# Bootstrap Methods and Their Application

| Article i    | n Technometrics · January 1997          |        |
|--------------|-----------------------------------------|--------|
| DOI: 10.2307 | 7/1271471 · Source: OAI                 |        |
|              |                                         |        |
| CITATIONS    | 5                                       | READS  |
| 4,161        |                                         | 14,580 |
|              |                                         |        |
| 2 author     | rs, including:                          |        |
|              | D. V. Hinkley                           |        |
|              | University of California, Santa Barbara |        |
|              | 120 PUBLICATIONS 12,467 CITATIONS       |        |
|              | SEE PROFILE                             |        |

# Bootstrap Methods and their Application

Anthony Davison

©2006

A short course based on the book 'Bootstrap Methods and their Application', by A. C. Davison and D. V. Hinkley ©Cambridge University Press, 1997

## Summary

- ▶ Bootstrap: simulation methods for frequentist inference.
- ▶ Useful when
  - standard assumptions invalid (n small, data not normal, ...);
  - standard problem has non-standard twist;
  - complex problem has no (reliable) theory;
  - or (almost) anywhere else.
- ▶ Aim to describe
  - basic ideas;
  - confidence intervals;
  - tests;
  - some approaches for regression

#### Motivation

- Motivation
- Basic notions
- Confidence intervals
- Several samples
- Variance estimation
- Tests
- Regression

## AIDS data

- ▶ UK AIDS diagnoses 1988–1992.
- ▶ Reporting delay up to several years!
- ▶ Problem: predict state of epidemic at end 1992, with realistic statement of uncertainty.
- ightharpoonup Simple model: number of reports in row j and column k Poisson, mean

$$\mu_{jk} = \exp(\alpha_j + \beta_k).$$

ightharpoonup Unreported diagnoses in period j Poisson, mean

$$\sum_{k \text{ unobs}} \mu_{jk} = \exp(\alpha_j) \sum_{k \text{ unobs}} \exp(\beta_k).$$

- ▶ Estimate total unreported diagnoses from period j by replacing  $\alpha_j$  and  $\beta_k$  by MLEs.
  - How reliable are these predictions?
  - How sensible is the Poisson model?

#### Motivation

| Diagnosis<br>period |         | Reporting-delay interval (quarters): |     |    |    |    |    |    |  |           | Total<br>reports |  |
|---------------------|---------|--------------------------------------|-----|----|----|----|----|----|--|-----------|------------------|--|
|                     |         |                                      |     |    |    |    |    |    |  |           | to end           |  |
| Year                | Quarter | $0^{\dagger}$                        | 1   | 2  | 3  | 4  | 5  | 6  |  | $\geq$ 14 | of 1992          |  |
| 1988                | 1       | 31                                   | 80  | 16 | 9  | 3  | 2  | 8  |  | 6         | 174              |  |
|                     | 2       | 26                                   | 99  | 27 | 9  | 8  | 11 | 3  |  | 3         | 211              |  |
|                     | 3       | 31                                   | 95  | 35 | 13 | 18 | 4  | 6  |  | 3         | 224              |  |
|                     | 4       | 36                                   | 77  | 20 | 26 | 11 | 3  | 8  |  | 2         | 205              |  |
| 1989                | 1       | 32                                   | 92  | 32 | 10 | 12 | 19 | 12 |  | 2         | 224              |  |
|                     | 2       | 15                                   | 92  | 14 | 27 | 22 | 21 | 12 |  | 1         | 219              |  |
|                     | 3       | 34                                   | 104 | 29 | 31 | 18 | 8  | 6  |  |           | 253              |  |
|                     | 4       | 38                                   | 101 | 34 | 18 | 9  | 15 | 6  |  |           | 233              |  |
| 1990                | 1       | 31                                   | 124 | 47 | 24 | 11 | 15 | 8  |  |           | 281              |  |
|                     | 2       | 32                                   | 132 | 36 | 10 | 9  | 7  | 6  |  |           | 245              |  |
|                     | 3       | 49                                   | 107 | 51 | 17 | 15 | 8  | 9  |  |           | 260              |  |
|                     | 4       | 44                                   | 153 | 41 | 16 | 11 | 6  | 5  |  |           | 285              |  |
| 1991                | 1       | 41                                   | 137 | 29 | 33 | 7  | 11 | 6  |  |           | 271              |  |
|                     | 2       | 56                                   | 124 | 39 | 14 | 12 | 7  | 10 |  |           | 263              |  |
|                     | 3       | 53                                   | 175 | 35 | 17 | 13 | 11 |    |  |           | 306              |  |
|                     | 4       | 63                                   | 135 | 24 | 23 | 12 |    |    |  |           | 258              |  |
| 1992                | 1       | 71                                   | 161 | 48 | 25 |    |    |    |  |           | 310              |  |
|                     | 2       | 95                                   | 178 | 39 |    |    |    |    |  |           | 318              |  |
|                     | 3       | 76                                   | 181 |    |    |    |    |    |  |           | 273              |  |
|                     | 4       | 67                                   |     |    |    |    |    |    |  |           | 133              |  |

## AIDS data

- ▶ Data (+), fits of simple model (solid), complex model (dots)
- ▶ Variance formulae could be derived painful! but useful?
- ▶ Effects of overdispersion, complex model, ...?



## Goal

Find reliable assessment of uncertainty when

- estimator complex
- data complex
- ► sample size small
- model non-standard

#### Basic notions

- Motivation
- Basic notions
- Confidence intervals
- Several samples
- Variance estimation
- Tests
- Regression

Table: Data from a study of handedness; hand is an integer measure of handedness, and dnan a genetic measure. Data due to Dr Gordon Claridge, University of Oxford.

| 1 13<br>2 18<br>3 20 | 1<br>1<br>3 | 11<br>12<br>13 | 28<br>28 | 1<br>2 | 21<br>22 | 29 | 2 | 31 | 31 | 1 |
|----------------------|-------------|----------------|----------|--------|----------|----|---|----|----|---|
|                      | 1 3         |                |          | 2      | 22       | 00 |   |    |    |   |
| 3 20                 | 3           | 1.9            |          |        |          | 29 | 1 | 32 | 31 | 2 |
|                      |             | 10             | 28       | 1      | 23       | 29 | 1 | 33 | 33 | 6 |
| 4 21                 | 1           | 14             | 28       | 4      | 24       | 30 | 1 | 34 | 33 | 1 |
| 5 21                 | 1           | 15             | 28       | 1      | 25       | 30 | 1 | 35 | 34 | 1 |
| 6 24                 | 1           | 16             | 28       | 1      | 26       | 30 | 2 | 36 | 41 | 4 |
| 7 	 24               | 1           | 17             | 29       | 1      | 27       | 30 | 1 | 37 | 44 | 8 |
| 8 27                 | 1           | 18             | 29       | 1      | 28       | 31 | 1 |    |    |   |
| 9 28                 | 1           | 19             | 29       | 1      | 29       | 31 | 1 |    |    |   |
| 10 28                | 2           | 20             | 29       | 2      | 30       | 31 | 1 |    |    |   |

Figure: Scatter plot of handedness data. The numbers show the multiplicities of the observations.



- ▶ Is there dependence between dnan and hand for these n = 37 individuals?
- ► Sample product-moment correlation coefficient is  $\widehat{\theta} = 0.509$ .
- ▶ Standard confidence interval (based on bivariate normal population) gives 95% CI (0.221, 0.715).
- ▶ Data not bivariate normal!
- ▶ What is the status of the interval? Can we do better?

## Frequentist inference

- ▶ Estimator  $\widehat{\theta}$  for unknown parameter  $\theta$ .
- ▶ Statistical model: data  $y_1, \ldots, y_n \stackrel{\text{iid}}{\sim} F$ , unknown
- ▶ Handedness data
  - $y = (\mathtt{dnan}, \mathtt{hand})$
  - F puts probability mass on subset of  $\mathbb{R}^2$
  - $\widehat{\theta}$  is correlation coefficient
- ▶ Key issue: what is variability of  $\widehat{\theta}$  when samples are repeatedly taken from F?
- $\blacktriangleright$  Imagine F known could answer question by
  - analytical (mathematical) calculation
  - simulation

## Simulation with F known

- ▶ For r = 1, ..., R:
  - generate random sample  $y_1^*, \ldots, y_n^* \stackrel{\text{iid}}{\sim} F$ ;
  - compute  $\widehat{\theta}_r$  using  $y_1^*, \dots, y_n^*$ ;
- ightharpoonup Output after R iterations:

$$\widehat{\theta}_1^*, \widehat{\theta}_2^*, \dots, \widehat{\theta}_R^*$$

- ▶ Use  $\widehat{\theta}_1^*, \widehat{\theta}_2^*, \dots, \widehat{\theta}_R^*$  to estimate sampling distribution of  $\widehat{\theta}$  (histogram, density estimate, ...)
- ▶ If  $R \to \infty$ , then get perfect match to theoretical calculation (if available): Monte Carlo error disappears completely
- ightharpoonup In practice R is finite, so some error remains

## Handedness data: Fitted bivariate normal model

Figure: Contours of bivariate normal distribution fitted to handedness data; parameter estimates are  $\hat{\mu}_1 = 28.5$ ,  $\hat{\mu}_2 = 1.7$ ,  $\hat{\sigma}_1 = 5.4$ ,  $\hat{\sigma}_2 = 1.5$ ,  $\hat{\rho} = 0.509$ . The data are also shown.



## Handedness data: Parametric bootstrap samples

Figure: Left: original data, with jittered vertical values. Centre and right: two samples generated from the fitted bivariate normal distribution.



## Handedness data: Correlation coefficient

Figure: Bootstrap distributions with R=10000. Left: simulation from fitted bivariate normal distribution. Right: simulation from the data by bootstrap resampling. The lines show the theoretical probability density function of the correlation coefficient under sampling from a fitted bivariate normal distribution.



## F unknown

- ▶ Replace unknown F by estimate  $\widehat{F}$  obtained
  - parametrically e.g. maximum likelihood or robust fit of distribution  $F(y) = F(y; \psi)$  (normal, exponential, bivariate normal, . . .)
  - nonparametrically using empirical distribution function (EDF) of original data  $y_1, \ldots, y_n$ , which puts mass 1/n on each of the  $y_j$
- ▶ Algorithm: For r = 1, ..., R:
  - generate random sample  $y_1^*, \ldots, y_n^* \stackrel{\text{iid}}{\sim} \widehat{F}$ ;
  - compute  $\widehat{\theta}_r$  using  $y_1^*, \dots, y_n^*$ ;
- ightharpoonup Output after R iterations:

$$\widehat{\theta}_1^*, \widehat{\theta}_2^*, \dots, \widehat{\theta}_R^*$$

## Nonparametric bootstrap

- ▶ Bootstrap (re)sample  $y_1^*, \ldots, y_n^* \stackrel{\text{iid}}{\sim} \widehat{F}$ , where  $\widehat{F}$  is EDF of  $y_1, \ldots, y_n$ 
  - Repetitions will occur!
- ► Compute bootstrap  $\widehat{\theta}^*$  using  $y_1^*, \dots, y_n^*$ .
- ▶ For handedness data take n = 37 pairs  $y^* = (\mathtt{dnan}, \mathtt{hand})^*$  with equal probabilities 1/37 and replacement from original pairs  $(\mathtt{dnan}, \mathtt{hand})$
- ▶ Repeat this R times, to get  $\widehat{\theta}_1^*, \dots, \widehat{\theta}_R^*$
- See picture
- ▶ Results quite different from parametric simulation why?

## Handedness data: Bootstrap samples

Figure: Left: original data, with jittered vertical values. Centre and right: two bootstrap samples, with jittered vertical values.



## Using the $\widehat{\theta}^*$

- ▶ Bootstrap replicates  $\widehat{\theta}_r^*$  used to estimate properties of  $\widehat{\theta}$ .
- ▶ Write  $\theta = \theta(F)$  to emphasize dependence on F
- ▶ Bias of  $\widehat{\theta}$  as estimator of  $\theta$  is

$$\beta(F) = \mathrm{E}(\widehat{\theta} \mid y_1, \dots, y_n \stackrel{\mathrm{iid}}{\sim} F) - \theta(F)$$

estimated by replacing unknown F by known estimate  $\widehat{F}$ :

$$\beta(\widehat{F}) = \mathrm{E}(\widehat{\theta} \mid y_1, \dots, y_n \stackrel{\mathrm{iid}}{\sim} \widehat{F}) - \theta(\widehat{F})$$

▶ Replace theoretical expectation E() by empirical average:

$$\beta(\widehat{F}) \approx b = \overline{\widehat{\theta}^*} - \widehat{\theta} = R^{-1} \sum_{r=1}^R \widehat{\theta}_r^* - \widehat{\theta}$$

#### Basic notions

▶ Estimate variance  $\nu(F) = \text{var}(\widehat{\theta} \mid F)$  by

$$v = \frac{1}{R-1} \sum_{r=1}^{R} \left( \widehat{\theta}_r^* - \overline{\widehat{\theta}^*} \right)^2$$

▶ Estimate quantiles of  $\widehat{\theta}$  by taking empirical quantiles of

$$\widehat{\theta}_1^*, \dots, \widehat{\theta}_R^*$$

► For handedness data, 10,000 replicates shown earlier give

$$b = -0.046, \quad v = 0.043 = 0.205^2$$

Figure: Summaries of the  $\widehat{\theta}^*$ . Left: histogram, with vertical line showing  $\widehat{\theta}$ . Right: normal Q-Q plot of  $\widehat{\theta}^*$ .



## How many bootstraps?

- ▶ Must estimate moments and quantiles of  $\hat{\theta}$  and derived quantities. Nowadays often feasible to take  $R \geq 5000$
- ▶ Need  $R \ge 100$  to estimate bias, variance, etc.
- ▶ Need  $R \gg 100$ , prefer  $R \ge 1000$  to estimate quantiles needed for 95% confidence intervals





## Key points

- ► Estimator is algorithm
  - applied to original data  $y_1, \ldots, y_n$  gives original  $\widehat{\theta}$
  - applied to simulated data  $y_1^*, \ldots, y_n^*$  gives  $\theta^*$
  - $\widehat{\theta}$  can be of (almost) any complexity
  - for more sophisticated ideas (later) to work,  $\hat{\theta}$  must often be smooth function of data
- ► Sample is used to estimate F
  - $\hat{F} \approx F$  heroic assumption
- ► Simulation replaces theoretical calculation
  - removes need for mathematical skill
  - does not remove need for thought
  - check code *very* carefully garbage in, garbage out!
- ► Two sources of error
  - statistical  $(\widehat{F} \neq F)$  reduce by thought
  - simulation  $(R \neq \infty)$  reduce by taking R large (enough)

## Confidence intervals

- Motivation
- Basic notions
- Confidence intervals
- Several samples
- Variance estimation
- Tests
- Regression

## Normal confidence intervals

- ▶ If  $\widehat{\theta}$  approximately normal, then  $\widehat{\theta} \sim N(\theta + \beta, \nu)$ , where  $\widehat{\theta}$  has bias  $\beta = \beta(F)$  and variance  $\nu = \nu(F)$
- ▶ If  $\beta, \nu$  known,  $(1 2\alpha)$  confidence interval for  $\theta$  would be (**D1**)

$$\widehat{\theta} - \beta \pm z_{\alpha} \nu^{1/2},$$

where  $\Phi(z_{\alpha}) = \alpha$ .

▶ Replace  $\beta$ ,  $\nu$  by estimates:

$$\beta(F) \doteq \beta(\widehat{F}) \doteq b = \overline{\widehat{\theta}^*} - \widehat{\theta}$$

$$\nu(F) \doteq \nu(\widehat{F}) \doteq v = (R-1)^{-1} \sum_{r} (\widehat{\theta}_r^* - \overline{\widehat{\theta}^*})^2,$$

giving  $(1-2\alpha)$  interval  $\hat{\theta} - b \pm z_{\alpha} v^{1/2}$ .

► Handedness data:  $R = 10,000, b = -0.046, v = 0.205^2,$  $\alpha = 0.025, z_{\alpha} = -1.96, \text{ so } 95\% \text{ CI is } (0.147, 0.963)$ 

## Normal confidence intervals

- ▶ Normal approximation reliable? Transformation needed?
- ▶ Here are plots for  $\hat{\psi} = \frac{1}{2} \log\{(1+\hat{\theta})/(1-\hat{\theta})\}$ :





## Normal confidence intervals

ightharpoonup Correlation coefficient: try Fisher's z transformation:

$$\widehat{\psi} = \psi(\widehat{\theta}) = \frac{1}{2} \log\{(1+\widehat{\theta})/(1-\widehat{\theta})\}$$

for which compute

$$b_{\psi} = R^{-1} \sum_{r=1}^{R} \widehat{\psi}_{r}^{*} - \widehat{\psi}, \quad v_{\psi} = \frac{1}{R-1} \sum_{r=1}^{R} \left( \widehat{\psi}_{r}^{*} - \overline{\widehat{\psi}^{*}} \right)^{2},$$

•  $(1-2\alpha)$  confidence interval for  $\theta$  is

$$\psi^{-1} \left\{ \widehat{\psi} - b_{\psi} - z_{1-\alpha} v_{\psi}^{1/2} \right\}, \quad \psi^{-1} \left\{ \widehat{\psi} - b_{\psi} - z_{\alpha} v_{\psi}^{1/2} \right\}$$

- ► For handedness data, get (0.074, 0.804)
- ▶ But how do we choose a transformation in general?

## **Pivots**

- ▶ Hope properties of  $\widehat{\theta}_1^*, \dots, \widehat{\theta}_R^*$  mimic effect of sampling from original model.
- ▶ Amounts to faith in 'substitution principle': may replace unknown F with known  $\widehat{F}$  false in general, but often more nearly true for pivots.
- Pivot is combination of data and parameter whose distribution is independent of underlying model.
- ▶ Canonical example:  $Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$ . Then

$$Z = \frac{\overline{Y} - \mu}{(S^2/n)^{1/2}} \sim t_{n-1},$$

for all  $\mu$ ,  $\sigma^2$  — so independent of the underlying distribution, provided this is normal

▶ Exact pivot generally unavailable in nonparametric case.

## Studentized statistic

- ▶ Idea: generalize Student t statistic to bootstrap setting
- ▶ Requires variance V for  $\widehat{\theta}$  computed from  $y_1, \ldots, y_n$
- ightharpoonup Analogue of Student t statistic:

$$Z = \frac{\widehat{\theta} - \theta}{V^{1/2}}$$

▶ If the quantiles  $z_{\alpha}$  of Z known, then

$$\Pr\left(z_{\alpha} \le Z \le z_{1-\alpha}\right) = \Pr\left(z_{\alpha} \le \frac{\widehat{\theta} - \theta}{V^{1/2}} \le z_{1-\alpha}\right) = 1 - 2\alpha$$

 $(z_{\alpha} \text{ no longer denotes a normal quantile!})$  implies that

$$\Pr\left(\widehat{\theta} - V^{1/2} z_{1-\alpha} \le \theta \le \widehat{\theta} - V^{1/2} z_{\alpha}\right) = 1 - 2\alpha$$
 so  $(1 - 2\alpha)$  confidence interval is  $(\widehat{\theta} - V^{1/2} z_{1-\alpha}, \widehat{\theta} - V^{1/2} z_{\alpha})$ 

#### Confidence intervals

▶ Bootstrap sample gives  $(\widehat{\theta}^*, V^*)$  and hence

$$Z^* = \frac{\widehat{\theta}^* - \widehat{\theta}}{V^{*1/2}}$$

▶ R bootstrap copies of  $(\widehat{\theta}, V)$ :

$$(\widehat{\theta}_1^*, V_1^*), \quad (\widehat{\theta}_2^*, V_2^*), \quad \dots, \quad (\widehat{\theta}_R^*, V_R^*)$$

and corresponding

$$z_1^* = \frac{\widehat{\theta}_1^* - \widehat{\theta}}{V_1^{*1/2}}, \quad z_2^* = \frac{\widehat{\theta}_2^* - \widehat{\theta}}{V_2^{*1/2}}, \quad \dots, \quad z_R^* = \frac{\widehat{\theta}_R^* - \widehat{\theta}}{V_R^{*1/2}}.$$

- ▶ Use  $z_1^*, \ldots, z_R^*$  to estimate distribution of Z for example, order statistics  $z_{(1)}^* < \cdots < z_{(R)}^*$  used to estimate quantiles
- ▶ Get  $(1-2\alpha)$  confidence interval

$$\widehat{\theta} - V^{1/2} z^*_{((1-\alpha)(R+1))}, \quad \widehat{\theta} - V^{1/2} z^*_{(\alpha(R+1))}$$

## Why Studentize?

▶ Studentize, so  $Z \xrightarrow{D} N(0,1)$  as  $n \to \infty$ . Edgeworth series:

$$\Pr(Z \le z \mid F) = \Phi(z) + n^{-1/2} a(z) \phi(z) + O(n^{-1});$$

 $a(\cdot)$  even quadratic polynomial.

▶ Corresponding expansion for  $Z^*$  is

$$\Pr(Z^* \le z \mid \widehat{F}) = \Phi(z) + n^{-1/2} \widehat{a}(z) \phi(z) + O_p(n^{-1}).$$

Typically 
$$\widehat{a}(z) = a(z) + O_p(n^{-1/2})$$
, so

$$\Pr(Z^* \le z \mid \widehat{F}) - \Pr(Z \le z \mid F) = O_p(n^{-1}).$$

▶ If don't studentize,  $Z = (\widehat{\theta} - \theta) \stackrel{D}{\longrightarrow} N(0, \nu)$ . Then

$$\Pr(Z \leq z \mid F) = \Phi\left(\frac{z}{\nu^{1/2}}\right) + n^{-1/2}a'\left(\frac{z}{\nu^{1/2}}\right)\phi\left(\frac{z}{\nu^{1/2}}\right) + O(n^{-1})$$

and

$$\Pr(Z^* \leq z \mid \widehat{F}) = \Phi\left(\frac{z}{\widehat{\nu}^{1/2}}\right) + n^{-1/2}\widehat{a}'\left(\frac{z}{\widehat{\nu}^{1/2}}\right) \phi\left(\frac{z}{\widehat{\nu}^{1/2}}\right) + O_p(n^{-1}).$$

Typically  $\widehat{\nu} = \nu + O_p(n^{-1/2})$ , giving

$$\Pr(Z^* \le z \mid \widehat{F}) - \Pr(Z \le z \mid F) = O_p(n^{-1/2}).$$

▶ Thus use of Studentized Z reduces error from  $O_p(n^{-1/2})$  to  $O_p(n^{-1})$  — better than using large-sample asymptotics, for which error is usually  $O_p(n^{-1/2})$ .

## Other confidence intervals

- $\triangleright$  Problem for studentized intervals: must obtain V, intervals not scale-invariant
- ► Simpler approaches:
  - Basic bootstrap interval: treat  $\widehat{\theta} \theta$  as pivot, get

$$\widehat{\theta} - (\widehat{\theta}^*_{((R+1)(1-\alpha))} - \widehat{\theta}), \quad \widehat{\theta} - (\widehat{\theta}^*_{((R+1)\alpha)} - \widehat{\theta}).$$

• Percentile interval: use empirical quantiles of  $\widehat{\theta}_1^*,\dots,\widehat{\theta}_R^*$ 

$$\widehat{\theta}^*_{((R+1)\alpha)}, \quad \widehat{\theta}^*_{((R+1)(1-\alpha))}.$$

- ▶ Improved percentile intervals  $(BC_a, ABC, ...)$ 
  - Replace percentile interval with

$$\widehat{\theta}^*_{((R+1)\alpha')}, \quad \widehat{\theta}^*_{((R+1)(1-\alpha''))},$$

where  $\alpha'$ ,  $\alpha''$  chosen to improve properties.

• Scale-invariant.

▶ 95% confidence intervals for correlation coefficient  $\theta$ , R = 10,000:

| Normal                                         | 0.147  | 0.963 |
|------------------------------------------------|--------|-------|
| Percentile                                     | -0.047 | 0.758 |
| Basic                                          | 0.262  | 1.043 |
| $BC_a \ (\alpha' = 0.0485, \alpha'' = 0.0085)$ | 0.053  | 0.792 |
| Student                                        | 0.030  | 1.206 |
|                                                |        |       |
| Basic (transformed)                            | 0.131  | 0.824 |
| Student (transformed)                          | -0.277 | 0.868 |

▶ Transformation is essential here!

### General comparison

- ▶ Bootstrap confidence intervals usually too short leads to under-coverage
- ▶ Normal and basic intervals depend on scale.
- ▶ Percentile interval often too short but is scale-invariant.
- ▶ Studentized intervals give best coverage overall, but
  - $\bullet$  depend on scale, can be sensitive to V
  - length can be very variable
  - best on transformed scale, where V is approximately constant
- ▶ Improved percentile intervals have same error in principle as studentized intervals, but often shorter so lower coverage

#### Caution

- ▶ Edgeworth theory OK for smooth statistics beware rough statistics: must check output.
- ▶ Bootstrap of median theoretically OK, but very sensitive to sample values in practice.
- ▶ Role for smoothing?



### Key points

- ▶ Numerous procedures available for 'automatic' construction of confidence intervals
- ► Computer does the work
- ▶ Need  $R \ge 1000$  in most cases
- ▶ Generally such intervals are a bit too short
- Must examine output to check if assumptions (e.g. smoothness of statistic) satisfied
- ightharpoonup May need variance estimate V see later

#### Several samples

- Motivation
- Basic notions
- Confidence intervals
- Several samples
- Variance estimation
- Tests
- Regression

### Gravity data

Table: Measurements of the acceleration due to gravity, g, given as deviations from  $980,000 \times 10^{-3}$  cms<sup>-2</sup>, in units of cms<sup>-2</sup>  $\times 10^{-3}$ .

| Series |     |     |    |    |    |    |    |  |  |
|--------|-----|-----|----|----|----|----|----|--|--|
| 1      | 2   | 3   | 4  | 5  | 6  | 7  | 8  |  |  |
| 76     | 87  | 105 | 95 | 76 | 78 | 82 | 84 |  |  |
| 82     | 95  | 83  | 90 | 76 | 78 | 79 | 86 |  |  |
| 83     | 98  | 76  | 76 | 78 | 78 | 81 | 85 |  |  |
| 54     | 100 | 75  | 76 | 79 | 86 | 79 | 82 |  |  |
| 35     | 109 | 51  | 87 | 72 | 87 | 77 | 77 |  |  |
| 46     | 109 | 76  | 79 | 68 | 81 | 79 | 76 |  |  |
| 87     | 100 | 93  | 77 | 75 | 73 | 79 | 77 |  |  |
| 68     | 81  | 75  | 71 | 78 | 67 | 78 | 80 |  |  |
|        | 75  | 62  |    |    | 75 | 79 | 83 |  |  |
|        | 68  |     |    |    | 82 | 82 | 81 |  |  |
|        | 67  |     |    |    | 83 | 76 | 78 |  |  |
|        |     |     |    |    |    | 73 | 78 |  |  |
|        |     |     |    |    |    | 64 | 78 |  |  |

### Gravity data

Figure: Gravity series boxplots, showing a reduction in variance, a shift in location, and possible outliers.



### Gravity data

- ► Eight series of measurements of gravitational acceleration g made May 1934 July 1935 in Washington DC
- ▶ Data are deviations from  $9.8 \text{ m/s}^2$  in units of  $10^{-3} \text{ cm/s}^2$
- $\triangleright$  Goal: Estimate g and provide confidence interval
- Weighted combination of series averages and its variance estimate

$$\widehat{\theta} = \frac{\sum_{i=1}^{8} \overline{y}_i \times n_i / s_i^2}{\sum_{i=1}^{8} n_i / s_i^2}, \quad V = \left(\sum_{i=1}^{8} n_i / s_i^2\right)^{-1},$$

giving

$$\hat{\theta} = 78.54, \quad V = 0.59^2$$

and 95% confidence interval of  $\hat{\theta} \pm 1.96V^{1/2} = (77.5, 79.8)$ 

### Gravity data: Bootstrap

- ▶ Apply stratified (re)sampling to series, taking each series as a separate stratum. Compute  $\widehat{\theta}^*$ ,  $V^*$  for simulated data
- ▶ Confidence interval based on

$$Z^* = \frac{\widehat{\theta}^* - \widehat{\theta}}{V^{*1/2}},$$

whose distribution is approximated by simulations

$$z_1^* = \frac{\widehat{\theta}_1^* - \widehat{\theta}}{V_1^{1/2}}, \dots, z_R^* = \frac{\widehat{\theta}_R^* - \widehat{\theta}}{V_R^{1/2}},$$

giving

$$(\widehat{\theta} - V^{1/2} z^*_{((R+1)(1-\alpha))}, \widehat{\theta} - V^{1/2} z^*_{((R+1)\alpha)})$$

▶ For 95% limits set  $\alpha = 0.025$ , so with R = 999 use  $z_{(25)}^*, z_{(975)}^*$ , giving interval (77.1, 80.3).

Figure: Summary plots for 999 nonparametric bootstrap simulations. Top: normal probability plots of  $t^*$  and  $z^* = (t^* - t)/v^{*1/2}$ . Line on the top left has intercept t and slope  $v^{1/2}$ , line on the top right has intercept zero and unit slope. Bottom: the smallest  $t_r^*$  also has the smallest  $v^*$ , leading to an outlying value of  $z^*$ .



### Key points

- ► For several independent samples, implement bootstrap by stratified sampling independently from each
- ▶ Same basic ideas apply for confidence intervals

#### Variance estimation

- Motivation
- Basic notions
- Confidence intervals
- Several samples
- Variance estimation
- Tests
- Regression

#### Variance estimation

- ▶ Variance estimate V needed for certain types of confidence interval (esp. studentized bootstrap)
- ▶ Ways to compute this:
  - double bootstrap
  - delta method
  - nonparametric delta method
  - jackknife

### Double bootstrap

- ▶ Bootstrap sample  $y_1^*, \ldots, y_n^*$  and corresponding estimate  $\widehat{\theta}^*$
- ▶ Take Q second-level bootstrap samples  $y_1^{**}, \ldots, y_n^{**}$  from  $y_1^{*}, \ldots, y_n^{*}$ , giving corresponding bootstrap estimates  $\widehat{\theta}_1^{**}, \ldots, \widehat{\theta}_Q^{**}$ ,
- ► Compute variance estimate V as sample variance of  $\widehat{\theta}_1^{**}, \dots, \widehat{\theta}_O^{**}$
- ▶ Requires total R(Q+1) resamples, so could be expensive
- ▶ Often reasonable to take  $Q \doteq 50$  for variance estimation, so need  $O(50 \times 1000)$  resamples nowadays not infeasible

#### Delta method

- Computation of variance formulae for functions of averages and other estimators
- ▶ Suppose  $\widehat{\psi} = g(\widehat{\theta})$  estimates  $\psi = g(\theta)$ , and  $\widehat{\theta} \sim N(\theta, \sigma^2/n)$
- ▶ Then provided  $g'(\theta) \neq 0$ , have (**D2**)

$$E(\widehat{\psi}) = g(\theta) + O(n^{-1})$$
$$var(\widehat{\psi}) = \sigma^2 g'(\theta)^2 / n + O(n^{-3/2})$$

- ► Then  $\operatorname{var}(\widehat{\psi}) \doteq \widehat{\sigma}^2 g'(\widehat{\theta})^2 / n = V$
- ► Example (**D3**):  $\widehat{\theta} = \overline{Y}$ ,  $\widehat{\psi} = \log \widehat{\theta}$
- ▶ Variance stabilisation (**D4**): if  $var(\widehat{\theta}) \doteq S(\theta)^2/n$ , find transformation h such that  $var\{h(\widehat{\theta})\}$   $\doteq$ constant
- Extends to multivariate estimators, and to  $\widehat{\psi} = g(\widehat{\theta}_1, \dots, \widehat{\theta}_d)$

### Variance estimation

### Nonparametric delta method

- Write parameter  $\theta = t(F)$  as functional of distribution F
- ▶ General approximation:

$$V \doteq V_L = \frac{1}{n^2} \sum_{j=1}^n L(Y_j; F)^2.$$

▶ L(y; F) is influence function value for  $\theta$  for observation at y when distribution is F:

$$L(y; F) = \lim_{\varepsilon \to 0} \frac{t \{(1 - \varepsilon)F + \varepsilon H_y\} - t(F)}{\varepsilon},$$

where  $H_y$  puts unit mass at y. Close link to robustness.

▶ Empirical versions of L(y; F) and  $V_L$  are

$$l_j = L(y_j; \hat{F}), \quad v_L = n^{-2} \sum l_j^2,$$

usually obtained by analytic/numerical differentation.

## Computation of $l_j$

- Write  $\widehat{\theta}$  in weighted form, differentiate with respect to  $\varepsilon$
- ► Sample average:

$$\widehat{\theta} = \overline{y} = \frac{1}{n} \sum y_j = \sum w_j y_j \Big|_{w_j \equiv 1/n}$$

Change weights:

$$w_j \mapsto \varepsilon + (1 - \varepsilon) \frac{1}{n}, \quad w_i \mapsto (1 - \varepsilon) \frac{1}{n}, \quad i \neq j$$

so  $(\mathbf{D5})$ 

$$\overline{y} \mapsto \overline{y}_{\varepsilon} = \varepsilon y_j + (1 - \varepsilon)\overline{y} = \varepsilon (y_j - \overline{y}) + \overline{y},$$

giving 
$$l_j = y_j - \overline{y}$$
 and  $v_L = \frac{1}{n^2} \sum (y_j - \overline{y})^2 = \frac{n-1}{n} n^{-1} s^2$ 

▶ Interpretation:  $l_j$  is standardized change in  $\overline{y}$  when increase mass on  $y_j$ 

### Nonparametric delta method: Ratio

▶ Population F(u, x) with y = (u, x) and

$$\theta = t(F) = \int x \, dF(u,x) / \int u \, dF(u,x),$$

sample version is

$$\widehat{\theta} = t(\widehat{F}) = \int x \, d\widehat{F}(u, x) / \int u \, d\widehat{F}(u, x) = \overline{x} / \overline{u}$$

▶ Then using chain rule of differentiation (D6),

$$l_j = (x_j - \widehat{\theta}u_j)/\overline{u},$$

giving

$$v_L = \frac{1}{n^2} \sum \left( \frac{x_j - \widehat{\theta} u_j}{\overline{u}} \right)^2$$

#### Handedness data: Correlation coefficient

► Correlation coefficient may be written as a function of averages  $\overline{xu} = n^{-1} \sum x_j u_j$  etc.:

$$\widehat{\theta} = \frac{\overline{xu} - \overline{x}\,\overline{u}}{\left\{ (\overline{x^2} - \overline{x}^2)(\overline{u^2} - \overline{u}^2) \right\}^{1/2}},$$

from which empirical influence values  $l_j$  can be derived

- ▶ In this example (and for others involving only averages), nonparametric delta method is equivalent to delta method
- ► Get

$$v_L = 0.029$$

for comparison with v = 0.043 obtained by bootstrapping.

 $\triangleright v_L$  typically underestimates  $var(\widehat{\theta})$  — as here!

#### Delta methods: Comments

- ► Can be applied to many complex statistics
- ▶ Delta method variances often underestimate true variances:

$$v_L < \operatorname{var}(\widehat{\theta})$$

▶ Can be applied automatically (numerical differentation) if algorithm for  $\widehat{\theta}$  written in weighted form, e.g.

$$\overline{x}_w = \sum w_j x_j, \quad w_j \equiv 1/n \text{ for } \overline{x}$$

and vary weights successively for j = 1, ..., n, setting

$$w_j = w_i + \varepsilon, \quad i \neq j, \quad \sum w_i = 1$$

for  $\varepsilon = 1/(100n)$  and using the definition as derivative

#### Jackknife

▶ Approximation to empirical influence values given by

$$l_j \approx l_{\text{jack},j} = (n-1)(\widehat{\theta} - \widehat{\theta}_{-j}),$$

where  $\widehat{\theta}_{-j}$  is value of  $\widehat{\theta}$  computed from sample

$$y_1,\ldots,y_{j-1},\quad y_{j+1},\ldots,y_n$$

▶ Jackknife bias and variance estimates are

$$b_{\text{jack}} = -\frac{1}{n} \sum l_{\text{jack},j}, \quad v_{\text{jack}} = \frac{1}{n(n-1)} \left( \sum l_{\text{jack},j}^2 - nb_{\text{jack}}^2 \right)$$

- ▶ Requires n+1 calculations of  $\widehat{\theta}$
- ► Corresponds to numerical differentiation of  $\widehat{\theta}$ , with  $\varepsilon = -1/(n-1)$

### Key points

- ▶ Several methods available for estimation of variances
- ▶ Needed for some types of confidence interval
- ▶ Most general method is double bootstrap: can be expensive
- ▶ Delta methods rely on linear expansion, can be applied numerically or analytically
- Jackknife gives approximation to delta method, can fail for rough statistics

- Motivation
- Basic notions
- Confidence intervals
- Several samples
- Variance estimation
- Tests
- Regression

### Ingredients

- ▶ Ingredients for testing problems:
  - data  $y_1, \ldots, y_n$ ;
  - model  $M_0$  to be tested;
  - test statistic  $t = t(y_1, ..., y_n)$ , with large values giving evidence against  $M_0$ , and observed value  $t_{obs}$
- ▶ P-value,  $p_{\text{obs}} = \Pr(T \ge t_{\text{obs}} \mid M_0)$  measures evidence against  $M_0$  small  $p_{\text{obs}}$  indicates evidence against  $M_0$ .
- ▶ Difficulties:
  - $p_{\text{obs}}$  may depend upon 'nuisance' parameters, those of  $M_0$ ;
  - $p_{\text{obs}}$  often hard to calculate.

### Examples

▶ Balsam-fir seedlings in  $5 \times 5$  quadrats — Poisson sample?

| 0 | 1 | 2 | 3 | 4 | 3 | 4 | 2 | 2 | 1 |
|---|---|---|---|---|---|---|---|---|---|
| 0 | 2 | 0 | 2 | 4 | 2 | 3 | 3 | 4 | 2 |
| 1 | 1 | 1 | 1 | 4 | 1 | 5 | 2 | 2 | 3 |
| 4 | 1 | 2 | 5 | 2 | 0 | 3 | 2 | 1 | 1 |
| 3 | 1 | 4 | 3 | 1 | 0 | 0 | 2 | 7 | 0 |

► Two-way layout: row-column independence?

| 1 | 2 | 2 | 1 | 1 | 0 | 1 |
|---|---|---|---|---|---|---|
| 2 | 0 | 0 | 2 | 3 | 0 | 0 |
| 0 | 1 | 1 | 1 | 2 | 7 | 3 |
| 1 | 1 | 2 | 0 | 0 | 0 | 1 |
| 0 | 1 | 1 | 1 | 1 | 0 | 0 |

### Estimation of $p_{\rm obs}$

- Estimate  $p_{\text{obs}}$  by simulation from fitted null hypothesis model  $\widehat{M}_0$ .
- ▶ Algorithm: for r = 1, ..., R:
  - simulate data set  $y_1^*, \ldots, y_n^*$  from  $\widehat{M}_0$ ;
  - calculate test statistic  $t_r^*$  from  $y_1^*, \ldots, y_n^*$ .
- Calculate simulation estimate

$$\widehat{p} = \frac{1 + \#\{t_r^* \ge t_{\text{obs}}\}}{1 + R}$$

of

$$\widehat{p}_{\text{obs}} = \Pr(T \ge t_{\text{obs}} \mid \widehat{M}_0).$$

► Simulation and statistical errors:

$$\widehat{p} \approx \widehat{p}_{\rm obs} \approx p_{\rm obs}$$

### Handedness data: Test of independence

- ▶ Are dnan and hand positively associated?
- ► Take  $T = \hat{\theta}$  (correlation coefficient), with  $t_{\rm obs} = 0.509$ ; this is large in case of positive association (one-sided test)
- ▶ Null hypothesis of independence:  $F(u, x) = F_1(u)F_2(x)$
- ▶ Take bootstrap samples independently from  $\widehat{F}_1 \equiv (\mathtt{dnan}_1, \ldots, \mathtt{dnan}_n)$  and from  $\widehat{F}_2 \equiv (\mathtt{hand}_1, \ldots, \mathtt{hand}_n)$ , then put them together to get bootstrap data  $(\mathtt{dnan}_1^*, \mathtt{hand}_1^*), \ldots, (\mathtt{dnan}_n^*, \mathtt{hand}_n^*)$ .
- ▶ With R = 9,999 get 18 values of  $\widehat{\theta}^* \ge \widehat{\theta}$ , so

$$\widehat{p} = \frac{1+18}{1+9999} = 0.0019 :$$

hand and dnan seem to be positively associated

▶ To test positive or negative association (two-sided test), take  $T = |\widehat{\theta}|$ : gives  $\widehat{p} = 0.004$ .

# Handedness data: Bootstrap from $\widehat{M}_0$





#### Choice of R

▶ Take R big enough to get small standard error for  $\widehat{p}$ , typically  $\geq 100$ , using binomial calculation:

$$\operatorname{var}(\widehat{p}) = \operatorname{var}\left(\frac{1 + \#\{t_r^* \ge t_{\text{obs}}\}}{1 + R}\right)$$
$$\doteq \frac{1}{R^2} Rp_{\text{obs}}(1 - p_{\text{obs}}) = \frac{p_{\text{obs}}(1 - p_{\text{obs}})}{R}$$

so if  $p_{\rm obs} \doteq 0.05$  need  $R \geq 1900$  for 10% relative error (D7)

- ▶ Can choose R sequentially: e.g. if  $\hat{p} \doteq 0.06$  and R = 99, can augment R enough to diminish standard error.
- ightharpoonup Taking R too small lowers power of test.

### Duality with confidence interval

- ▶ Often unclear how to impose null hypothesis on sampling scheme
- ▶ General approach based on duality between confidence interval  $\mathcal{I}_{1-\alpha} = (\theta_{\alpha}, \infty)$  and test of null hypothesis  $\theta = \theta_0$
- ▶ Reject null hypothesis at level  $\alpha$  in favour of alternative  $\theta > \theta_0$ , if  $\theta_0 < \theta_\alpha$
- ▶ Handedness data:  $\theta_0 = 0 \notin \mathcal{I}_{0.95}$ , but  $\theta_0 = 0 \in \mathcal{I}_{0.99}$ , so estimated significance level  $0.01 < \hat{p} < 0.05$ : weaker evidence than before
- $\triangleright$  Extends to tests of  $\theta = \theta_0$  against other alternatives:
  - if  $\theta_0 \notin \mathcal{I}^{1-\alpha} = (-\infty, \theta^{\alpha})$ , have evidence that  $\theta < \theta_0$
  - if  $\theta_0 \notin \mathcal{I}_{1-2\alpha} = (\theta_\alpha, \theta^\alpha)$ , have evidence that  $\theta \neq \theta_0$

#### Pivot tests

- ▶ Equivalent to use of confidence intervals
- ▶ Idea: use (approximate) pivot such as  $Z = (\widehat{\theta} \theta)/V^{1/2}$  as statistic to test  $\theta = \theta_0$
- ▶ Observed value of pivot is  $z_{\text{obs}} = (\widehat{\theta} \theta_0)/V^{1/2}$
- Significance level is

$$\Pr\left(\frac{\widehat{\theta} - \theta}{V^{1/2}} \ge z_{\text{obs}} \mid M_0\right) = \Pr(Z \ge z_{\text{obs}} \mid M_0)$$

$$= \Pr(Z \ge z_{\text{obs}} \mid F)$$

$$\doteq \Pr(Z \ge z_{\text{obs}} \mid \widehat{F})$$

- ▶ Compare observed  $z_{\text{obs}}$  with simulated distribution of  $Z^* = (\widehat{\theta}^* \widehat{\theta})/V^{*1/2}$ , without needing to construct null hypothesis model  $\widehat{M}_0$
- ▶ Use of (approximate) pivot is essential for success

### Example: Handedness data

► Test zero correlation ( $\theta_0 = 0$ ), not independence;  $\widehat{\theta} = 0.509$ ,  $V = 0.170^2$ :

$$z_{\text{obs}} = \frac{\hat{\theta} - \theta_0}{V^{1/2}} = \frac{0.509 - 0}{0.170} = 2.99$$

▶ Observed significance level is

$$\widehat{p} = \frac{1 + \#\{z_r^* \ge z_{\text{obs}}\}}{1 + R} = \frac{1 + 215}{1 + 9999} = 0.0216$$



#### Exact tests

▶ Problem: bootstrap estimate is

$$\widehat{p}_{\text{obs}} = \Pr(T \ge t_{\text{obs}} \mid \widehat{M}_0) \ne \Pr(T \ge t \mid M_0) = p_{\text{obs}},$$

so estimate the wrong thing

- ▶ In some cases can eliminate parameters from null hypothesis distribution by conditioning on sufficient statistic
- ▶ Then simulate from conditional distribution
- ▶ More generally, can use Metropolis—Hastings algorithm to simulate from conditional distribution (below)

### Example: Fir data

- ▶ Data  $Y_1, ..., Y_n \stackrel{\text{iid}}{\sim} \text{Pois}(\lambda)$ , with  $\lambda$  unknown
- ▶ Poisson model has  $E(Y) = var(Y) = \lambda$ : base test of overdispersion on

$$T = \sum (Y_j - \overline{Y})^2 / \overline{Y} \sim \chi_{n-1}^2;$$

observed value is  $t_{\rm obs} = 55.15$ 

▶ Unconditional significance level:

$$\Pr(T \ge t_{\text{obs}} \mid \widehat{M}_0, \lambda)$$

▶ Condition on value w of sufficient statistic  $W = \sum Y_j$ :

$$p_{\text{obs}} = \Pr(T \ge t_{\text{obs}} \mid \widehat{M}_0, W = w),$$

independent of  $\lambda$ , owing to sufficiency of W

▶ Exact test: simulate from multinomial distribution of  $Y_1, \ldots, Y_n$  given  $W = \sum Y_j = 107$ .

### Example: Fir data

Figure: Simulation results for dispersion test. Left panel: R = 999 values of the dispersion statistic  $t^*$  obtained under multinomial sampling: the data value is  $t_{\rm obs} = 55.15$  and  $\hat{p} = 0.25$ . Right panel: chi-squared plot of ordered values of  $t^*$ , dotted line shows  $\chi_{49}^2$  approximation to null conditional distribution.



#### Handedness data: Permutation test

- ▶ Are dnan and hand related?
- ▶ Take  $T = \hat{\theta}$  (correlation coefficient) again
- ▶ Impose null hypothesis of independence:  $F(u,x) = F_1(u)F_2(x)$ , but condition so that marginal distributions  $\widehat{F}_1$  and  $\widehat{F}_2$  are held fixed under resampling plan — permutation test
- ► Take resamples of form

$$(\mathtt{dnan}_1,\mathtt{hand}_{1^*}),\ldots,(\mathtt{dnan}_n,\mathtt{hand}_{n^*})$$

where  $(1^*, \dots, n^*)$  is random permutation of  $(1, \dots, n)$ 

- ▶ Doing this with R = 9,999 gives one- and two-sided significance probabilities of 0.002, 0.003
- ▶ Typically values of  $\hat{p}$  very similar to those for corresponding bootstrap test

# Handedness data: Permutation resample





# Contingency table

| 1 | 2 | 2 | 1 | 1 | 0 | 1 |
|---|---|---|---|---|---|---|
| 2 | 0 | 0 | 2 | 3 | 0 | 0 |
| 0 | 1 | 1 | 1 | 2 | 7 | 3 |
| 1 | 1 | 2 | 0 | 0 | 0 | 1 |
| 0 | 1 | 1 | 1 | 1 | 0 | 0 |

▶ Are row and column classifications independent:

$$Pr(row i, column j) = Pr(row i) \times Pr(column j)$$
?

▶ Standard test statistic for independence is

$$T = \sum_{i,j} \frac{(y_{ij} - \widehat{y}_{ij})^2}{\widehat{y}_{ij}}, \quad \widehat{y}_{ij} = \frac{y_{i\cdot}y_{\cdot j}}{y_{\cdot i}}$$

• Get  $\Pr(\chi_{24}^2 \ge 38.53) = 0.048$ , but is  $T \sim \chi_{24}^2$ ?

# Exact tests: Contingency table

- ► For exact test, need to simulate distribution of *T* conditional on sufficient statistics row and column totals
- ▶ Algorithm (**D8**) for conditional simulation:
  - 1. choose two rows  $j_1 < j_2$  and two columns  $k_1 < k_2$  at random
  - 2. generate new values from hypergeometric distribution of  $y_{j_1k_1}$  conditional on margins of  $2 \times 2$  table

$$y_{j_1k_1} \quad y_{j_1k_2} \\ y_{j_2k_1} \quad y_{j_2k_2}$$

- 3. compute test statistic  $T^*$  every I = 100 iterations, say
- ► Compare observed value  $t_{\rm obs} = 38.53$  with simulated  $T^*$  get  $\hat{p} \doteq 0.08$

## Key points

- ► Tests can be performed using resampling/simulation
- ▶ Must take account of null hypothesis, by
  - modifying sampling scheme to satisfy null hypothesis
  - inverting confidence interval (pivot test)
- ➤ Can use Monte Carlo simulation to get approximations to exact tests simulate from null distribution of data, conditional on observed value of sufficient statistic
- ► Sometimes obtain permutation tests very similar to bootstrap tests

#### Regression

- Motivation
- Basic notions
- Confidence intervals
- Several samples
- Variance estimation
- Tests
- Regression

## Linear regression

▶ Independent data  $(x_1, y_1), \ldots, (x_n, y_n)$  with

$$y_j = x_j^{\mathrm{T}} \beta + \varepsilon_j, \quad \varepsilon_j \sim (0, \sigma^2)$$

▶ Least squares estimates  $\widehat{\beta}$ , leverages  $h_j$ , residuals

$$e_j = \frac{y_j - x_j^{\mathrm{T}} \hat{\beta}}{(1 - h_j)^{1/2}} \quad \dot{\sim} \quad (0, \sigma^2)$$

ightharpoonup Design matrix X is experimental ancillary — should be held fixed if possible, as

$$\operatorname{var}(\widehat{\beta}) = \sigma^2(X^{\mathrm{T}}X)^{-1}$$

if model  $y = X\beta + \varepsilon$  correct

# Linear regression: Resampling schemes

- ► Two main resampling schemes
- ▶ Model-based resampling:

$$y_j^* = x_j^{\mathrm{T}} \widehat{\beta} + \varepsilon_j^*, \quad \varepsilon_j^* \sim \mathrm{EDF}(e_1 - \overline{e}, \dots, e_n - \overline{e})$$

- Fixes design but not robust to model failure
- Assumes  $\varepsilon_j$  sampled from population
- Case resampling:

$$(x_j, y_j)^* \sim \text{EDF}\{(x_1, y_1), \dots, (x_n, y_n)\}\$$

- Varying design X but robust
- Assumes  $(x_j, y_j)$  sampled from population
- Usually design variation no problem; can prove awkward in designed experiments and when design sensitive.

Table: Cement data: y is the heat (calories per gram of cement) evolved while samples of cement set. The covariates are percentages by weight of four constituents, tricalciumaluminate  $x_1$ , tricalcium silicate  $x_2$ , tetracalcium alumino ferrite  $x_3$  and dicalcium silicate  $x_4$ .

|    | $x_1$ | $x_2$ | $x_3$ | $x_4$ | y     |
|----|-------|-------|-------|-------|-------|
| 1  | 7     | 26    | 6     | 60    | 78.5  |
| 2  | 1     | 29    | 15    | 52    | 74.3  |
| 3  | 11    | 56    | 8     | 20    | 104.3 |
| 4  | 11    | 31    | 8     | 47    | 87.6  |
| 5  | 7     | 52    | 6     | 33    | 95.9  |
| 6  | 11    | 55    | 9     | 22    | 109.2 |
| 7  | 3     | 71    | 17    | 6     | 102.7 |
| 8  | 1     | 31    | 22    | 44    | 72.5  |
| 9  | 2     | 54    | 18    | 22    | 93.1  |
| 10 | 21    | 47    | 4     | 26    | 115.9 |
| 11 | 1     | 40    | 23    | 34    | 83.8  |
| 12 | 11    | 66    | 9     | 12    | 113.3 |
| 13 | 10    | 68    | 8     | 12    | 109.4 |

▶ Fit linear model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \varepsilon$$

and apply case resampling

- ► Covariates compositional:  $x_1 + \cdots + x_4 \doteq 100\%$  so X almost collinear smallest eigenvalue of  $X^TX$  is  $l_5 = 0.0012$
- ▶ Plot of  $\widehat{\beta}_1^*$  against smallest eigenvalue of  $X^{*T}X^*$  reveals that  $\text{var}^*(\widehat{\beta}_1^*)$  strongly variable
- ▶ Relevant subset for case resampling post-stratification of output based on  $l_5^*$ ?



Table: Standard errors of linear regression coefficients for cement data. Theoretical and error resampling assume homoscedasticity. Resampling results use R = 999 samples, but last two rows are based only on those samples with the middle 500 and the largest 800 values of  $\ell_1^*$ .

|                                   | $\widehat{eta}_0$ | $\widehat{eta}_1$ | $\widehat{eta}_2$ |
|-----------------------------------|-------------------|-------------------|-------------------|
| Normal theory                     | 70.1              | 0.74              | 0.72              |
| Model-based resampling, $R = 999$ | 66.3              | 0.70              | 0.69              |
| Case resampling, all $R = 999$    | 108.5             | 1.13              | 1.12              |
| Case resampling, largest 800      | 67.3              | 0.77              | 0.69              |

#### Survival data

| dose x       | 117.5  | 235.0  | 470.0 | 705.0 | 940.0 | 1410  |
|--------------|--------|--------|-------|-------|-------|-------|
| survival % y | 44.000 | 16.000 | 4.000 | 0.500 | 0.110 | 0.700 |
|              | 55.000 | 13.000 | 1.960 | 0.320 | 0.015 | 0.006 |
|              |        |        | 6.120 |       | 0.019 |       |

- ▶ Data on survival % for rats at different doses
- ► Linear model:

$$\log(\text{survival}) = \beta_0 + \beta_1 \text{dose}$$



#### Survival data

- ► Case resampling
- ▶ Replication of outlier: none (0), once (1), two or more  $(\bullet)$ .
- ▶ Model-based sampling including residual would lead to change in intercept but not slope.



### Generalized linear model

▶ Response may be binomial, Poisson, gamma, normal, . . .

$$y_j \sim \text{mean } \mu_j, \text{ variance } \phi V(\mu_j),$$

where  $g(\mu_j) = x_j^{\mathrm{T}} \beta$  is linear predictor;  $g(\cdot)$  is link function.

▶ MLE  $\widehat{\beta}$ , fitted values  $\widehat{\mu}_j$ , Pearson residuals

$$r_{Pj} = \frac{y_j - \widehat{\mu}_j}{\{V(\widehat{\mu}_j)(1 - h_j)\}^{1/2}} \quad \dot{\sim} \quad (0, \phi).$$

► Bootstrapped responses

$$y_j^* = \widehat{\mu}_j + V(\widehat{\mu}_j)^{1/2} \varepsilon_j^*$$

where  $\varepsilon_i^* \sim \text{EDF}(r_{P1} - \overline{r}_P, \dots, r_{Pn} - \overline{r}_P)$ . However

- possible that  $y_i^* \notin \{0, 1, 2, \dots, \}$
- $r_{Pj}$  not exchangeable, so may need stratified resampling

#### AIDS data

▶ Log-linear model: number of reports in row j and column k follows Poisson distribution with mean

$$\mu_{jk} = \exp(\alpha_j + \beta_k)$$

▶ Log link function

$$g(\mu_{jk}) = \log \mu_{jk} = \alpha_j + \beta_k$$

and variance function

$$\operatorname{var}(Y_{jk}) = \phi \times V(\mu_{jk}) = 1 \times \mu_{jk}$$

▶ Pearson residuals:

$$r_{jk} = \frac{Y_{jk} - \widehat{\mu}_{jk}}{\{\widehat{\mu}_{jk}(1 - h_{jk})\}^{1/2}}$$

▶ Model-based simulation:

$$Y_{jk}^* = \widehat{\mu}_{jk} + \widehat{\mu}_{jk}^{1/2} \varepsilon_{jk}^*$$

### Regression

| Diagnosis<br>period |         | Reporting-delay interval (quarters): |     |    |    |    |    |    |  | Total<br>reports |                   |
|---------------------|---------|--------------------------------------|-----|----|----|----|----|----|--|------------------|-------------------|
| Year                | Quarter | 0†                                   | 1   | 2  | 3  | 4  | 5  | 6  |  | ≥14              | to end<br>of 1992 |
| 1988                | 1       | 31                                   | 80  | 16 | 9  | 3  | 2  | 8  |  | 6                | 174               |
|                     | 2       | 26                                   | 99  | 27 | 9  | 8  | 11 | 3  |  | 3                | 211               |
|                     | 3       | 31                                   | 95  | 35 | 13 | 18 | 4  | 6  |  | 3                | 224               |
|                     | 4       | 36                                   | 77  | 20 | 26 | 11 | 3  | 8  |  | 2                | 205               |
| 1989                | 1       | 32                                   | 92  | 32 | 10 | 12 | 19 | 12 |  | 2                | 224               |
|                     | 2       | 15                                   | 92  | 14 | 27 | 22 | 21 | 12 |  | 1                | 219               |
|                     | 3       | 34                                   | 104 | 29 | 31 | 18 | 8  | 6  |  |                  | 253               |
|                     | 4       | 38                                   | 101 | 34 | 18 | 9  | 15 | 6  |  |                  | 233               |
| 1990                | 1       | 31                                   | 124 | 47 | 24 | 11 | 15 | 8  |  |                  | 281               |
|                     | 2       | 32                                   | 132 | 36 | 10 | 9  | 7  | 6  |  |                  | 245               |
|                     | 3       | 49                                   | 107 | 51 | 17 | 15 | 8  | 9  |  |                  | 260               |
|                     | 4       | 44                                   | 153 | 41 | 16 | 11 | 6  | 5  |  |                  | 285               |
| 1991                | 1       | 41                                   | 137 | 29 | 33 | 7  | 11 | 6  |  |                  | 271               |
|                     | 2       | 56                                   | 124 | 39 | 14 | 12 | 7  | 10 |  |                  | 263               |
|                     | 3       | 53                                   | 175 | 35 | 17 | 13 | 11 |    |  |                  | 306               |
|                     | 4       | 63                                   | 135 | 24 | 23 | 12 |    |    |  |                  | 258               |
| 1992                | 1       | 71                                   | 161 | 48 | 25 |    |    |    |  |                  | 310               |
|                     | 2       | 95                                   | 178 | 39 |    |    |    |    |  |                  | 318               |
|                     | 3       | 76                                   | 181 |    |    |    |    |    |  |                  | 273               |
|                     | 4       | 67                                   |     |    |    |    |    |    |  |                  | 133               |

#### AIDS data

- ▶ Poisson two-way model deviance 716.5 on 413 df indicates strong overdispersion:  $\phi > 1$ , so Poisson model implausible
- Residuals highly inhomogeneous exchangeability doubtful



### AIDS data: Prediction intervals

- ► To estimate prediction error:
  - simulate complete table  $y_{jk}^*$ ;
  - estimate parameters from incomplete  $y_{jk}^*$
  - get estimated row totals and 'truth'

$$\widehat{\mu}_{+,j}^* = e^{\widehat{\alpha}_j^*} \sum_{k \text{ unobs}} e^{\widehat{\beta}_k^*}, \quad y_{+,j}^* = \sum_{k \text{ unobs}} y_{jk}^*.$$

Prediction error

$$\frac{y_{+,j}^* - \widehat{\mu}_{+,j}^*}{\widehat{\mu}_{+,j}^{*1/2}}$$

studentized so more nearly pivotal.

 $\triangleright$  Form prediction intervals from R replicates.

## AIDS data: Resampling plans

- ▶ Resampling schemes:
  - parametric simulation, fitted Poisson model
  - parametric simulation, fitted negative binomial model
  - nonparametric resampling of  $r_P$
  - stratified nonparametric resampling of  $r_P$
- ▶ Stratification based on skewness of residuals, equivalent to stratifying original data by values of fitted means
- ► Take strata for which

$$\widehat{\mu}_{jk} < 1, \quad 1 \le \widehat{\mu}_{jk} < 2, \quad \widehat{\mu}_{jk} \ge 2$$

#### AIDS data: Results

- ▶ Deviance/df ratios for the sampling schemes, R = 999.
- ▶ Poisson variation inadequate.
- ▶ 95% prediction limits.



### AIDS data: Semiparametric model

▶ More realistic: generalized additive model

$$\mu_{jk} = \exp\left\{\alpha(j) + \beta_k\right\},\,$$

where  $\alpha(j)$  is locally-fitted smooth.

- ▶ Same resampling plans as before
- ▶ 95% intervals now generally narrower and shifted upwards





## Key points

- ▶ Key assumption: independence of cases
- ► Two main resampling schemes for regression settings:
  - Model-based
  - Case resampling
- ▶ Intermediate schemes possible
- ➤ Can help to reduce dependence on assumptions needed for regression model
- ▶ These two basic approaches also used for more complex settings (time series, ...), where data are dependent

### Summary

- ▶ Bootstrap: simulation methods for frequentist inference.
- ▶ Useful when
  - standard assumptions invalid (n small, data not normal, ...);
  - standard problem has non-standard twist;
  - complex problem has no (reliable) theory;
  - or (almost) anywhere else.
- Have described
  - basic ideas
  - confidence intervals
  - tests
  - some approaches for regression

### Books

- ► Chernick (1999) Bootstrap Methods: A Practicioner's Guide. Wiley
- ▶ Davison and Hinkley (1997) Bootstrap Methods and their Application. Cambridge University Press
- ► Efron and Tibshirani (1993) An Introduction to the Bootstrap. Chapman & Hall
- ► Hall (1992) The Bootstrap and Edgeworth Expansion. Springer
- ► Lunneborg (2000) Data Analysis by Resampling: Concepts and Applications. Duxbury Press
- ▶ Manly (1997) Randomisation, Bootstrap and Monte Carlo Methods in Biology. Chapman & Hall
- ▶ Shao and Tu (1995) The Jackknife and Bootstrap. Springer