Prof. Amador Martin-Pizarro Übungen: Michael Lösch

Logik für Studierende der Informatik

Blatt 8

Abgabe: 18.12.2018 14 Uhr Gruppennummer angeben!

Aufgabe 1 (10 Punkte).

Sei $\mathcal{L} = \{0, f\}$ die Sprache, welche aus einem einstelligen Funktionszeichen f und einem Konstantenzeichen 0 besteht. Betrachte die natürlichen Zahlen \mathbb{N} als \mathcal{L} -Struktur \mathcal{N} mit folgenden Interpretationen:

 $0^{\mathcal{N}} = 0 \text{ und } f^{\mathcal{N}}(x) := x + 1.$

- (a) Zeige, dass es für jedes $n \neq 0$ in \mathbb{N} ein k gibt, so dass $n = f^k(0) := \underbrace{f \circ f \cdots \circ f}_k(0)$.
- (b) Schreibe eine \mathcal{L} -Aussage, welche in \mathcal{N} gilt und besagt, dass jedes $0 \neq n \in \mathbb{N}$ im Bild von $f^{\mathcal{N}}$ liegt.
- (c) Zeige, dass es eine elementar Erweiterung \mathcal{M} von \mathcal{N} und ein Element m in M derart gibt, dass $m \neq f^k(0)$ für alle k in \mathbb{N} .
- (d) Beschreibe drei paarweise nicht isomorphe abzählbare Modelle des vollständigen Diagramms $\operatorname{Diag}(\mathcal{N})$ von \mathcal{N} .
- (e) Wie sehen abzählbare Modelle im Allgemein aus (eine informelle Beschreibung genügt)? Wieviele gibt es, bis auf Isomorphie?

Aufgabe 2 (5 Punkte).

Sei \mathcal{L} die Sprache mit einem zweistelligen Relationszeichen <. Wir betrachten die beiden \mathcal{L} -Strukturen $\mathcal{R} = (\mathbb{R}, <)$ und $\mathcal{Z} = (\mathbb{Z}, <)$ mit den natürlichen Ordnungen. Sei T die Menge aller \mathcal{L} -Aussagen, welche in \mathcal{Z} gelten.

Zeige, dass die Theorie $\operatorname{Diag}^{at}(\mathcal{R}) \cup T$ konsistent ist (siehe Aufgabe 4 (b), Blatt 5). Insbesondere lässt sich die dichte Ordnung \mathcal{R} in eine diskrete Ordnung einbetten.

Aufgabe 3 (5 Punkte).

Sei $A \subset \mathbb{N}^k$ eine (primitiv) rekursive Menge. Zeige, dass die Teilmenge $B \subset \mathbb{N}^k$ genau dann (primitiv) rekursiv ist, wenn beide Teilmengen $A \cap B$ und $A \cup B$ (primitiv) rekursiv sind.

DIE ÜBUNGSBLÄTTER MÜSSEN ZU ZWEIT EINGEREICHT WERDEN. ABGABE DER ÜBUNGSBLÄTTER IN DEN (MIT DEN NUMMERN DER ÜBUNGSGRUPPEN GEKENNZEICHNETEN) FÄCHERN IM EG DES GEBÄUDES 51.