Библиотечные инструменты языка программирования Python

1. Поиск характеристик и визуализация теоретических раконов распределений

```
Загрузка основных модулей
    import numpy as np
    import scipy.stats as sts
    import scipy.special as sc
    import matplotlib.pyplot as plt
    %matplotlib inline
Вероятностные распределения в модуле scipy.stats
    Пусть R - обозначение вида закона распределения, params - параметры распределе-
    ния.
    Общий вид обращения к распределению:
    sts.R(params) - закон распределения R с параметрами params.
    Некоторые виды распределений:
    sts.uniform (a1, a2) - равномерный закон распределения; если X \sim R(a,b), то a1
    совпадает с a, a2 совпадает с b-a.
    sts.norm(a,b) - нормальный закон распределения с параметрами а (математи-
    ческое ожидание) и b (среднее квадратичное отклонение).
    sts.expon(0,m) - экспоненциальный закон распределения; m совпадает с мате-
    матическим ожиданием, т.е. если X \sim Exp(\lambda), то m совпадает с 1/\lambda.
    sts.chi2(n) - закон распределения хи-квадрат с n степенями свободы.
    sts.t(n) - закон распределения Стьюдента с n степенями свободы.
    sts.f(k1, k2) - закон распределения Фишера со степенями свободы с k1 и k2.
    sts.binom(n,p) - биномиальный закон распределения с параметрами n (общее
    число испытаний) и р (вероятность успеха в одном испытании).
    sts.poisson (lm) - закон распределения Пуассона с параметром lm, параметр
    совпадает с традиционным параметром распределения \lambda (равен математическому
    ожиданию).
Методы поиска функциональных характеристик вероятностных распределений в
модуле scipy.stats
    Пусть R - обозначение типа закона распределения, params - параметры распределе-
    R (params).cdf(x) - значение функции закона распределения R с параметрами
    рагамѕ в точке х.
    R(params). pdf (x) - для непрерывной случайной величины значение плотности
    распределения в точке х.
    R (params).pmf (x) - для дискретной случайной величины вероятность принять
    значение х.
Методы поиска числовых характеристик случайной величины в модуле scipy.stats
    Пусть R - обозначение типа закона распределения, params - параметры распределе-
    ния. Тогда:
    R (params).ppf (q) - квантиль порядка q.
    R (params) .mean () - математическое ожидание.
    R (params).var(x) - дисперсия.
    R (params) . std (x) - среднее квадратичное (стандартное) отклонение.
    R (params) . median () - медиана.
```

```
R (params). moment (k) - начальный момент порядка k.
```

R (params) .stats('mvsk') - математическое ожидание, дисперсия, коэффициент асимметрии и коэффициент эксцесса.

Некоторые математические функции в модуле scipy.special

```
sc.factorial(n) - n! sc.comb(n, k), sc.binom(n, k) - C_n^k, число сочетаний из n по k. sc.perm(n, k) - A_n^k, число размещений из n по k. sc.gamma(x) - \Gamma(x) = \int_0^{+\infty} t^{x-1} e^t dt, гамма-функция.
```

2. Компьютерное моделирование выборок дискретных случайных величин, первичная обработка выборки

Barpyзка основных модулей import numpy as np import scipy.stats as sts import scipy.special as sc import matplotlib.pyplot as plt import random %matplotlib inline

Генераторы выборок дискретных распределений в библиотеке numpy

 Φ ункция np.random.choice(a, size, replace=True, p)

Возвращает выборку заданного объема size (если size - число) из массива а. По умолчанию повторную, если replace=False, то бесповторную. Выбор элемента из массива а осуществляется с соответствующей вероятностью массива р. Если size - кортеж, то генерируется массив заданной формы.

Другие варианты: если а - целое число, то генерируется случайное число из массива arange (a); если параметр р не задан, то элементы из а равновозможны.

Функция np.random.binomial(n, p, size)

Возвращает выборку заданного объема size (если size - число) биномиального распределения с параметрами n и вероятностью p. Если size - кортеж, то генерируется массив заданной формы.

Функция np.random.poisson (lm, size)

Формирует выборку заданного объема size (если size - число) распределения Пуассона с параметром lm. Если size - кортеж, то генерируется массив заданной формы.

В модуле numpy.random также имеются генераторы выборок следующих распределений: геометрического, гипергеометрического, отрицательного биномиального, распределения logser и др.

Средства формирования вариационного и статистического рядов в библиотеке numpy

 Φ ункция np.bincount(x)

Вычисляет количество появлений в массиве каждого целого числа от 0 до $\max(x)$.

 Φ ункция np.sort(list(set(x)))

Формирует набор уникальных элементов (вариант) выборки.

Случайное перемешивание

Функция np.random.shuffle (x) случайным образом перемешивает массив x.

3. Компьютерное моделирование выборок непрерывных случайных величин, первичная обработка выборки

Загрузка основных модулей

import numpy as np

import scipy.stats as sts

from statsmodels.distributions.empirical_distribution im-

port ECDF

import matplotlib.pyplot as plt

%matplotlib inline

Генераторы выборок некоторых непрерывных распределений в библиотеке numpy

Функция np.random.normal(loc, scale, size)

Возвращает выборку заданного объема size (если size - число) нормального распределения $N(m,\sigma)$.

Параметры: loc=m; $scale=\sigma$. Если size - кортеж, то генерируется массив заданной формы.

Функция np.random.uniform(low=0.0, high=1.0, size=None)

Возвращает выборку заданного объема size (если size - число) равномерного распределения R(a,b).

Параметры: low=a; high= b. Если size - кортеж, то генерируется массив заданной формы.

Функция np.random.exponential (scale=1.0, size=None)

Возвращает выборку заданного объема size (если size - число) экспоненциального распределения $Ex(\lambda)$.

Параметр: $scale = 1/\lambda$ (равен математическому ожиданию). Если size - кортеж, то генерируется массив заданной формы.

Функция np.random.chisquare (df, size=None)

Возвращает выборку заданного объема size (если size - число) распределения хи-квадрат c df степенями свободы. Если size - кортеж, то генерируется массив заданной формы.

Функция np.random.f(dfnum, dfden, size)

Возвращает выборку заданного объема size (если size - число) распределения Фишера со степенями свободы dfnum, dfden. Если size - кортеж, то генерируется массив заданной формы.

В модуле numpy.random также имеются генераторы выборок следующих распределений: бета, гамма, Гумбеля, Лапласа, логистического, логнормального, степенного, Рэлея, треугольного, Ломакса (Парето II вида), фон Мизеса, Уайльда, Вейбулла и др.

Построение эмпирической функции распределения в модуле $statsmodels.distributions.empirical_distribution$

Функция statsmodels.distributions.empirical_distribution.ECDF(x,side=right)

Возвращает эмпирическую функцию распределения.

Параметры: x - массив (выборка); side - задает форму интервалов, по которым строятся ступени эмпирической функции: right (по умолчанию) - интервалы вида [...), открытые справа, left - интервалы вида (...], открытые слева.

Средства визуализации: построение гистограммы и эмпирической функции распределения в модуле matplotlib.pyplot

Функция plt.hist(x, bins=None, density=None, weights=None, cu-mulative=False, histtype='bar', align='mid', orientation='vertical', log=False, color=None)

Строит гистограмму и возвращает два массива: высот столбцов гистограммы и центров интервалов группировки.

Параметры: х - массив (выборка); bins - число интервалов группировки или последовательность, задающая границы интервалов (все интервалы, кроме последнего, полуоткрытые вида [...)), или строка из списка, который приводится после перечня параметров; density - если True, то строится гистограмма относительных частот (суммарная площадь прямоугольников равна 1); weights - массив весов той же формы, что и х; симиlative - если True, то в сочетании с признаком density=True строит эмпирическую функцию распределения; histtype - кроме типа 'bar' можно указать 'barstacked' и 'step'; align - задает расположение центров прямоугольников; orientation - установив значение 'horizontal', можно повернуть график на 90°; log - если True, для осей используется логарифмическая шкала; color - признак, устанавливающий цвет.

По умолчанию число интервалов группировки равно 10.

Список правил для выбора числа интервалов:

bins='auto' - максимальное из значений, получаемых по правилу Стерджесса и Фридмана - Диакониса;

bins='fd' - правило Фридмана - Диакониса;

bins=' sturges' - правило Стерджесса;

bins= 'doane' - правило Доэна;

bins=' scott' - правило Скотта;

bins='stone' - обобщение правила Скотта;

bins=' rice' - правило Райса;

bins=' sqrt' - правило квадратного корня.

4. Точечное оценивание параметров распределения по выборке

Загрузка основных модулей import numpy as np import scipy.stats as sts

import matplotlib.pyplot as plt

import seaborn

%matplotlib inline

Точечные оценки параметров распределения в пакете numpy

 Φ ункция np.mean(a, axis)

Возвращает выборочное среднее.

Параметры: а - массив; в случае многомерного массива а можно указать ось (axis), вдоль которой вычисляется среднее.

Функция np.nan mean (a, axis) при вычислении игнорирует пропущенные данные nan (важно при обработке реальных данных).

Для вычисления выборочных начальных моментов порядка k можно использовать функцию mean применительно к k-й степени массива a.

 Φ ункция np.var(a, axis, ddof)

Возвращает оценку дисперсии по выборке а.

Параметры: а - массив; в случае многомерного массива а можно указать ось (axis), вдоль которой вычисляется дисперсия; ddof по умолчанию равен 0 (вычисляется выборочная дисперсия), если задать ddof=1, то функция возвращает исправленную выборочную дисперсию.

Функция np.nanvar(a, axis, ddof) при вычислении игнорирует пропущенные данные nan.

Функция np.std(a, axis, ddof)

Возвращает корень из выборочной (или исправленной выборочной) дисперсии.

Параметры: а - массив; в случае многомерного массива а можно указать ось, вдоль которой вычисляется дисперсия; ddof по умолчанию равен 0 (вычисляется выборочная дисперсия), если задать ddof=1, то функция возвращает исправленную выборочную дисперсию.

Функция np.median (a, axis=None, out=None)

Возвращает выборочную медиану (вычисляется как центральный элемент $a_{\frac{n-1}{2}}$ от-

сортированного по неубыванию массива а при нечетном n и как среднее арифметическое двух центральных значений при четном n).

Параметры: а - массив; в случае многомерного массива а можно указать ось (axis), вдоль которой вычисляется среднее; out - массив, если он указан, в него помещаются вычисленные значения медиан.

 Φ ункция np.quantile (a, q, axis=None, out=None, interpolation='linear')

Возвращает квантиль порядка q (указывается число из интервала (0,1)).

Параметры: a — массив; в случае многомерного массива а параметр axis - ось (кортеж осей), вдоль которой производятся вычисления; out - массив, если он указан, в него помещаются вычисленные значения квантилей; interpolation - признак, определяющий метод интерполяции в ситуации, когда квантиль расположена между двумя значениями массива ('linear' по умолчанию, есть другие варианты).

Первый квартиль Q_1 выборки X вычисляется с помощью функции np.quantile(X,0.25).

Третий квартиль Q_3 выборки X вычисляется с помощью функции np.quantile(X,0.75).

Точечные оценки параметров распределения в модуле scipy.stasts

Функция sts.moment(x, moment=k, axis=0, nan_policy='propogate')

Возвращает выборочный центральный момент порядка k.

Параметры: x - выборка; axis - ось, вдоль которой вычисляется оценка; $nan_policy - определяет$ способ обработки пропущенных значений ('propogate' - возвращает nan, 'raise' - генерирует ошибку, 'omit' - игнорирует пропущенные данные).

Функция sts.skew(x, axis=0, bias=True, nan_policy='propogate')

Возвращает выборочный коэффициент асимметрии.

Параметры: x — выборка; axis - ось, вдоль которой вычисляется оценка; bias - признак (если False - применяется коррекция для устранения смещенности); nan policy - определяет способ обработки пропущенных значений.

 Φ ункция sts.kurtosis(x, axis=0, fisher=True, bias=True, nan_policy='propogate')

Возвращает выборочный коэффициент асимметрии.

Параметры: x – выборка; axis - ось, вдоль которой вычисляется оценка; fisher - признак, если равен True (по умолчанию), то в формуле для эксцесса из отношения моментов вычисляется число 3; bias - признак (если False - применяется коррекция для устранения смещенности); nan_policy - определяет способ обработки пропущенных значений.

 Φ ункция sts.igr(x)

Вычисляет межквартильный размах - разность между третьим и первым квартилями.

Функция sts.describe(a, axis, ddof, bians, nan policy)

Возвращает набор оценок основных параметров случайной величины: nobs - объем выборки; minmax - кортеж, содержащий максимальное и минимальное значение выборки; mean - выборочное среднее; variance - исправленная выборочная дисперсия s^2 (в случае задания ddof=1 или по умолчанию) либо выборочная дисперсия (в случае задания ddof=0); skewness - коэффициент асимметрии; kurtosis - коэффициент эксцесса (в случае задания bias=False, коэффициенты асимметрии и эксцесса корректируются на величину смещения).

Параметры: а - выборка; axis - задание оси (для многомерной выборки); ddof - признак смещенности (только для дисперсии); bians - признак коррекции (только для асимметрии и эксцесса); nan_policy - задает способ обработки пропущенных данных.

Средства визуализации: построение гистограммы и боксплота в пакете seaborn

Функция boxplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None, orient=None, color=None)
Строит боксплот.

Параметры: x, y, hue - наименование признаков в наборе data; data - датафрейм, или массив numpy, или список; order и hue_order - строки, с помощью которых можно изменить порядок вывода признаков на график; orient - вертикальная или горизонтальная ориентация (v или v или v »); color - задание цвета.

Построение боксплота в пакете удобно сочетать с построением гистограммы с помощью функции histplot.

5. Интервальное оценивание параметров распределения по выборке

Загрузка основных модулей import numpy as np import scipy.stats as sts import scipy.special as sc import matplotlib.pyplot as plt import statsmodels.api as sm import statsmodels.stats.weightstats import statsmodels.stats.proportion %matplotlib inline

Построение доверительных интервалов в предположении нормального распределения генеральной совокупности

Функция _zconfint_generic (mean, std_mean, alpha, alternative) модуля statsmodels.stats.weightstats
Возвращает границы доверительного интервала (1) (см. приложение 1).

Параметры: mean - выборочное среднее, std_mean = $\frac{\sigma}{\sqrt{n}}$; alpha - уровень

значимости; alternative - вид доверительного интервала («two-sided» - двусторонний, по умолчанию, «smaller» - левосторонний, «larger» - правосторонний).

 Φ ункция zconfint(x, alpha=0.05, alternative=«two-sided») модуля statsmodels.api.stats

Возвращает границы доверительного интервала (2).

Параметры: x - выборка; alpha - уровень значимости; alternative - вид доверительного интервала («two-sided» - двусторонний (по умолчанию), «smaller» - левосторонний, «larger» - правосторонний).

Построение доверительных интервалов в предположении биномиального распределения генеральной совокупности

Функция proportion_confint(count=m, nobs=n, alpha, method='normal') модуля statsmodels.stats.proportion

Возвращает границы доверительного интервала (3) или (4).

Параметры: count - число успехов; nobs - число испытаний; alpha - уровень значимости; method - вид доверительного интервала (если 'normal', строится интервал (6), если 'wilson', строится интервал (3)).

 Φ ункция samplesize_confit_proportion(proportion, half_length, alpha, method='normal') модуля stats-models.stats.proportion

Возвращает минимальный объем выборки, необходимый для достижения желаемой точности при интервальном оценивании вероятности события.

Параметры: proportion - вероятность успеха; half_length - половина ширины требуемого интервала; alpha - уровень значимости (по умолчанию 0.05).

6. Проверка гипотез о значениях параметров распределения

Загрузка основных модулей

import numpy as np

import scipy.stats as sts

import matplotlib.pyplot as plt

%matplotlib inline

Проверка гипотезы о значении математического ожидания нормально распределенной генеральной совокупности при неизвестной дисперсии при двусторонней альтернативе

 Φ ункция ttest_1samp(a, popmean, axis = 0, nan_policy = 'propagate') модуля scipy.stats

Возвращает: выборочное значение статистики $W = \frac{\overline{X} - m_0}{S / \sqrt{n}};$ достигаемый уровень

значимости - р - значение (см. приложение 2).

Параметры: a — выборка; popmean - гипотетическое значение математического ожидания; nan policy - задает способ обработки пропущенных значений.

7. Проверка гипотез о законе распределения, проблема нормализации выборки

Загрузка основных модулей

```
import numpy as np
import scipy.stats as sts
import matplotlib.pyplot as plt
import pandas as pd
%matplotlib inline
```

Экспорт данных из csv или Excell- файла в объект DataFrame библиотеки Pandas

```
Функция pd.read_csv('Data.xlsx', sep=',' header = 'infer', index_col=None)
```

Создает объект DataFrame.

Параметры: Data.xlsx - строка с указанием пути к файлу; sep-разделитель (по умолчанию ,); header - строка, содержащая имена столбцов (по умолчанию 'infer'-в качестве имен используется первая строка данных); index_col-указывает, какой столбец в файле использовать в качестве индекса, если установить index_col= False, первый столбец данных в качестве индекса использоваться не будет.

Функция pd.read excel() имеет аналогичные параметры.

Средства группировки выборки библиотеки numpy

Функция np.histogram(a, bins=10, range=None, weights=None, density= None)

Возвращает два массива: hist - массив высот столбцов гистограммы; bin_edges - массив границ интервалов.

Параметры: а - одномерный массив (выборка); bins - число интервалов группировки (по умолчанию - 10) или последовательность, задающая границы интервалов; если bins='auto' - число интервалов выбирается как максимальное из величин, получаемых по правилу Стерджесса и Фридмана-Диакониса; range - начальная и конечная границы интервалов (если параметр не определен, то в качестве границ берутся минимальный и максимальный элементы выборки), элементы выборки вне области range игнорируются; density - если True - строится гистограмма относительных частот (суммарная площадь прямоугольников равна 1); weights - массив весов той же формы, что и а.

Реализация критерия хи-квадрат проверки гипотезы о законе распределения в модуле scipy.stats

 Φ ункция sts.chisquare (f_obs, f_exp = None, ddof = 0, axis = 0)

Возвращает наблюдаемое значение статистики и p - значение (т.е. максимальное значение уровня значимости, при котором основная гипотеза принимается).

Параметры: f_obs - наблюдаемые частоты (n_i); f_exp - частоты гипотетического (согласно основной гипотезе) распределения (np_i) (по умолчанию равные между собой); ddof - число параметров гипотетического распределения, оцениваемых по выборке. На вход функции можно подавать многомерный массив. Критерий будет применяться к каждому столбцу массива (если axis = 1, то к строке).

Условие использования: все наблюдаемые и гипотетические частоты должны быть не менее 5 ($n_i \ge 5$, $np_i \ge 5$).

Реализация критерия Шапиро-Уилка в модуле scipy.stats

Функция sts.shapiro (x, a=None, reta=False)

Возвращает наблюдаемое значение статистики $\,p\,$ - значение; массив параметров (присутствует, если reta=True).

Параметры: х - одномерный массив (выборка); а - массив внутренних параметров (если не заданы, вычисляется самой функцией); reta - признак, нужно ли возвращать вычисленные параметры).

Преобразование Бокса-Кокса модуля scipy.stats

 Φ ункция sts.boxcox(x, lmbda=None, alpha=None)

Возвращает: (1) boxcox - массив, результат преобразования Бокса-Кокса; (2) если параметр lmbda=None, то второй возвращаемый параметр maxlog - значение lmbda, максимизирующее логарифм функции правдоподобия; (3) если lmbda=None и alpha не None, возвращается кортеж, содержащий границы доверительного интервала.

Параметры: x - входной одномерный массив положительных чисел (выборка); lmbd - если не None, преобразование выполняется для этого значения; alpha - если не None, то функция возвращает в качестве третьего аргумента $100(1-\alpha)\%$ -й доверительный интервал для параметра lmbda.

8. Корреляционный анализ

Загрузка основных модулей

import numpy as np

import scipy.stats as sts

import matplotlib.pyplot as plt

import pandas as pd

import seaborn

%matplotlib inline

Генерация многомерного нормального распределения в библиотеке numpy

Функция np.random.multivariate normal (mean, cov, n)

Возвращает выборку объема n для многомерного нормального распределения с заданным вектором математических ожиданий mean и ковариационной матрицей cov.

Средства визуализации диаграммы рассеивания

Функция plt.scatter(x, y) модуля matplotlib.pyplot

Строит диаграмму рассеивания признаков х и у.

Параметры: х, у-два массива одинаковой длины.

Функция seaborn.pairplot(data, vars=None, kind='scatter', diag kind='hist', height=4) пакета seaborn

Строит диаграммы рассеивания пар признаков из vars, а также визуализирует распределение отдельных признаков.

Параметры: - датафрейм; vars - список имен переменных из vars, которые будут использованы для вывода диаграммы (если не задан, используются все числовые колонки data); kind - тип диаграммы рассеяния (обычная 'scatter' или с линией регрессии 'reg'); diag_kind - тип диагональных графиков ('auto', 'hist', 'kde'); height - высота каждой фацеты (в дюймах).

Расчет выборочных характеристик двумерной выборки

Функция np.cov(x, y=None, rowvar=True, bias=False, ddof=None) библиотеки numpy

Вычисляет выборочную ковариационную матрицу.

Параметры: x - одномерный или двумерный массив. Если одномерный - вычисляется ковариация между x и y. Если двумерный - при значении rowvar=True (по

умолчанию) вычисляется ковариация между строками массива x, при значении rowvar=False - между столбцами массива x; bias - признак, определяющий способ нормализации, по умолчанию (False) - производится деление на n-1, иначе на n; ddof - выполняет функцию, аналогичную признаку bias: при значении ddof=1 производится деление на n-1, при значении ddof=0 - деление на n

Функция np.corrcoef(x, y=None, rowvar=True) библиотеки numpy Вычисляет выборочную корреляционную матрицу.

Параметры: x - одномерный или двумерный массив. Если одномерный - вычисляется коэффициент корреляции между x и y. Если двумерный: при значении rowvar=True (по умолчанию) вычисляется коэффициент корреляции между строками массива x, при значении rowvar=False - между столбцами массива x.

Metog data.corr (method='pearson') библиотеки pandas Параметры: data-объект DataFrame, method - задает вид коэффициента корреляции 'pearson', 'spearman', 'kendall' (по умолчанию 'pearson').

Средства визуализация корреляционной матрицы

Функция seaborn.heatmap(data, annot=None, fmt='.2g', linewidth=0, linecolor='white', cbar=True, cbar_kws=None, cbar ax=None) пакета seaborn

Принимает на вход прямоугольный массив данных и отображает данные с помощью цвета. Цветовая панель показывает соответствие цвета числовым значениям переменной.

Параметры: data - объект DataFrame, annot - признак: если True, в каждую ячейку карты выводится значение признака; fmt - строка: задает формат для случая annot= True, linewidth, linecolor - размер и цвет линий, разделяющих ячейки; cbar_kws, cbar_ax - информация о необходимости вывода, цвете и расположении цветовой панели.

Критерии значимости коэффициента корреляции Спирмена модуля scipy.stats

Функция sts.spearmanr(a,b=None, axis=0, nan_policy='propogate')

Проверяет гипотезу об отсутствии значимой монотонной связи.

Возвращает r - выборочный коэффициент корреляции, p-value - достигаемый уровень значимости.

Параметры: a, b-два одномерных или двумерных массива одинакового размера, nan_policy ('propagate', 'raise', 'omit') - задает способ обработки пропущенных (NaN) значений.

9. Регрессионный анализ: парная линейная регрессия

Загрузка основных модулей

import numpy as np

import scipy.stats as sts

import matplotlib.pyplot as plt

import pandas as pd

imporseaborn

from sklearn.linear model import LinearRegression

%matplotlib inline

Средства получения оценок линейной регрессии

Вначале надо создать экземпляр класса LinearRegression, который будет представлять модель регрессии: linreg = LinearRegression().

 Φ ункция linreg.fit(x, y)

Вычисляет оценки коэффициентов регрессии b_0 , b_1 .

Ее параметры: x - двумерный массив, размера $n \times 1$ (независимая переменная); y - одномерный массив (вектор-строка) длины n (зависимая переменная).

Коэффициент b_0 можно получить, вызвав linreg.intercept .

Коэффициент b можно получить, вызвав linreg.coef .

Функция linreg.score (x, y) вычисляет коэффициент детерминации.

Приложение 1

Пара- метр	Условия	Доверительный интервал	Номер фор- мулы
m	$X \sim N(m, \sigma)$ σ известно	$\overline{X} - u_{\frac{1+\beta}{2}} \cdot \frac{\sigma}{\sqrt{n}} < m < \overline{X} + u_{\frac{1+\beta}{2}} \cdot \frac{\sigma}{\sqrt{n}}$	1
m	$X \sim N(m, \sigma)$ σ неизвестно	$\overline{X} - t_{\frac{1+\beta}{2}}(n-1) \cdot \frac{S}{\sqrt{n}} < m < \overline{X} + t_{\frac{1+\beta}{2}}(n-1) \cdot \frac{S}{\sqrt{n}}$	2
p	$X \sim B(n, p)$ $\sqrt{npq} \gg 1$	$ \frac{P^* + \frac{1}{2} \frac{u_{\frac{1+\beta}{2}}^2}{n} - u_{\frac{1+\beta}{2}} \cdot \sqrt{\frac{P^* \left(1 - P^*\right)}{n} + \frac{1}{4} \frac{u_{\frac{1+\beta}{2}}^2}{n^2}}}{1 + \frac{u_{\frac{1+\beta}{2}}^2}{n}}$	3
р	$X \sim B(n, p)$ $\sqrt{npq} \gg 1$	$P^* - u_{\frac{1+\beta}{2}} \cdot \sqrt{\frac{P^* \left(1 - P^*\right)}{n}}$ $ P^* + u_{\frac{1+\beta}{2}} \cdot \sqrt{\frac{P^* \left(1 - P^*\right)}{n}}$	4

Модификация схемы проверки статистических гипотез с использованием p - значения.

Метод, основанный на использовании так называемого p - значения критерия, позволяет решить для всех уровней значимости одновременно, принять или отклонить основную гипотезу.

Определение. p - значением $p(x_1, x_2, ..., x_n)$ нулевой гипотезы, проверяемой по выборке с помощью статистики критерия Z и критической области G_{α} , называется наименьший уровень значимости, при котором основная гипотеза при имеющейся выборке отклоняется:

$$p(x_1, x_2, ..., x_n) = \min \{\alpha \mid z_{\text{выб}} \in G_{\alpha}\}.$$

Здесь $z_{\text{выб}} = Z(x_1, x_2, ..., x_n)$ – выборочное значение статистики.

Для всех значений уровня значимости, таких, что $\alpha \le p(x_1, x_2, ..., x_n)$, основная гипотеза принимается, при всех $\alpha > p(x_1, x_2, ..., x_n)$ - отклоняется. Чем меньше p - значение, тем больше оснований отклонить нулевую гипотезу.

Вид формул, по которым вычисляются p - значения, зависит от вида критической области.

Справедливо следующее утверждение:

- 1. Если критическая область правосторонняя, т.е. имеет вид $(z_{1-\alpha}; +\infty)$, где $z_{1-\alpha}$ квантиль порядка $1-\alpha$, то p значение находится по формуле $p(x_1, x_2, ..., x_n) = P\{Z > z_{\text{выб}} | H_0\}$.
- 2. Если критическая область левосторонняя, т.е. имеет вид $(-\infty; z_{\alpha})$, где z_{α} квантиль порядка α , то p значение находится по формуле $p(x_1, x_2, ..., x_n) = P\{Z < z_{\text{выб}} | H_0\}$.
- 3. Если критическая область двусторонняя, т.е. имеет вид $(-\infty; z_{\alpha/2}) \cup (z_{1-\alpha/2}; +\infty)$, то p значение находится по формуле $p(x_1, x_2, ..., x_n) = 2 \cdot \min\{p, 1-p\}$, где $p = P\{Z < z_{\text{выб}} | H_0\}$.