

Enseignes et afficheurs à LED

BCM: la modulation codée binaire

Pierre-Yves Rochat

BCM: la modulation codée binaire

Pierre-Yves Rochat

BCM: la modulation codée binaire

- PWM sur une matrice
- Tolérance sur la forme
- Principe du BCM
- Avantages et limites du BCM
- Programmation de signaux BCM

PWM sur une matrice

• Le PWM est généralement utilisé pour faire varier l'intensité d'une LED

PWM sur une matrice

- Le **PWM** est généralement utilisé pour faire varier l'intensité d'une LED
- Sur un afficheur matriciel, l'intensité de chaque LED doit être indépendante

PWM sur une matrice

- Le **PWM** est généralement utilisé pour faire varier l'intensité d'une LED
- Sur un afficheur matriciel, l'intensité de chaque LED doit être indépendante
- Pour changer l'état d'une LED, il faut renvoyer l'état de toutes les LED

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PWM sur une matrice

- Le PWM est généralement utilisé pour faire varier l'intensité d'une LED
- Sur un afficheur matriciel, l'intensité de chaque LED doit être indépendante
- Pour changer l'état d'une LED, il faut renvoyer l'état de toutes les LED
- Fréquence de rafraîchissement : F_{raf} = F_{pwm} × N_{intens}

Tolérance sur la forme

• L'intensité perçue par l'œil ne dépend pas de la forme du signal

Tolérance sur la forme

• L'intensité perçue par l'œil ne dépend pas de la forme du signal

ÉCOLE POLYTECHNIQUE

Tolérance sur la forme

• L'intensité perçue par l'œil ne dépend pas de la forme du signal

• Ces deux signaux donnent la même impression visuelle

Principe du BCM

• Découper la période du signal en tranches dont les durées sont les poids binaires

Principe du BCM

• Découper la période du signal en tranches dont les durées sont les poids binaires

Principe du BCM

Découper la période du signal en tranches dont les durées sont les poids binaires

Modulation Codée Binaire (Binary Coded Modulation BCM)

Exemples

Signaux représentés sur 3 périodes

Avantages et limites du BCM

• En PWM, pour une résolution de b bits, il faut 2^b raffraîchissements des états des LED

Avantages et limites du BCM

- En PWM, pour une résolution de b bits, il faut 2^b raffraîchissements des états des LED
- En BCM, il en faut seulement b.

Avantages et limites du BCM

- En PWM, pour une résolution de b bits, il faut 2^b raffraîchissements des états des LED
- En BCM, il en faut seulement b.

• Le temps minimum entre deux raffraîchissements est le même

ÉCOLE POLYTECHNIQUE

Avantages et limites du BCM

- En PWM, pour une résolution de b bits, il faut 2^b raffraîchissements des états des LED
- En BCM, il en faut seulement b.

- Le temps minimum entre deux raffraîchissements est le même
- Du temps libre se dégage sur les bits de poids fort, utilisable pour calculer l'état suivant

Programmation de signaux BCM

```
8 \text{ uint8 t Intens}[8] = \{0, 0, 0, 0, 0, 0, 128, 0\};
                                                               1 #define BITS_BCM 8
 9 uint8 t n, b;
                                                               3 void Attente(uint16_t dur) {
10 uint8 t t = 0;
                                                                  volatile uint16 t i;
                                                                  for (i=0; i<(dur*64); i++) {</pre>
12 int main() {
     WDTCTL = WDTPW+WDTHOLD; // stoppe le WatchDog
     BCSCTL1 = CALBC1_16MHZ; DCOCTL = CALDCO_16MHZ;
151617
     P1DIR = 0xFF; // P1 tout en sortie
     while (1) { // Boucle infinie :
18
       for (n=0; n<BITS_BCM; n++) { // pour une période du BCM</pre>
19
         for (b=0; b<8; b++) { // pour chaque bit de sortie
20
           if (Intens[b] & (1<<n)) P10UT|=(1<<b); else P10UT&=~(1<<b);</pre>
212223242526
         Attente(1<<n);
       // ...calcul des prochaines valeurs des intensités
```


BCM: la modulation codée binaire

- PWM sur une matrice
- Tolérance sur la forme
- Principe du BCM
- Avantages et limites du BCM
- Programmation de signaux BCM