TP1: Lenguaje imperativo simple

Grillo, Libonati, Maiza

16/09/24

EJERCICIO 1

Sintaxis abstracta

$$\begin{array}{c} \mathrm{intexp} ::= \dots \\ \mid \mathrm{intexp} + + \\ \mid \mathrm{intexp} - \end{array}$$

Sintaxis concreta

EJERCICIO 4

$$\frac{x \in dom \ \sigma}{\langle x++,\sigma\rangle \Downarrow_{exp} \langle \ \sigma \ x+1, [\sigma \mid x: \ \sigma \ x+1] \rangle} \ VARINC$$

$$x \in dom \ \sigma$$

$$\frac{x \in dom \ \sigma}{\langle x - -, \sigma \rangle \Downarrow_{exp} \langle \ \sigma \ x - 1, [\sigma \mid x : \ \sigma \ x - 1] \rangle} \ VARDEC$$

EJERCICIO 5

Queremos ver que si $t \rightsquigarrow t'$ y $t \rightsquigarrow t''$, entonces t' = t''. Para ello haremos inducción sobre la derivación $t \rightsquigarrow t'$.

HI) para toda subderivación de $t \rightsquigarrow t'$ se verifica dicha propiedad.

Si la última derivación de $t \rightsquigarrow t'$ usa la regla:

- ASS: Tenemos que t tiene la forma $\langle v=e,\sigma\rangle$ y t' tiene la forma $\langle skip, [\sigma'\mid v:n]\rangle$. Por la forma de t, en la derivación $t\leadsto t''$ la última regla aplicada solo puede haber sido ASS, ya que no hay otra regla donde t pueda ser una asignación. Luego, como ψ_{exp} es determinista, resulta t'=t''.
- SEQ_1 : Tenemos que t tiene la forma $\langle skip; c_1, \sigma \rangle$ y t' tiene la forma $\langle c_1, \sigma \rangle$. Por la forma de t, en la derivación $t \rightsquigarrow t''$ la última regla aplicada solo puede haber sido SEQ_1 , ya que no hay otra regla donde t pueda ser una secuenciación con un skip. Luego, t' = t''.
- SEQ_2 : Tenemos que t tiene la forma $\langle c_0; c_1, \sigma \rangle$ y t' tiene la forma $\langle c'_0; c_1, \sigma' \rangle$. Por la forma de t, la última derivación en $t \leadsto t''$ debe ser aplicando la regla SEQ_2 , donde la forma de t' es $\langle c''_0; c_1, \sigma'' \rangle$. Nuestra HI es que si $\langle c_0, \sigma \rangle \leadsto \langle c'_0, \sigma' \rangle$ y $\langle c_0, \sigma \rangle \leadsto \langle c''_0, \sigma'' \rangle$, entonces $\langle c'_0, \sigma' \rangle = \langle c''_0, \sigma'' \rangle$. Luego por HI, $t' = \langle c'_0; c_1, \sigma' \rangle = \langle c''_0; c_1, \sigma'' \rangle = t''$
- IF_1 : Tenemos que t tiene la forma $\langle \mathbf{if} \ b \ \mathbf{then} \ c_0 \ \mathbf{else} \ c_1, \sigma \rangle \ \mathbf{y} \ \mathbf{t}'$ tiene la forma $\langle c_0, \sigma' \rangle$. Por la forma de t, la última regla aplicada en la derivación $t \rightsquigarrow t''$ debe ser IF_1 , ya que, como \Downarrow_{exp} es determinista, $\langle b, \sigma' \rangle \Downarrow_{exp} \langle true, \sigma' \rangle$. Por lo tanto, debe ser t' = t''.

- IF_2 : Tenemos que t tiene la forma $\langle \mathbf{if} \ b \ \mathbf{then} \ c_0 \ \mathbf{else} \ c_1, \sigma \rangle$ y t' tiene la forma $\langle c_1, \sigma' \rangle$. Por la forma de t, la última regla aplicada en la derivación $t \rightsquigarrow t''$ debe ser IF_2 , ya que, como \downarrow_{exp} es determinista, $\langle b, \sigma' \rangle \downarrow_{exp} \langle false, \sigma' \rangle$. Por lo tanto, debe ser t' = t''.
- REPEAT: Tenemos que t tiene la forma $\langle \mathbf{repeat}\ c\ \mathbf{until}\ b\ , \sigma \rangle\ y\ t'$ tiene la forma $\langle c; \mathbf{if}\ b\ \mathbf{then}\ skip\ \mathbf{else}\ \mathbf{repeat}\ c\ \mathbf{until}\ b\ , \sigma \rangle$. Por la forma de t, la última regla aplicada en la derivación $t\leadsto t''$ debe ser REPEAT, y por ende t'=t''.

Hemos probado que para cada posible regla aplicada en la derivación $t \rightsquigarrow t'$ se verifica lo planteado, con lo cual queda probado que si $t \rightsquigarrow t'$ y $t \rightsquigarrow t''$, entonces t' = t'', esto es, la relación de evaluación en un paso \rightsquigarrow es determinista.

EJERCICIO 6

Construiremos los árboles de derivación de cada programa utilizando las siguientes reglas de inferencia para la relación \leadsto^* :

$$\frac{t \leadsto t'}{t \leadsto^* t'} RT_1 \qquad \overline{t \leadsto^* t} RT_2 \qquad \frac{t \leadsto^* t'}{t \leadsto^* t''} RT_3$$

Para el programa a) tenemos el siguiente árbol:

$$\frac{x \in dom \ \sigma}{\langle x, \sigma \rangle \ \psi_{exp} \ \langle \sigma x, \sigma \rangle} \ \text{VAR} \ \frac{\langle 1, \sigma \rangle \ \psi_{exp} \ \langle 1, \sigma \rangle}{\langle 1, \sigma \rangle \ \psi_{exp} \ \langle 1, \sigma \rangle} \ \text{PLUS} \\ \frac{\langle x + 1, \sigma \rangle \ \psi_{exp} \ \langle \sigma x + 1, \sigma \rangle}{\langle x + 1, \sigma \rangle \ \psi_{exp} \ \langle \sigma x + 1, \sigma \rangle} \ \text{ASS} \\ \frac{\langle x = x + 1, \sigma \rangle \ \omega \ \langle skip, |\sigma| \ |x: \sigma x + 1| \rangle}{\langle x = x + 1; y = x, \sigma \rangle \ \omega \ \langle skip, y = x, |\sigma| \ |x: \sigma x + 1| \rangle} \ \text{ASS} \\ \frac{\langle skip, y = x, |\sigma| \ |x: \sigma x + 1| \rangle \ \omega \ \langle y = x, |\sigma| \ |x: \sigma x + 1| \rangle}{\langle skip, y = x, |\sigma| \ |x: \sigma x + 1| \rangle} \ \text{ASS} \\ \frac{\langle skip, y = x, |\sigma| \ |x: \sigma x + 1| \rangle \ \omega \ \langle y = x, |\sigma| \ |x: \sigma x + 1| \rangle}{\langle skip, y = x, |\sigma| \ |x: \sigma x + 1| \rangle} \ \text{ASS} \\ \frac{\langle x = x + 1; y = x, \sigma \rangle \ \omega^* \ \langle skip, y = x, |\sigma| \ |x: \sigma x + 1| \rangle}{\langle x = x + 1; y = x, \sigma \rangle \ \omega^* \ \langle skip, |\sigma| \ |x: \sigma x + 1| \rangle} \ \text{ASS} \\ \frac{\langle y = x, |\sigma| \ |x: \sigma x + 1| \rangle \ \psi_{exp} \ \langle \sigma x, |\sigma| \ |x: \sigma x + 1| \rangle}{\langle y = x, |\sigma| \ |x: \sigma x + 1| \rangle} \ \text{ASS} \\ \frac{\langle y = x, |\sigma| \ |x: \sigma x + 1| \rangle}{\langle y = x, |\sigma| \ |x: \sigma x + 1| \rangle} \ \text{ASS} \\ \frac{\langle y = x, |\sigma| \ |x: \sigma x + 1| \rangle \ \omega^* \ \langle skip, |\sigma| \ |x: \sigma x + 1, y: \sigma x + 1| \rangle}{\langle y = x, |\sigma| \ |x: \sigma x + 1| \rangle} \ \text{ASS} \\ \frac{\langle y = x, |\sigma| \ |x: \sigma x + 1| \rangle}{\langle y = x, |\sigma| \ |x: \sigma x + 1| \rangle} \ \text{ASS} \\ \frac{\langle y = x, |\sigma| \ |x: \sigma x + 1| \rangle}{\langle y = x, |\sigma| \ |x: \sigma x + 1| \rangle} \ \text{ASS} \\ \frac{\langle x = x + 1; y = x, \sigma \rangle \ \omega^* \ \langle skip, |\sigma| \ |x: \sigma x + 1, y: \sigma x + 1| \rangle}{\langle x = x + 1; y = x, \sigma \rangle \ \omega^* \ \langle skip, |\sigma| \ |x: \sigma x + 1, y: \sigma x + 1| \rangle} \ \text{ASS} \\ \frac{\langle x = x + 1; y = x, \sigma \rangle \ \omega^* \ \langle skip, |\sigma| \ |x: \sigma x + 1, y: \sigma x + 1| \rangle}{\langle x = x + 1; y = x, \sigma \rangle \ \omega^* \ \langle skip, |\sigma| \ |x: \sigma x + 1, y: \sigma x + 1| \rangle} \ \text{ASS} \\ \frac{\langle x = x + 1; y = x, \sigma \rangle \ \omega^* \ \langle skip, |\sigma| \ |x: \sigma x + 1, y: \sigma x + 1| \rangle}{\langle x = x + 1; y = x, \sigma \rangle \ \omega^* \ \langle skip, |\sigma| \ |x: \sigma x + 1, y: \sigma x + 1| \rangle} \ \text{ASS} \\ \frac{\langle x = x + 1; y = x, \sigma \rangle \ \omega^* \ \langle skip, |\sigma| \ |x: \sigma x + 1, y: \sigma x + 1| \rangle}{\langle x = x + 1; y = x, \sigma \rangle \ \omega^* \ \langle skip, |\sigma| \ |x: \sigma x + 1, y: \sigma x + 1| \rangle} \ \langle x = x + 1; y = x, \sigma \rangle \ \omega^* \ \langle skip, |\sigma| \ |x: \sigma x + 1, y: \sigma x + 1| \rangle} \ \text{ASS}$$

Y para el programa b) tenemos:

$$\frac{x \in dom \ \sigma}{\langle x++,\sigma \rangle \Downarrow_{exp} \langle \sigma x+1, [\sigma \mid x : \sigma x+1] \rangle} \text{ VARINC}$$

$$\frac{\langle y=x++,\sigma \rangle \leadsto \langle skip, [\sigma \mid x : \sigma x+1, y : \sigma x+1] \rangle}{\langle y=x++,\sigma \rangle \leadsto^* \langle skip, [\sigma \mid x : \sigma x+1, y : \sigma x+1] \rangle} RT_1$$

Luego, tenemos que $\forall \sigma \in \Sigma$, $\langle x = x + 1; y = x, \sigma \rangle \leadsto^* \langle skip, \sigma' \rangle$ sii $\langle y = x + +, \sigma \rangle \leadsto^* \langle skip, \sigma' \rangle$

Por lo tanto, los programas con semánticamente equivalentes.