Transformações 2D

Uéliton Freitas

Universidade Católica Don Bosco - UCDB freitas.ueliton@gmail.com

23 de agosto de 2014

Sumário

- Introdução
- 2 Translação
- 3 Rotação

Introdução

Transformações Geométricas

- São transformações aplicadas aos modelos de objetos:
 - Posicionamento (translação).
 - Orientação (rotação).
 - Tamanho (escala).
 - Reflexão.
 - Crisalhamento.

Translação

Translação de um Objeto

- A translação consiste em adicionar uma "variação" as coordenadas de um objeto.
 - $x' = x + \Delta x$
 - $y' = y + \Delta y$

Translação

Translação

Translação de um Objeto

- A translação consiste em adicionar uma "variação" as coordenadas de um objeto.
 - $x' = x + \Delta x$
 - $y' = y + \Delta y$

Notação Matricial

 Utilizando uma notação matricial é possível representar a operação de translação da seguinte forma:

$$\mathbf{P}' = \mathbf{P} + \mathbf{T}$$
 $\mathbf{P}' = \begin{bmatrix} x' \\ y' \end{bmatrix}, \mathbf{P} = \begin{bmatrix} x \\ y \end{bmatrix}, \mathbf{T} = \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}$

Rotação de um Objeto

- Dá-se a operação de rotação de um objeto através de um eixo de rotação e um ângulo de rotação.
- No plano 2D, o eixo de rotação dá-se pelo eixo perpendicular ao plano xy.

Rotação de um Objeto

- Para realizar a rotação de um objeto em 2D, é necessário um ângulo θ e o ponto de ponto de rotação (x,y), que é o ponto de intersecção com o eixo perpendicular ao plano xy.
 - Se $\theta > 0$, a rotação é no sentido anti-horária.
 - Se θ < 0, a rotação é no sentido horário.

Rotação de um Objeto

- Simplificando:
 - Considera-se que o ponto de rotação está na origem.
 - O raio r é constante.
 - ϕ é o ângulo do ponto P = (x, y) em relação a origem.
 - $oldsymbol{ heta}$ é o ângulo de rotação.

Sabemos que:

- $cos(\theta) = \frac{Cateto\ adjacente}{Hipotenuza}$
- $sen(\theta) = \frac{Cateto oposto}{Hipotenuza}$

Então temos que:

•
$$cos(\phi + \theta) = \frac{x'}{r} \implies x' = cos(\phi + \theta) \cdot r$$

•
$$sen(\phi + \theta) = \frac{y'}{r} \implies y' = sen(\phi + \theta) \cdot r$$

Como:

- $cos(\alpha + \beta) = cos(\alpha) \cdot cos(\beta) sen(\alpha) \cdot sen(\beta)$
- $sen(\alpha + \beta) = cos(\alpha) \cdot sen(\beta) + sen(\alpha) \cdot cos(\beta)$

Então temos que:

- $x' = r \cdot cos(\phi) \cdot cos(\theta) r \cdot sen(\phi) \cdot sen(\theta)$
- $y' = r \cdot cos(\phi) \cdot sen(\theta) + r \cdot sen(\phi) \cdot cos(\theta)$

Coordenadas Polares

- Temos que P = (x, y) pode ser escrito na forma de coordenadas polares:
 - $x = r \cdot cos(\theta)$
 - $y = r \cdot sen(\theta)$

Em Notação de Matriz

$$\mathbf{P}' = \mathbf{R} \cdot \mathbf{P}$$

$$\mathbf{P}' = \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

Coordenadas Polares

- Temos que P = (x, y) pode ser escrito na forma de coordenadas polares:
 - $x = r \cdot cos(\theta)$
 - $y = r \cdot sen(\theta)$
- Substituindo os valores temos:
 - $x' = x \cdot cos(\theta) y \cdot sen(\theta)$
 - $y' = x \cdot sen(\theta) + y \cdot cos(\theta)$

Em Notação de Matriz

$$P' = R \cdot P$$

$$\mathbf{P}' = \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

Rotação de em Torno de um Ponto Arbitrário

• Rotação em torno de um ponto (x_r, y_r) .

Para encontrar x'

- $cos(\phi + \theta) = \frac{x' x_r}{r}$
- $x' = r \cdot cos(\phi + \theta) + x_r$
- $x' = x_r + r \cdot \cos(\phi) \cdot \cos(\theta) r \cdot \sin(\phi) \cdot \sin(\theta)$

Mas temos que:

• $cos(\phi) = \frac{x - x_r}{r}$ e $sen(\phi) = \frac{y - y_r}{r}$

Então:

•
$$x' = x_r + (x - x_r) \cdot cos(\theta) - (y - y_r) \cdot sen(\theta)$$

•
$$y' = y_r + (x - x_r) \cdot sen(\theta) + (y - y_r) \cdot cos(\theta)$$