

CC0007 Science and Technology for Humanity

Blockchain Revolution

Asst Prof Li Yi, NTU

How Does Blockchain Work?

A Simple Cryptocurrency: GoofyCoin

GoofyCoin rules:

- Goofy can create new coins: "CreateCoin[uniqueCoinID]"
- 2. Whoever owns a coin can pass it on to someone else by signing a statement that saying, "Pass on this coin to X" (where X is specified as a public key).
- 3. Anyone can verify the validity of a coin by following the chain of hash pointers back to its creation by Goofy, verifying all signatures along the way.

A Simple Cryptocurrency: GoofyCoin

GoofyCoin Rules:

- Goofy can create new coins: "CreateCoin[uniqueCoinID]"
- 2. Whoever owns a coin can pass it on to someone else by signing a statement that saying, "Pass on this coin to X" (where X is specified as a public key)
- 3. Anyone can verify the validity of a coin by following the chain of hash pointers back to its creation by Goofy, verifying all of the signatures along the way

Solving the "Double-Spending" Problem

- Who gets to add the next block?
- Some nodes are known as miners.
 Miners add blocks to the blockchain.
- In order to add a block to the blockchain, a miner needs to do the following:
 - Take the transactions in the previous block and combine it with the hash of the previous block to derive its hash.
 - Store the derived hash into the current block.

Block n + 1 (to be added to the blockchain)

Block n

Lee, W-M. (2018). Understanding how blockchain works. NDC Conferences. Retrieved July 20, 2022 from https://blog.ndcconferences.com/understanding-blockchain/

Proof of Work (PoW)

- A mechanism to help reach consensus on the state of the blockchain.
- PoW requires the nodes to demonstrate they have burned CPU in order to win the right to create the next block.
 - A piece of data which was difficult (costly, time-consuming) to produce so as to satisfy certain requirements.
 - It must be trivial to check whether data satisfies said requirements.
 - Hashcash (SHA-256) is the PoW function used to solve difficult mathematics problems.
 - Mining is usually the process in which this proof occurs.

Proof of Work (PoW)

Miners work hard to find the value of nonce.

SHA-256 =<u>0000</u>18b6e...

Block n+1 (to be added to the blockchain)

Block n

 Once the nonce is found, the entire block and the nonce is broadcasted to other nodes.

- The block has been mined and ready to be added to the blockchain.
- Other miners can now verify that the nonce does indeed satisfy the difficult target.
- The miner earns the mining fees and transaction fees.

Difficulty Target nonce Transaction **Transaction Transaction** Hash of previous block **Difficulty Target** nonce **Transaction** Hash of block Transaction **Transaction** Hash of previous block

Lee, W-M. (2018). Understanding how blockchain works. NDC Conferences. Retrieved July 20, 2022 from https://blog.ndcconferences.com/understanding-blockchain/

Building a Blockchain for Students' Grades

Students

- Student identities are concealed.
- Each student has a public key that matches a private key that only the student knows.

	Public Key	Private Key
Student 1	ad59da	c8fc47b6fe
Student 2	bd9ebc	4382af3398
Student 3	c67445	56164d905c

Faculties

- Miners
- Other participating nodes
- Miners mine blocks, all nodes verify and vote

Pool of Grade Records

Block 1

Course: Parks 320

Student: ad59da

Grade: F

Block 2

Course: Engineering 300

Student: bd9ebc

Grade: B

Block 3

Course: Business 200

Student: c67445

Grade: C

Go Miners, Go

Hash = Nonce + a + b + c - Value of last two digits of previous hash

- a = Value of the first letter of the course
- b = Value of the first letter of the student's public key
- c = Value of the grade
- Nonce = Value between 1 and 3 that you will adjust to calculate a hash that can be evenly divisible by 3

Our First Block

Hash: 212

Genesis Block

Course: -Student: -Grade: -

Block 1

Course: Parks 320 Student: ad59da

Grade: F

Block	Course	Student	Grade	Nonce (1-3)	Prev Hash	а	b	С	Hash
									212
1	Parks 320	ad59da	F		12	80	65	70	

Hash = Nonce + a + b + c – Value of last two digits of previous hash

Finishing the Block: Hashing

Hash: 212 Hash: 204

Genesis Block

Course: -Student: -Grade: -

Block 1

Course: Parks 320 Student: ad59da

Grade: F

Block	Course	Student	Grade	Nonce (1-3)	Prev Hash	а	b	С	Hash
									212
1	Parks 320	ad59da	F	1	12	80	65	70	204

Hash = Nonce + a + b + c – Value of last two digits of previous hash

Finishing the Block: Verifying and Voting

Hash: 204

Hash: 212

Genesis Block

Course: -Student: -Grade: -

Course: Parks 320 Student: ad59da

Grade: F

Block	Course	Student	Grade	Nonce (1-3)	Prev Hash	а	b	С	Hash
									212
1	Parks 320	ad59da	F	1	12	80	65	70	204

Hash = Nonce + a + b + c - Value of last two digits of previous hash

Second Block

Hash: 212 Hash: 204 Hash: 198

Genesis Block

Course: -Student: -

Grade: -

Course: Parks 320

Student: ad59da

Grade: F

Block 2

Course: Engineering 300

Student: bd9ebc

Grade: B

Block	Course	Student	Grade	Nonce (1-3)	Prev Hash	а	b	С	Hash
									212
1	Parks 320	ad59da	F	I	12	80	65	70	204
2	Engineering 300	bd9ebc	В	I	4	69	66	66	198

Hash = Nonce + a + b + c – Value of last two digits of previous hash

Discussion

- What if "Student 1" loses his/her private key? We with retrieve
- What if a student pays off a node to change the score stored in "Block 1"? Many theny

Block	Course	Student	Grade	Nonce (1-3)	Prev Hash	а	b	С	Hash
			1						212
1	Parks 320	ad59da	F 🥕	1	12	80	65	70	204
2	Engineering 300	bd9ebc	В	I	4 🥖	69	66	66	198
					/				

Mining Difficulty

 Satoshi Nakamoto: "The more mining power the network has, the harder it is to guess the answer to the mining math problem"

 Self-adjusting to the accumulated mining power the network possesses.

Why did Satoshi do this?

On average, a new block will be added every 10 minutes (i.e., the nonce will be guessed every 10 minutes on average).

 A sort of "arms race" to get the most efficient and powerful miners.

Mining Difficulty

Mining Revolution

CPU mining

GPU mining

none power after design algo cannot be change

Mining Pools

- Idea: Miners group together to form a "pool" (i.e., combine their mining power to compete more effectively).
- Once the pool wins, the reward is divided among the pool members based on their contributed mining power.
 - Pros: Reduce the variance of mining rewards; easy to upgrade the network
 - Cons: Pool manager must be trusted; centralised

Mining Pool Distribution

Proof-of-Stake and Virtual Mining

- Goal of mining is to enable a form of voting on the state of the blockchain
 - Miners invest in computer cycles
 - Computing power is translated to votes
- Mining in PoW is costly
 - Hardware equipment
 - Energy

Narayanan, A., Bonneau, J., Felten, E., Miller, A. & Goldfeder, S. (2016). Bitcoin and cryptocurrency technologies: A comprehensive introduction. Princeton University Press.

to big player can he better successful mining

Proof-of-Stake and Virtual Mining

- Can we remove the step of spending money on energy and equipment?
 - After all, this is only to prove who has invested more in mining.
 - Votes come directly from the proportion of the currency they hold.
- Advantages of virtual mining
 - It reduces the environmental footprint of PoW.
 - Large shareholders have an incentive to do things that would benefit the system as a whole.

- This is essentially Proof-of-Stake (PoS).
- Ethereum and Algorand are adopting PoS as an alternative to PoW.

Types of Blockchain

Public blockchain

Private blockchain

Consortium blockchain

Public Blockchain

- Anyone can run the public code, start mining, make a transaction, explore and validate the blockchain.
- Each transaction is verified by every node before it is written to the system.
- Examples: Bitcoin, Ethereum, Algorand

Private Blockchain

- R/W permissions are kept centralised by one organisation.
- Examples: Ripple,
 Multichain, Corda

Consortium Blockchain

Also known as federated blockchain

- Controlled by a set of pre-selected nodes, members of the consortium can run code, start mining and make transactions.
- Examples: R3,
 HyperLedger Fabric

Decentralised Applications (DApps)

- The Do-It-Yourself platform for decentralised programs is also known as Decentralised Applications
- The infrastructure for running DApps worldwide
- First proposed in 2013 and then brought to life in 2014 by Vitalik Buterin, the co-founder of Bitcoin Magazine
- Goal: Ro truly decentralise the internet

- **Ethereum** in 2022:
 - 48 million smart contracts
 - 2,970 DApps deployed
 - 49.38K active users/day
 - 102.18K transactions/day

Smart Contracts

- User-defined self-executing computer programs running on top of blockchain
- Managing exchange of digital assets
- Applications across many different sectors

McKinsey&Company

Buying a House on Ethereum

Blockchain/Bitcoin/Ethereum

