

Gerenciamento de Dados e Informação

Modelo Relacional

Fernando Fonseca Ana Carolina Robson Fidalgo

Modelo Relacional

- Definido por E. F. Codd em 1970, teve sua grande aceitação comercial a partir de meados da década de 1980
- Razões da grande aceitação
 - Simplicidade dos conceitos básicos
 - Poder dos operadores de manipulação

Cln.ufpe.br

Modelo Relacional

Conceitos Básicos

Dada uma coleção de conjuntos $D_1,\ D_2,\ ...,\ D_n$ (não necessariamente disjuntos), R é uma Relação sobre estes n conjuntos se ela é um conjunto de n-uplas ordenadas <d $_1,\ d_2,\ ...,\ d_n>$ tal que $d_1\in D_1,\ d_2\in D_2,\ ...,\ d_n\in D_n$

- $\bullet \ \ \, D_1,\,D_2,\,...,\,D_n \ \text{são Domínios} \\$
- n é o grau de R

In.ufpe.br

Modelo Relacional

- O Domínio representa o conjunto de valores atômicos admissíveis de um componente de uma relação. Ele funciona como um conector semântico inter-relação a 2 níveis
 - \bullet Definição: todo valor \textbf{v}_i de uma n-upla é tal que $\textbf{v}_i \in \textbf{D}_i$
 - Manipulação: 2 valores só podem ser comparados se definidos sobre o mesmo domínio D

Cln.ufpe.b

Modelo Relacional

- Restrições de Integridade
 - Integridade de Domínio: diz respeito ao controle sintático e semântico de um dado e faz referência ao tipo de definição do domínio
 v_i ∈ D_i, ∀ v_i, D_i
 - Integridade de Entidade: diz respeito aos valores de chave primária que devem ser únicos e não nulos

Cln.ufpe

Modelo Relacional

- Restrições de Integridade (Cont.)
 - Integridade Referencial: diz respeito aos valores de um atributo chave estrangeira e aos valores do atributo chave primária correspondente
 - Para cada valor de chave estrangeira de uma relação A que aparece numa relação B, deve existir um valor igual de chave primária na relação A

ln.ufpe.br

Modelo Relacional

- Linguagem Algébrica/Álgebra Relacional
 - Compreende dois tipos de operadores
 - Operadores clássicos sobre conjuntos
 - União, interseção e diferença entre relações compatíveis
 - Operadores relacionais
 - Operadores unários de restrição: seleção e projeção
 - Operadores binários de extensão: junção e divisão

Cln.ufpe.b

Álgebra Relacional

 Seleção: seleciona todas as tuplas que satisfazem à condição de seleção em uma relação R

σ condição de seleção (R)

•condição simples: =, <> , <, <=, >, >=

«condição booleana: conexão de condições simples por operadores booleanos: AND, OR, NOT

Cln.ufpe.b

Álgebra Relacional

- Projeção: produz uma nova relação com alguns dos atributos de uma relação R
 - \bullet π < lista de atributos > (R)

18

Normalização

- Se a normalização for bem sucedida
 - O espaço de armazenamento dos dados diminui
 - A tabela pode ser atualizada com maior eficiência
 - A descrição do BD será imediata

Cln.ufpe.

