교재정오표 - 공학 선형대수학 문제 풀이집 (2020.01.29)

위치	수정 前	수정 後
8쪽 상 1 문제 3 (1)	, , , , , , , , , , , , , , , , , , , ,	$AB = \cdots = \begin{pmatrix} 1+4-4 & -6+2-4 \\ 0-2-2 & 0-1+2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -4 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 8 & -8 \end{pmatrix}$
는세 3 (1)	(1 1 2)	$BA = \cdots = \begin{pmatrix} 1 & 8 & -8 \\ 2 & 3 & -10 \\ 1 & 3 & -2 \end{pmatrix}$
	행렬식의 성질에 의해 $ A = A^t $ 이다. A^t 는 하삼각행렬이므로 대각성분의 곱이 행렬식이	
26쪽 하 8	된다. 그러므로	$ A = 2 \times (-1)^{4+1} \begin{vmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -3 & 2 & 0 \end{vmatrix} = -6$
	$ A = A^t = 1 \times 1 \times (-3) \times 2 = -6 $ or the second of	이다.
50쪽 하 2	$ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -\frac{5}{7}t \\ -\frac{5}{7}t \\ t \end{pmatrix} = t \begin{pmatrix} -\frac{5}{7} \\ -\frac{5}{7} \\ 1 \end{pmatrix} $	$ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -\frac{5}{7}t \\ -\frac{1}{7}t \\ t \end{pmatrix} = t \begin{pmatrix} -\frac{5}{7} \\ -\frac{1}{7} \\ 1 \end{pmatrix} $
51쪽 상 1, 2	$ \begin{pmatrix} -\frac{5}{7} \\ -\frac{5}{7} \\ 1 \end{pmatrix}, \begin{pmatrix} -\frac{5}{7} \\ -\frac{5}{7} \\ 1 \end{pmatrix}, \begin{pmatrix} 5 \\ 5 \\ -7 \end{pmatrix} $	$ \begin{pmatrix} -\frac{5}{7} \\ -\frac{1}{7} \\ 1 \end{pmatrix}, \begin{pmatrix} -\frac{5}{7} \\ -\frac{1}{7} \\ 1 \end{pmatrix}, \begin{pmatrix} 5 \\ 1 \\ -7 \end{pmatrix} $
57쪽 하 1	$\left[\left.T_{1} ight]_{\gamma}^{eta}\left[\left.T_{2} ight]_{eta}^{\gamma}$	$ig[T_2]^{\gamma}_{eta} ig[T_1]^{eta}_{\gamma}$
60쪽 하 3	$\beta_2 = \left\{ \boldsymbol{w_1} = \begin{pmatrix} 1 \\ -4 \\ 1 \end{pmatrix}, \ \boldsymbol{w_2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \ \boldsymbol{w_3} = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} \right\}$	$\beta_2 = \left\{ \boldsymbol{w_1} = \begin{pmatrix} 1 \\ -4 \\ -1 \end{pmatrix}, \ \boldsymbol{w_2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \ \boldsymbol{w_3} = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} \right\}$
66쪽 상 10	$egin{aligned} oldsymbol{x} = s egin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + t egin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \ s, \ t \in \mathbb{R} \end{aligned}$	$egin{aligned} oldsymbol{x} = s egin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} + t egin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \ s, \ t \in \mathbb{R} \end{aligned}$
88쪽 문제 1	내용 추가	(다른 풀이 방법) 내용 추가 참조
134쪽 상 4	tr(A+kA) = tr(A) + ktr(B)	tr(A+kB) = tr(A) + ktr(B)
147쪽 상 12-16	(8) $A = I$ (6)-(8) 풀이 내용	(8) $A \neq I$ (6)-(8) 풀이 내용 수정
158쪽 상 4	(1) 차수가 짝수인	(1) 최고차항의 차수가 짝수인
163쪽 하 6	내용 추가	(다른 풀이 방법) 내용 추가 참조
166쪽 상 2	$\cos x = \left(\frac{1}{2}\right)1 + (-1)\sin^2\left(\frac{x}{2}\right)$	$\cos x = 1 \times 1 + (-2) \times \sin^2\left(\frac{x}{2}\right)$
173쪽 상 4, 8, 11, 18, 20	V	U
176쪽 상 6		$k_2 = -\frac{1}{2}a + \frac{1}{2}b, [\boldsymbol{v}]_{\beta} = \left(\frac{a}{b-a}\right)$
183쪽 상 5	(7) $T: C[0, 1] \to C[0, 1]$	$(7) T: C(\mathbb{R}) \to C(\mathbb{R})$
184쪽 상 8	왜냐하면 $C[0, 1]$ 의 임의의 두 벡터 그러므로 $T: C[0, 1] \rightarrow C[0, 1]$ 는	왜냐하면 $C(\mathbb{R})$ 의 임의의 두 벡터
184쪽 하 9 199쪽 하 7	$\alpha = \left\{ \boldsymbol{u_1} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \ \boldsymbol{u_2} = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}, \ \boldsymbol{u_3} = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \right\},$	그러므로 $T: C(\mathbb{R}) \to C(\mathbb{R})$ 는 $\beta = \left\{ \mathbf{u_1} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \ \mathbf{u_2} = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}, \ \mathbf{u_3} = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \right\},$
A		$\alpha = \left\{ \mathbf{v_1} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \ \mathbf{v_2} = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}, \ \mathbf{v_3} = \begin{pmatrix} 3 \\ 1 \\ -1 \end{pmatrix} \right\}$
201쪽 문제 8 202쪽 상 6	선형변환 D (3) β 에서 γ 로의	선형변환 T (3) γ 에서 β 로의
202 측 정 6 202 쪽 하 5	(4) $S^{-1}AS \binom{-1}{5} = \binom{27}{11}$ 이다.	(4) $S^{-1}AS\begin{pmatrix} -1\\5 \end{pmatrix} = \begin{pmatrix} 1\\12 \end{pmatrix}$ 이다.
 221쪽 하 6	$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$	$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix}$

위치	수정 前	수정 後
228쪽 상 1, 2, 3, 6	$f^2(x)$	$\{f(x)\}^2$
2	$(2f)^2(x)$	$\left \{2f(x)\}^2\right $
4	$(f(x))^2$	$ \{f(x)\} ^2$
228쪽 문제 9	(3)	문제 및 풀이에서 (3)번 생략
229쪽 상 6	((z) (z) (z) (z) (z)	$ \left(\left\langle \begin{array}{c} 1 \\ 2 \\ y \\ 1 \end{array} \right\rangle \cdot \frac{1}{\sqrt{2}} \left(\begin{array}{c} 1 \\ 0 \\ 1 \end{array} \right) \left\langle \frac{1}{\sqrt{2}} \left(\begin{array}{c} 1 \\ 0 \\ 1 \end{array} \right) + \left\langle \left(\begin{array}{c} x \\ y \\ z \end{array} \right) \cdot \frac{1}{\sqrt{6}} \left(\begin{array}{c} -1 \\ 2 \\ 1 \end{array} \right) \right\rangle \frac{1}{\sqrt{6}} \left(\begin{array}{c} -1 \\ 2 \\ 1 \end{array} \right) $
230쪽 상 3	$x = (x, x_1)x_1 + (x, x_2)x_2 + (x, x_3)x_3 + (x, x_4)x_4$	$x = \langle x, x_1 \rangle x_1 + \langle x, x_2 \rangle x_2 + \langle x, x_3 \rangle x_3 + \langle x, x_4 \rangle x_4$
233쪽 상 6	$\left[oldsymbol{v} ight]_{eta}$ 을 구하여라.	v를 정규직교기저의 일차결합으로 나타내어라.
233쪽 상 7	$ \begin{bmatrix} \boldsymbol{v} \end{bmatrix}_{\beta} = \begin{pmatrix} \frac{1}{\sqrt{3}} (& a-b-c) \\ \frac{1}{\sqrt{6}} (2a+b+c) \\ \frac{1}{\sqrt{2}} (& -b+c) \end{pmatrix} \qquad \boldsymbol{v} = \frac{1}{\sqrt{3}} (& a-b-c) $	$)m{u_1} + rac{1}{\sqrt{6}}(2a + b + c)m{u_2} + rac{1}{\sqrt{2}}(-b + c)m{u_3}$
243쪽 하 2	$\hat{\boldsymbol{x}} = \cdots = \begin{pmatrix} \frac{19}{7} \\ -\frac{26}{7} \end{pmatrix}$	$\hat{\boldsymbol{x}} = \cdots = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$
244쪽 상 2	$\left(-\frac{\sqrt{7}}{7}\right)\left(0\right)$	$A\hat{\boldsymbol{x}} = \begin{pmatrix} 1 & 1 \\ 2 & -3 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}$
244쪽 하 5 	$\hat{\boldsymbol{x}} = \cdots = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$	$\hat{\boldsymbol{x}} = \cdots = \frac{1}{37} \begin{pmatrix} 95 \\ -130 \end{pmatrix}$
244쪽 하 4	$A\hat{\boldsymbol{x}} = \begin{pmatrix} -1 & 1\\ 2 & 1\\ 1 & -2 \end{pmatrix} \begin{pmatrix} 2\\ 1 \end{pmatrix} = \begin{pmatrix} -1\\ 5\\ 0 \end{pmatrix}$	$A\hat{\boldsymbol{x}} = \begin{pmatrix} -1 & 1\\ 2 & 1\\ 1 & -2 \end{pmatrix} \frac{1}{37} \begin{pmatrix} 95\\ -130 \end{pmatrix} = \frac{1}{37} \begin{pmatrix} -225\\ 60\\ 355 \end{pmatrix}$
247쪽 하 4	[0,1]위에서 일차함수에 의한	S위에서 일차함수에 의한
248쪽 상 7, 그림	$=6x+\frac{35}{6}$	$=\frac{53}{6}+6x$