植林电子科技大学

概率论与数理统计

近年精选试卷及答案

试卷编号: A

桂林电子科技大学试卷

				>>	/. 11 17		ij	果号			_
				第学	2别 工工	1 I I I I I I I I I I I I I I I I I I I		及、专业			
课程名和	尔 <u>概</u>	<u>率论与数</u>	<u>效理统i</u>	<u>t</u>					姓	名	
考试时间	<u> 120</u>	分	钟 班	級		_ 子与	一—	八	九	+	成绩
题号		=	=	<u> </u>	五 16	20					100
满分	12	12	20	20	10	20					
得分	ļ					:				<u> </u>	
评卷人	 	玉小颗 4	<u> </u> 分,;	上 夫 12 分	•)						
一 項3	这题(在 随机变量	#\1.\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		FI F(X)	0.5	D(X) =	0.45,	则 $n=_{-}$,	p =	;
o -#:	$X \sim \chi^2$	(n). W	D(X):	=		;					
2. 石	$\Lambda \sim \lambda$	(11) / /**			1	= 1 <i>7 hh</i> t	光	为样本	示准差,	μ, σ^2	未知。
3. 设	A X 总体X	$\sim N(\mu,$	σ^2),	$X_1, X_2,$	\cdots, X_n	足人 的作	740 3	794171		•	
rde	σ^2 的置	1/台嵌出	l – α 的	双侧置位	言区间为	ı:			°		
则	0 的国	一儿野	Δ Δ .	土 12 4	分)						
二选	择题(每小趔	477,	ス 1~	- (72)	ការ D (/	۸ UĀ):	= () 。		
1. 事	件A与	B 独立,	且 P	(A)=p,	P(B)=q	, 火() I (I	100)				
(Δ)1+ n	-a:	(B) p +	q; (C) 1 ;	(D)	1+pq	-q .			
2. 衤	f(x) =	= cos x F	了以作为	随机变	量 <i>X</i> 的	既率密度	[函数,]	则 X 的 $\overline{\square}$	丁能取值	区间为	:()
(A) $\left[0,\frac{2}{3}\right]$	$\left[\frac{\pi}{2}\right];$	(B) $\left\lceil \frac{\pi}{2} \right\rceil$	$,\pi$ $];$	(C) [0	$,\pi];$	(D)	$\frac{3\pi}{2}, \frac{7\pi}{4}$	·		
3. 该	とれ个随	机变量力	$X_{1}, X_{2},$	X , 相	互独立	且同分布	$\vec{j}, s^2 =$	$\frac{1}{n-1}\sum_{i=1}^{n}$	$\sum_{i} (X_i - X_i)^{-1}$	$(\overline{X})^2$. \mathbb{F}	ij()。
((A) s^{27}	下是σ²(的无偏位	5计; (B) s ² 与.	7 不相]	互独立;	(C) s	² 是σ ² f	的最大個	以然估计;
•	D) s ² 是										
= 1.	(每小局 连续型	随机变量	\mathbf{X} 的分	个的数.	为:						
		F(x	$\mathbf{x} = \begin{cases} \mathbf{A} \\ 0 \end{cases}$	+Be ^{-Ax}		$x > 0$ $x \le 0$	(λ:	>0)			
	(1) 试研	确定常数	(A, B	的值;(2	2) 求概	率密度。	f(x).				

2. 设随机变量 X 在区间(0, 1)上服从均匀分布,求 $Y = \frac{1}{X+1}$ 的概率密度。

四 (每小题 10 分, 共 20 分)

1.
$$X = Y$$
 独立同分布,且 X 的概率密度为 $f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0 \\ 0 & x < 0 \end{cases}$

试求: (1) 若
$$E(X^2) = \frac{1}{8}$$
, 求 λ ;

- (2) $Z = \max(X, Y)$ 的概率密度。
- 2. 某人进行投篮训练, 共投 100 次, 设每次投入的概率为 0.9, X 表示投中的次数, Y 表 示投不中的次数。

试求: (1) X 的分布律 ; (2) Cov(X,Y)。

五、(每小题8分,共16分)

- 1. 已知随机变量X与Y相互独立, $X \sim N(0,1)$,Y在区间(0,2)上服从均匀分布, 试求: $P\{X \ge Y\}$ 。
- 2. 设随机变量 (X,Y) 的概率密度为:

$$f(x,y) = \begin{cases} A(1+2x)(1+2y) & 0 \le x \le 1, 0 \le y \le 1 \\ 0 & \text{其它} \end{cases}$$

试求:

(1)A; (2) X 与 Y是否独立,为什么?

六、(每小题 10 分, 共 20 分)

1. 设 X_1, X_2, \dots, X_6 是总体 $X \sim N(\mu, \sigma^2)$ 的样本, $s^2 = \frac{1}{5} \sum_{i=1}^{6} (X_i - \overline{X})^2$ 为样本方差。

试求: $5s^2/\sigma^2$ 的分布及参数。

2. 设总体 X 的分布率为:

$$\begin{array}{c|ccccc} X & 1 & 2 & 3 \\ \hline P_k & \theta^2 & 2\theta(1-\theta) & (1-\theta)^2 \end{array}$$

其中 $\theta(0<\theta<1)$ 是未知参数。已知取得样本为: $x_1=1$, $x_2=2$, $x_3=3$ 。试求: θ 的 矩估计和最大似然估计。

试卷编号: B

桂林电子科技大学试卷

W-1			学年	第	学期		Ì	果号			
课程名和	尔 <u>概率</u>	与数理	经		适用珍	妊级 (耳	戊年级、	专业)	·		
考试时间	可 <u>120</u>	分	钟 班	E级		_ 学与	<u> </u>		姓	名	
题号			三	四	五.	六	七	八	九	+	成绩
满分	12	12	20	20	16	20					100
得分											
评卷人											

- 一、填空题 (每小题 4分, 共 12分)
- 1. 若事件 A 与 B 相互独立,则 $P(\overline{A} \cap \overline{B}) = ______;$
- 3. 设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \cdots, X_n 是X的样本。 s^2 为样本方差,则 $\frac{(n-1)s^2}{\sigma^2}$ 服
- 二、 选择题 (每小题 4 分,共 12 分)
- 1. 设 $P(A) = P(B) = P(C) = \frac{1}{3}$, A, B, C 相互独立,则 A, B, C 至少有一个发生的概率为 ()。 (A) $\frac{2}{2}$; (B) $\frac{19}{27}$; (C) $\frac{26}{27}$; (D) $\frac{1}{27}$ 。
- 2. 设总体 $X \sim b(n,p)$, X_1, X_2, \cdots, X_n 是X的样本, s^2 为样本方差。则 $E(s^2)=($)。

(A) np(1-p) ; (B) np ;

- (C) $(np)^2$; (D) np^2 .
- 3. 设总体 $X\sim N(\mu,\sigma^2)$, X_1,X_2,\cdots,X_n 是 X 的样本。 s^2 为样本方差, μ,σ^2 均未知。 则 μ 的置信度为 $1-\alpha$ 的双侧置信区间为:

(A)
$$\left(\overline{X} \pm \frac{\sigma}{\sqrt{n}} u_{\alpha/2} (n-1)\right)$$
; (B) $\left(\overline{X} \pm \frac{s}{\sqrt{n}} u_{\alpha/2}\right)$;

(C)
$$\left(\overline{X} \pm \frac{\sigma}{\sqrt{n}} t_{\alpha/2}(n-1)\right)$$
; (D) $\left(\overline{X} \pm \frac{s}{\sqrt{n}} t_{\alpha/2}(n-1)\right)$.

- 三 (每小题 10分,共20分)
- 1. 某班有30位同学,其中有3位同学身高在1.8米以上,现从中任抽取三人, X表示从

中任抽取三人身高在1.8米以上的人数。试求:

- (1) X 的分布律 ; (2) P(X=0) 。
- 2. 设 $X \sim U(a,b)$, E(X) = 1, D(X) = 3。试求:
 - (1). a,b;
 - (2). Y = 2X + 1 的概率密度。

四 (每小题 10分, 共 20分)

- 1.设(X,Y)在矩形域 D: $0 \le x \le 1, 1 \le y \le 2$ 上服从均匀分布。试求:
- (1) (X,Y) 的联合概率密度 f(x,y); (2) X 与 Y 是否独立,为什么? (3) $P\{-X+Y>\frac{3}{2}\}$ 。
- 2.(X,Y) 的联合分布律为:

Y	-1	1	2	
-1	$\frac{5}{20}$	$\frac{2}{20}$	$\frac{6}{20}$	
2	$\frac{3}{20}$	$\frac{3}{20}$	$\frac{1}{20}$	

试求:

- (1) X 的边缘分布律;
- (2) X, Y是否相互独立、并说明原因。

五、(每小题8分,共16分)

- 1. 已知随机变量 X 与 Y 相互独立,且都服从正态分布 $N(0,\frac{1}{2})$, 试求: $Z=\sqrt{X^2+Y^2}$ 的概率密度。
- 2. 设一批零件的重量都是随机变量,它们相互独立,且服从相同的分布。其期望为 0.5 kg,方差为 0.5 kg。问 5000 只零件的总重量超过 2510 kg 的概率是多少? ($\Phi(0.2) = 0.5793$) 六、(每小题 10 分,共 20 分)
- 1. 设 X_1, X_2, \dots, X_n 是总体X的样本, $\mu = E(X)$, $\sigma^2 = D(X)$ 存在且未知。试求 σ^2 的矩估计和无偏估计。
- 2. 设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \dots, X_n 是X的样本,且 σ^2 已知。

 $H_0: \mu = \mu_0$ (己知), $H_1: \mu \neq \mu_0$ 。

试求: (1) 检验统计量;

- (2) 对给定的置信水平 α , 其拒绝域:
- (3) 当 μ_0 = 3.27, σ = 0.02, n = 16, \bar{x} = 3, α = 0.1时,是接受原假设 H_0 ,还是拒绝原假设 H_0 。(参考数据 $z_{0.05}$ = 1.64)

试卷编号: C

桂林电子科技大学试卷

			学年	第	学期		7	课号		***	
课程名和	尔 <u>概率</u>	论与数	理统计	這	5用班绸	及(或年	F级、	∌亚)_			
考试时间	可_120_	分	钟玻	E级		_ 学与]		姓	名	·
题号			=	四	五	六	七	八	九	十	成绩
满分	12	12	24	24	20	8					100
得分											
评卷人											
1年7	रे अह र	= J. HE	. /\ -	H- 40 /		·	· · · · · · · · · · · · · · · · · · ·		·		

- 填空题(每小题 4 分,共 12 分)
- 1. 若随机事件 A, B 相互独立, P(A)=0.2, P(B)=0.45, 则 $P(A \cup B)=$
- 2. 设 ξ , η 是相互独立的随机变量,其分布函数分别为 $F_{\xi}(x)$, $F_{\eta}(y)$,则 $Z=\max(\xi,\eta)$ 的
- 3. 设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \dots, X_n 是X 的样本, s^2 为样本方差。

则 $E(s^2)=$

- 二 选择题 (每小题 4 分, 共 12 分)
- 1. 设随机变量 $X \sim N(\mu, \sigma^2)$,则随 σ 增大概率 $P\{|X \mu| < \sigma\}$ 应(
 - (A) 单调增大; (B) 单调减少; (C) 增减不定; (D) 保持不变。

- 2. 设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \cdots, X_n 是X的样本, \overline{X} 为样本均值,

$$s_k^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^k, k = 1,2,3,4$$
。则服从自由度为 $n-1$ 的 t 分布的随机变量是();

(A)
$$t = \frac{\overline{X} - \mu}{s_1 / \sqrt{n}}$$
; (B) $t = \frac{\overline{X} - \mu}{s_2 / \sqrt{n}}$; (C) $t = \frac{\overline{X} - \mu}{s_3 / \sqrt{n}}$; (D) $t = \frac{\overline{X} - \mu}{s_4 / \sqrt{n}}$.

3. 设总体 $X\sim N(\mu,\sigma^2)$, X_1,X_2,\cdots,X_n 是 X 的样本, \overline{X} 为样本均值。则 \overline{X} 服从()。

(A)
$$N(\mu, \sigma^2)$$
; (B) $N(\mu, (\sigma/n)^2)$; (C) $N(\mu, \sigma^2/n)$; (D) $N(\mu/n, \sigma^2)$.

- 三(每小题 12 分, 共 24 分)
- 1. 甲乙两人进行投篮比赛,各投两次,每人投中的概率均为0.5,设 X_1, X_2 ,分别表示甲乙 投中的次数, 试求: (1) (X_1, X_2) 的分布率。(2) $E(X_1X_2)$ 。

2. 设二维随机变量(X,Y)的联合概率密度为:

$$f(x,y) = \begin{cases} ke^{-(3x+4y)}, & x > 0, y > 0\\ 0, 其他 \end{cases}$$

求:(1)常数k; (2)验证X和Y是否相互独立。 四(每小题 12 分, 共 24 分)

1. 设(x,y)的概率密度为

$$f(x,y) = \begin{cases} 4xy & 0 \le x \le 1, 0 \le y \le 1 \\ 0 & 其它 \end{cases}$$

试求: (1). (X,Y) 的联合分布函数;

(2)
$$P\{X^2 + Y^2 \le 1\}$$
.

2. 根据历史资料分析,某地连续两次强地震时间间隔的年数 X 为随机变量,其分布函数为

$$F(x) = \begin{cases} 1 - e^{-0.05x} & x \ge 0 \\ 0 & x < 0 \end{cases}$$

现在该地区刚发生一次强地震, 试求:

(1) X 的概率密度; (2) 今后 10 年内再次发生强地震的概率;

五 (每小题 10 分, 共 20 分)

1. 设总体X的分布函数为:

$$F(x) = \begin{cases} 1 - \left(\frac{1}{x}\right)^{\theta} & x > 1\\ 0 & x \le 1 \end{cases}$$

其中 $\theta(\theta>1)$ 未知参数, X_1,X_2,\cdots,X_n 是X的样本。试求 θ 的矩估计量和最大似然估计量。

2. 设总体 $X\sim N(\mu,\sigma^2)$, X_1,X_2,\cdots,X_n 是X的样本, $a\sum_{i=1}^{n-1} \left(X_{i+1}-X_i\right)^2$ 为 σ^2 的无偏估

计。试求数a。

六 (8 %) 设随机变量 X 的概率密度为:

$$f_X(x) = \frac{2}{\pi(1+x^2)}, \quad x > 0$$

试证明: 随机变量 $Y = \frac{1}{X}$ 与X服从同一分布。

试卷编号: D

桂林电子科技大学试卷

			学年	第	学期		ì	果号			
课程名和	尔 <u>概率</u>	论与数	(理统计	•	适用现	E级(或					·
考试时间	可 120	分	·钟 班	级		_ 学与	ļ	~~	姓	名	
题号		二		四	五	六	七	八	九	十	成绩
满分	12	12	12	12	20	22	10				100
得分											
评卷人	き题(も	立小部	4分 =	比 10 4	<i>></i>)				<u></u>		
1. 设二组						2缘概率	密度分别	削为 <i>f</i> (x	$(x,y), f_x$	$(x), f_y$	<i>(y</i>),则
	Y相互										
2. 设总	体X服	从二项分	个布,即	$X \sim b$	(1,p),	$X_1, X_2,$	\cdots, X_n	是 <i>X</i> 的	样本,之	₹ 为样 [∠]	本均值。
则 <i>E</i>	(X)=	1.11 <u>.11</u> .12	, $D(\overline{X})$)=		_;					
3. 设总体	$X \sim N$	(μ,σ^2)	X_1	$X_2, \cdots,$	X_n 是 X	的样本	,且σ²	己知。			
$H_{0}: \mu$	$=\mu_0$ (i	己知),	$H_1: \mu$	≠ μ_{0} . \flat	则用于检	验假设	$H_{ m o}$ 的统	计量为	!		
二 选择 1. 一个小						邻不相同	的概率之	为(设-	-年为 30	65 天)	().
(A)	$\frac{1}{C_{365}^6}$;	(B)	$\frac{1}{A_{365}^6}$: (C	$\frac{C_{365}^6}{(365)}$	$(5)^{6};$	(D) $\frac{P_3^0}{(36)}$	$\frac{\frac{65}{65}}{5)^6}$ °			
2. 设 <i>ξ</i> ,η	是相互	独立的院	植机变量	,其分	布函数分	$}$ 别为 F_{c}	$f(x), F_{\eta}$	<i>(y</i>),贝	JZ = m	$\sin(\xi,\eta)$)的分布
函数	为())									
(A)	$F_Z(z)$	$=F_{\xi}(z)$;		(E	$F_{z}(z)$)=1-[$1-F_{\xi}$	z)][1 – <i>1</i>	$F_{\eta}(z)$]	;
(C)	$F_Z(z)$	= min{.	$F_{\xi}(z), F$	$\{\eta(z)\};$	(I	O) $F_Z(z)$	$(z) = F_{\eta}($	(z) .			
3. 设 <i>X</i> ₁	X_2,X_3	,是总体	X 的样	本, μ=	=E(X)	存在,q	$o(X_1, X_1)$	$(X_3)=$	$= aX_1 +$	$b(3X_3)$	$-2X_{2}$)
是 μ 的无	偏估计。	则().								

三(12分)已知二维随机变量(X,Y)的联合分布律为:

(A) a=1,b 可以是任意实数; (B) a=b; (C) a+b=1; (D) a+b=2.

(1)	求关于X,	Y	的边缘分	布律:
\ - /	-1-7 C 1 2 E 9	-	ロッペエーハン	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

- (2) 求条件分布律;
- (3) 问 X, Y 是否相互独立?

X	1	2	3
2	0.10	0.20	0.10
4	0.15	0.30	0.15

四(12分)

设二维随机变量(X,Y)的联合概率密度为:

$$f(x,y) = \begin{cases} k(1-x)y & 0 \le x \le 1, 0 \le y \le x \\ 0 & 其它 \end{cases}$$

试求: (1) k; (2) $P\{Y \le \frac{1}{2}X\}$; (3) 判断 X = Y 是否相互独立。

五 (每小题 10 分, 共 20 分)

1. 设随机变量X与Y相互独立,且服从同一分布。试证明;

$$P\{a < \min(X,Y) \le b\} = [P\{X > a\}]^2 - [P\{X > b\}]^2$$
.

2. 设X与Y独立同分布,且 $P(X = k) = \frac{1}{3}$,k=1,2,3。

试求: (1) (X,Y) 的联合分布律; (2) D(Y)。

六 (每小题 11 分, 共 22 分)

1. 设总体 X 服从正态分布,即 $X \sim N(\mu, \sigma^2)$ $X \sim N(\mu, \sigma^2)$, X_1, X_2, \dots, X_n 是 X 的样

本。试求
$$a$$
使 $\hat{\sigma} = a \sum_{i=1}^{n} \sum_{j=1}^{n} |X_i - X_j| 为 \sigma$ 的无偏估计。

2. 设总体 $X\sim N(\mu,\sigma^2)$, X_1,X_2,\cdots,X_n 是 X 的样本。 \overline{X},s 为样本均值与样本标准差, μ,σ^2 未知。试求:

(1) μ 的置信度为 $1-\alpha$ 的双侧置信区间;

(2) 当
$$n = 9, \bar{x} = 49.9, s = \sqrt{0.29}, \alpha = 0.05$$
 时,检验假设 $H_0: \mu = 50$ 的合理性 。

(参考数据: $t_{0.025}(8) = 2.306$)

七(10 分) 设二维随机变量(X,Y)的概率密度为:

$$f(x,y) = \begin{cases} c(R - \sqrt{x^2 + y^2}), x^2 + y^2 < R^2 \\ 0, x^2 + y^2 \ge R^2 \end{cases}$$

试求: (1) 系数c; (2) (X,Y) 落在圆域 $x^2 + y^2 < r^2 (r < R)$ 内的概率。

桂林电子科技大学试卷

			学年	第	学期		ì	果号			_
课程名	尔 <u>概率</u>	论与数	_								
考试时间	可_120	分	钟 班	E级		_ 学与	<u>;</u>		姓	名	
题号		=	Ξ	四	五	六		八	1	十	成绩
11.4 / 4	12	12	20	24	20	12					100
得分 评卷人							·				
一、 填空题(每小题 4 分,共 12 分) 1、设 X,Y 是相互独立的随机变量,且均服从正态分布 $N(6,4)$,则 $E[(Y-1)(X^2-1)]$ =。 2、设总体 $X \sim U(0,\theta)$, X_1,X_2,\cdots,X_5 是 X 的样本。则 $P\{\max(X_1,X_2,\cdots,X_5)>\frac{\theta}{2}\}=$ 。 3、设总体 $X \sim N(\mu,\sigma^2)$, X_1,X_2,\cdots,X_n 是 X 的样本, \overline{X} 为样本均值。则 \overline{X} 的概率密度为:。											
		为任意			},共 件,且 <i>i</i>			0,则 ⁻	下列选口	项不正	确 的
	(A), <i>I</i>	$P(\overline{A}) < 1$	$P(\overline{B})$;		(B),	P(A +	B) = P((B);			
	(C), I	P(AB) =	= P(B)	;	(D),	P(A) <	$P(A \mid A)$	B) .			
2、	告 $X \sim b$	p(n,p),	则 <i>E</i> (2	$(X^2) = $		•					
	(A) (1	$-np)^2$		(B	s) np(1	$-p-n_I$	p)				
	(C) (1	$+np)^2$		(D) np(1	$-p+n_{j}$	p)				
3、设总位	$ arraycharge X \sim \lambda$	$J(\mu,\sigma^2)$	X_{1}	$X_2, \cdots,$	X _n 是X	7 的样本	,且 σ^2	己知。	H_0 :	$\mu = \mu_0$	(已
知), <i>H</i> ₁	: μ≤ μ	$u_{_0}$ 。则 i	适合于检	验假设	的统计量	量为: _					

(A),
$$\frac{\overline{X} - \mu}{s/\sqrt{n}}$$
; (B), $\frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}}$; (C), $\frac{\overline{X} - \mu_0}{s/\sqrt{n}}$; (D), $\frac{\overline{X} - \mu}{\sigma/\sqrt{n}}$.

三 (每小题 10 分, 共 20 分)

- 1. 设随机变量 $X \sim N(10.4)$, Y = 5X 2, 试求:
 - (1)、Y的概率密度; (2)、 $P\{Y < 48\}$ 。
- 2. 设随机变量 X 的分布律为: $P\{X=k\}=\frac{1}{3}, k=0,1,2$,试求:
 - (1)、 $Y = X^2 1$ 的分布律; (2)、D(Y)。

四(每小题 12分, 共 24分)

- 1. 设来自 A, B, C 三个学校的考生人数分别为 10, 15, 25 名, 其中女生分别占 3, 5, 7名, 若随机叫一名考生, 试求:
 - (1)、是女生的概率:
 - (2)、已知叫的是一名女生,问该女生是 A 校的概率。
- 2. 已知(X,Y)的联合分布律为:

X	<u>-1</u>	1
0	1/	1
	/3	6
1	β	1/3

试求: (1)、 β ; (2)、X与Y是否独立; (3)、E(XY)。

五 (每小题 10分,共20分)

- 1. 设总体 $X \sim \pi(\lambda)$, X_1, X_2, \dots, X_n 是 X 的样本, 试求 p(X=0) 的最大似然估计。
- 2. 设总体 $X \sim N(0,2^2)$, X_1, X_2, \dots, X_4 是X的样本,

 $Y = a(4X_4 - 3X_3)^2 + b(2X_2 - X_1)^2$, 且 Y 服从 χ^2 分布。试求常数 a, b。

六 (共12分)

设X,Y的联合概率密度为:

$$f(x,y) = \begin{cases} ce^{-(x+y)}, & x > 0, y > 0\\ 0, & \text{ id} \end{cases}$$

试求: (1) c 的值; (2) 边缘概率密度 $f_X(x), f_Y(y)$; (3) Z = X - Y 的概率密度。

试卷编号: F

桂林电子科技大学试卷

		学年	第	学期		Ì	课号	·-·· · · · · · · · · · · · · · · · · ·			
课程名称_概率论与数理统计											
间 <u>120</u>	分	钟	E级	学号				姓	姓名		
		三	四	五	六	七	八	九	十	成绩	
12	12	20	20	16	20					100	
	间 <u>120</u> 一	间 <u>120</u>	称 <u>概率论与数理统计</u> 间 <u>120</u> 分钟 班 一 二 三	称 <u>概率论与数理统计</u> 间 <u>120</u> 分钟 班级 一	间 120 分钟 班级 一 二 三 四 五	称_概率论与数理统计 适用班级 间_120 分钟 班级 学量 一 二 三 三 四 五 六	称_概率论与数理统计 适用班级(或年级) 间_120 分钟 班级	称_概率论与数理统计 适用班级(或年级、专业 间_120 分钟 班级 学号 一 二 三 回 五 六 七 八	称 概率论与数理统计 适用班级(或年级、专业) 间 120 分钟 班级 学号 姓 一 二 三 四 五 六 七 八 九	称 概率论与数理统计 适用班级(或年级、专业) 间 120 分钟 班级 学号 姓名 一 二 三 四 五 六 七 八 九 十	

- 填空题 (每小题 4 分, 共 12 分)
- 1. 设 $X \sim b(2, p)$, $Y \sim b(3, p)$, 若 $P(X \ge 1) = 5/9$, 则 $P(Y = 1) = ______$
- 2. 设X,Y是相互独立的随机变量,且均服从正态分布 $N(\mu,\sigma^2)$,则X,Y的相关系数 ρ_{XY} =_____
- 3. 设 X_1, X_2, \dots, X_n 是总体X的样本, $\mu = E(X), \sigma^2 = D(X)$ 存在, S^2 为X的样本方差。 则 $E(S^2)=$ _____。
- 二. 选择题(每小题 4 分, 共 12 分)
 - 1. X 服从区间[0, 1]上的均匀分布,对 0 < a < 1 < b,则 P(a < X < b) = ()
 - (A) a; (B) b a;
- (C) 1-a; (D) b-1.
 - 2. 下列正确的是()
 - (A) $P(A \cup B) = P(A) + P(B)$; (B) P(AB) = P(A)P(B);

(C)
$$P(B \mid A) = \frac{P(A)}{P(B)}$$
 $(P(B) \neq 0)$; (D) $P(B \mid A) = \frac{P(AB)}{P(A)}$, $P(A) > 0$.

- 3. 设 X_1, X_2, \cdots, X_n 是总体X的样本, $\mu = E(X), \sigma^2 = D(X)$ 存在, \overline{X} 是X的样本均 值。则下列正确的是()。
- (A) X_i $(i=1,2,\cdots n)$ 不是 μ 的无偏估计; (B) \overline{X} 作为 μ 的无偏估计比 X_i 更有效;
- (C) X_i 作为 μ 的无偏估计比 \overline{X} 更有效; (D) \overline{X} 不是 μ 的无偏估计。
- (每小题 10 分, 共 20 分)
- 1. 设随机变量 Y 服从参数为 10 的指数分布, 求关于 x 的二次方程 $4x^2 + 4xY + Y + 2 = 0$ 有实根的概率。

2. 设
$$(X,Y) \sim f(x,y) =$$
$$\begin{cases} x^2 + Axy & 0 < x < 1, 0 < y < 2 \\ 0 & 其他 \end{cases}$$

试求: (1) A 的值; (2) P(X+Y<1); (3) 判断 X,Y 的独立性。

四、(每小题 10 分, 共 20 分)

1. 设 ξ 与 η 是相互独立同分布的随机变量,且 $P\{\xi = k\} = \frac{1}{3}$, k=1,2,3.

 $X = \max\{\xi, \eta\}, Y = \min\{\xi, \eta\}$ 。 试求:

- (1). (X,Y)的联合分布律; (2). D(Y) 。
- 2. 设总体 $X\sim N(\mu,\sigma^2)$, X_1,X_2,\cdots,X_n 是X 的样本, \overline{X} 与 s^2 分别为样本均值与方差, μ,σ^2 均未知。试求:
 - (1) μ 的置信度为 $1-\alpha$ 的双侧置信区间;
 - (2) 当 $\bar{x}=5$, s=0.9, n=9, 时, μ 的置信度为 0.95 的双侧置信区间。(参考数据 $t_{0.025}(8)=2.306$)。

五、(每小题8分,共16分)

1. 已知随机变量 X 的分布律为:

试求:

- (1) $Y = X^2 + 1$ 的分布律;
- (2) E(X)及D(X)的值。
- 2. 已知事件 A 与 \overline{B} 相互独立。证 \overline{A} 与 \overline{B} 相互独立。

六. (每小题 10分,共20分)

- 1. 设随机变量 X 服从正态分布,即 $X \sim N(0,\sigma^2)$, x_1,x_2,\cdots,x_n 是总体 X 的样本。试求:
 - (1) $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ 的概率密度函数;
 - (2) $E(\overline{x}^4)$.
 - 2.设总体 $X \sim U(a,b)$, X_1, X_2, \cdots, X_n 是 X 的样本。试求 a,b 的矩估计和最大似然估计。

试卷编号: H

桂林电子科技大学试券

	·		学年	第	学期		ì	果号			
课程名称_概率论与数理统计适用班级(或年级、专业)											
考试时间	可 <u>120</u>	分	钟 弱	E级		_ 学与	<u> </u>		姓	名	
题号		=	Ξ	四	五	六	七	八	九	+	成绩
满分	12	12	20	20	20	16					100
得分											
评卷人											

- 填空题 (每小题 4 分, 共 12 分)
 - 已知 P(A) = 0.3, P(B) = 0.4, P(B|A) = 0.7,则 $P(\overline{A}|B) = _______$;
 - 2、 高炮发射一发炮弹而击中敌机的概率是 0.5。当每门高炮只射一发时,至少需要 门高炮同时发射才能以99%的把握击中来犯的一架敌机;
 - 3、 设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \dots, X_n 是X的样本, \overline{X} 为样本均值,则

- 二、 选择题(每小题4分,共12分)
 - 1、对任意事件A,B,下列选项正确的是:(

 - (A) $P(A \cup B) = P(A) + P(B)$; (B) $P(A) = P(AB) + P(A\overline{B})$;
 - (C) P(AB) < P(A);

- (D) P(A-B) = P(A) P(B).
- 2、在 11 张卡片上分别写上 probability 这 11 个字母,从中任意连抽 7 张,其排列结果为 ability 的概率是: (

(A)
$$\frac{4}{P_{11}^7}$$
; (B) $\frac{7}{11}$; (C) $\frac{2}{C_{11}^7}$; (D) $\frac{2}{P_{11}^7}$.

- 3、设随机变量 X 的均值 E(X) 与方差 D(X) 存在,则对任意给定的 $\varepsilon > 0$,则切比雪夫不 等式为:(

 - (A) $P\{X E(X) < \varepsilon\} \le \frac{D(X)}{\varepsilon^2}$; (B) $P\{X D(X) < \varepsilon\} \le \frac{E(X)}{\varepsilon^2}$;
 - (C) $P\{X E(X) \ge \varepsilon\} \le \frac{D(X)}{\varepsilon^2}$; (D) $P\{X E(X) < \varepsilon\} \le \frac{1}{\varepsilon^2}$.
- 三、 (每小题 10 分, 共 20 分)
 - 1. 已知随机变量(X,Y)的联合分布率为:

X	1	2	3
0	0.1	0. 25	0. 15
1	0.05	0.05	0.10
2	0.10	0.05	0. 15

 $U = \max(X, Y)$, V = |X - Y|, 试求:

- 1)、U及V的分布律;
- 2), E(XY);
- 3)、在X = 0的条件下Y的条件分布律。
- 2. 设X 的概率密度为 $f(x) = \frac{A}{x^4}$ $(x \ge 1)$

试求: (1) A ; (2) E(X), D(X)。

四、(每小题 10 分, 共 20 分)

- $_1$ 、设 $_X$, $_Y$ 为随机变量,相关系数为 $_{_{XY}}$, $_U=aX+b$, $_V=cY+d$,($_a$, $_b$, $_c$, $_d$ 均为常数,且 $_{ac}$ < $_0$)。证 $_U$ 与 $_V$ 的相关系数 $_{_{UV}}=-\rho_{_{XY}}$ 。
 - 2、已知连续型随机变量 X 的分布函数 $F(x) = a + b \arctan(x)$, $-\infty < x < +\infty$.
 - 1)确定a,b; 2)、求 $P(-1 < X \le \sqrt{3})$; 3)求c使 $P\{X > c\} = \frac{1}{4}$ 。
- 五、(每小题 10 分, 共 20 分)
 - 1. 设总体 $X \sim N(\mu, 0.5^2)$, X_1, X_2, \dots, X_{10} 是 X 的样本。试求:

(2) (2) 当
$$\mu$$
未知时, $P\left\{\sum_{i=1}^{10} \left(X_i - \overline{X}\right)^2 \ge 2.85\right\}$ 。

(参考数据: $\chi_{0.25}^2(10) = 11.4, \chi_{0.1}^2(10) = 16$)

2. 设从总体 $X \sim N(\mu, \sigma^2)$ 中采集了 n=36 个样本观测值,且 $\overline{x}=58.61, s^2=33.8$ 。 试求均值 μ 与方差 σ^2 的置信水平为 90%的置信区间。

(参考数据:
$$t_{0.05}(35) = 1.69$$
, $\chi_{0.05}^2(35) = 49.8$, $\chi_{0.95}^2(35) = 22.47$)。

六、(每小题8分,共16分)

1. 根据历史资料分析,某地连续两次强地震时间间隔的年数 X 为随机变量,其分布函数

为
$$F(x) = \begin{cases} 1 - e^{-0.05x} & x \ge 0 \\ 0 & x < 0 \end{cases}$$

现在该地区刚发生一次强地震, 试求:

- (1) X 的概率密度; (2) 今后 10 年内再次发生强地震的概率;
- 2. 设随机变量 X 的概率密度为:

$$f_X(x) = \frac{2}{\pi(1+x^2)}, \quad x > 0$$

试证明: 随机变量 $Y = \frac{1}{X}$ 与X服从同一分布。

试卷编号: |

桂林电子科技大学试卷

	· .		学年	第	学期		j	课号			
课程名	你 <u>概率</u>	论与数	(理统计		适用:	班级(
考试时间											
题号		=	=	四	五	六	七	八	九	 +	成绩
满分	12	12	20	20	16	20					100
得分											
评卷人											
一、 填 1. 若 <i>A</i> 和 2. 设 <i>ξ</i> , η	D B 互不	相容,」	$\mathbb{E}P(A)$	= <i>p</i> ,0 <	, p < 1,	•				19X(<i>)</i> ^E 1	a) #h
分布函数							ς (**)) - <u>1</u>	(()) .)	1, 22	(5,	/ <i>)</i> H3
3. 已知 2						$D(\chi^2)$	=	· · · · · · · · · · · · · · · · · · ·	°		
二、选	择题(每小题	[4分,	共12:	分)						
1. 设随机	变量 X	的分布率	区为 P(X	= k) =	ae ^{-k} ,k	= 0,1,2,	…)则 a	=()			
(A) 1	(B)	$1 - e^{-1}$	(C)	$1 + e^{-1}$	(D) ()					
2. 设随机					且 EX = (D) 0		$\zeta = 0.84$	l,则P((X=2)	= ()
3. 设总体					` ,		X_1, X	x_2, \cdots, X	<i>X</i> , 是 <i>X</i>	的样才	Σ,
$S^2 = \frac{1}{n - 1}$	$\frac{1}{1}\sum_{i=1}^{n} \left(X_{i}\right)$	$(-\overline{X})^2$,	$B_2 = \frac{1}{n}$	$\sum_{i=1}^{n} (X_i)$	$-\overline{X}$) 2	。则下列	可正确的	选项是	()		

- (A) B_2 是 σ^2 无偏估计; (B) S^2 是 σ^2 有偏估计;
- (C) S^2 是 σ^2 无偏估计; (D) B_2 , S^2 都是 σ^2 无偏估计。

三 (每小题 10 分, 共 20 分)

1 某工厂甲乙丙三个车间加工同一零件,产量分别占全厂的 45%, 35%, 20%, 又知各车间的正品率分别为 96%, 98%, 95%, 求全厂的次品率。

2 已知
$$X \sim N$$
 (μ, σ^2) , 即 $f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$,证明 $Y = \frac{X-\mu}{\sigma} \sim N$ (0,1)。

四、(每小题 10 分, 共 20 分)

1. 已知离散型随机变量 X 的分布律为:

X	-2	-1	0	1	2
P	1	1	1	1	11
	5	6	5	15	30

求: $Y = X^2$ 的分布律及 P(-1 < Y < 1.5) 。

2 设
$$(X,Y) \sim f(x,y) =$$

$$\begin{cases} a(x+y) & 0 \le x \le 2, 0 \le y \le \frac{x}{2} \\ 0 & 其他 \end{cases}$$

求: (1) a 的值; (2) $P(Y < \frac{X}{4})$; (3) X 的边缘概率密度 $f_X(x)$ 。

五、(每小题8分,共16分)

- 1. 证明: 若A,B,C三个随机事件相互独立,则A∪B与C相互独立。
- 2. 设随机变量 X 在 (0, 2) 内服从均匀分布,求随机变量 $Y = X^2$ 的概率密度。 六、(每小题 10 分, 共 20 分)

1. 设总体
$$X \sim N(\mu, \sigma^2)$$
, X_1, X_2, \dots, X_n 是 X 的样本, $Y = \frac{1}{n} \sum_{i=1}^{n} |X_i - \mu|$ 。

试求: E(Y)和 D(Y)。

2. 设总体
$$X \sim N(20,3)$$
, X_1, X_2, \cdots, X_{25} 是 X 的样本, $\overline{X}_1 = \frac{1}{10} \sum_{i=1}^{10} X_i, \overline{X}_2 = \frac{1}{15} \sum_{i=1}^{15} X_{10+i}$ 试求: $P\{|\overline{X}_1 - \overline{X}_2| > 0.3\}$ (其中 $\Phi(0.42) = 0.6628$, $\Phi(0.101) = 0.5402$)。

试卷编号: A

桂林电子科技大学试卷评分标准与参考答案

课号_____ 课程名称 概率论与数理统计 适用班级(或年级、专业) · 填空题(每小题 4 分, 共 12 分) 1. 设随机变量 $X \sim b(n, p)$, 且 E(X) = 0.5, D(X) = 0.45, 则 n = 5, p = 0.1; 2. 若 $X \sim \chi^2(n)$,则D(X) = 2n; 设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \dots, X_n 是X的样本。S为样本标准差, μ, σ^2 未 知。则 σ^2 的置信度为 $1-\alpha$ 的双侧置信区间为: $\left(\frac{(n-1)S^2}{\chi^2_{\alpha \ell}(n)}, \frac{(n-1)S^2}{\chi^2_{1-\alpha \ell}(n)}\right)$ 。 二 选择题 (每小题 4 分, 共 12 分) 1. 事件 A 与 B 独立, 且 P(A) = p, P(B) = q, 则 $P(A \cup B) = (D)$; (A) 1 + p - q; (B) p + q; (C) 1; (D) 1 + pq - q. 2. 若 $f(x) = \cos x$ 可以作为随机变量 X 的概率密度函数,则 X 的可能取值区间为:(A); (A) $\left[0, \frac{\pi}{2}\right]$; (B) $\left[\frac{\pi}{2}, \pi\right]$; (C) $\left[0, \pi\right]$; (D) $\left[\frac{3\pi}{2}, \frac{7\pi}{4}\right]$. 3. 设n个随机变量 $X_1, X_2, ... X_n$ 相互独立且同分布, $s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$ 。则(C)。 (A) s^2 不是 σ^2 的无偏估计; (B) s^2 与 \overline{X} 不相互独立; (C) s^2 是 σ^2 的最大似然估计; (D) $s^2 \not\in \sigma^2$ 的无偏估计。 三 (每小题 10 分, 共 20 分) 解: 因连续型随机变量的分布函数在x=0处右连续。 : $F(0) = \lim_{x \to 0^+} F(x) = \lim_{x \to 0^+} (A + Be^{-\lambda x}) = A + B$2 分 又:F(0)=0即A+B=0又: $F(+\infty)=1$, 且 $F(+\infty)=\lim_{x\to +\infty}F(x)=\lim_{x\to +\infty}(A+Be^{-\lambda x})=A$ 2分 得: A=1.....1分

2. 记X, Y的分布函数分别为: $F_X(x)$, $F_Y(y)$ 。则

$$F_{Y}(y) = P\{Y \le y\} = P\{\frac{1}{X+1} \le y\} \qquad \dots 2 \text{ for } x = P\{X \ge \frac{1-y}{y}\}$$

$$= 1 - P\{X < \frac{1-y}{y}\}$$

$$= 1 - F_{X}(\frac{1-y}{y}) \qquad \dots 5 \text{ for } x = 1 + \frac{1-y}{y}$$

对上式两边求导得:

$$f_{Y}(y) = -f_{X}(\frac{1-y}{y})(\frac{1-y}{y})'$$

$$= \begin{cases} \frac{1}{y^{2}} & \frac{1}{2} < y < 1\\ 0 & \text{其它} \end{cases}$$
4 分

四(每小题 10分,共20分) 解 1.

(1)
$$: E(X) = \frac{1}{\lambda}, \quad D(X) = \frac{1}{\lambda^2}, \qquad \dots \dots 1$$

$$: E(X^2) = D(X) + \left[E(X)\right]^2 = \frac{2}{\lambda^2} \qquad \dots \dots 1$$

$$: E(X^2) = \frac{1}{8}, \quad : \frac{2}{\lambda^2} = \frac{1}{8}, \qquad \dots \dots 2$$
得: $\lambda = 4$ \quad \dots \dots

(2) X 的分布函数为:

$$F_X(x) = \begin{cases} \int_0^x \lambda e^{-\lambda x} dx = 1 - e^{-\lambda x} & x > 0 \\ 0 & x \le 0 \end{cases} \dots \dots 1 \, \mathcal{T}$$

$$\therefore \qquad F_Z(z) = F_X(z) \cdot F_Y(z) \qquad \dots 1 \, \text{ figure }$$

$$= \begin{cases} (1 - e^{-\lambda z})^2 & z > 0 \\ 0 & z \le 0 \end{cases} \dots 2 \,$$

$$f_{z}(z) = \begin{cases} 2\lambda e^{-\lambda z} (1 - e^{-\lambda z}) & z > 0 \\ 0 & z \le 0 \end{cases} \dots \dots 1$$

$$\therefore$$
 X的分布律为: $P\{X=i\} = C_{100}^{i}(0.9)^{i}(0.1)^{100-i}$ $(i=0,1,...,100)$ 3分

$$\therefore Cov(X,Y) = -9 \qquad \dots 1 \, \text{ } \text{ }$$

五(每小题8分,共16分)

1. 解: ∵

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \quad -\infty < x < +\infty$$

$$f_{Y}(y) = \begin{cases} \frac{1}{2} & 0 < y < 2 \\ 0 & \text{其它} \end{cases}$$
1

且
$$f(x,y) = f_X(x)f_Y(y)$$
1 分

$$\therefore P\{X \ge Y\} = P\{X - Y \ge 0\}$$

$$= \iint_G f(x, y) dx dy$$

$$= \iint_G \frac{1}{2\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx dy$$

$$= \frac{1}{2\sqrt{2\pi}} \int_0^2 dx \int_0^{\infty} e^{-\frac{x^2}{2}} dy + \int_0^{\infty} e^{-\frac{x^2}{2}} dx dy$$

$$= \frac{1}{2\sqrt{2\pi}} \left[\int_{0}^{2} dx \int_{0}^{\infty} e^{-\frac{x^{2}}{2}} dy + \int_{0}^{+\infty} dx \int_{0}^{2} e^{-\frac{x^{2}}{2}} dy \right] \qquad \dots \dots 2$$

$$= \frac{1}{2\sqrt{2\pi}} (1 - e^{-2}) + [1 - \Phi(2)]$$

$$\approx 0.1953 \quad \dots \dots 4 \, 2$$

2. 解 (1)由

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) dx dy = \int_{-\infty}^{1} \int_{-\infty}^{1} A(1+2x)(1+2y) dx dy = 4A = 1 \qquad \dots \dots 1$$

$$\Rightarrow A = \frac{1}{4}.$$
(2) :

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \begin{cases} \int_{-\infty}^{1} \frac{(1+2x)(1+2y)}{4} dy = \frac{1+2x}{2} & 0 \le x \le 1 \\ 0 & \text{#$\dot{\mathbb{C}}$} \end{cases}$$
......2 \(\frac{\psi}{2}\)

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \begin{cases} \int \frac{(1+2x)(1+2y)}{4} dx = \frac{1+2y}{2} & 0 \le y \le 1\\ 0 & \text{#$\dot{\mathbb{T}}$} \end{cases}$$
......2 \(\frac{\partial}{2}\)

∵对任意的
$$(x,y) \in R^2$$
 $f(x,y) = f_X(x)f_Y(y)$ 1 分

六 (每小题 10 分, 共 20 分)

1. 解:

又:
$$s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2 = \frac{1}{n-1} \sum_{i=1}^n \left[\left(\frac{X_i - \mu}{\sigma} \right) - \frac{1}{n} \sum_{i=1}^n \frac{X_i - \mu}{\sigma} \right]^2$$
 ...4分

$$\therefore \frac{5s^2}{\sigma^2} \sim \chi^2(5)$$
。且参数为 5。4 分

2. 解:

(1) :
$$E(X) = \theta^2 + 4\theta(1-\theta) + 3(1-\theta)^2 = 3-2\theta$$
 ...2 $\%$

由
$$\overline{X} = E(X)$$
, $\overline{x} = 2$ 。 ...1分

$$\therefore$$
有 θ 的矩估计值为: $\hat{\theta} = \frac{3-\bar{X}}{2} = \frac{1}{2}$ 2 分

(2) $: \theta$ 的似然函数为:

$$L(\theta) = \prod_{i=1}^{3} P\{X = x_i\} = \theta^2 \cdot 2\theta(1-\theta) \cdot (1-\theta)^2 = 2\theta^3 (1-\theta)^3 \qquad \dots 2$$

令
$$\frac{d[\ln(L(\theta))]}{d\theta} = 0$$
,得: $\hat{\theta} = \frac{1}{2}$ 1 分

$$\therefore \theta$$
 的最大似然估计值为: $\hat{\theta} = \frac{1}{2}$ 1 分

试卷编号: B

桂林电子科技大学试卷评分标准与参考答案

课号

课程名称 概率论与数理统计

适用班级(或年级、专业)

- 一 填空题 (每小题 4 分, 共 12 分)
- 1. 若事件 A 与 B 相互独立,则 $P(\overline{A} \cap \overline{B}) = P(\overline{A})P(\overline{B}) = [1 P(A)][1 P(B)];$
- 2. 设 $E(X) = \mu, D(X) = \sigma^2$,则对任意的 $\varepsilon > 0$ 关于X的切比雪夫不等式为:

$$\underline{P\{|X-\mu|\geq\varepsilon\}\leq\frac{\sigma^2}{\varepsilon^2}};$$

- 3. 设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \cdots, X_n 是X的样本。 s^2 为样本方差,则 $\frac{(n-1)s^2}{\sigma^2}$ 服从(自由度为n-1的 χ^2)分布。
- 二选择题(每小题 4 分,共 12 分)
- 1. 设 $P(A) = P(B) = P(C) = \frac{1}{3}$, A, B, C 相互独立,则 A, B, C 至少有一个发生的概率为 (B)

(A)
$$\frac{2}{3}$$
; (B) $\frac{19}{27}$; (C) $\frac{26}{27}$; (D) $\frac{1}{27}$.

- 2. 设总体 $X \sim b(n,p)$, X_1, X_2, \cdots, X_n 是X的样本, s^2 为样本方差。则 $E(s^2)$ 是 (A) $(A) np(1-p) ; \qquad (B) np ;$
- (C) $(np)^2$; (D) np^2 .
- 3. 设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \dots, X_n 是X的样本。 s^2 为样本方差, μ, σ^2 均未知。则 μ 的置信度为 $1-\alpha$ 的双侧置信区间为: (D)

(A)
$$\left(\overline{X} \pm \frac{\sigma}{\sqrt{n}} u_{\alpha/2}(n-1)\right)$$
; (B) $\left(\overline{X} \pm \frac{s}{\sqrt{n}} u_{\alpha/2}\right)$;

(C)
$$\left(\overline{X} \pm \frac{\sigma}{\sqrt{n}} t_{\alpha/2}(n-1)\right)$$
; (D) $\left(\overline{X} \pm \frac{s}{\sqrt{n}} t_{\alpha/2}(n-1)\right)$.

- 三 (每小题 10分,共 20分)
 - 1. 解: (1) 依题意知服从超几何分布, : X 的分布律为:

$$P\{X=k\} = \frac{C_3^k C_{27}^{3-k}}{C_{30}^3} \qquad (k=0,1,2,3) \qquad \cdots 5 \, \text{ }$$

$$P(X \ge 0) = 1 - P(X = 0) = \frac{C_3^0 C_{27}^3}{C_{30}^3} = \frac{5 \times 9 \times 13}{28 \times 29} \approx 0.72$$
 ...5 \(\frac{1}{2}\)

2.
$$M: (1) : X \sim U(a,b), : E(X) = \frac{a+b}{2}, D(X) = \frac{(b-a)^2}{12}, \exists a < b.$$

$$\therefore \begin{cases} \frac{a+b}{2} = 1 \\ \frac{(b-a)^2}{12} = 3 \end{cases} \Rightarrow \begin{cases} a = -2 \\ b = 4 \end{cases} \dots 5$$

(2) 因
$$X \sim U(-2,4)$$
, 即 $f_X(x) = \begin{cases} \frac{1}{6} & -2 < x < 4 \\ 0 & 其它 \end{cases}$

由
$$Y = 2X + 1$$
,得 $X = \frac{Y - 1}{2}$ …3 分 而 $(\frac{y - 1}{2})' = \frac{1}{2}$

四 (每小题 10 分, 共 20 分)

1. .解: (1) 设
$$f(x,y) = \begin{cases} M & 0 \le x \le 1, 1 \le y \le 2 \\ 0 &$$
其它

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1 \qquad \cdots 1 \,$$

$$\Rightarrow \iint \int_{-\infty}^{\infty} M dy dx = 1 \Rightarrow M = 1 \qquad \cdots 1 \, \text{$\frac{1}{2}$}$$

(2)
$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \begin{cases} \int_1^2 dy = 1 & 0 \le x \le 1 \\ 0 & 其它 \end{cases}$$
 …2分

$$f_{\gamma}(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \begin{cases} \int_{0}^{1} dx = 1 & 1 \le y \le 2 \\ 0 & 其它 \end{cases}$$
 …2分

: 对任意的 $(x,y) \in \mathbb{R}^2$, 有 $f(x,y) = f_X(x) f_Y(y)$, 所以X,Y相互独立。

(3)
$$P\{-X+Y>\frac{3}{2}\}=\iint_{y-x>\frac{3}{2}} f(x,y) dxdy = \int_{0}^{\frac{1}{2}} dx \int_{x+\frac{3}{2}}^{2} dy = \frac{1}{8}$$
 ...3 \(\frac{1}{2}\)

2. 解: (1) *X* 的边缘分布率为:

X	-1	1	2
P.	2	1	7
- 1	5	4	20

....3 分

(2) Y的边缘分布率为:

$$\begin{array}{c|cccc}
 & Y & -1 & 2 \\
\hline
 & P_i & \frac{13}{20} & \frac{7}{20} \\
\end{array}$$

...2分

$$P(X = -1, Y = -1) = \frac{5}{20} \neq P(X = -1) \cdot P(Y = -1) = \frac{2}{5} \times \frac{13}{20}$$

∴ X 与 Y 不相互独立。

__2分

五 (每小题8分,共16分)

1. 解: 由题设知:

$$f_X(x) = \frac{1}{\sqrt{\pi}} e^{-x^2} \qquad (-\infty < x < +\infty)$$

$$f_Y(y) = \frac{1}{\sqrt{\pi}} e^{-y^2}$$
 $(-\infty < y < +\infty)$ ___2 \(\frac{\pi}{2} \)

则
$$f(x,y) = f_X(x)f_Y(y) = \frac{1}{\pi}e^{-(x^2+y^2)}$$
 , $(x,y) \in \mathbb{R}^2$

$$\because F_Z(z) = P\{Z \le z\}$$

当
$$z < 0$$
 时, $F_Z(z) = P(Z \le z) = P(\sqrt{X^2 + Y^2} \le z) = 0$

当z≥0时,

$$F_{Z}(z) = P\{\sqrt{X^{2} + Y^{2}} \le z\} = \iint_{x^{2} + y^{2} \le z^{2}} f_{X}(x) f_{Y}(y) dx dy$$

$$= \int_{0}^{2\pi} d\theta \int_{0}^{\pi} \frac{r}{\pi} e^{-r^{2}} dr = 2 \int_{0}^{\pi} r e^{-r^{2}} dr$$

$$= 1 - e^{-z^{2}}$$
...4 \Re

所以

$$f_Z(z) = F_Z'(z) = \begin{cases} 0 & z \le 0 \\ 2ze^{-z^2} & z > 0 \end{cases}$$
 ...2 \(\frac{1}{2}\)

2. 解: 令 X_i 表示 "第i件设备的重量",则 $E(X_i) = 0.5(kg), D(X_i) = 0.5(kg^2)$ 。则所求概率为:

$$P\{\sum_{k=1}^{5000} X_k > 2510\} = P\{\frac{\sum_{k=1}^{5000} X_k - E(\sum_{k=1}^{5000} X_k)}{\sqrt{D(\sum_{k=1}^{5000} X_k)}} > \frac{2510 - 2500}{50}\}$$
....8 \(\frac{\pi}{2}\)

六、(每小题 10 分, 共 20 分)

1. 解: 令
$$\begin{cases} \overline{X} = E(X) \\ A_2 = E(X^2) \end{cases}$$
 ...3 分

 $\approx 1 - \Phi(0.2) = 1 - 0.5793 = 0.4207$

则
$$\sigma^2$$
 的矩估计为: $\hat{\sigma}^2 = A_2 - \overline{X}^2 = B_2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$...4 分

$$\therefore \sigma^2$$
 的无偏估计为: $\hat{\sigma}_2^2 = \frac{n}{n-1} B_2$ 或 $\hat{\sigma}_2^2 = \frac{n}{n-1} \hat{\sigma}^2$...3 分

2. 解: :检验统计量为:
$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$$
 ___2 分

则对给定的置信水平 α , 拒绝域为:

$$C_{\alpha} = \left\{ Z \| Z \| \ge z_{\alpha/2} \right\} \tag{3.3}$$

当 $\mu_0 = 3.27$, $\sigma = 0.02$, n = 16, $\bar{x} = 3$, $\alpha = 0.1$ 时, 有

$$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{3 - 3.27}{0.02 / \sqrt{16}} = -54 , \qquad ...3$$

查表可得: $z_{0.05} = 1.64$

$$\therefore |z| = 54 > z_{0.05} = 1.64$$
,拒绝原假设 H_0 。

桂林电子科技大学试卷评分标准与参考答案

一一一一学年第一学期 课号_____ 课程名称<u>概率论与数理统计</u> 适用班级(或年级、专业)一 填空题(每 小题 4 分,共 12 分)

- 4. 若随机事件 A, B 相互独立, P(A)=0.2, P(B)=0.45, 则 P(A∪B)=0.56_。
- 5. 设 ξ , η 是相互独立的随机变量,其分布函数分别为 $F_{\xi}(x)$, $F_{\eta}(y)$,则 $Z = \max(\xi,\eta)$ 的分布函数为: $F_{\xi}(z) \cdot F_{\eta}(z)$ 。
- 6. 设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \cdots, X_n 是 X 的样本, s^2 为样本方差。 则 $E(s^2) = \underline{\sigma^2}$ 。
- 二选择题(每小题4分,共12分)
- 2. 设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \dots, X_n 是X的样本, \overline{X} 为样本均值,

 $s_k^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^k, k = 1,2,3,4$ 。则服从自由度为n-1的t分布的随机变量是(B)

(A)
$$t = \frac{\overline{X} - \mu}{s_1 / \sqrt{n}}$$
; (B) $t = \frac{\overline{X} - \mu}{s_2 / \sqrt{n}}$; (C) $t = \frac{\overline{X} - \mu}{s_3 / \sqrt{n}}$; (D) $t = \frac{\overline{X} - \mu}{s_4 / \sqrt{n}}$.

3. 设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \cdots, X_n 是X的样本, \overline{X} 为样本均值。则 \overline{X} 服从(C);

(A)
$$N(\mu, \sigma^2)$$
; (B) $N(\mu, (\sigma/n)^2)$; (C) $N(\mu, \sigma^2/n)$; (D) $N(\mu/n, \sigma^2)$.

三 (每小题 12分, 共 24分)

- 1. 甲乙两人进行投篮比赛,各投两次,每人投中的概率均为 0.5,设 X_1, X_2 分别表示甲乙投中的次数,试求: (1) (X_1, X_2) 的分布率。(2) $E(X_1 X_2)$ 。
- 3. 设二维随机变量(X,Y)的联合概率密度为:

$$f(x,y) = \begin{cases} ke^{-(3x+4y)}, & x > 0, y > 0\\ 0, 其他 \end{cases}$$

1、解:(1)

分布率为:

x ₂	0	1	2
0	$(\frac{1}{2})^4$	$\left(\frac{1}{2}\right)^3$	$(\frac{1}{2})^4$
1	$(\frac{1}{2})^3$	$\left(\frac{1}{2}\right)^2$	$\left(\frac{1}{2}\right)^3$
2	$(\frac{1}{2})^4$	$\left(\frac{1}{2}\right)^3$	$(\frac{1}{2})^4$

 (X_1, X_2) 的

(2)
$$E(X_1X_2) = (\frac{1}{2})^2 + 2(\frac{1}{2})^3 + 2(\frac{1}{2})^3 + 4(\frac{1}{2})^4 = 1$$
.

2、解: (1)
$$: \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) dx dy = 1$$
, 得

$$k \int_{0}^{+\infty} \int_{0}^{+\infty} e^{-(3x+4y)} dx dy = 1$$

$$\therefore \frac{1}{12} k = 1, \quad \text{in } k = 12$$

$$(2) \quad \text{in } k = 12$$

$$f(x) = \int_{0}^{+\infty} 12 \int_{0}^{+\infty} e^{-(3x+4y)} dy = 3e^{-3x} \quad x > 0$$

$$f_X(x) = \begin{cases} 12 \int_0^{+\infty} e^{-(3x+4y)} dy = 3e^{-3x} & x > 0 \\ 0 & x \le 0 \end{cases},$$

同理

$$f_{Y}(x) = \begin{cases} 12 \int_{0}^{\infty} e^{-(3x+4y)} dx = 4e^{-4y} & y > 0\\ 0 & y \le 0 \end{cases}$$

∴ 对 $\forall x,y \in R$,有 $f(x,y) = f_X(x)f_Y(y)$,所以X,Y相互独立。

四 (每小题 12分, 共 24分)

3. 设(x,y)的概率密度为

$$f(x,y) = \begin{cases} 4xy & 0 \le x \le 1, 0 \le y \le 1 \\ 0 & 其它 \end{cases}$$

试求: (1). (X,Y) 的联合分布函数;

(2)
$$P\{X^2 + Y^2 \le 1\}$$
.

4. 根据历史资料分析,某地连续两次强地震时间间隔的年数 X 为随机变量,其分布函数为

$$F(x) = \begin{cases} 1 - e^{-0.05x} & x \ge 0 \\ 0 & x < 0 \end{cases}$$

现在该地区刚发生一次强地震, 试求:

(1) X 的概率密度; (2) 今后 10 年内再次发生强地震的概率;

1.
$$\mathbf{M}$$
: (1) $: F(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{y} f(x,y) dx dy$

$$F(x,y) = \int_0^x \int_0^y 4xy dx dy = x^2 y^2$$

$$F(x,y) = \begin{cases} x^2 y^2 & 0 < x < 1, 0 < y < 1 \\ x^2 & 0 < x < 1, 1 \le y \\ y^2 & 1 \le x, 0 < y < 1 \\ 1 & x \ge 1, y \ge 1 \\ 0 & \sharp \& \end{cases}$$

(2) :
$$f(x,y) = \begin{cases} 4xy & 0 < x < 1, 0 < y < 1 \\ 0 & 其他 \end{cases}$$

$$P\{X^{2} + Y^{2} \le 1\} = \iint_{x^{2} + y^{2} \le 1} f(x, y) dx dy = 2 \int_{0}^{\pi/2} \sin 2\theta d\theta \int_{0}^{1} \rho^{3} d\rho = \frac{1}{2}$$

2.
$$\mathbf{H}$$
: $: F'(x) = f(x)$

$$\therefore \quad \exists x \ge 0, F'(x) = (1 - e^{-0.05x})' = 0.05e^{-0.05x}$$

当
$$x < 0$$
时, $F'(x) = 0$ 。

$$f(x) = \begin{cases} 0.05e^{-0.05x} & x \ge 0 \\ 0 & x < 0 \end{cases}$$

(3) 依题意,即求 $P{X < 10}$

$$P\{X < 10\} = F(10) = 1 - e^{-0.05 \times 10} = 1 - e^{-0.5}$$
.

五 (每小题 10 分, 共 20 分)

1. 设总体 X 的分布函数为:

$$F(x) = \begin{cases} 1 - \left(\frac{1}{x}\right)^{\theta} & x > 1 \\ 0 & x \le 1 \end{cases}$$

其中 $\theta(\theta>1)$ 未知参数, X_1,X_2,\cdots,X_n 是X的样本。试求 θ 的矩估计量和最大似然估计

2. 设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \cdots, X_n 是 X 的样本, $a\sum_{i=1}^{n-1} (X_{i+1} - X_i)^2$ 为 σ^2 的无偏

估计。试求数*a*。 解:1.

$$f_X(x) = F'(x) = \begin{cases} \theta x^{-(1+\theta)} & x > 1 \\ 0 & x \le 1 \end{cases}$$

$$\therefore E(X) = \int_{0}^{+\infty} \theta x^{-\theta} dx = \frac{\theta}{\theta - 1} \quad \diamondsuit \ \overline{X} = E(X), \quad \theta \text{ 的矩估计量为:} \quad \hat{\theta} = \frac{\overline{X}}{\overline{X} - 1} \quad .$$

又言当 $x_i > 1, (i = 1, 2, \dots, n)$ 时, θ 的似然函数为:

$$L(\theta) = \prod_{i=1}^{n} \theta x_i^{-(1+\theta)} \quad \therefore \ln L(\theta) = n \ln \theta - (1+\theta) \sum_{i=1}^{n} \ln x_i$$

$$\Leftrightarrow \frac{d(\ln L(\theta))}{d\theta} = 0, \quad \text{θ:} \quad \frac{n}{\theta} - \sum_{i=1}^{n} \ln(x_i) = 0.$$

$$\hat{\theta}$$
的最大似然估计量为: $\hat{\theta} = n / \sum_{i=1}^{n} \ln(X_i)$

2. **
$$E\left[\sum_{i=1}^{n-1} (X_{i+1} - X_{i})^{2}\right] = E\left[\sum_{i=1}^{n-1} (X_{i+1}^{2} - 2X_{i+1}X_{i} + X_{i}^{2})\right]$$

$$= \sum_{i=1}^{n-1} \left[\left(E(X_{i+1}^{2})\right) - 2E(X_{i+1}X_{i}) + E(X_{i}^{2})\right] = \sum_{i=1}^{n-1} \left[2E(X^{2}) - 2E(X)E(X)\right]$$

$$= 2(n-1)\left[\left(\sigma^{2} + \mu^{2} - \mu^{2}\right)\right] = 2(n-1)\sigma^{2}$$

$$\therefore a = \frac{1}{2}(n-1)^{\circ}$$

六 (8 分) 设随机变量X 的概率密度为:

$$f_X(x) = \frac{2}{\pi(1+x^2)}, \quad x > 0$$

试证明: 随机变量 $Y = \frac{1}{X}$ 与X服从同一分布。

证明: 依题意, 易知 $Y = \frac{1}{X} > 0$, 故当y < 0时, $f_Y(y) = 0$.

当
$$y > 0$$
 时, $F_Y(y) = P\{Y \le y\} = P\{\frac{1}{X} \le y\} = P\{X \ge \frac{1}{y}\}$

$$=1-P\{X<\frac{1}{y}\}=1-F_X(\frac{1}{y})$$

$$\therefore f_Y(y) = F_Y'(y) = -f_X(\frac{1}{y}) \cdot (-\frac{1}{y^2}) = -\frac{2}{\pi} \cdot \frac{1}{1 + (\frac{1}{y})^2} \cdot (-\frac{1}{y^2}) = \frac{2}{\pi} \cdot \frac{1}{1 + y^2}$$

$$\therefore Y = \frac{1}{X} = X \text{ 服从同一分布}.$$

试卷编号: D

桂林电子科技大学试卷评分标准与参考答案

课号 学年第 学期

课程名称 概率论与数理统计 适用班级(或年级、专业)

- 填空题(每小题4分,共12分)
- 1. 设二维随机变量(X,Y)的联合概率密度与边缘概率密度分别为:

 $f(x,y), f_X(x), f_Y(y)$ 。则 X 与 Y 相互独立的充要条件是:

对 $\forall x, y \in R$, $f(x,y) = f_x(x)f_y(y)$;

2. 设总体X服从二项分布,即 $X\sim b(1,p)$, X_1,X_2,\cdots,X_n 是X的样本, \overline{X} 为样本均值。

则
$$E(\overline{X})=\underline{p}$$
, $D(\overline{X})=\frac{p(1-p)/p}{p}$;

3. 设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \dots, X_n 是 X 的样本,且 σ^2 已知。

 H_0 : $\mu=\mu_0$ (已知), H_1 : $\mu\neq\mu_0$ 。则用于检验假设 H_0 的统计量为: $\underline{U}=\overline{X-\mu_0}$ 。

- 二 选择题 (每小题 4 分, 共 12 分)
- 1. 一个小组有 6 个学生,则这 6 个学生的生日都不相同的概率为(设一年为 365 天): (D)。

(A)
$$\frac{1}{C_{365}^6}$$
; (B) $\frac{1}{P_{365}^6}$; (C) $\frac{C_{365}^6}{(365)^6}$; (D) $\frac{P_{365}^6}{(365)^6}$.

2. 设 ξ , η 是相互独立的随机变量,其分布函数分别为: $F_{\xi}(x)$, $F_{\eta}(y)$,则 $Z = \min(\xi,\eta)$ 的分 布函数为(B)

(A)
$$F_Z(z) = F_{\xi}(z)$$
;

(B)
$$F_Z(z) = 1 - [1 - F_{\varepsilon}(z)][1 - F_n(z)]$$
;

(C)
$$F_Z(z) = \min\{F_{\xi}(z), F_n(z)\};$$
 (D) $F_Z(z) = F_n(z).$

(D)
$$F_{z}(z) = F_{n}(z)$$
.

3. 设 X_1, X_2, X_3 是总体X的样本, $\mu = E(X)$ 存在,且

$$\varphi(X_1, X_2, X_3) = aX_1 + b(3X_3 - 2X_2)$$
是 μ 的无偏估计。则(C)。

(A) a = 1, b 可以是任意实数; (B) a = b; (C) a + b = 1; (D) a + b = 2。

三(12分)

解: (1) X,Y 的边缘分布律为:

Y	1	2	3	p.,
2	0.10	0.20	0.10	0.40
4	0.15	0.30	0.15	0.60
p _i .	0.25	0.50	0.25	

(2) 条件分布律:

$$P{X = i | Y = j} = \frac{P{X = i, Y = j}}{P{Y = j}}$$
 $i = 1,2,3; j = 2,4$

$$P{Y = j | X = i} = \frac{P{X = i, Y = j}}{P{X = i}}$$
 $i = 1, 2, 3; j = 2, 4$

按上述公式计算,列成下表:

X	1	2	3	
$P\{X=i Y=2\}$	0.25	0.50	0.25	
$P\{X=i Y=4\}$	0.25	0.50	0.25	
Y	2		4	
$P\{Y=j X=1\}$	0.4	0	0.60	
$P\{Y=j X=2\}$	0.4	0	0.60	
$P\{Y = j X = 3\}$	0.4	0	0.60	

(4) 从联合分布律与边缘分布律来看:对任何的i,j经计算都有

$$P{X = i, Y = j} = P{X = i}P{Y = j}$$
成立,所以 X, Y 相互独立。

四(12分)

解: (1)
$$: \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1$$
,
$$\mathbb{Z} : \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = k \int_{0}^{1} \int_{0}^{\infty} (1 - x) y dx dy = \frac{k}{24}$$

$$\therefore k = 24.$$

(2) :
$$P\{Y \le \frac{1}{2}X\} = \iint_{y \le \frac{x}{2}} f(x, y) dx dy = 24 \int_{0}^{x} (1-x) dx \int_{0}^{x/2} y dy = \frac{1}{4}$$
.

(3):
$$f_X(x) = \begin{cases} 24 \int_{-\infty}^{+\infty} f(x, y) dy = 24 \int_{0}^{x} (1 - x) y dy = 12(1 - x)x^2 & 0 < x < 1 \\ 0 & 其他 \end{cases}$$

$$f_{Y}(y) = \begin{cases} 24 \int_{-\infty}^{+\infty} f(x,y) dy = 24 \int_{y}^{1} (1-x) y dx = 12y (1-y)^{2} & 0 < y < 1 \\ 0 & \text{ 其他} \end{cases}$$

$$\therefore f\left(\frac{1}{2}, \frac{1}{2}\right) = 6 \neq f_X\left(\frac{1}{2}\right) \cdot f_Y\left(\frac{1}{2}\right) = \frac{9}{4}, \quad \therefore X \ni Y 不相互独立.$$

五(共10分)

1. 设随机变量 X 与 Y 相互独立,且服从同一分布。试证明:

$$P\{a < \min(X, Y) \le b\} = [P\{X > a\}]^2 - [P\{X > b\}]^2$$
.

- 2. 设X与Y独立同分布,且 $P(X = k) = \frac{1}{3}$, k=1,2,3 试求: (1)(X,Y)的联合分布律; (2)D(Y)。
- 1. $M: (1) \Leftrightarrow Z = \min(X, Y)$ $\text{Max}[F_z(z) = 1 [1 F_x(z)]^2]$

故
$$P\{a < Z \le b\} = F_Z(b) - F_Z(a) = 1 - [1 - F_X(b)]^2 - 1 + [1 - F_X(a)]^2$$

= $[1 - P\{X \le a\}]^2 - [1 - P\{X \le b\}]^2 = [P\{X > a\}]^2 - [P\{X > b\}]^2$

2.
$$M: (1)$$
 $P\{X=i,Y=j\} = P(X=i)P(T=j) = \frac{1}{9}$ $(i,j=1,2,3)$

(2)
$$E(Y) = 1 \times \frac{1}{3} + 2 \times \frac{1}{3} + 3 \times \frac{1}{3} = 2$$

 $E(Y^2) = 1 \times \frac{1}{3} + 4 \times \frac{1}{3} + 9 \times \frac{1}{3} = \frac{14}{3}$
 $\therefore D(Y) = E(Y^2) - [E(Y)]^2 = \frac{14}{3} - 4 = \frac{2}{3}$

$$\therefore D(Y) = E(Y^2) - [E(Y)]^2 = \frac{14}{3} - 4 = \frac{2}{3}.$$

六 (每小题 12 分, 共 24 分)

解:
$$1$$
.: $\exists i \neq j$, $i, j = 1, 2, \dots, n$ 时, $X_i - X_j \sim N(0, 2\sigma^2)$

$$\therefore E(|X_i - X_j|) = \int_{-\infty}^{+\infty} |x| f(x) dx = \int_{-\infty}^{+\infty} |x| \frac{1}{\sqrt{2\pi} \cdot \sqrt{2\sigma^2}} \exp(-x^2/4\sigma^2) dx = \frac{2\sigma}{\sqrt{\pi}}$$

当
$$i = j$$
, $i, j = 1, 2, \dots, n$ 时, $E(X_i - X_j) = 0$

$$\therefore E(\hat{\sigma}) = E\left(a\sum_{i=1}^{n}\sum_{j=1}^{n}\left|X_{i}-X_{j}\right|\right) = a\sum_{i=1}^{n}\sum_{j=1}^{n}E\left|X_{i}-X_{j}\right| = a \cdot n \cdot (n-1)\frac{2\sigma}{\sqrt{\pi}}$$

$$\therefore$$
 当 $a = \frac{\sqrt{\pi}}{2n \cdot (n-1)}$ 时, $\hat{\sigma}$ 为 σ 的无偏估计。

2. (1) μ 的置信度为 0.95 的双侧置信区间为:

$$\left(\overline{X} - \frac{S}{\sqrt{n}} \cdot t_{\alpha/2}(n-1), \overline{X} + \frac{S}{\sqrt{n}} \cdot t_{\alpha/2}(n-1)\right)$$

(2) 检验假设的统计量为:
$$t = \frac{\overline{X} - 50}{s / \sqrt{n}} \sim t(n-1)$$

对给定的置信水平 α ,又拒绝域为: $C_{\alpha} = \left\langle \left| \left| t \right| > t_{\alpha/2} (n-1) \right\rangle$

查表可得: $t_{0.025}(8) = 2.306$

$$|X:|t| = \left|\frac{\overline{x} - 50}{\frac{S}{\sqrt{n}}}\right| = 0.56 < t_{0.025}(8) = 2.306$$

:应接受 H_0 ,可以认为 H_0 是合理的。

七(10分)

解: (1) 由
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) dx dy = 1$$
得: $c \iint_{x^2+y^2 < R^2} (R - \sqrt{x^2 + y^2}) dx dy = 1$

令
$$x = r\cos\theta, y = r\sin\theta, r \in [0, R], \theta \in [0, 2\pi]$$
 故上式为:

$$c\int_{0}^{2\pi} d\theta \int_{0}^{R} (R-r) r dr = c\frac{1}{3}\pi R^{3} = 1$$
 所以 $c = \frac{3}{\pi R^{3}}$

(2) (X,Y)落在圆域 $x^2 + y^2 < r(r < R)$ 内的概率为:

$$P(X^{2} + Y^{2} < r^{2}) = \iint_{x^{2} + y^{2} < r^{2}} f(x, y) dxdy = \iint_{x^{2} + y^{2} < r^{2}} \frac{3}{\pi R^{3}} (R - \sqrt{x^{2} + y^{2}}) dxdy$$

当 $x = t\cos\theta, y = t\sin\theta, t \in [0,r], \theta \in [0,2\pi]$ 时,有

$$P(X^2 + Y^2 < r^2) = \frac{3}{\pi R^3} \int_0^{2\pi} d\theta \int_0^{2\pi} (R - t) t dt = \frac{3Rr^2 - 2r^3}{R^3}$$
.

桂林电子科技大学试卷评分标准与参考答案

学年第 学期

课号

课程名称 概率论与数理统计

适用班级(或年级、专业)

- 一、填空颢(每小题 4 分,共 12 分)
- 3、 设X,Y是相互独立的随机变量,且均服从正态分布N(6,4),则 $E[(Y-1)(X^2-1)]$ =195.
- 4、设总体 $X \sim U(0,\theta)$, X_1, X_2, \dots, X_5 是X的样本。则 $P\{\max(X_1, X_2, \dots, X_5) > \theta/2\} = 31/32$.
- 5、设总体 $X\sim N(\mu,\sigma^2)$, X_1,X_2,\cdots,X_n 是X的样本, \overline{X} 为样本均值。则 \overline{X} 的概 率密度为: $f_{\overline{X}}(x) = \frac{\sqrt{n}}{\sqrt{2\pi}} e^{-\frac{n(x-\mu)^2}{2\sigma^2}}, -\infty < x < +\infty$ 。
- 二、选择题(每小题 4 分, 共 12 分)
- 6、设 A, B 为任意的两个随机事件,且 $A \subset B, P(A) > 0$,则下列选项不正确的是 (A) .

 - (A), $P(\overline{A}) < P(\overline{B})$; (B), P(A+B) = P(B);

 - (C), P(AB) = P(A); (D), $P(A) \le P(A \mid B)$.
- 7、若 $X \sim b(n,p)$,则 $E(X^2) = (D)$ 。
 - (A) $(1-np)^2$;
- (B) np(1-p-np);
- (C) $(1+np)^2$; (D) np(1-p+np).
- 3、 设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \cdots, X_n 是X的样本,且 σ^2 已知。 $H_0: \mu = \mu_0$
- (已知), $H_1: \mu \leq \mu_0$ 。则适合于检验假设的统计量为: (B)。
- (A), $\frac{\overline{X} \mu}{g / \sqrt{n}}$; (B), $\frac{\overline{X} \mu_0}{g / \sqrt{n}}$; (C), $\frac{\overline{X} \mu_0}{g / \sqrt{n}}$; (D), $\frac{\overline{X} \mu}{g / \sqrt{n}}$.

- 三 (每小题 10 分, 共 20 分)
- 1、解: (1) 依题意, $f_X(x) = \frac{1}{2\sqrt{2\pi}} e^{-\frac{(x-10)^2}{8}}, -\infty < x < +\infty$

$$F_Y(y) = P\{Y \le y\} = P\{5X - 2 \le y\} = P\{X \le \frac{2+y}{5}\} = F_X(\frac{2+y}{5}) + \cdots 2$$

$$f_Y(y) = F_Y'(y) = f_X(\frac{2+y}{5}) \cdot \frac{1}{5} = \frac{1}{5} \cdot \frac{1}{2\sqrt{2\pi}} e^{-\frac{(y-48)^2}{200}}, -\infty < y < +\infty$$
 ...2 \(\frac{1}{27}\)

(2) 由第一问知, $Y \sim N(48,10^2)$, 所以

$$P\{Y < 48\} = P\{\frac{Y - 48}{10} < \frac{48 - 48}{20}\} = \Phi(0) = 0.5$$
 ···4 分

2、解: (1) 当x = 0时,Y = -1; 当x = 1时,Y = 0; 当x = 2时,Y = 3,所以 $P\{Y = -1\} = P\{X = 0\} = \frac{1}{3}; \quad P\{Y = 0\} = P\{X = 1\} = \frac{1}{3};$ $P\{Y = 3\} = P\{X = 2\} = \frac{1}{3}.$ ····4 分

故 $Y = X^2 - 1$ 的分布律为:

Y	-1	0	3
P	1	1	1
	3	3	3

…1分

(2) 由Y的分布律知:

$$E(Y) = -1 \times \frac{1}{3} + 0 \times \frac{1}{3} + 3 \times \frac{1}{3} = \frac{2}{3} \qquad \cdots 1 \text{ }$$

$$E(Y^2) = (-1)^2 \times \frac{1}{3} + 0^2 \times \frac{1}{3} + 3^2 \times \frac{1}{3} = \frac{10}{3} \qquad \cdots 1$$

于是
$$D(Y) = E(Y^2) - [E(Y)]^2 = \frac{10}{3} - \frac{4}{9} = \frac{26}{9}$$
 ...3 分

四 (每小题 12分,共 24分)

1、解:(1) 设 A_1 为叫到的是 A 校, A_2 为叫到的是 B 校, A_3 为叫到的是 C 校, N 为 叫到的是女生。则

$$P(N) = P(N \mid A_1) \cdot P(A_1) + P(N \mid A_2) \cdot P(A_2) + P(N \mid A_3) \cdot P(A_3)$$

$$= \frac{3}{10} \times \frac{1}{3} + \frac{5}{15} \times \frac{1}{3} + \frac{7}{25} \times \frac{1}{3} = \frac{137}{450} \qquad \cdots 6 \,$$

(2)
$$P(A_1 \mid N) = \frac{P(N \mid A_1) \cdot P(A_1)}{P(N)} = \frac{\frac{3}{10} \times \frac{1}{3}}{\frac{137}{450}} = \frac{45}{137}$$
 ...6 $\frac{1}{137}$

2、解: (1) 依题意知,
$$\frac{1}{3} + \frac{1}{6} + \beta + \frac{1}{3} = 1 \Rightarrow \beta = \frac{1}{6}$$
2 分

(2)
$$\therefore P\{X=0\} = \frac{1}{3} + \frac{1}{6} = \frac{1}{2}, P\{X=1\} = \frac{1}{6} + \frac{1}{3} = \frac{1}{2}$$

(3)
$$E(XY) = \sum_{i=1}^{2} \sum_{j=1}^{2} x_i y_j \cdot P_{ij}$$
 ...5 \Rightarrow

$$= 0 \times (-1) \times \frac{1}{3} + 0 \times 1 \times \frac{1}{6} + 1 \times (-1) \times \frac{1}{6} + 1 \times 1 \times \frac{1}{3} = \frac{1}{2} .$$

五 (每小题 10分,共20分)

解: 1. : 1 的似然函数为:

$$L(\lambda) = \prod_{i=1}^{n} \frac{\lambda^{x_i}}{x_i!} e^{-\lambda} , \qquad \therefore \ln L(\lambda) = -n\lambda + \ln \lambda \cdot \sum_{i=1}^{n} x_i - \sum_{i=1}^{n} \ln(x_i!) , \qquad \cdots 4 \ \text{f}$$

$$\therefore P(X=0)$$
的最大似然估计量为: $\hat{P}(X=0)=e^{-\bar{X}}$ ····4 分

2.
$$\therefore 2X_2 - X_1 \sim N(0,20)$$
, $4X_4 - 3X_3 \sim N(0,100)$2 \Rightarrow

∴
$$(2X_2 - X_1)/2\sqrt{5} \sim N(0,1)$$
, $(4X_4 - 3X_3)/10 \sim N(0,1)$2 $\%$

当
$$a = \frac{1}{100}, b = \frac{1}{20}$$
 时, Y 服从 $\chi^2(2)$ 分布。 ··· 6 分 六 (共 12 分)

解:

(1) 由因
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1$$
 ····2 分

$$c \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-(x+y)} dx dy = c = 1 \Rightarrow c = 1 \qquad \cdots 2 \$$

(2) 由 (1) 可知,
$$f(x,y) = \begin{cases} e^{-(x+y)} & x > 0, y > 0 \\ 0 & 其它 \end{cases}$$
 …1 分

于是,当 $x \le 0$ 时, $f_x(x) = 0$

当
$$x < 0$$
时, $f_X(x) = \int_{-\infty}^{+\infty} e^{-(x+y)} dy = e^{-x}$

$$\therefore f_X(x) = \begin{cases} e^{-x} & x > 0 \\ 0 & x \le 0 \end{cases} \dots 1 \, \mathcal{J}$$

同理
$$f_Y(y) = \begin{cases} e^{-y} & y > 0 \\ 0 & y \le 0 \end{cases}$$
 …1分

(3) :
$$F_Z(z) = P\{Z \le z\} = P\{X - Y \le z\} = \iint_{x - y \le z} f(x, y) dy dx$$

∴
$$\exists z \ge 0$$
 时, $F_z(z) = 1 - \int_z^{+\infty} dx \int_0^{x-z} e^{-(x+y)} dy = 1 - \frac{1}{2} e^{-z}$

当
$$z < 0$$
 时, $F_z(z) = \int_{-z}^{+\infty} dy \int_{-z}^{y+z} e^{-(x+y)} dx = \frac{1}{2} e^z$

$$F_{z}(z) = \begin{cases} 1 - \frac{1}{2}e^{-z} & z \ge 0 \\ \frac{1}{2}e^{z} & z < 0 \end{cases} \qquad \cdots 2$$

故:
$$f_Z(z) = F_Z'(z) = \begin{cases} \frac{1}{2}e^{-z} & z \ge 0 \\ \frac{1}{2}e^z & z < 0 \end{cases}$$
 …1分

桂林电子科技大学试卷评分标准与参考答案

学年第 学期 适用班级(或年级、专业) 课程名称 概率论与数理统计 ____

- 一、 填空题 (每小题 4 分,共 12 分)
- 1. 设 $X \sim b(2,p)$, $Y \sim b(3,p)$, 若 $P(X \ge 1) = 5/9$, 则 $P(Y = 1) = \frac{4}{0}$;
- 2. 设 X,Y 是相互独立的随机变量,且均服从正态分布 $N(\mu,\sigma^2)$,则 X,Y 的相关系数 ho_{XY} = 0;
- 3. 设 X_1, X_2, \dots, X_n 是总体X的样本, $\mu = E(X), \sigma^2 = D(X)$ 存在, S^2 为X的样本方差。 则 $E(S^2) = \underline{\sigma^2}$ 。
- 二、选择题(每小题4分,共12分)
 - 1. X 服从区间[0, 1]上的均匀分布,对 0 < a < 1 < b,则 P(a < X < b)=(C);
 - (B) b-a; (A) a:
- (C) 1-a: (D) b-1.
- 2. 下列正确的是(D);
 - (A) $P(A \cup B) = P(A) + P(B)$; (B) P(AB) = P(A)P(B);

(C)
$$P(B \mid A) = \frac{P(A)}{P(B)}$$
 $(P(B) \neq 0)$; (D) $P(B \mid A) = \frac{P(AB)}{P(A)}$, $P(A) > 0$.

- 3. 设 X_1, X_2, \cdots, X_n 是总体X的样本, $\mu = E(X), \sigma^2 = D(X)$ 存在, \overline{X} 是X的样本均 值。则下列正确的是(B)。
- (A) X_i $(i = 1,2, \dots n)$ 不是 μ 的无偏估计; (B) \overline{X} 作为 μ 的无偏估计比 X_i 更有效;
- (C) X_i 作为 μ 的无偏估计比 \overline{X} 更有效; (D) \overline{X} 不是 μ 的无偏估计。
- (每小题 10 分, 共 20 分)
- Y服从参数为 10 的指数分布, 1. 解: ::
 - :. Y 的概率密度为:

$$f(x) = \begin{cases} \frac{1}{10}e^{-\frac{x}{10}} & x > 0\\ 0 & \text{其它} \end{cases}$$
 ...2 \(\text{\text{\text{\$\text{\$d\$}}}}

故对 $\forall x, y \in R \ f(x, y) \neq f_X(x) \cdot f_Y(y)$, 于是 X, Y 不相互独立。 …1 分

四、 (每小题 10 分, 共 20 分)

解: 1.(X,Y)的联合分布律为:

Y	1	2	3
1	1/9	0	0
2	2/9	1/9	0
3	2/9	2/9	1/9

…4分

 $\therefore Y$ 的分布律为:

Y	1	2	3
P_n	5/9	3/9	1/9

:.
$$E(Y) = \frac{14}{9}$$
, $E(Y^2) = 26/9$, :. $D(Y) = 38/81$.

2. 解: (1)
$$\mu$$
 的置信度为 $1-\alpha$ 的双侧置信区间为: $\left(\overline{X}\pm\frac{S}{\sqrt{n}}t_{\alpha/2}(n-1)\right)$ 。 …5 分

(2)
$$\mu$$
 的置信度为 0.95 的右侧置信区间为: $\left(\overline{X} \pm \frac{S}{\sqrt{n}} t_{\alpha/2} (n-1)\right) = (4.31,5.69)$ 。 …5 分

五、(每小题8分,共16分)

1. 解: (1) : Y可取到的值有: 1, 2, 10, 且

$$P{Y = 1} = P{X = 0} = 0.2$$
;

$$P{Y = 2} = P{X = -1} + P{X = 1} = 0.1 + 0.5 = 0.6$$
;

$$P{Y = 10} = P{X = 3} = 0.2;$$

…2分

故 Y 的分布律为:

Y	1	2	10
P	0.2	0.6	0.2

…2分

$$E(X^{2}) = (-1)^{2} \times 0.1 + 0^{2} \times 0.2 + 1^{2} \times 0.5 + 3^{2} \times 0.2 = 2.4 \qquad \cdots 1 \ \text{$\frac{1}{2}$}$$

$$D(X) = E(X^{2}) - [E(X)]^{2} = 2.4 - 1^{2} = 1.4$$
 ...2 \(\frac{1}{2}\)

2. 解:证明:
$$\overline{B} = \overline{B}(A \cup \overline{A}) = \overline{B}A + \overline{B}\overline{A}$$
 …2分 …2分
 $P(\overline{B}) = P(\overline{B}A) + P(\overline{B}\overline{A}) = P(\overline{B})P(A) + P(\overline{B}\overline{A})$ …2分
 故 $P(\overline{B}\overline{A}) = P(\overline{B})(1 - P(A)) = P(\overline{B})P(\overline{A})$ …4分

六. (每小题 10 分, 共 20 分)

1.
$$M$$
: (1). $\overline{X} \sim N(0, \sigma^2/n)$...5 \mathcal{L}

2.
$$\text{M}: : E(X) = \frac{b+a}{2}, \quad E(X^2) = D(X) + [E(X)]^2 = \frac{b^2 + ab + a^2}{3} \qquad \cdots 2$$

$$\Leftrightarrow A_i = E(X^i), i = 1,2$$
. $\sharp + A_i = \frac{1}{n} \sum_{l=1}^n X_l^i$

:关于a,b的似然函数为:

$$L(a,b) = \prod_{i=1}^{n} f_X(x_i) = \begin{cases} \frac{1}{(b-a)^n} & a \le x_i \le b \\ 0 & 其他 \end{cases}$$
 ···2 分

:. 最大似然估计量为:

试卷编号: H

桂林电子科技大学试卷评分标准与参考答案

学年第 学期 课号

课程名称 概率论与数理统计 适用班级(或年级、专业)

- 一、填空题(每小题4分,共12分)
 - 1、已知 P(A) = 0.3, P(B) = 0.4, P(B|A) = 0.7,则 $P(\overline{A}|B) = \frac{19}{40}$;
 - 2、 高炮发射一发炮弹而击中敌机的概率是 0.5。当每门高炮只射一发时,至少需要 7 门高炮同时发射才能以99%的把握击中来犯的一架敌机;
 - 3、 设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \dots, X_n 是 X 的样本, \overline{X} 为样本均值, 则

$$E(|\overline{X}-\mu|) = \sqrt{2\sigma^2/n\pi}$$
.

- 二、选择题(每小题4分,共12分)
 - 1、对任意事件A, B, 下列选项正确的是(B)。
 - (A) $P(A \cup B) = P(A) + P(B)$; (B) $P(A) = P(AB) + P(A\overline{B})$;

(C) P(AB) < P(A):

- (D) P(A-B) = P(A) P(B).
- 2、在 11 张卡片上分别写上 probability 这 11 个字母,从中任意连抽 7 张,其排列结果为 ability 的概率是(A)。

(A)
$$\frac{4}{P_{11}^{7}}$$
; (B) 7/11; (C) $\frac{2}{C_{11}^{7}}$; (D) $\frac{2}{P_{11}^{7}}$;

- 3、设随机变量 X 的均值 E(X) 与方差 D(X) 存在,则对任意给定的 $\varepsilon > 0$,则切比雪夫不 等式为: (C)。

 - (A) $P\{X E(X) < \varepsilon\} \le \frac{D(X)}{\varepsilon^2}$; (B) $P\{X D(X) < \varepsilon\} \le \frac{E(X)}{\varepsilon^2}$;
 - (C) $P\{X E(X) \ge \varepsilon\} \le \frac{D(X)}{\varepsilon^2}$; (D) $P\{X E(X) < \varepsilon\} \le \frac{1}{\varepsilon^2}$.
- (每小题 11 分, 共 22 分)
 - 1. 解: (1) $U = \max(X, Y)$ 可能的取值为: 1, 2, 3, 且

$$P{U = 1} = P{X = 0, Y = 1} + P{X = 1, Y = 1} = 0.1 + 0.05 = 0.15$$

$$P\{U = 2\} = P\{X = 2, Y = 1\} + P\{X = 2, Y = 2\} + P\{X = 1, Y = 2\} + P\{X = 0, Y = 2\}$$

= 0.10 + 0.05 + 0.05 + 0.25 = 0.45

$$P\{U=3\} = P\{X=0, Y=3\} + P\{X=1, Y=3\} + P\{X=2, Y=3\}$$
$$= 0.15 + 0.1 + 0.15 = 0.40$$
 ····1 $\%$

U 的分布律为:

…1分

V = |X - Y| 可能的取值有: 0, 1, 2, 3。

$$P{V = 0} = P{X = 1, Y = 1} + P{X = 2, Y = 2} = 0.05 + 0.05 = 0.10$$

$$P{V = 1} = P{X = 0, Y = 1} + P{X = 1, Y = 2} + P{X = 2, Y = 3} + P{X = 2, Y = 1}$$

= 0.1 + 0.05 + 0.15 + 0.10 = 0.40

$$P{V = 2} = P{X = 0, Y = 2} + P{X = 1, Y = 3} = 0.25 + 0.1 = 0.35$$

$$P{V = 3} = P{X = 0, Y = 3} = 0.15$$
2 $\%$

:. V的分布律为:

…2分

(2)
$$E(XY) = \sum_{i=0}^{2} \sum_{j=1}^{3} g(x_i, y_i) \cdot P_{ij}$$

$$= \sum_{i=0}^{2} \sum_{j=1}^{3} x_i y_j P_{ij} = 0 \times 1 \times 0.1 + 0 \times 2 \times 0.25 + 0 \times 3 \times 0.15$$

$$+1\times1\times0.05 + 1\times2\times0.05 + 1\times3\times0.1$$

 $+2\times1\times0.1 + 2\times2\times0.05 + 2\times3\times0.15$
= 1.75

…2 分

(3)
$$P{Y=1 \mid X=0} = \frac{P{X=0,Y=1}}{P{X=0}} = \frac{0.1}{0.5} = \frac{10}{50}$$

$$(P\{X=0\}=0.1+0.25+0.15=0.5)$$

$$P{Y = 2 \mid X = 0} = \frac{P{X = 0, Y = 2}}{P{X = 0}} = \frac{0.25}{0.5} = \frac{25}{50}$$

$$P\{Y=3 \mid X=0\} = \frac{P\{X=0,Y=3\}}{P\{X=0\}} = \frac{0.15}{0.5} = \frac{15}{50} \qquad \cdots 2 \ \%$$

 \therefore 在X=0的条件下Y的条件分布律:

…1分

2 设 X 的概率密度为 $f(x) = \frac{A}{x^4}$ $(x \ge 1)$

(1)
$$: \int_{-\infty}^{\infty} f(x) dx = 1, \quad \mathbb{Z} : \int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{\infty} A/x^4 dx = A/3,$$

(2)
$$E(X) = \int_{-\infty}^{\infty} x f(x) dx = \int_{-\infty}^{\infty} 3/x^3 dx = 3/2,$$
 ...2 f

又:
$$E(X^2) = \int_{-\infty}^{\infty} x^2 f(x) dx = \int_{-\infty}^{\infty} 3/x^2 dx = 3 \qquad \cdots 2$$
 分

∴
$$D(x) = E(x^2) - [E(x)]^2 = 3 - 9/4 = 3/4$$
. ...4 $\%$

四、(每小题 10 分, 共 20 分)

1. 证明:
$$:: U = aX + b, V = cY + d$$

∴
$$E\{[U - E(U)][V - E(V)]\}$$

= $E\{[aX + b - E(aX + b)][cY + d - E(cY + d)]\}$
= $abE\{[X - E(X)][Y - E(Y)]\} = acCov(X, Y)$ ····2 $\%$

即 Cov(U,V) = acCov(X,Y)

$$D(U) = D(aX + b) = a^2 D(X), D(V) = D(cY + d) = c^2 D(Y)$$
 ···2 $\%$

$$\therefore \quad \rho_{UV} = \frac{Cov(U,V)}{\sqrt{D(U)D(V)}} = \frac{acCov(X,Y)}{\sqrt{a^2D(X)c^2D(Y)}} = -\frac{Cov(X,Y)}{\sqrt{D(X)} \cdot \sqrt{D(Y)}} = -\rho_{XY} \cdot \cdots 6 \, \text{f}$$

2.
$$: F'(x) = f(x) = b \cdot \frac{1}{1+x^2} - \infty < x < +\infty$$
 ··· 1 \(\frac{1}{2} \)

$$\nabla : \int_{-\infty}^{+\infty} f(x) dx = 1$$

$$\therefore b \cdot \int_{-\infty}^{+\infty} \frac{1}{1+x^2} dx = b \cdot \arctan x \Big|_{-\infty}^{+\infty} = b \cdot \pi = 1 \Rightarrow b = \frac{1}{\pi} \qquad \cdots 2 \ \text{f}$$

五、(每小题 10 分, 共 20 分)

$$P\bigg\{\sum_{i=1}^{10} X_i^2 \geq 4\bigg\} = P\big\{Y^2 \geq 16\big\} \quad \text{查表得:} \quad \chi_{0.1}^2\big(10\big) = 16 \;, \; \therefore P\bigg\{\sum_{i=1}^{10} X_i^2 \geq 4\bigg\} = 0.1 \;. \; \cdots 5 \; \text{分}$$

(2) :
$$Z^2 = \sum_{i=1}^{10} \left(\frac{X_i - \mu}{0.5} \right)^2 \sim \chi^2(10)$$
, ...3 $\%$

$$\therefore P\left\{\sum_{i=1}^{10} (X_i - \mu)^2 \ge 2.85\right\} = P\left(Z^2 > 2.85 / 0.25\right) = P\left(Z^2 > 11.4\right), \quad \cdots 3 \text{ } \text{?}$$

查表得:
$$\chi^2_{0.25}(10) = 11.4$$
, $\therefore P\left\{\sum_{i=1}^{10} \left(X_i - \overline{X}\right)^2 \ge 2.85\right\} = 0.25$ 。 …4 分

2. 解:均值 μ 的置信水平为90%的置信区间为:

$$\left(\bar{X} \pm \frac{S}{\sqrt{n}} t_{\alpha/2}(n-1)\right) = (49.09, 68.13)$$
 ...5 \(\frac{1}{2}\)

方差 σ^2 的置信水平为90%的置信区间为:

$$\left(\frac{(n-1)S^2}{\chi_{\alpha/2}^2(n-1)}, \frac{(n-1)S^2}{\chi_{1-\alpha/2}^2(n-1)}\right) = (23.76, 52.6)
\dots 5 \implies \dots 6 \implies \dots$$

六、(每小题8分,共16分)

1.
$$M: (1) :: F'(x) = f(x)$$

$$\therefore \quad \exists \ x \ge 0, F'(x) = (1 - e^{-0.05x})' = 0.05e^{-0.05x}$$

当
$$x < 0$$
 时, $F'(x) = 0$ 。

…2分

$$f(x) = \begin{cases} 0.05e^{-0.05x} & x \ge 0 \\ 0 & x < 0 \end{cases} \qquad \dots 2 \,$$

(2) 依题意,即求 $P{X < 10}$

∴
$$P{X < 10} = F(10) = 1 - e^{-0.05 \times 10} = 1 - e^{-0.5}$$
 ···4 分

2. 证明: 依题意,易知
$$Y = \frac{1}{X} > 0$$
,故当 $y < 0$ 时, $f_Y(y) = 0$ 。 …1分

当
$$y > 0$$
 时, $F_Y(y) = P\{Y \le y\} = P\{\frac{1}{X} \le y\} = P\{X \ge \frac{1}{y}\}$

$$=1-P\{X<\frac{1}{y}\}=1-F_X(\frac{1}{y})$$
 ···4 \(\frac{1}{y}\)

$$\therefore f_{Y}(y) = F'_{Y}(y) = -f_{X}(\frac{1}{y}) \cdot (-\frac{1}{y^{2}}) = -\frac{2}{\pi} \cdot \frac{1}{1 + (\frac{1}{y})^{2}} \cdot (-\frac{1}{y^{2}}) = \frac{2}{\pi} \cdot \frac{1}{1 + y^{2}}$$

$$\therefore Y = \frac{1}{X} = 5X \text{ 服从同一分布}. \qquad \cdots 3 \text{ 分}$$

t,

试卷编号: |

桂林电子科技大学试卷评分标准与参考答案

______学年第___学期 课号_____ 课程名称 概率论与数理统计____ 适用班级(或年级、专业)

- 一、填空题 (每小题 4 分, 共 12 分)
- 1. 若 A 和 B 互不相容,且 P(A) = p, 0 P(B|A) = 0;
- 2. 设 ξ , η 是相互独立的随机变量,其分布函数分别为 $F_{\xi}(x)$, $F_{\eta}(y)$,则 $Z = \max(\xi,\eta)$ 的分布函数为: $F_{z}(z) = F_{\xi}(z)F_{\eta}(z)$, $z \in R$;
- 3. 已知 $\chi^2 \sim \chi^2(n)$ 。则 $E(\chi^2) = \underline{n}$, $D(\chi^2) = \underline{2n}$ 。
- 二、 选择题 (每小题 4 分, 共 12 分)
- 1. 设随机变量 X 的分布率为 $P(X = k) = ae^{-k}, k = 0,1,2,\cdots)$ 则 a=(B);
 - (A) 1 (B) $1-e^{-1}$ (C) $1+e^{-1}$ (D) 0
- 2. 设随机变量 X 服从二项分布 b(n,p),且 EX = 1.2,DX = 0.84,则 P(X = 2) = (A);
 - (A) 0.2646 (B) 0.21 (C) 0.09 (D) 0.49
- 3. 设总体 $X \sim F(x; \sigma^2)$, $\sigma^2 = D(X)$ 为未知参数, X_1, X_2, \dots, X_n 是 X 的样本,

$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2, B_2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$$
 。则下列正确的选项是(C)。

- (A) B_2 是 σ^2 无偏估计; (B) S^2 是 σ^2 有偏估计;
- (C) S^2 是 σ^2 无偏估计; (D) B_2 , S^2 都是 σ^2 无偏估计。

三、(每小题 10 分, 共 20 分)

解: 1. 设该工厂某段时间内生产的该零件共有n个,则来自于甲、乙、丙三车间得数目分别为: 0.45n,0.35n,0.2n。 ····2 分

设次品率为:

$$P = 45\% \times (1 - 96\%) + 35\% \times (1 - 98\%) + 20\% \times (1 - 95\%) = 3.5\%$$
 ...8 \(\frac{1}{2}\)

证明: 2.
$$Y = \frac{X - \mu}{\sigma}$$
 亦服从正态分布,而 $E(X) = \mu$, $D(X) = \sigma^2$ ···4 分

$$\therefore E(Y) = E(\frac{X - \mu}{\sigma}) = \frac{1}{\sigma}E(X) - \frac{\mu}{\sigma} = 0 \qquad \cdots 2 \,$$

$$D(Y) = D(\frac{X - \mu}{\sigma}) = \frac{1}{\sigma^2 D(X)} = 1 \qquad \dots 2 \,$$

$$\therefore$$
 $Y \sim N(0,1)$ 。 ····2 分

四 (每小题 10 分, 共 20 分)

1、解: $Y = X^2$ 的分布律为:

Y	0	1	4
P	1	7	17
	5	30	30

…5分

$$P(-1 < Y < 1.5) = P(Y = 0) + P(Y = 1) = \frac{1}{5} + \frac{7}{30} = \frac{13}{30}$$
 ...5 \(\frac{1}{2}\)

2、解:

(1) 由
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1$$
 ····2 分

$$\therefore \quad a \int_{1}^{2} dx \int_{2}^{x} (x+y)dy = 1 \quad \therefore \quad a = \frac{3}{5} \qquad \cdots 1 \ \text{figure }$$

$$(2) \quad P(Y < \frac{X}{4})$$

$$= \int_{0}^{2} dx \int_{0}^{\frac{x}{4}} \frac{3}{5}(x+y)dy = \frac{3}{5} \int_{0}^{2} \frac{9}{32}x^{2}dx = \frac{9}{20}$$
 ···4 \(\frac{1}{2}\)

(3)
$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \begin{cases} \int_{2}^{x} \frac{3}{5} (x + y) dy = \frac{3}{8} x^2 & 0 \le x \le 2 \\ 0 & \text{#\dot{c}} \end{cases}$$
 ...3 \(\frac{\psi}{2}\)

五、(每小题 10分,共20分)

1. 证明:
$$:: P[(A \cup B)C] = P[(AC) \cup (BC)]$$

$$= P(AC) + P(BC) - P(ABC)$$

$$= P(A)P(C) + P(B)P(C) - P(A)P(B)P(C)$$

$$= P(C)[P(A) + P(B) - P(AB)]$$

$$= P(C)P(A \cup B) \qquad \cdots 8$$

当 $0 \le y \le 4$ 时,

$$F_{Y}(y) = P(Y \le y) = P(X^{2} \le y) = P(-\sqrt{y} \le X \le \sqrt{y}) = \int_{0}^{\sqrt{y}} \frac{1}{2} dx = \frac{\sqrt{y}}{2}, \quad \dots 4 \implies 1$$

:. Y的概率密度为:

$$f_Y(y) = F_Y'(y) = \begin{cases} \frac{1}{4\sqrt{y}} & 0 < y < 4\\ 0 & 其它 \end{cases}$$
 …4分

六、(每小题 10 分, 共 20 分)

1. 解: 令
$$Z_i = X_i - \mu$$
 ,则 $Z_i \sim N(0, \sigma^2)$ …2分

$$\therefore E(Y) = E(|Z_i|) = \int_{-\infty}^{+\infty} |z| f_{Z_i}(z) dz = \sqrt{\frac{2\sigma^2}{\pi}}, \qquad \cdots 4 \, \mathcal{I}$$

$$\therefore D(Y) = \frac{1}{n^2} \sum_{i=1}^n D(|Z_i|) = \frac{1}{n} [E(Z_i^2) - E^2(|Z_i|)] = \frac{(1 - 2/\pi)\sigma^2}{n} \quad \cdots \quad 4 \implies$$

∴
$$P\{|\overline{X}_1 - \overline{X}_2| > 0.3\} = 1 - P\{|\overline{X}_1 - \overline{X}_2| \le 0.3\} = 2[1 - \Phi(0.3 \times \sqrt{2})] = 0.6744$$
5 分