

Computing the Intersection of a Line and a Cylinder

Ching-Kuang Shene

Department of Mathematics and Computer Science Northern Michigan University Marquette, MI 49855-5340 facs@nmumus.bitnet

Computing the intersection of a line and a surface is a common operation in graphics applications. Traditional methods usually assume that the surface is given by an implicit equation and reduce the intersection problem to solving a single-variable equation. However, in many graphics applications, a cylinder or a cone is represented by some geometric form like the one used in this Gem. Although a geometric form can be transformed to an implicit equation (Shene 1994) so that traditional methods could be applied, a direct geometric method would be more efficient and robust. In this Gem, we shall present a simple geometric technique to compute the intersection of a line and a circular cylinder. The following notations will be used throughout this Gem:

- Upper- (resp., lower-) case vectors are position (resp., direction) vectors. Position vectors are sometimes referred to as points. Therefore, \vec{P} and P are equivalent. All direction vectors are of unit length. $|\vec{U}|$ is the length of vector \vec{U} .
- \overrightarrow{PQ} and \overline{PQ} are the line and the segment, respectively, determined by points \overrightarrow{P} and \overrightarrow{Q} .
- $\vec{u} \times \vec{v}$ denotes the cross product of vectors \vec{u} and \vec{v} .
- $\vec{u} \otimes \vec{v}$ is the normalized $\vec{u} \times \vec{v}$. That is, $\vec{u} \otimes \vec{v} = \vec{u} \times \vec{v}/|\vec{u} \times \vec{v}|$.
- $\ell(\vec{A}, \vec{u})$ is the line defined by base point \vec{A} and direction \vec{u} .
- $\mathcal{C}(\vec{A}, \vec{u}, r)$ is the circular cylinder with axis $\ell(\vec{A}, \vec{u})$ and radius r.

Let $\ell(\vec{A}, \vec{u})$ and $\mathcal{C}(\vec{B}, \vec{v}, r)$ be a line and a circular cylinder. If \vec{u} and \vec{v} are parallel, then we have two cases to consider based on the distance from \vec{B} to ℓ . If this distance is not equal to r, ℓ does not intersect \mathcal{C} ; otherwise, ℓ lies on \mathcal{C} .

Suppose ℓ and the axis of \mathcal{C} are not parallel. Let θ be the acute angle between \vec{u} and \vec{v} . Thus, $\cos \theta = |\vec{u} \cdot \vec{v}|$. Let \overrightarrow{OP} be the common perpendicular of ℓ and the axis of the cylinder, where \vec{O} is on the cylinder's axis and \vec{P} is on ℓ . Let |d| be the length of the segment \overline{OP} . Then, the plane containing $\ell(\vec{A}, \vec{u})$ and \overrightarrow{OP} cuts \mathcal{C} in an ellipse with

Figure 1. Computing the intersection point of a line and a circular cylinder.

semi-major axis length $a=|\vec{M}-\vec{O}|=r/\sin\theta=r/\sqrt{1-(\vec{u}\cdot\vec{v})^2}$ and semi-minor axis length r, where M is the intersection point of $\mathcal C$ and the line through O and parallel to ℓ (see Figure 1). If \overrightarrow{OM} and \overrightarrow{OP} are chosen to be the x- and the y-axes, respectively, and O the origin, the intersection ellipse has equation $\frac{x^2}{a^2}+\frac{y^2}{r^2}=1$. Since $\ell(\vec{A},\vec{u})$ is parallel to the x-axis at a distance of |d|, its intersection points with the ellipse can be determined by computing the x-coordinates corresponding to y=|d|. Hence, we have

$$x = \pm \frac{a}{r} \sqrt{r^2 - d^2} = \pm \sqrt{\frac{r^2 - d^2}{1 - (\vec{u} \cdot \vec{v})^2}}$$

If r < |d|, ℓ intersects \mathcal{C} at two points,

$$\vec{P} \pm \sqrt{\frac{r^2 - d^2}{1 - (\vec{u} \cdot \vec{v})^2}} \vec{u}$$

If r = |d|, ℓ is tangent to \mathcal{C} at \vec{P} ; otherwise, ℓ does not intersect \mathcal{C} .

Remark. \vec{P} and |d| are not difficult to compute. Since the common perpendicular of ℓ and the cylinder's axis has direction $\vec{w} = \vec{u} \otimes \vec{v}$, we have

$$\vec{A} + r\vec{u} + d\vec{w} = \vec{B} + s\vec{v} \tag{1}$$

for some appropriate r and s. Since both \vec{u} and \vec{v} are perpendicular to \vec{w} , computing the inner product of Equation (1) with \vec{w} gives $d = (\vec{B} - \vec{A}) \cdot \vec{w}$. Computing the cross

Using some results from classic theory of conic sections (Drew 1875, Macaulay 1895), we can apply the same technique to compute the intersection of a line and a cone; however, the resulting formulæ are more involved. The interested reader should refer to (Johnston and Shene 1992) for the details.

See also the other article on ray-cylinder intersection in this volume (Cychosz and Waggenspack 1994).

♦ Bibliography ♦

- (Cychosz and Waggenspack 1994) J. M. Cychosz and W. N. Waggenspack, Jr. Intersecting a ray with a cylinder. In Paul Heckbert, editor, *Graphics Gems IV*, pages 356–365. Academic Press, Boston, 1994.
- (Drew 1875) William H. Drew. A Geometric Treatise on Conic Sections, fifth edition. Macmillan and Co., London, UK, 1875.
- (Johnstone and Shene 1992) John K. Johnstone and Ching-Kuang Shene. Computing the intersection of a plane and a natural quadric. Computers & Graphics, 16(2):179–186, 1992.
- (Macaulay 1895) Francis S. Macaulay. *Geometric Conics*. Cambridge University Press, Cambridge, UK, 1895.
- (Shene 1994) Ching-Kuang Shene. Equations of cylinders and cones. In Paul Heckbert, editor, *Graphics Gems IV*, pages 321–323. Academic Press, Boston, 1994.