CODIGO DEFENSIVO

PRÁCTICA #5 DESARROLLO DE SOFTWARE SEGURO

- Jorge Ibarra Peña
- 20310025
- 7°P
- Desarrollo de Software
- 09/11/2023
- CETI COLOMOS

PRÁCTICA 5: "CONECTAR EQUIPOS A TRAVÉS DE NAT"

Objetivo: Conectar los equipos de Linux y metasploitable en una red NAT para realizar las prácticas de Código Defensivo

¿Qué es una red NAT?

El modo NAT (Network Address Translator), en las máquinas virtuales, es un sistema que crea una subred con una dirección IP diferente a la del router de la máquina anfitriona. Si no se activa este modo de red, nuestra máquina virtual obtendrá una dirección IP que coincidirá con el punto de conexión físico a internet. En otras palabras, sería como si este ordenador estuviese conectado por cable a dicho punto.

¿Cómo funciona la red NAT?

su trabajo consiste en tomar una dirección IP privada y traducirla a una dirección IP pública o viceversa. Se usa cuando necesitamos que nuestros dispositivos en la red (con IP privadas) se comuniquen a través de internet.

Procedimiento:

Abrimos nuestra VirtualBox y nos vamos a la sección de herramientas en el apartado de red:

Una vez en red, nos dirigimos a la pestaña de "Redes NAT" y acto seguido presionamos el botón de "Crear"

A su vez en este mismo apartado cambiamos el nombre de nuestra red y le pondremos la siguiente:

Opciones generales		Reenvío de puertos	
	1		
Nombre:	rednat1JorgeIbarra		
Prefijo IPv4:	10.0.2.0/24		
I	✓ Habilitar DHCP		
Habilitar IPv6			
Prefijo IPv6:	fd17:625c:f037:2::/64		
		Anunciar ruta por defecto IPv6	

Una vez terminado este proceso, ahora ingresamos las configuraciones, pero ahora a nuestro Kali Linux y nuestro Metasploitable, para eso nos dirigimos a "Configuración" en nuestra máquina virtual

Nos vamos al apartado de red y cambiamos la opción a Red NAT

Y aplicamos la misma configuración, pero en metasploit:

Encendemos nuestras máquinas virtuales y nos vamos al CMD o mejor dicho Terminal del sistema operativo y escribimos "Ifconfig" para conocer nuestra ip

```
-(kali⊛kali)-[~]
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
       inet 10.0.2.15 netmask 255.255.255.0 broadcast 10.0.2.255
       inet6 fe80::f02b:9ea1:ab0f:67a9 prefixlen 64 scopeid 0×20<link>
       ether 08:00:27:cb:7e:f5 txqueuelen 1000 (Ethernet)
       RX packets 60 bytes 11351 (11.0 KiB)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 29 bytes 3988 (3.8 KiB)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
       inet 127.0.0.1 netmask 255.0.0.0
       inet6 :: 1 prefixlen 128 scopeid 0×10<host>
       loop txqueuelen 1000 (Local Loopback)
       RX packets 4 bytes 240 (240.0 B)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 4 bytes 240 (240.0 B)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

Hacemos lo mismo, pero ahora en Kali Linux, para eso ponemos el mismo comando y ahora ya tenemos las dos IP's las cuales son:

Kali Linux: 10.0.2.15Metasploitable: 10.0.2.4

Ahora realizamos el ping para comprobar que realmente la conexión es exitosa, para eso lo probamos primero en Kali Linux con el comando "Ping" y la IP de Metasploit:

Y finalmente aplicamos el mismo ping, pero ahora con la IP de Kali Linux:

```
ING 10.0.2.15 (10.0.2.15) 56(84) bytes of data.

4 bytes from 10.0.2.15: icmp_seq=1 ttl=64 time=1.01 ms

4 bytes from 10.0.2.15: icmp_seq=2 ttl=64 time=3.63 ms

4 bytes from 10.0.2.15: icmp_seq=3 ttl=64 time=2.53 ms

4 bytes from 10.0.2.15: icmp_seq=4 ttl=64 time=6.32 ms

4 bytes from 10.0.2.15: icmp_seq=5 ttl=64 time=6.92 ms

4 bytes from 10.0.2.15: icmp_seq=6 ttl=64 time=6.72 ms

4 bytes from 10.0.2.15: icmp_seq=6 ttl=64 time=6.72 ms

4 bytes from 10.0.2.15: icmp_seq=7 ttl=64 time=2.66 ms

4 bytes from 10.0.2.15: icmp_seq=8 ttl=64 time=1.72 ms

4 bytes from 10.0.2.15: icmp_seq=8 ttl=64 time=4.73 ms

4 bytes from 10.0.2.15: icmp_seq=10 ttl=64 time=3.67 ms

4 bytes from 10.0.2.15: icmp_seq=11 ttl=64 time=1.47 ms

4 bytes from 10.0.2.15: icmp_seq=11 ttl=64 time=2.16 ms

4 bytes from 10.0.2.15: icmp_seq=12 ttl=64 time=11.3 ms

4 bytes from 10.0.2.15: icmp_seq=13 ttl=64 time=2.01 ms

4 bytes from 10.0.2.15: icmp_seq=14 ttl=64 time=2.01 ms

4 bytes from 10.0.2.15: icmp_seq=15 ttl=64 time=1.85 ms

4 bytes from 10.0.2.15: icmp_seq=15 ttl=64 time=1.85 ms

4 bytes from 10.0.2.15: icmp_seq=15 ttl=64 time=1.85 ms

4 bytes from 10.0.2.15: icmp_seq=15 ttl=64 time=0.880 ms

4 bytes from 10.0.2.15: icmp_seq=17 ttl=64 time=0.880 ms

5 bytes from 10.0.2.15: icmp_seq=17 ttl=64 time=0.880 ms

5 bytes from 10.0.2.15: icmp_seq=18 ttl=64 time=16.2 ms

-- 10.0.2.15 ping statistics ---

8 packets transmitted, 18 received, 0% packet loss, time 17127ms

tt min/avg/max/mdev = 0.880/4.164/16.283/3.905 ms

sfadmin@metasploitable:~$
```

