Project: Creditworthiness

Step 1: Business and Data Understanding

What decisions needs to be made?

As a loan officer at a young and small bank that needs to come up with an efficient solution to classify new customers on whether they can be approved for a loan or not. I need to use a series of classification models to figure out the best model and provide a list of creditworthy customers in the next two days.

- What data is needed to inform those decisions?
 - o Data on all past applications.
 - o The list of customers that need to be processed in the next few days.
- What kind of model (Continuous, Binary, Non-Binary, Time-Series) do we need to use to help make these decisions?
 - Use the binary model to get a decision and the possibility of making it by identifying people taking or not.

Step 2: Building the Training Set

 In your cleanup process, which fields did you remove or impute? Please justify why you removed or imputed these fields. Visualizations are encouraged.

Using summary tool and the result is

- age-years => 2.4% data missing and to solve the problem impute the data using the median.

- Duration-in-Current-address => 68.8% data missing, should be removed.

- Occupation => has one value should be removed
- Concurrent-Credits => has (other banks/depts) value should be removed
- Guarantors => Most of the data is null should be removed.

- Foreign-Worker => Most of the data is one value should be removed
- No-of-dependents => Most of the data is one value should be removed
- Telephone => It has to be removed because it doesn't do us any good.

Step 3: Train your Classification Models

- Which predictor variables are significant or the most important? Please show the p-values or variable importance charts for all of your predictor variables.
- Validate your model against the Validation set. What was the overall percent accuracy? Show the confusion matrix. Are there any bias seen in the model's predictions?

Used 4 model (Logistic Stepwise, Decision Tree, Forest Model, Boosted Model) Workflow in alteryx:

- Logistic Stepwise: the significant predictive variables are Account Balance, Payment Status of Previous Credit, Purpose, Credit Amount, Length of Current Employment, and Installment per Cent.

- Decision Tree: the 3 important predictive variables are Duration of Credit Month, Credit Amount, Account Balance.

- Forest Model: the 3 important predictive variables are Credit Amount, Age Years, and Duration of Credit Month.

- Boosted Model: the 3 important predictive variables are Credit Amount, Amount Balance, and Duration of Credit Month.

- then used the model comparison tool of these four models:

Model	Comr	parison	Report
Model	COILLE	<i>J</i> ai 13011	report

Fit and error meas	ures				
Model	Accuracy	F1	AUC	Accuracy_Creditworthy	Accuracy_Non-Creditworthy
Decision_Tree	0.6867	0.7854	0.6524	0.7544	0.4722
Forest_model	0.7933	0.8681	0.7368	0.7846	0.8500
Boosted_model	0.7867	0.8632	0.7524	0.7829	0.8095
Logistic_stepwise	0.7600	0.8364	0.7306	0.8000	0.6286

Model: model names in the current comparison.

Accuracy: overall accuracy, number of correct predictions of all classes divided by total sample number.

Accuracy_[class name]: accuracy of Class [class name], number of samples that are correctly predicted to be Class [class name] divided by number of samples predited to be Class [class name]

AUC: area under the ROC curve, only available for two-class classification.

F1: F1 score, precision * recall / (precision + recall)

Confusion matrix of Boosted_model				
	Actual_Creditworthy	Actual_Non-Creditworthy		
Predicted_Creditworthy	101	28		
Predicted_Non-Creditworthy	4	17		

Confusion matrix of Decision_Tree				
	Actual_Creditworthy	Actual_Non-Creditworthy		
Predicted_Creditworthy	86	28		
Predicted_Non-Creditworthy	19	17		

Confusion matrix of Forest_model				
	Actual_Creditworthy	Actual_Non-Creditworthy		
Predicted_Creditworthy	102	28		
Predicted_Non-Creditworthy	3	17		

Confusion matrix of Logistic_stepwise		
	Actual_Creditworthy	Actual_Non-Creditworthy
Predicted_Creditworthy	92	23
Predicted_Non-Creditworthy	13	22

Step 4: Writeup

- Which model did you choose to use? Please justify your decision using all of the following techniques. Please only use these techniques to justify your decision:
 - Overall Accuracy against your Validation set
 - o Accuracies within "Creditworthy" and "Non-Creditworthy" segments
 - o ROC graph
 - o Bias in the Confusion Matrices

use Forest model considering overall accuracy, PPV, NPV and the F1 score.

model comparison tool (Overall Accuracy+ "Creditworthy" and "Non-Creditworthy" + ROC graph):

	Model Comparison Report				
Fit and error measures					
Model	Accuracy	F1	AUC	Accuracy_Creditworthy	Accuracy_Non-Creditworthy
Decision_Tree	0.6867	0.7854	0.6524	0.7544	0.472
Forest_model	0.7933	0.8681	0.7368	0.7846	0.850
Boosted_model	0.7867	0.8632	0.7524	0.7829	0.809
Logistic_stepwise	0.7600	0.8364	0.7306	0.8000	0.628
Accuracy: overall accura Accuracy_[class name]	cy, number of correct p accuracy of Class [clas	redictions o		if by total sample number. nat are correctly predicted to be Class [clas	s name] divided by number of samples
•	cy, number of correct p accuracy of Class [clas name] curve, only available fo	redictions of s name], nu or two-class	imber of samples th	•	s name] divided by number of samples
Accuracy: overall accura Accuracy_[class name] oredited to be Class [class AUC: area under the ROC	cy, number of correct p caccuracy of Class [class camme] curve, only available foe ecall / (precision + reca	redictions of s name], nu or two-class II)	imber of samples th	•	s name] divided by number of samples
Accuracy: overall accura Accuracy_[class name] oredited to be Class [class AUC: area under the ROC F1: F1 score, precision * r	cy, number of correct p caccuracy of Class [class camme] curve, only available foe ecall / (precision + reca	redictions of s name], nu or two-class II)	mber of samples the classification.	•	s name] divided by number of samples Actual_Non-Creditworthy
Accuracy: overall accura Accuracy_[class name] oredited to be Class [class AUC: area under the ROC F1: F1 score, precision * r	cy, number of correct p caccuracy of Class [class camme] curve, only available foe ecall / (precision + reca	redictions of s name], nu or two-class II)	mber of samples the classification.	nat are correctly predicted to be Class [clas	

Confusion matrix of Decision_Tree		
	Actual_Creditworthy	Actual_Non-Creditworthy
Predicted_Creditworthy	86	28
Predicted_Non-Creditworthy	19	17
Confusion matrix of Forest_model		
	Actual_Creditworthy	Actual_Non-Creditworthy
Predicted_Creditworthy	102	28
Predicted_Non-Creditworthy	3	17
Confusion matrix of Logistic_stepwise		
	Actual_Creditworthy	Actual_Non-Creditworthy
Predicted_Creditworthy	92	23
Predicted_Non-Creditworthy	13	22

How many individuals are creditworthy?

408 individuals are creditworthy.

Workflow:

