https://www.h2o.ai

R - DOCUMENTATION

1. Overview

- Written in **JAVA**.
- Can be implemented on top of **HADOOP** (internally it runs Map/Reduce).
- Uses Java Fork/Join for multi-threading.
- Uses distributed Key/Value store to access and reference data.
- Gives **REST API** call for **R** and **Python**.
- Advantages

```
Fast
Distributed
In-Memory
Scalable
```

2. Installation

```
http://h2o-release.s3.amazonaws.com/h2o/rel-ueno/3/index.html
# The following two commands remove any previously installed H2O packages for R.
if ("package:h2o" %in% search()) { detach("package:h2o", unload=TRUE) }
if ("h2o" %in% rownames(installed.packages())) { remove.packages("h2o") }
# Next, we download packages that H2O depends on.
if (! ("methods" %in% rownames(installed.packages()))) { install.packages("methods") }
if (! ("statmod" %in% rownames(installed.packages()))) { install.packages("statmod") }
if (! ("stats" %in% rownames(installed.packages()))) { install.packages("stats") }
if (! ("graphics" %in% rownames (installed.packages()))) { install.packages("graphics") }
if (! ("RCurl" %in% rownames(installed.packages()))) { install.packages("RCurl") }
if (! ("jsonlite" %in% rownames(installed.packages()))) { install.packages("jsonlite") }
if (! ("tools" %in% rownames(installed.packages()))) { install.packages("tools") }
if (! ("utils" %in% rownames(installed.packages()))) { install.packages("utils") }
# Now we download, install and initialize the H2O package for R.
                                      type="source",
install.packages("h2o",
                                                                   repos=(c("http://h2o-
release. s3. amazonaws. com/h2o/rel-ueno/3/R")))
library(h2o)
```

3. Basic Commands

•	libi	ary (h2o)				
		0	load h2o in R			
•	h2o.	init(nt	hreads = -1, max_mem_size = '8G')			
		0	nthreads = -1 means it uses all cores in all CPUs			
		0	max_mem_size = memory to be used for H2O			
		0	Note: Use all CPUs and full RAM and don't run any browsers			
		while l	H2O operations is happening.			
•	h2o.	cluster	Info()			
		0	prints the cluster status and information			
•	h2o.	shutdow	n(prompt = F)			
		0	Shutsdown the cluster			
		0	prompt = F won't ask for confirmation			
•	as. l	120 (d)				
		0	converts d to a h2o frame (where d = data.table or data.frame)			
•	h2o.	1s()				
		0	to check objects in h2o environment			
•	h2o.	importF:	ile("full-path-of-the-file", sep = ",")			
		0	similar to read.csv			
•	h2o.	exportF	ile(object, "full-path-for-the-file")			
		0	similar to write.csv			
•	h2o.	merge(x,	, у)			
•	h2o.	rbind(x	, y)			
•	h2o.	cbind(x,	, у)			
•	h2o.	table(x,	, у)			
•	h2o.	group by	V			

- h2o. runinf (100)
- h2o.rm("object-in-quotes")
- h2o. which (x == 1)
- h2o.ifelse
- h2o.strsplit
- h2o. tolower
- h2o. toupper
- h2o.trim
 - O trims leading and trailing white spaces in a string
- h2o. gsub
- h2o.impute(data, "column-a", method = mean/mode/median, by = c("column-b", "column-c"))
 - O the above command imputes missing values in "column-a" with mean or median or mode grouped by "column-b", "column-c"
- h2o.splitFrame(data, ratios = 0.5)
 - o splits data into 2 parts of 0.5 each
 - if ratios = c(0.75, 0.15), then splits data into 3 parts 75%, 15% and 10% (train, test and validation)

4. Modelling Commands [Explained in later sections]

5. GLM (Generalized Linear Models)

- Extension of traditional linear models.
- Scales well for large datasets.
- Handles classification and Prediction by using family.
- Handles Gaussian, Poisson and various other family of distributions of data.
- In case of Linear Regression:
 - $\circ \quad Y = X^T \beta + \beta_0 + \epsilon$
 - where.
 - Y = Target (independent variable) and $Y \sim N(X^T \beta + \beta_0, \sigma^2)$
 - X^T = Feature vector
 - β = Parameter vector
 - β_0 = Intercept
 - $\epsilon = \text{noise}, \ \epsilon \sim N(0, \sigma^2)$ i.e. Gaussian random variable
 - o This assumes:
 - Normality of error term
 - Constant variance
 - Additivity of covariates
- Thus, we need more flexible model (Hence, we use GLM)
 - It allows variance to vary
 - o Allows non-linear relationship between response and covariates.

• Aim:

- o For Classification: To maximize log-likelihood over parameter (B).
 - i.e. $\max_{\mathcal{B}}(\log likelihood)$
- o For Regression: To minimize MSE.
- GLM also uses regularization and introduces parametric regularization penalty to prevent over fitting.
 - o i.e. $\max_{\beta}(loglikelihood reg penalty)$

• Parameters of regularization:

- o **alpha**: elastic net parameter [0, 1]
- o Lambda: regularization coefficient (preferred to do *lambda_search*)

• Model Validation:

- o Precision
- o Recall
- Accuracy
- $\circ \quad AIC = 2k 2\log(l(y; \mu))$
 - where,
 - k = no. of parameters
 - $l(y; \mu) =$ fitted maximum likelihood
 - It is used to compute qualities of models
 - Lower the AIC value, optimal the model
 - It increases penalty with increase in number of parameters, helps in preventing over fitting
- o Deviance = (max.loglikelihood.of.fitted max.loglikelihood.of.saturated.models)

• Regularization:

- o Penalties of coefficients are introduced to prevent over fitting.
- o Reduces the variance of prediction error.
- o Handles correlated predictor variables.
- o Examples:
 - Lasso Regression:
 - Uses L1 Regularization
 - $\bullet \quad \big| |B| \big|_1 = \sum_{k=1}^n |B_k|$
 - if lambda value is high, all coefficients are set to 0
 - Use it if the no. of features are high/correlated (Selects only one among correlated variable and sets other to 0)
 - Helps in reducing sparsity

Ridge Regression:

- Uses L2 Regularization
- $\bullet \quad \left| |B| \right|_2^2 = \sum_{k=1}^n B_k^2$
- Helps in achieving numerical stability
- Shrinks all parameters proportionally
- Reduces coefficients as the penalty increases without setting any value to 0
- Reduces coefficients if the features are correlated.

Elastic Net:

- Uses L1, L2 Regularization
- has alpha, lambda
- where:
 - o alpha [0, 1] elastic penalty distribution
 - o lambda (> 0) Penalty Strength

lambda	alpha	results
0	any value	no regularization
> 0	0	ridge regression
> 0	1	lasso regression
> 0	(0, 1)	elastic net

Handles sparsity and achieves stability

• Model Families:

Gaussian (Regression)

o Binomial (Logistic regression)

Multinomial (multi-class classification)

 \circ Poisson (if Y >= 0 and errors have possion distribution)

- \circ Gamma (if Y > 0)
 - h2o.glm(x, y, training_frame = df, family = 'gamma')
- Tweedie (includes gamma, normal, poisson, and their combination, and for Y
 >= 0)

• Paramerters in h2o.glm:

- o training_frame
- o validation frame
- o lambda
 - = **0** as default
- o lambda search
 - use **TRUE**, for searching optimal lambda value
- o max_active_predictors
 - uses when lambda_search = TRUE
 - if = 10, then stops after having 10 predictor values
- o remove_collinear_columns
 - use **TRUE** to remove collinear columns
- o standardize
 - use **TRUE** to scale the data to 0 mean and unit variance
- o compute_p_values
 - use **TRUE** to compute p values
 - used for hypothesis testing
 - higher the p values, unreliable the features are
 - lower the significant
- o nfolds
 - = 5 (does 5 fold cross validation)
 - to **print** use,
 - fit@model\$training_metrics@metrics\$AUC
 - fit@model\$cross_validation_metrics@metrics\$AUC
- o grid search over alpha:

```
alphas = list(list(0), list(0.25), list(0.5), list(0.75),
list(1))
```

```
hyper_params = list(alpha = alphas)
grid = h2o.grid(model = 'glm', hyper_params = hyper_params,
x, y, training_frame = df, family = 'binomial')
models = lapply(grid@model_ids, function(each_model) {
    h2o.getModel(each_model)
})
print(models[[1]]@model$model_summary$regularization)
print(h2o.auc(models[[1]]))
```

• Model Statistics:

- o h2o.mse
- o h2o.rmse
- o h2o.r2
- o h2o.auc
- o h2o.aic
- o h2o.logloss
- o h2o.null_deviance
 - deviance from NULL model
- o h2o.residual deviance
 - deviance of built model
- o print(fit@model\$coefficients)
 - prints model coefficients
- o print(fit@model\$scoring_history)
 - prints likelihood, iteration, objective scores at different timestamps and iterations
- o h2o.confusionMatrix(fit, valid = T)
 - valid = for validation data flag (TRUE or FALSE)
- o h2o.predict(fit, newdata = test)

- used for prediction on new data set
- o h2o.performance(fit, newdata = test)
 - used to calculate different performance measures on the new data

6. Random Forest

- Distributed in case of H2O
- Multiple Trees (multiple weak learners)

```
='rf-model',
h2o.randomForest(model id
                                                       training frame,
validation frame, nfolds, x, y
      , ntrees # grid search (10 -500)
      , max_depth # grid search seq(1, 29, 2)
      , min_rows # default = 10, 500 means it needs 500 TRUE and 500
FALSE to make split
      \# grid search seq(1, 20, 1)
      , min split improvement \# default = 10^{-5}
      # grid search (10<sup>-10</sup> .... 10<sup>-3</sup>)
      , nbins # bin numeric value, grid search (8, 16, 32, 64, 128,
256, 512)
      , nbin cats # bins for categorical, grid search (8, 16, 32, 64,
128, 256, 512, 1024, 2048, 4096)
      , nbins_top_level # bins to use at top level of trees
      # nbins, nbin cats, nbins top level less values less the
overfitting
      , stopping_rounds # for specific no. of rounds if there is no
improvement, then stop
      , stopping_metric # logloss, rmse, auc, mse
      , stopping_tolerance # 1e-3
      , seed # to reproduce
      , histogram type
            AUTO
```

```
#
      UniformAdaptive
      Random
      QuartilesGlobal
      Round Robin
, sample rate # (0, 1)
# - improves generalization
# - for large datasets use 0.7, 0.8, 1
# - for imbalanaced
, sample_rate_per_class
\# - c(1, 0.5) = \text{down samples class 2 by 50}\%
, col sample rate # (0, 1)
# - improves generalization
# - reduces validation error
# - no. of cols to consider for each split
, col_sample_rate_per_tree
# if no. of cols (n) = 100
# - if col sample rate per tree = 0.75
\# - and if col sample rate = 0.8
\# - then for each tree = 0.75 * 100 = 75 cols are considered
\# - and for each split = 75 * 0.8 = 60 cols are considered
, mtries \# (-1 or >= 1)
# - no. of cols to select randomly at each level
# - grid search for best value)
```

7. K Means

• Determine K

- o use estimate k parameter
- o internatlly it calculates:
 - PRE = (SSW[after split] SSW[before split])/SSW[before split]
- o if PRE < threshold, stop
- o where, threshold = $min(0.8, 0.02 + (10/# of rows) + (2.5/ (# of features)^2))$

8. PCA

- transforms correlated features to uncorrelated features (principle components)
- maximizes variances, reduces covariance
- used for dimension reduction
- makes all dimensions as orthogonal
- used before KMeans for best results
- Categorical internally it converts to one hot encoding

```
h2o.prcomp(model_id, training_frame

, transform

# none

# standardize

# normalize

# Demean

# Descale

, seed)
```

9. GLRM

- Generalized Low Rank Models
- Dimensional Reduction
- Useful to reconstruct missing values
- Find important features
- Parallel and optimized
- same use as SVD, Matrix factorization

```
\circ A [m x n] = X [m x k] %*% Y [k x n]
```

• Choose k = lower the better compressed

```
h2o.glrm(training_frame, cols = 1:ncol(data), k = 10)
```

10. Load and Save Models

```
h2o.loadModel(path)
h2o.saveModel(model, dir, name)
```

11. **GBM**

- Gradient Boosting Model
- Gradually improved estimations
- Models Non-Linear relationships
- Weak classification algorithms are sequentially applied to the incrementally changed data to create a series of decision trees, producing an ensemble
- In H2O
 - o Distributed and Parallelized
 - Fast and memory efficient
 - Uses stochastic gradient descent with column and row sampling
- Boosting is optimized by Gradient descent to minimize a model loss

• Steps

- a) fit a model to the data F1(x) = Y
- b) fit a model to the residuals (Y Y')

$$h1(x) = Y - F1(x)$$

c) create a model F2(x) = F1(x) + h1(x)

```
i.e. F(x) = F1(x) \rightarrow F2(x) - - - - - \rightarrow FM(x) where FM(x) = FM-1(x) + hM-1(x) and h1(x) weak learner (a decision stump)
```

• Main Parameters

```
o eta = 0.3 or 0.1
o max_depth = 3
o n_estimators = 100
o subsample = 1
```

• Tips by Owen Zhang (Kaggle #2) and Tianqi Chen

- Tune learning rate by using fixed values of trees
- o Use random search over grid search if search space is too large

GBDT Hyper Parameter Tuning

Hyper Parameter	Tuning Approach	Range	Note
# of Trees	Fixed value	100-1000	Depending on datasize
Learning Rate	Fixed => Fine Tune	[2 - 10] / # of Trees	Depending on # trees
Row Sampling	Grid Search	[.5, .75, 1.0]	
Column Sampling	Grid Search	[.4, .6, .8, 1.0]	
Min Leaf Weight	Fixed => Fine Tune	3/(% of rare events)	Rule of thumb
Max Tree Depth	Grid Search	[4, 6, 8, 10]	
Min Split Gain	Fixed	0	Keep it 0

Best GBDT implementation today: https://github.com/tqchen/xgboost by **Tianqi Chen** (U of Washington)

Codes

```
fit = h2o.gbm(x, y, training_frame, validation_frame, nfolds
    , ntrees # default = 50
    , max_depth # default = 5
    , min_rows # defualt = 10
    , min_split_improvement
    , nbins
    , nbin_cats
    , seed
    , learn_rate # (0, 1)
    # - lower the better but more time to reach minima
    # - use 0.05, with 0.99 learn_rate_annealing
    , learn_rate_annealing
```

```
# - reduces learning rate by this factor for every tree
     # - start with learn_rate
     # - ends with learn_rate * (learn_rate_annealing) ^ N
     # - instead of LR = 0.01, use LR = 0.05, LRA = 0.99 -
executes faster
     # - use = 1 to disable, but we should use low learn rate
     , distribution # loss function
     # - AUTO - if selected and if y == numeric, it selects
gaussian, else bernoulli
     # - bernoulli - 2 class
     # - multinomial - multi class
     # - gaussian - numeric
     # - poisson
     # - gamma
     # - laplace
     # - quantile
     # - huber
     # - tweedie
      , sample_rate
      , sample_rate_per_class
     , col_sample_rate
     , col sample rate per tree
```

```
, score_each_iterator # Flag
      , score_tree_interval # if = 5, scores every 5 trees
      , weights_column # no. of times each row to be repeated
      , balance_classes # flag
     , class_sampling_factors \# c(0.5, 1) = reduces class - 1
by 50%
      , max_after_balance_size # if 0.85 reduces the total data
size to 85%
     # if 1.7 then it increases the total data size to 117%
      , stopping_rounds
      , stopping_metric
      , stopping_tolerance
      , max_runtime_secs
      , checkpoint
     # used to continue model building
h2o. varimp(fit)
```

12. Deep Learning

- Neural Networks that are having more hidden layers
- Fast, memory efficient
- Multi-threaded, parallel and distributed
- Implemented in Java

Adaptive Learning rate

- \circ if error_N > error_{N-1}
- \circ alpha = alpha/2
- Regularization L1 (lambda1 * Sigma(W)), L2 (lambda2 * Sigma(W^2)), dropout, model averaging, HOGWILD!
- Can have learning rate, momentum
- Auto encoders for unsupervised

• Activation Functions

- o tanh: $(\exp(x) \exp(-x))/(\exp(x) + \exp(-x))$
- o makes the value of x in range of [-1, 1]
- \circ relu: max(0, x)
- o rectified linear unit
- o maxout: max(x1, x2)

• Loss functions:

- o for gaussian use mse
- o for laplace use absolute error
- o for bernoulli use cross entropy

Sample:

```
h2o.deeplearning(x, y, training_frame, validation_frame, distribution = 'bernoulli')
```

• Loss minimization:

- Uses SGD to parallelize via back propagation
- It also uses HOGWILD! to parallelize as SGD can't be parallelized completely
- o HOGWILD! is lock free parallelization scheme

 HOGWILD! uses shared memory when multiple cores handle multiple subsets of data

Other Optimizations:

- o L1
- o L2
- o dropout
 - input_dropout_ratios
 - hidden_dropout_ratios
- \circ momentum (0, 1)
 - helps in avoiding local minima
 - too much momentum leads instability
 - momentum_start
 - momentum_ramp
 - momentum_stable
 - nesterov_accelerated_gradient # recommended
 - Large momentum + low learning rate is better
 - damps oscillation in the direction of high curvature
- o Rate Annealing
 - 10^-6
 - i.e. it takes 10^-6 samples to change learning rate to half
- o Adaptive Learning
 - avoids slow convergence
 - adds benefits of momentum + rate_annealing
 - rho -> momentum (0.9 or 0.9999)
 - epsilon -> rate annealing $(10^{-10} \text{ or } 10^{-4})$

• Code:

```
h2o.deeplearning(x, y, training_frame, validation_frame, seed, nfolds
, activation
# Tanh
# Tanhwithdropout
```

```
# Rectifier
# Rectifierwithdropout
# maxout
# maxoutwithdropout
, hidden # c(100, 100) - 2 hidden layerss with 100 neurons each
, epochs # no. of times to iterate through the data
, variable_importance # flag
, weight_columns
, balance_classes
, class_sampling_factors
, max_after_balance_size
, standardize
, checkpoint
, adaptive_rate # flag
, input_dropout_ratio # (0.1 or 0.2 suggested)
, hidden_dropout_ratios # [0, 1) - default = 0.5
, 11
, 12
, loss
# - Automatic
# - CrossEntropy
```

```
# - Quadratic
# - Huber
# - Absolute
, distribution
, score_interval
, stopping_rounds
, stopping_metric
, stopping_tolerance
, autoencoder # flag
, rho # adaptive rate = T, then use this - adaptive rate time
decay factor
, epsilon # adaptive rate time smoothing factor
, shuffle_training_data
, missing_values_handling # Skip/MeanImputation
, rate
, rate_annealing
, rate_decay
, nesterov_accelerated_gradient # flag
, momentum_start # 0.5 is preferred
, momentum_ramp
, momentum_stable)
```

• Tuning:

- o Use hidden:
 - **[200, 200]**
 - **•** [512]
 - **•** [64, 64, 64]
 - **[**32, 32, 32, 32, 32]
- o Use L1, L2, dropout, adaptive rate with rho, epsilon

13. Stacked Ensembles

• Steps:

- O Specify a list of L base algorithms with model parameters
- Specify a meta learning algorithm
- o Train L models on training
- Predict on validation set (N rows)
- o we get N x L matrix (level one data)
- O Use the level one data to train a super meta learner
- o Predict on test data

• Code:

```
fit = h2o.stackedEnsemble(x, y, training_frame, model_id,
base_models = list(fit1@model_id, fit2@model_id))

fit = h2o.stackedEnsemble(x, y, training_frame, model_id,
base_models = list(gbm_grid_fit@model_ids))
```

Using h2oEnsemble

```
library(h2oEnsemble)
learner = c('h2o.randomForest', 'h2o.deeplearning.1',
'h2o.deeplearning.2')
metalearner = 'h2o.glm.wrapper'
```

```
fit = h2o.ensemble(x, y, training_frame, family = 'binomial',
learner = learner,
metalearner = metalearner, cvControl = list(V = 5))
h2o.ensemble_performance(fit, newdata)
predict(fit, newdata)
```

• Default Wrappers:

- o h2o.glm.wrapper
- o h2o.gbm.wrapper
- o h2o.randomForest.wrapper
- o h2o.deeplearning.wrapper

14. **H2O Parameter Tuning**

```
• hyper_parameters = list(....)
```

• Grid Search

```
grid = h2o.grid('gbm', x, y, training_frame, hyper_params =
hyper_parameters)
model = lapply(grid@model_ids, function(x) {
    h2o.getModel(x)
})
```

• Random Search

```
search_criteria = list(strategy = 'RandomDiscrete', max_runtime_sec =
600, max_models = 100, stopping_metric = 'AUTO', stopping_tolerance =
0.0001, stopping_rounds = 5, seed = 1234)

grid = h2o.grid(grid_id = 'random_search', search_criteria =
search_criteria, x, y, training_frame, 'gbm', hyper_params =
hyper_parameters)
h2o.getGrid(grid_id = 'random_search', sort_by = 'rmse')
```