H24-7

2つの無関係な部分問題にり帚着する。

minimize
$$\frac{1}{3}x_1 - x_2 - \frac{5}{12}x_3$$

(P1) S.t. $-x_1 - x_2 - \frac{1}{3}x_3 \ge -\frac{1}{5}$
 $x_1, x_2, x_3 \ge 0$

minimize
$$max(y_1-y_2,3y_1-2y_2)$$

 $(P2)^{S.t.}$ $\frac{3}{2}y_1 + y_2 \le 3$ — @ $\frac{1}{2}y_1 + y_2 \ge -1$ — @ $-2y_1 + y_2 \le \frac{19}{4}$ — @ $y_1 \le 0$

maximize
$$-\frac{1}{5}y_1$$

(D1) S.t. $-y_1 \le \frac{1}{3}$
 $-y_1 \le -1$ \longrightarrow $y_1^* = \frac{5}{4}$, max $-\frac{1}{4}$
 $-\frac{1}{3}y_1 \le -\frac{5}{12}$
 $y_1 \ge 0$

相補性定理制(P1)の最適值-女/(0,0,3) (x双対定理)

(P2)を図で解く。

max(y1-y2,3y1-2y2)=Kxt1<.

- サーサュン34,-24。のとき、(サン2とり、)
 ドーサーサンより、Kominimizeは
 直線サンニリートのサフ片のmaximize
 びって、①、②の交点ご連成し、k*=-ダ
- ・ y,-y, ≤ 34,-282のとき、(y, ≤24,) (y, y,)=(0,0)しかないので、 k*=3y*-2y*= ○
- ·從。て、(P2) $\xi^* = -\frac{17}{4}$, $\left(-\frac{1}{2}, \frac{15}{4}\right)$
- ·從。2、元の問題は、最適値 ダーダ = ラ , (x*,x*,x*,y*,y*)=(0,0,音,-1,15)

