Segmentation of Neuron Bundles from Diffusion MRI

SLT Course Project 2016

Nico Previtali Marko Pichler Trauber Jakob Jakob

30. May 2016

Presentation Outline

Overview

- ► Model Extensions
- ► Implementation
- Results

Model Extensions I

Basis Model: Data Clustering Using a Model Granular Magnet, Blatt et al. [1]

Neighbourhood Definition: No fixed k-nearest neighbourhood \implies automatically select k suitable neighbours:

- 1. Search for k^* -nearest neighbours of voxel v_i
- 2. Select the k neighbours ($k < k^*$) with the most similar diffusion profile w.r.t to voxel v_i

We used $k^* = 26$ and k = 6 which empirically turned out to be suitable.

Model Extensions II

Similarity Matrix: Pairwise diffusion profiles similarities instead of pairwise voxel distances

$$D_{ij} = \begin{cases} ||s_i - s_j|| & \text{if } v_i \text{ and } v_j \text{ are mutual neighbours} \\ 0 & \text{otherwise} \end{cases}$$

Use of Inner Products: Further we looked at inner products $\langle s_i, s_j \rangle$ between the diffusion profiles \implies allows to extend the model by applying a kernel.

$$D_{ij} = \begin{cases} \langle s_i, s_j \rangle & \text{if } v_i \text{ and } v_j \text{ are mutual neighbours} \\ 0 & \text{otherwise} \end{cases}$$

Implementation

Language: Python / numpy

CPU driven, single threaded implementation. Lots of nested loops and room to improve it.

Attempted Approach: First implement it correctly, then optimize ⇒ We had hard times (even debugging with a small grid was very slow)

Unfortunately, no time left for optimizations like threads, GPU etc.

Results I

Results II

Low Temperature

Super-paramagnetic Regime

High Temperature

Super-paramagnetic Regime

Results III

Video of Temperature Search / Phase Transitions

References

[1] Marcelo Blatt, Shai Wiseman, and Eytan Domany. "Data clustering using a model granular magnet". In: *Neural Computation* 9.8 (1997), pp. 1805–1842.