Einführung in die Künstliche Intelligenz

SS09 - Prof. Dr. J. Fürnkranz

Beispiellösung für das 4. Übungsblatt (16.06.2009)

Aufgabe 1 Vorwärts-, Rückwartsplanen

a) Wir benutzen als Suchalgorithmus für das Vorwärtsplanen die Breitensuche mit Closed List. In der Anfangssituation f_2 können die Aktionen a_2 und a_3 angewendet werden, die f_2, f_3, f_4 bzw. f_1, f_2 als Faktenmenge nach sich ziehen. Für Knoten 1 (Nachfolgerknoten der Anfangssituation nach der Aktion a_2) können dann wiederum die Aktionen a_2 und a_3 angewendet werden. Da die erneute Anwendung von a_2 eine Faktenmenge erzeugt, die in der Closed List enthalten ist, kann dieser Nachfolgerknoten entfernt werden. Die Anwendung der Aktion a_3 erzeugt die Faktenmenge f_1, f_2, f_4 und erfüllt die Zielbedingungen. Somit haben wir einen Plan gefunden (a_2, a_3) und sind nun fertig.

b) Beim Rückwärtsplanen werden nur Aktionen betrachtet, die *relevant* und *konsistent* sind (siehe Folie 37, Planen im Zustandsraum). Eine Aktion a ist konsistent für die Zustandsmenge x_1, \ldots, x_n , falls in der *Delete*-Liste von a kein $x_i, i = 1 \ldots n$ enthalten ist. Es sollte beachtet werden, dass die Konsistenzprüfung *lokal* ausgeführt wird, d.h. es is irrelevant, ob in einem Nachfolgerzustand möglicherweise das Literal y_1 enthalten ist, das von Aktion a gelöscht wird (Betrachten Sie die Aktion a_1 für die Zustandsmenge $f_2, f_4pdflat$ in dem folgenden Graphen).

Die gefundenen Pläne sind also:

- a_3, a_2
- $^{\bullet}a_3,a_2,a_1,a_3$
- a_2, a_3

Aufgabe 2 Partial-Order Planning

- a) Ein möglicher Plan ist: unstack(c,a), putdown(c), pickup(b), stack(b,a), pickup(c), stack(c,b). Die Bestimmung dieses Planes mittels Partial-Order Planning ist in dem extra Foliensatz schematisch dargestellt. In dem Foliensatz werden einige Beispiele für Konflikte gezeigt, die mittels aufwendigen Backtrackings gelöst werden. Die teilweise recht aufwendigen Schritte sind nicht immer leicht nachvollziehbar. Als alternative Übung zum Partial-Order Planning wird empfohlen das Beispiel aus der Vorlesung (Folien 11-20, Planen im Planraum) selbst zu lösen.
- b) Für den erzeugten Plan aus a) gibt es nur eine mögliche Abarbeitungsfolge. Es handelt sich somit um einen total geordneten Plan.

Aufgabe 3 Wahrscheinlichkeiten

a) Die Wahrscheinlichkeitstabelle sieht folgendermassen aus:

В	$P(\cdot)$
W	С
F	d
W	e
F	f
	W F W

Es gilt:

$$P(A) = c + d = 0.4$$

$$P(B) = c + e = 0.3$$

$$P(A \lor B) = 0.5 = c + d + e$$

$$P(True) = c + d + e + f = 1$$

$$\Rightarrow$$
 c = 0.2, *d* = 0.2, *e* = 0.1, *f* = 0.5

b)
$$P(A \land B | A \lor B) = \frac{P(A \land B \land (A \lor B))}{P(A \lor B)} = \frac{P(A \land B)}{P(A \lor B)} = \frac{0.2}{0.5} = 0.4$$

 $P(A | A \rightarrow B) = \frac{P(A \land (\neg A \lor B))}{P(\neg A \lor B)} = \frac{P(A \land B)}{P(\neg A \lor B)} = \frac{0.2}{0.8} = 0.25$

c)
$$P(A) = P(A \wedge True) = P(A \wedge (B \vee \neg B)) = P(A \wedge B \vee A \wedge \neg B) = P(A \wedge B) + P(A \wedge \neg B) - P(A \wedge B \wedge A \wedge \neg B) = P(A \wedge B) + P(A \wedge \neg B) - P(False) = P(A \wedge B) + P(A \wedge \neg B) - 0 = P(A \wedge B) + P(A \wedge \neg B).$$