

- Algorithm Design
 - 1. Representative Problems
 - Stable Matching
 - Five Represenative Problems
 - 2. Algorithm Analysis
 - Computational Tractability
 - Asymptotic Order of Growth
 - Common Running Times
 - o 3. Graphs
 - Basic Definition
 - Connectivity and Traversal
 - Implementing Graph Traversal
 - Bipartiteness
 - Connectivity in Digraphs
 - Topological Order in DAGs
 - <u>4. Greedy Algorithms</u>
 - Coin Changing
 - Interval Scheduling
 - Interval Partitioning
 - Minimizing Lateness
 - Optimal Caching
 - Shortest Paths in a Graph
 - Minimum Spanning Trees
 - Single-Link Clustering
 - Huffman Codes
 - <u>5. Divide and Conqu</u>er
 - Mergesort
 - Counting Inversions
 - Closest Pair of Points
 - Karatsuba's Algorithm
 - Convolution and FFT
 - <u>6. Dynamic Programming</u>
 - Weighted Interval Scheduling
 - Segmented Least Squares
 - Knapsack Problem
 - RNA Secondary Structure
 - Sequence Alignment
 - Hirschberg's Algorithm
 - Bellman-Ford Algorithm
 - Distane Vector Protocol

- Negative Cycles
- 7. Network Flow
 - Max-Flow and Min-Cut
 - Ford-Fulkerson Algorithm
 - Capacity-Scaling
 - Bipartite Matching
 - Disjoint Paths
 - Demands and Lower Bounds
 - Survey Design
 - Airline Scheduling
 - <u>Image Segmentation</u>
 - Project Selection
 - Baseball Elimination
 - Assignment Problem
- <u>8. Intractability</u>
 - Polynomial-Time Reductions
 - Vertex Cover
 - Independent Set
 - Set Cover
 - 3-Satisfiability
 - Hamiltonian Cycle
 - <u>3-Dimensional Matching</u>
 - Graph 3-Colorability
 - Subset Sum
 - P vs. NP
 - NP-Completeness
 - co-NP
- o 9. PSPACE
 - PSPACE
 - Quantified SAT
 - Planning Problem
 - PSPACE-Complete
- 10. Limits of Tractability
 - Small Vertex Covers
 - NP-Hard Problems on Trees
 - Circular Arc Coloring
- 11. Approximation Algorithms
 - Load Balancing
 - Center Selection
 - Vertex Cover
 - Weighted Vertex Cover
 - Generalized Load Balancing
 - Knapsack Problem
- 12. Local Search
 - Gradient Descent
 - Metropolis Algorithm
 - Hopfield Neural Networks
 - Maximum Cut
 - Nash Equilibria
- 13. Randomized Algorithms
 - Contention Resolution
 - Global Min Cut
 - Linearity of Expectation
 - <u>Max 3-SA</u>T

- Universal Hashing
- Chernoff Bounds
- Load Balancing
- Randomized Quicksort

Lecture Slides for Algorithm Design

These are the offical lecture slides that accompany the textbook *Algorithm Design* [Amazon · Pearson] by Jon Kleinberg and Éva Tardos. The slides were created by Kevin Wayne and are distributed by Pearson.

TOPIC	SLIDES	READINGS
Stable Matching	<u>1up</u> ⋅ <u>4up</u>	1
Algorithm Analysis	<u>1up</u> ⋅ <u>4up</u>	2
Graphs	<u>1up</u> · <u>4up</u>	3
Greedy Algorithms	<u>1up · 4up</u>	4.1–4.4
Minimum Spanning Trees	<u>1up · 4up</u>	4.5–4.7
Huffman Codes †	<u>1up · 4up</u>	4.8
Divide and Conquer	<u>1up · 4up</u>	5.1–5.4
Multiplication	<u>1up · 4up</u>	5.5–5.6
Dynamic Programming	<u>1up · 4up</u>	6.1–6.7
Bellman-Ford	<u>1up · 4up</u>	6.8–6.10
Maximum Flow and Minimum Cut	<u>1up · 4up</u>	7.1–7.3
Maximum Flow Applications	<u>1up</u> · <u>4up</u>	7.5–7.12
Assignment Problem	<u>1up · 4up</u>	7.13
Intractability	<u>1up · 4up</u>	8.1–8.2
Polynomial-Time Reductions	<u>1up · 4up</u>	8.5–8.8, 8.10
NP-Completeness	<u>1up · 4up</u>	8.3–8.4, 8.9
PSPACE	<u>1up · 4up</u>	9
Extending Limits of Tractability	<u>1up · 4up</u>	10
Approximation Algorithms	<u>1up</u> ⋅ <u>4up</u>	11
Local Search	<u>1up · 4up</u>	12
Randomized Algorithms	<u>1up · 4up</u>	13

[†] Lecture slides provided by Mathijs de Weerd.