

Kombinatorische Logik (comblogic)

Übersicht Zusammenhänge Schaltungsentwurf I/III

- Darstellungsmöglichkeiten:
 - Funktionsgleichung
 - Wertetabelle
 - KV-Diagramm
 - Schaltplan

Übersicht Zusammenhänge Schaltungsentwurf II/III

Übersicht Zusammenhänge Schaltungsentwurf III/III

Schaltnetze - Code-Umsetzer - Gray-Code decoder I/II

- Der Gray-Code decoder wandelt Binärcoder in Graycode um
- (bin -> Gray-Code)
- Beim Gray-Code unterscheiden sich benachbarte Codeworte nur in einem einzigen Bit
- Diese Eigenschaft wird verwendet um Übertragungsfehler bei sich kontinuierlich ändernden digitalen Signalen auf mehradrigen Leitungen zu verringern
- Eine Weitere Anwendung ist die Bestimmung der absoluten Position einer Scheibe oder Leiste[, die mit schwarzen und weißen Balken markiert ist, die mit Lichtschranken oder anderen Sensoren abgetastet wird.]
 - Diese Position wird dann zur Winkel- oder Drehgeschwindigkeitsmessung verwendet.

Schaltnetze - Code-Umsetzer - Gray-Code decoder II/II

Beispiel: 3bit Binär/Gray-Code Umsetzer (Gray-Code decoder)

X_3	X_2	X_1	Y_3	Y_2	Y_1
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	1
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	1	1	1
1	1	0	1	0	1
1	1	1	1	0	0

$$Y_3 = X_3$$

$$Y_2 = X_3 \oplus X_2$$

$$Y_1 = X_2 \oplus X_1$$

Schaltnetze - Komparator I/II

Mapping: a1=x4; a0=x3; b1=x2; b0=x1; gr=y

- -> y = x4x2' + x4x3x1' + x3x2'x1'
- ->gr=a1b1'+ a1a0b0'+ a0b1'b0'
- -kl: nehme gr und tausche ai durch bi kl=b1a1'+ b1b0a0'+ b0a1'a0'
- -gl: gl=(gr+kl)

Schaltnetze - Komparator II/II

-gr=a1b1'+ a1a0b0'+ a0b1'b0'
-kl=b1a1'+ b1b0a0'+ b0a1'a0'
-gl=(gr+kl)'

Schaltnetze - Multiplexer - Prinzip

- Allgemeine Funktionsweise eines Multiplexers:
 - Ein Multiplexer schaltet einen Eingang in Abhängigkeit des Steuereingangs auf den Ausgang

- ■Ein Multiplexer ist also ein gesteuerter Umschalter
- Multiplexer gibt es in verschiedenen Größen, man spricht dann von N:1 Multiplexern

Schaltnetze - Multiplexer 2:1 I/II - Übung

■ Beispiel: mux 2:1

Nr	S	x2	x 1	У
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	0
6	1	1	0	1
7	1	1	-1	1

Minimierung

Mapping: s=x3; x2=x2; x1=x1

Schaltplan

Schaltnetze - Demultiplexer - Prinzip

- Allgemeine Funktionsweise eines Demultiplexers:
 - Ein Multiplexer schaltet den Eingang in Abhängigkeit des Steuereingangs auf einen Ausgang

- Ein Demultiplexer schaltet den Eingang in Abhängigkeit des Steuereingangs auf einen der Ausgänge
- Ein Demultiplexer ist also ein gesteuerter Umschalter für den Ausgang
- Demultiplexer gibt es in verschiedenen Größen, man spricht dann von 1:N Demultiplexern

Schaltnetze - Demultiplexer 1:4

■ Beispiel: demux 1:4

S_2	S_1	Y_1	Y_2	Y_3	Y_4
0	0	X	0	0	0
0	1	0	\boldsymbol{X}	0	0
1	0	0	0	X	0
1	0 1 0 1	0	0	0	X

Gleichung

$$Y_1 = X \wedge \overline{S_2} \wedge \overline{S_1}$$

$$Y_2 = X \wedge \overline{S_2} \wedge S_1$$

$$Y_3 = X \wedge S_2 \wedge \overline{S_1}$$

$$Y_4 = X \wedge S_2 \wedge S_1$$

Schaltplan

Schaltnetze - Rechenschaltungen - Addierer - Halbaddierer I/II

 Addition von Ganzzahlen - Addition einer einzelnen Stelle (Halbaddierer) - Wertetabelle

xi	si=yi + xi	ci
0	0	0
1	1	0
0	1	0
1	0	1
	xi 0 1 0	xi si=yi + xi 0 0 1 1 0 1 1 0

• Minimierung -> Schaltfunktion -> Umsetzung als Gatter!

Schaltnetze - Rechenschaltungen - Addierer - Halbaddierer II/II

 Addition von Ganzzahlen - Addition einer einzelnen Stelle (Halbaddierer) - Gleichung und Schaltplan

Schaltnetze - Rechenschaltungen - Addierer - Volladdierer I/III

Addition von Ganzzahlen

 Addition einer einzelnen Stelle mit Berücksichtigung des Übertrags der Vorgängerstelle (Volladdierer) - Wertetabelle

c_{i-1}	yi	xi	si= yi+ xi + c _{i-1}	ci
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Eigentliche Addition braucht Übertrag der Vorgängerstelle

Schaltnetze - Rechenschaltungen - Addierer - Volladdierer II/III

- Addition von Ganzzahlen
 - Volladdierer Minimierung

c_{i-1}	yi	xi	$si = yi + xi + c_{i-1}$	ci
0	0	0	0	0
0	0	1		0
0	- 1	0	(1)	0
0	- 1	1	0	(1)
1	0	0	(1)	0
1	0	1	0	(1)
1	1	0	0	(1)
- 1	- 1	1	(1)	1

Schaltnetze - Rechenschaltungen - Addierer - Volladdierer III/III - Übung (R)

Addition von Ganzzahlen - Volladdierer - Schaltplan

$$\begin{aligned} &\text{ci=}\\ &= \mathsf{xiyi+} \; \mathsf{xi} \; c_{i-1} + \mathsf{yi} \; c_{i-1} \\ &\text{si=}\\ &= \mathsf{xiyi'} c_{i-1} \text{`+} \; \mathsf{xi'yi} \; c_{i-1} \text{'+} \; \mathsf{xi'yi'} c_{i-1} + \mathsf{xiyi} \; c_{i-1} \end{aligned}$$

Schaltnetze - Rechenschaltungen - Addierer - RCA

- Addition von Ganzzahlen
 - Hintereinander-Schaltung von Volladdieren (Carry Ripple Adder (RCA)
 - Beispiel 4 Bit

■ Einfach, wenig Bauelemente, aber langsam (Rechenzeit ~ Bitbreite)

Schaltnetze - Rechenschaltungen - Addierer - CLA - Motivation und Prinzip

- Der Ripple-Carry-Adder (RCA) ist recht Ressourcen schonend, aber sehr langsam
 - Das Carry muss von Stelle zu Stelle rutschen, bis es an der obersten Stelle ankommt
- Die Abhilfe hierfür ist eine beschleunigte Berechnung der Überträge(carry)
- Der Carry-Look-Ahead-Adder (CLA) berechnet alle Übertragsbits (carry) in einem extra Schaltnetz parallel

Schaltnetze - Rechenschaltungen - Addierer - CLA - Herleitung I/II (R)

- Startpunkt ist der Volladdierer
 - ci= c_{i-1} yi+ yixi+ c_{i-1} xi und zi=si= c_{i-1} yi'xi'+ c_{i-1} yixi+ c_{i-1} 'yi'xi+ c_{i-1} 'yixi'
- Dies kann man nun umschreiben für c_{i+1} und z_{i+1} :
 - c_{i+1} = ciyi+ yixi+ cixi und z_{i+1} = yi'xi'+ ciyixi+ ci'yi'xi+ ci'yixi'
- Dies kann man durch bool'sche Umformung umformen in:
 - c_{i+1} = ((xi xor yi)*ci)+ (xiyi) und z_{i+1} = ci xor (xi xor yi)
- Nun kann man eine weiter Abkürzung einführen:
 - mit gi=xiyi und pi=xi xor yi
 - c_{i+1} = (pi*ci)+gi = gi +(ci * pi)
 - z_{i+1} = ci xor pi

Schaltnetze - Rechenschaltungen - Addierer - CLA - Herleitung II/II

Nun kann man für ci einsprechend rekursiv einsetzen und "ausrollen" (c_{i+1}= gi +(ci * pi)):

```
c1= g0+ c0p0
c2= g1+ c1p1
    = g1+ (g0+ c0p0)p1
    = g1+ g0p1+ c0p0p1
c3= g2+ c2p2
    = g2+ (g1+ g0p1+ c0p0p1)p2
    = g2+ g1p2+ g0p1p2+ c0p0p1p2
c4= g3+ c3p3
    = g3+ (g2+ g1p2+ g0p1p2+ c0p0p1p2)p3
    = g3+ g2p3+ g1p2p3+ g0p1p2p3+ c0p0p1p2p3
```


Schaltnetze - Rechenschaltungen - Addierer - CLA - Schaltung x_3 x_2 x_1

```
c1= g0+ c0p0
c2= g1+ g0p1+ c0p0p1
c3= g2+ g1p2+ g0p1p2+
c0p0p1p2
c4= g3+ g2p3+ g1p2p3+
g0p1p2p3+ c0p0p1p2p3
z0= c0 xor p0
z1= c1 xor p1
z2= c2 xor p2
z3= c3 xor p3
```


- An dieser Schaltung kann man gut erkennen, das die Tiefe(=Laufzeit) unabhängig von der bitbreite ist
- Aber die Anzahl an Logikgattern nimmt pro bit kontinuierlich zu

Schaltnetze - Rechenschaltungen - Subtrahierer

- Die Subtraktion kann man auf die Addition des Zweierkomplements zurückführen
 x-y= x+(-y)
- D.h. jeder Addierer lässt sich durch eine "Zweierkomplementsstufe" (Negation +1) zu einem Subtrahierer machen
- (Beispiel CLA-Adder)

- Wenn s=0 -> CLA-Adder
- Wenn s=1 -> yi wird negiert und 1 dazu addiert

Schaltnetze - Rechenschaltungen - Multiplizierer I/II

- Zur Wiederholung: Die binäre Multiplikation funktioniert wie die dezimale Multiplikation
- Der Unterschied ist lediglich, dass es nur 0 und 1 gibt

multiplicand	0101	
multiplier	× 0111	
partial	0101	
products	0101 0101	
p. 6 d d d 6		
	+ 0000	
result	0100011	

 $5 \times 7 = 35$

- Die Bildung des Partialprodukts ist recht einfach: entweder den Multiplikant (=Mal 1) hinschreiben oder 0 (= Mal 0) hinschreiben
- Das Ergebnis ist dann (die gehiftete) Addition der Partialprodukte

Schaltnetze - Rechenschaltungen - Multiplizierer II/II

- Generell multipliziert ein NxN Multiplizierer zwei N-bit Zahlen und erzeugt ein 2N-bit Ergebnis
- Multiplikation von 1-bit Zahlen ist äquivalent zu UND-Operationen
 -> UND-Gatter
- Jedes einzelne Partialprodukt ist eine einzelne bitweise UNDoperation eines Multiplikator-Bit (B3, B2, B,1 B0) mit einem Multiplikant-Bit (A3, A2, A1, A0)
- Bei N-bit Operanden gibt es N Partialprodukte, N-1 1-bit Addierstufen

