Algo 2

Algorithme de Recherche Dichotomique

Entrées

- Un mot à rechercher, noté x.
- Un dictionnaire classé alphabétiquement, représenté par un tableau DIC de taille n.

Sortie

— La position du mot dans le dictionnaire ou une indication de son absence.

Étapes de l'algorithme

- 1. Définir l'indice de début $g \leftarrow 1$ et l'indice de fin $d \leftarrow n$.
- 2. Tant que $g \leq d$, effectuer les opérations suivantes :
 - Calculer l'indice médian : $m \leftarrow \lfloor (g+d)/2 \rfloor$.
 - Comparer l'élément DIC[m] avec le mot recherché x.
 - Si DIC[m] est égal à x, le mot est trouvé et sa position est m.
 - Sinon, si x est alphabétiquement supérieur à DIC[m], poursuivre la recherche dans la moitié droite en fixant $g \leftarrow m+1$.
 - Sinon, poursuivre la recherche dans la moitié gauche en fixant $d \leftarrow m-1$.
- 3. Si la recherche se termine sans trouver x, indiquer que le mot n'existe pas (par exemple, en retournant -1).

Algorithme de Rendu de Monnaie (Méthode Glouton)

Entrées

- Montant à rendre, noté M (exemple : 12 \mathfrak{C}).
- Pièces disponibles : $1 \in$, $2 \in$, $5 \in$.

Sortie

— La liste des pièces utilisées pour rendre le montant.

Étapes de l'algorithme

- 1. Lister les pièces disponibles en ordre décroissant : $5 \in$, $2 \in$, $1 \in$.
- 2. Tant que M est supérieur à 0 :
 - Choisir la pièce de plus grande valeur qui ne dépasse pas M.
 - Soustraire la valeur de cette pièce de M.
 - Ajouter cette pièce à la liste des pièces utilisées.
- 3. Lorsque M atteint 0, l'algorithme se termine.

Application pour 12€

- Utiliser une pièce de $5\mathfrak{C}$: montant restant = $12\mathfrak{C}$ $5\mathfrak{C}$ = $7\mathfrak{C}$.
- Utiliser une autre pièce de $5\mathfrak{C}$: montant restant = $7\mathfrak{C}$ $5\mathfrak{C}$ = $2\mathfrak{C}$.
- Utiliser une pièce de $2\mathfrak{C}$: montant restant = $2\mathfrak{C}$ $2\mathfrak{C}$ = $0\mathfrak{C}$.
- Résultat : 2 pièces de 5€ et 1 pièce de 2€.

Algorithme Récursif (Escalier de Fibonacci)

Problématique

Déterminer le nombre de façons d'atteindre le sommet d'un escalier de n marches en montant soit une marche, soit deux marches à la fois.

Sortie

— Le nombre de façons de monter l'escalier.

Étapes de l'algorithme

- 1. Si n = 1, il y a 1 manière de monter.
- 2. Si n=2, il y a 2 manières de monter.
- 3. Pour n>2, le nombre de façons de monter est donné par la relation :

$$F(n) = F(n-1) + F(n-2)$$

Ce qui signifie que le nombre de façons d'atteindre la n^{me} marche est la somme des façons d'atteindre la $(n-1)^{me}$ marche et la $(n-2)^{me}$ marche.

Exemple d'application

- Pour un escalier de 5 marches :
 - -F(1) = 1-F(2) = 2
 - -F(3) = F(2) + F(1) = 2 + 1 = 3
 - -F(4) = F(3) + F(2) = 3 + 2 = 5
 - -F(5) = F(4) + F(3) = 5 + 3 = 8
- Ainsi, il existe 8 façons de monter un escalier de 5 marches.