Cálculo:

- 1. Teorema Gauss-Green: $\int_{U}u_{x_{i}}\,\mathrm{d}x=\int_{\partial U}u
 u^{i}\,\mathrm{d}S \quad (i=1,...,n)$ o equivalentemente, $\int_{U} \nabla \cdot \boldsymbol{u} \, \mathrm{d}x = \int_{\partial U} \boldsymbol{u} \cdot \boldsymbol{\nu} \, \mathrm{d}S$
- 2. Integración por partes: $\int_{U} u_{x_{i}} v \, \mathrm{d}x = -\int_{U} u v_{x_{i}} \, \mathrm{d}x + \int_{\partial U} u v v^{i} \, \mathrm{d}S \quad (i=1,...,n)$ 3. Formulas de Green: $\int_{U} \Delta u \, \mathrm{d}x = \int_{\partial U} \frac{\partial u}{\partial \nu} \, \mathrm{d}S, \quad \int_{U} (u \Delta v v \Delta u) \, \mathrm{d}x = \int_{\partial U} \left(u \frac{\partial v}{\partial \nu} v \frac{\partial u}{\partial \nu} \right) \, \mathrm{d}S, \quad \int_{U} Dv \cdot Du \, \mathrm{d}x = -\int_{U} u \Delta v \, \mathrm{d}x + \int_{\partial U} \frac{\partial v}{\partial \nu} u \, \mathrm{d}S$ 4. Coordenadas polares: $\int_{\mathbb{R}^{n}} f \, \mathrm{d}x = \int_{0}^{\infty} \left(\int_{\partial B(x_{0},r)} f \, \mathrm{d}S \right) \, \mathrm{d}r, \quad \frac{d}{dr} \left(\int_{B(x_{0},r)} f \, \mathrm{d}x \right) = \int_{\partial B(x_{0},r)} f \, \mathrm{d}S$ 5. Fórmula de coarea: $\int_{\mathbb{R}^{n}} f |Du| \, \mathrm{d}x = \int_{-\infty}^{\infty} \left(\int_{\{u=r\}} f \, \mathrm{d}S \right) \, \mathrm{d}r$

- 6. Mollifiers: Sean $\{\rho_{\varepsilon}\}$ mollifiers, $f^{\varepsilon}:=\rho_{\varepsilon}*f$ cumple:

 - $\begin{array}{ll} \bullet & f^\varepsilon \in C^\infty(U_\varepsilon) \\ \bullet & f^\varepsilon \stackrel{\varepsilon \to 0}{\longrightarrow} f \text{ c.t.p} \end{array}$
 - Si $f \in C(U)$, entonces $f^{\varepsilon} \to f$ uniforme en compactos
 - Si $1 \leq p < \infty$ y $f \in L^p_{\mathrm{loc}}(U)$, entonces $f^{arepsilon} \xrightarrow{L^p_{\mathrm{loc}}(U)} f$
- 7. Volúmenes de esferas: $\alpha(n) := \text{Volumen de la esfera unitaria en } \mathbb{R}^n$. Luego $|\partial B(0,r)| = n\alpha(n)r^{n-1} \ \ \mathbf{y} \ \ |B(0,r)| = \alpha(n)r^n$.

Funciones Test y Distribuciones:

- 1. Topología para $C^{\infty}(\Omega)$ (au_o): Es la topología formada por las seminormas: $P_N(f) = \sup_{x \in \mathbb{K}_n} \max_{|\alpha| \le N} |\partial^{\alpha} f(x)|$
- 2. Espacios $D_k(\Omega)$ y $D(\Omega)$ Para un compacto K fijo definimos $D_k(\Omega)=\{f\in A\}$ $C^{\infty}(\Omega) \mid \operatorname{Supp}(f) \subseteq K\}$ con la topología $\tau_k \coloneqq \tau_0|_k$. Esta está generada por las normas:

$$||f||_N \coloneqq \sup_{\substack{x \in \Omega \\ |\alpha| \le N}} |\partial^{\alpha} f|$$

Para definir la topología au en $C_c^\infty(\Omega)$, se construye la siguiente base de vecindades del 0:

 $\beta := \{ \tilde{V} \text{ convexo, balanceado en } C^{\infty}(\Omega) \text{ tales que } \tilde{V} \cap D_K(\Omega) \in D_K(\Omega) \text{ para todo compacto } K \}$

Con esto, se denota espacio de funciones test a $D(\Omega) := (C_c^{\infty}(\Omega), \tau)$.

- 3. Convergencia de tests Si (f_n) es sucesión de Cauchy en $D(\Omega)$, existe K tal que $(f_n)\subseteq D_{K(\Omega)}$ y además $|f_n-f_m|_N o 0$ para todo N fijo
 - Si $f_n \to 0$ en $D(\Omega)$ entonces existe K tal que $(f_n) \subseteq D_{K(\Omega)}$ y $\partial^{\alpha} f_n \to 0$ uniforme en K para todo multi índice α
- 4. Caracterización del dual Se llama espacio de distribuciones a $D'(\Omega)$. Sea $T:C_c^\infty(\Omega)\to\mathbb{R}$ lineal, LSSE:
 - $T \in D'(\Omega)$
 - Para cada compacto K, existen $N(K) \geq 0$ y C(K) > 0 tal que $|\langle T, \phi \rangle| \leq C \|\phi\|_N$
 - Si existe N que no depende del compacto, se dice que el menor de ellos es el orden de T.
- 5. Derivada en distribuciones $\langle D^{\alpha}T, \varphi \rangle := (-1)^{|\alpha|} \langle T, D^{\alpha}\varphi \rangle$
- 6. Sea $T:D(\Omega) \to Y$ lineal. Entonces: T es continuo \Leftrightarrow T es acotado \Leftrightarrow $\forall \phi_n \to T$ 0 en $D(\Omega) \Leftrightarrow T\phi_n \to 0$ en $Y \Leftrightarrow T|_{D_*(\Omega)}$ es continuo para todo K.
- 7. Si $f\in C^\infty(\Omega)$ y $T\in D'(\Omega)$, definimos $\langle fT,\phi\rangle\coloneqq\langle T,f\phi\rangle$
- 8. Sea $(T_n)_{n\in\mathbb{N}}\subseteq D'(\Omega)$ tal que $\lim_{n\to\infty}\langle T_n,\phi\rangle$ existe para toda ϕ test, Definimos: $\langle T,\phi\rangle\coloneqq\lim_{n\to\infty}\langle T_n,\phi\rangle$, entonces $T\in D'(\Omega)$ y $\partial^{\alpha}T_n\xrightarrow{D'(\Omega)}\partial^{\alpha}T$
- 9. Anulación en distribuciones: Si w es abierto en Ω , decimos que T se anula en w si $\forall \varphi \in D(w), \langle T, \varphi \rangle = 0$

- 10. Soporte de una distribución: Definimos el soporte de una distribución Tcomo el **complemento** de $A_T \coloneqq \bigcup_{\substack{w \text{ abierto} \\ T \text{ se anula en } w}} w$ 11. **Distribucion de soporte compacto:** $\mathcal{E}'(\Omega)$ son las distribuciones de soporte
- compacto.
- 12. Si $T\in\mathcal{E}'(\Omega)$ tiene soporte $\{x_0\}$ entonces existen $N\in\mathbb{N}$, $(C_{\alpha})_{|\alpha|\leq N}$ tales que. $T = \sum_{|\alpha| \leq N} C_{\alpha} D^{\alpha} \delta_{x_0}$
- 13. Si $\operatorname{Supp} T = K$ compacto en Ω , entonces $\forall V \subseteq \Omega$ abierto $V \subset K$, existen
- funciones continuas $(f_{\alpha})_{|\alpha|\leq N}$ tales que $T=\sum_{|\alpha|\leq N}D_x^{\alpha}f_{\alpha}$ 14. Convolución de distribuciones: Si $T_1\in D'(\Omega), T_2\in \mathcal{E}'$, se define $T_1*T_2\in D'(\Omega)$ $\operatorname{como} \ \left\langle T_1 * T_2, \varphi \right\rangle \coloneqq \left\langle T_1(x), \left\langle T_2(y), \varphi(x+y) \right\rangle_y \right\rangle_x$
- 15. Propiedades de la convolución de distribuciones:
 - Si $T_1, T_2 \in \mathcal{E}'(\Omega)$, entonces $T_1 * T_2 \in \mathcal{E}'(\Omega)$
 - $\bullet \ \ \partial^\alpha(T_1*T_2)=\partial^\alpha T_1*T_2=T_1*\partial^\alpha T_2$
 - Si $T\in D'(\Omega)\text{, entonces }T*\delta_0=\delta_0*T=T$
 - $\bullet \text{ Si } T_1 \in S', T_2 \in \mathcal{E}' \text{ entonces: } \mathcal{F}(T_1 * T_2) = (2\pi)^{d/2} \, \widehat{T_1} \, \widehat{T_2} \underbrace{\widehat{T_2}}_{\in S' \in C^\circ}$

Transformada de Fourier:

- 1. Definición: Para $f\in L^1(\mathbb{R}^n)$, $\hat{f}(\xi):=\int_{\mathbb{R}^n}f(x)e^{-2\pi ix\cdot\xi}\,\mathrm{d}x$
- 2. Propiedades para $f,g\in L^1(\mathbb{R}^n)$:
 - $\bullet \|\hat{f}\|_{L^{\infty}} \leq \|f\|_{L^1}$
 - $[(\tau_y f)]^{\wedge}(\xi) = e^{i2\pi\xi y} \hat{f}(\xi)$
 - $T:\mathbb{R}^n o\mathbb{R}^n$ lineal invertible, $S=(T^*)^{-1}$, entonces $[f\circ T]^\wedge=rac{1}{|\det(T)|}\hat{f}\circ S$
 - $[f * g]^{\wedge} = \hat{f}\hat{g}$
 - α multiindice: $x^{\alpha}f \in L^{1} \Rightarrow \hat{f} \in C^{k}$, y $D^{\alpha}\hat{f} = \left[(-2\pi ix)^{|\alpha|}f\right]^{\wedge}$
 - $f \in C^k$ tal que $\forall |\alpha| \leq k, D^{\alpha}f \in L^1$ entonces $\forall |\alpha| \leq k-1, [D^{\alpha}f]^{\wedge} = (2\pi i \xi)^{\alpha} \hat{f}(\xi)$
- 3. Clase de Schwarz: $S(\mathbb{R}^n) \coloneqq \{ f \in C^{\infty}(\mathbb{R}^n) \mid \forall \alpha, \beta \text{ multiindices}, |x^{\alpha}D^{\beta}f| < \infty \}$
 - Prop: \mathcal{F} es un isomorfismo de la clase de Schwarz.
 - $S(\mathbb{R}^n)$ es denso en $L^p(\mathbb{R}^n)$ para $1 \leq p < \infty$
- 4. Fórmula de Parseval: Para $f,g\in L^1$, $\int_{\mathbb{P}^n}\hat{f}(x)g(x)\,\mathrm{d}x=\int_{\mathbb{P}^n}f(x)\hat{g}(x)\,\mathrm{d}x$
- 5. Inversión de Fourier: Para $f,\hat{f}\in L^1$, $f=\left(\hat{f}
 ight)^ee:=\int_{\mathbb{R}^n}\hat{f}e^{2\pi ix\xi}\,\mathrm{d}x$ c.t.p.
- 6. Plancherel: Podemos extender la transformada a $f \in L^2(\mathbb{R}^n)$, donde $\|f\|_{L^2} = \left\|\hat{f}\right\|_{L^2}$ y $\mathcal{F}_{L^2}:L^2 o L^2$.
- 7. **Dist. Temperadas**: Llamamos al dual $S'(\mathbb{R}^n)$ el espacio de dist. temperadas.
- 8. Fourier en S': Para $T \in S'$, \hat{T} se define por su acción $\langle \hat{T}, \varphi \rangle = \langle T, \hat{\varphi} \rangle$. La transformada es una operación continua en S'.

Ecuación de Laplace:

- 1. Ecuación de Poisson: Las ecuaciones $\Delta u = 0$ y $-\Delta u = f$ se llaman ecuaciones de Laplace y Poisson respectivamente. Se busca resolver para $u:\overline{U} \to \mathbb{R}$ con U abierto en \mathbb{R}^n . Las soluciones C^2 a Laplace se llaman armónicas.
- 2. Solución fundamental: La función

$$\Phi(x) \coloneqq \begin{cases} -\frac{1}{2}\pi \log(|x|) & n = 2\\ \frac{1}{n(n-2)\alpha(n)} \; |x|^{2-n} & n > 2 \end{cases}$$

definida en $\mathbb{R}^n/\{0\}$ es la solución fundamental a la ecuación de Laplace.

- 3. Solución a Poisson: Si $f\in C^2_c(\mathbb{R}^n)$, entonces $u(x):=\Phi*f=\int_{\mathbb{R}^n}\Phi(x-y)f(y)\,\mathrm{d}y\in C^2(\mathbb{R}^n)$ es solución de $-\Delta u=f$ en \mathbb{R}^n
- 4. Fórmula de la media: La función u es armónica ssi para toda bola $B(x,r)\subseteq U$ se cumple

$$u(x) = \int_{\partial B(x,r)} u(y) \,\mathrm{d}S(y) = \int_{B(x,r)} u(y) \,\mathrm{d}y$$

- 5. Principios del máximo: Sea U acotado y $u \in C^2(U) \cap C^0\left(\overline{U}\right)$ solución de $-\Delta u = 0$ en U. Entonces:
 - $\max_{\overline{U}} u = \max_{\partial U} u$
 - Además, si U es conexo y existe $x_0 \in U$ tal que $u(x_0) = \max_{\overline{U}} u$, entonces u es constante en U

Se deduce un principio del mínimo, ya que -u es armónica también.

- 6. Unicidad: Si $g\in C^0(\partial U), f\in C^0(U)$ entonces a lo mas existe una solución $u\in C^2(U)\cap C^0\left(\overline{U}\right)$ de $-\Delta u=f$ en U y u=g en ∂U
- 7. Regularidad: Si $u\in C^0(U)$ satisface la fórmula de la media para toda bola, entonces $u\in C^\infty$ (mas aún es analítica)
- 8. Estimaciones en derivadas: Si u es armónica en U, entonces

$$|D^{\alpha}u(x_{0})| \leq \frac{C_{k}}{r^{n+k}}\|u\|_{L^{1}(B(x_{0},r))} \quad (|\alpha| = k; B(x_{0},r) \subseteq U)$$

- 9. Liouville: Si $u:\mathbb{R}^n \to \mathbb{R}$ es armónica y acotada, entonces u es constante.
- 10. Representación: Si $f\in C^2_c(\mathbb{R}^n), n\geq 3$. Entonces cualquier solución acotada de $-\Delta u=f$ en \mathbb{R}^n es de la forma $u=\Phi*f+c$ con $c\in\mathbb{R}$.
- 11. Desigualdad de Harnack: Para cada abierto conexo $V \subset\subset U$, existe C(V)>0 tal que $\sup_V u \leq C\inf_V u$, $\forall u$ armónica no negativa. En concreto, para $x,y\in V$ se cumple $\frac{1}{C}u(y)\leq u(x)\leq Cu(y)$.
- 12. Función de Green: Queremos obtener una formula de representación para

$$\begin{cases} -\Delta u = f & \text{en } U \\ u = g & \text{en } \partial U \end{cases}$$

Para ello, para un x fijo buscamos la función corrector como la solución a

$$\begin{cases} -\Delta \phi^x = 0 & \text{en } U \\ \phi^x = \Phi(y - x) & \text{en } \partial U \end{cases}$$

Con esto definimos la función de Green para la región ${\it U}$

$$G(x,y) := \Phi(y-x) - \phi^x(y) \quad (x \neq y)$$

13. Representación usando Green: Si u resuelve el IVP anterior, entonces

$$u(x) = -\int_{\partial U} g(y) \frac{\partial G}{\partial \nu}(x,y) \, \mathrm{d}S(y) + \int_{U} f(y) G(x,y) \, \mathrm{d}y$$

- 14. Simetría de Green: Para todo par $x,y\in U$ distintos, G(x,y)=G(y,x)
- 15. Green para el semiespacio positivo (\mathbb{R}^n_+) : $\tilde{x}:=(x_1,x_2,...,-x_n)$, entonces $G(x,y)=\Phi(y-x)-\Phi(y-\tilde{x})$ para $x,y\in\mathbb{R}^n_+$. Por lo que la solución es

$$u(x) = \frac{2x_n}{n\alpha(n)} \int_{\partial \mathbb{R}^n_+} \frac{g(y)}{|x-y|^n} \,\mathrm{d}y$$

16. Green para la bola unitaria: Si $x\in\mathbb{R}^n-\{0\}$, $\tilde{x}:=\frac{x}{|x|^2}$, luego $G(x,y)=\Phi(y-x)-\Phi(|x|(y-\tilde{x}))$, con lo que la solución es:

$$u(x) = \frac{1 - |x|^2}{n\alpha(n)} \int_{\partial B(0,1)} \frac{g(y)}{|x - y|^n} \, \mathrm{d}S(y)$$

17. Solución para B(0,r): Se define

$$u_r(x) = \frac{r^2 - |x|^2}{n\alpha(n)r} \int_{\partial B(0,r)} \frac{g(y)}{|x-y|^n} \,\mathrm{d}S(y)$$

Entonces u_r es armónica en B(0,r) y $\lim_{\substack{x \to x_0 \\ x \in B_0(0,r)}} u_r(x) = g(x_0)$ para $x_0 \in \partial B(0,r)$

Ecuación de Calor:

Ecuación de Onda:

- H en $\mathbb{R}_+ \times \{t=0\}$
- 3. Fórmula de Kirchhoff: $u(x,t)=f_{\partial B(x,t)}\,th(y)+g(y)+Dg(y)\cdot(y-x)\,\mathrm{d}S(y)$, válida sólo
- $\begin{array}{l} \text{4. F\'ormula de Poisson 2D: } u(x,t) = \frac{1}{2} \int_{B(x,t)} \frac{tg(y) + t^2 h(y) + tDg(y) \cdot (y-x)}{(t^2 |y-x|^2)^{\frac{1}{2}}} \, \mathrm{d}S(y) \\ \text{5. F\'ormulas de Poisson 3D: } u(x,t) = \partial_t \bigg(t \int_{\partial B(x,t)} g \, \mathrm{d}S \bigg) + \frac{1}{2r} \int_{\partial B(x,t)} h(y) \, \mathrm{d}S(y) = \int_{\partial B(x,t)} th(y) \, \mathrm{d}S(y) \\ \text{5. F\'ormulas de Poisson 3D: } u(x,t) = \partial_t \bigg(t \int_{\partial B(x,t)} \frac{tg(y) + t^2 h(y) + tDg(y) \cdot (y-x)}{(t^2 |y-x|^2)^{\frac{1}{2}}} \, \mathrm{d}S(y) \\ \text{6. F\'ormulas de Poisson 3D: } u(x,t) = \partial_t \bigg(t \int_{\partial B(x,t)} \frac{tg(y) + t^2 h(y) + tDg(y) \cdot (y-x)}{(t^2 |y-x|^2)^{\frac{1}{2}}} \, \mathrm{d}S(y) \\ \text{7. F\'ormulas de Poisson 3D: } u(x,t) = \partial_t \bigg(t \int_{\partial B(x,t)} \frac{tg(y) + t^2 h(y) + tDg(y) \cdot (y-x)}{(t^2 |y-x|^2)^{\frac{1}{2}}} \, \mathrm{d}S(y) \\ \text{7. F\'ormulas de Poisson 3D: } u(x,t) = \partial_t \bigg(t \int_{\partial B(x,t)} \frac{tg(y) + t^2 h(y) + tDg(y) \cdot (y-x)}{(t^2 |y-x|^2)^{\frac{1}{2}}} \, \mathrm{d}S(y) \\ \text{8. F\'ormulas de Poisson 3D: } u(x,t) = \partial_t \bigg(t \int_{\partial B(x,t)} \frac{tg(y) + tDg(y) \cdot (y-x)}{(t^2 |y-x|^2)^{\frac{1}{2}}} \, \mathrm{d}S(y) \\ \text{9. F\'ormulas de Poisson 3D: } u(x,t) = \partial_t \bigg(t \int_{\partial B(x,t)} \frac{tg(y) + tDg(y) \cdot (y-x)}{(t^2 |y-x|^2)^{\frac{1}{2}}} \, \mathrm{d}S(y) \\ \text{9. F\'ormulas de Poisson 3D: } u(x,t) = \partial_t \bigg(t \int_{\partial B(x,t)} \frac{tg(y) + tDg(y) \cdot (y-x)}{(t^2 |y-x|^2)^{\frac{1}{2}}} \, \mathrm{d}S(y) \\ \text{9. F\'ormulas de Poisson 3D: } u(x,t) = \partial_t \bigg(t \int_{\partial B(x,t)} \frac{tg(y) + tDg(y) \cdot (y-x)}{(t^2 |y-x|^2)^{\frac{1}{2}}} \, \mathrm{d}S(y) \\ \text{9. F\'ormulas de Poisson 3D: } u(x,t) = \partial_t \bigg(t \int_{\partial B(x,t)} \frac{tg(y) + tDg(y) \cdot (y-x)}{(t^2 |y-x|^2)^{\frac{1}{2}}} \, \mathrm{d}S(y) \\ \text{9. F\'ormulas de Poisson 3D: } u(x,t) = \partial_t \bigg(t \int_{\partial B(x,t)} \frac{tg(y) \cdot (y-x)}{(t^2 |y-x|^2)^{\frac{1}{2}}} \, \mathrm{d}S(y) \\ \text{9. F\'ormulas de Poisson 3D: } u(x,t) = \partial_t \bigg(t \int_{\partial B(x,t)} \frac{tg(y) \cdot (y-x)}{(t^2 |y-x|^2)^{\frac{1}{2}}} \, \mathrm{d}S(y) \\ \text{9. F\'ormulas de Poisson 3D: } u(x,t) = \partial_t \bigg(t \int_{\partial B(x,t)} \frac{tg(y) \cdot (y-x)}{(t^2 |y-x|^2)^{\frac{1}{2}}} \, \mathrm{d}S(y) \\ \text{9. F\'ormulas de Poisson 3D: } u(x,t) = \partial_t \bigg(t \int_{\partial B(x,t)} \frac{tg(y) \cdot (y-x)}{(t^2 |y-x|^2)^{\frac{1}{2}}} \, \mathrm{d}S(y) \\ \text{9. F\'ormulas de Poisson 3D: } u(x,t) = \partial_t \bigg(t \int_{\partial B(x,t)} \frac{tg$ $g(y) + Dg(y) \cdot (y - x) dS(y)$
- 6. Solución homogénea general n impar:

$$\begin{split} u(x,t) &= \frac{1}{\gamma_n} \left[\partial_t \left(\frac{1}{t} \partial_t \right)^{\frac{n-3}{2}} \left(t^{n-2} \oint_{\partial B(x,t)} g \, \mathrm{d}S \right) + \left(\frac{1}{t} \partial_t \right)^{\frac{n-3}{2}} \left(t^{n-2} \oint_{\partial B(x,t)} h \, \mathrm{d}S \right) \right], \\ \gamma_n &= 1 \cdot 3 \cdot 5 \cdot \cdot \cdot (n-2) \end{split}$$

7. Solución homogénea general n par:

$$\begin{split} u(x,t) &= \frac{1}{\gamma_n} \left[\partial_t \left(\frac{1}{t} \partial_t \right)^{\frac{n-2}{2}} \left(t^n \int_{B(x,t)} \frac{g(y)}{\left(t^2 - |y-x|^2 \right)^{\frac{1}{2}}} \, \mathrm{d}y \right) + \left(\frac{1}{t} \partial_t \right)^{\frac{n-2}{2}} \left(t^n \int_{B(x,t)} \frac{h(y)}{\left(t^2 - |y-x|^2 \right)^{\frac{1}{2}}} \, \mathrm{d}y \right) \right], \\ \gamma_n &= 2 \cdot 4 \cdot 6 \cdot \cdot \cdot \cdot n \end{split}$$

- 8. Solución no-homogénea: $u(x,t)=\int_0^t u(x,t;s)\,\mathrm{d} s$, donde para $t\geq s$, $u_{tt}(\cdot;s)-\Delta u(\cdot;s)=0$, s.a. $u(\cdot;s)=0$, $u_t(\cdot;s)=f(\cdot,s)$ en t=s La solución general se obtiene sumando homogénea + inhomogenea
- 9. Energía: $E(t) = \frac{1}{2} \int_U (u_t^2 + |Du|^2) dx$. $\dot{E} = \int_U u_t (u_{tt} \Delta u) dx + \int_{\partial U} u_t Du \cdot \nu dS$

Espacios de Sobolev:

- 1. **Derivada débil:** $v=D^{\alpha}u\Leftrightarrow \forall \varphi\in C_{c}^{\infty}(\Omega), \int_{\Omega}uD^{\alpha}\varphi\,\mathrm{d}x=(-1)^{|\alpha|}\int_{\Omega}v\varphi\,\mathrm{d}x$ 2. $W^{k,p}(\Omega):=\{u\in L^{p}(\Omega)\mid \forall |\alpha|\leq k, D^{\alpha}u\in L^{p}(\Omega) \text{ existe en el sentido Débil}\}$ 3. $\|u\|_{W^{k,p}(\Omega)}:=\left(\sum_{|\alpha|\leq k}\|D^{\alpha}u\|_{L^{p}(\Omega)}^{p}\right)^{\frac{1}{p}}$. Con esta norma, $W^{k,p}(\Omega)$ es Banach. $H^{k}(\Omega):=W^{k,2}(\Omega)$ además es Hilbert.
- 4. Equivalente en $\mathbb{R}^n\colon \stackrel{\cdot}{H^s(\mathbb{R}^n)}\coloneqq \left\{u\in S'\mid \left(1+|\xi|^2\right)^{\frac{s}{2}}\hat{u}\in L^2(\mathbb{R}^n)\right\}$ con norma $\|u\|_{H^s} \coloneqq \left\| \left(1 + |\xi|^2\right)^{\{\frac{s}{2}\}} \hat{u} \right\|_{L^2(\mathbb{R}^n)}$
- 5. $W^{k,p}_0(\Omega) \coloneqq \overline{C^\infty_c(\Omega)}$ con respecto a $\|\cdot\|_{W^{k,p}(\Omega)}$.
- 6. Teoremas de densidad (p finito):
 - $C^\infty(\Omega)\cap W^{k,p}(\Omega)$ es denso en $W^{k,p}_{\mathrm{loc}}(\Omega)$ (sin supuestos extras sobre Ω).
 - Si además Ω es acotado: $C^\infty(\Omega)\cap W^{k,p}(\Omega)$ es denso en $W^{k,p}(\Omega)$.
 - Si Ω es acotado y borde $C^1\colon \, C^\inftyig(\overline\Omegaig)\cap W^{k,p}(\Omega)$ es denso en $W^{k,p}(\Omega)$.
- 7. Teorema de Extensión:

- Ω es acotado y borde $C^1 \Rightarrow \exists E: W^{k,p}(\Omega) \to W^{k,p}(\mathbb{R}^n)$ lineal continuo tal que Eu=u en Ω (c.t.p), y Eu tiene soporte en un abierto V acotado en \mathbb{R}^n , $\Omega \subset\subset V$.
- 8. Traza: Ω acotado $\wedge \partial \Omega \in C^1 \Rightarrow \exists T: W^{1,p}(\Omega) \to L^p(\partial \Omega)$ lineal continuo tal que $\forall u \in C(\overline{\Omega}) \cap W^{1,p}(\Omega), Tu = u|_{\partial\Omega}$. Además, $Tu = 0 \Leftrightarrow u \in W_0^{1,p}(\Omega)$.
- 9. Desigualdades de Sobolev:

 - Caso $1 \leq p < n$: Definimos $p^* = \frac{np}{n-p}$ (Gagliardo-Niremberg-Sobolev) En \mathbb{R}^n : $\forall u \in C^1_c(\mathbb{R}^n)$, $\|u\|_{L^{p^*}(\mathbb{R}^n)} \leq C\|Du\|_{L^p(\mathbb{R}^n)}$.
 - Ω acotado y frontera suave: $1 \leq p < n \Rightarrow \exists C > 0$ tal que $\forall u \in W^{1,p}(\Omega), \|u\|_{L^p(\Omega)} \leq n$
 - (Poincaré) Ω acotado: $\forall u \in W^{1,p}_0(\Omega), \forall q \in [1,p^*], \|u\|_{L^q(\Omega)} \leq C \|Du\|_{L^p(\Omega)}$
 - Caso n : Aquí, las sobolev son Hölder continuas (identificablecon continuas).
 - ▶ Espacio de Hölder:

$$u \in C^{k,\gamma}\left(\overline{\Omega}\right) \Leftrightarrow \|u\|_{C^{k,\gamma}\left(\overline{\Omega}\right)} \coloneqq \sum_{|\alpha| \leq k} \sup_{x \in \Omega} |D^{\alpha}u(x)| + \sum_{|\alpha| = k} \sup_{\substack{x,y \in U \\ (x \neq y)}} \left\{ \frac{|u(y) - u(x)|}{|y - x|^{\gamma}} \right\}$$

- $\text{ (Morrisey)} \ \forall u \in C^1(\mathbb{R}^n), \gamma \coloneqq 1 \tfrac{n}{p}, \|u\|_{C^{0,\gamma}(\mathbb{R}^n)} \leq C \|u\|_{W^{1,p}(\mathbb{R}^n)}$
- $\textbf{ (Morrisey 2) Si } \Omega \text{ es acotado y } \partial \Omega \text{ es } C^1 \text{: } \|u^*\|_{C^{0,\gamma}\left(\overline{\Omega}\right)} \leq C\|u\|_{W^{1,p}(U)} \text{ donde }$ $\gamma=1-\frac{n}{n}$ y $u^*=u$ c.t.p. Esto permite identificar u sobolev con funciones continuas.
- 10. **Inclusiones compactas** (Rellich-Kondrachov): Si Ω acotado y $\partial\Omega$ es C^1 , $W^{1,p}(\Omega)$ es compactamente embebido en $L^q(\Omega)$ para $1 < q < p^*$. Es decir, toda sucesión acotada en $W^{1,p}(\Omega)$ tiene subsucesión convergente en $L^q(\Omega)$.
- 11. Desigualdad Poincaré Weintenger: Si Ω acotado, $\partial\Omega$ es C^1 , y $1\leq p<\infty$ entonces $\exists C>0$ tal que $\forall u\in W^{1,p}(\Omega), \left\|u-f_\Omega\,u\right\|_{L^p(\Omega)}\leq C\|\nabla u\|_{L^p(\Omega)}$

Aplicaciones a EDP:

- 1. Operador Diferencial: Sea $\Omega \subset \mathbb{R}^d$ acotado y borde C^1 , $A(x) = (a_{ij}(x)), b(x) =$ $(b_i(x))$, y c(x) tales que $a_{ij},b_j,c\in L^\infty(\Omega)$, definimos los operadores diferenciales en forma: (notación: índices repetidos \Rightarrow sumar el índice de 1 a d)
 - De divergencia: $Lu = -\partial_i (a_{ij}(x)\partial_i u) + b_i(x)\partial_i u + c(x)u$
 - General: $Lu=-a_{ij}(x)\partial_i\partial_j u+b_j(x)\partial_j u+c(x)u$

obs: Estas formas son equivalentes si $a_{ij} \in C^1(\Omega)$

- 2. Elipticidad: $A(x) = \left(a_{ij}(x)\right)$ se dice uniformemente elíptico (acotado) si $\forall \chi \in$ \mathbb{R}^d , $\langle \chi, A\chi \rangle \geq (\leq) C_0 \langle \chi, \chi \rangle$. Habitualmente se trabaja con A simétrica.
- 3. Formulación Variacional: u se dirá solución débil del problema Lu=f si $\forall v$ en un espacio adecuado (ej: $u \in H^1(\Omega), v \in H^1(\Omega)$) $B[u,v] = \langle f,v \rangle$, donde B es una forma bilineal obtenida al integrar por partes el problema original, y f es promovido a un elemento del dual del espacio de v. Los detalles dependen del problema y las condiciones de borde en particular.
- 4. Lax-Milgram: Sean $u,v\in H$, con H un hilbert. El problema $B[u,v]=\langle f,v\rangle$ tiene **solución única** si existen $\alpha, \beta > 0$ tal que:
 - B continua: $|B[u,v]| \leq \alpha ||u|| ||v||$
 - B coerciva: $\beta(u,u) \leq B[u,u]$
- 5. Teorema de Representación de Riesz: A veces B además es simétrica. En este caso es más simple definir $((u,v))\coloneqq B[u,v]$, mostrar que es nuevo producto interno, y así el teorema de representación de Riesz nos garantiza existencia de solución.
- 6. Alternativa de Fredholm: Sea el problema primal con L op diferencial de divergencia: $Lu=f,u|_{\partial\Omega}=0$. El operador adjunto de L se puede escribir

como $L^*v=-\partial_i \left(a_{ij}\partial_j v\right)-b_i\partial_i v+(c-(\partial_i b_i))v$. La forma bilineal adjunta se define $B^*[u,v]:=B[v,u]$. El problema débil adjunto consiste en encontrar $v\in H^1_0(\Omega)$ tal que $\forall u\in H^1_0(\Omega), B^*[v,u]=(f,u)$. Con esto, **sólo una** de las siguientes es cierta:

- 1. Existe solución débil única del problema primal para cualquier $f \in L^2(\Omega)$.
- 2. Existe una solución débil no nula del problema homogéneo Lu=u, $u|_{\partial\Omega}=0$. En este caso, la dimension de ${\rm Ker}(L)$ es igual a la de ${\rm Ker}\;(L^*)$ y finita
- 3. Existe solución débil única del problema primal ssi $f \in \operatorname{Ker}(L^*)^\perp$