# Automating Sound Change Prediction for Phylogenetic Inference

A Tukanoan Case Study

Kalvin Chang\*, <u>Nathaniel Robinson</u>\*, <u>Anna Cai</u>\*, Ting Chen, Annie Zhang, David Mortensen





# Many modern languages are descended from a common ancestor.







# How can we deduce the protoforms and evolutionary history?







# Laws governing sound changes are regular and exceptionless!

|             | kaprə | karo | kapos | ••• |
|-------------|-------|------|-------|-----|
| a > ε       | kεprə | kεro | kεpos | ••• |
| k > ∫ / # _ | ∫ɛprə | ſεro | ſεpos | ••• |
| •••         |       |      |       |     |





### Comparative method (Campbell 2013)

- 1. Assemble cognate sets
- 2. Find corresponding sounds
- 3. Propose proto-sounds and sound laws for each correspondence
- 4. Iterate previous step
  - a. sound laws must be logically consistent and probabilistically likely
- 5. Reconstruct protoforms using proto-sounds
- 6. Reconstruct evolutionary tree using sound laws (phylogenetic inference)



### Comparative method (Campbell 2013)

- 1. Assemble cognate sets
- 2. Find corresponding sounds
- 3. Propose proto-sounds and sound laws for each correspondence
- 4. Iterate previous step
  - a. sound laws must be logically consistent and probabilistically likely
- 5. Reconstruct protoforms using proto-sounds
- 6. Reconstruct evolutionary tree using sound laws (phylogenetic inference)



## Towards automating the comparative method

- 1. Assemble cognate sets
- 2. Find corresponding sounds
- 3. Propose proto-sounds and sound laws for each correspondence
- 4. Iterate previous step
  - a. sound laws must be logically consistent and probabilistically likely
- 5. Reconstruct protoforms using proto-sounds
- 6. Reconstruct evolutionary tree using sound laws (phylogenetic inference)



## Prior work: Chacon & List (2016)

#### Parsimony-based algorithm

- Align protoforms with reflexes (expert)
- Learn sound laws from aligned reflexes (expert)
- Create sound change transition matrix (expert)
  - Identify intermediate sound changes
  - Assign weight to intermediate sound transitions \*\*
- Infer phylogeny via maximum parsimony
- Obtain consensus tree





#### Our realization

#### Parsimony-based algorithm

- Align protoforms with reflexes (expert)
- 2. Learn sound laws from aligned reflexes (expert)
- 3. Create sound change transition matrix (expert)
  - a. Identify intermediate sound changes
  - b. Assign weight to intermediate sound transitions 🏋
- 4. Infer phylogeny via maximum parsimony
- 5. Obtain consensus tree

Replace with Automatic intermediate sound change prediction (AISCP)





#### Our realization

#### Parsimony-based algorithm

- Align protoforms with reflexes (expert)
- 2. Learn sound laws from aligned reflexes (expert)
- 3. Create sound change transition matrix (expert)
  - a. Identify intermediate sound changes
  - b. Assign weight to intermediate sound transitions 🏋
- 4. Infer phylogeny via maximum parsimony
- Obtain consensus tree

Replace with Automatic sound law induction (ASLI)

Replace with Automatic intermediate sound change prediction (AISCP)





## AISCP: Intermediate sound changes

- Need: mapping from phones to articulatory features
  - o  $f: s \to \{-1, 0, 1\}^N$
- Create fully connected graph of phones
  - Edges weighted by feature edit distance (FED)
- Encodes similarity of sounds
  - [d] and [t] differ only in one feature (voice)
  - o [k] and [t] differ in four
  - I.e. FED([k], [t]) = 4 \* FED([d], [t])





## AISCP: Intermediate sound changes

- Need: mapping from phones to articulatory features
  - o  $f: s \to \{-1, 0, 1\}^N$
- Create fully connected graph of phones
  - Edges weighted by feature edit distance (FED)
- Encodes similarity of sounds
  - [d] and [t] differ only in one feature (voice)
  - o [k] and [t] differ in four
  - I.e. FED([k], [t]) = 4 \* FED([d], [t])
- However, this is not directional!





# AISCP: Directional weighted FED 🏋

- Need to model P(voicing) ≠ P(devoicing)
- Neural network M:  $\{0, 1\}^{3N} \to \{0, 1\}^{2N}$ 
  - o Prediction of each feature's direction of change given the source phone's features







# AISCP: Directional weighted FED 🏋

- Need to model P(voicing) ≠ P(devoicing)
- Neural network M:  $\{0, 1\}^{3N} \to \{0, 1\}^{2N}$ 
  - o Prediction of each feature's direction of change given the source phone's features



Trained on database of attested sound changes (e.g. [k] > [tʃ])





# AISCP: Directional weighted FED 🏋

- Fit NN on multilingual sound changes from the Index Diachronica
- Predicts realistic intermediate paths:
  - k > c > t<sub>6</sub> > t
  - $\circ$  p > f > h







#### **AISCP: Results**

- Generalized Quartet Distance (GQD) = 0.12
  - o reproduces 88% of valid quartets
- Recovers major Tukanoan subgroups from Chacon (2014)

| Experiment                   | GQD (Min) ↓ | GQD (Mean $\pm \sigma$ ) $\downarrow$ |  |
|------------------------------|-------------|---------------------------------------|--|
| Baseline: cognacy            | 0.533       | 0.533                                 |  |
| Baseline: shared innovations | 0.355       | 0.355                                 |  |
| C+L w/ AISCP, 1 layer NN     | 0.120       | <b>0.295</b> ±0.118                   |  |
| C+L w/ AISCP, 4 layer NN     | 0.191       | $0.309 \pm 0.096$                     |  |
| C+L w/ AISCP, 8 layer NN     | 0.402       | $0.439 \pm 0.021$                     |  |
| C+L w/ AISCP, 16 layer NN    | 0.248       | $0.435 \pm 0.080$                     |  |





#### **Ablations**

- Standard FED (non directional weights)
- Direct paths (no intermediate sound changes)

| Experiment                            | GQD (Min) ↓ | GQD (Mean $\pm \sigma$ ) $\downarrow$ |
|---------------------------------------|-------------|---------------------------------------|
| C+L, w/ AISCP (standard FED ablation) | 0.325       | $0.440 \pm 0.062$                     |
| C+L, w/ AISCP (direct paths ablation) | 0.281       | $0.397 \pm 0.072$                     |
| C+L w/ AISCP, 1 layer NN              | 0.120       | <b>0.295</b> ±0.118                   |
| C+L w/ AISCP, 4 layer NN              | 0.191       | $0.309 \pm 0.096$                     |
| C+L w/ AISCP, 8 layer NN              | 0.402       | $0.439 \pm 0.021$                     |
| C+L w/ AISCP, 16 layer NN             | 0.248       | $0.435 \pm 0.080$                     |





### **Automatic Sound Law Induction (ASLI)**

- Automatically generate correspondences from cognate data
- Alignment
  - Minimize FFD
- Minimal generalization (Albright & Hayes 2002, Wilson & Li 2021)
  - o iteratively generalize rules from base rules and keep most applicable







#### **ASLI: Results**

- Many generated sound laws are hyper-specific
  - o e.g. p > m / # (p<sup>?</sup> | <sup>?</sup>p) o \_ a #
- However, overall their phylogenetic signal may still be sufficient
- Note: the numbers in the proceedings are incorrect

| Experiment                       | GQD (Min) ↓ | GQD (Mean $\pm \sigma$ ) $\downarrow$ |
|----------------------------------|-------------|---------------------------------------|
| C+L w/ AISCP + ASLI 1 layer NN   | 0.124       | <b>0.224</b> ±0.076                   |
| C+L w/ AISCP + ASLI, 4 layer NN  | 0.354       | $0.461 \pm 0.070$                     |
| C+L w/ AISCP + ASLI, 8 layer NN  | 0.237       | $0.433 \pm 0.092$                     |
| C+L w/ AISCP + ASLI, 16 layer NN | 0.396       | $0.483 \pm 0.084$                     |





## Parsimony is not correlated with GQD

- Spearman's correlation: -0.04
- Optimizing over parsimony may not yield optimal trees!
- Should consider probabilistic methods instead
  - Bayesian inference





#### Conclusion

- Novel method for modeling diachronic intermediate sound changes for phylogenetic inference
- Predicted tree with 0.12 GQD for Tukanoan language family
- Proposed intermediate sound changes capture expert intuitions on phonetic naturalness



# Thank you for listening!

https://github.com/cmu-llab/aiscp

# Questions?



