

December 15, 2014

Research Advisor: Frantisek Marko, Ph.D

Overview

- The Ebola Virus
- Introduction to differential equations in calculating the spread of the disease
 - Variables
 - Assumptions
 - Equations
- Calculating the spread of disease in modern day
 - Sierra Leone
- Conclusion

The Ebola Virus

- Symptoms in two days to three weeks
- Fever, muscle pain
- Vomiting, diarrhea, liver and kidneys
- Internal and external bleeding
- Death in about 25 days
- Cure is yet to be found

Contact with blood or body fluid Contact with contaminated item Airborne spread is not documented Researchers believe that fruit bats are the origin of the disease http://news.nationalpost.com/2014/07/04/graphic-the-ebola-epidemic/

Introduction to Applying DE

- S(t): Individuals in the population who are not yet contaminated, but are in risk at time t Susceptibles
- I(t): Individuals who are infected and are capable of spreading the disease at time t Infected
- **R(t)**: Individuals who are removed from the Infected at time t Removed
- **N**: Total population, N = S + I + R
- This β: at Per Capita Contact Rate. The parameter controlling how often susceptible-infected contract results in a new infection.
- Per Capita Removal Rate. The parameter controlling the rate of Infected becoming Removed.

October 14, 2014 // 03:10 PM EST Reproduction number, (β / μ). Tells whether an epidemic will occur. (Rn = 2.54)

Applying Differential Equations

- Kermack McKendrick (SIR) Model
 - Published in 1927 to predict epidemics
- Assumptions
 - Each individual has equal probability of being contaminated with the virus.
 - Only the infected individuals can spread the disease to the Susceptibles
 - The Removed population consists of individuals who are immune, cured and have died from the disease.
 - Births, immigration and any external cause of deaths are ignored.

SIR Model

$$\frac{d}{dt}S = -eta imes S imes rac{I}{N}$$

October 14, 2014 // 03:10 PM EST

 $\frac{d}{dt}R = \mu I$

Written by
MICHAEL BYRNE
EDITOR

Computation

Modeling of SIR using MATLAB

- Appropriate MATLAB program approximates the differential equations.
- Command 'ode45' is used for solving differential equations using Runge - Kutta method.

Program Script & Function

% Function SIR.m

% Script *p1.m*

```
function
dy=SIR(t,y,beta,mu)
  dy=zeros(3,1);
if(isnumeric(beta)&&is
numeric(mu))
dy(1) = -((beta.*(y(1)).*y)
(2))./((y(1)+y(2)+y(3))))
dy(2)=((beta*y(1)*y(2))
./((y(1)+y(2)+y(3))))-(m
u.*y(2));
     dy(3)=mu.*y(2);
  end
```

```
clear; clc; close all;
s = input('Susceptible:
i = input('Infected: ');
r = input('Recovered:
beta = input('beta: ');
mu = input('mu: ');
t1 = input('Starting
from what day? ');
t2 = input('How many
total days? ');
X0 = [s,i,r];
N = sum(X0);
```

```
[T, Y] = ode45(@(t, y))
SIR(t, y, beta, mu), [t1]
t2], X0);
plot(T,Y(:,1),'-b','linewi
dth',2);
hold on;
plot(T,Y(:,2),'-m','linewi
dth',2);
plot(T,Y(:,3),'-r','linewid
th',2);
xlabel('Time(days)');
ylabel('Susceptible,Inf
ected,Removed');
legend('Susceptible','I
nfected','Removed');
```

```
hold off
disp(' -----');
disp(' -----');
No = ['Population:
', num2str(N)];
disp(No);
G = ['Susceptible:
', num2str(s)];
disp(G);
H = ['Infected:
', num2str(i)];
disp(H);
I = ['Recovered:
', num2str(r)];
disp(I);
Q = ['Total Days:
', num2str(t2)];
disp(Q);
```

```
U = ['Per Capita Contact
Rate: ',
num2str(beta)];
disp(U);
E = ['Per Capita
Recovered Rate: ',
num2str(mu)];
disp(E);
M = ['Total days:
', num2str(t2)];
disp(M);
C = ['Days on the Graph:
',num2str(delta_time)];
disp(C);
disp('Graph attached on
left');
```

end

Modeling Sierra Leone (1)

Modeling Sierra Leone (2)

2014

2014

Modeling Sierra Leone (3)

Program Executions

Graphs with Different inputs

$$\beta = 0.5 \& \mu = 0.4$$

$$\beta = 0.5 \& \mu = 0.6$$

 $Rn \leq 1$,

No Epidemic will occur

Further Research

Conclusion

- Based on our assumptions and the use differential equations, we predict about 1.5 million people in Sierra Leone will be infected by the Ebola virus in between 100~120 days if epidemic starts on 14 December 2014.
- Model can not be used when Infected population is 0 at time, t > 0
 - There must exist at least one Infected individual at time *t*.
- Epidemic scenarios will vary depending on *S*, *I*, *R*, and the rate constants.
- Epidemic can only occur when $\beta > \mu$.

$$\begin{pmatrix} S \\ I \end{pmatrix}' = \begin{pmatrix} 0 & -\beta S \\ 0 & \beta S - \mu \end{pmatrix} \begin{pmatrix} S \\ I \end{pmatrix}$$

$$\frac{d}{dt}S = -\frac{\beta SI}{N} \qquad \frac{d}{dt}I = \frac{\beta SI}{N} - \mu I \qquad \frac{d}{dt}R = \mu I$$

Work Cited

est-africa/

```
2014 Ebola Outbreak in West Africa - Case Counts." Centers for Disease Control and Prevention. Centers for Disease Control and Prevention, 2 Dec. 2014. Web. 5 Dec. 2014.

"SIR Model." SIR Model. Web. 29 Nov. 2014.

"Tag Archive." IB Maths Resources. Web. 26 Nov. 2014.

"WPR." Sierra Leone Population 2014. Web. 5 Dec. 2014.

www.samsi.info/sites/default/files/ODEMODELS.pdf

http://www.unc.edu/~rls/s940/samsidisdyntut.pdf

https://www.youtube.com/

http://www4.ncsu.edu/eos/users/w/white/www/white/mamac/Par_Id_SIR.pdf

http://motherboard.vice.com/read/this-math-model-is-predicting-the-ebola-outbreak-with-incredible-accuracy

http://health.gov.sl/?page_id=583
```

http://currents.plos.org/outbreaks/article/estimating-the-reproduction-number-of-zaire-ebolavirus-ebov-during-the-2014-outbreak-in-washing-the-production-number-of-zaire-ebolavirus-ebov-during-the-2014-outbreak-in-washing-the-production-number-of-zaire-ebolavirus-ebov-during-the-2014-outbreak-in-washing-the-production-number-of-zaire-ebolavirus-ebov-during-the-2014-outbreak-in-washing-the-production-number-of-zaire-ebolavirus-ebov-during-the-2014-outbreak-in-washing-the-production-number-of-zaire-ebolavirus-ebov-during-the-2014-outbreak-in-washing-the-production-number-of-zaire-ebolavirus-ebov-during-the-production-number-of-zaire-ebolavirus-ebov-during-the-production-number-of-zaire-ebolavirus-ebov-during-the-production-number-of-zaire-ebolavirus-ebov-during-the-production-number-of-zaire-ebolavirus-ebov-during-the-production-number-of-zaire-ebolavirus-ebov-during-the-production-number-of-zaire-ebolavirus-ebov-during-the-production-number-of-zaire-ebov-during-the-production-number-of-zaire-ebov-during-the-production-number-of-zaire-ebov-during-the-production-number-of-zaire-ebov-during-the-production-number-of-zaire-ebov-during-the-production-number-of-zaire-ebov-during-the-production-number-of-zaire-ebov-during-the-production-number-of-zaire-ebov-during-the-production-number-of-zaire-ebov-during-the-production-number-of-zaire-ebov-during-the-production-number-of-zaire-ebov-during-number-of-zaire-ebov-du

http://www.huffingtonpost.com/2014/08/02/ebola-symptoms-infection-virus n 5639456.html

18

Thank you!

