Activation, Initialization, Preprocessing, Dropout, Batch Norm

Covariate Shift and Batch Norm

Covariate Shifts

Randomly sampling mini-batches: Training assumes similar distribution!

Covariate Shifts

Randomly sampling mini-batches: Training assumes similar distribution! In practice (and although random), each mini-batch will have different distribution

→ Covariate shift

→ Can happen in **each** layer

Covariate Shifts

Randomly sampling mini-batches: Training assumes similar distribution! In practice (and although random), each mini-batch will have different distribution

→ Covariate shift → Can happen in **each** layer

→ Shifts can be large and can negatively affect training!

Eliminate covariate shift by "moving" batches to zero mean and unit standard dev

→ Then, move entire collection to desirable location: **Batch normalization**

offe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv:1502.0316

If we want unit Gaussian activations, let's make them that!

$$\hat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$
 This function is differentiable (backprop!)

 Rather then pre-conditioning data and hoping that nice properties are preserved, at each layer we re-condition during every forward pass

If we want unit Gaussian activations, let's make them that!

$$\hat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$
 This function is differentiable (backprop!)

 Rather then pre-conditioning data and hoping that nice properties are preserved, at each layer we re-condition during every forward pass

1. Compute empirical mean and variance for each channel

$$E[x^{(k)}], \operatorname{Var}[x^{(k)}]$$

2. Normalize to unit Gaussian

$$\hat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$

FC BN tanh FC BN tanh Usually inserted right after fully connected or convolutional layers, right before activation.

- 1. Compute empirical mean and variance for each channel $E[x^{(k)}], \operatorname{Var}[x^{(k)}]$
- 2. Normalize to unit Gaussian

$$\hat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$

Usually inserted right after fully connected or convolutional layers, right before activation.

- 1. Compute empirical mean and variance for each channel $E[x^{(k)}], \operatorname{Var}[x^{(k)}]$
- 2. Normalize to unit Gaussian

$$\hat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$

Q: Is unit Gaussian activation necessarily what we want?

Consider tanh or sigmoid activation

→ Batch normalization will limit the activation to the linear regime of these activation functions!

→ In such case, negatively affects performance

There are other cases where you also would not want BN, e.g. when magnitude matters.

- 1. Compute empirical mean and variance for each channel $E[x^{(k)}], \mathrm{Var}[x^{(k)}]$
- 2. Normalize to unit Gaussian $\hat{x}^{(k)} = \frac{x^{(k)} E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$
- 3. Squash output to beneficial range $y^{(k)} = \gamma^{(k)} \hat{x}^{(k)} + \beta^{(k)}$

These are parameters and are learned during training.

Network can learn identity!

$$\gamma^{(k)} = \operatorname{Var}[x^{(k)}]$$
$$\beta^{(k)} = E[x^{(k)}]$$

1. Compute empirical mean and variance for each channel $E[x^{(k)}], \operatorname{Var}[x^{(k)}]$

2. Normalize to unit Gaussian

$$\hat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$

3. Squash output to beneficial range

$$y^{(k)} = \gamma^{(k)}\hat{x}^{(k)} + \beta^{(k)}$$

These are parameters and are learned during training.

Input: Values of
$$x$$
 over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β

Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad // \text{mini-batch mean}$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{mini-batch variance}$$

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{normalize}$$

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad // \text{scale and shift}$$

Algorithm 1: Batch Normalizing Transform, applied to activation *x* over a mini-batch.

- Improves gradient flow through network and allows for higher learning rates
 - Avoids saturating activations
 - Avoids exploding/vanishing gradients
 - Higher learning rates usually produce larger weights leading to explosion
 - → Can be avoided here since re-normalized
- Reduces strong dependence on initialization
- Acts as regularization
 - Single instance is now seen in conjuncture with other samples of the batch
 - Network outputs per sample no longer deterministic

Batch Normalization During Testing

Input: Values of
$$x$$
 over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β

Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad // \text{mini-batch mean}$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{mini-batch variance}$$

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{normalize}$$

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad // \text{scale and shift}$$

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

Q: What to do at testing time?

Batch Normalization During Testing

- 6: Train $N_{\rm BN}^{\rm tr}$ to optimize the parameters $\Theta \cup \{\gamma^{(k)}, \beta^{(k)}\}_{k=1}^K$
- 7: $N_{\mathrm{BN}}^{\mathrm{inf}} \leftarrow N_{\mathrm{BN}}^{\mathrm{tr}}$ // Inference BN network with frozen // parameters
- 8: **for** k = 1 ... K **do**
- 9: // For clarity, $x \equiv x^{(k)}$, $\gamma \equiv \gamma^{(k)}$, $\mu_{\mathcal{B}} \equiv \mu_{\mathcal{B}}^{(k)}$, etc.
- 10: Process multiple training mini-batches \mathcal{B} , each of size m, and average over them:

$$\mathrm{E}[x] \leftarrow \mathrm{E}_{\mathcal{B}}[\mu_{\mathcal{B}}]$$

 $\mathrm{Var}[x] \leftarrow \frac{m}{m-1} \mathrm{E}_{\mathcal{B}}[\sigma_{\mathcal{B}}^2]$

- 11: In $N_{\mathrm{BN}}^{\mathrm{inf}}$, replace the transform $y = \mathrm{BN}_{\gamma,\beta}(x)$ with $y = \frac{\gamma}{\sqrt{\mathrm{Var}[x] + \epsilon}} \cdot x + \left(\beta \frac{\gamma \, \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}}\right)$
- 12: end for

Q: What to do at testing time?

Compute average mean and standard deviation across multiple batches, then save these values for inference.

- Is it really about covariate shift?
- Let's reconsider He initialization.
 - Goal: Preserve mean and variance of outputs if marginalized over the weight distribution

Channel activation at different depths with independent N(0,1) inputs

- Is it really about covariate shift?
- Let's reconsider He initialization.
 - Goal: Preserve mean and variance of outputs if marginalized over the weight distribution
- Every channel has chosen a constant value!
 - Peaked, narrow distribution
 - Most inputs would be classified as the orange class

Channel activation at different depths with independent N(0,1) inputs

split by channel

- Is it really about covariate shift?
- Let's reconsider He initialization
 - Goal: Preserve mean and variance of outputs if marginalized over the weight distribution
- Every channel has chosen a constant value!
 - Peaked, narrow distribution
 - Most inputs would be classified as the orange class
- Removing ReLU: Problem disappears
 - Non-zero channel means
 - Decreasing variance due to increasing mean (see blog)

Channel activation at different depths with independent N(0,1) inputs

Santurkar, S., Tsipras, D., Ilyas, A., & Madry, A. (2018). How does batch normalization help optimization? NeurIPS (pp. 2483-2493). split by channel, no ReLU https://myrtle.ai/how-to-train-your-resnet-7-batch-norm/

- → Without batch norm
 - → Standard initialization leads to bad configurations
 - → Network will predict near constant outputs
- → Batch norm fixes this by design

What happens during training?

Channel activation at different depths with independent N(0,1) inputs

Santurkar, S., Tsipras, D., Ilyas, A., & Madry, A. (2018). How does batch normalization help optimization?. NeurIPS (pp. 2483-2493). split by channel, no ReLU https://myrtle.ai/how-to-train-your-resnet-7-batch-norm/

- Random perturbation of the weight Strength of 1% of parameter vector length
 - Similar output distributions
 - Main mode and second smaller mode: Network starting to make confident predictions

Santurkar, S., Tsipras, D., Ilyas, A., & Madry, A. (2018). How does batch normalization help optimization?. NeurIPS (pp. 2483-2493). https://myrtle.ai/how-to-train-your-resnet-7-batch-norm/

- Targeted perturbation of the weight Strength of 1% of parameter vector length Gradient of channel mean
 - Network will predict perturbed class in majority of inputs!
 - Internal covariate shift can propagate to external covariate shift in non-batch norm networks!

batch norm no batch norm

Santurkar, S., Tsipras, D., Ilyas, A., & Madry, A. (2018). How does batch normalization help optimization?. NeurIPS (pp. 2483-2493). https://myrtle.ai/how-to-train-your-resnet-7-batch-norm/

- Targeted perturbation of the weight Strength of 1% of parameter vector length Gradient of channel mean
 - Network will predict perturbed class in majority of inputs!
 - Internal covariate shift can propagate to external covariate shift in non-batch norm networks!

- What does this mean for optimization?
 - Without batch norm, small perturbations lead to immense increases in loss!
 - This means that we are in a narrow valley-type loss landscape (see also next lecture)

- Investigate the Hessian of parameters
 - Leading eigenvector (direction of largest curvature)
 - → This direction makes SGD spiral out of control
 - Computed via a power method (not important)
- Also, compute gradients w.r.t. mean channel activation (as in perturbation)

→ Compute overlap between eigenvectors and output-mean gradients

→ Compute overlap between eigenvectors and output-mean gradients

- Largest eigenvectors lie almost entirely in the 9-dim subspace spanned by the mean-output gradients!
- This de-stabilizes SGD optimization!

Batch norm: Smoothens the optimization landscape.

Activation, Initialization, Preprocessing, Dropout, Batch Norm

Regularization with Dropout

The Bias-Variance Tradeoff and Regularization

Decomposition into bias and variance

$$L(W) = \underbrace{\left(E[\hat{y}] - y\right)^2}_{\text{Bias}^2} + \underbrace{E[(\hat{y} - E[\hat{y}])^2]}_{\text{Variance}} + \sigma$$

Adding regularization

$$L(W) = \frac{1}{N} \sum_{i} L_{i} \left(f(x_{i}, W), y_{i} \right) + \lambda R(W)$$
 Data fidelity Regularization

Hastie, T., Tibshirani, R., and Friedman, J. (2017) The Elements of Statistical Learning

Regularization "in a funny way" by seeing samples in conjuncture with others

Other approaches

- L2 on weights
- L1 on activations
- Adding noise to inputs

Q: Can we regularize "in a less funny" way?

No, not like this!

During training

At each iteration, in each layer, "knock out" each neuron with probability 1-α

During training

At each iteration, in each layer, "knock out" each neuron with probability 1-α

During training

- At each iteration, in each layer, "knock out" each neuron with probability 1-α
- In practice, we do not drop connections but set inputs/outputs to zero

Dropout in Forward Pass

Without dropout:

$$\begin{array}{lcl} z_i^{(l+1)} & = & \mathbf{w}_i^{(l+1)} \mathbf{y}^l + b_i^{(l+1)}, \\ y_i^{(l+1)} & = & f(z_i^{(l+1)}), \end{array}$$

With dropout:

$$r_j^{(l)} \sim \operatorname{Bernoulli}(p),$$
 $\widetilde{\mathbf{y}}^{(l)} = \mathbf{r}^{(l)} * \mathbf{y}^{(l)},$
 $z_i^{(l+1)} = \mathbf{w}_i^{(l+1)} \widetilde{\mathbf{y}}^l + b_i^{(l+1)},$
 $p_i^{(l+1)} = f(z_i^{(l+1)}).$

- For every node j and layer l, determine Bernoulli number {0,1}
- 2. Drop outputs
- 3. ???
- 4. Profit.

Dropout in Forward Pass

(a) Standard network

(b) Dropout network

Dropout in Backward Pass

- Backpropagation as usual, but
 Set updates to zero for dropped out weights
- Tricks of the trade still work

Dropout at Inference Time

A slightly different view onto dropout

- 2^N sub-networks for N-neuron network
- Dropout samples over these sub-networks
- → Learns a network that averages over all possible networks

Dropout at Inference Time

(a) At training time

During training

- Fewer activations present
- → Overall activation smaller

During testing

- All activations present
- → Weights or activations scaled by p

Dropout at Inference Time

(a) At training time

Always present (b) At test time

During training

- Fewer activations present
- → Overall activation smaller

During testing

- All activations present
- → Weights or activations scaled by p

Some research on test time dropout.

Q: Why would you want to do this?

Dropout: Typical Values and Results

Number of weight updates

We will see this behavior again later.

Typical values

Input unit dropout: 0.2Hidden unit dropout: 0.5

43

EN.601.482/682 Deep Learning

Training Part II Update Rules, Data Augmentation, Transfer Learning

Mathias Unberath, PhD

Assistant Professor

Dept of Computer Science

Johns Hopkins University

ConvNets

- One-time setup
 - Architecture (Lecture 12)
 - Activation functions (sigmoid, ReLU, ...)
 - Regularization (batch norm, dropout)
- Training
 - Data collection: Preprocessing, Augmentation
 - Training via SGD (update rules)

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU max(0.1x, x)

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0, x)$

ELU

 $\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$

Activation-related problems to keep track of

- Vanishing gradients for saturated neurons
 - → Dying ReLU problem
- Linear vs. non-linear regime
- Output-range: Zero-centered?
 If not, ineffective gradient updates
- Parameters?
 Can be as easy as PReLU or as complex as Maxout

Initialization-related problems to keep track of

- Never initialize with a constant
 - → Symmetry must be broken for training to succeed
- Xavier and He initialization: Important in the success of DL
- If you are using ReLU as recommended: He initialization

Preprocessing

- Zero-centered data for more effective gradient updates!
- Normalization not always necessary
- Consider dynamic range

Today's Lecture

Update Rules

Data Augmentation

Transfer Learning

Update Rules, Data Augmentation, Transfer Learning

Update Rules

Optimization

Reminder: Standard gradient descent

Finding the lowest point: $W' = \arg\min_{W} L(W)$

while not_converged:
 gradient = eval_gradient(loss, data, weights)
 weights += - step_size * gradient

Optimization

Reminder: Stochastic gradient descent

Finding the lowest point: $W' = \arg\min_{W} L(W)$

while not_converged:

data_batch = sample_training_data(data, batch_size)
gradient = eval_gradient(loss, data_batch, weights)
weights += - step_size * gradient

Loss changes very quickly along one direction and very slowly along the other

Loss changes very quickly along one direction and very slowly along the other

→ Slow progress along shallow dimension, jitter along the other

Why is this?

Condition number: Ratio of largest to smallest singular value of the Hessian → If large, then loss function at this point badly conditioned

- → Slow progress along shallow dimension, jitter along the other
- → Problematic: Neural networks have millions of parameters!

Why is this?

Condition number: Ratio of largest to smallest singular value of the Hessian

→ If large, then loss function at this point badly conditioned

Another Problem

Local minimum

In every direction, loss will go up.

Saddle point

In some direction loss will go up, in other direction loss will go down.

EN.601.482/682 Deep Learning Mathias Unberath

Another Problem

Local minimum

In every direction, loss will go up.

Saddle point

In some direction loss will go up, in other direction loss will go down.

In high dimensional space, this scenario is much more common.

EN.601.482/682 Deep Learning

Mathias Unberath

And Another Problem

```
while not_converged:
    data_batch = sample_training_data(data, batch_size)
    gradient = eval_gradient(loss, data_batch, weights)
    weights += - step_size * gradient
```

Gradient is computed over mini-batches

 Mini-batches do not necessarily represent the full dataset

And Another Problem

```
while not_converged:
    data_batch = sample_training_data(data, batch_size)
    gradient = eval_gradient(loss, data_batch, weights)
    weights += - step_size * gradient
```

Gradient is computer over mini-batches

- Mini-batches do not necessarily represent the full dataset
- Gradients can be noisy!

Adding Momentum $W' = \arg \min_{W} L(W)$

SGD

$$W_{t+1} = W_t - \alpha \nabla_W L(W_t)$$

 Update in negative gradient direction

Adding Momentum $W' = \arg \min_{W} L(W)$

SGD

$$W_{t+1} = W_t - \alpha \nabla_W L(W_t)$$

Update in negative gradient direction

SGD + Momentum

$$v_{t+1} = \rho v_t + \alpha \nabla_W L(W_t)$$
$$W_{t+1} = W_t - v_{t+1}$$

- Replace gradient with velocity
- Velocity: Running mean of gradients
- ρ determines friction ($\rho > 0.9$)
- Update in negative velocity direction

Adding Momentum $W' = \arg \min_{W} L(W)$

SGD

$$W_{t+1} = W_t - \alpha \nabla_W L(W_t)$$

Update in negative gradient direction

SGD + Momentum

$$v_{t+1} = \rho v_t + \alpha \nabla_W L(W_t)$$
$$W_{t+1} = W_t - v_{t+1}$$

- Replace gradient with velocity
- Velocity: Running mean of gradients
- ρ determines friction (ρ > 0.9)
- Update in negative velocity direction

This simple strategy helps in all previous problems!

SGD + Momentum

$$v_{t+1} = \rho v_t + \alpha \nabla_W L(W_t)$$
$$W_{t+1} = W_t - \alpha v_{t+1}$$

Saddle points / Local minima

- "Ball rolling down the hill" has momentum and velocity
- Even if there is zero gradient, velocity "carries" optimization

SGD + Momentum

$$v_{t+1} = \rho v_t + \alpha \nabla_W L(W_t)$$
$$W_{t+1} = W_t - \alpha v_{t+1}$$

Poor Conditioning

- Zig-zagging: Gradient contributions will cancel out
- Gradient along shallow dimension will accumulate, accelerating descent

Adding Momentum

Nesterov, Y. E. (1983). A method for solving the convex programming problem with convergence rate O (1/k^2). In Dokl. Akad. Nauk SSSR (Vol. 269, pp. 543-547). Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013, February), On the importance of initialization

and momentum in deep learning. In International conference on machine learning (pp. 1139-1147).

SGD + Momentum

$$v_{t+1} = \rho v_t - \alpha \nabla_W L(W_t)$$
$$W_{t+1} = W_t + v_{t+1}$$

Combine gradient at current point with velocity to get update

Nesteroy Momentum

$$v_{t+1} = \rho v_t - \alpha \nabla_W L(W_t + \rho v_t)$$
$$W_{t+1} = W_t + v_{t+1}$$

Evaluate gradient at where velocity would take us, then mix with velocity

Nesterov Momentum

Nesterov Momentum

$$v_{t+1} = \rho v_t - \alpha \nabla_W L W_t + \rho v_t$$

$$W_{t+1} = W_t + v_{t+1}$$

This is a little unpleasant: Gradient is not computed where we want to update

Evaluate gradient at where velocity would take us, then mix with velocity

Nesterov Momentum

Nesterov Momentum

$$v_{t+1} = \rho v_t - \alpha \nabla_W L W_t + \rho v_t$$

$$W_{t+1} = W_t + v_{t+1}$$

Evaluate gradient at where velocity would take us, then mix with velocity

This is a little unpleasant: Gradient is not computed where we want to update

Change of variables: $\tilde{W}_t = W_t + \rho v_t$

$$v_{t+1} = \rho v_t + \alpha \nabla_W L(\tilde{W}_t)$$

$$\tilde{W}_{t+1} = \tilde{W}_t - \rho v_t + (1+\rho)v_{t+1}$$
$$= \tilde{W}_t + v_{t+1} + \rho(v_{t+1} - v_t)$$

Conceptually: Swap the order of gradient and momentum update.

AdaGrad

$$g_t = \nabla_W L(W_t)$$

$$S_i = S_i + (g_t)_i^2 \quad \text{with } S_i(t=0) = 0$$

$$(dW_t)_i = \frac{\alpha}{\sqrt{S_i} + \epsilon} (g_t)_i$$

$$W_{t+1} = W_t - dW_t$$

1. Compute gradient

AdaGrad

$$g_t = \nabla_W L(W_t)$$

$$S_i = S_i + (g_t)_i^2 \quad \text{with } S_i(t=0) = 0$$

$$(dW_t)_i = \frac{\alpha}{\sqrt{S_i} + \epsilon} (g_t)_i$$

$$W_{t+1} = W_t - dW_t$$

- 1. Compute gradient
- 2. Compute and accumulate element-wise squared gradient

AdaGrad

$$g_t = \nabla_W L(W_t)$$

$$S_i = S_i + (g_t)_i^2 \quad \text{with } S_i(t=0) = 0$$

$$(dW_t)_i = \frac{\alpha}{\sqrt{S_i} + \epsilon} (g_t)_i$$

$$W_{t+1} = W_t - dW_t$$

- 1. Compute gradient
- 2. Compute and accumulate element-wise squared gradient
- 3. Compute gradient update with **parameter-wise** learning rate

$$g_t = \nabla_W L(W_t)$$

$$S_i = S_i + (g_t)_i^2 \quad \text{with } S_i(t=0) = 0$$

$$(dW_t)_i = \frac{\alpha}{\sqrt{S_i} + \epsilon} (g_t)_i$$

$$W_{t+1} = W_t - dW_t$$

- 1. Compute gradient
- 2. Compute and accumulate element-wise squared gradient
- 3. Compute gradient update with parameter-wise learning rate
- 4. Apply gradient update

Loss changes very quickly along one direction and very slowly along the other

Q: SGD will produce zig-zagging. What happens with AdaGrad?

$$S_i = S_i + (g_t)_i^2 \quad \text{with } S_i(t=0) = 0$$
$$dW_t)_i = \frac{\alpha}{\sqrt{S_i} + \epsilon} (g_t)_i$$

Q: What happens with AdaGrad?

Learning rate in steep direction is damped strongly, Learning rate in shallow direction is "accelerated"

Q: Problem?

$$S_i = S_i + (g_t)_i^2 \quad \text{with } S_i(t=0) = 0$$
$$(dW_t)_i = \frac{\alpha}{\sqrt{S_i} + \epsilon} (g_t)_i$$

$$S_i = S_i + (g_t)_i^2 \quad \text{with } S_i(t=0) = 0$$
$$(dW_t)_i = \frac{\alpha}{\sqrt{S_i} + \epsilon} (g_t)_i$$

Q: Problem?

S_i term only ever increases, so the learning rate will decay to zero.

→ Slow convergence, or no convergence at all

$$g_t = \nabla_W L(W_t)$$

$$S_i = \rho \cdot S_i + (1 - \rho)(g_t)_i^2 \quad \text{with } S_i(t = 0) = 0$$

$$(dW_t)_i = \frac{\alpha}{\sqrt{S_i} + \epsilon} (g_t)_i$$

$$W_{t+1} = W_t - dW_t$$

1. Compute gradient

$$S_i = S_i + \sqrt{(g_t)_i^2}$$

$$S_i = \rho \cdot S_i + (1 - \rho)(g_t)_i^2 \quad \text{with } S_i(t = 0) = 0$$

$$(dW_t)_i = \frac{\alpha}{\sqrt{S_i + \epsilon}}(g_t)_i$$

$$W_{t+1} = W_t - dW_t$$

- 1. Compute gradient
- 2. Compute "'discounted" element-wise squared gradient

$$S_i = S_i + \sqrt{(g_t)_i^2}$$

$$S_i = \rho \cdot S_i + (1 - \rho)(g_t)_i^2 \quad \text{with } S_i(t = 0) = 0$$

$$(dW_t)_i = \frac{\alpha}{\sqrt{S_i + \epsilon}}(g_t)_i$$

$$W_{t+1} = W_t - dW_t$$

- 1. Compute gradient
- 2. Compute "'discounted" element-wise squared gradient
- 3. Compute gradient update with **parameter-wise** learning rate

$$S_i = \nabla_W L(W_t)$$

$$S_i = \rho \cdot S_i + (1 - \rho)(g_t)_i^2 \quad \text{with } S_i(t = 0) = 0$$

$$(dW_t)_i = \frac{\alpha}{\sqrt{S_i + \epsilon}} (g_t)_i$$

$$W_{t+1} = W_t - dW_t$$

- 1. Compute gradient
- 2. Compute "'discounted" element-wise squared gradient
- 3. Compute gradient update with **parameter-wise** learning rate
- 4. Apply gradient update

Recap and Take Away (if nothing else)

- Vanilla SGD has many problems
 - Noisy gradient updates
 - Zig-zagging in steep-and-shallow environments
 - Susceptible to local minima and saddle points
- Adding momentum (vanilla or Nesterov)
 - Stabilizes updates by mixing local gradients with "velocity"
 - Velocity: Non-zero updates even in domains with zero local gradient
 - Zig-zagging will cancel out
- AdaGrad and RMSProp
 - Parameter-wise accumulation of gradient magnitude (RMSProp with discount rate)
 - Parameter-wise learning rate → "Equal steps" in every direction

Use RMSProp! AdaGrad updates will vanish

Tends to overshoot

Recap and Take Away (if nothing else)

EN.601.482/682 Deep Learning Mathias Unberath 85

$$g_t = \nabla_W L(W_t)$$

$$S_i^{(1)} = \rho_1 S_i^{(1)} + (1 - \rho_1)(g_t)$$

$$S_i^{(2)} = \rho_2 S_i^{(2)} + (1 - \rho_2)(g_t)$$

$$dW_t)_i = \frac{\alpha}{\sqrt{S_i^{(2)} + \epsilon}} S_i^{(1)}$$

$$W_{t+1} = W_t - dW_t$$

$$S_i^{(1)}(t=0) = 0$$

 $S_i^{(2)}(t=0) = 0$

1. Compute gradient

$$S_i^{(1)}(t=0) = 0$$

$$S_i^{(2)}(t=0) = 0$$

- 1. Compute gradient
- Compute first momentum ("velocity")
- 3. Compute second momentum (parameter-wise normalization)

$$g_{t} = \nabla_{W} L(W_{t})$$

$$S_{i}^{(1)} = \rho_{1} S_{i}^{(1)} + (1 - \rho_{1})(g_{t})_{i}$$

$$S_{i}^{(2)} = \rho_{2} S_{i}^{(2)} + (1 - \rho_{2})(g_{t})_{i}^{2}$$

$$(dW_{t})_{i} = \frac{\alpha}{\sqrt{S_{i}^{(2)}} + \epsilon} S_{i}^{(1)}$$

$$W_{t+1} = W_{t} - dW_{t}$$

$$S_i^{(1)}(t=0) = 0$$

$$S_i^{(2)}(t=0) = 0$$

Q: What happens at t=0?

- 1. Compute gradient
- 2. Compute first momentum ("velocity")
- 3. Compute second momentum (parameter-wise normalization)
- 4. Compute update with momentum and parameter-wise learning rate
- 5. Apply update

$$g_{t} = \nabla_{W} L(W_{t})$$

$$S_{i}^{(1)} = \rho_{1} S_{i}^{(1)} + (1 - \rho_{1})(g_{t})_{i}$$

$$S_{i}^{(2)} = \rho_{2} S_{i}^{(2)} + (1 - \rho_{2})(g_{t})_{i}^{2}$$

$$(dW_{t})_{i} = \frac{\alpha}{\sqrt{S_{i}^{(2)} + \epsilon}} S_{i}^{(1)}$$

$$S_{i}^{(1)}(t = 0) = 0$$

$$S_{i}^{(2)}(t = 0) = 0$$

$$S_{i}^{(2)}(t = 0) = 0$$

$$S_{i}^{(2)}(t = 0) = 0$$

Q: What happens at t=0?

Initialization 1st/2nd order momentum is zero; decay rates are very close to 1 2nd momentum very close to zero, step will be large!

→ Bias correction

$$g_t = \nabla_W L(W_t)$$

$$S_i^{(1)} = (\rho_1 S_i^{(1)} + (1 - \rho_1)(g_t)_i) \underbrace{(1 - \rho_1^t)^{(-1)}}_{(1 - \rho_1^t)^{(-1)}}$$

$$S_i^{(2)} = (\rho_2 S_i^{(2)} + (1 - \rho_2)(g_t)_i^2) \underbrace{(1 - \rho_2^t)^{(-1)}}_{(1 - \rho_2^t)^{(-1)}}$$

$$(\mathrm{d}W_t)_i = \frac{\alpha}{\sqrt{S_i^{(2)}} + \epsilon} S_i^{(1)}$$

$$W_{t+1} = W_t - \mathrm{d}W_t$$

$$S_i^{(1)}(t = 0) = 0$$

$$S_i^{(2)}(t = 0) = 0$$

- 1. Compute gradient
- 2. Compute first momentum ("velocity")
- 3. Compute second momentum (parameter-wise normalization)
- 4. Compute update with momentum and parameter-wise learning rate
- 5. Apply update

$$g_{t} = \nabla_{W} L(W_{t})$$

$$S_{i}^{(1)} = (\rho_{1} S_{i}^{(1)} + (1 - \rho_{1})(g_{t})_{i})(1 - \rho_{1}^{t})^{(-1)}$$

$$S_{i}^{(2)} = (\rho_{2} S_{i}^{(2)} + (1 - \rho_{2})(g_{t})_{i}^{2})(1 - \rho_{2}^{t})^{(-1)}$$

$$(dW_{t})_{i} = \frac{\alpha}{\sqrt{S_{i}^{(2)}} + \epsilon} S_{i}^{(1)}$$

$$S_{i}^{(1)}(t = 0) = 0$$

$$S_{i}^{(2)}(t = 0) = 0$$

Bias correction: Compensate the fact that moments are close to zero at start. Adam with $\rho_1 = 0.9, \ \rho_2 = 0.999, \ \alpha = 1e^{-3}$ is a good place to start!

A Note on Learning Rates

Nearly all optimization algorithms have learning rate

→ Typically, the most sensitive hyperparameter

Q: Which learning rate to chose?

A Note on Learning Rates

Nearly all optimization algorithms have learning rate

→ Typically, the most sensitive hyperparameter

→ Learning rate decay!

Step decay: E.g. decay by 0.1 every X epochs

Exponential decay: $\alpha = \alpha_0 e^{-kt}$

1/t decay:
$$\alpha = \frac{\alpha_0}{1+kt}$$

A Note on Learning Rates

Nearly all optimization algorithms have learning rate

→ Typically, the most sensitive hyperparameter

→ Learning rate decay!

Step decay: E.g. decay by 0.1 every X epochs

Exponential decay: $\alpha = \alpha_0 e^{-kt}$

1/t decay:
$$\alpha = \frac{\alpha_0}{1+kt}$$

Not common for Adam.

Reminder

Remember the bias variance tradeoff when optimizing for parameters!

→ Early stopping!

Update Rules, Data Augmentation, Transfer Learning

Data Augmentation

Data Augmentation

Two (primary) reasons:

- 1. Often, training data is very limited
- 2. Model should exhibit some invariance

Frameworks are available:

- https://github.com/mdbloice/Augmentor
- https://github.com/aleju/imgaug

Data Augmentation: Classification

Data Augmentation: Segmentation...

Image Transformations to Use for Augmentation

Rule of thumb

Every transformation that yields a valid image.

Examples: All these are random (within reasonable ranges)

- Horizontal / vertical flips
- Rotations and translations
- Noise (!)
- Scaling
- Cropping
- Color variations
- Distortions
- → We will see an interesting example of this soon!

A Small Aside

So far, we only discussed training-time augmentation

Goal: Make network invariant / robust to that particular variation in data

Remember **dropout**:

Goal: Make network invariant to feature co-adaptation

During training: Disturb input randomly

During application: Marginalize over randomness

Test time augmentation

- → Better statistics for predicted output
- → Some sense of "uncertainty"

Update Rules, Data Augmentation, Transfer Learning

Transfer Learning

Transfer Learning

Training large models with limited data

Computer vision

- ImageNet: 1,2 Mio images
- MS-Celeb-1M: 10 Mio images

Medical imaging

- CheXpert Chest X-ray: 224k images (14-class classification)
- Endoscopic artefact detection: ~2000 mixed resolution, multi-tissue, multi-modality, mixed population (7 class)

The regular approach to learning A whole lot of data

- Set-up network architecture
- Initialize randomly
- Train all parameters

Transfer learning: Very little data

- Set-up network architecture
- Initialize very last layer randomly
- Train new parameters

Transfer learning:

Slightly more data

- Set-up network architecture
- Initialize last layers randomly
- Train new parameters

3x3 conv, 64

3x3 conv, 64

pool/2

3x3 conv, 128

3x3 conv, 128

pool/2 3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

9001/2 3x3 conv, 512

3x3 conv, 512

3x3 conv, 512 pool/2 3x3 conv, 512

3x3 conv, 512

3x3 conv, 512 pool/2 fc 4096

fc 4096

fc 4096

Transfer learning:

Slightly more data

Lower learning rate! E.g. 1/10 of LR

- Set-up network architecture
- Initialize last layers randomly
- Train new parameters

Second step: After some improvement in training

- Finetune complete network
- Carefully adjust LR to avoid "forgetting"

Q: Why does this work?

fc 4096

fc 4096

fc 4096

3x3 conv, 64

3x3 conv, 64

Why does this work?

Fairly generic

low-level features

Rather specific

3x3 conv, 64

3x3 conv, 64

pool/2

3x3 conv, 128

3x3 conv, 128

pool/2 3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

pool/2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512 pool/2 3x3 conv, 512

3x3 conv, 512

3x3 conv, 512 pool/2 fc 4096

fc 4096

fc 4096

Transfer Learning: It's the Norm!

- Transfer learning is not a niche trick for medical image analysis
- It is applied nearly everywhere, including in state-of-the-art CV methods

If your problem allows you to use transfer learning:

- → Use it! Many tasks are very difficult to learn directly!
- → Also invest some thought in smart modeling

For many medical applications: impossible 3D data, time-series data, ...

Update Rules, Data Augmentation, Transfer Learning

Questions?