$x^{3}+y^{3} = \sin(x-2y), y'-?$ $(x^{3}+y^{3})'_{x} = (\sin(x-2y))'_{x}$ $(x^{3})'_{x}+(y^{3})'_{x} = \cos(x-2y)(x-2y)'_{x}$ $3x^{2}+3y^{2}-y' = \cos(x-2y)(x-2y)''_{x}$ $3y^{2}y'+2y'\cos(x-2y) = \cos(x-2y)-3x^{2}$ $y'(3y^{2}+\cos(x-2y)-3x^{2}$ $y' = 3y^{2}+2\cos(x-2y)$

N 7.1.72

 $x = 2\cos t, y = 3\sin t, y'(x) = ?$ $y'(t) = \frac{(3\sin t)_{t}^{2}}{(2\cos t)_{t}^{2}} = \frac{3\cos t}{2} = \frac{3}{2}\cot t$ $y'(x) = x'(t) = \frac{(3\cos t)_{t}^{2}}{(2\cos t)_{t}^{2}} = \frac{3\cos t}{2} = \frac{3}{2}\cot t$

1) $f(x) = \sin(3x), f'''(x) - ?$

f'(x)=(s:n3x)' = cos3x . (3x)' = 3 cos3x

 $f''(x)=(f')_{x}'=(3\cos 3x)_{x}=-9\sin 3x$

f "(x)= -27 cos3x

2) $X = t^{2}$, $y = t^{3}$, y = g(x), $g'' = \frac{7}{2}$ $\frac{x'_{1} \cdot y''_{1} - y'_{1} \cdot x''_{1}}{(x'_{1})^{3}} = \frac{(t^{2})^{2}((t^{3})')' - (t^{3})'((t^{2})')'}{((t^{2})')^{3}} = \frac{2t \cdot 6t - 3t^{2} \cdot 2}{8t^{3}}$ $= \frac{3}{8t^{3}} = \frac{3}{8t} = \frac{3}{4t}$