EE719: Mixed-Signal VLSI Design

Course Project: Part 3

Manideep Vudayagiri, 190070074

Design modification:

Changed the length of switching transistor MB2 from 200 nm to 600 nm to meet reqd SFDR specs

Parameter	M_{B1}	M_{B2}	$M_!$	M_2
Width (in nm)	4070	4070	5025	5025
Length (in nm)	200	600	50	50

<u>3(a)</u>

DAC schematic

Unitcell_4X_row schematic

Unitcell_4X_last_col schematic

Unitcell_4X schematic

Unitcell_2X schematic

Unitcell schematic

3(b)

DC Analysis

$$Maximum\ voltage\ =\ 387.2417\ mV\ (D_{in}=0)$$

$$Minimum\ voltage = -387.2417\ mV\ (D_{in} = 255)$$

Taking DC operating point after the design update, measured $I_{LSB} = 52.78 \ uA$.

Then, the ideal voltage when
$$D_{in}=0$$
 is $-255*R_L*I_{LSB}=-390.3081~mV$

$$\Rightarrow Offset\ error = V_{ideal} - V_{measured} = -390.3081 - (-387.2417) = -3.0664\ mV$$

Similarly, $Full\ scale\ error = 390.3081 - 387.2417 = 3.0664\ mV$

$$Gain\ error = \frac{V_{FS} - Full\ scale\ error}{V_{FS}} = 0.9921$$

Offset Error	Full Scale Error	Gain Error
-3.0664 mV	3.0664 mV	0.9921

3(d)

M = 203; N = 2048

2048 point FFT spectrum for sinusoidal input = 99.121 MHz

3(d)

M = 851; N = 2048

2048 point FFT spectrum for sinusoidal input = 415.527 MHz

The capacitance of the switching transistors (MB1 and MB2) and non-linearities of the transistor and digital components present in the DAC cause the harmonics.

<u>3(f)</u>

f_{input}	SNDR (in dB)	SFDR (in dB)	ENOB
99.121 MHz	49.91	57.61	7.999
415.527 MHz	45.64	53.00	7.289

<u>3(g)</u>

Total analog power consumed = V_{DD} x 255I_{LSB}

Power consumed by digit driver can is negligible as I^2R across it is comparatively very low.

From the DC analysis of the DAC in DNL_INL_TB, we found out

$$I_{LSB} = 60.74 uA$$

 \Rightarrow Total power consumed = 1.2 V * 255 * 60.74 uA = 18.59 mW