10 直流稳压电源

10.1 概述

电子设备需要直流电源

直流稳压电源的功能

上页 下页 后退

直流稳压电源的组成方框图

上页

下页

- 10.2 单相整流及电容滤波电路
- 10.2.1 单相桥式整流电路 设
- 1. 电路组成

- (a) $u_2 = \sqrt{2}U_2 \sin \omega t$
- (b) 二极管D₁~D₄性能理想

1. 工作原理

a. 当u₂>0时

电流流动方向

上页

下页

b. 当u₂<0时

电流流动方向

上页

下页

二极管D₂、D₄电压

上页 后退

思考题

1.如果D₁开路或者短路,输出电压如何变化?

D₁开路: 半波整流,输出 电压平均值减小;

D₁短路: 短接变压器二次侧, 烧毁二极管D2和变压器;

2.如果有二极管有一个接 反,后果如何?

会出现两个正偏二极管并接的情况,短接变压器二次侧,烧毁二极管和变压器,输出电压为零。

3. 主要性能指标

(1) 整流输出直流电压

因为输出电压

$$u_0 = \frac{2\sqrt{2}}{\pi}U_2(1 - \frac{2}{3}\cos 2\omega t - \frac{2}{15}\cos 4\omega t - \frac{2}{35}\cos 6\omega t - \Lambda)$$

输出直流电压

$$U_{0} = \frac{1}{\pi} \int_{0}^{\pi} u_{2} d\omega t = \frac{2\sqrt{2}}{\pi} U_{2} = 0.9U_{2}$$

(2)输出电压纹波因数γ

定义

$$\gamma = rac{oldsymbol{U_{
m or}}}{oldsymbol{U_{
m o}}}$$

式中

Uor—输出电压中各次谐波电压有效值的总和

Uo-输出电压的平均值

对于全波整流电路

$$u_0 = \frac{2\sqrt{2}}{\pi}U_2(1 - \frac{2}{3}\cos 2\omega t - \frac{2}{15}\cos 4\omega t - \frac{2}{35}\cos 6\omega t - \Lambda)$$

$$U_{\text{or}} = \sqrt{U_{\text{o}2}^2 + U_{\text{o}4}^2 + U_{\text{o}6}^2 + \Lambda}$$
$$= \sqrt{U_2^2 - U_0^2}$$

数
$$\gamma = \frac{U_{\text{or}}}{U_{\text{o}}} = \frac{\sqrt{U_2^2 - U_0^2}}{U_0^2} = \sqrt{\left(\frac{U_2}{U_0}\right)^2 - 1} = 0.483$$

上页 下页 后退

(3) 整流二极管的正向平均电流

$$I_{\rm D} = \frac{I_{\rm O}}{2} = \frac{U_{\rm O}}{2R_{\rm L}} = \frac{0.9U_{\rm 2}}{2R_{\rm L}} = \frac{0.45U_{\rm 2}}{R_{\rm L}}$$

(4) 整流二极管的最高反向电压

$$U_{\rm RM} = \sqrt{2}U_2$$

10.2.2 电容滤波电路

1. 电路组成

上页下页后退

2.工作原理

(1) 当 C=0 时

输入电压

桥式整流电路

输出电压

 $U_{\rm o} \approx 0.9 U_{\rm o}$

输入电压

输出电压波形

上页

下页

(2) 当 $C \neq 0$ 、 $R_{L} = \infty$ 时

由于电容器的充电时间常数 $\tau_1 = r_0 C = (r_T + 2r_D)C \approx 0$

输入电压

输出电压波形

上页

下页

当 $C\neq 0$ 、 $R_{\rm L}\neq\infty$ 时

电容器的充电时间常数

$$\tau_1 = (r_0 // R_L)C \approx r_0 C \approx 0$$

$$u_{\mathrm{O}} = u_{\mathrm{C}} \approx u_{\mathrm{2}}$$

输入电压

输出电压

输入电压

当C充电到最高点时, 二极管 D_1 、 D_3 将截止, C将通过 R_1 开始放电。

上页

下页

电容器的放电时间常数 $\tau_2 = R_L C$

由于t2较大,放电比较缓慢

上页

下页

二极管D₂、D₄导通 C又开始充电,直到最大值。

输出电压

上页

后退

 3π 4π

输入电压

输出电压

上页 下页

- 3. 电容滤波电路的外特性及主要参数估计
- (1) 电容滤波电路的外特性

上页

外特性特点:

a. C越小, $u_{O(AV)}$ 越小,纹波越大。

b. *i*_O越大, *u*_{O(AV)}越小。

结论: 外特性差

电容滤波电路适用于负载电流比较小或基本不变的场合。

上页 下页 后退

(2) 输出电压平均值

$$U_{O(AV)} = (1.1 \sim 1.4)U_2$$

一般取
$$U_{O(AV)} \approx 1.2U_2$$

(3) 输出电流平均值

$$I_{\mathrm{O(AV)}} = \frac{U_{\mathrm{O(AV)}}}{R_{\mathrm{L}}} \approx 1.2 \frac{U_{2}}{R_{\mathrm{L}}}$$

上页

下页

(4) 整流二极管的平均电流

考虑二极管内阻时输出电压波形

二极管电流的特点:

- (a) 比无滤波电容时的平均电流大。
- (b) 二极管导通时,有冲击电流。

二极管电流波形

上页

下页

(c) 冲击电流与二极管的导通角 $\theta(\theta < \pi)$ 有关。

放电时间常数越大, θ越小,冲击电流越大。

(5) 整流二极管的最高反向电压

$$U_{\rm RM} = \sqrt{2}U_2$$

2. π型滤波电路

RC-π型滤波电路

LC-π型滤波电路

上页

下页

例1. 下图D为理想二极管,C足够大,求以下三种情况下的直流平均电压 U_0 (注: U_2 的有效值为10V)

- (1) A、B间接 R_L ;
- (2) A、B间接C;
- (3) A、B间接 R_L 和C并联。

解: (1) $U_0 = 0.9 U_2 = 9V$

(2)
$$U_{\rm O} = \sqrt{2}U_{\rm 2} = 14{\rm V}$$

(3)
$$U_0 = 1.2U_2 = 12V$$

例2 下图电路中有否不妥之处? (U_2 有效值为30V)

解:有,一是滤波电容耐压应为 $\sqrt{2}U_2 = 30\sqrt{2}V_0$ 。

此处只30V。

二是其容量太小,

$$RC = 50 \times 10^{-4} = 5 \times 10^{-3}$$

$$\frac{T}{2} = 0.01S$$

$$RC < (3 \sim 5)\frac{T}{2}$$

:: 滤波效果不佳。

10.3 串联反馈型线性稳压电路

10.3.1 稳压电路的功能和性能指标

- 稳压电路的功能
 稳定输出直流电压。
- 2. 稳压电路的主要性能指标
- (1) 稳压系数

在负载电流计环境温度不变时,输出直流电压的相对变化量与输入直流电压相对变化量之比

$$S_{\mathrm{r}} = \frac{\Delta U_{\mathrm{o}}/U_{\mathrm{o}}}{\Delta U_{\mathrm{I}}/U_{\mathrm{I}}}\Big|_{\Delta I_{\mathrm{o}}=0,\,\Delta T=0}$$

(2) 电压调整率

在负载电流计环境温度不变及给定输入电压变化量(电网±10%波动)时,单位输出电压增量与对应输入电压增量之比

$$S_U = \left\{ \frac{1}{U_0} \frac{\Delta U_0}{\Delta U_I} \Big|_{\Delta I_0 = 0, \Delta T = 0} \right\} \times 100\%$$

(3)输出电阻

当输入电压和环境温度不变时,输出电压的变化量与输出电流的变化量之比

$$R_{\rm O} = \frac{\Delta U_{\rm O}}{\Delta I_{\rm O}} \Big|_{\Delta U_{\rm I}=0, \Delta T=0}$$

(4) 电流调整率

当输入电压和环境温度保持不变及给定输出电流变化量(常指负载电流从空载到满载时的变化量)时,输出电压相对变化量的百分比

$$S_I = \left\{ \frac{\Delta U_{\text{O}}}{U_{\text{O}}} \right|_{\Delta U_{\text{I}}=0, \Delta T=0} \right\} \times 100\%$$

(5) 输出电压的温度系数

在规定的温度范围内,当输入电压和负载电流保持不变时,单位温度变化所引起的输出电压相对变化量的百分比

$$S_T = \left\{ \frac{1}{U_0} \frac{\Delta U_0}{\Delta T} \Big|_{\Delta I_0 = 0, \Delta U_1 = 0} \right\} \times 100\%$$

以上系数越小,输出电压越稳定

(6) 纹波电压

稳压电路输出端的交流分量(通常为100Hz)的有效值或幅值。

(7) 纹波电压抑制比

输入、输出电压中的纹波电压之比

$$S_{
m rip} = 20 \lg rac{U_{
m ipp}}{U_{
m opp}}$$

串联反馈型线性稳压电路的工作原理 10.3.2

上页

下页

上页

输出电压 运放有负反馈

$$U_{\text{REF}} = \frac{R_2 + R_{\text{W}}''}{R_1 + R_{\text{W}} + R_2} U_{\text{O}}$$

所以

$$U_{\rm O} = \frac{R_1 + R_{\rm W} + R_2}{R_2 + R_{\rm W}''} U_{\rm REF}$$

$$U_{\text{Omin}} = \frac{R_1 + R_{\text{W}} + R_2}{R_2 + R_{\text{W}}} U_{\text{REF}}$$

4. 调整管参数选取原则

上页 下页 后退

5. 限流保护电路

工作原理

- (1) 当 I_0 较小时, $U_R < U_{BE2}$, T_2 截止,电路正常工作。
- (2) 当 I_0 增大, T_2 导通。 I_{B1} 减小,限制了 I_0 的增大。

下页

例: 串联型稳压电路如下图。稳压管 D_Z 的稳定电压 V_Z =5.3V,电阻 R_1 = R_2 =200 Ω 。晶体管的 V_{BE} =0.7V。

- (1) 试说明电路的如下四个部分分别由哪些元、器件构成;
- (2) 当 $R_{\rm W}$ 的滑动端在最下端时 $U_{
 m O}$ =15V,求 $R_{
 m W}$ 的值;
- (3) 若 $R_{\rm W}$ 的滑动端移至最上端,问 $U_{
 m O}$ =?

★ 调整管为: T₁ 解: (1)

* 放大环节为: T₂, R_{C2}

* 基准电压为: D_Z , R

*取样环节为: R_1 , R_W , R_2

上页

下页

(2) 当 $R_{ m W}$ 的滑动端在最下端时 $U_{ m O}$ =15V

$$U_{\rm A} = \frac{U_{\rm O} \cdot R_2}{R_1 + R_{\rm W} + R_2}$$

$$6 = \frac{200 \times 15}{200 + R_{\text{W}} + 200}$$
 得 $R_{\text{W}} = 100\Omega$

(3) 若 R_{W} 的滑动端移至最上端,问 U_{O} =?

(2)
$$U_{\rm A} = U_{\rm Z} + U_{\rm BE2} = 6 \rm V$$

$$U_{\rm O} = \frac{R_1 + R_{\rm W} + R_2}{R_2 + R_{\rm W}} U_{\rm A}$$
$$= \frac{200 + 100 + 200}{100 + 200} \times 6$$
$$= 10 \text{ V}$$

10.3.3 高精度基准电压源

(自学)

1. 电路组成

上页

下页

2. 工作原理

图中

$$U_{\rm REF} = U_{\rm BE3} + I_{\rm C2} R_{\rm C2}$$

$$I_{\text{C2}} = \frac{U_T}{R_{\text{E2}}} \ln(\frac{I_{\text{C1}}}{I_{\text{C2}}})$$

由此可得

$$U_{\text{REF}} = U_{\text{BE3}} + \frac{R_{\text{C2}}U_{\text{T}}}{R_{\text{E2}}} \ln(\frac{I_{\text{C1}}}{I_{\text{C2}}})$$

由式
$$U_{\text{REF}} = U_{\text{BE3}} + \frac{R_{\text{C2}}U_{\text{T}}}{R_{\text{E2}}} \ln(\frac{I_{\text{C1}}}{I_{\text{C2}}})$$
 可知

合理地选择 I_{C1}/I_{C2} 和 R_{C2}/R_{E2} 的值,使正温度系数的电压 $I_{C2}R_{C2}$ 正好补偿负温度系数电压的 U_{BE3} ,可获得零温度系数的基准电压。

基准电压为

$$U_{\rm REF} = U_{\rm g0} = 1.205 {
m V}$$

式中

 U_{g0} 为硅材料在0K时禁带宽度(能带间隙)的电压值。

- 10.3.4 集成三端稳压器
- 1. 电路主要组成部分
 - (1) 串联反馈型线性稳压电路
 - (2) 高精度基准电压源
 - (3) 过流、过热保护等电路
- 2. 主要特点:
 - (1) 工作可靠 (2) 外接元件少 (3) 使用方便

3. 分类

按输出电压是否可调 ~

固定式三端稳压器

可调式三端稳压器

- 4. 固定式集成三端稳压器的型号
- a. 78××(输出正电压)系列 b. 79××(输出负电压)系列
 - ××---输出电压的标称值

输出电压种类

5V、6V、9V、12V、15V和24V等

上页下页

上页 下页 后退

6. 稳压器电路符号

7. 固定式三端稳压器的典型接法

a. 78系列

上页

下页

电容作用 C_1 —防止自激振荡 C_2 —减小高频干扰 C_3 —减小输出纹波和低频干扰

上页

下页

- 8. 固定式三端稳压器的应用电路
 - a. 输出正、负电压的稳压电路

上页

下页

因为

$$U_{\rm o} = U_{\rm o}' + (\frac{U'}{R_1} + I_{\rm Q}) R_2$$
 所以 $U_{\rm o} = (1 + \frac{R_2}{R_1})U_{\rm o}' + I_{\rm Q}R_2$ 忽略公共端电流 $I_{\rm Q}$ $U_{\rm o} \approx (1 + \frac{R_2}{R_1})U_{\rm o}'$

c. 扩大输出电流

图中

$$I_{\rm O} = I_{\rm C} + I_{\rm O}'$$

$$= \beta I_{\rm B} + I_{\rm O}'$$

$$I_{\rm C} = 4A$$
 $I_{\rm O} = 5A$

10.4 开关型稳压电路

线性稳压电路的主要特点:

- (1) 电压稳定度高
- (2) 纹波电压小
- (3) 响应速度快
- (4) 电路简单
- (5) 调整管的功耗大
- (6) 功率变换效率低

开关型稳压电路的主要特点:

- (1) 调整管的工作于开关状态, 功耗低
- (2) 功率变换效率高
- (3) 体积小、重量轻
- (4) 可以省去电源变压器
- (5) 输出纹波大

降压型开关稳压电路的工作原理

1. 降压型开关稳压电路

上页

上页下页

上页 下页 后退

2. 工作原理

(1) 当控制脉冲为高电平(T_{on} 期间)时

T饱和导通 $u_{\rm E} \approx U_{\rm I}$ D截止 $C_{\rm O}$ 充电、L储能

上页

下页

(2) 当控制脉冲为低电平(T_{off} 期间)时

D导通 Co、L放能

上页

下页

(3) 工作波形

射极电压u_E

输出电压uo

上页

下页

3. 输出电压 U_0

占空比

$$q = rac{T_{
m on}}{T_{
m on} + T_{
m off}} = rac{T_{
m on}}{T}$$

输出直流电压

$$U_0 \approx qU_{\rm I}$$

上页

下页

4. 反馈控制的降压型开关稳压电源方框图

上页下页

练习题

- 例1. 某稳压电源如图所示, 试问:
 - (1) 输出电压 U_0 的极性和大小如何?
 - (2) 电容器 C_1 和 C_2 的极性如何?
 - (3) 如将稳压管接反,后果如何?
 - (4) 如R=0, 又将产生怎样的后果?

- 解: (1) U_0 =-15V,极性上"-"下"+"。
 - (2) C_1 和 C_2 的极性均为上"-",下"+"。
 - (3) 稳压管接反的直接后果是:
 - (a) 输出电压*U*₀≈0;
 - (b) 可能造成二极管和稳压管也被烧坏。

- $\overline{(4)}$ 如R=0,则
- (a) $U_{\rm I} \approx U_{\rm Z}$ 、 $I_{\rm Z} > I_{\rm Zmax}$,稳压管首先可能烧坏。
- (b) 当稳压管烧坏造成短路时, 二极管电流过大也会被烧坏。

例2 试求图示电路的输出电压 U_0 的可调范围。

解 由题意知,运算放大器处于线性状态,根据"虚短"的概念,由图可得

故

上页

下页

$$U_{\rm O} = \frac{R_3}{R_3 + R_4} \times \frac{R_1 + R_{\rm P} + R_2}{R_1 + R_{\rm P}'} U_{\rm XX} \qquad (0 \le R_{\rm P}' \le R_{\rm P})$$

当 $R'_p = R_p$ 时

$$U_{\rm o} = \frac{5}{5+5} \times \frac{3+1+2}{1+2} \times 8 = 8V$$

当 $R_p' = 0$ 时

$$U_{\rm o} = \frac{5}{5+5} \times \frac{3+1+2}{2} \times 8 = 12V$$

即 U_0 的可调范围为 $8\sim 12V$ 。