SF1624 - Algebra och geometri

detaljerade lösningar till rekommenderade uppgifter

Simon Rosén, Harald Olin

work in progress, hämta senaste versionen på https://github.com/simon-rosen/linalg-2022/blob/main/linalg_2022.pdf

October 2022

Innehåll

1	1.1 1.2	lul 1 Teori	2 3
2	2.1	Iul 2 2 Teori	20
3	3.1	dul 3 2 Teori Uppgifter att börja med 2	21
4	4.1	Iul 4 2 Teori	23
5	5.1	Iul 5 2 Teori	24
	6.1	Iul 6 2 Teori	25

$1 \mod 1$

1.1 Teori

Vektorerna och punkterna i dessa exempel är tre dimensioner (R^3) . Men formlerna fungerar på liknande sätt för en godtycklig dimension (R^n) .

Formel 1 (vektoraddition)

Två vektorer $\vec{u} = (u_1, u_2, u_3)$ och $\vec{v} = (v_1, v_2, v_3)$ adderas såhär:

$$\vec{u} + \vec{v} = (u_1 + v_1, u_2 + v_2, u_3 + v_3)$$

Kom ihåg att $\vec{u} - \vec{v} = \vec{u} + (-1) \cdot \vec{v}$

Formel 2 (vektormultiplikation med ett tal)

Ett tal t och en vektor $\vec{u} = (u_1, u_2, u_3)$ multipliceras såhär:

$$t \cdot \vec{u} = (t \cdot u_1, t \cdot u_2, t \cdot u_3)$$

Formel 3 Längden $|\vec{v}|$ av en vektor $\vec{v} = (x, y, z)$ fås genom:

$$|\vec{v}| = \sqrt{x^2 + y^2 + z^2}$$

Formel 4 En enhetsvektor $\vec{e}_{\vec{v}}$ i samma riktning som en vektor \vec{v} fås genom:

$$\vec{e}_{\vec{v}} = \frac{1}{|\vec{v}|} \cdot \vec{v}$$

Man skalar alltså om vektorn så att den får längd ett.

Formel 5 En vektor som går från punkten $P = (p_1, p_2, p_3)$ till punkten $Q = (q_1, q_2, q_3)$ fås genom

$$\vec{OQ} - \vec{OP} = (q_1, q_2, q_3) - (p_1, p_2, p_3)$$

Notera att \vec{OP} och \vec{OQ} är punkternas ortsvektorer (vektorer från origo till punkten), för tekniskt sätt kan man inte addera / subtrahera två punkter.

Formel 6 (skalärprodukt) Skalärprodukten av två vektorer $\vec{u} = (u_1, u_2, u_3)$ och $\vec{v} = (v_1, v_2, v_3)$ är:

$$\vec{u} \cdot \vec{v} = u_1 \cdot v_1 + u_2 \cdot v_2 + u_3 \cdot v_3$$

En annan formel som kan användas är:

$$\vec{u} \cdot \vec{v} = |\vec{u}||\vec{v}|cos(\alpha)$$

 $D\ddot{a}r \alpha \ddot{a}r vinkeln mellan vektorerna \vec{u} och \vec{v}$. Denna formel $\ddot{a}r s \ddot{a}rskilt användbar$ om man vill r $\ddot{a}kna$ ut vinkeln mellan två vektorer.

Skalärprodukten av två vektorer <u>är ett tal</u>.

Formel 7 En linje kan beskrivas med en parameterframställning om man har en punkt $P = (p_1, p_2, p_3)$ och en vektor $\vec{v} = (v_1, v_2, v_3)$ som pekar i linjens riktning (som man skalar om med ett tal $t \in R$ för att kunna komma till alla punkter på linjen)

$$(x, y, z) = P + t \cdot \vec{v} = (p_1, p_2, p_3) + t \cdot (v_1, v_2, v_3)$$

Formel 8 Ett plan kan beskrivas med en parameterframställning om man har en punkt $P=(p_1,p_2,p_3)$ samt två vektor $\vec{v}=(v_1,v_2,v_3)$ och $\vec{u}=(u_1,u_2,u_3)$ som är parallella med planet (om man skalar dessa vektorer med två tal $s,t\in R$ ska man kunna komma till alla punkter i planet)

$$(x, y, z) = P + s \cdot \vec{u} + t \cdot \vec{v} = (p_1, p_2, p_3) + s \cdot (u_1, u_2, u_3) + t \cdot (v_1, v_2, v_3)$$

Formel 9 Ett plan som beskrivs med en ekvation ax + by + cz = d har en normalvektor $\vec{n} = (a, b, c)$ som har en rät vinkel till planet.

Formel 10 För att projicera en vektor \vec{u} på en annan vektor \vec{v} kan vi använda projektionsformeln

$$proj_{\vec{v}}(\vec{u}) = \frac{\vec{v} \cdot \vec{u}}{|\vec{v}|^2} \cdot \vec{v}$$

1.2 Uppgifter att börja med

1.

Rent intuitivt borde det finnas två stycken enhetsvektorer parallella till (3, -4), en som pekar åt samma håll och en som pekar åt motsatt håll.

Dessa kan beräknas med hjälp av formel 4:

$$\vec{e}_{\vec{v}} = \frac{1}{|\vec{v}|} \cdot \vec{v} =$$

Och med formel 3:

$$= \frac{1}{\pm\sqrt{3^2 + (-4)^2}} \cdot (3, -4) = \pm \frac{1}{5} \cdot (3, -4)$$

Här kan man nöja sig eller så kan man utveckla ytterligare till:

$$\vec{e}_{\vec{v}} = \pm (\frac{3}{5}, \frac{-4}{5})$$

Notera att det finns två stycken lösningar pga \pm tecknet.

2.

a)

Använder formel 1:

$$\vec{u} + \vec{v} = (2,3) + (1,5) = (2+1,3+5)$$

Bild:

b)

Använder först formel 2:

$$\vec{u} - \vec{v} = \vec{u} + (-1) \cdot \vec{v} = (2,3) + (-1,-5)$$

Nu är det lätt att använda formel 1:

$$\vec{u} + \vec{v} = (2,3) + (-1,-5) = (1,-2)$$

Det här var en övertydlig lösning, enklare skulle vara att bara göra såhär direkt:

$$\vec{u} - \vec{v} = (2 - 1, 3 - 5) = (1, -2)$$

 $\quad \text{Bild:} \quad$

c)

Änvänder formel 2:

$$-2\vec{u} = (-2 \cdot 2, -2 \cdot 3) = (-4, -6)$$

3.

Vi vill beräkna skalärprodukten $\vec{u} \cdot \vec{u}$. För att göra detta använder vi den första varianten av formel 6:

$$\vec{u} \cdot \vec{u} = (1, 2, 3) \cdot (1, 2, 3) = 1 \cdot 1 + 2 \cdot 2 + 3 \cdot 3 = 1 + 4 + 9 = 14$$

Notera att $\vec{u} \cdot \vec{u} = 1 \cdot 1 + 2 \cdot 2 + 3 \cdot 3 = 1^2 + 2^2 + 3^2 = |\vec{u}|^2$.

4

Den här uppgiften är enklare än den verkar. A och B ligger på en linje mellan (4, 1, 5) och (1, 4, 2) och de delar upp den här linjen i tre delar. Det kan se ut såhär:

En metod för att bestämma A och B är:

- 1. Välj en startpunkt.
- 2. Ta fram en vektor som går mellan punkterna.
- 3. börja vid startpunkten och skala om vektorn så att den når till punkt A respektive B.

Jag väljer (1,4,2) som startpunkt. En vektor mellan (1,4,2) och (4,1,5) är (enligt formel 5)

$$(4,1,5) - (1,4,2) = (3,-3,3)$$

A ligger en tredjedel från A till B och blir alltså

$$(1,4,2) + \frac{1}{3} \cdot (3,-3,3) = (1,4,2) + (1,-1,1) = (2,3,3)$$

Och B som ligger två tredjedelar från A till B blir

$$(1,4,2) + \frac{2}{3} \cdot (3,-3,3) = (1,4,2) + (2,-2,2) = (3,2,4)$$

5.

Vi söker de enhetsvektorer som är ortogonala mot vektorerna (2, -6, -3) och (4, 3, -1). Kom ihåg att enhetsvektorer är vektorer av längd ett och att ortogonalitet betyder vinkelrät. Två vektorer är ortogonala om vinkeln mellan dom är $90^{\circ} = \frac{\pi}{2}$ radiener.

Vi döper våra kända vektorer till $\overline{v} = (2, -6, -3)$ och $\overline{u} = (4, 3, -1)$. Sedan definierar vi, till att börja med, en av våra sökta enhetsvektor $\overline{x} = (x, y, z)$. Med dessa definierade kan vi nu skriva upp våra villkor med matematisk notation.

Att \overline{x} är en enhetsvektor ger oss att $|\overline{x}| = 1$ vilket vi utvecklar till $\sqrt{x^2 + y^2 + z^2} = 1$. Sedan har vi villkoren att \overline{x} är ortogonal mot \overline{v} och \overline{u} vilket ger oss följande ekvationer

$$\overline{x} \cdot \overline{v} = |\overline{x}| \cdot |\overline{v}| \cdot \cos \frac{\pi}{2}$$
$$\overline{x} \cdot \overline{u} = |\overline{x}| \cdot |\overline{u}| \cdot \cos \frac{\pi}{2}$$

Vilka vi kan förenkla genom att använda oss av skalärprodukter och villkoret att $\cos\frac{\pi}{2}=0$ till

$$(x, y, z) \cdot (2, -6, -3) = 0$$

 $(x, y, z) \cdot (4, 3, -1) = 0,$

och vidare utveckla till

$$2x - 6y - 3z = 0$$
$$4x + 3y - z = 0.$$

Vi söker nu de tre variablerna x,y,z som löser ekvationssystemet från våra tre villkor.

$$\begin{cases} 2x - 6y - 3z &= 0\\ 4x + 3y - z &= 0\\ \sqrt{x^2 + y^2 + z^2} &= 1. \end{cases}$$

Viktigt att notera att vi inte har ett linjärt ekvationssystem då den tredje ekvationen har variabler av grad 2. Vi börjar därför med att lösa de två linjära ekvationerna.

Multiplicerar vi den övre ekvationen med -2 och adderar till den undre ekvationen får vi följande

$$\begin{cases} 2x - 6y - 3z & = 0\\ 4x + 3y - z + (-2) \cdot (2x - 6y - 3z) & = 0 + (-2 \cdot 0) \end{cases}$$

vilket vi förenklar till

$$\begin{cases} 2x - 6y - 3z = 0\\ 15y + 5z = 0. \end{cases}$$

Vi delar sedan den övre ekvationen med 2 och den undre ekvationen med 15 och får

$$\begin{cases} x - 3y - \frac{3}{2}z &= 0\\ y + \frac{1}{3}z &= 0 \end{cases}$$

sedan uttrycker vi den undre ekvationen i termer av z

$$\begin{cases} x - 3y - \frac{3}{2}z &= 0\\ y &= -\frac{1}{3}z \end{cases}$$

och upptäcker att genom insättning av den undre ekvationen i den övre ekvationen får vi att

$$x - 3y - \frac{3}{2}z = x - 3 \cdot (-\frac{1}{3}z) - \frac{3}{2}z = x + z - \frac{3}{2}z = x - \frac{1}{2}z.$$

vilket då ger oss ekvationssystemet

$$\begin{cases} x = \frac{1}{2}z \\ y = -\frac{1}{3}z. \end{cases}$$

Eftersom vi nu uttryck x och y i termer av z kan vi sätta in dessa i ekvationen för $|\overline{x}|$, då förenklar vi vänsterledet genom att låta

$$\sqrt{x^2 + y^2 + z^2} = \sqrt{\left(\frac{z}{2}\right)^2 + \left(-\frac{z}{3}\right)^2 + z^2} = \sqrt{z^2 \left(\frac{1}{4} + \frac{1}{9} + 1\right)} = \sqrt{z^2 \left(\frac{49}{36}\right)} = \frac{7z}{6}.$$

Detta kombinerat med högerledet ger oss att

$$\frac{7z}{6} = 1$$

vilket är ekvivalent med att

$$z = \frac{6}{7}.$$

Då får vi att

$$\begin{cases} x = \frac{1}{2} \cdot \frac{6}{7} &= \frac{3}{7} \\ y = -\frac{1}{3} \cdot \frac{6}{7} &= -\frac{2}{7}. \end{cases}$$

vilket ger oss att

$$\overline{x} = \frac{1}{7}(3, -2, 6).$$

Nu kan vi välja den andra ortogonala vektorn till

$$-\overline{x} = -\frac{1}{7}(3, -2, 6)$$

och på så vis har vi hittat två ortogogonala enhetsvektorer till vektorerna (2, -6, -3) och (4, 3, -1).

Svar: $\overline{x} = \pm \frac{1}{7}(3, -2, 6)$.

Alternativ lösning med kryssprodukt

Det här är ett typiskt tillfälle där kryssprodukten (formel 11) är användbar, eftersom att den ger just en vektor som är ortogonal mot de vektorer man tar kryssprodukten av. Jag tar fram den direkt med hjälp av formel 11

$$(2, -6, -3) \times (4, 3, -1) = (6 - (-9), -12 - (-2), 6 - (-24)) = (15, -10, 30)$$

Längden av den här vectorn tas fram med 3 och är $\sqrt{15^2 + (-10)^2 + 30^2} = \sqrt{1225}$. En av de enhetsvektorer vi söker är alltså enligt formel 4

$$\frac{1}{\sqrt{1225}} \cdot (15, -10, 30)$$

. Den andra pekar åt motsatt håll och är alltså

$$\frac{-1}{\sqrt{1225}} \cdot (15, -10, 30)$$

Man skulle kunna förenkla ytterligare om man vill för $\sqrt{1225} = 35$ (vilket inte alls är uppenbart om man saknar miniräknare)

$$\frac{1}{\sqrt{1225}} \cdot (15, -10, 30) = \frac{1}{35} \cdot (15, -10.30) = \frac{1}{7} \cdot (3, -2, 6)$$

6.

Uppgifter där man ska visa saker kan vara lite svåra att börja med, men ofta kan man börja testa sig fram med hjälp av den info som ges.

Här handlar det om ortogonalitet så då skulle man kunna börja testa att använda skalärprodukten (formel 6), eftersom att den ska vara 0 om två vektorer är ortogonala

$$(\vec{u} + \vec{v}) \cdot (\vec{u} - \vec{v}) = (u_1 + v_1) \cdot (u_1 - v_1) + (u_2 + v_2) \cdot (u_2 - v_2) + \dots + (u_n + v_n) \cdot (u_n - v_n) = (u_1 + v_1) \cdot (u_1 - v_1) + (u_2 + v_2) \cdot (u_2 - v_2) + \dots + (u_n + v_n) \cdot (u_n - v_n) = (u_1 + v_1) \cdot (u_1 - v_1) + (u_2 + v_2) \cdot (u_2 - v_2) + \dots + (u_n + v_n) \cdot (u_n - v_n) = (u_1 + v_1) \cdot (u_1 - v_1) + (u_2 + v_2) \cdot (u_2 - v_2) + \dots + (u_n + v_n) \cdot (u_n - v_n) = (u_1 + v_1) \cdot (u_1 - v_1) + (u_2 + v_2) \cdot (u_2 - v_2) + \dots + (u_n + v_n) \cdot (u_n - v_n) = (u_1 + v_1) \cdot (u_1 - v_1) + (u_2 + v_2) \cdot (u_2 - v_2) + \dots + (u_n + v_n) \cdot (u_n - v_n) = (u_1 + v_1) \cdot (u_1 - v_1) + (u_2 + v_2) \cdot (u_2 - v_2) + \dots + (u_n + v_n) \cdot (u_n - v_n) = (u_1 + v_1) \cdot (u_1 - v_1) + (u_2 + v_2) \cdot (u_2 - v_2) + \dots + (u_n + v_n) \cdot (u_n - v_n) = (u_1 + v_1) \cdot (u_1 - v_1) + (u_2 + v_2) \cdot (u_2 - v_2) + \dots + (u_n + v_n) \cdot (u_n - v_n) = (u_1 + v_1) \cdot (u_1 - v_1) + (u_2 + v_2) \cdot (u_2 - v_2) + \dots + (u_n + v_n) \cdot (u_n - v_n) = (u_1 + v_1) \cdot (u_1 - v_1) + (u_2 + v_2) \cdot (u_2 - v_2) + \dots + (u_n + v_n) \cdot (u_n - v_n) = (u_1 + v_1) \cdot (u_1 - v_1) + (u_2 + v_2) \cdot (u_2 - v_2) + \dots + (u_n + v_n) \cdot (u_n - v_n) = (u_1 + v_1) \cdot (u_1 - v_1) \cdot (u_1 - v_1) + (u_1 + v_2) \cdot (u_1 - v_2) + (u_1 + v_2) \cdot (u_1 - v_2) + (u_1 + v_2) \cdot (u_1 - v_2) + (u_1 + v_2) \cdot (u_2 - v_2) + \dots + (u_n + v_n) \cdot (u_n - v_n) = (u_1 + v_1) \cdot (u_1 - v_2) \cdot (u_1 - v_2) + (u_1 + v_2) \cdot (u_1 - v_2) +$$

Notera att varje term i högerledet går att utveckla med konjugatregeln. Då får vi

$$= (u_1^2 - v_1^2) + (u_2^2 - v_2^2) + \ldots + (u_n^2 - v_n^2) =$$

Uppgiften handlar ju också om att vektorerna ska ha samma längd och detta börjar ju likna formeln för vektorers längd (formel 3) lite. Jag skriver om den såhär

$$= (u_1^2 + u_2^2 + \dots + u_n^2) - (v_1^2 + v_2^2 + \dots + v_n^2) = \sqrt{(u_1^2 + u_2^2 + \dots + u_n^2)} - \sqrt{(v_1^2 + v_2^2 + \dots + v_n^2)} = |\vec{u}|^2 - |\vec{v}|^2 = 0 \\ \iff |\vec{u}|^2 = |\vec{v}|^2 \\ \iff |\vec{u}| = \pm |\vec{v}|$$

En vektors längd är ju positiv så $|\vec{u}| = |\vec{v}|$

7.

a)

Vi vill skapa en parameterframställning med formel 7. En vektor som går från (1, 0, -1) till (2, 3, -5) är

$$(2,3,-5) - (1,0,-1) = (1,3,-4)$$

En möjlig parameterframställning är alltså

$$L = (1, 0, -1) + t \cdot (1, 3, -4)$$

Där $t \in R$

b)

Det här är enkelt eftersom att vi redan har vektorn som är parallell med linjen L

$$(0,0,0) + t \cdot (1,3,-4), t \in R$$

8.

Den vektor som är ortogonal mot planet kallas för planets normalvektor. Planet har normalvektor n=(1,2,3), detta fås genom att man kollar på koefficienterna till x,y,z i planets ekvation x+2y+3z=5. Eftersom att vi vet att linjen kommer gå genom origo kan vi välja parameterformen

$$L = (0,0,0) + t \cdot (1,2,3) = t \cdot (1,2,3), t \in R$$

9.

En parameterform för ett plan består av

- 1 punkt som ligger i planet.
- 2 vektorer som är parallella med planet.

Vi har tre punkter som ligger i planet. Man kan välja en av dessa som 'startpunkt' och sedan ta fram de två vektorerna genom subtraktion. Låt oss välja (1, 2, 0) som startpunkt, då ser det ut såhär

En vektor från (1, 2, 0) till (2, 1, 1) är

$$(2,1,1) - (1,2,0) = (1,-1,1)$$

En vektor från (1, 2, 0) till (0, -1, 5) är

$$(0,-1,5) - (1,2,0) = (-1,-3,5)$$

En parameterframställning för planet är alltså

$$(x, y, z) = (1, 2, 0) + s \cdot (1, -1, 1) + t \cdot (-1, -3, 5) \text{ där } s, t \in \mathbb{R}$$

10.

Den här uppgiften är lite klurig. Vi vet från formel 8 att man för att kunna beskriva ett plan på parameterform behöver en punkt och två vektorer, men vi har bara en punkt och en linje. Men eftersom att vi har fått en linje som ligger i planet

$$(x, y, z) = t \cdot (-1, 0, 2) = (0, 0, 0) + t \cdot (-1, 0, 2)$$

kan vi ta en punkt på denna linje för att få fram en vektor som är parallell med planet. Låt till exempel t=0, då får vi en punkt i planet

$$(x, y, z) = 0 \cdot (-1, 0, 2) = (0, 0, 0)$$

En vektor som är parallell med planet är då

$$(1,1,0) - (0,0,0) = (1,1,0)$$

Vi har nu allt som krävs för att skriva planet på parameterform

- två punkter: (1, 1, 0) och origo (0, 0, 0). Det är enklast att välja origo.
- två vektorer som är parallella med planet: (-1, 0, 2) och (1, 1, 0).

Parameterframställningen blir därför

$$(x,y,z) = (0,0,0) + s \cdot (-1,0,2) + t \cdot (1,1,0) = s \cdot (-1,0,2) + t \cdot (1,1,0) \text{ där } s,t \in \mathbb{R}$$

11.

Följande behövs för parameterframställningen av en linje som ligger i planet

- En punkt i planet.
- En vektor som är parallell med planet.

x+y+z=1 uppfylls t.ex. av punkten (1, 0, 0), så här har vi en punkt som ligger i planet.

En vektor som är parallell med planet ska vara ortogonal med planets normalvektor. Vi ser från planets ekvation att denna är $\vec{n}=(1,1,1)$. Använder skalärprodukten (formel 6) för att ta fram en vektor \vec{v} som är ortogonal mot \vec{n}

$$\vec{n} \cdot \vec{v} = (1, 1, 1) \cdot (v_1, v_2, v_3) = v_1 + v_2 + v_3 = 0$$

Detta uppfylls t.ex. av $v_1=-1, v_2=1, v_3=0.$ En parameterframställning av linjen är alltså

$$(x, y, z) = (1, 0, 0) + t \cdot (-1, 1, 0), t \in R$$

12.

Den här uppgiften bygger vidare på uppgift 11 så se till att göra den först.

En parameterframställning av en linje som inte skär planet ska innehålla

- En punkt som inte ligger i planet.
- En vektor som är parallell med planet (det här är viktigt för annars kommer den skära planet någon gång).

Vi har en vektor $\vec{v} = (-1, 1, 0)$ som är parallell med planet från uppgift 11. Det enda vi behöver nu är en punkt som inte ligger i planet. En sådan punkt ska uppfylla $x + y + z \neq 1$. Vi testar med origo (0, 0, 0)

$$0 + 0 + 0 = 0 \neq 1$$

Nu har vi allt som krävs

$$(x, y, z) = (0, 0, 0) + t \cdot (-1, 1, 0) = t \cdot (-1, 1, 0), t \in R$$

13.

Sånna här uppgifter kommer vara mycket enklare att lösa senare i kursen när ni har gått igenom gausseliminering. Men man kan tänka såhär också: Om L_1 och L_2 skär varandra kommer deras ekvationer att ge samma resultat vid den punkten

$$t \cdot (-1,0,2) = (1,2,2) + s \cdot (-1,2,0) \text{ där } s,t \in \mathbb{R}$$

om man låter t=1, s=2 får man (-1,0,2)=(1,2,2)+(-2,4,0)=(-1,6,2). Detta är ju sant för det första elementet i vektorerna men inte för element två och tre. Det går helt enkelt inte att uppfylla VL=HL och en lösning saknas alltså, därför skär inte linjerna heller varandra.

14.

Skärningspunkter mellan linjen och planet ska uppfylla

- Linjens ekvation
- Planets ekvation

Linjens ekvation $(x, y, z) = (1, 2, 2) + t \cdot (-1, 2, 0), t \in \mathbb{R}$ kan också skrivas som (x, y, z) = (1 - t, 2 + 2t, 2). Vi sätter in dessa x, y, z i planets ekvation

$$x + 2y - z = 1$$

$$(1 - t) + 2(2 + 2t) - (2) = 1$$

$$3t + 3 = 1$$

$$t = \frac{-2}{3}$$

Detta betyder att när $t=\frac{-2}{3}$ så skär linjen planet. Vi tar fram skärningspunkten genom att sätta in detta värde på t i linjens ekvation

$$(x,y,z) = (1,2,2) + \frac{-2}{3} \cdot (-1,2,0) = (1,2,2) - (-\frac{2}{3},\frac{4}{3},0) = (1+\frac{2}{3},2-\frac{4}{3},2-0) = (\frac{5}{3},\frac{2}{3},2)$$

15.

Två vektorer har en rät vinkel mellan sig (de är ortogonala) om deras skalärprodukt är lika med 0. Utvecklar skalärprodukten (formel 6) mellan \vec{u} och \vec{v}

$$(1,2,2) \cdot (-1,1,a) = 0$$
$$-1 + 2 - 2a = 0$$
$$2a + 1 = 0$$
$$a = -\frac{1}{2}$$

16.

För att beräkna vinkeln mellan två vektorer kan man använda den andra varianten av skalärprodukten (formel 6)

$$|\vec{u}||\vec{v}|cos\alpha = \text{skalärprodukt} \iff cos\alpha = \frac{\text{skalärprodukt}}{|\vec{u}||\vec{v}|}$$

Nu behöver vi alltså beräkna skalärprodukten (med den första varianten av formel 6) och längden av vektorerna (med formel 3)

$$\vec{u} \cdot \vec{v} = (1, 1, 0, 0) \cdot (2, 0, 2, 0) = 2$$

$$|\vec{u}| = \sqrt{2}$$

$$|\vec{v}| = \sqrt{8}$$

Vinkeln α kan nu beräknas

$$\cos \alpha = \frac{2}{\sqrt{2}\sqrt{8}} = \frac{2}{\sqrt{16}} = \frac{1}{2}$$

$$\alpha = \cos^{-1}(\frac{1}{2}) = \frac{\pi}{3}$$

17.

I den här uppgiften vill vi använda båda varianterna av skalärprodukten (formel 6). Börja med att observera att skalärprodukten mellan en vektor $\vec{v}=(x,y,z)$ och x-, y- och z-axeln (med den första varianten av skalärprodukten) är

$$(x, y, z) \cdot (1, 0, 0) = x$$

$$(x, y, z) \cdot (0, 1, 0) = y$$

$$(x, y, z) \cdot (0, 0, 1) = z$$

Nu använder den andra varianten av skalärprodukten för att räkna ut x,y,z. Den vektor vi söker har längd 2, $|\vec{v}|=1$, och enhetsvektorn för x-, y- och z-axeln har längd ett.

Börjar med x-axeln

$$2 \cdot 1 \cdot \cos \frac{\pi}{3} = 2 \cdot \frac{1}{2} = 1$$

Sedan y-axeln

$$2\cdot 1\cdot \cos\frac{3\pi}{4} = 2\cdot \frac{-1}{\sqrt{2}} = -\sqrt{2}$$

Och till sist z-axeln

$$2 \cdot 1 \cdot \cos \frac{2\pi}{3} = 2 \cdot \frac{-1}{2} = -1$$

Eftersom att båda varianterna skalärprodukterna beräknar samma sak får vi $x=1,y=-\sqrt{2},z=-1$, vektorn vi söker är alltså $(1,-\sqrt{2},-1)$.

18.

a)

Punkten ligger i planet om den uppfyller planets ekvation. Testar

$$z = 19 - 2x - 3y$$

$$(12) = 19 - 2(2) - 3(1) = 19 - 4 - 3 = 12$$

Punkten uppfyller planets ekvation och ligger alltså i planet.

b)

Jag börjar med att skriva om planets ekvation på en mer bekant form

$$z = 19 - 2x - 3y$$
$$2x + 3y + z = 19$$

Enligt formel 9 har planet normalvektorn $\vec{n} = (2, 3, 1)$.

c)

För att beräkna avståndet mellan planet och punkten skulle vi kunna dra en linje som är rät mot planet till punkten och sedan mäta denna linje. Detta är dock lite svårt eftersom att vi inte vet vilken punkt på planet som 'ligger under' punkten.

Men vi känner till planets normalvektor så ett annat tillvägagångssätt är att flytta punkten en viss sträcka (parallellt med normalvektorn) så att den hamnar i planet, och sedan mäta hur stor denna sträcka var. Möjliga positioner för punkten beskrivs då av följande ekvation

$$(x, y, z) = (2, 3, 13) + t \cdot (2, 3, 1) = (2 + 2t, 3 + 3t, 13 + t), t \in \mathbb{R}$$

Att hitta när denna linje skär planet kan göras med insättning i planets ekvation

$$2x + 3y + z = 19$$

$$2(2+2t) + 3(3+3t) + (13+t) = 19$$

$$4 + 4t + 9 + 9t + 13 + t = 19$$

$$14t + 26 = 19$$

$$t = -\frac{7}{14} = -\frac{1}{2}$$

Så när $t=-\frac{1}{2}$ kommer punkten att ha flyttats till planet. Hur lång är då denna vektor som beskriver denna förflyttning? Vektorn är $-\frac{1}{2}\cdot(2,3,1)=\frac{1}{2}\cdot(-2,-3,-1)$ och den har längden

$$\frac{1}{2}|(-2,-3,-1)| = \frac{1}{2}\sqrt{4+9+1} = \frac{1}{2}\sqrt{14} = \sqrt{\frac{1}{4}\cdot 14} = \sqrt{\frac{7}{2}}$$

Alternativ lösning med projektionsformeln

sökt: avstånden från punkten q=(2,3,13) till planet 2x+3y+z=19. Med avståndet menar vi alltid det kortaste avståndet.

Detta kan vi göra med hjälp av projektionsformeln!

Vi vill projicera en vektor från planet Π till punkten q på normalvektorn $\vec{n}=(2,3,1)$. För att göra detta väljer vi en godtycklig punkt i planet p=(x,y,z) där $(x,y,z)\in\Pi$. Till exempel kan vi välja p=(2,3,6) ty det uppfyller planets ekvation och således är $(2,3,6)\in\Pi$.

Då skapar vi vår vektor

$$\vec{pq} = (2, 3, 13) - (2, 3, 6) = (0, 0, 7)$$

och med det kan vi nu använda projektionsformeln

$$proj_{\vec{n}}(\vec{pq}) = \frac{\vec{n} \cdot \vec{pq}}{|\vec{n}|^2} \cdot \vec{n}$$

och förenklar vi högerledet får vi

$$\frac{(2,3,1)\cdot(0,0,7)}{|(2,3,1)|^2}\cdot(2,3,1) =$$

$$\frac{2 \cdot 0 + 3 \cdot 0 + 1 \cdot 7}{\left(\sqrt{2^2 + 3^2 + 1^2}\right)^2} \cdot (2, 3, 1) =$$

$$\frac{7}{\left(\sqrt{14}\right)^2} \cdot (2,3,1) = \frac{7}{14} \cdot (2,3,1) = \frac{1}{2} \cdot (2,3,1).$$

Då får vi att $proj_{\vec{n}}(\vec{pq})=\frac{1}{2}\cdot(2,3,1)$ och eftersom vi vill veta avståndet så beräknar vi absolutbeloppet

$$\begin{split} |\frac{1}{2}\cdot(2,3,1)| &= \\ \sqrt{\left(\frac{1}{2}\right)^2\left(2^2+3^2+1^2\right)} &= \\ \sqrt{\frac{1}{4}\cdot 14} &= \sqrt{\frac{2\cdot 7}{2\cdot 2}} = \sqrt{\frac{7}{2}}. \end{split}$$

Svar: Avståndet är $\sqrt{\frac{7}{2}}$.

19.

Två plan kommer skära varandra med en rät vinkel om deras normalvektorer är ortogonala. Alltså om skalärprodukten (formel 6) = 0

$$(1,2,2) \cdot (a,b,c) = 0 \iff a+2b+2c = 0$$

Vi vill nu bestämma a,b,csom uppfyller detta (det finns flera möjligheter). Ett sådant val är

$$\begin{cases} a = 2 \\ b = -1 \\ c = 0 \end{cases}$$

Det sökta planet har alltså normalen (2, -1, 0) och ekvationen

$$2x - 1 \cdot y + 0 \cdot z = 0 \iff 2x - y = 0$$

20.

Ekvationssystemet är

$$\begin{cases} x + y + z = 1 & (1) \\ x + 2y + 2z = 0. & (2) \end{cases}$$

Tar(2) - (1) och får

$$y + z = -1 \iff y = -z - 1 (3)$$

Insättning av (3) i (1) ger

$$x + (-z - 1) + z = 1$$
$$x - z - 1 + z = 1$$
$$x = 2$$

Detta ger

$$\begin{cases} x &= 2\\ y+z &= -1. \end{cases}$$

Det finns alltså inte en entydig lösning. Men detta är inte heller så konstigt eftersom att skärningen mellan två plan är en linje. Vi skulle vilja ge svaret till den här uppgiften som denna linje på parameterform.

Man kan parametrisera z = t och får då

$$\begin{cases} x = 2 \\ y = -t - 1. \\ z = t \end{cases}$$

Med hjälp av denna kan vi enkelt skriva linjens ekvation på parameterform

$$(x, y, z) = (2, -t - 1, t) = (2, -1, 0) + t \cdot (0, -1, 1)$$

Alternativ lösning med gausseliminering

Ekvationssystemet är

$$\begin{cases} x + y + z = 1 & (1) \\ x + 2y + 2z = 0. & (2) \end{cases}$$

Det kan representeras med totalmatrisen

$$\begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 2 & 2 & 0
\end{pmatrix}$$

Och lösas med Gauss-Jordans metod

$$\begin{pmatrix} 1 & 1 & 1 & | & 1 \\ 1 & 2 & 2 & | & 0 \end{pmatrix} \sim \begin{pmatrix} r_1 \\ r_2 - r_1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & | & 1 \\ 0 & 1 & 1 & | & -1 \end{pmatrix} \sim \begin{pmatrix} r_1 - r_2 \\ r_2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & | & 2 \\ 0 & 1 & 1 & | & -1 \end{pmatrix}$$

Vilket betyder att ekvationssystemet har lösningsmängden

$$\begin{cases} x = 2 \\ y + z = -1 \end{cases}$$

Detta beskriver en linje i \mathbb{R}^3 som kan beskrivas på parameterform på samma sätt som ovan.

21.

Den här uppgiften går bara ut på att använda projektionsformeln (formel 10)

$$proj_{\vec{w}}(\vec{v}) = \frac{\vec{w} \cdot \vec{v}}{|\vec{w}|^2} \cdot \vec{w} = \frac{-1+15}{26} \cdot (-1,5) = \frac{7}{13}(-1,5) = (-\frac{7}{13},\frac{35}{13})$$

22.

Vi kallar riktningsvektorn till linjen för $\vec{u}=(2,1,-2)$ och använder sedan projektionsformeln (formel 10) för \vec{v} på \vec{u}

$$proj_{\vec{u}}(\vec{v}) = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}|^2} \cdot \vec{u} = \frac{2+2-2}{9} \cdot (2,1,-2) = \frac{2}{9}(2,1,-2) = (\frac{4}{9},\frac{2}{9},-\frac{4}{9})$$

23.

Vi kallar $(1,1)=\vec{u}$. Knepet för att lösa den här uppgiften är att använda projektionen av \vec{v} på \vec{u} , och sedan skriva \vec{v} som en summa av denna projektion och en vektor som är vinkelrät mot denna. Det kan visualiseras såhär

Vi beräknar projektionen (formel 10)

$$proj_{\vec{u}}(\vec{v}) = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}|^2} \cdot \vec{u} = \frac{2+5}{2} \cdot (1,1) = \frac{7}{2}(1,1) = (\frac{7}{2},\frac{7}{2})$$

Nu kan vi beräkna den vektor som är ortogonal genom att ta $\vec{v} - proj_{\vec{u}}(\vec{v})$

$$\vec{v} - proj_{\vec{u}}(\vec{v}) = (2,5) - (\frac{7}{2}, \frac{7}{2}) = (-\frac{3}{2}, \frac{3}{2})$$

 \vec{v} kan alttså skrivas som

$$\vec{v} = (2,5) = (\frac{7}{2}, \frac{7}{2}) + (-\frac{3}{2}, \frac{3}{2})$$

24.

25.

Vi ska Bestämma avståndet från punkten q=(1,5) till linjen med ekvation y=3x.

Detta kan vi göra med projektionsformeln!

Vi väljer en godtycklig punkt p=(1,3) på linjen y=3x. Skapar en vektor från punkten p på linjen till punkten q enligt $\vec{pq}=(1,3)-(1,5)=(0,-2)$ Sedan projicerar vi \vec{pq} på normallinjen till y=3x vilket vi får y-3x=0 med projectionsformlen

26.

lösning saknas

2 modul 2

- 2.1 Teori
- 2.2 Uppgifter att börja med

1.

Ekvationssystemet är

$$\begin{cases} x + y + z &= 1 \\ x + 2y + 2z &= 0. \end{cases}$$

Det kan representeras med totalmatrisen

$$\begin{pmatrix}
1 & 1 & 1 & | & 1 \\
1 & 2 & 2 & | & 0
\end{pmatrix}$$

Och kan lösas med gauss-eliminering

2.

lösning saknas

3.

lösning saknas

4.

lösning saknas

5.

lösning saknas

6.

7.

lösning saknas

8.

lösning saknas

9

lösning saknas

10.

lösning saknas

11.

lösning saknas

12.

lösning saknas

13.

lösning saknas

14.

lösning saknas

15.

lösning saknas

16.

lösning saknas

17.

lösning saknas

18.

lösning saknas

19.

lösning saknas

20.

lösning saknas

21.

lösning saknas

22.

lösning saknas

3 modul 3

3.1 Teori

Formel 11 (kryssprodukt) Kryssprodukten av två vektorer $\vec{u}=(u_1,u_2,u_3)$ och $\vec{v}=(v_1,v_2,v_3)$ är

$$\vec{u} \times \vec{v} = (u_2 \cdot v_3 - u_3 \cdot v_2, u_2 \cdot v_3 - u_3 \cdot v_2, u_2 \cdot v_3 - u_3 \cdot v_2)$$

En viktig egenskap kryssprodukten $\vec{u} \times \vec{v}$ är att den <u>är en vektor</u> som är ortogonal mot båda vektorerna \vec{u} och \vec{v} .

Formel 12 Storleken av kryssprodukten av två vektorer \vec{u} och \vec{v} är

$$|\vec{u} \times \vec{v}| = |\vec{u}||\vec{v}|sin(\alpha)$$

 $D\ddot{a}r \alpha \ddot{a}r vinkeln mellan \vec{u} och \vec{v}.$

3.2 Uppgifter att börja med

1.

lösning saknas

2.

lösning saknas

3.

lösning saknas

4.

lösning saknas

5.

lösning saknas

6.

lösning saknas

7.

lösning saknas

8.

lösning saknas

O.

lösning saknas

10snii

lösning saknas

11.

lösning saknas

12.

lösning saknas

13.

lösning saknas

14.

lösning saknas

15.

lösning saknas

16.

lösning saknas

17.

lösning saknas

18.

lösning saknas

19.

modul 4 4

4.1 Teori

Uppgifter att börja med 4.2

1.

lösning saknas

2.

lösning saknas

3.

lösning saknas

4.

lösning saknas

5.

lösning saknas

lösning saknas

7.

lösning saknas

8.

lösning saknas

9.

lösning saknas

10.

lösning saknas

11.

lösning saknas

12.

lösning saknas

13.

lösning saknas

14.

lösning saknas

15.

lösning saknas

16.

lösning saknas 17.

lösning saknas

18.

lösning saknas

19.

lösning saknas

20.

21.

lösning saknas

modul 5**5**

5.1 Teori

5.2Uppgifter att börja med

1.

lösning saknas

lösning saknas

3.

lösning saknas

lösning saknas

lösning saknas

6.

 $\frac{\text{l\"osning saknas}}{7}.$

lösning saknas

8.

lösning saknas

9.

lösning saknas

10.

lösning saknas

11.

lösning saknas 12.

lösning saknas

13.

lösning saknas

14.

lösning saknas

15.

6 modul 6

6.1 Teori

Uppgifter att börja med 6.2

1.

lösning saknas

2.

lösning saknas

3.

lösning saknas

4.

lösning saknas

5.

lösning saknas

lösning saknas

7.

lösning saknas

8.

lösning saknas

9.

lösning saknas

10.

lösning saknas

11.

lösning saknas

12.

lösning saknas

13.

lösning saknas

14.

lösning saknas

15.

lösning saknas

16.

lösning saknas 17.

lösning saknas

18.

lösning saknas

19.