1. Motivation: A multilevel CAR model for forest restoration

The Sabah biodiversity experiment

Measurements of more than 7000 trees in 124 study plots are collected over 10 years and researchers want to investigate:

- tree growth rate \sim biodiversity + species?
- any spatial correlation?
 - tree level: $\varepsilon_{ij}|\delta(\varepsilon_{ij}) \sim \mathcal{N}(\rho_e \sum \delta(\varepsilon_{ij}), \sigma_e^2)$
 - plot level: $b_j | \delta(b_j) \sim \mathcal{N}(\rho_p \sum \delta(b_j), \sigma_p^2)$

A multilevel CAR model

$$oldsymbol{y} = oldsymbol{X}oldsymbol{eta} + Zoldsymbol{b} + oldsymbol{arepsilon}; \ oldsymbol{b} \sim \mathcal{N}(oldsymbol{0}, \Sigma_b), \ oldsymbol{arepsilon} \sim \mathcal{N}(oldsymbol{0}, \Sigma_{arepsilon})$$

$$\Sigma_b = (I - \rho_p W_p)^{-1} \otimes diag(\Sigma_{b_j}), \ \Sigma_{b_j} = \sigma_b^2 I_{n_j}; \Sigma_{\varepsilon} = \sigma^2 (I - \rho_e W_e)^{-1}$$

2. The likelihood evaluation

The log-likelihood function $\ell(\theta; y)$ is

$$\propto \frac{\log(|\Sigma_{\varepsilon}||\Sigma_b|)}{-2} + \log \int \exp\left\{\frac{\tilde{\boldsymbol{e}}^T \Sigma_{\varepsilon}^{-1} \tilde{\boldsymbol{e}}^T + \boldsymbol{b}^T \Sigma_b^{-1} \boldsymbol{b}}{-2}\right\} d\boldsymbol{b} \propto -\frac{1}{2} \left(\log|\Sigma_y| + \boldsymbol{e}^T \Sigma_y^{-1} \boldsymbol{e}^T\right)$$

$$\Sigma_y = Z^T \Sigma_b Z + \Sigma_{\varepsilon}, \ \tilde{\boldsymbol{e}} = \boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta} - Z\boldsymbol{b}, \ \boldsymbol{e} = \boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}$$

 $|\Sigma_y| \text{ and } \Sigma_y^{-1} \text{ takes } \mathcal{O}(n^3) \text{ flops but } \Sigma_{\varepsilon}^{-1} \text{ and } \Sigma_b^{-1} \text{ are } \boldsymbol{sparse}!$

4. MC-MLE THROUGH RSM

Use evaluations at design points to fit a low-order polynomials approximation to the target function within the design region. Search for the maximum by exploring along the steepest ascent path. (?)

3. The Monte Carlo likelihood

For the likelihood $L(\theta; y) = \int f_{\theta}(y, b) db$, generate s samples of $b^{*(i)} \sim f_{\psi}(b|Y=y)$. (?)

MC likeihood:

 $\ell_{\psi}^{s}(\theta) = \log \frac{1}{s} \sum_{i}^{s} \frac{f_{\theta}(y, b^{*(i)})}{f_{\psi}(y, b^{*(i)})}$

MC MLE: $\hat{\theta}_{\psi}^{s} = \arg\max_{\theta \in \Theta} \hat{\ell}_{\psi}^{s}(\theta)$

MC error: depends on $d(\theta, \psi)$ and scales as $1/\sqrt{s}$.

5. Conclusion

- simulation-based likelihood inference procedure with stable implementation and acceptable computation time
 - regardless of initial value
 - 1 CPU hour for the SBE data
- fully automated and easy adaptation to more complicated spatial models.
- available in the package mclcar.

References