Desafío: Determinar la velocidad del sonido en el aire usando Tubos Resonantes

Objetivo

Determinar la velocidad del sonido en el aire mediante el estudio de ondas estacionarias en tubos resonantes **abierto-cerrado** y **abierto-abierto**, explorando tanto una simulación virtual como una práctica experimental real.

Conexiones

- Ciencia: Estudio de ondas estacionarias, resonancia acústica y condiciones de frontera en medios físicos.
- Tecnología: Uso de simulaciones interactivas y generadores de funciones para analizar fenómenos acústicos.
- Ingeniería: Aplicación de principios de resonancia en el diseño de instrumentos musicales y sensores acústicos.
- Matemáticas: Modelado de relaciones funcionales entre frecuencia y longitud; análisis de proporcionalidad e interpretación de gráficas lineales.

Preparación previa del estudiante

Antes de la sesión de clase:

- 1. Ingrese a la Simulación.
- 2. Explore ambos modos:
 - Tubo abierto-cerrado
 - Tubo abierto-abierto
- 3. Para cada uno:
 - Determine y registre las frecuencias donde se observan ondas estacionarias.
 - Dibuje los perfiles de presión y desplazamiento.
 - Deduzca las condiciones de resonancia a partir de las posiciones de nodo y antinodo.
 - Proponga las ecuaciones teóricas correspondientes $(f_n = \dots)$.

Preguntas orientadoras

- 1. ¿Qué condiciones de frontera determinan los modos de resonancia?
- 2. ¿Qué relación se espera entre frecuencia y longitud del tubo?
- 3. ¿Cómo influye la temperatura en la velocidad del sonido?
- 4. ¿Qué limitaciones tiene el experimento con tubo y agua?

Práctica experimental en laboratorio (Primera sesión – 1.5 h)

Tubo abierto-cerrado con agua

- 1. Arme el sistema con el tubo vertical parcialmente sumergido en agua.
- 2. Genere una onda armónica con el generador de funciones conectado al parlante.
- 3. Acerque el parlante al extremo superior abierto del tubo.
- 4. Varíe la longitud emergente hasta escuchar una resonancia clara.
- 5. Registre longitud L y frecuencia f.
- 6. Repita con al menos tres frecuencias diferentes.
- 7. Calcule la velocidad del sonido usando:

$$f_n = \frac{v}{4L}(2n-1)$$

Segunda sesión (1.5 h)

- Entrega del informe grupal escrito (2.5 puntos)
- Sustentación oral grupal de 10 minutos (2.5 puntos)

Rúbrica de evaluación del informe (2.5 puntos)

Criterio	Excelente (0.5)	Aceptable (0.33)	Deficiente (0.16 o menos)
Presentación del infor- me	Ordenado, bien redactado, con tablas y gráficas claras	Presentación regular, errores menores	Informe confuso o incompleto
Condiciones de resonan- cia	Identifica correcta- mente nodos, an- tinodos y deduce ecuaciones	Reconoce parcial- mente condiciones	No entiende condi- ciones de resonan- cia
Cálculo de velocidad del sonido	Correcto y justificado con gráfica o fórmula	Parcialmente correcto, con pequeños errores	Resultado incorrecto sin análisis
Análisis y discusión	Reflexión crítica sobre resultados, errores y mejoras	Discusión general o poco profunda	No hay discusión significativa
Uso del lenguaje científico correcto	Preciso, apropiado y riguroso en todo el informe	Adecuado con algunos usos imprecisos	Poco riguroso o con errores conceptua- les

Rúbrica de evaluación de la sustentación oral (2.5 puntos)

Criterio	Excelente (0.5)	Aceptable (0.33)	Deficiente (0.16 o menos)
Dominio del tema	Explican con seguridad, usan conceptos correctos	Comprensión básica, algunas imprecisiones	Confusos, sin claridad conceptual
Condiciones de resonan- cia	Exposición clara de condiciones de frontera	Explicación parcial o incompleta	No comprenden las condiciones físicas
Interpretación de resultados	Relación correc- ta entre teoría y práctica	Relación parcial o con errores	No relacionan teo- ría con resultados
Participación del grupo	Todos participan activamente	Participación des- igual	Uno o dos exponen
Uso del tiempo	Entre 8–10 min	6-8 min o >10 min	Muy breve o muy extenso

Nota final: Suma de informe (2.5) + sustentación (2.5) = 5.0 puntos

Enlace a la simulación

https://thephysicsaviary.com/Physics/Programs/Labs/ResonanceTubeLab/