סיכומי הרצאות - אלגברה לינארית 1

מיכאל פרבר ברודסקי

תוכן עניינים

2, חוגים ושדות														,5	11	11	בר	١,	מונואידים,					Ι																			
2											•																•										7	רוו	זגד	ר	1	L	
2					•	•																						ת	לו	עו	٥	יל	ט	ת	ונו	תכ			1.	1			
2																													•				-	ייד	וא	מונ)		1.	2			
2																											•		•					ה	ור	חב			1.	3			
2																											•		•						. ;	חוג			1.	4			
3	•		•	٠	•	•	•	•	•	•	•		•	٠	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	•		•	•	•	ה	שד)		1	5			
•																																						_	••				тт
•																																							בי	רוכ	בזו		ΙI

חלק I

מונואידים, חבורות, חוגים ושדות

1 הגדרות

1.1 תכונות של פעולות

A imes A הוא domain תהא A פעולה בינארית על

- $\forall a, b, c \in A. (a*b)*c = a*(b*c)$ אסוצייטיבית: * .1
 - $. \forall a, b.a * b = b * a$ מילופית: * .2
 - $.*: A \times A \rightarrow A :*$ סגורה לפעולה A סגורה לפעולה

1.2 מונואיד

G כך ש: G כלשהי ו־G כאשר כלשהי ו־G כאשר כלשהי ו־G כאשר כלשהי ו־ל

- .* סגורה לפעולה G .1
- 2. * פעולה אסוצייטיבית.
- . האיבר הזה . $\exists e \in G. \forall g \in G. e*g = g*e = g$ האיבר לפעולה, לפעולה, לפעולה, לפעולה. פ e_G האיבר הזה יחיד ומסומן.

1.3 חבורה

מקרה פרטי של מונואיד שמקיימת גם:

4. קיים איבר הופכי, כלומר $g\in G.\exists h\in G.g*h=h*g=e$ ראיבר יחידה. איבר איבר הופכי של g מסומן -g^-1

1.4 חוג

שלשה $\langle R, +, * \rangle$ נקראת חוג אם:

- $. \forall a,b \in R. a+b=b+a$ חבורה חילופית, כלומר $\langle R,+ \rangle$.1
 - .* סגורה לפעולה R ו־R סגורה לפעולה * .2
 - 3. חוק הפילוג:

$$\forall a, b, c \in R.a * (b+c) = a * b + a * c$$

 $(b+c) * a = b * a + c * a$

a*b=b*a חוג חילופית b*a* אם a*b=b*a* חוג חילופית (כלומר

חוג עם יחידה $^{ au}$ אם $\langle R,* \rangle$ מונואיד.

. פיים אם לכפל לכפל ניטרלי לחיבור, 1_R לחיבור, 0_R ניטרלי לכפל אם סיים

מחלק $a*b=0_R$ כך ש־ $b \neq 0_R$ כך שם "מחלק "מחלק (נקרא "מחלק $b \neq a \in R$ מחלק $b \neq a \in R$ מחלק $a*b=0_R$ מחלק (מחלק $a*b=0_R$

חוג חילופי עם יחידה וללא מחלקי 0 נקרא **תחום שלמות**. הוא מקיים את חוק הצמצום (לכל a=c אז a*b=c*b, אם $a,b,c\in R$

1.5 שדה

גם: מקרה פרטי של חוג שמקיים גם: $\langle F, +, * \rangle$

.1 ער אילופית חבורה $\langle F \setminus \{0_F\}, * \rangle$

כל שדה הוא תחום שלמות, אבל ההפך אינו נכון. תחומי שלמות סופיים הם כן שדות. הרבה פעמים בהגדרת שדה מוסיפים את הדרישה $0_F \neq 1_F$.

חלק II

מרוכבים

נסמן $\mathbb{C}=\mathbb{R}^2$, כאשר המספר הראשון הוא החלק ההגדרה הפורמלית של מרוכבים היא: $\mathbb{C}=\mathbb{R}^2$, כאשר המספר הראשון הוא $(Re\,(c)\,$ והמספר השני הוא החלק הדמיוני (שמסומן , $z\in\mathbb{C}$

- 1. הארגומנט של arg(z): נסמן כווית שהמספר יוצר עם ציר הממשיים(בדכ נסמן כarg(z), ניתן לחשב אותו בעזרת $arg(z)=\arctan(rac{b}{a})$
 - . בירים. z מראשית הצירים. $||z||=\sqrt{Re\left(z\right)^{2}+Im\left(z\right)^{2}}$ ב מראשית.
 - $z=||z||\,e^{i\cdot arg(z)}$ לכן , $e^{i heta}=\cos{(heta)}+i\sin{(heta)}$.3
 - 4. **חיבור:** מחברים את החלק הממשי והדמיוני בנפרד.
 - $.i^2 = -1$ משתמשים בזה ש־ $.(a+ib)\cdot(c+id) = (ac-bd)+i\,(bc+da)$.5
 - 6. כל שורש של פולינום מרוכב הוא מרוכב.
 - . נגדיר \overline{z} להיות להפוך את כלומר להפוך .. $\overline{z}=a-ib$ הדמיוני.
 - .8 שדה סגור אלגברית (כלומר כל שורש של כל פולינום מרוכב הוא מרוכב). $\langle \mathbb{C}, +, \cdot \rangle$