAEES DNVDSADAEEDDSDVWWGGADTDYADG RTSAIFGYDHDCKVHDAFALSSVLVDRQE WGSTYESGAGQGIAAFWGACWKEEQSLL FLLPDMDWLCLHSNINFNYISQNSHMLWR DPGEIDSKKLSALSSLPGIVLALGKAQRILLI ELGVGLESEDKVVEVAEEEEVAEVEEE ADDDEDDEDGDEVEBEAEEPYEEATERTT SIATTTTTTTESVEEVVREVCSEQAETGPCR AMISRWYFDVTEGKCAPFFYGGCGGNRN NFDTEEYCMAVCGSATNCTFDLKKSWSSG GQIQMADSIQRKGAELEAICQKRFSQRKHR YGKCFVGVLAPVMEEHFVIGTLGAASPFM NKLKANLCYFTPENRALAVPTTAASTPDA VDKYLETPGDENEHAHFQKAKERLEAKHR ERMSQVMREWEEAERQAKNLPKADKKAV IQHFQEKVESLEQEAANERQQLVETHMAR VEAMLNDRRRLALENYITALQAVPPRVGL

504

Table 8

SEQ ID NO:	Method	Predicted beginning nucleotide location of first amino acid residue of peptide sequence	Predicted ending nucleotide location of last amino acid residue of peptide sequence	Amino acid sequence (X=Unknown, *=Stop codon, /=possible nucleotide deletion,=possible nucleotide Insertion) AAAEFTLQVTAQTPRHVFNMLKKYVRAE QKDRQHTLKHFEHVRMVDPKKAAQIRSQ
2871	A	18	382	VMTHLRVIYERMNQSLSLLYNVPAVAEEI QDEVAFKINKNMNYYKPDAGKISG GKMPPHLAMGCPPRLNPWEQPELGARGR GDGCPCPAEHGWALDVRYS*LPLPQSLASS
2872	A	673	941	LAIPPQVFCSFTLSSKSPRPAARQETPAGAP PAGPSFAGRRRTIPGSGAPRRSPGGRRQEQ LR CCLAAHSGPPAQGQRRGPG*LCCSAGSGG
	, a			NL*S*AGGPG*GRSGQPVCPPWPGPGAPGH RPALPGSGGSSAVGRSAVPGAVRSPSHAG W
2873	A	227	712	ALLESLSSGEAQAWGAPRLVAGIRLIEHKC VLGGGTAGAWG*KDQVTIQPAGHAPGLSG TEATVTPDDSVSDPTTWPSQEVSMCHPLPG SHPSHLLKEGMTSVRPRALQQGPPWQLQT KDSAPPP*TPASFSPFFPLSPLPVSPSLSHTH SFRVQGAKRFA
2874	A	1942	932	ARVRWRPPRWPPRASCPGPALRLCRGGSM GGPRGAGWVAAGLLLGAGACYCIYRLTR GRRRGDRELGIRSSKSAEDLTDGSYDDVL NAEQLQKLLYLLESTEDPVIIERALITLGNN AAFSVNQAIIRELGGIPIVANKINHSNQSIKE KALNALNNLSVNVENQIKIKIYISQVCEDV FSGPLNSAVQLAGLTLLTNMTVTNDHQHM LHSYITDLFQVLLTGNGNTKVQVLKLLLNL SENPAMTEGLLRAQVDSSFLSLYDSHVAK EILLRVLTLFQNIKNCLKIEGHLAVQPTFTE GSLFFLLHGEECAQKIRALVDHHDAEVKE KVVTIIPKI
2875	С	1	531	MARNECVDGQPGHLVDFTCLVTYRVSGES RAPHPMAELFLVTYHMEEKLETHIPRKQER VEEKGPCICKALSPNSVNQRDAREKEMLQ QLQNRDTKQVLPSKASAHTPLDKAHHTAK PDGSGGEKDFLHTRTTPPPLLQGRAGNIFN NKTVYRSNTIITIGRWVLRAIELRPKDNN
2876	A	1573	2858	EPVFEQAIDQRSSTDTSLSTPAAPMVDSLIA RVGVMARGNAITLPVCGRDVKFTLEVLRG DSVEKTSRVWSGNERDQELLTEDALDDLIP SFLLTGQQTPAFGRRVSGVIEIADGSRRRK AAALTESDYRVLVGELDDEQMAALSRLG NDYRPTSAYERGQRYASRLQNEFAGNISA LADAENISQ*ICWKYFCAG*CGKYF\RKIIT RCINTAKLPKSVVALFSHPGELSARSGDAL QKAFTDKEELLKQQASNLHEQKKAGVISP PEEVITLLTSEIKTSSASRTSLSSRHQFAPGA TVLYKGDKMFITVKIAKRSQAPCMKSNNA LIVILGTVTLDAVGIGLVMPVLPGLLRDIVH SDSIASHYGVLLALYALMQFLCAPVLGALS DRFGRRPVLLASLLGATIDYAIMATTPVLW

505

Table 8

SEQ	Method	Predicted	Predicted	Amino acid sequence (X=Unknown, *=Stop
ID	MEHIOR	beginning	ending	codon. /=possible nucleotide
NO:		nucleotide	nucleotide	deletion,=possible nucleotide insertion)
NO:		location of	location of	
		first amino	last amino	
		acid residue	acid residue	
		of peptide	of peptide	ĺ
		sequence	sequence	
		sequence		IYPLVNSPSC
2877	В	448	3506	XALMIEIDGGESWSFMDDNQNKTHDKKE
2077	2	'''		KKMVVQKPHGTMEYTAGNQDTLNSIALK
	ļ			FNITPNKLVELNKLFTHTIVPGQVLFVPDA
				NSPSSTLRLSSSSPGATVSPSSSDAEYDKLP
				DADLARKALKPIERVLSSTSEEDEPGVVKF
		•		LKMNCRYFTDGKGVVGGVMIVTPNNIMF
				DPHKSDPLVIENGCEEYGLICPMEEVVSIAL
				YNDISHMKIKDALPSPGEWEDLASEKDINP
				FSKFKSINKEKRQQNGEKIMTSDSRPIVPLE
				KSTGHTPTKPSGSSVSEKLKKLDSSRETSH
				GSPTVTKLSKEPSDTSSAFESTAKENFLGED
Ì				DDFVDLEELSSQTGGGMHKKDTLKECLSL
				DPEERKKAESQINNSAVEMQVQSALAFLG
	1	'	l.	TENDVELKGALDLETCEKQDIMPEVDKQS
1				GSPESRVENTLNIHEDLDKVKLIEYYLTKN
				KEGPQVSENLQKTELSDGKSIEPGGIDITLS
			1	SSLSQAGDPITEGNKEPDKTWVKKGEPLPV
			1	KLNSSTEANVIKEALDSSLESTLDNSCQGA
				QMDNKSEVQLWLLKRIQVPIEDILPSKEEK SKTPPMFLCIKVGKPMRKSFATHTAAMVQ
}				QYGKRRKQPEYWFAVPRERVDHLYTFFV
1				QWSPDVYGKDAKEQGFVVVEKEELNMID
				NFFSEPTTKSWEIITVEEAKRRKSTCSYYED
				EDEEVLPVLRPHSALLENMHIEQLARRLPC
	1			KGYPWRLAYSTLEHGTSLKTLYRKSASLD
	1			SPVLLVIKDMDNQIFGAYATHPFKFSDHYY
				GTGETFLYTFSPHFKVFKWSGENSYFINGD
				ISSLELGGGGGRFGLWLDADLYHGRSNSC
				STFNNDILSKKEDFIVQDLEVWAFD
2878	A	226	2263	SVKNYTKCHVRNEQICNKLTSCKSCSLNL
2010	A	220	2203	NCOWDORQQECQALPAHLCGEGWSHIGD
				ACLRVNSSRENYDNAKLYCYNLSGNLASL
	İ			TTSKEVEFVLDEIQKYTQQKVSPWVGLRKI
				NISYWGWEDMSPFTNTTLQWLPGEPNDSG
	ļ			FCAYLERAAVAGLKANPCTSMANGLVCE
			,	KPVVSPNQNARPCKKPCSLRTSCSNCTSNG
				MECMWCSSTKRCVDSNAYIISFPYGQCLE
				WQTATCSPQNCSGLRTCGQCLEQPGCGW
			1	CNDPSNTGRGHCIEGSSRGPMKLIGMHHN
	1			EMVLDTNLCPKEKNYEWSFIQCPACQCNG
				HSTCINNNVCEQCKNLTTGKQCQDCMPGY
	1			YGDPTNGGQCTACTCSGHANICHLHTGKC
				FCTTKGIKGDQCQLCDSENRYVGNPLRGT
				CYYSLLIDYQFTFSLLQEDDRHHTAINFIAN
	1	ĺ		PEQSNKNLDISINASNNFNLNITWSVGSTA
		1		GTISGEETSIVSKNNIKEYRDSFSYEKFNFR
				SNPNITFYVYVSNFSWPIKIQIAFSQHNTIM
	1			DLVQFFVTFFSCFLSLLLVAAVVWKIKQTC
	ŀ			WASRREQLLRERQQMASRPFASVDVALE
				VGAEQTEFLRGPLEGAPKPIAIEPCAGNRA

Table 8

SEQ ID NO:	Method	Predicted beginning nucleotide location of first amino acid residue of peptide sequence	Predicted ending nucleotide location of last amino acid residue of peptide sequence	Amino acid sequence (X=Unknown, *=Stop codon, /=possible nucleotide deletion,=possible nucleotide insertion) AVLTVFLCLPRGSSGAPPPGQSGLAIASALI DISQQKASDSKDKTSGVRNRKHLSTRQGT CV MKVTFANKPEGGGRLAKQRPPGRGARPRP
2879	A	1	1131	KHEGGQSVLGTRRPALLQVSCTDVSLSEQ DKDGATATHFAASRGHSKVLSWLLLHGG EISADLWGGTALYDAAENGELGCCQILVV NGAELEVRDRDGYAAADLSDFNGHSHCT HCLRTVENLHRGMVLALGAAEHSKAQRP EAAGGPEGELPPEKESLEENEWPSRGQGLV PSAPTAVAQSMEHCVLSRDPSVELEAKQP DSGMSSPNTTVSVQPLNFDLSSPTSTLSNY DSCSSSHSSIKGQHPPRAPNPQILQYKKRFS ELEQLLERSGELEQQQLRDAEHSQDLESAL IWLEEEQQGGPGLAAWPPGRAPTDPLCPIQ ECOPGPGECHALRTAGPGRFGQPGSE
2880	A	1	416	FRTDARVAITIYYQATEBFQNGIASYIPKDN SLQSETVQYKRGVCQQFCLPSHTVDPSEW AEBELGFDLDREVYPLVVHAVVDEGDEYF GHCHVLLGTFEKHTDGTFCVKPLKQKQVV DGVSYLLQEIYGIENKYNTQ
2881	A	419	1	KYFKCAPFPPATRPKAHTVFLKNVDIQVNL RFCSKVAKLHYPNNLLFHSLGITKMQLDR KELAVVQSHSGSKGRILFSPSLPALEQLRVP LEEHSASPDPIHPPSLAPERAASPGPPTGAE TRVPAPHAGTDPSEPPRR
2882	A	2	366	ARPRVVLKRLGSQRELAQLGPEHLQAGHR PAPLRPAAGHAPDRVRAPQRRRASAHARG SGGLVGPGALPLAAPSRPPGAPLRGDQGL GQLPASQPQGLGAHAAAADPGLQPRAAG ATEFSV
2883	A	3	1396	RQENNTRGVPSLLKSFLQERLGIHLIRRKIV KPKHHVLMSRKESWKVKSEIPKVPKQPLV LHHPRMTTTKSPSKDMLEPEAELAEDLPTT KSTSVES/EDAH*EPGRPFPVLPDL/PCHCLP SAPTPLCIVKRPCPT*VTQLSASAQSAHQM RTPRAQSPSS*PR*VNCLPPS/LHKDDLELK EKDQKKPPTAPREVKGTRRKLPTAFLPSKY HGYEELLTAKPDPAFIEPKGIQKNA/PSPAT NAEAPTPVPLLQAQAGHSSETLCSQRETGP ENPDSTPKED*SPTSG*HLHSLAGSPEHYRG STRCCPAPVDRTAAGEP/ASSTWRPRGC*R SSRHVTGSW*VALCAQCSGLPRSPWPAQR *VRASPSSATSSSSWMSSARSPQPVTHKAR AVHGGCVHHPACAPALPEGSVPWTAPQG* PAGHRPQSSAGPHLLATRWHPLVRISPPWP RHDLVPGPAAIKSGCTGQ
2884	A	437	748	MLIGLLAWLQTVPAHGCQFLPITSVTATVY HLPVHQLKGRSRVQKNLTLDNEGEGTWTT CLEFLESLAGWRLGWGVSRGVREWLCLQ QVSLHQTPGLPHKQDL*

507 .

Table 8

SEQ ID NO:	Method	Predicted beginning nucleotide	Predicted ending nucleotide	Amino acid sequence (X=Unknown, *=Stop codon, /=possible nucleotide deletion,=possible nucleotide insertion)
NO:		location of first amino acid residue of peptide sequence	location of last amino acid residue of peptide sequence	
2885	A	1696	2394	ERSTYDLRSSDRPAQETSHQFQIHLPCVLLL YSPTLTLKYISTPSLATDHAPLTISLKPNHP YPAQCQYPIPQHALKGLKPAITRLLQHGLL KPINSPYNSPILPVLEPEKIYRLVQDLRLINQ IVLPIHPVVPNPYTLLSSIPPSTIHYSVLDLK RAFFTIPLYPSSQPLFAFTWTDPDTLQAQQI TWAVLPQSFTDSPHYFSQAQISSLSVTYLSI ILIKTHTLSLLIMSD
2886	A	377	3	TPAWMTERDCIWRRRTSAPGGSWPSGPVP SPGAQ*RPPSQGLGLWWAAAAAPRC*TAP GPRPPPHGPGSPQGASPPTRPPRCRPHPRA GSAGPTGATPPGSTQGQRRRHSHQLPGHP GHRVALG
2887	A	1162	536	HILRQEFFFFCLFVCLRWVLVLLPRLE*CG MILAHCNLFLLGSSNSPASAS*VAGTTGVR HHAWIIFCILVETEFHRVAQTDLELLSSGNP PASAS*SAGIIGVSHSAWPESCRYARRKCF CVKKLRRWKLNPLCIQKAVSEGHCWQASP YRDSAVREQSIWGTTASSGGARMRWSSPA ALYVRLLAGFSFINKLVASEYRVFSSTL
2888	A .	128	2626	NSHRWYYVRARRWRRRGKQREQPEDRGV PMKRAAMALHSPQYIFGDFSPDEFNQFFVT PRSSVELPPYSGTVLCGTQAVDKLPDGQEY QRIEFGVDEVIEPSDTLPRTPSYSISSTLNPQ APEFILGCTASKITPDGITKEASYGSIDCQYP GSALALDGSSNVEAEVLENDGVSGGLGQR ERKKKKKRPPGYYSYLKDGGDDSISTEAL VNGHANSAVPNSVSAEDAEFMGDMPPSVT PRTCNSPQNSTDSVSDIVPDSPFPGALGSDT RTAGQPEGGPGADFGQSCFPAEAGRDTLS RTAGAQPCVGTDTTENLGVANGQILESSG EGTATNGVELHTTESIDLDPTKPESASPPAD GTGSASGTLPVSQPKSWASLFHDSKPSSSS PVAYVETKYSPPAISPLVSEKQVEVKEGLV PVSEDPVAIKLAELLENVTLIHKPVSLQPRG LINKGNWCYINATLQALVACPPMYHLMKF IPLYSKVQRPCTSTPMIDSFVRLMNEFTNM PVPPKPRQALGDKIVRDIRPGAAFEPTYTYR LLTVNKSSLSEKGRQEDAEEYLGFILNGLH EEMLNLKKLLSPSNEKLTISNGPKNHSVNE EEQEEQGEGSEDEWEQVGPRNKTSVTRQA DFVQTPITGIFGGHIRSVVYQQSSKESATLQ PFFTLQLDIQSDKIRTVQDALESLVARESVQ GYTTKTKQEVEISRRVTLEKLPPVLVLHLK RFVYEKTGGCQKLIKNIEYPVDLEISKELLS PGVKNKNFKCHRTYRLFAVVYHHGNSAT GGHYTTDVFQIGLNGWLRIDDQTVKVINQ YQVVKPTAERTAYLLYYRRVDLL
2889	A	1669	1338	FRRPRRANRFRSRIRNQPGPHGETPFFL*IP KLARHGGG/CP*SPLLRRVRPENPFNPGSRG FN*LKPQPCPPTWVTE*DSVSKTNKQPPPT

508

Table 8

SEQ ID NO:	Method	Predicted beginning nucleotide location of first amino acid residue of peptide sequence	Predicted ending nucleotide location of last amino acid residue of peptide sequence	Amino acid sequence (X=Unknown, *=Stop codon, /=possible nucleotide deletion,=possible nucleotide insertion) KKNRDGRWGAIWESQMETWS GKGGCGQTRRCARPGRHHAAPALRADRT
2000				GPAPRRGLFGRCRTLQPSARRLSSEHSV*Q THGCATPSRCHGGDGREDRGSPGDRGERP AGPAGGAGLEPAPGTLQPRSRPSRRWLLSP GAGAQQLEVVHLPGQRPQNQPCPLDFLP
2891	A	1204		FFFPVPPPLFTDPRAPQPHRHLAFRGHRKE KGPGDPPSTPQSQ\ADPAAAPQGQPGC/RLP RGHCDRRHQEARPGCWGPP\GGPGSILGPK SWCHLEADSGKRPGWTVGVGVRSSPACP GH/VEQQGSAGSPGWMGWGCPCPVS*PLQ GQNQPSPSSLGGSRGSFFSPPDPA/GGQGQE GEGRGERSGQGPWGPGSFKNA/RQVAGGG QEGGQGPDPHDGGSLRPPRMKEGGLGRRG RPQPSVTPVLGSAARWSKAPPSQGQDHRT GGNRHLAP*SSGGRGGAPGALGL/PWHPA CSGASGHSGRWA*RSSGWG*GPSPHTPPPG PARHPAPGLAGLAPHPARLRK*SGRSPR/E AGVKISLLLGGERGL/PGPLAVVHDSGDGG AGHRGGV*S*RS\PPDPLSLSPRPAA
2892	В	74	325	SAFSYIPPRRLDPTEHSYYYRPAREQERPA GVLTSSVYGKRINQPIEPLNRDFGRANHVQ ADFYRKNDIPSLKEPGFGHIAPS
2893	A	1	3426	MAGGQEVEAVVADQLCAKYSKEYGKLCR TNQIGTVNDRLMHKLSVEAPPKILVERYLI EIAKNYNVPYEPDSVVMVEDILEMSLVEFG NIGEAFLEQNQSPESSVTLTSANATLLLSRQ NISTLPLSSYTLGHPAPVRLGFPSALALKEL LNKHPGVNVQVFALDPVLGTFLILTSVILM VLVVINLFVSAILMAFGKERKSLKVVMQS NTICYRENRISTVPPSGTRETARKAKGHRG LPENPVQLSEAFNCQDKLCNWIPVGQCPA ARSTVYANERAQLPGTVTMASRVIFPLPLA FESLHTPGKSSSQGSDAGAGPPILGLFCPW TRGPRLSALRARRLSSPIADVNKNIPPSKHR TILSSRPDGSILFLPPFFVVTITPPARADVQE KDGHTIEQDEGERQHQIEKTEEENTNKPKR KQKLAPGTPQSNMKPVHERSQECLPPKKR DLPVTSEDMGRTTSCSTNHTPSSDASEWSR GVVVAGQSQAGARVSLGGDGAEAITGLTV DQYGMLYKVAVPPATFSPTGLPSVVNMSP LPPTFNVASSLIQHPGIHYPPLHYAQLPSTS LQFIGSPYSLPYAVPPNFLPSPLLSPSANLAT SHLPHFVPYASLLAEGATPPPQAPSPAHSF NKAPSATSPSGQLPHHSSTQPLDLAPGRMP IYYQMSRLPAGYTLHETPPAGASPVLTPQE SQSALEAAAANGGQRPRERNLVRRESEAL DSPNSKGEGQGLVPVVECVVDGQLFSGSQ TPRVEVAAPAHRGTPDTDLEVQRVVASQV GPQSTILRTQCLCNHLTFFASDFFVVPRTV NVEDTIKLFLRVTNNPVGVSLLASLLGFYV

Table 8

SEQ ID NO:	Method	Predicted beginning nucleotide location of first amino acid residue of peptide sequence	Predicted ending nucleotide location of last amino acid residue of peptide sequence	Amino acid sequence (X=Unknown, *=Stop codon, /=possible nucleotide deletion,=possible nucleotide insertion) ITVVWARKKDQADMQKGCQTPAGVHPPA PQLEEAGTIPSGGLVKVTVLADNDPSAQFH YLIQVYTGYRRSAATTAKLSVYLILPGCRT RTRDPLSGVGSRPVAGAEYRLPGQFGRTST VAASNTQAEGAAGHRGFWLAKQHPKDAV TLELRCTPCRSIARLSDAGGVPAGARRVRC AAVLANCSLDMKRGVCASRSATVRKRSD KDVEELGDRESAVGVSDFLDGDAHYERN GNNSHLYQRHKKTKRGVAIARDKMPPDF QDHVIPGQEIKAKSFYSPVDSDETGDKIRY NSKRRHWRTGMLGL
2894	A	3	30	ENFQHFMDRISNGGLEEGKPVDLVLSCVD NFBARMTINTACNELGQTWMESGVSENAV SGHIQLIIPGESACFACAPPLVVAANIDEKT LKREGVCAASLPTTMGVVAGILVQNVLKF LLNFGTVSFYLGYNAMQDFFPTMSMKPNP QCDDRNCRKQQEEYKKKVAALPKQEVIQE EEEIHEDNEWGIELVSEVSEEELKNFSGPV PDLPEGITVAYTIPKKQEDSVTELTVEDSGE SLEDLMAKMKNM*ISWIE
2895	A	1	2369	AGGARLRPARGRPPRLLPPRPGPCRPPPVP APTVNERRAPPRAGWERRSDAGLSRGARP AEMYGVCGCYGALRPRYKRLVDNIFPEDP EDGLVKTNMEKLTFYALSAPEKLDRIGAY LSERLIRDVGRHRYGYVCIAMEALDQLLM ACHCQSINLFVESFLKMVAKLLESEKPNLQ ILGTNSFVKFANIEEDTPSYHRSYDFFVSRF SEMCHSSHDDLEIKTKIRMSGIKGLQGVVR KTVNDELQANIWDPQHMDKIVPSLLFNLQ HVEEAESRSPSPLQAPEKEKESPAELAERC LRELLGRAAFGNIKNAIKPVLIHLDNHSLW EPKVFAIRCFKIIMYSIQPQHSHLVIQQLLG HLDANSRSAATVRAGIVEVLSEAAVIAATG SVGPTVLEMFNYLLRQLRLSIDYALTGSY DGAVSLGTKIIKEHEERMFQEAVIKTVGSF ASTLPTYQRSEVILFIMSKVPRPSLHQAVDT GRTGENRNRLTQIMLLKSLLQVSTGFQCN NMMSALPSNFLDRLLSTALMEDAEIRLFVL EILISFIDRHGNRHKFSTISTLSDISVLKLKV DKCSRQDTVFMKKHSQQLYRHIYLSCKEE TNVQKHYEALYGLLALISIELANEEVVVDL IRLVLAVQDVAQVNEENLPVYNRCALYAL GAAYLNLISQLTTVPAFCQHIHEVIETRKKE APYMLPEDVFVERPRLSQNLDGVVIELLFR QSKISEVLGGSGYNSDRLCLPYIPQLTDED RLSKRRSIGETISLQVEVESRNSPEKEEVSV RATVLIGQPHLL
2896	A	1575	1968	REMGFRHVGQTGLELLTSGDLPTSASQSA GITGVSHHTWPKTLFVLRQSLTLSPGLECS GTISAHCSPHLPCSSNSCAPASRVAESTEAH H/LCPDNLHISSREGASPCWPGCS*TPELKR

510

Table 8

SEQ	Method	Predicted	Predicted	Amino acid sequence (X=Unknown, *=Stop
ID		beginning	ending	codon, /=possible nucleotide deletion,=possible nucleotide insertion)
NO:		nucleotide	nucleotide	deletion,=possible flucteotide insertion)
		location of	location of	
	1	first amino	last amino acid residue	
		acid residue	of peptide	
		of peptide sequence	sequence	·
		sequence		PAHPCRDQLGH
2897	A	524	954	FCSMSSQKWSWQAQPLSWRHWSQGPVPS
				LPAKLLFKGFLPGTAKPACSAFREAAALAF
	İ			IQDNKTAISEEKGNGSRFLGFPSARLRGRPR
				AESPRPEPRARPRATQPGPAAPAAHATPPP
				GPAPAPYLVIRGASGGRGNVRGPK DLHFEIQVLLEALRGLCSLYPKHREGSLKV
2898	A	188	590	HPGHLCWMPTVTRPGTPPSQASTGAQELP
				GGEKKTCRWEKKKKTFPGSAGLTGKSIER
				LTRPALYLRPLLFSSFPVRVTLEALPGGVPK
				RSASRMPVEMKRGPF
2899	A	41	274	KRGTERKTHFGGCSIQFSDIASGKNILPGLC
2099	^	41	274	FLTHKR\WFCSL*RQGWVSRWSHE*GCTR
				CWRLGKFLWVADRFLGSG
2900	A	1	1462	MKAMPWNWTCLLSHLLMVGMGSSTLLTR
2500	11	-		QPAPLSQKQRSFVTFRGEPAEGFNHLVVDE
				RTGHIYLGAVNRIYKLSSDLKVLVTHETGP
				DEDNPKCYPPRIVQTCNEPLTTTNNVNKM
	1		1	LLIDYKENRLIACGSLYQGICKLLRLEDLFK
				LGEPYHKKEHYLSGVNESGSVFGVIVSYSN
			Ì	LDDKLFIATAVDGKPEYFPTISSRKLTKNSE
				ADGMFAYVFHDEFVASMIKIPSDTFTIIPDF DIYYVYGFSSGNFVYFLTLQPEMVSPPGST
				TKEQVYTSKLVRLCKEDTAFNSYVEVPIGC
1			1	ERSGVEYRLLQAAYLSKAGAVLGRTLGVH
İ				PDDDLLFTVFSKGQKRKMKSLDESALCIFI
1				LKQINDRIKERLQSCYRGEGTLDLAWLKV
				KDIPCSSAIRVDGPRGNALQYETVQVVDPG
				PVLRDMAFSKDHEQLYIMSERQSQELCPPQ
				ELDDIFSCCQTPRSPDFSHTGTHCALDEAA
				MAWEWSHSQ
2901	A	14	348	GLFPNKIPFSVLEIRTWAHLSGRHHSAHCT
1			·	SCAWPQVACLPLATHPSCTCTFCSLQAPGR
		1		PGQSPLSPRRACGPEDLPPPPYV*DLAPSLG
				PSLGPLMSQSQPRRTPPLRG
2902	A	191	1375	EWPEGGGRYSSVPSAVHHARTCLAAELSG TSRPQEPRALPPETGVATAEAEKSNQPAAI
	1 '			SK/PNGQGAPLQR/RSPRLSPSPGAAQVPAL
				PMQDMSEGSSSPSPPGGHIWLASLTPCSLA
				LWNSCCQSPGSQPRGRDEGDCLVRATEPS
				ATGPDPRRTRLCSISASLVVRNTPDPGISDR
				RPGISDRRPGTSDRRPGISDRRPG
				TSDRRPGTSDRRPGTSDRRPGISD
				RRPGTSDRRPGISDRRPGTSDRRPGISDRRP
				GTSDRRPGTSDRRPGISRLPRDWIPAAAAS
				RENSNSADARNRCSSPSRKCQTPTSHRMR
1				GSAGSVGSSAGHTAGGTGLPTPSRCSQAL
[QVFPAVLGKRGFLSWERSLKQRDIRGPDFS
				STALI
2903	A	1	2547	MRKYNSLVVDMRKVSVVWIDQASHNIPLS
		1		QSQIQIRPFNSVKAERGEEATEEELEANTAS

Table 8

SEQ	Method	Predicted	Predicted	Amino acid sequence (X=Unknown, *=Stop
_	IATERHOR	beginning	ending	codon, /=possible nucleotide
ID NO:		nucleotide	nucleotide	deletion,=possible nucleotide insertion)
NO:	ľ	location of	location of	deletion, possible name
	ļ	1		
		first amino	last amino	
		acid residue	acid residue	
		of peptide	of peptide	
		sequence	sequence	GCASRLHSYLLALHCFTVRLCGVPSPHLFA
				SSTASLPESPGCCMHSLVTKSPCGDPLEPD
				DATLFKQNLFYLETLNTKQKLYHKKIFRTA
	İ			MLFQFVNVLLQVLVHKSHDLLQEEIGIAIY
				NMASVDFDGFFAAFLPEFLTSCDGVDANQ
				KSVLGRNFKMDRVCEGISSLSRLQNELSYI
			1	EKFTDFLRLFVSVHLRRIESYSQFPVVEFLT
	1			LLFKYTFHQDLDIQPSQAVFGGIEFTYILVT
				LVILGTQRVPKPGCGQGGRANCPNSGANA
				TANGTAAPAAAAAAATAYGERPTWRRAD
		1	ŀ	TANGIAAPAAAAAAATATOERTIWAAD
			1	TAGRPATNASASGFPHRIELKAGKTITLED
				GRQINGADYLAAPVPGKALAIFGDTGPCD AALDLAKGVDVMVHEATLDITMEAKANS
			Ì	AALDLAKGVDVMVHEATLDITIVIEAKANS
				RGHSSTRQAATLAREAGVGKLIITHVSSRY DDKGCQHLLRECRDFKATRPNEKWVTDV
	ļ	1		DDKGCQHLLRECKDFKATRPNEKWV1DV
,	-			TEFAVNGRKLYLSPVIDLFNNEVISYSLSER
	1	}		PVMNMVENMLDQAFKKLNPHEHPVLHSD
1				QGWQYRMRRYQNILKEHGIKQSMSRKGN
				CLDNAVVECFFGTLKSECFYLDEFSNISEL
	1			KDAVTEYIEYYNSRRISLKLKALAVALANI
			İ	DPIIELTSCADACKRTALVANPWQLGNVR
				DARTYKELLDQIAELLRILGSADRLMEVIR
	1			EELELVREQFGDKRRTEITANSADINLEDLI
				TQEDVVVTLSHQGYVKYQPLSEYEAQRRG
	1			GKGKSAARIKEEDFIDRLLVANTHDHILCF
				SSRGRVYSMKVYQLPEATRGARGRPIVNL
			 	LPLEQDERITAILPVTELGIL
2904	A	165	638	MFVIAFLSPLSLIFLAKFLKKADTRDSRQAC
				LAASLALALNGVFTNTIKLIVGRPRPDFFY
1	1			RCFPDGLAHSDLMCTGDKDVVNEGRKSFP
				SGHSSFAFAGLAFASFYLAGKLHCFTPQGR GKSWRFCAFLSPLLFAAVIALSRTCDYKHH
			[
		<u> </u>		WQGPFKW* MGWDCGLARWARVGLRERAAVQPLAPG
2905	A	1	2301	CAAMSFAFPPFIPQGYKTAFGVGTNKIVTQ
ł				DNRWELPGAWYFPRASSQAREMPQCPTLE
				SQEGENSEEKGDSSKEDPKETVALAFVREN
1				DC VONCION VOO GRARDARA ATTALATA
	1	1	1	PGAQNGLQNAQQQGKKKRKKKRLGLKAG EWGAMLMIGDQSIQLPAFLSSIVRRAAQQ
	1		1	YGFREGGEDDDWTLYWTDYSVSLERVME
	1		1	MKSYQKINHFPGMSEICRKDLLARNMSRM
	1			INTO I AVILLA LA LA LA LA LA LA LA LA LA LA LA LA
	1	1		LKMFPKDFRFFPRTWCLPADWGDLQTYSR SRKNKTYICKPDSGCQGKGIFITRTVKEIKP
		1		GEDMICQLYISKPFIIDGFKFDLRIYVLVTSC
				DEL DEL MECLA DE ATTEVED DOTTONI DOT
				DPLRIFVYNEGLARFATTSYSRPCTDNLDDI
				CMHLTNYSINKHSSNFSRDAHSGSKRKLST
				FSAYLEDHSYNVEQIWRDIEDVIIKTLISAH
				PIIRHNYHTCFPNHTLNSACFEILGFDILLDH
1				KLKPWLLEVNHSPSFSTDSRLDKEVKDGL .
				LYDTLVLINLESCDKKKVLEEERQRGQFLQ
1				QCCSREMRIEEAKGFRAVQLKKTETYEKE

Table 8

DO NO: Deginning nucleotide location of first amino acid residue of peptide sequence December 2007 Dece	OTIC	Mask-1	Predicted	Predicted	Amino acid sequence (X=Unknown, *=Stop
NO: nucleotide location of first amino acid residue of peptide sequence NCGGFRLIYPSLNSEKYEKFFQDNNSLFQN TVASRAREEYARQLIQELRLKREKKPFQM KKKVEMQGESAGEQVRKKGMRGWQQKQ QQKDKAATQASKQYIQPTLIVSYTPDLLLS VRGERKNETDSSLNQEAPTEEASSVFPKLF AKSASAVNVFTGTVVSILEAEKSKIKVLAS LMSGEGLFLLDGSFLLCPHTVEGAS NVTTERQLDWIERCQVLILALSEEMPELPE AIVMASSEVVTRQDNIDSPQEPPFTLEAS AVMASSEVVTRQDNIDSPQEPPFTLEAS AVMASSEVVTRQDNIDSPQEPPFTLEAS AVMASSEVVTRQDNIDSPQEPPFTLEAS AVMASSEVTRQDNIDSPQEPPFTLEAS AVMASSEVTRQDNIDSPQEPPFTLEAS AVMASSEVTRQDNIDSPQEPPFTLEAS AVMASSEVTRQDNIDSPQEPPFTLEAS AVMASSEVTRQDNIDSPQEPPFTLEAS AVMASSEVTRQDNIDSPQEPPFTLEAS AVMASSEVTRQDNIDSPQEPPFTLEAS AVMASSEVTRQDNIDSPQEPPFTLEAS AVMASSEVTRQDNIDSPQEPPFTLEAS AVMASSEVTRQDNIDSPQEPPFTLEAS AVMASSEVTRQDNIDSPQEPPFTLEAS AVMASSEVTRQDNIDSPQEPPFTLEAS AVMASSEVTRQDNIDSPQEPPFTLEAS AVMASSEVTRQDNIDSPQEPPFTLEAS AVMASSEVTRQDNIDSPQEPPFTLEAS AVMASSEVTRQDNIDSPQEPPFTLEAS AVMASSEVTRQDVILAVIVNIPSIDIALIQSS SWRMADYHKLTQGVTPIAAAVPNVISLE EQNITSSCTWYAAJVLNVFESIPPHKALK KQFAFSWQQQPYTFILPWGHINSPTLCYN LIWELDHFSLPQDITLLVHYIDDINLIQSS QEVANTLDLEEKALQQVQAAVQAALPLGP YDPADPVVLEVSVADRDITVWSLCSCCVTP WFGTLSHVSNLQTWSPCPPPVSVGSQRP LSREKNKNTKRHSIPEVLIMKPYFTAVAPH LLYRRSTRRKTELITNKELTSAHFTGDLPRR AVWVLGBRTAVRPSLEQGMALWI LYRRSTRRKTELITNKELTSAHFTGDLPRR AVWVLGBRTAVRPSLEQGMALWI LYRSTRRSTELTNKELTSAHFTGDLPRR AVWVLGBRTAVRPSLEQGMALWI LLYRRSTRRSTELTNKELTSAHFTGDLPRR AVWVLGBRTAVRPSLEQGMALWI LLYRRSTRRSTELTNKELTSAHFTGDLPRR AVWVLGBRTAVRPSLEQGMALWI LLYRRSTRRSTELTNKELTSAHFTGDLPRR AVWVLGBRTAVRPSLEQGMALWI LLYRRSTRRSTELTNKELTSAHFTGDLPRR AVWVLGBRTAVRPSLEQGMALWI LLYRRSTRRSTELTNKELTSAHFTGDLPRR AVWVLGBRTAVRPSLEQGGIV GPAGGWAGTDRGFRARPPQKSPPWBS GDAAKQQSFLPKGGV GPAGGWAGTDRGFRARPPQKSPPWBS GDAAKQQSFLPKGGV GPAGGWAGTDRGFRARPPQKSPPWBS GDAAKQQSFLPKGGV GPAGGWAGTDRGFRARPPQKSPPWBS GDAAKQQSFLPKGSV GDAAKQQSCLPLFAANDSGFRAVQHALSESSRHALAQFFYMH LAPGWLRAAVTQTFKECQWKLCSCVIA KEBRTVYRVQPNKRGKRTVLKHMWWLSCCCVIA GROTT GAACQCCCC GAACQCCCCCCCC GAACQCCCCCCCCCC	SEQ	Method			codon. /=possible nucleotide
location of first amino acid residue of peptide sequence Sequence					deletion.=possible nucleotide insertion)
first amlo acid residue of peptide sequence Sequence	NO:				deterior, possion management,
acid residue of peptide sequence Comparison				1	
of peptide sequence NCGGFRLIYPSLNSEKYEKFFQDNNSLFQN TVASRAREEYARQLIQELRLKREKKFPQM KKKVEMQGESAGEQVRKKGMRGWQQKQ QQKDKAATQASKQYIQPLTLVSYTPDLLLS VRGERKNETDSSLNQEAPTEEASSVFPKLT SAKPFSSI-PDLRINILSSSKLEPSKPNFSIKE AKSASAVNVFTGTVVSILEAEKSKIKVLAS LMSGEGLFLLOGSFILLCPHTVEGAS AKSASAVNVFTGTVVSILEAEKSKIKVLAS LMSGEGLFLLOGSFILLCPHTVEGAS AKSASAVNVFTGTVVSILEAEKSKIKVLAS LMSGEGLFLLOGSFILLCPHTVEGAS AKSASAVNVFTGTVVSILEAEKSKIKVLAS LMSGEGLFLLOGSFILLCPHTVEGAS PVTRLKSWRAPRVPVGPTTHPVVISPVPE CIISIDILRSWQNPHIGTLTGRVRAVMVRKA KWKPLELSLPRKIVNQKQYCVPGGIVEISA TIKDLKDAKVVPTISLENYPIWLVQKNDG SWRMAVDYHKLTQGVTPIAAAVPNISLL EQINTSSGTWYAAIVTISLPYPWLAVKALK KQFAFSWQGQPYTTILPWGHINSPTLCYN LIWRELDHFSLPQDITLVHYIDDIMLIGSSE QEVANTLDLEKALQQVQAAVAALPLGP YDPADPVVLEVSVADRDTVWSLCSCCYTP WFGTLSHVSNLQTWSPCPPPVSPVGSRPQ LSREKNKNTKRHSIPPVLINKPYFTAVAKP SLLSHKWILPLEKPENPCCYSSDHRTAVPNL LLYRRSTRKTELTNKELTSAHFTGDLPRR AVWVLGDRTAVRPSLEQGMALWI KGSTBAFISGTAGWGTGILPSSAGLPGW GPAGGWAGTDRRGPRARPPQKSPPWPWS GDAAKGQSGFLPVAAWAGQGRLPGGGIV H 2907 A 2 266 KGSTBAFISGTAGWGTGILPSSAGLPGGW GPAGGWAGTDRRGPRARPPOKSPPWPWS GDAAKGQSGFLPVAAWAGQGRLPGGGIV H LAPGWLRAAVTQTPFKFCQWKLCSVNIA GDSFSPWTGGISVAHPBETVTASPTTQGSA LPPGEENPSEVVLCAFSKRRAQYEHSLRPL KEDRTVYRVGPNKRGKRTVLKHMGWC FILEGGTAWKQHALSESSRHALAQFTVMH LPAQGALRAPLLITLAALVHVGVQSRGS RSRFLGCLEPIERSFLGVLPRSWERSVLCLP VNSLQGACLRLPAAADSSIFKKS SALDLQKRGATYPSGFPLR 2909 A 149 300 TRRGGCPERKVEELKLWEKCVHSLYRHSS SALDLQKRGATYPRSGFPLR				1	
Sequence Sequence NCGGFRLIYPSLNSEKYEKFFQDNNSLFQN					
NCGGRALIYSLNSEKYEKPRODNSLIQN TVASRARIEYARQLIQEIRLKREKKPROM KKKVEMQGESAGEQVRKKGMRGWQKQ QQKDKAATQASKQYIQELTILVSYTPDILLS VRGERKNETIDSSLNQEAPTEBASSVPFKLT SAKPFSSLPDLRNINLSSSKLEPSKPNFSIKE AKSASAVNVFTGTVVSILEAEKSKIKVLAS LMSGEGIFLIDGSFLICPHTVEGAS 2906 B 1 1 1518 MVNTERQLDWIERCQVLILALSEENPELPE ALVMASSBVVTRQDNIDSPQEPPPTPLFASR PVTRLKSWRAPRVPVOPRTHEVVISPVPE CIISIDILRSWQNPHIGTLTGRVRAVMVRKA KWRPLELSLPRKIVNQKQYCVPGGIVEISA TTKDLKDAKVVPTISLENYPIWLVQKNDG SWRMAVDYHKLTQGVTPIAAAVPNISLL EQINTSSGTWYAAIYLVNVFFSIPVHKALK KQFAFSWQGQPYTFTILPWGHINSPTLCYN LIWRELDHFSLPQDITLVHYIDDIMLIGSSE QEVANTIDLLEKALQQVQAAVQAALPLGP YDPADPVVLEVSVADRDTVWSLCSCCYTP WFGTLSHVSNLQTWSPCPPPVSPVGSQRPQ LSREKNKNTKRHISIPEVLIMKPYTTAVAKP SLASHKWIPLEKPENPCCYSSDIERTAVPNL LLYRRSTRKTELTNELTSAHFTGDLPRR AVWVLGBRTAVRPSLEQGMALWI LLYRRSTRKTELTNELTSAHFTGDLPRR AVWVLGBRTAVRPSLEQGMALWI H 2907 A 2 266 KGSTEAFISGTAGWGTGLIPSSAGIPGGW GPAGGWAGTDRGPRARPPQKSPPWPWS GDAAKGQSGFLPVAAWAGQGRLPGGGIV H 2908 B 494 641 MADLEQLGINPGLEGTHILHHPGHMGAK LDKQHPHIDRYPTKSDPACGMGTAVHH LAPGWLRAAVTQTPFKFCQWKLCSCVNLA GDSFSPWYGGISVAHPETVTVASPTTQGSA LPPGEENPSEVVLCAFSKREAQYEHSLRPL KEDRTYYRVGPNKRGKRRTYLKHMQWKL KGAYRRGQLLANNQAEHKVVSRKINQDC FILEGGTAWKQHALSESSRHALAQFFIVMH 1PAQPGALRAPLLLTLAALVHVGVQSRGS RSRFLGCLEPIERSFLGVLPRSWERSVLCLP VNSLQGACLRIPAAADSSIFKRS 2909 A 149 300 TRRGGCPERKVEEKLWEKCVHSLYRHSS SALDLOKREGARYPERSEVERYNDE					
TVASRAREPYARQLIQELRLKREKKPFQM KKKVEMQGESAGEQVRKKGMRGWQKKQ QQKDKAATQASKQYIQPLTLVSYTPDLLS VRGEKNETDSSLNQEAPTEEASSVPPKLT SAKPFSSLPDLRNINLSSSKLEPSKPNFSIKE AKSASAVNYTGTVVSILEAEKSKIKVLAS LMSGEGLFLIDGSFILCPHTVEGAS LMSGEGLFLIDGSFILCPHTVEGAS LMSGEGLFLIDGSFILCPHTVEGAS LMSGEGLFLIDGSFILCPHTVEGAS PYTRIKSWRAPRVRPVGPRTHPVVISPVPE CIISIDILRSWQNPHIGTLTGRVRAVMVRKA KWKPLELSLPRKIVNQKQYCVPGGIVEISA TTKDLKDAKVVIPTISLFNYPIWLVQKNDG SWRMAVDYHKLTQGVTFLAAVPNVISLL EQINTSSGTWYAAIYLVNVFFSIPVHKALK KQFAFSWQGQPYTFTILPWGHINSPTILCYN LIWREIDHFSLPQDITT.VHYIDDIMLIGSSE QEVANTLDLLEKALQQVQAAVQAALPLGP YDPADPVVLEVSVADRTTVWSLCSCCYTP WEGTISHVSNLQTWSPCPPPVSPVGSQRPQ LSREKNKNTKRHSIPEVLIMKPYTTAVAKP SLLSHKWLPLEKPENPCCYSDHRTAVAKP SLLSHKWLPLEKPENPCCYSDHRTAVAKP SLLSHKWLPLEKPENPCCYSDHRTAVAKP SLLSHKWLPLEKPENPCCYSDHRTAVAKP GPAGGWAGTDRRGPRARPPQKSPPWPWS GPAGGWAGTDRRGPRARPPQKSPPWPWS GPAGGWAGTDRRGPRARPPQKSPPWPWS GDAAKGQSGFLPVAAWAGQGLPGGGIIV H 2908 B 494 641 MADLEQLGINPGLEGTHHLHHPGHMGAK LDKQHPHDRVPTRKSDPACGMGTAVAHH LAPGENRAVTOTPFKFCQWKLCSCVNTA GDSFSPWYGGISVAHPEPTVTASPTTQGSA LPPGEENPSEVVLCAFSKREAQYBEHSLRPL KEDRTVYRVGPNKRGKRRTVILKHMQWKL KEDRTVYRVGPNKRGKRRTVILKHMQWKL KEDRTVYRVGPNKRGKRRTVILKHMQWKL KEDRTVYRVGPNKRGKRRTVILKHMQWKL KEDRTVYRVGPNKRGKRRTVILKHMQWKL KEDRTVYRVGPNKRGKRRTVILKHMQWKL KEDRTVYRVGPNKRGKRRTVILKHMQWKL KEDRTVYRVGPNKRGKRRTVILKHMQWKL KEDRTVYRVGPNKRGKRRTVILKHMQWKL KEDRTVYRVGPNKRGKRRTVILKHMQWKL KEDRTVYRVGPNKRGKRRTVILKHMQWKL KEDRTVYRVGPNKRGKRRTVILKHMQWKL KEDRTVYRVGPNKRGKRRTVILKHMQWKL KEDRTVYRVGPNKRGKRRTVILKHMQWKL KEDRTVYRVGPNKRGKRRTVILKHMQWKL KEDRTVYRVGPNKRGKRRTVILKHMQWKL KEDRTVYRVGPNKRGKRRTVILKHMQWKL KEDRTVYRVGPRKGKRRTVILKHMQWKL KEDRTVYRVGPRKGKRRTVILKHMQWKL KEDRTVYRVGPRKGKRRTVILKHMQWKL KEDRTVYRVGPRKGKRRTVILKHMQWKL KEDRTVYRVGPRKGKRRTVILKHMQWKL KEDRTVYRVGPREGERVILKHWREVRSVICLP VNSLQACLRIPAAADSIFKRS 2909 A 149 300 TRRGGCPEKVERELKLWEKCVHSLYRHSS SALDLOKREGERVERELKLWEKCVHSLYRHSS SALDLOKREGERVERELKLWEKCVHSLYRHSS			sequence	sequence	NCGGERI IVPSI NSEKYEK PFODNNSLFON
KKKVEMQGESAGEQVRKKGMRGWQCKQ QQKDKAATQASKQYIQPLTLVSYTPDLLLS VRGERKNETDSSLNQEAPTEEASSVPPKLT SAKPFSSLPDLRNINLSSSKLEPSKPNFSIKE AKSASAVNVFTGTVVSILEAEKSKIKVLAS LMSGEGLFLDGSFLLCPHTVEGAS LMSGEGLFLDGSFLLCPHTVEGAS MVNTERQLDWIERCQVLILALSEEINPELPE AIVMASSEVVTRQDNIDSPQEPPPTPLFASR PVTRLKSWRAPRVRPVGPRTHPVVISPVPE CIISDLIRSWQNPHIGTLTGRVRAVMVRKA KWEPLELSLPRKIVNQKQVCVPGGIVEISA KWEPLELSLPRKIVNQKQVCVPGGIVEISA KWEPLELSLPRKIVNQKQVCVPGGIVEISA KWEPLELSLPRKIVNQKQVCVPGGIVEISA KWEPLELSLPRKIVNQKQVCVPGGIVEISA KWEPLELSLPRKIVNQKQVCVPGGIVEISA KWEPLELSLPRKIVNQKQVCVPGGIVEISA TIKDLKDAKVVPPTISLFNYPIWLVQKNDG SWRMAVDYHKLTQGVTPIAAAVPNVISLL EQINTSSGTWYAATYLVNVFFSIPVHKALK KQFAFSWQGQPYTFTLIPWGHINSPTLCYN LIWRELDHFSLPQGPYTFTLIPWGHINSPTLCYN LIWRELDHFSLPQQVALVQAAVQAALPLGP YPDPADPVVLEVSVADRDTVWSLCSCCYTP WFGTLSHVSNLQTWSPCPPPVSPVGSQRPQ LSREKNKNTKRIHSIPEVLIMKPYFTAVAKP SILLSHKWLPLEKPENPCCYSSDHRTAVPNL LLYRRSTRRTELTINKELTSAHFTGDLPRR AVWVLGDRTAVRPSLEQGMALWI KGSTEAFISGTAGWGTGILPSSAGLPGGW GPAGGWAGTDRRGPRARPPQKSPPWPWS GDAAKGQSGFLPVAAWAGQGRLPGGGIV H AMDLEQLGLNPGLEGTHHLHHPGMGAK LDKQHPHDRVPTRKSDPACGMGTAVAHH LAPGWLRAAVTQTPFKFCQWKLCSCVNIA GDSFSPWYGGISVAHPEPTVTASPTTQGSA LPPGEENPSEVVLCAFSKREAQYEHSLRPL KEDRTVYRVQPNKRGKRRTVLKHMQWKL KGGAYRRGQLLANNQAEHKVVSKKINQDC FILEGGTAWKQHALSESSRHAWGWIINGHIVMH LPAQPGALRAPLLILTLALVHVGVQSRGS RSSFIGCLEPIERSFLGVIPRSWERSVLCLP VNSLQGACLRLPAAADSSIFKRS TRRGGCPEEKVEELKLWEKCVHSLYRHSS SALDLQKPGATYPTSGFPLR 2909 A 149 300 TRRGGCPEEKVEELKLWEKCVHSLYRHSS SALDLQKPGATYPTSGFPLR				Į	TVASRAREFYAROLIOELRLKREKKPFOM
2906 B 1 1 1518 MYNTERQLØHTELSENFELTS SAKPFSSLPDLRNINLSSSKLEPSKPNFSIKE AKSASAVNVFTGTVVSILEAEKSKIKVLAS LMSGEGLFLLOGSFLLCPHTVEGGAS LMSGEGLFLLOGSFLLCPHTVEGGAS MYNTERQLØMERCQVLILALSEEINPELPE ALVMASSEVVTRQDNIDSPQEPPPTPLFASR PVTRIKSWRAPRVRPVGPRTHPVVISPVE CIISDILRSWQNPHIGTLTIGRVRAVMVRKA KWKPLELSLPRKIVNQKQVCVPGGIVEISA TTKDLKDAKVVPTISLFNYPIWLVQKNDG SWRMAVDYHKLTQGVTPIAAAVPNVISLL EQINTSSGTWYAATYLNVFFSIPVHKALK KOFAFSWQGQPYTFTILPWGHINSPTLCYN LIWRELDHFSLPQDITLVHYIDDIMLIGSSE QEVANTLDLLEKALQQVQAAVQAALPLGP YDPADPVVLEVSVADRDTVWSLCSCCYTP WFGTLSHVSNLQTWSPCPPPVSPVGSQRPQ LSREKNKNTKRHSIPEVLIMKPYFTAVAKP SLLSHKWLPLEKPENPCCVSSDHRTAVPNL LLYRRSTRRKTELTNKELTSAHFTGDLPRR AVWVLGDRTAVRSLEQGMALWI 2907 A 2 266 KGSTEAFISGTAGWGTGLPSSAGLPGGW GPAGGWAGTDRGPRAPPPQSSPPWWS GDAAKGQSGFLPVAAWAGQGRLPGGGIIV H 2908 B 494 641 MADLEQLGLNPGLEGTHHLHHPGHMGAK LDKQHPHDRVPTRKSDPACGMGTAVAHH LAPGWLRAAVTQTPFKFCQWKLCSCVNIA GDSFSPWYGGISVALHEPTVTASPTTQGSA LPPGENPSEVVLCAFSKREAQVEHSLRPL KEDRTVYRVGPNKRGKRRTVLKHMQWKL IKGAYRRGQLLANNQAEHKVVSKKINQDC FILEGGTAWKQHALSESSRIALAQFFIVMH LPAQPGALRAPLLLTLAALVHVGVQSRGS RSRFLGCLEPTERSFLGVLPRSWERSVLCLP VNSLQGACLRLPAAADSSIFKRS 2909 A 149 300 TRRGGCPEKVEELKLWEKCVHSLYRHSS SALDLQKPGAIYPTSGFPLR		}			KKKVEMOGESAGEOVRKKGMRGWOOKO
VRGERKNETDSSLNQEAPTEEASSVPFKLT		ļ			OOKDKAATOASKOVIOPI.TI.VSYTPDLLLS
2906 B 1 1 1518 MVNTERQLDWIERCQVLILALSEEINPELPE ALVMASSEVVTRQDNIDSPQEPPTPLFASR PVTRLKSWRAPRVRPVGPRTHPVVISPVPE CIISIDLIRSWQNPHIGTLTGRVRAVMVRKA KWRPLELSLPRRIVNQKQYCVPGGIVEISA TTKDLKDAKVVPTISLFNPYIWLVQKNDG SWRMAVDYHKLTQGVTPLAAAVPNVISLL EQNTSSGTWYAAIYLVNVFFSIPVHKALK KQFAFSWQGQPYFFTILPWGHINSPTLCYN LIWRELDHFSLPQDITTLVHYIDDIMLIGSSE QEVANTLDLLEKALQQVQAAVQAALPLGP YDPADPVVLEVSVADRDTVWSLCSCCYTP WFGTLSHVSNLQTWSPCPPPVSFVGSQRPQ LSREKNKNTKRIHSIPEVLIMKPYFTAAVAPN LLYRRSTRRKTELTNKELTSAHFTGDLPRR AVWVLGDRTAVPSLEQGMALWI KGSTEAFISGTAGWGTGLLPSSAGLPGGW GPAGGWAGTDRRGPRAPPPQKSPPWSP GDAAKGQSGFLPVAAWAGQGRLPGGGIV H MADLEQLGLNPGLEGTHHLHHPGHMGAK LDKQHPHDRVPTRKSDPACCMGTAVAHH LAPGWLRAAVTQTPFKFCQWKLCSCVNIA GDSSPWYGGISVAHPEPTVTASPTTQGSA LPPGEBPSPSVVLCAFSKREAQYEHSLRPL KEDRTVYRVGPNKRGKRRTVLKHMQWKL IKGAYRRGQLLANNQAEHKVORKINQWL IKGAYRRGQLLANNQAEHKVORKINQW LPQFGEBPSFEVVLCAFSKREAQYEHSLRPL KEDRTVYRVGPNKRGKRRTVLKHMQWKL IKGAYRRGQLLANNQAEHKVORKINGW SRSFIGCT.EPIERSFLGVLPRSWERSVLCLP VNSLQGACLRLPAAADSSIFKRS 2909 A 149 300 TRRGGCPEEKVEELKLWEKCVHSLYRHSS SALDLQKIPGAFIFFER AVNEV			·		VP GERKNETDSSI NOFAPTEEASSVEPKLT
AKSASAVNYFTGTVVSILEAEKSKIKVLAS LMSGEGLFLIDGSFLLCPHTVEGAS 1 1518 MVNTERQLDWIERQCYVILALSEEINPELPE AIVMASSEVVTRQDNIDSPQEPPPTPLFASR PYTRLKSWRAPRVRPVGPRTHEPVLSPVFE CIISDILRSWQNPHIGTLTGRVRAVMVRKA KWKPLELSLPRKIVNQKQYCVPGGIVEISA TTKDLKDAKVVIPTISLFNYPIVLVQKNDG SWRMAVDYHKLTQGVTPIAAAVPNVISLL EQNTSSGTWYAAIVLVNVFFSIPVHKALK KQPAFSWQQPYTFTILPWGHINSPTLCYN LIWRELDHFSLPQDITLVHYIDDIMLIGSSE QEVANTLDLLEKALQQVQAAVQAALPLGP YDPADPVVLEVSVADRDTVWSLCSCCYTP WFGTLSHVSNLQTWSPCPPPVSPVGSQRPQ LSREKNKNTKRIHSIPEVLIMKPYFTAVAKP SLLSHKWLPLEKPENPCCYSSDHRTAVPNL LLYRRSTRRKTELTNKELTSAHFTGDLPRR AVWVLGDRTAVRPSLEQGMALWI LLYRRSTRRKTELTNKELTSSAHFTGDLPRR AVWVLGDRTAVRPSLEQGMACHWI LLYRRSTRRKTELTNKELTSSAHFTGDLPRR AVWVLGDRTAVRPSLEQGMACHWI LLYRRSTRRKTELTNKELTSSAHFTGDLPRR AVWVLGDRTAVRPSLEQGMACHWI LLYRRSTRRKTELTNKELTSSAHFTGDLPRR AVWVLGDRTAVRPSLEQGMACHWI LLYRRSTRRKTELTNKELTSSAHFTGDLPRR AVWVLGDRTAVRPSLEQGMACHWI LLYRRSTRRKTELTNKELTSSAHFTGDLPRR AVWVLGDRTAVRPSLEQGMACHWI LLYRRSTRRKTELTNKELTSSAHFTGDLPRR AVWVLGDRTAVRPSLEQGMACHWI LLYRRSTRRKTELTNKELTSSAHFTGDLPRR AVWVLGDRTAVRPSLEQGMACHWI LLYRRSTRRKTELTNKELTSSAHFTGDLPRR AVWVLGDRTAVRPSLEQGMACHWI LLYRRSTRRKTELTNKELTSSAHFTGDLPRR AVWVLGDRTAVRPSLEQGMACHWI LLYRRSTRRKTELTNKELTSSAHFTGDLPRR AVWVLGDRTAVRPSLEQGMACHWI LLYRRSTRRKTELTNKELTSSAHFTGDLPRR AVWVLGDRTAVRPSLEQGMACHWI LLYRRSTRRKTELTNKELTSSAHFTGDLPRR AVWVLGDRTAVRPSLEQGMACHWI LLYRRSTRRKTELTNKELTSAHFTGDLPRR AVWVLGDRTAVRPSLEQGMACHWI LLYRRSTRRKTELTNKELTSSAHFTGDLPRR AVWVLGDRTAVRPSLEQGMACHWI LREGATRAVRPSLEQGMACHWI LREGATRAVRPSLEQGMACHWI LPAQPGALRAPALADSSIFKRS ALDLQKIPGATYPSGFFLR 2909 A 149 300 TRRGGCPEKVEELKLWEKCVHSLYRHSS SALDLQKIPGATYPSGFFLR AVGORDAN ARTER EREFITANTEELEARVNFV				1	SAK PESSI POL RNINI SSSKI EPSKPNFSIKE
2906 B 1 1 1518 MVNTERQLDWIERCQVLIALSEEINPELPE ALVMASSEVVTRQDNIDSPQEPPPTPLFASR PVTRLKSWRAPRVRPVGPRTHPVVISPVPE CISDILRSWQNPHIGTLTGRYRAVWYRKA KWKPLELSLPRKIVNQKQYCVPGGIVEISA TIKDLKDAKVVIPTISLENYPIWLVQKNDG SWRMAVDYHKLTQGVTPIAAVPNVISLL EQINTSSGTWYAAIYLVNVFFSIPVHKALK KQPAFSWQGQPYTFTILPWGHINSPTLCYN LIWRELDHFSLPQDITLVHYIDDIMLIGSSE QEVANTLDLLEKALQQVQAAVQAALPLGP YDPADPVVLEVSVADRDTVWSLCSCCYTP WFGTLSHVSNLQTWSPCPPPVSPVGSQRPQ LSREKNKNTKRHSIPEVLIMKPYFTAVAKP SLLSHKWLPLEKPENPCYSSDHRTAVPNL LLYRRSTRRKTELTNKELTSAHFTGDLPRR AVWVLGDRTAVRPSLEQGMALWI KGSTEAFISGTAGWGTGLLPSSAGLPGGW GPAGGWAGTDRRGPRARPIPQKSPPWPWS GDAAKGQSGFLPVAAWAGQGRLPGGGIV H 2908 B 494 641 MADLEQLGLNPGLEGTHHLHHPGHMGAK LDKQHPHDRVPTRKSDPACGMGTAVAHH LAPGWLRAAVTQTFPFKFCQWKLCSCVNIA GDSFSPWYGGISVAHPEPTVTASPTTOGSA LPPGEENPSEVVLCAFSKREAQYEHSLRPL KEDRTVYRVGPNKRGKRRTVLKHMQWKL IKGAYRRGQLLANNQAEHKVVSRKINQDC FILEGGTAWKQHALSESSRHALAQFFIVMH LPAQPGALRAPLLLTLAALVHVGVQSRGS RSRFLGCLEPPERSFLGVLPRSWERSVLCLP VNSLQGACLRLPAAADSIFKRS 2909 A 149 300 TRRGGCPEEKVEELKLWEKCVHSLYRHSS SALDLQKIPGATYPSGFPLR					AKSASAVNVETGTVVSILEAEKSKIKVLAS
2906 B 1 1518 MVNTERQLDWIERCQVLILALSEEINPELPE AIVMASSEVVTRQDNIDSPQEPPPTPLFASR PYTRLKSWRAPRVRPVGPRTHEPVISPYPE CISIDILRSWQNPHIGTLTGRVRAVMVRKA KWKPLELSLPRKIVNQKQYCVPGGIVEISA TTKDLKDAKVVPTISLFNYPIWLVQKNDG SWRMAVDYHKLTQGVTPIAAAVPNVISLL EQINTSSGTWYAAIYLVNVFFSIPVHKALK KQFAFSWQGQPYTFILLPWGHINSPTLCYN LIWRELDHFSLPQDITLVHYIDDIMLIGSSE QEVANTLDLLEKALQQVQAAVQAALPLGP YDPADPVVLEVSVADRDTVWSLCSCCYTP WFGTLSHVSNLQTWSPCPPPVSPVGSQRPQ LSREKNKNTKRHSIPEVLIMKPYFTAVAKP SLLSHKWLPLEKPENPCCYSSDHRTAVPNL LLYRRSTRRKTELTNKELTSAHFTGDLPRR AVWVLGDRTAVRPSLEQGMALWI KGSTEAFISGTAGWGTGLLPSSAGLPGGW GPAGGWAGTDRGPRARPPQKSPPWWS GDAAKGQSGFLPVAAWAGQGRLPGGGIV H 2908 B 494 641 MADLEQLGINPGLEGTHHLHHPGHMGAK LDKQHPHDRVPTRKSDPACGMGTAVAHH LAPGWLRAAVTQTPFKFCQWKLCSCVNIA GDSTSPWYGGISVAHPEPTVTASPTTQGSA LPPGEENPSEVVLCAFSKREAQYEHSLRPL KEDRTVYRVGPNKRGKRTVLKHMQWKL IKGAYRRGQLLANNQAEHKVVSRKINQDC FILEGGTAWKQHALSESSRHALAQFFIVMH LPAQPGALRAPLLLTLAALVHVGVQSRGS RSRFLGCLEPIERSFLGVLPRSWERSVLCLP VNISLQGACLRLPAAADSSIFKRS 2909 A 149 300 TRRGGCPEEKVEELKLWEKCVHSLYRHSS SALDLQKPGATPSGFPLR		ļ			LMSGEGI FI IDGSFI I CPHTVEGAS
AIVMASSEVYTRQDNIDSPQEPPTPILFASR PYTRLKSWRAPRVRPVGPRTHPVVISPVPE CIISDILRSWQNPHIGTLTGRVRAVMVRKA KWKPLELSLPRKIVNQKQYCVPGGIVEISA TTKDLKDAKVVPTISLFNYPIWLVQKNDG SWRMAVDYHKLTQGVTPIAAAVPNVISLL EQINTSSGTWYAAIYLVNVFFSIPVHKALK KQFAFSWQGQPYTFTILPWGHINSPTLCYN LIWRELDHFSLPQDITLVHYIDDIMLIGSSE QEVANTIDLLEKALQQVQAAVQAAIPLGP YDPADPVVLEVSVADRDTVWSLCSCCYTP WFGTLSHVSNLQTWSPCPPPVSPVGSQRPQ LSREKNKNTKRHSIPEVLIMKPYFTAVAKP SLLSHKWLPLEKPENPCCYSSDHRTAVPNL LLYRRSTRRKTELTINKELTSAHFTGDLPRR AVWVLGDRTAVRPSLEQGMALWI 2907 A 2 266 KGSTEAFISGTAGWGTGLLPSSAGILPGGW GPAGGWAGTDRRGPRARPIPQKSPPWPWS GDAAKGQSGFLPVAAWAGQGRLPGGGIV H 2908 B 494 641 MADLEQLGLNPGLEGTHHLHHPGHMGAK LDKQHPHDRVPTRKSDPACGMGTAVAHH LAPGWLRAAVTQTPFKFCQWKLCSCVNIA GDSFSPWYGGISVAHPEPTVTASPTTQGSA LPPGEENPSEVVLCAFSKREAQYEHSLRPL KEDRTVYRVGPNKRGKRRTVLKHMQWKL IKGAYRRGQLLANNQAEHKVVSRKINQDC FILEGGTAWKQHALSESSRHALAQFFIVMH LPAQPGALRAPLLLTLAALVHVGVQSRGS RSRFLGCLEPIERSPLGVLPRSWERSVLCLP VNSLQGACLRLPAAADSSIFKRS 2909 A 149 300 TRRGGCPEEKVEELKLWEKCVHSLYRHSS SALDLQKPGAIYPSGFPLR				1510	MONTEP OLDWIFT COVILIA I SEEINPELPE
PVTRLKSWRAPRVRPVGPRTHPVVISPVPE CIISIDILRSWQNPHIGTLTGRVRAVMVRKA KWKPLEISLPRKIVNQKQVCVPGGIVEISA TTKDLKDAKVVIPTISLFNYPIWLVQKNDG SWRMAVDYHKLTQGVTPIAAAVPNVISLL EQINTSSGTWYAAIYLVNVFFSIPVHKALK KQFAFSWQGQPYTFTILPWGHINSPTLCYN LIWRELDHFSLPQDITLVHYIDDIMLIGSSE QEVANTLDLLEKALQQVQAAVQAALPLGP YDPADPVVLEVSVADRDTVWSLCSCCYTP WFGTLSHVSNLQTWSPCPPPVSPVGSQRPQ LSREKNKNTKRIHSIPEVLIMKPYFTAVAKP SLLSHKWLPLEKPENPCCYSSDHRTAVPNL LLYRRSTRKTELTNKELTSAHFTGDLPRR AVWVLGDRTAVRPSLEQGMALWI 2907 A 2 2666 KGSTEAFISGTAGWGTGLLPSSAGLPGGW GPAGGWAGTDRRGPRARPPQKSPPWPWS GDAAKGQSGFLPVAAWAGQGRLPGGGIV H 2908 B 494 641 MADLEQLGLNPGLEGTHHLHHPGHMGAK LDKQHPHDRVPTRKSDPACGMGTAVAHH LAPGWLRAAVTQTPFKFCQWKLCSCVNIA GDSFSPWYGGISVAHPEPTVTASPTTQGSA LPPGEENPSEVVLCAFSKREAQYEHSLRPL KEDRTVYRVGPNKRGKRTVLKHMQWKL IKGAYRRGQLLANNQAEHKVVSRKNQDC FILEGGTAWKQHALSESSRHALAQFFIVMH LPAQPGALRAPLLLTLAALVHYGVQSRGS RSFFLGCLEPIERSFLGVLPRSWERSVLCLP VNSLQGACLRLPAAADSSIFKRS 2909 A 149 300 TRRGGCPEEKVEELKLWEKCVHSLYRHSS SALDLQKUPGATYPSGFFLR	2906	B	1	1218	A DAMA SSEVATE ODNID SPOEPPTEL FASR
CIISIDILRSWQNPHIGTLTGRVRAVMVRKA KWKPLELSLPRKIVNQKQYCVPGGIVEISA TTKDLKDAKVVPTISLFNYPIWLVQKNDG SWRMAVDYHKLTQGVTPIAAAVPNVISLL EQINTSSGTWYAAIYLVNVFFSIPVHKALK KQFAFSWQGQPYTFTILPWGHINSPTLCYN LIWRELDHFSLPQDITLVHYIDDIMLIGSSE QEVANTLDLLEKALQQVQAAVQAALPLGP YDPADPVVLEVSVADRDTVWSLCSCCYTP WFGTLSHVSNLQTWSPCPPPVSPVGSQRPQ LSREKNKNTKRIHSIPEVLIMKPYFTAVAKP SILSHKWLPLEKPENPCCYSSDHRTAVPNL LLYRRSTRRKTELTNKELTSAHFTGDLPRR AVWVLGDRTAVRPSLEQGMALWI 2907 A 2 266 KGSTEAFISGTAGWGTGLLPSSAGLPGGW GPAGGWAGTDRRGPRARPPQKSPPWPWS GDAAKGQSGFLPVAAWAGQGRLPGGGIV H 2908 B 494 641 MADLEQLGLNPGLEGTHHLHHPGHMGAK LDKQHPHDRVPTRKSDPACGMGTAVAHH LAPGWLRAAVTQTPFKFCQWKLCSCVNIA GDSFSPWYGGISVAHPEPTVTASPTTQGSA LPPGEENPSEVVLCAFSKREAQYEHSLRPL KEDRTVYRVGPNKRGKRRTVLKHMQWKL IKGAYRRGQLLANNQAEHKVVSRKINQDC FILEGGTAWKQHALSESSRHALAQFFVMH LPAQPGALRAPLLLTLAALVHVGVQSRGS RSRFLGCLEPPERSFLGVLPRSWERSVLCLP VNSLQGACLRLPAAADSSIFKRS 2909 A 149 300 TRRGGCPEKVEELKLWEKCVHSLYRHSS SALDLQKUPGATYIPSGFELR				1	DYTTEL KOWE A DEVE DVGPRTHPVVISPVPE
KWKPLELSLPRKIVNQKQYCVPGGIVEISA TITKDLKDAKVVIPTISLFNYPIWLVQKNDG SWRMAVDYHKLTQGVTPIAAAVPNVISLL EQINTSGTWYAAIYLVNVFFSIPVHKALK KQFAFSWQGQPYTFILPWGHINSPTLCYN LIWRELDHFSLPQDITLVHYIDDIMLIGSSE QEVANTLDLLEKALQQVQAAVQAALPLGP YDPADPVVLEVSVADRDTVWSLCSCCYTP WFGTLSHVSNLQTWSPCPPPVSPVGSQRPQ LSREKNKNTKRHISIPEVLIMKPYFTAVAKP SLLSHKWLPLEKPENPCCYSSDHRTAVPNL LLYRRSTRRKTELTNKELTSAHFTGDLPRR AVWVLGDRTAVRPSLEQGMALWI LLYRRSTRRKTELTNKELTSAHFTGDLPRR AVWVLGDRTAVRPSLEQGMALWI GPAGGWAGTDRGPRARPIPQKSPPWPWS GDAAKGQSGFLPVAAWAGQGRLPGGGIV H 2908 B 494 641 MADLEQLGLNPGLEGTHHLHHPGHMGAK LDKQHPHDRVPTRKSDPACGMGTAVAHH LAPGWLRAAVTQTPFKFCQWKLCSCVNIA GDSFSPWYGGISVAHPEPTVTASPTTQGSA LPPGEENPSEVVLCAFSKREAQYEHSLRPL KEDRTVYRVGPNKRGKRRTVLKHMQWKL IKGAYRRGQLLANNQAEHKVVSRKINQDC FILEGGTAWKQHALSESSRHALAQFFVMH LPAQPGALRAPLLLITLAALVHVGVQSRGS RSRFLGCLEPIERSFLGVLPRSWERSVLCLP VNSLQGACLRLPAAADSSIFKRS 2909 A 149 300 TRRGGCPEEKVEELKLWEKCVHSLYRHSS SALDLQKIPGAIYPISGFPLR					CHOINT BOWONDLIGHT TORVE AVMVRKA
TTKDLKDAKVVPTISLFNYPIWLVQKNDG SWRMAVDYHKLTQGVTPIAAAVPNVISLL EQINTSSGTWYAAIYLVNVFFSIPVHKALK KQFAFSWQGQPYTFTILPWGHINSPTLCYN LIWRELDHFSLPQDITLVHYIDDIMLIGSSE QEVANTLDLLEKALQQVQAAVQAALPLGP YDPADPVVLEVSVADDTVWSLCSCCYTP WFGTLSHVSNLQTWSPCPPPVSPVGSQRPQ LSREKNKNTKRHISIPEVLIMKPYFTAVAKP SLLSHKWLPLEKPENPCCYSSDHRTAVPNL LLYRRSTRRKTELTINKELTSAHFTGDLPRR AVWVLGDRTAVPPSLEQGMALWI 2907 A 2 266 KGSTEAFISGTAGWGTGLLPSSAGLPGGW GPAGGWAGTDRRGPRARPIPQKSPPWPWS GDAAKGQSGFLPVAAWAGQGRLPGGGIV H 2908 B 494 641 MADLEQLGLNPGLEGTHHLHHPGHMGAK LDKQHPHDRVPTRKSDPACGMGTAVAHH LAPGWLRAAVTQTPFKFCQWKLCSCVNIA GDSFSPWYGGISVAHPETVTASPTTQGSA LPPGEENPSEVVLCAFSKREAQYEHSLRPL KEDRTVYRVGPNKRGKRRTVLKHMQWKL IKGAYRRGQLLANNQAEHKVVSRKINQDC FILEGGTAWKQHALSESSRHALAQFFIVMH LPAQPGALRAPLLLTLAALVHVGVQSRGS RSFFLGCLEPIERSFLGVLPRSWERSVLCLP VNSLQGACLRLPAAADSSIFKRS 2909 A 149 300 TRRGGCPEEKVEELKLWEKCVHSLYRHSS SALDLQKIPGAIYPISGFPLR				1	CHRIPTICS MALITHOLD TOKARA WARREST
SWRMAVDYHKLTQGVTPIAAAVPNVISLL EQINTSSGTWYAAIYLVNVFFSIPVHKALK KQFAFSWQGQPYTFTILPWGHINSPTLCYN LIWRELDHFSLPQDITLVHYIDDIMLIGSSE QEVANTLDLLEKALQQVQAAVQAALPLGP YDPADPVVLEVSVADRDTVWSLCSCCYTP WFGTLSHVSNLQTWSPCPPPVSPVGSQRPQ LSREKNKNTKRHISIPEVLIMKPYFTAVAKP SLLSHKWLPLEKPENPCCYSSDHRTAVPNL LLYRRSTRKTELTNKELTSAHFTGDLPRR AVWVLGDRTAVRPSLEQGMALWI KGSTEAFISGTAGWGTGLLPSSAGLPGGW GPAGGWAGTDRRGPRARPIPQKSPPWPWS GDAAKGQSGFLPVAAWAGQGRLPGGGIIV H 2908 B 494 641 MADLEQLGLNPGLEGTHHLHHPGHMGAK LDKQHPHDRVPTRKSDPACGMGTAVAHH LAPGWLRAAVTQTPFKFCQWKLCSCVNIA GDSFSPWYGGISVAHPEPTVTASPTTQGSA LPPGEENPSEVVLCAFSKREAQYEHSLRPL KEDRTVYRVGPNKRGKRRTVLKHMQWKL IKGAYRRGQLLANNQAEHKVVSRKNQDC FILEGGTAWKQHALSESSRHALAQFFIVMH LPAQPGALRAPLLLTLAALVHVGVQSRGS RSSFLGCLEPIERSFLGVLPRSWERSVLCLP VNSLQGACLRLPAAADSSIFKRS 2909 A 149 300 TRRGGCPEEKVEELKLWEKCVHSLYRHSS SALDLQKIPGAYITST EDEUTNNEEFAK VNEV					WAPLELSLIP AND THE TEN VERWI VOKNING
EQINTSSGTWYAAIYLVNVFFSIPVHKALK KQFAFSWQGQPYTFTILPWGHINSPTLCYN LIWRELDHFSLPQDITLVHYIDDIMLIGSSE QEVANTLDLLEKALQQVQAAVQAALPLGP YDPADPVVLEVSVADRDTVWSLCSCCYTP WFGTLSHVSNLQTWSPCPPPVSPVGSQRPQ LSREKNKNTKRHISPEVLIMKPYFTAVAKP SLLSHKWLPLEKPENPCCYSSDHRTAVPNL LLYRRSTRRKTELTNKELTSAHFTGDLPRR AVWVLGDRTAVRPSLEQGMALWI 2907 A 2 266 KGSTEAFISGTAGWGTGLLPSSAGLPGGW GPAGGWAGTDRRGPRARPIPQKSPPWPWS GDAAKQQSGFLPVAAWAGQGRLPGGGIV H 2908 B 494 641 MADLEQLGLNPGLEGTHHLHHPGHMGAK LDKQHPHDRVPTRKSDPACGMGTAVAHH LAPGWLRAAVTQTPFKFCQWKLCSCVNIA GDSFSPWYGGISVAHPEPTVTASPTTQGSA LPPGEENPSEVVLCAFSKREAQYEHSLRPL KEDRTVYRVGPNKRGKRRTVLKHMQWKL IKGAYRRGQLLANNQAEHKVVSRKINQDC FILEGGTAWKQHALSESSRHALAQFFIVMH LPAQPGALRAPLLLTLAALVHVGVQSRGS RSSFLGCLEPPERSFLGVLPRSWERSVLCLP VNSLQGACLRLPAAADSSIFKRS 2909 A 149 300 TRRGGCPEEKVEELKLWEKCVHSLYRHSS SALDLQKIPGATTERDETENNEERAK VNEV			1		CYUDA A VIDVUKI TOCVTPIA A A VPNVISI I.
KQFAFSWQGQPYTFTILPWGHINSPTLCYN LIWRELDHFSLPQDITLVHYIDDIMLIGSSE QEVANTLDLLEKALQQVQAAVQAALPLGP YDPADPVVLEVSVADRDTVWSLCSCCYTP WFGTLSHVSNLQTWSPCPPPVSPVGSQRPQ LSREKNKNTKRIHSIPEVLIMKPYFTAVAKP SLLSHKWLPLEKPENPCCYSSDHRTAVPNL LLYRRSTRRKTELTNKELTSAHFTGDLPRR AVWVLGDRTAVRPSLEQGMALWI EPPAGGWAGTDRGPRARPPQKSPPWPWS GPAGGWAGTDRGPRARPPQKSPPWPWS GDAAKGQSGFLPVAAWAGQGRLPGGGIV H 2908 B 494 641 MADLEQLGLNPGLEGTHHLHHPGHMGAK LDKQHPHDRVPTRKSDPACGMGTAVAHH LAPGWLRAAVTQTPFKFCQWKLCSCVNIA GDSTSPWYGGISVAHPEPTVTASPTTQGSA LPPGEENPSEVVLCAFSKREAQYEHSLRPL KEDRTVYRVGPNKRGKRRTVLKHMQWKL IKGAYRRGQLLANNQAEHKVVSRKINQDC FILEGGTAWKQHALSESSRHALAQFFIVMH LPAQPGALRAPLLLTLAALVHVGVQSRGS RSRFLGCLEPIERSFLGVLPRSWERSVLCLP VNSLQGACLRLPAAADSSIFKRS 2909 A 149 300 TRRGGCPEEKVEELKLWEKCVHSLYRHSS SALDLQKIPGAIYIPSGFPLR		1			SWKWAYDIIKLIQUVII MARVESIDVHKAI K
LIWRELDHFSLPQDITLVHYIDDIMLIGSSE QEVANTLDLLEKALQQVQAAVQAALPLGP YDPADPVVLEVSVADRDTVWSLCSCCYTP WFGTLSHVSNLQTWSPCPPPVSPVGSQRPQ LSREKNKNTKRIHSIPEVLIMKPYFTAVAKP SLLSHKWLPLEKPENPCCYSSDHRTAVPNL LLYRRSTRRKTELTNKELTSAHFTGDLPRR AVWVLGDRTAVRPSLEQGMALWI EPPAGGWAGTDRRGPRARPIPQKSPPWPWS GPAGGWAGTDRRGPRARPIPQKSPPWPWS GPAGGWAGTDRRGPRARPIPQKSPPWPWS GDAAKGQSGFLPVAAWAGQGRLPGGGIIV H 2908 B 494 641 MADLEQLGLNPGLEGTHHLHHPGHMGAK LDKQHPHDRVPTRKSDPACGMGTAVAHH LAPGWLRAAVTQTPFKFQWKLCSCVNIA GDSFSPWYGGISVAHPEPTVTASPTTQGSA LPPGEENPSEVVLCAFSKREAQYEHSLRPL KEDRTVYRVGPNKRGKRRTVLKHMQWKL IKGAYRRGQLLANNQAEHKVVSRKINQDC FILEGGTAWKQHALSESSRHALAQFFIVMH LPAQPGALRAPLLITLAALVHVGVQSRGS RSRFLGCLEPIERSFLGVLPRSWERSVLCLP VNSLQGACLRLPAAADSSIFKRS 2909 A 149 300 TRRGGCPEEKVEELKLWEKCVHSLYRHSS SALDLQKIPGAIVIPSGFEAK VNEV			1		EQINISSUIW I AATI LVINVITSII VIIIUUK
QEVANTLDLLEKALQQVQAAVQAALPLGP YDPADPVVLEVSVADRDTVWSLCSCCYTP WFGTLSHVSNLQTWSPCPPPVSPVGSQRPQ LSREKNKNTKRIHSIPEVLIMKPYFTAVAKP SLLSHKWLPLEKPENPCCYSSDHRTAVPNL LLYRRSTRRKTELTNKELTSAHFTGDLPRR AVWVLGDRTAVRPSLEQGMALWI 2907 A 2 266 KGSTEAFISGTAGWGTGLLPSSAGLPGGW GPAGGWAGTDRRGPRARPPQKSPPWPWS GDAAKGQSGFLPVAAWAGQGRLPGGGIIV H 2908 B 494 641 MADLEQLGLNPGLEGTHHLHHPGHMGAK LDKQHPHDRVPTRKSDPACGMGTAVAHH LAPGWLRAAVTQTPFKFCQWKLCSCVNIA GDSFSPWYGGISVAHPEPTVTASPTTQGSA LPPGEENPSEVVLCAFSKREAQYEHSLRPL KEDRTVYRVGPNKRGKRTVLKHMQWKL IKGAYRRGQLLANNQAEHKVVSRKINQDC FILEGGTAWKQHALSESSRHALAQFFIVMH LPAQPGALRAPLLITLAALVHVGVQSRGS RSRFLGCLEPIERSFLGVLPRSWERSVLCLP VNSLQGACLRLPAAADSSIFKRS 2909 A 149 300 TRRGGCPEEKVEELKLWEKCVHSLYRHSS SALDLQKIPGAIYIPSGFLR					KOPAPSWOOQPTIFILE WOMASITECTA
YDPADPVVLEVSVADRDTVWSLCSCCYTP WFGTLSHVSNLQTWSPCPPPVSPVGSQRPQ LSREKNKNTKRIHSIPEVLIMKPYFTAVAKP SILSHKWLPLEKPENPCCYSSDHRTAVPNL LLYRRSTRRKTELTNKELTSAHFTGDLPRR AVWVLGDRTAVRPSLEQGMALWI 2907 A 2 266 KGSTEAFISGTAGWGTGLLPSSAGLPGGW GPAGGWAGTDRRGPRARPIPQKSPPWPWS GDAAKGQSGFLPVAAWAGQGRLPGGGIIV H 2908 B 494 641 MADLEQLGLNPGLEGTHHLHHPGHMGAK LDKQHPHDRVPTRKSDPACGMGTAVAHH LAPGWLRAAVTQTPFKFCQWKLCSCVNIA GDSFSPWYGGISVAHPEPTVTASPTTQGSA LPPGEENPSEVVLCAFSKREAQYEHSLRPL KEDRTVYRVGPNKRGKRRTVLKHMQWKL KEDRTVYRVGPNKRGKRRTVLKHMQWKL IKGAYRRGQLLANNQAEHKVVSRKINQDC FILEGGTAWKQHALSESSRHALAQFFIVMH LPAQPGALRAPLLLTLAALVHVGVQSRGS RSRFLGCLEPIERSFLGVLPRSWERSVLCLP VNSLQGACLRLPAAADSSIFKRS 2909 A 149 300 TRRGGCPEKVEELKLWEKCVHSLYRHSS SALDLQKIPGATYPISGFPLR		i			LIWRELDHESLEQUITE AT TOOLOGY AND AT DICE
WFGTLSHVSNLQTWSPCPPPVSPVGSQRPQ LSREKNKNTKRIHSIPEVLIMKPYFTAVAKP SLLSHKWLPLEKPENPCCYSSDHRTAVPNL LLYRRSTRKTELTNKELTSAHFTGDLPRR AVWVLGDRTAVRPSLEQGMALWI KGSTEAFISGTAGWGTGLLPSSAGLPGGW GPAGGWAGTDRRGPRARPIPQKSPPWPWS GDAAKGQSGFLPVAAWAGQGRLPGGGIIV H MADLEQLGLNPGLEGTHHLHHPGHMGAK LDKQHPHDRVPTRKSDPACGMGTAVAHH LAPGWLRAAVTQTFFKFCQWKLCSCVNIA GDSFSPWYGGISVAHPEPTVTASPTTQGSA LPPGEENPSEVVLCAFSKREAQYEHSLRPL KEDRTVYRVGPNKRGKRRTVLKHMQWKL IKGAYRRGQLLANNQAEHKVVSRKINQDC FILEGGTAWKQHALSESSRHALAQFFIVMH LPAQPGALRAPLLLTLAALVHVGVQSRGS RSRFLGCLEPIERSFLGVLPRSWERSVLCLP VNSLQGACLRLPAAADSSIFKRS 2909 A 149 300 TRRGGCPEKVEELKLWEKCVHSLYRHSS SALDLQKIPGATYPISGFPLR					QEVANTLDLLEKALQQVQAAVQAALFLOI
LSREKNKNTKRIHSIPEVLIMKPYFTAVAKP SLLSHKWLPLEKPENPCCYSSDHRTAVPNL LLYRRSTRRKTELTNKELTSAHFTGDLPRR AVWVLGDRTAVPSLEQGMALWI 2907 A 2 266 KGSTEAFISGTAGWGTGLLPSSAGLPGGW GPAGGWAGTDRRGPRARPIPQKSPPWPWS GDAAKGQSGFLPVAAWAGQGRLPGGGIIV H 2908 B 494 641 MADLEQLGLNPGLEGTHHLHHPGHMGAK LDKQHPHDRVPTRKSDPACGMGTAVAHH LAPGWLRAAVTQTPFKFCQWKLCSCVNIA GDSFSPWYGGISVAHPEPTVTASPTTQGSA LPPGEENPSEVVLCAFSKREAQYEHSLRPL KEDRTVYRVGPNKRGKRRTVLKHMQWKL IKGAYRRGQLLANNQAEHKVVSRKINQDC FILEGGTAWKQHALSESSRHALAQFFIVMH LPAQPGALRAPLLLTLAALVHVGVQSRGS RSRFLGCLEPIERSFLGVLPRSWERSVLCLP VNSLQGACLRLPAAADSSIFKRS 2909 A 149 300 TRRGGCPEEKVEELKLWEKCVHSLYRHSS SALDLQKIPGAIYIPSGFPLR					ADDADLA ALTA OLIVED CEREBOARDIA MARCACCI IL
SLLSHKWLPLEKPENPCCYSSDHRTAVPNL LLYRRSTRRKTELTNKELTSAHFTGDLPRR AVWVLGDRTAVRPSLEQGMALWI 2907 A 2 266 KGSTEAFISGTAGWGTGLLPSSAGLPGGW GPAGGWAGTDRRGPRARPPQKSPPWPWS GDAAKGQSGFLPVAAWAGQGRLPGGGIV H 2908 B 494 641 MADLEQLGLNPGLEGTHHLHHPGHMGAK LDKQHPHDRVPTRKSDPACGMGTAVAHH LAPGWLRAAVTQTPFKFCQWKLCSCVNIA GDSFSPWYGGISVAHPEPTVTASPTTQGSA LPPGEENPSEVVLCAFSKREAQYEHSLRPL KEDRTVYRVGPNKRGKRRTVLKHMQWKL IKGAYRRGQLLANNQAEHKVVSRKINQDC FILEGGTAWKQHALSESSRHALAQFFIVMH LPAQPGALRAPLLLTLAALVHVGVQSRGS RSRFLGCLEPIERSFLGVLPRSWERSVLCLP VNSLQGACLRLPAAADSSIFKRS 2909 A 149 300 TRRGGCPEEKVEELKLWEKCVHSLYRHSS SALDLQKIPGAIYIPSGFPLR				1	WEGITSHAZUTATIODEAL IMANDALLANAKA
LLYRRSTRRKTELTNKELTSAHFTGDLPRR AVWVLGDRTAVRPSLEQGMALWI 2907 A 2 266 KGSTEAFISGTAGWGTGLLPSSAGLPGGW GPAGGWAGTDRRGPRARPIPQKSPPWPWS GDAAKGQSGFLPVAAWAGQGRLPGGGIIV H 2908 B 494 641 MADLEQLGLNPGLEGTHHLHHPGHMGAK LDKQHPHDRVPTRKSDPACGMGTAVAHH LAPGWLRAAVTQTPFKFCQWKLCSCVNIA GDSFSPWYGGISVAHPEPTVTASPTTQGSA LPPGEENPSEVVLCAFSKREAQYEHSLRPL KEDRTVYRVGPNKRGKRRTVLKHMQWKL IKGAYRRGQLLANNQAEHKVVSRKINQDC FILEGGTAWKQHALSESSRHALAQFFIVMH LPAQPGALRAPLLLTLAALVHVGVQSRGS RSRFLGCLEPIERSFLGVLPRSWERSVLCLP VNSLQGACLRLPAAADSSIFKRS 2909 A 149 300 TRRGGCPEEKVEELKLWEKCVHSLYRHSS SALDIQKIPGAIYIPSGFPLR					LSKEKNKNI KKINSIPE V LIMKT I TIAVAKI
AVWVLGDRTAVRPSLEQGMALWI 2907 A 2 266 KGSTEAFISGTAGWGTGLLPSSAGLPGGW GPAGGWAGTDRRGPRARPIPQKSPPWPWS GDAAKGQSGFLPVAAWAGQGRLPGGGIIV H 2908 B 494 641 MADLEQLGLNPGLEGTHHLHHPGHMGAK LDKQHPHDRVPTRKSDPACGMGTAVAHH LAPGWLRAAVTQTPFKFCQWKLCSCVNIA GDSFSPWYGGISVAHPEPTVTASPTTQGSA LPPGEENPSEVVLCAFSKREAQYEHSLRPL KEDRTVYRVGPNKRGKRRTVLKHMQWKL IKGAYRRGQLLANNQAEHKVVSRKINQDC FILEGGTAWKQHALSESSRHALAQFFIVMH LPAQPGALRAPLLLTLAALVHVGVQSRGS RSRFLGCLEPIERSFLGVLPRSWERSVLCLP VNSLQGACLRLPAAADSSIFKRS 2909 A 149 300 TRRGGCPEEKVEELKLWEKCVHSLYRHSS SALDQKIPGAIYIPSGFPLR				1	SLLSHKWLPLEKPENPCC1SSDARIAVIAD
2907 A 2 266 KGSTEAFISGTAGWGTGLLPSSAGLPGGW GPAGGWAGTDRRGPRARPIPQKSPPWPWS GDAAKGQSGFLPVAAWAGQGRLPGGGIIV H 2908 B 494 641 MADLEQLGLNPGLEGTHHLHHPGHMGAK LDKQHPHDRVPTRKSDPACGMGTAVAHH LAPGWLRAAVTQTPFKFCQWKLCSCVNIA GDSFSPWYGGISVAHPEPTVTASPTTQGSA LPPGEENPSEVVLCAFSKREAQYEHSLRPL KEDRTVYRVGPNKRGKRRTVLKHMQWKL IKGAYRRGQLLANNQAEHKVVSRKINQDC FILEGGTAWKQHALSESSRHALAQFFIVMH LPAQPGALRAPLLLTLAALVHVGVQSRGS RSRFLGCLEPIERSFLGVLPRSWERSVLCLP VNSLQGACLRLPAAADSSIFKRS 2909 A 149 300 TRRGGCPEEKVEELKLWEKCVHSLYRHSS SALDQKIPGAIYINGEGAKVNEV		ĺ			
GPAGGWAGTDRRGPRARPIPQKSPPWPWS GDAAKGQSGFLPVAAWAGQGRLPGGGIIV H 2908 B 494 641 MADLEQLGLNPGLEGTHHLHHPGHMGAK LDKQHPHDRVPTRKSDPACGMGTAVAHH LAPGWLRAAVTQTPFKFCQWKLCSCVNIA GDSFSPWYGGISVAHPEPTVTASPTTQGSA LPPGEENPSEVVLCAFSKREAQYEHSLRPL KEDRTVYRVGPNKRGKRRTVLKHMQWKL IKGAYRRGQLLANNQAEHKVVSRKINQDC FILEGGTAWKQHALSESSRHALAQFFIVMH LPAQPGALRAPLLITLAALVHVGVQSRGS RSRFLGCLEPIERSFLGVLPRSWERSVLCLP VNSLQGACLRLPAAADSSIFKRS 2909 A 149 300 TRRGGCPEEKVEELKLWEKCVHSLYRHSS SALDQKIPGAIYIPSGFPLR				 	AVWVLGDRIAVRPSLEQUINALWI
GDAAKGQSGFLPVAAWAGQGRLPGGGIIV H 2908 B 494 641 MADLEQLGLNPGLEGTHHLHHPGHMGAK LDKQHPHDRVPTRKSDPACGMGTAVAHH LAPGWLRAAVTQTPFKFCQWKLCSCVNIA GDSFSPWYGGISVAHPEPTVTASPTTQGSA LPPGEENPSEVVLCAFSKREAQYEHSLRPL KEDRTVYRVGPNKRGKRRTVLKHMQWKL IKGAYRRGQLLANNQAEHKVVSRKINQDC FILEGGTAWKQHALSESSRHALAQFFIVMH LPAQPGALRAPLLLTLAALVHVGVQSRGS RSRFLGCLEPIERSFLGVLPRSWERSVLCLP VNSLQGACLRLPAAADSSIFKRS 2909 A 149 300 TRRGGCPEEKVEELKLWEKCVHSLYRHSS SALDQKIPGAIYIPSGFPLR	2907	A	2	266	KGSTEAFISGTAGWGTGLLFSSAGLFGGW
B 494 641 MADLEQLGLNPGLEGTHHLHHPGHMGAK LDKQHPHDRVPTRKSDPACGMGTAVAHH LAPGWLRAAVTQTPFKFCQWKLCSCVNIA GDSFSPWYGGISVAHPEPTVTASPTTQGSA LPPGEENPSEVVLCAFSKREAQYEHSLRPL KEDRTVYRVGPNKRGKRRTVLKHMQWKL IKGAYRRGQLLANNQAEHKVVSRKINQDC FILEGGTAWKQHALSESSRHALAQFFIVMH LPAQPGALRAPLLLTLAALVHVGVQSRGS RSRFLGCLEPIERSFLGVLPRSWERSVLCLP VNSLQGACLRLPAAADSSIFKRS 2909 A 149 300 TRRGGCPEEKVEELKLWEKCVHSLYRHSS SALDQKIPGAIYIPSGFPLR					GPAGGWAGIDKKGFKAKFIFQKSITWIWS
2908 B 494 641 MADLEQLGINPGLEGTHHLHHPGHMGAK LDKQHPHDRVPTRKSDPACGMGTAVAHH LAPGWLRAAVTQTPFKFCQWKLCSCVNIA GDSFSPWYGGISVAHPEPTVTASPTTQGSA LPPGEENPSEVVLCAFSKREAQYEHSLRPL KEDRTVYRVGPNKRGKRRTVLKHMQWKL IKGAYRRGQLLANNQAEHKVVSRKINQDC FILEGGTAWKQHALSESSRHALAQFFIVMH LPAQPGALRAPLLLTLAALVHVGVQSRGS RSRFLGCLEPIERSFLGVLPRSWERSVLCLP VNSLQGACLRLPAAADSSIFKRS 2909 A 149 300 TRRGGCPEEKVEELKLWEKCVHSLYRHSS SALDQKIPGAIYIPSGFPLR					
LDKQHPHDRVPTRKSDPACGMGTAVAHH LAPGWLRAAVTQTPFKFCQWKLCSCVNIA GDSFSPWYGGISVAHPEPTVTASPTTQGSA LPPGEENPSEVVLCAFSKREAQYEHSLRPL KEDRTVYRVGPNKRGKRRTVLKHMQWKL IKGAYRRGQLLANNQAEHKVVSRKINQDC FILEGGTAWKQHALSESSRHALAQFFIVMH LPAQPGALRAPLLLTLAALVHVGVQSRGS RSRFLGCLEPIERSFLGVLPRSWERSVLCLP VNSLQGACLRLPAAADSSIFKRS TRRGCPEEKVEELKLWEKCVHSLYRHSS SALDLQKIPGAIYIPSGFPLR					H
LAPGWLRAAVTQTPFKFCQWKLCSCVNIA GDSFSPWYGGISVAHPEPTVTASPTTQGSA LPPGEENPSEVVLCAFSKREAQYEHSLRPL KEDRTVYRVGPNKRGKRRTVLKHMQWKL IKGAYRRGQLLANNQAEHKVVSRKINQDC FILEGGTAWKQHALSESSRHALAQFFIVMH LPAQPGALRAPLLLTLAALVHVGVQSRGS RSRFLGCLEPIERSFLGVLPRSWERSVLCLP VNSLQGACLRLPAAADSSIFKRS TRRGGCPEEKVEELKLWEKCVHSLYRHSS SALDLQKIPGAIYIPSGFPLR	2908	В	494	641	MADLEQUENPGLEGIALLARGINGAK
GDSFSPWYGGISVAHPEPTVTASPTTQGSA LPPGEENPSEVVLCAFSKREAQYEHSLRPL KEDRTVYRVGPNKRGKRRTVLKHMQWKL IKGAYRRGQLLANNQAEHKVVSRKINQDC FILEGGTAWKQHALSESSRHALAQFFIVMH LPAQPGALRAPLLITLAALVHVGVQSRGS RSRFLGCLEPIERSFLGVLPRSWERSVLCLP VNSLQGACLRLPAAADSSIFKRS TRRGGCPEEKVEELKLWEKCVHSLYRHSS SALDQKIPGAIYIPSGFPLR					LDKUHPHDKYP I KASDI ACGMOTA VAILL
LPPGEENPSEVVLCAFSKREAQYEHSLRPL KEDRTVYRVGPNKRGKRRTVLKHMQWKL IKGAYRRGQLLANNQAEHKVVSRKINQDC FILEGGTAWKQHALSESSRHALAQFFIVMH LPAQPGALRAPLLITLAALVHVGVQSRGS RSRFLGCLEPIERSFLGVLPRSWERSVLCLP VNSLQGACLRLPAAADSSIFKRS TRRGCPEEKVEELKLWEKCVHSLYRHSS SALDQKIPGAIYIPSGFPLR					LAPGWLKAAVIQIPPKFCQWKLCSCVNIA
KEDRTVYRVGPNKRGKRRTVLKHMQWKL IKGAYRRGQLLANNQAEHKVVSRKINQDC FILEGGTAWKQHALSESSRHALAQFFIVMH LPAQPGALRAPLLITLAALVHVGVQSRGS RSRFLGCLEPIERSFLGVLPRSWERSVLCLP VNSLQGACLRLPAAADSSIFKRS TRRGGCPEEKVEELKLWEKCVHSLYRHSS SALDLQKIPGAIYIPSGFPLR					GDSFSPW YGGISVAHPEFI VIASFII QGSA
IKGAYRRGQLLANNQAEHKVVSRKINQDC FILEGGTAWKQHALSESSRHALAQFFIVMH LPAQPGALRAPLLITLAALVHVGVQSRGS RSRFLGCLEPIERSFLGVLPRSWERSVLCLP VNSLQGACLRLPAAADSSIFKRS 2909 A 149 300 TRRGGCPEEKVEELKLWEKCVHSLYRHSS SALDLQKIPGAIYIPSGFPLR		1			LPPGEENPSEV VLCAFSKRAQ I EIISBIG E
FILEGGTAWKQHALSESSRHALAQFFIVMH LPAQPGALRAPLLLTLAALVHVGVQSRGS RSRFLGCLEPIERSFLGVLPRSWERSVLCLP VNSLQGACLRLPAAADSSIFKRS TRRGGCPEEKVEELKLWEKCVHSLYRHSS SALDLQKIPGATYIPSGFPLR					KEDKI V IKVOPNKKOKKI V LKIMQ WAL
LPAQPGALRAPLLLTLAALVHVGVQSRGS RSRFLGCLEPIERSFLGVLPRSWERSVLCLP VNSLQGACLRLPAAADSSIFKRS 2909 A 149 300 TRRGGCPEEKVEELKLWEKCVHSLYRHSS SALDLQKIPGAIYIPSGFPLR		1			INDA I KKUQLLAINIQAEIIK V JIKKINQDO
RSRFLGCLEPIERSFLGVLPRSWERSVLCLP VNSLQGACLRLPAAADSSIFKRS 2909 A 149 300 TRRGGCPEEKVEELKLWEKCVHSLYRHSS SALDLQKIPGAIYIPSGFPLR		1	1		TILEUUIAWAQIALSESSALIALAQI TIVIMI
VNSLQGACLRLPAAADSSIFKRS 2909 A 149 300 TRRGGCPEEKVEELKLWEKCVHSLYRHSS SALDLQKIPGAIYIPSGFPLR VNSLQGACLRLPAAADSSIFKRS TRRGGCPEEKVEELKLWEKCVHSLYRHSS SALDLQKIPGAIYIPSGFPLR					PODEL COLEDED SEL CALIDO MED SALOL
2909 A 149 300 TRRGGCPEKVEELKLWEKCVHSLYRHSS SALDLQKIPGAIYIPSGFPLR	1	1			KOKINCLERIEKOLOUVLIKOWEKOVECEL
SALDLQKIPGATYIPSGFPLR MOONING MISTI EDELITANIEEEAK YNEV					AND COCRETION AND STRUM
14COMMUNICATION EDENTANIERE AK VNEV	2909	Α	149	300	
THE TAKE THE					SALDLQKIPGATYIPSGPPLK
2910 B 312 460 MOQUAVALANDER TOTAL AND AND AND AND AND AND AND AND AND AND	2910	В	312	466	MGQVWVLVHSTLEFFHINNEEEAKYNEV
TEEVTEQVCLPAKANAAKEKEVHPYPSAP		1			TEEVIEQVCLPAKANAAKEKEVII I I SAP
LNYFEEKEWPDPPDLSFLEDIGGDPSLISH		ļ			LNYFEEKEWPDPPDLSFLEDTGGDPSLTSH
WQLTKEAEAELQLIEKQVHKAQINRIDPEK				1	WQLTKEAEAELQLIEKQVHKAQINRIDPEK
IPDLLIFSTQHSPTGVIVQEQDLVEWFFLPH		1	İ		IPDLLIFSTQHSPTGVIVQEQDLVEWFFLPH
TDSWTLTPYLDQITTMIGIGRTRIVKLHGY	}	1			TDSWTLTPYLDQITTMIGIGRTRIVKLHGY
DPGKIIVPLMKAQIQQAFINSLTWQTHLAD	1	1			DPGKIIVPLMKAQIQQAFINSLTWQTHLAD
FVGILDNHFPKMKLFQFLKLTNCILPKITKF	1	1			FVGILDNHFPKMKLFQFLKLTNCILPKITKF
KPIEGAENVETDGSSNGKASYFGSKRKVFQ		1			KPIEGAENVFTDGSSNGKASYFGSKRKVFQ

513

Table 8

SEQ ID	Method	Predicted beginning	Predicted ending	Amino acid sequence (X=Unknown, *=Stop codon, /=possible nucleotide
NO:		nucleotide location of first amino acid residue of peptide sequence	nucleotide location of last amino acid residue of peptide sequence	deletion,=possible nucleotide insertion)
				TPYTSAQKVELVAVIELLTAFDMPINVISDS SYVVHSTQLIENAQLRFHTEEKLMTLFTQL QTAVRSRMHRFYITHIRAHTHLPGSLTEGN QMADRLVATAVSNARHFHSLTHVNASGL KHRYSITWKEAKAIIQRCPTCQVVHSSSFT GGVNPRGLEPNSLWEMDVTHVPSFGRLAY VHACVDTFSHFVWATCQSGESSAYVKRHL LQCFVVIGILASIKTDNAPGYTSQALATFFS IRNIKHITGIPYNSQGQAIVERMNLSPETAV
2911	Α .	3	415	AKSKKKGGKQGLRGHPICN ETGRHRSQQSVSSPPVQPRGKRAMYHSAA ELVSRGFPRPPVQAPAEPAGAAEGVHSQPA SRQEA/GS/TEVRGQAHRFVSPPNAAGAGD G/PDPQSLLAPTNRPCPPGGISPARSEPVPPA PGRAAP*CFPDLPGLAPPLC
2912 .	A	178	423	MLLIPYFLEWKKLWPLAVLSLAWLTYDW NTHSQGGRRSAWVRNWTLWKYFRNYFPV KLVKTHDLSPKHNYIIANHPHGILSF
2913	A	52	228	MLTLPQSLWMLTRRTICFVPTIVSCRGLLPS NPHHELARLISVSQHRVWPHPVGTQYL*
2914	A	447	1331	SHPLLSCPEKVSAKLRAAAEAAAEERRTR GAGSRGICAGLRSVAPGPEPLKQEEGRRE WGSSIGTPSPCGSAQAAAAAAEEATEKIP ALRPALLWALLALWLCCATPAHALQCRD GYEPCVNEGMCVTYHNGTGYCKCPEGFL GEYCQHRDPCEKNRCQNGGTCVAQAMLG KATCRCASGFTGEDCQYSTSHPCFVSRPCL NGGTCHMLSRDTYECTCQVGFTGRNPKCP GGNLNYQFNGIIVVYSGGSVPPSGTKTSKP AEHNAMGTGSKNFASGTLWVMVSGATST STSTL
2915	A	160	409	DSPTSVIWSSSTGKYSPHPSAGRVVRGYCP RRVLCCPSPEAALEPGRARAQGIRGDSPW HGPTCTQPGRKTVIVGIQLPTQAI
2916	A	1578	685	VFLQQGLAQRTIILIGRIYQSWLAIMPGCNH SMTQLHMLSGLRIYHNKSAPVIEVYCPQKP ICKQNWTWLEIMNVFVWEDCIAKQAEVLC NNSYGIIIDWSPKGMFSLNCTCQSVCHSHT MFSWSEQNSQMVEMVRNTARVPIIWKRG GIVAPQPQMIWSTVEAKHKDLWKLLMSV NKIKIWERIKKHLEGHSTNLFLDMAKLKEQ IFKASQAHLTLMPGTGVLKGAADKLAASN PLKWMKTLGSSVISMMIVLLICVVCLCVV CRCRS*LLREVAHRDKAAFAFIALQKQEG GYAGE
2917	A	118	399	KWKKYPLGFQTFSNNSQWDTSEFLCSSLL YVLGVSSQNAVNQYSIERSIVGGDCCPFFP WYVHHSWATLKEQRLFLAQQQQEDHEDC TKFEVPH
2918	A	2	335	EDRSAFRPRQPHTLHPLHARSLAPRSPTPPS PPSPDTQLGLSGPTSGPESAPTA/PGNPSWR

514

Table 8

OTEO	Mathad	Predicted	Predicted	Amino acid sequence (X=Unknown, *=Stop
SEQ	Method		ending	codon, /=possible nucleotide
ID		beginning nucleotide	nucleotide	deletion,=possible nucleotide insertion)
NO:	ì		location of	usiono-, p
		location of	last amino	
	Ì	first amino		
		acid residue	acid residue	
		of peptide	of peptide	
		sequence	sequence	SSRWGSSSPCAASST*KSPYP*/CSPT/CAFP
			į	SPRLPFCRSAYQPAAGAGRGK.
			248	VRQLFSLLLPRLECNGVISAHCNLRLPGSC
2919	Α	486	248	DSSASAS*VARITGASGSQAVVLQVQCLQP
				VQPGELLRVDLFQLVVLQR
			525	AARQQHCTQVRSRRLMKELQDIARLSDRFI
2920	A	3	535	SVELVDESLFDWNVKLHQVDKDSVLWQD
				MKETNTEFILLNLTFPDNFPFSPPFMRVLSP
	Į.	<u>'</u>		RLENGYVLDGGAICMELLTPRGWSSAYTV
				EAVMRQFAASLVKGQGRICRKAGKSKKSF
]			SRKEAEATFKSL\VKTHEKYGWGHPARVP
	1			
				DG AGQTPGHRASGPSERSPAPRSRLQPGGEAA
2921	A	3384	1260	TRTEPATPGRRAGPGSATMEALMARGIAL
		İ		TGPLRALCLLGCLLSHAAAAPSPIIKFPGDV
				TGPLKALCLLGCLLSHAAAAFSFIIKITOD V
				APKTDKELAVQYLNTFYGCPKESCNLFVL
				KDTLKKMQKFFGLPQTGDLDQNTIETMRK
				PRCGNPDVANYNFFPRKPKWDKNQITYRII
1				GYTPDLDPETVDDAFARAFQVWSDVTPLR
1				FSRIHDGEADIMINFGRWEHGDGYPFDGK
	i			DGLLAHAFAPGTGVGGDSHFDDDELWTL
				GEGQVVRVKYGNADGEYCKFPFLFNGKE
1.	1			YNSCTDTGRSDGFLWCSTTYNFEKDGKYG
	1	Ì		FCPHEALFTMGGNAEGQPCKFPFRFQGTSY
ļ	1			DSCTTEGRTDGYRWCGTTEDYDRDKKYG
İ				FCPETAMSTVGGNSEGAPCVFPFTFLGNKY
		İ	ļ	ESCTSAGRSDGKMWCATTANYDDDRKW
1	1			GFCPDQGYSLFLVAAHEFGHAMGLEHSQD
1	İ			PGALMAPIYTYTKNFRLSQDDIKGIQELYG
			}	ASPDIDLGTGPTPTLGPVTPEICKQDIVFDGI
	l l		•	AQIRGEIFFFKDRFIWRTVTPRDKPMGPLL
				VATFWPELPEKIDAVYEAPQEEKAVFFAG
				NEYWIYSASTLERGYPKPLTSLGLPPDVQR
1				VDAAFNWSKNKKTYIFAGDKFWRYNEVK
				KKMDPGFPKLIADAWNAIPDNLDAVVDLQ
				GGGHSYFFKGAYYLKLENQSLKSVKFGSI
				KSDWLGC
2922	A	155	575	RRAQGEPERRAPSLAWTCRDPIPTREELAL
	1			TSTTTSCISSLSIVPFQTILVGDSGVGKTSLL
	1			VQFDQGKFIPGSFSATVGIGFTNKVGTVDG
				VREKLPI\WTPAGKERFRSVTHAYYRDAHG
[*FLLYDPNHRISLLRLSAL
2923	С	188	207	MWHLSV
2924	A	3	453	VRSDMNSNPL\DGRYRAPPAPRAPAEAGAS
2324	1.7	٦		SQP*SPPAAQASGKEGGENNAPLFQ*TPLPT
1				TPTDTLSVP\PRAPVPPSDRFLRSRPPGPRPS
			1	FPFRLQGGGGAPH*RGSSATPTPPA/SAPGP
				GVRSLPRPRWWTPIRLKKPWQKSADPSLQ
2025		711	4	GARFACLCSTTPAPMASCLGLLILSSCLLA
2925	A	/ ' ' '	•	DCRFIPEAWSACTVTCGVGTQVRIVRCQV
				LLSFSQSVADLPIDECEGPKPASQRACYAG
L				

Table 8

CEO	Makkad	Daniel	Prodicted	
SEQ	Method	Predicted	Predicted	Amino acid sequence (X=Unknown, *=Stop
ID		beginning	ending	codon, /=possible nucleotide
NO:		nucleotide	nucleotide	deletion,=possible nucleotide insertion)
		location of	location of	
		first amino	last amino	
		acid residue	acid residue	·
		of peptide	of peptide	
		sequence	sequence	
				PCSGEIPEFNPDETDGLFGGLQDFDELYDW
	1			EYEGFTKCSESCGGGVQEAVVSCLNKQTR
				EPAEENLCVTSRRPPQLLKSCNLDPCPASSL
				VVEPKCVGKGHQLFYLTTVLSSRKKQYRL
				SMERLQRSLLGNQEAWLLILLSPTSSVA
2926	Α	2126	2241	ROGFHHVGQAGLKLLTSGDLPALASOSAG
		5.20		IAGMTHSAR
2927	A	830	1143	NDQSALVRARSSFSKSVKPRTHQFFHMFNI
2721	1	050	1145	GPARDGPPPPSPAPHGPGTLPYRGSSRPGSP
	į			1
				PPPPRTPPVSSFLCHSSGAPVTRRDAAAQA HLLCSRFPFSFIG
2928	 	1	702	
2928	A	[1	782	MTKIQEPSTSVKFLGVQWSGAYQDIPSKV
				KDKLLHLAPPTTTKEAYLGL/FGFWRQHIP
		1		H/LGTEQEKTLQHVQAAVQVALFLEPYDP
	1		1	ADPMVLEVSVADRDAIWSLWQAPISESQW
			1	RPQGFWSKALPSSAANYSPFERQLLAYYW
			1	ALVETEHLTMGHQVTKQPELPIMNWVLSD
	j			PSSHKVGCAQQHSIIKWKWYICDRARAGP
	i			EGTTTPVITQWAHEQSGHGGRDGGYTWA
	1			QQQGLPLTKADLATATAECPICQQQRPTLS
				P
2929	A	1	274	MARATLSAAPSNPRLLRVALLLLLLVAAS
				RRAAGASVVTELRCQCLQTLQGIHLKNIQS
	1			VN\ATLKNGKKACLNPASPMVQKIIEKILN
				NP
2930	A	1.1	1236	MLIGSSEQEVANTLDLFVRHLHAREWEIKL
		l l		TKIQGPSTSVKFLGVQWYGACQDIPSNVK
			i	DTLLHLAPPITKKEAQCLLGLFGFWRQHIP
				HLELPIKNWVLSDPSSYKVGCAQQYSIIKW
				KWYICDWAQANPEGTINGLARWSGTWKK
	1			HNWKIGDKEIWGRGMWMDLSEWSKTVKI
				YVSHVSAHQQMTSAEEDFNNQVDRMTRS
	ļ			MDTTQPLSPTTPVITQWAHEQSDHGGRDG
	İ		1	DYTWAQQHGLPLTKSFTFAKEVWQWAHA
	ł		1	HGIHWSYVPHHPEAAGLIERWNGLLKSQL
	l			KCQLGDNTLQGWGKVLQKAMYALNQHPI
				YGTVSPIARLHGSRNQGEEVEVAPLIITPGD
		ĺ		LLAKFLLPVSTTLHSAGLGVVYGFKLTRD
				GLVMVNTECQLDRIEGCKVLFLGVSVRVS
	1			PKEINI
2931	Α	3	714	RRPFIALCLSNVAFMLPWQFAQFILFTQIAS
_				LFPMYVVGYIEPSKFQKIIYMNMISVTLSFI
				LMFGNSMYLSSYYSSSLLMTWAIILKRNEI
				QKLGVSKLNCWLIQGSAWWCGTIILKFLTS
		j		KILGVSDHICLSDLIAAGILRYTDFDTLKYT
				CSPEFDFMEKATLLIYTKTLLLPVVMVITCF
				IFKKTVGDISRVLATNVYLRKQLLEHSELA
2932	A	1	699	FHTLQLLAFTALAILILRLKLVL
4734	^	*	עפט	MRFVMSVTMYHTTLVGLDIKHLNLESGKV
				WVMGKASKEPRLPIGRNAVAWIEHWLDL
	L	<u> </u>	<u> </u>	RDLFGSKDDALFLSKLGKRISARNVQKRFA

Table 8

SEQ ID NO:	Method	Predicted beginning nucleotide location of first amino acid residue of peptide sequence	Predicted ending nucleotide location of last amino acid residue of peptide sequence	Amino acid sequence (X=Unknown, *=Stop codon, /=possible nucleotide deletion,=possible nucleotide insertion) EWGIKQGLNNHVHPHKLRHSFATHMLESS GDLRGLFRFVSAKRHAKGSKVGSPIIYADQ IIIGAGQNHPARWRGLPRKSRLLVSPSNDK RRKAGAAPVAALRHFPPISIENAIVKIQFRII RRLNHQQLVKPYPQVPISQATNQFR MFAIISYSSLAAVLLTATLTAAGIISFPVALC
2933	A		924	LVIGANLGSGLLAMLNNSAANAAARRVAL GSLLFKLVGSLIILPFVHLLAETMGKLSLPK AELVIYFHVFYNLVRCLVMLPFVDPMARF CKTIIRDEPELDTQLRPKHLDVSALDTPTLA LANAARETCALATPWTDDGRKYAYSAAS GGRRSATKVMVVVTDGESHDGSMLKAVI DQCNHDNILRFGIAVLGYLNRNALDTKNLI KEIKAIASIPTERYFFNVSDEAALLEKAGTL GEQIFSIEDMDLGDEVYTVGRPHPMIDPTL RNQLIADLGAKPQVRVLLLDVVIGFGATA DPAASLVSAWQKACAARLDNQPLYAIATV TGTERDPQCRSQQIATLEDAGIAVVSSLPE ATLLAAALIHPLSPAAQQHTPSLLENVAVI NIGLRSFALELQSASKPVVHYQWSPVAGQ GKWLANPELLEADADAEYAAVIDIDLADI KEPILCAPNDPDDARPLSAVQGEKIDEVFIG SCMTNIGHFRAAGKLLDAHKGQLPTRLWV APPTRMDAAQLTEEGYYSVFGKSGARVSSI PCAVPCVWARVADGATVVSTSTRNFPNRL GTGANVFLASAELAAVAALIGKLPTPEEYQ TYVAQVDKTAVDTYRYLNFNQLSQYTEK ADGLLKPRFRPWQRKILDTLATYHEQHRD EPGPGRERLRRMALPMEDEALVLLLIEKM RESGDIHSHHGWLHLPDHKAG*SSDNGKY QRLFYLPAPRRSGTLPASAVCQSAPQQ/LA SSAEARKTFAPVPRRFGKLRVEVETTVAPS
2934	A	201	632	MPGLLNWITGAALPLTASDVTSCVSGYAL GLTASLTYGNLEAQPFQGLFVYPLDECTTV IGFEAVIADRVVTVQIKDKAKLESGHFDAS HVRSPTVTGNILQDGVSIAPHSCTPGKVTL DEDLERILFVANLWTIAPMYRAVWD
2935	A	267	25	MGAVQRLMKIIMLNYRLVAHFLVLFAQK KANRQRTRVHRGSLWLSECESPNGPGGRH TEPAEGRQARGRTPQQGFAVSLM*
2936	Α .		330	MNKHFLFLLLYCLIAAVTSLQCITCHLRT RTDRCRRGFGVCTAQKGEACMLLRIYQRN TLQISYMVCQKFCRDMTFDLRNRTYVHTC CNYNYCNFKL*
2937	A	34	411	MTAGTVVITGGILATVILLCIIAVLCYCRLQ YYCCKKSGTEVADEEEEREHDLPTHPRGP TCNACSSQALDGRGSLAPLTSEPCSQPCGV AASHCTTCSPYSSPFYIRTADMVPNGGGGE RLSFAP
2938	A	333	545	MMPTNLAHLVFWQALLASGRFSLMEHYP

517

Table 8

	1	1 30 11 1	T able	Amino acid sequence (X=Unknown, *=Stop
SEQ	Method	Predicted	Predicted	codon, /=possible nucleotide
ID		beginning	ending	
NO:	l	nucleotide	nucleotide	deletion,=possible nucleotide insertion)
		location of	location of	
ļ	1	first amino	last amino	
		acid residue	acid residue	
	ł	of peptide	of peptide	
		sequence	sequence	
				PNVQSNRGITHYMLPRGYILGLLYSSAGNT
	1			GTSRPRRTHYGT*
2939	Α	242	382	MNRVMRGLAITTTCLLSMLQAITISPSILW
-, -,	1			NHAAVQYVHGHSLVQA*
2940	A	108	290	MPQWLALQRQQALLTLLSGAGTWAGMRP
25,10	1	1		PSQCWPQGPSTGNQSLSHGRGELLTHAVG
				VCI*
2941	A	109	417	MLMLILVTGVSSLRNMIMCDYISRAKLKSS
2941	^	103	171	HIVLSYCTLKQEYDDSRGVMNLEAREEGS
		ĺ		RGFYCLGCIDTGLQTPGGRGPSSALVTSVH
			1	LACEEYSKHSFVK*
	ļ.,	155	675	RRAQGEPERRAPSLAWTCRDPIPTREELAL
2942	A	155	575	MANUGEPERRAPSLAW ICROPH IREBUAL
1				TSTTTSCISSLSIVPFQTILVGDSGVGKTSLL
				VQFDQGKFIPGSFSATVGIGFTNKVGTVDG
•				VREKLPI\WTPAGKERFRSVTHAYYRDAHG
				*FLLYDPNHRISLLRLSAL
2943	A	429	1	RLVYASTANKIHF*NDNNPGKNTDTVPHC
		ļ	1	HKLCNQDSHIRGNHRGQHIHSKTAKPCSG
				KTTFVITTFLLSDKHKYKLAPLRPAAASYSS
				PFTRKVTCLTRITEPS*P*HTAATLRSDQRS
				QTCSHGTGTLSWRSSRWRSSSTK
2944	A	1728	2782	RASSAVRGSLGDSARGRRRRSIVKVSLHPA
				VMSKSESPKEPEQLRKLFIGGLSFETTDESL
-				RSHFEQWGTLTDCVVMRDPNTKRSRGFGF
			1	VTYATVEEVDAAMNARPHKVDGRVVEPK
				RAVSREDSQRPGAHLTVKKIFVGGIKEDTE
				EHHLRDYFEQYGKIEVIEIMTDRGSGKKRG
				FAFVTFDDHDSVDKIVIQKYHTVNGHNCE
		}	İ	VRKALSKQEMASASSSQRGRSGSGNFGGG
				RGGGFGGNDNFGRGGNFSGRGGFGGSRG
				GGGYGGSGDGYNGFGNDGSNFGGGGSYN
				DFGNYNNQSSNFGPMKGGNFGGRSSGPYG
1				GGGQYFAKPRNQGGYGGSSSSSYGSGRR
				F
2945	 	234	657	VQQPGRGLDLSTDGPGGRSQVGLIWSCCC
2943	A	234	057	LH*AASGEPGGRCPGS/GAPGPAGSALEFR
	1			ARDGVP\GVGGPSWESHSPAAATPPPAECR
	1			GPGPTPSPAPGEAAPEDREDGAAAPGRAEP
	1			
	 	1505	2140	ASIVAPADGSQGQVLATQAGALGA
2946	A	1725	2140	YTYQISQTSGKL*PGDKSVHSELV/SSCNTSI
				ISSSGISSTSLL*LRRLFSAASANSASSVASK
	1			K*ASSMPLSQTASADAPVDSLLGDGL*GF
				WVSLLLVSSASSVVNSSSSLKKNRRHTSAG
				NGKQSDLKFFALHTGS
2947	Α	1	1134	DTYCRGDQLHILLVVRDHLGRRKQYGGDF
	1		1	LRARRSSPALMAGASGKVTDFNNGTYLVS
	1			FTLFWEGQVSLSLLLIHPSEGVSALWSARN
1	1			QGYDRVIFTGQFVNGTSQVHSECGLILNTN
	1		ĺ	AELCQYLDNRDQESFYWVRPQHMRCAAL
				THMYSKNKKVSYLSKQEKSLFERSNVGVE
}	1			IMEKFNTISVSKCNTLKSVDLHESGKLQHQ
		_1		

Table 8

SEQ	Method	Predicted	Predicted	Amino acid sequence (X=Unknown, *=Stop
ID	1,10,110,4	beginning	ending	codon, /=possible nucleotide
NO:		nucleotide	nucleotide	deletion,=possible nucleotide insertion)
110.		location of	location of	
		first amino	last amino	
	l	acid residue	acid residue	
		of peptide	of peptide	
	ļ.	sequence	sequence	
				LAVDLDRNINIQWQKYCYPLIGSMTYSVK
	ľ		:	EMEYLTRAIDRTGGEKNTVIVISLGQHFRP
				FPIDVFIRRALNVHKAIQHLLLRSPDTMVII
	1		}	KTENIREMYNDAERFSDFHGYIQYLIIKDIF
	1			QDLSDIRHVLKYNASKNAADLDLFFSSNL
	1			DDFYNFSELHKGRSKSPLMQITQ
2948	A	504	198	QLIQHQTVHTGRKLYECKECGKAFNQGST
				LIRHQRIHTGEKPYECKVCGKAFRVSSQLK
			\	QHQRIHTGERPYQCKELKGRGAEMLAVLA
				VKEQNRTPVNYGK
2949	A	1	578	MGETALMIQLPPPGPALGTWGLWDLQFKT
				NTTSTDTDPRSHLQETGDNILTLFTMHPPL
				ESEWTICNFRQIWLLSSWSTLETRAQPLHS ESEWTICNFRQIWLLSSWSTLETRAQPLHS
	1			YFRKLKGRGTAIAGIVFGIVFIMGVIAGIAI
	1			CICMCMKNHRATRVGILRTTHINTVSSYPG
				PPPYGHDHEMEYCADLPPPYSPTPQGPAQR
				SPPPPYPGNARK AAAGRARGAGDMFRRKQSNPRQIKRSLGD
2950	Α	1	943	MEAREEVQLVGASHMEQKATAPEAPSPPS
	i			MEAREEVQLVGASHMEQKATAPEAFSFF5
				ADVNSPPPLPSPTSPGGPKELEGQEPEPRPT EEEPGSPWSGPDELEPVVQ/DGRRRIRARLS
			Ì	LATGLSWGPFHGSVQTRASSPRQAEPSPAL
				TLLLVDEACWLRTLPQALTEAEANTEIHRK
	1			DDALWCRVTKPVPAGGLLSVLLTGEPHST
			-	PGHPVKKEPAEPTCPAPAHDLQLLPQQAG
ļ				MASILATAVINKDVFPCKDCGIWYRSERNL
				QAHLLYYCASRQGTGSPAAAATDEKPKET
1				YPNERVCPYPQSRKSCPG
2051		2	435	AVCRTSSDVDDNPPVFNQLIYESYVSELAP
2951	A	2	433	RGHFVTCVQASDADSSDFDRLEYSILSGND
	į			RTSFLMDSKSGVITLSNHRKQRMEPLYSLN
		İ		VSVSDGLFTSTAQVHIRVLGANLYSPAFSQ
				STYVAEVRENVAAGTKVIHVRATD
2952	A	199	399	MPGSLCGRRTVCWLLGSVTSKQVLTFDLR
2932	l A	155		KFSRSSRLQEDQERSLGFRPFTHSPDMMW
	1			DLPAODEWS
2953	A	38	397	TVLCLTLTSCSFRQSLAT*SFGG/MGSGSVH
2933	1	130		FGVGGAFLEPSIHWGS/GSRSLSVSSTHFVP
				SSSS/GGYGSGDASVLCRSDRLLTGTKITTQ
	1			NIHD/RLGSYLDKVRALEEAG\ELKVKICD
1				WAP
2954	A	2	673	NSRVEGOLCDLDPSAHFYGHCGEQLECRL
2934	n	"	1 575	DTGGDLSRGEVPEPLCACRSOSPLCGSDGH
				TYSOICRLOEAARARPDANLTVAHPGPCES
				GPOTVSHPYDTWNVTGQDVIFGCEVFAYP
1				MASIEWRKDGLDIQLPGDDPHISVQFRGGP
				ORFEVTGWLOIQAVRPSDEGTYRCLARNA
				LGQVEAPASLTVLTPDQLNSTGIPQLRSLN
1				LVPEEEAESEENDDYY
2955	A	1	440	GNOKCTRNNHRISSLLCDPQEGYLQMLQIS
4933	^	1 *	1	NLYLYDSVLMLANAFHRKLEDRKWHNM

519

Table 8

SEQ ID NO:	Method	Predicted beginning nucleotide location of first amino acid residue of peptide sequence	Predicted ending nucleotide location of last amino acid residue of peptide sequence	Amino acid sequence (X=Unknown, *=Stop codon, /=possible nucleotide deletion,=possible nucleotide insertion) ASLNCIRKSTKPWNGGRSMLDTIKKGHITG
			205	LTGVMEFREDSSNPYVQFEILGTTYSETL'E EPFVMVAENILGQPKRYKGFSIDVLDALA GSGDAGGQHRARCPSGRAGNWDWHPPA
2956	A	23	395	MEEPGPPGGLSQDQVERCMGAMQEGMQ MVKLRGGSKGLVRFYYLDEHRSCIRWRPS RKNEKAEISIDSIQEVSEGRQSEVLQRYPDG SFDPNCCCSI
2957	A	663	144	KELSAVSAGIPHSCGSQGCGGGSVAACVP AAPAAAGLCSGRAQKVPPPPSLAGWPPGV NAPPPPVCSSVRLHVCQSDRLWVRLAARR GILALLRSALKAATLAGCQSVRWSVRPSES LRPTSNAASLFRSSVPTVLSHSVPLAASLG KRRACGGREHASVAVYLSVCLSLPT
2958	A	1856	591	PPTPTAETLTSEDAQPGSPLATGTDQVSLD KPLSSAAHLDDAAKMPSASSGEEADAGSL LPTTNELSQALAGADSLDSPPRPLERSVGQ LPSPPLLPTPPPKASSKTVKKMSQAKPHSSK PPA*RVPTL/PLRGQLSTPTGSPHLTTVHRP LPPSRVIEELHRALATKHRQDSFQGRESKG SPKKRLDVRLSRTSSVERGKEREEAWSFD GALENKRTAAKESEENKENLIINSELKDDL LLYQDEEALNDSIISGTLPRKCKKELLAVK LRNRPSKQELEDRNIFPRRTDEERQEIRQQI EMKLSKRLSQRPAVEELERRNILKQRNDQ TEQEERREIKQRLTRKLNQRPTVDELRDRK ILIRFSDYVEVAKAQDYDRRADKPWTRLS AADKAAIRKELNEYKSNEMEVHASSKHLT RFHRP
2959	A	1578	685	VFLQGLAQRTIILIGRIYQSWLAIMPGCNH SMTQLHMLSGLRIYHNKSAPVIEVYCPQKP ICKQNWTWLEIMNVFVWEDCIAKQAEVLC NNSYGIIIDWSPKGMFSLNCTCQSVCHSHT MFSWSEQNSQMVEMVRNTARVPIIWKRG GIVAPQPQMIWSTVEAKHKDLWKLLMSV NKIKIWERIKKHLEGHSTNLFLDMAKLKEQ IFKASQAHLTLMPGTGVLKGAADKLAASN PLKWMKTLGSSVISMMIVLLICVVCLCVV CRCRS*LLREVAHRDKAAFAFIALQKQEG GYAGE
2960	A	470	258	MIIAIGGVIVASGLVFIVLLMIRYKVYGDG DSRRVKGSRALPRVRHVCSQTNGAGTGAE QAPALPAQDHY*
2961	A	3	866	ELNLQDFSHLDHRDLIPIIAALEYNQWFTK LSSKDLKLSTDVCEQILRVVSRSNRLEELV LENAGLRTDFAQKLASALAHNPNSGLHTI NLAGNPLEDRGVSSLSIQFAKLPKGLKHLI LSKTHYYPKAVNSLSQSLSANPLTASTLVH LDLSGNVLRGDDLSHMYNFLAQPNAIVHL DLSNTECSLDMVWGALLRGCLQYLAVLN LSRTVFSHRKGKEVPPSFKQFFSSSLALMHI

520

Table 8

SEQ ID NO:	Method	Predicted beginning nucleotide location of first amino acid residue of peptide sequence	Predicted ending nucleotide location of last amino acid residue of peptide sequence	Amino acid sequence (X=Unknown, *=Stop codon, /=possible nucleotide deletion,=possible nucleotide insertion) NLSGTKLSPEPLKALLLGLACNHNLKGVSL
				DLSNCELRSGGAQVLEGCIG
2962	A	574	203	TQAFEQEVGNPLCIPSHCMGAVFILLNLAT AHSSGLCLLQLELSFRSLSTTAVHCCPRPTI DFHP/LGSSRVSAVLLIQ/QRCPLPLPIGLEA DHCSCMAKGPGFILIELNTSHWVPQFSSVT HDFY
2963	A	399	15	NTMVAHHIVENTYFCPVLATGLSGLYSSLP TKLEEKGEEWHCLLKDDWLLLPSLVQFM NSLEFCNAVIQVAHPLIRNQLVIYISNEFLV PVLAPALHKVPVQEVMSPTAYLDLFVRSIS EPALLEIF
2964	A	3	567	CSEIFASLRLPRIMAHSKQPSHFQSLMLLQ WPLSYLAIFWILQPLFVYLLFTSLWPLPVL YFAWLFLDWKTPERGGRRSAWVRNWCV WTHIRDYFPITILKTKDLSPEHNYLMGVHP HGLLTFGAFCNFCTEATGFSKTFPGITPHLA TLSWFFKIPFVREYLMAKGASDHTYWSFW SMFLLGNAPF
2965	A .	2	394	TLADGGEGQFDGTFEPATVALPGGEHAEN AVQIHKVVTGTMALIFSFLIAALVLYVSWK CFPASLRQLRQCFVTQRRKQKQKQTMHQ MAAMSAQEYYVDYKPNHIEGALVIINEYG SCTCHQQPARECEV
2966	A	2	412	EFLSSNQITQLPNTTFRPMPNLRSVDLSYN KLQALAPDLFHGLRKLTTLHMRANAIQFV PVRIFQDCRSLKFLDIGYNQLKSLARNSFA GLFKLTELHLEHNDLVKVNFAHFPRLISLH SLCLRRNKVAIVVSSLDW
2967	A	1	1343	ERCKVQSSTLVSSLEAELSEVKIQTHIVQQE NHLLKDELEKMKQLHRCPDLSDFQQKISS VLSYNEKLLKEKEALSEELNSCVDKLAKSS LLEHRIATMKQEQKSWEHQSASLKSQLVA SQEKVQNLEDTVQNVNLQMSRMKSDLRV TQQEKEALKQEVMSLHKQLQNAGGKSWA PEIATHPSGLHNQQKRLSWDKLDHLM/NV EEQQLLWQENERLQTMVQNTKAELTHSRE KVRQLESNLLPKHQKHLNPSGTMNPTEQE KLSLKRECDQFQKEQSPANRKVSQMNSLE QELETIHLENEGLKKKQVKLDEQLMEMQH LRSTATPSPSPHAWDLQLLQQQACPMVPR EQFLQLQRQLLQAERINQHLQEELENRTSE TNTPQGNQEQLVTVMEERMIEVEQKLKLV KRLLQEKVNQLKEQVSLPGHLCSPTSHSSF NSSFTSLYCH
2968	A	382	203	RPSSPGPPCPEAGKR/RFGCGGAGSLRPEHS \trppprglgkgrgqrekrgaskegsegca
2969	A	303	46	AVVFKLLSPRKKHLKNPFVGGVGCAWRT GWEWSPGQEQAPPPATGSMLATSSPPSGPP PPP*PPGFMLPPLGDGLGAGTSAGRS*EKG RGK

521

Table 8

SEQ ID	Method	Predicted beginning	Predicted ending nucleotide	Amino acid sequence (X=Unknown, *=Stop codon, /=possible nucleotide deletion,=possible nucleotide insertion)
NO:		nucleotide location of first amino acid residue of peptide sequence	location of last amino acid residue of peptide sequence	
2970	A	3	586	MVECPACQH*RPTLSLRDTSYHQVECIRSL LPWNGHQFVLTRIDICSK*/G/FVFPNYFASS STTI*ELTGCLIH*HT*N*GTH/LIAKEV*Q*T RSYKI/HWCI/PHHPEAASQIGFWNGLLKTG L/QLRLRCNALQS/WGAVLQNMVYALKCI GPKWIYSIVSPVG/HVHTGVASITITPSHSPV EFVPPRSEIWSQLGYDP
2971	A	299	21	MGSSVLSIWILSPSIYPILSPLAMPCLSRTDL IRVRRIQGAWPSEGTASSIRGWVLTKLRMS SGKALEALYCIPGAAQHPGLGVTRVWSGR T*
2972	A	1	555	KKVGNYYTTPIYRFRMKCHLCVNYIEMQT DPANCDYVIVSGAQRKEERWDMADNEQV LTTGERHPLTCLGAL/DPESALGPPKPSRAL IVAEHEKKQKLETDAMFRLEHGEADRSTL KKALPTLSHIQEAQSAWKDDFALNSMLRR RFRVRGAPARGQRGCMVDQGPGPALPPPH PSFEQATCTF
2973	A	1	598	MAVVIPAALGTAALVPWSILRGKAPRYWL LPLLLDPDKVPIISARDLTSPDAALASLTAQ SGGLEELHLKLVHEVAVMANTECQLDWIE GCKVLILACRLWDLVIMTHPAFYQSVQWG KGNDQTFQGRLDTGCELMLIPGDPNCGPP VKVGVYGGIIYHCDLTKEELEPRVFREVTV KGIDASDYQTVQLPKGTESSRN
2974	В	1		MGGAGSPQVILVSHTPQSASAACEEIAYQV AGVSGNLAPGNQPEKEGRAHQCLECDRAF SSAAVLMHHSKEVHGRERIHGCPVCRKAF KRATHLKEHMQTHQAGPSLSSQKPRVFKC DTCEKAFAKPSQLERHSRIHTGERPFHCTL CEKAFNQKSALQVHMKKHTGERPYKCAY CVMGFTQKSNMKLHMKRAHSYAVAVAM GGTAQCPPGATACLGTAICPSGLRAQRPSN LSVPEAAKPKSGRNRKIEAPTWALSTSKDP QTEGLRNPQTCVQIRSNPFCAFAQGFSLISE LRTLNCFVGLCDSQSGKQQLGFYSGQPAT EAWQKYSLAVCILRSEQEISATRLGLKNTN VNKLDGGCGAWNFLGGMSEHNSPPSGRAI LLPVVFTEVFPGPWTPEQGSHICRMNLAPT FQAFLPKTGFPIDPQELLQGPIERTIWPGTV YTFRSAIVTARAVWVRPRMDRRADLSSAT QSASAEKFGGRVSAGHCALPLPARPVTAS VYGRLARLRGCLEDSYPSALSAQVFLDSPA VGCGLETRLFIEAALGPPCRATVTSRGHLL DISITKSPGRPCFLSVCLHGSDQQKRKGAA ATAKRKSKGGGVNVEGRLCTWPPEDPPKS WSLAFGPLQEKTTELNLHPRCWARCLSHW ELPPGPRGRAQAPDWTGSKSFREQLLTFTL WGVQEKISKHQANQGKEAPAYTGLEDSDP
2975	+A $-$	248	597	DRCPAAWDRHPAGIQSSRREPSKATWTLR

Table 8

CPA	M-47:2	Dan dinted	Dundinted	Amino acid sequence (X=Unknown, *=Stop
SEQ	Method	Predicted	Predicted	Amino acid sequence (X=Unknown, *=Stop codon, /=possible nucleotide
ID		beginning	ending	
NO:		nucleotide	nucleotide	deletion,=possible nucleotide insertion)
	i	location of	location of	
		first amino	last amino	
}		acid residue	acid residue	
	ł	of peptide	of peptide	·
<u> </u>	ļ	sequence	sequence	SKLSVQDGRRDSSLRLNCKVAARLGAGHP
				PMLRLGLRC*YPGKQGLEWTSSKLQQTCH
	į			*GS*LLKGKLTNRKDIHSKTPSVRHYHQR
2076	 		353	EVDHRGDYVSHEIMHHQRRRRAVPVSEVE
2976	Α	2	333	PLHLRLKGSRHDFHVDLRTSSSLVAPGFIV
				QTLGKTGTKSVQTLPPEDFCFYQGSLRSHR
2077	A	134	412	NSSVALSTCQGLSGMIRTEEADYFLRPL MVKFIGPRVRRGLESPLCHACYLALCTLAL
2977	A	134	412	•
				VRLCALSRSRSLSLMLILQAFYRPPMSQEP ALSTVLFLLLLLANPPTKVSRSHRKERVLL
				l control of the cont
2070	 	1,	500	LVA MAELETSABI VEHTUTI OVAESTVGI GETI
2978	A	1	598	MAFLETSAPLYEHIWTLQVAFSTVGLGETL KVAMISMSTSSGYFLQLLQYCCSSTITITGY
				KVANISMSTSSGTFLQLLQTCCSSTTTTGT
		1		MPILQGQIDALLEFDVHPNELTNGVINAAF
				MLLFKDLIKLFACYNDGVINLLGTWMKLE
				TILSKLLOROKTKHCMFSLIGGNRTMRTL
				GHRKGNITHWALLAGGGAAEG
2979	A	793	1	GSRIDDMKSERRPPSPDVIVLSDNEQPSSPR
2919	A	193	1	VNGLTTVALKETSTEALMKSSPEERERMIK
		ļ		QLKEELRLEEAKLVLLKKLRQSQIQKEATA
	1			QKPTGSVGSTVTTPPPLVRGTQNIPAGKPS
				LQTSSARMPGSVIPPPLVRGGQQASSKLGP
				QASSQVVMPPLVRG\AQQIHSIRQHSSTGPP
	l			PLLLAPRASVPSVQIQGQRIIQQGLIRVANV
				PNTSLLVNIPQPTPASLKGTTATSAQANSTP
	ļ			TSVASVVTSTESPASRQAA
2980	A	2	1427	LLARGAGRTNPAPPLMSCGPWGKFLKCCE
		-		VYKSGPYKVQ*EEITIHSRAEAESTYQIKYE
				ELQTLAGKHGDDLRCAK/T/EISEMNQNISR
				LQAETEGLKGQGASLEAAIADAEQWGELA
	ŀ			IKDANTKLSELEAAMQRAKQDMA/RQLGE
			Ī	YQKLALDIEIATYRKLLEGEESRLESGMQN
				VSIHKKTTSGYAGAPARIVSLLQNELLSLE
				VGVLKGHPTGKGEELGAPYSECSFGLCRR
				TVMLTQAPSSVVRSRNSRNHTVNSGGSCL
				SASTVAIPAINDSSAAMSACSTISAQKRTCC
	1			TACEPARKYKDTASHQEPAVCQPACQLET
	1	[ADPKGGGVLALPQPPSPGMLCWPYCRAH
	1		ļ	ATDYFLANFFSEFPCHFLHRAGAAQTQAT
	1	1		GDGMEHGQSRELPKRKAPREESETSEEKSP
		!		NKWGPVSKQKKQLLVDILTTIIRPTRGNAY
	!	1	ļ	TGLSTRKWKPRSEENALMQPNKKDEKGTL
				TQKLGL
2981	A	4235	940	ARGRRSRPVWAASWGGRGRPAARRRPRG
				LAATMGFELDRFDGDVDPDLKCALCHKV
	1		,	LEDPLTTPCGHVFCAGCVLPWVVQEGSCP
	1		· .	ARCRGRLSAKELNHVLPLKRLILKLDIKCA
		[YATRGCGRVVKLQQLPEHLERCDFAPARC
		[RHAGCGQVLLRRDVEAHMRDACDARPVG
	L	L		RCQEGCGLPLTHGEQRAGGHCCARALRA

523

Table 8

SEQ	Method	Predicted	Predicted	Amino acid sequence (X=Unknown, *=Stop
ID T	1,20.20	beginning	ending	codon, /=possible nucleotide
NO:		nucleotide	nucleotide	deletion,=possible nucleotide insertion)
110.		location of	location of	1
		first amino	last amino	
		acid residue	acid residue	1
		of peptide	of peptide	
			sequence	
		sequence	Sequence	HNGALQARLGALHKALKKEALRAGKREK
				SLVAQLAAAQLELQMTALRYQKKFTEYSA
				RLDSLSRCVAAPPGGKGEETKSLTLVLHRD
				SGSLGFNIIGGRPSVDNHDGSSSEGIFVSKIV
				POOD A ARECOLOUIDBUE MICEDI CD ATH
				DSGPAAKEGGLQIHDRIIEVNGRDLSRATH
				DQAVEAFKTAKEPIVVQVLRRTPRTKMFT
				PPSESQLVDTGTQTDITFEHIMALTKMSSPS
				PPVLDPYLLPEEHPSAHEYYDPNDYIGDIH
			}	QEMDREELELEEVDLYRMNSQDKLGLTVC
	1			YRTDDEDDIGIYISEIDPNSIAAKDGRIREG
				DRIIQINGIEVQNREEAVALLTSEENKNFSL
				LIARAELQLDEGWMDDDRNDFLDDLHMD
				MLEEQHHQAMQFTASVLQQKKHDEDGGT
	,	i		TDTATILSNQHEKDSGVGRTDESTRNDESS
		1		EQENNGDDATASSNPLAGQRKLTCSQDTL
			1.	GSGDLPFSNKSFISPECTGAAYLGIPVDECE
		1		RFRELLELKCQVKSATPYGLYYPSGPLDAG
				KSDPESVDKELELLNEELRSIELECLSIVRA
	1			HKMQQLKEQYRESWMLHNSGFRNYNTSI
[DVRRHELSDITELPEKSDKDSSSAYNTGES
				CRSTPLTLEISPDNSLRRAAEGISCPSSEGA
				VGTTEAYGPASKNLLSITEDPEVGTPTYSPS
				LKELDPNQPLESKERRASDGSRSPTPSQKL
				GSAYLPSYHHSPYKHAHIPAHAQHYQSYM
				QLIQQKSAVEYAQSQMSLVSMCKDLSSPT
				PSEPRMEWKVKIRSDGTRYITKRPVRDRLL
Ï				RERALKIREERSGMTTDDDAVSEMKMGR
	1			YWSKEERKQHLVKAKEQRRRREFMMQSR
				LDCLKEQQAADDRKEMNILELSHKKMMK
				KRNKKIFDNWMTIQELLTHGTKSPDGTRV
	i			YNSFLSVTTV
2982	A	792	389	PTRPPL\QLQAPRAHLSEDQKRLLLMKQKG
2982	A	192	369	VMNQPMAYAALPSHGQEQHPVGLPRTTG
				PMOSSVPPGSGGMVSGASPAGPGFLGSQP
				QAAIMKQMLIDQRAQLIEQQKQQFLREQR
				QQQQQQQILAEQVTCPLA
2002	 	1-	268	FTRSDELARHYRTHTGEKRFSCPLCPKQFS
2983	A	3	268	RSDHLTKHARRHPTYHPDMIEYRGRRRTP
				RIDPPLTSEVESSASGSGPGPAPSFTTCL
	 	 	421	GPEFPGSAKLVFLDLSYNNLTQLGAGAFRS
2984	A	3	431	AGRLVKLSLANNNLVGVHEDAFETLESLQ
		1		ACKLYNLOLANNINLYCYTEDAFEILESLY
				VLELNDNNLRSLSVAALAALPALRSLRLD
				GNPWLCDCDFAHLFSWIQENASKLPKGLD
<u></u>				EIQCSLPMESRRISLRACRRPASRV
2985	Α	108	497	MGIYQMYLCFLLAVLLQLYVATEAILIALV
				GATPSYHWDLAELLPNQSHGNQSAGEDQ
	1			AFGDWLLTANGSEIHKHVHFSSSFTSIASE
	1			WFLIANRSYKVSAASSFFFSGVFVGVISFG
	1			QLSDRFGRKKVY
2986	A	488	754	QSIYQEKFDDENFILKHTGPGILSMANAGP
				TQMVPSFSPVWPRLSGWMASTRSLAK*EE

524

Table 8

SEQ ID NO:	Method ,	Predicted beginning nucleotide location of first amino acid residue of peptide sequence	Predicted ending nucleotide location of last amino acid residue of peptide sequence	Amino acid sequence (X=Unknown, *=Stop codon, /=possible nucleotide deletion,=possible nucleotide insertion) GVNIMEAMECSGSGNGETGKKIPTAXCGQ
				L L

Table 9

SEQ ID NO: of full- length nucleotide sequence	SEQ ID NO: of full- length peptide sequence	SEQ ID NO: of contig nuclcotide sequence	SEQ ID NO: of contig peptide sequence	Identification of Priority Application that contig nucleotide sequence was filed (Attorney Docket No. SEQ ID NO.) *
1	1042			
2	1043			
3	1044			
4	1045	0000	0535	790 104
5	1046	2083	2535	790_104
6	1047			
7	1048		<u> </u>	
8	1049	2004	2526	790 16362
9	1050	2084	2536	790_10302
10	1051		 	
11	1052		 	
12	1053		 	
13	1054		 	
14	1055		 	
15	1056	<u> </u>	 	
16	1057	2085	2537	784 5743
17	1058	2085	2538	790 167
18	1059	2080	2336	750_107
19	1060	2087	2539	788 2001
20	1061	2007	2339	700_2001
21	1062	2088	2540	784 1683
23	1064	2089	2541	785 1699
24	1065	2009	2571	703_1033
25	1066	 	 	
26	1067	2090	2542	789 5434
27	1068	2070	23.12	705_0.2.
28	1069	2091	2543	790 13996
29	1070	2031	23.13	1,30_1030
30	1071	 		
31	1072	 		
32	1073			
33	1074	2092	2544	784 6213
34	1075	2093	2545	784 1993
35	1076			
36	1077	2094	2546	790_3341
37	1078	2095	2547	791 5740
38	1079	T		
39	1080	2096	2548	792 4643
40	1081			
41	1082			
42	1083			
43	1084	2097	2549	790_407
44	1085			
45	1086	2098	2550	785_1457
46	1087	2099	2551	790_20129
47	1088			
48	1089	2100	2552	790_18963
49	1090	2101	2553	790_515
50	1091	2102	2554	787_7703

Table 9

SEQ ID	SEQ ID	SEQ ID	SEQ ID	Identification of
NO: of full-	NO: of full-	NO: of	NO: of	Priority Application
length	length	contig	contig	that contig nucleotide
nucleotide	peptide	nucleotide	peptide	sequence was filed
sequence	sequence	sequence	sequence	(Attorney Docket
sequence	sequence	sequence	sequence	No. SEQ ID NO.) *
51	1092			Tro. GEQ ID No.)
52	1093			
53	1094	2103	2555	784 7239
54	1095	2104	2556	790_19031
55	1096	2105	2557	791 1750
56	1097	2103	2331	1,51_1,50
57	1098		 	
58	1099		 	
59	1100	2106	2558	790 23024
60	1101	2100	2330	150_25021
61	1102	2107	2559	788_3666
62	1102	2107	12000	1.30_3000
63	1104	2108	2560	787 2031
64	1105		3300	1.5,_205,
65	1106		 	+
66	1107	2109	2561	784 2939
67	1108	2110	2562	787 4769
68	1109	2111	2563	792 7097
69	1110	2112	2564	788 9897
70	1111	2113	2565	790 29652
71	1112			
72	1113	2114	2566	784 4530
73	1114			
74	1115			
75	1116	2115	2567	787 7560
76	1117			
77	1118	•		
78	1119			
79	1120			
80	1121			
81	1122			
82	1123			
83	1124	2116	2568	784_1264
84	1125	2117	2569_	791_1515
85	1126			
86	1127	2118	2570	784_3498
87	1128			
88	1129			
89	1130]	
90	1131			
91	1132			
92	1133			ļ
93	1134	2119	2571	791_1404
94	1135	2122	10550	-
95	1136	2120	2572	784_9584
96	1137	0101		
97	1138	2121	2573	787_7852
98	1139	0100	0574	
99	1140	2122	2574	788_5026
100	1141	2122	0675	700 16504
101	1142	2123	2575	790_16594

Table 9

SEQ ID	SEQ ID	SEQ ID	SEQ ID	Identification of
NO: of full-	NO: of full-	NO: of	NO: of	Priority Application
length	length	contig	contig	that contig nucleotide
nucleotide	peptide	nucleotide	peptide	sequence was filed
sequence	sequence	sequence	sequence	(Attorney Docket
				No. SEQ ID NO.) *
102	1143	2124	2576	790_975
103	1144			
104	1145			
105	1146		 	
106	1147 1148	2125	2577	790 11619
107	1149	2126	2578	790 1040
109	1150	2127	2579	787 946
110	1151	EIL.	1	
111	1152			
112	1153	 		
113	1154	2128	2580	790_19602
114	1155			
115	1156	2129	2581	788_12191
116	1157	2130	2582	784_5727
117	1158			
118	1159	2131	2583	784_7669
119	1160			
120	1161	2132	2584	784_5053
121	1162			
122	1163			
123	1164		0505	790 9619
124	1165	2133	2585	790_9619
125	1166			
126	1167	2134	2586	790 1144
127	1168	2134	2300	/20_11.1
128	1169 1170	+		
129	1170	+		
131	1172	2135	2587	790 16699
132	1173	2136	2588	790 1170
133	1174	12150		
134	1175	2137	2589	790_1171
135	1176			
136	1177			
137	1178			
138	1179			
139	1180	2138	2590	785_66
140	1181	2139	2591	790_11744
141	1182			
142	1183		 	704 10222
143	1184	2140	2592	784_10222
144	1185	2141	2593	790_1217
145	1186	2142	2594	785_2455
146	1187			
147	1188	21.42	2595	784 3575
148	1189	2143	2393	104_3313
149	1190	 		
150	1191			
151	1192	2144	2596	787 9817
152	1193	1 2144	2330	101,7011

528

Table 9

SEQ ID	SEQ ID	SEQ ID	SEQ ID	Identification of
NO: of full-	NO: of full-	NO: of	NO: of	Priority Application
length	length	contig	contig	that contig nucleotide
nucleotide	peptide	nucleotide	peptide	sequence was filed
sequence	sequence	sequence	sequence	(Attorney Docket
			ļ	No. SEQ ID NO.) *
153	1194	2145	2597	784 9353
154	1195	2145	2391	784 2555
155	1196			
156	1197		 	
157	1198	2146	2598	784 4306
158	1199	2146	2398	784_4300
159	1200		 	
160	1201		<u> </u>	
161	1202		 	
162	1203 1204	2147	2599	790 23831
163	1204	217/	12377	1.7.5.5.5.
164	1205	 -	 	
165	1206	 	 	
166 167	1207	2148	2600	790 1363
168	1208	2149	2601	784 1344
169	1210	2177	+===	1 -
170	1210	-		
171	1212	2150	2602	787 1542
172	1213	2150	12002	
173	1214	2151	2603	785_2871
174	1215	2152	2604	787 5391
175	1216	2153	2605	790 27456
176	1217			
177	1218	2154	2606	784 1229
178	1219			
179	1220	2155	2607	788_1187
180	1221	2156	2608	784_256
181	1222			
182	1223			
183	1224	2157	2609	790_6023
184	1225			
185	1226	2158	2610	790_28512
186	1227			
187	1228			
188	1229			
189	1230			
190	1231			
191	1232		1	500 07560
192	1233	2159	2611	790_27560
193	1234	2160	2612	784_9678
194	1235		-	505.0030
195	1236	2161	2613	787_2238
196	1237		1001	707 0011
197	1238	2162	2614	787_8011
198	1239	 	12615	794 0426
199	1240	2163	2615	784 9436
200	1241	2164	2616	787_6897
201	1242			
202	1243	10165	2617	700 1640
203	1244	2165	2617	790_1649

Table 9

SEQ ID	SEQ ID	SEQ ID	SEQ ID	Identification of
NO: of full-	NO: of full-	NO: of	NO: of	Priority Application
length	length	contig	contig	that contig nucleotide
nucleotide	peptide	nucleotide	peptide	sequence was filed
sequence	sequence	sequence	sequence	(Attorney Docket
				No. SEQ ID NO.) *
204	1245	2166	2618	790 1664
205		2167	2619	790 1671
206	1247	2168	2620	789 4182
207	1248 1249	2169	2621	787 3365
208	1250	2170	2622	790 24699
209	1251	2170	12025	
210	1252	2171	2623	790 24002
212	1253			
213	1254	2172	2624	790_1713
214	1255	1		
215	1256	2173	2625	790_12005
216	1257			
217	1258	2174	2626	787_371
218	1259	2175	2627	788_11375
219	1260	2176	2628	792_6253
220	1261	2177	2629	790_20480
221	1262			
222	1263	2178	2630	787_8084
223	1264			
224	1265	2179	2631	790_1787
225	1266	2180	2632	787_5659
226	1267	2181	2633	790_14480
227	1268	2182	2634	790_1801
228	1269		1	500 50501
229	1270	2183	2635	790_22521
230	1271	2184	2636	790_3633
231	1272		10027	787 5670
232	1273	2185	2637	790 20482
233	1274	2186	2638	790_20482
234	1275	0107	2639	790 6685
235	1276	2187	2640	785 2624
236	1277	2188	2040	765_2621
237	1278	 		
238	1279 1280	2189	2641	787 6797
239	1280	2190	2642	784 5046
240	1282	1	1-1-	
241	1283	-		
242	1284	+		
244	1285			
245	1286			
246	1287	1		
247	1288	2191	2643	784_6709
248	1289	T		
249	1290	<u> </u>		
250	1291	2192	2644	787_3930
251	1292			
252	1293	2193	2645	790_2982
253	1294	2194	2646	790_2086
254	1295			

Table 9

CEO ID	SEQ ID	SEQ ID	SEQ ID	Identification of
SEQ ID NO: of full-	NO: of full-	NO: of	NO: of	Priority Application
	length	contig	contig	that contig nucleotide
length	peptide	nucleotide	peptide	sequence was filed
nucleotide	sequence	sequence	sequence	(Attorney Docket
sequence	sequence	sequence	504_5555	No. SEQ ID NO.) *
255	1296			
256	1297			
257	1298			
258	1299	2195	2647	784_1280
259	1300			
260	1301	2196	2648	787_9953
261	1302	2197	2649	790_4258
262	1303	2198	2650	790 16925
263	1304	2199	2651	790_1256
264	1305	2200	2652	788_6514
265	1306			
266	1307			
267	1308			
268	1309		_	
269	1310		 	
270	1311		ļ	
271	1312	 	10050	707 2494
272	1313	2201	2653	787_2484
273	1314	2202	2654	790_2283
274	1315		0655	787_2505 ·
275	1316	2203	2655	790 6292
276	1317	2204	2656	790_0292
277	1318			
278	1319	2205	2657	784 2332
279	1320	2205	2037	764 2332
280	1321			
281	1322	2206	2658	790 2410
282	1323	2207	2659	790 6347
283	1325	2208	2660	790 12379
284	1325	2209	2661	790 2433
285	1327	2210	2662	784 8177
286	1328	2211	2663	790 2436
288	1328		1-3	
289	1330			
290	1331	1		
290	1332	2212	2664	790_2469
292	1333	2213	2665	788_7
293	1334	2214	2666	784_6493
294	1335	1		The state of the s
295	1336			
296	1337	2215	2667	790_2489
297	1338			
298	1339			
299	1340	2216	2668	790_8006
300	1341	2217	2669	787_2576
301	1342	2218	2670	790_2537
302	1343			
303		2219	2671	790 2542
1 202	1344	2219	2071	
304	1344	2219	2011	

Table 9

SEQ ID	SEQ ID	SEQ ID	SEQ ID	Identification of
NO: of full-	NO: of full-	NO: of	NO: of	Priority Application
length	length	contig	contig	that contig nucleotide
nucleotide	peptide	nucleotide	peptide	sequence was filed
sequence	sequence	sequence	sequence	(Attorney Docket
•	1			No. SEQ ID NO.) *
306	1347	2220	2672	784_1031
307	1348			
308	1349	2221	2673	787_3678
309	1350			
310	1351	2222	2674	787_1269
311	1352	2223	2675	790_4055
312	1353			
313	1354			
314	1355			
315	1356			
316	1357			
317	1358	2224	2676	790_2683
318	1359			
319	1360		ļ	
320	1361			
321	1362			
322	1363			
323	1364			
324	1365	2225	2677	784_2283
325	1366	2226	2678	785_999
326	1367			
327	1368			
328	1369	2227	2679	787_2690
329	1370	2228	2680	787_10099
330	1371			707.0706
331	1372	2229	2681	787_2706
332	1373	2230	2682	790 3751
333	1374	2231	2683	787_9316
334	1375	2232	2684	790_20358 784_5053
335	1376	2233	2685	784_5053
336	1377	 		
337	1378	0024	2686	791 2711
338	1379	2234	2686	791_2/11
339	1380	2225	2687	784 3427
340	1381	2235	2007	107_3761
341	1382	2226	2688	790 2178
342	1383	2236	2689	790 2178
343	1384	12231	2009	170_1407
344	1385	2238	2690	784 6221
345	1386	2239	2691	791_3194
346	1387	2240	2692	791 3194
347	1388	2241	2693	790 23660
348	1389	- 2241	2073	170 23000
349	1390	-	+	
350	1391	+	-	
351	1392	+	+	
352	1393	-		
353	1394	 		
354	1395	2242	2694	784 1062
355	1396	2242		784 552
356	1397	2243	2695	104_332

Table 9

	T == 0 ==	CEOTO	SEQ ID	Identification of
SEQ ID	SEQ ID	SEQ ID		Priority Application
NO: of full-	NO: of full-	NO: of	NO: of	that contig nucleotide
length	length	contig	contig	sequence was filed
nucleotide	peptide	nucleotide	peptide	· (Attorney Docket
sequence	sequence	sequence	sequence	No. SEQ ID NO.) *
		2014	2606	787 2790
357	1398	2244	2696	784 2232
358	1399	2245	2697	785_231
359	1400	2246	2698	790 11073
360	1401	2247	2699	
361	1402	2248	2700	790_2954
362	1403		_	
363	1404		ļ	
364	1405			
365	1406			700 (004
366	1407	2249	2701	789_6204
367	1408		 	
368	1409		ļ	
369	1410		1	707.0016
370	1411	2250	2702	787_9215
371	1412	2251	2703	789_4399
372	1413	2252	2704 .	790_29004
373	1414	2253	2705	790_3053
374	1415			
375	1416			
376	1417			
377	1418	2254	2706	787_7446
378	1419			
379	1420			
380	1421	2255	2707	784_2866
381	1422	2256	2708	790_3129
382	1423			
383	1424			
384	1425	2257	2709	787_2844
385	1426	2258	2710	790_7572
386	1427	2259	2711	792_907
387	1428	2260	2712	785_396
388	1429			
389	1430			
390	1431			
391	1432			
392	1433			
393	1434			
394	1435	2261	2713	790_3197
395	1436	2262	2714	790_26462
396	1437			
397	1438			
398	1439			
399	1440	2263	2715	790 3241
400	1441	2264	2716	790_14778
401	1442			
402	1443			
403	1444			
404	1445	2265	2717	787_6238
404	1446	2266	2718	784 2488
406	1447	+==		
407	1448	2267	2719	784 9081
4U/	1 1 10	1 3 -		

Table 9

SEQ ID NO: of full- length nucleotide	SEQ ID NO: of full- length peptide	SEQ ID NO: of contig nucleotide	SEQ ID NO: of contig peptide	Identification of Priority Application that contig nucleotide sequence was filed
sequence	sequence	sequence	sequence	(Attorney Docket NoSEQ ID NO.) *
100	1449	2268	2720	784 4949
408	1450	2200	2120	
410	1451			
411	1452			
412	1453		 	
413	1454			
414	1455			
415	1456	2269	2721	784_5313
416	1457			
417	1458	2270	2722	784_8649
418	1459			
419	1460			
420	1461	2271	2723	790_3503
421	1462	2272	2724	790_10950
422	1463	2273	2725	787_1829
423	1464	2274	2726	785_845
424	1465			
425	1466	2275	2727	787_1830
426	1467	2276	2728	787_2166
427	1468	2277	2729	787_918
428	1469	2278	2730	790_2695
429	1470			
430	1471	2279	2731	785_406
431	1472	ļ <u>.</u>		
432	1473	2280	2732	790_12656
433	1474	2281	2733	787_2938
434	1475	2282	2734	784_1698
435	1476		0005	707 021
436	1477	2283	2735	787_931
437	1478	1	077.6	707 5005
438	1479	2284	2736	787_5985 787_3966
439	1480	2285	2737	790 17389
440	1481	2286	2738	787 1371
441	1482	2287	2739	784 2299
442	1483	2288	2740	104_2277
443	1484	- 		
444	1485	2289	2741	790 15495
445	1486	2207	12/71	170 13-173
446		2290	2742	787 2985
447	1488	2230	2172	,07_2,03
448	1489	2291	2743	790 4868
450	1490	2271	27.13	1.73
450	1491			
452	1493	2292	2744	785 410
452	1494	22/2	 	
454	1495	2293	2745	784 3656
455	1496	\ 	<u> </u>	
456	1497			
457	1498			
458	1499	1		

Table 9

(C) (C) (C)	OFO ID	CFO ID	SEQ ID	Identification of
SEQ ID	SEQ ID	SEQ ID	NO: of	Priority Application
NO: of full-	NO: of full-	NO: of		that contig nucleotide
length	length	contig	contig	
nucleotide	peptide	nucleotide	peptide	sequence was filed
sequence	sequence	sequence	sequence	(Attorney Docket
			2516	No. SEQ ID NO.) *
459	1500	2294	2746	790_17074
460	1501		ļ	
461	1502			
462	1503			
463	1504			
464	1505	2295	2747	790 6796
465	1506 1507	2296	2748	784 8548
466	1507	2290	2740	704_0540
467	1509			
468	1510	2297	2749	787 4134
	1511	LLST	2145	,0,
470 471	1512	 	+	
	1512	2298	2750	785_607
472 473	1513	2230	1000	
474	1515	2299	2751	784 4444
474	1516	1	 	
476	1517			
477	1517	2300	2752	785 609
477	1519	2301	2753	787 6219
479	1520	2302	2754	790 20198
480	1521	12302		
481	1522	2303	2755	789 5808
482	1523			
483	1524	2304	2756	790_21362
484	1525			
485	1526			
486	1527			
487	1528	2305	2757	790_8539
488	1529			
489	1530	2306	2758	790_14555
490	1531			
491	1532			
492	1533	2307	2759	790_17165
493	1534	2308	2760	789_5563
494	1535			
495	1536			700 10002
496	1537	2309	2761	788 10803
497	1538	2310	2762	790_1392
498	1539	 _		
499	1540			
500	1541			
501	1542	1001	07.63	700 26265
502	1543	2311	2763	790_26265
503	1544	ļ		<u> </u>
504	1545			
505	1546			
506	1547	12210	2764	790 14264
507	1548	2312	2764	/90_14204
508	1549			
509	1550			

Table 9

SEQ ID NO: of full- length	SEQ ID NO: of full- length	SEQ ID NO: of contig	SEQ ID NO: of contig	Identification of Priority Application that contig nucleotide
nucleotide	peptide	nucleotide	peptide	sequence was filed (Attorney Docket
sequence	sequence	sequence	sequence	NoSEQ ID NO.) *
510	1551			NoSEQ ID NO.)
511	1552			
512	1553	2313	2765	787 419
513	1554	2314	2766	791 2696
514	1555			
515	1556			
516	1557	2315	2767	785_1450
517	1558	2316	2768	787_4026
518	1559			
519	1560	2317	2769	790_12340
520	1561			
521	1562			
522	1563	2318	2770	790_13247
523	1564	2319	2771	790_10245
524	1565	2320	2772	787_1017
525	1566	2321	2773	790_23263
526	1567	2322	2774	790_16427
527	1568			500 5406
528	1569	2323	2775	789_5186
529	1570	2324	2776	790_30441
530	1571	2325	2777	789_3709
531	1572	2326	2778	790_18037
532	1573	2227	2770	785 764
533	1574	2327	2779	783_704
534 535	1575 1576	2328	2780	789 5283
536	4 5 5 5	2329	2781	790 22045
537	1577 -	2330	2782	789 2553
538	1579	2331	2783	790 16254
539	1580	2332	2784	785 3340
540	1581	2333	2785	789 1599
541	1582	2334	2786	784 2310
542	1583	2335	2787	790 4114
543	1584	2336	2788	790 12511
544	1585			
545	1586			
546	1587			
547	1588			
548	1589	2337	2789	788_11639
549	1590			
550	1591			
551	1592	2338	2790	790_14073
552	1593			
553	1594	2339	2791	790_27205
554	1595			
555	1596		<u> </u>	
556	1597	2340	2792	790_4994
557	1598	2341	2793	790_6212
558	1599	2342	2794	787_8231
559	1600		ļ	
560	1601			

Table 9

	CORO TO	Leeo m	SEQ ID	Identification of
SEQ ID	SEQ ID	SEQ ID	NO: of	Priority Application
NO: of full-	NO: of full-	NO: of	contig	that contig nucleotide
length	length	contig nucleotide	peptide	sequence was filed
nucleotide	peptide	sequence	sequence	(Attorney Docket
sequence	sequence	sequence	sequence	No. SEQ ID NO.) *
561	1602			7.5.3
562	1603		<u> </u>	
563	1604	<u> </u>		
564	1605	2343	2795	789_3199
565	1606	2344	2796	784_1039
566	1607			
567	1608			
568	1609			
569	1610	·		
570	1611			
571	1612	2345	2797	784_9353
572	1613			
573	1614	2346	2798	790_29553
574	1615			
575	1616	2347	2799	787_669
576	1617			
577	1618	2348	2800	790_4880
578	1619	2349	2801	784_2473
579	1620	2350	2802	791_3397
580	1621			
581	1622			
582	1623	2351	2803	787_6211
583	1624			
584	1625			700 10660
585	1626	2352	2804	790_19650
586	1627	<u> </u>		
587	1628			
588	1629			
589	1630			
590	1631		 	
591	1632			***
592	1633	<u> </u>		
593	1634			
594	1635	2353	2805	788 1109
595	1636		2806	790 12340
596	1637	2354	2000	170 125 10
597	1638			
598	1639 1640	2355	2807	790 16631
599	1641	2356	2808	784 3763
600	1642	2330	2000	
601	1643	 		
602	1644			
604	1645			
605	1646	+		
606	1647	+		
607	1648	+		
608	1649	_		
609	1650			
610	1651			
611	1652			

Table 9

SEQ ID NO: of full- length nucleotide sequence	SEQ ID NO: of full- length peptide sequence	SEQ ID NO: of contig nucleotide sequence	SEQ ID NO: of contig peptide sequence	Identification of Priority Application that contig nucleotide sequence was filed (Attorney Docket No. SEQ ID NO.) *
612	1653			
613	1654		 	
614	1655			
615	1656			
616	1657	<u> </u>		
617	1658			
618	1659	2357	2809	790_24903
619	1660	2358	2810	785_2185
620	1661			
621	1662			
622	1663	2359	2811	790_20271
623	1664			
624	1665			
625	1666			
626	1667			
627	1668			
628	1669			
629	1670	2360	2812	790_14778
630	1671			
631	1672			
632	1673			
633	1674		<u></u>	
634 .	1675			
635	1676			
636	1677			· · · · · · · · · · · · · · · · · · ·
637	1678			
638	1679		<u> </u>	
639	1680			
640	1681			
641	1682	2361	2813	790_12348
642	1683			
643	1684			
644	1685			
645	1686			700 667
646	1687	2362	2814	790_667
647	1688	2363	2815	787_4774
648	1689	2364	2816	784_4739
649	1690	1	0017	705 2741
650	1691	2365	2817	785_2741
651	1692	-		
652	1693			
653	1694			
654	1695	10055	0010	707 10200
655	1696	2366	2818	787_10308
656	1697	_		
657	1698		10010	700 12071
658	1699	2367	2819	790_13971
659	1700	-		
660	1701		2022	700 1214
661	1702	2368	2820	790_1314 ·
662	1703	2369	2821	788_6944

538

Table 9

SEQ ID	SEQ ID	SEQ ID	SEQ ID	Identification of
NO: of full-	NO: of full-	NO: of	NO: of	Priority Application
length	length	contig	contig	that contig nucleotide
nucleotide	peptide	nucleotide	peptide	sequence was filed
sequence	sequence	sequence	sequence	(Attorney Docket
				No. SEQ ID NO.) *
663	1704	2370	2822	790_2750
664	1705	2371	2823	787_9604
665	1706	2372	2824	784_3541
666	1707			1 200 20020
667	1708	2373	2825	790 20829 789 1765
668	1709	2374	2826	789 1703
669	1710		 	
670	1711	0075	2027	784 1088
671	1712	2375	2827	784_1088
672	.1713			
673	1714	ļ		
674	1715	 	 	
675	1716		 	
676	1717			
677	1718			
678	1719	 		
679	1721			
680	1722			
682	1723	2376	2828	791 4325
683	1724	2570		
684	1725	 		
685	1726			
686	1727	2377	2829	790_17256
687	1728	2378	2830	790_6038
688	1729			
689	1730			
690	1731			
691	1732	2379	2831	784_1490
692	1733			
693	1734			
694	1735			
695	1736			50 1 1 500
696	1737	2380	2832	784_1639
697	1738			
698	1739		2022	700 3739
699	1740	2381	2833	790_3738
700	1741			
701	1742		_	
702	1743			
703	1744		+	
704	1745			
705	1746 1747			
706	1747	2382	2834	784 4929
707 708	1749	2383	2835	790 28014
708	1750	2303	1	
710	1751	2384	2836	792 6483
711	1752	1200	1	
712	1753			
713	1754	1	1	

Table 9

714 1755 2385 2837 790 15616 715 1756 <td< th=""><th>on tide *</th></td<>	on tide *
715 1756 716 1757 717 1758 718 1759 719 1760 720 1761 721 1762 722 1763 723 1764 724 1765 725 1766 726 1767 727 1768 728 1769 729 1770 730 1771 731 1772 732 1773 2387 734 1775 735 1776 2389 2841 790 734 1775 2390 2842 787 6489 737 1778 2391 2843 790 29981 738 1779 739 1780 740 1781 741 1782 2392 2844 790 6347 742 1783 2393 2845 790	
716 1757 717 1758 718 1759 719 1760 2386 2838 784 1755 720 1761 721 1762 722 1763 722 1763 723 1764 724 1765 725 1766 725 1766 727 1768 727 1768 728 1769 729 1770 730 1771 731 1771 731 1772 732 1773 2387 2839 784 3304 785 2998 734 1775 735 1776 2389 2841 790 5241 787 6489 787 6489 787 6489 787 6489 787 6489 787 6489 788 178 789 29981 788 178 789 29981 788 178 789 29981 788 178 789 29981 788 178 789 29981 788 178 789 178 789 14685 789 14685 789 14685 789 14685 789 14685 789 14685 789 14685 789 14685 789 14685 789 14685 789 14685 78	
717 1758 718 1759 719 1760 2386 2838 784 1755 720 1761 721 1762 722 1763 722 1763 722 1763 722 724 1765 724 1765 725 1766 726 1767 727 1768 728 1769 729 1770 730 1771 730 1771 731 1772 732 1773 2387 2839 784 3304 785 2998 734 1775 735 1776 2389 2841 790 5241 787 6489 787 6489 787 6489 787 6489 787 6489 787 6489 789 1780 739 1780 739 1780 739 1780 739 1780 740 1781 741 1782 2392 2844 790 6347 742 1783 2393 2845 790 14685 743 1784 744 1785 745 1786 2394 2846	
718 1759 719 1760 2386 2838 784 1755 720 1761	
719 1760 2386 2838 784 1755 720 1761	
720 1761 721 1762 722 1763 723 1764 724 1765 725 1766 726 1767 727 1768 728 1769 729 1770 730 1771 731 1772 732 1773 2387 2839 784_3304 733 1774 2388 2840 785_2998 734 1775 735 1776 2389 2841 790_5241 736 1777 2390 2842 787_6489 737 1778 2391 2843 790_29981 738 1779 739 1780 740 1781 741 1782 2392 2844 790_6347 742 1783 2393 2845 790_14685 743 1784 744 1785 745 1786 2394	
722 1763 723 1764 724 1765 725 1766 726 1767 727 1768 728 1769 729 1770 730 1771 731 1772 732 1773 2387 734 1775 735 1776 2389 2841 790_5241 736 1777 2390 2842 787_6489 737 1778 2391 2843 790_29981 738 1779 739 1780 740 1781 741 1782 2392 2844 790_6347 742 1783 2393 2845 790_14685 743 1784 744 1785 745 1786 2394 2846 787_10117 746 1787 747 1788 748 1789 2395 2847 787_1056	
722 1763 723 1764 724 1765 725 1766 726 1767 727 1768 728 1769 729 1770 730 1771 731 1772 732 1773 2387 733 1774 2388 2840 785 2998 734 1775 735 1776 2389 2841 790 5241 736 1777 2390 2842 787 6489 737 1778 2391 2843 790 29981 738 1779 739 1780 790 29981 741 1782 2392 2844 790 6347 742 1783 2393 2845 790 14685 743 1784 744 1785 745 1786 2394 2846 787 10117 746 1787 747 1788 748 <td></td>	
723 1764 724 1765 725 1766 726 1767 727 1768 728 1769 729 1770 730 1771 731 1772 732 1773 2387 2839 784 3304 733 1774 2388 2840 785 2998 734 1775 2390 2842 787 6489 735 1776 2389 2841 790 5241 736 1777 2390 2842 787 6489 737 1778 2391 2843 790 29981 738 1779 739 1780 740 1781 741 1782 2392 2844 790 6347 742 1783 2393 2845 790 14685 743 1784 744 1785 745 1786 2394 2846 787 <td></td>	
724 1765 725 1766 726 1767 727 1768 728 1769 729 1770 730 1771 731 1772 732 1773 2387 2839 784 3304 733 1774 2388 2840 785 2998 734 1775 735 1776 2389 2841 790 5241 736 1777 2390 2842 787 6489 737 1778 2391 2843 790 29981 738 1779 739 1780 740 1781 741 1782 2392 2844 790 6347 742 1783 2393 2845 790 14685 743 1784 744 1785 745 1786 2394 2846 787 10117 746 1787 747 1788 748 1789 2395 28	
725 1766 726 1767 727 1768 728 1769 729 1770 730 1771 731 1772 732 1773 2387 2839 784 3304 733 1774 2388 2840 785 2998 734 1775 735 1776 2389 2841 790 5241 736 1777 2390 2842 787 6489 737 1778 2391 2843 790 29981 738 1779 739 1780 740 1781 741 1782 2392 2844 790 6347 742 1783 2393 2845 790 14685 743 1784 744 1785 745 1786 2394 2846 787 10117 746 1787 747 1788 748 1789 2395 2847 787 1056	
726 1767 727 1768 728 1769 729 1770 730 1771 731 1772 732 1773 2387 2839 784 3304 733 1774 2388 2840 785 2998 734 1775 2389 2841 790 5241 735 1776 2389 2842 787 6489 737 1778 2391 2843 790 29981 738 1779 739 1780 740 1781 741 1782 2392 2844 790 6347 742 1783 2393 2845 790 14685 743 1784 744 1785 745 1786 2394 2846 787 10117 746 1787 747 1788 747 1788 748 1789 2395 2847 787 1056	
727 1768 728 1769 729 1770 730 1771 731 1772 732 1773 2387 2839 784 3304 733 1774 2388 2840 785 2998 734 1775 735 1776 2389 2841 790 5241 736 1777 2390 2842 787 6489 737 1778 2391 2843 790 29981 738 1779 739 1780 740 1781 741 1782 2392 2844 790 6347 742 1783 2393 2845 790 14685 743 1784 744 1785 745 1786 2394 2846 787 10117 746 1787 747 1788 748 1789 2395 2847 787 1056	
728 1769 729 1770 730 1771 731 1772 732 1773 2387 2839 784 3304 733 1774 2388 2840 785 2998 734 1775	
729 1770 730 1771 731 1772 732 1773 2387 2839 784 3304 733 1774 2388 2840 785 2998 734 1775	
730 1771 731 1772 732 1773 2387 2839 784 3304 733 1774 2388 2840 785 2998 734 1775	
731 1772 732 1773 2387 2839 784_3304 733 1774 2388 2840 785_2998 734 1775	
732 1773 2387 2839 784 3304 733 1774 2388 2840 785 2998 734 1775	
733 1774 2388 2840 785 2998 734 1775 735 1776 2389 2841 790 5241 736 1777 2390 2842 787 6489 737 1778 2391 2843 790 29981 738 1779 739 1780 740 1781 741 1782 2392 2844 790 6347 742 1783 2393 2845 790 14685 743 1784 744 1785 745 1786 2394 2846 787 10117 746 1787 747 1788 748 1789 2395 2847 787 1056	
734 1775 735 1776 2389 2841 790_5241 736 1777 2390 2842 787_6489 737 1778 2391 2843 790_29981 738 1779 790_29981 739 1780 790_29981 740 1781 790_29981 741 1782 2392 2844 790_6347 742 1783 2393 2845 790_14685 743 1784 744 1785 787_10117 746 1787 747 1788 787_1056 748 1789 2395 2847 787_1056	
735 1776 2389 2841 790 5241 736 1777 2390 2842 787 6489 737 1778 2391 2843 790 29981 738 1779 790 29981 739 1780 790 29981 740 1781 790 29981 741 1782 2392 2844 790 6347 742 1783 2393 2845 790 14685 743 1784 744 1785 787 10117 746 1787 747 1788 787 1056 748 1789 2395 2847 787 1056	
736 1777 2390 2842 787 6489 737 1778 2391 2843 790 29981 738 1779	
737 1778 2391 2843 790 29981 738 1779	
738 1779	
739 1780 740 1781 741 1782 2392 2844 790 6347 742 1783 2393 2845 790 14685 743 1784 744 1785 745 1786 2394 2846 787 10117 746 1787 747 1788 748 1789 2395 2847 787 1056	
740 1781 741 1782 2392 2844 790 6347 742 1783 2393 2845 790 14685 743 1784 790 14685 790 14685 744 1785 745 1786 2394 2846 787 10117 746 1787 747 1788 748 1789 2395 2847 787 1056	
741 1782 2392 2844 790 6347 742 1783 2393 2845 790 14685 743 1784 790 14685 790 14685 744 1785 745 1786 2394 2846 787 10117 746 1787 747 1788 748 1789 2395 2847 787 1056	
742 1783 2393 2845 790_14685 743 1784	
743 1784 744 1785 745 1786 2394 2846 787 10117 746 1787 747 1788 748 1789 2395 2847 787 1056	
745 1786 2394 2846 787 10117 746 1787	
746 1787 747 1788 748 1789 2395 2847 787_1056	
746 1787 747 1788 748 1789 2395 2847 787_1056	
747 1788 748 1789 2395 · 2847 787_1056	
748 1789 2395 · 2847 787_1056	
749 1790	
750 1791 2396 2848 785 ₁₀₄₇	
751 1792 2397 2849 791 419	
752 1793 2398 2850 787 ₂ 3759	
753 1794	
754 1795 2399 2851 785 <u>3</u> 304	
755 1796	
756 1797 2400 2852 784_4056	
757 1798	
758 1799 2401 2853 790_2255	
759 1800	
760 1801	
761 1802	
762 1803 2402 2854 787_4393	
763 1804	
764 1805	

540

Table 9

SEQ ID NO: of full- length nucleotide	SEQ ID NO: of full- length peptide	SEQ ID NO: of contig nucleotide	SEQ ID NO: of contig peptide	Identification of Priority Application that contig nucleotide sequence was filed
sequence	sequence	sequence	sequence	(Attorney Docket No. SEQ ID NO.) *
	1806	2403	2855	784 3297
765	1806	2403	2033	7,5,5
766	1807	 	 	
767	1809	2404	2856	784 3609
768	1810	2404	2030	
769	1811	 		
770	1812	2405	2857	792 6026
771	1813	2406	2858	787 9972
772	1814	2400	12030	
773 774	1815	 		
775	1816		 	
776	1817			
777	1818		 	
778	1819			
779	1820	2407	2859	785 1351
780	1821	12.07	1	
781	1822	2408	2860	791 3196
782	1823	2409	2861	790 25408
783	1824	2410	2862	784_3960
784	1825	2411	2863	787_4591
785	1826	2412	2864	784_4366
786	1827			
787	1828	2413	2865	785_3201
788	1829	2414	2866	784_360
789	1830	2415	2867	785_1913
790	1831	2416	2868	789_2627
791	1832			
792	1833			
793	1834			
794	1835		<u> </u>	
795	1836		<u> </u>	
796	1837			
797	1838	2417	2869	790_2077
798	1839	2418	2870	790_19187
799	1840	2419	2871	789_3760
800	1841	2420	2872	784_6919
801	1842			704 1456
802	1843	2421	2873	784_1456
803	1844			
804	1845		 	704 6222
805	1846	2422	2874	784_5322
806	1847	2423	2875	790_1305
807	1848			
808	1849			
809	1850			
810	1851			
811	1852			<u> </u>
812	1853			
813	1854		0000	700 01920
814	1855	2424	2876	790_21839
815	1856			

541

Table 9

SEQ ID NO: of full-	SEQ ID NO: of full-	SEQ ID NO: of	SEQ ID NO: of	Identification of Priority Application
length	length	contig	contig	that contig nucleotide
nucleotide	peptide	nucleotide	peptide	sequence was filed
sequence	sequence	sequence	sequence	(Attorney Docket
				NoSEQ ID NO.) *
816	1857			<u> </u>
817	1858	2425	2027	700 20652
818	1859 1860	2425	2877	790_20653
819 820	1861	2426	2878	784 8235
821	1862	2427	2879	792 7381
822	1863	2421	2013	172_1301
823	1864	2428	2880	784 2446
824	1865	2429	2881	787 5610
825	1866	2.27	2001	707_5020
826	1867			
827	1868	2430	2882	787 8030
828	1869			
829	1870			
830	1871.	2431	2883	784_287
831	1872	2432	2884	785_2857
832	1873			
833	1874			
834	1875			
835	1876			
836	1877	2433	2885	787_7849
837	1878	2434	2886	788_4268
838	1879			
839	1880	ļ. .		
840	1881			
841 842	1882 1883	-	ļ	
843	1884			
844	1885	2435	2887	784 3976
845	1886	2436	2888	788 13658
846	1887	2430	2000	700_15050
847	1888			
848	1889	2437	2889	784 5652
849	1890	2438	2890	784 6881
850	1891	2439	2891	784_344
851	1892			
852	1893			
853	1894			
854	1895			
855	1896			
856	1897			
857	1898			
858	1899	2440	2892	790_1219
859	1900	2441	2893	790_19855
860	1901	2442	2004	704 4000
861	1902	2442	2894	784_4089
862	1903	2443	2895	787_4525
863	1904		 	
864 865	1905 1906	2444	2896	701 14
866	1906	2444	2090	791_14
000	1301	l	L	<u> </u>

Table 9

CEO ID	CEO ID	SEO ID	SEQ ID	Identification of
SEQ ID	SEQ ID NO: of full-	SEQ ID NO: of	NO: of	Priority Application
NO: of full-		l .	contig	that contig nucleotide
length	length	contig		sequence was filed
nucleotide	peptide	nucleotide	peptide	(Attorney Docket
sequence	sequence	sequence	sequence	No. SEQ ID NO.) *
			 	No. SEQ ID No.)
867	1908			
868	1909	-	2007	792 8447
869	1910	2445	2897	792_8447
870	1911	ļ		
871	1912		2000	700 12280
872	1913	2446	2898	790_12289
873	1914	0.145	2000	701 029
874	1915	2447	2899	791_938 787_2708
875	1916	2448	2900	
876	1917	2449	2901	790_28624
877	1918	ļ	-	
878	1919			
879	1920	ļ	-	700 0414
880	1921	2450	2902	790_9414
881	1922			
882	1923		 	
883	1924			
884	1925	2451	2903	790_29172
885	1926	2452	2904	785_1259
886	1927			
887	1928	2453	2905	790_11594
888	1929	2454	2906	790_4305
889	1930	2455	2907	792_4498
890	1931			
891	1932			
892	1933			
893	1934			
894	1935			
895	1936			
896	1937	2456	2908	790_2984
897	1938			
898	1939	2457	2909	790_11010
899	1940	2458	2910	790_21318
900	1941	2459	2911	790_3969
901	1942	2460	2912	785_3697
902	1943	2461	2913	785_3750
903	1944	2462	2914	787_10293
904	1945	2463	2915	787_5468
905	1946			
906	1947	2464	2916	784_4027
907	1948			
908	1949	2465	2917	791_1076
909	1950	2466	2918	790_14655
910	1951			
911	1952	2467	2919	788 11281
912	1953	2468	2920	784_3554
913	1954	2469	2921	784_6827
914	1955			
915	1956		 	
916	1957			
917	1958	2470	2922	789 4549
121/	1 4770	1 2 110		

Table 9

SEQ ID	SEQ ID	SEQ ID	SEQ ID	Identification of
NO: of full-	NO: of full-	NO: of	NO: of	Priority Application
length	length	contig	contig	that contig nucleotide
nucleotide	peptide	nucleotide	peptide	sequence was filed
sequence	sequence	sequence	sequence	(Attorney Docket
				No. SEQ ID NO.) *
918	1959			700 040
919	1960	2471	2923	790_948
920	1961		2054	700 (00
921	1962	2472	2924	789 682
922	1963	2473	2925	787_2281
923	1964		2026	700 11000
924	1965	2474	2926	790_11999 790_28325
925	1966	2475	2927	790_28323
926	1967	2476	2928 2929	790_7793
927	1968	2477	2929	792_3301
928	1969	2470	2930	790 4547
929	1970	2478 2479	2930	788 5864
930	1971	2419	2931	100_3004
931	1972	2480	2932	790 24604
932	1973	2400	2932	170_24004
933	1974 1975	2481	2933	790_25716
934	1975	2481	2934	785 1851
935	1977	2483	2935	785 1852
936	1977	2484	2936	785 1155
937	1978	2485	2937	785 3352
938	1980	2463	2557	, 03_0302
940	1981	2486	2938	785 1297
941	1982	2487	2939	785 477
942	1983	2488	2940	785 2441
943	1984	2489	2941	785 1294
944	1985			
945	1986		•	
946	1987			
947	1988	2490	2942	789_4549
948	1989	2491	2943	784_6979
949	1990	2492	2944	784_8567
950	1991	2493	2945	790_14286
951	1992	2494	2946	784_8986
952	1993			
953	1994	2495	2947	790_12510
954	1995			
955	1996			
956	1997			
957	1998	2496	2948	787_3623
958	1999			
959	2000			
9.60	2001			<u> </u>
961	2002	2497	2949	792_4842
962	2003	2498	2950	784_9156
963	2004		·	<u> </u>
964	2005	1		
965	2006			
966	2007	2499	2951	784_2649
967	2008	2500	2952	785_544
968	2009	2501	2953	787_4148

Table 9

OF O ID	CPO TD	SEO ID	SEQ ID	Identification of
SEQ ID	SEQ ID	SEQ ID	NO: of	Priority Application
NO: of full-	NO: of full-	NO: of	contig	that contig nucleotide
length	length	contig		sequence was filed
nucleotide	peptide	nucleotide ·	peptide	(Attorney Docket
sequence	sequence	sequence	sequence	No. SEQ ID NO.) *_
				No. SEQ ID No.)
969	2010		0054	784 5145
970	2011	2502	2954	784_3143
971	2012	0503	2055	784 919
972	2013	2503	2955	784_919
973	2014	2504	2956	787 2532
974	2015	2505	2957	788 13689
975 976	2017	2303	2557	700_1500
977	2017	2506	2958	784 2950
978	2019	2300	2550	
979	2020	 		
980	2020	2507	2959	784 4027
981	2022	2508	2960	785 332
982	2023		-	
983	2024			
984	2025	2509	2961	784_1944
985	2026	2510	2962	787_6916
986	2027	2511	2963	787_2539
987	2028			
988	2029	2512	2964	787_10243
989	2030			
990	2031			
991	2032	2513	2965	787_5673
992	2033			
993	2034			
994	2035			
995	2036			
996	2037		<u> </u>	
997	2038		<u> </u>	707 0160
998	2039	2514	2966	787_2168
999	2040	2515	2967	784_1151
1000	2041		<u> </u>	
1001	2042		2000	787 3680
1002	2043	2516	2968	787 5181
1003	2044	2517	2969	787 3356
1004	2045	2518	2970	785_254
1005	2046	2519	27/1	103_234
1006	2047	-		
1007	2048	2520	2972	789 1109
1008	2049	2320	2312	707 1107
1009	2050	 		
1010	2052	2521	2973	790 7032
1011	2052	2522	2974	791 4111
1012	2053		1-21.7	
1013	2055	-	+	
1014	2056	2523	2975	790 11262
1015	2057	2524	2976	787 2040
1017	2058	2327	 	
1017	2059			
1019	2060			
1017	1 2000			

Table 9

SEQ ID NO: of full- length nucleotide sequence	SEQ ID NO: of full- length peptide sequence	SEQ ID NO: of contig nucleotide sequence	SEQ ID NO: of contig peptide sequence	Identification of Priority Application that contig nucleotide sequence was filed (Attorney Docket No. SEQ ID NO.) *
1020	2061			1000
1021	2062	2525	2977	785_1902
1022	2063	2526	2978	790_12167
1023	2064		ļ	
1024	2065			
1025	2066			<u> </u>
1026	2067			
1027	2068	2527	2979	784_9027
1028	2069	2528	2980	790_8294
1029	2070			
1030	2071	2529	2981	784_5029
1031	2072	2530	2982	784_3541
1032	2073			, , , , , , , , , , , , , , , , , , , ,
1033	2074	2531	2983	787_5870
1034	2075		<u></u>	
1035	2076	2532	2984	787_2733
1036	2077	2533	2985	785_581
1037	2078	2534	2986	787_9345
1038	2079			
1039	2080			
1040	2081			
1041	2082	<u> L</u>		

*784_XXX = SEQ ID NO: XXX of Attorney Docket No. 784, US Serial No. 09/488,725 filed 01/21/2000, the entire disclosure of which, including sequence listing, is incorporated herein by reference.

785_XXX = SEQ ID NO: XXX of Attorney Docket No. 785, US Serial No. 09/491,404 filed 01/25/2000, the entire disclosure of which, including sequence listing, is incorporated herein by reference.

787_XXX = SEQ ID NO: XXX of Attorney Docket No. 787, US Serial No. 09/496,914 filed 02/03/2000, the entire disclosure of which, including sequence listing, is incorporated herein by reference.

788_XXX = SEQ ID NO: XXX of Attorney Docket No. 788, US Serial No. 09/515,126 filed 02/28/2000, the entire disclosure of which, including sequence listing, is incorporated herein by reference.

789 XXX = SEQ ID NO: XXX of Attorney Docket No. 789, US Serial No. 09/519,705 filed 03/07/2000, the entire disclosure of which, including sequence listing, is incorporated herein by reference.

790_XXX = SEQ ID NO: XXX of Attorney Docket No. 790, US Serial No. 09/540,217 filed 03/31/2000, the entire disclosure of which, including sequence listing, is incorporated herein by reference.

546

Table 9

791 XXX = SEQ ID NO: XXX of Attorney Docket No. 791, US Serial No. 09/552,929 filed 04/18/2000, the entire disclosure of which, including sequence listing, is incorporated herein by reference.

792_XXX = SEQ ID NO: XXX of Attorney Docket No. 792, US Serial No. 09/577,408 filed 05/18/2000, the entire disclosure of which, including sequence listing, is incorporated herein by reference.

547 Table 10

SEQ ID NO of Full-length Nucleotide Sequence	SEQ ID NO of Full-length Peptide Sequence	SEQ ID NO in Priority Application
Nucleotide Sequence	1 eptide Sequence	USSN 60/311,261
	1042	1
1	1042	2
2	1043	3
3	1044	4
4	1045	5
5	1046	6
6	1047	
7	1048	7
8	1049	8
9	1050	9
10	1051	10
11	1052	11
12	1053	12
13	1054	13
14	1055	14
15	1056	15
16	1057	16
17	1058	17
18	1059	18
19	1060	19
20	1061	20
21	1062	21
22	1063	22
23	1064	23
24	1065	24
25	1066	25
26	1067	26
27	1068	27
28	1069	28
29	1070	29
30	1071	30
31	1072	31
32	1073	32
33	1074	33
34	1075	34
35	1076	35
36	1077	36
	1078	37
37 38	1079	38
	1080	39
39	1081	40
40		41
41	1082	42
42	1083	43
43	1084	44
44	1085	45
45	1086	
46	1087	46
47	1088	47
48	1089	48
49	1090	49
50	1091	50
51	1092	51
52	1093	52

548 Table 10

SEQ ID NO of Full-length	SEQ ID NO of Full-length	SEQ ID NO in
Nucleotide Sequence	Peptide Sequence	Priority Application
<u> </u>		USSN 60/311,261
53	1094	53
54	1095	54
55	1096	55
56	1097	56
57	1098	57
58	1099	58
59	1100	59
60	1101	60
61	1102	61
62	1103	62
63	1104	63
64	1105	64
65	1106	65
66	1107	66
67	1108	67
68	1109	68
69	1110	69
70	1111	70
71	1112	71
72	1113	72
73	1114	73
74	1115	74 75
75	1116	
76	1117	76
77	1118	78
78	1119	79
79	1120	80
80	1121	81
81	1122	82
82	1123	83
83	1124	84
84	1125	85
85 .	1126	86
86	1127	87
87	1128	88
88	1129 1130	89
89		90
90	1131 1132	91
91		92
92	1133	93
93	1135	94
94	1136	95
95	1137	96
96	1137	97
97	1139	98
98	1140	99
99	1141	100
100	1141	101
101	1143	102
102		103
103	1144	104
104	1145	105
105	1146] 103

549 Table 10

SEQ ID NO of Full-length	SEQ ID NO of Full-length	SEQ ID NO in
Nucleotide Sequence	Peptide Sequence	Priority Application
	1115	USSN 60/311,261
106	1147	107
107	1148	107
108	1149	109
109	1150	110
110	1151	111
111	1152 1153	112
112	1154	113
113	1155	114
114		115
115	1156 1157	116
116		117
117	1158 1159	118
118		119
119	1160	120
120	1161	121
121		122
122	1163	123
123	1164	124
124	1165	125
125	1166 1167	126
126		127
127	1168	128
128	1170	129
129	1170	130
130 131	1172	131
132	1173	132
133	1174	133
134	1175	134
135	1176	135
136	1177	136
137	1178	137
138	1179	138
139	1180	139
140	1181	140
141	1182	141
142	1183	142
143	1184	143
144	1185	144
145	1186	145
146	1187	146
147	1188	147
148	1189	148
149	1190	149
150	1191	150
151	1192	151
152	1192	152
153	1194	153
154	1194	154
155	1196	155
156	1197	156
157	1198	157
		1 141

550 Table 10

	Table 10	SEQ ID NO in
SEQ ID NO of Full-length	SEQ ID NO of Full-length	Priority Application
Nucleotide Sequence	Peptide Sequence	
		USSN 60/311,261
159	1200	159
160	1201	160
161	1202	161
162	1203	162
163	1204	163
164	1205	164
165	1206	165
166	1207	166
167	1208	167
168	1209	168
169	1210	169
170	1211	170
171	1212	171
172	1213	172
173	1214	173
174	1215	174
175	1216	175
176	1217	176
177	1218	177
	1219	178
178		179
179	1220	180
180	1221	181
181	1222	182
182	1223	183
183	1224	184
184	1225	
185	1226	185
186	1227	186
187	1228	187
188	1229	188
189	1230	189
190	1231	190
191	1232	191
192	1233	192
193	1234	193
194	1235	194
195	1236	195
196	1237	196
197	1238	197
198	1239	198
199	1240	199
200	1241	200
201	1242	201
202	1243	202
203	1244	203
204	1245	204
205	1246	205
206	1247	206
207	1248	207
	1249	208
208		209
209	1250	210
210	1251	
211	1252	211

551 Table 10

SEQ ID NO of Full-length	SEQ ID NO of Full-length	SEQ ID NO in
Nucleotide Sequence	Peptide Sequence	Priority Application
		USSN 60/311,261
212	1253	212
213	1254	213
214	1255	214
215	1256	215
216	1257	216
217	1258	217
218	1259	218
219	1260	219
220	1261	220
221	1262	221
222	1263	222
223	1264	223
224	1265	224
225	1266	225
226	1267	226
227	1268	227
228	1269	228
229	1270	229
230	1271	230
231	1272	231
232	1273	232
233	1274	233
234	1275	234
235	1276	235
236	1277	236
237	1278	237
238	1279	238
239	1280	239
240	1281	240
241	1282	241
242	1283	242
243	1284	243
244	1285	244
245	1286	245
246	1287	246
247	1288	247
248	1289	248
249	1290	249
250	1291	250
251	1292	251
252	1293	252
253	1294	253
254	1295	254
255	1296	255
256	1297	256
257	1298	257
258	1299	258
259	1300	259
260	1301	260
261	1302	261
262	1303	262
	1304	263
263 264	1305 .	264

552 Table 10

SEQ ID NO of Full-length	SEQ ID NO of Full-length	SEQ ID NO in
Nucleotide Sequence	Peptide Sequence	Priority Application USSN 60/311,261
265	1306	265
266	1307	266
267	1308	267
268	1309	268
269	1310	269
270	1311	270
271	1312	271
272	1313	272
273	1314	273
274	1315	274
275	1316	275
276	1317	276
277	1318	277
278	1319	278
279	1320	279
	1221	280
280	1321	281
281	1323	282
282	1324	283
283	1325	284
284		285
285	1326	286
286	1327	287
287	1328	288
288	1329	289
289	1330	
290	1331	290
291	1332	291
292	1333	292 293
293	1334	
294	1335	294
295	1336	295
296	1337	296
297	1338	297
298	1339	298
299	1340	299
300	1341	300
301	1342	301
302	1343	302
303	1344	303
304	1345	304
305	1346	305
306	1347	306
307	1348	307
308	1349	308
309	1350	309
310	1351	310
311	1352	311
312	1353	312
313	1354	313
314	1355	314
315	1356	315
316	1357	316

553 Table 10

SEQ ID NO of Full-length	SEQ ID NO of Full-length	SEQ ID NO in
Nucleotide Sequence	Peptide Sequence	Priority Application
		USSN 60/311,261
318	1359	318
319	1360	319
320	1361	320
321	1362	321
322	1363	322
323	1364	323
324	1365	324
325	1366	325
326	1367	326
327	1368	327
328	1369	328
329	1370	329
330	1371	330
331	1372	331
332	1373	332
333	1374	333
334	1375	334
335	1376	335
336	1377	336
337	1378	337
338	1379	338
339	1380	339
340	1381	340
341	1382	341
342	1383	342
343	1384	343
344	1385	344
345	1386	345 346
346	1387	
347	1388	347
348	1389	348
349	1390	349 350
350	1391	
351	1392	351 352
352	1393	353
353	1394	354
354	1395	355
355	1396	356
356	1397	357
357	1398	358
358	1399	359
359	1400	360
360	1401	361
361	1402	362
362	1403	
363	1404	363 364
364	1405	365
365	1406	
366	1407	366
367	1408	367
368	1409	368
369	1410	369
370	1411	370

554 Table 10

SEQ ID NO of Full-length	SEQ ID NO of Full-length	SEQ ID NO in
Nucleotide Sequence	Peptide Sequence	Priority Application
		USSN 60/311,261
371	1412	371
372	1413	372
373	1414	373
374	1415	374
375	1416	375
376	1417	376
377	1418	377
378	1419	378
379	1420	379
380	1421	380
381	1422	381
382	1423	382
383	1424	383
384	1425	384
385	1426	385
386	1427	386
387	1428	387
388	1429	388
389	1430	389
390	1431	390
391	1432	391
392	1433	392 393
393	1434	393
394	1435	395
395	1436	396
396	1437	397
397	1438	398
398	1439	399
399	1441	400
400	1441	401
401	1442	402
402	1444	403
403	1445	404
404	1446	405
405	1447	406
406	1448	407
407	1448	408
408	1450	409
409	1451	410
410	1452	411
411	1453	412
412	1454	413
413	1455	414
414	1456	415
415	1457	416
	1458	417
417	1459	418
418	1460	419
419	. 1461	420
420	1462	421
421	1463	422
422 423	1464	423

555 Table 10

SEQ ID NO of Full-length	SEQ ID NO of Full-length	SEQ ID NO in
Nucleotide Sequence	Peptide Sequence	Priority Application
2,440,000,000		USSN 60/311,261
424	1465	424
425	1466	425
426	1467	426
427	1468	427
428	1469	428
429	1470	429
430	1471	430
431	1472	431
432	1473	432
433	1474	433
434	1475	434
435	1476	435
436	1477	436
437	1478	437
438	1479	438
439	1480	439
440	1481	440
441	1482	441
442	1483	442
443	1484	443
444	1485	444
445	1486	445
446	1487	446 .
447	1488	447
448	1489	448
449	1490	449
450	1491	450
451	1492	451
452	1493	452
453	1494	453
454	1495	454
455	1496	455
456	1497	456
457	1498	457
458	1499	458
459	1500	459
460	1501	460
461	1502	461
462	1503	462
463	1504	463
464	1505	464
465	1506	465
466	1507	466
467	1508	467
468	1509	468
469	1510	469
470	1511	470
471	1512	471
472	1513	472
473	1514	473
474	1515	474
475	1516	475
476	1517	476

556 Table 10

SEQ ID NO of Full-length Nucleotide Sequence SEQ ID NO of Full-length Peptide Sequence SEQ ID NO of Full-length Priority Applie USSN 60/311 477 1518 477 478 1519 478 480 1521 480 481 1522 481 482 1523 482 483 1524 483 484 1525 484 485 1526 485 486 1527 486 487 1528 487 488 1529 488 489 1530 489 490 1531 490 491 1532 491 492 1533 492 493 1534 493 494 1535 494 495 1536 495 495 1536 495 498 1539 498 499 1540 499 500 1541 500	in .
USSN 60/311	
478 1519 478 479 1520 479 480 1521 480 481 1522 481 482 1523 482 483 1524 483 484 1525 484 485 1526 485 486 1527 486 487 1528 487 488 1529 488 489 1530 489 490 1531 490 491 1532 491 492 1533 492 493 1534 493 494 1535 494 495 1536 495 496 1537 496 497 1538 497 498 1539 498 499 1540 499 500 1541 500 501 1542 501 502 1543	,261
478 1519 478 479 1520 479 480 1521 480 481 1522 481 482 1523 482 483 1524 483 484 1525 484 485 1526 485 486 1527 486 487 1528 487 488 1529 488 489 1530 489 490 1531 490 491 1532 491 492 1533 492 493 1534 493 494 1535 494 495 1536 495 496 1537 496 497 1538 497 498 1539 498 499 1540 499 500 1541 500 501 1542 501 502 1543	
479 1520 479 480 1521 480 481 1522 481 482 1523 482 483 1524 483 484 1525 484 485 1526 485 486 1527 486 487 1528 487 488 1529 488 489 1530 489 490 1531 490 491 1532 491 492 1533 492 493 1534 493 494 1535 494 495 1536 495 496 1537 496 497 1538 497 498 1539 498 499 1540 499 500 1541 500 501 1542 501 502 1543 502 503 1544	
480 1521 480 481 1522 481 482 1523 482 483 1524 483 484 1525 484 485 1526 485 486 1527 486 487 1528 487 488 1529 488 489 1530 489 490 1531 490 491 1532 491 492 1533 492 493 1534 493 494 1535 494 495 1536 495 496 1537 496 497 1538 497 498 1539 498 499 1540 499 500 1541 500 501 1542 501 502 1543 502 503 1544 503 506 1547	
481 1522 481 482 1523 482 483 1524 483 484 1525 484 485 1526 485 486 1527 486 487 1528 487 488 1529 488 489 1530 489 490 1531 490 491 1532 491 492 1533 492 493 1534 493 494 1535 494 495 1536 495 496 1537 496 497 1538 497 498 1539 498 499 1540 499 500 1541 500 501 1542 501 502 1543 502 503 1544 503 504 1545 504 505 1546	
482	
483	
484 1525 484 485 1526 485 486 1527 486 487 1528 487 488 1529 488 489 1530 489 490 1531 490 491 1532 491 492 1533 492 493 1534 493 494 1535 494 495 1536 495 496 1537 496 497 1538 497 498 1539 498 499 1540 499 500 1541 500 501 1542 501 502 1543 502 503 1544 503 504 1545 504 505 1546 505 506 1547 506 507 1548 507 508 1549	
485	
486 1527 486 487 1528 487 488 1529 488 489 1530 489 490 1531 490 491 1532 491 492 1533 492 493 1534 493 494 1535 494 495 1536 495 496 1537 496 497 1538 497 498 1539 498 499 1540 499 500 1541 500 501 1542 501 502 1543 502 503 1544 503 504 1545 504 505 1546 505 506 1547 506 507 1548 507 508 1549 508 509 1550 509 510 1551	
487 1528 487 488 1529 488 489 1530 489 490 1531 490 491 1532 491 492 1533 492 493 1534 493 494 1535 494 495 1536 495 496 1537 496 497 1538 497 498 1539 498 499 1540 499 500 1541 500 501 1542 501 502 1543 502 503 1544 503 504 1545 504 505 1546 505 506 1547 506 507 1548 507 508 1549 508 509 1550 509 510 1551 510 511 1552	
488 1529 488 489 1530 489 490 1531 490 491 1532 491 492 1533 492 493 1534 493 494 1535 494 495 1536 495 496 1537 496 497 1538 497 498 1539 498 499 1540 499 500 1541 500 501 1542 501 502 1543 502 503 1544 503 504 1545 504 505 1546 505 506 1547 506 507 1548 507 508 1549 508 509 1550 50 509 1550 50 509 1553 51 510 1551	
489 1530 489 490 1531 490 491 1532 491 492 1533 492 493 1534 493 494 1535 494 495 1536 495 496 1537 496 497 1538 497 498 1539 498 499 1540 499 500 1541 500 501 1542 501 502 1543 502 503 1544 503 504 1545 504 505 1546 505 506 1547 506 507 1548 507 508 1549 508 509 1550 509 510 1551 510 511 1552 511 512 1553 512 513 1554	
490 1531 490 491 1532 491 492 1533 492 493 1534 493 494 1535 494 495 1536 495 496 1537 496 497 1538 497 498 1539 498 499 1540 499 500 1541 500 501 1542 501 502 1543 502 503 1544 503 504 1545 504 505 1546 505 506 1547 506 507 1548 507 508 1549 508 509 1550 509 510 1551 510 511 1552 511 512 1553 512 513 1554 513 514 1555	
491 1532 491 492 1533 492 493 1534 493 494 1535 494 495 1536 495 496 1537 496 497 1538 497 498 1539 498 499 1540 499 500 1541 500 501 1542 501 502 1543 502 503 1544 503 504 1545 504 505 1546 505 506 1547 506 507 1548 507 508 1549 508 509 1550 509 510 1551 510 511 1552 511 512 1553 512 513 1554 513 514 1555 514 515 1556	
492 1533 492 493 1534 493 494 1535 494 495 1536 495 496 1537 496 497 1538 497 498 1539 498 499 1540 499 500 1541 500 501 1542 501 502 1543 502 503 1544 503 504 1545 504 505 1546 505 506 1547 506 507 1548 507 508 1549 508 509 1550 509 510 1551 510 511 1552 511 512 1553 512 513 1554 513 514 1555 514 515 156 515 516 1557	
493 1534 493 494 1535 494 495 1536 495 496 1537 496 497 1538 497 498 1539 498 499 1540 499 500 1541 500 501 1542 501 502 1543 502 503 1544 503 504 1545 504 505 1546 505 506 1547 506 507 1548 507 508 1549 508 509 1550 509 510 1551 510 511 1552 511 512 1553 512 513 1554 513 514 1555 514 515 1556 515 516 1557 516 517 1558	
494 1535 494 495 1536 495 496 1537 496 497 1538 497 498 1539 498 499 1540 499 500 1541 500 501 1542 501 502 1543 502 503 1544 503 504 1545 504 505 1546 505 506 1547 506 507 1548 507 508 1549 508 509 1550 509 510 1551 510 511 1552 511 512 1553 512 513 1554 513 514 1555 514 515 1556 515 516 1557 516 517 1558 517 518 1559	
495 1536 495 496 1537 496 497 1538 497 498 1539 498 499 1540 499 500 1541 500 501 1542 501 502 1543 502 503 1544 503 504 1545 504 505 1546 505 506 1547 506 507 1548 507 508 1549 508 509 1550 509 510 1551 510 511 1552 511 512 1553 512 513 1554 513 514 1555 514 515 1556 515 516 1557 516 517 1558 517 518 1559 518 519 1560	
496 1537 496 497 1538 497 498 1539 498 499 1540 499 500 1541 500 501 1542 501 502 1543 502 503 1544 503 504 1545 504 505 1546 505 506 1547 506 507 1548 507 508 1549 508 509 1550 509 510 1551 510 511 1552 511 512 1553 512 513 1554 513 514 1555 514 515 1556 515 516 1557 516 517 1558 517 518 1559 518 519 1560 519 520 1561	
497 1538 497 498 1539 498 499 1540 499 500 1541 500 501 1542 501 502 1543 502 503 1544 503 504 1545 504 505 1546 505 506 1547 506 507 1548 507 508 1549 508 509 1550 509 510 1551 510 511 1552 511 512 1553 512 513 1554 513 514 1555 514 515 1556 515 516 1557 516 517 1558 517 518 1559 518 519 1560 519 520 1561 520 521 1562	
498 1539 498 499 1540 499 500 1541 500 501 1542 501 502 1543 502 503 1544 503 504 1545 504 505 1546 505 506 1547 506 507 1548 507 508 1549 508 509 1550 509 510 1551 510 511 1552 511 512 1553 512 513 1554 513 514 1555 514 515 1556 515 516 1557 516 517 1558 517 518 1559 518 519 1560 519 520 1561 520 521 1563 522 523 1564	
499 1540 499 500 1541 500 501 1542 501 502 1543 502 503 1544 503 504 1545 504 505 1546 505 506 1547 506 507 1548 507 508 1549 508 509 1550 509 510 1551 510 511 1552 511 512 1553 512 513 1554 513 514 1555 514 515 1556 515 516 1557 516 517 1558 517 518 1559 518 519 1560 519 520 1561 520 521 1562 521 522 1563 522 523 1564	
500 1541 500 501 1542 501 502 1543 502 503 1544 503 504 1545 504 505 1546 505 506 1547 506 507 1548 507 508 1549 508 509 1550 509 510 1551 510 511 1552 511 512 1553 512 513 1554 513 514 1555 514 515 1556 515 516 1557 516 517 1558 517 518 1559 518 519 1560 519 520 1561 520 521 1562 521 523 1564 523	
501 1542 501 502 1543 502 503 1544 503 504 1545 504 505 1546 505 506 1547 506 507 1548 507 508 1549 508 509 1550 509 510 1551 510 511 1552 511 512 1553 512 513 1554 513 514 1555 514 515 1556 515 516 1557 516 517 1558 517 518 1559 518 519 1560 519 520 1561 520 521 1563 522 523 1564 523	
502 1543 502 503 1544 503 504 1545 504 505 1546 505 506 1547 506 507 1548 507 508 1549 508 509 1550 509 510 1551 510 511 1552 511 512 1553 512 513 1554 513 514 1555 514 515 1556 515 516 1557 516 517 1558 517 518 1559 518 519 1560 519 520 1561 520 521 1563 522 523 1564 523	
503 1544 503 504 1545 504 505 1546 505 506 1547 506 507 1548 507 508 1549 508 509 1550 509 510 1551 510 511 1552 511 512 1553 512 513 1554 513 514 1555 514 515 1556 515 516 1557 516 517 1558 517 518 1559 518 519 1560 519 520 1561 520 521 1562 521 523 1564 523	
504 1545 504 505 1546 505 506 1547 506 507 1548 507 508 1549 508 509 1550 509 510 1551 510 511 1552 511 512 1553 512 513 1554 513 514 1555 514 515 1556 515 516 1557 516 517 1558 517 518 1559 518 519 1560 519 520 1561 520 521 1562 521 523 1564 523	
505 1546 505 506 1547 506 507 1548 507 508 1549 508 509 1550 509 510 1551 510 511 1552 511 512 1553 512 513 1554 513 514 1555 514 515 1556 515 516 1557 516 517 1558 517 518 1559 518 519 1560 519 520 1561 520 521 1562 521 523 1564 523	
506 1547 506 507 1548 507 508 1549 508 509 1550 509 510 1551 510 511 1552 511 512 1553 512 513 1554 513 514 1555 514 515 1556 515 516 1557 516 517 1558 517 518 1559 518 519 1560 519 520 1561 520 521 1562 521 523 1564 523	
507 1548 507 508 1549 508 509 1550 509 510 1551 510 511 1552 511 512 1553 512 513 1554 513 514 1555 514 515 1556 515 516 1557 516 517 1558 517 518 1559 518 519 1560 519 520 1561 520 521 1562 521 523 1564 523	
508 1549 508 509 1550 509 510 1551 510 511 1552 511 512 1553 512 513 1554 513 514 1555 514 515 1556 515 516 1557 516 517 1558 517 518 1559 518 519 1560 519 520 1561 520 521 1562 521 523 1564 523	
509 1550 509 510 1551 510 511 1552 511 512 1553 512 513 1554 513 514 1555 514 515 1556 515 516 1557 516 517 1558 517 518 1559 518 519 1560 519 520 1561 520 521 1562 521 522 1563 522 523 1564 523	
510 1551 510 511 1552 511 512 1553 512 513 1554 513 514 1555 514 515 1556 515 516 1557 516 517 1558 517 518 1559 518 519 1560 519 520 1561 520 521 1562 521 522 1563 522 523 1564 523	
511 1552 511 512 1553 512 513 1554 513 514 1555 514 515 1556 515 516 1557 516 517 1558 517 518 1559 518 519 1560 519 520 1561 520 521 1562 521 522 1563 522 523 1564 523	
512 1553 512 513 1554 513 514 1555 514 515 1556 515 516 1557 516 517 1558 517 518 1559 518 519 1560 519 520 1561 520 521 1562 521 522 1563 522 523 1564 523	
513 1554 513 514 1555 514 515 1556 515 516 1557 516 517 1558 517 518 1559 518 519 1560 519 520 1561 520 521 1562 521 522 1563 522 523 1564 523	
513 1554 513 514 1555 514 515 1556 515 516 1557 516 517 1558 517 518 1559 518 519 1560 519 520 1561 520 521 1562 521 522 1563 522 523 1564 523	
514 1555 514 515 1556 515 516 1557 516 517 1558 517 518 1559 518 519 1560 519 520 1561 520 521 1562 521 522 1563 522 523 1564 523	
515 1556 515 516 1557 516 517 1558 517 518 1559 518 519 1560 519 520 1561 520 521 1562 521 522 1563 522 523 1564 523	
516 1557 516 517 1558 517 518 1559 518 519 1560 519 520 1561 520 521 1562 521 522 1563 522 523 1564 523	
517 1558 517 518 1559 518 519 1560 519 520 1561 520 521 1562 521 522 1563 522 523 1564 523	
518 1559 518 519 1560 519 520 1561 520 521 1562 521 522 1563 522 523 1564 523	
519 1560 519 520 1561 520 521 1562 521 522 1563 522 523 1564 523	
520 1561 520 521 1562 521 522 1563 522 523 1564 523	
521 1562 521 522 1563 522 523 1564 523	
522 1563 522 523 1564 523	
523 1564 523	
524 . 1565 524	
525 1566 525	
525 1500 525 526 1567 527	
V2.	
528 1569 529 529 1570 530	

557 Table 10

SEQ ID NO of Full-length	SEQ ID NO of Full-length	SEQ ID NO in
Nucleotide Sequence	Peptide Sequence	Priority Application
1,40.000.000		USSN 60/311,261
530	1571	531
531	1572	532
532	1573	533
533	1574	534
534	1575	535
535	1576	536
536	1577	537
	1578	538
537	1579	539
538	1580	540
539	1581	541
540	1582	542
541	1583	543
542	1584	544
543		545
544	1585	546
545	1586	547
546	1587	548
547	1588	549
548	1589	550
549	1590	551
550	1591	552
551	1592	553
552	1593	554
553	1594	
554	1595	555
555	1370	556
556	1597	557
557	1598	558
558	1599	559
559	1600	560
560	. 1601	561
561	1602	562
562	1603	563
563	1604	564
564	1605	565
565	1606	566
566	1607	567
567	1608	568
568	1609	569
569	1610	570
570	1611	571
571	1612	572
572	1613	573
573	1614	574
574	1615	575
575	1616	576
576	1617	577
577	1618	578
578	1619	579
	1620	580
579	1621	581
580	1622	582
581		583
582	1623	

558 Table 10

SEQ ID NO of Full-length	SEQ ID NO of Full-length Peptide Sequence	SEQ ID NO in Priority Application
Nucleotide Sequence	repude Sequence	USSN 60/311,261
583	1624	584
	1625	585
584 585	1626	586
586	1627	587
587	1628	588
588	1629	589
589	1630	590
590	1631	591
591	1632	592
592	1633	593
593	1634	594
594	1635	595
595	1636	596
596	1637	597
597	1638	598
598	1639	599
599	1640	600
600	1641	601
601	1642	602
602	1643	603
603	1644	604
604	1645	605
605	1646	606
606	1647	607
607	1648	608
608	1649	609
609	1650	610
610	1651	611
611	1652	612
612	1653	613
613	1654	614
614	1655	615 .
615	1656	616
616	1657	617
617	1658	618
618	1659	619
619	1660	620
620	1661	621
621	1662	622
622	1663	623
623	1664	624
624	1665	625
625	1666	626
626	1667	627
627	1668	628
628	1669	629
629	1670	630
630	1671	631
631	1672	632
632	1673	633
633	1674	634
634	1675	635
635	1676	636

559 Table 10

SEQ ID NO of Full-length	SEQ ID NO of Full-length	SEQ ID NO in
Nucleotide Sequence	Peptide Sequence	Priority Application
		USSN 60/311,261
636	1677	637
637	1678	638
638	1679	639
639	1680	640
640	1681	641
641	1682	642
642	1683	643
643	1684	644
644	1685	645
645	1686	646
646	1687	647
647	1688	648
648	1689	649
649	1690	650
650	1691	651
651	1692	652
652	1693	653
653	1694	654
654	1695	655
655	1696	656
656	1697	657
657	1698	658 659
658	1699	660
659	1700	661
660	1701	662
661	1702	663
662	1703	664
663	1704	665
664	1705	666
665	1706	667
666	1707	668
667	1708	669
668	1709	670
669	1710	671
670	1711	672
671	1712	673
672	1713	674
673	1714	675
674	1715	676
675	1716	677
676	1717	678
677	1718	679
678	1719 1720	680
679	1721	681
680	1722	682
681		683
682	1723	684
683	1724	685
684	1725	686
685	1726	
686	1727	687
687	1728 1729	689

560 Table 10

SEQ ID NO of Full-length	SEQ ID NO of Full-length	SEQ ID NO in
Nucleotide Sequence	Peptide Sequence	Priority Application USSN 60/311,261
689	1730	690
690	1731	691
691	1732	692
692	1733	693
693	1734	694
694	1735	695
695	1736	696
696	1737	697
697	1738	698
698	1739	699
699	1740	700
700	1741	701
701	1742	702
	1743	703
702	1744	704
703	1745	705
704	1746	706
/03	1747	707
706		708
707	1748	709
708	1749	710
709	1750	
710	1751	711
711	1752	712
712	1753	713
713	1754	714
714	1755	715
715	1756	716
716	1757	717
717	1758	718
718	1759	719
719	1760	720
720	1761	721
721	1762	722
722	1763	723
723	1764	724
724	1765	725
725	1766	726
726	1767	727
727	1768	728
728	1769	729
729	1770	730
	1771	731
730	1772	732
731	1773	733
732	1774	734
733	1775	735
734		736
735	1776	737
736	1777	
737	1778	738
738	1779	739
739	1780	740
740	1781	741
741	1782	742

561 Table 10

SEQ ID NO of Full-length	SEQ ID NO of Full-length	SEQ ID NO in Priority Application
Nucleotide Sequence	Peptide Sequence	USSN 60/311,261
740	1783	743
742	1784	744
743	1785	745
744	1786	746
745	1787	747
746	1788	748
747	1789	749
748	1790	750
750	1791	751
751	1792	752
752	1793	753
753	1794	754
754	1795	755
755	1796	756
756	1797	757
757	1798	758
758	1799	759
759	1800	760
760	1801	761
761	1802	762
762	1803	763
763	1804	764
764	1805	765
765	1806	766
766	1807	767
767	1808	768
768	1809	769
769	1810	770
770	1811	771
771	1812	772
772	1813	773
773 .	1814	774
774	1815	775
775	1816	776
776	1817	777
777	1818	778
778	1819	779
779	1820	780
780	1821	781
781	1822	782
782	1823	783
783	1824	784
784	1825	785
785	1826	786
786	1827	787
787	1828	788
788	1829	789
789	1830	790
790	1831	791
791	1832	792
792	1833	793
793	1834	794
794	1835	795

562 Table 10

SEQ ID NO of Full-length	SEQ ID NO of Full-length	SEQ ID NO in
Nucleotide Sequence	Peptide Sequence	Priority Application
ŕ		USSN 60/311,261
795	1836	796
796	1837	797
797	1838	798
798	1839	799
799	1840	800
800	1841	801
801	1842	802
802	1843	803
803	1844	804
804	1845	805
805	1846	806
806	1847	807
	1848	808
807	1849	809
808	1850	810
809	1851	811
810	1852	812
811		813
812	1853	814
813	1854	815
814	1855	816
815	1856	817
816	1857	
817	1858	818
818	1859	819
819	1860	820
820	1861	821
821	1862	822
822	1863	823
823	1864	824
824	1865	825
825	1866	826
826	1867	827
827	1868	828
828	1869	829
829	1870	830
830	1871	831
831	1872	832
832	1873	833
833	1874	834
834	1875	835
835	1876	836
836	1877	837
837	1878	838
838	1879	839
839	1880	840
840	1881	841
841	1882	842
842	1883	843
843	1884	844
844	1885	845
845	1886	846
	1887	847
846		848
847	1888	040

563 Table 10

SEQ ID NO of Full-length	SEQ ID NO of Full-length	SEQ ID NO in Priority Application
Nucleotide Sequence	Peptide Sequence	USSN 60/311,261
049	1980	849
848	1889	850
849 850	1891	851
	1892	852
851 852	1893	853
	1894	854
853	1895	855
854	1896	856
855	1897	857
856	1898	858
857	1899	859
858	1900	860
859 860	1901	861
	1902	862
861	1903	863
862	1904	864
863 864	1905	865
865	1906	866
	1907	867
866 867	1908	868
	1909	869
868 869	1910	870
870	1911	871
871	1912	872
872	1913	873
873	1914	874
874	1915	875
875	1916	876
876	1917	877
877	1918	878
878	1919	879
879	1920	880
880	1921	881
881	1922	882
882	1923	883
883	1924	884
884	1925	885
885	1926	886
886	1927	887
887	1928	888
888	1929	889
889	1930	890
890	1931	891
891	1932	892
892	1933	893
893	1934	894
894	1935	895
895	1936	896
896	1937	897
897	1938	898
898	1939	899
899	1940	900
900	1941	901

564 Table 10

SEQ ID NO of Full-length	SEQ ID NO of Full-length	SEQ ID NO in
Nucleotide Sequence	Peptide Sequence	Priority Application
		USSN 60/311,261
901	1942	902
902	1943	903
903	1944	904
904	1945	905
905	1946	906
906	1947	907
907	1948	908
908	1949	909
909	1950	910
910	1951	911
911	1952	912
912	1953	913
913	1954	914
914	1955	915
915	1956	916
916	1957	917
917	1958	918
918	1959	919
919	1960	920
920	1961	921
921	1962	922
922	1963	923
923	1964	924
924	1965	925
925	1966	926
926	1967	927
927	1968	928 929
928	1969	
929	1970	930
930	1971	932
931	1972	933
932	1973	934
933	1974	935
934	1973	936
935	1976	937
936	1977	938
937	1978	939
938	1979	940
939	1980	941
940	1981	942
941	1982	943
942	1983	944
943	1984	945
944	1985	946
945	.1986	947
946	1987	948
947	1988	949
948	1989	950
949	1990	950
950	1991	
951	1992	952
952	1993	953
953	1994	954

565 Table 10

SEQ ID NO of Full-length	SEQ ID NO of Full-length	SEQ ID NO in
Nucleotide Sequence	Peptide Sequence	Priority Application USSN 60/311,261
954	1995	955 956
955	1996	957
956	1997	958
957	1998	
958	1999	959 960
959	2000	
960	2001	961 962
961	2002	
962	2003	963
963	2004	964 965
964	2005	
965	2006	966
966	2007	967
967	2008	968
968	2009	969
969	2010	
970	2011	971
971	2012	972 973
972	2013	974
973	2014	975
974	2015	976
975	2016	977
976	2017	978
977	2018	979
978		980
979	2020	981
980	2021	982
981	2022	983
982	2023	984
983	2025	985
984	2026	986
985	2027	987
986	2027	988
987	2029	989
988	2030	990
989	2031	991
990 991	2032	992
	2032	993
992	2034	994
993	2035	995
995	2036	996
	2037	997
996 997	2038	998
998	2039	999
999	2040	1000
	2041	1001
1000 1001	2042	1002
1002	2042	1003
	2044	1004
1003	2045	1005
1004	2046	1006
1005 1006	2047	1007

566 Table 10

SEQ ID NO of Full-length	SEQ ID NO of Full-length	SEQ ID NO in
Nucleotide Sequence	Peptide Sequence	'Priority Application USSN 60/311,261
1007	2048	1008
1008	2049	1009
1009	2050	1010
1010	2051	1011
1011	2052	1012
1012	2053	1013
1013	2054	1014
1014	2055	1015
1015	2056	1016
1016	2057	1017
1017	2058	1018
1018	2059	1019
1019	2060	1020
1020	2061	1021
1021	2062	1022
1022	2063	1023
1023	2064	1024
1024	2065	1025
1025	2066	1026
1026	2067	1027
1027	2068	1028
1028	2069	1029
1029	2070	1030
1030	2071	1031
1031	2072	1032
1032	2073	1033
1033	2074	1034
1034	2075	1035
1035	2076	1036
1036	2077	1037
1037	2078	1038
1038	2079	1039
1039	2080	1040
1040	2081	1041
1041	2082	1042

WHAT IS CLAIMED IS:

- 1. An isolated polynucleotide comprising a nucleotide sequence selected from the group consisting of SEQ ID NO: 1-1041.
- 2. An isolated polynucleotide encoding a polypeptide with biological activity, wherein said polynucleotide hybridizes to the polynucleotide of claim 1 under stringent hybridization conditions.
- 3. An isolated polynucleotide encoding a polypeptide with biological activity, wherein said polynucleotide has greater than about 99% sequence identity with the polynucleotide of claim 1.
- 4. The polynucleotide of claim 1 wherein said polynucleotide is DNA.
- 5. An isolated polynucleotide of claim 1 wherein said polynucleotide comprises the complementary sequences.
- 6. A vector comprising the polynucleotide of claim 1.
- 7. An expression vector comprising the polynucleotide of claim 1.
- 8. A host cell genetically engineered to comprise the polynucleotide of claim 1.
- 9. A host cell genetically engineered to comprise the polynucleotide of claim 1 operatively associated with a regulatory sequence that modulates expression of the polynucleotide in the host cell.
- 10. An isolated polypeptide, wherein the polypeptide is selected from the group consisting of:
 - (a) a polypeptide encoded by any one of the polynucleotides of claim 1;
 and
 - (b) a polypeptide encoded by a polynucleotide hybridizing under stringent conditions with any one of SEQ ID NO: 1-1041.

WO 03/080795 PCT/US02/25485

- 568
- A composition comprising the polypeptide of claim 10 and a carrier. 11.
- An antibody directed against the polypeptide of claim 10. 12.
- A method for detecting the polynucleotide of claim 1 in a sample, comprising: 13.
- contacting the sample with a compound that binds to and forms a complex with the polynucleotide of claim 1 for a period sufficient to form the complex; and
- detecting the complex, so that if a complex is detected, the polynucleotide of claim 1 is detected.
- A method for detecting the polynucleotide of claim 1 in a sample, comprising: 14.
- contacting the sample under stringent hybridization conditions with a) nucleic acid primers that anneal to the polynucleotide of claim 1 under such conditions;
- b) amplifying a product comprising at least a portion of the polynucleotide of claim 1; and
- detecting said product and thereby the polynucleotide of claim 1 in the c) sample.
- The method of claim 14, wherein the polynucleotide is an RNA molecule and the 15. method further comprises reverse transcribing an annealed RNA molecule into a cDNA polynucleotide.
- 16. A method for detecting the polypeptide of claim 10 in a sample, comprising:
- a) contacting the sample with a compound that binds to and forms a complex with the polypeptide under conditions and for a period sufficient to form the complex; and
- b) detecting formation of the complex, so that if a complex formation is detected, the polypeptide of claim 10 is detected.
- 17. A method for identifying a compound that binds to the polypeptide of claim 10, comprising:

- a) contacting the compound with the polypeptide of claim 10 under conditions sufficient to form a polypeptide/compound complex; and
- b) detecting the complex, so that if the polypeptide/compound complex is detected, a compound that binds to the polypeptide of claim 10 is identified.
- 18. A method for identifying a compound that binds to the polypeptide of claim 10, comprising:
- a) contacting the compound with the polypeptide of claim 10, in a cell, under conditions sufficient to form a polypeptide/compound complex, wherein the complex drives expression of a reporter gene sequence in the cell; and
- b) detecting the complex by detecting reporter gene sequence expression, so that if the polypeptide/compound complex is detected, a compound that binds to the polypeptide of claim 10 is identified.
- 19. A method of producing the polypeptide of claim 10, comprising,
- a) culturing a host cell comprising a polynucleotide sequence selected from the group consisting of any of the polynucleotides from SEQ ID NO: 1-1041, under conditions sufficient to express the polypeptide in said cell; and
 - b) isolating the polypeptide from the cell culture or cells of step (a).
- 20. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of any one of the polypeptides SEQ ID NO: 1042-2082.
- 21. The polypeptide of claim 20 wherein the polypeptide is provided on a polypeptide array.
- 22. A collection of polynucleotides, wherein the collection comprising of at least one of SEQ ID NO: 1-1041.
- 23. The collection of claim 22, wherein the collection is provided on a nucleic acid array.
- 24. The collection of claim 23, wherein the array detects full-matches to any one of the polynucleotides in the collection.

- 25. The collection of claim 23, wherein the array detects mismatches to any one of the polynucleotides in the collection.
- 26. The collection of claim 22, wherein the collection is provided in a computer-readable format.