P.7 MATHEMATICS LESSON NOTES TERM 1

LESSON 1

SET CONCEPTS

		DATE	CLASS	TIME	SUBJECT	No. OF PUPILS	
			P.7		MTC		
1.	TOPIC	SET CONCEPTS					
	SUB-TOPIC	REVISION EXERCISE ON DESCRIPTION OF SETS AND LISTING ELEMENTS				ELEMENTS	
		1. <u>Describe the following s</u>	sets:				
		a) $Q = \{0, 2, 4, 6, 8,\}$	a) $Q = \{0, 2, 4, 6, 8,\}$				
		b) $N = \{4, 8, 12, 16, 20,$.}				
		c) $M = \{10, 20, 30, 40, 50\}$,}				
		d) K = {Jan, Feb, Mar, Ap	ril, May, Jur	ne, }			
		e) $L = \{0, 1, 2, 3, 4, 5, \dots \}$	}				
		f) $R = \{5, 10, 15, 20, 25,\}$	}				
		g) $O = \{2, 3, 5, 7, 11, \dots \}$	}				
		h) $A = \{1, 3, 5, 7, 9, 11,\}$	}				
		i) B = {a, e, I, o, u,	}				
		2. <u>List the elements of the f</u>	following set	<u>s.</u>			
		a) $A = \{Multiples of 2 bet \}$	ween 10 and	20}			
		b) $B = \{Factors of 24\}$					
		c) C = {Prime numbers be					
		d) D = {Counting numbers		ŕ			
		e) E = {Composite numbe		15}			
		f) $F = \{Square number les$	s than 30}				
		Answers					
		1. a) $Q = \{A \text{ set of even not}\}$		· ·			
		$N = \{Multiples of 4\}$,	}			
		$M = \{First 5 multiple \}$					
		$K = \{First 6 months\}$		4 0			
		$L = \{A \text{ set of whole} \}$					
		$R = \{\text{Multiples of 5}: $		}			
		$O = \{First 5 prime n\}$	ŕ				
		$A = \{ Odd \text{ numbers } f$	trom I to 11	}			

	$B = \{All\ vo$	owel numbers} OR {English alphab	et}
	$2. A = \{12, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14$	6, 18}	
	$B = \{1, 2, 3, 4, 4, 4, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,$, 6, 8, 12, 24}	
	$C = \{97\}$		
	$D = \{11, 12, 1\}$	3, 14, 15, 16, 17, 18, 19}	
	$E = \{4, 6, 8, 9, \dots\}$, 10, 12, 14}	
	$F = \{1, 4, 9, 16\}$	5, 25}	
REMARKS			
	DATE	CLASS TIME	SUBJECT NO OF PUPILS

	DATE	CLASS	TIME	SUBJECT	No. OF PUPILS
		P.7		MTC	

TOPIC SET CONCEPTS 2.

SUB-TOPIC

REVISION EXERCISE ON DRAWING VENN DIAGRAMS

- 1. <u>Draw the following Venn diagrams</u>
 - a) All boys are males.

$$A \cup B = A$$

- b) All girls are females.
- c) All cows are animals.

$$P \cap Q = Q$$

2. Draw a Venn diagram to show the sets A and B below.

$$A = \{a, b, c, d, e\}, B = \{b, d, e, f, g, h\}$$

From the above Venn diagram. Find

- a) AnB
- e) n(AnB)
- b) AuB
- f) n(AuB)
- c) A B
- g) n(A B)
- d) B-A h) n(B-A)
- 3. Study the Venn diagram below and answer questions that follow.

- a) List all the elements of set Q.
- b) How many objects are in set Q?
- c) Find set p.
- d) Find n(P-Q)'
- e) How many subjects are in set Q?

f) Find the number of proper subjects in set P.

Answers

1. a)

D

2. (i)

- a) AnB = $\{b, d, e\}$
- b) $A u B = \{a, b, c, d, e, f, g, h\}$
- $c) A-B = \{a,c\}$
- d) $B A = \{f, g, h\}$
- e) n(AnB) = 3 elements
- f) n(AuB) = 8 members
- g) n(A-B) = 2 members
- h) n(B A) = 3 elements
- 3. a) Set $Q = \{1, 2, 3, 4, 5\}$
 - b) $n(Q) = \underline{5 \text{ members}}$
 - c) Set $P = \{1, 3\}$
 - d) n(P) = 2 objects
 - e) n(C) = 32 objects
 - = 3 proper subjects f)

	REMARKS					
		DATE	CLASS	TIME	SUBJECT	No. OF PUPILS
			P.7		MTC	
3.	TOPIC	SET CONCEPTS	l			
	SUB-TOPIC	SHADING AND I	DESCRIBING SHAI	DED SETS.		
		1. Shade the follo	wing parts of sets.			
		a) AnB		b) AuB	c) A-B	
		A C	BBA			
		(P-Q)/ P Q		N M	M¹	
		d) B-A	e) A complemen	$(AnB)^1$	g) (AuB))1
		A B A	B A B	A B		
		2. Describe the fo	llowing shadedand u	nshaded regions		
		a)	b) c)	d)	e)	
		X YP Q	A B	X Y	C D	
		i) shaded	i) shaded	i) shaded	i) shaded	i) shaded
		ii)unshaded	ii)unshaded	ii)unshaded	ii)unshaded	ii)unshaded
	REMARKS					
		DATE	CLASS	TIME	SUBJECT	No. OF PUPILS
			P.7		MTC	
4.	TOPIC SUB-TOPIC	SET CONCEPTS SUBSETS	1	,	'	

|--|

- a) A subset (s) is (are) a small set (s) got from a big set (universal) set. OR it is a part of a given set.
- b) Symbol for a subset = "C"
- c) An empty set is a subset of every set. Symbol = $\{\}$ OR \emptyset .
- d) Every set is a subset of itself.

Examples

1. List all the possible subsets of $A = \{0, 1, 2\}$

Note

The list begins with an empty and ends with a set itself.

Soln

$$A = \{0, 1, 2\}$$

$$= \{\}, \{0\}, \{1\}, \{2\}, \{0,1\}, \{0,2\}, \{1,2\}, \{0,1,2\}$$

2. How many subsets can be counted from set $x = \{all \ vowels\}$

$$x = \{a, e, i, o, u\}$$

 $n(x) = 5$ members

$$n(\in) = 2^n$$

$$n(C) = 2^{5}$$

$$= (2 \times 2) \times (2 \times 2) \times 2$$

$$= (4 \times 4) \times 2$$

$$= 16 \times 2$$

EVALUATION EXERCISE

- 1. List all the possible subsets of each of the following sets.
 - a) $A = \{0, 1\}$ $B = \{a, b, c\}$ $C = \{2, 3, 5, 7\}$ $D = \{e\}$

= 32 subsects

2. Calculate the number of subsets from:

a)
$$W = \{0\}$$

 $X = \{a, b\}$
 $Y = \{1, 2, 3\}$
 $Z = \{a, b, c, d\}$
 $V = \{0, 1, 2, 3, 4\}$
 $U = \{a, b, c, d, e, f\}$

		Answers:				
		1. a) $A = \{\}, \{0\}, \{1\}, \{0\}$.1}			
		$B = \{\}, \{a\}, \{b\}, \{c\}\}$		c}, {b, c}, {a, b, c}		
		$C = \{\}, \{2\}, \{3\}, \{5\}, \{7\}, \{2, 3\}, \{2, 5\}, \{2, 7\}$				
		{3, 5}, {3, 7}, {3				
		{3, 5, 7}, {2, 3, 7}, and {	. ,	3,, (2, 3, 7)		
		$D = \{\}, \{e\}$	2, 3, 3, 7,			
		2. $w = 2$ subsets, $x = 4$ subset	ets, y = 8sul	osets, $z = 16$ subsets,	v = 32subsets	u = 64subsets
	REMARKS					
		DATE	CLASS	TIME	SUBJECT	No. OF PUPILS
			P.7		MTC	
5.	TOPIC	SET CONCEPTS	<u> </u>			
	SUB-TOPIC	PROPER SUBSETS				
		Concepts:				
		1. A proper subset of a set	is that subse	t of the set which is n	ot a set itself.	
		<u>OR</u>				
		Proper subsets are subsets	s without th	e super set . mother	set	
		A proper subset is a subset the	hat is differe	ent from the set itself.		
		OR It is a subset that doe	esn't include	a set itself.		
		2. Symbol for proper subset	t = "C"			
		<u>Examples</u>				
		a) List all the possible p	oroper subse	ts of set $P = \{0, 1, 2\}$	}	
		Soln				
		$P = \{0, 1, 2\}$				
		= {}, {0}, {1}, {2	2}, {0, 1}, {0	0, 2}, {1, 2}		
		b) Calculate the number	r of proper s	ubsets in set $x = \{a,$	b, c, d,e}	
		Soln				
		$x = \{a, b, c, d, e\}$				
		n(x) = 5 elements				
		$n(c) = 2^n - 1$				
		$n(c) = 2^5 - 1$				
		$= (2 \times 2) \times (2 \times 2)$	x 2 x 2) – 1			
		$= (4 \times 4) \times 2 -$	1			
		$= (16 \times 2) - 1$				
		= 32 - 1				
		= 31 proper subsets				

	List all the possible proper su	bsets of:			
	$ a) x = \{a\} $				
	$y = \{a, b\}$				
	$z = \{a, b, c\}$				
	$w = \{a, b, c, d\}$				
	2. Find the number of proper	subsets fron	<u>1</u> :		
	$ a) v = \{a\} $				
	$\mathbf{w} = \{\mathbf{a}, \mathbf{b}\}$				
	$x = \{a, b, c\}$				
	$y = \{a, b, c, d\}$				
	$z = \{a, b, c, d, e\}$				
	Answers:				
	1. a) $x = \{ \}$				
	$y = \{ \} \{a\}, \{b\}$				
	$z = \{ \} \{a\}, \{b\}, \{c\} \}$	}, {a, b}, {a	, c}, {b, c}		
		, -, (,, -)	, (, -,)		
	· · · · · · · · · · · · · · · · · · ·				
	2. a) $v = 1$ proper subset				
	w = 3 proper subsets				
	x = 7 proper subsets				
	y = 15 proper subset	<u>ts</u>			
	z = 31 proper subset	<u>s</u>			
REMARKS	DATE	CLASS	TIME	SUBJECT	No. OF PUPILS
		P.7		MTC	
ГОРІС	SET CONCEPTS	I	I	I	
SUB-TOPIC	FINDING THE NUMBER	OF ELEMI	ENTS GIVEN S	UBSETS	
	Concepts				
	1. Express the subsets given	in powers of	of 2.		
I	ГОРІС	y = {a, b} z = {a, b, c} w = {a, b, c, d} 2. Find the number of proper a) v = {a} w = {a, b} x = {a, b, c} y = {a, b, c} y = {a, b, c, d} z = {a, b, c, d} z = {a, b, c, d} z = {a, b, c, d, e} Answers: 1. a) x = {} y = {} y = {} {a}, {b}, {c} w = {} {}, {a}, {b}, {c} w = {} {}, {a}, {b}, {c} y = {a, b, c, d, e} Answers: 1. a) x = {} y = {} y = {} } 2. a) v = 1 proper subset w = 3 proper subset w = 3 proper subsets y = 15 proper subset z = 31 proper subset SUB-TOPIC SET CONCEPTS FINDING THE NUMBER Concepts	y = {a, b} z = {a, b, c} w = {a, b, c, d} 2. Find the number of proper subsets from a) v = {a} w = {a, b} x = {a, b, c} y = {a, b, c, d} z = {a, b, c, d} z = {a, b, c, d, e} Answers: 1. a) x = {} y = {} {a}, {b}, {c}, {a, b}, {a, b} z = {} {a}, {b}, {c}, {d}, {a, b}, {a	y = {a, b} z = {a, b, c} w = {a, b, c, d} 2. Find the number of proper subsets from: a) v = {a} w = {a, b} x = {a, b, c} y = {a, b, c, d} z = {a, b, c, d} z = {a, b, c, d, e} Answers: 1. a) x = {} y = { } {a}, {b}, {c}, {a, b}, {a, c}, {b, c} w = { }, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {b, c} w = { }, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {d}, {c}, {d}, {b}, {a, b}, {a, c} {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, c, d} {c, d, b}, {a, b, d}, {f} 2. a) v = 1 proper subset w = 3 proper subsets x = 7 proper subsets y = 15 proper subsets z = 31 proper subsets REMARKS DATE CLASS TIME P.7 FOPIC SET CONCEPTS FINDING THE NUMBER OF ELEMENTS GIVEN S	y = {a, b} z = {a, b, c} w = {a, b, c, d} 2. Find the number of proper subsets from: a) v = {a} w = {a, b} x = {a, b, c} y = {a, b, c, d} z = {a, b, c, d} z = {a, b, c, d} z = {a, b, c, d, c} Answers: 1. a) x = {} y = { }{a}, {b}, {c}, {a, b}, {a, c}, {b, c} y = {a, b, c, d, c} Answers: 1. a) x = {} y = { }{a}, {b}, {c}, {d}, {a, b}, {a, c}, {b, c} w = { }{, {a}, {b}, {b}, {c}, {d}, {a, b}, {a, c}, {d}, {c}, {d}, {d}, {b}, {d}, {d}, {d}, {d}, {d}, {d}, {d}, {d

Examples

1. Set A has 8 subsets, how many elements are in set A?

Soln

$$n(c) = 2^{n}$$
 $2^{n} = 8 \text{ subsets}$
 $2^{n} = 2 \times 2 \times 2$
 $2^{n} = 2^{3}$
 2×8
 2×4
 2×2
 2×2
 2×3

:. n = 3 elements

Set Q has 1 subset

Find n(Q)

$$2^{n} = 1$$

$$2^{n} = 20$$

2. Given that set P has 15 proper subsets, find the number of elements in set P

Soln

$$n(c) = 2n - 1$$

 $2^n - 1 = 15$ proper subsets

$$2^{n}-1+1 = 15+1$$

$$2^{n} - 0 = 16$$

$$2^n = 16$$

$$2^{n} = 2 \times 2 \times 2 \times 2$$

$$2^{n} = 2^{4}$$

:. n = 4 members

EVALUATION EXERCISE

1. Given the following subsets, find the number of elements each set:

a) X = 4 subsets

Y = 16 subsets

Z = 32 subsets

W = 64 subsets

V = 128 subsets

b) A = 3 proper subsets

B = 7 proper subsets

C = 31 proper subsets

D = 63 proper subsets

	1	A				7
		Answers				
		a) $X = 2$ members				
		Y = 4 members				
		$Z = \underline{5 \text{ members}}$				
		$W = \underline{6 \text{ members}}$				
		V = 7 members				
		b) $A = 2$ elements				
		B = 4 elements				
		$C = \underline{5 \text{ elements}}$				
		$D = \underline{6 \text{ elements}}$				
	REMARKS					
		DATE	CLASS	TIME	SUBJECT	No. OF PUPILS
			P.7		MTC	
7.	TOPIC	SET CONCEPTS				
	SUB-TOPIC	REPRESENTING INFOR	MATION (ON A VENN DI	AGRAM	
		Concepts				
		1. Summarize the statemen	its given.			
		Examples				
		(i) In a group of 12 pupils, 8	pupils got p	ens (P) and 7 pu	pils got books (B).	
		a) Show this information on	a Venn diag	ram.		
		Soln				
		$n(\in) = 12, \ n(P) = 8, \ n(B) =$	7			
		n(PnB) = ?				
		Venn diagram.				
		∈ = 12				
		b) From the Venn diagram a	above. Find	the value of m.		

Soln

$$(8-m) + m + (7-m) = 12$$

 $8 + 7 + m - m - m = 12$
 $15 - m = 12$
 $15 - 15 - m = 12 - 15$
 $0 - m = -3$
 $-m = -3$

-m

$$\frac{-m}{-1} = \frac{-3}{-1}$$

$$M = 3$$
 pupils

c) How many pupils got only one type of stationery?

Soln

Only one =
$$(8-m) + (7-m)$$

= $(8-3) + (7-3)$
= $5+4$

= 9 pupils

- 2. Given that n(A) = 30, n(B) = 25, n(AuB) = 45 and $n(AuB)^{1} = 5$
- a) Show this on a Venn diagram.

Soln

Let P be n(AnB)

$$n(\in) = 45$$

b) Find the elements in AnB.

Soln

$$30 + p + p + 25 - p + 5 = 45$$

$$30 + 25 + 5 - p = 45$$

$$60 - p = 45$$

$$60 - 60 - p = 45 - 60$$

$$0 - p = -15$$

$$-p = -15$$

$$-1(-p) = -1(-15)$$

:. P = 15 elements

c) How many elements are in at least one set only?

Soln

At least one =
$$(30 - p) + p + (25 - p)$$

= $(30 - 15) + 15 + (25 - 15)$
= $15 + 15 + 10$
= $30 + 10$

= 40 pupils

EVALUATION EXERCISE

- 1. In a class of 25 pupils, 15 like fish (F), and 18 like beans (B).
 - a) Show this on a Venn diagram.
 - b) Find; (i) n(FnB) (ii) n(F) only (iii) n(B) only
 - c) How many pupils like only one type of food?
- 2. If n(x) = 15, n(y) = 20, n(xuy) = 35, $n(xuy)^{1} = 10$.
 - a) Represent this information on a Venn diagram.
 - b) Find the number of element in
 - (i) xny
 - (ii) set x only
 - (iii) set y only
- 3. There are 75 members in a group of which 45 like debate (D), 40 like music (M), 15 like none of the two subjects while some like both.
 - a) Put this on the Venn diagram.
 - b) How many members like both subjects.
- 4. In a class, 16 pupils belong to a MTC club, (M), 20 belong to a debate club (D), 4 don't belong to any and 10 belong to both clubs.
 - a) Put this on the Venn diagram.
 - b) How many pupils are in the class altogether?

c) Find the number of pupils who belong to at least one club.

Answers

1. a)

$$n(\in) = 25$$

- b) (i) FnB = 8 pupils
- (ii) F only = $\frac{7 \text{ pupils}}{1 \text{ pupils}}$
- (iii) B only = $\underline{10 \text{ pupils}}$
- c) only one = $\underline{17 \text{ pupils}}$
- 2. (a) Venn diagram

- b) (i) Xny = 10 elements
- (ii) set x only = 5 elements
- (iii) y only = 10 elements

$$n(\in) = 75$$

- b) K = 25 members
- 4. a) Venn diagram

$$n(\in) = ?$$

- b) $n(\underline{\epsilon}) = 30 \text{ pupils}$
- c) at least one = 26 pupils

	DATE	CLASS	TIME	SUBJECT	No. OF PUPILS
		P.7		MTC	

8. TOPIC

SUB-TOPIC

MORE ABOUT APPLICATION OF SETS

1. Study the venn diagram below carefully

- a) Find the value of P
- b) How many members are in set m?
- c) Calculate n(E) '
- 2. In a class of 30 members, 15 ate chicken(C) on Easter, y ate meat (M), 5 ate both meat and chicken, while 4 of them ate neither.
- a) Complete the venn diagram below

- b) Find the value of y.
- c) Find the probability of selecting a member who ate chicken only.

		DATE	CLASS	TIME	SUBJECT	No. OF PUPILS	
			P.7		MTC		
9.	TOPIC	MORE ABOUT APPLICATION OF SETS					
	SUB-TOPIC	1. In a class of 40 pup	ils, 21 pupils	play football (F) only	, 15 pupils pla	ty Volley ball (V)	
		only and K pupils	only and K pupils play both games. a) Use the information to complete the venn diagram below				
		a) Use the informa					
		n(∈) = 40					
		V= F=	_				
		/ _K					
			_				
		b) Find K					
		c) Find the probab	ility of pickir	g a team captain who	plays Volly b	all.	
		2. At Nankinga Junior	School, there	are 215 pupils, 130 p	upils eat Rice	(R), 15 eat both	
		rice and posho; 75 e	at only posho	(P) while x eat none	of the two.		
		a) Complete the ve					
		n(∈) = 215					
		n(R)= $n(R)$	P)=				
		15					
		$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$					
		b) How many pupi	ls eat none of	the foods?			
		c) Find the number					
	REMARKS			-			

		DATE	CLASS	TIME	SUBJECT	No. OF PUPILS	
			P.7		MTC		
10	TOPIC	SET CONCEPTS					
	SUB-TOPIC	FINITE AND INFINITE SETS					
		Concepts:					
		1. A finite set is a set whose members can be listed.					
		<u>Note</u>					
		Finite means having an e					
		2. An infinite set is that who	ose elements	cannot be listed.			
		Note					
		Infinite means having no	end.				
		<u>Examples</u>					
		State whether it is finite of	or infinite se	ts.			
		1. If $A = \{a, b, c, d, e\}$					
		Soln					
		$A = \underline{5 \text{ members}}$					
		:. Set A is a finite set.					
		2. A set B = {counting men	nbers}				
		Soln					
		Set B = $\{1, 2, 3, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,$	/, 8, 9,	}			
		Set B = infinite set.					
	EVALUATION	EXERCISE Which of the full aming acts of	6:4	: <i>C</i> ::4			
		Which of the following sets a		infinite.			
		 The set of English Alpha The set of all pupils in P. 					
		3. The set of $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$,					
		4. The set of even numbers		nd 100.			
		5. The set of all whole num					
		6. The set of all people in U	Jganda.				
		7. The set of all integers.					
		8. Give two infinite sets.					
		Answers					
		1. Finite set.					
		2. Finite set.					
		3. <u>Infinite set.</u>					

		4. Finite set.
		5. <u>Infinite set.</u>
		6. Finite set.
		7. <u>Infinite set.</u>
		8. (i) A set of even numbers (n) A set of prime numbers
	REMARKS	o. (1) 11 bet of even numbers (ii) 11 bet of prime numbers
11	TOPIC	SET CONCEPTS
11	SUB-TOPIC	SETS ON A NUMBER LINE
	SUB-TOPIC	
		Concepts: 1. We use the word "interval" when representing sets on a number line
		1. We use the word " <u>interval</u> " when representing sets on a number line.
		2. <u>Interval</u> means parts of a line or a line segment.
		3. Different meanings of brackets.
		(a) [] represent elements from the first to the last in given as set e.g
		$[1,5] = \{(1),2,3,4,(5)\}$
		(b) X X X X X X
		0 1 2 3 4 5 6 7
		() represents elements between the first and the last given in a set.
		e.g $(1,5) = \{2,3,4\}$
		(c) X X X
		1 2 3 4 5 6 7 8
		[) represents elements in a given set where the last is not included.
		e.g $[1, 5) = \{(1), 2, 3, 4\}$
		d) • X X X X + + + + + + + + + + + + + + +
		0 1 2 3 4 5 6 7
		(] represents elements in a given set where the first is not included
		e.g (] = $\{2, 3, 4, (5)\}$
		-1 0 1 2 3 4 5 6 7 8

EVALUATAION	<u>EXERCISE</u>
	1. <u>List the elements of the following sets and show each on a number line</u>
	(a) [1, 4]
	(b) (2, 6)
	(c) [1,7)
	(d) (2, 6]
	2. List the elements of the following sets.
	(a) [2, 4] U [1, 5]
	(b) (2, 5) n (3, 7)
	(c) [-5, 3]
	(d) [-2, 8)
	<u>Answers</u>
	1. $a = \{1, 2, 3, 4\}$
	$b. = \{3, 4, 5\}$
	$c. = \{1, 2, 3, 4, 5, 6\}$
	$d. = \{3, 4, 5, 6\}$
	2. $a = \{1, 2, 3, 4, 5\}$
	$b. = \{4\}$
	c. = (-5, -4, -3, -2, -1, 0, 1, 2, 3)
	$d. = \{-2, -1, 0, 1, 2, 3, 4, 5, 6, 7\}$
REMARKS	

PROBABILITY

DICE

- 1. If a dice is tossed once, what is the probability of having the following on top;
 - a) Composite number?
 - b) Even number?
 - c) Odd number?
 - d) Square number?
 - e) Cube number?

- f) Triangular number?
- g) Number less than 5?
- h) Multiple of 3?
- i) Number?

Note: A dice has 6 faces numbered from one to six

- 2. In a bag, there are six oranges and four lemons. What is the probability of picking the following from the bad;
 - a) An orange?
 - b) A lemon?
 - c) A mango?
 - d) An orange and a lemon?
- 3. In a factory of 192 smart phones, the probability of picking a brown smart phone is $\frac{2}{3}$. How many black smart phones are there?

2. NUMERATION SYSTEMS AND PLACE VALUE

		DATE	CLASS	TIME	SUBJECT	No. OF PUPILS	
			P.7		MTC		
1	TOPIC	WHOLE NUMBER	RS	1	1		
	SUB-TOPIC	IDENTIFYING MA	AIN PLACE VALU	JES			
		Concepts:					
		1. A digit on the lef	1. A digit on the left is ten times greater than that on it's right.				
		2. In a place value to	table, the number is	read from the ri	ght to the left i.e		
		Example.					
		In the number 35689	24 there are;				
		4 Ones	$= 4 \times 1$				
		2 Tens	$= 2 \times 10$				
		9 Hundreds	$= 9 \times 100$				
		8 Thousands	$= 8 \times 1000$				
		6 Ten thousands	$= 6 \times 10,000$				
		5 Hundred thousands	$s = 5 \times 1,000,000$				
		3 millions	$= 3 \times 1,000,000$				

	FORMING NUMBERS FROM DIGITS						
	<u>Concepts</u>						
	a) Re-arrange the digits in the order given.						
	Examples.						
	Given the digits 5, 1, 2, 4, 3. / Digits with a zero						
	Form the:						
	a) The largest number.						
	b) The smallest number.						
	Soln						
	a) Digits $= 5, 1, 2, 4, 3$						
	Largest $= 5, 4, 3, 2, 1$						
	Largest number = $\underline{54,321}$						
	<u>Soln</u>						
	b) Digits = 5, 1, 2, 4, 3						
	Smallest = $1, 2, 3, 4, 5$						
	Smallest number = $\underline{12,345}$						
EVALUATION	EXERCISE						
	1. Given the number 94567201						
	How many						
	a) Tens are there?						
	b) Millions are there?						
	c) Ten thousands are there?						
	d) Ones are there?						
	e) Ten millions are there?						
	2. From the above number, find the position of the following digits						
	a) 9						
	b) 6						
	c) 2						
	3. From the digits below						
	2, 9, 3, 7, 5						
	From the following numbers						
	(i) Smallest						
	(ii) Biggest						
	(iii) What is the difference between the biggest and smallest numbers formed above?						

Answers

1. (a) 0 Tens
(b) 4 Millions
(c) 6 Ten thousands
(d) 1 Ones
(e) 9 Ten millions
2. (a) Eighth (8 th) position
(b) Fifth (5 th) position
(c) Third (3 rd) position
3. (i) $\underline{23.579} \rightarrow$ Smallest
(ii) <u>97532</u> → Biggest
(iii) <u>73953</u> → Difference

	REMARKS					
		DATE	CLASS	TIME	SUBJECT	No. OF PUPILS
			P.7		MTC	
3	TOPIC	WHOLE NUMBER	RS	<u> </u>		
	SUB-TOPIC	WRITING WORD	S IN FIGURES			
		Concepts:				
		1. Identify and grou	up the problem into	the 3 main place	e values i.e millions,	thousands and
		ones.				
		<u>Examples</u>				
		1. Write in figures	"fifty seven millions	s, four hundred t	twenty one thousand,	nine hundred five.
		Soln				
		Fifty seven / fou	r hundred twenty on	e thousand/nine	hundred five	
		57,000,000 /	421,000	9	005	
		57,000,000				
		+ 421,000				
		905				
		<u>57,421,905</u>				
		Concepts:				
		a) Group the numb	er into 3 main place	values by count	ting 3 digits from the	right.
		Examples.				
		Write 82, 057, 607 in	n words			
		Soln				

	82, 057, 607
	Millions Thousands Units
	82 057 607
	= Eighty two million fifty seven thousand, six hundred seven.
EVALUATION	EXERCISE
	1. Write in figures;
	(a) Seventy nine.
	(b) Eighty hundred fourteen.
	(c) Nine thousand eight.
	(d) Thirty three thousand, thirty three.
	(e) Four million seventy two.
	(f) Eight hundred seven million, four hundred two thousand, fourty two.
	2. Write in words;
	a) 19
	b) 202
	c) 10101
	d) 204509
	e) 9876543
	f) 123345678
	g) 987654321
	Answers:
	1. a) <u>79</u>
	b) <u>814</u>
	c) <u>9,008</u>
	d) <u>33,033</u>
	e) <u>4,000,072</u>
	f) <u>807,402,042</u>
	2. a) Nineteen.
	b) <u>Two hundred two.</u>
	c) <u>Ten thousand, one hundred one</u> .
	d) Two hundred thousand, five hundred nine.
	e) Nine million, eight hundred seventy six thousand, five hundred forty three.
	(f) Twelve million, three hundred forty five thousand, six hundred seventy eight.
	(g) Nine hundred eighty seven million, six hundred fifty four thousand, three hundred
	twenty one.

REMARKS					
	DATE	CLASS	TIME	SUBJECT	NO. OF PUPILS
		P.7		MTC	
TOPIC	WHOLE NUMBERS				
SUB-TOPIC	IDENTIFYING PLAC	CE VALUES			
	Concepts: 4 6 7 8 9 5 8				
	4 6 7 8 9 5 8	— Ones			
		—— Tens			
		Hundreds			
		Thousands Ten thousan	u da		
		—— Hundred th			
			iousaiius		
		Millions			
	i) 4531j) 1035k) 19836				
	1) 25183				
		value of the unde	erlined digits in t	the numbers given be	elow
	j) 89 <u>3</u> 1		-	-	
	k) <u>5</u> 963				
	1) 98340				
	m) 156 <u>3</u> 7				
	n) 1 <u>4 3</u> 8 8				
REMARKS					

		DATE	CLASS	TIME	SUBJECT	No. OF PUPILS	
			P.7		MTC		
4.	TOPIC						
	SUB-TOPIC	WHOLE NUMBERS					
		ROMAN NUMERALS					
		Concepts:					
		a) Identify the major Roman	n numerals.				
		b) Identify the groups of Ro	man numera	als.			
		c) Expand then write each is	n Hindu or I	Roman form.			
		1. BASIC ROMAN NUME	RALS				
		<u>HINDUROMAN</u>					
		1	→ 1				
		5	→ V				
		10 —	→ X				
		50	→ L				
		100	→ C				
		500	→ D				
		1000	→ M				
		2. Groups of ROMAN NUMERALS					
		a) Repeated – one number r	enants itsalf				
		2 = 1+1	epeats itself	•			
		= 11					
		20 = 10+10					
		= <u>XX</u>					
		200 = 100+100					
		= <u>CC</u>					
		3 = 1+1+1					
		= <u>III</u>					
		30 = 10+10+10					
		$= \underline{XXX}$					
		300 = 100+100+100	0				
		= <u>CCC</u>					

$$6 = 5+1$$

$$= VI$$

$$60 = 50+10$$

$$= LX$$

$$600 = 500 + 100$$

$$7 = \%+2$$

$$= VII$$

$$70 = 50+20$$

$$= LXX$$

$$700 = 500+200$$

$$= \underline{DCC}$$

$$8 = 5+3$$

$$= VIII$$

$$80 = 50+30$$

$$= LXXX$$

$$800 = 500 + 300$$

$$= \underline{DCCC}$$

c) <u>Subtraction:</u> minor subtracted from the major / minor comes before the major.

$$4 = 5-1$$

$$=$$
 IV

$$40 = 50-10$$

$$= \underline{XL}$$

$$400 = 500-10$$

$$= CD$$

$$9 = 10-1$$

$$= \underline{IX}$$

$$= \underline{XC}$$

$$900 = 1000 - 100$$

$$= \underline{CM}$$

Conversions

a) HINDU TO ROMAN

Concepts:

- Expand in value form.
- Write each expanded in Roman form.
- Write a bar on top which means multiply by 1000.

e.g

1. Write in Romans 1962

Soln

1962 = 1000 + 900 + 60 + 2

1962 = M+CM+LX+II

 $\therefore 1962 = \underline{MCMLXII}$

2. What is 6000 in Romans?

Soln

 $6000 = 6 \times 1000$

= VI

b) ROMANS TO HINDU ARABIC

Concepts:

- (i) Expand in Roman form.
- (ii) Write each expanded in Hindu-Arabic

Eg.

(i) Write CXCV in Hindu – form.

Soln 100

$$CXCV = C + XC + V$$
 90
 $= 100 + 90 + 5$ 5
 $= 195 - 195$

(ii) Write XV in Hindu-Arabic form

Soln

$$XV = XV \times 100$$

= 15 x 1000
= 15,000

EVALUATION	EXERCISE
	1. Write in Roman form;
	a) 9
	b) 18
	c) 27
	d) 84
	e) 105
	f) 404
	g) 777
	h) 1062
	i) 2347
	j) 45000
	2. Write in Hindu-Arabic system.
	a) VIII
	b) XII
	c) XXXIX
	d) XCIX
	e) DCII
	f) CMLXXXIV
	g) MCDXLIX
	h) IV
	i) LVI
	j) CD
	Answers 1. a) IX
	b) <u>XVIII</u>
	c) <u>XXVII</u>
	d) <u>LXXXIV</u> e) <u>CV</u>
	f) <u>CDIV</u>
	g) <u>DCCLXXVII</u> h) <u>MMCCCXLVII</u>
	i) <u>MLXII</u>
	j) <u>XLV</u> 2. a) <u>8</u>
	b) <u>12</u>
	c) <u>39</u> d) <u>99</u>
	e) <u>602</u>
	f) <u>984</u>
	g) <u>1449</u> h) <u>4,000</u>
	i) <u>56,000</u>
	j) <u>400,000</u>

REMARKS					
	DATE	CLASS	TIME	SUBJECT	No. OF PUPILS
		P.7		MTC	

TOPIC

SUB-TOPIC

MORE ABOUT ROMAN NUMERALS

1. Read and write down the time on each of the clock faces below in Hindu Arabic

2. Romeo delivers grapes to a factory near his farm every week on Tuesday. The following is a record of the masses of grapes he delivered in five weeks. Read the table then answer the questions below i. e.

1 st week	2 nd week	3 rd week	4 th week	5 th week
CCLX	CCXC	CCCV	CCCXLIX	CDII

- a) How many kg of grapes did he deliver in the
 - 1st week
 - 2nd week
 - 3rd week
 - 4th week
 - 5th week
- b) Which week did he deliver the most grapes?
- c) Write true or false. From 1st week to 5th week, the amount of grapes he delivered was decreasing.
- d) Explain your answer for part (C)

TOPIC	WHOLE NUMBERS					
SUB-TOPIC	ROUNDING OFF					
	Concepts:					
	a) Borrow if the digit to the right of the required place is greater than 5 (5, 6, 7, 8, 9)					
	b) Borrow 0 if the digit to the right is less than 5 (0,1, 2, 3, 4).					
	c) Never include the zero's if the number is a decimal.					
	Examples:					
	1. Round off 43256 to the nearest ten thousand.					
	Soln					
	43256					
	43256					
	+ 0					
	<u>:. 43256 ≅ 40000</u>					
	2. <u>DECIMAL</u>					
	- Remove all the digits after the required place value then form a common fraction.					
	- If the fraction is greater than half, borrow 1 but if it's less than half borrow O.					
	- Round off 21. 267998 to the nearest ten thousandths.					
	Soln					
	21. 267998					
	$21.\ 267998\ =\ 0$					
	21.2679 = 98 = 1					
	100 2					
	21. 2679					
	<u>+ 1</u>					
	<u>:. 21.267998 ≅ 21.2680</u>					
EVALUATION	EXERCISE					
	1. Write / Round off as instructed.					
	a) 23 (tens)					
	b) 1254 (Hundreds)					
	c) 96702 (Thousands)					
l						

 1					
	d) 234567 (Ten thousar	nds)			
	e) 4208007 (Millions)				
	2. a). 6.73 (tenths)				
	b) 12.998 (hundredths)				
	c) 9.26782 (whole number)				
	d) 39.245376 (thousands)				
	e) 239.8967432 (millionths)				
	Answers:				
	1 a) <u>20</u>				
	b) <u>1,300</u>				
	c) <u>97000</u>				
	d) <u>230000</u>				
	e) <u>4000000</u>				
	2. a) <u>6.7</u>				
	b) <u>13.00</u>				
	c) <u>10</u>				
	d) <u>39.245</u>				
	e) <u>239.896743</u>				
REMARKS					
	DATE	CLASS	TIME	SUBJECT	No. OF PUPILS
		P.7		MTC	
TOPIC	WHOLE NUMBERS				
SUB-TOPIC	DECIMALS IN WORDS AND FIGURES				
	Concepts:				
	1. Group the number into wholes and decimals.				
	2. Give the place value of the last decimal.				
	Examples				
	1. Write 125.678 in words				
i .	•				

		f) Nine thousandth	s.			
		2. a) <u>0.1</u>	_			
		b) <u>3.8</u>				
		c) <u>70.005</u>				
		d) <u>105 . 028</u>				
		e) <u>5.0004</u>				
	REMARKS					
		DATE	CLASS	TIME	SUBJECT	No. OF PUPILS
			P.7		MTC	
6.	TOPIC	WHOLE NUMBERS	,	1	,	
	SUB-TOPIC	CONVERSATION IN	N DECIMALS			
		Concepts:				
		1. The number of zero	oes in the denomin	nator is equal to	the number of decim	al places and vice
		versa.				
		a) Write $\frac{2}{100}$ as a d	lecimal			
			ecimai.			
		Soln				
		2 zeroes = 2 c				
		$\underline{002} = \underline{0.0}$	02			
		100				
		b) Write $3^4/_{10}$ as a d	ecimal			
		Soln				
		$3^4/_{10} = (3 \times 10) + 4$				
		10				
		= 30+4				
		10				
		= <u>34</u>				
		10				
		$3^4/_{10} = 3.4$				
		, 10	-			

c) Write 0.02 as a common fraction. Soln 0.02 = 0.02 $= 0.02 \times 100$ 1 x 100 = <u>2</u> 100 d) Express 3.05 as a common fraction Soln 3.05 = 3.05 $= 3.05 \times 100$ 1 x 100 = 305100 OR $3^{5}/_{100}$ **EXERCISE EVALUATION** 1. Express as decimals; a) $^{3}/_{10}$ b) $1^{1}/_{10}$ c) $^{4}/_{100}$ e) $\frac{125}{100}$

	1. A base is a system in wh	nich a numbe	er operates / works	S.	
SUB-TOPIC	BASES Concepts:				
TOPIC	WHOLE NUMBERS				
		P.7		MTC	
	DATE	CLASS	TIME	SUBJECT	No. OF PUPILS
REMARKS					
	e) ¹²⁵ / ₁₀₀₀				
	d) ¹²⁵ / ₁₀₀				
	c) ⁵ / ₁₀₀				
	b) ²⁵ / ₁₀₀				
	$2. a)^{2}/_{100}$				
	e) 1.25				
	d) 4.5				
	c) 0.04				
	1. a) 0.3 b) 1.1				
	Answers				
	3, 3.3.2.3				
	d) 1.25 e) 0.125				
	c) 0.05				
	b) 2.5				
	a) 0.2				
	2. Write as common fraction	ons;			

2.

	Base	Name	Digits
1	Two	Binary	= {0, 1}
2	Three	Ternary	= {0, 1, 2}
3	Four	Quarterly	= {0, 1, 2, 3}
4	Five	Quaternary	= {0, 1, 2, 3, 4}
5	Six	Senary	$= \{0, 1, 2, 3, 4, 5\}$
6	Seven	Septenary / Heptenary	= {0, 1, 2, 3, 4, 5, 6}
7	Eight	Octal	= {0, 1, 2, 3, 4, 5, 6, 7}
8	Nine	Nonary	= {0, 1, 2, 3, 4, 5, 6, 7, 8}
9	Ten	Denary / Decimal	
		Ordinary / mother	$= \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

CONVERSIONS:

a) TO BASE TEN

Concepts:

- Give the number the powers.
- Expand the number in the given base.
- Express each bracket in multiplication form.
- Get the value of each bracket then add.

Examples:

1. Express 1010_{two} in base ten.

Soln

$$1010_{two}\ =\ 1010$$

$$1010_{\text{two}} = (1 \text{ x } 2) + (0\text{x2}) + (1\text{x2}) + (0\text{x2})$$

$$1010_{\text{two}} = (1x2x2x2) + (0+2x2) + (1x2) + (0x1)$$

$$1010_{\text{two}} = 8 + 0 + 2 + 0$$

$$1010_{\text{two}} = 10 \text{ten}$$

2. Convert 103_{four} to decimal base

Soln

b) FROM BASE TEN TO ANY BASE.

Concepts.

- Divide the number in base ten by the required base only till the result is less than that base.
- Record the remainders from the bottom upwards as the answer (required base).

Examples

1. Convert 33 to binary system.

$$33_{\text{ten}} = 100001_{\text{two}}$$

= 4 groups of 2 rem. 0

OR

 $8_{\rm ten}$

	4 (11)(11)
	$4_{\text{ten}} = (11)(11)$
	= 2 groups of 2 rem.0
	$2_{\text{ten}} = (11)$
	= 1 group of 2 rem.0
	$:.33_{\text{ten}} = 100001_{\text{two}}$
EVALUATION	EXERCISE
	1. Convert the following to base ten;
	$a)$ 10_{ten}
	b) 21 _{three}
	c) 101 _{two}
	d) 240 _{five}
	e) 10110t _{wo}
	f) 33 _{six}
	2. Change the following into the base instructed in brackets;
	a) 9 _{ten} to base two
	b) 13_{ten} (Ternary)
	c) 15 _{ten} (Quinary)
	d) 30_{ten} (Senary)
	e) 24 _{ten} (Quarternary)
	f) 18 _{ten} (two)
	<u>Answers</u>
	1. a) <u>2_{ten}</u>
	b) <u>7_{ten}</u>
	c) <u>5_{ten}</u>
	d) <u>70_{ten}</u>
	e) <u>22ten</u>
	f) <u>21_{ten}</u>
	2. a) 1001 _{two}
	b) 111 _{three}
	c) 30_{five}
	d) 50 _{six}
	e) 120 _{four}
	f) 10010 _{two}
 1	

REMARKS					
	DATE	CLASS	TIME	SUBJECT	No. OF PUPILS
		P.7		MTC	
TOPIC	WHOLE NUMBERS			I	L
SUB-TOPIC	EXPANDED BASE:				
	Concepts:				
	a) Get the expanded num	common base used.			
	<u>Example</u>				
	1. What number has been	n expanded to	give $(1x2^3) + (0x^2)$	$(x2^2) + (0x2^1) + (1x2^0)$)?
	Soln				
	$= (1x2^3) + (0x2^2) + (0x^2)$	$(x2^1) + (1x2^0)$			
	= (1x2x2x2) + (0x2x2))+(0x2)+(1x)	x 1)		
	= 8 + 0 + 0 + 1				
	= 9 _{ten}				
	Common base = 2				
	$9_{\text{ten}} = \underline{\text{Base} \mid 1}$	NO. Rem			
	<u>2 9 R</u>				
	<u>2 4 1</u>				
	2 2 0				
		1 0			
	:. Expanded base = 1	1 <u>001_{two}</u>			
EVALUATION	<u>EXERCISE</u>				
	1. What base / number h	as been expan	ded to give;		
	a) $(1x2^3) + (1x2^2) + (0x2^1) + (0x2^0)$?				
	b) $(2x3^2) + (1x3^1) +$	$(0x3^0)$?			
	c) $(1x4^2) + (1x4^1) +$	$(1x4^0)$?			
	d) $(1x2^4) + (0x2^3) +$	$(1x2^2) + (0x2^1)$	$+(1x2^{0})$?		
	e) $(3x5^3) + (2x5^2) +$	$(1x5^1) + (0x5^0)$)?		
	f) $(1x6^1) + (1x6^0)$?				
	a) (i) <u>12_{ten}</u>				
1	(ii) <u>1100_{two}</u>				
1					
	b) (i) <u>21_{ten}</u>				

_		(**) 210				
		(ii) 210 _{three}				
		c) (i) <u>21_{ten}</u>				
		(ii) 111 _{four}				
		(11) <u>III lour</u>				
		d) (i) <u>21_{ten}</u>				
		(ii) <u>11101_{two}</u>				
		e) (i) <u>430_{ten}</u>				
		(ii) <u>3210_{five}</u>				
		f) (i) <u>7_{ten}</u>				
		(ii) <u>11_{six}</u>				
	REMARKS	() <u></u>				
		DATE	CLASS	TIME	SUBJECT	No. OF PUPILS
			P.7		MTC	
F	TOPIC	WHOLE NUMBERS	S			
	SUB-TOPIC	OPERATION IN BA	ASES:			
		<u>Concepts</u>				
		1. Addition				
		Concepts				
		- The sum must be	less than the base u	sed.		
		- If the sum is more	than the used base	e, divide it by the	at base, record the rea	minder and carry
		the full units.				
		<u>E.g</u>				
		- Add. 101 _{two} + 1	111_{two}			
		Soln				
		$101_{\rm two}$				
		+ <u>111_{two}</u>				
		1100 _{two_}				
		2. <u>Subtraction</u>				
		Concepts:				
		- If the problem is i	mpossible, borrow	the base units u	sed and add then sub	tract.
		e.g				
	1	1				

3. Multiplication

concepts:

- The product must be less than the base.
- If the product is more than the base, divide by that base, record the reminder first then carry the full unit.

Eg.

Multiply: 123_{four} x 23_{four}

Soln

22

 123_{four}

x 23_{four}

1101

+ 3120

10221_{four}

4. <u>Division</u>

Concepts:

- First change all the numbers to base ten.
- Change the answer to the required base.

e.g

Divide $204_{\text{five}} \div 14_{\text{five}}$

Soln

$$204 \div 14_{five} = (2x5^{2}) + (0x5^{1}) + (4x5^{0}) \div (1 x5^{1}) + (4x5^{0})$$

$$= (2x5x5) + (0x5) + (4x1) \div (1x5) + (4x1)$$

$$= (2x25) + 0 + 4 \div 5 + 4$$

$$= 54 \div 9$$

$$= 6_{ten}$$

Required base = 5

b)
$$6 ten = \underline{Base}$$
 No Rem
$$\underline{5} \quad \underline{6} \quad \underline{R}$$

:. $204 \text{ five } \div 14 \text{ five } = 11 \text{ five.}$

EVALUATION

EXERCISE

1. Work out:

$$+$$
 $\frac{3}{4}$ $\frac{4}{3}$ $\frac{3}{5}$ $\frac{1}{100}$

2. Simplify:

c) Subtract 3 4 5_{six} from 4 3 1_{seven} and give your answer in base eight.

Work out:

- 3. a) 121_{three} x 2_{three}
 - $24_{six} \times 32_{six}$ b)
 - 64_{eight} x 24_{eight} and give your answer in a base nine.
- 4. Divide:
 - a) $144_{\text{five}} \div 12_{\text{five}}$
 - b) $231_{six} \div 21_{six}$
 - c) $103_{\text{nine}} \div 15_{\text{nine}}$ answer in base five.

Answers

- 1. a) $\underline{1022_{\text{five}}}$ b) $\underline{1111_{\text{three}}}$ c) $\underline{5252_{\text{seven}}}$

- 2. a) 103_{four}
 - b) <u>204_{five}</u>
 - c) (i) $345_{six} = 137_{ten}$
 - (ii) $431_{\text{seven}} = \underline{218}_{\text{ten}}$
 - difference = 081_{ten} (iii)

	(iv) $081 \text{ten} = 121$				
	(IV) 001tcm - <u>121</u>	eight			
	3. a) 1012 _{three}				
	b) (i) 1152 _{six} (ii)	1520 .			
		1320 _{nine}			
	4. a) (i) Quotient = $\frac{7}{\text{ten}}$				
	(ii) $7_{\text{ten}} = \underline{12_{\text{five}}}$				
	b) (i) Quotient = $\frac{7}{\text{ten}}$ (ii) $7_{\text{ten}} = \frac{11_{\text{ten}}}{}$				
	c) (i) Quotient = $\underline{6}_{ten}$				
	(ii) $6_{\text{ten}} = \underline{11}_{\text{five}}$				
REMARKS					
REMARKS	DATE	CLASS	TIME	SUBJECT	No. OF PUPILS
	DATE	P.7	TINIE	MTC	No. OF FUFILS
TODIC	WHOLE NUMBERS	Γ./		MIC	
TOPIC SUB-TOPIC	WHOLE NUMBERS	MANI DACEC			
SUB-TOPIC	SOLVING FOR UNKNO	WN BASES			
	Concepts:	a ta baga tan			
	 Change eache base/sid Collect like terms and 				
		sorve.			
	$\frac{\underline{E}.\underline{g}}{\text{Solve for K}: K^2 = 71_{\text{nine}}}$				
	Soln				
	$K^2 = 71^0_{\text{nine}}$				
	$K^2 = (7 \times 9^1) + (1 \times 9^0)$				
	$K^2 = (7 \times 9) + (1 \times 1)$				
	$K^2 = 63 + 1$				
	$K^2 = 64$				
	$\sqrt{K^2} = \sqrt{64}$				
	$\sqrt{K^2} = \sqrt{(2x^2)} \times (2x^2) \times (2x^2)$	22)			
		2x2)			
	$\sqrt{K^2} = \sqrt{2^2 \times 2^2 \times 2^2}$				
	$K = 2 \times 2 \times 2$				
	:. K = 8				
	The used base in eight.				

EVALUATION

EXERCISE

Solve for the unknown bases below;

1.
$$44p = 35_{\text{nine}}$$

2.
$$23_x = 19_{ten}$$

3.
$$55_n = 43_{eight}$$

4.
$$112_{\text{three}} = 22_{x}$$

5.
$$31_y = 221_{three}$$

6.
$$P^2 = 54_{nine}$$

7.
$$213_{\text{six}} = 100_{\text{n}}$$

8.
$$P^3 = 121_{seven}$$

9.
$$n^2 + n^2 = 112_{five}$$

10.
$$n + 3_{five} = 2_{five}$$

11.
$$p-5 s_{ix} = 4 s_{ix}$$

12.
$$2n_{six} = 15_{ten}$$

Answers

1.
$$p = 7$$

2.
$$x = 8$$

3.
$$n = 6$$

4.
$$x = 6$$

5.
$$y = 8$$

6.
$$p = 7$$

7.
$$n = 9$$

8.
$$p = 8$$

9.
$$n = 4$$

	DATE	CLASS	TIME	SUBJECT	No. OF PUPILS
		P.7		MTC	

TOPIC

OPERATION ON WHOLE NUMBERS

SUB-TOPIC NUMBER SYSTEMS

Concepts:

- Number systems are the different types of numbers we use.

Examples

1. Natural numbers

These are the same as counting numbers and they begin from 1.

If $m = \{\text{counting numbers less than 5}\}\$

Soln

 $M = \{1, 2, 3, 4\}$

2. Whole numbers

These are numbers which start from zero.

 $X = \{ \text{whole numbers greater than 5 but less than 10} \}$

Soln

$$X = \{6, 7, 8, 9\}$$

3. Even numbers

These are whole numbers which are completely divisible by 2.

Note

How are even numbers obtained?

Concepts

a) When a whole number is multiplied by 2/ doubled you get an even number

Eg

$$0 \times 2 = 0$$

$$0 \times 2 = \underline{0}$$
 $2 \times 2 = \underline{4}$ $4 \times 2 = \underline{8}$

$$4 \times 2 = 8$$

$$1 \times 2 = 2$$

$$3 \times 2 = 6$$

$$1 \times 2 = \underline{2}$$
 $3 \times 2 = \underline{6}$ $5 \times 2 = \underline{10}$

Order of even numbers = $\{0, 2, 4, 6, 8, 10, \dots \}$

b) When any two even numbers are added, the result is an even number.

$$Eg.2 + 4 = 6$$

$$0 + 8 = 8$$

c) When any two even numbers are multiplied, the result is an even number.

$$Ox6 = 0$$

$$2 \times 8 = 16$$

NB formular for even numbers = "2n"

4. Odd numbers

These are whole numbers which are not completely divisible by 2.

Note:

How do we get odd numbers?

a) When a whole number is multiplied by 2 then add 1 to the result, you get an odd number.

OR add 1 to an even number

Formular =
$$\underline{\text{"2n} + 1\text{"}}$$

e.g.
$$(0x2) + 1 = \underline{1}$$

$$(1x2) + 1 = 3$$

$$(2x2) + 1 = 5$$

Order of odd numbers = $\{1, 3, 5, 7, 9, \dots \}$

b) When any two odd numbers are multiplied, the result is <u>an odd number.</u>

Eg.
$$1x3 = \underline{3}$$

 $3x5 = \underline{15}$
 $5x7 = \underline{35}$

c) When any odd number is added to any even number, the result is <u>an odd number</u>.

Eg.
$$1+2 = 3$$

 $2+3 = 5$
 $4+5 = 9$

Note:

❖ When any odd number is subtracted from any odd number, the result is <u>an even number</u>.

Eg.
$$0x1 = \underline{0}$$
$$2x3 = \underline{6}$$
$$5x4 = 20$$

❖ When any odd number is subtracted from any odd number, the result is <u>an even number</u>.

Eg.
$$3-1 = \underline{2}$$

 $7-3 = \underline{4}$
 $15-7 = 8$

5. Prime numbers:

These are numbers which have only 2 factors ie one and itself.

- Order of prime numbers = $\{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, \dots\}$
- 6. Composite number.

These are numbers with more than two factors. (opposite of prime numbers) order of composite numbers = $\{4, 6, 8, 9, 10, 12, 14, 15, 16, \dots\}$

- 7. Square numbers:
- These are numbers got by multiplying a number by itself / squaring a number.

e.g
$$1^2 = 1x1 = \underline{1}$$

 $2^2 = 2x2 = \underline{4}$
 $3^2 = 3x3 = 9$

- Square numbers are also got by adding consecutive odd numbers from 1.

e.g
$$1 = 1$$

 $1+3 = 4$
 $1+3+5 = 9$
 $1+3+5+7 = 16$

- Order of square numbers = $\{1, 4, 9, 16, \dots \}$

8. Triangular numbers:

These numbers are got by adding consecutive counting numbers from 1.

Eg
$$1 = \underline{1}$$

 $1+2 = \underline{3}$
 $1+2+3 = \underline{6}$
 $1+2+3+4 = \underline{10}$
 $1+2+3+5 = \underline{15}$

- Order of triangular numbers = {1, 3, 6, 10, 15,}

9. Cube numbers

These are numbers obtained by multiplying counting number by itself three times / cubing a number.

Eg.
$$1^3 = 1x1x1 = \underline{1}$$

 $2^3 = 2x2x2 = \underline{8}$
 $3^3 = 3x3x3 = \underline{27}$
 $4^3 = 4x4x4 = \underline{64}$

- Order of cube number = $\{1, 8, 27, 64, \dots \}$

10. Integers:

These are a combination of negatives, positives with zero.

11. Rational numbers:

These are numbers which can be written as fractions / they are the same as fractions e.g = $\{\frac{1}{2}, \frac{2}{9}, \frac{3}{4}, \dots \dots \}$

EVALUATION

EXERCISE

- 1. State the difference between whole and natural numbers.
- 2. What is the first?
- a) Whole number?
- b) Natural number?
- c) Even number?
- d) Odd number?
- e) Prime number?
- f) Composite number?
- g) Square number?
- h) Triangular number?

		i) Cube number?					
		3. a) Using the formular <u>"2n"</u> , work out and list a set of any 5 even numbers.					
		b) using the formular "2n", work out and list a set of any 5 odd numbers.					
		a) By squaring a number, work out and list a set of numbers greater than 9 but less than					
		100.					
		b) By adding consecutive odd numbers from 1, work out and list a set of number from 25 to					
		100.					
		c) By adding consecutive counting numbers from 1, workout and list a set of numbers from					
		21 to 55.					
		d) Finally, by cubing any number, workout and list a set of numbers from 125 to 512.					
		<u>Answers</u>					
		1. Whole numbers start from 0 while natural numbers start from 1.					
		2. a) $\underline{0}$ b) $\underline{1}$ c) $\underline{0}$ d) $\underline{1}$ e) $\underline{2}$ f) $\underline{4}$ g) $\underline{1}$ h) $\underline{1}$ i) $\underline{1}$					
		3. a) {2, 6, 10, 14, 18} b) {3, 7, 11, 15, 19}					
		4. a) {16, 25, 36, 49, 64, 81}					
		b) {25, 36, 49, 64, 81, 100}					
		c) {21, 28, 36, 45, 55}					
		d) {125, 216, 343, 512}					
	REMARKS						
1							

OPERATION OF NUMBERS

1	TOPIC	NUMERATION (OPERATION)			
	SUB-TOPIC	<u>ARITHMETIC</u>			
		Concepts:			
		1. <u>Arithmetic</u> is the study of numbers/ digits ie 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 under different			
		operations like addition, subtraction, multiplication and division.			
		2. The operations in arithmetic are called the <u>"Four rules"</u> ie			
		a) Addition (together, sum, total, plus) – to			
		b) Subtraction (difference, minus, take away) – from			
		c) Multiplication product, groups of, times) – through (by)			
		d) Division (quotient, over) – by (through)			

<u>Note</u>

- 1. Addition
 - **Examples**
- a) Add 48 + 19

b) Workout 378946 + 27996Soln

11111

378946

+ 027996

406942

Exercise

- 1. Add the following:-
- a) 2,545 + 3,455 + 1,011
- b) 34 + 2,004 + 33,333 + 5,321
- 2. The principal of a National Teacher's College bought 1,450kg of flour in term 1, 2007kg and 1,549kg of flour in term II of the same year. How much flour did he buy during the period?
- 3. Manjasi High School bought 299,450 exercise books in February this year and 300,990 exercise books in July. How many exercise books were bought altogether?
- 4. Kigo Primary school received a grant of sh. 2,345,940 from the government of March 2009 and sh. 1,450,945 in July the same year. How much money did the school get that year?

Date	Class	Time	Subject	No. of pupils
	P.7		MTC	

Subtraction:

Examples

1) Subtract: 48 – 19

Soln

$$48 \longrightarrow 40 + 8 \longrightarrow 30 + (10 + 8) \longrightarrow 30 + 18$$
- 19 \rightarrow 10 + 9 \rightarrow 10 + 9

20 + 9

20

+9

29

:. 48

<u>- 19</u>

29

2) Find the difference between 65717 and 579.

Soln

65717

- 00579

65138

Activity

- 1. Subtract
 - a) 1,000 342
 - b) 19,000 9889
- 2. Subtract one thousand ten from four thousand six
- 3. The reading of an electric meter is 003980. At the end of the month, it was reading 003993. How many units were used?
- 4. What is the difference between 456 264 and 109 239?

Date	Class	Time	Subject	No. of pupils
	P.7		MTC	

Multiplication

Examples

1. Simplify: 58 x 3

Soln

$$\underline{x} 3\underline{x} 3\underline{3} + \underline{24}$$

$$150 + 24$$
 174

:. 58

<u>x 3</u>

174

2. A factory produced 4395 crates of soda, if each crate contains 24 bottles, how many bottles did it produce?

Soln

Crates = 4395

Bottles@ = 24

Product = 4395×24

= 4395

<u>x 24</u>

17580

+87900

105480 bottles

A factory produced 105,480 bottles.

Activity (Application of multiplication)

- 1. Multiply the following
 - a) 243 x 14
 - b) 531 x 19
- 2. In a school there are 29 classrooms with 149 pupils in each classroom.
 - a) How many pupils are in the school?
 - b) If one Friday each class had 24 pupils absent, how many pupils attended classes that day?
- 3. If there are 120 workers in Tororo District and each worker is paid sh. 9,460 a month, how much money will be paid to the workers in four months?
- 4. The bus charges sh. 400 per kilometer travelled and a bodaboda charges sh. 500 every two kilometers. How much money will Mary pay if she travelled 160km by bus and 20km by bodaboda?

Date	Class	Time	Subject	No. of pupils
	P.7		MTC	

Division

The components of division include;

- a) A divisor (D) a number that divides into another.
- b) A dividend (D) a number that divided into.
- c) A quotient (Q) a number that tells the number of times a number is divided into.
- d) A reminder (R) a number that is left over when a number is not completely divided into.

Division formular.

Dividend = Division x Quotient + reminder.

Examples

1. Divide 148 ÷4

Soln

Note

The steps for long division in order;

- a) Divide / group
- b) Multiply
- c) Subtract

d) Borrow
$$148 \div 4 = 4148 - 0.4 \text{ in } 1 - 4 + 4 + 4 = 3 \text{ fours}$$

$$= 3 \times 4 \quad 12 - 28 - 28$$

$$= 7 \times 4 \quad 28 - 28 - 3 \times 4 \quad 28 - 3 \times 4 = 10 \times 10^{-2} + 10^{-2} \times 10^{-2} + 10^{-2} \times 10^{$$

$148 \div 4 = 37$

Activity

- 1. Workout the following:
 - a) $6,069 \div 7$
 - b) 12,493 ÷13
- 2. Matovu had 3 children. He left dollars 78,240 to them when he died. If the children shared the money equally, how much money did each child get?
- 3. In a district, there are 26,688 pupils in the district. If each school had the same number of children, find the number of children in each school.
- 4. During the tree planting season, 27,045 young trees were shared equally among 621 schools. How many trees did each school get?

REMARKS

	DATE	CLASS	TIME	SUBJECT	No. OF PUPILS		
		P.7		MTC			
TOPIC	NUMBERS (OPERATION)			I			
SUB-TOPIC	QUICK WAY CALCULATIONS / DISTRIBUTIVE PROPERTY						
	Concepts:						
	- identify the common factor	or from the	number parts (b	rackets).			
	- Pullout the common facto	r and the si	ign.				
	<u>Examples</u>						
	1. Calculate the following us	•		<u>ıly.</u>			
	a) $(379 \times 27) + (27 \times 21)$		side work				
	Soln		379				
	$= (379 \times 27) + (27 \times 2)$	21) +					
	$= 27 \times (379 + 21)$		021				
	$= 27 \times (400)$		400				
	$= 27 \times 400$		<u>x 27</u>				
	= 10,800	1 2	2800				
	500						
	10,800						
	b) (156÷ 13) + (260÷ 13	3)					
	Soln						
	$= (156 \div 13) + (260 \div$	13)	side work				
	$=(156+260) \div 13$		156				
	$=416 \div 13$		<u>260</u>				
	4126_		416				
	13						
	<u>= 32</u>						
EVALUATION	<u>EXERCISE</u>						
	1. Fill in the missing number	rs;					
	a) $(3 \times 7) + (3 \times 4) = 3 \times (+ 4)$	4) = 3x					
	b) $(6x4) + (6x7) = (4 +)$,					
	c) $(13x15) + (13x5) = x$						
	d) $(25 \times 130) - (25 \times 30) =$	x (30	(x) = 25 x				
	e) $(147 \div 12) - (3 \div 12) =$	() ÷	12 =				

b) $(125 \div 7) + (22 \div 7)$ c) $(27 \times 29) - (27 \times 19)$ d) $(420 \times 12) + (420 \times 8)$ e) $(17 \div 3) + (10 \div 3)$ Answers 1. a) $3x(7+4) = 3 \times 11$ b) $6 \times (4+7) = 6 \times 11$ c) $13 \times (15+5) = 13 \times 20$ d) $25 \times (130-30) = 25 \times 100$ e) $(147-3) \div 12$ 2. a) 4 b) 21 c) 270 d) 8400 e) 9	
c) $(27 \times 29) - (27 \times 19)$ d) $(420 \times 12) + (420 \times 8)$ e) $(17 \div 3) + (10 \div 3)$ Answers 1. a) $3x(7 + 4) = 3 \times 11$ b) $6 \times (4 + 7) = 6 \times 11$ c) $13 \times (15 + 5) = 13 \times 20$ d) $25 \times (130 - 30) = 25 \times 100$ e) $(147 - 3) \div 12$ 2. a) 4 b) 21 c) 270 d) 8400 e) 9	
d) $(420 \times 12) + (420 \times 8)$ e) $(17 \div 3) + (10 \div 3)$ Answers 1. a) $3x(7+4) = 3 \times 11$ b) $6 \times (4+7) = 6 \times 11$ c) $13 \times (15+5) = 13 \times 20$ d) $25 \times (130-30) = 25 \times 100$ e) $(147-3) \div 12$ 2. a) 4 b) 21 c) 270 d) 8400 e) 9	
e) $(17 \div 3) + (10 \div 3)$ Answers 1. a) $3x(7+4) = 3 \times 11$ b) $6 \times (4 + 7) = 6 \times 11$ c) $13 \times (15 + 5) = 13 \times 20$ d) $25 \times (130 - 30) = 25 \times 100$ e) $(147 - 3) \div 12$ 2. a) 4 b) 21 c) 270 d) 8400 e) 9 REMARKS DATE CLASS TIME SUBJECT NO.	
Answers 1. a) $3x(7+4) = 3 \times 11$ b) $6 \times (4+7) = 6 \times 11$ c) $13 \times (15+5) = 13 \times 20$ d) $25 \times (130-30) = 25 \times 100$ e) $(147-3) \div 12$ 2. a) 4 b) 21 c) 270 d) 8400 e) 9 REMARKS DATE CLASS TIME SUBJECT NO.	
b) $\underline{6} \times (4 + \underline{7}) = 6 \times \underline{11}$ c) $\underline{13} \times (15 + \underline{5}) = 13 \times \underline{20}$ d) $\underline{25} \times (\underline{130} - 30) = 25 \times \underline{100}$ e) $(\underline{147} - \underline{3}) \div 12$ 2. a) $\underline{4}$ b) $\underline{21}$ c) $\underline{270}$ d) $\underline{8400}$ e) $\underline{9}$ REMARKS DATE CLASS TIME SUBJECT NO.	
c) $13 \times (15 + 5) = 13 \times 20$ d) $25 \times (130 - 30) = 25 \times 100$ e) $(147 - 3) \div 12$ 2. a) 4 b) 21 c) 270 d) 8400 e) 9	
d) $25 \times (130 - 30) = 25 \times 100$ e) $(147 - 3) \div 12$ 2. a) 4 b) 21 c) 270 d) 8400 e) 9 REMARKS DATE CLASS TIME SUBJECT NO.	
e) $(\underline{147} - \underline{3}) \div 12$ 2. a) $\underline{4}$ b) $\underline{21}$ c) $\underline{270}$ d) $\underline{8400}$ e) $\underline{9}$ REMARKS DATE CLASS TIME SUBJECT NO.	
2. a) <u>4</u> b) <u>21</u> c) <u>270</u> d) <u>8400</u> e) <u>9</u> REMARKS DATE CLASS TIME SUBJECT NO.	
REMARKS DATE CLASS TIME SUBJECT NO.	
DATE CLASS TIME SUBJECT NO.	
	OF PUPILS
P.7 MTC	
TOPIC NUMBERS (OPERATION)	
SUBTOPIC EXPANDED NOTATION	
Concepts	
• <u>Expanded notation</u> is a way of making a number become bigger in size.	
• Forms of expanded notation;	
a) Place value form.	
b) Value form.	
c) Exponent / index / power form.	
, , , , , , , , , , , , , , , , , , , ,	
d) Scientific / standard form.	
d) Scientific / standard form.	
d) Scientific / standard form.1. <u>Place value form</u>	
d) Scientific / standard form. 1. Place value form Concepts:	
d) Scientific / standard form. 1. Place value form Concepts: Multiply a digit by its place value then get its value.	
d) Scientific / standard form. 1. Place value form Concepts: Multiply a digit by its place value then get its value. Eg	
d) Scientific / standard form. 1. Place value form Concepts: Multiply a digit by its place value then get its value. Eg Expand 7962 in place value form.	
d) Scientific / standard form. 1. Place value form Concepts: Multiply a digit by its place value then get its value. Eg Expand 7962 in place value form. 7962 = (7x1000) + (9x100) + (6x10) + (2x1)	
d) Scientific / standard form. 1. Place value form Concepts: Multiply a digit by its place value then get its value. Eg Expand 7962 in place value form. 7962 = (7x1000) + (9x100) + (6x10) + (2x1) 2. Value form	

Expand in value form;

- a) 7,962
- b) 0.6259

Soln

a)
$$7962 = (7x1000) + (9x100) + (6x10) + (2x1)$$

$$= 7000 + 900 + 60 + 2$$

b)
$$0.6259 = (6x^{1}/_{10}) + (2x^{1}/_{10}) + (5x^{1}/_{10}) + (9x^{1}/_{10,000})$$

= $\frac{6}{10} + \frac{2}{100} + \frac{5}{1000} + \frac{6}{10,000}$
= $0.6 + 0.02 + 0.005 + 0.0006$

3. Power/ exponent / index form

Concepts

- The powers of tern are the number of zeros a number has.
- Multiply a digit by its place value.

Eg

Expand in power form;

- a) 7,962
- b) 0.6259

soln

a)
$$7,962 = (7x1000) + (9 x 100) + (6 x 10) + (2x1)$$

= $(7x10 x 10x10) + (9x10x10) + (6x10) + (2x)$
= $(7x10^3) + (9x10^2) + (6x10^1) + (2x10^0)$

b)
$$0.6259 = (0x1) + (6x^{1}/_{10}) + (2x^{1}/_{100}) + (5x^{1}/_{1000}) + (9x^{1}/_{10,000})$$

$$= (0x1) + (6x^{1}/_{10}) + (2x^{1}/_{10^{2}}) + (5x^{1}/_{10^{3}}) + (9x^{1}/_{10^{4}})$$

$$= (6x^{1}0^{-1}) + (2x^{1}0^{-2}) + (5x^{1}0^{-3}) + (9x^{1}0^{-4})$$

EVALUATION

EXERCISE

- 1. Expand the following in place value form.
 - a) 23
 - b) 234
 - c) 12345 d) 9876543 e) 9876543

- 2. a) 34 b) 2.3 c) 125.4 d) 2.3456 e) 3456.78

	3. Expand in power	rs of ten:					
	a) 32 b) 134	c) 2.35	d) 135.6789	e) 0.12345			
	Answers						
	1. a) $(2x10) + ($	(3x1)					
	b) $(2x100) + (3x100) + ($, , , , , , , , , , , , , , , , , , ,					
	c) (1x10,000) +	-(2x1000) + (3x)	(x 100) + (4x10)	+(5x1)			
	d) (9x1000,000) + (8x100,000)	+ (7 x 10,000)	+ (6 x 1000) + (5 x 100)	+(4x10)+(3x1)		
	e) (2x10,000) +	-(0x1000) + (4x)	(100) + (5x10) +	-(0x1)			
	2. a) <u>30 +4</u>						
	b) <u>2+0.3</u>						
	c) 100 + 20 -	c) $100 + 20 + 5 + 0.4 + 0.06$					
	d) 2+0.3 + 0.04 + 0.005 + 0.0006						
	e) $3000 + 400 + 50 + 6 + 0.7 + 0.08$						
	2 2 20 10 2 40 10 10						
	3. a) $(3 \times 10^{1}) + (2 \times 10^{0})$						
	b) $(1x10^2) + (3x10^1) + (4x10^0)$						
	c) $(2x10^{0}) + (3x10^{-1}) + (5x10^{-2})$						
				$\frac{(7x10^{-2}) + (8x10^{-3}) + (9x10^{-3})}{(5x10^{-5})}$	<u>x10)</u>		
	e) (1x10 ⁻¹) +	$\frac{(2x10^{-2}) + (3x1)}{(2x10^{-2})}$	$\frac{0^{-3}}{} + (4x10^{-4}) + \frac{1}{}$	(5x10°)			
REMARKS							
REMARKS							
KEWAKKS	DATE	CLAS	SS TIME	SUBJECT	No. OF PUPILS		
	2112	P.7		MTC	1,00 01 1 01 125		
TOPIC	OPERATION ON V		BERS				
SUB-TOPIC	COMMUTATIVE						
	Example 1	-					
	8+4=4+8						
	The statement is commutative under addition						
	Example 2						
	$4 \times 6 = 6 \times 4$						
	The statement is con	nmutative under	multiplication				
			-	d or multiplied does not	affect the result.		
		,		-			
	1						

Exercise	
Fill in the missing numbers	
1. 5 + 6 = +5	
2. 11 + 7 = +11	
3. 19 + 8 = 8 +	
4. 40 + 9 = + 40	
5. 5 x 2 = x 5	
6. 8 x 3 = x 8	
7. 4 x 7 = 7 x	
8. 11 x 5 = 5 x	

REMARKS							
	DATE	CLASS	TIME	SUBJECT	No. OF PUPILS		
		P.7		MTC			
TOPIC	OPERATION ON	WHOLE NUMBER	RS	·			
SUB-TOPIC	ASSOCIATIVE PROPERTY						
	Example 1						
	(6+4)+5						
	10 + 5						
	11 15						
	3X (4X5)						
	=3X20						
	=60						
	Therefore (3 x 4) x	$(4) \times 5 = 3x(4x5)$ is associative property of multiplication					
	Note: When carry	ing out addition or mu	ıltiplication of m	ore than two number	rs, the way in		
	which numbers are	grouped does not affe	ect the sum or pr	oduct.			
	Exercise						
	Fill in the missing numbers						
	1. 4 + (6+3) = (4+) + 3						
	2. (9+2)+5=9+(2+)						
	3. $7 + (6 + 8) = (7 + \underline{\hspace{1cm}}) + 8$						

Workout the following using the associative property
1. $3+5+7$
2. 16 + 14 + 10
3. 6 x 3 x 5
4. 8 x 5 x 9

NUMBER PATTERNS AND SEQUENCES

	DATE	CLASS	TIME	SUBJECT	No. OF PUPILS		
		P.7		MTC			
TOPIC	NUMBER PATTE	RNS AND SEQUE	NCES				
SUB-TOPIC	NEXT NUMBERS	IN THE SEQUEN	CES				
	<u>Concepts</u>						
	- Identify the nam	ne of the sequence.					
	- Follow the order of the sequence.						
	<u>Examples</u>						
	1. <u>Square numbers</u>	1					
	Find the next nu	mber in sequence be	elow				
	1, 4, 9, 16, 25, -						
	Soln						
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16, 25 t = 16 1+3+5+7+9 = 25 the next number: $1+3+5+7+9 = 25$ the next number: $1+3+5+7+9 = 25$ 16					
	:. The n	ext N0: 25 + 1	11 = 36				

2. Cube numbers

Got by multiplying a number by itself three time.

e.g

find the next number in the sequence below

1, 8, 27, 64, 125, -----

Soln

1, 8, 27, 64, 125, <u>216</u>

 $1^3 \ 2^3 \ 3^3 \ 4^3 \ 5^3 \ 6^3$

1x1x1 = 1

2x2x2 = 8

3x3x3 = 27

4x4x4 = 64

5x5x5 = 125

The next N0: = 6x6x6

3. <u>Triangular numbers</u>

NB

These are got by adding consecutive counting numbers starting from one. E.g. Find the next number in the sequence below. 1, 3, 6, 10, 15, 21, -----

Soln

1, 3, 6, 10, 15, 21, ---

1, 3, 6, 10, 15, 21,
$$\underline{28}$$
 $1+2=3$
 $3+3=6$
 $6+4=10$
 $10+5=15$
 $15+6=21$

1. The next N0: $=21+7=28$

4. Other sequences

Examples

Find the next number:

a) 1, 3, 9, 27, ----

Soln

b) Find the next number 9, 3, 1, -----

Soln

$$9, 3, 1, \frac{1}{3}$$

c) What is the next number?

Soln

:. The next N0:
$$=$$
 42

59__

d) 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -----

Soln

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8 + 2,9 + 2

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11

EVALUATION 1

EXERICSE

Find the next number (s) in the sequence below:

- 6. 1, 2, 4, 5, 7, ---, ----
- 7. 1, 4, 9, ----
- 8. 1, 8, 27, -----
- 9. 16, 8, 4, ----
- 10. 9, 3, 1, $\frac{1}{3}$, ------

Answers

- 1. <u>12</u>
- 2. <u>9</u>
- 3. <u>16</u>
- 4. <u>4, -4</u>
- 5. <u>10</u>
- 6. <u>8, 10</u>
- 7. <u>16</u>
- 8. <u>64</u>
- 9. <u>2</u>
- 10. $\frac{1}{9}$

Divisibility test for 2

A number is divisible by 2 if it ends with an even digit.

For example

42

42 is divisible by 2 since it ends with an even digit.

Exercise

- 1. Which of the following numbers is divisible by 2?
 - 463, 542, 860, 951
- 2. Without dividing, which number is divisible by 2?
 - i) 489 or 946
 - ii) 3 5 4 or 5 7 8
 - iii) 9 4 5 or 3 3 4
 - iv)7 5 6 or 2 5 3

Date	Class	Time	Subject	No. of pupils

Divisibility tests for 3

A number is exactly divisible by 3 if the sum of its digits is divisible by 3.

For Example

33; Is divisible by 3 since its sum i.e 3 + 3 = 6 is divisible by 3.

Exercise

- 1. Which of the following numbers is divisible by 3?
 - 30, 32, 35, 37, 39
- 2. Without dividing, which number is divisible by 3?
 - 76 or 72
 - 96 or 94
 - 144 or 166
 - 135 or 73

Date	Class	Time	Subject	No. of pupils

Divisibility test for 4

A number is divisible by 4 if its last two digits are zero or multiples of 4

For example

356

356 is divisible by 4 since its last two digits are multiples of 4.

Exercise

- Which of the following numbers are divisible by 4?
 10, 185, 949, 3700, 444
- 2. Without dividing, which number is divisible by 4?
- m) 108 or 442
- n) 62 0r 68
- o) 18254 or 30700
- p) 90 or 900

		Divisible test for 5						
		A number is divisible by 5 if	it ends with	0 or 5.				
		For example						
		70	70					
		70 is divisible by 5 since it ends with 0						
		Exercise						
			ina numbara	oro divigible by 5				
		1. Which of the follow 4, 5, 7, 10, 55, 66	ing numbers	are divisible by 5				
		2. Without dividing, where the state of the	hich number	ic divisible by 59				
		- 101 or 205	men number	is divisible by 5:				
		- 18 or 30						
		- 12 or 80						
		- 60 or 78						
		00 01 70						
	REMARKS							
		DATE	CLASS	TIME	SUBJECT	No. OF PUPILS		
			P.7		MTC			
2	TOPIC	NUMBER PATTERNS AN	ND SEQUE	NCES				
	SUB-TOPIC	DIVISIBILITY TESTS						
		1. Examples						
		1. <u>Divisibility test for 6.</u>						
		Concents						
		Concepts A number is divisible by	. 6 if it is div	isible by 2 and 2				
		 A number is divisible by 6 if it is divisible by 2 and 3. A number is also divisible by 6 if the sum of its digits is divisible by 3. 						
		Eg state whether 612 and			iivisioie by 3.			
		Eg state whether 012 and	a 750 are are	isiole by 0.				
		Soln						
		612 = 6 + 1 + 2						
		= 9 (divisible by 3)					
		738 = 7+3+8						
		= 10 + 8						
1		1						
		= 18 divisible by 3)	1					

:. 612 and 738 are divisible by 6.

Date	Class	Time	Subject	No. of pupils

Activity

- 1. Which of the following numbers is divisible by 6.
- 7, 8,, 12, 18, 19, 20
 - 2. Without dividing which number is divisible by 6?
- 1200 or 700
- 64 or 72
- 28 or 30
- 42 or 63

Date	Class	Time	Subject	No. of pupils

3. <u>Divisibility test for 7.</u>

Concepts.

When the last digit of a number is doubled and when the result is subtracted from the remaining number is divisible by 7.

e.g 1s 861 and 1792 divisible by 7?

Soln

$$86(1) = 1+1$$

86 = 2

86 = 86 - 2

= 84 (Divisible by 7)

Activity

- 1. Which of the following numbers is divisible by 7?
- 14, 16, 21, 25, 28
 - 2. Without dividing, which number is divisible by 7
- 100 or 91
- 112 or 107
- 63 or 79
- 36 0r 56

<u>**NB**</u>. For big N0's repeat the procedure till you get a small number.

$$179(2) = 2+2$$

$$=$$
 $\underline{4}$

$$179 = 179 - 4$$

$$= 175$$

$$17(5) = 5+5$$

$$17 = 10$$

$$= 17 - 10$$

= $\underline{7}$ (divisible by 7).

:. 861 and 1792 are all divisible by 7.

Date	Class	Time	Subject	No. of pupils

4. Divisibility test for 8:

Concepts:

A number is divisible by 8 if the number formed by the last 3 digits is also divisible by 8. e.g check whether 7.960 and 5788 is divisible by 8.

Soln

$$7(960) = 960$$

8

= 120 (divisible)

188

8

= $\frac{23 \frac{1}{2}}{2}$ (Not divisible)

:. 7960 is divisible by 8 but not 5188.

Activity

- 1. Which of the following numbers is divisible by 8
- 135, 144, 400, 500, 600, 960, 188
 - 2. Without dividing, which number is divisible by 8
- 1200 or 500
- 1244 or 5288
- 2700 or 35200
- 11288 or 9478

Date	Class	Time	Subject	No. of pupils

5. <u>Divisibility test for 9.</u>

Concepts

- A number is divisible by 9 if the sum of its digits is divisible by 9.

e.g take 198 to see whether its divisible by 9.

Soln

$$198 = 1 + 9 + 8$$

$$= 10 + 8$$

= 18 (divisible by 9)

:. 198 is divisible test for 9

Activity

- 1. Which of the following numbers is divisible by 9
- 10, 18, 21, 27, 28, 46, 50
 - 2. Without dividing, which number is divisible by 9?

I 66 or 72

108 or 118

651 or 126

903 or 288

Date	Class	Time	Subject	No. of pupils

Divisibility test for 10

A number is divisible by 10 if the digit in the ones place is 0 or if it ends with 0.

Or: Any number divisible by 10 is also divisible by 2 and 5

For example

80 - is divisible by 10 since 0 is in the place of ones

Exercise

- 1. Which of the following numbers is divisible by 10
- 52, 10, 15, 20, 25, 55, 33, 77, 60

2.	Without	dividing.	which	number is	divisible	by 10)
∠.	Williout	aivianig,	WILL	Hullioti 15	division	Uy I	,

- 388 or 450
- 4508 or 1890
- 133 or 200
- 1458 or 2700

Date	Class	Time	Subject	No. of pupils

6. <u>Divisibility test for 11</u>

Concepts.

- A number is divisible by 11 if the difference between the sum of the digits in the even places and that of the digits in the odd places stating with odd zero or divisible by 11. Examples.
- 1. Check whether 733689 and 676390 are divisible by 11.

Soln

Odd places starts from the last digit while even places start from the second last digit.

a) even position

7 3 3 6 8 9

odd position

(i) sum in odd position = 7 + 3 + 8

$$= 10 + 8$$

$$= 18$$

(ii) sum in even position = 3+6+9

$$= 9+9$$

$$= 18$$

(iii) difference between the sum = 18

- 18

00 (divisible by 11).

b) Odd

676390

Even

	(i)	Sum in even position = $7+3+0$
		= <u>10</u>
	(ii)	Sum in odd position = $6+6+9$
		= 12 + 9
		= 21
	(iii)	Difference in sums = 21
		<u>-10</u>
		11 (divisible by 11)
		:. 733689 and 676390 are all divisible by 11.
	<u>Activity</u>	
	1. W	Thich of the following numbers is divisible by 11?
	- 121, 1	87, 128, 132, 143, 147, 148, 149
	2. W	Tithout dividing, which number is divisible by 11?
	- 3333 (or 6425
	- 2678	or 1001
	- 814 01	- 444
	- 8080	or 6666
EVALUATION	EXERCIS	
EVALUATION	EXERCISE Which of	SE the numbers given are divisible by the number given?
EVALUATION	EXERCISE Which of $1. 6 = \{2$	SE the numbers given are divisible by the number given? (367, 2376, 814, 4625, 2782, 1001, 3333)
EVALUATION	EXERCISE Which of $1. 6 = \{2, 7 = \{3\}$	SE the numbers given are divisible by the number given? (367, 2376, 814, 4625, 2782, 1001, 3333) (79, 144, 912, 814)
EVALUATION	EXERCISE Which of 1. 6 = {2 2. 7 = {3 3. 8 = (7)	SE the numbers given are divisible by the number given? (367, 2376, 814, 4625, 2782, 1001, 3333) (79, 144, 912, 814) (6344, 98020, 59752, 4576128)
EVALUATION	EXERCISE Which of 1. 6 = {2 2. 7 = {3 3. 8 = (7 4. 9 = {3	SE the numbers given are divisible by the number given? (367, 2376, 814, 4625, 2782, 1001, 3333) (79, 144, 912, 814) (6344, 98020, 59752, 4576128) (42, 783, 660, 8757, 4827, 70308, 54696)
EVALUATION	EXERCISE Which of 1. 6 = {2 2. 7 = {3 3. 8 = (7 4. 9 = {3 5. 10 = {	SE the numbers given are divisible by the number given? 367, 2376, 814, 4625, 2782, 1001, 3333} 79, 144, 912, 814} 6344, 98020, 59752, 4576128} 42, 783, 660, 8757, 4827, 70308, 54696} 8001, 72000, 144, 245}
EVALUATION	EXERCISE Which of 1. 6 = {2 2. 7 = {3 3. 8 = (7 4. 9 = {3 5. 10 = { 6. 11 = {	SE the numbers given are divisible by the number given? (367, 2376, 814, 4625, 2782, 1001, 3333) (79, 144, 912, 814) (6344, 98020, 59752, 4576128) (42, 783, 660, 8757, 4827, 70308, 54696)
EVALUATION	EXERCISE Which of 1. 6 = {2 2. 7 = {3 3. 8 = (7 4. 9 = {3 5. 10 = { 6. 11 = { Answers	SE the numbers given are divisible by the number given? (367, 2376, 814, 4625, 2782, 1001, 3333) (79, 144, 912, 814) (6344, 98020, 59752, 4576128) (42, 783, 660, 8757, 4827, 70308, 54696) (8001, 72000, 144, 245) (2397, 901,938, 326044, 769034)
EVALUATION	EXERCISE Which of 1. 6 = {2 2. 7 = {3 3. 8 = (7 4. 9 = {3 5. 10 = { 6. 11 = { Answers 1. By	the numbers given are divisible by the number given? 367, 2376, 814, 4625, 2782, 1001, 3333} 79, 144, 912, 814} 6344, 98020, 59752, 4576128} 42, 783, 660, 8757, 4827, 70308, 54696} 8001, 72000, 144, 245} 2397, 901,938, 326044, 769034} y 6 = {2367, 2376, 3333}
EVALUATION	EXERCISE Which of 1. 6 = {2 2. 7 = {3 3. 8 = (7 4. 9 = {3 5. 10 = { 6. 11 = { Answers 1. By 2. By	the numbers given are divisible by the number given? 367, 2376, 814, 4625, 2782, 1001, 3333} 79, 144, 912, 814} 6344, 98020, 59752, 4576128} 42, 783, 660, 8757, 4827, 70308, 54696} 8001, 72000, 144, 245} 2397, 901,938, 326044, 769034} y 6 = {2367, 2376, 3333} y 7 = Nil
EVALUATION	EXERCISE Which of 1. 6 = {2 2. 7 = {3 3. 8 = (7 4. 9 = {3 5. 10 = { 6. 11 = { Answers 1. By 2. By 3. By	the numbers given are divisible by the number given? (367, 2376, 814, 4625, 2782, 1001, 3333) (79, 144, 912, 814) (6344, 98020, 59752, 4576128) (42, 783, 660, 8757, 4827, 70308, 54696) (8001, 72000, 144, 245) (2397, 901,938, 326044, 769034) (y 6 = {2367, 2376, 3333}) (y 7 = Nil) (y 8 = {59752, 4576128})
EVALUATION	EXERCISE Which of 1. 6 = {2 2. 7 = {3 3. 8 = (7 4. 9 = {3 5. 10 = { 6. 11 = { Answers 1. By 2. By 4. By	the numbers given are divisible by the number given? (367, 2376, 814, 4625, 2782, 1001, 3333) (79, 144, 912, 814) (6344, 98020, 59752, 4576128) (42, 783, 660, 8757, 4827, 70308, 54696) (8001, 72000, 144, 245) (2397, 901,938, 326044, 769034) (y 6 = {2367, 2376, 3333}) (y 7 = Nil) (y 8 = {59752, 4576128}) (y 9 = {342, 783, 8757, 70308})
EVALUATION	EXERCISE Which of 1. 6 = {2 2. 7 = {3 3. 8 = (7 4. 9 = {3 5. 10 = { 6. 11 = { Answers 1. By 2. By 3. By 4. By 5. By	the numbers given are divisible by the number given? 367, 2376, 814, 4625, 2782, 1001, 3333} 79, 144, 912, 814} 6344, 98020, 59752, 4576128} 42, 783, 660, 8757, 4827, 70308, 54696} 8001, 72000, 144, 245} 2397, 901,938, 326044, 769034} y 6 = {2367, 2376, 3333} y 7 = Nil y 8 = {59752, 4576128} y 9 = {342, 783, 8757, 70308} y 10 = {72000}
REMARKS	EXERCISE Which of 1. 6 = {2 2. 7 = {3 3. 8 = (7 4. 9 = {3 5. 10 = { 6. 11 = { Answers 1. By 2. By 3. By 4. By 5. By	the numbers given are divisible by the number given? (367, 2376, 814, 4625, 2782, 1001, 3333) (79, 144, 912, 814) (6344, 98020, 59752, 4576128) (42, 783, 660, 8757, 4827, 70308, 54696) (8001, 72000, 144, 245) (2397, 901,938, 326044, 769034) (y 6 = {2367, 2376, 3333}) (y 7 = Nil) (y 8 = {59752, 4576128}) (y 9 = {342, 783, 8757, 70308})