A Short Note on LL(1) Grammars

Suresh Purini, IIIT-H

Let G = (N, T, P, S) be a context-free grammar (CFG) where N is the set of non-terminals, T is the set of terminals, P is the set of production rules and $S \in N$ is the start symbol.

Definition 1. For a non-terminal symbol $A \in N$ define

$$FIRST(A) = \{ a \in T \mid \exists A \Rightarrow^* a\alpha \text{ where } \alpha \in (N \cup T)^* \} \cup \{ \epsilon \mid \exists A \Rightarrow^* \epsilon \}.$$

Definition 2. For a sentential form $\alpha \in (N \cup T)^*$ define

$$FIRST(\alpha) = \{ \ a \in T \mid \exists \ \alpha \Rightarrow^* a\beta \ where \ \beta \in (N \cup T)^* \ \} \cup \{ \ \epsilon \mid \exists \ \alpha \Rightarrow^* \epsilon \ \}.$$

Note that the Definition 2 actually subsumes the Definition 1. However the definitions are stated separately for the sake of clarity.

Let us assume that after a sequence of left-most derivation steps, a top-down recursive descent parser has constructed a partial parse tree and $uA\alpha$ be the left-sentential form labeling the leaf nodes of the parse tree (refer Figure 1). Also let the input string be w=uav where u is prefix that had already been derived and a is the correct look-ahead token in the input stream.

Figure 1: Partially Expanded Parse Tree

Let $A \to \alpha_1 \mid \cdots \mid \alpha_k$ be the production rules corresponding to the non-terminal symbol A in the CFG G. In order to avoid back-tracking the top-down parser wants to deterministically choose one of the k alternate production rules to expand the parse tree using the look-ahead symbol a as the extra information. We shall first take a **Naive Approach** to solve this problem and later have to refine it to get the **LL(1) Approach**. Throughout our discussion $uA\alpha$ is the current left-sentential form and a is the look-ahead symbol.

Naive Approach. Use the production rule $A \to \alpha_i$ to expand the parse tree if $a \in FIRST(\alpha_i)$ and $a \notin FIRST(\alpha_j)$ for $1 \le j \ne i \le k$.

If we observe carefully there is a subtle flaw in the Naive Approach. Consider the case where $a \in FIRST(\alpha_i)$, $a \notin FIRST(\alpha_j)$ and $\epsilon \in FIRST(\alpha_j)$. It is quite possible for us to have a derivation like $S \Rightarrow^* uA\alpha \Rightarrow u\alpha_j\alpha \Rightarrow^* u\epsilon\alpha \Rightarrow^* ua\beta$ (refer Figure 2). However this derivation also implies the derivation $S \Rightarrow^* uA\alpha \Rightarrow^* uAa\beta$ indicating that $a \in FOLLOW(A)$.

Figure 2: Alternate Parse Tree Expansion

Claim 1. Given a left-sentential form $uA\alpha$, we can use the substituion rule $A \Rightarrow \alpha_i$ to expand the parse tree only if at least one of the following two conditions hold.

1.
$$a \in FIRST(\alpha_i)$$

2.
$$\epsilon \in FIRST(\alpha_i)$$
 and $a \in FOLLOW(A)$

With the previous claim in mind we give the following defintion.

Definition 3.

$$FIRST^{+}(A \rightarrow \alpha) = \begin{cases} FIRST(\alpha) & \epsilon \not\in FIRST(\alpha) \\ FIRST(\alpha) \cup FOLLOW(A) & \epsilon \in FIRST(\alpha) \end{cases}$$

LL(1) Approach. Use the production rule $A \to \alpha_i$ to expand the parse tree if $a \in FIRST^+(\alpha_i)$ and $a \notin FIRST^+(\alpha_j)$ for $1 \le j \ne i \le k$.

Remark: A grammar is not LL(1)-parsable if there exists two productions $A \to \alpha_i$ and $A \to \alpha_j$ such that $FIRST^+(A \to \alpha_i) \cap FIRST^+(A \to \alpha_j) \neq \phi$.