MPLS

Multi-protocol Label Switching

Introduction (1)

- Norme IETF: RFC 3031
 - But :
 - Accroitre la vitesse de traitement dans les équipements actifs du réseau

Plus d'actualité du fait des progrès dans les routeurs

- Enrichir les services de routage
- MPLS se situe entre la couche 2 et 3, souvent traité comme un protocole de couche 2,5.

Introduction (2)

- Rôle principal
 - Combiner les concepts du routage IP de niveau 3, et les mécanismes de commutation de niveau 2
 - Permettre d'avoir un mode connecté à IP en évitant une surcharge au niveau entête
 - On élimine le concept de routage "next hop", pour avoir un routage global → ATM, Frame relay,...

Objectifs

- L'aspect "fonctionnalité" est plus important actuellement que l'aspect "performance"
 - Flexibilité sur le médium (ATM, SDH, Ethernet, PPP)
 - Création de VPN

 - Mise en place de Qos avec DiffServ
 Traffic Engineering (gestion de trafic)
 Découpage en classe suivant le trafic

Fonctionnement

- Basé sur le label (étiquette)
 - A chaque paquet entrant sur le réseau MPLS, on lui associe un label → un entier
 - L'acheminement des paquets est basé sur l'analyse du label et non plus sur l'analyse de l'adresse IP
 - MPLS utilise une technique de commutation
 - Chaque équipement MPLS (LSR : Label Switch Router) possède une table de commutation → échange de label entre l'entrée et la sortie

Principe (1)

- A l'entrée du réseau MPLS, équipement actif :
 E-LSR : Edge Label Switch Router (ou LER)
 - Décide de l'affectation d'un label à un paquet
 - Dépend des groupes ou des classes de flux FEC (Forwarding Equivalence Classes)
 - Chaque paquet d'une même FEC sont traités de la même manière (suivent le même chemin)
 - Le label est ajouté :
 - Entre la couche 2 et la couche 3 (environnement paquet)
 - Dans le champ VPI/VCI (identificateur de chemin virtuel/identificateur de canal virtuel pour ATM)

Label

ATM VPI/VCI Données

Frame Relay DLCI Données

Label: 20 bits:

Cos: 3 bits: Class of service

S: 1 bit: empilement de label

TTL: 8 bits: Time To Live (identique au rôle en IP)

On ne regarde que le label et le TTL pour faire transiter le paquet

Principe (2)

- Le E-LSR (LER) est l'interface entre le monde MPLS et l'extérieur (interface IP traditionnelle)
 - 2 sortes de LER : ingress node ou egress node
 - Labellise le paquet
- Les Paquets suivent le LSP (Label Switch Path)
 - Chemin composé par une suite de LSR
 - Configuré via le mécanisme de labels, pour une FEC donné
 - Peut-être configuré statiquement ou dynamiquement
 - Un label n'est utile que localement. A chaque LSR, changement de label pour suivre le LSP.

Protocole pour mettre en œuvre les LSP

→ LDP (Label Distributed Protocol)

FEC

• FEC

- Est la représentation d'un groupe de paquets qui ont en commun les mêmes besoins quant à leur transport
- Sont basés sur les besoins en terme de service pour certains groupes de paquets, et plus généralement sur le même préfixe IP pour la destination
- A chaque paquet est associé une et une seule FEC à son entrée dans MPLS
- Les FEC sont partagés par tous les routeurs LSR du réseau, via le protocole LDP

Distribution de labels (1)

- Protocole LDP: Label Distribution Protocol
 - Mode indépendant et non sollicitée
 - Pour chaque route dans la table de routage, création d'un label
 - Annonce de chaque label à ses voisins, et donc diffusion des labels (utilisation de TCP, et de messages tel que Label request, et label mapping et aussi de paquets hello)
 - → Création du LSP pour chaque route
 - Utilisation des routes déjà connues
 - Surcharge du réseau en certains points
 - Risque de création de boucles
 - Détection possible
 - On ne sait pas toutes les éviter

Distribution de labels (2)

- Mode de contrôle centralisé
 - 2 protocoles possibles :
 - CR-LDP : Constraint Routing LDP → extension de LDP
 - RSVP-TE: ReSerVation Protocol Tunnel Extension
 - But: choisir son chemin afin d'avoir une QoS
 - On impose le chemin d'une manière statique entre 2 E-LSR.
 - Entrée stricte : chemin directe entre 2 LSR
 - Entrée lâche : un chemin entre 2 LSR
 - Identification fixe du LSP tout au long du chemin (LSPId)
 - Champ présent dans la trame de création pour avoir une QoS défini
 - Pb si plus de places → notion de priorité de maintien
 - Pour rsvp-te, label mis en place via la réponse de la création du chemin et utilisation d'UDP.

Routage hiérarchique

- Utilisation du bit S de l'entête
 - Création de réseau virtuel à l'intérieur de MPLS (mise en place de tunnel)
 - Un LSR peut faire 3 actions :
 - Replace : échange d'un label contre un autre label
 - Replace and push : modification d'un label et empilement d'un nouveau label (création du tunnel)
 - Pop : dépilement du premier label

Sauf ordre contraire, MPLS ne traite que le label supérieur