AD NUMBER

AD510733

CLASSIFICATION CHANGES

TO: unclassified

FROM: confidential

LIMITATION CHANGES

TO:

Approved for public release, distribution unlimited

FROM:

Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; MAY 1970. Other requests shall be referred to Air Force Rocket Propulsion Lab., AFSC, Edwards AFB, CA.

AUTHORITY

AFRPL ltr, 31 Jan 1972; AFRPL ltr, 31 Jan 1972

AFRPL-70-33

UNCLASSIFIED

THE CRYSTAL STRUCTURE OF TWO NEW OXYAMINE SALTS

ෙ (7)

20

7

"DOACI & DOABr"

AD 510 733 TROM-CONFIDENTIAL TO UNCLASSIFIED PER TAB. NO. 72-7 1 MAIL 1972

C. M. BOCK AND W. M. HODGSON, CAPT, USAF

TECHNICAL REPORT AFRPL-TR-70-33

MAY 1970

IN ADDITION TO SECURITY REQUIREMENTS WHICH MUST BE MET, THIS DOCUMENT IS SUBJECT TO SPECIAL EXPORT CONTROLS AND EACH TRANSMITTAL TO FOXEIGN GOVERNMENTS OR FOREIGN NATIONALS MAY BE MADE ONLY WITH PRIOR APPROVAL OF AFRPL (RPORT-STINFO), EDWARDS, CALIFORNIA 93523.

> AIR FORCE ROCKET PROPULSION LABORATORY AIR FORCE SYSTEMS COMMAND UNITED STATES AIR FORCE EDWARDS, CALIFORNIA

DOWNGRADED AT 3 YEAR INTERVALS; DECLASSIFIED AFTER 12 YEARS. DOD DIR 5200.10

NOTICES

When U. S. Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

AFRPL-TR-70-33

UNCLASSIFIED

THE CRYSTAL STRUCTURE OF TWO NEW OXYAMINE SALTS, "DOAC1 & DOAB".

Charles M. Bock

and

William M. Hodgson, Capt, USAF

In addition to security requirements which must be met, this document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of AFRPL (RPORT-STINFO), Edwards, California, 93523.

This document contains information affecting: the national delepite of the United States within the meaning of the Espropage Laws. Jule 18, U.S.C., Section 793, and 794, the transmission of which in any manner to an unauthorized person is probleted by law.

FOREWORD

The synthesis of new propellant ingredients to obtain desirable chemical and physical characteristics is a continuing effort at this laboratory. Molecular structure is fundamental to the nature of any substance and X-ray diffraction analysis provides a rapid and unequivocal method of determining this structure in many cases. Knowing the precise structure of a new compound enables one to predict the feasibility of synthesis of homologs and an estimate of their stability.

This report describes the determination of the crystal and molecular structure of two salts of a new potential propellant material.

Reviewed and approved for publication by:

W.S. ANDERSON, Chief Chemical & Materials Branch Propellant Division

COLOUR TIAL ABSTRACT

The crystal and molecular structures of two new oxyamine salts, "DOAC1 and DOABr" have been determined by X-ray diffraction methods. Bond lengths and angles are all normal suggesting that the analogous tris and tetrakis compounds can be made.

UNCLASSIFIFI

iii/iv

TABLE OF CONTENTS

Section		Page
I	INTRODUCTION	1
п	EXPERIMENTAL	Ź
ш	SOLUTION AND REFINEMENT OF THE STRUCTURES	4
IV	DISCUSSION	10
v	SUMMARY	13
AČKN	ÓWLEDĞEMENTS	14
ŘEFE	RENCES	15
APPE	NDIX A-1	16
APPE	NDIX A=2	19
AUTH	OR - BIOGRAPHY	24
DISTE	RIBÚTIÓN	25
FORM	7 1473	30

v

ILLUSTPATIONS

Page

12

Figure

1	Stereo Diagram of The Unit Cell of DOACI Showing The Molecular Structure. Single Unbonded Balls in The Diagram Are The Cl Ions	7
	TÁBLES	
Table		Page
I	Positional Thermal Parameters for DOABr and COACI	6
II	Important Interatomic Distances, Angles and Their Standard Errors	8
Ш	Distance and Angles Evolved in Hydrogen Bonding	9
IV	Bond Distances for Some Compounds Similar to DOAC1	11

Selected Hydrogen Bonding Information

vi

SECTION I

INTRODUCTION

C = methylene bis(oxyamine hydrochloride), "DOACL" and methylene bis(oxyamine hydrobromide), "DOABr" were prepared at AFRPL under an in-house exploratory synthesis program. Details of the synthesis will be reported at a later date. Structural studies of the perchlorate salt are now in progress and the results of those stuides will be presented when complete.

SECTION II

EXPERIMENTAL

Clear colorless needle-shaped crystals of DOACL & DOABR were grown by slow evaporation of a water solution.

The crystals were mounted on glass fibers parallel to their needle axis (a₀). X-ray precision photographs established in the crystal symmetry of both crystals as monoclinic. Crystal data are:

DOABR	DOAC1
O	
ao 4.051 A ±.008	$3.941 \pm .002$
bo 12.25 ±.01	$11.885 \pm .010$
co 12.94 ±.01	12.486 ±.010
$\beta 90^{\circ}40' \pm 20'$	$90.48^{\circ} \pm .05^{\circ}$
pobś not measured	1.66 g/cm^3
ρX-ray 2.48 g/cm ³	1.77 g/cm ³
Z 4	4
Space group $P2_1/c$ (C_{2n}^5)	$Pz_1/c (C_{2n}^5)$
a; b; c 0.3306:1: 1.056	0.3316:1: 1.051

Lattice parameter measurements on DOABR were made from precission photographs taken with unfiltered molybdenum radiation (λ = 0.71069). Initial intensity data was taken with a Weissenberg camera using the multiple film technique with three films per pack and exposures of 23 and 3 hours and tube power at 40 K.V. and 30 M.A.. Initial intensity data were collected using Ni - filtered Cu radiation (λ = 1.54178). Keflection intensities were visually estimated by comparison with a calibrated intensity scale.

Lattice parameter and final intensity data on DOACL were derived from data taken on an automated Picker FACS-1 diffractometer. The lattice parameter data were obtained with a least squares lattice parameter refine program supplied with the FACS-1 system using twelve reflections ($\lambda \approx 1.54178$). A LiF monochromator was used for both the intensity data collection and the lattice parameter data,

All unique data were collected to 128° 20, however, because of an interruption caused by the full circle, data from two otherwise unique quadrants were used. Absorption corrections were made on the final DOACL data and were found to be appreciable even though the crystal was small (0.047 m.m. diameter X 0.62 m.m. long, $\mu = 92.7 \text{cm}^{-1}$). Peak intensity was estimated using the θ - 20 scanning method over a two degree range. Background was measured for 10 seconds on each side of the peak and a weighing scheme modeled after that suggested by Stout and Jensen was derived. A reflection was considered to be observed if the counts accumulated during the scan were greater than the estimated background.

SECTION III SOLUTION AND REFINEMENT OF THE STRUCTURES

The structures were solved using the symbolic addition method of Karle and Karle (1). The DOABR structure was solved first by taking advantage of the short ao axis and solving the structure in its okl projection. A somewhat equivocal E-map yielded Br atom positions which were introduced into the least squares program ORFLS². Several cycles of least squares varying the 2 independent Bromine Y and Z coordinates reduced the conventional agreement factor R to 26 percent. A Fourier calculation using phases derived from the bromide atom coordinates rearry showed the positions of the carbon, oxygen and nitrogen atoms. With the addition of the other non-hydrogen atoms to the least squares refinement and the inclusion of a scale factor and individual isotropic thermal parameters, the residual fell to 12 percent. Unit weights were used throughout this refinement.

Since the crystallographic similarity between DOAC1 and DOABr was so striking a least squares refinement calculation was made using the okl data for DOAC1 and the atom coordinates derived from the DOABr structure. The residual stabilized at 12 percent after two cycles varying the same parameters that had been varied in the DOABr two-dimensional refinement.

The X coordinates for the COAC1 structure were derived by performing a Sigma-two calculation on the three dimensional DOAC1 data with all normalized structure factors greater than 1.0.

In addition to the okl reflections whose signs were known from the projected structure, the sign of the 131 |E|=2.13 reflection was arbitrarily set positive thus fixing the three-dimensional origin. From the 72 reflections used as a starting set, 101 additional signs were

4

CONFIDENTIAL

determined after three iterations of the data. A three-dimensional E map was computed and from this the relative X coordinates were determined.

Heavy atom coordinates derived from photographic data were used to start the refinement of the diffractometer data on DOACI. Several cycles of least squares varying positional and anisotropic least squares thermal parameters using the program ORFLS (2) brought the residual for observed data to 8 percent. Form factors used for heavy atoms were taken from the International Tables (3). The form factors for hydrogen were taken from the work of Stewart, Davidon and Simpson (4). A difference Fourier was completed and all hydrogen atoms were easily located. Also it was noted that the chlorine form factors used were those for neutral atoms producing a ring-shaped area of positive electron density in the difference Fourier (cf Stout & Jensen) (5). Accordingly, the form factors for Cl were introduced along with the hydrogen atoms to the next full matrix refinement. Two additional cycles of refinement brought the residual for non zero observed F's to 6.5 percent. Another difference Fourier was computed showing no anomalies and the refinement was terminated. Thermal parameters for the hydrogen atoms were fixed at the values derived for the attached heavy atoms and no attempt was made to refine that value.

Tables of computed and observed structure factors are presented in Appendix A.

Positional and thermal parameters for DOABr and DOAC1 are presented in Table I.

nined

TABLE I. POSITIONAL THERMAL PARAMETERS FOR DOAB' AND DOACI.

as determir	2 B 23.	0. 0001(1)		0, 0003(1)		0.0004(3)		0, 0005(3)		-0.0004(4)		0.0004(4)		-0.0002(4)									
Anistropic thermal parameters are of the form Texptl $-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + \beta_{12}hk + 2\beta_{13}hk + 2\beta_{13}hl + 2\beta_{23}kl$ Error terms as determing from the loast squares refinement are enclosed in (). Atoms from the DOABr molocule are enclosed in square brackets[].	β 2 13	0.0005(2)		0. 0007(3)		0.0018(7)		-0.0002(7)		-0,0004(10)		0.0008(9)		-0.0002(11)									
$+2\frac{\beta}{13}$ hl $+2\frac{\beta}{23}$ k losed in square	β 2 12	-0.0000(3)		0, 0018(3)		-0.0002(8)		-0, 0008(8)		-0, 3004(10)		-0.0002(10)		-0.0004(13)									
2hk + 2 ^β ₁₂ hk locule are one	β 33	0.0039(1).		0.0048(1)		0,0054(3)		0.0048(3)		0.0049(4)		0.0046(4)		0.0043(5)									
$+\beta_{33}^{2}+\beta_{1}^{2}$ e DOABr mol	β 22	0.0052(1)		0.0047(1)		0.0048(4) 0.0054(3)		0.0049(4) 0.0048(3)		0.0043(5) 0.0049(4)		0.0047(5) 0.0046(4)		0.0056(6)									
11 h ² + 2 2 $^{k^2}$	β11	0. 0221(9)		0.0240(9)		0.0154(25)		0.0156(24)		0, 0252(34)		0, 0225(33)		0. 0347(42)									
cxptl - (β n (). At	Ø		1.0(1)		1, 2(0, 1)		0. 9(7)		2.0(9)		1. 2(10)		0; 6(0, 8)		1.3(1.0)								
of the form I tre enclosed i	N	0.1390(1)	0.1408(4)	0.0864(1)	0.0890(4)	0.3417(4)	0.3422(27)	0.4069(4)	0.4109(32)	0.3620(5)	0.3648(35)	0.4866(5)	0.4865(30)	0.3158(6)	0.3123(40)	0, 255 (5)	0. 286 (5)	0.289 (6)	0, 385 (5)	0.429 (5)	0.457 (5)	0.,012 (5)	0.037 (6)
rameters are refinement a	>	0.4555(1)	0,4555(4)	0.1280(1)	0.1286(4)	0.3445(4)	0.3454(28)	0.1976(4)	0, 2008(33)	0.4308(5)	0.4269(37)	0.1643(5)	0.1643(32)	0.242.0(6)	0, 2413(43)	0.258 (6)	0, 185 (6)	0.441 (6)	0.492 (6)	0.411 (6)	5, 106 (6)	0, 270 (6)	0.370 (6)
ic thermal pa	×	-0.3894(4)	•	-0.4514(4)	•	0.1938(10)	•	-0.1332(10)	•	-0.0497(14)	•	0, 1112(13)	•	0.0337(17)	•	0.853 (17)	0.242 (17)	0.820 (17)	0.078 (17)	0.808(17)	0. 257 (17)	0.223 (17)	-0.22 (18)
Anistrop from the	Atom	ក ប	[Br 1]	2 CJ	[Br 2]	0 1			[0 2]	- Z	T Z	2	ন <u>স</u>	ပ	<u>ი</u>	H	H 2	н 3	Ħ	H 2	9 H	1 Н	8 H

Figure 1. Stereo Diagram of The Unit Cell of DOAC1 Showing
The Molecular Structure. Single Unbonded Balls
in The Dagram Are The Cl Ions.

7

CONFIDENTIAL

TABLE IL. IMPORTANT INTERATOMIC DISTANCES, ANGLES AND THEIR STANDARD ERRORS

Atoms	Distance (A)	Bond Angles, (deg)
c-0 ₁	1.407(8)	•
C-0 ₂	1.418(8)	
0 ₁ - N ₁	1. 428(6)	
0 ₂ - N ₂	1. 435(7)	
Cl ₁ - Cl ₂	3. 953(4)	
O ₁ - C - O ₂		110.4(5)
N ₁ - O ₁ - C		110. 2(4)
C-H ₁	1.04(5)	
C - Ĥ _Ż	1. 12(5)	
$H_1 - C - H_2$		110(1)

TABLE III. DISTANCE AND ANGLES EVOLVED IN HYDROGEN BONDING

Atoms	N- C1(A)	N-H(X)	ĨĨ C1(Å)	AN-H Cl(deg)
N ₁ - H ₃ Cl ₁	3. 09	1. 05	2 . 05	173.8 deg
N ₁ - H ₄ Cl ₂	3. 13 ⁻	0. 92	2. 23	168.8
N ₁ - H ₅ Cl ₂	3. 13	1.02	2. 29	173.4.
N2 - H6 C1	3. 13	0, 98	2 . 2Î	157.0
$N_2 - H_7 \cdot Cl_2$	3. 25	0.94	2.31	172.5
N ₂ - H ₈ CL ₁	3, 10	088	2. 23	173.3

SECTION IV

DISCUSSION

The configuration of the DOAC1 molecular structure and its relationship to the unit cell chosen, is shown in the stereodiagram Figure 1. The stereoplots were made with the program ORTEP (6).

Important interatomic distances and angles and their estimated standard errors were calculated with the program ORFEE (7) and are listed in Tables II and III.

From the inspection of the bond distances and angles about the carbon atom it is apparent that tetrhedral symmetry has been maintained. Further, the DOA molecule has within the limits of error a two-fold axis of symmetry. The difference between the carbon oxygen bonds is 0.011A ± 0.012 Å. The difference between the oxygen-nitrogen bonds is 0.007A ± 0.009 Å. The difference between the two carbon-oxygen-nitrogen bond angles is 0.9 \pm 0.7.

TABLE IV. BOND DISTANCES FOR SOME COMPOUNDS SIMILAR TO DOAC!

Compound	Distance O-C	Distance O-N	Reference
CH ₃ ONH ₃	1.46 ± 0.04	1.42 ± 0.02	Laurent & Rerat (1964)
CH ₃ ONH ₂	1.44 ± 0.02	1.37 ± 0.02	Brockway, Beach & Pauling (1935)
(CH ₃) ₃ NO HCl		1.425 ± 0.011	Caron & Donohue (1966)
CH ₂ O ₂ (NH ₃) ⁺⁺ Cl ₂ -	1.418 ± 0.011	$1.431 \pm 0.009 +$	This work

As shown in Table IV, the average carbon-oxygen and oxygen-nitrogen bonds for DOACl are in good agreement with distances determined for similarly bonded molecules, and preliminary work on the structure of the DOA perchlorate salt shows similar molecular symmetry and bond distances.

The separation of the chlorine atoms at 3.95 Å is only slightly greater than one would have predicted on the basis of the usual van der Waals radii of 1.80.

Hydrogen bonding between the amine groups and the chlorine ions seems to be in good agreement with other work (See Table V.).

TABLE V. SELECTED HYDROGEN BONDING INFORMATION

Compound	NC1(8)	N.H(A)	H C1(A)	N. C1(8) N.H(8) H., C1(8) AN.H., C1(dog) Determination	Method of Determination	Roference
Methoxyamine hydrochloride	3. 10	•	,	i	X. ray	Lauront &
	3, 17	ı		•		Kerat (1964)
Hydroxylammonium chloride	3, 202(6)	1.024(11)	1. 024(11) 2. 256(13)	153, 2(9)	Neutron	Padmanabhan(1967)
		1. 017(9)	2: 248(16)	157. 3(8)		
		1.019(9)	2, 260(14)	156. 2(9)		
DOACL	41.4	0 97	2 22	170	X	1 d d d
ATT CARROL		5	3	2	2	A WOLF

12

CONFIDENTIAL

SECTION V

SUMMARY

In summary, the structure shows unequivocally that the synthesis of the bis oxyamine cation was successful and that there is no reason to believe on stereochemical grounds, that the tris and tetrakis oxyamine radicals cannot also be made.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the substantial help they received from Mr. Stephen Rose in programing many of the required calculations for our computers.

CONFIDENTIAL (This page is unclassified)

REFERENCES

- 1. Karle, I. L. and Karle, J., Acta Cryst., 16, 969 (1963).
- 2. Busing, W.R., Martin, K.O., and Levy, H.A., "ORFLS", Oak Ridge National Laboratory, Oak Ridge, Tenn., 1962.
- 3. Lonsdale, Kl, Ed., The Kynoch Press, Birmingham, England, 1962, page 202.
- 4. Stewart, Robert F., Davidson, Ernest R. and Simpson, William T., The Journal of Chemical Physics, 42, 3175 (1965).
- 5. Stout, Geo. H. and Jenson, Lyle H., "X-ray Structure Determination", page 384, 457, The MacMillan Co., New York 1968.
- 6. Johnson, C. V., "ORTEP", Oak Ridge National Laboratory Report 3794, Oak Ridge, Tenn., 1965.
- 7. Busing, W.R., Martin K. O. and Levy, H.A., "ORFEE", Oak Ridge National Laboratory Report 306, Oak Ridge, Tenn., 1964.
- 8. Laurent F. T., Rerat, C., Acta Cryst., 17, 277 (1964).
- 9. Caron, Aimery and Donohue, Jerry, Acta Cryst., 1052 (1962).
- 10. Padmanabhan, V. M., Acta Cryst., 22, 928 (1967).

15/16

APPENDIX A-1

DOACL observed and computed structure factors.

						.,				u	v		FÖÉ	FCA
H -4	ĸ	L	FOR	FCA	H	К 5	L -2	FOR 335	FCA 337	H -3	Ķ 2	ل - 3	184	185
-4	0. 0	~6 -4	60 44	57 -49	-4 -4	5	-1	<i>333</i>	96	-3	2	4	135	129
~4	-0	-2	349	324	-4	5	Ô	32	2.9	-3	2	5	112	125
-4	ŏ	Ü	222	188	-4	5	i	9	21	-3	2	6	158	183
-4	Ö	2	307	285	-4	5	2	108	103	-3	2	7	11	24
-4	ŏ	4	176	189	-4	ś	3	107	105	-3	2	8	62	70-
-4	ŏ	6	235	243	-4	5	4	3.7	28	-3	2	9	64	71
-4	ĭ	-6	95	103	-4	6	-3	.29	30	-3	2	10	112	118
-4	Ĭ.	-5	139	141	-4	6	~2	78	81	-3	3 .	-16	108	109
-4	1	-4	107	104	-4	6	- i	114	111	-3	3	-9	0	20
-4	1	-3	277	277	-4	.6	0	82	74	-3 .	3	-8	67	72
-4	1	-2	103	102	-4	6	1	246	251	-3	3	-7	76	77
-4	1	-1	124	137	-4	6	2	0	11	-3	3	~6	19	26
-4	1	0	162	142	-4	6	3	95	89	-3	3	-5	33	34
-4	1	1	323	294	-3		-10	120	121	-3	3	-4	67	83
-4	1	2	68	65	-3	0	-8	76	84	-3	3	-3	269	281
-4	1	.3	40	35	-3	0	-6	114	125	-3 -3	3	-2 -1	12 169	13 179
-4	i	4	187	180	-3 -3	0	-4 -2	63 [°] 137	76 132	-3	3	-0	366	356
-4 -4	i	5 6	60 -163	56 171	-3	٠٥.	0	206	180	ر ق.ن	3	ĭ	200	195
-4	1	7	106	106	-3.	Ö	2	528	456	-3-	3	2	36	35
-4	2	-6	72	67	-3	Ö	4	-101	106	-ŝ	3	3	201	196
-4	2	-5	206	201	-3	Č	6	272	302	-3	3	4	404	434
-4:	2	-4	155	156	-3	Ö	8	95	106	-3	3	5	68	80
-4	2	-3	145	151	-3	ō	10	147	154	-3	3	6	29	32
-4	2	-2	0	1	~3		-10	62	62	-3	3	7	223	246
-4	2	-1	118	135	-3	1	-9	242	257	-3	3	8	185	202
-4	2	0	114	108	-3	1	-8	58	70	∸ 3	3	9	100	108
-4	.2	1	11	14	-3	1	-7	73	81	-3	3	10	6	3
-4	2.	2	184	173	-3	1	-6	101	112	~3		-10-	108	111
-4	2	3	32	45	~3	1	-5	348	389	3	4	-9	130	133
-4	2	4	84	95	-3	1	-4	212	214	-3		-8	141	143
-4	2	5	88	84	-3	1	-3	152	156	-3	4	-7	118	121
-4	2	6	161	157	-3	1	-2	19	7	-3	4	-6 -5	52 197	66 213
-4	3	-6	15	-17	-3	1	-1	305	298	-3 -3	4	 4	323	367
-4	3	-5	8	12	-3 ∴2	1	0	318	279 2	-, -3	4	-3	92	95
-4	3	-4 -3	0 44	13 42	3 3	1	2	65	66	-3	4	-2	0	5
-4 -4	3	-2	48	47	-3	i	3	136	128	-3	4	-1	ő	18
-4	3	-1	111	116	-3	i	4	306	298	~3	4	ō	281	284
-4	3	-0	75	85	-3	i	5	197	210	-3	4	ĭ	251	252
-4	3	ĭ	225	216	-3	ī	6	181	203	-3	4	2	47	50
-4	3	2	202	198	-3	ī	7	29	50	-3	4	3	86	96
-4	3	3	304	308	-3	1	8	82	94	-3	4	4	47	104
-4	3	4	88	96	-3	1	9	309	333	-3	4	5	149	170
-4	3	5	36	36	-3	1	10	51	55	-3	4	6	45	54
-4	3	6	263	246	-3	1	11	5	12	-3	4	7	194	206
-4	4	-5	34	38	-3		-10	0	3	-3	4	8	215	226
-4	4	-4	221	213	-3	2	-9	26	29	-3	4	9	126	117
-4	4	-3	198	196	~3	2	-8	150	155	-3 -3	4	10	67	72
-4	4	-2	175	179	-3	2	-7	214	235	-3 -3	5 5	-9 -8	73 286	68 296
-4	4	-1	120	119	-3 -3	2	-6 -5	127 C	143	-3 -3	5	-8 -7	108	115
-4 -4	4	0	122 183	127 179	-3 -3	2	-4	169	178	-3	5	-6	257	283
-4 -4	4	1 2	212	204	-3	2	-3	292	308	-3	5	-5	130	143
-4	4	3	92	94	-3	2	-2	209	216	-3	ś	-4	152	169
-4	4	4	52	50	-3	ž	-ī	289	281	-3	5	-3	0	17
-4	4	5	174	164	-3	2	ō	239	220	-3	5	2	81	97
-4	5	-4	16	24	-3	2	ì	67	56	-3	5	-1	66	81
-4	5	-3	97	94	-3	2	2	160	150	-3	5	0	65	72
	-													

Н	K	L	F08	FCA	H	K	Ļ	£08	FCA	·H·	K	L	FOB	FCA
-3	5	1	155	171	-3	9	-4	0	3	-2	3	6	119	135
-3	5	2	39	47	-3	9	-3	68	72	-2	3	7	179	197
-3	5	3	110	128	-3	9	-2	57	64	-2	3.	8	171	185
-3	5	4	58	59	-3	9	- 1	122	127	-2	3	9	159	175
-3	.5	5	83	86	-3	9	Ü	127	133-	-2	3	10	69	66
-3 -3	5	6	116	132	~3	9	ĭ	174	180	-2	3	iï	92	87
<u>-3</u>	5	7	108	112	-3	ý	Ž	Ö	2	-2	3	12	19	16
-3	5	8	126	125	-3	9	3	228:	236	-2	4	ī	139	
-3		9				9	4	200			4	ř		134
-3	5		7	11	-3				198	-2		2	185	178
- 3	6	3-	7	9	-3	9	5	112	105	-2	4	3	515	517
-3	6	-7	.0	12	-3	10	-3	112	105	-2	4	4	97	103
-3	6	-6	74	85	-3	10	-2	140	139	-2	4	5	107	103
-3 -3	6	-5	44	49	-3	10	0	79	70	-2	4	b	201	204
-3	6	-4	125	133	-3	10	1	6	23	-2	4	7	131	133
-3	6	~3	130	149	-3	10	2	160	151	-2	4	8	195	220
-3	6	-2	0	4	-3	10	3	61	64	-2	4	9	ġź	107
-3	6	-1	193	225	-2	G	-12	186	192	-2	4	10	1:7	20
-3 -3	6	Ô	172	178	-2	Ó	-10	46	53	-2	-4	11	101	105
-5	6	ī	324	357	-2	ō	2	467	747	~2	4	12	166	155
-3	6	2	29	Ž4	-2	ŏ	4	29	36	-2	5	ì	360	351
-3	6	3	151	170	-2	ŏ	6	538	522	-2	5	2	148	146
- 2		4		110	2	Ö	8			-2	5	3		
-3	6		11	5	-2			139	149	-2	2		180	183
-3	6	5	348	377	-2	-0	10	119	132	-2	5	4	146	152
-3	6	6	90	86	-2	0	12	70	73	-2	5	5	129	132
-3	6	7	22	37	-2	1	-13	115	97	-2	5	6	93	109
-3	6	8	0	11	-2	1	-12	17	13	2	5	7	152	165
-3	6	G	190	177	-2	1	-11	29	43	- 2	5	8	۶l	58
-3	7	-8	81	77	~2	1	-10	89	85	~2	5	9	66	75
-3	7	-7	20	27	-2	1	-7	131	135	-2	5	10	254	258
-3	7	-6	1.76	179	-2	1	1	71	56	-2	5	11.	.8	22
-3	7	-5	66	66	··2	Ī-	2.	209	169	-2	5	12	126	110
-3	7	-4	156	168	-2	ī	3	33	25	-2	6	ī	51	5,2
-3	7	-3	166	187.	-2	ī	4	209	191	-2	6	2	35	39
-3	7	-2	317	360	-2	î	5	153:	148	-2	6	3	489	515
-3	7	-1	20			ì	6	224	222	-2	6	4	153	157
				2	-2							5		
-3	7	0	92	99	-2	1	7	130	127	-2	6	-	100	99
-3	7	1	201	231	-2	1	8	115	128	-2	6	6	80	86
-3	7	2	108	112	-2	1	9	163	187	-2	6	- 1	264	290
-3	7	3	77	89	-2	1	10	49	62	-2	6	8	105	106
-3	7	4	148	152	-2	1	11	117	124	-2	6	9	52	56
-3	7	5	139	150	-2	1	12	73	76	-2	ઇ	.10	16	25
-3	7	5	60	59	-2	1	13	189	167	-2	6	11	63	54
-3	7	7	138	137	-2	2	0	114	99	-2	7	0	141	153
-3	7	43	81	73	-2	2	1	158	124	-2	7	1	131	132
-3	8	-7	90	86	-2	2	2	332	285	-2	7	2	30	29
-3	8	-6	78	74	-2	2	3	262	235	-2	7	3	223	244
-3	8	-5	8	24	-2	2	'4	373	351	-2	7	4	100	เ เร
-3	8	-4	216	223	-2	2	5	307	293	-2	7	5	43	49
-3	8	-3	118	134	-2	2	6	141	130	-2	7	6	225	240
-3			57	71	-2		7	228	237	-2	7	7	240	252
-,; -3	8	-2 -1		14	-? -2	2	8	315	350	-2	7	8	60	71
-,	8		0		-2	2				-2				11
-3	8	0	105	114	-2	2	9	146	162	-2	7	9	9	18
-3	8	l	0	2	-2	2	10	50	56	-2	7	10	196	187
-3	8	2	128	134	-2	2	11	248	259	-2	8	1	151	162
-3	8	3	112	120	-2	2	12	153	143	-2	8	2	62	75
-3	8	4	0	13	-2	3	i	242	208	-2	8	. 5	0	3
-3	8	5	42	42	-2	3	2	147	144	-2	8	4	65	84
-3	8	6	24	25	-2	3	3	215	204	-2	8	;	34	40
-3	8	7	87	83	-2	3	4	348	348	-2	8	5	0	32
~3	9	-5	74	68	-2	3	5	224	216	-2	Я	7	127	132
-														

` _														
н	K	Ł	FOR	FCA	Н	K	L	FOB	FCA	Н	K	Ĺ	FOB	FCA
-2	8	8	223	-	-ï	ž	12		63					
		_		218	-	2		63		-1	7	7	18	15
-2	8	9	54	48	-1	2	13	106	96	-1	7	8	107	118
-2	8	10	21	19	-1	2	14	17	23	-1	7	4	90	83
-2	9	1	239	269	-1	3	1	130	169	-1	7	16	243	234
-2	ģ	ž	105	116	-ì	3	2	572	562	-ī	7	11	63	54
~2					-	2				_				
-2	9	3	74	83	-1	3	3	223	213	-1	-7	12	29	2,2
-2	9	4	291	312	-1	3	4	333	309	-1	8	1	.0	14
-2	9	5	200	208	-1	3	5	563	565	-1	8	2	239	251
-2	ġ	6	29	40	-ī	3	6	571	369	-ī	8	3	245	250
-2	-				_					_		_		
-2	9	7	74	69	- £	3	7	83	75	-1	8	4	0	20
-2	9	8	88	75	-1	3	8	51	56	-1	8	5	90	90
2	9	9	46	44	-1	3	9	121	126	-1	8	6	225	230
-ž	10	i	Ö	5	-ī	3	10	116	113	-1	8	1	131	135
					-									
-2	10	2	95	107	-1	3	11	22	32	-1	8	E	161-	168
-2	10	3	57	60	-1	3	12	98	9.5	-1	ક	9	231	229
-2	-10	4	65	7Ó	-1	3	13	74	65	-1	В	16	55	4.9
-2	10	5	72	76	-1	4	1	22	25	-ī	8	11	123	108
-2	-				_	-								
	10	6	134	133	-1	4	2	212	201	-1	9	1	252	272
-2	10	7	9	3	-1	4	3.	.80	79	-1	9	2	185	202
-2	11	1	0	3	-1	4	4	0	7	-1	9	3	119	132
-2	11	2	115	114	-1	4	5	254	255	-1	9	4	39	46
-2	ii	3	64	61	-i	4	6	294	292	-i	9	5	187	195
-2						-								
-2	11	4	72	92	-ı	4	7	143	155	-1	9	b	0	14
-2	11	5	75	68	-l	4	8	249	248	-1	9	7	10	22
-2	11	6	49	43	-1	4	9	63	68	-1	9	8	64	65
-ž	12	1	52	53	-ī	4	10	118	131	-1	9	9	33	27
				-							-			
-2	12	2	291	266	-1	4	11	43	42	-1	9	10	46	34
-2	12	3	24	19	-1	4	12	204	199	- <u>į</u>	10	1	0	1-
-1	0	2	.770	67.1	-1	4	13	111	102	-i	10	2	221	238
-1	Ö	4	635	608	-1	5	ī	18	6	-ī	10	3	141	146
										_				
-1	0	6	468	460	-1	5	2	234	239	-1	10	4	169	187
-1	0	8.	259	259	-1	5	3	72	86	-1	10	5	207	217
-1	0	10	0	7	-1	5	4	189	187	-1	10	6	159	162
-1	0	12	54	54	-1	5	5	114	121	-1	10	7	0	5
-i	ŏ	14	173	144		5	6	435	432	-i		8	148	131
					-1						10			
-1	1	1	138	133	-1	5	7	64	74	-1	10	9	161	133
-1	1	2	878	827	-1	5	8	78	84	-l	11	1	33	32
-1	1	3	570	544	-1	5	9	0	3	-1	11	2	0	2.
-i	ī	4	404	378	-1	5	10	304	325	-1	11	3	54	66
					-									
-1	1	5	107	93	-1	5	11	35	34	-1	11	4	166	163
-1	1	6	253	250	-1	5	12	88	82	-1	11	5	37	41
-1	1	7	464	466	-1	5	13	43	34	-i	11	6	24	32
-1	1	8	117	116	-1	6	1	140	129	-1	11	7	196	170
-1	i	ğ	152	160		6	ž	23	21	-i	11	8	130	108
	_				-1									
-1	i	10	145	147	-1	6	3	543	548	-1	12	1	0	17
-1	ı	11	264	289	-1	6	4	145	138	-1	12	2	122	116
-1	1	12	52	44	-1	6	5	159	166	-1	12	3	27	24
-i	i	13	148	140	-i	6	6	ó	13	- <u>1</u>	12	4	162	143
_					_							_		
~1	I	14	89	75	-1	6	7	191	192	-1	12	5	31	25
-1	2	1	235	198	-1	6	8	11	17	-1	12	6	91	77
-i	2	2	209	195	-1	6	9	1.23	118	-1	13	1	25	24
-ī	Ž	3	72	63	-1	6	10	G	ō	-1	13	2	131	114
-1		4	97	77	-i	6	ii	41	40	-i	13	3	39	31
-ř	2													
-1	2	5	65	63	-1	5	12	29	23	0	0	2	267	274
-1	2	6	57	54	- i	7	i	424	433	0	0	4	937	57
-1	2	7	32	51	-1	7	2	132	127	0	0	6	48	65
-ì	2	B	36	47	-1	7	3	0	13	ō	Ō	8	156	175
-1		9			-1	7	4	55	62	Ö	ŏ	10	0	ě
-1	2		305	321	_									
-1	2	10	30	33	-1	7	5	298	292	0	0	12	118	134
-Ł	2	11	176	178	-1	7	6	169	176	0	0	14	172	162
_														

19/20

APPENDIX A-2

DOABR observed and computed structure factors.

		_											-	
Ĥ	Ķ	L	50B	FCA	H2	K	Ŀ	F08	FÇA	н	K	L	FOB	ECA
0	1	1	16	15	0	5	4	271	270	0.	10	3	149	166
0	1	2	220	210	0	5	5	279	269	0	10	4	152	159
0	1	3	22	11	Ō	5	E	197	197	ō	10	5	38	43
Ō	ĩ	4	388	393	ŏ	5	ž	95	92	ŏ	10	6	186	
ŏ	i	5	197	201						_				194
					0.	5	8	369	379	0	10	7	77	75
0	1	6	96	113	0,	5	. 9	79	84	0	Į0	8	102	99
0	1	7.	342	352	0	Ś	10	221	234	0	10	9	175	159
0	1	8	165	164	0	5	11	111	113	0	10	10	121	103
٠0	1	9	Ó	38	0	5	12	163	148	0	11	1.	45	41
0	1	10	Õ	23	ō	5	13	91	83	ŏ	ii	ž		
ŏ	i												168	174
_		11	204	231	0	6	. 0	116	101	0	11	3	138	137
0	1	12	e	67	0	6	1	336	344	0	11	4	32	31
0	1	13	0	34	0	6	2	178	171	0	11	5	84	77
0	ı	14	0	11	0	6	3	389	374	0	11	6	0	10
0	2	ŋ	20	7	0	6	4	65	51	Ó	-11	1	232	207
0	2	1	172	178	, Ŏ	6	5	149	149	ŏ	11	8	60	48
ō	2	ž	127	129	ŏ	6	6	Ó		-				
									12	0	12	0	206	204
ó	2	3	422	454	0	6	7	150	149	0	12	1	61	72
0	2	4	429	456	0	6	8	18	28	0	12	2	55	.55
0	2	5	687	702	´O	6	9	80	92	0	-12	- 3	34	33
0	2	6	136	125	0	6	10	47	54	0	12	4	228	211
0	2	7	220	217	Ō	6	11	55	60	ŏ	12	5	82	72
ŏ	2	8	252	247	ŏ	6	îż	94	75	ő				
		-									12	6	182	148
0	2	3	425	442	0	6	13	106	83	0	12	7	. 5	9
0	2	10	230	247	0-	7	1	298	294	0	13-	1	59-	54
0	·2	11	58	60	0	7	2	0	5	0	13	S	171	148
0	2	12	153	161	0	7	3	215	212	0	13	3	179	162
9	2	13	245	228	Ö	7	4	288	279	Ő	13	4	53	54
ŏ	2	14	174	146	ő	7	5	252						
					-				25,6	0	13	5	50	40
0	3	l	235	239	0	7	6	122	129	1	0	0	124	90
0	3	2	612	695	0	7	7	108	108	1	0	2	452	418
0	3	3	561	603	0	7	8	207	214	1	0	4	174	172
0	3	4	136	128	0	7	9.	0	10	1	0	6	205	195
0	3	5	304	308	Õ	7	10	139	131	ī	ō	8	202	207
ŏ	3	6	112			7								
				123	Ů		11	123	109	1	0	10	76	90
-0	3	7	75	81	0	7	12	140	120	ı	0	12	128	129
0	3	8	143	162	0	8	0	33	28	1	0	14	106	100
0	3	9	120	134	0	8	1	247	239	1	1	0	80	59
0	3	10	81	85	O	8	2	62	77	i	ì	ı	205	194
0	3	11	60	65	Ö	8	3	69	79	i	i	ž	917	930
ŏ	3	iż	0	5	-	, 8	4		91					
	3		_		0			84		1	l	3	589	584
0		13	1.28	116	0	8	5	243	257	1	1	4	104	105
0	3	14	57	44	0	8	6	209	221	1	l	5	242	215
0	4	Ω	364	378	0	8	7	0	11	1	ı	l,	417	421
0	4	ı	546	588	0	8	8	224	219	1	1	7	419	419
0	4	2	382	404	ŋ	8	9	103	100	ī	ī	3	94	99
ŏ	4	3	472	475	ő	8	10	160	140		i		256	
	4				-					1		9		264
0		4	62	56	0	8	11	93	73	1	1	10	33	52
0	4	5	239	229	0	9	1	171	193	L	1	11	315	331
0	4	6	257	251	0	9	4	198	210	1	1	12	42	49
0	4	7	159	163	Ο	9	5	116	129	1	1	13	102	103
Ŏ	4	8	88	101	ő	ģ	6	170	1.65	î	i	14	124	101
ŏ	4	ĝ	170	171	ŏ	á	7	36	42					
										1	2	0	682	607
0	4	10	116	117	0	9	8	131	122	1	2	i	224	233
0	4	11	41	42	0	9	9	79	77	1	2	2	307	296
Ò	4	12	190	171	0	9	10	0	l	1	2	3	700	708
0	4	13	98	95	0	9	ii	20	14	ì	2	4	260	255
ŏ	5	ĺ	532	540	ő	10	Ö	291	310	i	2	'5	172	174
	5	2	101	89	ő					_				
0						10	1	117	118	i	?	6	316	322
0	5	3	114	110	0	10	2	63	74	1	2	1	288	290

н	к	Ł	FOR	FCA	н	ĸ	L	F08	FCA	Н	.K	L	FOB	FCA.
1	2	8	61	53	1	6	11	89	84	ì	12	' 3	93	82
1	2	9	149	155	1	6	12	0	3	1	12	.4	167	157
1	2	10	85	93	1	7 -7	0	78	79	1 · 1	12	5	28.	25
1 1	2	11	0 60.	7 58	1	7	1 2	86 37	83 53	1	12	0. 0.	77 127	62 116
î	2	13	76	7l	ī	7	3	100	94	i	13	i	81	76
ī	2	14	66	55	ī	7	4	247	252	1.	13	2	188	159
1	3	0	319	3Ô9	1	7	5	11	12	1	13	3	27	21
1	3	1	299	295	1	7	6	134	128	2	0	0	581	405
1	3	2	496	489	1	7	7	0	15	2	0	2 4	577	497
1	3	3	421 53	405 51	1	7 7	8 9	245 0	259 7	2	0	6	413 193	400 175
î	3	5	27	21	i	7	10	117	109	2	Õ-	ä	105	104
1	3	6	216	211	ī	7	11	65	51	2	1	Ö	385	290
1	3	7	89	9.3	1	7	12	182	152	2	1	1	429	363
1	3	8	92	91	1	8	0	200	201	2	1	2	302	278
-1	3	9	82	85	1	8-	l	109	118	5.	1	3	65.	-67
1	3	10 11	.0 148	8 147	1	8 9	2	-125 174	119 177	2	l l	4	171 511	160 512
1	3	12	170	165	i	8	4	184	193	2	i	5 6	102	117
î	3	13	120	107	i	ě	Š	99	106	2	·i	8	67	82
ī	4	Ö	239	280	ì	8	6	270	280	2	ī	9	245	269
1	4	1	85	79	1	8	7	134	136	2	2	1	229	194
1	4	2	52	52	1	8	8	-72	62	2	2	2	293	261
1	4	3	10	14	1	Ś	9	99	93	2	Ž	3	225	306
1	4	4	214	218	1	8	10	231	202	2	2	-4	113	114
i i	4	5 6	97 402	91 406	1	8 9	11 C	100	84 9	2	2 2	5, 6	128	128
1	4	7	149	156	i	9	1	119	124	2	2	8	-167 130	165- 138
î	4	8	159	161	i	ģ	ż	191	191	2	2	ÿ	197	214
ī	4	9	143	158	ĩ	9	3	309	326	2	-2	LÖ	178	190
1	4	10	260	268	1	9	4	Q	ı	2	2	11	122	125
1	4	11	154	151	1	9	5	133	131	2		12	101	99
1	4	12	116	110	1	9	6	36	46	2	3	0	431	374
1	4 5	13	91 421	78	ļ	9	7	78 0	78	2	3	l	11	2
l 1	5	l	83	414 85	1	9	8	93	3 86	2	3	2	276 79	264 78
ì	ś	ž	53	43	i	ģ	10	93	80	2	3	4	184	177
ī	5	3	71	79	ī	10	ē	103	111	2.	3	5	158	152
1	5	4	529	528	1	10	1	0	9	2	3	8	0	14
ì	5	5	122	112	1	19	2	185	194	2	3	9	37	44
1	5	6	105	91	ì	10	3	139	153	2	3	10	136	142
1	5	7	125	117	1	10	4	131	141	2	3	11	52	53
1	5 5	8 9	378 44	400 40	1	10 10	5 6	122 35	128 41	2	3 4	12	64 128	62 117
i	ś	10	0	2	ì	10	7	168	152	2	4	i	488	452
ì	ś	ii	37	38	î	10	8	27	22	2	4	ž	248	237
l	5	12	191	173	1	10	9	195	158	2	-4	3	339	338
ì	5	13	71	57	ı	11	0	120	120	2	4	4	192	130
1	6	0	5	13	1	11	1	70	81	2	4	3	393	410
1	6	1	630	630	ı	11	2	53	61	2	4	7	154	175
l	6	2	243 337	249 343	l	11 11	3	83 91	87 90	2	4	8	159	181
l l	6	3	21	21	l	11	5	157	158	2	4	10	65 219	72 220
ì	6	5	266	265	i	ii	6	0	1	2	4	11	154	149
i	5	6	11	29	ī	ii	7	210	186	2	4	12	6	ίí
ì	5	1	133	131	ı	11	8	143	119	2	5	Ω	37	44
1	6	8	131	129	1	12	0	311	307	2	5	1	0	26
1	6	,,	30	42	1	12	1	45	48	2	5	2	439	430
1	6	10	0	15	ι	12	2	36	36	2	5	3	305	306

H2222222222222222222222222222222222222	l. 4 6	F08 188 123	ECA- 194 1-29
2 5	1 8	78 158 52	85 164
2 5	9	52	60 30
2 5	.10	21	30 77
2 6	11	145	-137
2 6		415	425 182
2 6	5	107	123 126
2 6	6.	115	126
2 6	2 5 6 7 8 9 10 11 2	280 145 415 163 107 115 35 126 94 118	43 126
2 6	9	94	95
2 6	11	169 41	155
2 7	2	4 <u>1</u> 138	52
2 7	4	235	95 102 155 52 151 257
2 7	5	164	178
2 7	7	235 164 200 40 272	178 216 52 271
2 7	8	272 76	271 79
222222222222222222222222222222222222222	10	126	-108
2 8	0	137 75	158 88
5 B	2	170	191
2 8· 2 8 2 8	345678900123456789001234567890	53 144	61 161
2 8	5	0	3
2 2 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	6 7	258 122 0 48	278 125
2 8	8	0	125 11 42 190 343 30 190
2 8	9 10	218	42 190
2 9	ő	309	343
2 9	l 2	18 172	30 1 40
2 9	3	94	106
2 9	4 5	120 65	130 62
2 9	6	309 18 172 94 120 65 115	130 62 110 5 1 39 63
2 9	. 7 8	0	י 1
2 9	9	0 48 59	39
2 10	0	59 163	63 178
2 10	2	86	89
2 10	3	196 17	202 23
2 10	5	0 115	14
2 10 2 10 2 10 2 10 2 10 2 10 2 11 2 11		115 143	109 132
2 11	Ó	35	36
2 11		114 66	113 64
2 11	3	15	29 20

Commence of the Commence

K L FÖB FCA H K L
11 5 250 223
11 6 49 46
12 0 112 109
12 1 0 5
12 2 192 171
12 3 27 27

			~~~		••				<b>50.4</b>					
H	K	L	FOB	FCA	H	Ķ	ř	FOB	FCA	H	K	Ļ	FOB	FCA
0	0	2	96	72	0	4	3	161	153	ð	8	1	92	103
0	9	4	308	389	0	4	4	43	42	0	8	2	·57	58
0	0	6	23	22	0,	4	5	152	130	0	8	3	25	33
0	0	8	100	86	0	4	6	185	168	C	8	4	0	12:
<b>,</b> 0	0	10	-14	4	0	4	7.	55	43	0	8	5	121	128
0	0	12	78	79	0	4	8	62	52	0	8	ه.	171	156
0	Ð	14	107	103	0	4	9	127	109	-0	8	7	0	<b>~9</b>
0	Ō	16	64	69	0,	4	10	131	119	0	8	8	105	98
Ŏ	ì	1	10	0.	Õ	4	11	0	11	õ	8	9	117	86
Ŏ	ī	Ž	87	80	ō	4	12	126	117	ŏ	8	10	150	129
ŏ	i	3	110	99	ŏ	4	13	90	65	Õ	8	ii	59	
	i.	4				4	14							40
0			150	116	0			28	24	-0	8	12	97	94
0	1	5	118	86	0	4	15	64	60	0	8	13	65	63.
0	1	6	.82	68	0	4	16	44	70	0	8	14	40	54
0	1	7	224	214	0	5	1	180.	180	0	9	1	106	129
0	1	8	93	93	0	5	2	59	50	0	9	-2	149	187
0	1	9	25	29	0	5	3	56	47	0	9	3	45	59
0	1	10	28	30	0	5	4	175	165	0	9	4	75	81
0	1	11	191	172	٥	5	5	155	124	Ō	9	5	79	79
0	1	12	0	10	0	5	6	114	98	Ō	9	6	94	97
Ŏ	ī	13	Ŏ	6	ō	5	7	46	40	ō	9.	7	53	49
ŏ	i	14	29	42	ŏ	5	8	214	226	ŏ	ģ	8	87	56
ŏ	i	15	91	88	ŏ	5	9	35	36	ŏ	9	9		
													0	25
0	1	16	34	33	0	5	10	148	125	0	9	10	0	9
0	2	0	103	97	0	5	11	68	59	0	9	11	14	17
0	2	1	18	17	0	5	12	166	128	0	9	12	0	22
0	2	2	66	52	0	5	13	38	42	0	9.	13	43	50
0	2	3	195	172	0	5	14	62	51	0	10	0	150	172
0	2	4	181	160	0	5	15	0	9	0	10	1	49	51
0	2	5	247	236	0	6	0	29	27	0	10	2	30	22
Õ	2	6	102	86	Ŏ	6	ĭ	197	202	Ŏ	10	3	96	101
Ō,	2	7	130	115	ŏ	6	2	53	48	ŏ	10	4	309	116
ŏ	2	8	123	115	Ŏ	6	3	209	223	ō	10	5	53	53
ŏ	2	9	209	231	-									
_	2	-			0	6	4	11	22	0	10	6	69	74
0	2	10	131	121	0	6	5	105	97	0	10	7	85	69
0	2	11	31	29	0	6	6	0	12	0	10	8	63	62
0	2	12	72	61	0	6	7	106	106	0	10.	9	126	116
0	2	13	190	148	0	6	ક	0	4	0	10	10	73	63
0	2	14	122	85	0	6	9	31	27	0	10	11	0	9
0	2	15	39	43	0	6	10	33	21	0	10	12	0	8
0	2	16	0	5	0	6	11	42	38	0	11	1	0	14
Ŏ	3	ì	174	183	ŏ	6	12	30	40	ŏ	11	2	84	81
ŏ	3	2	233	286	ō	6	13	15	19	ŏ	īī	3	96	98
ŏ	3	3	210	203	ŏ	6	14	ó	*4	ŏ	11	4	0	15
	3	4	56	52	ŏ		_	80	103	ŏ	ii			
0						6	15					5	57	54
0	3	5	186	158	0	7	1	141	156	, 0	11	6	. 0	16
0	3	6	111	96	0	7	2	37	46	0	11	7	163	152
0	3	7	41	35	0	7	3	85	92	0	11	8	0	10
0	3	8	39	43	0	7	4	134	144	0	11	9	34	34
0	3	9	0	14	0	7	5	140	134	0	11	10	25	14
0	3	10	29	23	0	7	6	77	83	0	11	11	112	138
0	3	11	9	9	0	7	7	44	45	0	12	0	153	176
Ŏ	3	12	34	24	ō	7	8	148	143	ŏ	12	ĭ	0	16
ŏ	3	13	98	76	ŏ	7	9	16	- 6	ŏ	12	2	34	24
ŏ	3	14	55	47	ŏ	7	10	102	88	ŏ	12	3	0	3
	3		99	3	ŏ	7	11	73			12	4		
0		15		72					58	0			148	152
0	3	16	59	72	0	7	12	105	101	0	12	5	32	41
0	4	0	144	137	0	7	13	60	59	0	12	6	68	65
0	4	1	203	186	0	7	14	65	78	0	12	7	0	9
0	4	2	144	124	0	8	0	22	27	0	12	8	27	32

FOB FCA

H	X	L	FOB	FCA	H	K	L	FOB	FCA	н	K	Ł
C	12	9	44	45								
0	12	10	0	6								
0	13	1	ŋ	26								
0	13		117	115								
0	13	2	86	90								
0	13	4	37	36								
ō	13	5	Ō	36 2								
0	13	6	:33	38								
Ō	13	7	109	106								
Ŏ	13	8	20	29								
0	13	8 9	Ö	25								
Č	14-	Ó	28	28								
Ō	14	ĭ	Ō	2								
Õ	14	2	Ŏ	22								
ō	14	1 2 3	54	57								
ŏ	14	4	0-	23								
ō	14	5	59	69								
Ō,	14	6	53	54								
ő	14	7	40	50								
ŏ	15	7	71	89								
Ö	15	÷	52	104								
·S	15	2	29	36								
	15	2	27 0	3								
0	15	4 5	0 27	54								
3	73	,	٤,	37								

25/26

#### AUTHOR - BIOGRAPHY

NAME: Charles M. Bock

EDUCATION: B.A., Miami University, Oxford, Ohio 1957

M. S., Miami University, Oxford, Ohio 1958

Ph. D., University of Arizona, Tuscon, Arizona, 1963

Dr. Bock has been employed in the Propellant Division of the Rocket Propulsion Laboratory as a Research Physical Scientist since 1963. Initially he entered the laboratory as a Lieutenant, but has been employed as a civilian scientist since 1965. Dr. Bock operates the x-ray analytical laboratory at AFRPL and has published papers in the open and classified literature dealing with the crystal and molecular structures of propellant and propellant related materials.

Dr. Bock is a member of the American Crystallographic Association and Sigma Xi.

27/28

Distribution List
Mat Filmed

Page 21 to 34



			والمراجع والم والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراج
	ONTROL DATA - R		
Security classification of title, body of abstract and inde ORIGINATING ACTIVITY (Corporate author)	exing armotorium must be		
	,	2a. REPOST	SECURITY-CLASSIFICATION
Air Force Rocket Propulsion Labor	ratory	2b. GROUP	FULNOSIFIED
			IV
J. REPORT TITLE		<u></u>	
The Crystall Structure of Two New Ox	vamine Salts.	" DOAC1	and DOABr".
•	.,		
4 DESCRIPTIVE HOTES (Type of report and inclusive dates)			
5 AUTHOR(3) (First name, middle initial, last name)	<del></del>		
Charles M. Bock and William M. Hodg	gson, Captain,	USAF	
May 1970	74. TOTAL NO. O	FPAGES	7b. NO. OF REFS
	37		10
en, CONTRACT OR GRANT NO.	9a. ORIGINATOR	S REPORT NU	MBER(S)
5=PROJECT NO.	AFRPI	_TR-70-	.33
c.	95, OTHER REPO	RT NO(S) (Any	other numbers that may be assigned
	this report)	, , , , , , , , , , , , , , , , , , , ,	The state of the s
d.			
10 DISTRIBUTION STATEMENT In addition to secu	rity requireme	ents which	h must be met, this
document is subject to special export of	controls and ea	ch transı	mittal to foreign
governments or foreign nationals may	be made only v	vith prio	r approval of AFRPL
(RPOR/STINFO), Edwards, California			
To Bunda ANT HOTES	12 SPONSORING	MILITARY ACT	TIVITY
13 ABSTRACT			

The crystal and molecular structures of two new oxyamine salts, "DOACl and DOABr" have been determined by x-ray diffraction methods. Bond lengths and angles are all normal suggesting that the analogous tris and tetrakis compounds can be made.

DD . FORM . 1473

Confidential

Security Classification	LINI	( A	LIN	КВ	LINK C .		
4; KEY WORDS	ROLE	WT	ROLE	WT	ROLE	WT	
Crystal Molecular Structure						1	
Molecular							
Structure							
Oxyamine Salts	Ì						
•		<u> </u>					
	İ						
	1			ļ			
			] }				
	1		Ì	1			
			]				
			1				
					1		
	İ		ļ	1		-	
•				1			
			1				
			1		İ	į	
				1			
	1	1					
			ļ		1	1	
	İ		İ	1			
	1		1				
		1	1				
		1	•	1	1		
					j	1	
	ļ		1				
				1			
	1						
			j				
				-			
				- [	1	İ	
					1		
				1			

Confidential

Security Classification