1. Theory Question: In the lecture we encountered the plot seproduced here	е,
snowing a structured classification problem. It was pointed out that	
the most salient feature of this problem is that each class seems to	>
have its own generative distribution	
i.e tre blue points have a different distribution	
than the green ones, (although both die tributions happen to	
have its own generative distribution i.e the blue points have a different distribution than the green ones, (although both distributions happen to overlap).	
Such situations indicate on anti-cousal relationship.	
Such situations indicate on onti-causal relationship. ("the labol causes the inputs")	
and it might seem that discriminative modeling	
and it might seem that discriminative modeling paradigm adopted in the lecture is not appropriate.	
The goal of this week's theory is to realise that the situation is a bit more subtled than that.	
For the purpose of this exercise, we will assume that there are two classes C, and Cz, defining probability distributions	
that there are two classes C, and C, deliming probability	
distributions	
p(n/G), p(n/G) over the imputs, and	
classes are drawn with the probability.	
$p(C) = \left[p(C_1), p(C_1) = 1 - p(C_1)\right]$	

(a) Given a new imput
$$n$$
, how would you compute the postnior $p(C_1|x)$? Show that it can be written as a logistic function:

Ans: $p(C_1|x) = \frac{1}{1+e^{-a(x)}}$ where $a(x) = \ln \frac{p(C_1|x)}{p(C_2|x)}$

Consider the RHS:

$$\frac{1}{1+e^{-a(x)}} = \frac{1}{1+e^{-a(x)}} = \frac{p(C_1|x)}{p(C_2|x)}$$
using Bayes rule
$$\frac{p(C_1|x)}{p(x)} = \frac{p(x)}{p(x)} = \frac{p(C_1|x)}{p(x)}$$

$$\frac{p(C_1|x)}{p(x)} = \frac{p(C_1|x)}{p(x)} = \frac{p(C_1|x)}{p(C_1)} + \frac{p(x)}{p(x)}$$
From lew of total probability $p(x) = p(C_1|x)$

$$\Rightarrow p(C_1|x) = \frac{p(x)}{p(x)} = \frac{p(C_1|x)}{p(x)} = \frac{p(C_1|x)}{p(C_1)} + \frac{p(x)}{p(x)}$$