# **OBJECTIVE**

- Investigate whether there are differences across the product with respect to customer characteristics.
- Find the target audience for each type of treadmill with analysis and provide a better recommendation to the new customers.

# In [463]:

```
1 # !pip install pandas-profiling
...
```

### In [464]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
```

#### In [5]:

```
1 af = pd.read_csv(r"C:\Users\Acer\Downloads\aerofit_treadmill.csv")
```

#### In [6]:

1 af

#### Out[6]:

|     | Product | Age | Gender | Education | MaritalStatus | Usage | Fitness | Income | Miles |
|-----|---------|-----|--------|-----------|---------------|-------|---------|--------|-------|
| 0   | KP281   | 18  | Male   | 14        | Single        | 3     | 4       | 29562  | 112   |
| 1   | KP281   | 19  | Male   | 15        | Single        | 2     | 3       | 31836  | 75    |
| 2   | KP281   | 19  | Female | 14        | Partnered     | 4     | 3       | 30699  | 66    |
| 3   | KP281   | 19  | Male   | 12        | Single        | 3     | 3       | 32973  | 85    |
| 4   | KP281   | 20  | Male   | 13        | Partnered     | 4     | 2       | 35247  | 47    |
|     |         |     |        |           |               |       |         |        |       |
| 175 | KP781   | 40  | Male   | 21        | Single        | 6     | 5       | 83416  | 200   |
| 176 | KP781   | 42  | Male   | 18        | Single        | 5     | 4       | 89641  | 200   |
| 177 | KP781   | 45  | Male   | 16        | Single        | 5     | 5       | 90886  | 160   |
| 178 | KP781   | 47  | Male   | 18        | Partnered     | 4     | 5       | 104581 | 120   |
| 179 | KP781   | 48  | Male   | 18        | Partnered     | 4     | 5       | 95508  | 180   |

180 rows × 9 columns

- 1 #### Challenges
- 2 Age: Given in years which can be changed into different bins for easy classification

Fitness: Given as a numerical value which is defined in the problem statement which can be changes to a catagorical value

# Observations on the shape of data & Data types of all the attributes

```
In [12]:
```

```
1 af.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 180 entries, 0 to 179
Data columns (total 9 columns):
    Column
                   Non-Null Count
                                   Dtype
    ____
                   -----
    Product
 0
                   180 non-null
                                   object
 1
    Age
                   180 non-null
                                   int64
 2
                   180 non-null
                                   object
    Gender
 3
    Education
                   180 non-null
                                   int64
 4
    MaritalStatus 180 non-null
                                   object
 5
                   180 non-null
    Usage
                                   int64
 6
    Fitness
                   180 non-null
                                   int64
 7
    Income
                   180 non-null
                                   int64
 8
    Miles
                   180 non-null
                                   int64
dtypes: int64(6), object(3)
memory usage: 12.8+ KB
```

#### **Observations**

- There are 9 columns and 180 rows in the dataframe
- There seems to be a mix of catagorical and numerical values in the data
- · Cannot find any null or missing vsalues in primary check

#### Null value detection

```
In [41]:
```

```
null_value = af.loc[af.isnull().values.any(axis =1)]
null_value
```

Out[41]:

Product Age Gender Education MaritalStatus Usage Fitness Income Miles

#### Obeservation

· there is no null value, confirmed

#### In [13]:

```
1 af.describe(include = object)
```

#### Out[13]:

|        | Product | Gender | MaritalStatus |
|--------|---------|--------|---------------|
| count  | 180     | 180    | 180           |
| unique | 3       | 2      | 2             |
| top    | KP281   | Male   | Partnered     |
| freq   | 80      | 104    | 107           |

#### **Observations**

- There are mainly 3 products : KP281, KP481, or KP781
- 2 Genders Male and Female
- In the primary look there seems to be a male dominance in usage and KP281 being the most preferred product.

.....

# **Converting Objects into Catagories**

```
In [16]:
```

```
for col in ['Product', 'Gender', 'MaritalStatus']:
    af[col] = af[col].astype('category')
```

#### In [17]:

```
1 af.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 180 entries, 0 to 179
Data columns (total 9 columns):

| # | Column        | Non-Null Count | Dtype    |
|---|---------------|----------------|----------|
|   |               |                |          |
| 0 | Product       | 180 non-null   | category |
| 1 | Age           | 180 non-null   | int64    |
| 2 | Gender        | 180 non-null   | category |
| 3 | Education     | 180 non-null   | int64    |
| 4 | MaritalStatus | 180 non-null   | category |
| 5 | Usage         | 180 non-null   | int64    |
| 6 | Fitness       | 180 non-null   | int64    |
| 7 | Income        | 180 non-null   | int64    |
| 8 | Miles         | 180 non-null   | int64    |

dtypes: category(3), int64(6)

memory usage: 9.5 KB

#### **Observations**

• Converted Product, Gender, MaritalStatus to catagorical values inorder to work hasslefree.

# Visual Analysis - Univariate

#### In [278]:

```
\# sns.countplot(x = 'Gender', data = af)
   # print(af['Gender'].value_counts())
 2
 3
 4
   sns.set(style="whitegrid")
 5
   plt.figure(figsize=(8,7))
   total = float(len(af))
   ax = sns.countplot(x="Gender", data=af)
 7
   plt.title('Gender Usage Percentage', fontsize=20)
 9
   for p in ax.patches:
        percentage = '{:.1f}%'.format(100 * p.get_height()/total)
10
        x = p.get_x() + p.get_width()
11
12
        y = p.get_height()
13
        ax.annotate(percentage, (x, y),ha='center')
14
   plt.show()
```





#### **Observations**

- Its evident that more males use the products than females
- · Around 15% more males use the product

#### In [321]:

```
sns.set(style="whitegrid")
plt.figure(figsize=(8,7))
total = float(len(af))
ax = sns.countplot(x="MaritalStatus", data=af , palette=['#43CAA1',"#FFAEAB"])
plt.title('Married vs Single Probability', fontsize=20)
for p in ax.patches:
    percentage = '{:.1f}%'.format(100 * p.get_height()/total)
    x = p.get_x() + p.get_width()
    y = p.get_height()
    ax.annotate(percentage, (x, y),ha='center')
plt.show()
```





#### **Observations**

- · more users are partnered / married.
- 20% more users are married: this data can be used more.

#### In [316]:

```
sns.set(style="whitegrid")
   plt.figure(figsize=(8,7))
   total = float(len(af))
   ax = sns.countplot(x="Product", data=af, palette=['#43A371',"#FAAE1B"])
plt.title('Product Purchase Probability', fontsize=20)
 5
   for p in ax.patches:
 7
       percentage = '{:.1f}%'.format(100 * p.get_height()/total)
       x = p.get_x() + p.get_width()
 8
9
       y = p.get_height()
       ax.annotate(percentage, (x, y),ha='center')
10
11
   plt.show()
12
13
   14
15
   print(df.groupby('Product')['Price'].sum())
16
17
   18
19
```





\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Product

KP281 9327200 KP481 8160600 KP781 7772560

Name: Price, dtype: int64

\*\*\*\*\*\*\*\*\*\*\*\*\*

#### **Observations**

- the data clearly shows KP 281 as the leading product which happen to be the cheapest product and the most sold item
- KP 481 as the second leading product followed by KP 781

# **KP 281**

#### In [101]:

```
1 af[af['Product'] == 'KP281'].describe().T
```

#### Out[101]:

|           | count | mean       | std         | min     | 25%     | 50%     | 75%     | max     |
|-----------|-------|------------|-------------|---------|---------|---------|---------|---------|
| Age       | 80.0  | 28.5500    | 7.221452    | 18.0    | 23.0    | 26.0    | 33.0    | 50.0    |
| Education | 80.0  | 15.0375    | 1.216383    | 12.0    | 14.0    | 16.0    | 16.0    | 18.0    |
| Usage     | 80.0  | 3.0875     | 0.782624    | 2.0     | 3.0     | 3.0     | 4.0     | 5.0     |
| Fitness   | 80.0  | 2.9625     | 0.664540    | 1.0     | 3.0     | 3.0     | 3.0     | 5.0     |
| Income    | 80.0  | 46418.0250 | 9075.783190 | 29562.0 | 38658.0 | 46617.0 | 53439.0 | 68220.0 |
| Miles     | 80.0  | 82.7875    | 28.874102   | 38.0    | 66.0    | 85.0    | 94.0    | 188.0   |

#### **Observations on KP281**

- Average customer age is 28 with most falls in the age range of 23 33
- its used atleast 3 times a week
- a total of 80 customers purchased the product

# **KP 481**

#### In [102]:

```
1 af[af['Product'] == 'KP781'].describe().T
```

# Out[102]:

|           | count | mean      | std          | min     | 25%      | 50%     | 75%      | max      |
|-----------|-------|-----------|--------------|---------|----------|---------|----------|----------|
| Age       | 40.0  | 29.100    | 6.971738     | 22.0    | 24.75    | 27.0    | 30.25    | 48.0     |
| Education | 40.0  | 17.325    | 1.639066     | 14.0    | 16.00    | 18.0    | 18.00    | 21.0     |
| Usage     | 40.0  | 4.775     | 0.946993     | 3.0     | 4.00     | 5.0     | 5.00     | 7.0      |
| Fitness   | 40.0  | 4.625     | 0.667467     | 3.0     | 4.00     | 5.0     | 5.00     | 5.0      |
| Income    | 40.0  | 75441.575 | 18505.836720 | 48556.0 | 58204.75 | 76568.5 | 90886.00 | 104581.0 |
| Miles     | 40.0  | 166.900   | 60.066544    | 80.0    | 120.00   | 160.0   | 200.00   | 360.0    |

#### **Observations on KP781**

- Average customer age is 29 with most falls in the age range of 22 30.
- its used atleast 4 times a week
- a total of 40 customers purchased the product making it least purchased item

# **KP 781**

#### In [30]:

```
1 af[af['Product'] == 'KP481'].describe().T
```

#### Out[30]:

|           | count | mean         | std         | min     | 25%     | 50%     | 75%      | max     |
|-----------|-------|--------------|-------------|---------|---------|---------|----------|---------|
| Age       | 60.0  | 28.900000    | 6.645248    | 19.0    | 24.0    | 26.0    | 33.25    | 48.0    |
| Education | 60.0  | 15.116667    | 1.222552    | 12.0    | 14.0    | 16.0    | 16.00    | 18.0    |
| Usage     | 60.0  | 3.066667     | 0.799717    | 2.0     | 3.0     | 3.0     | 3.25     | 5.0     |
| Fitness   | 60.0  | 2.900000     | 0.629770    | 1.0     | 3.0     | 3.0     | 3.00     | 4.0     |
| Income    | 60.0  | 48973.650000 | 8653.989388 | 31836.0 | 44911.5 | 49459.5 | 53439.00 | 67083.0 |
| Miles     | 60.0  | 87.933333    | 33.263135   | 21.0    | 64.0    | 85.0    | 106.00   | 212.0   |

#### **Observations on KP481**

- Average customer age is 28 with most falls in the age range of 24 33.
- its used atleast 3 times a week
- a total of 60 customers purchased the product making it least purchased item

**↓** 

# **Treating Outliers**

# In [402]:

```
f, (ax_box, ax_hist) = plt.subplots(2, sharex=True, gridspec_kw={"height_ratios": (.15, sns.boxplot(x = af['Age'] , data = af , orient = 'h' , ax = ax_box )
sns.set(rc={'figure.figsize':(5,8.27)})
sns.histplot(x = af['Age'] , data = af , ax = ax_hist , kde = True )
ax_box.set(xlabel='')
plt.show()
```





#### In [403]:

#### 46.5 10.5

#### In [ ]:

1

#### In [406]:

```
f, (ax_box, ax_hist) = plt.subplots(2, sharex=True, gridspec_kw={"height_ratios": (.15, sns.boxplot(x = af['Income'] , data = af , orient = 'h' , ax = ax_box )
sns.set(rc={'figure.figsize':(5,8.27)})
sns.histplot(x = af['Income'] , data = af , ax = ax_hist , kde = True )
ax_box.set(xlabel='')
plt.show()
```





#### In [407]:

80581.875 22144.875

#### In [ ]:

1 Observations

# In [420]:

```
f, (ax_box, ax_hist) = plt.subplots(2, sharex=True, gridspec_kw={"height_ratios": (.15, sns.boxplot(x = af['Miles'] , data = af , orient = 'h' , ax = ax_box )
sns.set(rc={'figure.figsize':(5,8.27)})
sns.histplot(x = af['Miles'] , data = af , ax = ax_hist , kde = True )
ax_box.set(xlabel='')
plt.show()
```



# **Bivariate Visual Analysis**

#### In [292]:

```
print('*********************************

print(pd.crosstab(af['Product'] , af['Gender']))

print('*********************************

sns.set(rc={'figure.figsize':(12,9)})

sns.countplot(x = 'Product' , hue = 'Gender' , data = af)
```

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

| Gender  | Female | Male  |           |
|---------|--------|-------|-----------|
| Product |        |       |           |
| KP281   | 40     | 40    |           |
| KP481   | 29     | 31    |           |
| KP781   | 7      | 33    |           |
| ******  | *****  | ***** | ********* |

#### Out[292]:

<AxesSubplot:xlabel='Product', ylabel='count'>



# Observation

· We can see that in all the products, Male users dominate the usage

• In KP 281 we can see that the number of female users are equal to that of male, making it most favourable for couples or females.

### In [304]:

```
print('-----')
print(pd.crosstab(af['Product'] , af['MaritalStatus']))
print('-----')

sns.countplot(x = 'Product' , hue = 'MaritalStatus' , data = af , palette=['#435371', as a single of the content of the cont
```

MaritalStatus Partnered Single
Product
KP281 48 32
KP481 36 24

KP781 23 17

#### Out[304]:

<AxesSubplot:xlabel='Product', ylabel='count'>



#### Observation

- For every Product the numbers are dominated by Partnered when compared to single.
- This shows that more than focusing on the relationship status we can focus on their fitness and usage to draw more information and recommendation

```
In [54]:

1 pd.crosstab(index = [af['Product'] , af['MaritalStatus']] , columns = af['Gender'] , ma
Out[54]:
```

|         | Gender        | Female | Male | All |
|---------|---------------|--------|------|-----|
| Product | MaritalStatus |        |      |     |
| KP281   | Partnered     | 27     | 21   | 48  |
|         | Single        | 13     | 19   | 32  |
| KP481   | Partnered     | 15     | 21   | 36  |
|         | Single        | 14     | 10   | 24  |
| KP781   | Partnered     | 4      | 19   | 23  |
|         | Single        | 3      | 14   | 17  |
| All     |               | 76     | 104  | 180 |

#### **Observations**

- this data shows that of leading Women who use the product KP 281 most are married
- For every product the usage is dominated by Married couples than Singles

# converting age to certain bins

```
In [87]:

1 af['Age_Group'] = af['Age']

In [88]:

1 af["Age_Group"] = pd.cut(af["Age_Group"], bins =[0,21,35,45,60], include_lowest=True, ]
```

# In [89]:

1 af

# Out[89]:

|       | Product               | Age | Gender | Education | MaritalStatus | Usage | Fitness | Income | Miles | Age_Gr             |  |  |
|-------|-----------------------|-----|--------|-----------|---------------|-------|---------|--------|-------|--------------------|--|--|
| 0     | KP281                 | 18  | Male   | 14        | Single        | 3     | 4       | 29562  | 112   | Teen(0             |  |  |
| 1     | KP281                 | 19  | Male   | 15        | Single        | 2     | 3       | 31836  | 75    | Teen(0             |  |  |
| 2     | KP281                 | 19  | Female | 14        | Partnered     | 4     | 3       | 30699  | 66    | Teen(0             |  |  |
| 3     | KP281                 | 19  | Male   | 12        | Single        | 3     | 3       | 32973  | 85    | Teen(0             |  |  |
| 4     | KP281                 | 20  | Male   | 13        | Partnered     | 4     | 2       | 35247  | 47    | Teen(0             |  |  |
|       |                       |     |        |           |               |       |         |        |       |                    |  |  |
| 175   | KP781                 | 40  | Male   | 21        | Single        | 6     | 5       | 83416  | 200   | Adult(35           |  |  |
| 176   | KP781                 | 42  | Male   | 18        | Single        | 5     | 4       | 89641  | 200   | Adult(35           |  |  |
| 177   | KP781                 | 45  | Male   | 16        | Single        | 5     | 5       | 90886  | 160   | Adult(35           |  |  |
| 178   | KP781                 | 47  | Male   | 18        | Partnered     | 4     | 5       | 104581 | 120   | Towards_<br>age(45 |  |  |
| 179   | KP781                 | 48  | Male   | 18        | Partnered     | 4     | 5       | 95508  | 180   | Towards_<br>age(45 |  |  |
| 18∩ r | 180 rows x 10 columns |     |        |           |               |       |         |        |       |                    |  |  |

180 rows × 10 columns

In [90]:

pd.crosstab(af['Product'] , af['Age\_Group'])

# Out[90]:

| Age_Group |         | Teen(0-21) | Young_Adult(21-35) | Adult(35-45) | Towards_old-age(45-60 |  |
|-----------|---------|------------|--------------------|--------------|-----------------------|--|
|           | Product |            |                    |              |                       |  |
|           | KP281   | 10         | 56                 | 11           | 3                     |  |
|           | KP481   | 7          | 45                 | 7            | 1                     |  |
|           | KP781   | 0          | 34                 | 4            | 2                     |  |

# In [331]:

# Out[331]:

<AxesSubplot:xlabel='Product', ylabel='count'>



#### Observation

- In every product the number of Young Adult between age 21 35 is dominated
- signifying the amount of couples and singles usage and preferences in the catagory

# **Changing Fitness Numericals Into Catagorical Variables**

```
In [92]:

1  df = af.copy()

In [93]:

1  df['Fitness_level'] = df['Fitness'].astype('object')

In [94]:

1  df['Fitness_level'] = df['Fitness_level'].replace({1: 'poor fitness', 2: 'low fitness', 3: 'marginal fitness', 4: 'good fitness', 5: 'high performance'})
```

# In [95]:

1 df.drop(columns = ['Age' , 'Fitness'])

# Out[95]:

|     | Product | Gender | Education | MaritalStatus | Usage | Income | Miles | Age_Group                  | Fitness_le    |
|-----|---------|--------|-----------|---------------|-------|--------|-------|----------------------------|---------------|
| 0   | KP281   | Male   | 14        | Single        | 3     | 29562  | 112   | Teen(0-21)                 | good fitn     |
| 1   | KP281   | Male   | 15        | Single        | 2     | 31836  | 75    | Teen(0-21)                 | marg<br>fitn  |
| 2   | KP281   | Female | 14        | Partnered     | 4     | 30699  | 66    | Teen(0-21)                 | marg<br>fitn  |
| 3   | KP281   | Male   | 12        | Single        | 3     | 32973  | 85    | Teen(0-21)                 | marg<br>fitn  |
| 4   | KP281   | Male   | 13        | Partnered     | 4     | 35247  | 47    | Teen(0-21)                 | low fitn      |
|     |         |        |           |               |       |        |       |                            |               |
| 175 | KP781   | Male   | 21        | Single        | 6     | 83416  | 200   | Adult(35-45)               | ł<br>performa |
| 176 | KP781   | Male   | 18        | Single        | 5     | 89641  | 200   | Adult(35-45)               | good fitn     |
| 177 | KP781   | Male   | 16        | Single        | 5     | 90886  | 160   | Adult(35-45)               | l<br>performa |
| 178 | KP781   | Male   | 18        | Partnered     | 4     | 104581 | 120   | Towards_old-<br>age(45-60) | l<br>performa |
| 179 | KP781   | Male   | 18        | Partnered     | 4     | 95508  | 180   | Towards_old-<br>age(45-60) | ł<br>performa |

180 rows × 9 columns

```
In [100]:
```

```
1 pd.crosstab(index = [df['Product'] , df['Fitness_level']] , columns = df['Gender'] , max
```

Out[100]:

|         | Gender           | Female | Male | All |
|---------|------------------|--------|------|-----|
| Product | Fitness_level    |        |      |     |
| KP281   | good fitness     | 3      | 6    | 9   |
|         | high performance | 1      | 1    | 2   |
|         | low fitness      | 10     | 4    | 14  |
|         | marginal fitness | 26     | 28   | 54  |
|         | poor fitness     | 0      | 1    | 1   |
| KP481   | good fitness     | 4      | 4    | 8   |
|         | low fitness      | 6      | 6    | 12  |
|         | marginal fitness | 18     | 21   | 39  |
|         | poor fitness     | 1      | 0    | 1   |
| KP781   | good fitness     | 1      | 6    | 7   |
|         | high performance | 5      | 24   | 29  |
|         | marginal fitness | 1      | 3    | 4   |
| All     |                  | 76     | 104  | 180 |

### **Observations**

- Product KP 781 has a base of only Good, Marginal and High performers sowing its mostly used by athletes or performers than day to day users.
- KP 281 has the most Users in the low and marginal catagory showing these are the products used by customers who is trying to get into shape.
- KP 481 has not high performance users which can be focused for improvement in the future

# In [386]:

```
sns.set(style="darkgrid")
sns.boxplot(x="Product", y="Usage", hue ='Gender', data = af, palette=['#43A371',"#FAAE
sns.set(rc={'figure.figsize':(10,15)})
```



#### **Observations**

- for KP 281 the Male users are in much more of frequent users than the females.
- KP 781 females are the more frequent users here compared to males

#### In [428]:

```
fig, axes = plt.subplots(figsize=(20, 8), nrows=1, ncols=2)
sns.boxenplot(x='Gender',y='Income',data=af, ax = axes[0])
axes[0].set_title("Product vs Age")
# ax = sns.stripplot(x="Gender", y="Income", data=af,size=4, color=".26")
sns.boxenplot(x='Product',y='Miles',data=af, ax=axes[1])
axes[1].set_title("Product vs Miles")
# ax = sns.stripplot(x="Product", y="Miles", data=af, size=4, color=".26")
```

#### Out[428]:

Text(0.5, 1.0, 'Product vs Miles')



#### **Observations**

- From the fig Females Income is mostly focused between 4000 5000 range where as males is between 5000 6000 with large spread from 3500 to 8500 this shows that the male customers are more euipped to buy the high end products
- In figure 2 the KP 781 leads the miles run by a fair distance while compared to other products

```
In [144]:
```

```
1 df['Price'] = df['Product']
```

# In [154]:

# In [155]:

1 df

# Out[155]:

|     | Product | Age | Gender | Education | MaritalStatus | Usage | Fitness | Income | Miles | Age_Gr             |
|-----|---------|-----|--------|-----------|---------------|-------|---------|--------|-------|--------------------|
| 0   | KP281   | 18  | Male   | 14        | Single        | 3     | 4       | 29562  | 112   | Teen(0             |
| 1   | KP281   | 19  | Male   | 15        | Single        | 2     | 3       | 31836  | 75    | Teen(0             |
| 2   | KP281   | 19  | Female | 14        | Partnered     | 4     | 3       | 30699  | 66    | Teen(0             |
| 3   | KP281   | 19  | Male   | 12        | Single        | 3     | 3       | 32973  | 85    | Teen(0             |
| 4   | KP281   | 20  | Male   | 13        | Partnered     | 4     | 2       | 35247  | 47    | Teen(0             |
|     |         |     |        |           |               |       |         |        |       |                    |
| 175 | KP781   | 40  | Male   | 21        | Single        | 6     | 5       | 83416  | 200   | Adult(35           |
| 176 | KP781   | 42  | Male   | 18        | Single        | 5     | 4       | 89641  | 200   | Adult(35           |
| 177 | KP781   | 45  | Male   | 16        | Single        | 5     | 5       | 90886  | 160   | Adult(35           |
| 178 | KP781   | 47  | Male   | 18        | Partnered     | 4     | 5       | 104581 | 120   | Towards_<br>age(45 |
| 179 | KP781   | 48  | Male   | 18        | Partnered     | 4     | 5       | 95508  | 180   | Towards_<br>age(45 |

180 rows × 12 columns

# In [158]:

```
1 sns.heatmap(df.corr(), cmap = 'Blues', annot = True)
```

# Out[158]:

# <AxesSubplot:>



# In [198]:

```
corr_pairs = df.corr().unstack() # give pairs of correlation
print( corr_pairs[abs(corr_pairs)>0.5])
```

| Age        | Age       | 1.000000 |
|------------|-----------|----------|
|            | Income    | 0.513414 |
| Education  | Education | 1.000000 |
|            | Income    | 0.625827 |
|            | Price     | 0.563487 |
| Usage      | Usage     | 1.000000 |
| _          | Fitness   | 0.668606 |
|            | Income    | 0.519537 |
|            | Miles     | 0.759130 |
|            | Price     | 0.623157 |
| Fitness    | Usage     | 0.668606 |
|            | Fitness   | 1.000000 |
|            | Income    | 0.535005 |
|            | Miles     | 0.785702 |
|            | Price     | 0.696657 |
| Income     | Age       | 0.513414 |
|            | Education | 0.625827 |
|            | Usage     | 0.519537 |
|            | Fitness   | 0.535005 |
|            | Income    | 1.000000 |
|            | Miles     | 0.543473 |
|            | Price     | 0.695870 |
| Miles      | Usage     | 0.759130 |
|            | Fitness   | 0.785702 |
|            | Income    | 0.543473 |
|            | Miles     | 1.000000 |
|            | Price     | 0.643948 |
| Price      | Education | 0.563487 |
|            | Usage     | 0.623157 |
|            | Fitness   | 0.696657 |
|            | Income    | 0.695870 |
|            | Miles     | 0.643948 |
|            | Price     | 1.000000 |
| dtyno: flo | n+6/I     |          |

dtype: float64

#### **Observations**

- Unstacked all the correlation points which are greater than 0.5 so that it gets easy to work on the probability and multi variate analysis
- · will be focussing on
  - USAGE : FITNESS WRT ( PRODUCT , GENDER , AGE , MARITAL STATUS )

- MILES: FITNESS WRT ( PRODUCT, GENDER, AGE, MARITAL STATUS )
- USAGE: MILES WRT ( PRODUCT, GENDER, AGE, MARITAL STATUS )

```
In [475]:
```

```
1 # df
```

# In [476]:

```
1 # df.info()
```

# USAGE: FITNESS WRT ( PRODUCT, GENDER, AGE, MARITAL STATUS)

#### In [434]:

```
fig, ax = plt.subplots(1 ,4 , figsize=(16, 5))
ax = ax.flatten()
i=0
for category in df.select_dtypes('category').columns:
    sns.scatterplot(data=df, x='Fitness', y='Usage', hue=category, ax=ax[i])
ax[i].set_title(f'Fitness vs Usage hue : {category}', size=16)
i = i+1
plt.show()
```



#### Observation

- Most high performance is from KP 781
- · Most frequent users are males
- · Most high performance users are single
- Adults are the most fit age group

# In [430]:

```
1 # df.info()
```

#### In [429]:

```
# fig1, axes1 =plt.subplots(3,2,figsize=(14, 19))
# list1_col=['Age','Income','Education','Usage','Fitness','Miles']
# # to plot graph side by side.
# for i in range(len(list1_col)):
# row=i//2
# col=i%2
# ax=axes1[row,col]
# sns.boxplot(df[list1_col[i]],df['Gender'],ax=ax).set(title='GENDER BY ' + list1_col[i]]
```

# MILES: FITNESS WRT ( PRODUCT, GENDER, AGE, MARITAL STATUS)

#### In [171]:

```
fig, ax = plt.subplots(1 ,4 , figsize=(16, 5))
ax = ax.flatten()
i=0
for category in df.select_dtypes('category').columns:
    sns.scatterplot(data=df, x='Fitness', y='Miles', hue=category, ax=ax[i])
ax[i].set_title(f'Fitness vs Miles hue : {category}', size=16)
i = i+1
plt.show()
```



#### **Observations**

- Most miles run are with the KP 781 Product
- Most Well shaped and Healthy catagory are dominated by males
- · Most miles run are by the Young adults

# USAGE: MILES WRT (PRODUCT, GENDER, AGE, MARITAL STATUS)

#### In [173]:

```
fig, ax = plt.subplots(1 ,4 , figsize=(16, 5))
ax = ax.flatten()
i=0
for category in df.select_dtypes('category').columns:
    sns.scatterplot(data=df, x='Usage', y='Miles', hue=category, ax=ax[i])
ax[i].set_title(f'Usage vs Miles hue : {category}', size=16)
i = i+1
plt.show()
```



#### Observation

- The usage '4'is densly populated showing that the most fittest people used the KP 781 product
- · Catagory "4" good fitness people are mostly males
- · Catagory "4" good fitness people are mostly Partnered
- Catagory "4" good fitness people are mostly in age group Young Adults (21 35)

```
- In general the Good fitness people are - Male , Married , Use KP 781 and in Age 21 - 35
```

# **Probability and Conditional Probability**

# In [237]:

```
df.groupby(['MaritalStatus','Product']).Usage.value_counts()
```

### Out[237]:

| MaritalStatus | Product | Usage |    |
|---------------|---------|-------|----|
| Partnered     | KP281   | 3     | 23 |
|               |         | 2     | 12 |
|               |         | 4     | 12 |
|               |         | 5     | 1  |
|               | KP481   | 3     | 17 |
|               |         | 2     | 10 |
|               |         | 4     | 6  |
|               |         | 5     | 3  |
|               | KP781   | 4     | 11 |
|               |         | 5     | 5  |
|               |         | 6     | 5  |
|               |         | 7     | 2  |
| Single        | KP281   | 3     | 14 |
|               |         | 4     | 10 |
|               |         | 2     | 7  |
|               |         | 5     | 1  |
|               | KP481   | 3     | 14 |
|               |         | 4     | 6  |
|               |         | 2     | 4  |
|               | KP781   | 4     | 7  |
|               |         | 5     | 7  |
|               |         | 6     | 2  |
|               |         | 3     | 1  |
| Names Hears   | d+ + n+ | C 1   |    |

Name: Usage, dtype: int64

#### Observation

- Partnered are more likely to buy KP 281 if they have usage rating between 2 to 4
- Single person is more likely to buy KP281 if the usage rating is 3 or 4.

# In [332]:

```
1 df.groupby(['MaritalStatus' , 'Gender','Product'])['Usage'].count()
```

# Out[332]:

| MaritalStatus | Gender | Product |    |
|---------------|--------|---------|----|
| Partnered     | Female | KP281   | 27 |
|               |        | KP481   | 15 |
|               |        | KP781   | 4  |
|               | Male   | KP281   | 21 |
|               |        | KP481   | 21 |
|               |        | KP781   | 19 |
| Single        | Female | KP281   | 13 |
|               |        | KP481   | 14 |
|               |        | KP781   | 3  |
|               | Male   | KP281   | 19 |
|               |        | KP481   | 10 |
|               |        | KP781   | 14 |
|               |        |         |    |

Name: Usage, dtype: int64

#### **Observations**

- · KP 481 is bought more by Single females
- KP 281 remains good choice for Partnered females
- · A partnered male is equally likely to buy KP 281 and KP 481
- Single male is more likely to buy either KP 281 or KP 481

# probability of product Gender

# **Defining the Probability for Product and Gender:**

• P(KP): Probability of any given product

```
- (KP 281 , KP 481 , KP 781)
```

• P(G): Probability of particular gender

```
- ( Male , Female)
```

• P(KP ∩ G): Probability of male / female using any of the given three products

```
- [P(KP 281 n M) P(KP 281 n F) P(KP 481 n M , P(KP 481 n F), P(KP 781 n M) , P(KP 781 n F))]
```

• P(KP|G): Probability of USING A PARTICULAR PRODUCT GIVEN SPECIFIC GENDER

```
- P(KP 781 \mid M) = P(KP 781 \cap M) / P(M)
```

### In [363]:

```
pd.crosstab([df["Product"]],df["Gender"],margins=True)
```

#### Out[363]:

| Gender  | Female | Male | All |
|---------|--------|------|-----|
| Product |        |      |     |
| KP281   | 40     | 40   | 80  |
| KP481   | 29     | 31   | 60  |
| KP781   | 7      | 33   | 40  |
| All     | 76     | 104  | 180 |

```
In [366]:
```

```
pd.crosstab([df["Product"]],df["Gender"],margins=True,normalize="columns") #p(P/G)
```

#### Out[366]:

| Gender  | Female Male |          | All      |
|---------|-------------|----------|----------|
| Product |             |          |          |
| KP281   | 0.526316    | 0.384615 | 0.44444  |
| KP481   | 0.381579    | 0.298077 | 0.333333 |
| KP781   | 0.092105    | 0.317308 | 0.222222 |

#### In [376]:

```
from IPython.display import display_html
 2
   from itertools import chain,cycle
 3
4
   def display_side_by_side(*args,titles=cycle([''])):
 5
       html str=''
       for df,title in zip(args, chain(titles,cycle(['</br>'])) ):
 6
7
          html_str+=''
8
          html_str+=f'<h2>{title}</h2>'
          html_str+=df.to_html().replace('table', 'table style="display:inline"')
9
          html str+=''
10
       display_html(html_str,raw=True)
11
12
13
   df1 = pd.crosstab([df["Product"]],df["Gender"],margins=True)
14
   df2 = pd.crosstab([df["Product"]],df["Gender"],normalize="columns")
16
17
   display_side_by_side(df1,df2 , titles = ['Product wise count' , 'P(product | Gender)'])
```

# Productwise count P(product|Gender)

| Gender  | Female | Male | All | Gender  | Female   | Male     |
|---------|--------|------|-----|---------|----------|----------|
| Product |        |      |     | Product |          |          |
| KP281   | 40     | 40   | 80  | KP281   | 0.526316 | 0.384615 |
| KP481   | 29     | 31   | 60  | KP481   | 0.381579 | 0.298077 |
| KP781   | 7      | 33   | 40  | KP781   | 0.092105 | 0.317308 |
| ΔΙΙ     | 76     | 104  | 180 |         |          |          |

#### **Observations**

- the probability of a female buying the KP281 is the highest among all the products
- for male the product probability is close between KP 281 and KP 781

# probability of product given marital status

# **Defining the Probability for Product and Gender:**

• P(KP): Probability of any given product

```
- (KP 281 , KP 481 , KP 781)
```

- P(M): Probability of particular Marital Status
  - ( Partnered , single)
- P(KP ∩ M): Probability of male / female using any of the given three products

```
- [P(KP 281 \cap P) P(KP 281 \cap S) P(KP 481 \cap P , P(KP 481 \cap S), P(KP 781 \cap P) , P(KP 781 \cap S))]
```

• P(KP|M): Probability of USING A PARTICULAR PRODUCT GIVEN MARITAL STATUS

```
- P(KP 781 \mid M) = P(KP 781 \cap P) / P(P)
```

#### In [367]:

```
pd.crosstab([df["Product"]],df["MaritalStatus"],margins=True)
```

#### Out[367]:

| MaritalStatus | Partnered | Single | All |
|---------------|-----------|--------|-----|
| Product       |           |        |     |
| KP281         | 48        | 32     | 80  |
| KP481         | 36        | 24     | 60  |
| KP781         | 23        | 17     | 40  |
| All           | 107       | 73     | 180 |

#### In [370]:

```
pd.crosstab([df["Product"]],df["MaritalStatus"],normalize="columns") #p(p/single) or p
```

#### Out[370]:

| MaritalStatus |         | Partnered | Single   |  |
|---------------|---------|-----------|----------|--|
|               | Product |           |          |  |
|               | KP281   | 0.448598  | 0.438356 |  |
|               | KP481   | 0.336449  | 0.328767 |  |
|               | KP781   | 0.214953  | 0.232877 |  |

# In [378]:

```
from IPython.display import display html
   from itertools import chain,cycle
 4
   def display_side_by_side(*args,titles=cycle([''])):
 5
       html str=''
 6
       for df,title in zip(args, chain(titles,cycle(['</br>'])) ):
7
          html_str+=''
          html_str+=f'<h2>{title}</h2>'
8
9
          html_str+=df.to_html().replace('table','table style="display:inline"')
          html str+=''
10
11
       display_html(html_str,raw=True)
12
13
   df3 = pd.crosstab([df["Product"]],df["MaritalStatus"],margins=True)
14
   df4 = pd.crosstab([df["Product"]],df["MaritalStatus"],normalize="columns")
15
16
17
   display_side_by_side(df3,df4 , titles = ['Product wise count' , 'P(Product MaritalState
18
19
```

# Product wise count P(Product|MaritalStatus)

| MaritalStatus | Partnered | Single | All | MaritalSt | atus | Partnered | Single   |
|---------------|-----------|--------|-----|-----------|------|-----------|----------|
| Product       |           |        |     | Pro       | duct |           |          |
| KP281         | 48        | 32     | 80  | K         | P281 | 0.448598  | 0.438356 |
| KP481         | 36        | 24     | 60  | KI        | P481 | 0.336449  | 0.328767 |
| KP781         | 23        | 17     | 40  | KI        | P781 | 0.214953  | 0.232877 |
| ΔII           | 107       | 73     | 180 |           |      |           |          |

#### Observation

 Most partnered as well as the single people prefers KP281. Makes sense as KP281 is the cheapest and most sold product

```
In [474]:
```

```
# pd.crosstab(index=[df["Product"],df["MaritalStatus"]],columns=df["Gender"],margins=Tr
```

#### In [473]:

```
# pd.crosstab(index=[df["Product"],df["MaritalStatus"]],columns=df["Gender"],margins=Tr
1
2
```

# **Marginal Probability**

#### any of the three products:

### In [459]:

```
marg_prob1 = round(pd.crosstab(index=df['Usage'],columns=df['Product'],margins=True,nor
marg_prob1
marg_prob1
marg_prob1.loc[marg_prob1[2]]
```

#### Out[459]:

| Product | KP281 | KP481 | KP781 | All    |
|---------|-------|-------|-------|--------|
| Usage   |       |       |       |        |
| 2       | 10.56 | 7.78  | 0.00  | 18.33  |
| 3       | 20.56 | 17.22 | 0.56  | 38.33  |
| 4       | 12.22 | 6.67  | 10.00 | 28.89  |
| 5       | 1.11  | 1.67  | 6.67  | 9.44   |
| 6       | 0.00  | 0.00  | 3.89  | 3.89   |
| 7       | 0.00  | 0.00  | 1.11  | 1.11   |
| All     | 44.44 | 33.33 | 22.22 | 100.00 |

# MARGINAL PROBABILITIES of the customers who are in the age groups(15-64) buying any of the three products:

#### In [448]:

```
1 marg_prob2 = round(pd.crosstab(index=df['Education'],columns=df['Product'],margins=True
2 marg_prob2
```

#### Out[448]:

| Product   | KP281 | KP481 | KP781 | All    |
|-----------|-------|-------|-------|--------|
| Education |       |       |       |        |
| 12        | 1.11  | 0.56  | 0.00  | 1.67   |
| 13        | 1.67  | 1.11  | 0.00  | 2.78   |
| 14        | 16.67 | 12.78 | 1.11  | 30.56  |
| 15        | 2.22  | 0.56  | 0.00  | 2.78   |
| 16        | 21.67 | 17.22 | 8.33  | 47.22  |
| 18        | 1.11  | 1.11  | 10.56 | 12.78  |
| 20        | 0.00  | 0.00  | 0.56  | 0.56   |
| 21        | 0.00  | 0.00  | 1.67  | 1.67   |
| All       | 44.44 | 33.33 | 22.22 | 100.00 |

MARGINAL PROBABILITIES of the customers who are either married or single and buying any of the three products:

```
In [449]:
```

```
marg_prob3 = round(pd.crosstab(index=df['MaritalStatus'],columns=df['Product'],margins=
marg_prob3
```

# Out[449]:

| Product       | KP281 | KP481 | KP781 | All    |
|---------------|-------|-------|-------|--------|
| MaritalStatus |       |       |       |        |
| Partnered     | 26.67 | 20.00 | 12.78 | 59.44  |
| Single        | 17.78 | 13.33 | 9.44  | 40.56  |
| All           | 44.44 | 33.33 | 22.22 | 100.00 |

#### Observation

- High Price/Best featured KP 781 product 'usage' is more among people who are buying it. So the company should focus more on this product
- (MALES who are MARRIED and have higher income) and (who uses the product more than or equal to 4 times in a week(usage)) and (who have education more than or equal to 16 years))

# customer profile

#### **KP 281**

- This model has same level of popularity in Male customers as well as Female customers as it has same numbers of Male and Female customers.
- Average age of customer who purchases KP 281 is 28.5.
- This model is popular among Bachelors as average years of education of customers for this product is 15.
- Users expect to use this treadmill 3-4 times a week.
- · Self rate fitness level of customer is average.
- It is the most popular model (in all genders) because of its falshy price and affordability with 33.3% of sales.
- Customers of this treadmill are on the process if getting into better shape and thus the price is the major attracting factor in this product.

#### **KP 481**

- Customers with lower income purchase KP 4 or KP 281 model may be because of lower cost of the Treadmill.
- Average age of customer who purchases KP 481 is 29.
- Customers expecting KP 481 model to use less frequently but to run more miles per week on this.

#### **KP 781**

- This is the least sold product(22.2% sales) Treadmill, may be because of it heafty price range making it Company's Premium product.
- Average age of customer who purchases TM798 is 29.
- Treadmill may have some advanced features as people with high income are ready to spend money to buy this model
- Customers expected usage on this model is 4-5 day a week with moderate Miles to run.
- Male customers who are more serious about fitness or Professionals buy this mode (self fitness rating 3-5).
- Customers of this treadmill are on high fitness and elite product with the High fitness major attraction of the product.

# Recommendations

- · Recommend the KP 781 to users who have high usage rating
- Recommending the KP 781 to the People with higher income as it has more features
- KP 781 should be marketed as a Premium Model and marketing it to high income groups and educational over 20 years market segments could result in more sales.
- Recommend KP 281 to the Single people with usage rating less than 4 to 5
- KP 481 can be recommended to the Single females
- Aerofit should conduct market research to determine if it can attract customers with income under USD 1750 to expand its customer base.

# In [472]:

```
1 # from pandas_profiling import ProfileReport
2 # profile = ProfileReport(df)
3 # profile
```

#### In [ ]:

1