Exercice. Deux questions en guise d'échauffement.

- 1. Soit $(a, b) \in \mathbb{R}^2$ et $P = X^5 + aX^2 + bX$.
 - (a) Prouver qu'il existe un unique couple (a,b) de \mathbb{R}^2 pour lequel 1 est racine de multiplicité au moins 2 de P.
 - (b) Factoriser dans ce cas le polynôme P en produit d'irréductibles de $\mathbb{R}[X]$.
- 2. Soit $P \in \mathbb{C}[X]$ un polynôme non constant, et $\omega \in \mathbb{C}$. On note $\widetilde{P}: z \mapsto P(z)$ la fonction polynomiale associée, définie sur \mathbb{C} . Prouver que l'ensemble des antécédents de ω par \widetilde{P} est non vide et fini.

Problème. Une preuve de l'identité $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

Pour $n \in \mathbb{N}^*$, on définit le polynôme $P_n \in \mathbb{C}[X]$:

$$P_n = \frac{1}{2i} \left[(X+i)^{2n+1} - (X-i)^{2n+1} \right].$$

1. En développant par la formule du binôme de Newton, montrer que

$$P_n = \sum_{\ell=0}^n a_\ell X^{2\ell}.$$

On précisera les coefficients a_{ℓ} et on vérifiera que ce sont des réels. Préciser le degré de P_n , son coefficient dominant et le coefficient de X^{2n-2} .

2. Montrer que les racines complexes de P_n sont exactement les nombres réels

$$\omega_k = \frac{1}{\tan\left(\frac{k\pi}{2n+1}\right)}, \quad k \in [1, 2n].$$

En déduire que

$$P_n = (2n+1) \prod_{k=1}^{2n} (X - \omega_k).$$

3. Pour $k \in [1, n]$, montrer que : $\omega_{2n+1-k} = -\omega_k$. En déduire que

$$\prod_{k=1}^{2n} (X - \omega_k) = \prod_{k=1}^{n} (X^2 - \omega_k^2).$$

4. On pose $Q_n(X) = (2n+1) \prod_{k=1}^n (X - \omega_k^2)$.

Montrer que $Q_n(X^2) = P_n(X)$.

Préciser le degré, le coefficient dominant et le coefficient de X^{n-1} de Q_n .

5. On définit :

$$T_n = \sum_{k=1}^n \omega_k^2$$
 et $S_n = \sum_{k=1}^n \frac{1}{\sin^2 \frac{k\pi}{2n+1}}$.

- (a) Montrer que $S_n = n + T_n$
- (b) Montrer, en considérant la somme des racines de Q_n , que

$$T_n = \frac{n(2n-1)}{3}$$
 et $S_n = \frac{2n(n+1)}{3}$.

6. (a) Montrer que pour tout $x \in \left[0, \frac{\pi}{2}\right[: \sin x \le x \le \tan x$. En déduire que :

$$\forall x \in \left] 0, \frac{\pi}{2} \right[: \frac{1}{\tan^2 x} \le \frac{1}{x^2} \le \frac{1}{\sin^2 x}.$$

(b) Démontrer que $\sum_{k=1}^{n} \frac{1}{k^2} \xrightarrow[n \to +\infty]{} \frac{\pi^2}{6}$ (Encadrer cette somme à l'aide de S_n et T_n .)