ArgonCube 2x2 Physics Study

P. P. Koller*1

¹University of Bern, Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics (LHEP), Bern, Switzerland

May 7, 2019

1 Neutrino-event

1.1 Full event

Figure 1: Fraction of the parent neutrino kenetic energy deposited within the active detector volume.

 $^{^*}$ Corresponding author: patrick.koller@lhep.unibe.ch

Figure 2: Event-containment efficiency. An event is classed as contained if at least 90% of the parent neutrino kinetic energy is deposited within the active detector volume.

8 1.2 Muon energies ignored

- (a) 2x2 stand-alone, vertex in fiducial volume, muon energies ignored.
- (b) $2x^2 + \text{tracker}$, vertex in fiducial volume, muon energies ignored.

Figure 3: Fraction of the parent neutrino kenetic energy deposited within the active detector volume.

- (a) 2x2 stand-alone, vertex in fiducial volume, muon energies ignored.
- (b) 2x2 + tracker, vertex in fiducial volume, muon energies ignored.

Figure 4: Event-containment efficiency. An event is classed as contained if at least 90% of the parent neutrino kinetic energy is deposited within the active detector volume.

₉ 1.3 Primary muon energy ignored

- (a) 2x2 stand-alone, vertex in fiducial volume, primary muon energy ignored.
- (b) 2x2 + tracker, vertex in fiducial volume, primary muon energy ignored.

Figure 5: Fraction of the parent neutrino kenetic energy deposited within the active detector volume.

- (a) 2x2 stand-alone, vertex in fiducial volume, primary muon energy ignored.
- **(b)** $2x^2 + \text{tracker}$, vertex in fiducial volume, primary muon energy ignored.

Figure 6: Event-containment efficiency. An event is classed as contained if at least 90% of the parent neutrino kinetic energy is deposited within the active detector volume.

¹⁰ 2 EM Showers

2.1 Fractional Containment of EM Showers

Figure 7: Fraction of kinetic shower energy (e^{\pm} mass ignored) deposited within the active detector volume.

2 2.2 Containment Efficiency of EM Showers

Figure 8: Shower-containment efficiency. A shower is classed as contained if at least 90% of the kinetic shower energy (e^{\pm} mass ignored) is deposited within the active detector volume.

${f 3}$ ${f 3}$ π^0 Showers

$_{14}$ 3.1 Fractional Containment of π^0 Showers

Figure 9: Fraction of total shower energy (including the π^0 mass) deposited within the active detector volume.

3.2 Containment Efficiency of π^0 Showers

Figure 10: Shower-containment efficiency. A shower is classed as contained if at least 90% of the total shower energy (including the π^0 mass) is deposited within the active detector volume.

4 Proton Induced Showers

4.1 Fractional Containment of Proton Induced Showers

Figure 11: Fraction of initial proton kinetic energy deposited within the active detector volume.

¹⁸ 4.2 Containment Efficiency of Proton Induced Showers

Figure 12: Shower-containment efficiency. A shower is classed as contained if at least 90% of the initial proton kinetic energy is deposited within the active detector volume.