Logarithme - exponentielle

Simplifier l'écriture des expressions suivantes

a)
$$\ln e^{-1}$$

b)
$$\ln e^2$$

c)
$$\ln \sqrt{e}$$

a)
$$\ln e^{-1}$$
 b) $\ln e^{2}$ c) $\ln \sqrt{e}$ d) $\ln \frac{1}{\sqrt{e}}$ e) $e^{\ln 2}$ f) $e^{-\ln 3}$ g) $e^{2\ln 2}$

e)
$$e^{\ln 2}$$

f)
$$e^{-\ln 3}$$

g)
$$e^{2\ln \theta}$$

h)
$$e^{\frac{1}{2}\ln 3}$$

Exercice 2:

Résoudre les équation suivantes dans IR (trouver l'ensemble des x ou t pour lesquels l'égalité suivante est vraie)

a)
$$\ln t + \frac{1}{2} = 0$$

b)
$$e^t - 2 = 0$$

c)
$$2 \ln x = \ln 3 + \ln(2x + 3)$$

b)
$$e^t - 2 = 0$$
 c) $2 \ln x = \ln 3 + \ln(2x + 3)$ c) $\ln x^2 = \ln 3 + \ln(2x + 3)$ * $danger c)d$

e)
$$e^{2t} - 4e^t + 3 = 0$$

Exercice 3:

Calculer les limites suivantes si elles existent :

a)
$$\lim_{x \to +\infty} \frac{\ln x}{x^2 + 1}$$

a)
$$\lim_{x \to +\infty} \frac{\ln x}{x^2 + 1}$$
 b) $\lim_{x \to +\infty} \frac{\ln(x^2 + 1)}{x^3}$ c) $\lim_{x \to +\infty} (x - \ln x)$ d) $\lim_{x \to +\infty} (x - \ln x)$ e) $\lim_{x \to +\infty} (\sqrt{x} - \ln x)$ a) $\lim_{x \to +\infty} \frac{e^x}{x^2 - 1}$ b) $\lim_{x \to +\infty} \frac{-x^2 + 3}{e^{2x}}$ c) $\lim_{x \to +\infty} (x^3 - e^x)$ d) $\lim_{x \to +\infty} (x + 1)e^{-x}$ e) $\lim_{x \to +\infty} (x + 1)e^{-x}$ e) $\lim_{x \to +\infty} (x + 1)e^{-x}$

c)
$$\lim_{x\to 0} (x - \ln x)$$

d)
$$\lim_{x \to +\infty} (x - \ln x)$$

e)
$$\lim_{x \to +\infty} \left(\sqrt{x} - \ln x \right)$$

a)
$$\lim_{x \to +\infty} \frac{e^x}{x^2 - 1}$$

b)
$$\lim_{x \to +\infty} \frac{-x^2 + 3}{e^{2x}}$$

c)
$$\lim_{x \to +\infty} \left(x^3 - e^x \right)$$

d)
$$\lim_{x \to +\infty} (x+1)e^{-x}$$

e)
$$\lim_{x \to +\infty} \sqrt{x+1}e^{-3x}$$

f)
$$\lim_{x \to +\infty} \frac{e^{1+x^2}}{x^2 \ln x}$$
 g) $\lim_{x \to +\infty} \frac{3^x}{x^4}$

g)
$$\lim_{x\to+\infty} \frac{3^x}{x^4}$$

Exercice 4:

Etudier et représenter graphiquement les fonctions suivantes :

a)
$$f(x) = \frac{x}{\ln x}$$
 définie sur $I =]0; +\infty|$

a)
$$f(x) = \frac{x}{\ln x}$$
 définie sur $I =]0; +\infty[$ b) $f(x) = e^{\frac{1}{x}}$ définie sur $I =]0; +\infty[$ $\textcircled{0}((e^u)' = u'e^u)$

Exercice 5:

Soit la fonction f définie sur l'intervalle [1; e] par : $f(x) = x^2 \ln x$

- 1) Calculer f'(x). Etudier son signe. En déduire le sens de variation de f.
- 2) Tracer la courbe représentant f dans un repère orthonormal (unités : 2cm sur l'axe des abscisses, 1 cm sur l'axe des ordonnées).
- 3) Démontrer qu'il existe un unique a dans l'intervalle [1,2] tel que f(a) = 1. Donner une valeur de a à 10^{-2} .

Exercice 6:

On considère la fonction g définie sur IR par : $g(x) = x - e^x$

- 1) a) Déterminer $\lim_{x \to a} g(x)$ et $\lim_{x \to a} g(x)$
- b) Déterminer g'(x) et étudier les variations de g
- 2) Soit la fonction f définie sur IR par $f(x) = \frac{x^2}{2} e^x$
- a) montrer que f'(x) = g(x). Indiquer les variations de f.
- b) Déterminer $\lim f(x)$ et $\lim f(x)$
- c) Montrer que l'équation f(x) = 0 a une solution unique appartenant à l'intervalle [-1;0].
- d) Tracer la courbe C représentant f dans un repère orthonormal.

Exercice 7:

Etudier sur l'intervalle [-5;5] la fonction $f(x) = 2ch\frac{x}{2} = 2\left(e^{\frac{x}{2}} + e^{-\frac{x}{2}}\right)$

Exercice 8

Calculer $\arccos x + \arcsin x$