TECHFIESTA 2025 Farmatrix

Problem Statement ID - T2K25A6

Problem Statement Title - Yield Prediction using Remote Sensing

Domain - Agriculture

Team Name - Team AgroTech

Team Leader Name - Krishna Punjabi

TECH

0101010

FIESTA

HACKATHON

Access our Prototype: https://tinyurl.com/465r9jmh

WORKFLOW OF FARMATRIX

METHODOLOGY

GAP-ANALYSIS

By examining data gaps in soil health, weather forecasts, and resource utilization, we found inefficiencies in the farming methods used today.

PLANNING

To successfully close
these gaps, our team
created a solid
methodology that
combines satellite data
integration with ML
models using hybrid
approach

IMPLEMENTATION

We created Farmatrix as
a comprehensive
solution that combines
preprocessing, feature
extraction, data
collection, and predictive
analytics. We also used
different methods to
increase the accuracy of
the Model.

TESTING

To verify predictions and enhance model performance for practical situations, extensive testing will be carried out on a variety of datasets.

EVALUATION

In order to achieve optimal dependability and scalability, we will adapt based on feedback and measure the effect of Farmatrix on crop productivity, resource optimization, and sustainability.

FEASIBILITY AND KEY FEATURES

02.

04.

03.

O1. Earmatrix uses bybrid modeling. Y

Farmatrix uses hybrid modeling, Yeo-Johnson transformation, and feature extraction to increase prediction accuracy and minimize inaccuracies.

FERTILIZER OPTIMIZATION

Promotes sustainable farming by optimizing resources, lowering waste, and increasing crop output through fertilizer recommendations.

HYBRID APPROACH

Uses machine learning models like neural networks, GBM, random forests, and linear regression to ensure precise and effective predictions.

CONTINOUS INTERGRATION

Integrates fresh data and retrains models on a regular basis to guarantee adaptability and smooth updates.

IMPACT AND USE-CASES

CROP-TYPE RECOMMENDATION

Enhances profitability and resource efficiency by aligning crop selection with environmental conditions.

RESOURCE OPTIMIZATION

Optimizes the use of seeds, fertilizers, and pesticides by providing precise recommendations.

FARM MANAGEMENT

Integrates satellite image data to monitor large-scale farm conditions, identify underperforming areas, and plan corrective actions.

PEST MANAGEMENT

Makes recommendations for treatments and preventative measures to reduce crop damage.

PRACTICAL USE-CASES

EDUCATION

Serves as a tool to educate farmers about modern agricultural practices, precision farming, and resource optimization.

CROP YEILD PREDICTION

Helps farmers estimate production and make informed decisions about crop selection and resource allocation.

FERTILIZER OPTIMIZATION

Reduces resource wastage and improves crop health and yield, promoting sustainable farming practices.

PRECISE IRRIGATION

Prevents overwatering or underwatering, ensuring efficient water usage.

TECH-STACK FOR

FARMATRIX

Programming Languages

Python (Core Programming), React (frontend), SQL (data manipulation)

Deployment

Flask for APIs, Docker for containers, and AWS/Azure for hosting

Post-processing

Evaluation with Scikit-learn and visualization using Matplotlib or Plotly.

Prediction

Linear Regression, Random Forest (Scikit-learn), Neural Networks (PyTorch), and GBM (LightGBM).

Data Collection

APIs (OpenWeatherMap, SoilGrids), Remote Sensing (SentinelHub, Google Earth Engine), Databases (PostgreSQL, MongoDB)

Pre-processing

Pandas, NumPy for data cleaning; Scikit-learn for encoding and normalization

Extraction

Transformations (Yeo-Johnson in Scikit-learn) and optimization (Pyomo, SciPy)

Training

Scikit-learn, TensorFlow, and PyTorch

OUR NEXT STEPS

