Networked Life: Homework 6

Guo Ziqi - 1000905 Zhao Juan - 1000918 Zhang Hao - 1000899

1. Answer:

Table 1: Steps of the Bellman-Ford Algorithm

Bidder	Day 1	Day 2	Day 3	Day 4	Day 5
1	(1) 7	(3) 9.5	$(5)\ 10 \to 11$		(8) 27.45
2		(2) 9.25		(6) 13.65	
3			$(4) 9.75 \rightarrow 11.25$	(7) 13.9	
Ask price	7.25	9.75	11.5	14.15	27.7

2. Answer:

According to the bidding progression, bidder 1 wins the bid and pays \$27.45.

3. Answer:

- (a) If $b_1 > b_2$, Alice wins the slot with clickthrough rate of 500 per hour. Her payoff is $\$(r b_2)$ per click, or equivalently, $\$500(r b_2)$ per hour.
 - If $b_1 < b_2$, Alice wins the slot with clickthrough rate of 300 per hour. Alice's payoff is then \$r\$ per click, or equivalently, \$300r per hour.
- (b) From the payoffs above, we can equate the two payoffs and find out that when $2/5r > b_2$, getting the first slot will yield higher payoff for Alice; otherwise, getting the second slot will yield higher payoff for Alice. Therefore, the dominant strategy for Alice is to bid 2/5r, so that in both cases Alice can always maximize her payoff.

4. Answer:

- (a) The only scenario that will yield a positive payoff for Bidder 1 is that he wins both seats. However, assuming Bidder 2 is rational, he will always have the choice to give up one seat and bid \$10 on the other one. So with a \$15 total valuation of the two seats, Bidder 1 would never be able to win both seats.
 - In this case, getting only one seat will yield a negative payoff for Bidder 1, as a single seat is worth nothing to him. As the best scenario results in a payoff of \$0, not bidding on any of the seats is the dominant strategy for Bidder 1.
- (b) In this case, Bidder 1 just needs to always bid on the package consisting of both seats. Regardless of whether Bidder 2 bids on individual seats or package, Bidder 1 just needs to top Bidder 2's total bid by minimum increment.

Therefore, Bidder 1 instead can win the bid if package bidding is used. The price charged is \$(12+m) at most, assuming m is the minimum increment to top a previous bid. His payoff is \$(3-m).

5. Answer:

The price charged to the winners Bidder 1 and 4 are represented by p_1 and p_4 :

$$M* = (1,1), (4,2)$$

$$V* = 10 + 9 = 19$$

$$p_1 = (7+8) - 9 = 6$$

$$p_4 = (10+8) - 10 = 8$$

6. Answer:

Vector $\pi[k]$ will exhibit periodic behavior as k becomes large. In particular, $\pi[0] = [1/2, 1/2, 0, 0]^T$, $\pi[1] = [1/2, 0, 0, 1/2]^T$, $\pi[2] = [0, 0, 1/2, 1/2]^T$, $\pi[3] = [0, 1/2, 1/2, 0]^T$, and then the pattern repeats itself.

Therefore, there is no solution for steady-state probabilities π^* such that $\pi^{*T} = \pi^{*T}H$.

7. Answer:

When
$$\theta = 0.1$$
, $\pi_1 = 0.211$, $\pi_2 = 0.205$, $\pi_3 = 0.200$, $\pi_4 = 0.193$, $\pi_5 = 0.190$;
When $\theta = 0.3$, $\pi_1 = 0.236$, $\pi_2 = 0.221$, $\pi_3 = 0.196$, $\pi_4 = 0.177$, $\pi_5 = 0.170$;
When $\theta = 0.5$, $\pi_1 = 0.270$, $\pi_2 = 0.249$, $\pi_3 = 0.183$, $\pi_4 = 0.153$, $\pi_5 = 0.145$;
When $\theta = 0.85$, $\pi_1 = 0.385$, $\pi_2 = 0.369$, $\pi_3 = 0.102$, $\pi_4 = 0.073$, $\pi_5 = 0.071$;

As θ increases, the difference of probabilities grows larger. It is more and more obvious that π_1 and π_2 have larger significance. This trend is because θ indicates how much we value the original distribution of transition probabilities. So as θ becomes larger, the probabilities at equilibrium are mostly determined by the structural connectivity of the graphs.

8. Answer:

- (a) $[\pi_A^*, \pi_B^*]^T = [0.827, 0.173]^T$
- (b) $[\pi_1^*, \pi_2^*]^T = [0.5, 0.5]^T$ $[\pi_3^*, \pi_4^*, \pi_5^*]^T = [0.416, 0.168, 0.416]^T$
- (c) The approximate π^* calculated by the given equation is $[0.413, 0.413, 0.072, 0.029, 0.072]^T$.

The time complexity of this approximate method is less than that of the directly computing π^* . No matter if we use inversion or matrices or iterative method, expensive matrix operations like inversion or multiplication is involved. As the matrix dimension n gets larger, computational load would increase exponentially. Splitting the whole matrix into smaller matrices would make computation less costly. In this case, updating each iteration would cost around $5^2 = 25$ multiplications for the original matrix. But once we use the approximation, only $3^2 + 2^2 + 2^2 = 17$ multiplications are needed.