5-clustering

February 25, 2021

#

Ciencia de Datos

Víctor Muñiz Sánchez

Maestría en Cómputo Estadístico

Enero a junio 2021

1 Clustering jerárquico

1.1 Ejemplo primates (Izenman)

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler
import matplotlib as mpl
import os
os.chdir('/home/victor/cursos/ciencia_de_datos_2021/')
sns.set()
%matplotlib inline
```

```
[2]: primate_scapulae = pd.read_csv('data/primate.scapulae.csv')
primate_scapulae.head()
```

```
class_str
[2]:
       genus
              AD.BD
                    AD.CD
                           EA.CD
                                  Dx.CD
                                         SH.ACR EAD
                                                      beta
                                                            gamma
    0
          54 65.56 166.0
                           50.55 12.80
                                           70.3 115
                                                        14
                                                             45.0
                                                                  Hylobates
    1
          54 50.91
                      93.9
                           61.82 13.09
                                           75.0 121
                                                             54.0
                                                                  Hylobates
                                                        20
          54 46.15
                                           70.0 120
                                                                  Hylobates
    2
                      80.8 64.10 11.80
                                                        25
                                                             61.0
    3
          54
             70.29 220.5
                           50.00 12.75
                                           61.1 113
                                                        12
                                                             45.0
                                                                  Hylobates
    4
          54 63.16 144.0 57.89 12.98
                                                             46.0
                                                                  Hylobates
                                           64.9 115
                                                        14
```

```
classdigit
0 1
1 1
```

```
2 1
3 1
4 1
```

Quitamos la categoría homo, ya que no cuenta con la medición del ángulo γ

```
[3]: data = primate_scapulae.drop(primate_scapulae[primate_scapulae.class_str == ∪ → 'Homo'].index)
data.drop(['genus', 'gamma', 'class_str', 'classdigit'], 1, inplace = True)
data.head()
```

```
[3]:
       AD.BD
              AD.CD EA.CD
                             Dx.CD
                                    SH.ACR EAD
                                                 beta
     0 65.56
               166.0 50.55
                             12.80
                                      70.3
                                            115
                                                   14
     1 50.91
                93.9 61.82
                             13.09
                                      75.0
                                            121
                                                   20
     2 46.15
                80.8 64.10
                             11.80
                                      70.0
                                            120
                                                   25
     3 70.29
               220.5
                     50.00
                             12.75
                                      61.1
                                            113
                                                   12
       63.16
              144.0 57.89
                                            115
                            12.98
                                      64.9
                                                   14
```

Clustering jerárquico con scipy

```
[4]: from scipy.cluster.hierarchy import linkage, fcluster, dendrogram

link = 'single' #'complete' 'average' (ver otros en la documentacion del módulo)
link_mat = linkage(data, method=link)
print('size data',data.shape)
print('clustering',link_mat.shape)
link_mat[:10,]
```

```
size data (65, 7) clustering (64, 4)
```

```
[4]: array([[20.
                            , 21.
                                              3.13261871,
                                                             2.
                                                                         ],
              [33.
                            , 35.
                                              4.07410113,
                                                             2.
                                                                         ],
              [32.
                             42.
                                              4.2483997,
                                                             2.
                                                                         ],
              [40.
                             66.
                                              4.9819173 ,
                                                             3.
                                                                         ],
              [34.
                             67.
                                              5.32959661,
                                                             3.
                                                                         ],
              [36.
                                                             2.
                             63.
                                              5.43829937,
                                                                         ],
              [46.
                                              6.00983361,
                            , 69.
                                                             4.
                                                                         ],
                                                             2.
              Γ60.
                             61.
                                              6.23247142,
                                                                         ],
              [16.
                             29.
                                              6.6892152 ,
                                                             2.
                                                                         ],
              Γ25.
                            , 65.
                                              7.10786184,
                                                             3.
                                                                         ]])
```

 $link_mat$ contiene el resultado del clústering jerárquico. Las primeras dos columnas indican el índice de los objetos agrupados. La tercera la distancia (disimilaridad) del clúster y la cuarta, el número de objetos en tal clúster. Cuando el índice de las primeras dos columnas es > n, indica un clúster agregado como un nuevo objeto. Ver documentación de linkage en https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html#scipy.cluster.hierarchy.

Dendograma básico

```
[6]: plt.figure(figsize=(25, 10))
   plt.title('Hierarchical Clustering Dendrogram. Method: '+link)
   plt.xlabel('Objetos')
   plt.ylabel('Distancia')
   dendrogram(
        link_mat,
        leaf_rotation=90., # rotates the x axis labels
        leaf_font_size=15., # font size for the x axis labels
)
   plt.show()
```


Dendograma con más información y un punto de corte para seleccionar clústers

```
[24]: plt.figure(figsize=(20, 10))
   plt.title('Hierarchical Clustering Dendrogram')
   plt.xlabel('sample index')
   plt.ylabel('distance')

max_d = 23
   fancy_dendrogram(
        link_mat,
        #truncate_mode='lastp',
        #p=12,
        leaf_rotation=90.,
        leaf_font_size=12.,
        show_contracted=True,
        annotate_above=10,
        max_d=max_d, # plot a horizontal cut-off line
)
plt.show()
```


Obtener la asignación de los objetos (datos) a cada clúster según cierto valor de distancia o especificación del número k de clústers

	4D DD	4.D. GD	EA CD	D 0D	arr Aab	EAD.		a .
0	AD.BD	AD.CD	EA.CD	Dx.CD	SH.ACR	EAD	beta	Cluster
0	65.56	166.0	50.55	12.80	70.3	115	14	3
1	50.91	93.9	61.82	13.09	75.0	121	20	3
2	46.15	80.8	64.10	11.80	70.0	120	25	3
3	70.29	220.5	50.00	12.75	61.1	113	12	4
4	63.16	144.0	57.89	12.98	64.9	115	14	3
5	50.72	134.6	56.23	11.88	52.6	136	14	3
6	58.99	164.0	54.96	12.46	58.6	109	11	3
7	55.38	144.0	52.31	11.92	65.3	131	16	3
8	64.29	138.5	57.14	12.50	60.0	115	16	3
9	65.67	169.2	50.75	12.46	55.3	117	20	3
10	55.91	113.0	60.22	12.47	64.5	121	16	3
11	64.62	134.6	52.31	13.23	75.0	124	12	3
12	62.07	128.6	56.90	12.41	61.5	119	17	3
13	59.26	128.0	51.85	11.39	73.3	125	19	3
14	57.94	182.5	60.32	12.54	66.0	105	11	3
15	57.14	147.4	61.22	11.63	64.3	115	11	3
16	31.13	30.6	84.91	12.45	48.7	117	32	1
17	38.32	38.3	68.22	12.62	64.5	138	30	1
18	33.64	29.5	76.64	13.08	60.5	127	40	1
19	28.57	30.5	75.89	11.16	51.3	130	33	1
20	34.78	38.1	80.87	12.70	58.0	117	31	1
21	36.04	36.4	81.08	12.16	58.0	116	33	1
22	30.38	23.1	82.28	12.91	52.9	129	43	1
23	32.14	29.4	82.14	12.86	53.7	118	37	1
24	28.74	28.4	89.66	12.07	65.8	116	35	1
25	37.80	33.3	85.37	12.56	56.5	117	37	1
26	36.00	45.0	79.20	12.40	63.0	123	24	1
27	39.13	36.6	73.91	11.30	69.7	119	37	1
28	33.68	39.0	78.95	12.63	52.6	127	30	1
29	29.47	32.6	84.21	12.95	45.2	120	36	1
30	26.83	27.2	84.15	12.20	53.3	126	31	1
31	80.00	118.9	59.09	12.91	52.1	94	20	2
32	74.49	100.0	57.14	12.45	53.0	101	20	2
33	75.79	80.0	61.05	13.47	50.0	98	28	2
34	76.36	100.0	57.27	12.82	50.0	96	24	2
35	73.68	81.4	63.16	13.68	51.3	100	28	2
36	76.19	103.9	59.05	13.71	60.0	97	24	2
37	75.29	80.0	55.29	13.29	57.9	101	26	2
38	62.00	66.0	67.00	13.00	61.8	104	28	2
39	72.73	100.0	56.36	13.18	63.5	110	21	2

```
13.70
     40
         77.00
                  81.1
                        63.00
                                          52.3
                                                 95
                                                        30
                                                                   2
         76.53
                  93.8
                        58.16
                                13.47
                                                100
                                                        27
                                                                   2
     41
                                          57.9
                                12.94
                                                                   2
     42
         76.47
                  97.5
                        56.86
                                          51.4
                                                100
                                                        22
     43
         76.67
                  89.6
                        55.56
                                13.89
                                          43.2
                                                 105
                                                        22
                                                                   2
                                                                   2
         78.35
                  84.4
                         61.86
                                13.92
                                          59.0
                                                 95
                                                        25
     44
          70.00
                  76.8
                         63.33
                                13.67
                                          50.6
                                                107
                                                        25
                                                                   2
     45
                                                                   2
     46
         78.00
                 102.6
                        56.00
                                13.20
                                          50.0
                                                101
                                                        24
                 114.9
                                          55.9
                                                                   2
     47
         77.00
                        54.00
                                14.00
                                                103
                                                        19
         84.55
                 100.0
                        57.27
                                13.27
                                          62.2
                                                 92
                                                        24
                                                                   2
     48
                                13.90
                                          53.9
                                                108
                                                        29
                                                                   2
     49
          69.47
                  66.0
                        57.89
         78.57
                  77.0
                        45.92
                                13.88
                                          53.8
                                                 105
                                                        29
                                                                   2
     50
         70.59
                 100.0
                        72.94
                                12.94
                                          57.1
                                                 95
                                                        27
                                                                   2
     51
                                                                   2
                  79.7
                                12.56
                                          56.1
                                                        33
     52
         63.95
                         68.02
                                                101
                                                                   2
     53
         67.97
                  72.5
                        64.84
                                14.06
                                          66.7
                                                 100
                                                        30
         73.48
                  95.1
                         66.67
                                13.26
                                          77.1
                                                        25
                                                                   2
     54
                                                 94
                                                                   2
     55
         66.67
                  84.0
                        67.46
                                12.62
                                          59.3
                                                 97
                                                        30
     56
         57.89
                  68.1
                        62.41
                                12.48
                                          61.1
                                                107
                                                        31
                                                                   2
                                          65.1
                                                                   2
     57
         74.07
                 101.7
                         64.81
                                13.46
                                                 94
                                                        32
     58
         71.54
                  93.0
                        69.23
                                13.08
                                          60.9
                                                 95
                                                        30
                                                                   2
                                                                   2
     59
         65.93
                  78.1
                        54.81
                                13.48
                                          60.2
                                                105
                                                        34
                                12.62
                                          49.0
                                                                   2
     60
         66.90
                  92.4
                         60.69
                                                103
                                                        25
     61
          68.00
                  89.5
                         65.60
                                12.96
                                          50.0
                                                103
                                                        27
                                                                   2
                                                                   2
     62
         65.68
                  95.7
                        72.78
                                12.84
                                          65.7
                                                 96
                                                        25
                                                                   2
     63
         76.50
                 106.1
                         62.84
                                13.28
                                          59.7
                                                 96
                                                        27
     64
         71.75
                  81.4
                        63.84
                                12.66
                                          62.3
                                                 96
                                                        35
                                                                   2
[28]: k = 4
      obj_clus = fcluster(link_mat, k, criterion='maxclust')
      data_clus = pd.DataFrame(data).assign(Cluster = obj_clus)
      print(data_clus.to_string())
```

```
AD.CD
                           Dx.CD
                                  SH.ACR
                                           EAD
    AD.BD
                   EA.CD
                                                beta
                                                       Cluster
0
    65.56
           166.0
                   50.55
                           12.80
                                     70.3
                                           115
                                                   14
                                                             3
             93.9
                           13.09
                                     75.0
                                                             3
1
    50.91
                   61.82
                                           121
                                                   20
2
    46.15
            80.8
                   64.10
                           11.80
                                     70.0
                                           120
                                                   25
                                                             3
3
    70.29
           220.5
                   50.00
                           12.75
                                     61.1
                                           113
                                                   12
                                                             4
                                                             3
4
    63.16
           144.0
                   57.89
                           12.98
                                     64.9
                                                   14
                                           115
5
    50.72
           134.6
                   56.23
                           11.88
                                     52.6
                                           136
                                                   14
                                                             3
                           12.46
6
    58.99
           164.0
                   54.96
                                     58.6
                                           109
                                                   11
                                                             3
                                                             3
7
    55.38
           144.0
                   52.31
                           11.92
                                     65.3
                                           131
                                                   16
    64.29
           138.5
                   57.14
                           12.50
                                     60.0
                                           115
                                                   16
                                                             3
8
9
    65.67
           169.2
                   50.75
                           12.46
                                     55.3
                                           117
                                                   20
                                                             3
    55.91
           113.0
                   60.22
                           12.47
                                     64.5
                                                             3
10
                                           121
                                                   16
                                     75.0
                                                             3
11
    64.62
           134.6
                   52.31
                           13.23
                                           124
                                                   12
                                                             3
12
    62.07
           128.6
                   56.90
                           12.41
                                     61.5
                                           119
                                                   17
    59.26
           128.0
                   51.85
                           11.39
                                     73.3
                                           125
                                                   19
                                                             3
13
                                     66.0
                                                             3
14
    57.94
           182.5
                   60.32
                           12.54
                                           105
                                                   11
                           11.63
15
    57.14
           147.4
                   61.22
                                     64.3
                                           115
                                                   11
                                                              3
```

16	31.13	30.6	84.91	12.45	48.7	117	32	1
17	38.32	38.3	68.22	12.62	64.5	138	30	1
18	33.64	29.5	76.64	13.08	60.5	127	40	1
19	28.57	30.5	75.89	11.16	51.3	130	33	1
20	34.78	38.1	80.87	12.70	58.0	117	31	1
21	36.04	36.4	81.08	12.16	58.0	116	33	1
22	30.38	23.1	82.28	12.91	52.9	129	43	1
23	32.14	29.4	82.14	12.86	53.7	118	37	1
24	28.74	28.4	89.66	12.07	65.8	116	35	1
25	37.80	33.3	85.37	12.56	56.5	117	37	1
26	36.00	45.0	79.20	12.40	63.0	123	24	1
27	39.13	36.6	73.20	11.30	69.7	119	37	1
28	33.68	39.0	78.95	12.63	52.6	127	30	1
29	29.47	32.6	84.21	12.95	45.2	120	36	1
30	26.83	27.2	84.15	12.20	53.3	126	31	1
31	80.00	118.9	59.09	12.20	52.1	94	20	2
32	74.49	100.0	57.14	12.45	53.0	101	20	2
33	75.79	80.0	61.05	13.47	50.0	98	28	2
	76.36	100.0				96		
34	73.68		57.27	12.82	50.0		24	2 2
35		81.4	63.16	13.68	51.3	100	28	2
36	76.19	103.9	59.05	13.71	60.0	97	24	
37	75.29	80.0	55.29	13.29	57.9	101	26	2
38	62.00	66.0	67.00	13.00	61.8	104	28	2
39	72.73	100.0	56.36	13.18	63.5	110	21	2
40	77.00	81.1	63.00	13.70	52.3	95	30	2
41	76.53	93.8	58.16	13.47	57.9	100	27	2
42	76.47	97.5	56.86	12.94	51.4	100	22	2
43	76.67	89.6	55.56	13.89	43.2	105	22	2
44	78.35	84.4	61.86	13.92	59.0	95	25	2
45	70.00	76.8	63.33	13.67	50.6	107	25	2
46	78.00	102.6	56.00	13.20	50.0	101	24	2
47	77.00	114.9	54.00	14.00	55.9	103	19	2
48	84.55		57.27	13.27	62.2	92	24	2
49	69.47	66.0		13.90	53.9	108	29	2
50	78.57	77.0	45.92	13.88	53.8	105	29	2
51	70.59	100.0	72.94	12.94	57.1	95	27	2
52	63.95	79.7	68.02	12.56	56.1	101	33	2
53	67.97	72.5	64.84	14.06	66.7	100	30	2
54	73.48	95.1	66.67	13.26	77.1	94	25	2
55	66.67	84.0	67.46	12.62	59.3	97	30	2
56	57.89	68.1	62.41	12.48	61.1	107	31	2
57	74.07	101.7	64.81	13.46	65.1	94	32	2
58	71.54	93.0	69.23	13.08	60.9	95	30	2
59	65.93	78.1	54.81	13.48	60.2	105	34	2
60	66.90	92.4	60.69	12.62	49.0	103	25	2
61	68.00	89.5	65.60	12.96	50.0	103	27	2
62	65.68	95.7	72.78	12.84	65.7	96	25	2
63	76.50	106.1	62.84	13.28	59.7	96	27	2

Usando sklearn. Detalles, ve en la documentación: https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html#sklearn.cluster.AgglomerativeClustering.html

Clusters: 65

Observa que, se puede definir un número de clusters ($n_{clusters}$) o un criterio basado en la distancia distance_threshold. En este caso, como la distancia se pone en 0, no da una asignación específica de clusters a los datos. De hecho, el número de clústers es n.

```
[31]: def plot_dendrogram(model, **kwargs):
          # Create linkage matrix and then plot the dendrogram
          # create the counts of samples under each node
          counts = np.zeros(model.children_.shape[0])
          n_samples = len(model.labels_)
          for i, merge in enumerate(model.children_):
              current_count = 0
              for child_idx in merge:
                  if child_idx < n_samples:</pre>
                      current_count += 1 # leaf node
                  else:
                      current_count += counts[child_idx - n_samples]
              counts[i] = current_count
          linkage_matrix = np.column_stack([model.children_, model.distances_,
                                             counts]).astype(float)
          # Plot the corresponding dendrogram
          dendrogram(linkage_matrix, **kwargs)
```

```
[60]: plt.figure(figsize=(20, 10))
   plt.title('Hierarchical Clustering Dendrogram')
   plot_dendrogram(cluster)
   #plot_dendrogram(cluster, truncate_mode='level', p=4)
   plt.xlabel("Number of points in node (or index of point if no parenthesis).")
   plt.show()
```



```
Clusters:
    AD.BD
          AD.CD EA.CD
                                                   Cluster
                        Dx.CD
                                SH.ACR
                                       EAD
                                             beta
0
   65.56
          166.0 50.55
                         12.80
                                  70.3
                                        115
                                               14
                                                         0
   50.91
           93.9
                                  75.0
                                        121
                                               20
                                                         0
1
                 61.82
                         13.09
   46.15
                                  70.0
                                                         0
2
            80.8
                 64.10
                         11.80
                                        120
                                               25
3
   70.29
          220.5 50.00
                         12.75
                                  61.1
                                        113
                                               12
                                                         3
4
   63.16
          144.0
                 57.89
                         12.98
                                  64.9
                                        115
                                               14
                                                         0
5
   50.72
          134.6 56.23
                        11.88
                                  52.6
                                        136
                                               14
                                                         0
                                  58.6
6
   58.99
          164.0 54.96
                         12.46
                                        109
                                               11
                                                         0
7
   55.38 144.0 52.31
                         11.92
                                  65.3
                                                         0
                                        131
                                               16
8
   64.29
          138.5 57.14
                         12.50
                                  60.0
                                        115
                                               16
                                                         0
9
   65.67
          169.2 50.75
                         12.46
                                  55.3
                                               20
                                                         0
                                        117
   55.91
          113.0 60.22
                        12.47
                                  64.5
                                        121
                                                         0
10
                                               16
                         13.23
                                                         0
11
   64.62
          134.6 52.31
                                  75.0
                                        124
                                               12
12
   62.07
          128.6 56.90
                        12.41
                                  61.5
                                        119
                                               17
                                                         0
13 59.26
          128.0 51.85
                         11.39
                                  73.3
                                        125
                                               19
                                                         0
                                                         0
14 57.94
          182.5 60.32
                         12.54
                                  66.0
                                        105
                                               11
                                                         0
15 57.14 147.4 61.22
                         11.63
                                  64.3
                                               11
                                        115
                                                         2
16 31.13
           30.6 84.91 12.45
                                  48.7
                                        117
                                               32
```

17	38.32	38.3	68.22	12.62	64.5	138	30	2
18	33.64	29.5	76.64	13.08	60.5	127	40	2
19	28.57	30.5	75.89	11.16	51.3	130	33	2
20	34.78	38.1	80.87	12.70	58.0	117	31	2
21	36.04	36.4	81.08	12.16	58.0	116	33	2
22	30.38	23.1	82.28	12.91	52.9	129	43	2
23	32.14	29.4	82.14	12.86	53.7	118	37	2
24	28.74	28.4	89.66	12.07	65.8	116	35	2
25	37.80	33.3	85.37	12.56	56.5	117	37	2
26	36.00	45.0	79.20	12.40	63.0	123	24	2
27	39.13	36.6	73.91	11.30	69.7	119	37	2
28	33.68	39.0	78.95	12.63	52.6	127	30	2
29	29.47	32.6	84.21	12.95	45.2	120	36	2
30	26.83	27.2	84.15	12.20	53.3	126	31	2
31	80.00	118.9	59.09	12.91	52.1	94	20	1
32	74.49	100.0	57.14	12.45	53.0	101	20	1
33	75.79	80.0	61.05	13.47	50.0	98	28	1
34	76.36	100.0	57.27	12.82	50.0	96	24	1
35	73.68	81.4	63.16	13.68	51.3	100	28	1
36	76.19	103.9	59.05	13.71	60.0	97	24	1
37	75.29	80.0	55.29	13.29	57.9	101	26	1
38	62.00	66.0	67.00	13.00	61.8	104	28	1
39	72.73	100.0	56.36	13.18	63.5	110	21	1
40	77.00	81.1	63.00	13.70	52.3	95	30	1
41	76.53	93.8	58.16	13.47	57.9	100	27	1
42	76.47	97.5	56.86	12.94	51.4	100	22	1
43	76.67	89.6	55.56	13.89	43.2	105	22	1
44	78.35	84.4	61.86	13.92	59.0	95	25	1
45	70.00	76.8	63.33	13.67	50.6	107	25	1
46	78.00	102.6	56.00	13.20	50.0	101	24	1
47	77.00	114.9	54.00	14.00	55.9	103	19	1
48	84.55	100.0	57.27	13.27	62.2	92	24	1
49	69.47	66.0	57.89	13.90	53.9	108	29	1
50	78.57	77.0	45.92	13.88	53.8	105	29	1
51	70.59	100.0	72.94	12.94	57.1	95	27	1
52	63.95	79.7	68.02	12.56	56.1	101	33	1
53	67.97	72.5	64.84	14.06	66.7	100	30	1
54	73.48	95.1	66.67	13.26	77.1	94	25	1
55	66.67	84.0	67.46	12.62	59.3	97	30	1
56	57.89	68.1	62.41	12.48	61.1	107	31	1
57	74.07	101.7	64.81	13.46	65.1	94	32	1
58	71.54	93.0	69.23	13.08	60.9	95	30	1
59	65.93	78.1	54.81	13.48	60.2	105	34	1
60	66.90	92.4	60.69	12.62	49.0	103	25	1
61	68.00	89.5	65.60	12.96	50.0	103	27	1
62	65.68	95.7	72.78	12.84	65.7	96	25	1
63	76.50	106.1	62.84	13.28	59.7	96	27	1
64	71.75	81.4	63.84	12.66	62.3	96	35	1

Ahora, especifico el número de Clústers en 4

1.1.1 Clustering de observaciones y variables. El Heatmap

Como habíamos mencionado en clase, podemos hacer clústering de observaciones y variables eligiendo la medida de distancia (disimilaridad) apropiada. En este ejemplo, usaremos distancia euclideana para las observaciones y la distancia de correlación para las variables

```
[39]: from scipy.spatial.distance import pdist, squareform

# distancia para observaciones
Y = data.transpose()
row_link = linkage(data, metric = 'euclidean', method='single')
col_link = linkage(Y, metric = 'correlation', method = 'single')
```

OJO: recuerda que la correlación como distancia no es lo mismo que la matriz de correlación. Checa tus notas de clase cuando vimos distancias... (espero que tomes nota).

Clustering de observaciones (ya lo vimos pero lo repetimos)

```
[40]: plt.figure(figsize=(15, 10))
   plt.title('Hierarchical Clustering Dendrogram')
   plt.xlabel('Observaciones')
   plt.ylabel('Distancia')
   dendrogram(
       row_link,
       leaf_rotation=90., # rotates the x axis labels
       leaf_font_size=10., # font size for the x axis labels
)
   plt.show()
```


Clustering de variables

```
[41]: plt.figure(figsize=(10, 7))
  plt.title('Hierarchical Clustering Dendrogram')
  plt.xlabel('Variables')
  plt.ylabel('Distancia')
  dendrogram(
      col_link,
      labels = list(data.columns),
      leaf_rotation=90., # rotates the x axis labels
      leaf_font_size=15., # font size for the x axis labels
)
  plt.show()
```


Todo junto en un heatmap que muestra las distancias (similaridades) entre las observaciones, ordenadas según los clústers jerárquicos para observaciones y variables

```
[42]: import seaborn as sns; sns.set()

row_link = linkage(data, method='single')
col_link = linkage(Y, method = 'single')

g = sns.clustermap(data, row_linkage=row_link, col_linkage=col_link)
```


Para detalles sobre las opciones de configuración del heatmap, ver la documentación de seaborn.clustermap

1.1.2 Ejemplo Gower.

Tomado de https://github.com/wwwjk366/gower.

```
[45]: import numpy as np
import pandas as pd

Xd=pd.DataFrame({'age':[21,21,19, 30,21,21,19,30],
    'gender':['M','M','M','F','F','F'],
    'civil_status':
    →['MARRIED','SINGLE','SINGLE','MARRIED','SINGLE','WIDOW','DIVORCED'],
```

```
'salary':[3000.0,1200.0 ,32000.0,1800.0 ,2900.0 ,1100.0 ,10000.0,1500.0],
'has_children':[1,0,1,1,1,0,0,1],
'available_credit':[2200,100,22000,1100,2000,100,6000,2200]})
Xd
```

```
[45]:
         age gender civil_status
                                    salary has_children available_credit
          21
                                    3000.0
                  Μ
                          MARRIED
                                                                        2200
      1
          21
                  Μ
                           SINGLE
                                    1200.0
                                                         0
                                                                         100
      2
          19
                           SINGLE 32000.0
                                                         1
                                                                       22000
                  Μ
      3
          30
                  Μ
                           SINGLE
                                    1800.0
                                                         1
                                                                        1100
          21
      4
                  F
                          MARRIED
                                    2900.0
                                                         1
                                                                        2000
      5
          21
                  F
                           SINGLE
                                    1100.0
                                                        0
                                                                         100
                  F
                                                        0
      6
          19
                            WIDOW
                                   10000.0
                                                                        6000
      7
          30
                  F
                         DIVORCED
                                    1500.0
                                                         1
                                                                        2200
```

Datos sintéticos. Ver la documentación para las distintas formas de especificar el tipo de variables en un data frame de Pandas.

```
[48]: # instalar con pip
import gower
from tabulate import tabulate

dm = gower.gower_matrix(Xd)
print('Matriz disimilaridad \n')
table = tabulate(dm, tablefmt="fancy_grid")
print(table)
```

Matriz disimilaridad

0 0.477788	0.359024	0.504073	0.317874	0.168728	0.52623	0.596979
0.359024 0.653964	0	0.529764	0.313877	0.523629	0.167206	0.456002
0.504073 0.815194	0.529764	0	0.488614	0.672801	0.69697	0.740428
0.317874 0.343323	0.313877	0.488614	0	0.482479	0.481083	0.748186
0.168728	0.523629	0.672801	0.482479	0	0.357502	0.432373

0.312104

```
0.52623
           0.167206 0.69697
                               0.481083 0.357502 0
                                                              0.289875
0.487836
           0.456002
 0.596979
                     0.740428
                               0.748186
                                         0.432373
                                                    0.289875
0.574766
 0.477788 0.653964 0.815194
                               0.343323
                                         0.312104
                                                    0.487836
                                                              0.574766
```

Un detalle al usar linkage de scipy, es que el argumento y de los datos debe ser una matriz de datos $n \times d$ o una matriz de distancias condensada, es decir, un arreglo que contenga la diagonal superior. Ver los detalles en la documentación de la función.

```
[49]: # clustering (3 grupos)
Zd = linkage(dm, method = 'single')
cld = fcluster(Zd, 3, criterion='maxclust')

data_clus3 = pd.DataFrame(Xd).assign(Cluster = cld)

print('Clustering \n')
data_clus3
```

Clustering

<ipython-input-49-21b6065830cf>:2: ClusterWarning: scipy.cluster: The symmetric
non-negative hollow observation matrix looks suspiciously like an uncondensed
distance matrix

Zd = linkage(dm, method = 'single')

[49]:	age	gender	civil_status	salary	has_children	available_credit	Cluster
0	21	M	MARRIED	3000.0	1	2200	2
1	21	M	SINGLE	1200.0	0	100	1
2	19	M	SINGLE	32000.0	1	22000	3
3	30	M	SINGLE	1800.0	1	1100	2
4	21	F	MARRIED	2900.0	1	2000	2
5	21	F	SINGLE	1100.0	0	100	1
6	19	F	WIDOW	10000.0	0	6000	1
7	30	F	DIVORCED	1500.0	1	2200	2

```
[57]: plt.figure(figsize=(15, 10))
   plt.title('Hierarchical Clustering Dendrogram')
   plt.xlabel('Objetos')
   plt.ylabel('Distancia')
   dendrogram(Zd, leaf_rotation=90., leaf_font_size=15.,)
   plt.show()
```


Clustering

[51]:		age	gender	civil_status	salary	has_children	available_credit	Cluster
	0	21	M	MARRIED	3000.0	1	2200	2
	1	21	M	SINGLE	1200.0	0	100	0
	2	19	M	SINGLE	32000.0	1	22000	1
	3	30	M	SINGLE	1800.0	1	1100	0

4	21	F	MARRIED	2900.0	1	2000	2
5	21	F	SINGLE	1100.0	0	100	0
6	19	F	WIDOW	10000.0	0	6000	0
7	30	F	DIVORCED	1500.0	1	2200	2

Alternativamente, con la función de sklearn puedes pasar directamente una matriz de distancias con la opción affinity = precomputed