研究進捗発表 2018年9月

LDAを用いたAmazonのレビュー データのデータマイニング

B8EM1016 富田優(とみたゆう)

アウトライン

- * ①はじめに
- * ②前回のおさらい
- * ③使用したデータ
- * ④モデル適用の結果
- * 5 考察

はじめに

- * 発表者:富田優
- * 所属:経済学研究科1年
- * 指導教員:石垣先生
- * POSデータやレビューデータの分析をといったマーケティング・リ サーチの分野に進む予定
- * 興味ある分野:統計学、ベイズ統計、機械学習
- ○今日発表する内容 5月に紹介した「トピックモデルを用いた商品の評判要因分析に 関する検討」という論文をもとに進めている研究の発表

前回のおさらい①

項目選択方式

- ○メリット
- * モニターの負担が軽い
- ○デメリット
- * 事前に項目を決める必要
- * サンプル数が必要
- * 人的労力と金銭的費用が大

自由記述方式

- ○メリット
- * 事前に想定できなかった評判要因を知られる
- ○デメリット
- * モニターの負担が重い
- * 解析に労力が必要
- * 多変量解析などの統計的解析 手法が使いにくい

前回のおさらい2

ECサイト上のユーザーレビュー

楽天トラベルのサイト

○メリット

- * 容易に多くのデータを収集可能
- * 統計処理しやすい評点情報
- * 自由記述であるレビュー情報

前回のおさらい③~トピックモデル~

パラメータΦが与えられたときの文書 集合Wの確率は以下の通り

$$p(\boldsymbol{w}|\boldsymbol{\theta_d}, \boldsymbol{\Phi})$$

$$= \prod_{n=1}^{N_d} \prod_{k=1}^K p(z_{dn} = k | \theta_d) p(w_{dn} | \Phi_k)$$

 $\prod_{n=1}^{N_d} \sum_{k=1}^K \theta_{dk} \, \varphi_{kw_{dn}}$ あとはこの θ_{dk} , $\varphi_{kw_{dn}}$, Kをデータから推定する

W:文書集合

Φ:φ_νのベクトル表示

w_d:文書dの単語集合

Φν:単語νが出現する確率

 N_d ;文書dに含まれる単語数

w_{dn}:文書dのn番目の単語

Φ_{wdn}:文書dのn番目の単語が出る確率

前回のおさらい4

○やりたいこと

レビューデータをもっと有効活用して、消費者の商品に対する判断基準を理解し、さらなる購買につなげたい

○具体的な手法

LDA(トピックモデル)を用いてトピック分布と単語分布を推定

○回帰分析

商品のレーティングを、トピック分布、単語分布、価格、消費者の 属性に回帰する

○どの評判要因がレーティングに影響しているのか分析

実験データ

Amazon.comのレビューデータ					
分類	Office Products	Musical instruments			
レビュー数	53,258	10,261			
総語彙数	73,104	18,928			

実験データ

	asin	helpful.0	helpful.1	overall	reviewText	reviewTime	reviewerID	reviewerName	summary	unixReviewTime
	<chr></chr>	<db1></db1>	<db1></db1>	<db1></db1>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<db7></db7>
1	B00000JBLH	3	4	5	I bought m∼	09 3, 2004	A32T2H815~	ARH	A soli∼	<u>1</u> 094 <u>169</u> 600
2	B00000JBLH	7	9	5	"WHY THIS \sim	12 15, 20~	$A3MAFS04Z{\sim}$	"Let it Be ~	Price ~	<u>1</u> 197 <u>676</u> 800
3	B00000JBLH	3	3	2	I have an ~	01 1, 2011	${\tt A1F1A0QQP}{\sim}$	Mark B	Good f∼	<u>1</u> 293 <u>840</u> 000
4	B00000JBLH	7	8	5	I've start∼	04 19, 20~	A49R5DBXX~	R. D Johnson	One of~	<u>1</u> 145 <u>404</u> 800
5	B00000JBLH	0	0	5	For simple~	08 4, 2013	$A2XRMQA6P{\sim}$	Roger J. Bu∼	Still ~	<u>1</u> 375 <u>574</u> 400
6	B00000JBLH	10	12	5	While I do∼	01 23, 20~	A2JFOHC9W~	${\sf scott_from_{\sim}}$	Every ~	<u>1</u> 011 <u>744</u> 000
7	B00000JBLH	3	4	5	I've had a∼	01 17, 20~	A38NELQT9~	W. B. Halper	A work~	<u>1</u> 168 <u>992</u> 000
8	B00000JBLH	0	0	5	Bought thi~	11 14, 20~	AA8M6331N~	ZombieMom	Fast s∼	<u>1</u> 384 <u>387</u> 200
9	B00000JBLU	3	3	5	This is a ~	12 7, 2010	$A25C2M3QF{\sim}$	Comdet	Nice d∼	<u>1</u> 291 <u>680</u> 000
_0	B00000JBLU	0	0	5	I love thi~	12 2, 2013	A1RTVWTWZ~	"Hb \"Black~	Love I~	<u>1</u> 385 <u>942</u> 400

モデルの設定

- * サンプリング方法:ギブスサンプリング
- * トピック数の判断基準:パープレキシティ
- * ハイパーパラメータ:α=? β=?
- * サンプリング回数 ?

Perplexity

Perplexityは分岐数または選択肢の数を表している

- * モデルによって単語の候補をどれだけ絞り込めるか
- * より絞り込める方がよい→値が低い方がよい

*
$$L(\mathbf{w^{test}}|\mathbf{M}) = \sum_{d=1}^{M} \sum_{w_{d,i \in w_d^{test}}} \log p(w_{d,i}|\mathbf{M})$$

*
$$PPL(\mathbf{w^{test}}|\mathbf{M}) = exp\left\{-\frac{L(\mathbf{w^{test}}|\mathbf{M})}{\sum_{d=1}^{M} n_d^{test}}\right\}$$

- * w^{test}:テストデータの単語集合
- * M:学習されたモデル
- * Wd,i:ドキュメントdのi番目の単語

パープレキシティ

トピック数	オフィス製品	楽器
2	933849.5	96999.52
3	1004840	100062.7
4	1052383	103362.1
5	1080513	106244.8
6	1105529	108141.5
7	1136654	109806.3
8	1146791	111919.5
9	1162816	112349.6
10	1176841	113067.9

各トピックの単語出現確率の上位20単語:オフィス製品

各トピックの単語出現確率の上位20単語:オフィス製品

各トピックの単語出現確率の上位20単語:楽器

各トピックの単語出現確率の上位20単語:楽器

各トピックの単語出現確率の上位20単語:楽器

考察

- □トピック数が2と考えられる理由
 - 1. データに対して合わないモデル
 - tf-idf, word to vectorも考えられる
 - 2. 前処理が不十分
 - 名詞と形容詞のみでやるべき?
 - 3. その他
- □ Perplexityがモデルの評価に合わない可能性
 - 1. パープレキシティではなく階層ディリクレ過程を用いる
- □極性をみるべきか
- □ノイズ(やらせ)が混入

参考

- 1. Ldaのモデル選択におけるperplexityの評価(東京農工大学工学部情報工学科2年 森尾 学 2016/02/01)
- 2. トピックモデルによる統計的潜在意味解析(奥村2013)
- 3. トピックモデルを用いた商品の評判要因分析に 関する検討(月岡2013et al)