In [6]:

```
#Data Visualization With Python

#Visualizing statistical relationships
#Visualizing distributions of data
#Visualizing categorical data

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")

movies = pd.read_csv('Movie-Ratings.csv')
df = pd.read_csv('DemographicData.csv')
epl = pd.read_excel('EPL Data.xlsx', sheet_name=1)
```

In [7]:

```
movies.columns = ['Film','Genre','CR','AR','Budget($M)','Year']
movies.head()
```

Out[7]:

	Film	Genre	CR	AR	Budget(\$M)	Year
0	(500) Days of Summer	Comedy	87	81	8	2009
1	10,000 B.C.	Adventure	9	44	105	2008
2	12 Rounds	Action	30	52	20	2009
3	127 Hours	Adventure	93	84	18	2010
4	17 Again	Comedy	55	70	20	2009

In [8]:

```
df.columns = ['Country Name','Country Code','BR','IA','IG','BRC']
df.head()
```

Out[8]:

	Country Name	Country Code	BR	IA	IG	BRC
0	Aruba	ABW	10.244	78.9	High income	LBR
1	Afghanistan	AFG	35.253	5.9	Low income	HBR
2	Angola	AGO	45.985	19.1	Upper middle income	HBR
3	Albania	ALB	12.877	57.2	Upper middle income	LBR
4	United Arab Emirates	ARE	11.044	88.0	High income	LBR

In [9]:

```
epl['Region'] = epl['Region'].fillna('Default')
epl.head()
```

Out[9]:

	Team	City	Stadium	Capacity	In Big Six	In EPL	Region
0	Arsenal	London	Emirates Stadium	60361	Big Six	EPL	London
1	Aston Villa	Birmingham	Villa Park	42785	Other	EPL	Central
2	Bournemouth	Bournemouth	Vitality Stadium	11464	Other	EPL	South
3	Brighton	Brighton	The Amex	30500	Other	EPL	South
4	Burnley	Burnley	Turf Moor	21401	Other	EPL	North

In [10]:

```
#Relational Plots - Simple Scatter plot
sns.relplot(x = 'CR', y = 'AR', data=movies, kind='scatter')
```

Out[10]:

<seaborn.axisgrid.FacetGrid at 0x23d98636850>

In [11]:

```
sns.set_theme(style="darkgrid")
```

In [14]:

```
sns.relplot(x = 'BR', y = 'IA', data=df, kind='scatter',hue='IG')
```

Out[14]:

<seaborn.axisgrid.FacetGrid at 0x23d98512c10>

In [18]:

Out[18]:

<seaborn.axisgrid.FacetGrid at 0x23d9c502390>

In [20]:

Out[20]:

<seaborn.axisgrid.FacetGrid at 0x23d9c7f2350>

In [28]:

Out[28]:

<seaborn.axisgrid.FacetGrid at 0x23d9e898510>

In [29]:

#Distribution Plots - Column Chart / Stacked column / Clustered Column / Histogram
sns.displot(movies, x='Year')

Out[29]:

<seaborn.axisgrid.FacetGrid at 0x23d9bb29d50>

In [30]:

sns.displot(movies, x='Year', hue='Genre', multiple='stack')

Out[30]:

<seaborn.axisgrid.FacetGrid at 0x23d9ec43dd0>

In [31]:

sns.displot(movies, x='Year', hue='Genre', multiple='dodge')

Out[31]:

<seaborn.axisgrid.FacetGrid at 0x23d9ec4d7d0>

In [33]:

sns.displot(movies, x='AR')

Out[33]:

<seaborn.axisgrid.FacetGrid at 0x23d9f39c450>

In [34]:

sns.displot(movies, x='Genre',col='Year')

Out[34]:

<seaborn.axisgrid.FacetGrid at 0x23da0a45bd0>

In [43]:

sns.displot(movies, x='Year', hue='Genre', multiple='stack', kind='kde')

Out[43]:

<seaborn.axisgrid.FacetGrid at 0x23da2d40550>

In [44]:

```
sns.displot(movies, x='Year', hue='Genre',fill=True,kind='kde')
```

Out[44]:

<seaborn.axisgrid.FacetGrid at 0x23da1c57fd0>

In [35]:

```
# joint plot for CriticsRatings Vs AudienceRatings
j = sns.jointplot(data=movies, x='CR',y='AR',color='Red')
```


In [40]:

sns.jointplot(data=movies, x='CR',y='AR',color='blue',kind="hex")

Out[40]:

<seaborn.axisgrid.JointGrid at 0x23da2794e10>

In [42]:

```
sns.jointplot(data=movies, x='CR',y='AR',color='Blue',kind="kde")
```

Out[42]:

<seaborn.axisgrid.JointGrid at 0x23da2de59d0>

In [45]:

sns.pairplot(df,height=3)

Out[45]:

<seaborn.axisgrid.PairGrid at 0x23da3411110>

In [52]:

```
#Categorical Plots - strip plot / swarm / box / violin
sns.catplot(data=df, x="BRC", y="IA", kind="strip",hue="IG")
```

Out[52]:

<seaborn.axisgrid.FacetGrid at 0x23da5d7ad90>

In [54]:

sns.catplot(data=df, x="BRC", y="IA", kind="swarm", hue="IG")

Out[54]:

<seaborn.axisgrid.FacetGrid at 0x23da5f4cf10>

In [56]:

```
sns.catplot(data=df, x="BRC", y="IA", kind="box")
```

Out[56]:

<seaborn.axisgrid.FacetGrid at 0x23da5fdbd10>

In [57]:

sns.catplot(data=df, x="BRC", y="IA", kind="violin")

Out[57]:

<seaborn.axisgrid.FacetGrid at 0x23da625ea10>

In [59]:

```
ax = sns.swarmplot(x="BRC", y="IA", data=df,hue="IG", zorder=0)
sns.boxplot(x="BRC", y="IA", data=df, ax=ax)
plt.show()
```


In []: