Lab Mid Exam

Course: Data Science Section 8A
Instructor: Maemoona Kayani
Date: 11th April 2022

Empirical rule

The **Empirical Rule** or the **68-95-99.7 Rule** states that for if a frequency distribution of a set of sample data is **normally distributed** then

- Approximately 68% of the data falls within 1 standard deviation of the mean i.e. within $x \pm s$.
- Approximately 95% of the data falls within 2 standard deviations of the mean i.e. within $x \pm 2s$.
- Approximately 99.7% of the data falls within 3 standard deviations of the mean i.e. within $\overline{x} \pm 3s$.

Dataset "faithful"

To test the data set "the length of time of eruptions of the Old Faithful Geyser in Yellowstone" that it satisfies the Empirical Rule. In python,

load the data.

look at the eruption times now in variable eruptions.

Plot histogram of eruptions.

To see what percentage of the data is within one, two and three standard deviations, compute the mean and the standard deviation and save the numbers.

Find the number of observations within ±1 standard deviation of the mean and calculate percentage by dividing by the number of observations.

The data set eruptions DOES NOT satisfy the Empirical rule, which in turn means that the data set is NOT normally distributed. This can also be seen from the histogram.

Questions

1. For the above data set, what percentage of data falls in the range of $x \pm \overline{1.25}s$?

2. For the above data set, what percentage of data falls in the range of $x \pm 2s$, $x \pm 3s$?

3. How does it compare with the Empirical Rule?

according to Empirical rule, the data within 1 standard deviation should be 65%, but this data has 80.555555555556%

according to Empirical rule, the data within 2 standard deviation should be 95%, but this data has 96.527777777779%

according to Empirical rule, the data within 2 standard deviation should be 99.7%, but this data has 100%

4. Find percentages of data which falls in the range $x \pm s$, $x \pm \overline{1.25s}$, $x \pm 2\overline{s}$ and $x \pm 3\overline{s}$ for the data set called "AirPassengers" and "LakeHuron". Compare your results with Empirical Rule.

Already done.

To hand in:

- 1. 3 Histograms for the data sets Faithful, AirPassengers or LakeHuron (according to your name), mean and standard deviation typed out.
- 2. Type out the answers to Questions for the data sets Faithful, AirPassengers or LakeHuron (according to your name) in a MS word.

Roll no	Name	Dataset
170246	Shanila Abid	Faithful
170744	Areej Sajjad	Airpassenger
180954	Muhammad Muneeb	LakeHuron
180962	Areej Zafar	Faithful
180974	Asra Imtiaz	Airpassenger
180978	Maryam Munir	LakeHuron
180986	Mirza Hammad Baig	Faithful
180990	Muhammad Farrukh Shahid	Airpassenger
180994	Ahmad Yar Khan	LakeHuron
180998	Baseerat Lazawal	Faithful
181002	Haseeb Tariq	Airpassenger
181026	Saqlain Umer	LakeHuron
181030	Qurat-ul-Ain	Faithful
181034	Noman Aziz khan	Airpassenger
181074	Muhammad Mubashar Saleem	LakeHuron
181094	Ayesha Jabeen Malik	Faithful
181098	Hassam Shafique Cheema	Airpassenger
181114	Hamza Kayani	LakeHuron
181126	Hammad Rustum	Faithful
181130	Mir Mashood Afsar	Airpassenger
181138	Muhammad Haseeb Rafique	LakeHuron
183244	Maimoona Nawaz Khan	Faithful
180991	Zainab Noor	Airpassenger
181019	Muhammad Shahzaib Khan	LakeHuron
181135	Mubashir Ahmad	Faithful
181913	Aksam Javed	Airpassenger