Probability and Statistics: Lecture-

Monsoon-2020

```
by Pawan Kumar (IIIT, Hyderabad)
on September 11, 2020
```

» Table of contents

1. Quiz

- 2. Special Distributions
- * Uniform Distribution
- * Bernoulli Distribution
- * Geometric Distribution
- * Binomial Distribution

Discourte

-> You may login to Skype for alternative

Attend the Quiz on Gradescope!

» Motivation for Uniform Distribution: Distribution of a Die Roll...

» Motivation for Uniform Distribution: Distribution of a Die Roll...

Example: Motivation for Uniform Distribution

Consider rolling a fair die. The possible outcomes are $\{1, 2, 3, 4, 5, 6\}$. Then the PMF is given by

$$p(x) = \begin{cases} \frac{1}{6}, & x \in \{1, 2, 3, 4, 5, 6\} \\ 0, & otherwise \end{cases}$$

We note here that $\sum_{x \in \mathbb{Z}} |x| = 1$. We note here that PMF takes uniform values for all values of X = x.

» Uniform Distribution...

» Uniform Distribution...

Definition: Uniform Distribution

Motivated from the previous example, we now define uniform distribution on $\{1,2,\dots,n\}$ by

$$p(x) = \begin{cases} \frac{1}{n}, & x \in \{1, 2, \dots, n\} \\ 0, & otherwise \end{cases}$$

We verify here that $\sum_{k\in\mathbb{Z}} = 1$.

Bernoulli distribution

A random variable X is called a Bernoulli random variable with parameter p, denoted by $X \sim Bernoulli(p)$, if its PMF is given by

$$P_X(x) = \begin{cases} p & \text{for } x = 1, \\ 1 - p & \text{for } x = 0, \\ 0 & \text{otherwise,} \end{cases}$$

Bernoulli distribution

A random variable X is called a Bernoulli random variable with parameter p, denoted by $X \sim Bernoulli(p)$, if its PMF is given by

$$P_X(x) = egin{cases} oldsymbol{p} & ext{for } x = 1, \ 1 - oldsymbol{p} & ext{for } x = 0, \ 0 & ext{otherwise}, \end{cases}$$

where 0 .

 \ast This models random experiments that have $\underline{\mathsf{two}}$ possible outcomes

Bernoulli distribution

A random variable X is called a Bernoulli random variable with parameter p, denoted by $X \sim Bernoulli(p)$, if its PMF is given by

$$P_{X}(\mathbf{x}) = egin{cases} \mathbf{p} & \text{for } \mathbf{x} = 1, \ 1 - \mathbf{p} & \text{for } \mathbf{x} = 0, \ 0 & \text{otherwise}, \end{cases}$$

- * This models random experiments that have two possible outcomes
- * Example: You take a pass-fail exam. You either pass or fail

Bernoulli distribution

A random variable X is called a Bernoulli random variable with parameter p, denoted by $X \sim Bernoulli(p)$, if its PMF is given by

$$P_{X}(\mathbf{x}) = egin{cases} \mathbf{p} & \text{for } \mathbf{x} = 1, \ 1 - \mathbf{p} & \text{for } \mathbf{x} = 0, \ 0 & \text{otherwise}, \end{cases}$$

- * This models random experiments that have two possible outcomes
- * Example: You take a pass-fail exam. You either pass or fail
- * Example: A coin is tossed, the outcome is either heads or tails

Definition of Geometric Distribution

A random variable X is called geometric random variable with parameter p, denoted by $X \sim Geometric(p)$, if its PMF is given by

$$P_X(k) = \begin{cases} p(1-p)^{k-1}, \\ 0, \end{cases}$$

for $k = 1, 2, 3, \dots$ otherwise,

Definition of Geometric Distribution

A random variable X is called geometric random variable with parameter p, denoted by $X \sim Geometric(p)$, if its PMF is given by

$$P_{X}(k) = egin{cases} oldsymbol{p}(1-oldsymbol{p})^{k-1}, & ext{ for } k=1,2,3,\dots \ 0, & ext{ otherwise}, \end{cases}$$

where 0 .

* Example: Suppose we have an unfair coin with P(H) = p.

Definition of Geometric Distribution

A random variable X is called geometric random variable with parameter p, denoted by $X \sim Geometric(p)$, if its PMF is given by

$$P_{X}(k) = egin{cases} oldsymbol{p}(1-oldsymbol{p})^{k-1}, & ext{ for } k=1,2,3,\dots \ 0, & ext{ otherwise}, \end{cases}$$

where 0 .

* Example: Suppose we have an unfair coin with P(H) = p. We toss the coin until we obtain first heads.

Definition of Geometric Distribution

A random variable X is called geometric random variable with parameter p, denoted by $X \sim Geometric(p)$, if its PMF is given by

$$P_{X}(k) = egin{cases} oldsymbol{p}(1-oldsymbol{p})^{k-1}, & ext{ for } k=1,2,3,\dots \ 0, & ext{ otherwise}, \end{cases}$$

where 0 .

* Example: Suppose we have an unfair coin with P(H) = p. We toss the coin until we obtain first heads. Let RV X be the total number of tosses.

Definition of Geometric Distribution

A random variable X is called geometric random variable with parameter p, denoted by $X \sim Geometric(p)$, if its PMF is given by

$$P_{X}(k) = egin{cases} oldsymbol{p}(1-oldsymbol{p})^{k-1}, & ext{ for } k=1,2,3,\dots \ 0, & ext{ otherwise}, \end{cases}$$

where 0 .

* Example: Suppose we have an unfair coin with P(H) = p. We toss the coin until we obtain first heads. Let RV X be the total number of tosses. Then X have geometric distribution.

Definition of Geometric Distribution

A random variable X is called geometric random variable with parameter p, denoted by $X \sim Geometric(p)$, if its PMF is given by

$$P_X(k) = egin{cases} p(1-p)^{k-1}, & ext{for } k=1,2,3,\dots \ 0, & ext{otherwise}, \end{cases}$$

- * Example: Suppose we have an unfair coin with P(H) = p. We toss the coin until we obtain first heads. Let RV X be the total number of tosses. Then X have geometric distribution.
- Caution: Some books define geometric random variable X as total number of failures before observing first success. Then

Definition of Geometric Distribution

A random variable X is called geometric random variable with parameter p, denoted by $X \sim Geometric(p)$, if its PMF is given by

$$P_{X}(k) = egin{cases} p(1-p)^{k-1}, & ext{for } k=1,2,3,\dots \ 0, & ext{otherwise}, \end{cases}$$

- * Example: Suppose we have an unfair coin with P(H) = p. We toss the coin until we obtain first heads. Let RV X be the total number of tosses. Then X have geometric distribution.
- * Caution: Some books define geometric random variable X as total number of failures before observing first success. Then

$$P_{X}(k) = \begin{cases} p(1-p)^{k}, & \text{for } k = 1, 2, 3, \dots \\ 0, & \text{otherwise}, \end{cases}$$

Definition of Binomial Distribution

A random variable X is called Binomial random variable with parameters p and p, denoted by $X \sim Binomial(n, p)$, if the PMF is given by

where 0 .

Definition of Binomial Distribution

A random variable X is called Binomial random variable with parameters n and p, denoted by $X \sim Binomial(n, p)$, if the PMF is given by

$$P_X(k) = \begin{cases} \binom{n}{k} p^k (1-p)^{n-k} & \text{for } k = 0, 1, 2, \dots, n \\ 0 & \text{otherwise,} \end{cases}$$

Definition of Binomial Distribution

A random variable X is called Binomial random variable with parameters n and p, denoted by $X \sim Binomial(n, p)$, if the PMF is given by

$$P_X(k) = \begin{cases} \binom{n}{k} p^k (1-p)^{n-k} & \text{for } k = 0, 1, 2, \cdots, n \\ 0 & \text{otherwise,} \end{cases}$$

where 0 .

* Example: Consider an unfair coin with P(H) = p. Consider tossing the coin n times and let X be the total number of heads we observe. Then X is a Binomial with parameters n and p.

Definition of Binomial Distribution

A random variable X is called Binomial random variable with parameters n and p, denoted by $X \sim Binomial(n, p)$, if the PMF is given by

$$P_X(k) = egin{cases} \binom{n}{k} p^k (1-p)^{n-k} & ext{for } k=0,1,2,\cdots,n \\ 0 & ext{otherwise}, \end{cases}$$

- * Example: Consider an unfair coin with P(H) = p. Consider tossing the coin n times and let X be the total number of heads we observe. Then X is a Binomial with parameters n and p.
- * Binomia (n, p) is a sum of n independent Bernoulli(p) random variables.

Definition of Binomial Distribution

A random variable X is called Binomial random variable with parameters n and p, denoted by $X \sim Binomial(n, p)$, if the PMF is given by

$$P_X(k) = egin{cases} \binom{n}{k} p^k (1-p)^{n-k} & \quad ext{for } k=0,1,2,\cdots,n \ 0 & \quad ext{otherwise}, \end{cases}$$

- * Example: Consider an unfair coin with P(H) = p. Consider tossing the coin n times and let X be the total number of heads we observe. Then X is a Binomial with parameters n and p.
- * Binomial(n, p) is a sum of n independent Bernoulli(p) random variables.
- * If $X_1, X_2, ..., X_n$ are independent Bernoulli(p) random variables, then $X = X_1 + \cdots + X_n$ has Bernoulli(n, p) distribution.

Definition of Binomial Distribution

A random variable X is called Binomial random variable with parameters n and p, denoted by $X \sim Binomial(n, p)$; if the PMF is given by

$$P_X(k) = \begin{cases} \binom{n}{k} p^k (1-p)^{n-k} & \text{for } k = 0, 1, 2, \dots, n \\ 0 & \text{otherwise,} \end{cases}$$

- * Example: Consider an unfair coin with P(H) = p. Consider tossing the coin n times and let X be the total number of heads we observe. Then X is a Binomial with parameters n and p.
- * Binomial(n, p) is a sum of n independent Bernoulli(p) random variables.
- * If $X_1, X_2, ..., X_n$ are independent Bernoulli(p) random variables, then $X = X_1 + \cdots + X_n$ has Bernoulli(p, p) distribution.
- * We verify that $\sum_{x \in \mathbb{Z}} p(x) = \sum_{x=0}^{n} {n \choose x} p^{x} (1-p)^{n-x} = 1$

» Scratch Space...

» Scratch Space...

* Imagine you are an Uber driver

- * Imagine you are an Uber driver
- To maximize profit, you want to remain close to an area with more requests
- * How can you use probability to predict requests for car ride?

- * Imagine you are an Uber driver
- To maximize profit, you want to remain close to an area with more requests
- How can you use probability to predict requests for car ride?

- * Imagine you are an Uber driver
- To maximize profit, you want to remain close to an area with more requests
- * How can you use probability to predict requests for car ride?

Example

Given that there are on average 5 requests for car ride per minute from certain area. What is the probability of k requests from this area in next 1 minute?

» Introduce Poisson Using an Example...

» Introduce Poisson Using an Example...

Example

Given that there are on average 5 requests for car ride per minute from certain area. What is the probability of k requests from this area in next 1 minute?

* What do we know for this problem?

Example

Given that there are on average 5 requests for car ride per minute from certain area. What is the probability of k requests from this area in next 1 minute?

* What do we know for this problem? There are requests for car ride!

Example

- * What do we know for this problem? There are requests for car ride!
- * There are two possibilities: request (1) or no request (0):

Example

- * What do we know for this problem? There are requests for car ride!
- * There are two possibilities: request (1) or no request (0): binary choices

Example

- * What do we know for this problem? There are requests for car ride!
- * There are two possibilities: request (1) or no request (0): binary choices
- * Sounds familiar? Yes!

Example

- * What do we know for this problem? There are requests for car ride!
- * There are two possibilities: request (1) or no request (0): binary choices
- * Sounds familiar? Yes! Recall: How many heads in n trials?

Example

- * What do we know for this problem? There are requests for car ride!
- * There are two possibilities: request (1) or no request $\overline{(0)}$: binary choices
- * Sounds familiar? Yes! Recall: How many heads in *n* trials?
- * The problem here is: we don't have *n* trials, instead a time interval! So?

Example

- * What do we know for this problem? There are requests for car ride!
- st There are two possibilities: request (1) or no request (0): binary choices
- * Sounds familiar? Yes! Recall: How many heads in n trials?
- * The problem here is: we don't have n trials, instead a time interval! So?
- Key idea: Want to use discrete distribution, so anyhow convert time to discrete intervals

Example

Given that there are on average 5 requests for car ride per minute from certain area. What is the probability of k requests from this area in next 1 minute?

- * What do we know for this problem? There are requests for car ride!
- * There are two possibilities: request (1) or no request (0): binary choices
- * Sounds familiar? Yes! Recall: How many heads in *n* trials?
- * The problem here is: we don't have n trials, instead a time interval! So?

* Key idea: Want to use discrete distribution, so anyhow convert time to discrete intervals

Example

Given that there are on average 5 requests for car ride per minute from certain area. What is the probability of k requests from this area in next 1 minute?

- * What do we know for this problem? There are requests for car ride!
- * There are two possibilities: request (1) or no request (0): binary choices
- * Sounds familiar? Yes! Recall: How many heads in *n* trials?
- * The problem here is: we don't have *n* trials, instead a time interval! So?
- Key idea: Want to use discrete distribution, so anyhow convert time to discrete intervals

0 0 1 0	1	0	1 0	1	1	0
---------	---	---	-----	---	---	---

* break a minute into 60 seconds;

Example

Given that there are on average 5 requests for car ride per minute from certain area. What is the probability of k requests from this area in next 1 minute?

- st What do we know for this problem? There are requests for car ride!
- * There are two possibilities: request (1) or no request (0): binary choices
- * Sounds familiar? Yes! Recall: How many heads in *n* trials?
- * The problem here is: we don't have n trials, instead a time interval! So?
- Key idea: Want to use discrete distribution, so anyhow convert time to discrete intervals

break a minute into 60 seconds; each second is independent trial with request or no request

Example

- * What do we know for this problem? There are requests for car ride!
- * There are two possibilities: request (1) or no request (0): binary choices
- * Sounds familiar? Yes! Recall: How many heads in *n* trials?
- * The problem here is: we don't have n trials, instead a time interval! So?
- Key idea: Want to use discrete distribution, so anyhow convert time to discrete intervals

0 0 1 0 1	0 1	0 1	1	0
-----------	-----	-----	---	---

- st break a minute into 60 seconds; each second is independent trial with request or no request
- * Let X = number of requests in a minute

Example

- * What do we know for this problem? There are requests for car ride!
- * There are two possibilities: request (1) or no request (0): binary choices
- * Sounds familiar? Yes! Recall: How many heads in n trials?
- * The problem here is: we don't have *n* trials, instead a time interval! So?
- * Key idea: Want to use discrete distribution, so anyhow convert time to discrete intervals

- * break a minute into 60 seconds; each second is independent trial with request or no request
- * Let X = number of requests in a minute
- * $F[X] = \lambda + 5 = np$, where p is the probability of request

Example

- * What do we know for this problem? There are requests for car ride!
- * There are two possibilities: request (1) or no request (0): binary choices
- * Sounds familiar? Yes! Recall: How many heads in n trials?
- * The problem here is: we don't have n trials, instead a time interval! So?
- Key idea: Want to use discrete distribution, so anyhow convert time to discrete intervals

- * break a minute into 60 seconds; each second is independent trial with request or no request
- * Let X = number of requests in a minute
- * $E[X] = \lambda = 5 = np$ where p is the probability of request
- * We now identify this problem as $X \sim Binomial(n = 60, p = 5/50)$

Example

- * What do we know for this problem? There are requests for car ride!
- * There are two possibilities: request (1) or no request (0): binary choices
- * Sounds familiar? Yes! Recall: How many heads in *n* trials?
- * The problem here is: we don't have *n* trials, instead a time interval! So?
- * Key idea: Want to use discrete distribution, so anyhow convert time to discrete intervals

- break a minute into 60 seconds; each second is independent trial with request or no request
- * Let X = number of requests in a minute
- * $E[X] = \lambda = 5 = np$, where p is the probability of request
- * We now identify this problem as $X \sim Binomial(n = 60, p = 5/50)$ * $P(X = k) = \binom{60}{k}\binom{5}{60}^k \left(1 \frac{5}{60}\right)^{n-k}$

Example

Given that there are on average 5 requests for car ride per minute from certain area. What is the probability of k requests from this area in next 1 minute?

* We identified this problem as $X \sim Binomial(n = 60, p = 5/50)$

Example

Given that there are on average 5 requests for car ride per minute from certain area. What is the probability of k requests from this area in next 1 minute?

* We identified this problem as $\textit{X} \sim \textit{Binomial}(\textit{n} = 60, \textit{p} = 5/50)$

*
$$P(X = k) = {60 \choose k} {5 \choose 60}^k \left(1 - \frac{5}{60}\right)^{n-k}$$

* There is a problem!

Example

Given that there are on average 5 requests for car ride per minute from certain area. What is the probability of k requests from this area in next 1 minute?

st We identified this problem as X \sim Binomial(n=60, p=5/50)

*
$$P(X = k) = \binom{60}{k} \binom{5}{60}^k \left(1 - \frac{5}{60}\right)^{n-k}$$

* There is a problem! What is that?

Example

- st We identified this problem as X \sim Binomial(n=60, p=5/50)
- $P(X = k) = {60 \choose k} {5 \choose 60}^k \left(1 \frac{5}{60}\right)^{n-k}$
- * There is a problem! What is that? Time is continuous!

Example

- * We identified this problem as $\textit{X} \sim \textit{Binomial}(\textit{n} = 60, \textit{p} = 5/50)$
- $* P(X = k) = {60 \choose k} {5 \choose 60}^k \left(1 \frac{5}{60}\right)^{n-k}$
- * There is a problem! What is that? Time is continuous!
- * Since time is continuous, no guarantee that there will be only one request per second

Example

- * We identified this problem as $\emph{X} \sim \emph{Binomial}(\emph{n}=60,\emph{p}=5/50)$
- * $P(X = k) = {60 \choose k} {5 \choose 60}^k \left(1 \frac{5}{60}\right)^{n-k}$
- * There is a problem! What is that? Time is continuous!
- st Since time is continuous, no guarantee that there will be only one request per second
- * What do we do now?

Example

- * We identified this problem as $\emph{X} \sim \emph{Binomial}(\emph{n}=60,\emph{p}=5/50)$
- * $P(X = k) = {60 \choose k} {5 \choose 60}^k \left(1 \frac{5}{60}\right)^{n-k}$
- * There is a problem! What is that? Time is continuous!
- * Since time is continuous, no guarantee that there will be only one request per second
- * What do we do now? We can make the interval smaller, take time intervals as milliseconds?

Example

- * We identified this problem as $\textit{X} \sim \textit{Binomial}(\textit{n} = 60, \textit{p} = 5/50)$
- $* P(X = k) = {60 \choose k} {5 \choose 60}^k \left(1 \frac{5}{60}\right)^{n-k}$
- * There is a problem! What is that? Time is continuous!
- * Since time is continuous, no guarantee that there will be only one request per second
- * What do we do now? We can make the interval smaller, take time intervals as milliseconds?
- * But there is still no guarantee that there will be only one request per millisecond

Example

- * We identified this problem as $\textit{X} \sim \textit{Binomial}(\textit{n} = 60, \textit{p} = 5/50)$
- $* P(X = k) = {60 \choose k} {5 \choose 60}^k \left(1 \frac{5}{60}\right)^{n-k}$
- * There is a problem! What is that? Time is continuous!
- * Since time is continuous, no guarantee that there will be only one request per second
- * What do we do now? We can make the interval smaller, take time intervals as milliseconds?
- * But there is still no guarantee that there will be only one request per millisecond
- * What should we do next?

Example

- * We identified this problem as $\textit{X} \sim \textit{Binomial}(\textit{n} = 60, \textit{p} = 5/50)$
- $= (80)^{1/2} \times P(X = k) = {60 \choose k} {5 \choose 60}^k \left(1 \frac{5}{60}\right)^{n-k}$
- * There is a problem! What is that? Time is continuous!
- * Since time is continuous, no guarantee that there will be only one request per second
- * What do we do now? We can make the interval smaller, take time intervals as milliseconds?
- * But there is still no guarantee that there will be only one request per millisecond
- * What should we do next? Here comes calculus...

Example

- * We identified this problem as $\textit{X} \sim \textit{Binomial}(\textit{n} = 60, \textit{p} = 5/50)$
- * $P(X = k) = {\binom{60}{k}} {\binom{5}{60}}^k \left(1 \frac{5}{60}\right)^{n-k}$
- * There is a problem! What is that? Time is continuous!
- * Since time is continuous, no guarantee that there will be only one request per second
- * What do we do now? We can make the interval smaller, take time intervals as milliseconds?
- * But there is still no guarantee that there will be only one request per millisecond
- * What should we do next? Here comes calculus... to go from discrete to continuous...

Binomial in the Limit is Poisson Distribution...

P(
$$x=k$$
) = $\lim_{k\to\infty} \binom{n}{k} \binom{n}{n} \binom{1-k}{n} \binom{n}{k} \binom{n-k}{n} \binom$

» Definition of Poisson Distribution...

» Definition of Poisson Distribution...

Definition of Poisson

A random variable X is said to be a Poisson random variable with parameter λ , shown as $X \sim Poisson(\lambda)$, if its range is $R_X = \{0, 1, 2, \dots, \}$, and its PMF is given by

$$P_X(k) egin{cases} rac{e^{-\lambda}\lambda^k}{k!}, & k \in R_X \ 0 & ext{otherwise} \end{cases}$$

- * Simeon-Denis Poisson, was a French mathematician (1781-1840)
- st He published his first paper at 18, professot at 21
- * He published over 300 papers