A Brief Guide to Variational Inference

Haziq Jamil
PhD (LSE), MSc (LSE), BSc MMORSE (Warw)

4 December 2018

UBD Interview Seminar

http://socialstats.haziqj.ml

Outline

Introduction

Idea

Mean-field distributions Coordinate ascent algorithm

2 Example Gaussian mixtures

3 Discussion

Zero-forcing vs Zero-avoiding Quality of approximation

Introduction

• Consider a statistical model parameterised by $\theta = (\theta_1, \dots, \theta_p)^{\top}$ for which we have observations $\mathbf{y} = \{y_1, \dots, y_n\}$ and also some latent variables $\mathbf{z} = \{z_1, \dots, z_m\}$.

- Consider a statistical model parameterised by $\boldsymbol{\theta} = (\theta_1, \dots, \theta_p)^{\top}$ for which we have observations $\mathbf{y} = \{y_1, \dots, y_n\}$ and also some latent variables $\mathbf{z} = \{z_1, \dots, z_m\}$.
- Want to evaluate the intractable integral

$$I := \int p(\mathbf{y}|\mathbf{z})p(\mathbf{z})\,\mathrm{d}\mathbf{z} = p(\mathbf{y})$$

- ► Frequentist likelihood maximisation $\arg \max_{\theta} \log p(\mathbf{y}|\theta)$
- ▶ Bayesian posterior analysis $p(\mathbf{z}|\mathbf{y}) = p(\mathbf{y}, \mathbf{z})/p(\mathbf{y})$

- Consider a statistical model parameterised by $\theta = (\theta_1, \dots, \theta_p)^{\top}$ for which we have observations $\mathbf{y} = \{y_1, \dots, y_n\}$ and also some latent variables $\mathbf{z} = \{z_1, \dots, z_m\}$.
- Want to evaluate the intractable integral

$$I := \int \rho(\mathbf{y}|\mathbf{z})\rho(\mathbf{z})\,\mathrm{d}\mathbf{z} = \rho(\mathbf{y})$$

- Frequentist likelihood maximisation $\arg \max_{\theta} \log p(\mathbf{y}|\theta)$
- ▶ Bayesian posterior analysis $p(\mathbf{z}|\mathbf{y}) = p(\mathbf{y}, \mathbf{z})/p(\mathbf{y})$
- Variational inference approximates the "posterior" $p(\mathbf{z}|\mathbf{y})$ by a tractably close distribution in the Kullback-Leibler sense.

- Consider a statistical model parameterised by $\boldsymbol{\theta} = (\theta_1, \dots, \theta_p)^{\top}$ for which we have observations $\mathbf{y} = \{y_1, \dots, y_n\}$ and also some latent variables $\mathbf{z} = \{z_1, \dots, z_m\}$.
- Want to evaluate the intractable integral

$$I := \int p(\mathbf{y}|\mathbf{z})p(\mathbf{z})\,\mathrm{d}\mathbf{z} = p(\mathbf{y})$$

- Frequentist likelihood maximisation $\arg \max_{\theta} \log p(\mathbf{y}|\theta)$
- ▶ Bayesian posterior analysis $p(\mathbf{z}|\mathbf{y}) = p(\mathbf{y}, \mathbf{z})/p(\mathbf{y})$
- Variational inference approximates the "posterior" $p(\mathbf{z}|\mathbf{y})$ by a tractably close distribution in the Kullback-Leibler sense.
- Advantages:
 - ► Computationally fast
 - ► Convergence easily assessed
 - ► Works well in practice

000000

Occupa October on the feet of the control of

• Well known in machine learning, slowly encroaching other fields.

In the literature

Google Scholar results for 'variational inference'

- Well known in machine learning, slowly encroaching other fields.
- Applications (Blei et al., 2017):
 - Computer vision and robotics (image denoising, tracking, recognition)
 - Natural language processing and speech recognition (topic modelling)
 - Social statistics (probit models, latent class models, variable selection)
 - Computational biology (phylogenetic hidden Markov models, population genetics, gene expression analysis)
 - Computational neuroscience (autoregressive processes, hierarchical models, spatial models, artificial neural networks)

Introductory texts

- D. M. Blei et al. (2017). "Variational Inference: A Review for Statisticians". J. Am. Stat. Assoc, 112.518, pp. 859–877
- C. M. Bishop (2006). Pattern Recognition and Machine Learning.

 Springer
- K. P. Murphy (2012). Machine Learning: A Probabilistic Perspective.
 The MIT Press
- M. J. Beal (2003). "Variational algorithms for approximate Bayesian inference". PhD thesis. Gatsby Computational Neuroscience Unit, University College London
- HJ (Oct. 2018). "Regression modelling using priors depending on Fisher information covariance kernels (I-priors)". PhD thesis. London School of Economics and Political Science

q(z)

Minimise Kullback-Leibler divergence (using calculus of variations)

$$\mathsf{KL}(q\|p) = -\int \log rac{p(\mathsf{z}|\mathsf{y})}{q(\mathsf{z})} q(\mathsf{z}) \, \mathsf{dz}.$$

• Use $\tilde{q}(\mathbf{z}; \nu^*) := \arg\min_{q} \mathsf{KL}(q||p)$ as an approximation to $p(\mathbf{z}|\mathbf{y})$.

D. M. Blei (2017). "Variational Inference: Foundations and Innovations". URL: https://simons.berkeley.edu/talks/david-blei-2017-5-1

Minimise Kullback-Leibler divergence (using calculus of variations)

$$\mathsf{KL}(q\|p) = -\int \log rac{p(\mathsf{z}|\mathsf{y})}{q(\mathsf{z})} q(\mathsf{z}) \, \mathsf{dz}.$$

• Use $\tilde{q}(\mathbf{z}; \nu^*) := \arg\min_{q} \mathsf{KL}(q \| p)$ as an approximation to $p(\mathbf{z} | \mathbf{y})$.

D. M. Blei (2017). "Variational Inference: Foundations and Innovations". URL: https://simons.berkeley.edu/talks/david-blei-2017-5-1

Idea

Minimise Kullback-Leibler divergence (using calculus of variations)

$$\mathsf{KL}(q\|p) = -\int \log rac{p(\mathsf{z}|\mathsf{y})}{q(\mathsf{z})} q(\mathsf{z}) \, \mathsf{dz}.$$

• Use $\tilde{q}(\mathbf{z}; \nu^*) := \arg\min_{q} \mathsf{KL}(q \| p)$ as an approximation to $p(\mathbf{z} | \mathbf{y})$.

D. M. Blei (2017). "Variational Inference: Foundations and Innovations". URL: https://simons.berkeley.edu/talks/david-blei-2017-5-1

Idea

Minimise Kullback-Leibler divergence (using calculus of variations)

$$\mathsf{KL}(q\|p) = -\int \log rac{p(\mathsf{z}|\mathsf{y})}{q(\mathsf{z})} q(\mathsf{z}) \, \mathsf{dz}.$$

• Use $\tilde{q}(\mathbf{z}; \nu^*) := \arg\min_{q} \mathsf{KL}(q||p)$ as an approximation to $p(\mathbf{z}|\mathbf{y})$.

D. M. Blei (2017). "Variational Inference: Foundations and Innovations". URL: https://simons.berkeley.edu/talks/david-blei-2017-5-1

The Evidence Lower Bound (ELBO)

• Let q(z) be some density function to approximate p(z|y).

Introduction

0000000

The Evidence Lower Bound (ELBO)

• Let q(z) be some density function to approximate p(z|y). Then the log-marginal density can be decomposed as follows:

$$\log p(\mathbf{y}) = \log p(\mathbf{y}, \mathbf{z}) - \log p(\mathbf{z}|\mathbf{y})$$

The Evidence Lower Bound (ELBO)

• Let q(z) be some density function to approximate p(z|y). Then the log-marginal density can be decomposed as follows:

$$\log p(\mathbf{y}) = \log p(\mathbf{y}, \mathbf{z}) - \log p(\mathbf{z}|\mathbf{y})$$

$$= \int \left\{ \log \frac{p(\mathbf{y}, \mathbf{z})}{q(\mathbf{z})} - \log \frac{p(\mathbf{z}|\mathbf{y})}{q(\mathbf{z})} \right\} q(\mathbf{z}) d\mathbf{z}$$

The Evidence Lower Bound (ELBO)

• Let q(z) be some density function to approximate p(z|y). Then the log-marginal density can be decomposed as follows:

$$\log p(\mathbf{y}) = \log p(\mathbf{y}, \mathbf{z}) - \log p(\mathbf{z}|\mathbf{y})$$

$$= \int \left\{ \log \frac{p(\mathbf{y}, \mathbf{z})}{q(\mathbf{z})} - \log \frac{p(\mathbf{z}|\mathbf{y})}{q(\mathbf{z})} \right\} q(\mathbf{z}) d\mathbf{z}$$

$$= \mathcal{L}(q) + \mathsf{KL}(q||p)$$

$$\geq \mathcal{L}(q)$$

The Evidence Lower Bound (ELBO)

• Let q(z) be some density function to approximate p(z|y). Then the log-marginal density can be decomposed as follows:

$$\log p(\mathbf{y}) = \log p(\mathbf{y}, \mathbf{z}) - \log p(\mathbf{z}|\mathbf{y})$$

$$= \int \left\{ \log \frac{p(\mathbf{y}, \mathbf{z})}{q(\mathbf{z})} - \log \frac{p(\mathbf{z}|\mathbf{y})}{q(\mathbf{z})} \right\} q(\mathbf{z}) d\mathbf{z}$$

$$= \mathcal{L}(q) + \mathsf{KL}(q||p)$$

$$\geq \mathcal{L}(q)$$

- \mathcal{L} is referred to as the "lower-bound", and it serves as a surrogate function to the marginal.
- Maximising $\mathcal{L}(q)$ is equivalent to minimising $\mathsf{KL}(q\|p)$.

The Evidence Lower Bound (ELBO)

• Let q(z) be some density function to approximate p(z|y). Then the log-marginal density can be decomposed as follows:

$$\log p(\mathbf{y}) = \log p(\mathbf{y}, \mathbf{z}) - \log p(\mathbf{z}|\mathbf{y})$$

$$= \int \left\{ \log \frac{p(\mathbf{y}, \mathbf{z})}{q(\mathbf{z})} - \log \frac{p(\mathbf{z}|\mathbf{y})}{q(\mathbf{z})} \right\} q(\mathbf{z}) d\mathbf{z}$$

$$= \mathcal{L}(q) + \mathsf{KL}(q||p)$$

$$\geq \mathcal{L}(q)$$

- \mathcal{L} is referred to as the "lower-bound", and it serves as a surrogate function to the marginal.
- Maximising $\mathcal{L}(q)$ is equivalent to minimising $\mathsf{KL}(q\|p)$.
- N.b. Equality in the bound when $q(z) \equiv p(z|y)$, and KL(q||p) vanishes (c.f. EM algorithm).

Factorised distributions (Mean-field theory)

- Maximising \mathcal{L} over all possible q not feasible. Need some restrictions, but only to achieve tractability.
- Suppose we partition elements of z into M disjoint groups $z = (z_{[1]}, \dots, z_{[M]})$, and assume

$$q(\mathsf{z}) = \prod_{j=1}^M q_j(\mathsf{z}_{[j]}).$$

Factorised distributions (Mean-field theory)

- Maximising \mathcal{L} over all possible q not feasible. Need some restrictions, but only to achieve tractability.
- Suppose we partition elements of z into M disjoint groups $z = (z_{[1]}, \dots, z_{[M]})$, and assume

$$q(\mathsf{z}) = \prod_{j=1}^M q_j(\mathsf{z}_{[j]}).$$

• Under this restriction, the solution to $\arg\max_q \mathcal{L}(q)$ is

$$\tilde{q}_j(\mathbf{z}_{[j]}) \propto \exp\left(\mathsf{E}_{-j}[\log p(\mathbf{y}, \mathbf{z})]\right)$$
 (1)

for
$$j \in \{1, ..., m\}$$
.

Factorised distributions (Mean-field theory)

- Maximising \mathcal{L} over all possible q not feasible. Need some restrictions, but only to achieve tractability.
- Suppose we partition elements of z into M disjoint groups $z = (z_{[1]}, \dots, z_{[M]})$, and assume

$$q(\mathsf{z}) = \prod_{j=1}^M q_j(\mathsf{z}_{[j]}).$$

• Under this restriction, the solution to $\arg\max_q \mathcal{L}(q)$ is

$$\tilde{q}_j(\mathbf{z}_{[j]}) \propto \exp\left(\mathsf{E}_{-j}[\log p(\mathbf{y}, \mathbf{z})]\right)$$
 (1)

for $j \in \{1, ..., m\}$.

 In practice, these unnormalised densities are of recognisable form (especially if conjugacy is considered).

• The optimal distributions are coupled with another, i.e. each $\tilde{q}_j(\mathbf{z}_{[j]})$ depends on the optimal moments of $\mathbf{z}_{[k]}$, $k \in \{1, \ldots, M | k \neq j\}$.

Introduction

0000000

- The optimal distributions are coupled with another, i.e. each $\tilde{q}_j(\mathbf{z}_{[j]})$ depends on the optimal moments of $\mathbf{z}_{[k]}$, $k \in \{1, \dots, M | k \neq j\}$.
- One way around this to employ an iterative procedure.

- The optimal distributions are coupled with another, i.e. each $\tilde{q}_i(\mathbf{z}_{[i]})$ depends on the optimal moments of $\mathbf{z}_{[k]}$, $k \in \{1, ..., M | k \neq j\}$.
- One way around this to employ an iterative procedure.
- Assess convergence by monitoring the lower bound

$$\mathcal{L}(q) = \mathsf{E}_q[\log p(\mathbf{y}, \mathbf{z})] - \mathsf{E}_q[\log q(\mathbf{z})].$$

- The optimal distributions are coupled with another, i.e. each $\tilde{q}_j(\mathbf{z}_{[j]})$ depends on the optimal moments of $\mathbf{z}_{[k]}$, $k \in \{1, ..., M | k \neq j\}$.
- One way around this to employ an iterative procedure.
- Assess convergence by monitoring the lower bound

$$\mathcal{L}(q) = \mathsf{E}_q[\log p(\mathsf{y},\mathsf{z})] - \mathsf{E}_q[\log q(\mathsf{z})].$$

Algorithm 4 CAVI

- 1: **initialise** Variational factors $q_i(\mathbf{z}_{[i]})$
- 2: while $\mathcal{L}(q)$ not converged do
- for $j = 1, \ldots, M$ do 3:
- $\log q_i(\mathbf{z}_{[i]}) \leftarrow \mathsf{E}_{-i}[\log p(\mathbf{y}, \mathbf{z})] + \mathsf{const.}$ ⊳ from (1) 4:
- end for 5:
- $\mathcal{L}(q) \leftarrow \mathsf{E}_q[\log p(\mathsf{y},\mathsf{z})] \mathsf{E}_q[\log q(\mathsf{z})]$
- 7. end while
- 8: return $\tilde{q}(z) = \prod_{i=1}^{M} \tilde{q}_i(z_{[i]})$

- Introduction
- 2 Example
- 3 Discussion

Gaussian mixture model (Old Faithful data set)

• Let $\mathbf{x}_i \in \mathbb{R}^d$ and assume $\mathbf{x}_i \overset{\mathsf{iid}}{\sim} \sum_{k=1}^K \pi_k \, \mathsf{N}_d(\boldsymbol{\mu}_k, \boldsymbol{\Psi}_k^{-1})$ for $i = 1, \dots, n$.

Gaussian mixture model

- Introduce $\mathbf{z}_i = (z_{i1}, \dots, z_{iK})$, a 1-of-K binary vector, where each $z_{ik} \sim \text{Bern}(\pi_k)$.
- \bullet Assuming $z=\{z_1,\ldots,z_n\}$, the conditional likelihood is

$$p(\mathbf{x}|\mathbf{z},\boldsymbol{\mu},\boldsymbol{\Psi}) = \prod_{i=1}^n \prod_{k=1}^K \mathsf{N}_d(\mathbf{x}_i|\boldsymbol{\mu}_k,\boldsymbol{\Psi}_k^{-1})^{z_{ik}}.$$

Gaussian mixture model

- Introduce $\mathbf{z}_i = (z_{i1}, \dots, z_{iK})$, a 1-of-K binary vector, where each $z_{ik} \sim \text{Bern}(\pi_k)$.
- Assuming $z = \{z_1, \dots, z_n\}$, the conditional likelihood is

$$p(\mathbf{x}|\mathbf{z},\boldsymbol{\mu},\boldsymbol{\Psi}) = \prod_{i=1}^n \prod_{k=1}^n \mathsf{N}_d(\mathbf{x}_i|\boldsymbol{\mu}_k,\boldsymbol{\Psi}_k^{-1})^{z_{ik}}.$$

Gaussian mixture model

$$\begin{split} & \rho(\mathbf{x}, \mathbf{z}, \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Psi}) \\ &= \rho(\mathbf{x}|\mathbf{z}, \boldsymbol{\mu}, \boldsymbol{\Psi}) \rho(\mathbf{z}|\boldsymbol{\pi}) \\ & \times \rho(\boldsymbol{\pi}) \rho(\boldsymbol{\mu}|\boldsymbol{\Psi}) \rho(\boldsymbol{\Psi}) \\ &= \rho(\mathbf{x}|\mathbf{z}, \boldsymbol{\mu}, \boldsymbol{\Psi}) \rho(\mathbf{z}|\boldsymbol{\pi}) \\ & \times \mathsf{Dir}_{K}(\boldsymbol{\pi}|\alpha_{01}, \dots, \alpha_{0K}) \\ & \times \prod_{k=1}^{K} \mathsf{N}_{d}(\boldsymbol{\mu}_{k}|\mathbf{m}_{0}, (\kappa_{0}\boldsymbol{\Psi}_{k})^{-1}) \\ & \times \prod_{k=1}^{K} \mathsf{Wis}_{d}(\boldsymbol{\Psi}_{k}|\mathsf{W}_{0}, \nu_{0}) \end{split}$$

- Introduce $\mathbf{z}_i = (z_{i1}, \dots, z_{iK})$, a 1-of-K binary vector, where each $z_{ik} \sim \text{Bern}(\pi_k)$.
- Assuming $z = \{z_1, \dots, z_n\}$, the conditional likelihood is

$$p(\mathbf{x}|\mathbf{z},\boldsymbol{\mu},\boldsymbol{\Psi}) = \prod_{i=1}^n \prod_{k=1}^K \mathsf{N}_d(\mathbf{x}_i|\boldsymbol{\mu}_k,\boldsymbol{\Psi}_k^{-1})^{z_{ik}}.$$

Variational inference for GMM

Assume the mean-field posterior density

$$egin{aligned} q(\mathsf{z},\pi,\mu,\Psi) &= q(\mathsf{z})q(\pi,\mu,\Psi) \ &= q(\mathsf{z})q(\pi)q(\mu|\Psi)q(\Psi). \end{aligned}$$

Algorithm 5 CAVI for GMM

details

- 1: initialise Variational factors q(z), $q(\pi)$ and $q(\mu, \Psi)$
- 2: while $\mathcal{L}(q)$ not converged do
- 3: $q(z_{ik}) \leftarrow \text{Bern}(\cdot)$
- 4: $q(\pi) \leftarrow \mathsf{Dir}_{\mathcal{K}}(\cdot)$
- 5: $q(\mu|\Psi) \leftarrow \mathsf{N}_d(\cdot,\cdot)$
- 6: $q(\Psi) \leftarrow \mathsf{Wis}_d(\cdot, \cdot)$
- 7: $\mathcal{L}(q) \leftarrow \mathsf{E}_q[\log p(\mathsf{x}, \mathsf{z}, \pi, \mu, \Psi)] \mathsf{E}_q[\log q(\mathsf{z}, \pi, \mu, \Psi)]$
- 8: end while
- 9: return $\widetilde{q}(\mathsf{z},\pi,\mu,\Psi) = \widetilde{q}(\mathsf{z})\widetilde{q}(\pi)\widetilde{q}(\mu|\Psi)\widetilde{q}(\Psi)$

Final thoughts on variational GMM

- Similar algorithm to the EM, and therefore similar computational time.
- Can extend to mixture of bernoullis a.k.a. latent class analysis.
- PROS:
 - ▶ Automatic selection of number of mixture components.
 - Less pathological special cases compared to EM solutions because regularised by prior information.
 - ▶ Less sensitive to number of parameters/components.
- CONS:
 - Hyperparameter tuning.

- Introduction
- 2 Example
- 3 Discussion

Non-convexity of ELBO

- CAVI only guarantees converges to a local optimum.
- Multiple local optima may exist.

Non-convexity of ELBO

- CAVI only guarantees converges to a local optimum.
- Multiple local optima may exist.

Zero-forcing vs Zero-avoiding

• Back to the KL divergence:

$$\mathsf{KL}(q\|p) = \int \log rac{q(\mathsf{z})}{p(\mathsf{z}|\mathsf{y})} q(\mathsf{z}) \, \mathsf{dz}$$

- KL(q||p) is large when p(z|y) is close to zero, unless q(z) is also close to zero (*zero-forcing*).
- What about other measures of closeness?

Zero-forcing vs Zero-avoiding

• Back to the KL divergence:

$$\mathsf{KL}(q\|p) = \int \log rac{q(\mathsf{z})}{p(\mathsf{z}|\mathsf{y})} q(\mathsf{z}) \, \mathsf{dz}$$

- KL(q||p) is large when $p(\mathbf{z}|\mathbf{y})$ is close to zero, unless $q(\mathbf{z})$ is also close to zero (*zero-forcing*).
- What about other measures of closeness? For instance,

$$\mathsf{KL}(p\|q) = \int \log rac{p(\mathsf{z}|\mathsf{y})}{q(\mathsf{z}|\mathsf{y})} p(\mathsf{z}|\mathsf{y}) \, \mathsf{dz}.$$

- This gives the Expectation Propagation (EP) algorithm.
- It is zero-avoiding, because KL(p||q) is small when both p(z|y) and q(z) are non-zero.

Zero-forcing vs Zero-avoiding (cont.)

— p(z)

Zero-forcing vs Zero-avoiding (cont.)

Zero-forcing vs Zero-avoiding (cont.)

— p(z) — q(z)

Distortion of higher order moments

• Consider $\mathbf{z} = (z_1, z_2)^{\top} \sim \mathsf{N}_2(\boldsymbol{\mu}, \boldsymbol{\Psi}^{-1})$, $\mathsf{Cov}(z_1, z_2) \neq 0$.

Distortion of higher order moments

- Consider $\mathbf{z} = (z_1, z_2)^{\top} \sim \mathsf{N}_2(\boldsymbol{\mu}, \boldsymbol{\Psi}^{-1})$, $\mathsf{Cov}(z_1, z_2) \neq 0$.
- ullet Approximating $p(\mathbf{z})$ by $q(\mathbf{z})=q_1(z_1)q_2(z_2)$ yields

$$ilde{q}_1(z_1) = \mathsf{N}(z_1|\mu_1,\psi_{11}^{-1})$$
 and $ilde{q}_2(z_2) = \mathsf{N}(z_2|\mu_2,\psi_{22}^{-1})$

and by definition, $Cov(z_1, z_2) = 0$ under \tilde{q} .

Distortion of higher order moments

- Consider $\mathbf{z} = (z_1, z_2)^{\top} \sim \mathsf{N}_2(\boldsymbol{\mu}, \boldsymbol{\Psi}^{-1})$, $\mathsf{Cov}(z_1, z_2) \neq 0$.
- Approximating $p(\mathbf{z})$ by $q(\mathbf{z}) = q_1(z_1)q_2(z_2)$ yields

$$ilde{q}_1(z_1) = \mathsf{N}(z_1|\mu_1,\psi_{11}^{-1}) \ \ \mathsf{and} \ \ ilde{q}_2(z_2) = \mathsf{N}(z_2|\mu_2,\psi_{22}^{-1})$$

and by definition, $Cov(z_1, z_2) = 0$ under \tilde{q} .

• This leads to underestimation of variances (widely reported in the literature—Zhao and Marriott, 2013).

• Variational inference converges to a different optimum than ML, except for certain models (Gunawardana and Byrne, 2005).

- Variational inference converges to a different optimum than ML, except for certain models (Gunawardana and Byrne, 2005).
- But not much can be said about the quality of approximation.

- Variational inference converges to a different optimum than ML, except for certain models (Gunawardana and Byrne, 2005).
- But not much can be said about the quality of approximation.
- Statistical properties not well understood—what is its statistical profile relative to the exact posterior?

- Variational inference converges to a different optimum than ML, except for certain models (Gunawardana and Byrne, 2005).
- But not much can be said about the quality of approximation.
- Statistical properties not well understood—what is its statistical profile relative to the exact posterior?
- Speed trumps accuracy?

End

Thank you!

References I

- Beal, M. J. (2003). "Variational algorithms for approximate Bayesian inference". PhD thesis. Gatsby Computational Neuroscience Unit, University College London.
- Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.
- Blei, D. M. (2017). "Variational Inference: Foundations and Innovations". URL:
 - https://simons.berkeley.edu/talks/david-blei-2017-5-1.
- Blei, D. M., A. Kucukelbir, and J. D. McAuliffe (2017). "Variational Inference: A Review for Statisticians". *Journal of the American Statistical Association*, 112.518, pp. 859–877.
- Gunawardana, A. and W. Byrne (2005). "Convergence theorems for generalized alternating minimization procedures". *Journal of Machine Learning Research* 6, pp. 2049–2073.

References II

- Kass, R. and A. Raftery (1995). "Bayes Factors". *Journal of the American Statistical Association* 90.430, pp. 773–795.
- Murphy, K. P. (2012). *Machine Learning: A Probabilistic Perspective*. The MIT Press.
- Jamil, H. (Oct. 2018). "Regression modelling using priors depending on Fisher information covariance kernels (I-priors)". PhD thesis. London School of Economics and Political Science.
- Zhao, H. and P. Marriott (2013). "Diagnostics for variational Bayes approximations". arXiv: 1309.5117.

4 Additional material

The variational principle Comparison to EM The EM algorithm Laplace's method Solutions to Gaussian mixture

The variational principle

 Name derived from calculus of variations which deals with maximising or minimising functionals.

```
Functions p: \theta \mapsto \mathbb{R} (standard calculus)
Functionals \mathcal{H}: p \mapsto \mathbb{R} (variational calculus)
```

The variational principle

 Name derived from calculus of variations which deals with maximising or minimising functionals.

Functions
$$p: \theta \mapsto \mathbb{R}$$
 (standard calculus)
Functionals $\mathcal{H}: p \mapsto \mathbb{R}$ (variational calculus)

Using standard calculus, we can solve

$$\arg\max_{\theta} p(\theta) =: \hat{\theta}$$

e.g. p is a likelihood function, and $\hat{\theta}$ is the ML estimate.

The variational principle

 Name derived from calculus of variations which deals with maximising or minimising functionals.

Functions
$$p: \theta \mapsto \mathbb{R}$$
 (standard calculus)
Functionals $\mathcal{H}: p \mapsto \mathbb{R}$ (variational calculus)

Using standard calculus, we can solve

$$\arg\max_{\theta} p(\theta) =: \hat{\theta}$$

e.g. p is a likelihood function, and $\hat{\theta}$ is the ML estimate.

Using variational calculus, we can solve

$$\operatorname{arg\,max}_{p} \mathcal{H}(p) =: \tilde{p}$$

e.g. \mathcal{H} is the entropy $\mathcal{H} = -\int p(x) \log p(x) dx$, and \tilde{p} is the entropy maximising distribution.

Comparison to the EM algorithm

- In addition to latent variables z, typically there are unknown parameters θ to be estimated.
 - \blacktriangleright Frequentist estimation: θ is fixed
 - ▶ Bayesian estimation: $\theta \sim p(\theta)$ is random
- Consider θ fixed. Maximising the (marginal) log-likelihood directly

$$\underset{\theta}{\operatorname{arg \, max}} \log \left\{ \int p(\mathbf{y}|\mathbf{z}, \theta) p(\mathbf{z}|\theta) \, d\mathbf{z} \right\}$$

is difficult. However, if somehow the latent variables were known, then the problem may become easier.

- Given initial values $\theta^{(0)}$, the EM algorithm cycles through
 - ► **E-step**: Compute $Q(\theta|\theta^{(t)}) := \mathsf{E}_{\mathsf{z}}[\log p(\mathsf{y},\mathsf{z}|\theta) \,|\, \mathsf{y},\theta^{(t)}]$
 - ▶ **M-step**: $\theta^{(t+1)} \leftarrow \arg \max_{\theta} Q(\theta|\theta^{(t)})$

for $t = 1, 2, \ldots$ until convergence.

Comparison to the EM algorithm (cont.)

Variational inference/Bayes	(Variational) EM algorithm
GOAL : Posterior densities for (\mathbf{w}, θ)	GOAL : ML/MAP estimates for θ
Variational approximation for latent variables and parameters $q(\mathbf{w}, \theta) \approx p(\mathbf{w}, \theta \mathbf{y})$	Variational approximation for latent variables only $q(\mathbf{w}) \approx p(\mathbf{w} \mathbf{y})$
Priors required on θ	Priors not necessary for θ
Derivation can be tedious	Derivation less tedious
Inference on θ through (approximate) posterior density $q(\theta)$	Asymptotic distribution of θ not well studied; standard errors for θ not easily obtained

Laplace's method

• Interested in $p(\mathbf{f}|\mathbf{y}) \propto p(\mathbf{y}|\mathbf{f})p(\mathbf{f}) =: e^{Q(\mathbf{f})}$, with normalising constant $p(\mathbf{y}) = \int e^{Q(\mathbf{f})} d\mathbf{f}$. The Taylor expansion of Q about its mode $\tilde{\mathbf{f}}$

$$Q(\mathbf{f}) \approx Q(\tilde{\mathbf{f}}) - \frac{1}{2}(\mathbf{f} - \tilde{\mathbf{f}})^{\top} \mathbf{A}(\mathbf{f} - \tilde{\mathbf{f}})$$

is recognised as the logarithm of an unnormalised Gaussian density, with ${\bf A}=-{\bf D}^2 Q({\bf f})$ being the negative Hessian of Q evaluated at $\tilde{\bf f}$.

R. Kass and A. Raftery (1995). "Bayes Factors". *Journal of the American Statistical Association* 90.430, pp. 773–795, §4.1, pp.777-778.

Laplace's method

• Interested in $p(\mathbf{f}|\mathbf{y}) \propto p(\mathbf{y}|\mathbf{f})p(\mathbf{f}) =: e^{Q(\mathbf{f})}$, with normalising constant $p(\mathbf{y}) = \int e^{Q(\mathbf{f})} d\mathbf{f}$. The Taylor expansion of Q about its mode $\tilde{\mathbf{f}}$

$$Q(\mathbf{f}) \approx Q(\tilde{\mathbf{f}}) - \frac{1}{2}(\mathbf{f} - \tilde{\mathbf{f}})^{\top} \mathbf{A}(\mathbf{f} - \tilde{\mathbf{f}})$$

is recognised as the logarithm of an unnormalised Gaussian density, with ${\bf A}=-{\sf D}^2 Q({\bf f})$ being the negative Hessian of Q evaluated at $\tilde{\bf f}$.

• The posterior $p(\mathbf{f}|\mathbf{y})$ is approximated by $N(\tilde{\mathbf{f}}, \mathbf{A}^{-1})$, and the marginal by

$$p(\mathbf{y}) \approx (2\pi)^{n/2} |\mathbf{A}|^{-1/2} p(\mathbf{y}|\mathbf{\tilde{f}}) p(\mathbf{\tilde{f}})$$

R. Kass and A. Raftery (1995). "Bayes Factors". *Journal of the American Statistical Association* 90.430, pp. 773–795, §4.1, pp.777-778.

Laplace's method

• Interested in $p(\mathbf{f}|\mathbf{y}) \propto p(\mathbf{y}|\mathbf{f})p(\mathbf{f}) =: e^{Q(\mathbf{f})}$, with normalising constant $p(\mathbf{y}) = \int e^{Q(\mathbf{f})} d\mathbf{f}$. The Taylor expansion of Q about its mode $\tilde{\mathbf{f}}$

$$Q(\mathbf{f}) \approx Q(\tilde{\mathbf{f}}) - \frac{1}{2}(\mathbf{f} - \tilde{\mathbf{f}})^{\top} \mathbf{A}(\mathbf{f} - \tilde{\mathbf{f}})$$

is recognised as the logarithm of an unnormalised Gaussian density, with ${\bf A}=-{\sf D}^2 Q({\bf f})$ being the negative Hessian of Q evaluated at $\tilde{{\bf f}}$.

• The posterior $p(\mathbf{f}|\mathbf{y})$ is approximated by $N(\tilde{\mathbf{f}}, \mathbf{A}^{-1})$, and the marginal by

$$p(\mathbf{y}) \approx (2\pi)^{n/2} |\mathbf{A}|^{-1/2} p(\mathbf{y}|\tilde{\mathbf{f}}) p(\tilde{\mathbf{f}})$$

• Won't scale with large *n*; difficult to find modes in high dimensions.

R. Kass and A. Raftery (1995). "Bayes Factors". *Journal of the American Statistical Association* 90.430, pp. 773–795, §4.1, pp.777-778.

Comparison of approximations (density)

Comparison of approximations (density)

Comparison of approximations (density)

Comparison of approximations (deviance)

Variational solutions to Gaussian mixture model

Variational M-step

$$\begin{split} \tilde{q}(\mathbf{z}) &= \prod_{i=1}^n \prod_{k=1}^K r_{ik}^{z_{ik}}, \quad r_{ik} = \rho_{ik} / \sum_{k=1}^K \rho_{ik} \\ \log \rho_{ik} &= \mathsf{E}[\log \pi_k] + \frac{1}{2} \, \mathsf{E}\left[\log |\Psi_k|\right] - \frac{d}{2} \log 2\pi \\ &- \frac{1}{2} \, \mathsf{E}\left[(\mathbf{x}_i - \boldsymbol{\mu}_k)^\top \Psi_k (\mathbf{x}_i - \boldsymbol{\mu}_k)\right] \end{split}$$

Variational E-step

$$\begin{split} \tilde{q}(\pi_1,\dots,\pi_K) &= \mathsf{Dir}_K(\boldsymbol{\pi}|\tilde{\boldsymbol{\alpha}}), \quad \tilde{\alpha}_k = \alpha_{0k} + \sum_{i=1}^n r_{ik} \\ \tilde{q}(\boldsymbol{\mu},\boldsymbol{\Psi}) &= \prod_{k=1}^K \mathsf{N}_d\left(\boldsymbol{\mu}_k|\tilde{\boldsymbol{\mathsf{m}}}_k,(\tilde{\kappa}_k\boldsymbol{\Psi}_k)^{-1}\right) \mathsf{Wis}_d(\boldsymbol{\Psi}_k|\tilde{\boldsymbol{\mathsf{W}}}_k,\tilde{\nu}_k) \end{split}$$

Variational solutions to Gaussian mixture model (cont.)

$$\tilde{\kappa}_k = \kappa_0 + \sum_{i=1}^n r_{ik}$$

$$\tilde{\mathbf{m}}_k = (\kappa_0 \mathbf{m}_0 + \sum_{i=1}^n r_{ik} \mathbf{x}_i) / \tilde{\kappa}_k$$

$$\mathbf{W}_k^{-1} = \mathbf{W}_0^{-1} + \sum_{i=1}^n r_{ik} (\mathbf{x}_i - \bar{\mathbf{x}}_k) (\mathbf{x}_i - \bar{\mathbf{x}}_k)^{\top}$$

$$\bar{\mathbf{x}}_k = \sum_{i=1}^n r_{ik} \mathbf{x}_i / \sum_{i=1}^n r_{ik}$$

$$\nu_k = \nu_0 + \sum_{i=1}^n r_{ik}$$

Also useful

$$E\left[(\mathbf{x}_{i} - \boldsymbol{\mu}_{k})^{\top} \boldsymbol{\Psi}_{k} (\mathbf{x}_{i} - \boldsymbol{\mu}_{k})\right] = d/\tilde{\kappa}_{k} + \nu_{k} (\mathbf{x}_{i} - \tilde{\mathbf{m}}_{k})^{\top} \tilde{\mathbf{W}}_{k} (\mathbf{x}_{i} - \tilde{\mathbf{m}}_{k})$$

$$E\left[\log \pi_{k}\right] = \sum_{i=1}^{d} \psi\left(\frac{\nu_{k} + 1 - i}{2}\right) + d\log 2 + \log|\tilde{\mathbf{W}}_{k}|$$

 $\mathsf{E}\left[\log|\Psi_k|\right] = \psi(\tilde{\alpha}_k) - \psi\left(\sum_{k=1}^K \tilde{\alpha}_k\right), \quad \psi(\cdot) \text{ is the digamma function}$