2A

UC2844

UC3844 по

integrado Circuito

CI

Fusive

Fus

	IA, 400V	IA, +15V	1A,-15V	1A, +24V	6,3A, 400V	47kΩ, 2W	220kQ, 1/3W	22kΩ, 1/3W	3,9kΩ, 1/3W	150kΩ, 1/3W	1kΩ, 1/3W	10kΩ, 1/3W	10Ω, 1/3W	330Ω, IW	0,5Ω (2 resistores em paralelo de 1Ω/1W)	33kQ, 2W	N _P = 53esp, 1 fio 24AWG	$N_{S_1} = N_{S_1} = N_{S_1} = N_{S_1} = 13 \text{csp}$	1 fio 29AWG	Ns, = Ns, = Ns, = Ns, = 19esp.	1 fio 29AWG	N _{S_p} =11esp 1 fio 29AWG	$l_g = 0.3 \text{mm}$ (entreferro do núcleo)	18V, 1W	16V, 0,5W	
	MUR140	LM7815	LM7915	LM7824	IRF740								Die service	W. F.	1000				E-30/14	Thornton						
rápidos	Diodo ultra- rápido	Reguladores	Reguladores lineares	Reguladores lineares	Transistor	Resistor	Resistor	Resistor	Resistor	Resistor	Resistores	Resistor	Resistor	Resistor	Resistor	Resistor		New T	Transformador	Flyback			S environment	Zener	Zener	
D ₆ , D ₇ , D ₈ , D ₉ , D ₁₀ , D ₁₁	D3	L ₁ , L ₃ ,	L2, L4	L5, L6, L7, L8	M ₁	R	R ₂	R3	R4	Rs	Re. R9	R ₇	R ₈	R ₁₀	R11	R ₁₂				T,	THE STATE OF THE PARTY.			Z_1	Z_2	
	1	2	2	4	1	1	1	1	1	1	2	1	1	1	1	1		171		1	1,20	1	T)	1	1	

APENDICE

CONSIDERAÇÕES SOBRE O EMPREGO DE CAPACITORES

a) Circuito Equivalente do Capacitor

Um capacitor tem o seguinte circuito equivalente (Fig. A1.1).

Fig. A1.1: Circuito equivalente série do capacitor.

Onde: C - capacitância.

RSE - resistência série equivalente.

LSE - indutância série equivalente.

Nas freqüências usuais em eletrônica de potência (f < 100 kHz), o efeito da LSE pode ser ignorado.

A componente alternada da corrente que circula pelo capacitor produz dois efeitos: a) Perdas, que podem provocar excessivo aquecimento e danificar o capacitor, que são calculadas pela seguinte expressão:

$$P = RSE \cdot I_{ef}^2$$

303

Seja AIp o valor de pico da corrente alternada. Assim:

$$\Delta V_p = RSE \cdot \Delta I_p$$

b) Fator de Perdas

Seja o modelo paralelo do capacitor, representado pelo circuito seguinte (Fig. A1.2).

Fig. A1.2: Circuito equivalente paralelo do capacitor.

Seja:

$$V_o = V_p \operatorname{sen} \omega t$$
 (A1.1)

$$Q = V_o I_C$$
 (A1.2)

$$P = V_o I_R \tag{A1.3}$$

Fig. A1.3: Diagrama Fasorial.

$$tg\delta = \frac{I_R}{I_C}$$

(A1.4)

$$I_R = tg\delta I_C \tag{A1.5}$$

$$I_C = \frac{V_o}{X_C} \omega C V_o$$

(A1.6)

Assim:

$$P = V_o^2 \omega C t g \delta$$

(A1.7)

$$V_o = \frac{V_p}{\sqrt{2}}$$

(A1.8)

$$V_o^2 = \frac{V_p^2}{2} \qquad P = \frac{V_p^2 \omega C}{2} tg\delta$$

(A1.9)

Projetos de Fontes Chaveadas

305

$$P = \frac{I_p^2}{2\omega C} tg\delta$$

(A1.10)

Por outro lado,

$$P = RSEI_{ef}^2 = RSE \frac{I_p^2}{2}$$
 (A1.11)

$$RSE \frac{I_p^2}{2} = \frac{I_p^2}{2\omega C} tg\delta$$

$$RSE = \frac{tg\delta}{\omega C} \implies$$

$$RSE = \frac{tg\delta}{2\pi f C}$$

(A1.12)

tgo - fator de perdas.

Assim, conhecendo-se o fator de perdas e a frequência de operação pode-se determinar o valor de RSE.

Tanto RSE quanto tgô variam com a temperatura e com a frequência.

O valor de tgô aumenta com a freqüência e diminui com a temperatura.

Normalmente o fabricante do capacitor fornece os valores de tgô e RSE para 120Hz, que é a freqüência que aparece no filtro de entrada das fontes chaveadas, para 25 °C.

Fornece também o valor de I_N, que é a corrente eficaz máxima, senoidal, 120Hz, para uma temperatura ambiente de 85°C.

Os capacitores eletrolíticos de alta freqüência são empregados na filtragem da saída das fontes chaveadas. Nesse caso o fabricante fornece o valor eficaz da corrente que pode ser utilizada em 100kHz e 85 °C de temperatura ambiente.

Em seguida apresenta curvas com fatores de correção para frequências e temperaturas diferentes. Com essas informações a questão térmica fica resolvida. Contudo, para efeito de cálculo da tensão de *ripple*, o valor de RSE é difícil de ser determinado.

c) Quedas de Tensão

Quando uma corrente alternada passa por um capacitor produz duas componentes de tensão, em quadratura como está mostrado na Fig. A1.4.

Fig. A1.4: Quedas de tensão no circuito equivalente do capacitor.

Apêndice 1 - Considerações sobre o emprego de capacitores

no

$$\overline{V} = \overline{V_R} + \overline{V_C} \tag{A1.14}$$

Na maioria dos casos, em fontes chaveadas, $\overline{V_C} << \overline{V_R}$. Assim, toma-se:

$$V = V_R \tag{A1.15}$$

ou seja, considera-se apenas o riplle produzido pela RSE.

d) Medição da RSE

Seja o seguinte circuito (Fig. A1.5):

Fig. A1.5: Circuito de medição da RSE.

A chave S é mantida fechada durante um intervalo de tempo Δt. As formas de onda relevantes são mostradas na Fig. A1.6.

R₁ >> RSE. Assim:

$$=\frac{V_{in}}{R_1}$$

$$V_{in}$$

$$\downarrow V_{out}$$

Fig. AI.6: Formas de ondas geradas pelo circuito da Fig. A1.5.

Assim:

V_{RSE} - valor medido com osciloscópio.

$$V_{RSE} = RSEI_1$$

(A1.17)

Projetos de Fontes Chaveadas

$$RSE = \frac{V_{RSE} R_1}{V_{in}}$$
 (A1.19)

e) Tecnologias dos Capacitores para Fontes Chaveadas

Nas fontes chaveadas convencionais são empregados diversos tipos de capacitores nos estágios de potência, citamos como exemplo:

- a) Filtro do retificador de entrada: São empregados capacitores eletrolíticos de alumínio com alto produto CV e baixas perdas;
- b) Filtros de saída: São empregados capacitores eletrolíticos de alumínio, de baixa indutância e baixa RSE, aptos a operarem em altas freqüências;
- c) Circuitos SNUBBER: São empregados capacitores com dielétricos de polipropileno, especiais para regime de pulso com alta taxa de subida.

TRANSFORMADORES E INDUTORES COM CÁLCULO TÉRMICO DE **NÚCLEO DE FERRITE**

a) Por questões de rendimento as perdas devem ser limitadas.

b) Causas das perdas:

- Perdas no núcleo, por histerese e correntes parasitas;
- Perdas nos enrolamentos.
- As perdas no núcleo de ferrite são calculadas pela seguinte expressão empírica:

$$P_C/cm^3 = \Delta B_m^{2,4} (K_H f + K_B f^2)$$
 (A2.

ΔBm - excursão da densidade de fluxo em Teslas;

f - freqüência de operação em Hz;

K_H - coeficiente de perdas por histerese;

K_H - 4·10⁻⁵, para a ferrite (valor referencial);

K_E - coeficiente de perdas por correntes parasitas;

K_E - 4.10⁻¹⁰ (valor referencial).

Apêndice 2 - Cálculo térmico de transformadores e indutores com

núcleo de ferrite

N - número de espiras;

Icf - valor eficaz da corrente em A.

A expressão revela que as perdas no núcleo aumentam com a frequência de operação e com a excursão da densidade de fluxo. Para desprezadas. À medida que f aumenta, o projetista reduz ΔB_{m} para frequências inferiores a 40kHz, geralmente as perdas no núcleo são controlar as perdas.

enrolamentos, depende da bitola do fio, que por sua vez depende da

densidade de corrente adotada.

A resistência por unidade de comprimento e, portanto, a perda nos

d) As perdas em um enrolamento, por efeito Joule, são calculadas como segue.

$$P_{\rm W} = R I_{\rm cf}^2 \tag{A2.2}$$

$$R = \frac{\rho}{S} \ell = \frac{\rho}{S} N \ell_{t} \tag{A2.3}$$

Assim:

$$P_{\rm W} = \frac{\rho}{S} N \ell_{\rm t} I_{\rm cf}^2 \tag{A2.4}$$

(A2.4)

Ω/cm dado em tabela em função da bitola do fio;
 S

l, - comprimento de uma espira em cm;

Nos projetos onde as perdas no núcleo são desconsideradas, a (A2.5) deve provocar um acréscimo de temperatura de 30°C no Nos casos onde as perdas no núcleo não podem ser ignoradas, a O valor escolhido para a densidade de corrente com a expressão densidade de corrente é reduzida, e calculada com o emprego da densidade de corrente é definida pela expressão (A2.5): transformador, acima da temperatura ambiente. $J_{30} = 420.(A_cA_w)^{-0.24}A/cm^2$ $J_{15} = 297(A_eA_w)^{-0.24}A/cm^2$ expressão (A2.6).

(A2.5)

$$J_{15} = 297(A_e A_w)^{-0.24} A/cm^2$$
 (A2.6)

O cálculo é feito para que as contribuições das perdas no cobre e no núcleo na elevação de temperatura sejam iguais a 15°C, com uma variação total de 30°C.

As expressões indicam que a densidade máxima de corrente permitida decresce com o crescimento do tamanho do núcleo. Isto se explica porque a área de dissipação de calor cresce menos que o volume que produz calor.

Apêndice 2 - Cálculo térmico de transformadores e indutores com

núcleo de ferrite

A resistência para corrente alternada é definida pela relação (A2.7).

$$R_{CA} = F_R R_{CC} \tag{A2.7}$$

R_{CA} - resistência para corrente alternada; R_{CC} - resistência para corrente contínua;

F_R - fator de resistência.

O fator de resistência F_R depende da profundidade de penetração Δ da corrente e do número de camadas. Δ é calculado com a expressão (A2.8).

$$\Delta = \frac{7.5}{\sqrt{f}} \tag{A2.8}$$

Δ - cm;

f - Hz.

F_R e, portanto, R_{CA} aumenta com o aumento de f e com o número de camadas.

Nas frequências próximas ou superiores a 100kHz, é fortemente recomendado o emprego de uma única camada de fios para cada enrolamento, para reduzir as perdas devido ao efeito de proximidade.

Quando a profundidade de penetração Δ for menor que o raio do condutor, deve-se associar condutores em paralelo, formando o que se conhece por fio *Litz*. Nesse caso o raio de cada fio deve ser menor que a profundidade de penetração Δ e a resistência equivalente pode ser aquela especificada para corrente contínua.

 f) As perdas totais no transformador ou indutor são calculadas com o emprego da expressão (A2.9).

$$P_{T} = P_{W} + P_{C} \tag{A2.9}$$

Pr - perdas totais;

Pw - perdas nos enrolamentos.

$$P_C = (P_C/cm^3)V_e$$
 (A2.10)

Ve - volume do núcleo em cm3 especificado pelo fabricante.

$$V_e \equiv 5.7(A_e A_w)^{0.68} cm^3$$
 (A2.11)

g) A elevação de temperatura ΔT é obtida com a expressão (A2.12).

$$\Delta T = P_T R_T \tag{A2.12}$$

R_T - resistência térmica em °C/W.

Apêndice 2 – Cálculo térmico de transformadores e indutores com núcleo de ferrite

Seja um indutor com os seguintes dados:

$$-B_{sat} = 0,3T$$

$$-\ell_i = 7,53$$
cm

$$-I = 2,34A$$

-
$$I = 2.34A$$
 (valor eficaz)
- $\rho/S = 0.00035\Omega/cm$ (resistência pc

$$-\Delta B = 0.15T$$

-
$$P_C/cm^3 = 0.01 \text{W/cm}^3$$
 (perdas por unidade de volume)

$$-v_e = 18,70$$
cm³

h.1) Perdas no Cobre:

$$P_W = I^2 N \ell_t \frac{\rho}{s}$$

$$P_{\rm W} = 2,66{\rm W}$$

h.2) Perdas no Núcleo:

$$P_{\rm C} = (P_{\rm C} / {\rm cm}^3) V_{\rm e} = 0.01 \cdot 18,70 = 0.1870 W$$

h.3) Elevação de temperatura:

$$P_T = P_W + P_C$$
 (perdas totais)

$$P_T = 2,59 + 0,187 = 2,84W$$

$$R_T = 23(A_cA_w)^{-0.37}$$
 °C/W

$$R_T = 23/5,59^{0,37} = \frac{23}{1,89} = 12,16^{\circ}C/W$$

R_T - resistência térmica do núcleo.

Assim:

$$\Delta T = P_T R_T = 2,84.12,16$$

Neste exemplo, verifica-se que a contribuição das perdas do núcleo na elevação de temperatura é insignificante e pode ser ignorada.

Exemplo de cálculo envolvendo o efeito pelicular.

Seja um enrolamento de um transformador com os seguintes

Projetos de Fontes Chaveadas

 N^{9} de camadas = 1

 $I_{ef} = 5A$

 $J = 300 \text{A/cm}^2$

A área do condutor será:

$$S = \frac{I}{J} = \frac{5}{300} = 0,01666cm^2$$

De acordo com a tabela de fios, deve-se empregar o condutor 15 AWG, cujo diâmetro é de 0,156cm.

$$\Delta = \frac{7.5}{\sqrt{f}} = \frac{7.5}{\sqrt{100000}} = 0.024 \text{cm}$$

Desse modo, o diâmetro máximo de um fio nessa freqüência

$$D_{max} = 2\Delta = 2 \cdot 0,024 = 0,048cm$$

Na tabela é indicado o fio 25 AWG, com uma área de $0,001614\,\mathrm{cm}^2$.

Assim, o número de fios a serem empregados em paralelo será:

$$n = \frac{S_{15}}{S_{25}} = \frac{0,01666}{0,001614} \equiv 10$$

ESCOLHA DO NÚCLEO COM RESTRIÇÃO DE PERDAS NO FERRITE

Para operação com altas freqüências, as perdas que ocorrem no núcleo devem ser consideradas ao se determinar as suas dimensões.

Seja o caso geral representado pela expressão (A3.1).

$$A_e A_w = \frac{P}{\beta f J \Delta B} \tag{A3.1}$$

P - potência da fonte;

 β - parâmetro que depende do tipo de transformador ou indutor.

Seja
$$\alpha = K_H f + K_E f^2$$
 (A3.2)

Assim
$$(P_C/cm^3) = \Delta B^{2,4}\alpha$$
 (A3.3)

$$\Delta B = \left[\frac{\left(P_{\rm C} / \text{cm}^3 \right)}{\alpha} \right]^{0.42} \tag{A3.4}$$

$$P_C = \frac{P_T}{2} = \frac{\Delta T}{2R_T} = \frac{15}{R_T}$$
 (A3.5)

Projetos de Fontes Chaveadas

Assim:
$$P_C = 0.652(A_eA_w)^{0.37}$$
 (A3.7)

$$V_e = 5.7(A_e A_w)^{0.68}$$
 (A3.8)

Desse modo:

$$(P_C/cm^3) = 0,1144/(A_eA_w)^{0,31}$$
 (A3.9)

Substituindo (A3.9) em (A3.4) obtém-se:

$$\Delta B = \left[\frac{0,1144}{(A_e A_w)^{0.31} \alpha} \frac{1}{\alpha} \right]^{0.42}$$
 (A3.10)

A densidade de corrente para 15°C de contribuição do cobre na temperatura total é:

$$J = \frac{297}{(A_e A_w)^{0.240}}$$
 (A3.11)

Levando as expressões (A3.10) e (A3.11) na expressão (A3.1), obtém-se:

$$A_e A_w = \left(\frac{P}{120\beta f}\right)^{1.6} \alpha^{0.67}$$
 (A3.12)

ou
$$A_e A_w = \left(\frac{P10^4}{120\beta f}\right)^{1.6} \left(K_H f + K_B f^2\right)^{0.67}$$
 (A3.13)

O valor de β para transformadores é igual a 0,1. Para cálculo dos indutores é empregada a expressão (A3.14).

$$A_o A_w = \left(\frac{L \Delta II_{L_{ef}} 10^4}{120 \beta}\right)^{1.6} \left(K_H f + K_B f^2\right)^{0.67}$$
 (A3.14)

onde:

ILee - valor eficaz da corrente no indutor;

AI - ondulação da corrente;

 $\beta = 0.7$.

Exemplo Numérico:

Seja o transformador para uma fonte chaveada Forward com as seguintes especificações:

P = 150W

f = 100kHz

Determinar as dimensões do núcleo a ser adotado considerando a elevação de temperatura propiciada no ferrite.

Seja:

$$K_H = 4.10^{-4}$$

$$K_E = 4 \cdot 10^{-10}$$

Assim:

$$y = \left(K_H f + K_E f^2\right)^{0.67} = \left(4 \cdot 10^{-5} \cdot 10^{-5} + 4 \cdot 10^{-10} \cdot 10^{10}\right)^{0.67}$$

$$y = (4+4)^{0.67} = 4,03$$

$$\beta = 0,1$$

$$A_e A_w = \left(\frac{P10^4}{120\beta f}\right)^{1.6} y$$

$$A_e A_w = \left(\frac{150 \cdot 10^4}{120 \cdot 0.1 \cdot 1000000}\right)^{1.6} 4.0$$

$$A_e A_w = 5,76 \text{cm}^4$$

Escolhe-se o núcleo E55-21 de acordo com a Tabela de Núcleos le Ferrite.

Por curiosidade, vamos calcular o produto A_eA_w para f=20kHz, P=100W, $J=300A/cm^2$ e $\Delta B=0.3T$, sem restrições de perdas no Ferrite.

$$A_{c}A_{w} = \frac{2P}{K_{W} K_{P} J f \Delta B} 10^{4}$$

$$A_e A_w = \frac{2 \cdot 10^2 \cdot 10^4}{0.2 \cdot 3 \cdot 10^2 \cdot 20000 \cdot 0.3}$$

$$A_eA_w = 5,56cm^4$$

O núcleo adotado será o E55.

Os valores de KP e Kw são dados na tabela 1.

Tabela 1

EMPREGO	Kw	Kp
Indutor Buck ou Boost Cond. Contínua	0,7	1,0
Indutor Boost Cond. Descontínua	0,7	1,0
Transformador Flyback Cond. Contínua	0,4	0,5
Transformador Flyback Cond. Descontínua	0,4	0,5

Apêndice 3 - Escolha do núcleo com restrição de perdas de ferrite

OUTRAS TOPOLOGIAS DE FONTES CHAVEADAS

a) Flyback com dois interruptores

Fig. A4.1: Flyback com dois interruptores.

Vantagens em relação ao Flyback com um único interruptor:

a) D₁ e D₂ operam como limitadores não-dissipativos das tensões dos interruptores, devolvendo à fonte a energia acumulada nas indutâncias de dispersão; desse modo o snubber dissipativo não é necessário.

c) As tensões nominais dos interruptores são menores, reduzindo o custo dos mesmos.

b) Forward com dois interruptores

Fig. A4.2: Forward com dois interruptores.

Vantagens em relação ao Forward com um único interruptor:

- a) Tensão sobre um interruptor é a metade do valor.
- b) D₁ e D₂ devolvem à fonte V_{in} a energia acumulada na indutância de dispersão. Desse modo, o snubber, quando empregado, destina-se exclusivamente a reduzir as perdas de comutação no interruptor.

c) Não há necessidade de enrolamentos de desmagnetização no transformador.

d) O rendimento e a confiabilidade são maiores.

Uma variação do Half-Bridge 0

Fig. A4.3: Variação do Half-Bridge.

A não ser pelo fato de não exigir um ponto médio na fonte Vin, não há aparentemente vantagens em relação ao conversor Half-Bridge. C é o capacitor destinado a impedir a presença de corrente média no primário do transformador, o que o levaria à saturação.

NÚCLEOS DE FERRITE TIPO E

(V
	э	3
		ŭ
•	5	٦
		3
ţ	٠	+

			-			
Núcleo	A _e (cm ²)	A _w (cm ²)	l _e (cm)	l _t (cm)	v _e (cm³)	Núcleo Ae (cm²) Aw (cm²) Ie (cm) It (cm) ve(cm³) AeAw (cm⁴)
E-20	0,312	0,26	4,28	3,8	1,34	80,0
E-30/7	09'0	08'0	6,7	5,6	4,00	0,48
E-30/14	1,20	0,85	6,7	6,7	8,00	1,02
E-42/15	1,81	1,57	7,6	8,7	17,10	2,84
E-42/20	2,40	1,57	7,6	10,5	23,30	3,77
E-55	3,54	2,50	1,2	11,6	42,50	8,85
						Committee of the Commit

Material: IP6

Temperatura Curie: > 160°C

Ae - área de perna central;

Aw - área da janela do carretel;

le - comprimento magnético;

l. - comprimento médio de um espira;

ve - volume de ferrite;

Bsat - 0,3 T (para 85°C);

 $\mu_o = 1$ (CGS) - permeabilidade do ar;

 $= 4\pi \cdot 10^{-7} \text{(SI)};$

 $\mu_r = 3000 \text{ (CGS) para B} = 100 \text{GAUSS (0,1T)}.$

TABELA DE FIOS ESMALTADOS

Tabela 3

AWG	Diâmetro Cobre (cm)	Área Cobre	Diâmetro Isolamento (cm)	Area Isolamento (cm²)	OHMS/CM 20 °C	OHMS/CM 100 °C	para 450A/cm ²
10	0.259	0.052620	0,273	0,058572	0,000033	0,000044	23,679
=	0.231	0.041729	0.244	0,046738	_	0	18,778
12	0.205	0.033092		0,037309	0,000052	0,000070	14,892
13	0.183	0.026243		0,029793	-	0,0000080	11,809
14	0.163	0.020811	0.174	0,023800		0,000111	9,365
15	0.145	0,016504	0,156	0,019021	0,000104	0,000140	7,427

	0.129	0.013088	0.139	0.015207	0,000132	0,000176	5,890
	0115	0.010379	0.124	0.012164	0,000166	0,000222	4,671
10	0100	0.008231	0.111	0.009735	0.000209	0,000280	3,704
	0000	0.006527	0010	0.007794	0.000264	0,000353	2,937
	0.081	0.005176	0.080	0.006244	0.000333	0,000445	2,329
	0,001	0.004105	0.080	0.005004	0,000420	0,000561	1,847

0	0.064	0.003255	0.071	0.004013	0,000530	0,000708	1,465
1 6	0.057	0.002582	0.064	0.003221	0,000668	0,000892	1,162
2 5	0.051	0.002047	0.057	0.002586	0.000842	0,001125	0,921
t v	0.045	400000	0.051	0,002078	0,001062	0,001419	0,731
26	0,040	0.001287	0.046	0,001671	0.001339	0,001789	0,579
2 5	0,040	1001000	0.041	0,001344	0.001689	0,002256	0,459

AWG	Cobre (cm)	Area Cobre (cm²)	Diâmetro Isolamento (cm)	Area Isolamento (cm²)	OHMS/CM 20 °C	OHMS/CM 100 °C	AMP. para 450A/cm²
28	0,032	0,000810	0,037	0,001083	0,002129	0,002845	0,364
	0,029	0,000642	0,033	0,000872	0,002685	0,003587	0,289
	0,025	0,000509	0,030	0,000704	0,003386	0,004523	0,229
	0,023	0,000404	0,027	0,000568	0,004269	0,005704	0,182
32	0,020	0,000320	0,024	0,000459	0,005384	0,007192	0,144
33	0,018	0,000254	0,022	0,000371	0,006789	0,009070	0,114

1	0,016	0,000201	0,020	0,000300	0,008560	0,011437	0,091
73	0,014	0,000160	0,018	0,000243	0,010795	0,014422	0,072
100	0,013	0,000127	0,016	0,000197	0,013612	0,018186	0,057
37	0,011	0,000100	0,014	09100000	0,017165	0,022932	0,045
35	0,010	0,000080	0,013	0,000130	0,021644	0,028917	0,036
2.7	600'0	0,000063	0,012	0.000106	0,027293	0.036464	0.028

 0,008
 0,000050
 0,010
 0,000086
 0,034417
 0,045981
 0,023

 0,007
 0,000040
 0,009
 0,000070
 0,043399
 0,057982
 0,018

40