

(12) SOLICITUD INTERNACIONAL PUBLICADA EN VIRTUD DEL TRATADO DE COOPERACIÓN
EN MATERIA DE PATENTES (PCT)

542937

(19) Organización Mundial de la Propiedad
Intelectual
Oficina internacional

(43) Fecha de publicación internacional
12 de Agosto de 2004 (12.08.2004)

PCT

(10) Número de Publicación Internacional
WO 2004/067740 A1

(51) Clasificación Internacional de Patentes⁷: C12N 15/09,
C12Q 1/68

Diego [ES/ES]; Sardenya, 350, 08025 Barcelona (ES).
MARTINEZ MARTINEZ, Antonio [ES/ES]; Sardenya,
350, 08025 Barcelona (ES). MALLEN PEREZ, Miguel
[ES/ES]; Sardenya, 350, 08025 Barcelona (ES).

(21) Número de la solicitud internacional:
PCT/ES2004/070001

(74) Mandatarlo: ELZABURU, Alberto, de; Miguel Angel,
21, 28010 Madrid (ES).

(22) Fecha de presentación internacional:
21 de Enero de 2004 (21.01.2004)

(81) Estados designados (*a menos que se indique otra cosa,
para toda clase de protección nacional admisible*): AE,
AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY,
BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ,
EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID,
IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT,
LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
VC, VN, YU, ZA, ZM, ZW.

(25) Idioma de presentación: español

(26) Idioma de publicación: español

(30) Datos relativos a la prioridad:

P200300206 28 de Enero de 2003 (28.01.2003) ES

P200302671 17 de Noviembre de 2003 (17.11.2003) ES

(71) Solicitante (*para todos los Estados designados salvo
US*): EFARMES, S.A. [ES/ES]; Sardenya, 350, 08025
Barcelona (ES).

(84) Estados designados (*a menos que se indique otra cosa,
para toda clase de protección regional admisible*): ARIPO
(BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG,
ZM, ZW), euroasiática (AM, AZ, BY, KG, KZ, MD, RU,
TJ, TM), europea (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE,
SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

(72) Inventores; e

Publicada:

(75) Inventores/Solicitantes (*para US solamente*): MATA
LOPEZ, Pedro [ES/ES]; Sardenya, 350, 08025
Barcelona (ES). ALONSO KARLEZI, Rodrigo, Al-
berto [ES/ES]; Sardenya, 350, 08025 Barcelona (ES).
MOZAS ALONSO, Pilar [ES/ES]; Sardenya, 350, 08025
Barcelona (ES). REYES LEAL, Gilberto [ES/ES]; Sar-
denya, 350, 08025 Barcelona (ES). POCOVI MIERAS,
Miguel [ES/ES]; Sardenya, 350, 08025 Barcelona (ES).
CASTILLO FERNANDEZ, Sergio [ES/ES]; Sardenya,
350, 08025 Barcelona (ES). TEJEDOR HERNANDEZ,

- *con informe de búsqueda internacional*
- *antes de la expiración del plazo para modificar las reivin-
dicaciones y para ser republicada si se reciben modifica-
ciones*

[Continúa en la página siguiente]

(54) Title: METHOD AND DEVICE FOR THE DETECTION OF MUTATIONS IN ISOLATED GENE SEQUENCES OF THE LOW-DENSITY LIPOPROTEIN RECEPTOR (LDL-R) WHICH IS ASSOCIATED WITH FAMILIAL HYPERCHOLESTEROLEMIA

(54) Título: PROCEDIMIENTO Y DISPOSITIVO DE DETECCIÓN DE MUTACIONES EN SECUENCIAS GÉNICAS AISLA-
DAS DEL RECEPTOR DE LIPOPROTEÍNAS DE BAJA DENSIDAD (LDL-R) ASOCIADO CON LA HIPERCOLESTEROLE-
MIA FAMILIAR

(57) Abstract: The invention relates to extracorporeal methods of analysing the presence or absence of mutations which cause familial hypercholesterolemia. The inventive methods describe the way in which said mutations can be detected using a DNA sample from an individual and comprising the following: chain reaction of the polymerase with primers which are complementary to the low-density lipoprotein receptor gene; analysis of the amplified product by sequencing; restriction analysis; single strand conformation polymorphism techniques; heteroduplex analysis and analysis of a device on top of a biochip glass support on which oligonucleotide probes are disposed, which can be used to detect the aforementioned mutations in the DNA.

(57) Resumen: La invención describe métodos extracorpóreos para analizar la presencia o ausencia de mutaciones causantes de hipercolesterolemia familiar. Los métodos indican la forma de detectar estas mutaciones a partir de una muestra de ADN de un individuo y utilizando la reacción en cadena de la polimerasa con cebadores complementarios al gen del receptor de las lipoproteínas de baja densidad, el análisis del producto amplificado por secuenciación, análisis de restricción, técnicas de los polimorfismos de conformación de cadena sencilla, análisis de heterodíplex y de un dispositivo sobre un soporte de vidrio "biochip" en el que se depositan sondas de oligonucleótidos que permite detectar estas mutaciones en el ADN.

WO 2004/067740 A1

Para códigos de dos letras y otras abreviaturas, véase la sección "Guidance Notes on Codes and Abbreviations" que aparece al principio de cada número regular de la Gaceta del PCT.

- 1 -

**PROCEDIMIENTO Y DISPOSITIVO DE DETECCIÓN DE MUTACIONES EN
SECUENCIAS GÉNICAS AISLADAS DEL RECEPTOR DE LIPOPROTEÍNAS
DE BAJA DENSIDAD (LDL-R) ASOCIADO CON LA
HIPERCOLESTEROLEMIA FAMILIAR.**

5

Ambito de la invención

La invención se adscribe al sector técnico-industrial del diagnóstico in vitro, extracorpóreo, de muestras biológicas, mediante técnicas de ingeniería genética, para determinar la predisposición de un individuo al desarrollo de la enfermedad denominada 10 hipercolesterolemia familiar.

Antecedentes de la invención

La aterosclerosis se define según la Organización Mundial de la Salud (OMS) como una combinación de cambios que se produce en la íntima de las arterias a 15 consecuencia de un acúmulo focal de lípidos y componentes complejos que se acompaña con la formación de tejido fibroso y calcificación que a su vez se asocia con cambios en estructura de la media.

La aterosclerosis puede considerarse como una forma especial de arteriosclerosis con un depósito patogénico de lípidos en la pared arterial. La mayoría de formas de la 20 arteriosclerosis implican la degeneración grasa de la pared vascular, con lo que el término arteriosclerosis y aterosclerosis suele utilizarse de forma indistinta (Assmann G. in "Lipid Metabolism and Atherosclerosis" Schattauer Verlag GMbH, Stuttgart 1982:1).

Los lípidos son sustancias insolubles en disoluciones acuosas. Las lipoproteínas son las partículas que posibilitan el transporte de los lípidos en la sangre. Las 25 lipoproteínas se dividen en varias categorías según su densidad dependiendo de como pueden separarse por ultracentrifugación. (Havel RJ y col. J Clin Invest 1955, 34:1345). Las lipoproteínas de baja densidad (LDL) ($d=1.019-1.063 \text{ g/mL}$) son las que mayoritariamente transportan el colesterol en el torrente circulatorio. Estas lipoproteínas están formadas por el 75% de lípidos (principalmente colesterol libre, colesterol 30 esterificado y fosfolípidos), alrededor el 70 % del colesterol total de la sangre es transportado por las partículas LDL.

- 2 -

El término hipercolesterolemia se utiliza para reflejar la elevación del colesterol del plasma por encima de los niveles considerados normales para una determinada población y es uno de los factores cruciales para el inicio y progresión de la arteriosclerosis. Más de la mitad de todas las muertes que se producen en los países 5 desarrollados están relacionados con la enfermedad cardiovascular arteriosclerosa (Murray CJL y Lopez AD. Lancet 1997; 349:1269-1276).

Las hipercolesterolemia familiar (HF) es una enfermedad de herencia autosómica dominante causada por mutaciones que se producen en el gen del receptor de las LDL (r-LDL), este gen codifica una proteína que permite la captación y degradación 10 intracelular de las LDL (Goldstein JL, y Brown MS Ann Rev Cell Biol 1985; 1:1-39).

La penetrancia de la HF es cercana al 100% lo que significa que la mitad de la descendencia de una persona afectada tendrá su colesterol plasmático muy elevado desde el momento de nacer, afectando por igual a hombres y mujeres (Goldstein JL, Brown MS. The metabolic basis of inherited disease. Editores: Scriver CR, Beaudet AL, Sly WS, 15 Valle D. McGraw Hill New York 6th edition, 1989; 1215-1250).

Los pacientes con HF presentan como síntomas característicos clínicos arco corneal, xantomas tendinosos y enfermedad coronaria prematura (Scientific Steering Committee on behalf of the Simon Broome Register Group. Atherosclerosis 1999; 142: 105-115). La HF es una de las enfermedades monogénicas mas frecuentes con una 20 prevalencia estimada de pacientes heterocigotos de una en cada 500 personas y de heterocigotos de una en cada 1.000.000.

Determinadas poblaciones tales como los canadienses de habla francesa (Leitersdorf E y col. J Clin Invest 1990; 85:1014-1023), cristianos libaneses (Lehrman MA y col. J Biol Chem 1987; 262:401-410), drusos (Landsberger D y col. Am J Hum Genet 1992; 50: 427-433) finlandeses (Koivisto UM y col. J Clin Invest 1992; 90: 219-228), los "afrikaners" de Suráfrica (Kotze MJ y col. Ann Hum Genet 1991; 55: 115-121), los judíos Ashkenazi de descendencia lituana (Meiner V y col. Am J Hum Genet 1991; 49:443-449) presentan la particularidad que solo tienen unas pocas mutaciones responsables de la HF, esto es consecuencia de un efecto fundador y por lo tanto la frecuencia de heterocigotos en estas poblaciones es mas alta que lo estimado para otras poblaciones.

- 3 -

Los pacientes con HF presentan una concentración de colesterol en plasma muy elevada, por regla general superior al percentil 95. La mortalidad de los pacientes con HF, ajustada por edad y sexo, es entre cuatro y cinco veces mas alta que en la población general (Scientific Steering Committee on behalf of the Simon Broome Register Group. 5 Atherosclerosis 1999; 142: 105-115). Los pacientes que heredan dos mutaciones en el locus del gen del r-LDL se denominan HF homocigotos o HF heterocigotos compuestos en cuyo caso prácticamente no hay receptores funcionales lo que condiciona que la concentración de c-LDL se eleve entre seis y ocho veces en relación a la considerada normal. La mayoría de pacientes de esta categoría presentan enfermedad coronaria antes 10 de los 20 años (Goldstein JL y col. N Engl J Med 1983; 309:288-296). Si los pacientes homocigotos o los heterocigotos fueran diagnosticados antes de que presentaran signos de enfermedad coronaria y tratados de forma preventiva su riesgo de infarto de miocardio se vería reducido de forma sustancial

El r-LDL es una glicoproteína ubicua de membrana de 839 aminoácidos que capta 15 e internaliza partículas LDL por un mecanismo denominado de endocitosis (Goldstein J. y Brown M. J Biol Chem 1974; 249:5153-5162) (Figura 1).

El gen del r-LDL se encuentra situado en el brazo corto del cromosoma 19 región p13.1-13.3 (Yamamoto T y col. Cell 1984; 39: 27-38), tiene un tamaño de 45.000 pares de bases (pb). Este gen consta de 18 exones y 17 intrones los cuales codifican los seis 20 dominios funcionales de la proteína: El péptido señal, el dominio de unión del ligando, el dominio homólogo al factor de crecimiento epidérmico (EGF), la zona de glicosilación, el dominio transmembrana y el citoplásmico (Sundhof T y col. Science 1985; 228:893-895) (Figura 2).

La síntesis de r-LDL se encuentra regulada por un sofisticado mecanismo de retroalimentación que controla la transcripción del gen del r-LDL en función de las variaciones de la concentración intracelular de esteroles y la demanda celular de colesterol (Sudhof TC y col. J Biol Chem 1987; 262:10773-10779). Las secuencias del ADN necesarias para la regulación de la transcripción del gen del r-LDL están situadas en una región de 177 pb de la zona promotora (Sudhof TC y col. J Biol Chem 1987; 262: 30 10773-10779). Esta región contiene todos los elementos en cis que permiten la expresión basal así como la regulación por esteroles y contiene tres repeticiones de 16 pb cada una. La repetición 1 y 3 contienen un sitio de unión para el factor de transcripción Sp1 y son

- 4 -

esenciales para que se produzca la expresión basal del gen pero requieren de la contribución de la repetición 2 para la expresión completa (Dawson PA y col. J Biol Chem 1988; 263:3372-3379). La repetición 2 incluye un elemento de regulación por esteroles de 10 pb, SRE-1 (Smith JR y col. J Biol Chem 1990; 265:2306-2310) que 5 posibilita la unión del factor de transcripción denominado SREBP-1 el cual aumenta la transcripción cuando la concentración de esteroles intracelulares disminuye. Hasta la fecha, se han descrito varias mutaciones situadas en los elementos reguladores de la transcripción del receptor LDL (Hobbs HH, y col al. Hum Mutat 1992; 1:445-466; Koivisto UM. Y col Proc Natl Acad Sci USA, 1994; 91:10526-10530), Mozas P, y col J 10 Lipid Res 2002; 43:13-18, <http://www.ucl.ac.uk/fh>; <http://www.umd.necker.fr>).

El exón 1 codifica el péptido señal el cual consiste en una secuencia de 21 amino ácidos que es eliminado de la proteína durante la translocación que tiene lugar en el redículo endoplásmico. Se han descrito varias mutaciones en este exón que incluyen cambios de pauta de lectura, cambios de aminoácido o codones de parada 15 (<http://www.ucl.ac.uk/fh>; <http://www.umd.necker.fr>).

Los exones del 2 al 6 codifican el dominio de unión al ligando, el cual consta de siete repeticiones en tandem de 40 amino ácidos. La estructura de este dominio ha sido resuelta de forma parcial (Jeon H y col. Nature Struc Biol 2001; 8:499-5049). En cada repetición tiene una agrupación de aminoácidos cargados negativamente Asp-X-Ser-Asp- 20 Glu y seis restos de cisteina que forman tres enlaces disulfuro.

El segundo dominio del r-LDL consta de una secuencia de 400 amino ácidos codificada por los exones 7 al 14. Esta secuencia tiene un 33% de homología con el factor precursor del crecimiento de la epidermis (EGFP). Al igual que el dominio de unión al ligando, esta región, contiene tres repeticiones de 40 amino ácidos con 25 secuencias ricas en cisteina. Las dos primeras repeticiones, denominadas A y B, son contiguas y están separadas de la tercera repetición por una región de 280 amino ácidos que contiene cinco copias de la secuencia YWTD (Tyr-Trp-Thr-Asp). El dominio análogo al EGFP es fundamental para la disociación ácida del r-LDL de las partículas recubiertas de clatrina que tiene lugar en el endosoma durante el proceso de reciclado del 30 receptor. De todas las mutaciones descritas hasta la fecha, aproximadamente el 55% están localizadas en la región homóloga EGFP y el 35% están localizadas en las repeticiones YWTD (<http://www.ucl.ac.uk/fh>).

- 5 -

El tercer dominio del r-LDL, codificado por el exón 15, es una región en la que abundan los amino ácidos treonina y serina. La función de este dominio se desconoce, pero se sabe que en esta región están ancladas las cadenas de carbohidratos. Esta zona está muy poco conservada en seis especies analizadas y se cree que desempeña una función 5 estabilizadora del receptor. (Goldstein y col. En The Metabolic and Molecular Basis of Inherited Disease. Editores Scriver CR, Beaudet AL, Sly WS, Valle D. 7th Edition. McGraw Hill, 1995: 1981-2030).

El dominio transmembrana consta de 22 amino ácidos hidrofóbicos codificados por el exón 16 y el extremo 5' del exón 17. Este dominio es esencial para el anclaje del 10 receptor a la membrana celular.

El dominio citoplásmico del r-LDL, está formado por una secuencia de 50 amino ácidos codificada por la región 3' del exón 17 y la 5' del exón 18. Este dominio contiene dos secuencias señal que permiten dirigir a la proteína a la superficie celular y situar al receptor en las partículas revestidas (Yokode M, y col. J Cell Biol 1992; 117: 39-46). 15 Este dominio es uno de los más conservados, con un porcentaje de aminoácidos conservados del 86% entre seis especies analizadas.

Las mutaciones del r-LDL que se han encontrado en pacientes con HF se clasifican en 5 clases: alelos nulos, defectuosos en el transporte, defectuosos en la unión, en la internalización y reciclado. Por regla general cada categoría está asociada con 20 mutaciones localizadas en una región del gen que codifican un dominio particular de la proteína. (Hobbs HH, et al. Hum Mutat 1992; 1:445-466).

La heterogeneidad que presentan los pacientes con HF en cuanto a los niveles plasmáticos de colesterol ligado a LDL (C-LDL) y enfermedad coronaria se debe en parte a diferencias en cuanto al tipo de mutación (Sun XM y col. Arterioscler Thromb Vas 25 Biol 1993; 13:1680-1688, Kotze y col. Arterioscler Thromb Vas Biol 1993; 13: 1460-1468; Gudnason V y col. Arterioscler Thromb Vas Biol 1997; 17:3092-3101). Por otra parte, el descenso que se produce en la concentración del c-LDL en pacientes HF heterocigotos tras el tratamiento con inhibidores de la hidroxi-metilglutaril coenzima A (HMGCoA) reductasa depende, en parte, de la naturaleza de la mutación del gen r-LDL 30 (Leisterdorf E y col. Circulation 1993; 87:35-44; Jeenah M y col. Atherosclerosis 1993; 98:51-58, Sijbrands EJG y col. Atherosclerosis 1998; 136: 247-254).

- 6 -

El principal ligando del receptor es la partícula LDL la cual contiene una sola copia de una proteína denominada la apolipoproteína B-100 (ApoB-100) (Goldstein J y Brown M J Biol Chem 1974; 249:5153-5162). Esta apolipoproteína tiene una zona en la que abundan los aminoácidos básicos y es el lugar donde se une al receptor (Borén J y col. J 5 Clin Inves 1998; 101: 1084-1093). Se han encontrado varias mutaciones en el gen de la apoB-100 que alteran la funcionalidad de la proteína y disminuyen la capacidad de retirada de las partículas LDL, dando como resultado el acúmulo de c-LDL en plasma. Hasta la fecha se han descrito cuatro mutaciones en el gen de apo B-100 que cursan con una hipercolesterolemia que se denomina apolipoproteína B defectuosa familiar (BDF), 10 todas estas mutaciones se encuentran localizadas en el dominio de unión de la apo-B100; amino ácidos 3130-3630: R3480W, R3500Q, R3500W y R3531C (Soria L y col. Proc Natl Acad Sci USA 1989; 86: 587-591; Pullinger CR, y col. J Clin Invest 1995; 95:1225-1234; Gaffney D, y col. Arterioscler Thromb Vasc Biol 1995; 15:1025-1029; Boren J, y col. J Biol Chem 2001; 276; 9214-9218). Una mutación que cambia el codón de la 15 posición 3500 CGG por CAG dando lugar a una sustitución de una Glutamina por Arginina (R3500Q), es la más frecuente de toda las que cursan con BDF. Los pacientes heterocigotos para la mutación apo B-3500 son por regla general hipercolesteroleémicos, aunque su concentración de colesterol total plasmático varía dentro del rango observado en pacientes con HF hasta concentraciones moderadamente elevadas. (Tybjaerg-Hansen 20 A, y col. Atherosclerosis 1990; 80:235-242; Hansen PS, y col. Arterioscl Throm Vasc Biol 1997; 17:741-747). Dado que las características y bioquímicas de estos pacientes son muy similares, el diagnóstico diferencial entre los pacientes con BDF o HF sólo es posible a través del diagnóstico genético molecular.

El diagnóstico clínico de la HF se fundamenta en los datos analíticos de lípidos y 25 lipoproteínas del plasma, sintomatología clínica (xantomas) e historia familiar y personal de enfermedad coronaria. La OMS a través de su programa MedPed recomienda una serie de criterios a seguir para llevar a cabo el diagnóstico clínico de HF. Estos criterios están basados en una puntuación que depende de la historia personal y familiar de hipercolesterolemia, de las características clínicas y de la analítica del paciente. Cuando 30 la puntuación que alcanza el paciente es igual o superior a 8 puntos el criterio clínico de diagnóstico de HF se clasifica como "seguro", entre 5 y 8 puntos de "probable" y entre 3 y 5 puntos de "posible" (Familial Hypercholesterolemia. Report of a second WHO

- 7 -

consultation. The International MedPed FH Organization, Geneva 1998). Sin embargo, algunos pacientes no cumplen con los criterios de HF porque la historia familiar es incompleta o desconocida, o bien porque en el momento del análisis solo presentan concentraciones moderadas de colesterol plasmático y carecen de signos de depósito de colesterol en tejidos, tales como xantomas tendinosos, arco corneal o xantelasmas.

En familias cuyo mutación del gen del r-LDL se conoce se ha demostrado que el mejor "punto de corte" para el diagnóstico es el utilizar el percentil 90 para la concentración de c-LDL (Umans-Eckenhausen MAW y col. Lancet 2001; 357:165-168. Sin embargo, el 18% de los pacientes portadores de la mutación presentan una concentración de colesterol total por debajo de este percentil, por otra parte, la proporción de falsos positivos fue también del 18%. Por lo tanto, se comete porcentaje alto de diagnósticos equivocados si se utiliza solo la cifra de colesterol plasmático. Se ha publicado, que más del 50% de los pacientes con HF no reciben tratamiento farmacológico hipolipemiante ni consejo dietético como consecuencia de no haber sido diagnosticados correctamente como pacientes con HF (Williams RR y col. Am J Cardiol 1993; 72:18D-24D).

El conocimiento de las bases moleculares de la HF ha permitido que se pueda realizar el diagnóstico inequívoco a nivel del ADN en la gran mayoría de casos: la demostración de un defecto molecular en el gen del r-LDL constituye una confirmación definitiva del diagnóstico (Familial Hypercholesterolemia. Report of a second WHO consultation. The International MedPed FH Organization, Geneva 1998). El diagnóstico preciso de la HF es posible utilizando métodos de biología molecular, sin embargo, en la actualidad su utilidad en poblaciones heretogéneas se encuentra limitada debido a la gran heterogeneidad de las mutaciones del gen del r-LDL.

En la solicitud PCT WO-88/03175 (Biotechnology Research Partners, Ltd.) se reivindica un método para el diagnóstico de la aterosclerosis, que se basa en la detección de la presencia o ausencia de varios polimorfismos en la región génica de la apolipoproteína AI-CIII-AIV, o en los genes apoB, apoCI, apoAI, así como en el gen del receptor de LDL. Concretamente para este gen, se presenta el empleo de los polimorfismos Cfr13I y BstEII.

Otro documento de interés es la patente japonesa JP-10099099 que, se refiere al empleo de una mutación en el triplete codificante del aminoácido 109, en concreto la

- 8 -

inserción de una C, para el diagnóstico de anomalías en el gen del receptor de LDL, aunque no se menciona concretamente la hipercolesterolemia familiar.

Finalmente, las patentes norteamericana US-4.745.060 y US-4.966.837, ambas de la Universidad de Texas, presentan métodos para el diagnóstico de la hipercolesterolemia familiar basándose en mutaciones en el gen del receptor de LDL. Sin embargo, lo que se reivindica en la primera de ellas son secuencias correspondientes al gen "normal", presentando un ejemplo puntual de una mutación que se define por el cambio del mapa de restricción con Xba I. En la segunda patente, por su parte, se reivindica el empleo de varias enzimas de restricción (Eco RI, Asp 718, Taq I, Bam HI, Xba I, Inf. I, Bgl II, Cla I, Eco RV, Kpn I, Pvu II, Sph I, Sst I, Sst II, Stu I, Xho I, Nde I y Nsi I) en un método para determinar mutaciones en el gen r-LDL, que se basa en observar la alteración del modelo de restricción con estas enzimas frente al modelo correspondiente al gen normal.

El documento de patente más próximo a la invención es WO02/06467, en el que se describe un método de detección de errores en el metabolismo lipídico basado en una serie de mutaciones y polimorfismos del gen r-LDL. Sin embargo, ninguna de las mutaciones ni polimorfismos descritos en dicha patente coincide con los reivindicados en la presente solicitud.

Descripción detallada de la invención

- La nomenclatura de las mutaciones y los polimorfismos viene definida en
- Antoranakis S. E and the Nomenclature Working Group, Recommendations for Nomenclature Systems for Human Gene Mutations. *Human Mutation* 11:1-3; 1998.
 - Dunnen JT, Antoranakis S.E. Mutation Nomenclature Extrensions and Suggestions to describe Complex Mutations: A Discussion. *Human Mutation* 15: 7-12, 2000.

- Asimismo el concepto del polimorfismos se define en
- Harris H. *The Principles of Human Biochemical Genetics* 3rd Edition. Amsterdam. North-Holland 1980.
 - Beaudet AL, Scriver CL, Sly WS, Valle D. *Genetics, Biochemistry and Molecular Basis of Variant Human Phenotypes*, En *The Metabolic and Molecular Bases of*

- 9 -

Inherited Disease. Editores Beaudet AL, Scriver CR, Sly WS, Valle D 7th Edition.
pg. 53 MacGraw Hill. New York 1995.

Se han detectado, aislado y caracterizado toda una serie de mutaciones nuevas que se detallan a continuación. Asimismo, toda una serie de mutaciones y polimorfismos ya descritos, se han combinado con aquéllas para analizar la probabilidad de que un individuo desarrolle hipercolesterolemia familiar. Todas las mutaciones y polimorfismos que en esta invención se relacionan con el desarrollo de la hipercolesterolemia familiar, se producen en la secuencia génica SEQ ID NO: 1 correspondiente al gen del receptor de lipoproteínas de baja densidad (r-LDL). Es decir, todas las mutaciones se producen en el mismo gen, se emplean en el mismo dispositivo de ensayo, utilizándose la misma tecnología, para determinar, según un mismo método, extracorpóreamente e in vitro, la probabilidad de desarrollar la misma enfermedad, lo que apoya el carácter unitario de la invención.

En la Tabla I se detallan todas las mutaciones nuevas detectadas, según la nomenclatura científicamente aprobada y detallada en las publicaciones mencionadas anteriormente. Asimismo se les otorga un código alfa-numérico.

En la Tabla II se detallan mutaciones ya descritas y conocidas, cuyo uso en combinación con las mutaciones de la Tabla I, en dispositivos de ensayo in vitro para diagnóstico de la hipercolesterolemia familiar es una de las formas preferidas, nueva e inventiva, de realización de la invención. Asimismo, de forma análoga a lo mencionado para las mutaciones conocidas, en la Tabla III se detallan polimorfismos.

Las mutaciones de amino ácidos se representan en códigos de una letra que tienen su equivalencia según la Tabla IV.

- 10 -

TABLA I

	MUTACION	CÓDIGO
5	(-23)A>C	M002
	1054 del11	M006
	108delC	M008
	1197del9	M009
10	1207delT	M010
	1432delG	M012
	191-2delAinsCT	M016
	2184delG	M020
	231delC	M022
15	2399del5/ins4	M024
	313+1insT	M027
	338del16	M029
	509insC	M030
	675del15	M032
20	684dup12	M034
	941-39C>T	M041
	C195R	M046
	C255G	M0100
	C319Y	M050
25	D157G	M059
	D630N	M063
	E291X	M068
	H635N	M096
	N59K	M074
30	T41M	M097
	W515X	M098
	Y379X	M092
	Y421X	M093
	T433N	M105
35	818del8	M110
	1423delGC/insA	M111
	1204insT	M112
	451del3	M115
	G516X	M117
40	2389+4A>G	M120
	1815del11	M121
	1186+5G>A	M129
	T740M	M131
	I771T	M135
45	R279G	M138
	T446I	M141
	H562Q	M142

- 11 -

	C74Y	M145
	D686Y	M147
	G(-2)R	M149
	E579D	M150
5	S205C	M151
	D200V	M153
	V766E	M154
	L(-6)P	M155
	2544insC	M156
10	C42Y	M157
	2389+3A>C	M160
	[1587-5del5;1587del31]M161	

TABLA II

	MUTACIÓN	CÓDIGO	MUTACIÓN	CÓDIGO
	2393del9	M001	C646Y	M053
	(-42)C>G	M003	C677Y	M054
	(-49)C>T	M004	C68W	M055
20	1045delC	M005	C74G	M056
	1061-8T>C	M007	C95R	M057
	A378T	M0102	D151N	M058
	C358R	M0104	D200G	M060
	1358+1G>A	M011	D200Y	M061
25	1706-10G>A	M014	D280G	M062
	1845+1G>C	M015	E10X	M064
	2085del19	M017	E246A	M066
	211delG	M018	E256K	M067
	2140+5G>A	M019	F634L	M069
30	2207insT	M021	G322S	M070
	2390-1G>C	M023	G352D	M071
	313+1G>C	M025	G571E	M072
	313+1G>A	M026	N543H	M073
	518delG	M031	N804K	M075
35	7delC	M035	Q12X	M076
	872delC	M036	Q133X	M077
	884delT	M038	Q357P	M078
	920ins4	M039	Q427X	M079
	A519T	M042	Q71E	M080
40	C113W	M043	R395Q	M081
	C127R	M045	R574W	M082
	C255X	M047	R612C	M083
	C281Y	M048	S156L	M084
	C297F	M049	S205P	M085
45	C347Y	M051	T413K	M086
	C371X	M052	T705I	M087

- 12 -

TABLA II (continuación)

	MUTACIÓN	CODIGO
5	V502M	M089
	W(-18)X	M090
	W541X	M091
	D679E	M094
	1359-1G>A	M099
10	681ins21	M033
	C122X	M044
	V408M	M088
	G528D	M106
	D412H	M107
15	N619N	M108
	E80K	M109
	L534P	M113
	L621S	M114
	C356Y	M116
20	R329X	M119
	G248D	M122
	C201Y	M125
	313+5G>A	M126
	C358Y	M127
25	C331R	M128
	D157N	M130
	V776M	M134
	P664L	M136
	W462X	M137
30	Q328X	M139
	L584P	M140
	R395W	M143
	G314V	M144
	W469X	M146
35	P678L	M148
	R612H	M152
	R236W	M159

- 13 -

TABLA III

POLIMORFISMOS CÓDIGO

5	81T>C BstUI Exón 2	P1
	1060+10G>C SmaI Exón 7	P2
	1171G>A StuI Exón 8	P3
	1413G>A DdeI Exón 10	P4
10	1617C>T BstNI Exón 11	P5
	1725C>T SSCP Exón 12	P6
	1771C>T HincII Exón 12	P7
	1959 T>C Avall Exón 13	P8
	2232G>A MspI Exón 15	P9

15

TABLA IV

CÓDIGOS AMINOÁCIDOS

20	Alanina	Ala	A
	Aspártico	Asp	D
	Glutámico	Glu	E
	Glicina	Gly	G
25	Fenilalanina	Phe	F
	Leucina	Leu	L
	Serina	Ser	S
	Tirosina	Tyr	Y
	Cisteína	Cys	C
30	Triptófano	Trp	W
	Leucina	Leu	L
	Prolina	Pro	P
	Histidina	His	H
	Glutamina	Gln	Q
35	Arginina	Arg	R
	Isoleucina	Ile	I
	Metionina	Met	M
	Treonina	Thr	T
	Asparagina	Asn	N
40	Lisina	Lys	K
	Serina	Ser	S
	Arginina	Arg	R
	Valina	Val	V
	Terminación	Ter	X

45

- 14 -

El dispositivo de ensayo (biochip) desarrollado en la invención consta de un soporte que presenta en su superficie toda una serie de sondas que se recogen en el listado de secuencias. Estas sondas oligonucleotídicas son capaces de hibridar con las secuencias mutadas contenidas en las Tablas I a III. La sistemática a utilizar sería la siguiente, para 5 cada una de las mutaciones.

Impresión de los portas de vidrio

- Se imprimen los oligonucleótidos capaces de detectar la mutación en un porta de vidrio aminosilanado empleando DMSO como tampón de impresión.
- 10 ◦ La impresión se lleva a cabo con un “spotter” o impresor de oligonucleótidos en el que se controlan la temperatura y la humedad.

Procesamiento de los portaobjetos de vidrio

- Tras la impresión se somete a un tratamiento con radiación ultravioleta.

15

Preparación de la muestra a hibridar

- Se extrae el ADN del paciente a partir de una muestra de sangre de aproximadamente 300 µl mediante un protocolo de filtración.
- Se amplifican para dicho paciente todos los exones y el promotor del gen del receptor 20 LDL, a través de PCR multiplex.
- En la misma reacción de amplificación se incorpora un nucleótido unido a biotina constituyendo un marcaje indirecto que requiere un revelado final con un complejo fluoróforo-estreptavidina.
- Se comprueba en gel de agarosa que ha tenido lugar reacción de amplificación.

25

- Se somete a fragmentación la muestra a hibridar.
- Se añade el tampón de hibridación.
- Se procede a la desnaturalización durante 15 minutos a 95 °C.

Hibridación

- 30 • La hibridación se lleva a cabo automáticamente en la estación desarrollada para tal fin por Amersham Biosciences.
- Se prehibrida el portaobjetos.

- 15 -

- Se inyecta con una pipeta Hamilton la solución a hibridar.
- Se hibrida durante 1 hora.
- Se lava 3 veces con tampón de lavado.
- La estación procede al secado del soporte de vidrio.

5

Escaneado del portaobjetos

- Se introduce el portaobjetos en el escáner.
- Se procede a escanear la señal emitida por el marcaje estándar al ser excitado por el láser.

10

Cuantificación de la imagen

- El software del escáner nos permite cuantificar en la imagen obtenida la señal de los puntos donde se ha producido hibridación.
- A partir de la señal que se obtiene en los oligonucleótidos que detectan el alelo normal y el mutado establecemos la presencia o ausencia de la mutación en el paciente.

15

Cada mutación presenta en el portaobjetos cuatro oligonucleótidos repetidos 10 veces para su detección. Dos de ellos detectan el alelo normal y otros dos el mutado. La base interrogada se encuentra siempre en posición central.

20

En el caso de un paciente normal (Fig. 3A), no presenta alelo mutado. Por consiguiente en la imagen que se obtiene del soporte de vidrio los oligonucleótidos que detectan dicho alelo no presentan señal de hibridación o una señal menor que los oligonucleótidos que detectan el alelo normal.

25

Por el contrario, un individuo heterocigoto (Fig. 3B) para la mutación presenta el alelo normal y el mutado. De ahí que los oligonucleótidos que detectan el alelo normal y el mutado presentan una señal de hibridación equivalente.

30

Los resultados de la hibridación del ADN-chip con PCRs marcados, producidos a partir del ADN de los individuos a analizar, demuestran que el individuo representado en la Figura 3A no tiene una mutación puntual en el gen rLDL que ocasiona un cambio de aminoácido E256K, y que el individuo de la Figura 3B es heterocigoto para esa mutación. De esta forma el individuo heterocigoto quedaría diagnosticado genéticamente como hipercolesterolémico familiar.

A continuación se detallan mediante ejemplos el análisis de algunas de las

- 16 -

mutaciones detectadas con el dispositivo de ensayo de la invención.

EJEMPLO 1: Identificación de mutaciones localizadas en el exón 1 del gen del r-LDL.

5 Se amplificó un fragmento de 215 pb del exón 1 por la técnica de la reacción en cadena de la polimerasa (PCR) utilizando los desoxi oligonucleótidos Ex1F (SEQ ID NO: 2) y Ex1R (SEQ ID NO: 3).

La reacción de amplificación se llevó a cabo en un volumen final de 50 µL con 500 ng de ADN en una mezcla de 20mM Tris-HCl, pH 8,4, 50 mM KCl, 1,5 mM MgCl₂, 10 200 µM de cada dNTP, 0,2 µM de cada desoxi oligonucleótido y 1,5 unidades de Taq ADN polimerasa (Gibco BRL, Carlsbad, CA, USA). Los ciclos de amplificación fueron: 10 minutos de desnaturación a 96°C, seguido de 35 ciclos: desnaturación a 94°C durante 1 minuto, hibridación a 59°C durante 1 minuto y elongación a 74°C durante 2 minutos, al final de los ciclos se realizó una extensión a 72 °C durante 10 minutos.

15 Los productos de PCR fueron analizados por la técnica de polimorfismos de conformación de cadena sencilla (SSCP) y los fragmentos que mostraron un patrón anómalo por SSCP fueron secuenciados utilizando un secuenciador automático CEQ 2000XL ADN Analysis System (Beckman Coulter, Palo Alto, CA, USA). La presencia de una mutación identificada por secuenciación se analizó posteriormente por análisis de restricción y con el dispositivo descrito ("biochip").

Análisis de la mutación (-23)A>C

Esta mutación crea un nuevo sitio de reconocimiento para la enzima de restricción Ava II. Cinco microlitros del material amplificado del exón 1 se hidrolizaron con 15 25 unidades de Ava II en un volumen final de 30 µl según las instrucciones descritas por el fabricante (NEB, Beverly, MA, USA). Los fragmentos que se obtuvieron tenían un tamaño de 148 y 67 pb para el alelo normal y de 93, 55 y 67 para el alelo mutado, estos fragmentos se separaron por electroforesis en geles de poliacrilamida al 8% y se visualizaron por tinción con bromuro de etidio. Alternativamente, esta mutación puede 30 analizarse con el dispositivo descrito ("biochip") utilizando en el soporte los oligonucleótidos SEQ ID NO: 36, SEQ ID NO: 37, SEQ ID NO: 38 y SEQ ID NO: 39.

- 17 -

La mutación (-23)A>C se encontró en una mujer de 60 años que presentaba arco corneal y xantelasmas, habiendo sido diagnosticada de hipercolesterolemia familiar con una puntuación de 8 según los criterios de diagnóstico del MedPed (Familial hypercholesterolemia. Report of a second WHO consultation. The International MedPed 5 FH Organization, Geneva 1998). La historia familiar no reveló evidencia de enfermedad cardiovascular prematura en familiares de primer grado. Las concentraciones plamáticas de lípidos antes del tratamiento farmacológico fueron: Colesterol total (CT) 352 mg/dL, c-LDL 271 mg/dL, y sus triglicéridos (TG) y colesterol de las lipoproteínas de alta densidad (c-HDL) estaban dentro del rango de la normalidad. El tratamiento 10 hipolipemiante con simvastatina (20mg/día) disminuyó su concentración de CT y c-LDL a 251 y 171 mg/dL respectivamente.

Análisis de la mutación L(-6)P

Esta mutación (47T>C, CTC>CCC, Leu(-6)Pro) se caracterizó mediante 15 secuenciación automática del fragmento de 215 pb correspondiente al exón 1 del gen del rLDL al analizar este fragmento en pacientes con diagnóstico clínico de hipercolesterolemia familiar. La reacción de secuenciación se llevó a cabo en un termociclador PE Gene Amp System 9700 utilizando los reactivos del kit CEQ 2000 Dye Terminator Cycle Sequencing con Quick Start de Beckman (Beckman Coulter, Palo Alto, 20 CA, USA) y los cebadores Ex1F (SEQ ID NO:2) y Ex1R (SEQ ID NO:3). Los fragmentos generados por la reacción de secuenciación se analizaron en un secuenciador automático CEQ 2000XL DNA Analysis System de Beckman. El cambio T>C observado se confirmó mediante secuenciación automática de un segundo producto de PCR de la misma muestra. Se llevó a cabo su confirmación posterior por secuenciación automática 25 de un segundo producto de PCR de la misma muestra. Alternativamente, esta mutación puede analizarse con el dispositivo descrito ("biochip") utilizando en el soporte los oligonucleótidos SEQ ID NO: 240, SEQ ID NO: 241, SEQ ID NO: 242 y SEQ ID NO: 243.

La mutación L(-6)P se encontró en una mujer de 47 años con arco corneal, cuyo 30 padre tenía hipercolesterolemia con un CT de 350 mg/dL y dos tíos paternos con hipercolesterolemia habían fallecido de infarto de miocardio a los 24 y 33 años respectivamente. El diagnóstico clínico de hipercolesterolemia familiar alcanzó una

- 18 -

puntuación según criterios del MedPed de 9 puntos. Las concentraciones plasmáticas de lípidos antes del tratamiento farmacológico fueron: CT 420 mg/dL, c-LDL 320 mg/dL, TG 155mg/dL y c-HDL 49 mg/dL. El tratamiento hipolipemiante con atorvastatina (15mg/día) redujo su concentración de CT y c-LDL a 289 y 233 mg/dL respectivamente.

5

Análisis de la mutación G(-2)R

Esta mutación (58G>A, GGG>AGG, Gly(-2)Arg) fue caracterizada mediante secuenciación automática del fragmento de 215 pb correspondiente al exón 1 del gen del rLDL al analizar este fragmento en pacientes con diagnóstico clínico de hipercolesterolemia familiar. La reacción de secuenciación se llevó a cabo en un termociclador PE Gene Amp System 9700 utilizando los reactivos del kit CEQ 2000 Dye Terminator Cycle Sequencing con Quick Start de Beckman (Beckman Coulter, Palo Alto, CA, USA) y los cebadores Ex1F (SEQ ID NO:2) y Ex1R (SEQ ID NO:3). Los fragmentos generados por la reacción de secuenciación se analizaron en un secuenciador automático CEQ 2000XL DNA Analysis System de Beckman. El cambio G>A observado se confirmó mediante secuenciación automática de un segundo producto de PCR de la misma muestra. Alternativamente, esta mutación puede analizarse con el dispositivo descrito (“biochip”) utilizando en el soporte los oligonucleótidos SEQ ID NO: 220, SEQ ID NO: 221, SEQ ID NO: 222 y SEQ ID NO: 223.

La mutación G(-2)R se encontró en una mujer de 34 años con arco corneal, cuya madre presentaba hipercolesterolemia con un CT de 400 mg/dL. El diagnóstico clínico de hipercolesterolemia familiar en esta paciente alcanzó una puntuación según criterios del MedPed de 10 puntos. Sus concentraciones plasmáticas de lípidos antes del inicio del tratamiento farmacológico fueron: CT de 354 mg/dL, c-LDL de 264 mg/dL, con TG dentro de la normalidad y c-HDL de 64 mg/dL.

EJEMPLO 2: Identificación de mutaciones localizadas en el exón 2 del gen del r-LDL.

Se amplificó un fragmento de 183 pb del exón 2 por la técnica de la reacción en cadena de la polimerasa (PCR) utilizando los desoxi oligonucleótidos Ex2F (SEQ ID NO: 4) y Ex2R (SEQ ID NO: 5).

- 19 -

La reacción de amplificación se llevó a cabo en un volumen final de 50 µL con 500 ng de ADN en una mezcla de 20mM Tris-HCl, pH 8,4, 50 mM KCl, 1,5 mM MgCl₂, 200 µM de cada dNTP, 0,2 µM de cada desoxi oligonucléotido y 1,5 unidades de Taq ADN polimerasa (Gibco BRL, Carlsbad, CA, USA). Los ciclos de amplificación fueron:

5 10 minutos de desnaturación a 96°C, seguido de 35 ciclos: desnaturación a 94°C durante 1 minuto, hibridación a 59°C durante 1 minuto y elongación a 72°C durante 2 minutos, al final de los ciclos se realizó una extensión a 72°C durante 10 minutos.

Los productos de PCR fueron analizados por la técnica de polimorfismos de conformación de cadena sencilla (SSCP) y los fragmentos que mostraron un patrón anómalo 10 por SSCP fueron secuenciados utilizando un secuenciador automático CEQ 2000XL ADN Analysis System (Beckman Coulter, Palo Alto, CA, USA). La presencia de una mutación identificada por secuenciación se analizó posteriormente por análisis de restricción y con el dispositivo descrito ("biochip").

15 **Análisis de la mutación 108delC**

Esta mutación crea un nuevo sitio de reconocimiento para la enzima de restricción MnII. Quince microlitros del material amplificado del exón 1 se hidrolizaron con 15 unidades de MnII en un volumen final de 30 µl según las instrucciones descritas por el fabricante (Fermentas Inc., Hanover, MD, USA). Los fragmentos que se obtuvieron 20 tenían un tamaño de 150 y 33 pb para el alelo normal y de 118, 33 y 32 para el alelo mutado; estos fragmentos se separaron por electroforesis en geles de poliacrilamida al 8% y se visualizaron por tinción con bromuro de etidio. Alternativamente, esta mutación puede analizarse con el dispositivo descrito ("biochip") utilizando en el soporte los oligonucleótidos SEQ ID NO: 40, SEQ ID NO: 41, SEQ ID NO: 42 y SEQ ID NO: 43.

25 La mutación 108delC se encontró en una mujer de 50 años sin ninguna sintomatología clínica, fue diagnosticada de hipercolesterolemia familiar con una puntuación de 9 puntos según los criterios de diagnóstico del MedPed. La historia familiar mostró que un familiar en primer grado había tenido enfermedad cardiovascular prematura. Las concentraciones plasmáticas de lípidos sin tratamiento farmacológico 30 fueron: CT 381 mg/dL, c-LDL 321 mg/dL, TG 142 mg/dL y c-HDL 32 mg/dL.

- 20 -

Análisis de la mutación T41M

Esta mutación (185C>T, ACG>ATG, Thr41Met) destruye un sitio de reconocimiento para la enzima de restricción TaiI. Quince microlitros del material amplificado del exón 2 se hidrolizaron con 15 unidades de TaiI en un volumen final de 5 30 µl según las instrucciones descritas por el fabricante (NEB, Beverly, MA, USA). Los fragmentos que se obtuvieron tenían un tamaño de 154 y 29 pb para el alelo normal y de 183 pb para el alelo mutado que corresponde al tamaño del material amplificado, estos fragmentos se separaron por electroforesis en geles de poliacrilamida al 8% y se visualizaron por tinción con bromuro de etidio. Alternativamente, esta mutación puede 10 analizarse con el dispositivo descrito (“biochip”) utilizando en el soporte los oligonucleótidos SEQ ID NO: 140, SEQ ID NO: 141, SEQ ID NO: 142 y SEQ ID NO: 143.

La mutación T41M se detectó en un hombre de 69 años que había tenido un infarto de miocardio a la edad de 55 años, y que había sido diagnosticado clínicamente de 15 hipercolesterolemia familiar: 6 puntos según los criterios de diagnóstico del MedPed. El paciente tenía historia familiar de enfermedad coronaria prematura. Las concentraciones plasmáticas de lípidos sin tratamiento farmacológico fueron: CT 274 mg/dL, c-LDL 217 mg/dL y sus triglicéridos (TG) y colesterol de las lipoproteínas de alta densidad (c-HDL) estaban dentro del rango de la normalidad.

20

Análisis de la mutación C42Y

Esta mutación C42Y (188G>A, TGC>TAG, Cys42Tyr) fue caracterizada mediante secuenciación automática del fragmento de 183 pb correspondiente al exón 2 del gen del rLDL al analizar este fragmento en pacientes con diagnóstico clínico de 25 hipercolesterolemia familiar. La reacción de secuenciación se llevó a cabo en un termociclador PE Gene Amp System 9700 utilizando los reactivos del kit CEQ 2000 Dye Terminator Cycle Sequencing con Quick Start de Beckman (Beckman Coulter, Palo Alto, CA, USA) y los cebadores Ex2F (SEQ ID NO:4) y Ex2R (SEQ ID NO:5) Los fragmentos generados por la reacción de secuenciación se analizaron en un secuenciador automático 30 CEQ 2000XL DNA Analysis System de Beckman. El cambio G>A observado se confirmó mediante secuenciación automática de un segundo producto de PCR de la misma muestra. Alternativamente, esta mutación puede analizarse con el dispositivo

- 21 -

descrito (“biochip”) utilizando en el soporte los oligonucleótidos SEQ ID NO: 248, SEQ ID NO: 249, SEQ ID NO: 250 y SEQ ID NO: 251.

La mutación C42Y se encontró en una varón de 17 años que presentaba arco corneal, y cuya madre tenía una hipercolesterolemia grave. El diagnóstico clínico de 5 hipercolesterolemia familiar alcanzó una puntuación según criterios del MedPed de 10 puntos. Las concentraciones plasmáticas de lípidos antes del tratamiento farmacológico fueron: CT 350 mg/dL, con niveles de TG y c-HDL dentro de la normalidad. El tratamiento hipolipemiante con simvastatina (20 mg/día) disminuyó su concentración de CT y c-LDL a 274 y 214 mg/dL respectivamente.

10

Análisis de la mutación C74Y

Esta mutación C74Y (284 G>A, TGC>TAC, Cys74Tyr) fue caracterizada mediante secuenciación automática del fragmento de 196 pb correspondiente al exón 3 del gen del rLDL al analizar este fragmento en pacientes con diagnóstico clínico de 15 hipercolesterolemia familiar. La reacción de secuenciación se llevó a cabo en un termociclador PE Gene Amp System 9700 utilizando los reactivos del kit CEQ 2000 Dye Terminator Cycle Sequencing con Quick Start de Beckman (Beckman Coulter, Palo Alto, CA, USA) y los cebadores Ex3F (SEQ ID NO:6) y Ex3R (SEQ ID NO:7) Los fragmentos generados por la reacción de secuenciación se analizaron en un secuenciador automático 20 CEQ 2000XL DNA Analysis System de Beckman. El cambio observado G>A se confirmó mediante secuenciación automática de un segundo producto de PCR de la misma muestra. Alternativamente, esta mutación puede analizarse con el dispositivo descrito (“biochip”) utilizando en el soporte los oligonucleótidos SEQ ID NO: 212, SEQ ID NO: 213, SEQ ID NO: 214 y SEQ ID NO: 215.

25

La mutación C74Y se encontró en un varón de 52 años que presentaba arco corneal y xantomas tendinosos con historia familiar de hipercolesterolemia en la infancia. Fue diagnosticado de hipercolesterolemia familiar con una puntuación según los criterios del MedPed de 17 puntos Las concentraciones plasmáticas de lípidos antes del tratamiento farmacológico fueron: CT 420 mg/dL, TG 96 mg/dl y c-HDL 69 mg/dl. El 30 tratamiento con un inhibidor de la HMG-CoA reductasa a dosis de 10 mg/día redujo su cifra de c-LDL en un 22%.

- 22 -

EJEMPLO 3: Identificación de mutaciones localizadas en el exón 3 del gen del r-LDL.

Se amplificó un fragmento de 196 pb del exón 3 por la técnica de la reacción en cadena de la polimerasa (PCR) utilizando los desoxi oligonucleótidos Ex3F (SEQ ID NO:6) y Ex3R (SEQ ID NO: 7).

La reacción de amplificación se llevó a cabo en un volumen final de 50 μ L con 500 ng de ADN en una mezcla de 20mM Tris-HCl, pH 8,4, 50 mM KCl, 1,5 mM MgCl₂, 200 μ M de cada dNTP, 0,2 μ M de cada desoxi oligonucleótido y 1,5 unidades de Taq ADN polimerasa (Gibco BRL, Carlsbad, CA, USA). Los ciclos de amplificación fueron: 10 minutos de desnaturización a 96°C, seguido de 35 ciclos: desnaturización a 94°C durante 1 minuto, hibridación a 59°C durante 1 minuto y elongación a 72°C durante 2 minutos. Al final de los ciclos se realizó una extensión a 72°C durante 10 minutos.

Los productos de PCR fueron analizados por la técnica de polimorfismos de conformación de cadena sencilla (SSCP). Los fragmentos que mostraron un patrón anómalo por SSCP fueron secuenciados utilizando un secuenciador automático CEQ 2000XL ADN Analysis System (Beckman Coulter, Palo Alto, CA, USA). La presencia de una mutación identificada por secuenciación se analizó posteriormente por análisis de restricción y con el dispositivo descrito ("biochip").

20 **Análisis de la mutación 191-2delAinsCT**

Como esta mutación no cambia el mapa de restricción, se diseñó y se sintetizó un desoxi oligonucleótido con una base desapareada que introduce un sitio de reconocimiento para la enzima de restricción BfaI en presencia del alelo normal y que desaparece en presencia del alelo mutado.

25 Se amplificó un fragmento de 184 pb del exón 3 por la técnica de PCR utilizando los desoxi oligonucleótidos Ex3R (SEQ ID NO: 7) y Mut191-2F (SEQ ID NO: 8).

La reacción de amplificación se llevó a cabo en un volumen final de 50 μ L con 500 ng de ADN en una mezcla de 20mM Tris-HCl, pH 8,4, 50 mM KCl, 1,5 mM MgCl₂, 200 μ M de cada dNTP, 0,2 μ M de cada desoxi oligonucleótido y 1,5 unidades de Taq ADN polimerasa (Gibco BRL, Carlsbad, CA, USA). Los ciclos de amplificación fueron: 10 minutos de desnaturización a 96°C, seguido de 35 ciclos: desnaturización a 94°C

- 23 -

durante 1 minuto, hibridación a 59°C durante 1 minuto y elongación a 72°C durante 2 minutos. Al final de los ciclos se realizó una extensión a 72° C durante 10 minutos.

Quince microlitros del material amplificado se hidrolizaron con 15 unidades de BfaI en un volumen final de 30 µl según las instrucciones descritas por el fabricante 5 (NEB, Beverly, MA, USA). Los fragmentos que se obtuvieron tenían un tamaño de 161 y 23 pb para el alelo normal y de 185 pb para el alelo mutado que corresponde al tamaño del material amplificado, estos fragmentos, se separaron por electroforesis en geles de poliacrilamida al 8% y se visualizaron por tinción con bromuro de etidio.

Alternativamente, esta mutación puede analizarse con el dispositivo descrito 10 ("biochip") utilizando en el soporte los oligonucleótidos SEQ ID NO: 44, SEQ ID NO: 45, SEQ ID NO: 46 y SEQ ID NO: 47.

La mutación 191-2delAinsCT se encontró en dos familias aparentemente no relacionadas con hipercolesterolemia familiar de herencia autosómica dominante. El probando de una familia era una mujer de 58 años con xantomas tendinosos, 15 xantelasmas y angina de pecho y con historia familiar de enfermedad coronaria e hipercolesterolemia. Fue diagnosticada de hipercolesterolemia familiar con una puntuación según los criterios del MedPed de 15 puntos. Las concentraciones plamáticas de lípidos antes del inicio del tratamiento farmacológico fueron: CT 559 mg/dL, c-LDL 467 mg/dL, TG 175 mg/dL y c-HDL 57 mg/Dl. El tratamiento hipolipemiante con 20 simvastatina (40mg/día) disminuyó su concentración de CT y c-LDL a 302 y 228 mg/dL respectivamente.

Análisis de la mutación N59K

Esta mutación (240C>A, AAC>AAA, Asn59Lys) destruye un sitio de reconocimiento 25 para la enzima de restricción HincII. Quince microlitros del material amplificado del exón 3 se hidrolizaron con 15 unidades de HincII en un volumen final de 30 µl según las instrucciones descritas por el fabricante (Amersham Pharmacia Biotech Inc., Piscataway, NJ, USA). Los fragmentos que se obtuvieron tenían un tamaño de 111 y 85 pb para el alelo normal y de 196 pb para el alelo mutado que corresponde al tamaño del material 30 amplificado. Estos fragmentos se separaron por electroforesis en geles de poliacrilamida al 8% y se visualizaron por tinción con bromuro de etidio.

- 24 -

Alternativamente, esta mutación puede analizarse con el dispositivo descrito (“biochip”) utilizando en el soporte los oligonucleótidos SEQ ID NO: 48, SEQ ID NO: 49, SEQ ID NO: 50 y SEQ ID NO: 51.

La mutación se detectó en un hombre de 43 años diagnosticado clínicamente de hipercolesterolemia familiar con una puntuación de 12 según criterios del MedPed. Las concentraciones plasmáticas de lípidos antes del inicio de tratamiento farmacológico fueron: CT 465 mg/dL, c-LDL 397 mg/dL, TG 100 mg/dL y c-HDL 48 mg/dL. El tratamiento hipolipemiante con simvastatina (40mg/día) disminuyó su concentración de CT y c-LDL a 350 y 282 mg/dL respectivamente. Su madre había sufrido un infarto de miocardio a la edad de 58 años y el probando tenía un hijo de 8 años con hipercolesterolemia (CT 325 mg/dL y c-LDL 241 mg/dL).

Análisis de la mutación 231delC

Esta mutación destruye un sitio de reconocimiento para la enzima de restricción HaeIII. Quince microlitros del material amplificado del exón 3 se hidrolizaron con 15 unidades de HaeIII en un volumen final de 30 µl según las instrucciones descritas por el fabricante (Gibco BRL, Carlsbad, CA, USA). Los fragmentos que se obtuvieron tenían un tamaño de 76, 51, 41 y 25 pb para el alelo normal y de 117, 51 y 27 pb para el alelo mutado. Estos fragmentos se separaron por electroforesis en geles de poliacrilamida al 8% y se visualizaron por tinción con bromuro de etidio.

Alternativamente, esta mutación puede analizarse con el dispositivo descrito (“biochip”) utilizando en el soporte los oligonucleótidos SEQ ID NO: 52, SEQ ID NO: 53, SEQ ID NO: 54 y SEQ ID NO: 55.

La mutación se detectó en una mujer de 37 años que presentaba arco corneal y que había sido diagnosticada de hipercolesterolemia familiar con una puntuación 16 puntos según criterios del programa de la OMS, MedPed. Las concentraciones plasmáticas de lípidos sin tratamiento farmacológico fueron: CT 543 mg/dL, c-LDL 456 mg/dL, TG 178 mg/dL y c-HDL 51 mg/dL. El tratamiento hipolipemiante combinado con atorvastatina (40 mg/día) y colesterol (20 g/día) disminuyó su concentración de CT y c-LDL a 260 y 190 mg/dL respectivamente. Un hermano había tenido infarto de miocardio a la edad de 38 años, y uno de sus hijos de 12 años era hipercolesterolémico con una concentración de CT de 305 mg/dL.

Análisis de la mutación 313+1insT

Esta mutación crea un sitio de reconocimiento para la enzima de restricción Tru1I. Quince microlitros del material amplificado del exón 3 se hidrolizaron con 15 unidades de Tru1I en un volumen final de 30 µl según las instrucciones descritas por el fabricante (Fermentas Inc., Hanover, MD, USA). Los fragmentos resultantes de esta hidrólisis tenían un tamaño de 196 pb para el alelo normal y de 162 y 34 pb para el alelo mutado. Estos fragmentos se separaron por electroforesis en geles de agarosa NuSieve al 3% y se visualizaron mediante tinción con bromuro de etidio.

Alternativamente, esta mutación puede analizarse con el dispositivo descrito ("biochip") utilizando en el soporte los oligonucleótidos SEQ ID NO: 56, SEQ ID NO: 57, SEQ ID NO: 58 y SEQ ID NO: 59.

La mutación 313+1insT se detectó en una mujer de 53 años con xantomas tendinosos y arco corneal. No se observó historia familiar de enfermedad coronaria prematura en sus familiares en primer grado. Según los criterios clínicos de hipercolesterolemia del MedPed esta mujer tenía una puntuación de 19. Las concentraciones plasmáticas de lípidos sin tratamiento farmacológico fueron: CT 574 mg/dL, c-LDL 505 mg/dL y con TG y c-HDL estaban dentro del rango de la normalidad. El tratamiento hipolipemiante combinado con simvastatina (80 mg/día) y colestipol (20 g/día) redujo su concentración de CT y c-LDL a 286 y 225 mg/dL, respectivamente.

20

EJEMPLO 4: Identificación de mutaciones localizadas en el exón 4A del gen del r-LDL.

Se amplificó un fragmento de 242 pb de la zona 5' del exón 4 (4A) por la técnica de la reacción en cadena de la polimerasa (PCR) utilizando los desoxi oligonucleótidos: Ex4AF (SEQ ID NO: 9) y Ex4AR (SEQ ID NO: 10).

La reacción de amplificación se llevó a cabo en un volumen final de 50 µL con 500 ng de ADN en una mezcla de 20mM Tris-HCl, pH 8,4, 50 mM KCl, 1,5 mM MgCl₂, 200 µM de cada dNTP, 0,2 µM de cada desoxi oligonucleótido y 1,5 unidades de Taq ADN polimerasa (Gibco BRL, Carlsbad, CA, USA). Los ciclos de amplificación fueron: 30 10 minutos de desnaturación a 96°C, seguido de 35 ciclos: desnaturación a 94°C durante 1 minuto, hibridación a 63°C durante 1 minuto y elongación a 72°C durante 2 minutos. Al final de los ciclos se realizó una extensión a 72°C durante 10 minutos.

- 26 -

Los productos de PCR fueron analizados por la técnica de polimorfismos de conformación de cadena sencilla (SSCP). Los fragmentos que mostraron un patrón anómalo por SSCP fueron secuenciados utilizando un secuenciador automático CEQ 2000XL ADN Analysis System (Beckman Coulter, Palo Alto, CA, USA). La presencia 5 de una mutación identificada por secuenciación se analizó posteriormente por análisis de restricción y con el dispositivo descrito ("biochip").

Análisis de la mutación 338del16

Esta mutación crea un sitio de reconocimiento para la enzima de restricción 10 Van91I. Quince microlitros del material amplificado del exón 4A se hidrolizaron con 15 unidades de Van91I en un volumen final de 30 µl según las instrucciones descritas por el fabricante (Amersham Pharmacia Biotech Inc., Piscataway, NJ, USA). Los fragmentos que se obtuvieron tenían un tamaño de 242 pb para el alelo normal y de 194 y 52 pb para el alelo mutado. Estos fragmentos se separaron por electroforesis en geles de agarosa al 15 2% y se visualizaron mediante tinción con bromuro de etidio.

Alternativamente, esta mutación puede analizarse con el dispositivo descrito ("biochip") utilizando en el soporte los oligonucleótidos SEQ ID NO: 144, SEQ ID NO: 145, SEQ ID NO: 146 y SEQ ID NO: 147.

La mutación 338del16 se encontró en tres familias no relacionadas con 20 hipercolesterolemia autosómica dominante. El probando de una de estas familias era un varón de 40 años con xantomas tendinosos y arco corneal, CT 542 mg/dL y c-LDL de 441 mg/dL, con TG y c-HDL normales. La puntuación para el diagnóstico clínico de hipercolesterolemia familiar según el MedPed fue de 19 puntos. No se observó que hubiese historia familiar de enfermedad coronaria prematura. El tratamiento 25 hipolipemiante con atorvastatina (10 mg/día) redujo su concentración de CT y c-LDL a 293 y 218 mg/dL, respectivamente.

Análisis de la mutación 509insC

Como esta mutación no cambia el mapa de restricción, se diseñó y se sintetizó un 30 desoxioligonucleótido con tres bases desapareadas, una de las cuales crea un sitio de reconocimiento par la enzima de restricción MnII en presencia del alelo mutado pero no desaparece en presencia del alelo normal.

- 27 -

Se amplificó un fragmento de 244 pb del exón 4A por la técnica de PCR utilizando el desoxi oligonucleótido Ex4AF (SEQ ID NO: 9) y el desoxi oligonucleótido Mut509insCR (SEQ ID NO: 11).

La reacción de amplificación se llevó a cabo en un volumen final de 50 µL con
5 500 ng de ADN en una mezcla de 20mM Tris-HCl, pH 8,4, 50 mM KCl, 1,5 mM MgCl₂,
200 µM de cada dNTP, 0,2 µM de cada desoxi oligonucleótido y 1,5 unidades de Taq
ADN polimerasa (Gibco BRL, Carlsbad, CA, USA). Los ciclos de amplificación fueron:
10 10 minutos de desnaturación a 96°C, seguido de 35 ciclos: desnaturación a 94°C
durante 1 minuto, hibridación a 65°C durante 1 minuto y elongación a 72°C durante 2
10 minutos. Al final de los ciclos se realizó una extensión a 72 °C durante 10 minutos.

Quince microlitros del material amplificado se hidrolizaron con 15 unidades de MnII en un volumen final de 30 µl según las instrucciones descritas por el fabricante (Fermentas Inc., Hanover, MD, USA). Los fragmentos que se obtuvieron tenían un tamaño de 141, 99 y 4 pb para el alelo normal y de 141, 88, 12 y 4 pb para el alelo
15 mutado. estos fragmentos se separaron por electroforesis en geles de poliacrilamida al 8% y se visualizaron mediante tinción con bromuro de etidio.

Alternativamente, esta mutación puede analizarse con el dispositivo descrito (“biochip”) utilizando en el soporte los oligonucleótidos SEQ ID NO: 60, SEQ ID NO: 61, SEQ ID NO: 62 y SEQ ID NO: 63.

20 La mutación 509insC se encontró en una mujer de 44 años con hipercolesterolemia CT 477 mg/dL y c-LDL 394 mg/dL con TG y c-HDL normales, sin historia familiar ni personal de enfermedad coronaria. El diagnóstico clínico según criterios del MedPed alcanzó una puntuación de 9. Dos de sus hermanos tenían hipercolesterolemia con una concentración de c-LDL por encima del percentil 95.
25

Análisis de la mutación 451del3

Esta mutación fue caracterizada mediante secuenciación automática del fragmento de 242 pb correspondiente al exón 4 (4A) del gen del rLDL al analizar este fragmento en pacientes con diagnóstico clínico de hipercolesterolemia familiar. La reacción de secuenciación se llevó a cabo en un termociclador PE Gene Amp System 9700 utilizando el kit CEQ 2000 Dye Terminator Cycle Sequencing con Quick Start de Beckman (Beckman Coulter, Palo Alto, CA, USA) y los cebadores Ex4AF (SEQ ID NO:9) y

- 28 -

Ex4AR (SEQ ID NO:10). La posterior electroforesis en secuenciador automático CEQ 2000XL DNA Analysis System de Beckman. Esta delección de tres nucleótidos se confirmó mediante secuenciación automática de un segundo producto de PCR de la misma muestra. Alternativamente, esta mutación puede analizarse con el dispositivo 5 descrito (“biochip”) utilizando en el soporte los oligonucleótidos SEQ ID NO: 172, SEQ ID NO: 173, SEQ ID NO: 174 y SEQ ID NO: 175.

La mutación 451del3 se encontró en un varón de 36 años que presentaba arco corneal y que había padecido un infarto de miocardio a los 34 años de edad. Este paciente tenía dos hijos de 2 y 8 años de edad con hipercolesterolemia grave con cifras de CT de 10 320 y 375 mg/dL respectivamente. El diagnóstico clínico de hipercolesterolemia familiar de este paciente alcanzó una puntuación según criterios del MedPed de 17 puntos. Las concentraciones plasmáticas de lípidos antes de iniciar del tratamiento farmacológico hipolipemiante fueron: CT 449 mg/dL, c-LDL 367 mg/dL, TG 218 mg/dL y c-HDL 38 mg/dL. El tratamiento con simvastatina (40 mg/día) disminuyó su cifra de c-LDL a 270 15 mg/dL.

EJEMPLO 5: Identificación de mutaciones localizadas en el exón 4B del gen del r-LDL.

Se amplificó un fragmento de 237 pb de la zona 3' del exón 4 (4B) por la técnica 20 de la reacción en cadena de la polimerasa (PCR) utilizando los desoxi oligonucleótidos Ex4BF (SEQ ID NO: 12) y Ex4BR (SEQ ID NO: 13).

La reacción de amplificación se llevó a cabo en un volumen final de 50 µL con 500 ng de ADN en una mezcla de 20mM Tris-HCl, pH 8,4, 50 mM KCl, 1,5 mM MgCL₂, 200 µM de cada dNTP, 0,2 µM de cada desoxi oligonucleótido y 1,5 unidades de 25 Taq ADN polimerasa (Gibco BRL, Carlsbad, CA, USA). Los ciclos de amplificación fueron: 10 minutos de desnaturación a 96°C, seguido de 35 ciclos: desnaturación a 94°C durante 1 minuto, hibridación y elongación a 72°C durante 2 minutos. Al final de los ciclos se realizó una extensión a 72 °C durante 10 minutos.

Los productos de PCR fueron analizados por la técnica de polimorfismos de 30 conformación de cadena sencilla (SSCP). Los fragmentos que mostraron un patrón anómalo por SSCP fueron secuenciados utilizando un secuenciador automático CEQ 2000XL ADN Analysis System (Beckman Coulter, Palo Alto, CA, USA). La presencia

- 29 -

de una mutación identificada por secuenciación se analizó posteriormente por análisis de restricción y con el dispositivo descrito ("biochip").

Análisis de la mutación D157G

5 Esta mutación (533A>G, GAT>GGT, Asp157Gly) crea un sitio de reconocimiento para la enzima de restricción HphI. Quince microlitros del material amplificado del exón 4B se hidrolizaron con 15 unidades de HphI en un volumen final de 30 µl según las instrucciones descritas por el fabricante (NEB, Beverly, MA, USA). Los fragmentos resultantes de la digestión tenían un tamaño de 237 pb correspondiente al
10 material amplificado sin digerir para el alelo normal y de 175 y 62 pb para el alelo mutado. Estos fragmentos se separaron por electroforesis en geles de agarosa NuSieve al 3% y se visualizaron mediante tinción con bromuro de etidio. Alternativamente, esta mutación puede analizarse con el dispositivo descrito ("biochip") utilizando en el soporte los oligonucleótidos SEQ ID NO: 64, SEQ ID NO: 65, SEQ ID NO: 66 y SEQ ID NO:
15 67.

La mutación D157G se encontró en una mujer de 32 años con hipercolesterolemia, sin historia familiar ni personal de enfermedad coronaria. Su diagnóstico clínico de hipercolesterolemia familiar alcanzó una puntuación según criterios del Med Ped de 6. Las concentraciones plasmáticas de lípidos sin tratamiento farmacológico fueron: CT 358 mg/dL y c-LDL 296 mg/dL, con niveles de TG y c-HDL de 57 y 61 mg/dL, respectivamente. El tratamiento con atorvastatina (10 mg/día) redujo su colesterol total a 212 mg/dL y su c-LDL a 140 mg/dL. Su familia paterna presentaba historia de hipercolesterolemia: El padre con CT de 364 mg/dL, y la abuela y un tío paterno con CT de 341 mg/dL y 320 mg/dL, respectivamente.
25

Análisis de la mutación C195R

Esta mutación (646T>C, TGT>CGT, Cys195Arg) crea un sitio de reconocimiento para la enzima de restricción BshNI. Quince microlitros del material amplificado del exón 4B se hidrolizaron con 15 unidades de BshNI en un volumen final de 30 µl según 30 las instrucciones descritas por el fabricante (Fermentas Inc., Hanover, MD, USA). Los fragmentos que se obtuvieron tenían un tamaño de 237 pb, correspondiente al material amplificado sin digerir, para el alelo normal y de 159 y 78 pb para el alelo mutado. Estos

- 30 -

fragmentos se separaron por electroforesis en geles de poliacrilamida al 8% y se visualizaron mediante tinción con bromuro de etidio. Alternativamente, esta mutación puede analizarse con el dispositivo descrito (“biochip”) utilizando en el soporte los oligonucleótidos SEQ ID NO: 68, SEQ ID NO: 69, SEQ ID NO: 70 y SEQ ID NO: 71.

5 La mutación C195R se detectó en una mujer de 64 años con arco corneal, con hipercolesterolemia e historia familiar de enfermedad coronaria prematura en su madre. Su diagnóstico clínico de hipercolesterolemia familiar fue clasificado de seguro con una puntuación según criterios del MedPed de 11. Las concentraciones plamáticas de lípidos sin tratamiento farmacológico fueron: CT 560 mg/dL y c-LDL 468 mg/dL con niveles de
10 TG y c-HDL dentro del rango de la normalidad.

Análisis de la mutación 675del15

Esta mutación se puede identificar por análisis de heteroduplex. La electroforesis en un gel de poliacrilamida al 8% del material de PCR amplificado del exón 4B cuando existe mutación muestra la presencia de bandas de heteroduplex de un aparente mayor tamaño molecular que las dos bandas homoduplex de 237 y 222 pb, fácilmente distinguibles en el gel después de la tinción con bromuro de etidio. Las dos bandas de los heteroduplex que se forman migran a velocidad más lenta como consecuencia de la formación de los abultamientos entre las secuencias no apareadas. Alternativamente, esta mutación puede analizarse con el dispositivo descrito (“biochip”) utilizando en el soporte los oligonucleótidos SEQ ID NO: 72, SEQ ID NO: 73, SEQ ID NO: 74 y SEQ ID NO: 75.

La mutación 675del15 se detectó en una mujer de 63 años con hipercolesterolemia, sin historia familiar de enfermedad coronaria prematura. Su
25 diagnóstico clínico de hipercolesterolemia familiar alcanzó una puntuación según criterios del MedPed de 8 puntos siendo clasificado de seguro. No se pudo conseguir la colaboración sus familiares para realizar el estudio lipídico y genético. Las concentraciones plamáticas de lípidos sin tratamiento farmacológico fueron: CT 450 mg/dL y c-LDL 379 mg/dL con niveles de TG y c-HDL dentro del rango de la normalidad.

- 31 -

Análisis de la mutación 684dup12

Esta mutación se analizó por digestión del fragmento amplificado del exón 4B con la endonucleasa de restricción MnII. La adición de 12 pb adicionales que produce la mutación permite detectar la presencia de la mutación en el material amplificado del exon 5 4B por electroforesis en poliacrilamida al 8% y tinción del gel con bromuro de etidio. Adicionalmente, quince microlitros del material amplificado del exón 4B se hidrolizaron con 15 unidades de MnII en un volumen final de 30 µl según las instrucciones descritas por el fabricante (Fermentas Inc., Hanover, MD, USA). Los fragmentos que se obtuvieron tenían un tamaño de 192 y 45 pb para el alelo normal y de 204 y 45 pb para el 10 alelo mutado. Estos fragmentos se separaron por electroforesis en geles de poliacrilamida al 8% y se visualizaron por tinción con bromuro de etidio. Alternativamente, esta mutación puede analizarse con el dispositivo descrito (“biochip”) utilizando en el soporte los oligonucleótidos SEQ ID NO: 76, SEQ ID NO: 77, SEQ ID NO: 78 y SEQ ID NO: 79.

La mutación 684dup12 se detectó en dos familias no relacionadas con hipercolesterolemia de herencia autosómica dominante. El probando de una de estas familias era un hombre de 63 años con xantomas tendinosos y arco corneal, que había sufrido un infarto de miocardio a la edad de 55 años. Su diagnóstico clínico de hipercolesterolemia familiar alcanzó una puntuación según criterios del MedPed de 17 puntos. Las concentraciones plasmáticas de lípidos sin tratamiento farmacológico fueron: CT 469 mg/dL y c-LDL 408 mg/dL, con niveles de TG de 100 mg/dL y c-HDL de 41 mg/dL.

Análisis de la mutación D200V

25 Esta mutación D200V (662A>T, GAC>GTC, Asp200Val) fue caracterizada mediante secuenciación automática del fragmento de 237 pb correspondiente al exón 4B del gen del rLDL al analizar este fragmento en pacientes con diagnóstico clínico de hipercolesterolemia familiar. La reacción de secuenciación se llevó a cabo en un termociclador PE Gene Amp System 9700 utilizando los reactivos del kit CEQ 2000 Dye 30 Terminator Cycle Sequencing con Quick Start de Beckman (Beckman Coulter, Palo Alto, CA, USA) y los cebadores Ex4BF (SEQ ID NO:12) y Ex4BR (SEQ ID NO:13). Los fragmentos generados por la reacción de secuenciación se analizaron en un secuenciador

- 32 -

automático CEQ 2000XL DNA Analysis System de Beckman. El cambio observado A>T se confirmó mediante secuenciación automática de un segundo producto de PCR de la misma muestra. Alternativamente, esta mutación puede analizarse con el dispositivo descrito (“biochip”) utilizando en el soporte los oligonucleótidos SEQ ID NO: 232, SEQ 5 ID NO: 233, SEQ ID NO: 234 y SEQ ID NO: 235.

La mutación D200V se encontró en una familia con hipercolesterolemia autosómica dominante. El probando era una mujer de 43 años con historia familiar de hipercolesterolemia en la infancia y cuya madre y hermano presentaban niveles de c-LDL por encima del percentil 95. El diagnóstico clínico de hipercolesterolemia familiar en esta 10 paciente alcanzó una puntuación según criterios del MedPed de 8 puntos. Las concentraciones plasmáticas de lípidos bajo tratamiento farmacológico (Pravastatina, 40 mg/dL) fueron: CT 329 mg/dL, TG 73 mg/dl y c-HDL de 41 mg/dl y unos niveles de c-LDL de 273 mg/dL.

15 **Análisis de la mutación S205C**

La mutación S205C (677C>G, TCT>TGT, Ser205Cys) fue caracterizada mediante secuenciación automática del fragmento de 237 pb correspondiente al exón 4B del gen del rLDL al analizar este fragmento en pacientes con diagnóstico clínico de hipercolesterolemia familiar. La reacción de secuenciación se llevó a cabo en un termociclador PE Gene Amp System 9700 utilizando los reactivos suministrados en el kit 20 CEQ 2000 Dye Terminator Cycle Sequencing con Quick Start de Beckman (Beckman Coulter, Palo Alto, CA, USA) y los cebadores Ex4BF (SEQ ID NO:12) y Ex4BR (SEQ ID NO:13). Los fragmentos generados por la reacción de secuenciación se analizaron en un secuenciador automático CEQ 2000XL DNA Analysis System de Beckman. El 25 cambio C>G observado se confirmó mediante secuenciación automática de un segundo producto de PCR de la misma muestra. Alternativamente, esta mutación puede analizarse con el dispositivo descrito (“biochip”) utilizando en el soporte los oligonucleótidos SEQ ID NO: 228, SEQ ID NO: 229, SEQ ID NO: 230 y SEQ ID NO: 231.

La mutación S205C se encontró en una mujer de 39 años con historia familiar de 30 hipercolesterolemia (madre y hermano con niveles de CT de 450 y 500 mg/dL respectivamente) y con 2 hijos con CT por encima del percentil 95. El diagnóstico clínico de hipercolesterolemia familiar, realizado a los 20 años, alcanzó una puntuación según

- 33 -

criterios del MedPed de 8 puntos. Las concentraciones plasmáticas de lípidos antes del tratamiento farmacológico fueron: CT 390 mg/dL, 150 mg/dL y c-HDL 35 mg/dL y unos niveles de c-LDL de 325 mg/dL. El tratamiento con simvastatina (10 mg/día) disminuyó su cifra de c-LDL a 270 mg/dL.

5

EJEMPLO 6: Identificación de mutaciones localizadas en el exón 6 del gen del r-LDL.

Se amplificó un fragmento de 179 pb del exón 6 por la técnica de la reacción en cadena de la polimerasa (PCR) utilizando los desoxiolidonucleótidos Ex6F (SEQ ID NO:

10 14) y Ex6R (SEQ ID NO: 15).

La reacción de amplificación se llevó a cabo en un volumen final de 50 µL con 500 ng de ADN en una mezcla de 20mM Tris-HCl, pH 8,4, 50 mM KCl, 1,5 mM MgCl₂, 200 µM de cada dNTP, 0,2 µM de cada desoxiolidonucleótido y 1,5 unidades de Taq ADN polimerasa (Gibco BRL, Carlsbad, CA, USA). Los ciclos de amplificación fueron:

15 10 minutos de desnaturación a 96°C, seguido de 35 ciclos: desnaturación a 94°C durante 1 minuto, hibridación a 56°C durante 1 minuto y elongación a 72°C durante 2 minutos. Al final de los ciclos se realizó una extensión a 72°C durante 10 minutos.

Los productos de PCR fueron analizados por la técnica de polimorfismos de conformación de cadena sencilla (SSCP): los fragmentos que mostraron un patrón anómalo por SSCP fueron secuenciados utilizando un secuenciador automático CEQ 2000XL ADN Analysis System (Beckman Coulter, Palo Alto, CA, USA). La presencia de una mutación identificada por secuenciación se analizó posteriormente por análisis de restricción y con el dispositivo descrito ("biochip").

25 Análisis de la mutación C255G

Como esta mutación (826T>G, TGC>GGC, Cys255Gly) no cambia el mapa de restricción, se diseñó y se sintetizó un desoxiolidonucleótido con una base desapareada que introduce un sitio de reconocimiento para la enzima de restricción BstUI en presencia del alelo mutado, que desaparece en presencia del alelo normal.

30 Se amplificó un fragmento de 163 pb del exón 6 por la técnica de la PCR utilizando los desoxiolidonucleótidos Ex6R (SEQ ID NO: 15) y MutC255GF (SEQ ID NO: 16).

- 34 -

La reacción de amplificación se llevó a cabo en un volumen final de 50 µL con 500 ng de ADN en una mezcla de 20mM Tris-HCl, pH 8,4, 50 mM KCl, 1,5 mM MgCl₂, 200 µM de cada dNTP, 0,2 µM de cada desoxi oligonucleótido y 1,5 unidades de Taq ADN polimerasa (Gibco BRL, Carlsbad, CA, USA). Los ciclos de amplificación fueron:

5 10 minutos de desnaturación a 96°C, seguido de 35 ciclos: desnaturación a 94°C durante 1 minuto, hibridación a 63°C durante 1 minuto y elongación a 72°C durante 2 minutos. Al final de los ciclos se realizó una extensión a 72°C durante 10 minutos.

Quince microlitros del material amplificado se hidrolizaron con 15 unidades de BstUI en un volumen final de 30 µl según las instrucciones descritas por el fabricante (NEB, Beverly, MA, USA). Los fragmentos que se obtuvieron tenían un tamaño de 163 pb para el alelo normal y de 141 y 22 pb para el alelo mutado. Estos fragmentos se separaron por electroforesis en geles de poliacrilamida al 8% y se visualizaron mediante tinción con bromuro de etidio. Alternativamente, esta mutación puede analizarse con el dispositivo descrito (“biochip”) utilizando en el soporte los oligonucleótidos SEQ ID NO: 80, SEQ ID NO: 81, SEQ ID NO: 82 y SEQ ID NO: 83.

La mutación C255G se encontró en una mujer de 63 años con historia familiar de hipercolesterolemia familiar. El diagnóstico clínico de hipercolesterolemia familiar alcanzó una puntuación según criterios del Med Ped de 8 puntos. Las concentraciones plasmáticas de lípidos sin tratamiento farmacológico fueron: CT 439 mg/dL y c-LDL 355 mg/dL con niveles de TG y c-HDL dentro del rango de la normalidad.

Análisis de la mutación E291X

Como esta mutación (934G>T, GAG>TAG, Asp291Stop) no cambia el mapa de restricción, se diseñó y se sintetizó un desoxi oligonucleótido con una base desapareada que crea un sitio de reconocimiento para la enzima de restricción SspI en presencia del alelo mutado que desaparece en presencia del alelo normal.

Se amplificó un fragmento de 164 pb del exón 6 por la técnica de PCR utilizando el desoxi oligonucleótido Ex6F (SEQ ID NO: 13) y el desoxi oligonucleótido Mut E291XR (SEQ ID NO: 17).

30 La reacción de amplificación se llevó acabo en un volumen final de 50 µL con 500 ng de ADN en una mezcla de 20mM Tris-HCl, pH 8,4, 50 mM KCl, 1,5 mM MgCl₂, 200 µM de cada dNTP, 0,2 µM de cada desoxi oligonucleótido y 1,5 unidades de Taq

- 35 -

ADN polimerasa (Gibco BRL, Carlsbad, CA, USA). Los ciclos de amplificación fueron: 10 minutos de desnaturalización a 96°C, seguido de 35 ciclos: desnaturalización a 94°C durante 1 minuto, hibridación a 59°C durante 1 minuto y elongación a 72°C durante 2 minutos, al final de los ciclos se realizó una extensión a 72 °C durante 10 minutos.

5 Quince microlitros del material amplificado se hidrolizaron con 15 unidades de SspI en un volumen final de 30 µl según las instrucciones descritas por el fabricante (Amersham Pharmacia Biotech Inc., Piscataway, NJ, USA). Los fragmentos que se obtuvieron tenían un tamaño de 164 pb (fragmento no digerido) para el alelo normal y de 144 y 20 pb para el alelo mutado. Estos fragmentos se separaron por electroforesis en
10 geles de agarosa NuSieve al 3% y se visualizaron mediante tinción con bromuro de etidio.

Alternativamente, esta mutación puede analizarse con el dispositivo descrito (“biochip”) utilizando en el soporte los oligonucleótidos SEQ ID NO: 84, SEQ ID NO: 85, SEQ ID NO: 86 y SEQ ID NO: 87.

15 La mutación E291X se encontró en una familia con hipercolesterolemia familiar autosómica dominante. El probando era un varón de 44 años con arco corneal con concentraciones de CT de 381 mg/dL, c-LDL de 314, TG 111mg/dL y c-HDL 45 mg/dL. Su diagnóstico clínico de hipercolesterolemia familiar alcanzó una puntuación según criterios del Med Ped de 12 puntos. El tratamiento hipolipemiante combinado con
20 simvastatina (40 mg/día) y colestiramina (12 g/día) redujo su colesterol plasmático a 253 mg/dL y su c-LDL a 188 mg/dL.

Análisis de la mutación 818del8

Esta mutación se pudo identificar por análisis de heterodúplex. La electroforesis
25 en un gel de poliacrilamida al 8% del material de PCR amplificado del exón 6 cuando existe mutación muestra la presencia de dos banda heterodúplex de un aparente mayor tamaño molecular que las dos bandas homodúplex de 179 y 171 pb, fácilmente distinguibles en el gel después de la tinción con bromuro de etidio. Las dos bandas de los heterodúplex que se forman migran a velocidad más lenta como consecuencia de la
30 formación de los abultamientos entre las secuencias no apareadas.

Adicionalmente, esta mutación puede ser caracterizada por digestión del producto amplificado correspondiente al exón 6 del gen del rLDL con la endonucleasa de

- 36 -

restricción MaeIII; quince microlitros del material amplificado del exón 4B se hidrolizaron con 15 unidades de MaeIII en un volumen final de 30 µl según las instrucciones descritas por el fabricante (Roche Diagnostics, Manheim, Germany). Los fragmentos que se obtuvieron tenían un tamaño de 118, 34 y 27 pb para el alelo normal y
5 de 118 y 53 pb para el alelo mutado. Estos fragmentos se separaron por electroforesis en geles de poliacrilamida al 8% y se visualizaron por tinción con bromuro de etidio. Alternativamente, esta mutación puede analizarse con el dispositivo descrito ("biochip") utilizando en el soporte los oligonucleótidos SEQ ID NO: 160, SEQ ID NO: 161, SEQ ID NO: 162 y SEQ ID NO: 163.

10 La mutación 818del8 se encontró en una mujer de 69 años con dos hijos con cifras de CT de 382 y 304 mg/dL respectivamente y con evidencia de enfermedad cardiovascular prematura. El diagnóstico clínico de hipercolesterolemia familiar, alcanzó una puntuación según criterios del MedPed de 10 puntos. Las concentraciones plasmáticas de lípidos antes del tratamiento farmacológico fueron: CT 530 mg/dL, c-LDL
15 439 mg/dL, TG 170 mg/dL y c-HDL 57 mg/dL. El tratamiento con cerivastatina (0,4 mg/día) disminuyó su cifra de c-LDL a 363 mg/dL.

Análisis de la mutación R279G

20 Esta mutación R279G (898A>G, AGA>GGA, Arg279Gly) fue caracterizada mediante secuenciación automática del fragmento de 179 pb correspondiente al exón 6 del gen del rLDL al analizar este fragmento en pacientes con diagnóstico clínico de hipercolesterolemia familiar. La reacción de secuenciación se realizó en un termociclador PE Gene Amp System 9700 utilizando el kit CEQ 2000 Dye Terminator Cycle Sequencing con Quick Start de Beckman (Beckman Coulter, Palo Alto, CA, USA) y los
25 cebadores Ex6F (SEQ ID NO: 14) y Ex6R (SEQ ID NO: 15). Los fragmentos generados por la reacción de secuenciación se analizaron en un secuenciador automático CEQ 2000XL DNA Analysis System de Beckman. El cambio A>G observado se confirmó mediante secuenciación automática de un segundo producto de PCR de la misma muestra.

30 Alternativamente, esta mutación puede analizarse con el dispositivo descrito ("biochip") utilizando en el soporte los oligonucleótidos SEQ ID NO: 200, SEQ ID NO: 201, SEQ ID NO: 202 y SEQ ID NO: 203.

- 37 -

La mutación R279G se encontró en una mujer de 59 años con xantelasma e historia familiar de hipercolesterolemia en padre y dos hermanos. El diagnóstico clínico de hipercolesterolemia familiar, alcanzó una puntuación según criterios del MedPed de 8 puntos. Las concentraciones plasmáticas de lípidos antes del tratamiento farmacológico fueron: CT 384 mg/dL, c-LDL 314 mg/dl, con TG y c-HDL normales. El tratamiento hipolipemiante con simvastatina (80 mg/dl) redujo su concentración de c-LDL a 167 mg/dL.

EJEMPLO 7: Identificación de mutaciones localizadas en el exón 7 del r-LDL.

10 Se amplificó un fragmento de 234 pb del exón 7 por la técnica de la reacción en cadena de la polimerasa (PCR) utilizando los desoxi oligonucleótidos Ex7F (SEQ ID NO: 18) y Ex7R (SEQ ID NO: 19).

La reacción de amplificación se llevó a cabo en un volumen final de 50 µL con 500 ng de ADN en una mezcla de 20mM Tris-HCl, pH 8,4, 50 mM KCl, 1,5 mM MgCl₂, 15 200 µM de cada dNTP, 0,2 µM de cada desoxi oligonucleótido y 1,5 unidades de Taq ADN polimerasa (Gibco BRL, Carlsbad, CA, USA). Los ciclos de amplificación fueron: 10 min de desnaturación a 96°C, seguido de 35 ciclos de desnaturación a 94°C durante 1 minuto, hibridación a 57°C durante 1 minuto y elongación a 72°C durante 2 minutos, al final de los ciclos se realizó una extensión a 72 °C durante 10 minutos.

20 Los productos de PCR fueron analizados por la técnica de polimorfismos de conformación de cadena sencilla (SSCP). Los fragmentos que mostraron un patrón anómalo por SSCP fueron secuenciados utilizando un secuenciador automático CEQ 2000XL ADN Analysis System (Beckman Coulter, Palo Alto, CA, USA). La presencia de una mutación identificada por secuenciación se analizó posteriormente por análisis de 25 restricción y con el dispositivo descrito ("biochip").

Análisis de la mutación 941-39C>T

Esta mutación elimina un sitio de reconocimiento para la endonucleasa de restricción ApaI. Quince microlitros del material amplificado del exón 7 se hidrolizaron 30 con 15 unidades de ApaI en un volumen final de 30 µl según las instrucciones descritas por el fabricante (Fermentas Inc., Hanover, MD, USA). Los fragmentos resultantes de la digestión tenían un tamaño de 186, 26 y 22 pb para el alelo normal y de 208 y 26 pb para

- 38 -

el alelo mutado. Estos fragmentos se separaron por electroforesis en geles de poliacrilamida al 8% y se visualizaron mediante tinción con bromuro de etidio. Alternativamente, esta mutación puede analizarse con el dispositivo descrito ("biochip") utilizando en el soporte los oligonucleótidos SEQ ID NO: 88, SEQ ID NO: 89, SEQ ID NO: 90 y SEQ ID NO: 91.

La mutación 941-39C>T se detectó en cuatro familias no relacionadas que presentaban la característica común de tener una hipercolesterolemia familiar autosómica dominante. El probando de una de estas familias era una mujer de 61 años que había sufrido un infarto de miocardio y con historia familiar de enfermedad coronaria prematura. Su diagnóstico clínico de hipercolesterolemia familiar alcanzó una puntuación según criterios del MedPed de 7 puntos. Las concentraciones plasmáticas de lípidos sin tratamiento farmacológico fueron: CT 340 mg/dL, c-LDL 248 mg/dL con TG de 136 mg/dL y c-HDL 65 mg/dL. Tras el tratamiento con 20 mg/día de atorvastatina el CT se redujo a 223 mg/dL y el c-LDL a 144 mg/dL, sin cambios significativos en sus cifras de TG y c-HDL.

Análisis de la mutación C319Y

Esta mutación (1019G>A, TGC>TAC, Cys319Tyr) crea un sitio de reconocimiento para la endonucleasa de restricción RsaI. Quince microlitros del material amplificado del exón 7 se hidrolizaron con 15 unidades de RsaI en un volumen final de 30 µl según las instrucciones descritas por el fabricante (Gibco BRL, Carlsbad, CA, USA). Los fragmentos que se obtuvieron tenían un tamaño de 234 (fragmento sin digerir) para el alelo normal y de 136 y 98 pb para el alelo mutado. Estos fragmentos se separaron por electroforesis en geles de poliacrilamida al 8% y se visualizaron por tinción con bromuro de etidio. Alternativamente, esta mutación puede analizarse con el dispositivo descrito ("biochip") utilizando en el soporte los oligonucleótidos SEQ ID NO: 92, SEQ ID NO: 93, SEQ ID NO: 94 y SEQ ID NO: 95.

La mutación C319Y se detectó en una familia con hipercolesterolemia familiar autosómica dominante. El probando era un hombre de 43 años con xantomas tendinosos en tendón de Aquiles y en los tendones extensores de las manos y arco corneal y que tenía un hijo de 17 años con colesterol total plasmático de 384 mg/dL. Su padre había fallecido de muerte súbita a los 45 años. Su diagnóstico clínico de hipercolesterolemia

- 39 -

familiar alcanzó una puntuación según criterios del MedPed de 22 puntos. Las concentraciones plamáticas de lípidos sin tratamiento farmacológico fueron: CT 428 mg/dL, c-LDL 372 mg/dL, estando el nivel de TG dentro del rango de la normalidad.

5 **Análisis de la mutación 1054del11**

Esta mutación destruye un sitio de reconocimiento para la endonucleasa de restricción HphI. Quince microlitros del material amplificado del exón 7 se hidrolizaron con 15 unidades de HphI en un volumen final de 30 µl según las instrucciones descritas por el fabricante (Gibco BRL, Carlsbad, CA, USA). Los fragmentos que se obtuvieron tenían un tamaño de 189 y 45 pb para el alelo normal y de 223 para el alelo mutado. Estos fragmentos se separaron por electroforesis en geles de poliacrilamida al 8% y se visualizaron mediante tinción con bromuro de etidio. Alternativamente, esta mutación puede analizarse con el dispositivo descrito ("biochip") utilizando en el soporte los oligonucleótidos SEQ ID NO: 96, SEQ ID NO: 97, SEQ ID NO: 98 y SEQ ID NO: 99.

15 La mutación 1054del11 se detectó en una familia con hipercolesterolemia familiar autosómica dominante. El probando era un hombre de 43 años con xantomas aquileos tendinosos y con un familiar en primer grado con enfermedad coronaria prematura. Su diagnóstico clínico de hipercolesterolemia familiar alcanzó una puntuación según criterios del MedPed de 16 puntos. Las concentraciones plamáticas de lípidos sin tratamiento farmacológico fueron: CT 480 mg/dL, c-LDL 416 mg/dL ,TG en 95 mg/dL y c-HDL 36 mg/dL.

EJEMPLO 8: Identificación de mutaciones localizadas en el exón 8 del r-LDL.

Se amplificó un fragmento de 220 pb del exón 8 por la técnica de la reacción en cadena de la polimerasa (PCR) utilizando los desoxioligonucleótidos Ex 8F (SEQ ID NO: 148) y EX8R (SEQ ID NO: 149).

La reacción de amplificación se llevó a cabo en un volumen final de 50 µL con 500 ng de ADN en una mezcla de 20mM Tris-HCl, pH 8,4, 50 mM KCl, 1,5 mM MgCl₂, 200 µM de cada dNTP, 0,2 µM de cada desoxioligonucléotido y 1,5 unidades de Taq ADN polimerasa (Gibco BRL, Carlsbad, CA, USA). Los ciclos de amplificación fueron: 30 10 min de desnaturalización a 96° C, seguido de 35 ciclos de desnaturalización a 94° C

- 40 -

durante 1 minuto, hibridación a 64° C durante 1 minuto y elongación a 72° C durante 2 minutos, al final de los ciclos se realizó una extensión a 72° C durante 10 minutos.

Los productos de PCR fueron analizados por la técnica de polimorfismos de conformación de cadena sencilla (SSCP). Los fragmentos que mostraron un patrón anómalo por SSCP fueron secuenciados utilizando un secuenciador automático CEQ 2000XL DNA Analysis System (Beckman Coulter, Palo Alto, CA, USA). La presencia de una mutación identificada por secuenciación se analizó posteriormente por análisis de restricción y con el dispositivo descrito ("biochip").

10 **Análisis de la mutación 1186+5 G>A**

Esta mutación fue caracterizada mediante secuenciación automática del fragmento de 220 pb correspondiente al exón 8 del gen del rLDL al analizar este fragmento en pacientes con diagnóstico clínico de hipercolesterolemia familiar. La reacción de secuenciación se llevó a cabo en un termociclador PE Gene Amp System 9700 utilizando los reactivos del kit CEQ 2000 Dye Terminator Cycle Sequencing con Quick Start de Beckman (Beckman Coulter, Palo Alto, CA, USA) y los cebadores Ex8BF (SEQ ID NO: 148) y Ex8BR (SEQ ID NO: 149).

Los fragmentos generados por la reacción de secuenciación se analizaron en un secuenciador automático CEQ 2000XL DNA Analysis System de Beckman. El cambio G>A observado se confirmó mediante secuenciación automática de un segundo producto de PCR de la misma muestra. Alternativamente, esta mutación puede analizarse con el dispositivo descrito ("biochip") utilizando en el soporte los oligonucleótidos SEQ ID NO: 188, SEQ ID NO: 189, SEQ ID NO: 190 y SEQ ID NO: 191.

Esta mutación se encontró en dos familias no relacionadas con hipercolesterolemia autosómica dominante. El probando de una de ellas era una mujer de 45 años que presentaba arco corneal, xantomas tendinosos, xantelasmas e historia familiar de hipercolesterolemia. El diagnóstico clínico de hipercolesterolemia familiar alcanzó una puntuación según criterios del MedPed de 21 puntos. Las concentraciones plasmáticas de lípidos antes del tratamiento farmacológico fueron: Colesterol total (CT) de 411 mg/dL, c-LDL de 346 mg/dL y niveles de TG y c-HDL normales. El tratamiento hipolipemiante con Cerivastatina (0,2 mg/día) redujo su cifra de c-LDL a 222 mg/dL.

- 41 -

EJEMPLO 9: Identificación de mutaciones localizadas en el exón 9 del gen del r-LDL.

Se amplificó un fragmento de 224 pb del exón 9 por la técnica de la reacción en cadena de la polimerasa (PCR) utilizando los desoxi oligonucleótidos Ex9F (SEQ ID NO:

5 20) y Ex9R (SEQ ID NO: 21).

La reacción de amplificación se llevó a cabo en un volumen final de 50 µL con

500 ng de ADN en una mezcla de 20mM Tris-HCl, pH 8,4, 50 mM KCl, 1,5 mM MgCl₂,

200 µM de cada dNTP, 0,2 µM de cada desoxi oligonucleótido y 1,5 unidades de Taq

ADN polimerasa (Gibco BRL, Carlsbad, CA, USA). Los ciclos de amplificación fueron:

10 10 min de desnaturación a 96°C, seguido de 35 ciclos: desnaturación a 94°C durante 1 minuto, hibridación a 63°C durante 1 minuto y elongación a 72°C durante 2

minutos. Al final de los ciclos se realizó una extensión a 72 °C durante 10 minutos.

Los productos de PCR fueron analizados por la técnica de polimorfismos de

conformación de cadena sencilla (SSCP). Los fragmentos que mostraron un patrón

15 anómalo por SSCP fueron secuenciados utilizando un secuenciador automático CEQ

2000XL ADN Analysis System (Beckman Coulter, Palo Alto, CA, USA). La presencia

de una mutación identificada por secuenciación se analizó posteriormente por análisis de

restricción y con el dispositivo descrito ("biochip").

20 **Análisis de la mutación 1197del9**

Esta mutación se puede analizar por análisis de heteroduplex. La electroforesis en un gel de poliacrilamida al 8% del material de PCR amplificado del exón 9 en presencia de esta mutación muestra dos bandas heteroduplex de un aparente mayor tamaño molecular que las bandas homoduplex de 224 y 215 pb que pueden distinguirse en el gel

25 después de la tinción con bromuro de etidio. Las dos bandas de los heteroduplex que se forman migran a velocidad más lenta como consecuencia de la formación de los abultamientos entre las secuencias no apareadas. Alternativamente, esta mutación puede

analizarse con el dispositivo descrito ("biochip") utilizando en el soporte los oligonucleótidos SEQ ID NO: 100, SEQ ID NO: 101, SEQ ID NO: 102 y SEQ ID NO:

30 103.

La mutación 1197del9 se encontró en ocho familias no relacionadas que presentaban la característica común de tener una hipercolesterolemia familiar autosómica

- 42 -

dominante. El probando de una de estas familias era una mujer de 45 años con xantomas tendinosos y que había tenido un angina de pecho a los 41 años. Su diagnóstico clínico de hipercolesterolemia familiar alcanzó una puntuación según criterios del Med Ped de 18 puntos. Su padre sufrió un infarto de miocardio a los 36 años. Las concentraciones plasmáticas de lípidos sin tratamiento farmacológico fueron: CT 525 mg/dL, c-LDL 443 mg/dL, TC 153 mg/dL y c-HDL 49 mg/dL. El tratamiento con atorvastatina (20 mg/día) redujo su CT a 323 mg/dL.

Análisis de la mutación Y379X

Esta mutación (1200C>A, TAC>TAA, Tyr379Stop) destruye un sitio de reconocimiento para la endonucleasa de restricción MnII. Quince microlitros del material amplificado del exón 9 se hidrolizaron con 15 unidades de MnII en un volumen final de 30 µl según las instrucciones descritas por el fabricante (Gibco BRL, Carlsbad, CA, USA). Los fragmentos que se obtuvieron tenían un tamaño de 87, 56, 34, 22, 18, 4, y 3 para el alelo normal y de 87, 56, 38, 22, 18 y 3 pb para el alelo mutado. Estos fragmentos se separaron por electroforesis en geles de poliacrilamida al 16%, de esta forma se pudo distinguir las bandas de 34 y 38 pb que diferencian ambos alelos por tinción con bromuro de etidio. Alternativamente, esta mutación puede analizarse con el dispositivo descrito ("biochip") utilizando en el soporte los oligonucleótidos SEQ ID NO: 104, SEQ ID NO: 105, SEQ ID NO: 106 y SEQ ID NO: 107.

La mutación Y379X se encontró en una familia con hipercolesterolemia autosómica dominante. El probando de una de esta familia era un varón de 69 años. El diagnóstico clínico de hipercolesterolemia familiar alcanzó una puntuación según criterios del Med Ped de 7 puntos. Su padre había fallecido de infarto de miocardio a los 50 años y tenía dos hijos con colesterol total plasmático por encima del percentil 95. Las concentraciones plasmáticas de lípidos sin tratamiento farmacológico fueron: CT 381 mg/dL, c-LDL 306 mg/dL, siendo sus niveles de TG y c-HDL normales. Tras el tratamiento hipolipemiante con atorvastatina (20 mg/día) su CT plasmático descendió a 259 mg/dL.

- 43 -

Análisis de la mutación 1207delT

Esta mutación destruye un sitio de reconocimiento para la endonucleasa de restricción MboII. Quince microlitros del material amplificado del exón 9 se hidrolizaron con 15 unidades de MboII en un volumen final de 30 µl según las instrucciones descritas 5 por el fabricante (Amersham Pharmacia Biotech Inc., Piscataway, NJ, USA). Los fragmentos que se obtuvieron tenían un tamaño de 140, 46, 35 y 3 para el alelo normal y de 140, 48 y 35 para el alelo mutado. Estos fragmentos se separaron por electroforesis en geles de poliacrilamida al 16%, mediante tinción con bromuro de etidio se pudo distinguir las bandas de 46 y 48 pb que diferencian ambos alelos. Alternativamente, esta 10 mutación puede analizarse con el dispositivo descrito (“biochip”) utilizando en el soporte los oligonucleótidos SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110 y SEQ ID NO: 111.

La mutación 1207delT se encontró en una familia con hipercolesterolemia autosómica dominante. El probando era una mujer de 35 años. El diagnóstico clínico de 15 hipercolesterolemia familiar alcanzó una puntuación según criterios del MedPed de 9 puntos. Las concentraciones plasmáticas de lípidos sin tratamiento farmacológico fueron: CT 429 mg/dL, c-LDL 345 mg/dL, siendo sus niveles de TG y c-HDL de 188 y 46 mg/dL respectivamente. El tratamiento hipolipemiante combinado con 40 mg/día de simvastatina y 5 g/día de colestipol redujo el CT a 220 mg/dL y el c-LDL a 137 mg/dL, 20 sin cambios significativos en sus cifras de TG y c-HDL.

Análisis de la mutación Y421X

Esta mutación (1326C>G, TAC>TAG, Tyr421Stop) crea un sitio de reconocimiento para la endonucleasa de restricción BfaI. Quince microlitros del material 25 amplificado del exón 9 se hidrolizaron con 15 unidades de BfaI en un volumen final de 30 µl según las instrucciones descritas por el fabricante (NEB, Beverly, MA, USA). Los fragmentos que se obtuvieron tenían un tamaño de 224 (fragmento sin digerir) para el alelo normal y de 164 y 60 para el alelo mutado: Estos fragmentos se separaron por electroforesis en geles de poliacrilamida al 8%, y se visualizaron por tinción con bromuro 30 de etidio.

- 44 -

Alternativamente, esta mutación puede analizarse con el dispositivo descrito (“biochip”) utilizando en el soporte los oligonucleótidos SEQ ID NO: 112, SEQ ID NO: 113, SEQ ID NO: 114 y SEQ ID NO: 115.

La mutación Y421 se encontró en tres familias no relacionadas que presentaban la 5 característica común de tener una hipercolesterolemia familiar autosómica dominante. El probando de una de estas familias era una mujer de 71 años con xantomas tendinosos, xantelasmas y arco corneal. El diagnóstico clínico de hipercolesterolemia familiar alcanzó una puntuación según criterios del MedPed de 16 puntos. Su padre sufrió un infarto de miocardio a los 51 años y tenía un hijo con hipercolesterolemia acusada (CT 10 367 mg/dL). Las concentraciones plasmáticas de lípidos sin tratamiento farmacológico fueron: CT 615 mg/dL, c-LDL 550 mg/dL, con TC y c-HDL dentro del rango de la normalidad.

Análisis de la mutación 1204insT

15 Esta mutación elimina un sitio de reconocimiento para la endonucleasa de restricción MboII. Quince microlitros del material amplificado del exón 9 se hidrolizaron con 15 unidades de MboII en un volumen final de 30 µl según las instrucciones descritas por el fabricante (Amersham Pharmacia Biotech Inc., Piscataway, NJ, USA). Los fragmentos resultantes de la digestión tenían un tamaño de 141, 45, 35 y 3 pb para el 20 alelo normal y de 141, 45 y 39 pb para el alelo mutado. Estos fragmentos se separaron por electroforesis en geles de poliacrilamida al 8% y se visualizaron mediante tinción con bromuro de etidio. Alternativamente, esta mutación puede analizarse con el dispositivo descrito (“biochip”) utilizando en el soporte los oligonucleótidos SEQ ID NO: 168, SEQ ID NO: 169, SEQ ID NO: 170 y SEQ ID NO: 171.

25 La mutación 1204insT se encontró en una niña de 12 años cuyo padre presentaba unos niveles de CT de 412 mg/dl y su hermano de 7 años un CT de 321 mg/dL. El diagnóstico clínico de hipercolesterolemia familiar alcanzó una puntuación según criterios del MedPed de 9 puntos. Las concentraciones plasmáticas de lípidos antes del tratamiento farmacológico fueron: Colesterol total (CT) de 332 mg/dL, c-LDL de 267 30 mg/dL y niveles de TG y c-HDL normales. El tratamiento hipolipemiante con resinas (15 g/día) redujo su cifra de c-LDL a 248 mg/dL.

- 45 -

EJEMPLO 10: Identificación de mutaciones localizadas en el exón 10.

Se amplificó un fragmento de 278 pb del exón 10 por la técnica de la reacción en cadena de la polimerasa (PCR) utilizando los siguientes desoxi oligonucleótidos Ex10F (SEQ ID NO: 22) y Ex10R (SEQ ID NO: 23).

5 La reacción de amplificación se llevó acabo en un volumen final de 50 μ L con 500 ng de ADN en una mezcla de 20mM Tris-HCl, pH 8,4, 50 mM KCl, 1,5 mM MgCl₂, 200 μ M de cada dNTP, 0,2 μ M de cada desoxi oligonucleótido y 1,5 unidades de Taq ADN polimerasa (Gibco BRL, Carlsbad, CA, USA). Los ciclos de amplificación fueron: 10 minutos de desnaturización a 96°C, seguido de 35 ciclos: desnaturización a 94°C 10 durante 1 minuto, hibridación a 58°C durante 1 minuto y elongación a 72°C durante 2 minutos. Al final de los ciclos se realizó una extensión a 72°C durante 10 minutos.

Los productos de PCR fueron analizados por la técnica de polimorfismos de conformación de cadena sencilla (SSCP). Los fragmentos que mostraron un patrón anómalo por SSCP fueron secuenciados utilizando un secuenciador automático CEQ 15 2000XL ADN Analysis System (Beckman Coulter, Palo Alto, CA, USA). La presencia de una mutación identificada por secuenciación se analizó posteriormente por análisis de restricción y con el dispositivo descrito ("biochip").

Análisis de la mutación 1432delG

20 Como esta mutación no cambia el mapa de restricción, se diseñó y se sintetizó un desoxi oligonucleótido con una base desapareada que crea un sitio de reconocimiento para la enzima de restricción NaeI en presencia del alelo mutado que desaparece en presencia del alelo normal.

25 Se amplificó un fragmento de 200 pb del exón 10 por la técnica de PCR utilizando el desoxi oligonucleótido Ex10R (SEQ ID NO: 23) y el desoxi oligonucleótido con la base desapareada Mut1432delGF (SEQ ID NO: 24).

La reacción de amplificación se llevó acabo en un volumen final de 50 μ L con 500 ng de ADN en una mezcla de 20mM Tris-HCl, pH 8,4, 50 mM KCl, 1,5 mM MgCl₂, 200 μ M de cada dNTP, 0,2 μ M de cada desoxi oligonucleótido y 1,5 unidades de Taq 30 ADN polimerasa (Gibco BRL, Carlsbad, CA, USA). Los ciclos de amplificación fueron: 10 minutos de desnaturización a 96°C, seguido de 35 ciclos: desnaturización a 94°C

- 46 -

durante 1 minuto, hibridación a 58 °C durante 1 minuto y elongación a 72 °C durante 2 minutos. Al final de los ciclos se realizó una extensión a 72 °C durante 10 minutos.

Quince microlitros del material amplificado del exón 10 se hidrolizaron con 15 unidades de NaeI en un volumen final de 30 µl según las instrucciones descritas por el fabricante (Amersham Pharmacia Biotech Inc., Piscataway, NJ, USA). Los fragmentos que se obtuvieron tenían un tamaño de 200pb (fragmento sin digerir) para el alelo normal y de 179 y 20pb para el alelo mutado. Estos fragmentos se separaron por electroforesis en geles de poliacrilamida al 8%, y se visualizaron mediante tinción con bromuro de etidio. Alternativamente, esta mutación puede analizarse con el dispositivo descrito ("biochip") utilizando en el soporte los oligonucleótidos SEQ ID NO: 116, SEQ ID NO: 117, SEQ ID NO: 118 y SEQ ID NO: 119.

La mutación 1432delG se encontró en una familia con hipercolesterolemia autosómica dominante. El probando era una mujer de 53 años con xantomas tendinosos y que había sufrido un infarto de miocardio, presentando además historia familiar de enfermedad coronaria prematura. El diagnóstico clínico de hipercolesterolemia familiar alcanzó una puntuación según criterios del Med Ped de 15 puntos. Las concentraciones plasmáticas de lípidos sin tratamiento farmacológico fueron: CT 548 mg/dL, c-LDL 470 mg/dL, siendo sus niveles de TG y c-HDL normales.

20 **Análisis de la mutación T433N**

Esta mutación T433N (1361C>A, ACC>AAC, Tyr433Asn) fue caracterizada mediante secuenciación automática del fragmento de 278 pb correspondiente al exón 10 del gen del rLDL al analizar este fragmento en pacientes con diagnóstico clínico de hipercolesterolemia familiar. La reacción de secuenciación se desarrolló en termociclador 25 PE Gene Amp System 9700 utilizando los reactivos del kit CEQ 2000 Dye Terminator Cycle Sequencing con Quick Start de Beckman (Beckman Coulter, Palo Alto, CA, USA) y los cebadores Ex10F (SEQ ID NO: 22) y Ex10R (SEQ ID NO: 23). Los fragmentos generados por la reacción de secuenciación se analizaron en un secuenciador automático CEQ 2000XL DNA Analysis System de Beckman. El cambio observado C>A se confirmó mediante secuenciación automática de un segundo producto de PCR de la misma muestra. Alternativamente, esta mutación puede analizarse con el dispositivo

descrito (“biochip”) utilizando en el soporte los oligonucleótidos SEQ ID NO: 156, SEQ ID NO: 157, SEQ ID NO: 158 y SEQ ID NO: 159.

La mutación T433N se encontró en un varón de 50 años con arco corneal y con historia paterna de hipercolesterolemia y una hija de 21 años con niveles de CT de 310 mg/dL. El diagnóstico clínico de hipercolesterolemia familiar alcanzó una puntuación según criterios del Med Ped de 6 puntos. Las concentraciones plasmáticas de lípidos antes del inicio del tratamiento farmacológico fueron: CT 318 mg/dL, c-LDL 249 y con concentraciones de TG y c-HDL normales. El tratamiento hipolipemiante con lovastatina (20 mg/día) descendió su cifra de c-LDL a 199 mg/dL.

10

Análisis de la mutación T446I

La mutación T446I (1400C>T, ACC>ATC, Tyr446Ile) fue caracterizada mediante secuenciación automática del fragmento de 278 pb correspondiente al exón 10 del gen del rLDL al analizar este fragmento en pacientes con diagnóstico clínico de hipercolesterolemia familiar. La reacción de secuenciación se llevó a cabo en un termociclador PE Gene Amp System 9700 utilizando los reactivos del kit CEQ 2000 Dye Terminator Cycle Sequencing con Quick Start de Beckman (Beckman Coulter, Palo Alto, CA, USA) y los cebadores Ex10F (SEQ ID NO: 22) y Ex10R (SEQ ID NO: 23). Los fragmentos generados por la reacción de secuenciación se analizaron en un secuenciador automático CEQ 2000XL DNA Analysis System de Beckman. El cambio C>T observado se confirmó mediante secuenciación automática de un segundo producto de PCR de la misma muestra. Alternativamente, esta mutación puede analizarse con el dispositivo descrito (“biochip”) utilizando en el soporte los oligonucleótidos SEQ ID NO: 204, SEQ ID NO: 205, SEQ ID NO: 206 y SEQ ID NO: 207.

25

La mutación T446I se encontró en una mujer de 64 años con antecedentes de enfermedad cardiovascular prematura (angor a los 62 años) y con dos hermanos hipercolesterolémicos que habían sufrido un infarto de miocardio a la edad de 40 y 46 años respectivamente. El diagnóstico clínico de hipercolesterolemia familiar, alcanzó una puntuación según criterios del MedPed de 9 puntos. Las concentraciones plasmáticas de lípidos bajo tratamiento farmacológico (Pravastatina) fueron: CT de 352 mg/dL, c-LDL de 281 mg/dl y niveles de TG y c-HDL normales. Posteriormente, el tratamiento

- 48 -

hipolipemiante con Simvastatina (20mg/día) se disminuyó su cifra de c-LDL a 150 mg/dL.

Análisis de la mutación 1423delGC/insA

5 Esta mutación elimina un sitio de reconocimiento para la endonucleasa de restricción MvaI. Quince microlitros del material amplificado del exón 10 se hidrolizaron con 15 unidades de MvaI en un volumen final de 30 µl según las instrucciones descritas por el fabricante (Fermentas Inc., Hanover, MD, USA). Los fragmentos resultantes de la digestión tenían un tamaño de 150 y 128 pb para el alelo normal y de 128, 87 y 63 pb
10 para el alelo mutado. Estos fragmentos se separaron por electroforesis en geles de poliacrilamida al 8% y se visualizaron mediante tinción con bromuro de etidio. Alternativamente, esta mutación puede analizarse con el dispositivo descrito ("biochip") utilizando en el soporte los oligonucleótidos SEQ ID NO: 164, SEQ ID NO: 165, SEQ ID NO: 166 y SEQ ID NO: 167.

15 La mutación 1423delGC/insA se encontró en un varón de 34 años con historia paterna de hipercolesterolemia. El diagnóstico clínico de hipercolesterolemia familiar, alcanzó una puntuación según criterios del MedPed de 9 puntos. Las concentraciones plasmáticas de lípidos antes del tratamiento farmacológico fueron: Colesterol total (CT) de 554 mg/dL, c-LDL de 422 mg/dl y niveles de TG y c-HDL normales. El tratamiento
20 hipolipemiante administrado (Atorvastatina 10 mg/día) tan sólo disminuyó su cifra de c-LDL a 406 mg/dl.

EJEMPLO 11: Identificación de mutaciones localizadas en el exón 11 del gen del r-LDL.

25 Se amplificó un fragmento de 194 pb del exón 11 por la técnica de la reacción en cadena de la polimerasa (PCR) utilizando los desoxi oligonucleótidos Ex11F (SEQ ID NO: 25) y Ex11R (SEQ ID NO: 26).

La reacción de amplificación se llevó a cabo en un volumen final de 50 µL con 500 ng de ADN en una mezcla de 20mM Tris-HCl, pH 8,4, 50 mM KCl, 1,5 mM MgCl₂,
30 200 µM de cada dNTP, 0,2 µM de cada desoxi oligonucleotido y 1,5 unidades de Taq ADN polimerasa (Gibco BRL, Carlsbad, CA, USA). Los ciclos de amplificación fueron: 10 minuto de desnaturación a 96°C, seguido de 35 ciclos: desnaturación a 94°C

- 49 -

durante 1 minuto, hibridación a 65°C durante 1 minuto y elongación a 72°C durante 2 minutos. Al final de los ciclos se realizó una extensión a 72°C durante 10 minutos.

Los productos de PCR fueron analizados por la técnica de polimorfismos de conformación de cadena sencilla (SSCP). Los fragmentos que mostraron un patrón anómalo por SSCP fueron secuenciados utilizando un secuenciador automático CEQ 2000XL ADN Analysis System (Beckman Coulter, Palo Alto, CA, USA). La presencia de una mutación identificada por secuenciación se analizó posteriormente por análisis de restricción y con el dispositivo descrito ("biochip").

10 **Análisis de la mutación W515X**

Esta mutación (1607G>A, TGG>TAG, Trp515Stop) crea un sitio de reconocimiento para la endonucleasa de restricción BfaI. Quince microlitros del material amplificado del exón 9 se hidrolizaron con 15 unidades de BfaI en un volumen final de 30 µl según las instrucciones descritas por el fabricante (NEB, Beverly, MA, USA). Los 15 fragmentos que se obtuvieron tenían un tamaño de 164 y 30 pb para el alelo normal y de 97, 67 y 30pb para el alelo mutado. Estos fragmentos se separaron por electroforesis en geles de agarosa NuSieve al 3%, y se visualizaron por tinción con bromuro de etidio. Alternativamente, esta mutación puede analizarse con el dispositivo descrito ("biochip") utilizando en el soporte los oligonucleótidos SEQ ID NO: 120, SEQ ID NO: 121, SEQ ID 20 NO: 122 y SEQ ID NO: 123.

La mutación W515X se encontró en un hombre de 39 años con arco corneal, cuyo padre con hipercolesterolemia había tenido un infarto de miocardio a los 50 años. Su diagnóstico clínico de hipercolesterolemia familiar alcanzó una puntuación según criterios del MedPed de 13 puntos. Las concentraciones plasmáticas de lípidos sin 25 tratamiento farmacológico fueron: CT 364 mg/dL, c-LDL 308 mg/dL, siendo sus niveles de TG y c-HDL normales. El padre del probando, dos hermanos y un hijo tenían cifras de colesterol por encima del percentil 95.

Análisis de la mutación [1587-5del5; 1587del31]

30 La mutación [1587-5del5; 1587del31] fue caracterizada mediante secuenciación automática del fragmento de 194 pb correspondiente al exón 10 del gen del rLDL al analizar este fragmento en pacientes con diagnóstico clínico de hipercolesterolemia

- 50 -

familiar. La reacción de secuenciación se llevó a cabo en un termociclador PE Gene Amp System 9700 utilizando el kit CEQ 2000 Dye Terminator Cycle Sequencing con Quick Start de Beckman (Beckman Coulter, Palo Alto, CA, USA) y los cebadores Ex11F (SEQ ID NO: 25) y Ex11R (SEQ ID NO: 26).

5 Los fragmentos generados por la reacción de secuenciación se analizaron en un secuenciador automático CEQ 2000XL DNA Analysis System de Beckman. Esta delección se confirmó mediante electroforesis en gel de agarosa al 2% tras la que pudieron observarse bandas de 194 y 158 pb correspondientes al alelo normal y mutado respectivamente. Alternativamente, esta mutación puede analizarse con el dispositivo
10 descrito (“biochip”) utilizando en el soporte los oligonucleótidos SEQ ID NO: 256, SEQ ID NO: 257, SEQ ID NO: 258 y SEQ ID NO: 259.

La mutación [1587-5del5; 1587del31] se encontró en un varón de 43 años con arco corneal, historia de hipercolesterolemia en la familia (padre e hijo con hipercolesterolemia) y evidencia de enfermedad cardiovascular en la familiar (padre
15 sufrió un infarto agudo de miocardio a los 50 años). El diagnóstico clínico de hipercolesterolemia familiar, alcanzó una puntuación según criterios del MedPed de 9 puntos. Las concentraciones plasmáticas de lípidos antes del tratamiento farmacológico fueron: Colesterol total (CT) de 345 mg/dL con niveles de TG de 160 mg/dl y c-HDL de 34 mg/dl. El tratamiento hipolipemiante combinada con Simvastatina (40 mg/día) y
20 colestipol (10 g/día) disminuyó su cifra de CT a 208 mg/dl.

Análisis de la mutación g516x

Esta mutación (1609G>T, GGA>TGA, Gly516Stop) introduce un sitio de reconocimiento para la endonucleasa de restricción HphI. Quince microlitros del material
25 amplificado del exón 11 se hidrolizaron con 15 unidades de HphI en un volumen final de 30 µl según las instrucciones descritas por el fabricante (NEB, Beverly, MA, USA). Los fragmentos resultantes de la digestión tenían un tamaño de 139, 43 y 12 pb para el alelo normal y de 81, 58, 43 y 12 pb para el alelo mutado. Estos fragmentos se separaron por electroforesis en geles de poliacrilamida al 8% y se visualizaron mediante tinción con bromuro de etidio. Alternativamente, esta mutación puede analizarse con el dispositivo descrito (“biochip”) utilizando en el soporte los oligonucleótidos SEQ ID NO: 176, SEQ
30 ID NO: 177, SEQ ID NO: 178 y SEQ ID NO: 179.

- 51 -

La mutación G516X se encontró en una mujer de 20 años con xantomas tendinosos e historia de hipercolesterolemia en la familia (madre y dos hermanos adolescentes con niveles de c-LDL por encima del percentil 95). El diagnóstico clínico de hipercolesterolemia familiar alcanzó una puntuación según criterios del MedPed de 17 puntos. Las concentraciones plasmáticas de lípidos antes del tratamiento farmacológico fueron: CT 476 mg/dL, c-LDL 403 mg/dl y niveles de TG y c-HDL normales. El tratamiento hipolipemiante con un inhibidor de la HMG-CoA reductasa disminuyó su cifra de c-LDL a 202 mg/dL.

10 **Análisis de la mutación H562Q**

Esta mutación (1749C>A, CAC>CAA, His562Gln) fue caracterizada mediante secuenciación automática del fragmento de 194 pb correspondiente al exón 10 del gen del rLDL al analizar este fragmento en pacientes con diagnóstico clínico de hipercolesterolemia familiar. La reacción de secuenciación se llevó a cabo en un termociclador PE Gene Amp System 9700 utilizando el kit CEQ 2000 Dye Terminator Cycle Sequencing con Quick Start de Beckman (Beckman Coulter, Palo Alto, CA, USA) y los cebadores Ex11F (SEQ ID NO: 25) y Ex11R (SEQ ID NO: 26). Los fragmentos generados por la reacción de secuenciación se analizaron en un secuenciador automático CEQ 2000XL DNA Analysis System de Beckman. El cambio observado C>A se confirmó mediante secuenciación automática de un segundo producto de PCR de la misma muestra. Alternativamente, esta mutación puede analizarse con el dispositivo descrito (“biochip”) utilizando en el soporte los oligonucleótidos SEQ ID NO: 208, SEQ ID NO: 209, SEQ ID NO: 210 y SEQ ID NO: 211.

La mutación H562Q se encontró en una mujer de 37 años con historia de hipercolesterolemia y enfermedad coronaria en la familia (padre con hipercolesterolemia e IAM a los 48 años e hijo de 13 años con 500 mg/dl de CT). El diagnóstico clínico de hipercolesterolemia familiar, alcanzó una puntuación según criterios del MedPed de 9 puntos. Las concentraciones plasmáticas de lípidos antes del tratamiento farmacológico fueron: Colesterol total (CT) de 350 mg/dL con niveles de TG y c-HDL normales. El tratamiento hipolipemiante con Atorvastatina (20 mg/día) disminuyó su cifra de CT a 333 mg/dl.

- 52 -

EJEMPLO 12: Identificación de mutaciones localizadas en el exón 12 del r-LDL

Se amplificó un fragmento de 236 pb del exón 12 por la técnica de la reacción en cadena de la polimerasa (PCR) utilizando los desoxioligonucleótidos Ex12F (SEQ ID NO: 150) y Ex12R (SEQ ID NO: 151).

5 La reacción de amplificación se llevó a cabo en un volumen final de 50 µL con 500 ng de ADN en una mezcla de 20mM Tris-HCl, pH 8,4, 50 mM KCl, 1,5 mM MgCl₂, 200 µM de cada dNTP, 0,2 µM de cada desoxioligonucléotido y 1,5 unidades de Taq ADN polimerasa (Gibco BRL, Carlsbad, CA, USA). Los ciclos de amplificación fueron: 10 min de desnaturación a 96°C, seguido de 35 ciclos de desnaturación a 94°C 10 durante 1 minuto, hibridación a 58°C durante 1 minuto y elongación a 72°C durante 2 minutos, al final de los ciclos se realizó una extensión a 72 °C durante 10 minutos.

Los productos de PCR fueron analizados por la técnica de polimorfismos de conformación de cadena sencilla (SSCP). Los fragmentos que mostraron un patrón anómalo por SSCP fueron secuenciados utilizando un secuenciador automático CEQ 15 2000XL DNA Analysis System (Beckman Coulter, Palo Alto, CA, USA). La presencia de una mutación identificada por secuenciación se analizó posteriormente por análisis de restricción y con el dispositivo descrito ("biochip").

Análisis de la mutación E579D

20 Esta mutación E579D (1800G>C, GAG>GAC, Glu579Asp) fue caracterizada mediante secuenciación automática del fragmento de 236 pb correspondiente al exón 12 del gen del rLDL al analizar este fragmento en pacientes con diagnóstico clínico de hipercolesterolemia familiar. La reacción de secuenciación se llevó a cabo en un termociclador PE Gene Amp System 9700 utilizando el kit CEQ 2000 Dye Terminator 25 Cycle Sequencing con Quick Start de Beckman (Beckman Coulter, Palo Alto, CA, USA) y los cebadores Ex12F (SEQ ID NO: 150) y Ex12R (SEQ ID NO: 151). Los fragmentos generados por la reacción de secuenciación se analizaron en un secuenciador automático CEQ 2000XL DNA Analysis System de Beckman. El cambio G>C observado se confirmó mediante secuenciación automática de un segundo producto de PCR de la 30 misma muestra. Alternativamente, esta mutación puede analizarse con el dispositivo descrito ("biochip") utilizando en el soporte los oligonucleótidos SEQ ID NO: 224, SEQ ID NO: 225, SEQ ID NO: 226 y SEQ ID NO: 227.

- 53 -

La mutación E579D se encontró en un varón de 49 años con historia de hipercolesterolemia en la familia (padre con 450 mg/dl de CT, hermano y dos hijos adolescentes con niveles de c-LDL por encima del percentil 95). El diagnóstico clínico de hipercolesterolemia familiar, alcanzó una puntuación según criterios del MedPed de 8 puntos. Las concentraciones plasmáticas de lípidos antes del tratamiento farmacológico fueron: CT 320 mg/dL, c-LDL 250 mg/dl y niveles de TG y c-HDL normales. El tratamiento hipolipemiante con Atorvastatina (10 mg/día) redujo su cifra de c-LDL a 187 mg/dl.

10 **Análisis de la mutación 1815del11**

Esta mutación se pudo identificar por análisis de heterodúplex. La electroforesis en un gel de poliacrilamida al 8% del material de PCR amplificado del exón 12 cuando existe mutación muestra la presencia de bandas de heterodúplex de un aparente mayor tamaño molecular que las dos bandas homodúplex de 236 y 225 pb, fácilmente distinguibles en el gel después de la tinción con bromuro de etidio. Las dos bandas de los heterodúplex que se forman migran a velocidad más lenta como consecuencia de la formación de los abultamientos entre las secuencias no apareadas. Alternativamente, esta mutación puede analizarse con el dispositivo descrito ("biochip") utilizando en el soporte los oligonucleótidos SEQ ID NO: 184, SEQ ID NO: 185, SEQ ID NO: 186 y SEQ ID NO: 187.

La mutación 1815del11 se encontró en 4 familias no relacionadas con hipercolesterolemia autosómica dominante. El probando de una de ellas, era una mujer de 69 años con arco corneal, evidencia de enfermedad cardiovascular prematura (angor a los 56 años) e historia de hipercolesterolemia en varios miembros de su familia (dos hermanos con CT de 700 y 435 mg/dL respectivamente). El diagnóstico clínico de hipercolesterolemia familiar, alcanzó una puntuación según criterios del MedPed de 13 puntos. Las concentraciones plasmáticas de lípidos bajo tratamiento farmacológico (Simvastatina, 40 mg/día) fueron: CT 444 mg/dL, c-LDL 368 mg/dL y niveles de TG y c-HDL normales. El tratamiento hipolipemiante con Atorvastatina (30 mg/día) redujo su cifra de c-LDL a 225 mg/dL.

- 54 -

EJEMPLO 13: Identificación de mutaciones localizadas en el exón 13 del r-LDL.

Se amplificó un fragmento de 215 pb del exón 13 por la técnica de la reacción en cadena de la polimerasa (PCR) utilizando los desoxi oligonucleótidos Ex13F (SEQ ID NO: 27) y Ex13R (SEQ ID NO: 28).

5 La reacción de amplificación se llevó a cabo en un volumen final de 50 μ L con 500 ng de ADN en una mezcla de 20mM Tris-HCl, pH 8,4, 50 mM KCl, 1,5 mM MgCl₂, 200 μ M de cada dNTP, 0,2 μ M de cada desoxi oligonucleótido y 1,5 unidades de Taq ADN polimerasa (Gibco BRL, Carlsbad, CA, USA). Los ciclos de amplificación fueron:
10 durante 10 minutos de desnaturalización a 96°C, seguido de 35 ciclos de desnaturalización a 94°C durante 1 minuto, hibridación a 59°C durante 1 minuto y elongación a 72°C durante 2 minutos, al final de los ciclos se realizó una extensión a 72°C durante 10 minutos.

Los productos de PCR fueron analizados por la técnica de polimorfismos de conformación de cadena sencilla (SSCP). Los fragmentos que mostraron un patrón anómalo por SSCP fueron secuenciados utilizando un secuenciador automático CEQ 15 2000XL ADN Analysis System (Beckman Coulter, Palo Alto, CA, USA). La presencia de una mutación identificada por secuenciación se analizó posteriormente por análisis de restricción y con el dispositivo descrito ("biochip").

Análisis de la mutación D630N

20 Esta mutación (1951G>A, GAT>AAT, Asp630Asn) destruye un sitio de reconocimiento para la endonucleasa de restricción MnII. Quince microlitros del material amplificado del exón 9 se hidrolizaron con 15 unidades de MnII en un volumen final de 30 μ l según las instrucciones descritas por el fabricante (Fermentas Inc., Hanover, MD, USA). Los fragmentos que se obtuvieron tenían un tamaño de 89pb, 48pb, 39 pb, dos de 25 14 pb y 11 pb para el alelo normal y de 89pb, 59pb, 39pb, dos de 14 pb y 12 pb para el alelo mutado. Estos fragmentos se separaron por electroforesis en geles de poliacrilamia al 8%, y se visualizaron mediante tinción con bromuro de etidio. Alternativamente, esta mutación puede analizarse con el dispositivo descrito ("biochip") utilizando en el soporte los oligonucleótidos SEQ ID NO: 124, SEQ ID NO: 125, SEQ ID NO: 126 y SEQ ID
30 NO: 127.

La mutación D630N se encontró en dos familias no relacionadas con hipercolesterolemia familiar de herencia autosómica dominante. El probando era una

- 55 -

mujer de 36 años cuyos padres habían fallecido ambos de infarto de miocardio a los 62 y 64 años.

El diagnóstico clínico de hipercolesterolemia familiar alcanzó una puntuación según criterios del MedPed de 7 puntos. Las concentraciones plasmáticas de lípidos sin 5 tratamiento farmacológico fueron: CT 332 mg/dL, c-LDL 268 mg/dL, siendo sus niveles de TG y c-HDL de 81 y 48 mg/dL, respectivamente.

Análisis de la mutación H635N

Como esta mutación (1966C>A, CAC>AAC, His635Asn) no cambia el mapa de restricción, se diseñó y se sintetizó un desoxi oligonucleótido con dos bases desapareadas que crea un sitio de reconocimiento para la enzima de restricción CaiI en presencia del alelo normal y que desaparece en presencia del alelo mutado.

Se amplificó un fragmento de 169 pb del exón 13 por la técnica de PCR utilizando el desoxi oligonucleótido Ex13F (SEQ ID NO: 27) y el desoxi oligonucleótido 15 con dos bases desapareadas MutH635NR (SEQ ID NO: 29).

La reacción de amplificación se llevó a cabo en un volumen final de 50 µL con 500 ng de ADN en una mezcla de 20mM Tris-HCl, pH 8,4, 50 mM KCl, 1,5 mM MgCl₂, 200 µM de cada dNTP, 0,2 µM de cada desoxi oligonucleótido y 1,5 unidades de Taq ADN polimerasa (Gibco BRL, Carlsbad, CA, USA). Los ciclos de amplificación fueron: 20 10 minutos de desnaturización a 96°C, seguido de 35 ciclos: desnaturización a 94°C durante 1 minuto, hibridación a 56°C durante 1 minuto y elongación a 72°C durante 2 minutos. Al final de los ciclos se realizó una extensión a 72°C durante 10 minutos.

Quince microlitros del material amplificado se hidrolizaron con 15 unidades de CaiI en un volumen final de 30 µl según las instrucciones descritas por el fabricante 25 (Fermentas Inc., Hanover, MD, USA). Los fragmentos que se obtuvieron tenían un tamaño de 151 y 18 pb para el alelo normal y de 169 pb para el alelo mutado, estos fragmentos se separaron por electroforesis en geles de poliacrilamia al 8%, y se visualizaron mediante tinción con bromuro de etidio. Alternativamente, esta mutación puede analizarse con el dispositivo descrito (“biochip”) utilizando en el soporte los 30 oligonucleótidos SEQ ID NO: 128, SEQ ID NO: 129, SEQ ID NO: 130 y SEQ ID NO: 131.

- 56 -

La mutación H635N se encontró en una familia con hipercolesterolemia autosómica dominante. El probando era un hombre de 43 años con arco corneal y sin historia familiar de enfermedad coronaria prematura. La madre y tres de sus hermanos presentaron concentraciones de colesterol por encima del percentil 95. El diagnóstico clínico de hipercolesterolemia familiar alcanzó una puntuación según criterios del MedPed de 13 puntos. Las concentraciones plasmáticas de lípidos sin tratamiento farmacológico fueron: CT 448 mg/dL, c-LDL 384 mg/dL, siendo sus niveles de TG y c-HDL normales.

10 **EJEMPLO 14: Identificación de mutaciones localizadas en el exón 14 del r-LDL.**

Se amplificó un fragmento de 288 pb del exón 14 por la técnica de la reacción en cadena de la polimerasa (PCR) utilizando los desoxi oligonucleótidos Ex14F (SEQ ID NO: 30) y Ex14R (SEQ ID NO: 31).

La reacción de amplificación se llevó a cabo en un volumen final de 50 µL con
15 500 ng de ADN en una mezcla de 20mM Tris-HCl, pH 8,4, 50 mM KCl, 1,5 mM MgCl₂,
20 µM de cada dNTP, 0,2 µM de cada desoxi oligonucleótido y 1,5 unidades de Taq ADN
polimerasa (Gibco BRL, Carlsbad, CA, USA). Los ciclos de amplificación fueron: 10
min de desnaturación a 96°C, seguido de 35 ciclos de desnaturación a 94°C
durante 1 minuto, hibridación a 59°C durante 1 minuto y elongación a 72°C durante 2
20 minutos, al final de los ciclos se realizó una extensión a 72 °C durante 10 minutos.

Los productos de PCR fueron analizados por la técnica de polimorfismos de
conformación de cadena sencilla (SSCP). Los fragmentos que mostraron un patrón
anómalo por SSCP fueron secuenciados utilizando un secuenciador automático CEQ
2000XL DNA Analysis System (Beckman Coulter, Palo Alto, CA, USA). La presencia
25 de una mutación identificada por secuenciación se analizó posteriormente por análisis de
restricción y con el dispositivo descrito ("biochip").

Análisis de la mutación D686Y

La mutación D686Y (2119G>T, GAC>TAC, Asp686Tyr) fue caracterizada
30 mediante secuenciación automática del fragmento de 288 pb correspondiente al exón 14
del gen del rLDL al analizar este fragmento en pacientes con diagnóstico clínico de
hipercolesterolemia familiar. La reacción de secuenciación se llevó a cabo en un

- 57 -

termociclador PE Gene Amp System 9700 utilizando el kit CEQ 2000 Dye Terminator Cycle Sequencing con Quick Start de Beckman (Beckman Coulter, Palo Alto, CA, USA) y los cebadores Ex14F (SEQ ID NO: 30) y Ex14R (SEQ ID NO: 31).

Los fragmentos generados por la reacción de secuenciación se analizaron en un 5 secuenciador automático CEQ 2000XL DNA Analysis System de Beckman. El cambio G>T observado se confirmó mediante secuenciación automática de un segundo producto de PCR de la misma muestra. Alternativamente, esta mutación puede analizarse con el dispositivo descrito (“biochip”) utilizando en el soporte los oligonucleótidos SEQ ID NO: 216, SEQ ID NO: 217, SEQ ID NO: 218 y SEQ ID NO: 219.

10 La mutación D686Y se encontró en un varón de 31 años con xantomas tendinosos, arco corneal, evidencia de enfermedad coronaria prematura (angor) e historia de hipercolesterolemia en la familia (padre y varios hermanos con niveles de c-LDL por encima del percentil 95). El diagnóstico clínico de hipercolesterolemia familiar, alcanzó una puntuación según criterios del MedPed de 21 puntos. Las concentraciones 15 plasmáticas de lípidos antes del tratamiento farmacológico fueron: CT 430 mg/dL y niveles de TG y c-HDL normales. El tratamiento hipolipemiante combinado con Atorvastatina (40 mg/día) y resina (5 gr/día) redujo su cifra de CT a 205 mg/dl.

20 **EJEMPLO 15: Identificación de mutaciones localizadas en el exón 15 del gen del r-LDL.**

Se amplificó un fragmento de 243 pb del exón 15 por la técnica de la reacción en cadena de la polimerasa (PCR) utilizando los desoxioliogonucleótidos Ex15F (SEQ ID NO: 32) y Ex15R (SEQ ID NO: 33).

La reacción de amplificación se llevó a cabo en un volumen final de 50 µL con 25 500 ng de ADN en una mezcla de 20mM Tris-HCl, pH 8,4, 50 mM KCl, 1,5 mM MgCl₂, 200 µM de cada dNTP, 0,2 µM de cada desoxioliogonucleótido y 1,5 unidades de Taq ADN polimerasa (Gibco BRL, Carlsbad, CA, USA). Los ciclos de amplificación fueron: 10 minutos de desnaturización a 96°C, seguido de 35 ciclos: desnaturización a 94°C durante 1 minuto, hibridación a 55°C durante 30 segundos y elongación a 72°C durante 30 90 segundos. Al final de los ciclos se realizó una extensión a 72°C durante 10 minutos.

Los productos de PCR fueron analizados por la técnica de polimorfismos de conformación de cadena sencilla (SSCP). Los fragmentos que mostraron un patrón

anómalo por SSCP fueron secuenciados utilizando un secuenciador automático CEQ 2000XL ADN Analysis System (Beckman Coulter, Palo Alto, CA, USA). La presencia de una mutación identificada por secuenciación se analizó posteriormente por análisis de restricción y con el dispositivo descrito ("biochip").

5

Análisis de la mutación 2184delG

Esta mutación crea un nuevo sitio de reconocimiento para la endonucleasa de restricción AluI. Quince microlitros del material amplificado se hidrolizaron con 15 unidades de AluI en un volumen final de 30 µl, según las instrucciones descritas por el fabricante (Gibco BRL, Carlsbad, CA, USA). Los fragmentos resultantes tenían un tamaño de 166 y 78 pb para el alelo normal y de 166, 67 y 11 pb para el alelo mutado. Estos fragmentos se separaron por electroforesis en geles de poliacrilamia al 8%, y se visualizaron por tinción con bromuro de etidio. Alternativamente, esta mutación puede analizarse con el dispositivo descrito ("biochip") utilizando en el soporte los oligonucleótidos SEQ ID NO: 132, SEQ ID NO: 133, SEQ ID NO: 134 y SEQ ID NO: 135.

La mutación 2184delG se detectó en una familia con hipercolesterolemia autosómica dominante. El probando era una mujer de 32 años con historia familiar de enfermedad coronaria prematura. El diagnóstico clínico de hipercolesterolemia familiar alcanzó una puntuación según criterios del MedPed de 6 puntos. Las concentraciones plasmáticas de lípidos sin tratamiento farmacológico fueron: CT 330 mg/dL, c-LDL 270 mg/dL, siendo sus niveles de TG y c-HDL normales.

Análisis de la mutación T740M

25 Esta mutación (2282C>T, ACG>ATG, Tyr740Met) introduce un sitio de reconocimiento para la endonucleasa de restricción NlaIII. Quince microlitros del material amplificado que incluía parte del exón 15 se hidrolizaron con 15 unidades de NlaIII en un volumen final de 30 µl según las instrucciones descritas por el fabricante (NEB, Beverly, MA, USA). Los fragmentos resultantes de la digestión tenían un tamaño de 247 pb para el alelo normal y de 247, 194 y 53 pb para el alelo mutado. Estos fragmentos se separaron por electroforesis en geles de poliacrilamida al 8% y se visualizaron mediante tinción con bromuro de etidio. Alternativamente, esta mutación

- 59 -

puede analizarse con el dispositivo descrito ("biochip") utilizando en el soporte los oligonucleótidos SEQ ID NO: 192, SEQ ID NO: 193, SEQ ID NO: 194 y SEQ ID NO: 195.

La mutación T740M se encontró en un mujer de 60 años con arco corneal, 5 historia familiar de hipercolesterolemia y antecedentes de enfermedad cardiovascular prematura en la familia (padre muerto de accidente cerebrovascular a los 34 años). El diagnóstico clínico de hipercolesterolemia familiar, alcanzó una puntuación según criterios del MedPed de 10 puntos. Las concentraciones plasmáticas de lípidos antes del tratamiento farmacológico fueron: CT 492 mg/dL y niveles de TG y c-HDL normales. El 10 tratamiento hipolipemiante con atorvastatina (10 mg/día) disminuyó su cifra de CT a 251 mg/dL.

EJEMPLO 16: Identificación de mutaciones localizadas en el exón 16 del r-LDL.

Se amplificó un fragmento de 273 pb del exón 16 por la técnica de la reacción en 15 cadena de la polimerasa (PCR) utilizando los desoxi oligonucleótidos Ex16F (SEQ ID NO: 152) y Ex16R (SEQ ID NO: 153).

La reacción de amplificación se llevó a cabo en un volumen final de 50 µL con 500 ng de ADN en una mezcla de 20mM Tris-HCl, pH 8,4, 50 mM KCl, 1,5 mM MgCl₂, 200 µM de cada dNTP, 0,2 µM de cada desoxi oligonucleótido y 1,5 unidades de Taq 20 ADN polimerasa (Gibco BRL, Carlsbad, CA, USA). Los ciclos de amplificación fueron: 10 min de desnaturación a 96°C, seguido de 35 ciclos de desnaturación a 94°C durante 1 minuto, hibridación a 63°C durante 1 minuto y elongación a 72°C durante 2 minutos, al final de los ciclos se realizó una extensión a 72 °C durante 10 minutos.

Los productos de PCR fueron analizados por la técnica de polimorfismos de conformación de cadena sencilla (SSCP). Los fragmentos que mostraron un patrón anómalo por SSCP fueron secuenciados utilizando un secuenciador automático CEQ 2000XL DNA Analysis System (Beckman Coulter, Palo Alto, CA, USA). La presencia de una mutación identificada por secuenciación se analizó posteriormente por análisis de restricción y con el dispositivo descrito ("biochip").

30

Análisis de la mutación V766E

- 60 -

La mutación V766E (2360T>A, GTG>GAG, Val766Glu) fue caracterizada mediante secuenciación automática del fragmento de 273 pb correspondiente al exón 16 del gen del rLDL al analizar este fragmento en pacientes con diagnóstico clínico de hipercolesterolemia familiar. La reacción de secuenciación se llevó a cabo en un termociclador PE Gene Amp System 9700 utilizando el kit CEQ 2000 Dye Terminator Cycle Sequencing con Quick Start de Beckman (Beckman Coulter, Palo Alto, CA, USA) y los cebadores Ex 16F (SEQ ID NO: 152) y EX16R (SEQ ID NO: 153). Los fragmentos generados por la reacción de secuenciación se analizaron en un secuenciador automático CEQ 2000XL DNA Analysis System de Beckman. El cambio T>A observado se confirmó mediante secuenciación automática de un segundo producto de PCR de la misma muestra. Alternativamente, esta mutación puede analizarse con el dispositivo descrito ("biochip") utilizando en el soporte los oligonucleótidos SEQ ID NO: 236, SEQ ID NO: 237, SEQ ID NO: 238 y SEQ ID NO: 239.

La mutación V766E se encontró en una mujer de 58 años con xantomas tendinosos en codos, xantelasmás, arco corneal, y con historia familiar de hipercolesterolemia. El diagnóstico clínico de hipercolesterolemia familiar, alcanzó una puntuación según criterios del MedPed de 12 puntos. Las concentraciones plasmáticas de lípidos antes del tratamiento farmacológico fueron: CT 420 mg/dL, c-LDL de 324 mg/dL y con niveles de TG y c-HDL normales.

20

Análisis de la mutación I771T

Como esta mutación (2375T>C, ATT>CACT, Ile771Thr), no cambia el mapa de restricción, se diseño y sintetizó un desoxi oligonucleótido con una base desapareada que crea un sitio de reconocimiento para la enzima de restricción HincII en presencia del alelo mutado y que desaparece en presencia del alelo normal.

Se amplificó un fragmento de 142 pb del exón 16 por la técnica de PCR utilizando el desoxi oligonucleótido Ex16R (SEQ ID NO: 153) y el desoxi oligonucleótido con la base desapareada MutI771TF (SEQ ID NO: 154).

La reacción de amplificación se llevó a cabo en un volumen final de 50 µL con 30 500 ng de ADN en una mezcla de 20mM Tris-HCl, pH 8,4, 50 mM KCl, 1,5 mM MgCl₂, 200 µM de cada dNTP, 0,2 µM de cada desoxi oligonucleótido y 1,5 unidades de Taq ADN polimerasa (Gibco BRL, Carlsbad, CA, USA). Los ciclos de amplificación fueron:

- 61 -

10 minutos de desnaturalización a 96°C, seguido de 35 ciclos: desnaturalización a 94°C durante 1 minuto, hibridación a 61°C durante 1 minuto y elongación a 72 °C durante 2 minutos. Al final de los ciclos se realizó una extensión a 72 °C durante 10 minutos. Quince microlitros del material amplificado de parte del exón 14 se hidrolizaron con 15 unidades de HincII en un volumen final de 30 µl según las instrucciones descritas por el fabricante (Amersham Pharmacia Biotech Inc., Piscataway, NJ, USA). Los fragmentos resultantes de la digestión tenían un tamaño de 142 pb para el alelo normal y de 121 y 21 pb para el alelo mutado. Estos fragmentos se separaron por electroforesis en geles de poliacrilamida al 8% y se visualizaron mediante tinción con bromuro de etidio.

5 Alternativamente, esta mutación puede analizarse con el dispositivo descrito ("biochip") utilizando en el soporte los oligonucleótidos SEQ ID NO: 196, SEQ ID NO: 197, SEQ ID NO: 198 y SEQ ID NO: 199.

10

La mutación I771T se encontró en una mujer de 60 años con evidencia de enfermedad coronaria prematura en la familia e historia familiar de hipercolesterolemia. 15 El diagnóstico clínico de hipercolesterolemia familiar, alcanzó una puntuación según criterios del MedPed de 21 puntos. Las concentraciones plasmáticas de lípidos antes del tratamiento farmacológico fueron: CT 422 mg/dL, c-LDL 368 mg/dL y unos niveles de TG y c-HDL normales.

20 **Análisis de la mutación 2389+3 A>C**

La mutación 2389+3 C>T fue caracterizada mediante secuenciación automática del fragmento de 273 pb correspondiente al exón 16 del gen del rLDL al analizar este fragmento en pacientes con diagnóstico clínico de hipercolesterolemia familiar. La reacción de secuenciación se llevó a cabo en un termociclador PE Gene Amp System 9700 utilizando el kit CEQ 2000 Dye Terminator Cycle Sequencing con Quick Start de Beckman (Beckman Coulter, Palo Alto, CA, USA) y los cebadores Ex16F (SEQ ID NO: 152) y Ex16R (SEQ ID NO: 153). Los fragmentos generados por la reacción de secuenciación se analizaron en un secuenciador automático CEQ 2000XL DNA Analysis System de Beckman. El cambio C>T observado se confirmó mediante secuenciación 25 automática de un segundo producto de PCR de la misma muestra.

30

- 62 -

Alternativamente, esta mutación puede analizarse con el dispositivo descrito ("biochip") utilizando en el soporte los oligonucleótidos SEQ ID NO: 252, SEQ ID NO: 253, SEQ ID NO: 254 y SEQ ID NO: 255.

La mutación 2389+3 C>T se encontró en un varón de 36 años con xantomas tendinosos en tendón de aquiles y extensores de la mano e historia de hipercolesterolemia en la familia (madre, hermano y un hijo con niveles de c-LDL por encima del percentil 95). El diagnóstico clínico de hipercolesterolemia familiar, alcanzó una puntuación según criterios del MedPed de 18 puntos. Las concentraciones plasmáticas de lípidos antes del tratamiento farmacológico fueron: CT 450 mg/dL y niveles de TG y c-HDL normales. El tratamiento hipolipemiante con Atorvastatina (20 mg/día) redujo su cifra de CT a 259 mg/dl.

Análisis de la mutación 2389+4 A>G

Como esta mutación no cambia el mapa de restricción, se diseñó y sintetizó un desoxinucleótido con una base desapareada que crea una un sitio de reconocimiento para la enzima de restricción BshNI en presencia del alelo mutado y que desaparece en presencia del alelo normal.

Se amplificó un fragmento de 194 pb del exón 16 por la técnica de PCR utilizando el desoxioligonucleótido Ex16F (SEQ ID NO: 152) y el desoxioligonucleótido con la base desapareada Mut2389+4 A>GR (SEQ ID NO: 155).

La reacción de amplificación se llevó a cabo en un volumen final de 50 µL con 500 ng de ADN en una mezcla de 20mM Tris-HCl, pH 8,4, 50 mM KCl, 1,5 mM MgCl₂, 200 µM de cada dNTP, 0,2 µM de cada desoxioligonucléotido y 1,5 unidades de Taq ADN polimerasa (Gibco BRL, Carlsbad, CA, USA). Los ciclos de amplificación fueron: 10 minutos de desnaturización a 96°C, seguido de 35 ciclos: desnaturización a 94°C durante 1 minuto, hibridación a 61°C durante 1 minuto y elongación a 72 °C durante 2 minutos. Al final de los ciclos se realizó una extensión a 72 °C durante 10 minutos.

Quince microlitros del material amplificado del exón 16 se hidrolizaron con 15 unidades de BshNI en un volumen final de 30 µl según las instrucciones descritas por el fabricante (Fermentas Inc., Hanover, MD, USA). Los fragmentos resultantes de la digestión tenían un tamaño de 194 pb para el alelo normal y de 175 y 19 pb para el alelo mutado. Estos fragmentos se separaron por electroforesis en geles de poliacrilamida al

8% y se visualizaron mediante tinción con bromuro de etidio. Alternativamente, esta mutación puede analizarse con el dispositivo descrito (“biochip”) utilizando en el soporte los oligonucleótidos SEQ ID NO: 180, SEQ ID NO: 181, SEQ ID NO: 182 y SEQ ID NO: 183.

- 5 La mutación 2389+4 A>G se encontró en once familias no relacionadas con herencia de la hipercolesterolemia autosómica dominante. El probando de una de ellas, era una mujer de 22 años con xantomas tendinosos, antecedentes de enfermedad cardiovascular prematura en la familia (padre con hipercolesterolemia e infarto de miocardio a los 29 años). El diagnóstico clínico de hipercolesterolemia familiar, alcanzó una puntuación 10 según criterios del MedPed de 17 puntos. Las concentraciones plasmáticas de lípidos antes del tratamiento farmacológico fueron: CT 356 mg/dL, c-LDL 293 mg/dL con niveles de TG y c-HDL normales. El tratamiento hipolipemiante combinado con atorvastatina (40 mg/día) y resina (5 gramos/día) disminuyó su cifra de c-LDL a 227 mg/dL.

15

EJEMPLO 17: Identificación de mutaciones localizadas en el exón 17 del gen del r-LDL.

- Se amplificó un fragmento de 242 pb del exón 17 por la técnica de la reacción en cadena de la polimerasa (PCR) utilizando los desoxi oligonucleótidos Ex17F (SEQ ID 20 NO: 34) y Ex17R (SEQ ID NO: 35).

La reacción de amplificación se llevó a cabo en un volumen final de 50 µL con 300 ng de ADN en una mezcla de 20mM Tris-HCl, pH 8,4, 50 mM KCl, 1,5 mM MgCl₂, 200 µM de cada dNTP, 0,2 µM de cada desoxi oligonucleótido y 1,5 unidades de Taq ADN polimerasa (Gibco BRL, Carlsbad, CA, USA). Los ciclos de amplificación fueron: 25 10 minutos de desnaturización a 96°C, seguido de 35 ciclos de desnaturización a 94°C durante 1 minuto, hibridación a 58°C durante 1 minuto y elongación a 72°C durante dos minutos. Al final de los ciclos se realizó una extensión a 72°C durante 10 minutos.

Los productos de PCR fueron analizados por la técnica de polimorfismos de conformación de cadena sencilla (SSCP). Los fragmentos que mostraron un patrón anómalo por SSCP fueron secuenciados utilizando un secuenciador automático CEQ 30 2000XL ADN Analysis System (Beckman Coulter, Palo Alto, CA, USA). La presencia

- 64 -

de una mutación identificada por secuenciación se analizó posteriormente por análisis de restricción y con el dispositivo descrito ("biochip").

Análisis de la mutación 2399del5ins4

5 Esta mutación elimina la secuencia TCTTC e inserta la secuencia GGGT en la posición 2399 creando un nuevo sitio de reconocimiento para la endonucleasa de restricción Aval. Quince microlitros del material amplificado se hidrolizaron con 15 unidades de Aval en un volumen final de 30 µl según las instrucciones descritas por el fabricante (Amersham Pharmacia Biotech Inc., Piscataway, NJ, USA). Los fragmentos
10 resultantes tenían un tamaño de 230 y 12 pb para el alelo normal y de 183, 46 y 12 pb para el alelo mutado. Estos fragmentos se separaron por electroforesis en geles de poliacrilamida al 8%, y se visualizaron mediante tinción con bromuro de etidio. Alternativamente, esta mutación puede analizarse con el dispositivo descrito ("biochip")
15 utilizando en el soporte los oligonucleótidos SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138 y SEQ ID NO: 139.

La mutación 2399del5ins4 se detectó en tres familias no relacionadas con hipercolesterolemia de herencia autosómica dominante. El probando de una familia era una mujer de 49 años con xantomas tendinosos y cuyo padre había fallecido a los 51 años de infarto de miocardio. El diagnóstico clínico de hipercolesterolemia familiar alcanzó
20 una puntuación según criterios del MedPed de 16 puntos. Las concentraciones plasmáticas de lípidos sin tratamiento farmacológico fueron: CT 510 mg/dL, c-LDL 424 mg/dL, siendo sus niveles de TG y c-HDL de 140 y 58 mg/dL respectivamente. El tratamiento farmacológico combinado con simvastatina 20 mg/dL y colestipol 20 g/día redujo su colesterol total plasmático a 280 mg/dL. Por otra parte, dos hijos suyos de 22 y
25 20 años tenían cifras de colesterol de 330 y 386 mg/dL, respectivamente.

Análisis de la mutación 2544insC

Esta mutación fue caracterizada mediante secuenciación automática del fragmento de 242 pb correspondiente al exón 17 del gen del rLDL al analizar este fragmento en
30 pacientes con diagnóstico clínico de hipercolesterolemia familiar. La reacción de secuenciación se desarrolló en termociclador PE Gene Amp System 9700 utilizando el kit CEQ 2000 Dye Terminator Cycle Sequencing con Quick Start de Beckman (Beckman

- 65 -

Coulter, Palo Alto, CA, USA) con los cebadores Ex17F (SEQ ID NO: 34) y Ex17R (SEQ ID NO: 35) la posterior electroforesis en secuenciador automático CEQ 2000XL DNA Analysis System de Beckman. Esta delección se confirmó mediante secuenciación automática de un segundo producto de PCR de la misma muestra. Alternativamente, esta 5 mutación puede analizarse con el dispositivo descrito (“biochip”) utilizando en el soporte los oligonucleótidos SEQ ID NO: 244, SEQ ID NO: 245, SEQ ID NO: 246 y SEQ ID NO: 247.

La mutación 2544insC se encontró en un varón de 37 años que había sufrido un infarto de miocardio, xantomas tendinosos, arco corneal, e historia de hipercolesterolemia 10 en la familia (su padre falleció prematuramente de infarto de miocardio). El diagnóstico clínico de hipercolesterolemia familiar, alcanzó una puntuación según criterios del MedPed de 21 puntos. Las concentraciones plasmáticas de lípidos antes del tratamiento farmacológico fueron: CT 444 mg/dL, c-LDL 379 mg/dL y con niveles de TG y c-HDL normales. El tratamiento hipolipemiante con Atorvastatina (40 mg/día) redujo su cifra de 15 CT a 282 mg/dL.

Descripción de las figuras:

Figura 1: Esta figura es una representación esquemática de la ruta celular que sigue el r-LDL. El r-LDL se sintetiza en el retículo endoplásmico como una proteína precursora de 20 120 Kilodaltons y es transportado al aparato de Golgi. Una vez que es transferido a la superficie celular el receptor reconoce a la apolipoproteína B que es el componente protélico de las LDL. La unión conduce a la captación, internalización y degradación liposomal por el proceso denominado endocitosis. Esta captación permite satisfacer las necesidades de colesterol de la célula e induce a la supresión de la síntesis endógena de 25 colesterol.

Figura 2: La figura representa los cinco dominios estructurales de la proteína del receptor LDL humana y su correspondencia con los exones del gen.

Figura 3: Portaobjetos de cuantificación de imagen con 4 cebadores (2 normales y 2 mutados) repetidos en 10 pocillos para la mutación E256K. (A) individuo normal (B) 30 individuo con hipercolesterolemia familiar.

- 66 -

REIVINDICACIONES

- 1.- Secuencia génica correspondiente a SEQ ID NO:1 que comprende al menos una de las siguientes mutaciones: (-23)A>C, 1054 del11, 108delC, 1197del9, 1207delT, 1432delG, 191-2delAinsCT, 2184delG, 231delC, 2399del5ins4, 313+1insT, 338del16, 5 509insC, 675del15, 684dup12, 941-39C>T, C195R, C255G, C319Y, D157G, D630N, E291X, H635N, N59K, T41M, W515X, Y379X, Y421X, T433N, 818del8, 1423delGC/insA, 1204insT, 451del3, G516X, 2389+4A>G, 1815del11, 1186+5G>A, T740M, I771T, R279G, T446I, H562Q, C74Y, D686Y, G(-2)R, E579D, S205C, D200V, V766E, L(-6)P, 2544insC, C42Y, 2389+3A>C, [1587-5del5;1587del31], de aplicación 10 en métodos de diagnóstico extracorpóreos e in vitro, de la hipercolesterolemia familiar.
- 2.- Secuencia génica según la reivindicación 1 que comprende además, alguna de las siguientes mutaciones: 2393del9, (-42)C>G, (-49)C>T, 1045delC, 1061-8 T>C, A378T, C358R, 1358+1G>A, 1706-10G>A, 1845+1G>C, 2085del19, 211delG, 2140+5G>A, 2207insT, 2390-1G>C, 313+1G>C, 313+1G>A, 518delG, 7delC, 872delC, 15 884delT, 920ins4, A519T, C113W, C255X, C281Y, C297F, C347Y, C371X, C646Y, C677Y, C68W, C74G, C95R, D151N, D200G, D200Y, D280G, E10X, E246A, E256K, F634L, G322S, G352D, G571E, N543H, N804K, Q12X, Q133X, Q357P, Q427X, Q71E, R395Q, R574W, R612C, S156L, S205P, T413K, T705I, V502M, W(-18)X, W541X, D679E, 1359-1G>A, C127R, 681ins21, C122X, V408M, G528D, D412H, N619N, 20 E80K, L534P, L621S, C356Y, R329X, G248D, C201Y, 313+5G>A, C358Y, C331R, D157N, V776M, P664L, W462X, Q328X, L584P, R395W, G314V, W469X, P678L, R612H, R236W, de aplicación en métodos de diagnóstico extracorpóreos e in vitro, de la hipercolesterolemia familiar.
- 3.- Secuencia génica según cualquiera de las reivindicaciones 1 ó 2 que comprende, además, alguno de los siguientes polimorfismos: 81T>C BstUI Exón 2, 25 1060+10G>C SmaI Exón 7, 1171G>A StuI Exón 8, 1413G>A DdeI Exón 10, 1617C>T BstNI Exón 11, 1725C>T SSCP Exón 12, 1771C>T HincII Exón 12, 1959 T>C Avall Exón 13, 2232G>A MspI Exón 15, de aplicación en métodos de diagnóstico extracorpóreos e in vitro, de la hipercolesterolemia familiar.
- 4.- Uso de la secuencia génica de la reivindicación 1 en el diseño y la preparación 30 de sondas oligonucleotídicas capaces de hibridar con alguna de las siguientes mutaciones: (-23)A>C, 1054del11, 108delC, 1197del9, 1207delT, 1432delG, 191-2delAinsCT,

- 67 -

2184delG, 231delC, 2399del5/ins4, 313+1insT, 338del16, 509insC, 675del15, 684dup12,
941-39 C>T, C195R, C255G, C319Y, D157G, D630N, E291X, H635N, N59K, T41M,
W515X, Y379X, Y421X, T433N, 818del8, 1423delGC/insA, 1204insT, 451del3,
G516X, 2389+4A>G, 1815del11, 1186+5G>A, T740M, I771T, R279G, T446I, H562Q,
5 C74Y, D686Y, G(-2)R, E579D, S205C, D200V, V766E, L(-6)P, 2544insC, C42Y,
2389+3A>C, [1587-5del5;1587del31].

5.- Sondas oligonucleotídicas capaces de hibridar con cualquiera de las mutaciones comprendidas en la secuencia génica de la reivindicación 1.

6.- Sondas oligonucleotídicas según la reivindicación 5 seleccionadas entre al menos unas de las siguientes SEQ ID NO: 8, SEQ ID NO: 11, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 24, SEQ ID NO: 29, o al menos una de entre SEQ ID NO: 37 a la SEQ ID NO: 147 o de entre SEQ ID NO:154 a SEQ ID NO: 259.

7.- Uso de las sondas de la reivindicación 5 en un método extracorpóreo de detección in vitro de mutaciones del gen r-LDL para el diagnóstico de la 15 hipercolesterolemia familiar.

8.- Uso de las sondas de la reivindicación 6 en un método extracorpóreo de detección in virtro de mutaciones del gen r-LDL para el diagnóstico de hipercolesterolemia familiar.

9.- Dispositivo de ensayo que comprende un soporte al que se acopla alguna de 20 las sondas oligonucleotídicas de la reivindicación 5, de aplicación en la diagnosis de la hipercolesterolemia familiar.

10.- Dispositivo de ensayo que comprende un soporte al que se acopla alguna de las sondas oligonucleotídicas de las reivindicación 6, de aplicación en la diagnosis de la hipercolesterolemia familiar.

25 11.- Uso de algunas de las sondas seleccionadas entre: SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 30 28, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 32, SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 148, SEQ ID NO: 149, SEQ ID NO: 150, SEQ ID NO:

151, SEQ ID NO: 152, SEQ ID NO: 153 en un método extracorpóreo de detección in vitro de mutaciones del gen r-LDL para el diagnóstico de la hipercolesterolemia familiar.

12.- Dispositivo de ensayo según cualquiera de las reivindicaciones 9 ó 10 que comprende un soporte al que se acoplan además alguna de las sondas seleccionadas entre:

5 SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 32, SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 148, SEQ ID NO: 149, SEQ ID NO: 150, SEQ ID NO: 151, SEQ ID NO: 152, SEQ ID NO: 153 de aplicación en la diagnosis de la hipercolesterolemia familiar.

13.- Método extracorpóreo de diagnóstico in vitro de hipercolesterolemia familiar caracterizado por detectar en una muestra biológica de un individuo algunas de las 15 mutaciones de SEQ ID NO:1, descritas en la reivindicación 1.

14.- Método extracorpóreo de diagnóstico in vitro de hipercolesterolemia familiar caracterizado por detectar en una muestra biológica de un individuo algunas de las mutaciones de SEQ ID NO:1, descritas en la reivindicación 1, en combinación con alguna de las mutaciones de dicha SEQ ID NO:1, descritas en la reivindicación 2.

20 15.- Método extracorpóreo de diagnóstico in vitro de hipercolesterolemia familiar caracterizado por detectar en una muestra biológica de un individuo algunas de las mutaciones de SEQ ID NO:1, descritas en la reivindicación 1, en combinación con alguno de los polimorfismos de dicha SEQ ID NO:1, descritos en la reivindicación 3.

16.- Método de diagnóstico según las reivindicaciones 13 a 15 que comprende 25 amplificar fragmentos de ADN que contengan las mutaciones de la reivindicación 1, sólas o en combinación con las mutaciones de la reivindicación 2 y/o los polimorfismos de la reivindicación 3, por la técnica de la reacción en cadena de la polimerasa (PCR), utilizando para ello alguno de los desoxi oligonucléotidos seleccionados entre SEQ ID NO: 2 a SEQ ID NO: 259 o combinaciones de los mismos, sometiendo los productos 30 PCR a un análisis por la técnica de polimorfismos de conformación de cadena sencilla (SSCP), secuenciando aquellos fragmentos que presenten un patrón anómalo por SSCP.

- 69 -

para detectar las mutaciones que serían identificadas con posterioridad mediante análisis de restricción o mediante el dispositivo de ensayo de las reivindicaciones 9, 10 ó 12.

1/3

FIG. 1

2/3

FIG. 2

3/3

B

A

FIG. 3

- 1 -

LISTADO DE SECUENCIAS

<110> EFARMES, S.A.

<120> "PROCEDIMIENTO Y DISPOSITIVO DE DETECCIÓN DE MUTACIONES EN SECUENCIAS GENICAS AISLADAS DEL RECEPTOR DE LIPOPROTEÍNAS DE BAJA DENSIDAD (LDL-R) ASOCIADO CON LA HIPERCOLESTEROLEMIA FAMILIAR".

<130> PCT-154

<160> 259

<150> ES200300206

<151> 28.01.03

<150> ES200302671

<151> 17.11.03

<210> SEQ ID NO.: 1

<211> 60.000

<212> polinucleótido

<213> humano

<220>

<221> gen

<223> rLDL

<400>

aaaagatgg tatatccattc aatggaacat tatttggcct ttaaaaggaa ggaaattctc 60
actgagcata gtggtttatg cctgtaatcc cagcactttg ggaggcttag gcagggggga 120
gggggcggtt cacctgaggt caggagttca agaccagcct ggccaacatg gtgaatccc 180
gtctotacta aaaataaaaaaa aaaatttagcc gagtggttg gcacacaccc gtaagccagg 240
ctacacggga gactgaggca ggagaatcgc tggaacccgg.gaggcagagg ctgcagagag 300
ccgagattgc gtcactgcac tccagcctgg gtgacagagc gagactcttg tctaaaaaaa 360
aaaaagaagg aaggaaggaa ggaaggaagg aagtctgac acaggctcca acacagatgt 420
tatgctcagt gaaataagcc agacatgaaa ggacaaatac tgccctgatct cattcataag 480
aggtccctag aattgtagaa tggtgtgtgc cacggcctgg gaggggggtgt ggccagagtt 540
tcagtttggg aagttgagaa tggatggcg atggatggcg gtatgtgtgg ttgcacaact 600
gtgtgaatgc gcttaatgcc tctgaattgt gcagttacaa gtggttcgga tggccgggc 660
gcggcggctc atgcctgtaa tcccagcact ttggggaggcc gaggcaggtg gatcatgaga 720
tcaggagatc gagaccatcc tggctaacac ggtgaaaccc catctctact aaaaaataca 780

- 2 -

aaaaaattagc caggcatggt ggtgggcacc ttagtccca gctacttggg aggccgaggc 840
aggagaatgg cgtgaacacg ggagggcagaa cttgcagtga gccgagatca cgccactgca 900
ctccagcctg ggcacagag tgagactccg tctaaaaaaaaaaa aaaaagtggtaaagatggc 960
cgggcatggg ggtcacgct tgcaatccca acacttggg aggctgaggt gggtgattac 1020
gaggtcagga gttcgagacc agcctgacca ccatggtaa accccgtctc tactaaaagt 1080
acaaaattag ccgggtgtcg tggcacacgt ctgtaatccc agctactggg gaggctgagt 1140
tgggaggatc acctgagccc agggaggtcc aggctgcagc aagccatgat tgaccactg 1200
caactccagcc tgggtgagag agtggagaccc tggctccaaa caaacacaca tgaaaaacag 1260
atttttttg ccaggtgcag tggctcacac ctgtaatccc agcactttgg gaggccaagg 1320
cgggtggatc acgaggtcag gtactgaga gcacccctggc taacacgggt aaaccctggc 1380
tctactaaaa atacaaaaat ttagccgagc atgggtggtaa gcacctgttag tcccaagctac 1440
tcgggaggct gaggcaggag aatggcatga acctgggagg cggagcttgc agttagctga 1500
gatcacgcca ctgcactcta gcctggggga cacagcaaaa ctgtctcaaa aaaaaaaaaa 1560
aagggttttt taattaaaaa agggaaagaaa aggagagtgc tcgtgtggca ggcacctagc 1620
cctgtccagc gcaccctgag acagggatgatg tggctcccttcc ttgacctaag accacaagtt 1680
ctaaccattt caaccgagga cagagccccca attccaggca gggcaatggg gtcgccttgt 1740
gaactaagat gcagatggag aagagcagac acagacacag gtcttggggc ccctgcaggg 1800
gtttctcaact ggctttttcc ccctggattc ctatgggttc tggggaaacag agttaggtcg 1860
gctggcaaga cagatgcatttggc gcccctgaca ttgagccgga gggccagagt 1920
tcgtcattgc tgacgcagag aagctgggag ccaaggttag ccagatgggt tggaggagtt 1980
ttaaaacaattt ttttcttttcc ttctcttttcc catctgtctg tccttctttcc ctcccttcct 2040
gcccccttcc ttctctcctt tcttccttcc ctctctcctt cctccctttt tttctttttt 2100
tttggtttttcc tttttgtatt agtattatta ttttttagac agggcttgc tctgttgccc 2160
aggctggagg gcagtggcac gatcacagct cagtagaccc tcaacccttcc gggtaaaggc 2220
aatcccttcgtt ccctggcctc ccaggttagt gggactacag gctgtgcca ccacacctgg 2280
ttaattttttt ttttttttga gacggagtct tgcctgtca cccaggctgc agtgcagtgg 2340
cgtgatctcg gctcaactgca acctccaccc cccgggttca agcgatcctc ctgcctcagc 2400
ctccccagta gctgggatttta cacggcccccc ccaccaagcc cggctaattt ttttattttt 2460
agtagagaca gagtttccacc acgttggcca ggctcgctc aaactcctga cttagtgatc 2520
tacccacccctt ggctctcaa agtgcgtggta tttagaggcgt gagccacccat ggcgcagccaa 2580
ttttgtattttttagtagatgggtttcc accatgttgg tcaagtctgg tctgaactcc 2640
tgacctcaag tgatccacccctt ccctcagccctt cccaaagtgc tggaaattaca ggcataagcc 2700
accgcgccccca gcccctctaa ccatttttaa gtgcacagtt cagcagcatt aagcacattc 2760
acattgttgtt gcaaccatca gccccctgtcc atctccagct ttctctttttt ttttgggtt 2820
tttggagacag ggtcttaactc tctcgccccag tatagagtgc agtgggtggc tcttggtcg 2880
ctgcaacccctt tgccttcag gttcaagcta ttctcctgccc tcagtcctcc cagtagctgg 2940
gattacagac acacatcacc acggccctgtctt aatttttttgc cttttttttttagt agagatgggtg 3000
tttccaccata ttggccaggc tgatcttggaa ctccctggctt caagtgggtct gctccaaact 3060
gctgagatta cagccgtgag ccactgctcc cagccatctg cacctttctc atcttccaa 3120
atgttaactat gtccccgtga aacactcaact ccccatccca cctcccccagc ccctggcacc 3180
ccccatttta ttctgggtctt agggaaattt caaaccaggc aagtctcaac acatgctcgaa 3240
gtgttaagaac cagccccacag cctcggttccca taatcaggtt caaaccaggaa ttctactccaa 3300

- 3 -

ggttctactc tgtgaatctg ctttctgtga atctgtact ctggggaccg cctataagtt 3360
gaatccata gtgtctccac ttcaagtact ggcttatttc acttttctcc tctttattta 3420
tgagacaaaa tttcgctttt gttgctcagg ctggaaatgca atggcgtat ctcgcta 3480
tttttgtat ttttagtaga ggccccgtt caccatgtt gccaggctgg tctcgaaactc 3540
ctgacctcag acgatccact ttggccttcc aaagtgcgtt gattacaggc gcggccacc 3600
tttctctct taatcacaca ggtaatccat acatacgaca ttctttttt ttttgacac 3660
ggagtcttac tctgtcacct aggtggagt gcagtggcgc aatcttggct cactgcaacc 3720
tctgcctccc aggtcaagc aattctcctg cctcagccctc ctgagtagct gggattacag 3780
gtaaccatca ccacacctgg ctaaaatttt tatttttagt agagacgggg tttcaccacg 3840
ttggccacgc tggatttggaa ctctggctt caagtatctt tccctgtctg gtctccgaa 3900
gtgctggat tacaggaatg agccactgtg cccggccaaat acgacatctg tgcaatgaag 3960
tgcaacatata aagacacccct tccccccaccc actgccccca ccaccgcccc cacgccccca 4020
cccccatctc cagatcagaa cctggggctg tgcaattttt aacgtttagt ccacttgcta 4080
cttggtagt tgaagttcag tctcagccag gttggagtcc tggactctgg cccctctttt 4140
attttttattt tttttttttt ttttagacag agtctcgctc tgcgccccag actggagcgc 4200
agtgggcga tctcggctca ctgcaagctc tgccctctga gttcacgc 4260
tcagcctccc gagcagctgg gactacaggc gcccggccacc acacccggct aatttctgt 4320
attttttagt agagatgggg tttcaccctg ttagccagga tggcttagat ttccctgac 4380
tatgatccgc ctgcctcggg cctcccaaag tgctggatg acaggagtga gccaccgcgc 4440
ccggcctt tttttttttt tagacagtct ctgtcaccctt ggcttagatg cgatggcgc 4500
atctcggctc actgcaacccctt ccacccctgg gttcaagcg attctcctgc ctcagccctc 4560
tgagtatctg ggattacagg tgcctgtgac cacggccggc tgattttgt attttttagt 4620
gagacgggg ttcaccacat tggcaggct agcctaaac tccctgaccctt gtgatccttc 4680
cgccctcagcc tcccaaagtg ctgggattac aggactctgg cccatctgg ctgctgcca 4740
tgtccttcct tctatcttgg tttttccaca gttacgcaca tgccagataa cggcgagtct 4800
gttccccagc aactgcaacg gatctgccccca ccactggaa atggaagacc ttgcagcccc 4860
ggtctttgta gaccaagatt agattgtggt caacaaacac ctgaccttgg ccttggAAC 4920
catcagccat gtcagctaaa ataaaagcag aatctggctg ggccgagtg ctacgcctg 4980
taatcccagc actttgggg gctgaggtgg gcagaccacc tgaggtccgg cgttctagac 5040
cagcctgacc aatatgatga aaccccgctc ctactaaaca tacaaaaatt agctggccat 5100
gggtggccggc acctgtaatc ccagctactc gggaggctga ggaaggagaa ttgcttgaac 5160
cctggaggca gaggttgcag tgagccgaga ttgcgccact gcactccaac ctggactgca 5220
gaacaagact ctgtccaaa agcagataaa taaaaataaa taaaaataaa aatatggccg 5280
ggcatggtgg ctcacacctg taatcccaac actgggaaga tgaggcggc agatcacgag 5340
gtcaggatt cgagaccacc ctggccaaca tggtaaaacc ccgtctctac taaaaataca 5400
aaaattagcc gggcatgatg ctgcacgcct gtaatccag ctactctgg ggctgaggca 5460
ggagaatcgc ttcatccgg gaggtggagc ttgcagttagt ctgagatcgc gccactgcac 5520
tctagctgg gcaaaaagat gagactccat cgcaagaaaa aaaaaaaaaa aagctgcaag 5580
ctctgtctcc cgggttcaag tgattctctt gcctcagccct tccaaatggatc taggattata 5640
cgcccccggcc accatgcctg gctaattttt gtatttttag tagagatcgc gttcaccat 5700
gttggccagg ctggtctcaa actcctgacc tcacgtgatc cacctgcctc ggccctccag 5760
agtgcgtggaa ttacaggtgt gaacccctgc gcctggccaa gaaaagtgc ttgaatgaag 5820

- 4 -

agtaaataga agacccagaa agaaatgatt cgtccgagga aggtcacaga agcaacgtaa 5880
tcaagatgga aatctgactc ttccctaattt tggccagact tcccattccct ccaaagcttt 5940
ccagactctt ccagatcatt ctatgatattt ccagaaatca ttctgtgaaat ctaacttagga 6000
gtatctgtt aacaatgtgt ttccacacaga tacaattcat aaacgatgag aagacaagga 6060
cacttcatga atgaaatttt tacggccggg tatgttgct cacgcctata atccaggac 6120
tttggaaagac ccaggcagga ggattgctt gatccaggag ttcaagacca gtctggcc 6180
catagtgaga ccctgtcgct acaaaaaatt taaaaattag gtatgtatgg tggtgtatgc 6240
ctctagttt agctttttt gaggctgaag caggaggatc tcttgagccc aggagggtga 6300
gctgcaatga gctacgattt aactactaca ctccagtcg ggtgacagag aaagaggctg 6360
cctcaaaaaa ataaaaataaa aaaaataagg ccggacgcgg tggctcacgc ctgtaatccc 6420
agcactttgg gaggctgggg tggccagacc acgaggtcag gagatcgagg ccattctggc 6480
caacatgatg aaaccctgtc tctactgaaa acacaaaaat tagctggcg tggtgccgt 6540
tacctgtat cccagctact cgggaggctg aggcaggaga atcacttgaa ccaggaggc 6600
agaggttgca gcgagaggag attgtgccac tgcattccag cctggcaaca gagcaagact 6660
ccgtctcaaa aaagaaacaa caacagcaac aacaacaaaa aaaacataaa aaagttcggg 6720
cacggtggct cacacctgtt atcccagcac tttgggaggc caaggtgggt agatctttg 6780
aggtcaggag ttcaagacca gcctggccaa caaacatggt gaaacccctt ctctactaaa 6840
aatacaaaaa qtagccgggt gtatcccag ctactcgaa ggctgaggca ggagaatcgc 6900
ttcaacctgg gagatggaag ttgcagtgaa ctgagattgc gccactgggt gacagagtaa 6960
gactcttgcc tcaaaaaaaaaa aaaaagaaag aaagtttaat ttaatgatttcc aaataatgac 7020
ctgctcgaga gataaatata aagtctaacg taagagggtt atactttttc ctctgtcc 7080
ctgtcctcgc cccacctcac cccaaagtccc aacctgattt atcagtctcc tttccctctg 7140
gtagccccac tccatgacc gaaccgagaa gtcatgcacc cgcataagaa ctctaatttt 7200
tttttcaaa gtcttctcac tgccccaaaa atagtttctt tcattccctt gggatgtgaa 7260
agtgtctctc ccaattttt ttcaacctcc cagcgatcca cacatatgcc ttgcctc 7320
cagcttcac tgatctgcca tttccacctc ggcgctgctc ctacctgcgg aaatccctgtc 7380
catccatagt ctgatcttgc ttgttccaga acattttttt tttttcccc tggAACATTc 7440
tttaagatac ctcaataaaat gaaaccagag ggtatagagc agtatgaatg ggtactacaa 7500
tgtacagggg gaaatggagg ggaatatgat atactctccct cttgtatat gcttagatg 7560
ttctagaagg atatgtttaa aaggttagca gtcctggcca ggcgtgggtt ctcacgcctg 7620
taatctcagc actttggat gccaacgcgg acggatcaca aggtcaggag ttctagatca 7680
gcctgaccaa tatagtgaaa cctcatctt actaaaaata caaaaaattttt ccgggtacgg 7740
tggcatgtgc ctgtatccc agtactttt gaaacctgagg caggagaatc gcttgaactc 7800
gggaggcaga ggttgcagt gacccgagact gtgcattgc actgcagcct gggatgtgaa 7860
acaggactcc gtctcaaaaaa aaaacaaaaa aggtcagcag tcttaattttt cagaggcag 7920
gggacctgca tggatggag gttttccat gtgtccaccc tttgaggccct tttgtttttt 7980
tttttttaat ctttttattt tagcaaaata gatataaaat ttaccctttt tttttttttag 8040
acagggtctc actctgttgc ccagggttggaa gtgcagtggc atgatcttgc ctcactgc 8100
cctctgcctc ctgggttcaa gcatggcc tgcctcagcc tcccgagtag ctgggattac 8160
aggtgcttgc caccatacccg ggctaaattttt gtatTTTtag tagagacggg gttacgcca 8820
gttggccaag ctggtcgcaactcctgacc tcaagtgtatc cgccccccctc ggcctccaa 8280
agtgtggaa ttacaggcag gagccaccac gtcagccctt aaaaatttacc atattaacca 8340

- 5 -

tttcaagtt cagaggcatt aaagtatact cacattgttgc ttcactgtc accactactc 8400
acctgcagaa gttttcatc ttgcaaagtg aaaaccat accaaatttc ccgttctcc 8460
tctcagcccc tggtaatcac tattctactt tttgtctact tttgttatga atttgcttat 8520
tcttaggacct aatagaagtg gagtcaaacc tggttgcct tttgtggctg gcttattca 8580
cccgcccta tattcctcaag gtttatccat gttggaggat gcctgaattt cttgtttt 8640
aaggctaaat tttattctat tatattaata tgtcatattt tggttgcct gatggacact 8700
tgggttgatt ccacccccc ccattttgaa gaagcttcta tgtacatggt atacacatat 8760
atctttgggt.ctctgcttc aatgctttg.gggatatttc.agatgtggaa.tttctggatt.8820
ataaggcaat.tttttttt.gagacagact.ctcgctttg.tcgcccaggc tagaatgtgg 8880
tgggtgtatc tattttttt ttttttttga gatggagtct cgctctgtcg cccaggctgg 8940
agtgcagtgt cacgatctca gctactgca agctccgcct cccaggttcg tgccattctt 9000
atgcctcagc ctcccaagta gctgggacca cagccccc cccacccacc cggctaattt 9060
ttgtatTTT agtagagaca gggtttcaact atgttgcacca ggatggtctc gatctcctga 9120
cctcgtgatc cgcctgcctc ggcctccaa agtgcgggat ttacaggcgt gagccactgc 9180
acccggctgg tggatcttgc acctctgcct cccaggttca agcgattttt 9240
gtgcctcagc ctctccgcag ctgggactac aggtgtgcgc cactgtgcctt agctactttt 9300
taaaaatata tggatattta ttatattttt aagttctggg atacatgtac agaacgtgca 9360
ggtttggatc ataggatatac atgtgccatg gtggtttgc gcacccatca accggatc 9420
tacatttagt atttctccta atgctatccc ttcccttagcc ctccactctc ccggTTTTT 9480
gttttggatc gttttggatc ttgttggatc gtagagacag ggtctcacca tggccctt 9540
gctagtcttgc aactcctgac ctcaagtgtat ccggccaccc cagccccc aagtgcggg 9600
attacaggtg tgacccacta cactcggcct tattttcact tattttatgca attttacta 9660
ttgctatattt cttagggacca ctgtggattt gcactgtggat attttatgtat tgctgtatTTT 9720
cagcaagcca tgaggtctgt cagcacacgg ctttggcat tttgtgaaga taactgtatgc 9780
cagctgagcc aaggcaggtt cctgatttca cccactggca ggcaccgagg tctctgtgt 9840
tactgatggat ttctctgtgg attgtgggc ttaaggccag accacagctg caatggctca 9900
cctctgccaa aggccaggtt cggtgggca gagacctatt ccggactgag cctctgtgg 9960
aatttagagat gtagaaaaatg ggaggacggg ggcagggtggg ctattacagc gagaaaaatg 10020
cccaccctga gttgtatttag ataactttgg gagttcagga actttccaaat aaagtgggtt 10080
ccacagcagg attacttact gactccctaa tagaaagaag gcaggcacag gccggggcgtg 10140
ttggctcatg tctgtatcc cagcacgttg ggaggctgag gcgggtggat cacaaggatca 10200
ggagatccag accatccctgg ctaacaaatg gaaacccgt ctctactaaa aataaaaaaa 10260
attaggctgg gcgtgggtggc tcgtgcctgt aatcccagca ctttgggagg ctgaggcggg 10320
cgatcagca ggtcaggaga tcgagaccgt cctggctaac acggtaaaac cccatctcta 10380
ctaaacatac aaaaaaaaaat tagccaggatg tgggtgggg cccctgtatg cccagctact 10440
caggaggctg aggcaaggaga gtgggtgtgaa ctcggaggc gcagcttgcgtc gtgagccgag 10500
actgcgcac tgcactccag cctgggcaac agacagagac tccgtctcaa aaaaaaaaaa 10560
aaaaaaataca aaaaatttagc caggcgtggt ggcacgtgca cgtgactgtat gtcggcgtca 10620
cttgggaggc tgaggcagga gaattgtttt aacccgggag acggagggtt cagtgagccg 10680
agatcgcgc actgcactcc agcctgggtg acagagactg actccgtcaa aaaacaaaaaa 10740
acaaaaaaaca aaaaaacaaa aaaaaaaaaa cagcaggaac tggcaggatc tccctgaaga 10800
gataaaaaaa aaaaaatgca gttgcaacac aaaagcagcc acagagaaaa gcaaaccat 10860

- 6 -

atatggtatt tattatgcac cgagtgtggc tctaattact ttttttttt taattgagag 10920
acagcctggc tctgttGatt gggctggagt gcagtggcgc gaccgttagct cattgcagcc 10980
tcaacccct tggctcaagc aatccctcta cctcagccctc ctgagtagct gggaccacag 11040
gtgtgagcca ccacgcctgg ctaattgttt ttttttttt tgtagagaca gggtctcaact 11100
atgtggccca ggctggtttc caactcctgg gctcaagtga tcctcccacc tctgcctccc 11160
aaagtgcctgg ggattacagg catgagccac ctcgcctggc ctctagtcgc tttatataatt 11220
ttaacttaat ccttacaaga gccctgttag cttagttacag gagcacaaat gaaaaccaag 11280
aaacagaaaa atttatcagc atgactcagt cctcagagcc atgtatggcc gtgtccgtgc 11340
atggcaggca ggtcaggggc ctggggAACG ctgttctgaa aaccttgccc aggccttggc 11400
acccgaggaa tgtgcttttc agagttttg tggctctttt ccagacctgc cctgacctct 11460
agctctggga actatgttaag ccaagtgcct tccgggaagg gagtccctct cctggtaact 11520
ctttctgggt aaccagatgt ggactcatga cacacactga gcctacgtct tataattttt 11580
tggttttgtt tttgagacag tttcggtctt cttgcccagg ctggagtgc atggtgcgat 11640
ctcggtcac tgcacccctc gcctcccagg ttcaagcgt tctctgcct cagcctccct 11700
agtagctggaa attgcaggca tgcgcacca cgcctggcta attttttgtt tttttttttt 11760
tttagtagaa acggggtttc accttggtag ccaggctgtt caccaactcc tgacccctagg 11820
tgatccgccc acctctgcct cccaaagtgc tgggattaca ggtgtgagac agctgtgagc 11880
caccaacgccc ggcgcatttt tttttcttt ttttcagag ggagtgtccc tctgtcaccc 11940
aggctgaagt gtatgtggcgt gatctggcc cactgttaacc tctatctccc aggttcaagt 12000
gattctcctg actcagccctc ccaagtagct gggactacag gcgcctgcta ccatgcctgg 12060
ctaatttttg tagtttttagt agaaaccggg ttttgcctg ttggccaggc tggctctaaa 12120
ctcttgactt caggtgatcc acctgccttg gcctctgaa gtgctggat tataaggcat 12180
gagccactgt gactggccat cttaaatttt tttttttttt tttttttttt ttgagacagg 12240
gtttcactct gtcgcccagg ctggagtgc aaggcgcgtt cttggttcac tgcaagctcc 12300
gcctccctggg ttcatgccccat tctccctgcct ctgcctcatg agtaactgag actacaggcg 12360
cccaccacca cggccggcta attttttgtt atttttttag tagagatggg gtccaccc 12420
gttagccagg atggtctcga tctcctgacc tcgtgatcca cccgtctcggtt cctcccaaaa 12480
tgctggcatt acaggcgtga gccaccgcac ccagccttaa attttttttt aaggaaatc 12540
aaacccagtg atattgggcc agtacagtgg ctcacacccctg taattccacc actttggag 12600
gctgaggcag gtgaatcacc tgaggtcagg agttcgagac cagccggca aacatggcga 12660
aaccccgctt ctactaaaaaa taagaaaaatt agccgggggtt agtggcatgc acctgttaatc 12720
tcagctactc gggaaagctga ggcattgagaa tcgcttgaac ctgggagcag gacgttgcag 12780
tgaaccgata tcacaccact gcactccagc ctgggtgaca gagcaagact ctgtctctaaa 12840
aaaaaaaaaaa aaaaaaaaaatc cagtgataact tactttttaa atttttattt acttattttt 12900
tgctttaagt tgaatcttta aacttatctt tatttttgag acacagtctc actctgtcgc 12960
ccaggctggc gtgcagtggt acaaccacag ctcagtgca cgttgcacccctc ctgggctcaa 13020
gccatccctcc cgcctcagcc tccccggtag ctgggactac aggccgcacac aaccatgtcc 13080
agcttattttt tggatattttt ttagagacag ggtccctactg tggtggccctg gcttggctcg 13140
aactccctagg ctcaagtgtt ccccccgcct caccctccca aagtgtggg attacaggca 13200
tgagccacca catccagact tcactttttt gttaatgtc gcaaatggca taaggaatgg 13260
gattcaatgg ggacacattt ataaacgttg cagcagctcc tagaacttgc ctatccttgt 13320
aaacttctct aggtgattgc taattacttc tttttttttt tttttttttt agacggagtc 13380

- 7 -

tcactctgtc	gcccaggctg	gagtacagtg	gcgcaatctc	gtctcactgc	aaactccacc	13440
tcccggttc	acgccattct	cctgcctcag	cctcccgagt	agctgggact	acaggcaccc	13500
gccaccacgc	ccggctaatt	tttgtatTTT	tttttagta	gaggtggggt	ttcaactgtgt	13560
tatccaggat	ggtcttgatc	tcctgacctc	gtgatccacc	tgcctcagcc	tcccaaagtg	13620
ctgggattac	aggcgtgagc	caccatgccc	agcccgtaa	ttatttcaat	ttgaccttga	13680
cactgagcct	gcacaaggtagg	ttcaagcatt	ttgatggccc	ctttacaggt	tgggaaagct	13740
aatttatctg	tccaaggccg	aattctgaaa	ctgagtctta	actgccaAAA	attcttatca	13800
tcaatttctt	cttctgggtt	gggcacagtg	gctcatgcct	gtaaagccag	caatttgaga	13860
ggcatcatga	tgcaagagga	agaggattga	gtgaagctag	gagttggga	ccagcctggg	13920
caacatagtg	agaccccattc	tataaaaaaa	aattaaaaat	tagtgggcA	tggtggtgca	13980
ctcctgttgt	cctagctatt	caggaggctg	aggtgggagg	attccttgag	cccagggttg	14040
acgctgcaga	gagctgtgat	cacgccactg	cagtccagcc	tgagtgacag	ctggaaataa	14100
tgataaataa	ataataaata	attattttaa	aaattataat	aaaataatt	aaaaaattat	14160
tttccctgat	taatctttt	tttgcctt	ctgagagttc	aatttgtccc	tttctgcct	14220
ggtotcttag	gttccctaa	aatcctgctg	agaggttagc	actgcctgcc	aaagtcaatt	14280
tgcaaaatcc	cagagaaatc	cagcttattc	ctgggggaac	cgccaagact	gcccagccct	14340
gtgtgggtt	caggcaagtt	tctcacatgt	gccttttgg	caagaggcct	ctggcaaccc	14400
catgagtcCc	caaagagact	caattctaaa	agttggtctc	caccagctct	ctgtggctta	14460
ggggttcaag	ttcaactgtg	aaagccctgt	tttgcTTTGA	ttttgcTTG	agggagagga	14520
aaccgcctt	ctgtttgttc	aactccttct	cctaaggggA	gaaatcaata	tttacgtcca	14580
gactccaggt	atccgtacaa	ttgatttttc	agatgtttat	actcagccaa	aggcgggatc	14640
ccacaaaaaca	aaaaatattt	tttgcgtgt	actttgtga	agattttatt	taaattcctg	14700
attgatcaGT	gtctattagg	tgatttggaa	taacaatgt	aaaacaatAT	acaacgaaag	14760
gaagctaaaa	atctatacac	aattcctaga	aaggaaaaagg	caaatataga	aagtggcggA	14820
agttcccaac	atTTTtagtg	tttgcTTTT	gaggcagaga	ggacaatggc	attaggctat	14880
tggaggatct	tgaaaggctg	ttgttatcct	tctgtggaca	acaacagcaa	aatgttaaca	14940
gttaaacatc	gagaaatttc	aggaggatct	ttcagaagat	gcgtttccaa	ttttgagggg	15000
gcgtcagctc	ttcacccggag	accCAAatac	aacAAatcaa	gtcgccctgcc	ctggcgcacac	15060
tttgcgaagga	ctggagtggg	aatcagagct	tcacgggtta	aaaagccgat	gtcacatcg	15120
ccgttgcggaa	ctccctcctct	tgcagtgagg	tgaagacatt	tgaaaatcac	cccactgca	15180
actcctcccc	ctgctagaaa	cctcacattg	aaatgctgt	aatgacgtgg	gccccgagtg	15240
caatcgccgg	aagccagggt	ttccagctag	gacacagcag	gtcgtgatcc	gggtcgggac	15300
actgcotggc	agaggctgcg	agc atg	ggg ccc tgg	ggc tgg	aaa ttg cgc	15350
met gly pro trp gly trp lys leu arg						
-21 -20			-15			
tgg acc gtc gcc ttg ctc ctc gcc gcg ggg act gca g	gttaaggcttg					15400
trp thr val ala leu leu leu ala ala ala	ala gly	thr ala v				
-10			-5			-1 1
ctccaggcgc	cagaataggt	tgagagggag	cccccggggg	gcccTTggga	atttattttt	15460
ttgggtacaa	ataatcactc	catccctggg	agacttgg	ggtaatggca	cggggcctt	15520
cccaaacggc	tggagggggc	gctggaggggg	ggcgctgagg	ggagcgcgag	ggtcgggagg	15580
agtctgaggg	atTTAAGGGA	aacggggcac	cgctgtcccc	caagtctcca	cagggtgagg	15640

- 8 -

gaccgcatct tctttgagac ggagtcttagc tctgtcgccc aggatggagt gcagtggcac	15700
gatctcagct cactgcaacc tccgcctccc gggtttaagc gagtctcctc tctcagcctc	15760
ccgaatacgct gggattacag gcgcacaacc accacgccc cctaattttt gtatttttag	15820
tagagacggg ttttccccat tttggccagg ctggtctcga accccgaccc caggtgatct	15880
gcccaaaagt gctgggatta caggcgtcag ccaccgcgc cggccggac cctctttct	15940
aactcggagc tgggtgtggg gacctccagt cctaaaacaa gggatcactc ccaccccccgc	16000
cttaagtccct tctggggcg aggccactg gagaccggg tgtagccct ggaggtcacc	16060
gcgggctcag gggtcccgat ccgcattgcg cgacccagg gcgcactgc catcctgagt	16120
tgggtgcagt cccgggattc cgccgcgtgc tccgggacgg gggccacccc ctccgcggc	16180
tgcggccccc ccttggccc gccccccgaa ttccattggg tgtagtccaa caggccaccc	16240
tcgagccact ccccttgcc aatgtgaggc ggtggaggcg gaggccggcg tcgggaggac	16300
ggggcttgtg tacgagccgg gcggggctgg cgccgaagtc tgacccctcac ctgtccggg	16360
gcgaggccga tgcaggggag gcctggcggt cctccgcgt tcctgtcaca aaggcgacga	16420
caagtcccggt gtcggcgag ccgcctccgc gacatacactg agtcgcctc cgttatcctg	16480
ggccctccctg gcgaagtccc cggttccgc tgcgtctgt ggcgacaccc cctgtccccc	16540
cttgcctgg gggcgccct gcacccacca gccccatca agttcacaga ggggcggcc	16600
gccacccctca aggccctcggt tccttacagag gttgaaacgt tgccctcagaa tctccgc	16660
cctccttggc ctgcagccga gatcttcagc cacggggggg cagctatccc cggggaccga	16720
ccccctgggg tggcctcgct tcttacaggc ctgtgaatgg ctccgggtca gctgtccaag	16780
cggcatttt tcctctgggt gaaatggatt agatttaga ttccacacaag aggctggta	16840
gtcatgatc ctgagttaga gtttttagg tggcttaaa ttatgtcgag agagacagcc	16900
tcgcctaga caacagctac atggcccttt ccctcctcgag aaccagccta gcctagaaaa	16960
ggattggat tgcctgatga acacaaggat tgcagggaaac ttttttttta attggcaagg	17020
gggttggctt tgactggatg gagagcttg aactgcctt aaattcacgc tgtaactaac	17080
acaccagttt cctctggag gccagagagg gagggagggt gtaatgaaat acggatgatt	17140
gttcttttat ttttattttac ttatattttt tttaactttt tgtagagatg aggtctcgct	17200
tgggtgccta ggctggctt gaactcctgg cctcaagcga tcctcctacc tcagcctccc	17260
aaagtgttgg gattacagga gtgagccacc gcgcaccacc gggatgatg atgatgcaa	17320
acattctgcc actcagttt aaaaaagaaa gagaggact ggattaatgt gtatctact	17380
caccaatcaa cctttccctt aagagaaaat tttaaggaaag tcttaggcaa ggccttgg	17440
tttcttgcctt atttccttta caaaggaaag ttgttggaa ctgaaccgca agccttca	17500
caaggagact acacccctga tggccctc cagactctg agagctggtg tggcttcta	17560
gcactttcta gctgcaccac ctcacgctgt agctggctt aaggcatacc cagggggag	17620
tttcttgcctt atttccttta caaaggaaag ttgttggaa ctgaaccgca agccttca	17680
tagaccaaaa tcaggcaaca gcggtgagcg cagctccaaa cgtgtcaatg actcacc	17740
atttgagtaa gggagttggc tgcttaacg agccgcagg tgattccctt gtcattccg	17800
gaaataccta tcttccaggg aacactggg aaaaacaggg agacctttgt tgagacagaa	17860
aacctgttagg ggaattctgt tcctcattcc tgcatttatac tgtagacttc ctccctgata	17920
agatccaatt ctatgggt cggttgctcc ttgctttgt gggtgcttgg atggcttta	17980
ttattattat tattattattt attattattt tgatggctt ttgatgtcc ctcccttc	18040
caacactctgt cccaaactgtc aagcaaatacg cttttgttg ctaagagact gcagatgtaa	18100
ccgaccagca gcaaacagtg agtcaggctc tctttccgg aagcaaaatc aattgtcgag	18160

- 9 -

atcactctgg ggaaaatacc caccttattt ggaaagaagc actgatcaat tgatgtctat	18220
ttttttttt tttgagttgg agtctcgccc tgtcacccag gctggagtgc aatggcataa	18280
tctcgcccta ctgcaatccc cgcctcccg gttccagcaa ttctcctgcc tcagccct	18340
gagtagctgg aattataggc gcctgccaca acacccggct aattttgtt tttgttagtag	18400
agatggggtt tcaccacgtt ggccaggctg gtctcgaaact cctgacctcg tgatccaccc	18460
gcctcagcct cccaaagtcc aaggattgca ggcgtgaccc actgtgccag ccaatcaatt	18520
gatttctcat tcattttcag ctggctctgt tcccttaagc caggggattt tcgtttgtt	18580
gtttccccctt caaggaaatg attctagcta cagtttgat ttccctgtac aactgtttc	18640
agtagcacag ggaaagaaaa catcgaaagc attcaccacc tcatttgtt gctggggaa	18700
aaagcagaaaa tgtgtattct cttttttgtt ttcgatgacc ttgttcctga cttgttactc	18760
gtgacttgag agatcagagg gctagaggac tagaatttt agaggtgtt tttttgtt	18820
tttattttt ttcgagttgc ccaggctgga gtgcagtgac gcaatctcg ctcactgcaa	18880
cctctgcctc ccaggttcaa gcgattcttc ggctcagcc tcctgagtag ctggaaactac	18940
aggcgcccg caccacaccc agctaatttt tgtattttc agtagagatg ggatttcacc	19000
atattggtca agctggcctc gaactcctga cctcgtgate caccgcctc agtttcccaa	19060
agtgtggga gtacaggcgt gagccggcgt gcccggctt tttgtgttt tttgtttt	19120
agaggagctc attgctttt aggctccct agcgtgagaa aatctggggta tccatgctct	19180
agtttacttc cttttttttt ttttttttga gatggagttc cgcttagatt gcctaattctc	19240
agtcattgc aacttctgcc tccggggttc aaggattct cgtgtctcag ctcctgggt	19300
agctaggata cgggcacccg ctaccatgcc tggctaattt tgtacttttta gtagagacag	19360
ggttcgcca cggtggccag gctggctcg aactcctgac ctcaggtgag ccgcctgcct	19420
tggcctccca aagtgttagg attacaggcg tgagccaccc cgcttggcct aatttgcttt	19480
tcctgaaatt caaatggct aatatgaaaa acgccaacct tgctgaaag aataagaaaag	19540
aggtgcggtt tcgttggcc gttgatgttt ggaacaggac tggtttgc cccttgctcg	19600
gaaagggcag caactgttag gacagctccc tgacgtgctc tcactcagca ctgttccgtt	19660
cctgagcact gtccccacta gctaggccaa gggagctcat ttggcaggca actgctgtt	19720
ggctgcgcct gtggcagtaa aactgcctt tattttttgg aggcaaggc ttgcccgtc	19780
gctcaggctg aagtgtcgat ttatagctca ctgcagcctc cagcttctgt actcaactga	18940
tcctcctctc tcagcctcct gagtagctgg gactatacgc acgtgttacc actccaccc	19900
cagttgttt gtttattttt ttatattttt atttatttgat atggagttt gctttgtcg	19960
cccaggctgg agtgcaatgg cgcgatctcg gctcacccga acctccaccc cctgggtcaa	20020
gcgattctcc tgcctcagcc tcctgagtag ctgggattac aggcatgcac caccacgccc	20080
ggctaattttt gtattttcg tagagatggg gtttctccac attgggtcg gctgttctcg	20140
aactcccaac ctcaggttat ccacccgcct cagcctccca aagtgtggg attataggcg	20190
tgagcccccg aacccggcca ctcccagcta agttaaatt tttttttgtt ttgttgc	20260
gtttttattt tttgagacag agtctcccgcc ccaaggctgg ggcagatca ctgcatttc	20320
gaccccccag gcttaagcca tcctcccccac tcagcctccc aagtagctgg gattacaggt	20380
gtgtgcact atgcttgct aagttgttta tttttttttt agatgggggtt caaggattc	20440
tcgtttttttt gcttcgggtt gtctcaaact cctggctca agcagtcctc ctcctcagc	20500
ctcccaaggt gctggggaaa tccactttt aaacattgtc tggagagttt cccaggtgtt	20560
agatcacaga aataggtcat cgtggggtcc ttcccatggg tgcaatcttg agccacctgt	20620
ggccagcaaa tattttggaga ataatagtca gggagagct tgaggtccag ggaaaggttt	20680

- 10 -

tgtttttctt cagggaaagg tttttattgt tctttatccc tccttaaagg acttcaggt	20740
gttactgaca ttcccggtct acccagtggc acattttagtt tgtaagctgg gccctcgta	20800
agaggttaggg aggtgagagc attggattag tggcaccaa agctgcggtc acctagtggg	20860
gtgatcagag gtcctccct taagatctt attgccaacg cctctggccc aactttcctt	20920
tttatttatac gcaagcctcc tggaatctca attgctttt gcccacccgg tgtgtcagca	20980
caagaaaatga gtcatttcct ccttaagca cagttaaaat tgagctgtga gtcagtgagg	21040
tgtgtacgat attgtcaaag cggggtgtgt acagtattga cagatctgtatgttggcaag	21100
agaattatca gagtttgtga ccacagcaga ttccaaagct cgactcattt tcttctctct	21160
tccttcctt ttttctttt tttttttt ttttttttgc agagtctcgc tctgttgccc	21220
aggctggagt gcagtggcac aatctggct cactgcagcc cctgcctcct gggttcaa	21280
gattctcatg tttcagcctc ccgagtagct gcaattacag gcattcgggt tcaagtgatt	21340
ctcctgcctc agccacctga gcagctggga ttacaggcgc ccgccaccac gcccggctaa	21400
tttttgtatt ttttagtagag acggggtttc accatgttgg ccaggctgg ctcgaactcc	21460
tgaactcagg tgatccgccc acttcggcct cccaaagtgc tgagattaca gacgtgagtc	21520
accgcgcccc gctgttctg ttcttaatt ctcaaaacac cctcttagaa gttagagactg	21580
ccattctccc ccattttaca gatcagggaaa ctgagtccca gaaggattta gtcagttacc	21640
caagttgttc tagttaaatg gcctggaaag ccagtgaagc ccaggattgt ctatctaacc	21700
cccttactac tctaactttc agggaaatcca catgaatgtg ctgggtcaac catcaaagtt	21760
gaaatggata aagggggctg gatgcggtgg ctgatgcctg taatccttagc actttggag	21820
gccgagatgg gtgggtggat tgcttgagcc caagagttt agaccagcct gggcaacata	21880
gtgagacacc tgcgttgc aaaaataaaat aaaaagttt tagtgcgttgc tggtgcaccc	21940
ctctagtcac agctgtttag tttaggcttag gcaggaggat cgcatgaacc tggaggtgg	22000
aggcggccgt gaggctcagt catgccactg cactccaacc tggcaacag agtggaaagcc	22060
ggtgtccgaa agagaaagaa aaaaagacat agatacatct tttaaagtta gttgtatgt	22120
taattaccta caactcagtt tcaactgtgc tttaaggagg aaatgactca tttcttgcta	22180
cataatcaa at tagccaaaa tgttagtgct taaaacaaca catttatgtat ttctcagtt	22240
ttgcgtgtca ggaatttggaa agcagcacag ctagacgggtt ccagctcagg gtctctcatg	22300
aagttgcaat caaaatattt gcaggagaga aaaacatatt ttcaagaagct gcaggcatag	22360
gaagacttgg ctggggttga aggatccact tccaagatgg cgcaactcagt ggcttgc	22420
tggaggccctc agttccctgc tgcgtggagc tctccctcca gctgttgc tggactcatg	22480
acatgcagct ggccctccct ggagcagtcg atccaacaat gagcatggcc atgaactagg	22540
ctcagaagcc actccctgtc gtctctacat ttccctatca gaagcaagtc attaaaagtc	22600
cagtgcact ccaggggaga cgaattaggc tctgccttct gaaaggatta tcacagaaga	22660
tgcggccta tattttttt tttaaaattt tctttttttt atttttaga gatgggtct	22700
tggatgttg cctaggccag tctggattc ctggctcaa acaatcctgt ctctgcctcc	22780
caaagtgttg ggattacagg catgagccac tgcacctggt catgtggtca tattttctt	22840
ttctttttt ttttttttgc agacagagtc tctgtcgccc aggctggagt atgggtggcgt	22900
gatctcagtt cactgcagcc tccgcctccc gggttcaagc gatttcctg cctcaggcctc	22960
ctgagtagct gggattacag gcccggccaa acatgcccag ctaattttt tagtagagat	23020
ggggtttcac catgttagcc aggatggct cgatctcctg attgggtat ccgcccaccc	23080
tggcctccca aagttcaac catcgatcg aacttattga tgtacttatg tagctaggca	23140
cggtggcgcg tgcctgtat cccagctact tggaaagggtt aaggcaggag aatcgcttga	23200

- 11 -

acctgggagg cagagggtac agtgagtcaa gatcatacca ttgcactcca gtctggcaa	23260
cagaatgaga ctctgtctca aaaacaaaaa acaaaccctt gtatgtgatt ttccctggata	23320
gcatctgtta catttcaca aagataaaaa gtcagacttg gctgggcatg gtggctcaca	23380
cctgtaatcc cagcactgag aggctgaggc aggcagatca cttgaggtca ggaatttgag	23440
accaggtgg gcagcatggt gaaaccccgt ctctacaaaa aatacaaaaa ttagccgggt	23500
gtggtgtcac gcacctgtat tcccaagcta ctcaggaagc taaggcagga gaatcacttg	23560
aacccagagg tggaggttg cagtgagttg agattgtgcc attgcactcc agcctggcg	23620
acagagttag actctgtgtc aaaaataaaa taaaataaaa tttaaaaaaaa ggcagatttt	23680
tttttcttct tggattttttt accttattat agtaataata agtgcatagt gcatgctgag	23740
ataagaatc ataattttttt attgcggccg ggcatggtg ctccagccta taatccagc	23800
acttttgtca ggagttcaag gccagcctgg ccaatatagt gaaactccat ctctactaaa	23860
atacaagaaa ttacctgggc atggtggcag ttgctggta tcccaagcta cttgggaggc	23920
tgaggcagga gaatcgctt aacctggaa gcagaggtt cagtgagcca agattgcacc	23980
actgcactcc agcctgggtg acagagttag actctgtctg aaaaataata taataataat	24040
ttgttattgc ttttattgcc tttagttaca taggaaatca aagtttatac tttgatttat	24100
aaaagttgct ttgattctag ttcacagaaac cagaatctt catataaagg tattagaggg	24160
cccagtgtgg tggctcatgc ctgtaatccc agcatattgg gaggctgagg agggaggatc	24220
actttaggag tttgaggcca gcctaggcaa catagtgaga ccttgtctct acaaaaaatt	24280
ccaacattag ctggcatgg tggcatgtgc ctgttagtccc atttatttg gggctgagg	24340
caggaggatc acttgagccc acgaggttca atccagggtt cagtaagcca tgatcctgcc	24400
actgcactcc agtttgggtt acagagcgaa gctatgtctc aaaaaaagaa aaaaaaagta	24460
ttctaaatcc aaatttaata tataaaacta aatgcaggcc aagtgtggt gcatataacct	24520
ataatcacaac cactttggga ggctgagggtt ggaggattgc ttgagccaa gagttcaaga	24580
ccagcctagg taacacagta agacccatc tctacaaaaa gtagaaaaat tagcctggca	24640
tggtggtgag tgcttttaat cccaaactact taggggctg agatggaaag attgcttgag	24700
cctcagagtt tgaggctgca gtggccgtg atcgctccac tgatcgctct aaagtgagac	24760
cctgtctcaa aaaaaaagaa aatagaagaa aactaaatac attcaataag actttgatct	24820
cttttccaag gtgtaaatat attttggaa attttccagt tactttgttc tcattttat	24880
gtaataatct aagtcttggt tttctaagga aaagtttct cttattataat cttttgttaa	24940
tgtttctctc ccatttctt tgatctgatc ttcaagataca tgattatctt cactgctaaa	25000
tttgtgttct ctggcctcta cattataat ttctcataat tctttatcta agtatttctt	25060
ccctacctac tgaagaaaac tcaagtttc ttccaccta atgattatgc tgtgtctgt	25120
agtttcttc atgactctt acagtacaag ttttttggtt ttgtttttt aatggtcaga	25180
tggatagaac aacacagggtt ttgtttgtt tggtttact tttaaaaaaaa ttataataga	25240
taaagggtct cactacgtt tccaggctga tctcataactc ctggctcaa gcaatccacc	25300
cacctctgcc tcccaaagtg ctgggattac agtcatgagc caacatgcct gggcagtaca	25360
ggtttttttt gagacggagt ttgttctt ttgcccaggc tggagtgc gggcacaatc	25420
ttggctcacc acaaagtctg cctcccagggt tcaagtgatt ctccgcctc agcctcctga	25480
gtagctggga ttacaggcat gtgccaccac gcccagctaa ttttgtattt ttagtagaga	25540
cggggtttca ccatgttggc caggctggtt tcgaactgct gacctcaggt gatctcccc	25600
cctcggcctc ccaaagtct gggattacag gcatgagcca ccatgcccag ctgtaytaca	25660
ggttttaata tgctaaatac tcttccttcc tttattaatg tgcatgaaag ttctaatatt	25720

- 12 -

tttttccat accccagaga gtccatattt tggaatcaac aacactagcc tttgttgaca	25780	
agtgtctctc ttgggttcct tctttgtgc ctccactgaa ttttgggtt cataaaattt	25840	
catttgttgc gcttgcttaa ttccctggga atcagactgt tcctgatcgg atgacatttc	25900	
tggtaattc tttagttggc aggaaataga cacaggaaac gtggtcagtt tctgatctg	25960	
gcgttgagag accctttctc ctttcctct ctctcag tg ggc gac aga tgc gaa	26014	
al gly asp arg cys glu		
	5	
aga aac gag ttc cag tgc caa gac ggg aaa tgc atc tcc tac aag tgg	26062	
arg asn glu phe gln cys gln asp gly lys cys ile ser tyr lys trp		
10	15	20
gtc tgc gat ggc agc gct gag tgc cag gat ggc tct gat gag tcc cag	26110	
val cys asp gly ser ala glu cys gln asp gly ser asp glu ser gln		
25	30	35
gag acg tgc t gtgagtcctt tttggcatg atatgcattt atttttgtaa	26160	
glu thr cys 1		
40		
tagagacagg gtctcgccat gttggccagg ctggtcttga atttctggtc tcaagtgtac	26220	
cgctggcctc gcctcccaa agtgcgtggta ttacaggcac cacgcctggc ctgtgacacg	26280	
attcttaacc ccttttgc gatggcggt ggaaaagtgg ccagtggatt ttgatgtatt	26340	
caatcatgaa ttaggaggtg gggagagaat gaattattgg agcttcctt aaagccatta	26400	
aatggctcta ttgtttttc aatttgcgtg aatttcacat aacatgaaat taaccagctc	26460	
agtggcatta atacatctgc aatgcgtgt ggccaccacc tctatctgt tccaaaactt	26520	
tgcataacct aatgtctttt tttttttttt tttttgagac ggagtctcg tccatcaccc	26580	
aggctggagt gcagtgggt gatctcagct cactgcaacc tccgcctccc aggttacgc	26640	
catecctcctg cctcgcctc ccgagtagct gggactacag gcaccctcca ccacatccgg	26700	
ctaattttt gtatcttag tagagatggg gtttccacat gttagccggg atggctcgat	26760	
tctcctgacc tcgtgatcca cctgcctccg cctcccaaag tgctggcatt acaggcgtga	26820	
gccaccatgc coggcctatt tttttttta agagatggg tctaattctg ttgcccaggc	26880	
tggagtccag tggtaaccatc atacttcaact gcagccttga cctcttggc tcaagtgtatt	26940	
ctcttcctc gaactcccaa agtattggta ttacagggtg gagccaccgc actcagccta	27000	
atgtccagtt tttaacaagc tccatttaa tgccctccgt tttgacccat aaagggtag	27060	
gcttggccgg gcacaatggc ttgtgtctgt agtcccagct acttgggagg ctgaggcaga	27120	
aaggcagaaa gattgcttta taaagccccag gagtttgagg gccacctggg tggcatagct	27180	
agacccatc tctaaaaat aagtaataaa taaatatttg tttttgtttt tttcttttc	27240	
ttttctttt ttttttttt tgagacggag tcttgcctcg ttgcccaggc tggagtgcag	27300	
tggcgcgatc tcagctcaact gcaagctgtg cctcctgggt tcatgccatt ctccgcctc	27360	
agcctcccgaa gtagctggta ctacaggcgc ccactaccac gcccagctaa tttttgtat	27420	
tttttagtaga gatggggttt caccacgtta gccaggatgg tctcaatctc ctgacccgt	27480	
gatccgcagg ctggcctc ccaaagtgtt gggattacag gcgtgagcca ctgagccgc	27540	
cccatatgtta tgttatata tattttta aaatgggaga ccaggcatgg tggctcatgc	27600	
ctagaatccc agcactttgg gaagctgagg taggcggatc acttgggaggc atgagttga	27660	
gaccaggctg ctcaacatga taaaacttct atctctacta aaaaaaaaaag tgggattagg	27720	

- 13 -

tcaggcacgg tggctcacac ctgtaatccc agcacttca gaggccgagg caggaggatc	27780		
atgaggtcag gagatcgaga ccacccctggc taacacggtg aaaccccgtc tctactaaaaa	27840		
aaatacaaaa aattagccag gcgtgggtggc ggggcctgt agtcccagct actcaggagg	27900		
ctgaggcagg agaatggcgt gaacccggga ggcggagctt gcagttagcc aagatcgtgc	27960		
cactgtactc cagcctggc gacagagcaa gactctgtct caaaaaaaaaa aaaaaaaagtg	28020		
ggattgacat tctttttcaaa gttctgggtt tttccttgc aaagacagga ttggcaaggc	28080		
cagtgggtct tttttgtgtg tgtgtgtgtg acggagtc acctgtccac ccaggctgga	28140		
gtgcaatggc aggatctcg ctcaccgcaa cctcctcctc ccaggttaaa gtgattctcc	28200		
tgcctcagcc tcccggacttag ctggactac aggtgcccgc caccacaccc aactaatttt	28210		
tgtatTTTA gtagagacag gtttcacta tattggccag gctggcttg aacccttgac	28320		
ctcacgtgat ccacccgcct tggcctccca aagtgtggg attacaggcg tgagccactg	28380		
tgctcggcct cagtgggtct ttccctttagtgag tgacagttca atcctgtctc ttctgttag tg	28440		
	eu		
tct gtc acc tgc aaa tcc ggg gac ttc agc tgt ggg ggc cgt gtc aac	28488		
ser val thr cys lys ser gly asp phe ser cys gly gly arg val asn			
45	50	55	
cgc tgc att cct cag ttc tgg agg tgc gat ggc caa gtg gac tgc gac	28536		
arg cys ile pro gln phe trp arg cys asp gly gln val asp cys asp			
60	65	70	75
aac ggc tca gac gag caa ggc tgt c gtaagtgtgg ccctgccttt	28581		
asn gly ser asp glu gln gly cys p			
80			
gctattgagc ctatctgagt cctggggagt ggtctgactt tgtctctacg gggcctgct	28641		
cgagctgcaa ggcagctgcc ccgaactggg ctccatctt tggggctca taccacgcct	28701		
cttccgcctt tcaaattcccc ctttgaccag gaggcattac aaagtggggta tgggtctacc	28761		
tcttcgggtt tgtcacgcac agtcaggag gctgtccctg ccgaggccta gccacctggc	28821		
acacacactg gcaagccgcgt gtgattcccg ctggcgtga tccccgtat cctgtatcc	28881		
ccgccccgtg aggctgaaca catagtgacg cttgctagcc aagcctcaat gaccacgtat	28941		
acatgaaggg gaaaaagcca gaaagttctg ccaaggagca agggcaagaa tcccgaaggg	29001		
aaatggactt tgaagctggg cgtcttcttg gctgtcttaa tacaagtggc acatccaaat	29061		
ccaaaaacccc gaaattcaaa gtcttgagca cccgaaattc tgaaacgtct tgagcactga	29121		
cctttagaag gaaatgctta ttggagcatt ttggatttgc gatTTTacc actgagtgtg	29181		
gagtcctaata tagaaaaaaa accaggctga ccgaacccaa gaaaaagcaat aaaagaaggc	29241		
agatagggtc aggcacggtg gctcaccct gtaatccag cttttgaga ggctgaggcg	29301		
ggtggatcac ttgaggtcag gagttcgaga gcagcctggc caacacggtg aaaccccatc	29361		
tctactgaaa atacaaaaac tagccaggtt tggggcgatc tgctgttaat cccagctact	29421		
cgggaggctg agacaggaga atcacttcaa cctggggaggc agaggttgca gtgagccat	29481		
atcacgcctt tgcactccag cctgggggac aagagcgaaa ttctgtctca aaaaaaaaaaaga	29541		
agaagaaggc cgacaaacta tgtaactctg ctttctcca tggccagaa cacacagccc	29601		
tcctgcgtaa ataactcctt atcttcctgc tccctgtat catcagacac ctcggctgat	29661		
agaaaaattgc aagtttagctc actgcaacct cggcattata agtactgcac aaagccctct	29721		
tcagcgcaca gcacaaggcac cattctataa aatctccagc aagcggccag gtgcagtggc	29781		

- 14 -

tcataacctgt aatcccagca ttttgggaga ctgaggcggg cgatcacct gaggtcagga	29841	
gttgagacc agcctggcca acatggtaa accccgtctc tattaaaaat aaaaaaaaaat	29901	
tagccaggcg tggtggcagg tgccctgtaat cccagctact tggaaggctg aggcaggaga	29961	
atcgcttcaa cccgggaggt ggaagttgca gtgagccgag atcttgcac cgactccag	30021	
cctggggac aagagtgaga cttcgctca aaaaaaaaaaaa aaaaaattcc cagcaagcct	30081	
ttgtcttctg gcagtcagct cctcttgc tgacctgctc attgctttct tgcaaggtat	30141	
tttccttacacttctgaa ataaatctgt ctttctgtac ttacaactac cttttttaaa	30201	
atttcttcttcttctgagat ggagtctcac tctgtttgcc caggctggag ttcaagtttg	30261	
caatctcagc tcactgcaac ctctacccac tgggttcaag cgattctcct gcctcagctt	30321	
cccgagtagc tgggattaca ggcgtgcacc agcacgcagg ctaattttttagt tatttttagt	30381	
agagacgggg tttcaccatg ttggccaagg tggcttggaa ctccctgaccc caagtgtacc	30441	
tcccacccca gctccccaaa gcgcctaggat tacggccatg agccactgag gccggctgca	30501	
cctacaactg tcttataaaa ttcttacccc cacaccactg gtccagatag tcagtgtca	30561	
cccacaacat taaggatatt ccaaatttga aacattccaa aatcagaaaa atattccaac	30621	
tctgaaaata ttccaaaatc caaaaaaaaaaaat caaaatccaa aacacttctg gtcccaagca	30681	
tttagagaa gggatactca accccaaaata aggacagcaa ttctataaat tgtgtacca	30741	
tcttcaggt ctcagttaa cagcttaca cctattagcg caccagtgtc catagcagtgc	30801	
ctggaaatg tgtacagatg aggaaactga ggcacccgaga gggcagtgg tcagagtcca	30861	
tggccctga ctgctccccca gcccgcctt ccaggggcct ggcctcactg cggcagcgtc	30921	
cccgctata gaatgggctg gtgtgggag acttcacacg gtgatggtgg tctcgccca	30981	
tccatccctg cag cc ccc aag acg tgc tcc cag gac gag ttt cgc tgc	31029	
ro pro lys thr cys ser gln asp glu phe arg cys		
85	90	95
cac gat ggg aag tgc atc tct cgg cag ttc gtc tgt gac tca gac cgg	31077	
his asp gly lys cys ile ser arg gln phe val cys asp ser asp arg		
100	105	110
gac tgc ttg gac ggc tca gac gag gcc tcc tgc ccg gtg ctc acc tgt	31125	
asp cys leu asp gly ser asp glu ala ser cys pro val leu thr cys		
115	120	125
ggt ccc gcc agc ttc cag tgc aac agc tcc acc tgc atc ccc cag ctg	31173	
gly pro ala ser phe gln cys asn ser ser thr cys ile pro gln leu		
130	135	140
tgg gcc tgc gac aac gac ccc gac tgc gaa gat ggc tgc gat gag tgg	31221	
trp ala cys asp asn asp pro asp cys glu asp gly ser asp glu trp		
145	150	155
ccg cag cgc tgt agg ggt ctt tac gtg ttc caa ggg gac agt agc ccc	31269	
pro gln arg cys arg gly leu tyr val phe gln gly asp ser ser pro		
160	165	170
tgc tcg gcc ttc gag ttc cac tgc cta agt ggc gag tgc atc cac tcc	31317	
cys ser ala phe glu phe his cys leu ser gly glu cys ile his ser		
180	185	190

- 15 -

agc tgg cgc tgt gat ggt ggc ccc gac tgc aag gac aaa tct gac gag	31365
ser trp arg cys asp gly gly pro asp cys lys asp lys ser asp glu	
195 200 205	
gaa aac tgc g gtatggcg ggccagggtg gggggggggc gtcctatcac	31415
glu asn cys a	
210	
ctgtccctgg gctccccag gtgtggaca tgcagtgatt taggtgccga agtggatttc	31475
caacaacatg ccaagaaagt attcccattt catgtttgtt tctttttttt cttttcttc	31535
tttattttgt ttttgagatg gagtctact ctgtgatttt tttcatctct aaatttctta	31595
catccatatg gccaccatga ggcccccaggc tggccatgg ttgtgttag ctattggga	31655
aatcaactgtt tggaaggtgc tggtgtttt ttgttgttg ttgttttgt ttttgtttt	31715
gttttgagac ggagtctcgc tctgtcgcca gggtgagtg cagtggcgatc acagctcac	31775
tgcaacctcc gttcctggg ttcaagccat tctcctgcct cagcctccca agtagcgccg	31835
attacaggca tggccacca ctcggctta ttttttttc tatttagtag agatgggtt	31895
tcaccatgtt agtcaggctg gtcataact cttgacccatc ggtgatccac cgcctcggc	31955
ctcccaaagt gctgggatta caggcgtgca ctgctgcacc cagcctttt ttgtttttt	32015
gagacagggt cttgctgtca cccaggttga agtaaggtagg cacgattatg gtcactgctg	32075
gccttgcatact cttggctca agcataccct tcacttcagc ctctcaagca gttggAACCA	32135
caggcgttac caccaaggct ggcaatttt tttgtacaga cacaggctgg tcttgaactc	32195
ctgggctcaa gcaatccccc tgcattggcc tcccaaagtg ctgggattcc aggcatgagc	32255
cgctgcaccc ggcaaaaaggc cctgcttctt ttctctgggt tgctctttt tgagaaaatc	32315
aacacactct gtcctgtttt ccag ct gtg gcc acc tgt cgc cct gac gaa	32365
la val ala thr cys arg pro asp glu	
215	
ttc cag tgc tct gat gga aac tgc atc cat ggc agc cgg cag tgt gac	32413
phe gln cys ser asp gly asn cys ile his gly ser arg gln cys asp	
220 225 230 235	
cgg gaa tat gac tgc aag gac atg agc gat gaa gtt ggc tgc gtt aat	32461
arg glu tyr asp cys lys asp met ser asp glu val gly cys val asn	
240 245 250	
g gtgagcgctg gccatctgggt tttccatccc ccattctctg tgcatttgctg	32512
v	
cttgcaaatg atttgtgaag ccagagggcg cttccctgggt cagctctgca ccagctgtgc	32572
gtctgtggc aagtgcattt acttctcaga gcctcacttc cttttgtttt gagacggagt	32632
ctcgctctga caccctggct ggagtgtgtt ggcacaatca cagctcacgg cagcctctgc	32692
ctctgatgtc cagtgattct ctcgcctcag cttcccgagt agctgagatt aaaggcgtat	32752
accaccacgc cggcttaatt ttttgttattt ttatttagaga cagggtttctt ccatgttggc	32812
caggcgtggc ttgaactctt ggtctcaggt gatccacccg ctcggcctc ccaaagtgt	32872
aggattacag gtgtgagcca ctgcgcagg cctaattttt ttgttattttt agtagagatg	32932
cggttttgc atattgccc ggttgtctc gaactcctgg gctcaagcga tctgcctgcc	32992
ttggcctccc aaagtgcgg gattacaggc acaaaccacc gtgcccacg cgttttctta	33052
atgaatccat ttgcattgcgt tcttatgtga ataaactatt atatgaatga gtgccaagca	33112

- 16 -

aactgaggct cagacacacc	tgacccctc	ccttcctctc	tctggctctc	acag tg aca	33271
				al thr	
ctc tgc gag gga ccc	aac aag ttc	aag tgt cac agc	ggc gaa tgc atc	33219	
leu cys glu gly pro	asn lys phe	lys cys his ser	gly glu cys ile		
255	260		265		
acc ctg gac aaa gtc	tgc aac atg	gct aga gac	tgc cgg gac	tgg tca	33267
thr leu asp lys val	cys asn met	ala arg asp	cys arg asp	trp ser	
270	275		280		285
gat gaa ccc atc aaa	gag tgc g	gtgagtctcg	gtgcaggcgg	cttgcagagt	33319
asp glu pro ile lys	glu cys g				
290					
ttgtgggag ccaggaaagg	gactgagaca	tgagtgtgt	agggtttgg	gaactccact	33379
ctgcccaccc ttgtcaaagg	gtccctttt	tcatttttag	acagtctcg	acggtcgccc	33439
aggctggagc gcaatggcg	catctggct	caccacaacc	tccggctccc	aggttcaagc	33499
gattcttctg cctcagcctc	ctgagtagct	gggattacag	ctgaatgcca	cttgctggg	33559
ctaattttt	tatTTTtagt	agagatgggg	tttcaccatg	ttggccaggc	33619
ctcctgacct cgagtgatct	gccccctcc	tgaagtgtg	ggattacagg	cgtgagccac	33679
ctcgctctgg tgagggtttt	ttttttccc	caaccctctg	tggtgatac	tgaaagacca	33739
tattaggata actgtacagt	atagagaagg	cagtggcaag	ttttctctgt	catataccag	33799
agtgggcttg ggcattgg	catactctg	tagtctcagc	taatcaggag	gctgaggaag	33859
gaggatcgct tggggccagg	agttggagac	tgttagtgac	tgtatcaca	ccaccacact	33919
tcaatctggg caacagagca	agagacccta	tctctaaaaa	aaagtaagta	tttcggacac	33979
tgtggccat acggctctg	gtcagtttc	tcaacatggc	tgtgggtga	acacaaccac	34039
gcacagaacg caaaccaata	cacgtggctg	tggggccaga	aaatgttatt	tatggacaca	34099
aaaattggaa ttccatataa	ctgtttgtg	tcatgaaaat	gattccctt	tttatttttta	34159
tttttcttct caagtattta	aatatgtaaa	agccattttt	aggcctggca	ggatggttca	34219
cagctgtaat cccagcactt	tgggaggtcg	aggcgggagg	atcacgaggt	caggagatcg	34279
agaccatcct ggccaacaca	gtgaaacccc	gtctctacta	aaaatacaaa	aaattaacca	34339
ggcttggtgg cgcgctctg	tagtcccagc	tgctcaggag	gctgaggcag	gagaatcgct	34399
tgaatgcagg aggccggaggt	tgttagtgac	cgaggttgca	ccactgcact	ccagcctgag	34459
cgacagagtg agatccgcc	tcaaacaaaaa	aatgtttgc	ccatgctgg	cttgaactcc	34519
tgggctcaag ctatctgcct	gccttggct	cccaaagttc	tgggattaca	ggcatgagct	34579
acagcgcccg gactttgtt	gttttatatc	tatatactt	tatataactt	gttttatgtt	34639
tatataataac ttgtttata	tatatacata	aactgcagta	aaaaacatgt	aacataaaaat	34699
ttacccctctc aaaccttatt	aagtgcacag	ttctgtgcc	ttagcaaatt	cacactgttgc	34759
tacaacatca caaccacca	ctccagaact	ttttttttt	tttttattct	ttttgagaca	34819
gagtcctact cgtcgcacgg	gctggagtgc	agtggtgcga	tctcggttca	ctgcaacctc	34879
cacctaccag gttcaagcaa	ttctcctgccc	tcagccccct	cagtagctgg	gattacaggt	34939
gccccgtccta ccacgcccag	ctaatttttg	tatTTTcagt	agagactgac	tgggtttcac	34999
catgttggcc aggctggct	cgaactcctg	acctcaagtg	atcctccac	ctcagcctcc	35059
caaagtgtg ggaatacagg	catgagccac	tgccggcggc	cccagaactc	ttttatcttc	35119
ccaaactgaa gctctgtccc	catgaaacac	tcactctcca	tccctcccc	aactcctggc	35179

- 17 -

acccaccatt ctactttctg tccctatgaa tgtgatggct ctagggacct cctctgagtg	35239		
gaatcagaca gcattttcct ttttgactg gcttatttca ctgagccaag tgccgtggca	35299		
cacgcctgtta atccccaaaac tttgggagac cgaggcgccc gcatcaccag aggacaggag	35359		
nncgagacca gcccggccaa cagggggaaa ccccatcaact agggagctg cagaaagaaa	35419		
gccaccacat ggcctgctgg agccacacaa tcccagcaaa acagggacgc taaacgttagg	35479		
agaaacacac aaccccagga ggcggaggc gcagtgagcc gagatcgtgc cattacactc	35539		
cagcctggc aacaagagtg aaactccgtc tctcctaaaa atacaaaaaa attagctggg	35599		
catggtggca catgcctgtta gtcccagcta ctggggaggc tgaggcagga gaatcacttg	35659		
aacccgggag gtggaggtttaatgagcca aggttggcgg cgaagggatg gtaggggcc	35719		
cgagagtgac cagtctgcat cccctggccc tgcgcaag gg acc aac gaa tgc ttg	35773		
ly thr asn glu cys leu			
	295		
gac aac aac ggc ggc tgt tcc cac gtc tgc aat gac ctt aag atc ggc	35821		
asp asn asn gly gly cys ser his val cys asn asp leu lys ile gly			
300	305	310	
tac gag tgc ctg tgc ccc gac ggc ttc cag ctg gtg gcc cag cga aga	35869		
tyr glu cys leu cys pro asp gly phe gln leu val ala gln arg arg			
315	320	325	330
tgc gaa g gtgatttccg ggtggactg agccctggc cccctctgac cttcctgaca	35926		
cys glu a			
tggcaaccaa acccctcatg cctcagtttcccatctgttt aagtgtgctt gaaagcagtt	35986		
aggagggttt catgagattc cacctgcattt gaaaactatac attggctggc cagagttct	36046		
tgcctctggg gatttagtaat taagaaattt caggccgggt gcgtaatccc tgtaatccca	36106		
acacccctggg acgcccgggc gggcagatca cctgaggctcg ggagttccag accagcctga	36166		
ccaaacatgga gaaacccgtt ctctactaaa aatacataat tagccggct tgggtggc	36226		
tgcctataat cccagctact caggaggctg aggcaggaga atcacttgaa cctgggaggt	36286		
ggagggttg gtgagccaaat atcgtgccat tgcactccag cctggcaac aagagtgaaa	36346		
ctccatccaa aaaaaaaaaaa aaaaaaaaaaa aagaaatttc agctgacaca	36406		
gcttcacact cttgggtggg ttccctgtgtt gaatgatgag gtcaggtgat gactggggat	36466		
gacacctggc tgggtttggc attacatctc ccgagaggct gggctgtctc ctggctgcct	36526		
tcgaaggtgt gggcccccac tcgctccgtc tctagccatt gggaaagagc	36586		
ctccccacca agcctcttcc tctctttcc ag at atc gat gag tgt cag gat	36638		
sp ile asp glu cys gln asp			
	335		
ccc gac acc tgc agc cag ctc tgc gtg aac ctg gag ggt ggc tac aag	36686		
pro asp thr cys ser gln leu cys val asn leu glu gly gly tyr lys			
340	345	350	355
tgc cag tgt gag gaa ggc ttc cag ctg gac ccc cac acg aag gcc tgc	36734		
cys gln cys glu glu gly phe gln leu asp pro his thr lys ala cys			
360	365	370	

- 18 -

aag gct gtg g gtgagcacgg gaaggcggcg ggtggggcg gcctcacccc	36784	
lys ala val g		
375		
ttgcagggcag cagtggtggg ggagttcat cctctgaact ttgcacagac tcataatcccc	36844	
tgaccggag gctgtttgct cctgagggct ctggcagggg agtctgccgc cctgttagga	36904	
cttggcttg ccagggggat gcctgcatat gtcctagtt ttggaaatat ccagtaacg	36964	
gaaccctcag ccctactggg ggaacaggaa cccgcattcc ttcagggac aacctgggaa	37024	
gtgacttcaa ggggttaaag aaaaaaaaatt agctggcat ggtgccacac acctgtggtc	37084	
ccagctactc agaaggctga ggcgggagga ttgcttgagg gcaggaggat tgggtatcc	37144	
tcccaccta gcctccggag tagctggac ctcaggtgca tgccactatg cctggctaat	37204	
tttctttttt ctttttttt tttttcag acggagtctc gctctgtgc ccaggctgga	37264	
gtgcagtggc aggatctcgg ctcactgcaa gctccgcctc ccgggttacac gccattctcc	37324	
tgcctcagcc tccccagtag ctggactac aggagccgc cactgcacca ggccaatttt	37384	
tttgtatttt tagtagagac ggggttacac tgggttagcc aggtggctc cgatctccctg	37444	
acttcgtat ccgcacccacct cggccttcca aagtgtcg attacaggcg tgagccactg	37504	
cgcaccccg ctaatttca tattttttagt aaaaacaggg tttcaccatg ttggccaggc	37564	
tagtcttcaa ctccctgaacc caagtgtatcc tcctgccttgccttgcggat	37624	
tacagacacc acaacctggctt attattttttt ttttagagaca ggggtgtgtct cttatccca	37684	
gcctgtatgtc cagtgcagcc tccatcatag ctgcgtgcag cttgacccctc ctgggttacac	37744	
gtgatcgtcc cgcctaaagcc tctggaggag ctggaggtac tggcatgtgc caccatgcct	37804	
ggtaatttttt tttttttttt ttttgagac agagtctcat tctgtcaccc aggctggagt	37864	
gcgggtgtgc gatcttggct tactgaaacc tccacccccc aggttccagc aattctccctg	37924	
cctcaccctt ctgagtagct gggattacag gttccggcta ccaaacctgg ctatgttttgc	37984	
tatgttttagt agagacaggg tttcaccatg ttgggtgaggc tgggtctcgat tctccccc	38044	
cagcctccca aagtgtggg attacaggct tgagccaccc tgccctggctt tttttttttt	38104	
ttttttttt gtggcaataa ggtctcatttgc tcttgccttgc gctagcccttgc tgcctctatgc	38164	
ctcaagtgtat ctcctccctt cagcctccca aagtgtggg attacaggctt ggcggccactg	38224	
tgcctgttcc cgttggagg tctttccac ccttttttgc tgggtgcctc ctctggctca	38284	
ggccgcacccctt gcaggatgac acaagggat ggggaggcac tcttgggttcc atcgacgggt	38344	
ccccctctgac cccctgacccctt ccgtccccgg accccccag gc tcc atc gcc tac ctc	38399	
ly ser ile ala tyr leu		
375	380	
ttc ttc acc aac cgg cac gag gtc agg aag atg acg ctg gac cgg agc	38447	
phe phe thr asn arg his glu val arg lys met thr leu asp arg ser		
385	390	395
gag tac acc agc ctc atc ccc aac ctg agg aac gtg gtc gct ctg gac	38495	
glu tyr thr ser leu ile pro asn leu arg asn val val ala leu asp		
400	405	410
acg gag gtg gcc agc aat aga atc tac tgg tct gac ctg tcc cag aga	38543	
thr glu val ala ser asn arg ile tyr trp ser asp leu ser gln arg		
415	420	425

- 19 -

atg atc tgc ag gtgagcgctg cccctgcctg cagccttggc ccgcaggta	38594	
met ile cys se		
430		
gatgagggtct cctggcgctg atgcccttct ctccctcctgc ctca g c acc cag ctt	38649	
	r thr gln leu	
435		
gac aga gcc cac ggc gtc tct tcc tat gac acc gtc atc agc aga gac	38697	
asp arg ala his gly val ser ser tyr asp thr val ile ser arg asp		
440	445	450
atc cag gcc ccc gac ggg ctg gct gtg gac tgg atc cac agc aac atc	38745	
ile gln ala pro asp gly leu ala val asp trp ile his ser asn ile		
455	460	465
tac tgg acc gac tct gtc ctg ggc act gtc tct gtt gcg gat acc aag	38793	
tyr trp thr asp ser val leu gly thr val ser val ala asp thr lys		
470	475	480
ggc gtg aag agg aaa acg tta ttc agg gag aac ggc tcc aag cca agg	38841	
gly val lys arg lys thr leu phe arg glu asn gly ser lys pro arg		
485	490	495
gcc atc gtg gtg gat cct gtt cat gg gtgcgtatcc acgacgctga	38887	
ala ile val val asp pro val his gl		
500	505	
gggctgcaga gggaaatggag ggagcaggaa ggagcttcag gaactggta gtggctggg	38947	
catggtgct caaagcacct gtaatcccag cactttggga ggccaaggta ggtggatcat	39007	
caagaccagc ctgaccaaca tggtaaaacc tggctctac taaaaataca aaaattagcc	39067	
gggtgtggta gtggcacct gtaatcccag ctgctggga ggctgaggca ggagaatcac	39127	
ttgaacctgg gagatggagg ttgcagttag ccaagacagc cccactgcac tccagcctgg	39187	
gtgacagagt gagactccgt ctaaaaaaaaaaa ctaaacaaaa aactggtag	39247	
tggctagaca acaggatgtt atcttccaag cccatggctg actcagcagc tcctgggtca	39307	
agacactgtg acctgtgtcc cctggcagga agcatgccc ctgccacctg cccggtgtac	39367	
tctgtacctg tcaggtgaca tctgctaccc aagcacgtga gaggtggcat ttcacagttt	39427	
cagtgtggta ctgacaaccc gggacgcaca ctgtccttgc agctacaatc aggaggtgaa	39487	
tgttgggtt ccagcagaga acactggaga aggcacactt ggtgtctggaa agggaaaagc	39547	
aggaaagaga gcatcatcag atgcctgcgg gtgaaggtagg gcccgcata gcccacgtcc	39607	
ctttttat ttatttat atttatttga gatggaatct cgctctgtcg cccagactgt	39667	
agtgcagtgg tgcatcact gctactgca agtccgcct cacaggttca cgcattctc	39727	
ctgcctcagc ctccccagta gctggacta caggcacccg ccaccacgcc cggtaattt	39787	
tttgcatttt tattagagac gggtttccac cgcgttagcc agatggctt aaatctcctg	39847	
accctgtat ccacccgcct cggcctccct aagtgcgttgg attacaagcg tgagccacca	39907	
cggccggccc ctttttatt ttttatttt tgagacggag tctcgctctg tcgcccaggc	39967	
tagattgcag tggcgtgatc tcggctact gcagcctccg cctcccaggta caagtgtt	40027	
ctccgcctc aacctccaa ctaatttagga ttacaagcat gtaccacccat gcctgactaa	40087	
ttttttgtat ttttagtaga gactgggtt caccatgtt gctaggctgg tctcgaaccc	40147	

- 20 -

ttagcctcaa gtaatctgcc	tgcctcagcc tcccaaacag cggggattac aggcatgagc	40207
caactgtgccc aacccaaccc	tggatctctt taaaacaaga caatgctcg	40267
gaacaatggg tggggatcat	gtggcccagt gtgttggcc acataactgc caggccagag	40327
ggaaagagac tctcagactg	tctccactca gatacaaatg tgtgtgtgt gtgcgtgt	40387
tctggtctca tatttgtttg	tttgagaca ggggtcgct ctgtcactga gtctggagtg	40447
cagtgccgca atcagagttc	actgcagcct caaaactctt ggctcagttt attctccac	40507
ttcagcctcc caagtagctg	gaactacagg tgaacaccac tgtgcccagc taatttattt	40567
tatTTTtagt agagatgagg	tctcactatg ttgcccagc tggttttgc ctcctagcct	40627
caagcaatcc tcctgcctt	gtctccaaa gtgctggat tacacgtgcg agccattgcg	40687
catggcttgtt gtttttgtt	ttcttcctt ttcttcgag atggcgctc agtctgccac	40747
ccaggctgga gtgcagtgg	gtgatcatag ctcaactgt cctcaacttc ctggctcaa	40807
gcaatcctct tgatttcagc	ctcccgggcc tggccagcat ggtgaaaccc cgtctctact	40867
aaaaatacaa aaatgtagcc	aggcgtggg gtggggcct gtaatcccag ctacaccaga	40927
ggctgaggca ggagaatcgc	ttgagcctgg aaggtggagg ttgcagcaag ccaagatcgt	40987
gccactgcac tccagcctgg	gcaacagaga cagactctgt ctcaaaaaaaaaa aaaaaaaaaa	41047
acccaaacaa gccacattt	gagtttgggg ttcccagcag gactattcc caagcctgag	41107
cctggctttt tcttccagaa	ttcggtgcac gcattggctg ggatcctccc ccgcctcca	41167
gcctcacagc tattctctgt	cctccacca g c ttc atg tac tgg act gac tgg	41220
	y phe met tyr trp thr asp trp	
	510	515
gga act ccc gcc aag atc aag aaa	ggg ggc ctg aat ggt gtg gac atc	41268
gly thr pro ala lys ile lys lys	gly gly leu asn gly val asp ile	
520	525	530
tac tcg ctg gtg act gaa aac att	cag tgg ccc aat ggc atc acc cta	41316
tyr ser leu val thr glu asn ile	gln trp pro asn gly ile thr leu	
535	540	545
g gtatgttcgc aggacagccg	tcccagccag ggccggcac aggctggagg	41367
a		
acagacgggg gttgccaggt	ggctctggga caagccaaag ctgctccctg aaggtttccc	41427
tctttctttt ctttgtttt	tctttttt agatgaggc ttggctgtc acccaggctg	41487
gagtgcactg gcgcaatcgt	agtcactgc agcctccacc tcccaggctc aagtgtatc	41547
cctgcctcac ctcctgagt	agtcgagatt acagacacgt gcccaccacgg cagactaatt	41607
ttatTTTatt tttggaaaga	gacaaagtct tggtatgttgcctggctgg tctcaaactc	41667
agggtgcag cgatcctccc	gcctcagcct tccaaactgc tggattaca ggcgtggcc	41727
accgtaccca gcctccttga	agttttctg acctgcaact cccctacctg cccattggag	41787
agggcgtcac aggggagggg	ttcaggctca catgtggttg gagctgcctc tccaggtgct	41847
tttctgttag gtccctggca	gggggtttc ctgccccggag cagcgtggcc aggcctcag	41907
gaccctctgg gactggcatac	agcacgtgac ctctccttat ccacttgcgt gtctag	41963
at ctc ctc agt ggc cgc ctc tac tgg gtt gac tcc	aaa ctt cac tcc	42010
sp leu leu ser gly arg leu tyr trp val asp ser	lys leu his ser	
550	555	560

- 21 -

atc tca agc atc gat gtc aac ggg ggc aac cgg aag acc atc ttg gag	42058	
ile ser ser ile asp val asn gly gly asn arg lys thr ile leu glu		
565	570	575
gat gaa aag agg ctg gcc cac ccc ttc tcc ttg gcc gtc ttt gag	42103	
asp glu lys arg leu ala his pro phe ser leu ala val phe glu		
580	585	590
gtgtggctta cgtacgagat gcaagcactt aggtggcgga tagacacaga ctatagatca	42163	
ctcaagccaa gatgaacgca gaaaaactggt tgtgactagg aggaggctt agacctgagt	42223	
tatttctatt ttcttcttcc tttttttttt tttttttttag acagagttt gctctcgttt	42283	
cccaggctgg agggcaatgg catgatctcg gctcaccgca acctccaccc cccaggttca	42343	
agtgattctc ctgtctcagg ctccccagta gctgggatta caggcatgca ccaccacat	42403	
gcccgctaa ttttgtatTT ttagtagaga cggagttct ccatgttggt caggctggtc	42463	
tcgaactccc gacctcaggt gatctgcctg cctcggcctc ccaaagtgc gggattacag	42523	
actttagcca ccgcgcaggat ctaatttctgt tttctttctt tcttcttctt cttttttttt	42583	
ttctaaagaga caggatctca ctctgtcccc aggcaggagt gcagtgcgt gatcatagct	42643	
cactgcagcc ttaacctccct gggctcaagt gatcttccca cctcagcctc ccaagtagct	42703	
ggaactacag gtgcacacca ccatgcccag ctcattttt tttttttttt tttttttaga	42763	
cagtcctcggtt ctgtcaccccc ggctggagtg cagtggtaca atcttggctc actgcaacct	42823	
ctgcctccca ggttcaagcg atttcctgc ctcagcctcc tgtagtagttt agattacagg	42883	
catgtgtgcc atcatacctg gctgatTTT gtatTTTT ttagagatgg ggtctcgta	42943	
tgttgaccag gcttgcctta aactcccgcc ctcaagtgtat cctccactt cagtctccca	43003	
aagtgcgtggg attacaggca tgagccactg cggccgggtt gttttttttt ttttttgcgtt	43063	
ttttggagac ggaatttcac ctttgttgc caggatggag tgcaatggca cgatatcgcc	43123	
tcaccacaaac ctctgcctcc tgggttcaaa ccattttctt gcctcagcct tcttagtagc	43183	
tgggattaca agcatgtgcc accacgccc gctgatTTT tttttttttagt agagatgggg	43243	
tttctccatg ttggccaggc tggctcgaa ctccctgaccc caggtcattt gcccacctct	43303	
gcctccaaa gtgtggat tacaggcgtg agccaccgtg cccgggtgggt tttttttttt	43363	
ttactgagag tcgtgaaagg cagtgatccct ctgtcacatg tgatcttggc tctcagggg	43423	
catttggcaa ttcttagaga ttttttgggtt gtcacaagtc aatggggaaag actgttggca	43483	
tttagtgggt agaggctgggt gacgctgctg aacaccaga acagggaaagt agcaggccct	43543	
agatagagcc atcggtggga aaccctgctc taaggaaatg gcgttatTTT ataacccac	43603	
gttcctggca tgattaccaa cagccaaaag tggagttcccc ccaagtgtgt tcgtccattt	43663	
gcattgcagt aaaggaatag ctgaggccgg gtaatttata aagaaaagag atttaaactg	43723	
ggtatggcag tttatgccta taatccaga actttggag gctgaggcag gaggatcgct	43783	
tgagtccagg agtgtgagac cgagaccagg ctggccaaaca tgacgaaaact ctgtctcac	43843	
aaaaaaaaataca aaaagttaggc caggcacgg gttcacgccc tgaatccca gcactttggg	43903	
aggccgaggc gggcggtatca cgaggtcagg agatcgagac catcctggct aacacggta	43963	
aaccccgctt ctactaaaaaa tacaaaaaca aaattagccg ggtgtgggtt caggcgcctg	44023	
tagtcccagc tactcggggag gctgaggcgg gagaatggcg tgaacccggg aggcggagct	44083	
tgcagtgagc caagatcgctt ccactgcact ccagcctggg tgaccgagtt gagactccgt	44143	
ctcaaaaaaaaaaaaaaaa aaaaaaaaaataca aaaagttagcc aggtgtgggtt gcaggcacct	44203	
gtaatcctgg gttctcgaga ccgaggcatg agaattgcct gaccccgagga ggtggaggct	44263	

- 22 -

gcagtgagcc aagatcatgc cactgcactc cagcctggc gacagagtgg gactctgtct	44323
caaaaaacaa caaaaaaaaaa gttctggaaa tggatggtgg ttagtggat acttccacaa	44383
cagcgtgaat ctgcttaagg ccaccgaact gtgcactcac aaatagtcga gatggtacat	44443
tttatgttat gtgtatttca ccacaattaa aaactagttt tggccaggt gtgggttcc	44503
atgcctgtaa tcccagact ttgggaggc agagggaggt ggatcatgag gtcagcagtt	44563
cgagaccagc caggcaaca tggtaaacc ccatctcac taaaaataca aaaattagcc	44623
aggcgtggc gcacatgcct gtagtcccag ctacttgaga ggctgaagca ggagaatcgc	44683
ttgaacctgg gaggctaaga ttgcagttag ccgagatcgt gccactgcac tccagcctgg	44743
acgacagagt gagacttcgt ctaaaaaaaaa aaacaaaaaaaaa aaaaattagc tgtggtcag	44803
gcactgtggc tcacgcctgt aatcccagca ctttgggaga ccgaggtagg tggatggcct	44863
gaggtcagga gttcgaatcc agcctggcca acatggtaa agccccgtctc tactaaaaat	44923
acaaaaaatt agtcaggtat gttggcacac ctgtaatccc agctactcgg gaggctgaag	44983
caagagaatc gtttgaaccc aggagggtggc cgttgcagt gacccgagatt gggccactgt	45043
actccagcct gggcaacaaa agtcaaactc tgtctgaaac aaacaaacaa acaaacaaac	45103
agacaaacaa aaaaactagt tgtggagaga gggtggcctg tgtctcatcc cagtgtttaa	45163
cgggatttgt catttccctt gtcgtgttt tag gac aaa gta ttt tgg aca gat	45217
asp lys val phe trp thr asp	
595	600
atc atc aac gaa gcc att ttc agt gcc aac cgc ctc aca ggt tcc gat	45265
ile ile asn glu ala ile phe ser ala asn arg leu thr gly ser asp	
605	610
615	
gtc aac ttg ttg gct gaa aac cta ctg tcc cca gag gat atg gtt ctc	45313
val asn leu leu ala glu asn leu leu ser pro glu asp met val leu	
620	625
630	
ttc cac aac ctc acc cag cca aga g gtaagggtgg gtcagccccca	45358
phe his asn leu thr gln pro arg g	
635	640
645	650
655	
cccccccaac cttgaaacct cttgtggaa actctggat gttctggaaa tttctggat	45418
cttctggat agctgtatgtat ctgcgttcctg ccctgactcc gcttcttctg ccccaag	45474
ga gtg aac tgg tgt gag agg acc acc ctg agc aat ggc ggc tgc cag	45521
ly val asn trp cys glu arg thr thr leu ser asn gly gly cys gln	
660	665
670	
tat ctg tgc ctc cct gcc ccg cag atc aac ccc cac tcg ccc aag ttt	45569
tyr leu cys leu pro ala pro gln ile asn pro his ser pro lys phe	
675	680
685	
acc tgc gcc tgc ccg gac ggc atg ctg ctg gcc agg gac atg agg agc	45617
thr cys ala cys pro asp gly met leu leu ala arg asp met arg ser	
690	
tgc ctc aca g gtgtggcaca cgccttggttt ctgcgttcctg tgtcctccaa	45667
cys leu thr g	
ctgccccctc ctgagcctct ctctgctcat ctgtcaaatg ggtacctcaa ggtcggtta	45727

- 23 -

aggactcatg agtcgggata accatacttt tcttggatgg acacatcagc accgggcttg	45787
acatttaccc agttccccctt tgatgcctgg tttcctctt cccggccccc tgaagaggtg	45847
atctgatttc tgacaggagc cctgagggag gaaatggtc cctttgttga cttttctttt	45907
tctttatttt tttcttttga gatttgetgt cacccagcct ggaatgcagt ggtccatct	45967
tggctcaactg ctacctctcc cactgggttc aagcaattct cctgcctcag cctcccaagt	46027
agctgggatt acaagcatgc gccaccatgc ctggctaagt tttgtatttt tagtacagac	46087
agggttctc catggggcc aggctggct tgaactcctg acetcagggtg atcctccac	46147
ctctgcctcc cgaagtgcata cgattacagg catgagccac cgcccccate ccccttgtt	46207
gactttctc atcctctgag aaagtctcag ttgaggccag cacccctc aagtgaattg	46267
aatctccctt ttgaacaaca acaaataaca atatgaccca gacgtggtgg ctcacacctg	46327
tggtcccagc tactcgggag gctgaggtgt gaggattgt tgagcccagg aggtcaaggc	46387
tacagagagc tataatcaca ccacttcact ccagcctggg ggacaaaagtg aaaccctgtc	46447
tgaaaaaaac aaaaaaaagaa aaaggaaaaa gaaacaatac gatcacaaaag tagatattca	46507
tagtgtttat tttcagtact ctttttttt tttttttttt ttttgagac ggagtcttgc	46567
tctgtgccc aggctggagt gcagtggcac gatcttggct cactgcagcc tctgcctccc	46627
aggttcaagc gctggctca ctgcaacctc cgcctctgg gttcaagcgc ttctctgcc	46687
tcagcctccc cagtagctgg gactataggc acgtcccact acgcccagct aatttttgt	46747
attttttagt agagatgggg tttcactatg ttagccagga tggtctcgat ctccgtacct	46807
cgtgatctgc ctgccttggg ctcccaaagt gttgggatta tgggcatgag ccactgcacc	46867
tggcctttt tttttttttt tttgagatgg agttcgctc ttgtgcccga ggctggagt	46927
caatggtgtg atctcggttc actgcaacct ctgcctctg gttcaagca attctctgc	46987
ctcagcctcc cgagtagctg ggattacagg cacctgccac cacgcctggc taattttgt	47047
acttttagta gagacggggt ttctccatgt tggtcaggct ggtctaaac tcctgacctc	47107
agggtatcca cccacctcg cctccaaag ttctgggatt acagacatga gccaccgcgc	47167
ctggccgtgt ctggcctttt ttagttattt ctttttttt tttttttttt tttgagacag	47227
agtcttaactc cgtcgcccag gctggagtgc agcggtgca tgcacgtc ctgcaagctc	47287
cgccttcgg gttcatgcca ttctctgcc tcagcctct gtagactgg gactgcaggc	47347
gcctgccact acgcccggct actttttgt atatttagta gagatggagt ttcaactgtgt	47407
tagccaggat ggtctcgatc tcctgacttt gtgatccgccc cgcctcgcc tcccaaagt	47467
ctgggattac aggcgtgagc caccatgcca ggctttttt tttttttttt ttttgagac	47527
ggagtcttgc tctgtcgccc aggctggagt gcagtgcct gatctcagct cactgcaagc	47587
tccacttccc aggctcacgc cattctccag cctcagcctc ccaagtagct gagactacag	47647
gggcccggca ccacactcg ctaattttt tttttagttt tttttttttt ttttttgagac	47707
tgttagccag gctggctttt aactcctaact ctcaggcgat tcacctgcct cggcctccc	47767
aagtgctggg attaaaggta ttagccacct cgcctgggtt gagccacctc gcccagcctg	47827
agccacactca cccagctaa gccactgtgc ctggcctgtat ttggacttt ttaaaaattt	47887
tattaataat tatttttggg tttctttttt tttgagacagg gtcttactct gtcacccagg	47947
ccatccctgtc tgcacgtat cccactgtat ggtatcatacc ttgctgcagc ctctacactcc	48007
tgggctcaag cgatccccc ccctcagcct cctgagtagc tgggagtaca ggtgtgcacc	48067
accacacctg gctaattttt tttttttttt ttgtatataag agatggattt ttgccatgtt	48127
gaccaggcta gtcttaact cctggactca ctcaagagat cctcctgcct tggcctccc	48187
aggcatttg agactttcgat cattaggcgc acacctatga gaaggccctg caggcacgtg	48247

- 24 -

gcactcagaa gacgtttatt tattttca	g ag gct gag gct gca gtg gcc acc	48301
lu ala glu ala ala val ala thr		
695	700	
cag gag aca tcc acc gtc agg cta aag gtc agc tcc aca gcc gta agg	48349	
gln glu thr ser thr val arg leu lys val ser ser thr ala val arg		
705	710	715
aca cag cac aca acc acc cga cct gtt ccc gac acc tcc cgg ctg cct	48397	
thr gln his thr thr thr arg pro val pro asp thr ser arg leu pro		
720	725	730
ggg gcc acc cct ggg ctc acc acg gtg gag ata gtg aca atg tct cac	48445	
gly ala thr pro gly leu thr thr val glu ile val thr met ser his		
735	740	745
caa g gtaaagactg gcgcctccct aggccccct tcacccagag acgggtccct	48499	
gln a		
750		
tcaagtggcca cgaacattt ggtcacgaga tggagtccag gtgtcgctt cactccctt	48559	
ctgaccttct ctcacttggg ccgtgtgtct ctgggcctc agttcccta tctgtaaagt	48619	
gggtctataata acagttcttg ccctcttgc aaggattaaa tggccaaat catatgaggg	48679	
gccaggtcct tcaggctcct gttccaaa gtcagccacg caccgtgtgg gtcccaaaat	48739	
tttatcaagg cacattcggtt gcctcagtt caggcatctg cccaaaaagg ccaggactaa	48799	
ggcaaggaga gggagggatt cctcagtaact cagctttca cagaggctcc aaaaggctaa	48859	
ggaatccagt aacgtttaa cacaattta caatttttt ttttgagacg gagtttgct	48919	
cttggccc aggctggagt gcaagtggcac gatctcggtt cactgcaacc tctggccc	48979	
gggttcaagc gattctcctg ctcagtc cccagtagt gggattacag gcatgcgc	49039	
ccacgctcgg ctaatttgt attttagta cagaaggggc ttctctgtt gtcaggctgg	49099	
tctgtgaactc tcaacctcag gtgagccacc cgcctgagcc tcccaaagtg ctgggattac	49159	
aggtgtgagc caccacgcct ggccttttt ttgagacaga gtctcgctc cgcccatgct	49219	
gtactgcagt gacgcagttt gggctcaactg taacctccgc ttcccagggtt caagtgattc	49279	
ttctgccgca gcctccatg tagatgtt gggattacag gcacccgcca ccatgcctgg	49339	
ctaattctt catttttgtt agagatgggg tttcacatgt ttggccaggc tggctctaaa	49399	
cttctgacctt caagtcatct gcctgcctt gcccgcctt agtgcgtggaa ttatagatgt	49459	
gagccaccgc gcctggccta cagtttattt ttgggtggct cacacctgtt atctcagcac	49519	
tttggaggc caaggtggga gaatggctt agcccaggag ttcaagtcca gcctggcaa	49579	
catagcaaga ccctatctt actacaaaat aaataataaa taaactaatt tttttcttt	49639	
taaaacccaa ctattcaaca tggcaatgca atatattaaa aaaattttt ttttcttga	49699	
aacggagtct ctcactgtca cccggctgg agtgcagttt cgcctatctt gctcaactgca	49759	
acctccgcct cccaggtcca agtgcatttctt ctgcatttgc ctcccgatgt gctgggat	49819	
caggcaccca ccaccataacc cagctaatat ttttgttattt tttagtagaga tgggtttca	49879	
ctatgttggg caggctggc tggactcctt gacctcgatgt tctgcccag gatcggcggc	49939	
ctcccaaaatgt gctggggattt gcaggcatgtt gccaccgtgc ccagccaaaat tttttttt	49999	
tttattttttt tgggacacgg tctcactgtt taccctcagac tggagtgtata gagtgtgtc	50059	
atggctcaactt gcagcctcaa cctccctggg ctcaggtgtt cttccgtctt cagtctccca	50119	

- 25 -

ggtagctggg actacaggca tgagccacca cacccagcta attttgaat ttttttag	50179
agacagggtt tcaccttgtg gcccagactt gtctctaact ccaggcgtca agcgatctgc	50239
ccacacctggc ctcccaaagt gctgagatta atgcaattta aaaaattttt tggccaggcc	50299
tggtggtca tgcctgtatt cacaacacct tgggaggcaa aggtggcag atcaactgag	50359
gtcaggagtt cgagactagc ctggccaaca tggtaaaacc ccctgtctac taaaaaaaata	50419
caaaaattac ctgggcacag tgggggtgc ctgtaatccc agtacttgg gatgctgagg	50479
gtggagaatt gcttgaacct gggaggcaga agttgcagta agccaagatc atgccactgg	50539
actccagcct cagtgcacaga gcaaaaactct gtctccaaaa aaattgtttt ttttttttt	50599
ttttcaaatc atcacactac agccaaggcc tggccactta ctttgtaaa taaagttta	50659
ttggagccag tggaccagtg aggccgatc ttgcaggtgt aagatcacag tctatccttg	50719
aaaattttga tattttgttc attgggttgt ttttcattha tttaaatttt aaaaaataac	50779
atattaaagg ctggtgtgga ggtgcacgcc tgcagtccct gctactccca gaggctgagg	50839
cgggagactt gcttggcccc aagagttgaa gtccagcctg ggcaacatag cgagaccccc	50899
atctctaaaa ataaaaataa tgcatttagaa tattattgga ttcctggca gggcacagtg	50959
gctcacaccc tgaatccca cactttggga ggctgaggtg ggtggatcac ctgaggcag	51019
gagtttgaga ccagcctggc caacatggt aaaccccgtc tctactaaaa atacaaaaat	51079
tagccaggcg tggggcagg tgcctgtat cccagctact cgggaggctg aagcacgaga	51139
atcgcttgc aa tccaggaggc ggaggttgca gtgagctgag attgcgcatt tgcactccag	51199
cctggaggac aagagtgaaa ctccattccc ctctgcaaaag aaaaggaata ttatcagatt	51259
cctaagctt ttggctcccc cttagttt ggggctgggg tggtagtgt ctgacccggc	51319
ctcaactgtcc tccctggatg tgatgagacc caggtgtggg tcaggatgtc attcggttgt	51379
ccaccagagg gcgcacaaac tgcttgagc tgctggaaa tggtagctcct agacttttag	51439
caaacaaca aaaaaaaaaatg gcacatcgcc aaatttcaga ccattcttt ttttttttt	51499
tttggttcca gagtagctga aatctttgtt cagttacaag caggataaaa tggaaactgc	51559
ctggggagg ctgagaaacc ttcttgctt ggggaggtgg ggcactgcta gaattaatcg	51619
cttcacagac cagcccatcc aggactcctc aaatttggca aaaaagccat tcattcattc	51579
attcatttat gtagagacga gggggatctg gctatattgc ctatggatgtc attcaattcc	51739
tggcctcaag tgatcctct gccttggct actaatgtgc tgcgattaca ggcattgagcc	51799
accgtgccta gctctagttt accttggaaatg ttgccttgcc cagggccctt atgttgaatg	51859
gcccagggtcc acttgtatgg ttctgtacca aggttaaccc catcccataa tgcctgggac	51919
agttgatgca ggacaatcag ttctgtgcc attcaacctc aggactgagc atgctggca	51979
ttgtgggtc cgaagggtgc tccctgtcc ccttcaaaat acccttttt tcttttcttc	52039
ttttttttt tttttttttt ttgagacgaa gtcttgctt gttggccctt ctagagtgc	52099
gtggtagct ctcagctccc cgcaacctct gcttccggg ttcaaggcgat tctcctgcct	52159
cagccctctg agtagctggg attacagggtg cccaccgcca cagctggcta atttttgtat	52219
tttttagaga gacagggttt caccgtgtt gccaggctgg tcttgaactc ctgacccatc	52279
gcaacctgcc cacctcagcc tcccaaagtg ctgggattac aggtttgagc cactggcct	52339
ggcccttttt tttttttttt gagagggagt ctcaactgt tgcggccat ggagtgcata	52399
ggcgcgatct tgactcaactg caactccatt tcccggttc aagtgattct cctccctcag	52459
cctcccaagt agctgggatt acaggtgcatt gccaccacgg ccagctaaatt ttgtatTTT	52519
agtagagaca gggttcaact atgttgcata tgctggtctc aaactcctga ctttaggtga	52579
tctgcccggcc ttagcctcccc aaagtgttgg gattacagggt gtgagccacc ggcggccagac	52639

- 26 -

caaaaatatgc tcattttaat aaaatgcaca agtaggttga caagaatttc acctgcaacc	52699
ttgtcaacca cctagaataa aagcctctgc agccctcccc taaagactca tcaatgtgag	52759
gctcaagaac cttcttaggc tggctcggt ggctcatttc tgtaatccct gcactttgga	52819
aggctgagggc aggaggatct cttagggcca ggagttcaag acaaggctgg gcaacatagc	52879
cagacctctg tttctatccc ccacaaaaag aaccttctta aaccggaatt gagtcctaca	52939
acctcgataa ctcacaaaata agccgtgtg gcctctcaca gacttggaa gttctccaag	52999
tgtccaggga gatgtgccag gcgccttcct gccgtgacca ccgtcctctg cctgctccat	53059
ttcttggtgg ctttccttta gacctgggcc tcactcttgc ttcttcctg cag ct ctg	53117
	la leu
	750
ggc gac gtt gct ggc aga gga aat gag aag aag ccc agt agc gtg agg	53165
gly asp val ala gly arg gly asn glu lys lys pro ser ser val arg	
755	760
gct ctg tcc att gtc ctc ccc atc g gtaagcgcgg gccggtcccc	53210
ala leu ser ile val leu pro ile v	
770	775
cagcgtcccc caggtcacag cctcccgcta tgtgacctcg tgcctggctg gttgggctg	53270
ttcacttttt ctccctggaca gggAACAGCC ccactgggtgt cctttatcac ccccacggcc	53330
tctcctggct tggggctgac agtgacaaga tcagacagct aaggggtcag atggaggatg	53390
tggagctggg tccctgtctg tggaaatagcc tcaccgagat ttgagtgcct tctggggAAC	53450
tggttccctt gcagggggct gtgtggagag ggcgccttc cctgcctcac ccatgctcat	53510
cctaactcgg ttaccatcac atctctttt tcttttttc ttaaatttttta agaaaaaaaga	53570
aatttaattt tttttagaga cagagtcttgc tctgtcacc caggctggag tgcagtggca	53630
ccatcatgcc tcgctgcagc ctcaatgtct gggctcaagc gatcctccc cctcagcctc	53690
ctgagtagct ggtgcaagcc actatacccc acttcctatt tcttaaaaag tcacagccct	53750
gtgtgtggct aatcctggac agaaatctag aagaagtcag ctacttctgg ggcgtggctc	53810
acccagtggg cttcaggtta gatatttctt atacttatga ggctgggtgt ggtggottat	53870
gcctgtatc ccagcactt gggaggctga agtgggtgga ttgcttgggc tcaggagttc	53930
gagaccaacc tggcaacat ggcggAAACCC tggactaca aaaggtacaa aaattagctg	53990
ggcaggtggc acgtgcctgt ggtaccagct acttgaggGC ctgaggcagg aggatcgctt	54050
gaacctggga ggtcgaggtt gcagtgaact gagatcatgt cactgcactc cagcctggtg	54110
acagagcaag accccgtctc aaaaaaaaaa aaagaaagaa aaaaattctt atgcataagat	54170
ttgcctcttt tctgtttgtt tggactaca tggacttgc ctctgtcgcc caggctggag	54230
tacagtggct caacctcgcc tcactgcaac ctctgcctcc cgggttcaag caatttotcct	54290
gcctcagcct cctgagtagc tggactaca ggcggccca ccatgcccag ctaatttttg	54350
tatTTTtagt agagactgac tgggtttcat catgttggcc aggctggctc cgaactcttg	54410
accttcatgtat cgcggccct cagcctccc aaatgctggg attacaggcg tgagccacca	54470
ggcccgaggcc gcaaggcgat ctctaaacaa acataaaaga ccaggagtca aggttatgg	54530
acgtgcccgg tggactaca ccagccacgg agctgggtct ctggctcggt gggcagctgt	54590
gtgacagagc gtgcctctcc ctacag tg ctc ctc gtc ttc ttt tgc ctg ggg	54642
	al leu leu val phe leu cys leu gly

780

- 27 -

gtc ttc ctt cta tgg aag aac tgg cgg ctt aag aac atc aac agc atc	54690
val phe leu leu trp lys asn trp arg leu lys asn ile asn ser ile	
785 790 795 800	
aac ttt gac aac ccc gtc tat cag aag acc aca gag gat gag gtc cac	54738
asn phe asp asn pro val tyr gln lys thr thr glu asp glu val his	
805 810 815	
att tgc cac aac cag gac ggc tac agc tac ccc tcg gtgagtgacc	54784
ile cys his asn gln asp gly tyr ser tyr pro ser	
820 825	
ctctctagaa agccagagcc catggcggcc ccctcccagc tggaggcata tgatcctcaa	54844
gggaccaggc cgaggcttcc ccagccctcc agatcgagga cagcattagg tgaatgcttc	54904
tgtgcgctca ttcaaatgt cagcggacaa tggccttggg ggtgttagagg aatgttggat	54964
aagcaaataag agagctccat cagatggtga cagggcaaaag aaagtcaaaa ggagttcaga	55024
ggccgggcgc ggtggctcat gcctgtaatc ccaggactt gggaggccga ggctggcggg	55084
tcacctgaag tcaggagtt gagaccagct tggccatcat gacaaaaccc cgtctctatt	55144
aaaaatacaa aaaattagcc aggctgtggg gtgggcgcct gtaatcccag ctactcggga	55204
ggccgaggta gaaaaatcgc ttgaacctag gaggcagagg ttgcagttag ccgagatcgc	55264
gccactgcat tccagccccg gaggcaagag caaaaactcca tctaaaaaaaaaaaaaaa	55324
ggagttcaga ggcccgccat ggtggttcac acatgtgatc ccagaacttg gggaggttga	55384
ggcaggagaa tcacctgagc tcagagttca agaccagct gggcagcaca gcaagacccc	55444
atctctgcaa aaaataaaaaa tttagccag tgggtgtat aggccttagt tccagctact	55504
aggaggcta aggcaggagg attgcttgag gctaaggtag gagattgaga ctgcagttag	55564
ttgtgattgc gtcactgcgc tccagcctgg gtgacagagc aagcccttgt ctctaaaaaa	55624
aaaaaaaaaaa ttcaaagaag ggttccaga gggccaggag ggaggaaggg agaggaggtag	55684
tttttttttt ttgttttat tttttattt gagacagagt ctctctctgt cacccaggtt	55744
ggagtgcagt gctgtgatct tggctactg caacttgc ctctgggtt caagcaattc	55804
ttatgcctca gcctcagcct cctgagtagc tgggattaca acactatgcc cggtaattt	55864
ttgttatttt agtagagacg aggttgcgc atgttgcaca gactggctc gaactcctga	55924
cctcaagtga tccacccgccc ttggcctccc cacgtgctgg gattgcaggg gtgagccact	55984
gcgcggcct tgcattttac acaagggtt taggtaggt agcctctct gaaccaggag	56044
aacagcctgt gcaaggcccc tgaggctgga ccgtgcotgt tgggttttag gccgtttag	56104
ctggagcaa cagagagagg ggtaaaaagg caggaggcta ccaggcaggt tgtcagagc	56164
cttggggcc actggggagg actttggctt ttggcctgag agcgggtggg agtgactgaa	56224
tccggtaactc accgtctccc tctggcggct cctggggaa catgcttggg gatcaggctg	56284
ggggaggctg ccaggccccag gaggtgagaa gtaggtggcc tccagccgtg ttccctgaat	56344
gctggactga tagttccgc tggattaccat ttgttggcag aga cag atg gtc agt	56399
arg gln met val ser	
830	
ctg gag gat gac gtg gcg tgaacatctg cctggagtcc cgtccctgcc	56447
leu glu asp asp val ala	
835 839	
cagaaccctt cctgagacct cgccggcctt gtttattca aagacagaga agaccaaagc	56507

- 28 -

- 29 -

tggcatgatc tcggcttact gcaagctccg cctcccaagg tcaagcaatt ctccgcctc	59087
agcctcccta gtagcttagga ttacaggtga gtgccaccac gcctggccaa tttttttttt	59147
ttttttttt ttgagacaga gtctcgctct gtcacccagg ctggagtgca gtggtgtgat	59207
ctcggtcac tgcaagctct gcctcccagg ttaatgccat tctccgtct cagcctcctg	59267
agtagctggg gccacaggcg cctgccacca cgcccggtta attttttttt gtacttctt	59327
tagtacagac ggggtttcac catgttagcc aggatggtct cgatctcctg accttgtat	59387
ccacctgctt cggcctccca aagtgttagg attacaggcg tgagccaccg cgggtggcca	59447
acgctaattt tttgttttt ttagatggag tcttgctctg tcgcccaggc tggagtgcag	59507
tggcgtgatc tctgcctact gcaagctccg cctcccggtt tcatgccatt ctccgcctc	59567
agcctcccta gtaactgggta ctacaggcac ccggccaccac gcccggctaa tttttgtat	59627
tttttagtaga gacagggttt caccgttta gccaggatgg tcttgatctc ctgaccttgt	59687
gatccaccccg tctcggcctc ccaaagtgtt gggatttagag gtgtgagcca ccacacctgg	59747
cctagcctgg ctaattttt tattttgtt agagacgggg tttcaccatg ttggtcaggc	59807
tggtcttcaa cttctgacct caggtaatct gcctgcctca gtctcccaa gtgctggat	59867
tacaggtgtg agccaccgcg cctggcctca ctccctctg tcatctgttt gtggattgga	59927
ctccccagga gaaggaccca gaaggggaaag actcccagaa ctccgggcaa gatgcaatct	59987
ccgtggcgtg cca	60000

<210> SEQ ID NO.: 2

<211> 24

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<223> Ex1F

<400>

cacattgaaa tgctgttaat gacg

<210> SEQ ID NO.: 3

<211> 24

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<223> Ex1R

- 30 -

<400>

ctattctggc gcctggagca agcc

<210> SEQ ID NO.: 4

<211> 24

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<223> Ex2F

<400>

ttgagagacc ctttctcctt ttcc

<210> SEQ ID NO.: 5

<211> 20

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<223> Ex2R

<400>

gcatatcatg cccaaagggg

<210> SEQ ID NO.: 6

<211> 24

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<223> Ex3F

<400>

ttccttgag tgacagttca atcc

- 31 -

<210> SEQ ID NO.: 7

<211> 24

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<223> Ex3R

<400>

gataggctca atagcaaagg cagg

<210> SEQ ID NO.: 8

<211> 24

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<223> Mut191-2F

<400>

acagttcaat cctgtctctt ctct

<210> SEQ ID NO.: 9

<211> 10

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<223> Ex4AF

<400>

gtggtctcgg ccatccatcc

<210> SEQ ID NO.: 10

<211> 20

<212> polinucleótido

- 32 -

<213> secuencia artificial

<220>

<221> cebador

<223> Ex4ARF

<400>

agccatcttc gcagtcgggg

<210> SEQ ID NO.: 11

<211> 12

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<223> Mut 509insCR

<400>

cgagccatct tcgcagtcgg ag

<210> SEQ ID NO.: 12

<211> 20

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<223> Ex4BF

<400>

cccccagctg tgggcctgcg

<210> SEQ ID NO.: 13

<211> 20

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

- 33 -

<223> Ex4BR

<400>

cgccccccacc ctgccccggc

<210> SEQ ID NO.: 14

<211> 20

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<223> Ex6F

<400>

tccctcattcc tctctctggc

<210> SEQ ID NO.: 15

<211> 20

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<223> Ex6R

<400>

tctgcaagcc gcctgcacccg

<210> SEQ ID NO.: 16

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<223> MutC255GF

<400>

ctctggctctc acagtgcacac gc

- 34 -

<210> SEQ ID NO.: 17

<211> 20

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<223> Mut E291XR

<400>

gcaccgagac tcaccgcaat

<210> SEQ ID NO.: 18

<211> 20

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<223> Ex7F

<400>

ggcgaaggga tgggttagggg

<210> SEQ ID NO.: 19

<211> 20

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<223> Ex7R

<400>

gttgccatgt caggaagcgc

<210> SEQ ID NO.: 20

<211> 20

<212> polinucleótido

- 35 -

<213> secuencia artificial

<220>

<221> cebador

<223> Ex9F

<400>

ccccctgacct cgctccccgg

<210> SEQ ID NO.: 21

<211> 20

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<223> Ex9R

<400>

gctgcaggca ggggcgacgc

<210> SEQ ID NO.: 22

<211> 20

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<223> Ex10F

<400>

atgcctttct ctccctctgc

<210> SEQ ID NO.: 23

<211> 24

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

- 36 -

<223> Ex10R

<400>

agccctcagc gtcgtggata

<210> SEQ ID NO.: 24

<211> 20

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<223> Mut1432delGF

<400>

gggacatcca ggcccccgcc

<210> SEQ ID NO.: 25

<211> 20

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<223> Ex11F

<400>

tcctcccccgc ccctccagcc

<210> SEQ ID NO.: 26

<211> 20

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<223> Ex11R

<400>

gctgggacgg ctgtcctgcg

- 37 -

<210> SEQ ID NO.: 27

<211> 20

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<223> Ex13F

<400>

gtcatttcc ttgctgcctg

<210> SEQ ID NO.: 28

<211> 30

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<223> Ex13R

<400>

ttccacaagg aggttcaag gttgggggg

<210> SEQ ID NO.: 29

<211> 13

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<223> MutH635NR

<400>

acctttggc tgggtcaggt tct

<210> SEQ ID NO.: 30

<211> 20

<212> polinucleótido

- 38 -

<213> secuencia artificial

<220>

<221> cebador

<223> Ex14F

<400>

aaatttctgg aatcttctgg

<210> SEQ ID NO.: 31

<211> 20

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<223> Ex14R

<400>

gcagagagag gctcaggagg

<210> SEQ ID NO.: 32

<211> 22

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<223> Ex15F

<400>

gaagggcctg cagcacgtgg ca

<210> SEQ ID NO.: 33

<211> 19

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

- 39 -

<223> Ex15R

<400>

tagggagggc ccagtcttt

<210> SEQ ID NO.: 34

<211> 20

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<223> Ex17F

<400>

gggtctctgg tctcggggc

<210> SEQ ID NO.: 35

<211> 22

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<223> Ex17R

<400>

ggctctggct ttcttagagag gg

<210> SEQ ID NO.: 36

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

cgggtcggga cactgcctgg cag

- 40 -

<210> SEQ ID NO.: 37

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

cgggtcggga ccctgcctgg cag

<210> SEQ ID NO.: 38

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

ctgccaggca gtgtcccgac ccg

<210> SEQ ID NO.: 39

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

ctgccaggca gggtcccgac ccg

<210> SEQ ID NO.: 40

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

- 41 -

<400>

atgcatttcc cgtcttggca ctg

<210> SEQ ID NO.: 41

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gatgcatttc cctcttggca ctg

<210> SEQ ID NO.: 42

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gatgcatttc ccgtcttggc actgg

<210> SEQ ID NO.: 43

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

agatgcattt ccctcttggc actgg

<210> SEQ ID NO.: 44

<211> 25

<212> polinucleótido

<213> secuencia artificial

- 42 -

<220>

<221> cebador

<400>

tgtctttctg ttagtgtctg tcacc

<210> SEQ ID NO.: 45

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gtctttctg tctgtgtctg tcacc

<210> SEQ ID NO.: 46

<211> 27

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

ctgtcttttc ttagtgtctg gtcacct

<210> SEQ ID NO.: 47

<211> 27

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

tgtctttctg gtctgtgtctg gtcacct

<210> SEQ ID NO.: 48

<211> 23

- 43 -

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

ggccgtgtca accgctgcat tcc

<210> SEQ ID NO.: 49

<211> 21

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gccgtgtcaa ccgctgcatt c

<210> SEQ ID NO.: 50

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

aggaatgcag cgtttgacac ggccc

<210> SEQ ID NO.: 51

<211> 27

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gaggaatgca gcgtttgaca cggcccc

- 44 -

<210> SEQ ID NO.: 52

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

agctgtgggg gccgtgtcaa ccg

<210> SEQ ID NO.: 53

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

agctgtgggg gcgtgtcaac cgc

<210> SEQ ID NO.: 54

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

cgttgacac ggcccccaca gct

<210> SEQ ID NO.: 55

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

- 45 -

<400>

gcgggttaca cgcccccaca gct

<210> SEQ ID NO.: 56

<211> 21

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

caaggctgtc gtaagtgtgg c

<210> SEQ ID NO.: 57

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gcaaggctgt cgtaagtgtg gcc

<210> SEQ ID NO.: 58

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

caaggctgtc gttaagtgtg gcc

<210> SEQ ID NO.: 59

<211> 21

<212> polinucleótido

<213> secuencia artificial

- 46 -

<220>

<221> cebador

<400>

aaggctgtcg ttaagtgtgg c

<210> SEQ ID NO.: 60

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gacaacgacc ccgactgcga agatg

<210> SEQ ID NO.: 61

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gacaacgacc cccgactgct aagat

<210> SEQ ID NO.: 62

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

acaacgaccc cgactgcgaa gat

<210> SEQ ID NO.: 63

<211> 23

- 47 -

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

acaacgaccc ccgactgcga aga

<210> SEQ ID NO.: 64

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gcggccactc atccgagcca tct

<210> SEQ ID NO.: 65

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gcggccactc acccgagcca tct

<210> SEQ ID NO.: 66

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

tgcggccact catccgagcc atctt

- 48 -

<210> SEQ ID NO.: 67

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

tgcggccact cacccgagcc atctt

<210> SEQ ID NO.: 68

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

ccagctggcg ctgtgatggc ggc

<210> SEQ ID NO.: 69

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

ccagctggcg ccgtgatggc ggc

<210> SEQ ID NO.: 70

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

- 49 -

<400>

tccagctggc gctgtatgg tggcc

<210> SEQ ID NO.: 71

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

tccagctggc gccgtatgg tggcc

<210> SEQ ID NO.: 72

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

ctgcaaggac aaatctgacg aggaa

<210> SEQ ID NO.: 73

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

ctgcaaggac aactgcggta tgggc

<210> SEQ ID NO.: 74

<211> 27

<212> polinucleótido

<213> secuencia artificial

- 50 -

<220>

<221> cebador

<400>

actgcaagga caaatctgac gaggaaa

<210> SEQ ID NO.: 75

<211> 27

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

actgcaagga caactgcggc atgggcg

<210> SEQ ID NO.: 76

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

caaatacgac gaggaaaact gcggc

<210> SEQ ID NO.: 77

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

caaatacgac gacaaatctg acgag

<210> SEQ ID NO.: 78

<211> 27

- 51 -

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

acaaatctga cgaggaaaac tgcggtta

<210> SEQ ID NO.: 79

<211> 27

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

acaaatctga cgacaaatct gacgagg

<210> SEQ ID NO.: 80

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gggtccctcg cagagtgtca ctg

<210> SEQ ID NO.: 81

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gggtccctcg ccgagtgtca ctg

- 52 -

<210> SEQ ID NO.: 82

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

tgggtccctc gcagagtgtc actgt

<210> SEQ ID NO.: 83

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

tgggtccctc gccgagtgtc actgt

<210> SEQ ID NO.: 84

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

aaccatcaa agagtgcggt gag

<210> SEQ ID NO.: 85

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

- 53 -

<400>

aacccatcaa atagtgcggt gag

<210> SEQ ID NO.: 86

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gaacccatca aagagtgcgg tgagt

<210> SEQ ID NO.: 87

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gaacccatca aatagtgcgg tgagt

<210> SEQ ID NO.: 88

<211> 20

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

tcactctcgg gcccctacca

<210> SEQ ID NO.: 89

<211> 21

<212> polinucleótido

<213> secuencia artificial

- 54 -

<220>

<221> cebador

<400>

tcactctcg acccctaccc a

<210> SEQ ID NO.: 90

<211> 20

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

cactctcgaa cccctaccc

<210> SEQ ID NO.: 91

<211> 19

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

cactctcgaa cccctaccc

<210> SEQ ID NO.: 92

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

acgagtgcct gtgcgcggac ggctt

<210> SEQ ID NO.: 93

<211> 25

- 55 -

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

acgagtgcct gtacggccac ggctt

<210> SEQ ID NO.: 94

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

cgagtgccctg tgcggccgacg gct

<210> SEQ ID NO.: 95

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

cgagtgccctg tacggccgacg gct

<210> SEQ ID NO.: 96

<211> 24

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gcgaagatgc gaaggtgatt ccgg

- 56 -

<210> SEQ ID NO.: 97

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

ggcccaagcga agatttccgg gtggg

<210> SEQ ID NO.: 98

<211> 27

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

agcgaagatg cgaagggtgat ttccggg

<210> SEQ ID NO.: 99

<211> 27

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

tggcccaagcg aagatttccg ggtggga

<210> SEQ ID NO.: 100

<211> 21

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

- 57 -

<400>
tgaagaagag gtaggcgatg g

<210> SEQ ID NO.: 101

<211> 21

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

cggtttgtga agacgatgga g

<210> SEQ ID NO.: 102

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gtgaagaaga ggttaggcgtt gga

<210> SEQ ID NO.: 103

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

ccggtttgttg aagacgatgg agc

<210> SEQ ID NO.: 104

<211> 25

<212> polinucleótido

<213> secuencia artificial

- 58 -

<220>

<221> cebador

<400>

ctccatcgcc tacctttct tcacc

<210> SEQ ID NO.: 105

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

ctccatcgcc taactttct tcacc

<210> SEQ ID NO.: 106

<211> 27

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gctccatcgc ctacctttc ttcacca

<210> SEQ ID NO.: 107

<211> 27

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gctccatcgc ctaactttc ttcacca

<210> SEQ ID NO.: 108

<211> 25

- 59 -

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

tgcgggttgg tgaagaagag gtagg

<210> SEQ ID NO.: 109

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gtgccggttg gtgagaagag gtagg

<210> SEQ ID NO.: 110

<211> 27

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gtgccggttg gtgaagaaga ggtggc

<210> SEQ ID NO.: 111

<211> 27

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

cgtgccggtt ggtgagaaga ggtggc

- 60 -

<210> SEQ ID NO.: 112

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

caatagaatc tactggtctg acctg

<210> SEQ ID NO.: 113

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

caatagaatc tagtggtctg acctg

<210> SEQ ID NO.: 114

<211> 27

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gcaatagaat ctactggtct gacctgt

<210> SEQ ID NO.: 115

<211> 27

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

- 61 -

<400>

gcàatagaat ctagtgtct gacctgt

<210> SEQ ID NO.: 116

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

ggcccccggac gggctggctg tggac

<210> SEQ ID NO.: 117

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

ggcccccggac ggctggctgt ggact

<210> SEQ ID NO.: 118

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gtccacagcc agcccggtcg gggcc

<210> SEQ ID NO.: 119

<211> 25

<212> polinucleótido

<213> secuencia artificial

- 62 -

<220>

<221> cebador

<400>

agtccacagc cagccgtcgg gggcc

<210> SEQ ID NO.: 120

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gcgggagttc cccagtcagt ccagt

<210> SEQ ID NO.: 121

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gcgggagttc cctagtcagt ccagt

<210> SEQ ID NO.: 122

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

cgggagttcc ccagtcagtc cag

<210> SEQ ID NO.: 123

<211> 23

- 63 -

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

cgggagttcc ctatcgatc cag

<210> SEQ ID NO.: 124

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

ctgtccccag agatatggt tctct

<210> SEQ ID NO.: 125

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

ctgtccccag agaatatggt tctct

<210> SEQ ID NO.: 126

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

tgtccccaga ggatatggtt ctc

- 64 -

<210> SEQ ID NO.: 127

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

tgtccccaga gaatatggtt ctc

<210> SEQ ID NO.: 128

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

tggttctctt ccacaacctc acc

<210> SEQ ID NO.: 129

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

tggttctctt caacaacctc acc

<210> SEQ ID NO.: 130

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

- 65 -

<400>

atggttctct tccacaacct caccc

<210> SEQ ID NO.: 131

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

atggttctct tcaacaacct caccc

<210> SEQ ID NO.: 132

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gctgaccttt agcctgacgg tggat

<210> SEQ ID NO.: 133

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

agctgacctt tagctgacgg tggat

<210> SEQ ID NO.: 134

<211> 27

<212> polinucleótido

<213> secuencia artificial

- 66 -

<220>

<221> cebador

<400>

agctgacctt tagcctgacg gtggatg

<210> SEQ ID NO.: 135

<211> 27

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gagctgacctt tagcctgacg gtggatg

<210> SEQ ID NO.: 136

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

tgccttcgtt cttccattgc ctg

<210> SEQ ID NO.: 137

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

tgccttcgtt ggtctttgcc tgg

<210> SEQ ID NO.: 138

<211> 25

- 67 -

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gtgctcctcg tcttccttg cctgg

<210> SEQ ID NO.: 139

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gtgctcctcg gggtcttgc ctggg

<210> SEQ ID NO.: 140

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gactcacagc acgtctcctg ggact

<210> SEQ ID NO.: 141

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gactcacagc acatctcctg ggact

- 68 -

<210> SEQ ID NO.: 142

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

actcacagca cgtctcctgg gac

<210> SEQ ID NO.: 143

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

actcacagca catctcctgg gac

<210> SEQ ID NO.: 144

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

ccatcggtgc agcgaaactc gtc

<210> SEQ ID NO.: 145

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

- 69 -

<400>
atgcacttcc cacgtcctgg gag

<210> SEQ ID NO.: 146

<211> 21

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

catcggtggca gcgaaaactcg t

<210> SEQ ID NO.: 147

<211> 21

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

tgcacttccc acgtcctggg a

210> SEQ ID NO.: 148

<211> 20

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador Ex8F

<400>

cattggggaa gagcctcccc

210> SEQ ID NO.: 149

<211> 20

<212> polinucleótido

- 70 -

<213> secuencia artificial

<220>

<221> cebador Ex8R

<400>

gcctgcaagg ggtgaggccg

210> SEQ ID NO.: 150

<211> 20

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador Ex12F

<400>

actggcatca gcacgtgacc

210> SEQ ID NO.: 151

<211> 20

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador Ex12R

<400>

cgtgtgtcta tccggccacc

210> SEQ ID NO.: 152

<211> 20

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador Ex16F

<400>

gcgctttcct gccgtgacca

- 71 -

210> SEQ ID NO.: 153

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador Ex16R

<400>

cctgtccagg agaaaaagtg aac

210> SEQ ID NO.: 154

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador MutI771TF

<400>

cagtagcgtg agggctctgt caa

210> SEQ ID NO.: 155

<211> 19

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador Mut2389+4A>GR

<400>

ctgggggacc ggccggcg

210> SEQ ID NO.: 156

<211> 23

<212> polinucleótido

<213> secuencia artificial

- 72 -

<220>

<221> cebador

<400>

tgtcaagctg ggtgctgagg cag

210> SEQ ID NO.: 157

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

tgtcaagctg gttgctgagg cag

210> SEQ ID NO.: 158

<211> 21

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gtcaagctgg gtgctgaggc a

210> SEQ ID NO.: 159

<211> 21

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gtcaagctgg ttgctgaggc a

- 73 -

210> SEQ ID NO.: 160

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

ggtccctcgc agagtgtcac tgt

210> SEQ ID NO.: 161

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

ggtccctcgc actgtgagag cca

210> SEQ ID NO.: 162

<211> 21

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gtccctcgca gagtgtcact g

210> SEQ ID NO.: 163

<211> 21

<212> polinucleótido

<213> secuencia artificial

<220>

- 74 -

<221> cebador
<400>
gtccctcgca ctgtgagagc c

210> SEQ ID NO.: 164

<211> 21
<212> polinucleótido
<213> secuencia artificial
<220>
<221> cebador
<400>
ccgtcgaaaa cctggatgtc t

210> SEQ ID NO.: 165

<211> 21
<212> polinucleótido
<213> secuencia artificial
<220>
<221> cebador
<400>
ccgtcgaaaa tctggatgtc t

210> SEQ ID NO.: 166

<211> 23
<212> polinucleótido
<213> secuencia artificial
<220>
<221> cebador
<400>
ccgtcgaaaa gcctggatgt ctc

210> SEQ ID NO.: 167

- 75 -

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gcccgtcggg gtctggatgt ctc

210> SEQ ID NO.: 168

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

ccggttggtg aagaagaggt aggcg

<210> SEQ ID NO.: 169

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

cgggttgtga agaaagaggt aggcg

<210> SEQ ID NO.: 170

<211> 27

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

- 76 -

<400>
gccgggttgtt gaagaagagg taggcga

<210> SEQ ID NO.: 171

<211> 27

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

ccgggttgtg aagaaagagg taggcga

<210> SEQ ID NO.: 172

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

actggaagct ggccggacca cag

<210> SEQ ID NO.: 173

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gcactggaag ctgggaccac agg

<210> SEQ ID NO.: 174

<211> 23

- 77 -

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

ctgtggtccc gccagttcc agt

<210> SEQ ID NO.: 175

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

cctgtggtcc cagcttccag tgc

<210> SEQ ID NO.: 176

<211> 21

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gcgggagttc cccagtca gt c

<210> SEQ ID NO.: 177

<211> 21

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

- 78 -

gcgggagttc accagtca
gt c

<210> SEQ ID NO.: 178

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

ggcgaggatt cccca
gtcag tcc

<210> SEQ ID NO.: 179

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

ggcgaggatt cacc
gtcag tcc

<210> SEQ ID NO.: 180

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

ccccatcggt aagcg
cgccg ccg

<210> SEQ ID NO.: 181

<211> 23

<212> polinucleótido

- 79 -

<213> secuencia artificial

<220>

<221> cebador

<400>

ccccatcggt aggccgcgggc cg

<210> SEQ ID NO.: 182

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

ccggcccgcg cttaccgatg ggg

<210> SEQ ID NO.: 183

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

ccggcccgcg cctaccgatg ggg

<210> SEQ ID NO.: 184

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gaaaagagggc tggcccaccc ctt

- 80 -

<210> SEQ ID NO.: 185

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gaaaagaggc ttctccttgg ccg

<210> SEQ ID NO.: 186

<211> 21

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

aaaagaggct ggcccacccc t

<210> SEQ ID NO.: 187

<211> 21

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

aaaagaggct tctccttggc c

<210> SEQ ID NO.: 188

<211> 25

<212> polinucleótido

<213> secuencia artificial

- 81 -

<220>

<221> cebador

<400>

cgccttcccg tgctcaccca cagcc

<210> SEQ ID NO.: 189

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

cgccttcccg tgttcaccca cagcc

<210> SEQ ID NO.: 190

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

ggctgtgggt gagcacggga aggcg

<210> SEQ ID NO.: 191

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

ggctgtgggt gaccacggga aggcg

- 82 -

<210> SEQ ID NO.: 192

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

actatctcca ccgtggtgag cccag

<210> SEQ ID NO.: 193

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

actatctcca ccatggtgag cccag

<210> SEQ ID NO.: 194

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

ctgggctcac cacggtgagg atagt

<210> SEQ ID NO.: 195

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

- 83 -

<221> cebador

<400>

ctgggctcac catggtggag atagt

<210> SEQ ID NO.: 196

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gggcctctgtc cattgtcctc cccat

<210> SEQ ID NO.: 197

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gggcctctgtc cactgtcctc cccat

<210> SEQ ID NO.: 198

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

atggggagga caatggacag agccc

<210> SEQ ID NO.: 199

- 84 -

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

atggggagga cagtggacag agccc

<210> SEQ ID NO.: 200

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

tgcaacatgg ctagagactg ccggg

<210> SEQ ID NO.: 201

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

tgcaacatgg ctggagactg ccggg

<210> SEQ ID NO.: 202

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

- 85 -

<400>

gcaacatggc tagagactgc cgg

<210> SEQ ID NO.: 203

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gcaacatggc tggagactgc cgg

<210> SEQ ID NO.: 204

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

tgctgatgac ggtgtcatag gaa

<210> SEQ ID NO.: 205

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

tgctgatgac gatgtcatag gaa

<210> SEQ ID NO.: 206

<211> 21

- 86 -

<212> polinucleótido
<213> secuencia artificial
<220>
<221> cebador
<400>
gctgatgacg gtgtcatagg a

<210> SEQ ID NO.: 207
<211> 21
<212> polinucleótido
<213> secuencia artificial
<220>
<221> cebador
<400>
gctgatgacg atgtcatagg a

<210> SEQ ID NO.: 208
<211> 23
<212> polinucleótido
<213> secuencia artificial
<220>
<221> cebador
<400>
tccaaacttc actccatctc aag

<210> SEQ ID NO.: 209
<211> 23
<212> polinucleótido
<213> secuencia artificial
<220>
<221> cebador
<400>

- 87 -

tccaaacttc agtccatctc aag

<210> SEQ ID NO.: 210

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

cttgagatgg agtgaagttt gga

<210> SEQ ID NO.: 211

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

cttgagatgg actgaagttt gga

<210> SEQ ID NO.: 212

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gccaaagtgga ctgcgacaac ggctc

<210> SEQ ID NO.: 213

<211> 25

<212> polinucleótido

- 88 -

<213> secuencia artificial

<220>

<221> cebador

<400>

gccaaagtgga ctacgacaac ggctc

<210> SEQ ID NO.: 214

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gagccgttgt cgcagtccac ttggc

<210> SEQ ID NO.: 215

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gagccgttgt cgttagtccac ttggc

<210> SEQ ID NO.: 216

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

ctgctggcca gggacatgag gagct

- 89 -

<210> SEQ ID NO.: 217

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

ctgctggcca ggtacatgag gagct

<210> SEQ ID NO.: 218

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

agctcctcat gtccctggcc agcag

<210> SEQ ID NO.: 219

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

agctcctcat gtacctggcc agcag

<210> SEQ ID NO.: 220

<211> 25

<212> polinucleótido

<213> secuencia artificial

- 90 -

<220>

<221> cebador

<400>

ctcgccgcgg cggggactgc aggtt

<210> SEQ ID NO.: 221

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

ctcgccgcgg cgaggactgc aggtt

<210> SEQ ID NO.: 222

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

tacctgcagt ccccgccgcg gcgag

<210> SEQ ID NO.: 223

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

tacctgcagt cctcgccgcg gcgag

- 91 -

<210> SEQ ID NO.: 224

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gaccatcttg gaggatgaaa agagg

<210> SEQ ID NO.: 225

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gaccatcttg gacgatgaaa agagg

<210> SEQ ID NO.: 226

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

cctcttttca tcctccaaga tggtc

<210> SEQ ID NO.: 227

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

- 92 -

<221> cebador

<400>

cctctttca tcgtccaaga tggtc

<210> SEQ ID NO.: 228

<211> 27

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gttttcctcg tcagatttgt cttgca

<210> SEQ ID NO.: 229

<211> 27

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gttttcctcg tcacatttgt cttgca

<210> SEQ ID NO.: 230

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

ttttcctcgt cagattgtc cttgc

<210> SEQ ID NO.: 231

- 93 -

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

tttccctcgatcacatttgcctttgc

<210> SEQ ID NO.: 232

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

ttgtccttgcagtccccccacta

<210> SEQ ID NO.: 233

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

ttgtccttgcagacccccccaccat

<210> SEQ ID NO.: 234

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

- 94 -

<400>

tgtccttgca gtcggggcca cca

<210> SEQ ID NO.: 235

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

tgtccttgca gacggggcca cca

<210> SEQ ID NO.: 236

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

agcccagtag cgtgagggt ctgtc

<210> SEQ ID NO.: 237

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

agcccagtag cgagagggct ctgtc

<210> SEQ ID NO.: 238

<211> 25

- 95 -

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

gacagagccc tcacgctact gggct

<210> SEQ ID NO.: 239

<211> 25

<212> polinucleótido

<213> secuencia artificial

220>

<221> cebador

<400>

gacagagccc tctcgctact gggct

<210> SEQ ID NO.: 240

<211> 25

<212> polinucleótido

<213> secuencia artificial

220

<221> cebador

<400>

tcgccttgct cctcgccgcg gcggg

<210> SEQ ID NO.: 241

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

- 96 -

tcgccttgct ccccgccgca gcgaa

<210> SEQ ID NO.: 242

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

cccgccgcgg cgaggagcaa ggcga

<210> SEQ ID NO.: 243

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

cccgccgcgg cggggagcaa ggcga

<210> SEQ ID NO.: 244

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

acggctacag ctaccctcg gtgag

<210> SEQ ID NO.: 245

<211> 25

<212> polinucleótido

- 97 -

<213> secuencia artificial

<220>

<221> cebador

<400>

cggctacagc tacccctcg gtgag

<210> SEQ ID NO.: 246

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

ctcaccgagg ggttagctgta gccgt

<210> SEQ ID NO.: 247

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

ctcaccgagg ggtagctgt agccg

<210> SEQ ID NO.: 248

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

cccaggagac gtgctgtgag tcccc

- 98 -

<210> SEQ ID NO.: 249

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

cccaggagac gtactgtgag tcccc

<210> SEQ ID NO.: 250

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

ggggactcac agcacgtctc ctggg

<210> SEQ ID NO.: 251

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

ggggactcac agtacgtctc ctggg

<210> SEQ ID NO.: 252

<211> 25

<212> polinucleótido

<213> secuencia artificial

- 99 -

<220>

<221> cebador

<400>

ctccccatcg gtaagcgcgg gccgg

<210> SEQ ID NO.: 253

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

ctccccatcg gtcagcgcgg gccgg

<210> SEQ ID NO.: 254

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

ccggccccgcg cttaccgatg gggag

<210> SEQ ID NO.: 255

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

ccggccccgcg ctgaccgatg gggag

- 100 -

<210> SEQ ID NO.: 256

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

ccagtacatg aagctgggtgg gaga

<210> SEQ ID NO.: 257

<211> 25

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

tcttgatctt ggcctgggga cagag

<210> SEQ ID NO.: 258

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

<221> cebador

<400>

cagtacatga agctgggtggg agg

<210> SEQ ID NO.: 259

<211> 23

<212> polinucleótido

<213> secuencia artificial

<220>

- 101 -

<221> cebador

<400>

cttgatcttg gcctggggac aga

INTERNATIONAL SEARCH REPORT

International application No.

PCT/ ES 2004/070001

A. CLASSIFICATION OF SUBJECT MATTER

Int. cl7 C12N15/09, C12Q1/68

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int. cl7 C12N, C12Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPODOC, WPI, CIBEPAT, BIOSIS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	FOUCHIER SIGRID W. et al. "The molecular basis of familial hypercholesterolemia in the Netherlands" Human Genetics December 2001. Vol 109, n° 6, pages 602-615	1-16
X	PISCIOTTA LIVIA et al. "A "de novo" mutation of the LDL receptor gene as the cause of familial hypercholesterolemia". Biochimia et Biophysica Acta. 21 May 2002. Vol 1587, n° 1, pages 7-11	1-16
X	LIND S. et al. "Genetic characterization of Swedish patients with familial hypercholesterolemia A heterogenous pattern of mutations in the LDL receptor gene". Atherosclerosis August 2002. Vol 163, n° 2, pages 399-407	1-16
X	WO 0206467 A1 (BML, Inc.) 24.01.2002	1-16
A	VARRET M. et al. "Results of the molecular analysis of the 220 point mutations in the human LDL receptor gene database". Atherosclerosis. October 1997. Vol 134, n° 1-2, pages 74-74	1-16

 Further documents are listed in the continuation of Box C. See patent family annex.

- * Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search
12 May 2004 (12.05.04)Date of mailing of the international search report
11 June 2004 (11.06.04)

Name and mailing address of the ISA/

Authorized officer

S.P.T.O.

Facsimile No.

Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/ ES 2004/070001

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 4966837 A (UNIVERSITY OR TEXAS SYSTEM) 30.10.1990.	1-16

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/ ES 2004/070001

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 0206467 A	24.01.2002	AU 7106001 A CA 2416533 A EP 1304374 A EP 20010950004	30.01.2002 15.01.2003 23.04.2003 17.07.2001
US 4966837 A	30.10.1990	WO 8604090 A AU 5306586 A SE 8603591 A FI 863474 A NO 863438 A DK 409286 A NL 8520436 T EP 0205574 A EP 19860900490 GB 2178743 AB BR 8507148 A HU 41838 A JP 62501327 T DE 3590702 T US 4745060 A CH 671776 A	17.07.1986 29.07.1986 26.08.1986 27.08.1986 27.08.1986 28.08.1986 03.11.1986 30.12.1986 16.12.1985 18.02.1987 31.03.1987 28.05.1987 04.06.1987 16.07.1987 17.05.1988 29.09.1989 29.09.1989 29.09.1989

INFORME DE BUSQUEDA INTERNACIONAL

Solicitud internacional nº

PCT/ ES 2004/070001

A. CLASIFICACIÓN DEL OBJETO DE LA SOLICITUD

CIP⁷ C12N15/09, C12Q1/68

De acuerdo con la Clasificación Internacional de Patentes (CIP) o según la clasificación nacional y la CIP.

B. SECTORES COMPRENDIDOS POR LA BÚSQUEDA

Documentación mínima buscada (sistema de clasificación seguido de los símbolos de clasificación)

CIP⁷ C12N, C12Q

Otra documentación consultada, además de la documentación mínima, en la medida en que tales documentos formen parte de los sectores comprendidos por la búsqueda

Bases de datos electrónicas consultadas durante la búsqueda internacional (nombre de la base de datos y, si es posible, términos de búsqueda utilizados)

EPODOC, WPI, CIBEPAT, BIOSIS

C. DOCUMENTOS CONSIDERADOS RELEVANTES

Categoría ^a	Documentos citados, con indicación, si procede, de las partes relevantes	Relevante para las reivindicaciones nº
X	FOUCHIER SIGRID W. et al. "The molecular basis of familial hypercholesterolemia in the Netherlands". Human Genetics. Diciembre 2001. Vol 109, nº 6, páginas 602-615.	1-16
X	PISCIOTTA LIVIA et al. "A "de novo" mutation of the LDL receptor gene as the cause of familial hypercholesterolemia". Biochimia et Biophysica Acta. 21 Mayo 2002. Vol 1587, nº 1, páginas 7-11.	1-16
X	LIND S. et al. "Genetic characterization of Swedish patients with familial hypercholesterolemia. A heterogenous pattern of mutations in the LDL receptor gene". Atherosclerosis. Agosto 2002. Vol 163, nº 2, páginas 399-407.	1-16
X	WO 0206467 A1 (BML, Inc.) 24.01.2002	1-16
A	VARRET M. et al. "Results of the molecular analysis of the 220 point mutations in the human LDL receptor gene database". Atherosclerosis. Octubre 1997. Vol 134, nº 1-2, páginas 74-74.	1-16

En la continuación del recuadro C se relacionan otros documentos

Los documentos de familias de patentes se indican en el anexo

* Categorías especiales de documentos citados:	"T"	documento ulterior publicado con posterioridad a la fecha de presentación internacional o de prioridad que no pertenece al estado de la técnica pertinente pero que se cita por permitir la comprensión del principio o teoría que constituye la base de la invención.
"A" documento que define el estado general de la técnica no considerado como particularmente relevante.		
"E" solicitud de patente o patente anterior pero publicada en la fecha de presentación internacional o en fecha posterior.		
"L" documento que puede plantear dudas sobre una reivindicación de prioridad o que se cita para determinar la fecha de publicación de otra cita o por una razón especial (como la indicada).	"X"	documento particularmente relevante; la invención reivindicada no puede considerarse nueva o que implique una actividad inventiva por referencia al documento aisladamente considerado.
"O" documento que se refiere a una divulgación oral, a una utilización, a una exposición o a cualquier otro medio.	"Y"	documento particularmente relevante; la invención reivindicada no puede considerarse que implique una actividad inventiva cuando el documento se asocia a otro u otros documentos de la misma naturaleza, cuya combinación resulta evidente para un experto en la materia.
"P" documento publicado antes de la fecha de presentación internacional pero con posterioridad a la fecha de prioridad reivindicada.	"&"	documento que forma parte de la misma familia de patentes.

Fecha en que se ha concluido efectivamente la búsqueda internacional.
12 Mayo 2004 (12.05.2004)

Fecha de expedición del informe de búsqueda internacional

11 JUN 2004 11.06.2004

Nombre y dirección postal de la Administración encargada de la búsqueda internacional O.E.P.M.

Funcionario autorizado

J. Manso Tomico

C/Panamá 1, 28071 Madrid, España.
Nº de fax 34 91 3495304

Nº de teléfono + 34 91 349

INFORME DE BUSQUEDA INTERNACIONAL

Solicitud internacional nº

PCT/ES 2004/070001

C (Continuación).		DOCUMENTOS CONSIDERADOS RELEVANTES
Categoría*	Documentos citados, con indicación, si procede, de las partes relevantes	Relevante para las reivindicaciones nº
A	US 4966837 A (UNIVERSITY OR TEXAS SYSTEM) 30.10.1990.	1-16

INFORME DE BUSQUEDA INTERNACIONAL
Información relativa a miembros de familias de patentes

Solicitud internacional nº

PCT/ ES 2004/070001

Documento de patente citado en el informe de búsqueda	Fecha de publicación	Miembro(s) de la familia de patentes	Fecha de publicación
WO 0206467 A	24.01.2002	AU 7106001 A CA 2416533 A EP 1304374 A EP 20010950004	30.01.2002 15.01.2003 23.04.2003 17.07.2001
US 4966837 A	30.10.1990	WO 8604090 A AU 5306586 A SE 8603591 A FI 863474 A NO 863438 A DK 409286 A NL 8520436 T EP 0205574 A EP 19860900490 GB 2178743 AB BR 8507148 A HU 41338 A JP 62501327 T DE 3590702 T US 4745060 A CH 671776 A	17.07.1986 29.07.1986 26.08.1986 27.08.1986 27.08.1986 28.08.1986 03.11.1986 30.12.1986 16.12.1985 18.02.1987 31.03.1987 23.05.1987 04.06.1987 16.07.1987 17.05.1988 29.09.1989 29.09.1989 29.09.1989