EEDG/CE 6303: Testing and Testable Design

Mehrdad Nourani

Dept. of ECE Univ. of Texas at Dallas

Session 02

Fault Modeling

Main Fault Models

IEEE Gate Symbols

 In some of the examples, the standard IEEE symbols of the logic gates will be used

Goals of Fault Modeling

- To model physical defects in the circuit at high level of abstraction.
- To allow test generation and fault/coverage analysis to be done early in the design process.
- To model high percentage of the actual physical defects that can occur in components:
 - —To reduce number of individual defects that have to be considered (e.g. find equivalent or dominant faults).
 - —To reduce the complexity of the component/circuit description for test generation/analysis.

Stuck-at Fault Model

- Most commonly used fault model.
- May consider "single" or "multiple" stuck-at faults.
- The components are assumed to be (internally) fault-free.
- The effect of faults is modeled by having a line segment tied to either:
 - —Vcc (s-a-1)
 - —GND (s-a-0)

Stuck-at Fault Model (cont'd)

• Example:

- Fault-free function: $f = x_1x_2 + x_2x_3$
- Faulty functions:

—Fault 1@0 →
$$f^* = x_2x_3$$

-Fault 2@1
$$\rightarrow$$
 f* = $x_1 + x_3$

—Fault 6@0 →
$$f^* = x_2x_3$$

Line Segment

Stuck-at Value

Features of Single s-a-f Model

- Can be applied at the logic/RTL/system levels.
- Reasonable and manageable number of faults (i.e. less or equal 2 * # of line segments ≈ 2 * # of circuit nodes). So, is computationally feasible to deal with.
- Well-developed algorithms exist for automatic test patter generation (ATPG)
- Other useful fault models like stuck-open, bridging, etc. can be applied into (sequence of) stuck-at faults

Features of Single s-a-f Model (cont'd)

- Empirical evidence shows that single stuck-at fault model covers the majority (about 90%) of the possible manufacturing defects in circuits such as:
 - —Source-drain shorts
 - —Oxide pinholes
 - Diffusion contaminants
 - —Metallization shorts

---...

Stuck-Open Fault Model

- The main assumption in this model is that a single physical line in the circuit is broken (usually internal to gates).
- In CMOS circuit, a broken line may result in a "memory effect".
- Example:A CMOS NOR gate

Stuck-Open Example (cont'd)

Stuck-Open Fault Model (cont'd)

- This model covers physical defects not covered by stuck-at fault model
- These faults can be tested with sequences of stuck-at fault tests. In previous example we used "10"-"00" sequence on AB to detect stuckopen.
- This model requires a larger number of tests compared to s-a-f model.
- Algorithms for ATPG and fault simulation are complex
- Transistor-level description is needed to generate the fault list.

Stuck-Short Example

Bridging Fault Model

- Occurs when two (or more) lines are shorted together.
- The functional effect (on the logic nodes) is of a wired logic AND or OR depending on the technology
- Example:
 - —Fault-free:

$$f = x_1 x_2 + x_2 x_3$$

—Faulty:

$$f = x_1 x_2 x_3$$

Bridging Fault Model (cont'd)

- Three classes of bridging faults:
 - 1. Within a logic gate (e.g. transistor gate, drain, source shorted)
 - 2. Between logic nodes (e.g. inputs or outputs of logic elements)
 - 3. Between logic nodes with feedback
- The focus is usually on stuck-at "neighbor" faults between adjacent lines only to reduce complexity
- Requires a lower level (e.g. layout) information to produce the fault list or to analyze them

Bridging Fault Model (cont'd)

- Some research indicates up to 30% of all faults could be bridges.
- Single s-a-f methods can capture some of bridging faults.
- Testing requires setting the two bridged nodes to opposite values and observing the effect. This makes ATPG more complex.

Delay Fault Model

- Basic assumptions:
 - The logic function of the circuit-under-test is errorfree.
 - Some physical defects (developed during fabrication) makes some delays in the circuit greater than some predefined bonds.

- Two delay fault models:
 - 1. Transitional delay fault (a single gate delay violates the bound)
 - 2. Path delay fault (certain path is too long)

Delay Fault Model (cont'd)

- Transitional delay fault:
 - A logical model for defects that delays either "slowto-rise" or "slow-to-fall".
 - If a delay fault is large enough, it behaves as a temporary stuck-at fault and single s-a-f techniques can be applied.
 - The minimum delay fault size that can be detected is difficult to determine, especially when hazards are also present.
 - Two patterns are required for fault detection:
 - 1. For initialization
 - 2. For detection

Delay Fault Model (cont'd)

- Path delay fault:
 - —Total delays in a path from primary inputs (PI) to primary outputs (PO) is checked to see if it exceeds some predefined maximum value.
 - —Detects more delay faults than transitional delay.
 - —In transitional delay fault model, the delay of a faulty gate maybe compensated for by other faster gates in the path.
 - —It is consistent with a statistical design philosophy that recognizes that gate delays are not usually all "worst case" but they all fall within a range
 - —It deals with large number of paths and thus is a complex/slow process.

Fault Analysis System

