Lean 4 Cheatsheet

In the following table, name always refers to a name already known to Lean while new_name refers to a new name provided by the user; expr designates an expression, for example the name of an object in the context, an arithmetic expression that is a function of such objects, a hypothesis in the context, or a lemma applied to any of these. When one of these words appears twice in the same line, the appearances do not designate the same name or the same expression.

Logical symbol	Appears in goal	Appears in hypothesis
∀ (for all)	$\verb"intro" new_name"$	apply expr or specialize name expr
\exists (there exists)	use $expr$	cases' $expr$ with new_name new_name
\rightarrow (implies)	$\verb"intro" new_name"$	apply expr or specialize $\mathit{name}\ \mathit{expr}$
\leftrightarrow (if and only if)	constructor	rw [$expr$] or rw [$\leftarrow expr$]
\land (and)	constructor	cases' $expr$ with new_name new_name
∨ (or)	left or right	cases' $expr$ with new_name new_name
¬ (not)	$\verb"intro" new_name"$	apply $expr$ or specialize $name\ expr$

In the left-hand column of the following table, the parts in brackets are optional. The effect of these parts is also in brackets in the right-hand column. It is almost always a matter of specifying that a manipulation, which acts by default on the goal, must be performed rather on a certain hypothesis named hyp.

Tactic	Effect	
exact expr	assert that the goal can be satisfied by $expr$	
have new_name : $fact$	introduce a name new_name asserting that $fact$ is provable	
$\verb"unfold" name (\verb"at" hyp")$	unfold the definition of $name$ in the goal (or in the hypothesis hyp)	
convert $name$	prove the goal by transforming it to an existing proposition name and create goals for propositions used in the transformation that were not proved automatically	
convert_to expr	transform the goal into the expression $expr$ and create additional goals for propositions used in the transformation that were not proved automatically	
rw [(←) <i>expr</i>] (at <i>hyp</i>)	in the goal (or in the hypothesis hyp), replace the left-hand side (or the right-hand side, if \leftarrow is present) of the equality or equivalence $expr$ by the other side	
${\tt rw ~[~\it expr~,~\it expr~]~(at~\it hyp)}$	rewrite (parts of) the goal (or the hypothesis hyp), using given equalities/equivalences in the given order	
linarith	prove the goal by a linear combination of hypotheses	
ring	prove the goal by combining the axioms of a commutative (semi)ring	
library_search	search for a single existing lemma which closes the goal, also using local hypotheses $$	
$\verb by_cases new_name : expr $	split the proof into two cases depending on whether $expr$ is true or false, using new_name as name for this hypothesis	
by_contra new_name	start a proof by contradiction, using new_name as name for the hypothesis that is the negation of the goal	
contrapose	transform a goal of the form $expr o expr$ into its contrapositive	
${\tt push_neg} \ ({\tt at} \ hyp)$	$a_{\tt neg} \; ({\tt at} \; hyp)$ push negations in the goal (or in the hypothesis hyp)	
exfalso	apply the rule $ex\ falso\ quod\ libet$ (replaces the current goal by False)	