Exercises

Exercise

- 1. Consider the relation schema R(A,B,C) with FD $B\to C$. If A is a candidate key for R, can R be in BCNF? If so, under what conditions? If not, explain why not.
- 2. Suppose we have a relation schema R(A,B,C) representing a relationship between two entity sets with keys A and B, respectively. Suppose that R has (among others) the FDs $A \to B$ and $B \to A$. Explain what such a pair of dependencies means

- 1. The only way that R could be in BCNF is if B includes a key, i.e., if B is a key for R
- 2. It means that the relationship is one to one. That is, each ${\cal A}$ corresponds to at most one ${\cal B}$ and vice-versa.

Exercise

Consider a relation R(ABCDE) with FDs $A \to B$, $BC \to E$, and $ED \to A$

- 1. List all the keys for ${\cal R}$
- 2. Is R in BCNF?

- 1. ACD, BCD, and CDE
- 2. No. $A \rightarrow B$ and A is not a key

Exercise

Consider the following relation

X	Y	Z
x_1	y_1	z_1
x_1	y_1	z_2
x_2	y_1	z_1
x_2	y_1	z_3

- 1. List all the functional dependencies that this relation instance satisfies
- 2. Assume that the value of attribute Z of the last record in the relation is changed from z_3 to z_2 Now list all the functional dependencies that this relation instance satisfies.

- 1. $Z \to Y$, $X \to Y$, and and $XZ \to Y$
- 2. The same

Exercise

Consider a relation S(A,B,C,D,E,F,G,H,I). Are the following subrelations in BCNF? If not, decompose them into BCNF

1.
$$R_1(A, C, B, D, E)$$
, $A \rightarrow B$, $C \rightarrow D$

2.
$$R_2(A, B, F)$$
, $AC \rightarrow E$, $B \rightarrow F$

3.
$$R_3(A, D), D \rightarrow G, G \rightarrow H$$

4.
$$R_4(D, C, H, G)$$
, $A \rightarrow I$, $I \rightarrow A$

5.
$$R_5(A, I, C, E)$$

- 1. BCNF decomposition: AB, CD, ACE
- 2. BCNF decomposition: AB, BF
- 3. In BCNF.
- 4. In BCNF.
- 5. In BCNF.