# **TPL5010 – Watchdog and Interrupt Timer**

This is a description of some practical tests carries out on the operation of the TPL5010 low current timer. The timer uses a resistor on the DLY pin to set the timer, this period can be from a milli seconds up to 2 hours. See the appendix at the end of the document for resistor values and times.

The TPL5010 is similar to the TPL5110. The TPL5010 has the advantage of an open drain output on the RST pin which is ideal for direct drive of the RESET pin of a microcontroller.

The TPL5110 is designed to power down a project by driving a MOSFET or similar to connect and disconnect power to the microcontroller. This might seem a good choice for a project; deep sleep current in these circumstances should be in the 0.1uA region. However bear in mind that in these circumstances the project program starts from new every wakeup and thus the processor can be running for a couple of seconds before its ready to carry out its function. There is also a need for non-volatile storage to save status between sleeps. Deep sleeping the project so that the program continues just after the point where its put to sleep (with memory and variables intact) can in some circumstances be more power\battery efficient.



In the schematic above INT\_DLY is normally connected to an input, that is swapped to an output briefly to reset the timer.

INT\_RESET is connected to an input with internal pull-up enabled since this output from the TPL5010 is an open drain output.

INT\_DONE is an input.

INT\_WAKE is an output.

R4 sets the timer period, the value is read by the TPL5010 when power is applied to the device.

Note: R11 is a pull-up that ensures that in the event of the microcontroller failing to start, the DONE input of the TPL5010 does not float. If left floating it could be seen as a pulsing signal by the TPL5010 preventing the INT\_RESET from operating.

A program was written that setup INT\_WAKE and INT\_RESET as interrupts, with flag set if the interrupts occurred. There were routines to pulse the INT\_DONE and INT\_DLY pins.

The program ran a loop that approximately every second printed elapsed seconds and checked the flags for the interrupts having occurred, and printed a count of these interrupts.

R4 was initially 12K giving a time period of around 12 seconds.

# Test 1 – Effect of no INT\_DONE pulses

R4 was 12K giving a time period of around 12 seconds. Apply power, no pulses at start-up to INT\_DLY or INT\_DONE.

After 12 seconds there is an INT\_RESET. INT\_RESET interrupts then occur every 12 seconds, there are no INT\_WAKE interrupts.

### Test 2 - Effect of pulsing INT\_DONE at power up.

R4 was 12K giving a time period of around 12 seconds. Apply power, pulse INT\_DONE at start-up.

After 12 seconds there is an INT\_WAKE interrupt then 12 seconds later an INT\_RESET interrupt. INT\_RESETs then occur every 12 seconds, there are no further INT\_WAKE interrupts.

#### Test 3 – Effect of regular INT\_DONE pulses.

R4 was 12K giving a time period of around 12 seconds. Apply power, pulse INT\_DONE at start-up. After the INT\_WAKE interrupt pulse INT\_DONE.

After 12 seconds there is an INT\_WAKE interrupt then every 12 seconds there is a further INT\_WAKE interrupt. There are no INT\_RESET interrupts. .

#### **Test 4 – Effect of DONE pin floating.**

R4 was 12K giving a time period of around 12 seconds. Apply power, leave INT\_DONE floating.

There are erratic INT\_WAKE interrupts, less than 12 seconds apart. There are no INT\_RESET interrupts.

Therefore if the microcontroller fails to start correctly for some reason and INT\_WAKE is not changed from the default of input to an output there will be no reset output which could recover the situation. There does not seem to be a reason as to why the WAKE pin on the TPL5010 does not have a weak pull-up.

#### **Test 5 – Pulse DLY timer pin with IO pin.**

R4 was 47K giving a time period of around 360 seconds. Apply power, pulse INT\_DONE at start-up. After the first INT\_WAKE or INT\_RESET interrupt, pulse INT\_DLY.

The pulse on INT\_DLY resets the counters in the TPL5010 and causes the resistor to be read and checked again after the high on the INT\_DLY pin is removed. As this is a valid reset operation (assuming INT\_DLY is high for more than 20mS) there is also low pulse on the TPL5010 RST output (INT\_RESET).

So the sequence is; an INT\_WAKE interrupt which causes an INT\_RESET interrupt and there is then a sequence of INT\_RESET interrupts every 370 seconds with no further INT\_WAKE interrupts.

### Test 6 – Effect of IO pin on DLY timer pin.

R4 was 47K giving a time period of around 360 seconds with INT\_RESET connected to the processor RESET line. Check the time period a) with an IO line connected to DLY and b) without an IO line connected to DLY.

- a) Apply power, pulse INT\_DONE once at start-up. After power up there is an INT\_WAKE at 367 seconds and a reset of the microcontroller after 737 seconds. The sequence of INT\_WAKE interrupts and resets then continues.
- b) Repeat a) with an IO line as input connected to INT\_DLY. Same sequence as for a) at 369seconds and.

Conclusion; there is no particular problem with connecting an IO line to DLY to force a reset\re-read of the timer resistor, but its not necessary. A simple bit of code can be used to reset the microcontroller.

# **Test 7 – Total sleep current.**

Atmega 1284P using TP5010 as interrupt wake up timer and MCP1700 3V3 regulator. R4 was 12K giving a time period of around 12 seconds, 1284P put into deep sleep to wakeup on TPL5010 WAKE output. Using following libraries;

```
#include "LowPower.h" //https://github.com/rocketscream/Low-Power
#include "PinChangeInterrupt.h" //https://github.com/NicoHood/PinChangeInterrupt
```

Atmega1284 wakes up and goes back to sleep every 12 seconds, deep sleep current 2uA.

#### **Stuart Robinson**

September 2018

# Appendix A

### Extracts from TPL5010 datasheet;

http://www.ti.com/lit/ds/symlink/tpl5010.pdf

Table 2. First 9 Time Intervals

| tIP (ms) | Resistance ( $\Omega$ ) | Closest Real Value ( $\Omega$ ) | Parallel of Two 1% Tolerance Resistors, ( $k\Omega$ ) |
|----------|-------------------------|---------------------------------|-------------------------------------------------------|
| 100      | 500                     | 500                             | 1.0 // 1.0                                            |
| 200      | 1000                    | 1000                            | -                                                     |
| 300      | 1500                    | 1500                            | 2.43 // 3.92                                          |
| 400      | 2000                    | 2000                            | -                                                     |
| 500      | 2500                    | 2500                            | 4.42 // 5.76                                          |
| 600      | 3000                    | 3000                            | 5.36 // 6.81                                          |
| 700      | 3500                    | 3500                            | 4.75 // 13.5                                          |
| 800      | 4000                    | 4000                            | 6.19 // 11.3                                          |
| 900      | 4500                    | 4501                            | 6.19 // 16.5                                          |

Table 3. Most Common Time Intervals Between 1s to 2h

| tIP | Calculated Resistance ( $k\Omega$ ) | Closest Real Value $(k\Omega)$ | Parallel of Two 1% Tolerance Resistors, $(k\Omega)$ |
|-----|-------------------------------------|--------------------------------|-----------------------------------------------------|
| 1s  | 5.20                                | 5.202                          | 7.15 // 19.1                                        |
| 2s  | 6.79                                | 6.788                          | 12.4 // 15.0                                        |
| 3s  | 7.64                                | 7.628                          | 12.7// 19.1                                         |
| 4s  | 8.30                                | 8.306                          | 14.7 // 19.1                                        |
| 5s  | 8.85                                | 8.852                          | 16.5 // 19.1                                        |
| 6s  | 9.27                                | 9.223                          | 18.2 // 18.7                                        |
| 7s  | 9.71                                | 9.673                          | 19.1 // 19.6                                        |
| 8s  | 10.18                               | 10.180                         | 11.5 // 8.87                                        |
| 9s  | 10.68                               | 10.68                          | 17.8 // 26.7                                        |
| 10s | 11.20                               | 11.199                         | 15.0 // 44.2                                        |
| 20s | 14.41                               | 14.405                         | 16.9 // 97.6                                        |
| 30s | 16.78                               | 16.778                         | 32.4 // 34.8                                        |
| 40s | 18.75                               | 18.748                         | 22.6 // 110.0                                       |
| 50s | 20.047                              | 20.047                         | 28.7 // 66.5                                        |

Table 3. Most Common Time Intervals Between 1s to 2h (continued)

| tIP  | Calculated Resistance ( $k\Omega$ ) | Closest Real Value ( $k\Omega$ ) | Parallel of Two 1% Tolerance Resistors, $(k\Omega)$ |
|------|-------------------------------------|----------------------------------|-----------------------------------------------------|
| 1min | 22.02                               | 22.021                           | 40.2 // 48.7                                        |
| 2min | 29.35                               | 29.349                           | 35.7 // 165.0                                       |
| 3min | 34.73                               | 34.729                           | 63.4 // 76.8                                        |

| 4min    | 39.11  | 39.097  | 63.4 // 102.0   |
|---------|--------|---------|-----------------|
| 5min    | 42.90  | 42.887  | 54.9 // 196.0   |
| 6min    | 46.29  | 46.301  | 75.0 // 121.0   |
| 7min    | 49.38  | 49.392  | 97.6 // 100.0   |
| 8min    | 52.24  | 52.224  | 88.7 // 127.0   |
| 9min    | 54.92  | 54.902  | 86.6 // 150.0   |
| 10min   | 57.44  | 57.437  | 107.0 // 124.0  |
| 20min   | 77.57  | 77.579  | 140.0 // 174.0  |
| 30min   | 92.43  | 92.233  | 182.0 // 187.0  |
| 40min   | 104.67 | 104.625 | 130.0 // 536.00 |
| 50min   | 115.33 | 115.331 | 150.0 // 499.00 |
| 1h      | 124.91 | 124.856 | 221.0 // 287.00 |
| 1h30min | 149.39 | 149.398 | 165.0 // 1580.0 |
| 2h      | 170.00 | 170.00  | 340.0 // 340.0  |
|         |        |         |                 |

The End.