

Dr. rer. nat. Johannes Riesterer

Gradientenverfahren

Gradientenverfahren

Wie kann man Minima einer differenzierbaren Abbildung $f: \mathbb{R}^n \to \mathbb{R}$ finden?

Gradientenverfahren

- An jedem Punkt $x_k \in \mathbb{R}^n$ zeigt der negative Gradient $d_k := -\nabla f(x_k)$ in die steilste Abstiegsrichtung.
- Für hinreichend kleines α_k folgt mit Satz über die lokale Linearisierung:

$$f(x_{k+1}) = f(x_k + \alpha_k d_k) = f(x_k) + \alpha_k df(x_k) d_k + R(\alpha_k dk)$$

- Setze $x_{k+1} = x_k + \alpha_k d_k$
- Es gilt $f(x_{k+1}) \le f(x_k)$, falls $\nabla f(x_k) \ne 0$
- Falls die folge $f(x_k)$ beschränkt ist, so ist dieser Fixpunkt x^* ein Minimum, da $\nabla f(x^*) = 0$ gelten muss.

Gradientenverfahren

Figure: Quelle: Wikipedia

Gradientenverfahren

Höhenlinien

Sei $f: \mathbb{R}^n \to \mathbb{R}$ eine differenzierbare Funktion. Eine Kurve $\gamma: I \to \mathbb{R}^n$, auf der f konstant ist, also $f(\gamma(t)) = c$ für ein festes $c \in \mathbb{R}$ gilt, heißt Höhenlinie.

Figure: Quelle:

https://getoutside.ordnancesurvey.co.uk/guides/understanding-map-contour-lines-for-beginners/

Gradientenverfahren

Höhenlinien

Der Gradient steht senkrecht auf Höhenlinien. Dies bedeutet, dass

$$\langle \nabla f(\gamma(t)), \gamma'(t) \rangle = 0$$

gilt.

Beweis

Aus $f(\gamma(t)) = c$ folgt $\frac{d}{dt}f(\gamma(t)) = 0$. Mit der Kettenregel folgt $\frac{d}{dt}f(\gamma(t)) = df(\gamma(t)) \cdot \gamma'(t) = 0$ und damit $\langle \nabla f(\gamma(t)), \gamma'(t) \rangle = 0$.

Das Gradientenverfahren angewendet auf eine Lossfunktion eines neuronalen Netzes wird als Backpropagation bezeichnet. Gegeben ist ein neuronales Netz $f: \Omega \times \mathbb{R}^n \to \mathbb{R}^m$, und ein Datensatz $D:=\{(x_i,y_i)\}$ mit $x_i\in \mathbb{R}^n,y_i\in \mathbb{R}^m$. Finde Gewichte Omega, so dass Lossfunktion

$$L_D:\Omega\subset\mathbb{R}^n\to\mathbb{R}$$

minimal wird. Zum Beispiel

$$L_D(\omega) := \sum_{(x_i, y_i) \in D} (f(\omega, x_i) - y_i)^2$$

Figure

Figure

Backpropagation

Backpropagation

• Initialisiere k := 0 und zufällige Gewichte w_0 .

Backpropagation

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- ullet Initialisiere Genauigkeit $\epsilon>0$

Backpropagation

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- ullet Initialisiere Genauigkeit $\epsilon>0$
- While $||\nabla L_D(\omega)|| > \epsilon$

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- Initialisiere Genauigkeit $\epsilon > 0$
- While $||\nabla L_D(\omega)|| > \epsilon$
- Bestimme α_k mit $L_D(\omega_k + \alpha d_k) = L_D(\omega_k) + \alpha_k dL_D(\omega_k) d_k + R(\alpha_k dk)$

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- Initialisiere Genauigkeit $\epsilon > 0$
- While $||\nabla L_D(\omega)|| > \epsilon$
- Bestimme α_k mit $L_D(\omega_k + \alpha d_k) = L_D(\omega_k) + \alpha_k dL_D(\omega_k) d_k + R(\alpha_k dk)$
- Setze $\omega_{k+1} := \omega_k + \alpha_k d_k$.

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- ullet Initialisiere Genauigkeit $\epsilon>0$
- While $||\nabla L_D(\omega)|| > \epsilon$
- Bestimme α_k mit $L_D(\omega_k + \alpha d_k) = L_D(\omega_k) + \alpha_k dL_D(\omega_k) d_k + R(\alpha_k dk)$
- Setze $\omega_{k+1} := \omega_k + \alpha_k d_k$.
- $k \leftarrow k + 1$

Backpropagation

Mini Batch

• Datensatz D sehr groß (Big Data)

Backpropagation

Mini Batch

- Datensatz D sehr groß (Big Data)
- Berechnung des Gradienten der Lossfunktion entsprechend aufwendig.

Backpropagation

Mini Batch

- Datensatz D sehr groß (Big Data)
- Berechnung des Gradienten der Lossfunktion entsprechend aufwendig.
- Wende Backpropagation auf Teilräume $D' \subset D$ an (Minibatch).

Backpropagation

Mini Batch

- Datensatz D sehr groß (Big Data)
- Berechnung des Gradienten der Lossfunktion entsprechend aufwendig.
- Wende Backpropagation auf Teilräume $D' \subset D$ an (Minibatch).
- #D' = 1 stochastischer Gradientenabstieg.

Figure: Quelle: https://towardsdatascience.com/batch-mini-batch-stochastic-gradient-descent-7a62ecba642a

Backpropagation

Backpropagation

• Initialisiere k := 0 und zufällige Gewichte w_0 .

Backpropagation

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- ullet Initialisiere Genauigkeit $\epsilon>0$

Backpropagation

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- Initialisiere Genauigkeit $\epsilon > 0$
- Wähle Teilmenge $D_0' \subset D$

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- Initialisiere Genauigkeit $\epsilon > 0$
- Wähle Teilmenge $D_0' \subset D$
- While $||\nabla L_{D_k'}(\omega)|| > \epsilon$

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- Initialisiere Genauigkeit $\epsilon > 0$
- Wähle Teilmenge $D_0' \subset D$
- While $||\nabla L_{D'_{k}}(\omega)|| > \epsilon$
- Bestimme α_k mit

$$L_{D'_k}(\omega_k + \alpha d_k) = L_{D'_k}(\omega_k) + \alpha_k dL_{D'_k}(\omega_k) d_k + R(\alpha_k dk)$$

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- Initialisiere Genauigkeit $\epsilon > 0$
- Wähle Teilmenge $D_0' \subset D$
- While $||\nabla L_{D'_{k}}(\omega)|| > \epsilon$
- Bestimme α_k mit

$$L_{D'_k}(\omega_k + \alpha d_k) = L_{D'_k}(\omega_k) + \alpha_k dL_{D'_k}(\omega_k) d_k + R(\alpha_k dk)$$

• Setze $\omega_{k+1} := \omega_k + \alpha_k d_k$.

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- Initialisiere Genauigkeit $\epsilon > 0$
- Wähle Teilmenge $D_0' \subset D$
- While $||\nabla L_{D'_{k}}(\omega)|| > \epsilon$
- Bestimme α_k mit $L_{D'_k}(\omega_k + \alpha d_k) = L_{D'_k}(\omega_k) + \alpha_k dL_{D'_k}(\omega_k) d_k + R(\alpha_k dk)$
- Setze $\omega_{k+1} := \omega_k + \alpha_k d_k$.
- Wähle neue Teilmenge $D'_{k+1} \subset D$.

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- Initialisiere Genauigkeit $\epsilon > 0$
- Wähle Teilmenge $D_0' \subset D$
- While $||\nabla L_{D'_k}(\omega)|| > \epsilon$
- Bestimme α_k mit $L_{D'_k}(\omega_k + \alpha d_k) = L_{D'_k}(\omega_k) + \alpha_k dL_{D'_k}(\omega_k) d_k + R(\alpha_k dk)$
- Setze $\omega_{k+1} := \omega_k + \alpha_k d_k$.
- Wähle neue Teilmenge $D'_{k+1} \subset D$.
- $k \leftarrow k + 1$

Ableitung mehrdimensionale Funktionen

Gradient einer mehrdimensionalen Funktion

Eine Funktion $F:U\to\mathbb{R}^m$ heißt differenzierbar, wenn es eine lineare Abbildung dF gibt, so dass

$$F(a+h) = F(a) + dF(a)h + R(h)$$

mit $\lim_{h\to 0} \frac{R(h)}{||h||} = 0$ gilt für alle $a \in U$ und $h \in \mathbb{R}^n$.

Gradient einer mehrdimensionalen Funktion

Im Fall n = 1 stimmt diese Definition mit der alten Definition überein.

Beweis

Nach Satz über die lokale Linearisierung gilt für eine differenzierbare Funktion f(a+th)=f(a)+dfth+R(th) mit $\lim_{t\to 0}\frac{R(th)}{||th||}=0$. Umstellen ergibt

$$df(a)h = \lim_{t\to 0} \frac{f(a+th)-f(a)}{t}$$

Ableitung mehrdimensionale Funktionen

Gradient einer linearen Funktion

Für $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$ und $x \in \mathbb{R}^n$ ist die Abbildung F(x) := Ax + b differenzierbar, da F(a+h) = A(a+h) + b = Aa + Ah + b = Aa + b + Ah = F(a) + Ah und damit für dF(a) := A und R(h) = 0 die Definition erfüllt ist.

Differenzierbarkeit von Produktfunktionen

Eine Funktion $F:=(F_1,F_2):U\to\mathbb{R}^m\times\mathbb{R}^k$ ist genau dann differenzierbar, wenn $F_1:U\to\mathbb{R}^m$ und $F_2:U\to\mathbb{R}^k$ differenzierbar sind. In diesem Fall ist

$$dF(a) = (dF_1(a), dF_2(a)).$$

Beweis

Sind F_1 und F_2 differenzierbar, so gilt für i = 1, 2

$$F_i(a+h) = F_i(a) + dF_ih + R_i(h)$$

Dann gilt mit $dF(a) = (dF_1(a), df_2(a))$ und $R(h) := (R_1(h), R_2(h))$

$$F(a+h) = F(a) + dFh + R(h)$$

mit $\lim_{h\to 0} \frac{R(h)}{||h||} = 0$ und damit ist F differenzierbar. Die Umkehrung folgt analog.

Differenzierbarkeit von Produktfunktionen

Eine Abbildung $F:U\to\mathbb{R}^m$ ist genau dann differenzierbar, wenn ihre Koordinaten-Funktionen $F_1:U\to\mathbb{R},\cdots,F_m:U\to\mathbb{R}$ mit

$$F(a) = \begin{pmatrix} F_1(a) \\ \vdots \\ F_m(a) \end{pmatrix}$$
 differenzierbar sind. In diesem Fall gilt

$$dF(a) := \begin{pmatrix} \frac{\partial}{\partial x_1} F_1(a) & \cdots & \frac{\partial}{\partial x_n} F_1(a) \\ \vdots & & \vdots \\ \frac{\partial}{\partial x_1} F_m(a) & \cdots & \frac{\partial}{\partial x_n} F_m(a) \end{pmatrix}$$

Differenzierbarkeit von Produktfunktionen

Ein Weg
$$\gamma = \begin{pmatrix} \gamma_1 \\ \vdots \\ \gamma_m \end{pmatrix} : I \to U$$
 ist genau dann differenzierbar, wenn

 γ_i differenzierbar ist für $i=1,\cdots,m$ und dann gilt

$$\gamma'(t) = egin{pmatrix} \gamma_1'(t) \ dots \ \gamma_m'(t) \end{pmatrix} \ .$$

Ableitung mehrdimensionale Funktionen

Kettenregel

Seien $G:U\subset\mathbb{R}^n\to V\subset\mathbb{R}^m$ und $F:V\to Z\subset\mathbb{R}^k$ differenzierbar. Dann ist $F\circ G$ differenzierbar und mit b:=G(a) es gilt

$$d(F \circ G)(a) = dF(b) \cdot dG(a)$$

Beweis

Analog zu Baby Kettenregel

Ableitung mehrdimensionale Funktionen

Figure: Quelle: Wikipedia

Automatisches Ableiten in Pytorch

