Assignment – 4

1. (20 marks) Build a 18-bit carry-select adder. Decide the number of groups and the size of each group. Estimate the time delay of your design.

Ans.) 18-bit carry-select adder \Rightarrow n = 18

Let the 18-bit carry select adder be divided into L groups, each group of length k_1 , k_2 ,... k_L , then, the following inequality holds:

$$\Rightarrow$$
 1 + (L (L-1)) / 2 \geq 18 \Rightarrow L(L - 1) \geq 34

Since, L is an integer, the minimum value of L that satisfies the above relation is L = 7. Hence, the number of groups in the carry-select adder are 7.

The group size of each group would then be $k_1 = 1$, $k_2 = 1$, $k_3 = 2$, $k_4 = 3$, $k_5 = 4$, $k_6 = 5$, $k_7 = 2$

For a group l of length k_l it takes $(l-1)\times 2\Delta_G$ for its carry-in c_j signal to be available. And the latency of k_l -bit RCA is $2k_l\Delta_G$

2. (20 marks) Build a 18-bit carry-skip adder. Decide the number of groups and the size of a group. Estimate the time delay of your design.

Ans.) Let the following three time delays be defined:

 $t_{\rm r}$ denote carry ripple time through one bit

t_s(k) denote the time to skip on group

 t_{b} denote the time delay of an OR gate

For a n-bit carry-skip adder, of n/k groups where k is the size of the group,

$$\begin{split} T_{carry} &= (k-1) \, t_r + t_b + (\, n/k \, -2 \,) \, (\, t_s + t_b \,) + (k-1) \, t_r \\ &= (\, 4k + 2n \, / \, k \, -7 \,) \, \Delta_G \end{split}$$

where $t_r = 2\Delta_G$ and $t_b = t_s = \Delta_G$

Optimal size of
$$k \implies k_{opt} = \sqrt{\frac{n}{2}}$$

Hence, for n = 18, $k_{opt} = 3 \Rightarrow Number of groups = n / k_{opt} = 18 / 3 = 6$

Figure 2: Showing the critical path for "Carry Skip Adder"

- => Size of the group = $k_{opt} = 3$
- => Optimal time delay of the design, $\frac{T_{opt}}{T_{opt}} = \frac{(4 k_{opt} + 2n / k_{opt} 7) \Delta_g}{(4*3 + (2*18) / 3 7) \Delta_g} = \frac{17\Delta_g}{12}$

3. (20 marks) Build a carry-save adder that performs X = A + B + C + D + E, where each of operands A, B, C, D, and E has 4 bits. Draw a full diagram for the carry-save adder and estimate the complexities using both (3, 2) and (2, 2) counters as building blocks. Explicitly show a critical path.

Ans.) Since, A, B, C, D and E are 4 bit operands => A, B, C, D, E \in [0, 2⁴ - 1] = [0-15] Hence, the sum of four such numbers will have no more than (5 x [0-15]) \subset [0, 2⁷ - 1] i.e. 7 bits

=> Organize the architecture diagram in at most 7 columns.

Figure 3: "Carry Save Adder" using (3,2) as building blocks

The architecture complexities using only (3,2) or FA as building blocks are:

- * Circuit complexity: C = 18(3,2)'s = 18 FA
- * Critical path delay: $T = 8 * (2\Delta_G) = 16 \Delta_G$

Figure 4: "Carry Save Adder" using (2,2) as building blocks

The architecture complexities using both (3,2) or FA and (2,2) or HA as building blocks are:

- * Circuit complexity: C = 13(3,2)'s + 5(2,2)'s = 13 FAs + 5HAs
- * Critical path delay: $T = 6(2\Delta_G) + 2(1\Delta_G) = 14\Delta_G$

4. (20 marks) Consider multiplication of a 5-bit multiplicand A and a 4-bit multiplier X. Design a high-speed multiplier realizing this multiplication operation. Assume that (3, 2) and (2, 2) counters are used for carry save addition and carry-propagate addition. Show the steps in dot diagram or draw a block diagram for your design. How many (3, 2) and (2, 2) counters are required? Assume that Δ (3,2) = 2Δ G and Δ (2,2) = Δ G . What is time delay of your multiplier?

Ans.) Let $A = (a_4a_3a_2a_1a_0)$ and $X = (x_3x_2x_1x_0)$ then the product bits $P = (p_8p_7p_6p_5p_4p_3p_2p_1p_0)$ can be obtained as follows:

				a ₄	a ₃ x ₃	\mathbf{a}_2 \mathbf{x}_2	a_1 x_1	a_0 x_0
				a_4x_0	a_3x_0	a_2x_0	a_1x_0	a_0x_0
			a_4x_1	$\mathbf{a}_3\mathbf{x}_1$	$\mathbf{a}_2\mathbf{x}_1$	a_1x_1	a_0x_1	
		a_4x_2	$\mathbf{a}_3\mathbf{x}_2$	$\mathbf{a}_2\mathbf{x}_2$	$\mathbf{a}_1\mathbf{x}_2$	a_0x_2		
	a_4x_3	a_3x_3	a_2x_3	a_1x_3	a_0x_3			
p ₈	p ₇	p ₆	p ₅	p ₄	p ₃	p ₂	p_1	p_0

^{*} The 20 partial product bits can be generated using 20 two-input AND gates and hence requires one gate delay

- * Let the partial product bit be denoted with a *. Then, the CSA tree of 20 partial product bits forms an isoceles trapezoid with 4 rows and base consisting of 8 asterisk's. Since, the height of the trapezoid is 4, it requires 2 levels of CSA before the final CPA.
- * Number of (3,2) counter's required = 11
- * Number of (2,2) counter's required = 4

Figure 6 : Block diagram depicting the usage of (3,2)'s and (2,2)'s for adding the partial product terms

- * Time delay of the multiplier = Time to form the partial product terms (1 gate delay for the 2 input AND gates)
 - + Time for CSA to give actual product bits (Critical path highlighted in red in Figure 6)

$$= 1 \Delta_{G}$$
$$= 14 \Delta_{G}$$

+ $(2+2+1+2+2+2+2)\Delta_G$

5. (20 marks) Consider multiplication of a 5-bit multiplicand A and a 4-bit multiplier X. Design an array multiplier realizing this multiplication operation. Assume that FA and HA are used as building cells. Draw a block diagram for your design. How many FAs and HAs are required? Assume that Δ FA = 2Δ G and Δ HA = Δ G . What is time delay of your design?

Ans.)

Let $A = (a_4a_3a_2a_1a_0)$ and $X = (x_3x_2x_1x_0)$ then the product bits $P = (p_8p_7p_6p_5p_4p_3p_2p_1p_0)$ can be obtained as follows:

			.1.	a_4	\mathbf{a}_3	\mathbf{a}_2	a_1	a_0
			*		X 3	\mathbf{X}_2	\mathbf{X}_1	X_0
				a_4x_0	a ₃ x ₀	a_2x_0	a_1x_0	$a_0 x_0$
			a_4x_1	a_3x_1	a_2x_1	a_1x_1	a_0x_1	
		a_4x_2	$\mathbf{a}_3\mathbf{x}_2$	$\mathbf{a}_2\mathbf{x}_2$	a_1x_2	a_0x_2		
+	$\mathbf{a}_4\mathbf{x}_3$	a_3x_3	$\mathbf{a}_2\mathbf{x}_3$	a_1x_3	a_0x_3			
	n	n			n	n	n	n
p_8	\mathbf{p}_7	\mathbf{p}_{6}	\mathbf{p}_{5}	p_4	\mathbf{p}_3	\mathbf{p}_2	\mathbf{p}_1	\mathbf{p}_0

Assuming that the partial product bits $a_i x_j$, i = 0,...,4 and j = 0,...,3, have been generated, an array multiplier realizing the multiplication operation can be designed using FA's and HA's as follows:

Figure 7: Block diagram for multiplication of 5-bit multiplicand A and a 4-bit multiplier X

- * Number of Full Adder's required = 11
- * Number of Half Adder's required = 5

* Time delay for the design = Time to form the partial + Time to get actual product product terms (1 gate bits (Critical path highlighted in red delay for the 2 input in Figure 7) AND gates) $= 1 \Delta_G + (1+2+2+1+2+2+2)\Delta_G$ $= 13\Delta_G$

- 6. (no marks) Let a residue number system (RNS) be given by $(m_2, m_1, m_0) = (15, 14, 13)$.
- (a) Solve dynamic range for the RNS.
- (b) Find the RNS representations for $A = 19_{10}$ and $B = 22_{10}$. Perform $C = A \times B$ in the RNS.
- (c) How many bits are required to represent a number with respect to this RNS?

Ans.)

- a) Dynamic range for the RNS(15,14,13), M = 15 * 14 * 13 = 15 * 182 = 2730=> Range = [0, 2729]
- b) RNS representation for A = 19_{10} is (19 % 15, 19 % 14, 19 % 13) = (4, 5, 6)RNS representation for B = 22_{10} is (22 % 15, 22 % 14, 22 % 13) = (7, 8, 9) $C = A \times B \Rightarrow C = (4*7, 5*8, 6*9)$ = (28, 40, 54) $= (13, 12, 2)_{RNS (15,14,13)}$
- c) Bits required to represent a number w.r.t this RNS = $4 + 4 + 4 = \frac{12}{12}$