《基础物理实验》实验报告

1 实验目的及要求

- 1. 测量非线性元件的伏安曲线
- 2. 整流电路和电容特性

2 实验仪器

发光 LED/二极管 1N4007/稳压二极管、小灯泡、数字电源、模拟横流恒压电源、模拟电源、万用表、转接头、面包板

3 实验内容

3.1. 测量发光二极管的伏安曲线

- 1、使用万用表测量电阻阻值和二极管元件的正向导通压降。并估算、选用电源电压、电阻。
- 2、设计、搭建电路,选择合适的电源电压和万用表档位、量程。
- 3、测量、绘制伏安特性曲线

3.2. 整流滤波电路

- 1、用万用表测量电容值。
- 2、搭建二极管整流桥电路。使用一个电阻作为负载。观察、比较滤波前后的波形和幅值变化。
- 3、在电路中加入不同大小的电容进行滤波,比较大电容、有电容、无电容的波形变化。
- 4、用信号发生器产生方波,用不同的电阻与电容串联,观察充放电过程、计算充电常数。

4 实验电路设计与数据分析

4.1. 测量发光二极管的伏安曲线

4.1.1. 电路设计

图 1: 电路图

图 2: 电路实现

数据处理:

电压 (V)	1.72	1.74	1.76	1.77	1.78	1.79	1.80	1.83	1.85	1.90	1.95	2.00
电流 (mA)	0.11	0.21	0.33	0.42	0.53	0.70	0.95	1.94	2.40	5.75	10.52	16.87

\vee	mA
1.896×	0.014
1.72	0.11
1-74	0.21
1.76	0.33
1-77	0.42
1.78	0 .53
1.79	0.64
1.79	0.70
1-30	0.82
1.30	0.95
1.83	1.94
1.85	2.40
1.90	5.75
1.95	10.52
2.00	16.87

图 3: 原始数据记录

数据中有两组疑似为记录错误, 在统计时去除

图 4: 数据分析

上图说明发光二极管的伏安特性确实存在指数关系,与公式 $I=I_s(e^{\frac{U}{U_r}}-1)$ 吻合

4.1.2. 整流滤波电路

图 5: 半波整流与全波整流电路

图 6: 桥式整流电路

图 7: 整流结果

实际实验时,利用桥式整流电路并不能得到完美的波形,这是因为二极管存在导通电压,在输入 电压低于或约等于导通电压时,二极管不会导通(电阻趋于无穷大),因此电阻不会有分压,导致波形 低于导通电压的部分被截断