IE630: Simulation Modelling & Analysis Random Number Generation Random Variate Generation

Saurabh Jain
Assistant Professor
Department of Industrial Engineering and Operations Research
IIT Bombay

Quick Recap

......

Part I Random Number Generation

Introduction

- Data, parameters are not deterministic
- Example
 - Inter-arrival time, service time
 - Number of students attending the class
 - Balking behaviour
 - Machine break down frequency, machine fix frequency
 - and many more
- Challenges
 - Replication of the Process
- From this statistical distribution (PDF or PMF), how do we get different parameters (variates) each time?

Basic Concept

- We have the parameters represented as statistical distributions
 - UNIF(1,4)
 - NORMAL(25, 1)
 - TRIANGLE (4,5,6)
 - EXPO(0.2)

Big Question – How do we draw the appropriate value from these input distributions?

- Random Numbers
- Random Variates

Steps - Generate the Random Variates

 Generate the INDEPENDENT & IDENTICALLY DISTRIBTUED (I.I.D) random numbers following UNIF (0,1)

 Transform the I.I.D UNIF (0,1) random number into _____ from the defined input distribution

Generation of the Random Numbers

- Physics Processes
 - ✓ Noise from the analog circuits, Thermal/atmospheric noise
 - ✓ Hardware Random Number Generator
- Computational Methods
 - ✓ Pseudo-random number generator
 - Recursive methods to generate numbers
 - Output is predictable, given the seeds
- Hence, we need to find out -
 - Truly random number generator
 - Computational schemes to generate RN

Pseudo Random Number Generator: Properties

- Possess the ideal statistical properties
 - Uniformity
 - Independence
- Should be reproducible the given stream of random numbers exactly or vice versa
- Reasonably fast
- Have sufficiently long cycle
- ✓ Produce the separate streams of random numbers

Linear Congruential Method

• To produce a sequence of integers Z_1, Z_2, Z_3, \ldots Between 0 and m-1 by following a recursive relationship:

$$Z_i = (aZ_{i-1} + c) \mod m, i = 1, 2, 3, \dots$$

Assumption: m > 0 - Modulus

a < m - Multiplier

c < m - Increment

 Z_i - Seed

Values for a, c, m, and X₁ affects the _______

Linear Congruential Method

• To produce a sequence of integers Z_1, Z_2, Z_3, \ldots Between 0 and m-1 by following a recursive relationship:

$$Z_i = (aZ_{i-1} + c) \mod m, i = 1, 2, 3, \dots$$

Define the U_n as shown below –

$$U_i = Z_i/m \text{ for } i = 1, 2, 3, ...$$

$$) < U_i < ($$

Linear Congruential Method

LCM parameters used by Arena until version 3.0

$$m = 2^{31} - 1 = 2147483647$$

 $a = 7^5 = 16807$
 $c = 0$
 $Z_0 = 14561, \dots, 32535$

• Excel - Z_i =(1140671485· Z_{i-1} +12820163) mod 2²⁴

- Cycle, Full Cycle
 - Period (p): the length of a cycle (p m)
 - Generator is called "full period" if p == m

General Congruence

- General Congruences
 - $Z_i = g(Z_{i-1}, Z_{i-2}, \dots) \mod m$
- Composite Generators
 - Combination to produce a separate random number generators
 - Let Z_{2i} and Z_{1i} be two separate generators having two different LCGs
 - Then,
 - $Z_i = (Z_{2i} Z_{1i}) mod m$
 - Then, $U_i = Z_i/m$, if $Z_i > 0$

Composite Generators

- L'Ecuyer (1988)
 - $Z_{1,i} = (40,014) Z_{1,i-1} \mod (2^{31} 85)$
 - $Z_{2,i} = (40,692) Z_{2,i-1} \mod (2^{31} 249)$
 - $Y_i = (Z_{1,i} Z_{2,i}) \mod (2^{31}-86)$
 - $U_i = Y_i / (2^{31} 85)$
- L'Ecuyer (1999)

$$Z_{1,i} = [1,403,580 \ Z_{1,i-2} - 810,728 \ Z_{1,i-3}] \ \text{mod} \ (2^{32} - 209)$$

$$Z_{2,i} = [527,612 Z_{2,i-1} - 1,370,589 Z_{2,i-3}] \mod (2^{32} - 22853)$$

$$Y_i = (Z_{1,i} - Z_{2,i}) \mod (2^{32} - 209)$$

$$U_i = Y_i / (2^{32} - 209)$$

Combined period ~ 2 x 10¹⁸

Combined period ~ 3.1 x 10⁵⁷

BOMBAY

Random Number Generators: Test

- There are several ways to test RNG:
 - Testing the goodness of fit with IID U(0,1)
 - "Die Hard Tests"
 - Basic Statistician Tests
 - Theoretical Tests
- Die-Hard Tests
- Birthday spacing
- Overlapping permutations
- Monkey tests
- Count the 1s
- Parking lot test

- Minimum distance test
- Random spheres test
- The squeeze test
- Overlapping sums test
- Runs test

BOMBAY

Random Numbers: Test

- Two properties Uniformity & Independence
- Test for uniformity:
 - H_0 : $R_i \sim U[0,1]$
 - H₁: R_i!~ U[0,1]
 - Failure to reject the H₀ means that evidence of non-uniformity has been detected
- Test for Independence:
 - H₀: R_i ~ Independent
 - H₁: R_i!~ Independent
 - Failure to reject the H₀ means that evidence of dependence has been detected

Chi-Square Test

Test Statistic:

$$\chi_0^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}$$

Expected Frequency

$$E_i = n \times p_i$$

where p_i is the theoretical prob. of the i-th interval.

 O_i : Observed frequency in the i-th class

• Test Conditions:

$$\chi_0^2 \le \chi_{k-1,1-\alpha}^2$$

$$\chi_0^2 > \chi_{k-1,1-\alpha}^2$$

Unable to reject Null Hypothesis

Reject Null Hypothesis

Kolmogorov-Smirnov Test (K-S Test)

- Test fitted cdf with empirical cdf
 - Step 1: Rank the data smallest to largest
 - Step 2: Compute D⁺ and D⁻
 - Step 3: $D = Max\{D^+, D^-\}$
 - Step 4: Test Statistics

	Adjusted Test Statistics	1- a				
Case		0.850	0.900	0.950	0.975	0.990
All parameters known	$\left(\sqrt{n} + 0.12 + \frac{0.11}{\sqrt{n}}\right)D$	1.138	1.224	1.358	1.480	1.628
Normal $(\hat{\mu}, \hat{\sigma}^2)$	$\left(\sqrt{n} - 0.01 + \frac{0.85}{\sqrt{n}}\right)D$	0.775	0.819	0.895	0.955	1.035
$\text{Expo}(\hat{\lambda})$	$\left(\sqrt{n} + 0.26 + \frac{0.5}{\sqrt{n}}\right) \left(D - \frac{0.2}{n}\right)$	0.926	0.990	1.094	1.190	1.308

Part II Random Variate Generation

Random Variates Generation

- Generate IID U(0,1) random number
- Transformation of Random Number to Variates using Input Distribution

- Methods
 - ✓Inverse-Transform
 - ✓ Acceptance-Rejection
 - ✓ Convolution
 - Composition
 - ✓ Special

Inverse Transform Method

• Intuition:

- Uses the inverse of the cdf F(x)
- Mostly useful when F⁻¹ can be computed
- Steps to find generator
 - Compute CDF of the desired random variable X
 - Set F(X) = U, where $U \sim IID Uniform(0,1)$
 - Solve F(X) = U for X in terms of U

- Steps to use generator
 - Generate U_i
 - Return $X_i = F^{-1}(U_i)$

Inverse Transform Method

- Can be used for sampling from continuous as well as discrete distribution
 - Uniform
 - Exponential
 - Triangular
 - Weibull
 - Log-logistic
 - Empirical Continuous
- Advantages:
 - Valid for mixed discrete-continuous distributions
 - Facilitates variance reduction techniques
 - Ease of use in truncated distributions

- Discrete Uniform
- Geometric
- Bernoulli
- Empirical Discrete

- Disadvantages:
 - ✓ Need to evaluate F⁻¹ (U)
 - May not be the fastest way!

Inverse Transform Method – Some Distributions

Inverse Transform Method – Empirical Continuous Distribution

Suppose the data collected for 100 broken-widget repair times are:

Interval (Hours)	Frequency	Relative Frequency	Cumulative Frequency	Slope
[0.25,0.5]	31			
[0.5, 1.0]	10			
[1.0, 1.5]	25			
[1.5, 2.0]	34			

Inverse Transform Method – Empirical Discrete Distribution

- Suppose the number of shipments, x, on the loading dock of a company is either 0, 1, or 2
- Data Probability distribution:

x	P(x)	F(x)
0	0.5	
1	0.3	
2	0.2	

Inverse Transform Method

 The most common random number generator in use today is called a linear congruential generator. The linear congruential generator that we use is as follows:

$$(Z_i = (2Z_{i-1} + 3) \mod 5)$$

Using this generator, manually generate 3 consecutive random variates (i.e. i = 1, 2, & 3) following the Uniform distribution, Unif (4, 6). Assume your seed value is 3. Show all the steps of your answers

Inverse Transform Method

• For the same random numbers, derive three random variates following a discrete distribution: 10% of combo 1, 80% of combo 2, 10% of combo 3

Convolution method

Convolution

- Sum of IID random variables
- Can be readily generated than direct generation of main Random variate

$$Y = X_1 + X_2 + X_3 + X_4 + \dots + Xm$$

where Xi are independent R.V's from same distribution

Procedure:

- Step 1: Generate X₁, X₂, . . . , X_m IID each with distribution function
- Step 2: Return

$$Y = X_1 + X_2 + X_3 + X_4 + \dots + Xm$$

Convolution method

• Y~ Erlang (k, θ)

Y ~ Binomial (n,p)

Composition method

Composition

- Lets say we have a distribution function F for generating the random variate
- F can be expressed convex combination of other distribution functions F_1, F_2, F_3, \dots

• The goal is to be able to sample more easily from F_j 's compared to

original F

$$F(x) = \sum_{j=1}^{\infty} p_j F_j(x)$$

$$p_{\infty}^j \ge 0$$

$$\sum_{j=1}^{\infty} p_j F_j(x)$$

where

Composition method

Continuous Random Variate

Discrete Random Variate

Acceptance-Rejection Technique

- Useful particularly when inverse CDF does not exist in closed form
 - Thinning
- Illustration: Generate random variates, $X \sim U(\frac{1}{4}, 1)$

Procedure:

- Step 1: Generate $R \sim U(0, 1)$
- Step 2: If $R \ge \frac{1}{4}$, accept X = R
- Step 3: If $R < \frac{1}{4}$, reject R, return to step 1
- Efficiency heavily depends on the ability to minimize the number of rejections

Acceptance-Rejection Technique: Poisson Distribution

Probability mass function of a Poisson Distribution

$$P(X=n) = \frac{\alpha^n}{n!}e^{-\alpha}$$

Apply the A-R technique to generate R.V. for Pois(2)

