Statistical Inference Course Project

Kurt Fitz April 21, 2019

Overview

The following document explore some basic inference using the ToothGrowth data in R, and is the second half the two part course project assignment.

Part 2 Basic Inferential Data Analysis of ToothGrowth data in R datasets package.

The following basic inferential analysis will compare tooth growth by dose and supplement using confidence intervals

Below is a basic summary of the tooth growth data:

```
library(datasets)
data("ToothGrowth")
head (ToothGrowth)
##
     len supp dose
          VC 0.5
## 1 4.2
## 2 11.5
          VC 0.5
## 3 7.3
          VC 0.5
## 4 5.8
          VC 0.5
## 5 6.4
          VC 0.5
## 6 10.0
          VC 0.5
dim(ToothGrowth)
## [1] 60 3
str(ToothGrowth)
## 'data.frame':
                 60 obs. of 3 variables:
   $ len : num 4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ...
  $ supp: Factor w/ 2 levels "OJ", "VC": 2 2 2 2 2 2 2 2 2 ...
   summary(ToothGrowth)
```

```
##
        len
                   supp
                                dose
   Min. : 4.20
                   OJ:30
                           Min.
                                  :0.500
   1st Qu.:13.07
                   VC:30
                           1st Qu.:0.500
##
##
   Median :19.25
                           Median :1.000
##
  Mean :18.81
                           Mean :1.167
   3rd Qu.:25.27
                           3rd Qu.:2.000
  Max.
          :33.90
                                  :2.000
##
                           Max.
```

Tooth Growth by Supplement

```
library(ggplot2)
```

```
## Warning: package 'ggplot2' was built under R version 3.5.3
```

qplot(supp, len, data=ToothGrowth, facets=~dose, main="Tooth growth by supplement type and dosage (mg)"

Tooth growth by supplement type and dosage (mg)


```
t.test(len ~ supp, paired = FALSE, var.equal = FALSE, data = ToothGrowth)
```

```
##
## Welch Two Sample t-test
##
## data: len by supp
## t = 1.9153, df = 55.309, p-value = 0.06063
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.1710156 7.5710156
## sample estimates:
## mean in group OJ mean in group VC
## 20.66333 16.96333
```

We can see from the Student's t-test that the 95% confidence interval contains 0; therefore, we cannot reject the null hypotheses that there is no effect between the two supplements.

Tooth Growth by Dose

Next, we can examine the relationship between tooth growth and dosage.

```
## Subset to dosage 0.5 - 1.0
doseRange1 <- subset(ToothGrowth, dose %in% c(0.5, 1.0))</pre>
## Subset to dosage 0.5 - 2.0
doseRange2 <- subset(ToothGrowth, dose %in% c(0.5, 2.0))</pre>
## Subset to dosage 1.0 - 2.0
doseRange3 <- subset(ToothGrowth, dose %in% c(1.0, 2.0))</pre>
t.test(len ~ dose, paired = FALSE, var.equal = FALSE, data = doseRange1)
##
## Welch Two Sample t-test
##
## data: len by dose
## t = -6.4766, df = 37.986, p-value = 1.268e-07
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -11.983781 -6.276219
## sample estimates:
## mean in group 0.5
                       mean in group 1
              10.605
                                19.735
t.test(len ~ dose, paired = FALSE, var.equal = FALSE, data = doseRange2)
##
## Welch Two Sample t-test
## data: len by dose
## t = -11.799, df = 36.883, p-value = 4.398e-14
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -18.15617 -12.83383
## sample estimates:
## mean in group 0.5
                      mean in group 2
##
              10.605
                                26.100
t.test(len ~ dose, paired = FALSE, var.equal = FALSE, data = doseRange3)
##
##
  Welch Two Sample t-test
##
## data: len by dose
## t = -4.9005, df = 37.101, p-value = 1.906e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -8.996481 -3.733519
## sample estimates:
## mean in group 1 mean in group 2
            19.735
                            26.100
##
```

Conclusions

From the preceeding t-tests performed on the three dose ranges, we can conclude that there is a relationship between the increase and dosage and increase in growth. The p-value for each of the three ranges was below 0 and the 95% confidence intervals do not contain 0.