MATH CAMP ASSIGNMENT 4

DIFFERENTIATION & CONVEXITY

Xiankang Wang

August 21, 2025

1 Q1

Claim. If f'(x) > 0 on (a, b), then f is strictly increasing on (a, b) and, assuming f extends continuously to [a, b], f is a bijection from (a, b) onto (f(a), f(b)).

Proof. For a < x < y < b, the Mean Value Theorem (MVT) yields $c \in (x, y)$ with

$$f(y) - f(x) = f'(c)(y - x) > 0.$$

Hence f is strictly increasing and therefore injective. For $t \in (f(a), f(b))$, set h(x) = f(x) - t. Then h(a) < 0 < h(b), so by the Intermediate Value Theorem there is $x \in (a, b)$ with h(x) = 0, i.e. f(x) = t. Thus f is surjective onto (f(a), f(b)).

2 Q2

Let $g: \mathbb{R} \to \mathbb{R}$ be differentiable with $|g'(x)| \leq M$ for all x and some M > 0. Fix $\varepsilon > 0$ and define $f(x) = x + \varepsilon g(x)$.

Claim. If $\varepsilon M < 1$, then f is a bijection $\mathbb{R} \to \mathbb{R}$ (in fact strictly increasing).

Proof. $f'(x) = 1 + \varepsilon g'(x) \ge 1 - \varepsilon M =: c > 0$, hence f is strictly increasing and injective. By the MVT, for x < y,

$$f(y) - f(x) = f'(\xi)(y - x) \ge c(y - x),$$

so $f(x) \to \pm \infty$ as $x \to \pm \infty$, implying surjectivity onto \mathbb{R} .

3 Q3

Suppose f is differentiable and $f'(x) \to 0$ as $x \to \infty$. Define g(x) = f(x+1) - f(x).

Claim. $g(x) \to 0$ as $x \to \infty$.

Proof. By the MVT applied on [x, x + 1], there exists $\xi_x \in (x, x + 1)$ with

$$g(x) = f(x+1) - f(x) = f'(\xi_x) \to 0 \quad (x \to \infty).$$

4 Q4

Let *f* be continuous, differentiable for $x \neq 0$, and $f'(x) \rightarrow 3$ as $x \rightarrow 0$.

Claim. f'(0) exists and equals 3.

Proof. For h > 0, by the MVT on [0,h] there is $\xi_h \in (0,h)$ with $\frac{f(h)-f(0)}{h} = f'(\xi_h) \to 3$ as $h \downarrow 0$. Thus the right derivative at 0 equals 3. Similarly on [-h,0] we obtain the left derivative equals 3. Hence f'(0) = 3.

5 Q5

Assume f is twice continuously differentiable and $f^{(3)}$ exists in a neighborhood of \hat{x} . By Taylor's theorem with Lagrange remainder, for x near \hat{x} there is ξ between x and \hat{x} such that

$$f(x) = f(\hat{x}) + f'(\hat{x})(x - \hat{x}) + \frac{1}{2}f''(\hat{x})(x - \hat{x})^2 + \frac{f^{(3)}(\xi)}{6}(x - \hat{x})^3.$$

If $|f^{(3)}| \le K$ near \hat{x} , the remainder is bounded by $\frac{K}{6}|x - \hat{x}|^3$.

6 Q6

Let $A \in L(X, Y)$ be linear.

- (i) If Ax = 0 only when x = 0, then A is injective: indeed, if $Ax_1 = Ax_2$ then $A(x_1 x_2) = 0$, so $x_1 = x_2$.
- (ii) Conversely, if *A* is injective and Ax = 0, then Ax = A0, hence x = 0.

7 Q7

Let *X* be an *n*-dimensional vector space and $A \in L(X)$. Fix a basis $\{v_1, \ldots, v_n\}$.

(a)

Claim. Range(A) = span{ $Av_1, ..., Av_n$ }.

Proof. For $x = \sum_i \alpha_i v_i$, linearity gives $Ax = \sum_i \alpha_i Av_i$, so Range $(A) \subset \text{span}\{Av_i\}$. The reverse inclusion is obvious since each Av_i is in the range.

(b)

Claim. *A* is surjective $\iff \{Av_1, ..., Av_n\}$ is linearly independent.

Proof. By (a), A is surjective iff its range equals X, i.e. iff span $\{Av_i\} = X$. In an n-dimensional space, n vectors span X iff they are linearly independent.

(c)

Claim. If *A* is injective, then $\{Av_1, \ldots, Av_n\}$ is linearly independent.

Proof. If $\sum_i \alpha_i A v_i = 0$, then $A(\sum_i \alpha_i v_i) = 0$. Injectivity implies $\sum_i \alpha_i v_i = 0$, hence all $\alpha_i = 0$.

(d)

Claim. If $\{Av_1, \ldots, Av_n\}$ is linearly independent, then A is injective.

Proof. If Ax = 0 with $x = \sum_i \alpha_i v_i$, then $0 = Ax = \sum_i \alpha_i A v_i$. Linear independence yields all $\alpha_i = 0$, hence x = 0.

Therefore, on *X* finite-dimensional, *A* is injective iff *A* is surjective.

8 Q8 (Inverse Function Theorem: 1D case)

Let $f:(a,b)\to\mathbb{R}$ be C^1 and let $x_0\in(a,b)$ with $f'(x_0)\neq0$. Then there exist neighborhoods $U\ni x_0$ and $V\ni f(x_0)$ such that $f:U\to V$ is a bijection with C^1 inverse $g=f^{-1}$ and

$$g'(f(x)) = \frac{1}{f'(x)} \qquad (x \in U).$$

Equivalently, $(f^{-1})'(y) = 1/f'(x)$ with y = f(x).

9 Q9 (Implicit Function Theorem: 1D–1D case)

Let $F: \mathbb{R}^2 \to \mathbb{R}$ be C^1 , write variables as (x, u), and suppose $F(x_0, u_0) = 0$ with $F_x(x_0, u_0) \neq 0$. Then there exists a neighborhood $U \ni u_0$ and a unique C^1 function x = g(u) such that F(g(u), u) = 0 for $u \in U$. Moreover,

$$g'(u) = -\frac{F_u(g(u), u)}{F_x(g(u), u)}.$$

10 Q10 (Perturbation Methods)

We wish to solve $f(x, \varepsilon) = 0$ for $x = x(\varepsilon)$ near $\varepsilon = 0$. Assume there is x_0 with $f(x_0, 0) = 0$.

(a) First derivative via the Implicit Function Theorem

Assume $f \in C^1$ near $(x_0,0)$ and $f_x(x_0,0) \neq 0$. Then by Q9 there is a unique C^1 function $x(\varepsilon)$ with $f(x(\varepsilon),\varepsilon) = 0$ for $|\varepsilon|$ small and

$$x'(\varepsilon) = -\frac{f_{\varepsilon}(x(\varepsilon), \varepsilon)}{f_{x}(x(\varepsilon), \varepsilon)}, \qquad x'(0) = -\frac{f_{\varepsilon}(x_{0}, 0)}{f_{x}(x_{0}, 0)}.$$

(b) First-order approximation (Taylor)

Since x is C^1 at 0,

$$x(\varepsilon) = x_0 + x'(0) \,\varepsilon + o(\varepsilon) = x_0 - \frac{f_{\varepsilon}(x_0, 0)}{f_x(x_0, 0)} \,\varepsilon + o(\varepsilon).$$

(c) Second derivative and second-order approximation

Assume further $f \in C^2$ near $(x_0, 0)$ and f_x stays nonzero along the solution curve. Differentiate $f_x x' + f_\varepsilon = 0$ once more in ε to obtain

$$f_x x'' + f_{xx}(x')^2 + 2f_{x\varepsilon}x' + f_{\varepsilon\varepsilon} = 0$$

all functions evaluated at $(x(\varepsilon), \varepsilon)$. Hence

$$x''(\varepsilon) = -\frac{f_{xx}(x')^2 + 2f_{x\varepsilon}x' + f_{\varepsilon\varepsilon}}{f_x}.$$

At $\varepsilon = 0$, let

$$A = f_x(x_0, 0), \quad B = f_{\varepsilon}(x_0, 0), \quad C = f_{xx}(x_0, 0), \quad D = f_{x\varepsilon}(x_0, 0), \quad E = f_{\varepsilon\varepsilon}(x_0, 0).$$

Then x'(0) = -B/A and

$$x''(0) = -\frac{CB^2 - 2DAB + EA^2}{A^3}.$$

Therefore the second-order Taylor approximation around $\varepsilon = 0$ is

$$x(\varepsilon) = x_0 - \frac{B}{A}\varepsilon - \frac{CB^2 - 2DAB + EA^2}{2A^3}\varepsilon^2 + o(\varepsilon^2).$$

11 Q11 (Convex hull of finitely many points)

Let *V* be a vector space and $S = \{x_1, \dots, x_n\} \subset V$. Denote

$$A_n := \Big\{ \sum_{i=1}^n \lambda_i x_i : \lambda_i \ge 0, \sum_{i=1}^n \lambda_i = 1 \Big\}.$$

Claim. $Co(x_1,...,x_n) = A_n$.

Proof. First, A_n contains S (take one coefficient 1, others 0) and is convex: if $y = \sum \alpha_i x_i$, $z = \sum \beta_i x_i$ are in A_n and $\lambda \in [0,1]$, then

$$\lambda y + (1 - \lambda)z = \sum_{i=1}^{n} (\lambda \alpha_i + (1 - \lambda)\beta_i)x_i \in A_n.$$

By minimality of the convex hull, $Co(S) \subset A_n$.

Conversely, let *C* be any convex set containing *S*. We show $A_n \subset C$ by induction in *n*. The cases n=1,2 are trivial by convexity. Suppose true for n-1. For $y=\sum_{i=1}^n \lambda_i x_i$ with $\lambda_i \geq 0$, set $s=\sum_{i=1}^{n-1} \lambda_i$. If s=0 then $y=x_n \in C$. Otherwise put $\mu_i=\lambda_i/s$, then $z=\sum_{i=1}^{n-1} \mu_i x_i \in C$ by the induction hypothesis

and $y = sz + (1 - s)x_n \in C$ by convexity. Hence $A_n \subset C$. Taking the intersection of all such C yields $A_n \subset Co(S)$.

12 Q12 (Epigraph characterization)

Let $S \subset \mathbb{R}^n$ be convex and $f : S \to \mathbb{R}$. The epigraph of f is

epi
$$f = \{(x, t) \in S \times \mathbb{R} : t \ge f(x)\}.$$

Claim. f is convex \iff epi f is convex.

Proof. (\Rightarrow) Take $(x, t), (y, s) \in \text{epi } f \text{ and } \lambda \in [0, 1]$. Then

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y) \le \lambda t + (1 - \lambda)s$$
,

so
$$(\lambda x + (1 - \lambda)y, \lambda t + (1 - \lambda)s) \in \text{epi } f$$
.

(
$$\Leftarrow$$
) If epi f is convex, apply it to $(x, f(x))$ and $(y, f(y))$ to get $(\lambda x + (1 - \lambda)y, \lambda f(x) + (1 - \lambda)f(y)) \in \text{epi } f$, i.e. $f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$.

13 Q13 (Convex \Rightarrow Quasi-convex)

A function $f: S \to \mathbb{R}$ is quasi-convex iff for all x, y and $\lambda \in [0, 1]$,

$$f(\lambda x + (1 - \lambda)y) \le \max\{f(x), f(y)\}.$$

If *f* is convex, then

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y) \le \max\{f(x), f(y)\}.$$

Equivalently, all lower level sets $L_a = \{x : f(x) \le a\}$ are convex because for $x, y \in L_a$, $f(\lambda x + (1 - \lambda)y) \le \lambda a + (1 - \lambda)a = a$. Hence convexity implies quasi-convexity.