Academia Sabatina de Jóvenes Talento

Colinealidad y Concurrencia Clase #4

Encuentro: 18

Curso: Colinealidad y Concurrencia

Semestre: II

Fecha: 12 de agosto de 2023

Instructor: Kenny Jordan Tinoco

D. auxiliar: José Adán Duarte

Unidad II: Colinealidad Contenido: Colinealidad I

1. Desarrollo

1.1. Colinealidad

Tres puntos son **colineales** si se encuentran sobre una misma línea. Dicho esto, presentaremos algunos enfoques que nos ayudarán a probar que tres puntos son colineales al resolver problemas de geometría.

Hay tres formas más comunes de angulear que nos permiten probar que tres puntos A, B y C son colineales.

Figura 1: Tres configuraciones de colinealidad.

En la primera configuración¹, necesitaremos dos puntos adicionales que ya son colineales con nuestro punto "medio" B. Sean esos puntos X e Y. Si $\angle XBA = \angle YBC$, entonces los puntos A, B y C son colineales.

¹Comenzando de izquierda a derecha.

En la segunda configuración, necesitaremos un punto extra X que no esté en la supuesta línea A-B-C. Si $\angle ABX+\angle XBC=180^\circ$, entonces los puntos A,B y C son colineales.

En la tercera configuración, también necesitaremos un punto extra X que no esté en la supuesta línea A-B-C. Si $\angle XAB=\angle XAC$, entonces los puntos A,B y C son colineales.

Teorema 1.1 (Teorema de Menelao).

Dado un triángulo ABC, sean D, E y F puntos sobre los lados (o sus prolongaciones) BC, CA y AB, respectivamente. Entonces los puntos D, E y F son colineales si y sólo si

$$\frac{CD}{BD} \cdot \frac{BF}{FA} \cdot \frac{AE}{EC} = 1.$$

Demostración. La demostración se deja como ejercicio al lector.

Teorema 1.2 (Menelao trigonométrico).

Dado un triángulo ABC, sean D, E y F puntos sobre los lados (o sus prolongaciones) BC, CA y AB, respectivamente. Entonces los puntos D, E y F son colineales si y sólo si

$$\frac{\operatorname{sen}(\angle CAD)}{\operatorname{sen}(\angle BAD)} \cdot \frac{\operatorname{sen}(\angle BCF)}{\operatorname{sen}(\angle FCA)} \cdot \frac{\operatorname{sen}(\angle ABE)}{\operatorname{sen}(\angle EBC)} = 1.$$

Demostración. La demostración se deja como ejercicio al lector.

Teorema 1.3 (Recta de Gauss).

Sean L y M los puntos medios de las diagonales AC y BD del cuadrilátero ABCD. Las rectas AB y CD se cortan en E, y las rectas AD y BC se cortan en F. Sea N el punto medio de EF. Entonces los puntos L, M y N colineales.

1.2. Teorema de Pappus

Teorema 1.4 (Teorema de Pappus).

En todo hexágono (no necesariamente convexo) en el que sus vértices no consecutivos están alineados, las intersecciones de sus lados opuestos son colineales.

1.3. Teorema de Desargues

Teorema 1.5 (Teorema de Desargues).

Dos triángulos están en perspectiva si y solo si son coaxiales.

Observación 1.

Dos triángulos están en **perspectiva** si las rectas que unen sus vértices correspondientes son concurrentes.

Observación 2.

Dos triángulos son **coaxiales** cuando los puntos de intersección de los lados correspondientes son colineales.

1.4. Agregados culturales y preguntas

2. Ejercicios y Problemas

Sección de ejercicios y problemas para el autoestudio.

3. Problemas propuestos

Recordar que los problemas de esta sección son los asignados como **tarea**. Es el deber del estudiante resolverlos y entregarlos de manera clara y ordenada el próximo encuentro (de ser necesario, también se pueden entregar borradores).

4. Extra

Referencias

[Agu19] Eduardo Aguilar. Estrategias sintéticas en Geometría Euclídea. Editorial, 2019.

[Bac22] Jafet Baca. Apuntes de Geometría Euclidiana para Competiciones Matemáticas. Independent publication, 2022.

En caso de consultas

Instructor: Kenny J. Tinoco Teléfono: +505 7836 3102 (*Tigo*) Correo: kenny.tinoco10@gmail.com

Docente: José A. Duarte Teléfono: +505 8420 4002 (Claro) Correo: joseandanduarte@gmail.com