

Mark Scheme (Results) January 2009

GCE

GCE Mathematics (6665/01)

January 2009 6665 Core Mathematics C3 Mark Scheme

_	estion mber	Scheme	Marks
1	(a)	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\sqrt{(5x-1)}\right) = \frac{\mathrm{d}}{\mathrm{d}x}\left((5x-1)^{\frac{1}{2}}\right)$	
		$= 5 \times \frac{1}{2} (5x - 1)^{-\frac{1}{2}}$	M1 A1
		$\frac{dy}{dx} = 2x\sqrt{(5x-1)} + \frac{5}{2}x^2(5x-1)^{-\frac{1}{2}}$	M1 A1ft
		At $x = 2$, $\frac{dy}{dx} = 4\sqrt{9} + \frac{10}{\sqrt{9}} = 12 + \frac{10}{3}$	M1
		$= \frac{46}{3}$ Accept awrt 15.3	A1 (6)
	(b)	$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\sin 2x}{x^2} \right) = \frac{2x^2 \cos 2x - 2x \sin 2x}{x^4}$	M1 A1+A1 A1 (4) [10]
		Alternative to (b) $ \frac{d}{dx} \left(\sin 2x \times x^{-2} \right) = 2\cos 2x \times x^{-2} + \sin 2x \times (-2)x^{-3} $ $ = 2x^{-2}\cos 2x - 2x^{-3}\sin 2x \left(= \frac{2\cos 2x}{x^2} - \frac{2\sin 2x}{x^3} \right) $	M1 A1 + A1 A1 (4)

Question Number	Scheme	Marks	
2 (a)	$\frac{2x+2}{x^2-2x-3} - \frac{x+1}{x-3} = \frac{2x+2}{(x-3)(x+1)} - \frac{x+1}{x-3}$ $2x+2-(x+1)(x+1)$		
	$=\frac{2x+2-(x+1)(x+1)}{(x-3)(x+1)}$	M1 A1	
	$=\frac{(x+1)(1-x)}{(x-3)(x+1)}$	M1	
	$= \frac{1-x}{x-3} \qquad \text{Accept } -\frac{x-1}{x-3}, \ \frac{x-1}{3-x}$	A1	(4)
(b)	$\frac{d}{dx} \left(\frac{1-x}{x-3} \right) = \frac{(x-3)(-1)-(1-x)1}{(x-3)^2}$	M1 A1	
	$= \frac{-x+3-1+x}{(x-3)^2} = \frac{2}{(x-3)^2} $ * cso	A1	(3)
			[7]
	Alternative to (a)		
	$\frac{2x+2}{x^2-2x-3} = \frac{2(x+1)}{(x-3)(x+1)} = \frac{2}{x-3}$	M1 A1	
	$\frac{2}{x-3} - \frac{x+1}{x-3} = \frac{2-(x+1)}{x-3}$	M1	
	$=\frac{1-x}{x-3}$	A1	(4)
	Alternatives to (b)		
	① $f(x) = \frac{1-x}{x-3} = -1 - \frac{2}{x-3} = -1 - 2(x-3)^{-1}$		
	$f'(x) = (-1)(-2)(x-3)^{-2}$	M1 A1	
	$=\frac{2}{\left(x-3\right)^2} \bigstar $ cso	A1	(3)
	② $f(x) = (1-x)(x-3)^{-1}$		
	$f'(x) = (-1)(x-3)^{-1} + (1-x)(-1)(x-3)^{-2}$	M1	
	$= -\frac{1}{x-3} - \frac{1-x}{(x-3)^2} = \frac{-(x-3)-(1-x)}{(x-3)^2}$	A1	
	$=\frac{2}{\left(x-3\right)^2} \bigstar$	A1	(3)

Question Number	Scheme	Marks
3 (a)	(3,6) Shape (3,6) (7,0)	B1 B1 B1 (3)
(b)	(3,5) (3,5) (7,2) Shape (3,5) (7,2)	B1 B1 B1 (3) [6]

Question Number	Scheme	Marks
4	$x = \cos(2y + \pi)$ $\frac{dx}{dy} = -2\sin(2y + \pi)$ $\frac{dy}{dx} = -\frac{1}{2\sin(2y + \pi)}$ Follow through their $\frac{dx}{dy}$ before or after substitution $x = \cos(2y + \pi)$ $\frac{dy}{dx} = -\frac{1}{2\sin(2y + \pi)}$ Follow through their $\frac{dx}{dy}$ before or after substitution $y - \frac{\pi}{4} = \frac{1}{2}x$ $y = \frac{1}{2}x + \frac{\pi}{4}$	M1 A1 A1ft B1 M1 A1 (6) [6]

Question Number		Scheme	Mar	·ks
5	(a)	$g(x) \ge 1$	B1	(1)
	(b)	$fg(x) = f(e^{x^2}) = 3e^{x^2} + lne^{x^2}$	M1	
		$= x^2 + 3e^{x^2} + $ $\left(\text{fg} : x \mapsto x^2 + 3e^{x^2} \right)$	A1	(2)
	(c)	$fg(x) \ge 3$	B1	(1)
	(d)	$\frac{d}{dx}\left(x^2 + 3e^{x^2}\right) = 2x + 6xe^{x^2}$	M1 A1	
		$2x + 6x e^{x^{2}} = x^{2} e^{x^{2}} + 2x$ $e^{x^{2}} (6x - x^{2}) = 0$ $e^{x^{2}} \neq 0, \qquad 6x - x^{2} = 0$ $x = 0, 6$	M1 A1 A1 A1	(6) [10]

Question Number	Scheme	Marks
6 (a)(i)	$\sin 3\theta = \sin(2\theta + \theta)$ $= \sin 2\theta \cos \theta + \cos 2\theta \sin \theta$ $= 2\sin \theta \cos \theta \cdot \cos \theta + (1 - 2\sin^2 \theta)\sin \theta$ $= 2\sin \theta (1 - \sin^2 \theta) + \sin \theta - 2\sin^3 \theta$ $= 3\sin \theta - 4\sin^3 \theta *$ cso	M1 A1 M1 A1 (4)
(ii)	$8\sin^{3}\theta - 6\sin\theta + 1 = 0$ $-2\sin 3\theta + 1 = 0$ $\sin 3\theta = \frac{1}{2}$ $3\theta = \frac{\pi}{6}, \frac{5\pi}{6}$ $\theta = \frac{\pi}{18}, \frac{5\pi}{18}$	M1 A1 M1 A1 A1 (5)
(b)	$\sin 15^{\circ} = \sin (60^{\circ} - 45^{\circ}) = \sin 60^{\circ} \cos 45^{\circ} - \cos 60^{\circ} \sin 45^{\circ}$ $= \frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{2}} - \frac{1}{2} \times \frac{1}{\sqrt{2}}$ $= \frac{1}{4} \sqrt{6} - \frac{1}{4} \sqrt{2} = \frac{1}{4} (\sqrt{6} - \sqrt{2}) * \text{cso}$	M1 M1 A1 A1 (4) [13]
	Alternatives to (b) ① $\sin 15^\circ = \sin (45^\circ - 30^\circ) = \sin 45^\circ \cos 30^\circ - \cos 45^\circ \sin 30^\circ$ $= \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \times \frac{1}{2}$ $= \frac{1}{4} \sqrt{6} - \frac{1}{4} \sqrt{2} = \frac{1}{4} (\sqrt{6} - \sqrt{2}) * \text{cso}$	M1 M1 A1 (4)
	② Using $\cos 2\theta = 1 - 2\sin^2 \theta$, $\cos 30^\circ = 1 - 2\sin^2 15^\circ$ $2\sin^2 15^\circ = 1 - \cos 30^\circ = 1 - \frac{\sqrt{3}}{2}$ $\sin^2 15^\circ = \frac{2 - \sqrt{3}}{4}$ $\left(\frac{1}{4}(\sqrt{6} - \sqrt{2})\right)^2 = \frac{1}{16}(6 + 2 - 2\sqrt{12}) = \frac{2 - \sqrt{3}}{4}$ Hence $\sin 15^\circ = \frac{1}{4}(\sqrt{6} - \sqrt{2})$ * cso	M1 A1 M1 A1 (4)

Question Number		Scheme		Marks	
7	(a)	$f'(x) = 3e^{x} + 3xe^{x}$ $3e^{x} + 3xe^{x} = 3e^{x}(1+x) = 0$ $x = -1$ $f(-1) = -3e^{-1} - 1$	M1 A1 M1 A1 B1	(5)	
	(b)	$x_1 = 0.2596$ $x_2 = 0.2571$ $x_3 = 0.2578$	B1 B1 B1	(3)	
	(c)	Choosing $(0.25755, 0.25765)$ or an appropriate tighter interval. f(0.25755) = -0.000379 f(0.25765) = 0.000109 Change of sign (and continuity) \Rightarrow root $\in (0.25755, 0.25765) *$ cso	M1 A1 A1		
		($\Rightarrow x = 0.2576$, is correct to 4 decimal places) Note: $x = 0.25762765$ is accurate		(3) [11]	

Question Number		Scheme		Marks	
8	(a)	$R^{2} = 3^{2} + 4^{2}$ $R = 5$ $\tan \alpha = \frac{4}{3}$ $\alpha = 53 \dots ^{\circ}$	awrt 53°	M1 A1 M1 A1	(4)
	(b)	Maximum value is 5 At the maximum, $\cos(\theta - \alpha) = 1$ or $\theta - \alpha = 0$ $\theta = \alpha = 53 \dots \circ$	ft their R	B1 ft M1 A1 ft	(3)
	(c)	$f(t) = 10 + 5\cos(15t - \alpha)^{\circ}$ Minimum occurs when $\cos(15t - \alpha)^{\circ} = -1$ The minimum temperature is $(10 - 5)^{\circ} = 5^{\circ}$		M1 A1 ft	(2)
	(d)	$15t - \alpha = 180$ $t = 15.5$	awrt 15.5	M1 M1 A1	(3) [12]