פתרון מטלה -09 אנליזה על יריעות,

2025 במאי 30

שאלה 1

 $M^\circ=M\setminus\partial M$ נסמן שפה. יריעה עם יריעה $M^k\subseteq\mathbb{R}^n$ תהי

'סעיף א

 M° ב בים איא M° נראה ש

M צפופה ב־M אם ורק אם כל נקודה ב־M היא ערך גבולי של סדרה ב־ $M \setminus \partial M$. עבור נקודות ב־M אם ורק אם כל נקודה ב־M היא ערך גבולי של סדרה ב־ $M \setminus \partial M$. עבור נקודות ב־M אם פרמטריזציה מקומית לכן מספיק שנמצא סדרה $\alpha:U \to M$ המתכנסת ל- $\alpha:U \to M$ לכל מכזה. נניח ש־ $\alpha:U \to M$ ונניח ש־ $\alpha:U \to M$ אבל $\alpha:U \to M$ פתוחה ולכן קיים של $\alpha:U \to M$ כאשר $\alpha:U \to M$ כאשר $\alpha:U \to M$ פתוחה ולכן קיים $\alpha:U \to M$ כאשר $\alpha:U \to M$ בחר נקודה משמרת שפה, כלומר $\alpha:U \to M$ וכן נקודה $\alpha:U \to M$ לכל $\alpha:U \to M$ לכל $\alpha:U \to M$ וכן נקודה $\alpha:U \to M$ וכן נקודה $\alpha:U \to M$ לכל $\alpha:U \to M$

'סעיף ב

 \mathbb{R}^n בראה שאם M° אז k=n בראה ערה נראה נראה

lphaהטענה נובעת באופן ישיר מקיום פרמטריזציה מקומית. אם M° אז קיימת פרמטריזציה מקומית. אם פתוחה ער מהיוציה מקומית. אז קיימת פתוחה מטרי. נסיים את ההוכחה עם סגירות האיחוד ואיחוד כלל הסביבות פתוחות לכל נקודה ב- M° .

'סעיף ג

 $.U\subseteq M^\circ$ אז \mathbb{R}^n ב-תוחה פתוחה $U\subseteq M$ אם שאם נראה נראה נראה קבוצה

ולכן בסעיף הקודם היא פתוחה ולכן מפרמטריזציה מקומית וכמו לכל נקודה של $\deg M=n$ ולכן לכל בקודם היא פתוחה ולכן הוכחה. נתון כי $U\subseteq M$ יש פרמטריזציה של לעשות בשל חוצאת בשל תוצאת הסעיף הקודם). מעידה שM=0

'סעיף ד

נסיק שאם של יריעות ושל קבוצות מזדהות. ל $\dim M=n^-$ אז ההגדרות של יריעות של היריעות מזדהות. מודהות מזדהות.

הוכחה אז בפרט בערט מהסעיף הקודם שפנים של יריעה וקבוצה מזדהים כאשר M=n ביתר פירוט, אם $U\subseteq M$ פתוחה מהסעיף הקודם שפנים של יריעה וקבוצה מזדהים כאשר M° ולכן M° תת־קבוצה פתוחה מקסימלית של M, כלומר היא עומדת בהגדרה המטרית המדויקת של פנים. נקבל על־ידי חיסור קבוצות והעובדה ש־ $M=\overline{M}\setminus M^\circ$ כלומר גם השפה מזדהה עם ההגדרה המטרית.

שאלה 2

תהי $Q\in W\subseteq M$ יריעה עם שפה, נניח ש $q\in \partial M$ יריעה עם שפה, נניח ש $M^k\subseteq \mathbb{R}^n$ ותהי פרמטריזציה ער יריעה עם שפה, נניח ש $\tilde{V}\subseteq W$ יריעה ש $\tilde{W}=k$ ו רישה שלה, כלומר $\tilde{V}\subseteq \mathbb{R}^k$ וותהי פרמטריזציה שלה, כלומר מודעה שלה, כלומר של

. שלילית y'(0) אנו נראה שהקורדינטה האחרונה של נראה אנו נראה האחרונה של האחרונה אנו נראה אנו נראה שלילית.