CLAIMS

1. A white color organic electroluminescence device comprising:

a cathode;

an anode; and

one or more organic thin film layers sandwiched between the two electrodes and including at least a light emitting layer, wherein the light emitting layer has a laminate comprising a bluish color light emitting layer and a yellow-to-reddish color light emitting layer; and the light emitting layer comprises an asymmetric compound containing a condensed ring.

- 2. A white color organic electroluminescence device according to claim 1, wherein the light emitting layer consists of the bluish color light emitting layer and the yellow-to-reddish color light emitting layer.
- 3. A white color organic electroluminescence device according to claim 1, wherein the bluish color light emitting layer comprises a bluish color host material and a bluish color dopant, and the bluish color host material comprises an asymmetric compound containing a condensed ring.

4. A white color organic electroluminescence device according to claim 1, wherein the asymmetric compound containing a condensed ring comprises an asymmetric anthracene-based compound represented by the following general formula (I):

(I)

wherein Ar^1 and Ar^2 each independently represent a substituted of unsubstituted aryl group having 6 to 50 nuclear carbon atoms, provided that Ar^1 and Ar^2 do not have the same structure; and R^1 to R^8 each independently represent a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, a substituted or unsubstituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, a substituted or unsubstituted or unsubstitu

atoms, a substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, a carboxyl group, a halogen atom, a cyano group, a nitro group, or a hydroxyl group.

5. A white color organic electroluminescence device according to claim 1, wherein the asymmetric compound containing a condensed ring comprises an asymmetric anthracene-based compound represented by any one of the following general formulae (II) to (IV):

$$Ar \xrightarrow{Ar'} n \xrightarrow{Ar'} (x)_c$$

(II)

wherein Ar represents a substituted or unsubstituted fused aromatic ring residue having 10 to 50 nuclear carbon atoms;

Ar' represents a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, and the number of Ar's may be two or more;

X represents a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted

or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, a substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, a substituted or unsubstituted arylthio group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, a carboxyl group, a halogen atom, a cyano group, a nitro group, or a hydroxyl group; and

 ${\bf a}$, ${\bf b}$, and ${\bf c}$ each represent an integer of 0 to 4, and ${\bf n}$ represents an integer of 1 to 3;

$$R^9$$
 R^1 R^4 R^{10} R^5 R^7 R^6 (III)

wherein A^1 and A^2 each independently represent a substituted or unsubstituted fused aromatic ring residue having 10 to 20 nuclear carbon atoms;

 ${\rm Ar}^1$ and ${\rm Ar}^2$ each independently represent a hydrogen atom, or a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, and each of the number of ${\rm Ar}^1{\rm s}$ and the number of ${\rm Ar}^2{\rm s}$ may be two or more; and

R¹ to R¹0 each independently represent a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, a substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, a substituted or unsubstituted arylthio group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, a carboxyl group, a halogen atom, a cyano group, a nitro group, or a hydroxyl group, and each of the number of R¹0s and the number of R¹0s may be two or more, provided that no symmetrical group binds to each of 9-position and 10-position of central anthracene;

$$R^9$$
 R^1
 R^4
 R^{10}
 R^{10}
 R^7
 R^6
 R^6
 R^7

wherein Ar^{1} ' and Ar^{2} ' each independently represent a substituted

or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, and each of the number of ${\rm Ar}^{1}$'s and the number of ${\rm Ar}^{2}$'s may be two or more; and

R¹ to R¹⁰ each independently represent a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, a substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, a substituted or unsubstituted arylthio group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, a carboxyl group, a halogen atom, a cyano group, a nitro group, or a hydroxyl group, and each of the number of R⁹s and the number of R¹⁰s may be two or more, provided that no symmetrical group binds to each of 9-position and 10-position of central anthracene.

6. A white color organic electroluminescence device according to claim 1, wherein the asymmetric compound containing a condensed ring comprises an asymmetric pyrene-based compound represented by the following general formula (V):

$$R^{11}$$
 R^{12}
 R^{13}
 R^{18}
 R^{17}
 R^{16}
 R^{15}

(V)

wherein Ar³ and Ar⁴ each independently represent a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, provided that Ar³ and Ar⁴ do not have the same structure; and R¹¹ to R¹⁸ each independently represent a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, a substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, a substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, a substituted or unsubstituted arylthio group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, a carboxyl group, a halogen atom, a cyano group, a nitro group, or a hydroxyl group.

7. A white color organic electroluminescence device according

to claim 1, wherein the asymmetric compound containing a condensed ring comprises an asymmetric pyrene-based compound represented by any one of the following general formulae (VI) to (IX):

$$Ar^{5} \xrightarrow{\left(X^{1}\right)_{d}} Ar^{6}$$

$$\left(X^{2}\right)_{e}$$

$$\left(VI\right)$$

wherein Ar⁵ represents a substituted or unsubstituted fused aromatic ring residue having 10 to 50 nuclear carbon atoms;

 ${\rm Ar}^6$ represents a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, and the number of ${\rm Ar}^6{\rm s}$ may be two or more;

X¹ and X² each independently represent a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, a substituted or unsubstituted aralkyl group group having 5 to 50 nuclear atoms, a substituted or unsubstituted arylthio group having 5 to 50 nuclear atoms, a substituted or unsubstituted or unsubstituted arylthio group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, a carboxyl group, a halogen atom, a cyano group, a nitro group,

or a hydroxyl group; and

d represents an integer of 0 to 8, **e** represents an integer of 0 to 4, and n^1 represents an integer of 1 to 3;

$$(x^3)_f$$
 $(x^5)_h$
 $(x^4)_g$

(VII)

wherein Ar⁷ and Ar⁸ each independently represent a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, and each of the number of Ar⁷s and the number of Ar⁸s may be two or more; X³, X⁴, and X⁵ each independently represent a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, a substituted or unsubstituted or unsubstituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, a substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, a substituted or unsubstituted arylthic group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, a carboxyl group, a halogen atom, a cyano group, a nitro group, or a hydroxyl group; and

 ${\bf f}$ and ${\bf g}$ each represent an integer of 0 to 4, ${\bf h}$ represents an integer of 0 to 8, and ${\bf n}^2$ represents an integer of 1 to 3, provided that no symmetrical group binds to each of 1-position and 6-position of central pyrene;

$$R^{19}$$
 A^{3}
 R^{18}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}

(VIII)

wherein A^3 and A^4 each independently represent a substituted or unsubstituted fused aromatic ring residue having 10 to 20 nuclear carbon atoms;

 ${\rm Ar}^9$ and ${\rm Ar}^{10}$ each independently represent a hydrogen atom, or a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, and each of the number of ${\rm Ar}^9$ s and the number of ${\rm Ar}^{10}$ s may be two or more; and

R¹¹ to R²⁰ each independently represent a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted

aralkyl group having 6 to 50 carbon atoms, a substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, a substituted or unsubstituted arylthio group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, a carboxyl group, a halogen atom, a cyano group, a nitro group, or a hydroxyl group, and each of the number of R¹⁹s and the number of R²⁰s may be two or more, provided that no symmetrical group binds to each of 1-position and 6-position of central pyrene;

$$Ar^{11} \xrightarrow{\left(X^{6}\right)_{i}} L \xrightarrow{\left(X^{7}\right)_{j}} Ar^{12}$$

(IX)

wherein Ar¹¹ and Ar¹² each independently represent a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms; X^6 and X^7 each independently represent a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, a substituted or unsubstituted aryloxy

group having 5 to 50 nuclear atoms, a substituted or unsubstituted arylthio group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, a carboxyl group, a halogen atom, a cyano group, a nitro group, or a hydroxyl group;

L represents a substituted or unsubstituted arylene group having 6 to 50 nuclear carbon atoms, or a substituted or unsubstituted divalent aromatic heterocyclic group having 3 to 50 nuclear atoms; and

 \mathbf{i} and \mathbf{j} each represent an integer of 0 to 8, and \mathbf{n}^4 each represent an integer of 1 to 3

- 8. A white color organic electroluminescence device according to claim 3, wherein the bluish color dopant comprises at least one compound selected from a group consisting of a styrylamine, an amine-substituted styryl compound, a compound containing an amine-substituted fused aromatic ring, and a compound containing a fused aromatic ring.
- 9. A white color organic electroluminescence device according to claim 1, comprising the anode, the bluish color light emitting layer, the yellow-to-reddish color light emitting layer, and the cathode in this order, wherein the yellow-to-reddish color light emitting layer contains the same host material as that of the bluish

color light emitting layer and a yellow-to-reddish color dopant.

- 10. A white color organic electroluminescence device according to claim 9, wherein the yellow-to-reddish color dopant comprises a compound having multiple fluoranthene skeletons.
- 11. A white color organic electroluminescence device according to claim 9, wherein the yellow-to-reddish color dopant comprises a compound having a fluorescent peak wavelength of 540 nm to 700 nm.
- 12. A white color organic electroluminescence device according to claim 1, wherein each of the bluish color light emitting layer and the yellow-to-reddish color light emitting layer has a thickness of 5 nm or more.