

Projekt 1 – Jacobi- und Gauß-Seidel-Verfahren

Sarah Lutteropp und Johannes Sailer

Gliederung

Aufgabenstellung

Mathematischer Hintergrund

Parallelisierung

Experimentelle Auswertung

Fazit

Aufgabenstellung

Approximation von Stoffkonzentrationen

$$u_{i,j+1}$$
 $u_{i,j+1}$
 $u_{i,j}$
 u_{i+1}

Löse Au = b

Herleitung der Verfahren

Unser Abbruchkriterium

$$rac{\sum_{i,j}|u_{i,j}^{(k)}-u_{i,j}^{(k-1)}|}{\mathit{size}*\mathit{size}} \leq \mathtt{TOL}$$

Vorteile

- Sprunglos
- Implementierung mit #pragma omp reduce

Nachteile

 Maximum der Differenzen wäre exakter

Unser Abbruchkriterium

Beide Verfahren konvergieren.

Parallele Ansätze – Jacobi-Verfahren

Keine Abhängigkeiten innerhalb einer Iteration

Parallele Ansätze – Jacobi-Verfahren

Zusätzliche Optimierung: SSE-Vektorinstruktionen

TODO: SSE-Bild

Parallele Ansätze – Gauß-Seidel-Wavefront

Parallele Ansätze – Gauß-Seidel-RotSchwarz

Auswertung ohne Abbruchkriterium

Auswertung mit Abbruchkriterium

TODO

12

Fazit

