Machine Learning for Text

Natural Language Processing Discover The Power of Words!

Amna Dridi, Ph.D

Amna.Dridi@bcu.ac.uk

Agenda

- Why We should care about it?
- What is NLP?
- NLP Tasks
- How to represent Text for ML?
- Classic vs Modern NLP Models
- Demo
- NLP Challenges
- NLP Domains
- Summary

Why We Should Care About it?

Big Data (Text) Statistics

- In **2019**, internet users spent **1.2 billion** years online.
- Google gets over 3.5 billion searches daily.

WhatsApp users exchange up to 65 billion messages daily.

• Facebook stores and processes more than 30 Petabytes of user generated data.

Twitter users send over half a million tweets every minute.

- 95% of businesses cite the need to manage unstructured data.
- Using big data analytics, Netflix saves \$1 billion per year on customer retention.

Job listings for data science and analytics reached around 2.7 million in 2020.

Machine Learning for Text

Natural Language Processing (NLP)

What is NLP?

- A sub-field of Artificial Intelligence.
- An inter disciplinary subject.
- Aim: To build intelligent systems that can interact with human being like human being!
- Natural language: refers to the language spoken by people, e.g. English, Japanese,
 Urdu, as opposed to artificial languages, like Java, Python, etc.
- History: 1950 -- Alan Turing published an article called "Machine and Intelligence."
 Started with Machine Translation Research

The Alan Turing Institute

Have you ever used NLP products?

Search queries - Webmaster Tools Help

support.google.com/webmasters/bin/answer.py?hl=en&answer...
Oct 16, 2012 – View Search Queries Available data Filtering Search Queries data
Query details How to use Search Queries data About Search Queries data ...

- Sequence Classification
- Sequence Labelling
- Sequence to Sequence

- Sequence Classification
- Sequence Labelling
- Sequence to Sequence

Input: Sequence of words

Output: Label/Class

Sentiment Analysis

Spam Detector

- Sequence Classification
- Sequence Labelling
- Sequence to Sequence

Input: Sequence of words

Output: Sequence of Labels/Classes

Part-of-Speech Tagging

Named Entity Recognition

- Sequence Classification
- Sequence Labelling
- Sequence to Sequence

Machine Translation

Input: Sequence of words

Output: Sequence of Words

Summarisation

NLP Tasks with Other Media (Multimodal)

Image Captioning

A group of young people playing a game of frisbee.

Input: Images

Output: Sequence of Words

A person riding a motorcycle on a dirt road.

NLP Tasks with Other Media (Multimodal)

Image Captioning

Amna and her baby boy "Mahdi" at Edgbaston Reservoir;)

Example of NLP Production: Restaurant Chatbot

Example of NLP Production: Restaurant Chatbot

Intent: order

Details:

Product: coffee Amount: 2

Action: ask_more

- 1. Understand the meaning
- 2. Record details / extract information
- 3. Give Reply

Order_items:

- Coffee 2

Ok. Anything else?

I want to order two cups of coffee please

Example of NLP Production: Restaurant Chatbot

Inside ML for NLP

How to represent Text for ML

Inside NLP

Source: https://www.freshgravity.com/

Text Feature Extraction: Classic NLP Models

1. Bag of Words (also known as Count Vectors)

Each feature represents the frequency of occurrence of each word.

Example

Doc1 (D1) -> Jane is a smart person. She is always happy.

Doc2 (D2) -> John is a good photographer.

	Jane	is	а	smart	person	She	always	happy	John	good	photographer
D1	1	2	1	1	1	1	1	1	0	0	0
D2	0	1	1	0	0	0	0	0	1	1	1

Text Feature Extraction: Classic

- **2. TF-IDF** (Term Frequency-Inverse Document Frequency)
- TF is calculated as (number of times term t appears in the document) / (number of terms in the document). It denotes the contribution of words to the document.
- IDF is calculated as log(N/n), where N is the number of documents and n is the number of documents a term t has appeared in.

Example

Doc1 (D1) -> Sachin is a cricket player. Doc2 (D2) -> Federer is a tennis player.

- TF of D1 and D2 = 1/5
- IDF for 'Sachin' = log(2/1) = 0.301
- IDF for 'a' = log(2/2) = 0
- TF-IDF for 'Sachin' in D1 = (1/5) * 0.301 = 0.602
- TF-IDF for 'a' in D1 = (1/5) * 0 = 0

Doc 1	Doc 2
Sachin	Federer
is	is
а	а
cricket	tennis
player	player

How to represent Text for ML

Text Feature Extraction: Modern

Text Feature Extraction: Modern NLP Models – Towards Deep Learning!

Machine Learning

Hand engineered features are time consuming, brittle and not scalable in practice.

Can we learn the **underlying features** directly from data?

Source: https://www.xenonstack.com/

Text Feature Extraction: Modern – Word Embedding

Male-Female

Verb tense

Text Feature Extraction: Modern – Word Embedding

Word2vec Models

Text Feature Extraction: Modern – Word Embedding

Skip-Gram Model

Example: Covid-19 is short form for coronavirus disease 2019. (window size=2)

Covid-19 is short form for coronavirus disease 20

- Training samples: (form, is), (form, short), (form, for), (form, coronavirus)
- We are going to represent an **input** word like "short" as a **one-hot vector**. This vector will have as many components as in our vocabulary and we will place "1" in the position corresponding to the words "short". Example: "short" will be **00100000**.
- The **hidden layer** is going to be represented by a weight matrix with the dimension (vocabulary size x number of hidden neurons). Example- (8×300).
- **The output** of the network is a **single vector** containing for every word in our vocabulary, the **probability** that a randomly selected nearby word is that vocabulary word.

Demo: Word2Vec Training and Visualisation

Dataset: Wiki pages of "coronavirus"

• **Programming language:** Python

Library: Gensim

Modern NLP: Deep Learning

Deep Neural Network →
(a complex math)

Input: I love pizza

$$f(x) = 4x_1 + 3x_2 + ...$$

(this is overly simplified)

positive

Challenges in NLP

NLP is hard! Language is ambiguous!

Source: https://www.thoughtco.com/

NLP is hard! Irony!

"Excellent! This day couldn't start off any better!"

NLP is hard! Slang & Non-standard words!

chrisbrown

LOL!!! im no gangbanger! where im from we say cuz, blood, folk, woadie, homie, patna, its slang and ebonics!US KIDS USE THESE TERMS. chillout

half a minute ago via web

NLP is hard! Text Localisation (E.g. English vs Japanese)

NLP in Other Domains

- Bio-medical
- Forensic science
- Advertisement
- Education
- Politics
- E-governance
- Business Development
- ... and wherever we use language!

Summary

- **NLP** is a branch of **AI** which helps computers to understand, interpret and manipulate **human language**.
- NLP started when Alan Turing published an article called "Machine and Intelligence".
- The main NLP tasks are sequence classification, sequence labelling and sequence to sequence.
- Classic NLP models are based on feature extraction and statistical models.
- Modern NLP models are based on neural networks.
- Essential Applications of NLP are Information retrieval & Web Search, Grammar Correction, Question Answering, , Text Summarization, Machine Translation, etc

NLP Tools

... and many more!

NLP Resources Tips

Ol Medium

Thank You:)

Amna Dridi, Ph.D

Amna.Dridi@bcu.ac.uk

