OLA DRIVER CHURN PROJECT

import pandas as pd import numpy as np import seaborn as sns from scipy import stats import matplotlib.pyplot as plt from sklearn.linear_model import LogisticRegression from sklearn import metrics from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report from sklearn.metrics import roc_curve from sklearn.metrics import precision_recall_curve from sklearn.model_selection import train_test_split, KFold, cross_val_score from sklearn.preprocessing import MinMaxScaler from datetime import datetime from statsmodels.stats.outliers_influence import variance_inflation_factor import warnings warnings.filterwarnings("ignore")

ola = pd.read_csv('https://d2beiqkhq929f0.cloudfront.net/public_assets/assets/000/002/492/original/ola_driver_scaler.csv')

ola.head()

→	Unnamed: (YY-MMM	Driver_ID	Age	Gender	City	Education_Level	Income	Dateofjoining	LastWorkingDate	Joining Designation	Grade	Total Business Value	Quarterly Rating
) (01/01/19	1	28.0	0.0	C23	2	57387	24/12/18	NaN	1	1	2381060	2
	1 1	02/01/19	1	28.0	0.0	C23	2	57387	24/12/18	NaN	1	1	-665480	2
	2 2	2 03/01/19	1	28.0	0.0	C23	2	57387	24/12/18	03/11/19	1	1	0	2
	3 3	3 11/01/20	2	31.0	0.0	C7	2	67016	11/06/20	NaN	2	2	0	1
	4 4	12/01/20	2	31.0	0.0	C7	2	67016	11/06/20	NaN	2	2	0	1

EXPLORATORY DATA ANALYSIS

print('Rows in the ola dataset: ',ola.shape[0])
print('Columns in the ola dataset: ',ola.shape[1])

Rows in the ola dataset: 19104 Columns in the ola dataset: 14

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 19104 entries, 0 to 19103
Data columns (total 14 columns):
```

#	Column	Non-Null Count	Dtype								
0	Unnamed: 0	19104 non-null	int64								
1	MMM-YY	19104 non-null	object								
2	Driver_ID	19104 non-null	int64								
3	Age	19043 non-null	float64								
4	Gender	19052 non-null	float64								
5	City	19104 non-null	object								
6	Education_Level	19104 non-null	int64								
7	Income	19104 non-null	int64								
8	Dateofjoining	19104 non-null	object								
9	LastWorkingDate	1616 non-null	object								
10	Joining Designation	19104 non-null	int64								
11	Grade	19104 non-null	int64								
12	Total Business Value	19104 non-null	int64								
13	Quarterly Rating	19104 non-null	int64								
<pre>dtypes: float64(2), int64(8), object(4)</pre>											
memo	memory usage: 2.0+ MB										

Column Profiling: • MMMM-YY: Reporting Date (Monthly) (date-time)

- Age : Age of the employee (numerical)
- Gender : Gender of the employee Male : 0, Female: 1 (categorical)
- City: City Code of the employee (categorical)
- Education_Level : Education level 0 for 10+ ,1 for 12+ ,2 for graduate (categorical)
- Income : Monthly average Income of the employee (numerical)
- Date Of Joining : Joining date for the employee (date-time)
- LastWorkingDate: Last date of working for the employee Target Feature (date-time, but will be converted to categorical)
- Joining Designation : Designation of the employee at the time of joining (categorical, ordinal)
- Grade: Grade of the employee at the time of reporting (categorical, ordinal)
- Total Business Value: The total business value acquired by the employee in a month (negative business indicates cancellation/refund or car EMI adjustments) (numerical)
- Quarterly Rating : Quarterly rating of the employee: 1,2,3,4,5 (categorical, ordinal higher is better)

ola.describe()

→		Unnamed: 0 Drive		Driver_ID Age		Education_Level	Income	Joining Designation	Grade	Total Business Value	Quarterly Rating
	count	19104.000000	19104.000000	19043.000000	19052.000000	19104.000000	19104.000000	19104.000000	19104.000000	1.910400e+04	19104.000000
	mean	9551.500000	1415.591133	34.668435	0.418749	1.021671	65652.025126	1.690536	2.252670	5.716621e+05	2.008899
	std	5514.994107	810.705321	6.257912	0.493367	0.800167	30914.515344	0.836984	1.026512	1.128312e+06	1.009832
	min	0.000000	1.000000	21.000000	0.000000	0.000000	10747.000000	1.000000	1.000000	-6.000000e+06	1.000000
	25%	4775.750000	710.000000	30.000000	0.000000	0.000000	42383.000000	1.000000	1.000000	0.000000e+00	1.000000
	50%	9551.500000	1417.000000	34.000000	0.000000	1.000000	60087.000000	1.000000	2.000000	2.500000e+05	2.000000
	75%	14327.250000	2137.000000	39.000000	1.000000	2.000000	83969.000000	2.000000	3.000000	6.997000e+05	3.000000
	max	19103.000000	2788.000000	58.000000	1.000000	2.000000	188418.000000	5.000000	5.000000	3.374772e+07	4.000000

ola.describe(include='object')

since unnamed and driver_id columns have the highest correlation and they r the same
here, dropping unnamed column

ola.drop(columns='Unnamed: 0',axis=1,inplace=True)

ola.nunique()

\rightarrow	MMM-YY	24
	Driver_ID	2381
	Age	36
	Gender	2
	City	29
	Education Level	3
	Income	2383
	Dateofjoining	869
	LastWorkingDate	493
	Joining Designation	5
	Grade	5
	Total Business Value	10181
	Quarterly Rating	4
	dtype: int64	7
	utype. Into4	

ola.isna().sum()

→ ▼	MMM-YY	0
	Driver_ID	0
	Age	61
	Gender	52
	City	0
	Education_Level	0
	Income	0
	Dateofjoining	0
	LastWorkingDate	17488
	Joining Designation	0
	Grade	0
	Total Business Value	0
	Quarterly Rating	0
	dtype: int64	

ola.head(3)

→	MMM-YY	Driver_ID	Age	Gender	City	Education_Level	Income	Dateofjoining	LastWorkingDate	Joining Designation	Grade	Total Business Value	Quarterly Rating
	0 01/01/19	1	28.0	0.0	C23	2	57387	24/12/18	NaN	1	1	2381060	2
	1 02/01/19	1	28.0	0.0	C23	2	57387	24/12/18	NaN	1	1	-665480	2
	2 03/01/19	1	28.0	0.0	C23	2	57387	24/12/18	03/11/19	1	1	0	2

DATA PROCESSING AND FEATURE ENGINEERING

```
ola1 = ola.copy(deep=True)

# # Target variable creation: Create a column called target which tells whether the driver has left the company-
# # driver whose last working day is present will have the value 1

first = (ola1.groupby('Driver_ID').agg({'LastWorkingDate':'last'})['LastWorkingDate'].isna()).reset_index()
first['LastWorkingDate'].replace({True:1,False:0},inplace=True)
first.rename(columns={'LastWorkingDate':'target'},inplace=True)
first.head()
```

→		Driver_ID	target
	0	1	0
	1	2	1
	2	4	0
	3	5	0
	4	6	1

```
# Create a column which tells whether the quarterly rating has increased for that driver -
# for those whose quarterly rating has increased we assign the value 1
QR1 = (ola1.groupby('Driver_ID').agg({'Quarterly Rating':'first'})['Quarterly Rating']).reset_index()
QR2 = (ola1.groupby('Driver_ID').agg({'Quarterly Rating':'last'})['Quarterly Rating']).reset_index()
QR1.shape,QR2.shape
→ ((2381, 2), (2381, 2))
QR1.isna().sum(),QR2.isna().sum()
→ (Driver_ID
     Quarterly Rating
                         0
     dtype: int64,
     Driver_ID
     Quarterly Rating
                          0
     dtype: int64)
first = first.merge(QR1,on='Driver_ID')
first = first.merge(QR2,on='Driver_ID')
first.head()
\overline{\mathbf{T}}
        Driver ID target Quarterly Rating x Quarterly Rating y
                                           2
     0
     3
                6
                                                               2
first['Promotion'] = np.where(first['Quarterly Rating_x'] == first['Quarterly Rating_y'], 0,1)
```

```
first['Promotion'] = np.where(first['Quarterly Rating_x'] == first['Quarterly Rating_y'], 0,1)

# Create a column which tells whether the monthly income has increased for that driver -

# for those whose monthly income has increased we assign the value 1
incm1 = (ola1.groupby('Driver_ID').agg({'Income':'first'})['Income']).reset_index()
incm2 = (ola1.groupby('Driver_ID').agg({'Income':'last'})['Income']).reset_index()

incm1.shape,incm2.shape

$\frac{1}{2}$ ((2381, 2), (2381, 2))
```

```
incm1.isna().sum(),incm2.isna().sum()
```

(Driver_ID 0 Income 0 dtype: int64, Driver_ID 0 Income 0 dtype: int64)

first = first.merge(incm1,on='Driver_ID')
first = first.merge(incm2,on='Driver_ID')

first.head()

→		Driver_ID	target	Quarterly Rating_x	Quarterly Rating_y	Promotion	Income_x	Income_y
	0	1	0	2	2	0	57387	57387
	1	2	1	1	1	0	67016	67016
	2	4	0	1	1	0	65603	65603
	3	5	0	1	1	0	46368	46368
	4	6	1	1	2	1	78728	78728

first['Raise'] = np.where(first['Income_x'] == first['Income_y'], 0,1)

first.head()

→		Driver_ID	target	Quarterly Rating_x	Quarterly Rating_y	Promotion	Income_x	Income_y	Raise
	0	1	0	2	2	0	57387	57387	0
	1	2	1	1	1	0	67016	67016	0
	2	4	0	1	1	0	65603	65603	0
	3	5	0	1	1	0	46368	46368	0
	4	6	1	1	2	1	78728	78728	0

first.tail()

→		Driver_ID	target	Quarterly Rating_x	Quarterly Rating_y	Promotion	Income_x	Income_y	Raise
	2376	2784	1	3	4	1	82815	82815	0
	2377	2785	0	1	1	0	12105	12105	0
	2378	2786	0	2	1	1	35370	35370	0
	2379	2787	0	2	1	1	69498	69498	0
	2380	2788	1	1	2	1	70254	70254	0

```
first = first[['Driver_ID', 'target', 'Raise', 'Promotion']]
```

first.head()

→		Driver_ID	target	Raise	Promotion
	0	1	0	0	0
	1	2	1	0	0
	2	4	0	0	0
	3	5	0	0	0
	4	6	1	0	1

```
functions = {'MMM-YY':'count',
             'Driver_ID':'first',
             'Age':'max',
             'Gender':'last',
            'City':'last',
            'Education_Level':'last',
             'Dateofjoining':'first',
            'LastWorkingDate':'last',
             'Grade':'last',
             'Total Business Value':'sum',
            'Income':'sum',
             'Dateofjoining':'first',
            'LastWorkingDate':'last',
            'Joining Designation':'last',
            'Grade':'last',
             'Quarterly Rating':'first'}
ola1 = ola1.groupby([ola1['Driver_ID']]).aggregate(functions)
ola1['month'] = pd.to_datetime(ola['Dateofjoining']).dt.month
ola1['year'] = pd.DatetimeIndex(ola1['Dateofjoining']).year
ola1.rename(columns={'MMM-YY':'Reportings'},inplace=True)
```

ola1.reset_index(drop=True, inplace=True)
ola1 = ola1.merge(first,on='Driver_ID')
ola1.head()

₹	Reportings	Driver_ID	Age	Gender	City	Education_Level	Dateofjoining	LastWorkingDate	Grade	Total Business Value	Income	Joining Designation	Quarterly Rating	month	year	target	Raise	Promotion	
	0 3	1	28.0	0.0	C23	2	24/12/18	03/11/19	1	1715580	172161	1	2	12	2018	0	0	0	
	1 2	2	31.0	0.0	C7	2	11/06/20	None	2	0	134032	2	1	12	2020	1	0	0	
	2 5	4	43.0	0.0	C13	2	12/07/19	27/04/20	2	350000	328015	2	1	11	2019	0	0	0	
	3 3	5	29.0	0.0	C9	0	01/09/19	03/07/19	1	120360	139104	1	1	12	2019	0	0	0	
	4 5	6	31.0	1.0	C11	1	31/07/20	None	3	1265000	393640	3	1	12	2020	1	0	1	

```
import regex
ola1['Age'] = ola1['Age'].astype('int64')
ola1['Cities'] =ola1['City'].astype('str').str.extractall('(\d+)').unstack().fillna('').sum(axis=1).astype(int)
```

ola1.info()

<<rp><class 'pandas.core.frame.DataFrame'>
RangeIndex: 2381 entries, 0 to 2380
Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype
0	Reportings	2381 non-null	int64
1	Driver_ID	2381 non-null	int64
2	Age	2381 non-null	int64
3	Gender	2381 non-null	float64
4	City	2381 non-null	object
5	Education_Level	2381 non-null	int64
6	Dateofjoining	2381 non-null	object
7	LastWorkingDate	1616 non-null	object
8	Grade	2381 non-null	int64
9	Total Business Value	2381 non-null	int64
10	Income	2381 non-null	int64
11	Joining Designation	2381 non-null	int64
12	Quarterly Rating	2381 non-null	int64
13	month	2381 non-null	int32
14	year	2381 non-null	int32
15	target	2381 non-null	int64
16	Raise	2381 non-null	int64
17	Promotion	2381 non-null	int64
18	Cities	2381 non-null	int64
dtyp	es: float64(1), int32(2), int64(13), d	object(3)
memo	ry usage: 335.0+ KB		

ola1.drop(columns=['Dateofjoining','LastWorkingDate','City'],axis=1,inplace=True)
ola1['Gender'].replace({'M':0,'F':1},inplace=True)
ola1['Gender'] = ola1['Gender'].astype('int64')

ola1.head()

 $\overline{\Rightarrow}$ Reportings Driver_ID Age Gender Education_Level Grade Total Business Value Income Joining Designation Quarterly Rating month year target Raise Promotion Cities 12 2018 1715580 172161 2 31 0 134032 12 2020 4 43 350000 328015 11 2019 5 29 12 2019 6 31 1265000 393640 12 2020

sum(ola1.isna().sum())

→ 0

ola1.describe().T

e		_	
_	4	_	
_	~		

•	count	mean	std	min	25 %	50%	75 %	max
Reportings	2381.0	8.023520e+00	6.783590e+00	1.0	3.0	5.0	10.0	24.0
Driver_ID	2381.0	1.397559e+03	8.061616e+02	1.0	695.0	1400.0	2100.0	2788.0
Age	2381.0	3.366317e+01	5.983375e+00	21.0	29.0	33.0	37.0	58.0
Gender	2381.0	4.103318e-01	4.919972e-01	0.0	0.0	0.0	1.0	1.0
Education_Level	2381.0	1.007560e+00	8.162900e-01	0.0	0.0	1.0	2.0	2.0
Grade	2381.0	2.096598e+00	9.415218e-01	1.0	1.0	2.0	3.0	5.0
Total Business Value	2381.0	4.586742e+06	9.127115e+06	-1385530.0	0.0	817680.0	4173650.0	95331060.0
Income	2381.0	5.267603e+05	6.231633e+05	10883.0	139895.0	292980.0	651456.0	4522032.0
Joining Designation	2381.0	1.820244e+00	8.414334e-01	1.0	1.0	2.0	2.0	5.0
Quarterly Rating	2381.0	1.486350e+00	8.343483e-01	1.0	1.0	1.0	2.0	4.0
month	2381.0	6.975220e+00	3.007801e+00	1.0	5.0	7.0	10.0	12.0
year	2381.0	2.018536e+03	1.609597e+00	2013.0	2018.0	2019.0	2020.0	2020.0
target	2381.0	3.212936e-01	4.670713e-01	0.0	0.0	0.0	1.0	1.0
Raise	2381.0	1.805964e-02	1.331951e-01	0.0	0.0	0.0	0.0	1.0
Promotion	2381.0	3.427131e-01	4.747162e-01	0.0	0.0	0.0	1.0	1.0
Cities	2381.0	1.533557e+01	8.371843e+00	1.0	8.0	15.0	22.0	29.0

DATA VISUALIZATION

Univariate

```
# figure1
fig = plt.figure(figsize=(15,5))
ax = fig.add_subplot(1,2,1)
sns.countplot(y=ola1.month,palette='viridis')
plt.title('Months representing how many drivers joined OLA each month',fontname='Franklin Gothic Medium', fontsize=15)

ax = fig.add_subplot(1,2,2)
sns.countplot(y=ola1.year,palette='viridis')
plt.title('Years representing how many drivers joined OLA each year',fontname='Franklin Gothic Medium', fontsize=15)
sns.despine()
plt.show()
```

Months representing how many drivers joined OLA each monthYears representing how many drivers joined OLA each year

Observations:

- July received the maximum number of drivers in 8 years.
- February and March receives the least number of Drivers joining OLA.
- Joining of Drivers receives a boost of about 500% after 2017.

```
# figure2
fig = plt.figure(figsize=(15,3))
ax = fig.add_subplot(121)
sns.countplot(x=ola1.Age,palette='viridis',width=0.8)
plt.title('Age of Drivers',fontname='Franklin Gothic Medium', fontsize=15)
plt.xticks(rotation=90)

ax = fig.add_subplot(122)
a = pd.cut(ola1.Age,bins=[11,21,31,41,51,61],labels=['11,21','21-31','31-41','41-51','51-61'])
sns.countplot(x=a,palette='viridis')
plt.title('Groupwise Age count of Drivers',fontname='Franklin Gothic Medium', fontsize=15)
sns.despine()
plt.show()
```



```
# figure3
fig = plt.figure(figsize=(22,5))
ax = fig.add_subplot(121)
sns.countplot(x=ola1.Cities,palette='viridis',width=0.6)
plt.title('Cities alloted to Drivers',fontname='Franklin Gothic Medium', fontsize=13)
plt.xticks(rotation=90)

ax = fig.add_subplot(122)
sns.countplot(x=ola1.Reportings,palette='viridis',width=0.6)
plt.title('Number of Reportings of Drivers',fontname='Franklin Gothic Medium', fontsize=13)

# ax = fig.add_subplot(133)
# sns.countplot(x=ola1.Education_Level,palette='viridis')
# plt.title('Educational Level of Drivers',fontname='Franklin Gothic Medium', fontsize=13)
sns.despine()
plt.show()
```

 $\overline{\mathbf{T}}$


```
# figure4
plt.figure(figsize=(20,13))
plt.subplot(4,2,1)
sns.countplot(x=ola1.Grade,palette='viridis')
# plt.title('Grade given to different Drivers',fontname='Franklin Gothic Medium', fontsize=15)
plt.subplot(4,2,2)
sns.countplot(x=ola1['Joining Designation'],palette='viridis')
# plt.title('Grade given to different Drivers',fontname='Franklin Gothic Medium', fontsize=15)
plt.subplot(4,2,3)
sns.countplot(x=ola1.Education_Level,palette='viridis')
# plt.title('Grade given to different Drivers',fontname='Franklin Gothic Medium', fontsize=15)
plt.subplot(4,2,4)
sns.countplot(x=ola1['Quarterly Rating'],palette='viridis')
# plt.title('Grade given to different Drivers',fontname='Franklin Gothic Medium', fontsize=15)
plt.subplot(4,2,5)
sns.countplot(x=ola1.target,palette='viridis')
# plt.title('Grade given to different Drivers',fontname='Franklin Gothic Medium', fontsize=15)
plt.subplot(4,2,6)
sns.countplot(x=ola1.Raise,palette='viridis')
# plt.title('Grade given to different Drivers',fontname='Franklin Gothic Medium', fontsize=15)
```



```
plt.subplot(4,2,7)
sns.countplot(x=ola1.Promotion,palette='viridis')
# plt.title('Grade given to different Drivers',fontname='Franklin Gothic Medium', fontsize=15)
plt.subplot(4,2,8)
sns.countplot(x=ola1.Gender,palette='viridis')
# plt.title('Grade given to different Drivers',fontname='Franklin Gothic Medium', fontsize=15)
plt.show()
```


Observations:

- Between 21 years(min age) to 58(max age) years of age, maximum number of drivers are 32 years meanwhile the age group between 31-41 years of age receives the maximum number of drivers.
- 58.9% of the Drivers are male.
- City C20 has been used by the most of the drivers.
- There are 3 Education levels and all of them alomst have the equal distribution of Drivers
- Grade 2 has been received by most of the Drivers and then the count of grade keeps on falling

ears o		
5 .		
ing.		

```
a =ola1[['Age','Income','Total Business Value']]
for i in a:
    plt.figure(figsize=(12,2))
    plt.subplot(121)
    sns.distplot(x=ola1[i],color='teal')
    plt.title('')
    plt.xticks(rotation=90)
    plt.subplot(122)
    sns.boxplot(x=ola1[i],color='mediumvioletred')
    plt.title('')
    sns.despine()
    plt.show()
→
        0.100
     0.075
0.050
        0.025
        0.000
                                                                              20
                                                                                    25
                                                                                           30
                                                                                                        40
                                        40
                                                              09
                                                                                                 35
                                                                                                              45
                                                                                                                     50
                                                                                                                           55
                             30
                                                   20
                                                                                                      Age
            1e-6
        2.0 +
        1.5
     Density
        0.5
        0.0
                                                              in
1e6
                                                                                                             3
                                   7
                                                                                                   Income
                                                                                                                             1e6
            1e-7
        2.0
     Density
1.0
        0.5
        0.0
                                                             0
1
1e8
                                                                             0.0
                                                                                       0.2
                                                                                                 0.4
                                                                                                           0.6
                                                                                                                     0.8
                                                                                                                               1.0
                                            9.0
                                                                                             Total Business Value
                                                                                                                             1e8
```

Bivariate and multivariate

corr = ola1.corr()
plt.figure(figsize=(15,6))
sns.heatmap(corr,annot=True,cmap='Greens')
plt.show()

Papartings	1	0.026	0.3	0.02	0.02	0.25	0.70	0.05	0.10	0.57	-0.035	-0.56	0.35	0.20	0.45	0.037
Reportings -						0.25	0.79	0.85	-0.18					0.29		
Driver_ID -	0.026	1	-0.0045	0.014	-0.014	-0.014	0.015	0.0046	-0.023	0.04	0.047	-0.044	-0.029	-0.015	0.013	-0.0066
Age -	0.3	-0.0045	1	0.031	-0.0078	0.25	0.26	0.3	0.082	0.21	-0.025	-0.3	0.079	0.11	0.14	-0.011
Gender -	0.02	0.014	0.031	1	-0.0088	-0.0031	0.018	0.02	-0.046	-0.014	0.011	-0.026	-0.009	0.022	0.0021	-0.05
Education_Level -	0.02	-0.014	-0.0078	-0.0088	1	-0.017	0.0014	0.06	0.0032	0.038	-0.028	0.0078	0.008	-0.024	0.068	-0.0028
Grade -	0.25	-0.014	0.25	-0.0031	-0.017	1	0.38	0.52	0.71	0.04	-0.019	-0.2	0.23	0.15	0.066	0.039
Total Business Value -	0.79	0.015	0.26	0.018	0.0014	0.38	1	0.83	-0.12	0.59	-0.016	-0.51	0.38	0.42	0.38	0.033
Income -	0.85	0.0046	0.3	0.02	0.06	0.52	0.83	1	0.02	0.47	-0.041	-0.57	0.34	0.24	0.36	0.021
Joining Designation -	-0.18	-0.023	0.082	-0.046	0.0032	0.71	-0.12	0.02	1	-0.28	6.5e-05	0.31	0.13	-0.083	-0.13	0.044
Quarterly Rating -	0.57	0.04	0.21	-0.014	0.038	0.04	0.59	0.47	-0.28	1	0.011	-0.44	0.12	0.25	0.51	0.0033
month -	-0.035	0.047	-0.025	0.011	-0.028	-0.019	-0.016	-0.041	6.5e-05	0.011	1	0.0094	0.016	-0.01	-0.0041	-0.023
year -	-0.56	-0.044	-0.3	-0.026	0.0078	-0.2	-0.51	-0.57	0.31	-0.44	0.0094	1	0.079	-0.09	-0.27	0.0024
target -	0.35	-0.029	0.079	-0.009	0.008	0.23	0.38	0.34	0.13	0.12	0.016	0.079	1	0.18	0.19	0.012
Raise -	0.29	-0.015	0.11	0.022	-0.024	0.15	0.42	0.24	-0.083	0.25	-0.01	-0.09	0.18	1	0.11	0.0047
Promotion -	0.45	0.013	0.14	0.0021	0.068	0.066	0.38	0.36	-0.13	0.51	-0.0041	-0.27	0.19	0.11	1	0.013
Cities -	0.037	-0.0066	-0.011	-0.05	-0.0028	0.039	0.033	0.021	0.044	0.0033	-0.023	0.0024	0.012	0.0047	0.013	1
	Reportings -	Driver_ID -	- Age -	Gender -	Education_Level -	- Grade -	Total Business Value -	- lncome	Joining Designation -	Quarterly Rating -	month -	year -	target -	Raise -	Promotion -	- Cities

- 0.4

- 0.2

- 0.0

- -0.2

- -0.4

```
fig = plt.figure(figsize=(22,5))
ax = fig.add_subplot(1,3,1)
grouped_months = ola1.groupby(['month'])['Reportings'].count().reset_index()
sns.barplot(data=grouped_months,x='month',y='Reportings',palette='viridis')
plt.title('Reportings of Driver every month',fontname='Franklin Gothic Medium', fontsize=15)
ax = fig.add_subplot(1,3,2)
grouped_years = ola1.groupby(['year'])['Reportings'].count().reset_index()
sns.barplot(x='year', y='Reportings', data=grouped_years,palette='viridis')
plt.title('Reportings of Driver every year',fontname='Franklin Gothic Medium', fontsize=15)
ax = fig.add_subplot(1,3,3)
grouped_gender = ola1.groupby('Gender')['Reportings'].sum().reset_index()
grouped_gender['Reportings'] = (grouped_gender['Reportings']/sum(ola1.Reportings)*100).round(2)
sns.barplot(x=grouped_gender['Gender'],y= grouped_gender['Reportings'],palette='viridis')
plt.title('Reportings of Driver by Gender in percentage', fontname='Franklin Gothic Medium', fontsize=15)
sns.despine()
sns.despine()
plt.show()
```


grouped_gender

→		Gender	Reportings
	0	0	58.12
	1	1	41.88

```
fig = plt.figure(figsize=(15,4))
ax = fig.add_subplot(1,2,1)
sns.lineplot(x=ola1.Age,y=ola1.Grade,hue=ola1.target,palette='viridis')
plt.title('Age of Drivers in context with Grades and Target variable',fontname='Franklin Gothic Medium', fontsize=15)
ax = fig.add_subplot(1,2,2)
sns.barplot(data=ola1, x="Joining Designation", y="Grade",palette='viridis',hue='target')
plt.title('Joining Designation with Grade',fontname='Franklin Gothic Medium', fontsize=15)
sns.despine()
plt.show()
```



```
# figure7
plt.figure(figsize=(25,7))
plt.subplot(1,4,1)
sns.violinplot(y=ola1.Age,x=ola1['Joining Designation'],palette='viridis')
plt.title('Income of Drivers according to Designation',fontname='Franklin Gothic Medium', fontsize=15)
plt.subplot(1,4,2)
sns.violinplot(x=ola1.Grade,y=ola1.Income,palette='viridis')
plt.title('Income of Drivers according to Grade', fontname='Franklin Gothic Medium', fontsize=15)
plt.xticks(rotation=90)
plt.subplot(1,4,3)
sns.violinplot(x=ola1.Education_Level,y=ola1.Income,palette='viridis')
plt.title('Income of Drivers according to Their Education Level', fontname='Franklin Gothic Medium', fontsize=15)
plt.subplot(1,4,4)
sns.violinplot(x=ola1['Grade'],y=ola1["Quarterly Rating"],palette='viridis')
plt.title('Distribution of Quarterly Rating in context with Grade')
sns.despine()
sns.despine()
plt.show()
```



```
plt.figure(figsize=(25,5))
plt.subplot(1,2,1)
sns.scatterplot(x=ola1.Age,y=ola1.Income,color='olive')
plt.title('Scatterplot of Income and Age of the Drivers', fontname='Franklin Gothic Medium', fontsize=15)
plt.subplot(1,2,2)
sns.scatterplot(x=ola1.Age,y=ola1['Total Business Value'],color='teal')
plt.title('Scatterplot of Total Business Value and Age', fontname='Franklin Gothic Medium', fontsize=15)
plt.show()
→
                             Scatterplot of Income and Age of the Drivers
                                                                                                                                   Scatterplot of Total Business Value and Age
                                                                                                            1.0
                                                                                                            0.8
                                                                                                          Value
9.0
       3 ·
                                                                                                          Business \
                                                                                                            0.2
grouped_gender = ola1.groupby('Gender')['Income'].sum().reset_index()
grouped_education = ola1.groupby('Education_Level')['Income'].sum().reset_index()
grouped grade = ola1.groupby('Grade')['Income'].sum().reset index()
grouped_desig = ola1.groupby('Joining Designation')['Income'].sum().reset_index()
grouped OR = ola1.groupby('Quarterly Rating')['Income'].sum().reset index()
grouped_target = ola1.groupby('target')['Income'].sum().reset_index()
grouped raise = ola1.groupby('Raise')['Income'].sum().reset index()
grouped_promote = ola1.groupby('Promotion')['Income'].sum().reset_index()
plt.figure(figsize=(15,8))
plt.subplot(3,3,1)
plt.pie(grouped_gender['Income'], labels=grouped_gender['Gender'], autopct='%1.1f%%', startangle=90,colors=sns.color_palette('flare'))
hole = plt.Circle((0, 0), 0.5, facecolor='white')
plt.gcf().gca().add_artist(hole)
plt.title('Income with respect to Gender')
plt.subplot(3,3,2)
plt.pie(grouped_education['Income'], labels=grouped_education['Education_Level'], autopct='%1.1f%', startangle=90,colors=sns.color_palette('flare'))
hole = plt.Circle((0, 0), 0.5, facecolor='white')
plt.gcf().gca().add_artist(hole)
plt.title('Income with respect to Education Level')
plt.subplot(3,3,3)
plt.pie(grouped grade['Income'], labels=grouped grade['Grade'], autopct='%1.1f%%', startangle=90,colors=sns.color palette('flare'))
hole = plt.Circle((0, 0), 0.5, facecolor='white')
plt.gcf().gca().add_artist(hole)
plt.title('Income with respect to Grade')
plt.subplot(3,3,4)
plt.pie(grouped_desig['Income'], labels=grouped_desig['Joining Designation'], autopct='%1.1f%%', startangle=90,colors=sns.color_palette('flare'))
hole = plt.Circle((0, 0), 0.5, facecolor='white')
```

```
plt.gcf().gca().add_artist(hole)
plt.title('Income with respect to Joining Designation')
plt.subplot(3,3,5)
plt.pie(grouped QR['Income'], labels=grouped QR['Quarterly Rating'], autopct='%1.1f%%', startangle=90,colors=sns.color palette('flare'))
hole = plt.Circle((0, 0), 0.5, facecolor='white')
plt.gcf().gca().add_artist(hole)
plt.title('Income with respect to Quarterly Rating')
plt.subplot(3,3,6)
plt.pie(grouped_target['Income'], labels=grouped_target['target'], autopct='%1.1f%%', startangle=90,colors=sns.color_palette('flare'))
hole = plt.Circle((0, 0), 0.5, facecolor='white')
plt.gcf().gca().add_artist(hole)
plt.title('Income with respect to Target variable')
plt.subplot(3,3,7)
plt.pie(grouped_raise['Income'], labels=grouped_raise['Raise'], autopct='%1.1f%', startangle=90,colors=sns.color_palette('flare'))
hole = plt.Circle((0, 0), 0.5, facecolor='white')
plt.gcf().gca().add_artist(hole)
plt.title('Income with respect to Raise given')
plt.subplot(3,3,8)
plt.pie(grouped_promote['Income'], labels=grouped_promote['Promotion'], autopct='%1.1f%%', startangle=90,colors=sns.color_palette('flare'))
hole = plt.Circle((0, 0), 0.5, facecolor='white')
plt.gcf().gca().add_artist(hole)
plt.title('Income with respect to Promotion Given')
sns.despine()
plt.show()
```

Income with respect to Gender

Income with respect to Joining Designation

Income with respect to Raise given

Income with respect to Education Level

Income with respect to Quarterly Rating

Income with respect to Promotion Given

Income with respect to Grade

Income with respect to Target variable


```
plt.figure(figsize=(20,9))
plt.subplot(2,1,1)
sns.countplot(x=ola1['Reportings'],hue=ola1.target,palette='viridis')
plt.title('Reporting report by Drivers according to Target Variable',fontname='Franklin Gothic Medium', fontsize=15)
plt.subplot(2,1,2)
grouped_rating = ola1.groupby('Quarterly Rating')['Reportings'].count().reset_index()
sns.barplot(data = grouped_rating,y='Reportings',x='Quarterly Rating',palette='viridis')
plt.title('Reporting report by Drivers according to Quarterly Ratings Given',fontname='Franklin Gothic Medium', fontsize=15)
sns.despine()
plt.show()
```



```
plt.figure(figsize=(22,5))
plt.subplot(1,3,1)
sns.scatterplot(x=ola1['Total Business Value'],y=ola1.Income,hue=ola1.Raise)
plt.subplot(1,3,2)
sns.scatterplot(x=ola1['Total Business Value'],y=ola1.Income,hue=ola1.Reportings)
plt.subplot(1,3,3)
sns.scatterplot(x=ola1['Total Business Value'],y=ola1.Income,hue=ola1.Promotion)
sns.despine()
plt.show()
```


∨ Observation:-

- So we see that there are 57% male employees and 43% female employees.
- The percentages of employees with different education levels are almost same for level 1 & 2.
- 97.3% of the employees who did not get a raise.
- Almost 43% of the employees joined at lowest designation (1). 34% joined at level 2, 20% at level 3 and below 2% joined at higher levels.
- Majority (35%) of the employees currently are at designation level 2, followed by designation level 1 (31%) and 3 (26%). Less than 5% of the employees are currently in higher designations.
- Only 54.6% of the employees received a promotion, while 45.4% did not. However, only 2.6% received a raise in income.
- Number of employees has been increase with increase in year as well as number of reportings.
- The majority of the employees seem to be associated with city C20.
- Scatter plot of Income shows that Income increases with increase in age but after 45-50, we see a subtle decline.
- Scatter plot of Total Business Value shows an increase with increase in Age yet we notice a decline after 45.
- Income decreses with increase in Destination as about 4% of the employees hold higher designations.
- The median of the Income for employees having higher Grades is greater.
- Distribution of Income for enployes at different Education level is about a change of 3-5% with level 0.
- Joining Designation Increases with increase in Grade.
- Max reporting days is 24 days.
- About 55% of the reportings of the employees has got Quarlerly Rating 1.
- Number of reportings increases with increase in Income as well as Total Business Value.

```
plt.figure(figsize=(15,4))
plt.subplot(1,2,1)
sns.kdeplot(x=ola1.Income,hue=ola1['target'],palette='magma')
plt.subplot(1,2,2)
sns.kdeplot(x=ola1.Income,hue=ola1['Promotion'],palette='magma')
plt.show()
```


→ OUTLIER TREATMENT

ola1.describe().T

		_
_	﴾	_
_	÷	_

}		count	mean	std	min	25%	50%	75 %	max
	Reportings	2381.0	8.023520e+00	6.783590e+00	1.0	3.0	5.0	10.0	24.0
	Driver_ID	2381.0	1.397559e+03	8.061616e+02	1.0	695.0	1400.0	2100.0	2788.0
	Age	2381.0	3.366317e+01	5.983375e+00	21.0	29.0	33.0	37.0	58.0
	Gender	2381.0	4.103318e-01	4.919972e-01	0.0	0.0	0.0	1.0	1.0
	Education_Level	2381.0	1.007560e+00	8.162900e-01	0.0	0.0	1.0	2.0	2.0
	Grade	2381.0	2.096598e+00	9.415218e-01	1.0	1.0	2.0	3.0	5.0
	Total Business Value	2381.0	4.586742e+06	9.127115e+06	-1385530.0	0.0	817680.0	4173650.0	95331060.0
	Income	2381.0	5.267603e+05	6.231633e+05	10883.0	139895.0	292980.0	651456.0	4522032.0
	Joining Designation	2381.0	1.820244e+00	8.414334e-01	1.0	1.0	2.0	2.0	5.0
	Quarterly Rating	2381.0	1.486350e+00	8.343483e-01	1.0	1.0	1.0	2.0	4.0
	month	2381.0	6.975220e+00	3.007801e+00	1.0	5.0	7.0	10.0	12.0
	year	2381.0	2.018536e+03	1.609597e+00	2013.0	2018.0	2019.0	2020.0	2020.0
	target	2381.0	3.212936e-01	4.670713e-01	0.0	0.0	0.0	1.0	1.0
	Raise	2381.0	1.805964e-02	1.331951e-01	0.0	0.0	0.0	0.0	1.0
	Promotion	2381.0	3.427131e-01	4.747162e-01	0.0	0.0	0.0	1.0	1.0
	Cities	2381.0	1.533557e+01	8.371843e+00	1.0	8.0	15.0	22.0	29.0

len(ola1[ola1['Total Business Value'] < 1])</pre>

→ 729

As we can notice Total Business Value column has some values in negative.

We consider them as outlier which will affect the results of the our machine learning model.

Considering the parts of datasets that has Total Business Value > 1.

There are exactly 729 Driver having Total Business Value that less than 1.

ola1= ola1[ola1['Total Business Value'] > 1]

a =ola1[['Age','Income','Total Business Value']]
for i in a:
 plt.figure(figsize=(12,3))
 plt.subplot(121)
 sns.distplot(x=ola1[i],color='red')
 plt.xticks(rotation=90)

corr = ola1.corr()
plt.figure(figsize=(15,6))
sns.heatmap(corr,annot=True,cmap='Greens')
plt.show()

[
Reportings -	1	0.044	0.29	0.02	0.0025	0.27	0.78	0.82	-0.2	0.48	-0.022	-0.53	0.41	0.29	0.28	0.031
Driver_ID -	0.044	1	-0.0029	0.011	-0.0051	-0.025	0.025	0.011	-0.051	0.058	0.039	-0.066	-0.013	-0.017	0.025	-0.01
Age -	0.29	-0.0029	1	0.045	-0.028	0.23	0.26	0.29	0.041	0.18	-0.016	-0.28	0.079	0.11	0.075	-0.014
Gender -	0.02	0.011	0.045	1	0.0088	0.02	0.015	0.024	-0.028	-0.027	-0.0045	-0.027	-0.015	0.024	-0.0072	-0.054
Education_Level -	0.0025	-0.0051	-0.028	0.0088	1	-0.033	-0.017	0.048	0.0065	0.028	-0.0098	0.025	-0.021	-0.034	0.064	-0.0027
Grade -	0.27	-0.025	0.23	0.02	-0.033	1	0.44	0.57	0.64	0.013	-0.027	-0.24	0.26	0.16	0.039	0.012
Total Business Value -	0.78	0.025	0.26	0.015	-0.017	0.44	1	0.81	-0.11	0.53	-0.0073	-0.48	0.42	0.42	0.27	0.033
Income -	0.82	0.011	0.29	0.024	0.048	0.57	0.81	1	0.032	0.38	-0.033	-0.54	0.39	0.23	0.22	0.0093
Joining Designation -	-0.2	-0.051	0.041	-0.028	0.0065	0.64	-0.11	0.032	1	-0.31	-0.018	0.32	0.15	-0.089	-0.11	0.031
Quarterly Rating -	0.48	0.058	0.18	-0.027	0.028	0.013	0.53	0.38	-0.31	1	0.029	-0.39	0.086	0.24	0.4	-0.0064
month -	-0.022	0.039	-0.016	-0.0045	-0.0098	-0.027	-0.0073	-0.033	-0.018	0.029	1	-0.0045	0.001	-0.0092	0.014	-0.001
year -	-0.53	-0.066	-0.28	-0.027	0.025	-0.24	-0.48	-0.54	0.32	-0.39	-0.0045	1	0.072	-0.07	-0.15	0.02
target -	0.41	-0.013	0.079	-0.015	-0.021	0.26	0.42	0.39	0.15	0.086	0.001	0.072	1	0.19	0.17	0.027
Raise -	0.29	-0.017	0.11	0.024	-0.034	0.16	0.42	0.23	-0.089	0.24	-0.0092	-0.07	0.19	1	0.074	0.0034
Promotion -	0.28	0.025	0.075	-0.0072	0.064	0.039	0.27	0.22	-0.11	0.4	0.014	-0.15	0.17	0.074	1	0.0039
Cities -	0.031	-0.01	-0.014	-0.054	-0.0027	0.012	0.033	0.0093	0.031	-0.0064	-0.001	0.02	0.027	0.0034	0.0039	1
	Reportings -	Driver_ID -	- Age -	Gender -	Education_Level -	Grade -	Total Business Value -	- lncome	Joining Designation -	Quarterly Rating -	month -	year -	target -	- Raise -	Promotion -	Cities -

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

- -0.4

è		_
Ė	÷	<u> </u>

	count	mean	std	min	25%	50%	75 %	max
Reportings	1652.0	1.026998e+01	6.967589e+00	1.0	5.0	8.0	14.0	24.0
Driver_ID	1652.0	1.390315e+03	8.082919e+02	1.0	679.5	1385.0	2097.0	2788.0
Age	1652.0	3.432385e+01	6.190776e+00	21.0	30.0	34.0	38.0	58.0
Gender	1652.0	4.158596e-01	4.930188e-01	0.0	0.0	0.0	1.0	1.0
Education_Level	1652.0	1.030872e+00	8.093284e-01	0.0	0.0	1.0	2.0	2.0
Grade	1652.0	2.144068e+00	9.719606e-01	1.0	1.0	2.0	3.0	5.0
Total Business Value	1652.0	6.613094e+06	1.032794e+07	19580.0	663022.5	2242080.0	7418392.5	95331060.0
Income	1652.0	6.864932e+05	6.814522e+05	20886.0	236652.5	428960.0	877151.0	4522032.0
Joining Designation	1652.0	1.759685e+00	8.395129e-01	1.0	1.0	2.0	2.0	5.0
Quarterly Rating	1652.0	1.700363e+00	9.237035e-01	1.0	1.0	1.0	2.0	4.0
month	1652.0	6.914044e+00	3.021205e+00	1.0	5.0	7.0	9.0	12.0
year	1652.0	2.018208e+03	1.730439e+00	2013.0	2018.0	2018.0	2020.0	2020.0
target	1652.0	3.619855e-01	4.807202e-01	0.0	0.0	0.0	1.0	1.0
Raise	1652.0	2.602906e-02	1.592699e-01	0.0	0.0	0.0	0.0	1.0
Promotion	1652.0	4.933414e-01	5.001070e-01	0.0	0.0	0.0	1.0	1.0
Cities	1652.0	1.545278e+01	8.374318e+00	1.0	8.0	16.0	23.0	29.0

ENSEMBLE LEARNING:-

Data Prepration:-

The Trade-Off In general while choosing a model, we might choose to look at precision and recall scores and choose while keeping the following trade-off on mind:

If we prioritize precision, we are going to reduce our false positives. This may be useful if our targeted retention strategies prove to be expensive. We don't want to spend unnecessarily on somebody who is not even going to leave in the first place. Also, it might lead to uncomfortable situation for the employee themselves if they are put in a situation where it is assumed that they are going to be let go/ going to leave. If we prioritize recall, we are going to reduce our false negatives. This is useful since usually the cost of hiring a new person is higher than retaining n experienced person. So, by reducing false negatives, we would be able to better identify those who are actually going to leave and try to retain them by appropriate measures (competitive remuneration, engagement program, etc).

```
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.metrics import roc_auc_score
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import BaggingClassifier
from sklearn.ensemble import GradientBoostingClassifier
from xgboost import XGBClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import GridSearchCV
X = ola1.drop('target',axis=1)
y = ola1['target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state= 42)
```

```
from sklearn.model_selection import learning_curve
def plot_learning_curve(estimator, X, Y, title):
    train_sizes, train_scores, test_scores, _, _ = learning_curve(estimator, X, Y, return_times=True)
    fig, axes = plt.subplots(1, 1, figsize = (15, 5))
    axes.set_title(title)
    axes.plot
    axes.set_xlabel("Training examples")
    axes.set_ylabel("Score")
    train_scores_mean = np.mean(train_scores, axis=1)
    train_scores_std = np.std(train_scores, axis=1)
    test_scores_mean = np.mean(test_scores, axis=1)
    test_scores_std = np.std(test_scores, axis=1)
    # Plot learning curve
    32
    axes.grid()
    axes.fill_between(
    train_sizes,
    train_scores_mean - train_scores_std,
    train_scores_mean + train_scores_std,
    alpha=0.1,
    color="r",
    axes.fill_between(
    train_sizes,
    test_scores_mean - test_scores_std,
    test_scores_mean + test_scores_std,
    alpha=0.1,
    color="g",
    axes.plot(
    train_sizes, train_scores_mean, "o-", color="r", label="Training score"
    axes.plot(
    train_sizes, test_scores_mean, "o-", color="g", label="Cross-validation score"
    axes.legend(loc="best")
    plt.show()
```

X.head()

→	Reportings	Driver_ID	Age	Gender	Education_Level	Grade	Total Business Value	Income	Joining Designation	Quarterly	Rating	month	year	Raise	Promotion	Cities
0	3	1	28	0	2	1	1715580	172161	1		2	12	2018	0	0	23
2	5	4	43	0	2	2	350000	328015	2		1	11	2019	0	0	13
3	3	5	29	0	0	1	120360	139104	1		1	12	2019	0	0	9
4	5	6	31	1	1	3	1265000	393640	3		1	12	2020	0	1	11
7	6	12	35	0	2	1	2607180	168696	1		4	1	2019	0	1	23

```
ss= StandardScaler()
ss.fit transform(X train)
→ array([[-0.61446611, -1.09640018, 1.70794584, ..., -0.16737851,
             1.023749 , -0.04979913],
           [1.93718866, -1.32951199, 1.54780698, ..., -0.16737851,
            -0.97680193, -0.5247786 ],
           [-0.18919032, -1.0914666, 0.26669606, ..., -0.16737851,
             1.023749 , 1.25639439],
            [-0.75622471, 0.03585718, -1.49483144, ..., -0.16737851,
            -0.97680193, -0.88101319,
           [ 0.51960268, 1.32105562, -1.33469258, ..., -0.16737851, 
             1.023749 , -1.59348238],
            [-0.33094892, 0.60815284, -0.69413712, ..., -0.16737851,
            -0.97680193, -0.28728886]
from sklearn.model_selection import cross_validate
valid1 = cross_val_score(LogisticRegression(),X,y,cv=5)
print('Logistic Regression:',valid1.round(2))
print('Mean:',valid1.mean())
valid2 = cross_val_score( DecisionTreeClassifier(),X,y,cv=5)
print('Decision Tree:',valid2.round(3))
print('Mean:',valid2.mean())
valid3 = cross_val_score(RandomForestClassifier(),X,y,cv=5)
print('RandomForestClassifier():',valid3.round(2))
print('Mean:',valid3.mean())
valid4 = cross_val_score(GradientBoostingClassifier(),X,y,cv=5)
print('GradientBoostingClassifier:',valid4.round(3))
print('Mean:',valid4.mean())
valid5 =cross_val_score(XGBClassifier(),X,y,cv=5)
print('XGBoostClassifier:',valid1.round(2))
print('Mean:',valid5.mean())
→ Logistic Regression: [0.7 0.75 0.75 0.75 0.76]
    Mean: 0.7415453629955141
    Decision Tree: [0.84 0.852 0.864 0.839 0.848]
    Mean: 0.8486716103634533
    RandomForestClassifier(): [0.89 0.91 0.88 0.86 0.89]
    Mean: 0.886183282980866
    GradientBoostingClassifier: [0.891 0.918 0.885 0.879 0.845]
    Mean: 0.8837517165613843
    XGBoostClassifier: [0.7 0.75 0.75 0.75 0.76]
    Mean: 0.8728645976380115
```

MACHINE LEARNING MODEL:-

WITHOUT THE TREATMENT OF CLASS IMBALANCE

→ Random Forest Classifier

plot_learning_curve(rf_clf1, X_train, y_train, "Random ForestTrees")


```
y_pred = rf_clf1.predict(X_test)
proba = rf_clf1.predict_proba(X_test)[:,1]
print("Train data accuracy:",rf_clf1.score(X_train, y_train))
print("Test data accuracy:",rf_clf1.score(X_test,y_test))
print('Accuracy of the model:', accuracy_score(y_test, y_pred))
print("ROC-AUC score test dataset: ", roc_auc_score(y_test, proba))
print('-'*70)
print(classification_report(y_test, y_pred))
print('-'*70)
cm1 = (confusion_matrix(y_test, y_pred))
print('Confusion Metrix')
print(confusion_matrix(y_test, y_pred))
```

Train data accuracy: 0.9303557910673732
Test data accuracy: 0.8580060422960725
Accuracy of the model: 0.8580060422960725

ROC-AUC score test dataset: 0.9352501168770453

	precision	recall	f1-score	support	
0	0.87	0.90	0.89	207	
1	0.83	0.78	0.80	124	
accuracy			0.86	331	
macro avg	0.85	0.84	0.85	331	
weighted avg	0.86	0.86	0.86	331	

Confusion Metrix [[187 20] [27 97]]

rf_clf_imp1 = rf_clf1.feature_importances_

→ XG Boosting Classifier

```
gbc1 = GradientBoostingClassifier()
gbc1.fit(X_train, y_train)
y_pred = gbc1.predict(X_test)
proba = gbc1.predict_proba(X_test)[:, 1]
```


gbc_clf_imp1 = gbc1.feature_importances_

```
print('Train Score : ', gbc1.score(X_train, y_train))
print('Test Score : ', gbc1.score(X_test, y_test))
print('Accuracy Score : ', accuracy_score(y_test, y_pred))
print("ROC-AUC score test dataset: ", roc_auc_score(y_test, proba))
print('-'*60)
print(classification_report(y_test, y_pred))
print('-'*60)
print('Confusion Matrix')
cm2 = (confusion_matrix(y_test, y_pred))
print(confusion_matrix(y_test, y_pred))
print('-'*60)
> Train Score: 0.9553368660105981
    Test Score: 0.9003021148036254
    Accuracy Score: 0.9003021148036254
    ROC-AUC score test dataset: 0.9492364033037244
                              recall f1-score support
                  precision
               0
                       0.91
                                0.94
                                          0.92
                                                     207
               1
                       0.89
                                          0.86
                                                     124
                                0.84
                                          0.90
                                                     331
        accuracy
                       0.90
                                 0.89
       macro avg
                                          0.89
                                                     331
    weighted avg
                       0.90
                                0.90
                                          0.90
                                                     331
    Confusion Matrix
    [[194 13]
     [ 20 104]]
```

CLASS IMBALANCE TREATMENT

```
plt.figure(figsize=(15,4))
sns.countplot(x=y_train,palette='Set2')
plt.title('Class Imbalance in the Data')
plt.show()
```


800

700

600

500 400

300

200

100

target

1

(y_train.value_counts()*100)/len(y_train) **→** target 0 64.118092 35.881908 Name: count, dtype: float64 from imblearn.over_sampling import SMOTE smot = SMOTE(random_state=42) X_train_smot,y_train_smot = smot.fit_resample(X_train,y_train.ravel()) X_train_smot.shape,y_train_smot.shape **→** ((1694, 15), (1694,)) X_test.shape,y_test.shape → ((331, 15), (331,)) from collections import Counter c = Counter(y_train_smot) print(c) → Counter({0: 847, 1: 847})

0

→ Randome Forest Classifier

```
clf = RandomForestClassifier()
clf.fit(X_train_smot,y_train_smot)
     ▼ RandomForestClassifier
    RandomForestClassifier()
# param_grid = {
      'n_estimators':list(range(10,20)),
      'max_features': ['auto', 'sqrt', 'log2'],
     'max_depth' : [4,5,6,7,8],
     'criterion' :['gini', 'entropy']
# }
# clf = GridSearchCV(clf,param_grid,cv=10,scoring='recall')
# clf.fit(X_train_smot,y_train_smot)
# clf.best_params_
clf = RandomForestClassifier(criterion='gini', max_depth=8,
                          max_features='sqrt',n_estimators= 19)
clf.fit(X_train_smot,y_train_smot)
→
                    RandomForestClassifier
    RandomForestClassifier(max_depth=8, n_estimators=19)
```



```
y_pred = clf.predict(X_test)
print('-'*70)
print(classification_report(y_test, y_pred))
print('-'*70)
print('Confusion Metrix')
cm3 = confusion_matrix(y_test, y_pred)
print(confusion_matrix(y_test, y_pred))
```

	precision	recall	f1-score	support
0	0.92	0.86	0.89	207
1	0.79	0.88	0.83	124
accuracy			0.87	331
macro avg	0.86	0.87	0.86	331
weighted avg	0.87	0.87	0.87	331

Confusion Metrix [[178 29] [15 109]]

rf_clf_imp2= clf.feature_importances_

→ Gradient Boosting

```
gbc2 = GradientBoostingClassifier()
gbc2.fit(X_train_smot, y_train_smot)
y_pred1 = gbc2.predict(X_test)
gbc_clf_imp2 = gbc2.feature_importances_
print('-'*60)
print(classification_report(y_test, y_pred1))
print('-'*60)
cm4 = confusion_matrix(y_test, y_pred1)
print('Confusion Matrix')
print(cm4)
print('-'*60)
```

	precision	recall	f1-score	support
0	0.93	0.89	0.91	207
1	0.83	0.90	0.86	124
accuracy			0.89	331
macro avg	0.88	0.89	0.89	331
ighted avg	0.90	0.89	0.89	331

Confusion Matrix [[185 22] [13 111]]

plot_learning_curve(gbc2, X_train_smot, y_train_smot, "Gradient Boosting")

data1

→		Column_Name	RandomForestClassifier	XGBClassifier
	0	Reportings	0.217610	0.420991
	1	Driver_ID	0.021655	0.011572
	2	Age	0.022748	0.008344
	3	Gender	0.004886	0.001375
	4	Education_Level	0.007877	0.000804
	5	Grade	0.031205	0.001840
	6	Total Business Value	0.192251	0.125029
	7	Income	0.078846	0.017618
	8	Joining Designation	0.056676	0.005482
	9	Quarterly Rating	0.053705	0.027931
	10	month	0.013754	0.004966
	11	year	0.210138	0.343596
	12	Raise	0.015083	0.000000
	13	Promotion	0.048760	0.019118
	14	Cities	0.024806	0.011333

data2

 \rightarrow

	Column_Name	RandomForestClassifier	XGBClassifier
0	Reportings	0.206026	0.300500
1	Driver_ID	0.036032	0.009306
2	Age	0.035114	0.009480
3	Gender	0.009850	0.009140
4	Education_Level	0.015698	0.004790
5	Grade	0.023011	0.004796
6	Total Business Value	0.197718	0.205370
7	Income	0.082312	0.024849
8	Joining Designation	0.018801	0.003067
9	Quarterly Rating	0.056434	0.028597
10	month	0.023761	0.003971
11	year	0.215539	0.363063
12	Raise	0.006485	0.000000
13	Promotion	0.039385	0.025453
14	Cities	0.033834	0.007618

```
data1.plot(kind="area", figsize = (15,2),color=['teal','maroon'])
data2.plot(kind="area", figsize = (15,2),color=['teal','black'])
plt.show()
```



```
# calculating precision, reall and f1_score for every
tp1,fp1,fn1,tn1 =cm1[0][0],cm1[0][1],cm1[1][0],cm1[1][1]
tp2,fp2,fn2,tn2 =cm2[0][0],cm2[0][1],cm2[1][0],cm2[1][1]
tp3,fp3,fn3,tn3 =cm3[0][0],cm3[0][1],cm3[1][0],cm3[1][1]
tp4,fp4,fn4,tn4 =cm4[0][0],cm4[0][1],cm4[1][0],cm4[1][1]
precision1 = tp1/(tp1+fp1)
recall1 = tp1/(tp1+fn1)
precision2 = tp2/(tp2+fp2)
recall2 = tp2/(tp2+fn2)
precision3 = tp3/(tp3+fp3)
recall3 = tp3/(tp3+fn3)
precision4 = tp4/(tp4+fp4)
recall4 = tp4/(tp4+fn4)
f1_1 = (2*precision1*recall1)/(precision1+recall1)
f1_2 = (2*precision2*recall2)/(precision2+recall2)
f1_3 = (2*precision3*recall3)/(precision3+recall3)
f1_4 =(2*precision4*recall4)/(precision4+recall4)
```

df

→		Model	Class	True_pos	Fal_pos	Fal_neg	True_neg	F1_score%	Precision%	Recall%	_
	0	RandomForest	imbalanced	187	20	27	97	88.836105	90.338164	87.383178	•
	1	GradientBoosting	imbalanced	194	13	20	104	92.161520	93.719807	90.654206	
	2	RandomForest	balanced	178	29	15	109	89.000000	85.990338	92.227979	
	3	GradientBoosting	balanced	185	22	13	111	91.358025	89.371981	93.434343	

```
# df.plot(kind="bar", figsize = (15,5),colormap='cividis')
```

[#] plt.title('Representation of True Positives, True Negatives, False Positives, False Negatives and F1_score of all the Models')

[#] plt.show()

^{# ,}color=['red','blue','olive','teal','maroon']

```
plt.figure(figsize=(22,4))
plt.subplot(2,3,1)
sns.barplot(x=df.Class,y=df.True_pos,palette='viridis')
# plt.show()
plt.subplot(2,3,2)
sns.barplot(x=df.Class,y=df.True_neg,palette='viridis')
# plt.show()
plt.subplot(2,3,3)
sns.barplot(x=df.Class,y=df.Fal_pos,palette='viridis')
# plt.show()
plt.subplot(2,3,4)
sns.barplot(x=df.Class,y=df.Fal_pos,palette='viridis')
plt.subplot(2,3,5)
sns.barplot(x=df.Class,y=df['F1_score%'],palette='viridis',hue=df.Model)
plt.legend(loc='lower right')
sns.despine()
plt.show()
```



```
plt.figure(figsize=(15,4))
plt.subplot(1,2,1)
sns.barplot(x=df.Model,y=df['Precision%'],hue=df.Class,palette='viridis')
plt.title('Precision according to classes and Models')
plt.legend(loc='lower right')
plt.subplot(1,2,2)
sns.barplot(x=df.Model,y=df['Recall%'],hue=df.Class,palette='viridis')
plt.title('Recall according to classes and Models')
plt.legend(loc='lower right')
sns.despine()
plt.show()
```


INSIGHTS

- So we see that there are 57% male employees and 43% female employees.
- The percentages of employees with different education levels are almost same for level 1 & 2.
- 97.3% of the employees who did not get a raise.
- Almost 43% of the employees joined at lowest designation (1). 34% joined at level 2, 20% at level 3 and below 2% joined at higher levels.
- Majority (35%) of the employees currently are at designation level 2, followed by designation level 1 (31%) and 3 (26%). Less than 5% of the employees are currently in higher designations.
- Only 54.6% of the employees received a promotion, while 45.4% did not. However, only 2.6% received a raise in income.
- Number of employees has been increase with increase in year as well as number of reportings.
- The majority of the employees seem to be associated with city C20.
- Scatter plot of Income shows that Income increases with increase in age but after 45-50, we see a subtle decline.
- Scatter plot of Total Business Value shows an increase with increase in Age yet we notice a decline after 45.
- Income decreses with increase in Destination as about 4% of the employees hold higher designations.
- The median of the Income for employees having higher Grades is greater.
- Distribution of Income for enployes at different Education level is about a change of 3-5% with level 0.
- Joining Designation Increases with increase in Grade.
- Top reporting days is 24 days.
- About 55% of the reportings of the employees has got Quarlerly Rating 1.
- Number of reportings increases with increase in Income as well as Total Business Value.
- · Recall increased after treatment of data imbalance and is performing bettee in Gradient Boosting.
- Precision dropped after treatment of data imbalance and is performing better in Random Forest.
- F1_score incresed after the treatment of imabalanced data and in Gradient Boosting.

SUBMITTED BY:

NOOHI NAAZ