

Heller Ehrman White & McAuliffe, LLF

Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications
Serial No. 09/109,905 Applicants: Rammarayan et al.
Date of Filling: 11/10/00 Attorney Docket No. 24737-1906C

RECEIVED

OCT 2 4 2002

TECH CENTER 1600/2900

FIG. I

Heller Ehrman White & McAuliffe, LLP Sheet 2 of 46

Sneet z 01 40
itle: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in
Pharmacogenomics for Drug Design and Clinical Applications
Serial No. 90799.905 Applicanis: Ramparayan et al.
Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C

RECEIVED

OCT 2 4 2002 TECH CENTER 1600/2900

FIG. 2

OT L A MADEMAN DE

Heller Ehrman White & McAuliffe, LLP

litte: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications Serial No. 09/709, 305 Applicants: Ramnarayan et al. Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C

RECEIVED

OCT 2 4 2002

FIG. 3

Heller Ehrman White & McAuliffe, LLP Sheet 5 of 46

Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications Serial No. 90709,095 Applications Applications Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C

RECEIVED OCT 2 4 2002 TECH CENTER 1600/2900

COMPARISON OF CALCULATED VERUS EXPERIMENTAL BINDING FREE ENERGY CHANGES

FIG. 5

Heller Ehrman White & McAuliffe, LLP Sheet 4 of 46 tationally Derived Protein Structures of Gen

Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms
Pharmacogenomies for Drug Design and Clinical Applications
Serial No. 9979,9925 Applicans: Rammarayan et al.
Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C

RECEIVED

OCT 2 4 2002

TECH CENTER 1600/2900

Expected ∆ E_{binds} kcal/mol

FIG. 4

Heiler Ehrman White & Krahifft, LLP

Tite: Use of Computationally Derived Foreits Protutures of Greeite Polymorphism in
Pharmacogeomous for Drug Bedgia and Clinical Applications

Serial No. 09709,095 Applicants: Ramarayan et al.

Date of Phings: 11/1000 A Lutrory Dockets No. 23773-1966C

HIV PROTEASE INHIBITORS APPROVED BY FDA

SAQUINAVIR

NELFINAVIR

FIG. 6

Heller Ehrman White & McAuliffe, LLP
Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in
Proceedings of Computationally Derived Protein Structures of Genetic Polymorphisms in
Proceedings of Computational Computations of Computational Computations
Serial No. 09709,005 Applicatis: Rannarayanet al.
Date of Elling: 11/1000 Autoracy Decket No. 24737-1906C

Heller Ehrman White & McAuliffe, LLP Title: Use of Computationally Derived Froitin Structures of Genetic Polymorphisms in Phormacogenomics for Drug Delign and Chilical Applications Serial No. 09709.905 Applicants: Rammarayane et al. Date of Filing: 11/1000 Attorney Decker No. 24737-1906C

			-	-			
ATOM	1	N	PRO .	A 1	-3.433	7.956	34.152
ATOM	2	CA	PRO 2	A 1	-2.653	6.918	34.784
ATOM	3	C		A 1	-1.242	7.005	34.259
ATOM	4	ō		A 1	-0.950	7.638	33.216
ATOM	5	CB		A 1	-3.281	5.601	34.262
ATOM	6	CG	PRO		-4.191	5.995	33.118
ATOM	7	CD		A 1	-4.547	7.461	33.339
ATOM ATOM	8 9	1H 2H		A 1	-2.845	8.493	33.547
			PRO A		-3.824	8.552	34.853
ATOM	10	N		A 2	-0.259	6.464	35.001
ATOM	11	Н		A 2	-0.475	6.057	35.889
MOTA	12	CA	GLN A		1.115	6.443	34.568
ATOM	13	C	GLN A		1.452	4.993	34.301
ATOM	14	0	GLN A		1.379	4.106	35.173
ATOM	15	CB	GLN A		2.070	6.966	35.653
MOTA	16	CG	GLN A		3.549	6.859	35.240
ATOM	17	CD	GLN A		4.490	7.744	36.054
ATOM	18	OE1	GLN A		4.771	8.888	35.719
ATOM	19	NE2	GLN A	. 2	4.980	7.190	37.144
ATOM	20	1HE2	GLN A	1 2	5.605	7.702	37.734
ATOM	21	2HE2	GLN A	1 2	4.731	6.253	37.390
MOTA	22	N	ILE A	A 3	1.784	4.644	33.037
ATOM	23	H	ILE A	3	1.876	5.351	32.336
MOTA	24	CA	ILE A		2.013	3.257	32.665
MOTA	25	C	ILE A		3.505	3.028	32.473
ATOM	26	ō	ILE A		4.242	3.777	31.787
ATOM	27	CB	ILE A		1.226	2.944	31.370
ATOM	28	CG1	ILE A		-0.274	3.239	31.603
ATOM	29	CG2	ILE A		1.427	1.480	30.901
ATOM	30	CD1	ILE A		-1.089	3.219	30.322
ATOM	31	N	THR A		4.071	2.032	33.177
ATOM	32	Н	THR A		3.525	1.525	33.844
ATOM	33	CA	THR A		5.451	1.661	33.007
ATOM	34	C	THR A		5.515		
ATOM	35	Ö	THR A			0.637	31.901
ATOM	36	CB	THR A		4.490	0.143	31.397
ATOM					6.051	1.125	34.324
	37	OG1	THR A		5.224	0.069	34.791
ATOM	38	HG1	THR A		5.589	-0.299	35.646
ATOM	39	CG2	THR A		6.085	2.212	35.431
ATOM	40	N	LEU A		6.677	0.281	31.405
ATOM	41	Н	LEU A		7.518	0.530	31.885
ATOM	42	CA	LEU A		6.754	-0.464	30.177
ATOM	43	C	LEU A		7.432	-1.813	30.356
ATOM	44	0_	LEU A		7.940	-2.464	29.426
ATOM	45	CB	LEU A		7.459	0.394	29.128
ATOM	46	CG	LEU A		6.668	1.671	28.775
ATOM	47	CD1	LEU A		7.493	2.649	27.939
ATOM	48	CD2	LEU A		5.345	1.307	28.099
ATOM	49	N	TRP A		7.420	-2.351	31.594
ATOM	50	H	TRP A		7.030	-1.833	32.356
MOTA	51	CA	TRP A	. 6	7.958	-3.669	31-865
MOTA	52	C	TRP A	6	7.071	-4.697	31.204
MOTA	53	0	TRP A	6	7.520	-5.798	30.828
ATOM	54	CB	TRP A	6	8.099	-3.913	33.367
ATOM	55	CG	TRP A	6	9.041	-2.974	34.070

FIG. I IA

Heller Ehrman White, & Nicoliffe, LLP
State 15.4 del
Title: Use of Computationally Derived Frederic Riverteure of Genetic Polymer phisms in
Pharmacageomous for Drug Delegia and Ciliadi Applications
Serial No. 09709,905
Applicants Ranmarayan et al.
Date of Filing: 11/1000
Attorney Decket No. 24737-1986C

		Date of	Filing: 11/1	0/00	Attorney	Docket No. 24737-1906C		
MOTA	56	CD1	TRP	Α	6	8.745	-1.769	34.646
ATOM	57	CD2		A.	6	10.449	-3.171	34.273
ATOM	58	NE1		A	6	9.875	-1.209	35.190
ATOM	59	HE1		A	6	9.930	-0.332	35.668
ATOM	60	CE2		A	6	10.932	-2.048	34.974
ATOM	61	CE3		A	6	11.334	-4.190	33.924
ATOM	62	CZ2		A	6	12.257	-1.917	35.333
ATOM	63	CZ3		A	6	12.650	-4.065	34.278
ATOM	64	CH2		Ā	6	13.106	-2.942	34.974
ATOM	65	N N		A	7	5.773	-4.448	30.973
ATOM	66	Н		A	Ź	5.354	-3.619	31.343
ATOM	67	CA		A	7	4.952	-5.339	30.205
		C		A	7	4.438	-4.569	29.033
MOTA	68	Ö		A	7	4.433	-3.321	29.000
ATOM	69			A	7	3.712	-5.693	30.969
MOTA	70	CB		A	7	4.015	-6.467	32.210
ATOM	71 72	CG CD		A	7	2.734	-6.678	32.917
MOTA				A	7	2.053	-7.681	32.712
MOTA	73	OE1		A	7	2.356	-5.682	33.736
ATOM	74	NE2		A	7	1.501	-5.748	34.251
MOTA	75	1HE2		A	'n	2.926	-4.867	33.837
ATOM	76	2HE2		A	8	3.777	-5.239	28.078
MOTA	77	N			8	3.688	-6.233	28.142
MOTA	78	H		A	8	3.183	-4.568	26.142
ATOM	79	CA		A		2.117	-3.648	27.461
MOTA	80	C		A	8	1.333	-3.040	28.387
ATOM	81	0		A	8	2.574	-5.555	25.975
ATOM	82	CB		A	8		-6.593	25.437
ATOM	83	CG		A	8	3.532 2.842	-7.610	24.579
ATOM	84	CD		A	8	3.787	-8.487	23.900
MOTA	85	NE	ARG		8	4.762	-8.279	23.982
ATOM	86	HE		A	8		-9.541	23.185
ATOM	87	CZ		A	8	3.405 2.125	-9.871	23.163
ATOM	88	NH1		Α	8	1.418	-9.321	23.496
ATOM	89	2HH1		Α	8		-10.670	22.508
ATOM	90	1HH1		A	8	1.869 4.332	-10.670	22.508
ATOM	91	NH2		Α	8			22.048
MOTA	92	1HH2		Α	8	4.062	-11.082	22.682
MOTA	93	2HH2		Α	8	5.299 1.990	-10.050 -2.428	26.938
ATOM	94	N		A	9		-1.462	27.440
ATOM	95	CA		Α	9	1.001	-1.462	26.821
MOTA	96	C		A	9	-0.365		
ATOM	97	0		Α	9	-0.918	-0.935 -0.112	26.008 27.041
ATOM	98	CB		Α	9	1.572		25.931
ATOM	99	CG		Α	9	2.553	-0.404	
MOTA	100	CD		Α	9	3.024	-1.820	26.084 27.227
MOTA	101	N		Α	10	-1.028	-2.803	27.227
MOTA	102	H		A	10	-0.616	-3.404	
ATOM	103	CA		A	10	-2.319	-3.143	26.698 27.591
ATOM	104	C		A	10	-3.390	-2.565	
MOTA	105	0		Α	10	-3.336	-2.632	28.831
MOTA	106	CB		A	10	-2.451	-4.651	26.709
MOTA	107	CG		A	10	-1.483	-5.316	25.756
ATOM	108	CD1		Α	10	-1.159	-6.740	26.212
ATOM	109	CD2		A	10	-2.083	-5.262	24.322
ATOM	110	N	VAL		11	-4.447	-1.952	27.033
MOTA	111	Н	VAL	А	11	-4.507	-1.875	26.038

FIG. I IB

Heiler Ehrmun White & McAuliffe, LLP Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogeomistic For Drug Bestga and Clinical Applications Serial No. 09708,905 Applicatis: Rammarayan et al. Date of Finig: 11/1009 Attoracy Docker No. 24737-1906C

OIPE &	
OCT-1 7 2002	1
PHATE TRADEMA	*

ATOM	112	CA	VAL A	. 11	-5.506	-1.398	27.835
ATOM	113	C	VAL A		-6.827	-1.857	27.268
	114	Ö	VAL A		-6.924	-2.490	26.198
ATOM		CB	VAL A		-5.420	0.143	27.897
ATOM	115				-4.117	0.595	28.551
ATOM	116	CG1	VAL A				
ATOM	117	CG2	VAL A		-5.549	0.787	26.497
ATOM	118	N	THR A		-7.954	-1.592	27.978
ATOM	119	H	THR A	. 12	-7.884	-1.141	28.868
ATOM	120	CA	THR A	. 12	-9.301	-1.942	27.496
ATOM	121	С	THR A	. 12	-9.889	-0.726	26.795
ATOM	122	0	THR A	12	-9.856	0.436	27.247
ATOM	123	CB	THR A	. 12	-10.225	-2.385	28.659
ATOM	124	OG1	THR A		~9.596	-3.458	29.338
ATOM	125	HG1	THR A		-10.170	-3.766	30.096
ATOM	126	CG2	THR A		-11.579	-2.895	28.156
	127	N N	ILE A		-10.449	-0.932	25.594
ATOM					-10.449	-1.841	25.178
ATOM	128	H	ILE A				
ATOM	129	CA	ILE A		-11.112	0.133	24.882
ATOM	130	С	ILE A		-12.553	-0.292	24.693
ATOM	131	0	ILE A		-12.935	-1.469	24.821
ATOM	132	CB	ILE A		-10.432	0.364	23.511
ATOM	133	CG1	ILE A	. 13	-10.466	-0.896	22.628
ATOM	134	CG2	ILE A	. 13	-8.986	0.806	23.747
ATOM	135	CD1	ILE A	. 13	-9.755	-0.745	21.294
ATOM	136	N	LYS A	14	-13.470	0.658	24.438
ATOM	137	H	LYS A	14	-13.209	1.622	24.481
ATOM	138	CA	LYS A		-14.838	0.330	24.100
ATOM	139	C	LYS A		-15.088	0.877	22.719
ATOM	140	o	LYS A		-14.859	2.059	22.375
ATOM	141	СВ	LYS A		-15.855	0.916	25.099
			LYS A		-17.325	0.518	24.864
ATOM	142	CG			-17.323	0.146	26.166
ATOM	143	CD					
ATOM	144	CE	LYS A		-18.826	1.342	26.810
ATOM	145	NZ	LYS A		-19.316	0.929	28.173
ATOM	146	$_{1Hz}$	LYS A		-19.801	1.693	28.599
ATOM	147	3HZ	LYS A		-18.536	0.670	28.743
ATOM	148	2HZ	LYS A		-19.936	0.150	28.082
ATOM	149	N	ILE A	15	-15.535	0.005	21.798
ATOM	150	H	ILE A	15	-15.806	-0.916	22.078
ATOM	151	CA	ILE A	15	-15.642	0.347	20.400
ATOM	152	C	ILE A	15	-16.894	-0.328	19.887
ATOM	153	O	ILE A		-17.115	-1.542	20.041
ATOM	154	CB	ILE A		-14.382	-0.132	19.639
ATOM	155	CG1	ILE A		-14.478	0.148	18.125
ATOM	156	CG2	ILE A		-14.082	-1.623	19.880
ATOM	157	CD1	ILE A		-14.237	1.603	17.796
ATOM	158	N	GLY A		-17.843	0.435	19.308
					-17.720	1.426	19.260
ATOM	159	H	GLY A			-0.143	18.745
ATOM	160	CA	GLY A		-19.053		
ATOM	161	C	GLY A		-19.897	-0.817	19.789
MOTA	162	0	GLY A	16	-20.774	-1.668	19.516
ATOM	163	N	GLY A		-19.712	-0.493	21.088
ATOM	164	Н	GLY A		-19.038	0.204	21.334
ATOM	165	CA	GLY A	17	-20.464	-1.126	22.160
ATOM	166	C	GLY A		-19.718	-2.335	22.653
ATOM	167	0	GLY A	17	-20.147	-3.098	23.540

FIG. I IC

Heller Ehrman Wilse, & Icashiffe, LLP 30 Peter Street Stre

			~		1.0	-18.507	-2.591	22.121
ATOM	168	N	GLN	Α	18			
ATOM	169	H	GLN	Α	18	-18.059	-1.900	21.554
MOTA	170	CA	GLN	Α	18	-17.806	-3.830	22.326
ATOM	171	C	GLN	Α	18	-16.552	-3.549	23.123
	172	ŏ	GLN	Α	18	-15.887	-2.508	22.945
ATOM						-17.393	-4.294	20.928
MOTA	173	CB	GLN	А	18			
ATOM	174	CG	GLN	Α	18	-16.911	-5.734	20.788
ATOM	175	CD	GLN	Α	18	-18.018	-6.728	20.613
ATOM	176	OE1	GLN	Α	18	-19.131	-6.574	21.152
ATOM	177	NE2	GLN	Α	18	-17.722	-7.773	19.857
			GLN	A	18	-18.404	-8.484	19.689
MOTA	178	1HE2						
MOTA	179	2HE2	GLN	А	18	-16.814	-7.860	19.448
ATOM	180	N	LEU	Α	19	-16.133	-4.397	24.087
ATOM	181	H	LEU	Α	19	-16.682	-5.202	24.312
MOTA	182	CA	LEU	Α	19	-14.909	-4.178	24.808
ATOM	183	C	LEU	Α	19	-13.799	-4.912	24.090
ATOM	184	ō	LEU	A	19	-13.989	-6.018	23.558
MOTA	185	CB	LEU		19	-14.982	-4.714	26.254
MOTA	186	CG	LEU	Α	19	-15.490	-3.778	27.374
ATOM	187	CD1	LEU	Α	19	-16.392	-2.639	26.856
ATOM	188	CD2	LEU	Α	19	-16.208	-4.516	28.465
ATOM	189	N	LYS	Α	20	-12.603	-4.372	23.978
						-12.442	-3.448	24.324
MOTA	190	H	LYS	Α	20			
MOTA	191	CA	LYS	Α	20	-11.507	-5.082	23.365
ATOM	192	C	LYS	Α	20	-10.266	-4.618	24.062
ATOM	193	0	LYS	Α	20	-10.228	-3.611	24.816
ATOM	194	CB	LYS	Α	20	-11.397	-4.798	21.875
ATOM	195	CG	LYS	Α	20	-12.558	-5.356	21.100
						-12.537	-4.988	19.615
MOTA	196	CD	LYS	Α	20			
MOTA	197	CE	LYS	Α	20	-13.414	-5.958	18.827
ATOM	198	NZ	LYS	Α	20	-12.681	-7.208	18.639
MOTA	199	1HZ	LYS	Α	20	-13.247	-7.852	18.123
MOTA	200	3HZ	LYS	Α	20	-12.458	-7.601	19.531
MOTA	201	2HZ	LYS	Α	20	-11.837	-7.027	18.134
						-9.150	-5.357	23.893
ATOM	202	N	GLU	Α	21			
MOTA	203	H	GLU	Α	21	-9.185	-6.188	23.338
ATOM	204	CA	GLU	Α	21	-7.890	-4.997	24.486
ATOM	205	C	GLU	Α	21	-7.001	-4.462	23.390
ATOM	206	ō	GLU	Α	21	-6.970	-4.992	22.258
ATOM	207	CB	GLU	Α	21	-7.268	-6.260	25.051
						-5.835	-6.140	25.480
ATOM	208	CG	GLU	Α	21			
MOTA	209	CD	GLU	Α	21	-5.405	-7.352	26.275
MOTA	210	OE1	GLU	Α	21	-5.624	-7.343	27.508
MOTA	211	OE2	GLU	Α	21	-4.852	-8.309	25.684
ATOM	212	N	ALA	Δ	22	-6.239	-3.369	23.595
	213	н	ALA		22	-6.223	-2.938	24.497
MOTA						-5.419	-2.781	22.520
ATOM	214	CA	ALA		22			
MOTA	215	C	ALA		22	-4.138	-2.255	23.114
MOTA	216	0	ALA	Α	22	-3.985	-1.914	24.314
MOTA	217	CB	ALA	Α	22	-6.134	-1.657	21.821
ATOM	218	N	LEU	Α	23	-3.121	-2.091	22.240
MOTA	219	Н	LEU	A	23	-3.279	-2.236	21.263
						-1.797	-1.712	22.640
MOTA	220	CA	LEU	Α	23			
MOTA	221	С	LEU	Α	23	-1.660	-0.230	22.443
MOTA	222	0	LEU	Α	23	-2.020	0.349	21.402
MOTA	223	CB	LEU	Α	23	-0.814	-2.486	21.732

Heiler Ehrnan White & McLuiffe, LLP Stell St 66. Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Physics of Computational Protein Structures of Genetic Polymorphisms in Secial No. 9709,095 Applicants Rammarayan et al. Date of Filling: 11/1000 Advarces Decket App. 12/371-1996C

ATOM 225 CD1 LEU A 23 1.088 -3.400 23.124 ATOM 226 CD2 LEU A 23 1.462 -2.878 20.708 ATOM 227 N LEU A 24 -1.015 0.110 24.353 ATOM 228 H LEU A 24 -1.015 0.110 24.353 ATOM 229 CA LEU A 24 0.403 2.089 22.609 ATOM 231 O LEU A 24 0.403 2.089 22.609 ATOM 231 O LEU A 24 0.403 2.089 22.609 ATOM 231 O LEU A 24 0.403 2.089 22.609 ATOM 231 O LEU A 24 0.403 2.089 22.609 ATOM 231 O LEU A 24 1.471 1.717 23.130 ATOM 232 CB LEU A 24 -0.921 2.609 24.681 ATOM 233 CG LEU A 24 -2.063 3.291 26.772 ATOM 233 CG LEU A 24 -2.063 3.291 26.772 ATOM 235 CD2 LEU A 24 -2.063 3.291 26.772 ATOM 236 N ASP A 25 0.454 2.590 21.397 ATOM 237 H ASP A 25 0.454 2.590 21.397 ATOM 238 CA ASP A 25 0.334 3.085 21.032 ATOM 238 CA ASP A 25 1.642 2.423 0.605 ATOM 239 C ASP A 25 1.642 2.423 0.605 ATOM 241 CB ASP A 25 1.568 4.320 19.110 ATOM 241 CB ASP A 25 1.568 4.320 19.110 ATOM 242 CG ASP A 25 1.263 1.435 19.486 ATOM 243 OD1 ASP A 25 1.263 1.435 19.486 ATOM 244 OD2 ASP A 25 2.130 3.750 20.059 ATOM 240 O ASP A 25 1.263 1.435 19.486 ATOM 245 N THIR A 26 3.694 3.880 21.346 ATOM 247 CA THIR A 26 3.694 3.880 21.346 ATOM 247 CA THIR A 26 3.694 3.880 21.346 ATOM 247 CA THIR A 26 3.694 3.880 21.346 ATOM 249 O THIR A 26 3.694 3.880 21.346 ATOM 249 O THIR A 26 3.694 3.880 21.346 ATOM 250 CB THIR A 26 3.694 3.880 21.346 ATOM 250 CB THIR A 26 3.694 3.880 21.346 ATOM 250 CB THIR A 26 3.694 3.880 21.346 ATOM 250 CB THIR A 26 3.694 3.880 21.346 ATOM 250 CB THIR A 26 3.694 3.880 21.346 ATOM 250 CB THIR A 26 3.694 3.880 21.346 ATOM 250 CB THIR A 26 3.694 3.890 21.217 ATOM 250 CB THIR A 26 3.694 3.890 21.346 ATOM 250 CB THIR A 26 3.694 3.890 21.346 ATOM 250 CB THIR A 26 3.694 3.890 21.346 ATOM 250 CB THIR A 26 3.694 3.890 21.346 ATOM 250 CB THIR A 26 3.694 3.890 21.346 ATOM 250 CB THIR A 26 3.694 3.890 21.346 ATOM 250 CB THIR A 26 3.694 3.890 21.346 ATOM 250 CB THIR A 26 3.694 3.890 21.346 ATOM 250 CB THIR A 26 3.694 3.890 21.346 ATOM 250 CB THIR A 26 3.694 3.890 21.346 ATOM 250 CB THIR A 26 3.694 3.890 21.346 ATOM 250 CB THIR A 26 3.694 3.890 21.346 ATOM 250 CB THIR A 26 3.								
ATOM	ATOM	224	CG	LEU A	23	0.705	-2.448	21.991
ATOM 226 CD2 LEU A 23 ATOM 227 N LEU A 24 ATOM 228 H LEU A 24 ATOM 229 CA LEU A 24 ATOM 229 CA LEU A 24 ATOM 230 C LEU A 24 ATOM 231 O LEU A 24 ATOM 231 C LEU A 24 ATOM 231 C LEU A 24 ATOM 231 C LEU A 24 ATOM 232 CB LEU A 24 ATOM 231 C LEU A 24 ATOM 231 C LEU A 24 ATOM 232 CB LEU A 24 ATOM 233 CG LEU A 24 ATOM 234 CDI LEU A 24 ATOM 235 CD2 ATOM 235 CD2 ATOM 236 C LEU A 24 ATOM 237 C LEU A 24 ATOM 236 C LEU A 24 ATOM 237 C LEU A 24 ATOM 237 C LEU A 24 ATOM 238 CD2 ATOM 239 C LEU A 24 ATOM 236 N ASP A 25 ATOM 237 C ASP A 25 ATOM 239 C ASP A 25 ATOM 240 O ASP A 25 ATOM 241 CB ASP A 25 ATOM 241 CB ASP A 25 ATOM 242 CG ASP A 25 ATOM 243 CD1 LSEU A 25 ATOM 244 CD2 ATOM 245 CD ASP A 25 ATOM 246 C ASP A 25 ATOM 247 CA THR A 26 ATOM 247 CA THR A 26 ATOM 248 C THR A 26 ATOM 249 O THR A 26 ATOM 247 CA THR A 26 ATOM 248 C THR A 26 ATOM 249 O THR A 26 ATOM 240 C B ASP A 25 ATOM 240 C B ASP A 25 ATOM 250 CB THR A 26 ATOM 247 CA THR A 26 ATOM 248 C THR A 26 ATOM 249 O THR A 26 ATOM 247 CA THR A 26 ATOM 248 C THR A 26 ATOM 249 O THR A 26 ATOM 250 CB THR A 26 ATOM 250 CB THR A 26 ATOM 251 CG THR A 26 ATOM 252 CG THR A 26 ATOM 253 CG THR A 26 ATOM 254 N GLY A 27 ATOM 255 H GLY A 27 ATOM 256 C A GLY A 27 ATOM 257 C GLY A 27 ATOM 258 O GLY A 27 ATOM 259 N ALA A 28 ATOM 250 CB THR A 26 ATOM 250 CB THR A 26 ATOM 250 CB THR A 26 ATOM 251 CG THR A 26 ATOM 252 CG THR A 26 ATOM 253 CG2 THR A 26 ATOM 250 CB	ATOM	225	CD1	LEU A	23	1.088	-3.400	23.124
ATOM 228 H LEU A 24 -1.192 0.530 23.463 ATOM 228 LEU A 24 -1.015 0.110 24.353 ATOM 229 CA LEU A 24 -0.935 1.952 23.305 ATOM 230 C LEU A 24 0.403 2.089 22.609 ATOM 231 0 LEU A 24 0.403 2.089 22.609 ATOM 231 0 LEU A 24 0.403 2.089 22.609 ATOM 232 CB LEU A 24 0.921 2.609 24.681 ATOM 232 CB LEU A 24 -0.921 2.609 24.681 ATOM 233 CG LEU A 24 -2.063 3.291 26.772 ATOM 234 CD1 LEU A 24 -2.063 3.291 26.772 ATOM 235 CD2 LEU A 24 -2.063 3.291 26.772 ATOM 235 CD2 LEU A 24 -2.063 3.291 26.772 ATOM 237 H ASP A 25 0.454 2.590 21.397 ATOM 238 CA ASP A 25 1.642 2.423 20.605 ATOM 238 CA ASP A 25 1.642 2.423 20.605 ATOM 239 C ASP A 25 1.568 4.320 19.110 ATOM 241 CB ASP A 25 1.263 1.355 20.055 ATOM 241 CB ASP A 25 1.263 1.355 19.486 ATOM 242 CG ASP A 25 1.263 1.351 1.435 19.486 ATOM 244 OD2 ASP A 25 1.263 1.435 19.486 ATOM 244 OD2 ASP A 25 1.263 1.337 20.605 ATOM 244 OD2 ASP A 25 1.263 1.337 20.605 ATOM 244 OD2 ASP A 25 1.263 1.337 20.605 ATOM 244 OD2 ASP A 25 1.263 1.337 20.605 ATOM 244 OD2 ASP A 25 1.263 1.337 20.605 ATOM 245 N THR A 26 3.694 3.880 21.346 ATOM 247 CA THR A 26 3.694 3.880 21.346 ATOM 247 CA THR A 26 3.694 3.880 21.346 ATOM 247 CA THR A 26 3.691 5.552 20.144 ATOM 248 C THR A 26 3.691 5.552 20.144 ATOM 250 CB THR A 26 4.397 5.583 18.778 ATOM 250 CB THR A 26 4.397 5.583 18.778 ATOM 250 CB THR A 26 4.397 5.583 18.778 ATOM 250 CB THR A 26 4.397 5.583 18.778 ATOM 250 CB THR A 26 4.397 5.583 18.778 ATOM 250 CB THR A 26 4.596 6.219 21.217 ATOM 250 CB THR A 26 4.596 6.219 21.217 ATOM 250 CB THR A 26 4.596 6.219 21.217 ATOM 250 CB THR A 26 4.596 6.219 21.217 ATOM 250 CB THR A 26 4.596 6.219 21.217 ATOM 250 CB THR A 26 4.596 6.219 21.217 ATOM 250 CB THR A 26 4.596 6.219 21.217 ATOM 250 CB THR A 26 4.596 6.219 21.217 ATOM 250 CB THR A 26 4.596 6.219 21.217 ATOM 250 CB THR A 26 4.596 6.219 21.217 ATOM 250 CB THR A 26 4.596 6.219 21.217 ATOM 250 CB THR A 26 4.596 6.219 21.217 ATOM 250 CB THR A 26 4.596 6.219 21.217 ATOM 250 CB THR A 26 4.596 6.219 21.217 ATOM 250 CB THR A 26 4.596 6.219 21.217 ATOM 250 CB THR A 26 4.596 6.219 2			CD2	LEU A	23	1.462	-2.878	20.708
ATOM 229 CA LEU A 24 -1.015 0.110 24.353 ATOM 229 CA LEU A 24 -0.935 1.952 23.305 ATOM 230 C LEU A 24 0.403 2.089 22.609 ATOM 231 O LEU A 24 1.471 1.717 23.130 ATOM 231 C LEU A 24 -0.921 2.609 24.681 ATOM 232 CB LEU A 24 -2.220 2.492 25.477 ATOM 233 CG LEU A 24 -2.220 2.492 25.477 ATOM 234 CDI LEU A 24 -2.220 2.492 25.477 ATOM 235 CD2 LEU A 24 -2.220 2.492 25.477 ATOM 235 CD2 LEU A 24 -3.419 3.000 24.691 ATOM 236 N ASP A 25 0.454 2.590 21.397 ATOM 237 H ASP A 25 0.454 2.590 21.397 ATOM 238 CA ASP A 25 1.642 2.423 20.605 ATOM 239 C ASP A 25 1.642 2.423 20.605 ATOM 239 C ASP A 25 1.664 2.423 20.605 ATOM 240 O ASP A 25 1.568 4.320 19.110 ATOM 241 CB ASP A 25 1.568 4.320 19.110 ATOM 241 CB ASP A 25 1.568 4.320 19.110 ATOM 242 CG ASP A 25 1.568 4.320 19.110 ATOM 244 OD ASP A 25 1.568 4.320 19.110 ATOM 244 OD ASP A 25 1.568 4.320 19.110 ATOM 247 CA THR A 26 3.203 4.337 20.605 ATOM 245 N THR A 26 3.203 4.337 20.605 ATOM 247 CA THR A 26 3.203 4.337 20.605 ATOM 247 CA THR A 26 3.203 4.337 20.605 ATOM 248 C THR A 26 3.694 3.880 21.346 ATOM 247 CA THR A 26 3.694 3.880 21.346 ATOM 248 C THR A 26 3.694 3.880 21.346 ATOM 247 CA THR A 26 3.694 3.880 21.346 ATOM 248 C THR A 26 4.596 6.219 21.217 ATOM 250 CB THR A 26 4.596 6.219 21.217 ATOM 25							0.530	
ATOM								
ATOM 231 O LEU A 24 0.403 2.089 22.609 ATOM 231 O LEU A 24 1.471 1.717 23.130 ATOM 232 CB LEU A 24 -0.921 2.609 24.6671 ATOM 233 CG LEU A 24 -2.220 2.492 25.477 ATOM 234 CDI LEU A 24 -2.220 2.492 25.477 ATOM 235 CD2 LEU A 24 -3.419 3.000 24.691 ATOM 235 N ASP A 25 0.454 2.590 21.397 ATOM 237 H ASP A 25 0.454 2.590 21.397 ATOM 237 H ASP A 25 0.334 3.085 21.032 ATOM 238 CA ASP A 25 1.642 2.423 20.605 ATOM 239 C ASP A 25 1.642 2.423 20.605 ATOM 240 O ASP A 25 1.568 4.320 19.110 ATOM 241 CB ASP A 25 1.263 1.435 19.486 ATOM 241 CB ASP A 25 1.263 1.435 19.486 ATOM 242 CG ASP A 25 1.263 1.435 19.486 ATOM 244 OD2 ASP A 25 2.428 1.051 18.561 ATOM 244 OD2 ASP A 25 2.428 1.051 18.561 ATOM 245 N THR A 26 3.694 3.880 21.346 ATOM 246 H THR A 26 3.694 3.880 21.346 ATOM 247 CA THR A 26 3.694 3.880 21.346 ATOM 247 CA THR A 26 3.694 3.880 21.346 ATOM 249 O THR A 26 3.694 3.880 21.346 ATOM 249 O THR A 26 3.694 5.552 0.144 ATOM 250 CB THR A 26 3.694 5.552 0.144 ATOM 250 CB THR A 26 3.694 5.552 0.144 ATOM 250 CB THR A 26 3.694 5.552 0.144 ATOM 250 CB THR A 26 3.694 5.552 0.144 ATOM 250 CB THR A 26 3.694 5.552 0.144 ATOM 250 CB THR A 26 3.694 5.552 0.144 ATOM 250 CB THR A 26 3.694 5.552 0.144 ATOM 250 CB THR A 26 3.694 3.880 21.346 ATOM 250 CB THR A 26 3.694 3.880 21.346 ATOM 250 CB THR A 26 3.694 3.880 21.346 ATOM 250 CB THR A 26 3.694 3.880 21.346 ATOM 250 CB THR A 26 3.694 3.880 21.346 ATOM 250 CB THR A 26 3.694 3.880 21.346 ATOM 250 CB THR A 26 3.694 3.880 21.346 ATOM 250 CB THR A 26 4.596 6.219 21.217 ATOM 250 CB THR A 26 3.896 5.552 0.144 ATOM 250 CB THR A 26 3.896 5.552 0.144 ATOM 250 CB THR A 26 3.896 5.552 0.144 ATOM 250 CB THR A 26 3.896 5.552 0.144 ATOM 250 CB THR A 26 3.896 5.552 0.144 ATOM 250 CB THR A 26 3.896 5.552 0.144 ATOM 250 CB THR A 26 3.896 5.552 0.144 ATOM 250 CB THR A 26 3.896 5.552 0.144 ATOM 250 CB THR A 26 3.896 5.552 0.144 ATOM 250 CB THR A 26 3.896 5.552 0.144 ATOM 250 CB THR A 26 3.896 5.552 0.144 ATOM 250 CB THR A 26 3.896 5.552 0.144 ATOM 250 CB THR A 26 3.896 5.552 0.144 ATOM 250 CB THR A 26 3.896 5.								
ATOM 231 O LEU A 24	ATOM							
ATOM	ATOM	230	C	LEU A				
ATOM 234 CD1 LEU A 24 -2.220 2.492 25.477 ATOM 235 CD2 LEU A 24 -2.063 3.291 26.772 ATOM 236 CD2 LEU A 24 -3.419 3.000 24.691 ATOM 236 N ASP A 25 0.454 2.590 21.397 ATOM 237 H ASP A 25 0.454 2.590 21.397 ATOM 238 CA ASP A 25 1.642 2.423 20.605 ATOM 239 C ASP A 25 1.642 2.423 20.605 ATOM 240 O ASP A 25 1.568 4.320 19.110 ATOM 241 CB ASP A 25 1.568 4.320 19.110 ATOM 241 CB ASP A 25 1.568 4.320 19.110 ATOM 242 CG ASP A 25 1.568 4.320 19.110 ATOM 243 ODI ASP A 25 1.568 4.320 19.110 ATOM 244 ODZ ASP A 25 1.568 4.320 19.110 ATOM 244 CDZ ASP A 25 1.568 4.320 19.110 ATOM 247 CD ASP A 25 1.568 1.540 18.729 ATOM 246 H THIR A 26 3.203 4.337 20.605 ATOM 247 CA THIR A 26 3.203 4.337 20.605 ATOM 248 C THIR A 26 3.691 5.552 20.144 ATOM 248 C THIR A 26 3.691 5.552 20.144 ATOM 249 O THIR A 26 4.642 6.587 18.778 ATOM 250 CB THIR A 26 4.596 6.219 21.217 ATOM 251 OGI THIR A 26 4.596 6.219 21.217 ATOM 253 CGZ THIR A 26 6.332 5.676 22.091 ATOM 254 N GLY A 27 4.757 4.377 18.298 ATOM 255 H GLY A 27 4.757 4.377 18.298 ATOM 256 CA GLY A 27 4.526 3.550 18.811 ATOM 257 C GLY A 27 4.526 3.550 18.81 ATOM 258 O GLY A 27 4.526 3.550 18.81 ATOM 258 O GLY A 27 4.526 3.590 18.81 ATOM 258 O GLY A 27 4.526 3.590 18.81 ATOM 260 H ALA A 28 1.117 2.980 15.390 ATOM 261 CA ALA A 28 1.117 2.980 15.390 ATOM 266 CA ASP A 29 1.912 5.216 12.74 ATOM 267 CA ASP A 29 1.912 5.216 12.74 ATOM 268 C ASP A 29 1.912 5.216 12.74 ATOM 267 CA ALA A 28 1.117 2.980 15.390 ATOM 268 C ASP A 29 1.912 5.216 12.74 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 268 C ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 268 C ASP A 29 1.912 5.216 12.746 ATOM 267 CA AS	ATOM	231	0	LEU A	24	1.471	1.717	23.130
ATOM 234 CDI LEU A 24 -2.220 2.492 25.477 ATOM 235 CD2 LEU A 24 -2.063 3.291 26.772 ATOM 235 CD2 LEU A 24 -3.419 3.000 24.691 ATOM 236 N ASP A 25 0.454 2.590 21.397 ATOM 237 H ASP A 25 0.454 2.590 21.397 ATOM 238 CA ASP A 25 1.642 2.423 20.605 ATOM 239 C ASP A 25 1.642 2.423 20.605 ATOM 240 O ASP A 25 1.568 4.320 19.110 ATOM 241 CB ASP A 25 1.568 4.320 19.110 ATOM 241 CB ASP A 25 1.568 4.320 19.110 ATOM 242 CG ASP A 25 1.568 4.320 19.110 ATOM 243 ODI ASP A 25 1.568 4.320 19.110 ATOM 244 ODZ ASP A 25 1.568 4.320 19.110 ATOM 245 N THR A 25 3.546 1.540 18.729 ATOM 246 H THR A 26 3.203 4.337 20.605 ATOM 247 CA THR A 26 3.203 4.337 20.605 ATOM 248 C THR A 26 3.694 3.880 21.346 ATOM 248 C THR A 26 3.694 3.880 21.346 ATOM 249 O THR A 26 4.596 6.219 21.217 ATOM 250 CB THR A 26 4.596 6.219 21.217 ATOM 251 CGI THR A 26 4.596 6.219 21.217 ATOM 252 HGI THR A 26 3.891 5.652 20.144 ATOM 253 CGZ THR A 26 4.596 6.320 2.597 ATOM 254 N GLY A 27 4.757 4.377 18.298 ATOM 255 H GI THR A 26 3.888 6.320 22.597 ATOM 256 CA GLY A 27 4.526 3.550 18.811 ATOM 257 C GLY A 27 4.526 3.550 18.81 ATOM 258 O GLY A 27 4.526 3.550 18.81 ATOM 259 N ALLA A 28 3.197 4.084 16.117 ATOM 250 CB THR A 28 2.57 5.481 4.333 17.040 ATOM 256 CA GLY A 27 4.526 3.550 18.811 ATOM 257 C GLY A 27 4.526 3.550 18.81 ATOM 258 O GLY A 27 4.526 3.550 18.811 ATOM 259 N ALLA A 28 1.117 2.980 15.390 ATOM 260 H ALLA A 28 1.117 2.980 15.390 ATOM 261 CA ALLA A 28 1.117 2.980 15.390 ATOM 262 C ALLA A 28 1.117 2.980 15.390 ATOM 263 C ALLA A 28 1.117 2.980 15.390 ATOM 266 C ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 267 C ALLA A 28 1.117 2.980 15.390 ATOM 268 C ASP A 29 1.912 5.216 12.746 ATOM 267 C ALLA A 28 1.117 2.980 15.390 ATOM 268 C ASP A 29 1.912 5.216 12.746 ATOM 267 C ALLA A 28 1.117 2.980 15.390 ATOM 268 C ASP A 29 1.902 5.213 3.365 12.269 ATOM 270 CB ASP A 29 1.902 6.666 6.724 13.327 ATOM 268 C ASP A 29 1.902 6.666 6.724 13.327 ATOM 269 O ASP A 29 1.900 7.433 11.775	ATOM	232	CB	LEU A	24	-0.921	2.609	24.681
ATOM					24	-2.220	2.492	25.477
ATOM 236 N ASP A 25 0.454 2.590 21.397 ATOM 237 H ASP A 25 0.454 2.590 21.397 ATOM 238 CA ASP A 25 0.454 2.590 21.397 ATOM 238 CA ASP A 25 1.642 2.423 20.605 ATOM 239 C ASP A 25 1.642 2.423 20.605 ATOM 240 O ASP A 25 1.568 4.320 19.110 ATOM 241 CB ASP A 25 1.568 4.320 19.110 ATOM 242 CG ASP A 25 1.568 4.320 19.110 ATOM 242 CG ASP A 25 1.568 4.320 19.110 ATOM 243 OD1 ASP A 25 2.428 1.051 18.561 ATOM 244 OD2 ASP A 25 3.546 1.540 18.729 ATOM 245 N THR A 26 3.203 4.337 20.605 ATOM 246 H THR A 26 3.203 4.337 20.605 ATOM 247 CA THR A 26 3.203 4.337 20.605 ATOM 248 C THR A 26 3.694 3.880 21.346 ATOM 248 C THR A 26 3.694 5.552 20.144 ATOM 248 C THR A 26 4.642 6.587 18.079 ATOM 250 CB THR A 26 4.596 6.219 21.217 ATOM 251 OG1 THR A 26 4.596 6.219 21.217 ATOM 252 HGI THR A 26 6.332 5.676 22.091 ATOM 253 CG2 THR A 26 6.332 5.676 22.091 ATOM 254 N GIY A 27 4.757 4.3377 18.298 ATOM 255 H GIY A 27 4.757 4.3377 18.298 ATOM 256 CA GIY A 27 4.526 3.550 18.811 ATOM 257 C GIY A 27 4.526 3.550 18.81 ATOM 258 O GIY A 27 4.526 3.550 18.81 ATOM 259 N ALA A 28 3.197 4.084 16.117 ATOM 256 CA GIY A 27 4.526 3.550 18.81 ATOM 257 C GIY A 27 4.526 3.550 18.81 ATOM 258 O GIY A 27 4.526 3.550 18.81 ATOM 259 N ALA A 28 3.197 4.084 16.117 ATOM 260 H ALA A 28 3.197 4.084 16.117 ATOM 261 CA ALA A 28 3.197 4.084 16.117 ATOM 262 C ALA A 28 3.197 4.084 16.117 ATOM 263 N ASP A 29 1.912 5.216 12.746 ATOM 266 N ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 268 C ASP A 29 1.912 5.216 12.746 ATOM 269 O ASP A 29 1.909 7.433 11.755 ATOM 269 O ASP A 29 1.909 7.433 11.756 ATOM 269 O ASP A 29 1.909 7.433 11.756 ATOM 269 O ASP A 29 1.909 7.433 11.756 ATOM 267 CA ASP A 29 1.909 7.433 11.756 ATOM 268 C ASP A 29 1.909 7.433 11.756 ATOM 269 O ASP A 29 2.439 7.882 11.312 ATOM 269 O ASP A 29 2.439 7.882 11.312 ATOM 269 O ASP A 29 2.439 7.882 11.312 ATOM 270 CB ASP A 29 2.439 7.882 11.312 ATOM 270 CB ASP A 29 2.439 7.882 11.312								
ATOM 236 N ASP A 25								
ATOM 237 H ASP A 25 -0.334 3.085 21.032 ATOM 238 CA ASP A 25 1.642 2.423 20.605 ATOM 239 C ASP A 25 1.568 4.320 19.110 ATOM 241 CB ASP A 25 1.568 4.320 19.110 ATOM 241 CB ASP A 25 1.568 4.320 19.110 ATOM 242 CG ASP A 25 1.568 4.320 19.110 ATOM 242 CG ASP A 25 1.263 1.435 19.486 ATOM 243 OD1 ASP A 25 2.428 1.051 18.561 ATOM 244 OD2 ASP A 25 2.428 1.051 18.561 ATOM 245 OD ASP A 25 2.428 1.051 18.561 ATOM 246 T THR A 26 3.203 4.337 20.605 ATOM 247 CA THR A 26 3.694 3.880 21.346 ATOM 247 CA THR A 26 3.694 3.880 21.346 ATOM 248 C THR A 26 3.691 5.652 20.144 ATOM 249 O THR A 26 3.691 5.652 20.144 ATOM 248 C THR A 26 4.642 6.587 18.079 ATOM 250 CB THR A 26 4.642 6.587 18.079 ATOM 250 CB THR A 26 4.642 6.587 18.079 ATOM 251 OG1 THR A 26 6.332 5.676 22.091 ATOM 252 HG1 THR A 26 6.332 5.676 22.091 ATOM 253 CG2 THR A 26 6.332 5.676 22.091 ATOM 254 N GLY A 27 4.757 4.377 18.298 ATOM 255 H GLY A 27 4.757 4.377 18.298 ATOM 256 CA GLY A 27 4.526 3.550 18.811 ATOM 257 C GLY A 27 4.526 3.550 18.811 ATOM 258 O GLY A 27 4.526 3.550 18.811 ATOM 259 N ALLA A 28 3.197 4.084 16.117 ATOM 260 H ALLA A 28 3.197 4.084 16.117 ATOM 261 CA ALLA A 28 3.197 4.084 16.117 ATOM 262 C ALLA A 28 3.197 4.084 16.117 ATOM 263 C ALLA A 28 3.197 4.084 16.117 ATOM 264 CB ALLA A 28 1.159 5.299 14.750 ATOM 265 N ASP A 29 1.902 5.744 13.390 ATOM 266 C ASP A 29 1.902 5.744 13.390 ATOM 267 CA ASP A 29 1.902 5.216 12.746 ATOM 268 C ASP A 29 1.902 5.216 12.746 ATOM 269 O ASP A 29 1.909 7.433 11.755 ATOM 269 O ASP A 29 1.909 7.433 11.756 ATOM 269 O ASP A 29 1.609 7.433 11.756 ATOM 269 O ASP A 29 1.909 7.433 11.756 ATOM 269 O ASP A 29 1.909 7.433 11.756 ATOM 270 CB ASP A 29 1.909 7.433 11.756 ATOM 270 CB ASP A 29 2.439 7.882 11.3290 ATOM 270 CB ASP A 29 2.439 7.882 11.3290								
ATOM 238 CA ASP A 25 1.642 2.423 20.605 ATOM 239 C ASP A 25 2.130 3.750 20.059 ATOM 240 O ASP A 25 1.568 4.320 19.110 ATOM 241 CB ASP A 25 1.263 1.435 19.486 ATOM 242 CG ASP A 25 1.263 1.435 19.486 ATOM 243 ODI ASP A 25 3.546 1.540 18.729 ATOM 243 ODI ASP A 25 3.546 1.540 18.729 ATOM 244 ODZ ASP A 25 2.164 0.241 17.658 ATOM 245 N THR A 26 3.203 4.337 20.605 ATOM 246 H THR A 26 3.203 4.337 20.605 ATOM 247 CA THR A 26 3.694 3.880 21.346 ATOM 247 CA THR A 26 3.694 3.880 21.346 ATOM 248 C THR A 26 4.397 5.552 20.144 ATOM 248 C THR A 26 4.397 5.583 18.778 ATOM 250 CB THR A 26 4.596 6.219 21.217 ATOM 250 CB THR A 26 4.596 6.219 21.217 ATOM 251 OGI THR A 26 4.596 6.219 21.217 ATOM 252 HGI THR A 26 4.596 6.219 21.217 ATOM 253 CGZ THR A 26 4.596 6.219 21.217 ATOM 255 CA GLY A 27 4.757 4.377 18.298 ATOM 255 CA GLY A 27 4.757 4.377 18.298 ATOM 255 CA GLY A 27 4.526 3.550 18.811 ATOM 257 C GLY A 27 4.526 3.550 18.811 ATOM 258 O GLY A 27 4.526 4.991 7.040 ATOM 258 O GLY A 27 4.526 4.991 7.057 ATOM 259 N ALA A 28 3.197 4.084 16.117 NTOM 260 H ALA A 28 3.197 4.084 16.117 NTOM 261 CA ALA A 28 3.197 4.084 16.117 NTOM 261 CA ALA A 28 3.197 4.084 16.117 NTOM 260 H ALA A 28 3.197 4.084 16.117 NTOM 266 C ALA A 28 3.197 4.084 16.117 NTOM 266 C ALA A 28 3.197 4.084 16.117 NTOM 266 H ASP A 29 1.503 5.744 13.490 ATOM 267 CA ASP A 29 1.503 5.744 13.490 ATOM 266 C ALA A 28 1.117 2.980 15.390 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A								
ATOM 240 O ASP A 25 1.568 4.320 19.110 ATOM 241 CB ASP A 25 1.568 4.320 19.110 ATOM 242 CG ASP A 25 1.263 1.435 19.486 ATOM 243 ODI ASP A 25 1.263 1.435 19.486 ATOM 244 ODZ ASP A 25 2.428 1.051 18.561 ATOM 244 ODZ ASP A 25 2.428 1.051 18.561 ATOM 245 N THR A 25 3.546 1.540 18.729 ATOM 246 H THR A 26 3.694 3.880 21.346 ATOM 247 CA THR A 26 3.694 3.880 21.346 ATOM 247 CA THR A 26 3.691 5.652 0.144 ATOM 248 C THR A 26 4.397 5.583 18.778 ATOM 249 O THR A 26 4.397 5.583 18.778 ATOM 250 CB THR A 26 4.596 6.219 21.217 ATOM 251 OGI THR A 26 5.716 5.324 21.386 ATOM 252 HGI THR A 26 5.716 5.324 21.386 ATOM 253 CGZ THR A 26 6.332 5.676 22.091 ATOM 254 N GLY A 27 4.526 3.550 18.811 ATOM 255 C GLY A 27 4.526 3.550 18.811 ATOM 256 CA GLY A 27 4.526 3.550 18.811 ATOM 257 C GLY A 27 4.526 3.550 18.811 ATOM 258 O GLY A 27 4.526 4.990 15.886 ATOM 259 N ALA A 28 3.197 4.084 16.117 ATOM 260 H ALA A 28 2.856 4.091 7.055 ATOM 261 CA ALA A 28 1.598 5.299 14.755 ATOM 262 C ALA A 28 1.598 5.299 14.755 ATOM 263 O ALA A 28 1.598 5.299 14.755 ATOM 264 CB ALA A 28 1.598 5.299 14.755 ATOM 267 C GLY A 27 4.526 3.550 18.811 ATOM 268 C ASP A 29 1.912 5.216 12.746 ATOM 267 C GLY A 27 4.526 3.550 18.311 ATOM 268 C ASP A 29 1.912 5.216 12.746 ATOM 267 C ALA A 28 1.598 5.299 14.755 ATOM 268 C ASP A 29 1.912 5.216 12.746 ATOM 267 C ASP A 29 1.912 5.216 12.746 ATOM 268 C ASP A 29 1.912 5.216 12.746 ATOM 269 O ASP A 29 1.912 5.216 12.746 ATOM 269 O ASP A 29 1.912 5.216 12.746 ATOM 269 O ASP A 29 1.912 5.216 12.746 ATOM 269 O ASP A 29 1.909 7.433 11.775 ATOM 269 O ASP A 29 1.909 7.433 11.712 ATOM 269 O ASP A 29 1.909 7.433 11.712 ATOM 269 O ASP A 29 1.909 7.433 11.712 ATOM 269 O ASP A 29 1.909 7.433 11.712 ATOM 269 O ASP A 29 1.909 7.433 11.712 ATOM 269 O ASP A 29 1.909 7.433 11.712								
ATOM 241 CB ASP A 25 1.568 4.320 19.110 ATOM 241 CB ASP A 25 1.263 1.435 19.486 ATOM 242 CG ASP A 25 2.428 1.051 18.561 ATOM 243 ODI ASP A 25 3.546 1.540 18.729 ATOM 244 ODZ ASP A 25 3.546 0.241 7.658 ATOM 245 N THR A 26 3.203 4.337 20.605 ATOM 246 H THR A 26 3.203 4.337 20.605 ATOM 247 CA THR A 26 3.694 3.880 21.346 ATOM 248 C THR A 26 3.694 5.652 20.144 ATOM 249 O THR A 26 4.397 5.583 18.778 ATOM 250 CB THR A 26 4.596 6.219 21.217 ATOM 251 OGI THR A 26 4.596 6.219 21.217 ATOM 252 HGI THR A 26 6.332 5.676 22.091 ATOM 253 CGZ THR A 26 6.332 5.676 22.091 ATOM 254 N GLY A 27 4.757 4.377 18.298 ATOM 255 H GI THR A 26 6.332 5.676 22.091 ATOM 256 CA GLY A 27 4.757 4.377 18.298 ATOM 257 C GLY A 27 4.526 3.550 18.811 ATOM 258 O GLY A 27 4.526 3.550 18.811 ATOM 259 N ALA A 28 3.197 4.084 16.117 ATOM 250 CB TLR A 28 3.197 4.084 16.117 ATOM 251 CG LY A 27 4.526 4.991 7.057 ATOM 250 CB TLR A 28 3.197 4.084 16.117 ATOM 257 C GLY A 27 4.526 3.550 18.811 ATOM 258 O GLY A 27 4.526 4.991 7.057 ATOM 260 H ALA A 28 3.197 4.084 16.117 ATOM 261 CA ALA A 28 3.197 4.084 16.117 ATOM 262 C ALA A 28 3.197 4.084 16.117 ATOM 263 O ALA A 28 1.117 2.980 15.390 ATOM 266 CA ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 268 C ASP A 29 1.912 5.216 12.746 ATOM 269 O ASP A 29 1.909 7.433 11.758 ATOM 269 O ASP A 29 1.909 7.433 11.758 ATOM 269 O ASP A 29 1.909 7.433 11.758 ATOM 270 CB ASP A 29 1.909 7.433 11.758 ATOM 271 CG ASP A 29 2.439 7.882 11.412 ATOM 272 ODI ASP A 29 2.439 7.885 11.299	MOTA							
ATOM 241 CB ASP A 25 1.263 1.435 19.486 ATOM 242 CG ASP A 25 2.428 1.051 18.561 ATOM 243 OD1 ASP A 25 2.428 1.051 18.561 ATOM 244 OD2 ASP A 25 2.164 0.241 17.658 ATOM 245 N THR A 26 3.694 3.880 21.346 ATOM 247 CA THR A 26 3.694 3.880 21.346 ATOM 247 CA THR A 26 3.694 3.880 21.346 ATOM 248 C THR A 26 3.694 5.652 0.144 ATOM 248 C THR A 26 4.397 5.583 18.778 ATOM 250 CB THR A 26 4.397 5.583 18.778 ATOM 250 CB THR A 26 4.596 6.219 21.217 ATOM 251 OG1 THR A 26 5.5716 5.242 21.386 ATOM 251 OG1 THR A 26 5.716 5.242 21.386 ATOM 252 HG1 THR A 26 5.716 5.242 21.386 ATOM 253 CG2 THR A 26 5.716 5.242 21.386 ATOM 255 CG CB THR A 26 5.716 5.242 21.386 ATOM 255 CG CB THR A 26 3.878 6.320 22.577 ATOM 257 C GLY A 27 4.526 3.550 18.811 ATOM 257 C GLY A 27 4.526 3.550 18.811 ATOM 258 O GLY A 27 4.526 3.550 18.811 ATOM 258 O GLY A 27 4.526 3.550 18.811 ATOM 258 O GLY A 27 4.526 4.190 15.886 ATOM 258 O GLY A 27 4.520 4.190 15.886 ATOM 260 H ALA A 28 2.815 4.091 17.057 ATOM 261 CA ALA A 28 2.815 4.091 17.057 ATOM 262 C ALA A 28 2.815 4.091 17.057 ATOM 263 O ALA A 28 1.598 5.299 14.750 ATOM 264 CB ALA A 28 1.598 5.299 14.750 ATOM 266 H ALA A 28 1.598 5.299 14.750 ATOM 266 H ALA A 28 1.598 5.299 14.750 ATOM 267 CA ALA A 28 1.598 5.299 14.750 ATOM 267 CA ALA A 28 1.598 5.299 14.750 ATOM 268 C ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 271 CG ASP A 29 1.912 5.216 12.746 ATOM 272 OLA ASP A 29 1.912 5.216 12.746 ATOM 273	ATOM	239	C	ASP A	25		3.750	
ATOM 242 CG ASF A 25 2.428 1.051 18.561 ATOM 243 ODI ASF A 25 3.546 1.540 18.729 ATOM 244 ODI ASF A 25 2.164 0.241 17.658 ATOM 245 N THR A 26 3.203 4.337 20.605 ATOM 246 H THR A 26 3.694 3.880 21.346 ATOM 247 CA THR A 26 3.691 5.652 20.144 ATOM 249 O THR A 26 4.397 5.683 18.778 ATOM 250 DE THR A 26 4.596 6.219 21.217 ATOM 251 OGI THR A 26 5.716 5.324 21.386 ATOM 251 HGI THR A 26 6.332 25.676	MOTA	240	0	ASP A	25	1.568	4.320	19.110
ATOM 242 CG ASF A 25 2.428 1.051 18.561 ATOM 243 ODI ASF A 25 3.546 1.540 18.729 ATOM 244 ODI ASF A 25 2.164 0.241 17.658 ATOM 245 N THR A 26 3.203 4.337 20.605 ATOM 246 H THR A 26 3.694 3.880 21.346 ATOM 247 CA THR A 26 3.691 5.652 20.144 ATOM 249 O THR A 26 4.397 5.683 18.778 ATOM 250 DE THR A 26 4.596 6.219 21.217 ATOM 251 OGI THR A 26 5.716 5.324 21.386 ATOM 251 HGI THR A 26 6.332 25.676	MOTA	241	CB	ASP A	25	1.263	1.435	19.486
ATOM 244 OD2 ASP A 25 3.546 1.540 18.729 ATOM 244 OD2 ASP A 25 2.164 0.241 17.658 ATOM 245 N THR A 26 3.203 4.337 20.605 ATOM 246 H THR A 26 3.691 3.880 21.346 ATOM 247 CA THR A 26 3.691 5.652 20.144 ATOM 248 C THR A 26 4.397 5.583 18.778 ATOM 249 O THR A 26 4.397 5.583 18.778 ATOM 250 CB THR A 26 4.596 6.219 21.217 ATOM 251 OGI THR A 26 4.596 6.219 21.217 ATOM 251 OGI THR A 26 4.596 6.219 21.217 ATOM 252 HG1 THR A 26 6.332 5.676 22.091 ATOM 253 CG2 THR A 26 6.332 5.676 22.091 ATOM 254 N GLY A 27 4.526 3.878 6.320 22.577 ATOM 255 H GLY A 27 4.526 3.550 18.811 ATOM 256 CA GLY A 27 4.526 3.550 18.811 ATOM 257 C GLY A 27 4.526 3.550 18.811 ATOM 258 O GLY A 27 4.520 4.190 15.886 ATOM 259 N ALA A 28 3.197 4.084 16.117 ATOM 250 CA ALA A 28 3.197 4.084 16.117 ATOM 260 H ALA A 28 2.213 3.955 15.018 ATOM 261 CA ALA A 28 1.117 2.980 15.390 ATOM 263 O ALA A 28 1.117 2.980 15.390 ATOM 266 N ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 268 C ASP A 29 1.009 7.433 11.752 ATOM 269 O ASP A 29 -0.666 6.724 13.357 ATOM 267 CA ASP A 29 -1.488 7.371 3.568 ATOM 267 CA ASP A 29 -1.488 7.371 3.568 ATOM 267 CA ASP A 29 -1.488 7.371 3.568 ATOM 267 CA ASP A 29 -1.488 7.371 3.558 ATOM 267 CA ASP A 29 -1.488 7.371 3.558 ATOM 267 CA ASP A 29 -1.488 7.371 3.558 ATOM 267 CA ASP A 29 -1.488 7.371 3.558 ATOM 267 CA ASP A 29 -1.488 7.371 3.568 ATOM 267 CA ASP A 29 -1.488 7.371 3.568 ATOM 267 CA ASP A 29 -1.488 7.371 3.568 ATOM 270 CB ASP A 29 -1.488 7.371 3.568 ATOM 271 CG ASP A 29 -1.488 7.371 3.568 ATOM 272 ODL ASP A 29 -1.488 7.371 3.568 ATOM 273 ODL ASP A 29 -1.488 7.371 3.568 ATOM 274 N ASP A 29 -2.666 8.253 10.252						2.428	1.051	18.561
ATOM 244 OD2 ASP A 25								
ATOM								
ATOM 246 H THR A 26 3.694 3.880 21.346 ATOM 247 CA THR A 26 3.691 5.652 20.144 ATOM 248 C THR A 26 4.397 5.583 18.778 ATOM 249 O THR A 26 4.642 6.587 18.079 ATOM 250 CB THR A 26 4.642 6.587 18.079 ATOM 251 OG1 THR A 26 4.696 6.219 21.217 ATOM 251 OG1 THR A 26 5.716 5.324 21.386 ATOM 252 HG1 THR A 26 5.716 5.324 21.386 ATOM 253 CG2 THR A 26 5.716 5.324 21.386 ATOM 254 N GLY A 27 4.757 4.377 18.298 ATOM 255 H GLY A 27 4.757 4.377 18.298 ATOM 256 CA GLY A 27 4.526 3.550 18.811 ATOM 257 C GLY A 27 5.481 4.233 17.040 ATOM 258 O GLY A 27 4.908 4.242 14.696 ATOM 259 N ALA A 28 3.197 4.084 6.117 ATOM 260 H ALA A 28 3.197 4.084 6.117 ATOM 261 CA ALA A 28 2.213 3.955 15.018 ATOM 262 C ALA A 28 1.062 5.982 15.650 ATOM 263 O ALA A 28 1.062 5.982 15.650 ATOM 264 CB ALA A 28 1.062 5.982 15.650 ATOM 265 N ASP A 29 1.503 5.744 13.490 ATOM 266 CA ASP A 29 1.503 5.744 13.490 ATOM 267 CA ASP A 29 0.810 6.984 13.213 ATOM 268 C ASP A 29 0.810 6.984 13.213 ATOM 269 O ASP A 29 1.488 7.637 13.568 ATOM 270 CB ASP A 29 0.810 6.984 13.213 ATOM 269 O ASP A 29 1.488 7.637 13.568 ATOM 270 CB ASP A 29 1.488 7.637 13.568 ATOM 270 CB ASP A 29 1.488 7.637 13.568 ATOM 270 CB ASP A 29 1.488 7.637 13.568 ATOM 271 CG ASP A 29 2.439 7.882 11.412 ATOM 272 OD1 ASP A 29 2.439 7.882 11.412 ATOM 273 OD2 ASP A 29 2.606 8.253 10.252								
ATOM 248 C THR A 26								
ATOM 248 C THR A 26 4.397 5.583 18.778 ATOM 249 O THR A 26 4.642 6.587 18.079 ATOM 250 CB THR A 26 4.596 6.219 21.217 ATOM 251 OG1 THR A 26 5.716 5.324 21.386 ATOM 252 HG1 THR A 26 5.716 5.324 21.386 ATOM 253 CG2 THR A 26 6.332 5.676 22.091 ATOM 253 CG2 THR A 26 3.878 6.320 22.577 ATOM 254 N GLY A 27 4.757 4.377 18.298 ATOM 255 H GLY A 27 4.526 3.550 18.811 ATOM 256 CA GLY A 27 5.481 4.233 17.040 ATOM 257 C GLY A 27 5.481 4.233 17.040 ATOM 258 O GLY A 27 4.520 4.190 15.886 ATOM 259 N ALA A 28 3.197 4.084 6.117 ATOM 260 H ALA A 28 2.815 4.091 17.057 ATOM 261 CA ALA A 28 2.213 3.955 15.018 ATOM 262 C ALA A 28 1.062 5.982 15.650 ATOM 263 O ALA A 28 1.062 5.982 15.650 ATOM 264 CB ALA A 28 1.062 5.982 15.650 ATOM 265 N ASP A 29 1.503 5.744 13.490 ATOM 266 H ASP A 29 1.503 5.744 13.490 ATOM 267 CA ASP A 29 1.503 5.744 13.213 ATOM 268 C ASP A 29 1.009 7.433 11.775 ATOM 269 O ASP A 29 1.009 7.433 11.775 ATOM 269 O ASP A 29 1.009 7.433 11.775 ATOM 270 CB ASP A 29 1.009 7.433 11.775 ATOM 270 CB ASP A 29 1.009 7.433 11.775 ATOM 270 CB ASP A 29 1.009 7.433 11.775 ATOM 270 CB ASP A 29 1.009 7.433 11.775 ATOM 270 CB ASP A 29 1.009 7.433 11.775 ATOM 271 CG ASP A 29 2.439 7.882 11.412 ATOM 272 OD1 ASP A 29 2.466 8.253 10.252								
ATOM 249 O THE A 26 4.642 6.587 18.079 ATOM 250 CB THR A 26 4.596 6.219 21.217 ATOM 251 OGI THR A 26 5.716 5.324 21.386 ATOM 252 HGI THR A 26 6.332 5.676 22.091 ATOM 253 CGZ THR A 26 6.332 5.676 22.091 ATOM 254 N GLY A 27 4.757 4.377 18.298 ATOM 255 H GILY A 27 4.757 4.377 18.298 ATOM 256 CA GLY A 27 4.526 3.550 18.811 ATOM 257 C GLY A 27 4.526 3.550 18.811 ATOM 258 O GLY A 27 4.526 4.242 14.696 ATOM 259 N ALLA A 28 3.197 4.084 16.117 ATOM 261 CA ALLA A 28 3.197 4.084 16.117 ATOM 262 C ALLA A 28 1.050 4.091 7.057 ATOM 263 O ALLA A 28 1.1598 5.299 14.750 ATOM 264 CB ALLA A 28 1.117 2.980 15.650 ATOM 265 N ASP A 29 1.912 5.216 12.746 ATOM 266 H ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 0.810 6.984 13.213 ATOM 268 C ASP A 29 0.810 6.984 13.13.37 ATOM 267 CA ASP A 29 0.810 6.984 13.13.365 ATOM 268 C ASP A 29 0.810 6.984 13.13.365 ATOM 269 O ASP A 29 0.810 6.984 13.13.365 ATOM 269 O ASP A 29 0.810 6.984 13.15.565 ATOM 270 CB ASP A 29 1.488 7.637 13.568 ATOM 270 CB ASP A 29 1.488 7.637 13.568 ATOM 270 CB ASP A 29 1.488 7.637 13.568 ATOM 270 CB ASP A 29 1.488 7.637 13.568 ATOM 270 CB ASP A 29 1.488 7.637 13.568 ATOM 270 CB ASP A 29 2.439 7.882 11.12 ATOM 271 CG ASP A 29 2.439 7.882 11.12 ATOM 272 ODI ASP A 29 2.439 7.882 11.290	MOTA	247	CA	THR A	26			
ATOM 251 OGI THR A 26 4.596 6.219 21.217 ATOM 251 OGI THR A 26 5.716 5.224 21.386 ATOM 252 HGI THR A 26 6.332 5.676 22.091 ATOM 253 CG2 THR A 26 3.878 6.320 22.577 ATOM 254 N GLY A 27 4.556 3.550 18.811 ATOM 255 CG CGLY A 27 4.526 3.550 18.811 ATOM 256 CA GLY A 27 4.526 3.550 18.811 ATOM 257 C GLY A 27 4.520 4.190 15.886 ATOM 258 O GLY A 27 4.520 4.190 15.886 ATOM 258 O GLY A 27 4.520 4.190 15.886 ATOM 260 H ALA A 28 3.197 4.084 16.117 ATOM 261 CA ALA A 28 2.856 4.091 17.057 ATOM 261 CA ALA A 28 1.598 5.299 14.750 ATOM 262 C ALA A 28 1.598 5.299 14.750 ATOM 263 O ALA A 28 1.598 5.299 14.750 ATOM 264 CB ALA A 28 1.117 2.980 15.390 ATOM 265 N ASP A 29 1.912 5.216 12.746 ATOM 266 H ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 -0.666 6.724 13.327 ATOM 268 C ASP A 29 -0.666 6.724 13.327 ATOM 269 O ASP A 29 -1.488 7.637 13.568 ATOM 270 CB ASP A 29 -1.488 7.637 13.568 ATOM 270 CB ASP A 29 -1.488 7.637 13.568 ATOM 270 CB ASP A 29 -1.488 7.637 13.568 ATOM 271 CG ASP A 29 2.439 7.882 11.712 ATOM 272 ODL ASP A 29 2.439 7.882 11.712 ATOM 273 ODL ASP A 29 2.439 7.882 11.712 ATOM 274 N ASP A 29 3.360 7.855 12.269 ATOM 273 NASP A 29 3.360 7.855 12.269 ATOM 274 N ASP A 29 3.360 7.855 12.269 ATOM 274 N ASP A 29 3.360 7.855 12.269	MOTA	248	С	THR A	26	4.397	5.583	18.778
ATOM 250 CB THR A 26 4.596 6.219 21.217 ATOM 251 OGI THR A 26 5.716 5.324 21.386 ATOM 252 HGI THR A 26 6.332 5.676 22.091 ATOM 253 CG2 THR A 26 3.878 6.320 22.577 ATOM 254 N GLY A 27 4.526 3.550 18.811 ATOM 255 C G GLY A 27 4.526 3.550 18.811 ATOM 256 CA GLY A 27 4.526 3.550 18.811 ATOM 257 C GLY A 27 4.520 4.190 15.886 ATOM 258 O GLY A 27 4.520 4.190 15.886 ATOM 259 N ALA A 28 3.197 4.084 16.117 ATOM 259 N ALA A 28 3.197 4.084 16.117 ATOM 260 H ALA A 28 2.856 4.091 17.057 ATOM 261 CA ALA A 28 1.598 5.299 14.750 ATOM 262 C ALA A 28 1.598 5.299 14.750 ATOM 263 O ALA A 28 1.598 5.299 14.750 ATOM 264 CB ALA A 28 1.117 2.980 15.390 ATOM 265 N ASP A 29 1.912 5.216 12.746 ATOM 266 C ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 -0.666 6.724 13.327 ATOM 268 C ASP A 29 -0.666 6.724 13.327 ATOM 269 O ASP A 29 -1.488 7.637 13.558 ATOM 270 CB ASP A 29 -1.488 7.637 13.558 ATOM 270 CB ASP A 29 -1.488 7.637 13.568 ATOM 270 CB ASP A 29 -1.488 7.637 13.568 ATOM 271 CG ASP A 29 2.439 7.882 11.712 ATOM 272 ODL ASP A 29 2.439 7.882 11.712 ATOM 273 ODL ASP A 29 2.439 7.882 11.712 ATOM 273 NASP A 29 2.439 7.882 11.712 ATOM 274 N ASP A 29 2.606 8.253 10.252	ATOM	249	0	THR A	26	4.642	6.587	18.079
ATOM 251 OG1 THR A 26 5.716 5.324 21.386 ATOM 252 HG1 THR A 26 6.332 5.676 22.091 ATOM 253 CG2 THR A 26 3.878 6.320 22.577 ATOM 254 N GLY A 27 4.757 4.377 18.298 ATOM 255 H GLY A 27 4.757 4.377 18.298 ATOM 256 CA GLY A 27 5.481 4.233 17.040 ATOM 257 C GLY A 27 5.481 4.233 17.040 ATOM 257 C GLY A 27 4.526 4.190 15.886 ATOM 259 N ALLA A 28 3.197 4.084 16.117 ATOM 261 CA ALLA A 28 2.813 4.091 17.057 ATOM 261 CA ALLA A 28 2.213 3.955 15.018 ATOM 262 C ALLA A 28 1.052 5.299 14.750 ATOM 263 O ALLA A 28 1.052 5.982 15.650 ATOM 264 CB ALLA A 28 1.052 5.992 15.650 ATOM 265 N ASP A 29 1.503 5.744 13.490 ATOM 266 C ASP A 29 1.503 5.744 13.490 ATOM 266 C ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 268 C ASP A 29 0.810 6.984 13.213 ATOM 269 O ASP A 29 0.810 6.984 13.213 ATOM 270 CB ASP A 29 0.810 6.984 13.513 ATOM 270 CB ASP A 29 0.810 6.984 13.513 ATOM 270 CB ASP A 29 0.810 6.984 13.213 ATOM 270 CB ASP A 29 0.866 6.724 13.357 ATOM 270 CB ASP A 29 0.866 6.724 13.357 ATOM 270 CB ASP A 29 0.860 6.785 13.568 ATOM 270 CB ASP A 29 1.009 7.433 11.775 ATOM 270 CB ASP A 29 1.009 7.433 11.775 ATOM 270 CB ASP A 29 2.439 7.882 11.412 ATOM 272 OD1 ASP A 29 2.439 7.882 11.412 ATOM 273 OD2 ASP A 29 2.469 7.885 11.412 2.980 ATOM 274 N ASP A 29 2.666 8.253 10.252 ATOM 274 N ASP A 30 -1.143 5.517 12.990	ATOM	250	CB	THR A	26	4.596	6.219	21.217
ATOM 252 HG1 THR A 26 6.332 5.676 22.091 ATOM 253 CG2 THR A 26 3.878 6.320 22.577 ATOM 254 N GLY A 27 4.757 4.377 18.298 ATOM 255 H GLY A 27 4.526 3.550 18.811 ATOM 256 CA GLY A 27 4.526 3.550 18.811 ATOM 257 C GLY A 27 4.520 4.190 15.886 ATOM 258 O GLY A 27 4.520 4.190 15.886 ATOM 259 N ALA A 28 3.197 4.084 16.117 ATOM 259 N ALA A 28 3.197 4.084 16.117 ATOM 260 H ALA A 28 2.815 4.091 17.057 ATOM 261 CA ALA A 28 2.213 3.955 15.018 ATOM 262 C ALA A 28 1.598 5.299 14.750 ATOM 263 O ALA A 28 1.117 2.980 15.390 ATOM 266 N ASP A 29 1.912 5.216 12.746 ATOM 266 N ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 -0.666 6.724 13.327 ATOM 268 C ASP A 29 -0.666 6.724 13.327 ATOM 269 O ASP A 29 -1.488 7.637 13.568 ATOM 270 CB ASP A 29 -1.488 7.637 13.568 ATOM 270 CB ASP A 29 -1.488 7.637 13.568 ATOM 270 CB ASP A 29 -1.488 7.637 13.568 ATOM 270 CB ASP A 29 -1.488 7.637 13.568 ATOM 270 CB ASP A 29 -1.488 7.637 13.568 ATOM 271 CG ASP A 29 2.439 7.882 11.712 ATOM 272 ODL ASP A 29 2.439 7.882 11.712 ATOM 273 ODL ASP A 29 2.439 7.882 11.712 ATOM 273 ODL ASP A 29 2.606 8.253 10.252						5.716	5.324	21.386
ATOM 253 CG2 THR A 26 3.878 6.320 22.577 ATOM 254 N GLY A 27 4.757 4.377 18.298 ATOM 255 H GLY A 27 4.526 3.550 18.811 ATOM 256 CA GLY A 27 5.481 4.233 17.040 ATOM 257 C GLY A 27 5.481 4.233 17.040 ATOM 258 O GLY A 27 4.520 4.190 15.886 ATOM 259 N ALA A 28 3.197 4.084 6.117 ATOM 260 H ALA A 28 2.856 4.091 17.057 ATOM 261 CA ALA A 28 2.213 3.955 15.018 ATOM 262 C ALA A 28 2.213 3.955 15.018 ATOM 263 O ALA A 28 1.062 5.982 15.650 ATOM 264 CB ALA A 28 1.062 5.982 15.650 ATOM 265 N ASP A 29 1.912 5.216 12.746 ATOM 266 C ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 0.810 6.984 13.213 ATOM 268 C ASP A 29 0.810 6.984 13.213 ATOM 269 O ASP A 29 1.009 7.433 11.775 ATOM 260 CB ASP A 29 1.009 7.433 11.758 ATOM 270 CB ASP A 29 1.009 7.433 11.758 ATOM 270 CB ASP A 29 1.009 7.433 11.758 ATOM 270 CB ASP A 29 1.009 7.433 11.758 ATOM 270 CB ASP A 29 1.009 7.433 11.758 ATOM 271 CG ASP A 29 2.439 7.882 11.412 ATOM 272 OD1 ASP A 29 2.439 7.882 1.412 ATOM 273 OD2 ASP A 29 2.606 8.253 10.252 ATOM 274 N ASP A 30 -1.143 5.517 12.990								
ATOM 254 N GLY A 27 4.757 4.377 18.298 ATOM 255 H GLY A 27 4.526 3.550 18.811 ATOM 256 CA GLY A 27 4.526 3.550 18.811 ATOM 257 C GLY A 27 4.520 4.190 15.886 ATOM 258 O GLY A 27 4.520 4.190 15.886 ATOM 258 O GLY A 27 4.520 4.190 15.886 ATOM 259 N ALA A 28 3.197 4.084 16.117 ATOM 260 H ALA A 28 3.197 4.084 16.117 ATOM 261 CA ALA A 28 2.213 3.955 15.018 ATOM 262 C ALA A 28 2.213 3.955 15.018 ATOM 263 O ALA A 28 1.598 5.299 14.750 ATOM 264 CB ALA A 28 1.117 2.980 15.390 ATOM 265 N ASP A 29 1.912 5.216 12.746 ATOM 266 H ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 1.912 5.216 12.746 ATOM 268 C ASP A 29 0.810 6.984 13.213 ATOM 268 C ASP A 29 0.810 6.984 13.213 ATOM 269 O ASP A 29 0.666 6.724 13.327 ATOM 269 O ASP A 29 0.666 6.724 13.327 ATOM 270 CB ASP A 29 1.009 7.433 11.775 ATOM 270 CB ASP A 29 1.009 7.433 11.775 ATOM 270 CB ASP A 29 1.009 7.433 11.775 ATOM 270 CB ASP A 29 1.009 7.433 11.775 ATOM 271 CG ASP A 29 2.439 7.882 11.412 ATOM 272 ODI ASP A 29 2.439 7.882 11.412 ATOM 273 OD2 ASP A 29 2.439 7.882 11.412 ATOM 273 OD2 ASP A 29 2.606 8.253 10.252 ATOM 274 N ASP A 29 2.606 8.253 10.252 ATOM 274 N ASP A 30 -1.143 5.517 12.990								
ATOM 255 H GIY A 27 4.526 3.550 18.811 ATOM 256 CA GLY A 27 5.481 4.233 17.040 ATOM 257 C GLY A 27 5.481 4.233 17.040 ATOM 258 O GLY A 27 4.520 4.190 15.886 ATOM 258 O GLY A 27 4.908 4.242 14.696 ATOM 259 N ALA A 28 3.197 4.084 6.117 ATOM 260 H ALA A 28 3.197 4.084 6.117 ATOM 261 CA ALA A 28 2.856 4.091 17.057 ATOM 261 CA ALA A 28 2.856 4.091 17.057 ATOM 262 C ALA A 28 1.558 5.299 14.750 ATOM 263 O ALA A 28 1.062 5.982 15.650 ATOM 264 CB ALA A 28 1.062 5.982 15.650 ATOM 265 N ASF A 29 1.503 5.744 13.490 ATOM 266 H ASF A 29 1.503 5.744 13.490 ATOM 266 C ASF A 29 0.810 6.984 13.213 ATOM 267 CA ASF A 29 0.810 6.984 13.213 ATOM 268 C ASF A 29 0.666 6.724 13.327 ATOM 269 O ASF A 29 0.666 6.724 13.327 ATOM 270 CB ASF A 29 1.009 7.433 11.775 ATOM 271 CG ASF A 29 1.009 7.433 11.775 ATOM 272 OD1 ASF A 29 2.439 7.882 11.412 ATOM 273 OD2 ASF A 29 2.606 8.253 10.252								
ATOM 256 CA GLY A 27 5.481 4.233 17.040 ATOM 257 C GLY A 27 4.520 4.190 15.886 ATOM 258 O GLY A 27 4.520 4.190 15.886 ATOM 259 N ALLA A 28 3.197 4.084 16.117 ATOM 261 CA ALLA A 28 2.856 4.091 17.057 ATOM 261 CA ALLA A 28 2.213 3.955 15.018 ATOM 262 C ALLA A 28 1.598 5.299 14.750 ATOM 263 O ALLA A 28 1.598 5.299 14.750 ATOM 264 CB ALLA A 28 1.162 5.982 15.650 ATOM 265 N ASP A 29 1.912 5.216 12.746 ATOM 266 C ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 0.810 6.984 13.213 ATOM 268 C ASP A 29 -0.666 6.724 13.327 ATOM 269 O ASP A 29 -0.666 6.724 13.327 ATOM 270 CB ASP A 29 1.090 7.433 11.775 ATOM 271 CG ASP A 29 2.439 7.882 1.172 ATOM 272 OD1 ASP A 29 2.439 7.882 1.12 ATOM 273 OD2 ASP A 29 2.606 8.253 10.252 ATOM 274 N ASP A 29 2.606 8.253 10.252								
ATOM 257 C GIY A 27 4.520 4.190 15.886 ATOM 258 O GIY A 27 4.908 4.242 14.696 ATOM 258 N ALLA A 28 3.197 4.084 16.117 ATOM 260 H ALLA A 28 2.856 4.091 17.057 ATOM 261 CA ALLA A 28 2.856 4.091 17.057 ATOM 262 C ALLA A 28 1.598 5.299 14.750 ATOM 263 O ALLA A 28 1.598 5.299 14.750 ATOM 264 CB ALLA A 28 1.002 5.982 15.650 ATOM 265 N ASP A 28 1.117 2.980 15.390 ATOM 265 N ASP A 29 1.503 5.744 13.490 ATOM 266 H ASP A 29 1.503 5.744 13.490 ATOM 267 CA ASP A 29 0.810 6.984 13.213 ATOM 268 C ASP A 29 0.810 6.984 13.213 ATOM 269 O ASP A 29 -0.666 6.724 13.327 ATOM 270 CB ASP A 29 -1.488 7.637 13.568 ATOM 270 CB ASP A 29 1.009 7.433 11.775 ATOM 271 CG ASP A 29 1.009 7.433 11.775 ATOM 272 OD1 ASP A 29 3.360 7.856 12.269 ATOM 273 OD2 ASP A 29 2.606 8.253 10.252 ATOM 273 OD2 ASP A 29 2.606 8.253 10.252 ATOM 274 N ASP A 30 -1.143 5.517 12.990								
ATOM 258 O GLY A 27 4.908 4.242 14.696 ATOM 259 N ALA A 28 3.197 4.084 16.117 ATOM 260 H ALA A 28 2.856 4.091 17.057 ATOM 261 CA ALA A 28 2.213 3.955 15.018 ATOM 262 C ALA A 28 1.598 5.299 14.750 ATOM 263 O ALA A 28 1.062 5.982 15.650 ATOM 264 CB ALA A 28 1.062 5.982 15.650 ATOM 265 N ASP A 29 1.503 5.744 13.490 ATOM 266 H ASP A 29 1.503 5.744 13.490 ATOM 266 C ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 0.810 6.984 13.213 ATOM 268 C ASP A 29 0.666 6.724 13.327 ATOM 269 O ASP A 29 -0.666 6.724 13.327 ATOM 270 CB ASP A 29 -1.488 7.637 13.568 ATOM 270 CB ASP A 29 1.009 7.433 11.775 ATOM 271 CG ASP A 29 2.2439 7.882 11.412 ATOM 272 OD1 ASP A 29 2.439 7.882 11.412 ATOM 273 OD2 ASP A 29 2.4606 8.253 10.252 ATOM 273 OD2 ASP A 29 2.606 8.253 10.252 ATOM 274 N ASP A 30 -1.143 5.517 12.990								
ATOM	MOTA	257						
ATOM 260 H ALA A 28 2.856 4.091 17.057 ATOM 261 CA ALA A 28 2.213 3.955 15.018 ATOM 262 C ALA A 28 1.598 5.299 14.750 ATOM 263 O ALA A 28 1.062 5.982 15.650 ATOM 264 CB ALA A 28 1.062 5.982 15.650 ATOM 265 N ASF A 28 1.117 2.980 15.390 ATOM 266 H ASF A 29 1.503 5.744 13.490 ATOM 267 CA ASF A 29 1.912 5.216 12.746 ATOM 268 C ASF A 29 0.810 6.984 13.213 ATOM 269 O ASF A 29 -0.666 6.724 13.327 ATOM 270 CB ASF A 29 -1.488 7.637 13.568 ATOM 270 CB ASF A 29 1.009 7.433 11.775 ATOM 271 CG ASF A 29 2.439 7.882 11.412 ATOM 272 OD1 ASF A 29 3.360 7.856 12.269 ATOM 273 OD2 ASF A 29 2.606 8.253 10.252 ATOM 274 N ASF A 30 -1.143 5.517 12.990	ATOM	258	0	GLY A	27	4.908		
ATOM 261 CA ALA A 28 2.856 4.091 17.057 ATOM 261 CA ALA A 28 2.813 3.955 15.018 ATOM 262 C ALA A 28 1.598 5.299 14.750 ATOM 263 O ALA A 28 1.062 5.982 15.650 ATOM 264 CB ALA A 28 1.062 5.982 15.650 ATOM 265 N ASF A 28 1.117 2.980 15.390 ATOM 266 H ASF A 29 1.503 5.744 13.490 ATOM 267 CA ASF A 29 1.912 5.216 12.746 ATOM 268 C ASF A 29 0.810 6.984 13.213 ATOM 269 O ASF A 29 -0.666 6.724 13.327 ATOM 270 CB ASF A 29 -1.488 7.637 13.568 ATOM 270 CB ASF A 29 1.009 7.433 11.775 ATOM 271 CG ASF A 29 2.439 7.882 11.412 ATOM 272 OD1 ASF A 29 3.360 7.856 12.269 ATOM 273 OD2 ASF A 29 2.606 8.253 10.252	MOTA	259	N	ALA A	28	3.197	4.084	16.117
ATOM 261 CA ALA A 28 2.213 3.955 15.018 ATOM 262 C ALA A 28 1.598 5.299 14.750 ATOM 263 O ALA A 28 1.062 5.982 15.650 ATOM 264 CB ALA A 28 1.117 2.980 15.390 ATOM 265 N ASP A 29 1.503 5.744 13.490 ATOM 266 H ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 0.810 6.984 13.213 ATOM 268 C ASP A 29 -0.666 6.724 13.327 ATOM 269 O ASP A 29 -1.488 7.637 13.568 ATOM 270 CB ASP A 29 1.009 7.433 11.775 ATOM 271 CG ASP A 29 2.439 7.882 11.412 ATOM 272 OD1 ASP A 29 2.439 7.882 11.412 ATOM 273 OD2 ASP A 29 3.360 7.856 12.269 ATOM 273 OD2 ASP A 29 2.606 8.253 10.252		260	H	ALA A	28	2.856	4.091	17.057
ATOM 262 C ALA A 28 1.598 5.299 14.750 ATOM 263 O ALA A 28 1.002 5.982 15.650 ATOM 264 CB ALA A 28 1.002 5.982 15.650 ATOM 265 N ASP A 28 1.517 2.980 15.390 ATOM 265 N ASP A 29 1.503 5.744 13.490 ATOM 266 H ASP A 29 1.503 5.744 13.490 ATOM 267 CA ASP A 29 0.810 6.984 13.213 ATOM 268 C ASP A 29 -0.666 6.724 13.327 ATOM 269 O ASP A 29 -1.488 7.637 13.568 ATOM 270 CB ASP A 29 1.009 7.433 11.775 ATOM 271 CG ASP A 29 2.439 7.882 11.412 ATOM 272 OD1 ASP A 29 3.360 7.856 12.269 ATOM 273 OD2 ASP A 29 2.606 8.253 10.252 ATOM 273 OD2 ASP A 29 2.606 8.253 10.252 ATOM 274 N ASP A 30 -1.143 5.517 12.990								
ATOM 264 CB ALA A 28 1.062 5.982 15.650 ATOM 265 N ASP A 29 1.503 5.744 13.490 ATOM 266 H ASP A 29 1.912 5.216 12.746 ATOM 266 CB ASP A 29 0.810 6.984 13.213 ATOM 268 C ASP A 29 -0.666 6.724 13.327 ATOM 269 O ASP A 29 -0.666 6.724 13.327 ATOM 269 O ASP A 29 -1.488 7.637 13.568 ATOM 270 CB ASP A 29 1.009 7.433 11.775 ATOM 271 CG ASP A 29 2.439 7.882 11.412 ATOM 272 OD1 ASP A 29 2.439 7.882 11.412 ATOM 273 OD2 ASP A 29 2.439 7.882 11.412 ATOM 273 OD2 ASP A 29 2.606 8.253 10.252 ATOM 274 N ASP A 30 -1.143 5.517 12.990								
ATOM 264 CB ALA A 28 1.117 2.980 15.390 ATOM 265 N ASP A 29 1.503 5.744 13.490 ATOM 266 H ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 0.810 6.984 13.213 ATOM 268 C ASP A 29 -0.666 6.724 13.327 ATOM 269 O ASP A 29 -0.666 6.724 13.327 ATOM 270 CB ASP A 29 1.009 7.433 11.775 ATOM 271 CG ASP A 29 1.009 7.433 11.775 ATOM 271 CG ASP A 29 2.439 7.882 11.412 ATOM 272 OD1 ASP A 29 2.439 7.882 11.412 ATOM 273 OD2 ASP A 29 2.606 8.253 10.259 ATOM 273 OD2 ASP A 29 2.606 8.253 10.259 ATOM 274 N ASP A 30 -1.143 5.517 12.990								
ATOM 265 N ASP A 29 1.503 5.744 13.490 ATOM 266 H ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 0.810 6.984 13.213 ATOM 268 C ASP A 29 0.666 6.724 13.327 ATOM 269 O ASP A 29 -0.666 6.724 13.327 ATOM 270 CB ASP A 29 -1.488 7.637 13.568 ATOM 270 CB ASP A 29 1.009 7.433 11.775 ATOM 271 CG ASP A 29 2.439 7.882 11.412 ATOM 272 OD1 ASP A 29 2.439 7.882 11.412 ATOM 273 OD2 ASP A 29 2.606 8.253 10.252 ATOM 274 N ASP A 30 -1.143 5.517 12.990								
ATOM 266 H ASP A 29 1.912 5.216 12.746 ATOM 267 CA ASP A 29 0.810 6.984 13.213 ATOM 268 C ASP A 29 0.666 6.724 13.327 ATOM 269 O ASP A 29 -0.666 6.724 13.327 ATOM 270 CB ASP A 29 1.009 7.433 11.775 ATOM 271 CG ASP A 29 1.009 7.433 11.775 ATOM 272 OD1 ASP A 29 2.439 7.882 11.412 ATOM 272 OD1 ASP A 29 2.439 7.882 11.412 ATOM 273 OD2 ASP A 29 2.606 8.253 10.252 ATOM 274 N ASP A 30 -1.143 5.517 12.990								
ATOM 267 CA ASP A 29 0.810 6.984 13.213 ATOM 268 C ASP A 29 -0.666 6.724 13.327 ATOM 269 O ASP A 29 -1.488 7.637 13.568 ATOM 270 CB ASP A 29 1.009 7.433 11.775 ATOM 271 CG ASP A 29 1.009 7.433 11.775 ATOM 272 OD1 ASP A 29 2.439 7.882 11.412 ATOM 272 OD1 ASP A 29 3.360 7.856 12.269 ATOM 273 OD2 ASP A 29 2.606 8.253 10.259 ATOM 274 N ASP A 30 -1.143 5.517 12.990								
ATOM 268 C ASP A 29 -0.666 6.724 13.327 ATOM 269 O ASP A 29 -1.488 7.637 13.568 ATOM 270 CB ASP A 29 1.009 7.433 11.775 ATOM 271 CG ASP A 29 2.439 7.882 11.412 ATOM 272 OD1 ASP A 29 3.360 7.856 12.269 ATOM 273 OD2 ASP A 29 2.606 8.253 10.252 ATOM 274 N ASP A 30 -1.143 5.517 12.990								
ATOM 269 O ASP A 29 -1.488 7.637 13.568 ATOM 270 CB ASP A 29 1.009 7.433 11.775 ATOM 271 CG ASP A 29 2.439 7.882 11.412 ATOM 272 OD1 ASP A 29 2.439 7.882 11.412 ATOM 272 OD1 ASP A 29 3.360 7.856 12.269 ATOM 273 OD2 ASP A 29 2.606 8.253 10.252 ATOM 274 N ASP A 30 -1.143 5.517 12.990								
ATOM 270 CB ASP A 29 1.009 7.433 11.775 ATOM 271 CG ASP A 29 2.439 7.882 11.412 ATOM 272 OD1 ASP A 29 3.360 7.856 12.269 ATOM 273 OD2 ASP A 29 2.606 8.253 10.252 ATOM 274 N ASP A 30 -1.143 5.517 12.990	ATOM	268	C	ASP A	29	-0.666		
ATOM 271 CG ASP A 29 2.439 7.882 11.412 ATOM 272 ODL ASP A 29 3.360 7.856 12.269 ATOM 273 OD2 ASP A 29 2.606 8.253 10.252 ATOM 274 N ASP A 30 -1.143 5.517 12.990	MOTA	269	0	ASP A	29	-1.488	7.637	13.568
ATOM 271 CG ASP A 29 2.439 7.882 11.412 ATOM 272 ODL ASP A 29 3.360 7.856 12.269 ATOM 273 OD2 ASP A 29 2.606 8.253 10.252 ATOM 274 N ASP A 30 -1.143 5.517 12.990			CB		29	1.009	7.433	11.775
ATOM 272 OD1 ASP A 29 3.360 7.856 12.269 ATOM 273 OD2 ASP A 29 2.606 8.253 10.252 ATOM 274 N ASP A 30 -1.143 5.517 12.990								
ATOM 273 OD2 ASP A 29 2.606 8.253 10.252 ATOM 274 N ASP A 30 -1.143 5.517 12.990								
ATOM 274 N ASP A 30 -1.143 5.517 12.990								
	MOTA		Н					
ATOM 276 CA ASP A 30 -2.579 5.245 12.887								
ATOM 277 C ASP A 30 -3.057 4.208 13.867								
ATOM 278 O ASP A 30 -2.284 3.483 14.546								
ATOM 279 CB ASP A 30 -2.896 4.758 11.456	MOTA	279	CB	ASP A	30	-2.896	4.758	11.456

Heiler Ehrman White & McAuliffe, LLP
Sheet It of a Strature of Genetic Polymorphisms in
Title: Use of Computationally Deep Genetic Polymorphisms in
The Interconcensum for Drug Deeples and Ciliada Applications
Serial No. 09709,005 Applicants: Earmaraysa et al.
Date of Filmg: 11/1000 A Latrary Decket No. 24757-1906C

MOTA	280	CG	ASP	А	30	-2.495	5.768	10.425
ATOM	281	OD1	ASP	Α	30	-3.067	6.871	10.423
MOTA	282	OD2	ASP	Α	30	-1.596	5.494	9.618
ATOM	283	N	THR	Α	31	-4.393	4.076	14.002
ATOM	284	H	THR	Α	31	-5.004	4.700	13.515
ATOM	285	CA		A	31	-5.059	3.062	14.829
ATOM	286	C	THR		31	-5.565	1.967	13.913
		ō		A	31	-6.223	2.169	12.870
ATOM	287							
ATOM	288	CB		Α	31	-6.212	3.725	15.566
MOTA	289	OG1	THR		31	-5.668	4.667	16.474
MOTA	290	HG1		Α	31	-6.403	5.122	16.976
ATOM	291	CG2	THR	Α	31	-7.044	2.702	16.389
ATOM	292	N	VAL	Α	32	-5.187	0.713	14.235
ATOM	293	H	VAL	Α	32	-4.649	0.555	15.063
ATOM	294	CA	VAL	Α	32	-5.517	-0.462	13.437
MOTA	295	C		Α	32	-6.092	-1.506	14.365
ATOM	296	ŏ	VAL		32	-5.502	-1.957	15.365
		CB		A	32	-4.260	-1.064	12.757
ATOM	297							
ATOM	298	CG1		Α	32	-4.667	-2.136	11.735
ATOM	299	CG2		Α	32	-3.422	0.017	12.032
ATOM	300	N		Α	33	-7.352	-1.923	14.119
ATOM .	301	H	LEU	Α	33	-7.867	-1.523	13.361
ATOM	302	CA	LEU	Α	33	-7.982	-2.940	14.929
ATOM	303	C	LEU	Α	33	-8.174	-4.203	14.107
ATOM	304	0	LEU	Α	33	-8.268	-4.247	12.853
ATOM	305	CB		A	33	-9.336	-2.477	15.408
ATOM	306	CG	LEU	A	33	-9.292	-1.149	16.127
ATOM	307	CD1		A	33	-10.710	-0.747	16.485
		CD2		Ā	33	-8.348	-1.139	17.347
MOTA	308							
MOTA	309	N		A	34	-8.296	-5.319	14.782
ATOM	310	H		Α	34	-8.244	-5.302	15.780
MOTA	311	CA	GLU		34	-8.503	-6.551	14.086
MOTA	312	C	GLU	Α	34	-9.909	-6.549	13.510
MOTA	313	0	GLU	Α	34	-10.808	-5.717	13.795
ATOM	314	CB	GLU	Α	34	-8.265	-7.750	15.010
ATOM	315	CG	GLU	Α	34	-9.259	-7.791	16.165
ATOM	316	CD	GLU	Α	34	-8.763	-8.552	17.404
ATOM	317	OE1	GLU		34	-7.670	-9.193	17.368
ATOM	318	OE2	GLU		34	-9.482	-8.497	18.407
ATOM	319	N		Ā	35	-10.152	-7.480	12.568
	320	H	GLU		35	-9.485	-8.208	12.407
MOTA								
MOTA	321	CA		Α	35	-11.352	-7.466	11.773
MOTA	322	C		Α	35	-12.631	-7.520	12.571
MOTA	323	0	GLU	Α	35	-12.814	-8.294	13.528
MOTA	324	CB	GLU	Α	35	-11.237	-8.536	10.707
MOTA	325	CG	GLU	Α	35	-9.945	-8.280	9.907
ATOM	326	CD	GLU	Α	35	-9.872	-8.872	8.486
MOTA	327	OE1	GLU	Α	35	-10.612	-8.401	7.603
MOTA	328	OE2		A	35	-9.024	-9.776	8.261
ATOM	329	N		A	36	-13.580	-6.598	12.278
ATOM	330	Н	MET	A	36	-13.439	-5.967	11.515
ATOM	331	CA	MET	A	36	-14.819	-6.495	13.052
				A		-15.826	-5.635	12.271
MOTA	332	C			36			
MOTA	333	0		Α	36	-15.514	-4.828	11.371
MOTA	334	CB	MET	Α	36	-14.593	-5.845	14.428
MOTA	335	CG	MET	Α	36	-14.279	-4.353	14.417

FIG. I IF

Heiler Ehrman Nijote, & Nichailfe, LLP. Sang of Advantife, LLP. Sang of Advantife, LLP. Sang of Advantife, Sang of Advantife, LLP. Title: Use of Computationally Derived Frontia Structures of Genetic Polymorphisms in Physics and Continued Applications Serial No. 09709.995 Applicants: Rammaraysa et al. Date of Filming: 11/1000 Attractsp Docket No. 24773-1904C

MOTA	336	SD	MET	Α	36	-14.251	-3.718	16.099
MOTA	337	CE	MET	Α	36	-12.487	-3.846	16.409
ATOM	338	N		Α	37	-17.130	-5.776	12.590
	339	Н		A	37	-17.399	-6.431	13.296
ATOM								
MOTA	340	CA		A	37	-18.155	-5.005	11.940
ATOM	341	C		A	37	-18.286	-3.693	12.657
ATOM	342	0	SER	Α	37	-18.593	-3.624	13.865
ATOM	343	CB	SER	Α	37	-19.506	-5.688	12.032
ATOM	344	OG	SER	Α	37	-19.455	-7.054	11.716
ATOM	345	HG		A	37	-20.367	-7.457	11.791
	346	N		A	38	-18.185	-2.569	11.933
MOTA							-2.625	10.952
MOTA	347	H		A	38	-17.956		
MOTA	348	CA		A	38	-18.557	-1.247	12.465
ATOM	349	C	LEU .	A	38	-19.630	-0.605	11.572
ATOM	3 5.0	0	LEU .	Α	38	-19.706	-0.939	10.391
ATOM	351	CB	LEU .	Α	38	-17.315	-0.346	12.588
ATOM	352	CG		Α	38	-16.246	-0.818	13.596
ATOM	353	CD1		A	38	-14.998	0.073	13.489
ATOM	354	CD2		A	38	-16.756	-0.787	15.046
						-20.455	0.321	12.108
MOTA	355	N	PRO .		39			
ATOM	356	CA	PRO .		39	-21.460	1.053	11.339
MOTA	357	C	PRO .	A	39	-20.824	2.176	10.502
ATOM	358	0	PRO .	A	39	-19.654	2.519	10.685
ATOM	359	CB	PRO .	Α	39	-22.430	1.607	12.389
ATOM	360	CG	PRO .	Α	39	-21.531	1.845	13.600
ATOM	361	CD	PRO .	A	39	-20.539	0.686	13.517
ATOM	362	N		A	40	-21.620	2.749	9.586
	363	н		A	40	-22.569	2.417	9.493
MOTA						-21.203	3.811	8.678
MOTA	364	CA		A	40			
MOTA	365	C		A	40	-20.836	3.262	7.298
MOTA	366	0		A	40	-21.405	2.268	6.845
ATOM	367	N	LYS .	A	41	-19.895	3.945	6.631
MOTA	368	H	LYS .	A	41	-19.496	4.761	7.071
ATOM	369	CA	LYS .	Α	41	-19.323	3.558	5.343
ATOM	370	C		Α	41	-17.798	3.757	5.371
ATOM	371	Õ		A	41	-17.263	4.462	6.229
ATOM	372	CB		A	41	-20.025	4.352	4.224
				A	41	-19.703	3.839	2.810
MOTA	373	CG					4.486	1.757
ATOM	374	CD		A	41	-20.610		
MOTA	375	CE		A	41	-20.240	3.964	0.366
MOTA	376	NZ		A	41	-21.097	4.552	~0.678
MOTA	377	1HZ	LYS .	A	41	-20.824	4.189	-1.580
ATOM	378	3HZ	LYS .	A	41	-20.993	5.556	-0.673
MOTA	379	2HZ	LYS .	Α	41	-22.061	4.311	-0.498
ATOM	380	N		Α	42	-17.104	3.091	4.439
ATOM	381	н		A	42	-17.620	2.548	3.762
ATOM	382	CA		A	42	-15.654	2.932	4.423
					42	-15.105	2.852	2.994
ATOM	383	C		A				
ATOM	384	0		A	42	-15.845	2.702	2.021
ATOM	385	CB		A	42	-15.279	1.675	5.236
MOTA	386	CG		A	42	-16.214	0.514	5.094
ATOM	387	CD1	TRP .	A	42	-16.230	-0.402	4.101
MOTA	388	CD2	TRP .	Α	42	-17.355	0.203	5.942
ATOM	389	NE1		A	42	-17.297	-1.260	4.281
ATOM	390	HE1		A	42	-17.504	-2.015	3.644
ATOM	391	CE2	TRP		42	-18.045	-0.914	5.389
AION	221	CEZ	III.	••		10.015		2.303

Heiler Ehrman White & Weshille, LLP Title: Use of Computationally Derive Frontis Structures of Genetic Polymorphisms in Pharmacepeomistics for Prug Design and Citical Applications Serial No. 09709.093 Applicants: Rammarayan et al. Date of Filing: 11/1000 Atterney Docket No. 24737-1906C

ATOM	392	CE3	TRP	Α	42	-17.896	0.792	7.103
ATOM	393	CZ2	TRP	Α	42	-19.224	-1.421	5.959
ATOM	394	CZ3	TRP	Α	42	-19.077	0.298	7.675
ATOM	395	CH2	TRP	Α	42	-19.741	-0.806	7.112
ATOM	396	N		Α	43	-13.771	2.932	2.911
ATOM	397	Н		A	43	-13.260	3.058	3.773
	398	CA		A	43	-12.951	2.802	1.713
ATOM						-11.773	1.859	2.012
ATOM	399	C		A	43			
MOTA	400	0		Α	43	-11.359	1.760	3.166
ATOM	401	CB		Α	43	-12.451	4.193	1.270
MOTA	402	CG		Α	43	-11.724	4.979	2.383
ATOM	403	CD		A	43	-11.060	6.267	1.873
ATOM	404	CE		Α	43	-9.784	6.001	1.065
ATOM	405	NZ	LYS	Α	43	-8.700	5.458	1.903
MOTA	406	1HZ	LYS	Α	43	-7.876	5.315	1.338
ATOM	407	3HZ	LYS	Α	43	-8.993	4.576	2.300
MOTA	408	2HZ	LYS	Α	43	-8.493	6.108	2.647
ATOM	409	N	PRO	Α	44	-11.177	1.197	1.004
ATOM	410	CA		A	44	-9.947	0.435	1.187
ATOM	411	C		A	44	-8.760	1.392	1.379
ATOM	412	ō		A	44	-8.711	2.434	0.720
		CB		A	44	-9.808	-0.393	-0.095
ATOM	413				44	-10.501	0.458	-1.159
ATOM	414	CG		A				
ATOM	415	CD		Α	44	-11.630	1.132	-0.380
ATOM	416	N		Α	45	-7.790	1.030	2.240
MOTA	417	Н		Α	45	-7.912	0.227	2.824
MOTA	418	CA		Α	45	-6.547	1.747	2.314
MOTA	419	C		Α	45	-5.493	0.683	2.507
MOTA	420	0		Α	45	-5.780	-0.470	2.869
ATOM	421	CB	LYS	Α	45	-6.594	2.699	3.524
ATOM	422	CG	LYS	Α	45	-5.463	3.744	3.609
ATOM	423	CD	LYS	Α	45	-5.340	4.289	5.052
ATOM	424	CE	LYS	Α	45	-4.262	5.383	5.204
ATOM	425	NZ	LYS	Α	45	-2.907	4.911	4.916
ATOM	426	1HZ	LYS	Α	45	-2.260	5.664	5.032
ATOM	427	3HZ		A	45	-2.864	4.577	3.975
ATOM	428	2HZ		A	45	-2.672	4.169	5.544
ATOM	429	N		A	46	-4.224	0.949	2.193
ATOM	430	н		A	46	-3.998	1.805	1.728
ATOM	431	CA		A	46	-3.157	0.027	2.509
		CA		A	46	-2.417	0.701	3.627
MOTA	432					-2.417	1.937	3.634
ATOM	433	0		A	46			1.379
ATOM	434	CB		A	46	-2.166	-0.088	
ATOM	435	CG		A	46	-2.782	-0.366	0.053
ATOM	436	SD		Α	46	-3.076	-2.108	-0.118
MOTA	437	CE		A	46	-1.417	-2.652	-0.186
ATOM	438	N		Α	47	-1.827	-0.016	4.586
ATOM	439	Н		Α	47	-2.010	-0.997	4.655
ATOM	440	CA		Α	47	-0.922	0.586	5.539
ATOM	441	C		Α	47	0.233	-0.372	5.654
MOTA	442	0		Α	47	0.135	-1.584	5.356
ATOM	443	CB	ILE	Α	47	-1.550	0.836	6.923
ATOM	444	CG1	ILE	Α	47	-2.459	-0.301	7.354
MOTA	445	CG2	ILE	Α	47	-2.248	2.164	6.995
ATOM	446	CD1	ILE	A	47	-1.724	-1.336	8.111
ATOM	447	N	GLY	Α	48	1.420	0.089	6.043

Heiler Ehrman White & NicAmiffe, LLP
Title: Use of Computationally Derived Frotein Structures of Genetic Polymorphisms in
Serial No. 96709.965 Applicants Examanyana et al.
Date of Film; 1170009 Address Decker Assistance

ATOM	448	H	GLY A	48	1.509	1.040	6.339
ATOM	449	CA	GLY A	48	2.584	-0.753	6.048
ATOM	450	C	GLY A	48	3.280	-0.657	7.376
ATOM	451	0	GLY A	48	3.050	0.190	8.265
ATOM	452	N	GLY A	49	4.197	-1.617	7.603
ATOM	453	н	GLY A	49	4.375	-2.308	6.902
ATOM	454	CA	GLY A	49	4.936	-1.684	8.828
ATOM	455	C	GLY A	49	6.105	-2.589	8.533
ATOM	456	ō	GLY A	49	6.482	-2.807	7.370
ATOM	457	N	ILE A	50	6.761	-3.173	9.552
ATOM	458	Н	ILE A	50	6.552	-2.908	10.493
ATOM	459	CA	ILE A	50	7.772	-4.184	9.344
ATOM	460	C	ILE A	50	7.148	-5.317	8.566
ATOM	461	ŏ	ILE A	50	5.981	-5.734	8.772
ATOM	462	CB	ILE A	50	8.258	-4.686	10.722
ATOM	463	CG1	ILE A	50	9.257	-3.714	11.382
ATOM	464	CG2	ILE A	50	8.813	-6.134	10.693
ATOM	465	CD1	ILE A	50	10.580	-3.498	10.628
ATOM	466	N	GLY A	51	7.847	-5.891	7.596
ATOM	467	Н	GLY A	51	8.772	-5.569	7.395
ATOM	468	CA	GLY A	51	7.265	-6.966	6.850
	469	C	GLY A	51	6.519	-6.559	5.591
ATOM ATOM	470	Õ	GLY A	51	6.430	-7.318	4.634
	471	N	GLY A	52	5.886	-5.375	5.517
ATOM				52	5.990	-4.710	6.257
ATOM	472	H	GLY A	52	5.108	-5.227	4.320
ATOM	473	CA	GLY A		3.832	-4.415	4.520
ATOM	474	C	GLY A	52	3.654	-3.624	5.467
ATOM	475	0	GLY A	52		-4.518	3.559
ATOM	476	N	PHE A	53	2.886	-5.161	2.804
ATOM	477	H	PHE A	53	3.013 1.653	-3.720	3.566
ATOM	478	CA	PHE A	53		-4.651	3.783
ATOM	479	C	PHE A	53	0.494		
ATOM	480	0	PHE A	53	0.448	-5.816	3.336 2.221
ATOM	481	CB	PHE A	53	1.424	-3.022	
ATOM	482	CG	PHE A	53	2.363	-1.896	2.008
ATOM	483	CD1	PHE A	53	3.615	-2.135	1.447
ATOM	484	CD2	PHE A	53	2.011	-0.608	2.414
ATOM	485	CE1	PHE A	53	4.514	-1.087	1.275
ATOM	486	CE2	PHE A	53	2.925	0.446	2.237
MOTA	487	CZ	PHE A	53	4.172	0.202	1.668
ATOM	488	N	ILE A	54	-0.554	-4.173	4.439
MOTA	489	H	ILE A	54	-0.491	-3.285	4.895
ATOM	490	CA	ILE A	54	-1.789	-4.911	4.509
MOTA	491	С	ILE A	54	-2.903	-3.995	4.033
MOTA	492	0	ILE A	54	-2.751	-2.770	3.855
ATOM	493	CB	ILE A	54	-2.034	-5.535	5.904
MOTA	494	CG1	ILE A	54	-2.343	-4.481	6.988
MOTA	495	CG2	ILE A	54	-0.799	-6.318	6.314
ATOM	496	CD1	ILE A	54	-3.010	-5.089	8.246
MOTA	497	N	LYS A	55	-4.029	-4.577	3.560
MOTA	498	H	LYS A	55	-4.084	-5.574	3.501
MOTA	499	CA	LYS A	55	-5.177	-3.798	3.129
MOTA	500	C	LYS A	55	-6.115	-3.726	4.300
MOTA	501	0	LYS A	55	-6.422	-4.707	5.023
MOTA	502	CB	LYS A	55	-5.928	-4.461	1.938
MOTA	503	CG	LYS A	55	-6.853	-3.547	1.106

Heiler Ehrman White, & Mechaliffe, LLP
Title: Use of Computationally Derived Fredein Structures of Genetic Polymorphisms in
Programman Computation From goings and Chical Applications
Serial No. 09709,095 Applicates: Rammarayan et al.
Date of Filing: 11/1009. Autoring Docket No. 24737-1906C

ATOM	504	CD	LYS	Α	55	-8.267	-3.332	1.714
MOTA	505	CE	LYS	Α	55	-9.303	-4.392	1.301
MOTA	506	NZ	LYS	Α	55	-10.521	-4.453	2.192
ATOM	507	1HZ	LYS	Α	55	-11.142	-5.162	1.859
ATOM	508	3HZ	LYS	Α	55	-10.987	-3.569	2.180
ATOM	509	2HZ	LYS	Α	55	-10.240	-4.669	3.127
ATOM	510	N	VAL	A	56	-6.599	-2.509	4.619
ATOM	511	Н	VAL	A	56	-6.337	-1.713	4.073
		CA	VAL	A	56	-7.494	-2.311	5.735
MOTA	512		VAL		56	-8.711	-1.584	5.236
MOTA	513	C				-8.767	-1.029	
MOTA	514	0	VAL		56			4.114
ATOM	515	CB	VAL	Α	56	-6.759	-1.475	6.812
MOTA	516	CG1	VAL	Α	56	-5.569	-2.209	7.385
MOTA	517	CG2	VAL	Α	56	-6.287	-0.108	6.268
ATOM	518	N	ARG	Α	57	-9.784	-1.539	6.005
ATOM	519	H	ARG	Α	57	-9.835	-2.117	6.819
MOTA	520	CA	ARG	Α	57	-10.855	-0.648	5.638
ATOM	521	С	ARG	Α	57	-10.738	0.534	6.554
ATOM	522	0	ARG	Α	57	-10.558	0.449	7.789
ATOM	523	CB	ARG	А	57	-12.219	-1.271	5.835
ATOM	524	CG	ARG	A	57	-12.480	-2.452	4.952
ATOM	525	CD	ARG	A	57	-13.834	-3.051	5.195
ATOM	526	NE	ARG	A	57	-14.122	-4.137	4.270
ATOM	527	HE	ARG	A	57	-13.442	-4.347	3.568
ATOM	528	CZ	ARG	A	57	-15.243	-4.851	4.324
ATOM	529	NH1	ARG	A	57	-16.175	-4.624	5.243
		2HH1	ARG	A	57	-16.044	-3.899	5.920
ATOM	530				57	-17.008	-5.178	5.258
MOTA	531	11111	ARG	Α		-15.433	-5.822	3.434
ATOM	532	NH2	ARG	A	57			3.454
ATOM	533	1HH2	ARG	Α	57	-16.270	-6.368	2.738
ATOM	534	2HH2	ARG	Α	57	-14.738	-6.006	
MOTA	535	N	GLN	Α	58	-10.881	1.741	6.036
MOTA	536	H	GLN	Α	58	-11.030	1.844	5.053
MOTA	537	CA	GLN	А	58	-10.830	2.922	6.839
MOTA	538	C	GLN	Α	58	-12.231	3.342	7.205
MOTA	539	0	GLN	Α	58	-13.106	3.608	6.359
MOTA	540	CB	GLN	Α	58	-10.208	4.038	6.030
MOTA	541	CG	GLN	Α	58	-10.055	5.293	6.817
MOTA	542	CD	GLN	А	58	-9.632	6.411	5.927
MOTA	543	OE1	GLN	Α	58	-10.379	7.334	5.662
MOTA	544	NE2	GLN	Α	58	-8.412	6.303	5.437
MOTA	545	1HE2	GLN	Α	58	-8.047	7.009	4.830
MOTA	546	2HE2	GLN	Α	58	-7.843	5.514	5.668
MOTA	547	N	TYR	Α	59	-12.527	3.516	8.509
MOTA	548	H	TYR	Α	59	-11.877	3.219	9.209
ATOM	549	CA	TYR	Α	59	-13.769	4.125	8.933
ATOM	550	C	TYR	Α	59	-13.411	5.452	9.565
ATOM	551	Ö	TYR	Α	59	-12.416	5.592	10.310
ATOM	552	СВ	TYR	A	59	-14.517	3.252	9.957
ATOM	553	CG	TYR	A	59	-14.287	1.770	9.723
ATOM	554	CD1	TYR	A	59	-13.007	1.269	9.457
ATOM	555	CD2	TYR	A	59	-15.346	0.865	9.766
ATOM	556	CE1	TYR	A	59	-12.797	-0.092	9.240
ATOM	557	CE2	TYR	A	59	-15.148	-0.494	9.551
ATOM	558	CZ	TYR	A	59	-13.873	-0.972	9.287
ATOM	559	OH	TYR	A	59	-13.721	-2.311	9.079
01.1	222	OII	T T T	~	22	10.121		

FIG. I IJ

Heller Ehrman Wirks & Verhallfe, LLP Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Parkancegeomosis for Drug Design and Clinical Applications Serial No. 9079.905 Applicants Earmanyan et al. Date of Filings: 11/1000 Autoracy Docket No. 12477-1790C

			-			0 771	0 154
MOTA	560	HH	TYR A	59	-14.606	-2.771	9.154
MOTA	561	N	ASP A	60	-14.151	6.542	9.300
MOTA	562	Н	ASP A	60	-14.954	6.464	8.709
MOTA	563	CA	ASP A	60	~13.822	7.836	9.846
ATOM	564	C	ASP A	60	-14.782	8.226	10.947
	565	ō	ASP A	60	-15.941	7.765	11.053
MOTA					-13.861	8.942	8.769
MOTA	566	CB	ASP A	60			
MOTA	567	CG	ASP A	60	-12.735	8.830	7.725
MOTA	568	OD1	ASP A	60	-11.545	8.874	8.075
MOTA	569	OD2	ASP A	60	-13.060	8.702	6.544
MOTA	570	N	GLN A	61	-14.339	9.154	11.833
ATOM	571	H	GLN A	61	-13.385	9.451	11.804
MOTA	572	CA	GLN A	61	-15.151	9.804	12.885
ATOM	573	C	GLN A	61	-15.839	8.803	13.802
					-17.008	8.893	14.229
ATOM	574	0	GLN A	61			
MOTA	575	CB	GLN A	61	-16.097	10.908	12.338
MOTA	576	CG	GLN A	61	-16.239	12.133	13.262
ATOM	577	CD	GLN A	61	-16.910	13.366	12.629
MOTA	578	OE1	GLN A	61	-16.509	13.854	11.586
ATOM	579	NE2	GLN A	61	-17.937	13.887	13.292
ATOM	580	1HE2	GLN A	61	-18.416	14.689	12.934
ATOM	581	2HE2	GLN A	61	-18.239	13.482	14.155
					-15.060	7.760	14.175
MOTA	582	N	ILE A	62		7.714	13.862
MOTA	583	H	ILE A	62	-14.111		
MOTA	584	CA	ILE A		-15.557	6.705	15.015
MOTA	585	C	ILE A	62	-15.251	7.057	16.447
MOTA	586	0	ILE A	62	-14.198	7.613	16.837
MOTA	587	CB	ILE A	62	-14.829	5.397	14.653
ATOM	588	CG1	ILE A	62	-15.253	4.966	13.258
ATOM	589	CG2	ILE A	62	-15.106	4.271	15.675
ATOM	590	CD1	ILE A		-16.779	4.788	13.116
	591	N	LEU A		-16.242	6.807	17.320
MOTA							17.000
MOTA	592	Н	LEU A	63	-17.089	6.383	
MOTA	593	CA	LEU A		-16.127	7.131	18.719
MOTA	594	C	LEU A		-15.518	5.942	19.425
MOTA	595	0	LEU A	63	-15.869	4.753	19.269
MOTA	596	CB	LEU A	63	-17.512	7.428	19.282
MOTA	597	CG	LEU A	63	-17.660	7.598	20.813
MOTA	598	CD1	LEU A		-16.711	8.632	21,404
ATOM	599	CD2	LEU A		-19.089	7.963	21.201
ATOM	600	N	ILE A		-14.511	6.211	20.219
					-14.185	7.153	20.305
ATOM	601	H	ILE A				20.972
ATOM	602	CA	ILE A		-13.862	5.178	
MOTA	603	C	ILE A		-13.529	5.744	22.325
MOTA	604	0	ILE A	64	-13.396	6.959	22.602
MOTA	605	CB	ILE A	64	-12.618	4.716	20.231
MOTA	606	CG1	ILE A	64	-11.925	3.573	20.949
ATOM	607	CG2	ILE A		-11.690	5.865	19.950
MOTA	608	CD1	ILE A		-10.905	2.888	20.062
MOTA	609	N	GLU A		-13.396	4.815	23.294
					-13.443	3.844	23.059
MOTA	610	H	GLU A			5.174	24.670
MOTA	611	CA	GLU A		-13.186	4.360	25.165
ATOM	612	C	GLU A		-12.024		
MOTA	613	0	GLU A		-11.943	3.112	25.056
MOTA	614	CB	GLU A	65	-14.459	4.823	25.405
MOTA	615	CG	GLU A	65	-14.739	5.610	26.646

FIG. I IK

Heiler Ehrman White & McAuliffe, LLP

Title: Use of Computationally Derived Perolin Structures of Genetic Polymorphisms in
Pharmacogenomies for Drug Beilga and Gilleath Applications

Serial No. 90709,005 Applicants Enumaryan et al.

Date of Piling: 11/1000 Autorus Deachet No. 24773-1906C

					,			
ATOM	616	CD	GLU	Α	65	-16.131	5.353	27.115
ATOM	617	OE1	GLU	Α	65	-17.090	5.785	26.413
ATOM	618	OE2	GLU	Α	65	-16.269	4.708	28.163
ATOM	619	N	ILE	Α	66	-10.971	5.008	25.610
ATOM	620	Н	ILE	Α	66	-11.009	6.002	25.717
ATOM	621	CA	ILE	A	66	-9.762	4.317	25.947
	622	C	ILE	A	66	-9.571	4.586	27.413
ATOM						-9.422	5.732	27.413
ATOM	623	0	ILE	Α	66			
ATOM	624	CB	ILE	Α	66	-8.600	4.907	25.126
ATOM	625	CG1	ILE	Α	66	-8.838	4.669	23.633
MOTA	626	CG2	ILE	Α	66	-7.231	4.326	25.554
ATOM	627	CD1	ILE	А	66	-8.951	5.982	22.,856
MOTA	628	N	CYS	Α	67	-9.776	3.567	28.261
ATOM	629	H	CYS	Α	67	-9.989	2.659	27.902
ATOM	630	CA	CYS	Α	67	-9.698	3.740	29.687
ATOM	631	C	CYS	Α	67	-10.673	4.871	30.088
ATOM	632	0	CYS	Α	67	-10.393	5.716	30.958
ATOM	633	CB	CYS	А	67	-8.251	4.003	30.156
ATOM	634	SG	CYS	A	67	-7.170	2.529	30.217
ATOM	635	N	GLY	A	68	-11.877	4.947	29.499
ATOM	636	н	GLY	A	68	-12.125	4.286	28.791
ATOM	637	CA	GLY	A	68	-12.788	5.984	29.903
	638	CA	GLY	A	68	-12.581	7.322	29.241
ATOM				A	68	-13.404	8.253	29.376
ATOM	639	0	GLY			-11.504	7.545	28.471
ATOM	640	N	HIS	A	69		6.827	28.360
ATOM	641	Н	HIS	Α	69	-10.817		
ATOM	642	CA	HIS	Α	69	-11.305	8.800	27.793
ATOM	643	C	HIS	Α	69	-11.838	8.679	26.399
ATOM	644	0	HIS	Α	69	-11.516	7.742	25.630
ATOM	645	CB	HIS	А	69	-9.831	9.128	27.724
ATOM	646	CG	HIS	А	69	-9.276	9.286	29.081
ATOM	647	ND1	HIS	Α	69	-9.317	10.484	29.778
ATOM	648	HD1	HIS	А	69	-9.688	11.347	29.436
ATOM	649	CD2	HIS	Α	69	-8.723	8.352	29.912
ATOM	650	CE1	HIS	Α	69	-8.783	10.254	30.947
ATOM	651	NE2	HIS	Α	69	-8.405	8.990	31.091
ATOM	652	N	LYS	Α	70	-12.768	9.561	25.973
ATOM	653	H	LYS	Α	70	-13.084	10.284	26.588
MOTA	654	CA	LYS	Α	70	-13.325	9.492	24.646
ATOM	655	C	LYS	Α	70	-12.346	10.074	23.653
ATOM	656	0	LYS	Α	70	-11.587	11.055	23.864
ATOM	657	CB	LYS	Α	70	-14.645	10.285	24.536
MOTA	658	CG	LYS	Α	70	-15.837	9.703	25.330
ATOM	659	CD	LYS	Α	70	-17.105	10.593	25.286
MOTA	660	CE	LYS	Α	70	-18.293	10.011	26.092
ATOM	661	NZ	LYS	Α	70	-18.802	8.702	25.608
ATOM	662	1HZ	LYS	Α	70	-19.563	8.406	26.185
MOTA	663	3HZ	LYS	Α	70	-18.069	8.023	25.650
ATOM	664	2HZ	LYS	A	70	-19.116	8.795	24.663
MOTA	665	N	ALA		71	-12.323	9.485	22.446
ATOM	666	Н	ALA		71	-12.813	8.625	22.305
ATOM	667	CA	ALA	A	71	-11.616	10.044	21.333
ATOM	668	C		A	71	-12.529	9.795	20.171
ATOM	669	Ö	ALA		71	-13.351	8.850	20.146
ATOM	670	СВ	ALA	A	71	-10.292	9.358	21.143
ATOM	671	N	ILE	A	72	-12.559	10.685	19.149
101-1	0,1	4.4	ندسد	~	12	12.337	_0.000	

FIG. I IL

Heller Earrms White, & Mccaliffe, LLP
Titte: Use of Computationally Derived Frodein Structures of Genetic Polymorphisms in
Partial No. 097(99,095)
Serial No. 097(99,095)
Applications: Rammarayna et al.
Date of Filing: 111/1000
Autoracy Docket, N. 24731-1966C

ATOM	672	H	ILE A	72	-12.006	11.517	19.200
MOTA	673	CA	ILE A	72	-13.376	10.474	17.963
ATOM	674	С	ILE A	72	-12.480	10.662	16,771
		Ö	ILE A	72	-11.858	11.720	16.550
ATOM	675					11.464	17.882
MOTA	676	CB	ILE A	72	-14.541		
MOTA	677	CG1	ILE A	72	-15.306	11.455	19.196
ATOM	678	CG2	ILE A	72	-15.429	11.203	16.651
ATOM	679	CD1	ILE A	72	-16.446	12.415	19.176
ATOM	680	N	GLY A	73	-12.252	9.633	15.958
			GLY A	73	-12.778	8.789	16.067
ATOM	681	H					14.938
ATOM	682	CA	GLY A	73	-11.253	9.755	
ATOM	683	C	GLY A	73	-11.283	8.554	14.034
ATOM	684	0	GLY A	73	-12.211	7.706	14.006
ATOM	685	N	THR A	74	-10.247	8.428	13.182
ATOM	68.6	Н	THR A	74	-9.471	9.055	13.250
ATOM	687	CA	THR A	74	-10.201	7.416	12.158
				74	-9.674	6.134	12.760
ATOM	688	C	THR A				13.497
ATOM	689	0	THR A	74	-8.670	6.034	
ATOM	690	CB	THR A	74	-9.298	7.895	11.048
ATOM	691	OG1	THR A	74	-9.910	9.019	10.441
ATOM	692	HG1	THR A	74	-9.335	9.362	9.698
ATOM	693	CG2	THR A	74	-9.088	6.823	9.946
			VAL A	75	-10.318	5.027	12.327
ATOM	694	N					11.669
ATOM	695	H	VAL A	75	-11.066	5.114	
ATOM	696	CA	VAL A	75	-9.968	3.717	12.778
MOTA	697	C	VAL A	75	-9.906	2.843	11.551
ATOM	698	0	VAL A	75	-10.803	2.807	10.681
ATOM	699	CB	VAL A	75	-11.044	3.250	13.737
ATOM	700	CG1	VAL A	75	-11.021	1.721	13.943
				75	-10.915	4.019	15.034
MOTA	701	CG2					11.366
ATOM	702	N	LEU A	76	-8.768	2.139	
ATOM	703	H	LEU A	76	-8.002	2.260	11.998
ATOM	704	CA	LEU A	76	-8.566	1.183	10.276
MOTA	705	C	LEU A	76	-8.848	-0.211	10.808
ATOM	706	Ō	LEU A	76	-8.514	-0.582	11.958
ATOM	707	CB	LEU A	76	-7.103	1.270	9.798
					-6.608	2.684	9.443
ATOM	708	CG	LEU A	76			
MOTA	709	CD1	LEU A	76	-5.151	2.645	9.087
ATOM	710	CD2	LEU A	76	-7.396	3.302	8.296
ATOM	711	N	VAL A	77	-9.569	-1.062	10.042
ATOM	712	H	VAL A	77	-9.894	-0.766	9.144
ATOM	713	CA	VAL A	77	-9.899	-2.428	10.485
ATOM	714	C	VAL A	77	-9.298	-3.412	9.482
	715		VAL A	77	-9.450	-3.300	8.253
ATOM		0				-2.592	10.506
ATOM	716	CB	VAL A	77	-11.436		
ATOM	717	CG1	VAL A	77	-11.830	-4.021	10.682
ATOM	718	CG2	VAL A	77	-12.072	-1.765	11.634
ATOM	719	N	GLY A	78	-8.560	-4.402	9.928
ATOM	720	H	GLY A	78	-8.445	-4.530	10.913
ATOM	721	CA	GLY A	78	-7.930	-5.285	8.987
	722		GLY A	78	-7.228	-6.380	9.732
ATOM		C			-7.226	-6.524	10.970
ATOM	723	0	GLY A	78			
ATOM	724	N	PRO A	79	-6.512	-7.271	9.003
ATOM	725	CA	PRO A	79	-5.880	-8.467	9.602
ATOM	726	С	PRO A	79	-4.599	-8.107	10.340
ATOM	727	ō	PRO A	79	-3.449	-8.489	10.032
		-		-			

FIG. I IM

Heller Eurman White & Mcaulife, LLP
Step 17 of 46
Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in
Particle Step 18 of 1

MOTA	728	CB	PRO	Α	79	-5.613	-9.379	8.400
ATOM	729	CG	PRO	Α	79	-5.529	-8.416	7.210
ATOM	730	CD	PRO	Α	79	-6.415	-7.2 2 5	7.537
ATOM	731	N		A	80	-4.759	-7.304	11.408
	732	н		A	80	-5.664	-6.935	11.619
MOTA								
ATOM	733	CA	THR	Α	80	-3.658	-6.957	12.263
MOTA	734	С		Α	80	-3.490	-8.075	13.308
ATOM	735	0	THR	Α	80	-4.447	-8.642	13.857
ATOM	736	CB	THR	Α	80	-3.868	-5.572	12.927
ATOM	737	OG1		А	80	-2.770	-5.303	13.787
ATOM	738	HG1		A	80	-2.889	-4.412	14.225
							-5.464	
ATOM	739	CG2	THR	A	80	-5.210		13.678
MOTA	740	N	PRO	Α	81	-2.243	-8.496	13.589
MOTA	741	CA	PRO	Α	81	-1.986	-9.476	14.660
MOTA	742	C	PRO	Α	81	-2.499	-8.952	16.001
ATOM	743	0	PRO	Α	81	-2.944	-9.720	16.866
ATOM	744	CB		Α	81	-0.444	-9.549	14.732
ATOM	745	CG		A	81	0.069	-8.951	13.429
							-8.105	12.842
MOTA	746	CD		A	81	-1.029		
MOTA	747	N		Α	82	-2.474	-7.621	16.276
ATOM	748	H	VAL	Α	82	-2.180	-6.975	15.571
ATOM	749	CA	VAL	Α	82	-2.869	-7.091	17.591
ATOM	750	C	VAL	Α	82	-3.605	-5.761	17.379
ATOM	751	ō		A	82	-3.349	-5.004	16.429
	752	CB		A	82	-1.595	-6.858	18.443
MOTA					82	-0.650	-5.824	17.803
MOTA	753	CG1		A				
MOTA	754	CG2	VAL	Α	82	-1.907	-6.418	19.890
MOTA	755	N	ASN	Α	83	-4.548	-5.371	18.260
ATOM	756	H	ASN	Α	83	-4.810	-5.981	19.007
ATOM	757	CA	ASN	Α	83	-5.181	-4.067	18.123
ATOM	758	C	ASN	Α	83	-4.195	-3.019	18.565
ATOM	759	ŏ		A	83	-3.605	-3.064	19.665
	760	CB	ASN	A	83	-6.436	-3.942	18.982
MOTA								
MOTA	761	CG	ASN	А	83	-7.502	-4.930	18.631
MOTA	762	OD1		Α	83	-7.899	-5.049	17.488
MOTA	763	ND2	ASN	Α	83	-7.980	-5.662	19.628
ATOM	764	2HD2	ASN	Α	83	-8.695	-6.341	19.459
MOTA	765	1HD2	ASN	Α	83	-7.630	-5.541	20.557
ATOM	766	N	ILE	Α	84	-4.007	-1.951	17.770
ATOM	767	Н	ILE	A	84	-4.583	-1.827	16.962
						-2.993	-0.954	18.032
MOTA	768	CA	ILE	Α	84			
MOTA	769	C	ILE	Α	84	-3.679	0.387	18.114
MOTA	770	0	ILE	Α	84	-4.460	0.797	17.240
MOTA	771	CB	ILE	Α	84	-2.021	-0.922	16.833
ATOM	772	CG1	ILE	Α	84	-1.162	-2.150	16.859
ATOM	773	CG2	ILE	Α	84	-1.219	0.387	16.747
ATOM	774	CD1	ILE	A	84	-0.375	-2.360	15.579
				A	85	-3.471	1.155	19.203
ATOM	775	N	ILE					
MOTA	776	H	ILE	A	85	-2.972	0.781	19.985
MOTA	777	CA	ILE	Α	85	-3.951	2.518	19.281
ATOM	778	С	ILE	Α	85	-2.784	3.425	18.949
MOTA	779	0	ILE	Α	85	-1.767	3.515	19.663
ATOM	780	CB	ILE	Α	85	-4.522	2.825	20.676
ATOM	781	CG1	ILE	Α	85	-5.673	1.865	21.050
ATOM	782	CG2	ILE	A	85	-5.000	4.274	20.716
ATOM	783	CD1	ILE	A	85	-6.828	1.808	20.059
ATOM	103	CDI	TTT	~	0.5	-0.020	1.000	20.000

FIG. I IN

Heller Ebrauan White, & McAudiffe, LLP State 1 of 46 Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenamies for Dery Beign and Clinical Applications Serial No. 9079,995 Applicants Ramaraysa et al. Date of Filings: 11/1000 Autrorap Dacket No. 24773-1906C

MOTA		784	N	GLY	Α	86	-2.		4	.123		. 792
ATOM		785	H	GLY	Α	86	-3.			.087		.217
MOTA		786	CA	GLY	Α	86	-1.	690	4	. 936	17.	. 351
ATOM		787	С	GLY	Α	86	-1.		6	.393		.704
ATOM		788	0	GLY	Α	86	-2.	760	6	.864	18	390
ATOM		789	N	ARG	Α	87	-0.	881	7	.229	17.	.230
ATOM		790	Н	ARG	Α	87	-0.	204	6	.890	16.	577
ATOM		791	CA	ARG	Α	87	-0.	810	8	. 623	17.	643
ATOM		792	C	ARG	Α	87	-2.	027	9	.445		277
ATOM		793	ŏ	ARG	A	87	-2.			.430		963
ATOM		794	CB	ARG	A	87		450		.275		057
ATOM		795	CG	ARG	A	87		735		.496		205
ATOM		796	CD	ARG	A	87		762		.916		207
ATOM		797	NE	ARG	A	87		875		.961		117
ATOM		79.8	HE	ARG	A	87		035		.353		895
ATOM		799	CZ	ARG	A	87		660		.893		035
ATOM		800	NH1	ARG	A	87		463		.675		975
					A	87		712		.335		974
ATOM		801	2HH1	ARG	A	87		066		.602		181
MOTA		802	1HH1	ARG		87		656		.019		023
ATOM		803	NH2	ARG	Α							224
ATOM		804	1HH2	ARG	A	87		254		. 953		
MOTA		805	2HH2	ARG	Α	87		310		.426		813
MOTA		806	N	ASN	Α	88	-2.			.120		214
MOTA		807	H	ASN	Α	88	-2.5			.361		625
MOTA		808	CA	ASN	A	88	-4.(.860		890
MOTA	- 1	809	C	ASN	Α	88	-4.9			.921		069
MOTA		810	0	ASN	Α	88	-5.6			.954		345
MOTA		811	CB	ASN	Α	88	-4.			.315		617
MOTA		812	CG	ASN	Α	88	-5.4			.001		827
MOTA		813	OD1	ASN	Α	88	-4.9			.996		245
MOTA		814	ND2	ASN	Α	88	-6.	758		.998		506
MOTA		815	2HD2	ASN	Α	88	-7.3	306	7	.169	14.	622
MOTA		816	1HD2	ASN	Α	88	-7.	190	8	.824	14.	145
MOTA	- 1	817	N	LEU	Α	89	-5.3	130	8	.847	17.	848
MOTA		818	H	LEU	Α	89	-4.6	537	8	.002	17.	640
MOTA		819	CA	LEU	Α	89	-6.0	024	8	.865	19.	013
ATOM		820	C	LEU	Α	89	-5.2	275	9	.091	20.	309
MOTA		821	0	LEU	Α	89	-5.8	334	9	.632	21.	283
MOTA		822	CB	LEU	A	89	-6.8	840	7	.592	19.	140
ATOM		823	CG	LEU	Α	89	-7.	759	7	.355	17.	957
MOTA		824	CD1	LEU	Α	89	-8.3	369	5	.980	18.	880
ATOM		825	CD2	LEU	A	89	-8.8	317	8	.457	17.	801
MOTA		826	N	LEU	A	90	-3.9			.745		428
ATOM		827	Н	LEU	A	90	-3.5			.274		674
ATOM		828	CA	LEU	A	90	-3.2			.057		664
ATOM		829	C.	LEU	A	90	-3.:			.555		932
ATOM		830	Ö	LEU	A	90	-3.2			.020		092
ATOM		831	CB	LEU	A	90	-1.8			.453		661
ATOM		832	CG	LEU	A	90	-1.7			.914		587
ATOM		833	CD1	LEU	A	90	-0.3			.494		396
ATOM		834	CD2	LEU	A	90	-2.3			.230		812
ATOM		335	N N	THR	A	91	-3.0			.407		926
												988
ATOM ATOM		836 837	H CA	THR	A A	91 91	-2.9			.063 .834		155
ATOM				THR	A	91	-4.3			.331		635
		838	C									
ATOM		839	0	THR	Α	91	-4.4	122	14	.315	22.	398

Heller Ehrman White & McAuliffe, LLP Sheet 29 of 46

Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications Serial No. 09709,305 Applicants: Ramanaryan et al. Date of Filing: 11/10/00 Antorney Josect No. 24737-1996C

ATOM	840	CB	THR	Α	91	-2.555	13.543	19.848
ATOM	841	OG1	THR	Α	91	-3.459	13.214	18.802
ATOM	842	HG1	THR	Α	91	-3.188	13.677	17.958
ATOM	843	CG2	THR	Α	91	-1.153	13.122	19.395
MOTA	844	N	GLN	Α	92	-5.435	12.704	21.258
ATOM	845	H	GLN	Α	92	-5.379	11.892	20.677
ATOM	846	CA	GLN	Α	92	-6.763	13.186	21.682
ATOM	847	C	GLN	Α	92	-6.942	12.975	23.153
ATOM	848	ō	GLN	Α	92	-7.554	13.797	23.871
ATOM	849	CB	GLN	Α	92	-7.890	12.479	20.964
ATOM	850	CG	GLN	Α	92	-7.937	12.862	19.517
ATOM	851	CD	GLN	A	92	-9.251	12.515	18.886
ATOM	852	OE1	GLN	A	92	-10.270	12.424	19.546
ATOM	853	NE2	GLN	A	92	-9.202	12.323	17.588
ATOM	854	1HE2	GLN	A	92	-10.031	12.087	17.080
		2HE2	GLN	A	92	-8.336	12.411	17.097
ATOM	855		ILE	A	93	-6.472	11.846	23.721
ATOM	856	N			93	-6.014	11.160	23.721
ATOM	857	H	ILE	A	93	-6.608	11.578	25.165
ATOM	858	CA	ILE	A		-5.472	12.189	25.948
ATOM	859	C	ILE	Α	93			27.171
MOTA	860	0_	ILE	Α	93	-5.342	12.031	25.484
ATOM	861	CB	ILE	Α	93	-6.820	10.073	
MOTA	862	CG1	ILE	A	93	-5.536	9.221	25.286
ATOM	863	ÇG2	ILE	Α	93	-8.022	9.486	24.735
MOTA	864	CD1	ILE	Α	93	-5.754	7.740	25.693
MOTA	865	N	GLY	Α	94	-4.594	12.993	25.330
MOTA	866	H	GLY	Α	94	-4.617	13.079	24.334
ATOM	867	CA	GLY	Α	94	-3.613	13.742	26.063
ATOM	868	C	GLY	Α	94	-2.448	12.895	26.512
ATOM	869	0	GLY	Α	94	-1.764	13.158	27.519
ATOM	870	N	CYS	Α	95	-2.117	11.849	25.797
ATOM	871	H	CYS	Α	95	-2.619	11.644	24.957
ATOM	872	CA	CYS	Α	95	-1.036	10.994	26.214
ATOM	873	C	CYS	Α	95	0.362	11.566	25.925
ATOM	874	0	CYS	Α.	95	0.588	12.254	24.907
ATOM	875	CB	CYS	Α	95	-1.260	9.655	25.550
ATOM	876	SG	CYS	Α	95	-0.254	8.307	26.125
ATOM	877	N		Α	96	1.346	11.297	26.803
ATOM	878	Н	THR	A	96	1.135	10.738	27.618
ATOM	879	CA	THR	Α	96	2.728	11.779	26.664
ATOM	880	C	THR	Α	96	3.729	10.784	27.264
ATOM	881	ŏ	THR	A	96	3.498	10.249	28.345
ATOM	882	CB	THR	A	96	2.925	13.154	27.346
ATOM	883	OG1	THR	A	96	2.594	13.109	28.721
ATOM	884	HG1	THR	A	96	2.784	13.966	29.109
ATOM	885	CG2	THR	A	96	2.139	14.300	26.698
ATOM	886	N N	LEU	A	97	4.882	10.603	26.599
		H	LEU	A	97	5.016	11.071	25.714
ATOM ATOM	887 888	CA	LEU	A	97	6.040	9.910	27.166
	889		LEU	A	97	6.751	10.824	28.175
ATOM		C			97	6.705	12.046	28.175
ATOM	890	0	LEU	A		7.013	9.497	26.049
ATOM	891	CB	LEU	Α	97		8.449	25.049
MOTA	892	CG	LEU	A	97	6.452	8.449	23.828
ATOM	893	CD1	LEU	Α	97	7.360		
ATOM	894	CD2	LEU	A	97	6.345	7.065	25.724
MOTA	895	N	ASN	Α	98	7.412	10.221	29.175

FIG. I IP

Heller Ebrmus White & McAuliffe, LLP
Shee 30 of 46
Title: Use of Comparationally Derived Protein Structures of Cenetic Polymorphisms in
Practic Processing Structures of Cenetic Polymorphisms in
Serial No. 09709,005
Applicates: Rammarayan et al.
Date of Piling: 11/1000
Attoracy Decker No. 24737-1906C

ATOM	896	Н	ASN	Α	98	7.413	9.212	29.205
		CA	ASN	A	98	8.065	10.897	30.292
ATOM	897				98	9.220	10.029	30.800
ATOM	898	C	ASN	Α		8.995	9.079	31.550
MOTA	899	0	ASN	Α	98			31.423
MOTA	900	CB		Α	98	7.057	11.177	
MOTA	901	CG	ASN	Α	98	6.084	12.305	31.083
MOTA	902	OD1	ASN	Α	98	4.983	12.062	30.594
ATOM	903	ND2	ASN	Α	98	6.493	13.549	31.342
ATOM	904	2HD2	ASN	Α	98	5.888	14.331	31.136
ATOM	905	1HD2	ASN	Α	98	.7.406	13.707	31.742
ATOM	906	N	LEU	А	99	10.451	10.369	30.389
ATOM	907	Н	LEU	A	99	10.547	11.177	29.792
ATOM	908	CA	LEU	Α	99	11.679	9.620	30.666
ATOM	909	C	LEU	A	99	12.711	10.437	31.454
ATOM	910	ō	LEU		99	12.487	11.652	31.651
		CB	LEU	A	99	12.233	8.989	29.369
ATOM	911					12.833	9.873	28.248
ATOM	912	CG	LEU	Α	99		10.947	27.705
ATOM	913	CD1	LEU	A	99	11.876		
MOTA	914	CD2	LEU	Α	99	14.183	10.505	28.623
ATOM	915	OXT	LEU	Α	99	13.716	9.819	31.869
TER								
ATOM	916	N	PRO	В	1	12.600	14.237	30.106
MOTA	917	CA	PRO	В	1	11.842	15.268	29.363
ATOM	918	C	PRO	В	1	10.430	14.773	29.138
ATOM	919	0	PRO	В	1	10.054	13.695	29.618
ATOM	920	CB	PRO	В	1	12.622	15.412	28.035
ATOM	921	CG	PRO	В	1	13.817	14.470	28.131
MOTA	922	CD	PRO	В	1	13.966	14.227	29.603
ATOM	923	1H	PRO	В	1	12.175	13.343	29.964
ATOM	924	2H	PRO	В	1	12.594	14.457	31.081
ATOM	925	N		В	2	9.513	15.542	28.523
ATOM	926	Н	GLN	В	2	9.751	16.474	28.251
ATOM	927	CA	GLN	В	2	8.186	15.058	28.242
ATOM	928	C	GLN	В	2	8.066	15.151	26.749
ATOM	929	ō	GLN	В	2	8.523	16.140	26.133
ATOM	930	CB	GLN	В	2	7.155	15.976	28.856
ATOM	931	CG	GLN	В	2	5.739	15.732	28.373
ATOM	932	CD	GLN	В	2	4.744	16.365	29.284
	933	OE1	GLN	В	2	4.628	15.962	30.431
ATOM	934	NE2	GLN	В	2	4.024	17.367	28.784
ATOM					2	3.341	17.830	29.349
ATOM	935	1HE2	GLN	В	2	4.160	17.665	27.839
ATOM	936	2HE2	GLN	В		7.499	14.176	26.036
ATOM	937	N	ILE	В	3			26.504
ATOM	938	H	ILE	В	3	7.102	13.386	
MOTA	939	CA	ILE	В	3	7.435	14.216	24.601
ATOM	940	C	ILE	В	3	5.956	14.097	24.184
MOTA	941	0	ILE	В	3	5.150	13.290	24.710
ATOM	942	CB	ILE	В	3	8.299	13.058	24.029
ATOM	943	CG1	ILE	В	3	9.743	13.232	24.534
ATOM	944	CG2	ILE	В	3	8.269	12.985	22.496
ATOM	945	CD1	ILE	В	3	10.621	12.068	24.143
MOTA	946	N	THR	В	4	5.462	15.108	23.453
MOTA	947	H	THR	В	4	6.046	15.887	23.226
MOTA	948	CA	THR	В	4	4.107	15.115	22.976
MOTA	949	C	THR	В	4	4.039	14.193	21.765
ATOM	950	0	THR	В	4	5.066	13.755	21.203

FIG. I IQ

Heller Ehrman White & McAniffe, LLP
Title: Use of Computationally Derived Protein Streetures of Genetic Polymorphisms in
Parameters of Computational Processing Computer Streetures of Control Polymorphisms in
Parameters of Computer Streetures of Compute

ATOM	951	CB	THR	В	4	3.616	16.548	22.647
ATOM	952	OG1	THR	В	4	4.450	17.157	21.645
ATOM	953	HG1	THR	В	4	4.123	18.080	21.442
ATOM	954	CG2	THR	В	4	3.644	17.454	23.876
ATOM	955	N	LEU	В	5	2.872	13.781	21.324
ATOM	956	H	LEU	В	. 5	2.033	14.151	21.723
ATOM	957	CA	LEU	В	5	2.837	12.795	20.265
ATOM	958	C	LEU	В	5	2.183	13.415	19.047
ATOM	959	ō	LEU	В	5	1.677	12.720	18.142
ATOM	960	СВ	LEU	В	5	2.093	11.577	20.762
ATOM	961	CG	LEU	В	5	2.819	10.856	21.892
ATOM	962	CD1	LEU	В	5	1.889	9.885	22.602
	963	CD2	LEU	В	5	4.108	10.159	21.416
ATOM	964	N CD2	TRP	В	6	2.209	14.742	18.880
ATOM						2.601	15.323	19.593
ATOM	965	Н	TRP	В	6	1.683	15.364	17.690
ATOM	966	CA	TRP	В	6			16.509
ATOM	967	C	TRP	В	6	2.581	14.978	
MOTA	968	0	TRP	В	6	2.159	14.851	15.349
MOTA	969	CB	TRP	В	6	1.587	16.879	17.833
MOTA	970	CG	TRP	В	6	0.652	17.339	18.921
MOTA	971	CD1	TRP	В	6	0.955	17.584	20.232
MOTA	972	CD2	TRP	В	6	-0.750	17.612	18.783
ATOM	973	NE1	TRP	В	6	-0.167	17.989	20.913
MOTA	974	HE1	TRP	В	6	-0.217	18.230	21.882
ATOM	975	CE2	TRP	В	6	-1.224	18.013	20.048
ATOM	976	CE3	TRP	В	6	-1.637	17.550	1,7.709
ATOM	977	CZ2	TRP	В	6	-2.544	18.352	20.266
ATOM	978	CZ3	TRP	В	6	-2.947	17.885	17.921
ATOM	979	CH2	TRP	В	6	-3.394	18.281	19.185
MOTA	980	N	GLN	В	7	3.896	14.809	16.738
ATOM	981	Н	GLN	В	7	4.267	14.985	17.650
ATOM	982	CA	GLN	В	7	4.794	14.376	15.689
ATOM	983	C	GLN	В	7	5.361	13.043	16.096
ATOM	984	ō	GLN	В	7	5.221	12.586	17.243
ATOM	985	CB	GLN	В	7	5.880	15.430	15.505
ATOM	986	CG	GLN	В	7	5.353	16.704	14.804
ATOM	987	CD	GLN	В	7	6.197	17.912	15.137
ATOM	988	OE1	GLN	В	7	7.400	17.802	15.404
ATOM	989	NE2	GLN	В	7	5.553	19.083	15.121
				В	7	6.040	19.931	15.330
ATOM	990	1HE2	GLN		7	4.579	19.331	14.900
ATOM	991	2HE2	GLN	В			12.274	15.189
ATOM	992	N	ARG	В	8	5.979		
ATOM	993	H	ARG	В	8	6.073	12.597	14.247
ATOM	994	CA	ARG	В	8	6.505	10.985	15.573
ATOM	995	С	ARG	В	8	7.577	11.198	16.610
MOTA	996	0	ARG	В	8	8.395	12.130	16.515
ATOM	997	CB	ARG	В	8	7.092	10.238	14.384
ATOM	, 998	CG	ARG	В	8	6.132	10.018	13.237
MOTA	999	CD	ARG	В	8	6.802	9.402	12.046
ATOM	1000	NE	ARG	В	8	5.846	9.005	11.023
ATOM	1001	HE	ARG	В	8	4.872	9.080	11.237
ATOM	1002	CZ	ARG	В	8	6.217	8.552	9.828
ATOM	1003	NH1	ARG	В	8	7.496	8.442	9.486
ATOM	1004	2HH1	ARG	В	8	8.211	8.703	10.134
MOTA	1005	1HH1	ARG	В	8	7.744	8.098	8.580
ATOM	1006	NH2	ARG	В	8	5.279	8.202	8.952

FIG. I IR

Heller Ebrnan Wite, & McCaillfe, LLP San 23, 46:4 Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Serial No. 09705,995 Applicants Earnmaryan et al. Date of Filmg: 11/1000 Date of Autrory Decket No. 24773-7900C

MOTA	1007	1HH2	ARG !	B 8	5.540	7.860	8.050
MOTA	1008	2HH2	ARG I	B 8	4.312	8.281	9.196
MOTA	1009	N	PRO 1	В 9	7.663	10.381	17.682
MOTA	1010	CA	PRO I	В 9	8.666	10.587	18.746
MOTA	1011	C	PRO I	В 9	10.065	10.196	18.315
MOTA	1012	0	PRO 1	В 9	10.678	9.215	18.778
MOTA	1013	CB	PRO I		8.148	9.682	19.878
MOTA	1014	CG	PRO I	В 9	7.315	8.607	19.206
MOTA	1015	CD	PRO I	В 9	6.708	9.323	18.004
MOTA	1016	N	LEU I	B 10	10.685	10.969	17.400
ATOM	1017	H	LEU I	B 10	10.201	11.746	16.998
MOTA	1018	CA	LEU I	B 10	12.040	10.706	16.978
MOTA	1019	C	LEU I	в 10	12.976	11.498	17.850
MOTA	1020	0	LEU !	B 10	12.880	12.733	18.018
MOTA	1021	CB	LEU !	B 10	12.250	11.170	15.554
MOTA	1022	CG	LEU I	B 10	11.427	10.386	14.551
MOTA	1023	CD1	LEU I	B 10	11.385	11.175	13.276
MOTA	1024	CD2	LEU I	B 10	11.956	8.947	14.355
MOTA	1025	N	VAL I	B 11	14.030	10.843	18.384
MOTA	1026	H	VAL I	B 11	14.148	9.866	18.206
MOTA	1027	CA	VAL I	B 11	15.018	11.517	19.223
MOTA	1028	C	VAL I	B 11	16.400	11.111	18.740
MOTA	1029	0	VAL I	B 11	16.581	10.201	17.911
MOTA	1030	CB	VAL I	B 11	14.857	11.100	20.699
MOTA	1031	CG1	VAL I	B 11	13.514	11.586	21.293
MOTA	1032	CG2	VAL !	B 11	15.038	9.573	20.903
MOTA	1033	N	THR I	B 12	17.485	11.739	19.232
MOTA	1034	H	THR I	B 12	17.370	12.507	19.862
MOTA	1035	CA	THR I	B 12	18.843	11.325	18.868
MOTA	1036	C	THR I	B 12	19.377	10.284	19.837
MOTA	1037	0	THR I	B 12	19.237	10.352	21.082
ATOM	1038	CB	THR I	B 12	19.830	12.520	18.820
MOTA	1039	OG1	THR I	B 12	19.389	13.483	17.876
MOTA	1040	HG1	THR I	B 12	20.028	14.252	17.848
MOTA	1041	CG2	THR I	B 12	21.234	12.075	18.399
ATOM	1042	N	ILE I	B 13	20.044	9.234	19.338
ATOM	1043	Ħ	ILE !	B 13	20.135	9.130	18.348
ATOM	1044	CA	ILE !	B 13	20.641	8.239	20.176
MOTA	1045	С	ILE !	B 13	22.119	8.226	19.855
ATOM	1046	0	ILE !	B 13	22.579	8.817	18.865
MOTA	1047	CB	ILE E	B 13	19.993	6.870	19.879
MOTA	1048	CG1	ILE E	B 13	20.192	6.464	18.415
ATOM	1049	CG2	ILE E	B 13	18.482	6.893	20.206
MOTA	1050	CD1	ILE B	B 13	19.829	5.035	18.106
MOTA	1051	N	LYS I	B 14	22.973	7.618	20.661
MOTA	1052	H		B 14	22.652	7.243	21.531
MOTA	1053	CA	LYS I	B 14	24.364	7.480	20.317
MOTA	1054	С	LYS !	B 14	24.680	6.029	20.477
ATOM	1055	0	LYS I	B 14	24.353	5.353	21.484
ATOM	1056	CB		B 14	25.266	8.263	21.242
MOTA	1057	CG		B 14	24.947	9.729	21.236
ATOM	1058	CD		B 14	25.664	10.498	22.339
MOTA	1059	CE	LYS I	B 14	26.758	11.441	21.807
MOTA	1060	NZ		B 14	28.026	10.781	21.440
ATOM	1061	1HZ	LYS I	B 14	28.674	11.466	21.107
MOTA	1062	3HZ	LYS I	B 14	27.855	10.107	20.722

FIG. I IS

Heller Ebruan Witte & McAuilife, LLP 30 of Computationally Derived Protein Structures of Genetic Polymorphisms in Parties Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Secrial No. 90708-905 Applicants Earmanayan et al. Date of Filling: 11/1000 Autrores Decket No. 42773-790C

ATOM	1063	2HZ	LYS	В	14	28.408	10.323	22.243
ATOM	1064	N	ILE	В	15	25.214	5.390	19.425
ATOM	1065	H	ILE	В	15	25.434	5.901	18.594
ATOM	1066	CA	ILE	В	15	25.489	3.989	19.434
ATOM	1067	C	ILE	В	15	26.832	3.981	18.750
ATOM	1068	Ö	ILE	В	15	27.104	4.869	17.933
ATOM	1069	CB	ILE	В	15	24.435	3.220	18.606
ATOM	1070	CG1	ILE	В	15	24.893	1.824	18.347
ATOM	1071	CG2	ILE	В	15	24.048	3.977	17,309
ATOM	1072	CD1	ILE	В	15	23.830	0.996	17.645
ATOM	1072	N	GLY	В	16	27.812	3.212	19.202
ATOM	1073	Н	GLY	В	16	27.623	2.535	19.913
ATOM	1075	CA		В	16	29.175	3.336	18.677
ATOM	1075	CA		В	16	29.771	4.754	18.619
	1075			В	16	30.737	4.970	17.902
ATOM		0			17	29.273	5.791	19.335
ATOM	1078	N		В		28.453	5.660	19.892
MOTA	1079	H		В	17		7.105	19.302
MOTA	1080	CA		В	17	29.924		
MOTA	1081	C		В	17	29.468	8.043	18.176
MOTA	1082	0		В	17	29.984	9.155	17.933
ATOM	1083	N		В	18	28.433	7.621	17.411
ATOM	1084	H		В	18	28.046	6.711	17.560
MOTA	1085	CA		В	18	27.834	8.449	16.348
ATOM	1086	C		В	18	26.407	8.755	16.736
ATOM	1087	0		В	18	25.678	7.953	17.353
MOTA	1088	CB		В	18	27.810	7.645	15.045
ATOM	1089	CG		В	18	27.247	6.204	15.146
ATOM	1090	CD	GLN	В	18	27.572	5.333	13.924
ATOM	1091	OE1	GLN	В	18	26.771	4.501	13.464
ATOM	1092	NE2	GLN	В	18	28.766	5.531	13.393
ATOM	1093	1HE2	GLN	В	18	29.057	5.005	12.594
ATOM	1094	2HE2	GLN	В	18	29.388	6.209	13.786
ATOM	1095	N	LEU	В	19	25.873	9.933	16.337
ATOM	1096	H	LEU	В	19	26.446	10.602	15.863
ATOM	1097	CA	LEU	В	19	24.467	10.267	16.578
ATOM	1098	С	LEU	В	19	23.633	9.622	15.490
ATOM	1099	0	LEU	В	19	23.912	9.707	14.284
ATOM	1100	CB		В	19	24.207	11.777	16.457
ATOM	1101	CG		в	19	. 24.857	12.756	17.454
ATOM	1102	CD1		В	19	24.739	12.335	18.880
ATOM	1103	CD2		В	19	26.299	13.072	17.130
ATOM	1104	N		В	20	22.450	9.085	15.850
ATOM	1105	Н		В	20	22.242	8.948	16.819
ATOM	1106	CA		В	20	21.472	8.702	14.867
ATOM	1107	C		В	20	20.121	9.105	15.417
ATOM	1108	ō		В	20	19.957	9.572	16.569
ATOM	1109	СВ		В	20	21.496	7.200	14.560
ATOM	1110	CG		В	20	22.904	6.653	14.507
ATOM	1111	CD		В	20	23.052	5.366	13.677
ATOM	1111	CE		В	20	23.052	5.603	12.145
ATOM	1112	NZ		В	20	23.893	6.758	11.699
ATOM	1114	1HZ			20	23.893	6.836	10.703
				В	20	23.847	6.617	11.978
ATOM ATOM	1115	3HZ 2HZ			20	23.544	7.597	12.116
	1116			В			9.022	
ATOM	1117	N H		В	21	19.068	8.712	14.591
ATOM	1118	н	GLU	B	21	19.200	0./12	13.650

FIG. I IT

OLT 1 7 2002 W

Heller Ehrman White & McAuliffe, LLP Sheet 34 of 46

Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications Serial No. 097/09,905 Applicants: Rammarayan et al. Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C

9.366 15.008 ATOM GLU B 21 17.735 1119 CA 8.095 15.119 1120 C GLU B 21 16.937 ATOM 17.117 7.103 14.376 ATOM 1121 0 GLU B 21 10.314 1122 CB GLU B 21 17.143 13.983 ATOM GLU B 21 15.714 10.706 14.162 ATOM 1123 CG 15.304 11.607 13.036 CD GLU B 21 ATOM 1124 14.971 11.051 11.957 OE1 GLU B 21 ATOM 1125 15.338 12.854 13.174 ATOM 1126 OE2 GLU B 21 ALA B 7.999 16.072 22 16,025 ATOM 1127 N 1128 ALA B 22 15.825 8.792 16.648 ATOM Н 15.300 6.783 16.315 ATOM 1129 CA ALA B 22 13.981 7.132 16.952 ATOM 1130 C ALA B 17.632 13.756 8.153 ATOM 1131 0 ALA B 16.095 5.865 17.235 ATOM 1132 CB ALA B 22 1133 N LEU B 23 12.994 6.230 16.743 ATOM 5.379 16.257 LEU B 23 13.195 ATOM 1134 Н LEU B 23 11.639 6.408 17.180 ATOM 1135 CA 5.740 11.476 18.534 ATOM 1136 LEU B 23 4.564 18.746 LEU B 23 11.814 ATOM 1137 0 16.192 ATOM 1138 CB LEU B 23 10.775 5.665 LEU B 5.810 16.237 23 9.267 ATOM 1139 CG LEU B 23 8.807 7.142 15.664 ATOM 1140 CD1 15.482 8.648 4.625 ATOM 1141 CD2 LEU B 23 6.455 19.553 ATOM LEU B 24 10.948 1142 N ATOM 1143 Н LEU B 24 10.775 7.433 19.435 LEU B 5.838 20.849 CA 24 10.613 ATOM 1144 C LEU B 24 9.271 5.160 20.687 ATOM 1145 8.208 5.764 20.418 LEU B ATOM 1146 24 21.971 CB LEU B 24 10.564 6.878 ATOM 1147 7.750 22,075 ATOM 1148 CG LEU B 24 11.828 11.580 1149 CD1 LEU B 24 8.859 23.077 ATOM 1150 CD2 LEU B 24 13.099 6.955 22.388 ATOM 9.246 3.822 20.809 ASP B 25 ATOM 1151 N 10.025 3.347 21.218 ATOM 1152 Н ASP B 25 8.122 3.030 20.366 ATOM 1153 CA ASP B 25 7.637 ATOM 1154 C ASP B 25 2.136 21.484 ATOM 1155 0 ASP 8.189 1.048 21.759 19.189 25 8.613 2.196 ATOM 1156 CB ASP 25 7.528 1.421 18.511 ATOM 1157 CG ASP В 25 6.422 1.339 19.058 ATOM 1158 OD1 ASP В 7.800 0.897 17.426 ATOM 1159 OD2 ASP В 25 22.157 ATOM 1160 N THR B 26 6.547 2.465 THR B 26 6.067 3.314 21.938 ATOM 1161 Н CA THR B 26 6.025 1.621 23.212 ATOM 1162 5.347 0.369 22.694 ATOM 1163 C THR B 26 23.451 4.976 -0.550 ATOM 1164 0 THR B 26 24.046 ATOM 1165 CB THR B 26 5.027 2.389 ATOM THR B 26 3.927 2.853 23,239 1166 OG1 HG1 THR B 26 3.277 3.359 23.806 ATOM 1167 3.603 CG2 26 5.703 24.650 ATOM 1168 THR B 0.245 21.382 27 5.090 ATOM 1169 N GLY B 5.341 0.983 20.756 ATOM 1170 н GLY B 27 -0.938 20.867 ATOM 1171 CA GLY B 27 4.457 C GLY B 27 5.475 -1.99220.458 MOTA 1172 5.121 -3.108 20.055 MOTA 0 GLY B 27 1173 ALA B 6.792 -1.717 20.495 ATOM 1174 N 28

FIG. I IU

Heller Ehrman White & Mochalife, LLP Seeh Set 46 Title: Use of Computationally Derived Freein Structures of Genetic Polymorphisms in Pharmacogeomoise for Prog Beging and Glinical Applications Serial No. 09706,905 Applicants: Eamaraysa et al. Date of Pilings: 11/1000 Ahreng Docket Ne. 12473-1390C

MOTA	1175	H	ALA E	28	7.104	-0.832	20.841
MOTA	1176	CA	ALA E	28	7.800	-2.690	20.037
MOTA	1177	C	ALA E		8.371	-3.444	21.259
ATOM	1178	ŏ	ALA E		8.840	-2.807	22.213
	1179	CB	ALA E		8.924	-1.936	19.358
MOTA			ASP B		8.459	-4.787	21.289
MOTA	1180	N					20.535
MOTA	1181	H	ASP E		8.082	-5.325	
MOTA	1182	CA	ASP E		9.121	-5.441	22.452
MOTA	1183	C	ASP E		10.608	-5.219	22.404
MOTA	1184	0	ASP E		11.345	-5.264	23.412
MOTA	1185	CB	ASP E	29	8.965	-6.975	22.447
MOTA	1186	CG	ASP E	29	7.551	-7.477	22.774
MOTA	1187	OD1	ASP E	29	6.683	-6.693	23.169
MOTA	1188	OD2	ASP E	29	7.350	-8.686	22.616
ATOM	1189	N	ASP B	30	11.164	-5.157	21.171
ATOM	1190	H	ASP B	3.0	10.577	-5.063	20.367
MOTA	1191	CA	ASP E		12.609	-5.217	20.880
MOTA	1192	C	ASP E		13.048	-3.886	20.335
MOTA	1193	o	ASP B		12.269	-3.055	19.817
		CB	ASP B		12.833	-6.226	19.735
MOTA	1194				12.477	-7.675	20.099
MOTA	1195	CG	ASP B		13.197	-8.272	20.908
MOTA	1196	OD1	ASP B			-8.237	19.569
MOTA	1197	OD2	ASP B		11.494		
MOTA	1198	N	THR B		14.387	-3.692	20.227
MOTA	1199	H	THR E		15.018	-4.380	20.586
MOTA	1200	CA	THR E	31	14.981	-2.530	19.614
MOTA	1201	C	THR E	31	15.578	-2.979	18.260
MOTA	1202	0	THR E	31	16.246	-4.020	18.123
MOTA	1203	CB	THR B	31	16.036	-2.004	20.557
MOTA	1204	OG1	THR E	31	15.378	-1.376	21.645
MOTA	1205	HG1	THR E	31	16.052	-1.016	22.290
MOTA	1206	CG2	THR E	31	16.944	-0.960	19.904
ATOM	1207	N	VAL E		15.237	-2.283	17.150
MOTA	1208	н	VAL E		14.703	-1.442	17.237
ATOM	1209	CA	VAL E		15.626	-2.722	15.806
ATOM	1210	C	VAL E		16.303	-1.566	15.132
	1211	0	VAL E		15.779	-0.428	14.995
MOTA					14.407	-3.126	14.964
MOTA	1212	CB			14.820	-3.703	13.596
MOTA	1213	CG1	VAL E				15.703
MOTA	1214	CG2	VAL E		13.556	-4.102	
MOTA	1215	N	LEU E		17.563	-1.756	14.720
MOTA	1216	H	TEA E		17.984	-2.658	14.814
MOTA	1217	CA	LEU E		18.347	-0.697	14.138
MOTA	1218	C	LEU E		18.610	-1.009	12.685
MOTA	1219	-0	LEU E		18.685	-2.162	12.205
MOTA	1220	CB	LEU E	3 3 3	19.679	-0.628	14.856
MOTA	1221	CG	LEU E	3 3	19.698	0.363	16.031
MOTA	1222	CD1	LEU E	3 3 3	18.425	0.321	16.891
MOTA	1223	CD2	LEU E	3 3 3	20.929	0.179	16.889
MOTA	1224	N	GLU E		18.786	0.078	11.899
ATOM	1225	Н	GLU E		18.619	0.991	12.271
MOTA	1226	CA	GLU E		19.218	0.041	10.488
ATOM	1227	C	GLU E		20.478	-0.774	10.399
MOTA	1228	õ	GLU E		21.374	-0.835	11.272
ATOM	1229	СВ	GLU E		19.536	1.460	9.996
ATOM	1230	CG	GLU E		20.722	2.088	10.761
111 011	1230	-	JUC E		20.722	2.000	_0.,01

FIG. I IV

Heller Ehrman White, McAnilfte, LLP Shee Hof 46 Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Proceedings of the Computational Structure of Genetic Polymorphisms in Strial No. 09709,098 Applicantic Ehrmanzyan et al. Date of Plinig: 11/1000 Autorapt Obcekt De. 24773-1909C

							40.00.
MOTA	1231	CD	GLU E		21.085	3.512	10.314
ATOM	1232	OE1	GLU E		20.285	4.466	10.500
ATOM	1233	OE2	GLU E	34	22.211	3.703	9.775
ATOM	1234	N	GLU E	35	20.673	-1.367	9.205
ATOM	1235	H	GLU E	35	20.011	-1.227	8.468
ATOM	1236	CA	GLU E	3 3 5	21.802	-2.205	8.930
ATOM	1237	c	GLU E		23.096	-1.520	9.321
		Ö	GLU E		23.391	-0.379	8.916
ATOM	1238				21.741	-2.479	7.439
ATOM	1239	CB			22.795	-3.380	6.883
MOTA	1240	CG	GLU E			-4.587	7.744
ATOM	1241	CD	GLU E		22.987		
MOTA	1242	OE1	GLU E		21.980	-5.258	8.118
ATOM	1243	OE2	GLU E		24.149	-4.860	8.048
ATOM	1244	N	MET E		23.926	-2.106	10.157
MOTA	1245	H	MET E	36	23.654	-2.953	10.613
ATOM	1246	CA	MET E	36	25.232	-1.559	10.441
ATOM	1247	С	MET E	36	26.146	-2.687	10.815
ATOM	1248	ō	MET E		25.731	-3.783	11.257
ATOM	1249	CB	MET E		25.251	-0.424	11.497
ATOM	1250	CG	MET E		24.626	-0.724	12.881
					24.722	0.719	13.988
ATOM	1251	SD			23.132	1.586	13.692
ATOM	1252	CE	MET E				
ATOM	1253	N	SER E		27.441	-2.551	10.593
ATOM	1254	H	SER E		27.783	-1.726	10.144
ATOM	1255	CA	SER E		28.321	-3.608	11.011
ATOM	1256	C	SER E		28.721	-3.352	12.442
ATOM	1257	0	SER E	37	29.402	-2.369	12.788
ATOM	1258	CB	SER E	37	29.567	-3.622	10.109
ATOM	1259	OG	SER E	37	29.231	-3.908	8.750
ATOM	1260	HG	SER E	37	30.057	-3.911	8.187
ATOM	1261	N	LEU E		28.469	-4.295	13.366
ATOM	1262	H	LEU B		27.948	-5.123	13.117
ATOM	1263	CA	LEU E		29.073	-4.232	14.714
ATOM	1264	C	LEU B		30.132	-5.342	14.895
ATOM	1265	Ö	LEU E		30.070	-6.357	14.197
			LEU E		27.986	-4.237	15.802
ATOM	1266	CB			27.005	-3.039	15.750
ATOM	1267	CG	LEU E				16.788
ATOM	1268	CD1	LEU E		25.885	-3.214	
ATOM	1269	CD2	LEU E		27.707	-1.696	16.017
MOTA	1270	N	PRO E		31.119	-5.160	15.804
MOTA	1271	CA	PRO E		32.199	-6.116	16.052
MOTA	1272	C	PRO E	39	31.767	-7.223	17.028
ATOM	1273	0	PRO E	3 9	31.448	-6.942	18.185
MOTA	1274	CB	PRO E	3 9	33.347	-5.276	16.625
ATOM	1275	CG	PRO E	3 9	32.634	-4.148	17.370
ATOM	1276	CD	PRO E		31.385	-3.916	16.523
ATOM	1277	N	GLY E		31.770	-8.481	16.559
ATOM	1278	Н	GLY E		32.036	-8.641	15.598
ATOM	1279	CA	GLY E		31.420	-9.658	17.353
ATOM	1279	CA	GLY E		30.679	-10.723	16.539
					30.647	-10.723	15.308
ATOM	1281	0					17.255
MOTA	1282	N	LYS E		30.098	-11.699	
MOTA	1283	H	LYS E		30.164	-11.656	18.261
ATOM	1284	CA	LYS E		29.399	-12.861	16.702
MOTA	1285	C	LYS E		27.9 7 1	-12.923	17.245
ATOM	1286	0	LYS E	41	27.743	-12.700	18.436

FIG. I IW

Heller Ehrman White & McAntiffe, LLP Title: Use of Computationally Derived Frontin Structures of Genetic Polymorphisms in Serial No. 0705,998 Applicants Enumaryane et al. Date of Hitting: 117,000 Antropo Decket Pol. 42775-7590C

				_				
MOTA	1287	CB	LYS	В	41	30.154	-14.152	17.048
MOTA	1288	CG	LYS	В	41	31.537	-14.221	16.384
ATOM	1289	CD	LYS	В	41	32.192	-15.580	16.651
ATOM	1290	CE	LYS	В	41	33.566	-15.642	15.983
					41	34.198	-16.956	16.183
MOTA	1291	NZ	LYS	В				
MOTA	1292	1HZ	LYS	В	41	35.102	-16.968	15.732
ATOM	1293	3HZ	LYS	В	41	33.612	-17.674	15.782
ATOM	1294	2HZ	LYS	В	41	34.312	-17.128	17.172
ATOM	1295	N	TRP	В	42	27.018	-13.228	16.351
	1296	Н	TRP	B	42	27.307	-13.458	15.411
MOTA						25.597	-12.929	16.521
MOTA	1297	CA	TRP	В	42			
MOTA	1298	C	TRP	В	42	24.723	-14.179	16.405
MOTA	1299	0	TRP	В	42	25.210	-15.277	16.131
MOTA	1300	CB	TRP	В	42	25.192	-11.856	15.491
ATOM	1301	CG	TRP	В	42	26.127	-10.687	15.390
ATOM	1302	CD1	TRP	В	42	26.651	-10.197	14.244
						26.739	-9.913	16.467
MOTA	1303	CD2	TRP	В	42			
MOTA	1304	NE1	TRP	В	42	27.548	-9.191	14.533
ATOM	1305	HE1	TRP	В	42	28.067	-8.702	13.818
MOTA	1306	CE2	TRP	В	42	27.664	-8.995	15.893
ATOM	1307	CE3	TRP	В	42	26.640	-9.923	17.875
ATOM	1308	CZ2	TRP	В	42	28.443	-8.136	16.680
							-9.075	18.673
MOTA	1309	CZ3	TRP	В	42	27.426		
ATOM	1310	CH2	TRP	В	42	28.318	-8.171	18.077
MOTA	1311	N	LYS	В	43	23.416	-13.980	16.617
MOTA	1312	H	LYS	В	43	23.105	-13.044	16.840
ATOM	1313	CA	LYS	В	43	22.378	-14.995	16.526
ATOM	1314	C	LYS	В	43	21.368	-14.507	15.478
			LYS		43	20.743	-13.472	15.706
MOTA	1315	0		В				17.893
MOTA	1316	CB	LYS	В	43	21.694	-15.196	
ATOM	1317	CG	LYS	В	43	22.641	-15.623	19.034
ATOM	1318	CD	LYS	В	43	22.409	-14.814	20.323
ATOM	1319	CE	LYS	В	43	22.767	-13.327	20.182
MOTA	1320	NZ	LYS	В	43	24.214	-13.113	20.015
ATOM	1321	1HZ	LYS	В	43	24.400	-12.125	19.924
					43	24.532	-13.593	19.185
MOTA	1322	3HZ	LYS	В				
MOTA	1323	2HZ	LYS	В	43	24.702	-13.476	20.821
MOTA	1324	N	PRO	В	44	21.175	-15.204	14.341
ATOM	1325	CA	PRO	В	44	20.139	-14.835	13.382
ATOM	1326	C	PRO	В	44	18.765	-14.997	14.044
ATOM	1327	Ö	PRO	В	44	18.573	-15.902	14.860
ATOM	1328	CB	PRO	В	44	20.341	-15.761	12.180
						20.999	-16.999	12.787
MOTA	1329	CG	PRO	В	44			
MOTA	1330	CD	PRO	В	44	21.837	-16.434	13.933
MOTA	1331	N	LYS	В	45	17.825	-14.101	13.712
ATOM	1332	H	LYS	В	45	17.994	-13.483	12.944
ATOM	1333	CA	LYS	В	45	16.523	-14.088	14.339
ATOM	1334	C	LYS	В	45	15.519	-13.590	13.329
MOTA	1335	õ	LYS	В	45	15.829	-12.838	12.379
								15.560
ATOM	1336	CB	LYS	В	45	16.558	-13.149	
ATOM	1337	CG	LYS	В	45	15.469	-13.442	16.579
MOTA	1338	CD	LYS	В	45	15.256	-12.254	17.501
ATOM	1339	CE	LYS	В	45	14.131	-12.461	18.469
ATOM	1340	NZ	LYS	В	45	14.549	-13.442	19.474
ATOM	1341	1HZ	LYS	В	45	13.805	-13.588	20.126
ATOM	1342	3HZ	LYS	В	45	15.355	-13.101	19.958
ATOM	1342	2112	PIP	Д	40		10.101	10.000

Heller Ehrman White & Nichallife, LLP Sander & St. 18 of 46 Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomies for Purp Beigle and Cillada Applications Serial No. 00709,098 Applicants Rammarayan et al. Date of Plitting: 1171000 Autrore Discale No. 42757-1906C

ATOM 1344 N MET B 46 14.772 -14.306 19.023 ATOM 1345 H MET B 46 13.991 -14.005 13.416 ATOM 1346 CA MET B 46 13.991 -14.005 14.085 ATOM 1346 CA MET B 46 13.991 -12.623 13.425 ATOM 1348 O MET B 46 11.782 -13.063 14.471 ATOM 1349 CB MET B 46 11.782 -13.063 14.471 ATOM 1350 CG MET B 46 11.782 -13.063 14.471 ATOM 1351 SD MET B 46 13.153 -15.586 11.187 ATOM 1352 CE MET B 46 13.153 -15.586 11.187 ATOM 1355 CA MET B 46 12.977 -15.188 9.473 ATOM 1355 CA LLE B 47 11.933 -11.379 13.030 ATOM 1355 CA LLE B 47 11.933 -11.379 13.030 ATOM 1355 CA LLE B 47 10.971 -10.568 13.797 ATOM 1355 CA LLE B 47 10.971 -10.568 13.797 ATOM 1355 CA LLE B 47 10.971 -10.568 13.797 ATOM 1356 C LLE B 47 9.819 -10.048 11.731 ATOM 1357 O LLE B 47 9.819 -10.048 11.731 ATOM 1358 CB LLE B 47 12.542 -9.638 15.494 ATOM 1360 CG2 LLE B 47 12.542 -9.638 15.494 ATOM 1361 CD1 LLE B 47 12.542 -9.638 15.494 ATOM 1362 N GLY B 48 8.557 -10.136 13.558 ATOM 1363 H GLY B 48 8.557 -10.136 13.558 ATOM 1364 CA GLY B 48 8.656 -16.785 11.459 ATOM 1365 C GLY B 48 8.684 -10.249 14.549 ATOM 1366 C GLY B 48 6.626 -8.512 13.141 ATOM 1367 N GLY B 49 5.940 -8.027 12.800 ATOM 1368 H GLY B 49 5.940 -8.027 12.2800 ATOM 1370 C GLY B 49 5.940 -8.027 12.2800 ATOM 1371 O GLY B 49 5.940 -8.027 12.2800 ATOM 1373 H LLE B 50 1.175 -7.253 9.215 ATOM 1374 CA LLE B 50 1.175 -7.253 9.215 ATOM 1378 CG LLE B 50 1.055 -3.539 11.396 ATOM 1379 C GLY B 51 3.957 -5.920 8.737 ATOM 1371 C GLY B 51 3.957 -5.920 8.737 ATOM 1373 C GLY B 51 3.957 -5.920 8.737 ATOM 1374 CA LLE B 50 1.075 -3.539 11.396 ATOM 1378 C GLY B 51 3.957 -5.920 8.737 ATOM 1380 C GLY B 51 3.957 -5.920 8.737 ATOM 1381 N GLY B 51 3.957 -5.920 8.737 ATOM 1386 C GLY B 51 3.916 -4.077 11.252 ATOM 1387 C GLY B 51 3.917 -7.253 9.215 ATOM 1388 C G GLY B 51 3.917 -7.253 9.215 ATOM 1389 C GLY B 51 3.977 -0.757 7.259 ATOM 1380 C GLY B 51 3.916 -0.991 -4.077 11.252 ATOM 1381 N GLY B 51 3.977 -0.0584 8.311 ATOM 1386 C GLY B 51 3.916 -0.091 -4.077 11.252 ATOM 1387 C GLY B 51 3.916 -0.091 -4.077 11.252 ATOM 1388 C G GLY B 51 3.916 -0.091 -4.077 11								
ATOM 1346 CA MET B 46 13.991 -14.705 14.085 ATOM 1346 CA MET B 46 13.203 -13.472 12.570 ATOM 1347 C MET B 46 12.291 -12.623 13.425 ATOM 1348 O MET B 46 12.291 -12.623 13.425 ATOM 1349 CB MET B 46 12.838 -14.616 12.016 ATOM 1350 CG MET B 46 13.153 -15.586 11.187 ATOM 1351 SD MET B 46 13.153 -15.586 11.187 ATOM 1351 SD MET B 46 13.153 -15.586 11.187 ATOM 1355 CE MET B 46 13.153 -15.586 11.187 ATOM 1355 CE MET B 46 13.566 -16.690 8.775 ATOM 1355 N ILE B 47 11.933 -11.379 13.030 ATOM 1355 CA ILE B 47 10.971 -10.568 13.797 ATOM 1355 CA ILE B 47 10.971 -10.568 13.797 ATOM 1355 CA ILE B 47 10.971 -10.568 13.797 ATOM 1356 C ILE B 47 9.819 -10.048 11.731 ATOM 1358 CB ILE B 47 9.819 -10.048 11.731 ATOM 1356 C ILE B 47 9.819 -10.048 11.731 ATOM 1360 CC2 ILE B 47 12.345 -8.459 13.318 ATOM 1360 CC2 ILE B 47 12.345 -8.459 13.318 ATOM 1361 CD1 ILE B 47 12.542 -9.638 15.494 ATOM 1361 CD1 ILE B 47 12.542 -9.638 15.494 ATOM 1363 H GLY B 48 8.557 -10.136 13.558 ATOM 1363 H GLY B 48 8.557 -10.136 13.558 ATOM 1366 C GLY B 48 8.557 -10.136 13.554 ATOM 1366 C GLY B 48 8.557 -10.136 13.544 ATOM 1366 C GLY B 48 7.365 -9.872 12.800 ATOM 1366 C GLY B 48 7.365 -9.872 12.800 ATOM 1367 N GLY B 48 7.365 -9.872 12.800 ATOM 1367 N GLY B 49 5.668 -8.562 11.506 ATOM 1367 N GLY B 49 5.668 -8.562 11.506 ATOM 1370 C GLY B 49 5.940 -8.027 12.306 ATOM 1371 O GLY B 49 5.936 -6.745 12.306 ATOM 1373 H ILE B 50 1.987 -7.253 9.11.506 ATOM 1371 O GLY B 49 5.936 -6.745 12.306 ATOM 1373 H ILE B 50 1.982 -4.071 10.391 ATOM 1373 C GLY B 49 5.366 -7.7832 14.149 ATOM 1371 O GLY B 49 5.366 -7.7832 14.149 ATOM 1371 O GLY B 59 5.668 8.562 11.506 ATOM 1373 H ILE B 50 1.982 -4.071 10.391 ATOM 1378 C GLY B 49 5.366 -7.7832 14.149 ATOM 1371 O GLY B 50 50 50 50 50 50 50 50 50 50 50 50 50	ATOM	1343	2HZ	LYS B	45			
ATOM 1347 C MET B 46 12.291 -12.623 13.425 ATOM 1347 C MET B 46 12.291 -12.623 13.425 ATOM 1348 O MET B 46 12.281 -13.063 14.471 ATOM 1349 CB MET B 46 12.383 -14.616 12.016 ATOM 1350 CG MET B 46 12.383 -14.616 12.016 ATOM 1351 SD MET B 46 12.977 -15.188 9.473 ATOM 1352 CE MET B 46 12.977 -15.188 9.473 ATOM 1353 N ILE B 47 12.327 -10.991 12.196 ATOM 1355 C ILE B 47 12.327 -10.991 12.196 ATOM 1356 C ILE B 47 10.971 -10.568 13.797 ATOM 1357 O ILE B 47 9.761 -10.233 12.962 ATOM 1358 CB ILE B 47 9.761 -10.233 12.962 ATOM 1359 CGI ILE B 47 9.761 -10.233 12.962 ATOM 1360 CG2 ILE B 47 9.761 -10.233 12.962 ATOM 1361 CD1 ILE B 47 12.345 -8.459 13.318 ATOM 1360 CG2 ILE B 47 12.345 -8.459 13.318 ATOM 1361 CD1 ILE B 47 12.789 -7.123 13.551 ATOM 1363 H GLY B 48 8.484 -10.249 14.549 ATOM 1366 C GLY B 48 8.484 -10.249 14.549 ATOM 1367 N GLY B 48 8.484 -10.249 14.549 ATOM 1368 H GLY B 48 9.5668 -8.512 13.141 ATOM 1369 CA GLY B 48 8.626 -8.512 13.141 ATOM 1369 CA GLY B 48 9.5.668 -8.562 11.506 ATOM 1370 C GLY B 49 5.940 -8.027 12.306 ATOM 1371 O GLY B 49 5.940 -8.027 12.306 ATOM 1372 N ILE B 50 1.516 -7.832 14.149 ATOM 1373 H ILE B 50 1.564 1.172 -7.253 10.673 ATOM 1376 O ILE B 50 1.175 -7.253 10.673 ATOM 1377 CB ILE B 50 1.175 -7.253 9.11.374 ATOM 1378 CG ILE B 50 1.175 -7.253 9.11.374 ATOM 1378 CG ILE B 50 1.175 -7.253 9.11.374 ATOM 1378 CG ILE B 50 1.175 -7.253 9.11.396 ATOM 1378 CG ILE B 50 1.175 -7.253 9.215 ATOM 1379 CG ILE B 50 1.175 -7.253 9.215 ATOM 1370 C ILE B 50 1.175 -7.253 9.215 ATOM 1371 O GLY B 51 3.561 -7.634 11.315 ATOM 1372 CG ILE B 50 1.610 -3.739 8.922 ATOM 1373 H ILE B 50 1.610 -3.739 8.922 ATOM 1376 C ILE B 50 1.610 -3.739 8.922 ATOM 1377 CB ILE B 50 1.610 -3.739 8.922 ATOM 1378 C ILE B 50 1.610 -3.739 9.892 ATOM 1379 CG ILE B 50 1.610 -3.739 8.922 ATOM 1380 CD ILE B 50 1.610 -3.739 9.892 ATOM 1381 N GLY B 51 3.716 -8.945 5.973 ATOM 1382 C GLY B 51 3.716 -8.945 5.973 ATOM 1386 C GLY B 51 3.716 -8.945 5.973 ATOM 1387 C GLY B 52 6.534 -10.190 7.874 ATOM 1389 C GLY B 51 3.716 6.8945 6.990 ATOM 1389 C GLY B 52	MOTA	1344	N	MET B	46			
ATOM 1347 C MET B 46 12.291 -12.623 13.425 ATOM 1348 O MET B 46 11.782 -13.063 14.471 ATOM 1350 CG MET B 46 12.383 -14.616 12.016 ATOM 1351 SD MET B 46 13.153 -15.586 11.187 ATOM 1352 CE MET B 46 13.153 -15.586 11.187 ATOM 1353 N MET B 46 13.566 -16.690 8.775 ATOM 1355 N MET B 46 13.566 -16.690 8.775 ATOM 1355 N LLE B 47 11.393 -11.379 13.030 ATOM 1355 CA ILE B 47 10.971 -10.568 13.797 ATOM 1355 CA ILE B 47 10.971 -10.568 13.797 ATOM 1355 CA ILE B 47 9.619 -10.048 11.731 ATOM 1356 C ILE B 47 9.619 -10.048 11.731 ATOM 1357 O ILE B 47 9.619 -10.048 11.731 ATOM 1358 CB ILE B 47 9.619 -10.048 11.731 ATOM 1356 C ILE B 47 12.345 -8.459 13.318 ATOM 1360 CG2 ILE B 47 12.542 -9.638 15.494 ATOM 1360 CG2 ILE B 47 12.542 -9.638 15.494 ATOM 1361 CD1 ILE B 47 12.542 -9.638 15.494 ATOM 1362 N GLY B 48 8.557 -10.136 13.558 ATOM 1363 H GLY B 48 8.557 -10.136 13.558 ATOM 1366 C GLY B 48 7.365 -9.872 12.800 ATOM 1366 C GLY B 48 7.365 -9.872 12.800 ATOM 1366 N GLY B 48 7.365 -9.872 12.200 ATOM 1367 N GLY B 48 7.365 -9.872 12.200 ATOM 1368 H GLY B 49 5.668 8.562 11.506 ATOM 1369 CA GLY B 49 5.668 8.626 -8.512 13.141 ATOM 1367 N GLY B 49 5.668 8.626 12.304 ATOM 1370 C GLY B 49 5.940 -8.027 12.306 ATOM 1371 O GLY B 49 5.940 -8.027 12.306 ATOM 1373 H ILE B 50 3.551 -7.847 11.273 ATOM 1373 N ILE B 50 3.551 -7.847 11.273 ATOM 1374 CA ILE B 50 2.118 -6.456 9.420 ATOM 1375 C ILE B 50 1.195 -4.777 11.492 ATOM 1377 CB ILE B 50 1.982 -4.071 10.391 ATOM 1378 CG ILE B 50 1.982 -4.071 10.391 ATOM 1380 CD ILE B 50 1.982 -4.071 10.391 ATOM 1381 N GLY B 51 3.957 -5.920 8.737 ATOM 1382 C GLY B 51 3.957 -5.920 8.737 ATOM 1386 C GLY B 51 3.957 -5.920 8.737 ATOM 1387 C GLY B 52 6.639 -9.421 6.6456 9.420 ATOM 1388 C GLY B 51 3.957 -5.920 8.737 ATOM 1380 C GLY B 51 3.957 -5.920 8.737 ATOM 1381 N GLY B 51 3.957 -5.920 8.737 ATOM 1383 C G GLY B 52 6.639 -9.421 6.959 ATOM 1386 C GLY B 52 6.639 -9.421 6.959 ATOM 1387 C GLY B 52 6.639 -9.421 6.959 ATOM 1388 C G GLY B 52 6.639 -9.421 6.959 ATOM 1389 C GLY B 52 6.639 -9.421 6.959 ATOM 1389 C GLY B 52 6.639 -9.	ATOM	1345	H	MET B	46	13.991	-14.705	14.085
ATOM 1348 O MET B 46 12.921 -12.623 13.425 ATOM 1348 O MET B 46 11.782 -13.063 14.471 ATOM 1350 CG MET B 46 12.975 -15.168 9.473 ATOM 1351 SD MET B 46 12.977 -15.188 9.473 ATOM 1352 CE MET B 46 13.566 -16.690 8.775 ATOM 1353 N ILE B 47 11.933 -11.379 13.030 ATOM 1354 H ILE B 47 11.933 -11.379 13.030 ATOM 1355 CD ILE B 47 12.327 -10.991 12.196 ATOM 1355 CD ILE B 47 10.971 -10.568 13.797 ATOM 1355 CD ILE B 47 10.971 -10.568 13.797 ATOM 1356 CD ILE B 47 10.971 -10.568 13.797 ATOM 1357 O ILE B 47 9.819 -10.048 11.731 ATOM 1358 CD ILE B 47 9.819 -10.048 11.731 ATOM 1358 CD ILE B 47 12.345 -8.459 13.318 ATOM 1360 CG2 ILE B 47 12.542 -9.638 15.494 ATOM 1361 CD1 ILE B 47 12.542 -9.638 15.494 ATOM 1362 N GLY B 48 8.557 -10.136 13.558 ATOM 1363 H GLY B 48 8.484 -10.249 14.549 ATOM 1366 CG ILY B 48 8.484 -10.249 14.549 ATOM 1366 C GLY B 48 7.136 -9.872 12.800 ATOM 1367 N GLY B 48 7.365 -9.872 12.306 ATOM 1368 H GLY B 49 5.668 8.562 11.506 ATOM 1369 CA GLY B 49 5.668 8.562 11.506 ATOM 1369 CA GLY B 49 5.668 8.626 -8.512 13.141 ATOM 1369 CA GLY B 49 5.668 8.626 -7.851 13.141 ATOM 1371 O GLY B 49 5.668 8.626 12.306 ATOM 1373 H ILE B 50 2.118 6.745 11.273 ATOM 1377 CB ILE B 50 2.118 6.745 11.273 ATOM 1378 CGI ILE B 50 2.247 -5.573 10.673 ATOM 1377 CB ILE B 50 2.118 6.456 9.420 ATOM 1378 CGI ILE B 50 2.118 6.456 9.420 ATOM 1379 CGI ILE B 50 1.982 -4.071 10.391 ATOM 1370 C GLY B 49 5.668 8.8562 11.674 ATOM 1371 O GLY B 59 50 4.015 -4.777 11.492 ATOM 1373 C GLY B 50 1.982 -4.071 10.391 ATOM 1374 CA ILE B 50 2.118 6.456 9.420 ATOM 1375 C ILE B 50 1.982 -4.071 10.391 ATOM 1380 CD ILE B 50 1.982 -4.071 10.391 ATOM 1380 CD ILE B 50 1.982 -4.071 10.391 ATOM 1381 N GLY B 51 3.957 -5.920 8.737 ATOM 1380 CD ILE B 50 1.905 -3.539 11.396 ATOM 1380 CD ILE B 50 1.905 -3.539 1.906 ATOM 1380 CD ILE B 50 1.906 -9.420 9.657 ATOM 1380 CD ILE B 50 1.906 -9.420 9.657 ATOM 1380 CD ILE B 50 1.906 -9.420 9.657 ATOM 1380 CD ILE B 50 1.906 -9.420 9.657 ATOM 1380 CD ILE B 50 1.906 9.421 9.657 ATOM 1380 CD ILE B 53 9.727 -10.584 8.315 ATOM 1380 CD ILE B	ATOM	1346	CA	MET B	46	13.203	-13.472	12.570
ATOM 1349 CB MET B 46			С	MET B	46	12.291	-12.623	13.425
ATOM				MET B	46	11.782	-13.063	14.471
ATOM 1351 SD MET B 46 13.153 -15.586 11.187 ATOM 1352 CE MET B 46 12.977 -15.188 9.473 ATOM 1353 N ILE B 47 11.933 -11.379 13.030 ATOM 1355 CA ILE B 47 11.933 -11.379 13.030 ATOM 1355 CA ILE B 47 10.971 -10.568 13.797 ATOM 1355 CA ILE B 47 10.971 -10.568 13.797 ATOM 1355 CA ILE B 47 10.971 -10.568 13.797 ATOM 1356 C ILE B 47 9.819 -10.048 11.731 ATOM 1357 O ILE B 47 9.819 -10.048 11.731 ATOM 1358 CB ILE B 47 12.345 -8.459 13.318 ATOM 1359 CGI ILE B 47 12.345 -8.459 13.318 ATOM 1360 CG2 ILE B 47 12.542 -9.638 15.494 ATOM 1361 CDI ILE B 47 12.542 -9.638 15.494 ATOM 1361 CDI ILE B 47 12.542 -9.638 15.494 ATOM 1366 CG ILE B 47 12.542 -9.638 15.494 ATOM 1366 CG ILE B 47 12.542 -9.638 15.494 ATOM 1366 CG ILE B 47 12.542 -9.638 15.494 ATOM 1366 CG ILE B 47 12.542 -9.638 15.494 ATOM 1366 CG ILE B 47 12.542 -9.638 15.494 ATOM 1366 CG ILE B 47 12.542 -9.638 15.494 ATOM 1366 CG ILE B 47 12.599 -7.123 13.851 ATOM 1367 N GLY B 48 8.484 -10.249 14.549 ATOM 1366 CG ILY B 48 6.826 -8.512 13.141 ATOM 1368 H GLY B 48 7.365 -9.872 12.800 ATOM 1367 N GLY B 49 5.940 -8.027 12.306 ATOM 1369 CA GLY B 49 5.940 -8.027 12.306 ATOM 1370 C GLY B 49 5.940 -8.027 12.306 ATOM 1371 O GLY B 49 5.940 -8.027 12.306 ATOM 1371 O GLY B 49 5.940 -8.027 12.306 ATOM 1373 H ILE B 50 3.531 -5.634 11.315 ATOM 1373 H ILE B 50 3.531 -5.634 11.315 ATOM 1373 H ILE B 50 4.015 -7.847 11.273 ATOM 1377 CB ILE B 50 1.175 -7.253 9.215 ATOM 1378 CGI ILE B 50 1.982 -4.071 10.391 ATOM 1378 CGI ILE B 50 1.982 -4.071 10.391 ATOM 1380 CDI ILE B 50 1.982 -4.071 10.391 ATOM 1380 CDI ILE B 50 1.055 -3.539 11.396 ATOM 1381 N GLY B 51 3.131 -6.410 8.519 ATOM 1380 CDI ILE B 50 1.056 -3.539 11.396 ATOM 1380 CDI ILE B 50 1.057 -3.539 1.396 ATOM 1380 CDI ILE B 50 1.057 -3.539 1.396 ATOM 1380 CDI ILE B 50 1.057 -3.539 1.396 ATOM 1381 N GLY B 51 3.131 -6.410 8.519 ATOM 1380 CDI ILE B 50 1.056 -3.539 1.396 ATOM 1380 CDI ILE B 50 1.057 -3.539 1.396 ATOM 1380 CDI ILE B 50 1.057 -3.539 1.396 ATOM 1380 CDI ILE B 50 1.057 -3.539 1.396 ATOM 1380 CDI ILE B 50 1.057 -3.539 1.396 ATOM 1380					46	12.383	-14.616	12.016
ATOM 1351 SD MET B 46 12.977 -15.188 9 .473 ATOM 1352 CE MET B 46 13.566 -16.690 8.755 ATOM 1353 N ILE B 47 11.933 -11.379 13.030 ATOM 1355 A H ILE B 47 12.327 -10.991 12.196 ATOM 1355 C ILE B 47 12.327 -10.991 12.196 ATOM 1356 C ILE B 47 9.761 -10.233 12.962 ATOM 1357 O ILE B 47 9.761 -10.233 12.962 ATOM 1358 CB ILE B 47 9.761 -10.233 12.962 ATOM 1359 CG1 ILE B 47 12.345 -8.459 13.318 ATOM 1360 CG2 ILE B 47 12.542 -9.638 15.494 ATOM 1361 CD1 ILE B 47 12.542 -9.638 15.494 ATOM 1362 N GLY B 48 8.557 -10.136 13.558 ATOM 1363 H GLY B 48 8.484 -10.249 14.549 ATOM 1366 C GLY B 48 8.484 -10.249 14.549 ATOM 1366 C GLY B 48 8.484 -10.249 14.549 ATOM 1366 N GLY B 48 8.626 -8.512 13.141 ATOM 1366 C GLY B 48 8.626 -8.512 13.141 ATOM 1366 C GLY B 48 7.365 -9.872 12.800 ATOM 1367 N GLY B 49 5.966 8.562 11.506 ATOM 1368 H GLY B 49 5.668 8.562 11.506 ATOM 1369 CA GLY B 49 5.668 8.562 11.506 ATOM 1370 C GLY B 49 5.940 -8.027 12.306 ATOM 1371 O GLY B 49 4.082 -6.786 11.674 ATOM 1373 H ILE B 50 3.531 -5.634 11.315 ATOM 1374 CA ILE B 50 2.247 -5.573 10.673 ATOM 1375 C ILE B 50 1.175 -7.253 9.15 ATOM 1376 O ILE B 50 1.175 -7.253 9.15 ATOM 1377 CB ILE B 50 1.982 -4.071 10.391 ATOM 1378 CG ILE B 50 1.175 -7.253 9.11 ATOM 1379 CG ILE B 50 1.175 -7.253 9.215 ATOM 1379 CG ILE B 50 1.982 -4.071 10.391 ATOM 1376 O ILE B 50 1.982 -4.071 10.391 ATOM 1377 CB ILE B 50 1.982 -4.071 10.391 ATOM 1378 CG ILE B 50 1.982 -4.071 10.391 ATOM 1378 CG ILE B 50 1.982 -4.071 10.391 ATOM 1378 CG ILE B 50 1.982 -4.071 10.391 ATOM 1380 CD ILE B 50 1.505 -3.539 11.396 ATOM 1380 CD ILE B 50 1.505 -3.539 11.396 ATOM 1380 CD ILE B 50 1.505 -3.539 11.396 ATOM 1380 CD ILE B 50 1.505 -3.539 17.396 ATOM 1380 CD ILE B 50 1.505 -3.539 17.396 ATOM 1380 CD ILE B 50 1.505 -3.539 17.396 ATOM 1380 CD ILE B 50 1.505 -3.539 17.396 ATOM 1380 CD ILE B 50 1.506 -9.420 A					46	13.153	-15.586	11.187
ATOM 1352 CE MET B 46 13.566 -16.690 B.775 ATOM 1353 N ILE B 47 11.933 -11.379 13.030 ATOM 1354 H ILE B 47 10.971 -10.568 13.797 ATOM 1355 CA ILE B 47 10.971 -10.568 13.797 ATOM 1355 CA ILE B 47 10.971 -10.568 13.797 ATOM 1357 O ILE B 47 9.819 -10.048 11.731 ATOM 1358 CB ILE B 47 9.819 -10.048 11.731 ATOM 1358 CB ILE B 47 9.819 -10.048 11.731 ATOM 1359 CGI ILE B 47 12.345 -8.459 13.318 ATOM 1360 CG2 ILE B 47 12.345 -8.459 13.318 ATOM 1361 CD1 ILE B 47 12.542 -9.638 15.494 ATOM 1361 CD1 ILE B 47 12.542 -9.638 15.494 ATOM 1362 N GLY B 48 8.557 -10.136 13.558 ATOM 1363 H GLY B 48 8.557 -10.136 13.558 ATOM 1366 C GLY B 48 8.557 -10.136 13.558 ATOM 1366 N GLY B 48 7.365 -9.872 12.800 ATOM 1366 C GLY B 48 7.365 -9.872 12.800 ATOM 1366 N GLY B 48 7.136 -7.832 14.149 ATOM 1367 N GLY B 49 5.668 -8.562 11.506 ATOM 1369 CA GLY B 49 5.668 -8.562 11.506 ATOM 1370 C GLY B 49 5.366 -6.745 12.393 ATOM 1371 O GLY B 49 3.561 -7.847 11.273 ATOM 1373 N ILE B 50 4.015 -4.777 11.492 ATOM 1373 N ILE B 50 4.015 -4.777 11.492 ATOM 1376 O ILE B 50 1.982 -4.071 10.391 ATOM 1377 C GLY B 49 3.561 -7.877 11.492 ATOM 1378 C ILE B 50 1.982 -4.071 10.391 ATOM 1379 CG ILE B 50 1.982 -4.071 10.391 ATOM 1378 C ILE B 50 1.982 -4.071 10.391 ATOM 1379 C GLY B 49 3.561 -7.253 9.215 ATOM 1378 C ILE B 50 1.982 -4.071 10.391 ATOM 1378 C ILE B 50 1.982 -4.071 10.391 ATOM 1378 C ILE B 50 1.982 -4.071 10.391 ATOM 1378 C ILE B 50 1.982 -4.071 10.391 ATOM 1380 C ILE B 50 1.982 -4.071 10.391 ATOM 1381 N GLY B 51 3.957 -5.920 8.737 ATOM 1386 C GLY B 51 3.957 -5.920 8.737 ATOM 1388 C GLY B 51 3.957 -5.920 8.737 ATOM 1388 C GLY B 51 3.957 -5.920 8.737 ATOM 1388 C GLY B 52 6.639 -9.421 ATOM 1389 C GLY B 52 6.639 -9.421 9.657 ATOM 1389 C GLY B 52 6.639 -9.421 9.657 ATOM 1389 C GLY B 52 6.639 -9.421 9.657 ATOM 1389 C GLY B 52 6.639 -9.421 9.657 ATOM 1389 C GLY B 52 6.639 -9.421 9.657 ATOM 1389 C GLY B 52 6.639 -9.421 9.657 ATOM 1391 N PHE B 53 7.227 -11.603 7.540 ATOM 1393 C PHE B 53 9.727 -10.584 8.315						12.977		
ATOM 1353 N ILE B 47						13.566		8.775
ATOM 1354 R ILE B 47 10.971 -10.568 13.797 ATOM 1355 CA ILE B 47 10.971 -10.568 13.797 ATOM 1355 CA ILE B 47 9.761 -10.233 12.962 ATOM 1357 O ILE B 47 9.819 -10.048 11.731 ATOM 1358 CB ILE B 47 9.819 -10.048 11.731 ATOM 1358 CB ILE B 47 9.819 -10.048 11.731 ATOM 1358 CB ILE B 47 12.345 -8.459 13.318 ATOM 1360 CG2 ILE B 47 12.345 -8.459 13.318 ATOM 1360 CG2 ILE B 47 12.542 -9.638 15.494 ATOM 1361 CD1 ILE B 47 12.542 -9.638 15.494 ATOM 1361 CD1 ILE B 47 12.789 -7.123 13.851 ATOM 1362 N GLY B 48 8.557 -10.136 13.558 ATOM 1363 H GLY B 48 8.484 -10.249 14.549 ATOM 1363 H GLY B 48 7.365 -9.872 12.800 ATOM 1365 C GLY B 48 7.365 -9.872 12.800 ATOM 1366 O GLY B 48 7.365 -9.872 12.800 ATOM 1367 N GLY B 49 5.668 -8.512 13.141 ATOM 1366 N GLY B 49 5.668 -8.562 11.506 ATOM 1369 CA GLY B 49 5.668 -8.562 11.506 ATOM 1370 C GLY B 49 5.668 -8.562 11.506 ATOM 1371 O GLY B 49 5.336 -6.745 12.493 ATOM 1371 O GLY B 49 5.366 -7.45 12.493 ATOM 1373 H ILE B 50 3.531 -5.634 11.315 ATOM 1373 N ILE B 50 3.531 -5.634 11.315 ATOM 1374 CA ILE B 50 2.118 -6.456 9.420 ATOM 1377 CB ILE B 50 2.118 -6.456 9.420 ATOM 1377 CB ILE B 50 2.118 -6.456 9.420 ATOM 1377 CB ILE B 50 1.055 -3.533 11.396 ATOM 1378 CG ILE B 50 1.055 -3.533 11.396 ATOM 1376 O ILE B 50 1.055 -3.533 11.396 ATOM 1377 CB ILE B 50 1.055 -3.533 11.396 ATOM 1378 CG ILE B 50 1.055 -3.533 11.396 R.922 ATOM 1376 O ILE B 50 1.055 -3.533 11.396 R.922 ATOM 1380 CD ILE B 50 1.055 -3.533 11.396 R.922 ATOM 1380 CD ILE B 50 1.055 -3.533 11.396 R.922 ATOM 1380 CD ILE B 50 1.055 -3.533 11.396 R.922 ATOM 1380 N GLY B 51 3.113 -6.410 8.519 ATOM 1380 N GLY B 51 3.957 -5.920 8.737 ATOM 1380 N GLY B 52 4.227 -8.580 9.029 ATOM 1388 CA GLY B 51 3.957 -5.920 8.737 ATOM 1388 CA GLY B 51 3.957 -5.920 8.737 ATOM 1388 CA GLY B 51 3.957 -5.920 8.737 ATOM 1388 CA GLY B 51 3.957 -5.920 8.737 ATOM 1388 CA GLY B 51 3.957 -5.920 8.737 ATOM 1388 CA GLY B 51 3.957 -5.920 8.737 ATOM 1388 CA GLY B 51 3.957 -5.920 8.737 ATOM 1388 CA GLY B 52 6.634 -10.178 8.6678 ATOM 1390 N PHE B 53 7.227 -10.638 8.919 7.077 ATOM 139								
ATOM 1355 CA ILE B 47						12.327	-10.991	12.196
ATOM 1356 C ILE B 47 9.761 -10.233 12.962 ATOM 1357 O ILE B 47 9.819 -10.048 11.731 ATOM 1358 CB ILE B 47 11.608 -9.294 14.385 ATOM 1359 CG1 ILE B 47 12.345 -8.459 13.318 ATOM 1360 CG2 ILE B 47 12.542 -9.638 15.494 ATOM 1361 CD1 ILE B 47 12.542 -9.638 15.494 ATOM 1362 N GLY B 48 8.557 -10.136 13.558 ATOM 1363 H GLY B 48 8.557 -10.136 13.558 ATOM 1364 CA GLY B 48 8.484 -10.249 14.549 ATOM 1365 C GLY B 48 7.365 -9.872 12.800 ATOM 1366 O GLY B 48 7.136 -7.832 14.149 ATOM 1366 O GLY B 48 7.136 -7.832 14.149 ATOM 1367 N GLY B 49 5.668 -8.512 13.141 ATOM 1368 H GLY B 49 5.668 -8.562 11.506 ATOM 1369 CA GLY B 49 5.668 -8.562 11.506 ATOM 1370 C GLY B 49 5.668 -8.562 11.506 ATOM 1371 O GLY B 49 3.561 -7.847 11.273 ATOM 1373 H ILE B 50 3.531 -5.634 11.315 ATOM 1374 CA ILE B 50 4.015 -4.777 11.492 ATOM 1375 C ILE B 50 2.118 -6.456 9.420 ATOM 1376 O ILE B 50 2.118 -6.456 9.420 ATOM 1377 CB ILE B 50 2.118 -6.456 9.420 ATOM 1378 CG1 ILE B 50 1.005 -3.539 11.396 ATOM 1379 CG2 ILE B 50 1.005 -3.539 11.396 ATOM 1370 C GLY B 51 3.957 -5.920 8.737 ATOM 1371 O GLE B 50 1.982 -4.071 10.391 ATOM 1373 CG ILE B 50 1.982 -4.071 10.391 ATOM 1374 CA ILE B 50 2.118 -6.456 9.420 ATOM 1376 O ILE B 50 1.982 -4.071 10.391 ATOM 1378 CG1 ILE B 50 1.982 -4.071 10.391 ATOM 1380 CD1 ILE B 50 1.982 -4.071 10.391 ATOM 1381 N GLY B 51 3.957 -5.920 8.737 ATOM 1382 C GLY B 51 3.957 -5.920 8.737 ATOM 1383 CA BLY B 51 3.611 -8.891 7.077 ATOM 1386 C GLY B 51 3.957 -5.920 8.737 ATOM 1387 C GLY B 52 6.334 -10.178 8.679 ATOM 1388 C GLY B 51 3.716 -8.945 5.973 ATOM 1388 C GLY B 52 6.539 -9.421 ATOM 1389 C GLY B 52 6.539 -9.421 ATOM 1389 C GLY B 52 6.539 -9.421 ATOM 1389 C GLY B 52 6.539 -9.421 ATOM 1390 O GLY B 52 6.539 -9.421 6.557 ATOM 1391 N PHE B 53 7.227 -10.584 8.315 ATOM 1393 C PHE B 53 9.727 -10.584 8.315 ATOM 1394 C PHE B 53 9.727 -10.584 8.315 ATOM 1395 C PHE B 53 9.727 -10.584 8.315								13.797
ATOM 1358 CB ILE B 47 11.608 -9.294 14.385 ATOM 1359 CG1 ILE B 47 12.345 -8.459 13.318 ATOM 1360 CG2 ILE B 47 12.542 -9.638 15.494 ATOM 1361 CD1 ILE B 47 12.542 -9.638 15.494 ATOM 1361 CD1 ILE B 47 12.542 -9.638 15.494 ATOM 1362 N GLY B 48 8.557 -10.136 13.558 ATOM 1363 H GLY B 48 8.484 -10.249 14.549 ATOM 1363 H GLY B 48 8.484 -10.249 14.549 ATOM 1366 C GLY B 48 6.826 -8.512 13.141 ATOM 1366 O GLY B 48 6.826 -8.512 13.141 ATOM 1366 N GLY B 49 5.940 -8.027 12.306 ATOM 1367 N GLY B 49 5.940 -8.027 12.306 ATOM 1368 H GLY B 49 5.940 -8.027 12.306 ATOM 1369 CA GLY B 49 5.940 -8.027 12.306 ATOM 1370 C GLY B 49 40.82 -6.786 11.506 ATOM 1371 O GLY B 49 40.82 -6.786 11.506 ATOM 1371 N GLY B 49 5.336 -6.745 12.493 ATOM 1373 N ILE B 50 3.531 -5.634 11.315 ATOM 1373 H ILE B 50 4.015 -7.847 11.273 ATOM 1373 H ILE B 50 4.015 -7.857 11.492 ATOM 1376 C ILE B 50 4.015 -7.257 3 10.673 ATOM 1377 CB ILE B 50 2.247 -5.573 10.673 ATOM 1378 CG ILE B 50 1.175 -7.253 9.215 ATOM 1378 CG ILE B 50 1.982 -4.071 10.391 ATOM 1378 CG ILE B 50 1.982 -4.071 10.391 ATOM 1378 CG ILE B 50 1.982 -4.071 10.391 ATOM 1378 CG ILE B 50 1.982 -4.071 10.391 ATOM 1378 CG ILE B 50 1.982 -4.071 10.391 ATOM 1378 CG ILE B 50 1.982 -4.071 10.391 ATOM 1380 CD ILE B 50 1.610 -3.739 8.922 ATOM 1380								
ATOM 1358 CB ILE B 47								
ATOM 1369 CGI ILE B 47 12.345 -8.459 13.318 ATOM 1361 CDI ILE B 47 12.542 -9.638 15.494 ATOM 1361 CDI ILE B 47 12.789 -7.123 13.851 ATOM 1362 N GLY B 48 8.557 -10.136 13.558 ATOM 1363 H GLY B 48 8.557 -10.136 13.558 ATOM 1366 CGI ILE B 47 12.789 -7.123 13.851 ATOM 1363 H GLY B 48 8.557 -10.136 13.558 ATOM 1366 CGI ILE B 48 8.684 -10.249 14.549 ATOM 1366 CGI ILE B 48 8.684 -10.249 14.549 ATOM 1366 O GLY B 48 6.826 -8.512 13.141 ATOM 1366 O GLY B 48 6.826 -8.512 13.141 ATOM 1367 N GLY B 49 5.940 -8.027 12.306 ATOM 1368 H GLY B 49 5.940 -8.027 12.306 ATOM 1368 H GLY B 49 5.940 -8.027 12.306 ATOM 1370 C GLY B 49 5.336 -6.745 12.493 ATOM 1371 O GLY B 49 5.336 -6.745 12.493 ATOM 1371 O GLY B 49 3.561 -7.847 11.273 ATOM 1373 N ILE B 50 3.551 -5.634 11.315 ATOM 1373 H ILE B 50 4.015 -4.777 11.492 ATOM 1373 H ILE B 50 4.015 -4.777 11.492 ATOM 1375 C ILE B 50 2.247 -5.573 10.673 ATOM 1376 C B ILE B 50 1.175 -7.253 9.215 ATOM 1377 CB ILE B 50 1.982 -4.071 10.391 ATOM 1378 CGI ILE B 50 1.055 -3.539 11.396 ATOM 1379 CG2 ILE B 50 1.055 -3.539 11.396 ATOM 1378 CGI ILE B 50 1.055 -3.539 11.396 ATOM 1380 CDI ILE B 50 1.055 -3.539 11.396 ATOM								
ATOM 1360 CG2 ILE B 47								
ATOM 1361 CD1 ILE B 47								
ATOM 1362 N GLY B 48 8.557 -10.136 13.558 ATOM 1363 H GLY B 48 8.484 -10.249 14.549 ATOM 1366 C GLY B 48 7.365 -9.872 12.800 ATOM 1366 C GLY B 48 6.826 -8.512 13.141 ATOM 1367 N GLY B 48 6.826 -8.512 13.141 ATOM 1368 H GLY B 49 5.940 -8.027 12.306 ATOM 1369 CA GLY B 49 5.940 -8.027 12.306 ATOM 1369 CA GLY B 49 5.336 -6.745 12.493 ATOM 1370 C GLY B 49 5.336 -6.745 12.493 ATOM 1371 O GLY B 49 4.082 -6.786 11.674 ATOM 1372 N ILE B 50 3.551 -5.634 11.315 ATOM 1373 H ILE B 50 4.015 -4.777 11.492 ATOM 1373 C ILE B 50 2.247 -5.573 10.673 ATOM 1375 C ILE B 50 2.247 -5.573 10.673 ATOM 1377 C ILE B 50 1.175 -7.253 9.215 ATOM 1378 C ILE B 50 1.175 -7.253 9.215 ATOM 1378 C ILE B 50 1.982 -4.071 10.391 ATOM 1378 CGI ILE B 50 1.982 -4.071 10.391 ATOM 1378 CGI ILE B 50 1.982 -4.071 10.391 ATOM 1378 CGI ILE B 50 1.610 -3.739 8.922 ATOM 1380 CDI ILE B 50 1.610 -3.739 8.922 ATOM 1380 CDI ILE B 50 1.610 -3.739 8.922 ATOM 1381 N GLY B 51 3.957 -5.920 8.737 ATOM 1382 H GLY B 51 3.957 -5.920 8.737 ATOM 1383 CA GLY B 51 3.957 -5.920 8.737 ATOM 1386 C GLY B 51 3.957 -5.920 8.737 ATOM 1387 H GLY B 51 3.957 -5.920 8.737 ATOM 1388 CA GLY B 51 3.957 -5.920 8.737 ATOM 1388 CA GLY B 51 3.957 -5.920 8.737 ATOM 1389 C GLY B 51 3.957 -5.920 8.737 ATOM 1389 C GLY B 52 4.226 -8.982 8.116 ATOM 1389 C GLY B 52 4.226 -8.982 8.116 ATOM 1389 C GLY B 52 6.334 -10.178 8.674 ATOM 1389 C GLY B 52 6.334 -10.178 8.674 ATOM 1389 C GLY B 52 6.519 -9.421 9.657 ATOM 1389 C GLY B 52 6.519 -9.421 9.657 ATOM 1390 C GLY B 52 6.519 -9.421 9.657 ATOM 1391 N PHE B 53 7.227 -10.584 8.315 ATOM 1393 CA PHE B 53 9.727 -10.584 8.315 ATOM 1394 C PHE B 53 9.727 -10.584 8.315 ATOM 1395 C PHE B 53 9.727 -10.584 8.315 ATOM 1396 CB PHE B 53 9.727 -10.584 8.315								
ATOM 1363 H GLY B 48 7.365 -9.872 12.800 ATOM 1364 CA GLY B 48 7.365 -9.872 12.800 ATOM 1365 C GLY B 48 7.365 -9.872 12.800 ATOM 1366 O GLY B 48 7.365 -8.512 13.141 ATOM 1367 N GLY B 49 5.668 -8.521 13.141 ATOM 1368 H GLY B 49 5.668 -8.027 12.306 ATOM 1369 CA GLY B 49 5.668 -8.562 11.506 ATOM 1369 CA GLY B 49 5.668 -8.562 11.506 ATOM 1371 O GLY B 49 5.668 -8.562 11.506 ATOM 1371 O GLY B 49 3.561 -7.847 11.273 ATOM 1373 H ILE B 50 3.531 -5.634 11.315 ATOM 1373 H ILE B 50 4.015 -4.777 11.492 ATOM 1375 C ILE B 50 2.118 -6.456 9.420 ATOM 1376 O ILE B 50 2.118 -6.456 9.420 ATOM 1377 CB ILE B 50 2.118 -6.456 9.420 ATOM 1378 CGI ILE B 50 1.982 -4.071 10.391 ATOM 1378 CGI ILE B 50 1.982 -4.071 10.391 ATOM 1378 CGI ILE B 50 1.982 -4.071 10.391 ATOM 1378 CGI ILE B 50 1.982 -4.071 10.391 ATOM 1380 CDI ILE B 50 1.610 -3.739 8.922 ATOM 1381 N GLY B 51 3.957 -5.920 8.737 ATOM 1382 C GLY B 51 3.957 -5.920 8.737 ATOM 1383 CA GLY B 51 3.957 -5.920 8.737 ATOM 1384 N GLY B 51 3.511 -6.410 8.519 ATOM 1385 O GLY B 51 3.671 -8.995 8.793 ATOM 1386 N GLY B 51 3.671 -8.995 8.793 ATOM 1387 C GLY B 52 4.227 -8.580 9.029 ATOM 1388 CA GLY B 51 3.671 -8.995 9.029 ATOM 1389 C GLY B 52 4.227 -8.580 9.029 ATOM 1389 C GLY B 52 6.334 -10.178 8.678 ATOM 1389 C GLY B 52 6.334 -10.178 8.678 ATOM 1389 C GLY B 52 6.334 -10.178 8.678 ATOM 1389 C GLY B 52 6.334 -10.178 8.678 ATOM 1389 C GLY B 52 6.334 -10.178 8.678 ATOM 1390 O GLY B 52 6.519 -9.421 9.657 ATOM 1391 N PHE B 53 7.227 -11.603 7.540 ATOM 1393 CA PHE B 53 7.227 -11.603 7.540 ATOM 1394 C PHE B 53 9.727 -10.584 8.315 ATOM 1395 O PHE B 53 9.727 -10.584 8.315 ATOM 1396 CB PHE B 53 9.727 -10.584 8.315								
ATOM 1365 C GLY B 48 6.826 -8.512 13.141 ATOM 1366 O GLY B 48 7.365 -9.872 12.800 ATOM 1366 O GLY B 48 7.136 -7.832 14.149 ATOM 1367 N GLY B 49 5.940 -8.027 12.306 ATOM 1368 H GLY B 49 5.940 -8.027 12.306 ATOM 1369 CA GLY B 49 5.936 -6.745 12.493 ATOM 1370 C GLY B 49 5.336 -6.745 12.493 ATOM 1371 O GLY B 49 40.82 -6.786 11.674 ATOM 1371 O GLY B 49 40.82 -6.786 11.674 ATOM 1372 N 1LE B 50 3.531 -5.634 11.315 ATOM 1373 H 1LE B 50 4.015 -4.777 11.492 ATOM 1374 CA 1LE B 50 2.247 -5.573 10.673 ATOM 1375 C 1LE B 50 2.247 -5.573 10.673 ATOM 1376 O 1LE B 50 1.175 -7.253 9.215 ATOM 1377 CB 1LE B 50 1.982 -4.071 10.391 ATOM 1378 CG1 1LE B 50 1.982 -4.071 10.391 ATOM 1378 CG1 1LE B 50 1.982 -4.071 10.396 ATOM 1380 CD1 1LE B 50 1.610 -3.739 8.922 ATOM 1380 CD1 1LE B 50 1.610 -3.739 8.922 ATOM 1381 N GLY B 51 3.113 -6.410 8.519 ATOM 1382 H GLY B 51 3.113 -6.410 8.519 ATOM 1384 C GLY B 51 3.113 -6.410 8.519 ATOM 1385 O GLY B 51 3.113 -6.410 8.519 ATOM 1386 N GLY B 51 3.113 -6.410 8.519 ATOM 1387 C GLY B 51 3.113 -6.410 8.519 ATOM 1388 CA GLY B 51 3.113 -6.410 8.519 ATOM 1389 C GLY B 52 4.296 -8.982 8.116 ATOM 1389 C GLY B 52 4.296 -8.982 8.116 ATOM 1389 C GLY B 52 4.296 -8.982 8.116 ATOM 1389 C GLY B 52 6.334 -10.178 8.678 ATOM 1389 C GLY B 52 6.334 -10.178 8.678 ATOM 1391 N PHE B 53 7.325 -11.055 8.341 ATOM 1393 CA PHE B 53 9.727 -10.584 8.315 ATOM 1394 C PHE B 53 9.727 -10.584 8.315 ATOM 1395 O PHE B 53 9.727 -10.584 8.315 ATOM 1396 CB PHE B 53 9.727 -10.584 8.315 ATOM 1397 CG PHE B 53 9.727 -10.584 8.315								
ATOM 1366 O GLY B 48 6.826 -8.512 13.141 ATOM 1367 N GLY B 49 5.940 -8.027 12.306 ATOM 1368 H GLY B 49 5.940 -8.027 12.306 ATOM 1369 CA GLY B 49 5.940 -8.027 12.306 ATOM 1370 C GLY B 49 5.968 -8.562 11.506 ATOM 1371 O GLY B 49 4.082 -6.786 11.674 ATOM 1371 O GLY B 49 4.082 -6.786 11.674 ATOM 1372 N ILE B 50 3.531 -5.634 11.315 ATOM 1373 H ILE B 50 4.015 -4.777 11.492 ATOM 1374 CA ILE B 50 2.247 -5.573 10.673 ATOM 1375 C ILE B 50 2.118 -6.456 9.420 ATOM 1376 O ILE B 50 1.175 -7.253 9.215 ATOM 1377 CB ILE B 50 1.982 -4.071 10.391 ATOM 1378 CGI ILE B 50 1.982 -4.071 10.391 ATOM 1378 CGI ILE B 50 1.982 -4.071 10.391 ATOM 1378 CGI ILE B 50 1.982 -4.071 10.391 ATOM 1380 CDI ILE B 50 -0.391 -4.077 11.252 ATOM 1381 N GLY B 51 3.113 -6.410 8.519 ATOM 1382 C GLY B 51 3.957 -5.920 8.737 ATOM 1383 CA GLY B 51 3.957 -5.920 8.737 ATOM 1384 C GLY B 51 3.957 -5.920 8.737 ATOM 1385 O GLY B 51 3.571 -8.391 7.077 ATOM 1386 CA GLY B 51 3.571 -8.391 7.077 ATOM 1387 C GLY B 51 3.571 -8.391 7.077 ATOM 1388 CA GLY B 51 3.716 -8.945 5.973 ATOM 1388 CA GLY B 51 3.716 -8.945 5.973 ATOM 1388 CA GLY B 52 4.227 -8.580 9.029 ATOM 1389 C GLY B 52 5.053 -10.190 7.874 ATOM 1389 C GLY B 52 6.334 -10.178 8.678 ATOM 1389 C GLY B 52 6.334 -10.178 8.678 ATOM 1389 C GLY B 52 6.334 -10.179 7.874 ATOM 1389 C GLY B 52 6.334 -10.178 8.678 ATOM 1390 O GLY B 52 6.519 -9.421 9.657 ATOM 1391 N PHE B 53 7.227 -11.603 7.540 ATOM 1392 H PHE B 53 7.227 -10.584 8.315 ATOM 1393 CA PHE B 53 9.727 -10.584 8.315 ATOM 1395 O PHE B 53 9.727 -10.584 8.315 ATOM 1396 CB PHE B 53 9.727 -10.584 8.315 ATOM 1397 CG PHE B 53 9.727 -10.584 8.315								
ATOM 1366 O GLY B 48 7.136 -7.832 14.149 ATOM 1367 N GLY B 49 5.940 -8.027 12.306 ATOM 1368 H GLY B 49 5.668 -8.562 11.506 ATOM 1369 CA GLY B 49 5.668 -8.562 11.506 ATOM 1370 C GLY B 49 5.336 -6.785 12.493 ATOM 1371 O GLY B 49 3.561 -7.847 11.273 ATOM 1372 N ILE B 50 3.531 -5.634 11.315 ATOM 1373 H ILE B 50 4.015 -4.777 11.492 ATOM 1374 CA ILE B 50 2.247 -5.573 10.673 ATOM 1375 C ILE B 50 2.247 -5.573 10.673 ATOM 1376 O ILE B 50 1.175 -7.253 9.215 ATOM 1377 CB ILE B 50 1.982 -4.071 10.391 ATOM 1378 CG1 ILE B 50 1.982 -4.071 10.391 ATOM 1379 CG2 ILE B 50 1.610 -3.739 8.922 ATOM 1380 CD1 ILE B 50 -0.391 -4.077 11.252 ATOM 1380 CD1 ILE B 50 -0.391 -4.077 12.525 ATOM 1381 N GLY B 51 3.113 -6.410 8.519 ATOM 1382 H GLY B 51 3.113 -6.410 8.519 ATOM 1384 C GLY B 51 3.671 -8.391 7.7253 ATOM 1385 CG GLY B 51 3.671 -8.391 7.255 ATOM 1386 CD GLY B 51 3.671 -8.391 7.7255 ATOM 1387 H GLY B 51 3.671 -8.8945 5.973 ATOM 1388 CA GLY B 51 3.671 -8.8945 5.973 ATOM 1386 N GLY B 51 3.671 -8.8945 5.973 ATOM 1387 H GLY B 52 4.296 -8.982 8.116 ATOM 1388 CA GLY B 52 4.296 -8.982 8.116 ATOM 1389 C GLY B 52 6.334 -10.190 7.874 ATOM 1389 C GLY B 52 6.519 -9.421 9.657 ATOM 1389 C GLY B 52 6.519 -9.421 9.657 ATOM 1389 C GLY B 52 6.519 -9.421 9.657 ATOM 1389 C GLY B 52 6.519 -9.421 9.657 ATOM 1390 O GLY B 52 6.519 -9.421 9.657 ATOM 1391 N PHE B 53 7.227 -10.584 8.315 ATOM 1393 CA PHE B 53 9.727 -10.584 8.315 ATOM 1394 C PHE B 53 9.727 -10.584 8.315 ATOM 1395 O PHE B 53 9.727 -10.584 8.315 ATOM 1396 CB PHE B 53 9.727 -10.584 8.315 ATOM 1397 C PHE B 53 9.727 -10.584 8.315								
ATOM 1367 N GLY B 49 5.940 -8.027 12.306 ATOM 1368 H GLY B 49 5.668 -8.562 11.506 ATOM 1369 CA GLY B 49 5.668 -6.745 12.493 ATOM 1370 C GLY B 49 4.082 -6.786 11.674 ATOM 1371 O GLY B 49 4.082 -6.786 11.674 ATOM 1372 N ILE B 50 3.531 -5.634 11.273 ATOM 1373 H ILE B 50 4.015 -4.777 11.492 ATOM 1373 H ILE B 50 2.118 -6.456 9.420 ATOM 1375 C ILE B 50 2.118 -6.456 9.420 ATOM 1376 O ILE B 50 1.195 -7.253 9.215 ATOM 1377 CB ILE B 50 1.982 -4.071 10.391 ATOM 1378 CGI ILE B 50 1.982 -4.071 10.391 ATOM 1378 CGI ILE B 50 1.982 -4.071 10.391 ATOM 1378 CGI ILE B 50 1.982 -4.071 10.391 ATOM 1378 CGI ILE B 50 1.610 -3.739 8.922 ATOM 1380 CDI ILE B 50 -0.91 -4.077 11.252 ATOM 1381 N GLY B 51 3.957 -5.920 8.737 ATOM 1382 C GLY B 51 3.957 -5.920 8.737 ATOM 1383 CA GLY B 51 3.957 -5.920 8.737 ATOM 1386 C GLY B 51 3.671 -8.391 7.077 ATOM 1387 N GLY B 52 4.296 -8.982 8.116 ATOM 1388 CA GLY B 52 4.296 -8.982 8.116 ATOM 1389 C GLY B 52 4.296 -8.982 8.116 ATOM 1389 C GLY B 52 4.296 -8.982 8.116 ATOM 1389 C GLY B 52 6.334 -10.178 8.678 ATOM 1389 C GLY B 52 6.334 -10.178 8.678 ATOM 1389 C GLY B 52 6.334 -10.178 8.678 ATOM 1390 O GLY B 52 6.519 -9.421 9.657 ATOM 1391 N PHE B 53 7.325 -11.005 8.343 ATOM 1392 H PHE B 53 7.227 -10.584 8.315 ATOM 1393 CA PHE B 53 9.727 -10.584 8.315 ATOM 1394 C PHE B 53 9.727 -10.584 8.315 ATOM 1395 O PHE B 53 9.727 -10.584 8.315 ATOM 1396 CB PHE B 53 9.727 -10.584 8.315 ATOM 1397 CG PHE B 53 9.727 -10.584 8.315								
ATOM 1368 H GLY B 49 5.668 -8.562 11.506 ATOM 1369 CA GLY B 49 5.336 -6.745 12.493 ATOM 1370 C GLY B 49 4.082 -6.786 11.674 ATOM 1371 O GLY B 49 3.561 -7.847 11.273 ATOM 1372 N ILE B 50 3.531 -5.634 11.315 ATOM 1373 H ILE B 50 3.531 -5.634 11.315 ATOM 1374 CA ILE B 50 2.247 -5.573 10.673 ATOM 1375 C ILE B 50 2.118 -6.456 9.420 ATOM 1376 O ILE B 50 1.175 -7.253 9.215 ATOM 1377 CB ILE B 50 1.175 -7.253 9.215 ATOM 1377 CB ILE B 50 1.005 -3.539 11.396 ATOM 1378 CG1 ILE B 50 1.005 -3.539 11.396 ATOM 1379 CG2 ILE B 50 1.005 -3.539 11.396 ATOM 1380 CD1 ILE B 50 -0.391 -4.071 11.252 ATOM 1381 N GLY B 51 3.113 -6.410 8.519 ATOM 1382 H GLY B 51 3.113 -6.410 8.519 ATOM 1383 CA GLY B 51 3.671 -8.391 7.077 ATOM 1384 C GLY B 51 3.671 -8.391 7.077 ATOM 1385 O GLY B 51 3.671 -8.391 7.077 ATOM 1386 CG ILY B 51 3.716 -8.945 5.973 ATOM 1387 H GLY B 52 4.296 -8.982 8.116 ATOM 1388 CA GLY B 52 4.296 -8.982 8.116 ATOM 1388 CA GLY B 52 4.296 -8.982 8.116 ATOM 1389 C GLY B 52 6.534 -10.190 7.874 ATOM 1389 C GLY B 52 6.534 -10.179 7.874 ATOM 1389 C GLY B 52 6.534 -10.179 7.874 ATOM 1391 N PHE B 53 7.325 -11.015 8.343 ATOM 1392 H PHE B 53 7.325 -11.058 8.343 ATOM 1393 CA PHE B 53 9.780 -10.618 7.075 ATOM 1394 C PHE B 53 9.780 -10.618 7.075 ATOM 1395 O PHE B 53 8.804 -12.555 9.545								
ATOM 1369 CA GLY B 49 5.336 -6.745 12.493 ATOM 1370 C GLY B 49 4.082 -6.786 11.674 ATOM 1371 O GLY B 49 3.561 -7.847 11.273 ATOM 1372 N ILE B 50 3.531 -5.634 11.315 ATOM 1373 H ILE B 50 3.531 -5.634 11.315 ATOM 1373 H ILE B 50 4.015 -4.777 11.492 ATOM 1376 C ILE B 50 2.247 -5.573 10.673 ATOM 1377 CB ILE B 50 2.247 -5.573 10.673 ATOM 1377 CB ILE B 50 1.175 -7.253 9.215 ATOM 1378 CG1 ILE B 50 1.005 -3.539 11.396 ATOM 1378 CG1 ILE B 50 1.005 -3.739 8.922 ATOM 1380 CD1 ILE B 50 1.610 -3.739 8.922 ATOM 1381 N GLY B 51 3.113 -6.410 8.519 ATOM 1382 CA GLY B 51 3.113 -6.410 8.519 ATOM 1383 CA GLY B 51 3.957 -5.920 8.737 ATOM 1384 C GLY B 51 3.671 -8.391 7.077 ATOM 1385 O GLY B 51 3.671 -8.391 7.077 ATOM 1386 CD ILE B 50 4.296 -8.982 ATOM 1388 CA GLY B 51 3.671 -8.391 7.077 ATOM 1388 CA GLY B 51 3.671 -8.391 7.077 ATOM 1388 CA GLY B 51 3.671 -8.391 7.077 ATOM 1388 CA GLY B 52 4.296 -8.982 8.116 ATOM 1387 H GLY B 52 4.296 -8.982 8.116 ATOM 1389 C GLY B 52 6.334 -10.190 7.874 ATOM 1389 C GLY B 52 6.334 -10.190 7.874 ATOM 1389 C GLY B 52 6.334 -10.178 8.678 ATOM 1391 N PHE B 53 7.325 -11.015 8.343 ATOM 1392 H PHE B 53 7.325 -11.055 8.343 ATOM 1393 CA PHE B 53 9.727 -10.584 8.315 ATOM 1395 O PHE B 53 9.727 -10.584 8.315 ATOM 1396 CB PHE B 53 9.727 -10.584 8.315 ATOM 1397 CG PHE B 53 8.804 -12.555 9.542								
ATOM 1370 C GLY B 49 4.082 -6.786 11.674 ATOM 1371 O GLY B 49 3.561 -7.847 11.273 ATOM 1372 N ILE B 50 3.531 -5.634 11.315 ATOM 1373 H ILE B 50 4.015 -4.777 11.492 ATOM 1375 C ILE B 50 2.118 -6.456 9.420 ATOM 1376 O ILE B 50 2.118 -6.456 9.420 ATOM 1377 CB ILE B 50 1.175 -7.253 9.215 ATOM 1377 CB ILE B 50 1.982 -4.071 10.391 ATOM 1378 CGI ILE B 50 1.982 -4.071 10.391 ATOM 1379 CG2 ILE B 50 1.982 -4.071 10.391 ATOM 1379 CG2 ILE B 50 1.982 -4.071 10.391 ATOM 1380 CD1 ILE B 50 -0.391 -4.077 11.252 ATOM 1381 N GLY B 51 3.957 -5.920 8.737 ATOM 1382 C GLY B 51 3.957 -5.920 8.737 ATOM 1383 CA GLY B 51 3.671 -8.391 7.077 ATOM 1386 N GLY B 51 3.671 -8.391 7.077 ATOM 1386 N GLY B 52 4.227 -8.580 9.029 ATOM 1388 C GLY B 51 3.671 -8.945 5.973 ATOM 1388 C GLY B 52 4.227 -8.580 9.029 ATOM 1389 C GLY B 52 4.227 -8.580 9.029 ATOM 1389 C GLY B 52 6.334 -10.178 8.678 ATOM 1389 C GLY B 52 6.334 -10.178 8.678 ATOM 1390 O GLY B 52 6.519 -9.421 9.657 ATOM 1391 N PHE B 53 7.325 -11.015 8.341 ATOM 1392 H PHE B 53 7.227 -10.584 8.315 ATOM 1393 CA PHE B 53 9.727 -10.584 8.315 ATOM 1394 C PHE B 53 9.727 -10.584 8.315 ATOM 1395 O PHE B 53 9.727 -10.584 8.315 ATOM 1396 CB PHE B 53 9.727 -10.584 7.555								
ATOM 1371 O GLY B 49 3.561 -7.847 11.273 ATOM 1372 N ILE B 50 3.531 -5.634 11.315 ATOM 1373 H ILE B 50 4.015 -4.777 11.492 ATOM 1373 H ILE B 50 2.247 -5.573 10.673 ATOM 1374 CA ILE B 50 2.247 -5.573 10.673 ATOM 1375 C ILE B 50 2.247 -5.573 10.673 ATOM 1376 O ILE B 50 1.175 -7.253 9.215 ATOM 1377 CB ILE B 50 1.982 -4.071 10.391 ATOM 1378 CG1 ILE B 50 1.005 -3.539 11.396 ATOM 1379 CG2 ILE B 50 1.610 -3.739 8.922 ATOM 1380 CD1 ILE B 50 1.610 -3.739 8.922 ATOM 1381 N GLY B 51 3.113 -6.410 8.519 ATOM 1382 H GLY B 51 3.113 -6.410 8.519 ATOM 1383 CA GLY B 51 3.113 -6.410 8.519 ATOM 1384 C GLY B 51 3.671 -8.391 7.077 ATOM 1385 CG ILE B 50 3.671 -8.391 7.077 ATOM 1386 CD GLY B 51 3.671 -8.391 7.077 ATOM 1387 H GLY B 52 4.296 -8.982 8.116 ATOM 1388 CA GLY B 52 4.296 -8.982 8.116 ATOM 1389 C GLY B 52 4.296 -8.982 8.116 ATOM 1389 C GLY B 52 6.334 -10.190 7.874 ATOM 1389 C GLY B 52 6.519 -9.421 9.657 ATOM 1390 C GLY B 52 6.519 -9.421 9.657 ATOM 1391 N PHE B 53 7.325 -11.015 8.343 ATOM 1392 H PHE B 53 7.227 -10.584 8.315 ATOM 1393 CA PHE B 53 9.727 -10.584 8.315 ATOM 1394 C PHE B 53 9.727 -10.584 8.315 ATOM 1395 C PHE B 53 9.727 -10.584 8.315 ATOM 1396 CB PHE B 53 8.804 -12.555 9.542								
ATOM 1372 N TLE B 50 3.531 -5.634 11.315 ATOM 1373 H ILE B 50 4.015 -4.777 11.492 ATOM 1374 CA ILE B 50 2.247 -5.573 10.673 ATOM 1375 C ILE B 50 2.118 -6.456 9.420 ATOM 1376 O ILE B 50 1.175 -7.253 9.215 ATOM 1377 CB ILE B 50 1.982 -4.071 10.391 ATOM 1378 CGI ILE B 50 1.982 -4.071 10.391 ATOM 1378 CGI ILE B 50 1.982 -4.071 10.391 ATOM 1379 CG2 ILE B 50 1.982 -4.071 10.391 ATOM 1380 CD1 ILE B 50 1.610 -3.739 8.922 ATOM 1380 CD1 ILE B 50 -0.391 -4.077 11.252 ATOM 1381 N GLY B 51 3.113 -6.410 8.519 ATOM 1382 C GLY B 51 3.957 -5.920 8.737 ATOM 1383 CA GLY B 51 3.671 -8.391 7.077 ATOM 1386 C GLY B 51 3.671 -8.391 7.077 ATOM 1386 N GLY B 51 3.671 -8.391 7.077 ATOM 1387 H GLY B 52 4.296 -8.982 8.116 ATOM 1388 C GLY B 52 4.296 -8.982 8.116 ATOM 1389 C GLY B 52 4.296 -8.982 8.116 ATOM 1389 C GLY B 52 6.334 -10.178 8.678 ATOM 1389 C GLY B 52 6.334 -10.178 8.678 ATOM 1391 N PHE B 53 7.325 -11.015 8.343 ATOM 1392 H PHE B 53 7.325 -11.096 9.110 ATOM 1393 CA PHE B 53 9.727 -10.584 8.315 ATOM 1394 C PHE B 53 9.727 -10.584 8.315 ATOM 1395 C PHE B 53 9.727 -10.584 8.315 ATOM 1395 C PHE B 53 9.727 -10.584 8.315 ATOM 1396 CB PHE B 53 9.727 -10.584 7.075 ATOM 1397 CP PHE B 53 9.780 -10.618 7.075 ATOM 1397 CP PHE B 53 9.780 -10.618 7.075								
ATOM 1373 H ILE B 50								
ATOM 1374 CA ILE B 50 2.247 -5.573 10.673 ATOM 1375 C ILE B 50 2.118 -6.456 9.420 ATOM 1376 O ILE B 50 1.175 -7.253 9.215 ATOM 1377 CB ILE B 50 1.982 -4.071 10.391 ATOM 1378 CGI ILE B 50 1.982 -4.071 10.391 ATOM 1378 CGI ILE B 50 1.005 -3.539 11.396 ATOM 1379 CG2 ILE B 50 1.610 -3.739 8.922 ATOM 1380 CD1 ILE B 50 -0.391 -4.077 11.252 ATOM 1381 N GLY B 51 3.113 -6.410 8.519 ATOM 1382 H GLY B 51 3.957 -5.920 8.737 ATOM 1383 CA GLY B 51 3.957 -5.920 8.737 ATOM 1384 C GLY B 51 3.957 -5.920 8.737 ATOM 1385 O GLY B 51 3.671 -8.391 7.077 ATOM 1386 N GLY B 51 3.671 -8.391 7.077 ATOM 1387 H GLY B 52 4.296 -8.982 8.116 ATOM 1388 CA GLY B 52 4.296 -8.982 8.116 ATOM 1388 CA GLY B 52 4.297 -8.580 9.029 ATOM 1388 CA GLY B 52 6.334 -10.178 8.678 ATOM 1389 C GLY B 52 6.334 -10.178 8.678 ATOM 1390 O GLY B 52 6.519 -9.421 9.657 ATOM 1391 N PHE B 53 7.325 -11.015 8.343 ATOM 1392 H PHE B 53 7.227 -11.603 7.540 ATOM 1393 CA PHE B 53 9.727 -10.584 8.315 ATOM 1394 C PHE B 53 9.727 -10.584 8.315 ATOM 1395 O PHE B 53 9.727 -10.584 8.315 ATOM 1396 CB PHE B 53 8.804 -12.555 9.542								
ATOM 1375 C ILE B 50 2.118 -6.456 9.420 ATOM 1376 O ILE B 50 1.175 -7.253 9.215 ATOM 1377 CB ILE B 50 1.982 -4.071 10.391 ATOM 1378 CG1 ILE B 50 1.982 -4.071 10.391 ATOM 1378 CG1 ILE B 50 1.005 -3.539 11.396 ATOM 1387 CG1 ILE B 50 1.005 -3.539 11.396 ATOM 1380 CD1 ILE B 50 1.010 -3.739 8.922 ATOM 1381 N GLY B 51 3.113 -6.410 8.519 ATOM 1382 H GLY B 51 3.957 -5.920 8.737 ATOM 1383 CA GLY B 51 2.926 -7.075 7.259 ATOM 1384 C GLY B 51 3.957 -6.391 7.077 ATOM 1385 O GLY B 51 3.761 -8.391 7.077 ATOM 1386 N GLY B 51 3.761 -8.391 7.077 ATOM 1387 H GLY B 52 4.296 -8.982 8.116 ATOM 1388 CA GLY B 52 4.296 -8.982 8.116 ATOM 1389 C GLY B 52 5.053 -10.190 7.874 ATOM 1389 C GLY B 52 6.334 -10.190 7.874 ATOM 1390 O GLY B 52 6.334 -10.190 7.874 ATOM 1391 N PHE B 53 7.325 -11.015 8.343 ATOM 1392 H PHE B 53 7.325 -11.015 8.343 ATOM 1393 CA PHE B 53 8.542 -11.096 9.110 ATOM 1394 C PHE B 53 9.727 -10.584 8.315 ATOM 1395 O PHE B 53 8.804 -12.555 9.545								
ATOM 1376 O ILE B 50 1.175 -7.253 9.215 ATOM 1377 CB ILE B 50 1.982 -4.071 10.391 ATOM 1378 CG1 ILE B 50 1.005 -3.539 11.396 ATOM 1379 CG2 ILE B 50 1.610 -3.739 8.922 ATOM 1380 CD1 ILE B 50 -0.931 -4.077 11.252 ATOM 1381 N GLY B 51 3.113 -6.410 8.519 ATOM 1382 H GLY B 51 3.957 -5.920 8.737 ATOM 1383 CA GLY B 51 3.957 -5.920 8.737 ATOM 1384 C GLY B 51 3.671 -8.391 7.077 ATOM 1385 O GLY B 51 3.671 -8.391 7.077 ATOM 1386 N GLY B 51 3.671 -8.391 7.077 ATOM 1387 H GLY B 52 4.296 -8.982 8.116 ATOM 1388 CA GLY B 52 4.296 -8.982 8.116 ATOM 1389 C GLY B 52 6.334 -10.190 7.874 ATOM 1389 C GLY B 52 6.334 -10.178 8.678 ATOM 1391 N PHE B 53 7.325 -11.015 8.343 ATOM 1392 H PHE B 53 7.325 -11.015 8.343 ATOM 1393 CA PHE B 53 9.727 -10.584 8.315 ATOM 1394 C PHE B 53 9.727 -10.584 8.315 ATOM 1395 O PHE B 53 9.727 -10.584 8.315 ATOM 1395 O PHE B 53 8.804 -12.555 9.542								
ATOM 1377 CB ILE B 50								
ATOM 1378 CG1 ILE B 50								
ATOM 1380 CD1 ILE B 50 -0.391 -4.077 11.252 ATOM 1381 N GLY B 51 3.113 -6.410 8.519 ATOM 1382 H GLY B 51 3.957 -5.920 8.737 ATOM 1383 CA GLY B 51 3.957 -7.075 -7.259 ATOM 1384 C GLY B 51 3.957 -7.075 -7.259 ATOM 1385 O GLY B 51 3.671 -8.391 7.077 ATOM 1386 CB GLY B 51 3.671 -8.391 7.077 ATOM 1387 H GLY B 52 4.296 -8.982 8.116 ATOM 1387 H GLY B 52 4.296 -8.982 8.116 ATOM 1388 CA GLY B 52 4.297 -8.580 9.029 ATOM 1388 CA GLY B 52 4.297 -8.580 9.029 ATOM 1389 C GLY B 52 6.334 -10.178 8.678 ATOM 1390 O GLY B 52 6.334 -10.178 8.678 ATOM 1391 N PHE B 53 7.325 -11.015 8.343 ATOM 1392 H PHE B 53 7.325 -11.015 8.343 ATOM 1393 CA PHE B 53 9.727 -10.584 8.315 ATOM 1394 C PHE B 53 9.727 -10.584 8.315 ATOM 1395 O PHE B 53 9.727 -10.584 8.315 ATOM 1395 CB PHE B 53 8.804 -12.555 9.542 ATOM 1396 CB PHE B 53 8.804 -12.555 9.542 ATOM 1397 CG PHE B 53 8.804 -12.555 9.542								
ATOM 1380 CD1 ILE B 50 -0.391 -4.077 11.252 ATOM 1381 N GLY B 51 3.113 -6.410 8.519 ATOM 1382 H GLY B 51 3.957 -5.920 8.737 ATOM 1383 CA GLY B 51 2.926 -7.075 7.259 ATOM 1388 C GLY B 51 3.671 -8.391 7.077 ATOM 1386 N GLY B 51 3.716 -8.945 5.973 ATOM 1386 N GLY B 52 4.296 -8.982 8.116 ATOM 1387 H GLY B 52 4.227 -8.580 9.029 ATOM 1388 CA GLY B 52 5.053 -10.190 7.874 ATOM 1389 C GLY B 52 6.334 -10.190 7.874 ATOM 1390 O GLY B 52 6.334 -10.178 8.678 ATOM 1391 N PHE B 53 7.325 -11.015 8.343 ATOM 1392 H PHE B 53 7.325 -11.005 8.343 ATOM 1393 CA PHE B 53 8.542 -11.096 9.110 ATOM 1394 C PHE B 53 9.727 -10.584 8.315 ATOM 1395 O PHE B 53 9.727 -10.584 8.315 ATOM 1396 CB PHE B 53 8.804 -12.555 9.545 ATOM 1397 C PHE B 53 8.804 -12.555 9.575	MOTA							
ATOM 1381 N GLY B 51 3.113 -6.410 8.519 ATOM 1382 H GLY B 51 3.957 -5.920 8.737 ATOM 1383 CA GLY B 51 2.926 -7.075 7.259 ATOM 1384 C GLY B 51 3.671 -8.391 7.077 ATOM 1385 O GLY B 51 3.671 -8.945 5.973 ATOM 1386 N GLY B 51 3.671 -8.945 5.973 ATOM 1386 N GLY B 52 4.296 -8.982 8.116 ATOM 1387 H GLY B 52 4.296 -8.982 8.116 ATOM 1388 CA GLY B 52 4.297 -8.580 9.029 ATOM 1388 CA GLY B 52 5.053 -10.190 7.874 ATOM 1389 C GLY B 52 6.334 -10.178 8.678 ATOM 1390 O GLY B 52 6.334 -10.178 8.678 ATOM 1391 N PHE B 53 7.325 -11.015 8.343 ATOM 1392 H PHE B 53 7.325 -11.015 8.343 ATOM 1393 CA PHE B 53 7.227 -11.603 7.540 ATOM 1393 CA PHE B 53 9.727 -10.584 8.315 ATOM 1395 O PHE B 53 9.727 -10.584 8.315 ATOM 1396 CB PHE B 53 8.804 -12.555 9.542 ATOM 1397 CG PHE B 53 8.804 -12.555 9.542 ATOM 1397 CG PHE B 53 8.804 -12.555 9.542	MOTA	1379						
ATOM 1382 H GLY B 51 3.957 -5.920 8.737 ATOM 1383 CA GLY B 51 2.926 -7.075 7.259 ATOM 1384 C GLY B 51 3.671 -8.391 7.077 ATOM 1385 O GLY B 51 3.716 -8.945 5.973 ATOM 1386 N GLY B 52 4.296 -8.982 8.116 ATOM 1387 H GLY B 52 4.227 -8.580 9.029 ATOM 1388 CA GLY B 52 5.053 -10.190 7.874 ATOM 1389 C GLY B 52 6.334 -10.190 7.874 ATOM 1390 O GLY B 52 6.334 -10.178 8.678 ATOM 1391 N PHE B 53 7.325 -11.015 8.343 ATOM 1392 H PHE B 53 7.325 -11.015 8.343 ATOM 1393 CA PHE B 53 8.542 -11.096 9.110 ATOM 1394 C PHE B 53 9.727 -10.584 8.315 ATOM 1395 O PHE B 53 9.727 -10.584 8.315 ATOM 1396 CB PHE B 53 8.804 -12.555 9.542 ATOM 1396 CB PHE B 53 8.804 -12.555 9.542 ATOM 1397 CG PHE B 53 8.804 -12.555 9.542 ATOM 1397 CG PHE B 53 7.850 -13.023 10.592								
ATOM 1383 CA GLY B 51 2.926 -7.075 7.259 ATOM 1384 C GLY B 51 3.671 -8.391 7.077 ATOM 1385 O GLY B 51 3.716 -8.945 5.973 ATOM 1386 N GLY B 51 3.716 -8.945 5.973 ATOM 1386 N GLY B 52 4.296 -8.982 8.116 ATOM 1387 H GLY B 52 4.296 -8.580 9.029 ATOM 1388 CA GLY B 52 5.053 -10.190 7.874 ATOM 1389 C GLY B 52 6.334 -10.190 7.874 ATOM 1390 O GLY B 52 6.334 -10.178 8.678 ATOM 1391 N PHE B 53 7.325 -11.015 8.343 ATOM 1392 H PHE B 53 7.325 -11.015 8.343 ATOM 1393 CA PHE B 53 8.542 -11.096 9.110 ATOM 1394 C PHE B 53 9.727 -10.584 8.315 ATOM 1395 O PHE B 53 9.780 -10.618 7.075 ATOM 1396 CB PHE B 53 8.804 -12.555 9.542 ATOM 1397 C PHE B 53 8.804 -12.555 9.542 ATOM 1397 C PHE B 53 8.804 -12.555 9.542	MOTA	1381	N	GLY B				
ATOM 1384 C GLY B 51 3.671 -8.391 7.077 ATOM 1385 O GLY B 51 3.716 -8.945 5.973 ATOM 1386 N GLY B 52 4.296 -8.982 8.116 ATOM 1387 H GLY B 52 4.227 -8.580 9.029 ATOM 1388 CA GLY B 52 5.053 -10.190 7.874 ATOM 1389 C GLY B 52 5.053 -10.190 7.874 ATOM 1390 O GLY B 52 6.314 -10.178 8.678 ATOM 1391 N PHE B 53 7.325 -11.015 8.343 ATOM 1392 H PHE B 53 7.227 -11.603 7.540 ATOM 1393 CA PHE B 53 8.542 -11.096 9.110 ATOM 1394 C PHE B 53 9.780 -10.584 8.315 ATOM 1395 O PHE B 53 9.780 -10.618 7.075 ATOM 1396 CB PHE B 53 8.804 -12.555 9.544 ATOM 1396 CB PHE B 53 8.8504 -12.555 9.544 ATOM 1397 CG PHE B 53 8.860 -13.023 10.592	ATOM	1382						
ATOM 1385 O GLY B 51 3.716 -8.945 5.973 ATOM 1386 N GLY B 52 4.296 -8.982 8.116 ATOM 1387 H GLY B 52 4.227 -8.580 9.029 ATOM 1388 CA GLY B 52 5.053 -10.190 7.874 ATOM 1389 C GLY B 52 5.053 -10.190 7.874 ATOM 1390 O GLY B 52 6.334 -10.178 8.678 ATOM 1391 N PHE B 53 7.325 -11.015 8.343 ATOM 1392 H PHE B 53 7.325 -11.015 8.343 ATOM 1393 CA PHE B 53 7.227 -11.603 7.540 ATOM 1394 C PHE B 53 8.542 -11.096 9.110 ATOM 1395 O PHE B 53 9.727 -10.584 8.315 ATOM 1395 CB PHE B 53 9.780 -10.618 7.075 ATOM 1396 CB PHE B 53 8.804 -12.555 9.542 ATOM 1397 CG PHE B 53 8.804 -12.555 9.542 ATOM 1397 CG PHE B 53 7.850 -13.023 10.592	MOTA	1383	CA	GLY B	51			
ATOM 1386 N GLY B 52 4.296 -8.982 8.116 ATOM 1387 H GLY B 52 4.227 -8.580 9.029 ATOM 1388 CA GLY B 52 5.053 -10.190 7.874 ATOM 1389 C GLY B 52 6.334 -10.178 8.678 ATOM 1390 O GLY B 52 6.519 -9.421 9.657 ATOM 1391 N PHE B 53 7.325 -11.015 8.343 ATOM 1392 H PHE B 53 7.227 -11.603 7.540 ATOM 1393 CA PHE B 53 8.542 -11.096 9.110 ATOM 1394 C PHE B 53 9.727 -10.584 8.315 ATOM 1395 O PHE B 53 9.780 -10.618 7.075 ATOM 1396 CB PHE B 53 8.804 -12.555 9.542 ATOM 1397 CG PHE B 53 8.804 -12.555 9.542 ATOM 1397 CG PHE B 53 8.804 -12.555 9.542 ATOM 1397 CG PHE B 53 7.850 -13.023 10.592	ATOM	1384	С		51			
ATOM 1387 H GLY B 52 4.227 -8.580 9.029 ATOM 1388 CA GLY B 52 5.053 -10.190 7.874 ATOM 1389 C GLY B 52 6.334 -10.178 8.678 ATOM 1390 O GLY B 52 6.519 -9.421 9.657 ATOM 1391 N PHE B 53 7.325 -11.015 8.343 ATOM 1392 H PHE B 53 7.227 -11.603 7.540 ATOM 1393 CA PHE B 53 8.542 -11.096 9.110 ATOM 1394 C PHE B 53 9.727 -10.584 8.315 ATOM 1395 O PHE B 53 9.780 -10.618 7.075 ATOM 1396 CB PHE B 53 8.804 -12.555 9.542 ATOM 1397 CG PHE B 53 7.850 -13.023 10.592	MOTA	1385	0	GLY B	51	3.716	-8.945	
ATOM 1388 CA GLY B 52 5.053 -10.190 7.874 ATOM 1389 C GLY B 52 6.334 -10.178 8.678 ATOM 1390 O GLY B 52 6.519 -9.421 9.657 ATOM 1391 N PHE B 53 7.325 -11.015 8.343 ATOM 1392 H PHE B 53 7.227 -11.603 7.540 ATOM 1393 CA PHE B 53 8.542 -11.096 9.110 ATOM 1394 C PHE B 53 9.727 -10.584 8.315 ATOM 1395 O PHE B 53 9.780 -10.618 7.075 ATOM 1396 CB PHE B 53 8.804 -12.555 9.542 ATOM 1397 CG PHE B 53 8.804 -12.555 9.542 ATOM 1397 CG PHE B 53 7.850 -13.023 10.592	ATOM	1386	N	GLY B	52	4.296	-8.982	8.116
ATOM 1389 C GLY B 52 6.334 -10.178 8.678. ATOM 1390 O GLY B 52 6.519 -9.421 9.657 ATOM 1391 N PHE B 53 7.325 -11.015 8.343 ATOM 1392 H PHE B 53 7.227 -11.603 7.540 ATOM 1393 CA PHE B 53 8.542 -11.096 9.110 ATOM 1394 C PHE B 53 8.542 -11.096 9.110 ATOM 1395 O PHE B 53 9.727 -10.584 8.315 ATOM 1396 CB PHE B 53 9.780 -10.618 7.075 ATOM 1396 CB PHE B 53 8.804 -12.555 9.542 ATOM 1397 CG PHE B 53 7.850 -13.023 10.592	MOTA	1387	H	GLY B	52	4.227	-8.580	9.029
ATOM 1390 O GLY B 52 6.519 -9.421 9.657 ATOM 1391 N PHE B 53 7.325 -11.015 8.343 ATOM 1392 H PHE B 53 7.227 -11.603 7.540 ATOM 1393 CA PHE B 53 8.542 -11.096 9.110 ATOM 1394 C PHE B 53 9.727 -10.584 8.315 ATOM 1395 O PHE B 53 9.727 -10.618 7.075 ATOM 1396 CB PHE B 53 8.804 -12.555 9.542 ATOM 1397 CG PHE B 53 7.850 -13.023 10.592	MOTA	1388	CA	GLY B	52			
ATOM 1391 N PHE B 53 7.325 -11.015 8.343 ATOM 1392 H PHE B 53 7.227 -11.603 7.540 ATOM 1393 CA PHE B 53 8.542 -11.096 9.110 ATOM 1394 C PHE B 53 8.542 -11.096 9.110 ATOM 1395 O PHE B 53 9.727 -10.584 8.315 ATOM 1395 O PHE B 53 9.780 -10.618 7.075 ATOM 1396 CB PHE B 53 8.804 -12.555 9.542 ATOM 1397 CG PHE B 53 7.850 -13.023 10.592	MOTA	1389	C	GLY B	52	6.334	-10.178	
ATOM 1392 H PHE B 53 7.227 -11.603 7.540 ATOM 1393 CA PHE B 53 8.542 -11.096 9.110 ATOM 1394 C PHE B 53 9.727 -10.584 8.315 ATOM 1395 O PHE B 53 9.780 -10.618 7.075 ATOM 1396 CB PHE B 53 8.804 -12.555 9.542 ATOM 1397 CG PHE B 53 7.850 -13.023 10.592	MOTA	1390	0	GLY B	52			
ATOM 1392 H PHE B 53 7.227 -11.603 7.540 ATOM 1393 CA PHE B 53 8.542 -11.096 9.110 ATOM 1394 C PHE B 53 9.727 -10.584 8.315 ATOM 1395 O PHE B 53 9.780 -10.618 7.075 ATOM 1396 CB PHE B 53 8.804 -12.555 9.542 ATOM 1397 CG PHE B 53 7.850 -13.023 10.592	MOTA	1391	N	PHE B	53	7.325	-11.015	8.343
ATOM 1394 C PHE B 53 9.727 -10.584 8.315 ATOM 1395 O PHE B 53 9.780 -10.618 7.075 ATOM 1396 CB PHE B 53 8.804 -12.555 9.542 ATOM 1397 CG PHE B 53 7.850 -13.023 10.592		1392	H	PHE B	53	7.227	-11.603	
ATOM 1394 C PHE B 53 9.727 -10.584 8.315 ATOM 1395 O PHE B 53 9.780 -10.618 7.075 ATOM 1396 CB PHE B 53 8.804 -12.555 9.542 ATOM 1397 CG PHE B 53 7.850 -13.023 10.592	ATOM	1393	CA	PHE B	53	8.542	-11.096	9.110
ATOM 1395 O PHE B 53 9.780 -10.618 7.075 ATOM 1396 CB PHE B 53 8.804 -12.555 9.542 ATOM 1397 CG PHE B 53 7.850 -13.023 10.592				PHE B	53	9.727	-10.584	8.315
ATOM 1396 CB PHE B 53 8.804 -12.555 9.542 ATOM 1397 CG PHE B 53 7.850 -13.023 10.592			0	PHE B	53	9.780	-10.618	7.075
ATOM 1397 CG PHE B 53 7.850 -13.023 10.592						8.804	-12.555	9.542
				PHE B	53	7.850	-13.023	10.592
			CD1	PHE B	53	6.513	-13.277	10.279

FIG. I IY

Heiler Ehrmus White & McAuliffe, LLP Title: Use of Computationally Derived Froden Structures of Genetic Polymorphisms in Partial No. 09709,005 Applicants: Rammarayan et al. Date of Ellings: 11/1000 Attoracy Docket No. 24737-1906C

	1200	ana.	DITE	-	E 2	8.279 -13.192 11.918
MOTA	1399	CD2	PHE	В	53	
ATOM	1400	CE1	PHE	В	53	5.620 -13.697 11.253
MOTA	1401	CE2	PHE	В	53	7.382 -13.615 12.903
ATOM	1402	CZ	PHE	В	53	6.052 -13.868 12.574
ATOM	1403	N	ILE	В	54	10.758 -10.126 8.985
ATOM	1404	Н	ILE	В	54	10.665 -9.922 9.960
ATOM	1405	CA	ILE	В	54	12.029 -9.910 8.338
		C	ILE	В	54	13.089 -10.648 9.134
ATOM	1406					
ATOM	1407	0	ILE	В	54	12.952 -11.006 10.325
ATOM	1408	CB	ILE	В	54	12.390 -8.444 8.236
MOTA	1409	CG1	ILE	в	54	12.386 -7.775 9.611
MOTA	1410	CG2	ILE	В	54	11.460 -7.770 7.218
MOTA	1411	CD1	ILE	В	54	13.113 -6.438 9.590
ATOM	1412	N	LYS	В	55	14.272 -10.852 8.523
ATOM	1413	H	LYS	В	55	14.383 -10.599 7.562
ATOM	1414	CA	LYS	В	55	15.403 -11.431 9.216
ATOM	1415	C	LYS	В	55	16.274 -10.324 9.732
ATOM	1416	0	LYS	В	55	16.620 -9.328 9.047
ATOM	1417	CB	LYS	В	55	16.222 -12.237 8.245
MOTA	1418	CG	LYS	В	55	15.638 -13.596 8.063
ATOM	1419	CD	LYS	В	55	16.299 -14.348 6.953
MOTA	1420	CE	LYS	В	55	15.311 -14.520 5.813
MOTA	1421	NZ	LYS	В	55	15.757 -15.577 4.897
ATOM	1422	1HZ	LYS	В	55	15.095 -15.676 4.154
ATOM	1423	3HZ	LYS	В	55	15.830 -16.441 5.395
MOTA	1424	2HZ	LYS	В	55	16.650 -15.334 4.518
MOTA	1425	N		В	56	
MOTA	1426	H		В	56	16.741 -11.418 11.382
ATOM	1427	CA		В	56	17.732 -9.578 11.534
MOTA	1428	C	VAL	В	56	18.884 -10.304 12.184
ATOM	1429	0	VAL	В	56	18.884 -11.539 12.367
MOTA	1430	CB	VAL	В	56	16.912 -8.819 12.609
ATOM	1431	CG1	VAL	В	56	15.865 -7.943 11.921
ATOM	1432	CG2		В	56	16.215 -9.788 13.599
ATOM	1433	N		В	57	19.958 -9.593 12.591
ATOM	1434	Н		В	57	20.030 -8.624 12.353
ATOM	1435	CA		В	57	21.050 -10.193 13.386
MOTA	1436	С		В	57	20.963 -9.608 14.804
ATOM	1437	0		В	57	20.814 -8.395 15.053
ATOM	1438	CB		В	57	22.426 -9.873 12.817
ATOM	1439	CG	ARG	В	57	22.664 -10.437 11.439
ATOM	1440	CD	ARG	В	57	24.012 -10.065 10.899
MOTA	1441	NE	ARG	В	57	24.280 -10.697 9.617
ATOM	1442	HE		В	57	23.592 -11.323 9.250
ATOM	1443	CZ		В	57	25.392 -10.478 8.921
ATOM	1444	NH1		В	57	26.337 -9.650 9.353
ATOM					57	26.223 -9.171 10.224
	1445	2HH1		В		
ATOM	1446	1HH1		В	57	27.163 -9.505 8.808
MOTA	1447	NH2		В	57	25.561 -11.104 7.760
ATOM	1448	1HH2		В	57	26.392 -10.950 7.225
ATOM	1449	2HH2	ARG	В	57	24.857 -11.729 7.422
ATOM	1450	N	GLN	В	58	20.997 -10.489 15.832
ATOM	1451	н		В	58	21.176 -11.456 15.650
ATOM	1452	CA		В	58	20.780 -10.072 17.206
ATOM	1453	C		В	58	22.108 -9.886 17.882
ATOM	1454	ō			58	22.918 -10.815 18.038
ATON	1404	U	GDIA	٥	50	22.310 -10.013 10.038

FIG. I IZ

Heller Ebruau Nivise, & Nichalife, LLP San de Afel Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogeomous for Drop Belega and Ciliad Applications Serial No. 09709,095 Applicants Rannaraysa et al. Date of Pinige; 117(100) Attoresy Docket No. 24773-1960C

ATOM	1455	CB		В	58	20.051 -11.190 17.932
ATOM	1456	CG	GLN	В	58	19.765 -10.845 19.366
ATOM	1457	CD	GLN	В	58	19.179 -12.003 20.112
ATOM	1458	OE1	GLN	В	58	19.712 -12.472 21.101
ATOM	1459	NE2	GLN	В	58	18.055 -12.476 19.623
ATOM	1460	1HE2	GLN	В	58	17.598 -13.249 20.063
ATOM	1461	2HE2	GLN	В	58	17.647 -12.066 18.807
ATOM	1462	N	TYR	В	59	22.416 -8.692 18.422
ATOM	1463	Н	TYR	В	59	21.788 -7.921 18.311
ATOM	1464	CA	TYR	В	59	23.631 -8.486 19.161
ATOM	1465	c	TYR	В	59	23.244 -8.290 20.607
ATOM	1466	ō	TYR	В	59	22.178 -7.728 20.927
ATOM	1467	CB	TYR	В	59	24.387 -7.241 18.653
ATOM	1468	CG	TYR	В	59	24.271 -7.075 17.149
ATOM	1469	CD1	TYR	В	59	23.045 -7.242 16.494
ATOM	1470	CD2	TYR	В	59	25.385 -6.753 16.374
ATOM	1471	CE1	TYR	В	59	22.939 -7.093 15.112
ATOM	1472	CE2	TYR	В	59	25.291 -6.603 14.995
	1473	CZ	TYR	В	59	24.068 -6.774 14.365
ATOM			TYR	В	59	24.018 -6.620 13.010
ATOM	1474	OH	TYR	В	59	24.926 -6.394 12.658
ATOM	1475	HH		В	60	24.010 -8.785 21.596
ATOM	1476	N	ASP ASP			24.852 -9.276 21.372
ATOM	1477	H		В	60	
ATOM	1478	CA	ASP	В	60	
ATOM	1479	C	ASP	В	60	24.556 -7.595 23.615
MOTA	1480	0	ASP	В	60	25.654 -7.261 23.125
MOTA	1481	CB	ASP	В	60	23.789 -9.920 23.777
ATOM	1482	CG	ASP	В	60	22.803 -10.960 23.332
ATOM	1483	OD1	ASP	В	60	21.619 -10.634 23.032
ATOM	1484	OD2	ASP	В	60	23.208 -12.126 23.273
ATOM	1485	N	GLN	В	61	24.156 -7.022 24.774
ATOM	1486	H	GLN	В	61	23.252 -7.234 25.146
MOTA	1487	CA	GLN	В	61	25.011 -6.086 25.519
MOTA	1488	C	GLN	В	61	25.411 -4.866 24.746
MOTA	1489	0	GLN	В	61	26.560 -4.382 24.832
MOTA	1490	CB	GLN	В	61	26.269 -6.763 26.028
ATOM	1491	CG	GLN	В	61	26.020 -8.038 26.753
ATOM	1492	CD	GLN	В	61	25.714 -7.766 28.185
MOTA	1493	OE1	GLN	В	61	24.572 -7.455 28.548
ATOM	1494	NE2	GLN	В	61	26.744 -7.844 29.014
ATOM	1495	1HE2	GLN	В	61	26.620 -7.675 29.992
ATOM	1496	2HE2	GLN	В	61	27.654 -8.073 28.669
ATOM	1497	N	ILE	В	62	24.539 -4.257 23.933
ATOM	1498	H	ILE	В	62	23.628 -4.648 23.801
ATOM	1499	CA	ILE	В	62	24.878 -3.047 23.238
ATOM	1500	C	ILE	В	62	24.571 -1.885 24.144
ATOM	1501	0	ILE	В	62	23.515 -1.819 24.819
ATOM	1502	CB	ILE	В	62	24.097 -2.922 21.912
ATOM	1503	CG1	ILE	В	62	24.310 -4.170 21.094
ATOM	1504	CG2	ILE	В	62	24.568 -1.709 21.067
MOTA	1505	CD1	ILE	В	62	25.794 -4.479 20.878
ATOM	1506	N	LEU	В	63	25.485 -0.912 24.304
MOTA	1507	H	LEU	В	63	26.403 -1.028 23.926
ATOM	1508	CA	LEU	В	63	25.192 0.322 25.015
ATOM	1509	C	LEU	В	63	24.630 1.296 24.030
ATOM	1510	Õ	LEU	В	63	25.239 1.658 22.995

FIG. I laa

Heiler Ehrman White & McAulffe, LLP Sheet 41 of 46 Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Paramosquoomists for Drug Design and Clinical Applications Serial No. 09709.095 Applicants: Rammaryan et al. Date of Filing: 11/1000 Atterney Decket No. 24757-1906C

ATOM	1511	CB	LEU	В	63	26.436	0.970	25.590
ATOM	1512	CG	LEU	В	63	26.186	2.358	26.226
MOTA	1513	CD1	LEU	В	63	25.486	2.261	27.576
ATOM	1514	CD2		В	63	27.468	3.162	26.382
MOTA	1515	N		В	64	23.492	1.946	24.358
				В	64	22.958	1.643	25.148
MOTA	1516	H						
MOTA	1517	CA		В	64	23.003	3.068	23.617
ATOM	1518	C		В	64	22.872	4.194	24.612
MOTA	1519	0		В	64	22.915	4.007	25.846
MOTA	1520	CB	ILE	В	64	21.634	2.701	22.989
ATOM	1521	CG1	ILE	В	64	21.825	1.521	22.029
ATOM	1522	CG2	ILE	В	64	20.982	3.894	22.246
ATOM	1523	CD1		В	64	20.593	1.096	21.260
ATOM	1524	N		В	65	22.803	5.460	24.172
ATOM	1525	Н		В	65	23.013	5.664	23.216
				В	65	22.432	6.551	25.037
ATOM	1526	CA					7.194	24.373
MOTA	1527	C		В	65	21.242		
MOTA	1528	0		В	65	21.312	7.729	23.257
ATOM	1529	CB		В	65	23.497	7.615	25.131
ATOM	1530	CG	GLU	В	65	24.787	7.196	25.761
ATOM	1531	CD	GLU	В	65	25.694	8.385	26.076
ATOM	1532	OE1	GLU	В	65	25.170	9.510	26.311
ATOM	1533	OE2		В	65	26.938	8.200	26.092
ATOM	1534	N		В	66	20.078	7.240	25.035
ATOM	1535	Н		В	66	20.010	6.835	25.947
				В	66	18.907	7.865	24.462
ATOM	1536	CA					9.195	25.145
ATOM	1537	C		В	66	18.777		
ATOM	1538	0		В	66	18.591	9.303	26.379
MOTA	1539	CB		В	66	17.713	6.995	24.790
MOTA	1540	CG1	ILE	В	66	17.916	5.583	24.335
MOTA	1541	CG2	ILE	В	66	16.405	7.544	24.177
MOTA	1542	CD1	ILE	В	66	16.888	4.677	24.884
ATOM	1543	N	CYS	В	67	18.965	10.325	24.437
ATOM	1544	Н		В	67	19.201	10.268	23.467
ATOM	1545	.CA		В	67	18.833	11.663	25.049
ATOM	1546	C		В	67	19.637	11.781	26.319
				В	67	19.235	12.400	27.328
MOTA	1547	0				17.387	12.400	25.319
MOTA	1548	CB		В	67			
MOTA	1549	SG		В	Ç7	16.407	12.259	23.821
ATOM	1550	N		В	68	20.830	11.180	26.383
MOTA	1551	H		В	68	21.158	10.646	25.604
MOTA	1552	CA	GLY	В	68	21.654	11.288	27.558
MOTA	1553	C	GLY	В	68	21.464	10.185	28.584
MOTA	1554	0	GLY	В	68	22.174	10.128	29.606
MOTA	1555	N	HIS	В	69	20.513	9.255	28.425
ATOM	1556	Н		В	69	19.924	9.282	27.618
ATOM	1557	CA		В	69	20.304	8.199	29.391
ATOM	1558	CA		В	69	20.861	6.936	28.811
				В		20.589	6.560	27.647
ATOM	1559	0			69			
MOTA	1560	CB		В	69	18.832	7.992	29.654
MOTA	1561	CG		В	69	18.175	9.203	30.223
MOTA	1562	ND1		В	69	17.504	9.195	31.435
MOTA	1563	HD1		В	69	17.383	8.402	32.032
MOTA	1564	CD2	HIS	В	69	18.122	10.470	29.729
MOTA	1565	CE1	HIS	В	69	17.070	10.429	31.626
MOTA	1566	NE2	HIS	В	69	17.410	11.240	30.635

FIG. I lbb

Heller Ehrman White, & Nichallife, LLP Sanch 23 464 Title: Use of Computationally Derived Fration Structures of Genetic Polymorphisms in Particle Computationally Derived Fration Structures of Genetic Polymorphisms in Serial No. 90790,905 Applicantis: Elamanayan et al. Date of Plinige; 1171000 Attracept Dealect No. 24773-7490C

ATOM	1567	N	LYS I	B 70	2	1.751	6.217	29.499
ATOM	1568	Н		B 70		2.025	6.512	30.414
ATOM	1569	CA		B 70	2	2.326	5.020	28.945
ATOM	1570	C		B 70		1.386	3.854	29.145
ATOM	1571	Ö		B 70		0.627	3.725	30.120
ATOM	1572	СВ		B 70		3.613	4.678	29.663
ATOM	1573	CG		B 70		4.694	5.655	29.379
ATOM	1574	CD		B 70		5.739	5.524	30.444
ATOM	1575	CE		B 70		7.048	6.090	30.011
ATOM	1576	NZ		B 70		6.948	7.548	30.000
ATOM	1577	1HZ		B 70		7.821	7.940	29.711
ATOM	1578	3HZ		B 70		6.725	7.874	30.919
				B 70		6.230	7.828	29.363
MOTA	1579	2HZ		B 71		1.512	2.849	28.284
ATOM	1580	N				2.141	2.934	27.512
MOTA	1581	Н		_		0.762	1.630	28.432
ATOM	1582	CA						
MOTA	1583	C		B 71		1.629	0.576	27.805
MOTA	1584	0		B 71		2.463	0.830	26.912
MOTA	1585	CB		B 71		9.452	1.726	27.737
ATOM	1586	N		B 72		1.547	-0.681	28.237
ATOM	1587	H		B 72		0.864	-0.925	28.926
MOTA	1588	CA	ILE F	B 72		2.424	-1.698	27.730
MOTA	1589	C	ILE F	B 72		1.615	-2.938	27.462
MOTA	1590	0	ILE E	B 72		0.909	-3.490	28.330
ATOM	1591	CB	ILE E	B 72	2	3.524	-1.999	28.737
MOTA	1592	CG1	ILE E	B 72	2	4.322	-0.735	29.090
ATOM	1593	CG2	ILE E	3 72	2	4.442	-3.037	28.153
MOTA	1594	CD1	ILE F	B 72	2	5.374	-1.012	30.163
MOTA	1595	N	GLY I	B 73	2	1.609	-3.446	26.235
MOTA	1596	H	GLY I	B 73	2	2.204	-3.054	25.534
ATOM	1597	CA	GLY E	3 73	2	0.707	-4.545	26.062
ATOM	1598	C	GLY E	3 73	2	0.828	-5.084	24.663
ATOM	1599	Ō	GLY F	3 73	2	1.754	-4.831	23.863
MOTA	1600	N	THR I	B 74	1	9.856	-5.905	24.271
ATOM	1601	н		B 74		9.086	-6.088	24.882
ATOM	1602	CA	THR I		1	9.869	-6.548	22.988
ATOM	1603	C		B 74		9.363	-5.590	21.931
MOTA	1604	õ		B 74		8.338	-4.870	22.053
MOTA	1605	ČВ	THR I			9.011	-7.801	23.074
ATOM	1606	OG1	THR I			9.611	-8.683	24.013
ATOM	1607	HG1	THR I			9.068	-9.519	24.092
ATOM	1608	CG2	THR I			8.817	-8.496	21.705
MOTA	1609	N N	VAL I			0.028	-5.620	20.762
ATOM	1610	н	VAL I			0.835	-6.203	20.666
MOTA	1611	CA	VAL I			9.630	-4.837	19.611
ATOM	1612	CA	VAL I			9.600	-5.771	18.426
ATOM	1613	Ö	VAL I			0.444	-6.673	18.230
			VAL I			0.667	-3.712	19.395
MOTA	1614	CB				0.473	-3.712	18.046
MOTA	1615	CG1	VAL				-3.002	20.567
MOTA	1616	CG2	VAL I			0.679		17.565
MOTA	1617	N	LEU E			8.557	-5.647	
MOTA	1618	Н	LEU I			7.822	-5.000	17.76 7
MOTA	1619	CA	LEU I			8.444	-6.427	16.324
MOTA	1620	C	LEU E			8.736	-5.487	15.144
ATOM	1621	0	LEU E			8.239	-4.343	15.040
MOTA	1622	CB	LEU I	3 76	1	7.028	-7.021	16.158

FIG. I Icc

Heller Ehrmas White & McAuliffe, LLP Sheet at 6 46 utilife, LLP of Computationally Derived Frotein Structures of Genetic Polymorphisms in Pharmacogeomolies for Drug Bestign and Clitical Applications Serial No. 99709,905 Applicants: Rammarayan et al. Date of Filing: 11/1000 Attorney Docket No. 24737-1906C

ATOM	1623	CG	LEU B	76	16.427	-7.612	17.449
MOTA	1624	CD1	LEU B	76	14.992	-8.075	17.263
ATOM	1625	CD2	LEU B	76	17.266	-8.758	18.019
ATOM	1626	N	VAL B	77	19.607	-5.900	14.222
ATOM	1627	н	VAL B	77	19.985	-6.824	14.276
		CA	VAL B	77	20.027	-5.042	13.133
ATOM	1628			77	19.570	-5.662	11.842
MOTA	1629	C			19.678	-6.883	11.598
MOTA	1630	0	VAL B	77			
ATOM	1631	CB	VAL B	77	21.563	-4.905	13.191
ATOM	1632	CG1	VAL B	77	22.129	-4.202	11.944
ATOM	1633	CG2	VAL B	77	22.030	-4.166	14.470
ATOM	1634	N	GLY B	78	18.978	-4.915	10.943
ATOM	1635	H	GLY B	78	18.841	-3.941	11.121
ATOM	1636	CA	GLY B	78	18.523	-5.475	9.705
ATOM	1637	С	GLY B	78	18.019	-4.338	8.874
ATOM	1638	0	GLY B	78	18.130	-3.142	9.223
ATOM	1639	N	PRO B	79	17.408	-4.596	7.722
ATOM	1640	CA	PRO B	79	16.954	-3.535	6.834
ATOM	1641	C	PRO B	79	15.635	-2.872	7.280
		0	PRO B	79	14.609	-2.877	6.565
MOTA	1642					-4.274	5.492
MOTA	1643	CB	PRO B	79	16.804		
MOTA	1644	CG	PRO B	79	16.463	-5.712	5.881
MOTA	1645	CD	PRO B	79	17.159	-5.959	7.189
MOTA	1646	N	THR B	80	15.574	-2.247	8.458
MOTA	1647	H	THR B	80	16.374	-2.242	9.058
ATOM	1648	CA	THR B	80	14.364	-1.583	8.865
ATOM	1649	С	THR B	80	14.312	-0.189	8.228
ATOM	1650	ō	THR B	80	15.349	0.471	8.001
ATOM	1651	CB	THR B	80	14.250	-1.512	10.410
ATOM	1652	OG1	THR B	80	13.079	-0.802	10.806
ATOM	1653	HG1	THR B	80	13.022	-0.766	11.804
ATOM	1654	CG2	THR B	80	15.519	-0.901	11.062
MOTA	1655	N N	PRO B	81	13.137	0.354	7.885
		CA	PRO B	81	13.036	1.747	7.379
MOTA	1656				13.363	2.732	8.484
ATOM	1657	C	PRO B	81		3.880	8.250
ATOM	1658	0	PRO B	81	13.791		
MOTA	1659	CB	PRO B	81	11.548	1.912	6.982
MOTA	1660	CG	PRO B	81	10.819	0.674	7.488
MOTA	1661	CD	PRO B	81	11.854	-0.387	7.797
ATOM	1662	N	VAL B	82	13.197	2.368	9.772
ATOM	1663	H	VAL B	82	12.940	1.427	9.992
MOTA	1664	CA	VAL B	82	13.380	3.306	10.885
MOTA	1665	C	VAL B	82	14.160	2.668	12.010
MOTA	1666	0	VAL B	82	14.045	1.465	12.293
MOTA	1667	CB	VAL B	82	11.996	3.695	11.431
ATOM	1668	CG1	VAL B	82	12.055	4.961	12.269
ATOM	1669	CG2	VAL B	82	10.958	3.857	10.318
ATOM	1670	N	ASN B	83	14.963	3.422	12.775
ATOM	1671	н	ASN B	83	15.147	4.370	12.516
ATOM	1672	CA	ASN B	83	15.550	2.846	13.967
			ASN B	83	14.481	2.874	15.022
ATOM	1673	C			14.461	3.903	15.022
MOTA	1674	0	ASN B	83			
MOTA	1675	CB	ASN B	83	16.743	3.639	14.472
ATOM	1676	CG	ASN B	83	17.935	3.574	13.570
ATOM	1677	OD1	ASN B	83	18.409	2.511	13.167
ATOM	1678	ND2	ASN B	83	18.439	4.735	13.238

FIG. I Idd

Heller Ehrman White & McAuliffe, LLP Title: Use of Computationally Desired. The Structures of Genetic Polymorphisms in Pharmacogeomistic for Purp Bergia and Gilleida Applications Serial No. 90790,905 Applicants Ramarayan et al. Date of Pinigg; 11/1000 Attrices Discolat No. 24773-7500C

3 50014	1679	2HD2	ASN	в 8	83	19.237	4.786	12.638
ATOM					83	18.030	5.580	13.582
ATOM	1680	1HD2			84	14.225	1.749	15.711
MOTA	1681	N	ILE					15.564
ATOM	1682	H			84	14.791	0.938	
MOTA	1683	CA			84	13.154	1.658	16.667
ATOM	1684	C	ILE	B 8	84	13.740	1.317	18.020
ATOM	1685	0	ILE	B 8	84	14.428	0.300	18.223
MOTA	1686	CB	ILE	B 8	34	12.214	0.517	16.260
ATOM	1687	CG1	ILE	в 8	34	11.656	0.759	14.849
ATOM	1688	CG2	ILE	в 8	34	11.128	0.247	17.315
ATOM	1689	CD1			34	10.770	-0.359	14.291
ATOM	1690	N			35	13.483	2.157	19.051
ATOM	1691	н			35	13.028	3.030	18.877
	1691	CA			35	13.846	1.834	20.408
ATOM					35	12.596	1.254	21.085
ATOM	1693	C					1.903	21.267
ATOM	1694	0			35	11.536		
MOTA	1695	CB			35	14.308	3.115	21.137
MOTA	1696	CG1			35	15.447	3.826	20.395
MOTA	1697	CG2			35	14.673	2.840	22.589
MOTA	1698	CD1	ILE	B 8	35	16.730	3.053	20.263
ATOM	1699	N	GLY	в 8	36	12.617	-0.052	21.422
ATOM	1700	H	GLY	в 8	36	13.439	-0.595	21.251
ATOM	1701	CA	GLY	В 8	36	11.481	-0.702	22.028
ATOM	1702	С	GLY	в 8	36	11.557	-0.748	23.538
ATOM	1703	0	GLY	в 8	36	12.412	-0.165	24.238
ATOM	1704	N		в 8	37	10.614	-1.489	24.149
ATOM	1705	Н			37	10.012	-2.072	23.604
ATOM	1706	CA			37	10.442	-1.468	25.584
ATOM	1707	C			37	11.627	-2.021	26.326
ATOM	1708	Õ			37	11.911	-1.666	27.495
ATOM	1709	CB			37	9.200	-2.271	25.949
ATOM	1710	CG			37	7.951	-1.960	25.161
ATOM	1711	CD			37	6.956	-3.074	25.219
		NE			37	5.906	-2.933	24.205
ATOM	1712				37	5.790	-2.039	23.772
ATOM	1713	HE			3 / 3 7	5.119	-3.953	23.856
MOTA	1714	CZ						24.396
MOTA	1715	NH1			37	5.252	-5.161	
ATOM	1716	2HH1			37	5.958	-5.326	25.085
ATOM	1717	1HH1			37	4.646	-5.905	24.113
ATOM	1718	NH2			37	4.180	-3.751	22.939
MOTA	1719	1HH2			37	3.580	-4.502	22.664
ATOM	1720	2HH2			87	4.073	-2.848	22.524
ATOM	1721	N			8 8	12.413	-2.937	25.731
MOTA	1722	H			38	12.206	-3.237	24.800
MOTA	1723	CA			38	13.582	-3.519	26.415
MOTA	1724	C			88	14.532	-2.429	26.821
MOTA	1725	0	ASN	B 8	38	15.214	-2.516	27.863
ATOM	1726	CB	ASN	B 8	38	14.285	-4.605	25.559
ATOM	1727	CG	ASN	В 8	38	15.063	-4.031	24.358
ATOM	1728	OD1	ASN	B 8	8 8	14.515	-3.245	23.612
ATOM	1729	ND2	ASN	В 8	8 8	16.333	-4.445	24.180
ATOM	1730	2HD2	ASN	в 8	8 8	16.875	-4.099	23.414
ATOM	1731	1HD2	ASN		88	16.744	-5.102	24.812
ATOM	1732	N			39	14.695	-1.328	26.061
ATOM	1733	H			89	14.192	-1.240	25.201
ATOM	1734	CA			89	15.597	-0.234	26.452

FIG. I lee

Heller Ehrman Wing, & Notodiffe, LLP State St. 464 Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Serial No. 09709,096 Applicants Ehrmanzyan et al. Date of Filing: 11/1000 Attoresy Docket No. 24773-1960C

MOTA	1735	C	LEU 1	B 89	14.797	0.937	27.053
MOTA	1736	0	LEU I	B 89	15.293	1.734	27.879
ATOM	1737	CB	LEU I	B 89	16.421	0.232	25.236
ATOM	1738	CG	LEU I	B 89	17.400	-0.754	24.567
ATOM	1739	CD1		B 89	18.215	0.002	23.573
ATOM	1740	CD2		B 89	18.352	-1.458	25.570
	1741	N		B 90	13.511	1.114	26.705
MOTA				B 90	13.082	0.486	26.056
ATOM	1742	H			12.698	2.221	27.257
ATOM	1743	CA		B 90			
MOTA	1744	C		B 90	12.537	2.060	28.751
MOTA	1745	0		B 90	12.575	3.033	29.533
MOTA	1746	CB		B 90	11.311	2.258	26.628
ATOM	1747	CG		B 90	11.232	2.730	25.168
ATOM	1748	CD1		B 90	9.808	2.744	24.642
ATOM	1749	CD2	LEU I	B 90	11.831	4.105	24.982
ATOM	1750	N	THR I	B 91	12.315	0.843	29.271
ATOM	1751	H	THR I	B 91	12.218	0.055	28.663
ATOM	1752	CA	THR I	B 91	12.210	0.634	30.699
ATOM	1753	C	THR I	B 91	13.537	1.028	31.375
ATOM	1754	ō		B 91	13.575	1.525	32.518
ATOM	1755	CB		B 91	11.893	-0.843	31.028
ATOM	1756	OG1		B 91	12.919	-1.676	30.504
ATOM	1757	HG1		B 91	12.722	-2.634	30.713
	1758	CG2		B 91	10.599	-1.285	30.418
MOTA				B 92	14.705	0.852	30.732
MOTA	1759	N			14.707	0.832	29.797
ATOM	1760	Н		B 92			31.433
MOTA	1761	CA		B 92	15.920	1.190	31.633
ATOM	1762	C		B 92	16.088	2.660	
MOTA	1763	0		B 92	16.807	3.137	32.527
MOTA	1764	CB		B 92	17.127	0.680	30.682
MOTA	1765	CG		B 92	17.076	-0.805	30.517
MOTA	1766	CD		B 92	18.336	-1.314	29.900
ATOM	1767	OE1	GLN I	B 92	19.394	-0.720	30.059
ATOM	1768	NE2	GLN I	B 92	18.221	-2.411	29.195
ATOM	1769	1HE2	GLN I	B 92	19.022	-2.813	28.751
ATOM	1770	2HE2	GLN I	B 92	17.331	-2.856	29.095
ATOM	1771	N	ILE	B 93	15.538	3.512	30.746
ATOM	1772	н	ILE I	B 93	15.016	3.153	29.972
ATOM	1773	CA		B 93	15.693	4.937	30.899
ATOM	1774	C		B 93	14.522	5.549	31.698
ATOM	1775	ō		B 93	14.438	6.773	31.940
ATOM	1776	CB		B 93	15.981	5.657	29.548
ATOM	1777	CG1		B 93	14.746	5.718	28.619
ATOM	1778	CG2		B 93	17.223	5.060	28.874
	1779			B 93	14.946	6.734	27.488
ATOM		CD1			13.617	4.731	32.263
ATOM	1780	N			13.617	3.752	32.263
ATOM	1781	H		B 94			
ATOM	1782	CA		B 94	12.594	5.224 5.846	33.170 32.432
ATOM	1783	C		B 94	11.443		
ATOM	1784	0		B 94	10.766	6.803	32.878
ATOM	1785	N		B 95	11.134	5.354	31.225
ATOM	1786	H		B 95	11.603	4.538	30.888
ATOM	1787	CA		B 95	10.134	5.969	30.381
MOTA	1788	C		B 95	8.750	5.512	30.764
ATOM	1789	0		B 95	8.478	4.309	31.006
MOTA	1790	CB	CYS	B 95	10.456	5.643	28.922

FIG. I Iff

Heller Ehrman White & Mcchaiffe, LLP
Title: Use of Computationally Derived Frotein Structures of Genetic Polymorphisms in
Paramoogeomists for Drug Beigs and Clinical Applications
Serial No. 99799,905 Applicates: Rammaraya

ATOM 1791 SG CYS B 95 9.426 6.512 27.764 ATOM 1792 N THR B 96 7.778 6.444 30.764 ATOM 1793 H THR B 96 8.014 7.401 30.539 ATOM 1795 C THR B 96 6.379 6.163 31.108 ATOM 1796 O THR B 96 5.390 6.970 30.254 ATOM 1797 CB THR B 96 5.567 8.171 30.066 ATOM 1797 CB THR B 96 6.111 6.439 32.066 ATOM 1798 OGI THR B 96 6.341 7.794 32.938
ATOM 1793 H THR B 96 8.014 7.401 30.539 ATOM 1794 CA THR B 96 6.379 6.163 31.108 ATOM 1795 C THR B 96 5.390 6.970 30.254 ATOM 1796 O THR B 96 5.567 8.171 30.066 ATOM 1797 CB THR B 96 6.111 6.439 32.604
ATOM 1794 CA THR B 96 6.379 6.163 31.108 ATOM 1795 C THR B 96 5.390 6.970 30.254 ATOM 1796 O THR B 96 5.567 8.171 30.066 ATOM 1797 CB THR B 96 6.111 6.439 32.604
ATOM 1795 C THR B 96 5.390 6.970 30.254 ATOM 1796 O THR B 96 5.567 8.171 30.066 ATOM 1797 CB THR B 96 6.111 6.439 32.604
ATOM 1796 O THR B 96 5.567 8.171 30.066 ATOM 1797 CB THR B 96 6.111 6.439 32.604
ATOM 1797 CB THR B 96 6.111 6.439 32.604
111011 1777 02 11111 1
ATOM 1798 OG1 THR B 96 6.341 7.794 32.938
111011 1750 000 11111 = 11
ATOM 1799 HG1 THR B 96 6.111 7.924 33.861
ATOM 1800 CG2 THR B 96 6.938 5.566 33.554
ATOM 1801 N LEU B 97 4.302 6.321 29.809
ATOM 1802 H LEU B 97 4.216 5.332 29.997
ATOM 1803 CA LEU B 97 3.127 6.986 29.238
ATOM 1804 C LEU B 97 2.336 7.681 30.358
ATOM 1805 O LEU B 97 2.350 7.221 31.499
ATOM 1806 CB LEU B 97 2.226 5.958 28.532
ATOM 1807 CG LEU B 97 2.860 5.279 27.300
ATOM 1808 CD1 LEU B 97 2.101 3.986 26.957
ATOM 1809 CD2 LEU B 97 2.842 6.216 26.085
ATOM 1810 N ASN B 98 1.637 8.777 30.024
ATOM 1811 H ASN B 98 1.662 9.086 29.063
ATOM 1812 CA ASN B 98 0.906 9.631 30.960
ATOM 1813 C ASN B 98 -0.251 10.321 30.231
ATOM 1814 O ASN B 98 -0.032 11.303 29.522
ATOM 1815 CB ASN B 98 1.845 10.678 31.587
ATOM 1816 CG ASN B 98 2.783 10.077 32.634
ATOM 1817 OD1 ASN B 98 3.926 9.739 32.335
ATOM 1818 ND2 ASN B 98 2.297 9.942 33.870
ATOM 1819 2HD2 ASN B 98 2.877 9.551 34.599
ATOM 1820 1HD2 ASN B 98 1.351 10.229 34.074
ATOM 1821 N LEU B 99 -1.476 9.808 30.426
ATOM 1822 H LEU B 99 -1.568 9.010 31.037
ATOM 1823 CA LEU B 99 -2.709 10.288 29.797
ATOM 1824 C LEU B 99 -3.816 10.589 30.815
ATOM 1825 O LEU B 99 -3.630 10.272 32.011
ATOM 1826 CB LEU B 99 -3.146 9.340 28.657
ATOM 1827 CG LEU B 99 -3.714 7.932 28.941
ATOM 1828 CD1 LEU B 99 -2.767 7.057 29.774
ATOM 1829 CD2 LEU B 99 -5.134 7.943 29.528
ATOM 1830 OXT LEU B 99 -4.842 11.156 30.376
TER

FIG. I lgg

Heiler Ehrma: White & Mechalife, LLP

Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in
Pharmacogeometic for Prug: Design and Clinical Applications:
Serial No. 097109,095 Applications: Ramazaryan et al.
Date of Filing: 11/10/00 Attoracy Decket No. 24737-1966C

Database filename: hivpr.mdb Number of structures: 10591 Talerance (%) >= 1.05

ResNum	TotOcc	TotFreq	Dist	WtAA	NumMut	MutList	NumList
1	11	0	15.4	Ρ	0		
2	32	0	14.5	Q	0		
3	38	0	12.1	I	0		
4	106	0	13.0	T	0		
5	100	0	11.3	L	0		
6	47	0	14.3	W	0		
7	58	0	12.8	Q	0		
8	27	. 0	9.6	R	0		
9	11	0	7.9	Ρ	0		
10	4004	37.8	9.2	L	3	IVF	3162 441 278
11	82	0	10.9	٧	0		
12	1117	10.5	13.7	T	5	SEPAN	241 185 158 155 117
13	1745	16.5	13.7	I	1	٧	1717 .
14	646	6.1	17.0	K	1	R	623
15	1760	16.6	17.5	I	1	V	1709
16	361	3.4	20.9	G	1	Ε	254
17	56	0	22.4	G	0		
18	242	2.3	20.5	Q	0		
19	1340	12.7	18.3	L	4	TOVI	873 162 130 128
20	1549	14.6	15.4	K	4	IRTM	576 560 209 145
21	43	0	12.7	Ε	0		
22	46	0	9.0	Α	0		
23	89	0	5.8	L	D		
24	402	3.8	3.8	L	1	I	377

FIG. 8A

Heiler Ehrmus White & McAuliffe, LLP
Sheef 20 4 ct.
Sheef 20 4 ct.
Title: Use of Computationally Derived Fredetis Structures of Genetic Polymorphisms in
Pharmoscopomies for Drug Design and Clinical Applications
Serial No. 09709.095 Applicatis: Ramsarayas et al.
Date of Filing: 11/1000 Attorays Docket No. 24737-1006C

25	28	0	0.0	D	0		
26	14	0	3.8	Т	0		
27	9	0	5.5	G	0		
28	16	0	5.8	Α	0		
29	34	0	8.7	D	0		
30	770	7.3	9.2	D	1	N	725
31	15	0	8.9	Т	0		
32	238	2.2	10.5	٧	1	I	221
33	578	5.5	12.4	L	3	VIF	207 189 172
34	88	0	15.1	Ε	0		
35	2790	26.3	18.6	Ε	1	D	2646
36	2780	26.2	20.2	М	2	IV	2549 129
37 .	3252	30.7	22.8	N	4	DSET	1253 1129 246 209
38	54	0	22.0	L	0		
39	302	2.9	24.9	Р	1	S	133
40	19	0	25.5	G	0		
41	2249	21.2	26.0	R	1	K	2235
42	21	0	23.5	w	0		
43	372	3.5	23.7	ĸ	2	TR	166 144
44	12	0	22.6	Ρ	0		
45	208	2	20.0	ĸ	1	R	170
46	2165	20.4	18.8	м	2	IL	1580 560
47	47	0	15.4	I	0		
48	445	4.2	14.9	G	1	٧	385
49	17	0	12.9	G	0		
50	31	0	14.5	I	0		
51	24	0	17.6	G	0		
52	12	0	18.3	G	0		
53	408	3.9	18.1	F	1	L	360

FIG. 8B

Heller Ehrmas, White & McAuffle, LLP
Sheet 10 of 46

If Computationally Derived Protein Structures of Genetic Polymorphisms in
Pharmacogeomies for Drug Design and Clinical Applications
Serial No. 99709,905 Applicants: Ramarrayan et al.
Date of Filing: 1/1006 Alteropt Docket No. 24737-1996C

54	1661	15.7	18.0	I	1	V	1460
55	164	1.5	19.7	K	1	R	149
56	13	0	18.1	٧	0		
57	1194	11.3	19.7	R	1	K	1162
58	341	3.2	18.6	Q	1	Ε	317
59	20	0	19.4	Y	0		
60	992	9.4	19.6	D	1	Ε	938
61	468	4.4	19.9	Q	1	Ε	285
62	2711	25.6	18.6	1	1	٧	2685
63	8864	83.7	18.5	L	6	PASTQH	7245 380 321 266 226 162
64	2238	21.1	15.8	I	2	VL	1931 223
65	222	2.1	15.6	Ε	1	D	206
66	194	1.8	12.8	1	0		
67	309	2.9	14.6	С	1	S	143
68	51	0	17.5	G	0		
69	773	7.3	16.1	н	2	QY	376 206
70	478	4.5	17.0	K	1	R	359
71	3664	34.6	15.3	Α	3	VTI	2301 1145 190
72	1494	14.1	17.2	1	3	VTL	650 409 126
73	1246	11.8	15.8	G	2	ST	932 185
74	658	6.2	15.4	T	2	SA	433 126
75	73	0	14.1	V	0		
76	59	0	14.6	L	0		
77	3533	33.4	16.1	٧	1	ī	3513
78	8	0	16.9	G	0		
79	95	0	17.2	P	0		
80	6	0	13.6	T	0		
81	7	0	13.7	P	0		
82	2208	20.8	11.0	٧	2	AT	1668 284

FIG. 8C

Heiler Ehrmas White & McAuliffe, LLP
Title: Use of Computationally Derived Frotin Structures of Genetic Polymorphisms in
Paral No. 09709,005
Applicatis: Rammarayae et al.
Date of Piling: 111/000, 4 Attoray Docket, No. 24731-706C

83	44	0	9.7	N	0		
84	1091	10.3	6.3	I	1	V	1073
85	213	2	5.7	I	1	V	198
86	16	0	5.3	G	0		
87	32	0	7.3	R	0		
88	706	6.7	10.4	N	2	DS	543 128
89	240	2.3	10.1	L	1	М	143
90	3429	32.4	8.3	L	1	М	3397
91	28	0	11.4	T	0		
92	227	2.1	13.6	Q	1	K	169
93	3095	29.5	13.1	I	1	L	3041
94	15	0	13.6	G	0		
95	100	0	10.6	С	0		
96	6	0	11.2	T	0		
97	83	0	10.7	L	0		
98	44	0	14.2	N	0		
99	35	0	16.4	F	0		

FIG. 8D

Heller Ehrman White & McAuliffe, LLP Sheet 12 of 46

Sheet 12 of 40
Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications
Serial No. 997099, 905
Applications Serial No. 99709, 905
Date of Filing: 11/10/00
Attorney Docket No. 24737-1906C

FIG. 9

Heller Ehrman White & McAuliffe, LLP Sheet 13 of 46

Sheet 13 of 46
Fille: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomies for Drug Design and Clinical Applications Serial No. 09/709,005 Applicants: Ramnarayan et al.

Date of Filing: 11/10/000 Attorney Docket No. 24737-1906C

FIG. 10

