Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology, Madras.

Fundamentals of Finite Element Analysis (AM 5450)

Assignment 4 - 1D FE Solutions

Submission Date: 9 Sept 2024

Instructions:

- I. Use scientific non-programmable calculator wherever necessary.
- II. MATLAB/PYTHON scripts used to prepare plots/figures/results should be attached with your answer.
- III. Scan all the pages of your hand-written answers, MATLAB/PYTHON scripts, output results, and figures into a PDF file.

Definitions -

- <u>p-type FE approach</u> It is an approach where improvement in the solution of the field variable $\tilde{u}(x)$ is sought by implementing higher degree polynomial approximation for the solution.
- <u>h-type FE approach</u> In order to improve the solution of the field variable $\tilde{u}(x)$ number of finite elements (with the same order) are increased until the desired relative error threshold is achieved.
- <u>Combination of p-type and h-type</u> For rapid convergence to the solution, number of higher-order finite elements (based on higher degree polynomial approximation) are used; although, this approach requires more computational resources.
- Relative error R_E for the solution $\tilde{u}(x)$ obtained with N and N-1 finite elements is computed as follows.

$$R_E = \frac{\tilde{u}_N - \tilde{u}_{N-1}}{\tilde{u}_N}$$

• A solution quantity $\tilde{u}(x)$ (or another quantity say strain $\tilde{u}'(x)$) is said to be <u>converged</u> if the Relative error in that quantity attains a desired preset threshold criteria i.e. R_E <= 1e-6. (Use this criteria for this assignment)

Question

Find the displacement field $\tilde{u}(x)$ and strain $\tilde{u}'(x)$ for the governing differential equation of the tapered bar as shown in **Figure 1** below using the **three approaches mentioned in A and B** programmed in MATLAB/PYTHON.

Figure 1 Axially loaded bar with linearly varying cross-section area A(x)

Assume E=200 GPa, $A_0=3.1416E-04$ m², $A_L=1.9635E-05$ m², L=2 m, P=2 kN, and q(x)=c=1 kN/m.

$$\frac{d}{dx}\left(EA(x)\frac{du}{dx}\right) + q(x) = 0$$

with the boundary conditions given as, u(0) = 0 and $AEu'(x)|_{x=L} = P$.

- A. Use the **Galerkin's method** by assuming polynomials of order 1 to N_P , where N_P is the converged polynomial order at which the residual function e(x) = 1E-6 (approximates to 0) for all values of x in the domain. (a) Plot the displacement field $\tilde{u}(x)$ and strain $\tilde{u}'(x)$ as a function of x in MATLAB/PYTHON for each polynomial order 1 to N_P . (b) Plot the residual function e(x) by substituting back the obtained $\tilde{u}(x)$ for each polynomial order 1 to N_P .
- B. Use the Galerkin's method with a 2-noded finite element form of assumed solution with the linear approximation $\tilde{u}(x) = N_1 u_1 + N_2 u_2$. Use the Mapping to convert the interpolation functions N_i to a local element CS ranging over -1 to +1. (a) Find out the number of such linear elements N_{LE} required to obtain a converged nodal displacement at the tip point and at the mid-point of the tapered bar. (b) Find out the relative error for the strain $\tilde{u}'(x)$ in the elements carrying nodes of the tip and mid-point of the tapered bar when N_{LE} number of elements are used. (c) Plot the solutions of displacement field $\tilde{u}(x)$ and strain $\tilde{u}'(x)$ over the length of bar (separate plots in MATLAB/PYTHON) as the number of elements increase upto N_{LE} (Show min. 5 plots).

Which approach among A and B seems to be better? Answer based on following points –

- 1) Considering the computational complexity and time required.
- 2) Accuracy of the obtained solution and its derivative with minimum computational effort.