Stabilizzazione: alcuni problemi di controllo, matrice compagna

(x(t) = Ax(t) + Bu(t)) Rubbina: (Stabilizzassione dell'aigine) Travare una legge di controllo $2x(a) = x_0$ ($x(a) = x_0$

Oct: AeRmane di Hurwitz se (4200A)) Reflito

Sia úla)=Fx, con Felk^{mxm} generica funcione limene dello stato

x(t) = Ax(t) + Bu(t) = Ax(t) + BFx(t) = (A+BF)x(t). Quindi il sistema nethodobonato e descrito da [sell] = (A+BF) x(t) quindi x(t) = e(A+BF) to, poiche il sistema è autonomo. (x(0) = x.

Inalthe abbromo the il saloma è asintolicamente stabile <=> (1/20 e IR") lime++00 selt) =0 <=>

(A+BF) è di Harcoutte.

Reprieté: Il problème della statificazorione dell'origine è risolto con û = Fac=> A+BFè diffuruotz Cef. (\$, \vec{u}), \vec{vec{e}} = \mathbb{R}^m \vec{e} \text{ uno coppie di equilibrio per (14) te \vec{vec{e}} = \vec{vec{e}}, \text{telle \vec{e}} \vec{vec{e}} \vec{vec{e}} = \vec{vec{e}} \vec{vec{e con ult = u, tel.

Proprieto: (2,0) è una coppia di equilibrio poe il sistema (412 => Az+Bt=0.

(Dim: (\$\overline{\pi}, \overline{\pi}) \overline{\pi} \cdot \overline{\pi} \over Robbona: (Stabilizzarione di une cappia di equilibrio): Sia $(\vec{\pi}, \vec{u})$ una cappia di equilibrio per il sistema (4), vaglianno Govare una legge di controllo $\hat{u}: \mathbb{R} \to \mathbb{R}^m$ tale che $(\forall x \in \mathbb{R}^m)$

lim to + so relt1 = Te e lim to + so il belt1) = it.

- 23

-38

3

-18

13

福

霜 12

18 福

-

- 18 100

-- 70

標

-

福

-

-3

福

北

#

響 播

運

湿

潜

湿

擂

福 福

4

-

Posiamo ricondurre questo problema al problema della stabilizzantione dell'origine facendo um cambio di condinate. Definiamo l'enore e= 2-2, ett= 2(t)-2, étt=2(t)= = Az(H+Bult) = Az(H)+Bult)-(Az+Bū) = A(z(t)-z)+B(u(t)-ū)=Ae(t)+Bv(t) con e(b)= 2000-70 quindi sett)= A e(t) + Br(t) asimblicamente vogliamo portare l'ensone

eco = 20-2 a soro, quindi ci sorro ricordotto al probleme delle stabilizzazione dell'origine perchi uggliomo havave il controllo VCH in mode tale the il sistema errore si porti asimblicamente azero. Definiamo v(t) come una rethoazeme limeare doll state: v(t) = Fe(t), e(t) = Ae(t) + BFe(t) = (A+BF)e(t) e quindi (the eRM) lime, ettl=0 <=> A+BF è di Hurmite. Vedicimo com è fatto il controllo ult):

 $u(t) = \overline{u} + v(t) = \overline{u} + Fe(t) = \overline{u} + F(x(t) - \overline{x})$

Bopieta: ilcn) = u + F(2 - 20) risolve il probleme della stabilizzazione della coppia di equilibrio <=> A+BF è di Huruntz.

facallack e fealbriward poicht tiè indipendente dallo state quindi è un termine di facelformoid mentie il secondo termine dipende della stato quindi è un termine al retroppione.

Strama generalizare il publica ornivando sel probleme del tracking.

Cof: (x_n, u_n) , $x_n: \mathbb{R} \to \mathbb{R}^m$, $u_n: \mathbb{R} \to \mathbb{R}^m$ è una coppia di riferemente per il ristoma (x) se $x(t) = x_n(t)$, $t \in \mathbb{R}$ è soluzione di (x) con l'ingresso ulti- $u_n(t)$, $t \in \mathbb{R}$.

Proprieta: (xx un) è una coppia di riferimento per (x) <=> xintt)=Axn(t)+Buntt), telR.

Problema: (Tracking a simtotico dello stato): Se (sen, un) una coppia di riferimento per (*1), vogliamo travare û: R×R™→1R™ tale che per agni stato iniziale xe(R°, se u(t)=û(t, x(t)), allora tim+++= (2(t)-xn(t))=0 e lim+++= (t(t,2(t))-un(t))=0.

Possiamo reizandurne questo probleme a quello della stabilizzazione ali una coppin di equilibrio. e = x - xn, elt = x(t) - xn(t), e(t) = x(t) - xn(t) = Ax(t) + Bu(t) - (Axn(t) + Bunt)) = $= A(x(t)-x_n(t)) + B(u(t)-u_n(t)) = Ae(t) + Bv(t).$

[elt]=Aelt]+Bult) Voglamo che il sistema emone asimblicamente vada a zero quindi ci le(o)=2,-2,10) samo ricondotti al prableme della sibbilizzazione dell'origine Come mer casi precedenti definiamo v(t1)= Fe(t), quindi e(t)= Ae(t)+ BFe(t)= (A+BF) e(t) Quindi (Yz. & R") lim+++ e(t)=0 <=> A+BF è di Hurmite.

 $u(t) = v(t) + u_n(t) = Fe(t) + u_n(t) = F(x(t) - x_n(t)) + u_n(t)$.

Promieta: ii(t,x)= un(t) + F(x-xx(t)) risobre il probleme del hocking esimblico delle stato <=> A+BF è di Hurmitz.

Stabilizzazione dell'origine

Stabilizzazione di una cappia di equilibrio / Travarre F tale che A+BF sia di Hurmite. Tracking asimtotico dello stato

Vednomo satto quali conditioni possiomo risolvere opesto problema alpebrico e mel caso sia risolvibile, vedremo un algoritmo risolutivo che consente di calcolore F. Ma pama vedicimo un esempio

Madello del motore elettrico: 20=11, w] - Nel mobleme della stabilizzazione dell'origine vogliamo portone w e i a zero, cost come le tensione a. · Nel problema della stabilitatamione della coppie di equilibrio .

zi=[i,w] representa la consente e la velocitat di notazione de asimbilicamente voglicimo reggiungene, inollre il i quella tensione che ci concente as moticomente di reggiungere se.

Nel problème del tractaing sen=[in, we], un sometempe veriente e quindi esintolicamente vogliano postarci su un profile non costente de mai desiderate.

Vaglionno travare F tale che A+BF è du Hermite.

3

3 -3

3 -8

3

-3 -3

--8

-18

3

3

7

7

A

7

3 3

3

7

-3 4

-1 7

-11

-

Defi La coppia (A,B) è stabilizzabile se FER ** tolleche A+BF è di Hurmite

Oef: La capia (A,B) è assegnable se per agni polinamio $d(\lambda) = \lambda^n + d_n + \lambda^{n-1} + ... + d_n \lambda + d_n$, esiste $F \in \mathbb{R}^{m \times m}$ tale the $X_{A+BF}(\lambda) = d(\lambda)$.

Rapricta: Se (A,B) è assegnabile, allora (A,B) è sabilizzabile

Esempio:
$$A = \begin{bmatrix} 2 & 0 \\ 2 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, F \in \mathbb{R}^{1 \times 2}, F = [f_1, f_2], A + BF = A + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \cdot [f_1, f_1] =$$

$$= \begin{bmatrix} 2 & 0 \\ 2 & 1 \end{bmatrix} + \begin{bmatrix} f_1 & f_2 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 2+f_1 & f_2 \\ 2 & 1 \end{bmatrix}, \quad d(\lambda) = \lambda^2 + d(\lambda) + d_0. \quad \chi_{A+BF}(\lambda) = \lambda^2 - (3+f_1)\lambda + 2+f_1 - 2f_2$$

$$d = \chi_{A+BF} < \Rightarrow d_1 = -(3+f_1) = d_0 = 2+f_1 - 2f_2 < \Rightarrow$$

 $\begin{cases} f_1 = -3 - d_1 \\ f_2 = 1 + \frac{f_1 - d_0}{2} \end{cases} \iff \begin{cases} f_1 = -3 - d_1 \\ f_2 = -\frac{1}{2} - \frac{d_1}{2} - \frac{d_0}{2} \end{cases}$ quindi (A,B) è assegnabile, e di conseguenza è anche stabilizzabile, basta scegliere

d(1)= (1-2,1)(2-2,1) con 2,,2,00.

$$A = \begin{bmatrix} 2 & 0 \\ 2 & 1 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, F = \begin{bmatrix} f_1, f_1 \end{bmatrix}, A + BF = \begin{bmatrix} 2 & 0 \\ 2+f_1 & 1+f_1 \end{bmatrix}, \sigma(A+BF) = \{2, 1+f_2\}$$
 quindi

la coppia mon è assognabile poiché 2 sons autovalore indipendentemente della scelta di F quindi nonstimo Riberi di variare gli autovalori della matrice A+BF, e queste coppio mon è nemmono stabilizzabile poiche Relzi>0.

Le difference estensiale trai due esempi é che il primo esempio è un sotome reggiungabile

menths it seconds no. Infatti mel secondo esempio: R=[B, AB] = [0 0] XR= Im [0]

Three mel primo esempio: $R=[B,AB]=\begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$, $X_R=[R^2]$

Quand' à che une coppie (A,B) è assegnabile? Quanda stabilizzabile?

Obso con ingresso scalare: $B \in \mathbb{R}^{m \times 1}$, B = b è costituita da una sole colonne

Coso con impreso scalare:
$$B \in \mathbb{R}^{m \times 1}$$
, $B = b$ è contituita da una sole colonne

Oef: Costo $p(\lambda) = \lambda^m + \kappa_{m-1} \lambda^{m-1} + ... + \kappa_1 \lambda + \alpha_2$, la maluice compagna du p è $C(p) = 0$

Proprieta: $\mathcal{X}_{C(p)} = p$

identite de organe m-1

In-1

2. Se la proprieta vale per grp=n-1 Quim: Perindusione sul grado di p: 1. vale se grep=2. allona vale onche per grep=m

篋

北

-

ポ

湿

2

2

--12

-12

-

- Ramieta: Se be Rm2 e (A,b) è raggiungeloite, allana (A,b) è assagnabile.

Com toplisms dimortione the pet d(1) = 1 that 1 that 1 that do If: Nather = d. Septimo Prome with mells continuous precedente tale the Ac = PAP", bc = Pb siamo mells forms canonica di controlo. Quindi A = P'AcP, b = P'bc, da cui A+of = = P'AcP+P'bcfc = P'(Ac+bcfc)P, quindi A+bf e Ac+bcfc cono simili e persono XA+bf = XAC+bcfc e conviene soviene in modo esplicito Ac+bcfc = Ac+[o,,0,1] [fo,f,,fn-] = -Ac+ [e o b] = [O] Im- XAC+bcfc (X)=(o-fo)+X(o,f)++X(on-fo) Voplismo the XAC+bcfc (X) = d(X) = do+d(X++dn,X) + X (Quindi imponismo the) Voplismo the XAC+bcfc (X) = d(X) = do+d(X++dn,X) + X (Quindi imponismo the) do=ox-fo A d(=ox-f), AA dn=oxfm-==> fo=ox-doA f(=ox-doAA fn=oxdn,A fn==oxdn,A fn==oxdn,
forms canonica di controllo. Quindi A = P"AcP, b = P bc, da cui A+of = = P"AcP+P"bcf. Comucene definire f= fcP con fc= P"f da cui A+of = P"AcP+P"bcfcP = P"(Ac+bcfc)P, quindi A+bf e Ac+bcfc cono simili e persanto XA+bf = XAc+bcfc e conviene scrivere in modo espleito Ac+bcfc = Ac+[o,o,1] [fo,f,,fm-] = - Ac+ [o o b] = [O] Im., XAc+bcfc (X)=(or-fo)+\lambda(or-fo)++\lambda(or-fo)++\lambda(or-fo)+\lambda(or-fo)+\lambda(or-fo)++\l
= P"(Ac+befc)P, quimali A+bfe Ac+befc cono simili e persanto XA+bf = XAc+befc = P"(Ac+befc)P, quimali A+bfe Ac+befc cono simili e persanto XA+bf = XAc+befc e consiene scrivere in modo esplicito Ac+befc = Ac+[0,,0,1] [fo,f,,fm] = = Ac+ [e 0
= P(Ac+befc)P, quimoli A+bfe Ac+befc cono simili e persono 6 / A+bf = 1 Ac+befc e conviene scrivere in modo esplicito Ac+befc = Ac+[0,,0,1][fo,f,,fm-] = - Ac+[0,,6] = [0] Im.,
e conviene scrivere in mode esplicito $A_c + b_c f_c = A_c + [0,,0,1] \ [f_o,f_{,},f_{m-1}] = A_c + [0,,b_{m-1}] = A_$
Voplume the $\chi_{a+befe}(\lambda) = d(\lambda) = da+d_1\lambda + + dn_1\lambda^m + \lambda^m$ (durindi impositions the indicates the indicate
Voplume the $\chi_{a+befe}(\lambda) = d(\lambda) = da+d_1\lambda + + dn_1\lambda^m + \lambda^m$ (durindi impositions the indicates the indicate
Con questo scalle di la effettivamente Xacobre = of Definiamo quindi f:= fc?
Con questo scalle di la effettivamente Xacobre = of Definiamo quindi f:= fc?
V 7 1
Roupi sisson dam P'erum sa lute so Pro Polo O d O A O O d O
Banquis representational del control of the period of the
be=LO, O, O, 1], vagliorno shuttone questo 2
shutture per accoprione gli autovalori del 2221
stema tetroprionato. Consideriono come polinomio desiderato d(1)=(1+1)4 in genere
nan à una becoma strategia assegnane trutte els autoralors mello stesso valore me la facciama per
semplificate i calculi soiche sounds all'un himanus i conflicienti licaledienno con il
1 triangolo di tarlaglia: d(2) = 1+42+62+42+2 conchiamo di impone questo
1 2 1 polimonio, se niusciomo, stabilitiamo il sisteme perche tutti gl'autovalori hamo
14 6 4 1 Re <0 fe=[fo, f, f, f, f, f]
Act befe = [0 4 0 0] (1+fo=-1 (fe=-2 Quindi fe=[-2,-4,-8,-5]
0 0 1 0 f = -4 f
1 this mode di tarbaglia: $d\Omega = 1+4\lambda+6\lambda^4+4\lambda^3+\lambda^4$ conchismo di impore questo 1 2 1 polimonio, se niulciomo, sabilitiamo il sistema peche tutti gl'autovalori hamo 1 3 3 1 1 Re <0 fe=[fo, fi, fi, fi, fi] Act befe= $\begin{bmatrix}0&1&0&0\\0&1&0&\\0&1&0&\\0&1&1&1&\\0&0&1&\\0&1&1&\\0&1&1&1&\\0&1&1&\\0&1&1&1&\\0&1&1&\\0&1&1&$
1+6 f. 2+f2 1+f3 (1+f3=-4 (f3=-5) ha regge all retropatione e
co 100 f 22
$\sigma(A+b\ell)=\xi-1.$
Ermula di Achermann: Se (A,b) è rappingible, con be 12 "x1, R=[b,Ab,,A"b] e d è
un polinomio pristrones di grado ne, allore XA+62 = ol <=> f=-en R'ol(A).
Ourn: (<=) f=fcP, fc=[ab-da, a,-dh,, on-izdmi], f=[x-da,,on-dm-][q, qA,,qAm]]=
= (xd) q + (x,-d) q A++ (xxdn-) q An = q(x o I + x, A++ xx- An) + 1 - A T. xx Howellow
- g(do I+d, A++dn.Am-1), quimdi f= -g(do I+d, A++dn.Am-+Am) = -em R-1 d(A)
(=>) Vogliamo mostione l'unicità di f, questo è una consequentia della proprieta precealente
f=feP, fe=[fo,f,fn.] ed fe deve soddisfore do-fo=do 1 1 dn.,-fm. =dn.,

8

8

量 量 車 車 車 車

品 品 品 品 品

8

Esempsia: A=	0 1 2 0 0 1 0 1 0 0 1 1 2 -3 0 1	b = $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ Voglama Travore is vettore as retroasione of tale the $X_{A+b} \in A = (A+1)^4 = 1+4A+6A+4A^3+A^4$. Questa volta viiomo la formula di Ackermann
ξ= <u>[</u> . R= =[18,	0,0,0,1]R ² d(A ²) 0 0 0 1 0 0 1 1 1 1 1 1	q è l'ultima ripa di R': q = [0,1,0,0], quindi f= -q(A+I)^4= -q(I+4A+6A^2+4A^3+A^4) = = -(4+49A+69A^2+49A^3+9A^4) qA = [0,0,1,0], qA^2=[1,0,0,1], qA^3=[2,-2,2,1], qA^4-[4,-1,2,3] quindi f=[0,1,0,0]+[0,0,4,0]+[6,0,0,6]+[8,-8,8,4]+[4,-1,2,3] 1,8,-14,-13] chi è la slessa soluzione ottonile con la forma canonica

38 39 m

-

-

1

-15

-3

-8

-18

-2

-9

-2 -2

-3

-1 -3

-2 -7

-2

-2

Rodome: Forceto un polinomio desiderato di trovare FerRmxm tale che XA+AF=d.

Possumo definire ulti= Falti+ tivlti, dove FERMEM è la matrice di retropretione, tie RMVHER vett regrusente un muovo impresso scalore, quinci abbiomo hasformate un distoma od ingressi multipli in una adimpreso simpolo. Se focusimo queste sociativisme atteniamo: selt)=Aselt+Bult)= = Azck1+B(Fzck1+ūvck1)= (A+BF) zck1+Būvck1=Āzck1+Bvck1, guindi soma passali de um sistema descritto della cappia (A,B) alla muara cappia (A,b) = (A+BF, Bū).

Se (A, b) è raggiungibile, R=[6, Ab, ..., Am b], sfuttendo la formula di Ackermann postions definite f=-em R'd(A) tale the Xz+if=d, date die il polinomia che vaglismo impone. Me A+ bf = A+BF + Buf = A+B(F+uf) = A+BF. Quindi Xx+6f=XA+BF=d e le matrize di nelhaborione è F=F+iif Vediome se è possibile havore F, ii tali che (A, b) è roggiungiloite.

Robbema: Oata (A,B) house FERMEN, TERM taliche (A, 5) -(A+BF, BT) è raggiungabile Reprieté: Oato il sistème (2(4+1) = A2(k) + Bu(k), sie XR= Jm[B,AB,...,AM-18]

e sia 2(1), 2(1), ..., 2(1) la soluzione conispondente agli impressi u(0), u(1), ..., u(l-1), con dum tim [sels), sels), , sell] < dim Xx, allora esiste ule tale che x (C+1) & Jm [x(1),x(1),..., x(C)]

Oirm: V = 3m [20(1),20(1),...,20(1)], 20(+1)=Ax(0)+Bull). Per assurdo sia 20(+1) eV per agni all) eR AxII) + Bull & V. Dumostuamo che A(V) = V e che V > 1mB.

Ra sappiamo che x(k+1) = Anc(k) + Bu(k), h=0,,l-1, e Bu(k) e x(k+1) e V, quimoli A x(k)= x(k+1) - Bu(k) e V, h=0,,l-1. Quimoli A(V) = Afm[x(1), x(1),,x(1)]) = = Jm[Ax(1),, Ax(1)] ≤ V. Quimoli A(V) ≤ V ≥ JmB ⇒ Xe ≤ V ⇒ dim V > dim Xe & □
prieta: Se (A, B) è reggiongebile, allore estremo ingressi u(o), u(1),, u(n-1) Talliche la solubio- ne del sittèma e tempo alioneto soddisfe Im [2(1), 2(2),, 2(m)] = 12 ^m
im: (A,B) reggionsibile $\Rightarrow B \neq 0 \Rightarrow \exists u(0): x(1)=Ax_0+Bu(0)=A\cdot 0+Bu(0)\neq 0$. Applicando la proprietà precedente $\exists u(1): x(2) \notin \text{Im}[x_0], \exists u(2): x(3) \notin \text{Im}[x_0], x(1)],,$ $\exists u(n-1): x(m) \notin \text{Im}[x(0), x(1),, x(n-1)], quinqui dum Im[x(0),, x(n)]=m.$
francho l'ingresso u(t)= Foc(t)+ ufx(t) possiono dalla coppia (A,B) a (A,B)=(A+BF, Bu) positiona: Sia oz(1),, ocin) la soluzione del sistema (ocche)= o definito da u(o), u(1),, u(m-1) esia tale che
definito de u(o), u(1),, u(m-1) estatale che (200)=0
$X=[x(1),,x(m)]\in \mathbb{R}^{m\times m}$ è invertibile. Definionno $F=[ul_1),,u(m-i),o]\cdot X'$ e $\overline{u}=u(o)$ 1. Posto $\overline{A}=A+BF$, $\overline{b}=B\overline{u}$; $\overline{A}^i\overline{b}=x(i+1)$, $i=0,,m-1$ 2. $(\overline{A}_1\overline{b})$ è roggiumpibile
$\begin{array}{llllllllllllllllllllllllllllllllllll$
2. R=[5,Ab,,AMB]=[2ds), 2d2), 2dm]=X è invertible paripates:⇒(A,b) è raggiungi- bile
owno di exepprogione degli autovalori: (A, B) è assegnative => (A, B) è raggiungibile
um: (&): Dato um polinomio d'alignoso m, travare F: XA+BF=d.
[sc(h+1) = Ax(h) + Bu(h) troubumo u(0), u(1),, u(m-1) tale che 2x(6) = 0
? x(6)=0 X=[x(x), x(1),, xm] & invertible.
Refuniamo F := [uls], u(1),, uln-1), o] X , a := ulo). A = A+BF, G=Ba.
Soppiomo cho (A, b) è roggingibile, de cui, shuttando la formula di Alermann
If: Xa+Ef=d, A+Ef=A+BF+BEf=A+B(F+Ef)=: A+BF XA+BF=Xa+Ef=d
(=): Per assurate (A,B) mon sie naggiungibile. Methomo il sistema nella forma

(YUER) ARCEL+ BUEV, in particolore, u=0 => A. RUELEV => (YUER) BUEV => Im BEV.

Ro

陸

100

游船船

B B

E:

```
standard di naggiimpolitità: 2=Tz, T=[Ti, T2], JmTi=Xe, A=TAT, B=TB
              quinde A = TAT", B = TB, F = FT" A+BF = TAT"+TBFT = T(A+BF)T"
               A+BF~ A+BF (le due matrice sono simile), quinde XA+BF=XA+BF
              \hat{A} + \hat{B}\hat{F} = \begin{bmatrix} A_R & A_{12} \\ O & A_{NR} \end{bmatrix} + \begin{bmatrix} B_R \\ O \end{bmatrix} \begin{bmatrix} F_R & F_{NR} \end{bmatrix} = \begin{bmatrix} A_R & A_{11} \\ O & A_{NR} \end{bmatrix} + \begin{bmatrix} B_R F_R & B_R F_{NR} \\ O & O \end{bmatrix} = \begin{bmatrix} A_R & A_{12} \\ O & A_{NR} \end{bmatrix}
              = \frac{A_{R} + B_{R}F_{R}}{O} \begin{vmatrix} A_{12} + B_{R}F_{NR} \\ A_{NR} \end{vmatrix}, \chi_{\widehat{A}+\widehat{B}\widehat{F}} = \det \underbrace{\begin{bmatrix} \lambda I - A_{R} - B_{R}F_{R} \\ O \\ \lambda I - A_{NR} \end{bmatrix}}_{A_{1}} = \underbrace{\begin{bmatrix} A_{1} + B_{1}F_{R} \\ A_{1} - B_{1}F_{NR} \\ O \\ \lambda I - A_{NR} \end{bmatrix}}_{A_{1}} = \underbrace{\begin{bmatrix} A_{1} + B_{1}F_{R} \\ A_{1} - B_{1}F_{NR} \\ O \\ \lambda I - A_{NR} \end{bmatrix}}_{A_{1}} = \underbrace{\begin{bmatrix} A_{1} + B_{1}F_{R} \\ A_{1} - B_{1}F_{NR} \\ O \\ \lambda I - A_{NR} \end{bmatrix}}_{A_{1}} = \underbrace{\begin{bmatrix} A_{1} + B_{1}F_{R} \\ A_{1} - B_{1}F_{NR} \\ O \\ \lambda I - A_{NR} \end{bmatrix}}_{A_{1}}
              = MAE+BAFA: XANK quindi XA+BF = XAE+BAFE. XANK notions he il primo colinomio
               può espere modelficialo opendo su Fr ma il secondo mo, quindi (YFER")
                T(ANR) & T(A+BF), quanto unal dire che (A1B) mon à assignabile &
Exemplie: A = \begin{bmatrix} 2 & 1 & 4 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} B = \begin{bmatrix} 2 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}, \sigma(A) = \begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix} il interpret mon é printationnente \sigma(A+BF) = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix} stabile; vaglaomo travore F lale she \sigma(A+BF) = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}
               In particulare vaglismo impare d(1)= (1+1)2(1+1), in questo modoil sistema diventa
                asimfoticamente stabile. Quindi consideriomo il sistema a lempo discreto:
               [ack+1] = Ax(k) + Bulk) X = [alx], a(x), a(3)] F = [ulx], u(x), o] \cdot X certhomo
              Prela)=0 quirali di prendere una X simile alle identita.
                2(1)=Ax(6)+Bu(0)=Bu(0)=[2 1]. u(0) a boste sceptione acor in mode telecte
                                                                                               1 0 n(1) # 0; sceptions u(0) = 10, 1].
               \frac{2(1)}{0} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad 2(1) = A_{2(1)} + B_{2(1)} + B_{2(1)} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ -2 \\ 0 \end{bmatrix}, \quad 2(1) = \begin{bmatrix} 0 \\ -1 \\ 2 \end{bmatrix}
               2(3) = A_{x}(x) + B_{u}(x) = \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix} + \begin{bmatrix} 2 & 1 \\ 1 & 0 \\ 2 & 0 \end{bmatrix} u_{x}(x) = \begin{bmatrix} 4 \\ -3 \end{bmatrix}, u_{x}(3) = \begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix} \begin{bmatrix} -1 \\ -2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}
              X = \begin{bmatrix} 2(1), x(1), x(2) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 2 & 1 \end{bmatrix}, \quad \overline{F} = \begin{bmatrix} u(1), u(1), 0 \end{bmatrix} \quad \overline{X}' = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -3 & 0 \end{bmatrix} \quad \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 3 & 0 \end{bmatrix}, \quad \overline{b} = B\overline{u} = Bu(0) = \begin{bmatrix} 2 & 1 \\ 1 & 0 \\ -2 & 0 \end{bmatrix} \quad \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}
             \bar{A}_{-}A_{+}B\bar{F}_{-}=A_{-}\begin{bmatrix} 2 & 4 \\ 1 & 0 \end{bmatrix}\begin{bmatrix} -1 & -1 & 0 \\ 0 & 3 & 0 \end{bmatrix}=\begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}\begin{bmatrix} -2 & 1 & 0 \\ -1 & -1 & 0 \\ 2 & 2 & 0 \end{bmatrix}\begin{bmatrix} 0 & 2 & 1 \\ 2 & 1 & 0 \\ 2 & 1 & 1 \end{bmatrix}
```

18

-8

- 18

- 15

15

-

133

120

13

10

15

10

10

10

坦坦

10 10

-3

Come verifica na ropphamo che deve valore che R=[6, A6, A'6]=X, quindi R= = 0 -1 0 = X. Calcolomo ora f=-[0,0,1]. R-d(A), q=[0,2,1] d() = (1+1) (1+1) = (1+2)+1 (1+2) = 1+41+51+2 1=-9d(A)=-9A++A++A+2I)=-(9A+49A+59A+29) aA=[0, 4 1], aA=[1,1,1], aA=[4,3,2] bourneli f=-([1,3,2]+[4,4,4]+[0,5,5]+[0,4,2])=-[5,16,13]=[-5,-16,-13]. $F = \overline{F} + \overline{u}f = \begin{bmatrix} -1 & -1 & 0 \\ 0 & 3 & 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} -5 & -16 \\ -13 \end{bmatrix} = \begin{bmatrix} -1 & -1 & 0 \\ 0 & 3 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ -5 & -16 & -13 \end{bmatrix} = \begin{bmatrix} -1 & -1 &$ Not care much ingressi a seconda della scelte che facciomo atterremo una Foliversa per verificare the contribus abbitions fatto iono cornetti porriamo verificare the XA+BF=d. Stabilizzazione: amolizioni per la stabilizzabilitat, esempi Ricondiamo che (A,B) sidice stabilizzabile se 3F: A+BF e di Humiltz. Requietà: (A,B) e stabilizzabile <=> gli autovalori mon roggiungibili di Ahanno porte reale <0. Dim: Methomo il 55 tomo nolla forma standard per i si tomi non completamente naggiungabili x=Tz, T=[T,Tz] Im T=XR, A=TAT, B=T'B, C=CT, B=D. Bossiomo invertible A=TAT, B=TB, C=ĈT, B=D e comulamo definine F=FT A+BF=TÂT"+TBFT"+T(Â+BF)T", quimole A+BF~ Â+BF, ossia $\chi_{A+BF} = \chi_{A+\hat{G}\hat{F}}$, $\hat{A}+\hat{B}\hat{F} = \begin{bmatrix} A_R & A_{12} \\ O & A_{NR} \end{bmatrix}$, $\begin{bmatrix} B_R \end{bmatrix} \begin{bmatrix} F_R, F_{NR} \end{bmatrix} = \begin{bmatrix} A_R & A_{1L} \\ O & A_{NR} \end{bmatrix}$, $\begin{bmatrix} B_RF_R & B_RF_{NR} \\ O & O \end{bmatrix}$ = AR+BRFR AIR+BRFNR XA+BF= XA+BRFR XANR
O ANR Quandi G(A+BF) = G(AR+BRFR) U G(ANR) €: CAR, Be) è completamente raggiungibile, per il Perama di ossegnazione degli autorelori 3) FR: AR+BRFR & di Humitz. Baché (CA+BF) = ((AR+BRFR) UG(ANR) ed enthambiquesti invierni hanno alementi a parte neole <0 => A+BF è di Aturnitz La matrice di retroprisme è dosa da F= [FR, FNR], F= FT'=[FR, FNR]T The mon ha influence sulla postrione depli autovalori del sisteme retransportes quindi pus essere scella liberamente, ad ecempio possiomo esseguento a terro => : Per assundo =2 & or (ANE) : Refly >0. Or (A+BF) = or (A+BEF) U or (ANE)

該

1

6

Repueta: (A,B) è slabilizzabile <=> (YZEO(A)) Res[Z]>0 => romb [A-ZI,B]=m 64)

(YF) 2 ET (A+BF) => (YF) A+BF mon è di Hurmite &

Quim: (+) (+) (+) (+) (A) Reflood =>) & ((A) paril rest PBH <=> (A,B) & stabilizabile [
Esomptio: $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 2 & 1 & 1 \end{bmatrix}$ Vecliamo se (A, B) é stabilizabile $\chi_{A}(\lambda) = \lambda(\lambda - 1)(\lambda + 1) \sigma(A) = \{0, 1, -1\}$ questo sistema non é asimilaticamente stabile
0 0 0 1 1 2 CM 10 1 5 CM 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 0 A 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Querro sistemo mon e atimologomente sisteme
Test PBH: \(\lambda=0\), \(\text{Romk}[A-oI, B] = \text{romk}[1 1 0 0] = 3, 0 \(\xi\tau \text{(Aur)}\) \(0 0 0 1 \\ 2 1 -1 0 \end{array}
0001
12 1 -10 1 1 CO 00 0
A=1, ROMRLA-1, B] = ROMR O 1 0 0 = 3, 1 & O(ANR) quimou (A B) e
L=1, ronk[A-I,B]=ronk [0 1 0 0]=3, 1¢ O(Ann) quindi (AB) e 0 1 0 1 stibilizatabile peché tutti gli autouslar [2 1 -2 0] di A a porte reale =0 nom sono
[2 1 -2 0] di A a porte realle =0 mom sone
outevolori non raggiungibili. Briamo quindi hovare esplicitamente F: A+BFè di Hurwite Ritamo colmettere il ristoma in forma standard
X_(4)=JmB=Jmr07, X_(2)=X_(4)+JmAB=X_(4), Jmr47-Jmr0 17
$X_{R}(1) = \lim_{N \to \infty} 0$, $X_{R}(2) = X_{R}(1) + \lim_{N \to \infty} AB = X_{R}(1) + \lim_{N \to \infty} 1 = \lim_{N \to \infty} 0$ 1
Xx(3)= Xx(2)+3mAM = Xx(2)+ Jm[1]= Xx(2)= Xx, Tx-[1 0], Tz=[0]
[1 0 0] [1 0 0] 0 0 0 1 0
T=010,T=010 [1] [10]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\hat{A} = T^{-1}AT = T^{-1}\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 \\ B_R \\ 1 \\ 0 \end{bmatrix}$
A=1 A = 1 0 0 0 = 0 AR 0 0 B=1 B=
[-1 0 1] LO 0 -1 - ANR LO
Per vedere che À è stabilitatabile apperuionno che tutti gli autovalori di Ane (G(ANE)= f-23
harmo parte reale co. Sabaliziamo ora la parte reggiimquibile, cerchiomo quindi
FR: Ar+BrFr & di Hurmitz. d(A) = (A+1)(A+2), usiomo lo formula di Ackormann
fe=-[0,1][BR, ARBRI'd (AR)=-[0,1][0 17 d(AR)=-[0,1][0 17 d(AR)
Quindi $q=[1,0]$. $d(\lambda)=(\lambda+1)(\lambda+1)=\lambda^2+3\lambda+2$.
fr=-(qA2+3qA2+2q). qAx=[1,1], qA2=[1,1]
fn = - ([1,1]+[3,3]+[5,0])=-[6,4]=[-6,-4]
F= f= [fr. fne] = [-6,-4,0], quindi F= F.T-1 = [-6,-4,0].
Per venturare Be corretterno del similiato calcoliamo A+BF = A + [][-6-4.0] =
Per verificare B correttorio del similitato calcolismo A+BF = A + [][-6,-4,0] =
$= A + \begin{bmatrix} 0 & 0 & 0 \\ -6 & -4 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ -6 & -4 & 0 \\ 2 & 1 & -4 \end{bmatrix} \chi_{A+GF}(\lambda) = (\lambda^{2}+3\lambda+2)(\lambda+1) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 2 & 1 & -4 \end{bmatrix} = (\lambda+1)^{2}(\lambda+2), \nabla(A+BF) = \{-1, -2\}.$
$0 0 0 2 1 -1 = (\lambda + 1)^{4}(\lambda + 2) \sigma(A + BF) = (-1, -2)$

- S

多多多多多

おお

Casa tempo discreto: recteri) = Arectel + Bu(t) e consideucimo la retrocacione u(t) = Freth), sortituenalo odoniamo a(4+1)= Ax(k)+ BFx(k) = (A+BF) x(k) Cof: (A,B) è sabilizzabile se (3FER MAM) (YXETA+BF) 12121. Proprieta: (A,B) è stabilitzabile Las (YZE (ANR)) 12/41 $= (\lambda - 4)((\lambda + 1)(\lambda + 3) - 3) + 4(-3 + 3(\lambda + 1)) = 0 \quad \lambda + 1 \quad 3$ $= (\lambda - 4)(\lambda + 4\lambda + 3 - 3) + 4(3\lambda - 3 + 3) = 0 \quad 4 \quad 1 \quad \lambda + 3$ $= \lambda(\lambda+4)(\lambda-4)+12\lambda = \lambda(\lambda^{2}-16+12) = \lambda(\lambda^{2}-4) = \lambda(\lambda-1)(\lambda+2), o(A) = \{0,2,-2\}$ il sistema mon è asimboticamente stabile, usiamo il tert PBH per copine se è stabilizzabile: $=\lambda=2$: rank[A-2I, B] = rank[2 1 3 0] = 3, quindi $\lambda=2 \notin \sigma(A_{NR})$ 0 -3 -3 1 .2=-2: rank [A+2[,B] = rank [6 1 3 0] = 3, quindi -2 & G(ANR) aluetto significe che (A,B) è s'abbilizzabile, conchiamo quindi Ftaleche A+BF è asimtetizamente statoile. Saulutimo il sistema valla forma standard Xx(2) = 7mB = 7m [0], Xx(2) = Xx(2) + 3mAB = Xx(2) + 3m[1] = 3m[0 1] $\begin{bmatrix}
1 & 0 & 0 \\
1 & 0 & 0
\end{bmatrix}$ $\begin{bmatrix}
1 & 0 & 0 \\
1 & 0 & 1
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
2 & 0 & 1
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}
1 & 1 & 3 \\
3 & -1 & -3
\end{bmatrix}$ $\begin{bmatrix}$ $\hat{B} = T^*B = \begin{bmatrix} \frac{Q}{2} \\ 0 \end{bmatrix}$ Calcularmo Fritale che Az + Br. Fr. he autovaloui in modulo < 1.

vegliame $d(\lambda) = \lambda^i$. Usiomo la formula di Ackermann $F_{R} = -[0, 1] \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} A_{R}^{2} \quad q = [1, 0], \quad qA_{R} = [1, 1], \quad qA_{R}^{2} = [4, 0]$

B

1

Quindi Fr= - 9 An = [+10], colodismo F + [Fr, Fre] = [-4,0,0] equindi F= F.T'= =[-4,0,0]. Esempsio:

(a)

France III

France III

France III

France IIII

France III

France IIII

France III

France III

France III

France III

France III T= kti mel caso di un moltore i eleale la potenta mecianica è uquale alla from forma controllettromatrice from t = z · w = let · i · w do cui si attiene fran=letw. Ricocalianno il madella di stato di questo sittema: $\begin{bmatrix}
\dot{i} = u - Ri - k_{T}\omega \\
I\tilde{\omega} = k_{T}i - D\omega
\end{bmatrix}$ $2 = \begin{bmatrix}
i \\
\omega
\end{bmatrix},$ $\dot{z} = \begin{bmatrix}
-R_{L} + k_{T}N \\
k_{T}I - D_{T}I
\end{bmatrix}$ $2 + \begin{bmatrix}
M_{L} \\
0
\end{bmatrix}$ $2 + \begin{bmatrix}
M_{L} \\
0
\end{bmatrix}$ $3 + \begin{bmatrix}
M_{L} \\
0
\end{bmatrix}$ $4 + \begin{bmatrix}
M$ Vogliomo rasolvere il problema della stabilizzorione di una coppià di equilibrat, voglioma portione il motore ad una velocità a neguime di wi. fir. I-DW=0 => I = DW = la conentre de ci permette di uincere gli attritti emonténere la velacità costante. Calcoliàmo anchela Tensione conispondente: ū-Ri-terū=0 => ū = Rī+hrw, βo coppia di equilibrio è (π, ū) con π=[i]=[D/hr] ω $e \overline{u} = \begin{bmatrix} \frac{RD}{k_T} - k_T \end{bmatrix} \overline{w} \qquad \overline{u} \Rightarrow Sistema \Rightarrow \overline{v} = \overline{w}$ $e := \chi - \overline{\chi}$ (A D E) = 4e(t) = e(A+BF) t ero) Verifichiamo che (A,B) è assignabile <=> (A,B) è raggiungibile XR(1) = 3m B = 3m [1], XR(2) = XR(1) + 3m AB = XR(1) + 3m PRL] = 1R2 Late to the control of the (A,B) è completamente raggionnatale e quinali è assignabale Passionno imposse il polinomio canalteristico che desideriomo.

- 81

3

138

-31

- 18

10

-

-

-

7

-

-

7

3