

# Introduction to Machine Learning

Raphael Cóbe

raphaelmcobe@gmail.com



#### Links and References

- □ Book: Artificial Intelligence: A Modern Approach
- □ Book: An Introduction to Machine Learning
- □ Book: Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2
- □ Machine Learning Tutorial
- Machine Learning Tutorial 2
- ☐ Video Tutorial: Supervised vs. Unsupervised Learning

#### **Definitions**

- ☐ Science (or art) of computer programming so that they can **learn from data**;
- □ "Field of study that gives computers the ability to learn without being explicitly programmed". Arthur Samuel, 1959
- ☐ A deterministic algorithm has clear rules to return results according to the provided input.
- ☐ If the input can vary widely, this set of rules will be very large, making the execution time unfeasible.

#### "Traditional" Programming (Rule-Based Systems)

- □ Dynamic nature of problems requires constant redefinition of rules
- □ Email SPAM detection system
  - E.g., a machine learning-based spam filter is capable of using various criteria for such classification
    - O Characterization of a SPAM can be dynamically adapted according to user markings
    - Spammers identify that rules do not detect numbers and change "Two" to 2



#### "Traditional" Programming (Rule-Based Systems)

- □ Dynamic nature of problems requires constant redefinition of rules
- □ Email SPAM detection system
  - E.g., a machine learning-based spam filter is capable of using various criteria for such classification
    - O Characterization of a SPAM can be dynamically adapted according to user markings
    - Spammers identify that rules do not detect numbers and change "Two" to 2



■ Every small change will require rule adaptation.

- □ Fundamentally involves building mathematical models to help understand data
  - Arbitrarily complex functions
- □ Parameter adjustments
  - Allows models to be adapted to observed data
- ☐ Thus, such models can be used to predict and understand aspects of unknown data



#### **Utilization of Machine Learning**

- ☐ Algorithms can be improved based on result analysis;
- Application of techniques to evaluate large amounts of data
  - Discovering patterns that were not apparent
- ☐ Used as an iterative process, seeking solutions from data, and optimizing the use of data and algorithms
- ☐ This process can be automated to some extent;

#### **Development Cycle**



#### **Statistical Learning**

- $\square$  Until the 1990s, it was a problem of estimating a function from a given data collection;
- □ With the development of new analysis techniques in the 1990s (e.g., *Support Vector Machines*)
  - Not only a tool for theoretical analysis
  - Tool for creating practical algorithms to estimate functions with inputs in N-Dimensions;



#### How to estimate the function f?

- ☐ The statistical process starts from a set of known events
  - Training set
- $\square$  Each event has one or more predictor variable values  $\mathcal{X}:X_1,X_2,...,X_n$  and an output value  $\mathcal{Y}$
- $\square$  Evaluation of function f performance
- $\square$  Distance between the predicted value and the observed value arepsilon
- $\square$  Use *statistical learning* on the training set to estimate function f;
  - Find a function  $\hat{f}$  such that  $\mathcal{Y} \approx \hat{f}(\mathcal{X})$  for any observation  $(\mathcal{X},\mathcal{Y})$

#### Why estimate the function f?

- $\square$  Prediction: estimate the value of an output variable  ${\mathcal Y}$  from one or more input variable values  ${\mathcal X}$ 
  - Taking into account future data (i.e., unseen by the model for which we do not know the value  $\mathcal{Y}$ )
- □ Inference: understand the relationship between each variable  $\mathcal{X}$  and variable  $\mathcal{Y}$  how changes in  $X_1,...,X_n$  affect the value of  $\mathcal{Y}$ 
  - Which predictors are associated with the response?
  - What is the relationship between the response and each predictor?

#### **Elementary Categories of Machine Learning Algorithms**

- Supervised
  - Classification
  - Regression
- Unsupervised
  - Clustering
  - Dimensionality Reduction
- Semi-Supervised
  - Generative Models



Supervised Learning

#### **Supervised Learning**

- Involves modeling the relationship between data's characteristic measures and some associated data label
- □ The determined model can be used to apply labels to new data
- □ Types of supervised algorithms
  - Classification: labels are discrete categories
  - Example of spam filter: Emails are marked as spam or non-spam. Model classifies new emails
  - Regression: labels are continuous quantities
  - Example: predicting the price of a car considering a set of predictor variables (mileage, age, brand)

#### **Supervised Learning (cont.)**

- □ Given a training set with N examples of input-output pairs  $(\mathcal{X}_1, y_1), (\mathcal{X}_2, y_2), \dots, (\mathcal{X}_N, y_N)$ 
  - Each  $y_i$  is generated by an unknown function y = f(x);
- $\Box$  The function  $\hat{f}$  is called a hypothesis;
- Learning is a search in the space of possible hypotheses that will have good performance, even on new examples beyond the training set;
- ☐ To measure the **accuracy of a hypothesis**, we provide a set of **test examples** that are **distinct from the training set** 
  - A hypothesis generalizes well if it predicts the y value correctly for new examples
- $\ \square \ f$  can be stochastic not strictly a function of  ${\mathcal X}$ 
  - Learning the conditional probability distribution,  $P(\mathcal{Y}|\mathcal{X})$ .

#### **Supervised Learning (cont.)**

- $\square$  Hypothesis space  ${\cal H}$
- ☐ A consistent hypothesis agrees with all the data;



How can we choose between various consistent hypotheses?

#### **Supervised Learning (cont.)**

- $\square$  Hypothesis space  ${\cal H}$
- ☐ A consistent hypothesis agrees with all the data;



- ☐ How can we choose between various consistent hypotheses?
- □ Ockham's razor

#### **Supervised Learning (cont.)**

- ☐ Choosing the hypothesis space:
- $\ \square$  Polynomial in  $\mathcal X$  vs  $sin(\mathcal X)$



#### **Supervised Learning (cont.)**

☐ In the case of classification:



#### Classification vs Regression

- ☐ In a nutshell:
  - Classification is the task of predicting a discrete class label.
  - Regression is the task of predicting a continuous quantity.
- ☐ There's some overlap between classification and regression algorithms; for example:
- A classification algorithm can predict a continuous value, but the continuous value is in the form of a probability for a class label.
- A regression algorithm can predict a discrete value, but the discrete value in the form of an integer quantity.

#### Classification vs Regression (cont.)

- □ Some algorithms can be used for both with slight modifications
  - Decision trees and artificial neural networks;
- ☐ How we evaluate classification and regression predictions vary and do not overlap
  - Classification predictions can be evaluated using accuracy, while regression predictions cannot.
- Regression predictions can be evaluated using root mean squared error (RMSE), while classification predictions cannot.

#### **Key Characteristics**

- ☐ For any problem to be investigated as Machine Learning, we have some common characteristics:
  - Samples: rows in the dataset
  - Features: columns in the dataset
  - Feature Matrix: Combination of rows and features
  - Target vector: column to be predicted

#### **Key Characteristics (cont.)**

- Machine Learning algorithms usually require a large amount of data to provide a satisfactory solution
- □ Data needs to be representative concerning the problem being investigated
- □ Consider the influence of categories in relation to the complete dataset
- □ Data Quality:
  - Consider detecting and, if possible, eliminating outliers and noise
  - Discard redundant data
  - They are unnecessary when placed in the context of another attribute
  - E.g., Social class and monthly income
  - Discard irrelevant data
  - They have no relation to the target attribute
  - E.g., Social Security Number and disease

#### **Iterative Machine Learning Design**

- ☐ Define the problem to be tackled with a predictive model
- Organize data according to the defined problem
- □ Define an evaluation metric
- ☐ Split the data into training and testing according to the metric
- ☐ Inspect the solution
- ☐ Propose improvements to the model or data organization

- ☐ The process of organizing data according to the defined model involves the following activities:
  - Exchange categorical or ordinal data for numbers
  - Change the scale of the data
  - Eliminate missing values or replace them with another value
  - Separate predictor variables and target variables
  - Split the dataset into training and testing