

Model Development Phase Template

Date	10th July 2024
Team ID	739918
Project Title	Food Demand Forecasting For Food Delivery Company
Maximum Marks	6 Marks

Model Selection Report

The goal of this report is to recommend suitable models for forecasting food demand in a food delivery company. Accurate forecasting is crucial for optimizing inventory management, resource allocation, and customer satisfaction. This report outlines the methodology used to select appropriate models based on data characteristics and business requirements

Madal	Description		Performance Metric (e.g., Accuracy, F1 Score)
Model	Description	Hyperparameters	
Random Forest	Ensemble learning method using multiple decision trees	- n_estimators: Number of trees in the forest max_depth: Maximum depth of each tree min_samples_split: Minimum number of samples required to split an internal node min_samples_leaf: Minimum number of samples required to be at a leaf node	MAE: 10.5 RMSE: 15.2

Decision Tree	Non-linear model that predicts the target variable by learning simple decision rules inferred from the data	- max_depth: Maximum depth of the tree min_samples_split: Minimum number of samples required to split an internal node min_samples_leaf: Minimum number of samples required to be at a leaf node	MAE: 12.1 RMSE: 17.3
Gradient Boosting Regressor	Ensemble learning method that builds a model in a stage-wise fashion and combines weak learners (typically decision trees) to improve predictive performance	- n_estimators: Number of boosting stages to be performed br>- learning_rate: Rate at which model learns by minimizing	MAE : 9.8 RMSE : 14.5