ECRYP PROBLEMS FOR THE MIDTERM TEST #1

7.04.2018

Problem # 1

Alice and Bob use a binary Vernam's cryptosystem with a secret key $k = k_1 k_2 ... k_r$ where $k_i \in \{0,1\}$. Assume we know a plain text message $m = m_1 m_2 ... m_r$, where $m_i \in \{0,1\}$ and a corresponding cryptogram $c = c_1 c_2 ... c_r$ where $c_i \in \{0,1\}$. Compute the secret key $k = k_1 k_2 ... k_r$ from $m = m_1 m_2 ... m_r$ and $c = c_1 c_2 ... c_r$.

Problem # 2

Compute inverses of 7, 8, 9 a) in the multiplicative group Z_{11}^* b) in the multiplicative group Z_{13}^* .

Problem #3

Compute inverses of 4,5,6, in the multiplicative groups Z_{13}^* and Z_{15}^* . List all elements in the multiplicative groups Z_{13}^* and Z_{15}^* .

Problem # 4

Compute all generators

- 1) of the multiplicative group Z_{17}^*
- 2) of the multiplicative group Z_{13}^* .

Problem # 5

Compute log_58 in the multiplicative group Z^*_{13} and in the the multiplicative group Z^*_{19} .

Problem # 6

Give an example proving that the assumption in RSA definition: ,n is a square-free number" is important.

Problem # 7

Assume we have a RSA cryptosystem with $n = p \cdot q$ (where p and q are secret different primes) and e is a public key. Prove that factorization of n breaks the RSA cryptosystem.

Problem #8

Assume we deal with the RSA cipher with $n = p \cdot q$ and RSA has two different public keys e_1 and e_2 which are relatively prime i.e. $GCD(e_1, e_2) = 1$. Prove that if we have two cryptogrammes c_1 and c_2 of the unknown plain text message $m \in Z_n$,

- c_1 (cryptogramme obtained with e_1) and
- c_2 (cryptogramme obtained with e_2)

then we can easily compute the plain text message $m \in \mathbb{Z}_n$ from c_1 and c_2 .

Problem # 9

Add the following polynomials (bytes) in the quotient ring

$$Z_2[x]/(x^8 + x^4 + x^3 + x + 1) = GF(2^8)$$
:

Hint: see AES

Problem # 10

Multiply the following polynomials (bytes) in the quotient ring:

$$Z_2[x]/(x^8 + x^4 + x^3 + x + 1) = GF(2^8)$$

Hint: see AES

Problem # 11

Solve the following set of 4 congruencies:

- $x \equiv 3 \pmod{7}$
- $x \equiv 3 \pmod{5}$
- $x \equiv 3 \pmod{11}$
- $x \equiv 3 \pmod{13}$

Problem # 12

Solve the following set of 4 congruencies:

- $x \equiv 4 \pmod{5}$
- $x \equiv 6 \pmod{7}$
- $x \equiv 10 \pmod{11}$
- $x \equiv 12 \pmod{13}$

Problem # 13

Solve the following set of 5 congruencies:

- $x \equiv 5 \pmod{7}$
- $x \equiv 3 \pmod{5}$
- $x \equiv 9 \pmod{11}$
- $x \equiv 11 \pmod{13}$
- $x \equiv 15 \pmod{17}$

Problem # 14

Solve the following set of 3 congruencies

```
x \equiv 1 \pmod{7}
```

$$x \equiv 2 \pmod{5}$$

$$x \equiv 3 \pmod{11}$$

Problem #15

Solve the following set of congruencies:

```
x \equiv 3 \pmod{7},
```

 $x \equiv 9 \pmod{13}$,

 $x \equiv 1 \pmod{5},$

 $x \equiv 7 \pmod{11}$

Problem # 16

Solve the following set of congruencies:

```
x \equiv 3 \pmod{7}
```

 $x \equiv 3 \pmod{5}$

 $x \equiv 7 \pmod{11}$

 $x \equiv 7 \pmod{13}$

Problem #17

Compute values of the Euler phi function

a)
$$\varphi$$
 (3458), b) φ (3459), c) φ (5357), d) φ (5358), e) φ (2¹⁰⁰⁰), f) φ (10¹⁰⁰⁰)

Problem # 18

Compute the following values: a) $\varphi(\varphi(5358))$, b) $\varphi(\varphi(3458))$, c) $\varphi(\varphi(2^{1000}))$, where φ is the Euler's phi function.

Problem # 19

Assume $n, a \in N$ and $n \ge 2$. Prove that if GCD(a, n) = 1 then

$$a^{m \pmod{\varphi(n)}} \equiv a^m \pmod{n}$$

where φ is the Euler function.

Problem # 20

Prove that the polynomial $x^2 + 1$ is irreducible in the ring $Z_3[x]$ and describe the field GF(9) (i.e. F_9).

Problem # 21

Assume $GF(2^k)[x]$ (where k is a fixed natural number) is a ring of polynomials with coefficients in the field $GF(2^k)$. Prove that for every polynomial x^n (where $n \in N$) from $GF(2^k)[x]$ we have

$$x^n \pmod{x^4 + 1} = x^{n \pmod{4}}$$

Problem # 22

Design an ELGamal cryptosystem for the field F_{19} .

Problem # 22

Design a RSA cryptosystem for "small numbers".

Problem # 23

Compute three last decimal digits of the number 2^{1000} (in common decimal notation).

Problem # 24

Compute two last digits of the number 2^{1000} (in common radix 7 notation).

Problem # 25

Compute three last digits of the number 2^{10^6}

- a)In common notation with radix W = 10 (common decimal notation)
- b)In common notation with radix W = 7

Problem # 26

Find the last 4 decimal digits of the number 2^{10^6} using Chinese Remaider Theorem.

Problem # 27

Using the Extended Euclid's Algorithm compute inverses of the following polynomials in the quotient ring: $Z_2[x]/(x^8 + x^4 + x^3 + x + 1) = GF(2^8)$

a) '10' b) '04' c) '57'

Hint: see AES

Problem # 28

Describe a round in DES. What is it the S-box in DES? Explain the method applied for S-box description in DES.

Problem # 29

Define the Diffie-Hellman protocol of key exchanging. Why is it a secure protocol?

Problem # 30

Describe the ElGamal public key cipher and design an example of the cipher "for small numbers" with an example of ciphering.

Problem #31

Design the ELGamal cryptosystem for the field F_{19} .

Problem #32

Assume we have two independent random variables X_1, X_2 with values in the set $Z_2 = \{0,1\}$.

Prove that if X_2 has a uniform distribution then $X_1 \oplus X_2$ has also the uniform distribution. (This fact is known from the protocol "fair coin tossing by phone")

The same in more strict formulation:

Prove the following theorem which is a crucial point for the Blum-Micali protocol (protocol of the fair coin tossing by phone). If $X_1:\Omega\to\{0,1\}$ and $X_2:\Omega\to\{0,1\}$ are two independent random variables defined on the probabilistic space (Ω,M,P) and a random variable $X_2:\Omega\to\{0,1\}$ has the uniform distribution on the set $\{0,1\}$ then the function defined by the formula $Y=X_1\oplus X_2$ (addition modulo 2) is a random variable with the uniform probability distribution on the space $\{0,1\}$.

Solution

2. Now we prove that the probability distribution of the random variable $Y = X_1 \oplus X_2$ is uniform. Denote

$$A_1 = \{ \omega \in \Omega; X_1(\omega) = 1, X_2(\omega) = 0 \},$$

$$B_1 = \{ \omega \in \Omega; X_1(\omega) = 0, X_2(\omega) = 1 \}$$

$$A_0 = \{ \omega \in \Omega; X_1(\omega) = 0, X_2(\omega) = 0 \},$$

$$B_0 = \{ \omega \in \Omega; X_1(\omega) = 1, X_2(\omega) = 1 \}$$

Sets A_0, A_1, B_0, B_1 are disjoint in pairs. Denote additionally $P(X_1 = 0) = p_0$, $P(X_1 = 1) = p_1$.

Random variables X_1 and X_2 are independent then we have

$$P(Y=1) = P(A_1 \cup B_1) = P(A_1) + P(B_1) = P(X_1=1) \cdot P(X_2=0) + P(X_1=0) \cdot P(X_2=1) = p_1 \cdot \frac{1}{2} + p_2 \cdot \frac{1}{2} = \frac{1}{2}$$

(because $p_0 + p_1 = 1$) and similarly

$$P(Y = 0) = P(A_0 \cup B_0) = P(A_0) + P(B_0) = P(X_1 = 0) \cdot P(X_2 = 0) + P(X_1 = 1) \cdot P(X_2 = 1) = p_1 \cdot \frac{1}{2} + p_2 \cdot \frac{1}{2} = \frac{1}{2}$$

then the random variable $Y = X_1 \oplus X_2$ has the uniform probability distribution.

Problem #33

Describe the ElGamal signature algorithm and prove that verification formula is true when the parameters are correct.

Problems #34

We have two numbers a = (3,4,5) and b = (2,1,8) written in RNS notation for moduli $m_1 = 5$, $m_2 = 7$, $m_3 = 11$. Add and multiply these numbers.