BEST AVAILABLE COPY

CLIPPEDIMAGE= JP410093880A

PAT-NO: JP410093880A

DOCUMENT-IDENTIFIER: JP 10093880 A

TITLE: THREE-DIMENSIONAL DISPLAY PROGRAM GUIDE GENERATION DEVICE

PUBN-DATE: April 10, 1998

INVENTOR-INFORMATION:

NAME

į.

KOMI, HIRONORI FUJII, YUKIO

ASSIGNEE-INFORMATION:

NAME

HITACHI LTD

COUNTRY

N/A

APPL-NO: JF08241728

APPI-DATE: September 12, 1996

INT-CL (IPC): HO4N005/445; HO4N007/08; HO4N007/081

ABSTRACT:

PROBLEM TO BE SOLVED: To inexpensively provide a program guide display device which can intuitively be operated through the use of a three-dimensional.

graphic and displays program data at high speed.

SOLUTION: CPU 5 receives program guide information from a distribution circuit

2. A CG(computer graphics) rendering circuit 8 makes a response to the

operation of a user at high speed and extracts only program data required for

texture data to be plotted, and it is accumulated in RAM 7.

Texture data

showing respective program names are designated in font ROM 16 from

correspondence information of respective program data and a polygon on a

virtual three-dimensional solid. The polygon is mapped and a program table is

constructed in the virtual three-dimensional solid. At the time of scrolling

the program table, line information between program data is used

mapping position of only the program of a necessary minimum is changed.

04/15/2001, EAST Version: 1.01.0021

(19)日本国特許庁(J P)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-93880

(43)公開日 平成10年(1998) 4月10日

(51) Int CL.6

计点限缩

HO4N 5/445 7/08

7/081

FI

1104N 5/445

7/08

%

7.

(近 01 全) XO 11級の現象協 永福永 永福光条

(21) 山獭路号

转随平8-241728

(22) 11 1611

平成8年(1996)9月12日

(71) 出版人 000005108

株式会社日立製作所

東京都千代山区神田駿河台四丁月6番地

(72) 発明者 小味 弘典

神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所マルチメディアシステ人関

外那本孫

(7%) 遊明者 遊井 由紀夫

神奈川県横浜市戸場区吉田町202番川株式

会社日立製作所マルチメディアシステム関

光本部内

(74)代理人 弁理上 小川 勝男

3次元表示番組为イド発生基置 (54) 【発明の名称】

(57) 【贬約】

【課題】3次元グラフィックスを用いて直感的に操作で **き、高速は番組データを表示する番組ガイド表示装置を** 安価に実現する。

【層決手段】分配回路2より番組ガイド情報をCPU5 が受け取り、CGレンダリング回路8においてユーザの 操作に高速に適答し描画すべきテクスチャデータに必要 な評組データのみを抽出し、RAM7に落積する。各番 租データと仮想3次元立体上のポリゴンとの対応情報よ り、各番組名を示すテクスチャデータをフォントROM 1.6中に指定し、ボリゴンにマッピングし番組表を促想 3次元立体に構築する。番組表のスクロール時には、各 番組データ間のリンク情報を利用し必要最小限の番組に 敗してのみマッピング位置の変更を行う。

【作品言語及の範囲】

【語求項1】符号化映像音声信号と多重送信された第1 の番組ガイド情報を受け取り、ユーザに番組を選択させ るための諸組ガイド両面をコンピュータグラフィックス (以下CG)を用いて発生する装置であって、上記第1 の番組ガイド情報を解析して該第1の番組ガイド情報か ら第2の番組ガイド情報を抽出し、ユーザ採作情報に従 い番組ガイド画面作成指示を出すプロセッサと、上記第 2の番組ガイド情報を保持するメモリと、上記番組ガイ **ド両面作成指示に従って、上記番組ガイド両面を生成す** るCGレングリング回路を具備し、上記番組ガイド画面 には上記ユーザ操作情報に高速に応答して生成される画 面モードがあり、上記第2の番組ガイド情報は上記画面 モードの生成に必要なデータ項目のみを含み、さらに該 データ項目は十記第1の番組ガイド情報に含まれる全番 組分について上記メモリに保持されることを特徴とする 3次元表示潜卻ガイド発生裝置。

١

【請求項2】符号化映像台声信号と多重送信された第1 の番組ガイド情報を受け取り、ユーザに番組を選択させるための番組ガイド両面をCGを用いて発生する装置であって、上記第1の番組ガイド情報を解析して該第1の番組ガイド情報を開出し、ユーザ操作情報に従い番組ガイド情報を開出し、ユーザ操作情報に従い番組ガイド情報を保持するメモリと、上記番組ガイド両面作成指示に従って、上記番組ガイド両面を生成するCGレンダリング回路を具備し、上記番組ガイド画面には上記ユーザ操作情報に高速に応答して生成される両面モードがあり、上記第2の番組ガイド情報は上記両面モードの生成に必要なデータ項目のみを含み、該デーク項目は予め選択された一つ以上のカテゴリに属する番組分について上記メモリに保持されることを特徴とする3次元表示番組ガイド発生装置。

【語序項3】 符号化映像音声信号と多重送信された第1の番組ガイド情報を受け取り、ユーザに番組を選択させるための番組ガイド画面をCGを用いて発生する装置であって、上記第1の番組ガイド情報を解析して該第1の番組ガイド情報を解析して該第1の番組ガイド情報を抽出し、ユーザ操作情報に従い番組ガイド画面作成指示を出すプロセッサと、上記番組ガイド画面作成指示に従って、上記番組ガイド画面作成指示に従って、上記番組ガイド画面には上記ユーザ操作情報に高速に応答して生成される画面モードがあり、上記第2の番組ガイド情報は上記画面モードがあり、上記第2の番組ガイド情報は上記画面モードの生成に必要なデータ項目のみを含み、該データ項目は予め選択された。二切よ上のチャネルに属する番組分について上記メモリに保持されることを特徴とする3次元表示番組ガイド発生装置。

【請求項4】符号化映ိ作的中信号と多項送信された第1 の番組ガイド情報を受け取り、ユーザに番組を選択させ るための番組ガイド画面をCGを用いて発生する装置で 50

あって、上記第1の番組ガイド情報を解析して該第1の 番組ガイド情報から第2の番組ガイド情報を抽出し、ユーザ操作情報に従い番組ガイド両面作成指示を出すプロセッサと、上記第2の番組ガイド情報を保持するメモリと、上記番組ガイド両面作成指示に従って、上記番組ガイド両面を建成するCGレングリング回路を具備し、上記番組ガイド両面には上記ユーザ操作情報に高速に応答して生成される歯面モードがあり、上記第2の番組ガイド情報は上記両面モードの生成に必要なデーク項目のみを含み、設データ項目は予め選択された一つ以上の放送目に属する番組分について上記メモリに保持されることを特徴とする3次元表示番組ガイド発生装置。

2.

【請求項5】特許請求の範囲第1項、第2項、第3項決 たは第4項に記載の装置であって、上記CGレンダリン グ回路には該CGレングリング回路が直接アドレッシン グ可能なフォントメモリが接続され、上記第2の番組ガ イド情報はデータ項目として、各番組の番組名を含み、 該番組名を表すテクスチャ(以下番組テクスチャと呼 ぶ) を生成し、仮想空間内の仮想3次元立体に投影する マッピング回路を上記CGレングリング回路内に具備 し、上記マッピング回路は、上記番組名を上記プロセッ サから受け取り、該番組名を表す文字パターンを上記フ ォントメモリから読み出し、上記番組テクスチャを生成 することを特徴とする3次元表示番組ガイド発生装置。 【請求項6】特許請求の範囲第5項に記載の装置であっ て,上記仮想3次元立休を多角形(以下ポリゴンと呼 ぶ) の集合で表現し、各ポリゴンと該ポリゴンに投影さ れる潜和テクスチャとの対応表が上記メモリ内に格納さ れることを特徴とする3次元表示番組ガイド発生装置。

【請求項7】特定請求の範囲第5項に記載の装置であって、上記CGレングリング回路は直接アドレッシング可能な描画用グラフィックメモリを具備し、上記第2の番組ガイド情報のうち、各番組の番組名は上記グリフィックメモリ内に整積されることを特徴とする3次元表示番組ガイド発生装置。

【請求項8】特許請求の範囲第5項に記載の装置であって、上記エー明操作情報はエーザがポインタにより画面中で指定した指定座標を含み、上記プロセッサは番組テクスチャを生成するために番組名と該番組に固有の番組1Dと上記指定座標を上記マッピング回路に送り、上記マッピング回路が描画するピクセルと該指定座標が一致した場合に該ピクセルに対応する番組1Dを保持することを特徴とする3次元表示番組ガイド発生装置。

【語求項9】特許語求の範囲第6項に記載の範囲であって、上記ポリゴンと番組テクスチャ対応表は、上記番組テクスチャの投影面を視聴者が見ることが可能なポリゴンののについて構成されることを特徴とする3次元表示番組ガイド発生装置。

【請求項10】特許請求の範囲第6項に記載の装置であって、上記仮想3次元立体に投影される潜組テクスチャ

10

40

付書組表を表すように配置され、上記第2の番組ガイド情報が上記メモリに保持される際、各階組の番組データ間に上記番組表内の近度関係を示すリンク情報を与え、上記リンク情報は、上記番組表において上記各番組テクスチャから該番組テクスチャに最も近く配置される番組テクスチャに対する上記第2の番組ガイド情報内の相対アドレス値を示し、上記番組表を投影する上記仮想3次元立体内の位置を変更する際、上記リンク情報を用いて上記ボリゴンと番組テクスチャの対応表を変更する事を特徴とする3次元表示番組ガイド発生装置。

【請求項11】特許請求の範囲第10項に記載の装置であって、さらに、上記番組データ間のリンク情報を、予め与えられた条件に該当する番組データ間にのみ与え、上記番組データのうち上記リンク情報を持つ番組についてのみ番組テクスチャを上記仮想3次元立体に投影することを特徴とする3次元表示番組ガイド発生決置。

【発明の詳細な説明】

100011

1発明の属する技術分野】本発明は、符号化映像音声信号に時分割多重されて達られてきた番組ガイド情報を表 20 京し、ユーザが現在視聴希望する番組の選択、将来視聴希望する番組の子約を行うためのグラフィックユーザインクフェース(以下GUIと略記)に関する。

[0002]

【従来の技術】ディジタル衛星放送等では一つの周波数に複数のチャネル分の映像音声信号を時分割多重化し、複数周波数の放送により多数のチャネル分の情報を送信する。これらの放送では、ユーザが放送を視聴している時刻より未來の番組データも提供し、見たい番組を予約する民能や見た番組分のみの料金を支払うペイ・パー・ビュー方式(以下、PPVと略記)等の新しいサービスが付加されている。大量の番組データ情報をユーザに提供する方法は、特別半8 70451や特別半7 288783等で記載されているように、放送局側から番組に関する情報である番組ガイド(以下、EPGと略記)情報を符号化映像音声信号に多重化して送る方式が一般的である。

【〇〇〇3】 EP C情報には各番組のチャネル情報。周波数情報、プログラム名、プログラム開始、数字時間、プログラム解説文等が含まれ、ユーザが多くの番組から上記情報を参照し自分の好みに合った番組を選択できる。

【0004】図12は従来のディジクル物起放送受信機(1ntegrated Receiver Deceder:以下、1RDと略記)内で番組ガイド用グラフィックユーザーインターフェース(以下GUIと略記)を提供するシステムを示す。図12の装置は1SO/1GC13818-1~13818-3(通称MPEG2)に基づいて待号化、および時分割多重されたディジタル物是放送信号を受信する1RDである。

【0005】図12において、分配装置2は入力端子1よりトランスボートストリーム(以下TSと略記)と呼ばれる画像と音声の時分割多重信号を受け取る。TSは188パイトのパケット(以下TSパケットと略記)からなり、各TSパケットはパケットへッグとペイロードと呼ばれる2つの情報を含む、ペイロードには、PESパケット(Packelized Elementary Stream)、PSI(Program Specific Information)、およびSI(Service Information)と呼ばれる情報が含まれる。PESパケットは特号化された映像、音声信号を含む。PSIは各チャネルにおいて放送中のデータ(プログラム)とTSパケットの対応関係を示り情報である。SIはMPEG-2で規定されていないサービス情報である。

【0006】 TSバケットのヘッダにはバケット識別情報PID (Packel ID) が含まれ、該当TSバケットの民性が何であるかを示す。後述するように分配装置2はCPU5から指定されたPIDをもつTSバケットのペイロードを取り出し、該当TSバケットが、音声信号または画像信号のPESバケットの一部の場合、それぞれオーディオデコーダ3、ビデオデコーダイに送る。オーディオデコーダ3、ビデオデコーダイでデコードされた信号はそれぞれディジタル音声信号。ディジタル画像信号として出力端子19、20から出力される。分配装置2で得られたTSパケットの属性がPSIまたはSIの場合、分配装置2はCPU5に該当TSバケットのペイロードを転送する。

【OOO7】CPU与に送られるPSIには各プログラムの画像、音声信号とPIDの対応を表したPMT(Program Map Table)と各プログラムとPMTの対応を表したPAT(Program Association Table)が含まれる。これらの情報を解析することにより、現在選択しているプログラムに関する情報をもつTSバケットのPIDを求め、分配装置2に送る。

【0008】CPU5に送られるSLは番組ガイド、各番組の説明文等を含む。一般に、ディジタル簡星放送などで放送されるアログラム数は50を越え、EPG用情報として、現在放送されているもの、当日分以外に数日先の番組データまでも提供する。したがって、EPG情報に含まれる番組数は数千に及び、全番組情報をメモリに蓄積するためには数Mバイト近いメモリ容量を必要とする。

【①〇〇9】図12の例では、CPU5が現状のEPG 別GU1の状態に即して、分配回路2を介して現在放送 で送信されているEPG情報から必要なデータを受けと るか、メモリ7、あるいは画像デコーダイに設けられて いるメモリに子め保存したEPG情報から必要データを 50 読み込む。一般に、放送信号は数秒から数十秒ごとに全 番組分のEPG情報を送信する、読み込んだEPGデータはCPU号によりEPGメニュー画面として加工され、OSD (On Sereen Display) プロセッサ 1 8に送られる。ディスプレイ上のEPGメニュー画面を見て、ユーザは番組選択などの操作を行い、リモコン等により入力端で6からCPU号に選択情報を入力する。選択された番組が現在放送中のものである場合、CPU号は分配回路2に選択されたチャネルを指定し受信チャネルの変更を行う。また、将来の番組を選択された場合、スモリフ内にある番組予約データベースの 10 更新を行う。

【〇〇十〇】従来のEPGメニューでは画面上の水平 軸、重直軸を例えばチャネル軸、時間軸に対応させて番 組表を記述する。ユーザがカーソル移動等の方法で番組 を指定した場合、その番組に関する詳細情報を別途表示 する。画面内には情報の一部を表示し、画面外の情報を 見る場合には上下左右スクロールや画面全体の背き換え により表示内容を更新する。さらに3次元〇Gを用いて 番組ガイドを表現する際、番組情報を表すテクスチャを 〇PU5で生成し、仮想3次元立体に投影し2次元画面 20 に活視電換をして番組ガイド画面を生成する。

[0011]

【発明が解決しようとする課題】しかし、従来例では全 BPGチータをメモリに保持しようとすると大きなメモ リ容量を必要とするため、装置のコスト高を招く。

【OD12】メニュー値面作成の度に分配回路を介して、放送中のEPGデータより必要情報を得ようとすると必要番組データ取得に数砂へ数十秒時間がかかり、ユーザが番組選択のために大量の番組をサーチする時には、多くの待ち時間を要する。

【00131本発明の目的はユーザがEPG特報から所 望の番組データを選択する効率を妨げない程に「分高速 な3次元表示番組ガイド発生装置を安価に提供すること である。

[0014]

【課題を解決するための手段】本発明では、ユーザ操作 情報に高速に応答する陣面モードの番組ガイド画面をも ち、上記画面モードに必要な番組データのみを常時保持 する。

【〇〇1号】ボリゴンと該ボリゴンに投影される番組テクスチャとの対応情報、および番組データ間のリンク情報をもち、ボリゴンに投影する番組テクスチャを探索する際、探索範囲を限定する手段を備え、さらにユーザがボインタによって選択する番組を画面描画回路内の処理を利用して検出する手段を具備する。

[0016]

【発明の実施の形態】以下、本発明の実施の形態を図面を用いて説明する。図1は、本発明の第1の実施形態に係る装置の概能プロック図である。図12と共通のプロックに関しては、同一の符号を記し、説明を告略する。

10017】本実施形態では、番組名を並べた番組表をユーザが確認し、例えば、7日分の放送スケジュールの機略を得て、さらに興味のある番組に関して詳細情報表示を選択するものとする。番組表は放送チャネルを並べるチャネル軸と放送時間帯を表す時間軸を用いて表すものとする。上記番組表はユーザから込られる操作情報に常に高速に応答し描画されるようにし、視聴者が番組表をチェックする際、待ち時間が生じないようにする。このため、CPU5では、受け取ったエPG情報から、番組名、放送日、チャネル、時間帯のデーク項目を抽出しRAM7に書き込む。図2に示すように、各番組データは各番組を特定するための番号である番組1Dが付加された協定バイト数のデータ構造内に保持する。

6

【0018】 棚出したEPG情報内のデータ項目は後述の仮想の次元立体に投影(以下、マッピング)する番組表を決定するために必要なデータであり、全ての番組分のデータをメモリに持つことにより、分配回路2よりFPGデータを受ける必要がなく、あらゆる範囲の番組表を高速に作成することができる。また、他の番組情報にくらべ多くのバイト数を必要とする番組説明文質は保持しないため、抽出した番組データには比較的少ないメモリ容量しか必要としない。

【0019】本実施例では必要なデータ項目を送信されるEPG情報内の全番和分について抽出するが、予め指定されたカテゴリ、チャネル或いは放送目に属する番組分について抽出しても良い。この場合、番組表の範囲は限定されるが、EPG情報を保持するためのメモリ容量はさらに少なくできる。

【0020】CPU5では、入力端子6よりユーザーの 採作情報を受け、ユーザが両面上で指示している座標。 両面モード等を決定する、この後、CPU5は仮想3次 元立体、表示すべき番組情報の構成を計算する。

【0021】ここでは、番組表を表示する画面として図 3のようなGUIを考える。各円柱の側面部には1日分 の番組表が描かれている。画面より遠くの円柱はど現在 日より遠い未来の目になり、7日分の円柱が配置されて いるものとする。

【0022】 円柱の回転方向には24時間の時間軸、円柱の垂直方向にはチャネル軸が対応しており、各番組名は該当チャネルの放送時間帯部分に表示される。円柱側面に表示されるチャネルの範囲は番組ガイド情報内の一部であり、ユーツ操作情報に基づき円柱側面内で縦方面にスクロールする。また別のユーザ操作により円柱軸を中心として側面の番組表が回転することにより24時間すべての番組を連続的に確認することが可能である。

【0023】本GUIでは、遠遠法を用いて各円社を描画しており、ユーザ操作情報により円柱が奥。「前方向にスライドする。このGUIにより、ユーザが往視している日付の円柱をより大きく表示し、それ以外の情報は 30 小さく表示したり両面外に出すことで、注目している情 10

報をより強調することができる。

【0024】上記番組ガイド画面を描画するための処理を以下説明する。CPUのは入力端子6からの操作情報を指視しながら、四柱位置、四柱側面の番組表のチャネル軸、時間軸の可視範囲を決定する。

【0025】仮想多次定復制内の円柱は、図4のように ポリゴンと呼ばれる影角形で囲まれた影面体として表現 され、図4に示すように各項点の座標がCPU5によっ て視点座標系と呼ばれる多次元座標系の中で与えられ る。ここでは、各ポリゴンの大会さは等しいものとす る。視点座標系に変換されたポリゴン表面には番組名を 表すテクスチャである番組テクスチャがマッピングされる。

【0026】図4中の100社図2の番組データ例に示すように番組10が0、番組名が「あの町」、放送時間が17:15~18:45、チャネル番号が210、放送目が1996/8/1とする。以下、円柱の名ボリゴンを鉛直方向の番号でと回転方向の日を用いてPh.cとして表す。

【0027】現在、各国社のユーザ側から見える側の範 20 面が15:00~21:00とすると、1D0のマッピ ングされるもの範囲は4~7となる。チャネル210の 番組テクスサャがマッピングされるこの範囲が0からしてあったとすると、「図5に示すように、1996/8/ 1分の円柱のボリゴンと番組テクスチャの対応表である データ列車(h,c)の該当範囲に1D0の番組1D。 のが書き込まれる。各番組テクスチャが対応するボリゴンには複数の番組1Dが書き込みされるように取(h, c)は多次元配列とする。CPU5では、番組データを RAM7に保存する際、各番組データのチャネル番号と 放送時間離、現在の円柱の番組表表示範囲より、p (h,c)を決定し、BAM7に保存する。

【〇〇28】 」記対応表p(h, c)を一度作成した後は、放送すマネル、放送時間常などを逐次比較することなしに各ポリゴンにマッピングされる番組テクスチャを特定で含るため、CPU5の処理量を少なくすることができる。

【0029】また、本実施の形態では対応表 p (h , c) の範囲を、番組表の投影された面をユーザが見ることができるボリゴンの範囲に限定しているため、p (h , c) の設定にかかるC P U 5の処理量を低減している。

【〇〇30】ユーザからの操作情報に基づき番組表を円 行側面上で回転させる時、あるいはチャネル範囲を変更 する場合、CPUらはボリゴンの頂点位置は変化させず 番組テクスチャのマッピング位置を変更し、ボリゴンと 番組テクスチャの対応レ(ロ、c)を更新する。

【()()31】p(h, e)の更新を高速に行うため、図 2に示した各番組デーク内には同放送日、同チャネルの 番組データの中で放送時間帯がその番組の前後で最も近 50

い番組データに対してのリンク情報を付加する(時間前方リンク、時間後方リンク)。また、番組表を表示する際、上下最も近いチャネルに関して、同放送日で放送時間が最も近い番組へのリンク情報を持つ。同じチャネルで放送時間が重なる番組へのリンク情報を付加する(チャネル前方リンク、チャネル後方リンク)。番組表の端等、リンク先がない場合はリンク情報はその番組データ自身へのリンクとする。ここでは、各データ情報は分配回路2から取得する際、49バイト単位でRAM7上に格納し、その放送日、チャネル、時間帯を参照してリンク情報とその番組データからリンク先への相対アドレス位置で表すものとする。

8

【0032】上記リンク情報を用いてp(h,c)を奥 新する処理を図6を用いて説明する。現在からの時間動 の変化量、チャネル軸方向の変化量より、まず現在のロ (n. c) 内にある沓組テクスチャについてポリゴンの 対応関係を再計算する。さらに、新たにポリゴンとの対 応関係が生じる番組テクスチャに関しては、図ものよう に、新しいp'(h, c)内でスクロールする側にある **滑組データよりリンク先を探索する、リンク先の潜組テ** クスチャを再起的に検査し、p (h, c)内に入る可能 性のあるすべてのリンク先を探索する。現在検査してい る番組データが既にp'(h,c)の範囲外に有る場 合, さらにp゜(h, c) から離れる方向へのリンク先 はそれ以上疾亡する必要がない。この条件を利用し、 p'(h, c)に入る可能性のあるすべての番組テクス チャを検査したら、p(h,c)の変更を終了する。な お、更新後p(h, c)内に対応する番組テクスチャが **存在しない場合,更新前のp(h, c)にあった番組テ** クスチャからのリンク情報をもとに次のp(h, c)に 対応する候補番組テクスチャと探索する。

【①033】一般に、スクロール時には、多くの番組データは再度p(n,c)内に存在するため、リンク情報に基づく番組データの探索は小さな範囲で済む。このため、各ポリゴンと番組テクスチャの対応は高速に変更することができる。また上記方法は、ポリゴンを移動し、円柱の回転を表現する時のように、処理量の多い3次元40項点位置変換を大量に行うことはないため、CPU5の処理量を削減することができる。

【0034】ボリゴンで構成された門柱の各項点は到7に示すように視点座標系(x,y,元)からスクリーン 産標系(x',y',元')へと誘視変換される。スクリーン座標の(x',y')は実際にユーザが見ること ができる番組ガイド面の座標に対応する。元'は各項点 の負行さを表するの逆数である。

【①①35】CPU5では、ユーザ操作情報により円柱のスライドが生じた場合。各項点の多次元位置を変更し、各項点の透視変換と各項点における法線ベクトル部

算を行う.

【0036】C。PU与で作成されたEPGデータおよび、ボリゴンに関するデークはそれぞれ、ボリゴン単位でCGレングリング回路8に転送され、最終的なレングリングが行われる。

9

【0037】CPU5よりCPU1/F9を介して、各 ボリゴン頂点のスクリーン座標がラスタライズ回路10 に送られる。ラスタライズ回路10に送られたスクリー ン座標より、スクリーン上に透視変換されたボリゴンの 内部領域に該当するピクセル(西索)が決定される。図 10 8に完すように、ボリゴン内の領域はP1の透視変換後 の点P1、からy方向にスキャンされ、スパンと呼ばれる。 る境界線間のメ方向の線分の集まりとして考えられる。 さらにスパン内をメ方向にスキャンし、ピクセル位置が スパッファ更新回路11に渡される。

【OO38】ルバッファ更新回路 1 1では各ピクセルの カ'の値を求め、グラフィックRAM 1 5のスバッファ 内に招納する。もし、現在のピクセルに関してそれ以前に求めたっ。値が今回求めたっ。値より小さい場合。今回求めたポリゴン内部点の方がスクリーンにより近い場 20所に位置しているため、グラフィックRAM 1 5中のスパッファに現在のえ。値を書き込み、ピクセル対応色を求める収降の処理に進む。もし、以前のえ。値の方が大きい場合、このピクセルに対して、これ以上のレンダリング処理は行わない。

【0039】次に、マッピング回路12において各番組 テクスチャを生成し、ピクセル色を求める。図イに示す ように、CPUちは各ポリゴンのデータをCGレンダリ ング回路8に送る際、ボリゴンと番組テクスチャ対応デ …タp (h, c)を参照し、各ポリゴンに対応する文字 30 列のキャラクタコード及びポリゴン頂点から番組テクス チャへのオフセットをマッピング回路12に転送する。 マッピング回路12では送られてきたキャラクタコード よりフォントROM16のキャラクタデータを読み込 む。さんにCPU5より送られてさたポリゴン頂点と番 親テクスチャのオフセット値より必要なピットマップデ - ・ 夕飢民を計算し、さらにポリゴン内での位置を決定し マッピングする。例えば、図4において、1D0の番組 名は"あの町"であり、CPU5は195,0のレングリン グを指示する際、文字列"あの"のキャラクタコード列。 および"ポリコンド5,0の開始所点へから"あ"の開始 点までのオフセットABをマッピング回路12に与え る。以上の情報よりマッピング回路12はP5,0の名点 におけるテクスチャバターンをフォントROMI6内よ り読み込む。

【0040】本実施例では、仮想3次元立体全てを覆うようなテクスチャデータを保持しないため、テクスチャ川記憶領域をワーク川グラフィックRAM1ちに持つ必要がない。このため、グラフィックRAM1ちのメモリ容量を小さくすることができる。また、CPU5からは 50

番組テクスチャデータではなく文学列を送るため、CP U5とCGレンダリング回路間のデータ転送量は少なく て済む。

10

【0041】マッピング回路12で対応色が決定されたピクセルはシェーディング回路13に送られ、スムーズな陰影処理が施される。シェーディング回路にはCPU5から各ポリゴンの頂点における法線ペクトルが送られ、これらを基に各ピクセルにおける対応色が最終的に決定される。以上計算された各ピクセルの色情報はグラフィックRAM15内にあるフレームバッファ内に書き込まれる。

【0042】上記CGレンダリング回路ではインターレース形式、29、97Hzフレームレートの画像を生成する。画像を生成する際、1/(29、97×2)移以内に全てのポリゴンについて上記レンダリング処理を行い、データ項目画像を生成する。各データ項目画像はグラフィックRAM15内のフレームバッファ内に書き込まれ、ディスプレイエ/F17を介してOSD合成回路18に送られた後、MPEGー2のデコード画面に合成されて出力端子20より出力される。

【〇〇43】出力端子2〇より出力された画像をディスプレイで確認し、ユーザは番組表を回転、スクロール、あるいは日付別門柱をスライドさせることにより番組名をチェックする。興味のある番組をさらに詳細に確かめるためには、ボインタを興味ある番組テクスチャの上部に移動させ、選択ボタンにより番組を選択する。本実施の形態では、番組筐状処理をマッピング回路12において行う。図9を用いてこの処理を説明する。

【0044】CPU5は選択ボタン信号を受け取ると、 1 データ項目分の両像レンダリング間房時にCPUI/ **ドリを介して、マッピング回路12中のテクスチャ処型** 部21に番組選択の指示を送る。さらにスクリーン上の ボインク位置をボインタ位置バッファメモリ24に送。 り、さらに各ポリゴンにマッピングする番組デクスチャ 情報を送る際、番組テクスチャに対応する番組1Dもデ クスチャ処理部21に送る。テクスチャ処理部21は番 **和選択指示を受けた場合,テクスチャ対応番組 L D バッ** ファメモリ26を『該当番組なし』を表す番号NPによ って初期化する。さらに、各ピクセルのマッピング処理 を行う際、テクスチャバッファメモリ22に現在参照中 の番組テクスチャの番組1Dをバッファメモリ23に書 **き込む。もし、現在、マッピング処理を行っているピク** セルのスクリーン上の位置とバッファメモリ24内のボ インタ位置が比較回路25で一致した場合。比較回路2 5はテクスチャ番組1Dバッファメモリ23から選択群 組工Dバッファメモリ26への書き込み許可を出し、デ クスチャ対応番組1Dバッファメモリ23はバッファメ モリ内の番組1Dを選択番組1Dバッファメモリ26に 済る.

【10045】以上の処理を全てのポリゴンに関して行っ

た時、最後に選択番組1りバッファスモリ26に保持された番組1りがポインタの指示した番組としてCPU1/ドリを介してCPU5に転送される。ポインタ位置に対論する番組テクスチャがない場合。CPU5は番号NPを検出する。以上の手段により、番組選択処理は常に1フレームの表示期間0.034秒で処理でき、常に高速にユーザの番組選択情報に応答する事ができる。

【0046】CPU5はCPU1/F9より選択番組1 Dを受けた場合、番組所認分などの詳細表示用データを 分配同路2から抽出し、別途表示する。

【0047】次に本発明における第2の実施の形態を図 面を用いて説明する。第2の実施の形態の構成は第1の 実施の形態とはは同様で、本実施の形態において第1の 実施の形態と同じ機能を持つブロックに関しては図1と 同じ番号を使用し、説明を省略する。

【〇〇48】第1の実施の形態同様、CPU5において 器組テクスチャを生成するために必要なEPGデータを 抽出し、RAM7に保持する、RAM7に保持されるデータはM2の番組データから番組名を除いたデータ構造 を持つ。各番組1日に対応する番組名は分配回路2より データを受け取った時点でCGレングリング回路のに転 送する。CGレングリング回路のは番組名データを受け 取り、M10に示すようにグラフィックRAM15内の 番組名データ領域に書き込む。番組名データ領域のデー タは番組1日順に並んだ30バイトの固定長の配列に保 持され、番組1日によりアドレス位置を参照できる。こ の転送はEPGデータを更新するときにのみ行い、EP Gの保有時間内には生じない。

【① 0 4 9】 CP U 5 はユーザからの操作情報に基づいて仮想 3 次元立体の名前点をスクリーン座標系で求め、透視交換したのち、各ポリゴン単位で頂点に関するデータとそのポリゴンに対応する番組テクスチャの情報には、該当ポリゴンのII 6 かから番組テクスチャへのオフセット情報と番組 1 D が含まれる、番組 1 D を受けたマッピング回路 1 2 はグラフィック II A M 1 5 内に保持した番組名データ領域のベースアドレスと番組 1 D で決定されるアドレスより文字列を読みとり、上記番組テクスチャの文字パターンを決定する。この方法では、第 1 の実施形態のように、番組データ中の番組名を逐次転送することがないので、CP U 5 からCP U 1 / F 9 へのデータ転送量を削減することができる。

【0050】次に不発明における第3の実施の形態を図 面を用いて認明する。第3の実施の形態の構成は不発明 の第1の実施の形態の構成と同様であり、図1に示す通 りである。

【0051】第3の実施の形態では、BAM7に保存する番組データが対11のような固定データ項目を持つ構造となる。番組データ構造のうちカデゴリのデータ項目、にはその番組の属するカテゴリコードが保持される。カ 50

12 テゴリコードはEPGの規格として予め決められてお り、放送時に各番組に与えれているものとする。 【0052】今、すでに全番和データが分配回路2から 送られ、図11に示す番組データが抽出されていた時 に、人力端子もより、CPU5にカテゴリ別選択情報が 送られ、選択カテゴリとして「スポーツ」が指定された とする。CPU5は現在の番組データ間のリンク情報よ り、「スポーツ」のカテゴリコードを持つ番組データ間 についてのみリンクを作成する。該当カテゴリの番組デ 10 一夕に関しては、それ以前とそれ以降の同放送日、同チ マネル、同カテゴリの番組データの中で放送時間帯が最 も近い前後2つの番組データに対してのリンク情報を書 **き込む。また、同放送口、間カテゴリで放送時間が最も** 近く、番組表中の前後チャネルにある番組へのリンク情 報を書き込む。放送時間帯が重なる番組が同サセネル内 に複数有る場合は最も放送時間が長く事なる番組ヘリン クを生成する。リンク先がない場合、リンク情報はその 番組学 - ク自身へのリンク情報とする。該当カテゴリで ない番組データのリンク情報は全てリンク情報なしを意 **味するNHLLコードを入れる。また、ここでは、時間** 軸両端の各データ情報は51パイト単位でRAM7上で 格納され、各番組データのリンク情報はその番組データ からリンク先への相対アドレス位置で表すものとする。 格納されている番組データを順番に検査し、閉接番組デ ータへのリンク情報を更新することにより、最終的に7 日分の番和データリンクが特定カテゴリについてのみ形 成される。このリンク情報を用いてポリゴンと番組デー タの対応表であるい(h、c)を構築する。第1の実施 の形態同様にCGレンダリング回路にポリゴン単位でレ ングリングの指示を出すことにより、該当カテゴリの番 組のみを円柱側面の番組表として表示することができ る。他のカテゴリを指定された場合も、初たに番組情報 間のデータリンクおよびゃくロ、c)を形成し直すこと で番組ガイドの画面を変更することができる。以上の実 施形態により、番組データのリンク構造を変更するのみ で、他の処理を変更せずにカテゴリ別選択の帯組ガイド 両面を作成することができる。したがって、プログラム サイズを少なくすることができ、メモリ容量の低級に有 利である。本実施の形態では、リンク情報を選択カテゴ りに該当する番組データに限定したが、予め選択された 40 チャネルに属する番組データに限定することにより。ユ …ザが興味ある潜組のみの番組デクスチャをマッピング することが可能であるのは言うまでもない。

[0053]

【発明の効果】本発明の多次元表示番組ガイド発生装置では、高速底谷を必要とされる画面に必要な情報のみを膨大なEPGデータの中から抽出、保存することで、必要とするメモリ容量を低減した高速な番組ガイドを生成することができる。

【0054】仮想3次元立体を表現するためのポリゴン

)

と活組名を表示する番組テクスチャとの対応関係。さら に各審組情報のリンク情報を備えたことで、高速に番組 表を構築することが可能である。

13

【〇〇55】テクスチャデータのマッピング処理を利用して、ポインタの指示位置に対応する番組を検出するため、ユーザ操作情報に常に高速に応答して選択番組を検出できる。

【中海面の簡単な説明】

【F41】木発明の第1の実施形態に係る装置の構成図で わる。

【図2】 監視データの構造およびリンク情報を表す図である。

【同3】3次元表示された番組ガイドの概略図である。

[四4] 仮想3次元立体の各ポリゴンと番組テクスチャの対応を説明するための図である。

【国5】ポリゴンと番組テクスチャの対応表を表す図である。

【図6】ポリゴンと番組テクスチャの対応関係の更新を 大す例である。

11回71 視点座標からスクリーン座標への透視変換を表 20 寸図である。

【図8】 ピクセルのレンダリング順序を説明するための 国である。

> 【図1】 ध्या । 19 ል NAPPET Audio DEVENT MPEG-2 Video OSD合政 以外性包 (3),21 FPGMI CPU RAM 17AFH200 レンダリング科路 CIUM THE 31-7 177 | TISI' VI' 77ピング 11 HAM UF アスタライズ フィントFIOM フレールバッファ 10 (/20,480 42:0) ジー・クルメモリ グラフィックRAM

【図9】 ボインタで指定された番組を選択する回路を説明するための例である。。

11

【図10】本党明第2の実施の形態におけるメモリ内の 使用領域を表す図である。

【図11】本発明第3の実施の形態における番組データの構造を示す例である。

【図12】従来例の番組ガイドメニュー発生装置を説明 する例である。

【特号の説明】

10 1…時分割多重信号入力場子、2…分配装置、3…オーディオデコーダ、4…ビデオデコーダ、5…CPU、6 …ユーザ操作情報人力端子、7…RAM、8…CGレンダリング回路、9…CPUI /F、10…ラスタライズ回路、11…々バッファ更新回路、12…マッピング回路、13…シェーディング回路、14…RAMI/F、15…グラフィックRAM、16…フォントROM、17…ディスプレイI/F、18…OSD合成回路、19 …ディジタル高声信号出力端子、20…ディジタル映像信号出力端子、21…テクスチャ処理部、22…ボリゴン川テクスチャバッファ、23…テクスチャ対応番組1Dバッファメモリ、25…位置比較器、26…運択番組IDバッファメモリ、25…位置比較器、26…運択番組IDバッファメモリ

【图2】

凶2

(9)

BILLER

2013

超四分

図4

3 4 5, 6 7 8

[[2] 1 1]

2011

基例データ

ch210の新田

2bylu
306yta
abyto
2byte
4byto
2byte
Phyto
20yla
2010
SpAta:

化门纸印

[145]

DX 5

[[36]

1216

[[] 7]

过7

【图9】。

【図12】

划12

【図10】

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS		
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES		
☐ FADED TEXT OR DRAWING	<u> </u>	
BLURRED OR ILLEGIBLE TEXT OR DRAWING	•	
☐ SKEWED/SLANTED IMAGES		
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS		
GRAY SCALE DOCUMENTS		
\square LINES OR MARKS ON ORIGINAL DOCUMENT		
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE P	OOR QUALIT	ГY
Потнер		

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.