Biological Modeling of Neural Networks Week 1: A first simple neuron model/ neurons and mathemati

Wulfram Gerstner EPFL, Lausanne, Switzerland Week 2: Hodgkin-Huxley models and biophysical modeling Week 3: Two-dimensional models and phase plane analysis Week 4: Two-dimensional models, type I and type II models Week 5,6: Associative Memory, Hebb rule, Hopfield Week 7,8: Noise models, noisy neurons and coding

Week 9: Estimating neuron models for coding and decoding: GLM Week 10-13: Networks, cognition, learning Week x: Online video: Dendrites/Biophysics

LEARNING OUTCOMES

- ·Solve linear one-dimensional differential equations
- •Analyze two-dimensional models in the phase plane
- Develop a simplified model by separation of time scales
- Analyze connected networks in the mean-field limit
- •Formulate stochastic models of biological phenomena
- •Formalize biological facts into mathematical models
- •Prove stability and convergence
 •Apply model concepts in simulations
- •Predict outcome of dynamics
- Describe neuronal phenomena

Transversal skills

•Plan and carry out activities in a way which makes optimal use of available time and other resources. Collect data.

•Write a scientific or technical report.

Look at samples of past exams

Use a textbook, (Use video lectures) don't use slides (only)

miniproject

Biological Modeling of Neural Networks

Written Exam (2/3) + miniproject (1/3)

http://neuronaldynamics.epfl.ch/

Textbook:

Videos (for half the material):

http://lcn.epfl.ch/~gerstner/NeuronalDynamics-MOOC1.html

Biological Modeling of Neural	Networks	
Week 1 – neurons and mathematics:	1.1 Neurons and Synapses: Overview	
a first simple neuron model	1.2 The Passive Membrane - Linear circuit	
Wulfram Gerstner EPFL, Lausanne, Switzerland	- Dirac delta-function 1.3 Leaky Integrate-and-Fire Model 1.4 Generalized Integrate-and-Fire	
Reading for week 1: NEURONAL DYNAMICS - Ch. 1 (without 1.3.6 and 1.4)	Model 1.5. Quality of Integrate-and-Fire Models	
- Ch. 5 (without 5.3.1) Cambridge Univ. Press	models	
Biological Modeling of Neural	Networks	
→	1.1 Neurons and Synapses: Overview	
	1.2 The Passive Membrane - Linear circuit - Dirac delta-function	
	1.3 Leaky Integrate-and-Fire Model 1.4 Generalized Integrate-and-Fire	
	Model 1.5. Quality of Integrate-and-Fire Models	
Neuronal Dynamics – 1.1. Neuro	ns and Synapses/Overview	
	motor	
How do we recognize things? Models of cognition	cortex frontal cortex	
	sual	
	to motor output	

Neuronal Dynamics – 1.1. Neurons and Synapses/Overview

Neuronal Dynamics – 1.1. Neurons and Synapses/Overview

Integrate-and-fire models:

Formal/phenomenological
(week 1 and week 7-9)

-spikes are events
-triggered at threshold
-spike/reset/refractoriness

Spike emission

Spike reception

t

Postsynaptic
potential

Noise and variability in integrate-and-fire models

Output
-spikes are rare events
-triggered at threshold

Subthreshold regime:
-trajectory of potential shows fluctuations

Neuronal Dynamics – <mark>memb</mark> i	ane potential fluctuations	
Spontaneous activity <i>in vivo</i> What is noise? What is the neural code?	ctrode Brain	
(week 7-9) awake mouse	e, cortex, freely whisking,	
0 - 20 - 3 -40 -		-
-60	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Lab of Prof. C. Peters	sen, EPFL Crochet et al., 2011	
Biological Modeling of Neura	ni Networks – Ouiz 1.1	
A cortical neuron sends out signals	The dendrite is a part of the neuron	
which are called: [] action potentials	[] where synapses are located [] which collects signals from other	
[] spikes [] postsynaptic potential	neurons [] along which spikes are sent to other neurons	
In an integrate-and-fire model, when the	In vivo, a typical cortical neuron exhibits	
voltage hits the threshold: [] the neuron fires a spike	[] rare output spikes	
[] the neuron can enter a state of refractoriness	[] a fluctuating membrane potential	
[] the voltage is reset [] the neuron explodes	Multiple answers possible!	
Biological Modeling of Neur		
	Week 1: A first simple neuron model/ neurons and mathematics Week 2: Hodgkin-Huxley models and	
Wulfram Gerstner	biophysical modeling Week 3: Two-dimensional models and	
	phase plane analysis Week 4: Two-dimensional models,	-
ı	type I and type II models Week 5,6: Associative Memory, Hebb rule, Hopfield	
	Week 7,8: Noise models, noisy neurons and coding	
	Week 9: Estimating neuron models for coding and decoding: GLM Week 10-13: Networks, cognition, learning	
i	Week x: Online video: Dendrites/Biophysics	

Biological modeling of Neural Networks
Course: Monday : 9:15-13:00
A typical Monday: 1st lecture 9:15-9:50 1st exercise 9:50-10:00
2nd lecture 10:15-10:35 2nd exercise 9:50-10:00 paper and pencil
3rd lecture 11:15 – 11:40 3rd exercise 11:45-12:40 OR interactive toy
Course of 4 credits = 6 hours of work per week 4 'contact' + 2 homework on computer
http://lcn.epfl.ch/~gerstner/ moodle.eplf.ch

Week 1 - part 2: The Passive Membrane

EDGLE POLYTROPHILLE FORFALL DE LAUSANNE

Biological Modeling of Neural Networks

Week 1 – neurons and mathematics: a first simple neuron model

Wulfram Gerstner EPFL, Lausanne, Switzerland 1.1 Neurons and Synapses:

Overview

1.2 The Passive Membrane

- Linear circuit
 - Dirac delta-function
- 1.3 Leaky Integrate-and-Fire Model
- 1.4 Generalized Integrate-and-Fire Model
- 1.5. Quality of Integrate-and-Fire Models

Neuronal Dynamics – 1.2. The passive membrane

$$\tau \cdot \frac{d}{dt}u = -(u - u_{rest}) + RI(t)$$

$$\tau \cdot \frac{d}{dt}V = -V + RI(t); \qquad V = (u - u_{rest})$$

Passive Membrane Model/Linear differential equation $\tau \cdot \frac{d}{dt}V = -V + RV(t);$ Free solution: exponential decay

Pulse input – charge – delta-function		
	u(t)	
$\tau \frac{d}{dt}u = -(u - u_{vor}) + RI(t)$	I(t)	
	$I(t) = q \cdot \delta(t - t_0)$	Pulse current input

Neuronal Dynamics – Solution of Ex. 1 – arbitrary input		
	$\tau \cdot \frac{d}{dt}u = -(u - u_{rest}) + RI(t)$	
	Arbitrary input $u(t) = u_{rest} + \int_{-\infty}^{1} \frac{1}{c} e^{-(t-t')/\tau} I(t') dt'$	
	Single pulse $\Delta u(t) = \frac{q}{c} e^{-(t-t_0)/\tau}$ you need to know the solutions of linear differential equations!	

Passive membrane, linear differential equation	
I(t) t t d	
Passive membrane, linear differential equation	
If you have difficulties, watch lecture 1.2detour.	-
Three prerequisits: -Analysis 1-3 -Probability/Statistics	
-Differential Equations or Physics 1-3 or Electrical Circuits	
LEARNING OUTCOMES *Solve linear one-dimensional differential equations	
Analyze two-dimensional models in the phase plane Develop a simplified model by separation of time scales Analyze connected networks in the mean-field limit Formulate stochastic models of biological phenomena	
Formalize biological facts into mathematical models Prove stability and convergence Apply model concepts in simulations Predict outcome of dynamics Use a textbook,	
Describe neuronal phenomena Transversal skills - Describe neuronal phenomena Uuse video lectures) don't use slides (only)	
Plan and carry out activities in a way which makes optimal use of available time and other resources.	
Collect data. Write a scientific or technical report. miniproject minipr	

Biological Modeling of Neural Networks

Written Exam (2/3) + miniproject (1/3)

http://neuronaldynamics.epfl.ch/

Textbook:

Wulfram Gerstner EPFL, Lausanne, Switzerland

Videos (for half the material):

Questions?

http://lcn.epfl.ch/~gerstner/NeuronalDynamics-MOOC1.html

Week 1 - part 3: Leaky Integrate-and-Fire Model

Biological Modeling of Neural Networks

Week 1 – neurons and mathematics: a first simple neuron model

Wulfram Gerstner EPFL, Lausanne, Switzerland √ 1.1 Neurons and Synapses:

Overview

1.2 The Passive Membrane

- Linear circuit
- Dirac delta-function
- Detour: solution of 1-dim linear differential equation

1.3 Leaky Integrate-and-Fire Model

1.4 Generalized Integrate-and-Fire Model

1.5. Quality of Integrate-and-Fire Models

Neuronal Dynamics – 1.3 Leaky Integrate-and-Fire Model

$$\tau \cdot \frac{d}{dt}u = -(u - u_{rest}) + RI(t)$$

Neuronal Dynamics – First week, Exercise 2		
	$\tau \cdot \frac{d}{dt}u = -(u - u_{rest}) + RI(t)$	
	frequency-current relation f-I curve	

Week 1 - part 4: Generalized Integrate-and-Fire Model (PAL √ 1.1 Neurons and Synapses: Overview **Biological Modeling of** √ 1.2 The Passive Membrane **Neural Networks** - Linear circuit - Dirac delta-function 1.3 Leaky Integrate-and-Fire Model Week 1 – neurons and mathematics: 1.4 Generalized Integrate-and-Fire Model a first simple neuron model 1.5. Quality of Integrate-and-Fire Wulfram Gerstner Models EPFL, Lausanne, Switzerland

Neuronal Dynamics – 1.4. Generalized Integrate-and Fire

Integrate-and-fire model

LIF: linear + threshold

Neuronal Dynamics – 1.4. Leaky Integrate-and Fire revisited

Neuronal Dynamics – 1.4. Nonlinear Integrate-and Fire

LIF

$$\tau \cdot \frac{d}{dt}u = -(u - u_{rest}) + RI(t)$$

NLIF

$$\tau \cdot \frac{d}{dt}u = F(u) + RI(t)$$

If firing:

 $u \rightarrow u_{reset}$

Neuronal Dynamics – 1.4. Nonlinear Integrate-and Fire

Nonlinear Integrate-and-Fire NLIF

$$\tau \cdot \frac{d}{dt}u = F(u) + RI(t)$$
firing: $u(t) = \theta \Rightarrow u \rightarrow u_r$

Nonlinear Integrate-and-fire Model Spike emission g_r reset reset reset $u(t) = g_r \Rightarrow Fire+reset threshold$

Week 1 – part 5: How good are	Integrate-and-Fire Model?	
COULTESTING MARIE HORIZALES LANDONNIE	1.1 Neurons and Synapses: Overview	
Biological Modeling of Neural Networks	1.2 The Passive Membrane - Linear circuit	
ngui ai ngtwoi ka	- Dirac delta-function 1.3 Leaky Integrate-and-Fire Model 1.4 Generalized Integrate-and-Fire	
Week 1 – neurons and mathematics: a first simple neuron model	Model - where is the firing threshold?	
Wulfram Gerstner EPFL, Lausanne, Switzerland	1.5. Quality of Integrate-and-Fire Models	
Er i E, Eddding, Omedian	- Neuron models and experiments	
Neuronal Dynamics – 1.5.How good	are integrate-and-fire models?	
	$\tau \cdot \frac{d}{dt} u = F(u) + RI(t)$	
Can we compare neuron models with experimental data?	S	
Neuronal Dynamics – 1.5.How good	are integrate-and-fire models?	
	neuron 1	
What is a good neuron model?	mathematical neutron model	
Can we compare neuron model with experimental data?	S	
•		

Neuronal Dynamics – 1.5. How good are integrate-and-fire models?

Neuronal Dynamics – 1.5. How good are integrate-and-fire models?

Badel et al., J. Neurophysiology 2008

Neuronal Dynamics – 1.5. How good are integrate-and-fire models?

Neuronal Dynamics – 1.5. How good are integrate-and-fire models?

Nonlinear integrate-and-fire models are good

Mathematical description → prediction

Computer ecercises: Python

Need to add

- adaptation
- noise
- dendrites/synapses

Biological Modeling of Neural Networks

TA's: Marco Lehmann Vasiliki Liakoni Florian Colombo

http://neuronaldynamics.epfl.ch/

Textbook:

Lecture today:

-Chapter 1 -Chapter 5

Exercises today:

-Install PYTHON for Computer Exercises

-Exercise 3, on sheet

Videos (for today: 'week 1'):

http://lcn.epfl.ch/~gerstner/NeuronalDynamics-MOOC1.html

Bio	louica	l Modelina	ı of Neural N	etworks –	week1/Exerc	cise :
DIU	IVYIGA	I MVUGIIIIS	ı vi ngurai n	GIMOLK2 —	· WGGR I/ EXGFU	19 6

Homework!

First week – References and Suggested Reading

Reading: W. Gerstner, W.M. Kistler, R. Naud and L. Paninski, Neuronal Dynamics: from single neurons to networks and models of cognition. Chapter 1: Introduction. Cambridge Univ. Press, 2014

Selected references to linear and nonlinear integrate-and-fire models

- Lapicque, L. (1907). Recherches quantitatives sur l'excitation electrique des nerfs traitee comme une polarization. J. Physiol. Pathol. Gen., 9:620-635. Stein, R. B. (1965). A theoretical analysis of neuronal variability. Biophys. J., 5:173-194. - Ermentrout, G. B. (1996). Type I membranes, phase resetting curves, and synchrony.

-Ermentrout, G. B. (1996). Type I membranes, phase resetting curves, and synchrony.
 Neural Computation, 8(5):979-1001.
 -Fourcaud-Trocme, N., Hansel, D., van Vreeswijk, C., and Brunel, N. (2003). How spike generation mechanisms determine the neuronal response to fluctuating input.
 J. Neuroscience, 23:11628-11640.
 -Badel, L., Lefort, S., Berger, T., Petersen, C., Gerstner, W., and Richardson, M. (2008).

Biological Cybernetics, 99(4-5):361-370.
- Latham, P. E., Richmond, B., Nelson, P., and Nirenberg, S. (2000). *Intrinsic dynamics in neuronal networks. I. Theory.* J. Neurophysiology, 83:808-827.

First week

THE END (of main lecture)

MATH DETOUR SLIDES (for online VIDEO)

Week 1 - part 2: Detour/Linear differential equation

(PAL

Neuronal Dynamics: Computational Neuroscience of Single Neurons

Week 1 – neurons and mathematics: a first simple neuron model

Wulfram Gerstner EPFL, Lausanne, Switzerland √ 1.1 Neurons and Synapses:

Overview

- **√** 1.2 The Passive Membrane

 - Linear circuit Dirac delta-function
 - Detour: solution of 1-dim linear differential equation
 - 1.3 Leaky Integrate-and-Fire Model
 - 1.4 Generalized Integrate-and-Fire Model
- 1.5. Quality of Integrate-and-Fire Models

Neuronal Dynamics - 1.2 Detour - Linear Differential Eq.

$$\tau \cdot \frac{d}{dt}u = -(u - u_{rest}) + RI(t)$$

Neuronal Dynamics – 1.2Detour – Linear Differential Eq.

I(t)

Math development: Response to step current

Neuronal Dynamics – 1.2 Detour – Step current input $\tau \cdot \frac{d}{dt} u = -(u - u_{rest}) + RI(t)$ u(t) I(t)

Neuronal Dynamics – 1.2 Detour – Short pulse input $u(t) = u_{rest} + RI_0 \Big[1 - e^{-(t-t_0)/\tau} \Big] \qquad \qquad \tau \cdot \frac{d}{dt} u = -(u - u_{rest}) + RI(t)$ short pulse: $(t - t_0) << \tau$ u(t) u(t)

Neuronal Dynamics – 1.2Detour – Greens function
Single pulse $\Delta u(t) = q \frac{1}{C} e^{-(t-t_0)/\tau}$ $\tau \cdot \frac{d}{dt} u = -(u - u_{rest}) + RI(t)$
$\Delta u(t) = q \frac{e^{-e^{-t}}}{C^{e^{-t}}} \qquad at$ Multiple pulses: $u(t) = u_{rest} + [u(t_0) - u_{rest}] + \int_0^t \frac{1}{C} e^{-(t-t')/t} I(t') dt$ $u(t)$ $u(t)$ $u(t)$
Cleev's trung n(t)
$u(t) = u_{rest} + \int_{-\infty}^{t} \frac{1}{C} e^{-(t-t')/\tau} I(t') dt'$ $I(t)$

Neuronal Dynamics – 1.2 Detour – arbitrary input $\tau \cdot \frac{d}{dt} u = -(u - u_{rest}) + RI(t)$ If you don't feel at ease yet, spend 10 minutes on these mathematical exercise And quiz 2 in week 1. Arbitrary input $u(t) = u_{rest} + \int\limits_{-\infty}^{1} e^{-(t-t)/t} I(t') dt'$ Single pulse $\Delta u(t) = \frac{q}{c} e^{-(t-t_0)/t}$ you need to know the solutions of linear differential equations!