This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

DIALOG(R) File 347: JAPIO (c) 2000 JPO & JAPIO. All rts. reserv.

05970901 **Image available**
LIGHT WAVELENGTH CONVERTING MODULE

PUB. NO.: 10-254001 [JP 10254001 A] PUBLISHED: September 25, 1998 (19980925)

INVENTOR(s): SONODA SHINICHIRO

APPLICANT(s): FUJI PHOTO FILM CO LTD [000520] (A Japanese Company or

Corporation), JP (Japan)
APPL. NO.: 09-062575 [JP 9762575]
FILED: March 17, 1997 (19970317)

INTL CLASS: [6] G02F-001/37

JAPIO CLASS: 29.2 (PRECISION INSTRUMENTS -- Optical Equipment)

JAPIO KEYWORD: ROO2 (LASERS): RO12 (OPTICAL FIBERS)

ABSTRACT

PROBLEM TO BE SOLVED: To stably oscillate a semiconductor laser by providing a transmission type wavelength selection optical element selecting the wavelength of a semiconductor laser beam by reflecting the laser beam by the end face of a specified light wavelength converting element.

SOLUTION: This module is provided with the semiconductor laser (laser diode) 10, a collimator lens 12 collimating the laser beam 11 outgoing in a divergent light state and emitting parallel beams, a condensing lens 13 converging the laser beam 11, a narrow-band pass filter 14 functioning as the wavelength selection optical element arranged between the lenses 12 and 13, and the light wavelength conversion element 15. As for the element 15, the direction of the spontaneous polarization of a substrate forms an angle .theta. (O deg. < theta. deg. <90 deg.) with one surface of the substrate. The laser beam 11 is condensed by the lens 13 and converged on the end face 18a of a channel optical waveguide 18, then the wavelength of the laser beam 11 passing the filter 14 arranged in an external resonator is selected by the filter 14.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-254001

(43)公開日 平成10年(1998) 9月25日

(51) Int.Cl.6

識別記号

G02F 1/37

 \mathbf{F} I

G02F 1/37

審査請求 未請求 請求項の数27 OL (全 20 頁)

(21)出願番号

特願平9-62575

(22)出願日

平成9年(1997)3月17日

(71)出願人 000005201

富士写真フイルム株式会社 神奈川県南足柄市中沼210番地

(72)発明者 園田 慎一郎

神奈川県足柄上郡開成町宮台798番地 富

士写真フイルム株式会社内

(74)代理人 弁理士 柳田 征史 (外1名)

(54) 【発明の名称】 光波長変換モジュール

(57)【要約】

【課題】 非線形光学効果を有する強誘電体結晶基板に 光導波路が形成され、この光導波路にドメイン反転部が 周期的に形成され、基本波の導波方向に垂直な面内において、基板の自発分極の向きが基板の表面に対して角度 θ (0°< θ <<90°) をなしている光波長変換素子によって基本波を波長変換するモジュールにおいて、半導体 レーザーの発振波長をドメイン反転部の周期と位相整合 する波長に正確にロックし、半導体レーザーを安定して 発振させる。

【解決手段】 半導体レーザー10と光波長変換素子15との間に、狭帯域バンドパスフィルター等の波長選択光学素子14を設け、この波長選択光学素子14により、光波長変換素子15の端面18 a で反射して半導体レーザー10にフィードバックするレーザービーム11の波長を選択する。

30

【特許請求の範囲】

【請求項1】 非線形光学効果を有する強誘電体結晶基 板に、その一表面に沿って延びる光導波路が形成される とともに、この光導波路に基板の自発分極の向きを反転 させたドメイン反転部が周期的に形成されてなり、該光 導波路においてドメイン反転部の並び方向に導波する基 本波を波長変換する光波長変換素子であって、前記基本 波の導波方向に垂直な面内において、前記基板の自発分 極の向きが該基板の前記一表面に対して角度 θ (0°< $\theta < 90^{\circ}$)をなしている光波長変換素子と、

前記基本波としてこの光波長変換素子に入射されるレー ザービームを発する半導体レーザーと、

この半導体レーザーと前記光波長変換素子との間に配さ れ、該光波長変換素子の端面で反射して半導体レーザー にフィードバックするレーザービームの波長を選択する 透過型の波長選択光学素子とからなる光波長変換モジュ ール。

非線形光学効果を有する強誘電体結晶基 【請求項2】 板に、その一表面に沿って延びる光導波路が形成される とともに、この光導波路に基板の自発分極の向きを反転 20 させたドメイン反転部が周期的に形成されてなり、該光 導波路においてドメイン反転部の並び方向に導波する基 本波を波長変換する光波長変換素子であって、前記基本 波の導波方向に垂直な面内において、前記基板の自発分 極の向きが該基板の前記一表面に対して角度 θ (0° < $\theta < 90^{\circ}$)をなしている光波長変換素子と、

前記基本波としてこの光波長変換素子に入射されるレー ザービームを発する半導体レーザーと、

前記光波長変換素子に入射する前の前記レーザービーム を一部分岐させる光分岐手段と、

この分岐されたレーザービームを反射させて前記半導体 レーザーにフィードバックさせる反射部材と、

前記半導体レーザーにフィードバックされるレーザービ ームの波長を選択する透過型の波長選択光学素子とから なる光波長変換モジュール。

【請求項3】 非線形光学効果を有する強誘電体結晶基 板に、その一表面に沿って延びる光導波路が形成される とともに、この光導波路に基板の自発分極の向きを反転 させたドメイン反転部が周期的に形成されてなり、該光 導波路においてドメイン反転部の並び方向に導波する基 40 本波を波長変換する光波長変換素子であって、前記基本 波の導波方向に垂直な面内において、前記基板の自発分 極の向きが該基板の前記一表面に対して角度 θ (0° < $\theta < 90^{\circ}$)をなしている光波長変換素子と、

前記基本波としてこの光波長変換素子に入射されるレー ザービームを発する半導体レーザーと、

前記光波長変換素子から出射した前記レーザービームを 反射させて前記半導体レーザーにフィードバックさせる 反射部材と、

前記半導体レーザーにフィードバックされるレーザービ 50 前記基本波としてこの光波長変換素子に入射されるレー

ームの波長を選択する透過型の波長選択光学素子とから なる光波長変換モジュール。

前記光波長変換素子から出射した前記レ 【請求項4】 ーザービームと波長変換波とを分岐する光学系が設けら れていることを特徴とする請求項3記載の光波長変換モ

【請求項5】 非線形光学効果を有する強誘電体結晶基 板に、その一表面に沿って延びる光導波路が形成される とともに、この光導波路に基板の自発分極の向きを反転 させたドメイン反転部が周期的に形成されてなり、該光 導波路においてドメイン反転部の並び方向に導波する基 本波を波長変換する光波長変換素子であって、前記基本 波の導波方向に垂直な面内において、前記基板の自発分 極の向きが該基板の前記一表面に対して角度 θ (0° < $\theta < 90^{\circ}$)をなしている光波長変換素子と、

前記基本波としてこの光波長変換素子に入射されるレー ザービームを発する半導体レーザーと、

この半導体レーザーから、前記光波長変換素子に向かわ ない後方出射光として出射したレーザービームを反射さ せて前記半導体レーザーにフィードバックさせる反射部 材と、

前記半導体レーザーにフィードバックされるレーザービ ームの波長を選択する透過型の波長選択光学素子とから なる光波長変換モジュール。

非線形光学効果を有する強誘電体結晶基 【請求項6】 板に、その一表面に沿って延びる光導波路が形成される とともに、この光導波路に基板の自発分極の向きを反転 させたドメイン反転部が周期的に形成されてなり、該光 導波路においてドメイン反転部の並び方向に導波する基 本波を波長変換する光波長変換素子であって、前記基本 波の導波方向に垂直な面内において、前記基板の自発分 極の向きが該基板の前記一表面に対して角度heta(0° < $\theta < 90^{\circ}$)をなしている光波長変換素子と、

前記基本波としてこの光波長変換素子に入射されるレー ザービームを発する半導体レーザーと、

この半導体レーザーと前記光波長変換素子との間に配さ れ、前記レーザービームの一部を反射させて半導体レー ザーにフィードバックするとともに、このフィードバッ クするレーザービームの波長を選択する反射型の波長選 択光学素子とからなる光波長変換モジュール。

【請求項7】 非線形光学効果を有する強誘電体結晶基 板に、その一表面に沿って延びる光導波路が形成される とともに、この光導波路に基板の自発分極の向きを反転 させたドメイン反転部が周期的に形成されてなり、該光 導波路においてドメイン反転部の並び方向に導波する基 本波を波長変換する光波長変換素子であって、前記基本 波の導波方向に垂直な面内において、前記基板の自発分 極の向きが該基板の前記一表面に対して角度 $\, heta\,$ ($\,0\,^\circ\,$ < $\theta < 90^{\circ}$)をなしている光波長変換素子と、

ザービームを発する半導体レーザーと、

前記光波長変換素子から出射した前記レーザービームを 反射させて前記半導体レーザーにフィードバックすると ともに、このフィードバックするレーザービームの波長 を選択する反射型の波長選択光学素子とからなる光波長 変換モジュール。

【請求項8】 前記光波長変換素子から出射した前記レーザービームと波長変換波とを分岐する光学系が設けられていることを特徴とする請求項7記載の光波長変換モジュール。

【請求項9】 非線形光学効果を有する強誘電体結晶基板に、その一表面に沿って延びる光導波路が形成されるとともに、この光導波路に基板の自発分極の向きを反転させたドメイン反転部が周期的に形成されてなり、該光導波路においてドメイン反転部の並び方向に導波する基本波を波長変換する光波長変換素子であって、前記基本波の導波方向に垂直な面内において、前記基板の自発分極の向きが該基板の前記一表面に対して角度 θ (0°< θ <>90°) をなしている光波長変換素子と、

前記基本波としてこの光波長変換素子に入射されるレー 20 ザービームを発する半導体レーザーと、

この半導体レーザーから、前記光波長変換素子に向かわない後方出射光として出射したレーザービームを反射させて前記半導体レーザーにフィードバックするとともに、このフィードバックするレーザービームの波長を選択する反射型の波長選択光学素子とからなる光波長変換モジュール。

【請求項10】 前記波長選択光学素子が狭帯域バンドパスフィルターであることを特徴とする請求項1から9いずれか1項記載の光波長変換モジュール。

【請求項11】 前記狭帯域バンドパスフィルターが薄膜型バンドパスフィルターであることを特徴とする請求項10記載の光波長変換モジュール。

【請求項12】 前記薄膜型バンドパスフィルターが前記半導体レーザーの光出射端面に形成されていることを特徴とする請求項11記載の光波長変換モジュール。

【請求項13】 前記透過型の波長選択光学素子が薄膜型の狭帯域パンドパスフィルターであって、このパンドパスフィルターが前記反射部材の表面に形成されていることを特徴とする請求項2から5いずれか1項記載の光 40 波長変換モジュール。

【請求項14】 前記波長選択光学素子がバルクグレーティングであることを特徴とする請求項1から9いずれか1項記載の光波長変換モジュール。

【請求項15】 前記反射型の波長選択光学素子が、コアに複数の屈折率変化部が等間隔に形成された光ファイバーからなるファイバーグレーティングであることを特徴とする請求項6から9いずれか1項記載の光波長変換モジュール。

【請求項16】 前記ファイバーグレーティングに入射 50 いずれか1項記載の光波長変換モジュール。

するレーザービームをこのファイバーグレーティングの コア端面上で収束させる収束光学系が設けられているこ とを特徴とする請求項15記載の光波長変換モジュー ル。

【請求項17】 前記半導体レーザーが前記光波長変換素子の端面に結合されていることを特徴とする請求項1から16いずれか1項記載の光波長変換モジュール。

【請求項18】 非線形光学効果を有する強誘電体結晶基板に、その一表面に沿って延びる光導波路が形成されるとともに、この光導波路に基板の自発分極の向きを反転させたドメイン反転部が周期的に形成されてなり、該光導波路においてドメイン反転部の並び方向に導波する基本波を波長変換する光波長変換素子であって、前記基本波の導波方向に垂直な面内において、前記基板の自発分極の向きが該基板の前記一表面に対して角度 0 (0°</r>

この光波長変換素子の端面に結合され、前記基本波としてこの光波長変換素子に入射されるレーザービームを発する半導体レーザーと、

) この半導体レーザーの光出射面と前記光波長変換素子の 端面との間に配され、該光波長変換素子の端面で反射し て半導体レーザーにフィードバックするレーザービーム の波長を選択する透過型の薄膜狭帯域パンドパスフィル ターとからなる光波長変換モジュール。

【請求項19】 非線形光学効果を有する強誘電体結晶基板に、その一表面に沿って延びる光導波路が形成されるとともに、この光導波路に基板の自発分極の向きを反転させたドメイン反転部が周期的に形成されてなり、該光導波路においてドメイン反転部の並び方向に導波する基本波を波長変換する光波長変換素子であって、前記基本波の導波方向に垂直な面内において、前記基板の自発分極の向きが該基板の前記一表面に対して角度 θ (0° $< \theta < 90^\circ$) をなしている光波長変換素子と、

この光波長変換素子の端面に結合され、前記基本波としてこの光波長変換素子に入射されるレーザービームを発する半導体レーザーと、

この半導体レーザーの光出射面と前記光波長変換素子の端面との間に配され、前記レーザービームの一部を反射させて半導体レーザーにフィードバックするとともに、このフィードバックするレーザービームの波長を選択する反射型の薄膜狭帯域バンドパスフィルターとからなる光波長変換モジュール。

【請求項20】 前記光導波路がプロトン交換により形成されたものであって、前記角度 θ が θ <70° の範囲にあることを特徴とする請求項1から19いずれか1項記載の光波長変換モジュール。

【請求項21】 前記光導波路がプロトン交換およびアニールにより形成されたものであって、前記角度 θ が θ <20° の範囲にあることを特徴とする請求項1から19 いずれか1 百記載の光波長変換モジュール。

【請求項22】 前記角度 θ が0.2° $<\theta$ の範囲にあることを特徴とする請求項1から21いずれか1項記載の光波長変換モジュール。

【請求項23】 前記光導波路がプロトン交換およびアニールにより形成されたものであって、前記角度 θ が0. 5° $<\theta$ の範囲にあることを特徴とする請求項1から21いずれか1項記載の光波長変換モジュール。

【請求項24】 前記強誘電体結晶基板が、該結晶のY 換素軸をYZ面内でZ軸側に3°回転させた軸に対して垂直 て基な面でカットされたものであることを特徴とする請求項 10 る。 1から23いずれか1項記載の光波長変換モジュール。 【0

【請求項25】 前記強誘電体結晶基板が、該結晶の2軸を2X面内でX軸側に87°回転させた軸に対して垂直な面でカットされたものであることを特徴とする請求項1から23いずれか1項記載の光波長変換モジュール。

【請求項26】 前記強誘電体がLiNb, Ta_1 , O, $(0 \le x \le 1)$ またはそれにMgOあるいは2nOがドープされたものであることを特徴とする請求項1から25いずれか1項記載の光波長変換モジュール。

【請求項27】 前記光導波路において前記レーザービ 20 ームがTEモードで導波するように構成されていること を特徴とする請求項1から26いずれか1項記載の光波 長変換モジュール。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、光導波路型の光波 長変換素子を用いて基本波を第2高調波等に変換する光 波長変換モジュールに関し、特に詳細には、光導波路基 板として強誘電体結晶基板を用い、この光導波路に周期 ドメイン反転構造を形成してなる光波長変換素子を用い 30 た光波長変換モジュールに関するものである。

[0002]

【従来の技術】非線形光学効果を有する強誘電体の自発分極(ドメイン)を周期的に反転させた領域を設けた光波長変換素子を用いて、基本波を第2高調波に波長変換する方法が既にBleombergenらによって提案されている(Phys. Rev., vol. 127, No. 6, 1918(1962)参照)。この方法においては、ドメイン反転部の周期∧を、

 $\Lambda c = 2 \pi / \{\beta (2 \omega) - 2 \beta (\omega) \}$

ただし β (2 ω) は第2高調波の伝搬定数

β (ω) は基本波の伝搬定数

で与えられるコヒーレント長 A c の整数倍になるように 設定することで、基本波と第 2 高調波との位相整合(い わゆる疑似位相整合)を取ることができる。

【0003】そして、例えば特開平5-29207号に 示されるように、非線形光学材料からなる光導波路を有 し、そこを導波させた基本波を波長変換する光導波路型 の光波長変換素子において、上述のような周期ドメイン 反転構造を形成して、効率良く位相整合を取る試みもな されている。 【0004】このように周期ドメイン反転構造を形成した従来の光導波路型の光波長変換素子は、基板の自発分極の向きの点から2つのタイプに大別されている。一方のタイプの光波長変換素子は図29に示すように、一つの基板表面2a(それに沿って光導波路1が延びる基板表面)に対して、矢印Pで示す基板2の自発分極の向きが垂直になっているものであり、別のタイプの光波長変換素子は図30に示すように、上記基板表面2aに対して基板2の自発分極の向きが平行になっているものである。

【0005】前者のタイプの光波長変換素子は、例えば 上記の特開平5-29207号等に示されているもので あり、ドメイン反転部を基板表面から十分に深く形成で きる反面、半導体レーザーと組み合わせて用いる場合に は基本波の入射光学系が複雑化するという難点が認めら れる。以下、この点について詳しく説明する。

【0006】図29の構成において、導波光のビームパターンは図中Aで示すように、矢印Rで示す偏光ベクトルの向きに平行な方向のビーム径が小さく、それに直角な方向のビーム径が大きいものとなる。またこのとき、偏光ベクトルの向きは基板2の自発分極の向き(一般にLiNbO,等の強誘電体において、自発分極の向きは2軸と平行である)と一致し、導波モードはTMモードとなる。一方、半導体レーザー3から出射したレーザービーム4のビームパターンは、図中Bに示すように、矢印Qで示す偏光ベクトルの向きに平行な方向のビーム径が大きく、それに直角な方向のビーム径が小さいものとなる。

【0007】そこで、半導体レーザー3から出射したレーザービーム4を光導波路1に入力させるためにそれぞれの偏光方向を合わせるとビーム形状がミスマッチし、レーザービーム4を効率良く光導波路1に入力させることができない。そうであると、第2高調波の強度が小さいものとなってしまう。

【0008】そこで、レーザービーム4のビームパターンはそのままにしてその偏光方向を90°回転させるために、コリメーターレンズ5と集光レンズ6との間に入/2板7を配してなる複雑な基本波入射光学系が必要となる。

40 【0009】それに対して、図30に示すタイプの光波 長変換素子の場合は、上記のようなλ/2板7を配さな い状態でレーザービーム4の直線偏光方向と基板2の2 軸方向とが一致するので、複雑な基本波入射光学系は不 要で、また半導体レーザー3を光導波路1の端面に直接 結合することも可能となる。なお、このときの導波モー ドはTEモードとなる。

【0010】しかしその反面、この図30に示すタイプ の光波長変換素子は、ドメイン反転部8を基板表面2a から十分に深く形成することができないという問題があ 50 る。この点を、図31を参照して詳しく説明する。

【0011】この図31において、Dはドメイン反転部8を形成するための電極を示している。また、ドメイン反転部8の並び方向および基板2の厚さ方向は、それぞれ基板のX軸方向およびY軸方向である。波長変換する基本波の実際的な波長を考慮すると、図中aで示すドメイン反転部8の周期は数 μ m程度となる。これを便宜的に5 μ mとすると、最大波長変換効率を得るためにドメイン反転部8の幅と非反転部の幅との比を1:1にするためには、ドメイン反転部8の幅(図中のb寸法)は2.5 μ mとなる。電極Dを現在の一般的なプロセスで作成 10する場合、図中cで示す電極線幅を0.5 μ mよりも細くするのは困難であり、c=0.5 μ mとすると、電極Dからドメイン反転部8の並び方向にd=1 μ mだけドメイン反転部8を成長させれば、ドメイン反転部8の幅が2.5 μ mとなる。

【0012】ドメイン反転領域の成長速度は、基板2の自発分極の向きに沿った方向では大きく、自発分極の向きと垂直な方向(つまりX軸方向およびY軸方向)では小さくなっており、また、ドメイン反転領域のX軸方向およびY軸方向の成長速度は同じである。したがって、上述のようにしてドメイン反転部8の幅を $2.5~\mu$ mとすると、その深さ(Y軸方向の寸法)は $1~\mu$ m程度となってしまう。

【0013】以上のような理由により、本タイプの従来の光波長変換素子においては、ドメイン反転部の深さが 導波光の界分布よりも浅い1μm程度にとどまっており、そのため、ドメイン反転部と導波光との重なり積分 が小さくて波長変換効率が低くなるという問題があった。

【0014】本出願人はこのような事情に鑑み、ドメイ 30 ン反転部が十分に深く形成され、その一方、半導体レーザーを基本波光源として用いる場合に、複雑な基本波入射光学系を必要とせずに高い波長変換効率が得られる光波長変換素子を先に提案した(特願平8-47591号)。

【0015】この光波長変換素子は基本的に、非線形光学効果を有する強誘電体結晶基板に、その一表面に沿って延びる光導波路が形成されるとともに、この光導波路に基板の自発分極の向きを反転させたドメイン反転部が周期的に形成されてなり、該光導波路においてドメイン 40反転部の並び方向に導波する基本波を波長変換する光波長変換素子において、基本波の導波方向に垂直な面内において、基板の自発分極の向きが該基板の上記一表面に対して、角度 θ (0° $< \theta < 90^{\circ}$) をなしていることを特徴とするものである。

【0016】このように自発分極の向きが基板表面に対して、角度 θ ($0°<\theta<90°$)傾いている基板に周期ドメイン反転構造を形成してなる光波長変換素子においては、ドメイン反転部が十分に深く形成され、その一方、半導体レーザーを基本波光源として用いる場合に、

複雑な基本波入射光学系を必要とせずに高い波長変換効 率が得られるようになる。

[0017]

【発明が解決しようとする課題】ところで、上記の周期ドメイン反転構造を有する光導波路型の光波長変換素子は、半導体レーザーから発せられたレーザービームを波長変換するためにも多く用いられている。その場合、半導体レーザーの発振波長が、ドメイン反転部の周期と位相整合する波長と一致していないと、波長変換効率は著しく低いものとなり、実用性のある短波長光源を得ることは困難となる。

【0018】本発明は上記の事情に鑑みてなされたものであり、自発分極の向きが基板表面に対して角度 θ (0° $<\theta<$ 90°)傾いている基板に周期ドメイン反転構造を形成してなる光導波路型の光波長変換素子により、半導体レーザーから発せられたレーザービームを波長変換する光波長変換モジュールにおいて、半導体レーザーの発振波長をドメイン反転部の周期と位相整合する波長に正確にロックし、半導体レーザーを安定して発振させることを目的とするものである。

[0019]

20

【課題を解決するための手段】本発明による1つの光波 長変換モジュールは、前述した非線形光学効果を有する 強誘電体結晶基板に、その一表面に沿って延びる光導波 路が形成されるとともに、この光導波路に基板の自発分 極の向きを反転させたドメイン反転部が周期的に形成さ れてなり、該光導波路においてドメイン反転部の並び方 向に導波する基本波を波長変換する光波長変換素子であ って、基本波の導波方向に垂直な面内において、基板の 自発分極の向きが該基板の上記一表面に対して角度 θ (0°< θ <<90°)をなしている光波長変換素子と、基

(0 くりく90)をなしている元板投資投票する、産本波としてこの光波長変換素子に入射されるレーザービームを発する半導体レーザーと、この半導体レーザーと上記光波長変換素子との間に配され、該光波長変換素子の端面で反射して半導体レーザーにフィードバックするレーザービームの波長を選択する透過型の波長選択光学素子とからなることを特徴とするものである。

[0020] また本発明による別の光波長変換モジュールは、上記と同様の光波長変換素子および半導体レーザーに加えて、前記光波長変換素子に入射する前の基本波としてのレーザービームを一部分岐させる光分岐手段と、この分岐されたレーザービームを反射させて半導体レーザーにフィードバックさせる反射部材と、半導体レーザーにフィードバックされるレーザービームの波長を選択する透過型の波長選択光学素子とが設けられてなるものである。

【0021】また本発明によるさらに別の光波長変換モジュールは、上記と同様の光波長変換素子および半導体レーザーに加えて、光波長変換素子から出射した基本波50としてのレーザービームを反射させて半導体レーザーに

8

フィードバックさせる反射部材と、半導体レーザーにフィードバックされるレーザーピームの波長を選択する透 過型の波長選択光学素子とが設けられてなるものであ ス

【0022】なおこの光波長変換モジュールにおいては、光波長変換素子から出射したレーザービームと波長変換波とを分岐する光学系が設けられるのが望ましい。

【0023】また本発明によるさらに別の光波長変換モジュールは、上記と同様の光波長変換素子および半導体レーザーに加えて、半導体レーザーから、光波長変換素 10子に向かわない後方出射光として出射したレーザービームを反射させて半導体レーザーにフィードバックさせる反射部材と、半導体レーザーにフィードバックされるレーザービームの波長を選択する透過型の波長選択光学素子とが設けられてなるものである。

【0024】また本発明によるさらに別の光波長変換モジュールは、上記と同様の光波長変換素子および半導体レーザーに加えて、この半導体レーザーと光波長変換素子との間に配され、レーザービームの一部を反射させて半導体レーザーにフィードバックするとともに、このフ20ィードバックするレーザービームの波長を選択する反射型の波長選択光学素子が設けられてなるものである。

【0025】また本発明によるさらに別の光波長変換モジュールは、上記と同様の光波長変換素子および半導体レーザーに加えて、光波長変換素子から出射した基本波としてのレーザービームを反射させて半導体レーザーにフィードバックするとともに、このフィードバックするレーザービームの波長を選択する反射型の波長選択光学素子が設けられてなるものである。

【0026】なおこの光波長変換モジュールにおいては、光波長変換素子から出射した上記レーザービームと 波長変換波とを分岐する光学系が設けられるのが望ましい。

【0027】また本発明によるさらに別の光波長変換モジュールは、上記と同様の光波長変換素子および半導体レーザーに加えて、この半導体レーザーから、光波長変換素子に向かわない後方出射光として出射したレーザービームを反射させて半導体レーザーにフィードバックするとともに、このフィードバックするレーザービームの波長を選択する反射型の波長選択光学素子が設けられて40なるものである。

【0028】なお、以上説明した透過型あるいは反射型の波長選択光学素子としては、例えば狭帯域バンドパスフィルターを好適に用いることができる。またその中でも、薄膜型のバンドパスフィルターはより好ましい。

【0029】上記薄膜型の狭帯域バンドパスフィルターを用いる場合は、それを半導体レーザーの光出射端面に形成するのが望ましい。また、前記透過型の波長選択光学素子としてこの薄膜型の狭帯域バンドパスフィルターを用いる場合は、該フィルターを、レーザービームを半 50

導体レーザーにフィードバックさせる反射部材の表面に 形成してもよい。

10

【0030】また、以上説明した透過型あるいは反射型の波長選択光学素子として、バルクグレーティングを用いることもできる。

【0031】他方、反射型の波長選択光学素子としては、コアに複数の屈折率変化部が等間隔に形成された光ファイバーからなるファイバーグレーティングを用いることもできる。

1 【0032】このようなファイバーグレーティングを用いる場合は、基本波としてのレーザービームを、このファイバーグレーティングのコア端面上で収束させる収束光学系が設けられるのが望ましい。

【0033】他方、基本波としてのレーザービームを発する半導体レーザーは、光波長変換素子の端面に結合されるのが望ましい。

【0034】このように、半導体レーザーを光波長変換素子の端面に結合させる場合は、透過型の波長選択光学素子として薄膜狭帯域パンドパスフィルターを用い、この薄膜狭帯域パンドパスフィルターを半導体レーザーの光出射面と光波長変換素子の端面との間に配し、この端面で反射して半導体レーザーにフィードバックするレーザービームの波長を該フィルターによって選択するのが望ましい。

【0035】また、上記のように半導体レーザーを光波 長変換素子の端面に結合させる場合、反射型の波長選択 光学素子として薄膜狭帯域バンドパスフィルターを用 い、この薄膜狭帯域バンドパスフィルターを半導体レー ザーの光出射面と光波長変換素子の端面との間に配し、 このフィルターにより、基本波としてのレーザービーム の一部を反射させて半導体レーザーにフィードバックす るとともに、このフィードバックするレーザービームの 波長を選択するのが望ましい。

【0036】他方、本発明の光波長変換モジュールに用いられる基板における前記角度 θ 、つまり自発分極の向きと基板表面とがなす角度 θ の上限値について考えると、光導波路がプロトン交換により形成されたものである場合は、 θ <00°に設定するのが望ましい。また、光導波路がプロトン交換およびアニールにより形成されたものである場合は、0<00°に設定するのが望ましい。

 $[0\ 0\ 3\ 7]$ 一方、この角度 θ の下限値について考えると、0.2 ° $<\theta$ とするのが望ましく、0.5 ° $<\theta$ とすればさらに好ましい。

【0038】また強誘電体結晶基板として、より具体的には、該結晶のY軸をYZ面内でZ軸側に3°回転させた軸に対して垂直な面でカットされたものや、Z軸をZX面内でX軸側に87°回転させた軸に対して垂直な面でカットされたものが好適に用いられる。

[0039] さらに基板を構成する強誘電体として、より具体的には、LiNb, $Ta_{1-1}O$, $(0 \le x \le 1)$

またはそれにMgOあるいはZnOがドープされたもの が好適に用いられる。しかし本発明ではそれに限らず、 Sc、MgOがドープされたLiNb、Ta₁₋、O、基 板や、KTiOPO、KNbO、等のその他の材料か らなる基板を用いることも可能である。上記のMg〇が ドープされたLiNbO,基板は、光損傷に強いので、 ノンドープのLiNb、Ta.、O、基板等よりも好ま しい。

【0040】また本発明の光波長変換モジュールは、基 本波としてのレーザービームが、光導波路においてTE 10 モードで導波するように構成されるのが望ましい。

[0041]

【発明の効果】上記構成を有する本発明の光波長変換素 子においては、図2に示すように基板16の自発分極の向 きつまり Z軸方向が、基板表面16aに対して垂直にはな っていないので、半導体レーザー10から出射したレーザ ービーム11をその直線偏光方向(矢印Q方向)が基板表 面16aと平行となる状態で光導波路18に入射させても、 非線形光学定数 d., が利用されて波長変換が可能とな る。なおこの場合、レーザービーム11の電界ベクトルの 20 向きは基板表面16aと平行な向きとなり、該レーザービ ーム11は光導波路18をTEモードで導波する。そのとき の実効的な非線形光学定数は $d_{11}\cos \theta$ となる。

【0042】上記のように、レーザービーム11をその直 線偏光方向が基板表面16aと平行となる状態で光導波路 18に入射させるのであれば、直線偏光方向を回転させる 前述のλ/2板等は不要で基本波入射光学系は簡単なも のとなり、半導体レーザー10を光導波路18の端面に直接 結合することも可能となる。また、レーザービーム11を このようにして光導波路18に入射させる場合は、前述し たようにレーザービーム11の光導波路18への入力効率も 高くなる。

【0043】そして、基板16の自発分極の向きつまり2 軸方向が基板表面16αに対して角度θをなしていると き、図3に示すようにドメイン反転部17の深さdは基本 的にd=Ltan θ であるが、図30の従来技術に関して 説明したドメイン反転領域の広がり1μmを考慮すれば $d = L \tan \theta + 1 \mu m \cdots (1)$

となる。ここでしの値は、ドメイン反転させるために電 場を印加する手段(図3では、一例として櫛形電極80と 平板電極81を示す)の大きさによって直接的に定まるも のではなく、θの値が大きくなるにつれて増大する傾向 を示す。なお、先に図30に示した従来装置においては $\theta = 0$ ° としてドメイン反転部17を形成するからしが最 小となり、図29に示した従来装置においては $\theta = 90^{\circ}$ としてドメイン反転部17を形成するからしが最大(つま り電場印加用電極に対向する部分全域でドメイン反転が 起きる)となっている。

【0044】そこで、 θ をある程度大きく設定すること により、ドメイン反転部17の深さdを十分に大きくする 50 反転部が導波モードの界分布と重なって波長変換が効率

ことが可能である。このようにしてドメイン反転部17を

十分に深くすることができれば、ドメイン反転部17と導 波光との重なり積分が大きくなり、高い波長変換効率が 得られるようになる。

12

【0045】本発明の光波長変換モジュールは、上記構 成の光波長変換素子を用いた上で、実際にレーザービー ムがTEモードで導波するように半導体レーザーを配設 したものであるから、上述の通りにレーザービームの光 導波路への入力効率が高くなり、基本波入射光学系は簡 単なものとなり、そして高い波長変換効率が得られるも のとなる。

【0046】なお従来より、プロトン交換光導波路にお いて光ビームがTEシングルモードで導波するのは、2 軸と基板表面とがなす角度φが0°<φ<70°の場合で あると考えられている(例えばJournal of Optical Com munications 5(1984)1. pp16~19参照)。本発明におい ては、この角度φがすなわち角度θであるから、光導波 路がプロトン交換により形成されたものである場合は、 角度 θ を θ <70°の範囲に設定すると、波長変換が効率 良くなされるようになる。

【0047】また、プロトン交換およびその後のアニー ルによって形成された光導波路において光ビームがTE シングルモードで導波するのは、2軸と基板表面とがな す角度φが0°<φ<20°の場合であることが分かって いる。したがって、光導波路がプロトン交換およびアニ ールにより形成されたものである場合は、角度 θ を θ < 20°の範囲に設定すると、波長変換が効率良くなされる ようになる。

【0048】一方、最大の波長変換効率が得られる最適 なデューティ比を持つ(つまりドメイン反転部と非反転 部の幅の比が1:1である)ドメイン反転構造を形成し た場合、図3に示したL寸法は、 θ が数度以内であれば 概ね 50μ mとなることが分かった。また一般に、導波モ ードの界分布は最も細くすると1.2 μm程度にすること ができる。したがって前述の(1)式より、 $\theta=0.2$ ° とすればドメイン反転部の深さd=1.2 μmとなり、ド メイン反転部がその深さ方向において導波モードの界分 布とほぼ同サイズとなる。したがって、0.2° $<\theta$ とす れば、ドメイン反転部が導波モードの界分布と重なって 余りあるものとなり、波長変換が効率良くなされるよう になる。

【0049】なお、導波モードの界分布は上述のように 最小で1.2 μm程度とすることができるが、この界分布 が大きい程、外部光を光導波路に安定して入射させるこ とができる。実際上は、この導波モードの界分布が1.4 μmより大きければ外部光が光導波路に安定して入射す る。前述の(1)式より、 $\theta=0.5$ °とすればドメイン 反転部の深さd=1.4 μ mとなるので、0.5 ° $<\theta$ とす れば基本波が光導波路に安定して入射し、またドメイン

良くなされるようになる。

【0050】そして本発明の光波長変換モジュールにおいては、半導体レーザーにフィードバックされるレーザービームを、狭帯域バンドパスフィルター、バルクグレーティングあるいはファイバーグレーティング等からなる波長選択光学素子に通すようにしたので、半導体レーザーの発振波長を安定して所望値、つまりドメイン反転部の周期と位相整合する波長に選択、ロックすることができる。

[0051]

【発明の実施の形態】以下図面を参照して、本発明の実施の形態を説明する。図1は、本発明の第1の実施形態による光波長変換モジュールを示すものであり、図2はその一部を概略的に示すものである。

【0052】図示されるようにこの光波長変換モジュールは、半導体レーザー(レーザーダイオード)10と、この半導体レーザー10から発散光状態で出射したレーザービーム11を平行光化発するコリメーターレンズ12と、平行光化されたレーザービーム11を収束させる集光レンズ13と、これらのレンズ12および13の間に配された波長選20択光学素子としての狭帯域バンドパスフィルター14と、光波長変換素子15とを有している。

【0053】光波長変換素子15は、非線形光学効果を有する強誘電体であるLiNbO,にMgOが例えば5 mol%ドープされたもの(以下、MgO-LNと称する)の結晶からなる基板16に、その Z軸と平行な自発分極の向きを反転させたドメイン反転部17が周期的に形成されてなる周期ドメイン反転構造と、この周期ドメイン反転構造に沿って延びるチャンネル光導波路18が形成されてなるものである。

【0054】周期ドメイン反転構造は、基板1600X軸方向にドメイン反転部17が並ぶように形成され、その周期 Λ は、MgO-LNの屈折率の波長分散を考慮し、980 nm近辺の波長に対して1次の周期となるように $5.3~\mu$ mとされている。このような周期ドメイン反転構造は、例えば特開平6-242478号に示される方法によって形成することができる。

【0055】一方チャンネル光導波路18は、周期ドメイン反転部17を形成した後、基板16の+2面上に公知のフォトリソグラフィーとリフトオフにより金属マスクパタ 40 ーンを形成し、この基板16をピロリン酸中に浸漬してプロトン交換処理を行ない、マスクを除去した後にアニール処理する、等の方法によって作成することができる。その後このチャンネル光導波路18の両端面18a、18bをエッジ研磨すると、光波長変換素子15が完成する。

【0056】以下図4、5および6を参照して、光波長変換素子15の製造方法を詳しく説明する。図4中の16は、上記MgO-LNの結晶からなる基板である。このMgO-LN基板16は、図5に示すようにMgO-LNのインゴット16'を、Y軸をYZ面内で2軸側に3°回 50

転させた軸に対して垂直な面でカット、研磨して得られたものであり、単分極化処理がなされて例えば厚さ0.3 mmに形成されている。なお、この研磨角度 $\theta=3$ の精度は ±0.1 である。

14

【0057】以上のように形成されたMgO-LN基板 16の表面16a、16bと平行でX軸と直交する方向、および基板表面16a、16bに対して垂直な方向はそれぞれ、 Z軸方向およびY軸方向に対して角度 $\theta=3$ °をなす方向となるので、これらの方向を便宜的にそれぞれZ'方 10 向、Y'方向と称する。

【0058】上記MgO-LN基板16の表面16a、16bに、図4のようにそれぞれ櫛形電極80、平板電極81を取り付け、+2側に位置する櫛形電極80の方が正電位、-Z側に位置する平板電極81の方が負電位となるようにして、両電極10、11間にパルス電圧を印加すると、図6に概略図示するように、+Z方向を向いていた基板16の自発分極の向きが電圧印加部分において反転して、ドメイン反転部17が形成される。なお上記自発分極の向きは、基板表面16aに対して $\theta=3$ °傾いており、したがってドメイン反転部17の分極の向きも基板表面16aに対して同様に傾くことになる。

【0059】本例では、櫛形電極80および平板電極81をCrから形成したが、MgO-LN基板16よりも電気抵抗が十分低い材料ならば何でも電極材料として用いることができる。櫛形電極80および平板電極81は周知のフォトリソグラフィーによって形成することができ、厚さは例えば20~100 μ m、長さL, は例えば6 mm、両電極80、81間のギャップGは例えば100 ~500 μ mとすればよい。また櫛形電極80の周期 Λ は4.75 μ m、電極指の長さおよび幅はそれぞれ1000 μ m、0.5 μ mとした。そして平板電極81の幅、すなわちZ, 方向の寸法は100 μ m とした。

【0060】上記の電圧印加は、電流のリークを防止するために真空中で行なった。このときの真空度は、例えば 5×10^{-5} Torr以下とする。なお、このように真空中で電圧印加する代わりに、絶縁オイル中で電圧印加するようにしてもよい。また印加電圧のパルス幅は、 $1\sim10$ se c とすればよい。

【0061】各ドメイン反転部17は、印加電圧が大きい程 2 軸と垂直な方向に大きく広がるようになる。周知のように、周期ドメイン反転構造を利用して波長変換する場合の波長変換効率は、ドメイン反転部17と非反転部との導波方向の長さの比が1:1 となる。この比が1:1 となるのは、例えば上記ギャップ G が200 μ mの場合は印加電圧を約4000 V にしたとき、ギャップ G が400 μ mの場合は印加電圧を約4000 V にしたときである。これらの最適電圧の値は、基板温度を室温に設定した場合のものであり、基板温度を例えば200 C とすると、各場合の最適電圧は約1/3 となる。

【0062】以上のようにして形成されたドメイン反転

部17の深さは $2 \sim 3 \mu$ mであり、図 3 0 に示した従来の光波長変換素子におけるドメイン反転部の深さ(1μ m程度)と比べて、ドメイン反転部17の深さが $2 \sim 3$ 倍となっている。

【0063】なお以上は、基板の表と裏に電極を形成してドメイン反転部を形成した例であるが、基板の表のみに電極を設けても、同様の深いドメイン反転部が得られる。この場合、電極形成プロセスを基板の表に対して行なうだけでよいので、素子製造プロセスが簡便になって、より望ましい。

【0064】次に上記MgO-LN基板16に、以下のようにしてチャンネル光導波路18を形成した。まず、ドメイン反転が最も深くなっている櫛形電極80の先端近傍に、周知のフォトリソグラフィーにより、 Z'方向の幅が5~9μm程度の金属(本例ではTa)のマスクを形成する。その後このMgO-LN基板16に対して、ピロリン酸中で160℃で64分間プロトン交換処理を行ない、Taマスクをエッチング液で除去した後、大気中において350℃で1時間アニールする。以上の処理により、図1および2に示すように、ドメイン反転部17の並び方向20に沿って延びるチャンネル光導波路18が形成される。

【0065】次に上記MgO-LN基板16の、チャンネル光導波路18の端面を含む-X面および+X面を光学研磨すると、光波長変換素子15が完成する。

【0066】そして図1に示すように、半導体レーザー10から発せられた中心波長950 nmのレーザービーム11を集光レンズ13により集光して、チャンネル光導波路18の端面18aにおいて収束させる。それにより、この基本波としてのレーザービーム11がチャンネル光導波路18内に入射する。このレーザービーム11はチャンネル光導波 30路18をTEモードで導波し、その周期ドメイン反転領域で位相整合(いわゆる疑似位相整合)して、波長が1/2つまり475 nmの第2高調波19に波長変換される。この第2高調波19もチャンネル光導波路18を導波モードで伝搬し、光導波路端面18bから出射する。

【0067】光導波路端面18 bからは、波長変換されなかったレーザービーム11も発散光状態で出射し、第2高調波19とともにコリメーターレンズ20によって平行光化される。第2高調波19は、図示しないバンドパスフィルターやダイクロイックミラー等によってレーザービーム 4011と分離され、所定の用途に用いられる。

【0068】上記の光波長変換モジュールにおいては、MgO-LN基板16の自発分極の向きつまり 2 軸方向が、基板表面16 a に対して垂直にはなっていないので、半導体レーザー10から出射したレーザービーム11をその直線偏光方向(矢印Q方向)が基板表面16 a と平行となる状態で光導波路18に入射させても、非線形光学定数 d ,,が利用されて波長変換が可能となる。なおこの場合、レーザービーム11についての出射ビームパターンと導波ビームパターンは一致し、ビームパターンのミスマッチ 50

がないため、該レーザービーム11を高効率で光導波路18 に入力させることができる。そこで、発生する第2 高調波19の強度が高くなる。レーザービーム11は光導波路18 をTEモードで導波し、このときの実効的な非線形光学定数は $d_{11}\cos \theta$ となる。

16

【0069】この場合の波長変換の換算効率は180 %/Wcm²であり、例えば文献Technical Digest Of The Fourth Microoptics Conference And The Eleventh Topical Meeting On Gradient-index Optical Systems p.15 4等に記載されている、XまたはソカットのLiTaO,基板に光導波路および周期ドメイン反転構造を形成してなる従来の光波長変換素子の換算効率55%/Wcm²等と比べて、著しく高いものとなっている。

【0070】本実施形態においてはチャンネル光導波路18の端面18aに、波長950 nmのレーザービーム11を一部反射させる所定のコーティングが施され、該端面18aで反射したレーザービーム11が半導体レーザー10にフィードバックされる。つまりこの装置では、上記光導波路端面18aと半導体レーザー10の後方端面(図1中の左方の端面)によって半導体レーザー10の外部共振器が構成されている。

【0071】そしてこの外部共振器の中に配された狭帯域パンドパスフィルター14により、そこを透過するレーザービーム11の波長が選択される。半導体レーザー10はこの選択された波長で発振し、選択波長は狭帯域パンドパスフィルター14の回転位置(図1中の矢印A方向の回転位置)に応じて変化するので、この狭帯域バンドパスフィルター14を適宜回転させることにより、半導体レーザー10の発振波長を、ドメイン反転部17の周期と位相整合する波長に選択、ロックすることができる。

[0072] 次に図7を参照して、本発明の第2の実施 形態について説明する。なおこの図7において、図1お よび2中のものと同等の要素には同番号を付し、それら についての重複した説明は省略する(以下、同様)。

【0073】この第2の実施形態においては、コリメーターレンズ12と集光レンズ13との間にビームスプリッタ82が設けられ、光波長変換素子15に向かうレーザービーム11がこのビームスプリッタ82により一部分岐される。分岐されたレーザービーム11は狭帯域バンドパスフィルター14を透過した後、集光レンズ84によって収束し、その収束位置に配されたミラー85において反射する。

【0074】反射したレーザービーム11は、それまでの 光路を逆に辿って半導体レーザー10にフィードバックされる。つまりこの装置では、上記ミラー85と半導体レーザー10の後方端面(図7中の左方の端面)によって半導体レーザー10の外部共振器が構成されている。

[0075] そしてこの外部共振器の中に配された狭帯 域バンドパスフィルター14により、フィードバックされ るレーザービーム11の波長が選択される。半導体レーザ ー10はこの選択された波長で発振し、選択波長は狭帯域

)

バンドパスフィルター14の回転位置(図7中の矢印A方 向の回転位置)に応じて変化するので、この狭帯域バン ドパスフィルター14を適宜回転させることにより、半導 体レーザー10の発振波長を、ドメイン反転部17の周期と 位相整合する波長に選択、ロックすることができる。

【0076】次に図8を参照して、本発明の第3の実施 形態について説明する。この第3の実施形態において、 光波長変換素子15の光導波路端面18 bから出射した第2 高調波19および、波長変換されなかったレーザビーム11 は、コリメーターレンズ20によって平行光化される。平 10 帯域バンドパスフィルター14に代えて用いることがで 行光化された第2高調波19はダイクロイックミラー21で 反射し、利用位置に導かれる。一方波長変換されなかっ たレーザビーム11はダイクロイックミラー21および狭帯 域バンドパスフィルター14を透過し、集光レンズ22によ り集光されてミラー85上において収束する。

【0077】ミラー85で反射したレーザービーム11は、 それまでの光路を逆に辿って半導体レーザー10にフィー ドバックされる。つまりこの装置では、上記ミラー85と 半導体レーザー10の後方端面(図8中の左方の端面)に よって半導体レーザー10の外部共振器が構成されてい る。

【0078】そしてこの場合も、狭帯域バンドパスフィ ルター14を矢印A方向に適宜回転させることにより、半 導体レーザー10の発振波長を、ドメイン反転部17の周期 と位相整合する波長に選択、ロックすることができる。

【0079】次に図9を参照して、本発明の第4の実施 形態について説明する。この第4の実施形態において は、光波長変換素子15に向かわないレーザビーム11R

(後方出射光)が、コリメーターレンズ86によって平行 光化される。平行光化されたレーザビーム11Rは狭帯域 30 バンドパスフィルター14を透過した後、集光レンズ84に より集光されてミラー85上において収束する。

【0080】ミラー85で反射したレーザービーム11R は、それまでの光路を逆に辿って半導体レーザー10にフ ィードバックされる。つまりこの装置では、上記ミラー 85と半導体レーザー10の前方端面(図9中の右方の端 面) によって半導体レーザー10の外部共振器が構成され ている。

【0081】そしてこの外部共振器の中に配された狭帯 域パンドパスフィルター14により、フィードバックされ 40 るレーザービーム11Rの波長が選択される。半導体レー ザー10はこの選択された波長で発振し、選択波長は狭帯 域バンドパスフィルター14の回転位置(図9中の矢印A 方向の回転位置)に応じて変化するので、この狭帯域バ ンドパスフィルター14を適宜回転させることにより、半 導体レーザー10の発振波長を、ドメイン反転部17の周期 と位相整合する波長に選択、ロックすることができる。

【0082】次に図10を参照して、本発明の第5の実 施形態について説明する。この第5の実施形態の光波長 変換モジュールは、図1に示したものと比べると、狭帯 50

域バンドパスフィルター14に代えて透過型のバルクグレ ーティング90が用いられている点が異なるものである。 このバルクグレーティング90も波長選択光学素子として 機能するものであり、それを矢印A方向に適宜回転させ ることにより、半導体レーザー10の発振波長を、ドメイ ン反転部17の周期と位相整合する波長に選択、ロックす ることができる。

18

【0083】なおこの透過型のバルクグレーティング90 は、図7、8および9図に示した各構成においても、狭 き、そのようにした場合も上記と同様の作用、効果を奏 するものである。

【0084】次に図11を参照して、本発明の第6の実 施形態について説明する。この第6の実施形態の光波長 変換モジュールは、図1に示したものと比べると、狭帯 域バンドパスフィルター14に代えて、透過型の狭帯域薄 膜バンドパスフィルター91が用いられた点が異なるもの である。この狭帯域薄膜バンドパスフィルター91は、半 導体レーザー10の光出射端面10a上に形成されている。

【0085】この狭帯域薄膜パンドパスフィルター91 は、薄膜の構成に応じた波長の光を選択的に透過させる ものである。このような狭帯域薄膜バンドパスフィルタ 一91を、光波長変換素子15の光導波路端面18aと半導体 レーザー10の後方端面(図11中の左方の端面)によっ て構成される半導体レーザー10の外部共振器中に配した ことにより、半導体レーザー10の発振波長を、ドメイン 反転部17の周期と位相整合する波長に選択、ロックする ことができる。

【0086】次に図12を参照して、本発明の第7の実 施形態について説明する。この第7の実施形態の光波長 変換モジュールは、図11に示したものと比べると、透 過型の狭帯域薄膜パンドパスフィルター91の配置位置が 異なるものである。すなわちこの場合は、光波長変換素 子15の光導波路端面18aを含む端面上に狭帯域薄膜バン ドパスフィルター91が形成されている。

【0087】この実施形態でも、狭帯域薄膜バンドパス フィルター91を、光波長変換素子15の光導波路端面18a と半導体レーザー10の後方端面(図12中の左方の端 面) によって構成される半導体レーザー10の外部共振器 中に配したことにより、半導体レーザー10の発振波長 を、ドメイン反転部17の周期と位相整合する波長に選 択、ロックすることができる。

【0088】次に図13を参照して、本発明の第8の実 施形態について説明する。この第8の実施形態の光波長 変換モジュールは、図12に示したものと比べると、コ リメーターレンズ12および集光レンズ13を省いた上で、 半導体レーザー10の光出射端面10aを、透過型の狭帯域 薄膜バンドパスフィルター91を介して光波長変換素子15 に直接的に結合した点が異なるものである。

【0089】この実施形態でも、狭帯域薄膜パンドパス

フィルター91を、光波長変換素子15の光導波路端面18 a と半導体レーザー10の後方端面(図13中の左方の端面)によって構成される半導体レーザー10の外部共振器中に配したことにより、半導体レーザー10の発振波長を、ドメイン反転部17の周期と位相整合する波長に選択、ロックすることができる。

【0090】またこの第8の実施形態の光波長変換モジュールは、基本波を光波長変換素子に入射させる入射光学系が不要であるため、構成が簡単で、また光学的な調整も極めて容易なものとなる。

【0091】上記のように半導体レーザー10を光波長変換素子15に結合する場合、透過型の狭帯域薄膜バンドパスフィルター91は半導体レーザー10と光波長変換素子15との間に限らず、例えば、光波長変換素子15の光導波路端面18bを含む端面上等に形成することも可能である。

【0092】さらに、半導体レーザー10を光波長変換素子15に結合する場合、波長選択光学素子は上記透過型の狭帯域薄膜パンドパスフィルター91に限られるものではないことは勿論である。例えば前述した図8の構成において、レンズ12および13を省いて半導体レーザー10を光 20波長変換素子15に直接結合することもできる。

【0093】次に図14を参照して、本発明の第9の実施形態について説明する。この第9の実施形態の光波長変換モジュールは、図8に示したものと比べると、狭帯域パンドパスフィルター14に代えて、透過型の狭帯域薄膜パンドパスフィルター91が用いられた点が異なるものである。この狭帯域薄膜パンドパスフィルター91は、光波長変換素子15の光導波路端面18bを含む端面上に形成されている。

【0094】この実施形態でも、狭帯域薄膜バンドパス 30フィルター91を、ミラー85と半導体レーザー10の後方端面(図14中の左方の端面)によって構成される半導体レーザー10の外部共振器中に配したことにより、半導体レーザー10の発振波長を、ドメイン反転部17の周期と位相整合する波長に選択、ロックすることができる。

【0095】次に図15を参照して、本発明の第10の実施形態について説明する。この第10の実施形態の光波長変換モジュールは、図9に示したものと比べると、狭帯域バンドパスフィルター14に代えて、透過型の狭帯域薄膜バンドパスフィルター91が用いられた点が異なる40ものである。この狭帯域薄膜パンドパスフィルター91は、ミラー85の反射面上に形成されている。

【0096】この実施形態でも、狭帯域薄膜バンドパスフィルター91を、ミラー85と半導体レーザー10の前方端面(図15中の右方の端面)によって構成される半導体レーザー10の外部共振器中に配したことにより、半導体レーザー10の発振波長を、ドメイン反転部17の周期と位相整合する波長に選択、ロックすることができる。

【0097】なお以上説明した透過型の狭帯域薄膜バン 機能するものであり、それを矢印A方向に適宜回転させ ドパスフィルター91は、図7の構成において狭帯域パン 50 ることにより、半導体レーザー10の発振波長を、ドメイ

ドパスフィルター14に代えて用いることも勿論可能である。その場合、狭帯域薄膜パンドパスフィルター91は、例えばミラー85の反射面や、半導体レーザー10の前方端面(図7中の右方の端面)の上に形成すればよい。

【0098】次に図16を参照して、本発明の第11の 実施形態について説明する。この第11の実施形態の光 被長変換モジュールは、図7に示したものと比べると、 ミラー85に代えて反射型のバルクグレーティング92が設 けられ、そして狭帯域バンドパスフィルター14が省かれ 10 た点が異なるものである。

【0099】上記反射型のバルクグレーティング92は、そこに入射したレーザービーム11を反射させる。つまりこの装置では、このバルクグレーティング92と半導体レーザー10の後方端面(図16中の左方の端面)によって半導体レーザー10の外部共振器が構成されている。またこのバルクグレーティング92は波長選択光学素子として機能するものであり、それを矢印A方向に適宜回転させることにより、半導体レーザー10の発振波長を、ドメイン反転部17の周期と位相整合する波長に選択、ロックすることができる。

【0100】次に図17を参照して、本発明の第12の実施形態について説明する。この第12の実施形態の光波長変換モジュールは、図8に示したものと比べると、ミラー85に代えて反射型のバルクグレーティング92が設けられ、そして狭帯域バンドパスフィルター14が省かれた点が異なるものである。

【0101】上記反射型のバルクグレーティング92は、そこに入射したレーザービーム11を反射させる。つまりこの装置では、このバルクグレーティング92と半導体レーザー10の後方端面(図17中の左方の端面)によって半導体レーザー10の外部共振器が構成されている。またこのバルクグレーティング92は波長選択光学素子として機能するものであり、それを矢印A方向に適宜回転させることにより、半導体レーザー10の発振波長を、ドメイン反転部17の周期と位相整合する波長に選択、ロックすることができる。

【0102】次に図18を参照して、本発明の第13の実施形態について説明する。この第13の実施形態の光波長変換モジュールは、図9に示したものと比べると、ミラー85に代えて反射型のバルクグレーティング92が設けられ、そして狭帯域バンドパスフィルター14が省かれた点が異なるものである。

【0103】上記反射型のバルクグレーティング92は、そこに入射したレーザービーム11を反射させる。つまりこの装置では、このバルクグレーティング92と半導体レーザー10の前方端面(図18中の右方の端面)によって半導体レーザー10の外部共振器が構成されている。またこのバルクグレーティング92は波長選択光学素子として機能するものであり、それを矢印A方向に適宜回転させることにより、半導体レーザー10の発振波長を、ドメイ

ン反転部17の周期と位相整合する波長に選択、ロックす ることができる。

【0104】なお、以上説明したような反射型のバルク グレーティング92に代えて、反射型の狭帯域薄膜バンド パスフィルターを用いることもできる。そのように形成 された本発明の第14の実施形態を、図19を参照して 説明する。この第14の実施形態の光波長変換モジュー ルは、図18に示したものと比べると、コリメーターレ ンズ86、集光レンズ84および反射型のバルクグレーティ ング92を省いて、半導体レーザー10の後方端面10bに反 10 射型の狭帯域薄膜パンドパスフィルター95を形成した点 が異なるものである。

【0105】なお勿論ながら、上記図19の構成におい てレンズ12および13を省いて、半導体レーザー10を光波 長変換素子15に直接結合するようなことも可能である。

【0106】次に図20を参照して、本発明の第15の 実施形態について説明する。この第15の実施形態の光 波長変換モジュールは、図17に示したものと比べる と、バルクグレーティング92に代えてファイバーグレー ティング23が設けられている点が異なるものである。

【0107】光波長変換素子15の光導波路端面18bから は、波長変換されなかったレーザービーム11も発散光状 態で出射し、コリメーターレンズ20によって平行光化さ れる。平行光化された第2高調波19はダイクロイックミ ラー21で反射し、利用位置に導かれる。一方波長変換さ れなかったレーザービーム11はダイクロイックミラー21 を透過し、集光レンズ22により集光されてファイバーグ レーティング23の端面において収束する。

【0108】このファイバーグレーティング23は図21 に詳しく示すように、クラッド23b内にそれよりも高屈 折率のコア23cが埋め込まれてなり、そしてコア23cに は複数の屈折率変化部が等間隔に形成された光ファイバ ーである。このファイバーグレーティング23は、例えば クラッド外径が $125~\mu$ m、コア径が約 10μ mの光通信用 光ファイバーのコア23 c に、紫外域の波長248 nmのエ キシマレーザー光を用いて二光束干渉露光により干渉縞 を形成させ、コア23cの光が照射された部分の屈折率を 変化(上昇)させることにより作成される。なおこの屈 折率変化は、コア23cにドープされている酸化ゲルマニ ウムが紫外線照射により化学変化を起こすことによって 40 生じると考えられている。

【0109】上記ファイバーグレーティング23は、集光 レンズ22を経たレーザービーム11の収束位置にコア端面 23 a が位置するように配設されている。そこでレーザー ビーム11はコア端面23aからコア23c内に入射し、そこ を伝搬する。コア23cに形成された上記屈折率変化部 は、レーザービーム11の伝搬方向に沿ったグレーティン グ(回折格子)を構成している。このグレーティング は、コア23cを伝搬する光ビームのうち、その周期A_Fc に対応した特定波長の光のみを反射回折させ、光波長変 50 る。

換素子15を介して半導体レーザー10にフィードバックさ せる。つまりこの装置では、コア23 c に形成されたグレ ーティングと半導体レーザー10の後方端面(図20中の 左方の端面)によって半導体レーザー10の外部共振器が 構成されている。

【0110】したがって、上記グレーティングの周期A FGを所定値に設定しておくことにより、半導体レーザー 10の発振波長を、ドメイン反転部17の周期と位相整合す る波長に選択、ロックすることができる。

【0111】次に図22を参照して、本発明の第16の 実施形態について説明する。この第16の実施形態の光 波長変換モジュールにおいて、第2高調波19はダイクロ イックミラー30を透過して利用位置に導かれ、レーザー ビーム11はこのダイクロイックミラー30で反射してファ イバーグレーティング23に導かれる。

【0112】この場合も、ファイバーグレーティング23 のコアに形成されたグレーティングと半導体レーザー10 の後方端面 (図22中の左方の端面) によって半導体レ ーザー10の外部共振器が構成され、図20の装置におけ るのと同様の効果が得られる。

【0113】次に図23を参照して、本発明の第17の 実施形態について説明する。この第17の実施形態の光 波長変換モジュールは、図20のものと比べると、波長 変換されなかったレーザービーム11と第2高調波19とを 分離する手段が異なるものである。すなわち本装置にお いては、ファイバーグレーティング33として、前述と同 様の屈折率変化部を有する第1のファイバー34と、この 第1のファイバー34に結合された第2のファイバー35と からなるものが用いられている。これら第1のファイバ ー34および第2のファイバー35は、波長選択ファイバー カップラを構成している。

【0114】光波長変換素子15から発散光状態で出射し たレーザービーム11および第2高調波19は、収束光学系 としての集光レンズ31により収束せしめられる。この収 束位置には、ファイバーグレーティング33の第2のファ イバー35の一端面が配されており、レーザービーム11お よび第2高調波19はこの第2のファイバー35に入射す る。この第2のファイバー35に入射してそこを伝搬した 第2高調波19は、該第2のファイバー35の他端面から発 散光状態で出射し、コリメーターレンズ20によって平行 光化された上で、利用位置に導かれる。

【0115】一方、第2のファイバー35に入射してそこ を伝搬したレーザービーム11は、両ファイバー34、35の 結合部分において第1のファイバー34の方に移り、該第 1のファイバー34を伝搬してその屈折率変化部において 反射回折する。反射回折したレーザーピーム11は、第2 のファイバー35および光波長変換素子15を介して半導体 レーザー10にフィードバックされ、そこでこの場合も図 20の装置におけるのと同様の効果が得られることにな

【0116】なお上記とは反対に、集光レンズ31により 収束したレーザービーム11および第2高調波19をまず第 1のファイバー34に入射させ、該第1のファイバー34を 伝搬する第2高調波19を第2のファイバー35の方に移す ようにしてもよい。

【0117】以上説明した第15、16および17の実 施形態はいずれも、光波長変換素子15から波長変換され ずに出射した基本波としてのレーザービーム11をファイ バーグレーティングにより反射回折させるものである が、次に、光波長変換素子15に入射する前のレーザービ 10 ーム11をファイバーグレーティングにより反射回折させ るようにした3つの実施形態について説明する。

【0118】図24は、本発明の第18の実施形態によ る光波長変換モジュールを示すものである。この光波長 変換モジュールにおいて、半導体レーザー10から発散光 状態で出射したレーザービーム11は、収束光学系として の集光レンズ40により収束せしめられる。この収束位置 には、図20の装置で用いられたものと同様のファイバ ーグレーティング23の一端面が配されており、レーザー ビーム11はこのファイバーグレーティング23に入射す る。

【0119】ファイバーグレーティング23を伝搬したレ ーザービーム11の一部は、該ファイバーグレーティング 23の屈折率変化部において反射回折する。反射回折した レーザービーム11は、集光レンズ40を介して半導体レー ザー10にフィードバックされ、そこでこの場合も図20 の装置におけるのと同様の効果が得られることになる。

【0120】一方、ファイバーグレーティング23を伝搬 してその他端面から出射したレーザービーム11は、集光 レンズ41により集光されて光波長変換素子15のチャンネ 30 ル光導波路18に入射し、そこで第2高調波19に波長変換 される。光波長変換素子15から発散光状態で出射した第 2高調波19およびレーザービーム11は、コリメーターレ ンズ20によって平行光化され、第2高調波19が利用位置 に導かれる。この第2高調波19をレーザービーム11から 分離させるには、既に説明したようなものを適宜用いれ ばよい。

【0121】次に図25を参照して、本発明の第19の 実施形態について説明する。この第19の実施形態の光 波長変換モジュールにおいては、コリメーターレンズ12 40 によって平行光化されたレーザービーム11がビームスプ リッタ45によって分岐される。すなわち、このピームス ブリッタ45を透過したレーザービーム11は、図20の装 置におけるのと同様にして光波長変換素子15に導かれ る。他方、このピームスプリッタ45で反射したレーザー ビーム11はミラー46で反射した後、集光レンズ22で集光 されてファイバーグレーティング23に入射する。

【0122】ファイバーグレーティング23に入射してそ こを伝搬したレーザーピーム11は、該ファイバーグレー ティング23の屈折率変化部において反射回折する。反射 50 おいては全て、MgO-LNのインゴット16'を、Y軸

回折したレーザービーム11は、ミラー46やビームスプリ ッタ45等を介して半導体レーザー10にフィードバックさ れ、そこでこの場合も図20の装置におけるのと同様の 効果が得られる。

【0123】なおこの実施形態においては、コリメータ ーレンズ12および集光レンズ22により、光波長変換素子 15に入射する前のレーザービーム11を収束させる収束光 学系が構成されている。

【0124】次に図26を参照して、本発明の第20の 実施形態について説明する。この第20の実施形態の光 波長変換モジュールは、前述した図24の光波長変換モ ジュールと比べると、ファイバーグレーティング23に代 えて、ファイパーカップラを構成するファイバーグレー ティング50が用いられている点が異なるものである。こ のファイバーグレーティング50は、屈折率変化部を有す る第1のファイバー51と、該第1のファイバー51に結合 された第2のファイバー52とからなるものである。

【0125】上記第2のファイバー52に入射してそこを 伝搬するレーザーピーム11は、一部が両ファイバー51、 52の結合部分において第1のファイバー51の方に移っ て、二系統に分岐される。第2のファイバー52を伝搬し てその他端面から出射したレーザーピーム11は、集光レ ンズ41により集光されて光波長変換素子15のチャンネル 光導波路18に入射し、そこで第2高調波19に波長変換さ れる。光波長変換素子15から発散光状態で出射した第2 高調波19およびレーザーピーム11は、コリメーターレン ズ20によって平行光化され、第2高調波19が利用位置に 導かれる。この第2高調波19をレーザービーム11から分 離させるには、既に説明したようなものを適宜用いれば よい。

【0126】一方、第1のファイバー51に移ったレーザ ービーム11は、該第1のファイバー51を伝搬してその屈 折率変化部において反射回折する。反射回折したレーザ ービーム11は、集光レンズ40を介して半導体レーザー10 にフィードバックされ、そこでこの場合も図20の装置 におけるのと同様の効果が得られることになる。

【0127】次に図27を参照して、半導体レーザー10 の後方出射光を利用してその発振波長を選択、ロックす るようにした本発明の第21の実施形態について説明す る。この第21の実施形態の光波長変換モジュールにお いては、光波長変換素子15に向かわないレーザービーム 11R (後方出射光) が、収束光学系としての集光ーティ ング23に入射したレーザービーム11 Rは、該ファイバー グレーティング23の屈折率変化部において反射回折す る。反射回折したレーザービーム11 Rは、集光レンズ60 を介して半導体レーザー10にフィードバックされ、そこ でこの場合も図20の装置におけるのと同様の効果が得 られる。

【0128】なお以上説明した第1~21の実施形態に

をYZ面内でZ軸側に3°回転させた軸に対して垂直な面でカット、研磨して得られたMgO-LN基板(3°Yカット基板)16が用いられているが、本発明ではそれ以外の方位でカットされた基板を用いることも可能である。例えば図28に示すように、MgO-LNのインゴット16"を、そのZ軸をZX面内でX軸側に87°回転させた軸Z"に垂直となる面でカット、研磨して得た基板(87°Zカット基板)も好適に用いることができる。

【0129】また、以上例示した基板は、その表面に平行な方向および垂直な方向に対して、それぞれ Z 軸およ 10 び Y 軸がオフセットしているものであるが、少なくとも Z 軸がオフセットしていれば同様の効果が得られるものである。

【0130】さらに本発明の光波長変換モジュールにおいては、光導波路のドメイン反転部よりも導波方向上流側において、該光導波路を導波する光を変調する電気光学光変調部が形成されてもよい。このような電気光学光変調部を有する光波長変換モジュールについては、例えば本出願人による特願平8-314800号明細書に詳しい記載がなされている。

【図面の簡単な説明】

【図1】本発明の第1実施形態による光波長変換モジュ ールを示す概略側面図

【図2】上記光波長変換モジュールの要部を示す斜視図

【図3】光波長変換素子における基板の分極の向きを説明する概略図

【図4】上記第1実施形態の光波長変換モジュールに用いられた光波長変換素子を作成する様子を示す概略斜視図

【図5】上記光波長変換素子に用いられる基板のカット 30 状態を説明する概略図

[図6]上記光波長変換素子に形成されるドメイン反転 部を示す概略斜視図

【図7】本発明の第2実施形態による光波長変換モジュールを示す概略側面図

【図8】本発明の第3実施形態による光波長変換モジュールを示す概略側面図

【図9】本発明の第4実施形態による光波長変換モジュールを示す概略側面図

【図10】本発明の第5実施形態による光波長変換モジ 40 ュールを示す概略側面図

【図11】本発明の第6実施形態による光波長変換モジュールを示す概略側面図

【図12】本発明の第7実施形態による光波長変換モジュールを示す概略側面図

【図13】本発明の第8実施形態による光波長変換モジュールを示す概略側面図

【図14】本発明の第9実施形態による光波長変換モジュールを示す概略側面図

【図15】本発明の第10実施形態による光波長変換モ 50 22

ジュールを示す概略側面図

【図16】本発明の第11実施形態による光波長変換モジュールを示す概略側面図

26

【図17】本発明の第12実施形態による光波長変換モジュールを示す概略側面図

【図18】本発明の第13実施形態による光波長変換モジュールを示す概略側面図

【図19】本発明の第14実施形態による光波長変換モジュールを示す概略側面図

「図20】本発明の第15実施形態による光波長変換モジュールを示す概略側面図

【図21】上記第15実施形態による光波長変換モジュールの要部を示す概略側面図

【図22】本発明の第16実施形態による光波長変換モジュールを示す概略側面図

【図23】本発明の第17実施形態による光波長変換モジュールを示す概略側面図

【図24】本発明の第18実施形態による光波長変換モジュールを示す概略側面図

20 【図25】本発明の第19実施形態による光波長変換モジュールを示す概略側面図

【図26】本発明の第20実施形態による光波長変換モジュールを示す概略側面図

【図27】本発明の第21実施形態による光波長変換モジュールを示す概略側面図

【図28】本発明に用いられる基板の別のカット状態を 説明する概略図

[図29] 従来の光波長変換モジュールの一例を示す概略側面図

0 【図30】従来の光波長変換モジュールの別の例を示す 概略側面図

【図31】従来の光波長変換モジュールの問題を説明する説明図

【符号の説明】

10 半導体レーザー

10a、10b 半導体レーザーの端面

11 レーザービーム(基本波)

11R レーザービーム(後方出射光)

12 コリメーターレンズ

13 集光レンズ

14 狭帯域パンドパスフィルター

15 光波長変換素子

16 MgO-LN結晶基板

17 ドメイン反転部

18 チャンネル光導波路

18 a、18 b チャンネル光導波路の端面

19 第2高調波

20 コリメーターレンズ

21 ダイクロイックミラー

22 集光レンズ

	27
23	ファイバーグレーティング
23 a	ファイバーグレーティングのコア端面
23 b	ファイバーグレーティングのコア
23 c	ファイバーグレーティングのクラッド
30	ダイクロイックミラー
31	集光レンズ

33 ファイバーグレーティング 第1のファイバー 34 第2のファイバー 35 集光レンズ 40, 41 ビームスプリッタ 45

46 ミラー ファイバーグレーティング 50 [図1]

第1のファイバー 51

52 第2のファイバー

60 集光レンズ

80 櫛形電極

平板電極 81

ビームスプリッタ 82

集光レンズ

ミラー 85

コリメーターレンズ 86

10 90 透過型バルクグレーティング

透過型狭帯域薄膜バンドパスフィルター 91

反射型バルクグレーティング 92

95 反射型狭帯域薄膜バンドパスフィルター

【図4】

【図2】

[図13]

【図6】

【図7】

[図10]

【図8】

[図9]

【図11】

【図12】

【図14】

[図28]

【図15】

[図16]

【図17】

【図18】

[図19]

[図20]

[図21]

[図22]

[図23]

[図24]

【図25】

【図26】

[図27]

[図29]

[図30]

【図31】

