THE POINCARÉ SERIES OF A DIAGONAL POLYNOMIAL

DIBYAJYOTI DEB AND DAVID B. LEEP

ABSTRACT. Let R be a unique factorization domain of characteristic zero with maximal ideal generated by a prime element π having a finite residue field $R/(\pi)$. Let $f \in R[x_1,\ldots,x_n]$. For each $m \geq 1$, let c_m denote the number of solutions to the congruence $f(x_1,\ldots,x_n) \equiv 0 \mod \pi^m$. The Poincaré series of f is the formal power series $P_f(y) = 1 + \sum_{m=1}^\infty c_m y^m$. In this paper we compute $P_f(y)$ for an arbitrary diagonal polynomial f given by $f(x_1,\ldots,x_n) = \epsilon_1 x_1^{t_1} + \cdots + \epsilon_n x_n^{t_n} + b$ where $\epsilon_1,\cdots,\epsilon_n \in R,\ t_1,\ldots,t_n$ are positive integers and $b \in R$. We show explicitly that $P_f(y)$ is a rational function extending results of J. Wang and Q. Han.

Department of Mathematics, University of Kentucky, Lexington KY 40506-0027

E-mail address: ddeb@ms.uky.edu

Department of Mathematics, University of Kentucky, Lexington KY 40506-0027

E-mail address: leep@ms.uky.edu