Problem 1

In this question, consider models LINEAR, QUAD, and DUMMIES in the Stata output below. In these models, the dependent variable is price of a diamond ring and the pairs of numbers given are the OLS coefficients and their standard errors. The dummy d1 indicates above-average, d2 indicates average, and d3 indicates below-average quality of diamond.

		- ·			- ·	14	10	
sum	price	Inprice	sıze	sızesq	Insize	d1	d2	d3

Max	Min	Std. Dev.	Mean	Obs	Variable
1086 6.990256 3.5 12.25 1.252763	223 5.407172 1.2 1.44 .1823215	213.6428 .3950927 .5678752 2.632861 .2597902	500.0833 6.134642 2.041667 4.484167 .6792832	48 48 48 48	price Inprice size sizesq Insize
1 1 1	0 0 0	.4490929 .3087093 .4892461	.2708333 .1041667 .625	48 48 48	d1 d2 d3

. est table LINEAR LINHET QUAD DUMMIES LOGLIN LOGLOG, b(%10.3f) se stats(N F r2 r2_a rmse rss)

Variable	LINEAR	LINHET	QUAD	DUMMIES	LOGLIN	LOGLOG
size	372.102	372.102	292.013	372.182	0.679	
	8.179	7.775	68.130	8.362	0.023	
sizesq			17.399			
			14.695			
d1				3.982		
				10.796		
d2				1.552		
				15.724		
lnsize						1.498
						0.038
_cons	-259.626	-259.626	-174.130	-261.027	4.749	5.117
	17.319	15.856	74.238	18.219	0.048	0.028
N	48	48	48	48	48	48
F	2069.991	2290.555	1044.740	662.090	906.175	1515.544
r2	0.978	0.978	0.979	0.978	0.952	0.971
r2_a	0.978	0.978	0.978	0.977	0.951	0.970
rmse	31.841	31.841	31.702	32.506	0.088	0.069
rss	46635.671	46635.671	45226.677	46491.431	0.354	0.216

```
t_{-}.05, v \text{ for } v = 48
                                     v = 46
                                                  v = 45
                                                              v = 44
                                                                          v = 43
                         v = 47
             1.6772242
                         1.6779267
                                     1.6786604
                                                 1.6794274
                                                              1.68023
                                                                            1.6810707
t_{-}.025, v \text{ for } v = 48
                         v = 47
                                     v = 46
                                                  v = 45
                                                              v = 45
                                                                          v = 43
                                                 2.0141034
             2.0106348
                         2.0117405
                                     2.0128956
                                                              2.0141034
                                                                            2.0166922
t_{-}.01, v \text{ for } v = 48
                         v = 47
                                     v = 46
                                                  v = 45
                                                              v = 45
                                                                          v = 43
                                                                            2.4162501
             2.4065813
                         2.4083451
                                     2.4101881
                                                 2.4121159
                                                              2.4121159
t_{-}.005, v for v = 48
                         v = 47
                                     v = 46
                                                  v = 45
                                                              v = 45
                                                                          v = 43
                                                 2.689585
             2.682204
                         2.6845556 2.6870135
                                                              2.689585
                                                                            2.6951021
F_{..}05, v1, v2 for v1, v2=2, 48 v1, v2=2, 47 v1, v2=2, 46
                                                          v1, v2=2, 45
                                                                       v1, v2=2,44
                                                                                     v1, v2=2, 43
                  3.1907273
                                3.1950563
                                                                                     3.2144803
                                             3.1995817
                                                          3.2043173
                                                                        3.209278
F_{...}05,v1,v2 for
                  v1, v2=3,48 v1, v2=3,47
                                            v1, v2=3, 46 v1, v2=3, 45
                                                                       v1, v2=3, 44
                                                                                     v1, v2=3, 43
                   2.7980606
                                2.8023552
                                             2.8068449
                                                          2.8115435
                                                                        2.8164658
                                                                                     2.8216282
```

Part a. In model QUAD, what is the marginal effect at the mean on price of of increasing size by one unit?

Part b. After controlling for the size of the diamond, what is the difference in price between a ring of average quality and a ring of below-average quality?

Part c. After controlling for the size of a diamond, what is the difference in price between a ring of above-average quality and a ring of average quality?

Part d. Are all the regressors in model DUMMIES jointly significant at significance level 0.05? Perform an appropriate test. State clearly the null and alternative hypotheses of your test, and your conclusion.

Part e. Are the indicator variables d2 and d2 in model DUMMIES jointly statistically significant at significance level 0.05? Perform an appropriate test. State clearly the null and alternative hypotheses of your test, and your conclusion.

Part f. Do you see any problems in adding the variable d3 as a regressor in the model DUMMIES? Explain.

Part g. Using a measure of model fit that controls for the size of the model, which of the three models best explains the data? Explain your answer.

Part h. Provide a meaningful interpretation of the effect of variable size on price in model LOGLIN.

Part i. Provide a meaningful interpretation of the effect of variable size on price in model LOGLOG.

Part j. Suppose we use model LOGLIN. Do you see any problems in using

$$\widehat{price} = \exp(4.749 + 0.679 \times size)$$

to predict price? Explain.

Problem 2

Consider the following regression that you are probably sick of seeing by now. Recall that variable tv is in units of \$1000.

. regress sales tv

	Source	SS		df	MS		Number of obs						200 312.14
	Model Residual	3.3146e+09 2.1025e+09			3.3146e+09 Prob > 10618841.6 R-squar		F [°] red	= =	0.0000 0.6119 0.6099				
	Total	Total 5.4171e+09		199 2	27221853	Adj R-squared Root MSE		=	3258.7				
	sales	Coef.	Std. E	Err.	t I	P> t	[95% Cor	nf. In	terval]				
	tv _cons	47.53664 7032.594	2.6906 457.84			0.000 0.000	42.23072 6129.719		2.84256 935.468				
t t t	grees of freed 05: 025: 01: 005:	1.6525 1.9719 2.3451	199 1.6525 1.9720 2.3452 2.6008	198 1.6526 1.9720 2.3453 2.6009	197 1.6526 1.9721 2.3454 2.6010	1.9721	195 1.6527 1.9722 2.3456 2.6013	194 1.652 1.972 2.345 2.601	23 1.9723 57 2.3458				

Part a. Predict the actual sales when tv advertising equals \$100,000.

Part b. A statistician states that a 95 percent confidence interval for actual sales given to advertising equals \$100,000 will have width of at least 10,000 units. Is she correct? Explain your answer. (This is tricky.)

235.1121

5219.902

Part c. Consider the model below that accounts for region of advertising, which is captured by dummy variables region1 and region2.

. regress sales tv radio newspaper tvbynews region1 region2

Source	SS	df	MS		Number of obs		200 304.00
Model Residual	4.8988e+09 518350292	6 193	816466409 2685752.83	16466409 Prob > F 85752.81 R-squared		= =	0.0000 0.9043 0.9013
Total	5.4171e+09	199	2722185		Adj R-squared Root MSE		1638.8
sales	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
tv radio newspaper tvbynews region1	38.80747 187.3695 -32.16059 .2010003 -404.474	2.31232 8.701045 10.46367 .0568861 346.3489	16.78 21.53 -3.07 3.53 -1.17	0.000 0.000 0.002 0.001 0.244	34.2468 170.208 -52.7984 .08880 -1087.58	1 2 2	43.36813 204.5308 -11.52276 .3131985 278.6409

-1.12

8.60

0.264

0.000

-852.7135

3272.187

How does the regression change if we replace region1 with region3?

275.7715

493.7597

Problem 3

region2

_cons

. regress mpg hp curbwt torque disp

-308.8007

4246.044

Source	SS	df		MS		Number of obs		330 204.45
Model Residual	6955.79742 2764.22219	4 325		3.94935 0529904		Prob > F R-squared Adj R-squared Root MSE		0.0000 0.7156 0.7121
Total	9720.0196	329	29.5	5441325				2.9164
mpg	Coef.	std.	Err.	t	P> t	[95% Conf.	In	terval]
hp curbwt torque disp _cons	0432345 0025332 .0142477 8329362 44.40531	.0042 .0004 .0035 .3037 1.119	105 139 788	-10.13 -6.17 4.05 -2.74 39.67	0.000 0.000 0.000 0.006 0.000	0516277 0033408 .0073348 -1.430557 42.20314	 	0348412 0017256 0211606 2353152 6.60748

In the regression above, do you think multicollinearity is a problem? Explain.

Problem 4

A regression of wage (hourly wage) on an intercept and an indicator variable gender (equal to 1 if female and equal to 0 if male) leads to an estimate $\widehat{wage} = 20 - 4 \times gender$. What are average wages for men and for women in the sample?