Elaborado por: Ing. José Miguel Barboza Retana

Práctica #1. Números complejos.

Calcule el resultado de cada operación, verifique las sumas de forma gráfica:

1. (2+j5)+(-3+j2)

3. (2+j2)(-2+j2)

2. (i3) + (2)

4. (i3)(2)

Calcular el resultado de cada operación:

5. j(2+j)(3-4j)

9. $\frac{2}{i} \ln \left(\frac{1+j}{1-i} \right)$

6. $\frac{1+j^3}{(1+j)^3}$

10. $\text{Ln}(\sqrt{3} + 3j)$

7. $\frac{5j(2+2j)}{(1-j)(2+j)(3-j)}$

11. $(7 - 7j\sqrt{3})^{4+j}$ 12. $(1 - j)^{2-j}$

8. $\frac{1+j}{1-j} + \frac{1-j}{1+j}$

Calcular la magnitud, argumento, parte real y parte imaginaria de los siguientes números complejos:

13. *j*

20. $e^{jk\pi}$; $k \in \mathbb{Z}$

14. -j

21. $(1+j\sqrt{3})^{1+j}$

15. 3 - i4

22. $\sqrt{-j}$

16. $2e^{j\pi/4}$

23. i^{j}

17. $-2e^{j^{\pi}/4}$

18. $-2e^{-j\pi}$

24. i^{-j}

19. $cos(\alpha) - 1$; $\alpha \in \mathbb{R}$

25. sin(j)

26. cos(i)

Indicar la región del plano que representan las siguientes expresiones, asuma que $r, \theta \in$ \mathbb{R}^+ en los ejercicios que sea necesario:

27. |z| < r

29. $|Re\{z\}| < r$

28. $|z - z_0| < r$

30. $Re\{z\} < r$

31.
$$|Im\{z\}| < r$$

32.
$$Im\{z\} < r$$

33.
$$|Re\{z\}| > r$$

34.
$$Re\{z\} > r$$

35.
$$|Im\{z\}| > r$$

36.
$$Im\{z\} > r$$

37.
$$Re\{|z|\} < r$$

38.
$$|\angle z| < \theta$$

39.
$$Re\{z\} + 2Im\{z\} = 1$$

40.
$$\{|z-5+2j| \le 1\}$$

41.
$$\{|z+3-j|>3\}$$

42.
$$Re\{z\} = 2$$

43.
$$Im\{z\} \le 0$$

44.
$$\{|\measuredangle(z)| \le \frac{\pi}{3}; y > 0\}$$

45.
$$\left\{\frac{\pi}{4} \le \measuredangle(z) \le \frac{3\pi}{4}; x > 0; y < 3\right\}$$

Sean $z, w \in \mathbb{C}$. Encuentre gráficamente z y w según cada caso:

46.
$$|z| = 2$$
, $\angle w = \pi/4$ y además $z + w = 1$.

47.
$$|z| = 2$$
, $|w| = 3$ y también $z + w = 4$.

48.
$$\angle w = -\pi/3$$
, $\angle z = \pi/4$ y $z + w = 4$.

Determinar el número complejo z = x + jy de manera que cumpla lo siguiente:

49.
$$(3-4j)^2 - 2(x-yj) = x+j$$

50.
$$3 + 2xj + 3yj = 8j + x$$

51.
$$(1+j)x + 2yj = 4 + 2j$$

52.
$$(x + yj)(2 + 3j)$$
 sea un número real.

53. Las cinco raíces de
$$(-1)^{1/5}$$
.

54.
$$a = -3 + jx^2y$$
 y $b = x^2 + y + 4j$ son conjugados entre sí.

55.
$$z^*w^* = 2j - 1$$
, si se conoce que $w = 3 - 4j$

Encontrar la solución de los siguientes sistemas de ecuaciones

56.
$$\begin{cases} ju + (1+j)w = 3+j \\ (1+j)u^* - (6-j)w^* = 4 \end{cases}$$

57.
$$\begin{cases} 6w + (4j - 1)x = -3 - 7j \\ (j - 1)w^* - x^* = 7j - 5 \end{cases}$$

Dadas las siguientes condiciones geométricas, hallar $z \in \mathbb{C}$:

58.
$$\begin{cases} |z+j| = 5 \\ \angle(z^* + 2) = -\frac{3\pi}{4} \end{cases}$$
59.
$$\begin{cases} |z+3| = 5 \\ \angle(z-1) = -\frac{\pi}{2} \end{cases}$$

59.
$$\begin{cases} |z+3| = 5 \\ 4(z-1) = -\frac{\pi}{2} \end{cases}$$

60.
$$\begin{cases} |j+z^*| = 5\\ \not\preceq (z+2) = -\frac{3\pi}{4} \end{cases}$$

60.
$$\begin{cases} |j + z^*| = 5 \\ \angle(z + 2) = -\frac{3\pi}{4} \end{cases}$$
61.
$$\begin{cases} \angle(z + k) = \frac{\pi}{2} \\ \angle(z - k) = \frac{2\pi}{3}, k > 0, cte \end{cases}$$

- Resolver los siguientes problemas:
 - 62. Encontrar los puntos de intersección y el ángulo de intersección de las rectas |z (1+j)| = |z (3-j)| y |z (1-j)| = |z (3+j)|
 - 63. Calcular la parte real e imaginaria de $w = \frac{z^*}{1-z^2}$ donde $z \in \mathbb{C} \setminus \{-j, j\}$.
 - 64. Hallar los números complejos tales que $z^2 + 2z^{*2} + z z^* + 9 = 0$
 - 65. Calcular las soluciones de la ecuación $z^4 + (1+j)z^2 + 5j = 0$
 - 66. ¿Qué relación debe haber entre los coeficientes $a, b, c, d \in \mathbb{R}$ para que ambas raíces de la ecuación $z^2 + (a + bj)z + (c + dj) = 0$ tengan el mismo argumento (ángulo). **Sugerencia.** Considere que cualquier polinomio complejo se puede factorizar de la siguiente forma: $(z z_1)(z z_2) = z^2 (z_1 + z_2)z + z_1z_2$