Question	Marking Guidance	Mark	Comments
8(a)	A ligand is an electron pair / lone pair donor	1	Allow uses lone / electron pair to form a co-ordinate bond
	A bidentate ligand donates two electron pairs (to a transition metal ion) from different atoms / two atoms (on the same molecule / ion)	1	QoL
8(b)	CoCl ₄ ²⁻ diagram	1	Four chlorines attached to Co with net 2- charge correct
	Tetrahedral shape	1	Charge can be placed anywhere, eg on separate formula Penalise excess charges
	109° 28' CI CI	1	Allow 109° to 109.5°
	$[Co(NH_3)_6]^{2+}$ diagram NH_3	1	Six ammonia / NH ₃ molecules attached to Co with 2+ charge correct
	Octahedral shape	1	charge correct
	90°	1	Allow 180° if shown clearly on diagram
			CE= 0 if wrong complex but mark on if only charge is incorrect
8(c)	In different complexes the \underline{d} orbitals / \underline{d} electrons (of the cobalt) will have different energies / \underline{d} orbital splitting will be different	1	
	Light / energy is absorbed causing an electron to be excited	1	
	Different frequency / wavelength / colour of light will be absorbed / transmitted / reflected	1	

8(d)	1 mol of H ₂ O ₂ oxidises 2 mol of Co ²⁺	1	Or $H_2O_2 + 2Co^{2+} \rightarrow 2OH^- + 2Co^{3+}$
	$M_{\rm r} {\rm CoSO_4.7H_2O} = 281$	1	If M _r wrong, max 3 for M1, M4, M5
	Moles $Co^{2+} = 9.87/281 = 0.03512$	1	
	Moles $H_2O_2 = 0.03512/2 = 0.01756$	1	M4 is method mark for (M3)/2 (also scores M1)
	Volume H_2O_2 = (moles × 1000)/concentration = 0.01756 × 1000)/5.00		
	= $3.51 \text{ cm}^3 / (3.51 \times 10^{-3} \text{ dm}^3)$	1	Units essential for answer
			M5 is method mark for (M4) x 1000/5 Allow 3.4 to 3.6 cm ³
			If no 2:1 ratio or ratio incorrect Max 3 for M2, M3 & M5
			Note: Answer of 7 cm ³ scores 3 for M2, M3, M5 (and any other wrong ratio max 3)
			Answer of 16.8 cm 3 scores 3 for M1, M4, M5 (and any other wrong M_r max 3)
			Answer of 33.5 cm 3 scores 1 for M5 only (so wrong M_r AND wrong ratio max 1)