Supplementary Materials

A Method for Inferring Polymers Based on Linear Regression and Integer Programming

Ryota Ido¹, Shengjuan Cao¹, Jianshen Zhu¹, Naveed Ahmed Azam², Kazuya Haraguchi¹, Liang Zhao³, Hiroshi Nagamochi¹, Tatsuya Akutsu⁴

¹Department of Applied Mathematics and Physics, Kyoto University, Kyoto 606-8501, Japan;
²Department of Mathematics, Quaid-i-Azam University, Islamabad 45320, Pakistan;
³Graduate School of Advanced Integrated Studies in Human Survivability (Shishu-Kan),
Kyoto University, Kyoto 606-8306, Japan;

1 Linear Regressions

This section reviews the method for linear regression used by Zhu et al. [1] in the framework of inferring chemical graphs.

For an integer $p \ge 1$ and a vector $x \in \mathbb{R}^p$, the j-th entry of x is denoted by $x(j), j \in [1, p]$.

Let D be a data set of chemical graphs \mathbb{C} with an observed value $a(\mathbb{C}) \in \mathbb{R}$, where we denote by $a_i = a(\mathbb{C}_i)$ for an indexed graph \mathbb{C}_i .

Let f be a feature function that maps a chemical graph \mathbb{C} to a vector $f(\mathbb{C}) \in \mathbb{R}^K$ where we denote by $x_i = f(\mathbb{C}_i)$ for an indexed graph \mathbb{C}_i . For a prediction function $\eta : \mathbb{R}^K \to \mathbb{R}$, define an error function

$$\operatorname{Err}(\eta; D) \triangleq \sum_{\mathbb{C}_i \in D} (a_i - \eta(f(\mathbb{C}_i)))^2 = \sum_{\mathbb{C}_i \in D} (a_i - \eta(x_i))^2,$$

and define the coefficient of determination $R^2(\eta, D)$ to be

$$R^{2}(\eta, D) \triangleq 1 - \frac{\operatorname{Err}(\eta; D)}{\sum_{\mathbb{C}_{i} \in D} (a_{i} - \widetilde{a})^{2}} \text{ for } \widetilde{a} = \frac{1}{|D|} \sum_{\mathbb{C} \in D} a(\mathbb{C}).$$

For a feature space \mathbb{R}^K , a hyperplane is defined to be a pair (w, b) of a vector $w \in \mathbb{R}^K$ and a real $b \in \mathbb{R}$. Given a hyperplane $(w, b) \in \mathbb{R}^{K+1}$, a prediction function $\eta_{w,b} : \mathbb{R}^K \to \mathbb{R}$ is defined by setting

$$\eta_{w,b}(x) \triangleq w \cdot x + b = \sum_{j \in [1,K]} w(j)x(j) + b.$$

We observe that such a prediction function can be represented as an ANN with an input layer with K nodes $u_j, j \in [1, K]$ and an output layer with a single node v such that the weight of edge arc (u_j, v) is set to be w(j), the bias of node u is set to be b and the activation function at node u is set to be a linear function. However, a learning algorithm for an ANN may not find a set of weights $w(j), j \in [1, K]$ and b that minimizes the error function, since the algorithm simply iterates modification of the current weights and biases until it terminates at a local optima in the minimization.

We wish to find a hyperplane (w, b) that minimizes the error function $\operatorname{Err}(\eta_{w,b}; D)$. In many cases, a feature vector f contains descriptors that do not play an essential role in constructing a good prediction function. When we solve the minimization problem, the entries w(j) for some descriptors $j \in [1, K]$ in the resulting hyperplane (w, b) become zero, which means that these descriptors were not necessarily important for finding a prediction function $\eta_{w,b}$. It is proposed that solving the

⁴Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan

minimization with an additional penalty term τ to the error function often results in a more number of entries w(j)=0, reducing a set of descriptors necessary for defining a prediction function $\eta_{w,b}$. For an error function with such a penalty term, a Ridge function $\frac{1}{2|D|}\mathrm{Err}(\eta_{w,b};D) + \lambda[\sum_{j\in[1,K]}w(j)^2 + b^2]$ [2, 3] and a Lasso function $\frac{1}{2|D|}\mathrm{Err}(\eta_{w,b};D) + \lambda[\sum_{j\in[1,K]}|w(j)| + |b|]$ [4] are known, where $\lambda \in \mathbb{R}$ is a given real number.

Given a prediction function $\eta_{w,b}$, we can simulate a process of computing the output $\eta_{w,b}(x)$ for an input $x \in \mathbb{R}^K$ as an MILP $\mathcal{M}(x,y;\mathcal{C}_1)$ in the framework. By solving such an MILP for a specified target value y^* , we can find a vector $x^* \in \mathbb{R}^K$ such that $\eta_{w,b}(x^*) = y^*$. Instead of specifying a single target value y^* , we use lower and upper bounds $\underline{y}^*, \overline{y}^* \in \mathbb{R}$ on the value $a(\mathbb{C})$ of a chemical graph \mathbb{C} to be inferred. We can control the range between \underline{y}^* and \overline{y}^* for searching a chemical graph \mathbb{C} by setting y^* and \overline{y}^* to be close or different values. A desired MILP is formulated as follows.

$\mathcal{M}(x,y;\mathcal{C}_1)$: An MILP formulation for the inverse problem to prediction function

constants:

- A hyperplane (w, b) with $w \in \mathbb{R}^K$ and $b \in \mathbb{R}$;
- Real values $y^*, \overline{y}^* \in \mathbb{R}$ such that $y^* < \overline{y}^*$;
- A set $I_{\mathbb{Z}}$ of indices $j \in [1, K]$ such that the j-th descriptor $dep_{j}(\mathbb{C})$ is always an integer;
- A set I_+ of indices $j \in [1, K]$ such that the j-th descriptor $dcp_j(\mathbb{C})$ is always non-negative;
- $\ell(j), u(j) \in \mathbb{R}, j \in [1, K]$: lower and upper bounds on the jth-descriptor;

variables:

- Non-negative integer variable $x(j) \in \mathbb{Z}_+, j \in I_{\mathbb{Z}} \cap I_+;$
- Integer variable $x(j) \in \mathbb{Z}, j \in I_{\mathbb{Z}} \setminus I_{+};$
- Non-negative real variable $x(j) \in \mathbb{Z}_+, j \in I_+ \setminus I_{\mathbb{Z}}$;
- Real variable $x(j) \in \mathbb{Z}, j \in [1, K] \setminus (I_{\mathbb{Z}} \cup I_{+});$

constraints:

$$\ell(j) \le x(j) \le u(j), j \in [1, K],\tag{1}$$

$$\underline{y}^* \le \sum_{j \in [1,K]} w(j)x(j) + b \le \overline{y}^*, \tag{2}$$

objective function:

none.

The number of variables and constraints in the above MILP formulation is O(K). It is not difficult to see that the above MILP is an NP-hard problem.

The entire MILP for Stage 4 consists of the two MILPs $\mathcal{M}(x, y; \mathcal{C}_1)$ and $\mathcal{M}(g, x; \mathcal{C}_2)$ with no objective function. The latter represents the computation process of our feature function f and a given topological specification. See Section 5 for the details of MILP $\mathcal{M}(g, x; \mathcal{C}_2)$.

2 A Full Description of Descriptors

Our definition of feature function is analogous with the one by Zhu et al. [1] except for a necessary modification due to our polymer model with link-edges.

Associated with the two functions α and β in a chemical graph $\mathbb{C} = (H, \alpha, \beta)$, we introduce functions ac: $V(E) \to (\Lambda \setminus \{\mathtt{H}\}) \times (\Lambda \setminus \{\mathtt{H}\}) \times [1,3]$, cs: $V(E) \to (\Lambda \setminus \{\mathtt{H}\}) \times [1,6]$ and ec: $V(E) \to ((\Lambda \setminus \{\mathtt{H}\}) \times [1,6]) \times ((\Lambda \setminus \{\mathtt{H}\}) \times [1,6]) \times [1,3]$ in the following.

To represent a feature of the exterior of \mathbb{C} , a chemical rooted tree in $\mathcal{T}(\mathbb{C})$ is called a *fringe-configuration* of \mathbb{C} .

We also represent leaf-edges in the exterior of \mathbb{C} . For a leaf-edge $uv \in E(\langle \mathbb{C} \rangle)$ with $\deg_{\langle \mathbb{C} \rangle}(u) = 1$, we define the *adjacency-configuration* of e to be an ordered tuple $(\alpha(u), \alpha(v), \beta(uv))$. Define

$$\Gamma_{\mathrm{ac}}^{\mathrm{lf}} \triangleq \{(\mathtt{a},\mathtt{b},m) \mid \mathtt{a},\mathtt{b} \in \Lambda, m \in [1,\min\{\mathrm{val}(\mathtt{a}),\mathrm{val}(\mathtt{b})\}]\}$$

as a set of possible adjacency-configurations for leaf-edges.

To represent a feature of an interior-vertex $v \in V^{\mathrm{int}}(\mathbb{C})$ such that $\alpha(v) = \mathbf{a}$ and $\deg_{\langle \mathbb{C} \rangle}(v) = d$ (i.e., the number of non-hydrogen atoms adjacent to v is d) in a chemical graph $\mathbb{C} = (H, \alpha, \beta)$, we use a pair $(\mathbf{a}, d) \in (\Lambda \setminus \{\mathbf{H}\}) \times [1, 4]$, which we call the *chemical symbol* $\mathrm{cs}(v)$ of the vertex v. We treat (\mathbf{a}, d) as a single symbol $\mathbf{a}d$, and define Λ_{dg} to be the set of all chemical symbols $\mu = \mathbf{a}d \in (\Lambda \setminus \{\mathbf{H}\}) \times [1, 4]$.

We define a method for featuring interior-edges as follows. Let $e = uv \in E^{\rm int}(\mathbb{C})$ be an interior-edge $e = uv \in E^{\rm int}(\mathbb{C})$ such that $\alpha(u) = \mathtt{a}$, $\alpha(v) = \mathtt{b}$ and $\beta(e) = m$ in a chemical graph $\mathbb{C} = (H, \alpha, \beta)$. To feature this edge e, we use a tuple $(\mathtt{a}, \mathtt{b}, m) \in (\Lambda \setminus \{\mathtt{H}\}) \times (\Lambda \setminus \{\mathtt{H}\}) \times [1, 3]$, which we call the adjacency-configuration $\mathtt{ac}(e)$ of the edge e. We introduce a total order < over the elements in Λ to distinguish between $(\mathtt{a}, \mathtt{b}, m)$ and $(\mathtt{b}, \mathtt{a}, m)$ $(\mathtt{a} \neq \mathtt{b})$ notationally. For a tuple $\nu = (\mathtt{a}, \mathtt{b}, m)$, let $\overline{\nu}$ denote the tuple $(\mathtt{b}, \mathtt{a}, m)$.

Let $e = uv \in E^{\text{int}}(\mathbb{C})$ be an interior-edge $e = uv \in E^{\text{int}}(\mathbb{C})$ such that $cs(u) = \mu$, $cs(v) = \mu'$ and $\beta(e) = m$ in a chemical graph $\mathbb{C} = (H, \alpha, \beta)$. To feature this edge e, we use a tuple $(\mu, \mu', m) \in \Lambda_{\text{dg}} \times \Lambda_{\text{dg}} \times [1, 3]$, which we call the *edge-configuration* ec(e) of the edge e. We introduce a total order e0 over the elements in e1 denote the tuple e2 denote the tuple e3 denote the tuple e4 denote the tuple e5 denote the tuple e6 denote the tuple e6 denote the tuple e7 denote the tuple e8 denote the tuple e9 denote the tup

Let π be a chemical property for which we will construct a prediction function η from a feature vector $f(\mathbb{C})$ of a chemical graph \mathbb{C} to a predicted value $y \in \mathbb{R}$ for the chemical property of \mathbb{C} .

We first choose a set Λ of chemical elements and then collect a data set D_{π} of chemical compounds C whose chemical elements belong to Λ , where we regard D_{π} as a set of chemical graphs \mathbb{C} that represent the chemical compounds C in D_{π} . To define the interior/exterior of chemical graphs $\mathbb{C} \in D_{\pi}$, we next choose a branch-parameter ρ , where we recommend $\rho = 2$.

Let $\Lambda^{\mathrm{int}}(D_{\pi}) \subseteq \Lambda$ (resp., $\Lambda^{\mathrm{ex}}(D_{\pi}) \subseteq \Lambda$) denote the set of chemical elements used in the set $V^{\mathrm{int}}(\mathbb{C})$ of interior-vertices (resp., the set $V^{\mathrm{ex}}(\mathbb{C})$ of exterior-vertices) of \mathbb{C} over all chemical graphs $\mathbb{C} \in D_{\pi}$, and $\Gamma^{\mathrm{int}}(D_{\pi})$ (resp., $\Gamma^{\mathrm{lnk}}(D_{\pi})$) denote the set of edge-configurations used in the set $E^{\mathrm{int}}(\mathbb{C})$ of interior-edges (resp., the set $E^{\mathrm{lnk}}(\mathbb{C})$ of linked-edges) in \mathbb{C} over all chemical graphs $\mathbb{C} \in D_{\pi}$. Let $\mathcal{F}(D_{\pi})$ denote the set of chemical rooted trees ψ r-isomorphic to a chemical rooted tree in $\mathcal{T}(\mathbb{C})$ over all chemical graphs $\mathbb{C} \in D_{\pi}$, where possibly a chemical rooted tree $\psi \in \mathcal{F}(D_{\pi})$ consists of a single chemical element $\mathbf{a} \in \Lambda \setminus \{\mathbf{H}\}$.

We define an integer encoding of a finite set A of elements to be a bijection $\sigma: A \to [1, |A|]$, where we denote by [A] the set [1, |A|] of integers. Introduce an integer coding of each of the sets $\Lambda^{\text{int}}(D_{\pi})$, $\Lambda^{\text{ex}}(D_{\pi})$, $\Gamma^{\text{int}}(D_{\pi})$ and $\mathcal{F}(D_{\pi})$. Let $[a]^{\text{int}}$ (resp., $[a]^{\text{ex}}$) denote the coded integer of an element $a \in \Lambda^{\text{int}}(D_{\pi})$ (resp., $a \in \Lambda^{\text{ex}}(D_{\pi})$), $[\gamma]$ denote the coded integer of an element γ in $\Gamma^{\text{int}}(D_{\pi})$ and $[\psi]$ denote an element ψ in $\mathcal{F}(D_{\pi})$.

We assume that a chemical graph \mathbb{C} treated in this paper satisfies $\deg_{\langle \mathbb{C} \rangle}(v) \leq 4$ in the hydrogen-suppressed graph $\langle \mathbb{C} \rangle$.

In our model, we use an integer mass*(a) = $|10 \cdot \text{mass}(a)|$, for each $a \in \Lambda$.

We define the feature vector $f(\mathbb{C})$ of a polymer $\mathbb{C} = (H, \alpha, \beta) \in D_{\pi}$ to be a vector that consists

of the following non-negative integer descriptors $\operatorname{dcp}_i(\mathbb{C})$, $i \in [1, K]$, where $K = 14 + |\Lambda^{\operatorname{int}}(D_{\pi})| + |\Lambda^{\operatorname{ex}}(D_{\pi})| + |\Gamma^{\operatorname{lit}}(D_{\pi})| + |\Gamma^{\operatorname{lnk}}(D_{\pi})| + |\Lambda_{\operatorname{dg}}| + |\mathcal{F}(D_{\pi})| + |\Gamma^{\operatorname{lf}}_{\operatorname{ac}}|$.

- 1. $dcp_1(\mathbb{C})$: the number $|V(H)| |V_{\mathbb{H}}|$ of non-hydrogen atoms in \mathbb{C} .
- 2. $dcp_2(\mathbb{C})$: the number $|V^{int}(\mathbb{C})|$ of interior-vertices in \mathbb{C} .
- 3. $dcp_3(\mathbb{C})$: the number $|E^{lnk}(\mathbb{C})|$ of link-edges in \mathbb{C} . This descriptor is newly introduced in this paper to feature a structure of polymers.
- 4. $dcp_4(\mathbb{C})$: the average $\overline{ms}(\mathbb{C})$ of $mass^*$ over all atoms in \mathbb{C} ; i.e., $\overline{ms}(\mathbb{C}) \triangleq \frac{1}{|V(H)|} \sum_{v \in V(H)} mass^*(\alpha(v))$.
- 5. $\operatorname{dcp}_i(\mathbb{C})$, $i = 4 + d, d \in [1, 4]$: the number $\operatorname{dg}_d^{\overline{\mathbb{H}}}(\mathbb{C})$ of non-hydrogen vertices $v \in V(H) \setminus V_{\mathbb{H}}$ of degree $\operatorname{deg}_{\langle \mathbb{C} \rangle}(v) = d$ in the hydrogen-suppressed chemical graph $\langle \mathbb{C} \rangle$.
- 6. $\operatorname{dcp}_i(\mathbb{C}), \ i = 8 + d, d \in [1, 4]$: the number $\operatorname{dg}_d^{\operatorname{int}}(\mathbb{C})$ of interior-vertices of interior-degree $\operatorname{deg}_{\mathbb{C}^{\operatorname{int}}}(v) = d$ in the interior $\mathbb{C}^{\operatorname{int}} = (V^{\operatorname{int}}(\mathbb{C}), E^{\operatorname{int}}(\mathbb{C}))$ of \mathbb{C} .
- 7. $\operatorname{dcp}_i(\mathbb{C}), i = 12 + m, m \in [2, 3]$: the number $\operatorname{bd}_m^{\operatorname{int}}(\mathbb{C})$ of interior-edges with bond multiplicity $m \text{ in } \mathbb{C}$; i.e., $\operatorname{bd}_m^{\operatorname{int}}(\mathbb{C}) \triangleq \{e \in E^{\operatorname{int}}(\mathbb{C}) \mid \beta(e) = m\}$.
- 8. $\operatorname{dcp}_i(\mathbb{C}), i = 14 + [\mathtt{a}]^{\operatorname{int}}, \mathtt{a} \in \Lambda^{\operatorname{int}}(D_\pi)$: the frequency $\operatorname{na}^{\operatorname{int}}_{\mathtt{a}}(\mathbb{C}) = |V_\mathtt{a}(\mathbb{C}) \cap V^{\operatorname{int}}(\mathbb{C})|$ of chemical element \mathtt{a} in the set $V^{\operatorname{int}}(\mathbb{C})$ of interior-vertices in \mathbb{C} .
- 9. $\operatorname{dcp}_i(\mathbb{C})$, $i = 14 + |\Lambda^{\operatorname{int}}(D_{\pi})| + [\mathtt{a}]^{\operatorname{ex}}$, $\mathtt{a} \in \Lambda^{\operatorname{ex}}(D_{\pi})$: the frequency $\operatorname{na}_{\mathtt{a}}^{\operatorname{ex}}(\mathbb{C}) = |V_{\mathtt{a}}(\mathbb{C}) \cap V^{\operatorname{ex}}(\mathbb{C})|$ of chemical element \mathtt{a} in the set $V^{\operatorname{ex}}(\mathbb{C})$ of exterior-vertices in \mathbb{C} .
- 10. $\operatorname{dcp}_i(\mathbb{C})$, $i = 14 + |\Lambda^{\operatorname{int}}(D_{\pi})| + |\Lambda^{\operatorname{ex}}(D_{\pi})| + [\gamma]$, $\gamma \in \Gamma^{\operatorname{int}}(D_{\pi})$: the frequency $\operatorname{ec}_{\gamma}(\mathbb{C})$ of edge-configuration γ in the set $E^{\operatorname{int}}(\mathbb{C})$ of interior-edges in \mathbb{C} .
- 11. $\operatorname{dcp}_i(\mathbb{C})$, $i = 14 + |\Lambda^{\operatorname{int}}(D_{\pi})| + |\Lambda^{\operatorname{ex}}(D_{\pi})| + |\Gamma^{\operatorname{int}}(D_{\pi})| + [\gamma]$, $\gamma \in \Gamma^{\operatorname{lnk}}(D_{\pi})$: the frequency $\operatorname{ec}_{\gamma}(\mathbb{C})$ of edge-configuration γ in the set $E^{\operatorname{lnk}}(\mathbb{C})$ of link-edges in \mathbb{C} . This descriptor is newly introduced in this paper to feature link-edges of polymers.
- 12. $\operatorname{dcp}_i(\mathbb{C})$, $i = 14 + |\Lambda^{\operatorname{int}}(D_{\pi})| + |\Lambda^{\operatorname{ex}}(D_{\pi})| + |\Gamma^{\operatorname{int}}(D_{\pi})| + [\mu]$, $\mu \in \Lambda_{\operatorname{dg}}^{\operatorname{int}}$: the frequency of chemical symbols $\mu = \alpha(u) \operatorname{deg}_{\langle \mathbb{C} \rangle}(u)$ of connecting-vertices u in \mathbb{C} .
- 13. $\operatorname{dcp}_{i}(\mathbb{C}), i = 14 + |\Lambda^{\operatorname{int}}(D_{\pi})| + |\Lambda^{\operatorname{ex}}(D_{\pi})| + |\Gamma^{\operatorname{int}}(D_{\pi})| + |\Gamma^{\operatorname{lnk}}(D_{\pi})| + |\Lambda_{\operatorname{dg}}| + [\psi], \ \psi \in \mathcal{F}(D_{\pi})$: the frequency $\operatorname{fc}_{\psi}(\mathbb{C})$ of fringe-configuration ψ in the set of ρ -fringe-trees in \mathbb{C} .
- 14. $\operatorname{dcp}_{i}(\mathbb{C}), i = 14 + |\Lambda^{\operatorname{int}}(D_{\pi})| + |\Lambda^{\operatorname{ex}}(D_{\pi})| + |\Gamma^{\operatorname{int}}(D_{\pi})| + |\Gamma^{\operatorname{lnk}}(D_{\pi})| + |\Lambda_{\operatorname{dg}}| + |\mathcal{F}(D_{\pi})| + [\nu], \ \nu \in \Gamma^{\operatorname{lf}}_{\operatorname{ac}}$: the frequency $\operatorname{ac}_{\nu}^{\operatorname{lf}}(\mathbb{C})$ of adjacency-configuration ν in the set of leaf-edges in $\langle \mathbb{C} \rangle$.

3 Specifying Target Chemical Graphs

Our definition of topological specification is analogous with the one by Zhu et al. [1] except for a necessary modification due to our polymer model with link-edges.

Seed Graph

A seed graph for a polymer is defined to be a graph $G_{\rm C}=(V_{\rm C},E_{\rm C})$ with a specified edge subset $E_{\rm C}^{\rm lnk}$ such that the edge set $E_{\rm C}$ consists of four sets $E_{(\geq 2)}, E_{(\geq 1)}, E_{(0/1)}$ and $E_{(=1)}$, where each of them can be empty, and $E_{\rm C}^{\rm lnk}$ is a circular set in $G_{\rm C}$ such that $\emptyset \neq E_{\rm C}^{\rm lnk} \subseteq E_{(\geq 2)} \cup E_{(\geq 1)} \cup E_{(=1)}$. Figure 5(a) illustrates an example of a seed graph, where $V_{\rm C}=\{u_1,u_2,\ldots,u_{14}\}, E_{(\geq 2)}=\{a_1,a_2,a_3,a_4\}, E_{(\geq 1)}=\{a_5,a_6,\ldots,a_9\}, E_{(0/1)}=\{a_{10}\}, E_{(=1)}=\{a_{11},a_{12},\ldots,a_{18}\}$ and $E_{\rm C}^{\rm lnk}=\{a_1,a_2\}$.

A subdivision S of $G_{\mathbb{C}}$ is a graph constructed from a seed graph $G_{\mathbb{C}}$ according to the following rules:

- Each edge $e = uv \in E_{(\geq 2)}$ is replaced with a u, v-path P_e of length at least 2;
- Each edge $e = uv \in E_{(\geq 1)}$ is replaced with a u, v-path P_e of length at least 1 (equivalently e is directly used or replaced with a u, v-path P_e of length at least 2);
- Each edge $e \in E_{(0/1)}$ is either used or discarded; and
- Each edge $e \in E_{(=1)}$ is always used directly.

The set of link-edges in the monomer representation \mathbb{C} of an inferred polymer consists of edges in $E_{\mathcal{C}}^{\mathrm{lnk}} \cap (E_{(=1)} \cup E_{(\geq 1)})$ or edges in paths P_e for all edges $e = uv \in E_{\mathcal{C}}^{\mathrm{lnk}} \cap (E_{(\geq 1)} \cup E_{(\geq 2)})$ in a subdivision S of $G_{\mathcal{C}}$.

A target chemical graph $\mathbb{C} = (H, \alpha, \beta)$ will contain S as a subgraph of the interior H^{int} of \mathbb{C} .

Interior-specification

A graph H^* that serves as the interior H^{int} of a target chemical graph $\mathbb C$ will be constructed as follows. First construct a subdivision S of a seed graph $G_{\mathbb C}$ by replacing each edge $e = uu' \in E_{(\geq 2)} \cup E_{(\geq 1)}$ with a pure u, u'-path P_e . Next construct a supergraph H^* of S by attaching a leaf path Q_v at each vertex $v \in V_{\mathbb C}$ or at an internal vertex $v \in V(P_e) \setminus \{u, u'\}$ of each pure u, u'-path P_e for some edge $e = uu' \in E_{(\geq 2)} \cup E_{(\geq 1)}$, where possibly $Q_v = (v), E(Q_v) = \emptyset$ (i.e., we do not attach any new edges to v). We introduce the following rules for specifying the size of H^* , the length $|E(P_e)|$ of a pure path P_e , the length $|E(Q_v)|$ of a leaf path Q_v , the number of leaf paths Q_v and a bond-multiplicity of each interior-edge, where we call the set of prescribed constants an interior-specification σ_{int} :

- Lower and upper bounds $n_{LB}^{int}, n_{UB}^{int} \in \mathbb{Z}_+$ on the number of interior-vertices of a target chemical graph \mathbb{C} .
- Lower and upper bounds $n_{LB}^{lnk}, n_{UB}^{lnk} \in \mathbb{Z}_+$ on the number of link-edges of a target chemical graph \mathbb{C} .
- For each edge $e = uu' \in E_{(\geq 2)} \cup E_{(\geq 1)}$,
 - a lower bound $\ell_{LB}(e)$ and an upper bound $\ell_{UB}(e)$ on the length $|E(P_e)|$ of a pure u, u'-path P_e . (For a notational convenience, set $\ell_{LB}(e) := 0$, $\ell_{UB}(e) := 1$, $e \in E_{(0/1)}$ and $\ell_{LB}(e) := 1$, $\ell_{UB}(e) := 1$, ℓ_{UB
 - a lower bound $bl_{LB}(e)$ and an upper bound $bl_{UB}(e)$ on the number of leaf paths Q_v attached at internal vertices v of a pure u, u'-path P_e .

- a lower bound $\operatorname{ch}_{\operatorname{LB}}(e)$ and an upper bound $\operatorname{ch}_{\operatorname{UB}}(e)$ on the maximum length $|E(Q_v)|$ of a leaf path Q_v attached at an internal vertex $v \in V(P_e) \setminus \{u, u'\}$ of a pure u, u'-path P_e .
- For each vertex $v \in V_{\rm C}$,
 - a lower bound $\operatorname{ch}_{\operatorname{LB}}(v)$ and an upper bound $\operatorname{ch}_{\operatorname{UB}}(v)$ on the number of leaf paths Q_v attached to v, where $0 \leq \operatorname{ch}_{\operatorname{LB}}(v) \leq \operatorname{ch}_{\operatorname{UB}}(v) \leq 1$.
 - a lower bound $\operatorname{ch}_{\operatorname{LB}}(v)$ and an upper bound $\operatorname{ch}_{\operatorname{UB}}(v)$ on the length $|E(Q_v)|$ of a leaf path Q_v attached to v.
- For each edge $e = uu' \in E_{\mathbb{C}}$, a lower bound $\mathrm{bd}_{m,\mathrm{LB}}(e)$ and an upper bound $\mathrm{bd}_{m,\mathrm{UB}}(e)$ on the number of edges with bond-multiplicity $m \in [2,3]$ in u,u'-path P_e , where we regard P_e , $e \in E_{(0/1)} \cup E_{(=1)}$ as single edge e.

We call a graph H^* that satisfies an interior-specification σ_{int} a σ_{int} -extension of G_{C} , where the bond-multiplicity of each edge has been determined.

Table 1 shows an example of an interior-specification $\sigma_{\rm int}$ to the seed graph $G_{\rm C}$ in Figure 5(a).

$n_{LB}^{int} = 20$	nin nu	$_{\rm B}^{\rm t}=3$	30 n	$_{ m LB}^{ m lnk}=$	2	n ^{lnk} :	= 24			•			1110					
	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a_9									
$\ell_{\mathrm{LB}}(a_i)$	2	4	3	2	2	1	1	1	1									
$\ell_{\mathrm{UB}}(a_i)$	3	6	6	5	3	3	6	2	6									
$\mathrm{bl}_{\mathrm{LB}}(a_i)$	0	1	1	0	0	0	0	0	0									
$\mathrm{bl}_{\mathrm{UB}}(a_i)$	1	4	4	3	2	1	1	1	1									
$\operatorname{ch}_{\operatorname{LB}}(a_i)$	0	2	1	0	0	0	0	0	0									
$\operatorname{ch}_{\operatorname{UB}}(a_i)$	3	6	6	3	3	3	3	0	0									
	u_1	u_2	u_3	u_4	u_5	u_6	u_7	u_8	u_9	u_{10}	u_{11}	u_{12}	u_{13}	u_{14}				
$\mathrm{bl}_{\mathrm{LB}}(u_i)$	0	0	0	0	0	0	0	0	1	0	0	0	0	0				
$\mathrm{bl}_{\mathrm{UB}}(u_i)$	1	1	1	1	1	1	1	1	1	1	1	1	1	1				
$\operatorname{ch}_{\operatorname{LB}}(u_i)$	0	0	0	0	0	0	0	0	1	0	0	0	0	0				
$\operatorname{ch}_{\operatorname{UB}}(u_i)$	4	4	4	4	4	4	4	4	6	4	4	4	4	4				
	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a_9	a_{10}	a_{11}	a_{12}	a_{13}	a_{14}	a_{15}	a_{16}	a_{17}	a_{18}
$\mathrm{bd}_{2,\mathrm{LB}}(a_i)$) 0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
$\mathrm{bd}_{2,\mathrm{UB}}(a_i)$) 1	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
$\mathrm{bd}_{3,\mathrm{LB}}(a_i)$		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\mathrm{bd}_{3,\mathrm{UB}}(a_i)$) 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Table 1: Example 1 of an interior-specification $\sigma_{\rm int}$.

Figure 6 illustrates an example of an σ_{int} -extension H^* of seed graph G_{C} in Figure 5(a) under the interior-specification σ_{int} in Table 1.

Chemical-specification

Let H^* be a graph that serves as the interior H^{int} of a target chemical graph \mathbb{C} , where the bondmultiplicity of each edge in H^* has be determined. Finally we introduce a set of rules for constructing a target chemical graph \mathbb{C} from H^* by choosing a chemical element $\mathbf{a} \in \Lambda$ and assigning a ρ -fringe-tree ψ to each interior-vertex $v \in V^{\text{int}}$. We introduce the following rules for specifying the size of \mathbb{C} , a set of chemical rooted trees that are allowed to use as ρ -fringe-trees and lower and upper bounds on the frequency of a chemical element, a chemical symbol, an edge-configuration, and a fringe-configuration where we call the set of prescribed constants a *chemical specification* σ_{ce} :

- Lower and upper bounds n_{LB} , $n^* \in \mathbb{Z}_+$ on the number of vertices, where $n_{LB}^{int} \leq n_{LB} \leq n^*$.
- A subset $\mathcal{F}^* \subseteq \mathcal{F}(D_{\pi})$ of chemical rooted trees ψ with $\operatorname{ht}(\langle \psi \rangle) \leq \rho$, where we require that every ρ -fringe-tree $\mathbb{C}[v]$ rooted at an interior-vertex v in \mathbb{C} belongs to \mathcal{F}^* . Let $\Lambda^{\operatorname{ex}}$ denote the set of chemical elements assigned to non-root vertices over all chemical rooted trees in \mathcal{F}^* .
- A subset $\Lambda^{\rm int} \subseteq \Lambda^{\rm int}(D_{\pi})$, where we require that every chemical element $\alpha(v)$ assigned to an interior-vertex v in $\mathbb C$ belongs to $\Lambda^{\rm int}$. Let $\Lambda := \Lambda^{\rm int} \cup \Lambda^{\rm ex}$ and $\mathrm{na_a}(\mathbb C)$ (resp., $\mathrm{na_a^{\rm int}}(\mathbb C)$ and $\mathrm{na_a^{\rm ex}}(\mathbb C)$) denote the number of vertices (resp., interior-vertices and exterior-vertices) v such that $\alpha(v) = \mathbf a$ in $\mathbb C$.
- A set $\Lambda_{\mathrm{dg}}^{\mathrm{int}} \subseteq \Lambda \times [1,4]$ of chemical symbols.
- Subsets $\Gamma^{\text{lnk}} \subseteq \Gamma^{\text{int}}$ of $\Gamma^{\text{int}}(D_{\pi})$ of edge-configurations (μ, μ', m) with $\mu \leq \mu'$, where we require that the edge-configuration ec(e) of an interior-edge (resp., a link-edge) e in \mathbb{C} belongs to Γ^{int} (resp., Γ^{lnk}). We do not distinguish (μ, μ', m) and (μ', μ, m) .
- Define $\Gamma^{\rm int}_{\rm ac}$ (resp., $\Gamma^{\rm lnk}_{\rm ac}$) to be the set of adjacency-configurations such that $\Gamma^{\rm t}_{\rm ac}:=\{({\tt a},{\tt b},m)\mid ({\tt ad},{\tt bd}',m)\in\Gamma^{\rm t}\},$ $t\in\{{\rm int},{\rm lnk}\}.$ Let ${\rm ac}^{\rm int}_{\nu}(\mathbb{C}),\nu\in\Gamma^{\rm int}_{\rm ac}$ (resp., ${\rm ac}^{\rm lnk}_{\nu}(\mathbb{C}),\nu\in\Gamma^{\rm lnk}_{\rm ac}$) denote the number of interior-edges (resp., link-edges) e such that ${\rm ac}(e)=\nu$ in \mathbb{C} .
- Subsets $\Lambda^*(v) \subseteq \{a \in \Lambda^{\text{int}} \mid \text{val}(a) \geq 2\}, v \in V_C$, we require that every chemical element $\alpha(v)$ assigned to a vertex $v \in V_C$ in the seed graph belongs to $\Lambda^*(v)$.
- Lower and upper bound functions na_{LB} , na_{UB} : $\Lambda \to [0, n^*]$ and na_{LB}^{int} , na_{UB}^{int} : $\Lambda^{int} \to [0, n^*]$ on the number of interior-vertices v such that $\alpha(v) = a$ in \mathbb{C} .
- Lower and upper bound functions $\operatorname{ns_{LB}^{int}}, \operatorname{ns_{UB}^{int}} : \Lambda_{\operatorname{dg}}^{\operatorname{int}} \to [0, n^*]$ on the number of interior-vertices v such that $\operatorname{cs}(v) = \mu$ in \mathbb{C} .
- Lower and upper bound functions $\operatorname{ns_{LB}^{cnt}}, \operatorname{ns_{UB}^{cnt}}: \Lambda_{\operatorname{dg}}^{\operatorname{int}} \to [0,2]$ on the number of connecting-vertices v such that $\operatorname{cs}(v) = \mu$ in \mathbb{C} .
- Lower and upper bound functions $\operatorname{ac}_{\operatorname{LB}}^{\operatorname{int}}, \operatorname{ac}_{\operatorname{UB}}^{\operatorname{int}} : \Gamma_{\operatorname{ac}}^{\operatorname{int}} \to \mathbb{Z}_+ (\operatorname{ac}_{\operatorname{LB}}^{\operatorname{lnk}}, \operatorname{ac}_{\operatorname{UB}}^{\operatorname{lnk}} : \Gamma_{\operatorname{ac}}^{\operatorname{lnk}} \to \mathbb{Z}_+)$ on the number of interior-edges (resp., link-edges) e such that $\operatorname{ac}(e) = \nu$ in \mathbb{C} .
- Lower and upper bound functions $\operatorname{ec_{LB}^{int}}, \operatorname{ec_{UB}^{int}} : \Gamma^{\operatorname{int}} \to \mathbb{Z}_{+} \text{ (resp., } \operatorname{ec_{LB}^{lnk}}, \operatorname{ec_{UB}^{lnk}} : \Gamma^{\operatorname{lnk}} \to \mathbb{Z}_{+} \text{) on the number of interior-edges (resp., link-edges) } e \text{ such that } \operatorname{ec}(e) = \gamma \text{ in } \mathbb{C}.$
- Lower and upper bound functions $fc_{LB}, fc_{UB} : \mathcal{F}^* \to [0, n^*]$ on the number of interior-vertices v such that $\mathbb{C}[v]^{fr}$ is r-isomorphic to $\psi \in \mathcal{F}^*$ in \mathbb{C} .
- Lower and upper bound functions $\operatorname{ac_{LB}^{lf}}, \operatorname{ac_{UB}^{lf}}: \Gamma_{\operatorname{ac}}^{\operatorname{lf}} \to [0, n^*]$ on the number of leaf-edges uv in $\operatorname{ac_{C}}$ with adjacency-configuration ν .

We call a chemical graph \mathbb{C} that satisfies a chemical specification σ_{ce} a $(\sigma_{\text{int}}, \sigma_{\text{ce}})$ -extension of G_{C} , and denote by $\mathcal{G}(G_{\text{C}}, \sigma_{\text{int}}, \sigma_{\text{ce}})$ the set of all $(\sigma_{\text{int}}, \sigma_{\text{ce}})$ -extensions of G_{C} .

Table 2 shows an example of a chemical-specification σ_{ce} to the seed graph G_{C} in Figure 5(a). Figure 3 illustrates an example of a $(\sigma_{int}, \sigma_{ce})$ -extension of G_{C} obtained from the σ_{int} -extension H^* in Figure 6 under the chemical-specification σ_{ce} in Table 2.

Table 2: Example 2 of a chemical-specification σ_{ce} .												
$n_{\rm LB} = 30, n^* = 50.$												
branch-parameter: $\rho = 2$												
Each of sets $\mathcal{F}(v), v \in V_{\mathcal{C}}$ and \mathcal{F}_{E} is set to be												
t \mathcal{F} of chemical rooted trees ψ with $\operatorname{ht}(\langle \psi \rangle) \leq \rho = 2$ in Figure 5(b).												
$\boxed{ \Lambda = \{\mathtt{H},\mathtt{C},\mathtt{N},\mathtt{0},\mathtt{S}_{(2)},\mathtt{S}_{(6)},\mathtt{P} = \mathtt{P}_{(6)},\mathtt{Cl}\} \ \middle \ \Lambda_{\mathrm{dg}}^{\mathrm{int}} = \{\mathtt{C2},\mathtt{C3},\mathtt{C4},\mathtt{N2},\mathtt{N3},\mathtt{02},\mathtt{S}_{(2)}2,\mathtt{S}_{(6)}3,\mathtt{P4}\} } \ \ \ \Lambda_{\mathrm{dg}}^{\mathrm{int}} = \{\mathtt{C2},\mathtt{C3},\mathtt{C4},\mathtt{N2},\mathtt{N3},\mathtt{02},\mathtt{S}_{(2)}2,\mathtt{S}_{(6)}3,\mathtt{P4}\} \ \ \ \ \ \ \ \ \ \ $												
$ \Gamma_{\text{ac}}^{\text{int}} \mid \nu_1 = (\mathtt{C}, \mathtt{C}, 1), \nu_2 = (\mathtt{C}, \mathtt{C}, 2), \nu_3 = (\mathtt{C}, \mathtt{N}, 1), \nu_4 = (\mathtt{C}, \mathtt{0}, 1), \nu_5 = (\mathtt{C}, \mathtt{S}_{(2)}, 1), \nu_6 = (\mathtt{C}, \mathtt{S}_{(6)}, 1), \nu_7 = (\mathtt{C}, \mathtt{P}, 1) $												
$\gamma_7 = (\texttt{C3}, \texttt{C3}, \texttt{2}), \gamma_8 = (\texttt{C3}, \texttt{C4}, \texttt{1}), \gamma_9 = (\texttt{C2}, \texttt{N3}, \texttt{1}), \gamma_{10} = (\texttt{C3}, \texttt{N2}, \texttt{1}), \gamma_{11} = (\texttt{C4}, \texttt{N2}, \texttt{1}), \gamma_{12} = (\texttt{C2}, \texttt{02}, \texttt{1}), \gamma_{13} = (\texttt{C4}, \texttt{N2}, \texttt{1}), \gamma_{14} = (\texttt{C4}, \texttt{N2}, \texttt{1}), \gamma_{15} = (\texttt{C2}, \texttt{C3}, \texttt{C4}, \texttt{1}), \gamma_{16} = (\texttt{C3}, \texttt{C4}, \texttt{1}), \gamma_{17} = (\texttt{C4}, \texttt{N2}, \texttt{1}), \gamma_{18} = (\texttt{C2}, \texttt{C3}, \texttt{C4}, \texttt{1}), \gamma_{19} = (\texttt{C3}, \texttt{C4}, \texttt{1}), \gamma_{19} = (\texttt{C3}, \texttt{C4}, \texttt{1}), \gamma_{19} = (\texttt{C3}, \texttt{C4}, \texttt{1}), \gamma_{19} = (\texttt{C4}, \texttt{N2}, \texttt{1}), \gamma_{19} = (\texttt{C4}, \texttt{N2}, \texttt{1}), \gamma_{19} = (\texttt{C2}, \texttt{C3}, \texttt{C4}, \texttt{1}), \gamma_{19} = (\texttt{C3}, \texttt{C4}, \texttt{1}), \gamma_{19} = (\texttt{C4}, \texttt{N2}, \texttt{1}), \gamma_{19} = (\texttt{C4}, $												
$\gamma_{13} = (\texttt{C3}, \texttt{02}, 1), \gamma_{14} = (\texttt{C2}, \texttt{S}_{(2)}2, 1), \gamma_{15} = (\texttt{C3}, \texttt{S}_{(2)}2, 1), \gamma_{16} = (\texttt{C4}, \texttt{S}_{(2)}2, 1), \gamma_{17} = (\texttt{C3}, \texttt{S}_{(6)}3, 1), \gamma_{17} = (\texttt{C3}, \texttt{S}_{(6)}3, 1), \gamma_{18} = (\texttt{C4}, \texttt{C4}, \texttt{C4}, \texttt{C4}, \texttt{C4}, \texttt{C4}, \texttt{C4}, \texttt{C4}, \texttt{C4}, \texttt{C4}, \texttt{C5}, \texttt{C4}, \texttt{C5}, \texttt{C6}, \texttt{C4}, \texttt{C6}, $												
$\gamma_{18} = (\text{C4}, \text{S}_{(6)}3, 1), \gamma_{19} = (\text{C2}, \text{P4}, 1), \gamma_{20} = (\text{C3}, \text{P4}, 1)$												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$\gamma_7' = (\texttt{C3}, \texttt{N2}, 1), \gamma_8' = (\texttt{C2}, \texttt{S}_{(2)}2, 1), \gamma_9' = (\texttt{C3}, \texttt{S}_{(2)}2, 1), \gamma_{10}' = (\texttt{C4}, \texttt{S}_{(2)}2, 1)$												
$\Lambda^*(u_i) = \{\mathtt{C}\}, i \in \{1, 2, 3, 4, 5, 6, 9\}, \ \Lambda^*(u_8) = \{\mathtt{O}\}, \ \Lambda^*(u_{12}) = \{\mathtt{C}, \mathtt{P}\},$												
$\Lambda^*(u_i) = \{\mathtt{C},\mathtt{O},\mathtt{N}\}, \ i \in [1,14] \setminus \{1,2,3,4,5,6,8,9,12\}$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$na_{LB}(a)$ 40 25 1 1 0 0 0 0 $na_{LB}^{int}(a)$ 10 1 0 0 0												
$na_{UB}(a)$ 80 50 8 8 4 4 4 4 $na_{UB}^{int}(a)$ 25 4 5 2 2 2												
$lacksquare egin{bmatrix} {\sf C2} & {\sf C3} & {\sf C4} & {\sf N2} & {\sf N3} & {\sf O2} & {\sf S}_{(2)}2 & {\sf S}_{(6)}3 & {\sf P4} \end{bmatrix}$												
$\begin{array}{ c cccccccccccccccccccccccccccccccccc$												
$\boxed{ \text{ns}_{\text{UB}}^{\text{int}}(\mu) \mid 12 15 5 5 3 5 1 1 1 }$												
$oxed{C2 C3 C4 N2 N3 O2 S_{(2)}2 S_{(6)}3 P4}$												
$ \operatorname{ns^{cnt}_{LB}}(\mu) 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0$												
$\begin{array}{ c cccccccccccccccccccccccccccccccccc$												
$oxed{\operatorname{ac}^{\operatorname{int}}_{\operatorname{LB}}(u)} owedow 0 = 0 = 0 = 0 = 0 = 0$												
$ac_{ m UB}^{ m int}(u) \mid 30 10 10 2 3 3$												
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$\mathrm{ec_{LB}^{int}}(\gamma)$ 0 0 0 0 0 0												
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$\operatorname{ac_{LB}^{lnk}}(u') = 0 = 0 = 0 = \operatorname{ec_{LB}^{lnk}}(\gamma') = 0$												
$\operatorname{ac_{UB}^{lnk}}(\nu')$ 10 5 5 5 $\operatorname{ec_{UB}^{lnk}}(\gamma')$ 4												
$\boxed{ \psi \in \{\psi_i \mid i=1,6,11\} \psi \in \mathcal{F}^* \setminus \{\psi_i \mid i=1,6,11\} }$												
$fc_{LB}(\psi)$ 1 0												
$fc_{\mathrm{UB}}(\psi)$ 10 3												
$\nu \in \{(\mathtt{C},\mathtt{C},1),(\mathtt{C},\mathtt{C},2)\} \nu \in \Gamma_{\mathrm{ac}}^{\mathrm{lf}} \setminus \{(\mathtt{C},\mathtt{C},1),(\mathtt{C},\mathtt{C},2)\}$												
$ac_{LR}^{lf}(\nu)$ 0 0												
$ac_{\mathrm{UB}}^{\mathrm{lf}}(u)$ 10 8												

4 Test Instances for Stages 4 and 5

We prepared the following instances I_a and I_b for conducting experiments of Stages 4 and 5 in Phase 2.

In Stages 4 and 5, we use four properties $\pi \in \{AMD, HCL, RFID, TG\}$ and define a set $\Lambda(\pi)$ of chemical elements as follows:

```
\begin{split} &\Lambda(\text{AmD}) = \Lambda_4 = \{\text{H,C,N,0,Cl,S}_{(2)}\}, \ \Lambda(\text{HcL}) = \Lambda(\text{Tg}) = \Lambda_5 = \{\text{H,C,0,N,Cl,S}_{(2)},\text{S}_{(6)}\}, \ \Lambda(\text{RfId}) = \Lambda_6 = \{\text{H,C,0}_{(1)},\text{O}_{(2)},\text{N,Cl,Si}_{(4)},\text{F}\} \ \text{and} \\ &\Lambda(\text{Prm}) = \Lambda_3 = \{\text{H,C,0,N,Cl}\}. \end{split}
```

- (a) $I_{\rm a}=(G_{\rm C},\sigma_{\rm int},\sigma_{\rm ce})$: The instance used in Appendix 3 to explain the target specification. For each property $\pi\in\{{\rm AMD,\,HcL,\,RFID,\,TG,\,PRM}\}$, we replace $\Lambda=\{{\rm H,C,N,0,S_{(2)},S_{(6)},P_{(5)},Cl}\}$ in Table 2 with $\Lambda(\pi)\cap\{{\rm S_{(2)},S_{(6)},P_{(5)},Cl}\}$ and remove from the $\sigma_{\rm ce}$ all chemical symbols, edge-configurations and fringe-configurations that cannot be constructed from the replaced element set (i.e., those containing a chemical element in $\{{\rm S_{(2)},S_{(6)},P_{(5)},Cl}\}\setminus\Lambda(\pi)$).
- (b) $I_{\rm b}=(G_{\rm C},\sigma_{\rm int},\sigma_{\rm ce})$: An instance that represents a set of polymers that includes the four examples of polymers in Figure 7. We set a seed graph $G_{\rm C}=(V_{\rm C},E_{\rm C}=E_{(=1)})$ to be the graph with two cycles C_1 and C_2 in Figure 8(i), where we set $E_{(\geq 2)}=E_{\rm C}^{\rm lnk}=\{a_1,a_2\}$ and $E_{(=1)}=\{a_3,a_{12},\ldots,a_{14}\}$.

Set $\Lambda := \Lambda(\pi)$ for each property $\pi \in \{AMD, HCL, RFID, TG\}$, and set Λ_{dg}^{int} to be the set of all possible chemical symbols in $\Lambda \times [1, 4]$.

Set Γ^{int} (resp., Γ^{lnk}) to be the set of edge-configurations of the interior-edges (resp., the link-edges) used in the four examples of polymers in Figure 7. Set $\Gamma^{\text{int}}_{\text{ac}}$ (resp., $\Gamma^{\text{lnk}}_{\text{ac}}$) to be the set of the adjacency-configurations of the edge-configurations in Γ^{int} (resp., Γ^{lnk}).

We specify n_{LB} for each property π and set $n_{LB}^{int} := 14$, $n_{UB}^{int} := n^* := n_{LB} + 10$, $n_{LB}^{lnk} := 2$, $n_{UB}^{lnk} := 2 + \max\{n_{LB} - 15, 0\}$.

For each link-edge $a_i \in E_{(\geq 2)} = E_{\rm C}^{\rm lnk} = \{a_1, a_2\}$, set $\ell_{\rm LB}(a_i) := 2 + \max\{\lfloor (n_{\rm LB} - 15)/4 \rfloor, 0\}$, $\ell_{\rm UB}(a_i) := \ell_{\rm LB}(a_i) + 5$, $\mathrm{bl}_{\rm LB}(a_i) := 0$, $\mathrm{bl}_{\rm UB}(a_i) := 3$, $\mathrm{ch}_{\rm LB}(a_i) := 0$, $\mathrm{ch}_{\rm UB}(a_i) := 5$, $\mathrm{bd}_{2,\rm LB}(a_i) := 0$ and $\mathrm{bd}_{2,\rm UB}(a_i) := \lfloor \ell_{\rm LB}(a_i)/3 \rfloor$.

To form two benzene rings from the two cycles C_1 and C_2 , set $\Lambda^*(u) := \{C\}$, $\mathrm{bl}_{LB}(u) := \mathrm{bl}_{UB}(u) := \mathrm{ch}_{LB}(u) := \mathrm{ch}_{UB}(u) := 0$, $u \in V_C$, $\mathrm{bd}_{2,LB}(a_i) := \mathrm{bd}_{2,UB}(a_i) := 0$, $i \in \{3, 5, 7, 9, 11, 13\}$, $\mathrm{bd}_{2,LB}(a_i) := \mathrm{bd}_{2,UB}(a_i) := 1$, $i \in \{4, 6, 8, 10, 12, 14\}$.

Not to include any triple-bond, set $bd_{3,LB}(a) := bd_{3,UB}(a) := 0, a \in E_{C}$.

Set lower bounds na_{LB} , na_{LB}^{int} , ns_{LB}^{int} , nc_{LB}^{int} , ac_{LB}^{int} , ac_{LB}^{int} , ec_{LB}^{int} , ec_{LB}^{ink} and ac_{LB}^{lf} to be 0.

Set upper bounds $\text{na}_{\text{UB}}(\mathbf{a}) := n^*, \text{na} \in \{\mathtt{H},\mathtt{C}\}, \text{na}_{\text{UB}}(\mathbf{a}) := 5 + \max\{n_{\text{LB}} - 15, 0\}, \mathbf{a} \in \{\mathtt{O},\mathtt{N}\}, \\ \text{na}_{\text{UB}}(\mathbf{a}) := 2 + \max\{\lfloor (n_{\text{LB}} - 15)/4 \rfloor, 0\}, \mathbf{a} \in \Lambda \setminus \{\mathtt{H},\mathtt{C},\mathtt{O},\mathtt{N}\}, \text{ns}_{\text{UB}}^{\text{cnt}}(\mu) := 2, \mu \in \Lambda_{\text{dg}}^{\text{int}}, \text{ and na}_{\text{UB}}^{\text{int}}, \\ \text{ns}_{\text{UB}}^{\text{int}}, \text{ ac}_{\text{UB}}^{\text{int}}, \text{ ac}_{\text{UB}}^{\text{lnk}}, \text{ ec}_{\text{UB}}^{\text{int}}, \text{ ec}_{\text{UB}}^{\text{lnk}}, \text{ ec$

Set \mathcal{F} to be the set of the 17 chemical rooted trees $\psi_i, i \in [1, 17]$ in Figure 8(ii). Set $\mathcal{F}_E := \mathcal{F}(v) := \mathcal{F}, v \in V_{\rm C}$ and $\mathrm{fc_{LB}}(\psi) := 0, \psi \in \mathcal{F}, \ \mathrm{fc_{UB}}(\psi_i) := 12 + \max\{n_{\rm LB} - 15, 0\}, i \in [1, 4], \ \mathrm{fc_{UB}}(\psi_i) := 8 + \max\{\lfloor (n_{\rm LB} - 15)/2 \rfloor, 0\}, i \in [5, 12] \ \mathrm{and} \ \mathrm{fc_{UB}}(\psi_i) := 5 + \max\{\lfloor (n_{\rm LB} - 15)/4 \rfloor, 0\}, i \in [13, 17], \psi_i \in \mathcal{F}.$

5 All Constraints in an MILP Formulation for Chemical Graphs

Our definition of an MILP formulation MILP $\mathcal{M}(g, x; \mathcal{C}_2)$ is analogous with the one by Zhu et al. [1] except for a necessary modification due to our polymer model with link-edges.

We define a standard encoding of a finite set A of elements to be a bijection $\sigma: A \to [1, |A|]$, where we denote by [A] the set [1, |A|] of integers and by [e] the encoded element $\sigma(e)$. Let ϵ denote null, a fictitious chemical element that does not belong to any set of chemical elements, chemical symbols, adjacency-configurations and edge-configurations in the following formulation. Given a finite set A, let A_{ϵ} denote the set $A \cup \{\epsilon\}$ and define a standard encoding of A_{ϵ} to be a bijection $\sigma: A \to [0, |A|]$ such that $\sigma(\epsilon) = 0$, where we denote by $[A_{\epsilon}]$ the set [0, |A|] of integers and by [e] the encoded element $\sigma(e)$, where $[\epsilon] = 0$.

Let $\sigma = (G_{\rm C}, \sigma_{\rm int}, \sigma_{\rm ce})$ be a target specification, ρ denote the branch-parameter in the specification σ and \mathbb{C} denote a chemical graph in $\mathcal{G}(G_{\rm C}, \sigma_{\rm int}, \sigma_{\rm ce})$.

5.1 Selecting a Cyclical-base

Recall that

$$\begin{split} E_{(=1)} &= \{e \in E_{\mathrm{C}} \mid \ell_{\mathrm{LB}}(e) = \ell_{\mathrm{UB}}(e) = 1\}; \\ E_{(>1)} &= \{e \in E_{\mathrm{C}} \mid \ell_{\mathrm{LB}}(e) = 0, \ell_{\mathrm{UB}}(e) = 1\}; \\ E_{(>1)} &= \{e \in E_{\mathrm{C}} \mid \ell_{\mathrm{LB}}(e) = 1, \ell_{\mathrm{UB}}(e) \geq 2\}; \\ E_{(>2)} &= \{e \in E_{\mathrm{C}} \mid \ell_{\mathrm{LB}}(e) \geq 2\}; \end{split}$$

A subset $E_{\mathcal{C}}^{\mathrm{lnk}} \subseteq E_{(=1)} \cup E_{(\geq 2)} \cup E_{(\geq 2)}$ is given for introducing link-edges in the monomer representation \mathbb{C} of an inferred polymer.

- Every edge $a_i \in E_{(=1)}$ is included in $\langle \mathbb{C} \rangle$;
- Each edge $a_i \in E_{(0/1)}$ is included in $\langle \mathbb{C} \rangle$ if necessary;
- For each edge $a_i \in E_{(>2)}$, edge a_i is not included in $\langle \mathbb{C} \rangle$ and instead a path

$$P_i = (v^{C}_{\text{tail}(i)}, v^{T}_{j-1}, v^{T}_{j}, \dots, v^{T}_{j+t}, v^{C}_{\text{head}(i)})$$

of length at least 2 from vertex $v^{C}_{tail(i)}$ to vertex $v^{C}_{head(i)}$ visiting some vertices in V_{T} is constructed in $\langle \mathbb{C} \rangle$; and

- For each edge $a_i \in E_{(\geq 1)}$, either edge a_i is directly used in $\langle \mathbb{C} \rangle$ or the above path P_i of length at least 2 is constructed in $\langle \mathbb{C} \rangle$.

Let $t_{\rm C} \triangleq |V_{\rm C}|$ and denote $V_{\rm C}$ by $\{v^{\rm C}_i \mid i \in [1, t_{\rm C}]\}$. Regard the seed graph $G_{\rm C}$ as a digraph such that each edge a_i with end-vertices $v^{\rm C}_j$ and $v^{\rm C}_{j'}$ is directed from $v^{\rm C}_j$ to $v^{\rm C}_{j'}$ when j < j'. For each directed edge $a_i \in E_{\rm C}$, let head(i) and tail(i) denote the head and tail of $e^{\rm C}(i)$; i.e., $a_i = (v^{\rm C}_{{\rm tail}(i)}, v^{\rm C}_{{\rm head}(i)})$.

Define

$$k_{\mathbf{C}} \triangleq |E_{(\geq 2)} \cup E_{(\geq 1)}|, \quad \widetilde{k_{\mathbf{C}}} \triangleq |E_{(\geq 2)}|,$$

and denote $E_{C} = \{a_i \mid i \in [1, m_{C}]\},\$

$$E_{(>2)} = \{a_k \mid k \in [1, \widetilde{k_C}]\}, E_{(>1)} = \{a_k \mid k \in [\widetilde{k_C} + 1, k_C]\},\$$

$$E_{(0/1)} = \{a_i \mid i \in [k_C + 1, k_C + |E_{(0/1)}|]\}$$
 and $E_{(=1)} = \{a_i \mid i \in [k_C + |E_{(0/1)}| + 1, m_C]\}.$

Let $I_{(=1)}$ denote the set of indices i of edges $a_i \in E_{(=1)}$. Similarly for $I_{(0/1)}$, $I_{(\geq 1)}$ and $I_{(\geq 2)}$. Let I_{lnk} denote the set of indices i of edges $a_i \in E_C^{lnk}$.

To control the construction of such a path P_i for each edge $a_k \in E_{(\geq 2)} \cup E_{(\geq 1)}$, we regard the index $k \in [1, k_{\mathbb{C}}]$ of each edge $a_k \in E_{(\geq 2)} \cup E_{(\geq 1)}$ as the "color" of the edge. To introduce necessary linear constraints that can construct such a path P_k properly in our MILP, we assign the color k to the vertices $v^{\mathrm{T}}_{j-1}, v^{\mathrm{T}}_{j}, \ldots, v^{\mathrm{T}}_{j+t}$ in V_{T} when the above path P_k is used in $\langle \mathbb{C} \rangle$.

For each index $s \in [1, t_{\rm C}]$, let $I_{\rm C}(s)$ denote the set of edges $e \in E_{\rm C}$ incident to vertex $v^{\rm C}_s$, and $E^+_{(=1)}(s)$ (resp., $E^-_{(=1)}(s)$) denote the set of edges $a_i \in E_{(=1)}$ such that the tail (resp., head) of a_i is vertex $v^{\rm C}_s$. Similarly for $E^+_{(0/1)}(s)$, $E^-_{(0/1)}(s)$, $E^+_{(\geq 1)}(s)$, $E^-_{(\geq 1)}(s)$, $E^+_{(\geq 2)}(s)$ and $E^-_{(\geq 2)}(s)$. Let $I_{\rm C}(s)$ denote the set of indices i of edges $a_i \in I_{\rm C}(s)$. Similarly for $I^+_{(=1)}(s)$, $I^-_{(=1)}(s)$, $I^+_{(0/1)}(s)$, $I^+_{(\geq 1)}(s)$, $I^+_{(\geq 2)}(s)$ and $I^-_{(\geq 2)}(s)$. Note that $[1, k_{\rm C}] = I_{(\geq 2)} \cup I_{(\geq 1)}$ and $[k_{\rm C} + 1, m_{\rm C}] = I_{(\geq 1)} \cup I_{(0/1)} \cup I_{(=1)}$.

constants:

- $n^* \in \mathbb{Z}$: an upper bound on the number $n(\mathbb{C})$ of non-hydrogen atoms in \mathbb{C} ;
- $t_{\rm C} = |V_{\rm C}|$, $\widetilde{k_{\rm C}} = |E_{(\geq 2)}|$, $k_{\rm C} = |E_{(\geq 2)} \cup E_{(\geq 1)}|$, $t_{\rm T} = {\rm n_{UB}^{int}} |V_{\rm C}|$, $m_{\rm C} = |E_{\rm C}|$. Note that $a_i \in E_{\rm C} \setminus (E_{(\geq 2)} \cup E_{(\geq 1)})$ holds $i \in [k_{\rm C} + 1, m_{\rm C}]$;
- $\ell_{LB}(k)$, $\ell_{UB}(k) \in [1, t_T]$, $k \in [1, k_C]$: lower and upper bounds on the length of path P_k ;
- $n_{\text{lnk}}^{(=1)} = |I_{\text{lnk}} \cap E_{(=1)}| = |I_{\text{lnk}} \cap \{[k_{\text{C}} + |E_{(0/1)}| + 1, m_{\text{C}}\}|$: the number of link-edges created from $E_{(=1)}$;
- n_{LB}^{lnk} , $n_{UB}^{lnk} \in [0, n^*]$: lower and upper bounds on the number of link-edges of a target polymer \mathbb{C} ;

variables:

- $e^{C}(i) \in [0, 1], i \in [1, m_{C}]: e^{C}(i)$ represents edge $a_{i} \in E_{C}, i \in [1, m_{C}]$ ($e^{C}(i) = 1, i \in I_{(=1)}$); $e^{C}(i) = 0, i \in I_{(\geq 2)}$) ($e^{C}(i) = 1 \Leftrightarrow \text{edge } a_{i} \text{ is used in } \langle \mathbb{C} \rangle$);
- $v^{\mathrm{T}}(i) \in [0,1], i \in [1,t_{\mathrm{T}}]: v^{\mathrm{T}}(i) = 1 \Leftrightarrow \text{vertex } v^{\mathrm{T}}{}_{i} \text{ is used in } \langle \mathbb{C} \rangle;$
- $e^{\mathrm{T}}(i) \in [0,1], i \in [1,t_{\mathrm{T}}+1]$: $e^{\mathrm{T}}(i)$ represents edge $e^{\mathrm{T}}_{i} = (v^{\mathrm{T}}_{i-1},v^{\mathrm{T}}_{i}) \in E_{\mathrm{T}}$, where e^{T}_{1} and $e^{\mathrm{T}}_{t_{\mathrm{T}}+1}$ are fictitious edges $(e^{\mathrm{T}}(i) = 1 \Leftrightarrow \mathrm{edge}\ e^{\mathrm{T}}_{i}$ is used in $\langle \mathbb{C} \rangle$);
- $\chi^{\mathrm{T}}(i) \in [0, k_{\mathrm{C}}], i \in [1, t_{\mathrm{T}}]: \chi^{\mathrm{T}}(i)$ represents the color assigned to vertex v^{T}_{i} ($\chi^{\mathrm{T}}(i) = k > 0 \Leftrightarrow$ vertex v^{T}_{i} is assigned color k; $\chi^{\mathrm{T}}(i) = 0$ means that vertex v^{T}_{i} is not used in $\langle \mathbb{C} \rangle$);
- $\operatorname{clr}^{\mathrm{T}}(k) \in [\ell_{\mathrm{LB}}(k) 1, \ell_{\mathrm{UB}}(k) 1], k \in [1, k_{\mathrm{C}}], \operatorname{clr}^{\mathrm{T}}(0) \in [0, t_{\mathrm{T}}]:$ the number of vertices $v^{\mathrm{T}}_{i} \in V_{\mathrm{T}}$ with color c;
- $\delta_{\chi}^{\mathrm{T}}(k) \in [0, 1], k \in [0, k_{\mathrm{C}}]: \delta_{\chi}^{\mathrm{T}}(k) = 1 \Leftrightarrow \chi^{\mathrm{T}}(i) = k \text{ for some } i \in [1, t_{\mathrm{T}}];$
- $\chi^{\mathrm{T}}(i,k) \in [0,1], i \in [1,t_{\mathrm{T}}], k \in [0,k_{\mathrm{C}}] \ (\chi^{\mathrm{T}}(i,k) = 1 \Leftrightarrow \chi^{\mathrm{T}}(i) = k);$
- $\widetilde{\deg}_{\mathbf{C}}^+(i) \in [0,4], i \in [1,t_{\mathbf{C}}]$: the out-degree of vertex $v^{\mathbf{C}}_i$ with the used edges $e^{\mathbf{C}}$ in $E_{\mathbf{C}}$;
- $\widetilde{\deg}_{\mathbf{C}}(i) \in [0, 4], i \in [1, t_{\mathbf{C}}]$: the in-degree of vertex $v^{\mathbf{C}}_{i}$ with the used edges $e^{\mathbf{C}}$ in $E_{\mathbf{C}}$;
- $n_{\text{lnk}} \in [n_{\text{LB}}^{\text{lnk}}, n_{\text{UB}}^{\text{lnk}}]$: the number of link-edges in \mathbb{C} ;

constraints:

$$e^{C}(i) = 1, \quad i \in I_{(=1)},$$
 (3)

$$e^{C}(i) = 0, \quad \text{clr}^{T}(i) \ge 1, \quad i \in I_{(>2)},$$
 (4)

$$e^{C}(i) + \operatorname{clr}^{T}(i) \ge 1, \quad \operatorname{clr}^{T}(i) \le t_{T} \cdot (1 - e^{C}(i)), \quad i \in I_{(>1)},$$
 (5)

$$\sum_{c \in I_{(\geq 1)}^{-}(i) \cup I_{(0/1)}^{-}(i) \cup I_{(=1)}^{-}(i)} e^{\mathbf{C}}(c) = \widetilde{\deg}_{\mathbf{C}}^{-}(i), \qquad \sum_{c \in I_{(\geq 1)}^{+}(i) \cup I_{(0/1)}^{+}(i) \cup I_{(=1)}^{+}(i)} e^{\mathbf{C}}(c) = \widetilde{\deg}_{\mathbf{C}}^{+}(i), \qquad i \in [1, t_{\mathbf{C}}], \tag{6}$$

$$\chi^{\mathrm{T}}(i,0) = 1 - v^{\mathrm{T}}(i), \quad \sum_{k \in [0,k_{\mathrm{C}}]} \chi^{\mathrm{T}}(i,k) = 1, \quad \sum_{k \in [0,k_{\mathrm{C}}]} k \cdot \chi^{\mathrm{T}}(i,k) = \chi^{\mathrm{T}}(i), \quad i \in [1,t_{\mathrm{T}}], \quad (7)$$

$$\sum_{i \in [1, t_{\mathrm{T}}]} \chi^{\mathrm{T}}(i, k) = \mathrm{clr}^{\mathrm{T}}(k), \quad t_{\mathrm{T}} \cdot \delta_{\chi}^{\mathrm{T}}(k) \ge \sum_{i \in [1, t_{\mathrm{T}}]} \chi^{\mathrm{T}}(i, k) \ge \delta_{\chi}^{\mathrm{T}}(k), \qquad k \in [0, k_{\mathrm{C}}],$$
(8)

$$v^{\mathrm{T}}(i-1) \ge v^{\mathrm{T}}(i),$$

$$k_{\mathrm{C}} \cdot (v^{\mathrm{T}}(i-1) - e^{\mathrm{T}}(i)) \ge \chi^{\mathrm{T}}(i-1) - \chi^{\mathrm{T}}(i) \ge v^{\mathrm{T}}(i-1) - e^{\mathrm{T}}(i), \qquad i \in [2, t_{\mathrm{T}}],$$
(9)

$$\sum_{k \in I_{\text{lnk}} \cap [1, k_{\text{C}}]} (\text{clr}^{\text{T}}(k) + 1) + n_{\text{lnk}}^{(=1)} = n_{\text{lnk}}.$$
(10)

5.2 Constraints for Including Leaf Paths

Let $\widetilde{t_C}$ denote the number of vertices $u \in V_C$ such that $\mathrm{bl_{UB}}(u) = 1$ and assume that $V_C = \{u_1, u_2, \dots, u_p\}$ so that

$$\mathrm{bl}_{\mathrm{UB}}(u_i) = 1, \ i \in [1, \widetilde{t_{\mathrm{C}}}] \text{ and } \mathrm{bl}_{\mathrm{UB}}(u_i) = 0, \ i \in [\widetilde{t_{\mathrm{C}}} + 1, t_{\mathrm{C}}].$$

Define the set of colors for the vertex set $\{u_i \mid i \in [1, \widetilde{t_C}]\} \cup V_T$ to be $[1, c_F]$ with

$$c_{\mathrm{F}} \triangleq \widetilde{t_{\mathrm{C}}} + t_{\mathrm{T}} = |\{u_i \mid i \in [1, \widetilde{t_{\mathrm{C}}}]\} \cup V_{\mathrm{T}}|.$$

Let each vertex $v^{\mathbf{C}}_i$, $i \in [1, \widetilde{t_{\mathbf{C}}}]$ (resp., $v^{\mathbf{T}}_i \in V_{\mathbf{T}}$) correspond to a color $i \in [1, c_{\mathbf{F}}]$ (resp., $i + \widetilde{t_{\mathbf{C}}} \in [1, c_{\mathbf{F}}]$). When a path $P = (u, v^{\mathbf{F}}_j, v^{\mathbf{F}}_{j+1}, \dots, v^{\mathbf{F}}_{j+t})$ from a vertex $u \in V_{\mathbf{C}} \cup V_{\mathbf{T}}$ is used in $\langle \mathbb{C} \rangle$, we assign the color $i \in [1, c_{\mathbf{F}}]$ of the vertex u to the vertices $v^{\mathbf{F}}_j, v^{\mathbf{F}}_{j+1}, \dots, v^{\mathbf{F}}_{j+t} \in V_{\mathbf{F}}$.

- $c_{\rm F}$: the maximum number of different colors assigned to the vertices in $V_{\rm F}$;
- $\mathbf{n}_{\mathrm{LB}}^{\mathrm{int}}, \mathbf{n}_{\mathrm{UB}}^{\mathrm{int}} \in [2, n^*]$: lower and upper bounds on the number of interior-vertices in \mathbb{C} ;
- $\mathrm{bl_{LB}}(i) \in [0,1], \ i \in [1,\widetilde{t_{\mathrm{C}}}]$: a lower bound on the number of leaf ρ -branches in the leaf path rooted at a vertex v_{i}^{C} ;

- $\text{bl}_{LB}(k)$, $\text{bl}_{UB}(k) \in [0, \ell_{UB}(k) - 1]$, $k \in [1, k_{\text{C}}] = I_{(\geq 2)} \cup I_{(\geq 1)}$: lower and upper bounds on the number of leaf ρ -branches in the trees rooted at internal vertices of a pure path P_k for an edge $a_k \in E_{(>1)} \cup E_{(>2)}$;

variables:

- $\mathbf{n}_{G}^{\text{int}} \in [\mathbf{n}_{LB}^{\text{int}}, \mathbf{n}_{UB}^{\text{int}}]$: the number of interior-vertices in \mathbb{C} ;
- $v^{\mathrm{F}}(i) \in [0, 1], i \in [1, t_{\mathrm{F}}]: v^{\mathrm{F}}(i) = 1 \Leftrightarrow \text{vertex } v^{\mathrm{F}}_{i} \text{ is used in } \mathbb{C};$
- $e^{\mathrm{F}}(i) \in [0,1], i \in [1,t_{\mathrm{F}}+1]$: $e^{\mathrm{F}}(i)$ represents edge $e^{\mathrm{F}}_{i} = v^{\mathrm{F}}_{i-1}v^{\mathrm{F}}_{i}$, where e^{F}_{1} and $e^{\mathrm{F}}_{t_{\mathrm{F}}+1}$ are fictitious edges $(e^{\mathrm{F}}(i) = 1 \Leftrightarrow \mathrm{edge}\ e^{\mathrm{F}}_{i}$ is used in \mathbb{C});
- $\chi^{\mathrm{F}}(i) \in [0, c_{\mathrm{F}}], i \in [1, t_{\mathrm{F}}]: \chi^{\mathrm{F}}(i)$ represents the color assigned to vertex v^{F}_{i} ($\chi^{\mathrm{F}}(i) = c \Leftrightarrow \text{vertex } v^{\mathrm{F}}_{i}$ is assigned color c);
- $\operatorname{clr}^{\mathrm{F}}(c) \in [0, t_{\mathrm{F}}], c \in [0, c_{\mathrm{F}}]$: the number of vertices $v^{\mathrm{F}}{}_{i}$ with color c;
- $-\ \delta_{\chi}^{\mathrm{F}}(c) \in [\mathrm{bl_{LB}}(c),1], \ c \in [1,\widetilde{t_{\mathrm{C}}}]: \ \delta_{\chi}^{\mathrm{F}}(c) = 1 \Leftrightarrow \chi^{\mathrm{F}}(i) = c \ \mathrm{for \ some} \ i \in [1,t_{\mathrm{F}}];$
- $\delta_{\chi}^{\mathrm{F}}(c) \in [0,1], c \in [\widetilde{t_{\mathrm{C}}}+1, c_{\mathrm{F}}]: \delta_{\chi}^{\mathrm{F}}(c) = 1 \Leftrightarrow \chi^{\mathrm{F}}(i) = c \text{ for some } i \in [1, t_{\mathrm{F}}];$
- $\chi^{F}(i,c) \in [0,1], i \in [1,t_{F}], c \in [0,c_{F}]: \chi^{F}(i,c) = 1 \Leftrightarrow \chi^{F}(i) = c;$
- $\operatorname{bl}(k,i) \in [0,1], \ k \in [1,k_{\mathrm{C}}] = I_{(\geq 2)} \cup I_{(\geq 1)}, \ i \in [1,t_{\mathrm{T}}]: \ \operatorname{bl}(k,i) = 1 \Leftrightarrow \operatorname{path} P_k \text{ contains vertex } v^{\mathrm{T}}_i$ as an internal vertex and the ρ -fringe-tree rooted at v^{T}_i contains a leaf ρ -branch;

$$\chi^{F}(i,0) = 1 - v^{F}(i), \quad \sum_{c \in [0,c_{F}]} \chi^{F}(i,c) = 1, \quad \sum_{c \in [0,c_{F}]} c \cdot \chi^{F}(i,c) = \chi^{F}(i), \quad i \in [1,t_{F}], \quad (11)$$

$$\sum_{i \in [1, t_{\mathrm{F}}]} \chi^{\mathrm{F}}(i, c) = \mathrm{clr}^{\mathrm{F}}(c), \quad t_{\mathrm{F}} \cdot \delta_{\chi}^{\mathrm{F}}(c) \ge \sum_{i \in [1, t_{\mathrm{F}}]} \chi^{\mathrm{F}}(i, c) \ge \delta_{\chi}^{\mathrm{F}}(c), \qquad c \in [0, c_{\mathrm{F}}],$$
(12)

$$e^{F}(1) = e^{F}(t_{F} + 1) = 0,$$
 (13)

$$v^{F}(i-1) \ge v^{F}(i),$$

$$c_{F} \cdot (v^{F}(i-1) - e^{F}(i)) \ge \chi^{F}(i-1) - \chi^{F}(i) \ge v^{F}(i-1) - e^{F}(i), \qquad i \in [2, t_{F}], \qquad (14)$$

$$bl(k,i) \ge \delta_{\chi}^{F}(\widetilde{t_{C}} + i) + \chi^{T}(i,k) - 1, \qquad k \in [1, k_{C}], i \in [1, t_{T}],$$
 (15)

$$\sum_{k \in [1, k_{\mathcal{C}}], i \in [1, t_{\mathcal{T}}]} \operatorname{bl}(k, i) \leq \sum_{i \in [1, t_{\mathcal{T}}]} \delta_{\chi}^{F}(\widetilde{t_{\mathcal{C}}} + i), \tag{16}$$

$$\mathrm{bl}_{\mathrm{LB}}(k) \le \sum_{i \in [1, t_{\mathrm{T}}]} \mathrm{bl}(k, i) \le \mathrm{bl}_{\mathrm{UB}}(k), \qquad k \in [1, k_{\mathrm{C}}],$$
 (17)

$$t_{\rm C} + \sum_{i \in [1, t_{\rm T}]} v^{\rm T}(i) + \sum_{i \in [1, t_{\rm F}]} v^{\rm F}(i) = n_G^{\rm int}.$$
 (18)

5.3 Constraints for Including Fringe-trees

Recall that $\mathcal{F}(D_{\pi})$ denotes the set of chemical rooted trees ψ r-isomorphic to a chemical rooted tree in $\mathcal{T}(\mathbb{C})$ over all chemical graphs $\mathbb{C} \in D_{\pi}$, where possibly a chemical rooted tree $\psi \in \mathcal{F}(D_{\pi})$ consists of a single chemical element $\mathbf{a} \in \Lambda \setminus \{\mathbf{H}\}$.

To express the condition that the ρ -fringe-tree is chosen from a rooted tree C_i , T_i or F_i , we introduce the following set of variables and constraints.

constants:

- n_{LB} : a lower bound on the number $n(\mathbb{C})$ of non-hydrogen atoms in \mathbb{C} , where n_{LB} , $n^* \geq n_{LB}^{int}$;
- $\operatorname{ch}_{LB}(i), \operatorname{ch}_{UB}(i) \in [0, n^*], i \in [1, t_T]$: lower and upper bounds on $\operatorname{ht}(\langle T_i \rangle)$ of the tree T_i rooted at a vertex v_i^{C} :
- $\operatorname{ch}_{\operatorname{LB}}(k)$, $\operatorname{ch}_{\operatorname{UB}}(k) \in [0, n^*]$, $k \in [1, k_{\operatorname{C}}] = I_{(\geq 2)} \cup I_{(\geq 1)}$: lower and upper bounds on the maximum height $\operatorname{ht}(\langle T \rangle)$ of the tree $T \in \mathcal{F}(P_k)$ rooted at an internal vertex of a path P_k for an edge $a_k \in E_{(>1)} \cup E_{(>2)}$;
- Prepare a coding of the set $\mathcal{F}(D_{\pi})$ and let $[\psi]$ denote the coded integer of an element ψ in $\mathcal{F}(D_{\pi})$;
- Sets $\mathcal{F}(v) \subseteq \mathcal{F}(D_{\pi}), v \in V_{\mathcal{C}}$ and $\mathcal{F}_E \subseteq \mathcal{F}(D_{\pi})$ of chemical rooted trees T with $\operatorname{ht}(T) \in [1, \rho]$;
- Define $\mathcal{F}^* := \bigcup_{v \in V_{\mathcal{C}}} \mathcal{F}(v) \cup \mathcal{F}_E$, $\mathcal{F}_i^{\mathcal{C}} := \mathcal{F}(v^{\mathcal{C}}_i)$, $i \in [1, t_{\mathcal{C}}]$, $\mathcal{F}_i^{\mathcal{T}} := \mathcal{F}_E$, $i \in [1, t_{\mathcal{T}}]$ and $\mathcal{F}_i^{\mathcal{F}} := \mathcal{F}_E$, $i \in [1, t_{\mathcal{T}}]$;
- $fc_{LB}(\psi)$, $fc_{UB}(\psi) \in [0, n^*]$, $\psi \in \mathcal{F}^*$: lower and upper bound functions on the number of interior-vertices v such that $\mathbb{C}[v]$ is r-isomorphic to ψ in \mathbb{C} ;
- $\mathcal{F}_i^{\mathbf{X}}[p], p \in [1, \rho], \mathbf{X} \in \{\mathbf{C}, \mathbf{T}, \mathbf{F}\}$: the set of chemical rooted trees $T \in \mathcal{F}_i^{\mathbf{X}}$ with $\operatorname{ht}(\langle T \rangle) = p$;
- $n_{\overline{H}}([\psi]) \in [0, 3^{\rho}], \psi \in \mathcal{F}^*$: the number $n(\langle \psi \rangle)$ of non-root hydrogen vertices in a chemical rooted tree ψ ;
- $\operatorname{ht}_{\overline{H}}([\psi]) \in [0, \rho], \psi \in \mathcal{F}^*$: the height $\operatorname{ht}(\langle \psi \rangle)$ of the hydrogen-suppressed chemical rooted tree $\langle \psi \rangle$;
- $\deg_{\mathbf{r}}^{\mathsf{H}}([\psi]) \in [0,3], \psi \in \mathcal{F}^*$: the number $\deg_{\mathbf{r}}(\langle \psi \rangle)$ of non-hydrogen children of the root r of a chemical rooted tree ψ ;
- $\deg_{\mathbf{r}}^{\mathrm{hyd}}([\psi]) \in [0,3], \psi \in \mathcal{F}^*$: the number $\deg_{\mathbf{r}}(\psi) \deg_{\mathbf{r}}(\langle \psi \rangle)$ of hydrogen children of the root r of a chemical rooted tree ψ ;
- $v_{ion}(\psi) \in [-3, +3], \psi \in \mathcal{F}^*$: the ion-valence of the root in ψ ;
- $ac_{\nu}^{lf}(\psi), \nu \in \Gamma_{ac}^{lf}$: the frequency of leaf-edges with adjacency-configuration ν in ψ ;
- ${\rm ac_{LB}^{lf}, ac_{UB}^{lf}: \Gamma_{ac}^{lf} \to [0, n^*]:}$ lower and upper bound functions on the number of leaf-edges uv in ac_C with adjacency-configuration ν ;

variables:

- $n_G \in [n_{LB}, n^*]$: the number $n(\mathbb{C})$ of non-hydrogen atoms in \mathbb{C} ;
- $v^{\mathbf{X}}(i) \in [0,1], i \in [1,t_{\mathbf{X}}], \, \mathbf{X} \in \{\mathbf{T},\mathbf{F}\}: \, v^{\mathbf{X}}(i) = 1 \Leftrightarrow \text{vertex } v^{\mathbf{X}}{}_{i} \text{ is used in } \mathbb{C};$

- $\delta_{\text{fr}}^{\mathbf{X}}(i, [\psi]) \in [0, 1], i \in [1, t_{\mathbf{X}}], \psi \in \mathcal{F}_{i}^{\mathbf{X}}, \mathbf{X} \in \{\mathbf{C}, \mathbf{T}, \mathbf{F}\}: \delta_{\text{fr}}^{\mathbf{X}}(i, [\psi]) = 1 \Leftrightarrow \psi \text{ is the } \rho\text{-fringe-tree rooted at vertex } v^{\mathbf{X}}_{i} \text{ in } \mathbb{C};$
- $fc([\psi]) \in [fc_{LB}(\psi), fc_{UB}(\psi)], \psi \in \mathcal{F}^*$: the number of interior-vertices v such that $\mathbb{C}[v]$ is risomorphic to ψ in \mathbb{C} ;
- $ac^{lf}([\nu]) \in [ac^{lf}_{LB}(\nu), ac^{lf}_{UB}(\nu)], \nu \in \Gamma^{lf}_{ac}$: the number of leaf-edge with adjacency-configuration ν in \mathbb{C} ;
- $\deg_{\mathbf{X}}^{\mathrm{ex}}(i) \in [0,3], i \in [1,t_{\mathbf{X}}], \mathbf{X} \in \{\mathbf{C},\mathbf{T},\mathbf{F}\}$: the number of non-hydrogen children of the root of the ρ -fringe-tree rooted at vertex $v^{\mathbf{X}}_i$ in \mathbb{C} ;
- hyddeg^X(i) \in [0,4], $i \in$ [1, t_X], X \in {C, T, F}: the number of hydrogen atoms adjacent to vertex v^X_i (i.e., hyddeg(v^X_i)) in $\mathbb{C} = (H, \alpha, \beta)$;
- eledeg_X(i) \in [-3,+3], $i \in$ [1, t_X], X \in {C,T,F}: the ion-valence $v_{ion}(\psi)$ of vertex v_i^X (i.e., eledeg_X(i) = $v_{ion}(\psi)$ for the ρ -fringe-tree ψ rooted at v_i^X) in $\mathbb{C} = (H, \alpha, \beta)$;
- $h^{\mathbf{X}}(i) \in [0, \rho], i \in [1, t_{\mathbf{X}}], \mathbf{X} \in \{\mathbf{C}, \mathbf{T}, \mathbf{F}\}:$ the height $\operatorname{ht}(\langle T \rangle)$ of the hydrogen-suppressed chemical rooted tree $\langle T \rangle$ of the ρ -fringe-tree T rooted at vertex $v^{\mathbf{X}}_{i}$ in \mathbb{C} ;
- $\sigma(k,i) \in [0,1], k \in [1,k_{\text{C}}] = I_{(\geq 2)} \cup I_{(\geq 1)}, i \in [1,t_{\text{T}}]: \sigma(k,i) = 1 \Leftrightarrow \text{the } \rho\text{-fringe-tree } T_v \text{ rooted at vertex } v = v^{\text{T}}_i \text{ with color } k \text{ has the largest height } \operatorname{ht}(\langle \mathcal{T}_v \rangle) \text{ among such trees } T_v, v \in V_{\text{T}};$

$$\sum_{\psi \in \mathcal{F}_i^{\mathcal{X}}} \delta_{\text{fr}}^{\mathcal{C}}(i, [\psi]) = 1, \qquad i \in [1, t_{\mathcal{C}}],$$

$$\sum_{\psi \in \mathcal{F}_i^{\mathcal{X}}} \delta_{\text{fr}}^{\mathcal{X}}(i, [\psi]) = v^{\mathcal{X}}(i), \qquad i \in [1, t_{\mathcal{X}}], \mathcal{X} \in \{\mathcal{T}, \mathcal{F}\}, \qquad (19)$$

$$\sum_{\psi \in \mathcal{F}_i^{\mathbf{X}}} \deg_{\mathbf{r}}^{\overline{\mathbf{H}}}([\psi]) \cdot \delta_{\mathrm{fr}}^{\mathbf{X}}(i, [\psi]) = \deg_{\mathbf{X}}^{\mathrm{ex}}(i),$$

$$\sum_{\psi \in \mathcal{F}_i^{\mathbf{X}}} \deg^{\mathrm{hyd}}_{\mathbf{r}}([\psi]) \cdot \delta^{\mathbf{X}}_{\mathrm{fr}}(i, [\psi]) = \mathrm{hyddeg}^{\mathbf{X}}(i),$$

$$\sum_{\psi \in \mathcal{F}_{i}^{\mathbf{X}}} \mathbf{v}_{\text{ion}}([\psi]) \cdot \delta_{\text{fr}}^{\mathbf{X}}(i, [\psi]) = \text{eledeg}_{\mathbf{X}}(i), \qquad i \in [1, t_{\mathbf{X}}], \mathbf{X} \in \{\mathbf{C}, \mathbf{T}, \mathbf{F}\},$$
(20)

$$\sum_{\psi \in \mathcal{F}_{i}^{F}[\rho]} \delta_{fr}^{F}(i, [\psi]) \ge v^{F}(i) - e^{F}(i+1), \qquad i \in [1, t_{F}] \ (e^{F}(t_{F} + 1) = 0), \tag{21}$$

$$\sum_{\psi \in \mathcal{F}_i^{\mathcal{X}}} \operatorname{ht}_{\overline{\mathbf{H}}}([\psi]) \cdot \delta_{\operatorname{fr}}^{\mathcal{X}}(i, [\psi]) = h^{\mathcal{X}}(i), \qquad i \in [1, t_{\mathcal{X}}], \mathcal{X} \in \{\mathcal{C}, \mathcal{T}, \mathcal{F}\},$$
(22)

$$\sum_{\substack{\psi \in \mathcal{F}_{i}^{X} \\ i \in [1, t_{X}], X \in \{C, T, F\}}} n_{\overline{H}}([\psi]) \cdot \delta_{fr}^{X}(i, [\psi]) + \sum_{i \in [1, t_{X}], X \in \{T, F\}} v^{X}(i) + t_{C} = n_{G},$$
(23)

$$\sum_{i \in [1, t_{\mathcal{X}}], \mathcal{X} \in \{\mathcal{C}, \mathcal{T}, \mathcal{F}\}} \delta_{fr}^{\mathcal{X}}(i, [\psi]) = fc([\psi]), \qquad \qquad \psi \in \mathcal{F}^*,$$
(24)

$$\sum_{\psi \in \mathcal{F}_{i}^{\mathbf{X}}, i \in [1, t_{\mathbf{X}}], \mathbf{X} \in \{\mathbf{C}, \mathbf{T}, \mathbf{F}\}} \operatorname{ac}_{\nu}^{\mathrm{lf}}(\psi) \cdot \delta_{\mathrm{fr}}^{\mathbf{X}}(i, [\psi]) = \operatorname{ac}^{\mathrm{lf}}([\nu]), \qquad \qquad \nu \in \Gamma_{\mathrm{ac}}^{\mathrm{lf}}, \tag{25}$$

$$h^{\mathcal{C}}(i) \ge \operatorname{ch}_{\mathcal{L}\mathcal{B}}(i) - n^* \cdot \delta_{\chi}^{\mathcal{F}}(i), \quad \operatorname{clr}^{\mathcal{F}}(i) + \rho \ge \operatorname{ch}_{\mathcal{L}\mathcal{B}}(i),$$

$$h^{\mathcal{C}}(i) \le \operatorname{ch}_{\mathcal{U}\mathcal{B}}(i), \quad \operatorname{clr}^{\mathcal{F}}(i) + \rho \le \operatorname{ch}_{\mathcal{U}\mathcal{B}}(i) + n^* \cdot (1 - \delta_{\chi}^{\mathcal{F}}(i)), \qquad i \in [1, \widetilde{t_{\mathcal{C}}}],$$
(26)

$$\operatorname{ch}_{\operatorname{LB}}(i) \le h^{\operatorname{C}}(i) \le \operatorname{ch}_{\operatorname{UB}}(i), \qquad i \in [\widetilde{t_{\operatorname{C}}} + 1, t_{\operatorname{C}}], \tag{27}$$

$$h^{\mathrm{T}}(i) \le \mathrm{ch_{UB}}(k) + n^* \cdot (\delta_{\chi}^{\mathrm{F}}(\widetilde{t_{\mathrm{C}}} + i) + 1 - \chi^{\mathrm{T}}(i, k)),$$

$$\mathrm{chr^{\mathrm{F}}}(\widetilde{t_{\mathrm{C}}} + i) + \rho \le \mathrm{ch_{UB}}(k) + n^* \cdot (2 - \delta_{\chi}^{\mathrm{F}}(\widetilde{t_{\mathrm{C}}} + i) - \chi^{\mathrm{T}}(i, k)), \qquad k \in [1, k_{\mathrm{C}}], i \in [1, t_{\mathrm{T}}],$$
(28)

$$\sum_{i \in [1, t_{\mathrm{T}}]} \sigma(k, i) = \delta_{\chi}^{\mathrm{T}}(k), \qquad k \in [1, k_{\mathrm{C}}], \tag{29}$$

$$\chi^{\mathrm{T}}(i,k) \geq \sigma(k,i),$$

$$h^{\mathrm{T}}(i) \geq \mathrm{ch}_{\mathrm{LB}}(k) - n^* \cdot (\delta_{\chi}^{\mathrm{F}}(\widetilde{t_{\mathrm{C}}} + i) + 1 - \sigma(k,i)),$$

$$\mathrm{clr}^{\mathrm{F}}(\widetilde{t_{\mathrm{C}}} + i) + \rho \geq \mathrm{ch}_{\mathrm{LB}}(k) - n^* \cdot (2 - \delta_{\chi}^{\mathrm{F}}(\widetilde{t_{\mathrm{C}}} + i) - \sigma(k,i)), \qquad k \in [1, k_{\mathrm{C}}], i \in [1, t_{\mathrm{T}}]. \tag{30}$$

5.4 Descriptor for the Number of Specified Degree

We include constraints to compute descriptors for degrees in \mathbb{C} .

variables:

- $\deg^{\mathbf{X}}(i) \in [0, 4], i \in [1, t_{\mathbf{X}}], \mathbf{X} \in \{\mathcal{C}, \mathcal{T}, \mathcal{F}\}:$ the number of non-hydrogen atoms adjacent to vertex $v = v^{\mathbf{X}}_i$ (i.e., $\deg_{\langle \mathbb{C} \rangle}(v) = \deg_H(v) \operatorname{hyddeg}_{\mathbb{C}}(v)$) in $\mathbb{C} = (H, \alpha, \beta)$;
- $\deg_{\mathrm{CT}}(i) \in [0,4], i \in [1,t_{\mathrm{C}}]$: the number of edges from vertex v^{C}_i to vertices $v^{\mathrm{T}}_j, j \in [1,t_{\mathrm{T}}]$;
- $\deg_{\text{TC}}(i) \in [0, 4], i \in [1, t_{\text{C}}]$: the number of edges from vertices $v^{\text{T}}_{j}, j \in [1, t_{\text{T}}]$ to vertex v^{C}_{i} ;
- $\delta_{\text{dg}}^{\text{C}}(i,d) \in [0,1], i \in [1,t_{\text{C}}], d \in [1,4], \delta_{\text{dg}}^{\text{X}}(i,d) \in [0,1], i \in [1,t_{\text{X}}], d \in [0,4], \text{X} \in \{\text{T},\text{F}\}: \delta_{\text{dg}}^{\text{X}}(i,d) = 1 \Leftrightarrow \text{deg}^{\text{X}}(i) + \text{hyddeg}^{\text{X}}(i) = d;$
- $dg(d) \in [dg_{LB}(d), dg_{UB}(d)], d \in [1, 4]$: the number of interior-vertices v with $deg_H(v^X_i) = d$ in $\mathbb{C} = (H, \alpha, \beta)$;

- $\deg^{\rm int}_{\rm C}(i) \in [1,4], \ i \in [1,t_{\rm C}], \ \deg^{\rm int}_{\rm X}(i) \in [0,4], \ i \in [1,t_{\rm X}], {\rm X} \in \{{\rm T,F}\}:$ the interior-degree $\deg_{H^{\rm int}}(v^{\rm X}{}_i)$ in the interior $H^{\rm int}=(V^{\rm int}(\mathbb{C}),E^{\rm int}(\mathbb{C}))$ of \mathbb{C} ; i.e., the number of interior-edges incident to vertex $v^{\rm X}{}_i$;
- $\delta_{\mathrm{dg,C}}^{\mathrm{int}}(i,d) \in [0,1], i \in [1,t_{\mathrm{C}}], d \in [1,4], \delta_{\mathrm{dg,X}}^{\mathrm{int}}(i,d) \in [0,1], i \in [1,t_{\mathrm{X}}], d \in [0,4], X \in \{\mathrm{T,F}\}: \delta_{\mathrm{dg,X}}^{\mathrm{int}}(i,d) = 1 \Leftrightarrow \deg_{\mathrm{X}}^{\mathrm{int}}(i) = d;$
- $dg^{int}(d) \in [dg_{LB}(d), dg_{UB}(d)], d \in [1, 4]$: the number of interior-vertices v with the interior-degree $deg_{H^{int}}(v) = d$ in the interior $H^{int} = (V^{int}(\mathbb{C}), E^{int}(\mathbb{C}))$ of $\mathbb{C} = (H, \alpha, \beta)$.

$$\sum_{k \in I_{(>2)}^+(i) \cup I_{(>1)}^+(i)} \delta_{\chi}^{\mathrm{T}}(k) = \deg_{\mathrm{CT}}(i), \qquad \sum_{k \in I_{(>2)}^-(i) \cup I_{(>1)}^-(i)} \delta_{\chi}^{\mathrm{T}}(k) = \deg_{\mathrm{TC}}(i), \qquad i \in [1, t_{\mathrm{C}}], \tag{31}$$

$$\widetilde{\operatorname{deg}}_{\mathrm{C}}^{-}(i) + \widetilde{\operatorname{deg}}_{\mathrm{C}}^{+}(i) + \operatorname{deg}_{\mathrm{CT}}(i) + \operatorname{deg}_{\mathrm{TC}}(i) + \delta_{\chi}^{\mathrm{F}}(i) = \operatorname{deg}_{\mathrm{C}}^{\mathrm{int}}(i), \qquad i \in [1, \widetilde{t_{\mathrm{C}}}],$$
 (32)

$$\widetilde{\operatorname{deg}}_{\mathrm{C}}^{-}(i) + \widetilde{\operatorname{deg}}_{\mathrm{C}}^{+}(i) + \operatorname{deg}_{\mathrm{CT}}(i) + \operatorname{deg}_{\mathrm{TC}}(i) = \operatorname{deg}_{\mathrm{C}}^{\mathrm{int}}(i), \qquad i \in [\widetilde{t_{\mathrm{C}}} + 1, t_{\mathrm{C}}],$$
(33)

$$\deg_{\mathcal{C}}^{\operatorname{int}}(i) + \deg_{\mathcal{C}}^{\operatorname{ex}}(i) = \deg^{\mathcal{C}}(i), \qquad i \in [1, t_{\mathcal{C}}], \tag{34}$$

$$\sum_{\psi \in \mathcal{F}_i^{\mathcal{C}}[\rho]} \delta_{\text{fr}}^{\mathcal{C}}(i, [\psi]) \ge 2 - \deg_{\mathcal{C}}^{\text{int}}(i) \qquad i \in [1, t_{\mathcal{C}}], \tag{35}$$

$$2v^{T}(i) + \delta_{\chi}^{F}(\widetilde{t_{C}} + i) = \deg_{T}^{int}(i),$$

$$\deg_{T}^{int}(i) + \deg_{T}^{ex}(i) = \deg_{T}^{T}(i), \qquad i \in [1, t_{T}] \ (e^{T}(1) = e^{T}(t_{T} + 1) = 0), \tag{36}$$

$$v^{F}(i) + e^{F}(i+1) = \deg_{F}^{int}(i),$$

$$\deg_{F}^{int}(i) + \deg_{F}^{ex}(i) = \deg^{F}(i), \qquad i \in [1, t_{F}] \ (e^{F}(1) = e^{F}(t_{F} + 1) = 0), \tag{37}$$

$$\sum_{d \in [0,4]} \delta_{\text{dg}}^{X}(i,d) = 1, \quad \sum_{d \in [1,4]} d \cdot \delta_{\text{dg}}^{X}(i,d) = \text{deg}^{X}(i) + \text{hyddeg}^{X}(i),$$

$$\sum_{d \in [0,4]} \delta_{\text{dg},X}^{\text{int}}(i,d) = 1, \quad \sum_{d \in [1,4]} d \cdot \delta_{\text{dg},X}^{\text{int}}(i,d) = \text{deg}_{X}^{\text{int}}(i), \quad i \in [1, t_{X}], X \in \{T, C, F\}, \quad (38)$$

$$\sum_{i \in [1, t_{\mathrm{C}}]} \delta_{\mathrm{dg}}^{\mathrm{C}}(i, d) + \sum_{i \in [1, t_{\mathrm{T}}]} \delta_{\mathrm{dg}}^{\mathrm{T}}(i, d) + \sum_{i \in [1, t_{\mathrm{F}}]} \delta_{\mathrm{dg}}^{\mathrm{F}}(i, d) = \mathrm{dg}(d),$$

$$\sum_{i \in [1, t_{\mathrm{C}}]} \delta_{\mathrm{dg}, \mathrm{C}}^{\mathrm{int}}(i, d) + \sum_{i \in [1, t_{\mathrm{T}}]} \delta_{\mathrm{dg}, \mathrm{T}}^{\mathrm{int}}(i, d) + \sum_{i \in [1, t_{\mathrm{F}}]} \delta_{\mathrm{dg}, \mathrm{F}}^{\mathrm{int}}(i, d) = \mathrm{dg}^{\mathrm{int}}(d), \qquad d \in [1, 4]. \tag{39}$$

5.5 Assigning Multiplicity

We prepare an integer variable $\beta(e)$ for each edge e in the scheme graph SG to denote the bond-multiplicity of e in a selected graph H and include necessary constraints for the variables to satisfy in H.

constants:

- $\beta_{\rm r}([\psi])$: the sum $\beta_{\psi}(r)$ of bond-multiplicities of edges incident to the root r of a chemical rooted tree $\psi \in \mathcal{F}^*$;

variables:

- $\beta^{X}(i) \in [0, 3], i \in [2, t_{X}], X \in \{T, F\}$: the bond-multiplicity of edge e^{X}_{i} in \mathbb{C} ;
- $\beta^{C}(i) \in [0,3], i \in [\widetilde{k_{C}} + 1, m_{C}] = I_{(\geq 1)} \cup I_{(0/1)} \cup I_{(=1)}$: the bond-multiplicity of edge $a_{i} \in E_{(\geq 1)} \cup E_{(0/1)} \cup E_{(=1)}$ in \mathbb{C} ;
- $\beta^{\text{CT}}(k)$, $\beta^{\text{TC}}(k) \in [0,3]$, $k \in [1,k_{\text{C}}] = I_{(\geq 2)} \cup I_{(\geq 1)}$: the bond-multiplicity of the first (resp., last) edge of the pure path P_k in \mathbb{C} ;
- $\beta^{*F}(c) \in [0,3], c \in [1, c_F = \widetilde{t_C} + t_T]$: the bond-multiplicity of the first edge of the leaf path Q_c rooted at vertex $v^C_{c}, c \leq \widetilde{t_C}$ or $v^T_{c-\widetilde{t_C}}, c > \widetilde{t_C}$ in \mathbb{C} ;
- $\beta_{\text{ex}}^{\text{X}}(i) \in [0,4], i \in [1,t_{\text{X}}], \text{X} \in \{\text{C},\text{T},\text{F}\}:$ the sum $\beta_{\mathbb{C}[v]}(v)$ of bond-multiplicities of edges in the ρ -fringe-tree $\mathbb{C}[v]$ rooted at interior-vertex $v = v^{\text{X}}_{i}$;
- $-\ \delta^{\mathbf{X}}_{\beta}(i,m) \in [0,1], \ i \in [2,t_{\mathbf{X}}], \ m \in [0,3], \ \mathbf{X} \in \{\mathbf{T},\mathbf{F}\} \colon \ \delta^{\mathbf{X}}_{\beta}(i,m) = 1 \Leftrightarrow \beta^{\mathbf{X}}(i) = m;$
- $-\ \delta_{\beta}^{\rm C}(i,m) \in [0,1], \ i \in [\widetilde{k_{\rm C}},m_{\rm C}] = I_{(\geq 1)} \cup I_{(0/1)} \cup I_{(=1)}, \ m \in [0,3]: \ \delta_{\beta}^{\rm C}(i,m) = 1 \Leftrightarrow \beta^{\rm C}(i) = m;$
- $\delta_{\beta}^{\text{CT}}(k,m), \delta_{\beta}^{\text{TC}}(k,m) \in [0,1], k \in [1,k_{\text{C}}] = I_{(\geq 2)} \cup I_{(\geq 1)}, m \in [0,3]: \delta_{\beta}^{\text{CT}}(k,m) = 1 \text{ (resp., } \delta_{\beta}^{\text{TC}}(k,m) = 1) \Leftrightarrow \beta^{\text{CT}}(k) = m \text{ (resp., } \beta^{\text{TC}}(k) = m);$
- $\delta_{\beta}^{*F}(c, m) \in [0, 1], c \in [1, c_F], m \in [0, 3], X \in \{C, T\}: \delta_{\beta}^{*F}(c, m) = 1 \Leftrightarrow \beta^{*F}(c) = m;$
- $\mathrm{bd}^{\mathrm{int}}(m) \in [0, 2\mathrm{n}_{\mathrm{UB}}^{\mathrm{int}}], \ m \in [1, 3]$: the number of interior-edges with bond-multiplicity m in \mathbb{C} ;
- $\mathrm{bd_X}(m) \in [0, 2\mathrm{n_{UB}^{int}}], \mathrm{X} \in \{\mathrm{C}, \mathrm{T}, \mathrm{CT}, \mathrm{TC}\}, \ \mathrm{bd_X}(m) \in [0, 2\mathrm{n_{UB}^{int}}], \mathrm{X} \in \{\mathrm{F}, \mathrm{CF}, \mathrm{TF}\}, \ m \in [1, 3]: \ \mathrm{the}$ number of interior-edges $e \in E_{\mathrm{X}}$ with bond-multiplicity m in \mathbb{C} ;

$$e^{C}(i) \le \beta^{C}(i) \le 3e^{C}(i), i \in [\widetilde{k_{C}} + 1, m_{C}] = I_{(\ge 1)} \cup I_{(0/1)} \cup I_{(=1)},$$
 (40)

$$e^{X}(i) \le \beta^{X}(i) \le 3e^{X}(i), \qquad i \in [2, t_{X}], X \in \{T, F\},$$
(41)

$$\delta_{\chi}^{\mathrm{T}}(k) \le \beta^{\mathrm{CT}}(k) \le 3\delta_{\chi}^{\mathrm{T}}(k), \quad \delta_{\chi}^{\mathrm{T}}(k) \le \beta^{\mathrm{TC}}(k) \le 3\delta_{\chi}^{\mathrm{T}}(k), \qquad k \in [1, k_{\mathrm{C}}], \tag{42}$$

$$\delta_{\chi}^{F}(c) \le \beta^{XF}(c) \le 3\delta_{\chi}^{F}(c), \qquad c \in [1, c_{F}]$$

$$(43)$$

$$\sum_{m \in [0,3]} \delta_{\beta}^{X}(i,m) = 1, \quad \sum_{m \in [0,3]} m \cdot \delta_{\beta}^{X}(i,m) = \beta^{X}(i), \qquad i \in [2, t_{X}], X \in \{T, F\},$$
(44)

$$\sum_{m \in [0,3]} \delta_{\beta}^{C}(i,m) = 1, \quad \sum_{m \in [0,3]} m \cdot \delta_{\beta}^{C}(i,m) = \beta^{C}(i), \qquad i \in [\widetilde{k}_{C} + 1, m_{C}], \tag{45}$$

$$\sum_{m \in [0,3]} \delta_{\beta}^{\text{CT}}(k,m) = 1, \quad \sum_{m \in [0,3]} m \cdot \delta_{\beta}^{\text{CT}}(k,m) = \beta^{\text{CT}}(k), \qquad k \in [1, k_{\text{C}}],
\sum_{m \in [0,3]} \delta_{\beta}^{\text{TC}}(k,m) = 1, \quad \sum_{m \in [0,3]} m \cdot \delta_{\beta}^{\text{TC}}(k,m) = \beta^{\text{TC}}(k), \qquad k \in [1, k_{\text{C}}],
\sum_{m \in [0,3]} \delta_{\beta}^{*\text{F}}(c,m) = 1, \quad \sum_{m \in [0,3]} m \cdot \delta_{\beta}^{*\text{F}}(c,m) = \beta^{*\text{F}}(c), \qquad c \in [1, c_{\text{F}}], \tag{46}$$

$$\sum_{\psi \in \mathcal{F}_i^{\mathcal{X}}} \beta_{\mathcal{F}}([\psi]) \cdot \delta_{\mathcal{F}}^{\mathcal{X}}(i, [\psi]) = \beta_{\mathcal{E}_{\mathcal{X}}}^{\mathcal{X}}(i), \qquad i \in [1, t_{\mathcal{X}}], \mathcal{X} \in \{\mathcal{C}, \mathcal{T}, \mathcal{F}\},$$

$$(47)$$

$$\sum_{i \in [\widetilde{k_{\mathrm{C}}}+1,m_{\mathrm{C}}]} \delta_{\beta}^{\mathrm{C}}(i,m) = \mathrm{bd}_{\mathrm{C}}(m), \quad \sum_{i \in [2,t_{\mathrm{T}}]} \delta_{\beta}^{\mathrm{T}}(i,m) = \mathrm{bd}_{\mathrm{T}}(m),$$

$$\sum_{k \in [1,k_{\mathrm{C}}]} \delta_{\beta}^{\mathrm{CT}}(k,m) = \mathrm{bd}_{\mathrm{CT}}(m), \quad \sum_{k \in [1,k_{\mathrm{C}}]} \delta_{\beta}^{\mathrm{TC}}(k,m) = \mathrm{bd}_{\mathrm{TC}}(m),$$

$$\sum_{i \in [2,t_{\mathrm{F}}]} \delta_{\beta}^{\mathrm{F}}(i,m) = \mathrm{bd}_{\mathrm{F}}(m), \quad \sum_{c \in [1,\widetilde{t_{\mathrm{C}}}]} \delta_{\beta}^{*\mathrm{F}}(c,m) = \mathrm{bd}_{\mathrm{CF}}(m),$$

$$\sum_{c \in [\widetilde{t_{\mathrm{C}}}+1,c_{\mathrm{F}}]} \delta_{\beta}^{*\mathrm{F}}(c,m) = \mathrm{bd}_{\mathrm{TF}}(m),$$

$$\mathrm{bd}_{\mathrm{C}}(m) + \mathrm{bd}_{\mathrm{T}}(m) + \mathrm{bd}_{\mathrm{F}}(m) + \mathrm{bd}_{\mathrm{CT}}(m) + \mathrm{bd}_{\mathrm{TC}}(m) + \mathrm{bd}_{\mathrm{TF}}(m) + \mathrm{bd}_{\mathrm{CF}}(m) = \mathrm{bd}^{\mathrm{int}}(m),$$

$$m \in [1, 3]. \tag{48}$$

5.6 Assigning Chemical Elements and Valence Condition

We include constraints so that each vertex v in a selected graph H satisfies the valence condition; i.e., $\beta_{\mathbb{C}}(v) = \operatorname{val}(\alpha(v)) + \operatorname{eledeg}_{\mathbb{C}}(v)$, where $\operatorname{eledeg}_{\mathbb{C}}(v) = \operatorname{v_{ion}}(\psi)$ for the ρ -fringe-tree $\mathbb{C}[v]$ r-isomorphic to ψ . With these constraints, a chemical graph $\mathbb{C} = (H, \alpha, \beta)$ on a selected subgraph H will be constructed.

- Subsets $\Lambda^{\rm int} \subseteq \Lambda \setminus \{\mathtt{H}\}, \Lambda^{\rm ex} \subseteq \Lambda$ of chemical elements, where we denote by $[\mathtt{e}]$ (resp., $[\mathtt{e}]^{\rm int}$ and $[\mathtt{e}]^{\rm ex}$) of a standard encoding of an element \mathtt{e} in the set Λ (resp., $\Lambda^{\rm int}_{\epsilon}$ and $\Lambda^{\rm ex}_{\epsilon}$);
- A valence function: val : $\Lambda \rightarrow [1, 6]$;
- A function mass* : $\Lambda \to \mathbb{Z}$ (we let mass(a) denote the observed mass of a chemical element $\mathbf{a} \in \Lambda$, and define mass*(a) $\triangleq \lfloor 10 \cdot \text{mass}(\mathbf{a}) \rfloor$);

- Subsets $\Lambda^*(i) \subseteq \Lambda^{\text{int}}, i \in [1, t_{\text{C}}];$
- $na_{LB}(\mathbf{a}), na_{UB}(\mathbf{a}) \in [0, n^*], \mathbf{a} \in \Lambda$: lower and upper bounds on the number of vertices v with $\alpha(v) = \mathbf{a}$;
- $\operatorname{na_{LB}^{int}}(\mathtt{a}), \operatorname{na_{UB}^{int}}(\mathtt{a}) \in [0, n^*], \ \mathtt{a} \in \Lambda^{int}$: lower and upper bounds on the number of interior-vertices v with $\alpha(v) = \mathtt{a}$;
- $\alpha_{\mathbf{r}}([\psi]) \in [\Lambda^{\mathrm{ex}}], \in \mathcal{F}^*$: the chemical element $\alpha(r)$ of the root r of ψ ;
- $\operatorname{na}_{\mathtt{a}}^{\operatorname{ex}}([\psi]) \in [0, n^*]$, $\mathtt{a} \in \Lambda^{\operatorname{ex}}, \psi \in \mathcal{F}^*$: the frequency of chemical element \mathtt{a} in the set of non-rooted vertices in ψ , where possibly $\mathtt{a} = \mathtt{H}$;
- A positive integer $M \in \mathbb{Z}_+$: an upper bound for the average $\overline{\mathrm{ms}}(\mathbb{C})$ of mass* over all atoms in \mathbb{C} ;

variables:

- $\beta^{\text{CT}}(i), \beta^{\text{TC}}(i) \in [0, 3], i \in [1, t_{\text{T}}]$: the bond-multiplicity of edge $e^{\text{CT}}_{j,i}$ (resp., $e^{\text{TC}}_{j,i}$) if one exists;
- $\beta^{\text{CF}}(i), \beta^{\text{TF}}(i) \in [0, 3], i \in [1, t_{\text{F}}]$: the bond-multiplicity of $e^{\text{CF}}_{j,i}$ (resp., $e^{\text{TF}}_{j,i}$) if one exists;
- $\begin{array}{l} \text{-}\ \alpha^{\mathbf{X}}(i) \in [\Lambda_{\epsilon}^{\mathrm{int}}], \delta^{\mathbf{X}}_{\alpha}(i,[\mathbf{a}]^{\mathrm{int}}) \in [0,1], \mathbf{a} \in \Lambda_{\epsilon}^{\mathrm{int}}, i \in [1,t_{\mathbf{X}}], \mathbf{X} \in \{\mathbf{C},\mathbf{T},\mathbf{F}\}:\ \alpha^{\mathbf{X}}(i) = [\mathbf{a}]^{\mathrm{int}} \geq 1 \ (\mathrm{resp.}, \alpha^{\mathbf{X}}(i) = 0) \Leftrightarrow \delta^{\mathbf{X}}_{\alpha}(i,[\mathbf{a}]^{\mathrm{int}}) = 1 \ (\mathrm{resp.},\ \delta^{\mathbf{X}}_{\alpha}(i,0) = 0) \Leftrightarrow \alpha(v^{\mathbf{X}}_i) = \mathbf{a} \in \Lambda \ (\mathrm{resp.},\ \mathrm{vertex}\ v^{\mathbf{X}}_i \ \mathrm{is}\ \mathrm{not}\ \mathrm{used\ in}\ \mathbb{C}); \end{array}$
- $-\ \delta^{\mathbf{X}}_{\alpha}(i,[\mathbf{a}]^{\mathrm{int}}) \in [0,1], i \in [1,t_{\mathbf{X}}], \mathbf{a} \in \Lambda^{\mathrm{int}}, \mathbf{X} \in \{\mathbf{C},\mathbf{T},\mathbf{F}\} \colon \ \delta^{\mathbf{X}}_{\alpha}(i,[\mathbf{a}]^{\mathbf{t}}) = 1 \Leftrightarrow \alpha(v^{\mathbf{X}}_{i}) = \mathbf{a};$
- Mass $\in \mathbb{Z}_+$: $\sum_{v \in V(H)} \text{mass}^*(\alpha(v))$;
- $\overline{\mathrm{ms}} \in \mathbb{R}_+$: $\sum_{v \in V(H)} \mathrm{mass}^*(\alpha(v))/|V(H)|$;
- $-\ \delta_{\mathrm{atm}}(i) \in [0,1], i \in [n_{\mathrm{LB}} + \mathrm{na_{LB}}(\mathtt{H}), n^* + \mathrm{na_{UB}}(\mathtt{H})] \colon \delta_{\mathrm{atm}}(i) = 1 \Leftrightarrow |V(H)| = i;$
- $\operatorname{na}([\mathtt{a}]) \in [\operatorname{na}_{\operatorname{LB}}(\mathtt{a}), \operatorname{na}_{\operatorname{UB}}(\mathtt{a})]$, $\mathtt{a} \in \Lambda$: the number of vertices $v \in V(H)$ with $\alpha(v) = \mathtt{a}$, where possibly $\mathtt{a} = \mathtt{H}$;
- $\operatorname{na}^{\operatorname{int}}([\mathtt{a}]^{\operatorname{int}}) \in [\operatorname{na}^{\operatorname{int}}_{\operatorname{LB}}(\mathtt{a}), \operatorname{na}^{\operatorname{int}}_{\operatorname{UB}}(\mathtt{a})], \ \mathtt{a} \in \Lambda, \mathbf{X} \in \{\mathbf{C}, \mathbf{T}, \mathbf{F}\}: \ \text{the number of interior-vertices} \ v \in V(\mathbb{C}) \ \text{with} \ \alpha(v) = \mathtt{a};$
- $\operatorname{na}_{\mathbf{X}}^{\mathrm{ex}}([\mathtt{a}]^{\mathrm{ex}}), \operatorname{na}^{\mathrm{ex}}([\mathtt{a}]^{\mathrm{ex}}) \in [0, \operatorname{na}_{\mathrm{UB}}(\mathtt{a})], \ \mathtt{a} \in \Lambda, \ \mathbf{X} \in \{\mathbf{C}, \mathbf{T}, \mathbf{F}\}: \ \text{the number of exterior-vertices rooted}$ at vertices $v \in V_{\mathbf{X}}$ and the number of exterior-vertices $v \in V_{\mathbf{X}}$ and the number of exterior-vertices $v \in V_{\mathbf{X}}$ and the number of exterior-vertices $v \in V_{\mathbf{X}}$ and $v \in$

$$\beta^{\text{CT}}(k) - 3(e^{\text{T}}(i) - \chi^{\text{T}}(i, k) + 1) \leq \beta^{\text{CT}}(i) \leq \beta^{\text{CT}}(k) + 3(e^{\text{T}}(i) - \chi^{\text{T}}(i, k) + 1), i \in [1, t_{\text{T}}],$$

$$\beta^{\text{TC}}(k) - 3(e^{\text{T}}(i+1) - \chi^{\text{T}}(i, k) + 1) \leq \beta^{\text{TC}}(i) \leq \beta^{\text{TC}}(k) + 3(e^{\text{T}}(i+1) - \chi^{\text{T}}(i, k) + 1), i \in [1, t_{\text{T}}],$$

$$k \in [1, k_{\text{C}}],$$

$$(49)$$

$$\beta^{*F}(c) - 3(e^{F}(i) - \chi^{F}(i,c) + 1) \leq \beta^{CF}(i) \leq \beta^{*F}(c) + 3(e^{F}(i) - \chi^{F}(i,c) + 1), i \in [1, t_{F}], \qquad c \in [1, \widetilde{t_{C}}],$$

$$\beta^{*F}(c) - 3(e^{F}(i) - \chi^{F}(i,c) + 1) \leq \beta^{TF}(i) \leq \beta^{*F}(c) + 3(e^{F}(i) - \chi^{F}(i,c) + 1), i \in [1, t_{F}], \quad c \in [\widetilde{t_{C}} + 1, c_{F}],$$

$$(50)$$

$$\sum_{\mathbf{a} \in \Lambda^{\text{int}}} \delta_{\alpha}^{\mathcal{C}}(i, [\mathbf{a}]^{\text{int}}) = 1, \quad \sum_{\mathbf{a} \in \Lambda^{\text{int}}} [\mathbf{a}]^{\text{int}} \cdot \delta_{\alpha}^{\mathcal{X}}(i, [\mathbf{a}]^{\text{int}}) = \alpha^{\mathcal{C}}(i), \qquad i \in [1, t_{\mathcal{C}}],$$

$$\sum_{\mathbf{a} \in \Lambda^{\text{int}}} \delta_{\alpha}^{\mathcal{X}}(i, [\mathbf{a}]^{\text{int}}) = v^{\mathcal{X}}(i), \quad \sum_{\mathbf{a} \in \Lambda^{\text{int}}} [\mathbf{a}]^{\text{int}} \cdot \delta_{\alpha}^{\mathcal{X}}(i, [\mathbf{a}]^{\text{int}}) = \alpha^{\mathcal{X}}(i), \qquad i \in [1, t_{\mathcal{X}}], \mathcal{X} \in \{\mathcal{T}, \mathcal{F}\}, \tag{51}$$

$$\sum_{\psi \in \mathcal{F}_i^{\mathcal{X}}} \alpha_{\mathbf{r}}([\psi]) \cdot \delta_{fr}^{\mathcal{X}}(i, [\psi]) = \alpha^{\mathcal{X}}(i), \qquad i \in [1, t_{\mathcal{X}}], \mathcal{X} \in \{\mathcal{C}, \mathcal{T}, \mathcal{F}\},$$

$$(52)$$

$$\sum_{j \in I_{\mathcal{C}}(i)} \beta^{\mathcal{C}}(j) + \sum_{k \in I_{(\geq 2)}^{+}(i) \cup I_{(\geq 1)}^{+}(i)} \beta^{\mathcal{C}\mathcal{T}}(k) + \sum_{k \in I_{(\geq 2)}^{-}(i) \cup I_{(\geq 1)}^{-}(i)} \beta^{\mathcal{T}\mathcal{C}}(k)
+ \beta^{*\mathcal{F}}(i) + \beta_{\mathrm{ex}}^{\mathcal{C}}(i) - \mathrm{eledeg}_{\mathcal{C}}(i) = \sum_{\mathbf{a} \in \Lambda^{\mathrm{int}}} \mathrm{val}(\mathbf{a}) \delta_{\alpha}^{\mathcal{C}}(i, [\mathbf{a}]^{\mathrm{int}}), \qquad i \in [1, \widetilde{t_{\mathcal{C}}}], \quad (53)$$

$$\sum_{j \in I_{\mathcal{C}}(i)} \beta^{\mathcal{C}}(j) + \sum_{k \in I_{(\geq 2)}^{+}(i) \cup I_{(\geq 1)}^{+}(i)} \beta^{\mathcal{C}\mathcal{T}}(k) + \sum_{k \in I_{(\geq 2)}^{-}(i) \cup I_{(\geq 1)}^{-}(i)} \beta^{\mathcal{T}\mathcal{C}}(k)
+ \beta_{\mathrm{ex}}^{\mathcal{C}}(i) - \mathrm{eledeg}_{\mathcal{C}}(i) = \sum_{\mathbf{a} \in \Lambda^{\mathrm{int}}} \mathrm{val}(\mathbf{a}) \delta_{\alpha}^{\mathcal{C}}(i, [\mathbf{a}]^{\mathrm{int}}), \qquad i \in [\widetilde{t}_{\mathcal{C}}^{-} + 1, t_{\mathcal{C}}], \tag{54}$$

$$\beta^{\mathrm{T}}(i) + \beta^{\mathrm{T}}(i+1) + \beta_{\mathrm{ex}}^{\mathrm{T}}(i) + \beta^{\mathrm{CT}}(i) + \beta^{\mathrm{TC}}(i)$$

$$+\beta^{*\mathrm{F}}(\widetilde{t_{\mathrm{C}}} + i) - \mathrm{eledeg}_{\mathrm{T}}(i) = \sum_{\mathbf{a} \in \Lambda^{\mathrm{int}}} \mathrm{val}(\mathbf{a}) \delta_{\alpha}^{\mathrm{T}}(i, [\mathbf{a}]^{\mathrm{int}}),$$

$$i \in [1, t_{\mathrm{T}}] \ (\beta^{\mathrm{T}}(1) = \beta^{\mathrm{T}}(t_{\mathrm{T}} + 1) = 0),$$

$$(55)$$

$$\beta^{F}(i) + \beta^{F}(i+1) + \beta^{CF}(i) + \beta^{TF}(i) + \beta^{F}(i) + \beta^{F}(i) - eledeg_{F}(i) = \sum_{\mathbf{a} \in \Lambda^{int}} val(\mathbf{a}) \delta^{F}_{\alpha}(i, [\mathbf{a}]^{int}),$$

$$i \in [1, t_{F}] \ (\beta^{F}(1) = \beta^{F}(t_{F} + 1) = 0), \tag{56}$$

$$\sum_{i \in [1, t_{\mathbf{X}}], i \in [1, t_{\mathbf{X}}]} \delta_{\alpha}^{\mathbf{X}}(i, [\mathbf{a}]^{\mathrm{int}}) = \mathrm{na}_{\mathbf{X}}([\mathbf{a}]^{\mathrm{int}}), \qquad \mathbf{a} \in \Lambda^{\mathrm{int}}, \mathbf{X} \in \{\mathbf{C}, \mathbf{T}, \mathbf{F}\}, \tag{57}$$

$$\sum_{\psi \in \mathcal{F}_i^{\mathbf{X}}} \operatorname{na}_{\mathbf{a}}^{\operatorname{ex}}([\psi]) \cdot \delta_{\operatorname{fr}}^{\mathbf{X}}(i, [\psi]) = \operatorname{na}_{\mathbf{X}}^{\operatorname{ex}}([\mathbf{a}]^{\operatorname{ex}}), \qquad \mathbf{a} \in \Lambda^{\operatorname{ex}}, \mathbf{X} \in \{\mathbf{C}, \mathbf{T}, \mathbf{F}\},$$
 (58)

$$\begin{split} \operatorname{na}_{\mathrm{C}}([\mathtt{a}]^{\mathrm{int}}) + \operatorname{na}_{\mathrm{T}}([\mathtt{a}]^{\mathrm{int}}) + \operatorname{na}_{\mathrm{F}}([\mathtt{a}]^{\mathrm{int}}) &= \operatorname{na}^{\mathrm{int}}([\mathtt{a}]^{\mathrm{int}}), & \mathtt{a} \in \Lambda^{\mathrm{int}}, \\ \sum_{X \in \{\mathrm{C}, \mathrm{T}, \mathrm{F}\}} \operatorname{na}_{X}^{\mathrm{ex}}([\mathtt{a}]^{\mathrm{ex}}) &= \operatorname{na}^{\mathrm{ex}}([\mathtt{a}]^{\mathrm{ex}}), & \mathtt{a} \in \Lambda^{\mathrm{ex}}, \\ \operatorname{na}^{\mathrm{int}}([\mathtt{a}]^{\mathrm{int}}) + \operatorname{na}^{\mathrm{ex}}([\mathtt{a}]^{\mathrm{ex}}) &= \operatorname{na}([\mathtt{a}]), & \mathtt{a} \in \Lambda^{\mathrm{int}} \cap \Lambda^{\mathrm{ex}}, \\ \operatorname{na}^{\mathrm{int}}([\mathtt{a}]^{\mathrm{int}}) &= \operatorname{na}([\mathtt{a}]), & \mathtt{a} \in \Lambda^{\mathrm{int}} \setminus \Lambda^{\mathrm{ex}}, \\ \operatorname{na}^{\mathrm{ex}}([\mathtt{a}]^{\mathrm{ex}}) &= \operatorname{na}([\mathtt{a}]), & \mathtt{a} \in \Lambda^{\mathrm{ex}} \setminus \Lambda^{\mathrm{int}}, & (59) \end{split}$$

$$\sum_{\mathbf{a} \in \Lambda^*(i)} \delta_{\alpha}^{\mathbf{C}}(i, [\mathbf{a}]^{\text{int}}) = 1, \qquad i \in [1, t_{\mathbf{C}}], \tag{60}$$

$$\sum_{\mathbf{a} \in \Lambda} \operatorname{mass}^*(\mathbf{a}) \cdot \operatorname{na}([\mathbf{a}]) = \operatorname{Mass}, \tag{61}$$

$$\sum_{i \in [n_{\text{LB}} + \text{na}_{\text{LB}}(\mathbf{H}), n^* + \text{na}_{\text{UB}}(\mathbf{H})]} \delta_{\text{atm}}(i) = 1, \tag{62}$$

$$\sum_{i \in [n_{\text{LB}} + \text{na}_{\text{LB}}(\mathbb{H}), n^* + \text{na}_{\text{UB}}(\mathbb{H})]} i \cdot \delta_{\text{atm}}(i) = n_G + \text{na}^{\text{ex}}([\mathbb{H}]^{\text{ex}}),$$

$$i \in [n_{\text{LB}} + \text{na}_{\text{LB}}(\mathbb{H}), n^* + \text{na}_{\text{UB}}(\mathbb{H})]$$

$$M_{\bullet}(1 - S_{\bullet \bullet}(i)) \leq i = \overline{\text{trans}} \leq M_{\bullet, \text{Table}} + M_{\bullet}(1 - S_{\bullet, \text{Table}}(i)) = i \in [n_{\text{LB}} + n_{\text{LB}}(\mathbb{H}), n^* + n_{\text{LB}}(\mathbb{H})]$$

$$(63)$$

$$\operatorname{Mass} - \operatorname{M} \cdot (1 - \delta_{\operatorname{atm}}(i)) \le i \cdot \overline{\operatorname{ms}} \le \operatorname{Mass} + \operatorname{M} \cdot (1 - \delta_{\operatorname{atm}}(i)), \quad i \in [n_{\operatorname{LB}} + \operatorname{na}_{\operatorname{LB}}(\mathtt{H}), n^* + \operatorname{na}_{\operatorname{UB}}(\mathtt{H})].$$

$$(64)$$

5.7 Constraints for Bounds on the Number of Bonds

We include constraints for specification of lower and upper bounds $\mathrm{bd}_{\mathrm{LB}}$ and $\mathrm{bd}_{\mathrm{UB}}$. constants:

- $\mathrm{bd}_{m,\mathrm{LB}}(i)$, $\mathrm{bd}_{m,\mathrm{UB}}(i) \in [0,\mathrm{n_{\mathrm{UB}}^{\mathrm{int}}}]$, $i \in [1,m_{\mathrm{C}}]$, $m \in [2,3]$: lower and upper bounds on the number of edges $e \in E(P_i)$ with bond-multiplicity $\beta(e) = m$ in the pure path P_i for edge $e_i \in E_{\mathrm{C}}$;

variables:

- $\operatorname{bd}_{\mathbf{T}}(k, i, m) \in [0, 1], k \in [1, k_{\mathbf{C}}], i \in [2, t_{\mathbf{T}}], m \in [2, 3]: \operatorname{bd}_{\mathbf{T}}(k, i, m) = 1 \Leftrightarrow \text{the pure path } P_k \text{ for edge } e_k \in E_{\mathbf{C}} \text{ contains edge } e^{\mathbf{T}}_i \text{ with } \beta(e^{\mathbf{T}}_i) = m;$

$$\mathrm{bd}_{m,\mathrm{LB}}(i) \le \delta_{\beta}^{\mathrm{C}}(i,m) \le \mathrm{bd}_{m,\mathrm{UB}}(i), i \in I_{(=1)} \cup I_{(0/1)}, m \in [2,3],$$
 (65)

$$\mathrm{bd}_{\mathrm{T}}(k,i,m) \ge \delta_{\beta}^{\mathrm{T}}(i,m) + \chi^{\mathrm{T}}(i,k) - 1, \quad k \in [1,k_{\mathrm{C}}], i \in [2,t_{\mathrm{T}}], m \in [2,3], \tag{66}$$

$$\sum_{j \in [2, t_{\mathrm{T}}]} \delta_{\beta}^{\mathrm{T}}(j, m) \ge \sum_{k \in [1, k_{\mathrm{C}}], i \in [2, t_{\mathrm{T}}]} \mathrm{bd}_{\mathrm{T}}(k, i, m), \quad m \in [2, 3], \tag{67}$$

$$\mathrm{bd}_{m,\mathrm{LB}}(k) \leq \sum_{i \in [2,t_{\mathrm{T}}]} \mathrm{bd}_{\mathrm{T}}(k,i,m) + \delta_{\beta}^{\mathrm{CT}}(k,m) + \delta_{\beta}^{\mathrm{TC}}(k,m) \leq \mathrm{bd}_{m,\mathrm{UB}}(k),$$

$$k \in [1,k_{\mathrm{C}}], m \in [2,3]. \tag{68}$$

5.8 Descriptor for the Number of Adjacency-configurations

We call a tuple $(a, b, m) \in (\Lambda \setminus \{H\}) \times (\Lambda \setminus \{H\}) \times [1, 3]$ an adjacency-configuration. The adjacency-configuration of an edge-configuration $(\mu = ad, \mu' = bd', m)$ is defined to be (a, b, m). We include constraints to compute the frequency of each adjacency-configuration in an inferred chemical graph \mathbb{C} .

constants:

- A set Γ^{int} of edge-configurations $\gamma = (\mu, \mu', m)$ with $\mu \leq \mu'$;
- Let $\overline{\gamma}$ of an edge-configuration $\gamma = (\mu, \mu', m)$ denote the edge-configuration (μ', μ, m) ;
- Let $\Gamma^{\text{int}}_{<} = \{(\mu, \mu', m) \in \Gamma^{\text{int}} \mid \mu < \mu'\}, \Gamma^{\text{int}}_{=} = \{(\mu, \mu', m) \in \Gamma^{\text{int}} \mid \mu = \mu'\} \text{ and } \Gamma^{\text{int}}_{>} = \{\overline{\gamma} \mid \gamma \in \Gamma^{\text{int}}_{<}\};$
- Let $\Gamma^{\rm int}_{\rm ac,<}$, $\Gamma^{\rm int}_{\rm ac,=}$ and $\Gamma^{\rm int}_{\rm ac,>}$ denote the sets of the adjacency-configurations of edge-configurations in the sets $\Gamma^{\rm int}_{\rm conf}$, $\Gamma^{\rm int}_{\rm ac}$ and $\Gamma^{\rm int}_{\rm conf}$, respectively;
- Let $\overline{\nu}$ of an adjacency-configuration $\nu = (\mathtt{a}, \mathtt{b}, m)$ denote the adjacency-configuration $(\mathtt{b}, \mathtt{a}, m)$;
- Prepare a coding of the set $\Gamma^{int}_{ac} \cup \Gamma^{int}_{ac,>}$ and let $[\nu]^{int}$ denote the coded integer of an element ν in $\Gamma^{int}_{ac} \cup \Gamma^{int}_{ac,>}$;
- Choose subsets $\widetilde{\Gamma}_{ac}^{C}$, $\widetilde{\Gamma}_{ac}^{T}$, $\widetilde{\Gamma}_{ac}^{CT}$, $\widetilde{\Gamma}_{ac}^{TC}$, $\widetilde{\Gamma}_{ac}^{F}$, $\widetilde{\Gamma}_{ac}^{CF}$, $\widetilde{\Gamma}_{ac}^{TF}$ $\subseteq \Gamma_{ac}^{int} \cup \Gamma_{ac,>}^{int}$; To compute the frequency of adjacency-configurations exactly, set $\widetilde{\Gamma}_{ac}^{C} := \widetilde{\Gamma}_{ac}^{T} := \widetilde{\Gamma}_{ac}^{CT} := \widetilde{\Gamma}_{ac}^{TC} := \widetilde{\Gamma}_{ac}^{F} := \widetilde{\Gamma}_{ac}^{CF} := \widetilde{\Gamma}_{ac}^{TF} := \widetilde{\Gamma}_{a$
- $\operatorname{ac_{LB}^{int}}(\nu), \operatorname{ac_{UB}^{int}}(\nu) \in [0, 2n_{UB}^{int}], \nu = (\mathtt{a}, \mathtt{b}, m) \in \Gamma_{\mathrm{ac}}^{\mathrm{int}}$: lower and upper bounds on the number of interior-edges e = uv with $\alpha(u) = \mathtt{a}, \ \alpha(v) = \mathtt{b}$ and $\beta(e) = m$;
- A subset $\Gamma_{\mathrm{ac}}^{\mathrm{lnk}} \subseteq \Gamma_{\mathrm{ac}}^{\mathrm{int}}$ for adjacency-configurations of link-edges. Let $\Gamma_{\mathrm{ac},<}^{\mathrm{lnk}} = \Gamma_{\mathrm{ac}}^{\mathrm{lnk}} \cap \Gamma_{\mathrm{ac},<}^{\mathrm{int}}$, $\Gamma_{\mathrm{ac},=}^{\mathrm{lnk}} = \Gamma_{\mathrm{ac},<}^{\mathrm{lnk}} \cap \Gamma_{\mathrm{ac},>}^{\mathrm{int}}$ and $\Gamma_{\mathrm{ac},>}^{\mathrm{int}} = \{(\mathtt{b},\mathtt{a},m) \mid (\mathtt{a},\mathtt{b},m) \in \Gamma_{\mathrm{ac},<}^{\mathrm{lnk}}\};$
- $\operatorname{ac_{LB}^{lnk}}(\nu)$, $\operatorname{ac_{UB}^{lnk}}(\nu) \in [0, 2n_{UB}^{int}]$, $\nu = (\mathtt{a}, \mathtt{b}, m) \in \Gamma_{\mathrm{ac}}^{\mathrm{lnk}}$: lower and upper bounds on the number of link-edges e = uv with $\alpha(u) = \mathtt{a}$, $\alpha(v) = \mathtt{b}$ and $\beta(e) = m$;

variables:

- $ac^{int}([\nu]^{int}) \in [ac^{int}_{LB}(\nu), ac^{int}_{UB}(\nu)], \nu \in \Gamma^{int}_{ac}$: the number of interior-edges with adjacency-configuration ν ;
- $\operatorname{ac}_{\mathcal{C}}([\nu]^{\operatorname{int}}) \in [0, m_{\mathcal{C}}], \nu \in \widetilde{\Gamma}_{\operatorname{ac}}^{\mathcal{C}}, \operatorname{ac}_{\mathcal{T}}([\nu]^{\operatorname{int}}) \in [0, t_{\mathcal{T}}], \nu \in \widetilde{\Gamma}_{\operatorname{ac}}^{\mathcal{T}}, \operatorname{ac}_{\mathcal{F}}([\nu]^{\operatorname{int}}) \in [0, t_{\mathcal{F}}], \nu \in \widetilde{\Gamma}_{\operatorname{ac}}^{\mathcal{F}}$: the number of edges $e^{\mathcal{C}} \in E_{\mathcal{C}}$ (resp., edges $e^{\mathcal{T}} \in E_{\mathcal{T}}$ and edges $e^{\mathcal{F}} \in E_{\mathcal{F}}$) with adjacency-configuration ν ;
- $\operatorname{ac}_{\operatorname{CT}}([\nu]^{\operatorname{int}}) \in [0, \min\{k_{\operatorname{C}}, t_{\operatorname{T}}\}], \nu \in \widetilde{\Gamma}_{\operatorname{ac}}^{\operatorname{CT}}, \operatorname{ac}_{\operatorname{TC}}([\nu]^{\operatorname{int}}) \in [0, \min\{k_{\operatorname{C}}, t_{\operatorname{T}}\}], \nu \in \widetilde{\Gamma}_{\operatorname{ac}}^{\operatorname{CT}}, \operatorname{ac}_{\operatorname{CF}}([\nu]^{\operatorname{int}}) \in [0, t_{\operatorname{C}}], \nu \in \widetilde{\Gamma}_{\operatorname{ac}}^{\operatorname{TF}}, \operatorname{ac}_{\operatorname{TF}}([\nu]^{\operatorname{int}}) \in [0, t_{\operatorname{T}}], \nu \in \widetilde{\Gamma}_{\operatorname{ac}}^{\operatorname{TF}}: \text{ the number of edges } e^{\operatorname{CT}} \in E_{\operatorname{CT}} \text{ (resp., edges } e^{\operatorname{TC}} \in E_{\operatorname{TC}} \text{ and edges } e^{\operatorname{CF}} \in E_{\operatorname{CF}} \text{ and } e^{\operatorname{TF}} \in E_{\operatorname{TF}}) \text{ with adjacency-configuration } \nu;$
- $\delta_{\mathrm{ac}}^{\mathrm{C}}(i,[\nu]^{\mathrm{int}}) \in [0,1], i \in [\widetilde{k}_{\mathrm{C}} + 1, m_{\mathrm{C}}] = I_{(\geq 1)} \cup I_{(0/1)} \cup I_{(=1)}, \nu \in \widetilde{\Gamma}_{\mathrm{ac}}^{\mathrm{C}}, \ \delta_{\mathrm{ac}}^{\mathrm{T}}(i,[\nu]^{\mathrm{int}}) \in [0,1], i \in [2,t_{\mathrm{F}}], \nu \in \widetilde{\Gamma}_{\mathrm{ac}}^{\mathrm{F}}: \ \delta_{\mathrm{ac}}^{\mathrm{X}}(i,[\nu]^{\mathrm{int}}) = 1 \Leftrightarrow \mathrm{edge} \ e^{\mathrm{X}}_{i} \ \mathrm{has} \ \mathrm{adjacency-configuration} \ \nu$:
- $\delta_{\mathrm{ac}}^{\mathrm{CT}}(k, [\nu]^{\mathrm{int}}), \delta_{\mathrm{ac}}^{\mathrm{TC}}(k, [\nu]^{\mathrm{int}}) \in [0, 1], k \in [1, k_{\mathrm{C}}] = I_{(\geq 2)} \cup I_{(\geq 1)}, \nu \in \widetilde{\Gamma}_{\mathrm{ac}}^{\mathrm{CT}}: \delta_{\mathrm{ac}}^{\mathrm{CT}}(k, [\nu]^{\mathrm{int}}) = 1 \text{ (resp., } \delta_{\mathrm{ac}}^{\mathrm{TC}}(k, [\nu]^{\mathrm{int}}) = 1) \Leftrightarrow \mathrm{edge} \ e^{\mathrm{CT}}_{\mathrm{tail}(k), j} \ (\mathrm{resp., } \ e^{\mathrm{TC}}_{\mathrm{head}(k), j}) \text{ for some } j \in [1, t_{\mathrm{T}}] \text{ has adjacency-configuration } \nu;$

- $\delta_{\rm ac}^{\rm CF}(c,[\nu]^{\rm int}) \in [0,1], c \in [1,\widetilde{t_{\rm C}}], \nu \in \widetilde{\Gamma}_{\rm ac}^{\rm CF}$: $\delta_{\rm ac}^{\rm CF}(c,[\nu]^{\rm int}) = 1 \Leftrightarrow {\rm edge}\ e^{\rm CF}_{c,i}$ for some $i \in [1,t_{\rm F}]$ has adjacency-configuration ν ;
- $\delta_{\rm ac}^{\rm TF}(i,[\nu]^{\rm int}) \in [0,1], i \in [1,t_{\rm T}], \nu \in \widetilde{\Gamma}_{\rm ac}^{\rm TF}$: $\delta_{\rm ac}^{\rm TF}(i,[\nu]^{\rm int}) = 1 \Leftrightarrow {\rm edge}\ e^{\rm TF}_{i,j}$ for some $j \in [1,t_{\rm F}]$ has adjacency-configuration ν ;
- $\alpha^{\text{CT}}(k)$, $\alpha^{\text{TC}}(k) \in [0, |\Lambda^{\text{int}}|]$, $k \in [1, k_{\text{C}}]$: $\alpha(v)$ of the edge $(v^{\text{C}}_{\text{tail}(k)}, v) \in E_{\text{CT}}$ (resp., $(v, v^{\text{C}}_{\text{head}(k)}) \in E_{\text{TC}}$) if any;
- $\alpha^{\text{CF}}(c) \in [0, |\Lambda^{\text{int}}|], c \in [1, \widetilde{t_{\text{C}}}]: \alpha(v)$ of the edge $(v^{\text{C}}_{c}, v) \in E_{\text{CF}}$ if any;
- $\alpha^{\mathrm{TF}}(i) \in [0, |\Lambda^{\mathrm{int}}|], i \in [1, t_{\mathrm{T}}]: \alpha(v)$ of the edge $(v^{\mathrm{T}}_{i}, v) \in E_{\mathrm{TF}}$ if any;
- $\begin{array}{l} \ \Delta_{\rm ac}^{\rm C+}(i), \Delta_{\rm ac}^{\rm C-}(i), \in [0, |\Lambda^{\rm int}|], i \in [\widetilde{k_{\rm C}} + 1, m_{\rm C}], \Delta_{\rm ac}^{\rm T+}(i), \Delta_{\rm ac}^{\rm T-}(i) \in [0, |\Lambda^{\rm int}|], i \in [2, t_{\rm T}], \Delta_{\rm ac}^{\rm F+}(i), \Delta_{\rm ac}^{\rm F-}(i) \in [0, |\Lambda^{\rm int}|], i \in [2, t_{\rm F}]; \ \Delta_{\rm ac}^{\rm X+}(i) = \Delta_{\rm ac}^{\rm X-}(i) = 0 \ ({\rm resp.}, \ \Delta_{\rm ac}^{\rm X+}(i) = \alpha(u) \ {\rm and} \ \Delta_{\rm ac}^{\rm X-}(i) = \alpha(v)) \Leftrightarrow {\rm edge} \\ e^{\rm X}_{i} = (u, v) \in E_{\rm X} \ {\rm is} \ {\rm used} \ {\rm in} \ \mathbb{C} \ ({\rm resp.}, \ e^{\rm X}_{i} \not\in E(G)); \end{array}$
- $\Delta_{\mathrm{ac}}^{\mathrm{CT+}}(k)$, $\Delta_{\mathrm{ac}}^{\mathrm{CT-}}(k) \in [0, |\Lambda^{\mathrm{int}}|]$, $k \in [1, k_{\mathrm{C}}] = I_{(\geq 2)} \cup I_{(\geq 1)}$: $\Delta_{\mathrm{ac}}^{\mathrm{CT+}}(k) = \Delta_{\mathrm{ac}}^{\mathrm{CT-}}(k) = 0$ (resp., $\Delta_{\mathrm{ac}}^{\mathrm{CT+}}(k) = \alpha(u)$ and $\Delta_{\mathrm{ac}}^{\mathrm{CT-}}(k) = \alpha(v)$) \Leftrightarrow edge $e^{\mathrm{CT}}_{\mathrm{tail}(k), j} = (u, v) \in E_{\mathrm{CT}}$ for some $j \in [1, t_{\mathrm{T}}]$ is used in \mathbb{C} (resp., otherwise);
- $\Delta_{\mathrm{ac}}^{\mathrm{TC}+}(k), \Delta_{\mathrm{ac}}^{\mathrm{TC}-}(k) \in [0, |\Lambda^{\mathrm{int}}|], k \in [1, k_{\mathrm{C}}] = I_{(\geq 2)} \cup I_{(\geq 1)}$: Analogous with $\Delta_{\mathrm{ac}}^{\mathrm{CT}+}(k)$ and $\Delta_{\mathrm{ac}}^{\mathrm{CT}-}(k)$;
- $\Delta_{\text{ac}}^{\text{CF+}}(c) \in [0, |\Lambda^{\text{int}}|], \Delta_{\text{ac}}^{\text{CF-}}(c) \in [0, |\Lambda^{\text{int}}|], c \in [1, \widetilde{t_{\text{C}}}]: \Delta_{\text{ac}}^{\text{CF+}}(c) = \Delta_{\text{ac}}^{\text{CF-}}(c) = 0 \text{ (resp., } \Delta_{\text{ac}}^{\text{CF+}}(c) = \alpha(u) \text{ and } \Delta_{\text{ac}}^{\text{CF-}}(c) = \alpha(v)) \Leftrightarrow \text{edge } e^{\text{CF}}_{c,i} = (u, v) \in E_{\text{CF}} \text{ for some } i \in [1, t_{\text{F}}] \text{ is used in } \mathbb{C} \text{ (resp., otherwise)};$
- $\Delta_{\mathrm{ac}}^{\mathrm{TF}+}(i) \in [0, |\Lambda^{\mathrm{int}}|], \Delta_{\mathrm{ac}}^{\mathrm{TF}-}(i) \in [0, |\Lambda^{\mathrm{int}}|], i \in [1, t_{\mathrm{T}}]:$ Analogous with $\Delta_{\mathrm{ac}}^{\mathrm{CF}+}(c)$ and $\Delta_{\mathrm{ac}}^{\mathrm{CF}-}(c)$;
- $ac^{lnk}([\nu]^{int}) \in [ac^{lnk}_{LB}(\nu), ac^{lnk}_{UB}(\nu)], \nu \in \Gamma^{lnk}_{ac}$: the number of link-edges with adjacency-configuration ν ;
- $\operatorname{ac_C^{lnk}}([\nu]^{int}), \operatorname{ac_T^{lnk}}([\nu]^{int}) \in [0, m_C], \nu \in \Gamma_{ac}^{lnk}$: the number of link-edges $e^C \in E_C$ (resp., edges $e^T \in E_T$) with adjacency-configuration ν ;
- $\operatorname{ac_{CT}^{lnk}}([\nu]^{int}) \in [0, \min\{k_{\mathrm{C}}, t_{\mathrm{T}}\}], \operatorname{ac_{TC}^{lnk}}([\nu]^{int}) \in [0, \min\{k_{\mathrm{C}}, t_{\mathrm{T}}\}], \nu \in \Gamma_{\mathrm{ac}}^{\mathrm{lnk}}$: the number of link-edges $e^{\mathrm{CT}} \in E_{\mathrm{CT}}$ (resp., link-edges $e^{\mathrm{TC}} \in E_{\mathrm{TC}}$) with adjacency-configuration ν ;
- $\delta_{\text{ac}}^{\text{T,lnk}}(i, [\nu]^{\text{int}}) \in [0, 1], i \in [2, t_{\text{T}}], \nu \in \Gamma_{\text{ac}}^{\text{lnk}}: \delta_{\text{ac}}^{\text{T,lnk}}(i, [\nu]^{\text{int}}) = 1 \Leftrightarrow \text{edge } e^{\text{T}}_{i} \in E_{\text{T}} \text{ is a link-edge with adjacency-configuration } \nu;$

$$\begin{split} & \operatorname{ac}_{C}([\nu]^{\operatorname{int}}) = 0, & \nu \in \Gamma_{\operatorname{ac}}^{\operatorname{int}} \setminus \widetilde{\Gamma}_{\operatorname{ac}}^{C}, \\ & \operatorname{ac}_{T}([\nu]^{\operatorname{int}}) = 0, & \nu \in \Gamma_{\operatorname{ac}}^{\operatorname{int}} \setminus \widetilde{\Gamma}_{\operatorname{ac}}^{T}, \\ & \operatorname{ac}_{F}([\nu]^{\operatorname{int}}) = 0, & \nu \in \Gamma_{\operatorname{ac}}^{\operatorname{int}} \setminus \widetilde{\Gamma}_{\operatorname{ac}}^{F}, \\ & \operatorname{ac}_{CT}([\nu]^{\operatorname{int}}) = 0, & \nu \in \Gamma_{\operatorname{ac}}^{\operatorname{int}} \setminus \widetilde{\Gamma}_{\operatorname{ac}}^{CT}, \\ & \operatorname{ac}_{TC}([\nu]^{\operatorname{int}}) = 0, & \nu \in \Gamma_{\operatorname{ac}}^{\operatorname{int}} \setminus \widetilde{\Gamma}_{\operatorname{ac}}^{TC}, \\ & \operatorname{ac}_{CF}([\nu]^{\operatorname{int}}) = 0, & \nu \in \Gamma_{\operatorname{ac}}^{\operatorname{int}} \setminus \widetilde{\Gamma}_{\operatorname{ac}}^{CF}, \\ & \operatorname{ac}_{TF}([\nu]^{\operatorname{int}}) = 0, & \nu \in \Gamma_{\operatorname{ac}}^{\operatorname{int}} \setminus \widetilde{\Gamma}_{\operatorname{ac}}^{TF}, \end{split}$$

$$\sum_{\substack{(\mathbf{a}, \mathbf{b}, m) = \nu \in \Gamma_{1a}^{\text{lin}}}} \text{ac}_{\mathbf{C}}([\nu]^{\text{int}}) = \sum_{i \in [\widetilde{k_C} + 1, m_C]} \delta_{\beta}^{\mathbf{C}}(i, m), \qquad m \in [1, 3],$$

$$\sum_{\substack{(\mathbf{a}, \mathbf{b}, m) = \nu \in \Gamma_{1a}^{\text{lin}}}} \text{ac}_{\mathbf{C}}([\nu]^{\text{int}}) = \sum_{i \in [2, t_T]} \delta_{\beta}^{\mathbf{C}}(i, m), \qquad m \in [1, 3],$$

$$\sum_{\substack{(\mathbf{a}, \mathbf{b}, m) = \nu \in \Gamma_{1a}^{\text{lin}}}} \text{ac}_{\mathbf{C}}([\nu]^{\text{int}}) = \sum_{i \in [2, t_T]} \delta_{\beta}^{\mathbf{C}}(i, m), \qquad m \in [1, 3],$$

$$\sum_{\substack{(\mathbf{a}, \mathbf{b}, m) = \nu \in \Gamma_{1a}^{\text{lin}}}} \text{ac}_{\mathbf{C}}([\nu]^{\text{int}}) = \sum_{k \in [1, k_C]} \delta_{\beta}^{\mathbf{C}}(k, m), \qquad m \in [1, 3],$$

$$\sum_{\substack{(\mathbf{a}, \mathbf{b}, m) = \nu \in \Gamma_{1a}^{\text{lin}}}} \text{ac}_{\mathbf{C}}([\nu]^{\text{int}}) = \sum_{k \in [1, k_C]} \delta_{\beta}^{\mathbf{F}}(k, m), \qquad m \in [1, 3],$$

$$\sum_{\substack{(\mathbf{a}, \mathbf{b}, m) = \nu \in \Gamma_{1a}^{\text{lin}}}} \text{ac}_{\mathbf{C}}([\nu]^{\text{int}}) = \sum_{c \in [\tilde{t}, -1, c_T]} \delta_{\beta}^{\mathbf{F}}(c, m), \qquad m \in [1, 3],$$

$$\sum_{\substack{(\mathbf{a}, \mathbf{b}, m) = \nu \in \Gamma_{1a}^{\text{lin}}}} \text{ac}_{\mathbf{C}}([\nu]^{\text{int}}) = \sum_{c \in [\tilde{t}, -1, c_T]} \delta_{\beta}^{\mathbf{F}}(c, m), \qquad m \in [1, 3],$$

$$\sum_{\substack{(\mathbf{a}, \mathbf{b}, m) = \nu \in \Gamma_{1a}^{\text{lin}}}} \text{ac}_{\mathbf{C}}([\nu]^{\text{int}}) = \sum_{c \in [\tilde{t}, -1, c_T]} \delta_{\beta}^{\mathbf{F}}(c, m), \qquad m \in [1, 3],$$

$$\sum_{\nu = (\mathbf{a}, \mathbf{b}, m) \in \Gamma_{2c}^{\text{lin}}}} \text{ac}_{\alpha}(i, [\nu]^{\text{int}}) = \sum_{c \in [\tilde{t}, -1, c_T]} \delta_{\beta}^{\mathbf{F}}(c, m), \qquad m \in [1, 3],$$

$$\sum_{\nu = (\mathbf{a}, \mathbf{b}, m) \in \Gamma_{2c}^{\text{lin}}}} \text{ac}_{\alpha}(i, [\nu]^{\text{int}}) = \sum_{c \in [\tilde{t}, -1, c_T]} \delta_{\beta}^{\mathbf{F}}(c, m), \qquad m \in [1, 3],$$

$$\sum_{\nu = (\mathbf{a}, \mathbf{b}, m) \in \Gamma_{2c}^{\text{lin}}}} \text{ac}_{\alpha}(i, [\nu]^{\text{int}}) = \alpha^{\mathbf{C}}(t)$$

$$\sum_{\nu = (\mathbf{a}, \mathbf{b}, m) \in \Gamma_{2c}^{\text{lin}}} \text{ac}_{\alpha}(i, [\nu]^{\text{int}}) = \alpha^{\mathbf{C}}(t)$$

$$\sum_{\nu = (\mathbf{a}, \mathbf{b}, m) \in \Gamma_{2c}^{\text{lin}}} \delta_{\alpha}^{\mathbf{E}}(i, [\nu]^{\text{int}}) = \alpha^{\mathbf{C}}(t)$$

$$\sum_{\nu = (\mathbf{a}, \mathbf{b}, m) \in \Gamma_{2c}^{\text{lin}}} \delta_{\alpha}^{\mathbf{E}}(i, [\nu]^{\text{int}}) = \alpha^{\mathbf{C}}(i)$$

$$\sum_{\nu = (\mathbf{a}, \mathbf{b}, m) \in \Gamma_{2c}^{\text{lin}}} [\mathbf{a}_{\alpha}(i, [\nu]^{\text{int}}) = \alpha^{\mathbf{C}}(i)$$

$$\sum_{\nu = (\mathbf{a}, \mathbf{b}, m) \in \Gamma_{2c}^{\text{lin}}} [\mathbf{a}_{\alpha}(i, [\nu]^{\text{int}}) = \alpha^{\mathbf{C}}(i)$$

$$\sum_{\nu = (\mathbf{a}, \mathbf{b}, m) \in \Gamma_{2c}^{\text{lin}}} [\mathbf{a}_{\alpha}(i, [\nu]^{\text{int}}) = \alpha^{\mathbf{C}}(i)$$

$$\sum_{\nu = (\mathbf{a}, \mathbf{b}, m) \in \Gamma_{2c}^{\text{lin}}} [\mathbf{a}_{\alpha}(i, [\nu]^{\text{int}}) = \alpha^{\mathbf{C}}(i)$$

$$\sum_{\nu = (\mathbf{a}, \mathbf{b}, m) \in \Gamma_{2c}^{\text{lin}}} [\mathbf{a}$$

$$\delta_{\text{ac}}^{\text{T}}(i, [\nu]^{\text{int}}) + \sum_{k \in I_{\text{lnk}} \cap [1, k_{\text{C}}]} \chi^{\text{T}}(i, k) \ge 2\delta_{\text{ac}}^{\text{T,lnk}}(i, [\nu]^{\text{int}}), \quad i \in [2, t_{\text{T}}],
\delta_{\text{ac}}^{\text{T,lnk}}(i, [\nu]^{\text{int}}) \ge \delta_{\text{ac}}^{\text{T}}(i, [\nu]^{\text{int}}) + \sum_{k \in I_{\text{lnk}} \cap [1, k_{\text{C}}]} \chi^{\text{T}}(i, k) - 1, \quad i \in [2, t_{\text{T}}],
\sum_{i \in [2, t_{\text{T}}]} \delta_{\text{ac}}^{\text{T,lnk}}(i, [\nu]^{\text{int}}) = \operatorname{ac}_{\text{T}}^{\text{lnk}}([\nu]^{\text{int}}), \quad \nu \in \Gamma_{\text{ac}}^{\text{lnk}} \cup \Gamma_{\text{ac,>}}^{\text{lnk}}, \tag{74}$$

$$\sum_{\nu=(\mathbf{a},\mathbf{b},m)\in\widetilde{\Gamma}_{\mathrm{ac}}^{\mathrm{F}}} m \cdot \delta_{\mathrm{ac}}^{\mathrm{F}}(i,[\nu]^{\mathrm{int}}) = \beta^{\mathrm{F}}(i),$$

$$\Delta_{\mathrm{ac}}^{\mathrm{F+}}(i) + \sum_{\nu=(\mathbf{a},\mathbf{b},m)\in\widetilde{\Gamma}_{\mathrm{ac}}^{\mathrm{F}}} [\mathbf{a}]^{\mathrm{int}} \delta_{\mathrm{ac}}^{\mathrm{F}}(i,[\nu]^{\mathrm{int}}) = \alpha^{\mathrm{F}}(i-1),$$

$$\Delta_{\mathrm{ac}}^{\mathrm{F-}}(i) + \sum_{\nu=(\mathbf{a},\mathbf{b},m)\in\widetilde{\Gamma}_{\mathrm{ac}}^{\mathrm{F}}} [\mathbf{b}]^{\mathrm{int}} \delta_{\mathrm{ac}}^{\mathrm{F}}(i,[\nu]^{\mathrm{int}}) = \alpha^{\mathrm{F}}(i),$$

$$\Delta_{\mathrm{ac}}^{\mathrm{F+}}(i) + \Delta_{\mathrm{ac}}^{\mathrm{F-}}(i) \leq 2|\Lambda^{\mathrm{ex}}|(1-e^{\mathrm{F}}(i)), \qquad i \in [2,t_{\mathrm{F}}],$$

$$\sum_{i \in [2,t_{\mathrm{F}}]} \delta_{\mathrm{ac}}^{\mathrm{F}}(i,[\nu]^{\mathrm{int}}) = \mathrm{ac}_{\mathrm{F}}([\nu]^{\mathrm{int}}), \qquad \nu \in \widetilde{\Gamma}_{\mathrm{ac}}^{\mathrm{F}}, \qquad (75)$$

$$\alpha^{\mathrm{T}}(i) + |\Lambda^{\mathrm{int}}|(1 - \chi^{\mathrm{T}}(i, k) + e^{\mathrm{T}}(i)) \ge \alpha^{\mathrm{CT}}(k),$$

$$\alpha^{\mathrm{CT}}(k) \ge \alpha^{\mathrm{T}}(i) - |\Lambda^{\mathrm{int}}|(1 - \chi^{\mathrm{T}}(i, k) + e^{\mathrm{T}}(i)), \qquad i \in [1, t_{\mathrm{T}}],$$

$$\sum_{\nu = (\mathbf{a}, \mathbf{b}, m) \in \widetilde{\Gamma}_{\mathrm{ac}}^{\mathrm{CT}}} m \cdot \delta_{\mathrm{ac}}^{\mathrm{CT}}(k, [\nu]^{\mathrm{int}}) = \beta^{\mathrm{CT}}(k),$$

$$\Delta_{\mathrm{ac}}^{\mathrm{CT+}}(k) + \sum_{\nu = (\mathbf{a}, \mathbf{b}, m) \in \widetilde{\Gamma}_{\mathrm{ac}}^{\mathrm{CT}}} [\mathbf{a}]^{\mathrm{int}} \delta_{\mathrm{ac}}^{\mathrm{CT}}(k, [\nu]^{\mathrm{int}}) = \alpha^{\mathrm{C}}(\mathrm{tail}(k)),$$

$$\Delta_{\mathrm{ac}}^{\mathrm{CT-}}(k) + \sum_{\nu = (\mathbf{a}, \mathbf{b}, m) \in \widetilde{\Gamma}_{\mathrm{ac}}^{\mathrm{CT}}} [\mathbf{b}]^{\mathrm{int}} \delta_{\mathrm{ac}}^{\mathrm{CT}}(k, [\nu]^{\mathrm{int}}) = \alpha^{\mathrm{CT}}(k),$$

$$\Delta_{\mathrm{ac}}^{\mathrm{CT-}}(k) + \Delta_{\mathrm{ac}}^{\mathrm{CT-}}(k) \le 2|\Lambda^{\mathrm{int}}|(1 - \delta_{\chi}^{\mathrm{T}}(k)), \qquad k \in [1, k_{\mathrm{C}}],$$

$$\sum_{k \in [1, k_{\mathrm{C}}]} \delta_{\mathrm{ac}}^{\mathrm{CT}}(k, [\nu]^{\mathrm{int}}) = \mathrm{ac}_{\mathrm{CT}}([\nu]^{\mathrm{int}}), \qquad \nu \in \widetilde{\Gamma}_{\mathrm{ac}}^{\mathrm{CT}}, \qquad (76)$$

$$\sum_{i \in I_{\text{lnk}} \cap [1, k_{\text{C}}]} \delta_{\text{ac}}^{\text{CT}}(i, [\nu]^{\text{int}}) = \operatorname{ac}_{\text{CT}}^{\text{lnk}}([\nu]^{\text{int}}), \qquad \nu \in \Gamma_{\text{ac}}^{\text{lnk}} \cup \Gamma_{\text{ac},>}^{\text{lnk}},$$
(77)

$$\begin{split} &\alpha^{\mathrm{T}}(i) + |\Lambda^{\mathrm{int}}|(1 - \chi^{\mathrm{T}}(i, k) + e^{\mathrm{T}}(i + 1)) \geq \alpha^{\mathrm{TC}}(k), \\ &\alpha^{\mathrm{TC}}(k) \geq \alpha^{\mathrm{T}}(i) - |\Lambda^{\mathrm{int}}|(1 - \chi^{\mathrm{T}}(i, k) + e^{\mathrm{T}}(i + 1)), \qquad i \in [1, t_{\mathrm{T}}], \\ &\sum_{\nu = (\mathbf{a}, \mathbf{b}, m) \in \widetilde{\Gamma}_{ac}^{\mathrm{TC}}} \\ &\sum_{k \in [1, k_{\mathrm{C}}]} \delta_{ac}^{\mathrm{TC}}(k, [\nu]^{\mathrm{int}}) = \alpha^{\mathrm{C}}(\mathrm{loead}(k)), \\ &\sum_{k \in [1, k_{\mathrm{C}}]} \delta_{ac}^{\mathrm{TC}}(k, [\nu]^{\mathrm{int}}) = \alpha^{\mathrm{C}}(\mathrm{loead}(k)), \\ &\sum_{k \in [1, k_{\mathrm{C}}]} \delta_{ac}^{\mathrm{TC}}(k, [\nu]^{\mathrm{int}}) = \alpha^{\mathrm{C}}(\mathrm{loead}(k)), \\ &\sum_{k \in [1, k_{\mathrm{C}}]} \delta_{ac}^{\mathrm{TC}}(k, [\nu]^{\mathrm{int}}) = \alpha^{\mathrm{C}}(\mathrm{loead}(k)), \\ &\sum_{k \in [1, k_{\mathrm{C}}]} \delta_{ac}^{\mathrm{TC}}(k, [\nu]^{\mathrm{int}}) = \alpha^{\mathrm{CT}}(c), \\ &\alpha^{\mathrm{CF}}(k) + |\Lambda^{\mathrm{int}}|(1 - \chi^{\mathrm{F}}(i, c) + e^{\mathrm{F}}(i)) \geq \alpha^{\mathrm{CF}}(c), \\ &\alpha^{\mathrm{CF}}(i) + |\Lambda^{\mathrm{int}}|(1 - \chi^{\mathrm{F}}(i, c) + e^{\mathrm{F}}(i)) \geq \alpha^{\mathrm{CF}}(c), \\ &\sum_{\nu = (\mathbf{a}, \mathbf{b}, m) \in \widetilde{\Gamma}_{ac}^{\mathrm{CF}}} \\ &\sum_{\nu = (\mathbf{a}, \mathbf{b}, m) \in \widetilde{\Gamma}_{ac}^{\mathrm{TF}}} \\ &\sum_{\nu = (\mathbf{a}, \mathbf{b},$$

$$\sum_{X \in \{C,T,F,CT,TC,CF,TF\}} (ac_X([\nu]^{int}) + ac_X([\overline{\nu}]^{int})) = ac^{int}([\nu]^{int}), \qquad \nu \in \Gamma_{ac,<}^{int},$$

$$\sum_{X \in \{C,T,F,CT,TC,CF,TF\}} ac_X([\nu]^{int}) = ac^{int}([\nu]^{int}), \qquad \nu \in \Gamma_{ac,=}^{int}, \qquad (82)$$

$$\sum_{X \in \{C, T, CT, TC\}} (ac_X^{lnk}([\nu]^{int}) + ac_X^{lnk}([\overline{\nu}]^{int})) = ac^{lnk}([\nu]^{int}), \qquad \nu \in \Gamma_{ac, <}^{lnk},$$

$$\sum_{X \in \{C, T, CT, TC\}} ac_X^{lnk}([\nu]^{int}) = ac^{lnk}([\nu]^{int}), \qquad \nu \in \Gamma_{ac, =}^{lnk},$$
(83)

$$\sum_{\nu \in \nu \in \Gamma_{\text{ac}}^{\text{lnk}}} \operatorname{ac}^{\text{lnk}}([\nu]^{\text{int}}) = n_{\text{lnk}}.$$
(84)

5.9 Descriptor for the Number of Chemical Symbols

We include constraints for computing the frequency of each chemical symbol in Λ_{dg} . Let $\mathrm{cs}(v)$ denote the chemical symbol of an interior-vertex v in a chemical graph $\mathbb C$ to be inferred; i.e., $\mathrm{cs}(v) = \mu = \mathrm{a} d \in \Lambda_{\mathrm{dg}}$ such that $\alpha(v) = \mathrm{a}$ and $\deg_{\langle \mathbb C \rangle}(v) = \deg_H(v) - \deg_{\mathbb C}^{\mathrm{hyd}}(v) = d$ in $\mathbb C = (H, \alpha, \beta)$.

constants:

- A set $\Lambda_{\rm dg}^{\rm int}$ of chemical symbols;
- Prepare a coding of each of the two sets Λ_{dg}^{int} and let $[\mu]^{int}$ denote the coded integer of an element $\mu \in \Lambda_{dg}^{int}$;
- Choose subsets $\widetilde{\Lambda}_{dg}^{C}$, $\widetilde{\Lambda}_{dg}^{T}$, $\widetilde{\Lambda}_{dg}^{F} \subseteq \Lambda_{dg}^{int}$: To compute the frequency of chemical symbols exactly, set $\widetilde{\Lambda}_{dg}^{C} := \widetilde{\Lambda}_{dg}^{T} := \widetilde{\Lambda}_{dg}^{F} := \Lambda_{dg}^{int}$;

variables:

- $\operatorname{ns}^{\operatorname{int}}([\mu]^{\operatorname{int}}) \in [0, \operatorname{n}^{\operatorname{int}}_{\operatorname{UB}}], \, \mu \in \Lambda^{\operatorname{int}}_{\operatorname{dg}}$: the number of interior-vertices v with $\operatorname{cs}(v) = \mu$;
- $\delta_{ns}^{X}(i, [\mu]^{int}) \in [0, 1], i \in [1, t_X], \mu \in \Lambda_{dg}^{int}, X \in \{C, T, F\};$

$$\sum_{\mu \in \widetilde{\Lambda}_{dg}^{X} \cup \{\epsilon\}} \delta_{ns}^{X}(i, [\mu]^{int}) = 1, \quad \sum_{\mu = ad \in \widetilde{\Lambda}_{dg}^{X}} [a]^{int} \cdot \delta_{ns}^{X}(i, [\mu]^{int}) = \alpha^{X}(i),$$

$$\sum_{\mu = ad \in \widetilde{\Lambda}_{dg}^{X}} d \cdot \delta_{ns}^{X}(i, [\mu]^{int}) = \deg^{X}(i),$$

$$i \in [1, t_{X}], X \in \{C, T, F\}, \tag{85}$$

$$\sum_{i \in [1, t_{\rm C}]} \delta_{\rm ns}^{\rm C}(i, [\mu]^{\rm int}) + \sum_{i \in [1, t_{\rm T}]} \delta_{\rm ns}^{\rm T}(i, [\mu]^{\rm int}) + \sum_{i \in [1, t_{\rm F}]} \delta_{\rm ns}^{\rm F}(i, [\mu]^{\rm int}) = \text{ns}^{\rm int}([\mu]^{\rm int}), \qquad \mu \in \Lambda_{\rm dg}^{\rm int}.$$
 (86)

Descriptor for the Number of Edge-configurations

We include constraints to compute the frequency of each edge-configuration in an inferred chemical graph \mathbb{C} .

constants:

- A set Γ^{int} of edge-configurations $\gamma = (\mu, \mu', m)$ with $\mu \leq \mu'$, where we let $\overline{\gamma}$ denote (μ', μ, m) ;
- Let $\Gamma^{\text{int}}_{<} = \{(\mu, \mu', m) \in \Gamma^{\text{int}} \mid \mu < \mu'\}, \ \Gamma^{\text{int}}_{=} = \{(\mu, \mu', m) \in \Gamma^{\text{int}} \mid \mu = \mu'\} \ \text{and} \ \Gamma^{\text{int}}_{>} = \{(\mu', \mu, m) \mid (\mu, \mu', m) \in \Gamma^{\text{int}}_{<}\};$
- Prepare a coding of the set $\Gamma^{\rm int} \cup \Gamma^{\rm int}_{>}$ and let $[\gamma]^{\rm int}$ denote the coded integer of an element γ in $\Gamma^{\mathrm{int}} \cup \Gamma^{\mathrm{int}}$:
- Choose subsets $\widetilde{\Gamma}_{ec}^{C}$, $\widetilde{\Gamma}_{ec}^{T}$, $\widetilde{\Gamma}_{ec}^{CT}$, $\widetilde{\Gamma}_{ec}^{TC}$, $\widetilde{\Gamma}_{ec}^{F}$, $\widetilde{\Gamma}_{ec}^{CF}$, $\widetilde{\Gamma}_{ec}^{CF}$, $\widetilde{\Gamma}_{ec}^{TF} \subseteq \Gamma^{int} \cup \Gamma_{>}^{int}$; To compute the frequency of edge-configurations exactly, set $\widetilde{\Gamma}_{ec}^{C} := \widetilde{\Gamma}_{ec}^{TC} := \widetilde{\Gamma}_{ec}^{TC} := \widetilde{\Gamma}_{ec}^{TC} := \widetilde{\Gamma}_{ec}^{TF} := \widetilde{\Gamma}_{ec}^{TF} := \Gamma^{int} \cup \Gamma_{>}^{int}$;
- $\operatorname{ec_{LB}^{int}}(\gamma), \operatorname{ec_{UB}^{int}}(\gamma) \in [0, 2n_{UB}^{int}], \gamma = (\mu, \mu', m) \in \Gamma^{int}$: lower and upper bounds on the number of interior-edges e = uv with $\operatorname{cs}(u) = \mu, \operatorname{cs}(v) = \mu'$ and $\beta(e) = m$;
- A subset $\Gamma^{\text{lnk}} \subseteq \Gamma^{\text{int}}$ for edge-configurations of link-edges. Let $\Gamma^{\text{lnk}}_{<} = \Gamma^{\text{lnk}} \cap \Gamma^{\text{int}}_{<}$, $\Gamma^{\text{lnk}}_{=} = \Gamma^{\text{lnk}} \cap \Gamma^{\text{int}}_{=}$ and $\Gamma^{\text{int}}_{>} = \{(\mathtt{b},\mathtt{a},m) \mid (\mathtt{a},\mathtt{b},m) \in \Gamma^{\text{lnk}}_{<}\};$
- $\operatorname{ec_{LB}^{lnk}}(\gamma)$, $\operatorname{ec_{UB}^{lnk}}(\gamma) \in [0, 2n_{UB}^{int}]$, $\gamma = (\mu, \mu', m) \in \Gamma^{int}$: lower and upper bounds on the number of link-edges e = uv with $\operatorname{cs}(u) = \mu$, $\operatorname{cs}(v) = \mu'$ and $\beta(e) = m$;
- $\operatorname{ns_{LB}^{cnt}([\mu]), ns_{UB}^{cnt}([\mu])} \in [0, 2], \mu \in \Lambda_{dg}^{int}$: lower and upper bounds on the number of connecting-vertices v with $\operatorname{cs}(v) = \mu$; Define

```
\begin{split} &\Gamma^{\text{cnt}}_{<} := \{ (\mu, \mu', 1) \in \gamma \in \Gamma^{\text{lnk}}_{>} \mid \mu, \mu' \in \Lambda^{\text{int}}_{\text{dg}}, \text{ns}^{\text{cnt}}_{\text{LB}}(\mu) \leq 1 \leq \text{ns}_{\text{UB}}(\mu), \text{ns}^{\text{cnt}}_{\text{LB}}(\mu') \leq 1 \leq \text{ns}_{\text{UB}}(\mu') \}; \\ &\Gamma^{\text{cnt}}_{>} := \{ (\mu, \mu', 1) \in \gamma \in \Gamma^{\text{lnk}}_{>} \mid \mu, \mu' \in \Lambda^{\text{int}}_{\text{dg}}, \text{ns}^{\text{cnt}}_{\text{LB}}(\mu) \leq 1 \leq \text{ns}_{\text{UB}}(\mu), \text{ns}^{\text{cnt}}_{\text{LB}}(\mu') \leq 1 \leq \text{ns}_{\text{UB}}(\mu') \}; \\ &\Gamma^{\text{cnt}}_{=} := \{ (\mu, \mu, 1) \in \gamma \in \Gamma^{\text{lnk}}_{=} \mid \mu \in \Lambda^{\text{int}}_{\text{dg}}, \text{ns}^{\text{cnt}}_{\text{UB}}(\mu) = 2 \}; \end{split}
```

$$\Gamma_{>}^{\mathrm{cnt}} := \{ (\mu, \mu', 1) \in \gamma \in \Gamma_{>}^{\mathrm{lnk}} \mid \mu, \mu' \in \Lambda_{\mathrm{dg}}^{\mathrm{int}}, \mathrm{ns}_{\mathrm{LB}}^{\mathrm{cnt}}(\mu) \leq 1 \leq \mathrm{ns}_{\mathrm{UB}}(\mu), \mathrm{ns}_{\mathrm{LB}}^{\mathrm{cnt}}(\mu') \leq 1 \leq \mathrm{ns}_{\mathrm{UB}}(\mu') \}$$

variables:

- $ec^{int}([\gamma]^{int}) \in [ec^{int}_{LR}(\gamma), ec^{int}_{LR}(\gamma)], \gamma \in \Gamma^{int}$: the number of interior-edges with edge-configuration γ ;
- $\operatorname{ec}_{\mathcal{C}}([\gamma]^{\operatorname{int}}) \in [0, m_{\mathcal{C}}], \gamma \in \widetilde{\Gamma}_{\operatorname{ec}}^{\mathcal{C}}, \operatorname{ec}_{\mathcal{T}}([\gamma]^{\operatorname{int}}) \in [0, t_{\mathcal{T}}], \gamma \in \widetilde{\Gamma}_{\operatorname{ec}}^{\mathcal{T}}, \operatorname{ec}_{\mathcal{F}}([\gamma]^{\operatorname{int}}) \in [0, t_{\mathcal{F}}], \gamma \in \widetilde{\Gamma}_{\operatorname{ec}}^{\mathcal{F}}$: the number of edges $e^{\mathcal{C}} \in E_{\mathcal{C}}$ (resp., edges $e^{\mathcal{T}} \in E_{\mathcal{T}}$ and edges $e^{\mathcal{F}} \in E_{\mathcal{F}}$) with edge-configuration γ ;
- $\operatorname{ec}_{\operatorname{CT}}([\gamma]^{\operatorname{int}}) \in [0, \min\{k_{\operatorname{C}}, t_{\operatorname{T}}\}], \gamma \in \widetilde{\Gamma}_{\operatorname{ec}}^{\operatorname{CT}}, \operatorname{ec}_{\operatorname{TC}}([\gamma]^{\operatorname{int}}) \in [0, \min\{k_{\operatorname{C}}, t_{\operatorname{T}}\}], \gamma \in \widetilde{\Gamma}_{\operatorname{ec}}^{\operatorname{CT}}, \operatorname{ec}_{\operatorname{CF}}([\gamma]^{\operatorname{int}}) \in [0, t_{\operatorname{C}}], \gamma \in \widetilde{\Gamma}_{\operatorname{ec}}^{\operatorname{TF}}, \operatorname{ec}_{\operatorname{TF}}([\gamma]^{\operatorname{int}}) \in [0, t_{\operatorname{T}}], \gamma \in \widetilde{\Gamma}_{\operatorname{ec}}^{\operatorname{TF}}: \text{ the number of edges } e^{\operatorname{CT}} \in E_{\operatorname{CT}} \text{ (resp., edges } e^{\operatorname{TC}} \in E_{\operatorname{TC}} \text{ and edges } e^{\operatorname{CF}} \in E_{\operatorname{CF}} \text{ and } e^{\operatorname{TF}} \in E_{\operatorname{TF}}) \text{ with edge-configuration } \gamma;$
- $\delta_{\mathrm{ec}}^{\mathrm{C}}(i, [\gamma]^{\mathrm{int}}) \in [0, 1], i \in [\widetilde{k}_{\mathrm{C}} + 1, m_{\mathrm{C}}] = I_{(\geq 1)} \cup I_{(0/1)} \cup I_{(=1)}, \gamma \in \widetilde{\Gamma}_{\mathrm{ec}}^{\mathrm{C}}, \ \delta_{\mathrm{ec}}^{\mathrm{T}}(i, [\gamma]^{\mathrm{int}}) \in [0, 1], i \in [2, t_{\mathrm{F}}], \gamma \in \widetilde{\Gamma}_{\mathrm{ec}}^{\mathrm{F}}: \ \delta_{\mathrm{ec}}^{\mathrm{X}}(i, [\gamma]^{\mathrm{t}}) = 1 \Leftrightarrow \mathrm{edge} \ e^{\mathrm{X}}_{i} \ \mathrm{has} \ \mathrm{edge}$ configuration γ ;
- $\delta_{\text{ec,C}}^{\text{CT}}(k, [\gamma]^{\text{int}}), \delta_{\text{ec,C}}^{\text{TC}}(k, [\gamma]^{\text{int}}) \in [0, 1], k \in [1, k_{\text{C}}] = I_{(\geq 2)} \cup I_{(\geq 1)}, \gamma \in \widetilde{\Gamma}_{\text{ec}}^{\text{CT}}: \delta_{\text{ec,C}}^{\text{CT}}(k, [\gamma]^{\text{int}}) = 1$ (resp., $\delta_{\text{ec,C}}^{\text{TC}}(k, [\gamma]^{\text{int}}) = 1$) \Leftrightarrow edge $e^{\text{CT}}_{\text{tail}(k), j}$ (resp., $e^{\text{TC}}_{\text{head}(k), j}$) for some $j \in [1, t_{\text{T}}]$ has edgeconfiguration γ ;
- $\delta_{\mathrm{ec,C}}^{\mathrm{CF}}(c,[\gamma]^{\mathrm{int}}) \in [0,1], c \in [1,\widetilde{t_{\mathrm{C}}}], \gamma \in \widetilde{\Gamma}_{\mathrm{ec}}^{\mathrm{CF}}: \delta_{\mathrm{ec,C}}^{\mathrm{CF}}(c,[\gamma]^{\mathrm{int}}) = 1 \Leftrightarrow \mathrm{edge} \ e^{\mathrm{CF}}_{c,i} \ \mathrm{for \ some} \ i \in [1,t_{\mathrm{F}}] \ \mathrm{has} \ \mathrm{edge\text{-}configuration} \ \gamma;$

- $\delta_{\mathrm{ec,T}}^{\mathrm{TF}}(i,[\gamma]^{\mathrm{int}}) \in [0,1], i \in [1,t_{\mathrm{T}}], \gamma \in \widetilde{\Gamma}_{\mathrm{ec}}^{\mathrm{TF}}: \delta_{\mathrm{ec,T}}^{\mathrm{TF}}(i,[\gamma]^{\mathrm{int}}) = 1 \Leftrightarrow \mathrm{edge} \ e^{\mathrm{TF}}_{i,j} \text{ for some } j \in [1,t_{\mathrm{F}}] \text{ has edge-configuration } \gamma;$
- $\deg^{\operatorname{CT}}_{\operatorname{T}}(k)$, $\deg^{\operatorname{TC}}_{\operatorname{T}}(k) \in [0,4]$, $k \in [1,k_{\operatorname{C}}]$: $\deg_{\langle \mathbb{C} \rangle}(v)$ of an end-vertex $v \in V_{\operatorname{T}}$ of the edge $(v^{\operatorname{C}}_{\operatorname{tail}(k)},v) \in E_{\operatorname{CT}}$ (resp., $(v,v^{\operatorname{C}}_{\operatorname{head}(k)}) \in E_{\operatorname{TC}}$) if any;
- $\deg_{\mathcal{F}}^{\mathcal{CF}}(c) \in [0,4], c \in [1,\widetilde{t_{\mathcal{C}}}]: \deg_{\langle \mathbb{C} \rangle}(v)$ of an end-vertex $v \in V_{\mathcal{F}}$ of the edge $(v^{\mathcal{C}}_{c},v) \in E_{\mathcal{CF}}$ if any;
- $\deg^{\mathrm{TF}}_{\mathrm{F}}(i) \in [0,4], i \in [1,t_{\mathrm{T}}]: \deg_{\langle \mathbb{C} \rangle}(v)$ of an end-vertex $v \in V_{\mathrm{F}}$ of the edge $(v^{\mathrm{T}}_{i},v) \in E_{\mathrm{TF}}$ if any;
- $\Delta_{\text{ec}}^{\text{C+}}(i), \Delta_{\text{ec}}^{\text{C-}}(i), \in [0, 4], i \in [\widetilde{k}_{\text{C}} + 1, m_{\text{C}}], \ \Delta_{\text{ec}}^{\text{T+}}(i), \Delta_{\text{ec}}^{\text{T-}}(i) \in [0, 4], i \in [2, t_{\text{T}}], \ \Delta_{\text{ec}}^{\text{F+}}(i), \Delta_{\text{ec}}^{\text{F-}}(i) \in [0, 4], i \in [2, t_{\text{F}}]; \ \Delta_{\text{ec}}^{\text{X+}}(i) = \Delta_{\text{ec}}^{\text{X-}}(i) = 0 \text{ (resp., } \Delta_{\text{ec}}^{\text{X+}}(i) = \deg_{\langle \mathbb{C} \rangle}(u) \text{ and } \Delta_{\text{ec}}^{\text{X-}}(i) = \deg_{\langle \mathbb{C} \rangle}(v)) \Leftrightarrow \text{edge } e^{X}_{i} = (u, v) \in E_{X} \text{ is used in } \langle \mathbb{C} \rangle \text{ (resp., } e^{X}_{i} \notin E(\langle \mathbb{C} \rangle));$
- $\Delta_{\mathrm{ec}}^{\mathrm{CT+}}(k)$, $\Delta_{\mathrm{ec}}^{\mathrm{CT-}}(k) \in [0,4]$, $k \in [1,k_{\mathrm{C}}] = I_{(\geq 2)} \cup I_{(\geq 1)}$: $\Delta_{\mathrm{ec}}^{\mathrm{CT+}}(k) = \Delta_{\mathrm{ec}}^{\mathrm{CT-}}(k) = 0$ (resp., $\Delta_{\mathrm{ec}}^{\mathrm{CT+}}(k) = \deg_{\langle \mathbb{C} \rangle}(u)$ and $\Delta_{\mathrm{ec}}^{\mathrm{CT-}}(k) = \deg_{\langle \mathbb{C} \rangle}(v)$) \Leftrightarrow edge $e^{\mathrm{CT}}_{\mathrm{tail}(k),j} = (u,v) \in E_{\mathrm{CT}}$ for some $j \in [1,t_{\mathrm{T}}]$ is used in $\langle \mathbb{C} \rangle$ (resp., otherwise);
- $\Delta_{\text{ec}}^{\text{TC+}}(k), \Delta_{\text{ec}}^{\text{TC-}}(k) \in [0, 4], k \in [1, k_{\text{C}}] = I_{(>2)} \cup I_{(>1)}$: Analogous with $\Delta_{\text{ec}}^{\text{CT+}}(k)$ and $\Delta_{\text{ec}}^{\text{CT-}}(k)$;
- $\Delta_{\mathrm{ac}}^{\mathrm{CF+}}(c)$, $\Delta_{\mathrm{ec}}^{\mathrm{CF-}}(c) \in [0,4]$, $c \in [1,\widetilde{t_{\mathrm{C}}}]$: $\Delta_{\mathrm{ec}}^{\mathrm{CF+}}(c) = \Delta_{\mathrm{ec}}^{\mathrm{CF-}}(c) = 0$ (resp., $\Delta_{\mathrm{ec}}^{\mathrm{CF+}}(c) = \deg_{\langle \mathbb{C} \rangle}(u)$ and $\Delta_{\mathrm{ec}}^{\mathrm{CF-}}(c) = \deg_{\langle \mathbb{C} \rangle}(v)$) \Leftrightarrow edge $e^{\mathrm{CF}}_{c,j} = (u,v) \in E_{\mathrm{CF}}$ for some $j \in [1,t_{\mathrm{F}}]$ is used in $\langle \mathbb{C} \rangle$ (resp., otherwise);
- $\Delta_{\text{ec}}^{\text{TF+}}(i)$, $\Delta_{\text{ec}}^{\text{TF-}}(i) \in [0, 4]$, $i \in [1, t_{\text{T}}]$: Analogous with $\Delta_{\text{ec}}^{\text{CF+}}(c)$ and $\Delta_{\text{ec}}^{\text{CF-}}(c)$;
- $-\ ec^{lnk}([\gamma]^{int}) \in [ec^{lnk}_{LB}(\gamma), ec^{lnk}_{UB}(\gamma)], \gamma \in \Gamma^{lnk} \text{: the number of link-edges with edge-configuration } \gamma;$
- $\operatorname{ec^{lnk}_C}([\gamma]^{int}), \operatorname{ec^{lnk}_T}([\gamma]^{int}) \in [0, m_{\mathrm{C}}], \gamma \in \Gamma^{lnk}$: the number of link-edges $e^{\mathrm{C}} \in E_{\mathrm{C}}$ (resp., edges $e^{\mathrm{T}} \in E_{\mathrm{T}}$) with edge-configuration γ ;
- $\operatorname{ec^{lnk}_{CT}}([\gamma]^{int}) \in [0, \min\{k_{\mathrm{C}}, t_{\mathrm{T}}\}], \operatorname{ec^{lnk}_{TC}}([\gamma]^{int}) \in [0, \min\{k_{\mathrm{C}}, t_{\mathrm{T}}\}], \gamma \in \Gamma^{lnk}$: the number of link-edges $e^{\mathrm{CT}} \in E_{\mathrm{CT}}$ (resp., link-edges $e^{\mathrm{TC}} \in E_{\mathrm{TC}}$) with adjacency-configuration γ ;
- $\delta_{\text{ec}}^{\text{T,lnk}}(i, [\gamma]^{\text{int}}) \in [0, 1], i \in [2, t_{\text{T}}], \gamma \in \Gamma^{\text{lnk}}: \delta_{\text{ec}}^{\text{T,lnk}}(i, [\gamma]^{\text{int}}) = 1 \Leftrightarrow \text{edge } e^{\text{T}}_{i} \in E_{\text{T}} \text{ is a link-edge with edge-configuration } \gamma;$
- $\delta^{\mathrm{cnt}}([\gamma]^{\mathrm{int}}) \in [0,1], \gamma \in \Gamma^{\mathrm{cnt}}_{<} \cup \Gamma^{\mathrm{cnt}}_{=} \cup \Gamma^{\mathrm{cnt}}_{>}$: $\delta^{\mathrm{cnt}}([\gamma]^{\mathrm{int}}) = 1 \Leftrightarrow \mathrm{ec}(e) = \gamma$ for the link-edge e joining connecting-vertices;

$$\begin{split} ec_C([\gamma]^{int}) &= 0, & \gamma \in \Gamma^{int} \setminus \widetilde{\Gamma}_{ec}^C, \\ ec_T([\gamma]^{int}) &= 0, & \gamma \in \Gamma^{int} \setminus \widetilde{\Gamma}_{ec}^T, \\ ec_F([\gamma]^{int}) &= 0, & \gamma \in \Gamma^{int} \setminus \widetilde{\Gamma}_{ec}^F, \\ ec_{CT}([\gamma]^{int}) &= 0, & \gamma \in \Gamma^{int} \setminus \widetilde{\Gamma}_{ec}^{CT}, \\ ec_{TC}([\gamma]^{int}) &= 0, & \gamma \in \Gamma^{int} \setminus \widetilde{\Gamma}_{ec}^{TC}, \\ ec_{CF}([\gamma]^{int}) &= 0, & \gamma \in \Gamma^{int} \setminus \widetilde{\Gamma}_{ec}^{CF}, \\ ec_{TF}([\gamma]^{int}) &= 0, & \gamma \in \Gamma^{int} \setminus \widetilde{\Gamma}_{ec}^{TF}, \\ ec_{TF}([\gamma]^{int}) &= 0, & \gamma \in \Gamma^{int} \setminus \widetilde{\Gamma}_{ec}^{TF}, \\ ec_{TF}([\gamma]^{int}) &= 0, & \gamma \in \Gamma^{int} \setminus \widetilde{\Gamma}_{ec}^{TF}, \\ ec_{TF}([\gamma]^{int}) &= 0, & \gamma \in \Gamma^{int} \setminus \widetilde{\Gamma}_{ec}^{TF}, \\ ec_{TF}([\gamma]^{int}) &= 0, & \gamma \in \Gamma^{int} \setminus \widetilde{\Gamma}_{ec}^{TF}, \\ ec_{TF}([\gamma]^{int}) &= 0, & \gamma \in \Gamma^{int} \setminus \widetilde{\Gamma}_{ec}^{TF}, \\ ec_{TF}([\gamma]^{int}) &= 0, & \gamma \in \Gamma^{int} \setminus \widetilde{\Gamma}_{ec}^{TF}, \\ ec_{TF}([\gamma]^{int}) &= 0, & \gamma \in \Gamma^{int} \setminus \widetilde{\Gamma}_{ec}^{TF}, \\ ec_{TF}([\gamma]^{int}) &= 0, & \gamma \in \Gamma^{int} \setminus \widetilde{\Gamma}_{ec}^{TF}, \\ ec_{TF}([\gamma]^{int}) &= 0, & \gamma \in \Gamma^{int} \setminus \widetilde{\Gamma}_{ec}^{TF}, \\ ec_{TF}([\gamma]^{int}) &= 0, & \gamma \in \Gamma^{int} \setminus \widetilde{\Gamma}_{ec}^{TF}, \\ ec_{TF}([\gamma]^{int}) &= 0, & \gamma \in \Gamma^{int} \setminus \widetilde{\Gamma}_{ec}^{TF}, \\ ec_{TF}([\gamma]^{int}) &= 0, & \gamma \in \Gamma^{int} \setminus \widetilde{\Gamma}_{ec}^{TF}, \\ ec_{TF}([\gamma]^{int}) &= 0, & \gamma \in \Gamma^{int} \setminus \widetilde{\Gamma}_{ec}^{TF}, \\ ec_{TF}([\gamma]^{int}) &= 0, & \gamma \in \Gamma^{int} \setminus \widetilde{\Gamma}_{ec}^{TF}, \\ ec_{TF}([\gamma]^{int}) &= 0, & \gamma \in \Gamma^{int} \setminus \widetilde{\Gamma}_{ec}^{TF}, \\ ec_{TF}([\gamma]^{int}) &= 0, & \gamma \in \Gamma^{int} \setminus \widetilde{\Gamma}_{ec}^{TF}, \\ ec_{TF}([\gamma]^{int}) &= 0, & \gamma \in \Gamma^{int} \setminus \widetilde{\Gamma}_{ec}^{TF}, \\ ec_{TF}([\gamma]^{int}) &= 0, & \gamma \in \Gamma^{int} \setminus \widetilde{\Gamma}_{ec}^{TF}, \\ ec_{TF}([\gamma]^{int}) &= 0, & \gamma \in \Gamma^{int} \setminus \widetilde{\Gamma}_{ec}^{TF}, \\ ec_{TF}([\gamma]^{int}) &= 0, & \gamma \in \Gamma^{int} \setminus \widetilde{\Gamma}_{ec}^{TF}, \\ ec_{TF}([\gamma]^{int}) &= 0, & \gamma \in \Gamma^{int} \setminus \widetilde{\Gamma}_{ec}^{TF}, \\ ec_{TF}([\gamma]^{int}) &= 0, & \gamma \in \Gamma^{int} \setminus \widetilde{\Gamma}_{ec}^{TF}, \\ ec_{TF}([\gamma]^{int}) &= 0, & \gamma \in \Gamma^{int} \setminus \widetilde{\Gamma}_{ec}^{TF}, \\ ec_{TF}([\gamma]^{int}) &= 0, & \gamma \in \Gamma^{int} \setminus \widetilde{\Gamma}_{ec}^{TF}, \\ ec_{TF}([\gamma]^{int}) &= 0, & \gamma \in \Gamma^{int} \setminus \widetilde{\Gamma}_{ec}^{TF}, \\ ec_{TF}([\gamma]^{int}) &= 0, & \gamma \in \Gamma^{int} \setminus \widetilde{\Gamma}_{ec}^{TF}, \\ ec_{TF}([\gamma]^{int}) &= 0, & \gamma \in \Gamma^{int} \setminus \widetilde{\Gamma}_{ec}^{TF}, \\ ec_{TF}([\gamma]^{int}) &= 0, & \gamma \in \Gamma^{int} \setminus \widetilde{\Gamma}_{ec}^{TF$$

$$\sum_{(\mu,\mu',m)=\gamma\in\Gamma^{\text{int}}} \operatorname{ec}_{\mathcal{C}}([\gamma]^{\text{int}}) = \sum_{i\in[\widehat{k_{\mathcal{C}}}+1,m_{\mathcal{C}}]} \delta^{\mathcal{C}}_{\beta}(i,m), \qquad m \in [1,3],$$

$$\sum_{(\mu,\mu',m)=\gamma\in\Gamma^{\text{int}}} \operatorname{ec}_{\mathcal{C}}([\gamma]^{\text{int}}) = \sum_{i\in[2,t_{\Gamma}]} \delta^{\mathcal{C}}_{\beta}(i,m), \qquad m \in [1,3],$$

$$\sum_{(\mu,\mu',m)=\gamma\in\Gamma^{\text{int}}} \operatorname{ec}_{\mathcal{C}}([\gamma]^{\text{int}}) = \sum_{i\in[2,t_{\Gamma}]} \delta^{\mathcal{F}}_{\beta}(i,m), \qquad m \in [1,3],$$

$$\sum_{(\mu,\mu',m)=\gamma\in\Gamma^{\text{int}}} \operatorname{ec}_{\mathcal{C}}([\gamma]^{\text{int}}) = \sum_{k\in[1,k_{\mathcal{C}}]} \delta^{\mathcal{C}}_{\beta}(k,m), \qquad m \in [1,3],$$

$$\sum_{(\mu,\mu',m)=\gamma\in\Gamma^{\text{int}}} \operatorname{ec}_{\mathcal{C}}([\gamma]^{\text{int}}) = \sum_{c\in[1,t_{\mathcal{C}}]} \delta^{*\mathcal{F}}_{\beta}(c,m), \qquad m \in [1,3],$$

$$\sum_{(\mu,\mu',m)=\gamma\in\Gamma^{\text{int}}} \operatorname{ec}_{\mathcal{C}}([\gamma]^{\text{int}}) = \sum_{c\in[1,t_{\mathcal{C}}]} \delta^{*\mathcal{F}}_{\beta}(c,m), \qquad m \in [1,3],$$

$$\sum_{(\mu,\mu',m)=\gamma\in\Gamma^{\text{int}}} \operatorname{ec}_{\mathcal{C}}([\gamma]^{\text{int}}) = \sum_{c\in[1,t_{\mathcal{C}}]} \delta^{*\mathcal{F}}_{\beta}(c,m), \qquad m \in [1,3],$$

$$\sum_{(\mu,\mu',m)=\gamma\in\Gamma^{\text{int}}} \operatorname{ec}_{\mathcal{C}}([\gamma]^{\text{int}}) = \sum_{c\in[1,t_{\mathcal{C}}]} \delta^{*\mathcal{F}}_{\beta}(c,m), \qquad m \in [1,3],$$

$$\sum_{(\mu,\mu',m)=\gamma\in\Gamma^{\text{int}}} \operatorname{ec}_{\mathcal{C}}([\gamma]^{\text{int}}) = \sum_{c\in[1,t_{\mathcal{C}}]} \delta^{*\mathcal{F}}_{\beta}(c,m), \qquad m \in [1,3],$$

$$\sum_{(\mu,\mu',m)=\gamma\in\Gamma^{\text{int}}} \operatorname{ec}_{\mathcal{C}}([\gamma]^{\text{int}}) = \sum_{c\in[1,t_{\mathcal{C}}]} \delta^{*\mathcal{F}}_{\beta}(c,m), \qquad m \in [1,3],$$

$$\sum_{(\mu,\mu',m)=\gamma\in\Gamma^{\text{int}}} \operatorname{ec}_{\mathcal{C}}([\gamma]^{\text{int}}) = \sum_{c\in[1,t_{\mathcal{C}}]} \delta^{*\mathcal{F}}_{\beta}(c,m), \qquad m \in [1,3],$$

$$\sum_{(\mu,\mu',m)=\gamma\in\Gamma^{\text{int}}} \operatorname{ec}_{\mathcal{C}}([\gamma]^{\text{int}}) = \sum_{c\in[1,t_{\mathcal{C}}]} \delta^{*\mathcal{F}}_{\beta}(c,m), \qquad m \in [1,3],$$

$$\sum_{(\mu,\mu',m)=\gamma\in\Gamma^{\text{int}}} \operatorname{ec}_{\mathcal{C}}([\gamma]^{\text{int}}) = \sum_{c\in[1,t_{\mathcal{C}}]} \delta^{*\mathcal{F}}_{\beta}(c,m), \qquad m \in [1,3],$$

$$\sum_{(\mu,\mu',m)=\gamma\in\Gamma^{\text{int}}} \operatorname{ec}_{\mathcal{C}}([\gamma]^{\text{int}}) = \sum_{c\in[1,t_{\mathcal{C}}]} \delta^{*\mathcal{F}}_{\beta}(c,m), \qquad m \in [1,3],$$

$$\sum_{(\mu,\mu',m)=\gamma\in\Gamma^{\text{int}}} \operatorname{ec}_{\mathcal{C}}([\gamma]^{\text{int}}) = \sum_{c\in[1,t_{\mathcal{C}}]} \delta^{*\mathcal{F}}_{\beta}(c,m), \qquad m \in [1,3],$$

$$\sum_{(\mu,\mu',m)=\gamma\in\Gamma^{\text{int}}} \operatorname{ec}_{\mathcal{C}}([\gamma]^{\text{int}}) = \sum_{c\in[1,t_{\mathcal{C}}]} \delta^{*\mathcal{F}}_{\beta}(c,m), \qquad m \in [1,3],$$

$$\sum_{(\mu,\mu',m)=\gamma\in\Gamma^{\text{int}}} \operatorname{ec}_{\mathcal{C}}([\gamma]^{\text{int}}) = \sum_{(\mu,\mu',m)=\gamma\in\Gamma^{\text{int}}} \delta^{*\mathcal{F}}_{\beta}(c,m), \qquad m \in [1,3],$$

$$\sum_{(\mu,\mu',m)=\gamma\in\Gamma^{\text{int}}} \operatorname{ec}_{\mathcal{C}}([\gamma]^{\text{int}}) = \sum_{(\mu,\mu',m)=\gamma\in\Gamma^{\text{int}}} \delta^{*\mathcal{F}}_{\beta}(c,m), \qquad m \in [1,3],$$

$$\sum_{(\mu,\mu',m)=\gamma\in\Gamma^{\text{int}}} \operatorname{ec}_{\mathcal{C}}([\gamma]^{\text{int}}) = \sum_{(\mu,\mu',m)$$

$$\sum_{\gamma=(ad,bd',m)\in\widetilde{\Gamma}_{ec}^{C}} [(a,b,m)]^{int} \cdot \delta_{ec}^{C}(i,[\gamma]^{int}) = \sum_{\nu\in\widetilde{\Gamma}_{ac}^{C}} [\nu]^{int} \cdot \delta_{ac}^{C}(i,[\nu]^{int}),$$

$$\Delta_{ec}^{C+}(i) + \sum_{\gamma=(ad,\mu',m)\in\widetilde{\Gamma}_{ec}^{C}} d \cdot \delta_{ec}^{C}(i,[\gamma]^{int}) = \deg^{C}(\operatorname{tail}(i)),$$

$$\Delta_{ec}^{C-}(i) + \sum_{\gamma=(\mu,bd,m)\in\widetilde{\Gamma}_{ec}^{C}} d \cdot \delta_{ec}^{C}(i,[\gamma]^{int}) = \deg^{C}(\operatorname{head}(i)),$$

$$\Delta_{ec}^{C+}(i) + \Delta_{ec}^{C-}(i) \leq 8(1 - e^{C}(i)), \qquad i \in [\widetilde{k_{C}} + 1, m_{C}],$$

$$\sum_{i \in [\widetilde{k_{C}} + 1, m_{C}]} \delta_{ec}^{C}(i,[\gamma]^{int}) = \operatorname{ec}_{C}([\gamma]^{int}), \qquad \gamma \in \widetilde{\Gamma}_{ec}^{C}, \qquad (89)$$

$$\sum_{i \in I_{\text{lnk}} \cap [\widetilde{k_{\text{C}}} + 1, m_{\text{C}}]} \delta_{\text{ec}}^{\text{C}}(i, [\gamma]^{\text{int}}) = \text{ec}_{\text{C}}^{\text{lnk}}([\gamma]^{\text{int}}), \qquad \gamma \in \Gamma^{\text{lnk}} \cup \Gamma_{>}^{\text{lnk}},$$
(90)

$$\sum_{\gamma=(\mathsf{a}d,\mathsf{b}d',m)\in\widetilde{\Gamma}_{\mathrm{ec}}^{\mathrm{T}}} [(\mathsf{a},\mathsf{b},m)]^{\mathrm{int}} \cdot \delta_{\mathrm{ec}}^{\mathrm{T}}(i,[\gamma]^{\mathrm{int}}) = \sum_{\nu\in\widetilde{\Gamma}_{\mathrm{ac}}^{\mathrm{T}}} [\nu]^{\mathrm{int}} \cdot \delta_{\mathrm{ac}}^{\mathrm{T}}(i,[\nu]^{\mathrm{int}}),$$

$$\Delta_{\mathrm{ec}}^{\mathrm{T}+}(i) + \sum_{\gamma=(\mathsf{a}d,\mu',m)\in\widetilde{\Gamma}_{\mathrm{ec}}^{\mathrm{T}}} d \cdot \delta_{\mathrm{ec}}^{\mathrm{T}}(i,[\gamma]^{\mathrm{int}}) = \deg^{\mathrm{T}}(i-1),$$

$$\Delta_{\mathrm{ec}}^{\mathrm{T}-}(i) + \sum_{\gamma=(\mu,\mathsf{b}d,m)\in\widetilde{\Gamma}_{\mathrm{ec}}^{\mathrm{T}}} d \cdot \delta_{\mathrm{ec}}^{\mathrm{T}}(i,[\gamma]^{\mathrm{int}}) = \deg^{\mathrm{T}}(i),$$

$$\Delta_{\mathrm{ec}}^{\mathrm{T}-}(i) + \sum_{\gamma=(\mu,\mathsf{b}d,m)\in\widetilde{\Gamma}_{\mathrm{ec}}^{\mathrm{T}}} d \cdot \delta_{\mathrm{ec}}^{\mathrm{T}}(i,[\gamma]^{\mathrm{int}}) = \deg^{\mathrm{T}}(i),$$

$$\Delta_{\mathrm{ec}}^{\mathrm{T}+}(i) + \Delta_{\mathrm{ec}}^{\mathrm{T}-}(i) \leq 8(1-e^{\mathrm{T}}(i)),$$

$$i\in[2,t_{\mathrm{T}}],$$

$$\sum_{i\in[2,t_{\mathrm{T}}]} \delta_{\mathrm{ec}}^{\mathrm{T}}(i,[\gamma]^{\mathrm{int}}) = \mathrm{ec}_{\mathrm{T}}([\gamma]^{\mathrm{int}}),$$

$$\gamma\in\widetilde{\Gamma}_{\mathrm{ec}}^{\mathrm{T}},$$
(91)

$$\delta_{\text{ec}}^{\text{T}}(i, [\gamma]^{\text{int}}) + \sum_{k \in I_{\text{lnk}} \cap [1, k_{\text{C}}]} \chi^{\text{T}}(i, k) \ge 2\delta_{\text{ec}}^{\text{T,lnk}}(i, [\gamma]^{\text{int}}), \quad i \in [2, t_{\text{T}}],$$

$$\delta_{\text{ec}}^{\text{T,lnk}}(i, [\gamma]^{\text{int}}) \ge \delta_{\text{ec}}^{\text{T}}(i, [\gamma]^{\text{int}}) + \sum_{k \in I_{\text{lnk}} \cap [1, k_{\text{C}}]} \chi^{\text{T}}(i, k) - 1, \quad i \in [2, t_{\text{T}}],$$

$$\sum_{i \in [2, t_{\text{T}}]} \delta_{\text{ec}}^{\text{T,lnk}}(i, [\gamma]^{\text{int}}) = \operatorname{ec}_{\text{T}}^{\text{lnk}}([\gamma]^{\text{int}}), \qquad \gamma \in \Gamma^{\text{lnk}} \cup \Gamma_{>}^{\text{lnk}}, \tag{92}$$

$$\sum_{\gamma=(\mathsf{a}d,\mathsf{b}d',m)\in\widetilde{\Gamma}_{\mathrm{ec}}^{\mathrm{F}}} [(\mathsf{a},\mathsf{b},m)]^{\mathrm{int}} \cdot \delta_{\mathrm{ec}}^{\mathrm{F}}(i,[\gamma]^{\mathrm{int}}) = \sum_{\nu\in\widetilde{\Gamma}_{\mathrm{ac}}^{\mathrm{F}}} [\nu]^{\mathrm{int}} \cdot \delta_{\mathrm{ac}}^{\mathrm{F}}(i,[\nu]^{\mathrm{int}}),$$

$$\Delta_{\mathrm{ec}}^{\mathrm{F}+}(i) + \sum_{\gamma=(\mathsf{a}d,\mu',m)\in\widetilde{\Gamma}_{\mathrm{ec}}^{\mathrm{F}}} d \cdot \delta_{\mathrm{ec}}^{\mathrm{F}}(i,[\gamma]^{\mathrm{int}}) = \deg^{\mathrm{F}}(i-1),$$

$$\Delta_{\mathrm{ec}}^{\mathrm{F}-}(i) + \sum_{\gamma=(\mu,\mathsf{b}d,m)\in\widetilde{\Gamma}_{\mathrm{ec}}^{\mathrm{F}}} d \cdot \delta_{\mathrm{ec}}^{\mathrm{F}}(i,[\gamma]^{\mathrm{int}}) = \deg^{\mathrm{F}}(i,0),$$

$$\Delta_{\mathrm{ec}}^{\mathrm{F}-}(i) + \Delta_{\mathrm{ec}}^{\mathrm{F}-}(i) \leq 8(1-e^{\mathrm{F}}(i)), \qquad i \in [2,t_{\mathrm{F}}],$$

$$\sum_{i\in[2,t_{\mathrm{F}}]} \delta_{\mathrm{ec}}^{\mathrm{F}}(i,[\gamma]^{\mathrm{int}}) = \mathrm{ec}_{\mathrm{F}}([\gamma]^{\mathrm{int}}), \qquad \gamma \in \widetilde{\Gamma}_{\mathrm{ec}}^{\mathrm{F}},$$
(93)

$$\operatorname{deg}^{\mathrm{T}}(i) + 4(1 - \chi^{\mathrm{T}}(i, k) + e^{\mathrm{T}}(i)) \ge \operatorname{deg}^{\mathrm{CT}}_{\mathrm{T}}(k),
\operatorname{deg}^{\mathrm{CT}}_{\mathrm{T}}(k) \ge \operatorname{deg}^{\mathrm{T}}(i) - 4(1 - \chi^{\mathrm{T}}(i, k) + e^{\mathrm{T}}(i)), \qquad i \in [1, t_{\mathrm{T}}],
\sum_{\boldsymbol{\gamma} = (\mathbf{a}d, \mathbf{b}d', m) \in \widetilde{\Gamma}^{\mathrm{CT}}_{\mathrm{ec}}} [(\mathbf{a}, \mathbf{b}, m)]^{\mathrm{int}} \cdot \delta^{\mathrm{CT}}_{\mathrm{ec}, \mathbf{C}}(k, [\gamma]^{\mathrm{int}}) = \sum_{\boldsymbol{\nu} \in \widetilde{\Gamma}^{\mathrm{CT}}_{\mathrm{ac}}} [\boldsymbol{\nu}]^{\mathrm{int}} \cdot \delta^{\mathrm{CT}}_{\mathrm{ac}}(k, [\boldsymbol{\nu}]^{\mathrm{int}}),
\Delta^{\mathrm{CT}}_{\mathrm{ec}}(k) + \sum_{\boldsymbol{\gamma} = (\mathbf{a}d, \mu', m) \in \widetilde{\Gamma}^{\mathrm{CT}}_{\mathrm{ec}}} d \cdot \delta^{\mathrm{CT}}_{\mathrm{ec}, \mathbf{C}}(k, [\gamma]^{\mathrm{int}}) = \operatorname{deg}^{\mathrm{C}}(\mathrm{tail}(k)),
\Delta^{\mathrm{CT}}_{\mathrm{ec}}(k) + \sum_{\boldsymbol{\gamma} = (\mu, \mathbf{b}d, m) \in \widetilde{\Gamma}^{\mathrm{CT}}_{\mathrm{ec}}} d \cdot \delta^{\mathrm{CT}}_{\mathrm{ec}, \mathbf{C}}(k, [\gamma]^{\mathrm{int}}) = \operatorname{deg}^{\mathrm{CT}}_{\mathrm{T}}(k),
\Delta^{\mathrm{CT}}_{\mathrm{ec}}(k) + \Delta^{\mathrm{CT}}_{\mathrm{ec}}(k) \le 8(1 - \delta^{\mathrm{T}}_{\chi}(k)), \qquad k \in [1, k_{\mathrm{C}}],
\sum_{k \in [1, k_{\mathrm{C}}]} \delta^{\mathrm{CT}}_{\mathrm{ec}, \mathbf{C}}(k, [\gamma]^{\mathrm{int}}) = \operatorname{ec}_{\mathrm{CT}}([\gamma]^{\mathrm{int}}), \qquad \boldsymbol{\gamma} \in \widetilde{\Gamma}^{\mathrm{CT}}_{\mathrm{ec}},$$
(94)

$$\sum_{i \in I_{\text{lnk}} \cap [1, k_{\text{C}}]} \delta_{\text{ec}}^{\text{CT}}(i, [\gamma]^{\text{int}}) = \text{ec}_{\text{CT}}^{\text{lnk}}([\gamma]^{\text{int}}), \qquad \gamma \in \Gamma^{\text{lnk}} \cup \Gamma_{>}^{\text{lnk}},$$
(95)

$$\begin{aligned} \deg^{\mathrm{TC}}(i) + 4(1 - \chi^{\mathrm{T}}(i, k) + e^{\mathrm{T}}(i + 1)) &\geq \deg^{\mathrm{TC}}_{\mathrm{T}}(k), \\ \deg^{\mathrm{TC}}_{\mathrm{T}}(k) &\geq \deg^{\mathrm{TC}}_{\mathrm{T}}(i) - 4(1 - \chi^{\mathrm{T}}(i, k) + e^{\mathrm{T}}(i + 1)), \qquad i \in [1, t_{\mathrm{T}}], \\ \sum_{\gamma = (ad,bd',m) \in \widetilde{\Gamma}_{\mathrm{a}}^{\mathrm{TC}}} [(a, b, m)]^{\mathrm{int}} \cdot \delta^{\mathrm{TC}}_{\mathrm{cC}}(k, [\gamma]^{\mathrm{int}}) = \sum_{\nu \in \widetilde{\Gamma}_{\mathrm{L}}^{\mathrm{TC}}} [\nu]^{\mathrm{int}} \cdot \delta^{\mathrm{TC}}_{\mathrm{a}}(k, [\nu]^{\mathrm{int}}), \\ \sum_{\gamma = (ad,bd',m) \in \widetilde{\Gamma}_{\mathrm{L}}^{\mathrm{TC}}} \delta^{\mathrm{TC}}_{\mathrm{cc}}(k, [\gamma]^{\mathrm{int}}) = \deg^{\mathrm{TC}}_{\mathrm{C}}(k), \\ \Delta^{\mathrm{TC}}_{\mathrm{cc}}(k) + \sum_{\gamma = (ad,bd',m) \in \widetilde{\Gamma}_{\mathrm{L}}^{\mathrm{TC}}} \delta^{\mathrm{TC}}_{\mathrm{cc}}(k, [\gamma]^{\mathrm{int}}) = \deg^{\mathrm{C}}_{\mathrm{C}}(\mathrm{had}(k)), \\ \Delta^{\mathrm{TC}}_{\mathrm{cc}}(k) + \sum_{\gamma = (ad,bd',m) \in \widetilde{\Gamma}_{\mathrm{L}}^{\mathrm{TC}}} \delta^{\mathrm{TC}}_{\mathrm{cc}}(k) \leq 8(1 - \delta^{\mathrm{TC}}_{\mathrm{cc}}(k), \\ \sum_{\gamma = (ad,bd',m) \in \widetilde{\Gamma}_{\mathrm{cc}}^{\mathrm{TC}}} \delta^{\mathrm{TC}}_{\mathrm{cc}}(k) \leq 8(1 - \delta^{\mathrm{TC}}_{\mathrm{cc}}(k), \\ \lambda^{\mathrm{CC}}_{\mathrm{cc}}(k) + \lambda^{\mathrm{TC}}_{\mathrm{cc}}(k) \leq 8(1 - \delta^{\mathrm{TC}}_{\mathrm{cc}}(k), \\ \lambda^{\mathrm{CC}}_{\mathrm{cc}}(k) \leq \deg^{\mathrm{CF}}_{\mathrm{cc}}(k), \\ \lambda^{\mathrm{CC}}_{\mathrm{cc}}(k) \leq \log^{\mathrm{CF}}_{\mathrm{cc}}(k), \\ \lambda^{\mathrm{CC}}_{\mathrm{cc}}(k) \leq 2\log^{\mathrm{CF}}_{\mathrm{cc}}(k), \\ \lambda^{\mathrm{CC}}_{\mathrm{cc$$

$$\sum_{\substack{X \in \{C,T,F,CT,TC,CF,TF\}}} (ec_X([\gamma]^{int}) + ec_X([\overline{\gamma}]^{int})) = ec^{int}([\gamma]^{int}), \qquad \gamma \in \Gamma_{<}^{int},$$

$$\sum_{\substack{X \in \{C,T,F,CT,TC,CF,TF\}}} ec_X([\gamma]^{int}) = ec^{int}([\gamma]^{int}), \qquad \gamma \in \Gamma_{=}^{int}, \qquad (100)$$

$$\sum_{X \in \{C,T,CT,TC\}} (ec_X^{lnk}([\gamma]^{int}) + ec_X^{lnk}([\overline{\gamma}]^{int})) = ec^{lnk}([\gamma]^{int}), \qquad \qquad \gamma \in \Gamma^{lnk}_<,$$

$$\sum_{X \in \{C, T, CT, TC\}} ec_X^{lnk}([\gamma]^{int}) = ec^{lnk}([\gamma]^{int}), \qquad \gamma \in \Gamma_{=}^{lnk}.$$
 (101)

$$\sum_{\gamma \in \Gamma^{\text{lnk}}} ec^{\text{lnk}}([\gamma]^{\text{int}}) = n_{\text{lnk}}, \tag{102}$$

$$\operatorname{ns_{LB}^{cnt}}([\mu]) \le \delta^{\operatorname{cnt}}(1, [\mu]) + \delta^{\operatorname{cnt}}(2, [\mu]) \le \operatorname{ns_{UB}^{cnt}}([\mu]), \qquad \mu \in \Lambda_{\operatorname{dg}}^{\operatorname{int}}, \qquad (103)$$

$$\sum_{\substack{\gamma \in \Gamma_{\leq}^{\text{cnt}} \cup \Gamma_{\geq}^{\text{cnt}} \cup \Gamma_{>}^{\text{cnt}} \\ \text{ec}^{\text{lnk}}([\gamma]^{\text{int}}) \geq \delta^{\text{cnt}}([\gamma]^{\text{int}}), \\
\text{ec}^{\text{lnk}}([\overline{\gamma}]^{\text{int}}) \geq \delta^{\text{cnt}}([\gamma]^{\text{int}}), \\
\text{ec}^{\text{lnk}}([\overline{\gamma}]^{\text{int}}) \geq \delta^{\text{cnt}}([\gamma]^{\text{int}}), \\
\text{oc}^{\text{lnk}}([\overline{\gamma}]^{\text{int}}) \leq \delta^{\text{cnt}}([\gamma]^{\text{int}}), \\
(104)$$

5.11 Constraints for Normalization of Feature Vectors

By introducing a tolerance $\varepsilon > 0$ in the conversion between integers and reals, we include the following constraints for normalizing of a feature vector $x = (x(1), x(2), \dots, x(K))$:

$$\frac{(1-\varepsilon)(x(j)-\min(\operatorname{dcp}_j;D_{\pi}))}{\max(\operatorname{dcp}_j;D_{\pi})-\min(\operatorname{dcp}_j;D_{\pi})} \le \widehat{x}(j) \le \frac{(1+\varepsilon)(x(j)-\min(\operatorname{dcp}_j;D_{\pi}))}{\max(\operatorname{dcp}_j;D_{\pi})-\min(\operatorname{dcp}_j;D_{\pi})}, \ j \in [1,K].$$
(105)

An example of a tolerance is $\varepsilon = 1 \times 10^{-5}$.

We use the same conversion for descriptor $x_i = \overline{\text{ms}}$.

References

- [1] Zhu, J., Azam, N. A., Haraguchi, K., Zhao, L., Nagamochi, H., Akutsu, T.: A method for molecular design based on linear regression and integer programming, arXiv: 2107.02381 (2021).
- [2] Hoerl, A., Kennard, R.: Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics, **12**(1), 55–67 (1970)
- [3] Hoerl, A., Kennard, R.: Ridge Regression: Applications to Nonorthogonal Problems. Technometrics, **12**(1), 69–82 (1970)
- [4] Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B **58**, 267–288 (1996)