Step 1.Obtain phylogeny-informed taxon-function data, containing tree structure, branch lengths, functional abundance of each taxa.

Step 3.Calculate relative abundance of taxa by taxon-specific protein biomass contributions.

Step 2.

Calculate relative abundance of functions within each taxa.

Step 4. Further weigh the relative functional abundance by their corresponding relative taxonomic abundance.

	Taxon Function		S1	S2	S3	
2	T1	F1	100%*33.3%	0%*33.3%	100%*33.3%	
		F2	0%*33.3%	100%*33.3%	0%*33.3%	
	T2	F1	0%*33.3%	100%*33.3%	100%*33.3%	
		F2	100%*33.3%	0%*33.3%	0%*33.3%	
3	Т3	F1	100%*33.3%	100%*33.3%	0%*33.3%	
		F2	0%*33.3%	0%*33.3%	100%*33.3%	

Step 5.The table is expanded to represent all nodes up to the root of the phylogeny through summing up each node.

Step 6.Calculate relative abundance of functions within each tree node.

Step 7. Similarly, convert the taxonomic table into an expanded table.

	Taxon	Function	S1	S2	S3					
	T1	F1	100.0%	0.0%	100.0%	0.5 —	Taxa	S1	S2	S3
		F2	0.0%	100.0%	0.0%	0.5 T1	T1	33.3%	33.3%	33.3%
	T2	F1	0.0%	100.0%	100.0%	0.5	1.1	33.370	33.3%	33.370
		F2	100.0%	0.0%	0.0%	N1	T2	33.3%	33.3%	33.3%
	N1	F1	50.0%	50.0%	100.0%	0.5 T2				
		F2	50.0%	50.0%	0.0%	√ — N2 \	N1	66.7%	66.7%	66.7%
	Т3	F1	100.0%	100.0%	0.0%		Т3	22 20/	22.20/	22.20/
		F2	0.0%	0.0%	100.0%	T3	13	33.3%	33.3%	33.3%
	N2	F1	66.6%	66.6%	66.6%		N2	100.0%	100.0%	100.0%
		F2	33.3%	33.3%	33.3%					

Step 8.

Next calculate functional distances between each sample pair, i.e. $d_{(s1, s2)}$, $d_{(s1, s3)}$, $d_{(s2, s3)}$, at each branch node, according to weighted Jaccard distance: $d_{ab} = 1 - \frac{\sum_{i}^{\phi} \min(F_{ia}, F_{ib})}{\sum_{i}^{\phi} \max(F_{ia}, F_{ib})}$, where a and b are the two samples, ϕ denotes total number of functions, F_{ia} and F_{ib} represent normalized functional abundance of the ith function in samples a and b, respectively.

Step 9.

Finally, weigh $d_{(s1, s2)}$ (as well as $d_{(s1, s3)}$, $d_{(s2, s3)}$) at each branch node by branch length and relative protein abundances in both samples, to obtain $PiF_{(s1, s2)}$ (as well as $PiF_{(s1, s3)}$, $PiF_{(s2, s3)}$).

