1. (24%) Determine whether the series converges absolutely or conditionally, or diverges. In addition, please indicate the test you use.

(a)
$$\sum_{n=1}^{\infty} (-1)^{n+1} n e^{-n^2}$$

(b)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\sin(\sqrt{n})}{n^{\frac{3}{2}}}$$

(c)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2n^2}{n^3+3}$$

$$(d)\sum_{n=1}^{\infty} \left(\frac{n+1}{n}\right)^{n^2}$$

2. (16%) Find the interval of convergence of the power series (Be sure to check the for the convergence at the endpoints of the intervals)

(a)
$$\sum_{n=1}^{\infty} \frac{n}{n+1} \frac{(x)^n}{(2x+1)^n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{n!(x+1)^n}{3^n}$$

3. (10%) Let
$$f(x) = \sqrt{1+x} + \sqrt{1-x}$$
, what is $f^{(10)}(0) = ?$

4. (18%) Evaluate the following expression (Try to use the Basic series of Taylor series and notice that the power series is a continuous function)

$$(a) \sum_{n=0}^{\infty} \frac{3^{n+1}}{n!}$$

(b)
$$\frac{1}{1\times 2} - \frac{1}{2\times 2^2} + \frac{1}{3\times 2^3} - \frac{1}{4\times 2^4} + \dots$$

(c)
$$\lim_{x\to 0^+} \frac{\arctan(2x)-\sin(2x)}{\sin x-x}$$

- 5. (12%) Derive the Maclaurin series of f(x) = arccot(2x) (Do not use the results from arctan(x))
- 6. (10%) Find the area of the shaded region bounded by the curves $r = 1 + sin(\theta)$ and $r = 3sin(\theta)$

7. (10%) Find the area of the surface formed by revolving the polar graph $r=2(1+sin(\theta))$ about the $\theta=\frac{\pi}{2}$ over the interval $\frac{-\pi}{2} \leq \theta \leq \frac{\pi}{2}$

Function	Taylor series	Interval of convergence
$\frac{1}{x}$	$1 - (x - 1) + (x - 1)^{2} - (x - 1)^{3} + \dots + (-1)^{n}(x - 1)^{n} + \dots$	0 < x < 2
$\frac{1}{1+x}$	$1 - x + x^2 - x^3 + \dots + (-1)^n x^n + \dots$	-1 < x < 1
$\ln x$	$(x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \dots + \frac{(-1)^{n-1}(x-1)^n}{n} + \dots$	$0 < x \le 2$
e^x	$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots$	$-\infty < x < \infty$
sin(x)	$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + \frac{(-1)^n x^{2n+1}}{(2n+1)!} + \dots$	$-\infty < x < \infty$
cos(x)	$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + \frac{(-1)^n x^{2n}}{(2n)!} + \dots$	$-\infty < x < \infty$
arctan(x)	$x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + \frac{(-1)^n x^{2n+1}}{2n+1} + \dots$	$-1 \le x \le 1$
arcsin(x)	$x + \frac{x^3}{2 \times 3} + \frac{1 \times 3x^5}{2 \times 4 \times 5} + \dots + \frac{(2n)! x^{2n+1}}{(2^n n!)^2 (2n+1)} + \dots$	$-1 \le x \le 1$
$(1+x)^k$	$1 + kx + \frac{k(k-1)x^2}{2!} + \frac{k(k-1)(k-2)x^3}{3!}$	-1 < x < 1
	$+ \cdots + \frac{k(k-1) \dots (k-n+1)x^n}{n!} + \cdots$	