Sicurezza Reti e Calcolatori

Daniel Biasiotto

[2022-03-09 Wed 17:01]

CONTENTS

1	Cifrari Simmetrici							
	1.1	Cifrari	a blocchi	3				
	1.2	Metod	i dell'avversario	4				
2	Cifra	ari Asin	nmetrici	4				
3	Funzioni di Hash							
4	Autenticazione							
•	4.1	Simme	etrica	7				
			elettronica	7				
5	Sniff	ing & S	Spoofing	8				
5	DDo			9				
7		Firewall 9						
′	7.1		ge Filter	10				
	•	_	re Firewall	11				
3	VPN			12				
	8.1	-		12				
	0.1	8.1.1	Transport					
		8.1.2	Tunnel	13				
		8.1.3	Authentication Header	13				
		8.1.4	Encapsulating Security Payload					
		8.1.5	Anti-Replay					
9	Web	Securit		15				
9 10		kchain	·)	15				
10	DIOC.	Keriani		19				

- Prof: Bergadano Francesco
- PDF Version

CIFRARI SIMMETRICI 1

Cifrari sono sempre esistiti, tra i cifrari pre-informatici piú famosi ci sono i cifrari simmetrici character-oriented:

- Cifrario di Cesare, cifrari monoalfabetici a 1 lettera
- Cifrario di Playfair, monoalfabetico a 2 lettere
- Cifrari monoalfabetici a N lettere
- Cifrario di Vigenére, polialfabetico

I cifrari polialfabetici sostituiscono una lettera ogni volta in modo diverso, a seconda della sua posizione nel testo.

Questi cifrari si possono ancora suddividere in base alla tecnica utilizzata:

- a sostituzione
- a permutazione

Da quest'ultimo derivano i cifrari simmetrici bit-oriented:

- Cifrario di Vernam
- One-time Pad

In questi cifrari al posto dell'operazione di sostituzione alfabetica viene utilizzato ⊕¹

I cifrari simmetrici moderni sono caratterizzati da:

- uso del calcolatore
- combinazione di permutazioni e sostituzioni
- uso di numerose fasi, round

Di questi ne esistono diversi:

- Macchine a Rotori
- Feistel Cipher
- DES
- AES

Una proprietá desiderabile in un encryption algorithm é chiamata avalanche effect

 un cambiamento marginale in un input (chiave o plaintext) dovrebbe produrre un grande cambiamento nel ciphertext

Queste tecniche sono utilizzate nel contesto della bulk encryption

¹ Exclusive Or

Cifrari a blocchi

Utilizzando chiavi lunghe e testi arbitrariamente lunghi

- 1. cifrare a 2 fasi
 - suscettibile all'attacco meet in the middle
 - con known plaintext
 - conoscendo <P1,C1> <P2,C2>
 - * servono estrambe per incrociare la ricerca, i match sono diversi per blocco
 - * ci sono molte piu' chiavi che blocchi
 - brute force sulla prima fase di cifratura, su 2⁵⁶ possibilita' su DES
- 2. cifrare a 3 fasi
 - triple DES o 3DES
 - sicuro, chiave di 3.56 = 168
 - normalmente si utilizza K1 = K3
 - la forza sta nelle 3 fasi, non nelle 3 chiavi
 - si puo' utilizzare 3DES-EDE con 3 chiavi uguali, che equivale a DES

Per plaintext lunghi si hanno diverse tecniche per creare un messaggio cifrato a partire dai blocchi:

Electonic Codebook

- molto semplice ed efficiente ma insicuro
- divisione in blocchi esatti e criptarli tutti con la stessa chiave
 - * parti di testo uguali avranno blocco ciphertext uguali
 - * vulnerabilitá alla criptoanalisi statistica, utilizzabile solamente con testi corti

Cipher Block Chaining

- ogni blocco cifrato e mette in ⊕ con il successivo plaintext
 - * si decifra con un ⊕ tra la decrittazione del blocco corrente C_i e il blocco precedente (cifrato) C_{i-1}
- il primo blocco é in ⊕ con un initialization vector IV
 - * solitamente publico
- il piú usato, sicuro, semplice, efficiente
- un errore di 1 bit rende indecifrabile il blocco successivo

Cipher FeedBack

- cifrario a flusso
- simile al Cifrario di Vernam
- inefficiente, viene scartato del lavoro
- un errore di un bit essendoci feedback crea effetto valanga

Output Feedback

- molto simile al Cipher Feedback
- il feedback é fatto utilizzando gli i bit di output del cifrario a blocchi
- di fatto si divide in 2 fasi la procedura
 - 1. prima di conoscere il testo si produce la sequenza di i
 - 2. utilizzare questa informazione bufferizzata per cifrare in \oplus
- simile al One-time Pad e al Cifrario di Vernam
 - * solo simile in quanto il vettore di i e' solo pseudocasuale

1.2 Metodi dell'avversario

L'avversario puó decodificare i cifrari monoalfabetici a una lettera facilmente attraverso una Crittanalisi Statistica.

Questa analisi risulta molto piú difficile con un cifrario polialfabetico:

- in conoscenza di n é possibile fare la stessa analisi per lettere che distano n posizioni nel testo
 - per cui quindi vale la stessa sostituzione

Di conseguenza un testo cifrato di questo tipo risulta tanto piú facile da decifrare tanto é piú lungo, ancor di piú in presenza di parti di testo fisse.

CIFRARI ASIMMETRICI 2

Si utilizzano 2 chiavi, una per criptare e una per decriptare Le due chiavi non sono solo diverse nella forma, sono generate insieme e non é possibile ottenere una dall'altra La difficoltá per un avversario non é piú informativa ma computazionale Questi cifrari non sostituiscono quelli tradizionali, simmetrici, in quanto piú impegnativo a livello computazionale, infatti i primi sono molto recenti (Diffie-Hellman Key Exchange).

- il protocollo piú utilizzato in questo ambito é RSA.
- sono spesso combinati con cifrari simmetrici e funzioni di hash
 - vedi Digital Envelope

É possibile classificare l'uso di questi sistemi in:

1. Encryption/Decryption

sender encrypts with recipient public key

2. Digital Signature

sender signs with its private key

3. Key Exchange

parts work together to exchange a common secret key

Algorithm	Encryption/Decryption	Digital Signature	Key Exchange
RSA	Yes	Yes	Yes
Elliptic Curve	Yes	Yes	Yes
Diffie-Hellman	No	No	Yes
DSS	No	Yes	No

3 FUNZIONI DI HASH

Una funzione di Hash H accetta un blocco di dati M di lunghezza variabile e produce un valore di hash h = H(M)di lunghezza fissa.

- una buona funzione di Hash ha la proprietá che applicata a un gran numero di input gli output siano ben distribuiti e apparentemente random
- un cambiamento a un qualsiasi bit o bits in M causa, probabilmente, un cambiamento nel codice hash generato

In crittografia si usa un particolare tipo di funzione di hash, che ha ulteriori proprietá:

- one-way property
 - infeasible to find an object mapping to a pre-specified hash
- collision-free property

- infeasible to find two objects mapping to the same hash

Queste funzioni di hash sono utilizzate per:

- autenticare messaggi con i message digest
 - sender e recipient applicano entrambi la funzione e comparano i risultati
- digital signature
- one-way password file
- intrusion detection
- virus detection

Figure 11.8 General Structure of Secure Hash Code

La funzione di hash più utilizzata in tempi recenti é stato il Secure Hash Algorithm

Un *birthday attack* é effettuato generando collissioni:

- 2^m messaggi
- codici di c bit
- P(collision) > 0.5 per m > $\frac{c}{2}$
 - quindi per 64 bit bastano 2³² messaggi

Quindi un attaccante puó facilmente creare collisioni, ma il messaggio di cui il digest colliderá sará comunque incomprensibile, questo attacco é utile quando il ricevente si aspetta numeri o stringhe arbitrarie e non noterá nulla di strano nel messaggio ricevuto. Questi risultati impongono digest con almeno 256 bit.

AUTENTICAZIONE 4

NB Un messaggio cifrato non é necessariamente autentico, un messaggio autenticato puó essere leggibile. Spesso questi ultimi non vengono cifrati.

Simmetrica 4.1

- basata su cifrari simmetrici
- chiave condivisa

 $\operatorname{MAC}_K(M)$ - Message Authentication Code

- 1. DES-CBC MAC-CBC
 - si usa l'ultimo blocco cifrato (o una parte) come MAC
- 2. Keyed Hash Function HMAC
 - MAC generato applicando H a una combinazione di M e una chiave segreta
 - $\mathsf{HMAC}_{\mathsf{K}}(\mathsf{M}) = \mathsf{H}((\mathsf{K}'' \oplus \mathsf{opad}) || \mathsf{H}((\mathsf{K}'' \oplus \mathsf{ipad}) || \mathsf{M}'))$
 - K": una chiave segreta K' con padding di o fino a j bit
 - * se maggiore di j bit K'' = H(K')
 - ipad: 00110110 ripetuto j/8 volte
 - opad: 01011010 ripetuto j/8 volte
 - efficiente quanto H
 - molto piú efficiente che MAC-CBC

Firma elettronica

- basata su cifrari asimmetrici
- firma con la chiave privata, verifica con la chiave pubblica di chi firma

In questo caso:

- 1. RSA con MD5/SHA-1
 - SHA-1(M): *digest*
 - RSA(K⁻(A), digest)
- 2. DSA con SHA-1

Per far funzionare questo meccanismo é necessario risolvere il problema della distribuzione delle chiavi pubbliche. Questo in quanto rimane possibile un Man in the Middle attack.

- una terza parte C puó ricevere $\langle ID, K^+(ID) \rangle$ e restituirne un cer-
- questo poi viene condivisto da altre terze parti o dagli stessi che lo hanno richiesto

- il certificato di chiave pubblica é un documento che attesta l'associazione univoca tra chiave pubblica e l'identitá del soggetto
- queste operazioni sono eseguite da un ente fidato, Certification Authority o CA
 - un attaccante pur sostituendo una chiave certificata sniffata non puó sostituirla con la propria, non ha accesso alla chiave privata della CA e non puó crearsi un certificato falso

Alla fine il messaggio autenticato avrá la forma: M - FirmaElettronica - Certificato - Timestamp

SNIFFING & SPOOFING 5

- 1. sniffing
 - non facile su rete geografica
 - possibile su LAN
 - sia su switch che non
 - non é possibile su switch unicast
 - solo su *broadcast*
- 2. spoofing
 - ARP spoofing/poisoning
 - DHCP associa automaticamente IP di router e DNS
 - ARP associa MAC-IP
 - broadcast per la richiesta del MAC associato a un IP
 - unicast per la risposta
 - l'avversario risponde con il proprio MAC ingannando il richiedente
 - possibile tecnica per:
 - MAC
 - * scheda di rete in modalitá promiscua
 - * MAC della scheda cambiato malevolmente
 - IP
 - * non in TCP dove c'é il 3-way handshake
 - DNS
 - * instradamento degli utenti verso un DNS malevolo
 - * DNS malevolo serve IP falsificati

- URL
 - * indirizzi falsi

Per evitare questi attacchi:

- non usare HUB ma switch
- non usare broadcast
- cifrare a livello applicativo e a livello di trasporto

6 ppos

- raro
- difficile da evitare per i principi costituenti della rete
 - per applicazioni critiche é utile avere reti dedicate

Possibili attacchi:

- 1. syn flooding
 - primo messaggio dell'handshake TCP senza che questo sia poi portato a termine
- 2. ICMP echo request
 - distibuted, zombie e reflectors
 - smurf attack
 - echo request con payload consistente
 - possibilitá pensata per testing di rete, echo in broadcast
 - * ora non piú possibile
- 3. relay SMTP
 - flooding tramite server mail
 - possibili configurazioni server per evitare questi attacchi

7 FIREWALL

- vulnerabilitá locali di una macchina possono permettere il controllo della rete intera
- un PC compromesso in LAN permette attacchi diretti alla rete locale

- il Firewall si interpone tra LAN e WAN come unico punto di accesso
 - servizi di
 - filtro (direzione, servizio, utente)
 - * log (traffico, utenti)
 - * allarme
 - incluso nel router, screening router
 - * scarta i pacchetti sospetti
 - * non notifica
 - dual homed gateway
 - * tra LAN e router
 - il router si occupa di routing
 - * spesso comunque tutte le funzioni sono concentrate in un unico dispositivo
 - * dispositivi specializzati: firewall appliance
 - screened host gateway
 - fisicamente i pacchetti non sono forzati attraverso il FW
 - * si forza il passaggio a livello logico IP

Spesso in sicurezza, e anche per questi dispositivi, si parla di High Availability

- piú FW possono servire in parallelo per garantire la funzionalitá in caso di guasti
- Internet \rightarrow Router \rightarrow Switch \rightarrow FW | FW \rightarrow Switch \rightarrow LAN

Una DMZ é una cosiddetta

- DeMilitarized Zone
- server che devono poter comunicare con l'esterno senza interferenze dall'FW

7.1 Package Filter

- livello 3 e parzialmente 4
 - IP e TCP/UDP
- protegge in base alla direzione
 - interfaccia in/out
 - IP mittente e destinatario

- porta sorgente e destinazione
- la frammentazione IP puó essere usata per passare attraverso un
 - piccoli frammenti 24-28 Byte, senza header TCP
- da bloccare il source routing
 - permette al mittente di decidere l'instradamento
 - permette IP spoofing con TCP su WAN
- ACL Access Control List
 - omonimo con sistema Windows, diversi contesti e usi
 - lista di regole di accesso

7.2 Sofware Firewall

- livello 5
 - applicativo e di trasporto TCP/UDP
- piú semplice attraverso un proxy-FW
 - va configurato un *proxy* per ogni servizio da attivare
 - non é trasparente
 - piú lento
 - sicuro, sofisticato
- mascheramento degli indirizzi tramite NAT
 - megli il NAPT
 - * unico indirizzo pubblico
 - * indirizzi tradotti assieme alle porte
 - puó anche effettuare load balancing
 - * round robin, evita attacchi di carico
- WAF Web Application FW
 - reverse proxy
 - esamina il payload applicativo
 - solo se sicura apre la connessione al nostro server web e inoltra

8 VPN

Standard: IPsec

- permette collegamento a rete privata virtualmente
 - lavorare da remoto con la stessa sicurezza che si ha all'interno della LAN
- traffico virtualmente interno passa su internet e va protetto

8.1 IPsec

IP level security

- livello 3
- RFC 1825
- layer che si va a inserire sopra quello IP
 - header annidato all'interno dell'header IP
 - PDU cifrata/autenticata assieme a info per decifrazione
 - l'header IP non viene modificato
 - * i router non si accorgono del cambiamento
- protezione da modifica e intercettazioni
- cifratura ai capi della comunicazione tra le LAN
- ovviamento non protegge da vulnerabilitá interne

Due modalitá di funzionamento:

- 1. transport
- 2. tunnel

E tecniche

- 1. AH
- 2. ESP

Queste tecniche sono annidabili

• prima applicando AH e poi ESP

8.1.1 Transport

- software VPN sui calcolatori comunicanti
- protegge da spoofing/sniffing si rete locale
- non é trasparente, necessaria configurazione
- unico metodo per una postazione mobile
 - sono possibili soluzioni miste

8.1.2 Tunnel

- cifratura/auth da parte di un agente esterno terminatore
 - spesso incluso nel router e FW
 - i pacchetti escono dal tunnel decriptati
- non protegge da spoofing/sniffing su rete locale
- nasconde gli indirizzi
 - sono solamento noti gli IP dei terminatori
- trasparente
- veloce, efficiente

8.1.3 Authentication Header

AΗ

- garantisce integritá
- posizionato tra header IP e PDU
- formato
 - Next Header
 - * 8B
 - * protocollo superiore
 - Length
 - * 8B
 - Reserved
 - * 16B
 - SPI
 - * 32B
 - * Security Parameter Index

- parametri (entrambi indici di una tabella interna condivisa)
 - · tipo di algoritmo
 - · chiave simmetrica
- Data
 - * \$N×\$32B
 - * dati di autenticazione MAC
 - * questo MAC coper da header IP in poi
 - · ignora campi variabili TTP e checksum impostandoli

8.1.4 Encapsulating Security Payload

ESP

- posizionato dopo header IP e incapsula il PDU cifrato
- formato in modalitá Transport
 - SPI
 - * non cifrato
 - PDU, Next Header, autenticazione
 - * cifrati
- formato in modalitá Tunnel
 - SPI
 - * non cifrato
 - header IP incapsulato
 - * cifrato
 - * header originale nascosto dal terminatore VPN
 - * funzione di offuscamento del traffico
 - PDU, NH, auth
 - * cifrati

8.1.5 Anti-Replay

- individua ripetizione pacchetti
 - non é possibile escludere che non creino problemi a livello applicativo
- pacchetti IPsec numerati con un sequence number 16bit
- tecnica a sliding window con W bit

- implementazione con un bit vector
- N ultimo *sn* ricevuto
- finestra da N W a N + 1
 - * sn ricevuto a sinistra della finestra, non posso decidere
 - * sn ricevuto a destra, sicuramente nuovo
 - * sn all'interno il vettore indica se é stato ricevuto o no

WEB SECURITY 9

BLOCKCHAIN 10