ESALO

*Séries Temporais*Prof. Dr. Ricardo Limongi

Agenda

- Revisão da aula anterior
- ARIMA
- SARIMA
- Prophet

Interações

- Indicação de Livros em Português
- Conteúdo da disciplina
 - Determinístico e estocástico
 - Conceitos e principais técnicas
- Aula Final
- Dica sobre carreira
- Oportunidade de estudo na Plataforma Kaggle

- Séries Temporais
 - Conjunto de observações feitas em sequência ao longo do tempo
- Componentes:
 - Sazonalidade
 - Padrões de comportamento que se repetem em específicos épocas do ano
 - Tendência
 - Padrão de crescimento/decrescimento da variável em um certo período de tempo
 - Resíduo/Ruído
 - Capta os efeitos que não foram incorporados pela série de tempo, ou seja, o resíduo

- Estacionariedade
 - Série não muda ao longo do tempo e facilita a previsão
 - Condições:
 - 1. Média constante e o desvio padrão sem efeito de sazonalidade
 - Avaliação por meio do Teste de Dicky-Fuller
 - 3. Avaliação do p valor do teste

- Autocorrelação
 - Autocorrelação (ACF)
 - Relação existente entre as observações ao longo do tempo
 - Autocorrelação parcial (PACF)
 - Fornece a correlação parcial de uma série de tempo estacionária com seus próprios valores defasados regredindo os valores da série de tempo nas defasagens mais curtas. Contrasta com a função de autocorrelação, que não controla para outras defasagens.

Autocorrelação

Lags:

- Tempo de atraso na série para calcular as correlações.
- As defasagens são criadas após o deslocamento da série e, em seguida, compare a série defasada com a série original sem defasagem

Date	Value	Value _{t-1}		Value _{t-2}	
1/1/2017	200	NA 🎶	Т	NA	
1/2/2017	220	200		NA ,	,
1/3/2017	215	220		200	١
1/4/2017	230	215		220	
1/5/2017	235	230		215	
1/6/2017	225	235		230	
1/7/2017	220	225		235	
1/8/2017	225	220		225	
1/9/2017	240	225		220	
1/10/2017	245	240		225	
					T

199.116-40

Ajustamento Exponencial

Suavização Exponencial Simples

124.799.116-40
124.799.116-40

Matias Junior 124.799 sem tendência e sazonalidade, parâmetro α

Holt's Suavização Exponencial

com tendência , parâmetro α e β

Holt-Winter Suavização Exponencial

com tendência e sazonalidade, parâmetro α , β e y

AR → Modelo Autoregressivo

• A variável de interesse é uma regressão linear de valores passados da própria variável, o que implica que o futuro depende do passado. É composto por "p" observações defasadas da variável de interesse mais um ruído, que captura o que não é explicado pela regressão.

$I \rightarrow Integrado$

• Refere-se a diferentes métodos, computando diferenças entre observações consecutivas, para obter um processo estacionário a partir de um processo não estacionário. É definido pelo parâmetro "d", que descreve o número de vezes que as observações são diferenciadas.

MA → Modelo de Média Móvel

• É um modelo semelhante a uma regressão que recorre a erros de previsão anteriores para prever a variável de interesse, além de um ruído. A média móvel tem ordem "q" e define o tamanho da janela da média móvel.

ARIMA: Modelo Autoregressivo, integrado e de média móvel

Parâmetros

- P, termo autoregressivo
- *D*, número de diferenciações
- Q, termo da média móvel

Fonte: Midomenech (2020)

AR: modelo autoregressivo AR (p) ou ARIMA (p,0,0): y =

$$y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + \varepsilon_t$$

MA: apenas média móvel MA (q) ou ARIMA (0,q,0):

$$y_t = c + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \dots + \theta_q \varepsilon_{t-q}$$

Junção de AR e MA: ARMA (p,q) ou ARIMA (p,0, q): $y'_t = c + \phi_1 y'_{t-1} + \dots + \phi_p y'_{t-p} + \theta_1 \varepsilon_{t-1} + \dots + \theta_q \varepsilon_{t-q} + \varepsilon_t$

Com a diferenciação: ARIMA (p,d,q)

Com a sazonalidade: ARIMA (p,d,q,) (P,D,Q)

SARIMA: Modelo Autoregressivo Sazonal, integrado e de média móvel

Parâmetros

- *P*, termo autoregressivo
- *D*, número de diferenciações
- Q, termo da média móvel
- *M*, período sazonal (período anual 12, quadrimestre 4,)

Procedimento para avaliação dos parâmetros

Eventuais transformações necessárias:

- Diferenças entre 1a ou 2a ordem para remover tendências
- Diferença para remover efeitos sazonais
- Transformação logarítimica em caso de não estacionariedade

Fonte: Box e Jenkins (1974)

Prophet

$$y(t) = g(t) + s(t) + h(t) + \epsilon s$$

- s(t) = representa tendência s(t) = representa sazonalidade 't) = representa os eventos

Autocorrelação

Correlação: quão relacionado é um valor com outro valor (isso não significa que um valor influenciou o outro)

Autocorrelação (ACF): comparação do valor presente com valores do passado da mesma série.

A diferença entre a autocorrelação e a autocorrelação parcial (PACF)

ACF: correlação direta e indireta

PACF apenas a correlação direta.

Exemplificando: no ACF vemos a correlação direta do mês de janeiro em março e também a correlação indireta que o mês de janeiro teve em fevereiro que também teve em março.

Prof. Dr. Ricardo Limongi

linkedin.com/in/ricardolimongi/