N. Piskunov_Differential_and_Integral_Calculus kitabından Türev Konusunda Alıştırmalar

Exercises on Chapter III

Find the derivatives of functions using the definition of a derivative.

1,
$$y = x^3$$
. Ans. $3x^2$. 2. $y = \frac{1}{x}$. Ans. $-\frac{1}{x^2}$. 3. $y = \sqrt{x}$. Ans. $\frac{1}{2\sqrt{x}}$.

4.
$$y = \frac{1}{\sqrt{x}}$$
. Ans. $-\frac{1}{2x\sqrt{x}}$. 5. $y = \sin^2 x$. Ans. $2 \sin x \cos x$. 6. $y = 2x^2 - x$. Ans. $4x - 1$.

Determine the tangents of the angles of inclination of tangents to the curves: 7. $y=x^3$. a) When x=1. Ans. 3. b) When x=-1. Ans. 3. Make a drawing. 8. $y = \frac{1}{x}$. a) When $x = \frac{1}{2}$. Ans. -4. b) When x = 1. Ans. -1.

Make a drawing. 9.
$$y = \sqrt{x}$$
 when $x = 2$. Ans. $\frac{1}{2\sqrt{2}}$.
Find the derivatives of the functions: 10. $y = x^4 + 3x^2 - 6$. Ans. $y' = 4x^3 + 6x$.
11. $y = 6x^3 - x^2$. Ans. $y' = 18x^2 - 2x$. 12. $y = \frac{x^5}{a+b} - \frac{x^2}{a-b} - x$. Ans. $y' = \frac{x^5}{a+b} - \frac{x^2}{a-b} - x$.

$$= \frac{5x^3}{a+b} - \frac{2x}{a-b} - 1. \quad 13. \quad y = \frac{x^3 - x^2 + 1}{5}. \quad Ans. \quad y' = \frac{3x^2 - 2x}{5}. \quad 14. \quad y = 2ax^3 - \frac{1}{5}$$

$$+10x^{\frac{3}{2}}+2$$
. 16. $y=\sqrt{3x}+\sqrt[3]{x}+\frac{1}{x}$. Ans. $y'=\frac{\sqrt[3]{3}}{2\sqrt[3]{x}}+\frac{1}{3\sqrt[3]{x^2}}-\frac{1}{x^2}$.

17.
$$y = \frac{(x+1)^3}{\frac{3}{x^2}}$$
. Ans. $y' = \frac{3(x+1)^2(x-1)}{\frac{5}{2x^2}}$. 18. $y = \frac{x}{m} + \frac{m}{x} + \frac{x^2}{n^2} + \frac{n^2}{x^2}$.

Ans. $y' = \frac{1}{m} - \frac{m}{x^2} + \frac{2x}{n^2} - \frac{2n^2}{x^3}$. 19. $y = \sqrt[3]{x^2} - 2\sqrt{x} + 5$. Ans. $y' = \frac{2}{3} + \frac{1}{\sqrt[3]{x}} - \frac{2}{3} + \frac{1}{\sqrt$ $-\frac{1}{\sqrt{x}} \cdot 20. \quad y = \frac{ax^2}{\sqrt[3]{x}} + \frac{b}{\sqrt{x}} - \frac{\sqrt[3]{x}}{\sqrt[3]{x}} \cdot Ans. \quad y' = \frac{5}{3} ax^{\frac{2}{3}} - \frac{3}{2} bx^{-\frac{5}{2}} +$ $+\frac{1}{6}x^{-\frac{7}{6}}$ 21. $y = (1 + 4x^3)(1 + 2x^2)$. Ans. $y' = 4x(1 + 3x + 10x^3)$. 22. y = x(2x - 1)(3x + 2). Ans. $y' = 2(9x^2 + x - 1)$. 23. $y = (2x - 1)(x^2 - 6x + 3)$. Ans. $y' = 6x^2 - 26x + 12$. 24. $y = \frac{2x^4}{b^2 - x^2}$. Ans. $y' = \frac{4x^3(2b^2 - x^2)}{(b^2 - x^2)^2}$. 25. $y = \frac{a - x}{a + x}$. Ans. $y' = -\frac{2a}{(a + x)^2}$. 26. $f(t) = \frac{t^3}{1+t^2}$. Ans. $f'(t) = \frac{t^2(3+t^2)}{(1+t^2)^2}$. 27. $f(s) = \frac{(s+4)^2}{s+3}$. Ans. $f'(s) = \frac{(s+4)^2}{s+3}$. $= \frac{(s+2)(s+4)}{(s+3)^2}. \quad 28. \quad y = \frac{x^3+1}{x^2-x-2}. \quad Ans. \quad y' = \frac{x^4-2x^3-6x^2-2x+1}{(x^2-x-2)^2}.$ 29. $y = \frac{x^p}{x^m - a^m}$. Ans. $y' = \frac{x^{p-1} [(p-m) x^m - pa^m]}{(x^m - a^m)^2}$. 30. $y = (2x^2 - 3)^2$. Ans. $y' = 8x(2x^2-3)$. 31. $y = (x^2+a^2)^5$. Ans. $y = 10x(x^2+a^2)^4$. 32. $y = 10x(x^2+a^2)^4$. $=\sqrt{x^2+a^2}$. Ans. $y'=\frac{x}{\sqrt{x^2+a^2}}$. 33. y=(a+x) $\sqrt{a-x}$. Ans. $y'=\frac{a-3x}{2\sqrt{a-x}}$. 34. $y = \sqrt{\frac{1+x}{1-x}}$. Ans. $y' = \frac{1}{(1-x)\sqrt{1-x^2}}$. 35. $y = \frac{2x^2-1}{x\sqrt{1+x^2}}$. Ans. $y' = \frac{1}{x\sqrt{1+x^2}}$ $= \frac{1+4x^2}{\frac{3}{x^2+x+1}}. \quad 36. \quad y = \sqrt[3]{x^2+x+1}. \quad Ans. \quad y' = \frac{2x+1}{3\sqrt[3]{(x^2+x+1)^2}}. \quad 37. \quad y = \frac{3}{x^2+x+1}$ $=(1+\sqrt[3]{x})^3$. Ans. $y'=\left(1+\frac{1}{\sqrt[3]{x}}\right)^2$. 38. $y=\sqrt{x+\sqrt[3]{x+\sqrt[3]{x}}}$. Ans. $y'=\sqrt[3]{x+\sqrt[3]{x}}$. $= \frac{1}{2\sqrt{x+\sqrt{x+\sqrt{x}}}} \left[1 + \frac{1}{2\sqrt{x+\sqrt{x}}} \left(1 + \frac{1}{2\sqrt{x}} \right) \right]. \quad 39. \quad y = \sin^2 x. \quad Ans.$ $y' = \sin 2x$. 40. $y = 2 \sin x + \cos 3x$. Ans. $y' = 2 \cos x - 3 \sin 3x$. $= \tan{(ax+b)}$. Ans. $y' = \frac{a}{\cos^2{(ax+b)}}$. 42. $y = \frac{\sin{x}}{1+\cos{x}}$. Ans. $y' = \frac{1}{1+\cos{x}}$. **43.** $y = \sin 2x \cdot \cos 3x$. Ans. $y' = 2\cos 2x \cos 3x - 3\sin 2x \sin 3x$. **44.** $y = \cot^2 5x$. Ans. $y' = -10 \cot 5x \csc^2 5x$. 45. $y = t \sin t + \cos t$. Ans. $y' = t \cos t$. 46. $y = t \cos t$. = $\sin^3 t \cos t$. Ans. $y' = \sin^2 t (3 \cos^2 t - \sin^2 t)$. 47. $y = a \sqrt{\cos 2x}$. Ans. $y' = \sin^2 t \cos t$. $= -\frac{a \sin 2x}{\sqrt{\cos 2x}} \cdot 48. \ r = a \sin^3 \frac{\varphi}{3} \ Ans. \ r'_{\varphi} = a \sin^2 \frac{\varphi}{3} \cos \frac{\varphi}{3} \cdot 49. \ y = \frac{\tan \frac{x}{2} + \cot \frac{x}{2}}{x}.$

Ans.
$$y' = -\frac{2x \cos x + \sin^2 x \left(\tan \frac{x}{2} + \cot \frac{x}{2}\right)}{x^2 \sin^2 x}$$
. So. $y = a \left(1 - \cos^2 \frac{x}{2}\right)^2$. Ans. $y' = 2a \sin^3 \frac{x}{2} \cos \frac{x}{2}$. S1. $y = \frac{1}{2} \tan^2 x$. Ans. $y' = \tan x \sec^2 x$. S2. $y = \ln \cos x$.

Ans. $y' = -\tan x$. S3. $y = \ln \tan x$. Ans. $y' = \frac{2}{\sin 2x}$. 54. $y = \ln \sin^2 x$. Ans. $y' = 2 \cot x$. 55. $y = \frac{\tan x - 1}{\sec x}$. Ans. $y' = \sin x + \cos x$. 56. $y = \ln \sqrt{\frac{1 + \sin x}{1 - \sin x}}$.

Ans. $y' = \frac{1}{\cos x}$. 57. $y = \ln \tan \left(\frac{\pi}{4} + \frac{x}{2}\right)$. Ans. $y' = \frac{1}{\cos x}$. 58. $y = \sin (x + a) \times \cos (x + a)$. Ans. $y' = \cos 2(x + a)$. 59. $f(x) = \sin (\ln x)$. Ans. $f'(x) = \frac{\cos (\ln x)}{x}$. 60. $f(x) = \tan (\ln x)$. Ans. $f'(x) = \frac{\sec^2 (\ln x)}{x}$. 61. $f(x) = \sin (\cos x)$.

Ans. $f'(x) = -\sin x \cos (\cos x)$. 62. $f(x) = \frac{1}{3} \tan^3 \varphi - \tan \varphi + \varphi$. Ans. $\frac{df}{d\varphi} = \tan^4 \varphi$. 63. $f(x) = (x \cot x)^2$. Ans. $f'(x) = 2x \cot x (\cot x - x \csc^2 x)$. 64. $y = \ln (ax + b)$. Ans. $y' = \frac{a}{ax + b}$. 65. $y = \log_a (x^2 + 1)$. Ans. $y' = \frac{2x}{(x^2 + 1)\ln a}$. 66. $y = \ln \frac{1 + x}{1 - x}$. Ans. $y' = \frac{2}{1 - x^2}$. 67. $y = \log_a (x^2 + 1)$. Ans. $y' = \frac{2x - \cos x}{(x^2 - \sin x)\ln 3}$. 68. $y = \ln \left(\frac{1 + x}{1 - x}\right)$. Ans. $y' = \frac{4x}{1 - x^2}$. 69. $y = \ln (x^2 + x)$. Ans. $y' = \frac{2x + 1}{x^2 + x}$. 70. $y = \ln (x^3 - 2x + 5)$. Ans. $y' = \frac{3\ln^2 x}{x}$. 73. $y = \ln (x + \sqrt{1 + x^2})$. Ans. $y' = \ln (x + \sqrt{1 + x^2})$.

88.
$$r = a^{\theta}$$
. Ans. $r' = a^{\theta} \ln a$. 89. $r = a^{\ln \theta}$. Ans. $\frac{dr}{d\theta} = \frac{a^{\ln \theta} \ln a}{\theta} = \theta^{\ln a - 1} \ln a$.

90. $y = e^{x} (1 - x^{2})$. Ans. $y' = e^{x} (1 - 2x - x^{2})$. 91. $y = \frac{e^{x} - 1}{e^{x} + 1}$. Ans. $y' = \frac{2e^{x}}{(e^{x} + 1)^{2}}$.

92. $y = \ln \frac{e^{x}}{1 + e^{x}}$. Ans. $y' = \frac{1}{1 + e^{x}}$. 93. $y = \frac{a}{2} (e^{\frac{x}{a}} - e^{-\frac{x}{a}})$. Ans. $y' = \frac{1}{2} (e^{\frac{x}{a}} + e^{-\frac{x}{a}})$. 94. $y = e^{\sin x}$. Ans. $y' = e^{\sin x} \cos x$. 95. $y = a^{\tan nx}$. Ans. $y' = e^{\tan nx} \sec^{2} nx \ln a$. 96. $y = e^{\cos x} \sin x$. Ans. $y' = e^{\cos x} (\cos x - \sin^{2} x)$.

97. $y = e^{x} \ln \sin x$. Ans. $y' = e^{x} (\cot x + \ln \sin x)$. 98. $y = x^{n}e^{\sin x}$. Ans. $y' = x^{n-1}e^{\sin x} (n + x \cos x)$. 99. $y = x^{x}$. Ans. $y' = x^{x} (\ln x + 1)$. 100. $y = x^{\frac{1}{x}}$. Ans. $y' = x^{\frac{1}{x}} \left(\frac{1 - \ln x}{x^{2}}\right)$. 101. $y = x^{\ln x}$. Ans. $y' = x^{\ln x - 1} \ln x^{2}$. 102. $y = e^{x^{2}}$. Ans. $y' = e^{x^{2}} (1 + \ln x) x^{x}$. 103. $y = \left(\frac{x}{n}\right)^{nx}$. Ans. $y' = n \left(\frac{x}{n}\right)^{nx} \left(1 + \ln \frac{x}{n}\right)$. 104. $y = x^{\sin x}$. Ans. $y' = x^{\sin x} \left(\frac{\sin x}{x} + \ln x \cos x\right)$. 105. $y = (\sin x)^{x}$. Ans. $y' = (\sin x)^{x}$. Ans. y'

Find the derivatives of the functions after first taking logarithms of these functions:

110.
$$y = \sqrt[3]{\frac{x(x^2+1)}{(x-1)^2}}$$
. Ans. $y' = \frac{1}{3} \sqrt[3]{\frac{x(x^2+1)}{(x-1)^2}} \left(\frac{1}{x} + \frac{2x}{x^2+1} + \frac{2}{x-1}\right)$.
111. $y = \frac{(x+1)^3 \sqrt{(x-2)^3}}{\sqrt[5]{(x-3)^2}}$. Ans. $y' = \frac{(x+1)^3 \sqrt[4]{(x-2)^3}}{\sqrt[5]{(x-3)^2}} \left(\frac{3}{x+1} + \frac{3}{4(x-2)} - \frac{2}{5(x-3)}\right)$. 112. $y = \frac{(x+1)^2}{(x+2)^3 (x+3)^4}$. Ans. $y' = -\frac{(x+1)(5x^2+14x+5)}{(x+2)^4 (x+3)^5}$.
113. $y = \frac{\sqrt[5]{(x-1)^2}}{\sqrt[4]{(x-2)^3} \sqrt[3]{(x-3)^7}}$. Ans. $y' = \frac{-161x^2+480x-271}{60\sqrt[5]{(x-1)^3} \sqrt[4]{(x-2)^7} \sqrt[3]{(x-3)^{10}}}$.

114.
$$y = \frac{x(1+x^2)}{V(1-x^2)}$$
. Ans. $y' = \frac{1+3x^2-2x^4}{(1-x^2)^2}$. 115. $y = x^5 (a+3x)^3 (a-2x)^2$. Ans. $y' = \frac{1}{(1-x^2)^2}$. 116. $y = \arcsin \frac{x}{a}$. Ans. $y' = \frac{1}{Va^2-x^2}$. 117. $y = (\arcsin x)^2$. Ans. $y' = \frac{2 \arcsin x}{V(1-x^2)}$. 118. $y = \arccos (x^2+1)$. Ans. $y' = \frac{2}{1+(x^2+1)^2}$. 119. $y = \arccos \cot \frac{2x}{1-x^2}$. Ans. $y' = \frac{2}{1+x^2}$. 120. $y = \arccos (x^2)$. Ans. $y' = \frac{-2x}{V(1-x^2)}$. 121. $y = \frac{\arccos x}{x}$. Ans. $y' = \frac{-(x+V(1-x^2)\arccos x)}{x^2V(1-x^2)}$. 122. $y = \arcsin \frac{x+1}{V(2)}$. Ans. $y' = \frac{1}{V(2-x^2)}$. 123. $y = x\sqrt{a^2-x^2} + a^2 \arcsin \frac{x}{a}$. Ans. $y' = \sqrt{\frac{a-x}{a+x}}$. 125. $u = \arccos (\frac{v+a}{1-ax})$. Ans. $\frac{du}{dv} = \frac{1}{1+v^2}$. 126. $y = \frac{1}{\sqrt{3}}$ arc $\cot (\frac{x+3}{2})$. Ans. $y' = \frac{x^2+1}{x^4+x^2+1}$. 127. $y = x \arcsin x$. Ans. $y' = \frac{1}{x\sqrt{1-\ln^2 x}}$. 128. $f(x) = \arccos (\ln x)$. Ans. $f'(x) = \frac{1}{x\sqrt{1-\ln^2 x}}$. 129. $f(x) = \arcsin \sqrt{x}$ Ans. $f'(x) = \frac{\cos x}{1+\cos x}$ 130. $y = \frac{e^{\arccos (x+y)}}{1+\cos x}$ 132. $y = \arctan (x)$ Ans. $y' = \frac{e^{\arccos (x+y)}}{1+\cos x}$ 134. $y = \arcsin (x)$ Ans. $y' = \frac{e^{\arccos (x+y)}}{1+\cos x}$ 135. $y = \arctan (x)$ Ans. $y' = \frac{e^{\arccos (x+y)}}{1+\cos x}$ 136. $y = \arctan (x)$ Ans. $y' = \frac{2}{e^x+e^{-x}}$. 137. $y = \frac{e^{\arccos (x+y)}}{1+\cos x}$ 138. $y = \arctan (x)$ Ans. $y' = \frac{e^{\arccos (x+y)}}{1+\cos x}$ 139. $y = \arctan (x)$ Ans. $y' = \frac{2}{e^x+e^{-x}}$. 130. $y = \frac{e^{\cos (x+y)}}{1+\cos x}$ 136. $y = \arctan (x)$ Ans. $y' = \frac{2}{e^x+e^{-x}}$. 137. $y = \frac{e^{\cos (x+y)}}{1+\cos (x)}$ 136. $y = \arctan (x)$ Ans. $y' = \frac{2a^2}{x^4-a^4}$. 137. $y = \frac{1}{x^4+x^4-x^4}$. 139. $y = \frac{x^4}{1-x^4}$. 138. $y = \frac{3x^4-1}{1+x^4-x^4}$. 147. $y' = \frac{2x^4-1}{1+x^4-x^4}$. 159. $y' = \frac{x^4+1}{x^4-x^4}$. 138. $y' = \frac{x^4+1}{x^4-x^4-x^4}$. 179. $y' = \frac{x^4+1}{x^4-x^4}$. 179. $y' = \frac{x^4+1}{x^4-x^4}$. 170. $y' = \frac{x^4+$

Ans.
$$y' = \frac{1}{x^3 - 1}$$
. 140. $y = \ln \frac{1 + x\sqrt{2} + x^2}{1 - x\sqrt{2} + x^2} + 2 \arctan \frac{x\sqrt{2}}{1 - x^2}$. Ans. $y' = \frac{4\sqrt{2}}{1 + x^4}$.

141. $y = \arccos \frac{x^{2n} - 1}{x^{2n} + 1}$. Ans. $\frac{2n|x|^n}{x(x^{2n} + 1)}$.

Differentiation of Implicit Functions

Find
$$\frac{dy}{dx}$$
 if: 142. $y^2 = 4px$. Ans. $\frac{dy}{dx} = \frac{2p}{y}$. 143. $x^2 + y^2 = a^2$.

Ans. $\frac{dy}{dx} = -\frac{x}{y}$. 144. $b^2x^2 + a^2y^2 = a^2b^2$. Ans. $\frac{dy}{dx} = -\frac{b^2x}{a^2y}$. 145. $y^3 - 3y + 2ax = 0$.

Ans. $\frac{dy}{dx} = \frac{2a}{3(1-y^2)}$. 146. $x^{\frac{1}{2}} + y^{\frac{1}{2}} = a^{\frac{1}{2}}$. Ans. $\frac{dy}{dx} = -\sqrt{\frac{y}{x}}$. 147. $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$. Ans. $\frac{dy}{dx} = -\sqrt{\frac{y}{x}}$. 148. $y^2 - 2xy + b^2 = 0$. Ans. $\frac{dy}{dx} = \frac{y}{y-x}$.

149. $x^3 + y^3 - 3axy = 0$. Ans. $\frac{dy}{dx} = \frac{ay - x^2}{y^2 - ax}$. 150. $y = \cos(x + y)$. Ans. $\frac{dy}{dx} = -\frac{\sin(x + y)}{1 + \sin(x + y)}$. 151. $\cos(xy) = x$. Ans. $\frac{dy}{dx} = -\frac{1 + y \sin(xy)}{x \sin(xy)}$.

Find $\frac{dy}{dx}$ of functions represented parametrically:

152.
$$x = a \cos t$$
; $y = b \sin t$. Ans. $\frac{dy}{dx} = -\frac{b}{a} \cot t$. 153. $x = a (t - \sin t)$; $y = a (1 - \cos t)$. Ans. $\frac{dy}{dx} = \cot \frac{t}{2}$. 154. $x = a \cos^3 t$; $y = b \sin^3 t$. Ans. $\frac{dy}{dx} = -\frac{b}{a} \tan t$. 155. $x = \frac{3at}{1+t^2}$; $y = \frac{3at^2}{1+t^2}$. Ans. $\frac{dy}{dx} = \frac{2t}{1-t^2}$. 156. $u = 2 \ln \cot s$; $v = \tan s + \cot s$. Show that $\frac{du}{dv} = \tan 2s$.

Find the tangents of angles of the slopes of tangent lines to curves:

157. $x = \cos t$, $y = \sin t$ at the point $x = -\frac{1}{2}$, $y = \frac{\sqrt{3}}{2}$. Make a drawing Ans. $\frac{1}{\sqrt{3}}$. 158. $x = 2\cos t$, $y = \sin t$ at the point x = 1, $y = -\frac{\sqrt{3}}{2}$. Make a drawing. Ans. $\frac{1}{2\sqrt{3}}$ 159. $x = a(t - \sin t)$, $y = a(1 - \cos t)$ when $t = \frac{\pi}{2}$. Make a drawing. Ans. 1. 160. $x = a\cos^3 t$, $y = a\sin^3 t$ when $t = \frac{\pi}{4}$. Make a drawing. Ans. -1. 161. A body thrown at an angle α to the horizon (in airless space) described a curve, under the force of gravity, whose equations are: $x = \frac{\pi}{4}$.

= $v_0 \cos \alpha t$, $y = v_0 \sin \alpha t - \frac{gt^2}{2} (g = 9.8 \text{ m/sec}^2)$. Knowing that $\alpha = 60^\circ$, $v_0 = 50 \text{ m/sec}$, determine the direction of motion when: 1) t = 2 sec; 2) t = 7 sec. Make a drawing. Ans. 1) $\tan \varphi_1 = 0.948$, $\varphi_1 = 43^\circ 30'$; 2) $\tan \varphi_2 = -1.012$, $\varphi_2 = +134^\circ 7'$.

Find the differentials of the following functions:

162.
$$y = (a^2 - x^2)^5$$
. Ans. $dy = -10x (a^2 - x^2)^4 dx$. 163. $y = \sqrt{1 + x^2}$. Ans. $dy = \frac{x dx}{\sqrt{1 + x^2}}$. 164. $y = \frac{1}{3} \tan^3 x + \tan x$. Ans. $dy = \sec^4 x dx$. 165. $y = \frac{x \ln x}{1 - x} + \ln(1 - x)$. Ans. $dy = \frac{\ln x dx}{(1 - x)^2}$.

Calculate the increments and differentials of the functions:

166. $y = 2x^2 - x$ when x = 1, $\Delta x = 0.01$. Ans. $\Delta y = 0.0302$, dy = 0.03. 167. Given $y = x^3 + 2x$. Find Δy and dy when x = -1, $\Delta x = 0.02$. Ans. $\Delta y = 0.098808$, dy = 0.1. 168. Given $y = \sin x$. Find dy when $x = \frac{\pi}{3}$, $\Delta x = \frac{\pi}{18}$. Ans. dy = 0.098808

Ans. 18x-4. 173. $y=\sqrt[5]{x^3}$. Find y'''. Ans. $\frac{42}{125}x^{-\frac{12}{5}}$. 174. $y=x^6$. Find $y^{(6)}$.

Ans. 61. 175. $y = \frac{C}{x^n}$. Find y''. Ans. $\frac{n(n+1)C}{x^{n+2}}$. 176. $y = \sqrt{a^2 - x^2}$. Find y''.

Ans.
$$-\frac{a^2}{(a^2-x^2)\sqrt{a^2-x^2}}$$
. 177. $y=2\sqrt{x}$. Find $y^{(4)}$. Ans. $-\frac{15}{8\sqrt{x^7}}$. 178. $y=$

$$= ax^2 + bx + c$$
. Find y''' . Ans. 0. 179. $f(x) = \ln(x+1)$. Find $f^{IV}(x)$.

Ans.
$$-\frac{6}{(x+1)^2}$$
. 180. $y = \tan x$. Find y''' . Ans. $6 \sec^4 x - 4 \sec^2 x$. 181. $y = \ln \sin x$.

Find. y''. Ans. $2 \cot x \csc^2 x$. 182. $f(x) = \sqrt{\sec 2x}$. Find. f''(x). Ans. $f''(x) = 3 [f(x)]^5 - f(x)$. 183. $y = \frac{x^3}{1-x}$. Find $f^{(4)}(x)$. Ans. $\frac{4!}{(1-x)^5}$. 184. $p = \frac{x^3}{1-x}$

$$= (q^2 + a^2) \arctan \frac{q}{a}$$
 Find $\frac{d^3p}{dq^3}$. Ans. $\frac{4a^3}{(a^2 + g^2)^2}$. 185. $y = \frac{a}{2} (e^{\frac{x}{a}} + e^{-\frac{x}{a}})$.

Find
$$\frac{d^2y}{dx^2}$$
. Ans. $\frac{y}{a^2}$. 186. $y = \cos ax$. Find $y^{(n)}$. Ans. $a^n \cos \left(ax + n \frac{\pi}{2}\right)$.

187.
$$y = a^x$$
. Find $y^{(n)}$. Ans. $(\ln a^n) a^x$. 188. $y = \ln (1+x)$. Find $y^{(n)}$.

Ans.
$$(-1)^{n-1} \frac{(n-1)!}{(1+x)^n}$$
. 189. $y = \frac{1-x}{1+x}$. Find $y^{(n)}$. Ans. $2(-1)^n \frac{n!}{(1+x)^{n+1}}$.

190.
$$y = e^x x$$
. Find $y^{(n)}$. Ans. $e^x (x + n)$. 191. $y = x^{n-1} \ln x$. Find $y^{(n)}$.

Ans. $\frac{(n-1)!}{x}$. 192. $y = \sin^2 x$. Find $y^{(n)}$. Ans. $-2^{n-1}\cos\left(2x + \frac{\pi}{2}n\right)$. 193. $y = x\sin x$. Find $y^{(n)}$. Ans. $x\sin\left(x + \frac{\pi}{2}n\right) - n\cos\left(x + \frac{\pi}{2}n\right)$. 194. If $y = e^x\sin x$, prove that y'' - 2y' + 2y = 0. 195. $y^2 = 4ax$. Find $\frac{d^2y}{dx^2}$. Ans. $-\frac{4a^2}{y^3}$. 196. $b^2x^2 + a^2y^2 = a^2b^2$. Find $\frac{d^2y}{dx^2}$ and $\frac{d^3y}{dx^3}$. Ans. $-\frac{b^4}{a^2y^3}$; $-\frac{3b^6x}{a^4y^5}$. 197. $x^2 + y^2 = r^2$. Find $\frac{d^2y}{dx^2}$. Ans. $-\frac{r^2}{y^3}$. 198. $y^2 - 2xy = 0$. Find $\frac{d^3y}{dx^3}$. Ans. 0. 199. $y = \tan(\varphi + y)$. Find $\frac{d^3y}{dx^3}$. Ans. $\frac{1}{2} \cos(\varphi + y) = 1$. Find $\frac{d^2y}{dx^2}$. Ans. $\frac{1}{2} \cos(\varphi + y) = 1$. Find $\frac{d^2y}{dx^2}$. Ans. $\frac{1}{2} \cos(\varphi + y) = 1$. 201. $e^x + x = e^y + y$. Find $\frac{d^2y}{dx^2}$. Ans. $\frac{1}{2} \cos(\varphi + y) = 1$. 202. $y^3 + x^3 - 3axy = 0$. Find $\frac{d^2y}{dx^2}$. Ans. $\frac{2a^3xy}{(y^2 - ax)^3}$. 203. $x = a(t - \sin t)$, $y = a(1 - \cos t)$. Find $\frac{d^2y}{dx^2}$. Ans. $\frac{1}{4a\sin^4\left(\frac{t}{2}\right)}$. 204. $x = a\cos 2t$, $y = b\sin^2 t$. Show that $\frac{d^2y}{dx^2} = 0$. 205. $x = a\cos t$, $y = a\sin t$. Find $\frac{d^3y}{dx^3}$. Ans. $-\frac{3\cos t}{a^2\sin^5 t}$. 206. Show that $\frac{d^{2n}}{dx^{2n}}(\sinh x) = \sinh x$; $\frac{d^{2n+1}}{dx^{2n+1}}(\sinh x) = \cosh x$.

Equations of a Tangent and Normal. Lengths of a Subtangent and a Subnormal

207. Write the equations of the tangent and normal to the curve $y=x^3-3x^2-x+5$ at the point M(3, 2). Ans. The tangent is 8x-y-22=0; the normal, x+8y-19=0. 208. Find the equations of the tangent and normal of the length of the subtangent and subnormal of the circle $x^2+y^2=r^2$ at the point $M(x_1, y_1)$. Ans. The tangent is $xx_1+yy_1=r^2$; the normal is $x_1y-y_1x=0$; $s_T=\left|-\frac{y_1^2}{x_1}\right|$; $s_N=|-x_1|$.

209. Show that the subtangent of the parabola $y^2 = 4px$ at any point is divided into two by the vertex, and the subnormal is constant and equal to 2p. Make a drawing.

210. Find the equation of a tangent at the point $M(x_1, y_1)$:

- a) To the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Ans. $\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$.
- b) To the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$. Ans. $\frac{xx_1}{a^2} \frac{yy_1}{b^2} = 1$.

211. Find the equations of the tangent and normal to the Witch of Agnesi $y = \frac{8a^3}{4a^2 + x^2}$ at the point where x = 2a. Ans. The tangent is x + 2y = 4a; the normal is y = 2x - 3a.

212. Show that the normal to the curve $3y = 6x - 5x^3$ drawn to the point $M\left(1,\frac{1}{3}\right)$ passes through the coordinate origin.

213. Show that the tangent to the curve $\left(\frac{x}{a}\right)^n + \left(\frac{y}{b}\right)^n = 2$ at the point M(a, b) is $\frac{x}{a} + \frac{y}{b} = 2$.

214. Find the equation of that tangent to the parabola, $y^2 = 20x$, which forms an angle of 45° with the x-axis. Ans. y = x + 5 [at the point (5, 10)]. 215. Find the equations of those tangents to the circle $x^2 + y^2 = 52$, which are parallel to the straight line 2x + 3y = 6. Ans. $2x + 3y \pm 26 = 0$. 216. Find the equations of those tangents to the hyperbola $4x^2 - 9y^2 = 36$, which are perpendicular to the straight line 2y + 5x = 10. Ans. There are no such tangents

such tangents.

217. Show that the segment (lying between the coordinate axes) of the tangent to the hyperbola xy=m is divided into two by the point of tangency. 218. Prove that the segment (between the coordinate axes) of a tangent

to the asteroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ is of constant length.

219. At what angle α do the curves $y = a^x$ and $y = b^x$ intersect? Ans. $\ln a - \ln b$ $\tan \alpha = \frac{1}{1 + \ln a \cdot \ln b}$

220. Find the lengths of the subtangent, subnormal, tangent and normal of the cycloid $x = a(\theta - \sin \theta)$, $y = a(1 - \cos \theta)$ at the point at which $\theta = \frac{\pi}{2}$. Ans. $s_T = a$; $s_N = a$; $T = a \sqrt{2}$; $N = a \sqrt{2}$.

221. Find the quantities s_T , s_N , T and N for the hypocycloid $x = 4a \cos^3 t$, $y = 4a \sin^3 t$. Ans. $s_T = -4a \sin^2 t \cos t$; $s_N = -4a \frac{\sin^4 t}{\cos t}$; $T = 4a \sin^2 t$; $N = -4a \sin^2 t$ $= 4a \sin^2 t \tan t$.

Miscellaneous Problems

Find the derivatives of the following functions: 222. $y = \frac{\sin x}{2\cos^2 x} - \frac{1}{2} \times$ $\times 1$ intan $\left(\frac{\pi}{4} - \frac{x}{2}\right)$. Ans. $y' = \frac{1}{\cos^3 x}$. 223. $y = \arcsin \frac{1}{x}$. Ans. $y' = \frac{1}{|x| \sqrt{x^2 - 1}}$. Ans. $y' = \frac{\cos x}{|\cos x|}$. 225. $y = \frac{2}{\sqrt{a^2 - b^2}} \times$ $y = \arcsin (\sin x)$. $\times \arctan\left(\sqrt{\frac{a-b}{a+b}}\tan\frac{x}{2}\right) \ (a>0, \ b>0). \ Ans. \ y'=\frac{1}{a+b\cos x}, \ 226. \ y=|x|.$ Ans. $y' = \frac{x}{|x|}$. 227. $y = \arcsin \sqrt{1-x^2}$. Ans. $y' = -\frac{x}{|x|} \frac{1}{\sqrt{1-x^2}}$.

228. From the formulas for the volume and surface of a sphere,

$$v = \frac{4}{3} \pi r^3$$
 and $s = 4\pi r^2$

it follows that $\frac{dv}{dr} = s$. Explain the geometric significance of this result. Find a similar relationship between the area of a circle and the length of the circumference.

229. In a triangle ABC, the side a is expressed in terms of the other two sides b, c and the angle A between them by the formula

$$a = \sqrt{b^2 + c^2 - 2bc \cos A}.$$

For b and c constant, side a is a function of the angle A. Show that $\frac{da}{dA} = h_a$, where h_a is the altitude of the triangle corresponding to the base a. Interpret this result geometrically.

230. Using the differential concept, determine the origin of the approxi-

mate formulas

$$V\overline{a^2+b^2} \approx a + \frac{b}{2a}$$
, $\sqrt[3]{a^3+b} \approx a + \frac{b}{3a^2}$

where |b| is a number small compared with a.

231. The period of oscillation of a pendulum is computed by the formula

$$T = \pi \sqrt{\frac{l}{g}}$$
.

In calculating the period T, how will the error be affected by an error of 1% in the measurement of: 1) the length of the pendulum l; 2) the acceleration

of gravity g? Ans. 1) $\approx 1/2\%$; 2) $\approx 1/2\%$.

232. The tractrix has the property that for any point of it, the segment of the tangent T remains constant in length. Prove this on the basis of: 1) the equation of the tractrix in the form

$$x = \sqrt{a^2 - y^2} + \frac{a}{2} \ln \frac{a - \sqrt{a^2 - y^2}}{a + \sqrt{a^2 - y^2}}$$
 $(a > 0);$

2) the parametric equations of the curve

$$x = a \left(\ln \tan \frac{t}{2} + \cos t \right),$$

$$y = a \sin t.$$

233. Prove that the function $y = C_1 e^x + C_2 e^{-2x}$ satisfies the equation y'' + 3y' + 2y = 0 (here C_1 and C_2 are constants).

234. Putting $y = e^x \sin x$, $z = e^x \cos x$ prove the equalities y'' = 2z, z'' = -2y.

235. Prove that the function $y = \sin (m \arcsin x)$ satisfies the equation $(1-x^2)y''-xy'+m^2y=0.$

236. Prove that if
$$(a+bx)e^{\frac{y}{x}}=x$$
, then $x^2\frac{d^2y}{dx^2}=\left(x\frac{dy}{dx}-y\right)^2$.