

19CSE447 - Cloud Computing

Ramaguru Radhakrishnan Assistant Professor

CO2 - Familiarize with architecture of different cloud services and deployments models CO3 - Introduce to virtualization in cloud computing and various virtualization platforms Unit - 2 / Lecture - 5 / Class - 1

September 26, 2022

Virtualization

- Underlying technology for Cloud
- Separation of Compute Environment and Physical Infrastructure
- Allows multiple OS and apps to run simultaneously on single machine

Virtualization

Virtualization

- facilitates creating useful IT services using resources that are traditionally bound to hardware
- creating a virtual version at the same abstraction level, including computer hardware platforms, storage devices, and computer network resources.

- Distribution of resources:
- Accessibility of server resources
- Resource Isolation
- Security and authenticity
- Aggregation

- Increased Security
- Managed Execution
- Sharing
- Aggregation
- Emulation
- Isolation
- Portability

- Application Virtualization.
- Network Virtualization.
- Desktop Virtualization.
- Storage Virtualization.
- Server Virtualization.
- Data virtualization.

Taxonomy of Virtualization

TIFAC-CORE in Cyber Security, Amrita Vishwa Vidyapeetham

Applications

Operating System

Physical server hardware

Traditional Architecture

Virtual Architecture

Virtual Machine

- A virtual machine is typically comprised of either a single file or a group of files that can be read and executed by the virtualization layer.
- Each virtual machine is a self-contained operating environment that behaves as if it is a separate computer.

A hypervisor, also known as the virtual machine monitor (VMM), is the host layer of software that enables multiple virtual machines or operating systems to operate on a single physical server.

Features:

- High Availability
- Fault Tolerance
- Live Migration
- Distributed Resource Scheduler
- Distributed Power Management

Hypervisor

TIFAC-CORE in Cyber Security, Amrita Vishwa Vidyapeetham

App App App
OS OS OS

Bare metal hypervisor

Physical server hardware

Bare metal hypervisor

Applications Operating System Hosted hypervisor Operating System Physical server hardware

Hosted hypervisor

High Availability

Fault Tolerance

Live Migration

TIFAC-CORE in Cyber Security, Amrita Vishwa Vidyapeetham

Distributed Power Management

Server Virtualization

Server Virtualization

- Full Virtualization: Hypervisor serves as the hardware abstraction layer and can host multiple virtual machines (these are isolated from each other)
- Para-virtualization: Specially modified OS are installed on top of hypervisor to host multiple guest OS. OS are aware that they are running in virtual environment.
- **OS Partitioning:** Common OS on a physical server is divided into multiple isolated partitions.

Credits

TIFAC-CORE in Cyber Security, Amrita Vishwa Vidyapeetham

Thanks to multiple sources, authors and text book presentations.