Învățare Automată (Machine Learning)

Bogdan Alexe,

bogdan.alexe@fmi.unibuc.ro

Master Informatică, anul I, 2018-2019, cursul 5

Eastern European Machine Learning Summer School

(previously TMLSS)

1-6 July 2019, Bucharest, Romania

Deep Learning and Reinforcement Learning

Important dates

The application period is now open! Go to Application page.

Application deadline: March 29, 2019

Notification or acceptance: first round April 19, 2019; second round April 26, 2019

Registration open: early May, 2019

The No-Free-Lunch theorem

Theorem (No-Free-Lunch)

Let A be any learning algorithm for the task of binary classification with respect to the 0–1 loss over a domain X. Let m be any number smaller than |X|/2, representing a training set size.

Then, there exists a distribution \mathcal{D} over $\mathcal{X} \times \{0,1\}$ such that:

- 1. there exists a function $f: \mathcal{X} \to \{0, 1\}$ with $L_{\mathcal{D}}(f) = 0$.
- 2. with probability of at least 1/7 over the choice of S ~ \mathcal{D}^m we have that $L_{\mathcal{D}}(A(S)) \ge 1/8$.

In other words, for every learning algorithm A there are cases for which this algorithm will fail whereas there is another learner (e.g. a trivial successful learner in this case would be an ERM learner with the hypothesis class $\mathcal{H} = \{f\}$, or more generally, ERM with respect to any finite hypothesis class that contains f and whose size satisfies the equation $m \geq 8\log(7|H|/6)$) that solves the task. It simply means that an adversary can use the fact that A has no clue what happens on the other half of the domain. We cannot learn perfectly without the proper background knowledge.

The error decomposition

Decompose the error of an ERM $_{\mathcal{H}}$ predictor that chooses h_S from a restricted class \mathcal{H} into two components:

$$L_{\mathcal{D}}(h_S) = \epsilon_{app} + \epsilon_{est}$$
where: $\epsilon_{app} = \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h)$, $\epsilon_{est} = L_{\mathcal{D}}(h_S) - \epsilon_{app}$

The approximation error (ϵ_{app})

- the minimum risk achievable by a predictor in the hypothesis class ${\cal H}$
- it measures how well our hypothesis class ${\cal H}$ fits the distribution
- it is determined only by \mathcal{H} , enlarging it decreases the approximation error

The estimation error (ϵ_{est})

- it measures how well our particular sample let us estimate the best classifier
- the empirical risk is only an estimate of the true risk
- the quality of this estimation depends on the training set size and on the size (complexity) of ${\cal H}$
- it varies with samples

Uniform convergence for agnostic PAC learning?

Definition (uniform convergence)

A hypothesis class \mathcal{H} has the *uniform convergence property* wrt a domain \mathcal{Z} , loss function ℓ if:

- there exists a function $m_H^{UC}:(0,1)^2 \to N$
- such that for all $(\varepsilon, \delta) \in (0,1)^2$
- and for any probability distribution \mathcal{D} over \mathcal{Z}

if S is a sample of $m \ge m_H^{UC}(\varepsilon, \delta)$ examples drawn i.i.d. according to \mathcal{D} , then, with probability of at least $1 - \delta$, S is ε -representative.

Definition (ε – representative sample)

A sample S is called ε – representative wrt domain Z, hypothesis class \mathcal{H} , loss function ℓ and distribution \mathcal{D} if: $\forall h \in \mathcal{H}, |L_S(h) - L_{\mathcal{D}}(h)| \leq \epsilon$.

Lemma

Let S be a sample that is $\varepsilon/2$ – representative wrt domain \mathcal{Z} , hypothesis class \mathcal{H} , loss function ℓ and distribution \mathcal{D} . Then any output of $\mathrm{ERM}_{\mathcal{H}}(S)$ i.e any $h_S \in \mathrm{argmin}_h \, \mathrm{L}_S(h)$ satisfies:

$$L_{\mathcal{D}}(A(S)) \le \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon$$

Finite classes are agnostic PAC learnable

Theorem

Let \mathcal{H} be a finite hypothesis class, let \mathcal{Z} be a domain and let $\ell: \mathcal{H} \times \mathcal{Z} \to [0,1]$ be a loss function. Then \mathcal{H} has the uniform convergence property with sample complexity:

$$m_{\mathcal{H}}^{UC}(\epsilon, \delta) \leq \left\lceil \frac{\log(2|\mathcal{H}|/\delta)}{2\epsilon^2} \right\rceil$$

Moreover, the class \mathcal{H} is agnostically PAC learnable using the ERM paradigm with sample complexity:

$$m_{\mathcal{H}}(\epsilon, \delta) \leq m_{\mathcal{H}}^{UC}(\epsilon/2, \delta) \leq \left\lceil \frac{2\log(2|\mathcal{H}|/\delta)}{\epsilon^2} \right\rceil$$

Today's lecture: Overview

Learnability - what do we know so far

Shattering

• VC-dimension

Let \mathcal{H} a hypothesis class.

- is it PAC learnable?
- is it agnostic PAC learnable?
 - we do know that agnostic PAC learnability → PAC learnability

all hypothesis classes
PAC learnable
agnostic PAC learnable

Definition 3.1 (PAC Learnability). A hypothesis class \mathcal{H} is PAC learnable if there exist a function $m_{\mathcal{H}}: (0,1)^2 \to \mathbb{N}$ and a learning algorithm with the following property: For every $\epsilon, \delta \in (0,1)$, for every distribution \mathcal{D} over \mathcal{X} , and for every labeling function $f: \mathcal{X} \to \{0,1\}$, if the realizable assumption holds with respect to $\mathcal{H}, \mathcal{D}, f$, then when running the learning algorithm on $m \geq m_{\mathcal{H}}(\epsilon, \delta)$ i.i.d. examples generated by \mathcal{D} and labeled by f, the algorithm returns a hypothesis h such that, with probability of at least $1 - \delta$ (over the choice of the examples), $L_{(\mathcal{D}, f)}(h) \leq \epsilon$.

Definition 3.4 (Agnostic PAC Learnability for General Loss Functions). A hypothesis class \mathcal{H} is agnostic PAC learnable with respect to a set Z and a loss function $\ell: \mathcal{H} \times Z \to \mathbb{R}_+$, if there exist a function $m_{\mathcal{H}}: (0,1)^2 \to \mathbb{N}$ and a learning algorithm with the following property: For every $\epsilon, \delta \in (0,1)$ and for every distribution \mathcal{D} over Z, when running the learning algorithm on $m \ge m_{\mathcal{H}}(\epsilon, \delta)$ i.i.d. examples generated by \mathcal{D} , the algorithm returns $h \in \mathcal{H}$ such that, with probability of at least $1 - \delta$ (over the choice of the m training examples),

$$L_{\mathcal{D}}(h) \leq \min_{h' \in \mathcal{H}} L_{\mathcal{D}}(h') + \epsilon,$$

where $L_{\mathcal{D}}(h) = \mathbb{E}_{z \sim \mathcal{D}} [\ell(h, z)].$

Let \mathcal{H} a hypothesis class.

- is it PAC learnable?
- is it agnostic PAC learnable?
 - we do know that agnostic PAC learnability → PAC learnability
 - we don't know that PAC learnability → agnostic PAC learnability

Size of class H:

- finite
- infinite

all hypothesis classes
PAC learnable
agnostic PAC learnable
finite size classes
infinite size classes

Let \mathcal{H} a hypothesis class.

- is it PAC learnable?
- is it agnostic PAC learnable?

PAC learnable

finite size classes

- we do know that agnostic PAC learnability → PAC learnability
- we don't know that PAC learnability → agnostic PAC learnability

Size of class H:

- finite
- infinite

Hypothesis classes \mathcal{H} encountered until now:

- finite \mathcal{H}
 - C_n concept class of conjunctions of at most n Boolean literals $x_1, ..., x_n$
 - $-U_n$ universal concept class
- infinite \mathcal{H}
 - \mathcal{H}_{rec}^{2} set of all axis-aligned rectangle lying in R² (with positive labels unaffected PAC or affected by noise agnostic PAC)
 - \mathcal{H}_{all} all functions from X to $\{0,1\}$ (No Free-Lunch theorem)

all hypothesis classes
PAC learnable
agnostic PAC learnable
finite size classes
infinite size classes

Another class example - $\mathcal{H}_{thresholds}$

Consider $\mathcal{H}_{thresholds}$ be the set of threshold functions over the real line

$$\mathcal{H}_{\text{thresholds}} = \{h_a: \mathbf{R} \to \{0, 1\}, h_a(\mathbf{x}) = \mathbf{1}_{[\mathbf{x} < a]}, a \in \mathbf{R}\}, |\mathcal{H}_{\text{thresholds}}| = \infty$$

$$\mathbf{1}_{[x < a]} = \begin{cases} 1, x < a \\ 0, x \ge a \end{cases}$$

is the indicator function of the set $\{x \in \mathbb{R} \mid x < a\}$

Lemma

 $\mathcal{H}_{\text{thresholds}}$ is PAC learnable, using the ERM learning rule, with sample complexity of

$$m_{H_{thresholds}} \leq \left| \frac{1}{\varepsilon} \log \frac{1}{\delta} \right|$$

Another class example - $\mathcal{H}_{thresholds}$

Proof

Let $a^* \in \mathbf{R}$ such that $h_{a^*}(x) = \mathbf{1}_{[x < a^*]}$ achieves $L(h_{a^*}) = 0$ (realizability assumption in the PAC learning scenario).

Consider \mathcal{D}_{x} a distribution over $X = \mathbf{R}$ and take $a_0 < a^* \in \mathbf{R}$ such that:

$$\mathbb{P}_{x \sim \mathcal{D}_x} [x \in (a_0, a^*)] = \epsilon.$$

$$\varepsilon \text{ mass}$$

$$a_0$$

$$a^*$$

If $D_x(-\infty, a^*) \le \varepsilon$ take $a_0 = -\infty$.

Consider the training set $S = ((x_1, y_1), ..., (x_m, y_m))$ and the following algorithm A:

- take $b = \max\{x_i | (x_i, 1) \in S\}$ (if no positive example appears in S take $b = -\infty$)
- output $A(S) = h_S = h_b$

Another class example - $\mathcal{H}_{thresholds}$

Then $L_D(h_S) > \epsilon$ means that $b < a_0$. We have that:

$$P_{S \sim D^m}(L_D(h_S) > \varepsilon) = P(b < a_0) = (1 - \varepsilon)^m \le e^{-\varepsilon m}$$
 Take
$$m = \left\lceil \frac{1}{\varepsilon} \log \frac{1}{\delta} \right\rceil$$

So, we have that:

$$P_{S \sim D^m}(L_D(h_S) > \varepsilon) < \delta$$

which shows that $\mathcal{H}_{thresholds}$ is PAC learnable, using the ERM learning rule.

No Free Lunches vs. $\mathcal{H}_{thresholds}$

Why is $\mathcal{H}_{\text{thresholds}}$ = set of threshold classifiers not a victim of the No Free Lunch theorem? (we can PAC learn them)

The reason is simple:

 the class of threshold classifiers is so simple that an adversary has no room to create an adversarial distribution

In fact, as our discussion above shows:

- if two threshold classifiers agree on a large enough sample
- their respective thresholds will be close to each other
- there is no way you can force them to behave completely differently on unseen examples.

If that would have been possible then:

- we would have been able to create an adversarial distribution.

So, it seems necessary for PAC learnability that the general class $\mathcal H$ considered isn't too expressive

Shattering

How expressive is \mathcal{H} ?

In our binary classification context, a hypothesis is a function $h: X \to \{0, 1\}$

Hence the expressiveness of \mathcal{H} :

- is necessary a measure of how many functions \mathcal{H} can express
- in the light of the No Free Lunch theorem, not only functions on X, but also functions on (finite) subsets C of X

Definition (restriction of \mathcal{H} to C)

Let \mathcal{H} be a set hypothesis, i.e., set of functions from \mathcal{X} to $\{0, 1\}$, and let C be a (finite) subset of \mathcal{X} , $C = \{c_1, c_2, ..., c_m\}$. The restriction of \mathcal{H} to C, denoted by \mathcal{H}_C , is the set of functions from C to $\{0, 1\}$ that can be derived from \mathcal{H} . That is:

$$\mathcal{H}_C = \{h: C \to \{0, 1\} | h \in \mathcal{H}\}$$

Example: restriction of \mathcal{H} to C

Consider $\mathcal{H} = \mathcal{H}_{\text{thresholds}}$ be the set of threshold functions over the real line $\mathcal{H}_{\text{thresholds}} = \{h_a: \mathbf{R} \to \{0, 1\}, h_a(\mathbf{x}) = \mathbf{1}_{[\mathbf{x} < a]}, a \in \mathbf{R}\}, |\mathcal{H}_{\text{thresholds}}| = \infty.$

Consider $C = \{-1\}$. Then $\mathcal{H}_C = \{h: C \to \{0, 1\} | h \in \mathcal{H}\} = \{h: \{-1\} \to \{0, 1\} | h \in \mathcal{H}\}$ has 2 elements $h_{a, b}$ where:

$$h_{a}(-1) = 0$$
, $a \le -1$

Example: restriction of \mathcal{H} to C

Consider $\mathcal{H} = \mathcal{H}_{\text{thresholds}}$ be the set of threshold functions over the real line $\mathcal{H}_{\text{thresholds}} = \{h_a: \mathbf{R} \to \{0, 1\}, h_a(\mathbf{x}) = \mathbf{1}_{[\mathbf{x} < a]}, a \in \mathbf{R}\}, |\mathcal{H}_{\text{thresholds}}| = \infty.$

Consider $C = \{-1, 1\}$. Then $\mathcal{H}_C = \{h: C \to \{0, 1\} | h \in \mathcal{H}\} = \{h: \{-1, 1\} \to \{0, 1\} | h \in \mathcal{H}\}$ has 3 elements $h_{a_a} h_b, h_c$ where:

$$h_{a}(-1) = 0, h_{a}(1) = 0, a \le -1$$

$$h_{b}(-1) = 1, h_{b}(1) = 1, b > 1$$

$$h_{c}(-1) = 1, h_{c}(1) = 0, -1 < c \le 1$$

Example: restriction of \mathcal{H} to C

Consider $\mathcal{H} = \mathcal{H}_{\text{thresholds}}$ be the set of threshold functions over the real line $\mathcal{H}_{\text{thresholds}} = \{h_a: \mathbf{R} \to \{0, 1\}, h_a(\mathbf{x}) = \mathbf{1}_{[\mathbf{x} < a]}, a \in \mathbf{R}\}, |\mathcal{H}_{\text{thresholds}}| = \infty.$

Consider $C = \{-1, 1\}$. Then $\mathcal{H}_C = \{h: C \to \{0, 1\} | h \in \mathcal{H}\} = \{h: \{-1, 1\} \to \{0, 1\} | h \in \mathcal{H}\}$ has 3 elements $h_{a, h}, h_{c}$ where:

$$h_{a}(-1) = 0, h_{a}(1) = 0, a \le -1$$

 $h_{b}(-1) = 1, h_{b}(1) = 1, b > 1$
 $h_{c}(-1) = 1, h_{c}(1) = 0, -1 < c \le -1$

There is no function h_d in \mathcal{H}_C such that $h_d(-1) = 0$ and $h_d(1) = 1$ (as we work with the threshold functions)

Alternative view of functions

There is equivalence between functions from X to $\{0,1\}$ and subsets C of X

- given $h: \mathcal{X} \to \{0, 1\}$, we can define $C = \{x \in \mathcal{X} | \text{ such that } h(x) = 1\}$
- given C subset of X, we can define $h: X \to \{0,1\}$, $h(x) = \mathbf{1}_{C}(x)$ indicator function of C

Can represent a subset C of X as a vector, put 1 for element in C, 0 otherwise. Can represent each function from C to $\{0,1\}$ as a vector in $\{0,1\}^{|C|}$.

The restriction of \mathcal{H} to C, denoted by \mathcal{H}_C , is the set of functions from C to $\{0, 1\}$ that can be derived from \mathcal{H} . It can be also seen as the set of all possible vectors that can be generated by $h \in \mathcal{H}$ with elements from C. That is:

$$\mathcal{H}_C = \{h: C \to \{0, 1\} | h \in \mathcal{H}\} = \{(h(c_1), h(c_2), ..., h(c_m)) | h \in \mathcal{H}\}$$

Consider $C = \{-1, 1\}$. Then $\mathcal{H}_{thresholds} = \mathcal{H}_C = \{h: C \to \{0, 1\} | h \in \mathcal{H}\} = \{h: \{-1, 1\} \to \{0, 1\} | h \in \mathcal{H}\} = \{(0, 0), (1, 0), (1, 1)\}$. The vector (0, 1) is not realizable by \mathcal{H}_C .

Shattering

Definition (Shattering)

A hypothesis class \mathcal{H} shatters a finite set C of X, if the restriction of \mathcal{H} to C is the set of all functions from C to $\{0, 1\}$. That is $|\mathcal{H}_C| = 2^{|C|}$.

Examples:

Consider $\mathcal{H} = \mathcal{H}_{thresholds}$ be the set of threshold functions over the real line.

Consider $C = \{c_1\}$. Then $\mathcal{H}_C = \{h: C \to \{0, 1\} | h \in \mathcal{H}\}$ has two elements $\{h_a, h_b\}$ with $a \le c_1$ and $b > c_1$ so \mathcal{H} shatters C. $\mathcal{H}_C = \{(0), (1)\}, |\mathcal{H}_C| = 2^{|C|} = 2^1$

Consider $C = \{c_1, c_2 | c_1 \le c_2\}$. Then $\mathcal{H}_C = \{h: C \to \{0, 1\} | h \in \mathcal{H}\}$ has at most three elements, there is no function that realizes the labeling (0,1) and so \mathcal{H} does not shatter C.

Alternative view of Shattering

Definition (Shattering)

A hypothesis class \mathcal{H} shatters a finite set C of X, if the restriction of \mathcal{H} to C is the set of all functions from C to $\{0, 1\}$. That is $|\mathcal{H}_C| = 2^{|C|}$.

Similar Definition (Shattering)

Let \mathcal{H} be a collection of subsets of \mathcal{X} and \mathcal{C} a finite subset of \mathcal{X} .

 \mathcal{H} shatters C if for every subset B of C there exist some subset $h_B \subseteq \mathcal{H}$ such that $B = h_b \cap C$

In other words, using the elements of H, we can cut C in every possible way.

Shattering – graphical representation

Examples:

Consider $\mathcal{H} = \mathcal{H}_{thresholds}$ be the set of threshold functions over the real line.

Shattering – graphical representation

Examples:

Consider $\mathcal{H} = \mathcal{H}_{\text{thersholds}}$ be the set of threshold functions over the real line.

 $\mathcal{H}_{ ext{thresholds}}$

Consider $C = \{c_1\}$. Then $\mathcal{H}_C = \{h: C \to \{0, 1\} | h \in \mathcal{H}\}$ has two elements $\{h_a, h_b\}$ with $a \le c_1$ and $b > c_1$ so \mathcal{H} shatters C. $\mathcal{H}_C = \{(0), (1)\}, |\mathcal{H}_C| = 2^{|C|} = 2^1$

h_a generates label 0

h_b generates label 1

Shattering – graphical representation

Examples:

Consider $\mathcal{H} = \mathcal{H}_{\text{thersholds}}$ be the set of threshold functions over the real line.

 $\mathcal{H}_{ ext{thresholds}}$

Consider $C = \{c_1, c_2 | c_1 \le c_2\}$. Then $\mathcal{H}_C = \{h: C \to \{0, 1\} | h \in \mathcal{H}\}$ has at most three elements, there is no function that realizes the labeling (0,1) and so \mathcal{H} does not shatter C.

cannot generate the label (0,1)

Shattering – example $\mathcal{H}_{\text{balls}}$

Consider $\mathcal{H} = \mathcal{H}_{\text{balls}}$ be the set of all balls in \mathbb{R}^2 :

$$\mathcal{H}_{\text{balls}} = \{ B(x,r), x \in \mathbb{R}^2, r \ge 0 \},$$

 $B(x,r) = \{ y \in \mathbb{R}^2 | || y - x ||_2 \le r \}$

Can also view $\mathcal{H}_{\text{balls}}$ as:

$$\mathcal{H}_{\text{balls}} = \{h_{x,r}: \mathbf{R}^2 \to \{0, 1\}, h_{x,r} = \mathbf{1}_{B(x,r)}, x \in \mathbf{R}^2, r \ge 0 \}$$

Is there a set A in \mathbb{R}^2 of size 2 shattered by $\mathcal{H}_{\text{balls}}$?

Any set A of two distinct points in \mathbb{R}^2 is shattered by $\mathcal{H}_{\text{balls}}$

Shattering – example $\mathcal{H}_{\text{balls}}$

Is there a set A in \mathbb{R}^2 of size 3 shattered by $\mathcal{H}_{\text{balls}}$?

Any set A of three distinct points in \mathbb{R}^2 that are not collinear is shattered by $\mathcal{H}_{\text{balls}}$

Shattering – example $\mathcal{H}_{\text{balls}}$

Is there a set A in \mathbb{R}^2 of size 3 shattered by $\mathcal{H}_{\text{balls}}$?

Any set A of three distinct points in ${\bf R}^2$ that are collinear is not shattered by ${\cal H}_{balls}$

cannot realize the label (1, 0, 1)

What are the conditions for which a set A in \mathbb{R}^2 of size 4 is shattered by $\mathcal{H}_{\text{balls}}$?

No Free lunches - revisited

- from the proof of the No Free Lunch theorem, we saw that we can create an adversarial distribution if $\mathcal H$ shatters a too large class.
- let \mathcal{H} be a hypothesis class of functions $h: X \to \{0, 1\}$ and S a training set of size m. If there exists a set $C \subseteq \mathcal{X}$ of size 2m that is shattered by \mathcal{H} , then for any learning algorithms A there exists a distribution \mathcal{D} over $\mathcal{X} \times \{0, 1\}$ such that:
 - there exists a function $f: X \to \{0,1\}$ with $L_{\mathcal{D}}(f) = 0$
 - with probability of at least 1/7 over the choice of $S \sim \mathcal{D}^m$ we have that $L_{\mathcal{D}}(A(S)) \ge 1/8$
- the labels of the m instances give us no information about the labels of the rest of the instances in C every possible labeling of the rest of the instances can be explained by some hypothesis in \mathcal{H} .
- "If someone can explain every phenomenon, his explanations are worthless"
- shattering is good, but don't shatter too much.

VC-dimension

The VC-dimension

Definition (VC-dimension)

The VC - dimension of a hypothesis class \mathcal{H} , denoted VCdim(\mathcal{H}), is the maximal size of a set $C \subset X$ that can be shattered by \mathcal{H} . If \mathcal{H} can shatter sets of arbitrarily large size we say that \mathcal{H} has infinite VC-dimension.

Theorem

Let \mathcal{H} be a class of infinite VC-dimension. Then, \mathcal{H} is not PAC learnable.

Proof: Since \mathcal{H} has an infinite VC-dimension, for any training set S of size m, there exists a shattered set of size 2m, and the claim follows for the No Free Lunch theorem.

We will see in the next lecture that the converse is also true: a finite VC-dimension guarantees learnability. Hence, the VC-dimension characterizes PAC learnability. VC-dimension is a combinatorial measure, does not imply computing probabilities.

Determining the VC-dimension of H

Definition (VC-dimension)

The VC - dimension of a hypothesis class \mathcal{H} , denoted VCdim(\mathcal{H}), is the maximal size of a set $C \subset X$ that can be shattered by \mathcal{H} . If \mathcal{H} can shatter sets of arbitrarily large size we say that \mathcal{H} has infinite VC-dimension.

In order to show that the VC-dimension of a hypothesis class \mathcal{H} is d, we need to show that:

- 1. There exists a set C of size d that is shattered by \mathcal{H} . (VCdim(\mathcal{H}) \geq d)
- 2. Every set C of size d + 1 is not shattered by \mathcal{H} . (VCdim(\mathcal{H}) < d+1)

$VCdim(\mathcal{H}_{thresholds})$

Consider $\mathcal{H} = \mathcal{H}_{\text{thersholds}}$ be the set of threshold functions over the real line.

 $\mathcal{H}_{ ext{thresholds}}$

Consider $C = \{c_1\}$. Then $\mathcal{H}_C = \{h: C \to \{0, 1\} | h \in \mathcal{H}\}$ has two elements $\{h_a, h_b\}$ with $a \le c_1$ and $b > c_1$ so \mathcal{H} shatters C. $\mathcal{H}_C = \{(0), (1)\}, |\mathcal{H}_C| = 2^{|C|} = 2^1$

Consider $C = \{c_1, c_2 | c_1 \le c_2\}$. Then $\mathcal{H}_C = \{h: C \to \{0, 1\} | h \in \mathcal{H}\}$ has at most three elements, there is no function that realizes the labeling (0,1) and so \mathcal{H} does not shatter C.

So,
$$VCdim(\mathcal{H}_{thresholds}) = 1$$

$VCdim(\mathcal{H}_{intervals})$

Consider $\mathcal{H} = \mathcal{H}_{intervals}$ be the set of intervals over the real line.

$$\mathcal{H}_{intervals} = \{[a,b] | a \le b, a, b \in \mathbf{R} \}$$

Can also view $\mathcal{H}_{intervals}$ as:

$$\mathcal{H}_{\text{intervals}} = \{h_{a,b} : \mathbf{R} \to \{0, 1\}, h_{a,b} = \mathbf{1}_{[a,b]}, a \le b, a, b \in \mathbf{R}\}$$

 $\mathcal{H}_{intervals}$ shatters any set A of two different points in **R**.

 $\mathcal{H}_{intervals}$ cannot shatter any set A of three points in **R**.

$$c_1 c_2 c_3$$
So, VCdim(H_{intervals}) = 2 label (1,0,1)?

$$VCdim(\mathcal{H}_{lines})$$

Consider $\mathcal{H} = \mathcal{H}_{lines}$ be the set of lines in \mathbb{R}^2 .

$$\mathcal{H}_{lines} = \{h_{a,b,c} \colon \mathbf{R}^2 \to \{0,1\}, h_{a,b,c}((\mathbf{x},\mathbf{y})) = \mathbf{1}_{[\mathbf{a}\mathbf{x} + \mathbf{b}\mathbf{y} + \mathbf{c} > 0]}((\mathbf{x},\mathbf{y})), \mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbf{R}\}$$

$$\mathcal{H}_{lines} \text{ shatters any set A of three non-colinnear points in } \mathbf{R}^2.$$

$VCdim(\mathcal{H}_{lines})$

Consider $\mathcal{H} = \mathcal{H}_{lines}$ be the set of lines in \mathbb{R}^2 .

$$\mathcal{H}_{lines} = \{h_{a,b,c} \colon \mathbf{R}^2 \to \{0, 1\}, h_{a,b,c}((\mathbf{x}, \mathbf{y})) = \mathbf{1}_{[\mathbf{a}\mathbf{x} + \mathbf{b}\mathbf{y} + \mathbf{c} > 0]}((\mathbf{x}, \mathbf{y})), \mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbf{R}\}$$

$$\mathcal{H}_{lines} \text{ doesn't shatter any set A of four points in } \mathbf{R}^2.$$

Case a: one point is interior to the convex hull of the other 3

label (1,1,1,0) is un-realizable

Case b: no point is interior to the convex hull of the other 3

So, $VCdim(H_{lines}) = 3$

$VCdim(\mathcal{H}_{rec}^{2})$

Consider $\mathcal{H} = \mathcal{H}_{rec}^{2}$ be the set of axis aligned rectangles in the \mathbb{R}^{2} .

$$\mathcal{H}_{rec}^{2} = \{ [a,b] \times [c,d] | a \le b, c \le d, a, b, c, d \in \mathbf{R} \}$$

Can also view \mathcal{H}_{rec}^{2} as:

$$\mathcal{H}_{rec}^2 = \{h_{a,b,c,d} : \mathbf{R}^2 \to \{0, 1\}, h_{a,b,c,d} = \mathbf{1}_{[a,b] \times [c,d]}, a \le b, c \le d, a, b, c, d \in \mathbf{R} \}$$

Does \mathcal{H}_{rec}^2 shatters any set A of four different points in **R**?

Take A the set of 4 vertices of a rectangle with axis

aligned in
$$\mathbb{R}^2$$
. Then \mathcal{H}_{rec}^2 doesn't shatter A (the $(0,1,0,1)$

labeling is not realizable).

- Does this mean that $VCdim(\mathcal{H}_{rec}^{2}) < 4$?
- No! Either we show that all sets A of size 4 are not shattered by \mathcal{H}_{rec}^{2} (VCdim(\mathcal{H}_{rec}^{2}) < 4) or find a set A of size 4 that is shattered (VCdim(\mathcal{H}_{rec}^{2}) \geq 4).

$VCdim(\mathcal{H}_{rec}^{2})$

Can realize all 16 possible labels. So VCdim(\mathcal{H}_{rec}^{-2}) ≥ 4 Show now that all sets A of 5 points are not shattered by \mathcal{H}_{rec}^{-2} .

A = {a₁, a₂, a₃, a₄, a₅}. Consider a₁ – the leftmost point (smaller x), a₂ – the rightmost point (larger x), a₃ – the lowest point (smaller y), a₄ – the highest point (larger y). Then every rectangle containing a₁, a₂, a₃, a₄ will also contain a₅, so (1,1,1,1,0) is not realizable. So, **VCdim**(\mathcal{H}_{rec}^2) = 4

$VCdim(\mathcal{H}_{sin})$

$$VCdim(\mathcal{H}_{thresholds}) = 1$$
, $VCdim(\mathcal{H}_{intervals}) = 2$, $VCdim(\mathcal{H}_{lines}) = 3$
 $VCdim(\mathcal{H}_{rec}^{-2}) = 4$

Consider $\mathcal{H} = \mathcal{H}_{\sin}$ be the set of sin functions:

$$\mathcal{H}_{\sin} = \{ \mathbf{h}_{\theta} : \mathbf{R} \to \{0,1\} | \mathbf{h}_{\theta}(\mathbf{x}) = \left[\sin(\theta x) \right], \theta \in \mathbf{R} \}, \left[-1 \right] = 0$$

$$VCdim(\mathcal{H}_{sin}) = ?$$

It is possible to prove that $VCdim(\mathcal{H})=\infty$, namely, for every d, one can find d points that are shattered by \mathcal{H} .

Some basic properties of the $VCdim(\mathcal{H})$

- 1. $VCdim(\mathcal{H}) \leq log_2|\mathcal{H}|$
- 2. If $\mathcal{H}_1 \subseteq \mathcal{H}_2$ then $VCdim(\mathcal{H}_1) \leq VCdim(\mathcal{H}_2)$
- 3. If $VCdim(\mathcal{H}) = \infty$ then \mathcal{H} is not PAC learnable

Next time

6	The VC-Dimension		43
	6.1	Infinite-Size Classes Can Be Learnable	43
	6.2	The VC-Dimension	44
	6.3	Examples	46
	6.4	The Fundamental Theorem of PAC learning	48
	6.5	Proof of Theorem 6.7	49
	6.6	Summary	53
	6.7	Bibliographic remarks	53
	6.8	Exercises	54