PROPERTY RANGES AND CORRELATIONS IN CERAMIC COMPOUNDS

By PRIYANKA AWASTHI

Indian Institute of Technology Kanpur
July, 2001

PROPERTY RANGES AND CORRELATIONS IN CERAMIC COMPOUNDS

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of

MASTER OF TECHNOLOGY

Ву

Priyanka Awasthi

to the

MATERIAL SCIENCE PROGRAMME INDIAN INSTITUTE OF TECHNOLOGY KANPUR

JULY, 2001

- 4 MAR 2002 / पुरुषोत्तम काशीनाथ केलकर पुस्तकालय भारतीय प्रौद्योगिकी संस्थान कानपुर अवाप्ति क्र. A. 1.1.7.8.7.9

Certificate

This is to certify that the work contained in the thesis entitled "Property Ranges and correlations in Ceramic Compounds" by Priyanka Awasthi has been carried out under my supervision and that this work has not been submitted elsewhere for a degree.

(July, 2001)

(Dr. Om Prakash)

an Brakenh.

Astt. Professor

Department of Mechanical Engineering
Indian Institute of Technology

Kanpur – 208016

India.

Acknowledgements

It is a great pleasure to acknowledge my gratefulness to my thesis supervisor, Dr. Om Prakash, who has suggested me the problem and guided me throughout for a satisfactory completion of my work outlined in this thesis.

I am sincerely thankful to Prof. D.C. Agarwal, Prof. Jitendra Kumar, Prof. K.N.Rai and Prof K. Shahi for their valuable teachings during my course work. Their classes provided me a good insight into the world of Materials.

I would like to express my heartful appreciation to my classmates Mini, K.K.M Pandey, Saibaba, Dubey and A. Tiwari for having pleasant gatherings and sharing joyful moments during my stay at I.I T. Kanpur.

My special regards to Dr. Om Prakash, Dr. K.Shahi and Dr. J. Kumar for their timely help during my M.Tech. without which I would have been unable to complete my work.

The acknowledgement remains incomplete without the mention of my family members especially my brother Anup R. Awasthi, bhabhi Deepmala, Rajat and Akshara.

I express my deep gratitude to Vandana, Yamuna, Nishadi, ShivKumar and all my wingmates, especially the love and care provided by Vandana to me is unforgettable in my life. I wish a very bright future to all of them.

Last but not the least the financial assistantship from the authorities of CSIR (junior research fellowship) is gratefully acknowledged.

-Priyanka Awasthi

Abstract

In view of the large number of materials available to designers, materials selection in design increasingly relies on materials databases. Often the available information about materials is not complete and one has to use correlations to estimate unknown property values of a specific material. Correlations generally give reasonable results for a class of materials due to similarities in structure, nature of bonding etc.

This work deals with binary ceramic compounds and has the following objectives

- Compilation of property data for binary ceramic compounds
- Develop correlations between various properties
- Develop correlations based on structure maps
- Explore the use of Neural Network techniques in estimating property data

Results have been presented for four classes of binary ceramic compounds. These include borides, carbides, nitrides and oxides.

Dedicated To Mummy and Papa

(Parents are the representative of GOD)

Contents

Certificat Acknowle Abstract	e edgements	
Contents		
List of F	igures	
List of T	`ables	
Chapte	r 1	
Introd	luction	
1.1	Definition	1
1.2		2
	1.2.1 Borides	6
	1.2.2 Carbides1.2.3 Nitrides	6 7
	1.2.4 Oxides	8
1.3	Trends in Advanced Materials Data	
	1.3.1 Properties and Correlations	10
	1.3.2 Structure mapping	11
	The Present work	12
Chapte	er 2	
Prope	rty Ranges in Ceramic Compounds	
2.1	Introduction	16
2.2		17
2.3	•	18
2.4	Property Ranges for various category of materials Property Ranges for Ceramic Compounds	20
2.5 Chapte		22
Спари	A 3	
Corre	lations in Ceramic Compounds	•
	Literature Survey	38
3.2	Results and Discussions 3.2 1 Correlations for refractory compounds of borides, carbides,	43
-	nitrides and oxides	43
	and borides	

3.	.2.2 Calculations based on property ranges	48
Chapte		
Corr	elations based on Mendeleev Number	
<i>A</i> 1	Introduction	50
	Some Applications of Mendeleev Number	57
	Estimation of unknown Density and Melting Temperature	
4.5	of Refractory compounds of Oxides, Borides, Nitrides.	60
	or realistic of the second of	
Chapt	er 5	
-	erty estimation using Neural Network	
1.0pc	5.1 Brief introduction to neural network	70
	5.2 Simulation procedure	71
	5.3 Results and discussion	72
	5.3.1Carbides	72
	5.3.2 Nitrides	73
	5.3.3 Oxides	74
	5.3.4 Refractory compounds	74
	5.4 Informed neural networks	75
	Chapter 6	
	Conclusions and Objectives of Future work	
	6.1 Conclusions	90
	6.2 Suggestions for future work	91
	0.2 0.5 ₀	7.
Refe	rences	92
Appe	endix	95

List of Figures

No.	Title	
1.1	Melting point of high temperature material	2
1.2	Distribution of number of compounds	9
1.3	Mendeleev number of various elements superposed on periodic table	11
1.4	Structure map for AB type of compound	13
1.5	Structure map for AB ₂ type of compound	14
2.1	Materials selection chart between Young's modulus E and density p	21
2.2	Property ranges for density for various category of materials	29
2.3	Property ranges for melting point temperature for various category of materials	30
2.4	Property ranges for thermal conductivity for various category of materials	31
2.5	Property ranges for thermal expansion for various category of materials	32
2.6	Property ranges for yield strength for various category of materials	33
2.7	Property ranges for fracture toughness for various category of materials	34
2.8	Property ranges for elastic modulus for various category of materials	35
2.9	Property ranges for tensile strength for various category of materials	36
2.10	Property ranges for various properties of some refractory materials	37
3.1	Plot of coefficient of thermal expansion verses melting temperature (carbides)	50
3.2	Plot of shear modulus verses young modulus(carbides)	51
3.3	Plot of coefficient of thermal expansion verses melting temperature (nitrides)	52

3.4	Plot of coefficient of thermal expansion verses melting temperature (oxides)	53
3.5	Plot of shear modulus verses young modulus(oxides)	54
4.1	A graph of weldability property chart	56
4.2	Thermal study of binary compound	58
4.3	Phase diagram study of binary compound	59
4.4	Distribution of density of borides as a function of average mendeleev number	61
4.5	Distribution of density of borides as a function of average mendeleev number	62
4.6	Distribution of density of nitrides as a function of average mendeleev number	63
4.7	Distribution of density of oxides as a function of average mendeleev number	64
4.8	Distribution of density of nitrides as a function of average mendeleev number	65
4.9	Distribution of melting point temperature of borides as a function of average mendeleev number.	67
4.	10 Distribution of melting point temperature of nitrides as a function of average mendeleev number	68
4.1	Distribution of melting point temperature of oxides as a function of average mendeleev number	69
5.1	Neural network model and informed neural network model for carbides	76
5.2	Informed neural network model for carbides and neural network model for ni	itrides
5.:	Neural network model and informed neural network model for nitrides	78
5.	3 Neural Network model for oxides and refractory compounds	79

List of Tables

No.	Caption	Page
1.1	Some applications of ceramics	5
1.2	Estimations of materials combination	9
1.3	Mendelev numbers of the elements in the periodic table with their crystal structure	15
2.1	. Classification of properties according to crystal structure	19
2.2	Property ranges for various classification of materials	22
2.3	Typical data sheet for a binary compound TiC	24
2.4	Property ranges for various oxides	25
2.5	Property ranges for various borides	26
2.6	Property ranges for various carbides	27
2.7	Property ranges for various nitrides	28
3.1	Examples of values for limits for correlations	42
3.2	Values for limits of correlations for oxides	44
3.3	Values for limits of correlations for carbides	45
3.4	Values for limits of correlations for borides	46
3.5	Values for limits of correlations for nitrides	47
4.1	Calculated density values of different compounds	53
4.2	Calculated melting temperature values of different compounds	58

5.1	Network grid for T _m , E, G, K, ρ for metals(training & query data)	70	
5.2	Network grid for T _m , E, G, K, p for intermetallics (training & query data)	71	
5.3	Network grid for T _m , E,G, K,p for ceramics (training & query data)	72	
	Network grid for MA, Valency of A, Tm, p for Carbides (training & query	73	
data) 5.5	Network grid for M_{A_1} Valency of A, M_{B_1} Valency of B, T_m , ρ for Borides Carbides, Nitrides and Oxides (training & query data)	74	
A.1	Representative nomenclature for fourteen Bravais lattices	85	
A.2	2 Crystal structure nomenclature are arranged alphabetically by Pearson-Symbol designation and Strukturbericht designation		
A.3	Ranges for valence electron concentration (VEC) of refractory compounds 93 according to their nature of bonding		

-

,

Chapter 1

Introduction

1.1 Definition

Ceramic compounds may be defined as products formed with nonmetallic, inorganic materials generally involving high temperatures in their manufacture. The earlier ceramic products were made in the period 4000-1500 B.C. Most of the ceramics are produced from oxides, silicates and refractory materials including aluminides, beryllides, silicides, borides, carbides, nitrides and sulfides.

In general ceramic materials possess a very desirable combination of properties such as high compressive strength, melting point, service temperature, wear resistance, corrosion resistance, low density, low thermal conductivity and specific physical properties (optical, electrical, magnetic). Fig. 1.1 gives a comparison of melting point of various classes of materials for high temperature applications.[1]

Fig. 1.1: Melting point of ultra high temperature materials

Fig. 1.1(cont.): Melting point for high temperature materials

Ceramics can be subdivided into different groups under various aspects considering chemical composition, microstructure or application. A possible classification of ceramics is to distinguish between

- silicate ceramics
- oxide ceramics
- non-oxide ceramics

The main feature of silicate ceramics is the glassy phase with a pronounced pore structure. The main content is SiO₂ with additions of Al₂O₃, MgO, BeO ,ZrO₂ etc. While oxide ceramics are distinguished from silicate ceramics by the dominance of a crystalline phase with only a small content of glassy phase. The non—oxide ceramics comprise:

• elements: carbon in the form of graphite

nitrides: AlN, BN, Si₃N₄, TiN
carbides: B₄C, SiC, TiC, WC

• borides : ZrB₂, TiB₂

• selenides: ZnSe

sialones: Si₃ N₄ with Al₂O₃

syalons: Si₃ N₄ with Al₂O₃ and Y₂O₃

However ceramics have low fracture toughness and tensile strength consequently considerable effort is currently being made to develop new ceramic materials, ceramic based composites with superior properties. Some of the modern day ceramics and their field of utilization are discussed in the Table1.1 [2].

Table 1.1: Some applications of ceramics

Application	Ceramic used
Engine manufacturing Utilized properties	Wear resistance, heat insulation, low density, and resistance to corrosion, electrical insulation, and high temperature strength.
Materials	Al ₂ O ₃ , Al ₂ TiO ₅ , ZrO ₂ , SiC, Si ₃ N ₄
Examples	Thermal insulation of combustion chambers valve seats, spark plugs, turbochargers, gas turbines
Industrial processing engineering	

TT4:1:1	
Utilized properties	Resistanceto corrosion, wear resistance
Materials	Al ₂ O ₃ , ZrO ₂ , SiC,
Examples	Chemical devices, drawing die, sliderings, thread guides, rolls for paper industry
High temperature	grand and pup of including
techniques	
Utilized properties	Resistance to corrosion, thermal insulation, electrical insulation, high temperature strength
Materials	Al ₂ O ₃ , ZrO ₂ , SiC, Si ₃ N ₄ ,BN, C
	111203, 2102, 010, 013114, 011, 0
Examples	Heat exchangers, crucibles, heating conductors
Machining of materials	
Utilized properties	Resistance to corrosion, wear resistance
Proposition	resistance to confosion, wear resistance
Materials	Al ₂ O ₃ , SiC, Si ₃ N ₄ , BN, TiC, TiN
Examples	Cutting tools, grinding wheels, sandblast nozzles
Medical techniques	HOLZIES
•	
Utilized properties	Resistance to corrosion, physiological
Materials	compatibility Al ₂ O ₃ , ZrO ₂
Examples	Bone replacement, dental ceramics

Thus we see the interest in ceramics arises because of its multidimensional applications varying from pottery to nuclear fuels, from single crystal to molecular sieves and from heat engines to oxygen sensors. [3]

Before we move on to the subject of this thesis we will discuss about the structural properties and applications of some of binary compounds.

1.2 Classes of binary ceramic compounds

Binary compounds are those materials, which are formed of two constituent elements. Some of ceramics under this category are borides, carbides, nitrides and oxides.

1.2.1 Borides

Boron combines with a large number of metals and semimetals to form binary or higher solid compounds. A classification of borides was given by Kisseling [4] on the basis of boron structural elements for various M:B ratios. With increasing M:B ratio the tendency to form boron-boron bonds increases and cross-linked nets, octahedral (MB_6) , cubooctahedra (MB_{12}) are formed.

- a) The borides are produced by Synthesis from the elements by melting, sintering and hotpressing
- b) Borothermic reduction of metal oxide
- c) Electrolysis of metal oxide
- d) Deposition from the vapour phase

Most of the transition metal boride has melting point temperature higher than 3000°C. They are used as crucible material—for nonferrous metals. Their hardness and wear properties are utilized as thin coatings on metal surfaces, hardness for dodeca and hectoborides are more harder than WC or Al₂O₃. The electrical characteristics cover entire spectrum MB₆, MB₁₂ are semiconductors. While NbB, YB₆, ZrB₁₂ are superconductors. Lanthanide and actinide borides are best known high temperature electron emitters the lifetime of LaB₆ electrodes is reported to exceed that of tungsten cathodes by twice. CaB₆ is used as a deoxidizer for high conductivity copper. The refractory hexaboride of euporium (2EuB₆) is used as a neutron to control the power of fast breeder reactors [4]

1.2.2 Carbides

Most of the elements form binary compound with carbon. The properties of these carbides are very different so they are classified in four groups

- a) Saltlike carbides of metallic elements CaC₂
- b) Metal like WC
- c) Diamond like B₄C
- d) Nonmetal as CO

Saltlike carbides of metallic elements are the carbides of the elements of groups 1-3 and 11-13 of the periodic table. These are transparent and nonelectrical conductors except Lanthanide and Actinide carbides.

Metal like carbides are not attacked by water such as WC, TaC, TiC, NbC most of them are cemented carbides. Their greatest demand is for cutting and drilling tools, mining machinery tire stude scratchproof watchcases. TiC is the hardest carbide but it is too brittle to be used alone.

Diamond like carbides include only Be₄C and SiC they have extreme hardness but it is not used alone industrially because of its decomposition by water. However with some reinforcement silicon carbides are used in stirling heater heads, radomes, infrared domes and in turbine vanes bearings. Similarly TiC is used in turbine disks and in nuclear waste consolidation. Some of carbides and their uses are given as follows

BC

Boron carbide is an exceedingly hard material inferior only to diamond and cubic boron nitride. It has high mechanical strength with low density and high neutron cross-section. Its major use is abrasive grit, lightweight ceramic tiles used in helicopter and monolithic breastplates.

WC

Tungsten carbide is also known as cemented carbide it is used for milling cutters, cutting tips and drills, sawing teeth and blades, drawing and heading dies rolls, nozzles, sealing rings, balls for ball mills, ball for ballpoint pen and for tire studs.

TaC

Tantalum carbide is basically used for long-chipping steel cutting grades. Thermal shock resistance against cratering and oxidation.[5]

1.2.3. Nitrides

Nitrides occur rarely in nature. Titanium nitride has been detected in silicate meteorites as the mineral obsornite. The first industrial application of a nitride was the use of calcium cynamide as a fertilizer. Nitrides can be classified according to their bonding character.

- a) The ionic or saltlike nitrides (3rd group element)
- b) Covalent nitrides (13-15 group element)
- c) Transition metal nitrides
- d) Molecule forming nitrides

Nitrides have high degree of hardness, high melting point, metallic luster and superconductivity. *Ionic nitrides* such as Li₃N is a fast ionic conductor. *Covalent nitrides* include BN, AlN, GaN, and SiN. GaN is used as a LED (light emitting diode). Some of more stable transition metal nitrides are used as diffusion barriers in semiconductor technology, solar cells, heat sinks, the surface treatment of windows in microwave technology, Josephson junctions in fast computers, nuclear fusion reactors. Tin is used for magnetic tape heads and fusion reaction insulator; BN is used for transducers special dies. Very thin films of Mo and W nitrides are useful in a number of applications particularly as thin film components such as temperature insensitive precision resistors and capacitors some of these have been prepared by Troitskaya and Pinsker. Nitrides are also known for their comparable high T_C values, a number of high T_C phases of WC and MoC with B1 structure have been found. Some of nitrides and their uses is given as follows

BN

It is second hardest material after diamond so its uses are similar to three of diamond machining and drilling. Dielectric for plasma jet furnace pipes and nozzles for handing liquid metals. Protective tubes and insulating sleeves for thermocouples. In thermal conductivity BN ranks with stainless steel at cryogenic temperatures. It is a lubricant with wide range of temperature.

AIN

It has unusually high thermal conductivity combined with high electrical resistance and a thermal expansion coefficient. So these are used in electrical devices particularly as VLSI. AlN substrates are used as coolers for power transistors, integrated circuits, and laser diodes, thyristors. The crucible surface is coated with AlN to prevent diffusion of impurities from crucible metals into alloys.

SiN

Used in heavy-duty components in automotive engines. SiN bearings can be used up to 1100 ⁰K. SiN layers are used as diffusion barriers and passive coatings in semiconductor components. [6]

1.2.4 Oxides

The most important oxides are Al₂O₃, ZrO₂, BeO, ThO2_{, and MgO} etc. The properties of single oxides can be modified additives. Their are a large number of oxide ceramic compounds but here we will discuss only few of them.

Alumina

It is a foremost oxide ceramic it is mainly used for sealing disk, printed circuit boards, cutting tools, sandblast nozzles, implants for human medicine, burner nozzles, rotating spindles for accurate machining.

Zirconia

It is used for crucibles, bearing components, manufacture of apparatus, wiredrawing tools, knife blades. Zirconia finds widespread use in a stabilized cubic form as an oxygen sensor.

Beryllia

Beryllia has very high melting point, high heat conductivity. Permanent molds for small metal cast pieces are made of sintered berillia. It is a stable material with respect to radioactive influences. It has a high scattering power to fast neutrons.

Ceria

Ceria belongs to rare group metals. Aluminum, beryllium and all other alkaline metals can be melted in ceria crucibles leaving the metals in a chemically pure state. It is n-type semiconductor. [7]

1.3 Trends in Advanced Materials Data

In the literature and from a design point of view, it is desirable to have information about property data of various materials. In addition it is useful to draw generalizations about trends in material property data for various classes of compound. This is helpful in materials selection as well as estimating missing property data if data of related compound is available.

The first difficulty encountered in searching for generalizations relates to the number of compounds. Given the elements of the periodic table, there are countless combinations that will result in compounds. Table 1.2 shows experimentally known systems, relative to the estimated maximum number of compounds that are grouped by elemental composition. It is taken that the starting number of elements is 100.

Table 1.2: Estimation of materials combinations[7]

Compounds	Maximum number	Experimentally known systems
Unaries	100	100
Binaries	4,950	4000 (81%)
Ternaries	1,61,700	8000 (5%)
Quaternaries	39,21,225	1000 (<0.1%)

In calculating the number of compounds, if one start up with 89 elements and assumes 2 compounds per system (e.g., high temperature, high-pressure phases), the result is 198 unaries, 7823 binaries, 227128 ternaries and 4.8×10^6 quaternaries. Fig. 1.2 shows the distribution of the number of these compounds for which there are crystallographic data: 19597 (48.1%) unaries, 18586 (45.6%) binaries, 19597 (48.1%) ternaries and 1928 (4.7%) quaternaries. These numbers, relative to the estimated maximum number of compounds for each group, shows that binaries are fully investigated, while only 8% of the ternaries have been studied, and research in quaternary field has only just started.

Fig.1.2: Distribution of experimentally known compounds by elemental composition

1.3.1 Properties and Correlations

Material properties of solids lie in a wide range and are characteristic of the class for a given structure and bond-type. Beyond this correlations exist between the values of mechanical, thermal, electrical and other properties based on the nature of bonding and arrangement of the atoms in the material. Some of these correlations can be expressed as

dimensionless groups with much narrower value ranges. This allows one to check the consistency on property values and certain properties can be estimated when values for others are known. Others, which are empirical, can be found by an appropriate search routine. They too can be used to estimate the missing properties, and to assign a reliably range to the estimates [8].

The arrangement of atoms or molecules in space (structure) and the nature of bonding between them determine the properties of solids. Similarities in the properties can be seen in materials with similar structure and bonding. Their values lie within defined ranges, characteristic of the class and are, to varying degrees, interrelated. These relationships can be expressed as dimensionless property groups with nearly constant values for a given class of material [8].

Based on the classification of materials, individual properties of a material class have certain characteristic ranges of values. Certain properties, which originate from the nature of atomic bonding, exhibit strongest correlations and those that are derived from the dependency on defects have less strong correlations. The examples in former case are correlation between modulus and melting point and in later case are strength and toughness. There exist weak correlations when interaction with the environment is involved as in corrosion and wear. There are good reasons for these correlations, which can often be expressed as limits for the values of physically based dimensionless property groups.

The dimensionless property groups take the form

$$C_L < P_1 P_2^n < C_H$$

$$C_L < P_1 P_2^n P_3^m < C_H$$

Where P_1 , P_2 and P_3 are material properties, n and m are simple powers, usually -1, -1/2, 1/2 or 1 and C_L and C_H are dimensionless constants represents lower and upper limits between which the property group lies. When such correlations exist they permit checks and estimates, which are more discriminating and precise than do the range checks [8].

1.3.2 Structure mapping

The crystal structures of tens of thousands of binary, ternary and quaternary compounds have been determined since the advent of X-ray crystallography in 1910. To date more than two thousand different types of structure have been identified. The purpose of structure maps is to order this vast empirical data base within two-dimensional or three dimensional plots, so that all compounds with a given structure type are located in well-defined domains which are separated from the domains containing other structure types. The structure maps can then be used for predicting other possible compounds are alloys with a given desired crystal structure. These maps were constructed by choosing coordinates based on those physical factors, which felt to be important in controlling structural stability. For example Villars [9-11] has recently plotted three-dimensional maps (ΔX, ΔR, e/a) for binary compounds with the AB, AB₂, AB₃ and A₃B₅

stoichiometries. The three coordinates reflect the importance of the electronegativity difference ΔX , the atomic size difference ΔR and the average number of valence electrons per atom e/a in determination of structural stability [12,13]. These three dimensional plots suffer several drawbacks. These fairly related to the neglect of the angular dependence of the valence orbitals, since whether the electrons have s-, p- or d-like quantum character is not reflected in the choice of classical coordinates (ΔX , ΔR , e/a).

The alternative approach to the construction of structure maps has been proposed by D.G. Pettifor [14-16], rather than trying to find a set of microscopic coordinates which will produce a separation. The structural types within same n dimensional space, he look instead for a single phenomenological coordinate which would lead to good structural separation of empirical data on binary systems within two dimensions [17].

This was achieved by running a one-dimensional string through the two-dimensional periodic table [12] as shown in Fig. 1.3. Pulling the ends of the string apart orders all the elements along a one dimensional axis, their sequential order being termed the Mendeleev number M. This simple procedure is found to provide excellent structural separation of all binary compounds with a given stoichiometry $A_m B_m$ within a single two-dimensional plot (M_A, M_B) . For example AB structure map is shown in Fig. 1.4& Fig.1.5shows AB_2 type of structure maps. For other structure maps like AB_2 , AB_3 , AB_4 , AB_5 etc. can be found in Ref. [18]. The values of Mendeleev number and their structure

Fig1.3: Mendeleev number of various elements superposed on periodic table

1.4 The present work

In terms of materials selection in design there is a need to organize property data so that it can either directly be used in design calculations or may be used to estimate unknown data through the use of correlations. Accordingly, in this work we

- determine various property ranges for binary ceramic compounds
- investigate correlations between various physical properties
- investigate correlations based on structure maps. The later is based on the premise that properties are function of the structure.
- investigate the Neural Network approach for property estimation

Fig. 1.4: Structure map for AB type compounds

Fig. : Structure map for AB2 type compounds

Table 1.3: Mendeleev numbers for the elements in the periodic table with their crystal structure [17]

lendeleev o M	Element	Structure	Mendeleav no <i>M</i>	Element	Structure
1	He	hcp	53	Nb	bcc
2	No	fcc	54	V	bcc
3	Ar	fcc	55	W	bcc
4	Kr	fcc	56	Мо	bcc
5	Xe	fcc	57	Cr	bcc
6	Rn	:	58	Re	hcp
7	Fr	• •	69	Tc	hcp
8	Cs	bcc	60	Mn	compl
9	Rb	bcc	61	Fe	bcc
10	K	bcc	62	Ru	hcp
11	Nn	hcp	63	Os	hcp
12	11	ср	64	Co	hcp
13	Ra	- * *	65	Rh	fcc
14	Ba	bcc	66	lr	fcc
15	Sr	fcc	67	ii Ni	fcc
16	Ca	fcc	68	Pt	fcc
17	Yb	hcp	69	Pd	fcc
	Eu	bcc	70	Au	fcc
18	Sc ·	hcp	70 71	Âg	fcc
19	SC Lu	hcp	72	Cu	fcc
20	Tin	hcp	73	Mg	· hcp
21	Er	hcp	73 74	Hg	, thom
22			74 75	ng Cd	hcp
23	Ho D::	hcp			
24 25 i	Dу	hcp	76 77	Zn Be	hcp hcp
2.5	Y	hep	7 <i>7</i> 78	TI	hcp
26	Tb Gd	hep	78 79	In	tetr
27	Gd Sm	hcp	79 80	Al	fcc
28	Sm	cp dbcp		Gn	compi
29	Pm	dhop	81 82	Ga Pb	compi fcc
30	Nd D.	dhep	82 83		
31	Pr	dhcp	83	Sn Go	dia
32	Ce	fcc	84	Ge S:	dia
33	La `	dhcp	85 86	Si B	dia
34	Lr ,	• • •	86	В	compl
35	No	••	87	Bi	lay
36	Md		88	Sb	lay
37	Fm	••	89	As	lay
38	Es	•	90	P	compl
39	CI	dhcp	91	Po	8C
40	Bk	dhcp	92	Te	chain
41	Cm	dhcp	93	Se	chain
42	Am	dhcp	94	S	ring
43	Pu	compl	,95	Č	gra
44	Np	orth	196	Αι	dim
45	U	orth	97	î"	dım
46	Pa	tetr	98	Br	dim
47	ra Th	fcc	99	CI	dım
48	Λc	fcc	100	N O	dım
49	Zr	hcp	101	Ö	dim
50	در Hf	hcp	102	F	dım
51			103	н	dim •
	Tı Ta	hcp	103	***	unn ·
52	Та	bcc			

sc simple cubic, bcc body centred cubic, fcc face centred cubic, hcp hexagonal close packed, cp close packed, tetr tetragonal, orth orthorhombic, rhom rhombohedral, compl complex, dia daimond, gra graphite, lay, chain, ring and dim are structure types built up from puckered layers, helical chains, rings and dimers respectively.

Chapter 2

Property Ranges in Ceramic Compounds

2.1 Introduction

The conventional classification of engineering materials is generally given by

Metals and alloys Polymers Ceramics and glasses Composites

Metals have relatively high moduli. We can increase their strength by alloying or by mechanical and heat treatment. These remain ductile and can be used in deformation processes. The general characteristics of these materials are good electrical and thermal conductivity, relatively high strength, high stiffness ductility and shock resistance. These are particularly useful for structural and load bearing applications. Although pure metals are occasionally used, combination of metals (alloys) is normally designed to provide improvement in a particular desirable property.

Polymers have low modulii and strength. They can take large elastic deflection they creep even at room temperature. There properties depend upon temperature and there maximum service temperature is about 200° C. They are very easy to

shape. The large elastic deflections allow the design of polymer components which snap together, making assembly fast and cheap. Polymers are corrosion resistant and they have low coefficient of friction.

Polymers include rubber, plastics and many adhesives. They are produced by creating large molecular structures from organic molecules in a process known as polymerization. Thermoplastic polymers in which long molecular chains are not rigidly connected, have good ductility and formability. Thermosetting polymers are more stronger but more brittle because molecular chains are highly lined.

Ceramics and glasses have high moduli but are brittle when compared to metals. Their brittle compression strength is fifteen times larger than the brittle fracture strength. Their brittleness shows a wide scatter in the strength, depends on the volume of material under load as well as time for which it is applied. They have attractive features of being stiff, hard and abrasion-resistant. They retain their high strength at high temperatures and they are corrosion resistant.

The example of ceramics are brick, glass, tableware, refractories and abrasives, have low electrical and thermal conductivity and consequently are often used as insulators. They have good optical properties also. So they are used in fibre optic system and a variety of devices. They are also used in integrated circuits.

are stiff and strong and they can be tough. Most of the composite materials at present available to the engineer have a polymer matrix. Epoxy or polyster, usually reinforced by fibres of glass, carbon or kelvar. Composite components are extensive and they are relatively difficult to form and join With composites we can produce lightweight, strong, ductile, high temperature resistant materials, shock resistant cutting tools. Advanced aircraft and aerospace engines rely heavily on composites such as carbon-fibre-reinforced polymers.[3]

2.2 Structure - Property Relationships

We consider the properties of a material mainly under two categories

1.Mechanical 2.Physical

Mechanical properties describe how a material responds to an applied force. The most common mechanical properties are strength, ductility and stiffness(modulus of elasticity). However, we are often interested in how a material behaves when it is exposed to a sudden, intense blow, continually cycled by an alternating force i.e. fatigue, exposed to high temperatures (creep), or wear i.e. subjected to abrasive

conditions. Mechanical properties also determine the ease with which a material can be deformed into a useful shape.

Physical properties, which include electrical, magnetic, optical, thermal, elastic and chemical behaviour, which depends on the structure and processing of material. Even small changes in composition cause large scale variations in the electrical conductivity of many semiconducting materials.

The properties of a material depend on its structure. So for example, glassy polyethylene is transparent, whereas crystalline polyethylene is translucent. Imperfections in either type of atomic arrangement may be controlled to produce profound changes in properties.

A grain structure is found in most metals, semiconductors, ceramics and occasionally in polymers. The size and shape of the grain play a key role. In some cases, as with silicon chips for integrated circuits or metals for jet engine parts, it is more reliable to produce only one grain, or a single crystal.

Finally in most materials, more than one phase is present, with each phase having its own unique atomic arrangement and properties. Control of the type size, distributions and amount of these phases within the main body of the material provides an additional way to control properties.

2.3 Classification of properties According to structure

The properties of a material may be classified as:

- (1) Structure-sensitive
- (2) Structure-insensitive

The structure insensitive properties are well defined properties of a phase and do not strongly depend on processing history and resultant microstructure whereas structure sensitive properties are dependent not only on the composition and crystal structure of the material but also on structural details that depend upon previous history of the sample. Thus structure-sensitive properties are properties of a particular sample of a material, while the structure insensitive properties relate to the material. Different samples of the same material have essentially identical structure-insensitive properties, but structure-sensitive properties are identical only when the previous treatment has been equivalent. Some of the structure sensitive and structure insensitive properties are shown in Table 2.1

Mechanical properties

The application of a stress to a material may cause many changes. Elastic deformation, in which strain appears and disappears simultaneously with the application and removal of the stress. Anelastic deformation, in which strain reaches its maximum value after the stress has reached its maximum value and in which strain disappears after the removal of stress.

Plastic deformation, in which strain occurs simultaneously with the application of the stress, but does not vanish if the strain is removed.

Creep, in which non recoverable strain occurs, while the stress is held at a fixed value.

Fracture, in which separation takes place.

Of these properties, only first (elastic behaviour) is structure-insensitive anelasticity and creep would not be expected to occur in a perfect crystal and plastic deformation and fracture would occur in a perfect crystal at much higher stresses and strains than are normally found experimentally. These four properties are therefore structure sensitive and must be considered in relation to crystal that are imperfect.

Elastic modulus is defined as the slope of the linear elastic part of the stress-strain curve. In reality, moduli measured as slope of stresses are inaccurate, because of the contribution of anelasticity and other factors. Accurate moduli are measured by exciting the natural vibrations of a beam or wire, or by measuring the velocity of waves in the material.

Table 2.1: Classification of properties according to structure

Property	Structure-Insensitive	Structure-Sensitive
Mechanical	Elastic moduli	Fracture strength Plasticity Fracture toughness Creep strength
Physical	Density	
Thermal	Thermal expansion Melting point Thermal conductivity Specific heat Emissivity	
Electrical	Resistivity(metallic) Electrochemical potential Thermo electric properties	Resistivity (Semiconductor and at low temperature)
Magnetic	Paramagnetic and Diamagnetic properties	Ferromagnetic properties
Optical	Reflectivity	
Nuclear	Absorption of radiation	

Anelastic deformation, in which strain reaches its maximum value after the stress has reached its maximum value and in which strain disappears after the removal of stress.

Plastic deformation, in which strain occurs simultaneously with the application of the stress, but does not vanish if the strain is removed.

Creep, in which non recoverable strain occurs, while the stress is held at a fixed value.

Fracture, in which separation takes place.

Of these properties, only first (elastic behaviour) is structure-insensitive anelasticity and creep would not be expected to occur in a perfect crystal and plastic deformation and fracture would occur in a perfect crystal at much higher stresses and strains than are normally found experimentally. These four properties are therefore structure sensitive and must be considered in relation to crystal that are imperfect.

Elastic modulus is defined as the slope of the linear elastic part of the stress-strain curve. In reality, moduli measured as slope of stresses are inaccurate, because of the contribution of anelasticity and other factors. Accurate moduli are measured by exciting the natural vibrations of a beam or wire, or by measuring the velocity of waves in the material.

Table 2.1: Classification of properties according to structure

Property	Structure-Insensitive	Structure-Sensitive
Mechanical	Elastic moduli	Fracture strength Plasticity Fracture toughness Creep strength
Physical	Density	
Thermal	Thermal expansion Melting point Thermal conductivity Specific heat Emissivity	
Electrical	Resistivity(metallic) Electrochemical potential Thermo electric properties	Resistivity (Semiconductor and at low temperature)
Magnetic	Paramagnetic and Diamagnetic properties	Ferromagnetic properties
Optical	Reflectivity	
Nuclear	Absorption of radiation	

Physical properties

Density of a crystal can be calculated from the mass of the atoms and geometry of the crystal. The latter one is described by the volume of unit cell of the structure and number of atoms per unit cell. These two parameters in turn depend on the type of the structure and ionic radius appropriate to the structure.

Melting temperature is the most useful structure-insensitive property because

- 1 Its relative magnitude is a reasonable first approximation to the stiffness of a material since the elastic moduli have a strong correlation with melting temperature
- 2 In all models of strengthening, values of flow stress increases with the magnitude of elastic constants which in turn increase with $T_{\rm m}$.
- 3 Expansion coefficients are also vary inversely with T_m.
- 4 It gives some idea about the maximum service temperature of a material.

2.4 Property Ranges for various Category of Materials

A general idea about property ranges of materials is useful in mechanical design. For example, ceramics are hard and brittle, metals are ductile and conduct well, polymers are light and have large expansion coefficients. Chemical engineers strive to survive materials in corrosive condition. Automobile engineers desire lightweight and durable materials. Aerospace engineering demand lightweight materials that perform well both at high temperatures and in the cold vacuum of outer space. The property ranges for various categories of materials are shown in Table 2.2. Such information has been found very useful for materials selection in design. For example, Fig. 2.1 presents the materials selection map based on elastic modulus and density of various materials[24]. When this information is presented in terms of property ranges, different classes of materials occupy different regions on the plot. The material which offers the best combination of properties can then be located on such maps using the materials selection approach outlined in [24].

Fig. 2.1 gives the idea of materials selection for light and stiff compounds. The guide lines in this figure indicates

- $E/\rho = C$ (minimum weight design of stiff ties; minimum deflection in centrifugal loading, etc.)
- $E^{1/2}/\rho = C$ (minimum weight design of stiff beams, shafts and columns)
- $E^{1/3}/\rho = C$ (minimum weight design of stiff plates)

The property ranges are also useful in property checking of the new data. When creating a database and to tabulate the new data, property ranges are useful in checking whether each new data lies within the given property ranges. All properties have well defined ranges and new data should generally lie in its proper band. Any discrepancy may then easily be checked again so as to avoid any gross errors from occurring in the compilation.

Fig. 2.1: Materials selection chart between young's modulus E and density p

Table 2.2: Property (Physical) ranges for various categories of materials

Property			Material			•
	Metals	Ceramics	Polymers	Composites	Intermetallics	Refractory * compounds
Physical properties						
Density, gm/cc	0.5-23	1-15	0.75-5	0.3-15	2-20	2-17
Melting point,K	234-3700	140-4000	200-800	250-1750	500-3000	400-4840
Electrical conductivity,1/Ωcm	105-109	10 ⁻¹⁹ -10 ⁻⁵	10-16-10-9	1	103-109	10 ⁻¹² -10 ⁻⁵
Thermal conductivity, W/m/K	2-500	1-500	0.01-10	0.1-2	0.2-75	0.2-70 (at 300K)
Coefficient of linear thermal expansion, $K^{-1}(x10^{-6})$	5-50	1-20	20-300	2-50	1.15-184.3 (at 300K)	0.129-11 (at 300K)
Heat of formation, k.cal/mole	ı	ı	•	ı	1-200	100-272
Cohesive energy 10 ⁵ (J/m)	1	1	1	1	ı	2-15
	in 1 1 - 1 - 1	1 crides seromic compounds)	mnounde			

(* Binary borides, carbides, nitrides and oxides ceramic compounds)

2:Property (Mecahnical) ranges for various categories of materials(continued)

Property			Material			
,	Metals	Ceramics	Polymers	Composites	Intermetallics	Refractory *
modulus,GPa	1.7-100	7-1000	0.001-20	0.5-700	50-500	40-675
nodulus, GPa	1-200	ı	ı	ı	20-250	75-200
odulus,GPa	25-400	ı	1	1	50-300	95-245
n's ratio	0.1-0.5	₹	1	1	0.1-0.5	032
e toughness,MPam ^{1/2}	5-50	0.1-10	0.5-5	1-60	1-50	1-55
temperature, K	5-200	-20-2000	0-200	0-2000	200-1500	150-1600
gation	ı	1	1	1	0-50	0-20
constant(C ₁₁), GPa	1	t	1	1	50-500	200-500
trength, MPa	10-2000	3000-50000	0.2-400	2.5-1000	100-1500	140-300
strength, MPa	50-2000	1-800	5-100	100-1000	200-1500	65-150
nardness, GPa	1	ı	1		1-20	410-3370

2.5 Property Ranges for Ceramic Compounds

Property range data for metals, polymers, ceramics and composites have been reported by [23]. In this section we are presenting data on property ranges for refractory compounds based on a data compilation developed by us [20]. The property ranges for various categories of materials are shown in Table 2.2. The structure of data is as follows and typical data sheet is shown for TiC.

Table 2 3 Typical data sheet for TiC compound

Crystallographic	Space group	Fm3m	[40]
data	Crystal system	cubic(NaCl)	[40]
	Strukturbericht type	O_h^5 -F m3m	[40]
	Lattice constant	a=b=c=4.3270	[40]
	Pearson symbol	cF8	[40]
Thermal data	Melting Temperature, T _m (°C)	3065	[44]
	Heat of formation, -ΔH _f (k.cal/mo	ole) -	
Physical data	Density, $\rho(kg/m^3)$	4650	[44]
	Electrical resistivity $(\Omega-m)$	10-6	[44]
Mechanical data	· Hardness	93 (Vickers)	[43]
	Elastic modulus,E(GPa)	447	[43]
	Shear modulus, G(GPa)	186	[43]
•	Bulk modulus, K(GPa)	241	[43]
	Poisson's ratio,v	0.19	[43]

^{*}Various nomenclature of crystal structures of binary ceramic compounds are shown in Appendix.

Various data for borides, carbides, nitrides and oxides are shown in Table 2 4-2.7 A comparison between these data and conventional materials is included in Figs.2.2-2.9. Thus Figs 2.2-2.9 shows the schematic representation of property ranges for various properties for different categories of materials including borides, carbides, nitrides, and oxides (binary) ceramic compounds. Fig 2.10 summarizes all property ranges of refractory compounds.

Table 2.4: Various property data for borides

Boride	Str.	Density (gm/cc)	Melting temp (K)	ΔH (kJ/mole)	ρ(Ωcm)	H (kg/mm²)	E(GPa)	α (10 ⁻⁶) K ⁻¹
Ti ₂ .B	Tetra	-	2477	-			3.7	112
TiB ₂	Hexa	4.52	3144	-319.69	26x10 ⁻⁶	3370		6.39
ZrB	Cubic	6.7	_	-318	6x10 ⁻⁶	1560		
HfB	Cubic	12.80	3172	-332				
HfB ₂	Hexa	11.2	3522	-324	10x10 ⁻⁶	2400		5.3
VB	Ortho	5.4	2522	-136				5
NbB	Ortho	7.6	2533	-		2200		
TaB	Ortho	14.29	2760	-				
TaB ₂	Hexa	12.6	3366	-206	68x10 ⁻⁶	2537	250	5
CrB	Ortho	6.11	2272	-73.68				
CrB ₂	Hexa	5.6	2422	-91.37	21x10 ⁻⁶	1700		11.1
MoB	Tetra	8.77	2452	-				
MoB ₂	Hexa	7.78	2747	-				
W ₂ B	Tetra	16.72	2944	-	21x10 ⁻⁶			4.7
TiB	Cubic	5.26	2333	-159				
WB		15.5	2860			3750		
UB ₂	Hexa	12.73	2644	-162				
UB ₄	Tetra	9.38	2755	-244				
UB ₁₂	Cubic	5.86	2505	-438				
ZrB ₂	Hexa	6.1	3000		9.2x10 ⁻⁶	2200	350	6.83

∆H eV			8.5	8.7	5.2	4.15		5.6	1	5.7	1	3.7	1	3.7
$\rho 10^{-3}\Omega m$		1x10 ⁵	70	1000	25	177.8	63.1	70	1	1	I	1	1	1
	W/mK	27	14	06	20	18	28	21	t	1	1	ı	1	1
Kıc	MPam ^{1/2}	2.6	2	3	2	2	2	2	1	1	1	1	1	ı
	۷	.19	.22	.14	.22	.22	.02	.22	.19	.17	.10	.22	.22	.24
Bulk	(GPa)	245	197	188	220	240	350	220	293	100	268	296	248	255
	(GPa)	186	129	175	145	165	243	140	165	241	200	157	197	215
for Carbides	(GPa)	440	320	390	360	420	009	346	289	179	316	389	330	241
	(gm/cc)	2.45	7.6	3	13.4	4.9	15.5	9.9	ı	12.67		13.6	3	1
le2.5: Various property data npound T _m K Dens		2680	3770	2970	4050	3440	3000	3300		4203	ı	2769_	2866	ı
le2.5: V		(1)	rì		r \		*1	r)		כז	ر د)C	r \

Thermal Cond.

Table 2.6: Various property data for nitrides

Nitrides	Crystal struct.	Density (gm/cc)	Melting temp.(K)	Young mod. 10 ⁵ Nmm ⁻²	Micro Hardness 10Nmm ⁻²	α 10 ⁻⁶ K ⁻¹	Resis. 10 ⁻⁶ Ωcm	K _{IC} MPam ^{1/2}
AlN	Hex	3.05	2200	3.15	1200	6	1011	60
BN	Hex	2.25	3000	0.9	4400	3.8	1014	
CrN	Fcc	6.1	1050	4	1800	2.3	640	
Cr ₂ N	Hex	5.9	1725	3.13	1800	9.4		
HfN	Fcc	0.452	3310	3.33	1700	6.9	26	
Mo ₂ N	Fcc	8.8	700		630			
NbN	Fcc	8.4	2573	4.834	1400	10.1	60	
Nb ₂ N	Hex	8.3	2430		2120	3.26		
Si ₃ N ₄	Hex	2.8	2160	2.1	1410	2.4	1018	15
TaN	Нср	14.0	3000	5.76	3240	3.6	128	
Ta ₂ N	Hex	15.8	3000		3000		263	
TiN	Fcc	5.21	3223	2.5	2450	9.35	25	
UN		14.32	3123			8.1		
VN	Fcc	6.02	2450	4.6	1520	8.1	85	
WN	Нср				2500			
W ₂ N	Fcc	12	700				100	
ZrN	Fcc	6.93	3000	5.1	2000	6	13.6	
Be ₃ N ₂		2.7	1866					
Mg ₃ N ₂		2.71	1644				1	

vides //	able 2. /: Various property and for oxides	operiy dala	Voling	Shear	Bulk	Resistivity	Heat of		Krc		×	Hardness
Sapara Control	(vr)=Wr	(gm/cc)	modulus (GPa)	Modulus (GPa)	modulus (GPa)	(10 ⁻⁸ ohm-m)	fusion kJ/kg	,~	MPam ^{1/2}	10°6 Ж	W/mK	103
Al ₂ O ₃	2320	3.75	330	100	220		1060	.26	3.5	8	24	15
) (e)	2820	2.8	340	117	315	1x10°	3200	.32	2	7	260	1.1
Ogly	3080	3.54	270	92	226	1x10 ²⁰	1900	.35	2.7	6	30	5
,rO ₂	2950	5.7	180	09	120	1x10 ¹⁷	760	2.	2	7	2	1.2
102	I	2.15	69	29	38	1×10^{20}	ŧ	.18	9.	.52	1.2	5
O 9	1650	5.7	ı	ı	1	1x10°	1	4	- -	1	ı	1
Oil	2263	29.9	9.58	3.42	19	1x10 ¹⁰	1	.26	ī	ı	1	1
0g,	2845	3.34	I	7.37	11	1x10 ¹²	1	.20	1	1.29	1	1
O _L	2253	5.67	ī	1	1.28	1x10 ¹³	1	.10	1	1	,	1
iO_2	2103	4.25	ı	10	20.7	1x10 ¹⁵	1	.15	1	7.5	1	1
hO_2	3478	10	24	9.32		1x10 ¹⁹	ŧ	.20	1	9.4	1	1
00	2090	6.4	191	72	183	I	ŧ	.20	ī	ı	1	1
02	3143	10.97	17.2	9.37	47	I	I	.32	I	8.6	ı	1

Fig.2.2: Property ranges for Density for various category of materials

Thermal Conductivity, W/m/K

Fig.2.6:Property ranges for yield strength for various category of materials

Fig.2.7:Property ranges for various category for Fracture toughness for various category of materials

Fig.2.8:Property ranges for elastic modulus (E)for various categories of materials

Fig 2 10. Property ranges for various properties of refractory materials

Chapter 3

Correlations in Ceramic Compounds

3.1 Literature Survey

A number of correlations between various physical properties have been investigated over the years for various classes of materials [9,34]. Some correlations have a physical basis whereas others are empirical. In this chapter we will investigate the applicability of some of these correlations to refractory compounds. We first review some of the important correlations.

(a) Atomic Volume V_M (m³/k.mole)

The atomic volume denoted by V_M is given as

$$V_{\rm M} = \frac{\overline{A}}{\rho} \tag{3.1}$$

Where \overline{A} is average atomic weight of the compound in (kg/k.mole) and the density ρ in Kg/m³. The average atomic weight of the compound is given by

$$\overline{A} = \frac{mA_X + nA_Y}{m + n}$$

where A_X and A_Y are the atomic weights of X and Y respectively.

(b) Relation between Elastic modulus E, Shear modulus G, Bulk modulus and Poission's ratio v

We know for isotropic materials

$$G = \frac{E}{2(1+\nu)} \tag{3.2}$$

$$K = \frac{E}{3(1-2\nu)} \tag{3.3}$$

Theoretically ν may range between -1 and 0.5. However, for most materials ν varies between 0.2 and 0.4. We can therefore write above two relations as

$$C_{L} < \frac{G}{E} < C_{H}$$
 (3.4)

$$C_{L} < \frac{K}{E} < C_{H}$$
 (3.5)

where C_L and C_H are lower and upper limits of the correlation based on the actual compiled data.

(c) Relation between Elastic modulus E (GPa), Melting temperature T_m(K)

(i) Relation between Elastic modulus E (GPa), Melting temperature $T_m(K)$, Atomic Volume V_M (m^3/k .mole) and Gas constant R (kJ/k.mole.K)

If the bonds between the atoms are stretched too far, they break. Similarly heat can break the bonds and results in melting or sublimation. This is the basic relationship between elastic modulus and melting temperature. Bond stretching is characterized by bulk modulus K. The thermal energy per atom or molecule at melting point is RT_m/k .mole.

$$\frac{KV_m}{RT_m} = \text{constant}$$

Where R is the gas constant (8.314 kJ/k.mole.K). Expressing the above correlation with upper and lower limits,

$$C_{L} < \frac{KV_{m}}{RT_{m}} < C_{H}$$

$$C_{L} < \frac{EV_{m}}{RT_{m}} < C_{H}$$
(3.6)

Similar relation can be obtained for E, V_m , T_m and C_P (KJ/Kmole.K) and is given by

$$C_L < \frac{EV_m}{C_n T_m} < C_H \tag{3.7}$$

(ii) Relation between Elastic modulus E(GPa), Melting temperature $T_m(K)$, Density $\rho(Kg/m^3)$ and Specific heat $C_P(kJ/kg.K)$

The heat capacity is the heat required to raise the temperature of a solid by 1K. The molar heat capacity C_v^m (J/k.mole.K) is given by

$$C_{\nu}^{m} \approx 3R$$

$$C_V(kJ/kg.K) = \frac{3R}{\rho V_m}$$

In solid state heat capacity at constant pressure C_P is equal to that at constant volume, giving correlation

$$C_L < \frac{C_P \rho V_m}{R} < C_H \tag{3.8}$$

From equation 3.6 and 3.8, eliminating $\frac{V_m}{R}$, then eq. 3.8 becomes,

$$C_{L} < \frac{C_{P}\rho T_{m}}{E} < C_{H} \tag{3.9}$$

(d) Relation between Microhardness H (GPa), Melting temperature $T_m(K)$, Atomic volume V_m (m^3/k .mole), Boltzmann constant k (J/K) and Avagadro number(N)

The plot between microhardness and melting points shows that microhardness increases with melting temperature in Fig. 3.1. This shows that hardness and melting temperature are not independent variables. Low melting materials tend to be soft and high melting materials are hard. So we can say that microhardness varies linearly with melting temperature.

$$H \propto T_m$$

 $HV_m \propto Nk \; T_m$ Where k=1.38x10^23 J/K, N=6.02 x 10^26 /kmole

$$\frac{HV_m}{NkT_m} = \text{constant}$$

therefore

$$C_L < \frac{HV_m}{NkT_m} < C_H \tag{3.10}$$

similar relation can be obtained by replacing Nk with CP (kJ/k mole.K) as

$$C_L < \frac{HV_m}{C_p T_m} < C_H \tag{3.11}$$

(e) Relation between Specific heat C_p (kJ/kg.mole),Density ρ (Kg/m³), Melting temperature T_m (K) and Hardness H (GPa)

From eq. 3.9, materials with higher elastic modulus will be having higher melting point and so hardness also. So we can write eq.3.9 as

$$C_L < \frac{C_P \rho T_m}{H} < C_H \tag{3.12}$$

or from eq 3 10, using Nk=R (Gas constant)

$$C_L < \frac{HV_m}{T_m R} < C_H \tag{3.14}$$

Some examples of values for limits of correlations for metals and alloys, ceramics, polymers and elastomers are shown in table 3.1

Table 3.1: Examples of values for limits for correlations [8]

Material	Metals	and	Ceran	nics	Polymer	rs	Elaston	ners
class	Alloys							
Property	C_L	C_{H}	C_{L}	C _H	C_L	Сн	CL	C _H
Group								
G/E	0.3	0.4	0.33	0.5	0.29	0.41	0.3	0.5
K/E	0.5	2.0	0.55	2.2	1.0	3	20	1000
KV_m/RT_m	60	150	48	120	1.9	16	5.6	10
EV_m/RT_m	80	180	70	120	0.5	16	5.6	10
$C_p \rho V_m / R$	1.4	4.9	2.5	5.2	1	2.4	1.4	3.5
$C_p \rho T_m / K$	0.02	0.05	0.022	0.05	0.08	0.6	0.2	0.4
Kα/C _p ρ	0.3	0.84	0.25	0.9	0.05	0.24	0.14	0.25
$\alpha T_{\rm m}({\rm x}10^{-3})$	14	27	4	28	18	60	19	180
$\lambda/bC_p(E\rho)^{1/2}$	1.5x10 ⁶	2.4x10 ⁷	4x10 ⁵	5x10 ⁶	2.5x10 ⁴	8x10 ⁵	1.5x10 ⁶	1.5x10 ⁷
$L_m \rho V_m / RT_m$	0.9	1.2	0.8	1.3	NA	NA	NA	NA
L_m/C_pT_m	0.24	0.47	0.5	0.9	NA	NA	NA	NA
L _m ρ/K	0.008	0.022	0.015	0.38	NA	NA	NA	NA
T_g/T_m	0.5	0.6	0.5	0.6	0.6	0.75	NA	NA
σ _y /E	0.2	8	10	40	6	60	1000	8000
σ_{ts}/σ_{y}	1.1	2.5	1.0	1.2	1.1	2.0	1	1.1
σ _{ts} /E	1.2	7.0	0.1	36	8	95	1000	8000
$\sigma_{\text{MOR}}/\sigma_{\text{y}}$	1.05	1.2	1.05	14	1.1	1.6	1	1.2
σ_{ϕ}/σ_{y}	1	1.2	8	18	1.2	1.5	1	4
H/o _y	2.2	7.5	3	200	2.8	4	3	10
σ_{e}/σ_{ts}	0.23	1.3	0.8	1	0.35	0.9	03	1
$K_{IC}/\sigma_y\sqrt{b}$	2000	36000	6	170	150	6500	0.1	150
G _C /Eb	16	2500	0.05	4	25	3x10 ⁵	0.1	2x10 ⁵
$K_{IC}/E\sqrt{b}$	4	50	0.2	2	3	18	0.3	450

(f) Correlation between Elastic modulus E, Density $\rho,$ coefficient of thermal expansion α and specific heat C_p

The correlation between elastic modulus E, density ρ , coefficient of thermal expansion α and specific heat C_p is given by [8].

$$C_L < \frac{E\alpha}{C_B \rho} < C_H \tag{3.15}$$

3.2 Results and Discussions

In this section, we present results for correlation described in section 3.1. Section 3.2.1 discuss the relations between E,G and K for some of the refractory compounds section as a case study for carbides, borides, nitrides and oxides.

3.2.1 Correlations for Refractory compounds of Oxides and Carbides

As seen in the preceding section, better correlations and estimates are expected based on individual classes of materials. Therefore, correlations have been developed for various classes instead of the entire range of refractory compounds. Typical results for borides, carbides, nitrides and oxides are presented in Table 3.2 -3.5

Table 3.2: Different values for Borides

Property relation (equation number)	Units	C _L	Сн
$\frac{EV_m}{RT_m}$	E in Gpa V _m in m³/k.mole R in kJ/k.mole.K	20.0	116
$\frac{EV_{m}}{C_{P}T_{m}}$	C _p in kJ/kg.K	0.10	1.91
$\frac{C_{P}\rho V_{m}}{R}$	C_P in kJ/kg.K. ρ in kg/m ³	0.054	9.67
$\frac{C_P \rho T_m}{E}$	H in Gpa k is 1.38x10 ⁻²³ J/K N is 6.023x10 ⁻²³ /k.mole	0.21	1.2
$\frac{HV_{m}}{C_{P}T_{m}}$	C _P in kJ/k.mole.K	69	165
$\frac{C_{P}\rho T_{m}}{H}$	C _P in kJ/k.mole.K	0.4	1.0
$\frac{E\alpha}{C_P\rho}$	C _P in kJ/k.mole.K	2.6x10 ³	6.8x10 ³
αT_m	α in x10 ⁻⁶ /K T _m in K	7.2x10 ⁻³	33.7x10 ⁻³

Table 3.3: Different values for Carbides.

Property relation (equation number)	Units	C _L	Сн
$\frac{EV_m}{RT_m}$	E in Gpa V _m in m³/k.mole R in kJ/k.mole.K	12.8	116
$\frac{EV_{m}}{C_{p}T_{m}}$	C _p in kJ/kg.K	0.66	1.21
$\frac{C_P \rho V_m}{R}$	C _P in kJ/kg.K ρ in kg/m ³	0.75	10.3
$\frac{C_P \rho T_m}{E}$	H in Gpa k is 1.38x10 ⁻²³ J/K. N is	0.58	8.8
HV_m	6.023x10 ⁻²³ /k.mole C _P in kJ/k.mole.K	48	62
$\frac{HV_{m}}{C_{p}T_{m}}$ $\frac{C_{p}\rho T_{m}}{H}$		0.8	1.7
	C _P in kJ/k.mole.K	1.5x10⁴	15.8x10 ⁴
$\frac{E\alpha}{C_P\rho}$	C _P in kJ/k.mole.K		
αT_m	α in x10 ⁻⁶ /K T _m in K	9.35x10 ⁻³	27.3x10 ⁻³

Table 3.4: Different values for Nitrides

Property relation (equation number)	Units	C _L	Сн
$\frac{EV_m}{RT_m}$	E in Gpa V _m in m³/k.mole R in kJ/k.mole.K	32.8	64
$\frac{KV_m}{RT_m}$	K in Gpa	43	61
$\frac{C_P \rho V_m}{R}$	C _P in kJ/kg.K. ρ in kg/m ³	0.013	0.091
$\frac{C_{P}\rho T_{m}}{E}$	H in Gpa k is 1.38x10 ⁻²³ J/K N is 6.023x10 ⁻²³ /k.mole	0.04	0.141
$\frac{HV_{m}}{C_{P}T_{m}}$	C _P in kJ/k.mole.K	10	39
$\frac{C_P \rho T_m}{H}$	C _P in kJ/k.mole.K	0.14	2.46
$\frac{E\alpha}{C_P\rho}$	C _P in kJ/k.mole.K	6.9x10 ⁴	209.8x10 ⁴
αT_{m}	α in x10 ⁻⁶ /K T _m in K	2.7x10 ⁻³	29.6x10 ⁻³

Table 3.5: Different values for Oxides.

Property relation (equation number)	Units	C _L	Сн
$\frac{EV_m}{RT_m}$	E in Gpa V _m in m ³ /k.mole R in kJ/k.mole.K	2.8	235.2
$\frac{EV_m}{C_p T_m}$	C _p in kJ/kg.K	0.052	1.9
$\frac{C_P \rho V_m}{R}$ $\frac{C_P \rho T_m}{E}$	C _P in kJ/kg.K ρ in kg/m ³	0.5	26.9
$\frac{C_P \rho T_m}{E}$	H in Gpa k is 1.38x10 ⁻²³ J/K N is 6.023x10 ⁻²³ /k.mole	0.17	0.114
$\frac{HV_{m}}{C_{p}T_{m}}$	C _P in kJ/k.mole.K	28	84
$\frac{C_{P}\rho T_{m}}{H}$	C _P in kJ/k.mole.K	0.3	2.5
$\frac{E\alpha}{C_P\rho}$	C _P in kJ/k.mole.K	4.8x10 ⁴	39.1x10 ⁴
αT_m	α in $\times 10^{-6}$ /K T_m in K	0.85x10 ⁻³	44.8x10 ⁻³

3.2.2 Calculations based on property ranges

As seen in the preceding section, better correlations and estimates are expected based on individual classes of materials. Therefore correlations have been developed for various classes instead of the entire range of binary ceramic compounds.

(a) Coefficient of linear thermal expansion verses melting temperature

Fig 3.1 shows the variation of coefficient of linear thermal expansion verses melting temperature. It can be shown from figure that the distribution follows the relation

$$\alpha T_m = constant$$

where constant is approximately equal to 17752.7 fig. 3 1. This relationship is useful in estimating the unknown properties of either α or T_m is known. This can be expressed as follows.

$$C_{L} < \alpha T_{m} < C_{H}$$
 (3.16)

Where $C_L=9.35x10^{-3}$ and $C_H=27.3x10^{-3}$. Some estimates based on this correlation are shown in Table 3.6

Table 3.6: Some estimation of α for carbides using the correlation given by eq. (3.16)

Name of the compound	Temperature (K)	Correlation $C_L < \alpha < C_H$	Calculated $\frac{-}{\alpha}_{x10^{-6}}$ K ⁻¹	Actual αx10 ⁻⁶ K ⁻¹	% error
wc	3000	3.1x10 ⁻⁶ <α<9.1x10 ⁻⁶	6.1	5.0	22%
ZrC	3300	2.83x10 ⁻⁶ <α<8 27x10 ⁻⁶	5.55	6.0	9%

(b) Shear modulus verses Young modulus

Figure 3.2 shows the variation of shear modulus verses young modulus. It can be shown that the distribution follows the relation

$$\frac{G}{E}$$
=constant (3.17)

where constant is approximately equal to 0.42115 from figure 3.2 This relationship is useful in estimating the unknown properties of either G or E. this can be expressed as follows

$$C_L < G/E < C_H \tag{3.16}$$

Where C_L =0.4031 and C_H =0.405 Some estimates based on this correlation are shown in

Table 3.7: Some estimation of shear modulus using the correlation given by eq.3.17

Name of the compound	E (GPa)	Correlation	Calculated	Actual	% еггог
		$C_L < G < C_H$	\overline{G} (GPa)	G (GPa)	
WC	600	241.86 <g<242< td=""><td>241 93</td><td>242</td><td>0 02%</td></g<242<>	241 93	242	0 02%
ZrC	346	139.47 <g<140.13< td=""><td>139.80</td><td>140</td><td>0.14%</td></g<140.13<>	139.80	140	0.14%

The same treatment can be dealt with nitrides and oxides using the relationships given in table 3.4 & 3.5. These correlations are used in Informed Neural Network dealt in section 5.4.[49]

•

Chapter 4

Correlations based on Mendeleev Number

4.1 Introduction

The description of Mendeleev number is given in chapter 1. The success of Mendelev number in achieving the structural separation for various refractory compounds suggests that Mendeleev number may correlate also with formation and properties Of these compounds. For example the ease of joining two materials (elements) by friction welding varies from good weld formation to no joining. When such information for various materials is described on a chart where the corresponding Mendeleev number of the two materials are plotted on x and y axis, as shown in Fig.4.1 clear separation of material pairs which weld with varying degree of success is obtained [17]. Therefore in this chapter we explore the existence of such correlations between Mendeleev number and some physical properties like density, melting temperature heat of formation etc. Some correlations between two physical properties have already been presented in chapter 3. The approach is adhoc at this stage, but the results may guide us in conducting more systematic studies.

Fig. 4.1: Weldability property chart

4.2 Some Applications of Mendeleev number

For compound, we define an effective Mendeleev number as weighted average of individual Mendeleev numbers of the constituent elements. Similar definition has been used for design of ternary alloys [17]. Some of the important applications of Mendeleev number are

- Study of binary ceramic compounds thermally
- Phase diagram study of ceramic compounds

Now we will look these applications in the detail.

(a) Thermal study of binary Compounds

Using the informations given in [40], on thermal study of binary refractory compounds, we analyzed data in terms of variation with Mendeleev number M. This is shown in Fig. 4.2 and we can observe the three most significant regions of absence of chemical combination ,chemical combination and no thermal study. From Fig 4.2, we can observe that similar types of symbols are grouping together and as the thermal study continues we could see clear separation of these regions well.

(b) Phase diagram study of binary Compounds

Attempts for the existence or non-existence of binary ceramic compounds by phase diagram studies have been made for many years and the data has been compiled in various ways shown in [41]. The data is plotted in terms of Mendeleev number in Fig 4.3. The plot shows a part of chemical element verses chemical element where Mendeleev number is considered for each element. The plot shows clear separation of different regions with same identification. The various types of regions and their corresponding symbols are explained in Fig. 4.3.

Fig 4.2.: Thermal study of binary ceramic compounds

4.3 Estimation of unknown Density and Melting Temperature of Refractory Compounds

In this section we will study some methods to estimate the unknown values of density and melting temperatures of some Borides, Oxides and Nitrides by studying the variation of Mendeleev number with density as well as melting temperature

4.3.1 Density verses Mendeleev number of binary ceramic compounds

Fig. 4.5 shows the distribution of density of oxides as a function of their average Mendeleev number M_A and density ρ of oxides has been taken from [38]. In Fig. 4.7 we see some systematic (linear) patterns appearing in terms of position of groups of compounds: (W, Mo, Cr)B, (W, Mo, Cr)B₂, (*, W, Mo)₂ B₅, and (Mo, *, (r)B₂) Each straight line represents borides of particular type. These missing compounds, which are denoted by '* are Cr₂B₅, WB₂ respectively. We can also observe that all of these lines have similar slope. The density of unknown compound can be found by making use of geometrical similarity of these patterns. This requires first the calculation of the average Mendeleev numbers of unknown compounds Using this approach the density values for some of missing compounds are shown in Table 4.1.

Table 4.1: Calculated density values of boride nitrides, oxides

Name of the compound	Measured Density (kg/m³)	Literature Value (kg/m³)
Cr₂B₅	11.5	*
WB ₂	10.5	*
ZrB ₂	10.2	*
TaO	8.23	*
RaO	6.6	*
TaN	14.0	14.36
Mo ₂ N	8.8	8.04
V ₂ N	6.2	5 99
CrN	6.05	6.14

Fig.4.5: Distribution of density of borides as a function of average mendeleev number

Fig.4.6: Distribution of density of nitrides as a function of average mendeleev number

Fig.4.7: Distribution of density of oxides as a function of average mendeleev number

4.3.1 Melting temperature verses Mendeleev number of some compounds

then average Mendeleev number M_A and melting temperature T_m of oxides has been taken from [38]. In Fig 4.10 we see some systematic (linear) patterns appearing in terms of position of groups of compounds: (W, Mo, Cr)N, (W, Mo, *)2N (*, V, Nb)2 N, and (Be, *, Mg)3N2. Each straight line represents nitrides of particular type These missing compounds, which are denoted by '*' are $C_{12}N$, $T_{22}N$ respectively. We can also observe that all of these lines have similar slope. The melting point temperature of unknown compound can be found by making use of geometrical similarity of these patterns. This requires first the calculation of the average Mendeleev numbers of unknown compounds. Using this approach the melting point temperature values for the missing compounds are shown in Table 4.2

<i>Table 4.2:</i>	Calculated melting point temperature	values	of some compound
-------------------	--------------------------------------	--------	------------------

Name of	Melting	Literature
the	Temperature	Value
compound	'K	K
IrO	1870	*
V ₂ N	2474	*
Cr ₂ N	1910	1725
Zn ₃ N ₂	1875	*
Ta₂N	3180	3223

Other correlations can be obtained from fig.4.11. The Borides of Ta, Nb, V full on straight lines with equal slopes. Each straight line represents a Boride of l'articular type. These compounds are (Ta, Nb, V)B and (Ta, Nb, V)B₂, using the slope

We can find unknown density values for similar types of Borides.

Fig.4.9: Distribution of melting point temperature of borides as a function of average mendeleev number

"Fig.4.10; Distribution of melting point temperature of nitrides as a function of average mendeleev number

Fig.4.11: Distribution of melting point temperature of oxides as a function of average mendeleev number

Chapter 5

Property Estimation Using Neural Network

In the earlier chapter, we have considered estimation of property data using property ranges and correlations based on physical and empirical interrelation in things, structure maps etc. In this chapter we explore the possibility of using artificial neural network for this purpose.

5.1 Brief Introduction to Neural Network

People and animals are much better and faster at recognizing images than most advanced computers. Although computers outperform both biological and artificial neural systems for tasks based on precise and fast airthematic operations artificial neural systems represent the promising new generation of information processing networks.

Artificial neural systems function as parallel distributed computing networks. Their most basic characteristic is their architecture. Only some of the networks

provide instantaneous responses. Other networks need time to respond and are Characterized by their time domain behavior. Neural networks also differ from each other in their learning modes. Their are variety of learning rules that establish when and how the connecting weights change. Finally networks exhibit different speeds and efficiency of learning.

In contrast to conventional computers which are programmed to perform specific tasks most neural networks must be taught or trained. They learn new associations new patterns and new functional dependencies. Learning corresponds to parameter changes. Learning rules and algorithms used for experiential training of networks replace the programming required for conventional computation.

Neural network users do not specify an algorithm to be executed by each computing node. Instead they select what in their view is the best architecture, specify the characteristics of the neurons and initial weights and choose the training mode for the network. Appropriate inputs are then applied to the network so that it can acquire knowledge from the environment.[39]

Neural networks are developed to model the way in which the human brain performs a particular task. A neural network is a massively parallel distributed processor that has a natural propensity for storing experimental knowledge and making it available for use. The neural network provides a new type of computer architecture in which knowledge is acquired and stored over time through the use of adaptive learning algorithms. It resembles the brain in two respects.

- (1) Knowledge is acquired by the network through a learning process.
- (2) Interneuron connection strengths known as synaptic weights are used to store the knowledge

A neural is defined by three features topology, functioning and learning. Topology refers to the number of layers, number of nodes in each layer and the way nodes are connected. Functionality refers to the transfer function and discriminatory function of each node and the cost function of the network outputs. Learning refers to the learning algorithm and the values of learning parameters (learning rates and momentum). Learning rules specify an initial set of things and indicate how weights should be adapted during use to improve performance of neural network system. [45]

Neural networks can be classified differently according to different criteria the type of learning (supervised, unsupervised, self supervised) the mode of operation (on line, off line) the network interconnection architecture (feed forward, feedback recurrent) the number of layers the learning algorithm (Hebbian, back propagation resonant, Widrow Hoff).

The most forward neural network topology is feed forward networks, Multilayer Perceptron back propagation.

5.2 Simulation Procedure

The object of the simulation using neural network was to first have the system learn the appropriate mappings between input and output variables by observing the training samples The trained system was then used to determine the network Thus having an overview of neural network we will now use neural network approach for property relations in

- Carbides
- Nitrides
- Oxides
- Refractory compounds

We can apply neural network approach in our case because

- Correlations are empirical in nature
- Quality of correlations improves as we go on adding new additional inputs
- Correlations evolve in dynamic sense

The simulation were carried out using a Neural Network program [Easy NN][47] using the default algorithm and procedures for selecting weights

5.3 Results and Disscusion

Various simulations were carried out. The results can be summarized as follows. As discussed in [49], incorporating information about known correlations between the various variables in conjunction with neural network result in improved estimates. Accordingly results based on the "informed neural network" approach are also estimated and compared.

5.3.1 Carbides

A. Estimation of Hardness and G

Input Variables: Density (gm/cc), Melting Temperature (K), Elastic modulus(10⁵Nmm⁻²). The simulation for "informed neural network" includes an additional input variable c₂E based on the correlation GE=c₂ where c₂=0.4209

Output Variables: Hardness, G Training Pair and query data: as per Table 5.1

WC	By property ranges	By Neural Network	By Informed Neural Network	Literature value
H Error		Software cannot extrapolate	Software cannot extrapolate	3100
G(10 ⁵ Nmm ^{1/2}) Error	241.93 .02%	Software cannot extrapolate	Software cannot extrapolate	242

B. Estimation of Hardness and thermal expansion coefficient

Input Variables: Density (gm/cc), Melting Temperature (K), Elastic modulus (10^5Nmm^{-2}). The simulation for "informed neural network" includes an additional input variable αT_{in} based on the correlation $\alpha T_{\text{m}} = c_1$ where $c_1 = 17752.7$

Output Variables: Hardness, α.

Training Pair: as per Table 5.2

WC	By property ranges	By Neural Network	By Informed Neural Network	Literaturel value
H	-	1517 51%	1759 43%	3100
α Eποr	5.49 9%	5.8 16%	5.68 13%	5

The neural network is shown in figure 5.2

C. The above simulations (A&B) were run again to estimate property data for ZrC with WC included as training data the results obtained (from the two runs) were as follows. The results for hardness estimates are not given since no comparisons can be made in the absence of appropriate correlations.

ZrC	By	By Neural Network	By Informed Neural Network	Literature value
	property ranges		110didi 110twork	vuido
α(10 ⁻⁶ K ⁻¹)	5.49	5.68	5.8	6
Error	8%	5%	3%	
G(10 ⁵ Nmm ^{1/2})	1.39	1.485	1.4612	1.41
Error	1.4%	5.3%	5.1%	

The training data and query data are shown in Table 5.1(continued). The neural network model is shown in figures 5.1 and 5.2

5.3.2 Nitrides

Input Variables: Density (gm/cc), Melting Temperature (K), Elastic modulus(10^5Nmm^{-2}) The simulation for "informed neural network" includes an additional input variable c_1/T_m based on the correlation α $T_m=c_1$ where $c_1=11261.74$.

Output Variables: Hardness, Linear thermal expansion(10⁻⁶ K⁻¹)

Training Pair: Aluminum nitride, Boron nitride, Chromium nitride, Titanium nitride etc.

Query data:

VN	By property	By Neural	By Informed	Experimental
	ranges	Network	Neural	value
			Network	
α (10 ⁻⁶ K ⁻¹)	7.0	10 09	9.35	8.9
(10°K-1)				
Error		13%	5%	
Hardness	•	2492.7	1414.5	1520
Error		63%	6.9%	

The training data and query data are shown in Table 5.2. The calculation of different properties is done in Chapter 3. Neural network model for above problem is shown in Fig. 5.2

5.3.3 Oxides

Input Variables: Density(gm/cc), Melting temperature(K), Elastic modulus(10⁵ Nmm⁻²)

Output Variables: Hardness, Linear thermal expansion(10⁻⁶ K⁻¹)

Training pair: BeO, MgO, SiO₂, NiO etc.

Query data:

ZrO ₂	By property ranges	By Neural Network	By Informed Neural Network	Literature value
Hardness Error	-	1072 10%		1200
G(10 ⁵ Nmm ^{1/2})	58	57.87	59.02	60
Error	3%	3%	1.6%	
α(10 ⁻⁶ K ⁻¹)	7.73	8.08	7.7	7.5
Error	3%	7%	2.6%	

The training data and query data are given in Table 5.3. The calculation of different properties is done in Chapter 3 Neural network model for above problem is shown in Fig 5 3

5.3.4 Refractory Compounds

Input Variables: Mendeleev Number(A), Valency(A), Mendeleev Number(B), Valency(B).

Where A is a constituent element. And B represents Boride, Carbide, Nitride or Oxide.

()utput Variable: Density(gm/cc), Melting point temperature (K)

Training pair: carbides, borides, nitrides and oxides (see Table5.5)

Query data:

Refractory Compound*	Density(gm/cc)*	Melting point temperature(K)*
VN	6.02(6.68)	2450(2311.37)
NbN	8.36(8.61)	2477(2606)
TaN	14.36(13.83)	3366(3444)

(* Neural Network output values are given in bracket and compared with literature value)

The training data and query data are given in Table 5.4 while the comparison of query values with the literature values is given as above. The neural network model for above problem is shown in Fig.5.4. The results presented in the preceding sections indicate that neural networks is an effective tool for estimating unknown property data. The results are generally comparable to estimates made using correlations approach as shown earlier [49], the "informed neural network" approach always yields more accurately results compared the neural network approach.

<pre>: meltingtemp. : density : E : CE</pre>	2400.0000 2.4500 4.4000 1.8520	O: G O: hardness	1.8600 3100.0000
<pre>: meltingtemp. : density : E : CE</pre>	3770.0000 7.6000 3.2000 1.3470	O: G O: hardness	1.2900 2300.0000
<pre>: meltingtemp. : density : E : CE</pre>	2970.0000 3.0000 3.9000 1.6420	O: G O: hardness	1.7500 2500.0000
: meltingtemp. : density : E : CE	4050.0000 13.4000 3.6000 1.577	O: G O: hardness	1.4500 1300.0000
<pre>[: meltingtemp. [: density [: E [: CE</pre>	3440.0000 4.9000 4.2000 1.7680	0: G 0: hardness	1.6500 2500.0000
I: meltingtemp.I: densityI: EI: CE	3090.0000 15.5000 6.0000 2.5260	O: G O: hardness	2.4300 3100.0000
I: meltingtemp. I: density I: E I: CE	3300.0000 6.6000 3.4600 1.2171	0: G 0: hardness	1.4612 2345.5124

······································	150.0000 .5200	· O: hardness	
.· !	1.5000	0: alpha	C 1)(1
t _{i 2} 7Tm 72	·. 2640	•	
: Tm	1900.0000	0: hardness	1500.000
; gensity ;; F	6.6800 4.0000	O: alpha	10.0000
.: C/Tm	7.3660		
C^ Tin	1780.0000	O: hardness	2200 000
; density	6.9000 3.5000	O: alpha	2200.000 10.0000
: = p: C /Tm	4.9980		
i: Tm	3830.0000	0: hardness	2200.000
: gensity	12.2000	O: alpha	6.3000
I: E I: C/Tm	" · 3.5500 4.6460		
	3.0300		
l: Tm	3490.0000 7.7800	O: hardness	2400.000
r; density :: I	3.4000	O: alpha	6.6500
· C/Tm	5.0990		
; • 'n	200.0000	O: hardness	4500
i actisut y N F	. 2000 4.8000	O: alpha	5. 68Ut
: Or Tin.	ង.0890	•	
': "m	3780.0000	O: hardness	1790.000
: density	14.5000	O: alpha	6.2900
.: E ': C/Tm	6.2900 4.7081		•
I: Tm	3067.0000	0: hardness	3200.000
!: density	4.9300	O: alpha	7.4200
I: E	4.0000 5.8026		
!: C/Tm	5.8026		
!: Tm	2830.0000	O: hardness O: alpha	, 2950.000 6.5000
l: aensity l: L	5.5000 2.8000	O: alpha	0.3000
i: C/Tm	6.2880		
: Tm	2600.0000	O: hardness '	1759.365
: density	15.7000	O: alpha	5.6 39 7
i: E i: C/Tm	7.2000 6.8440		
: ''m	3535.0000	O: hardness	26543
: uensity	6.5000	O: alpha	5.8562
l: E	3.8000		
I: C/Tm	5.0340		

1	I: density I: melting temp. I: E	3.0500 2200.0000 3.1500	hardness alpha	1200.0000
1	g: density g: melting temp. g: E	2.2500 3000.0000 0.9000	hardness alpha	4400.0000 3.8000
	edensity emp.	6.1000 1050.0000 4.0000	hardness alpha	1800.0000
	: density : melting temp. : E	5.9000 1500.0000 3.1380	hardness alpha	2250.0000 9.4000
I	: density : melting temp. · E	13.8000 3310.0000 3.3300	hardness alpha	1700.000C 6.9000
I	density: melting temp.	8.4000 2570.0000 4.8300	hardness alpha	1400.0000
I	density melting temp.	3.4400 1900.0000 2.1000	hardness alpha	1410.000(
I	density melting temp.	3.6000 3000.0000 5.7600	hardness alpha	3240.000 3.6000
I:	density melting temp. E	5.2100 2950.0000 2.5000	 hardness alpha	1997.123 6.3257

1			
: Tm : density : E	2200.0000 2.2500 3.1500	O: hardness O: alpha	1200.0000 6.0000
: Tm : density : E	3000.0000 2.2500 0.9000	O: hardness O: alpha	4400.0000 3.8000
: Tm : density : E	1050.0000 6.1000 4.0000	O: hardness O: alpha	1800.0000 2.3000
: Tm : density : E	1500.0000 5.9000 3.1380	O: hardness O: alpha	2250.0000 9.4000
: Tm : density : E	3310.0000 13.8000 3.3300	O: hardness O: alpha	1700.0000 6.9000
: Tm : density : E	2570.0000 8.4000 4.8300	O: hardness O: alpha	1400.0000 10.1000
Tm : density : E	1900.0000 3.4400 2.1000	O: hardness O: alpha	1410.0000 2.4000
: Tm : dersity	3000.0000 3.6000	O: hardness O: alpha	3240.0000 3.6000
: E : Tm : density	5.7560 2950.0000 5.2100	O: hardness O: alpha	2450.0000 9.3500
: E : Tm : density	2.5000 2050.0000 6.1300	O: hardness O: alpha	2492.7096 10.0530
: E 1: Tm 1: density	4.6000 3000.0000 6.9300	O: hardness O: alpha	1345.117° 10.0974
[: E l: Tm l: dersity I: E	5.1000 ? ? 0.0000	O: hardness O: alpha	?

	•		
]: Tm]: density]: E	2200.0000 2.2500 3.1500	O: hardness O: alpha	1200.0000 6.0000
I: C/Tm	5.1190		
I: Tm I: density I: E I: C/Tm	3000.0000 2.2500 0.9000 3.7530	O: hardness O: alpha	4400.0000 3.8000
I: Tm I: density I: E I: C/Tm	1050.0000 6.1000 4.0000 10.7200	O: hardness O: alpha	1800.0000 2.3000
I: Tm I: density I: E I: C/Tm	1500.0000 5.9000 3.1380 7.5070	O: hardness O: alpha	2250.0000 9.4000
I: Tm I: density I: E I: C/Tm	3310.0000 13.8000 3.3300 3.4020	O: hardness O: alpha	1700.0000 6.9000
I: Tm I: density I: E I: C/Tm	2570.0000 8.4000 4.8300 4.3820	0: hardness 0: alpha	1400.0000 10.1000
N4 I: Tm I: density I: E I: C/Tm	1900.0000 3.4400 2.1000 5.9270	O: hardness O: alpha	1410.0000 2.4000
I: Tm : density : E : C/Tm	3000.0000 3.6000 5.7560 3.7530	0: hardness 0: alpha	· 3240.0000 3.6000
I: Tm I: density I: E I: C/Tm	2950.0000 5.2100 2.5000 3.8175	O: hardness O: alpha	2450.0000 9.3500
I: Tm I: density I: E I: C/Tm	2050.0000 6.1300 4.6000 5.4930	O: hardness O: alpha	1414.5074 9.0569
I: Tm I: density I: E I: C/Tm	3000.0000 6.9300 5.1000 3.7539	O: hardness O: alpha	1345.1179 10.0974
1.		O. hardness	?

I: Tm I: density I: E	2320.0000 3.7500 3.3000	O: hardness O: G	1500.0000 1.0000
I: Tm I: density I: E	2820.0000 2.8000 3.4000	O: hardness O: G	1100.0000 1.1700
I: Tm I: density I: E	3080.0000 3.5400 2.7000	O: hardness O: G	500.0000 0.9200
ro2 I: Tm I: density I: E	2950.0000 5.7000 1.8000	O: hardness O: G	2.0000 בְּלִּים. 10,5 7 00
iO2 I: Tm I. density I: E	1703.0000 2.3300 6.9000	O: hardness O: G	1091.2571 0.9277
I: Tm I: density I: E	2263.0000 6.6700 9.5800	O: hardness O: G	0.0000 3.4200
nc2 I: Tm I: density I: E	3478.0000 10.0000 1.3800	O: hardness O: G	950.0000 0.0000
If Im I: density I: E	2900.0000 9.7000 0.0000	O: hardness O: G	? ?

Table 5.4: Training and query data for oxides

Val.A 4. M.N.ofB 86 Val.B 5.	0000 O: .0000 0000	<u>1</u>	5.2600 2323.0000
M.N.ofB 86 Val.B 5.	0000	Melt.temp.	2323.0000
Val.B 5.	0000		I
M.N.of A 49	0.0000 o:	Density	6.7000
Val.A 4.		Melt.temp.	0.0000
M.N.ofB	5.0000	-	
Val.B 5.	0000		
M.N.of A 50).0000 o:	: Density	12.8000
		: Melt.temp.	3172.0000
	5.0000		
Val.B 5	.0000		
M.N.of A 5	4.0000 O:	: Density	5.4000
		: Density : Melt.temp.	2522.0000
1 7	6.0000 6.0000	. 11010.00mp.	
	.0000		
V(12.12	.0000		
		: Density	7.6000
		: Melt.temp.	2533.0000
	6.0000		
Val.B 5	.0000		
M.N.of A 5	2.0000	: Density	14.2900
Val.A 3	.0000 0	: Melt.temp.	2760.0000
M.N.ofB 8	6.0000		
: Val.B	.0000		
: M.N.of A 5	7.0000 0	: Density	2.8000
		e Melt.temp.	3136.4275
	6.0000		
	.0000		
: M.N.of A 5	6.0000 0): Density	7.8555
): Melt.temp.	3309.5345
· · · · · · · · · · · · · · · · · · ·	6.0000		
	.0000		
: M N.of A	55.0000 O): Density	14.3600
		O: Melt.temp.	3201.6637
	36.0000	<u>-</u>	
. 11.N.OLD	5.0000		
	51.0000 C	O: Density	4.9000
		O: Melt.temp.	3440.0000
	95.0000		
. 11.11.015	4.0000		
: Val.B			6 6000
1 11 14 OL 11		O: Density	6.6000
: Val.A		O: Melt.temp.	3300.0000
. M.N.O.D	95.0000		
: Val.B	4.0000		
: M.N.of A	50.000	O: Density	12.6700
: Val.A	4.0000	O: Melt.temp.	4203.0000
			-

M.N.ofB	95.0000		
Val.B	4.0000		
M.N.of A	54.0000	O: Density	13.6000
val.A	3.0000	O: Melt.temp.	2769.0000
M.N.ofB	95.0000		
Val.B	4.0000		
M.N.of A	53.0000	O: Density	7.6000
Val.A	3.0000	O: Melt.temp.	3770.0000
M.N.ofB	95.0000		
Val.B	4.0000		
M.N.of A	52.0000	O: Density	13.5482
val.A	3.0000	O: Melt.temp.	3846.7107
M.N.ofB	95.0000		
Val.B	4.0000		
M.N.of A	56.0000	O: Density	14.1609
Val A	2.0000	O: Melt.temp.	3978.8412
M.N.ofB Val.B	95.0000 4.0000		
va!.b	4.0000		
M.N.of A	55.0000	O: Density	14.2715
Val.A	2.0000	O: Melt.temp.	4027.4925
M.N.ofB	95.0000		
Val.B	4.0000		
M.N.of A	77.0000	O: Density	2.8000
Val.A	6.0000	O: Melt.temp.	2820.0000
M.N.ofB	101.0000		
: Val.B	2.0000		
: M.N.of A	73.0000	O: Density	3.5400
: Val.A	6.0000	O: Melt.temp.	3080.0000
M.N.01B	101.0000		
: Val.B	2.0000		
: M.N.of A	76.0000	O: Density	5.6700
: Val.A	6.0000	O: Melt.temp.	2253.0000
: M.N.ofB	101.0000		
: Val.B	2.0000		
: M.N.of A	16.0000	O: Density	3.3200
: Val.A	6.0000	O: Melt.temp.	2887.0000
: M.N.ofB	101.0000		
: Val.B	2.0000		
: M.N.of A	15.0000	O: Density	4.2000 2727.0000
: Val.A	6.0000	O: Melt.temp.	2727.0000
: M.N.ofB	101.0000		
: Val.B	2.0000		
: M.N.of A	14.0000	O: Density	5.7600
: Val.A	6.0000	O: Melt.temp.	2196.0000
: M.N.ofB	101.0000		
: Val.B	2.0000		
		,	

M.N.of A Val.A M.N.ofB Val.B	51.0000 4.0000 101.0000 2.0000	O: Density O: Melt.temp.	4.9300 1263.0000
M.N.of A Val.A M.N.ofB Val.B	54.0000 3.0000 101.0000 2.0000	O: Density O: Melt.temp.	5.2300 2322.0000
M.N.of A Val.A M.N.ofB Val.B	53.0000 3.0000 101.0000 2.0000	O: Density O: Melt.temp.	2.8000 2218.0000
M.N.of A Val.A M.N.ofB Val.B	51.0000 4.0000 100.0000 3.0000	O: Density O: Melt.temp.	5.4400 3223.0000
M.N.of A Val.A M.N.ofB Val.B	49.0000 4.0000 100.0000 3.0000	O: Density O: Melt.temp.	7.3500 3253.0000
M.N.of A Val.A M.N.ofB Val.B	50.0000 4.0000 100.0000 3.0000	O: Density O: Melt.temp.	13.9000 3660.0000
M.N.of A Val.A : M.N.ofB . Val.B	54.0000 3.0000 100.0000 3.0000	O: Density O: Melt.temp.	6.0200 2450.0000
: M.N.of A . Val.A : M.N.ofB : Val.B	53.0000 3.0000 100.0000 3.0000	O: Density O: Melt.temp.	8.3600 2477.0000
: M.N.of A : Val.A : M.N.ofB : Val.B	52.0000 3.0000 100.0000 3.0000	O: Density O: Melt.temp.	14.3600 3366.0000
: M.N.of A : Val.A : M.N.ofB : Val.B	57.0000 2.0000 100.0000 3.0000	O: Density O: Melt.temp.	6.1400 1772.0000
: M.N.of A : Val.A : M.N.ofB : Val.B	56.0000 2.0000 100.0000 3.0000	O: Density O: Melt.temp.	9.1800 1172.0000
: M.N.of A	55.0000	O: Density	12.1000

Val.A M.N.ofB Val.B	2.0000 100.0000 3.0000	O: Melt.temp.	873.0000
M.N.of A Val.A M.N ofB Val.B	54.0000 3.0000 100.0000 3.0000	O: Density O: Melt.temp.	6.6898 2311.3718
M.N.of A Val.A M.N.ofB Val.B	53.0000 3.0000 100.0000 3.0000	O: Density O: Melt.temp.	8.6104 2606.4585
M.N.of A Val A M.N.ofB Val.B	52.0000 3.0000 100.0000 3.0000	O: Density O: Melt.temp.	13.8339 3444.5763

Chapter 6

Conclusions and Future Work

6.1 Conclusions

This work is about trends in material data for binary ceramic compounds. The major aspects can be summed up as follows:

- 1. A database comprising of property data for about 60 ceramic compounds has been developed.
- 2. The compiled data has been used to determine property ranges and to explore various correlations.
- 3. Property ranges for various categories of materials including ceramics are compared which are useful for materials selection in mechanical design.
- 4. Correlations between various physical properties are discussed and the limits

of correlations are described for ceramic compounds. Based on above correlation ,estimates are made for a few compound and compared with literature value.

- 5. Neural Networks are developed for estimating various properties. After querring these networks, a good comparative values of the properties are obtained for materials. The concept of "informed neural network" was applied and it was found that it yields better estimates.
- 6. Neural Networks are developed for Borides, nitrides, carbides and oxides using Mendeleev number and valency as input a good estimate of melting point and density is made.

Preliminary results support the hypothesis that since Mendeleev number allows good structural separation of compounds in Pettifor maps, it should also be useful index in developing correlations with various properties of refractory compounds.

6.2 Suggestions for Future work

The present work is a first attempt to develop correlations between properties of materials based on various approaches including structure maps, and neural networks. Although the results are encouraging the work should be extended to cover more compounds and properties. It would then be possible to ascertain the utility as well as to carry out a comparative evaluation of these approaches.

References

- 1 P. William Lee, Ceramics., Reinhold Publishing Corporation, 1961
- 2 W.D. Kingrey, Introduction to Ceramics, John Wiley and Sons, 1965
- 3 David W. Richerson, Modern Ceramic Engineering, 1982, p376-392
- 4 Ullmann's Encyclopedia of Industrial Chemistry edited by Wolfgang Gerhartz, Y. Stephen Yamamoto, Thomas Campbell, Rudolf Pfefferkorn, James F. Rounsaville, vA4, 1985, p296-306
- 5 Ullmann's Encyclopedia of Industrial Chemistry edited by Wolfgang Gerhartz, Y. Stephen Yamamoto, Thomas Campbell, Rudolf Pfefferkorn, James F. Rounsaville, vA5, 1986, p61-77
- 6 Ullmann's Encyclopedia of Industrial Chemistry edited by Barbara Elvers, Stephen Hawkins, Gail Shulz, vA17,1991, p341-357
- 7 Eugene Ryshkewitch, Oxide Ceramics, Academic press, 1972, p109-388
- 8 Checks and Estimates for Material Properties, M.F.Ashby, Cambrige Engg. Design center, 1996
- 9 P. Villars, J. less-Comma Met., 92, 1983, 215
- 10 P. Villars, J.less- Comma Met., 99, 1984, 33
- 11 P.Villers, J.less-Comma Met., 102, 1985, 199
- 12 W.B. Pearson, The Crystal Chemistry and Physics of Metals and Alloys, John Wiley and Sons, New York, 1972
- 13 D.G. Pettifer, First supplement to the Pergomon Encyclopedia of Materials Science and Engineering, edited by R.W. Cahn, Pergamon, Oxford, 1988,p51
- 14 D.G. Pettifer, New Sci., 110, (1510), 1986
- 15 D.G. Pettifer, *Physical Metallurgy*, edited by R.W. Cahn and P.Haasen, chapter 3, 73-152, 1983, Amsterdam, North-Holland, 1983
- 16 D.G. Pettifer, J. Phys. C, Solid State Phys., 19,1986, 285
- 17 D.G. Pettifer and R.Podloucky, Phys. Rev. Lett., 55, 1985, 261
- 18 D.G. Pettifer, Mat. Sc. And Tech., 4,1988, 675

- 19 M.F. Ashby and David R.H.Jones, Engineering Materials: An Introduction to their properties and applications, v34, Pergamon Press, 1980
- 20 Priyanka awasthi, Om Prakash , Materials property data for binary ceramic compounds, IITK-ME-M&D-TR05, Department of mechanical engineering, Indian Institute of Technology, Kanpur, India, May 2001
- 21 D. R. Askeland, The Science and Engineering of Materials, Chapman and Hall 1990
- 22 CRC handbook of Chemistry & Physics, 79th ed, edited by David R.Lide, CSC Press LLC, 1998
- 23 M.F. Ashby, Material Selection in Mechanical Design, 2nd edn, Butterworth-Heinemann, 1992
- 24 Touloukian, Thermo physical properties of materr: Thermal conductivity of metallic element and alloys, The TPRC data series, v1, 1970
- 25 Touloukian, Thermo physical properties of matter: Thermal expansion of metals and alloys, The TPRC data series, v12, 1975
- 26 Smith Metals Reference Book, 6th edn., edited by Eric A. Brandes, R669 Sm6m6
- 27 Intermetallic Compounds: Principles & Practice, edited by J.H. Westbrook and R.L. Fleischer, v1, John Wiley & Sons, 1995
- 28 F.Ashby, Engineering Material: An Introduction to microstructures, Processing and Design, v39, Pergamon Press, 1986
- 29 B. Chalmers, Physical metallurgy, John Wiley& sons, 1962
- 30 W.B.Pearson, Handbook of lattice spacings, structure of metals and alloys, Pergamon Press, 1967
- 31 W.F.Pearson, Handbook of lattice spacings, structure of metals and alloys Pergamon Press, 1958
- 32 Encyclopedia of Material Science & Engineering, v1, edited by R.Cahn, Pergamon Press, 1998
- 33 Rules of Thumb for physical scientists, compiled by D.J. Fisher, Trans Tech publications Ltd., Switzerland, 1998.

- 34 P. Paufler, intermetallic phasen VEB Deutscher Verlag furGrundstoffindustrie Leipzig, 1976,165
- 35 R.L. Fleischer, Proc. Int. Symp. Intermetallic Compounds edited by O. Izumi, The Japan Institute of Metals, Sendai, 1991a, 157
- 36 A.A. Ivanko, *Handbook of Hardness Data*, edited by G.V. Samsonov, Akad.Sci. Ukranian SSSR, 1971
- 37 R.L. Fleischer, R.S. Gilmore and R.J. Zabala, J. Appl. Phys., 64, 1988, 2964
- 38 R.L. Fleischer, R.S. Gilmore and R.J. Zabala, Acta. Meta., 37, 1989, 2801
- 39 Jacek M. Zurada Introduction to Artificial Neural Systems Jaico Publishing House, 1999
- 40 Crystallographic data on metal and alloy Structures compiled by A.Taylor and Brenda J. Kagle, Mills Memorial Library, 1962
- 41 Intermetallic compounds, Principle and Practice, edited by J.H. Westbrook and R.L. Fischer, v2 John Wiley & sons, 1995, p12
- 42 Intermetallic compounds Principle and Practice, edited by J.H. Westbrook And R.L.Fischer, v2 John Wiley & sons, 1995,p 269
- 43 Materials data compilation by M.F.Ashby and A.M. Brown, Cambridge University, 1980
- 44 CRC Materials Science and Engineering Handbook, 2nd ed., edited by James F. Shackelford, William Alexander, Jun S. Park, 1994, p259-345
- 45 1987 IEEE, ASSP Lipman R. An introduction to computing with neural networks, p 4-18
- 46 H.K.D.H. Bhadeshia, ISIJ International, v39, 1999, p966-979
- 47 © 1999-2000 Stephen Wolestenholme, http://www.uksharereg.com/easynn.html
- 48 D.J.C. McKay Neural Computation, v4, 1992, p415-472.
- 49 Om Prakash, Informed neural networks for prediction of materials propertry data, IITK-ME-M&D-TR03, Department of mechanical engineering, Indian Institute of Technology, Kanpur, India, July 2000

Crystal Structure of Binary Compounds

The crystal structures of tens of thousands of binary, ternary and quaternary phases have been developed since the advent of x-ray crystallography in 1910. These crystal structures are having importance in alloy formation. In this section we will see various nomenclatures which describe the crystal structures of various materials In the following section we will see in brief about crystal structure of refractory compounds.

A.1 Crystal structure nomenclature

In general crystals structures are preliminarily classified according to the fourteen Bravais lattices and then the number of atoms in the conventional crystallographic Unit cell for standard space group. Secondary classification within these groups follows the numerical order of 230 space groups and finally within any space group structures follow an alphabetical order of their names. The important nomenclatures that generally come across are given below

- ASTM nomenclature
- Pearson nomenclature
- Strukturbericht type

ASTM nomenclature

ASTM uses a single arbitrary capital letter to characterize each of fourteen Bravais lattice as shown in Table A.1.

Pearson nomenclature

Pearson chosen two characters, which are widely used to identify crystal types. The nomenclature involves a small letter to identify the space lattice. He retained the crystallographic letters for this purpose. To these is added a number equal to the number of atoms in the unit cell conventionally selected for a particular crystal type. When determining number of atoms in the unit cell, it should be remembered that each atom that is shared with an adjacent cell (or cells) must be counted as only a fraction of an atom The Pearson symbols for the fourteen space lattices are shown in Table A.1

Sirukturhericht type

There are indefinite number of structural types falling under a given class.

Table A.1: Representative nomenclatures for fourteen Bravais lattices

Crystal System	Lattice Parameters & Angles	Space lattice	Lattice symbol	Small letter designation by Pearson	Pearson Symbol	ASTM symbol
Triclinic (anorthic)	$a \neq b \neq c$ $\alpha \neq \beta \neq \gamma$	Primitive	P	a	aP	Z
Monoclinic	$a \neq b \neq c$ $\alpha = \gamma = 90^{\circ} \neq \beta$ or $a \neq b \neq c$ $\alpha = \beta = 90 \neq \gamma$	Primitive Base – centered	P C	m	mP mC	M N
Orthorhombic	$a \neq b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$	Primitive Base – centered Face – centered Body – centered	P C F I	0	oP oC oF oI	O Q S P
Tetragonal	$a = b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$	Primitive Body – centered	P I	t	tP tI	T U
Hexagonal	$a = b \neq c$ $\alpha = \beta = 90^{\circ}$ $\gamma = 120^{\circ}$	Primitive .	P	h	hP	Н
Rhombohedral (or trigonal)	$a = b = c$ $\alpha = \beta = \gamma \neq 90^{\circ}$ $< 120^{\circ}$	Primitive	R	h	hR	R
Cubic	$a = b = c$ $\alpha = \beta = \gamma = 90^{\circ}$	Primitive Face – centered Body – centered	P F I	С	cP cF cI	C F B

symbols, space groups, structure prototypes and Strukturbericht designations for crystal structures are shown in Table A.2

A.3 Crystal structure of Ceramic Compounds

Refractory compounds have different crystal structure of its constituent chemical elements in the binary case or of its binary boundary refractory compounds in the ternary case Λ crystal structure is completely determined by the following data.

- Chemical formula
- Crystal system and unit cell dimensions
- Space group
- Occupation number and coordinates of the occupied point sets

The first crystal studies of refractory compounds showed relatively simple structures like those of common metals. Hundreds of crystallographic analysis have been completed. It is apparent that this group of compounds embraces many exceeding complex structural arrangements. The most common structures are among the most simple, certain of these belongings to the AB, AB₂ and AB₃ types.

Some example of these structures are shown in Fig.A.1.

Fig A.1: Some examples of crystal structure

Crystal Structure Nomenclature*

rranged Alphabetically by Pearson-Symbol Designation

1 ppennin

arson mbol	Prototype	Struktur- bericht designation	Space group	Pearson symbol	Prototype	Struktur- bericht designation	Space group
74	Cu	<i>A</i> 1	Fm 3m	cP6	Ag ₂ O	C3	Pn 3m
78	C (diamond)	A4	Fd3m	cP7	CaB ₆	$D2_1$	Pm3m
0	NaCl (rock salt)	B 1	Fm3m	cP8	Cr,Si (BW)	A 15	Pm3n
	ZnS (sphalerite)	B3	F43m		FeSi	B20	P2,3
-12	CaF ₁ (fluorite)	C1	Fm3m		Cu ₁ VS ₄ (sulvanite)	$H2_4$	P43m
12	MgAgAs	C1,	F43m	cP 12	FeS ₁ (pyrite)	C2	Pa3
F16	AlCu,Mn (Heusler)	L2	Fm3m		NiSbS (ullmanite)	$F0_1$	P2 ₁ 3
. 10	BiF, (AlFe,)	D0	Fm3m	cP20	βMn	A 13	P4.32
	NaTl	B32	Fd3m	cP36	BaHg ₁₁	$D2_{\epsilon}$	Pm3 <u>m</u>
F0.4	AuBe,	C15,	F43m	cP39	Mg_2Zn_{11}	$D8_c$	Pm3
F24	SiO ₂ (B cristobalite)	C9°	Fd3m	cP52	Cu ₂ Al ₄ (γ brass)	D8,	P43m
	Cu ₂ Mg (Laves)	C15	Fd3m	hP1	HgSn ₆₋₁₀	A_{I}	P6/mmm
F00	CuPt ₁	L1.	Fm3c	hP2	Mg	<i>A</i> 3	P6,/mmc
F32	UB ₁₂	$D2_{t}$	Fm3m		WC	B_{h}	P6m2
F52	Al_2MgO_4 (spincl)	\tilde{H}_1^{j}	Fd3m	hP3	AlB ₂	C32	P6/mmm
F56	Co ₃ S ₄	D7,	Fd3m		Cdl ₂	C 6	$P\overline{3}m1$
C(0	Co ₃ S ₁	D8	Fm3m		Fe ₂ N	L'3	P6 ₃ /mmc
F68	Sb ₂ O ₃ (senarmontite)	D_{λ}	Fd3m		LiŽn₂	C_k	P63/mmc
F80	Fe ₁ W ₁ C (η carbide)	E9,	Fd3m	•	γSe	A 8	P3 ₁ 21
F112	re, w, C (y carolde)	D_{2}^{2}	Fm3c	hP4	αLa	A3'	P63/mmc
	NaZn ₁₁	D8,	Fm3m		BN ·	$\boldsymbol{B}_{\boldsymbol{k}}$	P63/mmc
F116	Cr ₂₂ C ₆		Fm3m		· C (graphite)	A 9	P63/mmc
;	'Mn23Th, Cu16Mg,Si, (G-phase	A2	Im3m		NiAs	$B8_1$	P6 ₃ /mmc
12	W	B_{\bullet}	I 2,3	•	ZnS (wurtzite)	B 4	P63mc
116	C ₀ U	Ďΐ,	I 43d	hP5	La ₂ O ₃	$D5_2$	P3m1
<i>I</i> 28	Th ₃ P ₄	$D^{\prime\prime}$	Im 3		Ni ₂ Al ₃	$D5_{13}$	P3m1
132	CoAs, (skutterudite)	$D0_2$ $D8_c$	Im3m	hP6	CaCu,	$D2_d$	P6/mmm
140	Ge ₇ Ir ₃		143d	,,,,	CoSn	B35	P6/mmm
	Pu_2C_3	DŠ.	143m		Cu ₂ Te	C_{h}	P6/mmm
·152	Cu ₂ Zn ₂ (γ brass)	D_{2}	Im3m		HgS	<i>B</i> 9	· P3 ₁ 21
	$Fe_{3}Zn_{10}$ (γ brass)	$D8_1$	Im3m		MoS ₂	C7	P63/mmc
·154	Sb ₂ Tl ₇	L_{2}^{2}	143m		Ni ₂ ln	B82	P6 ₃ mmc
:158	α Mn (χ -phase)	A 12	143 <i>d</i>	hP8	Na ₃ As	$D0_{18}$	P63/mmc
:176	Cu ₁₅ Si ₄	D86	143 <u>u</u>	,,,,	Ni _z Sn	$D0_{19}$	P63/mmc
:/80	Mn ₂ O ₃ ·	D5,	Ia 3		TiAs	\boldsymbol{B}_{I}	P63/mmc
:196	AlLi ₃ N ₂	E9,	Im $\bar{3}$	hP9	CrSi ₂	C40	$P_{\frac{6}{2}}$ 22
:/162	$Mg_{12}(AI,Zn)_{49}$	D8.	Pm3m	762 /	Fe ₂ P	C22	P62 <u>m</u>
:P1	αPo	A_{1}	-		ζAgZn	\boldsymbol{B}_{b}	₽ 3̄
:P2	CsCl	<i>B</i> 2	Pm 3m		SiO, (high quartz)) <i>C</i> 8	P6 ₂ 22
:P4	AuCu ₃	$L1_2$	Pm 3m	hP10	Pt ₂ Sn ₃	$D5_b$	$P6_3/mm0$
	ReO ₃	$D0_{9}$	Pm3m	hP12	CuS	<i>B</i> 18	$P6_3/mm0$
:P5	AlFe-C (perovskite)	L'12	Pm3m	111 12	MgZn ₂ (Laves)	C14	P6,/mm
•	CaTiO, (perovskite)	$E2_1$	Pm3m		SiO ₂ (β tridymite	C10	P63/mm
	FeN	L'Ì	P43m				contir

Table A.2: Crystal structure nomenclatures are arranged alphabetically by Pearson symbol designation and Strukturbericht designation

anged Alphabetically by Pearson-Symbol Designation (continued)

rson bol	Prototype	Struktur- bericht designation	Space group	Pearson symbol	Prototype	Struktur- bericht designation	Space group
4 6	W,B,	D8,	P6 ₃ /mmc	oP8	βCu,Ti	$D0_{a}$	Pmmn
5	Mn,Si,	$D8_{8}^{n}$	P6 ₃ /mcm	01 0	FeB	B 2 7	Pnma
•	Ni,Ti	$D0_{24}$	P6 ₃ /mmc		GeS	B16	Pnma
3	Al ₄ C ₄ Si	E94	$P6_3mc$		SnS	B 10 B 29	Pmcn
,	Al, FeMg, Si	E9,	P62m		MnP	B31	Pnm a
	Mg ₂ Ni	C_{a}	$P6_{2}22$		TiB		Pnma
)	Fe ₃ Th ₇	$D10_2$	$P6_3mc$	oP12	Co ₂ Si, NiSiTi (E-phase)	B_{m} $C23$	Pnma
U	Th-S ₁₂	$D_{k}^{10_{2}}$		01 12	Co ₂ Si, WiSiTi (E-phase)	C37	Phnm
4	Cu ₁ P	$D0_{21}^{0}$	$P6_3/m$		HgCl,	C28	Pmnb
4		C36	P6 ₃ cm	oP16	Al,Ni	$D0_{20}$	Pnma
8	MgNi ₂ (Laves)	$D8_{11}$	P6 ₃ /mmc	02 10	AsMn,	$D0_d^{20}$	Pmmn
0	Co ₂ Al ₅	D_{011}	$P6_3/mmc$		BaS ₃	$D0_{17}^d$	P42 ₁ m
	αHg	A 10	R_{2m}		CdSb	B.	Pbca
	βΡο	A_{\perp}	$R_{\frac{3}{2}m}$		CuS,Sb (wolfsbergite)	FŠ,	Pnma
	αAs .	A7	$R\bar{3}m$		Fe ₃ C (cementite)	D_{11}^{136}	Pnma
	αSm	C19	$R \overline{\underline{3}} m$	oP20		D_{10}^{011}	Pnma
•	NaCrS ₂	F5 ₁	<u>R 3</u> m	01.70	Cr ₃ C ₂	$D_{5}^{3_{10}}$	Pnma Pnma
i	Bi ₂ Te ₃	C33	$R\overline{3}m$		Sb ₂ S ₃	$D_{11}^{D_{3}}$	Pccn
	Ni_3S_2	D5, `	R <u>3</u> 2	oP24	Sb ₂ O ₃ (valentinite) AuTe ₂ (krennerite)	C46	Pccn Pma 2
i	CaSi ₂	C12	R 3m	UF 24	CuFe ₂ S ₃ (cubanite)	E9,	Pma 2 Pnma
	NiS (millerite)	<i>B</i> 13	R3m		Cure ₂ S ₃ (cubanite)	69	
7	Al ₄ C ₃	$D7_1$	$R\bar{3}m$	- D 40	TiO ₂ (brookite)	C21	Pbca
	Mo ₂ B ₅	$D8_{t}$	R3m	oP40	Cr ₇ C ₃	D_10	Pnma
10	αAl ₂ O ₃ (corundum)	D_{5_1}	R3c	tI2	αΡα	A_{g}	I4/mmm
13	Fe_7W_6 (μ -phase)	$D_{8}^{3_1}$	R3m		In	A 6	I4/mmm
			$R\frac{3m}{3m}$	<i>tI</i> 4	βSn	A 5	I4,/amd
15	B ₄ C	$D1_{\mathbf{r}}$	N 3/11	<i>t</i> 16	CaC ₂	Clla	I4/mmm
26	Cr _s Al _s	$D8_{10}$	$R_{\underline{3}m}$		MoSi ₂	$C11_h$	I4/mmm
32	CuPt	$L1_1$	R3m		ThH,	1. ' 2,	<i>14/mmm</i>
6	Λu Γe ₂ (calaverite)	C34	C2/m	118	ΔI,Ti	D0	<i>IA/mmm</i>
8	CuO (tenorite)	B26 .	C2/c	<i>t1</i> 10	∧l ₄ Ba	D_{1}	<i>[4/mmm</i>
12	ThC ₂	$C_{\mathbf{r}}$	C2/c		MoNi ₄	$D1_{u}$	[4/m
14	δNi ₃ Sn ₄	Di.	C2/m	<i>tI</i> 12	Al ₂ Cu	C16	I4/mcm
116	FeKS ₂	F5	C2/c		ThSi ₂	C۲	I4 ₁ / <u>a</u> md
12	AgAuTe, (sylvanite)	$E1_{b}$	P2/c	<i>tI</i> 14	Al₂CdŠ₄	E3	14
	ZrO ₂	C43	$P2_1/c$	<i>tI</i> 16	Al ₁ Zr	$D0_{23}$	<i>I4/mmm</i>
20	As ₂ S ₃	$D5_{c}$	P2/c		CuFeS ₂ (chalcopyrite	$E1_1$	I <u>4</u> 2d
22	Co _z Aİ,	$D8_d^{\prime}$	P2/c		Cu ₂ FeSnS ₄ (stannite)	H2,	142m
24	FeAsS	$E0_7^{\circ}$	P2,/c		Ir ₃ Si	$D0_i^i$	14/mcm
32	AsS (realgar)	$B_{I}^{'}$	P2/c		MoB	B_{π}	14 ₁ /amd
	βSe	A'_{I}	P2/c		SiU,	$D\delta_c$	<i>14/mcm</i>
P64	αSe	A .	P2,/c		TISe	B 37	I4/mcm
4	αÜ	A 20	Cmcm	<i>tI</i> 18	Fe ₈ N	$D2_{\mathbf{z}}$	I4/mmm
8	CaSi	B_c	Cmmc	tI26	Mn_{12} Th	$D2_b^s$	I4/mmm
· ·	αGa	\tilde{A} ii	Cmca	tI28	MnU ₆	$D2_c^{\circ}$	I4/mcm
	CrB	B33	Cmcm	t132	Cr,B,	$D8_{t}$	I4/mcm
		A 14	Cmca		Ni ₃ P	$D0_{\star}$	14
	لم P (block)	A 17	Cmca		W ₅ S ₁ ,	$D8_{m}$	I4/mcm
12	P (black)	C49	Cmcm	tP2	δCuTi	$L_{2_a}^{\infty}$	P4/mmm
12	ZrSi ₂				βNp	A_d	P42 ₁ 2
16 20	BRe,	$E1_a$	Cmcm	tP4		L_{0}^{α}	P4/mmm
20	$PdSn_4$	$D1_{c}$	Aba2		AuCu		P4/mmm
24	PdSn ₂	C_{\bullet}	Aba2		CuTi,	$L6_0$	
28	Mn ۱ علا	$D2_h$	Cmcm		γCuTi	B11	P4/nmm
24	TiSi,	C54	Fddd		PbO	B 10	P4/nmm
40	Mn, B	$D1_f$	Fddd		PtS	B17	$P4_2/mmc$
48	CuMg ₂	C_{b}	Fddd	tP6	Cu₂Sb	C38	P4/nmm
72	GeS ₂	C44	Fdd2		PbFCl	$E0_1$	P4/nmm
128	లవ _ి అవే	A 16	Fddd		TiO ₂ (rutile)	C4	$P4_2/mnn$
128	SiS ₂	C42	Ibam	<i>tP</i> 10	Pb₄Pt	$D1_d$	P4/nbm
14	Ta.B.	$D7_{b}$	Immm		Si ₂ U ₃	$D5_{u}$	P4/mbm
20		$D_{b}^{\prime b}$	Imma	<i>tP</i> 16	PdS	B34	$P4_2/m$
	Al _t U Ga Ma	$D_{\mathbf{R}}^{1_b}$	Ibam	tP20	$\mathrm{B_4Th}$	$D1_{e}$	P4/mbn
28	Ga.Mg,	D_{0x}	Pmma	iP30	βU	Δ,	$P4_{7}/mnn$

r-		Pearson	Space	Struktur- bericht		D	C
tion	Prototype	symbol	group	designation	Prototype	Pearson symbol	Space group
	αPa	tI2	I4/mmm	B20	FeSi	cP8	P2 ₁ 3
	βU	<i>tP</i> 30	P4 ₂ /mnm	B26	CuO (tenorite)	mC8	C2/c
	αNp	oP8	Pnmu	B27	FeB	oP8	Pnma
	βNp	tP4	P42,2	B29	SnS	oP8	Pmcn
	HgSn ₆₋₁₀	hP1	P6/mmm	<i>B</i> 31	MnP	oP8	Pnma
	γ B	<i>tP</i> 50	$P4_2/nnm$	B32	NaTl	cF16	Fd3m
	αΡο	cP1	$Pm\overline{3}m$	$B33(=B_f)$	CrB	oC8	Cmcm
	βΡο	hR 1	R3m	B34	PdS	<i>tP</i> 16	$P4_2/m$
	αSe	mP64	$P2_1/c$	B35	CoSn	hP6	P6/mmm
	βSe	mP32	P2 <u>:</u> /c	B37	TISe	<i>tI</i> 16	I4/mcm
	Cu	cF4	Fm3m	$C_{\mathbf{a}}$	Mg_2Ni	hP 18	$P6_{2}22$
	W	CI2	Im3m	C_b	CuMg ₂	oF48	Fddd
	Mg	hP2	P6 ₃ /mmc	C.	ThSi ₂	tI 12	I4 ₁ /amd
	αLa	hP4	P6 ₃ /mmc	C, C	PdSn ₂ ThC ₂	oC24 mC12	Aba2 C2/c
l	C (diamond)	cF8	Fd3m	C,	Cu ₂ Te	hP6	P6/mmm
	₿Sn	114	I4 ₁ /amd	C.	LiZn ₂	hP3	P6 ₃ /mmc
	In	112	14/ <u>m</u> mm	Č	CaF ₂ (fluorite)	cF12	Fm3m
	αAs	hR2	R3m	$C1_{b}$	MgAgAs	cF12	F43m
	γSe	hP3	P3 ₁ 21	C2	FeS ₂ (pyrite)	cP 12	Pa3
	C (graphite)	hP4	P6 ₃ /mmc	C3	Ag ₂ O	cP6	Pn 3m
	αHg	hR 1	R3m	C4	TiO ₂ (rutile)	tP6	P4 ₂ /mnm
	αGa	oC8	Cmca	C6	Cdl ₂	hP3	P3m1
	αMn (χ-phase)	c158	I43m	C7	MoS ₂	hP6	P6 ₃ /mmc
	βMn	cP20 oC8	P4 ₁ 32 Cmca	C8	SiO ₂ (high quartz)	hP9	P6222
	l ₂ Cr ₃ Si (β-W)	cP8	Pm 3n	C9	SiO ₂ (β cristobalite)	cF24	Fd3m
	Cr ₃ Si (β-W)	oF128	Fin sn Fddd	C10	SiO ₂ (β tridymite)	hP 12	P6 ₃ /mmc
	P (black)	oC8	Cmca	C11.	CaC ₂	t16	I4/mmm
	r (black) αU	oC4	Cmcm	C11,	MoSi ₂ CaSi ₂	tI6 hR6	I4/mmm R3m
	C ₀ U	cI16	12 ₁ 3	C12 C14		hP12	P6 ₃ /mmc
	ζ A gZn	hP9	P3	C 14		cF24	Fd3m
	CaSi	oC8	Cmmc	C15,	AuBe,	cF24	F43m
	ηNiSi	oP8	Pbnm	C16	Al ₂ Cu	tI 12	I4/mcm
	CdSb	oP 16	Pbca	C18	FeS ₂ (marcasite)	oP6	Pnnm
33)	CrB	oC8	Cmcm	C19	αSm	hR3	$R\bar{3}m$
, , , ,	MoB	<i>tI</i> 16	I4 ₁ /amd	C21	TiO ₂ (brookite)	oP24	Pbca
	WC	hP2	P6m2	C22	Fe ₂ P	hP9	P 62m
	TiAs	hP8	P6,/mmc	C23	Co ₂ Si, NiSiTi (E-phase)	`oP12	Pnma
	BN	hP4	P6 ₃ /mmc	C28	HgCl ₂	oP12	Pmnb
	AsS (realgar)	mP32	$P2_1/c$	C32	AlB ₂	hP3	P6/mmm
	TiB	oP8	Pnma	C33	Bi ₂ Te ₁	hR 5	R3m
	NaCl (rock salt)	cF8	Fm 3m	C34	AuTe ₂ (calaverite)	mC6	C2/m
	CsCl	cP2	$Pm\bar{3}m$	C35	CaCl ₂	oP6	Pnnm
	ZnS (sphalerite)	cF8	F43m	C36	MgNi ₂ (Laves)	hP24	$P6_3/mmc$
	ZnS (wurtzite)	hP4	$P6_{3}mc$	C37	Co₂Si	oP12	Phnm
	NiAs	hP4	P6 ₃ mmc	C38	Cu₂Sb	tP6	P4/nmm
	Ni ₂ In	hP6	P6 ₃ mmc	C40	CrSi ₂	hP9	P6 ₂ 22
	HgS (cinnabar)	hP6	$P_{3_1}^{3}21$	C42	SiS ₂	oI12	Ibam D2 (*
	PbO	tP4	P4/nmm	C43	ZrO ₂	mP12	P2 ₁ /c
	γCuTi	tP4	P4/nmm	C44	GeS ₂	oF72	Fdd2
	NiS (millerite)	hR6	R3m	C46	AuTe ₂ (krennerite)	oP24	
	GeS	oP8	Pnma	C49	ZrSi ₂	oC12	Cmcm
	PtS (cooperite)	tP4	P4 ₂ /mmc	C54	TiSi ₂	oF24	Fddd
	CuS (rovelite)	hP12	P6 ₃ /mmc	$D0_a$	βCu,Ti	oP8	Pmmn
	AuCd	oP4	Pmma	$D0_{\epsilon}$	SiU,	<i>tI</i> 16	I4/mcm
	/ 10 - U						

Arranged Alphabetically by Strukturbericht Designation (continued) Struktur-

Co₃S₄

Th₃P₄

Mn₂₃Th, Cu₁₆Mg,Si₇ (G-phase) σCrFe

 Mg_2Zn_{11}

 $D7_2$

D7,

D8,

 $D8_b$

 $D8_c$

cF56

cI 28

cF116

*tP*30

cP39

Fd3m

I43d

Fm3m

P42/mnm

Pm3

 $L1_2$

 $L2_a$ $L2_1$

 $L2_2$

 $L6_0$

bericht		Pearson	C	Strukt			
designation	Prototype	symbol	Space	berich		Pearson	Space
ממי			group	designa	ation Prototype	symbol	
D0' D0 ₄	Ir ₃ Si	<i>tI</i> 16	I4/mcm	$D8_d$	Co ₂ Al ₉	mP22	
$D0_{\epsilon}$	AsMn,	oP 16	Pmmn .	D8,	$Mg_{32}(Al,Zn)_{49}$		$P2_1/c$
$D0_2$	Ni ₃ P	<i>tI</i> 32	14	D8,	Ge ₇ Ir ₃	cI 162 cI 40	Im 3 Im 3m
$D0_2$ $D0_3$	CoAs, (skutterudite)	cI32	Im3	D8,	Ga ₂ Mg ₅	oI 28	Imsm Ibam
	BiF ₃ , AlFe ₃	<i>cF</i> 16	Fm3m	$D8_{h}^{*}$	W_2B_5	hP14	P6 ₃ /mmc
D0, D0 ₁₁	ReO,	cP4	$Pm\overline{3}m$	$D8_i^n$	Mo ₂ B,	hR7	R3m
D_{011}	. Fe ₃ C (cementite)	oP16	Pnma	D_{k}	Th ₇ S ₁₂	hP20	$P6_3/m$
D017	BaS ₃	oP 16	$P42_1m$	$D8_{i}$	$\operatorname{Cr}_{5}\overline{\operatorname{B}}_{3}^{2}$	tI32	I4/mcm
$D0_{18}$	Na ₃ As	hP8	P6 ₃ /mmc	$D8_{m}$	W ₃ Si ₃	tI32	I4/mcm
$D0_{19}$	Ni ₃ Sn	hP8	P63/mmc	$D8_1^{m}$	Fe ₃ Zn ₁₀)	cI 52	Im3m
$D0_{20}$	Al ₃ Ni	oP16	Pnma	$D8_2$	Cu_5Zn_8 γ brass	c152	143m
$D0_{21}$	Cu ₃ P	hP24	$P6_3cm$	$D8_3$	Cu_9Al_4	cP 52	P43m
$D0_{22}$	Al ₃ Ti	<i>t</i> /8	I4/mmm	$D8_4$	$Cr_{23}C_6$	cF116	Fm3m
$D0_{23}$	Al ₃ Zr	<i>tI</i> 16	I4/mmm	$D8_{s}$	Fe ₇ W ₆ (μ-phase)	hR 13	R 3m
$D0_{24}$	Ni ₃ Ti	hP 16	P6 ₃ /mmc	$D8_6$	Cu ₁₅ Si ₄	cI76	143d
$D1_{\bullet}$	MoNi ₄	<i>tI</i> 10	I4/m	$D8_{i}$	Mn _s Si ₃	hP16	P6 ₃ /mcm
$D1_b$	Al₄U	<i>oI</i> 20	Imma	$D8_9$	Co ₂ S ₈	cF68	Fm3m
$D1_{c}$	PdSn ₄	oC20	Aba2	$D8_{10}$	Cr _s Áľ _s	hR 26	R 3m
$D1_d$	Pb₄Pt	<i>tP</i> 10	P4/nbm	$D8_{11}$	Co ₂ Al,	hP28	P63/mmc
D1	B ₄ Th ·	<i>tP</i> 20	P4/mbm	$D10_1$	$Cr_{7}C_{3}$	oP40	Pnma
$D1_f$	Mn ₄ B	oF40	Fådd	$D10_2$	Fe ₃ Th ₇	hP20	P6 ₃ mc
$D1_{x}^{\prime}$	B ₄ C	hR 15	R3m	$D8_{11}$	Co ₂ Al ₅	hP28	P63/mmc
$D1_3$	Al ₄ Ba	tI10		$E0_1$	PbFCÍ	tP6	P4/nmm
$D2_b$	Mn ₁₂ Th	1126	I4/mmm	$E0_7$	FeAsS	mP24	$P2_{1}/c$
D2,	MnU ₆		I4/mmm	E 1.	MgCuAl ₂	oC16	Cmcm
$D2_d$	CaCu _s	1/28	I4/mcm	$E1_{b}$	AgAuTc ₄ (sylvanite)	mP12	P2/c
D2,	BaHg ₁₁	hP6	P6/mmm	E1	CuFeS ₂ (chalcopyrite)	<i>tI</i> 16	142d
D2,	UB ₁₂	cP36	Pm 3m	$E2_1$	CaTiO ₃ (perovskite)	cP5	Pm3m
$D2_{\star}$	E ₂ N	cF52	Fm3m	E3	Al ₂ CdS ₄	1114	14
$D2_{k}^{2}$	Fc _s N	1/18	I4/mmm	E9.	Al ₇ Cu ₂ Fe	<i>tP</i> 40	P4/mnc
$D_{2_1}^{\Sigma_k}$	Al ₆ Mn	oC28	Cmcm	$E9_b$	Al ₈ FeMg ₃ Si ₆	<i>hP</i> 18	P 62m
$D2_1$	CaB ₆	cP7	Pm 3m	$E9_c$	Mn ₃ Al ₉ Si	hP26	P63/mmc
D5.	NaZn ₁₃	cF112	Fm 3c	$E9_d$	AlLi3N2	cI 96	Ia3
D5,	Si ₂ U,	<i>tP</i> 10	P4/mbm	E9,	CuFe ₂ S ₃ (cubanite)	oP24	Pnma
D5.	Pt ₂ Sn ₃	hP10	P6 ₃ /mmc	E9,	Fe ₁ W ₃ C (η carbide)	<i>cF</i> 112	Fd3m
DS.	Pu ₂ C ₃	cI40	143d	E9,	Al ₄ C ₄ Si	<i>hP</i> 18	P6 ₃ mc
DS_{r}	Ni ₃ S ₂	hR5	R32	$F0_1$	NiSbS (ullmanite)	<i>cP</i> 12	$P2_13$
DS_1	As_2S_3	mP20	$P2_1/c$	F5.	FeKS ₂	mC16	C2/c .
$D5_2$	αAl ₂ O ₃ (corundum)	hR 10	R3c	F5 ₁	NaCrS ₂	hR4	R 3m
D_{3_3}	La ₂ O ₃	hP5	P3m1	F5 ₆	CuS ₂ Sb (wolfsbergite)	oP 16	Pnma
D 5,	Mn_2O_3	cI80	Ia 3	$H1_1$	Al ₂ MgO ₄ (spinel)	cF56	Fd3m
	Sb ₂ O ₃ (senarmontite)	cF80	Fd3m	H2,	Cu ₃ VS ₄ (sulvanite)	cP8	P43m
DS_{i}	Sb ₂ S ₃	oP20	Pnma	$H2_6$	Cu ₂ FeSnS ₄	1/16	142m
D5,	Zn ₃ P ₂	tP40	P4 ₂ /nmc	L' 1	Fe ₄ N	cP5	Pm 3m
D5 ₁₀	Cr_3C_2	oP20	Pnma	$L'1_2$	AlFe ₃ C (perovskite)	cP5	Pm3m
D511	Sb ₂ O ₃ (valentinite)	oP20	Pccn	$L'2_{\rm b}$	ThH ₂	<i>tI</i> 6	I4/mmm
$D5_{13}$	Ni ₂ Al ₃	hP5	P3m1	L'3	Fe ₂ N	hP3	$P6_3/mmc$
D7.	δNi ₃ Sn ₄	mC14	C2/m	$L1_a$	CuPt,	cF32	Fm3c
$D7_b$	Ta ₃ B ₄	oI 14	Immm	$L1_0$	AuCu	IP4	P4/mmm
D7,	Al ₄ C ₃	hR7	R3m	$L1_1$	CuPt	hR 32	R 3 <u>m</u>
ת.	C ~ C	cE56	Ed3m	7 1	AuCu	aDA	D 2

Struktur-

AuCu₁

δCuTi

AlCu2Mn (Heusler)

Sb₂Tl₇

CuTi,

cP4

tP2

cF16

cl 54

tP4

Pm3m

P4/mmm

 $Fm\bar{3}m$

Im 3m

P4/mmm

Appendix B - The back-propagation Algorithm - a mathematical approach

Units are connected to one another. Connections correspond to the edges of the underlying directed graph. There is a real number associated with each connection, which is called the weight of the connection. We denote by W_{ij} the weight of the connection from unit u_i to unit u_j . It is then convenient to represent the pattern of connectivity in the network by a weight matrix W whose elements are the weights W_{ij} . Two types of connection are usually distinguished: excitatory and inhibitory. A positive weight represents an excitatory connection whereas a negative weight represents an inhibitory connection. The pattern of connectivity characterises the architecture of the network.

A unit in the output layer determines its activity by following a two step procedure.

First, it computes the total weighted input xj, using the formula:

$$X_f = \sum_i y_i W_{ij}$$

where y_i is the activity level of the jth unit in the previous layer and W_{ij} is the weight of the connection between the ith and the jth unit.

Next, the unit calculates the activity y_j using some function of the total weighted input. Typically we use the sigmoid function:

$$y_j = \frac{1}{1 + e^{-\kappa_j}}$$

Once the activities of all output units have been determined, the network computes the error E, which is defined by the expression:

where yj is the activity level of the jth unit in the top layer and dj is the desired output of the jth unit.

The back-propagation algorithm consists of four steps:

1. Compute how fast the error changes as the activity of an output unit is changed. This error derivative (EA) is the difference between the actual and the desired activity.

$$EA_j = \frac{dE}{dy} = y_j - d_j$$

2. Compute how fast the error changes as the total input received by an output unit is changed. This quantity (EI) is the answer from step 1 multiplied by the rate at which the output of a unit changes as its total input is changed.

$$EI_{j} = \frac{dE}{dx_{j}} = \frac{dE}{dy_{j}} \times \frac{dy_{j}}{dx_{j}} = EA_{j}y_{j}(1-y_{j})$$

3. Compute how fast the error changes as a weight on the connection into an output unit is changed. This quantity (EW) is the answer from step 2 multiplied by the activity level of the unit from which the connection emanates.

$$EW_{ij} = \frac{\partial E}{\partial V_{ij}} = \frac{\partial E}{\partial X_j} \times \frac{\partial X_j}{\partial V_{ij}} = El_{ij} y_i$$

4. Compute how fast the error changes as the activity of a unit in the previous layer is changed. This crucial step allows back propagation to be applied to multilayer networks. When the activity of a unit in the previous layer changes, it affects the activities of all the output units to which it is connected. So to compute the overall effect on the error, we add together all these seperate effects on output units. But each effect is simple to calculate. It is the answer in step 2 multiplied by the weight on the connection to that output unit.

$$EA_i = \frac{\mathcal{E}}{\partial y_i} = \sum_j \frac{\partial \mathcal{E}}{\partial x_j} \times \frac{\partial x_j}{\partial y_i} = \sum_j EI_j W_{ij}$$

By using steps 2 and 4, we can convert the EAs of one layer of units into EAs for the previous layer. This procedure can be repeated to get the EAs for as many previous layers as desired. Once we know the EA of a unit, we can use steps 2 and 3 to compute the EWs on its incoming connections.

