Módulo 7

Compromisos:

Repaso por métodos de análisis y optimización

Curso de Posgrado: "Redes Bayesianas para la toma de decisiones para el manejo y conservación de recursos naturales."

Andrea P. Goijman goijman.andrea@inta.gob.ar

Instituto Nacional de Tecnología Agropecuaria Argentina

¿Cuándo consideramos la optimización?

Una vez que se compararon las <u>consecuencias</u> de cada <u>alternativa</u> sobre los <u>objetivos</u>.

Muchas veces, hay que ceder en algo de un objetivo, para alcanzar más de otro.

¿... o evaluamos compromisos entre variables?

Una vez que se modelaron las <u>consecuencias</u>, es decir, las probabilidades condicionales entre variables.

¿... o evaluamos compromisos entre variables?

Una vez que se modelaron las *consecuencias*, es decir, las probabilidades

cond

¿... o evaluamos compromisos entre variables?

Fig. 4 Provision level of four ES for two land-use scenarios (soybean vs. maize) along 10 growing seasons (2000/ 2001-2009/2010) in Pampean agroecosystems. These ES are: (1) carbon (C) balance, (2) nitrogen (N) balance, (3) groundwater contamination control, and (4) N₂O emission control. The state more related to agroecosystems sustainability for each ES provision indicator is presented: (1) High C content in soil, (2) High available N in soil, (3) Low NO₃ concentration in groundwater, and (4) Low denitrification, respectively. Each state is expressed as a probability (%)

Rositano y Ferraro (2014)

Optimización: Métodos de Decisión Única

	SIN INCERTIDUMBRE	CON INCERTIDUMBRE
OBJETIVO ÚNICO	Soluciones gráficas Soluciones numéricas Derivación (cálculo) Programación lineal o no lineal	Árboles de decisión Simulación Redes de creencias Bayesiana
OBJETIVOS MÚLTIPLES	Técnica multi-atributo simple	Árboles de Decisión Redes de creencias Bayesianas Técnica multi-atributo simple

Herramientas de Objetivo Único

- 1. Determinísticos (sin incertidumbre)
- Variable de decisión de única vez
 - Ej. Tasas de cosecha, cantidad de insecticidas
- Los resultados predichos (objetivo) como función de la variable de decisión
- Métodos de solución
 - Cálculo, diferenciación
 - Soluciones numéricas

Ejemplo. Optimización Gráfica

Herramientas de Objetivo Único

- 2. Estocásticos (con incertidumbre)
- Necesidad de predecir los resultados y sus <u>probabilidades</u>
- Herramientas comunes
 - Árboles de Decisión
 - Redes de Creencia Bayesiana (BBN)
- Evalúan la mejor (óptima) decisión utilizando el "Valor Esperado"

Árbol de Decisión

SI ¿Aplicar Insecticida? Rendimiento Soja (Objetivo)

??

Árbol de Decisión

Rendimiento Soja (Objetivo)

Árbol de Decisión

Rendimiento Soja (Objetivo)

Red de Creencias Bayesianas (BBN)

¿Aplico o no?

- La incertidumbre es representada por una probabilidad
- El resultado de la decisión tiene un valor determinado por estas probabilidades y los valores del objetivo

Valor promedio de un atributo sobre sus valores de distribución

$$VE(SI) = 40 \times 0.7 + 35 \times 0.3$$

VE (Decisión 1) = Valor del Objetivo X * Probabilidad Objetivo X

Herramientas optimización Objetivos Múltiples

	SIN INCERTIDUMBRE	CON INCERTIDUMBRE
OBJETIVO ÚNICO	Soluciones gráficas Soluciones numéricas Derivación (cálculo) Programación lineal o no lineal	Árboles de decisión Simulación Redes de creencia Bayesiana
OBJETIVOS MÚLTIPLES	Técnica multi-atributo simple	Árboles de Decisión Redes de creencia Bayesianas

Estrategias para Objetivos Múltiples

- Hacer una o más:
 - Métodos cuantitativos de compromisos ("tradeoffs")
 - Poner las consecuencias en una escala común
 - Poner pesos y sumar a través de los objetivos
 - Reducir a un problema de objetivo único
 - Transformar algunos objetivos en limitaciones
 - Combinar objetivos en un atributo único (ej. Función de utilidad)
 - Negociar una solución de un set de compromisos
 - A veces el problema no puede ser reducido a un objetivo único
 - O los actores no se sienten cómodos asignando pesos a los objetivos
 - Se simplifica el problema lo más posible, negociando una solución

Negociar una solución

Beneficios vs. costos (frontera eficiente)

Beneficios vs. costos (frontera eficiente)

Evaluar compromisos

		Alternativas		
Objetivos	Wt	A1	A2	
Obj1 (A=Mejor)	0.7	A	C	
Obj2 (minimiza)	0.3	8	2	

Problema: ¿Cómo comparamos Objetivo 1 y Objetivo 2?

Respuesta: convertir a una escala normalizada y asignar pesos

Ejemplo ciclo PrOACT

PROBLEMA

¿Dónde mudarme que asegure buena calidad de vida por los próximos 5 años a mi y mi familia?"

OBJETIVOS

Tiempo de viajes, Ruido del tránsito

ALTERNATIVAS: 2 opciones

Ejemplo ciclo PrOACT

Entonces evaluamos las **CONSECUENCIAS**.

	RUIDO DEL TRANSITO	TIEMPO DE VIAJE
OPCION 1	0,5	0,42
OPCION 2	0,01	0,93

¿Cómo elegimos?

Supongamos que valoramos igual el tránsito y el tiempo de viaje

Supongamos que valoramos igual el tránsito y el tiempo de viaje

	RUIDO DEL TRANSITO	TIEMPO DE VIAJE	
OPCION 1	0,5	0,42	-2 A
OPCION 2	0,01	0,93	MEJOR OPCIÓN

Ejemplo **curvas de valor**:

Cómo cambia nuestra felicidad con el ruido del tránsito

O con el tiempo de viaje

Supongamos que valoramos el doble el tiempo de viaje que el tránsito...

	RUIDO DEL TRANSITO	TIEMPO DE VIAJE	
OPCION 1	0,5	0,42	-2 A
OPCION 2	0,01	0,93	MEJOR OPCIÓN

Simplificar – Convertir en Objetivo único

- Se puede convertir algún objetivo en limitación
 - Por ejemplo. Presupuesto disponible
- Los objetivos múltiples pueden ser combinados en un valor único, o Utilidad multi-atributo o función de utilidad
 - Asignando pesos a cada objetivo
 - Calculando un valor ponderado para cada alternativa
- Métodos:
 - Tablas SMART (simple-multi-attribute Rating Technique)
 - Función de utilidad (Ej. Redes de creencia Bayesianas)

Tablas SMART

Técnica de valoración multi-atributo Simple

Normalizar todos los atributos entre 0-1

- 1. Asignar pesos a cada atributo
- 2. Calcular la suma ponderada de los valores para cada alternativa (Valor esperado!)
- 3. Recomendar alternativa
- 4. Análisis de sensibilidad

Ejemplo. Se desea aumentar el rendimiento de un cultivo X, controlando una plaga nueva, al tiempo que se minimizan daños ambientales.

MATRIZ DE CONSECUENCIAS			ALTERNATIVAS		
OBJETIVO	DIRECC.	UNIDAD	No aplicar	Insecticida 1	Insecticida 2
Rendimiento	max	qq/ha	10	40	30
Contaminación	Min	0-1 Norm(Ppm)	0	1	0,4
Costo	Min	\$	0	70	150

Paso 1: Normalizar las unidades

1 = mejor

0 = peor

Para maximizar: (X-min) / (max-min)

Para minimizar: (X-max) / (min-max)

MATRIZ CONSECUE		ALTERNATIVAS			
OBJETIVO	DIRECC.	No aplicar	Insecticida 1	Insecticida 2	
Rendimiento	Max	0	1	0,67	
Contaminación	Min	O ¹⁾¹¹ 1	0	0,4	
Costo	Min	1	0,53	0	

Paso 2: Asignar pesos a cada objetivo

MATRIZ DE CONSECUENCIAS		ALTERNATIVAS			
OBJETIVO	DIRECC.	No aplicar	Insecticida 1	Insecticida 2	Pesos
Rendimiento	Max	0	P.7°	0,67	0,5
Cotaminación	Min	14/	0	0,4	0,3
Costo	Min	01/1	0,53	0	0,2

Paso 3: Multiplicar los pesos de cada objetivo por los valores normalizados de cada atributo.

MATRIZ DE CONSECUENCIAS		ALTERNATIVAS			
OBJETIVO	DIRECC.	No aplicar	Insecticida 1	Insecticida 2	Pesos
Rendimiento	Max	0	P.7°	0,67	0,5
Cotaminación	Min	100	0	0,4	0,3
Costo	Min	1	0,53	0	0,2

Paso 3: Multiplicar los pesos de cada objetivo por los valores normalizados de cada atributo.

MATRIZ DE CONSECUENCIAS		ALTERNATIVAS			
OBJETIVO	DIRECC.	No aplicar	Insecticida 1	Insecticida 2	Pesos
Rendimiento	Max	0	0,5	0,34	0,5
Cotaminación	Min	0,3	0	0,12	0,3
Costo	Min	0,2	0,11	0	0,2

Paso 4: Calcular el valor final de cada alternativa, sumando los valores de las columnas.

MATRIZ DE CONSECUENCIAS		ALTERNATIVAS			
OBJETIVO	DIRECC.	No aplicar	Insecticida 1	Insecticida 2	Pesos
Rendimiento	Max	0	0,5	0,34	0,5
Contaminación	Min	0,3	0	0,12	0,3
Costo	Min	0,2	0,11	0	0,2
Valor Final		0,5	0,61	0,46	

Redes de Creencias Bayesianas y función de utilidad

Función de utilidad (decisiones multi-objetivo)

Utilidad (aves_i, costo_j, bienestar_k) =
$$w_{aves} * U(Aves_i) + w_{costo} * U(Costo_j) + w_{bienestar} * U(Bienestar_k)$$

Costo
$$\Rightarrow$$
 \$
Aves \Rightarrow Ocupación
Bienestar \Rightarrow Cosecha (kg/ha)

Contaminación (ins*Ha)

 $U(x_i) = \frac{[x_i - peor(x_i)]}{mejor(x_i) - peor(x_i)}$

Redes de Creencias Bayesianas y función de utilidad

Función de utilidad (decisiones multi-objetivo)

* Foco puesto en los valores del tomador de decisión

Alternativas:

- Elicitar valores del tomador de decisión
- Valoración Indiferente
- Perfiles de respuesta

Valor Esperado de una Decisión (VE)

VE (Decisión 1) = Valor del Objetivo X * Probabilidad Objetivo X

$$VE(valor_{Di}) = \sum_{x} U(x) * probabilidad_{Di}(x)$$

Valor Esperado de una Decisión (VE)

Figura 4. Perfil de respuestas de la utilidad esperada para dos decisiones de manejo probables para el bosque de N. antarctica en los estados alternativos SI y SIII en relación a los ingresos a: a) muy corto, y b) muy largos horizontes de decisión. Abreviaturas, en la Tabla 1.

Rusch et al (2016)

- National Conservation Training Center (NCTC), US Fish and Wildlife Service & USGS.
 Introduction to Structured Decision Making (Course material, presentations)
- Conroy, M.J. and J.T. Peterson. 2013. Decision Making in Natural Resource Management. A Structures, Adaptive Approach. Wiley-Blackwell. 456pp.
- Gregory, R., L. Failing, M. Harstone, G. Long. T. McDaniels, and D. Ohlson. 2012.
 Structures Decision Making. A Practical Guide to Environmental Management Choices. Wiley-Blackwell. 299pp.
- Goodwin, Paul, and George Wright. Decision Analysis for Management Judgment 4th ed. John Wiley and sons, 2009.
- Hammond, J. S., Keeney, R. L., & Raiffa, H. 1999. Smart choices: a practical guide to making better life decisions. Random House LLC.
- Rositano, F., & Ferraro, D. O. (2014). Ecosystem services provided by agroecosystems: A qualitative and quantitative assessment of this relationship in the Pampa region, Argentina. *Environmental management*, 53, 606-619.
- Rusch, V. E., Rusch, G. M., Goijman, A. P., Varela, S. A., & Claps, L. (2017). Ecosystem services to support environmental and socially sustainable decision-making. *Ecología austral*, 27(1), 162-176. Zaccagnini N. E., Goijman A. P., Conroy M. J., Thompson J. J. 2014. Toma de Decisiones Estructuradas y Manejo Adaptativo de Recursos Naturales y Problemas Ambientales en Ecosistemas Productivos. INTA Ediciones.