# Data Analyst



# Problèmatique

Comment établir un état des lieux via les chiffres d'affaires d'une entreprise ?

# Index



- I. Traitement des données
  - A. Data's
  - B. Traitement des données
  - C. Enregistrement
  - D. Résumé
- II. Analyse de donnée
  - A. Graphique d'analyses & explication
- III. Corrélation des données
  - A. Explication des plots
- IV. Conclusions
- V. Questions

# **Stack technique**

Nous avons mis en place tout un environnement afin de pouvoir manipuler les donnée de manière sécurisée. Le projet utilise le langage python via l'ide qui se nomme jupyter tout c'est processus sont soumis à une gestion des containers qui est docker

# Traitement des données

### Data's

**Data** 

On interagit avec 3 dataframes différents:

- 1. Les produits
- 2. Les transactions
- 3. Les clients

#### **Produits**

|   | id_prod | price | categ |
|---|---------|-------|-------|
| 0 | 0_1421  | 19.99 | 0     |
| 1 | 0_1368  | 5.13  | 0     |
| 2 | 0_731   | 17.99 | 0     |
| 3 | 1_587   | 4.99  | 1     |
| 4 | 0_1507  | 3.99  | 0     |

#### **Transactions**

|   | id_prod | date                       | session_id | client_id |
|---|---------|----------------------------|------------|-----------|
| 0 | 0_1483  | 2021-04-10 18:37:28.723910 | s_18746    | c_4450    |
| 1 | 2_226   | 2022-02-03 01:55:53.276402 | s_159142   | c_277     |
| 2 | 1_374   | 2021-09-23 15:13:46.938559 | s_94290    | c_4270    |
| 3 | 0_2186  | 2021-10-17 03:27:18.783634 | s_105936   | c_4597    |
| 4 | 0_1351  | 2021-07-17 20:34:25.800563 | s_63642    | c_1242    |

#### Clients

| client_id | sex                                  | birth                            |
|-----------|--------------------------------------|----------------------------------|
| c_4410    | f                                    | 1967                             |
| c_7839    | f                                    | 1975                             |
| c_1699    | f                                    | 1984                             |
| c_5961    | f                                    | 1962                             |
| c_5320    | m                                    | 1943                             |
|           | c_4410<br>c_7839<br>c_1699<br>c_5961 | c_7839 f<br>c_1699 f<br>c_5961 f |

### **Traitement des données**

Pour chacune de ces dataframes évoqués nous allons appliquer un traitement de données. Ceci implique plusieurs faits :

- 1. Correction des valeurs aberrantes
- 2. Enlever les valeurs négatives
- 3. Identifier les valeurs nulles

### **Produit**

### Data

Pour chaque items, elle correspondent à une catégorie unique et un prix fixe.

Problématique ? Oui, car elle à des valeurs négatives mais aussi de test.

#### **Test Values**

detectTestValue = products[products['id\_prod'].str.contains('T', na=True) == True]
detectTestValue

|    | id_prod | price | cate |
|----|---------|-------|------|
| 31 | Т 0     | -1.0  | (    |

#### **Negative values**

 id\_prod
 price
 categ

 731
 T\_0
 -1.0
 0

### **Transaction**

#### **Data**

Pour chaque colonne, elle correspondent à un id de produit, une date, un client et une session

Problématique ? Oui, nous obtenons 200 lignes de test.

Afin de mieux traités les données. On applique une fonction de datatime

#### **Test Values**

|        | id_prod | date                            | session_id | client_id |
|--------|---------|---------------------------------|------------|-----------|
| 1431   | T_0     | test_2021-03-01 02:30:02.237420 | s_0        | ct_1      |
| 2365   | T_0     | test_2021-03-01 02:30:02.237446 | s_0        | ct_1      |
| 2895   | T_0     | test_2021-03-01 02:30:02.237414 | s_0        | ct_1      |
| 5955   | T_0     | test_2021-03-01 02:30:02.237441 | s_0        | ct_0      |
| 7283   | T_0     | test_2021-03-01 02:30:02.237434 | s_0        | ct_1      |
|        |         |                                 |            | 311       |
| 332594 | T_0     | test_2021-03-01 02:30:02.237445 | s_0        | ct_0      |
| 332705 | T_0     | test_2021-03-01 02:30:02.237423 | s_0        | ct_1      |
| 332730 | T_0     | test_2021-03-01 02:30:02.237421 | s_0        | ct_1      |
| 333442 | T_0     | test_2021-03-01 02:30:02.237431 | s_0        | ct_1      |
| 335279 | T_0     | test_2021-03-01 02:30:02.237430 | s_0        | ct_0      |

200 rows x 4 columns

### Client

Data

Pour chaque items, elle correspondent à un

client unique, un sexe, age

Problématique ? Oui, car elle à des valeurs de test

### **Test Values**

|      | client_id | sex | birth |
|------|-----------|-----|-------|
| 2735 | ct_0      | f   | 2001  |
| 8494 | ct_1      | m   | 2001  |

## **Orphan Data**

#### **Data**

Afin de pouvoir interpréter les différentes valeurs, nous devons donc les fusionner en une seule dataframe. Cependant, selon la méthod de jointure on se retrouve avec une second difficulté. Nous obtenons des données orpheline

### Donnée orpheline

|        | client_id | sex | user_birthday | id_product | sell_date                  | session_id | transaction_date | sell_year | month | price      | category_id |
|--------|-----------|-----|---------------|------------|----------------------------|------------|------------------|-----------|-------|------------|-------------|
| 266960 | c_4505    | m   | 1976.0        | 0_2245     | 2022-01-09 09:23:31.000720 | s_147220   | 2022-01-09       | 2022.0    | 1.0   | 17.216434  | NaN         |
| 266961 | c_3468    | f   | 1981.0        | 0_2245     | 2021-09-11 10:52:05.205583 | s_88251    | 2021-09-11       | 2021.0    | 9.0   | 17.216434  | NaN         |
| 266962 | c_1403    | f   | 1978.0        | 0_2245     | 2022-02-15 14:26:50.187952 | s_165575   | 2022-02-15       | 2022.0    | 2.0   | 17.216434  | NaN         |
| 266963 | c_3065    | f   | 1977.0        | 0_2245     | 2022-01-26 13:34:33.440366 | s_155484   | 2022-01-26       | 2022.0    | 1.0   | 17.216434  | NaN         |
| 266964 | c_7102    | m   | 1983.0        | 0_2245     | 2021-04-25 19:58:42.716401 | s_25704    | 2021-04-25       | 2021.0    | 4.0   | 17.216434  | NaN         |
|        |           |     |               |            |                            |            | 1111             |           |       |            |             |
| 336833 | NaN       | NaN | NaN           | 0_525      | NaN                        | NaN        | NaN              | NaN       | NaN   | 2.990000   | 0.0         |
| 336834 | NaN       | NaN | NaN           | 2_86       | NaN                        | NaN        | NaN              | NaN       | NaN   | 132.360000 | 2.0         |
| 336835 | NaN       | NaN | NaN           | 0_299      | NaN                        | NaN        | NaN              | NaN       | NaN   | 22.990000  | 0.0         |
| 336836 | NaN       | NaN | NaN           | 0_510      | NaN                        | NaN        | NaN              | NaN       | NaN   | 23.660000  | 0.0         |
| 336837 | NaN       | NaN | NaN           | 0_2308     | NaN                        | NaN        | NaN              | NaN       | NaN   | 20.280000  | 0.0         |

## **Enregistrement des données**

Une fois les données approuvées et conforme à nos attentes nous allons les enregistrer dans un dossier 'data\_clear\_values'. Ce dossier contient nos 4 dataframes différents pour rappel :

- 1. Clients
- 2. Produits
- 3. Transactions
- 4. Merge (fusion des de ces dataframes)

## Récapitulatif : traitement des données

Sur l'ensembles des dataframes, suites aux divers traitement effectuez une pertes de plus de 400 lignes sur l'ensembles des données. Il faut donc informer le clients de cette perte et comment la palier

# Analyse de données

# Première analyses

En 2021 : cette librairie réalise un chiffre d'affaire de de plus de 4 millions d'euros en CA.

Nous pouvons décomposer les ventes en 3 grande catégorie.

La catégorie 0 représente 39% des transactions.

On remarque que ces catégories se traduit aussi en gamme de prix.

La société à générer plus de 250 000 transactions en 12 mois.

## **Chiffre d'affaires**



# Chiffre d'affaires / Catégorie



# Par catégorie / transaction



# **Catégorie / achat**



# **Volumes des ventes / clients**



Indice de gini de 0.4 / lorenz curve ( très peu de client représente beaucoup de CA)

# Analyse bi-varié CA = Catégorie / tranche d'âge



# **Gamme de produit**

### Mean

En faisant une moyennes de prix par catégorie on peut déduire que le produit peut être catégorisé en tant que gamme

|   | category_id | price     |
|---|-------------|-----------|
| 0 | 0           | 10.646828 |
| 1 | 1           | 20.480106 |
| 2 | 2           | 75.174949 |

## Identification des plus gros clients

#### **CA par Client**

### 4 plus gros clients

On constates que c'est 4 clients représente plus de 7% du chiffre d'affaire global sur ces 12 mois. (hypothèse c'est sans doute une école ou une université)

|      | client_id | price     | client_id | sex | user_age |
|------|-----------|-----------|-----------|-----|----------|
| 677  | c_1609    | 162007.34 | c_8233    | m   | 58       |
| 4388 | c_4958    | 144257.21 | c_1123    | f   | 42       |
| 6337 | c_6714    | 73197.34  | c_1503    | m   | 35       |
| 2724 | c_3454    | 54442.92  | c_1476    | m   | 50       |

## Synthèse de l'analyse de donnée

Suite à cette première analyse on constate :

- Plus de 50% des clients sont de la même catégorie
- Une baisse significative du CA en Octobre
- On peut redéfinir les catégories en gamme de produit
- Les 3 plus gros clients représentent plus de 4% du Chiffre d'affaire global (représenté aussi par la courbe de lorenz
- Le panier moyen toute catégorie est de 33 euros

# **Corrélation des variables**

# Corrélation des variables

Le but d'avoir des grosses données l'optimisation du CA dans ce cas précis en extrayant différentes variable on peut voir le comportement des consommateurs

# Y-a t-il une corrélation entre le sexe des client et les catégories achetés ?

### **CHI-2**

Une utilise cette technique afin de voir si deux variable qualitative sont corréler. Visuellement on utilise un tableau de contingence

La p-value : 1 Chi-2 : 1.92

Légère corrélation entre la catégorie 1 et 2 . La troisième n'impacte pas .



# Y-a t-il une corrélation entre l'âge des clients et le montant des achats ?

### Régression linéaire

Une utilise cette technique de corrélation car les variables sont quantitatives.

Corrélation de pearson = 0.2 Cette corrélation négative faible entre l' âge des clients et leur dépenses.

P-val: 3.8



## Y-a t-il une corrélation entre l'âge et la fréquence des achats?

#### **Box Plot**

On peut faire le rapprochement avec la régression linéaire.

L'écart type des jeunes et ceux qui achète le plus souvent

Etat\*\*2 = 0.37



## Y-a t-il une corrélation entre l'âge et le panier moyen?

### Regréssion linéaire

Tranche d'âge et panier moyen

Cette régression n'est pas explicative. On référence que 30%. On constate visuellement qu'il n'y a pas de corrélation entre elle.

R\*\*2 = 0.30



# Y-a t-il une corrélation entre l'âge et les catégorie + produit achetées ?

### Contingence

Ce tableau confirme qu'il y a bien une corrélation entre l'âge et les catégories

 $xi_n = 0$ P-value = 0



# **Conclusion**



- 1. Une augmentation du chiffre d'affaire à part au mois d'octobre grosse baisse
- 2. Le sexe n'interfaire pas avec le CA
- 3. Les 30-40 sont ce qui dépensent le plus
- 4. Il y a une niche commercial pour les plus de 40 ans car ce groupe achète les livre les plus chères
- Cela nécessite énormément de traitement avant d'obtenir des datas clear

# Questions?