

CHEMISTRY Chapter 22

ESTEQUEOMETRIA II

Estequiometría

Palabra que se deriva del griego

Es la rama de la quimica que se encarga:

stoicheion

metron

Que significa "elemento"

Que significa "medida"

Del estudio de las relaciones cuantitativas entre elementos y compuestos dentro de una reacción química

REACTIVO LIMITANTE Y EN EXCESO

1. Reactivo limitante (R.L.)

El reactivo limitante, es el reaccionante que se encuentra en menor proporción en una reacción frente al otro reactivo.

2. Reactivo en exceso (R.E.)

Al reactivo o reactivos que se encuentran en cantidades mayores a las necesarias estequiométricamente, se les denomina reactivos en exceso.

REGLA PRÁCTICA PARA HALLAR EL R.L. Y R.E.

cantidad que se da en el problema cantidad estequiométrica

EJEMPLO

Se combinan 8 g de θ_2 con 2,5 g de H_2 para formar agua. Hallar el R.L. y R.E

$$2H_2 + O_2 \rightarrow 2H_2O$$

Resolución

$$2H_2 + O_2 \rightarrow 2H_2O$$

Dato del problema: 2,5g 8,0g

Relación estequiométricas 32g

Hallando la relación:

$$H_2: \frac{2,5}{4} = 0.625$$

$$mayor \text{ valor}$$

$$O_2$$
: $\frac{8}{32} = 0.25$

menor valor

 \therefore el R.L. es el O_2 y el R.E es H_2

ESTA RELACION TAMBIEN SE PUEDE UTILIZAR EN CANTIDADES DE MOLES VOLUMEN Y MASAS

CONDICIONES NORMALES (C.N.)

SE DA EN LAS CONDICIONES DE:

$$T = 0^{\circ} C <> 273 K$$

P = 1 atm = 760 mmHg

En estas condiciones se cumple

1 mol ocupa (sustancia gaseosa) → → 22,4 L

EJEMPLO

Para la siguiente reacción halle el volumen de CO_2 en C.N. si se tiene 200 g de $CaCO_3$

$$\overline{M} = 100$$

$$1CaCO_3 \rightarrow 1CaO + 1CO_2$$

$$100g \xrightarrow{\text{ocupa}} 1.(22,4 \text{ L})$$

$$200g \xrightarrow{\text{ocupa}} X \text{ L}$$

$$X = \frac{200x22,4}{100}$$

$$X = 44,8 L$$

¿Cuántos gramos de hierro (Fe) hay que hacer reaccionar con suficiente ácido clorhídrico para formar 4,5 mol de hidrógeno (H₂)? Datos PA: Fe=56; O=16; H=1; Cl=35,5

2 Fe + 6 HCl
$$\rightarrow$$
 2 FeCl₃ + 3 H₂

Resolución

MA = 56

2 Fe + 6 HCl
$$\rightarrow$$
 2 FeCl₃ + 3 H₂

$$x = \frac{112 \times 4,5}{3}$$

$$x = 168g Fe$$

Según la ecuación

$$2K + 2H_2O \rightarrow 2KOH + H_2$$

los gramos de K (PA=39) que se requieren para producir 4 mol de KOH son

Resolución

$$x = \frac{78 \times 4}{2}$$

$$x = 156g K$$

¿Cuántos litros en CN de oxígeno se necesitan para la combustión completa de 0,5 mol de gas butano?

$$2C_4H_{10} + 13O_2 \rightarrow 8CO_2 + 10H_2O$$

Resolución

$$2C_4H_{10} + 13O_2 \rightarrow 8CO_2 + 10H_2O$$

2 mol de
$$C_4H_{10}$$
 \longrightarrow 13(22.4)L de O_2
0,5 mol de C_4H_{10} \longrightarrow x L de O_2

$$x = \frac{0.5 \times 13(22.4)}{2}$$

$$x = 72,8 L O_2$$

Se tiene la siguiente reacción de fermentación:

$$C_6H_{12}O_6 \rightarrow 2C_2H_2OH_{(ac)} + 2CO_{2(g)}$$

Si se consume 9 gramos de glucosa, ¿qué volumen de gas a condiciones normales (CN) se pueden obtener? M: (Glucosa=180)

Si se emplean 50 litros de N_2 con 120 litros H_2

$$N_2 + 3H_2 \rightarrow 2NH_3$$

el reactivo en exceso es

Resolución

cantidad que se da en el problema cantidad estequiométrica

$$1N_2 + 3H_2 \rightarrow 2NH_3$$

Dato del problema: 50 L 120 L

Relación estequiométrica: 1L 3L

Hallando la relación:

$$N_2: \frac{50}{1} = 50$$

$$H_2: \frac{120}{3} = 40$$

mayor valor

menor valor

 \therefore el R.E es N_2

El tricloruro de fósforo, PCl3, es un compuesto importante desde el punto de vista comercial, utilizado en la fabricación de pesticidas, aditivos para la gasolina y muchos otros productos

El PCl3 líquido se obtiene por combinación directa del fósforo y el cloro

$$P_{4(s)}$$
+ 6 $Cl_{2(g)} \rightarrow 4PCl_{3(l)}$

¿Cuál es el reactivo en exceso y la cantidad sobrante en la reacción de 31 g de $P_{4(s)}$ con 426 g de $Cl_{2(g)}$?

Dato: mA (P = 31, Cl = 35,5)

Resolución

$$1P_{4(S)}$$
+ 6 $Cl_{2(g)} \rightarrow 4PCl_{3(l)}$

Dato del problema: g

426 g

Relación

124 g

6(71 g)

estequiometria:

Hallando la relación:

$$p_4: \frac{31}{124} = 0.25$$

$$cl_2: \frac{426}{426} = 1$$

menor valor

mayor valor

 \therefore el R.E es Cl_2

$$1P_{4(S)} + 6 Cl_{2(g)} \rightarrow 4PCl_{3(l)}$$

Relación estequiom
$$24 ig: \longrightarrow 6(71 g)$$
Dato del problema $31 g \longrightarrow Xg = 106,5 g$

cantidad sobrante = 426g
$$Cl_2$$
 - 106,5g Cl_2 = 319.5g Cl_2

R*pta*: 319.5 *g*

En un proceso químico se combina carburo de calcio con agua para obtener gas acetileno con hidróxido de calcio

$$CaC_2 + 2H_2O \rightarrow C_2H_2 + Ca(OH)_2$$

Si se combinan 20 mol de CaC2 con 50 mol de H2 O. ¿Cuántos moles quedan sin reaccionar?

Resolución

cantidad que se da en el problema cantidad estequiométrica

$$1CaC_2 + 2H_2O \rightarrow 1C_2H_2 + 1Ca(OH)_2$$

Datos: 20 mol 50 mol

1 mol 2 mol

Hallando la relación:

$$CaC_2$$
: $\frac{20}{1} = 20$

$$H_2O: \frac{50}{2} = 25$$

menor valor R. L.

mayor valor R. E.

$$1CaC_2 + 2H_2O \rightarrow 1C_2H_2 + 1Ca(OH)_2$$

20 mol 2

$$x = 40 \ mol \ \sin reaccionar = 50 \ mol - 40 mol$$

Rpta: 10 mol