Ensemble learning: Bagging & Boosting

CE-717: Machine Learning Sharif University of Technology

Prepared by M. Soleymani; reviewed/Complemented by H. R. Rabiee Fall 2018

What is ensemble learning?

- Ensembles combine multiple hypotheses to form a (hopefully) better hypothesis.
 - combining many weak learners in an attempt to produce a strong learner.
- Ensemble term is usually reserved for methods that generate multiple hypotheses using the same base learner.
- Multiple classifier (broader term) also covers combination of hypotheses that are not induced by the same base learner.

Ensemble learning

- We only talk about:
 - Bagging: Bootstrap aggregating
 - Boosting
 - One important committee method
 - ▶ The most famous boosting algorithm: AdaBoost

Bias-variance trade-off

- Weak or simple learners
 - Low variance: they don't usually overfit
 - High bias: they can't learn complex functions
- Boosting to decrease the bias
 - boost weak learners to enhance their capabilities
- Bagging can decrease the variance

Bagging algorithm (Breiman, 96)

- Each member of the ensemble is constructed from a different training dataset
 - samples training data uniformly at random with replacement
- Predictions combined either by uniform averaging or voting over class labels.
 - works best with unstable models (high variance models)
- Despite its apparent simplicity, Bagging is still not fully understood

Bootstrap Sampling

- ▶ Bootstrap sampling: Samples the given dataset N times uniformly with replacement (resulting in a set of N samples)
 - Some samples in the original set may be included several times in the bootstrap sampled data
- Bootstrap sampling: like "roll N-face dice N times"

Bagging algorithm

▶ **Input:** Required ensemble size *M*

Training set
$$D = \{(x^{(1)}, y^{(1)}), \dots, (x^{(N)}, y^{(N)})\}$$

- for t=1 to Tdo
 - Build a dataset D_t by sampling N items, randomly with replacement from D
 - Train a model h_t using D_t , and add it to the ensemble.
- $H(x) = \operatorname{sign}(\sum_{t=1}^{T} h_t(x))$
 - Combine models by voting for classification and by averaging for regression

Bagging on decision trees

- Decision trees are popular classifiers:
 - interpretable
 - can handle discrete and continuous features
 - robust to outliers
 - low bias
- ▶ However, they are high variance
- Trees are perfect candidates for ensembles
 - Consider averaging many (nearly) unbiased tree estimators
 - Bias remains similar, but variance is reduced
 - This is called bagging
 - Train many trees on bootstrapped data, then average outputs

Random Forest

- Bagging on decision trees
- Reduce correlation between trees, by introducing randomness
 - For b = 1, ..., B,
 - Draw a bootstrap dataset
 - Learn a tree on this dataset
 - \square Select m features randomly out of d features as candidates before splitting
 - Output:
 - Regression: average of outputs
 - ▶ Classification: majority vote Usually: $m \le \sqrt{d}$

Boosting idea

- We can select simple "weak" classification or regression methods and combine them into a single "strong" method
- Examples of weak classifiers: Naïve bayes, logistic regression, decision stumps or shallow decision trees
- Learn many weak classifiers that are good at different parts of the input space.
- ▶ To find the output class, find weighted vote of classifiers

Boosting

- Try to combine many simple "weak" classifiers (in sequence) to find a single "strong" classifier
 - ▶ Each component is a simple binary ±1 classifier
 - Voted combinations of component classifiers

$$H_m(\mathbf{x}) = \alpha_1 h(\mathbf{x}; \boldsymbol{\theta}_1) + \dots + \alpha_t h(\mathbf{x}; \boldsymbol{\theta}_t)$$

To simplify notation: $h(x; \theta_i) = h_i(x)$ $\alpha_i \ge 0$ are higher for more reliable classifiers

$$H_m(\mathbf{x}) = \alpha_1 h_1(\mathbf{x}) + \ldots + \alpha_t h_t(\mathbf{x})$$

• Prediction: $\hat{y} = sign(H_t(x))$

Simple component classifiers

Simple family of component classifiers (called decision stumps):

$$h(\mathbf{x}; \boldsymbol{\theta}) = sign(w_1 x_k - w_0) \qquad \boldsymbol{\theta} = \{k, w_1, w_0\}$$

• Each classifier is based on only a single feature of x (e.g., x_k): decision tree of depth one

AdaBoost: basic ideas

- Sequential production of classifiers
 - choose classifier whose addition will be most helpful.
- ▶ Each classifier is dependent on the previous ones
 - focuses on the previous ones' errors
- Incorrectly predicted samples in previous classifiers are weighted more heavily

Equal Weights to all training samples

ROUND 3

H final

AdaBoost algorithm

- For i=1 to N Initialize the data weight $w_1^{(i)}=\frac{1}{N}$
- 2) For t = 1 to T
 - a) Find a classifier $h_t(x)$ by minimizing the weighted error function:

$$J_t = \sum_{i=1}^N w_t^{(i)} \times I\left(y^{(i)} \neq h_t(\boldsymbol{x}^{(i)})\right)$$

Only when $h_t(x)$ with $\epsilon_t < 0.5$ (better than chance) is found, boosting continues.

b) Find the weighted error of $h_t(x)$:

$$\epsilon_t = \frac{\sum_{i=1}^{N} w_t^{(i)} \times I\left(y^{(i)} \neq h_t(\boldsymbol{x}^{(i)})\right)}{\sum_{i=1}^{N} w_t^{(i)}}$$

and the new component is assigned votes based on its error:

$$\alpha_t = \ln((1 - \epsilon_t)/\epsilon_t)$$

c) The normalized weights are updated:

$$w_{t+1}^{(i)} = w_t^{(i)} e^{\alpha_t I(y^{(i)} \neq h_t(x^{(i)}))}$$

Combined classifier $\hat{y} = \text{sign}(H_T(x))$ where $H_T(x) = \sum_{t=1}^{M} \alpha_t h_t(x)$

Notation explanation

- $w_t^{(i)}$: Weighting coefficient of data point i in iteration t
- α_t : weighting coefficient of t-th base classifier in the final ensemble
 - ϵ_t : weighted error rate of t-th base classifier

Boosting: main ideas

- Boosting algorithms maintain weights on training data:
 - Initially, all weights are equal, $w_1^{(i)} = 1/N$.
 - In t-th iteration, the weights are updated:
 - If $x^{(i)}$ is misclassified by h_t , $w_t^{(i)}$ goes up;
- Fitting of h_{t+1} is guided by weights of samples
 - Force h_{t+1} to focus on already misclassified examples.

Adaptive boosting (AdaBoost): intuition

First iteration: a usual procedure for training a single (weak) classifier

- Subsequent iterations:
 - $w_t^{(i)}$ are increased for misclassified data points
 - Then, successive classifiers are forced to place greater emphasis on points misclassified by previous classifiers

Boosting: loss function

- We need a loss function for the combination
 - be determine which new component $h(x; \theta)$ to add
 - and how many votes it should receive

$$H_t(\mathbf{x}) = \frac{1}{2} \left(\alpha_1 h_1(\mathbf{x}) + \dots + \alpha_t h_t(\mathbf{x}) \right)$$

- Many options for the loss function
 - AdaBoost is equivalent to using the following exponential loss

$$Loss(y, H_t(\mathbf{x})) = e^{-y \times H_t(\mathbf{x})}$$
$$\hat{y} = sign(H_t(\mathbf{x}))$$

 A simple interpretation of boosting in terms of the sequential minimization of the exponential loss function [Friedman et al., 2000].

Boosting: exponential loss function

- Differentiable approximation (bound) of 0/1 loss
 - Easy to optimize
 - Optimizing an upper bound on classification error.
- Other options are possible.

$$H_t(\mathbf{x}) = \frac{1}{2} [\alpha_1 h_1(\mathbf{x}) + \dots + \alpha_t h_t(\mathbf{x})]$$

AdaBoost: loss function

▶ Consider adding the *t*-th component:

$$E = \sum_{i=1}^{N} e^{-y^{(i)} H_t(x^{(i)})} = \sum_{i=1}^{N} e^{-y^{(i)} [H_{t-1}(x^{(i)}) + \frac{1}{2} \alpha_t h_t(x^{(i)})]}$$
$$= \sum_{i=1}^{N} e^{-y^{(i)} H_{t-1}(x^{(i)})} e^{-\frac{1}{2} \alpha_t y^{(i)} h_t(x^{(i)})}$$

Suppose it is fixed at stage t

$$= \sum_{i=1}^{N} w_t^{(i)} e^{-\frac{1}{2}\alpha_t y^{(i)} h_t(x^{(i)})}$$

Need to be optimized at stage t by seeking $h_t(x)$ and α_t

$$w_t^{(i)} = e^{-y^{(i)}H_{t-1}(x^{(i)})}$$

Weighted exponential loss

$$E = \sum_{i=1}^{N} w_t^{(i)} e^{-\alpha_t y^{(i)} h_t(x^{(i)})}$$

- sequentially adds a new component trained on reweighted training samples
- $w_t^{(i)}$: history of classification of $x^{(i)}$ by H_{t-1} .
 - → Loss weighted towards mistakes
- lteration t optimization:
 - choose the new component $h_t = h(x; \theta_t)$
 - and the vote α_t that optimize the weighted exponential loss.

Minimizing loss: finding h_t

$$E = \sum_{i=1}^{N} w_t^{(i)} e^{-\frac{1}{2}\alpha_t y^{(i)} h_t(x^{(i)})}$$

$$= e^{\frac{-\alpha_t}{2}} \sum_{y^{(i)} = h_t(x^{(i)})} w_t^{(i)} + e^{\frac{\alpha_t}{2}} \sum_{y^{(i)} \neq h_t(x^{(i)})} w_t^{(i)}$$

$$= \left(e^{\frac{\alpha_t}{2}} - e^{\frac{-\alpha_t}{2}}\right) \sum_{y^{(i)} \neq h_t(x^{(i)})} w_t^{(i)} + e^{\frac{-\alpha_t}{2}} \sum_{i=1}^{N} w_t^{(i)}$$

$$J_t = \sum_{i=1}^{N} w_t^{(i)} \times I\left(y^{(i)} \neq h_t(x^{(i)})\right) \qquad \text{Find } h_t(x) \text{ that minimizes } J_t$$

Minimizing loss: finding α_m

$$\frac{\partial E}{\partial \alpha_t} = 0$$

$$\Rightarrow \frac{1}{2} \left(e^{\frac{\alpha_t}{2}} + e^{\frac{-\alpha_t}{2}} \right) \sum_{y^{(i)} \neq h_t(x^{(i)})} w_t^{(i)} - \frac{1}{2} e^{\frac{-\alpha_t}{2}} \sum_{i=1}^N w_t^{(i)} = 0$$

$$\Rightarrow \frac{e^{\frac{-\alpha_t}{2}}}{\left(e^{\frac{\alpha_t}{2}} + e^{\frac{-\alpha_t}{2}}\right)} = \frac{\sum_{y^{(i)} \neq h_t(x^{(i)})} w_t^{(i)}}{\sum_{i=1}^N w_t^{(i)}}$$

$$\alpha_t = \ln((1 - \epsilon_t)/\epsilon_t)$$

$$\epsilon_{t} = \frac{\sum_{i=1}^{N} w_{t}^{(i)} I\left(y^{(i)} \neq h_{t}(\boldsymbol{x}^{(i)})\right)}{\sum_{i=1}^{N} w_{t}^{(i)}}$$

Updating weights

Updating weights in AdaBoost algorithm:

$$w_i^{t+1} = w_i^t e^{-\frac{1}{2}\alpha_t y^{(i)} h_t(x^{(i)})}$$

$$= w_i^t e^{-\frac{1}{2}\alpha_t} e^{\alpha_t I\left(y^{(i)} \neq h_t(x^{(i)})\right)}$$

$$y^{(i)} h_t(x^{(i)}) = 1 - 2I\left(y^{(i)} \neq h_t(x^{(i)})\right)$$
Independent of i and can be ignored
$$\Rightarrow w_i^{t+1} = w_i^t e^{\alpha_t I\left(y^{(i)} \neq h_t(x^{(i)})\right)}$$

Another perspective for AdaBoost

Define a uniform distribution $D_1(i)$ over elements of S.

for
$$t = 1$$
 to T do

Train a model h_t using distribution D_t .

Calculate
$$\epsilon_t = P_{D_t}(h_t(x) \neq y)$$

If $\epsilon_t \ge 0.5$ break

Set
$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

Update
$$D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

where Z_t is a normalization factor so that D_{t+1} is a valid distribution.

end for

For a new testing point (x', y'),

$$H(x') = \operatorname{sign}(\sum_{t=1}^{T} \alpha_t h_t(x'))$$

$$H_T(\mathbf{x}) = \sum_{n=0}^{\infty} [\alpha_1 h_1(\mathbf{x}) + \dots + \alpha_T h_T(\mathbf{x})]$$

AdaBoost algorithm: summary

- For i = 1 to N Initialize the data weight $w_1^{(i)} = \frac{1}{N}$
- 2) For t = 1 to T
 - a) Find a classifier $h_t(x)$ by minimizing the weighted error function
 - b) Find the normalized weighted error of $h_t(x)$ as ϵ_t
 - c) Compute the new component weight as α_t
 - d) Update example weights for the next iteration $w_{t+1}^{(i)}$
- Combined classifier $\hat{y} = \text{sign}(H_T(x))$ where $H_T(x) = \sum_{t=1}^T \alpha_t h_t(x)$

How to train base learners

- Weak learners used in practice:
 - Decision stumps
 - Decision trees
 - Multi-layer neural networks
- Can base learners operate on weighted examples?
 - In many cases they can be modified to accept weights along with the examples
 - In general, we can sample the examples (with replacement) according to the distribution defined by the weights

AdaBoost: typical behavior

- Exponential loss goes strictly down.
- ▶ Training error of *H* goes down
- ▶ Weighted error ϵ_t goes up \Rightarrow votes α_t go down.

AdaBoost properties: exponential loss

In each boosting iteration, assuming we can find $h(x; \widehat{\theta}_t)$ whose weighted error is better than chance.

$$H_t(\mathbf{x}) = \frac{1}{2} \left[\widehat{\alpha}_1 h(\mathbf{x}; \widehat{\boldsymbol{\theta}}_1) + \dots + \widehat{\alpha}_t h(\mathbf{x}; \widehat{\boldsymbol{\theta}}_t) \right]$$

▶ Thus, lower exponential loss over training data is guaranteed.

$$E = \sum_{i=1}^{N} e^{-y^{(i)} H_t(x^{(i)})}$$

AdaBoost properties: training error

• Boosting iterations typically decrease the classification error of $H_t(x)$ over training examples.

AdaBoost properties: training error

Training error has to go down exponentially fast if the weighted error of each h_t is strictly better than chance (i.e., $\epsilon_t < 0.5$)

Training error in t-th iteration is bounded by an exponential function a^t (0 < a < 1)

AdaBoost properties: weighted error

Weighted error of each new component classifier

$$\epsilon_{m} = \frac{\sum_{i=1}^{n} w_{m}^{(i)} I\left(y^{(i)} \neq h_{m}(x^{(i)})\right)}{\sum_{i=1}^{n} w_{m}^{(i)}}$$

tends to increase as a function of boosting iterations.

Updates & Normalization

Claim: D_{t+1} puts half of the weight on samples on which h_t was incorrect and other half on samples on which h_t was correct

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} e^{-\frac{1}{2}\alpha_t y^{(i)} h_t(x^{(i)})}$$

$$\Pr_{D_{t+1}}[y^{(i)} \neq h_t(x^{(i)})] = \sum_{i:y^{(i)} \neq h_t(x^{(i)})} \frac{D_t(i)}{Z_t} e^{\frac{1}{2}\alpha_t} = \frac{\epsilon_t}{Z_t} e^{\frac{1}{2}\alpha_t} = \frac{\epsilon_t}{Z_t} \sqrt{\frac{1 - \epsilon_t}{\epsilon_t}} = \frac{1}{Z_t} \sqrt{\epsilon_t (1 - \epsilon_t)}$$

$$\Pr_{D_{t+1}}[y^{(i)} = h_t(x^{(i)})] = \sum_{i:y^{(i)} = h_t(x^{(i)})} \frac{D_t(i)}{Z_t} e^{-\frac{1}{2}\alpha_t} = \frac{1 - \epsilon_t}{Z_t} e^{-\frac{1}{2}\alpha_t} = \frac{1 - \epsilon_t}{Z_t} \sqrt{\frac{\epsilon_t}{1 - \epsilon_t}} = \frac{1}{Z_t} \sqrt{\epsilon_t (1 - \epsilon_t)}$$

$$\begin{split} Z_t &= \sum_i D_t(i) e^{-\frac{1}{2}\alpha_t y^{(i)} h_t(x^{(i)})} = \sum_{i: y^{(i)} \neq h_t(x^{(i)})} D_t(i) e^{\frac{1}{2}\alpha_t} + \sum_{i: y^{(i)} = h_t(x^{(i)})} D_t(i) e^{-\frac{1}{2}\alpha_t} \\ &= (1 - \epsilon_t) e^{-\frac{1}{2}\alpha_t} + \epsilon_t e^{\frac{1}{2}\alpha_t} = 2\sqrt{\epsilon_t (1 - \epsilon_t)} \end{split}$$

Theorem: Error of
$$h_t$$
 over D_t : $\epsilon_t = \frac{1}{2} - \gamma_t$
$$E_{train}(H_T) \le e^{-2\sum_{t=1}^T \gamma_t^2}$$

Thus, if $\forall t, \gamma_t \geq \gamma > 0$ then $E_{train}(H_T) \leq e^{-2\gamma^2 T}$

- \blacktriangleright Training error decreases exponentially in T
- ▶ To reach $E_{train}(H_T) \le \epsilon$ we need $T = O\left(\frac{1}{\gamma^2}\log\left(\frac{1}{\epsilon}\right)\right)$

▶ Step I:
$$D_{T+1}(i) = \frac{1}{N} \left(\frac{e^{-y^{(i)}H_T(x^{(i)})}}{\prod_{t=1}^T Z_t} \right)$$

• Step 2: $E_{train}(H_T) \leq \prod_{t=1}^T Z_t$

▶ Step 3:
$$\prod_{t=1}^{T} Z_t = \prod_{t=1}^{T} 2\sqrt{\epsilon_t(1-\epsilon_t)} = \prod_{t=1}^{T} \sqrt{1-4\gamma_t^2}$$

 $\leq e^{-2\sum_{t=1}^{T} \gamma_t^2}$

$$\leq e^{-2\sum_{t=1}^{T} \gamma_t^2}$$

$$1-x \leq e^{-x}$$
For $0 \leq x \leq 1$

Step I:
$$D_{T+1}(i) = \frac{1}{N} \left(\frac{e^{-y^{(i)} H_T(x^{(i)})}}{\prod_{t=1}^T Z_t} \right)$$
 $H_t(x) = \frac{1}{2} \left[\alpha_1 h_1(x) + \dots + \alpha_t h_t(x) \right]$

Proof:

$$\begin{split} D_{1}(i) &= \frac{1}{N} \\ D_{t+1}(i) &= \frac{D_{t}(i)}{Z_{t}} e^{-\frac{1}{2}\alpha_{t}y^{(i)}h_{t}(x^{(i)})} \\ D_{T+1}(i) &= \frac{e^{-\frac{1}{2}\alpha_{T}y^{(i)}h_{T}(x^{(i)})}}{Z_{T}} D_{T}(i) \\ &= \frac{e^{-\frac{1}{2}\alpha_{T}y^{(i)}h_{T}(x^{(i)})}}{Z_{T}} \times \frac{e^{-\frac{1}{2}\alpha_{T-1}y^{(i)}h_{T-1}(x^{(i)})}}{Z_{T-1}} D_{T-1}(i) \\ &= \frac{e^{-\frac{1}{2}\alpha_{T}y^{(i)}h_{T}(x^{(i)})}}{Z_{T}} \times \cdots \times \frac{e^{-\frac{1}{2}\alpha_{1}y^{(i)}h_{1}(x^{(i)})}}{Z_{1}} D_{1}(i) \\ &= \frac{1}{N} \left(\frac{e^{-\frac{1}{2}(\alpha_{1}y^{(i)}h_{1}(x^{(i)})+\cdots+\alpha_{T}y^{(i)}h_{T}(x^{(i)}))}}{\prod_{t=1}^{T} Z_{t}} \right) = \frac{1}{N} \left(\frac{e^{-y^{(i)}H_{T}(x^{(i)})}}{\prod_{t=1}^{T} Z_{t}} \right) \end{split}$$

▶ Step I:
$$D_{T+1}(i) = \frac{1}{N} \left(\frac{e^{-y^{(i)}H_T(x^{(i)})}}{\prod_{t=1}^T Z_t} \right)$$

• Step 2: $E_{train}(H_T) \leq \prod_{t=1}^T Z_t$

Proof:

$$E_{train}(H_T) = \frac{1}{N} \sum_{i} I(y^{(i)} \neq sign(H_T(x^{(i)})))$$

$$= \frac{1}{N} \sum_{i} I(y^{(i)} H_T(x^{(i)}) \leq 0)$$

$$\leq \frac{1}{N} \sum_{i} e^{-y^{(i)} H_T(x^{(i)})}$$

$$= \sum_{i} D_{T+1}(x^{(i)}) \prod_{t=1}^{T} Z_t$$

$$= \prod_{t=1}^{T} Z_t$$

▶ Step I:
$$D_{T+1}(i) = \frac{1}{N} \left(\frac{e^{-y^{(i)}H_T(x^{(i)})}}{\prod_{t=1}^T Z_t} \right)$$

- ▶ Step 2: $E_{train}(H_T) \leq \prod_{t=1}^T Z_t$
- ▶ **Step 3:** $\prod_{t=1}^{T} Z_t = \prod_{t=1}^{T} 2\sqrt{\epsilon_t(1-\epsilon_t)} = \prod_{t=1}^{T} \sqrt{1-4\gamma_t^2}$ < $e^{-2\sum_{t=1}^{T} \gamma_t^2}$

Error of h_t over D_t $\epsilon_t = \frac{1}{2} - \gamma_t$

$$\operatorname{Recall:} Z_t = (1 - \epsilon_t) e^{-\frac{1}{2}\alpha_t} + \epsilon_t e^{\frac{1}{2}\alpha_t} = 2\sqrt{\epsilon_t(1 - \epsilon_t)}$$

Theorem: Error of
$$h_t$$
 over D_t : $\epsilon_t = \frac{1}{2} - \gamma_t$
$$E_{train}(H_T) \le e^{-2\sum_{t=1}^T \gamma_t^2}$$

Thus, if $\forall t, \gamma_t \geq \gamma > 0$ then $E_{train}(H_T) \leq e^{-2\gamma^2 T}$

- \blacktriangleright Training error decreases exponentially in T
- ▶ To reach $E_{train}(H_T) \le \epsilon$ we need $T = O\left(\frac{1}{\gamma^2}\log\left(\frac{1}{\epsilon}\right)\right)$

Generalization Error Bounds

$$E_{true}(H) \le E_{train}(H) + \tilde{O}\left(\sqrt{\frac{Td}{N}}\right)$$
 With high probability

T: number of boosting rounds

... . f . l . . . : f' . . .

[Freund & Schapire'95]

d:VC dimension of weak learner, measures complexity of classifier

N: number of training examples

According to this bound, boosting can overfit if T is large

Boosting and overfitting

- Boosting is often robust to overfitting
 - But not always
 - may easily overfit in the presence of labeling noise or overlap of classes

▶ Test set error decreases even after training error is zero

Training and test error

Test error usually does not increase as the number of base classifiers becomes very large.

AdaBoost: test error

Continuing to add new weak learners after achieving zero training error could even decrease test error!

Generalization Error Bounds

$$E_{true}(H) \leq E_{train}(H) + \tilde{O}\left(\sqrt{\frac{Td}{N}}\right)$$
 With high probability

[Freund & Schapire'95]

T: number of boosting rounds

d:VC dimension of weak learner, measures complexity of classifier

N: number of training examples

- Is not consistent with experimental results
- The bound is too loose
- Margin-based bounds as better analysis

AdaBoost and margin

Combined classifier in a more useful form:

$$H_t(\mathbf{x}) = \frac{\alpha_1 h_1(\mathbf{x}) + \dots + \alpha_t h_t(\mathbf{x})}{\alpha_1 + \dots + \alpha_t}$$

This allows us to define a margin:

$$margin(\mathbf{x}_i) = y^{(i)}H_t(\mathbf{x}^{(i)})$$

- \blacktriangleright margin lies in [-1,1] and is negative for misclassified examples.
 - > a measure of confidence in the correct decision
- Margin of training examples is increased during iterations
 - Even for correct classification can further improve confidence.

Cumulative distributions of margin values

Adaboost and margin

- When a combined classifier is used, the more classifier agreeing, the more confident you are in your prediction.
- Successive boosting iterations can improve the majority vote or margin for the training examples

A Margin Bound

For any γ , the generalization error is less than:

$$P(margin_{h}(\mathbf{x}, y) \leq 0)$$

$$\leq P_{train}(margin_{h}(\mathbf{x}, y) \leq \gamma) + O\left(\sqrt{\frac{d}{N\gamma^{2}}}\right)$$

▶ It does not depend on *T*.

$$margin_h(\mathbf{x}, \mathbf{y}) = \mathbf{y}H_T(\mathbf{x})$$

$$H_t(\mathbf{x}) = \frac{\alpha_1 h_1(\mathbf{x}) + \dots + \alpha_t h_t(\mathbf{x})}{\alpha_1 + \dots + \alpha_t}$$

Bagging & Boosting: Summary

Bagging

- Uses bootstrap sampling to construct several training sets from the original training set and then aggregate the learners trained on these datasets
- Bagging reduces the variance of high variance learners (e.g. decision tree)

Boosting

- Combine many ("weak") classifiers in sequence to find a single "strong" classifier
 - In each iteration, change the distribution of data to emphasis the samples that have been misclassified by the previous learner

Resources

- C. Bishop, "Pattern Recognition and Machine Learning", Chapter 14.2-14.3.
- Robert E. Schapire, The Boosting Approach to Machine Learning, 2001.
- ▶ Robert E. Schapire et. al, Boosting the margin: A new explanation for the effectiveness of voting methods. *The Annals of Statistics*, 26(5):1651-1686, 1998.