Exercise #6

Data Points:

i	1	2	3	4	5	6	7	8	9	10
Paid (in thousand)	20	20	25	27	30	30	33	35	35	40
ROI (in ten thousand)	8.75	9.43	12.87	14.24	16.89	18.94	25.48	30.11	36.07	51.27

Independent: amount paid over a period of time

amount_paid = c(20, 20, 25, 27, 30, 30, 33, 35, 35, 40) * 10^3

```
> amount_paid
[1] 20000 20000 25000 27000 30000 30000 33000 35000 35000 40000
```

Dependent: amount of return of investment

amount_roi = c(8.75, 9.43, 12.87, 14.24, 16.89, 18.94, 25.48, 30.11, 36.07, 51.27) * 10^4

```
> amount_roi
[1] 87500 94300 128700 142400 168900 189400 254800 301100 360700 512700
```

→ Polynomial Regression for Degree 1

```
> linearModel$coefficients
  (Intercept) amount_paid
-337390.52497 19.03188
```

^{**}For checking (using R's built-in function)

→ Polynomial Regression for Degree 2

**For checking (using R's built-in function)

→ Polynomial Regression for Degree 3

**For checking (using R's built-in function)

```
> cubicModel$coefficients
(Intercept) poly(amount_paid, 3, raw = TRUE)1 poly(amount_paid, 3, raw = TRUE)2 poly(amount_paid, 3, raw = TRUE)3
3.604610e+05 -2.309493e+01 2.955009e-04 9.491247e-09
```

Amount of ROI vs. Amount Paid

BLUE : degree 1 polynomial

GREEN : degree 2 polynomial

ORANGE : degree 3 polynomial