Мера Хаусдорфа

Пусть мы находимся в пространстве \mathbb{R}^n .

Опр: 1. Пусть $0 < \alpha \le n, \, \delta > 0$, тогда вспомогательной мерой называется функция:

$$H^{\alpha}_{\delta}(E) = \inf \left\{ \sum_{j} (\operatorname{diam} F_{j})^{\alpha} \colon E \subset \cup_{j} F_{j}, F_{j} \text{ - замкнутые, diam } F_{j} \leq \delta \right\}$$

Заметим, что выше, при $\delta \to 0+$ возможно лишь невозрастание $H^{\alpha}_{\delta}(E) \Rightarrow$ функция монотонна.

Опр: 2. Функция: $H^{\alpha}(E) = \lim_{\delta \to 0+} H^{\alpha}_{\delta}(E)$, где допустимо значение $+\infty$, называется мерой Хаусдорфа.

Утв. 1. H^{α} - внешняя мера и все борелевские множества измеримы: $\mathcal{B}(\mathbb{R}^n)\subset\mathcal{A}_{H^{\alpha}}.$

Утв. 2. Пусть $L \colon \mathbb{R}^n \to \mathbb{R}^n$ - аффинное, изометрическое (сохраняющее расстояния) отображение. Тогда:

$$\forall E, H^{\alpha}(L(E)) = H^{\alpha}(E)$$

Утв. 3. Пусть $f: \mathbb{R}^n \to \mathbb{R}^m$ это липшицево отображение с константой Λ , то есть:

$$\forall x_1, x_2 \in \mathbb{R}^n, \|f(x_1) - f(x_2)\| \le \Lambda \cdot \|x_1 - x_2\|$$

Тогда будет верно неравенство:

$$\forall E, H^{\alpha}(L(E)) \leq \Lambda^{\alpha} \cdot H^{\alpha}(E)$$

Rm: 1. Заметим, что множество E здесь какое угодно.

 \square Пусть $\delta>0$ и $E\subset \cup_j F_j,\ F_j$ - замкнутые, diam $F_j\leq \delta\Rightarrow F_j$ это компакт, тогда $f(F_j)$ это тоже компакт, поскольку f - липшицево \Rightarrow непрерывное \Rightarrow замкнутое множество. Рассмотрим диаметры:

$$\operatorname{diam} f(F_j) = \sup_{x_1, x_2 \in F_j} \|f(x_1) - f(x_2)\| \le \Lambda \cdot \sup_{x_1, x_2 \in F_j} \|x_1 - x_2\| = \Lambda \cdot \operatorname{diam} F_j$$

В частности, отсюда следует: diam $f(F_j) \leq \Lambda \cdot \delta$. Поскольку $f(E) \subset \cup_j f(F_j)$, то будет верно:

$$H_{\Lambda\delta}^{\alpha}(f(E)) \leq \sum_{j} (\operatorname{diam} f(F_{j}))^{\alpha} \leq \Lambda^{\alpha} \sum_{j} (\operatorname{diam} F_{j})^{\alpha}$$

Поскольку мы брали произвольное покрытие F_j , то для всякого такого покрытия, сумма их диаметров ограничена снизу $H^{\alpha}_{\Lambda\delta}(f(E))\cdot \frac{1}{\Lambda^{\alpha}}$, тогда и точная нижняя грань оценивается этой величиной:

$$H^{\alpha}_{\Lambda\delta}(f(E)) \cdot \frac{1}{\Lambda^{\alpha}} \leq H^{\alpha}_{\delta}(E) \Rightarrow H^{\alpha}(f(E)) = \lim_{\delta \to 0+} H^{\alpha}_{\Lambda\delta}(f(E)) \leq \Lambda^{\alpha} \cdot \lim_{\delta \to 0+} H^{\alpha}_{\delta}(E) = \Lambda^{\alpha} \cdot H^{\alpha}(E)$$

Верно, но трудно доказывается утверждение:

Теорема 1.

$$A \subset \mathbb{R}^n, f \colon A \to \mathbb{R}^m, \forall x_1, x_2 \in A, \|f(x_1) - f(x_2)\| \le \Lambda \|x_1 - x_2\| \Rightarrow \exists \widetilde{f} \colon \mathbb{R}^n \to \mathbb{R}^m$$

где $\widetilde{f}=f$ на A (продолжает функцию с множества A) и $\|\widetilde{f}(x_1)-\widetilde{f}(x_2)\|\leq \Lambda \|x_1-x_2\|$.

По сути это теорема о том, что можно продолжить любое липшецево отображение, заданное на какомлибо множестве, до липшицевого отображения всего пространства с той же самой константой.

Упр. 1. Доказать это утверждение с $\sqrt{m}\Lambda$ вместо Λ для \widetilde{f} .

Пусть $f: A \to \mathbb{R}^m$ с константой липшица Λ , тогда:

$$H^{\alpha}(f(A)) \leq \Lambda^{\alpha} \cdot H^{\alpha}(A)$$

где мы подменяем f на \widetilde{f} и применяем утверждение. Если множество A было бы замкнутым, то мы могли бы применить это без ссылки на продолжение функции.

 \mathbf{Rm} : 2. Если мера Хаусдорфа множества A конечна и мы что-то делаем липшицевым отображением с этим множеством A, то мы тоже получаем множество конечной меры.

Следствие 1. Если $f \colon \mathbb{R}^n \to \mathbb{R}^m$ локально липшецево отображение, то:

$$H^{\alpha}(E) = 0 \Rightarrow H^{\alpha}(f(E)) = 0$$

 \mathbf{Rm} : 3. Не важно, как соотносятся n и m, в том числе и в основном утверждении.

Rm: 4. Согласно следствию, локально липшицево отображение переводит множество меры нуль в множество меры нуль.

 \square Следует сразу из оценки: $H^{\alpha}(f(A)) \leq \Lambda^{\alpha} \cdot H^{\alpha}(A)$.

Утв. 4. Верны следующие утверждения:

- 1) Если $E \in \mathcal{A}_{H^{\alpha}}$ и $H^{\alpha}(E) < \infty$, то \exists борелевское множество $B \subset E$ такое, что: $H^{\alpha}(E \setminus B) = 0$, то есть: $E = B \cup B_0$, где B_0 это множество меры нуль по Хаусдорфу;
- 2) Если E измеримо и имеет конечную меру $(E \in \mathcal{A}_{H^{\alpha}}$ и $H^{\alpha}(E) < \infty)$, то $E = \bigcup_{j} K_{j} \cup E_{0}$, где E_{0} это множество меры H^{α} нуль и K_{j} это не более, чем счётный набор компактов;
- 3) Если $f: \mathbb{R}^n \to \mathbb{R}^m$ липшицево $E \in \mathcal{A}_{H^\alpha}$ и $H^\alpha(E) < \infty$, то f(E) измеримо $(f(E) \in \mathcal{A}_{H^\alpha})$ и $H^\alpha(f(E)) < \infty$;

1) Задача на коллоквиум. Доказательство проводится практически аналогично как для меры Лебега;

2) По пункту 1 верно: $E=B\cup B_0$, где $B\subset E\Rightarrow H^\alpha(B)<\infty$. Рассмотрим меру μ :

$$\forall A \in \mathcal{B}(\mathbb{R}^n), \, \mu(A) = H^{\alpha}(B \cap A)$$

Рис. 1: Продолжение меры H^{α} нулем вне множества B.

Таким образом, мы продолжили меру нулем вне множества B. Мера μ это конечная, σ -аддитивная мера на $\mathcal{B}(\mathbb{R}^n)$, тогда: $\forall m, \exists F_m$ - замкнутое множество: $F_m \subset B$ и верно: $\mu(B \setminus F_m) < \frac{1}{m}$ по теореме о приближении борелевскими. Тогда:

$$B = \bigcup_{m} F_m \cup B_0^F$$

где B_0^F это множество меры нуль. Заметим, что: $\mu(B \backslash F_m) = H^{\alpha}(B \backslash F_m)$, поскольку $\forall m, B \backslash F_m \subset B$. Для получения компактов можно взять кубы: $I_N = [-N, N]^n$ и представить F_m в виде:

$$F_m = \bigcup_{N=1}^{\infty} F_m \cap I_N$$

где $F_m \cap I_N$ уже будут компактами;

3) По предыдущему пункту: $E = \bigcup_j K_j \cup A$, где A это множество H^{α} -меры нуль. Тогда мы знаем, что: $f(E) = \bigcup_j f(K_j) \cup f(A)$, где $f(K_j)$ это компакты, а f(A) это множество H^{α} -меры нуль. Все эти множества измеримы \Rightarrow мы получили измеримое множество. Из липшицевости будет верно:

$$H^{\alpha}(f(E)) \leq \Lambda^{\alpha} \cdot H^{\alpha}(E) < \infty$$

Rm: 5. Заметим также, что F_m - замкнуты относительно \mathbb{R}^n .

Rm: 6. Заметим, что в пункте 2) H^{α} не является конечной мерой на борелевской σ -алгебре, даже если мы ограничим её на какой-либо куб. Если α будет малым, то мера будет бесконечной у многих множеств и применить теорему о приближении мы не сможем (там существенно было, что мера конечная). Заменить \mathbb{R}^n на борелевское множество мы также не можем, поскольку тогда поменяется топология: замкнутое множество в B не тоже самое, что и замкнутое множество в \mathbb{R}^n . Следовательно, правильным действием являлось продолжение H^{α} нулём вне B, получаем σ -аддитивную меру на всей борелевской σ -алгебре и применение к ней обычную теоремы о приближении.

Связь меры H^n и λ на \mathbb{R}^n

Утв. 5. Пусть n = 1, тогда: $\forall E, H^1(E) = H^1_{\delta}(E) = \lambda(E)$ на \mathbb{R} .

 \square Пусть $\delta > 0$, по определению:

$$H^1_{\delta}(E) = \inf \left\{ \sum_j \operatorname{diam} F_j \colon E \subset \cup_j F_j, \operatorname{diam} F_j \le \delta \right\}, \quad \lambda(E) = \inf \left\{ \sum_j |I_j| \colon E \subset \cup_j I_j \right\}$$

где I_j это отрезки, F_j это замкнутые множества на \mathbb{R} (отрезки) и верно, что $|I_j| = \operatorname{diam} I_j$. Поскольку отрезки всегда можно разбить на более мелкие, то можно считать, что: $\operatorname{diam} I_j \leq \delta$. Тем не менее, для меры Хаусдорфа используются произвольные замкнутые множества, следовательно: $H^1_{\delta}(E) \leq \lambda(E)$. Возьмем F_j с диаметром $d_j = \operatorname{diam} F_j$ и возьмем отрезок: $I_j = [\inf F_j, \sup F_j]$, тогда:

$$|I_j| = d_j, F_j \subset I_j \Rightarrow \sum_j \operatorname{diam} F_j = \sum_j |I_j| \wedge E \subset \cup_j I_j$$

Заметим, что $\sum_j |\mathcal{I}_j| \geq \lambda(E)$, поскольку $\lambda(E)$ это точная нижняя грань таких сумм, тогда:

$$\sum_{j} \operatorname{diam} F_{j} \ge \lambda(E) \Rightarrow H_{\delta}^{1}(E) \ge \lambda(E) \Rightarrow H_{\delta}^{1}(E) = \lambda(E)$$

 \mathbf{Rm} : 7. При n=1 в определении H^{α}_{δ} замкнутые множества можно заменить отрезками или интервалами. Замена интервалами возможна по тем же самым причинам по которым в мере Лебега можно было заменить отрезки интервалами: слегка увеличить и заменить отрезок интервалом, если получилось покрыть интервалами, то замена интервала на отрезок не меняет его диаметр (длину). В многомерном случае это уже не так и нельзя заменить множество шаром.

Упр. 2. Привести пример замкнутого множества F на \mathbb{R}^2 с diam F = r > 0 такого, что не существует замкнутого шара: $\mathcal{B}(a, \frac{r}{2})$: $F \subset \mathcal{B}(a, \frac{r}{2})$.

Рассмотрим теперь, что будет при n > 1.

Теорема 2. Верны следующие утверждения:

- 1) $H^n(E) = 0 \Leftrightarrow \lambda(E) = 0;$
- 2) $0 < H^n([0,1]^n) < \infty;$
- 3) $\mathcal{A}_{H^n} = \mathcal{A}_{\lambda}$ и $\exists c_n \in \mathbb{R}, c_n > 0 \colon c_n H^n = \lambda$ на измеримых множествах;

1) (\Leftarrow) Покажем, что $\lambda(E)=0 \Rightarrow H^n(E)=0$, для этого достаточно показать: $\forall \delta>0,\, H^n_\delta(E)=0$. Тогда:

$$\lambda(E)=0\Rightarrow orall arepsilon>0,\ E\subset \cup_j \mathcal{I}_j,\ \mathcal{I}_j$$
 - замкнутые, $\sum_i |\mathcal{I}_j|$

Мы знаем, что можно считать I_j кубами и diam $I_j < \delta$. Пусть мы взяли куб I_j с ребром l_j , тогда:

$$\operatorname{diam} \mathbf{I}_{j} = \sqrt{n} \cdot l_{j}, \ |\mathbf{I}_{j}| = l_{j}^{n} \Rightarrow (\operatorname{diam} \mathbf{I}_{j})^{n} = n^{\frac{n}{2}} \cdot l_{j}^{n} = n^{\frac{n}{2}} \cdot |\mathbf{I}_{j}| \Rightarrow$$

$$\Rightarrow \sum_{i} (\operatorname{diam} \mathbf{I}_{j})^{n} = n^{\frac{n}{2}} \cdot \sum_{i} |\mathbf{I}_{j}| < n^{\frac{n}{2}} \cdot \varepsilon \Rightarrow H_{\delta}^{n}(E) \leq n^{\frac{n}{2}} \cdot \varepsilon \xrightarrow{\varepsilon \to 0} 0 \Rightarrow H_{\delta}^{n}(E) = 0$$

 (\Rightarrow) Пусть теперь $H^n(E)=0,$ тогда $\forall \delta>0,$ $H^n_\delta(E)=0.$ Зафиксируем $\delta=1,$ тогда:

$$\forall \varepsilon > 0, E \subset \bigcup_j F_j, F_j$$
 - замкнутые, $\operatorname{diam} F_j < 1, \sum_j (\operatorname{diam} F_j)^n < \varepsilon$

Если $d_j = \operatorname{diam} F_j$ и $a_j \in F_j$, то верно:

$$F_j \subset \overline{\mathcal{B}}(a_j, d_j) \Rightarrow \lambda(\overline{\mathcal{B}}(a_j, d_j)) = \omega_n \cdot d_j^m$$

где ω_n это некоторая константа (объем единичного шара). При этом мы получаем:

$$E \subset \bigcup_{j} \overline{\mathcal{B}}(a_{j}, d_{j}) \Rightarrow \lambda(E) \leq \sum_{j} \lambda(\overline{\mathcal{B}}(a_{j}, d_{j})) = \omega_{n} \cdot \sum_{j} (\operatorname{diam} F_{j})^{n} < \omega_{n} \cdot \varepsilon \xrightarrow[\varepsilon \to 0]{} 0 \Rightarrow \lambda(E) = 0$$

2) Очевидно, что $H^n([0,1]^n)>0$, так как $\lambda([0,1]^n)=1>0$. Пусть $\delta>0$, хотим получить какую-то оценку $H^n([0,1]^n)$. Разобьем куб $[0,1]^n$ на более мелкие кубы K_j с рёбрами $\frac{1}{N}$, тогда:

$$\operatorname{diam} K_j = \frac{\sqrt{n}}{N} \Rightarrow \exists N \colon \operatorname{diam} K_j \le \delta \Rightarrow \sum_j (\operatorname{diam} K_j)^n = n^{\frac{n}{2}} \cdot \sum_j \frac{1}{N^n} = n^{\frac{n}{2}} \cdot 1 = n^{\frac{n}{2}}$$

где сумма равна 1 так как из K_i у нас составлен большой куб, тогда:

$$H^n_{\delta}([0,1]^n) \le n^{\frac{n}{2}}$$

Поскольку у нас n фиксирована, то при $\delta \to 0$ будет верно:

$$H^n([0,1]^n) \le n^{\frac{n}{2}} < \infty$$

3) Мы знаем, что верно соотношение:

$$E \in \mathcal{A}_{\lambda} \Leftrightarrow E = B \cup B_0^{\lambda}$$

где B это борелевское и B_0^λ множество меры λ нуль. Аналогично, известно, что:

$$E \in \mathcal{A}_{H^n} \Rightarrow E = \bigcup_N E \cap [-N, N]^n$$

где $E \cap [-N,N]^n$ это множество конечной меры H^n , поскольку единичный куб имеет конечную меру, а этот куб отличается от единичного гомотетией, которая есть липшицево отображение \Rightarrow образ множества конечной меры является множеством конечной меры $\Rightarrow E \cap [-N,N]^n = B_N \cup A_N$, где B_N - борелевское, а A_N - множество меры нуль H^n . Тогда:

$$E = \bigcup_{N} B_{N} \cup \bigcup_{N} A_{N}$$

то есть E это объединение борелевских множеств и счетного числа множеств меры нуль - множества меры нуль по H^n и по λ (поскольку мы знаем, что это одно и то же). А если оно представляется в таком виде, то оно конечно измеримо по H^n (борелевские измеримы и множество меры нуль измеримы). Следовательно, $\mathcal{A}_{\lambda} = \mathcal{A}_{H^n}$.

Заметим, что $H^n([0,1]^n) > 0 \Rightarrow$ можно умножить на константу так, чтобы получили 1:

$$\exists c_n : c_n \cdot H^n([0,1]^n) = 1 = \lambda([0,1]^n)$$

Вычисление этой c_n достаточно сложно, для этого нужно изодиаметрическое неравенство и мы его вычислять не будем. Докажем, что $c_n \cdot H^n = \lambda$ на измеримых множествах. Возьмем куб $[0,1]^n$ и поделим его сторону на N частей \Rightarrow весь куб разбивается на N^n кубиков K_j , причем они конгруэнтны, то есть K_i можно получить из K_j движением. Следовательно:

$$H^{n}(K_{i}) = H^{n}(K_{j}), H^{n}(K_{i} \cap K_{j}) = 0$$

где последнее верно поскольку либо $K_i \cap K_j = \emptyset$, либо $K_i \cap K_j$ это множество меры нуль. Тогда:

$$1 = c_n \cdot H^n([0,1]^n) = 1 = \sum_j c_n H^n(K_j) = N^n \cdot c_n \cdot H^n(K_1) \Rightarrow c_n \cdot H^n(K_j) = \frac{1}{N^n} = \lambda(K_j)$$

Следовательно, $c_n \cdot H^n$ и λ совпадают на кубах с ребром $\frac{M}{N} \in \mathbb{Q}$, поскольку такой куб может быть составлен любым образом из кубиков K_j , а для этих кубиков меры совпадают $\Rightarrow c_n \cdot H^n$ и λ совпадают на открытых множествах, поскольку любое открытое можно представить в виде объединения счетного числа кубиков, причем мы делали построение с шагом $\frac{1}{2^r}$, которые пересекаться могут лишь по границам (см. лекцию 5).

Рис. 2: Совпадение мер на открытых множествах, построением из кубиков с ребрами $\frac{M}{N} \in \mathbb{Q}$.

Меры совпадают на открытых множествах \Rightarrow можем брать открытые множества из куба $[-N,N]^n$ и применять теорему о совпадении двух мер $\Rightarrow c_n \cdot H^n$ и λ - конечные меры на $\mathcal{B}([-N,N]^n)$ и совпадают на открытых множествах, а поскольку [-N,N] можно брать любое, то $c_n \cdot H^n$ и λ совпадают на всех $\mathcal{B}(\mathbb{R}^n) \Rightarrow$ так как любое измеримое множество это борелевское плюс множество меры нуль, то $c_n \cdot H^n$ и λ совпадают на измеримых множествах;

Далее, всегда считаем, что H^{α} умножается на c_{α} так, что H^{k} на \mathbb{R}^{k} совпадает с λ .

Следствие 2. Пусть Π_k - k-мерная, аффинная плоскость в \mathbb{R}^n и λ_{Π_k} - мера Лебега на Π_k , тогда H^k на Π_k совпадает с λ_{Π_k} . В частности, если $\Pi_k = L(\mathbb{R}^k)$, L(x) = Ax + b, $\operatorname{rk} A = k$, то:

$$H^k(L(E)) = \sqrt{\det(A^T A)}\lambda(E)$$

для всякого измеримого E в \mathbb{R}^k .

 \square Очевидно, поскольку мера Хаусдорфа, построенная на замкнутом подмножестве (а Π_k это замкнутое подмножество), совпадает с мерой Лебега. А если мы считаем, что работаем только в плоскости Π_k , то дальше ситуация неотличима от \mathbb{R}^k : ввели на Π_k ортогональную систему координат, плоскость отождествилась с \mathbb{R}^k , а мера Хаусдорфа совпала с мерой Лебега.

Можно считать, что H^k это мера Хаусдорфа построенная внутри этой k-мерной плоскости Π_k , при построении меры Хаусдорфа система координат не используется (используется только метрика - диаметр считается), мера Лебега не зависит от системы координат \Rightarrow выбираем систему координат \Rightarrow получаем меру Хаусдорфа в \mathbb{R}^k и меру Лебега в \mathbb{R}^k , выше мы доказали, что они совпадают.

Rm: 8. Мера Хаусдорфа не зависит от системы координат по построению, используется только метрика (считается диаметр), то есть она инвариантна относительно прямоугольной системы координат (чтобы расстояния сохранялись).