	lpha									
\boldsymbol{x}	1	2	3	4	5	6	7	8	9	10
1	0.6320	0.2640	0.0800	0.0190	0.0040	0.0010	0.0000	0.0000	0.0000	0.0000
2	0.8650	0.5940	0.3230	0.1430	0.0530	0.0170	0.0050	0.0010	0.0000	0.0000
3	0.9500	0.8010	0.5770	0.3530	0.1850	0.0840	0.0340	0.0120	0.0040	0.0010
4	0.9820	0.9080	0.7620	0.5670	0.3710	0.2150	0.1110	0.0510	0.0210	0.0080
5	0.9930	0.9600	0.8750	0.7350	0.5600	0.3840	0.2380	0.1330	0.0680	0.0320
6	0.9980	0.9830	0.9380	0.8490	0.7150	0.5540	0.3940	0.2560	0.1530	0.0840
7	0.9990	0.9930	0.9700	0.9180	0.8270	0.6990	0.5500	0.4010	0.2710	0.1700
8	1.0000	0.9970	0.9860	0.9580	0.9000	0.8090	0.6870	0.5470	0.4070	0.2830
9		0.9990	0.9940	0.9790	0.9450	0.8840	0.7930	0.6760	0.5440	0.4130
10		1.0000	0.9970	0.9900	0.9710	0.9330	0.8700	0.7800	0.6670	0.5420
11			0.9990	0.9950	0.9850	0.9620	0.9210	0.8570	0.7680	0.6590
12			1.0000	0.9980	0.9920	0.9800	0.9540	0.9110	0.8450	0.7580
13				0.9990	0.9960	0.9890	0.9740	0.9460	0.9000	0.8340
14				1.0000	0.9980	0.9940	0.9860	0.9680	0.9380	0.8910
15					0.9990	0.9970	0.9920	0.9820	0.9630	0.9300

Table A.23 The Incomplete Gamma Function: $F(x;\alpha) = \int_0^x \frac{1}{\Gamma(\alpha)} y^{\alpha-1} e^{-y} dy$

A.24 Proof of Mean of the Hypergeometric Distribution

To find the mean of the hypergeometric distribution, we write

$$E(X) = \sum_{x=0}^{n} x \frac{\binom{k}{x} \binom{N-k}{n-x}}{\binom{N}{n}} = k \sum_{x=1}^{n} \frac{(k-1)!}{(x-1)!(k-x)!} \cdot \frac{\binom{N-k}{n-x}}{\binom{N}{n}}$$
$$= k \sum_{x=1}^{n} \frac{\binom{k-1}{x-1} \binom{N-k}{n-x}}{\binom{N}{n}}.$$

Since

$$\binom{N-k}{n-1-y} = \binom{(N-1)-(k-1)}{n-1-y} \quad \text{and} \quad \binom{N}{n} = \frac{N!}{n!(N-n)!} = \frac{N}{n} \binom{N-1}{n-1},$$

letting y = x - 1, we obtain

$$E(X) = k \sum_{y=0}^{n-1} \frac{\binom{k-1}{y} \binom{N-k}{n-1-y}}{\binom{N}{n}}$$

$$= \frac{nk}{N} \sum_{y=0}^{n-1} \frac{\binom{k-1}{y} \binom{(N-1)-(k-1)}{n-1-y}}{\binom{N-1}{n-1}} = \frac{nk}{N},$$

since the summation represents the total of all probabilities in a hypergeometric experiment when N-1 items are selected at random from N-1, of which k-1 are labeled success.

A.25 Proof of Mean and Variance of the Poisson Distribution

Let $\mu = \lambda t$.

$$E(X) = \sum_{x=0}^{\infty} x \cdot \frac{e^{-\mu} \mu^x}{x!} = \sum_{x=1}^{\infty} x \cdot \frac{e^{-\mu} \mu^x}{x!} = \mu \sum_{x=1}^{\infty} \frac{e^{-\mu} \mu^{x-1}}{(x-1)!}.$$

Since the summation in the last term above is the total probability of a Poisson random variable with mean μ , which can be easily seen by letting y = x - 1, it equals 1. Therefore, $E(X) = \mu$. To calculate the variance of X, note that

$$E[X(X-1)] = \sum_{x=0}^{\infty} x(x-1) \frac{e^{-\mu} \mu^x}{x!} = \mu^2 \sum_{x=2}^{\infty} \frac{e^{-\mu} \mu^{x-2}}{(x_2)!}.$$

Again, letting y = x - 2, the summation in the last term above is the total probability of a Poisson random variable with mean μ . Hence, we obtain

$$\sigma^2 = E(X^2) - [E(X)]^2 = E[X(X - 1)] + E(X) - [E(X)]^2 = \mu^2 + \mu - \mu^2 = \mu = \lambda t.$$

A.26 Proof of Mean and Variance of the Gamma Distribution

To find the mean and variance of the gamma distribution, we first calculate

$$E(X^k) = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} \int_0^{\infty} x^{\alpha+k-1} e^{-x/\beta} \ dx = \frac{\beta^{k+\alpha} \Gamma(\alpha+k)}{\beta^{\alpha} \Gamma(\alpha)} \int_0^{\infty} \frac{x^{\alpha+k-1} e^{-x/\beta}}{\beta^{k+\alpha} \Gamma(\alpha+k)} \ dx,$$

for $k=0,1,2,\ldots$ Since the integrand in the last term above is a gamma density function with parameters $\alpha+k$ and β , it equals 1. Therefore,

$$E(X^k) = \beta^k \frac{\Gamma(k+\alpha)}{\Gamma(\alpha)}.$$

Using the recursion formula of the gamma function from page 194, we obtain

$$\mu = \beta \frac{\Gamma(\alpha+1)}{\Gamma(\alpha)} = \alpha \beta$$
 and $\sigma^2 = E(X^2) - \mu^2 = \beta^2 \frac{\Gamma(\alpha+2)}{\Gamma(\alpha)} - \mu^2 = \beta^2 \alpha(\alpha+1) - (\alpha\beta)^2 = \alpha\beta^2$.