Diskrete Strukturen (WS 2023-24) - Halbserie 1

Bitte nur Probleme 1.1, 1.2 und 1.3 einreichen.

1.1 (bitte direkt auf moodle als Quiz-Frage antworten.)

[4]

[3]

1.2

Es seien die folgenden **Prädikate** gegeben:

- Z(x): x ist eine ganze Zahl,
- P(x): x ist eine Primzahl,
- E(x): x ist eine gerade Zahl,
- D(x,y): x ist durch y teilbar.

Formalisieren Sie folgende Aussagen:

- 1. Es gibt eine Primzahl, die gerade ist.
- 2. Jede ganze Zahl ist durch eine Primzahl teilbar.
- 3. Es gibt keine Primzahl, die durch eine gerade Zahl teilbar ist.

Solution.

- 1. $\exists x (P(x) \land E(x))$
- 2. $\forall x(Z(x) \to (\exists y(P(y) \land D(x,y)))$
- 3. $\neg \exists x (P(x) \land \exists y (E(y) \land D(x,y)))$

 $1.3 ag{3}$

Gegeben sei die folgende Aussage:

Wenn eine ganze Zahl gerade ist, so besitzt sie mindestens zwei verschiedene Teiler.

Geben Sie die Kontraposition dieser Aussage

- 1. in natürlicher Sprache
- 2. als prädikatenlogische Formel an. Verwenden Sie die Prädikate aus Aufgabe 1.2.

Solution.

- 1. Die Kontraposition lautet: Wenn eine ganze Zahl nicht mindestens zwei verschiedene Teiler besitzt, so ist sie keine gerade Zahl.
- 2. Formalisierung (andere Lösungen sind auch möglich):

$$\forall x (Z(x) \to ((\neg \exists y \exists z (y \neq z \land D(x, y) \land D(x, z))) \to \neg E(x)))$$

1.4 Es seien P und Q Prädikate.

Sind die folgenden Äquivalenzen wahr? Wenn nicht dann geben Sie ein Gegenbeispiel an. Wenn ja, dann beweisen Sie es mit zwei Implikationen.

- 1. $\exists x (P(x) \land Q(x))$ ist äquivalent zu $\exists x (P(x)) \land \exists x (Q(x))$
- 2. $\exists x (P(x) \lor Q(x))$ ist äquivalent zu $\exists x (P(x)) \lor \exists x (Q(x))$

Solution.

- 1. Falsch. Begründung durch Gegenbeispiel, wähle z.B. Universum \mathbb{Z} , P = Gerade, Q = Ungerade: Die rechte Formel gilt, die linke Formel gilt nicht.
- 2. Wahr.
 - (\Rightarrow) Angenommen $\exists x(P(x) \lor Q(x))$. Es gibt also ein Element a sodass $P(a) \lor Q(a)$ gilt. Wir machen eine Fallunterscheidung:
 - (1) Angenommen P(a) gilt. Dann gilt $\exists x P(x)$ und daraus folgt $\exists x P(x) \lor \exists x Q(x)$.
 - (2) Angenommen P(a) gilt nicht. Nach Annahme gilt also Q(a). Also gilt auch $\exists x Q(x)$ und daraus folgt $\exists x P(x) \vee \exists x Q(x)$.
 - (\Leftarrow) Angenommen $\exists x P(x) \lor \exists x Q(x)$ gilt. Also gilt $\exists x P(x)$ oder es gilt $\exists x Q(x)$. Wir machen eine Fallunterscheidung:
 - (1) Angenommen $\exists x P(x)$. Sei also a ein Element für das P(a) gilt. Dann gilt auch $P(a) \vee Q(a)$ und damit gilt auch $\exists x (P(x) \vee Q(x))$.
 - (2) Angenommen $\exists x P(x)$ gilt nicht. Dann muss nach Annahme $\exists x Q(x)$ gelten. Sei also a ein Element mit Q(a). Daraus folgt $P(a) \vee Q(a)$ und damit gilt $\exists x (P(x) \vee Q(x))$ auch in diesem Fall.
- 1.5 Es seien die folgenden Prädikate gegeben:
 - Student(x) drückt aus, dass x ein Student ist,
 - Professor(y) drückt aus, dass y ein Professor ist,
 - Dopsball(z) drückt aus, dass z ein Dopsball ist,

• Spielt(x, z) drückt aus, dass x mit z spielt.

Formalisieren Sie folgende Aussagen:

- 1. Es gibt einen Professor, der mit einem Dopsball spielt.
- 2. Jeder Student spielt mit einem Dopsball.
- 3. Es gibt keinen Dopsball, mit dem alle Studenten spielen.
- 4. Es gibt einen Studenten und einen Professor sodass beide mit dem selben Dopsball spielen.

Solution.

- 1. $\exists y \exists z (Professor(y) \land Dopsball(z) \land Spielt(y, z))$
- 2. $\forall x(Student(x) \rightarrow \exists z(Dopsball(z) \land Spielt(x, z)))$
- 3. $\neg \exists z. (Dopsball(z) \land \forall x (Student(x) \rightarrow Spielt(x, z))$
- 4. $\exists x \exists y \exists z (Student(x) \land Professor(y) \land Dopsball(z) \land Spielt(x, z) \land Spielt(y, z))$
- **1.6** Wir betrachten das Universum $\mathbb{N}_0 = \{0, 1, 2, 3, \ldots\}$. Definieren Sie für die folgenden Formeln die Prädikate A und B jeweils so, dass die Formel erfüllt wird. Prädikate lassen sich als Teilmengen des Universums \mathbb{N}_0 definieren.
 - 1. $\forall x A(x) \land \exists x (A(x) \rightarrow B(x))$
 - 2. $\forall x \forall y (A(x) \land B(y) \rightarrow x = y)$
 - 3. $\exists x \exists y (A(x) \land \neg A(y) \land \forall z (B(z) \rightarrow \neg (z=z)))$
 - 4. $\neg(\exists x A(x) \to \exists x (\neg B(x) \to \neg A(x)))$

Solution.

- 1. allgemein $A = \mathbb{N}_0$, $B \neq \emptyset$ z. B. $A = B = \mathbb{N}_0$
- 2. entweder haben beide Mengen nur ein Element und es gilt A=B oder $A=\emptyset$ oder $B=\emptyset$
- 3. allgemein $\emptyset \neq A \neq \mathbb{N}_0, B = \emptyset$ z. B. $A = \{0\}, B = \emptyset$
- 4. äquivalent zu $\exists x A(x) \land \forall x (A(x) \land \neg B(x))$ $A = \mathbb{N}_0, B = \emptyset$

1.7 Betrachten Sie folgende Mengen:

$$M_1 = \{0, 2, 4\}$$

 $M_2 = \{x \in \mathbb{N}_0 \mid x \text{ ist gerade und } x < 5\}$
 $M_3 = \{0\}$
 $M_4 = \{x \in \mathbb{N}_0 \mid \forall k(k \in \mathbb{N} \to k \ge x)\}$

- 1. Beweisen Sie $M_1 = M_2$.
- 2. Widerlegen Sie $M_1 = M_3$.
- 3. Beweisen Sie $M_3 \subseteq M_4$.

Solution. Beweis durch Zeigen der Inklusion in beide Richtungen:

 $M_1 \subseteq M_2$: Fallunterscheidung über alle Elemente in M_1 :

 $0 \in M_1$. Da 0 < 5 und gerade folgt $0 \in M_2$.

 $2 \in M_1$. Da 2 < 5 und gerade folgt $2 \in M_2$.

 $4 \in M_1$. Da 4 < 5 und gerade folgt $4 \in M_2$.

 $M_2 \subseteq M_1$: Sei $x \in M_2$. Daraus folgt x < 5 und x ist gerade. Also ist x entweder 0, 2 oder 4. Also $x \in M_1$.

 $2 \in M_1$ aber $2 \notin M_3$. Daraus folgt $M_1 \nsubseteq M_3$, also $M_1 \neq M_3$. Nur 0 ist Element von M_3 . Da jede natürliche Zahl größer gleich 0 ist, gilt $\forall k (k \in \mathbb{N} \to k \ge 0)$ und damit $0 \in M_4$.

1.8 Sei U eine Menge mit $A, B \subseteq U$.

Beweisen Sie die folgenden Aussagen mithilfe einer Äquivalenzkette. Geben Sie für jeden Schritt an, welche Umformungsregel angewendet wurde.

1.
$$A \cup (A \cap B) = A$$
 (Absorptionsgesetz)

2.
$$(A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$$
 (Symmetrische Differenz)

Solution.

1. Wir zeigen $\forall x (x \in A \cup (A \cap B) \leftrightarrow x \in A)$. Sei $x \in U$. Es gilt:

$$x \in A \cup (A \cap B)$$
 ist äquivalent zu $x \in A \lor x \in A \cap B$ (Def. \cup)
ist äquivalent zu $x \in A \lor (x \in A \land x \in B)$ (Def. \cap)
ist äquivalent zu $x \in A$ (Absorpt.)

Hinweis: Im letzten Schritt verwenden wir das Absorptionsgesetz für die Aussagenlogik und nicht das Absorptionsgesetz für Mengen, das wir in dieser Aufgabe beweisen.

2. Wir zeigen $\forall x (x \in (A \setminus B) \cup (B \setminus A) \leftrightarrow x \in (A \cup B) \setminus (A \cap B))$. Sei $x \in U$. Es gilt:

$$x \in (A \setminus B) \cup (B \setminus A)$$

ist äquivalent
$$zux \in A \setminus B \vee x \in B \setminus A$$
 (Def. \cup)

ist äquivalent
$$\operatorname{zu}(x \in A \land x \notin B) \lor (x \in B \land x \notin A)$$
 (Def. \)

ist äquivalent zu $((x \in A \land x \notin B) \lor x \in B)$

$$\wedge ((x \in A \land x \notin B) \lor x \notin A)$$
 (Distr.)

ist äquivalent $zu(x \in B \lor (x \in A \land x \notin B))$

$$\wedge (x \not\in A \lor (x \in A \land x \not\in B))$$
 (Kommut. \lor)

ist äquivalent $\operatorname{zu}((x \in B \lor x \in A) \land (x \in B \lor x \not\in B))$

$$\wedge ((x \notin A \lor x \in A) \land (x \notin A \lor x \notin B))$$
 (Distr.)

ist äquivalent
$$\operatorname{zu}(x \in B \lor x \in A) \land (x \notin A \lor x \notin B)$$
 (Tautol.)

ist äquivalent
$$\operatorname{zu}(x \in A \lor x \in B) \land (x \notin A \lor x \notin B)$$
 (Kommut. \lor)

ist äquivalent
$$\operatorname{zu}((x \in A \lor x \in B)) \land \neg(x \in A \land x \in B)$$
 (DeMorgan)

ist äquivalent
$$\operatorname{zu}((x \in A \lor x \in B)) \land x \notin (A \cap B)$$
 (Def. \cap)

ist äquivalent
$$zux \in A \cup B \land x \notin (A \cap B)$$
 (Def. \cup)

ist äquivalent
$$zux \in (A \cup B) \setminus (A \cap B)$$
 (Def. \)