Lecture 10: Materials and Currents

ECE221: Electric and Magnetic Fields

Prof. Sean V. Hum

Winter 2019

Outline

Properties of Materials

Currents and Current Densities

3 Behaviour of Conductors in Electric Fields

Properties of Materials

We can broadly characterize materials using their $conductivity \sigma$ [S/m or σ].

- Materials with high conductivity ($\sigma \gg 1$) are conductors.
- Materials with low conductivity ($\sigma \ll 1$) are dielectrics. (a.k.a insulators)
- Materials between these extremes are semiconductors.

We will be mainly concerned with conductors and dielectrics in this course.

A perfect electrical conductor (PEC) has $\sigma \to \infty$. A perfect dielectric has $\sigma = 0$.

Current I and Current Density J

- Voltage (or potential difference) and current are fundamental quantities in EE.
- Consider the current flowing in a wire as an example.

current = rate of movement of chap
across a reference plane.

$$I = [c/s] \qquad I = \frac{dQ}{dt}$$

1= Amberes.

Q=total charge passing through ref. plane.

Convection Current

- Convection current does not involve conductors.
- It occurs when charges flow through an insulator (e.g. vacuum), such as an electron beam in a cathode ray tube, electron microscope, linear accelerator, etc.

Source: Wikipedia

Convection Current

Conduction Current and Ohm's Law in Point Form

In conductors, free (valence) electrons more under the influence of an applied \vec{E} field.

$$\vec{F} = \vec{q}\vec{E} = -\vec{e}\vec{E}$$

 $\vec{e} = \vec{e}\vec{e}$ charge = 1.602×10⁻¹⁹ C

electors does not accelerate in the conductor, it constantly collides w/ the lattice structure of the conductor, slowing it down, to a constant average velocity could drift velocity

Properties of Materials

Newton's Law says ang. change in momentum of the free e must be equal to the applied force on e

Table 4-1: Conductivity of some common materials at 20°C.

Material	Conductivity , σ (S/m)
Conductors	
Silver	6.2×10^{7}
Copper	5.8×10^{7}
Gold	4.1×10^{7}
Aluminum	3.5×10^{7}
Iron	10 ⁷
Mercury	10^{6}
Carbon	3×10^{4}
Semiconductors	
Pure germanium	2.2
Pure silicon	4.4×10^{-4}
Insulators	
Glass	10-12
Paraffin	10-15
Mica	10^{-15}
Fused quartz	10^{-17}

Behaviour of Conductors Under an Applied Electric Field

Behaviour of Conductors Under an Applied Electric Field

Example: Cylindrical Resistor

$$A = \pi a^2$$

$$R = \frac{L}{\sqrt{\pi a^2}}$$

ECE221: Electric and Magnetic Fields

Joule's Law

destron charge contained in OV 9e = PUDV F= E = 9 E = ROVE Total nork expended by Ξ in moving ≤ 9 a distance $\Delta \vec{L}$ DW = F. SI power = work per unit time = $\frac{\Delta W}{\Delta t}$

Integrate over whome of conductor. $\Delta P = \vec{E} \cdot \vec{J} \Delta V$

 $P = \iiint_{\mathbf{z}} \vec{\mathbf{z}} \cdot \vec{\mathbf{J}} dv \quad [w] = \iiint_{\mathbf{z}} \nabla |\vec{\mathbf{z}}|^2 dv$