

Maximum Marks: 100	Semester: January 202 Examination: ESE	Examination	Duration: 3 Hrs
Programme code: 01 Programme: B.Tech		Class: SY	Semester: IV (SVU 2020)
Name of the Constituent Coll K. J. Somaiya College of Eng	ineering		the department: COMP
Course Code:	Name of the Cou Design agrams 2)Assume suital		Automata with Compiler

Question No.	The second secon	Max. Marks
Q1 (a)	Given the alphabet set Σ ={0,1}. Write Regular Expression for the following languages:	
	i. Language L1 where all words must start with 0 and end with 1. ii. Language L2 where all words must contain 11. iii. Language L3 where all words either start with 1 or end with 01 or both. iv. Language L4 where all words are not having three or more consecutive 1s.	2 2 3 3 3
Q1 (b)	Consider L1 = {aaab*} and L2= {a*bbb}, find regular expression for L1 U L2, L1 \cap L2 and -L1 (complement of L1) and draw their respective Automata.	10
	OR OR	
	i. Design a DFA for the Language	5
	L={w w is of even length and begins with 01}	1111
	ii. Design Mealy Machine to convert each occurrence of substring 1000 by 1001	5
Q2 (a)	i. Write a CFG for the Language L over the alphabet $\Sigma = \{ (,) \}$ where the words are balanced parenthesis. e.g (())()()()).	5
	ii. Construct a Parse tree using LMD showing that the string()()() is derived by the CFG.	5
	iii. What is the necessary condition when a CFG is called an Ambiguous grammar?	4
Q2 (b)	Eliminate Null Production from the given Grammar: S->ACB / CbB / Ba A-> da / BC B-> bC / ε C-> ab / ε	6

Q3 (a)	Construct PDA for the given CFG:	10	
	S -> AB		
	A -> BB		
	B-> AB		
	A -> a		
	B -> a		
	B => b		
Q3 (b) Design PDA for recognizing $L = \{a^n b^{2n+1} n > = 1\}$.	Design PDA for recognizing $L = \{a^n b^{2n+1} n \ge 1\}.$	10	
	OR		
	Convert the following grammar to Greibach Normal Form $G = (\{A,B,C\},$		
	{a,b},P,S) Where P consists of the following		
	A-> BC		
	B->CA/b		
	C->AB / a		
Q4 (a)	Design Turing Machine to increment the value of any binary number by one.	15	
	The output should also be a binary number with value one more the number		
	given. Show the simulation of input string "101101" on your Turing Machine.	40	
	OR		
	Design a TM for even length palindrome L= ww ^R w ∈ (a+b)*. Show the		
	simulation of your Turing Machine with the help of an example.		
Q4 (b)	Write a short note on Multitape Turing Machine.	5	
Q5 (a)	Explain Pumping Lemma.	5	
	Prove that the following language on alphabet = $\{a,b\}$ is not CFL: L= $\{a^nb^{2n}a^n \mid n>0\}$	5	
Q5 (b)	Write short note on any two:	10	
	i. Post correspondence Problem		
	ii. Rice's Theorem		
	iii. Recursively Enumerable Language		
	iv. Halting problem of Turing Machine		

Page 2052