Computer Arkitektur og Operativ Systemer

Denne forelæsning optages og gøres efterfølgende tilgængelig på Moodle MEDDEL VENLIGST UNDERVISEREN, HVIS DU <u>IKKE</u> ØNSKER, AT OPTAGELSE FINDER STED

This lecture will be recorded and afterwards be made available on Moodle

PLEASE INFORM THE LECTURER IF YOU DO NOT WANT RECORDING TO TAKE PLACE

Computer Arkitektur og Operativ Systemer Repræsentation af tal

Forelæsning 2 Brian Nielsen

Credits to
Randy Bryant & Dave O'Hallaron (CMU)

Hvordan repræsenteres heltal (signed/unsigned)?

Med w-bits kan vi indkode 2^w forskellige værdier

Hvilke heltal kan repræsenteres med w-bits?

Unsigned Værdier

•
$$UMax = 2^{w-1} + ... + 2^1 + 2^0 = 2^w - 1$$

111...1

Værdier i Two's Complement

•
$$TMin = -2^{w-1}$$

100...0

•
$$TMax = 2^{w-1} - 1$$
011...1

Minus 1111...1

Værdier for W = 16

	Decimal	Hex	Binary	
UMax	65535	FF FF	11111111 11111111	
TMax	32767	7F FF	01111111 11111111	
TMin	-32768	80 00	10000000 00000000	
-1	-1	FF FF	11111111 11111111	
0	0	00 00	00000000 00000000	

char: w=8

short int: w=16

int: w=32

long int: w=64

Hvordan håndteres konvertering imellem signed & unsigned?

- Hvad sker der i C?
- Hvad sker der på maskin-niveau når man konverterer fra signed til unsigned?

Hvad sker der ved addition?

- Overløb, men veldefineret
- Unsigned $UAdd_{w}(u, v) = \begin{cases} u+v, & ,u+v \leq UMax \\ u+w-2^{w}, & ,u+v > UMax \end{cases}$ $= (u+v) \mod 2^{w}$

Signed

$$TAdd_{w}(u , v) = \begin{cases} (u + v) - 2^{w} , TMax < u+v \text{ (pos overløb)} \\ (u + v) , TMin \le u+v \le TMax \text{ (normalt)} \\ (u + v) + 2^{w} , u+v < TMin \text{ (neg overløb)} \end{cases}$$

 Bevarer normale regne-regler for addition af heltal ("Abelsk gruppe")!

```
Fx, w=4, 8+11=19
1000
+ 1011
-----
±0011 //19 mod 2<sup>4</sup> = 3
```

SIGNED Negativ overløb

```
Fx, w=4,-7+-5=-12

1001

+ 1011

-----

\(\frac{1}{2}\) 0100 =4

//NB: -12+2<sup>4</sup> = 4
```

Bogen viser at man kan ræsonnere formelt om, hvad der sker på laveste maskin niveau!

I eksamineres ikke i *selve* beviserne – men sætningerne og en vis forståelse af baggrunden derfor

"Høk æ Hak" operationer (Shift-operations)

- Venstre skifte: x << y
- Højre skifte: x >> y
 - Logisk skift
 - Fyldes med 0 til venstre
 - Aritmetisk skift
 - Gentag msb til højre

Multiplikation med operand, som er en potens af 2:

$$\mathbf{u} \ll \mathbf{k}$$
 giver $\mathbf{u} * \mathbf{2}^k$

Reelle tal og Floats

- Forstå grundideen i float-repræsentationen
- Forstå begrænsninger i repræsentationen
- Afrunding

Øvelserne

- Talområder, twos complement
- Blanding af signed, unsigned
- Detektion af overløb
- Bitshift, aritmetik med bit-shift
- Challenge 0: hvordan bytes kan fortolkes som forskellig information!!
- Challenge 1: Røve en bank!

Forsøg løsning (med hjælpelærer) inden I går til løsningerne!

Start med øvelserne senest 10.15!