Home Compiler Automata AWS IoT Computer Fundamentals Control System Java HTML CSS

Context-Free Grammar (CFG)

CFG stands for context-free grammar. It is is a formal grammar which is used to generate all possible patterns of strings in a given formal language. Context-free grammar G can be defined by four tuples as:

$$G = (V, T, P, S)$$

Where,

G is the grammar, which consists of a set of the production rule. It is used to generate the string of a language.

T is the final set of a terminal symbol. It is denoted by lower case letters.

V is the final set of a non-terminal symbol. It is denoted by capital letters.

P is a set of production rules, which is used for replacing non-terminals symbols(on the left side of the production) in a string with other terminal or non-terminal symbols(on the right side of the production).

S is the start symbol which is used to derive the string. We can derive the string by repeatedly replacing a non-terminal by the right-hand side of the production until all non-terminal have been replaced by terminal symbols.

Example 1:

Construct the CFG for the language having any number of a's over the set $\Sigma = \{a\}$.

Solution:

As we know the regular expression for the above language is

```
r.e. = a*
```

Production rule for the Regular expression is as follows:

```
S \rightarrow aS rule 1

S \rightarrow \epsilon rule 2
```

Now if we want to derive a string "aaaaaa", we can start with start symbols.

```
S
aS
aaS rule 1
aaaS rule 1
aaaaS rule 1
aaaaaS rule 1
aaaaaS rule 1
aaaaaaS rule 1
aaaaaaS rule 2
aaaaaa
```

The r.e. = a^* can generate a set of string $\{\epsilon$, a, aa, aaa,..... $\}$. We can have a null string because S is a start symbol and rule 2 gives S $\rightarrow \epsilon$.

Example 2:

Construct a CFG for the regular expression (0+1)*

Solution:

The CFG can be given by,

```
Production rule (P): S \rightarrow 0S \mid 1S S \rightarrow \epsilon
```

The rules are in the combination of 0's and 1's with the start symbol. Since $(0+1)^*$ indicates $\{\epsilon, 0, 1, 01, 10, 00, 11, ...\}$. In this set, ϵ is a string, so in the rule, we can set the rule $S \to \epsilon$.

Example 3:

Construct a CFG for a language L = {wcwR | where $w \in (a, b)^*$ }.

Solution:

The string that can be generated for a given language is {aacaa, bcb, abcba, bacab, abbcbba,}

The grammar could be:

```
S \rightarrow aSa rule 1

S \rightarrow bSb rule 2

S \rightarrow c rule 3
```

Now if we want to derive a string "abbcbba", we can start with start symbols.

```
S \rightarrow aSa
S \rightarrow abSba from rule 2
S \rightarrow abbSbba from rule 2
S \rightarrow abbcbba from rule 3
```

Thus any of this kind of string can be derived from the given production rules.

Example 4:

Construct a CFG for the language $L = a^nb^{2n}$ where n > 1.

Solution:

The string that can be generated for a given language is {abb, aaabbbbbb....}.

The grammar could be:

```
S → aSbb | abb
```

Now if we want to derive a string "aabbbb", we can start with start symbols.

```
S \rightarrow aSbb
S \rightarrow aabbbb
```

SYoutube For Videos Join Our Youtube Channel: Join Now

Feedback

• Send your Feedback to feedback@javatpoint.com

Help Others, Please Share

Learn Latest Tutorials

Preparation

Trending Technologies

Artificial Intelligence

Data Science

Tutorial

Data Science

DevOps

Tutorial

DevOps

Selenium tutorial

Cloud Computing

Hadoop tutorial

Hadoop

B.Tech / MCA

	Data Structures		Operating System	Computer Network
Compiler Design tutorial Compiler Design	Computer Organization and Architecture Computer Organization	Discrete Mathematics Tutorial Discrete Mathematics	Ethical Hacking Tutorial Ethical Hacking	Computer Graphics Tutorial Computer Graphics
Software Engineering Tutorial Software Engineering	html tutorial Web Technology	Cyber Security tutorial Cyber Security	Automata Tutorial Automata	C Language tutorial C Programming
C++ tutorial	≥ Java tutorial Java	.Net Framework tutorial .Net	Python tutorial Python	List of Programs Programs
Control Systems tutorial Control System	Data Mining Tutorial Data Mining	Data Warehouse Tutorial Data Warehouse		