Zadanie nr 2 - Próbkowanie i kwantyzacja

Cyfrowe Przetwarzanie Sygnałów

Justyna Hubert, 210200 — Karol Podlewski, 21029417.04.2019

1 Cel zadania

Celem ćwiczenia jest zapoznanie się z praktycznymi aspektami procesu konwersji analogowo-cyfrowej (A/C) i cyfrowo-analogowej (C/A) sygnałów.

2 Wstęp teoretyczny

Jest to usprawniony program z zadania 1, dostosowany do instrukcji z zadania drugiego [1].

Zadanie polegało na zaimplementowaniu procesu przetwarzania analogowocyfrowego z uwzględnieniem operacji próbkowania i kwantyzacji oraz konwersji odwrotnej, tj. cyfrowo-analogowej. Zostały wykonane następujące warianty:

- (S1) Próbkowanie równomierne,
- (Q1) Kwantyzacja równomierna z obcięciem,
- (R2) Interpolacja pierwszego rzędu,
- (R3) Rekonstrukcja w oparciu o funkcję sinc.

Ponadto, w ramach realizacji ćwiczenia należało zaimplementować następujące miary:

- Błąd średniokwadratowy (MSE),
- Stosunek sygnał szum (SNR),
- Szczytowy stosunek sygnał szum (PSNR).
- Maksymalna ró»nica (MD),
- Efektywna liczba bitów (ENOB).

Rekonstrukcja w oparciu o funkcję sinc została wykonana zgodnie z [2].

3 Eksperymenty i wyniki

Eksperymenty postanowilismy przeprowadzic na trzech rodzajach sygnalów: sinusoidalnym, sinusoidalnym wyprostowanym jednopolówkowo oraz trójkatnym. Zaprezentujemy proces konwersji analogowo-cyfrowej i cyfrowo-analogowej.

3.1 Sygnał sinusoidalny

Rysunek 1: Parametry, które przyjmuje funkcja sinusoidalna.

Rysunek 2: Konwersja A/C.

Rysunek 3: Konwersja C/A.

Rysunek 4: Miary jakie osiagnela funkcja sinusoidalna.

3.2 Sygnał sinusoidalny wyprostowany jednopolówkowo

Rysunek 5: Parametry, które przyjmuje funkcja sinusoidalna wyprostowana jednopolówkowo.

Rysunek 6: Konwersja A/C.

Rysunek 7: Konwersja C/A.

Rysunek 8: Miary jakie osiagnela funkcja sinusoidalna wyprostowana jednopolówkowo.

3.3 Sygnał trójkątny

Rysunek 9: Parametry, które przyjmuje funkcja trójkatna.

Rysunek 10: Konwersja A/C.

Rysunek 11: Konwersja C/A.

Wartość średnia sygnału:	0.5
Wartość średnia bezwzględna sygnału:	0.5
Wartość skuteczna sygnału:	0.5774
Wariancja sygnału:	80.0
Moc średnia sygnału:	0.3334
Błąd średniokwadratowy:	0.0114
Stosunek sygnał - szum:	14.6606
Sczytowy stosunek sygnał - szum:	19.431
Maksymalna różnica:	0.18
Efektywna liczba bitów:	2.143

Rysunek 12: Miary jakie osiagnela funkcja trójkatna.

4 Wnioski

Aplikacja została napisana zgodnie z instrukcją do zadania [1]. Program poprawnie implementuje konwersję A/C oraz C/A wraz z obliczaniem parametrów. Aplikacja została napisana w sposób, aby umożliwiający nam rozszerzenie jej o kolejne funkcjonalności.

Bibliografia

- [1] Instrukcja do zadania 2: https://ftims.edu.p.lodz.pl/pluginfile.php/13449/mod_resource/content/0/zadanie2.pdf.
- [2] https://sound.eti.pg.gda.pl/ greg/dsp/05 Interpolacja.html.