Assignment2 STAT229

Name: Zihao Huang Date: 1/30/2017

1.

. tab sta inf

	1	INF	
STA	0	1	Total
0	100	60	160
1	16	24	40
Total	116	84	200

The log-odds is (100*24) / (60*16) = 2.5

. logistic sta inf

Logistic regression	Number of obs	=	200
	LR chi2(1)	=	6.58
	Prob > chi2	=	0.0103
Log likelihood = -96.792669	Pseudo R2	=	0.0329

sta	Odds Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]
inf	2.5	.9042723		0.011	1.230418	5.079573
_cons	.16	.0430813		0.000	.0943902	.2712146

The log-odds is 2.5

. logit sta inf

Iteration	0:	log	likelihood	=	-100.08048
Iteration	1:	log	likelihood	=	-96.853843
Iteration	2:	log	likelihood	=	-96.792686
Iteration	3:	log	likelihood	=	-96.792669
Iteration	4:	log	likelihood	=	-96.792669

Logistic regression	Number of obs	=	200
	LR chi2(1)	=	6.58
	Prob > chi2	=	0.0103
Log likelihood = -96.792669	Pseudo R2	=	0.0329

sta	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
inf	.9162908	.3617089	2.53	0.011	.2073543	1.625227
_cons	-1.832582	.2692582	-6.81	0.000	-2.360318	-1.304845

The slope coefficient of INF is e^0.9163=2.500 and Std is 0.3617

Also,

$$SD = [sqrt (1/100+1/16+1/24+1/60)] = 0.3617$$

And the 95% confident interval of OR of INF is (e^0.2074, e^1.6252) 1.23 =< OR =< 5.08

2.

	LOW	1	2	3	Total
•	0 1	73 23	15 11	42 25	130 59
•	Total	96	26	67	189

For race=1 is reference group,

The OR for race=1 and race=2 is (73*11) / (15*23) = 2.3275 (e^0.8448)

The OR for race=1 and race=3 is $(73*25) / (23*42) = 1.8892 (e^0.6362)$

. logistic low i.race

Logistic regression	Number of obs	=	189
	LR chi2(2)	=	5.01
	Prob > chi2	=	0.0817
Log likelihood = -114.83082	Pseudo R2	=	0.0214

low	Odds Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]
race 2 3	2.327536 1.889234	1.078613 .6571342	1.82 1.83	0.068 0.067	.9385072 .9554577	5.772385 3.735597
_cons	.3150685	.0753382	-4.83	0.000	.1971825	. 503433

. logit low i.race, level(90)

Iteration 0: log likelihood = -117.336Iteration 1: log likelihood = -114.84273 Iteration 2: log likelihood = -114.83082 Iteration 3: log likelihood = -114.83082

Number of obs = 189 LR chi2(2) = 5.01 Prob > chi2 = 0.0817 Pseudo R2 = 0.0214 Logistic regression

Log likelihood = -114.83082

low	Coef.	Std. Err.	z	P> z	[90% Conf.	Interval]
race						
2	.8448103	.4634141	1.82	0.068	.0825619	1.607059
3	.6361714	.347831	1.83	0.067	.0640403	1.208303
_cons	-1.154965	. 2391169	-4.83	0.000	-1.548278	7616529

The log-odds of low by race2 is $e^0.8448 = 2.3275$

The 95% confident interval of OR for race2 is (e^0.0826, e^1.6071), that is (1.0861, 4.9883)

The log-odds of low by race3 is $e^0.6362 = 1.8893$.

The 95% confident interval of OR for race3 is (e^0.0640, e^1.2083), that is (1.0661, 3.3478)

In 90% confidence (because the p-value is smaller than 0.10 but larger than 0.05),

Covariance matrix of coefficients of logistic model

		low	
	e (V)	race	_cons
low			
	race	.02937799	
	_cons	05714275	.13626626

logit sta crn

Iteration 0: log likelihood = -100.08048
Iteration 1: log likelihood = -97.599816
Iteration 2: log likelihood = -97.368391
Iteration 3: log likelihood = -97.368374
Iteration 4: log likelihood = -97.368374

.ogistic regression Number of obs = 200 LR chi2(1) = 5.42 Prob > chi2 = 0.0199

Pseudo R2

og likelihood = -97.368374

sta	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
crn _cons	1.219757 -1.53821	.5038556 .1948369	2.42 -7.89			2.207296 -1.156337

. logit sta crn age

Iteration 0: log likelihood = -100.08048
Iteration 1: log likelihood = -94.672038
Iteration 2: log likelihood = -94.3031
Iteration 3: log likelihood = -94.302294
Iteration 4: log likelihood = -94.302294

Logistic regression Number of obs = 200

LR chi2(2) = 11.56 Prob > chi2 = 0.0031 Pseudo R2 = 0.0577

0.0271

Log likelihood = -94.302294

sta	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
crn	1.019856	.5149244	1.98	0.048	.0106231	2.02909
age	.0249915	.0107234	2.33	0.020	.003974	.046009
_cons	-3.029875	.7000292	-4.33	0.000	-4.401907	-1.657843

. logit sta age crn i.crn#c.age

Logistic regression Number of obs = 200

Number of obs = 200 LR chi2(3) = 12.80 Prob > chi2 = 0.0051 Pseudo R2 = 0.0639

Log likelihood = -93.681076

sta	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
age crn	.029242 3.573101	.011725 2.322261	2.49 1.54	0.013 0.124	.0062613 978447	.0522226 8.124649
crn#c.age 1	0380925	.0340579	-1.12	0.263	1048447	.0286598
_cons	-3.297927	.7705345	-4.28	0.000	-4.808147	-1.787707

From these three models: STA explained by CRN, STA explained by CRN and AGE, STA explained by CRN and AGE and interaction of CRN and AGE, for model 1 and model 2, G=-2*(-93.681076-(-94.302294)), is larger than p-value for chi-square 0.05, means there is no difference between model1 and model 2. And the difference of CRN is (1.219757-1.019856)/1.019856 = 0.1960=19.6%, which means the change is nearly 20%, it needs adjustment. It can be seen that AGE make CRN's p-value larger which means it may be a confounder. And from the statistical interaction, we knew that the p-value of interaction between AGE and CRN is 0.263, which is large and it shows that in 95% confidence it is not significant in this model. So, there is no statistical interaction between these two variables.

4.

(a)

. logit death inh_inj

Logistic regression Number of obs = 1,000

Number of obs = 1,000 LR chi2(1) = 153.76 Prob > chi2 = 0.0000 Pseudo R2 = 0.1819

Log likelihood = -345.8305

death	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
inh_inj	2.692546	.2189964		0.000	2.263321	3.121771
_cons	-2.327903	.1186192		0.000	-2.560392	-2.095414

. logit death inh_inj age

Iteration 0: log likelihood = -422.70909
Iteration 1: log likelihood = -301.37879
Iteration 2: log likelihood = -269.42894
Iteration 3: log likelihood = -266.7758
Iteration 4: log likelihood = -266.77
Iteration 5: log likelihood = -266.77

Logistic regression Number of obs = 1,000

LR chi2(2) = 311.88 Prob > chi2 = 0.0000 Pseudo R2 = 0.3689

log likelihood = -266.77

death	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
inh_inj	2.923704	.2686788	10.88	0.000	2.397104	3.450305
age	.0587824	.0055477	10.60	0.000	.0479091	.0696557
_cons	-5.002426	.338955	-14.76	0.000	-5.666765	-4.338086

From these two models: death explained by inh_inj ,and death explained by inh_inj and age, Both inh_inj and age in these two models are significant, the percentage of inh_inj from model 1 to model 2 is (2.6925-2.9237)/2.9237=-0.0791=7.91%, and for these two model, G=-2*(-266.77-(-345.8305)), which is much smaller than chi-square (1)'s p-value 0.001, thus, these two models are significant.