Answers to problems.

Problem 1. (10 points) Answer the following questions regarding MLE.

- (a) Explain what an unbiased estimator is. Is the MLE $\hat{\theta}$ always unbiased? A point estimate $\hat{\theta}$ is unbiased if the expected value $E[\hat{\theta}]$ is exactly the parameter θ . The MLE is not always unbiased.
- (b) Describe or formulate the Cramér-Rao lower bound for an unbiased estimator. It is the reciprocal $1/I(\theta)$ of Fisher information $I(\theta)$.
- (c) Explain what an efficient estimator is. Is MLE $\hat{\theta}$ always efficient? A point estimate $\hat{\theta}$ is efficient if the variance $\text{Var}(\hat{\theta})$ attains the Cramér-Rao lower bound. The MLE is not always efficient.
- (d) Describe or formulate an asymptotic distribution of the MLE $\hat{\theta}$. $\hat{\theta}$ is asymptotically normal with mean θ and variance $1/I(\theta)$; thus, MLE is "asymptotically" unbiased and efficient.

Problem 2. (25 points) Let $f(x;\theta) = \binom{k}{x} \theta^x (1-\theta)^{k-x}$, x = 0, 1, ..., k, be the binomial frequency function, and let $\mathbf{X} = (X_1, ..., X_n)$ be a random sample from $f(x;\theta)$ with $0 < \theta < 1$, where k is known. Answer the following questions.

(a) Find the MLE $\hat{\theta}$ for θ .

Observe that

$$\ln f(\boldsymbol{x}; \theta) = \sum_{i=1}^{n} \ln \binom{k}{x_i} + (\ln \theta - \ln(1 - \theta)) \sum_{i=1}^{n} x_i + kn \ln(1 - \theta)$$
$$\frac{\partial}{\partial \theta} \ln f(\boldsymbol{x}; \theta) = \frac{1}{\theta(1 - \theta)} \sum_{i=1}^{n} x_i - \frac{kn}{\theta(1 - \theta)}$$

By solving $\frac{\partial}{\partial \theta} \ln f(\boldsymbol{x}; \theta) = 0$, we obtain $\hat{\theta} = \sum_{i=1}^{n} x_i / nk$.

(b) Find the Fisher information $I(\theta)$ for the random sample X.

$$I(\theta) = \operatorname{Var}\left(\frac{\partial}{\partial \theta} \ln f(\boldsymbol{X}; \theta)\right) = \frac{1}{\theta^2 (1 - \theta)^2} \sum_{i=1}^n \operatorname{Var}(X_i) = \frac{nk}{\theta (1 - \theta)}$$

- (c) Is $\hat{\theta}$ unbiased? Yes.
- (d) Is $\hat{\theta}$ efficient? Yes.
- (e) Find an asymptotic distribution of $\sqrt{n}(\hat{\theta} \theta)$ in terms of k and θ . $N(\theta, \theta(1-\theta)/k)$.

Problem 3. (10 points) Answer the following questions regarding a natural sufficient statistic.

(a) Explain what a natural sufficient statistic is.

When a pdf for random sample is of exponential family, we always obtain a sufficent statistic of the form $\sum_{i=1}^{n} k(X_i)$, and call it "natural" sufficient statistic.

- (b) Is a natural sufficient statistic always unbiased? No.
- (c) Is a natural sufficient statistic always complete? Yes.
- (d) Explain what Lehmann-Scheffé theorem does for complete and sufficient statistic. Once a complete and sufficient statistic Y_1 is obtained, the MVUE can be calculated by $E(Y_2|Y_1)$ with any unbiased statistic Y_2 .

Problem 4. (20 points) Continue **Problem 2**, and answer the following questions.

(a) Write the exponential family for the joint distribution $f(x;\theta)$ of X.

$$f(\boldsymbol{x};\theta) = \exp\left[(\ln \theta - \ln(1-\theta)) \sum_{i=1}^{n} x_i + kn \ln(1-\theta) + \sum_{i=1}^{n} \ln \binom{k}{x_i} \right]$$

(b) Find a natural sufficient statistic Y.

$$Y = \sum_{i=1}^{n} X_i$$

(c) Find the minimum variance unbiased estimator $\varphi(Y)$ for θ .

$$\varphi(Y) = \sum_{i=1}^{n} X_i / nk$$

(d) Find the variance of $\varphi(Y)$.

$$\theta(1-\theta)/nk$$

Problem 5. (10 points) Answer the following questions regarding hypothesis test.

(a) Describe a power function.

It is the function $K(\theta)$ of θ which provides the probability of rejecting the null hypothesis when the true parameter value is θ .

(b) Explain what the uniform most powerful (UMP) test is.

No other tests of the same size α has a larger value of power function when the alternative hypothesis is true.

(c) How can you find an optimal test statistic T(X) when the joint density $f(x;\theta)$ is of exponential family and the alternative hypothesis is $H_A: \theta > \theta_0$?

See the lecture note #4.

(d) Continue from the previous question, how can you find the size α of the test in terms of power function.

 $K(\theta_0)$

Problem 6. (25 points) Continue **Problem 4**. Here we wish to find evidence that $\theta > \frac{1}{2}$.

(a) Choose the null and the alternative hypothesis.

 $H_0: \theta \leq \frac{1}{2} \text{ versus } H_A: \theta > \frac{1}{2}.$

(b) Find an optimal test statistic $T(\mathbf{X})$.

$$T(\boldsymbol{X}) = \sum_{i=1}^{n} X_i$$

- (c) Find the distribution for T(X) given $\theta = \frac{1}{2}$, and express it in terms of n and k. Binomial distribution with $(nk, \frac{1}{2})$.
- (d) Suppose that k=1 and n=7. Construct the uniform most powerful (UMP) test of size $\alpha = \left(\frac{1}{2}\right)^7$.

$$\delta(\mathbf{X}) = \begin{cases} 1 & \sum_{i=1}^{n} X_i \ge 7; \\ 0 & \text{otherwise.} \end{cases}$$

- (e) Continue from the previous question. Find the power function $K(\theta)$ in terms of θ . Is it an increasing function?
 - Yes, $K(\theta) = \theta^7$ is an increasing function.