

MEC208 Instrumentation and Control System

2024-25 Semester 2

Dr. Bangxiang Chen

Email: Bangxiang.Chen@xjtlu.edu.cn

Office: SC554E

Department of Mechatronics and Robotics

School of Advanced Technology

Contents Covered in Exam

State Variable Models

Feedback Control System Characteristics

Time-Domain Performance of Feedback Control System

State Variable Models

□ State Variables
 □ State-space Modeling
 □ State Space Representation in Matrix Form
 □ Time-domain response (Solution of State-space Models)
 □ Conversion between State-space Model and Transfer Function

State of a System

The **State** of a system is a set of variables whose values, together with the input signals and the equations describing the dynamics, will provide the future state and output of the system;

It is the <u>minimum information</u> needed about the system in order to determine its future behavior.

State variables:
$$[x_1(t), x_2(t), x_3(t), ... x_n(t)]$$
 $x(t)$

Input signals:
$$[u_1(t), u_2(t), ... u_m(t)]$$
 u(t)

Output signals:
$$[y_1(t), y_2(t), ... y_p(t)]$$
 y(t)

State-space Modelling

First-order linear differential equations:

$$\begin{cases} \dot{x}_1(t) = a_{11}x_1(t) + a_{12}x_2(t) + \dots + a_{1n}x_n(t) + b_{11}u_1(t) + \dots + b_{1m}u_m(t) \\ \dot{x}_2(t) = a_{21}x_1(t) + a_{22}x_2(t) + \dots + a_{2n}x_n(t) + b_{21}u_1(t) + \dots + b_{2m}u_m(t) \\ \vdots \\ \dot{x}_n(t) = a_{n1}x_1(t) + a_{n2}x_2(t) + \dots + a_{nn}x_n(t) + b_{n1}u_1(t) + \dots + b_{nm}u_m(t) \end{cases}$$

$$\begin{cases} y_1(t) = c_{11}x_1(t) + c_{12}x_2(t) + \dots + c_{1n}x_n(t) + d_{11}u_1(t) + \dots + d_{1m}u_m(t) \\ y_2(t) = c_{21}x_1(t) + c_{22}x_2(t) + \dots + c_{2n}x_n(t) + d_{21}u_1(t) + \dots + d_{2m}u_m(t) \\ \vdots \\ y_n(t) = c_{n1}x_1(t) + c_{n2}x_2(t) + \dots + c_{nn}x_n(t) + d_{n1}u_1(t) + \dots + d_{nm}u_m(t) \end{cases}$$

*note: boldface small letter: vector; boldface capital letter: matrix.

Example 9.3 revisit

input: source current u(t)

output: resistor voltage v_o(t)

Ordinary Differential Equations:

$$i_c(t) = C \frac{dv_c}{dt} = u(t) - i_L(t)$$

$$L\frac{di_L}{dt} = -Ri_L(t) + v_c(t)$$

Output:

$$v_o(t) = Ri_L(t)$$

Choose variables, let $x_1(t) = v_c(t)$, $x_2(t) = i_L(t)$, $y(t) = v_o(t)$

$$\frac{dx_1}{dt} = -\frac{1}{C}x_2(t) + \frac{1}{C}u(t)$$

$$\frac{dx_2}{dt} = \frac{1}{L}x_1(t) - \frac{R}{L}x_2(t)$$

$$\dot{x}_1 = -\frac{1}{C}x_2 + \frac{1}{C}u$$

$$\dot{x}_2 = \frac{1}{L}x_1 - \frac{R}{L}x_2$$

$$y = Rx_2$$

Process of State-space Modelling

Model the system by linear ordinary differential equations (ODEs)

Define a set of state variables

Substitute the state variables into the ODEs and rewrite ODEs into

Rewrite ODEs into a set of first order differential equations

Don't forget about the output equations

For a system, the number of state variables required is equal to the number of independent energy-storage elements.

State-space Representation in Matrix Form

Linear first-order differential equations:

$$\dot{x}_1(t) = a_{11}x_1(t) + a_{12}x_2(t) + \dots + a_{1n}x_n(t) + b_{11}u_1(t) + \dots + b_{1m}u_m(t)$$

$$\dot{x}_2(t) = a_{21}x_1(t) + a_{22}x_2(t) + \dots + a_{2n}x_n(t) + b_{21}u_1(t) + \dots + b_{2m}u_m(t)$$

$$\vdots$$

$$\dot{x}_n(t) = a_{n1}x_1(t) + a_{n2}x_2(t) + \dots + a_{nn}x_n(t) + b_{n1}u_1(t) + \dots + b_{nm}u_m(t)$$

State Space Equations:

System matrix

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$

Input matrix

Output matrix

$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$$

Feed-forward matrix

Dimensions: $\mathbf{x}(n \times 1)$, $\mathbf{u}(m \times 1)$, $\mathbf{y}(p \times 1)$; $\mathbf{A}(n \times n)$, $\mathbf{B}(n \times m)$, $\mathbf{C}(p \times n)$, $\mathbf{D}(p \times m)$.

*note: boldface small letter: vector; boldface capital letter: matrix.

Time-domain response

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$

$$s\mathbf{X}(s) - \mathbf{x}(0) = \mathbf{A}\mathbf{X}(s) + \mathbf{B}\mathbf{U}(s),$$

$$\mathbf{X}(s) = [s\mathbf{I} - \mathbf{A}]^{-1}\mathbf{x}(0) + [s\mathbf{I} - \mathbf{A}]^{-1}\mathbf{B}\mathbf{U}(s)$$

State transition matrix

Then:

$$\mathbf{x}(t) = \mathbf{\Phi}(t)\mathbf{x}(0) + \int_0^t \mathbf{\Phi}(t - \tau)\mathbf{B}\mathbf{u}(\tau) d\tau$$

$$\mathbf{\Phi}(s) = [s\mathbf{I} - \mathbf{A}]^{-1}$$

If $\boldsymbol{u}(t) = 0$, then

unforced response

$$\mathbf{x}(t) = \mathbf{\Phi}(t)\mathbf{x}(0)$$

If $\boldsymbol{u}(t) \neq 0$, then

forced response
$$\mathbf{x}(t) = \mathbf{\Phi}(t)\mathbf{x}(0) + \int_0^t \mathbf{\Phi}(\tau)\mathbf{B}\mathbf{u}(t-\tau) d\tau$$
 Equivalent form

Covert State-space Model to Transfer Function

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$

$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$$

$$\mathbf{y}(s) = \mathbf{C}\mathbf{x}(s) + \mathbf{D}\mathbf{u}(s)$$

$$\mathbf{y}(s) = \mathbf{C}\mathbf{x}(s) + \mathbf{D}\mathbf{u}(s)$$

$$\mathbf{y}(s) = \mathbf{C}\mathbf{x}(s) + \mathbf{D}\mathbf{u}(s)$$

$$\mathbf{Y}(s) = (\mathbf{C}[s\mathbf{I} - \mathbf{A}]^{-1}\mathbf{B} + \mathbf{D})\mathbf{U}(s)$$

$$\mathbf{G}(s) = \mathbf{C}[s\mathbf{I} - \mathbf{A}]^{-1}\mathbf{B} + \mathbf{D}$$

Covert Transfer Function to State-space Model

Method 1: to develop graphic model of the system and use this model to determine state variables.

$$G(s) = \frac{Y(s)}{U(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{s^n + a_{m-1} s^{m-1} + \dots + a_1 s + a_0} \quad n \ge m$$

Divided by sⁿ

$$G(s) = \frac{b_m s^{-(n-m)} + b_{m-1} s^{-(n-m+1)} + \dots + b_1 s^{-(n-1)} + b_0 s^{-n}}{1 + a_{n-1} s^{-1} + \dots + a_1 s^{-(n-1)} + a_0 s^{-n}}$$

$$G(s) = \frac{b_3 s^3 + b_2 s^2 + b_1 s + b_0}{s^4 + a_3 s^3 + a_2 s^2 + a_1 s + a_0}$$
$$= \frac{b_3 s^{-1} + b_2 s^{-2} + b_1 s^{-3} + b_0 s^{-4}}{1 + a_3 s^{-1} + a_2 s^{-2} + a_1 s^{-3} + a_0 s^{-4}}.$$

$$\dot{x}_1 = x_2
\dot{x}_2 = x_3
\dot{x}_3 = x_4
\dot{x}_4 = -a_0 x_1 - a_1 x_2 - a_2 x_3 - a_3 x_4 + u
y = b_0 x_1 + b_1 x_2 + b_2 x_3 + b_3 x_4$$

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -a_0 & -a_1 & -a_2 & -a_3 \end{bmatrix} \mathbf{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

$$C = [b_0 \quad b_1 \quad b_2 \quad b_3]$$
 $D = [0]$

Covert Transfer Function to State-space Model

Method 2: State-space Model can be also obtained by introducing an intermediate variable Z(s).

For simplicity, assume n = 4:

$$G(s) = \frac{Y(s)}{U(s)} = \frac{b_3 s^3 + b_2 s^2 + b_1 s + b_0}{s^4 + a_3 s^3 + a_2 s^2 + a_1 s + a_0} \frac{Z(s)}{Z(s)}$$

$$Y(s) = (b_3 s^3 + b_2 s^2 + b_1 s + b_0) Z(s)$$

$$U(s) = (s^4 + a_3 s^3 + a_2 s^2 + a_1 s + a_0) Z(s)$$

Then taking inverse Laplace transform of both equations:

$$y = b_3 \frac{d^3 z}{dt^3} + b_2 \frac{d^2 z}{dt^2} + b_1 \frac{dz}{dt} + b_0 z$$

$$u = \frac{d^4z}{dt^4} + a_3 \frac{d^3z}{dt^3} + a_2 \frac{d^2z}{dt^2} + a_1 \frac{dz}{dt} + a_0 z$$

Covert Transfer Function to State-space Model

$$y = b_3 \frac{d^3 z}{dt^3} + b_2 \frac{d^2 z}{dt^2} + b_1 \frac{dz}{dt} + b_0 z \qquad u = \frac{d^4 z}{dt^4} + a_3 \frac{d^3 z}{dt^3} + a_2 \frac{d^2 z}{dt^2} + a_1 \frac{dz}{dt} + a_0 z.$$

Define the four state variables as follows:

$$x_1 = z$$

 $x_2 = \dot{x}_1 = \dot{z}$
 $x_3 = \dot{x}_2 = \ddot{z}$
 $x_4 = \dot{x}_3 = \ddot{z}$.

Then the differential equation can be written equivalently as

$$\dot{x}_1 = x_2,$$

 $\dot{x}_2 = x_3,$
 $\dot{x}_3 = x_4,$

and

$$\dot{x}_4 = -a_0 x_1 - a_1 x_2 - a_2 x_3 - a_3 x_4 + u,$$

and the corresponding output equation is

$$y = b_0 x_1 + b_1 x_2 + b_2 x_3 + b_3 x_4.$$

Method 3: Select state variable with physical meanings.

Feedback Control System Characteristics

Error Signal Analysis
 Sensitivity of Control System to Parameter Variations
 Disturbance Rejection and Measurement Noise Attenuation
 Control of the Transient Response and Steady-state Error

☐ "Cost" of Feedback

Error Signal Analysis

To facilitate our discussion, unity feedback system is assumed, i.e., H(s) = 1.

The output can be obtained from the block diagram:
$$Y(s) = \frac{G_c(s)G(s)}{1 + G_c(s)G(s)}R(s) + \frac{G(s)}{1 + G_c(s)G(s)}T_d(s) - \frac{G_c(s)G(s)}{1 + G_c(s)G(s)}N(s)$$

Therefore:
$$E(s) = R(s) - Y(s) = \frac{1}{1 + G_c(s)G(s)}R(s) - \frac{G(s)}{1 + G_c(s)G(s)}T_d(s) + \frac{G_c(s)G(s)}{1 + G_c(s)G(s)}N(s)$$

$$E(s) = \frac{1}{1 + L(s)}R(s) - \frac{G(s)}{1 + L(s)}T_d(s) + \frac{L(s)}{1 + L(s)}N(s)$$

where loop gain $L(s) = G_c(s)G(s)H(s) = G_c(s)G(s)$

Definition of System Sensitivity

By definition:
$$S = \frac{\partial T/T}{\partial G/G}$$
 , where system transfer function $T(s) = \frac{Y(s)}{R(s)}$

In the limit, for small incremental changes:

$$S = \frac{\partial T/T}{\partial G/G} = \frac{\partial \ln T}{\partial \ln G}$$

System sensitivity is the ratio of the change in the system transfer function T(s) to the change of a process transfer function G(s) (or parameter) for a small incremental change.

Sensitivity for OL system: 1

Sensitivity for CL system: since $T(s) = \frac{G_c(s)G(s)}{1 + G_c(s)G(s)}$

$$S_G^T = \frac{\partial T \cdot G}{\partial G \cdot T} = \frac{G_C}{[1 + G_C G]^2} \cdot \frac{1 + G_C G}{G_C} \rightarrow S_G^T = \frac{1}{1 + G_C G}$$

To determine the influence of process parameter α (of G(s)), use chain rule:

$$S_{\alpha}^{T} = S_{G}^{T} S_{\alpha}^{G}$$

Disturbance Rejection

Feedback control reduces the negative effect of disturbance signals:

- A disturbance signal is an unwanted input signal that affects the output signal.
- Many control systems are subject to extraneous disturbance signals that cause the system to provide an inaccurate output.
 - ➤ Electronic amplifiers have inherent noise generated within the integrated circuits or transistors;
 - Radar antennas are subject to wind gusts;
 - ➤ Many systems generate unwanted distortion signals due to nonlinear elements.
- The benefit of feedback systems is that the effect of distortion, noise, and unwanted disturbances can be effectively reduced.

To analyze rejection of disturbance, assume R(s) = N(s) = 0.

$$E(s) = -S(s)G(s)T_d(s) = -\frac{G(s)}{1 + L(s)}T_d(s)$$

For a fixed G(s) and a given $T_d(s)$, as the loop gain L(s) increases, the effect of $T_d(s)$ on the tracking error decreases. For good disturbance rejection, we require a large loop gain over the frequencies of interest associated with the expected disturbance signals.

Measurement Noise Attenuation

A noise signal that is prevalent in many systems is the noise generated by the **measurement sensor.**

To analyze attenuation of measurement noise, assume $R(s) = T_d(s) = 0$.

$$E(s) = C(s)N(s) = \frac{L(s)}{1 + L(s)}N(s)$$

As the loop gain L(s) decreases, the effect of N(s) on the tracking error decreases. For effective measurement noise attenuation, we need a small loop gain over the frequencies associated with the expected noise signals.

How to realize disturbance rejection and measurement noise attenuation at the same time?

- In practice, disturbances are often at low frequencies, while measurement noise signals are often at high frequencies.
- Therefore, the controller should be of high gain at low frequencies and low gain at high frequencies.

Control of Transient Response

One of the most important characteristics of control systems is their transient response, which is a function of time.

Another purpose of control systems is to provide a desired satisfactory transient response:

- If an OL control system does not provide a satisfactory transient response, then the process, G(s), may need to be replaced with a more suitable process;
- By contrast, a CL system can often be adjusted to yield the desired response by adjusting the feedback loop parameters (e.g., controller and feedback path parameters).

A feedback control system is valuable because it provides the engineer with the ability to **adjust/manipulate** the transient response.

Steady-state Error (and Output)

The **steady-state error (output)** is the error (output) value after the transient response has decayed, leaving only the continuous response.

<u>Final Value Theorem (only for stable system):</u>

$$\lim_{t\to\infty}e(t)=\lim_{s\to 0}sE(s)$$

Assume a unit step input as a comparable input $(r(t) = 1, t > 0; R(s) = \frac{1}{s})$:

Open-loop:

$$E_{OL}(s) = R(s) - Y(s) = (1 - G_c(s)G(s))R(s)$$

$$e_{OL}(\infty) = \lim_{s \to 0} s (1 - G_c(s)G(s)) (\frac{1}{s}) = 1 - G_c(0)G(0)$$

To calculate **steady-state output** towards input *R*, simply use:

Closed-loop (assume $T_d(s) = N(s) = 0$, and H(s) = 1):

$$E_{CL}(s) = \frac{1}{1 + G_c(s)G(s)}R(s)$$

$$e_{CL}(\infty) = \lim_{s \to 0} s \frac{1}{1 + G_c(s)G(s)} \frac{1}{s} = \frac{1}{1 + G_c(0)G(0)}$$

$$\lim_{t \to \infty} y(t) = \lim_{s \to 0} sY(s)$$
$$= \lim_{s \to 0} sT_{CL}R(s)$$

Large $L(0) = G_c(0)G(0)$ will lead to small steady-state error.

"Cost" of Feedback Control

- Increased number of components and complexity in the system.
 - To add feedback, it is necessary to consider several "physical" feedback components, e.g. sensors. The sensor is often the most expensive component in a control system, which may introduce noise, inaccuracy, and robustness issues.
- Loss of Gain.
 - Loop gain: $G_c(s)G(s)$
 - Closed-loop gain: $\frac{G_c(s)G(s)}{1+G_c(s)G(s)}$
- Introduction of the possibility of instability.
 - Even if an open-loop system is stable, the closed-loop system may not be always stable (will be discussed in later chapters).

Time-Domain Performance of Feedback Control System

Test Input Signals
 Performance of First-Order and Second-Order System
 Effects of a Third Pole and a Zero on the Second-Order System Response
 Pole Location on the s-plane and the Transient Response

Steady-State Error of Feedback Control Systems

Test Input Signal in Time- and s-Domain

Table 5.1	Test Signal Inputs	
Test Signal	r(t)	R(s)
Step	r(t) = A, t > 0 = 0, t < 0	R(s) = A/s
Ramp	r(t) = At, t > 0 = 0, t < 0	$R(s) = A/s^2$
Parabolic	$r(t) = At^2, t > 0$ = 0, t < 0	$R(s) = 2A/s^3$

$$r(t) = \delta(t)$$

$$\delta(t) = \begin{cases} 0, & t \neq 0 \\ +\infty, & t = 0 \end{cases}$$

$$R(s) = 1$$

Note: this is a continuous-time impulse.

First-order System: Unit-step Time Response

Normalized form

$$\frac{Y(s)}{R(s)} = \frac{1}{Ts+1}$$

T - time constant

Unit-step time response

$$y(t) = 1 - e^{-t/T}$$

Time points of interest

$$y(T) = 0.632$$

$$y(3T) = 0.95$$

$$y(4T) = 0.982$$

Second-Order system

The **normalized form** is:

$$\frac{Y(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$
 ω_n - Natural frequency ζ - Damping ratio/coefficient

 $\zeta > 1$ overdamped

 $\zeta = 1$ critical damped

 $\zeta < 1$ under damped

Unit-step time response:

$$\zeta > 1$$

$$y(t) = 1 - Ae^{-\frac{1}{T_1}t} - Be^{-\frac{1}{T_2}t}$$

One component can be ignored if T₁ and T₂ are far away enough to each other

$$y(t) = 1 - e^{-\zeta \omega_n t} \left(\cos \sqrt{1 - \zeta^2} \, \omega_n t + \frac{\zeta}{\sqrt{1 - \zeta^2}} \sin \sqrt{1 - \zeta^2} \, \omega_n t \right)$$

Second-Order system - under damped

$$\zeta < 1$$

$$y(t) = 1 - e^{-\zeta \omega_n t} \left(\cos \sqrt{1 - \zeta^2} \, \omega_n t + \frac{\zeta}{\sqrt{1 - \zeta^2}} \sin \sqrt{1 - \zeta^2} \, \omega_n t \right)$$

Peak Time:

$$T_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}}$$

Rise Time:

$$T_{r1} = \frac{2.16\zeta + 0.60}{\omega_n}$$
(0.3 < \zeta < 0.8)

2% Settling Time:

$$T_s = \frac{4}{\zeta \omega_n}$$

Percent Overshoot:

$$P.O. = 100e^{-\zeta\pi/\sqrt{1-\zeta^2}}$$

Additional pole – Underdamped Second-Order system

$$T_1(s) = \frac{1}{s^2 + 0.9s + 1}$$

$$T_2(s) = \frac{1}{(s^2 + 0.9s + 1)(0.22s + 1)}$$

$$T_3(s) = \frac{1}{(s^2 + 0.9s + 1)(s + 1)}$$

- Additional pole to the second-order system results in small overshoot and larger peak time
- If the pole's real part is faraway from the real part of original poles, the effect is minor and can be neglected

Additional zero – Underdamped Second-Order system

$$T(s) = \frac{\frac{\omega_n^2}{a}(s+a)}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

- Additional zero to the second-order system results in larger overshoot and smaller peak time
- If the zero's real part is faraway from the real part of original poles, the effect is minor and can be neglected

Copyright ©2017 Pearson Education, All Rights Reserved

Higher-order system – Unit-step Response

If the system (with DC gain = 1) has no repeated roots, its unit step response can be formulated as a partial fraction expansion as:

$$Y(s) = \frac{1}{s} + \sum_{i=1}^{M} \frac{A_i}{s + \sigma_i} + \sum_{k=1}^{N} \frac{B_k s + C_k}{s^2 + 2\alpha_k s + (\alpha_k^2 + \omega_k^2)}$$

$$y(t) = 1 + \sum_{i=1}^{M} A_i e^{-\sigma_i t} + \sum_{k=1}^{N} D_k e^{-\alpha_k t} \sin(\omega_k t + \theta_k)$$

Steady-State Error

$$e_{SS} = \lim_{s \to 0} s \frac{A/_S}{1 + G_C(s)G(s)} = \frac{A}{1 + \lim_{s \to 0} G_C(s)G(s)}$$

$$G_c(s)G(s) = \frac{K \prod_{i=1}^{M} (s + z_i)}{s^{N} \prod_{k=1}^{Q} (s + p_k)}$$

 $G_c(s)G(s) = \frac{K\prod_{i=1}^M(s+z_i)}{s^N\prod_{k=1}^Q(s+p_k)}$ The number of integration indicates a system. The number of integration indicates a system with **type**

Table 5.2 Summary of Steady-State Errors

Number of	Input		
Integrations in $G_c(s)G(s)$, Type Number	Step, $r(t) = A$, $R(s) = A/s$	Ramp, $r(t) = At$, $R(s) = A/s^2$	Parabola, $r(t) = At^2/2$, $R(s) = A/s^3$
0	$e_{\rm ss} = \frac{A}{1 + K_p}$	∞	∞
1	$e_{\rm ss}=0$	$rac{A}{K_v}$	∞
2	$e_{\rm ss}=0$	0	$\frac{A}{K_a}$

Good luck with your exam

Office hour: 2-4 pm Thursday SC554E