

AND

	В	F
0	0	0
1	0	0
0	1	0
1	1	1

Inputs		Output
Α	В	F
0	0	0
1	0	1
0	1	1
1	1	1

Inputs		Output
A	В	F
0	0	1
1	0	0
0	1	0
1	1	0

	A	В	F
<i>></i> ~	0	0	1
<i>/</i>	1	0	0
OR	0	1	0
	1	1	0

	Inputs		Output
j	Α	В	F
	0	0	0
	0	1	1
2	1	0	1
	1	1	0

EXCLUSIVE NOR

Inputs		Output
Α	В	F
0	0	1
0	1	0
1	0	0
1	1	1

IC – Introdução a Computação

EXCLUSIVE OR

Flip-Flops – D Master-Slave

Nosso circuito

- Dois Latchs D em cascata
- Os Latchs estão funcionando de forma complementar
- Gatilhado na borda de descida do relógio.

Repiques

Quando fechamos um interruptor, ou ainda um sensor é acionado, o estabelecimento da corrente no circuito não é imediato.

Os contatos mecânicos tendem a oscilar, causando assim pulsos de variação da tensão ou da corrente, denominados repiques, ou usando o termo inglês "bounce" (balanço), Esses repiques fazem com que o circuito digital que deva receber o comando do interruptor ou sensor interprete o sinal de entrada como mais de um pulso.

Neste caso, o fechamento do sensor é interpretado como uma sequência de três pulsos. Se o circuito tiver de contar pulsos, a contagem será de 3, e não apenas um fechamento.

Flip-Flops

Pode ser construído a partir de um Flip-Flop D

Possui duas entradas, denominadas de J e K

Ações possíveis:

- Setar (Q⁺ =1);
- Resetar ($Q^+ = 0$);
- Manter $(Q^+ = Q)$;
- Complementar (Q⁺ = Q');

Flip-Flop JK

$$D = JQ' + K'Q$$

Nosso circuito

Flip-Flop JK

$$JK$$
=10: Q^{+} = 1 (SET).

$$D = JQ' + K'Q = 1 \cdot Q' + 0' \cdot Q = Q' + Q = 1$$

$$JK$$
=01: Q^+ = 0 (RESET).

$$D = JQ' + K'Q = 0 \cdot Q' + 1' \cdot Q = 0 + 0 = 0$$

Flip-Flop JK

$$JK$$
=00: Q ⁺ = Q (MANTÉM).

$$D = JQ' + K'Q = 0 \cdot Q' + 0' \cdot Q = 0 + Q = Q$$

$$JK=11: Q^+ = Q'$$
 (COMPLEMENTA).

$$D = JQ' + K'Q = 1 \cdot Q' + 1' \cdot Q = Q' + 0 = Q'$$

Flip-Flop JK

Tabela de Transição de Estados

Entra	Entradas		Comontánio
J	K	Q^+	Comentário
0	0	Q	Manutenção
0	1	0	Estado de RESET
1	0	1	Estado de SET
1	1	Q'	Complementa

ATÉ A PRÓXIMA AULA!

Bibliografia

TOCCI, R.; WIDMER, N.; MOSS, G. Sistemas Digitais – Princípios e Aplicações. [S.I.]: Pearson Education Limited, 2011.

FEDELI, Ricardo Daniel. Introdução à ciência da computação / Ricardo Daniel Fedeli, Erico Giulio Franco Polloni, Fernando Eduardo Peres. – 2. ed. – São Paulo: Cengage Learning, 2011.

TANENBAUM, Andrew S.. Organização Estruturada de Computadores. 6º Edição. São Paulo, Pearson Prentice Hall, 2013.

