TD: Raisonnements

1 Raisonnement par récurrence

Exercice 1: Montrer que:

$$\forall n \in \mathbb{N}^*, \quad 1^3 + 2^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$

Exercice 2: Montrer que, si $n \in \mathbb{N}$, il existe un entier impair λ_n tel que :

$$5^{2^n} = 1 + \lambda_n 2^{n+2}$$

Exercice 3 : Soit $c \in \mathbb{R}^{+*}$. Pour $x \in \mathbb{R}$, soit $f(x) = \frac{x}{\sqrt{1+cx^2}}$. Calculer f(f(x)), f(f(f(x))) et généraliser.

Exercice 4: Soit (u_n) , la suite définie par :

$$u_0 = 2$$
, $u_1 = 5$ et $\forall n \in \mathbb{N}, u_{n+2} = 5u_{n+1} - 6u_n$

Montrer que :

$$u_n = 2^n + 3^n$$

Exercice 5 : Soit (U_n) , la suite définie par :

$$u_0 = 1, \quad u_1 = 2 \quad \text{et} \quad \forall n \in \mathbb{N}^*, u_{n+1} = \frac{u_n^2}{u_{n-1}}$$

Trouver une forme générale de u_n .

Exercice 6 : La suite de Fibonacci (F_n) est définir par :

$$F_0 = 0$$
, $F_1 = 1$; $\forall n \in \mathbb{N}$, $F_{n+2} = F_{n+1} + F_n$

De plus, posons:

$$\alpha = \frac{1 + \sqrt{5}}{2}, \quad \beta = \frac{1 - \sqrt{5}}{2}$$

- 1. Calculer F_2, F_3, F_4
- 2. Montrer que α et β sont solutions de $x^2 x 1 = 0$

3. Montrer que
$$F_n = \frac{\alpha^n - \beta^n}{\sqrt{5}}$$

4. On pose:

$$\Delta_n = F_n F_{n+2} - F_{n+1}^2$$

Calculer Δ_n pour quelques valeurs de n. Généraliser à l'aide d'une récurrence.

- 5. Montrer que $\alpha\beta = -1$ et $\alpha + \beta = 1$
- 6. Calculer directement Δ_n à partir de la formule établie précédemment.

2 Raisonnement par contraposée

Exercice 7 : Soit n un entier. En oncer et démontrer la contraposée de la proposition suivante :

Si n^2 est impair, alors n est impair.

Exercice 8 : Démontrer la propriété suivante pour $n \in \mathbb{N}^*$:

Si l'entier $(n^2 - 1)$ n'est pas divisible par 8, alors l'entier n est pair.

3 Raisonnement par l'absurde

Exercice 9 : Montrer que si $x \in \mathbb{R}$ tel que $|x| < \epsilon$ quel que soit $\epsilon > 0$, alors x = 0

Exercice 10 : Montrer que $\sqrt{2}$ est irrationnel

Exercice 11 : Soient a,b,c,d des nombres rationnels tels que

$$a + b\sqrt{2} = c + d\sqrt{2}$$

Montrer que a = b et b = d

Exercice 12: Montrer que $\sqrt{3}$ est irrationnel.

Exercice 13 : Montrer que $\frac{ln(3)}{ln(2)}$ est irrationnel

4 Raisonnement par Analyse Synthèse

Exercice 14 : Déterminer les réels tels que $\sqrt{2-x}=x$

Exercice 15 : Trouver l'ensemble des fonctions f de $\mathbb R$ dans $\mathbb R$ dérivables sur $\mathbb R$ telles que :

$$\forall (x,y) \in \mathbb{R}^2, \quad f(x+y) = f(x) + f(y)$$

Exercice 16 : Trouver l'ensemble des fonctions f de \mathbb{R}^{+*} dans \mathbb{R} dérivables telles que :

$$\forall (x,y) \in \mathbb{R}^2, \quad f(xy) = f(x) + f(y)$$