Effects of Prediction Table Size

This table shows how many cycles each sample took to terminate with different sizes of the prediction table

	32 Entries	64 Entries	128 Entries
Sample 1	1081	1081	1081
Sample 2	1145276	1140907	1138972
Sample 3	1283147	1268969	1264178
Sample 4	3589406	3538348	3530615
Large Sample 1	105402700	103703599	103703513
Large Sample 2	116974556	115530363	115116953

The graphs below show the effect of number of entries in the prediction table on the number of cycles to complete the simulation for each sample (excluding sample 1 because there was no change in performance between table sizes).

These graphs make it clear that the difference in performance between a prediction table of size 64 and 32 is greater than the difference in performance between table of size 128 and 64. The average percentage decrease of cycles to complete each sample between size 32 and size 64 prediction tables is 0.9524%, while the average percentage decrease between size 128 and size 64 is only 0.1873%. Increasing the size of the prediction table has diminishing returns: the increase from size 32 to size 64 has a significant impact on performance, but the increase from size 64 to size 128 has a much less significant impact on performance.