

Шпаргалка по параметрическим критериям*

1. Про единственную выборку

Математическое ожидание при большом числе наблюдений

- а. Наблюдаем: $X_1, X_2, ..., X_n$;
- б. Предполагаем: X_i независимы и одинаково распределены (не обязательно нормально), количество наблюдений $\mathfrak n$ велико.
- в. Проверяемая гипотеза: H_0 : $\mu = \mu_0$ против H_α : $\mu \neq \mu_0$;
- г. Статистика:

$$Z = \frac{\bar{X} - \mu_0}{se(\bar{X})} = \frac{\bar{X} - \mu_0}{\sqrt{\frac{\hat{\sigma}^2}{n}}}$$

д. При верной H_0 оказывается, что $Z \to \mathcal{N}(0;1);$

Математическое ожидание при нормальных наблюдениях

- а. Наблюдаем: $X_1, X_2, ..., X_n$;
- б. Предполагаем: X_i независимы и одинаково нормально распределены $\mathcal{N}(\mu; \sigma^2)$, количество наблюдений п может быть мало.
- в. Проверяемая гипотеза: H_0 : $\mu = \mu_0$ против H_α : $\mu \neq \mu_0$;

^{*}Эта pdf-ка, по факту, представляет из себя немного дополненный конспект Бориса Демешева: https://github.com/bdemeshev/pr201/raw/master/probab_pset/new_el.pdf

г. Статистика:

$$t = \frac{\bar{X} - \mu_0}{se(\bar{X})} = \frac{\bar{X} - \mu_0}{\sqrt{\frac{\hat{\sigma}^2}{n}}}$$

д. При верной H_0 оказывается, что $t \sim t_{n-1}$;

Математическое ожидание при нормальных наблюдениях и известной дисперсии

- а. Наблюдаем: $X_1, X_2, ..., X_n$, знаем величину σ^2 ;
- б. Предполагаем: X_i независимы и одинаково нормально распределены $\mathcal{N}(\mu; \sigma^2)$, количество наблюдений п может быть мало.
- в. Проверяемая гипотеза: H_0 : $\mu = \mu_0$ против H_a : $\mu \neq \mu_0$;
- г. Статистика:

$$Z = \frac{\bar{X} - \mu_0}{\sigma_{\bar{X}}} = \frac{\bar{X} - \mu_0}{\sqrt{\frac{\sigma^2}{n}}}$$

д. При верной H_0 оказывается, что $Z \sim \mathcal{N}(0;1)$;

Гипотеза о вероятности при наблюдениях с распределением Бернулли (0 или 1)

- а. Наблюдаем: $X_1, X_2, ..., X_n$;
- б. Предполагаем: X_i независимы и имеют распределение Бернулли: равны 1 с вероятностью p и 0 с вероятностью 1-p. Количество наблюдений n велико.
- в. Проверяемая гипотеза: H_0 : $p = p_0$ против H_α : $p \neq p_0$;
- г. Статистика:

$$Z = \frac{\hat{p} - p_0}{se(\hat{p})} = \frac{\hat{p} - p_0}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}}$$

Возможен вариант этой статистики:

$$Z = \frac{\hat{p} - p_0}{se(\hat{p})} = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

- д. При верной H_0 оказывается, что $Z \to \mathfrak{N}(0;1)$;
- е. Гипотеза о вероятностях является частным случаем гипотезы о математическом ожидании при большом количестве наблюдений. Можно заметить, что $\hat{p} = \bar{X}$ и $\hat{\sigma}^2 = \hat{p}(1-\hat{p}) \cdot \frac{n}{n-1}$. И потому также корректен вариант статистики

$$Z = \frac{\bar{X} - \mu_0}{se(\bar{X})} = \frac{\bar{X} - \mu_0}{\sqrt{\frac{\hat{\sigma}^2}{n}}}$$

2

Гипотеза о дисперсии при нормальных наблюдениях

- а. Наблюдаем: $X_1, X_2, ..., X_n$;
- б. Предполагаем: X_i независимы и одинаково нормально распределены $\mathcal{N}(\mu; \sigma^2)$, количество наблюдений \mathfrak{n} может быть мало.
- в. Проверяемая гипотеза: H_0 : $\sigma=\sigma_0$ против H_α : $\sigma\neq\sigma_0$;
- г. Статистика:

$$S = \frac{\sum (X_i - \bar{X})^2}{\sigma_0^2} = \frac{(n-1)\hat{\sigma}^2}{\sigma_0^2}$$

д. При верной H_0 оказывается, что $S \sim \chi^2_{n-1}$;

Гипотеза о дисперсии при нормальных наблюдениях и известном математическом ожидании

- а. Наблюдаем: $X_1, X_2, ..., X_n$, знаем величину μ ;
- б. Предполагаем: X_i независимы и одинаково нормально распределены $\mathcal{N}(\mu; \sigma^2)$, количество наблюдений \mathfrak{n} может быть мало.
- в. Проверяемая гипотеза: H_0 : $\sigma=\sigma_0$ против H_α : $\sigma\neq\sigma_0$;
- г. Статистика:

$$S = \frac{\sum (X_i - \bar{X})^2}{\sigma_0^2} = \frac{n\hat{\sigma}^2}{\sigma_0^2}$$

д. При верной H_0 оказывается, что $S \sim \chi_n^2$;

2. Про пару выборок

Гипотеза о разнице ожиданий при большом количестве наблюдений

- а. Наблюдаем: $X_1, X_2, ..., X_{n_x}, Y_1, Y_2, ..., Y_{n_y}.$ Возможно, что $n_x \neq n_y.$ Дисперсии σ_x^2 и σ_y^2 не знаем и не уверены, что они равны.
- б. Предполагаем: X_i одинаково распределены между собой (не обязательно нормально), Y_i одинаково распределены между собой, но возможно совсем не так, как X_i (не обязательно нормально). Все величины независимы. Количества n_x и n_y велики.
- в. Проверяемая гипотеза: H_0 : $\mu_x \mu_y = \delta_0$ против H_a : $\mu_x \mu_y \neq \delta_0$;
- г. Статистика:

$$Z = \frac{\bar{X} - \bar{Y} - \delta_0}{se(\bar{X} - \bar{Y})} = \frac{\bar{X} - \bar{Y} - \delta_0}{\sqrt{\frac{\hat{\sigma}_x^2}{n_x} + \frac{\hat{\sigma}_y^2}{n_y}}}$$

д. При верной H_0 оказывается, что $Z \to \mathcal{N}(0;1)$;

Гипотеза о разнице ожиданий при нормальности распределения обеих выборок и известных дисперсиях

- а. Наблюдаем: $X_1, X_2, ..., X_{n_x}, Y_1, Y_2, ..., Y_{n_y}$. Возможно, что $n_x \neq n_y$. Дисперсии σ_x^2 и σ_y^2 знаем. Возможно, что дисперсии не равны.
- б. Предполагаем: X_i одинаково распределены между собой $\mathcal{N}(\mu_x, \sigma_x^2)$, Y_i одинаково распределены между собой $\mathcal{N}(\mu_y, \sigma_y^2)$. Все величины независимы. Количества n_x и n_y любые.
- в. Проверяемая гипотеза: H_0 : $\mu_x \mu_y = \delta_0$ против H_a : $\mu_x \mu_y \neq \delta_0$;
- г. Статистика:

$$Z = \frac{\bar{X} - \bar{Y} - \delta_0}{\sigma_{\bar{X} - \bar{Y}}} = \frac{\bar{X} - \bar{Y} - \delta_0}{\sqrt{\frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}}}$$

д. При верной H_0 оказывается, что $Z \sim \mathcal{N}(0; 1)$;

Гипотеза о разнице ожиданий при нормальности распределения обеих выборок и неизвестных но равных дисперсиях

- а. Наблюдаем: $X_1, X_2, ..., X_{n_x}, Y_1, Y_2, ..., Y_{n_y}$. Возможно, что $n_x \neq n_y$. Дисперсии σ_x^2 и σ_y^2 равны, но неизвестны.
- б. Предполагаем: X_i одинаково распределены между собой $\mathcal{N}(\mu_x, \sigma^2)$, Y_i одинаково распределены между собой $\mathcal{N}(\mu_y, \sigma^2)$. Все величины независимы. Количества n_x и n_y любые.

4

в. Проверяемая гипотеза: H_0 : $\mu_x - \mu_y = \delta_0$ против H_a : $\mu_x - \mu_y \neq \delta_0$;

г. Статистика:

$$t = \frac{\bar{X} - \bar{Y} - \delta_0}{se(\bar{X} - \bar{Y})} = \frac{\bar{X} - \bar{Y} - \delta_0}{\sqrt{\frac{\hat{\sigma}^2}{n_x} + \frac{\hat{\sigma}^2}{n_y}}},$$

где

$$\widehat{\sigma}^2 = \frac{\sum (X_i - \bar{X})^2 + \sum (Y_i - \bar{Y})^2}{n_x + n_u - 2}$$

д. При верной H_0 оказывается, что $t \sim t_{n_x + n_u - 2}$;

Гипотеза о разнице ожиданий в связанных парах

- а. Наблюдаем: $X_1, X_2, ..., X_n, Y_1, Y_2, ..., Y_n$. Количество X_i и Y_i одинаковое.
- б. Предполагаем: внутри пары X_i и Y_i зависимы, а наблюдения с разными номерами независимы. Рассматриваем разницу $D_i = X_i Y_i$ и получаем одномерную выборку. Величины D_i независимы и одинаково распределены. Возможно три описанных ранее случая :) Здесь для примера рассмотрим случай, когда $D_i \sim \mathcal{N}(\mu_d, \sigma_d^2)$ с неизвестной дисперсией.
- в. Проверяемая гипотеза: H_0 : $\mu_d = \mu_0$ против H_a : $\mu_d \neq \mu_0$;
- г. Статистика:

$$t = \frac{\bar{D} - \mu_d}{se(\bar{D})} = \frac{\bar{X} - \bar{Y} - \mu_d}{\sqrt{\frac{\hat{\sigma}_d^2}{n}}},$$

где

$$\widehat{\sigma}_{d}^{2} = \frac{\sum (D_{\mathfrak{i}} - \bar{D})^{2}}{n-1} = \frac{\sum (X_{\mathfrak{i}} - Y_{\mathfrak{i}} - (\bar{X} - \bar{Y}))^{2}}{n-1}$$

д. При верной H_0 оказывается, что $t \sim t_{n-1}$;

Гипотеза о равенстве дисперсий при нормальности распределения обеих выборок

- а. Наблюдаем: $X_1, X_2, ..., X_{n_x}, Y_1, Y_2, ..., Y_{n_y}$. Возможно, что $n_x \neq n_y$. Дисперсии σ_x^2 и σ_y^2 не знаем. Возможно, что дисперсии не равны.
- б. Предполагаем: X_i одинаково распределены между собой $\mathcal{N}(\mu_x, \sigma^2)$, Y_i одинаково распределены между собой $\mathcal{N}(\mu_y, \sigma^2)$. Все величины независимы. Количества \mathfrak{n}_x и \mathfrak{n}_y любые.
- в. Проверяемая гипотеза: H_0 : $\sigma_x = \sigma_y$ против H_a : $\sigma_x \neq \sigma_y$;
- г. Статистика:

$$F = \frac{\hat{\sigma}_x^2}{\hat{\sigma}_u^2}$$

д. При верной H_0 оказывается, что $F \sim F_{n_x-1,n_u-1}$;