PSC4375: Linear Regression

Week 5: Lecture 10 (& 11)

Prof. Weldzius

Villanova University

Slides Updated: 2025-02-17

Data from an online betting company Intrade

- Data from an online betting company Intrade
- People trade contracts such as "Obama to win the electoral votes in Florida"

- Data from an online betting company Intrade
- People trade contracts such as "Obama to win the electoral votes in Florida"
- Market prices of each contract fluctuate based on its sales

- Data from an online betting company Intrade
- People trade contracts such as "Obama to win the electoral votes in Florida"
- Market prices of each contract fluctuate based on its sales
- Why might we expect betting markets like Intrade to accurately predict outcomes of elections?

• Goal: what's our best guess about Y_i if we know what X_i is?

- Goal: what's our best guess about Y_i if we know what X_i is?
 - What's our best guess about election margins if we know the market's margins?

- Goal: what's our best guess about Y_i if we know what X_i is?
 - What's our best guess about election margins if we know the market's margins?
- Terminology:
 - Dependent/outcome variable: what we want to predict (election margin).

- Goal: what's our best guess about Y_i if we know what X_i is?
 - What's our best guess about election margins if we know the market's margins?
- Terminology:
 - Dependent/outcome variable: what we want to predict (election margin).
 - Independent/explanatory variable: what we're using to predict (market margin).

We'll use two datasets: intrade08.csv & pres08.csv

Name	Description
day	Date of the session
statename	Full name of each state (including District of Columbia in 2008)
state	Abbreviation of each state (including District of Columbia in 2008)
PriceD	Closing price (predicted vote share) of Democratic Nominee's market
PriceR	Closing price (predicted vote share) of Republican Nominee's market
VolumeD	Total session trades of Democratic Party Nominee's market
VolumeR	Total session trades of Republican Party Nominee's market

 intrade08.csv: Each row represents daily trading information about the contracts for either the Democratic or Republican Party nominee's victory in a particular state.

Presidential voting data from 2008

Name	Description
state.name	Full name of state (only in pres2008)
state	Two letter state abbreviation
Obama	Vote percentage for Obama
McCain	Vote percentage for McCain
EV	Number of electoral college votes for this state

Predicting Elections Using Betting Markets and Linear Models

Predicting Elections Using Betting Markets and Linear Models

Load the data

Plot bivariate relationship

ullet Prediction: for any value of X, what's the best guess about Y?

PSC4375: Linear Regression

- ullet Prediction: for any value of X, what's the best guess about Y?
 - Need a function y = f(x) that maps values of X into predictions.

- ullet Prediction: for any value of X, what's the best guess about Y?
 - Need a function y = f(x) that maps values of X into predictions.
 - Machine learning: fancy ways to determine f(x)

- ullet Prediction: for any value of X, what's the best guess about Y?
 - Need a function y = f(x) that maps values of X into predictions.
 - Machine learning: fancy ways to determine f(x)
- Simplest possible way to relate two variables: a line.

- ullet Prediction: for any value of X, what's the best guess about Y?
 - Need a function y = f(x) that maps values of X into predictions.
 - Machine learning: fancy ways to determine f(x)
- Simplest possible way to relate two variables: a line.

$$y = mx + b$$

- ullet Prediction: for any value of X, what's the best guess about Y?
 - Need a function y = f(x) that maps values of X into predictions.
 - Machine learning: fancy ways to determine f(x)
- Simplest possible way to relate two variables: a line.

$$y = mx + b$$

Problem: for any line we draw, not all the data is on the line.

- ullet Prediction: for any value of X, what's the best guess about Y?
 - Need a function y = f(x) that maps values of X into predictions.
 - Machine learning: fancy ways to determine f(x)
- Simplest possible way to relate two variables: a line.

$$y = mx + b$$

- Problem: for any line we draw, not all the data is on the line.
 - Some points will be above the line, some below.

- ullet Prediction: for any value of X, what's the best guess about Y?
 - Need a function y = f(x) that maps values of X into predictions.
 - Machine learning: fancy ways to determine f(x)
- Simplest possible way to relate two variables: a line.

$$y = mx + b$$

- Problem: for any line we draw, not all the data is on the line.
 - Some points will be above the line, some below.
 - Need a way to account for chance variation away from the line.

$$Y_i = \underbrace{\alpha}_{\text{intercept}} + \underbrace{\beta}_{\text{slope}} \times X_i + \underbrace{\epsilon_i}_{\text{error term}}$$

Model for the line of best fit

$$Y_i = \underbrace{\alpha}_{\text{intercept}} + \underbrace{\beta}_{\text{slope}} \times X_i + \underbrace{\epsilon_i}_{\text{error term}}$$

• Coefficients/parameters (α, β) : true unknown intercept/slope of the line of best fit

$$Y_i = \underbrace{\alpha}_{\text{intercept}} + \underbrace{\beta}_{\text{slope}} \times X_i + \underbrace{\epsilon_i}_{\text{error term}}$$

- Coefficients/parameters (α, β) : true unknown intercept/slope of the line of best fit
- Chance error (ϵ_i) : accounts for the fact that the line doesn't perfectly fit the data.

$$Y_i = \underbrace{\alpha}_{\text{intercept}} + \underbrace{\beta}_{\text{slope}} \times X_i + \underbrace{\epsilon_i}_{\text{error term}}$$

- Coefficients/parameters (α, β) : true unknown intercept/slope of the line of best fit
- Chance error (ϵ_i) : accounts for the fact that the line doesn't perfectly fit the data.
 - Each observation allowed to be off the regression line
 - Chance errors are 0 on average

$$Y_i = \underbrace{\alpha}_{\text{intercept}} + \underbrace{\beta}_{\text{slope}} \times X_i + \underbrace{\epsilon_i}_{\text{error term}}$$

- Coefficients/parameters (α, β) : true unknown intercept/slope of the line of best fit
- Chance error (ϵ_i) : accounts for the fact that the line doesn't perfectly fit the data.
 - Each observation allowed to be off the regression line
 - Chance errors are 0 on average
- Useful fiction: this model represents the **data generating process*
 - George Box: "all models are wrong, some are useful"

$$Y_i = \alpha + \beta \times X_i + \epsilon_i$$

$$Y_i = \alpha + \beta \times X_i + \epsilon_i$$

- Intercept alpha: average value of Y when X is 0
 - Average Obama margin when market's margin is 0.

$$Y_i = \alpha + \beta \times X_i + \epsilon_i$$

- Intercept alpha: average value of Y when X is 0
 - Average Obama margin when market's margin is 0.
- Slope β : average change in Y when X increases by one unit
 - Average increase in Obama margin for each additional margin increase by the market.

$$Y_i = \alpha + \beta \times X_i + \epsilon_i$$

- Intercept alpha: average value of Y when X is 0
 - Average Obama margin when market's margin is 0.
- Slope β : average change in Y when X increases by one unit
 - Average increase in Obama margin for each additional margin increase by the market.
- But we don't know α or β . How can we estimate them? Next time. . .

$$Y_i = \alpha + \beta \times X_i + \epsilon_i$$

- Intercept alpha: average value of Y when X is 0
 - Average Obama margin when market's margin is 0.
- Slope β : average change in Y when X increases by one unit
 - Average increase in Obama margin for each additional margin increase by the market.
- ullet But we don't know lpha or eta. How can we estimate them? Next time. . .
 - Or now if we still have time!

Linear Regression Model (skip if same day)

$$Y_i = \underbrace{\alpha}_{\text{intercept}} + \underbrace{\beta}_{\text{slope}} \times X_i + \underbrace{\epsilon_i}_{\text{error term}}$$

- Coefficients/parameters (α, β) : true unknown intercept/slope of the line of best fit
- Chance error (ϵ_i) : accounts for the fact that the line doesn't perfectly fit the data.
 - Each observation allowed to be off the regression line
 - Chance errors are 0 on average

- Parameters: α, β
 - Unknown features of the data-generating process.
 - Chance error makes these impossible to observe directly.

- Parameters: α, β
 - Unknown features of the data-generating process.
 - Chance error makes these impossible to observe directly.
- Estimates: $\hat{\alpha}, \hat{\beta}$
 - An estimate is our best guess about some parameter.

- Parameters: α, β
 - Unknown features of the data-generating process.
 - Chance error makes these impossible to observe directly.
- Estimates: $\hat{\alpha}$, $\hat{\beta}$
 - An estimate is our best guess about some parameter.
- Regression line:

$$\hat{\mathbf{Y}} = \hat{\alpha} + \hat{\beta} \times \mathbf{x}$$

- Average value of Y when X is x - Represents the best guess or **predicted value** of the outcome at x.

Line of best fit

Why not this line?

• How do we figure out the best line to draw?

- How do we figure out the best line to draw?
 - **Fitted/predicted value** for each observation: $\hat{Y} = \hat{\alpha} + b\hat{e}ta \times X_i$

- How do we figure out the best line to draw?
 - **Fitted/predicted value** for each observation: $\hat{Y} = \hat{\alpha} + \hat{beta} \times X_i$
 - Residual/prediction error: $\hat{\epsilon_i} = Y_i \hat{Y}$

- How do we figure out the best line to draw?
 - **Fitted/predicted value** for each observation: $\hat{Y} = \hat{\alpha} + \hat{beta} \times X_i$
 - Residual/prediction error: $\hat{\epsilon_i} = Y_i \hat{Y}$
- Get these estimates by the least squares method

- How do we figure out the best line to draw?
 - **Fitted/predicted value** for each observation: $\hat{Y} = \hat{\alpha} + \hat{beta} \times X_i$

PSC4375: Linear Regression

- Residual/prediction error: $\hat{\epsilon_i} = Y_i \hat{Y}$
- Get these estimates by the least squares method
- Minimize the sum of the squared residuals (SSR):

- How do we figure out the best line to draw?
 - **Fitted/predicted value** for each observation: $\hat{Y} = \hat{\alpha} + \hat{beta} \times X_i$
 - Residual/prediction error: $\hat{\epsilon_i} = Y_i \hat{Y}$
- Get these estimates by the least squares method
- Minimize the sum of the squared residuals (SSR):

$$SSR = \sum_{i=1}^{n} \hat{\epsilon}_{i}^{2} = \sum_{i=1}^{n} (Y_{i} - \hat{\alpha} - \hat{\beta}X_{i})^{2}$$

- How do we figure out the best line to draw?
 - **Fitted/predicted value** for each observation: $\hat{Y} = \hat{\alpha} + \hat{beta} \times X_i$
 - Residual/prediction error: $\hat{\epsilon_i} = Y_i \hat{Y}$
- Get these estimates by the least squares method
- Minimize the sum of the squared residuals (SSR):

$$SSR = \sum_{i=1}^{n} \hat{\epsilon}_{i}^{2} = \sum_{i=1}^{n} (Y_{i} - \hat{\alpha} - \hat{\beta}X_{i})^{2}$$

Finds the line that minimizes the magnitude of the prediction errors!

R will calculate least squares line for a data set using lm()

- R will calculate least squares line for a data set using lm()
 - Syntax: lm(y ~ x, data = mydata)

- R will calculate least squares line for a data set using lm()
 - Syntax: $lm(y \sim x, data = mydata)$
 - y is the name of the dependent variable
 - x is the name of the independent variable
 - mydata is the data.frame where they live

```
fit <- lm(obama.actmarg ~ obama.intmarg, data = intresults08)
fit

##
## Call:
## lm(formula = obama.actmarg ~ obama.intmarg, data = intresulf
##
## Coefficients:
## (Intercept) obama.intmarg
## 5.5681 0.2799</pre>
```

Coefficients and fitted values

Use coef() to extrac estimated coefficients:

```
coef(fit)
```

```
(Intercept) obama.intmarg
##
      5.5681423 0.2799326
##
```

• R can show you each of the fitted values as well:

```
head(fitted(fit))
```

```
##
                                                        6
## 5.568142 5.568142 5.568142 5.568142 5.568142 5.568142
```

Properties of leasat squares

- Least squares line always goes through (\bar{X}, \bar{Y})
- Estimated slope is related to correlation:

$$\hat{\beta} = \text{(correlation of } X \text{and } Y \text{)} \times \frac{\text{SD of } Y}{\text{SD of } X}$$

Mean of residuals is always 0

19 / 20

Visual components of least squares

