

GROUP 5:

- Sumit Verma
- Olabisi Fadahunsi
- Prabhjot Kaur
- Mahesh Reddy Gaddam

AGENDA

- Introduction
- Terminologies
- Project Motivation
- Project Objectives
- Data Description
- Machine Learning Models
- Data Preparation
- Results
- Conclusion

INTRODUCTION

- Car-following model is the study of the interaction between front and rear vehicles in a single lane
 - It focuses on how drivers adjust their speed and position relative to the vehicle in front of them while driving in the same lane.
 - It helps traffic engineers design better traffic control strategies, such as optimizing traffic signal timings, implementing speed limits, and improving lane management.

FOLLOWING VEHICLE

SUBJECT VEHICLE

SUBJECT VEHICLE

SUBJECT VEHICLE

SUBJECT VEHICLE

PROJECT MOTIVATION

- Improve traffic flow patterns and improve safety on roads and highways
- Reduce congestion in cities

PROJECT OBJECTIVES

- Leverage the principles of motion to forecast the speed and intervehicle distance in the next time frame
- Perform comparative analysis of the predictions generated by the three machine learning models

DATA DESCRIPTION

18
columns

1 N

DIFFERENT TIME ZONE

LOCATION 180

Next Generation Simulation (NGSIM) Open Data https://datahub.transportation.gov/stories/s/Next-Generation-Simulation-NGSIM-Open-Data/i5zb-xe34/

DATA DESCRIPTION

Interstate-80

45 Min Data

using **7** Cameras

MACHINE LEARNING MODELS

Regression and classification

EQUATIONS OF MOTION

$$v = u + at$$

$$s = ut + \frac{1}{2}at^{2}$$

$$v^{2} = u^{2} + 2as$$

$$s = \frac{1}{2}(u + v)t$$

Where v = final speed

u = initial speed

a= acceleration

t = time at any moment during motion

DATA PREPARATION

DATA PREPARATION

COMPARISON BETWEEN MODELS

MODEL NAME	KNN	RF	SVM
Time to fit	35 s	180s	2hr
Split of data(train/test)	80/20	80/20	80/20
Loading the model	0.2 s	5 s	1 5s
Train/Test pairs	1024/257	1024/257	1024/257
Time taken(pairs reaction)	9 min	25 min	65 min
Test set completion	58 min	225 min	900 min

ACCELERATION RESULTS – Reaction time (0.5s)

ACCELERATION RESULTS – Reaction time (1s)

SPEED RESULTS – Reaction time (0.5s)

SPEED RESULTS – Reaction time (1s)

SPACE GAP RESULTS – Reaction time (0.5s)

SPACE GAP RESULTS – Reaction time (1s)

COMPARISON BETWEEN MODELS

COMPARISON BETWEEN MODELS

CONCLUSION

- RF outperformed KNN and SVM in predictive accuracy.
- Improved prediction of velocity and spacing with all three models for reaction time (0.5/1sec).
- The best overall prediction among all three models was achieved with RF, particularly when the reaction time was 0.5 seconds.

FUTURE WORK AND RESEARCH

• Ensemble models: Future research should explore the use of ensemble techniques, such as combining KNN/SVM with other models, to leverage their respective strengths and achieve even better prediction results.

#