NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA

THESIS

FURTHER INVESTIGATION OF THE SCATTERING OF UNDERWATER SOUND FROM A POROUS SOLID SPHERE

by

Martin E. Pace

December 1994

Thesis Advisor:

S.R. Baker

Approved for public release; distribution is unlimited

DTIC QUALITY INSPECTED 3

19950501 055

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY	(Leave blank)	2. REPORT DATE	3. REPORT TYPE AND DATES COVERED	
		December 1994	Master's Thesis	
4. TITLE AND SUBTITLE Further Investigati from a Porous Sol	ion of the Scatterir	ng of Underwater Sound	5. FUNDING NUMBERS	
6. AUTHOR(S) Pace, Martin E.				
7. PERFORMING ORGAN Naval Postgraduate Monterey CA 9394	School 3-5000		8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITO	RING AGENCY NA	AME(S) AND ADDRESS(ES)	10. SPONSORING/MONITORING AGENCY REPORT NUMBER	
11. SUPPLEMENTARY NO				
The views expressed in the	his thesis are those	of the author and do not ref	eflect the official policy or position of the Departm	nent
of Defense or the U.S. Go	overnment.			
12a. DISTRIBUTION/AVAII Approved for public relea			12b. DISTRIBUTION CODE	
This investigation is scattering of sound from a Theodore W. L. Huskey. 100 and 500 µm glass bea moduli measured from a composition for the porous spheres; the were used as input to the The experimental dat	a poro-elastic sphe Both monostatic a ads and on an alum cylindrical sample the shear moduli had theoretical model of ta were compared to bottained for the alu	ere embedded in a poro-elast and bistatic measurements we ninum sphere. The Poisson's composed of 300 µm glass developed by Kargl and Lim to the theoretical values. Reauminum and 100 µm spheres	al model, developed by Kargl and Lim, for the stic host. It is a follow-on to that conducted by LT. were taken on two porous glass spheres composed is Ratio was calculated from the shear and Young's beads. This was used to calculate the bulk modul it by LT. Huskey. These and other material propert m. easonably good agreement between the measured as the measured scattering from the 500 µm sphere.	of s i ies
14. SUBJECT TERMS			15. NUMBER OF PAGES	

NSN 7540-01-280-5500

OF REPORT

Unclassified

17. SECURITY CLASSIFICATION

Biot, Porous Medium, Backscatter, Borosilicate

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. 239-18

ABSTRACT

UL

20. LIMITATION OF

53 16. PRICE CODE

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

Approved for public release; distribution is unlimited.

FURTHER INVESTIGATION OF THE SCATTERING OF UNDERWATER SOUND FROM A POROUS SOLID SPHERE

Martin E. Pace Lieutenant, United States Navy B.S., Oregon State University, 1987

Submitted in partial fulfillment of the Accesion For requirements for the degree of NTIS CRA&I DTIC TAB Unannounced MASTER OF SCIENCE IN APPLIED PHYSICS Justification By_ from the Distribution / Availability Codes NAVAL POSTGRADUATE SCHOOL Avail and or Special Dist December 1994 Author: ____ Martin E. Pace Approved by: C. Scandrett, Second Reader William B. Colson, Chairman, Department of Physics

iv

ABSTRACT

This investigation is an attempt to verify the results of a theoretical model, developed by Kargl and Lim, for the scattering of sound from a poro-elastic sphere embedded in a poro-elastic host. It is a follow-on to that conducted by LT. Theodore W. L. Huskey. Both monostatic and bistatic measurements were taken on two porous glass spheres composed of 100 and 500 µm glass beads and on an aluminum sphere. The Poisson's Ratio was calculated from the shear and Young's moduli measured from a cylindrical sample composed of 300 µm glass beads. This was used to calculate the bulk moduli for the porous spheres; the shear moduli had been previously measured by LT. Huskey. These and other material properties were used as input to the theoretical model developed by Kargl and Lim.

The experimental data were compared to the theoretical values. Reasonably good agreement between the measured and predicted scattering was obtained for the aluminum and $100~\mu m$ spheres. The measured scattering from the $500~\mu m$ sphere was in poor agreement with the theoretical predictions.

TABLE OF CONTENTS

I. INTRODUCTION	
A. BACKGROUND1	
B. OBJECTIVES1	
C. EXPERIMENT OVERVIEW1	
II. DETERMINATION OF ELASTIC MODULI5	í
A. RESONANT ACOUSTIC METHOD5	;
B. ELASTIC MODULI MEASUREMENT6	í
III. BACKSCATTER MEASUREMENTS9)
A. MEASUREMENT OBJECTIVE)
B. EXPERIMENT SETUP)
C. EXPERIMENTAL PROCEDURE13	3
IV. DATA ANALYSIS AND RESULTS17	7
A. NORMALIZATION OF EXPERIMENTAL DATA 17	7
B. THEORETICAL DATA17	7
C. COMPARISON OF THEORETICAL AND EXPERIMENTAL DATA 17	7
V. CONCLUSION AND RECOMMENDATIONS	9
A. CONCLUSION29	9
B. RECOMMENDATIONS	0
APPENDIX A. MONOSTATIC DATA RESULTS3	1
APPENDIX B. BISTATIC DATA RESULTS	3
APPENDIX C. INPUTS TO KARGL'S PROGRAM	9
LIST OF REFERENCES4	1
INITIAL DISTRIBUTION LIST4	3

ACKNOWLEDGMENTS

The author wants to sincerely thank Prof. Steve Baker for his guidance and patience during the work in performing this investigation. I would also like to thank Steve Kargl of the University of Washington, Applied Physics Laboratory, for his assistance in my research.

I. INTRODUCTION

A. BACKGROUND

Because of the increased emphasis on littoral warfare and the threat of the use of buried mines in these areas, there is increased interest in the scattering of sound in fluidsaturated porous media.

Maurice Biot (Biot, 1956a, b) developed a general theory for the propagation of elastic waves in a fluid-saturated porous media. Biot's theory has been applied to the scattering of elastic waves from a saturated porous sphere in a saturated porous host (Kargl and Lim, 1993).

In 1993, LT. Huskey performed experiments in an attempt to verify Kargl and Lim's model. The results of his experiment were good when 10% frame damping was included in the calculations. Other calculations were less satisfactory. (Huskey, 1993)

B. OBJECTIVES

Kargl and Lim developed a numerical model to compute the scattering of sound from a saturated porous sphere. This research is an attempt to experimentally measure the scattering of sound from a saturated porous sphere and compare the results with the numerical values obtained from Kargl and Lim's model (Kargl and Lim, 1993).

C. EXPERIMENT OVERVIEW

As stated above, the purpose of this research is to measure the scattering of sound from a fluid saturated porous sphere. The spheres which were used in this research were composed of borosilicate glass beads. The beads had a mean diameter of $100~\mu m$ and $500~\mu m$. The beads were coated with a heat curing epoxy powder and then poured into cylindrical molds. These molds were then heated to cure the epoxy. The resulting cylinders were ground into spheres with a diameter of about 6.8 centimeters. Cylindrical

rods composed of $100 \, \mu m$ and $500 \, \mu m$ glass beads were made at the same time as the spheres. These rods were used by LT. Huskey to measure the permeability, porosity, and shear modulus of the porous matrices. These values are summarized in Table 1 (Huskey, 1993).

Sample	100 μm	500 μm
Permeability, k	6.53×10 ⁻¹² m ²	5.74×10 ⁻¹¹ m ²
Porosity, P	0.309	0.321
Shear Modulus, G	2.81×10 ⁹ Pa	2.72×10 ⁹ Pa

Table 1. Material measurements taken by LT. Huskey.

Scattering measurements taken for these spheres were compared to theoretical values determined by the model developed by Kargl and Lim. This model requires eleven material parameters to determine the scattered amplitude. The scattering solid provides five of these material parameters: mass density, bulk and shear moduli of the solid, and bulk and shear moduli of the porous lattice. Three material properties are determined by the structure of the porous lattice: tortuosity, permeability, and structural factor. The final three properties are of the bulk fluid: mass density, and the bulk and shear moduli. (Kargl and Lim). The program provided by Kargl used the bulk fluid's bulk modulus and viscosity to determine complex values for the bulk and shear moduli.

In this experiment all the material properties were accurately known with the exception of the bulk moduli of the spheres. This could not be measured by LT. Huskey at the time of his research (Huskey, 1993) due to the small aspect ratio (length to diameter) of the cylindrical samples. For this experiment a new cylinder of 300 μ m diameter porous glass beads with greater aspect ratio was obtained so that the bulk and shear moduli could be determined. From these moduli the Poisson's Ratio can be determined which can then be used along with the shear moduli of the 100 and 500 μ m samples to determine their bulk moduli. Once these parameters are determined they can

be used as input, along with the other known material properties, to Kargl and Lim's theoretical model and the results compared with the experimentally measured values.

II. DETERMINATION OF ELASTIC MODULI

A. RESONANT ACOUSTIC METHOD

The elastic moduli of a cylindrical sample can be obtained using a resonant acoustic method (Garrett, 1990). This method employs a transducer bonded to each end of a cylindrical sample which should have a length to diameter ratio >>1. The transducers are made from coiled magnet wire and are attached with epoxy. These are used to set up flexural, torsional, and longitudinal standing waves in the samples. The bars are positioned so that the transducers attached to the ends are centered between the pole faces of strong magnets. Depending on the orientation of the transducers to the pole pieces, any of the three vibrational modes can be selectively excited. Figure 1, from (Garret, 1990), illustrates the position of the magnet faces for the torsional and longitudinal modes. The fundamental frequency of each mode can be determined based on the length and boundary conditions of the sample. These frequencies can then be used to determine the moduli of the sample.

In the experiments conducted by LT. Huskey only the shear modulus could be measured due to the length to diameter ratio of the samples (about 3:1) which intensified electrical cross-talk between the attached transducers.

Figure 1. Transducer placement for the torsional and longitudinal modes.

B. ELASTIC MODULI MEASUREMENT

A sample made of 300 µm glass beads with a length of 19.7 centimeters and diameter of 2.6 centimeters (giving a length to diameter ratio of 7.6:1) was obtained and the resonant acoustic method was used to determine both the shear and bulk moduli of the sample. Approximately 2 meters of #32 magnet wire were attached to each end of the sample with epoxy resulting in 15 turns of wire in each transducer. Care was taken to minimize the amount of weight added by the epoxy. The sample weighed 153.52 grams and the transducers added 4.38 grams. The mass loading of the transducers was significant enough that an effective length of the bar had to be calculated using the following equations (Garret, 1990):

$$L_{eff} = L\left(1 + \frac{m}{M}\right)$$
 (longitudinal mode)

$$L_{eff} = L\left(1 + \frac{2m}{M}\right)$$
 (torsional mode)

where L is the actual length of the sample, m is the transducer mass, and M is the mass of the sample.

The sample was positioned so that each transducer was centered between the pole pieces of the magnets. One set of magnets were rotated 90° to minimize electrical crosstalk between the two transducers (one transducer was also offset 90° relative to the other when it was attached). A Hewlett-Packard 35665A Dynamic Signal Analyzer was used to drive one transducer through a Hewlett-Packard 467A Power Amplifier. The signal from the other transducer was then input to the Dynamic Signal Analyzer. Both signals were monitored on an oscilloscope to ensure that no distortion was occurring. The output from the Dynamic Signal Analyzer was then swept upward in frequency from 100 Hz to 20 kHz. The resonances were noted and the frequency bracket around each was tightened to allow for more accurate measurement of the resonance.

	Modal Frequency Summary	
Mode Number,	Frequency (Hz),	Normalized Frequency (Hz),
n	f _n	f _n /n
Torsional		
1	2505	2505
2	5175	2588
3	7830	2610
4	10260	2565
Average		2567±45
Flexural		
1	3940	3940
2	8080	4040
3	11775	3925
4	15985	3996
Average		3975±53

Table 2. Resonant frequency measurements.

The first four modes of both the longitudinal and torsional modes were measured and averaged together. The results are shown in Table 2. The Young's modulus (E) of the sample was determined using the following equation (from Garrett):

$$E = 4\rho L_{eff}^{2} \left(f_{n}^{L} / n \right)^{2}$$

where ρ is the mass density, n is the mode number, and f_n^L is the frequency of the nth longitudinal mode. The shear modulus (G) was similarly calculated using (from Garrett)

$$G = 4\rho L_{eff}^{2} \left(f_{n}^{T} / n \right)^{2}$$

where f_n^T is the frequency of the *n*th torsional mode.

The calculated Young's modulus was 3.83×10^9 Pa and the shear modulus was 1.68×10^9 Pa. These values are approximately 1/20 of the borosilicate glass used to make the glass beads. These were used to calculate the Poisson's Ratio (ν) by combining

$$v = \frac{3K - 2G}{2(3K + G)}$$
and
$$K = \frac{E}{3(1 - 2v)}$$
to give
$$v = \frac{E}{2G} - 1$$

	100 μm	500 μm	
Shear Modulus, G, (from Huskey)	2.81×10° Pa	2.72×10 ⁹ Pa	
Bulk Modulus, K, assuming $v = 0.14$.	2.96×10 ⁹ Pa	2.87×10 ⁹ Pa	

Table 3. Material properties of the samples.

where K is the bulk modulus. The resulting Poisson's Ratio was 0.14. This is an unusually small Poisson's Ratio and is possibly due to the epoxy used to bond the glass beads together. The epoxy may be stretching between the beads allowing the cylinder to elongate without much lateral constriction.

Since the 300 μm rod was made at a different time than the 100 μm and 500 μm spheres, the shear moduli measured by Huskey and the calculated Poisson's Ratio were used to calculate new bulk moduli for both spheres. These values are listed in Table 3 and were used as inputs to Kargl's program.

III. BACKSCATTER MEASUREMENTS

A. MEASUREMENT OBJECTIVE

The objective of the backscatter measurement was to separate the scattered acoustic pressure from the multipath interference. Multipath interference was caused by surface reflections from the transmitter's side lobes and from piping used for filtration of the tank's water.

B. EXPERIMENT SETUP

The backscatter measurements were taken in a water-filled tank, in Spanagel Hall Room 025, measuring 7.3 meters in length, 1.6 meters in width and 2.0 meters in depth. The walls and bottom of the tank are covered with anechoic tile. Figure 2 shows the tank setup for the backscatter measurements. All components were aligned along the centerline of the tank as viewed from the top of the tank.

A type F33 general-purpose directional transducer was used as the projector. This transducer is shown in Figure 3 from the *USRD Transducer Catalog*, April 1991. Its

Figure 2. Tank setup for scattering measurements.

Figure 3. Type F33 general-purpose transducer.

design consists of a small inner array made of 12 PZT disks with a frequency range of 15-150 kHz. The larger outer array consists of 64 PZT squares with a frequency range of 1-50 kHz (*USRD Transducer Catalog*). The arrays can be used individually or wired in parallel. In this experiment the arrays were connected in parallel for added directionality.

To ensure accurate measurements, the scatterer must be placed in the far field of the transmitter. The following equation was used to determine the limiting distance to the far field (r_{min}) :

$$r_{\min} = \frac{1}{4} \frac{d^2}{\lambda}$$

where d is the dimension of the transmitter and λ is the wavelength of sound (Kinsler et al.). The lowest frequency used in this experiment was 30 kHz, giving a maximum distance to the far field of less than 0.25 meters.

The receiver used was a Bruel and Kjaer type 8103 hydrophone. Figure 4 shows an illustration of the receiver from its calibration chart. It has a frequency range of 0.1 to 180 kHz. The receiver was suspended from the arm of a protractor-like device illustrated in Figure 5. The arm can be rotated in five degree increments and locked into place with a lock pin. The 180° position corresponds to sound being scattered from the sphere directly back at the transmitter. The receiver could be moved radially, in increments of 5 centimeters, between 40 to 75 centimeters from the center of the protractor. A small clamp was attached to the cable of the hydrophone allowing the depth to be adjusted. The clamp rested in any one of several beveled holes in the protractor's arm. A weight was

Figure 4. Bruel & Kjaer Type 8103 hydrophone.

suspended from the bottom of the receiver to ensure that it hung straight down. The weight was suspended a few centimeters from the bottom of the tank.

The target spheres were suspended in a fine net by a string. The string passed through a hole drilled in the bolt which was the pivot point of the protractor's arm. This allowed the depth of the sphere to be adjusted to correspond to the depth of the center of the transmitter. The spheres were degassed to ensure that no air bubbles were trapped in the spheres during the experimental measurements. This was done by placing them in a

beaker of water and then placing the beaker under a bell jar. A vacuum pump was then used to evacuate the bell jar until the water began to boil. At this point the hose to the bell jar was clamped and the vacuum pump was turned off. Periodically the beaker and sphere were agitated to dislodge any bubbles adhering to the surface. The vacuum was held for approximately 24 hours to ensure no bubbles remained trapped in the spheres. Next the hose clamp to the bell jar was removed allowing the pressure to return to normal. The bell jar was carefully removed and the sphere transported to the water tank in the beaker full of water. The beaker was submerged in the water tank and the sphere removed thus keeping it submerged at all times.

Figure 5. Protractor device used to position receiver.

Figure 6. Electronic equipment setup.

Figure 6 is a block diagram of the electronics used for this experiment. A 1 Volt peak to peak sine wave was generated with the Hewlett-Packard 3314A Signal Generator which was then amplified to a 10 Volt peak to peak signal by a Hewlett-Packard 467A Power Amplifier. This signal was then applied to the Type F33 transducer. The signal could also be monitored by either the Nicolet Pro 30 Digital Oscilloscope or the DSS5020 Oscilloscope. The signal received by the Bruel & Kjaer 8103 hydrophone was input to an Ithaco 1201 Preamplifier. The output from the preamplifier was then analyzed by the Nicolet Pro 30 Oscilloscope.

C. EXPERIMENTAL PROCEDURE

The frequency range used for this experiment was 30 kHz to 150 kHz, corresponding to a range of ka of approximately 4 to 22, referred to the wave number in water.

1. Monostatic Measurements

For the monostatic measurements the sphere was hung below the protractor. The B&K hydrophone was positioned 75 centimeters from the sphere along the arm of the protractor which was positioned at 180°. The signal generator was setup to send out 30 kHz bursts at a rate of five bursts per second. Each burst consisted of a 30-cycle sine wave.

The Nicolet Pro 30 was used to monitor the received signal. A trigger delay was used so that the trace on the oscilloscope would begin just before the arrival of the scattered signal. The delay was determined by the speed of sound and the distance between the transmitter, sphere and receiver. The sample rate was set so that the pulse would fill as much of the oscilloscope's screen as possible without being cutoff. Careful attention was paid to ensure that the sample rate remained well above the Nyquist frequency of the received signal. Fifty bursts of the received signal were averaged together and then saved to floppy disk. Measurements were taken between 30 and 150 kHz in 2 kHz steps.

At this point the sphere was carefully removed from the tank to a bucket of water and the above procedure was repeated to obtain the multipath interference background in the tank. The next measurement to be taken was the incident signal on the sphere. Due to the design of the protractor, the B&K hydrophone could not be positioned in the same place as the sphere but had to be positioned 15 centimeters behind it. This displacement was taken into account in the calculations by using a 1/r signal fall-off in the far field of the transmitter (Kinsler et al.). The incident signal was measured at each frequency.

Once the received signal and multipath interference background measurements had been taken, the saved waveforms were subtracted from each other, leaving only the scattered pulse. The subtraction process was performed using the Nicolet Pro 30 Digital Oscilloscope. Figure 7 shows the measured signal, multipath interference background, and resulting scattered signal from the subtraction process.

Figure 7. Example of subtracting the measured signal from the multipath interference background. At top is the received signal, in the middle is the multipath interference, and bottom is the difference between the measured signal and multipath interference background.

Next a Fast Fourier Transform (FFT) was taken of the scattered and incident waveforms, using the Nicolet Pro 30, to determine the amplitude of the desired transmitted frequency component. The start and stop points of the FFT were chosen so that they were inside the start and end points of the transmitted pulse. This was done to avoid distortion caused by the HP467A Power Amplifier turning on and off, and to avoid any ring up and down of the Type F33 transmitter. Care was taken to ensure that a whole number of wavelengths were taken and that the start and stop points were as close as possible to a zero crossing to avoid leakage into adjacent frequency bins when the FFT was taken (Hewlett-Packard, Application Note 243, pp. 25-26). No windowing function was used with the above method. The results of these measurements are listed in Appendix A. The method of calculation of the tabulated results are discussed in Chapter IV Section A, Normalization of Experimental Data.

2. Bistatic Measurements

Bistatic measurements were conducted in a manner similar to the monostatic measurements. The difference was that instead of adjusting the frequency between measurements, the angular position of the receiver was adjusted. The receiver was started in the 90° position and then moved in 5° increments until the 270° position was reached. The sphere was then removed from the tank and the background measurements were taken. Next the receiver was moved to measure the incident signal level on the sphere. After these measurements were made the resulting waveforms were subtracted and FFTs taken to obtain the scattered and incident signal levels. These measurements were performed at the following frequencies: 30, 60, 90, 120, and 150 kHz. Results of the measurements are listed in Appendix B.

For the aluminum sphere measurements were taken only at 30 kHz and 150 kHz since these were to be used as a gauge of the effectiveness of the experimental method.

IV. DATA ANALYSIS AND RESULTS

A. NORMALIZATION OF EXPERIMENTAL DATA

All of the experimental data was normalized to a distance of 1 meter from the sphere. This was done by using the following equation:

Normalized Scattering =
$$\frac{V_{scattered} \times r}{V_{incident}}$$

where r is the distance between the sphere and the receiver and $V_{incident}$ is given by

$$V_{incident} = V'_{incident} \times \frac{R + 0.15}{R}$$

where $V'_{incident}$ is the measured incident signal (approximately 15 cm behind where the sphere actually was) and R is the transmitter to sphere distance.

B. THEORETICAL DATA

The values for the theoretical data were obtained from two FORTRAN programs provided by Kargl. One program calculates the theoretical monostatic data results and the other the bistatic results for a saturated poro-elastic sphere in a saturated poro-elastic medium.

The program requires almost 30 inputs. These inputs are the material properties of the external fluid and poro-elastic medium, both water in this experiment, and the internal fluid (water) and poro-elastic medium of the scatterer. The internal poro-elastic medium was either porous glass or the aluminum. Inputs to the programs can be found in Appendix C.

C. COMPARISON OF THEORETICAL AND EXPERIMENTAL DATA

1. Scattering from the Aluminum Sphere

Figure 8 shows a comparison of the theoretical and experimental data for monostatic scattering from the aluminum sphere. Experimental data points are marked by X and connected with a dashed line. The dashes are only to guide the eye and are not an attempt at a curve fit. After the experimental data were taken the sphere was weighed and measured to verify the properties for input into Kargl's program. It was found that the aluminum sphere weighed approximately 30% more than it should. The sphere was not a solid aluminum sphere, it was an aluminum shell covering a core of some heavier unknown material. The main features in the experimental data agree very well with the theoretical data below 90 kHz except that the experimental values are shifted to the right by 5–10 kHz. Beyond 90 kHz the features match in relative position but the experimental data has a lower amplitude. Figure 9 shows the data adjusted so that it spans 20 to 150 kHz. This shows a much better match between the theoretical and experimental values at frequencies below 90 kHz. Since the sphere was determined not to be solid aluminum these results are considered to be in reasonable agreement with the predicted values and show that the experimental procedure is valid.

For the bistatic case, shown in Figure 10 and Figure 11, the structure and amplitudes do not agree well. Again, this is not unexpected since the sphere was not solid aluminum. However, because the lobing is clearly defined in the experimental data, it was again considered that the experimental procedure was valid.

Figure 8. Normalized monostatic scattering amplitudes from the aluminum based sphere.

Figure 9. Normalized monostatic scattering amplitudes from the aluminum based sphere with data 'stretched' between 20 and 150 kHz.

Figure 10. Normalized bistatic scattering at 30 kHz from aluminum sphere.

Figure 11. Normalized bistatic scattering at 150 kHz from aluminum sphere.

Figure 12. Normalized monostatic scattering amplitudes from the 100 μm sphere.

2. Scattering from the 100 μ m Porous Glass Sphere

Figure 12 shows the results for monostatic scattering from the 100 μ m sphere. Most of the features in the experimental data can be found to correspond fairly well to features in the theoretical model up to about 80 kHz and less so above 80 kHz. Note that the amplitude of the experimental data is lower than the theoretical data. This agrees with the bistatic data, which consistently shows that the amplitudes of the main lobes are lower than the theoretical prediction even when the side lobes have similar amplitudes as shown in Figures 13 through 17.

Figures 13 through 17 show the theoretical and experimental bistatic scattering data sets. There is good agreement for the 30, 60 and 90 kHz data sets except for the amplitudes of the main lobes. The 120 kHz data matches well and the 150 kHz data only

agrees in overall magnitude of the scattering. This is believed to be due to the increased sensitivity of the beam pattern to the material properties. In varying the values used as input for Kargl's program, it was noted that the beam pattern varied slightly at 30 kHz and increased in variation as frequency was increased. The resulting beam pattern varied significantly at 150 kHz. This is the most likely cause of the disagreement.

Figure 13. Normalized bistatic scattering at 30 kHz from 100 μm sphere.

Figure 14. Normalized bistatic scattering at 60 kHz from 100 μm sphere.

Figure 15. Normalized bistatic scattering at 90 kHz from 100 μm sphere.

Figure 16. Normalized bistatic scattering at 120 kHz from 100 μm sphere.

Figure 17. Normalized bistatic scattering at 150 kHz from 100 μm sphere.

Figure 18. Normalized monostatic scattering from the 500 μm sphere.

3. Scattering from the 500 µm Porous Glass Sphere

Monostatic scattering for the $500 \, \mu m$ sphere is shown in Figure 18. It is possible to see some correspondence between features below $90 \, kHz$ but above this frequency no match can be found.

Figures 19 through 23 show the bistatic results for the 500 μm sphere. There is no correspondence between the experimental and theoretical values. It is believed that this is due to defects in the 500 μm sphere. Prior to the experiment it was noted that this sphere has a $0.9 \times 0.5 \times 0.25$ centimeter gouge in its surface. The surface is also less consistent in texture from one area to another. Also the surface is more susceptible to crumbling than the 100 μm sphere. Finally, both spheres were weighed and measured and their densities calculated. Both were found to have a density of about 1550 kg/m³. This density

corresponds with the 100 μm bar used by LT. Huskey for determining the material properties of the 100 μm sphere. However, the density of the 500 μm bar used by LT. Huskey was 1513 kg/m³ (Huskey, 1993) which is about 2.5% lower than for the 500 μm sphere.

Based on the material condition of the 500 μm sphere and on the good results obtained with the 100 μm sphere it is believed that the 500 μm sphere is defective and that this caused the disagreement between the theoretical and experimental data.

Figure 19. Normalized bistatic scattering at 30 kHz from 500 μm sphere.

Figure 20. Normalized bistatic scattering at 60 kHz from 500 μm sphere.

Figure 21. Normalized bistatic scattering at 90 kHz from 500 μm sphere.

Figure 22. Normalized bistatic scattering at 120 kHz from 500 μm sphere.

Figure 23. Normalized bistatic scattering at 150 kHz from 500 μm sphere.

V. CONCLUSION AND RECOMMENDATIONS

A. CONCLUSION

The scattering of sound from an aluminum based sphere and from porous glass spheres composed of 100 µm and 500 µm diameter glass beads was measured. Monostatic and bistatic measurements were made for backscatter at 30, 60, 90, 120 and 150 kHz. Experimental data were compared with theoretical data computed by a FORTRAN program written by Kargl. The program was based on the theory developed by Kargl and Lim for the scattering of sound from a fluid saturated poro-elastic sphere in a saturated poro-elastic medium.

Material properties of the spheres were measured for input into Kargl's program. The elastic moduli of a cylindrical bar composed of 300 μ m diameter bonded glass beads were measured and used to determine the bar's Poisson's Ratio. This Poison's ratio was used to determine the value of the bulk moduli of the 100 μ m and 500 μ m porous glass spheres. Other material properties of these spheres had been previously measured by LT. Huskey.

Comparison of the experimental data to the theoretical from Kargl's program yielded reasonable results for the aluminum based sphere. Very good results were obtained for the 100 µm sphere. The measurements at the lower frequencies agreed more closely than those at the higher frequencies. This is due to the increased sensitivity of the spatial structure of the scattering at higher frequencies to slight variations in the material properties of the spheres. The main lobe was found to be lower in amplitude than predicted at all frequencies. No explanation of this could be found at this time. It is speculated that this may be the result of slight inhomogeneity in the composition of the sphere. At higher frequencies it may be due to error in the axial alignment of the source, sphere, and receiver. The 500 µm sphere produced extremely poor results and it is believed that this sphere is defective, specifically it is thought to be non-homogeneous.

B. RECOMMENDATIONS

Scattering measurements at lower frequencies is recommended. This would require a larger tank than is present at the Naval Postgraduate School. This would allow measurements to be made where the fluid's viscosity would affect the flow of the fluid through the pores in the spheres.

For measurements at higher frequencies the material properties of the spheres need to be known to fairly high accuracy. For this to be accomplished new spheres should be made at the same as the time cylindrical samples are made. The cylindrical samples should have a length to diameter ratio greater than 15:1 to allow accurate measurement of the elastic moduli. The surfaces of the cylinders should also be machined so that they are consistent with the sphere's surfaces. Also, for measurements at higher frequencies, a more accurate method for positioning the receiver is needed. Measurements should be taken at sufficiently small intervals to adequately define the structure of the side lobes.

Finally, an investigation into the non-uniform variation of the scatterer's material properties should be performed. This would determine their affect on the structure of the beam pattern from the sphere which may explain the poor results obtained with the $500 \ \mu m$ sphere.

APPENDIX A. MONOSTATIC DATA RESULTS

	Aluminum		100 µm			500 µm			
	444.01, 40,	Corrected			Corrected			Corrected	
	Scattered	Incident		Scattered	Incident		Scattered	Incident	
Frequency	Amplitude	Amplitude	Normalized	Amplitude	Amplitude	Normalized	Amplitude	Amplitude	Normalized
(kHz)	(mV)	(mV)	Amplitude	(mV)	(mV)	Amplitude	(mV)	(mV)	Amplitude
30	1.98	72.2	0.0197	1.41	76.4	0.0132	3.96	146.6	0.0193
32	2.37	89.1	0.0192	2.09	92.4	0.0162	2.13	184.2	0.0083
34	2.17	95.8	0.0163	1.08	95.3	0.0081	3.89	182.6	0.0063
36	2.18	109.8	0.0143	2.54	109.4	0.0166	5.49	212.2	0.0185
38	2.97	118.9	0.0180	4.12	116.7	0.0253	5.09	224.8	0.0162
40	2.69	135.4	0.0143	1.82	135.3	0.0096	6.10	255.0	0.0171
42	2.75	150.4	0.0132	5.71	151.9	0.0269	6.97	272.7	0.0183
44	1.98	174.8	0.0082	6.43	175.6	0.0262	7.31	302.2	0.0173
46	1.86	196.2	0.0068	4.68	198.5	0.0169	8.48	331.0	0.0183
48	5.60	225.4	0.0179	2.35	232.5	0.0072	10.16	381.1	0.0191
50	7.34	250.9	0.0211	4.24	258.9	0.0117	6.42	420.2	0.0109
52	9.17	283.0	0.0234	2.34	284.8	0.0059	5.20	462.7	0.0080
54	10.02	311.2	0.0232	6.80	303.3	0.0160	10.17	494.2	0.0147
56	10.78	344.9	0.0225	1.23	329.4	0.0027	12.92	542.6	0.0170
58	11.00	372.6	0.0213	5.92	361.3	0.0117	11.84	602.3	0.0141
60	11.65	407.1	0.0206	9.56	396.3	0.0173	11.19	676.4	0.0118
62	6.10	437.6	0.0100	10.40	433.1	0.0172	17.39	761.8	0.0163
64	4.61	467.4	0.0071	4.70	477.4	0.0070	24.20	864.8	0.0200
66	13.83	510.1	0.0195	8.15	530.7	0.0110	27.93	969.7	0.0206
68	17.41	565.3	0.0222	10.99	595.9	0.0132	30.08	1,080.5	0.0199
70	17.87	632.3	0.0204	7.31	669.3	0.0078	19.72	1,184.7	0.0119
72	23.18	710.7	0.0235	11.60	738.0	0.0112	24.06	1,312.3	0.0131
74	19.27	789.8	0.0176	17.87	798.0	0.0160	29.38	1,400.9	0.0150
76	20.32	847.8	0.0173	10.92	827.1	0.0094	32.12	1,471.0	0.0156
78	9.89	920.7	0.0077	4.36	869.6	0.0036	38.38	1,578.6	0.0174
80	13.52	1040.6	0.0094	11.56	984.2	0.0084	49.24	1,799.6	0.0196
82	26.46	1212.4	0.0157	2.86	1,181.4	0.0017	48.16	2,131.2	0.0162
84	35.31	1458.3	0.0174	16.26	1,425.2	0.0082	44.36	2,601.0	0.0122
86	46.48	1779.6	0.0188	25.23	1,740.3	0.0104	64.77	3,195.8	0.0145
88	63.57	2171.6	0.0211	14.13	2,137.7	0.0047	79.66	3,976.2	0.0143
90	69.29	2616.1	0.0191	43.72	2,604.8	0.0120	97.28	4,872.4	0.0143
92	61.70	3146.0	0.0141	74.19	3,164.8	0.0168	128.67	5,870.8	0.0157
94	54.42	3634.0	0.0108	58.89	3,718.8	0.0113	151.14	6,837.5	0.0158
96	68.43	3834.4	0.0129	37.77	3,992.6	0.0068	151.81	7,354.5	0.0148
98	53.58	3607.6	0.0107	48.47	3,835.2	0.0090	126.53	7,210.0	0.0126
100	56.15	3316.4	0.0122	35.40	3,558.4	0.0071	106.26	6,867.5	0.0111
102	72.82	3633.8	0.0144	11.87	3,808.8	0.0022	73.77	7,307.0	0.0072
104	93.49	4565.2	0.0148	6.04	4,605.6	0.0009	109.73	8,625.5	0.0091
106	92.14	5410.8	0.0123	24.91	5,364.4	0.0033	89.51	9,975.0	0.0064
108	80.72	5755.6	0.0101	57.30	5,629.6	0.0073	130.24	10,683.0	0.0087
110	92.62	5604.8	0.0119	65.85	5,534.8	0.0085	139.97	10,628.0	0.0094
112	97.44	5182.0	0.0135	28.33	5,151.6	0.0039	119.58	10,073.5	0.0085

	Aluminum			100 µm			500 μm		
		Corrected			Corrected			Corrected	
	Scattered	Incident		Scattered	Incident		Scattered	Incident	
Frequency	Amplitude	Amplitude	Normalized	Amplitude	Amplitude	Normalized	Amplitude	Amplitude	Normalized
(kHz)	(mV)	(mV)	Amplitude	(mV)	(mV)	Amplitude	(mV)	(mV)	Amplitude
114	96.93	4581.2	0.0152	38.35	4,595.6	0.0060	118.05	9,125.0	0.0093
116	79.54	3878.4	0.0148	48.85	3,927.0	0.0089	112.10	8,013.0	0.0100
118	71.32	3260.0	0.0158	24.81	3,269.8	0.0054	123.88	6,920.8	0.0128
120	50.71	2898.4	0.0126	10.50	3,008.6	0.0025	108.15	6,245.3	0.0124
122	36.51	2924.6	0.0090	28.56	2,930.4	0.0070	101.39	6,005.0	0.0121
124	44.15	3042.4	0.0105	22.79	3,030.4	0.0054	119.62	6,078.0	0.0141
126	61.34	3217.6	0.0137	18.33	3,179.8	0.0041	142.32	6,240.0	0.0163
128	74.04	3310.4	0.0161	32.47	3,251.4	0.0071	141.69	6,258.3	0.0162
130	78.00	3215.0	0.0175	28.93	3,144.4	0.0066	122.84	6,090.8	0.0144
132	70.86	3032.4	0.0168	_	2,935.0	-	119.41	5,806.3	0.0147
134	58.31	2902.6	0.0145	16.47	2,787.2	0.0042	126.25	5,488.0	0.0165
136	44.83	2781.8	0.0116	20.30	2,653.4	0.0055	120.71	5,142.0	0.0168
138	38.13	2616.4	0.0105	15.85	2,451.0	0.0046	102.76	4,747.1	0.0155
140	40.16	2361.8	0.0122	13.96	2,202.8	0.0045	81.74	4,352.2	0.0134
142	39.78	2127.1	0.0135	18.04	1,973.4	0.0065	66.25	3,965.6	0.0120
144	33.93	1943.0	0.0126	18.07	1,804.8	0.0072	55.41	3,611.2	0.0110
146	26.93	1796.5	0.0108	17.97	1,682.2	0.0076	49.04	3,344.4	0.0105
148	19.95	1655.3	0.0087	10.44	1,563.4	0.0048	44.13	3,063.8	0.0103
150	13.29	1481.7	0.0065	6.84	1,417.4	0.0035	41.93	2,757.6	0.0109

APPENDIX B. BISTATIC DATA RESULTS

30 kHz

	Aluminum		10	0 μm	500 μm		
	Scattered		Scattered		Scattered		
	Amplitude	Normalized	Amplitude	Normalized	Amplitude	Normalized	
Angle	(mV)	Amplitude	(mV)	Amplitude	(mV)	Amplitude	
90	2.33	0.0224	0.67	0.0066	1.50	0.0146	
95	1.84	0.0177	0.69	0.0067	0.88	0.0086	
100	2.76	0.0266	1.42	0.0138	0.34	0.0033	
105	2.96	0.0286	2.18	0.0212	0.73	0.0071	
110	2.99	0.0288	2.56	0.0250	1.07	0.0104	
115	2.98	0.0288	1.89	0.0184	0.92	0.0090	
120	2.90	0.0280	1.40	0.0137	1.13	0.0110	
125	2.52	0.0243	1.11	0.0108	1.22	0.0119	
130	2.23	0.0215	0.64	0.0062	0.34	0.0033	
135	1.65	0.0159	0.86	0.0084	0.25	0.0024	
140	1.72	0.0166	0.95	0.0092	1.41	0.0137	
145	1.57	0.0152	1.55	0.0151	1.26	0.0123	
150	1.79	0.0173	2.32	0.0226	0.67	0.0066	
155	2.15	0.0208	1.65	0.0161	1.23	0.0120	
160	1.91	0.0184	1.73	0.0168	1.33	0.0129	
165	2.07	0.0199	2.38	0.0232	1.74	0.0169	
170	2.24	0.0216	2.94	0.0287	1.41	0.0137	
175	2.17	0.0209	4.01	0.0391	1.46	0.0142	
180	2.24	0.0216	3.61	0.0351	1.43	0.0139	
185	2.27	0.0219	3.64	0.0354	1.60	0.0156	
190	2.05	0.0197	2.94	0.0286	1.31	0.0128	
195	1.63	0.0157	2.10	0.0204	1.46	0.0142	
200	1.47	0.0142	1.80	0.0175	1.21	0.0118	
205	1.68	0.0162	1.56	0.0151	1.40	0.0137	
210	1.51	0.0145	2.27	0.0221	1.26	0.0122	
215	0.99	0.0095	2.08	0.0202	1.51	0.0147	
220	1.76	0.0170	1.71	0.0167	1.08	0.0106	
225	1.79	0.0173	1.39	0.0136	0.53	0.0052	
230	1.92	0.0185	0.55	0.0053	0.17	0.0017	
235	2.11	0.0204	0.15	0.0015	1.15	0.0112	
240	2.88	0.0278	0.67	0.0066	1.18	0.0114	
245	3.20	0.0309	1.45	0.0142	1.39	0.0136	
250	3.36	0.0324	2.15	0.0209	1.35	0.0131	
255	3.13	0.0302	2.34	0.0228	1.00	0.0098	
260	3.42	0.0329	2.12	0.0207	0.78	0.0076	
265	2.59	0.0249	1.46	0.0142	0.67	0.0065	
270	1.33	0.0128	0.74	0.0072	0.91	0.0089	
Incident	74.22		73.51		73.51		

60 kHz

	10	0 μm	500 μm		
	Scattered		Scattered		
	Amplitude	Normalized	Amplitude	Normalized	
Angle	(mV)	Amplitude	(mV)	Amplitude	
90	10.95	0.0191	14.80	0.0136	
95	8.57	0.0150	10.80	0.0099	
100	6.40	0.0112	10.03	0.0092	
105	4.35	0.0076	10.84	0.0099	
110	10.31	0.0180	12.09	0.0111	
115	12.06	0.0210	11.85	0.0109	
120	11.01	0.0192	15.14	0.0139	
125	3.13	0.0055	15.46	0.0142	
130	3.32	0.0058	15.30	0.0140	
135	6.61	0.0115	11.25	0.0103	
140	5.59	0.0098	8.83	0.0081	
145	6.14	0.0107	14.33	0.0131	
150	4.15	0.0072	12.17	0.0112	
155	3.65	0.0064	14.61	0.0134	
160	4.58	0.0080	11.92	0.0109	
165	2.66	0.0046	12.85	0.0118	
170	4.46	0.0078	7.37	0.0068	
175	9.05	0.0158	11.39	0.0104	
180	11.72	0.0205	15.50	0.0142	
185	10.90	0.0190	13.95	0.0128	
190	8.91	0.0155	12.59	0.0115	
195	5.23	0.0091	16.32	0.0150	
200	2.63	0.0046	16.71	0.0153	
205	4.25	0.0074	14.02	0.0129	
210	6.15	0.0107	12.46	0.0114	
215	8.00	0.0140	13.03	0.0119	
220	6.37	0.0111	10.87	0.0100	
225	5.42	0.0095	12.33	0.0113	
230	5.62	0.0098	11.62	0.0106	
235	4.04	0.0070	13.63	0.0125	
240	5.60	0.0098	14.17	0.0130	
245	8.64	0.0151	12.53	0.0115	
250	9.14	0.0159	13.31	0.0122	
255	5.98	0.0104	9.77	0.0090	
260	0.81	0.0014	14.16	0.0130	
265	6.66	0.0116	14.40	0.0132	
270	9.14	0.0160	14.51	0.0133	
Incident	410.05		780.75		

90 kHz

	T	00 μm	500 μm			
	Scattered	ου μπι)0 μm		
	Amplitude	Normalized	Scattered			
Angle	(mV)	Amplitude	Amplitude (mV)	Normalized Amplitude		
90	51.20	0.0127	42.37	0.0066		
95	39.37	0.0098	77.50	0.0000		
100	17.89	0.0044	225.41	0.0120		
105	47.56	0.0118	65.48	0.0349		
110	39.39	0.0098	82.71	 		
115	10.34	0.0026	136.89	0.0128		
120	19.01	0.0047	112.68	0.0212		
125	33.49	0.0083	53.00			
130	26.09	0.0065	35.81	0.0082		
135	13.15	0.0033	55.51	0.0055		
140	16.89	0.0042	36.87	0.0086		
145	35.55	0.0042	41.07	0.0057		
150	33.40	0.0083	37.97	0.0064		
155	34.16	0.0085	44.34	0.0059		
160	36.12	0.0083		0.0069		
165	36.49	0.0090	66.64	0.0103		
170	39.45	0.0090	58.09 40.60	0.0090		
175	51.11	0.0038	61.83	0.0063		
180	56.62	0.0127	67.19	0.0096		
185	50.90	0.0126	76.02	0.0104		
190	42.01	0.0120	22.14	0.0118		
195	38.67	0.0096	66.06	0.0034		
200	38.45	0.0095	53.77	0.0102		
205	36.68	0.0091	59.32	0.0083		
210	34.31	0.0091	36.41	0.0092		
215	26.59	0.0066	32.11	0.0056		
220	17.33	0.0043	47.76	0.0050 0.0074		
225	23.49	0.0058	37.85			
230	36.83	0.0091	59.20	0.0059		
235	37.65	0.0093	49.09	0.0092 0.0076		
240	16.85	0.0042		· · · · · · · · · · · · · · · · · · ·		
245	20.13	0.0050	51.08 47.70	0.0079		
250	40.02	0.0099	45.56	0.0074		
255	34.82	0.0099	49.62	0.0071		
260	27.47	0.0068	56.56	0.0077		
265	29.21	0.0000	73.82	0.0088		
270	39.30	0.0072	69.75	0.0114		
Incident	2886.0	0.0001	4620.8	0.0108		
	2000.0		4020.0			

120 kHz

	10	0 μm	500 μm		
	Scattered		Scattered		
	Amplitude	Normalized	Amplitude	Normalized	
Angle	(mV)	Amplitude	(mV)	Amplitude	
90	51.31	0.0117	38.77	0.0106	
95	43.76	0.0099	28.49	0.0078	
100	22.59	0.0051	11.18	0.0031	
105	42.98	0.0098	20.21	0.0055	
110	27.04	0.0061	29.50	0.0081	
115	34.00	0.0077	26.58	0.0073	
120	35.89	0.0082	36.97	0.0101	
125	48.33	0.0110	28.56	0.0078	
130	43.22	0.0098	17.68	0.0048	
135	33.03	0.0075	19.39	0.0053	
140	24.26	0.0055	23.07	0.0063	
145	33.20	0.0075	24.95	0.0068	
150	39.00	0.0089	18.48	0.0051	
155	29.31	0.0067	24.74	0.0068	
160	18.77	0.0043	27.82	0.0076	
165	17.43	0.0040	26.91	0.0074	
170	26.23	0.0060	30.22	0.0083	
175	43.54	0.0099	26.30	0.0072	
180	54.23	0.0123	31.63	0.0087	
185	53.13	0.0121	22.21	0.0061	
190	44.05	0.0100	41.32	0.0113	
195	29.80	0.0068	45.13	0.0124	
200	17.51	0.0040	26.00	0.0071	
205	41.77	0.0095	36.59	0.0100	
210	44.56	0.0101	35.17	0.0096	
215	31.83	0.0072	29.53	0.0081	
220	32.51	0.0074	31.48	0.0086	
225	40.28	0.0092	26.86	0.0074	
230	36.76	0.0084	27.25	0.0075	
235	18.17	0.0041	31.57	0.0086	
240	33.11	0.0075	28.24	0.0077	
245	23.39	0.0053	39.94	0.0109	
250	21.27	0.0048	42.82	0.0117	
255	30.41	0.0069	15.78	0.0043	
260	17.81	0.0040	16.91	0.0046	
265	46.02	0.0105	28.25	0.0077	
270	27.73	0.0063	42.53	0.0117	
Incident	3148.6		2612.0		

150 kHz

	Aluminum		10	0 μm	500 μm		
	Scattered		Scattered		Scattered		
	Amplitude	Normalized	Amplitude	Normalized	Amplitude	Normalized	
Angle	(mV)	Amplitude	(mV)	Amplitude	(mV)	Amplitude	
90	31.80	0.0390	14.22	0.0069	3.16	0.0017	
95	28.28	0.0346	23.70	0.0115	10.45	0.0056	
100	3.84	0.0047	3.94	0.0019	4.70	0.0025	
105	11.00	0.0135	5.43	0.0026	10.12	0.0054	
110	15.08	0.0185	9.29	0.0045	7.91	0.0042	
115	13.85	0.0170	7.66	0.0037	9.73	0.0052	
120	12.54	0.0154	9.19	0.0044	12.08	0.0065	
125	27.40	0.0336	9.34	0.0045	8.54	0.0046	
130	15.04	0.0184	7.74	0.0037	9.24	0.0049	
135	30.90	0.0378	13.59	0.0066	7.67	0.0041	
140	4.89	0.0060	15.24	0.0074	7.73	0.0041	
145	23.90	0.0293	0.23	0.0001	9.86	0.0053	
150	23.41	0.0287	4.73	0.0023	9.71	0.0052	
155	26.68	0.0327	11.87	0.0057	3.33	0.0018	
160	33.31	0.0408	8.62	0.0042	11.70	0.0063	
165	23.45	0.0287	15.26	0.0074	3.70	0.0020	
170	15.03	0.0184	18.64	0.0090	5.96	0.0032	
175	29.77	0.0365	15.42	0.0075	4.63	0.0025	
180	38.15	0.0467	18.68	0.0090	6.58	0.0035	
185	17.47	0.0214	8.66	0.0042	13.05	0.0070	
190	33.76	0.0413	16.71	0.0081	6.60	0.0035	
195	18.08	0.0221	19.46	0.0094	15.67	0.0084	
200	19.80	0.0242	20.20	0.0098	8.85	0.0047	
205	12.46	0.0153	17.20	0.0083	6.76	0.0036	
210	32.76	0.0401	13.13	0.0064	5.49	0.0029	
215	8.70	0.0107	13.45	0.0065	4.83	0.0026	
220	16.79	0.0206	11.81	0.0057	9.90	0.0053	
225	8.93	0.0109	6.94	0.0034	9.17	0.0049	
230	33.38	0.0409	9.36	0.0045	12.60	0.0067	
235	1.36	0.0017	11.79	0.0057	10.98	0.0059	
240	18.24	0.0223	10.84	0.0052	11.07	0.0059	
245	9.89	0.0121	8.44	0.0041	14.90	0.0080	
250	8.46	0.0104	6.36	0.0031	9.24	0.0049	
255	6.12	0.0075	15.67	0.0076	13.97	0.0075	
260	21.72	0.0266	21.24	0.0103	13.83	0.0074	
265	25.74	0.0315	16.22	0.0078	6.39	0.0034	
270	15.17	0.0186	1.75	0.0008	15.89	0.0085	
Incident	545.35	571.48	1479.9		1337.5		

APPENDIX C. INPUTS TO KARGL'S PROGRAM

	Monostatic	Inputs	
	Aluminum	100 μ m	500 μ m
External Fluid (Water)			
Density, $ ho_{\it f}$	998.665	998.665	998.665
Bulk Modulus, K_f	2.17293×10 ⁹	2.17293×10 ⁹	2.17293×10 ⁹
Viscosity, η	0.0	0.0	0.0
Internal Fluid			
Density, $ ho_{to}$	2700	998.665	998.665
Bulk Modulus, K ₁₀	8.078×10 ¹⁰	2.17293×10 ⁹	2.17293×10 ⁹
Viscosity, η_o	0.001	0.001	0.001
External Medium (Water)			
Density, ρ_t	998.665	998.665	998.665
Solid Bulk Modulus, K _s	(2.17293×10 ⁹ , 0.0)	(2.17293×10 ⁹ , 0.0)	(2.17293×10 ⁹ , 0.0)
Lattice Bulk Modulus, K _B	(2.25×10 ⁵ , 0.0)	(2.17293×10 ⁵ , 0.0)	(2.17293×10 ⁵ , 0.0)
Shear Modulus, μ	(1.0, 0.0)	(1.0, 0.0)	(1.0, 0.0)
Tortuosity, α	1.65	1.65	1.65
Porosity, β	0.999999	0.999999	0.99999
Permeability, k_d	1.0	1.0	1.0
Internal Medium (Sphere)			
Density, $ ho_{\scriptscriptstyle 0}$	2700	2231	2231
Solid Bulk Modulus, K_{so}	(8.078×10 ¹⁰ , 0.0)	(3.5×10 ¹⁰ , 0.0)	(3.5×10 ¹⁰ , 0.0)
Lattice Bulk Modulus, K_{Bo}	(8.078×10 ¹⁰ , 0.0)	(2.96×10 ⁹ , 0.0)	(2.87×10 ⁹ , 0.0)
Shear Modulus, μ_o	(2.677×10 ¹⁰ , 0.0)	(2.81×10 ⁹ , 0.0)	(2.72×10 ⁹ , 0.0)
Tortuosity, α_o	1.65	1.65	1.65
Porosity, β_o	0.321	0.306	0.305
Permeability, <i>k_{d0}</i>	1.0×10 ⁻¹⁶	6.53×10 ⁻¹²	5.74×10 ⁻¹¹
Miscellaneous			
a,	1.0×10 ⁻⁵	1.0×10 ⁻⁵	1.0×10 ⁻⁵
a _{p0}	1.0×10 ⁻⁵	1.0×10 ⁻⁵	1.0×10 ⁻⁵
dfreq	100	100	100
max. freq.	150000	150000	150000
radius	0.0382	0.0344	0.0346
distance	0.75	0.75	0.75
hash	0	0	0
nstart	0	0	0
nend	75	75	75

	Bistatic In	puts	
	Aluminum	100 μ m	500 μ m
External Fluid (Water)			
Density, ρ_t	998.665	998.665	998.665
Bulk Modulus, K,	2.17293×10 ⁹	2.17293×10 ⁹	2.17293×10 ⁹
Viscosity, η	0.0	0.0	0.0
Internal Fluid			
Density, ρ_{ro}	2700	998.665	998.665
Bulk Modulus, K_{ro}	8.078×10 ¹⁰	2.17293×10 ⁹	2.17293×10 ⁹
Viscosity, η_o	1.0	0.001	0.001
External Medium (Water)			
	998.665	998.665	998.665
Density, ρ_t Solid Bulk Modulus, K_s	(2.17293×10 ⁹ , 0.0)	(2.17293×10 ⁹ , 0.0)	(2.17293×10 ⁹ , 0.0
Shear Modulus, μ	(1.0, 0.0)	(1.0, 0.0)	(1.0, 0.0)
	0.999999	0.99999	0.999999
Porosity, β Permeability, k_d	1.0	1.0	1.0
Internal Medium (Sphere)			
	2700	2231	2231
Density, ρ_o Solid Bulk Modulus, K_{so}	(8.078×10 ¹⁰ , 0.0)	(3.5×10 ¹⁰ , 0.0)	(3.5×10 ¹⁰ , 0.0)
Shear Modulus, μ_0	(2.677×10 ¹⁰ , 0.0)	(2.6×10 ¹⁰ , 0.0)	(2.6×10 ¹⁰ , 0.0)
	1.0×10 ⁻⁶	0.306	0.305
Porosity, β_o Permeability, k_{o0}	1.0×10 ⁻¹⁶	6.53×10 ⁻¹²	5.74×10 ⁻¹¹
Miscellaneous	1.0×10		
	2	5	5
nfreq freqmin	30000	30000	30000
dfreq	120000	30000	30000
x1min	0	0	0
x1max	50	50	50
radius	0.382	0.0344	0.0346
distance	1.0	0.75	0.75
hash	1	1	1
nstart	0	0	0
nend	75	75	75
exp	1	1	1
exp0	1	0	0
# of angles	361	361	361
Experimental K _∞	_	(2.96×10°, 0.0)	(2.87×10 ⁹ , 0.0)
Experimental μ ₀		$(2.81\times10^9, 0.0)$	$(2.72\times10^9, 0.0)$

LIST OF REFERENCES

(Biot, 1956a): M. A. Biot, "Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range," J. Acoust. Soc. Am. 28, pp. 168-178, 1956.

(Biot, 1956b): M. A. Biot, "Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range," J. Acoust. Soc. Am. 28, pp. 179-191, 1956.

(Garrett, 1990): S. L. Garrett, "Resonant acoustic determination of elastic moduli," *J. Acoust. Soc. Am.* 88, pp. 210-221, 1990.

(Hewlett-Packard): "The Fundamentals of Signal Analysis", Application Note 243, Hewlett-Packard Company, 1989.

(Huskey, 1993): T. W. L. Huskey, "Scattering of Underwater Sound from a Porous Solid Sphere," Thesis, Naval Postgraduate School, Monterey, CA, 1993.

(Kargl and Lim): S. G. Kargl and R. Lim, "A transition-matrix formulation of scattering in homogeneous, saturated, porous media," *J. Acoust. Soc. Am.* **94**, pp. 1527-1550, 1993.

(Kinsler et al.): L. E. Kinsler, A. R. Frey, A. B. Coppens, J. V. Sanders, Fundamentals of Acoustics, Third Edition, Wiley, New York, 1982.

(Sears, Salinger): F. W. Sears, G. L. Salinger, Thermodynamics, Kinetic Theory, and Statistical Thermodynamics, Third Edition, Addison-Wesley, Reading, MA, 1975.

INITIAL DISTRIBUTION LIST

1.	Defense Technical Information Center	. 2
2.	Library, Code 52 Naval Postgraduate School Monterey, California 93943-5002	. 2
3.	Commander	. 3
4.	Steven R. Baker, Code PH/BA Naval Postgraduate School Monterey, California 93943-5002	2
5.	Steven G. Kargl	1
6.	Clyde Scandrett, Code MA/SD Naval Postgraduate School Monterey, California 93943-5002	1
7.	Dr. David L. Johnson	1
8.	Dr. Nicholas Chotiros	1
9.	Dr. Robert D. Stoll	1
10	0. Dr. Tokuo Yamamoto	. 1

Jim Eagle, Code 37 Naval Postgraduate School Monterey, California 93943-5002	1
Lieutenant Martin E. Pace	111