MAT143 Brief Calculus Midterm Exam #1

Friday, 2/17/2023

Time: 50 minutes

Name:		
	(Please print)	

Instructions: This is a closed-book exam. No notes, books, or a computer should be used for the exam. However, you can use a calculator (TI or scientific calculator) for the exam. The first part consists of 6 multiple-choice problems and 2nd part consists of 3 show-your-work problems.

Part I: Multiple-choice problems. (42 points)

1. The average rate of change of f(x) from A and B (see Figure 1) is given by

A).
$$(y_1 - y_2) / (x_2 - x_1)$$

B).
$$(x_1 - x_2) / (y_1 - y_2)$$

C).
$$(y_1 - y_2) / (x_2 - x_1)$$

(D).
$$(y_2 - y_1) / (x_2 - x_1)$$

Figure 1

2. The difference quotient is defined by

$$\frac{f(x+h)-f(x)}{h}$$

- A). the intercept of tangent line PQ
- B). the slope of tangent line PQ
- C) the slope of the secant line PQ
- D). the derivative of f(x)

Figure 2

- 3. Let f(x) = 25 (a constant function). Then the derivative of f(x) is
 - A). 25
 - B). 1
 - (C),0
 - D). 25x
- 4. Let $f(x) = x^{2023}$. What rule of the derivative must be used to find the derivative of f(x)?
 - A). additive rule
 - B). multiplicative rule
 - C), power rule
 - D). chain rule
- 5. Let $f(x) = (x^2 + 1)^{1/3}$, what rule of the derivative must be used to find the derivative of f(x)?
 - A). additive rule
 - B). multiplicative rule
 - C). power rule
 - D). chain rule
- 6. Refer to Figure 3. What is the left limit as $x \rightarrow 1^-$
 - A). 1
 - B). 0
 - C). -2
 - (D).4

Figure 3

Part I: Show your work to receive credit. (58 points)

Problem 1. (8 points) For the function f(x) whose graph is given in Figure 4, answer the following questions.

Figure 4

(1). Does $\lim_{x\to 3} f(x)$ exist? Why?

No. Because the left limit is NOT equal to the right limit.

(2). Is f(x) continuous at x = 3? Why?

No. the left and the right limits are NOT equal.

Problem 2. Finding limits (20 points)

 $1. \quad \lim_{x \to \infty} \frac{2x^2}{1+x^2} \, .$

The direct substitution will result in to, we need to do algebraic manupition before doing substitution.

$$\lim_{\chi \to \infty} \frac{2\chi^2}{|+\chi^2|} = \lim_{\chi \to \infty} \frac{z}{\frac{1}{\chi^2 + 1}} = \frac{z}{\sum_{\mu \to 1} + 1} = z.$$

2.
$$\lim_{x \to 0} \frac{\sqrt{2+x^2}}{1+x^2}.$$

Direct substitution gives
$$\lim_{x\to 0} \frac{\sqrt{z+x^2}}{1+x^2} = \frac{\sqrt{z+0^2}}{1+\sqrt{0^2}} = \frac{\sqrt{z}}{1} = \sqrt{z}$$

Problem 3. Finding Derivatives (30 points)

1. For the given function

$$f(x) = (2x^3 + 2)^3$$
.

Find the derivative of f(x).

$$f'(x) = [(2x^{3}+2)^{2} - 3(2x^{3}+2)^{2} \cdot (2x^{3}+2)^{2}$$

$$= 3(2x^{3}+2)^{2} \cdot (2x^{3}+2)^{2} \cdot (2x^{3}+2)^{2}$$

$$= 18 \times^{2} (2x^{3}+2)$$

2. If
$$f(x) = \sqrt{x^3}$$
, find the value of $f'(4)$.

$$\int_{1}^{1}(x) = \left(\int_{X^{\frac{3}{2}}}\right)^{1} = \left(\chi^{\frac{3}{2}}\right)^{1} = \frac{3}{2}\chi^{\frac{3}{2}-1} = \frac{3}{2}\chi^{\frac{1}{2}} = \frac{3}{$$

3. Let If $f(x) = (x+1)(x^2+1)$, find the derivative of f(x).

$$f'(x) = \left[(x+1)(x^2+1)^{\frac{1}{2}} = (x+1)'(x^2+1) + (x+1)(x^2+1)' \right]$$

$$= 1 \times (x^2+1) + (x+1)(2x+0)$$

$$= x^2+1 + 2x(x+1)$$

$$= x^2+1 + 2x^2 + 2x = 3x^2 + 2x + 1$$