Departamento de Ciência de Computadores Algoritmos (CC4010)

FCUP 2020/2021

Teste (13.01.2021) Cotação: 4.0, 1.5, 3.0, 4.0, 6.0, 1.5 duração: 2h (+30')

N.º		Nome				
1. Recorde o problema <i>unit task scheduling</i> , de calendarização de n tarefas unitárias com penalização total mínima. Admita que d_i , com $1 \le d_i \le n$, é o prazo limite para execução da tarefa i e p_i o montante a pagar se a executar após esse prazo. As tarefas ficam concluídas no dia em que são executadas, só podendo executar uma tarefa em cada dia k , com $1 \le k \le n$.						
	Enuncie e justifique alização, um conjunt		ente o critério dado nas aulas para decidir se é possível calendarizar, sem efas (dado S).			
		_	de um algoritmo com complexidade temporal $O(n^2)$ que determine uma <i>uling</i> . Em caso de empate, optará pela tarefa com identificador menor .			
c) :	Ilustre a aplicação do	algoritmo	à instância seguinte.			
		$ \begin{array}{c cccc} i & 1 & 2 \\ \hline d_i & 5 & 4 \\ \hline p_i & 2 & 3 \end{array} $				
	resente a ordem <i>pela</i> produziu (para as 14		refas são calendarizadas pelo algoritmo que apresentou, a calendarização a penalização total.			

2. Suponha que temos um ficheiro com 100000 caracteres, em que ocorrem apenas os caracteres a, b, c, d, e, f, com as frequências seguintes (em milhares): a - 5, b - 9, c - 16, d - 13, e - 12, f - 45. Indique os códigos que resultam da aplicação do algoritmo de Huffmann para compressão. Apresente a árvore (de prefixos) que constrói (indicando os valores nos nós e nos ramos e o seu significado).					
3. O Clay Mathematics Institute atribuirá um prémio de 1 milhão de dólares a quem resolver o problem " $\mathbf{P} = \mathbf{NP}$?". Admita que alguém descobria um algoritmo polinomial que, dada uma qualquer instânci de TSP, com n nós e peso $d(u,v) \in \mathbb{Z}^+$ para o ramo (u,v) , determinava um ciclo de Hamilton C con $d(C) \leq n^2 d(C^*)$, sendo C^* um ciclo de Hamilton com peso mínimo. Explique porque é que ganharia e prémio. Recordando que o algoritmo de Christofides garante um fator de aproximação $3/2$, não serviria?					
4. Sejam A_1, A_2, \ldots, A_n matrizes de inteiros, tendo A_k dimensão $d_k \times d_{k+1}$, i.e., d_k linhas e d_{k+1} colunas para $1 \le k \le n$. Pretendemos calcular o produto $A_1 A_2 \cdots A_n$. Será usada a definição usual de produto de matrizes , mas queremos minimizar o número total de multiplicações (de inteiros) efetuadas.					
Note que, por exemplo, para $A_1:2\times 3,\ A_2:3\times 5$ e $A_3:5\times 2$, se usarmos $A_1(A_2A_3)$ efetuamo $30+12=42$ multiplicações e se usarmos $(A_1A_2)A_3$ efetuamos $30+20=50$. Recorde que se $C=A_1A$ então C tem dimensão $d_1\times d_3$ e no cálculo de $C[i,j]=\sum_{p=1}^{d_2}A_1[i,p]\times A_2[p,j]$ efetuamos d_2 multiplicaçõe (de inteiros), para $1\leq i\leq d_1,\ 1\leq j\leq d_3$.					

Para isso, exploramos o facto de o produto de matrizes ser associativo. Por exemplo, para $A_1A_2A_3A_4$, teriamos de considerar quatro possibilidades $A_1(A_2(A_3A_4))$, $A_1((A_2A_3)A_4)$, $(A_1A_2)(A_3A_4)$, $(A_1(A_2A_3))A_4$, $((A_1A_2)A_3)A_4$. Em geral, o número de casos é exponencial. Mas, podemos calcular uma solução ótima

usando programação dinâmica.

c) Considere o algoritmo apresentado à direita, suportado po INCREASEKEY, a localização do nó correspondente à máquin	
Indique a complexidade temporal do algoritmo. Justi- fique sucintamente.	LOADBALANCING (d, n, m, S, C) 1. $L = 0$ 2. for $i = 1$ to m

- 2. Sabendo que **Load-Balancing** é NP-hard e assumindo $P \neq NP$, comente a veracidade das afirmações, onde L é o valor obtido pelo algoritmo para a instância e L^{\star} o **ótimo** correspondente.
 - (i) Para alguma instância (d, n, m), tem-se $L \neq L^*$.
 - (ii) Qualquer que seja a instância, $L \geq (1+\varepsilon)L^{\star}$, para algum $\varepsilon > 0$.

d) Seja L o valor retornado pelo algoritmo. Seja k' uma máquina que fica com carga L na solução (ou seja, L = C[k']). Seja j' a última tarefa atribuída à máquina k'. Tendo em conta a estratégia greedy que o algoritmo implementa, justifique que $L-d_{j'} \leq C[i]$, para todas as máquinas i, considerando as cargas no momento em que processou j' no algoritmo e as cargas finais. Usando esse facto e **5a**), conclua que, na linha 11, se tem $L-d_{j'} \leq \frac{1}{m} \sum_i C[i] = \frac{1}{m} \sum_i d_i \leq L^*$, e que o algoritmo apresentado produz uma aproximação de fator 2, pelo que Load Balancing pertence à classe APX.

DCC/FCUP - Algoritmos (CC4010)

2020/2021

N.º	Nome	
L		

6. Usando a figura, explique a prova de Fisk para o teorema de Chvátal, de que bastam $\lfloor n/3 \rfloor$ para vigiar qualquer polígono simples com n vértices.

Sabendo que os vértices são (3,0), (9,3), (6,2), (8,4), (5,5), (5,6), (2,6), (2,4), (0,3), (1,2), (3,2), indique qual seria o mínimo para esta instância.

Master theorem:

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence T(n) = aT(n/b) + f(n), where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) has the following asymptotic bounds:

- 1. If $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log_2 n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \varepsilon})$, for some constant $\varepsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Stirling's approximation:

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta(1/n)\right) = \sqrt{2\pi n} \left(\frac{n}{e}\right)^{\alpha_n} \,, \quad \text{with } 1/(12n+1) < \alpha_n < 1/(12n)$$

Some useful results:

$$\log(\prod_{k=1}^{n}a_{k}) = \sum_{k=1}^{n}\log a_{k} \qquad \qquad \sum_{k=0}^{\infty}kx^{k} = \frac{x}{(1-x)^{2}}, \ \ \text{for} \ |x| < 1$$

If $(u_k)_k$ is an arithmetic progression (i.e., $u_{k+1}=r+u_k$, for some constant $r\neq 0$), then $\sum_{k=1}^n u_k=\frac{(u_1+u_n)n}{2}$.

If $(u_k)_k$ is a geometric progression (i.e., $u_{k+1}=ru_k$, for some constant $r\neq 1$), then $\sum_{k=1}^n u_k=\frac{u_{n+1}-u_1}{r-1}$.

If $f \geq 0$ is continuous and a monotonically increasing function, then

$$\int_{m-1}^{n} f(x)dx \le \sum_{k=m}^{n} f(k) \le \int_{m}^{n+1} f(x)dx$$