

Examen 1 Álgebra lineal

Nombre:

Resolver explicando tu respuesta 4 de 6 problemas, los problemas 1 y 3 son obligatorios.

1- a) Define que es la inversa de una matriz cuadrada. b) Aplica el método de Gauss-Jordan para calcular A^{-1}

$$A = \begin{bmatrix} 2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 1 \end{bmatrix}$$

c) Usando el resultado en b). Resolver el siguiente sistema como función de α, β .

y calcular la norma de la solución $\tilde{\mathbf{x}}(\alpha, \beta)$.

2.-Se dan los vértices de un paralelogramo ABCD conn $A=(0,1,-1),\,B=(1,0,2)$ y C=(2,3,0).

- i) Calcular las coordenadas de $D=(x_0,y_0,z_0)$ considerando que \overrightarrow{AD} es paralelo a \overrightarrow{BC} . Calcular los ángulos internos del vértice A
- ii) Calcular el plano que contiene al paralelogramo.
- iii) Encontrar el conjunto intersección del plano en iii) y el plano x + y + z = 2.
- 3.- Calcular para que valores del siguiente sistema de ecuaciones

$$\lambda x + y + z = 1$$
$$x + \lambda y + z = 1$$
$$x + y + \lambda z = 1$$

- * Se tiene una solución única
 - Se tiene una infinidad de soluciones
 - El sistema es inconsistente
 - 4. Si $A = \begin{pmatrix} 1 & a \\ 0 & a \end{pmatrix}$, con $a \neq 0$ calcular, usando inducción matemática la matriz A^n . (Recordar la siguiente factorización $a^n-1=(a-1)(a^{n-1}+a^n-2)+\ldots+a+1)$).
 - 5. Sabiendo que A es simétrica e invertible
 - Demostrar que A^{-1} también es simétrica.
 - Explicar por que $det(A^{-1}) \neq 0$.
 - Demostrar usando las propiedades del determinante que A^n también es invertible y $(A^n)^{-1} = (A^{-1})^n$
 - Si B es una matriz invertible, explicar por que $M = B \cdot B^T$ es invertible y $\det(M) > 0$.
 - 6. a) Obtener las matrices elementales que transforman a A en una matriz triangular
 - b) Usar a) para obtener la factorización PA = LU de la matriz asociada al sistema

$$\begin{array}{rcl}
2y & + & 2z & = & 4 \\
-x & + & 2y & - & 4z & = & 4 \\
2x & - & 5y & + & z & = & -8
\end{array}$$

c) Resolver el sistema **usando** la factorización PA = LU