Duality

Yuqian Zhang

Rutgers University yqz.zhang@rutgers.edu

February 11, 2021

Lagrangian

Standard form problem

minimize
$$f(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \cdots, m$
 $h_i(x) = 0, \quad i = 1, \cdots, p$

- no convex assumption
- make the optimization problem unconstrained
- trick: move the constraints into the objective

Lagrangian

Lagrangian $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to R$ with dom $(L) = \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p$

$$L(x, \lambda, v) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} v_i f_i(x)$$

- weighted sum of objective and constraint functions
- λ_i is Lagrange multiplier associated with $f_i(x) \leq 0$
- v_i is Lagrange multiplier associated with $h_i(x) = 0$

Lagrange dual function

Lagrange dual function $g: \mathbb{R}^m \times \mathbb{R}^p \to R$

$$g(\lambda, v) = \inf_{x \in \mathcal{D}} L(x, \lambda, v)$$

= $\inf_{x \in \mathcal{D}} f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p v_i f_i(x)$

Hence, independent of the convexity of f_i 's, we have

- $L(x, \lambda, v)$ is linear and convex in λ and v
- $-g(\lambda, v)$ is convex in λ and v
- $g(\lambda, \nu)$ is concave independent of the convexity of f_i 's

Convex function

• **Pointwise maximum**: If f_1, \dots, f_m are convex, then

$$f(x) = \max\{f_1(x), \cdots, f_m(x)\}\$$

is convex.

• **Pointwise supremum**: If f(x,y) is convex in x for each $y \in A$, then

$$g(x) = \sup_{y \in \mathcal{A}} f(x, y)$$

is convex.

Lower bound property

Lower bound property

If $\lambda_i \geq 0$, then $g(\lambda, v) \leq p^*$.

If \tilde{x} is feasible and $\lambda_i \geq 0$, then

$$f_i(\tilde{x}) \leq 0, \quad h_i(\tilde{x}) = 0.$$

minimizing over all feasible \tilde{x}

$$g(\lambda, v) = \inf_{x \in \mathcal{D}} L(x, \lambda, v)$$

$$\leq L(\tilde{x}, \lambda, v)$$

$$= f_0(\tilde{x}) + \sum_i \lambda_i f_i(\tilde{x}) + \sum_i v_i h_i(\tilde{x})$$

$$\leq f_0(\tilde{x})$$

Lower bound property

Lower bound property

If $\lambda_i \geq 0$, then $g(\lambda, v) \leq p^*$.

- Primal feasible solution x
- Dual feasible solution (λ, v)
- Every dual feasible point provides a lower bound on the solution of the original problem if $g(\cdot, \cdot)$ is known

Least-norm solution of linear equations

minimize
$$x^T x$$

subject to $Ax = b$

Dual function

- Lagrangian $L(x, v) = x^T x + v^T (Ax b)$
- to minimize L over x, set gradient equal to zero

$$\nabla_{\mathbf{x}} L(\mathbf{x}, \mathbf{v}) = 2\mathbf{x} + \mathbf{A}^T \mathbf{v} = 0 \implies \mathbf{x} = -\frac{1}{2} \mathbf{A}^T \mathbf{v}$$

• plug in L to obtain g, a concave function of v

$$g(v) = L((-1/2)A^Tv, v) = -\frac{1}{4}v^TAA^Tv - b^Tv,$$

Least-norm solution of linear equations

minimize
$$x^T x$$

subject to $Ax = b$

Lower bound property

$$-\frac{1}{4}v^{T}AA^{T}v - b^{T}v \leq \inf\left\{x^{T}x \mid Ax = b\right\}, \forall v \in \mathbb{R}^{m}$$

 \bullet pick any v and find a lower bound without solving any optimization

Standard form LP

minimize
$$c^T x$$

subject to $x \ge 0$
 $Ax = b$

• Lagrangian is affine in x,

$$L(x, \lambda, x) = c^{T}x + v^{T}(Ax - b) - \lambda^{T}x,$$

= $-b^{T}v + (c + A^{T}v - \lambda)^{T}x.$

ullet g is linear on affine domain $\big\{(\lambda, v) \mid A^T v - \lambda + c = 0\big\}$

$$g(\lambda, v) = \inf_{x} L(x, \lambda, v) = \begin{cases} -b^{T}v & A^{T}v - \lambda + c = 0\\ -\infty & \text{otherwise} \end{cases}$$

• Lower bound property: $p^* \ge -b^T v$ if $A^T v + c \ge 0$

Equality constrained norm minimization

minimize
$$||x||$$
 subject to $Ax = b$

Dual function

$$g(v) = \inf_{x} \left(\|x\| - v^{T} A x + b^{T} v \right)$$
$$= \begin{cases} b^{T} v & \|A^{T} v\|_{\star} \le 1 \\ -\infty & \text{otherwise} \end{cases},$$

where the dual norm of $\|\cdot\|$ is defined as $\|v\|_{\star} = \sup_{\|u\| < 1} u^T v$, hence

$$\left\|\boldsymbol{A}^{T}\boldsymbol{v}\right\|_{\star} \leq 1 \quad \Longrightarrow \quad \sup_{\boldsymbol{x}} \quad \frac{\boldsymbol{x}^{T}}{\left\|\boldsymbol{x}^{T}\right\|} \boldsymbol{A}^{T}\boldsymbol{v} \leq 1$$

Equality constrained norm minimization

$$g(v) = \inf_{x} \left(\|x\| - v^{T} A x + b^{T} v \right) = \begin{cases} b^{T} v & \left\| A^{T} v \right\|_{\star} \leq 1 \\ -\infty & \text{otherwise} \end{cases},$$

Follows from $\inf_{x} (\|x\| - y^T x) = 0$ is $\|y\|_{\star} \le 1$, $-\infty$ otherwise.

- $||y||_{\star} \le 1$, then $||x|| y^T x \ge 0$ for all x, with equality if x = 0
- $||y||_{\star} > 1$, choose x = tu where $||u|| \le 1$, $u^{T}y = ||y||_{\star} > 1$:

$$||x|| - y^T x = t (||u|| - ||y||_{\star}) \to -\infty, \text{ as } t \to \infty$$

Lower bound property: $p^* \ge b^T v$ if $||A^T v||_* \le 1$

Max cut

Given a graph G, find a vertix subset S such that the number of edges between S and its complement is large as possible.

$$W_{ij} = \begin{cases} 1 & (i,j) \in G \\ 0 & (i,j) \notin G \end{cases}, \quad x_i = \begin{cases} 1 & i \in S \\ -1 & i \notin S \end{cases}$$

Max cut

Nonconvex formulation

maximize
$$\sum_{i}\sum_{j}(1-x_{i}x_{j})W_{ij}$$
 subject to $x_{i}^{2}=1, \quad i=1,\cdots,n$

General Formulation

Max cut

minimize
$$x^T W x$$

subject to $x_i^2 = 1, \quad i = 1, \dots, n$

Dual function

$$g(v) = \inf_{x} \left(x^{T} W x + \sum_{i} v_{i}(x_{i}^{2} - 1) \right)$$

$$= \inf_{x} x^{T} (W + \operatorname{diag}(v)) x - \mathbf{1}^{T} v$$

$$= \begin{cases} -\mathbf{1}^{T} v & W + \operatorname{diag}(v) \succeq 0 \\ -\infty & \text{otherwise} \end{cases}$$

Lower bound property: $p^* \ge -\mathbf{1}^T v$ if $W + \operatorname{diag}(v) \succeq 0$

Lagrange dual and conjugate function

minimize
$$f_0(x)$$

subject to $Ax \le b$
 $Cx = d$

Dual function

$$g(\lambda, v) = \inf_{\mathbf{x} \in \text{dom}(f_0)} \left(f_0(\mathbf{x}) + (A^T \lambda + C^T v)^T \mathbf{x} - b^T \lambda - d^T v \right)$$
$$= -f_0^* (-A^T \lambda - C^T v) - b^T \lambda - d^T v$$

- conjugate $f^*(y) = \sup_{x \in dom(f)} (y^T x f(x))$
- simplifies derivation of dual if conjugate of f_0 is known

Lagrange dual and conjugate function

Dual problem

maximize
$$g(\lambda, v)$$
 subject to $\lambda \geq 0$

- ullet finds best lower bound on p^* , obtained from Lagrange dual function
- ullet a convex optimization problem; optimal value denoted d^*
- λ , ν are dual feasible if $\lambda \geq 0$
- ullet often simplified by making implicit constraint $(\lambda, v) \in \mathsf{dom}(g)$ explicit

Weak and strong duality

Weak duality $d^* \leq p^*$

- always holds (for convex and nonconvex problems)
- can be used to find nontrivial lower bounds for difficult problems
- example, solving the SDP

maximize
$$-\mathbf{1}^T v$$

subject to $W + \operatorname{diag}(v) \succeq 0$

gives a lower bound for the max cut partitioning problem

Weak and strong duality

Strong duality $d^* = p^*$

- does not hold in general
- (usually) holds for convex problems
- conditions that guarantee strong duality in convex problems are called constraint qualifications

Theorem

Strong duality holds for a convex optimization if slater's condition holds.

Slater's constraint qualification

Strong duality holds for a convex problem

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \cdots, m$
 $Ax = b$

if it is strictly feasible

$$\exists x \in \text{int } \mathcal{D}: \quad f_i(x) < 0 \quad i = 1, \dots, m,$$

$$Ax = b$$

- ullet also guarantees that the dual optimum is attained (if $p^* > -\infty$)
- there exist many other types of constraint qualifications

←□ ト ←□ ト ← 亘 ト ← 亘 ・ 夕 Q (*)

Inequality form LP

Primal problems

minimize
$$c^T x$$

subject to $Ax \le b$

Dual function

$$g(\lambda) = \inf \left((c + A^T \lambda)^T x - b^T \lambda \right)$$
$$= \begin{cases} -b^T \lambda & A^T \lambda + c = 0 \\ -\infty & \text{otherwise} \end{cases}$$

Inequality form LP

Primal problems

minimize
$$c^T x$$

subject to $Ax \le b$

Dual problem

maximize
$$-b^T \lambda$$

subject to $A^T \lambda + c = 0$

- from Slater's condition: $p^* = d^*$ if $A\tilde{x} < b$ for some \tilde{x}
- in fact, $p^* = d^*$ except when primal and dual are infeasible

Quadratic program

Primal problem, assume $P \in \mathbb{R}^n_{++}$

minimize
$$x^T P x$$

subject to $Ax \le b$

Dual function

$$g(\lambda) = \inf_{x} \left(x^{T} P x + \lambda^{T} (A x - b) \right)$$
$$= -\frac{1}{4} \lambda^{T} A P^{-1} A^{T} \lambda - b^{T} \lambda$$

Quadratic program

Primal problem, assume $P \in \mathbb{R}^n_{++}$

minimize
$$x^T P x$$

subject to $Ax \le b$

Dual problem

$$\begin{array}{ll} \text{maximize} & -\frac{1}{4}\lambda^T A P^{-1} A^T \lambda - b^T \lambda \\ \text{subject to} & \lambda \geq 0 \end{array}$$

- from Slater's condition: $p^* = d^*$ if $A\tilde{x} < b$ for some \tilde{x}
- in fact, $p^* = d^*$ always

Next Lecture

Duality