import warnings
warnings.filterwarnings('ignore')

Import the numpy and pandas package

import numpy as npgggg
import pandas as pd

Data Visualisation

import matplotlib.pyplot as plt

import seaborn as sns

housing = pd.DataFrame(pd.read_csv("/content/Housing.csv"))

housing.head()

housing.shape

→ (545, 13)

housing.info()

<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 545 entries, 0 to 544
 Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	price	545 non-null	int64
1	area	545 non-null	int64
2	bedrooms	545 non-null	int64
3	bathrooms	545 non-null	int64
4	stories	545 non-null	int64
5	mainroad	545 non-null	object
6	guestroom	545 non-null	object
7	basement	545 non-null	object
8	hotwaterheating	545 non-null	object
9	airconditioning	545 non-null	object
10	parking	545 non-null	int64
11	prefarea	545 non-null	object
12	furnishingstatus	545 non-null	object

dtypes: int64(6), object(7)
memory usage: 55.5+ KB

housing.describe()


```
→ price
                         0.0
    area
                         0.0
    bedrooms
                         0.0
    bathrooms
                         0.0
    stories
                         0.0
    mainroad
                         0.0
    guestroom
                         0.0
    basement
                         0.0
    hotwaterheating
                         0.0
    airconditioning
                         0.0
    parking
                         0.0
    prefarea
                         0.0
    furnishingstatus
                         0.0
    dtype: float64
```

```
fig, axs = plt.subplots(2,3, figsize = (10,5))
plt1 = sns.boxplot(housing['price'], ax = axs[0,0])
plt2 = sns.boxplot(housing['area'], ax = axs[0,1])
plt3 = sns.boxplot(housing['bdrooms'], ax = axs[0,2])
plt1 = sns.boxplot(housing['bathrooms'], ax = axs[1,0])
plt2 = sns.boxplot(housing['stories'], ax = axs[1,1])
plt3 = sns.boxplot(housing['parking'], ax = axs[1,2])
```

plt.tight_layout()


```
# outlier treatment for price
plt.boxplot(housing.price)
Q1 = housing.price.quantile(0.25)
Q3 = housing.price.quantile(0.75)
IQR = Q3 - Q1
housing = housing[(housing.price >= Q1 - 1.5*IQR) & (housing.price <= Q3 + 1.5*IQR)]</pre>
```



```
plt.boxplot(housing.area)
Q1 = housing.area.quantile(0.25)
Q3 = housing.area.quantile(0.75)
IQR = Q3 - Q1
housing = housing[(housing.area >= Q1 - 1.5*IQR) & (housing.area <= Q3 + 1.5*IQR)]</pre>
```



```
fig, axs = plt.subplots(2,3, figsize = (10,5))
plt1 = sns.boxplot(housing['price'], ax = axs[0,0])
plt2 = sns.boxplot(housing['area'], ax = axs[0,1])
plt3 = sns.boxplot(housing['bddrooms'], ax = axs[0,2])
plt1 = sns.boxplot(housing['bdthrooms'], ax = axs[1,0])
plt2 = sns.boxplot(housing['stories'], ax = axs[1,1])
plt3 = sns.boxplot(housing['parking'], ax = axs[1,2])
plt.tight_layout()
```

