Введение в римановы поверхности

С. К. Ландо

Национальный исследовательский университет Высшая школа экономики

2021

Лекция 11. Линейные расслоения над кривыми

Функции на кривой можно понимать как сечения тривиального линейного расслоения над ней. Тривиальное линейное расслоение над кривой \mathcal{C} — это прямое произведение $C \times \mathbb{C}$ этой кривой на комплексную прямую. Каждой мероморфной функции $f: C \to \mathbb{C}P^1$ сопоставляется мероморфное сечение этого расслоения $C \to C \times \mathbb{C}$. переводящее точку $x \in C$ в точку $(x, f(x)) \in C \times \mathbb{C}$. Прообразы бесконечности являются полюсами функции f в C. Если кривая C компактна, то все голоморфные функции на ней постоянны, а у всякой непостоянной мероморфной функции есть полюса. Помимо тривиального линейного расслоения над всякой кривой есть еще два естественных линейных расслоения: касательное TC и кокасательное $T^{\vee}C$. Эти два расслоения имеются не только над кривыми, но и над произвольными комплексными многообразиями. Однако над комплексным многообразием размерности n>1 эти расслоения не являются линейными; их ранг (т.е., размерность слоя), равен л, тогда как ранг линейного расслоения, по определению, равен 1.

Лекция 11. Линейные расслоения над кривыми

Definition

Векторным расслоением ранга $k, k \in \mathbb{N}$, над комплексным многообразием M размерности m называется пара, состоящая из комплексного многообразия E размерности m+k и голоморфного отображения $p:E \to M$, такого, что у любой точки $x \in M$ существует открытая окрестность $U(x) \subset M$ и биголоморфизм $\varphi: U(x) \times \mathbb{C}^k \to p^{-1}(U(x))$ прямого произведения U(x) и \mathbb{C}^k на полный прообраз этой окрестности, причем

- $p \circ \varphi : (x, v) \mapsto x$ для любой точки $x \in M$;
- ullet ограничение отображения φ на $y \times \mathbb{C}^k$ является линейным изоморфизмом на $p^{-1}(y)$ для любой точки $y \in U(x)$.

Прообраз $p^{-1}(x)$ точки $x \in M$ называется *слоем* векторного расслоения $p: E \to M$. *Мероморфным сечением* голоморфного векторного расслоения $p: E \to M$ называется мероморфное отображение $\sigma: M \to E$, такое, что $p \circ \sigma: M \to M$ есть тождественное отображение.

Если ранг k векторного расслоения равен 1, то расслоение называется линейным.

Лекция 11. Касательное и кокасательное расслоения над кривой

Слоем T_x касательного расслоения TC к кривой C над точкой $x \in C$ является касательная прямая к C в точке x. Касательная прямая состоит из *касательных векторов*, которые можно определять по-разному. Например, как классы эквивалентности голоморфных отображений $(D,0) \to (C,x)$, где D — единичный диск в $\mathbb C$, или как дифференцирования, т.е. линейные отображения из пространства ростков голоморфных функций в точке $x \in C$ в \mathbb{C} , удовлетворяющие правилу Лейбница v(fg) = v(f)g(x) + f(x)v(g). При втором определении утверждение о том, что касательные вектора к кривой C в данной точке x образуют векторное пространство. становится очевидным. Кокасательное расслоение двойственно к касательному. Векторное поле — это сечение касательного расслоения. Дифференциальная 1-форма сечение кокасательного расслоения (ковекторное поле). В локальной координате zвекторное поле записывается в виде $a(z)\partial/\partial z$; его нули и полюса — это нули и полюса локальных коэффициентов a(z). Если векторное поле голоморфно, то голоморфна и функция a(z); если поле мероморфно, то функция a(z) мероморфна. Соответственно, 1-форма записывается в виде b(z)dz.

Лекция 11. Векторные поля и 1-формы на проективной прямой

На любой кривой C голоморфные векторные поля и голоморфные 1-формы образуют векторное пространство над \mathbb{C} . В свою очередь, мероморфные векторные поля и мероморфные 1-формы образуют векторное пространство как над \mathbb{C} , так и над полем мероморфных функций на C. Отношение любых двух ненулевых векторных полей является мероморфной функцией, поэтому последнее векторное пространство одномерно. То же самое справедливо и для 1-форм (и сечений любых линейных расслоений).

Лекция 11. Векторные поля и 1-формы на проективной прямой

Векторное поле $\partial/\partial z$ является голоморфным векторным полем на проективной прямой. Его голоморфность очевидна для всех конечных значений z. Чтобы понять, как оно ведет себя в бесконечности, посмотрим, как это векторное поле действует на локальную координату w=1/z в окрестности бесконечности. Имеем

$$\frac{\partial}{\partial z}w = \frac{\partial}{\partial z}\frac{1}{z} = -\frac{1}{z^2} = -w^2.$$

Тем самым, в координате w наше векторное поле имеет вид $-w^2\partial/\partial w$. Это означает, что оно голоморфно (у него нет полюсов) и имеет нуль порядка 2 в бесконечности.

Corollary

Всякое голоморфное векторное поле на проективной прямой имеет вид $P_2(z)\partial/\partial z$, где $P_2(z)$ — многочлен степени не выше 2.

1-форма dz имеет в бесконечности полюс второго порядка: $dz = d\frac{1}{w} = -\frac{dw}{w^2}$.

Corollary

На проективной прямой нет ненулевых голоморфных 1-форм.

Лекция 11. Дифференциал функции

Одним из основных источников мероморфных 1-форм на комплексных кривых являются дифференциалы функций. Всякой мероморфной функции $f:C\to \mathbb{C}P^1$ на кривой C соответствует 1-форма df, ее дифференциал, на C. По определению, 1-форма df действует на касательный вектор $v\in T_xC$ по правилу $df:v\mapsto v(f)$. В локальной координате z дифференциал мероморфной функции f записывается в виде $df=\frac{\partial f}{\partial z}dz$. Упражнение. 1-форма dz на проективной прямой является дифференциалом мероморфной функции z. Дифференциалом какой мероморфной функции является 1-форма $\frac{dz}{z}$?

Лекция 11. Векторные поля и 1-формы

Всякое ненулевое мероморфное векторное поле на проективной прямой имеет вид $\frac{P(z)}{Q(z)} \frac{\partial}{\partial z}$, где P(z), Q(z) — многочлены, не имеющие общих корней. Всякая ненулевая мероморфная 1-форма на проективной прямой имеет вид $\frac{P(z)}{Q(z)}dz$, где P(z), Q(z) — многочлены, не имеющие общих корней.

Лекция 11. Векторные поля и 1-формы на эллиптических кривых

Векторное поле $\partial/\partial z$ на комплексной прямой $\mathbb C$ инвариантно относительно сдвигов на любой вектор в $\mathbb C$. В частности, оно инвариантно относительно сдвигов на элементы любой решетки $L\subset \mathbb C$, и определяет поэтому векторное поле на факторкривой $\mathbb C/L$. Это векторное поле голоморфно (у него нет полюсов) и не имеет нулей. Если V — другое голоморфное векторное поле на $\mathbb C/L$, то, разделив его на $\partial/\partial z$, получаем голоморфную функцию на $\mathbb C/L$, т.е. константу. Поэтому пространство голоморфных векторных полей на $\mathbb C/L$ одномерно.

Векторное поле $\partial/\partial z$ на эллиптической кривой $C=\mathbb{C}/L$ задает *тривиализацию* касательного расслоения TC к C. Таким образом, в случае эллиптической кривой касательное расслоение тривиально, $TC\cong C\times \mathbb{C}$.

Аналогичные утверждения справедливы и для 1-форм. Кокасательное расслоение $T^{\vee}C$ к эллиптической кривой тривиально и порождается голоморфной 1-формой dz, не имеющей нулей.

Лекция 11. Векторные поля и 1-формы

Сумма порядков нулей и полюсов мероморфного векторного поля на комплексной кривой равна ее эйлеровой характеристике. Поэтому на кривых рода g>1 (эйлерова характеристика которых отрицательна) нет ненулевых голоморфных векторных полей. Напротив, для существования голоморфных 1-форм отрицательность эйлеровой характеристики не является препятствием.

Задавать векторные поля и 1-формы на кривых рода g>1 сложнее, чем на кривых рода 0 и 1, — из-за отсутствия глобальной координаты и трудностей определения мероморфных функций на произвольной кривой. В то же время, 1-форму можно задать на кривой, отображенной в проективное пространство, подняв на нее мероморфную 1-форму на объемлющем пространстве. Например, если кривая C погружена в плоскость, то всякая 1-форма на плоскости задает 1-форму на C. Дифференциал функции также является поднятием 1-формы dz на $\mathbb{C}P^1$ при отображении $f: C \to \mathbb{C}P^1$.

Упражнение. Почему мероморфное векторное поле на плоскости не задает векторного поля на погруженной в плоскость кривой?

Более общим образом, голоморфное отображение $F:C\to M$ кривой C в комплексное многообразие M позволяет поднять на C любую 1-форму ω на M, положив $F^*\omega(v)=\omega(dF(v))$. Поэтому 1-формы — более подходящий объект для изучения и более подходящий инструмент исследования кривых, чем векторные поля.

Лекция 11. Векторные поля и 1-формы на кривых старших родов

Ограничивая 1-форму dx на произвольную плоскую алгебраическую кривую, мы получаем 1-форму на этой кривой. Если кривая C задана уравнением $(x-1)^2+y^2=1$, то ее можно параметризовать рациональной кривой, положив

$$x = \frac{2}{1+t^2}; \qquad y = \frac{2t}{1+t^2}.$$

Тогда $dx=-\frac{4tdt}{(1+t^2)^2}$, и нулями этой 1-формы являются те точки кривой, в которых t=0 и $t=\infty$, т.е. точки (2,0) и (0,0). Кроме того, у нее два полюса, оба порядка 2, в точках, отвечающих значениям параметра $t=\pm i$, т.е. в точках $(1:\pm i:0)$ на бесконечности нашей кривой.

Другой — и более универсальный, пригодный не только для рациональных кривых, — способ находить нули 1-формы, состоит в том, чтобы сравнить дифференциал на плоскости с дифференциалом df функции f, задающей кривую. В нулях ограничения дифференциала на кривую он пропорционален df; действительно, значение df на любом касательном векторе к кривой f=0 равно 0. Полюсами ограничения дифференциала на кривую могут оказаться точки пересечения кривой его полюсов с самой кривой; в частности, это могут быть точки кривой на бесконечности, которые нужно проверять.

Лекция 11. Размерность пространства голоморфных 1-форм на плоских кривых

Theorem

Пусть C — гладкая плоская кривая степени $d \ge 3$. Тогда размерность пространства голоморфных 1-форм на ней не меньше ее рода g(C) = (d-1)(d-2)/2.

Доказательство. Выберем на проективной плоскости координаты (x:y:z) таким образом, чтобы прямая z=0 пересекала кривую C в d точках (т.е., трансверсально). Пусть кривая C задается в аффинных координатах уравнением f(x,y)=0.

Lemma

Дифференциальная 1-форма

$$\omega_C = \frac{dx \wedge dy}{df}$$

является корректно определенной голоморфной 1-формой на С.

Лекция 11. Размерность пространства голоморфных 1-форм на плоских кривых

Пусть кривая C задается в аффинных координатах уравнением F(x,y,1) = f(x,y) = 0.

Lemma

Дифференциальная 1-форма

$$\omega_C = \frac{dx \wedge dy}{df}$$

является корректно определенной голоморфной 1-формой на С.

Доказательство. В аффинной карте z=1 1-форма $\omega_{\mathcal{C}}$ не имеет особенностей, поскольку df не обращается в нуль на \mathcal{C} . Достаточно проверить, что она не имеет полюсов на бесконечности. Перейдем от карты z=1 к карте x=1: $x=\frac{1}{v}, y=\frac{u}{v}$. Тогда

$$\omega_{C} = \frac{dx}{\partial f/\partial y} = -\frac{dv/v^{2}}{\partial f/\partial y\left(\frac{1}{v}, \frac{u}{v}, \right)} = -\frac{v^{d-3}dv}{v^{d-1}\partial f/\partial y\left(\frac{1}{v}, \frac{u}{v}\right)}.$$

В знаменателе последнего выражения стоит производная по u функции F(1,u,v).

Лекция 11. Размерность пространства голоморфных 1-форм на плоских кривых

Theorem

Пусть C — гладкая плоская кривая степени $d \geq 3$. Тогда размерность пространства голоморфных 1-форм на ней не меньше ее рода g(C) = (d-1)(d-2)/2.

Lemma

Для всякого многочлена p(x,y) степени, не превосходящей d-3, дифференциальная 1-форма

$$p(x,y)\omega_C$$

является корректно определенной голоморфной 1-формой на C, равной 0 в том и только в том случае, когда $p\equiv 0$.

Доказательство. Достаточно проверить, что в точках кривой C на бесконечности порядок нуля 1-формы ω_C равен d-3.

Лекция 11. Размерность пространства голоморфных 1-форм на плоских нодальных кривых

Theorem

Пусть C — гладкая плоская нодальная кривая степени $d \geq 3$. Тогда размерность пространства голоморфных 1-форм на ее нормализации не меньше ее рода $g(C) = (d-1)(d-2)/2 - \delta$, где δ — число точек простого самопересечения кривой C.

Lemma

Для всякого многочлена p(x,y) степени, не превосходящей d-3, обращающегося в нуль в двойных точках кривой C, дифференциальная 1-форма

$$p(x,y)\frac{dx \wedge dy}{df}$$

является корректно определенной голоморфной 1-формой на нормализации кривой C, равной 0 в том и только в том случае, когда $p\equiv 0$.

Семинар 11.

- Докажите, что ограничение 1-формы dF на плоскую кривую, где F мероморфная функция на плоскости, является дифференциалом ограничения функции F на эту кривую.
- Рассмотрим результат ограничения 1-формы (a) xdx; (b) ydx на плоскую кривую $x^n+y^n=1$. Найдите нули этой 1-формы и укажите их порядки. Найдите полюса этой 1-формы и укажите их порядки.

Семинар 11.

- Пусть f проекция квадрики $x^2+y^2=1$ на ось x. Верно ли, что любая мероморфная 1-форма на квадрике является поднятием некоторой 1-формы на прямой при отображении f?
- Пусть плоская кривая задана уравнением $y^4 = x^3 3x$. Найдите ее род. Найдите полюсы ограничения 1-формы dx/y на эту кривую и укажите их порядки. Постройте базис голоморфных 1-форм на этой кривой.
- Докажите, что всякая 1 форма вида

$$\frac{p(x)dx}{y}$$

где p — многочлен степени не выше g-1, является голоморфной 1-формой на гипреэллиптической кривой $y^2=Q_{2g+1}(x)$, где Q_{2g+1} — многочлен степени 2g+1 с попарно различными корнями.

Введение в римановы поверхности

С. К. Ландо

Национальный исследовательский университет Высшая школа экономики

2021

Лекция 12. Дифференциальные 1-формы на кривых

На прошлой лекции мы предъявили на всякой алгебраической кривой рода g g-мерное пространство голоморфных 1-форм. Цель сегодняшней лекции — доказать, что это все голоморфные 1-формы на кривой. Для этого мы докажем, что пространство голоморфных 1-форм не может быть более, чем g-мерно. Инструментом доказательства будет интегрирование 1-форм по вещественным путям в комплексных кривых.

Лекция 12. Интегрирование 1-форм

Пусть C — гладкая алгебраическая кривая, ω — голоморфная дифференциальная 1-форма на ней. Каждому непрерывному пути $\gamma:[0,1]\to C$ сопоставляется интеграл

$$\int_{\gamma} \omega = \int_{0}^{1} \gamma^{*}(\omega)$$

1-формы ω вдоль этого пути.

Точно так же можно интегрировать и мероморфные 1-формы, только в этом случае путь γ не должен проходить через полюса 1-формы ω .

Интеграл от 1-формы по пути не меняется при замене его другим путем в том же гомотопичском классе. Если 1-форма ω является точной, т.е. $\omega=df$ для некоторой мероморфной функции f, то по формуле Ньютона–Лейбница ее интеграл не зависит от выбранного пути, соединяющего две данные точки $x_0=\gamma(0)$ и $x_1=\gamma(1)$,

$$\int_{\gamma} df = \int_{x_0}^{x_1} df = f(x_1) - f(x_0).$$

В частности, интеграл от точной 1-формы по любому замкнутому пути равен 0.

Лекция 12. Периоды 1-форм

Интеграл 1-формы на алгебраической кривой вдоль замкнутого пути на этой кривой называется периодом этой 1-формы. Выберем на кривой C рода g какой-нибудь набор $\{\gamma_1,\ldots,\gamma_{2g}\}$ из 2g замкнутых путей с началом и концом в данной точке $x_0\in C$, классы гомологий которых образуют базис в группе одномерных гомологий $H_1(C,\mathbb{Z})$.

Lemma

Если все периоды гладкой вещественной 1-формы ω по путям γ_i равны нулю, то эта 1-форма точна, $\omega=df$ для некоторой гладкой вещественной функции f.

Доказательство. Функция f строится стандартным образом: мы полагаем $f(x) = \int_{x_0}^x \omega$. Поскольку все периоды 1-формы ω равны 0, этот интеграл не зависит от выбора гомотопического класса пути, соединяющего точки x_0 и x.

Corollary

Размер пространства голоморфных 1-форм на алгебраической кривой рода g не превышает 2g.

Действительно, разность двух голоморфных 1-форм с одинаковыми периодами имеет нулевые периоды, а значит является дифференциалом голоморфной функции, т.е. нулем.

Лекция 12. Антиголоморфные 1-формы

Каждой голоморфной 1-форме ω можно сопоставить комплексно сопряженную ей антиголоморфную 1-форму $\bar{\omega}$. Мы хотим доказать, что если голоморфные 1-формы ω_1,\dots,ω_k линейно независимы, то классы когомологий 1-форм $\omega_1,\dots,\omega_k,\bar{\omega}_1,\dots,\bar{\omega}_k$ линейно независимы. Отсюда сразу вытекает, что $k\leq g$.

Lemma

Если для пары голоморфных 1-форм ω_1, ω_2 1-форма $\omega_1 + \bar{\omega}_2$ является дифференциалом гладкой функции, то $\omega_1 = \omega_2 = 0$.

Лекция 12. Антиголоморфные 1-формы

Lemma

Если для пары голоморфных 1-форм ω_1, ω_2 1-форма $\omega_1 + \bar{\omega}_2$ является дифференциалом гладкой функции, то $\omega_1 = \omega_2 = 0$.

Доказательство. Пусть $\omega_1\wedge\bar{\omega}_2=df$. В локальной координате z=u+iv имеем $\bar{z}=u-iv$, $dz\wedge d\bar{z}=-2idu\wedge dv$ и $\omega_2=g_2(z)dz$. Отсюда

$$rac{i}{2}\omega_2\wedgear{\omega}_2=|g_2(z)|^2rac{i}{2}dz\wedge dar{z}=|g_2(z)|^2du\wedge dv.$$

Это означает, что если $\omega_2
eq 0$, то интеграл $\iint_C rac{i}{2} \omega_2 \wedge ar{\omega}_2 > 0$. С другой стороны,

$$\omega_2 \wedge \bar{\omega}_2 = \omega_2 \wedge \omega_1 + \omega_2 \wedge \bar{\omega}_2 = \omega_2 \wedge (\omega_1 + \bar{\omega}_2) = \omega_2 \wedge df$$

И

$$d(f\omega_2) = df \wedge \omega_2 + fd\omega_2 = df \wedge \omega_2,$$

т.е. 1-форма $df \wedge \omega_2$ точна, а значит,

$$\iint_C df \wedge \omega_2 = 0.$$

Лекция 12. Вычеты

Для мероморфных 1-форм утверждение о том, что интеграл по пути не зависит от выбора пути с данными концами в данном гомотопическом классе перестает быть верным. Точнее, оно остается верным но не для кривой C, а для этой кривой проколотой в полюсах 1-формы. Гомологическое описание мероморфной 1-формы дополняется описанием ее интегралов по путям, обходящим вокруг ее полюсов, — вычетов. Пусть мероморфная 1-форма ω в локальной координате z в окрестности своего полюса порядка k>1 раскладывается в ряд Лорана

$$\omega = \left(\frac{a_{-k}}{z^k} + \cdots + \frac{a_{-1}}{z} + a_0 + a_1 z + \ldots\right) dz, \qquad a_{-k} \neq 0.$$

Интеграл от каждого монома этого ряда кроме монома $a_{-1}dz/z$ по петле γ , обходящей точку z=0 в положительном направлении, равен 0: интегрируется дифференциал функции. Для исключительного монома

$$\int_{\gamma} \omega = \int_{\gamma} \frac{a_{-1}dz}{z} = a_{-1} \int_0^{2\pi} \frac{(-\sin t + i\cos t)dt}{\cos t + i\sin t} = 2\pi i a_{-1}.$$

Величина $a_{-1}=\frac{1}{2\pi i}\int_{\gamma}\omega$ называется *вычетом* 1-формы ω в ее полюсе. Она не зависит от выбора локальной координаты z.

Лекция 12. Сумма вычетов

Theorem

Сумма вычетов мероморфной 1-формы на гладкой алгебраической кривой равна 0.

Доказательство 1. Представим поверхность как результат склейки сторон многоугольника. Сумма вычетов 1-формы — ее интеграл по композиции петель, обходящих все полюса. Эта композиция гомотопна границе многоугольника. Граница гомологична нулю, так как по каждому отрезку проходит два раза — в противоположных направлениях.

Доказательство 2. Выберем маленькие диски с центром в каждом из полюсов 1-формы ω . На дополнении к этим дискам ω голоморфна. Значит ее дифференциал равен нулю, и по формуле Стокса ее интеграл по границе равен нулю. С другой стороны, этот интеграл — сумма вычетов 1-формы ω , с точностью до умножения на $-1/2\pi i$.

Лекция 12. Линейные расслоения над комплексными кривыми; дивизоры

Пусть $p:E\to C$ — линейное расслоение над кривой C. Всякому его ненулевому мероморфному сечению $\sigma:C\to E$ сопоставляются два набора точек на C — нули и полюса сечения. Кроме того, каждому нулю и каждому полюсу приписано натуральное число — порядок нуля или полюса. Совокупность нулей и полюсов сечения, с учетом их кратностей, называется дивизором сечения и записывается в виде формальной суммы

$$(\sigma) = \sum a_i x_i, \qquad a_i \in \mathbb{Z} \setminus \{0\};$$

положительные коэффициенты это порядки нулей, отрицательные — порядки полюсов. **Пример.** Для $C=\mathbb{C}P^1$ дивизор функции z равен

$$(z)=1\cdot 0-1\cdot \infty,$$

а дивизор 1-формы dz равен

$$(dz) = -2 \cdot \infty.$$

Лекция 12. Дивизоры

Definition

Дивизором на кривой C называется формальная линейная комбинация конечного числа ее точек с ненулевыми целыми коэффициентами, $\sum a_i \cdot x_i$, $a_i \neq 0$.

Дивизоры также естественно записывать в виде сумм

$$\sum_{x\in C}a_x\cdot x, \qquad a_x\in \mathbb{Z},$$

по всем точкам кривой C, в которых лишь конечное число коэффициентов a_x отлично от нуля.

Дивизоры образуют коммутативную группу относительно сложения:

$$\sum_{x\in C} a_x \cdot x + \sum_{x\in C} b_x \cdot x = \sum_{x\in C} (a_x + b_x) \cdot x.$$

Нулем в этой группе является нулевой дивизор.

Лекция 12. Степень дивизора

Количество нулей каждой мероморфной функции с учетом кратностей равно количеству ее полюсов с учетом их кратностей. Поэтому для дивизора $(f) = \sum a_i \cdot x_i$ мероморфной функции имеем $\sum a_i = 0$.

Умножив ненулевое мероморфное сечение $\sigma:C\to E$ расслоения $p:E\to C$ на ненулевую мероморфную функцию $f:C\to \mathbb{C}P^1$, мы получим новое сечение $f\sigma:C\to E$, дивизор которого равен

$$(f\sigma)=(f)+(\sigma).$$

Поэтому сумма коэффициентов дивизора $(f\sigma)$ такая же, как у (σ) . Поскольку отношение любых двух ненулевых сечений данного линейного расслоения является мероморфной функцией, дивизоры всех ненулевых сечений одного линейного расслоения имеют одну и ту же сумму коэффициентов.

Definition

Степенью дивизора на кривой C называется сумма его коэффициентов, $\deg(\sum a_i \cdot x_i) = \sum a_i$. Степенью линейного расслоения называется степень дивизора любого его ненулевого мероморфного сечения.

Пример. Степень тривиального линейного расслоения $C \times \mathbb{C} \to C$ равна 0. Степень кокасательного расслоения к $\mathbb{C}P^1$ равна -2.

С. К. Ландо

Лекция 12. Линейная эквивалентность дивизоров

Дивизоры степени 0 образуют подгруппу в группе дивизоров. Дивизоры мероморфных функций образуют подгруппу в этой подгруппе; эти дивизоры называются *главными*.

Definition

Два дивизора называются *линейно эквивалентными*, если их разность является дивизором мероморфной функции. Факторгруппа группы дивизоров по подгруппе главных дивизоров называется *группой классов дивизоров*.

Дивизоры любых двух сечений одного линейного расслоения линейно эквивалентны между собой.

Упражнение. Пусть C — эллиптическая кривая, $p,q\in C$ — различные точки на ней. Существует ли мероморфная функция f на C с дивизором $(f)=1\cdot p-1\cdot q$?

Семинар 12.

- Докажите, что касательное и кокасательное расслоения к проективной прямой не являются тривиальными.
- ullet Пусть $E_1 o C$, $E_2 o C$ два линейных расслоения над кривой C, $E_1 \otimes_C E_2$ линейное расслоение, являющееся их тензорным произведением. Докажите, что

$$\deg(E_1\otimes_C E_2)=\deg(E_1)+\deg(E_2).$$

• Докажите, что степени двойственных линейных расслоений противоположны.

Семинар 12.

- Приведите пример линейного расслоения степени 1 над проективной прямой.
- Докажите, что для каждого целого d над проективной прямой есть линейное расслоение степени d.
- Чему равна степень касательного расслоения к кривой рода g? Кокасательного расслоения?

Семинар 12.

- Пусть $E_1 \to C$, $E_2 \to C$ два линейных расслоения над данной кривой C, $\sigma_1: C \to E_1$, $\sigma_2: C \to E_2$ ненулевые мероморфные сечения этих расслоений. Докажите, что если $(\sigma_1) = (\sigma_2)$, то расслоения E_1, E_2 изоморфны.
- Опишите все линейные расслоения над проективной прямой.
- Приведите пример нетривиального линейного расслоения над эллиптической кривой.
 Чему равна степень этого расслоения? Укажите класс линейной эквивалентности дивизоров его сечений.

Введение в римановы поверхности

С. К. Ландо

Национальный исследовательский университет Высшая школа экономики

2021

Лекция 13. Восстановление линейного расслоения по классу дивизора

На прошлой лекции мы сопоставили каждому линейному расслоению над данной гладкой компактной алгебраической кривой C класс линейной эквивалентности дивизоров его сечений. Кроме того, мы доказали, что если для двух линейных расслоений эти классы совпадают, то сами расслоения изоморфны. Наша ближайшая цель — доказать следующее утверждение.

Theorem

Каждый класс линейной эквивалентности дивизоров на данной гладкой компактной алгебраической кривой С является классом дивизоров некоторого линейного расслоения над С.

Линейное расслоение, сопоставляемое дивизору D, обозначается $\mathcal{O}(D)$.

Доказательство. Построим искомое расслоение. Пусть $\sum_{i=1}^k a_i x_i$, $a_i \neq 0$, $x_i \in C$ — дивизор. Выберем на C маленькие диски U_i с центрами в точках x_i , z_i — произвольная локальная координата в U_i , и пусть $W = C \setminus \{x_1, \dots, x_k\}$. Склеим расслоение над C из тривиального расслоения над W и тривиальных расслоений над U_i , взяв в качестве функций склейки над $U_i \cap W$ отображения $(z_i, t) \mapsto (z_i, z_i^{-a_i}t)$, где t — координата в слое. Тривиализующее сечение расслоения над W превращается в мероморфное сечение построенного линейного расслоения над C, имеющее заданный дивизор.

Лекция 13. Отображения кривых в проективное пространство, связанные с линейными расслоениями

Пусть C — гладкая алгебраическая кривая, $L \to C$ — линейное расслоение над C. Голоморфные сечения $\sigma: C \to L$ расслоения L образуют векторное пространство $H^0(L)$ над \mathbb{C} ; это векторное пространство конечномерно. Точка $x \in C$, в которой все сечения расслоения L обращаются в нуль, называется базисной для этого расслоения. Если у расслоения L есть ненулевые голоморфные сечения, то множество его базисных точек конечно.

Каждая небазисная точка $x\in C$ задает линейный функционал ℓ_x на векторном пространстве $H^0(L)$, определенный с точностью до умножения на ненулевую константу: $\ell_x(\sigma_1)/\ell_x(\sigma_2)=\sigma_1(x)/\sigma_2(x)$ — корректно определенное число. Поэтому линейное расслоение $L\to C$ определяет отображение $x\mapsto \ell_x$ дополнения к базисным точкам в C в проективизацию двойственного к пространству голоморфных сечений расслоения L. Это отображение продолжается до непрерывного отображения $\varphi_L:C\to P(H^0(L))^\vee$.

Лекция 13. Отображения кривых в проективное пространство, связанные с линейными расслоениями

Пример. Кокасательное расслоение $T^{\vee}C \to C$ определяет отображение кривой C рода g>1 в проективизацию g-мерного пространства, двойственного пространству $H^0(T^{\vee}C)$ голоморфных 1-форм на C. Это отображение называется κ каноническим. Отображения φ_L удобно строить явно, выбрав базис в пространстве голоморфных сечений данного линейного расслоения L. Например, базис $\omega_1, \ldots, \omega_g$ в пространстве голоморфных 1-форм на данной кривой C рода g порождает отображение $x \mapsto (\omega_1(x):\cdots:\omega_g(x))$ кривой C в $\mathbb{C}P^{g-1}$.

Лекция 13. Эффективные дивизоры

Дивизор $D=\sum a_ix_i$ называется э $\phi\phi$ ективным, если $a_i\geq 0$ для всех i; в этом случае пишем $D\geq 0$.

Эффективные дивизоры образуют конус, т.е. сумма двух эффективных дивизоров эффективна, и результат умножения эффективного дивизора на положительное целое число является эффективным.

Для данного дивизора D обозначим множество линейно эквивалентных ему эффективных дивизоров через |D|. Это множество естественно отождествляется с проективизацией пространства голоморфных сечений расслоения $\mathcal{O}(D)$: дивизор произвольного мероморфного сечения расслоения $\mathcal{O}(D)$ имеет вид (f)+D для некоторой мероморфной функции f на C, и дивизор (f)+D эффективен тогда и только тогда, когда соответствующее ему сечение голоморфно.

Definition

Проективное пространство |D| называется *полной линейной системой*, отвечающей дивизору D. Проективные подпространства в |D| называются *линейными системами*.

Лекция 13. Пространства L(D)

Пусть D — дивизор на кривой C. Через L(D) обозначается векторное пространство мероморфных функций, дивизор которых больше -D, $L(D) = \{f | (f) + D \geq 0\}$, через I(D) — его размерность, $I(D) = \dim L(D)$. Через i(D) обозначается размерность пространства мероморфных 1-форм на C, дивизор которых больше D.

Лекция 13. Теорема Римана-Роха

Theorem

Пусть C — гладкая алгебраическая кривая рода g , $D \in \mathrm{Div}(C)$, $d = \deg(D)$. Тогда

$$I(D) = d - g + 1 + i(D).$$

Проверим, что это равенство выполняется в уже известных нам случаях.

Пример. Пусть g=0. Если для дивизора D его степень $d=\deg(D)\geq 0$, то, как мы знаем, l(D)=d+1 и i(D)=0. Если d=-1, то l(D)=i(D)=0. Если же d<-1, то l(D)=0 и i(D)=-d-1.

Пример. Пусть g=1. Для дивизора D=0 формула Римана—Роха приобретает вид I(0)=0-1+1+i(0)=i(0). Действительно, пространство голоморфных функций на эллиптической кривой одномерно, I(0)=1, как и пространство голоморфных 1-форм, нигде не обращающихся в 0.

Theorem

Пусть C- гладкая алгебраическая кривая рода g , $D\in \mathrm{Div}(C)$, $d=\deg(D)$. Тогда

$$I(D)=d-g+1+i(D).$$

Рациональная кривая. Докажем, наконец, что $\mathbb{C}P^1$ — единственная кривая рода 0. Пусть C — кривая рода g=0, и пусть $D=1\cdot x\in \mathrm{Div}(C)$, $x\in C$, $\deg D=1$. Тогда $I(D)=I(1\cdot x)=1-0+1+i(1\cdot x)=2+i(1\cdot x)\geq 2$. Поэтому на C существует мероморфная функция с полюсом первого порядка в точке x, не имеющая других полюсов. Эта функция имеет степень 1 и осуществляет биголоморфизм кривой C на $\mathbb{C}P^1$.

Theorem

Пусть C — гладкая алгебраическая кривая рода g , $D \in \mathrm{Div}(C)$, $d = \deg(D)$. Тогда

$$I(D) = d - g + 1 + i(D).$$

Функция Вейерштрасса. Мы строили функцию Вейерштрасса на эллиптической кривой, представляющей собой результат факторизации комплексной прямой $\mathbb C$ по решетке $L_{\tau}=\langle 1,\tau \rangle$, как сумму ряда по узлам решетки. Построенная мероморфная функция на кривой имеет единственный полюс, и порядок этого полюса равен 2. Формула Римана—Роха позволяет доказать существование функции с полюсом второго порядка, не строя ее явно:

$$I(2 \cdot x) = 2 - 1 + 1 + i(2 \cdot x) = 2 + i(2 \cdot x) \ge 2.$$

Упражнение. Докажите, что функция Вейерштрасса (как и любая функция с единственным полюсом второго порядка) четная, $\wp(-z) = \wp(z)$ для координаты z на торе с центром в полюсе функции.

Theorem

Пусть C- гладкая алгебраическая кривая рода g , $D\in \mathrm{Div}(C)$, $d=\deg(D)$. Тогда

$$I(D) = d - g + 1 + i(D).$$

Lemma

У кокасательного расслоения нет базисных точек.

Доказательство. Пусть $x \in C$ — базисная точка кокасательного расслоения $T^{\vee}C$, т.е. такая точка, в которой каждая голоморфная 1-форма на C обращается в 0. Тогда

$$I(1 \cdot x) = 1 - g + 1 + i(1 \cdot x) = 2 - g + g = 2,$$

поскольку $i(1 \cdot x) = i(0) = g$. Это означает, что на C есть мероморфная функция с единственным полюсом $x \in C$ порядка 1, а значит, g = 0.

Theorem

Пусть C- гладкая алгебраическая кривая рода g , $D\in \mathrm{Div}(C)$, $d=\deg(D)$. Тогда

$$I(D)=d-g+1+i(D).$$

Lemma

Если каноническое отображение $\varphi: C \to \mathbb{C} P^{g-1}$ кривой C рода g переводит какие-то две ее точки в одну, $\varphi(x) = \varphi(y)$, $x \neq y$, то кривая C гиперэллиптическая.

Доказательство. Пространство голоморфных 1-форм с нулем в точке x совпадает с пространством голоморфных 1-форм с нулем в точке y, поэтому $i(1 \cdot x + 1 \cdot y) = i(1 \cdot x) = i(1 \cdot y) = g - 1$. Отсюда

$$I(1 \cdot x + 1 \cdot y) = 2 - g + 1 + (g - 1) = 2.$$

Поэтому на C есть функция с полюсами первого порядка в точках x и y, не имеющая других полюсов. Степень этой функции равна 2, и она осуществляет гиперэллиптическое накрытие проективной прямой.

Theorem

Пусть C- гладкая алгебраическая кривая рода g , $D\in \mathrm{Div}(C)$, $d=\deg(D)$. Тогда

$$I(D)=d-g+1+i(D).$$

Lemma

Всякая кривая рода g = 2 является гиперэллиптической.

Доказательство. Каноническое отображение φ кривой рода g=2 отображает ее в $\mathbb{C}P^{g-1}\equiv \mathbb{C}P^1$. Оно не может быть взаимно-однозначным на образ, поэтому $\varphi(x)=\varphi(y)$ для некоторых несовпадающих точек $x,y\in C$. Поэтому кривая C гиперэллиптическая.

Семинар 13.

- ullet Пусть $D=\sum a_i\cdot x_i+a_\infty\cdot\infty$ дивизор на проективной прямой. Опишите пространство L(D).
- ullet Докажите, что i(D)=I(K-D), где K канонический дивизор.
- Пусть $C \subset \mathbb{C}P^n$ гладкая алгебраическая кривая степени d. Точки пересечения гиперплоскости в $\mathbb{C}P^n$ с кривой C образуют эффективный дивизор степени d. Докажите, что все такие дивизоры образуют линейную систему. Найдите размерность этой линейной системы. Является ли она полной?
- Пусть $C \subset \mathbb{C}P^n$ гладкая алгебраическая кривая степени d. Точки пересечения гиперповерхности степени k в $\mathbb{C}P^n$ с кривой C образуют эффективный дивизор степени kd. Докажите, что все такие дивизоры образуют линейную систему. Найдите размерность этой линейной системы. Является ли она полной?

Семинар 13.

- Верно ли, что каноническое отображение гиперэллиптической кривой является гиперэллиптическим накрытием ее образа?
- Докажите, что если для пары точек $x,y\in C$, $x\neq y$ существует функция с полюсами первого порядка в них и без других полюсов, то $\varphi(x)=\varphi(y)$.
- Пусть $f: C \to \mathbb{C}P^1$ гиперэллиптическое накрытие. Найдите размерность I(D) пространства L(D) для следующих случаев: a) $D=2\cdot x$, где $x=f^{-1}(f(x))$; б) $D=2\cdot x$, где $x\neq f^{-1}(f(x))$; в) $D=1\cdot x+1\cdot y$, где $x\neq y$, f(x)=f(y); г) $D=1\cdot x+1\cdot y$, где $x\neq y$, $f(x)\neq f(y)$.

Семинар 13.

• Докажите, что всякая кривая рода 2 допускает погружение в проективную плоскость с одной двойной точкой.

Введение в римановы поверхности

С. К. Ландо

Национальный исследовательский университет Высшая школа экономики

2021

Лекция 14. Задача Миттаг-Леффлера

Для данного набора главных частей локальных мероморфных функций в полюсах на данной кривой определить, является ли он набором главных частей глобальной мероморфной функции на этой кривой, не имеющей других полюсов.

Definition

Две мероморфные функции f,g, определенные в окрестности данной точки $x \in C$, имеют в этой точке *одинаковые главные части*, если их разность f-g не имеет полюса в точке x. *Главной частью порядка* k функций в данной точке $x \in C$ называется класс эквивалентности мероморфных функций с полюсом порядка k в x относительно этого отношения эквивалентности.

Лекция 14. Задача Миттаг-Леффлера

На набор главных частей в полюсах есть естественное ограничение.

Для данной голоморфной 1-формы ω и данной главной части f в точке $x\in \mathcal{C}$ определен вычет главной части мероморфной 1-формы $f\omega$ в точке x:

$$\operatorname{Res}_{\mathsf{x}} f \omega$$

как коэффициент при z^{-1} разложения 1-формы $f\omega$ в ряд Лорана.

Lemma

Если данный набор главных частей f_1, \ldots, f_n в точках $x_1, \ldots, x_n \in C$ является набором главных частей мероморфной функции $f: C \to \mathbb{C}P^1$, не имеющей других полюсов, то

$$\sum_{i=1}^n \mathrm{Res}_{x_i} f_i \omega = 0$$

для любой голоморфной 1-формы ω на C.

Действительно, в этом случае $\sum_{i=1}^n \mathrm{Res}_{x_i} f_i \omega = \sum_{i=1}^n \mathrm{Res}_{x_i} f \omega = 0$.

Лекция 14. Задача Миттаг-Леффлера

Theorem (Риман)

Набор главных частей f_1,\ldots,f_n в точках $x_1,\ldots,x_n\in C$ является набором главных частей мероморфной функции $f:C\to\mathbb{C}P^1$, не имеющей других полюсов, если и только если $\sum_{i=1}^n \mathrm{Res}_{x_i} f_i \omega = 0$ для любой голоморфной 1-формы ω на C.

Тем самым, для проверки реализуемости мероморфной функцией данного набора главных частей достаточно проверить g равенств нулю сумм вычетов для выбранного базиса $\omega_1, \ldots, \omega_g$ пространства голоморфных 1-форм на C.

Доказательство. Ограничимся случаем, когда все полюса имеют первый порядок. Для дивизора $D=1\cdot x_1+\dots+1\cdot x_n$ теорема Римана-Роха дает I(D)=n-g+1+i(D). 1-формы, обращающиеся в нуль в точках x_i , не накладывают ограничений на главные части; размерность их пространства равна i(D), а значит размерность пространства ограничений на вычеты равна g-i(D). Размерность пространства главных частей равна n, поэтому никаких других ограничений нет.

Набор главных частей в полюсах определяет функцию однозначно с точностью до аддитивной константы.

Лекция 14. Вычисление Римана

Теорема Римана—Роха позволяет подсчитать размерность пространства комплексных кривых данного рода g. Как мы знаем, при g=0 такая кривая одна (размерность пространства кривых равна 0). Размерность пространства эллиптических кривых (g=1) равна 1 (каждая такая кривая однозначно, с точностью до действия группы $\mathrm{SL}(2,\mathbb{Z})$, определяется вектором τ в верхней полуплоскости).

Размерность пространства функций степени d на кривых рода g определить просто. По формуле Римана—Гурвица общая такая функция имеет 2d+2g-2 точек простого ветвления, и, как мы знаем, значения функции в точках ветвления можно менять произвольно, т.е. они образуют систему локальных координат на пространстве функций. При $d \geq 2g$ размерность пространства мероморфных функций степени d с полюсами первого порядка на данной кривой рода g равна 2d-g+1: пространство дивизоров D полюсов таких функций имеет размерность d, и для конкретного дивизора $D=1\cdot x_1+\cdots+1\cdot x_d$ теорема Римана—Роха дает

$$I(D) = d - g + 1 + i(D) = d - g + 1$$

(i(D)=0, поскольку суммарная кратность нулей голоморфной 1-формы равна 2g-2). Таким образом, размерность пространства кривых рода g равна

$$(2d+2g-2)-(2d-g+1)=3g-3.$$

Лекция 14. Вычисление Римана: отмеченные точки

Значение 3g-3 для размерности пространства кривых рода g не согласуется с вычисленными нами ранее размерностями 0 и 1 для кривых рода g=0 и g=1 соответственно.

Причина этого несоответствия — наличие у кривых рода 0 и у кривых рода 1 непрерывных автоморфизмов (группа автоморфизмов кривой рода 0 имеет размерность 3, кривых рода 1 — размерность 1). Кривые рода g=2 и выше не имеют непрерывных автоморфизмов, и формула 3g-3 для размерности пространства таких кривых работает.

Чтобы сделать формулу для размерности универсальной, можно добавить на кривую отмеченные точки; если отмеченных точек достаточно много, то группа автоморфизмов кривой, сохраняющих отмеченные точки, становится конечной независимо от ее рода.

Theorem

Размерность пространства кривых рода g с n отмеченными точками равна 3g-3+n для всех g и n, таких, что 2-2g-n<0.

Лекция 14. Кривые рода 3

Lemma

Всякая гладкая кривая рода g степени 2g-2 в $\mathbb{C}P^{g-1}$, не содержащаяся ни в какой гиперплоскости, является канонической.

Доказательство. Пусть $C\subset \mathbb{C}P^{g-1}$ — кривая рода g степени 2g-2 в $\mathbb{C}P^{g-1}$. Обозначим через D дивизор гиперплоского сечения на C, через K — канонический дивизор. Тогда $\deg(K-D)=0$, и I(K-D)=1, если дивизор D линейно эквивалентен дивизору K и I(K-D)=0 в противном случае. В первом случае кривая C — каноническая. Во втором — по теореме Римана—Роха — I(D)=g-1, а значит, C содержится в некоторой гиперплоскости.

Лекция 14. Кривые рода 3

Theorem

Всякая гладкая плоская квартика (кривая степени 4) является канонической негиперэллиптической кривой рода 3.

Доказательство. Каноническое отображение негиперэллиптической кривой рода g=3 переводит ее в кривую в $\mathbb{C}P^{g-1}\equiv\mathbb{C}P^2$, т.е. в гладкую плоскую кривую. Степень этой кривой равна 4 — иначе род кривой не может равняться 3 (а также потому, что степень кокасательного расслоения равна 2g-2=4). С другой стороны, предыдущая лемма означает, что всякая гладкая кривая степени 4 — каноническая.

Семинар 14.

- Решите задачу Миттаг-Лефлера (докажите теорему Римана) в общем случае для набора главных частей произвольных порядков.
- Проверьте, что размерность пространства гиперэллиптических (d=2) функций на кривых рода g равна 2d+2g-2=2g+2. Выведите отсюда, что пространство гиперэллиптических кривых рода g имеет размерность 2g-1. Воспользовавшись этими сведениями, заключите, что не всякая кривая рода g=3 гиперэллиптическая.
- Найдите размерность пространства плоских квартик с точностью до проективной эквивалентности. Сравните эту размерность с размерностью пространства кривых рода g=3.

Семинар 14.

- С помощью подсчета размерностей докажите, что не всякая кривая рода 10 реализуется как гладкая плоская кривая.
- Пусть $C \subset \mathbb{C}P^2$ гладкая кривая степени 8, и пусть $D=1\cdot p_1+\cdots+1\cdot p_7$, где точки $p_1,\ldots,p_7\in C$ попарно различны и лежат на одной прямой. Найдите I(D). Выясните, имеет ли линейная система |D| базисные точки.

•

Семинар 14.

- Докажите, что трансверсальное пересечение гладкой квадрики (гиперповерхности степени 2) и гладкой кубики (гиперповерхности степени 3) в $\mathbb{C}P^3$ является кривой рода 4.
- Воспользовавшись каноническим вложением, докажите, что всякая негиперэллиптическая кривая рода 4 представляется в виде трансверсального пересечения гладких квадрики и кубики в $\mathbb{C}P^3$.

Введение в римановы поверхности

С. К. Ландо

Национальный исследовательский университет Высшая школа экономики

2021

Для любой пары точек проективной прямой существует ее автоморфизм, переводящий первую точку во вторую. То же самое справедливо и для любой эллиптической кривой. Однако для кривых рода $g \geq 2$ аналогичное утверждение уже неверно, и точки на них отличаются друг от друга. Формула Римана—Роха позволяет "измерить" это отличие.

Theorem

Если C- гладкая алгебраическая кривая рода $g, D \in \mathrm{Div}(C), d = \deg(D),$ то I(D) = d-g+1+i(D).

Применим ее к ситуации, когда дивизор D эффективен и сосредоточен в одной точке $x \in C$, $D = k \cdot x$, $k = 0, 1, 2, 3, \dots$

Lemma

Если $k \geq 2g - 1$, то $l(k \cdot x) = k - g + 1$.

Действительно, при таких k размерность $i(k\cdot x)=0$ для любой точки $x\in C$, поскольку не существует голоморфных 1-форм с нулем порядка 2g-1 или выше.

Таким образом, последовательность $I(k \cdot x)$ при $k \geq 2g-1$ ведет себя одинаково для всех точек $x \in C$; а вот при $1 \leq k \leq 2g-2$ ее поведение зависит от выбора точки.

$\mathsf{Theorem}$

Если C — гладкая алгебраическая кривая рода g, $D \in \mathrm{Div}(C)$, $d = \deg(D)$, то I(D) = d - g + 1 + i(D).

$$I(k \cdot x) = k - g + 1$$
 при $k \ge 2g - 1$.

Lemma

В частности, для всех $k \geq 2g-1$ выполняется равенство $I((k+1)\cdot x) = I(k\cdot x)+1$.

Corollary

На отрезке $1 \leq k \leq 2g-1$ последовательность $l(k \cdot x)$ имеет g-1 подскоков на 1.

Lemma

Пусть k_1, k_2 — две точки подскока последовательности $I(k \cdot x)$. Тогда $k_1 + k_2$ также является точкой подскока. Другими словами, множество точек подскока является подполугруппой в группе $\mathbb N$ натуральных чисел по сложению.

Действительно, если на C есть мероморфная функция f_1 с полюсом порядка k_1 в x, не имеющая других полюсов, и мероморфная функция f_2 с полюсом порядка k_2 в x, не имеющая других полюсов, то их произведение f_1f_2 является мероморфной функцией с полюсом порядка $k_1 + k_2$ в x, не имеющей других полюсов.

Remark. Полного независимого описания всех встречающихся подполугрупп в $\mathbb N$ такого вида не существует.

Значения параметра k, для которых $I(k \cdot x) = I((k-1) \cdot x)$ называются лакунами в точке x. Число лакун в каждой точке равно g и все они находятся на начальном отрезке $\{1,2,\ldots,2g-1\}$ значений параметра k. При $g \geq 1$ значение k=1 является лакуной в любой точке x: $I(1 \cdot x) = I(0 \cdot x) = 1$. Множество лакун образует дополнение k полугруппе подскоков.

Example

При g=0 последовательность $I(k\cdot x)$ имеет вид $2,3,4,\ldots$ для любой точки $x\in \mathbb{C}P^1$. При g=1 последовательность $I(k\cdot x)$ имеет вид $1,2,3,4,\ldots$ для любой точки $x\in C$.

Example

Всякая кривая рода g=2 гиперэллиптическая, и последовательность $l(k\cdot x)$ зависит от выбора точки x. Если x является неподвижной точкой гиперэаллиптической инволюции, то $l(2\cdot x)=2$, т.е. значение k=2 является точкой подскока. Поскольку на отрезке $\{1,2,3\}$ значений k должно быть две лакуны, то это значения k=1 и k=3. Таким образом, последовательность значений $l(k\cdot x)$ имеет вид $1,2,2,3,4,5,\ldots$. Если же x не является неподвижной точкой гиперэллиптической инволюции, то $l(2\cdot x)=1$, а значит лакуны это k=1 и k=2; последовательность $l(k\cdot x)$ имеет вид $1,1,2,3,4,\ldots$

Definition

Точка $x\in C$ гладкой алгебраической кривой C рода g называется точкой Вейерштрасса, если $l(k\cdot x)=2$ для некоторого значения $k\le g$ (эквивалентно, если $l(g\cdot x)\ge 2$). Точка Вейерштрасса называется нормальной, если последовательность ее лакун имеет вид $1,2,3,\ldots,g-1,g+1$.

Пусть $1 = a_1 < a_2 < \dots < a_g \le 2g-1$ — последовательность лакун точки x гладкой кривой C рода g.

Definition

Весом точки $x \in C$ гладкой алгебраической кривой C рода g называется величина $\sum_{i=1}^g (a_i-i)$.

В частности, если x — не точка Вейерштрасса, то ее вес равен 0. Вес нормальной точки Вейерштрасса равен 1.

Lemma

Если $x \in C$ — точка Вейерштрасса, то ее вес положителен.

Theorem

Сумма весов всех точек гладкой алгебраической кривой ${\sf C}$ рода ${\sf g}$ равна $({\sf g}-1){\sf g}({\sf g}+1)$.

Corollary

Число точек Вейерштрасса на всякой гладкой алгебраической кривой конечно и не превосходит (g-1)g(g+1), где g — род кривой.

Theorem

Сумма весов всех точек гладкой алгебраической кривой ${\sf C}$ рода ${\sf g}$ равна $({\sf g}-1){\sf g}({\sf g}+1)$.

Доказательство.

Пусть ω_1,\ldots,ω_g — базис в пространстве голоморных 1-форм на кривой C. Запишем эти 1-формы в локальной координате z в окрестности данной точки $x\in C$: $\omega_i=\varphi_i(z)dz$. Составим из коэффициентов ϕ_i этих 1-форм и их производных $g\times g$ -матрицу Вронского

$$W(z) = \begin{pmatrix} \varphi_1(z) & \varphi_1'(z) & \dots & \varphi_1^{(g-1)}(z) \\ \varphi_2(z) & \varphi_2'(z) & \dots & \varphi_2^{(g-1)}(z) \\ \dots & \dots & \dots & \dots \\ \varphi_g(z) & \varphi_g'(z) & \dots & \varphi_g^{(g-1)}(z) \end{pmatrix}.$$

Lemma

Вес точки кривой совпадает с порядком нуля определителя |W(z)| матрицы Вронского (вронскиана) в этой точке.

Lemma

Вес точки кривой совпадает с порядком нуля вронскиана в этой точке.

В частности, если точка кривой не является точкой Вейерштрасса, то вронскиан в ней отличен от нуля. Ясно также, что порядок нуля вронскиана в данной точке не зависит от выбора базиса в пространстве голоморфных 1-форм.

Вывод теоремы из леммы: выбор базиса в пространстве голоморфных 1-форм определяет отображение кривой C в пространство, двойственное пространству голоморфных сечений тензорного произведения линейных расслоений

$$T^{\vee}C\otimes (T^{\vee})^{\otimes 2}C\otimes (T^{\vee})^{\otimes 3}C\otimes \cdots \otimes (T^{\vee})^{\otimes g}C.$$

Степень этого линейного расслоения равна

$$(2g-2)+2\cdot(2g-2)+3\cdot(2g-2)+\cdots+g\cdot(2g-2)=(g-1)g(g+1).$$

Эта степень совпадает с суммой порядков нулей любого его голоморфного сечения, в том числе, вронскиана в любом базисе.

Lemma

Вес точки кривой совпадает с порядком нуля вронскиана в этой точке.

Доказательство. Утверждение локально. Пусть $x \in C$. Построим индуктивно базис в пространстве голоморфных 1-форм:

- в качестве ω_1 возьмем 1-форму, отличную от нуля в т. x (такая 1-форма существует, поскольку у кокасательного расслоения к C нет базисных точек);
- разложим пространство голоморфных 1-форм в прямую сумму прямой $\mathbb{C}\omega_1$ и дополнительного подпространства, состоящего из 1-форм, имеющих нуль в т. x; пусть b_2 наименьший порядок нуля в x у 1-форм из этого подпространства;
- выберем в построенном подпространстве 1-форму с нулем порядка b_2 в x и возьмем ее в качестве ω_2 ;
- разложим построенное подпространство голоморфных 1-форм в прямую сумму прямой $\mathbb{C}\omega_2$ и дополнительного подпространства, состоящего из 1-форм, имеющих в т. x нуль порядка $>b_2$; пусть b_3 наименьший порядок нуля в x у 1-форм из этого подпространства; и т.д.

Lemma

Порядок точки кривой совпадает с порядком нуля вронскиана в этой точке.

Получили упорядоченный базис 1-форм $\omega_1, \dots, \omega_g$, порядки нулей элементов которого в точке x равны $0=b_1 < b_2 < \dots < b_g$. Матрица Вронского такого набора 1-форм имеет вид

$$W(z) = \left(egin{array}{cccc} 1 + \dots & \dots & \dots & \dots \ z^{b_2} + \dots & b_2 z^{b_2-1} + \dots & \dots & \dots \ \dots & \dots & \dots & \dots \ z^{b_g} + \dots & b_g z^{b_g-1} + \dots & \dots & \dots \end{array}
ight).$$

Порядок нуля вронскиана равен $0+(b_2-1)+(b_3-2)+\cdots+(b_g-g+1)$. С другой стороны, условие $\mathrm{Res}_x f\omega=0$ накладывает на коэффициенты главной части функции f в точке x линейные условия, количество независимых среди которых в точности равно требуемому числу.

Лекция 15. Точки перегиба плоских квартик

Гладкая плоская кривая C степени d=4 (квартика) является кривой рода g=(d-1)(d-2)/2=3. Каждая точка x гладкой плоской квартики определяет мероморфную функцию степени 3 на ней — проекцию из этой точки. Одну из прямых, проходящих через x, мы можем считать бесконечностью. Если y — точка простого перегиба кривой C, то проходящая через нее касательная пересекает C еще в одной точке, которую мы обозначим через x.

Проекция, определяемая точкой $x\in C$, имеет в точке y полюс третьего порядка и не имеет других полюсов (прямая xy не пересекает C в других точках). Тем самым, $I(3\cdot y)\geq 2$, т.е. y является точкой Вейерштрасса кривой C. На общей гладкой квартике имеется 24 точки простого перегиба. Поскольку $(g-1)g(g+1)=2\cdot 3\cdot 4=24$, мы заключаем, что все точки простого перегиба имеют вес 1, а лакуны в этих точках равны 1,2,4.

Каждая гладкая плоская квартика является канонической кривой рода 3, при каноническом вложении негиперэллиптической кривой рода 3 точки Вейерштрасса переходят в точки перегиба. Точки Вейерштрасса канонических кривых старших родов представляют собой обобщения точек перегиба плоских квартик.

Лекция 15. Конечность группы автоморфизмов

Theorem

Группа автоморфизмов гладкой алгебраической кривой рода $g \geq 2$ конечна.

Lemma

Если автоморфизм гладкой алгебраической кривой C рода g имеет более 2g+2 неподвижных точек, то он тождественный.

Доказательство. Пусть $\eta:C\to C$ — автоморфизм, имеющий s неподвижных точек. Возьмем эффективный дивизор D, состоящих из g+1 точек кратности 1, ни одна из которых не является неподвижной точкой автоморфизма η . По теореме Римана—Роха, I(D)=(g+1)-g+1+i(D)=2+i(D). Поэтому существует функция $f:C\to \mathbb{C}P^1$, имеющая полюса не выше первого порядка, причем только в точках дивизора D. Функция $f-f\circ\eta$ имеет не более чем 2g+2 полюсов первого порядка и не менее s нулей (всякая неподвижная точка автоморфизма η является ее нулем). Поэтому $s\leq 2g+2$.

Lemma

Минимальное количество точек Вейерштрасса на кривой рода g равно 2g+2, и оно достигается только для гиперэллиптических кривых.

Семинар 15.

- Докажите, что на кривой C рода $g \ge 2$ значение k=2 не является лакуной в точке $x \in C$ в том и только в том случае, когда C гиперэллиптическая и x неподвижная точка гиперэллиптической инволюции.
- Докажите, что всякая точка Вейерштрасса гиперэллиптической кривой является неподвижной точкой гиперэллиптической инволюции.
- Докажите теорему Клиффорда: для любой точки x негиперэллиптической кривой C рода $g \geq 3$ справедливо неравенство $l(k \cdot x) < \frac{k}{2} + 1$ для всех $k = 1, 2, \dots, 2g 1$.

Семинар 15.

- Докажите, что на негиперэллиптической кривой рода $g \ge 3$ есть по крайней мере 2g+6 точек Вейерштрасса.
- Вычислите лакуны в точке перегиба второго порядка гладкой плоской квартики.
- Найдите точки перегиба квартики Клейна

$$x^3y + y^3z + z^3x = 0$$

и опишите действие группы автоморфизмов этой кривой на множестве точек перегиба.

Семинар 15.

- Найдите все точки Вейерштрасса плоской кривой Ферма $x^4+y^4=1$ и укажите их тип. Воспользовавшись этим результатом, найдите группу автоморфизмов кривой Ферма.
- Докажите лемму Шенберга: если у автоморфизма гладкой алгебраической кривой рода $g \geq 2$ больше 4 неподвижных точек, то все они являются точками Вейерштрасса.