Упражнения:

- 1. От продукцията на две автоматични линии са взети извадки от n_1 =16 и n_2 =12 детайли и са изчислени \overline{x}_1 =180 мм и \overline{x}_2 =186 мм. От предварителен анализ е установено, че неточността на изработката им се описва с нормално разпределени величини с дисперсии съответно σ_1^2 =6 мм² и σ_2^2 =11 мм². С ниво на значимост α =0,025 да се провери хипотезата H_0 : μ_1 = μ_2 срещу хипотезата H_1 : μ_1 < μ_2 .
- 2. Предприятие има два автомата за производство на изделия, диаметърът на които се изследва. Взети са по 100 изделия за проверка. Средният диаметър на изработените от първия автомат изделия е 10,3 със стандартна грешка 1,2, а за изработените от втория съответно 9,8 и 1,6. С ниво на значимост 0,01 да се проверят хипотезите: а) Точността на изработка на двата автомата е еднаква. б) Двата автомата произвеждат изделия с еднакви диаметри.
- 3. Две съвкупности от обекти, на които се изучава количественият признак X с нормално разпределение, са подложени на контрол. От първото множество е направена извадка с обем n_1 =21 и е пресметната поправената дисперсия, която е равна на 0,75. От второто множество е получена извадка с обем n_2 =11 с поправена дисперсия 0,25. Проверете хипотезата H_0 : DX_1 = DX_2 . при конкурираща хипотеза H_1 : DX_1 = DX_2 и ниво на значимост 0,1.
- 4. При измерване на една и съща величина X, са получени следните резултати $x_1=-4,\ x_2=0,\ x_3=-2,\ x_4=2,\ x_5=6$.а) Да се намерят \overline{x} и \widetilde{s}_X . б) Да се определи доверителният интервал за EX на случайната величина X с доверителна вероятност $\gamma=0,95$. в) По друг метод от извадка с обем n=9 е получена извадъчна дисперсия $\widetilde{s}_Y^2=16$. Да се провери с ниво на значимост $\alpha=0,02$ хипотезата за еднаква точност на двата метода, т.е. хипотезата $H_0=\{DX=DY\}$. Като конкурираща хипотеза да се разгледа $H_1=\{DX\neq DY\}$ (предполага се, че X има нормално разпределение).
- 5. За сравняване на две системи за изучаване на чужд език са избрани случайно по 10 отлични и 10 посредствени студенти. По първата система студентите са усвоили предадения материал както следва (в проценти):

посредствени студенти (извадка X_1): 67, 56, 55, 61, 67, 56, 68, 53, 66, 65; отлични студенти (извадка X_2): 87, 78, 86, 90, 77, 78, 81, 91, 82, 75.

След това същите групи студенти са обучавани по втората система като се получени следните резултати:

посредствени студенти (извадка Y_1): 32, 41, 51, 34, 55, 36, 39, 45, 36, 40; отлични студенти (извадка Y_2): 90, 88, 83, 85, 94, 91, 95, 87, 90, 83.

а) Кои от двойките извадки са зависими и кои са независими?

Да се намерят: доверителен интервал с доверителна вероятност 0,9 за разликата в степента на усвояване по двете системи а) за посредствените студенти; б) за отличните студенти. Коя от системите е по-подходяща за посредствени студенти и коя за отлично работещи студенти. в) Да се провери с ниво на значимост 0,01 хипотезата, че обучаваните по система 1 по-равномерно усвояват знанията на студентите (отлични и посредствени) отколкото обучаваните по втората система. г) Да се сравнят с доверителен интервал при $\gamma = 0,95$ средните постижения на всички студенти по система 1 и по система 2.

КОРЕЛАЦИОНЕН И РЕГРЕСИОНЕН АНАЛИЗ

§34. Двумерни извадки. Числени характеристики на извадката и точкови оценки. Корелационна таблица.

Много често в практиката се разглеждат два признака X и Y на генералната съвкупност като целта тук е не само изучаване на всеки от признаците, но и намиране на зависимост между тях, ако съществува такава. Например, изучават се теглото и ръстът на населението, броят на пушачите и броят на заболяванията на дихателните пътища и т.н. В такъв случай в резултат на наблюденията се получават двойки числа (x_i, y_i) , $i = 1, \ldots, n$, затова получената извадка се нарича $\underline{\partial \mathit{вумерна}}$ $\underline{\mathit{извадка}}$ с $\underline{\mathit{обем}}$ $\underline{\mathit{n}}$. Тъй като приемаме, че обектите на изследване са случайно избрани, то ще считаме, че (x_i, y_i) са реализации на двумерна случайна величина (X, Y).

Резултатите от наблюденията се подреждат във вид на таблица:

Графическо представяне на извадката е <u>диаграмата на разсейването</u> - съвкупност от точки с координати (x_i, y_i) в равнината Oxy (фиг. 34.1).

1. Групиране на данните. Данните, представени чрез таблица (34.1) са негрупирани. Ако има повторения на наблюдаваните стойности поудобно е:

1) Групиране по стойности - корелационы таблица

y_j x_i	x_1		x_k	m_{y_j}
<i>y</i> ₁ :	<i>m</i> ₁₁	•••	m_{k1}	m_{y_1}
y_s	m_{1s}		m_{ks}	m_{y_s}
m_{x_i}	m_{x_1}	•••	m_{x_k}	n

в която
$$m_{ij}$$
 – брой на наблюденията (x_i, y_j) , $n = \sum_{i=1}^k \sum_{i=1}^s m_{ij}$ – обем на

извадката. Последната колона се състои от сумите по съответния ред, а последния ред – сумите по съответната колона, при това

$$m_{y_j} = \sum_{i=1}^k m_{ij}$$
 е честотата на вариантата y_j

$$m_{x_i} = \sum_{j=1}^{s} m_{ij}$$
 е честотата на вариантата x_i .

2) Групиране на данните по интервали:

$(y_{j-1}, y_j) \qquad (x_{i-1}, x_i)$	(x_0, x_1)	 (x_{k-1}, x_k)		
(y_0,y_1) \vdots	m_{11} \vdots	 m_{k1}	$\stackrel{m_{y_1}}{\vdots}$,
(y_{s-1},y_s)	m_{1s}	 m_{ks}	m_{y_s}	
	m_{x_1}	 m_{x_k}	n	

където смисълът на m_{ij} , m_{x_i} и m_{y_i} е аналогичен.

Пример 34.1. Дадена е извадка с обем n=5: (8,1), (10,3), (5,1), (8,2) и (9,3). Да се получат негрупираното и групираното разпределение на извадката (корелационна таблица).

От . Негрупираното и групираното разпределение са съответно

2. Числени характеристики.

1.) Числени характеристики на съставните компоненти X и Y.

Очевидно, може разгледаме поотделно и да пресметнем всички познати ни числени характеристики на компонентите X и Y :

• За признака X: \overline{x} , s_x^2 , $\widetilde{s_x}^2$, начални $\overline{x^p}$ и централни $s_x^{(p)}$ моменти, които са и точкови оценки на съответните моменти на величината X. Формулите за пресмятането им се получават от статистическото разпределение на X, например,

начален момент от ред р:

$$\overline{x^p} = \begin{cases} \frac{1}{n} \sum_{i=1}^n x_i^p, & \text{за негрупирани} \\ \frac{1}{n} \sum_{i=1}^k m_{x_i} x_i^p = \frac{1}{n} \sum_{i=1}^k \sum_{j=1}^s m_{ij} x_i^p & \text{за групирани} \end{cases};$$

извадъчна и поправена дисперсия:

$$s_x^2 = \frac{1}{n} \sum_{i=1}^k m_{x_i} (x_i - \overline{x})^2 = \overline{x^2} - \overline{x}^2 \text{ if } \widetilde{s}_x^2 = \frac{n}{n-1} s_x^2.$$

- За признака Y: Аналогично получаваме \overline{y} , s_y^2 , \widetilde{s}_y^2 , начални $\overline{y^p}$ и централни $s_y^{(p)}$ моменти, които са и съответни точкови оценки на съответните моменти на величината Y.
- 2.) Числени характеристики, отразяващи връзките между наблюдаваните стойности:
- Извадъчна ковариация:

$$s_{xy} = egin{cases} rac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) & ext{за негрупирани данни} \ rac{1}{n} \sum_{i=1}^{k} \sum_{j=1}^{s} m_{ij} (x_i - \overline{x})(y_j - \overline{y}) & ext{за групирани данни} \end{cases}.$$

Извадъчната ковариация се явява отместена оценка на ковариацията ${\rm cov}(X,Y)$ на двумерната случайна величина (X,Y).

По-удобна формула за пресмятане на извадъчната ковариация:

$$s_{xy} = \overline{xy} - \overline{x}.\overline{y}$$
 , където $\overline{xy} = \begin{cases} \frac{1}{n} \sum_{i=1}^{n} x_i y_i & \text{за негрупирани данни} \\ \frac{1}{n} \sum_{i=1}^{k} \sum_{j=1}^{s} m_{ij} x_i y_j & \text{за групирани данни} \end{cases}$

- <u>Поправена извадъчна корелация.</u> $\widetilde{s}_{xy} = \frac{n}{n-1} s_{xy}$ поправена оценка на cov(X,Y):
- Извадъчен коефициент на корелация (коефициент на Пирсън):

$$r_{xy} = \frac{s_{xy}}{s_x s_y} \tag{34.2}$$

Този коефициент е оценка на коефициента на корелация $ho_{xy} = \frac{{
m cov}(X,Y)}{\sigma\!X.\sigma\!Y}$ на случайната величина (X,Y) и има свойствата:

- 1) не зависи от мерните единици на съставните;
- 2) $-1 \le r_{xy} \le 1$;
- 3) $r=\pm 1 \iff$ между X и Y има линейна зависимост aX+bY+c=0 .
- 4) измерва силата на линейната зависимост между X и Y:

Силата на линейната корелация се определя по скалата:

- Ако $|r_{xy}| \le 0.3$ слаба зависимост (фиг. 35.1a).
- Ако 0,3<|r_{xv}|<0,8 − средна зависимост(фиг.35.16).;
- Ако $|r_{xy}| \ge 0.8$ силна зависимост.(фиг. 35.1в).

Рангов коефициент на корелация (коефициент на Спирмън).

Ранговият коефициент на корелация оценява силата на така наречената рангова корелационна зависимост между компонентите X и Y. За определянето му по дадена извадка (x_i, y_i) , i=1,...,n подреждаме x_i по големина във възходящ ред (т.е. получаваме вариационния ред \hat{x}_i).

Поредният номер x_i' на x_i във вариационния ред се нарича <u>ранг</u> на вариантата.

По същия начин получаваме и ранговете y_i' на вариантите y_i . Така получаваме извадка, състояща се от ранговете (x_i',y_i') на двойките (x_i,y_i) .

Коефициентът $r_{x'y'}$ на корелация на извадката (x'_i, y'_i) , $i=1,\dots,n$ се нарича рангов коефициент r_s на изходната извадка (x_i, y_i) . $i=1,\dots,n$ (коефициент на Спирмън).

Пример 34.2. Да се намери ранговият коефициент на корелация на извадката $\begin{array}{c|cccc} x_i & 12,7 & 10,2 & 13,6 \\ \hline y_i & 2,7 & 3,2 & 3,0 \end{array}$.

Решение: Образуваме вариационният ред на X: 10,2; 12,7; 13,6. Следователно, поредните номера на вариантите x_1 =12.7 , x_2 =10,2 , x_3 =13,6 във вариационния ред са съответно 2, 1 и 3, т.е. x_1' =2 , x_2' =1 , x_3' =3 .

По същия начин определяме, че $y_1'=1$, $y_2'=3$, $y_3'=2$. Така получаваме ранговата извадка $\frac{x_i'}{y_i'} \begin{vmatrix} 2 & 1 & 3 \\ 1 & 3 & 2 \end{vmatrix}$, за която пресмятаме коефициента на корелация в следната последователност:

1)
$$\overline{x}' = \overline{y}' = \frac{1}{3}(1+2+3)=2$$
,

2)
$$s_{x'}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2 = \frac{1}{3} [(2-2)^2 + (1-2)^2 + (3-2)^2] = \frac{2}{3}$$
,
 $s_{y'}^2 = s_{x'}^2 = \frac{2}{3}$; $s_{x'} = s_{y'} = \sqrt{\frac{2}{3}}$;

3)
$$s_{x'y'} = \frac{1}{n} \sum_{i} (x_i - \overline{x})(y_i - \overline{y}) = \frac{1}{3} [(2-2)(1-2) + (1-2)(3-2) + (3-2)(2-2)] = -\frac{1}{3}$$

Следователно,
$$r_s = r_{x'y'} = \frac{-1/3}{\sqrt{2/3}\sqrt{2/3}} = -0.5.$$

Едно от предимствата на ранговия коефициент на корелация е лесното му пресмятане. Доказва се, че не е необходимо да се прилага формула (34.2), тъй като

$$r_s = 1 - \frac{6}{n(n^2 - 1)} \sum_{i=1}^{n} (x_i' - y_i')^2$$
.

По тази формула за ранговия коефициент от пример 2 имаме

$$r_s = 1 - \frac{6}{3(3^2 - 1)} [(2 - 1)^2 + (1 - 3)^2 + (3 - 2)^2] = 1 - \frac{1}{4}.6 = -0.5$$
.

Доказва се също, че ако между X и Y има линейна зависимост, т.е. aX+bY+c=0 , то $|\rho_{xy}|{=}|r_{xy}|{=}r_s|{=}1$.

Забележка 34.1. За намиране на числените характеристики при интервално статистическо разпределение на извадката интервалите се заменят със средите им.

Забележка 34.2. Пресмятането на числените характеристики се улеснява с помощта на *линейните трансформации*:

$$x_i = au_i + b$$
, $y_i = cv_i + d$.

Тогава: $\bar{x} = a\bar{u} + b$, $\bar{y} = c\bar{v} + d$, (34.3)

$$s_x^2 = a^2 s_u^2$$
, $s_y^2 = c^2 s_v^2$, $s_{xy} = a.c.s_{uv}$, $r_{xy} = r_{uv}$ (34.4)

Пример 34.3. В резултат на 100 измервания е получена

Да се намерят точковите оценки на двумерната случайна величина (X,Y). **Решение:** Заменяме интервалите със средите им:

y_j	1	3	7	m_{y_j}				
25	20	0	0	20	Попагаме	$u_1 = x_1 - 3$	$v_j = \frac{1}{5}(y_i - 40) = \frac{y_j}{5} - 8$	ı
40	0	30	10	40	1 TOTICI CIVIC	$u_1 - x_i \mathcal{I}$	$v_j - 5(y_i - 10) - 5$	•
85	0	20	20	40				
m_{x_i}	20	50	30	100				

получаваме таблицата: $\begin{vmatrix} u_i \\ v_j \end{vmatrix} -2 & 0 & 4 & m_{v_j} \\ -3 & 20 & 0 & 0 & 20 \\ 0 & 0 & 30 & 10 & 40 \\ 9 & 0 & 20 & 20 & 40 \\ m_{u_i} & 20 & 50 & 30 & 100 \\ \end{vmatrix} , \text{ от която пресмятаме:}$

1)
$$\overline{u} = \frac{1}{100}(-2.20 + 0 + 4.30) = 0.8$$
, $\overline{u^2} = \frac{1}{100}(4.20 + 16.30) = 5.6$

$$s_u^2 = \overline{u^2} - \overline{u}^2 = 4,96$$
, $s_u = \sqrt{4,96} = 2,23$.

2)
$$\overline{v} = \frac{1}{100} (-3.20 + 0 + 9.40) = 3$$
, $\overline{v^2} = \frac{1}{100} (9.20 + 81.40) = 34,20$,
 $s_v^2 = \overline{v^2} - \overline{v}^2 = 25.20$, $s_v = \sqrt{25.20} = 5.02$.

3)
$$\overline{uv} = \frac{1}{100}[(-2)(-3).20+0+0+0+0.0.30+0+0+0+9.4.20] = 8,4$$
,
 $s_{uv} = 8,4-0,8.3=6$;

4)
$$r_{uv} = \frac{6}{2,23.5,02} = 0.536$$
.

От формули (34.3),(34.4):
$$x_i=u_i+3\Rightarrow \overline{x}=0,8+3=3,8$$
 , $s_x^2=s_u^2=4,96$,
$$y_i=5v_i+40\Rightarrow \overline{y}=5.3+40=55$$
 , $s_y^2=25.s_v^2=630$,
$$s_{xy}=1.5.s_{uy}=30 \quad r_{xy}=r_{uy}=0,\!536$$
 .

Така получаваме следните точкови оценки:

- За математическите очаквания EX и $EY \ \overline{x} = 3.8$, $\overline{y} = 55$.
- За дисперсиите DX и DY поправените дисперсии

$$\widetilde{s}_x^2 = \frac{100}{100 - 1} s_x^2 = 6,06 \text{ u } \widetilde{s}_y^2 = \frac{5}{4} 630 = 787,5.$$

• За ковариацията $\operatorname{cov}(X,Y)$ – извадковата ковариация

$$\widetilde{s}_{xy} = \frac{100}{99} s_{xy} = 30,30$$
.

• За коефициента на корелация ρ_{XY} – извадъчния коефициент на корелация r_{yy} =0,536 . •

§35. Елементи на корелационния анализ. Видове зависимости между две величини.

Нека за изучаване на признаците X и Y на генералната съвкупност са направени n наблюдения. Разглеждайки (X,Y) като случайна величина, а получените данни $(x_1,y_1),\dots,(x_n,y_n)$ като нейни реализации, си поставяме задачата да изследваме зависимостта между компонентите X и Y.

1. Видове зависимости. Две случайни величини X и Y се наричат независими, ако законът на едната величина не зависи от това каква стойност е приела другата. В такъв случай диаграмата на разсейването има вида на фиг. 35.1а.

Две величини могат да бъдат свързани с функционална зависимост, например $Y = X^2$, Y = aX + b - линейна зависимост и т.н.

Всички останали зависимости са <u>статистически зависимости.</u> Предмет на изследване тук ще бъде така наречената *корелационна*

<u>зависимост (зависимост на тенденциите)</u> (фиг.35.1б,в) — зависимост при която при нарастване на X се забелязва нарастване (<u>положителна корелация</u>) на стойностите на Y или намаляване (<u>отрицателна корелация</u>).

Както вече показахме (виж.**§19**), за независимите величини cov(X,Y) = 0, но не и обратното. Величини, за които cov(X,Y) = 0, се наричат <u>некорелирани</u>, а за които $\text{cov}(X,Y) \neq 0$ - <u>корелирани</u>.

Основни инструменти за изследване на корелацията на две величини са извадъчната ковариация s_{xy} и особено извадъчният коефициент на корелация r_{xy} , които са оценки на съответно на $\mathrm{cov}(X,Y)$ и ρ_{XY} . Например:

- на фиг.35.1б) повече от произведенията $(x_i \overline{x})(y_i \overline{y})$ са положителни, откъдето $s_{xy} = \frac{1}{n} \sum (x_i \overline{x})(y_i \overline{y}) > 0$, а и от там $r_{xy} > 0$ (положителна корелация)
- \bullet на фиг.35.1в) е представен случая $s_{xy}\!<\!0$, $r_{\!x\!y}\!<\!0$ (ompuцателна корелация)
- ullet за фиг.35.1a) s_{xy} и r_{xy} са близки до нула (<u>некорелирани величини</u>).

<u>Корелационният анализ</u> е дял от статистиката, които изследва корелационната зависимост между две величини. Основни задачи:

- lacktriangle Намиране на оценки на коефициента на корелация $ho_{\it XY}$.
- Доказване на наличието или отсъствието на корелационна зависимост.
- Изследване на силата на линейната връзка между величините.

2. Доверителни интервали за коефициента на корелация ho_{XY} на нормално разпределени случайни величини X и Y.

Нека по дадена двумерна извадка на два нормално разпределени признака X и Y на генералната съвкупност и нека е изчислена оценката r_{xy} на коефициента на корелация ρ_{XY} . За определяне на доверителния

интервал за ρ_{XY} се използва, че разпределението на ρ_{XY} е близко до нормално разпределение $N(m^*,\sigma^*)$, с параметри

$$m*=\frac{1}{2}\ln\frac{1+r_{xy}}{1-r_{xy}}, \quad \sigma*=\frac{1}{\sqrt{n-3}}.$$

Намирането на **доверителния интервал** за ho_{XY} с доверителна вероятност γ се извършва в следната последователност:

- изчисляваме $m*=rac{1}{2}\lnrac{1+r_{xy}}{1-r_{xy}}$ и квантилът $Z_{rac{1+\gamma}{2}}$ на $Z\!\sim\!N(0,1)$;
- изчисляваме $z_1 = m^* Z_{\frac{1+\gamma}{2}} \cdot \frac{1}{\sqrt{n-3}}$ и $z_2 = m^* + Z_{\frac{1+\gamma}{2}} \cdot \frac{1}{\sqrt{n-3}}$;
- Определяме доверителния интервал $\rho_{xy} \in \left(\frac{e^{2z_1}-1}{e^{2z_1}+1}, \frac{e^{2z_2}-1}{e^{2z_2}+1}\right)$

Посоченото правило за намиране на доверителен интервал може да се приложи и за оценка на ранговия коефициент на корелация.

Освен като интервална оценка за ho_{XY} , с помощта на доверителния интервал могат да се проверяват предположения за вида на зависимостта между X и Y:

- Ако доверителният интервал съдържа числото нула, то с вероятност γ може да са твърди, че величините X и Y не са корелирани:
- Ако доверителният интервал съдържа числата 1 или -1, то с вероятност γ може да се твърди , че между X и Y има силна линейна връзка.

3. Проверка на хипотезата за значимостта на корелационната зависимост между нормално разпределени величини X и Y.

Разглеждаме хипотезата H_0 за некорелираност на величините X и Y, т.е. $H_0 = \{ \rho_{XY} = 0 \}$.

Статистическият критерий, с който се проверява тази хипотеза, е t-разпределението на Стюдънт с n-2 степени на свобода t(n-2) , като

наблюдаваната стойност е
$$t_{\rm Ha6n.} = \frac{r_{xy}\sqrt{n-2}}{\sqrt{1-r_{xy}^2}}$$

Критичната област се определя в зависимост от конкуриращата хипотеза и избраното ниво на значимост α :

• Ako $H_1 = \{ \rho_{XY} \neq 0 \}$:

• Ako $H_1 = \{ \rho_{XY} < 0 \}$:

• Ako $H_1 = \{\rho_{yy} > 0\}$

Така, като се използва четността на плътността на t-разпределението, т.е. $t_{\alpha}(n-1) = -t_{1-\alpha}(n-1)$, проверката на хипотезата H_0 при ниво на значимост α по дадена извадка с обем n се извършва по следния начин:

1) Изчислява се
$$t_{\text{набл.}} = \frac{r_{xy}\sqrt{n-2}}{\sqrt{1-r_{xy}^2}}$$
 ;

- 2) От таблицата за квантилите на t-разпределението с n-1 степени на свобода съгласно конкуриращата хипотеза се определя квантилът:
- $t_{\rm Kp} = t_{1-rac{lpha}{2}}(n-2)$ при $H_1 = \{
 ho_{XY}
 eq 0 \}$. Област на приемане на H_0 е

 $|t_{\mathsf{набл.}}| < t_{\mathsf{кр}}$

- $t_{\rm KP}=t_{\rm l-}\alpha(n-2)$ при $H_1=\{\rho_{XY}>0\}$. Област на приемане на H_0 е $t_{\rm HaGn.}< t_{\rm KD}$
- $t_{\rm kp}\!=\!-t_{1-lpha}(n\!-\!2)$ при $H_1\!=\!\{\rho_{XY}\!<\!0\}$. Област на приемане на H_0 е $t_{\rm HaGn.}\!>\!t_{\rm kp}$.

Приемането на хипотезата означава, че с вероятност 1- α между няма корелационна зависимост, а отхвърлянето – че има корелационна зависимост.

Същият тест се прилага и при проверка на хипотезата за значимост на ранговия коефициент на корелация, т.е. за отхвърляне или приемане на рангова корелационна зависимост.

Пример. 35.1. В конни състезания състезателните коне, които са номерирани съгласно ръста си, са заели следните места: 6, 5, 1, 4, 2, 7, 8, 10, 3, 9. С ниво на значимост α =0,05 да се провери хипотезата, че няма рангова корелационна зависимост между ръста и мястото, което състезателният кон е заел ($H_0 = \{r_s = 0\}$).

Решение. Означаваме с x_i номерата на конете съгласно ръста им, а с y_i - местата им в класирането. Очевидно, x_i са ранговете на теглата на конете, а y_i - ранговете на времената им за изминаване на разстоянието.

Нанасяме данните в таблицата $\frac{x_i}{y_i} \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 5 & 1 & 4 & 2 & 7 & 8 & 10 & 3 & 9 \end{vmatrix}$.

Пресмятаме ранговия коефициент:

$$r_s = 1 - \frac{6}{n(n^2 - 1)} \sum_{i=1}^{n} (x_i - y_i)^2 = 1 - \frac{6}{990} [5^2 + 3^2 + 2^2 + 3^2 + 1^2 + 1^2 + 2^2 + 6^2 + 1^2] = 0,4545$$

Изчисляваме наблюдаваната стойност:

$$t_{\mathsf{Ha6n.}} = \frac{r_s \sqrt{n-2}}{\sqrt{1-r_s^2}} = \frac{0.45.\sqrt{8}}{\sqrt{1-0.45^2}} = \frac{1.273}{0.893} = 1.42 \; .$$

От таблицата за t-разпределението изчисляваме

$$t_{\text{Kp.}} = t_{1-\frac{\alpha}{2}}(10-2) = t_{0.975}(8) = 2.31$$
.

Тъй като $|t_{{\sf Ha6n.}}| < t_{{\sf Kp.}}$, то нямаме основание да отхвърлим хипотезата H_0 , т.е. няма рангова корелационна зависимост между ръста и мястото на класиране.

Упражнения.

- 1. За изследването на променливите X и Y е получена извадката $\frac{x_i}{y_i} \begin{vmatrix} -1 & 2 & 2 & 3 & 6 \\ 0 & -1 & 2 & 4 & 8 \end{vmatrix}$. Да се представят графически резултатите, да се намери точкова и интервална оценка с доверителна вероятност 0,99 на коефициента на корелация.
- 2. Направени са следните наблюдения $\frac{X \mid 2 \quad 4 \quad 7 \quad 6 \quad 8}{Y \mid 2 \quad 12 \quad 16 \quad 18 \quad 21}$ на променливите

X и Y , за които се предполага, че са нормално разпределени случайни величини. Да се провери хипотезата за корелираност на величините .