# Bayesian classifier & Naive Bayes

#### Lecture outline

- 1. Bayes theorem
- 2. Bayesian classifier
- 3. Naive Bayes
- 4. Demo

## Bayes Theorem

### Bayes Theorem - Definitions

$$P(A | B) = \frac{P(B | A) P(A)}{P(B)}$$

$$P(A \mid B)$$
 Posterior probability

$$P(B | A)$$
 Likelihood

$$P(A)$$
 Prior probability

$$P(B)$$
 Evidence

# What is the probability that there is fire given there is smoke?

$$P(\,fire\,|\,smoke)\,=\,rac{P(smoke\,|\,fire)\,P(fire)}{P(smoke)}$$

# Scenario: Medical diagnostic test

#### Medical diagnostic test - scenario

- Consider a human population that may or may not have cancer
  - Cancer = True or False
- Consider a medical test supposed to detect cancer, that returns positive or negative
  - Test = Positive or Negative

**Problem:** You test a random person from the population and he/she gets a positive test result. What is the probability that the person actually has cancer?

#### Question

Given a person tests positive using the diagnostic test, what is the probability the person actually has cancer?

#### Sensitivity

- Medical diagnostic tests are not perfect
  - You might have heard of the PCR test or the Rapid Antigen Test (RAT) for Covid-19
- The capability of a test to accurately detect the condition is referred to as the sensitivity of the test or the true positive rate

$$\frac{True\,positives}{Positive\,test\,results}\cdot 100\,\%$$

- The sensitivity is usually determined by a statistical analysis of a large number of data points
- In our medical diagnostic example, after an appropriate study, the test was found to have a sensitivity of 0.85
  - If 100 people are tested positive, only 85 will actually have cancer

#### Question

Given a person tests positive using the diagnostic test, what is the probability the person actually has cancer?

- (a) Is it 100%
- (b) Is it 85%?
- (c) Is it something else?

#### Question - Bayes formulation

Given a person tests positive using the diagnostic test, what is the probability the person actually has cancer?

$$P(\mathit{Cancer} = \mathit{true} \,|\, \mathit{Test} = \mathit{positive}) = \frac{P(\mathit{Test} = \mathit{positive} \,|\, \mathit{Cancer} = \mathit{true}) \, P(\mathit{Cancer} = \mathit{true})}{P(\mathit{Test} = \mathit{positive})}$$

#### Base rate or prior probability

What's the probability of any person in a population having cancer?

- P(Cancer = true) = ?
- Determined using a statistical analysis
- In the event of lack of data, make a sensible assumption.

• *P*(*Cancer* = *true*) = 0.0002

#### Question

Given a person tests positive using the diagnostic test, what is the probability the person actually has cancer?

$$P(\mathit{Cancer} = \mathit{true} \,|\, \mathit{Test} = \mathit{positive}) = \frac{P(\mathit{Test} = \mathit{positive} \,|\, \mathit{Cancer} = \mathit{true}) \, P(\mathit{Cancer} = \mathit{true})}{P(\mathit{Test} = \mathit{positive})}$$

#### Evidence term

```
P(Test = positive) = ?
```

- Typically, the evidence term is difficult to reliably estimate statistically
- But we have an alternative way of calculating it, using some operations from probability theory

```
P(B) = P(B|A) * P(A) + P(B|¬A) * P(¬A)

P(Test=Positive) =

P(Test=Positive|Cancer=True) * P(Cancer=True) + P(Test=Positive|Cancer=False)

* P(Cancer=False)
```

#### Evidence term (2)

```
P(Cancer=False) = 1 - P(Cancer=True)
```

= 1 - 0.0002

= 0.9998

We can plug in our known values as follows:



#### Specificity

P(Test=Negative|Cancer=False)

How good is the test, at correctly identifying people without cancer

Also known as the true negative rate

$$rac{True\ negatives}{Negative\ test\ results}$$
 ·  $100\ \%$ 

In our study, the specificity of the test was found to be 95%

```
P(Test=Negative | Cancer=False) = 0.95
```

P(Test=Positive|Cancer=False) = 1 – P(Test=Negative | Cancer=False)

$$= 1 - 0.95$$

= 0.05

#### Back tracking (1): base rate probability

P(Test=Positive) = 0.85 \* 0.0002 + P(Test=Positive|Cancer=False) \* 0.9998

P(Test=Positive|Cancer=False) = = 1 - P(Test=Negative | Cancer=False)

P(Test=Positive) = 0.85 \* 0.0002 + 0.05 \* 0.9998

P(Test=Positive) = 0.05016

The probability of the test returning a positive result, regardless of whether the person has cancer or not is about 5%

#### Back tracking (2): Posterior probability

Given a person tests positive using the diagnostic test, what is the probability the person actually has cancer?

$$P(\mathit{Cancer} = \mathit{true} \,|\, \mathit{Test} = \mathit{positive}) \,=\, \frac{P(\mathit{Test} = \mathit{positive} \,|\, \mathit{Cancer} = \mathit{true}) \, P(\mathit{Cancer} = \mathit{true})}{P(\mathit{Test} = \mathit{positive})}$$

P(Cancer=True | Test=Positive) = 0.85 \* 0.0002 / 0.05016

P(Cancer=True | Test=Positive) = 0.00017 / 0.05016

P(Cancer=True | Test=Positive) = 0.003389154704944

If the patient is informed they have cancer with this test, then there is only 0.33% chance that they have cancer.

#### Connecting Bayes Theorem with Binary Classification

Confusion Matrix (two-class scenario)

|                     | Positive class      | Negative class      |
|---------------------|---------------------|---------------------|
| Positive prediction | True Positive (TP)  | False Positive (FP) |
| Negative prediction | False Negative (FN) | True Negative (TN)  |

```
True Positive Rate (TPR) = TP / (TP + FN) = Sensitivity
```

True Negative Rate 
$$(TNR) = TN / (TN + FP) = Specificity$$

False Negative Rate (FNR) = FN / (FN + TP)

#### Precision or Positive Predictive Value (PPV)

$$PPV = rac{True\,Positives}{True\,Positives + False\,Positives}$$

P(A|B) = PPV

Precision takes the same value as Posterior!

Can you figure out the connection from the other terms given in Bayes Theorem to the terms given in the confusion matrix?

**Bayes Optimal Classifier** 

#### Bayes theorem for classification

Classification: assign a label to a given input

This can be framed as calculating the conditional probability of a class label given a data sample

$$P(class \, | \, data) = rac{P(data \, | \, class) \, \cdot \, P(class)}{P(data)}$$

The likelihood term tends to be difficult to estimate. It typically requires a very large number of examples to effectively determine the probability distribution p(data|class)

#### Maximum A Posteriori (MAP) Estimation

What is the class that maximizes P(class | data)?

$$P(class \, | \, data) = egin{bmatrix} P(data \, | \, class) \, \cdot \, P(class) \ \hline P(data) \ \hline \end{pmatrix}$$

- Since we are only interested in in the MAP estimate, we can simplify the optimization
- We can ignore the denominator P(data), because it is a constant over all the classes
- The class that maximizes the above is the same as the class that maximizes:

<sup>\*</sup> It's also common to maximize the log of the above expression, because log is a monotonic function

#### Bayes classifier: Toy example (1)

#### Given:

- Features:  $X = (X_1, X_2, ..., X_n)$
- Labels:  $Y = (Y_1, Y_2, ..., Y_n)$

Find the value of Y for which the following posterior probability is maximum

$$P(Y=y \mid X = (x_1, x_2, ..., x_m))$$

In other words, what is the class label Y,

for a new data point  $X = (x_1, x_2, ..., x_m)$ ?

### Bayes classifier: Toy example (2)

| X <sub>1</sub> | X <sub>2</sub> | Y |
|----------------|----------------|---|
| 0              | 0              | 0 |
| 0              | 1              | 1 |
| 1              | 2              | 1 |
| 0              | 0              | 1 |
| 2              | 2              | 0 |
| 1              | 1              | 0 |
| 0              | 2              | 1 |
| 2              | 0              | 0 |
| 2              | 1              | 0 |
| 1              | 0              | 0 |

• 
$$X_{i} \in \{0,1,2\}$$

• 
$$Y_i \in \{0,1\}$$

Estimate Y, given X = (0,2)

That is, find the value y that maximizes the posterior:

$$P(Y=y | X = (0,2))$$

Since y can be either 0 or 1, we calculate the posterior corresponding to both cases

$$P(Y=0 \mid X = (0,2))$$
 and  $P(Y=1 \mid X = (0,2))$ 

### Bayes classifier: Toy example (3)

| X <sub>1</sub> | X <sub>2</sub> | Υ |
|----------------|----------------|---|
| <b>1</b>       | <b>A</b> 2     | • |
| 0              | 0              | 0 |
| 0              | 1              | 1 |
| 1              | 2              | 1 |
| 0              | 0              | 1 |
| 2              | 2              | 0 |
| 1              | 1              | 0 |
| 0              | 2              | 1 |
| 2              | 0              | 0 |
| 2              | 1              | 0 |
| 1              | 0              | 0 |

```
Estimate Y, given X = (0,2)
P(Y=y \mid X = (0,2)) = ?
(a) Posterior for Y=0: P(X=(0,2) | Y=0) P(Y=0)
P(Y=0) = 6/10, P(X=(0,2) | Y=0) = 0
=> (a) = 0
(b) Posterior for Y=1: P(X=(0,2) | Y=1) P(Y=1)
P(Y=1) = 4/10
P(X=(0,2) | Y=1) = 1/4
=> (b) = \frac{1}{4} * \frac{4}{10} = 0.1
=> Y=1 maximizes the posterior for X=(0,2)
```

#### We have a problem!

| X <sub>1</sub> | X <sub>2</sub> | Υ |
|----------------|----------------|---|
| 0              | 0              | 0 |
| 0              | 1              | 1 |
| 1              | 2              | 1 |
| 0              | 0              | 1 |
| 2              | 2              | 0 |
| 1              | 1              | 0 |
| 0              | 2              | 1 |
| 2              | 0              | 0 |
| 2              | 1              | 0 |
| 1              | 0              | 0 |

Estimate Y, given X = (0,2)

$$P(Y=y \mid X = (0,2)) = ?$$

The likelihood term becomes zero for all the combinations that are NOT directly observed before. This is common for a larger number of features X

(a) 
$$P(Y=0 \mid X = (0,2)) \propto P(X=(0,2) \mid Y=0) P(Y=0)$$

$$P(Y=0) = 6/10, P(X=(0,2) | Y=0) = 0$$

$$=> (a) = 0$$

(b) 
$$P(Y=1 \mid X = (0,2)) \propto P(X=(0,2) \mid Y=1) P(Y=1)$$

$$P(Y=1) = 4/10$$

$$P(X=(0,2) | Y=1) = 1/4$$

$$=> (b) = \frac{1}{4} * \frac{4}{10} = 0.1$$

It's difficult to compare multiple values of zero!

Solution: Naive Bayes Classifier

Consider  $X_1$  and  $X_2$  are independent (a naive assumption?)

$$=> P(X=(0,2) | Y=1) = P(X_1=0 | Y=1) * P(X_2=2 | Y=1)$$

$$P(X=(0,2) | Y=0) = P(X_1=0 | Y=0) * P(X_2=2 | Y=0)$$



Consider  $X_1$  and  $X_2$  are independent

=> 
$$P(X=(0,2) | Y=1) = P(X_1=0 | Y=1) * P(X_2=2 | Y=1)$$
 =  $\frac{3}{4}$  \* 
$$P(X=(0,2) | Y=0) = P(X_1=0 | Y=0) * P(X_2=2 | Y=0)$$



Consider  $X_1$  and  $X_2$  are independent

=> 
$$P(X=(0,2) | Y=1) = P(X_1=0 | Y=1) * P(X_2=2 | Y=1)$$
 =  $\frac{3}{4}$  \*  $\frac{2}{4}$  P(X=(0,2) | Y=0) =  $P(X_1=0 | Y=0) * P(X_2=2 | Y=0)$ 

| X <sub>1</sub> | X <sub>2</sub> | Y |
|----------------|----------------|---|
| 0              | 0              | 0 |
| 0              | 1              | 1 |
| 1              | 2              | 1 |
| 0              | 0              | 1 |
| 2              | 2              | 0 |
| 1              | 1              | 0 |
| 0              | 2              | 1 |
| 2              | 0              | 0 |
| 2              | 1              | 0 |
| 1              | 0              | 0 |

Consider  $X_1$  and  $X_2$  are independent

=> 
$$P(X=(0,2) | Y=1) = P(X_1=0 | Y=1) * P(X_2=2 | Y=1) = \frac{3}{4} * \frac{2}{4}$$
  
 $P(X=(0,2) | Y=0) = P(X_1=0 | Y=0) * P(X_2=2 | Y=0) = \frac{1}{6} * \frac{1}{6}$ 

| X <sub>1</sub> | X <sub>2</sub> | Y |
|----------------|----------------|---|
| 0              | 0              | 0 |
| 0              | 1              | 1 |
| 1              | 2              | 1 |
| 0              | 0              | 1 |
| 2              | 2              | 0 |
| 1              | 1              | 0 |
| 0              | 2              | 1 |
| 2              | 0              | 0 |
| 2              | 1              | 0 |
| 1              | 0              | 0 |

Consider  $X_1$  and  $X_2$  are independent

=> 
$$P(X=(0,2) | Y=1) = P(X_1=0 | Y=1) * P(X_2=2 | Y=1) = 0.375$$
  
 $P(X=(0,2) | Y=0) = P(X_1=0 | Y=0) * P(X_2=2 | Y=0) = 0.0278$ 

Using Maximum *A Posteriori* (MAP) estimation: For  $X=(0,2) \Rightarrow Y = 1$ 

#### Naive Bayes and MAP recap

$$P(Y \mid X) = \frac{P(X \mid Y) \cdot P(Y)}{P(X)}$$

To find the value of Y that maximizes the above posterior P(Y|X), we can find the Y that maximizes the numerator  $P(X|Y)^*P(Y)$ 

$$X = [x_1, x_2, ..., x_n]$$

$$P(X|Y)*P(Y) = P(X=[x_1, x_2, ..., x_n]|Y)*P(Y)$$

With the conditional independence of X, this becomes

$$\mathsf{P}(\mathsf{X} = \mathsf{x_1} | \mathsf{Y})^* \mathsf{P}(\mathsf{X} = \mathsf{x_2} | \mathsf{Y})^* ... ^* \mathsf{P}(\mathsf{X} = \mathsf{x_n} | \mathsf{Y})^* \mathsf{P}(\mathsf{Y}) = \prod_{i=1}^n P(X = x_i \mid Y) \cdot P(Y)$$

#### The "Zero Frequency / Probability" problem

$$P(X=x_1|Y)^*P(X=x_2|Y)^*...^*P(X=x_n|Y)^*P(Y) = \prod_{i=1}^n P(X=x_i \mid Y) \cdot P(Y)$$

- What if one of the P(X=x<sub>i</sub>|Y) terms is not observed?
- Then for that value of X=xi, the conditional probability becomes zero.
- That makes the whole product zero. Which makes the MAP estimation process useless
- To avoid it we should use a smoothing technique.
  - E.g. Laplace smoothing/correction

#### Laplace Smoothing

#### Also known as Laplace Correction and Additive Smoothing

A small-sample correction will be added to every probability estimate in the

likelihood term

Original way of calculating P(x<sub>i</sub>|Y)

o Therefore, no part of the term will be zero

$$P(x_i \mid Y = y) = \frac{n_{x_i}^y + \alpha}{N + \alpha K}$$

 $n_{x_i}^y$  - Number of times feature  $\mathbf{x_i}$  is observed with label  $\mathbf{y}$ 

Laplace smoothing

lpha - Smoothing parameter

K - Number of features (dimensions)

N - Total number of observations with Y=y

#### Smoothing parameter lpha

- A hyper parameter that can be tuned
- Typically set to 1
- Otherwise use an elbow plot or cross validation to determine a suitable value

#### Where does Naive Bayes fit in?

- Classifier
  - To find labels for data points (features)
- Supervised learning based
  - Needs examples

#### Disadvantages/Features of Naive Bayes

- Does not accurately capture the interdependencies among features, which might cause problems if there is a significant level of interdependencies
  - This is when the "naive assumption" i.e. conditional independence doesn't hold
- Most of the problems caused are because of the independence assumptions because it is not realistic in many real world situations
- Although the classification results are usually reliable, the posterior probability might not be

#### Advantages/Features of Naive Bayes

- Easy and fast to build
- Fast and efficient in deployment
- When the conditional independence assumption holds, NB performs better than most classifiers especially when there is only limited amount of data
- Performs better with categorical input variables than with numerical variables
  - o For numerical variables, often a normal distribution is assumed. This might not hold strongly.
- Suitable for multi-class classification tasks
- Suitable for real-time classification tasks

#### Application domains of Naive Bayes

- Some recommendation systems use collaborative filtering and Naive Bayes
- NLP tasks such as
  - Text classification
  - Spam filtering
  - Sentiment analysis

#### Notable cases of Naive Bayes

Differences arise because of the assumptions on how the likelihood P(X|Y) is distributed

| Attribute/Feature Type             | NB Adaptation (python sklearn module) |
|------------------------------------|---------------------------------------|
| Multivariate bernoulli distributed | BernoulliNB                           |
| Real (continuous valued)           | GaussianNB                            |
| Categorical                        | CategoricalNB                         |
|                                    |                                       |

#### Case 1: Gaussian NB

When the attributes are real valued (continuous) variables

E.g. Age, height, ...

.. and it's possible to assume they are normally distributed according to:

$$P(x_i \mid y) = rac{1}{\sqrt{2\pi\sigma_y^2}} \mathrm{exp}\left(-rac{(x_i - \mu_y)^2}{2\sigma_y^2}
ight).$$

The parameters  $\mu$  (mean) and  $\sigma$  (standard deviation) are estimated from the data using maximum likelihood estimation (MLE)



#### Case 2: Categorical NB

When each feature has its own categorical distribution

The probability of category in feature given class is estimated as:

$$P(x_i = t \mid y = c \; ; \; lpha) = rac{N_{tic} + lpha}{N_c + lpha n_i},$$

 $N_{tic} = |\{j \in J \mid x_{ij} = t, y_j = c\}|$  Is the number of times category t appears in the samples  $x_i$ , which belongs to class c. Alpha is a smoothing parameter and  $n_i$  is the number of available categories in feature i.

## Naive Bayes Demo

simplilearn

# NAIVE BAYES CLASSIFIER