

Maschinelles Lernen im Kontext der Programmierung in natürlicher Sprache

Betreut von Alexander Wachtel
Philipp Weinmann | 8. Februar 2019

IPD TICHY

Outline/Gliederung

- Einordnung von maschinellem Lernen
- 2 Künstliche neuronale Netze
 - Propagierungsfunktion
 - Trainieren eines künstlichen neuronalen Netzes
 - Limitationen von neuronalen Netzen
- Maschinelle Übersetzungen
- 4 Kuriositäten
- Bewertung

Februar 2019

Einleitung

[Hyp]

Einordnung von maschinellem Lernen

[Mle]

Einordnung von maschinellem Lernen

- Künstliche Intelligenz: Jede Technik, die es einem Computer ermöglicht auf seine Umgebung zu reagieren.
- Maschinelles Lernen: Teilbereich der Künstlichen Intelligenz. Jede Technik, die mit statistischen Methoden dem Computer ermöglicht durch Erfahrung seine Funktion zu verbessern.
- Deep Learning: Teilbereich von Maschinellem Lernen. Nutzt künsliche neuronale Netze mit zahlreichen Zwischenlagen.

Februar 2019

Anwendungen

- Gesichtserkennung
- Umwandlung von gesprochener Sprache zu Text
- Handschrifterkennung
- Autonomes Fahren
- Maschinelle Übersetzungen

Künstliche neuronale Netze

[Bra]

Künstliche Neuronale Netze

Ziele:

- Klassifizieren
- Zusammenhänge erkennen

Fully connected neural network

[Rai18]

Propagierungsfunktion

 Jede verbindung zwischen zwei Neuronen besitzt eine Gewichtung (Engl: weigth) w

Propagierungsfunktion

Die *Propagierungsfunktion* berechnet den Input $p_j^l(t)$ des Neurons j anhand der Outputs $o_i(t)$ der Neuronen in der vorangehenden Lage l.

$$\rho_j^{(l+1)}(t) = \sum_i o_i^{(l)}(t) w_{ij}^{(l)} \tag{1}$$

Trainieren eines künstlichen neuronalen Netzes

Anpassung der Gewichte:

$$w_{ij}^{neu} = w_{ij}^{alt} + \Delta w_{ij}, \ mit$$
 (2)

w_{ii}^{neu} der neue Wert des Gewichts der Verbindung zwischen Neuronen i und i

 w_{ii}^{alt} der alte Wert des Gewichts der Verbindung zwischen Neuronen i und j Δw_{ii} die Änderung des Gewichts der Verbindung zwischen Neuronen i und i

Elman recurrent neural network

[Cmd]

Limitationen von neuronalen Netzen

- Rechenintensiv
- Es werden massive Datenmengen benötigt
- Es kann in der Regel nicht verstanden werden weshalb eine Entscheidung getroffen wird

Maschinelle Übersetzungen

Google, Microsoft und Yandex nutzen alle neural machine translation

Google neural machine translation

[goo16]

Kuriositäten

- Facebook Chatbots erfinden ihre eigene Sprache
- Google neural machine nutzt eine neue Zwischensprache

Facebook Chatbots

Bob: i can i i everything else
Alice: balls have zero to me to \ensuremath{m}
Bob: you i everything else
Alice: balls have a ball to me to me to me to me to me to me
Bob: ii can iii everything else
Alice: balls have a ball to me to me to me to me to me to me
Bob: i
Alice: balls have zero to me to \ensuremath{m}
Bob: you i i i i i everything else
Alice: balls have 0 to me to $\label{eq:condition} \ensuremath{me}$
Bob: you i i i everything else
Alice: balls have zero to me

[Wil18]

Google neural machine translation

[Kor18]

Bewertung

- Mehr als nur Hype
- Gefahren und Limitationen

Vielen Dank

[Dwi18]

References I

- Cmdrjameson. The Elman Simple Recurrent Neural Network https://commons.wikimedia.org/wiki/File:Elman_srnn.png. URL: https://commons.wikimedia.org/wiki/File:Elman_srnn.png.
- Created a neural network which simulates the structure of brain (2018).

[Online; accessed 8. Feb. 2019]. URL:

http://scienews.com/technology/5962-created-a-neural-network-which-simulates-the-structure-of-brain.html.

- Deep Learning der Generalschlüssel für Dokumentanalysen? (Teil 2) (2016). [Online; accessed 7. Feb. 2019]. URL:
 - https://www.intergator.de/2016/11/01/deep-learning-der-generalschluessel-fuer-dokumentanalysen-teil-2.
 - Dwivedi, Divyansh (2018). "Machine Learning For Beginners". In: *Towards Data Science*. URL: https://towardsdatascience.com/machine-learning-for-beginners-d247a9420dab.

イロト 4周ト 4 至ト 4 至ト 至1年 めなべ

References II

- google (2016). A Neural Network for Machine Translation, at Production
 - Scale. URL: https://ai.googleblog.com/2016/09/a-neural-network-for-machine.html.
- Korbut, Daniil (2018). "Machine Learning Translation and the Google Translate Algorithm". In: *Stats and Bots*. URL:
 - https://blog.statsbot.co/machine-learning-translation-96f0ed8f19e4.
- Machine Learning Could Be Used For Early Dementia Diagnosis (2018).
 - [Online; accessed 8. Feb. 2019]. URL:
 - https://www.rdmag.com/article/2018/07/machine-learning-could-be-used-early-dementia-diagnosis.

References III

Raicea, Radu (2018). "Want to know how Deep Learning works? Here's a quick guide for everyone.". In: *freeCodeCamp.org*. URL:

https://medium.freecodecamp.org/want-to-know-how-deep-learning-works-heres-a-quick-guide-for-everyone-laedeca88076.

Wilson, Mark (2018). Al Is Inventing Languages Humans Can't Understand. Should We Stop It? URL:

https://www.fastcompany.com/90132632/ai-is-inventing-its-own-perfect-languages-should-we-let-it.