C. Watering Flowers

time limit per test: 2 seconds memory limit per test: 256 megabytes

input: standard input output: standard output

A flowerbed has many flowers and two fountains.

You can adjust the water pressure and set any values $r_1(r_1 \ge 0)$ and $r_2(r_2 \ge 0)$, giving the distances at which the water is spread from the first and second fountain respectively. You have to set such r_1 and r_2 that all the flowers are watered, that is, for each flower, the distance between the flower and the first fountain doesn't exceed r_1 , or the distance to the second fountain doesn't exceed r_2 . It's OK if some flowers are watered by both fountains.

You need to decrease the amount of water you need, that is set such r_1 and r_2 that all the flowers are watered and the $r_1^2 + r_2^2$ is minimum possible. Find this minimum value.

Input

The first line of the input contains integers n, x_1 , y_1 , x_2 , y_2 ($1 \le n \le 2000$, $-10^7 \le x_1$, y_1 , x_2 , $y_2 \le 10^7$) — the number of flowers, the coordinates of the first and the second fountain.

Next follow n lines. The i-th of these lines contains integers x_i and y_i (- $10^7 \le x_i$, $y_i \le 10^7$) — the coordinates of the i-th flower.

It is guaranteed that all n + 2 points in the input are distinct.

Output

Print the minimum possible value $r_1^2 + r_2^2$. Note, that in this problem optimal answer is always integer.

Examples

```
input

2 -1 0 5 3
0 2
5 2

output

6
```

```
input
4 0 0 5 0
9 4
8 3
-1 0
1 4

output
33
```

Note

The first sample is $(r_1^2 = 5, r_2^2 = 1)$: The second sample is $(r_1^2 = 1, r_2^2 = 32)$: