Importing libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

Importing dataset

```
In [2]: data=pd.read_csv(r"C:\Users\user\Downloads\nuclear explosion.csv")
    data
```

Out[2]:		WEAPON SOURCE COUNTRY	WEAPON DEPLOYMENT LOCATION	Data.Source	Location.Cordinates.Latitude	Location.Cordinates.Longitude
	0	USA	Alamogordo	DOE	32.54	-105.57
	1	USA	Hiroshima	DOE	34.23	132.27
	2	USA	Nagasaki	DOE	32.45	129.52
	3	USA	Bikini	DOE	11.35	165.20
	4	USA	Bikini	DOE	11.35	165.20
	•••	•••				
	2041	CHINA	Lop Nor	HFS	41.69	88.35
	2042	INDIA	Pokhran	HFS	27.07	71.70
	2043	INDIA	Pokhran	NRD	27.07	71.70
	2044	PAKIST	Chagai	HFS	28.90	64.89
	2045	PAKIST	Kharan	HFS	28.49	63.78
	2046 r	ows × 16 c	olumns			

info

2046 non-null

2046 non-null

object

object

Data.Source

WEAPON DEPLOYMENT LOCATION

```
Location.Cordinates.Latitude
                                    2046 non-null
                                                    float64
    Location.Cordinates.Longitude
                                    2046 non-null
                                                    float64
5
                                                    float64
    Data.Magnitude.Body
                                    2046 non-null
    Data.Magnitude.Surface
                                    2046 non-null
                                                    float64
    Location.Cordinates.Depth
7
                                    2046 non-null
                                                    float64
                                                    float64
8
    Data.Yeild.Lower
                                    2046 non-null
9
                                    2046 non-null
                                                    float64
    Data.Yeild.Upper
10 Data.Purpose
                                    2046 non-null
                                                    object
11 Data.Name
                                    2046 non-null
                                                    object
                                                    object
12 Data. Type
                                    2046 non-null
13 Date.Day
                                    2046 non-null
                                                    int64
14 Date.Month
                                    2046 non-null
                                                    int64
15 Date.Year
                                    2046 non-null
                                                    int64
dtypes: float64(7), int64(3), object(6)
memory usage: 255.9+ KB
```

describe

```
In [4]:
# to display summary of the dataset
data.describe()
```

Out[4]:		Location.Cordinates.Latitude	Location.Cordinates.Longitude	Data.Magnitude.Body	Data.Magnitude
	count	2046.000000	2046.000000	2046.000000	204
	mean	35.462429	-36.015037	2.145406	
	std	23.352702	100.829355	2.625453	
	min	-49.500000	-169.320000	0.000000	
	25%	37.000000	-116.051500	0.000000	
	50%	37.100000	-116.000000	0.000000	
	75%	49.870000	78.000000	5.100000	
	max	75.100000	179.220000	7.400000	
	4				>

columns

Out[6]:		WEAPON SOURCE COUNTRY	WEAPON DEPLOYMENT LOCATION	Data.Source	Location.Cordinates.Latitude	Location.Cordinates.Longitude
	0	USA	Alamogordo	DOE	32.54	-105.57
	1	USA	Hiroshima	DOE	34.23	132.27
	2	USA	Nagasaki	DOE	32.45	129.52
	3	USA	Bikini	DOE	11.35	165.20
	4	USA	Bikini	DOE	11.35	165.20
	•••					
	2041	CHINA	Lop Nor	HFS	41.69	88.35
	2042	INDIA	Pokhran	HFS	27.07	71.70
	2043	INDIA	Pokhran	NRD	27.07	71.70
	2044	PAKIST	Chagai	HFS	28.90	64.89
	2045	PAKIST	Kharan	HFS	28.49	63.78

2046 rows × 16 columns

To train the model-Model Building

```
In [8]: x=a[[ 'Date.Day']]
y=a['Date.Month']

In [9]: # to split my dataset into training and test data
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear regression

```
from sklearn.linear_model import LinearRegression
lr= LinearRegression()
lr.fit(x_train,y_train)
```

```
Out[10]: LinearRegression()
In [11]:
           print(lr.intercept_)
          7.479749493353967
In [12]:
           coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
           coeff
Out[12]:
                   Co-efficient
                     -0.010308
          Date.Day
In [13]:
           prediction=lr.predict(x test)
           plt.scatter(y_test,prediction)
          <matplotlib.collections.PathCollection at 0x1ec6a8ae5e0>
Out[13]:
          7.45
          7.40
          7.35
          7.30
          7.25
          7.20
          7.15
                                                     10
                                     6
In [14]:
           print(lr.score(x_test,y_test))
          0.0018011058221996112
In [15]:
           lr.score(x_train,y_train)
          0.0008956001221300802
```

Ridge regression

```
In [16]:
          from sklearn.linear_model import Ridge,Lasso
In [17]:
          rr=Ridge(alpha=10)
          rr.fit(x_train,y_train)
          rr.score(x_test,y_test)
```

```
Out[17]: 0.0018009516561215966

In [18]: rr.score(x_train,y_train)

Out[18]: 0.0008956001149248438
```

Lasso regression

```
In [19]: la=Lasso(alpha=10)
la.fit(x_train,y_train)

Out[19]: 0.0

In [20]: la.score(x_test,y_test)

Out[20]: -0.0006465534092729985
```

Elastic net regression

```
In [21]:
          from sklearn.linear model import ElasticNet
          en=ElasticNet()
          en.fit(x_train,y_train)
Out[21]: ElasticNet()
In [22]:
          print(en.coef_)
          [-0.00386094]
In [23]:
          print(en.intercept_)
         7.372302733406749
In [24]:
          predict=en.predict(x_test)
In [25]:
          print(en.score(x_test,y_test))
         0.00044095649985187446
In [26]:
          from sklearn import metrics
In [27]:
          print("Mean Absolute error:",metrics.mean_absolute_error(y_test,predict))
```

Mean Absolute error: 2.921026596447633

```
In [28]: print("Mean Squared error:",metrics.mean_squared_error(y_test,predict))

Mean Squared error: 11.12608779976566

In [29]: print("Root squared error:",np.sqrt(metrics.mean_squared_error(y_test,predict)))

Root squared error: 3.335579080124718
```

Model saving

```
In [30]: import pickle
    filename="prediction"
    pickle.dump(lr,open(filename,'wb'))
    filename='prediction'
    model=pickle.load(open(filename,'rb'))

In [32]: real=[[10],[7]]
    result=model.predict(real)
    result

Out[32]: array([7.37666482, 7.40759022])

In []:
```