Table 1 Selected Distances, Angles, and Torsions for $\bf 1$

	Distance (Å)		
Bond	Experimental	Calculated	
Re(1)-C(16)	1.89(1)	1.916	
Re(1)-C(17)	1.934(8)	1.936	
Re(1)- $C(18)$	1.90(1)	1.918	
Re(1)-N(1)	2.162(6)	2.197	
Re(1)- $N(2)$	2.236(9)	2.293	
Re(1)- $Cl(1)$	2.496(2)	2.525	
Angle	Degree	s (°)	
Angle	Experimental	Calculated	
C(16)-Re(1)-C(17)	87.6(4)	86.877	
C(16)-Re(1)- $C(18)$	88.3(4)	90.613	
C(17)-Re(1)- $C(18)$	87.3(4)	89.557	
C(16)-Re(1)-N(1)	96.4(3)	96.240	
C(17)-Re(1)-N(1)	174.9(3)	175.600	
C(18)-Re(1)-N(1)	95.9(3)	93.506	
C(16)-Re(1)-N(2)	169.3(3)	170.368	
C(17)-Re(1)-N(2)	101.1(3)	102.755	
C(18)-Re(1)-N(2)	98.3(3)	89.415	
N(2)-Re(1)-N(1)	74.5(3)	74.146	
C(16)-Re(1)-Cl(1)	91.7(3)	91.453	
C(17)-Re(1)-Cl(1)	91.7(3)	94.786	
C(18)-Re(1)-Cl(1)	179.9(3)	175.286	
N(1)-Re (1) -Cl (1)	84.0(2)	82.058	
N(2)-Re(1)-Cl(1)	81.6(2)	87.840	
O(1)-C(16)-Re(1)	179.6(9)	178.224	
O(2)- $C(17)$ - $Re(1)$	176.0(8)	176.907	
O(3)- $C(18)$ - $Re(1)$	177.3(9)	179.317	
Torsion	Degrees (°)		
10151011	Experimental	Calculated	
N(1)-C(5)-C(6)-N(2)	16(1)	15	
N(2)-C(10)-C(11)-N(3)	41(1)	139	

Table 2 Selected Distances, Angles, and Torsions for ${\bf 2}$

	Distance (Å)		
Bond	Experimental	Calculated	
Re(1)-C(16)	1.926(9)	1.92438	
Re(1)-C(17)	1.975(10)	1.90687	
Re(1)- $N(1)$	2.119(7)	2.13186	
Re(1)- $N(2)$	2.080(7)	2.08705	
Re(1)-N(3)	2.126(7)	2.13185	
Re(1)- $Cl(1)$	2.489(3)	2.53337	
N(1)-N(3)	4.14(1)	4.14772	
Anglo	Degree		
Angle	Experimental	Calculated	
C(16)-Re(1)-C(17)	91.5(4)	89.188	
C(16)-Re(1)-N(2)	173.7(4)	172.050	
C(17)-Re(1)-N(2)	94.6(3)	98.762	
C(16)-Re(1)-N(1)	103.9(3)	102.980	
C(17)-Re(1)-N(1)	92.7(3)	93.429	
N(2)-Re(1)-N(1)	77.3(3)	76.684	
C(16)-Re(1)-N(3)	101.8(3)	102.986	
C(17)-Re(1)-N(3)	91.7(3)	93.419	
N(2)-Re(1)-N(3)	76.6(3)	76.684	
N(1)-Re(1)-N(3)	153.7(3)	153.210	
C(16)-Re(1)-Cl(1)	91.8(3)	89.136	
C(17)-Re(1)-Cl(1)	176.5(2)	178.324	
N(2)-Re(1)-Cl(1)	82.1(2)	82.913	
N(1)-Re (1) -Cl (1)	85.4(2)	86.953	
N(3)-Re(1)-Cl(1)	88.7(2)	86.953	
O(1)-C(16)-Re(1)	177.9(9)	179.079	
O(2)- $C(17)$ - $Re(1)$	173.2(8)	179.182	
Selected Torsions (deg)			
N(1)-C(5)-C(6)-N(2)	1(1)	2	
N(2)-C(10)-C(11)-N(3)	-4(1)	-2	

 Table 3 Selected Distances, Angles, and Torsions for 3

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rond	. ,		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dond	Experimental	Calculated	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Re(1)-C(16)	1.911(3)	1.91740	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Re(1)-C(17)	1.890(3)	1.91814	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Re(1)-C(18)	1.921(4)	1.93897	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Re(1)- $N(1)$	2.173(3)	2.19687	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Re(1)- $N(2)$	2.232(2)	2.28998	
$ \begin{array}{ c c c c c c } \hline \text{Angle} & \hline \text{Experimental} & \hline \text{Calculated} \\ \hline \hline C(16)\text{-Re}(1)\text{-C}(17) & 89.1(1) & 90.772 \\ C(16)\text{-Re}(1)\text{-C}(18) & 85.9(1) & 86.823 \\ C(16)\text{-Re}(1)\text{-N}(1) & 97.9(1) & 96.034 \\ C(17)\text{-Re}(1)\text{-N}(1) & 92.5(1) & 93.597 \\ C(18)\text{-Re}(1)\text{-N}(1) & 175.4(1) & 175.575 \\ C(16)\text{-Re}(1)\text{-N}(2) & 171.2(1) & 170.290 \\ C(17)\text{-Re}(1)\text{-N}(2) & 96.0(1) & 89.435 \\ C(18)\text{-Re}(1)\text{-N}(2) & 101.3(1) & 102.886 \\ N(1)\text{-Re}(1)\text{-N}(2) & 74.7(1) & 74.265 \\ C(16)\text{-Re}(1)\text{-Br}(1) & 92.7(1) & 90.399 \\ C(17)\text{-Re}(1)\text{-Br}(1) & 177.6(1) & 176.076 \\ C(18)\text{-Re}(1)\text{-Br}(1) & 91.6(1) & 94.069 \\ N(1)\text{-Re}(1)\text{-Br}(1) & 85.74(7) & 82.555 \\ N(2)\text{-Re}(1)\text{-Br}(1) & 82.07(7) & 88.780 \\ O(1)\text{-C}(16)\text{-Re}(1) & 178.6(3) & 178.270 \\ O(2)\text{-C}(17)\text{-Re}(1) & 179.5(3) & 179.355 \\ O(3)\text{-C}(18)\text{-Re}(1) & 179.9(3) & 176.781 \\ \hline \end{array}$	Re(1)- $Br(1)$	2.6410(4)	2.67953	
$\begin{array}{ c c c c c c }\hline & C(16)\text{-Re}(1)\text{-C}(17) & 89.1(1) & 90.772\\\hline & C(16)\text{-Re}(1)\text{-C}(18) & 85.9(1) & 86.823\\\hline & C(16)\text{-Re}(1)\text{-N}(1) & 97.9(1) & 96.034\\\hline & C(17)\text{-Re}(1)\text{-N}(1) & 92.5(1) & 93.597\\\hline & C(18)\text{-Re}(1)\text{-N}(1) & 175.4(1) & 175.575\\\hline & C(16)\text{-Re}(1)\text{-N}(2) & 171.2(1) & 170.290\\\hline & C(17)\text{-Re}(1)\text{-N}(2) & 96.0(1) & 89.435\\\hline & C(18)\text{-Re}(1)\text{-N}(2) & 101.3(1) & 102.886\\\hline & N(1)\text{-Re}(1)\text{-N}(2) & 74.7(1) & 74.265\\\hline & C(16)\text{-Re}(1)\text{-Br}(1) & 92.7(1) & 90.399\\\hline & C(17)\text{-Re}(1)\text{-Br}(1) & 177.6(1) & 176.076\\\hline & C(18)\text{-Re}(1)\text{-Br}(1) & 91.6(1) & 94.069\\\hline & N(1)\text{-Re}(1)\text{-Br}(1) & 85.74(7) & 82.555\\\hline & N(2)\text{-Re}(1)\text{-Br}(1) & 82.07(7) & 88.780\\\hline & O(1)\text{-C}(16)\text{-Re}(1) & 178.6(3) & 178.270\\\hline & O(2)\text{-C}(17)\text{-Re}(1) & 179.5(3) & 179.355\\\hline & O(3)\text{-C}(18)\text{-Re}(1) & 179.9(3) & 176.781\\\hline \end{array}$	A1 -	Degree	s (°)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Angie	Experimental	Calculated	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(16)-Re(1)-C(17)	89.1(1)	90.772	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(16)-Re(1)-C(18)	85.9(1)	86.823	
$\begin{array}{cccccccccc} C(18)\text{-Re}(1)\text{-N}(1) & 175.4(1) & 175.575 \\ C(16)\text{-Re}(1)\text{-N}(2) & 171.2(1) & 170.290 \\ C(17)\text{-Re}(1)\text{-N}(2) & 96.0(1) & 89.435 \\ C(18)\text{-Re}(1)\text{-N}(2) & 101.3(1) & 102.886 \\ N(1)\text{-Re}(1)\text{-N}(2) & 74.7(1) & 74.265 \\ C(16)\text{-Re}(1)\text{-Br}(1) & 92.7(1) & 90.399 \\ C(17)\text{-Re}(1)\text{-Br}(1) & 177.6(1) & 176.076 \\ C(18)\text{-Re}(1)\text{-Br}(1) & 91.6(1) & 94.069 \\ N(1)\text{-Re}(1)\text{-Br}(1) & 85.74(7) & 82.555 \\ N(2)\text{-Re}(1)\text{-Br}(1) & 82.07(7) & 88.780 \\ O(1)\text{-C}(16)\text{-Re}(1) & 178.6(3) & 178.270 \\ O(2)\text{-C}(17)\text{-Re}(1) & 179.5(3) & 179.355 \\ O(3)\text{-C}(18)\text{-Re}(1) & 179.9(3) & 176.781 \\ \end{array}$	C(16)-Re(1)-N(1)	97.9(1)	96.034	
$\begin{array}{ccccccc} C(16)\text{-Re}(1)\text{-N}(2) & 171.2(1) & 170.290 \\ C(17)\text{-Re}(1)\text{-N}(2) & 96.0(1) & 89.435 \\ C(18)\text{-Re}(1)\text{-N}(2) & 101.3(1) & 102.886 \\ N(1)\text{-Re}(1)\text{-N}(2) & 74.7(1) & 74.265 \\ C(16)\text{-Re}(1)\text{-Br}(1) & 92.7(1) & 90.399 \\ C(17)\text{-Re}(1)\text{-Br}(1) & 177.6(1) & 176.076 \\ C(18)\text{-Re}(1)\text{-Br}(1) & 91.6(1) & 94.069 \\ N(1)\text{-Re}(1)\text{-Br}(1) & 85.74(7) & 82.555 \\ N(2)\text{-Re}(1)\text{-Br}(1) & 82.07(7) & 88.780 \\ O(1)\text{-C}(16)\text{-Re}(1) & 178.6(3) & 178.270 \\ O(2)\text{-C}(17)\text{-Re}(1) & 179.5(3) & 179.355 \\ O(3)\text{-C}(18)\text{-Re}(1) & 179.9(3) & 176.781 \\ \end{array}$	C(17)-Re(1)-N(1)	92.5(1)	93.597	
$\begin{array}{cccccc} C(17)\text{-Re}(1)\text{-N}(2) & 96.0(1) & 89.435 \\ C(18)\text{-Re}(1)\text{-N}(2) & 101.3(1) & 102.886 \\ N(1)\text{-Re}(1)\text{-N}(2) & 74.7(1) & 74.265 \\ C(16)\text{-Re}(1)\text{-Br}(1) & 92.7(1) & 90.399 \\ C(17)\text{-Re}(1)\text{-Br}(1) & 177.6(1) & 176.076 \\ C(18)\text{-Re}(1)\text{-Br}(1) & 91.6(1) & 94.069 \\ N(1)\text{-Re}(1)\text{-Br}(1) & 85.74(7) & 82.555 \\ N(2)\text{-Re}(1)\text{-Br}(1) & 82.07(7) & 88.780 \\ O(1)\text{-C}(16)\text{-Re}(1) & 178.6(3) & 178.270 \\ O(2)\text{-C}(17)\text{-Re}(1) & 179.5(3) & 179.355 \\ O(3)\text{-C}(18)\text{-Re}(1) & 179.9(3) & 176.781 \\ \end{array}$	C(18)-Re(1)-N(1)	175.4(1)	175.575	
$\begin{array}{cccccc} C(18)\text{-Re}(1)\text{-N}(2) & 101.3(1) & 102.886 \\ N(1)\text{-Re}(1)\text{-N}(2) & 74.7(1) & 74.265 \\ C(16)\text{-Re}(1)\text{-Br}(1) & 92.7(1) & 90.399 \\ C(17)\text{-Re}(1)\text{-Br}(1) & 177.6(1) & 176.076 \\ C(18)\text{-Re}(1)\text{-Br}(1) & 91.6(1) & 94.069 \\ N(1)\text{-Re}(1)\text{-Br}(1) & 85.74(7) & 82.555 \\ N(2)\text{-Re}(1)\text{-Br}(1) & 82.07(7) & 88.780 \\ O(1)\text{-C}(16)\text{-Re}(1) & 178.6(3) & 178.270 \\ O(2)\text{-C}(17)\text{-Re}(1) & 179.5(3) & 179.355 \\ O(3)\text{-C}(18)\text{-Re}(1) & 179.9(3) & 176.781 \\ \end{array}$	C(16)-Re(1)-N(2)	171.2(1)	170.290	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(17)-Re(1)-N(2)	96.0(1)	89.435	
$\begin{array}{ccccc} C(16)\text{-Re}(1)\text{-Br}(1) & 92.7(1) & 90.399 \\ C(17)\text{-Re}(1)\text{-Br}(1) & 177.6(1) & 176.076 \\ C(18)\text{-Re}(1)\text{-Br}(1) & 91.6(1) & 94.069 \\ N(1)\text{-Re}(1)\text{-Br}(1) & 85.74(7) & 82.555 \\ N(2)\text{-Re}(1)\text{-Br}(1) & 82.07(7) & 88.780 \\ O(1)\text{-C}(16)\text{-Re}(1) & 178.6(3) & 178.270 \\ O(2)\text{-C}(17)\text{-Re}(1) & 179.5(3) & 179.355 \\ O(3)\text{-C}(18)\text{-Re}(1) & 179.9(3) & 176.781 \\ \end{array}$	C(18)-Re(1)-N(2)	101.3(1)	102.886	
$\begin{array}{ccccc} C(16)\text{-Re}(1)\text{-Br}(1) & 92.7(1) & 90.399 \\ C(17)\text{-Re}(1)\text{-Br}(1) & 177.6(1) & 176.076 \\ C(18)\text{-Re}(1)\text{-Br}(1) & 91.6(1) & 94.069 \\ N(1)\text{-Re}(1)\text{-Br}(1) & 85.74(7) & 82.555 \\ N(2)\text{-Re}(1)\text{-Br}(1) & 82.07(7) & 88.780 \\ O(1)\text{-C}(16)\text{-Re}(1) & 178.6(3) & 178.270 \\ O(2)\text{-C}(17)\text{-Re}(1) & 179.5(3) & 179.355 \\ O(3)\text{-C}(18)\text{-Re}(1) & 179.9(3) & 176.781 \\ \end{array}$	N(1)-Re(1)-N(2)	74.7(1)	74.265	
$\begin{array}{cccc} C(18)\text{-Re}(1)\text{-Br}(1) & 91.6(1) & 94.069 \\ N(1)\text{-Re}(1)\text{-Br}(1) & 85.74(7) & 82.555 \\ N(2)\text{-Re}(1)\text{-Br}(1) & 82.07(7) & 88.780 \\ O(1)\text{-C}(16)\text{-Re}(1) & 178.6(3) & 178.270 \\ O(2)\text{-C}(17)\text{-Re}(1) & 179.5(3) & 179.355 \\ O(3)\text{-C}(18)\text{-Re}(1) & 179.9(3) & 176.781 \\ \end{array}$	C(16)-Re(1)-Br(1)	92.7(1)	90.399	
$\begin{array}{cccc} N(1)\text{-Re}(1)\text{-Br}(1) & 85.74(7) & 82.555 \\ N(2)\text{-Re}(1)\text{-Br}(1) & 82.07(7) & 88.780 \\ O(1)\text{-C}(16)\text{-Re}(1) & 178.6(3) & 178.270 \\ O(2)\text{-C}(17)\text{-Re}(1) & 179.5(3) & 179.355 \\ O(3)\text{-C}(18)\text{-Re}(1) & 179.9(3) & 176.781 \\ \end{array}$	C(17)-Re(1)-Br(1)	177.6(1)	176.076	
N(2)-Re(1)-Br(1) 82.07(7) 88.780 O(1)-C(16)-Re(1) 178.6(3) 178.270 O(2)-C(17)-Re(1) 179.5(3) 179.355 O(3)-C(18)-Re(1) 179.9(3) 176.781	C(18)-Re(1)-Br(1)	91.6(1)	94.069	
O(1)-C(16)-Re(1) 178.6(3) 178.270 O(2)-C(17)-Re(1) 179.5(3) 179.355 O(3)-C(18)-Re(1) 179.9(3) 176.781	N(1)-Re (1) -Br (1)	85.74(7)	82.555	
O(2)-C(17)-Re(1) 179.5(3) 179.355 O(3)-C(18)-Re(1) 179.9(3) 176.781	N(2)-Re(1)-Br(1)	82.07(7)	88.780	
O(3)- $C(18)$ - $Re(1)$ 179.9(3) 176.781	O(1)- $C(16)$ - $Re(1)$	178.6(3)	178.270	
	O(2)- $C(17)$ - $Re(1)$	179.5(3)	179.355	
Selected Torsions (deg)	O(3)- $C(18)$ - $Re(1)$	179.9(3)	176.781	
	Selected Torsions (deg)			
N(1)-C(6)-C(1)-N(2) -15.4(4) -14.749	N(1)-C(6)-C(1)-N(2)	-15.4(4)	-14.749	
N(2)-C(5)-C(11)-N(3) 141.1(3) 136.119		` '	136.119	

Table 4 Selected Distances, Angles, and Torsions for ${\bf 5}$

Axial CN Plan			Planar	CN	
D 1	Distan	ce (Å)	D 1	Distance (Å)	
Bond	Exp.	Calc.	Bond	Exp.	Calc.
Re(2)-C(35)	2.148(7)	2.13963	Re(1)-C(19)	2.105(8)	1.98769
Re(2)-C(36)	1.926(6)	1.94011	Re(1)-C(16)	1.928(5)	2.09197
Re(2)-C(37)	1.954(7)	1.96758	Re(1)-C(18)	1.96(1)	2.00792
Re(2)-C(38)	1.902(9)	1.91853	Re(1)-C(17)	1.918(7)	1.90499
Re(2)- $N(5)$	2.242(7)	2.28998	Re(1)-N(1)	2.253(5)	2.32197
Re(2)- $N(6)$	2.168(5)	2.20279	Re(1)-N(2)	2.176(4)	2.18806
C(35)-N(8)	1.138(9)	1.16104	C(19)-O(3)	1.17(1)	1.14703
C(36)-O(4)	1.145(8)	1.15044	C(16)-N(4)	1.149(7)	1.16100
C(37)-O(5)	1.151(9)	1.15134	C(18)-O(2)	1.14(1)	1.14276
C(38)-O(6)	1.17(1)	1.15368	C(17)-O(1)	1.130(8)	1.15781
Angle	Degre		Angle	Degre	
Aligie	Exp.	Calc.	Angle	Exp.	Calc.
C(36)-Re(2)- $C(38)$	87.7(3)	87.273	C(16)-Re(1)- $C(17)$	87.8(3)	90.158
C(36)-Re(2)-C(37)	88.0(3)	89.890	C(16)-Re(1)- $C(18)$	87.0(3)	84.822
C(36)-Re(2)- $C(35)$	92.1(3)	93.356	C(16)-Re(1)- $C(19)$	92.5(3)	88.356
C(38)-Re(2)-C(37)	88.5(3)	90.973	C(17)-Re(1)- $C(18)$	88.7(3)	88.453
C(38)-Re(2)-C(35)	90.8(3)	91.628	C(17)-Re(1)- $C(19)$	90.5(3)	87.745
C(37)-Re(2)- $C(35)$	179.2(3)	175.933	C(18)-Re(1)-C(19)	179.1(3)	172.179
C(36)-Re(2)-N(5)	100.6(3)	102.576	C(16)-Re(1)-N(1)	102.2(2)	98.105
C(36)-Re(2)-N(6)	174.2(3)	175.708	C(16)-Re(1)-N(2)	175.9(2)	172.047
C(38)-Re(2)-N(5)	169.3(3)	170.146	C(17)-Re(1)-N(1)	168.3(3)	170.509
C(38)-Re(2)-N(6)	96.6(3)	96.171	C(17)-Re(1)-N(2)	95.9(3)	97.544
C(37)-Re(2)-N(5)	98.4(2)	89.360	C(18)-Re(1)-N(1)	97.7(3)	88.487
C(37)-Re(2)-N(6)	96.0(2)	92.605	C(18)-Re(1)-N(2)	94.8(3)	93.374
C(35)-Re(2)-N(5)	82.3(2)	87.543	C(19)-Re(1)-N(1)	83.2(2)	96.317
C(35)-Re(2)-N(6)	83.9(2)	84.008	C(19)-Re(1)-N(2)	85.7(2)	93.899
N(5)-Re(2)-N(6)	74.7(2)	73.977	N(1)-Re(1)-N(2)	73.9(2)	73.675
O(6)-C(38)-Re(2)	179.4(7)	178.027	O(1)- $C(17)$ - $Re(1)$	178.2(7)	177.623
O(5)-C(37)-Re(2)	175.5(6)	179.414	O(2)- $C(18)$ - $Re(1)$	172.0(7)	176.452
N(8)- $C(35)$ - $Re(2)$	178.0(6)	176.457	O(3)-C(19)-Re(1)	178.0(6)	176.552
O(4)-C(36)-Re(2)	179.0(7)	177.313	N(4)- $C(16)$ - $Re(1)$	178.7(6)	178.113
Torsion	Degre	(/	Torsion	Degre	()
10151011	Exp.	Calc.	10151011	Exp.	Calc.
N(5)-C(20)-C(25)-N(6)	14.5(9)	13.735	N(1)-C(1)-C(6)-N(2)	12.5(8)	14.777
N(5)-C(24)-C(30)-N(7)	41(1)	135.774	N(1)-C(5)-C(11)-N(3)	43.7(9)	137.014

Table 5 Selected Distances, Angles and Torsions for Acetonitrile Adduct of $\bf 8$

Bond	Distance (Å)		
Dond	Experimental	Calculated	
Re(1)-C(16)	1.889(4)	1.92288	
Re(1)- $C(17)$	1.885(3)	1.92394	
Re(1)-N(1)	2.091(3)	2.10787	
Re(1)-N(2)	2.135(3)	2.15342	
Re(1)-N(3)	2.131(3)	2.16262	
Re(1)-N(4)	2.160(3)	2.14739	
N(2)-N(3)	4.138(4)	4.19048	
Angle	Degree	s (°)	
Aligie	Experimental	Calculated	
C(16)-Re(1)- $C(17)$	87.69(16)		
C(16)-Re(1)-N(1)	175.95(12)		
C(17)-Re(1)-N(1)	96.35(12)		
C(16)-Re(1)-N(3)	103.81(13)		
C(17)-Re(1)-N(3)	94.03(12)		
N(1)-Re(1)-N(3)	76.20(10)		
C(16)-Re(1)-N(2)	103.58(13)		
C(17)-Re(1)-N(2)	93.73(12)		
N(1)-Re(1)-N(2)	75.99(10)		
N(3)-Re(1)-N(2)	151.77(11)		
C(16)-Re(1)-N(4)	90.50(14)		
C(17)-Re(1)-N(4)	178.10(12)		
N(1)-Re(1)-N(4)	85.46(10)	89.737	
N(3)-Re(1)-N(4)	86.94(10)		
N(2)-Re(1)-N(4)	86.15(10)	86.044	
O(1)-C(16)-Re(1)	179.1(3)	178.587	
O(2)- $C(17)$ - $Re(1)$	178.0(3)	178.820	
Torsion	Degrees (°)		
	Experimental	Calculated	
N(1)-C(1)-C(6)-N(2)	1.7(4)	-1.3	
N(1)-C(5)-C(11)-N(3)	-1.8(4)	-0.3	

Table 6 Selected Distances, Angles, and Torsions for $\kappa^2(\text{terpy})\text{Mn(CO)}_3\text{Br}$ from Compain et. al.

	- R N		
Selected Distances	(A)		
Mn(1)-N(1)	2.045(1)		
Mn(1)- $N(2)$	2.105(2)		
N(1)-N(2)	2.636(2)		
Selected Angles (deg)			
N(1)-Mn(1)-N(2)	78.84(6)		
Selected Torsions (deg)		
N(1)-C(8)-C(9)-N(2)	-16.5(2)		
N(2)- $C(13)$ - $C(14)$ - $N(3)$	143.2(2)		

Table 7 Crystal data and structure refinement for compounds 1, 3, 5, and 7

Compound	1	3	5	7
Empirical formula	$\overline{\mathrm{C_{19}H_{11}N_3O_3ReCl}}$	$C_{19}H_{11}N_3O_3ReBr$	$C_{20}H_{11}N_4O_3Re$	$C_{22}H_{14}N_4O_6F_3SRe$
Formula weight (g/mol)	538.96	583.41	530.04	693.63
Temperature (K)	200(2)	200	200	200
Wavelength (Å)	0.71073	0.71073	0.71073	0.71073
Crystal System	Triclinic	Monoclinic	Triclinic	
Space Group	P-1	C2/c	P-1	
a (Å)	9.8736(4)	31.1537(7)	9.9196(9)	
b (Å)	14.8202(4)	7.1176(2)	14.9902(14)	
c (Å)	16.3472(4)	16.8519(4)	16.5187(15)	
α (deg)	69.2890(10)	90.000	68.363(2)	
β (deg)	80.801(2)	111.0230(10)	80.929(2)	
γ (deg)	79.836(2)	90.000	79.975(2)	
Volume (\mathring{A}^3)	2190.00(12)	3488.00	2236.6(4)	
Z, r (calc) (Mg/m ³)	2, 1.997	8, 2.222	2,1.927	
Absorption coefficient (mm ⁻¹)	6.063	9.282	5.821	
Absorption correction		Semi-empirical	from equivalents	
Final R indices $[I \ge 2\sigma(I)]$	R1 = 0.0397,	R1 = 0.0232,	R1 = 0.0390,	
	wR2 = 0.0839	wR2 = 0.0614	wR2 = 0.0921	
R indices (all data)	R1 = 0.0604,	R1 = 0.0285,	R1 = 0.0500,	
	wR2 = 0.0951	wR2 = 0.0642	wR2 = 0.0961	

 ∞

Table 8 Crystal data and structure refinement for compounds ${f 2,\,4,\,6,}$ and ${f 8}$

Compound	2	4	6	8
Empirical formula	$\overline{\mathrm{C_{18}H_{11}N_3O_2ReCl}}$	$\mathrm{C_{18}H_{11}N_3O_2ReBr}$	$C_{19}H_{11}N_4O_2Re$	$C_{21}H_{14}N_4O_5F_3SRe$
Formula weight (g/mol)	510.95	530.04	502.04	665.61
Temperature (K)	200(2)	200	200	200
Wavelength (Å)	0.71073	0.71073	0.71073	0.71073
Crystal System	Triclinic			Triclinic
Space Group	P-1			P-1
a (Å)	8.5275(3)			8.5745(4)
b (Å)	14.2421(5)			11.9805(5)
c (Å)	17.4637(6)			13.0970(5)
$\alpha \text{ (deg)}$	77.948(2)			79.748(2)
β (deg)	85.684(2)			81.106(2)
$\gamma \text{ (deg)}$	79.890			88.091(2)
Volume ($Å^3$)	2041.79(12)			1307.99(10)
$Z, r (calc) (Mg/m^3)$	4, 2.050			2, 1.993
Absorption coefficient (mm ⁻¹)	6.494			5.094
Absorption correction		Semi-empirical	from equivalents	
Final R indices $[I \ge 2\sigma(I)]$	R1 = 0.0636,			R1 = 0.0294,
	wR2 = 0.1018			wR2 = 0.0673
R indices (all data)	R1 = 0.0985,			R1 = 0.0366,
	wR2 = 0.1110			wR2 = 0.0700

Table 9 Solvated and Gas Phase Energies of Axial & Trans $\kappa^x-(\text{terpy})-\text{Re(CO)}_{5\text{-x}}\text{CN (x=2,3)}$

	Bidentate		Terde	entate
Geometry	E(gas) ^a	E(solution) ^b	$E(gas)^a$	E(solution) ^b
Axial	-1254.96132	-1254.99059	-1141.57255	-1141.60827
Trans	-1254.93788	-1254.97168	-1141.54660	-1141.58209
Difference	0.02343	0.01891	0.02595	0.02612
Difference (kcal/mol)	14.70	11.87	16.28	16.43

 $^{^{\}rm a}$ B3LYP SCF energy in hartrees. $^{\rm b}$ B3LYP SCF energy in hartrees with PCM solvation in acetonitrile.