Principal symbols, functions and operators

\boldsymbol{B}_{ij}	baseline vector between telescopes i and j
$F(\boldsymbol{u})$	coherent flux of object at spatial frequency <i>u</i>
F_{ij}	coherent flux of fringes measured between telescopes i and j
F_i	flux measured through telescope <i>i</i>
${\mathcal F}$	Fourier transform operator
$I(\boldsymbol{\sigma})$	object brightness at angular coordinate σ
i(x)	fringe intensity at coordinate x
i_p	fringe intensity at pixel p
$\mathrm{jinc}(x)$	$J_1(x)/x$ where J_1 is the order-1 Bessel function of the first kind
P_{ij}	power spectrum of fringes measured between telescopes i and j
r_0	seeing coherence length (Fried parameter)
$\hat{m{S}}_0$	direction of the phase centre
SNR	signal-to-noise ratio
rect(x)	rectangular 'top-hat' function
S_{ij}	spatial frequency of fringes between telescopes i and j
T_{ijk}	triple product (bispectrum) of fringes measured on telescopes i ,
	j and k
t_0	seeing coherence time
$\boldsymbol{u} = (u, v)$	projected baseline coordinate in wavelengths
$V(\boldsymbol{u})$	complex visibility of object at spatial frequency u
V_{ij}	complex visibility of fringes measured between telescopes i
	and j
$\delta(x)$	Dirac delta function
η_i	complex gain coefficient for telescope i
γ_{ij}	complex visibility degradation for fringes measured between
	telescopes i and j
λ	optical wavelength

 Λ_p integrated classical intensity in pixel p

v optical frequency

Ψ complex wave amplitude

 σ standard deviation

 $\sigma = (l, m)$ angular coordinate with respect to phase centre