Билеты к коллоквиуму по матанализу

База, сем. 2

Подготовили:

Решетников Сергей Р
3108
 $\underline{@ReshNF}$

Поставить звёздочку

О0. Структура

[**Homep**]* - доказательство нужно учить только если вы собираетесь идти на дополнительную часть коллоквиума

[**Homep**]** - билет нужно учить только если вы собираетесь идти на дополнительную часть коллоквиума

Если нашли ошибку или хотите дополнить pdf файлы - можете найти typst-исходники в репозитории, указанном на титульном листе. Ну или просто добавьте ишуй в него и я сам отредактирую файл)

Ну и поставьте звёздочку, ибо времени и сил было потрачено много

О1. Первообразная функции на промежутке

 $F'(x) = f(x), x \in \langle a, b \rangle$

О2. Неопределённый интеграл

Неопределенным интегралом функции f на промежутке (a, b) называется множество всех первообразных f на этом промежутке. Неопределенный интеграл обозначается следующим образом:

ОЗ. Многочлен, рациональная дробь, правильная рациональная дробь

3.1 Многочлен Многочленом (полиномом) $P_n(x)$ степени $n \ge 1$ будем называть функцию вида:

$$P_n(x) = a_0 + a_1 x + a_2 x_2 + \ldots + a_n x_n, i \in \mathbb{R}, a_n \neq 0, i \in \{1, 2, \ldots, n\}$$

Многочленом нулевой степени назовем произвольную константу, отличную от нуля. У тождественно равного нулю многочлена степенью будем называть символ $-\infty$.

3.2 Рациональная дробь. Рациональной дробью называется функция вида

$$\frac{P_n(x)}{Q_m(x)}$$

где $P_n(x), Q_m(x)$ – многочлены степеней n и m, соответственно.

3.3 Понятие правильной рациональной дроби. Рациональная дробь

$$\frac{P_n(x)}{Q_m(x)}$$

называется правильной, если n < m, иначе дробь называется неправильной

О4. Простейшие рациональные дроби

Понятие простейших дробей. Простейшими дробями (дробями первого и второго типов) называют дроби вида:

$$rac{A}{(x-a)^k}$$
 , $rac{Ax+B}{(x_2+px+q)^k}$

где $k \in \mathbb{N}$ и $p^2 - 4q < 0$

О5. Разбиение (дробление) отрезка

Понятие разбиения. Говорят, что на отрезке [a, b] введено разбиение (дробление) τ , если введена

система точек
$$x_i, i \in \{0, 1, ..., n\}$$
, что

 $a = x_0 < x_1 < x_2 < ... < x_n = b$

Об. Мелкость (ранг, диаметр) разбиения

Говорят, что на отрезке [a, b] введение разбиение (дробление) τ , если введена система точек $x_i, i \in \{0, 1, ..., n\}$, что:

$$a = x_0 < x_1 < x_2 < \dots < x_n = b$$

Величина $\lambda(\tau) = \max_{i \in \{1,2,\dots,n\}} \Delta x_i$ называется мелкостью (рангом, диаметром) разбиения (дробления).

О7. Оснащённое разбиение

Понятие оснащенного разбиения. Говорят, что на отрезке [a, b] введено разбиение (оснащенное разбиение) (τ, ξ) , если на нем введено разбиение τ и выбрана система точек $\xi = \{\xi_1, \xi_2, ..., \xi_n\}$ таким образом, что $\xi_i \in \Delta_i, i \in \{1, 2, ..., n\}$.

О8. Интегральная сумма

Понятие интегральной суммы. Пусть на отрезке [a, b] задана функция f и введено разбиение (τ, ξ) . Величина

$$\sigma_{\tau}(f,\xi) = \sum_{i=1}^{n} f(\xi_i) \Delta x_i$$

называется интегральной суммой для функции f на отрезке $[{\bf a},\,{\bf b}],$ отвечающей разбиению $(\tau,\xi).$

О9. Интеграл Римана

Понятие интеграла Римана. Пусть функция f задана на отрезке [a, b]. Говорят, что число I является интегралом Римана от функции f по отрезку [a, b], если

$$\forall \varepsilon > 0 \ \exists \delta : \forall (\tau, \xi) : \lambda(\tau) < \delta \ |\sigma_{\tau}(f, \xi) - I| < \varepsilon$$

Обозначают это число так:

$$I = \int_{a}^{b} f \ d(x)$$

О10. Интегрируемая функция

Понятие интегрируемой функции. Функция f, для которой существует интеграл Римана по отрезку [a, b], называется интегрируемой по Риману на этом отрезке (или просто интегрируемой). Класс интегрируемых (по Риману) на отрезке [a, b] функций будем обозначать так: R[a, b]

О11. Интеграл по отрезкам [a,a] и [b,a]

 $\int_a^a f \; d(x) = 0$ $\int_a^b f \; d(x) = -\int_b^a f \; d(x)$ при a < b

О12. Верхняя и нижняя суммы Дарбу

Понятие сумм Дарбу Пусть функция f задана на отрезке [a, b] и τ — некоторое разбиение этого отрезка. Величины

$$\begin{split} S_{\tau}(f) &= \sum_{i=1}^n M_i \Delta x_i \quad M_i = \sup_{x \in \Delta_i} f(x), \quad i \in \{1,2,...,n\} \\ s_{\tau}(f) &= \sum_{i=1}^n M_i \Delta x_i \quad M_i = \inf_{x \in \Delta_i} f(x), \quad i \in \{1,2,...,n\} \end{split}$$

называют верхней и нижней суммами Дарбу для функции f , отвечающими разбиению τ , соответственно.

013. Измельчение разбиения

Понятие измельчения разбиения. Пусть на отрезке [a, b] введены разбиения τ_1 и τ_2 . Говорят, что

разбиение τ_1 является измельчением разбиения τ_2 , если $\tau_2 \subset \tau_1$.

014. Колебание функции на множестве

Понятие колебания. Пусть $f: \mathbb{E} \to \mathbb{R}$. Колебанием функции f на множестве \mathbb{E} назовем величину

 $\omega(f, \mathbb{E}) = \sup_{x, y \in \mathbb{E}} (f(x) - f(y))$

онатие колебания. Пусть
$$f:\mathbb{F} o \mathbb{R}$$
 Колебанием функции f на множестве \mathbb{F} на

31. Верхний и нижний интеграл

С точки зрения геометрии критерий Дарбу означает следующее: функция f оказывается интегрируемой в том и только том случае, когда «площадь» под графиком функции f может быть изнутри и снаружи аппроксимирована ступенчатами фигурами (вписанной и описанной), «площади» которых могут быть сделаны сколь угодно близкими.

В доказательстве достаточности мы еще и увидели значения I_{\star} и I^{\star} , часто называемые нижним и верхним интегралами Дарбу, соответственно. Они показывают в каком-то смысле npedenы sepxhux и нижних сумм Дарбу при стремлении мелкости разбиения к нулю. Их равенство (и конеч- ность) и есть условие существования искомого интеграла, а их общая величина – его значение.

О15. Кусочно-непрерывная функция

Понятие кусочно-непрерывной функции. Функция $f:[a,b] \to \mathbb{R}$ называется кусочно-непрерывной, если ее множество точек разрыва конечно или пусто, и все разрывы – разрывы первого рода

О16. Интеграл с переменным верхним (нижним) пределом

Понятие интеграла с переменным верхним пределом. Пусть
$$f \in R[a,b]$$
 и $x \in [a,b]$. Функция

 $\Phi(x) = \int_{-\infty}^{x} f \ d(x)$

называется интегралом с переменным верхним пределом.

Понятие движения. Отображение $U:\mathbb{R}^n\to\mathbb{R}^n$ называется движением, если

|x - y| = |U(x) - U(y)|

О17. Движение

О18. Площадь

Понятие площади.). Функция множеств (функционал) $S: \mathbb{U} \to \mathbb{R}$, заданная на некотором множестве «квадрируемых» подмножеств плоскости, называется площадью, если:

- 1. $S(A) \geq 0, A \in \mathbb{U}$
- 2. Если $A, B \in \mathbb{U}, A \cap B = \emptyset$, то $A \cup B \in \mathbb{U}$ и

$$S(A \cup B) = S(A) + S(B)$$

- 3. Площадь прямоугольника со сторонами а, b равна ab
- 4. Если $A \in \mathbb{U}$, U движение, то $U(A) \in \mathbb{U}$ и

$$S(U(A)) = S(A)$$

О19. Подграфик и криволинейная трапеция в декартовых координатах

Понятия подграфика и криволинейной трапеции. Пусть $f:[a,b] \to \mathbb{R}, f \ge 0$. Множество

$$G_f = \{(x, y) \in \mathbb{R}^2 : x \in [a, b], 0 \le y \le f(x)\}$$

называется подграфиком функции f.

Если функция f непрерывна на [a, b], то подграфик называется криволинейной трапецией.

O20. Подграфик и криволинейный сектор в полярных координатах

Понятия подграфика и криволинейного сектора Пусть $0 < \beta - \alpha \le 2\pi, f : [\alpha, \beta] \to \mathbb{R}, f \ge 0.$ Множество

$$\mathbb{G}_f = \{ (r\cos\varphi, r\sin\varphi) \in \mathbb{R}^2 : \varphi \in [\alpha, \beta], 0 \le r \le f(\varphi) \}$$

называется подграфиком функции f в полярных координатах. Если функция f непрерывна на $[\alpha, \beta]$, то подграфик называется криволинейным сектором.

021. Путь

Понятие пути Путем в пространстве \mathbb{R}^n называется отображение $\gamma:[a,b]\to\mathbb{R}^n$, все координатные

функции которого непрерывны на [а, b].

022. Начало и конец, замкнутость пути

Понятия начала и конца пути, замкнутого пути. Пусть $\gamma:[a,b]\to\mathbb{R}^n$. Точка $\gamma(a)$ называется

началом пути, а точка $\gamma(b)$ — концом пути γ . Если $\gamma(a) = \gamma(b)$, то путь γ называется замкнутым.

Понятие носителя пути. Пусть $\gamma:[a,b]\to\mathbb{R}^n$. Множество $\gamma([a,b])$ называется носителем пути γ .

О23. Носитель пути

О24. Гладкий путь (порядок гладкости)

Понятие гладкого пути. Пусть $\gamma:[a,b] \to \mathbb{R}^n$, причем

$$\gamma(t) = \left(x_1(t), ..., x_{n(t)}\right), t \in [a, b].$$

Говорят, что γ — путь гладкости $m\in\mathbb{N}\cup\{+\infty\},$ если $x_i\in C^m[a,b], i\in\{1,...,n\}.$ Если $\mathrm{m}=1,$ то путь γ часто просто называют гладким

О25. Кусочно-гладкий путь

Понятие кусочно-гладкого пути Пусть $\gamma:[a,b] \to \mathbb{R}^n$. Если отрезок [a, b] можно разбить точками

$$a = t_0 < t_1 < ... < t_k = b$$

так, что сужение пути γ на каждый отрезок $[t_{i-1},t_i], i\in\{1,...,n\}$ — гладкий путь, то путь γ называется кусочно-гладким

026. Эквивалентные пути

Понятие эквивалентных путей Путь $\gamma_1:[a,b]\to\mathbb{R}^n$ называется эквивалентным пути $\gamma_2:[\alpha,\beta]\to\mathbb{R}^n$, если существует строго возрастающая биекция $u:[a,b]\to[\alpha,\beta]$, что

$$\gamma_1 = \gamma_2(u).$$

О27. Кривая и параметризация кривой

Понятие кривой Класс эквивалентных путей называют кривой, а каждый представитель класса - параметризацией кривой. Кривую часто обозначают $\{\gamma\}$, где γ — какая-либо ее параметризация

О28. Гладкая и кусочно-гладкая кривая

Кривая $\{\gamma\}$ называется гладкой (m-гладкой, $m \in \mathbb{N} \cup \{+\infty\}$, кусочно-гладкой), если у нее существует гладкая (m-гладкая, кусочно-гладкая) параметризация.

О29. Ломаная, вписаная в путь

Множество отрезков, соединяющих точки $\gamma(t_k)$ и $\gamma(t_k-1)$, называется ломаной, вписанной в путь γ , отвечающей разбиению τ . Эту ломаную будем обозначать s_τ

Л1. Длина вписанной ломаной

О длине вписанной ломаной Длина $|s_{\tau}|$ ломаной s_{τ} , вписанной в путь γ , равна

$$|s_{\tau}| = \sum_{i=1}^{n} \sqrt{\left(x(t_i) - x(t_{i-1})\right)^2 + \left(y(t_i) - y(t_{i-1})\right)^2}$$

Док-во. Длина отрезка, соединяющего точки $\gamma(t_k)$ и $\gamma(t_{k-1})$, вычисляется по теореме Пифагора и равна, очевидно,

$$\sqrt{{(x(t_k)-x(t_{k-1}))}^2+{(y(t_k)-y(t_{k-1}))}^2}$$

Тогда длина $|s_{\tau}|$ ломаной s_{τ} равна

$$|s_{\tau}| = \sum_{i=1}^{n} \sqrt{\left(x(t_i) - x(t_{i-1})\right)^2 + \left(y(t_i) - y(t_{i-1})\right)^2}$$

О30. Длина пути

п ...

Понятие длины пути Длиной пути
$$\gamma$$
 называется величина

 $l_{\gamma} = \sup_{\tau} |s_{\tau}|$

Понятие спрямляемого пути Если $l_{\gamma} < +\infty$, то путь γ называется спрямляемым.

О31. Спрямляемый путь

О32. Длина кривой

Понятие длины кривой Длиной кривой называют длину любой ее параметризации.

ОЗЗ. Локально интегрируемая функция

E, и пишут $f \in R_{loc}(E)$, если $f \in R[a,b]$ для любого $[a,b] \subset E$

Понятие локальной интегрируемости Говорят, что функция f локально интегрируема на множестве

О34. Несобственный интеграл и его значение

34.1 Понятие несобственного интеграла Пусть $f \in R_{loc}[a,b), -\infty < a < b \le +\infty$. Тогда символ

$$\int_a^b f \ d(x)$$

называется несобственным интегралом от функции f по множеству [a, b)

34.2 Понятие значения несобственного интеграла Пусть $f \in R_{\mathrm{loc}}[a,b), -\infty < a < b \leq +\infty$ и $\omega \in [a,b).$ Предел

$$\lim_{w \to b-0} \left(\int_{a}^{w} f \ d(x) \right)$$

если он существует в $\overline{\mathbb{R}}$, называется значением несобственного интеграла от функции f по множеству [a, b)

О35. Сходимость и расходимость несобственного интеграла

Понятие сходящегося несобственного интеграла. Пусть $f \in R_{\text{loc}}[a,b), -\infty < a < b \le +\infty$ и $\omega \in [a,b)$. Если предел

$$\lim_{w\to b-0} \left(\int_a^w f \ d(x) \right)$$

существует в \mathbb{R} , то несобственный интеграл называется сходящимся. Иначе - расходящимся.

О36. Несобственные интегралы первого и второго рода

Понятия интегралов первого и второго родов. Несобственный интеграл по неограниченному промежутку часто называется несобственным интегралом первого рода.

Несобственный интеграл от неограниченной функции по промежутку конечной длины часто называется несобственным интегралом второго рода.

О37. Остаток несобственного интеграла

Понятие остатка несобственного интеграла. Пусть $f \in R_{\mathrm{loc}}[a,b), c \in (a,b)$ Тогда

понятие остатка несооственного интеграла. Пусть
$$f \in R_{\mathrm{loc}}[a,b), c \in (a,b)$$
 то $\int_{-b}^{b} f \; d(x)$

называется остатком несобственного интеграла от f по [a, b).

32. Сведение интегралов 2 рода к 1 роду

Доказанные теоремы о замене переменной позволяют свести интегралы по конечному промежутку [a, b) к интегралам по бесконечному промежутку. Действительно, отображение

$$x = b - \frac{1}{t} : \left[\frac{1}{b-a}, +\infty \right] \to [a, b)$$

приводит интеграл второго рода к интегралу первого рода:

$$\int_a^b f \ d(x) = \int_{\frac{1}{b-a}}^{+\infty} f\bigg(b - \frac{1}{t}\bigg) \frac{d(t)}{t^2}$$

Значит, не нарушая общности, в дальнейшем можно исследовать интегралы лишь по бесконечному промежутку. Мы будем пользоваться этим соображением при рассмотрении примеров.

ОЗ8. Абсолютная сходимость несобственного интеграла

Понятие абсолютной сходимости. Пусть $f \in R_{loc}[a,b)$. Говорят, что несобственный интеграл от f по [a,b) сходится абсолютно, если сходится интеграл

$$\int^b |f| \ d(x)$$

ОЗ9. Условная сходимость несобственного интеграла

Пусть $f \in R_{loc}[a,b)$. Если интеграл от f по [a,b) сходится, но не сходится абсолютно, то говорят, что интеграл сходится условно.

О40. Несобственный интеграл с двумя особенностями на концах, его значение, сходимость и расходимость

40.1 Понятие несобственного интеграла с двумя особенностями на концах Пусть $-\infty \le a < b \le +\infty$ и $f \in R_{\mathrm{loc}}(a,b)$. Тогда символ

$$\int_a^b f \ d(x)$$

называется несобственным интегралом от функции f по множеству (a, b).

40.2 Понятие значения несобственного интеграла с двумя особен- ностями на концах Пусть $-\infty \le a < b \le +\infty$ и $f \in R_{\rm loc}(a,b)$ Тогда величина

$$\lim_{w_1 \to a+0} \left(\int_{w_1}^c f \ d(x) \right) + \lim_{w_2 \to b-0} \left(\int_c^{w_2} f \ d(x) \right)$$

если оба предела существуют в $\overline{\mathbb{R}}$ и не равны бесконечностям разных знаков, называется значением несобственного интеграла от функции f по множеству (a, b)

40.3 (N) Сходимость-расходимость. Пусть $-\infty \le a < b \le +\infty$ и $f \in R_{\mathrm{loc}}(a,b)$. Если

$$\left(\lim_{w_1 \to a+0} \left(\int_{w_1}^c f \ d(x) \right) + \lim_{w_2 \to b-0} \left(\int_c^{w_2} f \ d(x) \right) \right) \in R$$

то несобственный интеграл от функции f по (a, b) называется сходящимся, иначе — расходящимся.

Т1. Теорема о множестве всех первообразных

О множестве всех первообразны Пусть F — первообразная функции f на \langle a, b \rangle . Для того чтобы Ф также была первообразной функции f на \langle a, b \rangle , необходимо и достаточно, чтобы

$$F(x) - \Phi(x) \equiv C, \quad x \in \langle a, b \rangle, \quad C \in \mathbb{R}$$

. Док-во. Докажем необходимость. Пусть $\Psi=F-\Phi,$ где F и Φ — первообразные для f на $\langle {\bf a},\, {\bf b} \rangle.$ Тогда

$$\Psi'(x) = (F(x) - \Phi(x))' = F'(x) - \Phi'(x) = f(x) - f(x) = 0, \quad \forall x \in \langle a, b \rangle$$

. Согласно теореме Лагранжа, для любых $x_1, x_2 \in \langle a, b \rangle$ таких, что $x_1 < x_2,$

$$\Psi(x_2) - \Psi(x_1) = \Psi'(\xi)(x_2 - x_1) = 0, \quad \xi \in (x_1, x_2)$$

. Значит, $\Psi(x) \equiv C, C \in \mathbb{R}, x \in \langle a, b \rangle$.

Докажем достаточность. Пусть на $\langle a, b \rangle$ выполнено условие $F - \Phi \equiv C, C \in \mathbb{R}$. Тогда на этом промежутке $\Phi = F$ - C и, к тому же,

$$\Phi' = F' - C' = F' - 0 = F' = f$$

. Тем самым, Φ является первообразной для функции f на $\langle a,b \rangle$

Т2*. Достаточное условие существования первообразной

Достаточное условие существования первообразной Если $f \in C(\langle a, b \rangle)$, то множество первообразных f на $\langle a, b \rangle$ не пусто.

Т3*. Линейность неопределённого интеграла

О линейности неопределенного интеграл Пусть на $\langle a, b \rangle$ существуют первообразные функций f и q. Тогда:

1. На $\langle \mathbf{a},\,\mathbf{b} \rangle$ существует первообразная функции f+g, причем

$$\int (f+g) \ d(x) = \int f \ d(x) + \int g \ d(x)$$

2. На $\langle {\bf a},\, {\bf b} \rangle$ существует первообразная функции $\alpha f, \alpha \in \mathbb{R},$ причем при $\alpha \neq 0$

$$\int \alpha f \ d(x) = \alpha \int f \ d(x)$$

3. На $\langle a, b \rangle$ существует первообразная функции $\alpha f + \beta g, \alpha, \beta \in \mathbb{R}$, причем при $\alpha^2 + \beta^2 \neq 0$

$$\int (\alpha f + \beta g) \ d(x) = \alpha \int f \ d(x) + \beta \int g \ d(x)$$

Док-во

1. Докажем первый пункт. Понятно, что по свойству производной суммы, F+G — первообразная f+g. Значит, достаточно проверить равенство

$$\{F+G+C,C\in\mathbb{R}\}=\{F+C_1,C_1\in\mathbb{R}\}+\{G+C_2,C_2\in\mathbb{R}\}$$

Пусть $H \in \{F + G + C, C \in \mathbb{R}\}$, тогда

$$H = F + G + C = (F + 0) + (G + C)$$

а значит $H \in \{F + C_1, C_1 \in R\} + \{G + C_2, C_2 \in \mathbb{R}\}$ при $C_1 = 0, C_2 = C$.

Наоборот, пусть $H \in \{F + C_1, C_1 \in \mathbb{R}\} + \{G + C_2, C_2 \in \mathbb{R}\}$, то есть

$$H = F + C_1 + G + C_2 = F + G + (C_1 + C_2)$$

Тогда и $H \in \{F+G+C, C \in R\}$ при $C = C_1 + C_2$. Тем самым, равенство множеств установлено.

2. Докажем второй пункт. Понятно, что по свойству производной, αF — первообразная для αf . Значит, достаточно показать, что при $\alpha \neq 0$ верно равенство

$$\{\alpha F + C, C \in \mathbb{R}\} = \{\alpha F + \alpha C_1, C_1 \in \mathbb{R}\}\$$

Если $H \in \{\alpha F + C, C \in \mathbb{R}\}$, то

$$H = \alpha F + C = \alpha F + \alpha \frac{C}{\alpha}$$

откуда $H \in \{\alpha F + \alpha C_1, C_1 \in \mathbb{R}\}$ при $C_1 = \frac{C}{\alpha}$. Обратное включение доказывается похожим образом и остается в качестве упражнения.

3. Доказательство третьего пункта немедленно следует из утверждений 1-ого и 2-ого пунктов.

Т4*.Замена переменной в неопределённом интеграле

Формула замены переменной Пусть f имеет первообразную на $\langle a,b\rangle, \varphi: \langle \alpha,\beta\rangle \to \langle a,b\rangle, \varphi$ дифференцируема на $\langle \alpha,\beta\rangle$. Тогда

$$\int f \ d(x) = \int f(\varphi) \varphi' \ d(t)$$

Док-во Пусть F — первообразная для функции f на $\langle a, b \rangle$. Тогда, согласно теореме о производной композиции, $F(\varphi)$ — первообразная для функции $f(\varphi)\varphi'$ на $\langle \alpha, \beta \rangle$, откуда

$$\int f \ d(x) = F + C = F(\varphi) + C = \int f(\varphi)\varphi' \ d(t)$$

Л2**. Лемма о дробях первого типа

О дробях первого типа Пусть

$$\frac{P_n(x)}{Q_m(x)}$$

– правильная рациональная дробь и

$$Q_m(x)=(x-a)^k\cdot\overline{Q}(x)$$
, где $\overline{Q}(a)\neq 0,\overline{Q}$ - многочлен.

Существуют число $A \in \mathbb{R}$ и многочлен $\overline{P}(x)$, такие что

$$\frac{P_n(x)}{Q_m(x)} = \frac{A}{(x-a)^k} + \frac{\overline{P}(x)}{(x-a)^{k-1} \cdot \overline{Q}(x)}$$

причем написанное представление единственно

Л3**. Лемма о дробях второго типа

О дробях второго типа Пусть

$$\frac{P_n(x)}{Q_m(x)}$$

– правильная рациональная дробь и

$$Q_m(x) = \left(x^2 + px + q\right)^k \cdot \overline{Q}(x)$$
, где $\overline{Q}(lpha \pm ieta)
eq 0$, \overline{Q} – многочлен

 $p^2-4q<0$, а $\alpha\pm i\beta$ — комплексно-сопряженные корни квадратного трехчлена x^2+px+q . Существуют числа $A,B\in\mathbb{R}$ и многочлен $\overline{P}(x)$ такие, что:

$$\frac{P_n(x)}{Q_m(x)} = \frac{Ax + B}{\left(x^2 + px + q\right)^k} + \frac{\overline{P}(x)}{\left(x^2 + px + q\right)^{k-1} \cdot \overline{Q}(x)}$$

причем это представление единственно.

Т5. Теорема о разложении дроби на простейшие

О разложении дроби на простейшие Пусть

$$\frac{P_n(x)}{Q_m(x)}$$

– рациональная дробь, причем

$$Q_m(x) = (x-a_1)^{k_1} \cdot \ldots \cdot (x-a^p)^{k_p} \cdot (x_2+p_1x+q_1)^{l_1} \cdot \ldots \cdot \left(x^2+p_mx+q_m\right)^{l_m}$$

где при $i \in \{1, 2, ..., p\}, j \in \{1, 2, ..., m\}$

$$a_i \in \mathbb{R}, k_i \in \mathbb{N}, l_i \in \mathbb{N}, p_i^2 - 4q_i < 0$$

Тогда существует единственное разложение вида

$$\frac{P_n(x)}{Q_m(x)} = R_{n-m}(x) + \sum_{i=1}^p \sum_{j=1}^{k_i} \frac{A_{ij}}{\left(x - a_i\right)^{k_i - j + 1}} + \sum_{i=1}^m \sum_{j=1}^{l_i} \frac{B_{ij} + C_{ij}}{\left(x^2 + p_i x + q_i\right)^{l_i - j + 1}}$$

где все коэффициенты в числителе дробей справа – вещественные числа.

Т6. Определение интеграла Римана через последовательности

Определение интеграла через последовательности Пусть f задана на [a, b]. Тогда I – интеграл Римана от функции f по отрезку [a, b] тогда и только тогда, когда для любой последовательности (τ^n, ξ^n) оснащенных разбиений отрезка [a, b] такой, что $\lambda(\tau^n) \xrightarrow[n \to \infty]{} 0$, выполняется, что

$$\sigma_{\tau^n}(f,\xi^n) \underset{n\to\infty}{\longrightarrow} I$$

Док-во. Докажем необходимость. Пусть I — интеграл Римана от функции f по отрезку [a, b] согласно исходному определению и пусть $\varepsilon > 0$. Тогда

$$\exists \delta: \forall (\tau,\xi): \lambda(\tau) < \delta |\sigma_\tau(f,\xi) - I| < \varepsilon$$

Пусть теперь (τ^n, ξ^n) — последовательность оснащенных разбиений отрезка [a, b] такая, что $\lambda(\tau^n) \underset{n \to \infty}{\longrightarrow} 0$. Тогда

$$\exists n_0 \in \mathbb{N} : \forall n > n_0 \ \lambda(\tau^n) < \delta$$

Но тогда, при $n > n_0$ выполняется и

$$|\sigma_{\tau^n}(f,\xi^n) - I| < \varepsilon$$

откуда и следует утверждение. Докажем достаточность. От противного, пусть выполнено утверждение теоремы, но I — не интеграл Римана, согласно исходному определению. Это значит, что

$$\exists \varepsilon_0 > 0: \forall \delta > 0 \ \exists (\tau^\delta, \xi^\delta): \lambda(\tau^\delta) < \delta \quad \text{if} \quad |\sigma_{\tau^\delta}(f, \xi^\delta) - I| \geq \varepsilon_0$$

Пусть $\delta_n = \frac{1}{n}$. Тогда, по написанному,

$$\exists (\tau^n, \xi^n): \lambda(\tau, n) < \delta^n = \frac{1}{n} \ \text{ if } \ |\sigma_{\tau^n}(f, \xi^n) - I| \geq \varepsilon_0$$

Но так как $\delta_n \xrightarrow[n \to \infty]{} 0$, то $\lambda(\tau^n) \xrightarrow[n \to \infty]{} 0$, а значит построенная последовательность оснащенных разбиений удовлетворяет условию теоремы. В то же время

$$|\sigma_{\tau^n}(f,\xi^n) - I| \ge \varepsilon_0$$

что противоречит тому, что

$$\sigma_{\tau^n}(f,\xi^n) \xrightarrow[n \to +\infty]{} I$$

Л4*. Связь конечности сумм Дарбу и ограниченности функции

О связи конечности сумм Дарбу и ограниченности функции Ограниченность f сверху (снизу) равносильна конечности произвольной верхней (нижней) суммы Дарбу. **Док-во**

Докажем необходимость. Пусть f ограничена сверху, то есть

$$\exists M: f(x) \leq M, x \in [a, b].$$

Пусть τ — произвольное разбиение [a, b]. Тогда, так как $M_i \leq M, i \in \{1, 2, ..., n\}$,

$$S_{\tau}(f) = \sum_{i=1}^n M_i \Delta x_i \leq \sum_{i=1}^n M \Delta x_i = M(b-a) < +\infty.$$

Случай, когда f ограничена снизу доказывается аналогичным образом.

Докажем достаточность. Пусть au — разбиение [a,b] и $S_{ au}(f)$ конечна. Тогда

$$M_i < +\infty, i \in \{1, 2, ..., n\}$$

И

$$f(x) \leq M = \max_{i \in \{1,2,\dots,n\}} M_i = \sup_{x \in [a,b]} f(x), \forall x \in [a,b]$$

откуда и следует требуемое. Аналогичным образом доказывается утверждение в случае конечности $s_{ au}(f)$

Л5*. Связь сумм Дарбу и интегральных сумм

О связи сумм Дарбу и интегральных сумм Справедливы равенства

$$S_\tau(f) = \sup_\xi \sigma_\tau(f,\xi), \quad s_\tau(f) = \inf_\xi \sigma_\tau(f,\xi)$$

Док-во

Докажем первое равенство. Рассмотрим сначала случай, когда функция f ограничена сверху на [a, b]. Пусть $\varepsilon > 0$, тогда, по определению супремума,

$$\exists \xi_i \in \Delta_i : M_i - \frac{\varepsilon}{b-a} < f(\xi_i), \quad i \in \{1,2,...,n\}$$

Домножим каждое неравенство на Δx_i и сложим по i, получим

$$\sum_{i=1}^n \Bigl(M_i - \frac{\varepsilon}{b-a} \Bigr) \Delta x_i < \sum_{i=1}^n f(\xi_i) \Delta x_i$$

или

$$\sum_{i=1}^n M_i \Delta x_i - \varepsilon < \sigma_\tau(f,\xi) \Leftrightarrow S_\tau(f) - \varepsilon < \sigma_\tau(f,\xi)$$

Так как, как уже отмечалось, $S_{ au}(f) \geq \sigma_{ au}(f,\xi),$ то в итоге проверено, что

$$S_\tau(f) = \sup_{\xi} \sigma_\tau(f,\xi)$$

Пусть теперь f не ограничена сверху на [a,b], тогда $S_{\tau}(f)=+\infty$. Ясно, что при фиксированном разбиении τ функция f не ограничена сверху хотя бы на одном отрезке разбиения Δ_i . Не нарушая общности можно считать, что она не ограничена на Δ_1 . Тогда существует последовательность ξ_1^k , что $f(\xi_1^k) \underset{k \to \infty}{\longrightarrow} +\infty$. Пусть $\xi_i \in \Delta_i, i \in \{2,...,n\}$, – какие-то фиксированные точки, $\xi^k = \{\xi_1^k, \xi_2^k, ..., \xi_n^k\}$. Тогда, в силу определения супремума,

$$\sup_{\xi} \sigma_{\tau}(f,\xi) \geq \lim_{k \to \infty} \Biggl(f\Bigl(\xi_1^k\Bigr) \Delta x_1 + \sum_{i=2}^n f(\xi_i) \Delta x_i \Biggr) = +\infty = S_{\tau}(f)$$

Л6*. Монотонность сумм Дарбу

О монотонности сумм Дарбу Пусть $\tau_2 \subset \tau_1$, тогда

$$S_{\tau_2}(f) \geq S_{\tau_1}(f), \quad s_{\tau_1}(f) \geq s_{\tau_2}(f)$$

Док-во Докажем первое неравенство. Достаточно рассмотреть случай, когда измельчение τ_1 получается из τ_2 добавлением одной точки $\hat{x} \in \Delta_k = (x_{k-1}, x_k)$.

$$S_{\tau_2}(f) = \sum_{i=1}^n M_i \Delta x_i = \sum_{i=1, i \neq k}^n M_i \Delta x_i + M_k \Delta x_k$$

Пусть

$$M'_k = \sup_{x \in [x_{k-1}, \hat{x}]} f(x), \quad M''_k = \sup_{x \in [\hat{x}, x_k]} f(x),$$

тогда

$$M_k \ge M_k', \quad M_k \ge M_k''$$

И

$$M_k \Delta x_k = M_k(\hat{x} - x_{k-1}) + M_k(x_k - \hat{x}) \geq M_k'(\hat{x} - x_{k-1}) + M_k''(x_k - \hat{x}),$$

откуда

$$S_{r_2}(f) \geq \sum_{i=1}^n M_i \Delta x_i + M_k'(\hat{x} - x_{k-1}) + M_k''(x_k - \hat{x}) = S_{r_1}(f).$$

Второе неравенство доказывается аналогично.

Л7*. Соотношение верхних и нижних сумм Дарбу (об ограниченности сумм Дарбу)

Об ограниченности сумм Дарбу Пусть τ_1 и τ_2 – разбиения отрезка [a, b], тогда $s_{\tau_1}(f) \leq S_{\tau_2}(f)$. Док-во

Разбиение $\tau = \tau_1 \cup \tau_2$ является разбиением отрезка [a, b], причем $\tau_1 \subset \tau, \tau_2 \subset \tau$. Пользуясь монотонностью сумм Дарбу, получим

$$s_{\tau_*}(f) \leq s_{\tau}(f) \leq S_{\tau}(f) \leq S_{\tau_0}(f)$$

что и доказывает утверждение

Т7. Необходимое условие интегрируемости

Необходимое условие интегрируемости Пусть $f \in R[a,b]$. Тогда f ограничена на [a,b].

Док-во Если предположить, что f не ограничена, например, сверху, то, по лемме 69 (Связь конечности сумм Дарбу и ограниченности функции),

$$S_{\tau}(f) = +\infty.$$

Пусть $\varepsilon = 1$. Тогда, согласно определению интегрируемости,

$$\exists \delta > 0: \forall (\tau, \xi): \lambda(\tau) < \delta \quad |\sigma_{\tau}(f, \xi) - I| < 1 \Leftrightarrow I - 1 < \sigma_{\tau}(f, \xi) < I + 1$$

В частности, при фиксированном разбиении τ , мелкость которого меньше δ , интегральные суммы ограничены (по ξ). Но это противоречит тому, что при том же разбиении (лемма 70),

$$\sup_{\xi} \sigma_{\tau}(f,\xi) = S_{\tau}(f) = +\infty$$

Т8. Критерий существования интеграла Римана (Дарбу)

Критерий Дарбу

$$f \in R[a,b] \Leftrightarrow \lim_{\lambda(\tau) \to 0} (s_{\tau}(f) - s_{\tau}(f)) = 0,$$

или, что то же самое,

$$\forall \varepsilon > 0 \exists \delta > 0 : \forall \tau : \lambda(\tau) < \delta s_\tau(f) - s_\tau(f) < \varepsilon.$$

Док-во.

Докажем *необходимость*. Пусть функция f интегрируема на отрезке [a,b] и $\varepsilon > 0$. Тогда

$$\exists \delta > 0: \forall (\tau,\xi): \lambda(\tau) < \delta \ |\sigma_{\tau}(f,\xi) - I| < \frac{\varepsilon}{3},$$

откуда

$$I - \frac{\varepsilon}{3} < \sigma_{\tau}(f, \xi) < I + \frac{\varepsilon}{3}.$$

Переходя в правой части неравенства к супремуму, а в левой части к инфимуму по ξ , получаем (лемма 70 (Связь сумм Дарбу и интегральных сумм))

$$I - \frac{\varepsilon}{3} \leq s_\tau(f), \quad s_\tau(f) \leq I + \frac{\varepsilon}{3}.$$

Складывая неравенства

$$-s_\tau(f) \leq \frac{\varepsilon}{3} - I, \quad s_\tau(f) \leq I + \frac{\varepsilon}{3},$$

приходим к тому, что

$$s_{\tau}(f) - s_{\tau}(f) \leq \frac{2\varepsilon}{3} < \varepsilon.$$

Докажем достаточность. Так как $\lim_{\lambda(\tau)\to 0} (s_{\tau}(f) - s_{\tau}(f)) = 0$, то все верхние и нижние суммы Дарбу конечны. В силу леммы 72 (Соотношение верхних и нижних сумм Дарбу (об ограниченности сумм Дарбу)),

$$\sup_{\tau} s_{\tau}(f) = I_* < +\infty, \quad \inf_{\tau} s_{\tau}(f) = I^* < +\infty,$$

причем $I_* \leq I^*$. Пользуясь сказанным и тем, что для любого τ

$$s_{\tau}(f) \le I_* \le I^* \le s_{\tau}(f),$$

получим

$$0 \le I^* - I_* \le s_{\tau}(f) - s_{\tau}(f),$$

откуда, так как правая часть принимает сколь угодно малые значения (следствие 9), $I_* = I^*$. Пусть $I = I_* = I^*$. Из неравенств

$$s_{\tau}(f) \leq I \leq s_{\tau}(f), \quad s_{\tau}(f) \leq \sigma_{\tau(f,\xi)} \leq s_{\tau}(f),$$

получаем

$$|\sigma_{\tau(f,\mathcal{E})} - I| \leq s_{\tau}(f) - s_{\tau}(f).$$

Осталось воспользоваться утверждением критерия Дарбу и заметить, что мы приходим к тому, что

$$\int^b f \ d(x) = I$$

что и доказывает утверждение.

Т8.1*. Следствие о пределах сумм Дарбу

Если $f \in R[a,b]$, то

$$\lim_{\lambda(\tau) \to 0} s_{\tau}(f) = \lim_{\lambda(\tau) \to 0} S_{\tau}(f) = \int^b f \ d(x)$$

Док-во

Пользуясь предыдущим замечанием, имеем

$$0 \leq S_{\tau}(f) - \lambda_a^b f \ d(x) \leq S_{\tau}(f) - s_{\tau}(f), \quad 0 \leq \int^b f \ d(x) - s_{\tau}(f) \leq S_{\tau}(f) - s_{\tau}(f)$$

Остаётся применить критерий Дарбоу

Т8.2*. Критерий существования интеграла Римана в терминах колебаний (Дарбу)

 $\forall \varepsilon > 0 \; \exists \delta > 0 : \forall \tau : \; \lambda(\tau) < \delta \sum_{i=1}^n \omega(f, \Delta_i) \Delta x_i < \varepsilon$

$$f \in R[a,b] \Leftrightarrow \lim_{\lambda(au) o 0} \sum_{i=1}^{n} \omega(f.\Delta_i) \Delta x_i = 0$$

Т9. Связь интегрируемости и непрерывности

Об интегрируемости непрерывной функции

$$f \in C[a,b] \Rightarrow f \in R[a,b].$$

Док-во.

Пусть $\varepsilon > 0$. Согласно теореме Кантора (47), непрерывная на отрезке функция равномерно непрерывна на нем, а значит

$$\exists \delta > 0 : \forall x_1, x_2 \in [a,b] : |x_1 - x_2| < \delta \ |f(x_1) - f(x_2)| < \frac{\varepsilon}{b-a}.$$

Пусть au — такое разбиение отрезка [a,b], что $\lambda(au) < \delta$, тогда

$$\omega(f,\Delta_i) = \sup_{x,y \in \Delta_i} |f(x) - f(y)| < \frac{\varepsilon}{b-a}$$

И

$$\sum_{i=1}^{n} \omega(f, \Delta_i) \Delta x_i < \frac{\varepsilon}{b-a} \sum_{i=1}^{n} \Delta x_i = \varepsilon.$$

Значит, по следствию из критерия Дарбу, $f \in R[a, b]$.

T10*. Теорема о невлиянии на интеграл значения функции в конкретной точке

О невлиянии на интеграл значения функции в конкретной точке. Если значения интегрируемой функции изменить на конечном множестве точек, то интегрируемость не нарушится и интеграл не изменится.

Док-во:

Пусть $f \in R[a,b]$, а функция \tilde{f} отличается от f в точках $x_1,x_2,...,x_n$. Так как, согласно необходимому условию интегрируемости, $|f| \leq C$, то

$$|\tilde{f}| \leq C_1, \quad C_1 = \max \left(C, |\tilde{f}(x_1)|, ..., |\tilde{f}(x_n)|\right).$$

Заметим, что интегральные суммы для f и \tilde{f} отличаются не больше, чем в 2n слагаемых, причем

$$\left|\sigma_{\tau(f,\xi)} - \sigma_{\tau\left(\tilde{f},\xi\right)}\right| \leq 2n(C+C_1)\lambda(\tau) \underset{\lambda(\tau) \to 0}{\longrightarrow} 0,$$

что доказывает одновременное существование интегралов и их равенство между собой.

Т11*. Теорема об интегрируемости функции и её сужения

Об интегрируемости функции и ее сужения.

Справедливы следующие утверждения:

- 1. Пусть $f \in R[a,b]$ и $[\alpha,\beta] \subset [a,b]$. Тогда $f \in R[\alpha,\beta]$.
- 2. Пусть $f \in R[a,c]$ и $f \in R[c,b]$, a < c < b. Тогда $f \in R[a,b]$.

Док-во:

1. Воспользуемся критерием Дарбу и, выбрав $\varepsilon > 0$, найдем δ , что выбрав разбиение τ отрезка [a,b] мелкости меньшей, чем δ , будет выполняться

$$S_{\tau}(f) - s_{\tau}(f) < \varepsilon.$$

Пусть теперь τ' – какое-то разбиение $[\alpha, \beta]$ мелкости меньшей δ . Дополним это разбиение, разбив отрезки $[a, \alpha]$ и $[\beta, b]$, до разбиения τ отрезка [a, b] так, чтобы мелкость $\lambda(\tau)$ была меньше, чем δ . Тогда

$$0 \leq S_{\tau'}(f) - s_{\tau'}(f) \leq S_{\tau}(f) - s_{\tau}(f) < \varepsilon,$$

что и доказывает утверждение (критерий Дарбу).

2. Интегрируемость постоянной функции нам уже известна. Не нарушая общности будем считать, что f не постоянна, а значит $\omega(f,[a,b])>0$. Пусть $\varepsilon>0$. По критерию интегрируемости найдем δ_1,δ_2 , что для любых разбиений отрезка [a,c] таких, что $\lambda(\tau_1)<\delta_1$, и для любых разбиений отрезка [c,b] таких, что $\lambda(\tau_2)<\delta_2$, выполняется

$$S_{\tau_1}(f)-s_{\tau_1}(f)<\frac{\varepsilon}{3},\quad S_{\tau_2}(f)-s_{\tau_2}(f)<\frac{\varepsilon}{3}.$$

Пусть теперь $\delta = \min\left(\delta_1, \delta_2, \frac{\varepsilon}{3\omega(f, [a,b])}\right)$ и τ – разбиение отрезка [a,b], что $\lambda(\tau) < \delta$. Пусть точка c принадлежит какому-то промежутку $[x_{i-1}, x_i]$. Обозначим

$$\tau' = \tau \cup \{c\}, \quad \tau_1 = \tau' \cap [a, c], \quad \tau_2 = \tau' \cap [c, b].$$

Тогда, согласно выбору δ ,

$$S_{\tau}(f) - s_{\tau}(f) \leq S_{\tau_1}(f) - s_{\tau_1}(f) + S_{\tau_2}(f) - s_{\tau_2}(f) + \omega(f, [a, b])\delta < \varepsilon,$$

что, согласно критерию Дарбу (87), влечет интегрируемость f на [a,b].

Т12*. Связь интегрируемости и кусочной непрерывности

Об интегрируемости кусочно-непрерывной функции. Кусочно-непрерывная на отрезке функция интегрируема на нем.

Док-во:

Пусть $a_1 < ... < a_m$ – все точки разрыва функции f на (a, b). Функция f непрерывна во внутренних точках и имеет конечные односторонние пределы на концах отрезков $[a,a_1],[a_1,a_2],...,[a_m,b]$, а значит интегрируема на каждом из них, отличаясь от непрерывной функции не более чем в двух точках, согласно теореме 89 (Теорема о невлиянии на интеграл значения функции в конкретной точке). Тогда, по только что доказанной теореме 90 (Теорема об интегрируемости функции и её сужения), она интегрируема на [a,b].

Т13. Арифметические свойства интегрируемых функций

Арифметические свойства интегрируемых функций

Пусть $f, g \in R[a, b]$. Тогда:

1. Линейная комбинация f и g интегрируема, то есть

$$\alpha f + \beta g \in R[a, b], \quad \alpha, \beta \in \mathbb{R}.$$

2. Произведение f и g интегрируемо, то есть

$$fg \in R[a,b].$$

3. Модуль функции интегрируем, то есть

$$|f| \in R[a,b].$$

4. Если |f| > C на [a, b], C > 0, то

$$\frac{1}{f} \in R[a,b].$$

Док-во:

1. Так как

$$\begin{split} |\alpha f(x) + \beta g(x) - \alpha f(y) - \beta g(y)| &\leq |\alpha| \cdot |f(x) - f(y)| + |\beta| \cdot |g(x) - g(y)| \leq \\ &\leq |\alpha| \omega(f, E) + |\beta| \omega(g, E), \end{split}$$

то, переходя к супремуму в левой части, получим следующее неравенство:

$$\omega(\alpha f + \beta g, E) \le |\alpha|\omega(f, E) + |\beta|\omega(g, E),$$

верное для произвольного множества E.

Пусть $\varepsilon > 0$. Так как $f \in R[a, b]$, то по следствию из критерия Дарбу (26) интегрируемости функции,

$$\exists \delta_1: \forall \tau: \lambda(\tau) < \delta_1 \sum_{i=1}^n \omega(f, \Delta_i) \Delta x_i < \frac{\varepsilon}{2(|\alpha|+1)}.$$

Аналогично, так как $g \in R[a,b]$, то по следствию из критерия Дарбу (26) интегрируемости функции,

$$\exists \delta_2 : \forall \tau : \lambda(\tau) < \delta_2 \sum_{i=1}^n \omega(g, \Delta_i) \Delta x_i < \frac{\varepsilon}{2(|\beta|+1)}.$$

Пусть $\delta = \min(\delta_1, \delta_2)$, тогда для любого τ такого, что $\lambda(\tau) < \delta$, выполняется

$$\begin{split} \sum_{i=1}^n \omega(\alpha f + \beta g, \Delta_i) \Delta x_i &\leq \\ |\alpha| \sum_{i=1}^n \omega(f, \Delta_i) \Delta x_i + |\beta| \sum_{i=1}^n \omega(g, \Delta_i) \Delta x_i &\leq \\ &\leq \frac{|\alpha|\varepsilon}{2(|\alpha|+1)} + \frac{|\beta|\varepsilon}{2(|\beta|+1)} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{split}$$

Значит, по следствию из критерия Дарбу (26) интегрируемости функции, $\alpha f + \beta g \in R[a,b]$.

2. Так как $f, g \in R[a, b]$, то по необходимому условию (86) они ограничены на [a, b], то есть

$$\exists C: |f(x)| < C, |g(x)| < C \quad \forall x \in [a,b].$$

Кроме того, так как

$$\begin{split} |f(x)g(x)-f(y)g(y)| &= |f(x)g(x)-f(x)g(y)+f(x)g(y)-f(y)g(y)| \leq \\ &\leq |f(x)|\cdot |g(x)-g(y)|+|g(y)|\cdot |f(x)-f(y)| \leq C(\omega(f,E)+\omega(g,E)), \end{split}$$

то, переходя к супремуму в левой части, получим следующее неравенство:

$$\omega(fg, E) \le C(\omega(f, E) + \omega(g, E)),$$

верное для произвольного множества E. Дальнейшие обоснования проводятся тем же образом, что и в пункте 1, и остаются в качестве упражнения.

3. Так как

$$|\cdot|f(x)| - |f(y)| \cdot | \le |f(x) - f(y)| \le \omega(f, E),$$

то, переходя к супремуму в левой части, получим следующее неравенство:

$$\omega(|f|, E) \le \omega(f, E),$$

верное для любого множества E. Дальнейшие обоснования проводятся тем же образом, что и в пункте 1, и остаются в качестве упражнения.

4. Так как

$$\left|\frac{1}{f(x)} - \frac{1}{f(y)}\right| = \left|\frac{f(x) - f(y)}{f(x)f(y)}\right| \le \frac{|f(x) - f(y)|}{C^2} \le \frac{\omega(f, E)}{C^2},$$

то, переходя к супремуму в левой части, получим следующее неравенство:

$$\omega\left(\frac{1}{f}, E\right) \le \frac{\omega(f, E)}{C^2},$$

верное для любого множества E. Дальнейшие обоснования проводятся тем же образом, что и в пункте 1, и остаются в качестве упражнения.

Т14*. Линейность интеграла Римана

О линейности интеграла Римана.

Пусть $f, g \in R[a, b]$, тогда

$$\int_a^b (\alpha f + \beta g) \ d(x) = \alpha \int_a^b f \ d(x) + \beta \int_a^b g \ d(x).$$

Док-во:

То, что $\alpha f + \beta g \in R[a,b]$, известно из теоремы об арифметических свойствах интегрируемых функций (92). Осталось лишь в равенстве

$$\sum_{i=1}^{n} (\alpha f(\xi_i) + \beta g(\xi_i)) \Delta x_i = \alpha \sum_{i=1}^{n} f(\xi_i) \Delta x_i + \beta \sum_{i=1}^{n} g(\xi_i) \Delta x_i$$

перейти к пределу при $\lambda(\tau) \to 0$, откуда и получим требуемое

Т15*. Аддитивность по промежутку интеграла Римана

Об аддитивности по промежутку.

Пусть $f \in R[a,b], c \in [a,b]$, тогда

$$\int_{a}^{b} f \ d(x) = \int_{a}^{c} f \ d(x) + \int_{c}^{b} f \ d(x).$$

Док-во:

Интегрируемость функции f на промежутках [a,c] и [c,b] известна из ранее доказанной теоремы (90). Значит, для вычисления интеграла мы можем брать удобное для нас разбиение. Пусть τ — разбиение отрезка [a,b], содержащее точку c. Это разбиение порождает разбиения τ_1 отрезка [a,c] и τ_2 отрезка [c,b], причем $\lambda(\tau_1) \leq \lambda(\tau)$ и $\lambda(\tau_2) \leq \lambda(\tau)$. Так как

$$\sum_{[a,b]} f(\xi_i) \Delta x_i = \sum_{[a,c]} f(\xi_i) \Delta x_i + \sum_{[c,b]} f(\xi_i) \Delta x_i,$$

и при $\lambda(\tau) \to 0$ одновременно $\lambda(\tau_1) \to 0$ и $\lambda(\tau_2) \to 0$, то получаем требуемое.

T15.1*. Обобщение аддитивности по промежутку интеграла Римана

Пусть $f \in R[\min(a, b, c), \max(a, b, c)]$. Тогда

$$\int_{a}^{b} f \ d(x) = \int_{a}^{c} f \ d(x) + \int_{a}^{b} f \ d(x)$$

Т16*. Монотонность интеграла Римана

O монотонности интеграла Пусть $f,g\in R[a,b],\ a\leq b$ и $f(x)\leq g(x)$ при $x\in [a,b].$ Тогда

$$\int_a^b f \ d(x) \le \int_a^b g \ d(x)$$

Док-во Для интегральных сумм справедливо следующее неравенство

$$\sum_{i=1}^{n} f(\xi_i) \Delta x_i \le \sum_{i=1}^{n} g(x_i) \Delta x_i$$

Переходя к пределу при $\lambda(\tau) \to 0$ получим требуемое

Т16.1*. Оценка интеграла Римана

Пусть $f \in R[a,b], a \leq b, m = \inf_{x \in [a,b]} f(x), M = \sup_{x \in [a,b]} f(x)$. Тогда

$$m(b-a) \le \int^b f \ d(x) \le M(b-a)$$

Док-во: Сформулированное следствие не только понятно геометрически (и, конечно, следует из доказанной теоремы), но и было нами изучено давнымдавно. Действительно, если τ – разбиение отрезка [a, b], состоящее из двух точек а и b, то написанное неравенство следует из замечания 184.

Т17*. Связь модуля интеграла и интеграла от модуля

О связи модуля интеграла и интеграла от модуля Пусть $f \in R[a,b]$, тогда

$$\left| \int_{a}^{b} d \ d(x) \right| \leq \left| \int_{a}^{b} |f| \ d(x) \right|$$

Док-во: Интегрируемость функции |f| известна из теоремы об арифмети- ческих свойствах интегрируемых функций. Так как

$$\left| \sum_{i=1}^{n} f(\xi_i) \Delta x_i \right| \le \left| \sum_{i=1}^{n} |f(\xi_i) \Delta x_i| \right|$$

то при $\lambda(\tau) \to 0$ получается требуемое.

Т18. Первая теорема о среднем

Первая теорема о среднем

Пусть $f,g\in R[a,b],\,g$ не меняет знак на $[a,b],\,m=\inf_{x\in[a,b]}f(x),\,M=\sup_{x\in[a,b]}f(x).$

Тогда: $\exists \mu \in [m,M]: \int_a^b fg \ d(x) = \mu \int_a^b g \ d(x)$

Кроме того, если $f \in C[a,b]$, то $\exists \xi \in [a,b]: \int_a^b fg \ d(x) = f(\xi) \int_a^b g \ d(x).$

Док-во.

Пусть $g(x) \geq 0$ при $x \in [a, b]$, тогда

$$mg(x) \le f(x)g(x) \le Mg(x), \quad x \in [a, b]$$

и, по теореме о монотонности интеграла (95),

$$m\int_a^b g\ d(x) \leq \int_a^b fg\ d(x) \leq M\int_a^b g\ d(x).$$

Если $\int_a^b g \ d(x) = 0$, то, согласно неравенству выше,

$$\int_{a}^{b} fg \ d(x) = 0,$$

а значит равенство

$$\int_a^b fg\ d(x) = \mu \int_a^b g\ d(x)$$

верно при любом μ .

Если же $\int_a^b g\ d(x) \neq 0$, то, так как $g \geq 0$, выполнено (теорема 95), что $\int_a^b g\ d(x) > 0$. Тогда положим:

$$\mu = \frac{\int_a^b fg \ d(x)}{\int_a^b g \ d(x)}$$

и из неравенств следует, что $\mu \in [m, M].$

Если f непрерывна, то по теореме Больцано-Коши:

$$\exists \xi \in [a, b] : f(\xi) = \mu.$$

Поделив неравенство на интеграл, получаем:

$$m \le \frac{\int_a^b fg \ d(x)}{\int_a^b g \ d(x)} \le M.$$

Положим:

$$\mu = \frac{\int_a^b fg \ d(x)}{\int_a^b g \ d(x)},$$

что доказывает первое утверждение теоремы.

Если $f \in C[a,b]$, то по второй теореме Больцано-Коши (30) для $\mu \in [m,M]$ существует $\xi \in [a,b]$ такой, что:

$$f(\xi) = \mu$$

что то доказывает вторую часть теоремы.

Т19. Непрерывность интеграла с переменным верхним пределом О непрерывности интеграла с переменным верхним пределом

$$\Phi \in C[a,b]$$

Док-во: Пусть $x_0 \in [a,b], x_0 + \Delta x \in [a,b]$. Так как $f \in R[a,b]$, то она ограничена (теорема 86) на этом отрезке, то есть существует C > 0, что

$$|f(x)| \le C, x \in [a, b].$$

Тогда, пользуясь следствием 27 из теоремы об аддитивности, а также теоремой о сравнении интеграла от функции и интеграла от модуля функции (96), получим:

$$|\Phi(x_0+\Delta x)-\Phi(x_0)|=\left|\int_{x_0}^{x_0+\Delta x}f\ d(x)\right|\leq$$

$$\leq \left| \int_{x_0}^{x_0 + \Delta x} |f| \ d(x) \right| \leq C \left| \int_{x_0}^{x_0 + \Delta x} \ d(x) \right| = C |\Delta x|.$$

Значит, при $\Delta x \to 0$ выполняется $\Phi(x_0 + \Delta x) \to \Phi(x_0)$, что и означает непрерывность функции $\Phi(x)$ в точке x_0 . Так как x_0 — произвольная точка отрезка [a,b], то утверждение доказано.

T20. Теорема Барроу (о дифференцируемости интеграла с переменным верхним пределом)

О дифференцируемости интеграла с переменным верхним пределом

Функция Ф дифференцируема в точках непрерывности функции $f:[a,b] \to \mathbb{R}$, причем в этих точках

$$\Phi'(x_0) = f(x_0).$$

Док-во:

Пусть f непрерывна в точке x_0 и $x_0 + \Delta x \in [a, b]$. Рассмотрим:

$$\left|\frac{\Phi(x_0+\Delta x)-\Phi(x_0)}{\Delta x}-f(x_0)\right|=\left|\frac{\int_{x_0}^{x_0+\Delta x}f\ d(t)-f(x_0)\Delta x}{\Delta x}\right|=\left|\frac{\int_{x_0}^{x_0+\Delta x}(f(t)-f(x_0))\ d(t)}{\Delta x}\right|.$$

Пусть $\varepsilon > 0$. Тогда, в силу непрерывности f в точке x_0 :

$$\exists \delta > 0 : \forall t \in [a, b] : |t - x_0| < \delta \Rightarrow |f(t) - f(x_0)| < \varepsilon.$$

При $|\Delta x| < \delta$:

$$\left|\frac{\int_{x_0}^{x_0+\Delta x}(f(t)-f(x_0))\ d(t)}{\Delta x}\right| \leq \left|\frac{\int_{x_0}^{x_0+\Delta x}|f(t)-f(x_0)|\ d(t)}{\Delta x}\right| < \varepsilon \cdot \left|\frac{\int_{x_0}^{x_0+\Delta x}\ d(t)}{\Delta x}\right| = \varepsilon$$

Таким образом:

$$\lim_{\Delta x \to 0} \frac{\Phi(x_0 + \Delta x) - \Phi(x_0)}{\Delta x} = f(x_0).$$

Т20.1. Связь интеграла Римана и неопределённого интеграла

Всякая непрерывная на отрезке [a, b] функция f имеет на этом отрезке первообразную, причем любая ее первообразная имеет вид

$$F(x) = \int_{-\infty}^{x} f(d(t)) + C = \Phi(x) + C, C \in \mathbb{R}$$

Док-во: То, что Φ — первообразная для f на [a,b] сразу следует из предыдущей теоремы. Далее следует воспользоваться теоремой 77 о множестве всех первообразных

T21. Формула Ньютона-Лейбница для непрерывных функций Формула Ньютона-Лейбница для непрерывных функций

Пусть $f \in C[a,b]$ и F — ее первообразная. Тогда:

$$\int_{a}^{b} f \ d(x) = F(b) - F(a).$$

Док-во.

Согласно следствию 29 о существовании первообразной непрерывной функции, любая первообразная непрерывной функции имеет вид:

$$F(x) = \int_{a}^{x} f \ d(t) + C.$$

Подставим x = a:

$$F(a) = \int_{a}^{a} f \ d(x) + C \Rightarrow C = F(a).$$

Таким образом:

$$F(x) = \int_{a}^{x} f d(t) + F(a).$$

Подставив x = b, получаем:

$$F(b) = \int_a^b f \ d(x) + F(a) \Rightarrow \int_a^b f \ d(x) = F(b) - F(a).$$

Т22. Усиленная формула Ньютона-Лейбница

Усиленная формула Ньютона-Лейбница

Пусть $f \in R[a,b]$ и F — некоторая первообразная f на [a,b]. Тогда:

$$\int_a^b f\ d(x) = F(b) - F(a).$$

Док-во.

Введем следующее разбиение отрезка [a, b]:

$$x_k = a + \frac{k(b-a)}{n}, \quad k \in \{0, 1, ..., n\}.$$

Пусть F — какая-то первообразная f на [a,b]. Тогда

$$F(b) - F(a) = F(x_n) - F(x_0) = \sum_{k=1}^{n} (F(x_k) - F(x_{k-1})).$$

Согласно теореме Лагранжа (56), существует $\xi_k^n \in (x_{k-1}, x_k)$, что

$$F(x_k) - F(x_{k-1}) = f(\xi_k^n)(x_k - x_{k-1}),$$

а тогда

$$F(b) - F(a) = \sum_{k=1}^{n} f(\xi_k^n) \Delta x_k,$$

и мы получаем интегральную сумму для функции f по отрезку [a,b] с оснащенным разбиением (au^n,ξ^n) .

Так как $f \in R[a,b]$ и так как при $n \to \infty$ выполняется $\lambda(\tau^n) \to 0$, то

$$\lim_{n\to\infty}\sum_{k=1}^n f(\xi_k^n)\Delta x_k = \int_a^b f\ d(x).$$

С другой стороны,

$$F(b) - F(a) = \lim_{n \to \infty} \sum_{k=0}^{n} f(\xi_k^n) \Delta x_k,$$

а значит

$$\int_{a}^{b} f d(x) = F(b) - F(a).$$

Т23*. Интегрирование по частям в интеграле Римана

Формула интегрирования по частям Пусть u,v дифференцируемы на [a,b], причем $u',v'\in R[a,b]$. Тогда:

$$\int_a^b uv' \ d(x) = uv|_a^b - \int_a^b vu' \ d(x)$$

или

$$\int_{a}^{b} u \ d(v) = uv|_{a}^{b} - \int_{a}^{b} v \ d(u)$$

Док-во.

Согласно свойствам интегрируемых функций, $uv' \in R[a,b]$ и $u'v \in R[a,b]$. Кроме того, $(uv)' = u'v + uv' \in R[a,b]$, а значит, по усиленной формуле Ньютона-Лейбница (101),

$$\int_a^b u'v \ d(x) + \int_a^b uv' \ d(x) = \int_a^b (u'v + uv') \ d(x) = \int_a^b (uv)' \ d(x) = uv|_a^b,$$

откуда и следует утверждение.

Т24*. Замена переменной в интеграле Римана

Формула замены переменной

Пусть $f \in C[a,b], x = \varphi(t) : [\alpha,\beta] \to [a,b], \varphi$ дифференцируема и $\varphi' \in R[\alpha,\beta].$

Тогда:

$$\int_{\varphi(\alpha)}^{\varphi(\beta)} f \ d(x) = \int_{\alpha}^{\beta} f(\varphi) \varphi' d(t).$$

Док-во:

Ясно, что интеграл от правой функции определен, ведь $f \circ \varphi \in C[\alpha, \beta]$, а значит $f(\varphi) \in R[\alpha, \beta]$ и, по свойствам интегрируемых функций, $f(\varphi)\varphi' \in R[\alpha, \beta]$. Кроме того, если F — первообразная f на [a, b], то $F(\varphi)$ — первообразная $f(\varphi)\varphi'$ на $[\alpha, \beta]$. Тогда, по усиленной формуле Ньютона-Лейбница (101),

$$\int_{\alpha}^{\beta} f(\varphi) \varphi' \ d(t) = F(\varphi(\beta)) - F(\varphi(\alpha)) = \int_{\varphi(\alpha)}^{\varphi(\beta)} f \ d(x).$$

T25*. Интеграл Римана от чётной и нечётной функций по симметричному промежутку

25.1 Об интеграле от четной функции по симметричному промежутку

Пусть $f \in R[0,a]$ и является четной. Тогда:

$$\int_{-a}^{a} f \ d(x) = 2 \int_{0}^{a} f \ d(x).$$

Док-во:

Так как f(-x) = f(x), то, по теореме 90, $f \in R[-a, a]$. Пользуясь аддитивностью интеграла по промежутку (теорема 94), получим:

$$\int_{-a}^{a} f \ d(x) = \int_{-a}^{0} f \ d(x) + \int_{0}^{a} f \ d(x).$$

В первом интеграле можно сделать замену $t=-x,\,d(t)=-\,d(x),\,$ откуда

$$\int_{-a}^{0} f(x) \ d(x) = - \int_{a}^{0} f(-t)d(t) = \int_{0}^{a} f(t)d(t).$$

Значит,

$$\int_{0}^{a} f \ d(x) = \int_{0}^{a} f d(t) + \int_{0}^{a} f \ d(x) = 2 \int_{0}^{a} f \ d(x).$$

25.2 Об интеграле от нечетной функции по симметричному промежутку

Пусть $f \in R[0,a]$ и является нечетной. Тогда:

$$\int_{-a}^{a} f \ d(x) = 0.$$

Док-во:

Доказательство данной теоремы аналогично доказательству предыдущей и остается в качестве упражнения.

Т26*. Интеграл Римана от периодической функции по периоду

Об интеграле от периодической функции по периоду Пусть $f \in R[0,T]$ и является периодической с основным периодом Т. Тогда:

$$\int_{0}^{a} +Tf \ d(x) = \int_{0}^{T} f \ d(x), \quad \forall \alpha \in \mathbb{R}$$

Док-во: Доказательство данной теоремы аналогично доказательству преды- дущей и остается в качестве упражнения

T27. Вычисление площади плоской фигуры. Граница задана в декартовых координатах

27.1 О вычислении площади подграфика

Пусть $f \in R[a,b]$ и G_f — подграфик функции f. Если подграфик имеет площадь, то

$$S(G_f) = \int_a^b f \ d(x).$$

Док-во:

Пусть au — разбиение отрезка [a,b]. Геометрически очевидно, что

$$s_{\tau}(f) \le S(G_f) \le S_{\tau}(f).$$

Поскольку $f \in R[a, b]$, то (следствие 25)

$$S_{\tau}(f) \underset{\lambda(\tau) \to 0}{\to} \int_{s}^{b} f \ d(x) \underset{\lambda(\tau) \to 0}{\longleftarrow} s_{\tau}(f).$$

Значит, по теореме о сжатой переменной,

$$S(G_f) = \int_a^b f \ d(x).$$

27.2 О площади фигуры между графиками функций

Пусть $f,g \in R[a,b], f \leq g$. Тогда площадь фигуры $S(G_{f,g})$, где

$$G_{f,g}=\big\{(x,y)\in\mathbb{R}^2:x\in[a,b],f(x)\leq y\leq g(x)\big\},$$

вычисляется по формуле

$$S\big(G_{f,g}\big) = \int_a^b (g - f) \ d(x).$$

Док-во:

Для доказательства достаточно перенести фигуру выше оси абсцисс, добавив к f и g такую постоянную c, чтобы $f+c\geq 0$. Тогда, пользуясь свойством сохранения площади при движении, а также предыдущей теоремой,

$$\begin{split} S\big(G_{f,g}\big) &= S\big(G_{f+c,g+c}\big) = S\big(G_{g+c}\big) - S\big(G_{f+c}\big) = \\ &= \int^b (g+c)\ d(x) - \int^b (f+c)\ d(x) = \int^b (g-f)\ d(x). \end{split}$$

Л8**. Длины эквивалентных путей

Док-во

О длинах эквивалентных путей Длины эквивалентных путей равны

Пусть путь $\gamma:[a,b]\to\mathbb{R}^n$ эквивалентен пути $\tilde{\gamma}:[\alpha,\beta]\to\mathbb{R}^n,\,u:[a,b]\to[\alpha,\beta]$ — возрастающая биекция. Пусть $\tau=\{t_i\}_{i=0}^k$ — дробление [a,b], тогда $\tilde{t_k}=u(t_k)$ — дробление $[\alpha,\beta]$. Значит,

$$s_{\widetilde{\gamma}} = \sum_{k=1}^{n} \left| \widetilde{\gamma} \left(\widetilde{t_k} \right) - \widetilde{\gamma} \left(\widetilde{t_{k-1}} \right) \right| = \sum_{k=1}^{n} \left| \gamma(t_k) - \gamma(t_{k-1}) \right| = s_{\gamma} \le l_{\gamma},$$

и, тем самым, $l_{\tilde{\gamma}} \leq l_{\gamma}$. Меняя γ и $l_{\tilde{\gamma}}$ местами, проводя аналогичные приведенным выше выкладки, придем к неравенству $l_{\gamma} \leq l_{\tilde{\gamma}}$, откуда $l_{\gamma} = l_{\tilde{\gamma}}$

Л9**. Аддитивность длины

Об аддитивности длины

Пусть $\gamma:[a,b]\to\mathbb{R}^n$ — путь, $c\in(a,b),\,\gamma^1,\,\gamma^2$ — сужения пути γ на отрезки [a,c] и [c,b], соответственно. Путь γ спрямляем тогда и только тогда, когда спрямляемы пути γ^1 и γ^2 , причем

$$l_{\gamma}=l_{\gamma^1}+l_{\gamma^2}.$$

Док-во:

Докажем необходимость. Пусть путь γ спрямляем и пусть τ — разбиение [a,b], содержащее точку c. Ясно, что $\tau=\tau_1\cup\tau_2$, где τ_1 — разбиение [a,c] и τ_2 — разбиение [c,b]. Тогда ломаная s_{τ} — объединение ломаных s_{τ_1} и s_{τ_2} , причем

$$\left|s_{\tau_1}\right| + \left|s_{\tau_2}\right| = \left|s_{\tau}\right| \le l_{\gamma} < +\infty.$$

Отсюда сразу следует, что каждый из путей γ^1 и γ^2 спрямляем. Переходя в предыдущем неравенстве сначала к супремуму по τ_1 , а потом по τ_2 , получим

$$l_{\gamma^1} + l_{\gamma^2} \le l_{\gamma}.$$

Докажем достаточность и, заодно, противоположное неравенство. Пусть τ — разбиение отрезка [a,b]. Если оно не содержит точку c, то добавим ее, получив разбиение $\tau' = \tau_1 \cup \tau_2$, где τ_1 — разбиение [a,c] и τ_2 — разбиение [c,b]. Пусть точка c попала в i-ый отрезок разбиения, то есть $c \in (t_{i-1},t_i)$. Длина ломаной, отвечающей разбиению τ' , могла только увеличиться по сравнению c длиной ломаной, отвечающей разбиению c длиной доманой, отвечающей разбиению c длиной доманой,

$$\begin{split} \sqrt{\left(x(t_i) - x(t_{i-1})\right)^2 + \left(y(t_i) - y(t_{i-1})\right)^2} \leq \\ \sqrt{\left(x(c) - x(t_{i-1})\right)^2 + \left(y(c) - y(t_{i-1})\right)^2} + \sqrt{\left(x(t_i) - x(c)\right)^2 + \left(y(t_i) - y(c)\right)^2}. \end{split}$$

Значит,

$$|s_{\tau}| \leq |s_{\tau'}| = \left|s_{\tau_1}\right| + \left|s_{\tau_2}\right| \leq l_{\gamma^1} + l_{\gamma^2} < +\infty$$

и, тем самым, кривая γ спрямляема. Переходя к супремуму по τ в левой части неравенства, получим

$$l_{\gamma} \leq l_{\gamma^1} + l_{\gamma^2}$$
.

Объединяя это неравенство и последнее неравенство, полученное в пункте необходимости, заключаем, что

$$l_{\gamma} = l_{\gamma^1} + l_{\gamma^2},$$

и теорема полностью доказана.

Т28*. Достаточное условие спрямляемости пути

Достаточное условие спрямляемости пути

Пусть γ — гладкий путь, тогда он спрямляем.

Док-во:

Пусть τ — разбиение отрезка [a,b]. Длина ломаной, вписанной в путь γ , равна

$$|s_{\tau}| = \sum^n \sqrt{\left(x(t_i) - x(t_{i-1})\right)^2 + \left(y(t_i) - y(t_{i-1})\right)^2}.$$

По теореме Лагранжа (теорема 56), найдутся точки $\xi_i, \tau_i \in [t_{i-1}, t_i], i \in \{1, 2, ..., n\}$, что

$$x(t_i) - x(t_{i-1}) = x'(\xi_i) \Delta t_i, \quad y(t_i) - y(t_{i-1}) = y'(\eta_i) \Delta t_i, \quad \Delta t_i = t_i - t_{i-1},$$

откуда

$$|s_{\tau}| = \sum_{i=1}^n \sqrt{x'(\xi_i)^2 + y'(\eta_i)^2} \Delta t_i.$$

Пусть

$$M_x = \max_{t \in [a,b]} \lvert x'(t) \rvert, \quad M_y = \max_{t \in [a,b]} \lvert y'(t) \rvert,$$

$$m_x = \min_{t \in [a,b]} \lvert x'(t) \rvert, \quad m_y = \min_{t \in [a,b]} \lvert y'(t) \rvert,$$

тогда

$$\sum_{i=1}^n \sqrt{m_x^2 + m_y^2} \Delta t_i \leq |s_\tau| \leq \sum_{i=1}^n \sqrt{M_x^2 + M_y^2} \Delta t_i,$$

откуда

$$\sqrt{m_x^2 + m_y^2}(b - a) \le |s_\tau| \le \sqrt{M_x^2 + M_y^2}(b - a).$$

Переходя к супремуму по τ , имеем

$$\sqrt{m_x^2 + m_y^2}(b - a) \le l_\gamma \le \sqrt{M_x^2 + M_y^2}(b - a).$$

и правое неравенство дает возможность заключить, что путь спрямляем.

Т29. Вычисление длины пути

29.1 О гладкости длины участка пути

Пусть $\gamma:[a,b] \to \mathbb{R}^2$ — гладкий путь. Тогда $L_\gamma \in C^1[a,b]$, причем

$$L_{\gamma'}(t) = \sqrt{x'(t)^2 + y'(t)^2}.$$

Док-во:

Пусть $\Delta t > 0$, причем $t_0, t_0 + \Delta t \in [a, b]$. Согласно последнему неравенству в доказательстве предыдущей теоремы, сохраняя те же обозначения, на отрезке $[t_0, t_0 + \Delta t]$ выполнено

$$\sqrt{m_x^2+m_y^2}\Delta t \leq l_{\gamma(t_0+\Delta t)}-l_{\gamma(t_0)} \leq \sqrt{M_x^2+M_y^2}\Delta t.$$

Поделив неравенство на $\Delta t > 0$, получим

$$\sqrt{m_x^2+m_y^2} \leq \frac{l_{\gamma(t_0+\Delta t)}-l_{\gamma(t_0)}}{\Delta t} \leq \sqrt{M_x^2+M_y^2}.$$

Так как $M_x = \max_{t \in [t_0, t_0 + \Delta t]} \lvert x'(t)
vert$, и функция x'(t) непрерывна, то

$$\lim_{\Delta t \to 0+0} M_x = x'(t_0).$$

Аналогично,

$$\lim_{\Delta t \rightarrow 0+0} m_x = x'(t_0), \quad \lim_{\Delta t \rightarrow 0+0} M_y = y'(t_0), \quad \lim_{\Delta t \rightarrow 0+0} m_y = y'(t_0).$$

Значит,

$$\sqrt{{x'(t_0)}^2 + y'(t_0)^2} \leq \lim_{\Delta t \to 0+0} \frac{l_{\gamma(t_0 + \Delta t)} - l_{\gamma(t_0)}}{\Delta t} \leq \sqrt{{x'(t_0)}^2 + y'(t_0)^2}$$

И

$$l_{\gamma+}{}'(t_0) = \sqrt{x'(t_0)^2 + y'(t_0)^2}.$$

Аналогично рассматривается случай $\Delta t < 0$. Значит, в силу произвольности t_0 ,

$$l_{\gamma}'(t) = \sqrt{x'(t)^2 + y'(t)^2}.$$

29.2 О вычислении длины пути

Пусть $\gamma:[a,b] \to \mathbb{R}^2$ — гладкий путь, тогда

$$l_{\gamma} = \int_{a}^{b} \sqrt{x'(t)^2 + y'(t)^2} d(t).$$

Док-во.

Так как $l_{\gamma}' \in C[a,b]$ и $l_{\gamma(a)}=0$, то, по формуле Ньютона–Лейбница (теорема 100),

$$l_{\gamma(t)} = l_{\gamma(t)} - l_{\gamma(a)} = \int_a^t l_\gamma' d(t).$$

Так как $l_{\gamma}=l_{\gamma(b)},$ то

$$l_{\gamma}=l_{\gamma(b)}=\int_a^b l_{\gamma}'d(t)=\int_a^b \sqrt{x'^2(t)+y'^2(t)}d(t).$$

Т30*. Вычисление длины кривой. Кривая задана параметрически О вычислении длины пути

Пусть $\gamma:[a,b]\to\mathbb{R}^2$ — гладкий путь, тогда

$$l_{\gamma}=\int^b \sqrt{x'(t)^2+y'(t)^2}d(t).$$

Док-во.

Так как $l'_{\gamma} \in C[a,b]$ и $l_{\gamma(a)} = 0$, то, по формуле Ньютона–Лейбница (теорема 100),

$$l_{\gamma(t)} = l_{\gamma(t)} - l_{\gamma(a)} = \int_{-1}^{t} l_{\gamma}' d(t).$$

Так как $l_{\gamma} = l_{\gamma(b)}$, то

$$l_{\gamma} = l_{\gamma(b)} = \int_{-b}^{b} l_{\gamma}' d(t) = \int_{-b}^{b} \sqrt{x'^{2}(t) + y'^{2}(t)} d(t).$$

Т31*. Вычисление длины кривой. Кривая задана в декартовых координатах

О длине графика гладкой функции

Пусть $f \in C^1[a,b]$ и

$$\Gamma_f = \{(x, y) : y = f(x), x \in [a, b]\}$$

— график функции f. Тогда длина $l(\Gamma_f)$ графика функции f равна

$$l(\Gamma_f) = \int^b \sqrt{1 + (f')^2} d(x).$$

Док-во:

Действительно, график Γ_f может быть задан следующей параметризацией:

$$\gamma(t) = \begin{cases} x = t \\ y = f(t) \end{cases}, t \in [a, b].$$

Дальше остается сослаться на только что доказанную теорему.

Т32*. Вычисление длины кривой. Кривая задана в полярных координатах

О длине графика функции в полярной системе координат

Пусть $f \in C^1[\varphi_0, \varphi_1], f \ge 0$ и

$$\Gamma_f = \{(\varphi, r) : r = f(\varphi), \varphi \in [\varphi_0, \varphi_1]\}$$

— график функции f в полярной системе координат. Тогда длина $l(\Gamma_f)$ графика функции f равна

$$l\big(\Gamma_f\big) = \int_{\sigma_1}^{\varphi_1} \sqrt{f^2 + (f')^2} d(\varphi).$$

Док-во:

Действительно, график Γ_f может быть задан следующей параметризацией:

$$\gamma(t) = \begin{cases} x = f(\varphi)\cos\varphi, & \varphi \in [\varphi_0, \varphi_1]. \end{cases}$$

Дальше остается сослаться на только что доказанную теорему.

Л10. Лемма о совпадении несобственного интеграла и интеграла Римана

О совпадении несобственного интеграла и интеграла Римана

Пусть $f \in R[a,b]$. Тогда

$$\lim_{\omega \to b-0} \int_{a}^{\omega} f \ d(x) = \int_{a}^{b} f \ d(x),$$

где справа стоит интеграл Римана от функции f по отрезку [a,b].

Док-во: Доказательство немедленно следует из свойства непрерывности интеграла с переменным верхним пределом (теорема 98).

Т33*. Линейность несобственного интеграла

О линейности несобственного интеграла

Пусть $f \in R_{\text{loc}}[a,b]$. Если сходятся интегралы

$$\int_a^b f d(x) \quad \mathbf{и} \quad \int_a^b g d(x),$$

TO

$$\int_a^b (\alpha f + \beta g) d(x) = \alpha \int_a^b f d(x) + \beta \int_a^b g d(x).$$

Док-во:

Для доказательства достаточно перейти к пределу при $\omega \to b-0$ в равенстве, справедливом для интеграла Римана (теорема 93):

$$\int_{a}^{\omega} (\alpha f + \beta g) d(x) = \alpha \int_{a}^{\omega} f d(x) + \beta \int_{a}^{\omega} g d(x).$$

Т33.1*. Следствие о расходимости суммы

О расходимости суммы Пусть $f, g \in R_{loc}[a, b)$, причем интеграл от f по [a, b) сходится, а интеграл от gпо [a, b) расходится. Тогда интеграл от f + g по [a, b) расходится.

Док-во:

Действительно, если бы сходился интеграл от f + g по [a, b), то по предыдущей теореме сходился бы

интеграл от g = (f + g) - f по [a, b), что противоречит условию.

Т34*. Аддитивность по промежутку несобственного интеграла Об аддитивности по промежутку

Пусть $f \in R_{loc}[a,b]$. Тогда для любого $c \in (a,b)$ справедливо равенство

$$\int_a^b f d(x) = \int_a^c f d(x) + \int_c^b f d(x),$$

причем интегралы

$$\int_a^b fd(x)$$
 и $\int_c^b fd(x)$

сходятся или нет одновременно.

Док-во

Для доказательства достаточно перейти к пределу при $\omega \to b-0$ в равенстве, справедливом для интеграла Римана (теорема 94):

$$\int_{a}^{\omega} f d(x) = \int_{a}^{c} f d(x) + \int_{c}^{\omega} f d(x).$$

Л11*. Критерий сходимости несобственного интеграла в терминах остатка

Пусть $f \in R_{\text{loc}}[a,b], c \in (a,b)$. Тогда сходимость несобственного интеграла от f по [a,b) равносильна тому, что

$$\lim_{c \to b-0} \int_{a}^{b} f d(x) = 0.$$

Док-во:

Докажем необходимость. Пусть несобственный интеграл от f по [a,b) сходится. Тогда, по теореме об аддитивности по промежутку (теорема 94),

$$\int_a^b f d(x) = \int_a^c f d(x) + \int_a^b f d(x).$$

Пусть теперь $c \to b - 0$, тогда

$$\lim_{c \to b-0} \int_a^c f d(x) = \int_a^b f d(x),$$

откуда и следует требуемое.

Докажем достаток интеграла стремится к нулю. Значит, при некотором $c \in (a, b)$

$$\int_{a}^{b} f d(x) \in \mathbb{R}.$$

Но тогда, при $\omega > c$ выполнено

$$\int_{a}^{\omega} f d(x) = \int_{a}^{c} f d(x) + \int_{c}^{\omega} f d(x)$$

и при $\omega \to b-0$ приходим к требуемому.

Т35*. Монотонность несобственного интеграла

О монотонности несобственного интеграла

Пусть $f,g \in R_{\mathrm{loc}}[a,b]$, причем

$$\int_a^b fd(x) \in \mathbb{R}$$
 и $\int_a^b gd(x) \in \mathbb{R}$.

Если $f \leq g$ на [a,b], то

$$\int_{a}^{b} fd(x) \le \int_{a}^{b} gd(x).$$

Док-во:

Для доказательства достаточно перейти к пределу при $\omega \to b-0$ в неравенстве, справедливом для интеграла Римана (теорема 95):

$$\int_{a}^{\omega} f d(x) \le \int_{a}^{\omega} g d(x).$$

Т36*. Интегрирование по частям в несобственном интеграле Формула интегрирования по частям

Пусть u, v дифференцируемы на [a, b] и $u', v' \in R_{loc}(a, b)$. Тогда

$$\int_a^b uv'd(x) = uv|_a^b - \int_a^b vu'd(x), \quad uv|_a^b = \lim_{\omega \to b-0} u(\omega)v(\omega) - u(a)v(a),$$

или

$$\int_a^b u d(v) = uv|_a^b - \int_a^b v d(u),$$

причем равенство справедливо тогда и только тогда, когда существует (в \mathbb{R}) хотя бы два предела из трех.

Док-во:

Для доказательства достаточно перейти к пределу при $\omega \to b-0$ в верном для интеграла Римана (теорема 102) равенстве:

$$\int_a^\omega uv'd(x)=uv|_a^\omega-\int_a^\omega vu'd(x).$$

Т37*. Замена переменной в несобственном интеграле

Формула замены переменной

Пусть $f \in C[A, B), x = \varphi(t) : [\alpha, \beta] \to [A, B), \varphi$ дифференцируема и $\varphi' \in R_{loc}[\alpha, \beta]$. Пусть, кроме того, существует $\varphi(\beta - 0) \in \mathbb{R}$. Тогда

$$\int_{\varphi(\alpha)}^{\varphi(\beta-0)} f d(x) = \int_{\alpha}^{\beta} f(\varphi) \varphi' d(t),$$

причем если существует один интеграл (в $\overline{\mathbb{R}}$), то существует и другой.

Док-во:

Обозначим

$$\Phi(\gamma) = \int_{\alpha}^{\gamma} f(\varphi) \varphi' d(t), \quad F(C) = \int_{\varphi(\alpha)}^{C} f d(x).$$

Согласно формуле замены переменной в интеграле Римана (теорема 103), $\Phi(\gamma) = F(\varphi(\gamma)), \ \gamma \in (\alpha, \beta).$

1. Пусть существует

$$\int_{\varphi(\alpha)}^{\varphi(\beta-0)} f d(x) = I \in \mathbb{R}.$$

Докажем, что второй интеграл тоже существует и равен I. Пусть $\gamma_n \in [\alpha, \beta)$, причем $\gamma_n \xrightarrow[n \to \infty]{} \beta$. Тогда $\varphi(\gamma_n) \in [A, B)$ и $\varphi(\gamma_n) \xrightarrow[n \to \infty]{} \varphi(\beta - 0)$. Значит,

$$\lim_{n\to\infty}\Phi(\gamma_n)=\lim_{n\to\infty}F(\varphi(\gamma_n))=I.$$

В силу произвольности последовательности γ_n , приходим к требуемому.

2. Пусть теперь существует

$$\int_{\alpha}^{\beta} f(\varphi)\varphi'd(t) = I \in \mathbb{R}.$$

Докажем, что второй интеграл тоже существует. Тогда, по уже доказанному в первом пункте, он равен I. Если $\varphi(\beta-0)\in [A,B)$, то интеграл существует в собственном смысле, и доказывать нечего. Пусть теперь $\varphi(\beta-0)=B$. Пусть $C_n\in [A,B),$ $C_n\underset{n\to\infty}{\to} B$. Не нарушая общности можно считать, что $C_n\in [\varphi(\alpha),B)$. По теореме Больцано-Коши, найдутся точки $\gamma_n\in [\alpha,\beta)$, что $\varphi(\gamma_n)=C_n$. Покажем, что $\gamma_n\underset{n\to\infty}{\to} \beta$.

Если некоторая подпоследовательность $\gamma_{n_k} \underset{k \to \infty}{\to} \tau \in [\alpha, \beta)$, то, по непрерывности φ , $\varphi\left(\gamma_{n_k}\right) \underset{k \to \infty}{\to} \varphi(\tau) < B$, что неверно. Значит, $\gamma_n \underset{n \to \infty}{\to} \beta$ и

$$\lim_{n\to\infty}F(C_n)=\lim_{n\to\infty}\Phi(\gamma_n)=I.$$

Т38. Критерий сходимости несобственного интеграла от неотрицательной функции

Критерий сходимости интеграла от знакопостоянной функции Пусть $f \in R_{\mathrm{loc}}(a,b), \, f \geq 0.$ Тогда функция

$$F(\omega) = \int_{a}^{\omega} fd(x), \quad \omega \in [a, b],$$

возрастает, а сходимость интеграла

$$\int_{a}^{b} f d(x)$$

равносильна ограниченности функции $F(\omega)$.

Док-во:

Ясно, что если $a \le \omega_1 \le \omega_2 < b$, то, так как $f \ge 0$, по свойству интеграла Римана (теорема 95),

$$\int_{\omega_1}^{\omega_2} f d(x) \ge 0.$$

Но тогда

$$F(\omega_2) = \int_a^{\omega_2} fd(x) = \int_a^{\omega_1} fd(x) + \int_{\omega_1}^{\omega_2} fd(x) \geq \int_a^{\omega_1} fd(x) = F(\omega_1),$$

откуда $F(\omega_2) \geq F(\omega_1)$, что и доказывает неубывание $F(\omega)$. Значит, вопрос сходимости несобственного интеграла, то есть вопрос существования конечного предела $F(\omega)$ при $\omega \to b-0$, сводится к теореме Вейерштрасса (теорема 22). Как мы знаем, конечность предела (или сходимость заявленного интеграла) в этом случае равносильна ограниченности $F(\omega)$.

Т39. Первый признак сравнения (с неравенством) для несобственного интеграла

Признаки сравнения (пп 1-2)

Пусть $f,g \in R_{\mathrm{loc}}[a,b]$ и $0 \le f \le g$ при $x \in [a,b]$. Тогда:

1. Сходимость интеграла от g по [a,b] влечет сходимость интеграла от f по [a,b], то есть

$$\int_a^b g d(x) < +\infty \Rightarrow \int_a^b f d(x) < +\infty.$$

2. Расходимость интеграла от f по [a,b] влечет расходимость интеграла от g по [a,b], то есть

$$\int_a^b fd(x) = +\infty \Rightarrow \int_a^b gd(x) = +\infty.$$

Док-во:

1. Согласно предыдущей теореме, функция

$$F(\omega) = \int_{a}^{\omega} f d(x)$$

не убывает с ростом ω . Используя монотонность интеграла Римана, а также используя теорему Вейерштрасса (теорема 22), при каждом $\omega \in [a,b]$ справедлива цепочка неравенств:

$$F(\omega) = \int_a^\omega f d(x) \leq \int_a^\omega g d(x) \leq \sup_{\omega \in [a,b]} \int_a^\omega g d(x) = \int_a^b g d(x) < +\infty,$$

где последнее неравенство выполнено, согласно условию. Но тогда $F(\omega)$ ограничена, а значит, по предыдущей теореме, интеграл от f по [a,b] сходится.

2. От противного. Пусть интеграл

$$\int_{a}^{b} gd(x)$$

сходится. Тогда, по только что доказанному первому пункту, сходится и

$$\int_{a}^{b} fd(x),$$

что противоречит условию.

Т40. Второй признак сравнения (предельный) для несобственного интеграла

Признаки сравнения (пп 3)

Пусть $f, g \in R_{loc}[a, b]$ и $0 \le f \le g$ при $x \in [a, b]$. Тогда:

3. Если $f \sim g$ при $x \to b - 0$, то интегралы от f и g по [a,b] сходятся или расходятся одновременно.

Док-во:

3. Согласно определению, эквивалентность f и g при $x \to b-0$ означает, что существует такая функция α , что

$$f(x)=\alpha(x)g(x), \quad \text{при } x\in U(b)\cup [a,b), \quad \text{причем} \lim_{x\to b-0}\alpha(x)=1.$$

Тогда существует $\Delta > a$, что при $x \in [\Delta, b]$ выполняется неравенство

$$\frac{1}{2} \le \alpha(x) \le \frac{3}{2},$$

откуда, при $x \in [\Delta, b]$,

$$\frac{1}{2}g(x) \leq f(x) \leq \frac{3}{2}g(x).$$

Кроме того, сходимость интегралов

$$\int_a^b fd(x) \quad \text{if} \quad \int_a^b gd(x)$$

равносильна (лемма 82) сходимости интегралов

$$\int_{\Delta}^{b}fd(x)\quad \text{if}\quad \int_{\Delta}^{b}gd(x).$$

Для последних же рассуждения проводятся с использованием пунктов 1 и 2 данной теоремы, опираясь на приведенное выше неравенство.

Скажем, если сходится интеграл от g по $[\Delta, b]$, то, используя правую часть полученного неравенства, сходится и интеграл от f по $[\Delta, b]$. Если же расходится интеграл от f по $[\Delta, b]$, то, опять же, используя правую часть того же самого неравенства, расходится и интеграл от g по $[\Delta, b]$. Аналогичные рассуждения относительно левого неравенства завершают доказательство.

Т41*. Критерий Коши сходимости несобственного интеграла

Критерий Коши сходимости несобственного интеграла

Пусть $f \in R_{\text{loc}}[a,b]$. Для того чтобы интеграл

$$\int_{a}^{b} fd(x)$$

сходился необходимо и достаточно, чтобы

$$\forall \varepsilon > 0 \exists \Delta \in (a,b): \forall \delta_1, \delta_2 \in (\Delta,b) \left| \int_{\delta_1}^{\delta_2} f d(x) \right| < \varepsilon.$$

Док-во:

Обозначим

$$F(\omega) = \int_{a}^{\omega} f d(x).$$

Согласно определению, сходимость интеграла равносильна существованию предела функции $F(\omega)$ при $\omega \to b-0$. Согласно критерию Коши существования предела функции (теорема 23), это выполнено тогда и только тогда, когда

$$\forall \varepsilon > 0 \\ \exists \Delta \in (a,b): \forall \delta_1, \delta_2 \in (\Delta,b) \ |F(\delta_2) - F(\delta_1)| < \varepsilon.$$

Последнее же неравенство, в силу свойств интеграла, переписывается как

$$|F(\delta_2) - F(\delta_1)| < \varepsilon \Leftrightarrow \left| \int_{\delta_1}^{\delta_2} f d(x) \right| < \varepsilon,$$

откуда и следует требуемое.

Т42*. Признак абсолютной сходимости для несобственного интеграла

О сходимости абсолютно сходящегося интеграла

Пусть $f \in R_{loc}[a,b]$. Если интеграл от f по [a,b] сходится абсолютно, то он сходится.

Док-во:

Пусть $\varepsilon > 0$. Так как интеграл от f по [a,b] сходится абсолютно, то, согласно критерию Коши (теорема 124),

$$\exists \Delta : \forall \delta_1, \delta_2 \in (\Delta, b) \left| \int_{\delta_{\epsilon}}^{\delta_2} |f| d(x) \right| < \varepsilon.$$

Но, согласно свойствам интеграла,

$$\left| \int_{\delta_1}^{\delta_2} f d(x) \right| \leq \left| \int_{\delta_1}^{\delta_2} |f| d(x) \right| < \varepsilon,$$

а значит, по критерию Коши (теорема 124), интеграл от f по [a,b] сходится.