

Figure 1: Schematics of the PUMA560 robot

By extracting the 3×3 matrix R_6^0 and the 3×1 vector o_6^0 from H_6^0 , the forward kinematics computation is complete. Recall the geometric meaning of R_6^0 and o_6^0 : the columns of R_6^0 are the unit axes of the end effector frame 6 represented in the coordinates of frame 0: $R_6^0 = [x_6^0 \mid y_6^0 \mid z_6^0]$; the vector o_n^0 is the origin of frame 6 expressed in the coordinates of frame 0.

2.2 Inverse Kinematics

Given a desired position $o_d^0 \in \mathbb{R}^3$ and desired orientation $R_d \in SO(3)$ of the end effector, the inverse kinematics problem is to find $(\theta_1, \dots, \theta_6)$ such that $R_6^0(\theta_1, \dots, \theta_6) = R_d$ and $o_6^0(\theta_1, \dots, \theta_6) = o_d^0$.

Since the PUMA 560 has six links and a spherical wrist, one can solve the inverse kinematics problem by the technique of kinematic decoupling. In kinematic decoupling, the problem is divided in two parts: inverse position and inverse orientation.

Inverse position. The position of the wrist centre o_c only depends on the angles of the first three joints, $(\theta_1, \theta_2, \theta_3)$. The idea is to compute the desired location of the wrist centre and then find $(\theta_1, \theta_2, \theta_3)$ accordingly.

· Compute the vector

$$o_d^0 - R_d \begin{bmatrix} 0 \\ 0 \\ d_6 \end{bmatrix}$$
.

DH Table

LAB 1

* All units in im & rads

LINK	ai	αi	di	Di	
1	0	17/2	76	01	
2	43.23	0	-23,65	02	
3	0	11/2	0	93	
4	0	-T/2	0,4318	04	
5	0	11/2	0	05	
- 6	0	0	20	96	
					+

	AND RESIDENCE OF THE PERSON OF
a1 = [13.182+2.032
=	43.237
d1=-30	8,65 + 15 = -23.65

spherical
sout DH table
and d6=20

Inverse Kinematics

Now that we have the DH table, we can look into IK

Find D1:

$$(\theta_1 + \delta) = \alpha t \alpha n 2 (y_{c}, x_{c})$$

 $\delta = \alpha t \alpha n (23.65/86.36)$
 $(x_{c},y_{c}) = \alpha r c s in (-d_2/\sqrt{x_{t}^2 y_{t}^2})$
 $2 - d_2 = 23.65$

=> 0, = atan 2(xciye) - atan (23,65/86,36)

Find Ozlo3:

12 192 Q 193 W Q 5

Law of cosnes on PRR:

(PT2+ RT2) = PQ2+ RQ2- 2PQ RQ cos (TT-03+TT/2)

=> sin 83 = PT2+ RT2-PQ2-RQ2=

* PT2 = (xc2+yc2)cos2y

* RT = te-d1

* PQ = 92 + RQ = d4

$$\Rightarrow 5 \ln \theta_3 = (x_c^2 + y_c^2) \cdot \cos \delta + (z_c - d_1)^2 - a_2^2 - d_4^2 = D$$

$$2 a_2 d_4$$

$$\Rightarrow \theta_3 = a \tan 2 \left(D, \pm \sqrt{1 - D^2}\right)$$

$$Now \theta_2 = \frac{1}{2} - \frac{1}{2}$$

$$\theta_1 = a \tan 2 \left(d_4 \sin \left(\theta_3 - \frac{1}{2}\right), a_2 + d_4 \cos \left(\theta_2 - \frac{1}{2}\right)\right)$$

$$\theta_2 = a \tan 2 \left(z_c - d_1, (x_c^2 + y_c^2) \cos \delta\right)$$

$$And \theta_2 = \frac{1}{2} - \frac{1}{2}$$

$$We now know \theta_1, \theta_2, \theta_3, still need \theta_4, \theta_5, \theta_6;$$

$$We have the formula for H_c^{i-1} given.
$$\theta_1 = H_1^2 + H_2^2 + H_3^2, \text{ extract } R_3^2$$

$$\theta_2 = H_1^2 + H_2^2 + H_3^2, \text{ extract } R_3^2$$

$$\theta_3 = \frac{1}{2} + \frac{1}{2}$$$$