3 Talen en Berekenbaarheid

3.1 Inleiding

In hoofdstuk 3, Talen en Berekenbaarheid, zal er dieper worden ingegaan op Turingmachines en de werking ervan. Na het instuderen van dit hoofdstuk is het best om onderstaande vragen op te lossen. Het zijn niet zo veel vragen, maar ze bevatten steeds een redelijk groot deel van de leerstof (vaak ook verschillende stukken gecombineerd). De vragen die volgen zijn alle vragen die al eens gesteld zijn. Deze komen echter elk jaar terug. Concreet wil dit zeggen dat als al deze vragen gekend zijn een goed resultaat verwacht kan worden.

Dit wil echter niet zeggen dat het onmogelijk is om een andere vraag te krijgen. In de volgende sectie staat een kleine opsomming van delen uit het hoofdstuk die (tot nu toe) niet aan bod gekomen zijn tijdens de examens¹. Er bestaat echter een kleine kans dat hij zijn vragen veranderd, wat wil zeggen dat ook deze delen gekend moeten zijn. In het algemeen zijn de vragen uit dit document echter goed genoeg.

Achteraan dit document zal ook verwezen worden naar een implementatie van een Turingmachine in Haskell. Dit kan een dieper inzicht geven op hoe zo een machine werkt.

Aarzel niet om fouten of verbeteringen te melden op Github².

3.2 Overige secties

De volgende secties uit hoofdstuk 3 van Automaten en Berekenbaarheid zijn tot nu toe nog nooit aan bod gekomen op het examen, maar moeten wel gekend zijn. De pagina's komen overeen met de publicatie van 19 november 2013³.

- 1. Basiswerking van een Turingmachine (p.82-86)
- 2. Er bestaat een niet herkenbare taal (p.87)
- 3. Universele Turingmachines (p.95)
- 4. Verband met reguliere talen (p.100)
- 5. $Regular_{TM}$ en EQ_{TM} (p.105)
- 6. Aftelbaar (p.110)
- 7. The Post Correspondence Problem (p.113-116)
- 8. Recursieve functies (p.122-125)
- 9. De bezige bever (p.126-127)

¹Het gaat hier echter enkel over het mondeling examen, ze kunnen wel voorkomen op de tussentiids testen.

²User: Jense5

³De meeste recente versie in 2015.

Vraag 1. Bewijs dat A_{TM} niet beslisbaar is en steun daarbij niet op de stelling van Rice. Zou het helpen als het toegelaten was op de stelling van Rice te steunen? Is A_{TM} herkenbaar? Co-herkenbaar?

We hebben het hier over het acceptatieprobleem voor Turinmachines. We noemen de taal A_{TM} met de volgende formele definitie. Informeel is elk element een tuple met het eerste element een geëncodeerde Turingmachine die de string s, het tweede element, accepteerd.

$$A_{TM} = \{ \langle M, s \rangle \mid M \text{ is een Turingmachine en } s \in L_M \}$$

(a) A_{TM} is niet beslisbaar

Bewijs. Stel er bestaat een beslisser B voor A_{TM} . De werking van B kan op de volgende manier formeel gedefinieerd worden.

$$B(\langle M, s \rangle)$$
 is accept als M s accepteert en anders reject

B weigert dus indien M de input s weigert of wanneer M in een oneindige lus zit. We construeren nu een contradictie machine C met de eigenschap om telkens het tegenovergestelde te accepteren (of te weigeren) van B. We kunnen dit op de volgende manier formeel schrijven.

$$\forall$$
 Turingmachine $M: C(\langle M \rangle) = \neg(B(\langle M, M \rangle))$

Daarbij is $\neg accept = reject$ en $\neg reject = accept$. Neem nu voor M hierboven C zelf en vul deze in in C en B zelf. De volgende bewering komt tot stand.

$$C(< C >) = \neg (B(< C, C >))$$

We zien dat C zichzelf test. Indien C zichzelf accepteerd, dan is $\neg B(C,C) = accept$. Aangezien C C accepteert, moet B(C,C) = accept en dus $\neg B(C,C) = reject$. Contradictie.

Conclusie: C kan niet bestaan. Indien B bestaat kan C wel bestaan, dus B bestaat ook niet. A_{TM} is dus niet beslisbaar.

(b) De stelling van Rice

Definitie 1 (Stelling van Rice). Voor elke niet-triviale, taal-invariante eigenschap P van Turingmachines geldt dat Pos_P (en ook Neg_P) niet beslisbaar is.

Met deze stelling zouden we het hele bewijs kunnen inkorten. Door een niettriviale, taal-invariante eigenschap P te vinden van alle Turingmachines die s herkennen, hebben we meteen aangetoond dat de taal in kwestie, A_{TM} niet beslisbaar is.⁴ Deze taal komt dan overeen met Pos_P^5 .

 $^{^4}$ Voor meer informatie over het bewijs, zie het laatste hoofdstuk.

⁵Ik heb suggesties nodig voor P! Gooi ze op Github.

(c) A_{TM} is herkenbaar

Bewijs. De herkenner A voor A_{TM} laat, met input < M, s >, M lopen op s. Indien deze M s accepteerd, dan accepteerd A zijn input. Indien deze de input reject, of gewoon niet stopt, dan zal A deze ook niet accepteren. A_{TM} is dus herkenbaar (ook hier zien we dat A_{TM} niet beslisbaar is omdat deze kan blijven lopen).

(d) A_{TM} is niet co-herkenbaar

Bewijs. A_{TM} kan echter niet co-herkenbaar zijn. We bewijzen dit met contradictie. Indien A_{TM} co-herkenbaar is, is deze dus herkenbaar en co-herkenbaar (zie vorig bewijs). Wanneer een taal deze beide eigenschappen bezit, is deze beslisbaar. Dit is een contradictie met het eerste bewijs.

Vraag 2. Bespreek de twee noties $(A \leq_m B \text{ en } A \leq_T B)$ van reduceerbaarheid, hun verband en op welke manier die noties kunnen gebruikt worden om aan te tonen dat een taal (on)beslisbaar/herkenbaar is.

Om over te gaan naar de definitie van de reductie van talen, kunnen we best eerst de definifie van Turing-berekenbaar erbij halen (indien we dit niet doen, kunnen we zeker zijn van deze bijvraag).

Definitie 2 (Turing-berekenbare functie). Een functie f heet Turing berekenbaar indien er een Turingmachine bestaat die bij input s uiteindelijk stopt met f(s) op de band.

(a) Veel-één reductie (\leq_m)

Definitie 3 (Reductie van talen). We zeggen dat taal L_1 (over Σ_1) naar taal L_2 (over Σ_2) kan gereduceerd worden indien er een afbeelding f met signatuur $\Sigma_1^* \longrightarrow \Sigma_2^*$ bestaat zodanig dat $f(L_1) \subseteq L_2$ en $f(\overline{L_1}) \subseteq \overline{L_2}$, en zodanig dat f Turing-berekenbaar is. We noteren dat door $L_1 \leq_m L_2$.

Tot hiertoe is het al duidelijk wat $L_1 \leq_m L_2$ wil zeggen. Het is nu nog belangrijk om het verband met herkenbaarheid en beslisbaarheid aan te tonen. Dit doen we aan de hand van verschillende, specifiekere stellingen apart te bewijzen. We kunnen achteraf dan de vorige bewijzen gebruiken om ze simpeler te maken.

Definitie 4. Als $L_1 \leq_m L_2$ en L_2 is beslisbaar, dan is L_1 beslisbaar.

Bewijs. Het is belangrijk te weten dat de functie f, die elementen uit L_1 omzet naar element uit L_2 , Turing-berekenbaar is. Concreet wil dit zeggen dat we de mogelijkheid hebben om een turingmachine op te stellen met als in put $s_1 \in L_1$ en als output $f(s_1) \in L_2$.

Neem nu dat L_2 beslisbaar is, met zijn beslisser B. We construeren nu een machine F die elementen uit L_1 omzet (via f) naar elementen uit L_2 , waarna we de beslisser B laten beslissen. Hupsa, de combinatie van F en B is de beslisser van L_1 en ook deze taal is dus ook beslisbaar.

Definitie 5. Als $L_1 \leq_m L_2$ en L_2 is herkenbaar, dan is L_1 herkenbaar.

Bewijs. Dit bewijs werkt hetzelfde als het voorgaande, om na te gaan dat wanneer L_2 beslisbaar is, dat dan ook L_1 beslisbaar is. Hier moeten we enkel de beslisser B vervangen door een herkenner H.

Definitie 6. Als $L_1 \leq_m L_2$ en L_1 is niet-herkenbaar, dan is L_2 niet-herkenbaar.

Bewijs. Stel L_1 is niet-herkenbaar en L_2 wel. We hebben zonet bewezen dat als L_2 herkenbaar is, ook L_1 herkenbaar moet zijn. Contradictie.

Definitie 7. Als $L_1 \leq_m L_2$ en L_1 is niet-beslisbaar, dan is L_2 niet-beslisbaar.

Bewijs. Stel L_1 is niet-beslisbaar en L_2 wel. We hebben zonet bewezen dat als L_2 beslisbaar is, ook L_1 beslisbaar moet zijn. Contradictie.

(b) Orakels en hiërarchie van beslisbaarheid (\leq_T)

Zoals we weten is een Turingmachine een handig hulpmiddel om te bepalen of strings tot een taal horen of niet. We kunnen de machines gebruiken om talen te herkennen, of specifieker, te beslissen. Niet alle talen kunnen echter beslist worden door zo een Turingmachine. Zo is het bijvoorbeeld onmogelijk om een Turingmachine op te stellen die de taal A_{TM} beslist.

Dit zorgt er voor dat we op zoek moeten gaan naar een betere machine die naast het beslissen van de al besliste talen, ook andere talen kan beslissen. De nieuwe machine moet dus krachtiger zijn. Het resultaat is een orakelmachine.

Een orakelmachine is een uitbreiding op de Turingmachine, die een orakel bevat. Je kan een orakel bekijken als een black box waar de Turingmachine vragen een kan stellen. In theorie is een orakel eigenlijk een soort bitmap, of anders gezegd een rij van booleans. Stel we ordenen alle strings volgens de lexicografische orde met kortere strings eerst. Elke string op index i komt nu overeen met een booleaanse waarde in de bitmap, die ook gealloceerd is op locatie i. Indien de string op een bepaalde locatie tot een gegeven taal L behoord, dan zal de overeenkomstige booleaanse waarde op true staan. Indien dit niet het geval is, blijft de waarde op false.

De werking van een orakelmachine is nu heel eenvoudig. Het krijgt als input een string s. De machine vraagt nu aan het orakel of de string tot een taal behoort. Het orakel is in staat om de string om te vormen naar de index in de rij volgens de lexicografische volgorde en raadpleegt de overeenkomstige booleaanse waarde in de bitmap. Is die waarde true, dan accepteert het orakel de string s. Indien de waarde false is, dan wordt de string s geweigert. Een orakelmachine waarvan de bitmap een configuratie heeft voor een bepaalde taal L te beslissen, noemen we O^L .

Figuur 1: Simpele voorstelling van een orakel (bitmap).

Een orakel kan voor vele problemen gebruikt worden. Het halting probleem is hier echter maar één enkel voorbeeld van. Vaak wordt een orakel gebruikt om op een abstracte manier een antwoord te krijgen op een bepaalde vraag. Deze vraag kan zelfs onoplosbaar zijn.

Definitie 8 (Turingreduceerbaar). Een taal A is Turingreduceerbaar naar taal B, indien A beslisbaar is relatief t.o.v. B, t.t.z. er bestaat een orakelachine O^B die A beslist. De notatie is $A \leq_T B$.

Dit is inderdaad zeer gelijkend op het eerste deel van deze vraag. In plaats van een beslisser voor B te hebben, die A ook beslist, gebruiken we nu een orakelmachine. Deze machine is dan een theoretisch hulpmiddel dat we kunnen gebruiken om onze kennis toe te passen op meerdere talen. Deze kunnen we echter in realiteit niet implementeren zoals we net beschreven hebben.

Definitie 9. Indien $A \leq_T B$ en B is beslisbaar, dan is A beslisbaar.

Bewijs. De definitie zegt ons dat $A \leq_T B$ enkel geldt indien we een orakelmachine O^B hebben dat B én A beslist. Dit is dus volledig afleidbaar van de definitie.

Of anders: stel dat B beslisbaar is en A niet. Dan hebben we een orakel O^B dat (theoretisch) B beslist, maar niet A (want deze is niet beslisbaar). Dit is meteen een contradictie met de definitie.

Definitie 10. Indien $A \leq_m B$ dan is ook $A \leq_T B$. $M.a.w. \leq_m$ is figner dan \leq_T .

Dit is vanzelfsprekend indien we beseffen dat het orakel een theoretische uitbreiding is op de Turingmachine. We gebruiken de Turingmachines om talen te herkennen of the beslissen. Het is mogelijk zo een machine te implementeren in een taal naar keuze. Er is echter een grens op het aantal talen dat we kunnen beslissen, aangezien een aantal in een oneindige lus kunnen komen tijdens het beslissingsproces. Dit is een probleem dat we in de praktijk kunnen tegenkomen. Een theoretische oplossing daarvoor is de orakelmachine. We kunnen deze machine wel gebruiken om theoretisch verder te redeneren. Dit will zeggen dat het orakel alle talen beslist dit een Turingmachine kan besliseen, plus de talen die een turingmachine niet kan beslissen (oneindig lus). Hierdoor is $A \leq_m B$ fijner dan $A \leq_T B$.

Vraag 3. Definieer de enumeratormachine. Bewijs dat elke herkenbare taal kan geënumereerd worden en dat elke taal die door een enumerator wordt geënumereerd ook herkenbaar is. Kan elke beslisbare taal geënumereerd worden? Bespreek in deze context de uitspraak "de verzameling van Turing machines is een herkenbare taal".

De enumerator machine is de machine zoals origineel voorgesteld door Alan Turing in 1936. Deze machine bezit deels de Turing machine zoals we deze al kennen met enkele kleine aan passingen. Zo heeft de machine ook een outputband, output marker en een enumerator toestand q_e . De δ van de enumerator heeft als signatuur

$$Q \times \Gamma \to Q \times \Gamma \times \Gamma_e \times \{L, R, S\}$$

Met Q de huidige toestang en Γ het te lezen symbool. Als output een nieuwe toestand Q en Γ , samen met $\{L,R,S\}$. Het verschil met de Turingmachine die we eerder hebben gezien is Γ_e . Dit symbool zal bij overgang geschreven wordt op de outputband. Na het schrijven van Γ_e verplaatst de outputmarker zich 1 plaats naar rechts. De output kan dan een string zijn, verschillende strings opgesplitst door een scheidingsteken of zelfs een oneindige string... Eender hoe, het heeft zin om te spreken over de verzameling (eindige) outputstrings door de enumerator geproduceerd of geënumereerd. Die verzameling is de taal door de enumerator bepaald of geënumereerd. De enumerator mag daarbij dezelfde string meer dan eens op de outputband zetten.

Figuur 2: Enumeratormachine.

Definitie 11. De taal door een enumerator bepaald is herkenbaar en elke herkenbare taal wordt door een enumerator geënumereerd. Beide stellingen zullen in aparte bewijzen worden bewezen.

Bewijs. Elke taal door een enumerator bepaald is herkenbaar. Neem de Turingmachine T voor de taal L, bepaald door een gegeven enumerator E. Laat T nu E als een subroutine gebruiken.

T neemt een string s aan en geeft deze door naar de onderliggende E^6 . Telkens E in q_e komt zal T de laatst geproduceerde outputstring lezen op de outputband

 $^{^6}$ Door deze op de band te plaatsen en E te starten.

van E. Indien deze gelijk is aan de inputstring s, dan accepteert T s. Indien dit niet zo is, gaat de enumerator doorrrekenen⁷.

Bewijs. Elke herkenbare taal wordt geënumereerd door een enumerator. Neem de Turingmachine T die de willekeurige taal L herkent. Het is voldoende een enumerator E te construeren die L enumereerd⁸. Om E op te stellen, maken we gebruik van enkele hulpmachines.

- 1. Een machine die voor een gegeven getal n de eerste n strings uit Σ^* genereerd⁹. Deze T_{qen} zal de strings op de band van E plaatsen.
- 2. T_n zal op elk van de gegeven n strings, n stappen van T uitvoeren. Het zal dus het aantal stappen van T limiteren zodat deze niet in een oneindige lus kan gaan voor de strings die niet worden herkend. Waarom doen we dit? We willen eigenlijk alle strings overlopen 10 en daar de aanvaardbare strings $(s \in L)$ uit filteren. Deze behoren tot de herkenbare taal L. Hierdoor moeten we ook de strings nakijken die niet tot L behoren. Deze kunnen er echter voor zorgen dat de T in een oneindige lus gaat. Daarom limiteren we het aantal stappen zodat ook E niet oneindig moet blijven wachten. Indien E de string aanvaard, plaatst E de string op de outputband. Indien E de string niet schrijven.
- 3. T_{driver} zal een opeenvolging van getallen n genereren om de voorgaande machines op te stellen en T_{gen} en T_n oproepen.

Resultaat: Alle $s \in L$ zullen op de outputband worden gezet, maar toch zal de uitvoering van de oneindige lus gestopt worden zodat de enumerator zeker eindigt. Hiermee is het halting probleem voorkomen. Well done.

Ten slotte moeten we vermelden dat elke taal die beslisbaar is kan geënuereerd worden, aangezien elke beslisbare taal ook herkenbaar is. Uit het laatste bewijs zou ook duidelijk moeten zijn dat de verzameling van Turinmachines, A_{TM} , een herkenbare taal is. We voeren het bewijs gewoon opnieuw uit, maar met $L = A_{TM}$.

⁷De enumerator kan dus oneindig blijven doorrekenen waardoor de taal door een enumerator bepaald herkenbaar en niet beslisbaar is.

⁸Indien dit lukt is dit mogelijk voor elke L, aangezien L willekeurig is.

⁹Namelijk s_1, s_2, \ldots, s_n .

¹⁰Die mogelijk zijn op het alfabet Σ .

Vraag 4. Geef het bewijs van de stelling: E_{TM} is niet beslisbaar. Doe dit zonder de stelling van Rice te gebruiken. Bespreek de uitspraken E_{TM} is herkenbaar en E_{TM} is co-herkenbaar. Zijn er ook alternatieve bewijzen? Hoe zit het met E_{CFG} ?

3.2.1 (a) E_{TM} is niet beslisbaar

Definitie 12 (E_{TM}) . $E_{TM} = \{ \langle M \rangle \mid M \text{ is een } TM, \text{ en } L_M = \phi \}$ is niet beslisbaar: het is niet beslisbaar of een Turingmachine geen enkele input accepteert.

Bewijs. In dit bewijs gaan we gebruik maken van een hulpmachine M_s . Het is belangrijk eerst te snappen wat deze machine doet. s is hier een string die gehardcoded is. Voor elke input w die niet gelijk is aan s, zal de machine M_s de input weigeren. Indien w = s, dan zal M lopen op w (of s). Indien M de input s accepteert zal ook M_s accepteren. Onderstaande afbeelding is een schematische voorstelling van de hulpmachine M_s .

Figuur 3: Concept van M_s

Nu kunnen we verder met het bewijs. We proberen de stelling aan te tonen met een bewijs uit het ongerijmde. Stel dat E_{TM} beslisbaar is en een beslisser E heeft. We gaan nu een beslisser B voor A_{TM} opstellen met behulp van E^{11} . We kunnen twee punten inzien.

- 1. We stellen eerste onze hulpmachine M_s op. We laten nu E lopen over $\langle M_s \rangle$. Indien E nu $\langle M_s \rangle$ accepteerd. M_s accepteert dus geen strings (zie definitie E_{TM}). Merk op dat in dit geval $B \langle M, s \rangle$ niet accepteerd. M_s bepaalt de lege taal, dus M bepaald s niet.
- 2. In het andere geval kan het zijn dat E < M, s > verwerpt. Dan bepaald M_s wel een taal (die niet leeg is) en zal dus B zijn input wel accepteren.

Uit bovenstaande punten kunnen we concluderen dat E de tegenovergestelde uitkomst heeft van B. B bestaat echter niet, aangezien A_{TM} niet beslisbaar is. E kan dus ook geen beslisser zijn en E_{TM} is dus niet beslisbaar. Contradictie.

 $^{^{11}\}mathrm{De}$ beslisser Bkan niet bestaan, want A_{TM} is onbeslisbaar. Dit wordt de contradictie.

(b) E_{TM} is niet herkenbaar maar wel co-herkenbaar

Bewijs. Het is makkelijk aan te tonen dat door eerst de co-herkenbaarheid van E_{TM} te onderzoeken. Het complement van E_{TM} bestaat uit alle Turingmachines die een niet lege taal bepalen. Neem nu Turingmachine $M \in \overline{E_{TM}}$ en dus $L_M \neq \phi$. We maken een hulpmachine die voor elk van die M alles strings s in de lexicografische volgorde M laat lopen over s. Vanaf M accepteert, accepteert de hulpmachine. Indien dit niet is, gaat hij verder met de volgende string s. Dit proces kan niet oneindig doorgaan, tenzij geen enkele string s geaccepteerd wordt door M. $\overline{E_{TM}}$ is dus herkenbaar en dus is E_{TM} co-herkenbaar.

 E_{TM} is dus niet herkenbaar aangezien het co-herkenbaar is. Indien het ook herkenbaar is, zou het ook beslisbaar zijn. Dit is een contradictie met het vorige bewijs.

(d) Alternatieve bewijzen

Bewijs. Een alternatief bewijs zou kunnen zijn met behulp van de stelling van Rice. Een taal-invariante, niet-triviale eigenschap van E_{TM} is dat $L_M = \phi$ voor elke M in E_{TM} die L_M bepaald. Volgens de stelling van Rice is E_{TM} dus onbeslisbaar.

(e) Bespreek E_{CFG}

Definitie 13. $E_{CFG} = \{ \langle G \rangle \mid G \text{ is een } CFG, \text{ en } L_G \neq \phi \}$ is beslisbaar: emptyness van een CFL is beslisbaar.

Bewijs. We beschrijven formeel een algoritme dat G transformeert naar een vorm waarin de beslissing gemakkelijk is.

- 1. Indien er een regal $A \to \alpha$ in zit, en α bestaat alleen uit eindsymbolen (mag dus ook ϵ zijn), dan
 - (a) Verwijder alle regels waar A aan de linkerkant staat
 - (b) Vervang in elke regel waar A rechts voorkomt, de voorkomens van A foor α
- 2. Blijf dit doen totdat ofwel
 - (a) Het startsymbool verwijderd is: reject, want het startsymbool kan een string afleiden.
 - (b) Er geen regels zijn van de benodigde vorm: accept, want de taal is leeg.

Vraag 5. Leg de stelling van Rice uit, en geef het bewijs. Geef minstens één eigenschap van Turingmachines die niet voldoet aan de voorwaarde voor de stelling van Rice en toon aan dat die eigenschap geen aanleiding geeft tot een niet-beslisbare taal. Karakteriseer volledig alle eigenschappen van Turingmachines die aan de stelling van Rice voldoen m.b.v. $IsIn_{TM,S}$.

(a) De stelling van Rice

Vooraleer we verder gaan met de stelling van Rice is het verstandig om sommige termen te verklaren. Niet-triviale en taal-invariante eigenschappen zijn een belangrijk onderdeel van de stelling. In onderstaande verklaringen duidt Pos_P op de verzameling van machines die in het bezit zijn van een eigenschap P en Neg_P de verzameling van machines zonder eigenschap P.

Definitie 14 (Niet-triviale eigenschap). Een eigenschap P van Turingmachines heet niet-triviaal indien $Pos_p \neq \emptyset$ en ook $Neg_p \neq \emptyset$. Er bestaan dus Turingmachines die deze eigenschap P bezitten, maar ook machines die deze niet bezitten.

Definitie 15 (Taal-invariante eigenschap). De eigenschap P heet taal-invariant indien alle machines die dezelfde taal bepalen hebben ofwel allemaal P, ofwel heeft geen enkele ervan P.

$$L_{M_1} = L_{M_2} \Rightarrow P(M_1) = P(M_2)$$

Met deze twee definities in het achterhoofd, kunnen we overgaan naar de formele definitie van de stelling van Rice, met het bewijs als gevolg.

Definitie 16 (Stelling van Rice). Voor elke niet-triviale, taal-invariante eigenschap P van Turingmachines geldt dat Pos_P (en ook Neg_P) niet beslisbaar is.

Bewijs. We bewijzen dit met hehulp van een contradictie. Neem de Turingmachine M_{\emptyset} die de lege taal beslist. Laten we er nu van uit gaan dat deze machine een bepaalde eigenschap P heeft. De stelling zegt ons dat de eigenschap P niet-triviaal en taal-invariant is. Uit de definitie kunnen we dan afleiden dat $Pos_P \neq \emptyset$ (en ook $Neg_P \neq \emptyset$). Aangezien deze verzameling niet leeg is, moet er een Turingmachine X bestaan met deze eigenschap P. Laat ons zeggen dat deze Turingmachine de taal L_X beslist.

We gaan nu proberen een contradictie te bekomen door aan te nemen dat de stelling niet waar is. We nemen dus aan dat Pos_P (en dus ook Neg_P) beslisbaar is. We gaan nu een beslisser B proberen op te stellen voor Pos_P die deze beslist¹². Om B te maken, gaan we eerst een hulpmachine $H_{M,s}$ opstellen.

Deze hulpmachine $H_{M,s}$ heeft een Turingmachine M en een string s in zich.

 $^{^{12} \}mathrm{Later}$ zullen we deze Bgebruiken om een beslisser Ate maken voor de taal met Turingmachines A_{TM}

Deze staan vast voor de machine en kunnen dus niet veranderen¹³. De input van deze machine is een string $x \in L_X$. Wanneer $H_{M,s}$ gestart wordt, zal deze eerst M laten lopen over s. Indien M s reject, zal $H_{M,x}$ altijd rejecten. Indien M s accept, dan zal $H_{M,s}$ overgaan naar fase 2. Hier zal de hulpmachine X over x laten lopen. Indien X x ook accept, dan zal de hulpmachine accepten. Indien X x reject, dan zal ook de hulpmachine rejecten.

Figuur 4: Concept van $H_{M,s}$

Er zijn nu twee mogelijkheden voor $H_{M,s}$. Indien M s accept, dan gaat $H_{M,s}$ altijd overgaan tot het testen van x in X. In dit geval beslist $H_{M,s}$ de volledige taal L_X . De andere optie is dat M s reject. In dat geval gaat de hulpmachine altijd rejecten en dus enkel de lege taal accepteren.

Laat nu de beslisser B los op $H_{M,s}$. Dit wil zeggen dat de beslisser accept of reject voor de gegeven M en s.

Stel dat we nu een beslisser A maken voor A_{TM} . In dat geval moeten we dus elke M en s in A_{TM} testen. We kunnen dus zeggen dat A accept indien B $H_{M,s}$ accept, anders reject. We bekomen dus de volgende conclusie.

$$A \ \mathrm{accepts} < M, s > \ \mathop{\updownarrow} \ B \ \mathrm{accepts} \ H_{M,s} \ \mathop{\updownarrow} \ H_{M,s} \ \mathrm{heeft} \ \mathrm{eigenschap} \ P \ \mathop{\updownarrow} \ H_{M,s} \ \mathrm{accepts} \ L_X \ \mathop{\updownarrow} \ M \ \mathrm{accepts} \ s$$

Conclusie: A is een beslisser voor A_{TM} , maar dit is onmogelijk aangezien A_{TM} niet beslisbaar is¹⁴. Hieruit kunnen we concluderen dat alle bovenstaand equivalenties onwaar zijn en dus is ook Pos_P niet beslisbaar. Contradictie.

¹³Ze zijn als het ware gehardcoded.

¹⁴Zie vraag 1 van dit hoofdstuk voor het bewijs.

(b) Voorbeeld

We nemen de Turingmachine TM als voorbeeld. We stellen ons de vraag over de volgende eigenschap. Zal de Turingmachine TM ooit zijn leeskop naar links verschuiven? We kunnen hier een beslisser voor opstellen.

Gegeven het tupel $< M, s > {\rm zal} \ TM \ M$ los
laten op s voor maximaal |s| stappen. Als de machine geen en
kele keer zijn leeskop naar links heeft bewogen, dan moet de leeskop op de eerste # sta
an aan de rechterkant achter w op de leesband. Zoek nu de overgang δ in het state diagram van M die # als input heeft. We zijn enkel geïntereseerd in deze, aangezien voor de andere de leeskop nooit naar links is gegaan. Indien geen enkel van deze transacties naar links gaat, accept. Indien een van hun wel naar links gaat, reject.

Algemene notatie

De volgende notatie bepaalt de verzameling van turingmachines M die een taal L_M bepalen die behoord tot een gegeven verzameling van talen S.

$$IsIn_{TM,S} = \{ \langle M, S \rangle | L_M \in S \}$$

We kunnen deze notatie gebruiken om eigenschappen te karakteriseren. Een vorbeeld van een eigenschap van E_{TM} die voldoet aan de voorwaarden van de stelling van Rice, is dat de bepaalde taal leeg is. We kunnen dan de volgende notatie gebruiken om de eigenschap te karakteriseren.

$$E_{TM} = IsIn_{TM,\{\phi\}}$$

Vraag 6. Wat is een orakelmachine? Bespreek de uitspraak "de verzameling orakelmachines (over een gegeven orakel) is strikt krachtiger dan de verzameling van Turing machines". Leg hierbij ook uit wat men bedoeld met "krachtiger". Kan een verzameling orakelmachines (voor bepaald gegeven orakel) alle talen beslissen? Kan een orakelmachine ook A_{TM} of H_{TM} beslissen?

Orakelmachine

Zoals we weten is een Turingmachine een handig hulpmiddel om te bepalen of strings tot een taal horen of niet. We kunnen de machines gebruiken om talen te herkennen, of specifieker, te beslissen. Niet alle talen kunnen echter beslist worden door zo een Turingmachine. Zo is het bijvoorbeeld onmogelijk om een Turingmachine op te stellen die de taal A_{TM} beslist.

Dit zorgt er voor dat we op zoek moeten gaan naar een betere machine die naast het beslissen van de al besliste talen, ook andere talen kan beslissen. De nieuwe machine moet dus krachtiger zijn. Het resultaat is een orakelmachine.

Een orakelmachine is een uitbreiding op de Turingmachine, die een orakel bevat. Je kan een orakel bekijken als een black box waar de Turingmachine vragen een kan stellen. In theorie is een orakel eigenlijk een soort bitmap, of anders gezegd een rij van booleans. Stel we ordenen alle strings volgens de lexicografische orde met kortere strings eerst. Elke string op index i komt nu overeen met een booleaanse waarde in de bitmap, die ook gealloceerd is op locatie i. Indien de string op een bepaalde locatie tot een gegeven taal L behoord, dan zal de overeenkomstige booleaanse waarde op true staan. Indien dit niet het geval is, blijft de waarde op false.

De werking van een orakelmachine is nu heel eenvoudig. Het krijgt als input een string s. De machine vraagt nu aan het orakel of de string tot een taal behoort. Het orakel is in staat om de string om te vormen naar de index in de rij volgens de lexicografische volgorde en raadpleegt de overeenkomstige booleaanse waarde in de bitmap. Is die waarde true, dan accepteert het orakel de string s. Indien de waarde false is, dan wordt de string s geweigert. Een orakelmachine waarvan de bitmap een configuratie heeft voor een bepaalde taal L te beslissen, noemen we O^L .

Figuur 5: Simpele voorstelling van een orakel (bitmap).

Een orakel kan voor vele problemen gebruikt worden. Het halting probleem is hier echter maar één enkel voorbeeld van. Vaak wordt een orakel gebruikt om op een abstracte manier een antwoord te krijgen op een bepaalde vraag. Deze vraag kan zelfs onoplosbaar zijn.

Krachtiger dan een Turingmachine

Zoals zonet vermeld, is een orakelmachine krachtiger dan een Turingmachine. Dit wil zeggen dat een orakelmachine sowiso meer talen kan beslissen dan een Turingmachine. Het kan namelijk alle talen beslissen die een Turingmachine kent vermeerderd met heel wat talen die anders in een oneindige lus zullen komen. A_{TM} is daar een voorbeeld van. Een orakelmachine is dus strikt krachtiger dan een Turingmachine.

Verzameling orakelmachines

Normaal wordt een orakelmachine gegeven en kunnen we deze vraag concreet beantwoorden. Dit is nu dus onmogelijk. De redenering gaat echter van de volgende vorm zijn.

Een orakel O^A is gegeven dat een taal A beslist. Volgens de definitie van Turingreduceerbaar (zie onderaan) kunnen we concluderen dat elke B, waarvoor geldt dat $B \leq_T A$, kan beslist worden door de orakelmachine O^B . Het is dus niet mogelijk om alle talen te beslissen, enkel die die Turingreduceerbaar zijn.

Definitie 17 (Turingreduceerbaar). Een taal A is Turingreduceerbaar naar taal B, indien A beslisbaar is relatief t.o.v. B, t.t.z. er bestaat een orakelachine O^B die A beslist. De notatie is $A \leq_T B$.

Het is misschien wel mogelijk om een orakel te ontwerpen dat dit wel kan. In plaats van een bitmap voor alle strings, maken we een bitmap voor alle talen. Een element bevat hier geen booleaanse waarde, maar een ander orakel voor de overeenkomstige taal. Theoretisch is dit volgens mij mogelijk, maar gaat misschien iets te ver voor op het examen.

Beslisbaarheid A_{TM} en H_{TM}

Dit is een bijvraag en hier gaan we dus niet dieper op in. De bewijzen van de onbeslisbaarheid worden hier dus niet gegeven. Deze staan ook al in andere vragen. Volgens mij kan hier heel beknopt op geantwoord worden. A_{TM} en H_{TM} zijn niet beslisbaar met standaard Turingmachines. Met een orakelmachine kunnen we uiteraard een corresponderende bitmap maken voor de talen en zijn ze dus wel beslisbaar.

Vraag 7. Geef informeel de definitie van een lineair begrensde automaat (LBA). Argumenteer dat het aanvaardingsprobleem voor LBA's (A_{LBA}) beslisbaar is. Geef de stappen in een bewijs dat E_{LBA} (de verzameling van LBA's die de lege taal bepalen) niet beslisbaar is.

Lineair begrensde automaat

Definitie 18 (Lineair Begrensde Automaat). Een Lineair Begrensde Automaat is een Turingmachine die niet leest of schrijft buiten het deel van de band dat initieel invoer bevat.

De naam komt hier tot stand door de volgende equivalente definitie van een lineair begrense automaat. Deze definitie laat toe dat de LBA een stuk band gebruikt dat met een constante factor f groter mag zijn dan de input.

A_{LBA} is beslisbaar

Het acceptatieprobleem voor LBA is gedefinieerd als de taal

$$A_{LBA} = \{ \langle M, s \rangle | M \text{ is een } LBA \text{ en } s \in L_{LBA} \}$$

Bewijs. We kijken naar alle mogelijke configuraties van een LBA op een string van lengte n. Het aantal toestanden is q met het aantal elementen in het bandalfabet b. Het aantal mogelijke strings is dan b^n . De leeskop kan onder elk van de symbolen staan terwijl de machine in elk van de toestanden kan zitten. Dat geeft in het totaal maximaal qnb^b configuraties. We kunnen nu een beslisser B voor A_{LBA} construeren als volgt¹⁵:

- 1. Berekent $k = qnb^n$.
- 2. Simuleert dan M op s met maximaal k stappen.
- 3. Indien M ondertussen accepteerde, accept.
- 4. Indien M ondertussen verwierp, reject.
- 5. Indien M nog niet stopte, betekent dat dat M in een lus zit en dus niet zal accepteren: reject.

E_{LBA} is niet beslisbaar

Definitie 19. $E_{LBA} = \{M|M \text{ is een } LBA \text{ die de lege taal bepaalt }\}$ is niet beslisbaar.

We laten eerst zien dat voor een gegeven Turingmachine M en string s we een LBA kunnen construeren die gegeven een eindige rij configuraties (van M) kan beslissen of die rij een accepterende computation history is voor s. Een rij configuraties kan gemakkelijk op een band geplaatst worden zoals in de figuur hieronder.

¹⁵Bij input < M, s >.

Figuur 6: $\delta(q_4, c) = (q_7, b, R)$

Wat moet de machine doen om na te gaan of een rij configuraties een accepterende computation history is voor s?

- 1. Nakijken of twee opeenvolgende configuraties verbonden zijn door de δ .
- 2. Nakijken of de eerste configuratie q_s bevat op de juiste plaats.
- 3. N Akijken of de laatste configuratie q_a bevat.

Zonder veel in detail te treden moet het duidelijk zijn dat hiervoor slechts een constante hoeveelheid extra bandruimte nodig is en dat die beslissing dus kan genomen worden door een LBA. We maken die LBA zo dat hij bij een accepterende computation history accepteert en anders reject. Nu kunnen we aan het bewijs zelf beginnen.

Bewijs. Stel dat we een beslisser E hebben voor E_{LBA} . We construeren een beslisser B voor A_{TM} als volgt. Bij input $A_{TM} = A_{TM}$ als volgt.

- 1. Construeer de LBA $A_{M,s}$ die van input kan beslissen of een inputstring een accepterende computation history is voor M op input s.
- 2. Laat E los op $\langle A_{M,s} \rangle$: als E aanvaardt, reject; anders accept.

$$B \text{ beslist } A_{TM} \text{ want } B \text{ accepteert } < M, s > \\ \updownarrow \\ E < A_{M,s} > \text{reject} \\ \updownarrow \\ A_{M,s} \text{ aanvaardt minstens één string} \\ \uparrow \\ \updownarrow$$

Er bestaat een accepterende computation history voor M op s

Het laatste is equivalent met zeggen dat M s accepteert. Die B kan niet bestaan, dus ook E niet en E_{LBA} is onbeslisbaar.