MATHEMATICS-I (MA10001)

August 1, 2018

1. Determine the following limits using L'Hospital rule, if exist:

a)
$$\lim_{x \to 0} x \log x$$

b)
$$\lim_{x \to 0} x^x$$

c)
$$\lim_{x \to 1} x \frac{1}{x - 1}$$

d)
$$\lim_{x \to \infty} x^{1/3}$$

e)
$$\lim_{x \to 0} \frac{\tan^{-1} x}{\sin^{-1} x}$$

d)
$$\lim_{x \to \infty} x^{1/x}$$

f) $\lim_{x \to 0} \left(\frac{1}{e^x - 1} - \frac{1}{x} \right)$
h) $\lim_{x \to 0} |\sin x|^x$

g)
$$\lim |\sin x|^{\tan x}$$

h)
$$\lim_{x\to 0} |\sin x|^x$$

i)
$$\lim_{x \to e} \frac{\log(\log x)}{\sin(x - e)}$$

k)
$$\lim_{x \to 0} \frac{\sin x - x + \frac{x^3}{6}}{x^5}$$

2. By Taylor series expansion, using suitable function

a) find the value of $\sqrt{1.5}$ approximately.

b) show that
$$\sin 46^{\circ} \approx \frac{1}{\sqrt{2}} \left(1 + \frac{\pi}{180} \right)$$
.

3. If $f(x) = e^x$ then using Taylor's theorem, find the smallest interval in which value of $e^{0.1}$ belong. (Take n = 2.)

4. Use Taylor's theorem to prove that

a)
$$\cos x \ge 1 - \frac{x^2}{2}$$
 for $-\pi < x < \pi$.

b)
$$x - \frac{x^3}{6} < \sin x < x \text{ for } 0 < x < \pi.$$

c)
$$1 + x + \frac{x^2}{2} + \frac{x^3}{3!} < e^x < 1 + x + \frac{x^2}{2} + \frac{x^3}{3!}e^x$$
 for all $x > 0$.

5. Prove: If f is continuous at x_0 and there are constatuts a_0 and a_1 such that

$$\lim_{x \to x_0} \frac{f(x) - a_0 - a_1(x - x_0)}{x - x_0} = 0$$

then $a_0 = f(x_0)$, f' is differentiable at x_0 , and $f'(x_0) = a_1$.

6. Using Taylor's series formula, evaluate

a)
$$\lim_{x \to 0} \frac{\sin x}{\sqrt{1 - \cos x}}$$

b)
$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{\sin x} \right)$$

c)
$$\lim_{x\to 0} \frac{x - \log(1+x)}{1 - \cos x}$$

d)
$$\lim_{x\to 0} \frac{xe^x - \log(1+x)}{x^2}$$
.

- 7. Find the Maclaurin's infinite series expansion for
 - a) $f(x) = \cos x$ for all $x \in \mathbb{R}$.
 - b) $f(x) = \log(1+x)$ for (-1,1].
 - c) $f(x) = e^x \cos x$ for all $x \in \mathbb{R}$
- 8. Can the function f(x) defined by $f(x) = e^{1/x}$ for $x \neq 0$ and f(0)=0 be expanded in ascending powers of x by Maclaurin's Theorem?
- 9. Write the Maclaurin's formula for the function $f(x) = \sqrt[3]{1+x}$ of degree 2. Further estimate the error of the approximate equation $\sqrt[3]{1+x} \approx 1 + \frac{1}{3}x \frac{1}{9}x^2$ when x = 0.3.
- 10. Using Maclaurin's Theorem expand $\frac{e^x}{1+e^x}$.