DESIGN AND ANALYSIS OF ALGORITHMS CS402

TIME ALLOTTED: 3 HOURS

FULL MARKS: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable

GROUP – A (Multiple Choice Type Questions)

	(Multiple Choice Type Questions)		
1. Answer an	Answer any ten from the following, choosing the correct alternative of each ques		
		Marks	CO No.
(i)	Fractional knapsack problem is solved most efficiently by which of the following algorithm?	1	4
	a) Divide and conquer		
	b) Dynamic programming		
	c) Greedy algorithm		
	d) Backtracking		
(ii)	Kruskal's algorithm is used to	1	4
	a) find minimum spanning tree		
	b) find single source shortest path		
	c) find all pair shortest path algorithm		
	d) traverse the graph		
(iii)	Consider the two matrices P and Q which are 10 x 20 and 20 x 30 matrices respectively. What is the number of multiplications required to multiply the two matrices?	1	5
	a) 10*20		
	b) 20*30		
	c) 10*30		
	d) 10*20*30		
(iv)	Consider the strings "PQRSTPQRS" and "PRATPBRQRPS". What is the length of the longest common subsequence?	1	5
	a) 9		
	b) 8		
	c) 7		
	d) 6		

B.TECH. / CSE / R16 / EVEN / SEM-4 / CS402 / 2020-2021

(v)	Dijkstra's Algorithm is used to solve problems.	1	4
	a) All pair shortest path		
	b) Single source shortest path		
	c) Network flow		
	d) Sorting		
(vi)	Which algorithm is used to solve a maximum flow problem?	1	1
	a) Prim's algorithm		
	b) Kruskal's algorithm		
	c) Dijkstra's algorithm		
	d) Ford-Fulkerson algorithm		
(vii)	The worst-case time complexity of merge sort-	1	3
	a) O (log n)		
	b) O (nlogn)		
	c) O(n)		
	d) O (n2)		
(viii)	The main objective of Ford-Fulkerson algorithm is to find out	1	3
	a) Maximum flow of a network		
	b) traversal of a network		
	c) single source shortest path of a network		
	d) all pair shortest path of a network		
(ix)	Express the formula (n-1) * (n-5) in terms of big O notation	1	3
	a) O(1)		
	b) O (log n)		
	c) O(n)		
	d) O(n2)		
(x)	The time taken by linear search algorithm to search a key in a sorte array of n elements	ed 1	3
	a) O (log n)		
	b) O (n)		
	c) O (nlogn)		
	d) O (n2)		

	B.IECH./CSE/RIU/EVEN/SEWI-4/C	5402 / 2020	-2021
(wi)	What arranged is being followed in Flored Worshell Algorithms?	1	1
(xi)	What approach is being followed in Floyd Warshall Algorithm?	1	1
	a) Greedy technique		
	b) Dynamic Programming		
	c) Linear Programming		
	d) Backtracking		
(xii)	For the following program, calculate Big O analysis of the running	1	5
	time (in terms of n)		
	For (i=0; i <n; i++)<br="">A[i] = c ++;</n;>		
	a) O(n-1)		
	b) O(n)		
	c) O(n2)		
	d) $O(\log n)$		
	GROUP – B (Short Answer Type Questions)		
	Answer any <i>three</i> from the following:		3×5=15
		Marks	CO No.
	Solve the following recurrences:	5	5
	(i) $T(n) = 2T(n/2) + \Theta(n)$		
	(ii) $T(n) = T(n/2) + \Theta(1)$		

2.	Solve the following recurrences:	5	5
	(i) $T(n) = 2T(n/2) + \Theta(n)$		
	(ii) $T(n) = T(n/2) + \Theta(1)$		
3.	Derive the worst-case time complexity of merge sort.	5	3
4.	Given items as {value, weight} pairs {{40,20}, {30,10}, {20,5}}. The capacity of knapsack=20. Find the maximum value output assuming items to be divisible.	5	5
5.	Find the complexity of the function $f(x)=8n^3+3n^2+2$ in Big-O and little-O notation.	5	3
6.	Write the pseudo code for Floyds warshall algorithm.	5	2

GROUP – C (Long Answer Type Questions)

Answer any *three* from the following:

 $3 \times 15 = 45$

Marks	CO	No.
141611170	\sim	110

7. (a) Consider the graph G = (V, E) given below---

5 5

Find the minimum cost spanning tree by Prim's algorithm.

- (b) Find an optimal parenthesizing of a matrix chain product whose sequence of dimensions are {10, 20, 10, 5} and find the number of multiplications.
- 2

7

3

5

- (c) which one is better between Binary Search and Linear Search, and why?
- 4

1

8. (a) Derive the worst-case complexity of Dijkstra Algorithm.

3

(b) Explain Maxflow-mincut theorem.

5

(c) What do you mean by Amortized Analysis?

5 1,4

9. (a) Define NP-Complete and NP-Hard.

- 4 3
- (b) What is the relationship among P-class, NP-Class, NP-Complete and NP-Hard?
- 4 3

(c) Find out the maximum profit.

7 5

Jobs	J1	J2	Ј3	J4	J5
Profits	20	15	10	5	1
Deadlines	2	2	1	3	3

B.TECH. / CSE / R16 / EVEN / SEM-4 / CS402 / 2020-2021

10.	(a)	What do you mean by max heap and min heap?	4	1
	(b)	Write pseudo code for constructing Max heap.	5	4
	(c)	Derive the complexity of Heap sort algorithm.	6	3
11.	(a)	Define Augmenting path, sink and Residual network.	2+2+2	1
	(b)	State two graph traversal algorithms.	2	3
	(c)	Apply any one graph traversal algorithm on the above graph.	7	5

