

Games for Controller Synthesis

Laurent Doyen

EPFL

MoVeP'08

Given a plant P ...

Given a plant P and a specification φ ,...

Maintain the temperature in the range $[T_{min}, T_{max}]$.

Given a plant P and a specification φ , is there a controller C such that the closed-loop system $\mathbb{C} \parallel \mathbb{P}$ satisfies φ ?

Synthesis as a game

Given a plant P and a specification φ, is there a controller C such that the closed-loop system $\mathbb{C} \parallel \mathbb{P}$ satisfies ϕ ?

Specification
$$\varphi \equiv \varphi_1(a_1,u_1) \wedge \varphi_2(a_2,u_2)$$

Plant: 2-players game arena

Input (Player 1, System, Controller)

VS.

Output (Player 2, Environment, Plant)

Specification: game objective

for Player 1

Given a plant P and a specification φ , is there a controller C such that the closed-loop system C \parallel P satisfies φ ?

If a controller C exists, then construct such a controller.

Synthesis as a game

Specification: game objective for Player 1

Controller: winning strategy for Player 1

We are often interested in simple controllers: finite-state, or even stateless (memoryless).

We are also often interested in "least restrictive" controllers.

Objective: avoid Bad

Winning strategy = Controller

Games for Synthesis

Several types of games:

- Turn-based vs. Concurrent
- Perfect-information vs. Partial information
- Sure vs. Almost-sure winning
- Objective: graph labelling vs. monitor
- Timed vs. untimed
- Stochastic vs. deterministic
- etc....

This tutorial: Games played on graphs, 2 players, turn-based, ω-regular objectives.

Games for Synthesis

This tutorial: Games played on graphs, 2 players, turn-based, ω-regular objectives.

Outline

Part #1: perfect-information

Part #2: partial-information

Two-player game structures

belongs to Player 2

Playing the game: the players move a token along the edges of the graph

- The token is initially in v₀.
- In rounded states, Player 1 chooses the next state.
- In square states, Player 2 chooses the next state.

belongs to Player 2

Play: v₀

belongs to Player 2

Play: $v_0 v_1$

belongs to Player 2

Play: $v_0 v_1 v_3$

belongs to Player 2

Play: $v_0 v_1 v_3 v_0$

belongs to Player 2

Play: $v_0 v_1 v_3 v_0 v_2 ...$

Two-player game graphs

A 2-player game graph $G = \langle V_1, V_2, \widehat{v}, \mathsf{Succ} \rangle$ consists of:

- V_1 the set of Player 1 states,
- V_2 the set of Player 2 states, with $V_1 \cap V_2 = \emptyset$ and $V := V_1 \cup V_2$;
- $\hat{v} \in V$ the initial state,
- Succ : $V \to 2^V \setminus \emptyset$ the transition relation.

Two-player game graphs

A **play** in $G = \langle V_1, V_2, \hat{v}, Succ \rangle$ is an infinite sequence $w = v_0 v_1 v_2 \cdots \in V^{\omega}$ such that:

$$V = V_1 \cup V_2$$

 $\mathsf{Succ}: V \to 2^V \setminus \varnothing$

1.
$$v_0 = \hat{v}$$

1.
$$v_0 = \hat{v}$$
,
2. $v_{i+1} \in \operatorname{Succ}(v_i)$ for all $i \geq 0$.

Who is winning?

Play: $v_0 v_1 v_3 v_0 v_2 ...$

Who is winning?

Play: $v_0 v_1 v_3 v_0 v_2 ...$

A winning condition for Player k is a set $W_k \subseteq V^{\omega}$ of plays.

Who is winning?

A winning condition for Player k is a set $W_k \subseteq V^{\omega}$ of plays.

A 2-player game is **zero-sum** if $W_2 = V^{\omega} \setminus W_1$.

Winning condition

A winning condition for Player k is a set $W_k \subseteq V^{\omega}$ of plays.

Given $\mathcal{T} \subseteq V$, let

•
$$\operatorname{Reach}(\mathcal{T}) = \{v_0 v_1 \cdots \in V^{\omega} \mid \exists i : v_i \in \mathcal{T}\}$$

Touch \mathcal{T} eventually

Reachability

Winning condition

A winning condition for Player k is a set $W_k \subseteq V^{\omega}$ of plays.

Given $\mathcal{T} \subseteq V$, let

•
$$\operatorname{Reach}(\mathcal{T}) = \{v_0 v_1 \cdots \in V^{\omega} \mid \exists i : v_i \in \mathcal{T}\}$$

• Safe $(\mathcal{T}) = \{v_0 v_1 \cdots \in V^{\omega} \mid \forall i : v_i \in \mathcal{T}\}$

Touch \mathcal{T} eventually

Avoid $V \setminus \mathcal{T}$ forever

Reachability

Safety

Winning condition

A winning condition for Player k is a set $W_k \subseteq V^{\omega}$ of plays.

Given $\mathcal{T} \subseteq V$, let

• Reach
$$(\mathcal{T}) = \{v_0 v_1 \cdots \in V^{\omega} \mid \exists i : v_i \in \mathcal{T}\}$$

Touch \mathcal{T} eventually

• Safe
$$(\mathcal{T}) = \{v_0 v_1 \cdots \in V^{\omega} \mid \forall i : v_i \in \mathcal{T}\}$$

Avoid $V \setminus \mathcal{T}$ forever

•
$$\mathsf{B\ddot{u}chi}(\mathcal{T}) = \{v_0v_1 \dots \in V^{\omega} \mid \forall j \cdot \exists i \geq j : v_i \in \mathcal{T}\}$$

Visit \mathcal{T} ∞ -often

• coBüchi
$$(\mathcal{T}) = \{v_0 v_1 \cdots \in V^{\omega} \mid \exists j \cdot \forall i \geq j : v_i \in \mathcal{T}\}$$
 Visit $V \setminus \mathcal{T}$ finitely often

Safety

Büchi coBüchi

Remark

A winning condition for Player k is a set $W_k \subseteq V^{\omega}$ of plays.

Reach(\mathcal{T}), Safe(\mathcal{T}), Büchi(\mathcal{T}) and coBüchi(\mathcal{T}) are subsumed by the **parity** condition:

• Given a priority function $p: V \to \mathbb{N}$, define Parity $(p) = \{v_0v_1 \cdots \mid \min\{d \mid \forall i \cdot \exists j \geq i : p(v_i) = d\}$ is even}

"Minimal priority seen ∞-often is even"

Strategies

Players use strategies to play the game,

i.e. to choose the successor of the current state.

$$G = \langle V_1, V_2, \hat{v}, \mathsf{Succ} \rangle$$

A **strategy for Player k** is a function:

$$\lambda: V^*V_k \to V$$

such that

$$\lambda(v_1v_2\ldots v_n)\in \mathsf{Succ}(v_n)$$
 for all $v_1,\ldots,v_{n-1}\in V$ and $v_n\in V_k$

Strategies outcome

Graph: nondeterministic generator of behaviors.

Strategy: deterministic selector of behavior.

Graph + Strategies for both players → Behavior

Strategies outcome

Given strategies λ_k for Player k (k=1,2), the **outcome** of $\langle \lambda_1, \lambda_2 \rangle$ is the play $w=v_0v_1\dots$ such that:

$$v_i \in V_k \to v_{i+1} = \lambda_k(v_0 \dots v_i)$$

for all $i \geq 0$ and $k \in \{1, 2\}$

This play is denoted $\mathsf{Outcome}(G,\lambda_1,\lambda_2)$

Winning strategies

 Given a game G and winning conditions W₁ and W₂, a strategy λ_k is **winning** for Player k in (G,W_k) if for all strategies λ_{3-k} of Player 3-k, the outcome of $\{\lambda_k, \lambda_{3-k}\}$ in G is a winning play of W_k.

• Player 1 is winning if
$$\exists \lambda_1 \cdot \forall \lambda_2 : Outcome(G, \lambda_1, \lambda_2) \in W_1$$

• Player 2 is winning if
$$\exists \lambda_2 \cdot \forall \lambda_1 : Outcome(G, \lambda_1, \lambda_2) \in W_2$$

Winning strategies

=

Controllers that enforce winning plays

Symbolic algorithms to solve games

Given
$$\mathcal{T} \subseteq V$$
, let

$$\bullet \ \ \exists \mathsf{CPre}(\mathcal{T}) = \{v \in V \mid \exists v' \in \mathsf{Succ}(v) : v' \in \mathcal{T}\}$$

Given
$$\mathcal{T} \subseteq V$$
, let

•
$$\exists \mathsf{CPre}(\mathcal{T}) = \{ v \in V \mid \exists v' \in \mathsf{Succ}(v) : v' \in \mathcal{T} \}$$

•
$$\forall \mathsf{CPre}(\mathcal{T}) = \{ v \in V \mid \forall v' \in \mathsf{Succ}(v) : v' \in \mathcal{T} \}$$

Given
$$\mathcal{T} \subseteq V$$
, let

•
$$\exists \mathsf{CPre}(\mathcal{T}) = \{ v \in V \mid \exists v' \in \mathsf{Succ}(v) : v' \in \mathcal{T} \}$$

From a state v, Player 1 can **force** the next position of the game to be in \mathcal{T} if:

$$v \in \underbrace{(\exists \mathsf{CPre}(\mathcal{T}) \cap V_1) \cup (\forall \mathsf{CPre}(\mathcal{T}) \cap V_2)}_{\mathsf{1CPre}(\mathcal{T})}$$

$$1\mathsf{CPre}(\mathcal{T}) := (\exists \mathsf{CPre}(\mathcal{T}) \cap V_1) \cup (\forall \mathsf{CPre}(\mathcal{T}) \cap V_2)$$

and symmetrically

$$2\mathsf{CPre}(\mathcal{T}) := (\forall \mathsf{CPre}(\mathcal{T}) \cap V_1) \cup (\exists \mathsf{CPre}(\mathcal{T}) \cap V_2)$$

Note:
$$\mathcal{T}' \subseteq \mathcal{T}$$
 implies
$$\begin{cases} 1\mathsf{CPre}(\mathcal{T}') \subseteq 1\mathsf{CPre}(\mathcal{T}) \\ 2\mathsf{CPre}(\mathcal{T}') \subseteq 2\mathsf{CPre}(\mathcal{T}) \end{cases}$$

 $1CPre(\cdot)$ and $2CPre(\cdot)$ are **monotone** functions.

Symbolic algorithm to solve **safety** games

$$\mathsf{Safe}(\mathcal{T}) = \{ v_0 v_1 \cdots \in V^{\omega} \mid \forall i : v_i \in \mathcal{T} \}$$

Avoid $V \setminus \mathcal{T}$ forever

To win a safety game, Player 1 should be able to force the game to be in \mathcal{T} at every step.

To win a safety game, Player 1 should be able to force the game to be in \mathcal{T} at every step.

States in which Player 1 can force the game to stay in \mathcal{T} for the next:

0 step:
$$X_0 = \mathcal{T}$$

To win a safety game, Player 1 should be able to force the game to be in \mathcal{T} at every step.

States in which Player 1 can force the game to stay in \mathcal{T} for the next:

0 step: $X_0 = \mathcal{T}$

1 step: $X_1 = \mathcal{T} \cap 1\mathsf{CPre}(\mathcal{T})$

To win a safety game, Player 1 should be able to force the game to be in \mathcal{T} at every step.

States in which Player 1 can force the game to stay in \mathcal{T} for the next:

0 step: $X_0 = \mathcal{T}$

1 step: $X_1 = \mathcal{T} \cap 1\mathsf{CPre}(\mathcal{T})$

2 steps: $X_2 = \mathcal{T} \cap 1\mathsf{CPre}(\mathcal{T}) \cap 1\mathsf{CPre}(\mathcal{T} \cap 1\mathsf{CPre}(\mathcal{T}))$

To win a safety game, Player 1 should be able to force the game to be in \mathcal{T} at every step.

States in which Player 1 can force the game to stay in \mathcal{T} for the next:

0 step: $X_0 = \mathcal{T}$

1 step: $X_1 = \mathcal{T} \cap 1\mathsf{CPre}(\mathcal{T})$

2 steps: $X_2 = \mathcal{T} \cap 1CPre(\mathcal{T}) \cap 1CPre(\mathcal{T} \cap 1CPre(\mathcal{T}))$

subset of \mathcal{T}

To win a safety game, Player 1 should be able to force the game to be in \mathcal{T} at every step.

States in which Player 1 can force the game to stay in \mathcal{T} for the next:

0 step: $X_0 = \mathcal{T}$

1 step: $X_1 = \mathcal{T} \cap 1\mathsf{CPre}(\mathcal{T})$

2 steps: $X_2 = \mathcal{T} \cap 1CPre(\mathcal{T} \cap 1CPre(\mathcal{T}))$

To win a safety game, Player 1 should be able to force the game to be in \mathcal{T} at every step.

States in which Player 1 can force the game to stay in \mathcal{T} for the next:

0 step: $X_0 = \mathcal{T}$

1 step: $X_1 = \mathcal{T} \cap 1\mathsf{CPre}(X_0)$

2 steps: $X_2 = \mathcal{T} \cap 1CPre(X_1)$

To win a safety game, Player 1 should be able to force the game to be in \mathcal{T} at every step.

States in which Player 1 can force the game to stay in \mathcal{T} for the next:

```
0 step: X_0 = \mathcal{T}
```

1 step:
$$X_1 = \mathcal{T} \cap 1\mathsf{CPre}(X_0)$$

2 steps:
$$X_2 = \mathcal{T} \cap 1CPre(X_1)$$

:

n steps:
$$X_n = \mathcal{T} \cap 1\mathsf{CPre}(X_{n-1})$$

$$X_0 = T$$

$$\frac{X_0}{X_1} = \mathcal{T} \cap \frac{1 \text{CPre}(X_0)}{X_0}$$

$$X_0 = \mathcal{T}$$

$$X_1 = \mathcal{T} \cap \frac{1\mathsf{CPre}(X_0)}{\mathsf{CPre}(X_0)}$$

$$X_0 = \mathcal{T}$$

$$X_1 = \mathcal{T} \cap 1\mathsf{CPre}(X_0)$$

$$X_0 = \mathcal{T}$$
 $X_1 = \mathcal{T} \cap 1\mathsf{CPre}(X_0)$
 $X_2 = \mathcal{T} \cap 1\mathsf{CPre}(X_1)$

$$X_0 = \mathcal{T}$$
 $X_1 = \mathcal{T} \cap 1\mathsf{CPre}(X_0)$
 $X_2 = \mathcal{T} \cap 1\mathsf{CPre}(X_1)$

$$X_0 = \mathcal{T}$$
 $X_1 = \mathcal{T} \cap 1\mathsf{CPre}(X_0)$
 $X_2 = \mathcal{T} \cap 1\mathsf{CPre}(X_1)$

$$X_0 = \mathcal{T}$$

$$X_1 = \mathcal{T} \cap 1\mathsf{CPre}(X_0)$$

This is the set of states from which Player 1 can confine the game in \mathcal{T} forever no matter how Player 2 behaves.

$$X_2 = \mathcal{T} \cap 1\mathsf{CPre}(X_1) = X_1$$

 X_2 is a solution of the set-equation $X = \mathcal{T} \cap 1\mathsf{CPre}(X)$ and it is the greatest solution.

 X_2 is a solution of the set-equation $X = \mathcal{T} \cap 1\mathsf{CPre}(X)$ and it is the greatest solution.

We say that X_2 is the **greatest fixpoint** of the function $\mathcal{T} \cap 1\mathsf{CPre}(\cdot)$, written:

$$X_2 = \nu X \cdot \mathcal{T} \cap 1\mathsf{CPre}(X)$$
 greatest fixpoint operator

On fixpoint computations

A partially ordered set $\langle S, \sqsubseteq \rangle$ is a set S equipped with a **partial order** \sqsubseteq , *i.e.* a relation such that:

```
\forall x \qquad x \sqsubseteq x \qquad \qquad \text{(reflexivity)} \\ \forall x,y,z \quad \text{if } x \sqsubseteq y \text{ and } y \sqsubseteq z \text{ then } x \sqsubseteq z \qquad \text{(transitivity)} \\ \forall x,y \qquad \text{if } x \sqsubseteq y \text{ and } y \sqsubseteq x \text{ then } x=y \qquad \text{(anti-symmetry)} \\
```

 \sqsubseteq is not necessarily total, *i.e.* there can be x,y such that $x \not\sqsubseteq y$ and $y \not\sqsubseteq x$.

Let $X \subseteq S$.

y is an **upper bound** of X if $x \sqsubseteq y$ for all $x \in X$.

y is a **least upper bound** of X if

- (1) y is an upper bound of X, and
- (2) $y \sqsubseteq y'$ for all upper bounds y' of X.

Note: if X has a least upper bound, then it is unique (by anti-symmetry), and we write y = lub(X).

Examples: $\langle \mathbb{N}, \leq \rangle$

Examples: $\langle \mathbb{N}, \leq \rangle$

$$\langle \mathcal{P}(\{0,1,2\}), \subseteq \rangle$$

$$X = \{\{0\}, \{2\}\} \qquad \mathsf{lub}(X) = \{0, 2\}$$

A set
$$X = \{x_0, x_1, x_2, \dots\}$$
 is a **chain** if $x_0 \sqsubseteq x_1 \sqsubseteq x_2 \sqsubseteq \dots$

The partially ordered set $\langle S, \sqsubseteq \rangle$ is **complete** if

- (1) \varnothing has a lub, written $\mathsf{lub}(\varnothing) = \bot$, and
- (2) every chain $X \subseteq S$ has a lub.

Fixpoints

Let $f: S \to S$ be a function.

f is **monotonic** if $x \sqsubseteq y$ implies $f(x) \sqsubseteq f(y)$. is **continuous** if(1) f is monotonic, and $(2) \, f(\operatorname{lub}(X)) = \operatorname{lub}(f(X)) \, \text{for every chain} \, X.$

where $f(X) = \{f(x_0), f(x_1), f(x_2), \dots\}$

Note: f(X) is a chain (i.e. $f(x_0) \sqsubseteq f(x_1) \sqsubseteq f(x_2) \sqsubseteq \dots$) by monotonicity, and therefore $\mathsf{lub}(f(X))$ exists.

Fixpoints

Let $f: S \to S$ be a function.

```
x is a fixpoint of f if x = f(x)
```

x is a **least fixpoint** of f if

- (1) x is a fixpoint of f, and
- (2) $x \sqsubseteq x'$ for all fixpoints x' of f.

Kleene-Tarski Theorem

Let $\langle S, \sqsubseteq \rangle$ be a partially ordered set.

```
If \sqsubseteq is a complete partial order, and f:S\to S is a continuous function, then f \text{ has a least fixpoint, denoted Ifp}(f) and \mathrm{Ifp}(f)=\mathrm{lub}(\{\bot,f(\bot),f^2(\bot),f^3(\bot),\dots\})
```

Proof: exercise.

Kleene-Tarski Theorem

Let $\langle S, \sqsubseteq \rangle$ be a partially ordered set.

```
If \sqsubseteq is a complete partial order, and f:S\to S is a continuous function, then f \text{ has a least fixpoint, denoted Ifp}(f) and \mathrm{Ifp}(f)=\mathrm{lub}(\{\bot,f(\bot),f^2(\bot),f^3(\bot),\dots\})
```

Proof: exercise.

Over finite sets S, all monotonic functions are continuous.

Kleene-Tarski Theorem

The greatest fixpoint of f can be defined dually by

$$\mathsf{gfp}(f) = \mathsf{glb}(\{\top, f(\top), f^2(\top), f^3(\top), \dots\})$$

where $glb(\cdot)$ is the greatest lower bound operator (dual of $lub(\cdot)$) and $glb(\emptyset) = \top$

and
$$lfp(f) = lub(\{\bot, f(\bot), f^2(\bot), f^3(\bot), ...\})$$

Proof: exercise.

Over finite sets S, all monotonic functions are continuous.

Safety game

Winning states of a safety game:

$$u X \cdot \mathcal{T} \cap \mathsf{1CPre}(X)$$

$$\mathsf{gfp}(\mathcal{T} \cap \mathsf{1CPre}(X))$$

Limit of the iterations:
$$X_0 = \mathcal{T} \cap 1\mathsf{CPre}(V)$$
 $X_1 = \mathcal{T} \cap 1\mathsf{CPre}(X_0)$ $X_2 = \mathcal{T} \cap 1\mathsf{CPre}(X_1)$

÷

Partial order: $\langle 2^V, \subseteq \rangle$ with $\top = V$, $\bot = \emptyset$.

Symbolic algorithm to solve reachability games

Solving reachability games

$$\mathsf{Reach}(\mathcal{T}) = \{ v_0 v_1 \cdots \in V^{\omega} \mid \exists i : v_i \in \mathcal{T} \}$$

Visit \mathcal{T} eventually

To win a reachability game, Player 1 should be able to force the game be in \mathcal{T} after finitely many steps.

Solving reachability games

$$\mathsf{Reach}(\mathcal{T}) = \{ v_0 v_1 \cdots \in V^{\omega} \mid \exists i : v_i \in \mathcal{T} \}$$

Visit \mathcal{T} eventually

To win a reachability game, Player 1 should be able to force the game be in \mathcal{T} after finitely many steps.

Let X_i be the set of states from which Player 1 can force the game to be in \mathcal{T} within at most i steps:

$$X_0 = \mathcal{T}$$

 $X_{i+1} = X_i \cup 1\mathsf{CPre}(X_i) \quad \text{ for all } i \ge 0$

Solving reachability games

The limit of this iteration is the **least fixpoint** of the function $\mathcal{T} \cup 1\mathsf{CPre}(\cdot)$, written:

Symbolic algorithms

Let $G = \langle V_1, V_2, \hat{v}, Succ \rangle$ be a 2-player game graph.

Theorem

Player 1 has a winning strategy

```
\begin{array}{lll} & \text{in } \langle G, \mathsf{Reach}(\mathcal{T}) \rangle & \text{iff} & \hat{v} \in \mu X \cdot \mathcal{T} \cup 1\mathsf{CPre}(X) \\ & \text{in } \langle G, \mathsf{Safe}(\mathcal{T}) \rangle & \text{iff} & \hat{v} \in \nu X \cdot \mathcal{T} \cap 1\mathsf{CPre}(X) \\ & \text{in } \langle G, \mathsf{B\"{u}chi}(\mathcal{T}) \rangle & \text{iff} & \hat{v} \in \nu Y \cdot \mu X \cdot 1\mathsf{CPre}(X) \cup (\mathcal{T} \cap 1\mathsf{CPre}(Y)) \\ & \text{in } \langle G, \mathsf{coB\"{u}chi}(\mathcal{T}) \rangle & \text{iff} & \hat{v} \in \mu Y \cdot \nu X \cdot 1\mathsf{CPre}(X) \cap (\mathcal{T} \cup 1\mathsf{CPre}(Y)) \end{array}
```


Memoryless strategies are always sufficient to win parity games, and therefore also for safety, reachability, Büchi and coBüchi objectives.

A memoryless winning strategy

Parity games are **determined**: in every state, either Player 1 or Player 2 has a winning strategy.

Parity games are **determined**: in every state, either Player 1 or Player 2 has a winning strategy.

$$\phi_1 \equiv \exists \lambda_1 \cdot \forall \lambda_2 : \mathsf{Outcome}(G, \lambda_1, \lambda_2) \in \mathsf{Parity}(p)$$

$$\phi_2 \equiv \exists \lambda_2 \cdot \forall \lambda_1 : \mathsf{Outcome}(G, \lambda_1, \lambda_2) \not\in \mathsf{Parity}(p)$$

Determinacy says: $\phi_1 \lor \phi_2$

More generally, zero-sum games with Borel objectives are determined [Martin75].

For instance, since $V^{\omega} \setminus \mathsf{Safe}(\mathcal{T}) = \mathsf{Reach}(V \setminus \mathcal{T})$,

Player 1 does not win $\langle G, \mathsf{Safe}(\mathcal{T}) \rangle$

iff Player 2 wins $\langle G, \text{Reach}(V \setminus \mathcal{T}) \rangle$.

$$X_* = \nu X \cdot \mathcal{T} \cap 1\mathsf{CPre}(X)$$

$$X'_* = \mu X' \cdot \mathcal{T}' \cup 2\mathsf{CPre}(X')$$

Claim: if $\mathcal{T}' = V \setminus \mathcal{T}$, then $X'_* = V \setminus X_*$

Proof: exercise

Hint: show that $V \setminus 1CPre(X) = 2CPre(V \setminus X)$

$$\mathcal{T} = V \setminus \{v_7\}$$

Objective for Player 1: Safe(\mathcal{T})

for Player 2: Reach($\{v_7\}$)

$$X_0 = \{v_0, v_1, v_2, v_3, v_4, v_5, v_6\}$$

$$X_0' = \{v_7\}$$

$$X_1 = \{v_0, v_1, v_2, v_3, v_4\}$$

$$X_1' = \{v_5, v_6, v_7\}$$

$$X_2 = \{v_0, v_1, v_2, v_3, v_4\}$$

$$X_2' = \{v_5, v_6, v_7\}$$

$$\mathcal{T} = V \setminus \{v_7\}$$

States in which Player 1 wins for Safe(T).

States in which Player 2 wins for Reach $(V \setminus T)$.

Games of imperfect information

The Synthesis Question

The controller knows the state of the plant ("perfect information"). This, however, is often unrealistic.

- Sensors provide partial information (imprecision),
- Sensors have internal delays,
- Some variables of the plant are invisible,
- etc....

Imperfect information → Observations

Obs 0

Imperfect information → Observations

Obs 1

Obs 0

Imperfect information → Observations

Obs 1

Obs 0

Imperfect information → Observations

Obs 1

When observing Obs 2, there is no unique good choice: memory is necessary

Player 2 states → Nondeterminism

Playing the game: Player 2 moves a **token** along the edges of the graph, Player 1 does not see the position of the token.

- Player 1 chooses an action (on, off, delay), and then
- Player 2 resolves the nondeterminism and announces the color of the state.

Player 2:

Player 1:

Player 2:

V₁

chooses v₁, announces Obs 0

Player 1:

Player 2: v_1 delay

Player 1: delay plays action *delay*

Player 2: v_1 delay v_3 chooses v_3 , announces Obs 2 Player 1: delay

Player 2: V_1 delay V_3 off

Player 1: delay off

Imperfect information

A game graph + Observation structure

$$G = \langle V, \hat{v}, \mathsf{Succ} \rangle \qquad \langle \Sigma, \mathsf{Obs} \rangle$$

- Σ is a finite alphabet,
- Obs is a partition of V,
- Succ : $V \times \Sigma \to 2^V \setminus \varnothing$.

$$\mathsf{Post}_{\sigma}(s) = \{ v' \in \mathsf{Succ}(v, \sigma) \mid v \in s \}$$

$$\Sigma = \{delay, on, off\}$$

Obs =
$$\{\{v_1\}, \{v_2\}, \{v_3, v_4\}\}$$

Indistinguishable states belong to the same observation.

Let $obs(v) \in Obs$ be the (unique) observation containing v.

Strategies

Player 1 chooses a letter in Σ ,

Player 2 resolves nondeteminisim.

An observation-based strategy for Player 1 is a function:

$$\lambda_1:\mathsf{Obs}^+ \to \Sigma$$

A strategy for Player 2 is a function:

$$\lambda_2: V^+ \times \Sigma \to V$$

such that

$$\lambda_2(v_1 \dots v_n, \sigma) \in \mathsf{Succ}(v_n, \sigma)$$
 for all $v_1, \dots, v_n \in V$ and $\sigma \in \Sigma$

Outcome

$$\lambda_1:\mathsf{Obs}^+\to\Sigma$$

$$\lambda_2:V^+\times\Sigma\to V$$

The **outcome** of $\langle \lambda_1, \lambda_2 \rangle$ is the play $w = v_0 v_1 \dots$ such that:

$$v_{i+1} = \lambda_2(v_0 \dots v_i, \sigma)$$
 where $\sigma = \lambda_1(\mathsf{obs}(v_0) \dots \mathsf{obs}(v_i))$

for all i > 0.

This play is denoted Outcome $(G, \lambda_1, \lambda_2)$

Winning strategies

A winning condition for Player 1 is a set $U_1 \subseteq Obs^{\omega}$ of sequences of observations. The set U_1 defines the set of winning plays:

$$W_1 = \{v_0v_1 \cdots \mid \mathsf{obs}(v_0)\mathsf{obs}(v_1) \cdots \in U_1\}$$

Player 1 is winning if

$$\exists \lambda_1 \cdot \forall \lambda_2 : \mathsf{Outcome}(G, \lambda_1, \lambda_2) \in W_1$$

Solving games of imperfect information

Imperfect information

Games of imperfect information can be solved by a reduction to games of perfect information.

Subset construction

After a finite prefix of a play, Player 1 has a partial knowledge of the current state of the game: **a set of states**, called a **cell**.

Subset construction

After a finite prefix of a play, Player 1 has a partial knowledge of the current state of the game: **a set of states**, called a **cell**.

Initial knowledge: cell $\{\hat{v}\}$

Subset construction

After a finite prefix of a play, Player 1 has a partial knowledge of the current state of the game: **a set of states**, called a **cell**.

Initial knowledge: cell $\{\hat{v}\}$

Player 1 plays σ,

Player 2 chooses V_2 .

Current knowledge: $cell \{v_2, v_3\}$

$$\mathsf{Post}_{\sigma}(\{\widehat{v}\}) \cap \textcolor{red}{o_2}$$

Imperfect information

$$G = \langle V, \widehat{v}, \mathsf{Succ} \rangle$$

 $\langle \Sigma, \mathsf{Obs} \rangle$

State space

V

Initial state

 \widehat{v}

Perfect information

$$G' = \langle V_1', V_2', \hat{v}', \mathsf{Succ}' \rangle$$

$$V_1' = 2^V$$
$$V_2' = 2^V \times \Sigma$$

$$\hat{v}' = \{\hat{v}\}\$$

$$G = \langle V, \hat{v}, \mathsf{Succ} \rangle$$

 $\langle \Sigma, \mathsf{Obs} \rangle$

Transitions

$$G' = \langle V_1', V_2', \hat{v}', \mathsf{Succ}' \rangle$$

$$Succ'(s) = \{(s, \sigma) \mid \sigma \in \Sigma\}$$

$$G = \langle V, \widehat{v}, \mathsf{Succ} \rangle$$

$$\langle \Sigma, \mathsf{Obs} \rangle$$

Transitions

$$G' = \langle V_1', V_2', \hat{v}', \mathsf{Succ}' \rangle$$

$$Succ'(s) = \{(s, \sigma) \mid \sigma \in \Sigma\}$$
$$Succ'(s, \sigma) = \{Post_{\sigma}(s) \cap o \mid o \in Obs\}$$

$$G = \langle V, \widehat{v}, \mathsf{Succ} \rangle$$

 $\langle \Sigma, \mathsf{Obs} \rangle$

$$G' = \langle V_1', V_2', \hat{v}', \mathsf{Succ}' \rangle$$

$$p:\mathsf{Obs} \to \mathbb{N}$$

$$p': V_1' \cup V_2' \to \mathbb{N}$$

$$p'(s) = p'(s, \sigma) = p(o)$$

where $s \subseteq o$.

$$G = \langle V, \hat{v}, \mathsf{Succ} \rangle$$

$$\langle \Sigma, \mathsf{Obs} \rangle$$

$$G' = \langle V_1', V_2', \widehat{v}', \mathsf{Succ}' \rangle$$

Parity condition

$$p:\mathsf{Obs} \to \mathbb{N}$$

$$p': V_1' \cup V_2' \to \mathbb{N}$$

$$p'(s) = p'(s, \sigma) = p(o)$$

where $s \subseteq o$.

Theorem

Player 1 is winning in G,p if and only if Player 1 is winning in G',p'.

Imperfect information

Imperfect information

Direct symbolic algorithm

Controllable predecessor: $1 \text{CPre}: 2^{V_1'} \rightarrow 2^{V_1'}$

$$G = \langle V, \hat{v}, \mathsf{Succ} \rangle \quad \langle \Sigma, \mathsf{Obs} \rangle$$

Obs 2

1CPre(
$$\{\{v_3, v_4\}, \{v_5, v_6\}\}$$
) = $\{\{v_1\}, \{v_2\}\}$
 $\neq \{\{v_1, v_2\}\}$

The union of two controllable cells is not necessarily controllable,

but...

$$1\mathsf{CPre}(q) = \{ s \mid \exists \sigma \in \Sigma \cdot \forall o \in \mathsf{Obs} : \mathsf{Post}_{\sigma}(s) \cap o \in q \}$$

If a cell s is controllable (i.e. winning for Player 1), then all sub-cells $s' \subseteq s$ are controllable.

$$1\mathsf{CPre}(q) = \{ s \mid \exists \sigma \in \Sigma \cdot \forall o \in \mathsf{Obs} : \mathsf{Post}_{\sigma}(s) \cap o \in q \}$$

The sets of cells computed by the fixpoint iterations are downward-closed.

A set q of cells is downward-closed if $s \in q$ and $s' \subseteq s$ implies $s' \in q$.

$$1\mathsf{CPre}(q) = \{ s \mid \exists \sigma \in \Sigma \cdot \forall o \in \mathsf{Obs} : \mathsf{Post}_{\sigma}(s) \cap o \in q \}$$

The sets of cells computed by the fixpoint iterations are downward-closed.

A set q of cells is downward-closed if $s \in q$ and $s' \subseteq s$ implies $s' \in q$.

It is sufficient to keep only the maximal cells.

Antichains

Maximal cells in p: $\lceil p \rceil = \{ s \in p \mid \forall s' \in p : s \not\subset s' \}$

 $\lceil p \rceil$ is an **antichain**, *i.e.* a set of \subseteq -incomparable cells.

$$[p] = \{s_1, s_2, s_3\}$$

Antichains

Maximal cells in p: $\lceil p \rceil = \{ s \in p \mid \forall s' \in p : s \not\subset s' \}$

 $\lceil p \rceil$ is an **antichain**, *i.e.* a set of \subseteq -incomparable cells.

For downward-closed set p, we have:

$$\begin{aligned} \mathsf{1CPre}(p) &= \{ s \mid \exists \sigma \in \Sigma \cdot \forall o \in \mathsf{Obs} : \mathsf{Post}_{\sigma}(s) \cap o \in p \} \\ &= \{ s \mid \exists \sigma \in \Sigma \cdot \forall o \in \mathsf{Obs} \cdot \exists s' \in \lceil p \rceil : \mathsf{Post}_{\sigma}(s) \cap o \subseteq s' \} \end{aligned}$$

Hence, over antichains we define:

$$1\mathsf{CPre}^{\mathcal{A}}(q) = \left\lceil \{s \mid \exists \sigma \in \Sigma \cdot \forall o \in \mathsf{Obs} \cdot \exists s' \in q : \mathsf{Post}_{\sigma}(s) \cap o \subseteq s'\} \right\rceil$$

Antichains

1CPre(⋅) is monotone with respect to the following order:

$$q \sqsubseteq q' \text{ iff } \forall s \in q \cdot \exists s' \in q' : s \subseteq s'$$

 $\langle \mathcal{A}, \sqsubseteq \rangle$ is a complete partial order.

Least upper bound and greatest lower bound are defined by:

$$q \sqcup q' = \left[\{ s \mid s \in q \lor s \in q' \} \right]$$
$$q \sqcap q' = \left[\{ s \cap s' \mid s \in q \land s' \in q' \} \right]$$

Let $G = \langle V, \widehat{v}, \mathsf{Succ}, \Sigma, \mathsf{Obs} \rangle$ be a 2-player game graph of imperfect information, and $\mathcal{T} \subseteq \mathsf{Obs}$ a set of observations.

Games of imperfect information can be solved by the same fixpoint formulas as for perfect information, namely:

Theorem

Player 1 has a winning strategy

```
\begin{array}{lll} & \text{in } \langle G, \mathsf{Reach}(\mathcal{T}) \rangle & \text{iff} & \{ \hat{v} \} \sqsubseteq \mu X \cdot \mathcal{T} \sqcup 1\mathsf{CPre}(X) \\ & \text{in } \langle G, \mathsf{Safe}(\mathcal{T}) \rangle & \text{iff} & \{ \hat{v} \} \sqsubseteq \nu X \cdot \mathcal{T} \sqcap 1\mathsf{CPre}(X) \\ & \text{in } \langle G, \mathsf{B\"{u}}\mathsf{chi}(\mathcal{T}) \rangle & \text{iff} & \{ \hat{v} \} \sqsubseteq \nu Y \cdot \mu X \cdot 1\mathsf{CPre}(X) \sqcup (\mathcal{T} \sqcap 1\mathsf{CPre}(Y)) \\ & \text{in } \langle G, \mathsf{coB\"{u}}\mathsf{chi}(\mathcal{T}) \rangle & \text{iff} & \{ \hat{v} \} \sqsubseteq \mu Y \cdot \nu X \cdot 1\mathsf{CPre}(X) \sqcap (\mathcal{T} \sqcup 1\mathsf{CPre}(Y)) \\ & \text{on } \langle G, \mathsf{coB\"{u}}\mathsf{chi}(\mathcal{T}) \rangle & \text{iff} & \{ \hat{v} \} \sqsubseteq \mu Y \cdot \nu X \cdot 1\mathsf{CPre}(X) \sqcap (\mathcal{T} \sqcup 1\mathsf{CPre}(Y)) \\ & \text{on } \langle G, \mathsf{coB\"{u}}\mathsf{chi}(\mathcal{T}) \rangle & \text{off} & \{ \hat{v} \} \sqsubseteq \mu Y \cdot \nu X \cdot 1\mathsf{CPre}(X) \sqcap (\mathcal{T} \sqcup 1\mathsf{CPre}(Y)) \\ & \text{off} & \{ \hat{v} \} \sqsubseteq \mu Y \cdot \nu X \cdot 1\mathsf{CPre}(X) \sqcap (\mathcal{T} \sqcup 1\mathsf{CPre}(Y)) \\ & \text{off} & \{ \hat{v} \} \sqsubseteq \mu Y \cdot \nu X \cdot 1\mathsf{CPre}(X) \sqcap (\mathcal{T} \sqcup 1\mathsf{CPre}(Y)) \\ & \text{off} & \{ \hat{v} \} \sqsubseteq \mu Y \cdot \nu X \cdot 1\mathsf{CPre}(X) \sqcap (\mathcal{T} \sqcup 1\mathsf{CPre}(Y)) \\ & \text{off} & \{ \hat{v} \} \sqsubseteq \mu Y \cdot \nu X \cdot 1\mathsf{CPre}(X) \sqcap (\mathcal{T} \sqcup 1\mathsf{CPre}(Y)) \\ & \text{off} & \{ \hat{v} \} \sqsubseteq \mu Y \cdot \nu X \cdot 1\mathsf{CPre}(X) \sqcap (\mathcal{T} \sqcup 1\mathsf{CPre}(Y)) \\ & \text{off} & \{ \hat{v} \} \sqsubseteq \mu Y \cdot \nu X \cdot 1\mathsf{CPre}(X) \sqcap (\mathcal{T} \sqcup 1\mathsf{CPre}(Y)) \\ & \text{off} & \{ \hat{v} \} \sqsubseteq \mu Y \cdot \nu X \cdot 1\mathsf{CPre}(X) \sqcap (\mathcal{T} \sqcup 1\mathsf{CPre}(Y)) \\ & \text{off} & \{ \hat{v} \} \sqsubseteq \mu Y \cdot \nu X \cdot 1\mathsf{CPre}(X) \sqcap (\mathcal{T} \sqcup 1\mathsf{CPre}(Y)) \\ & \text{off} & \{ \hat{v} \} \sqsubseteq \mu Y \cdot \nu X \cdot 1\mathsf{CPre}(X) \sqcap (\mathcal{T} \sqcup 1\mathsf{CPre}(Y)) \\ & \text{off} & \{ \hat{v} \} \sqsubseteq \mu Y \cdot \nu X \cdot 1\mathsf{CPre}(X) \sqcap (\mathcal{T} \sqcup 1\mathsf{CPre}(Y)) \\ & \text{off} & \{ \hat{v} \} \sqsubseteq \mu Y \cdot \nu X \cdot 1\mathsf{CPre}(X) \sqcap (\mathcal{T} \sqcup 1\mathsf{CPre}(Y)) \\ & \text{off} & \{ \hat{v} \} \sqsubseteq \mu Y \cdot \nu X \cdot 1\mathsf{CPre}(X) \\ & \text{off} & \{ \hat{v} \} \sqsubseteq \mu Y \cdot \nu X \cdot 1\mathsf{CPre}(X) \\ & \text{off} & \{ \hat{v} \} \sqsubseteq \mu X \cdot \nu X \cdot 1\mathsf{CPre}(X) \\ & \text{off} & \{ \hat{v} \} \sqsubseteq \mu X \cdot \nu X \cdot 1\mathsf{CPre}(X) \\ & \text{off} & \{ \hat{v} \} \sqsubseteq \mu X \cdot \nu X \cdot 1\mathsf{CPre}(X) \\ & \text{off} & \{ \hat{v} \} \sqsubseteq \mu X \cdot \nu X \cdot 1\mathsf{CPre}(X) \\ & \text{off} & \{ \hat{v} \} \sqsubseteq \mu X \cdot \nu X \cdot 1\mathsf{CPre}(X) \\ & \text{off} & \{ \hat{v} \} \sqsubseteq \mu X \cdot \nu X \cdot 1\mathsf{CPre}(X) \\ & \text{off} & \{ \hat{v} \} \sqsubseteq \mu X \cdot \nu X \cdot 1\mathsf{CPre}(X) \\ & \text{off} & \{ \hat{v} \} \vdash \mu X \cdot \nu X \cdot 1\mathsf{CPre}(X) \\ & \text{off} & \{ \hat{v} \} \vdash \mu X \cdot \nu X \cdot 1\mathsf{CPre}(X) \\ & \text{off} & \{ \hat{v} \} \vdash \mu X \cdot \nu X \cdot 1\mathsf{CPre}(X) \\ & \text{off} & \{ \hat{v} \} \vdash \mu X \cdot \nu X \cdot 1\mathsf{CPre}(X) \\ & \text{off} & \{ \hat{v} \} \vdash \mu X \cdot \nu X \cdot 1
```


Has Player 1 an observation-based strategy to avoid v₃?

We compute the fixpoint $\nu X \cdot \mathcal{T} \sqcap 1\mathsf{CPre}(X)$

Objective: Safe(T)

$$X_0 = \mathcal{T} = \{\{v_0, v_1\}, \{v_2\}\}$$

Objective: Safe(T)

$$X_0 = \{\{v_0, v_1\}, \{v_2\}\}$$

$$X_1 = \mathsf{CPre}(X_0) \sqcap \mathcal{T} = \{\{v_1\}_b, \{v_0, v_2\}_a\} \sqcap \mathcal{T}$$

Objective: Safe(T)

$$X_0 = \{\{v_0, v_1\}, \{v_2\}\}$$

$$X_1 = \{\{v_0\}, \{v_1\}, \{v_2\}\}$$

$$X_2 = \mathsf{CPre}(X_1) \sqcap \mathcal{T} = \{\{v_0\}_a, \{v_1\}_b, \{v_2\}_a\} \sqcap \mathcal{T}$$

$$X_2 = \mathsf{CPre}(X_1) \sqcap \mathcal{T} = \{\{v_0\}_a, \{v_1\}_b, \{v_2\}_a\} \sqcap \mathcal{T}$$

Objective: Safe(T)

$$X_0 = \{\{v_0, v_1\}, \{v_2\}\}$$
$$X_1 = \{\{v_0\}, \{v_1\}, \{v_2\}\}$$

$$X_2 = \{\{v_0\}, \{v_1\}, \{v_2\}\}$$

Objective: Safe(T)

$$X_0 = \{\{v_0, v_1\}, \{v_2\}\}$$

$$X_1 = \{\{v_0\}, \{v_1\}, \{v_2\}\}\}$$

$$X_2 = \{\{v_0\}, \{v_1\}, \{v_2\}\}$$

Fixed point

Player 1 is winning since $\{v_0\} \in X_2$

$$\mathcal{T} = \mathsf{Obs} \setminus \{o_3\}$$

A winning strategy:

Objective: Safe(T)

$$X_0 = \{\{v_0, v_1\}, \{v_2\}\}$$

$$X_1 = \{\{v_0\}, \{v_1\}, \{v_2\}\}\}$$

$$X_2 = \{\{v_0\}, \{v_1\}, \{v_2\}\}$$

Fixed point

Remarks

1. **Finite memory** may be necessary to win safety and reachability games of imperfect information, and therefore also for Büchi, coBüchi, and parity objectives.

Remarks

1. **Finite memory** may be necessary to win safety and reachability games of imperfect information, and therefore also for Büchi, coBüchi, and parity objectives.

2. Games of imperfect information are **not determined**.

Non determinacy

Any fixed strategy λ_1 of Player 1 can be spoiled by a strategy λ_2 of Player 2 as follows:

In v_0 : λ_2 chooses v_1 if in the next step λ_1 plays b, and λ_2 chooses v_2 if in the next step λ_1 plays a.

Non determinacy

Player 1 cannot enforce Reach($\{v_3\}$).

Similarly, Player 2 cannot enforce $Safe(\{v_0, v_1, v_2\})$.

because when a strategy λ_2 of Player 2 is fixed, either $\lambda_1(o_1o_1) = a$ or $\lambda_1'(o_1o_1) = b$ is a spoiling strategy for Player 1.

Remarks

1. **Finite memory** may be necessary to win safety and reachability games of imperfect information, and therefore also for Büchi, coBüchi, and parity objectives.

2. Games of imperfect information are **not determined**.

3. **Randomized** strategies are more powerful, already for reachability objectives.

Randomization

The following strategy of Player 1 wins with probability 1:

At every step, play a and b uniformly at random.

After each visit to $\{v_1, v_2\}$, no matter the strategy of Player 2, Player 1 has probability $\frac{1}{2}$ to win (reach v_3).

Summary

Conclusion

- Games for controller synthesis: symbolic algorithms using fixpoint formulas.
- Imperfect information is more realistic, gives more robust controllers; but exponentially harder to solve.
- Antichains: exploit the structure of the subset construction.

Conclusion

- Games for controller synthesis: symbolic algorithms using fixpoint formulas.
- Imperfect information is more realistic, gives more robust controllers; but exponentially harder to solve.
- Antichains: exploit the structure of the subset construction.

It is sufficient to keep only the maximal elements.

Conclusion

- The antichain principle has applications in other problems where subset constructions are used:
 - Finite automata: language inclusion, universality, etc. [De Wulf,D,Henzinger,Raskin 06]
 - Alternating Büchi automata: emptiness and language inclusion.
 - LTL: satisfiability and model-checking.

[De Wulf,D,Maquet,Raskin 08]

Alaska

Antichains for Logic, Automata and Symbolic Kripke Structure Analysis

http://www.antichains.be

Acknowledgments

Credits

Antichains for games is a joint work with Krishnendu Chatterjee, Martin De Wulf, Tom Henzinger and Jean-François Raskin.

Special thanks to Jean-François Raskin for slides preparation.

Thank you!

Questions?

