CS553: Cryptography

Assignment 4: Solutions

Rohit Das (11910230)

September 21, 2019

1. Fiestal and SPN

1..1 Fiestal Ciphers

• Blowfish:

- Block Size: 64 bits
- Key Size: 32 448 bits
- Susceptible to 2^{nd} -order differential attack.

• Data Encryption Standard (DES):

- Block Size: 64 bits
- Key Size: 56 bits (+8 parity bits)
- Considered insecure because of feasibility of brute-force attacks.

• Rivest Cipher (RC5):

- Block Size: 32/64 (suggested)/128 bits
- Key Size: 0 2040 bits (128 bits suggested)
- Susceptible to differential attacks using 2^{44} plaintexts.

• Information Concealment Engine (ICE):

- Block Size: 64 bits
- Key Size: 64 bits
- Differential attacks can break 15 of 16 rounds with complexity 2^{56} .

• KASUMI:

- Block Size: 64 bits
- Key Size: 128 bits

1..2 Substitution-Permutation Network (SPN)

• Advanced Encryption Standard (AES):

- Block Size: 128 bits
- Key Size: 128/192/256 bits
- For AES-128, key can be recovered with complexity $2^{126.1}$ (biclique attack).

• 3-Way:

- Block Size: 96 bits
- Key Size: 96 bits
- Vulnerable to related key cryptanalysis.

• Kuznyechik:

- Block Size: 128 bits

- Key Size: 256 bits
- Vulnerable to meet-in-the-middle attack on 5 rounds.

• SAFER K-64 (Safer And Faster Encryption Routine):

Block Size: 64 bitsKey Size: 64 bits

• Square:

Block Size: 128 bitsKey Size: 128 bitsPrecursor to AES.

2. Random SBox (4-bit)

Python code (Python 3): Random_s-box_gen.py

```
import numpy as np
def rn_box(n): # random permutation of input symbols
    arr = [hex(int(i)) for i in np.arange(n)] # hex symbols
    # mapping each symbol to its random substitute
    return {i:j for i,j in zip(arr,
                                np.random.permutation(arr))}
\mathbf{def} main(sbox): # takes plaintext and performs confusion
    p = input("Enter your plaintext:")
    if not all(x in [format(i, 'x') for i in sbox]
               for x in p): # checking if in range [0-f]
        exit ("Enter valid characters [0-f]!")
    str1 = {format(i, 'x'):format(j, 'x') for i, j
    in sbox.items()}
    return "".join([str1[i] for i in p])
```

The S-Box to be used subsequently is as follows:

x	0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
S(x)	5	4	d	1	2	f	6	0	8	c	b	9	7	e	a	3

3. Differential Distribution Table (DDT)

Python code (Python 3): DDT_s-box.py

```
in zip(S_u0, S_u1)] # S[u0] xor S[u1]
             \# counting occurences and replacing 0 with '-'
             count = \{ \mathbf{hex(i)} : \text{'-'} \ \mathbf{if} \ S_u0_x_S_u1.count(\mathbf{hex(i)}) \}
             = 0 else S_u_0_x_S_u_1.count(hex(i)) for i in sbox
             \# format \ output \ as \ a \ table
             lst = [str(i) for j, i in count.items()]
             frmt = "{:>3}"*len(lst)
             \mathbf{print}\,(\,\mathbf{str}\,(\,\mathbf{format}\,(\,\mathrm{diff}\,\,,\,\,{}^{\prime}\mathrm{x}\,{}^{\prime})+\,{}^{\prime}\quad |\,\,{}^{\prime}\,)\,.\,\,\mathrm{rjust}\,(\,7)\;,\mathrm{frmt}\;.
                       \mathbf{format}\,(*\,l\,s\,t\,\,)\,)
ddt(sbox)
```

The generated DDT is as follows:

in\out	0	1	2	3	4	5	6	7	8	9	a	b	c	d	е	f
0	16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1	_	2	2	-	2	-	2	-	-	4	-	-	2	2	-	-
2	_	-	-	2	2	4	-	-	2	-	-	-	-	4	-	2
3	_	2	2	-	6	-	-	2	-	4	-	-	-	-	-	-
4	_	4	2	-	-	-	-	2	-	-	2	4	-	-	-	2
5	_	-	-	2	-	-	4	2	2	-	2	2	-	2	-	-
6	_	-	2	2	2	-	-	2	-	-	-	-	2	-	2	4
7	_	-	4	2	-	4	2	-	-	-	-	2	-	-	2	-
8	_	2	-	2	-	2	2	-	4	-	-	-	2	2	-	-
9	_	-	-	-	2	2	-	-	2	2	4	-	4	-	-	-
a	_	2	-	-	-	2	-	-	2	-	-	-	2	4	4	-
b	_	4	-	-	-	2	-	2	2	2	-	-	2	-	-	2
c	_	-	4	2	-	-	-	2	-	2	4	-	-	2	-	-
d	_	-	-	2	-	-	-	2	-	-	-	6	-	-	4	2
e	_	-	-	-	-	-	2	2	-	2	2	-	2	-	2	4
f	_	-	-	2	2	-	4	-	2	-	2	2	-	-	2	-

Actual output(file): output.txt

The maximum differential probability of this S-Box is $\frac{6}{16}$ for the (input,output) difference transactions (3,4) and (d,b).

4. SBox as a Boolean Function

The Boolean table for the above S-Box is as follows:

x	x_0	x_1	x_2	x_3	y_0	y_1	y_2	y_3	y = S[x]
0	0	0	0	0	0	1	0	1	5
1	0	0	0	1	0	1	0	0	4
2	0	0	1	0	1	1	0	1	d
3	0	0	1	1	0	0	0	1	1
4	0	1	0	0	0	0	1	0	2
5	0	1	0	1	1	1	1	1	f
6	0	1	1	0	0	1	1	0	6
7	0	1	1	1	0	0	0	0	0
8	1	0	0	0	1	0	0	0	8
9	1	0	0	1	1	1	0	0	c
a	1	0	1	0	1	0	1	1	b
b	1	0	1	1	1	0	0	1	9
c	1	1	0	0	0	1	1	1	7
d	1	1	0	1	1	1	1	0	e
e	1	1	1	0	1	0	1	0	a
f	1	1	1	1	0	0	1	1	3

The 4 K-maps for the variables are as follows:

 X_0X_1

$$y_2 = \sum (4, 5, 6, 10, 12, 13, 14, 15)$$

 X_0X_1

$$y_3 = \sum (0, 2, 3, 5, 10, 11, 12, 15)$$

The formulas for the variables are as follows:

$$y_0 = \sum (2, 5, 8, 9, 10, 11, 13, 14) = x_0 x_1' + x_1 x_2' x_3 + x_0 x_2 x_3' + x_1' x_2 x_3'$$

$$y_1 = \sum (0, 1, 2, 5, 6, 9, 12, 13) = x_2' x_3 + x_0' x_1' x_2' + x_0' x_2 x_3' + x_0 x_1 x_2'$$

$$y_2 = \sum (4, 5, 6, 10, 12, 13, 14, 15) = x_0 x_1 + x_0' x_1 x_2' + x_1 x_2 x_3' + x_0 x_2 x_3'$$

$$y_3 = \sum (0, 2, 3, 5, 10, 11, 12, 15) = x_1' x_2 + x_0' x_1' x_3' + x_0 x_2 x_3 + x_0' x_1 x_2' x_3 + x_0 x_1 x_2' x_3'$$