week 1

陈淇奥 21210160025

2022年2月23日

Exercise 1 (1.1.5). 令 T 为命题逻辑中的理论

- 1. 请验证 $\mathcal{B}(T) = (B, +, \cdot, -, 0, 1)$ 是一个布尔代数
- 2. T 是一致的当且仅当 $\mathcal{B}(T)$ 是非平反的
- 证明. 1. 下面验证 $\mathcal{B}(T)$ 满足布尔代数公理。对于任意公式 $[\alpha], [\beta], [\gamma] \in \mathcal{B}$

(a)

$$[\alpha] + ([\beta] + [\gamma]) = [\alpha] + [\beta \vee \gamma] = [\alpha \vee (\beta \vee \gamma)]$$

$$= [(\alpha \vee \beta) \vee \gamma] = [\alpha \vee \beta] + [\gamma] = ([\alpha] + [\beta]) + [\gamma]$$

$$[\alpha] \cdot ([\beta] \cdot [\gamma]) = [\alpha] \cdot [\beta \wedge \gamma] = [\alpha \wedge (\beta \wedge \gamma)]$$

$$= [(\alpha \wedge \beta) \wedge \gamma] = [\alpha \wedge \beta] \cdot [\gamma] = ([\alpha] \cdot [\beta]) \cdot [\gamma]$$

(b)

$$[\alpha] + [\beta] = [\alpha \vee \beta] = [\beta \vee \alpha] = [\beta] + [\alpha]$$
$$[\alpha] \cdot [\beta] = [\alpha \wedge \beta] = [\beta \wedge \alpha] = [\beta] \cdot [\alpha]$$

(c)

$$[\alpha] + ([\alpha] \cdot [\beta]) = [\alpha] + [\alpha \wedge \beta] = [\alpha \vee (\alpha \wedge \beta)] = [\alpha]$$
$$[\alpha] \cdot ([\alpha] + [\beta]) = [\alpha] \cdot [\alpha \vee \beta] = [\alpha \wedge (\alpha \vee \beta)] = [\alpha]$$

$$[\alpha] \cdot ([\beta] + [\gamma]) = [\alpha] \cdot [\beta \vee \gamma] = [\alpha \wedge (\beta \vee \gamma)]$$

$$= [(\alpha \wedge \beta) \vee (\alpha \wedge \gamma)] = ([\alpha] \cdot [\beta]) + ([\alpha] \cdot [\gamma])$$

$$[\alpha] + ([\beta] \cdot [\gamma]) = [\alpha \vee (\beta \wedge \gamma)] = [(\alpha \vee \beta) \wedge (\alpha \vee \gamma)]$$

$$= ([\alpha] + [\beta]) \cdot ([\alpha] + [\gamma])$$

(e)

$$[\alpha] + (-[\alpha]) = [\alpha] + [\neg \alpha] = [\alpha \lor \neg \alpha] = 1$$
$$[\alpha] \cdot (-[\alpha]) = [\alpha] \cdot [\neg \alpha] = [\alpha \land \neg \alpha] = 0$$

2. 若 T 不一致,则对于任意公式 α,β ,总有 $T\vdash\alpha\leftrightarrow\beta$,因此 |B|=1, $\mathcal{B}(T)$ 平凡

若 $\mathcal{B}(T)$ 是平凡的,于是对于任意公式 α 与公式 $\beta \in T$,有 $T \vdash \beta \leftrightarrow \alpha$,于是 $T \vdash \alpha$ 。因此 T 不一致

Exercise 2 (1.1.8). 令 $B=\{Y\subseteq X\mid Y$ 是有穷的或余有穷的 $\}$,则 $X,\emptyset\in B$ 。证明 B 对 $\cap,\cup,-$ 封闭,所以 \mathcal{B} 是一个布尔代数,是一个集合代数证明. 对于任意 $X,Y\in B$,

- 1. 若 X, Y 有穷,则 $X \cap Y$ 有穷, $X \cup Y$ 有穷,-X 余有穷
- 2. 若 X 有穷, Y 余有穷, 则 $X \cap Y$ 余有穷, $X \cup Y$ 余有穷
- 3. 若 X 余有穷, Y 有穷, 则 $X \cap Y X \cup Y$ 余有穷, -X 有穷
- 4. 若 X,Y 余有穷,则 $X \cap Y,X \cup Y$ 余有穷

Exercise 3 (1.1.9). 证明不存在基数为 3 的布尔代数。一个有穷的布尔代数, 其基数需要满足什么条件?

证明. 若存在基数为 3 的布尔代数 \mathcal{B} , 则令 $B = \{0,1,a\}$ 。

如果 -a=0, 那么 $a+(-a)=a+0=a+(a\cdot (-a))=a\neq 1$, 矛盾。如果 -a=1, 那么 $a\cdot (-a)=a\cdot 1=a\cdot (a+(-a))=a\neq 0$, 矛盾。如果 -a=a, 那么 $a=a\cdot 1=a\cdot (a+a)=a\cdot a+a\cdot a=0+0=0$, 矛盾。

因此不存在基数为3的布尔代数。

$$|\mathcal{B}| = 2^n$$
 for some n

Lemma 1. 给定布尔代数 \mathcal{B} , 对于任意 $a,b,c \in B$

1.
$$a + 0 = a$$

2.
$$a \cdot 1 = a$$

4.
$$-(a \cdot b) = (-a) + (-b) \cdot -(a+b) = (-a) \cdot (-b)$$

5.
$$--a = a$$

证明. 1.
$$a+0=a+(a\cdot(-a))=a$$

2.
$$a \cdot 1 = a \cdot (a + (-a)) = a$$

3.
$$b = b + 0 = b + a \cdot (-a) = (a + b) \cdot (b + (-a)) = 1 \cdot (b + (-a)) = (a + (-a)) \cdot (b + (-a)) = (-a) + (a \cdot b) = -a$$

4.
$$(-a) + (-b) + (a \cdot b) = ab + (-a) + (-b) \cdot (a + -a) = a(b + -b) + (-a)(1 + -b) = a + (-a) = 1.$$

$$(a \cdot b) \cdot (-a + -b) = ab(-a) + ab(-b) = 0 + 0 = 0.$$

同理可得
$$-(a+b) = (-a) \cdot (-b)$$

5. 由 3 可知

Exercise 4 (1.1.10). $1 \rightarrow 2$: 定义

$$2 \to 3$$
: 对任意 $a, b \in A$, $f(a \cdot b) = f(--(a \cdot b)) = -f((-a) + (-b)) = -(-f(a) + -f(b)) = f(a) \cdot f(b)$

3

$$3 \to 2$$
: 对任意 $a, b \in A$, $f(a+b) = f(--(a+b)) = -f((-a) \cdot (-b)) = f(a) + f(b)$
 $2 \to 4$: 对任意 $a, b \in A$, $f(1) = f(a+(-a)) = f(a) + -f(a) = 1$, $f(0) = f(-1) = -f(1) = 1$ 。若 $a \cdot b = 0$,则 $f(a \cdot b) = f(0) = 0$
 $4 \to 2$: 对任意 $a \in A$ $f(-a) \cdot f(a) = f(-a \cdot a) = 0$, $f(-a) + f(a) = f(-a+a) = f(1) = 1$,因此 $f(-a) = -f(a)$
因此 $4 \leftrightarrow 3 \leftrightarrow 2$,而 $4 \land 3 \land 2 \to 1$,因此 $2 \to 1$