

TP 2 - Méthode de la puissance

Soit A une matrice carrée d'ordre d. On définit la méthode de la puissance de la façon suivante :

Initialisation :
$$x^{(0)}$$
 donné $q^{(0)} = x^{(0)}/\|x^{(0)}\|$

Itérations :
$$k \ge 0$$
 $x^{(k)} = Aq^{(k-1)}$ $\lambda^{(k)}(j) = x^{(k)}(j)/q^{(k-1)}(j)$ pour $j = 1, \dots, d$ $q^{(k)} = x^{(k)}/\|x^{(k)}\|$

Théorème. Soit A une matrice carrée d'ordre d, diagonalisable dont la valeur propre de plus grand module λ_1 est unique. Si $q^{(0)}$ n'est pas orthogonal au sous espace propre associé à λ_1 , alors la suite construite précédemment vérifie :

1.
$$\lim_{k\to+\infty} \left(\frac{\overline{\lambda_1}}{|\lambda_1|}\right)^k q^{(k)}$$
 est un vecteur propre de norme unité associé à λ_1 ,

2.
$$\lim_{k \to +\infty} ||Aq^{(k)}|| = |\lambda_1|,$$

3.
$$\lim_{k \to +\infty} \frac{x^{(k+1)}(j)}{q^{(k)}(j)} = \lambda_1 \text{ pour } 1 \le j \le d \text{ si } q^{(k)}(j) \ne 0.$$

• Écrire un programme qui, étant donnés une matrice A, un vecteur $x^{(0)}$ et un entier N, construit les suites de vecteurs $x^{(k)}$, $\lambda^{(k)}$ et $q^{(k)}$ pour k = 1, 2, ..., N.

• On testera le programme avec

$$A = \begin{pmatrix} -1 & -1 & 1 \\ -1 & -2 & -2 \\ 1 & -2 & -2 \end{pmatrix}, \qquad x^{(0)} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \qquad N = 10.$$

Tracer l'évolution des composantes de $\lambda^{(k)}$ et de $\|x^{(k)}\|_2$ en fonction de k pour $1 \le k \le N$. Que peut-on en déduire?

• Tester de même le script avec le vecteur initial $x^{(0)} = (1,0,0)^T$ et N = 100. Tracer l'évolution des composantes de $\lambda^{(k)}$ et de $||x^{(k)}||_2$ en fonction de k pour $1 \le k \le N$.

• Écrire un nouveau programme qui prend comme argument A, $x^{(0)}$ et une tolérance TOL, analogue au programme précédent, mais qui utilise cette fois un critère d'arrêt sur la convergence de la valeur propre.

Tester ce programme avec le vecteur initial $x^{(0)} = (1,0,0)^T$ et une tolérance de 10^{-5} .