第五章 命题逻辑与谓词逻辑

陈建文

December 11, 2024

1 命题公式及真值

字符集

- (1) 表示命题的符号: $p_1, p_2, \cdots, p_n, \cdots$
- (2) 联结词集合: $\{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$
- (3) 辅助符号: ()
- **定义 1.** (1) 任意一个表示命题的符号为命题公式(这样的命题公式又称为原子公式);
 - (2) 如果A, B是命题公式,则(¬A), $(A \land B)$, $(A \lor B)$, $(A \to B)$, $(A \leftrightarrow B)$ 是命题公式:
 - (3) 有限次使用(1)与(2)复合所得到的结果都是命题公式。
- **例.** $((\neg p) \lor q), (\neg (p \lor q)), ((p \lor q) \to (r \land s))$ 都是命题公式。

最外层的括号可以省略;

五个逻辑联结词优先级从高到低依次为 \neg ,(\land , \lor), \rightarrow , \leftrightarrow ; \land , \lor 左结合。

例. $((\neg p)\lor q), (\neg (p\lor q)), ((p\lor q)\to (r\land s))$ 可以简写为 $\neg p\lor q, \neg (p\lor q), p\lor q\to r\land s$ 。

定义 2. 设 $A(p_1,p_2,\cdots,p_n)$ 为一个含有n个命题变元 p_1,p_2,\cdots,p_n 的命题公式, $\alpha:\{p_1,p_2,\cdots,p_n\}\to\{T,F\}$ 称为一个真值指派。 $\forall i,1\leq i\leq n$,当 p_i 的真值为 $\alpha(p_i)$ 时,如果公式A的真值为T,记为 $\alpha(A)=T$;如果公式A的真值为F,记为 $\alpha(A)=F$ 。

例. 设 $\alpha(p)=T, \alpha(q)=F$,则 $\alpha(\neg p \lor q)=F$;设 $\alpha(p)=T, \alpha(q)=T$,则 $\alpha(\neg p \lor q)=T$ 。

定义 3. 如果公式A对任一真值指派其真值均为真,则称之为重言式(永真式)。

例. $A \to (B \to A)$, $(A \to (B \to C)) \to ((A \to B) \to (A \to C))$, $(\neg A \to \neg B) \to (B \to A)$ 都是重言式。

定义 4. 如果公式A对任一真值指派其真值均为假,则称之为永假式。

例. $P \wedge \neg P$ 为永假式。

定义 5. 如果公式A存在一个真值指派使其真值为真,则称之为可满足式。

例. $A \to (B \to C)$, $A \vee B$ 都是可满足式。

2 逻辑蕴含与逻辑等价

定义 6. 设A, B为任意两个公式,对任意的指派 α , 如果 $\alpha(A) = T$, 那么 $\alpha(B) = T$, 则称A逻辑蕴含B, 记为 $A \to B$ 。 设 $\Gamma = \{A_1, A_2, \cdots, A_n\}$ 为一个公式集,B为任意一个公式,对任意的指派 α , 如果 $\forall i, 1 \leq i \leq n, \alpha(A_i) = T$, 那么 $\alpha(B) = T$,则称 Γ 逻辑蕴含B,记为 $\Gamma \to B$ 。

例. 判定下列逻辑蕴含是否成立。

(1)
$$\neg A \Rightarrow A \rightarrow B$$

(2)
$$\Gamma \Rightarrow A \to C$$
, 其中公式集 $\Gamma = \{A \to (B \to C), B\}$

(1)成立。

解法一.

A	B	$\neg A$	$A \to B$
Т	Τ	F	Τ
\mathbf{T}	\mathbf{F}	F	\mathbf{F}
F	T	Τ	${ m T}$
\mathbf{F}	\mathbf{F}	$^{\mathrm{T}}$	${f T}$

从以上真值表可以看出使得 $\neg A$ 为真的指派也使得 $A \rightarrow B$ 为真。

解法二. 对任意的指派 α , 如果 $\alpha(\neg A) = T$, 则 $\alpha(A) = F$, 此时必有 $\alpha(A \rightarrow B) = T$ 。

(2)成立。

解法一. 使得Γ中的每个公式为真的指派分别为

$$\alpha_1(B) = T, \alpha_1(A) = F, \alpha_1(C) = T$$
, 此时 $\alpha_1(A \to C) = T$
 $\alpha_2(B) = T, \alpha_2(A) = F, \alpha_2(C) = F$, 此时 $\alpha_2(A \to C) = T$
 $\alpha_3(B) = T, \alpha_3(A) = T, \alpha_3(C) = T$, 此时 $\alpha_3(A \to C) = T$
故 $\Gamma \Rightarrow A \to C$ 成立。

解法二. 对任意的指派 α , 如果 $\alpha(A \to C) = F$, 则 $\alpha(A) = T$, $\alpha(C) = F$, 此时如果 $\alpha(B) = T$, 则 $\alpha(A \to (B \to C)) = F$ 。于是,对任意的指派 α , 如果 $\alpha(A \to (B \to C)) = T$,必有 $\alpha(A \to C) = T$,从而 $\Gamma \Rightarrow A \to C$ 成立。

定义 7. 设A, B为任意两个公式,如果 $A \Rightarrow B$ 并且 $B \Rightarrow A$,则称A与B逻辑等价,记为 $A \Leftrightarrow B$ 。

 $p \wedge (q \vee r)$ 与 $(p \wedge q) \vee (p \wedge r)$ 逻辑等价。

p	q	r	$p \wedge (q \vee r)$	$(p \land q) \lor (p \land r)$
T	Τ	Τ	T	T
${\rm T}$	\mathbf{T}	\mathbf{F}	Γ	${ m T}$
${\rm T}$	F	\mathbf{T}	Γ	${ m T}$
\mathbf{T}	F	F	F	\mathbf{F}
F	\mathbf{T}	\mathbf{T}	F	\mathbf{F}
\mathbf{F}	${\rm T}$	F	F	\mathbf{F}
\mathbf{F}	\mathbf{F}	T	F	\mathbf{F}
F	\mathbf{F}	\mathbf{F}	F	\mathbf{F}
			•	

 $p \lor (q \land r)$ 与 $(p \lor q) \land (p \lor r)$ 逻辑等价。

p	q	r	$p \lor (q \land r)$	$(p \lor q) \land (p \lor r)$
T	Τ	Τ	T	${ m T}$
${ m T}$	\mathbf{T}	\mathbf{F}	ightharpoons T	${ m T}$
${ m T}$	F	\mathbf{T}	Γ	${ m T}$
\mathbf{T}	\mathbf{F}	\mathbf{F}	Γ	${ m T}$
\mathbf{F}	${\rm T}$	${\rm T}$	Γ	${ m T}$
\mathbf{F}	${\rm T}$	\mathbf{F}	F	\mathbf{F}
\mathbf{F}	\mathbf{F}	${\rm T}$	F	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{F}	F	\mathbf{F}

 $p \lor (p \land q)$ 与p逻辑等价。 $p \land (p \lor q)$ 与p逻辑等价。 $\neg (p \land q)$ 与 $\neg p \lor \neg q$ 逻辑等价。

p	q	$\neg (p \land q)$	$\neg p \vee \neg q$
\overline{T}	Τ	F	F
${ m T}$	\mathbf{F}	${ m T}$	${ m T}$
\mathbf{F}	T	${ m T}$	${ m T}$
\mathbf{F}	\mathbf{F}	${ m T}$	${ m T}$

 $\neg (p \lor q)$ 与 $\neg p \land \neg q$ 逻辑等价。

\ <u> -</u>	-/		
p	q	$\neg (p \lor q)$	$\neg p \wedge \neg q$
Τ	Τ	F	F
T	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{F}	${ m T}$	${ m T}$

 $p \to q$ 与¬ $p \lor q$ 逻辑等价。

p	q	$p \to q$	$\neg p \vee q$
Т	Τ	Т	Τ
\mathbf{T}	\mathbf{F}	F	\mathbf{F}
F	\mathbf{T}	Т	${ m T}$
\mathbf{F}	\mathbf{F}	${ m T}$	${ m T}$

 $p \leftrightarrow q = (p \rightarrow q) \land (q \rightarrow p)$ 逻辑等价。

p	q	$p \leftrightarrow q$	$(p \to q) \land (q \to p)$
\overline{T}	Т	Т	Τ
${\rm T}$	\mathbf{F}	F	\mathbf{F}
\mathbf{F}	\mathbf{T}	F	\mathbf{F}
\mathbf{F}	\mathbf{F}	T	${ m T}$

3 范式

定义 8 (文字). 一个命题符号或者其否定称为一个文字。

例. p, $\neg p$ 都是文字。

定义 9 (合取式). $B_1 \wedge B_2 \wedge \cdots \wedge B_n (n \ge 1)$ 称为一个合取式,其中 $B_i (1 \le i \le n)$ 为一个文字。单独的一个文字也称为一个合取式。

例. $p \wedge \neg q$, $\neg p \wedge \neg q$ 都是合取式。

定义 10 (析取式). $B_1 \vee B_2 \vee \cdots \vee B_n (n \ge 1)$ 称为一个析取式,其中 $B_i (1 \le i \le n)$ 为一个文字。单独的一个文字也称为一个析取式。

例. $p \vee \neg q$, $\neg p \vee \neg q$ 都是析取式。

定义 11 (合取范式). $A_1 \wedge A_2 \wedge \cdots \wedge A_n (n \ge 1)$ 称为一个合取范式,其中 $A_i (1 \le i \le n)$ 为析取式,称为一个合取项。

例. $(\neg p \lor q) \land (r \lor s), \neg p \lor r \lor s$ 都是合取范式。

定义 12 (析取范式). $A_1 \vee A_2 \vee \cdots \vee A_n (n \ge 1)$ 称为一个析取范式,其中 $A_i (1 \le i \le n)$ 为合取式,称为一个析取项。

例. $(\neg p \wedge q) \vee (r \wedge s)$, $\neg p \wedge r \wedge s$ 都是析取范式。

例. 求公式 $(p \wedge q) \rightarrow (\neg q \wedge r)$ 的合取范式和析取范式。

解.

$$\begin{split} &(p \wedge q) \rightarrow (\neg q \wedge r) \\ \Leftrightarrow \neg (p \wedge q) \vee (\neg q \wedge r) \\ \Leftrightarrow \neg p \vee \neg q \vee (\neg q \wedge r) & \text{析取范式} \\ \Leftrightarrow (\neg p \vee \neg q \vee \neg q) \wedge (\neg p \vee \neg q \vee r) \\ \Leftrightarrow (\neg p \vee \neg q) \wedge (\neg p \vee \neg q \vee r) & \text{合取范式} \\ \Leftrightarrow \neg p \vee \neg q & \text{既是析取范式又是合取范式} \end{split}$$

合取范式和析取范式的求解过程:

- (1) 消去" \leftrightarrow ": $A \leftrightarrow B \Leftrightarrow (A \to B) \land (B \to A)$
- (2) 消去" \rightarrow ": $A \rightarrow B \Leftrightarrow \neg A \lor B$
- (3) 进行公式变形: $\neg (A \lor B) \Leftrightarrow \neg A \land \neg B, \neg (A \land B) \Leftrightarrow \neg A \lor \neg B, \neg \neg A \Leftrightarrow A, A \land (B \lor C) \Leftrightarrow (A \land B) \lor (A \land C), A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C)$
- (4) 公式化简: $A \lor A \Leftrightarrow A, A \land A \Leftrightarrow A, A \land (A \lor B) \Leftrightarrow A, A \lor (A \land B) \Leftrightarrow A$

4 主范式

定义 13 (主合取范式). 设命题公式 $A(p_1,p_2,\cdots,p_n)$ 的合取范式为 $A_1 \wedge A_2 \wedge \cdots \wedge A_k (k \geq 1)$,如果其中每一个合取项 $A_j (1 \leq j \leq k)$ 的形式为 $A_j = Q_1 \vee Q_2 \vee \cdots \vee Q_n$,这里 $Q_i = p_i$ 或者 $\neg p_i (1 \leq i \leq n)$,则称 $A_1 \wedge A_2 \wedge \cdots \wedge A_k (k \geq 1)$ 为A的主合取范式。

定义 14 (主析取范式). 设命题公式 $A(p_1,p_2,\cdots,p_n)$ 的析取范式为 $A_1\vee A_2\vee\cdots\vee A_k(k\geq 1)$,如果其中每一个析取项 $A_j(1\leq j\leq k)$ 的形式为 $A_j=Q_1\wedge Q_2\wedge\cdots\wedge Q_n$,这里 $Q_i=p_i$ 或者¬ $p_i(1\leq i\leq n)$,则称 $A_1\vee A_2\vee\cdots\vee A_k(k\geq 1)$ 为A的主析取范式。

例. 求公式 $(p \wedge q) \rightarrow (\neg q \wedge r)$ 的主合取范式和主析取范式。

解法一.

$$(p \wedge q) \rightarrow (\neg q \wedge r)$$

$$\Leftrightarrow \neg p \vee \neg q$$

$$\Leftrightarrow \neg p \vee \neg q \vee (r \wedge \neg r)$$

$$\Leftrightarrow (\neg p \vee \neg q \vee r) \wedge (\neg p \vee \neg q \vee \neg r)$$
 主合取范式
$$(p \wedge q) \rightarrow (\neg q \wedge r)$$

$$\Leftrightarrow \neg p \vee \neg q$$

$$\Leftrightarrow (\neg p \wedge (q \vee \neg q)) \vee ((p \vee \neg p) \wedge \neg q)$$

$$\Leftrightarrow (\neg p \wedge q) \vee (\neg p \wedge \neg q) \vee (p \wedge \neg q) \vee (\neg p \wedge \neg q)$$

$$\Leftrightarrow (\neg p \wedge q) \vee (\neg p \wedge \neg q) \vee (p \wedge \neg q)$$

$$\Leftrightarrow (\neg p \wedge q) \vee (\neg p \wedge \neg q) \vee (p \wedge \neg q)$$

$$\Leftrightarrow (\neg p \wedge q \wedge (r \vee \neg r)) \vee (\neg p \wedge \neg q \wedge (r \vee \neg r)) \vee (p \wedge \neg q \wedge (r \vee \neg r))$$

$$\Leftrightarrow (\neg p \wedge q \wedge r) \vee (\neg p \wedge q \wedge \neg r)$$

$$\vee (\neg p \wedge \neg q \wedge r) \vee (\neg p \wedge \neg q \wedge \neg r)$$

$$\Rightarrow (p \wedge \neg q \wedge r) \vee (p \wedge \neg q \wedge \neg r)$$

$$\Rightarrow (p \wedge \neg q \wedge r) \vee (p \wedge \neg q \wedge \neg r)$$

$$\Rightarrow (p \wedge \neg q \wedge r) \vee (p \wedge \neg q \wedge \neg r)$$

$$\Rightarrow (p \wedge \neg q \wedge r) \vee (p \wedge \neg q \wedge \neg r)$$

$$\Rightarrow (p \wedge \neg q \wedge r) \vee (p \wedge \neg q \wedge \neg r)$$

$$\Rightarrow (p \wedge \neg q \wedge r) \vee (p \wedge \neg q \wedge \neg r)$$

$$\Rightarrow (p \wedge \neg q \wedge r) \vee (p \wedge \neg q \wedge \neg r)$$

$$\Rightarrow (p \wedge \neg q \wedge r) \vee (p \wedge \neg q \wedge \neg r)$$

$$\Rightarrow (p \wedge \neg q \wedge r) \vee (p \wedge \neg q \wedge \neg r)$$

$$\Rightarrow (p \wedge \neg q \wedge r) \vee (p \wedge \neg q \wedge \neg r)$$

$$\Rightarrow (p \wedge \neg q \wedge r) \vee (p \wedge \neg q \wedge \neg r)$$

$$\Rightarrow (p \wedge \neg q \wedge r) \vee (p \wedge \neg q \wedge \neg r)$$

$$\Rightarrow (p \wedge \neg q \wedge r) \vee (p \wedge \neg q \wedge \neg r)$$

$$\Rightarrow (p \wedge \neg q \wedge r) \vee (p \wedge \neg q \wedge \neg r)$$

$$\Rightarrow (p \wedge \neg q \wedge r) \vee (p \wedge \neg q \wedge \neg r)$$

$$\Rightarrow (p \wedge \neg q \wedge r) \vee (p \wedge \neg q \wedge \neg r)$$

$$\Rightarrow (p \wedge \neg q \wedge r) \vee (p \wedge \neg q \wedge \neg r)$$

$$\Rightarrow (p \wedge \neg q \wedge r) \vee (p \wedge \neg q \wedge \neg r)$$

$$\Rightarrow (p \wedge \neg q \wedge r) \vee (p \wedge \neg q \wedge \neg r)$$

$$\Rightarrow (p \wedge \neg q \wedge r) \vee (p \wedge \neg q \wedge \neg r)$$

$$\Rightarrow (p \wedge \neg q \wedge r) \vee (p \wedge \neg q \wedge \neg r)$$

$$\Rightarrow (p \wedge \neg q \wedge r) \vee (p \wedge \neg q \wedge \neg r)$$

$$\Rightarrow (p \wedge \neg q \wedge r) \vee (p \wedge \neg q \wedge \neg r)$$

解法二.

p	q	r	$(p \land q) \to (\neg q \land r)$
Т	Т	Τ	F
\mathbf{T}	\mathbf{T}	\mathbf{F}	F
Τ	\mathbf{F}	\mathbf{T}	${ m T}$
Τ	\mathbf{F}	\mathbf{F}	${ m T}$
\mathbf{F}	\mathbf{T}	\mathbf{T}	${ m T}$
\mathbf{F}	\mathbf{T}	\mathbf{F}	${ m T}$
\mathbf{F}	\mathbf{F}	\mathbf{T}	${ m T}$
\mathbf{F}	\mathbf{F}	\mathbf{F}	${ m T}$

主析取范式为 $(p \land \neg q \land r) \lor (p \land \neg q \land \neg r) \lor (\neg p \land q \land r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land \neg q \land \neg r)$

主合取范式为
$$(\neg p \lor \neg q \lor \neg r) \land (\neg p \lor \neg q \lor r)$$

5 自然演绎推理系统(ND)的组成

ND:Natural Deduction

- 1. 字符集
- (1) 表示命题的符号: $p_1, p_2, \cdots, p_n, \cdots$
- (2) 联结词集合: $\{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$
- (3) 辅助符号: ()
 - 2. 命题公式:
- (1) 任意一个表示命题的符号为命题公式;
- (2) 如果A, B是命题公式,则(¬A), $(A \land B)$, $(A \lor B)$, $(A \to B)$, $(A \leftrightarrow B)$ 是命题公式;
- (3) 有限次使用(1)与(2)所得到的结果均是命题公式。
 - 3. 公理
 - $\Gamma, A \vdash A$, 其中 Γ 为公式集, $\Gamma \cup \{A\}$ 简记为 Γ, A
 - 4. 推理规则
 - (1)假设引入规则(假设+)

$$\frac{\Gamma \vdash B}{\Gamma, A \vdash B}$$

(2)假设消除规则(假设-)

$$\frac{\Gamma,A \vdash B; \Gamma, \neg A \vdash B}{\Gamma \vdash B}$$

(3) >引入规则(>+)

$$\frac{\Gamma \vdash A}{\Gamma \vdash A \lor B}, \frac{\Gamma \vdash A}{\Gamma \vdash B \lor A}$$

(4) \/ 消除规则 (\/-)

$$\frac{\Gamma,A \vdash C; \Gamma,B \vdash C; \Gamma \vdash A \lor B}{\Gamma \vdash C}$$

(5) / 引入规则 (/+)

$$\frac{\Gamma \vdash A; \Gamma \vdash B}{\Gamma \vdash A \land B}$$

(6)∧消除规则 (∧-)

$$\frac{\Gamma \vdash A \land B}{\Gamma \vdash A}, \frac{\Gamma \vdash A \land B}{\Gamma \vdash B}$$

(7)→引入规则 (→+)

$$\frac{\Gamma,A \vdash B}{\Gamma \vdash A \to B}$$

(8)→消除规则 (→ -)

$$\frac{\Gamma \vdash A; \Gamma \vdash A {\rightarrow} B}{\Gamma \vdash B}$$

(9)¬引入规则 (¬+)

$$\frac{\Gamma,A \vdash B; \Gamma,A \vdash \neg B}{\Gamma \vdash \neg A}$$

(10)¬消除规则 (¬-)

$$\frac{\Gamma \vdash A; \Gamma \vdash \neg A}{\Gamma \vdash B}$$

(11)¬¬引入规则 (¬¬+)

$$\frac{\Gamma \vdash A}{\Gamma \vdash \neg \neg A}$$

(12)¬¬消除规则 (¬¬-)

$$\frac{\Gamma {\vdash} \neg \neg A}{\Gamma {\vdash} A}$$

(13)↔引入规则 (↔ +)

$$\frac{\Gamma \vdash A {\rightarrow} B; \Gamma \vdash B {\rightarrow} A}{\Gamma \vdash A {\leftrightarrow} B}$$

$$\begin{array}{c} (14) \leftrightarrow % % (14) \leftrightarrow % (1$$

演绎: 在ND中,以下序列称为 $\Gamma \vdash_{ND} A$ 中的一个证明(以下省去ND):

$$\Gamma_1 \vdash A_1, \Gamma_2 \vdash A_2, \cdots, \Gamma_m \vdash A_m (= \Gamma \vdash A)$$

其中 $\Gamma_i \vdash A_i (i=1,2,\cdots,m)$ 或为ND的公理,或为 $\Gamma_j \vdash A_j (j< i)$,或为 $\Gamma_{j_1} \vdash A_{j_1}, \Gamma_{j_2} \vdash A_{j_2}, \cdots, \Gamma_{j_k} \vdash A_{j_k} (j_1,j_2,\cdots,j_k< i)$ 使用推理规则导出的。如果 $\Gamma = \{A\}$,则 $\Gamma \vdash B$ 简记为 $A \vdash B$;如果 $\Gamma = \phi$,此时 $\Gamma \vdash A$ 即为 $\vdash A$, 则称A为ND的定理。

定理. $A \rightarrow (B \rightarrow A)$

证明.

$$(1)$$
 $A, B \vdash A$ (公理)

(2)
$$A \vdash B \to A$$
 $(1)(\to +)$

$$(3) \vdash A \rightarrow (B \rightarrow A)$$
 $(2)(\rightarrow +)$

定理. $(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$

证明.

(1)
$$A \to (B \to C), A \to B, A \vdash A$$
 (公理)

$$(2) A \to (B \to C), A \to B, A \vdash A \to (B \to C)$$
 (公理)

$$(3) A \to (B \to C), A \to B, A \vdash B \to C \qquad (1)(2)(\to -)$$

$$(4) A \to (B \to C), A \to B, A \vdash A \to B \qquad (公理)$$

(5)
$$A \rightarrow (B \rightarrow C), A \rightarrow B, A \vdash B$$
 (1)(4)(\rightarrow –)

(6)
$$A \rightarrow (B \rightarrow C), A \rightarrow B, A \vdash C$$
 (3)(5)($\rightarrow -$)

$$(7) A \to (B \to C), A \to B \vdash A \to C \qquad (6)(\to +)$$

$$(8) A \to (B \to C) \vdash (A \to B) \to (A \to C) \qquad (7)(\to +)$$

$$(9) \vdash (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$
 $(8)(\rightarrow +)$

定理. $(\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$

证明.

$$(1) \neg A \to \neg B, B, \neg A \vdash \neg A \qquad (公理)$$

$$(2) \neg A \to \neg B, B, \neg A \vdash \neg A \to \neg B \qquad (公理)$$

(3)
$$\neg A \rightarrow \neg B, B, \neg A \vdash \neg B$$
 (1)(2)($\rightarrow -$)

$$(4) \neg A \to \neg B, B, \neg A \vdash B \qquad (公理)$$

$$(5) \neg A \rightarrow \neg B, B \vdash \neg \neg A \qquad (3)(4)(\neg +)$$

(6)
$$\neg A \rightarrow \neg B, B \vdash A$$
 (5)($\neg \neg -$)

$$(7) \neg A \rightarrow \neg B \vdash B \rightarrow A \qquad (6)(\rightarrow +)$$

$$(8) \vdash (\neg A \to \neg B) \to (B \to A) \qquad (7)(\to +)$$

6 命题逻辑演算形式系统(PC)的组成

PC:Propositional Calculus

- 1. 字符集
- (1) 表示命题的符号: $p_1, p_2, \cdots, p_n, \cdots$
- (2) 联结词集合: {¬,→}
- (3) 辅助符号: ()
 - 2. 命题公式:
- (1) 任意一个表示命题的符号为命题公式;
- (2) 若A, B是命题公式, 则($\neg A$), $(A \rightarrow B)$ 是命题公式;
- (3) 有限次使用(1)与(2)所得到的结果均是命题公式。
- 3. 公理

 $A_1:A\to (B\to A)$

 $A_2: (A \to (B \to C)) \to ((A \to B) \to (A \to C))$

 $A_3: (\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$

4. 推理规则

 $r_{mp}:A,A\to B,B$

5. 定理推导

证明: 称下列公式序列为公式A在PC中的一个证明:

$$A_1, A_2, \cdots, A_m (= A)$$

其中 $A_i(i=1,2,\cdots,m)$ 或为PC的公理,或为 $A_j(j< i)$,或为 $A_j,A_k(j,k< i)$ 使用 r_{mp} 导出的公式。

定理: 如果公式A在PC中有一个证明序列,则称A为PC的定理,记为 \vdash_{PC} A,简记为 \vdash A。

演绎:设 Γ 为PC中若干公式构成的公式集,称下列公式序列为公式A以 Γ 为前提的演绎:

$$A_1, A_2, \cdots, A_m (= A)$$

其中 $A_i(i=1,2,\cdots,m)$ 或为PC的公理,或为 Γ 中的成员,或为 $A_j(j< i)$,或为 A_j , $A_k(j,k< i)$ 使用 r_{mp} 导出的公式。记为 $\Gamma \vdash_{PC} A$,简记为 $\Gamma \vdash A$,并称A为 Γ 的演绎结果。

如果 $\Gamma = \{B\}$,则 $\Gamma \vdash A$ 简记为 $B \vdash A$,表示公式A可由前提B在PC中演绎出来。如果此时还有 $A \vdash B$,则称公式A和B演绎等价,记为 $A \vdash \exists B$ 。

定理 (T1). $\vdash A \rightarrow A$

证明.

$$(1) (A \rightarrow ((B \rightarrow A) \rightarrow A)) \rightarrow ((A \rightarrow (B \rightarrow A)) \rightarrow (A \rightarrow A))$$

(2)
$$A \to ((B \to A) \to A)$$
 A_1

$$(3) (A \to (B \to A)) \to (A \to A) \qquad (1)(2)r_{mp}$$

$$(4) A \to (B \to A) \qquad A_1$$

(5)
$$A \rightarrow A$$
 (3)(4) r_{mp}

定理 (T2). 若 $\Gamma \vdash P$, 则 $\Gamma \vdash A \rightarrow P$ 。

证明.

- (1) P
- (2) $P \to (A \to P)$ A_1
- (3) $A \to P$ $(1)(2)r_{mp}$

定理. 若 $\Gamma \vdash A \to B$, $\Gamma \vdash B \to C$, 则 $\Gamma \vdash A \to C$

证明.

(1)
$$\Gamma$$
 ⊢ B → C 已知条件

(2)
$$\Gamma \vdash A \rightarrow (B \rightarrow C)$$
 T_2

(3)
$$\Gamma \vdash (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$
 A_2

(4)
$$\Gamma \vdash (A \to B) \to (A \to C)$$
 (2)(3) r_{mp}

- (5) $\Gamma \vdash A \rightarrow B$ 已知条件
- (6) $\Gamma \vdash A \to C$ (4)(5) r_{mp}

定理 (T3). $\vdash \neg A \rightarrow (A \rightarrow B)$

证明.

$$(1) \neg A \rightarrow (\neg B \rightarrow \neg A) \qquad A_1$$

(2)
$$(\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B)$$
 A_3

$$(3) \neg A \rightarrow (A \rightarrow B)$$
 定理

定理 (T4). $\neg \neg A \vdash A$

证明.

(1) ¬¬A (前提)

$$(2) \neg \neg A \to (\neg \neg \neg \neg A \to \neg \neg A) \qquad A_1$$

(3)
$$\neg\neg\neg\neg A \rightarrow \neg\neg A$$
 (1)(2) r_{mp}

$$(4) (\neg \neg \neg \neg A \rightarrow \neg \neg A) \rightarrow (\neg A \rightarrow \neg \neg \neg A) \qquad A_3$$

(5)
$$\neg A \rightarrow \neg \neg \neg A$$
 (3)(4) r_{mp}

(6)
$$(\neg A \rightarrow \neg \neg \neg A) \rightarrow (\neg \neg A \rightarrow A)$$
 A_3

$$(7) \neg \neg A \to A \qquad (5)(6)r_{mp}$$

(8)
$$A$$
 (1)(7) r_{mp}

定理 (T5). $\vdash (B \to C) \to ((A \to B) \to (A \to C))$

证明.

$$(1) (A \to (B \to C)) \to ((A \to B) \to (A \to C)) \qquad A_2$$

(2)
$$(B \to C) \to (A \to (B \to C))$$
 A_1

$$(3)$$
 $(B \to C) \to ((A \to B) \to (A \to C))$ $(1)(2)$ 定理

定理 (T7). $\vdash (A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$

证明.

(1)
$$(B \to C) \to ((A \to B) \to (A \to C))$$
 T_5

$$(2) ((B \to C) \to (A \to B)) \to ((B \to C) \to (A \to C))$$
 (1) $A_2 r_{mp}$

$$(3) \ (A \to B) \to ((B \to C) \to (A \to B))A_1$$

$$(4) (A \to B) \to ((B \to C) \to (A \to C))$$
 (2)(3)定理

定理 (T6). $\vdash (A \rightarrow (B \rightarrow C)) \rightarrow (B \rightarrow (A \rightarrow C))$

证明.

$$(1) (A \to (B \to C)) \to ((A \to B) \to (A \to C)) \qquad A_2$$

(2)
$$B \to (A \to B)$$
 A_1

$$(3) (B \to (A \to B)) \to (((A \to B) \to (A \to C))) \to (B \to (A \to C))) \qquad T_7$$

$$(4) ((A \to B) \to (A \to C)) \to (B \to (A \to C)) \qquad (2)(3)r_{mp}$$

(5)
$$(A \to (B \to C)) \to (B \to (A \to C))$$
 $(1)(4)T_7r_{mp}$

定理 (T8). $\vdash (\neg A \rightarrow A) \rightarrow A$

证明.

- (1) $\neg A \rightarrow (A \rightarrow \neg(\neg A \rightarrow A))$ T_3
- $(2) (\neg A \to A) \to (\neg A \to \neg(\neg A \to A)) \qquad (1)A_2 r_{mp}$
- $(3) \ (\neg A \to \neg (\neg A \to A)) \to ((\neg A \to A) \to A) \qquad A_3$
- $(4) (\neg A \to A) \to ((\neg A \to A) \to A) \qquad (2)(3)T_7 r_{mp}$
- $(5) ((\neg A \to A) \to (\neg A \to A)) \to ((\neg A \to A) \to A) \qquad (4)A_2 r_{mp}$

- (6) $(\neg A \to A) \to (\neg A \to A)$ T_1
- $(7) (\neg A \to A) \to A \qquad (5)(6)r_{mp}$

定理 (T9). $\vdash \neg \neg A \rightarrow A$

证明.

- (1) $(\neg A \to A) \to A$ T_8
- $(2) (\neg \neg A) \to ((\neg A \to A) \to A) \qquad (1)T_2$
- $(3) (\neg \neg A \to (\neg A \to A)) \to (\neg \neg A \to A) \qquad (2)A_2 r_{mp}$
- $(4) \neg \neg A \rightarrow (\neg A \rightarrow A)$ T_3
- (5) $\neg \neg A \to A$ (3)(4) r_{mp}

定理 (T10). $\vdash A \rightarrow \neg \neg A$

证明.

- $(1) (\neg \neg \neg A \to \neg A) \to (A \to \neg \neg A) \qquad A_3$
- (2) $\neg \neg \neg A \rightarrow \neg A$ T_9
- (3) $A \rightarrow \neg \neg A$ (1)(2) r_{mp}

定理 (T11). $\vdash (A \rightarrow \neg B) \rightarrow (B \rightarrow \neg A)$

证明.

 $(1) (\neg \neg A \to A) \to ((A \to \neg B) \to (\neg \neg A \to \neg B)) \qquad T_7$

(2)
$$\neg \neg A \to A$$
 T_{10}

(3)
$$(A \rightarrow \neg B) \rightarrow (\neg \neg A \rightarrow \neg B)(1)(2)r_{mp}$$

$$(4) (\neg \neg A \to \neg B) \to (B \to \neg A) \qquad A_3$$

(5)
$$(A \rightarrow \neg B) \rightarrow (B \rightarrow \neg A)$$
 (3)(4) $T_7 r_{mp}$

定理 (T12). $\vdash (A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$

证明.

(1)
$$(B \rightarrow \neg \neg B) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow \neg \neg B))$$
 T_5

(2)
$$B \rightarrow \neg \neg B$$
 T_{10}

(3)
$$(A \to B) \to (A \to \neg \neg B)$$
 $(1)(2)r_{mp}$

$$(4) (A \to \neg \neg B) \to (\neg B \to \neg A) \qquad T_{11}$$

(5)
$$(A \to B) \to (\neg B \to \neg A)$$
 $(3)(4)T_7 r_{mp}$

定理 (T13). $\vdash (\neg A \to B) \to (\neg B \to A)$

证明.

$$(1) (B \to \neg \neg B) \to ((\neg A \to B) \to (\neg A \to \neg \neg B)) \qquad T_5$$

(2)
$$B \rightarrow \neg \neg B$$
 T_{10}

(3)
$$(\neg A \rightarrow B) \rightarrow (\neg A \rightarrow \neg \neg B)(1)(2)r_{mp}$$

$$(4) (\neg A \to \neg \neg B) \to (\neg B \to A) \qquad A_3$$

(5)
$$(\neg A \rightarrow B) \rightarrow (\neg B \rightarrow A)$$
 (3)(4) $T_7 r_{mp}$

定理. 设A, B为命题公式,且满足 $\vdash A \rightarrow B$, $\vdash B \rightarrow A$, 公式D是将公式C中A的某次出现替换为公式B所得到的公式,则 $\vdash C \rightarrow D$, $\vdash D \rightarrow C$ 。

证明. 根据定义,每个命题公式都有一个形成规则,例如公式 $\neg(A \to B)$ 可以如下形成:

- (1) A是命题公式;
- (2) B是命题公式;
- (3) $(A \rightarrow B)$ 是命题公式;
- (4) $(\neg(A \to B))$ 是命题公式。

这里我们称 $\neg(A \to B)$ 可以由4步形成。

以下对命题公式C形成的步数n归纳证明结论成立。

当n=1时,此时C=A,D=B,由 $\vdash A\to B$, $\vdash B\to A$ 知 $\vdash C\to D$, $\vdash D\to C\circ$

假设当n < k时结论成立,往证当n = k时结论也成立。

如果 $C = \neg C_1$,此时如果C = A,则D = B,由 $\vdash A \to B$, $\vdash B \to A$ 知 $\vdash C \to D$, $\vdash D \to C$ 。如果 $C \neq A$,假设 C_1 中对应A的出现替换为B后所得到的公式为 D_1 ,则 $D = \neg D_1$ 。 由归纳假设 $\vdash C_1 \to D_1$, $\vdash D_1 \to C_1$ 。 从以下证明序列知

- (1) $C_1 \rightarrow D_1$
- (2) $D_1 \rightarrow C_1$

(3)
$$(C_1 \to D_1) \to (\neg D_1 \to \neg C_1)$$
 T_{12}

(4)
$$\neg D_1 \to \neg C_1$$
 (1)(3) r_{mp}

(5)
$$(D_1 \to C_1) \to (\neg C_1 \to \neg D_1)$$
 T_{12}

(6)
$$\neg C_1 \to \neg D_1$$
 (2)(5) r_{mp}

$$\vdash C \rightarrow D, \vdash D \rightarrow C \circ$$

如果 $C=C_1\to C_2$,此时如果C=A,则D=B,由 $\vdash A\to B$, $\vdash B\to A$ 知 $\vdash C\to D$, $\vdash D\to C$ 。 如果 $C\neq A$,分两种情况讨论:假设 C_1 中对应A的 出现替换为B后所得到的公式为 D_1 ,则 $D=D_1\to C_2$ 。由归纳假设, $\vdash C_1\to D_1$, $\vdash D_1\to C_1$,从以下证明序列知

(1)
$$D_1 \rightarrow C_1$$

(2)
$$(D_1 \to C_1) \to ((C_1 \to C_2) \to (D_1 \to C_2))$$
 T_7

(3)
$$(C_1 \to C_2) \to (D_1 \to C_2)$$
 $(1)(2)r_{mn}$

$$(4) C_1 \to C_2$$

(5)
$$D_1 \to C_2$$
 (3)(4) r_{mp}

$\vdash C \to D$, 同理可证 $\vdash D \to C$ 。

假设 C_2 中对应A的出现替换为B后所得到的公式为 D_2 ,则 $D=C_1\to D_2$ 。此时由归纳假设 $\vdash C_2\to D_2, \vdash D_2\to C_2$ 。 从以下证明序列知

(1)
$$C_2 \rightarrow D_2$$

(2)
$$(C_2 \to D_2) \to ((C_1 \to C_2) \to (C_1 \to D_2))$$
 T_5

(3)
$$(C_1 \to C_2) \to (C_1 \to D_2)$$
 (4)(5) r_{mp}

$$(4)$$
 $C_1 \rightarrow C_2$

(5)
$$C_1 \to D_2$$
 (3)(4) r_{mp}

 $\vdash C \to D$, 同理可证 $\vdash D \to C$ 。

定理 (T14). $\vdash (A \to C) \to ((B \to C) \to ((\neg A \to B) \to C))$

证明.

- (1) $(\neg A \to B) \to (\neg A \to B)$ T_1
- $(2) ((\neg A \to B) \to (\neg A \to B)) \to (\neg A \to ((\neg A \to B) \to B)) \qquad T_6$
- (3) $\neg A \rightarrow ((\neg A \rightarrow B) \rightarrow B)$ (1)(2) r_{mn}
- (4) $((\neg A \rightarrow B) \rightarrow B) \rightarrow (\neg B \rightarrow \neg(\neg A \rightarrow B))$ T_{12}
- (5) $\neg A \rightarrow (\neg B \rightarrow \neg (\neg A \rightarrow B))$ (3)(4) $T_7 r_{mp}$
- (6) $(\neg A \rightarrow (\neg B \rightarrow \neg(\neg A \rightarrow B))) \rightarrow ((\neg C \rightarrow \neg A) \rightarrow (\neg C \rightarrow (\neg B \rightarrow \neg(\neg A \rightarrow B))))$ T_5

- (7) $(\neg C \rightarrow \neg A) \rightarrow (\neg C \rightarrow (\neg B \rightarrow \neg (\neg A \rightarrow B)))$ (5)(6) r_{mn}
- (8) $(\neg C \rightarrow (\neg B \rightarrow \neg (\neg A \rightarrow B))) \rightarrow ((\neg C \rightarrow \neg B) \rightarrow (\neg C \rightarrow \neg (\neg A \rightarrow B)))$ A_2
- $(9) (\neg C \rightarrow \neg A) \rightarrow ((\neg C \rightarrow \neg B) \rightarrow (\neg C \rightarrow \neg (\neg A \rightarrow B))) (7)(8)T_7 r_{mx}$
- $(10) (A \to C) \to ((B \to C) \to ((\neg A \to B) \to C))$ (8)定理 r_{mp}

定理. 设 Γ 为任意公式的集合,A,B为任意两个公式,则 Γ , $A \vdash B$ 当且仅当 $\Gamma \vdash A \to B$ 。

证明. 充分性: 由 $\Gamma \vdash A \to B$ 知从前提集 Γ 出发,在PC中能够得到公式 $A \to B$ 的一个演绎序列,即 $A_1, A_2, \cdots, A_n (= A \to B)$,则从 $\Gamma \cup \{A\}$ 出发,可以得到如下的演绎序列: $A_1, A_2, \cdots, A_n (= A \to B), A, B$,即第n+2步的结论可由已知的第n步的结论 $A \to B$ 加上第n+1步的已知前提条件A通过 r_{mp} 所得,即 $\Gamma, A \vdash B$ 。

必要性: 由 Γ , $A \vdash B$ 知从前提集 $\Gamma \cup \{A\}$ 出发,在PC中能够得到公式B的一个演绎序列,即 $B_1, B_2, \cdots, B_k (=B)$,下面通过数学归纳法来证明 $\Gamma \vdash A \to B$,施归纳于此演绎序列的长度k:

(1) 当k=1时,根据演绎的定义知此时B或者为公理,或者 $B\in\Gamma\cup\{A\}$ 。如果B为公理,则从前提集 Γ 出发存在如下的演绎序列:

$$B($$
公理 $), B \to (A \to B)($ 公理 $), A \to B(r_{mn})$

即 Γ ⊢ $A \rightarrow B$;

如果 $B \in \Gamma$,则从前提集 Γ 出发存在如下的演绎序列:

B(前提 $), B \rightarrow (A \rightarrow B)($ 公理 $), A \rightarrow B(r_{mp})$

即 $\Gamma \vdash A \to B$;

如果 $B \in \{A\}$,则B = A,此时 $A \to B$ 即为 $A \to A$,而 $A \to A$ 为PC中已证的定理,从而 $\Gamma \vdash A \to A$ 。

(2) 假设当k < n时结论成立,即对上述演绎序列中的公式 $B_i(i < n)$,均有 $\Gamma \vdash A \to B_i$ 。则当k = n时, $B_k = B_n = B$ 或为公理,或者 $B \in \Gamma \cup \{A\}$,或由 $B_i, B_j(i, j < n)$ 通过 r_{mp} 所得。如果此时 $B_k = B_n = B$ 为公理,或者 $B \in \Gamma \cup \{A\}$,则讨论情况同(1);如果B由 B_i , $B_j(i, j < n)$ 通过 r_{mp} 导出,则不妨设 $B_i = B_i \to B$,根据归纳假设,

$$\Gamma \vdash A \rightarrow B_i, \Gamma \vdash A \rightarrow B_i$$

即

$$\Gamma \vdash A \to B_i, \Gamma \vdash A \to (B_i \to B)$$

又

$$(A \to (B_i \to B)) \to ((A \to B_i) \to (A \to B))$$

所以

$$\Gamma \vdash (A \rightarrow B_i) \rightarrow (A \rightarrow B)$$

从而

$$\Gamma \vdash A \to B$$

例. 利用演绎定理证明

$$\vdash (A \to (B \to C)) \to ((C \to D) \to (A \to (B \to D)))$$

证明. 根据演绎定理只需证:

$$A \to (B \to C) \vdash (C \to D) \to (A \to (B \to D))$$

只需证

$$A \to (B \to C), (C \to D) \vdash (A \to (B \to D))$$

只需证:

$$A \to (B \to C), (C \to D), A \vdash (B \to D)$$

只需证:

$$A \to (B \to C), (C \to D), A, B \vdash D$$

- (1) A 前提
- (2) $A \rightarrow (B \rightarrow C)$ 前提
- (3) $B \to C$ (1)(2) r_{mp}
- (4) B 前提
- (5) C (3)(4) r_{mp}
- (6) $C \rightarrow D$ 前提
- (7) D (5)(6) r_{mp}

例. 利用演绎定理证明

$$\vdash ((A \rightarrow B) \rightarrow (A \rightarrow C)) \rightarrow (A \rightarrow (B \rightarrow C))$$

证明. 根据演绎定理只需证:

$$(A \to B) \to (A \to C) \vdash (A \to (B \to C))$$

只需证:
 $(A \to B) \to (A \to C), A \vdash (B \to C)$
只需证:
 $(A \to B) \to (A \to C), A, B \vdash C$

- (1) B 前提
- (2) $B \to (A \to B)$ A_1
- (3) $A \to B$ (1)(2) r_{mp}
- (4) $(A \rightarrow B) \rightarrow (A \rightarrow C)$ 前提
- (5) $A \to C$ (3)(4) r_{mp}
- (6) A 前提
- (7) C (5)(6) r_{mp}

例. 利用演绎定理证明

$$\vdash (A \to C) \to ((B \to C) \to ((\neg A \to B) \to C))$$

证明. 根据演绎定理只需证:

$$A \to C \vdash ((B \to C) \to ((\neg A \to B) \to C))$$

只需证:
 $A \to C, B \to C \vdash ((\neg A \to B) \to C)$
只需证:
 $A \to C, B \to C, \neg A \to B \vdash C$

- (1) ¬ $A \rightarrow B$ 前提
- (2) $B \to C$ 前提
- (3) $\neg A \rightarrow C$ 定理
- (4) $(\neg A \to C) \to (\neg C \to A)$ 定理
- (5) $\neg C \rightarrow A$ (3)(4) r_{mp}
- (6) $A \rightarrow C$ 前提
- (7) $\neg C \rightarrow C$ (5)(6) $A_7 r_{mp}$

$$(8) \ (\neg C \to C) \to C$$

(9) C (7)(8) r_{mp}

例.

- (1) 所有的人都是要死的;
- (2) 苏格拉底是人;
- (3) 所以苏格拉底是要死的。

谓词M(x):x是人

谓词D(x): x是要死的

个体常元a表示"苏格拉底"

谓词:表示研究对象的性质或研究对象之间关系的词称为谓词。

- (1) $\forall x (M(x) \to D(x))$
- (2) $M(a) \rightarrow D(a)$
- (3) M(a)
- (4) D(a)

- 例. (1) $\forall x \forall y x + y = y + x$
 - (2) $\forall x \forall y \forall z(x+y) + z = x + (y+z)$
 - (3) $\forall x 0 + x = x \land x + 0 = x$
 - $(4) \ \forall x \exists y (y+x=0 \land x+y=0)$
 - (5) $\forall x \forall yx * y = y * x$
 - (6) $\forall x \forall y \forall z (x * y) * z = x * (y * z)$
 - (7) $\forall x1 * x = x * 1 = x$
 - (8) $\forall x(\neg(x=0) \rightarrow \exists y(y*x=1 \land x*y=1))$
 - (9) $\forall x \forall y \forall zx * (y+z) = x * y + x * z$
- (10) $\forall x \forall y \forall z (y+z) * x = y * x + z * x$

 $\forall x \forall y (x + y) * (x + y) = x * x + (1 + 1) * x * y + y * y$ 字符集:

- (1) 表示个体变元的符号: $v_1, v_2, \cdots, v_n, \cdots$
- (2) 联结词集合: $\{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$
- (3) 量词: ∀,∃
- (4) 辅助符号: ()
- (5) 表示谓词的符号: P,Q,...
- (6) 表示函词的符号: f, g, \cdots
- (7) 表示个体常元的符号: a,b,c,\cdots

定义 15.

- (1) 个体常元和个体变元都是项;
- (2) 如果f为一个n元函词, t_1, t_2, \dots, t_n 是项,则 $f(t_1, t_2, \dots, t_n)$ 也是项;
- (3) 由(1)(2)有限次复合所产生的结果都是项。

定义 16.

- (1) 设 t_1, t_2, \dots, t_n 为n个项,P为任意一个n元谓词符号,则 $P(t_1, t_2, \dots, t_n)$ 为 合式公式(这样的合式公式又称为原子谓词公式);
- (2) 如果A,B为合式公式,则(¬A), $(A \land B)$, $(A \lor B)$, $(A \to B)$, $(A \leftrightarrow B)$ 为合式公式:
- (3) 如果A为合式公式,x为任意一个变量,则 $\forall x A$ 和 $\exists x A$ 为合式公式;

(4) 有限次使用(1), (2) 和(3) 复合所得到的结果都是合式公式。 合式公式简称公式。

例.

- (1) $\forall x (M(x) \to D(x))$
- (2) $M(a) \rightarrow D(a)$
- (3) M(a)
- (4) D(a)

谓词M(x): x是人 谓词D(x): x是要死的 个体常元a表示"苏格拉底"

谓词M(x): x是有两个角相等的三角形

谓词D(x): x是等腰三角形 个体常元a表示一个具体的三角形

例. (1) $\forall x \forall y x + y = y + x$

- (2) $\forall x \forall y \forall z (x+y) + z = x + (y+z)$
- (3) $\forall x 0 + x = x \land x + 0 = x$
- (4) $\forall x \exists y (y + x = 0 \land x + y = 0)$
- $(5) \ \forall x \forall y x * y = y * x$
- (6) $\forall x \forall y \forall z (x * y) * z = x * (y * z)$
- (7) $\forall x1 * x = x * 1 = x$
- (8) $\forall x(\neg(x=0) \rightarrow \exists y(y*x=1 \land x*y=1))$
- (9) $\forall x \forall y \forall zx * (y+z) = x * y + x * z$
- (10) $\forall x \forall y \forall z (y+z) * x = y * x + z * x$ 结构 I:(R, +, *, 0, 1) 结构 $II:(\{0, 1\}, \oplus, \wedge, 0, 1)$

定义 17. 设 Σ 为一个符号集,D为任意一个非空集合,称为论域;I为一个定义在由 Σ 中的常量符号、函词符号和谓词符号所构成的集合上的一个映射, 称为一个解释,

- (1) 对任意一个常元a, I(a)为论域D中的一个个体,简记为 \bar{a} ;
- (2) 对任意一个n元函词f, I(f)为D上的一个n元函数,简记为 \bar{f} ;
- (3) 对任意一个n元谓词P, I(P)为D上的一个n元关系, 简记为 \bar{P} 。

(D,I)称为一个结构。

定义 18. 映射 $s:\{v_1,v_2,\cdots\}\to D$ 称为一个指派,对任意一个变元 $v_i,\ s(v_i)\in D$ 为 v_i 在指派s下的值。

定义 19. 指派s可以扩展为从项集合到论域的映射 \bar{s} : 对任意的项t,

$$\bar{s}(t) = \begin{cases} s(v) & \text{当t为变元v时} \\ \bar{a} & \text{当t为常元a时} \\ \bar{f}(\bar{s}(t_1), \bar{s}(t_2), \cdots, \bar{s}(t_n)) & \text{当t为n元函词fm} \end{cases}$$

例. 在结构(R,I)中,设I(+)=实数中的加法"+",I(0)=0实数0,则结构(R,I)又可以简记为(R,+,0)。设s(x)=1,s(y)=2,s(z)=3,则 $\bar{s}((x+y)+z)=\bar{s}(x+y)+\bar{s}(z)=(\bar{s}(x)+\bar{s}(y))+\bar{s}(z)=(s(x)+s(y))+s(z)=6$ 。

定义 20. 公式A在结构U = (D, I)和指派s下的取值为真记为 $\models_U A[s]$,定义如下:

- (1) 当A为原子公式 $P(t_1,t_2,\cdots,t_n)$ 时, $\models_U A[s]$ iff $(\bar{s}(t_1),\bar{s}(t_2),\cdots,\bar{s}(t_n)) \in \bar{P}$;
- (2) 当A为公式 $\neg B$ 时, $\vDash_U A[s]$ iff $\nvDash_U B[s]$;
- (3) 当A为公式 $B \land C$ 时, $\models_U A[s]$ iff $\models_U B[s]$ 并且 $\models_U C[s]$;
- (4) 当A为公式 $B \lor C$ 时, $\models_U A[s]$ iff $\models_U B[s]$ 或者 $\models_U C[s]$;
- (5) 当A为公式 $B \to C$ 时, $\models_U A[s]$ iff 如果 $\models_U B[s]$,那 $A \models_U C[s]$;
- (6) 当A为公式 $B \leftrightarrow C$ 时, $\models_U A[s]$ iff 如果 $\models_U B[s]$,那 $\Delta \models_U C[s]$,并且如果 $\models_U C[s]$,那 $\Delta \models_U B[s]$;
- (7) 当A为公式 $\forall vB$ 时, $\models_U A[s]$ iff 对任意的 $d \in D$, $\models_U B[s(v|d)]$,这里s(v|d)表示除了对变元v用指定元素d赋值外,对其他变元的赋值与s相同的指派;
- (8) 当A为公式 $\exists vB$ 时, $\models_U A[s]$ iff 存在 $d \in D$ 使得 $\models_U B[s(v|d)]$ 。

 $\models_U A$ 表示在结构U中,对任意的指派s,公式A均为真。

► A表示公式A在任意结构和任意指派下均为真。

例. $\vDash \forall x \forall y \forall z ((y+z)*x = y*x + z*x) \rightarrow \forall y \forall z ((y+z)*x = y*x + z*x)$ 定义 21.

- (1) 受量词约束的变元称为约束变元;
- (2) 不受量词约束的变元称为自由变元。

定义 22. 设下为任意一个公式集,B为任意一个公式,如果对任意的使得 Γ 中每个公式均为真的结构U和指派s,B也为真,则称 Γ 逻辑蕴含B,记为 $\Gamma \vDash B$ 。如果 $\Gamma = \{A\}$,则 $\Gamma \vDash B$ 简记为 $A \vDash B$,称为A逻辑蕴含B,即对任意的结构U和任意的指派s,如果 $\vDash_U A[s]$,则 $\vDash_U B[s]$ 。对任意的两个公式A和B,如果 $A \vDash B$ 并且 $B \vDash A$,则称 $A \leftrightharpoons B$ 逻辑等价。

例.
$$\forall x \forall y \forall z ((y+z) * x = y * x + z * x) \models \forall y \forall z ((y+z) * x = y * x + z * x)$$

谓词演算自然推理系统FND(First order Natural Deduction)在命题演算自 然推理系统的基础上添加了下列规则:

 $\frac{\Gamma \vdash A}{\Gamma \vdash \forall v A}$, v在 Γ 中无自由出现。

2.∀消除规则 (∀-)

 $\frac{\Gamma \vdash \forall vA}{\Gamma \vdash A_v^v}$,项t对变元v可代入。

3.3引入规则 (3+)

 $\frac{\Gamma \vdash A_t^v}{\Gamma \vdash \exists vA}$, 项t对变元v可代入。

4.∃消除规则 (∃–)

 $\frac{\Gamma \vdash \exists vA; \Gamma, A_c^v \vdash B}{\Gamma \vdash B}$,其中常元c在 Γ 及公式A,B中均无出现。

 $\Sigma = \{..., =\}$ =自反性:

t = t, t为任意一个项。

定理 (=对称性). 如果 $\Gamma \vdash t_1 = t_2$, 那么 $\Gamma \vdash t_2 = t_1$ 。

证明.

- $(1) \Gamma \vdash t_1 = t_1 \qquad (公理)$
- (2) $\Gamma, t_1 = t_2 \vdash t_2 = t_1$ (1) =可代入性
- (3) $\Gamma \vdash (t_1 = t_2) \to (t_2 = t_1)$ (2) $(\to +)$
- (4) $\Gamma \vdash t_1 = t_2$ 已知条件
- (5) $\Gamma \vdash t_2 = t_1$ (3)(4)($\rightarrow -$)

定理 (=传递性). 如果 $\Gamma \vdash t_1 = t_2, \Gamma \vdash t_2 = t_3$, 那么 $\Gamma \vdash t_1 = t_3$ 。 证明.

- (1) $\Gamma \vdash t_1 = t2$ 已知条件
- (2) $\Gamma, t_2 = t_3 \vdash t_1 = t_3$ (1) =可代入性

(3)
$$\Gamma \vdash (t_2 = t_3) \to (t_1 = t_3)$$
 (2)(\to +)

- (4) $\Gamma \vdash t_2 = t_3$ 已知条件
- (5) $\Gamma \vdash t_1 = t_3$ (3)(4)($\rightarrow -$)

演绎: 在FND中,以下序列称为 $\Gamma \vdash_{FND} A$ 中的一个证明(以下省去FND):

$$\Gamma_1 \vdash A_1, \Gamma_2 \vdash A_2, \cdots, \Gamma_m \vdash A_m (= \Gamma \vdash A)$$

其中 $\Gamma_i \vdash A_i (i=1,2,\cdots,m)$ 或为FND的公理,或为 $\Gamma_j \vdash A_j (j< i)$,或为 $\Gamma_{j_1} \vdash A_{j_1}, \Gamma_{j_2} \vdash A_{j_2}, \cdots, \Gamma_{j_k} \vdash A_{j_k} (j_1,j_2,\cdots,j_k < i)$ 使用推理规则导出的。

如果 $\Gamma = \{A\}$,则 $\Gamma \vdash B$ 简记为 $A \vdash B$; 如果 $\Gamma = \phi$,此时 $\Gamma \vdash A$ 即为 $\vdash A$,则称A为FND的定理。

以上在FND中关于演绎的定义与ND中的定义是相同的,但是其中的所涉及的公式指的是谓词公式。

定义 23. 代入: 对公式A中的自由变元v的所有自由出现都换为项t,记为 A_t^v 。如果A中没有v出现,则 $A_t^v = A$ 。

定义 24. 可代入: 设v为谓词公式A中的自由变元, t为一个项, 在A中将v替换为t之后, t中每个变元没有变成约束变元, 则称项t对v是可代入的。

$$\Sigma = \{..., =\}$$

例.
$$\Gamma \vdash \forall x \forall y (x+y) * (x+y) = x * x + (1+1) * x * y + y * y$$
 其中 $\Gamma = \{$

- $(1) \ \forall x \forall y x + y = y + x$
- (2) $\forall x \forall y \forall z (x+y) + z = x + (y+z)$
- (3) $\forall x0 + x = x \land x + 0 = x$
- (4) $\forall x \exists y (y + x = 0 \land x + y = 0)$
- (5) $\forall x \forall yx * y = y * x$
- (6) $\forall x \forall y \forall z (x * y) * z = x * (y * z)$
- (7) $\forall x1 * x = x * 1 = x$
- (8) $\forall x (\neg (x = 0) \to \exists y (y * x = 1 \land x * y = 1))$
- $(9) \ \forall x \forall y \forall z x * (y+z) = x * y + x * z$
- $(10) \ \forall x \forall y \forall z (y+z) * x = y * x + z * x$

}

证明.

```
(1) \Gamma \vdash \forall x \forall y \forall z x * (y + z) = x * y + x * z 公理
```

(2)
$$\Gamma \vdash \forall y \forall zx * (y+z) = x * y + x * z$$
 (1)(\forall -)

(3)
$$\Gamma \vdash \forall zx * (w+z) = x * w + x * z$$
 (2)(\forall -)

$$(4) \Gamma \vdash \forall w \forall z x * (w+z) = x * w + x * z \qquad (3)(\forall +)$$

(5)
$$\Gamma \vdash \forall x \forall w \forall z x * (w+z) = x * w + x * z$$
 (4)($\forall +$)

(6)
$$\Gamma \vdash \forall w \forall z (x+y) * (w+z) = (x+y) * w + (x+y) * z$$
 (5) $(\forall -)$

(7)
$$\Gamma \vdash \forall z(x+y) * (x+z) = (x+y) * x + (x+y) * z$$
 (6) $(\forall -)$

(8)
$$\Gamma \vdash (x+y) * (x+y) = (x+y) * x + (x+y) * y$$
 (7) $(\forall -)$

(9)
$$\Gamma \vdash \forall x \forall y \forall z (y+z) * x = y * x + z * x$$
 公理

(10)
$$\Gamma \vdash \forall y \forall z (y+z) * x = y * x + z * x$$
 (9)(\forall -)

(11)
$$\Gamma \vdash \forall z(x+z) * x = x * x + z * x$$
 (10)(\forall -)

(12)
$$\Gamma \vdash (x+y) * x = x * x + y * x$$
 (11)(\forall -)

(13)
$$\Gamma \vdash (x+y) * (x+y) = (x*x+y*x) + (x+y)*y$$
 (8)(12) = 可代入性

(14)
$$\Gamma \vdash (x+y) * (x+y) = (x*x+y*x) + ((x*y) + (y*y))$$
 ?

(15)
$$\Gamma \vdash (x+y) * (x+y) = (x*x+x*y) + ((x*y) + (y*y))$$
 ?

(16)
$$\Gamma \vdash (x+y) * (x+y) = (x*x+x*y) + ((x*y) + (y*y))$$
 ?

(17)
$$\Gamma \vdash (x+y) * (x+y) = ((x*x+x*y) + (x*y)) + (y*y)$$
 ?

(18)
$$\Gamma \vdash (x+y) * (x+y) = (x * x + (x * y + x * y)) + (y * y)$$
 ?

(19)
$$\Gamma \vdash (x+y) * (x+y) = (x * x + (1 * (x * y) + x * y)) + (y * y)$$

(20)
$$\Gamma \vdash (x+y) * (x+y) = (x*x + (1*(x*y) + 1*(x*y))) + (y*y)$$

(21)
$$\Gamma \vdash (x+y) * (x+y) = (x * x + ((1+1) * (x * y))) + (y * y)$$
 ?

(22)
$$\Gamma \vdash \forall y(x+y) * (x+y) = (x * x + ((1+1) * (x * y))) + (y * y)$$
 ?

(23)
$$\Gamma \vdash \forall x \forall y (x+y) * (x+y) = (x * x + ((1+1) * (x * y))) + (y * y)$$
?

例. $\vdash \exists vA \rightarrow \neg \forall v \neg A$

证明.

- $(1) \exists vA \vdash \exists vA$ 公理
- (2) $\exists v A, A_c^v, \forall v \neg A \vdash \forall v \neg A$ 公理

- $(3) \ \exists vA, A_c^v, \forall v \neg A \vdash \neg A_c^v \qquad (\forall -)$
- (4) $\exists v A, A_c^v, \forall v \neg A \vdash A_c^v$ 公理
- (5) $\exists v A, A_c^v \vdash \neg \forall v \neg A$ (3)(4)(\sigma +)
- (6) $\exists v A \vdash \neg \forall v \neg A$ (1)(5)($\exists -$)
- $(7) \vdash \exists vA \rightarrow \neg \forall v \neg A(6)(\rightarrow +)$

例. $\vdash \neg \forall v \neg A \rightarrow \exists v A$

证明.

- (1) $A \vdash A$ (公理)
- (2) $A \vdash \exists vA$ (1)($\exists +$)
- (3) $A, \neg \exists vA \vdash \exists vA$ (2)(假设+)
- $(4) A, \neg \exists vA \vdash \neg \exists vA \qquad (公理)$
- (5) $\neg \exists vA \vdash \neg A$ (2)(3)($\neg +$)
- $(6) \neg \exists v A \vdash \forall v \neg A \qquad (5)(\forall +)$
- $(7) \neg \exists v A, \neg \forall v \neg A \vdash \forall v \neg A \qquad (6)(假设+)$
- (8) $\neg \exists v A, \neg \forall v \neg A \vdash \neg \forall v \neg A$ (7)(假设+)
- $(9) \neg \forall v \neg A \vdash \neg \neg \exists v A$ (8)(假设+)
- $(10) \neg \forall v \neg A \vdash \exists v A \qquad (10)(\neg \neg -)$

例. $\forall x \exists yy > x \vdash \exists yy > x$,但是 $\forall x \exists yy > x \nvdash \exists yy > y$ 。

例. $x > 1 \vdash x > 1$,但是 $x > 1 \nvdash \forall xx > 1$ 。

例.

- (1) $x = c, y > x \vdash y > x$
- (2) $x = c, y > x \vdash \exists yy > x$
- (3) $x = c, y > x, c > x \vdash c > x$
- (4) $x = c, y > x, c > x \vdash c > c$
- $(5) x = c, y > x \vdash c > c$

由于c在x = c中出现,以上演绎过程是错误的。

例.

- (1) $x > c \vdash x > c$
- (2) $x > c \vdash \exists xx > c$
- (3) $x > c, d > c \vdash d > c$
- (4) $x > c \vdash d > c$

由于d在d > c中出现,以上演绎过程是错误的。

一阶谓词演算形式系统

FC:First Order Predicate Calculus

- 1. 字符集
- (1) 表示个体变元的符号: $v_1, v_2, \cdots, v_n, \cdots$
- (2) 联结词集合: {¬,→}
- (3) 量词: ∀
- (4) 辅助符号: ()
- (5) 表示谓词的符号: P,Q,\cdots
- (6) 表示函词的符号: f,g,\cdots
- (7) 表示个体常元的符号: a,b,c,\cdots
 - 2. 公式:
- (1) 设 t_1, t_2, \dots, t_n 为n个项,P为任意一个n元谓词符号,则 $P(t_1, t_2, \dots, t_n)$ 为 合式公式;
- (2) 如果A, B为合式公式,则 $(\neg A), (A \rightarrow B)$ 为合式公式;
- (3) 如果A为合式公式, x为任意一个变量, 则 $\forall x A$ 为合式公式;
- (4) 有限次使用(1),(2)和(3)复合所得到的结果都是合式公式。

合式公式简称公式。

3. 公理

 $A_1:A\to (B\to A)$

 $A_2: (A \to (B \to C)) \to ((A \to B) \to (A \to C))$

 $A_3: (\neg A \to \neg B) \to (B \to A)$

 $A_4: \forall vA \to A_t^v(项t对v可代入)$

 $A_5: \forall v(A \to B) \to (\forall vA \to \forall vB)$

 $A_6: A \rightarrow \forall v A (v \in A$ 中无自由出现)

设A为任意一个公式, $v_{i_1},v_{i_2},\cdots,v_{i_n}$ 为任意n个变量,则 $\forall v_{i_1} \forall v_{i_2} \cdots \forall v_{i_n} A$ 称为公式A的全称化。 FC的公理为 A_1,A_2,\cdots,A_6 及其全称化。

4. 推理规则

 $r_{mp}: A, A \to B, B$

5. 定理推导

证明: 称下列公式序列为谓词公式A在FC中的一个证明:

$$A_1, A_2, \cdots, A_m (= A)$$

其中 $A_i(i=1,2,\cdots,m)$ 或为FC的公理,或为 $A_j(j< i)$,或为 $A_j,A_k(j,k< i)$ 使用 r_{mp} 导出的谓词公式。

定理:如果谓词公式A在PC中有一个证明序列,则称A为PC的定理,记为PC A,简记为PC

演绎:设 Γ 为FC中若干公式构成的公式集,称下列公式序列为公式A以 Γ 为前提的演绎:

$$A_1, A_2, \cdots, A_m (= A)$$

其中 $A_i(i=1,2,\cdots,m)$ 或为FC的公理,或为 Γ 中的成员,或为 $A_j(j< i)$,或为 A_j , $A_k(j,k< i)$ 使用 r_{mp} 导出的公式。记为 $\Gamma \vdash_{FC} A$,简记为 $\Gamma \vdash A$,并称A为 Γ 的演绎结果。

如果 $\Gamma = \{B\}$,则 $\Gamma \vdash A$ 简记为 $B \vdash A$,表示公式A可由前提B在FC中演绎出来。

例. 在FND中证明: $\vdash \forall v(A \rightarrow B) \rightarrow (\forall vA \rightarrow \forall vB)$ 证明.

- $(1) \ \forall v(A \to B), \forall vA \vdash \forall vA$ 公理
- (2) $\forall v(A \to B), \forall vA \vdash A$ (1)(\forall -)
- $(3) \forall v(A \to B), \forall vA \vdash \forall v(A \to B)$ 公理
- $(4) \ \forall v(A \to B), \forall vA \vdash A \to B \qquad (3)(\forall -)$
- (5) $\forall v(A \to B), \forall vA \vdash B$ (2)(4)($\to -$)
- (6) $\forall v(A \to B), \forall vA \vdash \forall vB$ (5)($\forall +$)
- (7) $\forall v(A \to B) \vdash \forall vA \to \forall vB$ (6)(\to +)
- $(8) \vdash \forall v(A \to B) \to (\forall vA \to \forall vB) \qquad (7)(\to +)$

定理. 设 Γ 为FC中任意的一个公式集,A为FC中的任意一个公式,v为任意一个变元,v不在 Γ 的任意一个公式里自由出现,如果 Γ \vdash A,则 Γ \vdash $\forall vA$ 。

证明. 施归纳于A的证明长度k。

- (1) 当k=1时,如果A为公理,则 $\forall vA$ 为A的全称化,也是公理。如果 $A\in\Gamma$,则v不在 Γ 中自由出现,从而不在A中自由出现,由 $A,A\to \forall vA$ 和 r_{mp} 规则可以推出 $\forall vA$ 。
- (2) 假设当k < n时结论成立,往证当k = n时结论也成立。 假设存在证明序列 A_1, A_2, \cdots, A_n ,这里 $A_n = A$,根据归纳假设, $\forall i < n$, $\forall v A_i$,此时 A_n 或为公理,或属于 Γ ,或为 $A_i (i < n)$,或为由 $A_i, A_j (i, j < n)$ 通过 r_{mp} 规则得到。

- (I)如果 A_n 为公理,则 $\forall v A_n$ 为 A_n 的全称化,也是公理。
- (II)如果 $A_n \in \Gamma$, v不在 Γ 中自由出现,从而不在 A_n 中自由出现,由 $A_n, A_n \to \forall v A_n$ 和 r_{mn} 规则可以推出 $\forall v A_n$ 。
 - (III)如果 A_n 为 A_i (i < n),由归纳假设, $\forall v A_n$ 成立。
- (IV)如果 A_n 为由 $A_i, A_j(i, j < n)$ 通过 r_{mp} 规则得到,不妨设 $A_j = A_i \rightarrow A_n$,则由归纳假设 $\forall v A_i, \forall v (A_i \rightarrow A_n)$,由公理知 $\forall v (A_i \rightarrow A_n) \rightarrow (\forall v A_i \rightarrow \forall v A_n)$,由 $\forall v (A_i \rightarrow A_n)$ 和 $\forall v (A_i \rightarrow A_n) \rightarrow (\forall v A_i \rightarrow \forall v A_n)$ 及 r_{mp} 规则知 $\forall A_i \rightarrow \forall v A_n$,由 $\forall v A_i$ 和 $\forall v A_i \rightarrow \forall v A_n$ 及 r_{mn} 规则知 $\forall v A_n$ 。
- 例. $\forall x \forall y x * y = y * x \vdash \forall x (x+x) * x = x * (x+x)$ 证明.
 - (1) $\forall x \forall yx * y = y * x$ 前提
 - (2) $\forall x \forall y x * y = y * x \rightarrow \forall y (x+x) * y = y * (x+x)$ A_4
 - (3) $\forall y(x+x) * y = y * (x+x)$ (1)(2) r_{mp}
 - (4) $\forall y(x+x) * y = y * (x+x) \rightarrow (x+x) * x = x * (x+x)$ A_4
 - (5) (x+x)*x = x*(x+x) (3)(4) r_{mp}
 - (6) $\forall x(x+x) * x = x * (x+x)$ (5)全称推广
- 例. $\forall x \forall y x * y = y * x \vdash \forall x (x+x) * x = x * (x+x)$ 证明.
- (1) $\forall x \forall yx * y = y * x$ 前提
- (2) $\forall x \forall y x * y = y * x \rightarrow \forall x \forall x \forall y x * y = y * x$ A_6
- (3) $\forall x \forall x \forall y x * y = y * x$ (1)(2) r_{mp}
- (4) $\forall x (\forall x \forall y x * y = y * x \rightarrow \forall y (x+x) * y = y * (x+x))$ A_4
- (5) $\forall x(\forall x \forall yx * y = y * x \rightarrow \forall y(x+x) * y = y * (x+x)) \rightarrow \forall x \forall x \forall yx * y = y * x \rightarrow \forall x \forall y(x+x) * y = y * (x+x)$ A_5

- (6) $\forall x \forall x \forall y x * y = y * x \rightarrow \forall x \forall y (x+x) * y = y * (x+x)$ (4)(5) r_{mp}
- (7) $\forall x \forall y (x+x) * y = y * (x+x)$ (3)(6) r_{mn}
- (8) $\forall x (\forall y (x+x) * y = y * (x+x) \to (x+x) * x = x * (x+x))$ A_4
- (9) $\forall x (\forall y(x+x) * y = y * (x+x) \to (x+x) * x = x * (x+x)) \to \forall x \forall y(x+x) * y = y * (x+x) \to \forall x(x+x) * x = x * (x+x)$ A_4
- (10) $\forall x \forall y (x+x) * y = y * (x+x) \rightarrow \forall x (x+x) * x = x * (x+x)(8)(9) r_{mp}$
- (11) $\forall x(x+x) * x = x * (x+x)$ (7)(10) r_{mp}