Approximate Inference: Variational Bayes Inference (2)

Piyush Rai

Probabilistic Machine Learning (CS772A)

Oct 12, 2017

Recap

- ullet Assume an approximation class of distributions $\{q(oldsymbol{z}|\phi)\}$ parameterized by free parameters ϕ
- Approximate the true distribution p(z|x) by finding the "closest" $q(z|\phi)$ from this class

- Assume an approximation class of distributions $\{q(\mathbf{z}|\phi)\}$ parameterized by free parameters ϕ
- Approximate the true distribution p(z|x) by finding the "closest" $q(z|\phi)$ from this class

ullet ϕ (variational parameters) is like a "knob" that we have to tune to find the best matching $q(m{z}|\phi)$

- Assume an approximation class of distributions $\{q(z|\phi)\}$ parameterized by free parameters ϕ
- Approximate the true distribution p(z|x) by finding the "closest" $q(z|\phi)$ from this class

- ullet ϕ (variational parameters) is like a "knob" that we have to tune to find the best matching $q(m{z}|\phi)$
- $\phi^* = \operatorname{arg\,min}_{\phi} \operatorname{KL}[q_{\phi}(z)||p(z|x)]$

- ullet Assume an approximation class of distributions $\{q(oldsymbol{z}|\phi)\}$ parameterized by free parameters ϕ
- Approximate the true distribution p(z|x) by finding the "closest" $q(z|\phi)$ from this class

- ullet ϕ (variational parameters) is like a "knob" that we have to tune to find the best matching $q(m{z}|\phi)$
- $\phi^* = \arg\min_{\phi} \mathsf{KL}[q_{\phi}(\mathbf{z})||p(\mathbf{z}|\mathbf{x})]$: Approximate inference now becomes an optimization problem!

- ullet Assume an approximation class of distributions $\{q(oldsymbol{z}|\phi)\}$ parameterized by free parameters ϕ
- Approximate the true distribution p(z|x) by finding the "closest" $q(z|\phi)$ from this class

- ullet ϕ (variational parameters) is like a "knob" that we have to tune to find the best matching $q(oldsymbol{z}|\phi)$
- $\phi^* = \arg\min_{\phi} \mathsf{KL}[q_{\phi}(\mathbf{z})||p(\mathbf{z}|\mathbf{x})]$: Approximate inference now becomes an optimization problem!
- Even though we don't know p(z|x), we can solve the above problem by maximizing the **ELBO**

$$\ln p(\mathbf{X}) = \mathcal{L}(q) + \text{KL}(q||p)$$

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

$$\text{KL}(q||p) = -\int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{Z}|\mathbf{X})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

• The key identity central to VB inference is the following (holds for any choice of q)

$$\ln p(\mathbf{X}) = \mathcal{L}(q) + \text{KL}(q||p)$$

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

$$\text{KL}(q||p) = -\int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{Z}|\mathbf{X})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

• An Observation: The L.H.S. $\log p(X)$ is a constant w.r.t. **Z**

$$\ln p(\mathbf{X}) = \mathcal{L}(q) + \text{KL}(q||p)$$

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

$$\text{KL}(q||p) = -\int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{Z}|\mathbf{X})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

- An Observation: The L.H.S. $\log p(X)$ is a constant w.r.t. **Z**
- ullet Thus minimizing $\mathit{KL}(q||p) = \mathsf{maximizing}\ \mathcal{L}(q)$

$$\ln p(\mathbf{X}) = \mathcal{L}(q) + \text{KL}(q||p)$$

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

$$\text{KL}(q||p) = -\int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{Z}|\mathbf{X})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

- An Observation: The L.H.S. $\log p(X)$ is a constant w.r.t. **Z**
- Thus minimizing $\mathit{KL}(q||p) = \max \mathit{maximizing} \ \mathcal{L}(q)$
- Note: Since $KL \geq 0$, $\mathcal{L}(q)$ is a lower bound on the log-evidence $\log p(\mathbf{X})$ of the model m

$$\ln p(\mathbf{X}) = \mathcal{L}(q) + \text{KL}(q||p)$$

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

$$\text{KL}(q||p) = -\int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{Z}|\mathbf{X})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

- An Observation: The L.H.S. $\log p(X)$ is a constant w.r.t. **Z**
- Thus minimizing $\mathit{KL}(q||p) = \max \mathit{maximizing} \ \mathcal{L}(q)$
- Note: Since $KL \geq 0$, $\mathcal{L}(q)$ is a lower bound on the log-evidence $\log p(\mathbf{X})$ of the model m

$$\log p(\mathbf{X}|m) \geq \mathcal{L}(q)$$

$$\ln p(\mathbf{X}) = \mathcal{L}(q) + \text{KL}(q||p)$$

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

$$\text{KL}(q||p) = -\int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{Z}|\mathbf{X})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

- An Observation: The L.H.S. $\log p(X)$ is a constant w.r.t. **Z**
- Thus minimizing $\mathit{KL}(q||p) = \max \mathit{maximizing} \ \mathcal{L}(q)$
- Note: Since $KL \ge 0$, $\mathcal{L}(q)$ is a lower bound on the log-evidence $\log p(\mathbf{X})$ of the model m $\log p(\mathbf{X}|m) > \mathcal{L}(q)$
- Therefore $\mathcal{L}(q)$ is also known as the **Evidence Lower Bound (ELBO)**

• VB finds the q distribution that maximizes the ELBO

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

• VB finds the q distribution that maximizes the ELBO

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

$$\mathcal{L}(q) = \mathcal{L}(\phi) = \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] - \mathbb{E}_q[\log q(\mathbf{Z})]$$

VB finds the q distribution that maximizes the ELBO

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

• Note that q depends on the variational parameters ϕ . Expanding, we get

$$\mathcal{L}(q) = \mathcal{L}(\phi) = \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] - \mathbb{E}_q[\log q(\mathbf{Z})]$$

• Maximizing $\mathcal{L}(q)$ w.r.t. q (equivalently ϕ) can still be hard (note the expectation w.r.t. q)

VB finds the q distribution that maximizes the ELBO

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

$$\mathcal{L}(q) = \mathcal{L}(\phi) = \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] - \mathbb{E}_q[\log q(\mathbf{Z})]$$

- ullet Maximizing $\mathcal{L}(q)$ w.r.t. q (equivalently ϕ) can still be hard (note the expectation w.r.t. q)
- Some of the ways to make this problem easier

• VB finds the q distribution that maximizes the ELBO

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

$$\mathcal{L}(q) = \mathcal{L}(\phi) = \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] - \mathbb{E}_q[\log q(\mathbf{Z})]$$

- ullet Maximizing $\mathcal{L}(q)$ w.r.t. q (equivalently ϕ) can still be hard (note the expectation w.r.t. q)
- Some of the ways to make this problem easier
 - Restricting the form of the q distribution, e.g., mean-field VB inference

VB finds the q distribution that maximizes the ELBO

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

$$\mathcal{L}(q) = \mathcal{L}(\phi) = \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] - \mathbb{E}_q[\log q(\mathbf{Z})]$$

- ullet Maximizing $\mathcal{L}(q)$ w.r.t. q (equivalently ϕ) can still be hard (note the expectation w.r.t. q)
- Some of the ways to make this problem easier
 - Restricting the form of the q distribution, e.g., mean-field VB inference
 - Using Monte-Carlo approximation of the expectation/gradient of the ELBO

• Suppose we partition the latent variables Z into M groups Z_1, \ldots, Z_M

- ullet Suppose we partition the latent variables old Z into M groups $old Z_1, \dots, old Z_M$
- ullet Assume our approximation $q(\mathbf{Z})$ factorizes over these groups

$$q(\mathbf{Z}|\phi) = \prod_{i=1}^m q(\mathbf{Z}_i|\phi_i)$$

- ullet Suppose we partition the latent variables old Z into M groups $old Z_1, \dots, old Z_M$
- ullet Assume our approximation $q(\mathbf{Z})$ factorizes over these groups

$$q(\mathbf{Z}|\phi) = \prod_{i=1}^{M} q(\mathbf{Z}_i|\phi_i)$$

ullet In mean-field VB, learning the optimal q reduces to learning the optimal q_1,\ldots,q_M

- ullet Suppose we partition the latent variables old Z into M groups $old Z_1,\ldots,old Z_M$
- ullet Assume our approximation $q(\mathbf{Z})$ factorizes over these groups

$$q(\mathbf{Z}|\phi) = \prod_{i=1}^{M} q(\mathbf{Z}_i|\phi_i)$$

- ullet In mean-field VB, learning the optimal q reduces to learning the optimal q_1,\ldots,q_M
- Can be done via one of the following two (equivalent) ways

- ullet Suppose we partition the latent variables old Z into M groups $old Z_1,\dots,old Z_M$
- Assume our approximation $q(\mathbf{Z})$ factorizes over these groups

$$q(\mathbf{Z}|\phi) = \prod_{i=1}^{M} q(\mathbf{Z}_i|\phi_i)$$

- ullet In mean-field VB, learning the optimal q reduces to learning the optimal q_1,\ldots,q_M
- Can be done via one of the following two (equivalent) ways
 - ullet Compute each optimal q_j using the following expression (saw the derivation last time)

- ullet Suppose we partition the latent variables old Z into M groups $old Z_1,\ldots,old Z_M$
- Assume our approximation $q(\mathbf{Z})$ factorizes over these groups

$$q(\mathbf{Z}|\phi) = \prod_{i=1}^{M} q(\mathbf{Z}_i|\phi_i)$$

- ullet In mean-field VB, learning the optimal q reduces to learning the optimal q_1,\ldots,q_M
- Can be done via one of the following two (equivalent) ways
 - Compute each optimal q_i using the following expression (saw the derivation last time)

$$q_j^{\star}(\mathbf{Z}_j) = \frac{\exp\left(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})]\right)}{\int \exp\left(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})]\right) d\mathbf{Z}_j}$$

- ullet Suppose we partition the latent variables old Z into M groups $old Z_1,\ldots,old Z_M$
- ullet Assume our approximation $q(\mathbf{Z})$ factorizes over these groups

$$q(\mathbf{Z}|\phi) = \prod_{i=1}^{M} q(\mathbf{Z}_i|\phi_i)$$

- ullet In mean-field VB, learning the optimal q reduces to learning the optimal q_1,\ldots,q_M
- Can be done via one of the following two (equivalent) ways
 - Compute each optimal q_i using the following expression (saw the derivation last time)

$$q_j^{\star}(\mathbf{Z}_j) = \frac{\exp\left(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})]\right)}{\int \exp\left(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})]\right) d\mathbf{Z}_j}$$

ullet Assume some parameteric form of each q_i (ϕ_i 's will be params) and write down the ELBO

$$\mathcal{L}(q) = \mathcal{L}(\phi_1, \dots, \phi_M) = \int q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}) d\mathbf{Z} - \int q(\mathbf{Z}) \log q(\mathbf{Z}) d\mathbf{Z}$$

- ullet Suppose we partition the latent variables old Z into M groups $old Z_1,\ldots,old Z_M$
- Assume our approximation $q(\mathbf{Z})$ factorizes over these groups

$$q(\mathbf{Z}|\phi) = \prod_{i=1}^{M} q(\mathbf{Z}_i|\phi_i)$$

- ullet In mean-field VB, learning the optimal q reduces to learning the optimal q_1,\ldots,q_M
- Can be done via one of the following two (equivalent) ways
 - ullet Compute each optimal q_j using the following expression (saw the derivation last time)

$$q_j^{\star}(\mathbf{Z}_j) = \frac{\exp\left(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})]\right)}{\int \exp\left(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})]\right) d\mathbf{Z}_j}$$

ullet Assume some parameteric form of each q_i (ϕ_i 's will be params) and write down the ELBO

$$\mathcal{L}(q) = \mathcal{L}(\phi_1, \dots, \phi_M) = \int q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}) d\mathbf{Z} - \int q(\mathbf{Z}) \log q(\mathbf{Z}) d\mathbf{Z}$$

.. and compute the optimal values for variational parameters ϕ_1,\ldots,ϕ_M by taking derivatives..

- Suppose we partition the latent variables **Z** into M groups $\mathbf{Z}_1, \dots, \mathbf{Z}_M$
- Assume our approximation $q(\mathbf{Z})$ factorizes over these groups

$$q(\mathbf{Z}|\phi) = \prod_{i=1}^{m} q(\mathbf{Z}_i|\phi_i)$$

- In mean-field VB, learning the optimal q reduces to learning the optimal q_1, \ldots, q_M
- Can be done via one of the following two (equivalent) ways
 - Compute each optimal q_i using the following expression (saw the derivation last time)

$$q_j^{\star}(\mathbf{Z}_j) = \frac{\exp\left(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})]\right)}{\int \exp\left(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})]\right) \, d\mathbf{Z}_j}$$

• Assume some parameteric form of each q_i (ϕ_i 's will be params) and write down the ELBO

$$\mathcal{L}(q) = \mathcal{L}(\phi_1, \dots, \phi_M) = \int q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}) d\mathbf{Z} - \int q(\mathbf{Z}) \log q(\mathbf{Z}) d\mathbf{Z}$$

.. and compute the optimal values for variational parameters ϕ_1, \ldots, ϕ_M by taking derivatives...

• For both cases, deriving mean-field VB updates is easy if the model has local conjugacy

Some Properties of VB

Recall that VB is equivalent to finding q by minimizing $\mathsf{KL}(q||p)$

$$\mathrm{KL}(q||p) = -\int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

If the true posterior p is very small in some region then, to minimize KL(q||p), the approx. dist. q will also have to be very small (otherwise KL will be very large)

Some Properties of VB

Recall that VB is equivalent to finding q by minimizing $\mathsf{KL}(q||p)$

$$\mathrm{KL}(q||p) = -\int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

If the true posterior p is very small in some region then, to minimize KL(q||p), the approx. dist. q will also have to be very small (otherwise KL will be very large)

This has two key consequences for VB

- Underestimates the variances of the true posterior
- For multimodal posteriors, VB locks onto one of the modes

Figure: (Left) Zero-Forcing Property of VB, (Right) For multi-modal posterior, VB locks onto one of the models

Some Properties of VB

Recall that VB is equivalent to finding q by minimizing $\mathsf{KL}(q||p)$

$$\mathrm{KL}(q||p) = -\int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

If the true posterior p is very small in some region then, to minimize KL(q||p), the approx. dist. q will also have to be very small (otherwise KL will be very large)

This has two key consequences for VB

- Underestimates the variances of the true posterior
- For multimodal posteriors, VB locks onto one of the modes

Figure: (Left) Zero-Forcing Property of VB, (Right) For multi-modal posterior, VB locks onto one of the models

Note: Some other inference methods, e.g., Expectation Propagation (EP) can avoid this behavior

Today's Plan

Some recent advances in VB inference

Today's Plan

Some recent advances in VB inference

- Non-conjugate models. Lots of work on this. Will look at an approach called "Black-box" VI
 - Based on the idea of Monte-Carlo approximation of the ELBO gradient

Today's Plan

Some recent advances in VB inference

- Non-conjugate models. Lots of work on this. Will look at an approach called "Black-box" VI
 - Based on the idea of Monte-Carlo approximation of the ELBO gradient
- Scaling up VB for large datasets (Stochastic/Online VB)
 - Based on the idea of stochastic optimization techniques

Variational Inference for Non-Conjugate Models

Mean-Field VB for Non-Conjugate Models

Several ways to handle this

- Several ways to handle this
 - Use conjugate approximations for the non-conjugate parts of the model and then do MF-VB

- Several ways to handle this
 - Use conjugate approximations for the non-conjugate parts of the model and then do MF-VB
 - Black-box Variational Inference: Approximate ELBO derivatives using Monte-Carlo methods

- Several ways to handle this
 - Use conjugate approximations for the non-conjugate parts of the model and then do MF-VB
 - Black-box Variational Inference: Approximate ELBO derivatives using Monte-Carlo methods
- Black-box Variational Inference (BBVI) uses the following identity for the ELBO's derivative

$$abla_{\phi}\mathcal{L}(q) =
abla_{\phi}\mathbb{E}_{q}[\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi)]$$

- Several ways to handle this
 - Use conjugate approximations for the non-conjugate parts of the model and then do MF-VB
 - Black-box Variational Inference: Approximate ELBO derivatives using Monte-Carlo methods
- Black-box Variational Inference (BBVI) uses the following identity for the ELBO's derivative

$$\begin{array}{lcl} \nabla_{\phi}\mathcal{L}(q) & = & \nabla_{\phi}\mathbb{E}_{q}[\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi)] \\ & = & \mathbb{E}_{q}[\nabla_{\phi}\log q(\mathbf{Z}|\phi)(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))] \end{array} \text{ (proof on next slide)}$$

- Several ways to handle this
 - Use conjugate approximations for the non-conjugate parts of the model and then do MF-VB
 - Black-box Variational Inference: Approximate ELBO derivatives using Monte-Carlo methods
- Black-box Variational Inference (BBVI) uses the following identity for the ELBO's derivative

$$\begin{array}{lcl} \nabla_{\phi}\mathcal{L}(q) & = & \nabla_{\phi}\mathbb{E}_{q}[\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi)] \\ & = & \mathbb{E}_{q}[\nabla_{\phi}\log q(\mathbf{Z}|\phi)(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))] \end{array} \text{ (proof on next slide)}$$

ullet Thus ELBO gradient can be written in terms of expectation of gradient of $\log q(\mathbf{Z}|\phi)$

- Several ways to handle this
 - Use conjugate approximations for the non-conjugate parts of the model and then do MF-VB
 - Black-box Variational Inference: Approximate ELBO derivatives using Monte-Carlo methods
- Black-box Variational Inference (BBVI) uses the following identity for the ELBO's derivative

$$\begin{array}{lcl} \nabla_{\phi}\mathcal{L}(q) & = & \nabla_{\phi}\mathbb{E}_{q}[\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi)] \\ & = & \mathbb{E}_{q}[\nabla_{\phi}\log q(\mathbf{Z}|\phi)(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))] \end{array} \text{ (proof on next slide)}$$

- Thus ELBO gradient can be written in terms of expectation of gradient of $\log q(\mathbf{Z}|\phi)$
- Given S samples $\{\mathbf{Z}_s\}_{s=1}^S$ from $q(\mathbf{Z}|\phi)$, we can get (noisy) gradient $\nabla_{\phi}\mathcal{L}(q)$ as follows

$$abla_{\phi}\mathcal{L}(q) pprox rac{1}{S} \sum_{s=1}^{S}
abla_{\phi} \log q(\mathsf{Z}_{s}|\phi) (\log p(\mathsf{X},\mathsf{Z}_{s}) - \log q(\mathsf{Z}_{s}|\phi))$$

^{*}Black Box Variational Inference - Ranganath et al (2014)

$$abla_{\phi} \mathcal{L}(q) =
abla_{\phi} \int (\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi)) q(\mathbf{Z}|\phi) d\mathbf{Z}$$

$$\nabla_{\phi} \mathcal{L}(q) = \nabla_{\phi} \int (\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi)) q(\mathbf{Z}|\phi) d\mathbf{Z}$$

$$= \int \nabla_{\phi} [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi)) q(\mathbf{Z}|\phi)] d\mathbf{Z} \qquad (\nabla \text{ and } \int \text{ interchangeable; dominated convergence theorem)}$$

$$\begin{split} \nabla_{\phi} \mathcal{L}(q) &= \nabla_{\phi} \int (\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi)) q(\mathbf{Z}|\phi) d\mathbf{Z} \\ &= \int \nabla_{\phi} [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi)) q(\mathbf{Z}|\phi)] d\mathbf{Z} \quad (\nabla \text{ and } \int \text{ interchangeable; dominated convergence theorem}) \\ &= \int \nabla_{\phi} [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] q(\mathbf{Z}|\phi) + \nabla_{\phi} q(\mathbf{Z}|\phi) [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] d\mathbf{Z} \end{split}$$

$$\begin{split} \nabla_{\phi} \mathcal{L}(q) &= \nabla_{\phi} \int (\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi)) q(\mathbf{Z}|\phi) d\mathbf{Z} \\ &= \int \nabla_{\phi} [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi)) q(\mathbf{Z}|\phi)] d\mathbf{Z} \quad (\nabla \text{ and } \int \text{ interchangeable; dominated convergence theorem}) \\ &= \int \nabla_{\phi} [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] q(\mathbf{Z}|\phi) + \nabla_{\phi} q(\mathbf{Z}|\phi) [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] d\mathbf{Z} \\ &= \mathbb{E}_{q} [-\nabla_{\phi} \log q(\mathbf{Z}|\phi)] + \int \nabla_{\phi} q(\mathbf{Z}|\phi) [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] d\mathbf{Z} \end{split}$$

• The ELBO gradient can be written as

$$\begin{split} \nabla_{\phi} \mathcal{L}(q) &= \nabla_{\phi} \int (\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi)) q(\mathbf{Z}|\phi) d\mathbf{Z} \\ &= \int \nabla_{\phi} [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi)) q(\mathbf{Z}|\phi)] d\mathbf{Z} \quad (\nabla \text{ and } \int \text{ interchangeable; dominated convergence theorem}) \\ &= \int \nabla_{\phi} [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] q(\mathbf{Z}|\phi) + \nabla_{\phi} q(\mathbf{Z}|\phi) [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] d\mathbf{Z} \\ &= \mathbb{E}_{q} [-\nabla_{\phi} \log q(\mathbf{Z}|\phi)] + \int \nabla_{\phi} q(\mathbf{Z}|\phi) [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] d\mathbf{Z} \end{split}$$

 $\bullet \ \, \mathsf{Note that} \,\, \mathbb{E}_q[\nabla_\phi \log q(\mathbf{Z}|\phi)] = \mathbb{E}_q\left[\frac{\nabla_\phi q(\mathbf{Z}|\phi)}{q(\mathbf{Z}|\phi)} \right]$

• The ELBO gradient can be written as

$$\begin{split} \nabla_{\phi} \mathcal{L}(q) &= \nabla_{\phi} \int (\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi)) q(\mathbf{Z}|\phi) d\mathbf{Z} \\ &= \int \nabla_{\phi} [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi)) q(\mathbf{Z}|\phi)] d\mathbf{Z} \quad (\nabla \text{ and } \int \text{ interchangeable; dominated convergence theorem}) \\ &= \int \nabla_{\phi} [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] q(\mathbf{Z}|\phi) + \nabla_{\phi} q(\mathbf{Z}|\phi) [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] d\mathbf{Z} \\ &= \mathbb{E}_{\mathbf{q}} [-\nabla_{\phi} \log q(\mathbf{Z}|\phi)] + \int \nabla_{\phi} q(\mathbf{Z}|\phi) [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] d\mathbf{Z} \end{split}$$

• Note that $\mathbb{E}_q[
abla_\phi \log q(\mathbf{Z}|\phi)] = \mathbb{E}_q\left[rac{
abla_\phi q(\mathbf{Z}|\phi)}{q(\mathbf{Z}|\phi)}\right] = \int
abla_\phi q(\mathbf{Z}|\phi) d\mathbf{Z}$

• The ELBO gradient can be written as

$$\begin{array}{lll} \nabla_{\phi}\mathcal{L}(q) & = & \nabla_{\phi}\int(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))q(\mathbf{Z}|\phi)d\mathbf{Z} \\ \\ & = & \int\nabla_{\phi}[(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))q(\mathbf{Z}|\phi)]d\mathbf{Z} & (\nabla \text{ and } \int \text{ interchangeable; dominated convergence theorem}) \\ \\ & = & \int\nabla_{\phi}[(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))]q(\mathbf{Z}|\phi) + \nabla_{\phi}q(\mathbf{Z}|\phi)[(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))]d\mathbf{Z} \\ \\ & = & \mathbb{E}_{q}[-\nabla_{\phi}\log q(\mathbf{Z}|\phi)] + \int\nabla_{\phi}q(\mathbf{Z}|\phi)[(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))]d\mathbf{Z} \end{array}$$

• Note that $\mathbb{E}_q[
abla_\phi \log q(\mathbf{Z}|\phi)] = \mathbb{E}_q\left[rac{
abla_\phi q(\mathbf{Z}|\phi)}{q(\mathbf{Z}|\phi)}
ight] = \int
abla_\phi q(\mathbf{Z}|\phi) d\mathbf{Z} =
abla_\phi \int q(\mathbf{Z}|\phi) d\mathbf{Z}$

• The ELBO gradient can be written as

$$\begin{array}{lll} \nabla_{\phi}\mathcal{L}(q) & = & \nabla_{\phi}\int(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))q(\mathbf{Z}|\phi)d\mathbf{Z} \\ \\ & = & \int\nabla_{\phi}[(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))q(\mathbf{Z}|\phi)]d\mathbf{Z} & (\nabla \text{ and } \int \text{ interchangeable; dominated convergence theorem}) \\ \\ & = & \int\nabla_{\phi}[(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))]q(\mathbf{Z}|\phi) + \nabla_{\phi}q(\mathbf{Z}|\phi)[(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))]d\mathbf{Z} \\ \\ & = & \mathbb{E}_{q}[-\nabla_{\phi}\log q(\mathbf{Z}|\phi)] + \int\nabla_{\phi}q(\mathbf{Z}|\phi)[(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))]d\mathbf{Z} \end{array}$$

• Note that $\mathbb{E}_q[\nabla_\phi \log q(\mathbf{Z}|\phi)] = \mathbb{E}_q\left[rac{\nabla_\phi q(\mathbf{Z}|\phi)}{q(\mathbf{Z}|\phi)}
ight] = \int \nabla_\phi q(\mathbf{Z}|\phi) d\mathbf{Z} = \nabla_\phi \int q(\mathbf{Z}|\phi) d\mathbf{Z} = \nabla_\phi 1 = 0$

$$\begin{array}{lll} \nabla_{\phi}\mathcal{L}(q) & = & \nabla_{\phi}\int(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))q(\mathbf{Z}|\phi)d\mathbf{Z} \\ \\ & = & \int\nabla_{\phi}[(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))q(\mathbf{Z}|\phi)]d\mathbf{Z} & (\nabla \text{ and } \int \text{ interchangeable; dominated convergence theorem}) \\ \\ & = & \int\nabla_{\phi}[(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))]q(\mathbf{Z}|\phi) + \nabla_{\phi}q(\mathbf{Z}|\phi)[(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))]d\mathbf{Z} \\ \\ & = & \mathbb{E}_{q}[-\nabla_{\phi}\log q(\mathbf{Z}|\phi)] + \int\nabla_{\phi}q(\mathbf{Z}|\phi)[(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))]d\mathbf{Z} \end{array}$$

- Note that $\mathbb{E}_q[\nabla_\phi \log q(\mathbf{Z}|\phi)] = \mathbb{E}_q\left[\frac{\nabla_\phi q(\mathbf{Z}|\phi)}{q(\mathbf{Z}|\phi)}\right] = \int \nabla_\phi q(\mathbf{Z}|\phi) d\mathbf{Z} = \nabla_\phi \int q(\mathbf{Z}|\phi) d\mathbf{Z} = \nabla_\phi 1 = 0$
- ullet Also note that $abla_{\phi}q(\mathbf{Z}|\phi) =
 abla_{\phi}[\log q(\mathbf{Z}|\phi)]q(\mathbf{Z}|\phi)$

$$\begin{array}{lll} \nabla_{\phi}\mathcal{L}(q) & = & \nabla_{\phi}\int(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))q(\mathbf{Z}|\phi)d\mathbf{Z} \\ \\ & = & \int\nabla_{\phi}[(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))q(\mathbf{Z}|\phi)]d\mathbf{Z} & (\nabla \text{ and } \int \text{ interchangeable; dominated convergence theorem}) \\ \\ & = & \int\nabla_{\phi}[(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))]q(\mathbf{Z}|\phi) + \nabla_{\phi}q(\mathbf{Z}|\phi)[(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))]d\mathbf{Z} \\ \\ & = & \mathbb{E}_{q}[-\nabla_{\phi}\log q(\mathbf{Z}|\phi)] + \int\nabla_{\phi}q(\mathbf{Z}|\phi)[(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))]d\mathbf{Z} \end{array}$$

- Note that $\mathbb{E}_q[\nabla_\phi \log q(\mathbf{Z}|\phi)] = \mathbb{E}_q\left[\frac{\nabla_\phi q(\mathbf{Z}|\phi)}{q(\mathbf{Z}|\phi)}\right] = \int \nabla_\phi q(\mathbf{Z}|\phi) d\mathbf{Z} = \nabla_\phi \int q(\mathbf{Z}|\phi) d\mathbf{Z} = \nabla_\phi 1 = 0$
- Also note that $\nabla_{\phi} q(\mathbf{Z}|\phi) = \nabla_{\phi} [\log q(\mathbf{Z}|\phi)] q(\mathbf{Z}|\phi)$, using which

$$\int \nabla_{\phi} q(\mathbf{Z}|\phi) [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] d\mathbf{Z} = \int \nabla_{\phi} \log q(\mathbf{Z}|\phi) [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] q(\mathbf{Z}|\phi) d\mathbf{Z}$$

$$\begin{array}{lcl} \nabla_{\phi}\mathcal{L}(q) & = & \nabla_{\phi}\int(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))q(\mathbf{Z}|\phi)d\mathbf{Z} \\ \\ & = & \int\nabla_{\phi}[(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))q(\mathbf{Z}|\phi)]d\mathbf{Z} \qquad (\nabla \text{ and } \int \text{ interchangeable; dominated convergence theorem}) \\ \\ & = & \int\nabla_{\phi}[(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))]q(\mathbf{Z}|\phi) + \nabla_{\phi}q(\mathbf{Z}|\phi)[(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))]d\mathbf{Z} \\ \\ & = & \mathbb{E}_{q}[-\nabla_{\phi}\log q(\mathbf{Z}|\phi)] + \int\nabla_{\phi}q(\mathbf{Z}|\phi)[(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))]d\mathbf{Z} \end{array}$$

- Note that $\mathbb{E}_q[\nabla_\phi \log q(\mathbf{Z}|\phi)] = \mathbb{E}_q\left[\frac{\nabla_\phi q(\mathbf{Z}|\phi)}{q(\mathbf{Z}|\phi)}\right] = \int \nabla_\phi q(\mathbf{Z}|\phi) d\mathbf{Z} = \nabla_\phi \int q(\mathbf{Z}|\phi) d\mathbf{Z} = \nabla_\phi 1 = 0$
- Also note that $\nabla_{\phi} q(\mathbf{Z}|\phi) = \nabla_{\phi} [\log q(\mathbf{Z}|\phi)] q(\mathbf{Z}|\phi)$, using which

$$\int \nabla_{\phi} q(\mathbf{Z}|\phi) [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] d\mathbf{Z} = \int \nabla_{\phi} \log q(\mathbf{Z}|\phi) [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] q(\mathbf{Z}|\phi) d\mathbf{Z}$$

$$= \mathbb{E}_{q} [\nabla_{\phi} \log q(\mathbf{Z}|\phi) ((\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))]$$

• The ELBO gradient can be written as

$$\begin{array}{lcl} \nabla_{\phi}\mathcal{L}(q) & = & \nabla_{\phi}\int(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))q(\mathbf{Z}|\phi)d\mathbf{Z} \\ \\ & = & \int\nabla_{\phi}[(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))q(\mathbf{Z}|\phi)]d\mathbf{Z} \qquad (\nabla \text{ and } \int \text{ interchangeable; dominated convergence theorem}) \\ \\ & = & \int\nabla_{\phi}[(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))]q(\mathbf{Z}|\phi) + \nabla_{\phi}q(\mathbf{Z}|\phi)[(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))]d\mathbf{Z} \\ \\ & = & \mathbb{E}_{q}[-\nabla_{\phi}\log q(\mathbf{Z}|\phi)] + \int\nabla_{\phi}q(\mathbf{Z}|\phi)[(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))]d\mathbf{Z} \end{array}$$

- Note that $\mathbb{E}_q[\nabla_\phi \log q(\mathbf{Z}|\phi)] = \mathbb{E}_q\left[\frac{\nabla_\phi q(\mathbf{Z}|\phi)}{q(\mathbf{Z}|\phi)}\right] = \int \nabla_\phi q(\mathbf{Z}|\phi) d\mathbf{Z} = \nabla_\phi \int q(\mathbf{Z}|\phi) d\mathbf{Z} = \nabla_\phi 1 = 0$
- Also note that $\nabla_{\phi} q(\mathbf{Z}|\phi) = \nabla_{\phi} [\log q(\mathbf{Z}|\phi)] q(\mathbf{Z}|\phi)$, using which

$$\int \nabla_{\phi} q(\mathbf{Z}|\phi) [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] d\mathbf{Z} = \int \nabla_{\phi} \log q(\mathbf{Z}|\phi) [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] q(\mathbf{Z}|\phi) d\mathbf{Z}$$

$$= \mathbb{E}_{q} [\nabla_{\phi} \log q(\mathbf{Z}|\phi) ((\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))]$$

ullet Therefore $abla_{\phi}\mathcal{L}(q) = \mathbb{E}_q[
abla_{\phi}\log q(\mathbf{Z}|\phi)(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))]$

$$abla_{\phi}\mathcal{L}(q) pprox rac{1}{\mathcal{S}} \sum_{s=1}^{\mathcal{S}}
abla_{\phi} \log q(\mathbf{Z}_{s}|\phi) (\log p(\mathbf{X},\mathbf{Z}_{s}) - \log q(\mathbf{Z}_{s}|\phi))$$

• Recall that BBVI approximates the ELBO gradients by the Monte Carlo expectations

$$abla_{\phi}\mathcal{L}(q) pprox rac{1}{S} \sum_{s=1}^{S}
abla_{\phi} \log q(\mathbf{Z}_{s}|\phi) (\log p(\mathbf{X},\mathbf{Z}_{s}) - \log q(\mathbf{Z}_{s}|\phi))$$

• Enables applying VB inference for a wide variety of probabilistic models

$$abla_{\phi}\mathcal{L}(q) pprox rac{1}{S} \sum_{s=1}^{S}
abla_{\phi} \log q(\mathbf{Z}_{s}|\phi) (\log p(\mathbf{X},\mathbf{Z}_{s}) - \log q(\mathbf{Z}_{s}|\phi))$$

- Enables applying VB inference for a wide variety of probabilistic models
- Very few requirements

$$abla_{\phi}\mathcal{L}(q) pprox rac{1}{S} \sum_{s=1}^{S}
abla_{\phi} \log q(\mathbf{Z}_{s}|\phi) (\log p(\mathbf{X},\mathbf{Z}_{s}) - \log q(\mathbf{Z}_{s}|\phi))$$

- Enables applying VB inference for a wide variety of probabilistic models
- Very few requirements
 - ullet Should be able to sample from $q(\mathbf{Z}|\phi)$

$$abla_{\phi}\mathcal{L}(q) pprox rac{1}{S} \sum_{s=1}^{S}
abla_{\phi} \log q(\mathbf{Z}_{s}|\phi) (\log p(\mathbf{X},\mathbf{Z}_{s}) - \log q(\mathbf{Z}_{s}|\phi))$$

- Enables applying VB inference for a wide variety of probabilistic models
- Very few requirements
 - Should be able to sample from $q(\mathbf{Z}|\phi)$
 - Should be able to compute $\nabla_\phi \log q(\mathbf{Z}|\phi)$ (automatic differentiation methods exist!)

$$abla_{\phi}\mathcal{L}(q) pprox rac{1}{S} \sum_{s=1}^{S}
abla_{\phi} \log q(\mathbf{Z}_{s}|\phi) (\log p(\mathbf{X},\mathbf{Z}_{s}) - \log q(\mathbf{Z}_{s}|\phi))$$

- Enables applying VB inference for a wide variety of probabilistic models
- Very few requirements
 - Should be able to sample from $q(\mathbf{Z}|\phi)$
 - Should be able to compute $\nabla_{\phi} \log q(\mathbf{Z}|\phi)$ (automatic differentiation methods exist!)
 - Should be able to evaluate p(X, Z) and $\log q(Z|\phi)$

$$abla_{\phi}\mathcal{L}(q) pprox rac{1}{S} \sum_{s=1}^{S}
abla_{\phi} \log q(\mathbf{Z}_{s}|\phi) (\log p(\mathbf{X},\mathbf{Z}_{s}) - \log q(\mathbf{Z}_{s}|\phi))$$

- Enables applying VB inference for a wide variety of probabilistic models
- Very few requirements
 - Should be able to sample from $q(\mathbf{Z}|\phi)$
 - Should be able to compute $\nabla_{\phi} \log q(\mathbf{Z}|\phi)$ (automatic differentiation methods exist!)
 - Should be able to evaluate p(X, Z) and $\log q(Z|\phi)$
- Some tricks needed to control the variance in the Monte Carlo estimate of the ELBO gradient (if
 interested in the details, please refer to the BBVI paper)

Scalable (Online) Variational Inference

A Generic Probabilistic Model

ullet Assume D data points $old X = \{old x_1, \dots, old x_D\}$ generated via a probabilistic model

- ullet Assume local latent variables $old Z=\{old z_1,\ldots,old z_D\}$, one per data point $(old z_i$ for $old x_i,\ i=1,\ldots,D)$
- ullet Assume global latent variables eta shared by all data points
- ullet Probability distribution of data point $oldsymbol{x}_i$ only depends on $oldsymbol{z}_i$ and $oldsymbol{eta}$

A Generic Probabilistic Model

ullet Assume D data points $old X = \{old x_1, \dots, old x_D\}$ generated via a probabilistic model

- ullet Assume local latent variables $old Z=\{old z_1,\ldots,old z_D\}$, one per data point $(old z_i$ for $old x_i,\ i=1,\ldots,D)$
- ullet Assume global latent variables eta shared by all data points
- ullet Probability distribution of data point $oldsymbol{x}_i$ only depends on $oldsymbol{z}_i$ and $oldsymbol{eta}$
- The joint distribution for this model admits the following factorization

$$p(\mathbf{X}, \mathbf{Z}, \beta) = p(\beta) \prod_{i=1}^{D} p(x_i, z_i | \beta)$$

A Generic Probabilistic Model

ullet Assume D data points $old X = \{old x_1, \dots, old x_D\}$ generated via a probabilistic model

- ullet Assume local latent variables $old Z=\{old z_1,\ldots,old z_D\}$, one per data point $(old z_i$ for $old x_i,\ i=1,\ldots,D)$
- ullet Assume global latent variables eta shared by all data points
- ullet Probability distribution of data point $oldsymbol{x}_i$ only depends on $oldsymbol{z}_i$ and $oldsymbol{eta}$
- The joint distribution for this model admits the following factorization

$$p(\mathbf{x}, \mathbf{z}, \beta) = p(\beta) \prod_{i=1}^{D} p(x_i, z_i | \beta) = p(\beta) \prod_{i=1}^{D} p(x_i | z_i, \beta) p(z_i)$$

- Our goal is to infer the posterior distribution $p(\mathbf{Z}, \beta | \mathbf{X})$. Intractable in general.
- Let's approximate $p(\mathbf{Z}, \beta | \mathbf{X})$ using a mean-field distribution $q(\mathbf{Z}, \beta)$

$$q(\mathbf{Z}, \beta) = q(\beta) \prod_{i=1}^{D} q(\mathbf{z}_i)$$

- Our goal is to infer the posterior distribution $p(\mathbf{Z}, \beta | \mathbf{X})$. Intractable in general.
- Let's approximate $p(\mathbf{Z}, \beta | \mathbf{X})$ using a mean-field distribution $q(\mathbf{Z}, \beta)$

$$q(\mathbf{Z}, \beta) = q(\beta) \prod_{i=1}^{D} q(\mathbf{z}_i)$$

• The log joint probability has a simple form as a summation over all data points

$$\ln p(\mathbf{x}, \mathbf{z}, \beta) = \sum_{i=1}^{D} \ln p(x_i, z_i | \beta) + \ln p(\beta)$$

- Our goal is to infer the posterior distribution $p(\mathbf{Z}, \beta | \mathbf{X})$. Intractable in general.
- Let's approximate $p(\mathbf{Z}, \beta | \mathbf{X})$ using a mean-field distribution $q(\mathbf{Z}, \beta)$

$$q(\mathbf{Z}, eta) = q(eta) \prod_{i=1}^{D} q(\mathbf{z}_i)$$

• The log joint probability has a simple form as a summation over all data points

$$\ln p(\mathbf{x}, \mathbf{z}, \beta) = \sum_{i=1}^{D} \ln p(x_i, z_i | \beta) + \ln p(\beta)$$

• The ELBO $\mathcal{L} = \mathbb{E}_q \left[\ln \frac{p(\mathbf{X}, \mathbf{Z}, \beta)}{q(\mathbf{Z}, \beta)} \right]$ for the model can be written as

$$\mathcal{L} = \sum_{i=1}^{D} \mathbb{E}_{q} \left[\ln \frac{p(x_{i}, z_{i} | \beta)}{q(z_{i})} \right] + \mathbb{E}_{q} \left[\ln \frac{p(\beta)}{q(\beta)} \right]$$

- Our goal is to infer the posterior distribution $p(\mathbf{Z}, \boldsymbol{\beta}|\mathbf{X})$. Intractable in general.
- Let's approximate $p(\mathbf{Z}, \beta | \mathbf{X})$ using a mean-field distribution $q(\mathbf{Z}, \beta)$

$$q(\mathbf{Z}, \beta) = q(\beta) \prod_{i=1}^{D} q(\mathbf{z}_i)$$

• The log joint probability has a simple form as a summation over all data points

$$\ln p(\mathbf{x}, \mathbf{z}, \beta) = \sum_{i=1}^{D} \ln p(x_i, z_i | \beta) + \ln p(\beta)$$

• The ELBO $\mathcal{L} = \mathbb{E}_q \left[\ln \frac{p(\mathbf{X}, \mathbf{Z}, \beta)}{q(\mathbf{Z}, \beta)} \right]$ for the model can be written as

$$\mathcal{L} = \sum_{i=1}^{D} \mathbb{E}_{q} \left[\ln \frac{p(x_{i}, z_{i} | \beta)}{q(z_{i})} \right] + \mathbb{E}_{q} \left[\ln \frac{p(\beta)}{q(\beta)} \right]$$

• Can now do mean-field VB by optimizing w.r.t. $q(z_i)$, $\forall i$, and $q(\beta)$, until convergence

- The basic mean-field VB is a batch algorithm (each iteration operates on all the data)
- Each iteration has to look at every data point x_i and infer the corresponding $q(z_i)$, $\forall i$

Batch variational inference

- 1. For i = 1, ..., D, optimize $q(z_i)$
- 2. Optimize $q(\beta)$ \longrightarrow Depends on all the $q(z_i)$
- 3. Repeat

- The basic mean-field VB is a batch algorithm (each iteration operates on all the data)
- Each iteration has to look at every data point x_i and infer the corresponding $q(z_i)$, $\forall i$

Batch variational inference

- 1. For i = 1, ..., D, optimize $q(z_i)$
- 2. Optimize $q(\beta)$ \longrightarrow Depends on all the $q(z_i)$
- 3. Repeat
- This can be very slow is the number of data points D is very large
 - Before updating the global variables β , we must update all the local variables z_i 's

- The basic mean-field VB is a batch algorithm (each iteration operates on all the data)
- Each iteration has to look at every data point x_i and infer the corresponding $q(z_i)$, $\forall i$

Batch variational inference

- 1. For i = 1, ..., D, optimize $q(z_i)$
- 2. Optimize $q(\beta)$ Depends on all the $q(z_i)$
- 3. Repeat
- This can be very slow is the number of data points *D* is very large
 - Before updating the global variables β , we must update all the local variables z_i 's
- · Would like to have a faster inference algorithm that scales nicely with number of data points

• Based on the well-known idea of stochastic optimization

- Based on the well-known idea of stochastic optimization
- In each VB iteration, let's use only a small mini-batch of data points (chosen randomly)

- Based on the well-known idea of stochastic optimization
- In each VB iteration, let's use only a small mini-batch of data points (chosen randomly)

Stochastic variational inference

- 1. Randomly select a subset of local data, $S_t \subset \{1, \dots, D\}$
- 2. Construct the scaled variational objective function

$$\mathcal{L}_{t} = \underbrace{\frac{D}{|S_{t}|}}_{i \in S_{t}} \mathbb{E}_{q} \left[\ln \frac{p(x_{i}, z_{i} | \beta)}{q(z_{i})} \right] + \mathbb{E}_{q} \left[\ln \frac{p(\beta)}{q(\beta)} \right]$$

- 3. Optimize each $q(z_i)$ in \mathcal{L}_t only
- 4. Update the parameters of $q(\beta|\psi)$ using a gradient step

$$q(\beta|\psi) \rightarrow \psi_t = \psi_{t-1} + \rho_t M_t \nabla_{\psi} \mathcal{L}_t$$

5. Repeat

- Based on the well-known idea of stochastic optimization
- In each VB iteration, let's use only a small mini-batch of data points (chosen randomly)

Stochastic variational inference

- 1. Randomly select a subset of local data, $S_t \subset \{1, \dots, D\}$
- 2. Construct the scaled variational objective function

$$\mathcal{L}_{t} = \underbrace{\frac{D}{|S_{t}|}}_{i \in S_{t}} \mathbb{E}_{q} \left[\ln \frac{p(x_{i}, z_{i} | \beta)}{q(z_{i})} \right] + \mathbb{E}_{q} \left[\ln \frac{p(\beta)}{q(\beta)} \right]$$

- 3. Optimize each $q(z_i)$ in \mathcal{L}_t only
- 4. Update the parameters of $q(\beta|\psi)$ using a gradient step

$$q(\beta|\psi) \rightarrow \psi_t = \psi_{t-1} + \rho_t M_t \nabla_{\psi} \mathcal{L}_t$$

- 5. Repeat
- Similar in spirit to online EM

- Based on the well-known idea of stochastic optimization
- In each VB iteration, let's use only a small mini-batch of data points (chosen randomly)

Stochastic variational inference

- 1. Randomly select a subset of local data, $S_t \subset \{1, \dots, D\}$
- 2. Construct the scaled variational objective function

$$\mathcal{L}_{t} = \underbrace{\frac{D}{|S_{t}|}}_{i \in S_{t}} \mathbb{E}_{q} \left[\ln \frac{p(x_{i}, z_{i} | \beta)}{q(z_{i})} \right] + \mathbb{E}_{q} \left[\ln \frac{p(\beta)}{q(\beta)} \right]$$

- 3. Optimize each $q(z_i)$ in \mathcal{L}_t only
- 4. Update the parameters of $q(\beta|\psi)$ using a gradient step

$$q(\beta|\psi) \rightarrow \psi_t = \psi_{t-1} + \rho_t M_t \nabla_{\psi} \mathcal{L}_t$$

- 5. Repeat
- Similar in spirit to online EM
- ρ_t is a learning rate. M_t (a "pre-conditioner") will be defined later

- Based on the well-known idea of stochastic optimization
- In each VB iteration, let's use only a small mini-batch of data points (chosen randomly)

Stochastic variational inference

- 1. Randomly select a subset of local data, $S_t \subset \{1,\dots,D\}$
- 2. Construct the scaled variational objective function

$$\mathcal{L}_{t} = \underbrace{\frac{D}{|S_{t}|}}_{i \in S_{t}} \mathbb{E}_{q} \left[\ln \frac{p(x_{i}, z_{i} | \beta)}{q(z_{i})} \right] + \mathbb{E}_{q} \left[\ln \frac{p(\beta)}{q(\beta)} \right]$$

- 3. Optimize each $q(z_i)$ in \mathcal{L}_t only
- 4. Update the parameters of $q(\beta|\psi)$ using a gradient step

$$q(\beta|\psi) \rightarrow \psi_t = \psi_{t-1} + \rho_t M_t \nabla_{\psi} \mathcal{L}_t$$

- 5. Repeat
- Similar in spirit to online EM
- ρ_t is a learning rate. M_t (a "pre-conditioner") will be defined later
- ullet Note: In step-4, instead of solving for $q(eta|\psi)$ analytically, we are using a gradient method

• The ELBO on the full data

$$\mathcal{L} = \sum_{i=1}^{D} \mathbb{E}_q \left[\ln \frac{p(x_i, z_i | \beta)}{q(z_i)} \right] + \mathbb{E}_q \left[\ln \frac{p(\beta)}{q(\beta)} \right]$$

• The ELBO on the full data

$$\mathcal{L} = \sum_{i=1}^{D} \mathbb{E}_{q} \left[\ln \frac{p(x_{i}, z_{i} | \beta)}{q(z_{i})} \right] + \mathbb{E}_{q} \left[\ln \frac{p(\beta)}{q(\beta)} \right]$$

• The (scaled) ELBO on the random subset (mini-batch) of the data chosen in iteration t

$$\mathcal{L}_t = \frac{D}{|S_t|} \sum_{i=1}^{D} \mathbb{1}(d \in S_t) \mathbb{E}_q \left[\ln \frac{p(x_i, z_i | \beta)}{q(z_i)} \right] + \mathbb{E}_q \left[\ln \frac{p(\beta)}{q(\beta)} \right]$$

• The ELBO on the full data

$$\mathcal{L} = \sum_{i=1}^{D} \mathbb{E}_{q} \left[\ln \frac{p(x_{i}, z_{i} | \beta)}{q(z_{i})} \right] + \mathbb{E}_{q} \left[\ln \frac{p(\beta)}{q(\beta)} \right]$$

• The (scaled) ELBO on the random subset (mini-batch) of the data chosen in iteration t

$$\mathcal{L}_t = \frac{D}{|S_t|} \sum_{i=1}^{D} \mathbb{1}(d \in S_t) \mathbb{E}_q \left[\ln \frac{p(x_i, z_i | \beta)}{q(z_i)} \right] + \mathbb{E}_q \left[\ln \frac{p(\beta)}{q(\beta)} \right]$$

• The expectation of the mini-batch ELBO (expectation w.r.t. the random selection of mini-batch)

$$\mathbb{E}_{P}[\mathcal{L}_{t}] = \frac{D}{|S_{t}|} \sum_{i=1}^{D} \underbrace{\mathbb{E}_{P}[\mathbb{1}(d \in S_{t})]}_{P(d \in S_{t})} \mathbb{E}_{q} \left[\ln \frac{p(x_{i}, z_{i} | \beta)}{q(z_{i})} \right] + \mathbb{E}_{q} \left[\ln \frac{p(\beta)}{q(\beta)} \right]$$

• The ELBO on the full data

$$\mathcal{L} = \sum_{i=1}^{D} \mathbb{E}_{q} \left[\ln \frac{p(x_{i}, z_{i} | \beta)}{q(z_{i})} \right] + \mathbb{E}_{q} \left[\ln \frac{p(\beta)}{q(\beta)} \right]$$

• The (scaled) ELBO on the random subset (mini-batch) of the data chosen in iteration t

$$\mathcal{L}_t = \frac{D}{|S_t|} \sum_{i=1}^{D} \mathbb{1}(d \in S_t) \mathbb{E}_q \left[\ln \frac{p(x_i, z_i | \beta)}{q(z_i)} \right] + \mathbb{E}_q \left[\ln \frac{p(\beta)}{q(\beta)} \right]$$

• The expectation of the mini-batch ELBO (expectation w.r.t. the random selection of mini-batch)

$$\mathbb{E}_{P}[\mathcal{L}_{t}] = \frac{D}{|S_{t}|} \sum_{i=1}^{D} \underbrace{\mathbb{E}_{P}[\mathbb{1}(d \in S_{t})]}_{P(d \in S_{t})} \mathbb{E}_{q} \left[\ln \frac{p(x_{i}, z_{i} | \beta)}{q(z_{i})} \right] + \mathbb{E}_{q} \left[\ln \frac{p(\beta)}{q(\beta)} \right]$$

• Note that $P(d \in S_t) = \frac{|S_t|}{D}$. Therefore $\mathbb{E}_P[\mathcal{L}_t] = \mathcal{L}$ (this is good news!)

$$\mathbb{E}_{P}[\psi_{t}] = \psi_{t-1} + \rho_{t} M_{t} \nabla_{\psi} \mathbb{E}_{P}[\mathcal{L}_{t}] (= \psi_{t-1} + \rho_{t} M_{t} \nabla_{\psi} \mathcal{L})$$

• For our stochastic update of ψ for updating $q(\beta|\psi)$, i.e., $\psi_t = \psi_{t-1} + \rho_t M_t \nabla_{\psi} \mathcal{L}_t$

$$\mathbb{E}_{P}[\psi_{t}] = \psi_{t-1} + \rho_{t} M_{t} \nabla_{\psi} \mathbb{E}_{P}[\mathcal{L}_{t}] (= \psi_{t-1} + \rho_{t} M_{t} \nabla_{\psi} \mathcal{L})$$

ullet Therefore the stochastic gradient computed using S_t is unbiased

$$\mathbb{E}_{P}[\psi_{t}] = \psi_{t-1} + \rho_{t} M_{t} \nabla_{\psi} \mathbb{E}_{P}[\mathcal{L}_{t}] (= \psi_{t-1} + \rho_{t} M_{t} \nabla_{\psi} \mathcal{L})$$

- ullet Therefore the stochastic gradient computed using S_t is unbiased
- \bullet We now basically have an stochastic gradient method to update ψ

$$\mathbb{E}_{P}[\psi_{t}] = \psi_{t-1} + \rho_{t} M_{t} \nabla_{\psi} \mathbb{E}_{P}[\mathcal{L}_{t}] (= \psi_{t-1} + \rho_{t} M_{t} \nabla_{\psi} \mathcal{L})$$

- ullet Therefore the stochastic gradient computed using S_t is unbiased
- ullet We now basically have an stochastic gradient method to update ψ
- Note: The learning rate ho_t must satisfy $\sum_{t=1}^\infty
 ho_t = \infty$ and $\sum_{t=1}^\infty
 ho_t^2 < \infty$

$$\mathbb{E}_{P}[\psi_{t}] = \psi_{t-1} + \rho_{t} M_{t} \nabla_{\psi} \mathbb{E}_{P}[\mathcal{L}_{t}] (= \psi_{t-1} + \rho_{t} M_{t} \nabla_{\psi} \mathcal{L})$$

- Therefore the stochastic gradient computed using S_t is unbiased
- ullet We now basically have an stochastic gradient method to update ψ
- Note: The learning rate ho_t must satisfy $\sum_{t=1}^\infty
 ho_t = \infty$ and $\sum_{t=1}^\infty
 ho_t^2 < \infty$
 - Setting $\rho_t = \frac{1}{(t_0 + t)^{\kappa}}$ with $\kappa \in (0.5, 1)$ ensures this. t_0 is some positive number.

$$\mathbb{E}_{P}[\psi_{t}] = \psi_{t-1} + \rho_{t} M_{t} \nabla_{\psi} \mathbb{E}_{P}[\mathcal{L}_{t}] (= \psi_{t-1} + \rho_{t} M_{t} \nabla_{\psi} \mathcal{L})$$

- Therefore the stochastic gradient computed using S_t is unbiased
- ullet We now basically have an stochastic gradient method to update ψ
- Note: The learning rate ho_t must satisfy $\sum_{t=1}^\infty
 ho_t = \infty$ and $\sum_{t=1}^\infty
 ho_t^2 < \infty$
 - Setting $\rho_t = \frac{1}{(t_0 + t)^{\kappa}}$ with $\kappa \in (0.5, 1)$ ensures this. t_0 is some positive number.
- Note that SVI also gives us all the "local" $q(z_i)$ distributions in the normal way. It's only the $q(\beta)$ distribution (which depends on the local distributions) that is inferred in an online fashion

• Assuming the joint distribution of data x_i and local latent var. z_i to be exponential family dist.

$$p(\mathbf{X}, \mathbf{Z}|\beta) = \prod_{i=1}^{D} p(x_i, z_i|\beta) = \left[\prod_{i=1}^{D} h(x_i, z_i) \right] e^{\beta^T \sum_{i=1}^{D} t(x_i, z_i) - DA(\beta)}$$

• Assuming the joint distribution of data x_i and local latent var. z_i to be exponential family dist.

$$p(\mathbf{X}, \mathbf{Z}|\beta) = \prod_{i=1}^{D} p(x_i, z_i|\beta) = \left[\prod_{i=1}^{D} h(x_i, z_i) \right] e^{\beta^T \sum_{i=1}^{D} t(x_i, z_i) - DA(\beta)}$$

ullet Let's assume a conjugate prior on the global variables eta

$$p(\beta) = f(\xi, \nu)e^{\beta^{\top}\xi - \nu A(\beta)}$$

• Assuming the joint distribution of data x_i and local latent var. z_i to be exponential family dist.

$$p(\mathbf{X}, \mathbf{Z}|\beta) = \prod_{i=1}^{D} p(x_i, z_i|\beta) = \left[\prod_{i=1}^{D} h(x_i, z_i)\right] e^{\beta^T \sum_{i=1}^{D} t(x_i, z_i) - DA(\beta)}$$

ullet Let's assume a conjugate prior on the global variables eta

$$p(\beta) = f(\xi, \nu)e^{\beta^{\top}\xi - \nu A(\beta)}$$

• Let's assume our variational distribution $q(\beta)$ to have the same form as the prior $p(\beta)$

$$q(\beta) = f(\xi', \nu')e^{\beta^{\top}\xi' - \nu' A(\beta)}$$

• Assuming the joint distribution of data x_i and local latent var. z_i to be exponential family dist.

$$p(\mathbf{X}, \mathbf{Z}|\beta) = \prod_{i=1}^{D} p(x_i, z_i|\beta) = \left[\prod_{i=1}^{D} h(x_i, z_i)\right] e^{\beta^T \sum_{i=1}^{D} t(x_i, z_i) - DA(\beta)}$$

ullet Let's assume a conjugate prior on the global variables eta

$$p(\beta) = f(\xi, \nu)e^{\beta^{\top}\xi - \nu A(\beta)}$$

• Let's assume our variational distribution $q(\beta)$ to have the same form as the prior $p(\beta)$

$$q(\beta) = f(\xi', \nu')e^{\beta^{\top}\xi' - \nu' A(\beta)}$$

ullet SVI will basically do stochastic optimization to learn the parameters $\xi',
u'$ of variational distribution

• Assuming the joint distribution of data x_i and local latent var. z_i to be exponential family dist.

$$p(\mathbf{X}, \mathbf{Z}|\beta) = \prod_{i=1}^{D} p(x_i, z_i|\beta) = \left[\prod_{i=1}^{D} h(x_i, z_i)\right] e^{\beta^T \sum_{i=1}^{D} t(x_i, z_i) - DA(\beta)}$$

ullet Let's assume a conjugate prior on the global variables eta

$$p(\beta) = f(\xi, \nu)e^{\beta^{\top}\xi - \nu A(\beta)}$$

• Let's assume our variational distribution $q(\beta)$ to have the same form as the prior $p(\beta)$

$$q(\beta) = f(\xi', \nu')e^{\beta^{\top}\xi' - \nu' A(\beta)}$$

- ullet SVI will basically do stochastic optimization to learn the parameters $\xi',
 u'$ of variational distribution
- We will now look at the general form of these updates for a generic model with exp. family dist.

• If we were doing full batch updates for $q(\beta|\psi)$ (where $\psi = [\xi, \nu]$) using gradient methods then

$$\begin{bmatrix} \xi' \\ \nu' \end{bmatrix} \leftarrow \begin{bmatrix} \xi' \\ \nu' \end{bmatrix} + \rho_t M_t \nabla_{(\xi',\nu')} \mathcal{L}$$

• If we were doing full batch updates for $q(\beta|\psi)$ (where $\psi = [\xi, \nu]$) using gradient methods then

$$\begin{bmatrix} \xi' \\ \nu' \end{bmatrix} \leftarrow \begin{bmatrix} \xi' \\ \nu' \end{bmatrix} + \rho_t M_t \nabla_{(\xi', \nu')} \mathcal{L}$$

ullet For this update, the part of ${\cal L}$ that depends on eta is

$$\mathcal{L}_{\beta} = \sum_{i=1}^{D} \mathbb{E}_{q}[\ln p(x_{i}, z_{i}|\beta)] + \mathbb{E}_{q}[\ln p(\beta)] - \mathbb{E}_{q}[\ln q(\beta)]$$

• If we were doing full batch updates for $q(\beta|\psi)$ (where $\psi = [\xi, \nu]$) using gradient methods then

$$\begin{bmatrix} \xi' \\ \nu' \end{bmatrix} \leftarrow \begin{bmatrix} \xi' \\ \nu' \end{bmatrix} + \rho_t M_t \nabla_{(\xi',\nu')} \mathcal{L}$$

ullet For this update, the part of ${\cal L}$ that depends on β is

$$\mathcal{L}_{\beta} = \sum_{i=1}^{D} \mathbb{E}_{q}[\ln p(x_{i}, z_{i}|\beta)] + \mathbb{E}_{q}[\ln p(\beta)] - \mathbb{E}_{q}[\ln q(\beta)]$$

Plugging in the expressions for exponential family distributions (given on the previous slide)

$$\mathcal{L}_{\beta} = \mathbb{E}_{q}[\beta]^{T} \left(\sum_{i=1}^{D} \mathbb{E}[t(x_{i}, z_{i})] + \xi - \xi' \right) - \mathbb{E}_{q}[A(\beta)](D + \nu - \nu') + \ln f(\xi', \nu') + \text{const.}$$

• If we were doing full batch updates for $q(\beta|\psi)$ (where $\psi = [\xi, \nu]$) using gradient methods then

$$\begin{bmatrix} \xi' \\ \nu' \end{bmatrix} \leftarrow \begin{bmatrix} \xi' \\ \nu' \end{bmatrix} + \rho_t M_t \nabla_{(\xi',\nu')} \mathcal{L}$$

ullet For this update, the part of ${\cal L}$ that depends on eta is

$$\mathcal{L}_{\beta} = \sum_{i=1}^{D} \mathbb{E}_{q}[\ln p(x_{i}, z_{i}|\beta)] + \mathbb{E}_{q}[\ln p(\beta)] - \mathbb{E}_{q}[\ln q(\beta)]$$

Plugging in the expressions for exponential family distributions (given on the previous slide)

$$\mathcal{L}_{\beta} = \mathbb{E}_{q}[\beta]^{T} \left(\sum_{i=1}^{D} \mathbb{E}[t(x_{i}, z_{i})] + \xi - \xi' \right) - \mathbb{E}_{q}[A(\beta)](D + \nu - \nu') + \ln f(\xi', \nu') + \text{const.}$$

• Note that it requires computing two expectations $\mathbb{E}_q[eta]$ and $\mathbb{E}_q[A(eta)]$

ullet The expectations $\mathbb{E}_q[eta]$ and $\mathbb{E}_q[A(eta)]$ can be computed as follows

$$q(\beta) = f(\xi', \nu') e^{\beta^T \xi' - \nu' A(\beta)}$$

$$\int \nabla_{\xi'} q(\beta) d\beta = 0, \qquad \int \frac{\partial}{\partial \nu'} q(\beta) d\beta = 0$$

$$\mathbb{E}_q[\beta] = -\nabla_{\xi'} \ln f(\xi', \nu'), \qquad \mathbb{E}_q[A(\beta)] = \frac{\partial \ln f(\xi', \nu')}{\partial \nu'}$$

• Exercise: Verify the above (using the fact that $q(\beta)$ is an exp-family dist.)

ullet The expectations $\mathbb{E}_q[eta]$ and $\mathbb{E}_q[A(eta)]$ can be computed as follows

$$q(\beta) = f(\xi', \nu') e^{\beta^T \xi' - \nu' A(\beta)}$$

$$\int \nabla_{\xi'} q(\beta) d\beta = 0, \qquad \int \frac{\partial}{\partial \nu'} q(\beta) d\beta = 0$$

$$\mathbb{E}_q[\beta] = -\nabla_{\xi'} \ln f(\xi', \nu'), \qquad \mathbb{E}_q[A(\beta)] = \frac{\partial \ln f(\xi', \nu')}{\partial \nu'}$$

- Exercise: Verify the above (using the fact that $q(\beta)$ is an exp-family dist.)
- ullet These can then be plugged into the expression of \mathcal{L}_eta

ELBO gradient (batch case)

$$\nabla_{(\xi',\nu')} \mathcal{L}_{\beta} = \begin{bmatrix} \nabla_{\xi'} \mathcal{L}_{\beta} \\ \frac{\partial}{\partial \nu'} \mathcal{L}_{\beta} \end{bmatrix} = - \begin{bmatrix} \nabla_{\xi'}^{2} \ln f(\xi',\nu') & \frac{\partial^{2} \ln f(\xi',\nu')}{\partial \nu' \partial \xi'} \\ \frac{\partial^{2} \ln f(\xi',\nu')}{\partial \nu' \partial \xi'^{T}} & \frac{\partial^{2} \ln f(\xi',\nu')}{\partial \nu' \partial \xi'} \end{bmatrix} \begin{bmatrix} \sum_{i=1}^{D} \mathbb{E}_{q}[t(x_{i},z_{i})] + \xi - \xi' \\ D + \nu - \nu' \end{bmatrix}$$

ELBO gradient (batch case)

$$\nabla_{(\xi',\nu')} \mathcal{L}_{\beta} = \begin{bmatrix} \nabla_{\xi'} \mathcal{L}_{\beta} \\ \frac{\partial}{\partial \nu'} \mathcal{L}_{\beta} \end{bmatrix} = - \begin{bmatrix} \nabla_{\xi'}^{2} \ln f(\xi',\nu') & \frac{\partial^{2} \ln f(\xi',\nu')}{\partial \nu' \partial \xi} \\ \frac{\partial^{2} \ln f(\xi',\nu')}{\partial \nu' \partial \xi'^{T}} & \frac{\partial^{2} \ln f(\xi',\nu')}{\partial \nu'^{2}} \end{bmatrix} \begin{bmatrix} \sum_{i=1}^{D} \mathbb{E}_{q}[t(x_{i},z_{i})] + \xi - \xi' \\ D + \nu - \nu' \end{bmatrix}$$

• Since preconditioning matrix is p.s.d., setting gradient to zero gives closed-form batch VB update

$$\xi' = \xi + \sum_{i=1}^{D} \mathbb{E}[t(x_i, z_i)], \qquad \nu' = \nu + D$$

ELBO gradient (batch case)

$$\nabla_{(\xi',\nu')} \mathcal{L}_{\beta} = \begin{bmatrix} \nabla_{\xi'} \mathcal{L}_{\beta} \\ \frac{\partial}{\partial \nu'} \mathcal{L}_{\beta} \end{bmatrix} = - \begin{bmatrix} \nabla_{\xi'}^{2} \ln f(\xi',\nu') & \frac{\partial^{2} \ln f(\xi',\nu')}{\partial \nu' \partial \xi} \\ \frac{\partial^{2} \ln f(\xi',\nu')}{\partial \nu' \partial \xi'^{T}} & \frac{\partial^{2} \ln f(\xi',\nu')}{\partial \nu'^{2}} \end{bmatrix} \begin{bmatrix} \sum_{i=1}^{D} \mathbb{E}_{q}[t(x_{i},z_{i})] + \xi - \xi' \\ D + \nu - \nu' \end{bmatrix}$$

• Since preconditioning matrix is p.s.d., setting gradient to zero gives closed-form batch VB update

$$\xi' = \xi + \sum_{i=1}^{D} \mathbb{E}[t(x_i, z_i)], \qquad \nu' = \nu + D$$

ullet The SVI uses the stochastic gradients and the updates will be $\psi_t=\psi_{t-1}+
ho_t \mathcal{M}_t
abla_\psi \mathcal{L}_t$

$$\begin{bmatrix} \xi_t' \\ \nu_t' \end{bmatrix} = \begin{bmatrix} \xi_{t-1}' \\ \nu_{t-1}' \end{bmatrix} - \rho_t M_t \begin{bmatrix} \nabla_{\xi'}^2 \ln f(\xi', \nu') & \frac{\partial^2 \ln f(\xi', \nu')}{\partial \nu' \partial \xi} \\ \frac{\partial^2 \ln f(\xi', \nu')}{\partial \nu' \partial \xi''^T} & \frac{\partial^2 \ln f(\xi', \nu')}{\partial \nu'^2} \end{bmatrix} \begin{bmatrix} \frac{D}{|S_t|} \sum_{i \in S_t} \mathbb{E}[t(x_i, z_i)] + \xi - \xi_{t-1}' \\ D + \nu - \nu_{t-1}' \end{bmatrix}$$

ELBO gradient (batch case)

$$\nabla_{(\xi',\nu')} \mathcal{L}_{\beta} = \begin{bmatrix} \nabla_{\xi'} \mathcal{L}_{\beta} \\ \frac{\partial}{\partial \nu'} \mathcal{L}_{\beta} \end{bmatrix} = - \begin{bmatrix} \nabla_{\xi'}^{2} \ln f(\xi',\nu') & \frac{\partial^{2} \ln f(\xi',\nu')}{\partial \nu' \partial \xi} \\ \frac{\partial^{2} \ln f(\xi',\nu')}{\partial \nu' \partial \xi'^{T}} & \frac{\partial^{2} \ln f(\xi',\nu')}{\partial \nu'^{2}} \end{bmatrix} \begin{bmatrix} \sum_{i=1}^{D} \mathbb{E}_{q}[t(x_{i},z_{i})] + \xi - \xi' \\ D + \nu - \nu' \end{bmatrix}$$

Since preconditioning matrix is p.s.d., setting gradient to zero gives closed-form batch VB update

$$\xi' = \xi + \sum_{i=1}^{D} \mathbb{E}[t(x_i, z_i)], \qquad \nu' = \nu + D$$

• The SVI uses the stochastic gradients and the updates will be $\psi_t = \psi_{t-1} + \rho_t M_t \nabla_\psi \mathcal{L}_t$

$$\begin{bmatrix} \xi_t' \\ \nu_t' \end{bmatrix} = \begin{bmatrix} \xi_{t-1}' \\ \nu_{t-1}' \end{bmatrix} - \rho_t M_t \begin{bmatrix} \nabla_{\xi'}^2 \ln f(\xi', \nu') & \frac{\partial^2 \ln f(\xi', \nu')}{\partial \nu' \partial \xi} \\ \frac{\partial^2 \ln f(\xi', \nu')}{\partial \nu' \partial \xi''^T} & \frac{\partial^2 \ln f(\xi', \nu')}{\partial \nu'^2} \end{bmatrix} \begin{bmatrix} \frac{D}{|S_t|} \sum_{i \in S_t} \mathbb{E}[t(x_i, z_i)] + \xi - \xi_{t-1}' \\ D + \nu - \nu_{t-1}' \end{bmatrix}$$

• M_t can be set to I. However we can choose M_t sensibly to get a clean update.

• Our stochastic gradient updates had the form

$$\begin{bmatrix} \xi_t' \\ \nu_t' \end{bmatrix} = \begin{bmatrix} \xi_{t-1}' \\ \nu_{t-1}' \end{bmatrix} - \rho_t M_t \begin{bmatrix} \nabla_{\xi'}^2 \ln f(\xi', \nu') & \frac{\partial^2 \ln f(\xi', \nu')}{\partial \nu' \partial \xi} \\ \frac{\partial^2 \ln f(\xi', \nu')}{\partial \nu' \partial \xi'^T} & \frac{\partial^2 \ln f(\xi', \nu')}{\partial \nu'^2} \end{bmatrix} \begin{bmatrix} \frac{D}{|S_t|} \sum_{i \in S_t} \mathbb{E}[t(x_i, z_i)] + \xi - \xi_{t-1}' \\ D + \nu - \nu_{t-1}' \end{bmatrix}$$

• Our stochastic gradient updates had the form

$$\begin{bmatrix} \xi_t' \\ \nu_t' \end{bmatrix} = \begin{bmatrix} \xi_{t-1}' \\ \nu_{t-1}' \end{bmatrix} - \rho_t M_t \begin{bmatrix} \nabla_{\xi'}^2 \ln f(\xi', \nu') & \frac{\partial^2 \ln f(\xi', \nu')}{\partial \nu' \partial \xi} \\ \frac{\partial^2 \ln f(\xi', \nu')}{\partial \nu' \partial \xi'^T} & \frac{\partial^2 \ln f(\xi', \nu')}{\partial \nu'^2} \end{bmatrix} \begin{bmatrix} \frac{D}{|S_t|} \sum_{i \in S_t} \mathbb{E}[t(x_i, z_i)] + \xi - \xi_{t-1}' \\ D + \nu - \nu_{t-1}' \end{bmatrix}$$

• Suppose we set M_t as

$$M_t = -\begin{bmatrix} \nabla_{\xi'}^2 \ln f(\xi', \nu') & \frac{\partial^2 \ln f(\xi', \nu')}{\partial \nu' \partial \xi} \\ \frac{\partial^2 \ln f(\xi', \nu')}{\partial \nu' \partial \xi'^T} & \frac{\partial^2 \ln f(\xi', \nu')}{\partial \nu'^2} \end{bmatrix}^{-1}$$

• Our stochastic gradient updates had the form

$$\begin{bmatrix} \xi'_t \\ \nu'_t \end{bmatrix} = \begin{bmatrix} \xi'_{t-1} \\ \nu'_{t-1} \end{bmatrix} - \rho_t M_t \begin{bmatrix} \nabla^2_{\xi'} \ln f(\xi', \nu') & \frac{\partial^2 \ln f(\xi', \nu')}{\partial \nu' \partial \xi} \\ \frac{\partial^2 \ln f(\xi', \nu')}{\partial \nu' \partial \xi'''} & \frac{\partial^2 \ln f(\xi', \nu')}{\partial \nu'^2} \end{bmatrix} \begin{bmatrix} \frac{D}{|S_t|} \sum_{i \in S_t} \mathbb{E}[t(x_i, z_i)] + \xi - \xi'_{t-1} \\ D + \nu - \nu'_{t-1} \end{bmatrix}$$

• Suppose we set M_t as

$$M_t = -\begin{bmatrix} \nabla_{\xi'}^2 \ln f(\xi', \nu') & \frac{\partial^2 \ln f(\xi', \nu')}{\partial \nu' \partial \xi} \\ \frac{\partial^2 \ln f(\xi', \nu')}{\partial \nu' \partial \xi'^T} & \frac{\partial^2 \ln f(\xi', \nu')}{\partial \nu'^2} \end{bmatrix}^{-1}$$

Then the updates will be

$$\xi'_{t} = (1 - \rho_{t})\xi'_{t-1} + \rho_{t} \left(\xi + \frac{D}{|S_{t}|} \sum_{i \in S_{t}} \mathbb{E}[t(x_{i}, z_{i})] \right) \qquad \nu'_{t} = (1 - \rho_{t})\nu'_{t-1} + \rho_{t}(\nu + D)$$

• Our stochastic gradient updates had the form

$$\begin{bmatrix} \xi_t' \\ \nu_t' \end{bmatrix} = \begin{bmatrix} \xi_{t-1}' \\ \nu_{t-1}' \end{bmatrix} - \rho_t M_t \begin{bmatrix} \nabla_{\xi'}^2 \ln f(\xi', \nu') & \frac{\partial^2 \ln f(\xi', \nu')}{\partial \nu' \partial \xi} \\ \frac{\partial^2 \ln f(\xi', \nu')}{\partial \nu' \partial \xi'^T} & \frac{\partial^2 \ln f(\xi', \nu')}{\partial \nu'^2} \end{bmatrix} \begin{bmatrix} \frac{D}{|S_t|} \sum_{i \in S_t} \mathbb{E}[t(x_i, z_i)] + \xi - \xi_{t-1}' \\ D + \nu - \nu_{t-1}' \end{bmatrix}$$

• Suppose we set M_t as

$$M_t = -\begin{bmatrix} \nabla_{\xi'}^2 \ln f(\xi', \nu') & \frac{\partial^2 \ln f(\xi', \nu')}{\partial \nu' \partial \xi} \\ \frac{\partial^2 \ln f(\xi', \nu')}{\partial \nu' \partial \xi'^T} & \frac{\partial^2 \ln f(\xi', \nu')}{\partial \nu'^2} \end{bmatrix}^{-1}$$

Then the updates will be

$$\xi'_t = (1 - \rho_t)\xi'_{t-1} + \rho_t \left(\xi + \frac{D}{|S_t|} \sum_{i \in S_t} \mathbb{E}[t(x_i, z_i)] \right) \qquad \nu'_t = (1 - \rho_t)\nu'_{t-1} + \rho_t(\nu + D)$$

ullet Note: The above choice of M_t is not arbitrary. It is actually equivalent to $M_t = -\mathbb{E}_q[
abla^2 \ln q(eta)]$

Our stochastic gradient updates had the form

$$\begin{bmatrix} \xi_t' \\ \nu_t' \end{bmatrix} = \begin{bmatrix} \xi_{t-1}' \\ \nu_{t-1}' \end{bmatrix} - \rho_t M_t \begin{bmatrix} \nabla_{\xi'}^2 \ln f(\xi', \nu') & \frac{\partial^2 \ln f(\xi', \nu')}{\partial \nu' \partial \xi'} \\ \frac{\partial^2 \ln f(\xi', \nu')}{\partial \nu' \partial \xi''} & \frac{\partial^2 \ln f(\xi', \nu')}{\partial \nu'^2} \end{bmatrix} \begin{bmatrix} \frac{D}{|S_t|} \sum_{i \in S_t} \mathbb{E}[t(x_i, z_i)] + \xi - \xi_{t-1}' \\ D + \nu - \nu_{t-1}' \end{bmatrix}$$

• Suppose we set M_t as

$$M_t = -\begin{bmatrix} \nabla_{\xi'}^2 \ln f(\xi', \nu') & \frac{\partial^2 \ln f(\xi', \nu')}{\partial \nu' \partial \xi} \\ \frac{\partial^2 \ln f(\xi', \nu')}{\partial \nu' \partial \xi'^T} & \frac{\partial^2 \ln f(\xi', \nu')}{\partial \nu'^2} \end{bmatrix}^{-1}$$

Then the updates will be

$$\xi'_{t} = (1 - \rho_{t})\xi'_{t-1} + \rho_{t} \left(\xi + \frac{D}{|S_{t}|} \sum_{i \in S_{t}} \mathbb{E}[t(x_{i}, z_{i})] \right) \qquad \nu'_{t} = (1 - \rho_{t})\nu'_{t-1} + \rho_{t}(\nu + D)$$

- ullet Note: The above choice of M_t is not arbitrary. It is actually equivalent to $M_t = -\mathbb{E}_q[
 abla^2 \ln q(eta)]$
 - This choice makes our stochastic gradient a "natural gradient" (considered to be good direction)

SVI vs Batch Inference

- Online inference methods (e.g., SVI) usually have a faster convergence than batch inference
- Shown below is a plot comparing batch and online inference for topic model (LDA)

(Pic courtesy: David Blei)

• VB is a deterministic approximate inference method (unlike sampling methods)

- VB is a deterministic approximate inference method (unlike sampling methods)
- Finds the best q by maximizing the ELBO (or minimizing $\mathsf{KL}(q||p)$)

- VB is a deterministic approximate inference method (unlike sampling methods)
- ullet Finds the best q by maximizing the ELBO (or minimizing $\mathsf{KL}(q||p)$)
- VB is guaranteed to converge to a local optima (in finite time)

- VB is a deterministic approximate inference method (unlike sampling methods)
- ullet Finds the best q by maximizing the ELBO (or minimizing $\mathsf{KL}(q||p)$)
- VB is guaranteed to converge to a local optima (in finite time)
- \bullet Simplifying assumption on q (e.g., mean field VB) can make VB updates very easy to derive

- VB is a deterministic approximate inference method (unlike sampling methods)
- ullet Finds the best q by maximizing the ELBO (or minimizing $\mathsf{KL}(q||p))$
- VB is guaranteed to converge to a local optima (in finite time)
- ullet Simplifying assumption on q (e.g., mean field VB) can make VB updates very easy to derive
- ullet More advanced VB methods can handle richer forms of $q(\mathbf{Z})$, likelihood and priors

- VB is a deterministic approximate inference method (unlike sampling methods)
- ullet Finds the best q by maximizing the ELBO (or minimizing $\mathsf{KL}(q||p)$)
- VB is guaranteed to converge to a local optima (in finite time)
- ullet Simplifying assumption on q (e.g., mean field VB) can make VB updates very easy to derive
- ullet More advanced VB methods can handle richer forms of $q(\mathbf{Z})$, likelihood and priors
 - E.g., Monte-Carlo approximations of ELBO and its derivatives

- VB is a deterministic approximate inference method (unlike sampling methods)
- ullet Finds the best q by maximizing the ELBO (or minimizing $\mathsf{KL}(q||p)$)
- VB is guaranteed to converge to a local optima (in finite time)
- ullet Simplifying assumption on q (e.g., mean field VB) can make VB updates very easy to derive
- More advanced VB methods can handle richer forms of $q(\mathbf{Z})$, likelihood and priors
 - E.g., Monte-Carlo approximations of ELBO and its derivatives
- Combination of methods like BBVI and SVI can help us develop scalable approximate inference algorithms for a large class of models

- VB is a deterministic approximate inference method (unlike sampling methods)
- Finds the best q by maximizing the ELBO (or minimizing KL(q||p))
- VB is guaranteed to converge to a local optima (in finite time)
- ullet Simplifying assumption on q (e.g., mean field VB) can make VB updates very easy to derive
- More advanced VB methods can handle richer forms of $q(\mathbf{Z})$, likelihood and priors
 - E.g., Monte-Carlo approximations of ELBO and its derivatives
- Combination of methods like BBVI and SVI can help us develop scalable approximate inference algorithms for a large class of models
- Implementations of many classic/advanced VB methods available in Stan, Edward, etc.

