Generalidades de los Sistemas Paralelos

CC3069 – Programación Paralela y Distribuida Ciclo 1 - 2020

Computadoras Modernas

- La *Ley de Moore* predecía el crecimiento de los equipos uniprocesador. *Ya no es válida*.
- A partir del 2002 debemos adoptar *estrategias paralelas para seguir mejorando* el desempeño (performance) y rendimiento (throughput)
- Toda computadora moderna es paralela (escritorio, server, móvil, embebida)

Paralelismo en múltiples niveles

Procesador

 Microarquitectura, Pipeline, Múltiple emisión, Predicción y Especulación

Multinúcleos

 UP (unidades de procesamiento) separadas, Memoria compartida, Buses integrados

Clusters

 Equipos multinúcleo con interconexión, Alto desempeño; Entorno Empresarial y científico

GPUs

• SIMD, a nivel de equipos de consumo (usuario)

El muro de potencia

Tipos de Sistemas Paralelos

Sistemas de Memoria Compartida

Sistemas de Memoria Distribuida

Estrategias para lograr paralelismo

Estrategias generales de paralelismo en software

Repartición de Datos

- Data-parallel
- División de dominio

Separación de Tareas

Task-parallel

Rediseño del Algoritmo

- Método de Foster
- Algoritmo Paralelo

```
sum = 0;
for (i=0; i<n; i++) {
    x=siguiente_valor(...);
    suma += x;
}</pre>
```

- Calcular n valores y sumarlos (serial)
- Podemos dividir el dominio de datos entre diferentes UPs

- Cada UP (núcleo) recibe una porción de los datos
- Variables y sumas parciales locales
- Dividimos los *n* datos dentro de *p* UPs

• División de dominio:

Core	0	1	2	3	4	5	6	7
my_sum	1,4,3	9,2,8	5,1,1	6,2,7	2,5,0	4,1,8	6,5,1	2,3,9

Sumas parciales:

Core	o	1	2	3	4	5	6	7
my_sum	8	19	7	15	7	13	12	14

```
If(soy_maestro){
    suma = mi_x;
    for each core <> maestro {
       obtener suma_parcial;
       suma += suma_parcial;
    }
} else {
    send mi_x a maestro;
}
```

- Designo 1 UP como maestra para acumular todos las sumar parciales
- Muchas llamadas a 1 sola UP.

- ANALISIS
 - La UP maestra recibe 7 llamadas y realiza 8 sumas

MEJORA

MEJORA

- Repartimos el trabajo hacia otras UP
- Trabajan en parejas (par-impar)
 - · Core o suma valores del core 1
 - Core 2 suma valores del core 3
 - Core 4 suma valores del core 5 ...
- · Repetimos en el siguiente nivel
 - · Core o suma acumulado del core 2
 - Core 4 suma acumulado del core 6
- En el ultimo paso, el core o suma la mitad de valores acumulados en el core 4
 - En total realiza 3 operaciones de comunicación (3 niveles)

LOS NÚMEROS IMPORTAN

- A mayor número de UPs, mayor ganancia en la reducción de la comunicación inter-UP/proceso.
- Con 1000 Ups:
 - Acumulación en UP maestra = 999 mensajes recibidos
 - Acumulación por parejas = 10 mensajes recibidos máximo en la UP o
- Mejora relativa = 999 / 10 ≈ **100**

División de Tareas

30 preguntas 300 exámenes

3 auxiliares

División de Datos – 100 exámenes cada uno

División de Tareas

División de Tareas

División de Tareas – 10 preguntas cada uno

Ambas estrategias mezcladas

¿Dónde?

```
sum = 0;
 for (i=0; i<n; i++) {
    x=siguiente_valor(...);
                                     Data-parallel
    suma += x;
If(soy_maestro){
   suma = mi_x;
   for each core <> maestro {
      obtener suma_parcial;
      suma += suma_parcial;
                                     Task-parallel
                                       (Recibir,
} else {
                                       sumar)
   send mi_x a maestro;
```

Coordinación de UPs

Es común que tengamos que mantener coordinación del procesamiento y la carga de cómputo:

COMUNICACIÓN

• Intercambio de resultados parciales

BALANCE DE CARGA

 Aprovechar los recursos de forma equitativa. Ocupar las UPs al mismo tiempo

SINCRONÍA

 No podemos asumir las mismas condiciones en cada UP.
 El mismo proceso correrá diferente cada vez aún en la misma UP.