Derivatives

Definition

Let f(z) be defined on a domain D and let $z_0 \in D$. The derivative of f at z_0 , denoted $f'(z_0)$, is given by:

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

Replacing $z - z_0$ with Δz :

$$f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

To say that f is differentiable at z_0 means that the limit exists, regardless of path from z to z_0 .

When considering any $z \in D$, and letting $\Delta w = f(z + \Delta z) - f(z)$:

$$\frac{dw}{dz} = \lim_{\Delta z \to 0} \frac{\Delta w}{\Delta z}$$

Example

$$f(z) = z^2$$

$$f'(z) = \lim_{\Delta z \to 0} \frac{(z + \Delta z)^2 - z^2}{\Delta z}$$

$$= \lim_{\Delta z \to 0} z^2 + 2z(\Delta z) + (\Delta z)^2 - z^2 \Delta z$$

$$= \lim_{\Delta z \to 0} \frac{2z(\Delta z) + (\Delta z)^2}{\Delta z}$$

$$= \lim_{\Delta z \to 0} 2z + \Delta z$$

$$= 2z$$

Example

$$f(z) = \bar{z}$$

$$f'(z) = \lim_{\Delta z \to 0} \frac{\overline{z + \Delta z} - \overline{z}}{\frac{\Delta z}{\Delta z}}$$
$$= \lim_{\Delta z \to 0} \frac{\overline{z} + \overline{\Delta z} - \overline{z}}{\Delta z}$$
$$= \lim_{\Delta z \to 0} \frac{\overline{\Delta z}}{\Delta z}$$

Consider a path along the x-axis, where $\Delta z = \Delta x$:

$$\lim_{\Delta z \to 0} \frac{\overline{\Delta z}}{\Delta z} = \lim_{\Delta x \to 0} \frac{\overline{\Delta x}}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta x}{\Delta x} = 1$$

Now consider a path along the *y*=axis, where $Dz = i\Delta y$:

$$\lim_{\Delta z \to 0} \frac{\overline{\Delta z}}{\Delta z} = \lim_{i \Delta y \to 0} \frac{\overline{i \Delta y}}{i \Delta y} = \lim_{i \Delta y \to 0} \frac{-i \Delta y}{i \Delta y} = -1$$

Thus, the limit DNE and $f(z) = \bar{z}$ is not differentiable anywhere.

Example

$$f(z) = |z|^2 = z\bar{z}$$

$$f'(z) = \lim_{\Delta z \to 0} \frac{(z + \Delta z)(\overline{z} + \overline{\Delta z}) - z\bar{z}}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{(z + \Delta z)(\overline{z} + \overline{\Delta z}) - z\bar{z}}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{z\bar{z} + z\overline{\Delta z} + \bar{z}\Delta z + \Delta z\overline{\Delta z} - z\bar{z}}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \left(\bar{z} + \overline{\Delta z} + z\overline{\Delta z}\right)$$

But this limit can only possibly exist at z = 0 and

$$\lim_{\Delta z \to 0} \left(0 + \overline{\Delta z} + 0 \right) = \lim_{\Delta z \to 0} \overline{\Delta z} = 0$$

Theorem

Let f(z) be a real-valued function:

f differentiable $\implies f$ is only differentiable at f(z) = 0

Proof

Assume
$$f$$
 is differentiable Let $L_R = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}$ Let $L_I = \lim_{ih \to 0} \frac{f(z+ih) - f(z)}{ih}$ L_R and L_I must exist $L_R \in \mathbb{R}$ and $L_I \in \mathbb{C}$ But $L_R = L_I$ This can only at $f(z) = 0$

Example

$$f(z) = |z|$$

Since f(z) is real-valued, f(z) can only be differentiable at: f(z)=|z|=0, which only occurs at z=0

$$f'(z) = \lim_{z \to 0} \frac{f(z) - f(0)}{z - 0}$$

$$= \lim_{z \to 0} \frac{|z| - |0|}{z - 0}$$

$$= \lim_{z \to 0} \frac{|z|}{z}$$

$$= \lim_{z \to 0} \frac{\sqrt{z\bar{z}}}{z}$$

$$= \lim_{z \to 0} \sqrt{\frac{\bar{z}}{z}}$$

But that limit DNE, so f(z) = |z| is nowhere differentiable.

Properties: Consequences

Let f(z) = u(x, y) + iv(x, y)

1). u and v differentiable $\implies f$ differentiable.

Example: $f(z) = \bar{z} = x - iy$

2). f(z) may be differentiable at only one point and nowhere else.

Example: $f(z) = |z|^2$ is only differentiable at z = 0

3). Continuity does not imply differentiability

Example: $f(z) = \vert z \vert$ is continuous everywhere but differentiable nowhere.

Theorem

$$f(z)$$
 differentiable at $z_0 \implies f(z)$ continuous at z_0

Proof

Assume
$$f(z)$$
 is differentiable at z_0 $f'(z) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$ exists $\lim_{z \to z_0} (z - z_0) = 0$ exists

$$\lim_{z \to z_0} [f(z) - f(z_0)] = \lim_{z \to z_0} \left[\frac{f(z) - f(z_0)}{z - z_0} (z - z_0) \right]$$

$$= \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} \lim_{z \to z_0} (z - z_0)$$

$$= f'(z) \cdot 0$$

$$= 0$$

$$\therefore \lim_{z \to z_0} f(z) = f(z_0)$$