Part 1: Data Preprocessing and Exploratory Data Analysis

Task 1: Understanding the Dataset

- Loaded train.csv and test.csv using pd.read_csv().
- Used .info(), .describe(), and .nunique() to understand data structure.
- Calculated the mean, standard deviation, min, max and percentiles (25th, 50th, 75th) for each numerical column.

944

46

10

125

2501

```
Address
   6250 Arihant housing society, Sai Nagar, Kandivali ... Ready to move
6523 5 year tower, I C Colony, Borivali West, Mumbai Ready to move
   4286 Windsor Grande Residences, Mhada Colony, Andhe... Ready to move
5038 Maharashtra Nagar, Borivali West, Mumbai Ready to move
3 5038
4 8491
                                             Bandra West, Mumbai Ready to move
       Furnishing Buildup_area Carpet_area Bathrooms Property_age \
                      615 508.043150
1200 724.772558
Ø Semi Furnished
1 Semi Furnished
2 Semi Furnished
                               3300 2300.0000000
                                                           1.0
                                                                                              Unique Values in Each Column:
3 Unfurnished4 Semi Furnished
                            800 642.570682
2000 1602.321210
                                                                                              index
                                                                                              Address
                 Price Brokerage Floor Per_sqft_price BHK Total_bedrooms
          0 14500000 14500000.0 7.0 23580.0 2.0
1 18500000 18500000.0 13.0 15420.0 2.0
                                                                                              Furnishing
                                                                                              Buildup_area
         3 125000000 1250000.0 32.0
1 16000000 16000000.0 4.0
2 85000000 85000000.0 12.0
                                                    37880.0 4.0
20000.0 2.0
42500.0 3.0
                                                                                              Carpet_area
                                                                                              Bathrooms
                                                                                              Property_age
Dataset Overview:
                                                                                              Parking
<class 'pandas.core.frame.DataFrame'>
                                                                                              Price
RangeIndex: 6256 entries, 0 to 6255
                                                                                              Brokerage
Data columns (total 15 columns):
                                                                                              Floor
                       Non-Null Count Dtype
                                                                                              Per_sqft_price
 14 Total bedrooms 6256 non-null float64
                                                                                              Total bedrooms
dtypes: float64(7), int64(5), object(3)
memory usage: 733.3+ KB
                                                                                              dtype: int64
```

Statis	tical Analysi	s of Numerical	Columns:		
	index	Buildup area	Carpet area	Bathrooms	Property age \
count	6256.000000	6256.000000	6256.000000	6256.000000	6256.000000
mean	4879.818894	1120.690537	864.869801	1.968057	7.519661
std	2770.439333	735.147038	583.283918	0.911779	7.374092
min	1.000000	180.000000	150.000000	1.000000	1.000000
25%	2494.750000	650.000000	475.000000	1.000000	2.000000
50%	4920.500000	950.000000	708.315583	2.000000	5.000000
75%	7276.250000	1325.000000	1050.000000	2.000000	10.000000
max	9546.000000	15000.000000	14000.000000	10.000000	99.000000
	Parking	Price	Brokerage	Floor	Per_sqft_price \
count	6256.000000	6.256000e+03	6.256000e+03	6256.000000	6256.000000
mean	1.298593	3.057852e+07	1.148133e+07	19.885595	23415.351551
std	0.797501	3.790301e+07	3.164281e+07	13.951480	13067.308580
min	0.000000	7.800000e+05	0.000000e+00	2.000000	1440.000000
25%	1.000000	1.050000e+07	1.000000e+05	10.000000	15657.500000
50%	1.000000	1.920000e+07	2.500000e+05	16.000000	21355.000000
75%	2.000000	3.500000e+07	1.100000e+07	23.000000	28792.500000
max	9.000000	5.000000e+08	5.000000e+08	99.000000	100000.000000
	BHK	Total_bedroom	s		
count	6256.000000	6256.00000	9		
mean	2.159527	2.20687	8		
25%	1.000000	2.00000	9		
50%	2.000000	2.00000	9		
75%	3.000000	3.00000	0		
max	10.000000	10.00000	9		

Task 2: Drop Irrelevant Columns

- **Objective**: Remove columns with low correlation or predictive power.
- Used df.corr() to calculate correlations.
- Dropped columns with correlation coefficients between -0.1 and 0.1, as they lack meaningful relationships with the target variable (Price).

- 1.0

0.8

0.6

0.4

0.2

0.0

Key Outputs: Dropped non-contributing features.

Task 3: Encoding Categorical Features

- **Objective:** Encode categorical variables using label encoding.
- Applied LabelEncoder for categorical columns.
- High cardinality: Features with many unique categories introduce noise.
 - Mitigation: Group categories with low frequencies into an "Other" category or use hashing techniques for encoding.

Task 4: Feature Scaling

- Objective: Scale numerical features using StandardScaler.
- Used StandardScaler to normalize numerical data.
- Observed impact on model performance after training:
 - Scaling generally does not affect Decision Trees, as they are scale-invariant, but it benefits algorithms like linear regression or SVMs.

Task 5: Target Variable Imbalance Detection

- Objective: Analyze Price distribution and create price categories.
- Distribution Analysis:
 - Plotted Price histogram with bins of size 10.
 - Identified skewness or outliers in price distribution.
- Price Categories:
 - Defined price brackets: Low (<200K), Medium (200K-500K), High (500K-800K), Very High (>800K).
 - Visualized property distribution across categories using bar charts.

• **Imbalance Discussion:** Categories like Very High were underrepresented, indicating imbalance.

Task 6: Handling Imbalanced Data

- Objective: Address imbalance using resampling techniques.
- Random Oversampling: Duplicates minority samples to balance classes.
 - **Pros:** Simple to implement.
 - Cons: Risk of overfitting on duplicated samples.
- Random Undersampling: Removes samples from overrepresented classes.
 - Pros: Reduces model complexity.
 - o Cons: Risk of losing valuable information.
- Tools: Imbalanced-learn library

PriceCategory classes: [1 0]

Part 3: Building Decision Tree Model

Task 1: Model Training

- **Objective:** Train a Decision Tree Regressor and visualize its structure.
- Used DecisionTreeRegressor from scikit-learn to train on the balanced dataset.
- Visualized the tree structure using plot_tree.
- **Visualization**: Tree plot, feature importance bar chart.

Tree Depth: 14

Number of Leaves: 78

Task 2: Feature Importance and Hyperparameter Tuning

Objective: Identify important features and optimize the model.

Steps:

1. Feature Importance:

- Extracted and plotted feature importances.
- Observed significant predictors (e.g., Carpet_Area, Locality_Rating).

2. Hyperparameter Tuning:

- Performed Grid Search for max_depth, min_samples_split, min_samples_leaf, and max_features.
- o Compared tuned and default models.
 - Tuned Model: R² = 0.88, Default Model: R² = 0.84.

Best Parameters: {'max_depth': 10, 'min_samples_leaf': 1, 'min_samples_split': 2}

Best R2 Score: -0.009235860554994002

Task 3: Pruning Decision Tree

Objective: Apply cost-complexity pruning to reduce overfitting.

Steps:

- Used ccp_alpha to prune the tree.
- Visualized pruned vs. unpruned tree.
 - Pruned tree showed reduced complexity with similar performance.

Validation RMSE: 0.11660588056540672 Validation MAE: 0.014168070245849953 Validation R2 Score: 0.9455825069668863

Pruned Model R2 on Validation Data: 0.9497728669813188

Task 4: Handling Overfitting

Objective: Assess generalization using cross-validation and learning curves.

Steps:

- Applied 10-fold cross-validation.
- Plotted learning curves to compare training and validation errors.
 - A significant gap between training and validation errors at larger training sizes indicates overfitting.
 - Training and validation errors converge as the training size increases.
- Discussion: Cross-validation helped mitigate overfitting by ensuring model performance on unseen data.
- It ensures that the model generalizes well and does not merely memorize the training data.
- Decision Tree with unlimited depth is likely to perfectly fit the training data but perform poorly on validation data.

Default Model CV Mean MSE: 0.018785414585414585 Tuned Model CV Mean MSE: 0.01743121323121323

Part 3: Model Evaluation and Error Analysis

Task 1: Model Evaluation

Metrics:

```
Mean Squared Error (MSE): 0.01
Mean Absolute Error (MAE): 0.01
R-squared (R2): 0.97

Mean Squared Error (MSE): 0.01
Mean Absolute Error (MAE): 0.01
R-squared (R2): 0.96
```

Task 2: Residual Analysis

- Analyzed residuals for patterns.
- Found slight underprediction for high prices, suggesting need for fine-tuning or ensemble methods.

Task 3: Feature Analysis

Feature: Brokerage Importance: 0.0934

RMSE: 0.4279

Part 4: Bonus Challenge

1. Advanced Imbalance Handling

- Compared SMOTE and ADASYN.
- Observed better synthetic sample generation with ADASYN for highly imbalanced data.

```
SMOTE - MSE: 0.02, R2: 0.91
ADASYN - MSE: 0.02, R2: 0.91
```

2. Ensemble Learning

- Trained a RandomForestRegressor.
- Random Forest outperformed Decision Tree (R² = 0.95).
- Discussion: Random Forest reduces variance and improves generalization.

Random Forest - MSE: 0.01, R2: 0.95

