

Algebraic Expressions and Identities Ex 6.2 Q7

## Answer:

(i) 
$$x^2 - 3x + 5 - \frac{1}{2} (3x^2 - 5x + 7)$$
  
 $= x^2 - 3x + 5 - \frac{3x^2}{2} + \frac{5x}{2} - \frac{7}{2}$   
 $= x^2 - \frac{3x^2}{2} - 3x + \frac{5x}{2} + 5 - \frac{7}{2}$  (Collecting like terms)  
 $= (\frac{1-3}{2})x^2 + (\frac{-3+5}{2})x + (\frac{10-7}{2})$   
 $= -\frac{x^2}{2} - \frac{x}{2} + \frac{3}{2}$ 

Thus, the answer is  $-\frac{x^2}{2} - \frac{x}{2} + \frac{3}{2}$ 

(ii) 
$$[5 - 3x + 2y - (2x - y)] - (3x - 7y + 9)$$
  
=  $[5 - 3x + 2y - 2x + y] - (3x - 7y + 9)$   
=  $[5 - 5x + 3y] - (3x - 7y + 9)$   
=  $5 - 5x + 3y - 3x + 7y - 9$   
=  $5 - 9 - 5x - 3x + 3y + 7y$   
=  $-4 - 8x + 10y$ 

$$\begin{aligned} & \left( \text{iv} \right) \left( \frac{1}{3} \, y^2 - \frac{4}{7} \, y + 11 \right) - \left( \frac{1}{7} \, y - 3 + 2 y^2 \right) - \left( \frac{2}{7} \, y - \frac{2}{3} \, y^2 + 2 \right) \\ & = \frac{1}{3} \, y^2 - \frac{4}{7} \, y + 11 - \frac{1}{7} \, y + 3 - 2 y^2 - \frac{2}{7} \, y + \frac{2}{3} \, y^2 - 2 \end{aligned}$$

$$\begin{array}{l} = \frac{1}{3}\,y^2 - 2y^2 + \frac{2}{3}\,y^2 - \frac{4}{7}\,y - \frac{1}{7}\,y - \frac{2}{7}\,y + 11 + 3 - 2 & \text{(Collecting like terms)} \\ = \left(\frac{1 - 6 + 2}{3}\right)y^2 + \left(\frac{-4 - 1 - 2}{7}\right)y + 12 \\ = -y^2 - 7y + 12 & \text{(Combining like terms)} \end{array}$$

\*\*\*\*\*\*\* END \*\*\*\*\*\*