Université de Picardie Jules Verne. Année 2024-2025. UFR sciences.

M1: Optimisation

TD3

Exercice 0

On a vu qu'étant donnée une fonction continue f définie sur un sous-ensemble fermé U (non vide) de \mathbb{R}^n , f coercive, le problème (P) usuel admet au moins une solution. L'objectif de cet exercice est de montrer que ce résultat est faux en dimension infinie. On considère la fonction définie sur l^2 (voir TD 1 d'analyse fonctionnelle pour la définition de l^2) par

$$J(v) = (\|v\|_{l^2}^2 - 1)^2 + \sum_{i=1}^{+\infty} \frac{v_i^2}{i^2}.$$

- 1. Montrer que la fonction J est bien définie, puis qu'elle est coercive et continue.
- 2. Déterminer l'infimum de J.
- 3. Conclure.

Exercice 1

On considère une fonctionnelle α -elliptique définie sur \mathbb{R}^n , c'est-à-dire une fonction de classe C^1 sur \mathbb{R}^n satisfaisant la condition suivante : il existe $\alpha > 0$ tel que

$$(\nabla J(v) - \nabla J(u), v - u) \ge \alpha ||v - u||^2 \ \forall u, v \in \mathbb{R}^n.$$

0. Montrer qu'il existe un unique élément u de \mathbb{R}^n tel que

$$J(u) = \inf_{u \in \mathbb{R}^n} J(v).$$

La méthode du gradient à pas optimal consiste à construire une suite de vecteurs de \mathbb{R}^n définie de la façon suivante:

Etape 0. Soit un vecteur $u_0 \in \mathbb{R}^n$ tel que $\nabla J(u_0) \neq 0$. On cherche alors à minimiser ϕ_0 : $\rho \mapsto J(u_0 + \rho \nabla J(u_0))$ sur \mathbb{R} (les hypothèses sur J permettent d'assurer qu'il existe un unique $\rho_0 \in \mathbb{R}$ minimisant ϕ_0). On pose $u_1 = u_0 + \rho_0 \nabla J(u_0)$.

Etape k. $(k \ge 1)$. Soit u_k le vecteur déterminé à l'étape k-1. Ou $\nabla J(u_k) = 0$ et l'algorithme est terminé (expliquez pourquoi) ou $\nabla J(u_k) \ne 0$, et alors on minimise $\phi_k(\rho) := J(u_k + \rho \nabla J(u_k))$ sur \mathbb{R} . Soit ρ_k l'unique point en lequel est réalisé le minimum de ϕ_k . On pose alors

$$u_{k+1} = u_k + \rho_k \nabla J(u_k).$$

- 1. Montrer que la suite (u_k) est bien définie.
- 2. Montrer que

$$||u_k - u|| \le \frac{1}{\alpha} ||\nabla J(u_k)||, \quad \forall k.$$

3. Établir que

$$(\nabla J(u_k), \nabla J(u_{k+1}) = 0, \quad \forall k \in \mathbb{N}.$$

4. Montrer que

$$\lim_{k \to +\infty} ||u_k - u_{k+1}|| = 0,$$

puis établir l'inégalité

$$\|\nabla J(u_k)\| \le \|\nabla J(u_k) - \nabla J(u_{k+1})\|, \quad \forall k \in \mathbb{N}.$$

- 5. En déduire que (u_k) converge vers u.
- 6. Décrire la méthode du gradient à pas optimal appliquée à la fonctionnelle quadratique définie sur \mathbb{R}^n par

$$J(v) = \frac{1}{2}(Av, v)_2 - (b, v)_2 \tag{1}$$

où $A \in M_n(\mathbb{R})$ est symétrique définie positive, $b \in \mathbb{R}^n$.

Exercice 2

On considère la fonction définie sur \mathbb{R}^2 par

$$J(v_1, v_2) = v_1^2 + v_2^2 - 2(v_1 + v_2) + 2|v_1 - v_2|.$$

- 1. Montrer que J est coercive et strictement convexe sur \mathbb{R}^2 . Que peut-on en déduire ?
- 2. Montrer que J est non dérivable en (0,0).
- 3. Déterminer $\inf_{v \in \mathbb{R}^n} J(v)$.
- 4. Appliquer à J la méthode de relaxation abordée en cours (la décrire préalablement) avec le choix $u_0 = (0,0)$.
- 5. Qu'en concluez-vous?