Analysis of Performance Influencing Factors in INVASE

Selection Probabilty Stability-based Early Stopping Policy

Analysis of Performance Influencing Factors in INVASE

Selection Probabilty Stability-based Early Stopping Policy

Table 4.1: Comparison Between Long Training and the Proposed Early Stopping Policy

Scenario	Metrics(%)	Synethetic Datasets						
		A.1	A.2	A.3	A.4	A.5	A.6	
10k Epoches	Mean TPR	100	100	90.2	100	75.3	74.7	
	Mean FDR	0	0	0	42.7	38.6	42.3	→ Loss chances to be better
Simple Early Stopping	Mean TPR	\$	\$	▼ 50.7	\$	▼ 16.3	♦	Save Time
	Mean FDR	♦	♦	♦	♦	▼ 20.6	▼ 2.4	
	Used Epoch(k)	1.5	1.2	1.7	5	1.9	4.2	→ Save Time

Individual Settings: Framework: INVASE; Hyperparameter: $\lambda = 0.1$; Activation: ReLU.

Notations: ♦ denotes no difference, ▼ indicates a decrease, ▲ signifies an increase.