When to consider neural networks

- Input is high-dimensional discrete or raw-valued
- Output is discrete or real-valued
- Output is a vector of values
- Possibly noisy data
- Form of target function is unknown
- Human readability of the result is not important

Examples:

- Speech phoneme recognition
- Image classification
- Financial prediction

 The n-dimensional input vector x is mapped into variable y by means of the scalar product and a nonlinear function mapping

Perceptron

- Basic unit in a neural network
- Linear separator
- Parts
 - N inputs, x₁ ... x_n
 - Weights for each input, w₁ ... w_n
 - A bias input x₀ (constant) and associated weight w₀
 - Weighted sum of inputs, $y = w_0x_0 + w_1x_1 + ... + w_nx_n$
 - A threshold function or activation function,
 - i.e 1 if y > t, -1 if y <= t

Artificial Neural Networks (ANN)

- Model is an assembly of inter-connected nodes and weighted links
- Output node sums up each of its input value according to the weights of its links

 Compare output node against some threshold t

Perceptron Model

$$Y = I(\sum_{i} w_{i} x_{i} - t) \qquad \text{or} \qquad$$

$$Y = sign(\sum_{i} w_{i} x_{i} - t)$$

Types of connectivity

- Feedforward networks
 - These compute a series of transformations
 - Typically, the first layer is the input and the last layer is the output.
- Recurrent networks
 - These have directed cycles in their connection graph. They can have complicated dynamics.
 - More biologically realistic.

Different Network Topologies

- Single layer feed-forward networks
 - Input layer projecting into the output layer

Different Network Topologies

Multi-layer feed-forward networks

Algorithm for learning ANN

Initialize the weights (w₀, w₁, ..., w_k)

- Adjust the weights in such a way that the output of ANN is consistent with class labels of training examples
 - Error function: $\operatorname{Loss} = -\frac{1}{\underset{\mathrm{size}}{\operatorname{output}}} \sum_{i=1}^{\underset{\mathrm{size}}{\operatorname{size}}} y_i \cdot \log \, \hat{y}_i + (1-y_i) \cdot \log \, (1-\hat{y}_i)$
 - Find the weights w_i's that minimize the above error function
 - e.g., gradient descent, backpropagation algorithm

Optimizing concave/convex function

 Maximum of a concave function = minimum of a convex function

Gradient ascent (concave) / Gradient descent (convex)

Gradient ascent rule

A 1-HIDDEN LAYER NET

$$N_{INPUTS} = 2$$

$$N_{HIDDEN} = 3$$

Copyright © 2001, 2003, Andrew W. Moore

Neural Networks: Slide 52

The Sigmoid

$$g(h) = \frac{1}{1 + \exp(-h)}$$

Now we choose **w** to minimize

$$\sum_{i=1}^{R} [y_i - \text{Out}(x_i)]^2 = \sum_{i=1}^{R} [y_i - g(w^T x_i)]^2$$

Sigmoid Unit

 $\sigma(x)$ is the sigmoid function/activation function (also linear, threshold)

$$\frac{1}{1+e^{-x}}$$

Nice property:
$$\frac{d\sigma(x)}{dx} = \sigma(x)(1 - \sigma(x))$$
 Differentiable

We can derive gradient decent rules to train

- One sigmoid unit
- Multilayer networks of sigmoid units \rightarrow Backpropagation

Backpropagation

$$Out(\mathbf{x}) = g\left(\sum_{j} W_{j} g\left(\sum_{k} w_{jk} x_{k}\right)\right)$$

Find a set of weights $\{W_j\}, \{w_{jk}\}$ to minimize

$$\sum_{i} (y_i - \mathrm{Out}(\mathbf{x}_i))^2$$

by gradient descent.

That's it!
That's the backpropagation
algorithm.

Backpropagation

- Iteratively process a set of training tuples & compare the network's prediction with the actual known target value
- For each training tuple, the weights are modified to minimize the mean squared error between the network's prediction and the actual target value
- Modifications are made in the "backwards" direction: from the output layer, through each hidden layer down to the first hidden layer, hence "backpropagation"
- Steps
 - Initialize weights (to small random #s) and biases in the network
 - Propagate the inputs forward (by applying activation function)
 - Backpropagate the error (by updating weights and biases)
 - Terminating condition (when error is very small, etc.)

Artificial Neural Networks (ANN)

X ₁	X ₂	X ₃	Υ
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
0	0	1	0
0	1	0	0
0	1	1	1
0	0	0	0

$$Y = I(0.3X_1 + 0.3X_2 + 0.3X_3 - 0.4 > 0)$$
where $I(z) = \begin{cases} 1 & \text{if } z \text{ is true} \\ 0 & \text{otherwise} \end{cases}$

A Multi-Layer Feed-Forward Neural Network

General Structure of ANN

