```
import os
import pandas as pd
import numpy as np
```

boston_df = pd.read_csv("C:\\Users\\DELL\\Downloads\\BOSTON\\boston.csv")

boston_df.head()

→		CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
	0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296.0	15.3	396.90	4.98	24.0
	1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242.0	17.8	396.90	9.14	21.6
	2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242.0	17.8	392.83	4.03	34.7
	3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222.0	18.7	394.63	2.94	33.4
	4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222.0	18.7	396.90	5.33	36.2

boston_df.columns

boston_df.shape

→ (506, 14)

boston_df.info()

3	CHAS	506	non-null	int64
4	NOX	506	non-null	float64
5	RM	506	non-null	float64
6	AGE	506	non-null	float64
7	DIS	506	non-null	float64
8	RAD	506	non-null	int64
9	TAX	506	non-null	float64
10	PTRATIO	506	non-null	float64
11	В	506	non-null	float64
12	LSTAT	506	non-null	float64
13	MEDV	506	non-null	float64

dtypes: float64(12), int64(2)

memory usage: 55.5 KB

boston_df.describe()

→		CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
	count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000
	mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	3.795043	9.549407	408.237154	18.455534	356.674032	12.653063	22.532806
	std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	2.105710	8.707259	168.537116	2.164946	91.294864	7.141062	9.197104
	min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.129600	1.000000	187.000000	12.600000	0.320000	1.730000	5.000000
	25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	2.100175	4.000000	279.000000	17.400000	375.377500	6.950000	17.025000
	50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	3.207450	5.000000	330.000000	19.050000	391.440000	11.360000	21.200000
	75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	5.188425	24.000000	666.000000	20.200000	396.225000	16.955000	25.000000
	max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126500	24.000000	711.000000	22.000000	396.900000	37.970000	50.000000

import matplotlib.pyplot as plt
import seaborn as sns

sns.pairplot(boston_df, diag_kind = 'kde')


```
plt.figure(figsize=(12,10))
sns.heatmap(boston_df.corr(), annot = True, cmap = 'coolwarm')
```

AXE:	· /													
CRIM	1	-0.2	0.41	-0.056	0.42	-0.22	0.35	-0.38	0.63	0.58	0.29	-0.39	0.46	-0.39
N -	-0.2	1	-0.53	-0.043	-0.52	0.31	-0.57	0.66	-0.31	-0.31	-0.39	0.18	-0.41	0.36
INDUS	0.41	-0.53	1	0.063	0.76	-0.39	0.64	-0.71	0.6	0.72	0.38	-0.36	0.6	-0.48
CHAS	-0.056	-0.043	0.063	1	0.091	0.091	0.087	-0.099	-0.0074	-0.036	-0.12	0.049	-0.054	0.18
XON -	0.42	-0.52	0.76	0.091	1	-0.3	0.73	-0.77	0.61	0.67	0.19	-0.38	0.59	-0.43
M -	-0.22	0.31	-0.39	0.091	-0.3	1	-0.24	0.21	-0.21	-0.29	-0.36	0.13	-0.61	0.7
AGE	0.35	-0.57	0.64	0.087	0.73	-0.24	1	-0.75	0.46	0.51	0.26	-0.27	0.6	-0.38
DIS	-0.38	0.66	-0.71	-0.099	-0.77	0.21	-0.75	1	-0.49	-0.53	-0.23	0.29	-0.5	0.25
RAD -	0.63	-0.31	0.6	-0.0074	0.61	-0.21	0.46	-0.49	1	0.91	0.46	-0.44	0.49	-0.38
TAX -	0.58	-0.31	0.72	-0.036	0.67	-0.29	0.51	-0.53	0.91	1	0.46	-0.44	0.54	-0.47
PTRATIO	0.29	-0.39	0.38	-0.12	0.19	-0.36	0.26	-0.23	0.46	0.46	1	-0.18	0.37	-0.51
м -		0.18	-0.36		-0.38		-0.27				-0.18	1	-0.37	0.33
LSTAT	0.46	-0.41	0.6	-0.054	0.59	-0.61	0.6	-0.5	0.49	0.54	0.37	-0.37	1	-0.74
MEDV	-0.39	0.36	-0.48	0.18	-0.43	0.7	-0.38	0.25	-0.38	-0.47	-0.51	0.33	-0.74	1
		1										1		

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

```
LSTAT MEDV
                  ZN INDUS CHAS NOX RM
                                                                         TAX PTRATIO B
          CRIM
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
x = boston_df.drop(columns=('MEDV'))
y = boston_df['MEDV']
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.30, random_state=42)
x_train.shape, x_test.shape, y_train.shape, y_test.shape
    ((354, 13), (152, 13), (354,), (152,))
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
x_train_scaled = scaler.fit_transform(x_train)
x_test_scaled = scaler.fit_transform(x_test)
Regression = LinearRegression()
Regression.fit(x_train_scaled, y_train)
\overline{\Rightarrow}
      ▼ LinearRegression ① ?
     LinearRegression()
y_pred = Regression.predict(x_test_scaled)
intercept = Regression.score(x_train_scaled, y_train)
print("The intercept for model is {}".format(intercept))
    The intercept for model is 0.7434997532004697
```

```
0.6761000049033605
import math
mse = np.mean(Regression.predict(x_test_scaled)-y_test)**2
math.sqrt(mse)
    1.6079244721974455
from sklearn.linear_model import Ridge, Lasso
from sklearn.metrics import mean_squared_error
print("Linear Regression RMSE:", mean_squared_error(y_test, y_pred))
    Linear Regression RMSE: 24.13479128906756
from sklearn.linear_model import RidgeCV, LassoCV
lasso_cv = LassoCV(alphas=[0.01, 0.1, 1.0], cv=5)
lasso_cv.fit(x_train_scaled, y_train)
print("Best Aplha for Lasso:", lasso_cv.alpha_)
    Best Aplha for Lasso: 0.01
lasso = Lasso(alpha=0.01)
lasso.fit(x_train_scaled, y_train)
y_pred_lasso = lasso.predict(x_test_scaled)
print("Lasso RMSE:", mean_squared_error(y_test, y_pred_lasso))
    Lasso RMSE: 24.174962542563506
ridge_cv = RidgeCV(alphas=[0.1, 1.0, 10.0], cv=5)
ridge_cv.fit(x_train_scaled, y_train)
print("Best alpha for Ridge:", ridge_cv.alpha_)
     Best alpha for Ridge: 10.0
```

Regression.score(x_test_scaled, y_test)

```
ridge = Ridge(alpha=10.0)
ridge.fit(x_train_scaled, y_train)
y_pred_ridge = ridge.predict(x_test_scaled)
print("Ridge RMSE:", mean_squared_error(y_test, y_pred_ridge))
    Ridge RMSE: 24.364185433874894
import matplotlib.pyplot as plt
import seaborn as sns
feature_names = x.columns
lasso_coef = lasso.coef_
coef_df = pd.DataFrame({
    'Feature': feature_names,
    'coefficient': lasso_coef
})
#Bars close to zero --means Lasso shrunk them down, Taller bars means those are important features and Bars at zero means those features are eliminated by lasso
plt.figure(figsize=(10,8))
bars = plt.bar(coef_df['Feature'], coef_df['coefficient'], color='Purple')
plt.axhline(0, color='yellow', linestyle='--')
plt.xticks(rotation=90)
plt.ylabel("coefficient value")
plt.title("Lasso Regression Coefficient")
plt.tight_layout()
plt.show()
```

Lasso Regression Coefficient


```
#Lets see those features which are eliminated by Lasso
colors = ['red' if coef == 0 else 'Green' for coef in coef_df['coefficient']]

plt.figure(figsize=(10,8))
plt.bar(coef_df['Feature'], coef_df['coefficient'], color = colors)
plt.axhline(0, color='blue', linestyle='--')
plt.xticks(rotation=90)
plt.ylabel=("coefficient value")
plt.title("red is REMOVED FEATURES")
plt.tight_layout()
plt.show()
```