# Mathematics of Deep Learning Lecture 2: Expressive/Approximation Power of Neural Nets

Prof. Predrag R. Jelenković Time: Wednesday 4:10-6:40pm

Dept. of Electrical Engineering
Columbia University , NY 10027, USA
Office: 812 Schapiro Research Bldg.
Phone: (212) 854-8174
Email: predrag@ee.columbia.edu
URL: http://www.ee.columbia.edu/~predrag

## Last Lecture: General Learning Framework

Supervised learning: there is an input-output relationship

$$Y = f(X)$$

- ▶ *f* unknown
- ▶ Training data (observations):  $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$
- Objectives:
  - ightharpoonup Learn/estimate  $\hat{f}$  from training data
  - $\blacktriangleright$  Inference/prediction: Use  $\hat{f}$  to predict outcomes on unseen/new data
- Two problems:
  - ightharpoonup Regression: Y is quantitative
  - Classification: Y is categorical
- ▶ Unsupervised learning: Just X, no output Y (no labels) Typical problems:
  - ▶ Distribution estimation: learn the distribution/density, p(x)
    - Generative modeling: first estimate the distribution, then use it for other learning problems, e.g., QDA/LDA
  - Dimensionality reduction, e.g., PCA
  - Clustering and, in general, any data mining, e.g., data association, etc.



## Last Lecture: Curse of Dimensionality

Why is it hard to estimate a function in high dimensions?

- ▶ How do we estimate a density of one dimensional X on [0,1]? Question: Say, we want to learn  $p(x):[0,1]\to\mathbb{R}$ 
  - ▶ Solution: split [0,1] in 100 bins of size  $\epsilon=0.01$ , get about 1000 samples of X and plot a histogram This should be a pretty good estimate of p(x)
- ▶ Suppose X is supported on 100 dimensional cube  $[0,1]^{100}$  Learn density  $p(x):[0,1]^{100}\to\mathbb{R}$ 
  - ▶ The preceding solution: splitting  $[0,1]^{100}$  in bins of size  $0.01^{100}$  would require more than

$$10^{200}$$
 samples (!)

This is usually referred to as curse of dimensionality

- Many real world problems are high dimensional Images  $> 10^6$  dimensions; gene expression data > 10,000
- ▶ Only hope: existence of low dimensional structure

## Overfitting Problem

One can fit infinitely many functions through a finite set of points, but



## Overfitting:

- Low training error does not imply low testing error
- More complicated models not always better
  - Less interpretability
  - More difficult to train
- Mystery: Deep is learning highly flexible, possibly millions of parameters, but usually doesn't overfit.
- ▶ **John von Neumann elephant quote**: "With four parameters I can fit an elephant, and with five I can make him wiggle his trunk."

## Last Lecture: General Supervised Learning Setup

Supervised learning problem can be formulated as (say,  $x_i \in \mathbb{R}^p, y_i \in \mathbb{R}^m$ )

$$\hat{f}^* = \arg\min_{\hat{f} \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \ell(y_i, \hat{f}(x_i)) + \lambda R(\hat{f})$$
 (1)

 $\ell: \mathbb{R}^{p+m} \to \mathbb{R}$  - loss function, and empirical risk/loss is defined as  $\boldsymbol{x} = (x_1, \dots, x_p), \boldsymbol{y} = (y_1, \dots, y_m)_n$ 

$$\bar{L}(\boldsymbol{x}, \boldsymbol{y}) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \hat{f}(x_i))$$

Hence, Equation (2) is called Empirical Risk Minimization (ERM)

- H Hypothesis class (class of approximation functions) Desirable properties of H:
  - Rich/versatile, yields accurate predictions, easy to train (e.g., problem (2) is convex), interpretable/simple, etc.
- lacktriangledown  $\lambda R(\hat{f}) \in \mathbb{R}^+$  regularizer/penalty, shrinkage term
  - lacksquare  $\lambda R(\hat{f})$  shrinking  $\mathcal{H}$ : if  $\lambda_2 > \lambda_1 \to \mathcal{H}_{\lambda_2} \subset \mathcal{H}_{\lambda_1}$
  - Should prevent overfitting

# Linear Examples: Regression and Classification

## Regularized Linear Regression (say $y \in \mathbb{R}$ )

- ▶  $\mathcal{H}$ : set off all p-dimensional linear functions  $\hat{f}(x) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$
- Quadratic loss:  $\ell(y_i, \hat{f}(x_i)) = (y_i \hat{f}(x_i))^2$
- Typical penalties
  - ▶ Ridge  $l_2$  norm:  $R(\hat{f}) = \langle \hat{f}, \hat{f} \rangle = ||f||^2 = \sum \beta_i^2$
  - ▶ LASSO:  $l_1$  norm (basis pursuit):  $R(\hat{f}) = \sum |\beta_j|$

Support Vector Classifier: Separate two classes by a hyperplane,  $y_i \in \{-1,1\}$ 

$$\min_{\beta_0, \beta} \sum_{i=1}^n \max \left[ 0, 1 - y_i (\beta_0 + x_{i1} \beta_1 + \dots + x_{ip} \beta_p) \right] + \lambda \sum_{j=0}^p \beta_j^2$$

 $\ell(x_i,y_i) = \max\left[0,1-y_i(\beta_0+x_{i1}\beta_1+\cdots+x_{ip}\beta_p)\right]$  is called hinge loss

What if the problem is not linear? This is most likely the case.

## Nonlinear Functions: Transform/Expand Features

Example: Classifying red and blue point on a real line

Can't be separated by a single point (hyperplane)



- ▶ Nonlinear feature transformation/expansion:  $x \to (x, x^2)$
- ▶ Now, the points are separable by a single hyperplane (!)



- ▶ Feature engineering:  $x \to \phi(x)$
- ▶ Well-developed theory: Reproducing Kernel Hilbert Spaces (RKHS)
- Problem: How do we find feature functions/kernels?



## Where Does Deep Learning Fits in This Framework?

- Rich H: Provides a versatile parametric class of functions
  - Universal function approximation: depth helps improves expressiveness
  - ▶ However, it is difficult to train: non-convex optimization
  - Often produces accurate predictions in practice, but difficult to understand and interpret
- Automatic feature extraction
  - ▶ Traditional Feature Engineering approach: expert constructs feature mapping  $\phi: \mathcal{X} \to \Phi$ . Then, apply machine learning to find a linear predictor on  $\phi(\mathbf{x})$ .
  - "Deep learning" approach: neurons in hidden layers can be thought of as features that are being learned automatically from the data
  - ► Shallow neurons corresponds to low level features, while deep neurons correspond to high level features

## Parametric Supervised Learning

- $\blacktriangleright$   $\mathcal{H}$  is a parametric class of functions  $f(w,x), w \in \mathcal{W}, w = (w_1, \dots, w_k)$ 
  - Examples: polynomials, or other linear combinations of basis, neural networks
- lacksquare Finding  $f\in\mathcal{H}$  is equivalent to finding  $w\in\mathcal{W}$

Hence, our general supervised learning problem can be formulated in terms of w as (say,  $x_i \in \mathbb{R}^p, y_i \in \mathbb{R}^m, \ell : \mathbb{R}^{p+m} \to \mathbb{R}$  - loss function)

$$\hat{w} = \arg\min_{w \in \mathcal{W}} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(w, x_i)) + \lambda R(w)$$
 (2)

How do we solve the preceding problem?

When the problem is convex and we are lucky, we can find an explicit  $\hat{w}$  by solving (e.g., generalized (Kernel) ridge regression)

$$\frac{\partial}{\partial w_i} \left( \frac{1}{n} \sum_{i=1}^n \ell(y_i, f(w, x_i)) + \lambda R(w) \right) = 0, \quad i = 1, \dots, k.$$

# Parametric Supervised Learning

Let us denote the objective function

$$F(w) := \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(w, x_i)) + \lambda R(w)$$

In general, we use the following numerical algorithm:

- 1. Initialization: Pick an initial value  $w_0$ , possibly random
- 2. Iteration: Follow the path of steepest descent = direction of negative gradient.

For the preceding procedure to find a local minimum

- Avoid getting stuck on a flat surfaces, say flat saddle points.
- ▶ If F is convex, we can find a global minimum.

Properties of gradient,  $\nabla f(x)$ :

- $\nabla f(x)$ : direction of steepest ascent/max increase of f(x)
- $-\nabla f(x)$ : direction of steepest descent/max decrease of f(x)
  - $\nabla f(x)$  is perpendicular to level curves f(x) = c

## Path of Gradient Descent

 $\mathbf{x}(t)$  - path of steepest gradient descent given initial condition  $\mathbf{x}(0)$  is given by an ODE

$$\frac{d\mathbf{x}(t)}{dt} = -\eta \nabla f(\mathbf{x}(t)),\tag{3}$$

where  $\eta$  is the rate/speed of descent, a.k.a. learning rate. Note that x'(t) is tangent to the curve x(t), and thus parallel to  $\nabla f(\mathbf{x}(t))$ .

► Example:  $f(\mathbf{x}) = ax_1^2 + bx_2^2, a, b > 0, \Rightarrow$   $\nabla f(\mathbf{x}) = (2ax_1, 2bx_2) \Rightarrow x_1'(t) = -2\eta ax_1(t), x_2'(t) = -2\eta bx_2(t)$  $x_1(t) = x_1(0)e^{-2\eta at}, \qquad x_2(t) = x_2(0)e^{-2\eta bt}$ 



# Gradient Descent Algorithm

GD Algorithm is a discrete linear approximation to Equation (3)

$$\frac{\mathbf{x}(t + \Delta t) - \mathbf{x}(t)}{\Delta t} \approx \frac{d\mathbf{x}(t)}{dt} = -\eta \nabla f(\mathbf{x}(t))$$

or equivalently (with a small abuse of notation)

$$\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - \eta_t \nabla f(\mathbf{x}^{(t)})$$

- ▶ Hence, after initialization at  $\mathbf{x}^{(0)}$ , the GD Algorithm follows the preceding iteration to a local minimum
- Stopping criterion (could be):  $|\mathbf{x}^{(t+1)} \mathbf{x}^{(t)}| < \epsilon$

Adaptive GD (AdaGrad): modifies the learning rate  $\eta_t$  in each iteration t

## More Interesting Landscape

$$f(x) = (x_1^2 - 1)^2 + (x_1^2 x_2 - x_1 - 1)^2$$

▶ Gradient  $\nabla f(x) = \begin{bmatrix} 4x_1(x_1^2-1) + 2(2x_1x_2-1)(x_1^2x_2-x_1-1) \\ 2x_1^2(x_1^2x_2-x_1-1) \end{bmatrix}$ 

Oscillations in "narrow valleys"



Motivation for momentum: remembers/averages previous  $\Delta x$ 

$$\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - \eta_t \nabla f(\mathbf{x}^{(t)}) + \mu_t (\mathbf{x}^{(t)} - \mathbf{x}^{(t-1)})$$

## Stochastic Gradient Descent

- Stochastic approximation of gradient descent
- Function (typically encountered in learning)

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x)$$

- lacktriangle Computationally expensive gradient for large n
- ▶ Approximation: pick a random subset  $S \in [1, n]$

$$\frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} \nabla f_i(x)$$

- ▶ S called batch/mini-batch
- Example
  - ▶ n scalar data points  $x_1, x_2, \cdots, x_n$
  - objective

$$\min_{c} \frac{1}{n} \sum_{i=1}^{n} (x_i - c)^2$$

## SGD Example: Linear Regression

- ▶ Data:  $(x_i, y_i)_{i=1}^n$ ,  $n = 10^5$
- ► Loss function:  $L(\beta, x, y) = \frac{1}{n} \sum_{i=1}^{n} (y_i \beta_0 \beta_1 x_i)^2$
- Stochastic gradient

$$\nabla_{\beta} \hat{L}(\beta, x, y) = \frac{2}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} \begin{bmatrix} (\beta_0 + \beta_1 x_i - y_i) \\ x_i (\beta_0 + \beta_1 x_i - y_i) \end{bmatrix}$$



## Math of Deep Learning: The Preliminary List of Topics

- ▶ The preliminary list of topics include the results on:
  - Expressive (approximation) power of neural networks
  - ▶ Depth separation results: Can deep neural networks of depth (d+1) express functions much more efficiently in terms of the number of neurons and parameters compared to networks of depth d? What classes of functions can deep neural nets approximate well?
  - Connection between wide neural nets and Kernels: Neuro Tangent Kernels (NTK)
  - Global versus local optimality
  - ► Training and convergence properties of wide neural nets:
    - Is training converging to global min?
    - ▶ Is training converging far or close to the initial NTK?
  - Generalization error: Deep neural networks have a lot of parameters. How come they are not overfitting?
    - Basic generalization concepts from machine learning theory will be covered
  - Deep residual networks
  - ► Deep generative probabilistic models, e.g., deep Boltzmann machines (time permitting)
  - Etc.



## Deep Neural Networks, a.k.a. Multilayer Perceptrons

► Feed-forward network



- Designed to mimic the function of neurons
- ▶ Blue nodes: activation functions/neurons
- ▶ Depth = lengths of a longest path
- ▶ Deep network: depth  $\geq 3$
- Very successful in solving practical problems

## A Single Artificial Neuron

- ▶ A single neuron function:  $\mathbf{x} \mapsto \sigma(b + \langle \mathbf{w}, \mathbf{x} \rangle)$ , where  $\sigma : \mathbb{R} \to \mathbb{R}$  is called the activation function of the neuron. Inner/dot product:  $\langle \mathbf{w}, \mathbf{x} \rangle = \sum x_i w_i$ .
- ▶ More compact notation  $\langle \tilde{\mathbf{w}}, \tilde{\mathbf{x}} \rangle$ , where  $\tilde{\mathbf{x}} = (1, \mathbf{x}), \tilde{\mathbf{w}} = (b, \mathbf{w})$



# Common Activation Functions/Perceptrons

step function

$$\sigma(x) = 1_{\{x>0\}}$$
  $\sigma'(x) = 0, x \neq 0$ 

► logistic

$$\sigma(x) = \frac{1}{1 + e^{-x}} \qquad \sigma'(x) = \sigma(x)(1 - \sigma(x))$$

rectified linear unit (ReLU)

$$\sigma(x) = \max\{x, 0\}$$
  $\sigma'(x) = 1_{\{x > 0\}}, x \neq 0$ 

soft-plus

$$\sigma(x) = \log(1 + e^x) \qquad \sigma'(x) = \frac{1}{1 + e^{-x}}$$



# Example

- ▶ Single neuron is a binary half-space classifier:  $sign(w \cdot x + b)$
- ▶ 2 layer networks can express intersection of halfspaces



# Example

► 3 layer networks can express unions of intersection of halfspaces



## How do we train neural networks?

- ▶ Neural nets: excellent hypothesis class, but difficult to train
- Main technique: Stochastic Gradient Descent (SGD)
- ▶ Not convex, no guarantees, can take a long time, but:
  - Often still works fine, finds a good solution
  - With some luck:)

# Stochastic Gradient Descent (SGD) for Neural Networks

#### Common Training Ideas:

- Random initialization: rule of thumb,  $w[u \to v] \sim U[-c,c]$  where  $c = \sqrt{3/|\{(u',v) \in E\}|}$  (or small Gaussian instead of U[-c,c])
- ▶ Update step with Nesterov's momentum: Initialize  $\theta = 0$  and:

$$\theta_{t+1} = \mu_t \theta_t - \eta_t \tilde{\nabla} L(w_t + \mu_t \theta_t)$$
  
$$w_{t+1} = w_t + \theta_{t+1}$$

#### where:

 $\mu_t$  is momentum parameter (e.g.  $\mu_t=0.9$  for all t)  $\eta_t$  is learning rate (e.g.  $\eta_t=0.01$  for all t)  $\tilde{\nabla} L$  is an estimate of the gradient of L based on a small set of random examples (often called a "minibatch")

Efficient gradient calculation: Backpropagation

## Expressive/Approximation Power of Neural Nets

# Question: What types of functions can be approximated with neural networks?

Two approaches to answering this question:

- ► Constructive approach: for a given function, we construct explicitly its neural network approximation.
  - ▶ This is usually more intuitive, but less general.
- Existence approach: we prove that for a given class of functions, there exists an accurate neural network approximation.
  - This gives us confidence that good approximations exist, but less informative.

## Expressive Power of Shallow Neural Nets

Questions: What type of real-valued functions can we approximate with NNs with one hidden layer? Such NN approximations can be written as:

$$\hat{f}(oldsymbol{x}) = \sum_{i=1}^n a_i \sigma(\langle oldsymbol{w}_i, oldsymbol{x} 
angle + b_i), \quad oldsymbol{x}, oldsymbol{w} \in \mathbb{R}^d, a_i, b_i \in \mathbb{R}$$

Single variable example: explicit approximation with simple/step unctions

$$\sigma(x)=1_{\{x>0\}}, \qquad \phi(x)=1_{\{x>0\}}-1_{\{x>1\}} \qquad \text{(simple/pulse function)}$$

## Expressive Power of Neural Nets

Piecewise Linear Approximation: ReLU -  $\sigma(x) = \max(0, x)$ 

Example:  $f(x):[0,\pi]\to[0,1]$ 

$$f(x) = \sin(x)$$

## Piecewise Linear Approximation



# Example: Function That Is Difficult to Approximate

Consider function  $f(x):[0,1)\to[-1,1]$ 

$$f(x) = \sin\left(\frac{1}{1-x}\right)$$

is continuous and infinitely differentiable.

### Difficult to Approximate: Why?



## Function Regularity: Uniform Continuity

So, we need to impose some regularity on f(x).

**Definition** Let  $I \subset \mathbb{R}$  be an interval. Function  $f(x): I \to \mathbb{R}$  is uniformly continuous if for any  $\epsilon > 0$ , there exists  $\delta > 0$ , such that

$$|x_1 - x_2| < \delta \quad \Rightarrow |f(x_1) - f(x_2)| < \epsilon$$

#### Remarks

▶ If I is a closed interval, [a, b], then

ordinary continuity ⇔ uniform continuity

- ▶ Hence, to prevent the problem from the preceding example, f(x) needs to be defined on a closed interval [0,1] instead of [0,1).
- ▶ The preceding definition extends to  $\mathbb{R}^k$  spaces with Euclidean norm, and in general metric spaces.
- Finite closed intervals generalize to compact sets.

## From Sigmoidal to Step Function

Starting with any sigmoidal functions, say

$$\sigma(x) = \frac{1}{1 + e^{-x}},$$

we can approximate arbitrarily close a step function by using  $\sigma(wx)$  and w large enough.



## Making Simple/Pules Function, a.k.a. Haar Wavelet

Haar scaling function (single pulse) is defined

$$\phi(x) = 1_{\{x>0\}} - 1_{\{x-1>0\}}$$

Two sigmoidal functions, we can create a perfect pulse (Haar function)

$$\phi(x) \approx \phi_w(x) = \sigma(wx) - \sigma(w(x-1))$$

for w large enough (which can be used to make Haar wavelet basis)

$$\phi_w(x), w = 3, 5, 8, 30, 100$$



## Non-monotonic Sigmoidal to Step Function

Do we need sigmoidal functions to be monotonic? For example

$$\sigma(x) = \frac{1}{1 + e^{-x}} + \sin(4\pi x)e^{-|x|}$$

Again, we can approximate arbitrarily close a step function by using  $\sigma(wx)$  and w large enough.

$$\sigma(wx), w = 1, 3, 5, 8, 30$$



Continuity can be relaxed to  $\sigma(x)$  being bounded with limits at  $\pm \infty$ .

## Universal Approximation Theorem in 1D

#### **Definitions**

▶ A function  $\sigma(x): \mathbb{R} \to \mathbb{R}$  is called sigmoidal if it is bounded and

$$\lim_{x \to -\infty} \sigma(x) = 0 \quad \text{ and } \quad \lim_{x \to \infty} \sigma(x) = 1.$$

(Equivalence to step function:  $\sigma(wx) \approx 1_{\{x>0\}}$  for large w.)

▶ C([a,b]): space of continuous functions,  $f(x):[a,b]\to\mathbb{R}$  without loss of generality, we consider C([0,1])

**Theorem** (Constructive/Explicit Representation) Consider a sigmoidal function,  $\sigma$  and  $f \in C([0,1])$ . For every  $\epsilon > 0$ , there exist an integer n and w > 0 (depending on n), such that for  $x \in [0,1]$ 

$$\hat{f}(x) \stackrel{\text{def}}{=} \sum_{k=1}^{n} (f(k/n) - f((k-1)/n))\sigma(w(x-k/n)) + f(0)\sigma(w(x+1/n)),$$

then

$$\sup_{0 \le x \le 1} |\hat{f}(x) - f(x)| < \epsilon.$$

## Universal Approximation Theorem in 1D: Proof

lackbox Let  $\hat{g}$  be a simple function approximation of f

$$\hat{g}(x) := \sum_{k=1}^{n} (f(k/n) - f((k-1)/n)) 1_{\{x-k/n > 0\}} + f(0) 1_{\{x+1/n > 0\}}$$

Since f(x) is continuous on [0,1], and thus uniformly continuous, we can chose n large enough, such that for any  $x \in [0,1]$ 

$$|f(x) - \hat{g}(x)| \le \frac{\epsilon}{2}$$

▶ To complete the proof, we need to bound the error between  $\hat{f}(x)$  and  $\hat{g}(x)$ , i.e.,

$$|f(x) - \hat{f}(x)| \le |f(x) - \hat{f}(x)| + |\hat{f}(x) - \hat{g}(x)| = \frac{\epsilon}{2} + |\hat{f}(x) - \hat{g}(x)|$$

▶ To this end, let  $M := \max(1 + \sup_x \sigma(x), \sup_x f(x))$ 

# Universal Approximation Theorem in 1D: Proof

We have two parameters to choose, n, w,

n large enough to ensure

$$|f(k/n) - f((k-1)/n)| \le \frac{\epsilon}{4M}$$

• w to make  $\sigma(wx)$  arbitrarily close to a step function, i.e., we can choose w large enough such that for all  $|x| \geq 1/n$ 

$$|\sigma(wx) - 1_{\{x > 0\}}| \le \frac{\epsilon}{4Mn}$$

and around x=0, since  $\sigma(x)$  is bounded, for  $|x|\leq 1/n$ 

$$|\sigma(wx) - 1_{\{x>0\}}| \le 1 + \sup_{x} \sigma(x) \le M$$

Hence, for  $x \in [(j-1)/n, j/n]$ ,

$$\begin{split} |\hat{f}(x) - \hat{g}(x)| &\leq \sum_{k \neq j} |f(k/n) - f((k-1)/n)| |\sigma(w(x-k/n)) - 1_{\{x-k/n > 0\}}| \\ &+ |f(j/n) - f((j-1)/n)| |\sigma(w(x-j/n)) - 1_{\{x-j/n > 0\}}| \\ &+ |f(0)| |\sigma(w(x+1/n)) - 1_{\{x+1/n > 0\}}| \\ &\leq \frac{\epsilon}{4M} (n-1) \frac{\epsilon}{4Mn} + \frac{\epsilon}{4M} M + \frac{|f(0)|\epsilon}{4Mn} < \frac{\epsilon}{2} \end{split}$$

# Sigmoidal Approximation Example

Consider function  $f(x):[0,\pi] \to [0,1]$   $f(x) = \sin(x)$ 

## **Step Functions**



## Expressiveness of ReLU in 1D: Also Universal

- ▶ Recall, ReLU activation:  $\sigma(x) = \max\{0, x\} =: x^+$
- ▶ To show that ReLU is universal, we can define a sigmoid  $\sigma_1(x) = x^+ (x-1)^+$  and use the preceding theorem
- Or we can do it directly using piece-wise linear approximation
- ▶ The following approximation can be made arbitrarily close to  $f \in C([0,1])$ , i.e.,  $|f(x) \hat{f}(x)| < \epsilon$ , for large enough n

$$\hat{f}(x) = \sum_{k=0}^{n-1} w_k \sigma(x - k/n) + f(0),$$

where the slopes  $w_k$  are chosen such that  $\hat{f}(k/n) = f(k/n)$ , i.e.,

- $w_0 = n(f(1/n) f(0))$
- $w_1$  is such that  $f(2/n) = 2w_0/n + w_1/n + f(0)$ , yielding

$$w_1 = n(f(2/n) - 2f(1/n) + f(0))$$

ightharpoonup And so on, we inductively select  $w_k$  to satisfy

$$f\left(\frac{k+1}{n}\right) = \hat{f}\left(\frac{k+1}{n}\right) = w_0 \frac{k+1}{n} + w_1 \frac{k}{n} + \dots + w_k \frac{1}{n} + f(0)$$

## Functions Equivalent to ReLU

► Similarly to sigmoidal functions, through scaling, many other functions are equivalent to ReLU. For example, one can define ReLU-equivalent functions as: continuous with

$$\lim_{x \to -\infty} \sigma(x) = 0, \qquad \lim_{x \to -\infty} \frac{\sigma(x)}{x} = 1.$$

 $\qquad \qquad \textbf{Then, as } w \to \infty \text{,}$ 

$$\frac{\sigma(wx)}{w} \to \max(0, x)$$

Scaling soft-plus  $\sigma(x) = \log(1 + e^x)$  to ReLU



# ReLU Approximation

Consider function 
$$f(x):[0,\pi]\to [0,1]$$

$$f(x) = \sin(x)$$

#### Piecewise Linear Functions



### Historical Comments on ReLU

- $ightharpoonup \max(0,x)$  has a long history in statistics
- ▶ It is called linear spline basis (or hinge function)
- ▶ Bias b: in  $\max(0, x + b)$  is called knot
- ► One hidden layer NN with ReLU is a free knot linear spline
  - ▶ Studied for 50+ years
- ▶ In general, one considers polynomial spline bases

$$\max(0, x^k), \quad k \ge 0$$

e.g., see Chapter 5 of The Elements of Statistical Learning book by Hastie et al.

## Constructive Extension to Multivariate Functions

- ▶ How about multivariate functions  $f(x):[0,1]^d \to \mathbb{R}$ ?
- ► Can we find a constructive uniform approximation?
  - ► Use simple functions in many dimensions.
  - ► Fourier series to the rescue (idea from Chen, Chen&Liu 1992 [CCL92])

Consider periodic functions  $f:\mathbb{R}^d\to\mathbb{R}$  with unit period in all directions, i.e.,

$$f(\boldsymbol{x} + \boldsymbol{m}) = f(\boldsymbol{x}), \qquad \boldsymbol{x} \in \mathbb{R}^d, \boldsymbol{m} \in \mathbb{Z}^d$$

Equivalently, these functions can be considered on d-torus:  $T^d=S\times\cdots S=(S)^d$ , where S is a circle of circumference one.

- Note the functions on  $[0,1]^d$  can be extended to periodic functions on  $\mathbb{T}^d$ .
- Let  $C(T^d)$  and  $C([0,1]^d)$  be continuous real-valued functions on unit d-torus and d-cube, respectively.
- Note that  $C(T^d) \subset C([0,1]^d)$ , but  $C([0,1]^d) \not\subset C(T^d)$  the inference  $C([0,1]^d) \subset C(T^d)$  was incorrectly used in [CCL92]

## Finite Series Multidimensional Fourier Approximation

▶ Bochner-Riesz means,  $R, \alpha \ge 0$ ,

$$\hat{f}_R(\boldsymbol{x}) := \sum_{\boldsymbol{m}: \|\boldsymbol{m}\|_2 < R, \boldsymbol{m} \in \mathbb{Z}^d} \left(1 - \frac{\|\boldsymbol{m}\|_2^2}{R^2}\right)^{\alpha} a_{\boldsymbol{m}} e^{2\pi i \boldsymbol{m} \cdot \boldsymbol{x}}$$
(4)

Then, the following uniform convergence theorm can be found in Chapter 7 of Stein&Weiss: see Corollary 2.15 on p. 256 and Theorem 2.11 (b) on p. 253.

**Theorem** If  $f\in C(T^d)$  and  $\alpha>(d-1)/2$ , then  $\hat{f}_R\to f$  uniformly, as  $R\to\infty$ , i.e., for any  $\epsilon>0$ , there is R>0, such that

$$\sup_{\boldsymbol{x}\in T^d}|f(x)-\hat{f}_R(x)|<\epsilon.$$

Note that when f is real valued, we can ignore the imaginary part in Equation (4), and write  $(a_{\boldsymbol{m}} = a_{\boldsymbol{m}R} + ia_{\boldsymbol{m}I})$ 

$$\hat{f}_R(\boldsymbol{x}) := \sum_{\boldsymbol{m}: \|\boldsymbol{m}\|_2 < R} \left(1 - \frac{\|\boldsymbol{m}\|_2^2}{R^2}\right)^{\alpha} \left(a_{\boldsymbol{m}R} \cos(2\pi i \boldsymbol{m} \cdot \boldsymbol{x}) - a_{\boldsymbol{m}I} \sin(2\pi i \boldsymbol{m} \cdot \boldsymbol{x})\right)$$

(5)

## Fourier Series Recipe for NN Approximation

Consider continuous multivariable functions  $(C(T^d))$ . We can approximate these function using the following 2 step procedure:

- 1. Approximate uniformly with NNS 1D functions  $\cos(u)$  and  $\sin(u)$  for  $|u| \leq 2\pi\sqrt{d}R$ . (Note that  $\boldsymbol{x} \in [0,1]^d$  and  $\|\boldsymbol{x}\|_1 \leq \sqrt{d}\|\boldsymbol{x}\|_2$  imply  $|\boldsymbol{m} \cdot \boldsymbol{x}| \leq \sum |m_i| = \|\boldsymbol{m}\|_1 \leq \sqrt{d}\|\boldsymbol{m}\|_2 \leq \sqrt{d}R$ .)
- 2. Replace the NN approximation of  $\sin/\cos$  into the Fourier approximation Equation (5)

Complexity: The preceding 2-step approximation has exponential complexity in d since the number of summands in Equation (5) is  $\sum_{\|\boldsymbol{m}\|_2 < R} 1 \approx \operatorname{Vol}(n\text{-Ball}) = O(R^d) = O(e^{d\log R})$  Curse of dimensionality

Uniform convergence: a brute-force way to ensure uniform convergence is to make the approximation of  $\sin/\cos$  in Step 1 above very precise with an error smaller than  $\epsilon/R^d$ 

### More General Existence Results

- ▶ Consider multivariate functions  $f(x):[0,1]^d \to \mathbb{R}$  (or some other compact domain)
- ▶ We will look at the results of Cybenko (1989) and Hornik (1991)
- These results are more general, but approximations are not explicitly constructed.
  - ▶ Instead, proofs by contradiction: elegant, but less intuitive
- ▶ Involve non-elementary mathematics: functional analysis

## Results by Cybenko

**Theorem** (Cybenko (1989)) Let  $\sigma$  be a continuous sigmoidal function (recall  $\lim_{x\to-\infty}\sigma(x)=0$  and  $\lim_{x\to\infty}\sigma(x)=1$  and pick an  $f\in C([0,1]^d)$ . Then, the set of approximation functions of the form

$$\hat{f}(x) := \sum_{j} \alpha_{j} \sigma(\langle \boldsymbol{w}_{j}, \boldsymbol{x} \rangle + b_{j})$$

is dense in  $C([0,1]^d)$  with the metric  $d(f,g)=\sup|f(x)-g(x)|$ ,  $f,g\in C([0,1]^d)$ , i.e., for any  $f\in C([0,1]^d)$  and  $\epsilon>0$ , there exists a NN approximation function  $\hat{f}(x)$ , such that

$$\sup_{x \in [0,1]^d} |f(x) - \hat{f}(x)| < \epsilon.$$

# Few Results From Functional Analysis

**Hahn-Banach Extension Theorem** If X is a normed vector space with linear subspace M and  $x_0 \in X \backslash \overline{M}$ , then there exists a continuous linear map  $L: X \to \mathbb{R}$  with L(x) = 0 for all  $x \in M, L(x_0) = 1$ , and  $\|L\| \le d(M, x_0)$ .

(E.g., see Theorem 3.5, p. 60 in Functional Analysis, 2nd ed., by Rudin.)

Use of this theorem in our context:

- Proof by contradiction: consider the subspace M given by  $\{\hat{f}(\boldsymbol{x}) = \sum \alpha_j \sigma(<\boldsymbol{w}_j, \boldsymbol{x} > +b_j)\}$ , and assume that its closure  $\overline{M}$  is not the entire space of functions  $C([0,1]^d)$ .
- ▶ We conclude that there exists a continuous linear map L on our function space that restricts to 0 on  $\overline{M}$  but is not identically zero.
- ightharpoonup Hence, to prove the desired result, it suffices to show that any continuous linear map L that is zero on M must be the zero map, implying contradiction.

# Few Results From Functional Analysis

**Riesz Representation Theorem** A bounded linear functional  $L:C(X)\to\mathbb{R}$  can be expressed as

$$L(f) = \int f \, d\mu(x),$$

where  $\mu$  is a finite signed measure supported on X and  $f \in C(X)$ .

Simple motivating example in 1D: Consider functions of one variable, C([0,1]), and  $\sigma(x)=1_{\{x>0\}}$ .

Then, if the space spanned by  $\hat{f}$ , call it M, does not approximate all functions in C([0,1]), then there exists a linear operator L on C([0,1]), which is not identically zero.

But, by Riesz Theorem, for any  $0 \le a < b \le 1$ , and  $f = 1_{\{x-a>0\}} - 1_{\{x-b>0\}} \in M$ 

$$L(f) = \int (1_{\{x-a>0\}} - 1_{\{x-b>0\}}) \, d\mu(x) = \int_a^b \, d\mu(x) = 0$$

Hence,  $\mu \equiv 0$ , which is a contradiction.

▶ The difficulty in the general proof is to extend this argument to many dimensions and general sigmoidal functions,  $\sigma$ .

# Cybenko's Proof: Outline

#### Proof by contradiction:

- ▶ Consider the subspace M given by  $\{\sum \alpha_j \sigma(< \boldsymbol{w}_j, \boldsymbol{x} > +b_j)\}$
- Assume that its closure  $\overline{M}$  is not the entire space of functions  $C([0,1]^d.$  (If  $\overline{M}=C([0,1]^d,$  then we are done.)
- ▶ Hence, by Hahn-Banach Theorem, there exists a continuous linear map L on our function space  $C([0,1]^d$  that restricts to 0 on  $\overline{M}$  but is not identically zero.
- ▶ Then, by Riesz Representation Theorem, this linear functional can be expressed as integral, for any  $f \in C([0,1]^d)$

$$L(f) = \int f \, d\mu(x)$$

▶ Key difficulty is to prove that, since  $\sigma(< w, x > +b) \in M$ ,

$$\int_{[0,1]^d} \sigma(\langle \boldsymbol{w}, \boldsymbol{x} \rangle + b) d\mu(\boldsymbol{x}) = 0 \quad \Rightarrow \quad \mu \equiv 0,$$

which implies  $L \equiv 0$  on entire  $C([0,1]^d)$ , resulting in contradiction.



## Lemma 1 in Cybenko

**Lemma 1** Let  $\mu$  be finite, signed measure on  $[0,1]^d$ . For any bounded, sigmoidal function,  $\sigma$ , if, for all  $\boldsymbol{w} \in \mathbb{R}^d, b \in \mathbb{R}$ 

$$\int_{[0,1]^n} \sigma(\langle \boldsymbol{w}, \boldsymbol{x} \rangle + b) d\mu(x) = 0 \quad \Rightarrow \quad \mu \equiv 0$$

**Proof** Recall the step function approximation: as  $\lambda \to \infty$ , and then  $\phi \to \infty$ 

$$\begin{split} \sigma(\lambda(<\boldsymbol{w},\boldsymbol{x}>+b)+\phi) &\to 1_{\{<\boldsymbol{w},\boldsymbol{x}>+b>0\}} + \sigma(\phi)1_{\{<\boldsymbol{w},\boldsymbol{x}>+b=0\}} \\ &\to 1_{\{<\boldsymbol{w},\boldsymbol{x}>+b\geq0\}} \end{split}$$

Hence, by Dominated Convergence Theorem, as  $\lambda \to \infty$ , and then  $\phi \to \infty$ 

$$0 = \int_{[0,1]^d} \sigma(\lambda(\langle \boldsymbol{w}, \boldsymbol{x} \rangle + b)) d\mu(x) = \int_{[0,1]^n} 1_{\{\langle \boldsymbol{w}, \boldsymbol{x} \rangle + b \rangle 0\}} d\mu(x)$$
$$= \mu(\{\boldsymbol{x} : \langle \boldsymbol{w}, \boldsymbol{x} \rangle + b \geq 0\}),$$

i.e.,  $\mu$  is zero on all half-spaces. (If  $\mu$  were positive, we would be done.)

## Lemma 1 in Cybenko

**Proof** - **continued** Since indicator (simple) functions are dense in  $L^{\infty}(\mathbb{R})$  (bounded functions:  $\mathbb{R} \to \mathbb{R}$ ), we conclude that the linear operator

$$F(h) = \int_{[0,1]^d} h(\langle \boldsymbol{w}, \boldsymbol{x} \rangle) d\mu(\boldsymbol{x}) \equiv 0$$

for any  $h \in L^{\infty}(\mathbb{R})$ 

Hence, by choosing h to be  $\sin(\langle w, x \rangle)$  and  $\cos(\langle w, x \rangle)$ , we get

$$\int_{[0,1]^d} (\cos(\langle \boldsymbol{w}, \boldsymbol{x} \rangle) + i \sin(\langle \boldsymbol{w}, \boldsymbol{x} \rangle)) d\mu(\boldsymbol{x})$$
$$= \int_{[0,1]^d} \exp(i \langle \boldsymbol{w}, \boldsymbol{x} \rangle) d\mu(\boldsymbol{x}) = 0$$

for all w.

Finally, Fourier transform of  $\mu$  being zero, implies

$$\mu \equiv 0$$
.

This completes the proof of the lemma, and, in view of the prior outline, the proof of Theorem 2 in Cybenko.



Hornik follows the general plan in Cybenko, which we outlined earlier.

The key technical result is the generalization of the preceding Lemma 1 of Cybenko to allowing the activation functions,  $\sigma(x)$ , to be bounded and nonconstant, not necessarily sigmoidal.

**Theorem 5** (Hornik) Let  $\mu$  be finite, signed measure on  $[0,1]^d$ . For any bounded and nonconstant  $\sigma$ , if, for all  $\boldsymbol{w} \in \mathbb{R}^d, b \in \mathbb{R}$ 

$$\int_{[0,1]^n} \sigma(\langle \boldsymbol{w}, \boldsymbol{x} \rangle + b) d\mu(x) = 0 \quad \Rightarrow \quad \mu \equiv 0$$

**Proof (sketch)**: As in Cybenko, the key idea is to show that the Fourier transform of  $\mu$  is identically zero, which implies  $\mu \equiv 0$ .

We want to show that, for any  ${m w}, b$ 

$$\int_{\mathbb{R}^n} \sigma(\langle \boldsymbol{w}, \boldsymbol{x} \rangle + b) d\mu(\boldsymbol{x}) = 0 \quad \Rightarrow \quad \mu \equiv 0.$$

First, we reduce the integration from  $\mathbb{R}^d$  to  $\mathbb{R}$ , by defining measures  $\mu_w$  on  $\mathbb{R}, B \subset \mathbb{R}$ , as

$$\mu_{\boldsymbol{w}}(B) = \mu(\boldsymbol{x} : < \boldsymbol{w}, \boldsymbol{x} > \in B)$$

and observe that the prior integral becomes

$$\int_{\mathbb{R}^d} \sigma(\lambda < \boldsymbol{w}, \boldsymbol{x} > +b) d\mu(\boldsymbol{x}) = \int_{\mathbb{R}} \sigma(\lambda t + b) d\mu_{\boldsymbol{w}}(t) = 0$$

Moreover, if we can show that  $\mu_{\bm{w}} \equiv 0$  for each  $\bm{w}$ , then  $\mu \equiv 0$  ("a measure is defined by all of its projections"), since then

$$\hat{\mu}(\boldsymbol{w}) = \int_{\mathbb{R}^d} \exp(i < \boldsymbol{w}, \boldsymbol{x} >) d\mu(\boldsymbol{x}) = \int_{\mathbb{R}} \exp(it) d\mu_w(t) = 0 \Rightarrow \hat{\mu} = 0 \Rightarrow \mu = 0.$$

(Note that we used the finiteness of  $\mu$  here.) Hence, the goal is to find arguments that justify the preceding equation.

To this end, use the convolution trick (that also uses the finiteness of  $\mu$ ). By convolving  $\mu_{\boldsymbol{w}}(t)$  with a Gaussian  $v(t)=e^{-t^2}$ , we obtain a measure that has a density, letting us work with Lebesgue measure.  $\mu_{\boldsymbol{w}}*v$  is also finite.

Next,

$$0 = \int_{\mathbb{R}} \left[ \int_{\mathbb{R}} \sigma(\lambda t + (b + \lambda s)) d\mu_{\boldsymbol{w}}(t) \right] v(s) ds$$
$$= \int_{\mathbb{R}} \int_{\mathbb{R}} \sigma(\lambda (t + s) + b) d\mu_{\boldsymbol{w}}(t) v(s) ds d\mu_{\boldsymbol{w}}(t)$$
$$= \int_{\mathbb{R}} \sigma(\lambda t + b) d(v * \mu_{\boldsymbol{w}})(t);$$

let  $h(t) = v * \mu_w)(t)$  is the convolution of  $\mu_w(t)$  and v(t). Then, using the results from abstract Fourier analysis, one shows that  $h \equiv 0$ . (see: Fourier Analysis on Groups, Rudin 1967)

This implies that the Fourier transform  $\hat{h}=\hat{v}\hat{\mu}_{\boldsymbol{w}}=0$ . Since,  $\hat{v}$  has no zeros, this results in  $\hat{\mu}_{\boldsymbol{w}}\equiv 0 \Rightarrow \hat{\mu}\equiv 0 \Rightarrow \mu\equiv 0$ , concluding the proof of Theorem 5 in Hornik.

Using Theorem 5 with more general activation functions, Hornik obtains the following results:

- ▶ Theorem 1 If  $\sigma$  is unbounded and nonconstant, then NN approximations are dense in  $L^p(\mu)$  for all finite measures  $\mu$  on  $\mathbb{R}^d$ .  $L^p(\mu), p \geq 1$ , is the space of functions f with  $\int |f|^p d\mu < \infty$  and distance metric  $d(f,g) = \left(\int |f-g|^p d\mu\right)^{1/p}$ .
- ▶ Theorem 2 If  $\sigma$  is continuous, bounded and nonconstant, then NN approximation are dense in the space of all continuous functions, C(X), with compact domain  $X \subset \mathbb{R}^k$  and supremum distance  $d(f,g) = \sup_{x \in X} |f(x) g(x)|$ . (This is a full generalization of Theorem 2 in Cybenko.)
- ▶ **Theorems 3&4** Extend results to Sobolev spaces under the  $\ell_p, 1 \leq p < \infty$  and supremum norm.

Sobolev spaces contain function that have up to m derivatives and distance is measured between functions and their derivatives.

## Reading on the Universal Approximation Results

### Shallow (1 hidden layer) networks are universal approximators

- Constructive proofs:
  - ► A Constructive Proof and An Extension of Cybenko's Approximation Theorem, by Chen, Chen & Ruey-wen Liu, 1992. (Note: Not more general than Cybenko: requires continuity of periodic function extensions.)
  - Constructive Approximation by Superposition of Sigmoidal Functions, by Costarelli and Spigler, 2013. (1D&2D)
- General proofs:
  - Approximations by superpositions of sigmoidal functions, by Cybenko, 1989.
  - ► Approximation capabilities of multilayer feedforward networks, by Hornik, 1991.

## Reading For Next Class

### Bounds on NN approximations:

- Universal approximation bounds for superpositions of a sigmoidal function, by Barron 1993.
- ► Approximation theory of the mlp model in neural networks, by Pinkus, 1999.

**Expressive Power Depth** Depth separation results: Can deep neural networks of depth (d+1) express functions much more efficiently in terms of the number of neurons compared to networks of depth d?

- Representation Benefits of Deep Feedforward Networks, by Telgarsky, 2015.
- Error bounds for approximations with deep ReLU networks, by Yarotsky, 2017.
- WHY DEEP NEURAL NETWORKS FOR FUNCTION AP-PROXIMATION?, Lianf and Srikant, 2017.
- ► NEW ERROR BOUNDS FOR DEEP RELU NETWORKS USING SPARSE GRIDS, by Montanelli and Du, 2018.
- ► The Power of Depth for Feedforward Neural Networks, by Eldan and Shamir, 2016.



### General references on deep learning:

[UML] Chapter 14: Stochastic Gradient Descent Chapter 20: Neural Networks

[DL] Chapter 6: Deep Feedforward Networks

**Software**: Download R, R Studio and TensorFlow Or, equivalent for Python

If you would like to refresh or learn the concepts form real analysis, you could check Chapter 2 on basic topology concepts and Chapter 4 for continuity/uniform continuity in

Principles of Mathematical Analysis, by W. Rudin.

More advanced reading on Fourier analysis

- ▶ Introduction to Fourier Analysis on Euclidian Spaces, by Stein and Weiss, 1971. (Chapter 7 is on multivariate Fourier series and Bochner-Riesz means.)
- ► Fourier Analysis on Groups, by W. Rudin. (Chapter 7 is used in Hornik.)