Measuring uncertainty in age-structured fisheries stock assessment models using delta, bootstrap, and MCMC methods

Arni Magnusson

NMFS workshop 27 Apr 2005

Why measure uncertainty

Fisheries managers would like to know the status of the resource and expected consequences of alternative actions

- Current biomass, absolute or relative
- Future biomass, given catch level x

Not only the most likely value, but a range of likely values

Confidence interval

What's the problem

"Very unlikely" things keep happening in fisheries

- Our methods underplay the real uncertainty
- A 90% confidence interval should contain the true value 90% of the time

Scientists use a variety of methods, not knowing which methods are more reliable than other

 Using delta method, bootstrap, or MCMC can lead to different management advice

Which method works best?

Punt and Butterworth (1993)

- Delta Jackknife Bootstrap
- Schaefer~SCA, data=hake
- Equally good, if bootstrap is done right

Restrepo et al. (2000)

- Delta Bootstrap MCMC
- VPA~SCA, data=contrast
- Delta and bootstrap are best, with bias correction

My plan

Magnusson and Punt (in prep.)

- Delta Bootstrap MCMC
- SCA~SCA, data=contrast

Procedure

- Generate simulated datasets where true parameter values and reference points are known
- Run datasets through estimation model
- Apply different methods to quantify uncertainty about reference points
- Check how often confidence intervals contain true value

Limitations

In real assessments, the uncertainty is much greater than is captured in a simulation study

Mantra of simulation studies

 If a method doesn't work in laboratory conditions, it's probably not going to work in nature

Hypothesis

For all methods, the empirical performance is expected to match the claimed uncertainty

- Delta
- Bootstrap
- MCMC

Main emphasis on confidence limits, but bias and variance will also be looked at

Methods

Simulation flowchart

Operating model

Simple version of Coleraine, implemented in R

Constant M, q, and selectivities

Biology and fishery based on Atlantic cod

- 10 ages, M=0.2, Bev-Holt recruitment
- 20 years of data, one fleet, one survey, asymptotic selectivities

Simulated datasets

- Recruitment variability σ_R=0.6
- Observation noise σ_i =0.2, n=50

Scenario

Abundance index

Estimation model

Coleraine, given the exact

- model structure
- σ_R , σ_I , n
- annual catch, weight and maturity at age

Estimating

- R₀, h, M, q, dome-shaped selectivities
- u_{init}, R_{init}, R_{plus}, recruitment deviates

Objective function

survIndex + survCA + comCA + penalties

Reference points

B₂₀₀₅ current spawning biomass

Depletion B₂₀₀₅/B₀

MSY avg long-term catch at optimal u_{MSY}

 B_{2005}/B_{MSY} current abundance relative to B_{MSY}

Surplus $Y_{2004} + (VB_{2005} - VB_{2004})$

Measuring uncertainty

Delta

ADMB output (.cor)

Bootstrap

add parametric noise to CA and Index, 100 datasets

MCMC

ADMB output (.psv), million iterations, 1000 draws

All methods benefit from knowing σ_1 =0.2 and n=50

Performance

Compare

- CONFINT_{delta}
- CONFINT_{boot}
- CONFINT_{mcmc}

to the true value of a reference point

If we look at one thousand 90% confidence intervals for MSY, we expect around 900 out of 1000 to contain the true value

300 assessment datasets

Recruitment pattern #1

100 x observation noise

Recruitment pattern #2

100 x observation noise

Recruitment pattern #3

100 x observation noise

C4hmr-01-001.txt

C4hmr-01-100.txt

C4hmr-02-001.txt

. . .

C4hmr-02-100.txt

C4hmr-03-001.txt

. . .

C4hmr-03-100.txt

Discussion

Operating model

- constant M and sel, linear I=qB
- •

Estimation model, maybe we'd like to explore a model that

- underplays uncertainty
- overplays uncertainty
- ...

Discussion

Likelihood profiling

Does ADMB apply the delta method with a bias correction? Should I be using bias correction and/or variance acceleration in my bootstrap analysis?

Performance (something other than conf. int.)

Theoretical differences, how to interpret conf. int.