Task ID	Activity	Predecessor	Duration (months)	Budget (k\$)	Progress	AC
1	Preparation	-	2	600	100%	600
2	Design	1	3	1200	100%	1400
3	Implementation	2	2	400	50%	200
4	Testing	2	3	1200	33.3%	500
5	Deployment	4	3	300	0%	0

Total Estimated duration = 11 months. Budget at Completion (BaC) = 3700 k\$

- Delta cost = 600+1200+400*0.5+1200/3 (600+1400+200+500) = -300k\$

 The project is, so far, 300k\$ over budget.
- Given that the project started 7 months ago:

Estimated timeline:

- Task 1: Done
- Task 2: Done
- Task 3: has 4 months float so it could be done or still not started or anything in between.
- Task 4: 66.7% done

The delay in task 3 is less than the task float, so it is acceptable. However, task 4 is on the critical path, so it will delay the entire project.

The project is (0.333*3=)1 month behind schedule.

• Estimate-actual = 600+1200+400+1200+300 – (600+1400+200*2+500*3+300) = -500k\$ If the progress proceeds with the same rate, then by the end of the project it will be around 500 k\$ over budget (assuming task 5 costs about the same as its allotted budget).

After 7 months

Task	Progress	budget	PV	EV	AC	
1	100%	600	600	600	600	
2	100%	1200	1200	1200	1400	
3	50%	400	0-400	.5*400 = 200	200	
4	33.3%	1200	1200*2/3 = 800	1200/3 = 400	500	
5	0%	300	0	0	0	
total		3700		2400	2700	

PV at 7 months:

- when task 3 is planned as early as possible (should be completely done): PV = 3000 k\$
- when task 3 is planned as late as possible (would not have started): PV = 2600 k\$
- Average Case: PV = 2800 k\$

Cost variance (CV)	$CV = Earned\ Value\ (EV) - Acual\ Cost\ (AC)$	2400-2700 = -300 k\$	
Schedule Variance (SV)	SV = Earned Value (EV) — Planned Value (PV) For: Max PV Min PV Avg PV	2400-3000 = -600 k\$ 2400-2600 = -200 k\$ 2400-2800 = -400 k\$	
Cost Performance Index (CPI) $CPI = \frac{Earned\ Value\ (EV)}{Acual\ Cost\ (AC)}$		2400/2700 = 0.89	
Schedule Performance Index (SPI)	$SPI = rac{Earned\ Value\ (EV)}{Planned\ Value\ (PV)}$ For: Max PV Min PV Avg PV	For PV=3000: SPI = 0.8 For PV=2600 SPI = 0.93 For PV = 2800 SPI = 0.86	
Estimate At Completion (EAC) $EAC = \frac{BAC}{CPI}$		3700/0.889 = 4160 k\$	