Capítulo 5

Derivación de funciones reales de variable real

5.1. Derivada de una función

5.1.1. Introducción

DEFINICIÓN 5.1.1. Sea $f:(a,b) \subset \mathbb{R} \to \mathbb{R}$ y $x_0 \in (a,b)$. Se dice que la función f es derivable en el punto x_0 si el siguiente límite existe y es finito

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$
 (5.1.1)

Al valor de este límite se le llama derivada de la función f en el punto x_0 y se denota por $f'(x_0)$.

La expresión $\frac{f(x) - f(x_0)}{x - x_0}$ se llama cociente incremental o tasa de variación media de la función f en el intervalo de extremos x y x_0 , y mide la variación de la función f(x) con respecto a la variación de la variable x.

Si hacemos $x - x_0 = h$ en (5.1.1) podemos expresar la derivada en la forma

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

5.1.2. Derivadas laterales

DEFINICIÓN 5.1.2. Sea $f:(a,b) \to \mathbb{R}$ y supongamos que f está definida en un intervalo de la forma $[x_0, x_0 + \delta)$ con $\delta > 0$. Si el siguiente límite existe y es finito

$$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{\substack{x \to x_0 \\ x > x_0}} \frac{f(x) - f(x_0)}{x - x_0},$$

diremos que la función f es derivable por la derecha en x_0 . Al valor de este límite lo llamaremos derivada por la derecha de la función f en el punto x_0 y lo denotaremos por $f'(x_0^+)$.

Análogamente, si f está definida en un intervalo de la forma $(x_0 - \delta, x_0]$ con $\delta > 0$, podemos considerar el límite

$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{\substack{x \to x_0 \\ x < x_0}} \frac{f(x) - f(x_0)}{x - x_0}.$$

Si este límite existe y es finito diremos que f es derivable por la izquierda en x_0 . Al valor de ese límite lo llamaremos derivada por la izquierda de la función f en el punto x_0 y lo denotaremos por $f'(x_0^-)$.

PROPOSICIÓN 5.1.1. Sea $f:(a,b) \to \mathbb{R}$ y $x_0 \in (a,b)$. Entonces, f es derivable en x_0 si y sólo si f es derivable por la izquierda y por la derecha en x_0 y además

$$f'(x_0^-) = f'(x_0^+) = f'(x_0).$$

5.1.3. Interpretación geométrica y física de la derivada

Interpretación geométrica

Sea $f:(a,b)\to\mathbb{R}$ y supongamos que f es derivable en un punto $x_0\in(a,b)$. El cociente incremental

$$\frac{f(x_0+h)-f(x_0)}{h}$$

es la pendiente de la recta que pasa por los puntos $P \equiv (x_0, f(x_0))$ y $Q \equiv (x_0 + h, f(x_0 + h))$.

Cuando $h \to 0$, la recta que pasa por los puntos $P \neq Q$ se aproxima a la recta tangente a la gráfica y = f(x) en el punto $P \equiv (x_0, f(x_0))$. Por tanto, la derivada $f'(x_0)$ se corresponde geométricamente con la pendiente de la recta tangente a la gráfica de y = f(x) en el punto $(x_0, f(x_0))$.

Interpretación física

Supongamos una partícula que se mueve en línea recta y que recorre una distancia s = s(t) al cabo de un cierto tiempo t. La velocidad media de la partícula en el intervalo de tiempo $[t_0, t_0 + h]$ viene dada por el cociente incremental

$$\frac{s(t_0+h)-s(t_0)}{h}.$$

Si en la expresión anterior tomamos el límite cuando h tiende a cero obtenemos la velocidad instantánea en t_0 dada por

$$v(t_0) = \lim_{h \to 0} \frac{s(t_0 + h) - s(t_0)}{h} = s'(t_0),$$

es decir, la velocidad en el instante $t = t_0$ es la derivada de la función s(t) en el punto t_0 .

5.1.4. Ecuaciones de la recta tangente y la recta normal

Sea $f:(a,b)\to\mathbb{R}$ una función derivable en $x_0\in(a,b)$. La recta tangente a la gráfica y=f(x) en el punto $(x_0,f(x_0))$ tiene de pendiente $f'(x_0)$ por lo que su ecuación viene dada por

$$y = f(x_0) + f'(x_0)(x - x_0).$$

La recta que pasa por el punto $(x_0, f(x_0))$ y es perpendicular a la recta tangente se denomina recta normal a la gráfica y = f(x) en el punto $(x_0, f(x_0))$. Pueden presentarse dos situaciones:

1) Si $f'(x_0) \neq 0$, la pendiente de la recta normal es $-1/f'(x_0)$ y su ecuación viene dada por

$$y = f(x_0) - \frac{1}{f'(x_0)}(x - x_0).$$

2) Si $f'(x_0) = 0$, la recta tangente es la recta horizontal de ecuación $y = f(x_0)$. En este caso la recta normal será la recta vertical de ecuación $x = x_0$.

5.2. Propiedades de las funciones derivables

TEOREMA 5.2.1 (**Derivable** \Rightarrow **Continua**). Sea $f:(a,b) \to \mathbb{R}$ $y \ x_0 \in (a,b)$. Si f es derivable en x_0 entonces f es continua en x_0 .

Ejercicio 5.2.1. Poner un ejemplo de una función continua en un punto que no sea derivable en ese punto.

Proposición 5.2.1 (Derivación de funciones elementales).

a)
$$\frac{d}{dx}x^{\alpha} = \alpha x^{\alpha-1}, \quad \alpha \in \mathbb{R}.$$

b)
$$\frac{d}{dx}a^x = a^x \ln a$$
, $a > 0$; $\frac{d}{dx}e^x = e^x$.

c)
$$\frac{d}{dx} \log_a x = \frac{1}{x} \log_a e$$
, $a > 0$; $\frac{d}{dx} \ln x = \frac{1}{x}$.

d)
$$\frac{d}{dx} \sin x = \cos x$$
, $\frac{d}{dx} \cos x = -\sin x$.

e)
$$\frac{d}{dx} \operatorname{tg} x = \frac{1}{\cos^2 x} = 1 + \operatorname{tg}^2 x$$
, $\frac{d}{dx} \operatorname{cotg} x = -\frac{1}{\sin^2 x} = -(1 + \cot^2 x)$.

f)
$$\frac{d}{dx} \operatorname{arsen} x = \frac{1}{\sqrt{1-x^2}}, \qquad \frac{d}{dx} \operatorname{arcos} x = \frac{-1}{\sqrt{1-x^2}}.$$

$$g) \frac{d}{dx} \operatorname{artg} x = \frac{1}{1+x^2}.$$

PROPOSICIÓN 5.2.2 (Reglas de derivación). Sean f, g dos funciones derivables en x_0 . Entonces

1. f + g es derivable en x_0 y

$$(f+g)'(x_0) = f'(x_0) + g'(x_0).$$

2. fg es derivable en x_0 y se cumple que

$$(f g)'(x_0) = f'(x_0) g(x_0) + f(x_0) g'(x_0).$$

3. Si $g(x_0) \neq 0$, entonces f/g es derivable en x_0 y

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{[g(x_0)]^2}.$$

4. Si $\lambda \in \mathbb{R}$, entonces la función λf es derivable en x_0 y se cumple que

$$(\lambda f)'(x_0) = \lambda f'(x_0).$$

TEOREMA 5.2.2 (Regla de la cadena). Sean f, g dos funciones tales que $\text{Im}(f) \subseteq \text{Dom}(g)$ y consideremos la función compuesta $g \circ f$.

Si f es derivable en $x_0 \in \text{Dom}(f)$ y g es derivable en $f(x_0) \in \text{Dom}(g)$, entonces $g \circ f$ es derivable en x_0 y además

$$(g \circ f)'(x_0) = g'[f(x_0)] f'(x_0).$$

EJERCICIO 5.2.2. Aplicar la regla de la cadena a la composición $f^{-1} \circ f$ para obtener la fórmula para la derivada de la función inversa.

5.3. Aplicaciones de la derivada

5.3.1. Regla de L'Hôpital

El siguiente resultado es de gran utilidad para resolver indeterminaciones cuando se calculan límites.

TEOREMA 5.3.1 (Regla de L'Hôpital). Sean f, g dos funciones derivables en $(x_0 - r, x_0) \cup (x_0, x_0 + r)$, para algún r > 0, tales que

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0.$$

 $Si\ g'(x) \neq 0\ \forall x \in (x_0 - r, x_0) \cup (x_0, x_0 + r)\ y\ existe\ \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$, entonces también existe $\lim_{x \to x_0} \frac{f(x)}{g(x)}$ y además ambos límites coinciden

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}.$$

Observación 5.3.1. La regla de L'Hôpital es aplicable también cuando

$$\lim_{x \to x_0} f(x) = \pm \infty, \quad \lim_{x \to x_0} g(x) = \pm \infty,$$

lo que permite utilizarla para resolver indeterminaciones del tipo " ∞/∞ ", y es también aplicable cuando $x \to \infty$ para resolver indeterminaciones del tipo "0/0" e " ∞/∞ ".

5.3.2. Máximos y mínimos relativos

DEFINICIÓN 5.3.1. Sea $f: D \subset \mathbb{R} \to \mathbb{R}$ y $x_0 \in D$. Diremos que f tiene un máximo relativo en x_0 si existe un r > 0, tal que

$$f(x) \le f(x_0), \quad \forall x \in D \cap (x_0 - r, x_0 + r).$$
 (5.3.1)

Análogamente, diremos que f tiene un mínimo relativo en x_0 si existe un r > 0, tal que

$$f(x) \ge f(x_0), \quad \forall x \in D \cap (x_0 - r, x_0 + r).$$
 (5.3.2)

En cualquiera de los dos casos anteriores se dice que f tiene un extremo relativo en x_0 . El extremo es estricto si las desigualdades anteriores son estrictas. El extremo es absoluto si las desigualdades se cumplen para todo $x \in D$.

Los puntos donde una función tiene un máximo o un mínimo relativo se llaman extremos locales o extremos relativos.

TEOREMA 5.3.2 (Condición necesaria de extremo relativo). Sea $f:(a,b) \to \mathbb{R}$ y $x_0 \in (a,b)$. Si f tiene un máximo o un mínimo relativo en x_0 y f es derivable en x_0 entonces

$$f'(x_0) = 0.$$

OBSERVACIÓN 5.3.2. (i) La condición $f'(x_0) = 0$ no es suficiente para garantizar que una función tenga un máximo o mínimo relativo en $x = x_0$. Por ejemplo, la función $f(x) = x^3$ verifica que f'(0) = 0 y sin embargo no tiene ningún extremo relativo en $x_0 = 0$.

(ii) La condición $f'(x_0) = 0$ solo es necesaria para extremos relativos que se alcanzen un un punto x_0 interior al intervalo (a,b) y donde f sea derivable. En un intervalo cerrado [a,b] los puntos x = a y x = b también son candidatos a extremos relativos. Por ejemplo, la función $f(x) = x^2$ en el intervalo [-1,1] alcanza su máximo en x = -1, x = 1 y su mínimo en x = 0, a pesar de que f'(x) = 0 solo se cumple para x = 0.

5.3.3. El teorema de Rolle y algunas de sus consecuencias

TEOREMA 5.3.3 (**Teorema de Rolle**). Sea $f : [a,b] \to \mathbb{R}$ y supongamos que f es continua en [a,b], derivable en (a,b) y además f(a) = f(b). Entonces existe $c \in (a,b)$ tal que f'(c) = 0.

COROLARIO 5.3.1 (Unicidad de solución). Sea $f : [a,b] \to \mathbb{R}$ y supongamos que f es continua en [a,b] y derivable en (a,b). Si $f'(x) \neq 0$ para todo $x \in (a,b)$ entonces la ecuación f(x) = 0 tiene a lo sumo una solución en el intervalo [a,b].

TEOREMA 5.3.4 (**Teorema del Valor Medio**). Sea $f : [a,b] \to \mathbb{R}$ y supongamos f es continua en [a,b] y derivable en (a,b). Entonces existe $c \in (a,b)$ tal que

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Si consideramos los puntos P=(a,f(a)) y Q=(b,f(b)), entonces $m=\frac{f(b)-f(a)}{b-a}$ es la pendiente de la recta que pasa por los puntos P y Q. Por otra parte, f'(c) es la pendiente de la recta tangente a la gráfica y=f(x) en el punto C=(c,f(c)). Por tanto, el teorema del valor medio nos asegura que existe un punto $c\in(a,b)$ tal que la recta tangente a la gráfica y=f(x) es paralela a la recta que une los extremos de la gráfica.

Ejercicio 5.3.1. Supongamos que un coche ha recorrido 350 km. en 2 horas y media. Probar que ha superado el límite de velocidad en algún momento.

Como consecuencia del teorema del valor medio se obtienen los siguientes resultados.

COROLARIO 5.3.2. Sea $f: I \to \mathbb{R}$, donde I es un intervalo abierto.

- 1. Si $f'(x) = 0 \ \forall x \in I$ entonces f es una función constante en I.
- 2. Si $f'(x) \ge 0 \ \forall x \in I$ entonces f es una función creciente en I.
- 3. Si $f'(x) > 0 \ \forall x \in I$ entonces f es una función estrictamente creciente en I.
- 4. Si $f'(x) \leq 0 \ \forall x \in I$ entonces f es una función decreciente en I.
- 5. Si $f'(x) < 0 \ \forall x \in I$ entonces f es una función estrictamente decreciente en I.
- 6. Sea $g: I \to \mathbb{R}$. Si $f'(x) = g'(x) \ \forall x \in I$ entonces existe $c \in \mathbb{R}$ tal que

$$f(x) - g(x) = c \quad \forall x \in I.$$

DEFINICIÓN 5.3.2. Sea $f: I \to \mathbb{R}$ una función derivable en I. Decimos que f es convexa en I si la gráfica de f es mayor o igual que cualquier recta tangente a dicha gráfica en los puntos de I.

Si la gráfica de f es menor o igual que cualquier recta tangente a dicha gráfica en los puntos de I decimos que f es cóncava en I.

Si f es convexa a un lado de x_0 y cóncava al otro diremos que f tiene en x_0 un punto de inflexión.

EJEMPLO 5.3.1. La función $f(x) = x^2$ es convexa en \mathbb{R} mientras que $g(x) = -x^2$ es cóncava en \mathbb{R} .

El siguiente resultado nos permite analizar los intervalos de convexidad y concavidad de una función.

TEOREMA 5.3.5. Sea $f: I \to \mathbb{R}$ una función dos veces derivable en el intervalo abierto I.

- 1. Si $f''(x) \ge 0$ para todo $x \in I$ entonces f es convexa en I.
- 2. Si $f''(x) \le 0$ para todo $x \in I$ entonces f es cóncava en I.
- 3. Si f tiene en x_0 un punto de inflexión entonces $f''(x_0) = 0$.