Analytical Geometry and Calculus II

Conrad A. Mearns

January 15, 2017

January 12, 2017

Review of Limits

Theorems for Limits:

Let a and c be any number, if $F = \lim_{x \to a} f(x)$ and $G = \lim_{x \to a} g(x)$ then

1.
$$\lim_{x\to a} (f(x) + g(x)) = F + G$$

2.
$$\lim_{x\to a} (f(x) - g(x)) = F - G$$

3.
$$\lim_{x\to a} (c * f(x)) = c * F$$

4.
$$\lim_{x\to a} (\frac{f(x)}{g(x)}) = \frac{\lim_{x\to a} f(x)}{\lim_{x\to a} g(x)}$$
 except when $G=0$

5.
$$\lim_{x\to a} (f(x))^c = F^c$$

Limits Involving Infinity while $c \neq 0$

These are templates, where x is either taken to ∞ or 0.

1.
$$c * (\pm \infty) = \pm \infty$$
 Example: $\lim_{x \to \infty} 5x = \infty$

2.
$$\frac{c}{\pm \infty} = 0$$
 Example: $\lim_{x \to \infty} \frac{5}{x} = 0$

3.
$$\frac{c}{0} = \pm \infty$$
 Example: $\lim_{x \to 0} \frac{5}{0} = \infty$

$$4. \ \frac{\pm \infty}{c} = \pm \infty$$

Limits that can't be dealt with

- \bullet $\frac{0}{0}$
- \bullet $\frac{\infty}{\infty}$
- $\infty \infty$
- 0 * ∞

Limits of Rational Functions

Let d represent the degree of f(x) and e represent the degree of g(x).

Theorem: Given a rational function $\frac{f(x)}{g(x)}$, the following is be true.

- 1. If d > e then $\lim_{x \to \infty} \frac{f(x)}{g(x)} = \pm \infty$
- 2. If d < e then $\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$
- 3. If d = e then $\lim_{x \to \infty} \frac{f(x)}{g(x)} = \frac{a}{b}$ where a is the leading term of f(x) and b is the leading term of g(x)

Example: To evalute $\lim_{x\to\infty} \frac{10x^3 - 3x^2 + 8}{\sqrt{25x^6 + x^4 + 2}}$ first reduce all terms by x of the leading coefficient's degree.

mg coemcient's degree. $\frac{10-3x^{-1}+8x^{-3}}{\sqrt{25+x^{-2}+2x^{-6}}}$ Then take the limit of each term. $\frac{10-0+0}{\sqrt{25+0+0}}$ Simplifiy. $\frac{10}{\sqrt{25}}=\frac{10}{5}=2$

Inverse Trig Functions

Definition: $y = sin^{-1}x$ is the value of y such that x = siny.

Domain: $-1 \le x \le 1$

Range: $\frac{-\pi}{2} \le y \le \frac{\pi}{2}$

Definition: $y = cos^{-1}x$ is the value of y such that x = cosy.

Domain: $-1 \le x \le 1$ Range: $0 \le y \le \pi$

Inverse Trig Identities

- $sin(sin^{-1}x) = x$
- $cos(cos^{-1}x) = x$
- $sin^{-1}(sinx) = x$ only if x is in range of sin^{-1}
- $cos^{-1}(cos x) = x$ only if x is in range of cos^{-1}

Example: $sin^{-1}(sin\pi) = sin^{-1}(0) = 0 \neq \pi$

Example: $cos(sin^{-1}x)$

Let $y = sin^{-1}x$ so that x = siny and $cos(sin^{-1}x) = cosy$

Recall that $sin = \frac{opposite}{hypotenuse}$ Let hypotenuse = 1 and opposite = b where b has yet to be determined. Recall that $cosy = \frac{adjacent}{hypotenuse}$

 $\frac{adjacent}{hypotenuse} = \frac{b}{1}$, and therefor cosy = bUse the Pythagorean Theorem to solve: $x^2 + b^2 = 1^2$

 $b^2 = 1 - x^2$ $b = \sqrt{1 - x^2}$

Therefor $cos(sin^{-1}x) = \sqrt{1-x^2}$