Kaldi ASR Research Team

Team: Tabitha O'Malley, Tamina Tisha, David Serfaty, Milan Haruyama, Adam Gallub Customer: Dr. Jianhua Liu

What is the Kaldi ASR Toolkit?

- Kaldi ASR Toolkit
 - Builds automatic speech recognition models
- Automatic Speech Recognition
 - Conversion of speech to text
- Training Data
 - 30-hour ATC dataset
- ASR Model
 - Speech recognition for ATC applications

Background

- Complexities in ATC communication requires extensive training
 - Instructor time
 - Lack of existing resources for students
- RTube Web Application
 - Transcribe live ATC transmissions in real time

Customer Needs

In Progress

1. Understanding current sample ASR model provided by Kaldi ASR Toolkit

Future Iterations

- 1. Adjust the sample ASR model using the 30-hour ATC dataset
- 2. Compare the performance of the trained models
- 3. Experiment with other models
- 4. Apply the best trained model
- 5. Experiment with callsign and frequency identification

Major Requirements

1. Computer

- a. Windows Subsystem for Linux (WSL)
- b. Kaldi ASR Toolkit
- c. Sufficiently powerful GPU
- d. Sufficient amount of memory

2. WAV file as input

- a. Contains spoken speech
- b. Convert non-WAV files using FFMPEG utility

3. TXT file as output

a. Contains words transcribed from the WAV file

DFD Level 0: Context Diagram

3.1

Out.txt

DFD Level 1 ASR Training

Use Case Diagram: Sample ASR

Use Case Diagram: Training Process

Class Diagram

Future Testing

Input Testing

- "The system shall return exceptions/errors if the input is a non-WAV file."
- "The system shall return exceptions/errors if there are multiple inputs."

Accuracy Testing

• Assess transcription accuracy of ASR model using predefined benchmarks (e.g., a minimum transcription accuracy of 80%)

Runtime Testing

- Evaluate efficiency of ASR model based on processing time
- Measure time taken by ASR model to process standard WAV file and produce output text file

Lessons Learned

Complexity of Speech Recognition

- Black box that became slightly more translucent
 - Spaghetti code
 - Bad documentation
- Nuances in human speech
 - o Pronunciation (e.g., regional accents)
 - Articulation
 - Volume
 - o Pace

Hardware Limitations

- High performance requirements
 - o Training speed dependent on GPU speed

Next steps

Fall 2023	Spring 2024	202X	202X	202X	202X
Understand current ASR model (on going process)	Adjust the model using the 30-hour ATC dataset	Compare the performance of trained models	Experiment with other models	Apply the best trained model	Experiment with callsign and frequency identification

Questions?