Trưởng nhóm môn học: Trưởng bộ môn:

Số phách:

Điểm:

Mã số đề: (d+h)010

Số phách:

1. Tính công suất trung bình của tín hiệu $x(t) = \cos(10\pi t + \pi/2) - 2\sin(10\pi t + \pi/2)$

A 4.5

C 5

B 1.25

D 2.5

2. Hệ thống LTI được biểu diễn bởi phương trình sai phân:

$$y[n] = -x[n+3] - 2x[n+1] + x[n] - x[n-1] + 2x[n-2] + x[n-4]$$

I. Hãy tìm đầu ra y[n] của hệ thống khi đầu vào $x[n] = \text{rect}_3[n] - 0.5\delta[n-2]$.

$$y[n] = \{-1, -1, -2.5, -1, -1, 1.5, 1.5, 2, 1, 0.5\}$$

II. Hãy tính đáp ứng pha $\arg\{H(e^{j\omega})\}$?

 $\mathbf{A} - \omega - k\pi, \quad k \in \mathbb{Z}$

 $\bigcirc 0.5\omega + k\pi, \quad k \in \mathbb{Z} \text{ (thiêu } \frac{\pi}{2}\text{)}$

 $\mathbf{B} \ \omega + k\pi, \quad k \in \mathbb{Z}$

 $\mathbf{D} - k\pi, \quad k \in \mathbb{Z}$

III. Hãy tính $\int_{-\pi}^{\pi} H(e^{j\omega})d\omega$?

 $\triangle 12\pi$

 $\mathbf{C} \ 0.5\pi$

 $\mathbf{B} - \pi$

D 1

IV. Hãy tính $\int_0^{2\pi} |H(e^{j\omega})|^2 d\omega$?

(A) 24π

 $\mathbf{C} 16\pi$

B 8

D 12

3. Cho tín hiệu x(t) có đáp ứng tần số được minh họa trong hình 1a với độ rộng dải thông B=10 Hz. Thực hiện điều chế AM-DSBSC tín hiệu x(t) với sóng mang $c(t)=\cos(2\pi f_c t)$, trong đó $f_c=20$ Hz. Tín hiệu sau điều chế y(t)=x(t)c(t) được lấy mẫu với tần số $f_s=70$ Hz và chuẩn hóa thành tín hiệu rời rạc y[n]. Hãy vẽ đáp ứng tần số của y[n] trong đoạn $[-2\pi, 2\pi]$ vào hình 1b.

Hình 1: Điều chế AM-DSBSC và lấy mẫu

4. Cho tín hiệu x[n] với phổ $X(e^{j\omega})$ minh họa trong hình 2a. Quá trình upsampling được thực hiện như sau:

$$x_u[n] = \left\{ \begin{array}{ll} x[\frac{n}{L}] & \qquad n \quad \text{chia h\'et cho} \quad L \\ 0 & \qquad n \quad \text{còn lại} \end{array} \right.$$

trong đó L là số nguyên dương. Phổ của $x_u[n]$ là $X_u(e^{j\omega})$.

Hình 2: Upsampling

I. Hãy tính $X_u(e^{j\omega})$ theo $X(e^{j\omega})$?

$$X_u(e^{j\omega}) = X(e^{j\omega L})$$

- II. Hãy vẽ $X_u(e^{j\omega})$ vào hình 2
b cho trường hợp L=2?
- 5. Cho một hệ thống LTI nhân quả với đầu vào:

$$x[n] = \left(\frac{1}{2}\right)^n u[n] + (-2)^n u[-n-1]$$

thì có đầu ra:

$$y[n] = 2\left(\frac{1}{2}\right)^n u[n] - 2\left(-\frac{3}{4}\right)^n u[n]$$

I. Hãy tìm hàm truyền đạt H(z) của hệ thống.

$$H(z) = \frac{Y(z)}{X(z)} = \frac{1 + 2z^{-1}}{1 + \frac{3}{4}z^{-1}} = \frac{8}{3} - \frac{5}{3} \frac{1}{1 + \frac{3}{4}z^{-1}}$$

II. Hãy tìm đáp ứng xung h[n] của hệ thống?

$$h[n] = \frac{8}{3}\delta[n] - \frac{5}{3}\left(-\frac{3}{4}\right)^n u[n]$$

III. Hãy vẽ sơ đồ thực hiện hệ thống?
Xuất phát từ công thức

$$\frac{Y(z)}{X(z)} = \frac{1 + 2z^{-1}}{1 + \frac{3}{4}z^{-1}}$$