Data Bus

It provides a medium for the exchange of data and information between various

Avionics subsystems

Integration of Avionics subsystems in military or civil aircraft and spacecraft.

TYPES OF PROTOCOLS

Command/Response : Centralized Control Method

Token Passing : Decentralized Control Method

CSMA/CA : Random Access Method

How the systems are interconnected in a particular fashion

LINEAR NETWORK

Linear Cable

All the systems are connected in across the Cable

RING NETWORK

Point to Point interconnection

Datas flow through the next system from previous

system

SWITCHED NETWORK

Similar to telephone network

Provides communications paths between terminals

Linear

Ring

Switched

MLSID 4553B

- Developed at Wright Patterson Air Force Base in 1970s
- Published First Version 1553A in 1975
- Introduced in service on F-15 Program
- Published Second version 1553B in 1978

- MIL-STD-1553, Command / Response Aircraft Internal Time Division Multiplex Data Bus, is a Military standard which has become one of the basic tools being used today for integration of Avionics subsystems
- This standard describes the method of communication and the electrical interface requirements for the subsystems connected in the data bus

SPECIFICATION OVERVIEW

Data Rate 1 Mbps

Word Length 20 Bits

Message Length 32 Word Strings(maximum)

Data Bits per Word 16 Bits

Transmission Technique Half - Duplex

Encoding Manchester II Bi-phase

Protocol Command Response

Transmission Mode Voltage Mode

ARINC 429

ARNIC 629

```
1977 => Boeing began to work on "DATAC" project
1977 - 85 => DATAC Emerged as ARINC 629
1989 => ARINC 629 was adopted by AEEC
1990 => ARINC 629 was first implemented in BOEING-777
```

SPECIFICATION OVERVIEW

Data Rate 2 Mbps

Word Length 20 Bits

Message Length 31 Word Strings(maximum)

Data Bits per Word 16 Bits

Transmission Technique Half - Duplex

Encoding Manchester II Bi-phase

Protocol Carrier Sense Multiple Access

Collision avoidance

Transmission Mode Voltage Mode, Current Mode, Fiber Optic

Mode

ARNIC 629 ARCHITECTURE

AFDX [ARNIC 664]

- Avionics Fully Duplex Switched Ethernet is an advanced Protocol Standard to interconnect avionics subsystems
 - It can accommodate future system bandwidth demands
 - Increase flexibility in Avionics design
 - Reduce aircraft wire counts, thus lowering aircraft weight and cost

- Since the Ethernet is a switched architecture rather than a point-point link, aircraft designers can create redundant sub networks
- Faults can be isolated and analysed without impacting the system as a whole
- ARINC 429 data bus may still be used but the main Avionics data pipe will be Ethernet (AFDX) of 100 Mbps

HSDB

- •Used in F-22 Advanced tactical fighter
- •Generic version SAE Aerospace Standard 4074.1
- •50 Mbps- linear bus
- for optical medium implementation star topology
- •HSDB uses distributed control in which each terminal is permitted to transmit only when it receives the token frame.

SCI

- ➤IEEE –STD-1596-1992
- >SCI is an interconnect system for both backplane and LAN usage.
- ➤ It is a system of rings and switches in its basic format
- ➤ Operates at 1 Gbps
- Electrical links upto 30m and optical links upto several kms.
- Same Bandwidth as today's 155Mbits/sec ATM links, 32 times that of today's fiber optic channel and 800 times that of Ethernet.

Signaling Rate

1553B - 1Mbps

Ethernet(AFDX) - 100Mbps

ARINC 429 - 100Kbps or 12-14.5Kbps

ARINC 629 - 2Mbps

MIL-STD 1553

WHY ORTICAL RIBER?

- Though 1553B is used in various modern aircraft, it is recognised that buses operate in extremly severe environment like
- EMI from intersystem and intrasystem
- Lightning
- Electrostatic discharge
- High Altitude Electromagnetic pulse

- Fiber-optic version of 1553B
- It also operates at the rate of 1Mbps
- It also have the same 20 bit word and three words such as command word, status word and data word
- stronger immunity to radiation-induced electromagnetic interference

- Controller Area Network (CAN) is the network Established among microcontrollers.
- Carrier-sense multiple access with collision avoidance (CSMA/CA) Protocol
- Two wire high speed network system which was firstly Established to overcome the problems (wire harness, Communication) faced in automobiles.
- Linked up to 2032 devices(assuming one node with one identifier) on a single network.
- CAN offers high speed communication up to 1 Mbps, thus allowing real time control.

• Originally **Ginabus** (**G**estion des **I**nformations **N**umeriques **A**eroportees – Airborne Digital Data Management)

• Designed jointly by Electronique Serge Dassault (ESD) and Avions Marcel Dassault- Breguet Aviation (AMD-BA) and SAGEM between 1973 and 76

• Digibus is now standard for all branches of French Military.

• Serial point to point communication

Between space shuttle payload general support computer and various subsystems

- MDM interface consists of a serial data bus and three discretes (Message in, Message out and word)
- Discrete contains the timing, direction and No. of words on the serial data bus

AVIONICS ARCHITECTURE

AVIONICS SYSTEM ARCHITECTURE

- Establishing the basic architecture is the first and the most fundamental challenge faced by the designer
- The architecture must conform to the overall aircraft mission and design while ensuring that the avionics system meets its performance requirements
- These architectures rely on the data buses for intra and intersystem communications
- The optimum architecture can only be selected after a series of exhaustive design tradeoffs that address the evaluation factors

AVIONICS ARCHITECTURE

First Generation Architecture (1940's –1950's)

- Disjoint or Independent Architecture (MiG-21)
- Centralized Architecture (F-111)

Second Generation Architecture (1960's –1970's)

- Federated Architecture (F-16 A/B)
- Distributed Architecture (DAIS)
- Hierarchical Architecture (F-16 C/D, EAP)

Third Generation Architecture (1980's –1990's)

• Pave Pillar Architecture (F-22)

Fourth Generation Architecture (Post 2005)

- Pave Pace Architecture- JSF
- Open System Architecture

FGA - DISJOINT ARCHITECTURE

FGA - CENTRALIZED ARCHITECTURE

SGA - DAIS HARDWARE ARCHITECTURE

SGA - HIERARCHICAL SYSTEM

AVIONICS SYSTEM EVOLUTION

Independent Avionics (40's - 50's)

Integrated Avionics (80's - 90's)

Federated Avionics (60's - 70's)

Advanced Integrated Avionics (Post 2000)

KEY OBSERVATIONS

AVIONICS ARCHITECTURAL EVOLUTION

- Increased Digitization of Functions
- Increased sharing and modularization of functions
- Integration/ sharing concepts increased to the skin of the aircraft
- Functionality has increasingly obtained through software
- Complex hardware architecture modules
- Complex software modules
- Increased network complexity and speed

Current avionics

- Many Line Replaceable Units (LRU)
 - Communication systems multiple VHF radios, HF, satellite, etc
 - Similarly for navigation and surveillance
- Multimode units will reduce unit count
 - Multimode navigation system already
 - Multimode communications systems are expected
- Integration of communication, navigation and surveillance data only takes place in the cockpit HMI and is performed by the pilot at the moment
 - New architectures will enable closer information integration

New aircraft architectures

- Boeing and Airbus have adopted new network-based approach to interconnection on their new aircraft **B787 and A380**
 - Enabled through Integrated Modular Avionics (IMA)
- Flexible Application Environment
 - Data is shared more widely with a range of applications
 - Sensors provide data for use by a wide range of applications
- Service-oriented architecture (SOA)
 - Enables integration with current systems in a phased approach without any major architectural changes

Future Avionics Architecture

Thank You