Yapay Sinir Ağları

Artificial Neural Network

Orkun GÜRLER 121620181096

Eskişehir Osmangazi Üniversitesi Matematik ve Bilgisayar Bilimleri Bitirme Tezi

12 Ekim 2020

İçindekiler

- 1 Yapay Sinir Ağı Nedir?
 - Yapay Sinir Ağları
 - Biyolojik Sinir Ağları
- 2 Tarihçesi
- 3 Nerelerde Kullanılır?
 - Sinyal İşleme
 - Örüntü Tanıma
 - Konuşma Tanıma
- 4 Nasıl Uygulanır?
 - Ağ Mimarileri
 - Ağırlık Hesaplama
 - Aktivasyon Fonksiyonları

- Karmaşık
- Doğrusal Olmayan
- Paralel

- İnsan beyni için basit
 - Motor kontroller
 - Nörolojik yapı

Yapay Sinir Ağları, bilgiyi işlemeye yarayan matematiksel modellemeler olarak düşünülebilir.

Klasik makinelerden ya da diğer bir değişle Turing Makinelerinden farklı çalışır, onların aksine ilişkiler kurar.

Yapay Sinir Ağları

İnsan kavrayışının matematiksel bir modelidir. Aşağıdaki aksiyomlara dayanır.

- 1. Nöron
- 2. Sinyal
- 3. Ağırlık
- 4. Aktivasyon

Bir yapay sinir ağı, nöronlar arasındaki bağlantı örgüsü, bağlantı ağırlığı hesaplanma metodu ve aktivasyon fonksiyonu ile karakterize edilmiştir.

Biyolojik Sinir Ağları

Figure: Nöral ve Yapay Nöral Ağ Sistemi [3]

Tarihçesi

Tarihçesi

- 1940'larda Warren McCulloch ve Walter Pitts, temellerini attı.
- 50'lerde Rosenblatt tarafından sunulan Perceptron Ağının bulunması ile ilk Altın Çağına ulaştı.

Figure: McCulloch & Pitts

Tarihçesi

- 70'ler boyunca duraksama dönemini yaşamıştır.
- 80'lerde Backpropagation, Hopfield Ağları ve donanım uygulamaları gibi çalışmalarla tekrar gündeme oturmuştur.
- Sonrasında da gündemde kalmayı başarmıştır.

Nöral ağlar, geliştirme ve uygulama açısından disiplinler arası bir alandır.

Matematik, mühendislik, sağlık, ekonomi vb. gibi alanlarda sıkça kullanılır.

Sinyal İşleme

- Ses, fotoğraf, bilimsel ölçüm
- Analizi, işlenmesi ve sentezi
- Gürültü engelleme

Figure: Nöral Sinyal İşleme

Örüntü Tanıma

- Tanımlama ve kategorizasyon
- Harf, sayı tanıma
- El yazısı tanıma

Figure: Nöral Örüntü Tanıma

Konuşma Tanıma

- Linguistik ve Bilgisayar Bilimlerinin bir birleşimi
- akıllı ev sistemleri, speech-to-text teknolojisi

Figure: Nöral Konuşma Tanıma

- Ağ Mimarileri
- Ağırlık Hesaplama
- Aktivasyon Fonksiyonları

Ağ Mimarileri

- Nöron
- Girdi
- Bağlantı
- Ağırlık
- Ağırlıklı Toplam
- Yanlılık
- Çıktı

Ağ Mimarileri/Tek Katmanlı Nöral Ağ

Bir girdi katmanı ve bir çıktı katmanı vardır. Girdiler direkt olarak çıktı nöronlarına bağlıdır. Karmaşık sistemler için güçsüz kalabilir.

Ağ Mimarileri/Çok Katmanlı Nöral Ağ

Girdi ve çıktı katmanları arasında gizli katmanlar bulunur. Gizli katmanlar, daha karmaşık problemleri çözmeye yardımcı olur.

Ağırlıkların belirlenmesı, tek katmanlıya göre, daha zordur.

Ağ Mimarileri/Yinelenen Katmanlı Nöral Ağ

Birden çok ağın birleşimi, ya da bir ağın kendi içinde yinelenmesidir.

Geçici ve değişken davranışların çözümlenmesinde kullanılır. El yazısı gibi.

Ağırlık Hesaplama

- Takviyeli / Gözetimli Öğrenme
- Gözetimsiz Öğrenme
- Sabit Ağırlıklı Ağlar

Ağırlık Hesaplama/Takviyeli - Gözetimli Öğrenme

Ağırlıkların belirlenmesi için ağ eğitilir.

Ağa, hedef vektörleri verilir.

Ağın verdiği cevabın doğruluk miktarına göre ağırlıklar yeniden düzenlenir.

Ağırlık Hesaplama/Gözetimsiz Öğrenme

Hedef vektörleri yoktur. Ağ, benzer bulduğu girdileri sınıflandırmaya çalışır. Ağırlıkları bu sınıflandırmaya göre optimize eder.

Ağırlık Hesaplama/Sabit Ağırlıklı Ağlar

Bazı zor optimizayon problemleri için orta halli sonuçlar yeterlidir. Bu durumda modeli eğitmek zor olabilir. Bunun yerine ağırlıklar sabit olacak şekilde belirlenir.

Aktivasyon Fonksiyonları

- Genellikle lineer değildir.
- Özellikle çok katmanlı mimarilerde, doğrusal olmamalı.
- Ağırlıklı toplamdan gelen değeri ölçeklendirir.

Aktivasyon Fonksiyonları/Özdeşlik Fonksiyonu

$$f(x) = x$$
, for all x

Aktivasyon Fonksiyonları/Eşik Değer Fonksiyonu

$$f(x) = \begin{cases} 1, & \text{eğer } x \ge \Theta \\ 0, & \text{eğer } x < \Theta \end{cases}$$

Aktivasyon Fonksiyonları/Sigmoid Fonksiyonu

$$f(x) = \frac{1}{1 + e^{-\sigma x}}$$

Aktivasyon Fonksiyonları/Çift Kutuplu Sigmoid Fonksiyonu

Hiperbolik Tanjant fonksiyonu olarak da anlandırılır.

$$f(x) = \frac{1 - e^{-\sigma x}}{1 + e^{-\sigma x}}$$

Aktivasyon Fonksiyonları/Düzeltilmiş Doğrusal Birim Fonksiyonu (ReLU)

$$f(x) = x^+ = max(0, x)$$

Aktivasyon Fonksiyonları/Sızıntılı Düzeltilmiş Doğrusal Birim Fonksiyonu (Leaky-ReLU)

Aktivasyon Fonksiyonları/Swish Fonksiyonu

Aktivasyon Fonksiyonları

AKTİVASYON FONKSİYON	DENKLEM	ARALIK
Doğrusal Fonksiyon	f(x) = x	$(-\infty,\infty)$
Basamak Fonksiyonu	$f(x) = \begin{cases} 0 & i \sin x < 0 \\ 1 & i \sin x \ge 0 \end{cases}$	{0, 1}
Sigmoid Fonksiyon	$f(x) = \sigma(x) = \frac{1}{1 + e^{-x}}$	(0,1)
Hiperbolik Tanjant Fonksiyonu	$f(x) = \tanh(x) = \frac{(e^x - e^{-x})}{(e^x + e^{-x})}$	(-1,1)
ReLU	$f(x) = \begin{cases} 0 & i \sin x < 0 \\ x & i \sin x \ge 0 \end{cases}$	[0,∞)
Leaky (Sızıntı) ReLU	$f(x) = \begin{cases} 0.01 & i \sin x < 0 \\ x & i \sin x \ge 0 \end{cases}$	$(-\infty,\infty)$
Swish Fonksiyonu	$f(x) = 2x\sigma(\beta x) = \begin{cases} \beta = 0 & \text{igin } f(x) = x \\ \beta \to \infty & \text{igin } f(x) = 2\max(0, x) \end{cases}$	$(-\infty,\infty)$

Formülün Gösterimi

Girdi: x_j Ağırlık: w_{kj} Bias: b_k (Yanlılık)

$$u_k=\sum_{j=1}^m w_{kj}*x_j$$
 Ağırlıklı Toplam $v_k=u_k+b_k=\sum_{j=0}^m w_{kj}x_j$ Yanlılık Değerli Ağırlıklı Toplam $y_k=arphi(u_k+b_k)=arphi(v_k)$ Çıktı

Formülün Gösterimi

Formülün Gösterimi

References

L. Fausett.

Fundamentals of Neural Networks: Architectures, Algorithms, and Applications.

Prentice-Hall international editions, Prentice-Hall, 1994.

S. Haykin.

Neural Networks and Learning Machines.

Number 10. c. in Neural networks and learning machines. Prentice Hall. 2009.

M. Landin and R. Rowe.

Artificial neural networks technology to model, understand, and optimize drug formulations.

Formulation Tools for Pharmaceutical Development, pages 7-37, 07 2013.