Spike Sorting

Shivanshu Shukla Mounika Gorantla Vignesh Soundararajan

Agenda

- Feature extraction
- Clustering
- Methodology
- Noisy spike sorting
- Results
- Work in progress
- Questions

Feature extraction

The goal is to select features that best separate the different spike classes.

Derivative

- Reduces low frequency noise and amplifies high frequency component.
- Recorded waveforms from neurons with similar ion channel populations may have localized variations (high frequency) making it difficult to examine in time domain.
- Derivation amplifies these localized variations. *

Wavelet

- Use wavelet transform to calculate the coefficients for each spike.
- Select the wavelet coefficients using Kolmogorov Smirnov test for Normality.
- Our implementation uses the first 10 coefficients with the largest deviation from normality.
- Wavelet coefficients provides a compressed representation of the spike features that serves as the input to the clustering algorithm.

PCA

The first 3 features are considered.

^{*}Ref:Spike Feature Extraction Using Informative Samples. Zhi Yang, et al.

Clustering

- DBSCAN
 - It is a density based clustering algorithm.
 - A cluster satisfies two points.
 - All points within the cluster are mutually density-connected.
 - If a point is density-reachable from any of the cluster, it is a part of the cluster as well
 - The border points which are treated as noise by DBSCAN are sorted separately.

Methodology

Perform derivative on the given data set

Feature Extraction: PCA / wavelet

Clustering: DBSCAN

Noisy Spike Sorting: kNN / Correlation

Approaches with limited success

- PCA with k-means (worked for Sample_data 1)
- Wavelet with k-means (worked for Sample_data 1 and 2)
- Mapping waveforms to higher dimensions(improvement was insignificant)
 - Clusters the irregular spikes.
- Template matching
 - Needs centroid spike.
 - Will be good for sorting the outliers after clustering.
- Derivative of spikes followed by PCA / wavelet and DBSCAN for clustering works well.

Approach for Noisy spike sorting

- knn classification
 - Noisy spike is assigned to the nearest cluster.
- Correlation
 - Find a spike that shows high correlation with other spikes in the cluster.
 - Compare the correlation coefficient of each noisy spike with the above spike.

Results

Work in progress

- \square Automatic selection of ε for DBSCAN
 - k-Nearest Neighbour graph.
 - Use HINTS :)
 - For example, there cannot be more than 6 clusters.

Thank You

Questions?

