Organization	Team	Team ID#
1. [5] A positive in smallest primer i		umber of distinct prime factors. Find the
		- 1 numbers $a_{n,0}, a_{n,1}, a_{n,2}, \ldots, a_{n,n}$ where $a_{n-1,k-1}$. What is the sum of all numbers in
is solvable if the cell going throug	3. [5] An $n \times m$ maze is an $n \times m$ grid in which each cell is one of two things: a wall, or a blank. A maximis solvable if there exists a sequence of adjacent blank cells from the top left cell to the bottom recell going through no walls. (In particular, the top left and bottom right cells must both be blank cells.)	
I	IMMT November 2018, November 10, 2018 —	GUTS ROUND
Organization	Team	Team ID#

- 4. [6] Let a, b, c, n be positive real numbers such that $\frac{a+b}{a} = 3$, $\frac{b+c}{b} = 4$, and $\frac{c+a}{c} = n$. Find n.
- 5. [6] Jerry has ten distinguishable coins, each of which currently has heads facing up. He chooses one coin and flips it over, so it now has tails facing up. Then he picks another coin (possibly the same one as before) and flips it over. How many configurations of heads and tails are possible after these two flips?
- 6. [6] An equilateral hexagon with side length 1 has interior angles $90^{\circ}, 120^{\circ}, 150^{\circ}, 90^{\circ}, 120^{\circ}, 150^{\circ}$ in that order. Find its area.

Organization	Team	Team ID#
cornsilk. It is at least one of	-Egg Academy, each student has two eyes, eknown that 30% of the students have at least cream eye, and 50% of the students have at least Easter-Egg Academy have two eyes of the same	one eggshell eye, 40% of the students have ast one cornsilk eye. What percentage of
and $\angle M = \angle$	JAMES is such that $AM = SJ$ and the inter S . Given that there exists a diagonal of $JAMES$ ide of $JAMES$ to the longest side of $JAMES$	TES that bisects its area, find the ratio of
heads and 9 l	times has some strange animals. His hens have egs, and his zombie hens have 6 heads and 12 his farm. What is the number of animals that it	legs. Farmer James counts 800 heads and
	HMMT November 2018, November 10, 2018 —	GUTS ROUND
Organization	Team	Team ID#

- 10. [8] Abbot writes the letter A on the board. Every minute, he replaces every occurrence of A with AB and every occurrence of B with BA, hence creating a string that is twice as long. After 10 minutes, there are $2^{10} = 1024$ letters on the board. How many adjacent pairs are the same letter?
- 11. [8] Let $\triangle ABC$ be an acute triangle, with M being the midpoint of \overline{BC} , such that AM = BC. Let D and E be the intersection of the internal angle bisectors of $\angle AMB$ and $\angle AMC$ with AB and AC, respectively. Find the ratio of the area of $\triangle DME$ to the area of $\triangle ABC$.
- 12. [8] Consider an unusual biased coin, with probability p of landing heads, probability $q \le p$ of landing tails, and probability $\frac{1}{6}$ of landing on its side (i.e. on neither face). It is known that if this coin is flipped twice, the likelihood that both flips will have the same result is $\frac{1}{2}$. Find p.

Organizati	on Team	Team ID#
13.	[9] Find the smallest positive integer n for which	
	$1!2! \cdots (n-1)! > n!^2.$	
	[9] Call a triangle <i>nice</i> if the plane can be tiled using congruent triangles that share an edge (or part of an edge) are reflections many dissimilar nice triangles are there?	-
	[9] On a computer screen is the single character a . The compushich may be pressed in any sequence.	ter has two keys: c (copy) and p (paste)
	Pressing p increases the number of a's on screen by the numpressed. c doesn't change the number of a's on screen. Deterquired to attain at least 2018 a's on screen. (Note: premothing).	ermine the fewest number of keystrokes
	TIME I DOLO N. I 10 DOLO GI	UTTC POLIND
	HMMT November 2018, November 10, 2018 — G	UIS ROUND

- 16. [10] A positive integer is called *primer* if it has a prime number of distinct prime factors. A positive integer is called *primest* if it has a primer number of distinct primer factors. Find the smallest primest number.
- 17. [10] Pascal has a triangle. In the *n*th row, there are n+1 numbers $a_{n,0}, a_{n,1}, a_{n,2}, \ldots, a_{n,n}$ where $a_{n,0}=a_{n,n}=1$. For all $1 \leq k \leq n-1$, $a_{n,k}=a_{n-1,k}-a_{n-1,k-1}$. What is the sum of the absolute values of all numbers in the 2018th row?
- 18. [10] An $n \times m$ maze is an $n \times m$ grid in which each cell is one of two things: a wall, or a blank. A maze is *solvable* if there exists a sequence of adjacent blank cells from the top left cell to the bottom right cell going through no walls. (In particular, the top left and bottom right cells must both be blank.) Determine the number of solvable 2×5 mazes.

Organizat	ion Team	Team ID#
19.	[11] Let A be the number of unordered pairs of ordered pairs and let B be the number of ordered pairs of unordered pairs (Repetitions are allowed in both ordered and unordered pairs.)	of integers between 1 and 6 inclusive.
20.	[11] Let z be a complex number. In the complex plane, the distribution z^2 to 1 is 6. What is the real part of z ?	ance from z to 1 is 2, and the distance
21.	[11] A function $f:\{1,2,3,4,5\}\to\{1,2,3,4,5\}$ is said to be $a,b\in\{1,2,3,4,5\}$ satisfying $f(a)=b$ and $f(b)=a$. How many	
	HMMT November 2018, November 10, 2018 — GUT	es round
Organizat	ion Team	Team ID#

- 22. [12] In a square of side length 4, a point on the interior of the square is randomly chosen and a circle of radius 1 is drawn centered at the point. What is the probability that the circle intersects the square exactly twice?
- 23. [12] Let S be a subset with four elements chosen from $\{1, 2, ..., 10\}$. Michael notes that there is a way to label the vertices of a square with elements from S such that no two vertices have the same label, and the labels adjacent to any side of the square differ by at least 4. How many possibilities are there for the subset S?
- 24. [12] Let ABCD be a convex quadrilateral so that all of its sides and diagonals have integer lengths. Given that $\angle ABC = \angle ADC = 90^{\circ}$, AB = BD, and CD = 41, find the length of BC.

	HMMT November 2018, N	nber 10, 2018 — GUTS RO	DUND
Organizat	ion Team _		Team ID#
25.	[13] Let a_0, a_1, \ldots and b_0, b_1, \ldots be geometrisuch that	ic sequences with comm	on ratios r_a and r_b , respectively,
	$\sum_{i=0}^{\infty} a_i = \sum_{i=0}^{\infty} b_i = 1 \text{a}$	$\operatorname{nd} \left(\sum_{i=0}^{\infty} a_i^2\right) \left(\sum_{i=0}^{\infty} b_i^2\right)$	$=\sum_{i=0}^{\infty}a_ib_i.$
	Find the smallest real number c such that a	$_0 < c$ must be true.	
26.	[13] Points E, F, G, H are chosen on segments AB, BC, CD, DA , respectively, of square $ABCD$. Given that segment EG has length 7, segment FH has length 8, and that EG and FH intersect inside $ABCD$ at an acute angle of 30° , then compute the area of square $ABCD$.		
27.	[13] At lunch, Abby, Bart, Carl, Dana, and one takes takes one slice of pizza uniformly a form "sectors" broken up by the taken slices sector, but if none of them take adjacent sl number of sectors formed?	at random, leaving 11 slies, e.g. if they take five co	ces. The remaining slices of pizza onsecutive slices then there is one
	HMMT November 2018, Nove	nber 10, 2018 — GUTS RO	DUND
Organizat	ion Team _		Team ID#
28.	[15] What is the 3-digit number formed by in the decimal expansion of $\frac{1}{998}$?	the 9998 th through 1000	0 th digits after the decimal point
	Note: Make sure your answer has exactly the	ree digits, so please inclu-	de any leading zeroes if necessary.
29.	[15] An isosceles right triangle ABC has area 1. Points D, E, F are chosen on BC, CA, AB respectively such that DEF is also an isosceles right triangle. Find the smallest possible area of DEF .		
30.	[15] Let n be a positive integer. Let there be P_n ways for Pretty Penny to make exactly n dollars out of quarters, dimes, nickels, and pennies. Also, let there be B_n ways for Beautiful Bill to make exactly n dollars out of one dollar bills, quarters, dimes, and nickels. As n goes to infinity, the sequence of fractions $\frac{P_n}{B_n}$ approaches a real number c . Find c .		
	Note: Assume both Pretty Penny and Beau	ıtiful Bill each have an ı	unlimited number of each type of

coin. Pennies, nickels, dimes, quarters, and dollar bills are worth 1, 5, 10, 25, 100 cents respectively.

	HMMT November 2018, November 10, 2018	— GUTS ROUND
Organizat	tion Team	Team ID#
31.	[17] David and Evan each repeatedly flip a fair coin. Davill stop once he flips 2 consecutive tails. Find the probation.	
32.	[17] Over all real numbers x and y , find the minimum po	ossible value of
	$(xy)^2 + (x+7)^2 + (2x+7)^2 + ($	$(2y+7)^2.$
33.	[17] Let ABC be a triangle with $AB = 20, BC = 10, CA$ BI meet AC at E and CI meet AB at F . Suppose that point D different from I . Find the length of the tangent	the circumcircles of BIF and CIE meet at a
	HMMT November 2018, November 10, 2018	
Organizat	tion Team	Team ID#
34.	[20] A positive integer is called <i>primer</i> if it has a prime integer is called <i>primest</i> if it has a primer number of d called <i>prime-minister</i> if it has a primest number of dist prime-minister number. Estimate N .	listinct primer factors. A positive integer is
	An estimate of $E>0$ earns $\lfloor 20\min\left(\frac{N}{E},\frac{E}{N}\right)\rfloor$ points.	
35.	[20] Pascal has a triangle. In the <i>n</i> th row, there are n $a_{n,0}=a_{n,n}=1$. For all $1 \le k \le n-1$, $a_{n,k}=a_{n-1,k}-a_{n,k}=a_{n-1,k}$	
	$\sum_{k=0}^{2018} \frac{ a_{2018,k} }{\binom{2018}{k}}$	•
	Estimate N .	
	An estimate of $E > 0$ earns $\lfloor 20 \cdot 2^{- N-E /70} \rfloor$ points.	
36.	[20] An $n \times m$ maze is an $n \times m$ grid in which each cell is is $solvable$ if there exists a sequence of adjacent blank cell going through no walls. (In particular, the top left at Let N be the number of solvable 5×5 mazes. Estimate An estimate of $E > 0$ earns $\lfloor 20 \min \left(\frac{N}{E}, \frac{E}{N} \right)^2 \rfloor$ points.	ells from the top left cell to the bottom right and bottom right cells must both be blank.)