2020

Versuch 3: Timer, PWM, Schrittmotor

Zu den wichtigsten I/O-Modulen gehören Timerbausteine. Ihre Anwendung reicht von der Erzeugung regelmäßiger Timerinterrupts über Funktionen zur Zeitmessung oder Ereigniszählung bis zur Ausgabe von zeitgesteuerten Signalen. Eine häufig verwendete zeitgesteuerte Signalform ist die Pulsweitenmodulation. In diesem Versuch wird mit Hilfe der Pulsweitenmodulation des Timers 3 ein Servomodul sowie eine RGB-LED angesteuert und mit Hilfe des Systick Timer Interrupts ein Schrittmotor betrieben.

Pulsweitenmodulation (PWM):

Bei der PWM wird ein Puls regelmäßig mit einer bestimmten Periodendauer wiederholt, die Pulsbreite kann variiert werden. Durch das Verhältnis von Pulsbreite zur Periodendauer kann z.B. die Helligkeit einer LED bestimmt werden. Eine weitere Anwendung ist die Ansteuerung eines Servomotors. Die Periodendauer muss dabei 20 ms betragen, die Pulsweite kann von 1 ms bis 2 ms betragen. Die Position des Servomotors wird durch die Pulsweite gesteuert.

Timerbaustein:

Ein Timerbaustein besteht im Wesentlichen aus einem Zähler, der von einem Takt angesteuert wird. Der Zähler zählt von 0 bis zu einem einstellbaren Reload-Wert und beginnt dann wieder von vorn. Der Takt kann über einen Prescaler variiert werden. Der Zählerwert wird kontinuierlich mit dem Wert in einem Compare-Register verglichen. Bei Übereinstimmung von Zähler und Vergleichswert wird das Ausgangssignal OC1 gesetzt bzw. zurückgesetzt.

Im PWM-Betrieb (Modus pwm1) wird OC1 beim Zählerstart gesetzt und beim Erreichen des Vergleichswertes zurückgesetzt. Erst beim Erreichen des Reload-Wertes wird OC1 wieder gesetzt.

Praktikum Mikrocomputertechnik V3

2020

Der Timer 3 des STM32 ist ein universeller Timer, er arbeitet im Capture/Compare-Modus.

Capture bedeutet, dass abhängig von einem Triggersignal der aktuelle Zählerwert im Capture-Register gespeichert wird und somit die Zeit zwischen Zählerstart und Triggersignal gemessen werden kann, der Zähler wird im Input-Modus betrieben.

Im Output-Modus wird das Compareregister als Vergleichswert für die Erzeugung einer zeitgesteuerten Signalform verwendet. In diesem Versuch werden wir nur den Output-Modus verwenden.

Der Timer 3 verfügt über vier Compareregister sowie vier Ausgangssignale, es können also vier PWM-Signale mit gleicher Periodendauer, aber unterschiedlicher Pulsweite erzeugt werden.

In der folgenden Registerübersicht sind die für die PWM notwendigen Register markiert. Die Timerausgänge liegen an den Pins PA6 und 7 sowie PC 8 und 9, d.h. sie müssen auf den Modus "alternate function" geschaltet werden (siehe Tabelle im Dokument "Alternate Functions").

2020

Aufgabe 3.1: Servomotor

Ein Servomotor wird häufig im Modellbau verwendet. Ein Elektromotor fährt gesteuert durch eine interne Regelung eine bestimmte Position innerhalb eines 90°-Winkels an. Die Position wird mit einer Pulsweitenmodulation vorgegeben. Dabei muss eine Periodendauer von 20 ms eingehalten werden. Die Pulsweite liegt zwischen 1 und 2 ms, sie bestimmt die Position, z.B. 1 ms entspricht dem rechten Anschlag, 2 ms steht für den linken Anschlag. Eine Pulsweite dazwischen wird in die entsprechende Position umgesetzt.

Programmieren Sie nun den Timer 3 so, dass an OC1 (entspricht Port A6) das PWM-Signal zum Steuern eines Servomotors generiert wird. Die Position wird wie in Versuch 2 mit "putty" über die serielle Schnittstelle eingegeben. Dabei wird nach einer Kennung s der Positionswert als Prozent-

angabe des Vollausschlags eingegeben, ein Punkt beendet die Eingabe (z.B. s50. = Servo fährt auf Mittelstellung). Nachdem der Timer das PWM-Signal autark ohne den Prozessor erzeugt, kann weiterhin die Analogausgabe aus Versuch 2 laufen, die USART-Schnittstelle wird per Interrupt eingelesen. Orientieren Sie sich am Beispielprojekt V3.1_PWM_Stepper. Überzeugen Sie sich von der korrekten PWM-Ausgabe mit Hilfe des Oszilloskops.

Vorbereitung: Berechnen Sie den Prescaler-Wert, den Preload-Wert für 20 ms Periodendauer und den Wert für 1 ms Periodendauer bei einem Prozessortakt von 16 MHz. Der Bereich von 1 ms bis 2 ms soll in 100 Schritte aufgeteilt werden. Verwenden Sie keine Komma-Zahlen!

Hinweis: Alle Zugriffe auf den Timer 3 sollen im Modul TIM3_PWM erfolgen, so dass im main-Programm keine Hardwarezugriffe erscheinen.

2020

Aufgabe 3.2: Ansteuern einer 3-farbigen LED

Zum unterschiedlichen Dimmen einer 3-farbigen LED mit den Farben Rot, Grün und Blau verwenden wir nun die Ausgänge OC2...OC4 des Timers 3. Erweitern Sie das Programm so, dass die Helligkeit der 3 Farben der LED durch Pulsweitenmodulation gesteuert wird (Ausgänge PA7, PC8, PC9). Bleiben Sie bei einer Periodendauer von 20 ms, die Pulsweite soll nun aber von 0 ms bis 20 ms reichen. Durch die Einstellung von unterschiedlichen Helligkeiten (0...255) der 3 Farben lassen sich beliebige Mischfarben erzeugen. Erweitern Sie Ihre Eingabe so, dass verschiedene Werte für alle 3 Farben einstellbar sind (z.B. r200g150b0. sollte die LED gelb leuchten lassen).

Achtung: Die LEDs sind im Gegensatz zum Servo low active, d.h. sie leuchten, wenn das Ausgangssignal des Timers "low" ausgibt. Sie müssen daher die Polarität der Ausgänge für Kanal 2…4 ändern (siehe Register CCER).

Aufgabe 3.3 : Schrittmotor

In diesem Versuch wird der Schrittmotor verwendet, den Sie aus dem Praktikum Digitaltechnik bereits kennen. Der Schrittmotor ist an den Ausgängen PB0...3 angeschlossen und benötigt im Halbschrittmodus 400 Schritte für eine Umdrehung. Der Systick-Timer soll regelmäßig einen Interrupt auslösen, der zur Ansteuerung des Schrittmotors verwendet wird. Im Interrupthandler wird jeweils ein Schritt ausgegeben, die Geschwindigkeit des Motors wird also durch die Interruptrate bestimmt. (Tipp: Definieren Sie das Schrittmuster in einem Array und geben Sie mit Hilfe einer Indexvariablen jeweils einen Schritt aus. Der Index wird pro Interrupt hoch- oder runtergezählt, je nach Drehrichtung des Motors)

- a) Steuern Sie den Schrittmotor mit Hilfe des SystickTimers an. Der Motor soll sich permanent drehen, die Drehrichtung wird durch die Eingabe von + bzw. am putty-Terminal umgeschaltet.
- b) Nun soll der Schrittmotor nicht mehr permanent drehen, sondern eine bestimmte Position anfahren. Die Zielposition wird über putty vorgegeben (z.B. m250.) und kann auch mehrfache Umdrehungen bedeuten (z.B. m800 = zwei Umdrehungen).

Hinweis: Deklarieren Sie die Variablen ziel_pos und akt_pos (= aktuelle Position). Die Variable ziel_pos wird über putty vorgegeben, akt_pos wird vom Interrupthandler verwaltet. Im Interrupthandler wird aus der Differenz zwischen ziel_pos und akt_pos die Drehrichtung ermittelt. Bei Übereinstimmung bleibt der Motor stehen!

Alle Funktionen für den Schrittmotor sollen im Modul Stepper implementiert werden.

Offset	Register	31	30	59	28	27	56	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	∞	7	9	2	4	ဗ	2	_	0
0x00	TIMx_CR1	Res.	Res,	Res.	Res.	Res.	Res.	Res.		KD :0]	ARPE		//S :0]	DIR	OPM	URS	NDIS	CEN															
	Reset value	T																						0	0	0	0	0	0	0	0	0	0
0x04	TIMx_CR2	Res.	Res	Res.	Res	Res.	Res	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	TI1S	MN	/IS[2	2:0]	CCDS	Res.	Res.	Res.								
	Reset value																						,			0	0	0	0	0			
0x08	TIMx_SMCR	Res.	Res.	Res.	Res	Res.	Res.	Res.	Res.	Res	Res.	ETP	ECE		PS :0]		ETF	[3:0]]	MSM	T	S[2:	0]	Res.	SN	1S[2	:0]						
	Reset value																	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0
0x0C	TIMx_DIER	Res.	Res.	Res.	Res.	Res	Res.	TDE	COMDE	CC4DE	CC3DE	CC2DE	CC1DE	UDE	Res.	TIE	Res.	CC4IE	CC3IE	CC2IE	CC11E	UIE											
	Reset value																		0	0	0	0	0	0	0		0		0	0	0	0	0
0x10	TIMx_SR	Res.	CC40F	CC30F	CC20F	CC10F	Res.	Res.	TIF	Res.	CC4IF	CC3IF	CC2IF	CC11F	UIF																		
	Reset value																				0	0	0	0			0		0	0	0	0	0
0x14	TIMx_EGR	Res.	Res.	Res.	Res.	Res.	Res.	Res.	TG	Res.	CC4G	cc3G	CC2G	CC1G	ng																		
	Reset value																										0		0	0	0	0	0

Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	œ	7	9	2	4	ဗ	2	-	0
	TIMx_CCMR1 Output Compare mode	Res.	Res.	Res.	Res.	Res	Res.	Res.	Res.	OC2CE		C2I [2:0]		OC2PE	OC2FE	CC [1:	:2S :0]	OC1CE		OC1I [2:0]		OC1PE	OC1FE	CC [1:									
040	Reset value																	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x18	TIMx_CCMR1 Input Capture mode	Res.	Res.	Res.	Res.	Res	Res.	Res.	Res.	ļ	IC2F[3:0]			IC2 PSC [1:0]		CC2S [1:0]		ı	IC1F[3:0			IC1 PSC [1:0]		CC [1:									
	Reset value																	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	TIMx_CCMR2 Output Compare mode	Res.	Res.	Res.	Res.	Res	Res.	Res.	Res.	024CE	OC4M [2:0]		OC4PE	OC4FE		:4S :0]	OC3CE		OC3M [2:0]		OC3PE	OC3FE	CC [1:										
0.40	Reset value																	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x1C	TIMx_CCMR2 Input Capture mode	Res.	Res.	Res.	Res.	Res	Res.	Res.	Res.	ı	C4F	[3:0)]	IC PS [1:	SC		:4S :0]	ı	C3F	[3:0]	IC PS [1:		CC [1:									
	Reset value																	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x20	TIMx_CCER	Res.	Res	Res.	Res.	Res	Res.	Res.	Res.	CC4NP	Res.	CC4P	CC4E	CC3NP	Res.	ССЗР	CC3E	CC2NP	Res.	CC2P	CC2E	CC1NP	Res.	CC1P	CC1E								
	Reset value																	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x24	TIMx_CNT	(TIM	12 a	nd	TIM	5 o		NT[-	n th	ie o	the	r tin	ners)							C	NT[15:0	D]						
	Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Offset	Register	31	30	29	28	27	26	25	24	23	77	21	20	19	18	17	16	15	14	13	12	1	10	6	∞	7	9	2	4	က	7	1	0
0x28	TIMx_PSC	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.							F	esc	[15:0	0]						
	Reset value	Г																0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x2C	TIMx_ARR	(ARR[31:16] (TIM2 and TIM5 only, reserved on the other timers)																				Α	RR	[15:0	0]			a.				
	Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x30	Reserved	Res.	Res.	Res	Res	Res	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.
0x34	TIMx_CCR1	(TIM	/12 a	ind	TIM	5 o			[31: erve	-	n th	ie o	the	tim	ners)	CCR1[15:0]															
	Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x38	TIMx_CCR2	(TIM	/12 a	ind	TIM	5 o			[31: erve		n th	ie o	the	tim	ners)	CCR2[15:0]															
	Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x3C	TIMx_CCR3	(TIM	12 a	ind	TIM	5 o			[31: erve	_	n th	ie o	thei	tin	ners)							С	CR	3[15:	0]				•		
	Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x40	TIMx_CCR4	(TIM	12 a	ind	TIM	5 o			[31: erve	-	n th	ne o	thei	tin	ners)							С	CR4	4[15:	0]						
	Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0