Lista Teórica 8

1. Mostre que ${\bf v}$ é um autovetor de A e determine o autovalor correspondente:

(a)
$$A = \begin{bmatrix} 0 & 3 \\ 3 & 0 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

(b)
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} -3 \\ 3 \end{bmatrix}$

2. Mostre que λ é um autovalor de A e determine o autovetor correspondente a esse autovalor:

(a)
$$A = \begin{bmatrix} 2 & 2 \\ 2 & -1 \end{bmatrix}$$
, $\lambda = 3$

(b)
$$A = \begin{bmatrix} 2 & 2 \\ 2 & -1 \end{bmatrix}$$
, $\lambda = -2$

3. Dadas as matrizes:

$$A = \begin{bmatrix} 1 & 3 \\ -2 & 6 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix},$$

calcule:

(a) O polinômio característico de cada matriz.

(b) Os autovalores de cada matriz.

(c) A base para cada autoespaço.

(d) A multiplicidade algébrica e geométrica de cada autovalor.

4. Assuma que A e B são matrizes $n \times n$ com $\det(A) = 3$ e $\det(B) = -2$. Encontre:

(a) det(AB)

(b) $\det(A^2)$

(c) $\det(B^{-1}A)$

(d) det(2A)

(e) $\det(3B^T)$

(f) $\det(AA^T)$

5. Mostre que os autovalores de uma matriz triangular superior da forma:

$$A = \begin{bmatrix} a & b \\ 0 & d \end{bmatrix}$$

1

são $\lambda_1=a$ e $\lambda_2=d.$ e encontre os autoespacos correspondentes.