Untangling the physical components of galaxies

SDAF: 19/10/2016 Peter Hurley

Purpose of talk: show how I have used techniques such as PCA and NMF in my work Time at the end for discussion

What is a galaxy?

M83, hundreds of billions of stars

Galaxies have different physical environments:

Active Galactic Nuclei: super massive black hole, accretion disk, gives of huge amount of energy, XRAY radio, infra red dusty torus Star forming regions: molecular clouds, collapse, form stars, these give of UV-optical light, but heat up surrounding material, e.g. gas and dust..

Galaxy evolution

- •How does SFR and AGN change over time?
- Connection between SF and AGN?

black curve SFR red curve XRAY -AGN

Understanding connection between different regions requires multi-wavelength data

People tend to use only one or two specific features as signatures

Spectral features are used as diagnostics, but they ignore information contained in the rest of the spectrum

A specific feature missing e.g. bad spectra? What happens if spectra is noisy?

Ideally, we want a set of MIR spectral components that relate to the physical environments of galaxies.

What do the templates for these physical environments look like?

Can we use multivariate analysis techniques to:

- 1) Use the most of the data
- 2) Learn the templates from the data

PCA: finds components that provide the most variance, and are orthogonal:.. i.e. modelling as multivariate gaussian

Features that vary most e.g. dust slope, then PAH features NOTE: positive and negative weights and templates

PCA as a data compression technique:

PCA provides a statistical interpretation

Take a bunch of faces, learn PCs

In VQ, each column of H is constrained to be a unary vector, with one element equal to unity and the other elements equal to zero. In other words, every face (column of V) is approximated by a single basis image (column of W) in the factorization V WH

NMF is just a matrix factorisation with positive constraints

By applying NMF to IRS spectra, we assume galaxy spectra are a linear combination of components

More appropriate than PCA:

$$F(\lambda) = Mean(\lambda) + c_1 \cdot PC1(\lambda) + c_2 \cdot PC2(\lambda) + c_3 \cdot PC3(\lambda) + c_4 \cdot PC4(\lambda) + c_5 \cdot PC5(\lambda)$$

729 galaxies in total

Fit all galaxies with template set, calculate Bayesian Evidence

unphysical,

There is a common star formation component

There is a common 'hot silicate dust' component

There is a common 'hot dust and ionised gas' component

Finding common suggests the 3 components are fundamental spectral building blocks whose behaviour is linear

- Common star formation component:
 - •contains all the PAH features,
 - star formation regions look similar amongst a range of galaxies
- •Unified model of AGN predict silicate emission from type 1 AGN:
 - Silicate emission is a fundamental spectral component
 - •Occurs in more than just type 1 AGN
 - •Evidence for Clumpy torus?

We can use an NMF set with 7 components to fit galaxies

Use a data compression technique..

Assumptions of technique affect results you get out

PCA assumptions:

- Orthogonal, linear components,
- Multi-variate Gaussian Distribution
- Variance comes from something interesting

NMF assumptions:

- Linear combination
- Positive constraint on weights
- Positive weight on templates