Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа программной инженерии

Отчет по лабораторной работе

Вариант 4. Цифровая фильтрация шумов в среде MATLAB. Фильтр Чебышева

Выполнил студент гр. в 3530904/00321 <подпись > В.Я. Копылов Руководитель <подпись > В.С. Тутыгин

Оглавление

Цель работы	3
Программа работы	4
Результат работы	5
Выводы	7
Приложение. Тексты программ	8

Цель работы

Целью лабораторной работы является изучение методики разработки программ цифровой обработки сигналов, включающей различные способы улучшения отношения сигнал/шум (накопление, использование НЧ и ВЧ-фильтров, оптимального фильтра Колмогорова-Винера, прямого и обратного комплесного БПФ).

Заданный фильтр по варианту:

Фильтр Чебышёва

где $\mathcal{E}-$ постоянный коэффициент, определяющий степень неравномерности AЧX в полосе пропускания;

 T_n — полином <u>Чебышева</u> 1-го рода n-го порядка.

$$T_0(x)=1:T_1(x)=x;T_2(x)=2x^2-1;T_3(x)=4x^3-3x;$$

 $T_4(x)=8x^4-8x^2+1;T_5(x)=16x^5-20x^3+5x$

Частотная характеристика цифрового фильтра Чебышёва

Рисунок 1. Функция, задающая фильтр

Программа работы

- 1. Определить зависимости погрешность заданного преподавателем сигнала на выходе фильтра от полосы пропускания фильтра при нескольких (от 0.1 до 0.5) значениях СКО шума ξ на входе.
- 2. Для каждого значения СКО шума ξ найти оптимальное значение полосы пропускания фильтра Нопт, при котором погрешность сигнала на выходе фильтра минимальна δ опт= δ (Нопт).
 - 3. Построить график зависимости δ опт = $f(\xi)$.
- 4. Определить зависимости погрешность заданного преподавателем сигнала на выходе оптимального фильтра Колмогорова-Винера при нескольких (от 0.1 до 0.5) значениях СКО шума ξ на входе.
- 5. Построить график зависимости $\delta = f(\xi)$ для оптимального фильтра Колмогорова-Винера.
 - 6. Построить графики зависимости δ опт = $f(\xi)$ для всех фильтров.

Результаты работы

Для функции abs(sin(x)) была построена таблица, которая иллюстрирует оптимальный выбор количества полос от значения SKO шума.

Ширина полосы пропускаемого фильтра ряда Фурье	Q = 0.1	Q = 0.2	Q = 0.3	Q = 0.4	Q = 0.5
6	6,14228	6,81894	7,47602	9,48846	10,38638
8	3,70786	5,11769	6,78375	8,32383	9,85282
10	3,20972	4,60417	5,76317	8,67075	11,31016
12	2,75165	4,36735	7,63849	10,16900	13,17912
14	3,51902	5,34118	7,95829	10,83132	12,90829
16	2,78937	5,77475	8,04883	12,58785	15,16134
18	3,24649	5,94309	8,86792	11,42122	15,23100
20	3,16977	6,37068	9,77627	12,15085	15,68370
22	3,38132	7,32397	10,33369	12,90668	15,53821
24	3,52976	7,36500	9,91998	14,18960	16,96004
26	3,38800	7,69868	11,35220	14,50800	19,15194
28	3,73892	7,57377	10,59165	15,89420	19,58954
30	3,81143	7,90206	11,54911	16,97138	18,58182
32	4,31341	7,64108	12,11961	15,43683	21,54705

Также для более наглядного понимания был построен график:

Зависимость погрешности сигнала от полосы пропускания фильтра Чебышева

На данном этапе видно, что для данной функции оптимальным выбором количества полос будет от 8 до 12 в зависимости от SKO шума.

Также в отдельную таблицу было вынесено минимальное среднеквадратичное отклонение сигнала, количество полос такого сигнала и среднеквадратичное отклонение шума.

Ширина полосы пропускаемого фильтра ряда Фурье	СКО шума	SKO_total
12	Q = 0.1	2,75165
12	Q = 0.2	4,36735
10	Q = 0.3	5,76317
8	Q = 0.4	8,32383
8	Q = 0.5	9,85282

Также данная функция тестировалась на фильтре Комогорова-Винера и в последующем сравнена с фильтром Чебышева. Результаты представлены ниже:

Фильтр Чебышева	Фильтр Колмогорова-Винера
2,75165	0,9613
4,36735	1,9966
5,76317	2,145
8,32383	2,4921
9,85282	2,7765
	2,75165 4,36735 5,76317 8,32383

Выводы

После проделанной работы было выявлено:

- Для функции abs(sin(x)) и фильтре чебышева, оптимальным выбором полос будет от 8 до 12 с шагом 2, в зависимости от SKO шума, равное от 0.1 до 0.5 с шагом 0.1, после этого количества полос SKO самой функции будет медленно расти.
- **Предположение**: на основании 5 экспериментов можно сделать догадку о том, что чем больше SKO шума, тем меньшее количество полос необходимо фильтру Чебышева. Данное предположение было сделано из данной таблицы, хотя и опытом достаточно мало.

Ширина полосы пропускаемого фильтра ряда Фурье	СКО шума	SKO_total
12	Q = 0.1	2,75165
12	Q = 0.2	4,36735
10	Q = 0.3	5,76317
8	Q = 0.4	8,32383
8	Q = 0.5	9,85282

- Фильтр Колмогорова-Винера, на основании экспериментов, оказался более эффективным, нежели фильтр Чебышева. Это показывает графики, созданные в процессе работы.
- **Об условиях применения фильтра Колмогорова-Винера**: эффективность работы данного фильтра зависит от отношения сигнал/шум на входе фильтра. Чем больше такое отношение, тем более "чистый" сигнал будет на выходе.

Приложение. Тексты программ

```
%Фильтр Чебышева
clc;
clear;
% NC=6; %полоса пропускания фильтра по уровню 0,7 амплитуды
% выражена в количестве отчетов спектра БПФ, пропускаемых фильтром
% остальные отсчеты (в частотном спектре!) будут ослабляться по
амплитуде
%% настройка сохранения в файл
fid1 = fopen('total SKO.txt', 'w');
fid2 = fopen('random SKO.txt', 'w');
А=1; %амплитуда сигнала
Q=0.5; %амплитуда шума 0.1 вместо 0.001
КР1=5;% - количество периодов первого сигнала
КР2=15;% - количество периодов второго сигнала
N=1024;%количество точек расчета
е=0.1;%параметр фильтра Чебышева
for NC=6:2:32
  q=randn(1,N); %генерация одномерного массива нормально
распределенного шума
  for k=1:N % генерация сигнала и шума
    s(k) = A * abs(sin(2 * pi * KP1 * (k-1)/N));
    x(k)=s(k)+Q*q(k); % суммирование сигнала и шума
  x=x-mean(x);%для фильтра Чебышёва нужно центрировать входной
сигнал!
%
    figure
\frac{0}{0}
    plot(x);
%
    axis tight; %диапазон X и Y по осям точно соответствует Xmax и Kmax
\frac{0}{0}
    title('Зашумленный сигнал до фильтра');
%
    Y=fft(x,N); %БПФ сигнала с шумом
%
    i=1:N/2;
%
%
    figure
```

```
\frac{0}{0}
    % semilogy(i(1:200),2*abs(SS1(1:200)));
\frac{0}{0}
    %plot(i(1:100),2*abs(SS1(1:100)));
%
    plot(i(1:N/2),abs(Y(1:N/2)));
%
    title('Частотный спектр сигнала с шумом');
  for i=1:N
    Тп=2*(i/NC)^2-1;%значение полинома Чебышёва 1 рода 2-го порядка
    H(i)=1/sqrt(1+e^2*Tn^2):%частотная характеристика фильтра
Чебышева
  end
  h=ifft(H);
  i=1:N:
\frac{0}{0}
    plot(i(1:20),abs(h(1:20))); %Импульсная характеристика фильтра
%
    title('Импульсная характеристика фильтра');
%
    i=1:200;
%
    figure
\frac{0}{0}
    plot(i,abs(H(1:200)));
%
    %semilogx(i,abs(H(1:200)));%то же, что и plot, но в логарифмическом
%
    %масштабе по Х
%
    grid on:
    title('Частотная хар-ка цифрового фильтра Чебышева');
%
  i=1:N:
  XX1=fft(x,N); %частотный спектр сигнала с шумом
  Z=ifft(XX1.*H); %свертка зашумленного сигнала с частотной хар-кой
фильтра
  XX2=fft(s,N);%частотный спектр сигнала
  Z2=ifft(XX2.*H); %свертка незашумленного сигнала с частотной хар-кой
фильтра
  DZ(i)=(2*real(Z(i))-2*real(Z2(i)))*100./(max(s)-min(s));%случайная
погрешность
  DZ1(i)=(2*real(Z(i))-s(i))*100/(max(s)-min(s));%полная погрешность
  SKO random=std(DZ);
  SKO total=std(DZ1);
  fprintf(fid1, '%f\n', SKO total);
  fprintf(fid2, '%f\n', SKO random);
%
    out = ['NC= ', int2str(NC)];
```

```
\frac{0}{0}
    disp(out);
0/0
%
    out = ['SKO random= ', num2str(SKO random)];
%
    disp(out);
\frac{0}{0}
%
    out = ['SKO total= ', num2str(SKO total)];
%
    disp(out);
%
    disp('----');
  i=1:N;
  yy=A*abs(sin((2 * pi * KP1*(i-1)/N)));
%
    figure
%
    plot(i,x); %вывод сигнала до фильтра
%
    title('Сигнал до фильтра');
    xlabel('Номер отсчета'); % подпись по оси X
%
%
    ylabel('Амплитуда'); % подпись по оси Y
%
    axis tight; %диапазон X и Y по осям точно соответствует Xmax и Ymax
    hold on; % "удержание" окна вывода для вывода следующего графика
\frac{0}{0}
\frac{0}{0}
%
    plot(i,2 * real(Z(1:N)), 'r-'), grid; %вывод отфильтрованного сигнала
%
    %представление графика линией красного цвета, отображение сетки
\frac{0}{0}
    title('Сигнал до и после фильтра');%подпись назв ания графика
%
    hold off;
%
    i=1:N:
%
    figure
%
    plot(i,DZ(1:N)); %вывод случайной погрешности отфильтрованного
сигнала
%
    title('Случайная погрешность отфильтрованного сигнала');
    ylabel('Случайная погрешность, %'); % подпись по оси Y
%
%
    axis tight;
%
    i=1:N;
%
    figure
%
    plot(i,DZ1(1:N)); %вывод случайной погрешности отфильтрованного
сигнала
%
    title('Полная погрешность отфильтрованного сигнала');
    ylabel('Полная погрешность, %'); % подпись по оси Y
%
%
    axis tight;
end
status1 = fclose(fid1);
```

```
status2 = fclose(fid2);
close all;
```