DS 623 PE03

For PE03, your code in the Jupyter Notebook should have the following properties:

- 1) Input: v₁ and v₂ in R³ (i.e., two three-dimensional vectors)
- 2) Output:
 - a. I_1 norm of v_1 :
 - b. I_1 norm of v_2 :
 - c. I_1 distance between v_1 and v_2 :
 - d. Triangular inequality: $||v_1||_1 + ||v_2||_1 \ge ||v_1+v_2||_1$; True/False
 - Display the length of each vector v1, v2, and v1+v2 with inequality; display "True" if the triangular inequality holds.
 - e. l_2 norm of v_1 :
 - f. I_2 norm of v_2 :
 - g. l_2 distance between v_1 and v_2 :
 - h. Triangular inequality: $||v_1||_2 + ||v_2||_2 \ge ||v_1+v_2||_2$; True/False
 - Same as in d
 - i. (optional) Area of the parallelogram formed by v1 and v2 in L2. (hint: area = base x height; you can get height using the property of dot product and sin().)

For this assignment, you can use any NumPy and SciPy operations. Use three decimal places for non-integer values.

Example)

Enter v1: np.array([2, 1, -3]) Enter v2: np.array([-3, 0, 5])

Output:

I1 norm of v1: 6 I1 norm of v2: 8

I1 distance between v1 and v2: 8 Triangular inequality: $6 + 8 \ge 8$; True

I2 norm of v1: 3.742 I2 norm of v2: 5.831

12 distance between v1 and v2: 5.477

Triangular inequality: $3.742 + 5.831 \ge 5.477$; True

Area of the parallelogram formed by v1 and v2 (in l2): 19.874