Практическое задание к уроку 4 Урок 4. Предел функции. Часть 1

② Question

Предложить пример функции, не имеющей предела в нуле и в бесконечности.

Привести пример функции, не имеющей предела в точке, но определенной в ней.

Question

Исследовать функцию $f(x) = x^3 - x^2$ по плану:

- а. Область задания и область значений.
- b. Нули функции и их кратность.
- с. Отрезки знакопостоянства.
- d. Интервалы монотонности.
- е. Четность функции.
- f. Ограниченность.
- g. Периодичность.

а) Область задания и область значений. Функция определена и непрерывна на всей числовой прямой: $D(f)=\mathbb{R}$. Учитывая, что у нас нет точек разрыва, становится понятна и область значений функции: $E(f)=\mathbb{R}$ – тоже любое действительное число.

b) **Нули функции и их кратность.**

Сначала найдём точку пересечения графика с осью ординат. Необходимо вычислить значение функции при $x=0:y=f(0)=0-0=0,\,x=1:y=f(1)=1-1=0$ Уравнение имеет 2 действительных корня: x=0,x=1.

с) Отрезки знакопостоянства. На числовой прямой отложим найденные значения и методом интервалов определим знаки функции:

d) **Интервалы монотонности.**

Исследуем первую производную: $\frac{\partial (x^3-x^2)}{\partial x}=3x^2-2x\Longrightarrow 3x^2-2x=0\Longrightarrow x=0; x=\frac{2}{3}$ Данное уравнение имеет два действительных корня. Отложим их на числовой прямой и определим знаки производной:

В точке $x=\frac{2}{3}$ функция достигает минимума, а в точке x=0 максимума.

X	$(-\infty,0)$	0	$\left(0,\frac{2}{3}\right)$	$\frac{2}{3}$	$\left(\frac{2}{3},\infty\right)$
f'(x)	+	0	-	0	+
f(x)	1	0	\	$-\frac{4}{27}$	\uparrow

Исследуем вторую производную: $\frac{\partial (3x^2-2x)}{\partial x}=6x-2\Longrightarrow 6x-2=0\Longrightarrow x=\frac{1}{3}$ Определим знаки производной:

X	$\left(-\infty, \frac{1}{3}\right)$	$\frac{1}{3}$	$\left(\frac{1}{3},\infty\right)$
f"(x)	-	0	+
f(x)	\cap	$-\frac{2}{27}$	U

е) Четность функции. Проверим на четность/нечетность:

 $f(-x)=(-x)^3-(-x)^2=-x^3-x^2\Longrightarrow f(-x)
eq f(x), f(-x)
eq -f(x),$ значит, данная функция не является чётной или нечётной.

f) Ограниченность. Выясним, как ведёт себя функция на бесконечности:

Вертикальные асимптоты отсутствуют.

$$\lim_{x o\pm\infty}\left(x^3-x^2
ight)=\pm\infty\Longrightarrow$$
 Нет горизонтальных асимптот.

Наклонная асимптота имеет вид y=kx+b, где:

$$k=\lim_{x o\infty}rac{f(x)}{x};\,b=\lim_{x o\infty}(f(x)-kx)$$

Найдем k:

$$k=\lim_{x o\infty}rac{x^3-x^2}{x}=\lim_{x o\infty}x^2-x=\infty$$

Аналогично $k=\lim_{x\to -\infty} rac{x^3-x^2}{x}=\lim_{x\to -\infty} x^2-x=\infty.$ Наклонных асимптот нет.

Таким образом, функция неограниченная – не ограничена сверху и не ограничена снизу.

g) Периодичность. Функция непериодическая.

② Question

Найти предел: