Direct Conversion of RE to DFA

From Regular Expression to DFA Directly (Algorithm)

- Augment the regular expression r with a special end symbol # to make accepting states important $r \rightarrow (r) \#$
- □ Construct a syntax tree for (r)# Alphabets → leaf node Operators → inner node
- Number each alphabet including #
- Traverse the tree to construct functions nullable, firstpos, lastpos, and followpos

1/3/2011

Syntax Tree of (a|b)*abb#

Annotating the Tree

- nullable(n): the subtree at node n generates languages including the empty string
- firstpos(n): set of positions that can match the first symbol of a string generated by the subtree at node n
- lastpos(n): the set of positions that can match the last symbol of a string generated be the subtree at node n
- \Box **followpos(i):** the set of positions that can follow position i in the tree

Annotating the Tree Cont...

Node n	nullable(n)	firstpos(n)	lastpos(n)
Leaf ε	true	Ø	Ø
Leaf i	false	{ <i>i</i> }	{ <i>i</i> }
	$nullable(c_1)$ or $nullable(c_2)$	$firstpos(c_1)$ \cup $firstpos(c_2)$	$lastpos(c_1)$ \cup $lastpos(c_2)$
, \ C ₁ C ₂	$nullable(c_1)$ and $nullable(c_2)$	if $nullable(c_1)$ then $firstpos(c_1)$ $\cup firstpos(c_2)$ else $firstpos(c_1)$	if $nullable(c_2)$ then $lastpos(c_1)$ $\cup lastpos(c_2)$ else $lastpos(c_2)$
* 1/3/2011 C ₁	true	$firstpos(c_1)$	$lastpos(c_1)$

Syntax Tree of (a|b)*abb#

followpos

```
for each node n in the tree do

if n is a cat-node with left child c_1 and right child c_2 then

for each i in lastpos(c_1) do

followpos(i) := followpos(i) \cup firstpos(c_2)

end do

else if n is a star-node

for each i in lastpos(n) do

followpos(i) := followpos(i) \cup firstpos(n)

end do

end if
```

Algorithm

```
s_0 := firstpos(root) where root is the root of the syntax tree
Dstates := \{s_0\} and is unmarked
while there is an unmarked state T in Dstates do
       mark T
       for each input symbol a \in \Sigma do
               let U be the set of positions that are in followpos(p)
                       for some position p in T,
                       such that the symbol at position p is a
               if U is not empty and not in Dstates then
                       add U as an unmarked state to Dstates
               end if
               Dtran[T,a] := U
```

 $_{1/3/2011}$ end do

Example

