Lezione N+1 Algebra 1

Federico De Sisti2025-05-15

0.1 Teorema dell'elemento primitivo

Ricordo: Abbiamo dimostrato

Teorema 1

 \mathbb{F} campo infinito, allora ogni estensione separabile di grado finito è semplice

Teorema 2 (elemento primitivo)

 \mathbb{F} campo. Ogni estensione separabile di grado finito di \mathbb{F} è semplice

Dimostrazione

si tratta di studiare il caso $|\mathbb{F}| < +\infty$. Sappiamo che il gruppo moltiplicativo $U_{\mathbb{F}} = \mathbb{F} \setminus \{0\}$ è ciclico.

Sia ora $\mathbb{F} \in \mathbb{K}$ estensione finita

$$\Rightarrow \exists \alpha \in \mathbb{K} \ tale \ che \ U_{\mathbb{K}} = <\alpha> \Rightarrow \mathbb{F} \subseteq \mathbb{F}(\alpha) = \mathbb{K}$$

Osservazione

Nel caso finito non abbiamo usato l'ipotesi di estensione separabile Il prossimo risultato è dimostrato da Galois(1831) di Steinitz(1910)

1 Teoria di Galois

Definizione 1

 $\varphi: \mathbb{F} \to \mathbb{K}$ estensione di campi

 $\overline{\varphi}_{\mathbb{K}}: \mathbb{K} \to \overline{\mathbb{K}}$ chiusura algebrica

Un \mathbb{F} -omomorfismo di \mathbb{K} è un estensione $\psi : \mathbb{K} \to \overline{\mathbb{K}}$ tale che il diagramma (INSERISCI IMMAGINE 4 30), sia commutativo.

Esercizio:

L'insieme $I(\mathbb{K},\mathbb{F})$ degli \mathbb{F} -omomorfismi di \mathbb{K} non dipende dalla scelta di $\varphi_{\mathbb{K}}$ Esempio:

$$\mathbb{Q} \hookrightarrow \mathbb{Q}(\sqrt[3]{2}) \hookrightarrow \mathbb{A}$$

dove la prima freccia è φ e la seconda è $\overline{\phi}_k$

il polinomio minimo di
$$\sqrt[3]{2}$$
 è $x^3 - 2 \in \mathbb{Q}[x]$ $x^3 - 2 = (x - \sqrt[3]{2})(x - \sqrt[3]{2})(x - \sqrt[3]{2}\omega^2)$

dove
$$\omega = \frac{-1+i\sqrt{3}}{2} \in \mathbb{A}$$

L'estensione

$$\psi: \mathbb{Q}(\sqrt[3]{2}) \to \mathbb{A}$$
$$\sqrt[3]{2} \to \sqrt[3]{2}\omega$$

Proposizione 1

Sia $\mathbb{F} \subseteq \mathbb{K}$ estensione separabile e di grado finito, allora

$$|I(\mathbb{K}, \mathbb{F})| = [\mathbb{K} : \mathbb{F}].$$

Dimostrazione

Dal teorema dell'elemento primitivo $\exists \alpha \in \mathbb{K} \text{ tale che } \mathbb{F} \subseteq \mathbb{F}(\alpha) = \mathbb{K}$ Sia $\psi \in I(\mathbb{K}, \mathbb{F})$

 ψ è univocamente determinato da $\psi(\alpha)$

- dimostriamo che $\alpha, \psi(\alpha)$ sono coniugati sia $f \in \mathbb{F}[x]$ il polinomio minimo di α , allora $0 = \psi(0) = \psi(f(\alpha)) = f(\psi(\alpha))$ $\Rightarrow f \ \ \dot{e}$ il polinomio minimo di $\psi(\alpha)$
- per ogni radice β di f l'applicazione

$$\psi_{\beta}: \mathbb{K} \setminus \mathbb{F}(\alpha) \to \overline{\mathbb{K}}$$
$$\alpha \to \psi_{\ell}(\alpha) = \beta.$$

è un omomorfismo di anelli (con $im(\psi_{\beta}) = \mathbb{F}(\beta)$)

• Dato che $\mathbb{F} \subseteq \mathbb{K}$ è estensione separabile $\Rightarrow f$ ammette $\deg(f)$ radici distinte, quindi

$$|I(\mathbb{K}, \mathbb{F})| = deg(f) = [\mathbb{K} : \mathbb{F}].$$

Definizione 2 (Gruppo di Galois)

 $\mathbb{F} \subseteq K$ estensione. Il suo gruppo di Galoi s è $(G(\mathbb{K}, \mathbb{F}), \circ)$ dove

$$G(\mathbb{K}, \mathbb{F}) = \{ \sigma : \mathbb{K} \to \mathbb{K} \mid \sigma \text{ } \text{\hat{e} isomorfismo di anelli } e \sigma|_{\mathbb{F}} = id_{\mathbb{F}} \}.$$

 $e \circ \grave{e} \ la \ composizione$

Osservazione:

Data l'estensione $\varphi : \mathbb{F} \to \mathbb{K}$ e dato $\omega : \mathbb{K} \to \mathbb{K}$ scriveremo $\omega|_{\mathbb{F}} = id_{\mathbb{F}}$ intendendo che, inserisci diagramma, è un diagramma commutativo.

Proposizione 2

 $\mathbb{F} \subseteq L \ estensione$

$$|G(\mathbb{K}, \mathbb{F})| \le |I(\mathbb{K}, \mathbb{F})|.$$

Dimostrazione

Costruiamo un'applicazione iniettiva fra insiemi $G(K,F) \to I(\mathbb{K},\mathbb{F})$

inserisci immagine

 $dove \ \overline{\varphi}_{\mathbb{K}} : \mathbb{K} \to \overline{\mathbb{K}} \ \dot{e} \ una \ chiusura \ algebrica \ fissata$

• X è ben definita poiché $\sigma \in G(\mathbb{K}, \mathbb{F})$ allora INSERISCI IMMAGINE 4 58 è un diagramma commutativo

• Inoltre X è iniettiva poiché.

$$X(\underline{\sigma}_1) = X(\underline{\sigma}_2)$$

$$\Rightarrow \overline{\phi}_{\mathbb{K}} = \sigma_1 = \overline{\sigma}_{\mathbb{K}} = \sigma_2 \Rightarrow \sigma_1 = \sigma_2$$

Corollario 1

 $\mathbb{F} \subseteq \mathbb{K}$ estensione separabile di grado finito, allora

$$|G(\mathbb{K}, \mathbb{F})| \leq [\mathbb{K} : \mathbb{F}].$$

Dimostrazione

questo segue dalle proposizioni precedenti.

Definizione 3

 $\mathbb{K} \ campo \ H \leq Aut(\mathbb{K})$

Poniamo

$$\mathbb{K}_H := \{ k \in \mathbb{K} \mid \omega(k) = k \forall \sigma \in H \}.$$

si dice campo fissato da H.

Esercizio:

Dimostrare che è un campo.

Definizione 4 (Galois)

 $\mathbb{F} \subseteq \mathbb{K} \ estensione$

$$\mathcal{F}_{\mathbb{K},\mathbb{F}} = \{estensioni\ intermedie\ \mathbb{F} \subset \mathbb{L} \subset \mathbb{K}\}.$$

$$\mathcal{G}_{\mathbb{K},\mathbb{F}} = \{sottogruppi \ di \ G(\mathbb{K},\mathbb{F}).$$

$$\psi: \mathcal{F}_{\mathbb{K}.\mathbb{F}} \to \mathcal{G}_{\mathbb{K}.\mathbb{F}}$$

$$(\mathcal{F} \subseteq \mathbb{L} \subseteq \mathbb{K}) \to G(\mathbb{K}, \mathbb{L}) \leq G(\mathbb{K}, \mathbb{F})$$

$$\Phi:\mathcal{G}_{\mathbb{K},\mathbb{F}} o\mathcal{F}_{\mathbb{K},\mathbb{F}}$$

$$H \leq G(\mathbb{K}, \mathbb{F}) \to \mathbb{F} \subseteq \mathbb{K}_H \subseteq \mathbb{K}$$
.

 ψ e ϕ si dicono corrispondenze di Galois

Domande:

- 1. $\Phi(\psi(\mathbb{E})) = \mathbb{E}$? per ogni estensione $\mathbb{F} \subseteq \mathbb{L} \subseteq \mathbb{K}$
- 2. $\psi(\Phi(H)) = H$? per ogni $H \leq G(\mathbb{K}, \mathbb{F})$

Esercizi:

 $\mathbb{F}\subseteq\mathbb{K}$ estensione, dimostrare

1.
$$G(\mathbb{K}, \mathbb{K}) = \{id\}$$

2.
$$\mathbb{F} \subseteq \mathbb{L} \subseteq \mathbb{L}_2 \subseteq \mathbb{K}$$

 $\Rightarrow \psi(\mathbb{L}_2) = G(\mathbb{K}, \mathbb{L}_2) \le G(\mathbb{K}, \mathbb{L}_1) = \psi(\mathbb{L}_1)$

3.
$$\mathbb{K}_{\{id\}} = \mathbb{K}$$

4.
$$H_1 \leq H_2 \leq G(\mathbb{K}, \mathbb{F})$$

 $\Rightarrow F \subseteq \mathbb{K}_{H_2} = \Phi(H_2) \subseteq \mathbb{K}_{H_1} = \Phi(H_1) \subseteq \mathbb{K}$

5.
$$H \leq G(\mathbb{K}, \mathbb{F}) \Rightarrow H \leq G(\mathbb{K}, \mathbb{K}_H) = \psi(\mathbb{K}_H) = \psi(\Phi(H))$$

6.
$$\mathbb{F} \subseteq \mathbb{L} \subseteq \mathbb{K} \Rightarrow \mathbb{F} \subseteq \mathbb{L} \subseteq \mathbb{K}_{G(\mathbb{K},\mathbb{L})} \subseteq \mathbb{K}$$

$$\psi: \mathcal{F}_{\mathbb{K},\mathbb{F}} \to \mathcal{G}_{\mathbb{K},\mathbb{F}}$$

$$(\mathbb{F} \subseteq \mathbb{L} \subseteq \mathbb{K}) \to \mathcal{G}(\mathbb{K},\mathbb{L})$$

$$\psi: \mathcal{G}_{\mathbb{K},\mathbb{F}} \to \mathcal{F}_{\mathbb{K},\mathbb{F}} \quad H \leq G(\mathbb{K},\mathbb{F}) \to F \subseteq \mathbb{K}_G \subseteq \mathbb{K}.$$

Osservazione

- $H \leq \psi(\Phi(H))$
- $\mathbb{L} \subseteq \Phi(\psi(\mathbb{L}))$

Obiettivo

Esibire condizioni su $\mathbb{F} \subseteq \mathbb{K}$ affinché Φ, ψ siano una l'inversa dell'altra

Teorema 3

 $\mathbb{F} \subseteq \mathbb{K}$ separabile di grado finito. Allora dato $H \leq G(\mathbb{K}, \mathbb{F})$ abbiamo

- $|H| = [\mathbb{K}, \mathbb{K}_H]$
- $\psi(\Phi(H)) = H$

Dimostrazione

Abbiamo $H \leq G(\mathbb{K}, \mathbb{K}_H)$

$$\Rightarrow |H| \leq |G(\mathbb{K}, \mathbb{K}_H)| \leq [\mathbb{K}, \mathbb{K}_H].$$

basta verificare che

$$|H| \geq [\mathbb{K}, \mathbb{K}_H].$$

per dedurre entrambi gli enunciati.

Dal teorema dell'elemento primitivo esiste $\alpha \in \mathbb{K}$ tale che

$$\mathbb{F} \subseteq \mathbb{F}(\alpha) = \mathbb{K}.$$

Vogliamo costruire un polinomio $f \in \mathbb{K}_H$ di cui α sia radice.

$$H = {\sigma_1 = Id, \sigma_2, \dots, \sigma_h}.$$

Definiamo:

$$\alpha_s := \sum_{1 \le j_1 < \dots < j_s \le h} \sigma_{j_1}(\alpha) \cdot \dots \cdot \sigma_{j_s}(\alpha) \in \mathbb{K}$$

Poniamo

$$f(x) = \prod_{j=1}^{h} (x - \sigma_j(\alpha)) = x^h - \alpha_1^{h-1} + \dots + (-1)^h \alpha_h \in \mathbb{K}[x].$$

Chiaramente $f(\delta) = 0$. Verifichiamo $\alpha_s \in \mathbb{K}_H$ ovvero $\sigma_t(\alpha_s) = \alpha_s \ \forall t, s \in \{1, \ldots, h\}$

Abbiamo

$$\sigma_t(\alpha_s) = \sum_{1 \le j_1 < \dots < j_s \le h} \sigma_{j_1}(\alpha) \cdot \dots \cdot \sigma_{j_s}(\alpha) = \sigma_s.$$

Dove l'ultima uguaglianza segue dal fatto che

$$\begin{array}{c} H \to H \\ \sigma_j \to \sigma_t \cdot \sigma_j \end{array}.$$

è un isomorfismo $\forall t \in \{1, \dots, h\}$

 $\Rightarrow f \in \mathbb{K}_H[x]$

 $\Rightarrow |H| = h = deg(f) \ge deg(\ polinomio\ minimo\ di\ \alpha\ su\ \mathbb{K}_H) = [\mathbb{K}_H(\alpha) : \mathbb{K}_H] = [\mathbb{K} : \mathbb{K}_H]$

Teorema 4

 $\mathbb{F}\subseteq\mathbb{K}\ estensione\ separabile\ di\ grado\ finito.$

Allora sono equivalenti:

1. $\mathbb{F} \subseteq \mathbb{K}$ estensione normale

2. $\Phi(\psi(\mathbb{L})) = \mathbb{L} \ per \ ogni \ \mathbb{F} \subseteq \mathbb{L} \subseteq \mathbb{K}$

Dimostrazione

 $(2) \Rightarrow 1) \ per \ ipotesi \ abbiamo \ \mathbb{F} = \mathbb{K}_{G(\mathbb{K},\mathbb{F})}$

Per dimostrare che $\mathbb{F} \subseteq \mathbb{K}$ è normale, basta verificare che sia un campo di spezzamento di un polinomio $f \in \mathbb{F}[x]$.

Per il teorema dell'elemento primitivo

$$\exists \alpha \in \mathbb{K} \quad tale \ che \ \mathbb{F} \subseteq \mathbb{F}(\alpha) = \mathbb{K}$$

Inoltre
$$|G(\mathbb{K}, \mathbb{F})| < +\infty$$

$$G(\mathbb{K},\mathbb{F}) = \{\sigma_1,\ldots,\sigma_h\}$$

$$f(x) = \prod_{j=1}^{h} (x - \sigma_j(\alpha)) = x^h - \alpha_1 x^{h-1} + \dots + (-1)^h \alpha_h$$

dove

$$\alpha_s = \sum_{i \leq j_1 < \dots < j_s \leq h} \sigma_{j_1}(\alpha) \cdot \dots \cdot \sigma_{j_s}(\alpha).$$

 $f(x) \in \mathbb{K}[x]$

Osserviamo che $s, t \in \{1, \ldots, h\}$

$$\sigma_t(\alpha_s) = \sum_{1 \leq j_1 < \dots < j_s \leq h} (\sigma_t \sigma_{j_1})(\alpha) \cdot \dots \cdot (\sigma_t \sigma_{j_s})(\alpha).$$

$$\Rightarrow \alpha_s \in \mathbb{K}_{G(\mathbb{K},\mathbb{F})} = \mathbb{F} \Rightarrow f(x) \in \mathbb{F}[x]$$

- f si decompone in fattori lineari in $\mathbb{K}[x]$
- $f(\alpha) = 0$ quindi data un'estensione $\mathbb{F} \subseteq \mathbb{L} \subseteq \mathbb{K}$ abbiamo $\alpha \in \mathbb{L}$
 - $\Rightarrow \mathbb{K} = \mathbb{F}(\alpha) \subseteq \mathbb{L} \subseteq \mathbb{K}$
 - $\Rightarrow \mathbb{L} = \mathbb{K}$
 - $\Rightarrow \mathbb{F} \subseteq \mathbb{K} \ \dot{e} \ campo \ di \ spezzamento \ di \ f.$

1) \Rightarrow 2) Dobbiamo verificare che se $\mathbb{F} \subseteq \mathbb{K}$ è separabile, di grado finito e normale, allora

$$\Phi(\psi(\mathbb{L})) = \mathbb{L} \quad per \ ogni \ \mathbb{F} \subseteq \mathbb{L} \subseteq \mathbb{K}.$$

 $\mathbb{L} \subseteq \Phi(\psi(\mathbb{L})) = \mathbb{K}_{G(\mathbb{K}, \mathbb{L})}$

Verificare che $\mathbb{K}_{G(\mathbb{K},\mathbb{L})} \subseteq \mathbb{L}$

Sappiamo che $\mathbb{L} \subseteq \mathbb{K}$

è estensione normale di grado finito.

Quindi esiste polinomio $f \in \mathbb{L}[x]$ tale che $\mathbb{L} \subseteq \mathbb{K}$ sia campo di spezzamento di f.

Procedo per induzione su [L : K]

$$se \left[\mathbb{L} : \mathbb{K} \right] = 1 \Rightarrow \mathbb{L} = \mathbb{K}$$

$$\Rightarrow \mathbb{K}_{G(\mathbb{K} \mathbb{T})} = \mathbb{K} = \mathbb{I}$$

$$\Rightarrow \mathbb{K}_{G(\mathbb{K},\mathbb{L})} = \mathbb{K} = \mathbb{L}$$

$$Se \ [\mathbb{K} : \mathbb{L}] > 1 \ allora$$

 $f: p_1 \cdot \ldots \cdot_r$ fattorizzazione in irriducibili

Possiamo assumere che $deg(p_1) > 1$.

Siano $\alpha_1, \alpha_2, \ldots, \alpha_h \in \mathbb{K}$ le radici di p_1 $(deg(p_1) = h > 1)$

$$[\mathbb{K} : \mathbb{L}] = [\mathbb{K} : \mathbb{L}(\alpha_1)][\mathbb{L}(x) : \mathbb{L}].$$

 $con \left[\mathbb{L}(x) : \mathbb{L} \right] = h$

Quindi

$$[\mathbb{K}:\mathbb{L}(\alpha_1)]<[\mathbb{K}:\mathbb{L}].$$

e per ipotesi induttiva

$$\mathbb{K}_{G(\mathbb{K},\mathbb{L}(\alpha_1))} = \mathbb{L}(\alpha_1).$$

Definiamo

$$\begin{aligned} \alpha_1 \to \alpha_s \\ \text{(si può estendere a tutto } \mathbb{K}) \\ \text{Dobbiamo verificare } \mathbb{K}_{G(\mathbb{K},\mathbb{L})} \subseteq \mathbb{L} \\ \text{Sia } k \in_{G(\mathbb{K},\mathbb{L})} \subseteq \mathbb{K}_{G(\mathbb{K},\mathbb{L}(\alpha))} = \mathbb{L}(\alpha_1) \\ \Rightarrow k = c_0 + c_1\alpha_1 + \ldots + c_{h-1}\alpha_1^{h-1} \in \mathbb{L}(\alpha_1) \\ \Rightarrow \sigma_s(k) = k \quad \forall s \in \{1,\ldots,h\}. \\ \text{poiché } \sigma_s \in G(\mathbb{K},\mathbb{L}) \\ \text{Ora } f(x) = (c_0 - k) + c_1x + \ldots, c_hx^{h-1} \in \mathbb{L}(\alpha_1)[x] \\ \alpha_s = \sigma_s(\alpha_1) \text{ è radice di } f(x) \quad \forall s \in \{1,\ldots,h\} \text{ che sono tutte distinte.} \end{aligned}$$

 $\sigma_1, \ldots, \sigma_h \in G(\mathbb{K}, \mathbb{L}).$ $\sigma_s : \mathbb{K} \to \mathbb{K}$

Definizione 5

 $\mathbb{F} \subseteq \mathbb{K}$ si dice estensione Galoisiana se è separabile e normale

Quindi ho h radici ma $deg(f) = h - 1 \Rightarrow f(x) = 0 \Rightarrow k = c_0 \in \mathbb{L}$

Corollario 2

 $\mathbb{F}\subseteq\mathbb{K}$ estensione Galoisiana di grado finito, allora Φ,ψ sono una l'inversa dell'altra