Министерство науки и высшего образования Российской Федерации

Муромский институт

федерального государственного бюджетного образовательного учреждения высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (МИВлГУ)

Факультет	ТМТ
Кафедра	ИС

ПРАКТИЧЕСКАЯ РАБОТА №5

ПО	Специальным главам математики					
Тема	Статистическая обработка экспериментальных данных					
			_			
		Руководител	lь			
		Щаников С.	Α.			
		(фамилі	ия, инициалы)			
		(подпись)	(дата)			
		Студент	<u>ИСм-121</u> (группа)			
		<u>Минеев Р. Р</u>	<u>. </u>			
		(фамилия, инициалы)				
		(подпись)	(дата)			

Практическая работа №5.

Тема: Статистическая обработка экспериментальных данных.

Задание на работу: найти численной значение производной функции и рассчитать интеграл функции численным методом.

```
import numpy
import matplotlib.pyplot as plt
import scipy.stats
laplas = lambda x: scipy.stats.norm.cdf(x) - 0.5
my data = [
    26, 26, 35, 19, 27, 16, 32, 19, 23, 26, 26, 19, 15,
    28, 30, 27, 19, 20, 29, 14, 22, 20, 24, 26, 26, 24,
   25, 28, 28, 30, 29, 21, 27, 25, 18, 20, 24, 21, 18,
    31, 25, 20, 32, 25, 30, 22, 23, 28, 22, 32, 25, 21,
    21, 28, 19, 26, 22, 31, 34, 30, 24, 32, 28, 13, 29,
    20, 26, 23, 28, 29, 30, 27, 27, 15, 23, 18, 29, 16,
   17, 25, 22, 30, 22, 18, 33, 20, 17, 19, 36, 23, 27,
    27, 22, 24, 25, 22, 23, 20, 24, 28, 20, 23, 34, 26,
n = int(numpy.sqrt(len(my data)))
h = (max(my_data) - min(my_data)) / n
X Y = {i: 0 for i in numpy.arange(min(my data), max(my data),h)}
for value in my_data:
    for key in reversed(X Y.keys()):
       if key < value:
            X_Y[key] += 1
x, y = zip(*sorted([(key, X Y[key]) for key in X Y.keys()], key=lambda <math>x: x[0]))
plt.hist(my_data, bins=int(numpy.sqrt(len(my_data))))
plt.show()
print(numpy.mean(my data))
print(numpy.var(my data))
print(numpy.std(my data))
# Расчёт средней взвешенной
x = sum([xf[0]*xf[1] for xf in zip(x, y)]) / sum(y)
# Размах вариации
R = max(x) - min(x)
# Дисперсия
D = sum([(xf[0]-x)**2 * xf[1] for xf in zip(x, y)]) / sum(y)
# Несмещённая оценка дисперсии
```

Изм	Лист	№ докум.	Подп.	Дата	МИВУ 09.04.02-05.001				
Сту	дент	Минеев Р. Р.		08.01.		Литер	oa	Лист	Листов
Рук	OB.	Щаников С.А.			Практическая работа №5	У		2	3
Кон	С				Статистическая обработка	МИ ВлГУ		_	
Н.кс	нтр.				экспериментальных данных				
Утв	ı				оконоримонтальных данных	ИСм-121			1

```
S_2 = sum([(xf[0]-x_)**2 * xf[1] for xf in zip(x, y)]) / (sum(y) - 1)
       std = D ** 0.5
       # Оценка среднеквадратического отклонения
       s = S 2 ** 0.5
       # Критерий согласия Пирсона
       P = list()
       for i in range(len(x)):
          x1 = (x[i] - x_) / s
          if i == len(x) - 1:
              x2 = (max(my_data) - x_) / s
              x2 = (x[i+1] - x) / s
          F x1 = laplas(x1)
          F_x2 = laplas(x2)
          P.append(abs(F_x2 - F_x1))
      K = sum([(y[i] - n*P[i])**2 / n*P[i] for i in range(len(P))])
       print(K, 'Pirson\'s coef')
      (13.0, 15.3, 17.6, 19.9000000000002, 22.200000000003, 24.500000000004,
26.8000000000004, 29.1000000000005, 31.4000000000006, 33.7) (3, 4, 10,
      20, 13, 16, 20, 8, 5, 4)
      24.451923076923077
      24.61307322485207
       4.961156440271973
      17.130309594100634 Pirson's coef
```

Так как Наблюдаемое значение критерия меньше критического значения (17.130309594100634 < 19.3), нулевую гипотезу о нормальном распределении можно принять при данном уровне значимости.

Вывод: в данной практической работе были получены навыки агрегирования данных и проверки данных на законы распределения.

Изм	Лист	№ докум.	Подп.	Дата

Лист