PSALTer results panel

 ${\stackrel{0^+}{\cdot}}_f{}^{\parallel} {\stackrel{0^+}{\cdot}}_f{}^{\perp} {\stackrel{0^-}{\cdot}}_{\mathcal{A}}{}^{\parallel}$

$$S = \iiint \left(\mathcal{A}^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + f^{\alpha\beta} \ \tau \left(\Delta + \mathcal{K} \right)_{\alpha\beta} - \frac{1}{2} \ \alpha_{0} \left(\mathcal{A}_{\alpha\chi\beta} \ \mathcal{A}^{\alpha\beta\chi} + \mathcal{A}^{\alpha\beta}_{\ \alpha} \ \mathcal{A}^{\chi}_{\beta\chi} + 2 \ f^{\alpha\beta} \ \partial_{\beta}\mathcal{A}^{\chi}_{\alpha\chi} - 2 \ \partial_{\beta}\mathcal{A}^{\alpha\beta}_{\ \alpha} - 2 \ f^{\alpha\beta} \ \partial_{\chi}\mathcal{A}^{\chi}_{\alpha\beta} + 2 \ f^{\alpha}_{\ \alpha} \ \partial_{\chi}\mathcal{A}^{\beta\chi}_{\beta} \right) - \alpha_{1} \left(\partial_{\chi}\mathcal{A}^{\delta}_{\beta} \ \partial^{\chi}\mathcal{A}^{\alpha\beta}_{\ \alpha} + \left(\partial_{\alpha}\mathcal{A}^{\alpha\beta\chi} - 2 \ \partial^{\chi}\mathcal{A}^{\alpha\beta}_{\ \alpha} \right) \partial_{\delta}\mathcal{A}^{\delta}_{\beta\chi} \right) + 4 \ \alpha_{3} \ \partial_{\beta}\mathcal{A}^{\alpha\beta}_{\ \alpha} \partial_{\delta}\mathcal{A}^{\chi\delta}_{\ \chi} - \alpha_{2} \left(\partial_{\chi}\mathcal{A}^{\delta}_{\delta\zeta} \ \partial^{\delta}\mathcal{A}^{\beta\chi}_{\beta} + \left(\partial_{\beta}\mathcal{A}^{\beta\chi\delta} - 2 \ \partial^{\delta}\mathcal{A}^{\beta\chi}_{\delta\chi} \right) \right) [t, \ \chi, \ y, \ z] \ dz \ dy \ dx \ dt$$

Wave operator

	• 01	- /	- ,	• 01	_									
^{0⁺} Æ †	$\frac{1}{2} \left(\alpha_{\bullet} + 4 \left(\alpha_{\bullet} + \alpha_{\bullet} + 3 \alpha_{\bullet} \right) k^2 \right)$	$-\frac{i\alpha.k}{\sqrt{2}}$	Θ	0										
^{0⁺} •f †	$\frac{i \alpha_{\cdot} k}{\sqrt{2}}$	0	0	0										
$\overset{0^+}{\cdot}f^{\perp}$ †		0	0	0										
^{o-} Æ [∥] †	0	0	0	$\frac{\alpha_{\stackrel{\circ}{0}}}{2}$	${\stackrel{1^{+}}{\cdot}}\mathcal{H}^{\parallel}{}_{\alpha\beta}$	$\mathcal{A}^{\perp}_{\bullet}\mathcal{A}^{\perp}_{\alpha\beta}$	$1^{+}f^{\parallel}_{\alpha\beta}$	${}^{1^{-}}_{ullet}\mathcal{H}^{\parallel}_{lpha}$	${}^{1^{-}}_{\bullet}\mathcal{A}^{\perp}{}_{\alpha}$	$\frac{1}{\bullet}f^{\parallel}_{\alpha}$	$^{1}_{\bullet}f^{\perp}{}_{\alpha}$			
				${}^{1^{\scriptscriptstyle +}}_{\scriptscriptstyle \bullet}\mathcal{A}^{\parallel}\dagger^{lphaeta}$	$\left \frac{1}{4} \left(\alpha_{\bullet} + 2 \left(\alpha_{\bullet} - \alpha_{\bullet} \right) k^2 \right) \right $	$\frac{\alpha_{\stackrel{\bullet}{0}}}{2\sqrt{2}}$	$\frac{i \alpha_{0} k}{2 \sqrt{2}}$	0	0	0	0			
				$^{1^{+}}_{\bullet}\mathcal{A}^{\perp}$ † lphaeta	$\frac{\alpha_{0}}{2\sqrt{2}}$	0	0	0	0	0	0			
				$f^{\parallel} \uparrow^{\parallel} \uparrow^{\alpha\beta}$	$-\frac{i\alpha_0 k}{2\sqrt{2}}$	0	0	0	0	0	Θ			
				$\overset{1^{-}}{\cdot}\mathcal{A}^{\parallel} \stackrel{\alpha}{+}$	0	Θ	0	$\frac{\alpha_{\bullet}}{\frac{0}{4}} + \alpha_{\bullet} k^2$	$-\frac{\alpha_{\stackrel{\bullet}{0}}}{2\sqrt{2}}$	0	$-\frac{1}{2}i\alpha_{0}k$			
				$^{1^{-}}_{\bullet}\mathcal{A}^{\perp}\dagger^{\alpha}$	0	0	0	$-\frac{\alpha_{\stackrel{\bullet}{0}}}{2\sqrt{2}}$	0	0	0			
				$\frac{1}{\cdot}f^{\parallel}\uparrow^{\alpha}$	0	0	0	Θ	0	0	0			
				$f^{\perp}f^{\perp}$	0	0	0	$\frac{i\alpha. k}{2}$	0	0	0	${}^{2^{+}}_{\bullet}\mathcal{A}^{\parallel}{}_{\alpha\beta}$	$2^+_{\bullet}f^{\parallel}_{\alpha\beta}$	$\mathcal{A}^{2}\mathcal{A}^{\parallel}_{\alpha\beta\chi}$
											${}^{2^{+}}_{\bullet}\mathcal{A}^{\parallel}$ † lphaeta	$\frac{1}{4} \left(-\alpha_{0} + 2 \left(\alpha_{1} + \alpha_{2} \right) k^{2} \right)$	$\frac{i \alpha_{0} k}{2 \sqrt{2}}$	Θ
											${\stackrel{2^+}{\cdot}}f^{\parallel} \uparrow^{\alpha\beta}$	$-\frac{i\alpha.k}{2\sqrt{2}}$	0	Θ
											$^{2^{-}}_{\bullet}\mathcal{A}^{\parallel}\uparrow^{lphaeta\chi}$	0	0	$-\frac{\alpha}{\frac{\theta}{4}}$

Saturated propagator

Source constraints

Spin-parity form	Covariant form	Multiplicities	
⁰⁺ τ [⊥] == 0	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta+\mathcal{K}\right)^{\alpha\beta} == 0$	1	
$\frac{2 i k \cdot 1^{-} \sigma^{\perp}^{\alpha} + \cdot 1^{-} \tau^{\perp}^{\alpha} == 0}{$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2 \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3	
1- _τ ^α == Θ	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha}$	3	
$ \frac{1}{i k $	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\ \partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = \\ = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha} + 2\ \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta} = \\ = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + \\ = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + \\ = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \\ = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \\ = \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \\ = \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi\gamma} + \\ =$	3	
Total expected gauge generators:			

Massive spectrum

(No particles)

Massless spectrum

Massless particle

Pole residue:	$\frac{p^2}{\alpha_0^2} > 0$
Polarisations:	2

Unitarity conditions