Customer Churn Analysis

and Prediction

Charlie Inc.

Outline

1 Business Problem Understanding

2 Data Understanding

3 Initial Data Analysis and Data Cleaning

4 Test Statistic

5 Exploratory Data Analysis (EDA)

6 Data Splitting and Data Preprocessing

7 Model Benchmarking and Modeling on Test Data

8 Hyperparameter Tuning

9 Feature Importance

10 Conclusion

11 Recommendation

Business Problem Understanding

Role: E-Commerce Consultant

1. Churned customers may cause company loss due to missing potential orders and purchases

2. Mistargeted Investments by the company may also decrease profits and increase losses

Our Recommendation: Churn Prediction

- Classification Target 1 = Churn
- Classification Target 0 = Not Churn

1. What factors influence customer Churn behavior?

1. Identify the factors that may cause customer churn and predict the customer churn potential 2. What business strategy is more suitable to minimize customer churn?

2. Analyze business strategies to minimize losses by using vouchers to minimize customer churn.

Data Understanding

Attribute	Data Type, Length	Description	200
CustomerID	Integer	Unique customer ID	
Churn	Integer	Binary Target: 0 - Not churn, 1 - Churn	
Tenure	Float	Tenure of customer in organization	Month 1
PreferredLoginDevice	String	Preferred login device of customer	
CityTier*	Integer	City tier	
WarehouseToHome	Float	Distance in between warehouse to home of customer	Kilometer
PreferredPaymentMode	String	Preferred payment method of customer	
Gender	String	Gender of customer	
HourSpendOnApp	Float	Number of hours spend on mobile application or website	Daily Average
NumberOfDeviceRegistered	Integer	Total number of deceives is registered on particular custo	mer
PreferedOrderCat	String	Preferred order category of customer in last month	2
SatisfactionScore*	Integer	Satisfactory score of customer on service	
MaritalStatus	String	Marital status of customer	
NumberOfAddress	Integer	Total number of added added on particular customer	
Complain*	Integer	Binary, 1 - If any complaint has been raised in last month	
OrderAmountHikeFromlastYear	Float	Percentage increases in order from last year	
CouponUsed	Float	Total number of coupon has been used in last month	3
OrderCount	Float	Total number of orders has been places in last month	
DaySinceLastOrder	Float	Day Since last order by customer	
CashbackAmount	Integer	Average cashback in last month	INR

Assumptions:

Some features are categorical (Nominal, Ordinal, Binary), with somewhat low cardinality. The highest cardinality contains 7 unique values

There are some redundant unique
values where 2 values has similar
meaning, we can merge them into a single
value to reduce the cardinality

Every row represents exactly 1 customer, whether it be churned ones or still active customers

^{*} Categorical features which don't need to be encoded

Data Understanding

Attribute	Data Type, Length	Description
CustomerID	Integer	Unique customer ID
Churn	Integer	Binary Target: 0 - Not churn, 1 - Churn
Tenure	Float	Tenure of customer in organization
PreferredLoginDevice	String	Preferred login device of customer
CityTier*	Integer	City tier
WarehouseToHome	Float	Distance in between warehouse to home of customer
PreferredPaymentMode	String	Preferred payment method of customer
Gender	String	Gender of customer
HourSpendOnApp	Float	Number of hours spend on mobile application or website
NumberOfDeviceRegistered	Integer	Total number of deceives is registered on particular custome
PreferedOrderCat	String	Preferred order category of customer in last month
SatisfactionScore*	Integer	Satisfactory score of customer on service
MaritalStatus	String	Marital status of customer
NumberOfAddress	Integer	Total number of added added on particular customer
Complain*	Integer	Binary, 1 - If any complaint has been raised in last month
OrderAmountHikeFromlastYear	Float	Percentage increases in order from last year
CouponUsed	Float	Total number of coupon has been used in last month
OrderCount	Float	Total number of orders has been places in last month
DaySinceLastOrder	Float	Day Since last order by customer
CashbackAmount	Integer	Average cashback in last month

Total data: 5630 rows, 20 columns

Data types:

- float (7 columns),
- integer (8 columns),
- object (5 columns).

Categorical Features
Numerical Features
Target

^{*} Categorical features which don't need to be encoded

Data Understanding

Categorical Descriptive Statistic

	count	unique	top	freq
PreferredLoginDevice	5630	3	Mobile Phone	2765
PreferredPaymentMode	5630	7	Debit Card	2314
Gender	5630	2	Male	3384
PreferedOrderCat	5630	6	Laptop & Accessory	2050
MaritalStatus	5630	3	Married	2986
Complain *	5630	2	1	4026
CityTier *	5630	3	3	3666
SatisfactionScore	5630	5	5	1698

- Feature with **highest cardinality** (7 unique values) : PreferredPaymentMode
- Features with **lowest cardinality** (2 unique values/binary) : Gender, Complain

Numerical Descriptive Statistic

	count	mean	std	min	25%	50%	75%	max
CustomerID	5630.0	52815.500000	1625.385339	50001.0	51408.25	52815.5	54222.75	55630.0
Churn	5630.0	0.168384	0.374240	0.0	0.00	0.0	0.00	1.0
Tenure *	5366.0	10.189899	8.557241	0.0	2.00	9.0	16.00	61.0
CityTier	5630.0	1.654707	0.915389	1.0	1.00	1.0	3.00	3.0
WarehouseToHome	5379.0	15.639896	8.531475	5.0	9.00	14.0	20.00	127.0
HourSpendOnApp	5375.0	2.931535	0.721926	0.0	2.00	3.0	3.00	5.0
NumberOfDeviceRegistered	5630.0	3.688988	1.023999	1.0	3.00	4.0	4.00	6.0
SatisfactionScore	5630.0	3.066785	1.380194	1.0	2.00	3.0	4.00	5.0
NumberOfAddress	5630.0	4.214032	2.583586	1.0	2.00	3.0	6.00	22.0
Complain	5630.0	0.284902	0.451408	0.0	0.00	0.0	1.00	1.0
OrderAmountHikeFromlastYear	5365.0	15.707922	3.675485	11.0	13.00	15.0	18.00	26.0
CouponUsed	5374.0	1.751023	1.894621	0.0	1.00	1.0	2.00	16.0
OrderCount	5372.0	3.008004	2.939680	1.0	1.00	2.0	3.00	16.0
DaySinceLastOrder	5323.0	4.543491	3.654433	0.0	2.00	3.0	7.00	46.0
CashbackAmount	5630.0	177.221492	49.193869	0.0	146.00	163.0	196.00	325.0

Max Tenure = 61 (month)
Max HourSpendOnApp = 5 (daily average)

^{*} Categorical features which don't need to be encoded

Delete unique ID; Delete duplicated rows; Delete category redundancy;

Drop Unique Identifier

_ _ _ _ _

Unique identifier will not be used for analysis and modeling

• 1 column dropped: 'CustomerID'

Drop Duplicated Rows

_ _ _ _

Duplicated rows may caused overfit or information leakage

• 556 duplicated rows deleted

Merge Redundant Values

_ _ _ _

Merge similar values to a single value

- Mobile, Phone & Mobile Phone
- CC & Credit Card
- COD & Cash on Delivery

Handling Outliers

- 4 data points have tenure far longer than the others, but they only have very few orders (3 max), also their last order is also not too long ago.
- 2 data points have home very far away from the nearest warehouse. Due to the far distance and the very few amounts, these outliers can be deleted.
- 4 data points had input many addresses on their app, however they only did 2 orders maximum.

These outliers are few and very far from the rest of the observations, so we can delete these outliers in particular..

Total data:

- Before dropping duplicates and outliers: 5630 rows, 20 columns
- After dropping duplicates and outliers: 5064 rows, 19 columns

Identify Missing Values

Missing Value: DaySinceLastOrder, OrderAmountHikeFromLatyear, OrderCount,Tenure, HourSpendOnApp, WarehouseToHome, CouponUsed (a)

Missing values' pattern are random (b) and not correlated one another (c).

Handling Missing Values

'CouponUsed' & 'OrderCount'
are the only features that are
strongly correlated (0.72)

-> both will be iteratively imputed

0.7246

Handling Missing Values

Normality Test

	feature	normal_stats	p_val	hypothesis
0	WarehouseToHome	0.887448	2.382207e-44	Not Normal (Reject H0)
1	Tenure	0.906713	1.884186e-41	Not Normal (Reject H0)
2	DaySinceLastOrder	0.890055	5.465064e-44	Not Normal (Reject H0)
3	OrderAmountHikeFromlastYear	0.915125	4.998586e-40	Not Normal (Reject H0)
4	HourSpendOnApp	0.827627	0.000000e+00	Not Normal (Reject H0)

The rest of the features containing missing values have non-normal distribution, including:

- 1. 'DaySinceLastOrder'
- 2. 'WarehouseToHome'
- 3. 'Tenure'
- 4. 'OrderAmountHikeFromlastYear'
- 5. 'HourSpendOnApp'
- -> they all will be **imputed** with their respective **'median'** values

After being imputed, there are no more missing values

Test Statistic

Two Sample

Independent T-Test

Hypothesis:

Ho: The average value of non churn equals the one that is churn from 1 feature

Ha: The average value of non churn does not equal the one that is churn from 1 feature

	feature	t_stats	p_val	hypothesis
0	Tenure	-25.154585	5.721674e-132	Dependent (Reject H0)
1	WarehouseToHome	4.988401	3.145865e-07	Dependent (Reject H0)
2	HourSpendOnApp	0.970007	1.660446e-01	Independent (Accept H0)
3	NumberOfDeviceRegistered	8.363530	3.893265e-17	Dependent (Reject H0)
4	NumberOfAddress	3.470546	2.618686e-04	Dependent (Reject H0)
5	OrderAmountHikeFromlastYear	-1.511510	6.536053e-02	Independent (Accept H0)
6	CouponUsed	-0.192087	4.238409e-01	Independent (Accept H0)
7	OrderCount	-1.542998	6.144683e-02	Independent (Accept H0)
8	DaySinceLastOrder	-10.587844	3.161856e-26	Dependent (Reject H0)
9	CashbackAmount	-10.246951	1.055610e-24	Dependent (Reject H0)

Conclusion: P-Value is lower than the significance level (0.05) = we have sufficient evidence to reject the **Ho**.

>> numeric features that have different mean between churn and not churn:

Tenure, WarehouseToHome, NumberOfDeviceRegistered, NumberOfAddress, D aySinceLastOrder, dan CashbackAmount.

Chi-Square

Hypothesis:

Ho: Feature does not affect the target (churn)

Ha: Feature affects the target (churn)

hypothesis	p_val	chi_stats	feature	
Dependent (Reject H0)	4.327215e-04	12.385324	PreferredLoginDevice	0
Dependent (Reject H0)	1.422259e-11	49.952380	CityTier	1
Dependent (Reject H0)	4.060830e-10	49.755702	PreferredPaymentMode	2
Dependent (Reject H0)	4.620927e-02	3.973949	Gender	3
Dependent (Reject H0)	7.760609e-48	226.426179	PreferedOrderCat	4
Dependent (Reject H0)	9.811513e-12	57.479912	SatisfactionScore	5
Dependent (Reject H0)	1.415019e-37	169.697011	MaritalStatus	6
Dependent (Reject H0)	2.608364e-69	309.645877	Complain	7

Conclusion: P-Value is lower than the significance level (0.05) = we have sufficient evidence to reject the **Ho**.

>> all categorical features affect 'Churn'.

Exploratory Data Analysis

Where's the E-Commerce Located?

How many customers have churned?

Item category purchased based on gender:

Created in Tableau; Charlie Inc. 2022

- More customers purchased 'mobile phone' and 'laptop & accessory' than the other categories.
- Male customers purchased more items than female customers in general.
- Customers are more likely to churn when they have lower cashback and tenure.
- Customers are more likely to churn when they have reported a complaint.
- Customers are more likely to churn when they have further distance from their home to the nearest warehouse.

Data Splitting & Preprocessing

Data Splitting

TRAIN SET: TEST SET

80%:20%

Data Preprocessing

One Hot Encoding

(≤4 unique values)

- PreferredLoginDevice
- Gender
- MaritalStatus

Binary Encoding

(>4 unique values)

- PreferredPaymentMode
 - PreferredOrderCat

Modelling

Model Benchmark: Train Set

_	' _		
	est	-	ρт
		V	

Model	Mean F1–Score	Std
LightGBM	0.874574	0.025805
Random Forest	0.870420	0.029388
Decision Tree	0.820771	0.021130
Adaptive Boosting	0.820761	0.027525
Gradient Boosting	0.707085	0.052768
XGBoost	0.684257	0.044418
Logistic Regression	0.571417	0.067113
KNN	0.473248	0.048200

Model	F1-Score
LightGBM	0.865031
Random Forest	0.867925

From the results above, **Random Forest** and **LightGBM** give a higher F1-score compared to other models

After fitting the model to test set, there is no big difference between the two models F1-score. Next, hyperparameter tuning will be performed on both models to improve their performance.

Hyperparameter Tuning

PARAMETER

LightGBM

- 'model max bin'
- 'model num leaves'
- 'model min data in leaf'
- 'model num iterations'
- 'model learning rate'

Random Forest

- 'model n estimators'
- 'model criterion'
- 'model max features'
- 'model max depth'
- 'model min samples split'
- 'model min samples leaf'
- 'model bootstrap'

Model		core Tuning	F1–Score After Tuning		
	Train Set	Test Set	Train Set	Test Set	
<mark>LightGBM</mark>	0.874574	0.865031	<mark>0.910657</mark>	<mark>0.901493</mark>	
Random Forest	0.870420	0.867325	0.886497	0.875379	

Based on the results of hyperparameter tuning, the best model obtained is **LightGBM** because it has a higher F1-score.

Feature Importances

Based on the graph, it can be seen that the most important features are 'WarehouseToHome' and 'CashbackAmount'.

Classification	PRECISION	RECALL	F1-SCO RE
1	0.90	0.90	0.90
0	0.98	0.98	0.98

1 = Churn; O = Not Churn

Assumptions:

- a. 1013 customers; 845 not churn; 168 churn.
- b. Average Cashback Amount (not churn) = 180 INR per customer
- c. Cost for voucher = 190 INR per customer.
- d. Cost for voucher divided into class (per customer)= Low; 180 INR, Medium; 185 INR, High; 190 INR.
- e. Loss due to customer churn :2 order per customer * 500 INR
 - = 1000 INR per customer.

Without model Cost Benefit Analysis Prediction using LGBM

Total cost for voucher: 190 INR * 1013 cust =

192.470 INR

Total loss (mistargeted voucher):
190 INR * 845 cust =
160.550 INR

Saves around 83.5% Saves around 0.3%

Voucher given divided into class

Recommendation

Analyze the possible cause behind why is the test score often higher than the train score.

Add more data and gather more information to strengthen assumptions that have been made.

Add more features related to the amount customers spend on the E-Commerce.

The added features may improve model performance and assist in determining strategies to reduce customer churn.

More research is needed regarding the current E-Commerce business strategy related to 'WarehouseToHome'.

Try other Machine Learning algorithms and do hyperparameters tuning again to get better result.

6 More thorough analysis on the wrong prediction result.

Identify the direction of the feature's relationship to the target by using Shap library.

Thank you!

