CS 170 Efficient Algorithms and Intractable Problems

Lecture 5: Graph Decompositions (Graphs part 1)

Nika Haghtalab and John Wright

EECS, UC Berkeley

Announcements

HW3 will be released today

Go to the discussion sections this week!

→They help a lot with HW3 ©

Graph of the internet, around 1999.

Graph of Friendships on Facebook

Graph of neurological connections in the brain

Graph of Delta Flights in the US

Graph Algorithms

There are lots of graphs everywhere. Many of them are very large!

Somethings we may want to do with graphs:

- Storing and accessing the graphs
- Find structures in them: like communities, friend groups, ...
- Find routes: how to get from one point to another

• ...

How to design algorithms on graphs

• Are they correct? Are they fast? Can we do better?

Undirected Graphs

An undirected graph G has:

- A set V of vertices/nodes
- A set E of edges
- Formally, G = (V,E)

Example

- $V = \{1,2,3,4\}$
- $E = \{ \{1,3\}, \{2,4\}, \{3,4\}, \{2,3\} \}$

Example of undirected graphs:

• Facebook friendship graph (V≈ 3.03 billion, E≈ 338×3.03 billion)

Directed Graphs

An directed graph G has:

- A set V of vertices/nodes
- A set E of directed edges
- Formally, G = (V,E)

Example

- $V = \{1, 2, 3, 4\}$
- $E = \{ (1,3), (2,3), (4,2), (4,3) \}$

Example of directed graphs:

• Twitter "follow" graph ($V \approx 450$ million, $E \approx 707 \times 450$ million) X!

Parameters Representing Graphs

Number of nodes: |V| = n

Number of Edges: |E| = m

- $m \in O(n^2)$
- In many cases, $m \ll n^2$

Degree (deg)

- Undirected $(\deg(v))$: Number of edges on a node v
- Directed:
 - in-deg(v): # of edges coming into v
 - out-deg(v): # of edges coming out of v (also called deg(v) sometimes)

Representing Graphs on Computers

An **adjacency** matrix

An **adjacency** list

Representing Graphs on Computers: Example

An **adjacency** matrix

An **adjacency** list

Tradeoffs

Adjacency matrix

Adjacency list

Storage size	
Is $(u, v) \in E$?	
Enumerate all $u's$ neighbors	

Recall, n is the number of nodes, m is the number of edges.

Graph Questions

1. Is there a path from u to v?

2. Is graph *G* connected?

3. What are *G*'s connected components?

Maze/Labyrinth

How do you explore a graph?

With a piece of chalk and a string!

Mark where you've visited

Trace your way back, if you've seen everything

- Not been there yet
- Been there, haven't explored all the paths out.
- Been there, have explored all the paths out.

```
explore(G, u)
visited[u] = true
```

```
For v such that \{u, v\} \in E //alphabetic order If visited[v] = false then explore(G, v)
```


- Not been there yet
- Been there, haven't explored all the paths out.
- Been there, have explored all the paths out.

```
explore(G, u)
visited[u] = true
```

```
For v such that \{u, v\} \in E //alphabetic order If visited[v] = false then explore(G, v)
```


- Not been there yet
- Been there, haven't explored all the paths out.
- Been there, have explored all the paths out.

```
explore(G, u)
visited[u] = true
```

```
For v such that \{u, v\} \in E //alphabetic order If visited[v] = false then explore(G, v)
```


- Not been there yet
- Been there, haven't explored all the paths out.
- Been there, have explored all the paths out.

```
explore(G, u)
visited[u] = true
```

```
For v such that \{u, v\} \in E //alphabetic order

If visited[v] = false then explore(G, v)
```


- Not been there yet
- Been there, haven't explored all the paths out.
- Been there, have explored all the paths out.

```
explore(G, u)
visited[u] = true
```

```
For v such that \{u, v\} \in E //alphabetic order

If visited[v] = false then explore(G, v)
```


- Not been there yet
- Been there, haven't explored all the paths out.
- Been there, have explored all the paths out.

```
explore(G, u)
visited[u] = true
```

```
For v such that \{u, v\} \in E //alphabetic order If visited[v] = false then explore(G, v)
```


- Not been there yet
- Been there, haven't explored all the paths out.
- Been there, have explored all the paths out.

```
explore(G, u)
visited[u] = true
```

```
For v such that \{u, v\} \in E //alphabetic order If visited[v] = false then explore(G, v)
```


- Not been there yet
- Been there, haven't explored all the paths out.
- Been there, have explored all the paths out.

```
explore(G, u)
visited[u] = true
```

```
For v such that \{u, v\} \in E //alphabetic order If visited[v] = false then explore(G, v)
```


- Not been there yet
- Been there, haven't explored all the paths out.
 - Been there, have explored all the paths out.

```
explore(G, u)
visited[u] = true
```

```
For v such that \{u, v\} \in E //alphabetic order If visited[v] = false then explore(G, v)
```


- Not been there yet
- Been there, haven't explored all the paths out.
- Been there, have explored all the paths out.

```
explore(G, u)
visited[u] = true
```

```
For v such that \{u, v\} \in E //alphabetic order If visited[v] = false then explore(G, v)
```

Explore's guarantees

Property: $explore(G, \mathbf{u})$ visits exactly the vertices \mathbf{v} s.t., G has a path from \mathbf{u} to \mathbf{v} .

Proof:

• v is visited \longrightarrow G has a path from u to v

• G has a path from u to $v \longrightarrow v$ is visited

```
\begin{aligned} & explore(G,u) \\ & visited[u] = true \end{aligned} For v such that \{u,v\} \in E  & \text{If } visited[v] = false \text{ then } explore(G,v) \end{aligned}
```

3 min break! (Please close the doors)


```
explore(G, u)
visited[u] = true
```

```
For v such that \{u, v\} \in E //alphabetic order

If visited[v] = false then explore(G, v)
```

```
dfs(G)
```

```
boolean array visited(n)

// initialize to all false.
```



```
explore(G, u)
visited[u] = true
```

```
For v such that \{u, v\} \in E //alphabetic order If visited[v] = false then explore(G, v)
```

```
dfs(G)
```

```
boolean array visited(n) // initialize to all false.
```

```
For v \in V //alphabetic order If visited[v] = false then explore(G, v)
```



```
explore(G, u)
visited[u] = true
For u such that \{u, u\} \in F //alphabetic order
```

```
For v such that \{u, v\} \in E //alphabetic order If visited[v] = false then explore(G, v)
```

```
dfs(G) boolean array visited(n)
```

```
boolean array visited(n)

// initialize to all false.
```

```
For v \in V //alphabetic order
If visited[v] = false then explore(G, v)
```



```
explore(G,u) visited[u] = true For v such that \{u,v\} \in E //alphabetic order
```

If visited[v] = false then explore(G, v)

```
dfs(G)
boolean array visited(n)
// initialize to all false.
```

```
For v \in V //alphabetic order If visited[v] = false then explore(G, v)
```



```
explore(G,u) visited[u] = true For v such that \{u,v\} \in E //alphabetic order
```

If visited[v] = false then explore(G, v)

```
dfs(G)
boolean array visited(n)
// initialize to all false.
```

```
For v \in V //alphabetic order If visited[v] = false then explore(G, v)
```



```
explore(G,u) visited[u] = true For v such that \{u,v\} \in E //alphabetic order
```

If visited[v] = false then explore(G, v)

```
dfs(G)
boolean array visited(n)
// initialize to all false.
```

```
For v \in V //alphabetic order If visited[v] = false then explore(G, v)
```


Computing *G*'s connected components (undirected)


```
explore(G, u)
visited[u] = true
```

```
For v such that \{u, v\} \in E //alphabetic order

If visited[v] = false then explore(G, v)
```

dfs(G)

```
boolean array visited(n)

// initialize to all false.
```

```
For v \in V //alphabetic order

If visited[v] = false

then explore(G, v);
```

The DFS Tree / Forest!

We are implicitly building a tree, with the calls to "explore" (orange edges)

Depth-First: First, we go as deep as possible

A DFS Tree Example (Undirected)

DFS Facts

Cross Edge:

An edge between two vertices u, v, from different branches of the DFS tree (neither descendent or ancestor)

Fact: In an undirected graph, there are no cross edges!

DFS Runtime

We call explore(G, u) exactly once for each $u \in V$.

Runtime of explore(G, u):

$$\begin{array}{c} explore(G,u) \\ visited[u] = true \\ \hline \\ For \ v \ such \ that \ \{u,v\} \in E \\ \hline \\ If \ visited[v] = false \ then \ explore(G,v) \\ \end{array}$$

Total DFS Runtime:

$$\sum_{u \in V} O(1 + \deg(u)) = O(n + m)$$

DFS for Directed Graphs

The same principle:

- Keep track of *visited* [u].
- At every vertex, "explore" any unvisited neighbors.
- → This time only outgoing edges

Because of the directedness of edges, the DFS tree/forest looks a bit different!

Let's do some more book-keeping around when a node is "explored"


```
explore(G, u)
visited[u] = true
```

```
For v such that \{u,v\} \in E //alphabetic order If visited[v] = false then explore(G,v)
```

```
dfs(G)
boolean array visited(n)
```

// initialize to all false.

For $v \in V$ //alphabetic order

If visited[v] = false then explore(G, v)


```
 \begin{aligned} & \textit{visited}[u] = \textit{true} \\ & \textit{pre}[u] = \textit{clock}; \textit{clock++} \\ & \text{For } v \text{ such that } \{u,v\} \in \textit{E} \quad //\text{alphabetic order} \\ & \text{If } \textit{visited}[v] = \textit{false} \text{ then } \textit{explore}(\textit{G},v) \\ & \textit{post}[u] = \textit{clock}; \textit{clock++} \end{aligned}
```

```
dfs(G)
boolean array visited(n)

// initialize to all false.
clock = 1
int array pre(n), post(n)

For v \in V //alphabetic order

If visited[v] = false then explore(G, v)
```



```
 \begin{aligned} & \textit{visited}[u] = \textit{true} \\ & \textit{pre}[u] = \textit{clock}; \textit{clock++} \\ & \text{For } v \text{ such that } \{u,v\} \in E \quad //\text{alphabetic order} \\ & \text{If } \textit{visited}[v] = \textit{false} \text{ then } \textit{explore}(\textit{G},\textit{v}) \\ & \textit{post}[u] = \textit{clock}; \textit{clock++} \end{aligned}
```

```
dfs(G)
boolean array visited(n)
// \text{ initialize to all false.}
clock = 1
int array <math>pre(n), post(n)
For <math>v \in V //alphabetic order
If \textit{visited}[v] = false \text{ then } explore(G, v)
```



```
 \begin{aligned} & \textit{visited}[u] = \textit{true} \\ & \textit{pre}[u] = \textit{clock}; \textit{clock++} \\ & \text{For } v \text{ such that } \{u,v\} \in \textit{E} \quad //\text{alphabetic order} \\ & \text{If } \textit{visited}[v] = \textit{false} \text{ then } \textit{explore}(\textit{G},v) \\ & \textit{post}[u] = \textit{clock}; \textit{clock++} \end{aligned}
```

```
dfs(G)
boolean array visited(n)
// \text{ initialize to all false.}
clock = 1
int array <math>pre(n), post(n)
For <math>v \in V // \text{alphabetic order}
If \textit{visited}[v] = false \text{ then } explore(G, v)
```



```
 \begin{aligned} & \textit{visited}[u] = \textit{true} \\ & \textit{pre}[u] = \textit{clock}; \textit{clock++} \\ & \text{For } v \text{ such that } \{u,v\} \in E \quad //\text{alphabetic order} \\ & \text{If } \textit{visited}[v] = \textit{false} \text{ then } \textit{explore}(\textit{G},v) \\ & \textit{post}[u] = \textit{clock}; \textit{clock++} \end{aligned}
```

```
dfs(G)
boolean array visited(n)

// initialize to all false.
clock = 1
int array pre(n), post(n)

For v \in V //alphabetic order

If visited[v] = false then explore(G, v)
```



```
 \begin{aligned} & \textit{visited}[u] = \textit{true} \\ & \textit{pre}[u] = \textit{clock}; \textit{clock} + + \\ & \text{For } v \text{ such that } \{u,v\} \in \textit{E} \quad / / \text{alphabetic order} \\ & \text{If } \textit{visited}[v] = \textit{false} \text{ then } \textit{explore}(\textit{G},v) \\ & \textit{post}[u] = \textit{clock}; \textit{clock} + + \end{aligned}
```

```
dfs(G)
boolean array visited(n)
// \text{ initialize to all false.}
clock = 1
int array <math>pre(n), post(n)
For <math>v \in V // \text{alphabetic order}
If \textit{visited}[v] = false \text{ then } explore(G, v)
```



```
 \begin{aligned} & \textit{visited}[u] = \textit{true} \\ & \textit{pre}[u] = \textit{clock}; \textit{clock} + + \\ & \text{For } v \text{ such that } \{u,v\} \in E \quad / / \text{alphabetic order} \\ & \text{If } \textit{visited}[v] = \textit{false} \text{ then } \textit{explore}(\textit{G},v) \\ & \textit{post}[u] = \textit{clock}; \textit{clock} + + \end{aligned}
```

```
dfs(G)
boolean array visited(n)

// initialize to all false.
clock = 1
int array pre(n), post(n)

For v \in V //alphabetic order

If visited[v] = false then explore(G, v)
```



```
 \begin{aligned} & \textit{visited}[u] = \textit{true} \\ & \textit{pre}[u] = \textit{clock}; \textit{clock} + + \\ & \text{For } v \text{ such that } \{u, v\} \in E \quad / / \text{alphabetic order} \\ & \text{If } & \textit{visited}[v] = \textit{false} \text{ then } & \textit{explore}(G, v) \\ & \textit{post}[u] = \textit{clock}; \textit{clock} + + \end{aligned}
```

```
dfs(G)
boolean array visited(n)
// \text{ initialize to all false.}
clock = 1
int array <math>pre(n), post(n)
For <math>v \in V // \text{alphabetic order}
If \textit{visited}[v] = false \text{ then } explore(G, v)
```



```
 \begin{aligned} & \textit{visited}[u] = \textit{true} \\ & \textit{pre}[u] = \textit{clock}; \textit{clock} + + \\ & \text{For } v \text{ such that } \{u, v\} \in E \quad / / \text{alphabetic order} \\ & \text{If } & \textit{visited}[v] = \textit{false} \text{ then } & \textit{explore}(G, v) \\ & \textit{post}[u] = \textit{clock}; \textit{clock} + + \end{aligned}
```

```
\begin{aligned} &\mathsf{dfs}(G) \\ &\mathsf{boolean\ array\ } \textit{visited}(n) \\ & //\ \mathsf{initialize\ to\ all\ false.} \\ &\mathit{clock} = 1 \\ &\mathsf{int\ array\ } \textit{pre}(n), \textit{post}(n) \\ &\mathsf{For\ } v \in V\ //\mathsf{alphabetic\ order} \\ &\mathsf{If\ } \textit{visited}[v] = f\mathit{alse\ then\ } \textit{explore}(G,v) \end{aligned}
```



```
 \begin{aligned} & \textit{visited}[u] = \textit{true} \\ & \textit{pre}[u] = \textit{clock}; \textit{clock} + + \\ & \text{For } v \text{ such that } \{u, v\} \in E \quad / / \text{alphabetic order} \\ & \text{If } & \textit{visited}[v] = \textit{false} \text{ then } & \textit{explore}(G, v) \\ & \textit{post}[u] = \textit{clock}; \textit{clock} + + \end{aligned}
```

```
\begin{aligned} &\mathsf{dfs}(G) \\ &\mathsf{boolean\ array\ } \textit{visited}(n) \\ & //\ \mathsf{initialize\ to\ all\ false.} \\ &\mathit{clock} = 1 \\ &\mathsf{int\ array\ } \textit{pre}(n), \textit{post}(n) \\ &\mathsf{For\ } v \in V\ //\mathsf{alphabetic\ order} \\ &\mathsf{If\ } \textit{visited}[v] = f\mathit{alse\ then\ } \textit{explore}(G,v) \end{aligned}
```



```
 \begin{aligned} & visited[u] = true \\ & pre[u] = clock; clock++ \\ & For \ v \ \text{such that} \ \{u,v\} \in E \quad //\text{alphabetic order} \\ & \text{If} \ visited[v] = false \ \text{then} \ explore(G,v) \\ & post[u] = clock; clock++ \end{aligned}
```



```
 \begin{aligned} & \textit{visited}[u] = \textit{true} \\ & \textit{pre}[u] = \textit{clock}; \textit{clock++} \\ & \text{For } v \text{ such that } \{u,v\} \in \textit{E} \quad //\text{alphabetic order} \\ & \text{If } \textit{visited}[v] = \textit{false} \text{ then } \textit{explore}(\textit{G},v) \\ & \textit{post}[u] = \textit{clock}; \textit{clock++} \end{aligned}
```



```
A pre[A] = 1

B pre[B] = 2
post[B] = 7

C pre[C] = 8
post[D] = 3
post[D] = 6

E pre[E] = 4
post[E] = 5
```

```
 \begin{aligned} & visited[u] = true \\ & pre[u] = clock; clock++ \\ & For \ v \ \text{such that} \ \{u,v\} \in E \quad //\text{alphabetic order} \\ & \text{If} \ visited[v] = false \ \text{then} \ explore(G,v) \\ & post[u] = clock; clock++ \end{aligned}
```

```
\begin{aligned} &\mathsf{dfs}(G) \\ &\mathsf{boolean\ array}\ \textit{visited}(n) \\ & //\ \mathsf{initialize\ to\ all\ false.} \\ &\mathit{clock} = 1 \\ &\mathsf{int\ array}\ pre(n), post(n) \\ &\mathsf{For\ } v \in V\ //\mathsf{alphabetic\ order} \\ &\mathsf{If\ } \textit{visited}[v] = false\ \mathsf{then\ } explore(G,v) \end{aligned}
```



```
A) pre[A] = 1

B) pre[B] = 2
post[B] = 7
C) pre[C] = 8
post[C] = 9
C) pre[C] = 8
C) pre[C] = 9
C) pre[C] = 9
C) pre[C] = 8
C) pre[C] = 9
C) pre[C] =
```

```
 \begin{aligned} & \textit{visited}[u] = \textit{true} \\ & \textit{pre}[u] = \textit{clock}; \textit{clock} + + \\ & \text{For } v \text{ such that } \{u, v\} \in \textit{E} \quad / / \text{alphabetic order} \\ & \text{If } \textit{visited}[v] = \textit{false} \text{ then } \textit{explore}(\textit{G}, \textit{v}) \\ & \textit{post}[u] = \textit{clock}; \textit{clock} + + \end{aligned}
```

```
\begin{aligned} &\mathsf{dfs}(G) \\ &\mathsf{boolean\ array}\ \textit{visited}(n) \\ & //\ \mathsf{initialize\ to\ all\ false.} \\ &\mathit{clock} = 1 \\ &\mathsf{int\ array}\ pre(n), post(n) \\ &\mathsf{For\ } v \in V\ //\mathsf{alphabetic\ order} \\ &\mathsf{If\ \textit{visited}}[v] = false\ \mathsf{then\ explore}(G, v) \end{aligned}
```



```
A pre[A] = 1

B pre[B] = 2
post[B] = 7
C pre[C] = 8
post[C] = 9

D pre[D] = 3
post[D] = 6
E pre[E] = 4
post[E] = 5
```

```
 \begin{aligned} & \textit{visited}[u] = \textit{true} \\ & \textit{pre}[u] = \textit{clock}; \textit{clock++} \\ & \text{For } v \text{ such that } \{u,v\} \in \textit{E} \quad //\text{alphabetic order} \\ & \text{If } \textit{visited}[v] = \textit{false} \text{ then } \textit{explore}(\textit{G},v) \\ & \textit{post}[u] = \textit{clock}; \textit{clock++} \end{aligned}
```

```
dfs(G)
boolean array visited(n)
// \text{ initialize to all false.}
clock = 1
int array <math>pre(n), post(n)
For <math>v \in V // \text{alphabetic order}
If \textit{visited}[v] = false \text{ then } explore(G, v)
```



```
A pre[A] = 1 post[A] = 10

B pre[B] = 2 post[B] = 7 post[C] = 8 post[C] = 9

D pre[D] = 3 post[D] = 6

E pre[E] = 4 post[E] = 5
```

```
 \begin{aligned} & \textit{visited}[u] = \textit{true} \\ & \textit{pre}[u] = \textit{clock}; \textit{clock++} \\ & \text{For } v \text{ such that } \{u,v\} \in \textit{E} \quad //\text{alphabetic order} \\ & \text{If } \textit{visited}[v] = \textit{false} \text{ then } \textit{explore}(\textit{G},v) \\ & \textit{post}[u] = \textit{clock}; \textit{clock++} \end{aligned}
```

```
dfs(G)
boolean array visited(n)
// \text{ initialize to all false.}
clock = 1
int array <math>pre(n), post(n)
For <math>v \in V // \text{alphabetic order}
If \textit{visited}[v] = false \text{ then } explore(G, v)
```

DFS Tree/Forest for Directed Graphs

More concise notations: Interval [pre[u], post[u]].

Types of edges:

• Tree edge

Recursive explore calls

• Back edge:

From descendent to ancestor

• Forward edge:

From ancestor to non-child descendent

• Cross edge:

Between neither descendent or ancestor

More on Cross Edges

We saw that a cross edge can go from the "right" (later) branch to the "left" (earlier branch).

Can a cross edge go from the "left" (earlier) branch to the "right" (later) branch.

Tree and Forward Edges

Imagine $(u, v) \in E$ is a tree edge or a forward edge.

What is the relationship between [pre[v], post[v]] and [pre[u], post[u]]?

Back Edges

Imagine $(u, v) \in E$ is a <u>back</u> edge.

What is the relationship between [pre[v], post[v]] and [pre[u], post[u]]?

Cross Edge

Imagine $(u, v) \in E$ is a <u>cross edge</u>.

What is the relationship between [pre[v], post[v]] and [pre[u], post[u]]?

Edges Types and Intervals Summary

Edge $(u, v) \in E$				
Tree / Forward edge	pre[u] < pre[v] < post[v] < post[u]			
Back edge:	pre[v] < pre[u] < post[u] < post[v]			
Cross edge:	pre[v] < post[v] < pre[u] < post[u]			

All other relationships between intervals are impossible!

Back Edges and Post-times are special!

Edge	(u,	<i>v</i>)	\in	\boldsymbol{E}
8	()			

Tree / Forward edge

Back edge:

Cross edge:

How to detect a back edge?

 \rightarrow An edge $(u, v) \in E$ is a back edge if and only if post[u] < post[v].

Back Edges and Topological Sort

Find an ordering of vertices so that no edges go backward.

 \rightarrow i.e., If *u* comes before *v* in the ordering, there is no edge (v, u).

E.g., software package dependency

Topological Sort and DAGS

Definition: a directed acyclic graph (DAG) is a graph with no directed cycles.

Claim: Suppose we run a DFS on on G. G is a DAG if and only if it has no back edges!

Topological Sort and Back Edges

In what order should I install packages?

- The vertex the finishes later (higher post number) is higher up in the DFS tree (or in a later branch).
- Install in the reverse order of the post-times of the vertices.
- Verify this at home!

Wrap up

Graphs are awesome!

DFS is useful!

- → Edge types are important
- → Simple book keeping tells us about edge types too.

Next time

- More with graphs
- Paths and strongly connected components