Serial No. 09/855,333 Docket No. CRN298PA

predetermined low speed. Jog switches 128 can be located on the outsides of the ends of the handle 114; or, jog switches 130 can be located on the insides of the ends of the handle 114. It is apparent that the jog switches 130 are better sheltered from inadvertent activation since they are protected by the handle 114 and thus are preferred. In any event, an operator walking beside a truck can move the truck by operating the jog switches. While either the jog switches 128 or the jog switches 130 are provided on many walkie/rider pallet trucks equipped with jog switches, an improved jog arrangement including both jog switches 128, 130 on each side of the handle 114 as disclosed in U.S. Patent No. 5,245,144 provides still better protection against inadvertent activation and is illustrated in the present application. For additional information regarding the improved jog switch arrangement, reference should be made to the '144 patent.

The compression spring 140G surrounds the mounting pin 140F,

Please replace the second full paragraph on page 12 with:

extends between the solid body 140A and the plate 132A, and, in a working embodiment, provided a force of about 1/2 pound, see Figs 4A and 4B. By spring biasing the electromagnet 140 into the armature plate 138, the distance between the two is maintained to accommodate tolerance build up in the pivotal mounting of the steering arm 116 to the steering head 132 and to ensure consistent magnetic forces when the brake is applied. The body 140A of the electromagnet 140 is prevented from rotating about its axis by a notch 140H in the body 140A which



receives a pin 132C extending from the plate 132A. In the illustrated

Serial No. 09/855,333 Docket No. CRN298PA

Q3

embodiment, the solid body 140A is retained on the mounting pin 140F against the force of the compression spring 140G by its engagement with the armature plate 138.

Please replace the first full paragraph on page 15 with:

In addition to the novel deadman brake override system described above, another aspect of the present invention is the control of the system (or any other deadman brake override or coast control system). In the illustrated embodiment of the present invention, control for overriding a deadman brake is incorporated into a controller 142 of the truck 100. See Fig. 8 which is a schematic block diagram of a portion of the control system for the truck 100 wherein normally open contacts are indicated by an "X" and normally closed contacts are indicated by a "I". In a working embodiment of the present invention, the controller 142 is a Sevcon Millipak controller for separately excited motors (SEM) that includes microprocessor control, however, a variety of other controllers can be used in the present invention. Inputs to the controller 142 include the high speed/coast release switch 115A, the coast switch 115E and the twist grips 118. Movement of the truck 100 is enabled by a brake switch 144 which is connected to the reverser switch 120. If the reverser switch 120 is not activated, reverse switch 146 and forward switch 148 are enabled so that the direction of travel of the truck 100 is determined by which of the switches 146 and 148 is activated. If the reverser switch 120 is activated, the switches 146 and 148 are disabled and a signal to reverse the truck 100 is sent to the controller 142.

QH