Deep Learning for NLP

Введение

Даниил Анастасьев

dan.anastasyev@gmail.com

Почему DL?

• Потому что словные вектора

Почему DL?

Classical NLP

Deep Learning-based NLP

Элементы уважающих себя сетей

- Слои (и связи между ними)
- Функция потерь
- Оптимизатор

Основные слои

- Полносвязные
- Эмбеддинги
- Сверточные
- Рекуррентные
- + Активации
- + Слои регуляризации

Полносвязные слои

Полносвязные слои

Слой эмбеддингов

Рекуррентные слои

http://colah.github.io/posts/2015-08-Understanding-LSTMs

Сверточные сети

http://cs231n.github.io/convolutional-networks

Dropout

(a) Standard Neural Net

(b) After applying dropout.

Нелинейности

Функции потерь

Бинарная классификация:

$$L_{\text{logistic}}(\hat{y}, y) = -y \log \hat{y} - (1 - y) \log(1 - \hat{y})$$

Многоклассовая классификация:

$$L_{\text{cross-entropy}}(\hat{\boldsymbol{y}}, \boldsymbol{y}) = -\sum_{i} \boldsymbol{y}_{[i]} \log(\hat{\boldsymbol{y}}_{[i]})$$

Оптимизаторы

SGD:

$$heta = heta - \eta \cdot
abla_{ heta} J(heta)$$

В большинстве случаев используют адаптивные методы. Чаще всего – **Adam**.