Facial Landmarks Detection with Fake-it Dataset

Overview

- Design a deep learning neural
 network model for facial landmarks
 detection
- Train the model on the CG faces
- Test the model on the real world faces

Our output

Real world samples of human faces with facial landmarks annotated.

Best Model

Our Model!

MSE Loss	Training loss	Validation Loss	Test Loss
Our Model	0.00078196	0.00007003	0.00269198
Xception	0.00083827	0.00002770	0.00287737
ResNet-50	0.00187827	0.00046778	0.00385637
MobileNet-v2	0.00116653	0.00011362	0.00336023

Dataset

• Training data:

CG dataset from Microsoft

(with 70 standard facial landmarks)

Dataset

• Testing data:

Flickr-Faces-HQ Dataset

Video (30 fps)

Data preprocessing

- Box the Face
- Original size: 512*512
- After resized: 128*128
- Implemented through

TF.resize and TF.crop

Data augmentation

- Random Gamma
- Random Contrast
- Random Hue
- Random Saturation
- Random Brightness
- Random Rotation

- Our Model
 - Entry Flow (two residual)
 - Middle Flow
 - Exit Flow

- Our Model
 - Entry Flow
 - Middle Flow
 - Exit Flow

Our Model

- Entry Flow
- Middle Flow
- Exit Flow

ResNet-50

- Stage 0
- o Stage 1
- o Stage 2
- o Stage 3
- o Stage 4

MobileNet_v2

- Inverted residual
- Bottleneck residual block

Input	Operator	$\mid t \mid$	c	$\mid n \mid$	s
$224^2 \times 3$	conv2d	-	32	1	2
$112^2 \times 32$	bottleneck	1	16	1	1
$112^2 \times 16$	bottleneck	6	24	2	2
$56^2 \times 24$	bottleneck	6	32	3	2
$28^2 \times 32$	bottleneck	6	64	4	2
$14^2 \times 64$	bottleneck	6	96	3	1
$14^2 \times 96$	bottleneck	6	160	3	2
$7^{2} \times 160$	bottleneck	6	320	1	1
$7^2 \times 320$	conv2d 1x1	-	1280	1	1
$7^2 \times 1280$	avgpool 7x7	-	-	1	-
$1\times1\times1280$	conv2d 1x1	-	k	-	

Our model

Validation set prediction

Our model

Test set prediction

• Different Versions of Xception Network (5000 images in training set)

MSE Loss	Training loss	Validation Loss	Test Loss
Our Model LeakyReLU & 6 mid	0.00174931	0.00010353	0.00334268
Xception	0.00155704	0.00010563	0.00339070
Xception with LeakyReLU	0.00149869	0.00018571	0.00349785
Xception with 6 mid block	0.00386720	0.00052409	0.00654623

- Results of Different training set sizes
- 5000 is a viable size

Validation MSE Loss	Training set 2000	Training set 5000	Training set 10000
Our Model	0.00070798	0.00010353	0.00003220
Xception	0.00091584	0.00010563	0.00003259
ResNet50	0.00120577	0.00018337	0.00007236
MobileNet-v2	0.00045519	0.00023415	0.00006439

 Results of our model, Xception network, ResNet-50, and MobileNet_v2 after Hyperparameter optimization

MSE Loss	Training loss	Validation Loss	Test Loss
Our Model	0.00078196	0.00007003	0.00269198
Xception	0.00083827	0.00002770	0.00287737
ResNet50	0.00187827	0.00046778	0.00385637
MobileNet-v2	0.00116653	0.00011362	0.00336023

Reference

- Erroll Wood, Tadas Baltrusaitis, Charlie Hewitt, Sebastian Dziadzio, Thomas J. Cashman, Jamie Shotton.: Fake it till you make it: face analysis in the wild using synthetic data alone. International Conference on Computer Vision 2021.
 https://openaccess.thecvf.com/content/ICCV2021/html/Wood_Fake_It_Till_You_Make_It_Face_Analysis_in_the_ICCV2021/paper.html
- ChihFan Hsu, ChiaChing Lin, TingYang Hung, ChinLaung Lei, KuanTa Chen: Annotated Facial Landmarks in the Wild:
 A large-scale, real-world database for facial landmark localization. arXiv:2005.08649. https://arxiv.org/abs/2005.08649

Thank you!