Оглавление

	$0.1 \\ 0.2$	Фибоначчи	1 2	
1	Эле 1.1	Participant of the property of	3	
Лекция 4: Фибоначчи и теория вероятностей 0.1 Фибоначчи			04.10.2023	
		еделение 1. Последовательность Фибоначчи определяеется как: $=0,$ $=1,$ $=F_{n-1}+F_{n-2}, n\geq 2.$		

Лемма 1.

$$F_{2k} = F_{2k-1} + F_{2k-3} + \ldots + F_1$$

$$F_{2k-1} = F_{2k} + F_{2k-2} + \ldots + F_0 + 1$$

Доказательство. Докажем по индукции. База: k=1:

$$F_2 = F_1 + F_0 = 1 + 0 = 1.$$

 $F_1 = F_0 + 1 = 0 + 1 = 1.$

$$F_1 = F_0 + 1 = 0 + 1 = 1$$
.

Переход: $k \to k+1$. По предположению индукции:

$$F_{2k}=F_{2k-1}+F_{2k-3}+\ldots+F_1$$
. Тогда $F_{2k+2}=F_{2k+1}+F_{2k-1}+\ldots+F_1+F_0=F_{2k+1}+F_{2k}$. Аналогично для нечетных. \square

Теорема 1. (Представление натуральных чисел в виде суммы чисел Фибоначчи)

$$\forall S \in \mathbb{N} : S = F_{i_0} + F_{i_1} + \ldots + F_{i_s}$$
 Где $i_0 = 0, i_{k-1} + 1 < i_k : k \in 1 : s$

Доказательство. Докажем, что такое представление существует. Пусть j(s) — номер максимального числа Фибоначчи, не большего чем S.Положим $S' = S - F_{j(s)}$. Предположим, что $S' > F_{j(s)-1}$, тогда: S' >

 $F_{j(s)-1} \Rightarrow S > F_{j(s)} + F_{j(s)-1} \Rightarrow S > F_{j(s)+1},$ но по лемме $S \leq F_{js+1}$ — противоречие, значит $S' < F_{j(s)-1}$

Далее можно построить представление для S', итого число S прдставляется в виде представление для S', дополненное слагаемым $F_{j(s)}$

Проверим однозначность предсталвения: пусть $S=F_{j_0}+\ldots+F_{j_q}(2)$. Не умоляя общности, $j_q< j(s)$ (больше быть не может, а равные можно отбросить) Заменим F_{j_q} на $F_{j(s)-1}$, тогда правая часть равенства (2) увеличится. Будем заменять F_{j_q-1} на $F_{j(s)-3}$ и т.д. Но при таких заменах сумма не превзойдет $F_{j(s)}$ по лемме, значит, представление для S однозначно.

0.2 Фибоначчиева система счисления

Вектор набора (i_0, i_1, \dots, i_s) — запись числа S в фибоначчиевой системе счисления.

Алгоритм. (Прибалвение единицы в фибоначчиевой системе счисления)

• Начальное положение: имеем набор x[0:n-1] из нулей и единиц, в котором нет двух единиц рядом и x[0]=1.

0 1

 $0 \mid 1$

- Положим x[1] := 1.
- Шаг: выбирем наибольшее k: $x[k] = 1 \land x[k-1] = 1$. Тогда:

$$\begin{cases} x[k] := 0, \\ x[k-1] := 0, \\ x[k+1] := 1, \\ x[0] := 1. \end{cases}$$

Пример.

0 | 0 | 0 | 0 | 0 | 0

Оглавление

пояснение

= 46

начало

1-й шаг

2-й шаг

3-й шаг

Глава 1

Элементарная теория вероятностей

1.1 Основные понятия

Определение 2. Ω — множество элементарных исходов. $A\subset \Omega$ — событие.

Определение 3. $\varnothing\subset\Omega$ — невозможное событие, $\Omega\subset\Omega$ — достоверное событие.

Определение 4. Пусть есть события A, B, тогда:

- $A \cup B$ объединение событий
- $A \cap B$ совмещение событий, причем, если $A \cap B = \emptyset$, то A, B несовместные события.
- ullet \overline{A} противоположное событие.

Определение 5. $p: \Omega \to [0,1]$ — вероятность события. Причем:

- 1. $0 \le p(A) \le 1$
- 2. $A \subset B \Rightarrow p(A) \leq p(B)$
- 3. если $A = A_1 + A_2, A_1 \cap A_2 = \emptyset$, то $p(A) = p(A_1) + p(A_2)$

Определение 6. $p(A) = \frac{|A|}{|\Omega|}$ — классическая вероятность.

Определение 7. (Полная система событий) Пусть есть события S_1, \ldots, S_n , таких, что:

- $S_i \cap S_j = \emptyset, i \neq j$
- $S_1 \cup \ldots \cup S_n = \Omega$

Тогда вероятность события A можно посчитать следующим образом:

$$p(A) = \sum_{i=1}^{n} p(A \cap S_i)$$

Определение 8. События A, B — независимы, если:

$$p(A \cap B) = p(A) \cdot p(B)$$

Определение 9. События A_1,\ldots,A_n — независимы попарно, если:

$$p(A_i \cap A_j) = p(A_i) \cdot p(A_j)$$

И независимы в совокупности, если:

$$p(A_1 \cap \ldots \cap A_n) = \prod_{i=1}^n p(A_i)$$

Определение 10. (Условная вероятность)

Событие B при условии, что произошло событие A:

$$p(B|A) = \frac{p(A \cap B)}{p(A)}$$

Пример. Пусть есть тетраэдр с одной красной, одной черной, одной белой и одной, покрашенной во все цвета гранями. Тогда:

- $p(\text{Kpac.}) = \frac{1}{2}$
- $p(\text{Крас.} \cap \text{Черн.}) = \frac{1}{4} \text{попарно независимы}$
- $p({\rm Kpac.} \cap {\rm Черн.} \cap {\rm Бел.}) = \frac{1}{4}$ не независимы в совокупности.

Определение 11. (Полная вероятность, используя условную)

$$p(A) = \sum_{i=1}^{n} p(A \cap S_i) = \sum_{i=1}^{n} p(A|S_i) \cdot p(S_i)$$

Определение 12. (Формула Байеса) Пусть есть события A, B:

$$p(B) = \sum_{i=1}^{n} p(B|A_i) \cdot p(A_i)$$

$$p(B|A_i) = \frac{p(A_i \cap B)}{p(A_i)} \Rightarrow p(B \cap A_i) = p(A_i) \cdot p(B|A_i) = p(B) \cdot p(A_i|B)$$

Получаем формулу Байеса:

$$p(A_i|B) = \frac{p(B|A_i) \cdot p(A_i)}{\sum_{j=1}^{n} p(B|A_j) \cdot p(A_j)}$$