Резюме

Пусть $z_1 = x_1 + iy_1$, $z_2 = x_2 + iy_2$ — два комплексных числа, записанные в алгебраической форме. Тогда

$$z_1 \pm z_2 = (x_1 \pm x_2) + i(y_1 \pm y_2);$$

$$z_1 \cdot z_2 = (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1);$$

если
$$z_2 \neq 0$$
 , то $\frac{z_1}{z_2} = \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} + i \frac{x_2 y_1 - x_1 y_2}{x_2^2 + y_2^2}$.

Если z = x + iy — комплексное число, записанное в алгебраической форме, то число $|z| = \sqrt{x^2 + y^2}$ называют модулем комплексного числа z .

Пусть z = x + iy, $z \ne 0$. Число ϕ , такое, что

$$\cos \varphi = \frac{x}{\sqrt{x^2 + y^2}}, \quad \sin \varphi = \frac{y}{\sqrt{x^2 + y^2}},$$

называют аргументом комплексного числа z и обозначают через $\arg z$. Справедливо представление $z=r(\cos \phi+i\sin \phi)$, где r=|z|, $\phi=\arg z$. Это представление называют тригонометрической формой комплексного числа.

Если $z_1 = r_1(\cos\varphi_1 + i\sin\varphi_1)$, $z_2 = r_2(\cos\varphi_2 + i\sin\varphi_2)$, то

$$z_1 z_2 = r_1 r_2 \left(\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2) \right);$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \left(\cos(\varphi_1 - \varphi_2) + i \sin(\varphi_1 - \varphi_2) \right).$$

Пусть $z = r(\cos \varphi + i \sin \varphi)$; при всяком $n \in \mathbb{Z}$ справедлива формула Муавра:

$$z^{n} = r^{n}(\cos n\varphi + i\sin n\varphi).$$

Пусть $a = \rho(\cos \psi + i \sin \psi)$, а n — натуральное число, $n \ge 2$. При k = 0, 1, ..., n-1 числа z_k ,

$$z_k = \sqrt[n]{\rho} \left(\cos \frac{\psi + 2k\pi}{n} + i \sin \frac{\psi + 2k\pi}{n} \right)$$

составляют совокупность корней степени n из числа a .

 $\lim z_k=a$, если для любого $\varepsilon>0$ существует $k_\varepsilon\in \mathbb{N}$ такое, что при $k>k_\varepsilon$ справедливо $|z_k-a|<\varepsilon$.

Пусть $z_k = x_k + iy_k$, $a = x_0 + iy_0$. Тогда $a = \lim z_k$ в том и только в том случае, когда $x_0 = \lim x_k$, $y_0 = \lim y_k$.

Пусть
$$z = x + iy$$
; тогда $\lim_{x \to a} \left(1 + \frac{z}{k}\right)^k = \exp z$, где $\exp z = e^x(\cos y + i\sin y)$.

Контрольные вопросы к главе 1

- 1. Дайте определение множества **С** комплексных чисел. Какие геометрические интерпретации этого множества вам известны?
 - 2. Пусть $z_1 = 1 + i$, $z_2 = -4 + i3$. Найти $z_1 + z_2$, $z_1 z_2$, $(z_1 + z_2)(z_1 z_2)$, $\frac{z_1}{z_2}$.
 - 3. Что называют модулем комплексного числа z = x + iy?
- 4. Что называют аргументом комплексного числа z = x + iy, $z \neq 0$? Что такое тригонометрическая форма этого числа?
- 5. Числа $z_1 = 1 i\sqrt{3}$, $z_2 = \frac{1-i}{1+i}$, $z_3 = 1 + \cos\frac{\pi}{7} + i\sin\frac{\pi}{7}$ записать в тригонометрической форме.
- 6. Вычислить (т. е. записать в алгебраической форме) числа $z_1 = \left(\frac{1+i\sqrt{3}}{1-i}\right)^{20},$ $z_2 = \frac{(1+i)^5}{(1-i)^3}$ (использовать формулу Муавра).
 - 7. Найти все значения следующих выражений: a) $\sqrt{-1+i\sqrt{3}}$; б) $\sqrt[4]{2\sqrt{3}+2i}$.
 - 8. Числа z_1 , z_2 и z_3 из п. 5 записать в показательной форме.
 - 9. $z_1 = 1 i\sqrt{3}$, $z_2 = \sqrt{3} + i$. Записать в алгебраической форме числа $z_1 \cdot \bar{z}_2$; $\left(\frac{\bar{z}_1}{z_2}\right)^2$.
 - 10. Найти $z_1 = \lim \left(\frac{\sin n}{n} + \left(1 + \frac{1}{n} \right)^n i \right), \ z_2 = \lim \frac{(n+2i)(3+7ni)}{(2-i)n^2+1}$.

Ответы на контрольные вопросы

2.
$$z_1 + z_2 = -3 + i4$$
; $z_1 - z_1 = 5 - i2$; $(z_1 + z_2)(z_1 - z_2) = -7 + i26$; $\frac{z_1}{z_2} = -\frac{1}{25} - i\frac{7}{25}$.

5.
$$z_1 = 2\left(\cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3}\right)$$
, $z_2 = \cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2}$, $z_3 = 2\cos\frac{\pi}{14}\left(\cos\frac{\pi}{14} + i\sin\frac{\pi}{14}\right)$.

6.
$$z_1 = 512 - 512\sqrt{3}i$$
; $z_2 = 2$.

7. a)
$$\pm \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{6}}{2}i\right)$$
; 6) $\sqrt{2}\left(\cos\left(\frac{\pi}{24} + \frac{\pi}{2}k\right) + i\sin\left(\frac{\pi}{24} + \frac{\pi}{2}k\right)\right)$, $k = 0, 1, 2, 3$.

8.
$$z_1 = 2e^{-\frac{5\pi}{3}}$$
; $z_2 = e^{-\frac{3\pi}{2}}$; $z_3 = 2\cos\frac{\pi}{4}e^{i\frac{\pi}{14}}$.

9.
$$z_1 \bar{z}_2 = -4i$$
; $\left(\frac{\bar{z}_1}{z_2}\right)^2 = \frac{1}{2} + \frac{\sqrt{3}}{2}i$.

10.
$$z_1 = 1 + ie$$
; $z_2 = -\frac{7}{5} + \frac{14}{5}i$.