递增进制法

中介数

 $a_n a_{n-1} \cdots a_2$, 其中 a_i 表示 i 的右边比 i 小的数字个数

中介数	排列
0000	12345
0001	21345
0010	13245
0011	23145
0100	12435

中介数转排列

从 a_n 往 a_2 填即可

e.g. 中介数是 67342221, 求排列

中介数	排列
$a_9=6$	9
$a_8=7$	8.9
$a_7 = 3$	8.97
$a_6=4$	8.96.7
$a_5=2$	8.96.75
$a_4=2$	8.96 4 75
$a_3=2$	8 <mark>3</mark> 96475
$a_2 = 1$	8396475 <mark>2</mark> .

中介数	排列
1 没有中介数	83964752 <mark>1</mark>

序号

$$m=\sum_{i=2}^n a_i(i-1)!$$

其中 a_i 是中介数

序号转中介数

$$m=a_2+2!a_3+3!a_4+\cdots+(n-1)!a_n \ =a_2+2(a_3+3(a_4+\cdots+(n-1)a_n))$$

所以我们从 i=2 到 i=n,每次对 m 做带余除法,余数为当前的 a_i ,商进行下一次带余除法

e.g. 9 位排列,序号是 279905, 求中介数

$$279905 \div 2 = 139952 \cdots 1$$
 $139952 \div 3 = 46650 \cdots 2$
 $46650 \div 4 = 11662 \cdots 2$
 $11662 \div 5 = 2332 \cdots 2$
 $2332 \div 6 = 388 \cdots 4$
 $388 \div 7 = 55 \cdots 3$
 $55 \div 8 = 6 \cdots 7$
 $6 \div 9 = 0 \cdots 6$

所以中介数就是 67342221

下一个排列

e.g. 求 839647521 的下一个排列

找到最长的逆序对,839647521,交换 3 与 4 并把 1~3 按顺序填好,得到下一个排列是 849617523

递减进制法

中介数

 $a_2 a_3 \cdots a_n$, 其中 a_i 仍表示 i 的右边比 i 小的数字个数

中介数	排列
0004	51234
0010	12435
0134	54132
0200	31245

中介数转排列

跟递增进制法一样,从 a_n 往 a_2 填即可,此处略

序号

$$egin{align} m &= a_n + a_{n-1} \cdot n + a_{n-2} \cdot n(n-1) + \dots + a_2 rac{n!}{2} \ &= n! \sum_{i=2}^n rac{a_i}{i!} \ \end{aligned}$$

序号转中介数

$$egin{aligned} m &= a_n + a_{n-1} \cdot n + a_{n-2} \cdot n(n-1) + \dots + a_2 rac{n!}{2} \ &= a_n + n(a_{n-1} + (n-1)(a_{n-2} + \dots + (3a_2)) \end{aligned}$$

类似于递增进制法,但是从i=n到i=2进行带余除法

e.g. 9 位排列,序号是 340989,求中介数

$$340989 \div 9 = 37887 \cdots 6$$

$$37887 \div 8 = 4735 \cdots 7$$

$$4735 \div 7 = 676 \cdots 3$$

$$676 \div 6 = 112 \cdots 4$$

$$112 \div 5 = 22 \cdots 2$$

$$22 \div 4 = 5 \cdots 2$$

$$5 \div 3 = 1 \cdots 2$$

$$1 \div 2 = 0 \cdots 1$$

所以中介数就是 12224376

下一个排列

设 k 是能往左移的最大的数,将 k 往左移一位 , k+1 到 n 按顺序回到最后

e.g.

- 839647521 的下一个排列是 893647521
- 987542361 的下一个排列是 542631789

字典序法

中介数

 $k_1 \ k_2 \cdots k_{n-1}$,其中 k_i 表示 p_i 的右边比 p_i 小的数字个数

中介数转排列

从 k_1 往 k_n 填

e.g. 中介数是 72642321, 求排列

中介数	剩余数字	前缀
$k_1 = 7$	123456789	8
$k_2=2$	12 <mark>3</mark> 45679	83

中介数	剩余数字	前缀
$k_{3} = 6$	1245679	839
$k_4=4$	124567	8396
$k_5=2$	12 <mark>4</mark> 57	83964
$k_6 = 3$	1257	839647
$k_7=2$	125	8396475
$k_8 = 1$	12	83964752
	1	839647521

序号

$$m=\sum_{i=1}^{n-1}k_i(n-i)!$$

序号转中介数

$$m = (n-1)!k_1 + (n-2)!k_2 + \dots + 2!k_{n-2} + k_{n-1}$$

= $k_{n-1} + 2(k_{n-2} + 3(k_{n-3} + \dots + (n-1)k_1))$

看式子就知道跟递增进制法基本一致,从 i=2 到 i=n,每次对 m 做带余除法,余数为 k_{n-i+1} ,商进行下一次带余除法

e.g. 序号是 297191

$$297191 \div 2 = 148595 \cdots 1$$
 $148595 \div 3 = 49531 \cdots 2$
 $49531 \div 4 = 12382 \cdots 3$
 $12382 \div 5 = 2476 \cdots 2$
 $2476 \div 6 = 412 \cdots 4$
 $412 \div 7 = 58 \cdots 6$
 $58 \div 8 = 7 \cdots 2$
 $7 \div 9 = 0 \cdots 7$

下一个排列

从后往前找到第一个 $a_i < a_{i+1}$ 的位置,在 [i+1:n] 的后缀中从后往前找到第一个比 a_i 大的位置 j ,交换 a_i 与 a_j 并把交换后的后缀按顺序写

e.g. 求 839647521 的下一个排列,后缀中第一个比 4 大的是 5,交换 4 与 5,按顺序写下 1247,即下一个排列是 839651247

邻位交换法

这个有点神秘, 其类似于递减进制法, 但是 S 型移动数字

中介数

我们令**奇排列**指逆序对数为奇数的排列,**偶排列**为逆序对数为偶数的排列。

我们给数字 k 上定义一个箭头,其方向由 [1,k-1] 的排列决定,偶左奇右,偶 \leftarrow 奇 \rightarrow

规定 1 的箭头指向左

中介数 $b_2 b_3 \cdots b_n$,其中 b_i 表示 i 的箭头**反方向**比 i 小的数字个数

序号

类似递减进制法

$$egin{align} m &= b_n + b_{n-1} \cdot n + b_{n-2} \cdot n(n-1) + \dots + b_2 rac{n!}{2} \ &= n! \sum_{i=2}^n rac{b_i}{i!} \end{split}$$

序号转中介数

就跟递减进制法非常类似啦, 见下一小节

中介数转排列

难点在于,我们不知道当前数的箭头,所以不知道应该从哪边数格子填。

我们先根据中介数计算出序号,然后进行**序号转中介数**的操作,根据每次带余除法的**商的奇偶性**,得出当前数的箭头方向。

以 9 位排列,中介数 10121372 为例。

$$m = 1 * \frac{9!}{2!} + 0 * \frac{9!}{3!} + 1 * \frac{9!}{4!} + 2 * \frac{9!}{5!} + 1 * \frac{9!}{6!} + 3 * \frac{9!}{7!} + 7 * \frac{9!}{8!} + 2 * \frac{9!}{9!}$$

$$= 203393$$

$$203393 \div 9 = 22599 \cdots 2$$

$$22599 \div 8 = 2824 \cdots 7$$

$$2824 \div 7 = 403 \cdots 3$$

$$403 \div 6 = 67 \cdots 1$$

$$67 \div 5 = 13 \cdots 2$$

$$13 \div 4 = 3 \cdots 1$$

$$3 \div 3 = 1 \cdots 0$$

$$1 \div 2 = 0 \cdots 1$$

每一次带余除法中,余数对应的就是中介数,商是**奇数**则→,是**偶数**则←。

中介数	箭头方向	排列
$b_9=2$	\rightarrow	9
$b_8=7$	←	8.9
$b_7 = 3$	\rightarrow	8.97
$b_6=1$	\rightarrow	8.96.7
$b_5=2$	\rightarrow	8.96.75
$b_4=1$	\rightarrow	8.96475
$b_3 = 0$	\rightarrow	8 <mark>3</mark> 96475
$b_2 = 1$		8396475 <mark>2</mark> .

中介数	箭头方向	排列
1 没有中介数	不关心	83964752 <mark>1</mark>

下一个排列

首先,我们在确定当前排列每个数的箭头方向时,只需要知道逆序对的奇偶性即可,设已经算完了 [1,i-1] 的排列,对于当前数 i ,如果其使排列增加了奇数个逆序对,那我们就在这个数上标一个点,i

判断是奇排列还是偶排列时,根据点的奇偶性判断即可。

以排列 839647521 为例。

排列	逆序增加数	奇偶性
1		偶
21	奇	奇
3 21	偶	奇
3421	偶	奇
34521	偶	奇
3 <mark>6</mark> 4521	偶	奇
364 <mark>7</mark> 521	奇	偶
8 3647521	奇	奇
839647521	偶	奇

所以 $\dot{8}3964\dot{7}5\dot{2}1$, $\dot{8}$ $\dot{3}$ $\dot{9}$ $\dot{6}$ $\dot{4}$ $\dot{7}$ $\dot{5}$ $\dot{2}$ $\dot{1}$,最大的能按箭头方向移动的数是 9,所以下一个排列是 836947521

例题

序号 202487, 9 位排列, 求其在四种排列生成算法下的排列, 中介数和下一个排列

	递增进制法	递减进制法	字典序法	邻位交换法
中介数	50111321	10115525	50111321	10115525
排列	432956718	672 <mark>9</mark> 14853	613459872	$635 \overset{\leftarrow}{9} 42871$
下一个排列	51293674 8	67 <mark>9</mark> 214853	613472589	$63\frac{\leftarrow}{9}542871$

递增进制法、字典序法的中介数计算过程如下:

$$202487 \div 2 = 101243 \cdots 1$$

$$101243 \div 3 = 33747 \cdots 2$$

$$33747 \div 4 = 8436 \cdots 3$$

$$8436 \div 5 = 1687 \cdots 1$$

$$1687 \div 6 = 281 \cdots 1$$

$$281 \div 7 = 40 \cdots 1$$

$$40 \div 8 = 5 \cdots 0$$

$$5 \div 9 = 0 \cdots 5$$

递减进制法、邻位交换法的中介数计算过程如下:

$$202487 \div 9 = 22498 \cdots 5$$

$$22498 \div 8 = 2812 \cdots 2$$

$$2812 \div 7 = 401 \cdots 5$$

$$401 \div 6 = 66 \cdots 5$$

$$66 \div 5 = 13 \cdots 1$$

$$13 \div 4 = 3 \cdots 1$$

$$3 \div 3 = 1 \cdots 0$$

$$1 \div 2 = 0 \cdots 1$$