Probability and Statistics I

18. Chapter 4 Summary Exercise

Use Google Maps to compute the distance from your home to campus. Enter the result in the spreadsheet at:

https://uwoca-my.sharepoint.com/:x:/g/personal/sbonner6_uwo_ca/ Ee9EAgVPP2pJkSgS7SPQCZoBhubeOhoSTgMd-2QrGf9KIg?e=o27rxM

SS2857 1/10

SS2857 2/10

$$n = 51$$
, $\hat{\mu} = 4.634$, $\widehat{\sigma^2} = 58.011$

Use the data summaries on the previous slide to estimate the parameters assuming:

- the distribution is normal.
- the distribution is gamma.

For each distribution find:

- **①** The value d_1 so that 97.5% of students live less than d_1 km from campus.
- ② The value d_2 so that 97.5% of students live greater than d_2 km from campus.

Which distribution do you believe will fit the data better?

SS2857 4/10

Normal Distribution

$$\hat{\mu} = 4.634, \quad \widehat{\sigma^2} = 58.011$$

Gamma Distribution

$$\hat{\alpha} = 0.37, \quad \hat{\beta} = 12.519$$

Percentile Plots

Suppose that the data come from a distribution with percentiles η_p . Then we would expect the k-th largest data point to be close to $\eta_{(k-.5)/n}^{1}$.

With 51 observations, we would expect

- \bullet the smallest observation to be close to $\eta_{\frac{.5}{51}}$
- \bullet the next smallest observation to be close to $\eta_{\frac{1.5}{51}}$
-
- \bullet the biggest observation to be close to $\eta_{\frac{50.5}{51}}$

Generally, if $x_{(1)}, \ldots, x_{(n)}$ represent the *ordered* data then

$$x_{(k)} \approx \eta_{\frac{k}{n}}$$
.

Percentile Plots

Suppose that the data come from a distribution with percentiles η_p . Then we would expect the k-th largest data point to be close to $\eta_{(k-.5)/n}^2$.

Generally, if $x_{(1)}, \ldots, x_{(n)}$ represent the *ordered* data then

$$x_{(k)} \approx \eta_{\frac{k}{n}}.$$

A percentile plot plots $x_{(k)}$ vs $\eta_{\frac{k}{n}}$ for $k=1,\ldots,n$. If the data were generated from that distribution then the points will lie close to a straight line.

 $^{^{2}}$ The extra -.5 keeps us below 100%.

Percentile Plots - Normal

SS2857 9/10

Percentile Plots - Gamma

SS2857 10/10