```
#import Libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
```

from google.colab import files
upload=files.upload()

Browse... No files selected. Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to enable.

read the data set
data=pd.read_csv("Cancer.csv")
data.head()

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	sm
0	842302	М	17.99	10.38	122.80	1001.0	
1	842517	М	20.57	17.77	132.90	1326.0	
2	84300903	М	19.69	21.25	130.00	1203.0	
3	84348301	М	11.42	20.38	77.58	386.1	
4	84358402	M	20.29	14.34	135.10	1297.0	

get basic info of data
data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 33 columns):

	,	•	
#	Column	Non-Null Count	Dtype
0	id	569 non-null	int64
1	diagnosis	569 non-null	object
2	radius_mean	569 non-null	float64
3	texture_mean	569 non-null	float64
4	perimeter_mean	569 non-null	float64
5	area_mean	569 non-null	float64
6	smoothness_mean	569 non-null	float64
7	compactness_mean	569 non-null	float64
8	concavity_mean	569 non-null	float64
9	concave points_mean	569 non-null	float64
10	symmetry_mean	569 non-null	float64
11	fractal dimension mean	560 202-2111	f1~~+61

```
20 symmetry_se 569 non-null float64
21 fractal_dimension_se 569 non-null float64
22 radius_worst 569 non-null float64
23 texture_worst 569 non-null float64
24 perimeter_worst 569 non-null float64
25 area_worst 569 non-null float64
26 smoothness_worst 569 non-null float64
27 compactness_worst 569 non-null float64
28 concavity_worst 569 non-null float64
29 concave points_worst 569 non-null float64
30 symmetry_worst 569 non-null float64
31 fractal_dimension_worst 569 non-null float64
32 Unnamed: 32 0 non-null float64
33 Unnamed: 32 0 non-null float64
34 dtypes: float64(31), int64(1), object(1)
memory_usage: 146.8+ KB
```

check missing values in data
data.isnull().sum()

id	0
diagnosis	0
radius_mean	0
texture_mean	0
perimeter_mean	0
area_mean	0
smoothness_mean	0
compactness_mean	0
concavity_mean	0
concave points_mean	0
symmetry_mean	0
<pre>fractal_dimension_mean</pre>	0
radius_se	0
texture_se	0
perimeter_se	0
area_se	0
smoothness_se	0
compactness_se	0
concavity_se	0
concave points_se	0
symmetry_se	0
fractal_dimension_se	0
radius_worst	0
texture_worst	0
perimeter_worst	0
area_worst	0
smoothness_worst	0

```
data.set_index("id", inplace=True)
```

#Most of the columns are Numerical and only one categorical columns "diagnosis" data.diagnosis.value_counts()

B 357 M 212

Name: diagnosis, dtype: int64

data.describe()

	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	c
count	569.000000	569.000000	569.000000	569.000000	569.000000	
mean	14.127292	19.289649	91.969033	654.889104	0.096360	
std	3.524049	4.301036	24.298981	351.914129	0.014064	
min	6.981000	9.710000	43.790000	143.500000	0.052630	
25%	11.700000	16.170000	75.170000	420.300000	0.086370	
50%	13.370000	18.840000	86.240000	551.100000	0.095870	
75%	15.780000	21.800000	104.100000	782.700000	0.105300	
max	28.110000	39.280000	188.500000	2501.000000	0.163400	

from sklearn.preprocessing import LabelEncoder
label_encoder=LabelEncoder()

```
#diagnosis
data["diagnosis"]=label_encoder.fit_transform(data["diagnosis"])
```

Feature Selection using RandomForestClassifier

```
# lets select important features first using Random Forset classifier.
from sklearn.ensemble import RandomForestClassifier
rf_model= RandomForestClassifier(n_estimators=100)

#now fit the model
rf_model.fit(x,y)

#now get important features
important_feature= rf_model.feature_importances_

# now lets visualize the important features
df=pd.DataFrame({"Features":pd.DataFrame(x).columns,"Importance":important feature})
```

23	area_worst	0.144693
20	radius_worst	0.132321
22	perimeter_worst	0.127033
27	concave points_worst	0.106479
7	concave points_mean	0.062790
2	perimeter_mean	0.043717
26	concavity_worst	0.041974
13	area_se	0.040958
6	concavity_mean	0.039632
3	area_mean	0.038940
0	radius_mean	0.033357
12	perimeter se	0.024902


```
#splitting the data
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(final_df,y, test_size= 0.2, ran
```

Now we will scale the value to as ANN is sensitive to magnitude of values.
from sklearn.preprocessing import StandardScaler
scaler= StandardScaler()

X_train =scaler.fit_transform(X_train)

now lets visualize the Loss and Val_Loss to check how the loss value is optimized

∟pocns

9 of 29

29 of 29