MAT02036 - Amostragem 2

Aula 21 - Amostragem por Conglomerados em 2 Estágios - Introdução

Markus Stein

Departamento de Estatística, IME/UFRGS

2022/2

Housekeeping

- Aproveitem o momento presencial para tirar dúvidas
- Se estivéssemos no ensino remoto ou à distância
 - o vocês poderiam estar somente ouvindo, sem interação
 - o u assistindo vídeos e material em outro momento
- Depois das aulas, rever material da aula passada
 - fazer exercícios
 - se preparar para a próxima aula

Aula passada 💿

Estimação na **AS**

- ullet O estimador tipo *Horvitz-Thompson* do total $T = \sum_{i=1}^K T_i$ sob **AS**,
 - $\circ \,\,$ o peso amostral das unidades da amostra é sempre igual a $d_i=1/\pi_i=K$, então

$$\widehat{T}_{AS} = Kt_r = K\sum_{i \in s_r} y_i$$

em que $t_r = \sum_{i \in s_r} y_i$ é a soma amostral dos valores observados da variável y.

• Para estimar a média populacional $\overline{Y}=\frac{T}{N}=\frac{\sum_{r=1}^K t_r}{\sum_{r=1}^K n_r}$ um estimador não viciado (?) é dado por (quando N é conhecido)

$$\overline{y}_{AS} = rac{\widehat{T}_{AS}}{N} = rac{Kt_r}{N}.$$

Aula passada 💽

Estimação na **AS**

Estimador	Observação
$\widehat{T}_{AS} = K t_r = K \sum_{r=1}^K I(r) t_r$	
$\overline{y}_{AS} = rac{K}{N} t_r$	se N é conhecido
$\overline{y}_{AS} = rac{t_r}{n_r} = \overline{y}$	se N é desconhecido
$\widehat{Var}_{1AS}(\widehat{T}_{AS}) = N^2 \widehat{Var}_{1AS}(\overline{y}_{AS})$	se <i>N</i> é conhecido e sem ordenação
$\widehat{Var}_{2AS}(\widehat{T}_{AS}) = N^2 \widehat{Var}_{2AS}(\overline{y}_{AS})$	se <i>N</i> é conhecido e houver ordenação
$\widehat{Var}_{1AS}(\overline{y}_{AS}) = \left(rac{1}{n} - rac{1}{N} ight)rac{1}{n-1}\sum_{i \in s_r}(y_i - \overline{y}_{AS})^2$	se <i>N</i> é conhecido e sem ordenação
$\widehat{Var}_{2AS}(\overline{y}_{AS}) = \left(rac{1}{n} - rac{1}{N} ight)rac{1}{2(n-1)}\sum_{i \in s_r}(y_i - y_{i+K})^2$	se <i>N</i> é conhecido e houver ordenação

Aula passada 📀

Estimação na **AS**

Exemplo:.

Considere a população abaixo e n = 2:

$$X = (2, 6, 10, 8, 10, 12)$$

- a. Calcule $E(\overline{y}_{AS})$ e $Var(\overline{y}_{AS})$.
- b. Calcule $E\left[\widehat{Var}_{AS}(\overline{y}_{AS})\right]$.
- c. \overline{y}_{AS} e $\widehat{Var}_{AS}(\overline{y}_{AS})$ são **ENV** para os respectivos parâmetros a que se destinam estimar?

- Amostragem Conglomerada em dois estágios AC2 =
 - **AC1** + subamostragem

Estágio 1: selecione uma amostra a de m UPAs (conglomerados).

Estágio 2: para cada UPA C_i tal que $i \in a$, selecione amostra s_i de n_i unidades secundárias das N_i unidades existentes nessa UPA.

• A amostra completa de unidades selecionadas é dada por:

$$s=s_{i_1}\cup s_{i_2}\cup\cdots\cup s_{i_m}=igcup_{k=1}^m s_{i_k}$$

• O tamanho total da amostra é $n=\sum_{i\in a}n_i$.

As principais razões para adotar amostragem conglomerada em dois estágios são as seguintes:

- 1) Geralmente não é prático pesquisar todas as unidades nos conglomerados selecionados: **conglomerados** muito **grandes**, **carga de trabalho variável** por entrevistador, etc.
- 2) A **perda de precisão** da **AC1S** em relação à **AAS** para amostras de mesmo tamanho é maior quanto maior o **tamanho do conglomerado**.
 - A adoção de **AC2** reduz a **influência do tamanho dos conglomerados** na eficiência da amostragem conglomerada.
 - Controlar melhor a precisão do estimador resultante, ao manejar o número de unidades selecionadas em cada conglomerado.
 - Na **AC1** isso não está sob controle do amostrista, pois uma vez selecionado um conglomerado, todas as suas unidades devem ser pesquisadas.
- 3) Se a **variância dentro** dos conglomerados for **pequena**, as médias por conglomerados $\overline{Y_i}$ podem ser bem estimadas por amostragem.
- 4) Amostragem em dois estágios é mais complexa, porém mais flexível.

- Na estimação sob **AC2**, o plano amostral p(a) possui dois estágios de seleção, para encontrar médias e variâncias de estimadores, devem ser calculadas médias considerando todas as possíveis amostras sob p(a).
 - Devemos considerar todas as possíveis amostras no primeiro estágio e, todas as possíveis amostras no segundo estágio (dentro de cada amostra de UPAs).
- Usaremos os resultados de @Cochran1977 (pg. 275 e 276), para algum estimador $\hat{\theta}$ do parâmetro θ :

$$E[\hat{ heta}] = E_1[E_2(\hat{ heta})]$$

$$Var[\hat{ heta}] = Var_1[E_2(\hat{ heta})] + E_1[Var_2(\hat{ heta})]$$

- E_2 , Var_2 : valor esperado e variância sob todas as possíveis amostras de unidades dentro de um conjunto fixado de UPAs (**estágio 2**).
- E_1 , Var_1 : valor esperado e variância sob todas as possíveis amostras de UPAs (**estágio 1**).

Resultados similares podem ser estendidos para planos em três ou mais estágios (ver @Cochran1977, Seção 10.8).

• O estimador não viciado (Horvitz-Thompson) do total T sob AC2 é

$$\widehat{T}_{AC2/HT} = \sum_{i \in a} rac{\widehat{T}_i}{\pi_i} = \sum_{i \in a} rac{1}{\pi_i} \sum_{j \in s_i} rac{y_{ij}}{\pi_{j|i}} = \sum_{i \in a} \sum_{j \in s_i} d_{ij}y_{ij}$$

onde:

- π_i é a probabilidade de inclusão da UPA i;
- s_i é a amostra de unidades selecionadas dentro da UPA i;
- $\widehat{T}_i = \sum_{j \in s_i} rac{y_{ij}}{\pi_{j|i}}$ é um estimador HT do total T_i da UPA i;
- $\pi_{j|i} = P(j \in s_i \mid i \in a)$ é a probabilidade de inclusão da unidade j dado que a UPA i está na amostra a; e
- $d_{ij}=\pi_{ij}^{-1}=\pi_i^{-1}\pi_{j|i}^{-1}$ é o peso associado à unidade j da UPA i.

• A variância de $\widehat{T}_{AC2/HT}$ sob **AC2**:

$$egin{aligned} Var_{AC2}\left(\widehat{T}_{AC2/HT}
ight) &= Var_1\left[E_2\left(\sum_{i \in a}rac{\widehat{T}_i}{\pi_i}
ight)
ight] + E_1\left[Var_2\left(\sum_{i \in a}rac{\widehat{T}_i}{\pi_i}
ight)
ight] \ &= Var_1\left[\sum_{i \in U}R_iE_2\left(\widehat{T}_i
ight)/\pi_i
ight] + E_1\left[\sum_{i \in U}R_iVar_2\left(\widehat{T}_i
ight)/\pi_i^2
ight] \ &= Var_1\left(\sum_{i \in a}T_i/\pi_i
ight) + \sum_{i \in U}Var_2\left(\widehat{T}_i
ight)/\pi_i \ &= Var_{UPA} + Var_{USA} \end{aligned}$$

onde:

- \circ R_i é a variável indicadora da presença da unidade i na amostra;
- Var_{UPA} é a componente de variância de $\widehat{T}_{AC2/HT}$ proveniente da amostragem de UPAs (estágio 1), isto é, variância caso **AC1S** fosse usada (sem subamostragem); e
- $\circ Var_{USA}$ é a componente de variância de $\widehat{T}_{AC2/HT}$ proveniente da amostragem de USAs (amostragem no **estágio 2**).

• Um estimador não viciado (HT) da média por unidade \overline{Y} é:

$$\overline{y}_{AC2/HT} = rac{\widehat{T}_{AC2/HT}}{N} = rac{1}{N} \Biggl(\sum_{i \in a} rac{\widehat{T}_i}{\pi_i} \Biggr)$$

• Se N for conhecido, um **estimador tipo razão** para estimar o **total** T é

$$\widehat{T}_{AC2}^R = N\left(\sum_{i \in a} rac{\widehat{T}_i}{\pi_i}
ight) \Big/ \left(\sum_{i \in a} rac{N_i}{\pi_i}
ight).$$

• Um estimador tipo razão da média por unidade é dado por

$$\overline{y}_{AC2}^R = \left(\sum_{i \in a} rac{\widehat{T}_i}{\pi_i}
ight) \Big/ \left(\sum_{i \in a} rac{N_i}{\pi_i}
ight).$$

Este estimador de razão da média pode ser calculado mesmo quando N for desconhecido.

AC2 com AAS nos 2 estágios

- Seja o plano amostral AC2 com AAS nos 2 estágios AC2S, ou seja:
 - **Estágio 1**: selecione amostra de *m* UPAs usando **AAS**.
 - Estágio 2: para cada UPA i da amostra de primeiro estágio, selecione n_i unidades secundárias das N_i unidades existentes usando AAS.
- Na **AC2S** a probabilidade de inclusão da unidade j da UPA i é

$$\pi_{ij}=P(i\in a\,,\,j\in s)=P(i\in a)P(j\in s\,|\,i\in a)=rac{m}{M}rac{n_i}{N_i}.$$

• Planos amostrais simplificam se as probabilidades de inclusão são constantes (plano amostral *equiponderado* ou *autoponderado*),

$$\pi_{ij} = n/N, \; orall \; i \; \mathrm{e} \; orall j.$$

- Na **AC2S**, isto pode ser conseguido tomando $n_i \propto N_i$.
- Uma desvantagem importante desse tipo de plano seria a geração de cargas de trabalho desiguais por UPA ou por entrevistador, caso cada UPA $^{13\,/\,22}$

AC2 com AAS nos 2 estágios - Estimação do Total

• O estimador não viciado de *T* sob **AC2S** é (@Cochran1977, Expressão 11.21):

$$\widehat{T}_{AC2S} = rac{M}{m} \sum_{i \in a} \widehat{T}_i$$

com $\widehat{T}_i = rac{N_i}{n_i} \sum_{j \in s_i} y_{ij}$ para toda UPA i.

 A variância do estimador não viciado do total sob o plano amostral AC2S é (@Cochran1977, Expressão 11.22):

$$egin{align} Var_{AC2S}\left(\widehat{T}_{AC2S}
ight) &= M^2\left(rac{1}{m}-rac{1}{M}
ight)rac{1}{M-1}\sum_{i\in C}\left(T_i-\overline{Y_C}
ight)^2 \ &+rac{M}{m}\sum_{i\in C}N_i^2\left(rac{1}{n_i}-rac{1}{N_i}
ight)S_i^2 \end{aligned}$$

onde as parcelas do segundo membro são componentes da variância devidas ao 1º e ao 2º estágios de seleção, respectivamente, sendo

$$S_i^2 = \frac{1}{1-\epsilon} \sum_{i,j} \left(y_{ij} - \overline{Y_i} \right)^2$$
 a variância dentro da UPA i

AC2 com AAS nos 2 estágios - Estimação do Total

Note que:

1. Se m=M então, a 1ª componente da variância é nula, ou seja:

$$Var_{AC2S}\left(\widehat{T}_{AC2S}
ight) = \sum_{i \in C} N_i^2 \left(rac{1}{n_i} - rac{1}{N_i}
ight) S_i^2 = Var_{AES}\left(\widehat{T}_{AES}
ight)$$

- Assim a AC2S equivaleria a uma AES, os conglomerados se tornaram estratos!
- 2. Se $n_i=N_i \ (\forall \, i=1,2,\ldots,n)$ então, a 2ª componente da variância é nula, ou seja:

$$Var_{AC2S}\left(\widehat{T}_{AC2S}
ight)=M^2\left(rac{1}{m}-rac{1}{M}
ight)rac{1}{M-1}\sum_{i\in C}\left(T_i-\overline{Y_C}
ight)^2=Var_{AC1S}\left(\widehat{T}
ight)$$

Assim a AC2S equivaleria a uma AC1S.

AC2 com AAS nos 2 estágios - Estimação do Total

• Um estimador não viciado da variância do estimador HT de *T* na **AC2S** é (@Cochran1977, Expressão 11.24):

$$egin{align} \widehat{V}ar_{AC2S}\left(\widehat{T}_{AC2S}
ight) &= M^2\left(rac{1}{m} - rac{1}{M}
ight)rac{1}{m-1}\sum_{i \in a}\left(\widehat{T}_i - \overline{y}_C
ight)^2 + \ &+rac{M}{m}\sum_{i \in a}N_i^2\left(rac{1}{n_i} - rac{1}{N_i}
ight)\widehat{S}_i^2 \end{split}$$

onde:

$$\overline{y}_C = rac{1}{m} \sum_{i \in a} \widehat{T}_i$$
 estima a média por conglomerado $\overline{Y_C}$; e

$$\widehat{S}_i^2 = rac{1}{n_i-1} \sum_{j \in s_i} \left(y_{ij} - \overline{Y_i}
ight)^2$$
 estima a variância dentro da UPA i .

AC2 com AAS nos 2 estágios - Estimação da Média

• Um **estimador** não viciado da **média** por unidade (\overline{Y}) sob **AC2S** é:

$$\overline{y}_{AC2S} = rac{\widehat{T}_{AC2S}}{N} = rac{M}{mN} \sum_{i \in a} \widehat{T}_i = rac{M}{mN} \sum_{i \in a} rac{N_i}{n_i} \sum_{j \in s_i} y_{ij}$$

• A variância do estimador não viciado da média por unidade:

$$Var_{AC2S}\left(\overline{y}_{AC2S}
ight) =rac{1}{N^{2}}Var_{AC2S}\left(\widehat{T}_{AC2S}
ight)$$

• Um **estimador** não viciado da **variância** do **estimador** HT da **média** por unidade:

$$\widehat{V}ar_{AC2S}\left(\overline{y}_{AC2S}
ight) =rac{1}{N^{2}}\widehat{V}ar_{AC2S}\left(\widehat{T}_{AC2S}
ight)$$

Para casa 🏠

- Fazer a lista 4 de exercícios.
- Continuar exemplos.
- Ler o capítulo 4 da apostila da Profa. Vanessa.
- Ler seção 12.10 do livro 'Amostragem: Teoria e Prática Usando R'.
- Rever os slides.

Próxima aula IIII

• Acompanhar o material no moodle.

Amostragem Conglomerad em 2 estágios

- Efeito de planejamento e tamanho de amostra.
- Laboratório de 😱

Muito obrigado!

Fonte: imagem do livro Combined Survey Sampling Inference: Weighing of Basu's Elephants.

Referências

- Amostragem: Teoria e Prática Usando o R
- Elementos de Amostragem, Bolfarine e Bussab.
- Cochran(1977)

Resumo da notação

Trabalho

Tópicos em

Amostragem com Probabilidades Variáveis

e

Amostragens Complexas

- Escolher um tema dentre os tópicos que encerram o conjunto de disciplinas de Amostragem.
- Materiais disponíveis:
 - minicurso Sinape
 - minicurso Thomas
 - capítulos das nossas refeências
- Apresentar:
 - problema
 - o delineamento e estratégia
 - 10 slides? máximo
 - 15 min apresentação + 5 min perguntas, presencial ou video