

THUYẾT MINH DỰ ÁN EXTENSION BOARD DE-10 NANO

Người thực hiện: Phạm Thị Hiền Mentor: Ngô Minh Hồng Thái

Tháng 4, TP. Hồ Chí Minh

Mục lục

1	Tổn	ıg quar	n dự án	3
	1.1		hiệu	3
	1.2		dự án	3
		1.2.1	Vấn đề cần giải quyết	3
		1.2.2	Yêu cầu sản phẩm	4
	1.3		ối tượng liên quan	4
	1.4		ĩa	5
2	Thi	ết kế		5
	2.1	Khối r	ngoại vi	7
		2.1.1	Switch/Button	7
		2.1.2	LED don	7
		2.1.3	LED 7 doạn	8
		2.1.4	Màn hình LCD	10
		2.1.5	USB	11
	2.2	Thiết	kế sơ bộ trên Proteus	11
	2.3	Thành	n phần của Extension Board	11
		2.3.1	LED đơn: LED Xanh Lá 0603 Dán SMD Trong Suốt	13
		2.3.2	LED 7 doạn	14
		2.3.3	Công Tắc Trượt 3 Chân Xuyên Lỗ ON-OFF	15
		2.3.4	Nút Nhấn 6x6mm Cao 5mm 2 Chân Xuyên Lỗ	15
		2.3.5	Màn hình LCD: LCD 1602 Nền Xanh Lá Chữ Đen 5V	
			Kèm I2C Driver	16
		2.3.6	Đầu cắm USB type B	17
3	Kế	hoạch		18
	3.1	Timeli	ine dự kiến - Các cột mốc quan trọng và hình thức làm việc	18
	3.2	Chi pl	ní	18

1 Tổng quan dự án

1.1 Giới thiệu

TickLab là phòng thí nghiệm kỹ thuật, với mục tiêu đạt được hiệu quả cao trong nghiên cứu khoa học kỹ thuật và phát triển con người một cách toàn diện, TickLab có những thiết bị, dụng cụ kỹ thuật cần thiết để các thành viên có thể sử dụng cho mục đích học tập và nghiên cứu. Song thiết bị nào cũng có những mặt hạn chế nhất định, trong đó có mạch FPGA DE10-Nano. Để đạt được mục tiêu trên thì việc cải thiện những hạn chế của thiết bị là cần thiết, do đó dự án được đề xuất để việc sử dụng mạch DE10- Nano đạt được hiệu quả cao hơn.

1.2 Mô tả dự án

1.2.1 Vấn đề cần giải quyết

DE10-Nano Kit là bộ kit cung cấp nền tảng thiết kế phần cứng cho học tập, nhà sản xuất và người phát triển hệ thống IoT. Mạch cung cấp 2 đầu cấm GPIO, 1 đầu cấm Arduino, bộ nhớ DDR3 tốc độ cao, 1 cổng HDMI,.... Mạch cung cấp 1 nền tảng mạnh mẽ và giàu tính năng để tạo ra nhiều ứng dụng IoT thú vị. Mạch được chia làm 2 phần riêng biệt: thiết bị được làm từ bộ xử lí cứng (HPS - hard processor system) và FPGA (Field Programmable Gate Array). Mạch có những ứng dụng phổ biến như: ứng dụng các chương trình xử lí hình ảnh, video; hỗ trợ kết nối USB và nhiều phần cứng khác để hiển thị và thực hiện các tác vụ như màn hình LCD, Arduino,...

Mặc dù có tiềm năng to lớn trong việc thực hiện các thiết kế về phần cứng, song DE10-Nano lại khá hạn chế về các thiết bị hiển thị trực quan như đèn LED, LCD, switch, nút nhấn,... Việc này làm cho việc kiểm tra lại hoạt động hệ thống khó khăn hơn, và việc gắn/tháo I/O thường xuyên sẽ làm giảm tuổi tho của mach.

Hình 1: DE10-Nano Kit

D?	, ı ;	1	T / (?	•		DD10
Bång so	sann sa	i lirano	1/()	CIIA	cac	mach	1) H; 1 ()
Dang 30	Saiii S	, iuong .	1/0	cua	cac	macm	

, , , , , , , , , , , , , , , , , , , ,								
I/O	DE10-Standard	DE10-Lite	DE10-Nano					
Switches	10	10	4					
Buttons	4	2	2					
LED đơn	11	10	8					
LED 7 đoạn	6	6	-					
LCD	1 128x64 LCD	-	-					
USB	1 USB to UART	-	1 UART to USB					
	(Micro USB Type B)		(USB Mini-B)					

1.2.2 Yêu cầu sản phẩm

Mức độ của các yêu cầu sẽ được chia theo thang từ 1 đến 3 (1: phải có, 2: cần có, 3: có thể có hoặc không)

STT	Phân loại	Yêu cầu	Mức độ ưu tiên
1	Linh kiện	1	
		Switch, Button	
		Đầu cắm USB	2
		Mạch hoạt động được, các linh kiện hiển thị tốt	
2	Hoạt động	Kết nối được với DE10-Nano qua đầu cắm GPIO	1
		Hiển thị trực quan các tính năng được thiết kế	
3	Thiết kế	Sắp xếp linh kiện hợp lí	1
		Có bản hướng dẫn sử dụng mạch	3

Điều kiện nghiệm thu sản phẩm

STT	Phân loại	Điều kiện nghiệm thu	Mức độ ưu tiên
1	Linh kiện	Có đủ $>=80\%$ linh kiện ở mục thành phần mạch	1
2		Linh kiện hoạt động tốt, không bị hư hỏng	1
3	Hoạt động	Mạch kết nối và chạy được các tính năng được thiết kế	1
4	Thiết kế	Có bản thiết kế hoàn chỉnh (schematic, pcb, 3D)	1
5		Mạch kết nối đúng giữa các linh kiện	1
6		Thiết kế gọn, đi dây đẹp	2
7		Có bản hướng dẫn sử dụng mạch	3
8	Thực hiện	Có bản mạch thật	1
9		Mối hàn đẹp	3

1.3 Các đối tượng liên quan

- 1. Phòng thí nghiệm TickLab: sở hữu kết quả dự án.
- 2. Bản Quản trị: duyệt proposal, theo dõi quá trình thực hiện dự án.
- 3. Mentor: người hướng dẫn, tham khảo ý kiến trong việc thực hiện dự án.

- 4. Cá nhân/nhóm thực hiện dự án: chịu trách nhiệm về toàn bộ dự án và sản phẩm, cách sử dụng và vấn đề phát sinh của dự án.
- 5. Toàn bộ thành viên TickLab: được sử dụng sản phẩm của dự án để phục vụ học tập và làm việc.

1.4 Ý nghĩa

Đối với TickLab

- Cải thiện hiệu suất sử dụng DE10-Nano Kit, việc kiểm tra hệ thống được trưc quan và đầy đủ hơn.
- Tạo điều kiện tốt hơn và dễ dàng hơn cho các thành viên trong việc tiếp xúc và sử dụng FPGA, cụ thể là DE10-Nano Kit.
- Tài liệu về dự án có thể được sử dụng làm tư liệu tham khảo cho khoá sau.

Đối với thành viên thực hiện dự án

- Học hỏi thêm về FPGA, quy trình thiết kế mạch và các linh kiện mới.
- Trau dồi kỹ năng thiết kế và hiện thực mạch.
- Trải nghiệm quy trình thực hiện một dự án cụ thể.

2 Thiết kế

Chức năng chính của mạch là để bổ sung thêm các thiết bị ngoại vi tương tác với người dùng nên các thành phần của mạch sẽ là các thiết bị ngoại vi và các linh kiện xử lí tín hiệu để việc vận hành được trơn tru nhất.

Mạch gồm 2 phần là logic và các thiết bị ngoại vi, nhưng do phần logic xử lí tín hiệu đi kèm với thiết bị ngoại vi nên ta gộp chung vào khối thiết bị ngoại vi với mỗi thiết bị gồm 2 phần: logic và thiết bị.

Sơ đồ hoạt động của mạch:

2.1 Khối ngoại vi

Ngoại vi gồm nút nhấn, switch, LED đơn, LED 7 đoạn, màn hình LCD và đầu cắm USB.

2.1.1 Switch/Button

Dùng để điều khiển LED đơn, LED 7 đoạn. Kết nối với nguồn có thêm điện trở để đảm bảo an toàn cho mạch. Đối với nút nhấn còn sử dụng thêm tụ điện để ổn định điện áp.

Switch:

Button:

2.1.2 LED đơn

LED đơn sẽ được điều khiển bởi tín hiệu của và GPIO và Switch/Button, để tín hiệu không bị chập chờn, ta sử dụng thêm IC số để tín hiệu truyền đến LED được nhất quán. Ngoài ra còn có kết nối thêm điện trở và transistor để đảm bảo an toàn cho mạch.

Cổng OR cho tín hiệu đầu ra ở mức cao khi một trong cắc tín hiệu đầu vào ở mức cao.

Inp	uts	Output
A B		Y=A+B
0 0		0
0	1	1
1	0	1
1	1	1

Cổng NOT:

Input	Output
A	$Y = \overline{A}$
0	1
1	0

2.1.3 LED 7 đoạn

LED 7 đoạn dùng để hiển thị số, chỉ số theo chỉ định của hệ thống được thiết kế. Decoder 74LS47 được sử dụng để người dùng lập trình bằng mã BCD, mã sẽ được dịch sang mã của LED 7 đoạn và hiển thị.

IC 74LS47 là IC giải mã 4 tín hiệu BCD từ 0 đến 9 sang 7 tín hiệu LED 7 đoạn.

Bảng chân trị:

Dec	\overline{LT}	\overline{RBI}	D	\mathbf{C}	В	A	$\overline{BI}/\overline{RBO}$	a	b	$^{\mathrm{c}}$	d	e	f	g
0	1	1	0	0	0	0	1	on	on	on	on	on	on	off
1	1	X	0	0	0	1	1	off	on	on	off	off	off	off
2	1	X	0	0	1	0	1	on	on	off	on	on	off	on
3	1	x	0	0	1	1	1	on	on	on	on	off	off	on
4	1	x	0	1	0	0	1	off	on	on	off	off	on	on
5	1	x	0	1	0	1	1	on	off	on	on	off	on	on
6	1	X	0	1	1	0	1	off	off	on	on	on	on	on
7	1	X	0	1	1	1	1	on	on	on	off	off	off	off
8	1	X	1	0	0	0	1	on	on	on	on	on	on	on
9	1	X	1	0	0	1	1	on	on	on	off	off	on	on
-	1	0	0	0	0	0	0	off	off	off	off	off	off	off

Mạch LED 7 đoạn:

2.1.4 Màn hình LCD

I2C (Inter-Integrated Circuit) là giao thức truyền thông nối tiếp đồng bộ phổ biến hiện nay, I2C sử dụng 2 dây để kết nối là SCL (Serial Clock) và SDA (Serial Data).

Giao tiếp I2C bao gồm quá trình truyền nhận dữ liệu giữa các thiết bị chủ tớ, hay Master - Slave (ví dụ vi điều khiển - IC...). Sử dụng 2 đường truyền tín hiệu:

- SCL Serial Clock Line : Tạo xung nhịp đồng hồ do Master phát đi
- SDA Serial Data Line : Đường truyền nhận dữ liệu

Trong đó dây SCL có tác dụng để đồng bộ hóa giữa các thiết bị khi truyền dữ liệu, còn SDA là dây dữ liệu truyền qua.

Màn hình LED được tích hợp I2C để có thể giảm tối đa số chân tín hiệu xuống (16 xuống 4) mà vẫn đảm bảo về mặt hiển thị.

Màn hình LCD tích hợp I2C:

2 chân nguồn và 2 chân tín hiệu được kết nối với GPIO của DE10-Nano.

2.1.5 USB

IC CH340E để chuyển đổi USB sang cổng giao diện tiếp nối (USB - UART). Việc chuyển đổi này hỗ trợ việc truyền/ nhận dữ liệu giữa các thiết bị.

2.2 Thiết kế sơ bộ trên Proteus

Những tín hiệu GPIO được sử dụng logic state để quan sát hoạt động của mạch. Do một số linh kiện và thư viện chưa có trong Proteus (USB type B, thư viện Arduino...) nên phần LCD và USB tạm thời chưa được mô phỏng trên Proteus. Phần USB cần tìm hiểu thêm.

2.3 Thành phần của Extension Board

DE10-Nano khá hạn chế về I/O:

- 2 Nút nhấn
- 2 Switch

- 8 Đèn LED
- 1 Đầu cắm USB type B

Vì thế, mục đích chính của mạch là mở rộng thêm I/O

STT	Linh kiện	Số lượng
1	LED 7 đoạn	2
2	LED đơn	7
3	Button (nút nhấn)	4
4	Switch	7
5	Màn hình LCD	1
6	Đầu cắm USB type B	1

Tính toán

Vì Extension Board kết nối với GPIO của DE10-Nano nên nguồn sẽ được cấp thông qua DE10-Nano. DE10-Nano cung cấp 2 nguồn VCC là 5V và 3.3V, lấy nguồn 5V để tính toán \Rightarrow VCC = 5V.

• Mach LED don:

Sử dụng transistor BJT NPN C1815. Đèn LED sáng khi có dòng điện I =20mA chạy qua

$$\Rightarrow I_E = I_B + I_C = 20mA$$

$$I_C = 100.I_B \Rightarrow I_B = 1.98mA$$

Transistor hoạt động tại vùng bão hoà $\Rightarrow I_B > 1.98mA$

$$\Rightarrow I_B = 2mA, I_C = 18mA$$

$$\Rightarrow I_B = 2mA, I_C = 18mA$$

$$I_B = \frac{V_{BB} - V_{BE}}{R_B} \Rightarrow R_B = 2k\Omega. \text{ Lấy điện trở } 2k\Omega \text{ } 1/4\text{W } 1\%$$

$$V_{CE(sat)} = V_{CC} - I_C.R_C$$

$$V_{CE(sat)} = V_{CC} - I_C.R_C$$

$$\Leftrightarrow 0.25V = 5V - I_C.R_C \Rightarrow R_C = 264\Omega.$$
 Lấy điện trở R_C là 270 Ω 1/4W 1%

• Mach button

Chọn R = $10 \mathrm{k}\Omega$ 1/4W, dòng điện qua mạch I = $\frac{5V}{10 k\Omega}$ = 0.5 mA Chọn C là tu gốm 0603 100nF 16V.

• LED 7 đoạn

Theo datasheet, LED 7 đoạn sáng mạnh tại $I=20 \mathrm{mA}$ và $V=1.8 \mathrm{V}$. $R = \frac{5V - 1.8V}{20mA} = 160\Omega.$ Chọn điện trở R24 đến R30 là 160
 1/4W1%.

Các linh kiện sử dụng

Linh kiện	Designator	Thông số
LED đơn	D1 - D7	LED Xanh Lá 0603 Dán SMD Trong Suốt
LED 7 đoạn	DS1	SM410563N LED 7 Đoạn 0.56 inch Đỏ 1 Số Dương Chung
Điện trở	R (R1, R2)	Điện trở $1/4 \mathrm{W}~1\%$
Tụ điện	C1 - C4	Tụ Gốm 0603
Cổng OR	U1 - U9	SN74LS32N IC Quad 2-Input OR Logic Gate, 14-DIP
Cổng NOT	U10 - U13	SN74HC04N IC Hex Inverter, 14-DIP
Transistor	Q1 - Q7	2SC1815-HF Transistor NPN 50V 0.15A 3 Chân SO-23
Switch	SW1 - SW7	SS-12F44G5 Công Tắc Trượt ON-OFF 1P2T
Button	B1 - B4	Nút Nhấn 6x6mm Cao 5mm 2 Chân Xuyên Lỗ
Màn hình LCD	LCD1	LCD 1602 Nền Xanh Lá Chữ Đen 5V Kèm I2C Driver
IC xử lí USB - UART	U14	CH340E IC USB To Serial 2Mbps 10-MSOP
Cổng USB type B	USB1	BF90 Cổng USB Cái 2.0 Type B 4 Chân

Quá trình thực hiện dự án có thể bổ sung hoặc thay đổi một số linh kiện trên. Dưới đây sẽ liệt kê những thiết bị ngoại vi chính (LED, switch, button, LCD, USB). Những thiết bị xử lí tín hiệu đi kèm như IC số, transistor, điện trở... sẽ được liệt kê chi tiết về thông số kỹ thuật, datasheet,... trong báo cáo tổng kết của dự án.

2.3.1 LED đơn: LED Xanh Lá 0603 Dán SMD Trong Suốt

Thông số kỹ thuật

Kiểu chân: dán bề mặt

Số LED: 1 Điện áp: $2.5\mathrm{V}$

Cường độ sáng: 180 mcd

Số chân: 2

Hình dáng thấu kính: chữ nhật Kích thước: $1.6 \times 0.8 \times 0.8 \text{mm}$ Màu sắc thấu kính: trong suốt

Data sheet: https://content.instructables.com/ORIG/F1B/M8N0/ISCBS3VE/F1BM8N0ISCBS3VE.pdf

Hình ảnh thực tế

2.3.2 LED 7 đoạn

Thông số kỹ thuật

Loại LED: LED 7 đoạn Kích thước: 0.56
inch

Số ký tự: 1 Màu sắc: đỏ

Kích thước ngoài: 12.6 x 19 x 8mm

Kiểu chân: xuyên lỗ

 $Data sheet: \verb|https://www.velleman.eu/downloads/29/infosheets/vmp502_sma42056etc.pdf| \\$

Hình ảnh thực tế

2.3.3 Công Tắc Trượt 3 Chân Xuyên Lỗ ON-OFF

Thông số kỹ thuật

Cấu hình tiếp điểm: 1P2T

Kiểu chân: xuyên lỗ Hoạt động: on - off Dòng định mức: $0.5~\mathrm{A}$ Loại cần tác động: trượt Kích thước: $21.1~\mathrm{x}~5.5~\mathrm{x}~6\mathrm{mm}$ Điện trở tiếp điểm: $20m\Omega$

Diện áp định mức: 50VDC

Nhiệt độ hoạt động: -30 đến $70^{\circ}C$

Hình ảnh thực tế

2.3.4 Nút Nhấn 6x6mm Cao 5mm 2 Chân Xuyên Lỗ

Thông số kỹ thuật

Cấu hình tiếp điểm: Single Pole Throw (SPST)

Kiểu chân: xuyên lỗ Hoạt động: nhấn nhả Màu nút nhấn: đen Kích thước: 6 x 6 x 5mm

Dòng định mức tiếp điểm: 50 mA & 12 VDC

Nhiệt độ hoạt động: -35 đến $85^{\circ}C$

Vật liệu tiếp điểm: Niken Tuổi thọ: 100 000 lần

Hình ảnh thực tế

2.3.5 Màn hình LCD: LCD 1602 Nền Xanh Lá Chữ Đen 5V Kèm I2C Driver

Thông số kỹ thuật

LCD STN độ tương phản cao $16\mathrm{x}2$

Chữ trắng nền xanh dương, đèn LED nền màu trắng

Điện áp hoạt động: +5.0VDC

Ký tư 5x8 dot Giao tiếp 4 or 8 bit

Kích thước Module: $80.0 \times 36.0 \times 13.5 \text{mm}$ Kích thước khung chữ: $66.0 \times 16.0 \text{mm}$

Datasheet: https://www.sparkfun.com/datasheets/LCD/ADM1602K-NSW-FBS-

3.3v.pdf

Hình ảnh thực tế

2.3.6 Đầu cắm USB type B

Thông số kỹ thuật

Loại đầu nối: USB type B

Số tiếp điểm: 4 Loại đực, cái: cái Kiểu chân: xuyên lỗ

Hướng chân: vuông góc 90 độ

Cách kết nối: hàn

Nhiệt đô hoạt độn G
: 0 đến $85^{\circ}C$

Số port: 1

Dòng điện định mức: 1A Diện áp định mức: 30VAC Mạ tiếp điểm: vàng Vật liệu tiếp điểm: đồng Màu lớp cách điện: trắng

Hình ảnh thực tế

3 Kế hoạch

3.1 Timeline dự kiến - Các cột mốc quan trọng và hình thức làm việc

Thời gian	Tiêu đề	Chi tiết	Kết quả
1/3/2022 - 17/4/2022	Tìm hiểu dự án và thiết kế	Tìm hiểu về DE10-Nano, Extension Board, xác định các thành phần chính của mạch và thiết kế	Có bản thiết kế sơ bộ
9/4/2022 - 17/4/2022	Viết đặc tả dự án	Xác định những thành phần của mạch, sơ đồ hoạt động, cách hoạt động của các thiết bị trong mạch.	Bản thuyết minh về dự án
17/4/2022 - 30/4/2022	Hoàn thiện thiết kế sơ bộ	Hoàn chỉnh phần tính toán, kết nối các linh kiện có độ ưu tiên 1	Có bản thiết kế sơ bộ hoàn chỉnh của LED, switch, button
20/5/2022 -	Có bản thiết kế	Tính toán và hoàn thiện thiết kế	Bản thiết kế đầy đủ
3/6/2022	hoàn chỉnh	LCD và cổng USB	các linh kiện của mạch
3/6/2022 -	Hiện thực mạch	Vẽ schematic, tính toán đường dây,	Schematic, pcb và bản
17/6/2022	mièn mặc mặcn	design rules, làm pcb	3D của mạch
17/6/2022 -	Làm bản mạch	Tiến hành làm mạch và hàn các linh	Bản mạch thật hoàn
17/7/2022	thật	kiện được thiết kế trên mạch	chỉnh

3.2 Chi phí

Việc thiết kế và hiện thực dự án do thành viên thực hiện, do đó chi phí chỉ có trong việc đặt mạch thật hoặc tự làm bản mạch và mua linh kiện. Chi phí:

- Linh kiện: 64.000VNĐ (chưa tính phát sinh thêm trong quá trình làm)
- Bản mạch in thủ công: chưa xác định giá
- Đặt in mạch: từ 50.000VNĐ 150.000VNĐ (chưa tính tiền ship)

Tuỳ vào tình hình và khả năng sau khi hoàn thành xong phần hiện thực sẽ xác định phương án thực hiện mạch thật.