

On Practice of Machine Learning

Tricks or Principles?

Summary

- Given X, Find Y
- Find F() such that for all examples F(X_i) is as close as possible to Y_i
- F() is a learnable function with parameters W (many weights/coefficients).

- Training:
 - Given labeled examples { (X_i,Y_i) }, Find F_w()
 - Concerns:
 - Choose the nature of function F()
 - Find the best/appropriate W (i.e., Optimization)
- Testing/Inference
 - Given a new sample X, Predict Y

Training and testing

Training and testing

Training is the process of making the system able to learn.

- Assumptions:
 - Training set and testing set come from the same distribution
 - Need to make some assumptions or bias

Set of Concerns

- How to identify whether a problem is good for ML or not.
- Training:
 - How to obtain reliable supervision?
 - How to optimize my business performance measures?
- Testing/Inference
 - Fit the solution into Memory/Computational constraints.
- How to learn continously with user feedbacks, access patterns, availability of more data etc.?

Spectrum of Problems: F: X->Y

- X come from a small set (eg. Dictionaries)
- F(X) can be defined with some simple rules
- Popular ML problem space
- Y is some what independent of X
 - X is your name, gender, height. Y is your wealth.
- F(X) is not smooth $F(X+\Delta x)$ far from $Y+\Delta y$
 - Small change in X is taking predictions taking too far

Type of Data and Concerns

- Size
 - Small Vs Large data
- Sparsity
 - Sparse Vs Dense
- Balance
 - Balance Vs imbalance
- Quality
 - Noise, missing values etc.

- Simple model or complex models
- Dense is easier?
- Special treatment for minority.
- Reduce sensitivity. Remove noise.

Do we have enough data?

Do we have enough parameters?

How do I "push" the accuracy?

- Combine a variety of models
- If the models are diverse, and performances are similar,
 - High chance that the ensemble will do better

Supervision

Challenges with Supervision

- I have too much data. But most of them are unlabelled. What do we do?
- I have labeled data. But a good percentage of the labels are erroneous. What do I do?
- I have labellings from experts itself. But they do not agree. What do we do?
- My supervisors are too costly. How do I do minimize the cost of supervision?

•

Learn with minimal # of examples?

Expert / Oracle

Active Learning

Eg. Learn the notion of a rectangle.

Semi Supervised Learning

- I have a small quantity of labelled data and large quantity of unlabeled data.
 - How do I take advantage of the unlabeled data?

Algorithms

- Train a supervised learner on available labelled data (X_l, Y_l) .
- Label all points in unlabelled data X_u .
- Retrain the classifier using the new labels for documents where the classifier is most confident.
- Coninue until labels do not change any more.

- Assumption: One's own high confidence predictions are correct.
- Self-Training Algorithm
 - Train on labeled examples
 - Predict on unlabeled examples
 - Add (x, f(x)) to the labeled data
 - Add all
 - Add a few most confident pairs
 - Add weight for each pairs
 - Repeat the process

 Co-training assumed two "views" of the data where each input x is a pair

$$x = (x_1, x_2)$$

- Eg. In the context of web page classification, x_1 may be metadata associated with the web page such as tite etc. x_2 be the words in the link pointing to this page.
- Assume there exists fuctions c_1 , c_2 and c such that

$$c_1(x_1)=c_2(x_2)=c(x)$$

• Two sets of features x_1 and x_2 are conditionally independent given the class.

1998 paper demonstrates, with 12 labeled examples, 788 web pages could be classified with 95% accuracy.

- Use the labeled data to learn the initial h_1, h_2
- Pirst use h_1 to label examples that it is confident about and then feed these to our learner to update h_2
- Then use h_2 to label examples that it is confident about and then feed these to our learner to update h_1
- Weep repeating this process

Summary: Questions?

- Varying amount and quality of supervision
 - Many wrapper style methods.
 - Intuitive
- Many principled formulations
 - Formal extensions of existing methods
 - (eg. Transductive SVMs; Semi Supervised Random Forest)
 - Many newer learning problems
 - (eg. Multiple Instance Learning,)

Compression of DL Models

- At Test time.
- Why?
- Popular:
 - Pruning
 - Quantization
 - Architectural Modifications

Quantization

- What do we store/use at test time.
 - Primarily weights (interconnect of neurons)
- Convert weights (say double floats) to
 - Integers
 - Characters (say 8 bit)
 - 0/1 (or -1, 1)
- Objective: Round such that accuracies will not decrease much.

Iterative Pruning + Retraining

Iterative Pruning + Retraining

- 1. Choose a neural network architecture.
- 2. Train the network until a reasonable solution is obtained.
- 3. Prune the weights of which magnitudes are less than a threshold τ .
- 4. Train the network until a reasonable solution is obtained.
- 5. Iterate to step 3.

- Problem and Setting:
 - How hard the problem?
 - Amount of data, parameters, ?
- Training
 - Availability and Reliability of Supervision
- Testing
 - Memory, FLOPS, etc.
 - Compress DL models

Thanks. Questions?