Planche n° 20. Limite d'une fonction en un point. Continuité en un point

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice nº 1 (**T)

- 1) Montrer en revenant à la définition que $\lim_{\substack{x \to 5 \\ y > 5}} \frac{3x-1}{x-5} = +\infty$.
- 2) Montrer en revenant à la définition que $f: x \mapsto \frac{3x-1}{x-5}$ est continue en tout point de $\mathbb{R} \setminus \{5\}$.

Exercice nº 2 (*I)

Soient f et g deux fonctions continues en $x_0 \in \mathbb{R}$. Montrer que les fonction $Min\{f,g\}$ et $Max\{f,g\}$ sont continues en x_0 .

Exercice nº 3 (**IT)

Montrer que la fonction caractéristique de \mathbb{Q} est discontinue en chacun de ses points.

Exercice nº 4 (**IT)

- 1) Montrer que la fonction $x \mapsto \sin x$ n'a pas de limite en $+\infty$.
- 2) Montrer que la fonction $x \mapsto \sin\left(\frac{1}{x}\right)$ n'a pas de limite en 0.
- 3) Montrer que la fonction $x \mapsto x \sin\left(\frac{1}{x}\right)$ est prolongeable par continuité en 0.

Exercice no 5 (**T)

$$\mathrm{Pour}\; x \neq 1, \, \mathrm{on}\; \mathrm{pose}\; f(x) = \left\{ \begin{array}{ll} \displaystyle \frac{\alpha\left(e^{x-1}-1\right)}{x-1} \; \mathrm{si}\; x < 1 \\[0.2cm] \displaystyle \frac{\sqrt{6x-5}-b}{x-1} \; \; \mathrm{si}\; x > 1 \end{array} \right. \quad \text{où}\; (\alpha,b) \in \mathbb{R}^2.$$

f est-elle prolongeable par continuité en 1 (discuter en fonction de a et b)?

Exercice nº 6 (**)

Trouver f bijective de [0, 1] sur lui-même et discontinue en chacun de ses points.

Exercice nº 7 (**IT)

Etudier en chaque point de R l'existence d'une limite à droite, à gauche, la continuité de la fonction f définie par

$$f(x) = \begin{cases} x \times \left\lfloor \frac{1}{x} \right\rfloor & \text{si } x \neq 0 \\ 1 & \text{si } x = 0. \end{cases}.$$

Exercice nº 8 (*)

Soit f une fonction définie sur $\mathbb R$ à valeurs dans $\mathbb R$ et périodique, admettant une limite réelle quand x tend vers $+\infty$. Montrer que f est constante.

Exercice nº 9 (****)

Soit f une fonction définie sur un voisinage de 0 telle que $\lim_{x\to 0} f(x) = 0$ et $\lim_{x\to 0} \frac{f(2x) - f(x)}{x} = 0$. Montrer que $\lim_{x\to 0} \frac{f(x)}{x} = 0$. (Indication. Considérer $g(x) = \frac{f(2x) - f(x)}{x}$.)