TD Dualité

Exercice 1 Donner le primal du dual Primal

a) Max
$$Z = 2x1 + 4x2 + 3x3$$

 $3x1 + 4x2 + 2x3 \le 60$
 $2x1 + x2 + 2x3 \le 40$
 $x1 + 3x2 + 2x3 \le 80$
 $x1, x2, x3 \ge 0$

b) Min
$$Z = 20x1 + 24x2$$

 $x1 + x2 \ge 30$
 $x1 + 2x2 \ge 40$
 $x1, x2 \ge 0$

c) Max
$$Z = 10x1 + 6x2$$

 $x1 + 4x2 \le 40$
 $3x1 + 2x2 = 60$
 $2x1 + x2 \ge 25$
 $x1, x2 \ge 0$

-----Solution Exercice1-----

Dual

a) Min w =
$$60y1 + 40y2 + 80y3$$

 $3y1 + 2y2 + y3 \ge 2$
 $4y1 + y2 + 3y3 \ge 4$
 $2y1 + 2y2 + 2y3 \ge 3$
 $y1 \ge 0$, $y2 \ge$, $y3 \ge 0$
b) Max w = $30y1 + 40y2$
 $y1 + y2 \le 20$
 $y1 + 2y2 \le 24$
 $y1 \ge 0$, $y3 \ge 0$

c) Min w =
$$40y1 + 60y2 - 25y3$$

y1 + $3y2 - 2y3 \ge 10$
 $4y1 + 2y2 - y3 \ge 6$
y1 \ge 0, y3 \ge 0, y2 quelconque

L3 Informatique Programmation Linéaire

Exercice 2

Max
$$Z = 40x1 + 50x2$$

 $5x1 + 4x2 \le 80$
 $x1 + 2x2 \le 24$
 $3x1 + 2x2 \le 36$
 $x1, x2 \ge 0$

- 1- Donner le dual PL* de ce primal PL
- 2- Résoudre le primal PL par le simplexe
- 3- Déduire la solution du dual PL*

------Solution Exercice 2-----

1. Donner le dual ${\rm PL}^*$ de ce primal ${\rm PL}$

Min
$$w=80y1 + 24y2 + 36y3$$

$$5y1+y2+3y3 \ge 40$$

$$4y1+2y2+2y3 \ge 50$$

2- Résolution du primal par la méthode de simplexe

Forme standard

Max
$$Z = 40 x1 + 50 x2$$

s.c.
$$5x1 + 4x2 + s1 = 80$$

$$x1 + 2x2 + s2 = 24$$

$$3x1 + 2x2 + s3 = 36$$

$$x1, x2, s1, s2, s3 >= 0$$

Tableau initial

Base	x1	x2	s1	s2	s3	В
s1	5	4	1	0	0	80
s2	1	2	0	1	0	24
s3	3	2	0	0	1	36
-Z	40	50	0	0	0	0

Base initiale= $\{s1, s2, s3\}$

L3 Informatique Programmation Linéaire

Itération 1

Base	x1	x2	s1	s2	s3	В	Critère
s1	5	4	1	0	0	80	80/4=20
s2	1	2	0	1	0	24	24/2=12
s3	3	2	0	0	1	36	36/2=18
-Z	40	50	0	0	0	0	

x2 entre en base et s2 sort de la base

Nouvelle base= $\{s1, x2, s3\}$

Base	x1	x2	s1	s2	s3	В
s1	3	0	1	-2	0	32
x2	1/2	1	0	1/2	0	12
s3	2	0	0	-1	1	12
-Z	15	0	0	-25	0	-600

Itération 2

Base	x1	x2	s1	s2	s3	В	Critère
s1	3	0	1	-2	0	32	32/3=10.66
x2	1/2	1	0	1/2	0	12	12/(1/2)=24
s3	2	0	0	-1	1	12	12/2=6
-Z	15	0	0	-25	0	-600	

x1 entre en base et s3 sort de la base

Nouvelle base= $\{s1, x2, x1\}$

Base	x1	x2	s1	s2	s3	В
s1	0	0	1	-1/2	-3/2	14
x2	0	1	0	3/4	-1/4	9
x1	1	0	0	-1/2	1/2	6
-Z	0	0	0	-35/2	-15/2	-690

Tous les coefficients dans la fonction objectif sont <=0 donc la solution est optimale s1=14, x2=9, x1=6 et Z=690

3- Déduction de la solution du Dual "PL*

A l'optimum, le primal et le dual sont liés par les règles suivantes:

- les fonctions objectifs Z et W ont la même valeur optimale Z=CX* = Y*b=W
- la valeur marginale d'une variable dans un programme est égale à l'opposé de la valeur optimale de la variable associée dans l'autre programme et réciproquement
- les variables du primal (x_1, x_2) , étant toutes différentes de 0, alors les contraintes associées du dual sont saturées, d'où pour le dual à résoudre:

$$5y1+y2+3y3 = 40$$

 $4y1+2y2+2y3 = 50$

- la première variable d'écart s_1 est non nulle donc la première valeur y_1 = 0, d'où le dual à résoudre est : $y_2+3y_3=40$ $2y_2+2y_3=50$

	z = 690	x1	x2	s1	s2	s3
Primal	valeurs optimales	6	9	14	0	0
	valeurs marginales	0	0	0	-17.5	-7.5
Dual	w = 690	t1	t2	y1	y2	y3
	valeurs optimales	0	0	0	17.5	7.5
	valeurs marginales	-6	-9	-14	0	0