多项式全家桶

Xedokal

CUHK(SZ)

2021年11月29日

系数表示法

f(x) 可以表示成 $\sum\limits_{i=0}^n f_i x^i$ 这一形式,其中 n 被称作 f(x) 的度数, f_i 可被表示成为 $[x^i]f(x)$,称为 x 的 i 次方项的系数。

点值表示法

一个度数为 n 的多项式可以用 n 个点值

 $(x_0, f(x_0)), (x_2, f(x_2))...(x_n, f(x_n))$ 表示,(在之后会学到的)拉格朗日插值法告诉我们可以通过点值变换得到系数表示法

多项式加减法

$$f(x) \pm g(x) = (\sum_{i=0}^{n} f_{i} x^{i}) \pm (\sum_{i=0}^{m} g_{i} x^{i}) = \sum_{i=0}^{\max(n,m)} ([i \le n] f_{i} \pm [i \le m] g_{i}) x^{i}$$

时间复杂度 $O(\max(n, m))$

多项式乘法

$$h(x) = f(x) * g(x) = \left(\sum_{i=0}^{n} f_{i} x^{i}\right) * \left(\sum_{i=0}^{m} g_{i} x^{i}\right)$$
$$h_{i} = \sum_{j=0}^{i} [j \le n] f_{j} * [(i - j) \le m] g_{i-j}$$

我们发现h(x)度数为n+m,直接计算复杂度为O(nm)

利用点值的形式优化

考虑到有等式 $h(x_0) = f(x_0) * g(x_0)$,这告诉我们如果得到了 f,g 的点值表示,即 $(x_0,f(x_0))...(x_{n+m},f(x_{n+m}))$ 和 $(x_0,g(x_0))...(x_{n+m},g(x_{n+m}))$ 我们可以在 O(n+m) 的时间里计算出 $(x_0,h(x_0))...(x_{n+m},h_{n+m})$ 得到 h(x) 的点值表示法,再还原其系数表示法。

为此,选择性质优良的 x_i 是非常重要的

单位根

考虑方程 $x^n=1$,这个方程在复数域意义下存在 n 个解,对应的几何意义是复平面中单位圆 n 等分线与其交点,因此这 n 个点可以表示为 $\cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n}, k = 0, 1... n - 1$

不妨记 $\omega_n = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}$,那么 n 个解分别为 $\omega_n^0, \omega_n^1 ... \omega_n^{n-1}$

现有 $(\omega_n^i)^j = \omega_n^{ij}$ 且当 n 为偶数时存在如下引理:

折半引理: $\omega_n^{2k} = \omega_{\frac{n}{2}}^k$ 消去引理: $\omega_n^k = -\omega_n^{k+\frac{n}{2}}$

系数-点值

现在考虑让 $\omega_n^0...\omega_n^{n-1}$ 来作为选取的 $x_0, x_1...x_{n-1}$ 仍然假设 n 为偶数:

$$\begin{split} f(\omega_n^k) &= \sum_{i=0}^{n-1} \omega_n^{ki} f_i \\ &= \sum_{i=0}^{\frac{n}{2}-1} \omega_n^{2ki} f_{2i} + \sum_{i=0}^{\frac{n}{2}-1} \omega_n^{2ki+1} f_{2i+1} \\ &= \sum_{i=0}^{\frac{n}{2}-1} \omega_{\frac{n}{2}}^{ki} f_{2i} + \omega_n \sum_{i=0}^{\frac{n}{2}-1} \omega_{\frac{n}{2}}^{ki} f_{2i+1} \\ f(\omega_n^{k+\frac{n}{2}}) &= \sum_{i=0}^{\frac{n}{2}-1} \omega_{\frac{n}{2}}^{ki} f_{2i} - \omega_n \sum_{i=0}^{\frac{n}{2}-1} \omega_{\frac{n}{2}}^{ki} f_{2i+1} \end{split}$$

这样一来,相当于重排 f_i 的位置,缩小了一半的问题规模,显然只会进行 $O(\log n)$ 次重排,单次的变换复杂度为 O(n) 级别,总复杂度 $O(n\log n)$

点值-系数

系数-点值的转换可以写成线性变换的形式。

即现在要求对一个特殊的单位根矩阵求逆,这里直接给出结果并进行验证。

发现只需要对 ω_n 求逆之后再做一次上述变换,再对所有点值除 以 n 就得到了系数表示法。

这样一来可以在 $O((n+m)\log(n+m))$ 的时间复杂度内解决多项式乘法。

一般实现的时候会配合小范围暴力,效果挺好。

多项式求导/积分

$$f'(x) = \left(\sum_{i=0}^{n} f_{i} x^{i}\right)' = \sum_{i=0}^{n-1} f_{i+1}(i+1) x^{i}$$

$$\int f(x) \, dx = \int \left(\sum_{i=0}^{n} f_{i} x^{i}\right) \, dx = C + \sum_{i=1}^{n} \frac{f_{i-1}}{i} x^{i}$$

一般情况下取 C=0

牛顿迭代

假设现在已知多项式 f(x) 和函数 g, 要求满足 $f(x) \equiv g(h(x))$ mod x^n 的 h(x)

对于这种问题可以先等价于求函数 H(x) = g(h(x)) - f(x) 在模 x^n 意义下的零点,然后考虑倍增。

假设我们已知 $g(h_0(x)) - f(x) \equiv 0 \mod x^{\frac{n}{2}}$,现在在模 x^n 意义下将 H(h) 在 $h = h_0$ 处泰勒展开:

$$H(h-h_0) = \sum_{i>0} H^{(i)}(h_0) * \frac{(h-h_0)^i}{i!}$$

由于在模 x^n 意义下求 h,那么可以预见 $h-h_0$ 的前 $\frac{n}{2}$ 均为 0,这样实际上有 $H(h-h_0)\equiv H(h_0)+H'(h_0)(h-h_0)\equiv 0 \mod x^n$ 那么 $h=h_0-\frac{H(h_0)}{H'(h_0)}$ 这样倍增的复杂度一般是 $O(n\log n)$ 级别。

多项式求逆

注意到
$$H(h) = \frac{1}{h} - f$$
,那么带入刚刚推导的公式就有 $h = 2h_0 - h_0^2 f$

直接倍增就好了

多项式 exp

注意到
$$H(h) = \ln h - f$$
,那么带入刚刚推导的公式就有 $h = h_0(1 - \ln h_0 + f)$

直接倍增就…等等,多项式 ln ???

多项式 In

假设有
$$g = \ln f$$
,两边对 x 求导有 $g' = \frac{f}{f}$,也就是

$$g = \int (\frac{f}{f}) \, dx$$

多项式除法/取余

假设已知 A(x), B(x), 度数分别为 n, m, 现在求满足 A(x) = B(x) * C(x) + D(x) 的 C, D, 其中 C 的度数为 n - m, D 的度数可视作 m - 1

定义度数为 k 的多项式 F(x) 的翻转为 $F_{rev}(x) = F(\frac{1}{x})x^k$

现有:

$$A(\frac{1}{x}) = B(\frac{1}{x})C(\frac{1}{x}) + D(\frac{1}{x})$$

$$x^{n}A(\frac{1}{x}) = x^{m}B(\frac{1}{x})x^{n-m}C(\frac{1}{x}) + x^{m-1}D(\frac{1}{x}) * x^{n-m+1}$$

$$A_{rev}(x) \equiv B_{rev}(x)C_{rev}(x) \mod x^{n-m+1}$$

多项式求逆处理即可

多项式多点求值

模型: 快速计算 $f(x_1), f(x_2)...f(x_n)$

性质: 对于多项式 $f(x), f(x_0) = f(x) \mod (x - x_0)$

稍加推广就有:

$$f(x_1) = f(x) \mod (x - x_1)$$

= $(f(x) \mod (x - x_2)(x - x_1)) \mod (x - x_1)$

这启示我们对 [1, n] 建立分治树,区间 [l, r] 维护乘积 $\prod_{i=l}^{r} (x - x_i)$,那么 f(x) 从根依次取模到叶子即为点值,且每取模一次度数减半,总复杂度 $O(n\log^2 n)$

多项式快速插值

模型: 已知 $(x_1,y_1)...(x_n,y_n)$,要求构造满足 $f(x_i)=y_i$ 的多项式 f(x)

注意到 $f(x) \equiv y_i \mod (x - x_i)$ 是同余方程组,我们直接按照中国剩余定理构造出多项式

$$f(x) = \sum_{i=1}^{n} y_i \prod_{j \neq i} \frac{x - x_j}{x_i - x_j} = \sum_{i=1}^{n} \frac{y_i}{\prod\limits_{j \neq i} (x_i - x_j)} \prod_{j \neq i} (x - x_j)$$

该公式即著名的拉格朗日插值公式

为了快速计算 f(x),需要得到 $w_i = \frac{y_i}{\prod\limits_{j \neq i} (x_i - x_j)}$,对于分母,考虑构造 $T(x) = \prod\limits_{i=1}^n (x - x_i)$,那么分母即为 $T'(x_i)$,做一次多点求值算出 w_i 后简单合并就算出了 f(x),总时间复杂度 $O(n \log^2 n)$