Homework 2

Group 3

Initial import and merging

```
PROC IMPORT OUT= WORK.prod
      DATAFILE= "H:\prod tooth.xls"
      DBMS=EXCEL REPLACE;
  RANGE="Sheet1$";
  GETNAMES=YES;
  MIXED=NO;
  SCANTEXT=YES;
  USEDATE=YES;
  SCANTIME=YES;
RUN;
data grocery;
infile "H:\toothbr groc" firstobs = 2;
input IRI KEY WEEK SY GE VEND ITEM UNITS DOLLARS F$ D PR;
length UPC $ 17;
length SY2 $ 2;
length GE2 $ 2;
length VEND2 $ 5;
length ITEM2 $ 5;
SY2 = put(SY, z2.);
GE2 = put(GE,z2.);
VEND2 = put(VEND, z5.);
ITEM2 = put(ITEM, z5.);
UPC = catx('-', SY2, GE2, VEND2, ITEM2);
drop SY GE VEND ITEM;
run;
PROC PRINT DATA = grocery(obs=15);RUN;
data groc(rename=(SY2=SY GE2=GE VEND2=VEND ITEM2=ITEM));
set grocery;
RUN;
proc surveyselect data = groc
out = groc out method = srs
sampsize = 100000;
run;
proc print data = groc_out (obs=5);
```

```
run;
proc print data = prod (obs=10);
run;

proc sort data = groc_out; by UPC;
RUN;
proc sort data = prod; by UPC;
RUN;

data groc_prod_details;
merge groc_out (in = a)
prod (in=b);
by UPC;
if a and b;
run;

proc print data = groc_prod_details (obs=25);
run;
```

Questions

1. What are the top 6 brands in the category in terms of dollar sales? What are the market shares of the 6 brands (assuming there are only 6 brands in the market)

```
proc tabulate data = groc_prod_details out=top_six_brands_by_dollars ;
class L5;
var dollars;
tables L5, dollars*(mean sum);
run;

proc sort data=top_six_brands_by_dollars;
by descending DOLLARS_Sum;
run;

data T6brnds;
set top_six_brands_by_dollars(obs=6);
run;

proc print data=T6brnds;
var L5 DOLLARS_Mean DOLLARS_Sum ;
run;
```

```
proc sq1;
create table T6brndsTotal as
select L5, DOLLARS_Mean, DOLLARS_Sum, sum(DOLLARS_Sum) as TOTAL '' from
T6brnds;
quit;

proc print data = T6brndsTotal;
run;

data mktval;
set top_six_brands_by_dollars;
MarketVal = DOLLARS_Sum*100/TOTAL;
run;

proc print data=mktval;
run;
```

The top 6 brands are:

Obs	L5	DOLLARS_Mean	DOLLARS_Sum
1	PRIVATE LABEL	6.44654	62744.13
2	ORAL B ADVANTAGE	8.27610	61499.67
3	ORAL B CROSSACTION	9.77609	51207.18
4	ORAL B INDICATOR	6.97210	47082.60
5	COLGATE WAVE	7.97262	38627.35
6	COLGATE NAVIGATOR	8.96264	38566.24

Assuming there are only 6 brands in the market, market share of the 6 brands are:

Obs	L5	DOLLARS_Mean	DOLLARS_Sum	MarketVal
1	PRIVATE LABEL	6.44654	62744.13	20.9337
2	ORAL B ADVANTAGE	8.27610	61499.67	20.5186
3	ORAL B CROSSACTION	9.77609	51207.18	17.0846
4	ORAL B INDICATOR	6.97210	47082.60	15.7085
5	COLGATE WAVE	7.97262	38627.35	12.8875
6	COLGATE NAVIGATOR	8.96264	38566.24	12.8671

2. Which companies are the major players in the category? Which company owns which brands?

```
proc tabulate data = groc_prod_details out=major_companies ;
class L4;
var dollars;
tables L4, dollars*(mean sum);
run;
proc sort data=major companies;
by descending DOLLARS_Sum;
run;
proc print data=major companies (obs=6);
run;
data majorCompaniesBrands;
set prod;
if L4 = "PROCTER & GAMBLE" or L4 = "COLGATE ORAL PHARMACEUTICALS" or L4 = "JOHNSON &
JOHNSON" or L4 = "PRIVATE LABEL" or L4="CHURCH & DWIGHT CO INC" or L4
="GLAXOSMITHKLINE";
run;
proc sql;
create table Company_Brands as
select distinct L4,L5 from majorCompaniesBrands;
quit;
proc print data = Company Brands;
run;
```

Major players (Companies) in the category are as shown below.

Obs	L4	DOLLARS_Mean	DOLLARS_Sum
1	PROCTER & GAMBLE	7.61494	269591.76
2	COLGATE ORAL PHARMACEUTICALS	7.42638	161100.37
3	JOHNSON & JOHNSON	6.95940	93082.03
4	PRIVATE LABEL	6.44654	62744.13
5	CHURCH & DWIGHT CO INC	6.46638	41624.12
6	GLAXOSMITHKLINE	6.56979	37119.29

Below is the list that contain the brands and companies which own those brands

bs	L4	L5
1	CHURCH & DWIGHT CO INC	AIM
2	CHURCH & DWIGHT CO INC	CLOSE UP
3	CHURCH & DWIGHT CO INC	MENTADENT
4	CHURCH & DWIGHT CO INC	MENTADENT INTER SWEEP
5	CHURCH & DWIGHT CO INC	MENTADENT ORAL CARE
6	CHURCH & DWIGHT CO INC	MENTADENT PROCARE
7	CHURCH & DWIGHT CO INC	MENTADENT SMILE REPLENISHING
8	CHURCH & DWIGHT CO INC	MENTADENT SURROUND
9	CHURCH & DWIGHT CO INC	MENTADENT WHITE AND CLEAN
10	CHURCH & DWIGHT CO INC	PEPSODENT
11	CHURCH & DWIGHT CO INC	PEPSODENT PROFESSIONAL
12	COLGATE ORAL PHARMACEUTICALS	COLGATE
13	COLGATE ORAL PHARMACEUTICALS	COLGATE 360
14	COLGATE ORAL PHARMACEUTICALS	COLGATE ACTIVE ANGLE
15	COLGATE ORAL PHARMACEUTICALS	COLGATE BARBIE
16	COLGATE ORAL PHARMACEUTICALS	COLGATE BLUES CLUES
17	COLGATE ORAL PHARMACEUTICALS	COLGATE CLASSIC
18	COLGATE ORAL PHARMACEUTICALS	COLGATE COLOR CHANGE
19	COLGATE ORAL PHARMACEUTICALS	COLGATE DISNEY ATLANTIS
20	COLGATE ORAL PHARMACEUTICALS	COLGATE EXTRA CLEAN
21	COLGATE ORAL PHARMACEUTICALS	COLGATE GRIP EMS
22	COLGATE ORAL PHARMACEUTICALS	COLGATE HE MAN
23	COLGATE ORAL PHARMACEUTICALS	COLGATE LEGO
24	COLGATE ORAL PHARMACEUTICALS	COLGATE MASSAGER
25	COLGATE ORAL PHARMACEUTICALS	COLGATE NAVIGATOR
26	COLGATE ORAL PHARMACEUTICALS	COLGATE NICK JR DORA THE EXPL
27	COLGATE ORAL PHARMACEUTICALS	COLGATE NICK THE FRLY ODD PAR
28	COLGATE ORAL PHARMACEUTICALS	COLGATE PLUS
29	COLGATE ORAL PHARMACEUTICALS	COLGATE PLUS KOOL LOOKS
30	COLGATE ORAL PHARMACEUTICALS	COLGATE PLUS RIPPLED
31	COLGATE ORAL PHARMACEUTICALS	COLGATE PLUS ULTRA FIT

bs	L4	L5
32	COLGATE ORAL PHARMACEUTICALS	COLGATE POWER PUFF
33	COLGATE ORAL PHARMACEUTICALS	COLGATE SENSITIVE
34	COLGATE ORAL PHARMACEUTICALS	COLGATE SHREK
35	COLGATE ORAL PHARMACEUTICALS	COLGATE SPONGEBOB SQUAREPANTS
36	COLGATE ORAL PHARMACEUTICALS	COLGATE SUPER
37	COLGATE ORAL PHARMACEUTICALS	COLGATE SUPERMAN
38	COLGATE ORAL PHARMACEUTICALS	COLGATE TOTAL
39	COLGATE ORAL PHARMACEUTICALS	COLGATE TOTAL DESIGNS
40	COLGATE ORAL PHARMACEUTICALS	COLGATE TOTAL PROFESSIONAL
41	COLGATE ORAL PHARMACEUTICALS	COLGATE WAVE
42	COLGATE ORAL PHARMACEUTICALS	COLGATE WHITENING
43	COLGATE ORAL PHARMACEUTICALS	COLGATE ZIGZAG
44	COLGATE ORAL PHARMACEUTICALS	MY FIRST COLGATE
45	GLAXOSMITHKLINE	AQUAFRESH
46	GLAXOSMITHKLINE	AQUAFRESH DIRECT
47	GLAXOSMITHKLINE	AQUAFRESH DR SEUSS
48	GLAXOSMITHKLINE	AQUAFRESH EXTREME CLEAN
49	GLAXOSMITHKLINE	AQUAFRESH FLEX
50	GLAXOSMITHKLINE	AQUAFRESH FLEX DIRECT
51	GLAXOSMITHKLINE	AQUAFRESH FLEX FLEXOSAURUS
52	GLAXOSMITHKLINE	AQUAFRESH FLEX O FRIENDS FLEX
53	GLAXOSMITHKLINE	AQUAFRESH FLEX TIP
54	GLAXOSMITHKLINE	AQUAFRESH FLEX TIP MAX ACTIVE
55	GLAXOSMITHKLINE	AQUAFRESH FLEX TRIPLE ACTION
56	GLAXOSMITHKLINE	AQUAFRESH FLX O FRNDS FLEXOSA
57	GLAXOSMITHKLINE	AQUAFRESH MAX ACTIVE
58	GLAXOSMITHKLINE	AQUAFRESH XTENSIVE
59	GLAXOSMITHKLINE	SENSODYNE
60	GLAXOSMITHKLINE	SENSODYNE SEARCH
61	GLAXOSMITHKLINE	SOFTEX
62	JOHNSON & JOHNSON	JOHNSON & JOHNSON REACH
63	JOHNSON & JOHNSON	PLAX
64	JOHNSON & JOHNSON	PREVENT BY REACH
65	JOHNSON & JOHNSON	REACH
66	JOHNSON & JOHNSON	REACH ADVANCED

bs	L4	L5
67	JOHNSON & JOHNSON	REACH ADVANCED CLEAN ANGLE
68	JOHNSON & JOHNSON	REACH ADVANCED DESIGN
69	JOHNSON & JOHNSON	REACH ADVANCED GUM ACTION
70	JOHNSON & JOHNSON	REACH ANTIBACTERIAL
71	JOHNSON & JOHNSON	REACH BETWEEN
72	JOHNSON & JOHNSON	REACH CLEAN AND WHITEN
73	JOHNSON & JOHNSON	REACH CLEAN SWEEP
74	JOHNSON & JOHNSON	REACH CURIOUS GEORGE
75	JOHNSON & JOHNSON	REACH HARRY POTTER
76	JOHNSON & JOHNSON	REACH IN BETWEEN
77	JOHNSON & JOHNSON	REACH INTERDENTAL
78	JOHNSON & JOHNSON	REACH JIMMY NEUTRON
79	JOHNSON & JOHNSON	REACH JUSTICE LEAGUE
80	JOHNSON & JOHNSON	REACH MAX
81	JOHNSON & JOHNSON	REACH MAX BRIGHTENER
82	JOHNSON & JOHNSON	REACH MAX FRESH & CLEAN
83	JOHNSON & JOHNSON	REACH MAX TOOTH & GUM
84	JOHNSON & JOHNSON	REACH MAX TOOTH & GUM WONDERT
85	JOHNSON & JOHNSON	REACH PERFORMANCE
86	JOHNSON & JOHNSON	REACH PLAQUE BLASTER
87	JOHNSON & JOHNSON	REACH PLAQUE SWEEPER
88	JOHNSON & JOHNSON	REACH PLAQUE SWEEPER BETWEEN
89	JOHNSON & JOHNSON	REACH SPONGEBOB SQUAREPANTS
90	JOHNSON & JOHNSON	REACH SQUEEZE
91	JOHNSON & JOHNSON	REACH STRAWBERRY SHORTCAKE
92	JOHNSON & JOHNSON	REACH TOOTH & GUM CARE
93	JOHNSON & JOHNSON	REACH ULTRA CLEAN
94	JOHNSON & JOHNSON	REACH WONDER GRIP
95	PRIVATE LABEL	PRIVATE LABEL
96	PROCTER & GAMBLE	CREST
97	PROCTER & GAMBLE	CREST ADVANCED CARE
98	PROCTER & GAMBLE	CREST CLASSIC CLEAN
99	PROCTER & GAMBLE	CREST CLEAN EXPRESSIONS
100	PROCTER & GAMBLE	CREST COMPLETE
101	PROCTER & GAMBLE	CREST DEEP CLEAN ACTIVE CLEAN

bs	L4	L5
102	PROCTER & GAMBLE	CREST DEEP CLEAN GUM CARE
103	PROCTER & GAMBLE	CREST DEEP CLEAN SENSITIVITY
104	PROCTER & GAMBLE	CREST DEEP SWEEP
105	PROCTER & GAMBLE	CREST DUAL ACTION
106	PROCTER & GAMBLE	CREST EXTENDER
107	PROCTER & GAMBLE	CREST GUM CARE
108	PROCTER & GAMBLE	CREST MASSAGE PLUS
109	PROCTER & GAMBLE	CREST MULTICARE FLEX
110	PROCTER & GAMBLE	CREST MULTICLEAN
111	PROCTER & GAMBLE	CREST PREMIUM
112	PROCTER & GAMBLE	CREST SESAME STREET
113	PROCTER & GAMBLE	CREST TRIPLE EFFECT
114	PROCTER & GAMBLE	CREST WHITENING
115	PROCTER & GAMBLE	ORAL B
116	PROCTER & GAMBLE	ORAL B ADVANTAGE
117	PROCTER & GAMBLE	ORAL B ADVANTAGE ARTICA
118	PROCTER & GAMBLE	ORAL B ADVANTAGE PLUS
119	PROCTER & GAMBLE	ORAL B BLUES CLUES
120	PROCTER & GAMBLE	ORAL B CLASSIC
121	PROCTER & GAMBLE	ORAL B CROSSACTION
122	PROCTER & GAMBLE	ORAL B CROSSACTION VITALIZER
123	PROCTER & GAMBLE	ORAL B GRIPPER
124	PROCTER & GAMBLE	ORAL B INDICATOR
125	PROCTER & GAMBLE	ORAL B NICKELODEON
126	PROCTER & GAMBLE	ORAL B PULSAR
127	PROCTER & GAMBLE	ORAL B RADICAL CONTROL
128	PROCTER & GAMBLE	ORAL B RUGRATS
129	PROCTER & GAMBLE	ORAL B SENSITIVE ADVANTAGE
130	PROCTER & GAMBLE	ORAL B SESAME STREET
131	PROCTER & GAMBLE	ORAL B STAGES

3. Create a 7th brand called "Other" that has all other brands that are not in the top 6.

```
data Top6Brands;
set groc_prod_details;
if L5="PRIVATE LABEL" then Brand = "PRIVATE LABEL";
```

```
length Brand $35;
else if L5="ORAL B ADVANTAGE" then Brand = "ORAL B ADVANTAGE";
else if L5="ORAL B CROSSACTION" then Brand = "ORAL B CROSSACTION";
else if L5="ORAL B INDICATOR" then Brand = "ORAL B INDICATOR";
else if L5="COLGATE NAVIGATOR" then Brand = "COLGATE NAVIGATOR";
else if L5="COLGATE WAVE" then Brand = "COLGATE WAVE";
else Brand = "OTHER";
run;
proc print data = Top6Brands(obs=10);
run;
proc sql;
create table brnds as
select distinct Brand from Top6Brands;
quit;
proc print data = brnds;
run;
```

Created a brand called 'Others' which that contain all other brands that are not in top 6.

4. Find average prices, display, features of each of the 7 brands.

```
data Top6Brands_1;
set Top6Brands;
if F = "NONE" then FEAT = 0;
else FEAT = 1;
run;
proc print data = Top6Brands_1 (obs=10);
run;
```

```
proc means data = Top6Brands_1;
class Brand;
var DOLLARS FEAT D;
run;

proc tabulate data=Top6Brands_1;
class Brand;
var DOLLARS FEAT D;
table Brand, (DOLLARS FEAT D)* MEAN;
run;
```

Below is the list that contains average prices (dollar/units/oz), display (1/0), features(1/0) of each of the 7 brands

	DOLLARS	FEAT	D
	Mean	Mean	Mean
Brand			
COLGATE NAVIGATOR	8.96	0.15	0.06
COLGATE WAVE	7.97	0.12	0.05
ORAL B ADVANTAGE	8.28	0.11	0.06
ORAL B CROSSACTION	9.78	0.09	0.10
ORAL B INDICATOR	6.97	0.07	0.04
OTHER	6.72	0.05	0.04
PRIVATE LABEL	6.45	0.05	0.02

5. What are the top 5 regions in terms of dollar sales?

Merging Delivery Stores data with the previous data.

/*START */

create table GrocProdMkt as

select * from dStores , Top6Brands_1 where

```
data dStores;
infile "H:/Delivery_Stores" firstobs= 2 missover;
input @1 IRI_KEY best7. @9 OU $2. @12 EST_ACV best8. @21 Market_Name $20. @46 Open
best4. @51 Clsd best4. @56 MskdName $8.;
run;

proc print data = dStores (obs=5);
run;

proc sql;
```

```
dStores.IRI KEY = Top6Brands 1.IRI KEY;
quit;
proc print data = GrocProdMkt (obs=10);
run;
      /*end */
proc tabulate data=GrocProdMkt out = Top5Regions;
class Market_Name;
var DOLLARS;
table Market_Name , DOLLARS * (SUM MEAN);
run;
/*START OUR BRAND*/
DATA ourbrand by region; set GrocProdMkt; if L5 = "ORAL B CROSSACTION";
RUN;
proc tabulate data=ourbrand_by_region out = Top5RegionsBYBrand;
class Market Name;
var DOLLARS;
table Market Name, DOLLARS * (SUM MEAN);
run;
proc sort data = Top5RegionsBYBrand;
by descending DOLLARS_Sum;
run;
PROC PRINT DATA = Top5RegionsBYBrand(obs =5);
var Market Name DOLLARS Sum DOLLARS Mean;
run;
Top 5 regions in terms of dollar sales is as shown below
```

Obs	Market_Name	DOLLARS_Sum	DOLLARS_Mean
1	NEW YORK	71842.94	9.24620
2	LOS ANGELES	70791.61	8.29427
3	SAN FRANCISCO	31442.03	8.70006
4	WASHINGTON, DC	30287.39	8.82757
5	PORTLAND,OR	26549.00	8.56972

6. What are the top 10 store chains that sell a lot of your category in terms of dollar sales?

```
DATA Our_brand;
set GrocProdMkt;
if L5 = "ORAL B CROSSACTION";
RUN;

proc tabulate data=Our_brand out = Top10StoreChains;
class MskdName;
var DOLLARS;
table MskdName , DOLLARS * (SUM MEAN);
run;

proc sort data = Top10StoreChains;
by descending DOLLARS_Sum;
run;

proc print data = Top10StoreChains(obs=10);
run;
```

Obs	MskdName	_TYPE_	_PAGE_	_TABLE_	DOLLARS_Sum	DOLLARS_Mean
1	Chain94	1	1	1	3157.83	12.8367
2	Chain124	1	1	1	2894.62	12.1623
3	Chain75	1	1	1	2757.49	20.5783
4	Chain114	1	1	1	2258.09	11.1787
5	Chain79	1	1	1	1868.56	12.7984
6	Chain134	1	1	1	1863.67	11.3638
7	Chain89	1	1	1	1768.67	9.5604
8	Chain117	1	1	1	1702.99	12.2517
9	Chain10	1	1	1	1561.15	8.5777
10	Chain98	1	1	1	1450.71	12.3992

The above output shows the top 10 store chains in terms of Dollar Sales.

7. What is the average price per unit of 7 brands by week? Plot the average price by week (I wish to see a line plot of price by week). Comment on your findings.

```
data PricePerUnit;
set GrocProdMkt;
PRICEPERUNIT = DOLLARS/UNITS;
run;
proc print data=PricePerUnit (obs = 10);
run;
proc tabulate data = PricePerUnit out = AvgPriceByWeek;
class Brand week;
var priceperunit;
table WEEK , priceperunit*MEAN*BRAND ;
run;
proc print data=AvgPriceByWeek (obs=10);
run;
/* Set the graphics environment */
goptions reset=all border cback=white
    htitle=12pt htext=10pt;
proc sgplot data=AvgPriceByWeek;
 title 'Avg price per unit by week for Brands';
 series x=week y=PRICEPERUNIT Mean / group=Brand name='grouping';
 keylegend 'grouping' / type=linecolor;
run;
```

average price per unit of 7 brands by week

Obs	Brand	WEEK	_TYPE_	_PAGE_	_TABLE_	PRICEPERUNIT_Mean
1	COLGATE NAVIG	1114	11	1	1	3.24933
2	COLGATE WAVE	1114	11	1	1	2.89591
3	ORAL B ADVANT	1114	11	1	1	3.00920
4	ORAL B CROSSA	1114	11	1	1	4.89279
5	ORAL B INDICA	1114	11	1	1	2.41994
6	OTHER	1114	11	1	1	2.85450
7	PRIVATE LABEL	1114	11	1	1	1.59264
8	COLGATE NAVIG	1115	11	1	1	3.05124
9	COLGATE WAVE	1115	11	1	1	2.92379
10	ORAL B ADVANT	1115	11	1	1	2.88127

Plot of average price by week

We observe that the price per unit is highest for ORAL B CROSSACTION and least for PRIVATE LABEL. COLGATE WAVE and ORAL B ADVANTAGE have their price per units close to each other.

Among all the brands, ORAL B CROSSACTION has the most variation in price per unit.

- a. Majority of tooth brush brands (i.e. except Oral B Crossaction and Private label) have average price range greater than \$2 and less than \$4 per unit. Also, among them three brands have very competitive average price per unit (near to \$3)
- b. Tooth brush brands under private label have the least average price per unit. While Oral B Crossaction has highest average price per unit.
- c. From the line graph we can notice that no brand is stable in the market. All brands have a high and low every week and Oral B Crossaction has sharp low points every week.

- 8. Assume you are manager of a brand (out of the top 6). Write a short paragraph stating what you learned from this descriptive analysis (steps 1-7).
 - a. Top 6 brands capture 42.32% of the total market
 - b. The tooth brush brand we selected is Oral B Crossaction with market valuation over 7%
 - c. For oral b advantage which has the highest market value had features on toothbrush for over 10% of the time and displayed over 5% of the time.
 - i. Brand with highest feature % is Colgate navigator
 - ii. brand with highest display % is Oral b crossaction
 - d. We have a list of average prices in (dollar/unit), display, features of each of the 7 brands. We can use it to compare the prices of Oral B Crossaction competitors in the market
 - e. Major market value is divided among far east and far west regions of the United States e.g. LA, SF, Portland is west coast and New York and Washington in the east coast. The distribution of highest dollar sales for our brand i.e. ORAL B CROSSACTION is same
- 9. Do large stores (top 3 stores) have higher average price per unit than small stores (stores ranked 8-10) for brand 1 (the top brand in Q1). Test and report your results and comments.

```
data LS;
set PricePerUnit;
if BRAND EQ "PRIVATE LABEL" and (MskdName = "Chain94" or MskdName = "Chain114" or
MskdName = "Chain124" or MskdName = "Chain10" or MskdName = "Chain79" or MskdName =
"Chain107") ;
run;

data Large_Small_Store;
set LS;
if( MskdName = "Chain94" or MskdName = "Chain114" or MskdName = "Chain124" ) then
STORE_SIZE = "Large";
if (MskdName = "Chain10" or MskdName = "Chain79" or MskdName = "Chain107") then
STORE_SIZE = "Small";
RUN;
```

```
PROC PRINT DATA = Large_Small_Store(OBS=10);
RUN;

PROC TTEST data = Large_Small_Store SIDES = U TEST = DIFF;
VAR PRICEPERUNIT;
CLASS STORE_SIZE;
RUN;
```


Null Hypothesis: average price per unit is for large stores <= small stores.

Alternate Hypothesis: large stores (top 3 stores) have higher average price per unit than small stores.

On performing the ttest procedure we observe that the Pr > F value in the equality of variance table it is < .0001 Since, 0.0001<0.05 hence we reject the null that variance is equal.

Now we check the value of Pr>|t| and it is <0.0001 for unequal variances. Since, 0.0001 < 0.05 we reject the null in favor of alternative.

Hence, the average price per unit for large stores is greater than small stores
10. Develop three additional hypotheses linking useful variables to dollar sales, test them and report your findings.
Hypothesis 1: Feature and Dollar sales.
<pre>proc means data = PricePerUnit; class FEAT; var DOLLARS; run;</pre>
<pre>PROC TTEST DATA = PricePerUnit SIDES = U TEST = DIFF; VAR DOLLARS; CLASS FEAT; RUN;</pre>

				Th	e TT	EST P	roced	ıre					
				V	arial	ole: Do	OLLAR	S					
	FE	АТ	N	Mear	Sto	l Dev			Mini	mum	Ma	Maximum	
	0		93438	6.8107	7	.3497			0.	3200	1	344	1.3
	1 Diff (1-2)		6706	11.5814	15	5.7005	S CONTRACTOR		0	5500	U.	494	1.3
				-4.7707	8	.1796			4				
FEAT	Г	Method		Mea	an	95% (CL Mean		Std Dev		95	% CL	Std Dev
0				6.81	07	6.7636	6 6.857		7.3497		7.	3165	7.3832
1				11.5814		1.2056	6 11.95		15.	7005	15.	4392	15.9708
Diff (1-2)	Pool	ed	-4.7707		4.9408	3 Inft		y 8.1796		8.	1439	8.2156
Diff (1-2)	Satte	erthwaite	-4.77	07 -	5.0886	5 1	Infty					
			Method	V	ariances		DF	t	Value P		r > t		
		F	ooled	oled Equa			100142		-46.1	3 1.	0000		
		9	Satterthw	raite U	Unequal		6917.4		-24.69		0000		
			Equality of Variances										
			Method	d Nu	n DF	Den			lue	Pr >	F		
				Method Num Folded F 6			3437			<.0001			

Null Hypothesis: Average Dollar Sales in absence of Feature <= Average Dollar Sales in case of Feature

Alternative Hypothesis: Average Dollar Sales in absence of Feature > Average Dollar Sales in case of Feature

On performing the ttest procedure we observe that the Pr > F value in the equality of variance table it is 0.0001. Since, 0.0001 < 0.05 hence reject the null in favor of alternative.

Now we check the value of Pr>|t| and it is 1.000 for equal variances. Since, 1.000 > 0.05 we fail to reject the null. There is no evidence to support the alternative.

Hence, we conclude based on the hypothesis that, Average Dollar Sales in presence of Feature is greater than average Dollar Sales in absence of Feature

Hypothesis 2: Display and Dollar sales.

```
proc sql;
update PricePerUnit
set D = 1 where D = 2;
quit;

proc means data = PricePerUnit;
class D;
var DOLLARS;
run;

proc ttest data = PricePerUnit test = diff side = u;
class D;
var DOLLARS;
run;
```

Null Hypothesis: Average Dollar Sales in presence of Display >= Average Dollar Sales in absence of Display

Alternative Hypothesis: Average Dollar Sales in presence of Display < Average Dollar Sales in absence of Display

On performing the ttest procedure we observe that the Pr > F value in the equality of variance table it is 0.0001. Since, 0.0001 < 0.05 hence reject the null in favor of alternative.

Now we check the value of Pr>|t| and it is 1.000 for unequal variances. Since, 1.000 > 0.05 we fail to reject the null. There is no evidence to support the alternative.

Hence, we conclude based on the hypothesis that, Average Dollar Sales in presence of Display is greater than average Dollar Sales in absence of Display

Avg price per unit by week for Brands The TTEST Procedure Variable: DOLLARS D N Mean Std Dev Std Err Minimum Maximum 96845 6.9263 7.5630 0.0243 0.3200 320.6 1 3299 13.1164 18.9227 0.3295 0.6600 494.3 -6.1901 Diff (1-2) 8.1919 0.1450 D Std Dev 95% CL Std Dev Method Mean 95% CL Mean 6.9739 7.5630 7.5294 0 6.9263 6.8786 7.5968 1 13.1164 12.4704 13.7623 18.9227 18.4769 19.3907 Diff (1-2) Pooled -6.1901 -6.4287Infty 8.1919 8.1562 8.2279 Diff (1-2) Satterthwaite -6.1901 -6.7336 Infty Pr > t Method **Variances** DF t Value 100142 Pooled Equal -42.68 1.0000 Satterthwaite Unequal 3334 -18.74 1.0000 **Equality of Variances** Method Num DF Den DF F Value Pr > F

Hypothesis 3: TYPE_OF_BRUSH and Dollar sales.

```
data LSS;
set PricePerUnit;
if L4 EQ "COLGATE ORAL PHARMACEUTICALS";
RUN;

PROC MEANS DATA = LSS;
CLASS TYPE_OF_BRUSH;
VAR DOLLARS;
RUN;

DATA LSS2; SET LSS;
IF TYPE_OF_BRUSH = "REGULAR" OR TYPE_OF_BRUSH = "SENSITIVE";

PROC MEANS DATA = LSS2;
CLASS TYPE_OF_BRUSH;
```

Folded F

3298

96844

6.26 < .0001

```
VAR DOLLARS;
RUN;

PROC TTEST DATA = LSS2 TEST = DIFF SIDE = U;
CLASS TYPE_OF_BRUSH;
VAR DOLLARS;
RUN;
```

Null Hypothesis:

For "COLGATE ORAL PHARMACEUTICALS" Average Dollar Sales of a regular type of brush <= average sales of sensitive type Brush.

Alternative Hypothesis:

For "COLGATE ORAL PHARMACEUTICALS" Average Dollar Sales of a regular type of brush > average sales of sensitive type Brush.

On performing the ttest procedure we observe that the Pr > F value in the equality of variance table it is 0.0001. Since, 0.0001 < 0.05 hence reject the null in favor of alternative.

Now we check the value of Pr>|t| and it is 1.000 for unequal variances. Since, .901 > 0.05 we fail to reject the null. There is no evidence to support the alternative.

Hence, we conclude based on the hypothesis that, Average Dollar Sales for a regular type of brush is greater than the average sales of a sensitive type of Brush. Hence, It is beneficial for Colgate Oral Pharmaceuticals focus on increasing the sales of sensitive brushes.

The MEANS Procedure					
	The	BALLA	MIC	Denne	

	А	nalys	sis Variable	: DOLLARS	5	
TYPE OF BRUSH	N Obs	N	Mean	Std Dev	Minimum	Maximum
REGULAR	399	399	6.6615789	8.4391411	0.7700000	101.2700000
SENSITIVE	132	132	7.5184091	5.8900718	1.9900000	43.7800000

11. For the top brand: run a regression model with weekly dollar sales as dependent variable. Use average weekly price per unit, average display, average feature, and other useful variables in your regression and answer the following questions:

The top brand we considered is ORAL B ADVANTAGE.

```
DATA TopBrand;SET GrocProdMkt;

IF L5 ="ORAL B ADVANTAGE";

PRICEPERUNIT = DOLLARS/UNITS;

RUN;

PROC PRINT DATA= TopBrand(obs =10);RUN;

proc tabulate data = TopBrand out=MeanTopBrand;

class WEEK;

var DOLLARS FEAT D PRICEPERUNIT PR;

table WEEK, (DOLLARS FEAT D PRICEPERUNIT)* MEAN;

run;

proc reg DATA = MeanTopBrand;

var DOLLARS_Mean FEAT_Mean D_Mean PRICEPERUNIT_Mean;
```

```
model DOLLARS_Mean = FEAT_Mean D_Mean PRICEPERUNIT_Mean;
RUN;

DATA test; SET MeanTopBrand;
RUN;

PROC PRINT DATA =test;
RUN;
```

A. What is the R-sq and adj R-sq of the model?

R-Square is 0.4813 Adj R-Square is 0.4489

a. Which coefficients are significant?

	0	epend		Mo	REG Pro odel: MO ariable:	DE	L1	Mea	an		
		Numl	ber	of (Observa:	tion	s Read	52	2		
		Numl	ber	of Observations Used					2		
			Aı	nal	ysis of V	aria	ance				
Sour	ce	DF		Sum of squares	Mean Square		F Value		Pr	> F	
Mode	Model				4.15694	18.05231		14.85		<.0001	
Error		48	5	8.36683	1	21598					
Сопе	ected T	51	11	2.52377							
	Root MSE				1. 1027	1	R-Squa	re	0.4813	3	
	Depe	ndent	Me	8.29407		07 Adj R-S		0.4489	9		
	Coeff	Var			13.2952	20					
			Pa	ara	meter Es	stin	nates				
Variable				F	Parame Estima			lard rror tVa		ue	Pr> t
ntercept				1	2.885		6.87	424 0		42	0.6765
FEAT_Me	EAT_Mean			1	9.868		2.642	254 3		73	0.0005
D_Mean				1	22.871	24	5.938	832 3		85	0.0003
PRICEPE	RUNIT	Mear	1	1	1.005		21 2.329		0.	43	0.6680

Feature Mean coefficient 9.87 and Display Mean coefficient 22.87 are the significant coefficients as their p value is <0.05

- b. Which variables are most important in explaining sales?
 Feature and Display are most important in explaining sales as their coefficients are significant.
- c. Interpret the meaning of the price coefficient? What is the price elasticity?
 From the regression table we observe that price coefficient is insignificant (0.668 >0.005). Thus, price per unit doesn't much affect the dollar sale of the toothbrush ORAL B ADVANTAGE.

Price elasticity is (price coefficient * average price)/ average sales = (1.005 * 3.01)/8.33457 = 0.362

d. Interpret the meaning of the display coefficient? The display coefficient is significant.

We have assumed that display is a variable that takes the value 1 or 0. 1 represents both major and minor display whereas 0 represents no display.

Interpretation of the coefficient of display is that when there is a display, sales would increase by 22.87 dollars when compared to there is no display.

f. Test whether there is an interaction between display, feature and price. Comment on your findings.

```
DATA test; SET MeanTopBrand;
fd = D Mean*FEAT Mean;
pd = PRICEPERUNIT Mean*D Mean;
pf = PRICEPERUNIT Mean*FEAT Mean;
pdf = D_Mean*FEAT_Mean*PRICEPERUNIT_Mean;
RUN;
PROC PRINT DATA =test;
RUN;
proc reg DATA = test;
var DOLLARS Mean FEAT Mean D Mean PRICEPERUNIT Mean fd;
model DOLLARS Mean = FEAT Mean D Mean PRICEPERUNIT Mean fd;
RUN;
proc reg DATA = test;
var DOLLARS Mean FEAT Mean D Mean PRICEPERUNIT Mean pd;
model DOLLARS_Mean = FEAT_Mean D_Mean PRICEPERUNIT_Mean pd;
RUN;
proc reg DATA = test;
var DOLLARS Mean FEAT Mean D Mean PRICEPERUNIT Mean pf;
model DOLLARS Mean = FEAT Mean D Mean PRICEPERUNIT Mean pf;
RUN;
proc reg DATA = test;
var DOLLARS_Mean FEAT_Mean D_Mean PRICEPERUNIT_Mean pdf;
model DOLLARS Mean = FEAT Mean D Mean PRICEPERUNIT Mean pdf;
RUN;
```

		Depen		Mode	EG Pro el: MOI iable: [DE	L1	Me	an		
		Num	ber	of Ob	servat	s Read	52	2			
		Num	ber	of Ob	Observations Used				2		
			Ar	nalys	is of Va	aria	ance				
	Source		DF	-	Sum of Squares 97.32367		Square		F Value		> F
	Model		4	97.3					36.77	<.0	0001
	Епог		47	31.0	09689	0.66164					
	Сопесте	d Total	51	128.4	28.42056						
	R	oot MSE		0.81341		1 R-Squar		re 0.7579		1	
	D	ependen	t Me	an	9.76972		Adj R-S	q	0.7372		
	C	oeff Var		(2				
			Pa	iram	eter Es	tin	nates				
Variable					aramet Estima		Stand		t Value		Pr>
In	tercept		1	-0.810		5.5914		-0.14		0.885	
FE	AT_Mean		1 -	-18.828		5.41	895	5 -3.47		0.001	
D_	Mean		1	7.597		49 3.89		770 1		0.057	
PI	RICEPERUI	NIT_Mea	n	1	2.763	73	1.88	663	1	46	0.149
fd				1	2.801		0.41		011 6		<.000

As the p value is less than 0.05 which is significant for feature and display then there is an interaction between those two variables.

Avg price per unit by week for Brands

The REG Procedure
Model: MODEL1
Dependent Variable: DOLLARS_Mean

Number of Observations Read 52 Number of Observations Used 52

	Α	nalysis of V	arian ce		
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	4	72.34850	18.08713	15.16	<.0001
Епог	47	56.07206	1.19302		
Corrected Total	51	128.42056			

Root MSE	1.09226	R-Square	0.5634
Dependent Mean	8.32582	Adj R-Sq	0.5262
Coeff Var	13.11889		

Parameter Estimates												
Variable	DF	Parameter Estimate		t Value	Pr > t							
Intercept	1	-8.80587	8.95901	-0.98	0.3307							
FEAT_Mean	1	78.44060	28.96730	2.71	0.0094							
D_Mean	1	8.45506	5.24277	1.61	0.1135							
PRICEPERUNIT_Mean	1	5.25644	3.04973	1.72	0.0914							
pf	1	-22.90450	10.30895	-2.22	0.0311							

As the p value of price per unit and feature is less than 0.05(which is 0.0311) which is significant then there is an interaction between those two variables

Avg price per unit by week for Brands The REG Procedure Model: MODEL1 Dependent Variable: DOLLARS Mean Number of Observations Read 52 Number of Observations Used 52 Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F 68.35769 17.08942 Model 13.37 < .0001 Ептог 47 60.06287 1.27793 51 128.42056 Corrected Total 1.13046 R-Square 0.5323 Root MSE Dependent Mean 8.32582 Adj R-Sq 0.4925Coeff Var 13.57772 Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > |t| Intercept 1 -13.97871 15.31963 -0.91 0.3662 FEAT_Mean 1 14.03760 3.30707 4.24 0.0001 1 229.56732 182.05281 1.26 0.2135

D_Mean

pd

PRICEPERUNIT_Mean

1

1

As the P value (0.2290) is greater than 0.05 which is non significant then there is no interaction between those two variables

5.22731

62.13281

1.33 0.1894

-1.22 0.2290

6.96155

-75.72992

Avg price per unit by week for Brands The REG Procedure Model: MODEL1 Dependent Variable: DOLLARS Mean Number of Observations Read 52 Number of Observations Used Analysis of Variance Sum of Mean Source DF Square F Value Pr > F Squares Model 71.91715 17.97929 14.96 < .0001 Error 47 56.50340 1.20220 Corrected Total 51 128.42056 Root MSE 1.09645 R-Square 0.5600 Dependent Mean 8.32582 Adj R-Sq 0.5226 Coeff Var 13, 16925 Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > |t| Intercept 3.60029 7.54633 0.48 0.6355 FEAT_Mean 1 1.03260 7.06663 0.15 0.8844 D_Mean 1 -8.25204 9.17408 -0.90 0.3730 PRICEPERUNIT_Mean 1.26575 2.53098 0.50 0.6193 1 pdf 70.66033 33.16272 2.13 0.0384

As the p value (0.0384) for display, feature and price is less than 0.05 whose values are significant which indicates that there is an interaction between display, feature and price

g. Test whether the effect of price is non-linear. Comment on your findings.

```
proc reg DATA = test;
var DOLLARS_Mean FEAT_Mean D_Mean PRICEPERUNIT_Mean price_square;
model DOLLARS_Mean = FEAT_Mean D_Mean PRICEPERUNIT_Mean
price_square;
RUN;
```


As we know that x-square value is significant then the relation with the dependent variable is non-linear.

As the p value of price square (0.0602) is non-significant then the price doesn't have non linear relationship when we are considering 95% confidence level.

As there is no rule to strictly consider 95% confidence level if we are taking 90% confidence level then price is having non-linear relationship.

Actually price is showing non-linear relationship from 94% confidence level.

h. Test using VIF and COLLIN whether there is multicollinearity in the model? Comment on your findings.

```
proc reg DATA = test;
var DOLLARS_Mean FEAT_Mean D_Mean PRICEPERUNIT_Mean;
model DOLLARS_Mean = FEAT_Mean D_Mean PRICEPERUNIT_Mean / VIF tol
collin;
RUN;
quit;
```

						Mode	EG Pro	DE	L1					
				e pe	naen	ent Variable: DOLLARS_Mean								
				Number of Observations Read 52										
				Nu	umber of Observations Used 52									
					А	nalys	is of V	/a rla	nce					
						um of		Mean			D E			
		Sourc Mode			DF 3		UB F0 5		quare 15308			< 0001		
		Error			48			-	29086			1,0001		
		Corre	c te d T	otal	51	128.	42056							
			Root						R-Squa			-		
			De pe				3.6462	20	A OJ PK-S	q	0.46/4			
			Cooli	Val			0.040.	-						
					P	a ra me	e ter E	stm	ates					
Varia	ble		DF		ra me Estima		Standa En		t Value	P	r > t	Toleran	-	ariance nflation
Interd	ept		1		2.129	149	7.786	86	0.2	7 0	7857			0
FEAT	Mean		1	,	14.46906		3.3046		56 4.3		0001	0.380	31	2.62944
D_Me	an		1		7.77241		5.44414		1.4	0.1599		0.862	226	1.15975
PRICE	PERUNIT	_Mea	n 1		1.439	999	2.621	28	0.5	5 0.	.5853	0.418	90	2.38719
					Col	III nea	rity Di	agn	ostics					
			Condit	on				-	Proport	lon	of Var	lation		
Number	⊟genval		Ind				rcept FEA		Wean	D_Mea		n PRIC	EPERL	JNIT_Mean
1	3.603	314	1.000	000	0.000	03 008	3008		00787	0.0131		0	0.000031	
2	0.248	304	3.811	39	0.00021791		1	0.3	5259	5.965584E-7		7	0.000297	
3	0.148	362	4.923	389	0.000	24359	9	0.0	6273	-	0.9710	16		0.00024488
	0.000210	186 1	30.720	060	0.	99951	9951		7681	0.01584		4	0.99943	

As the VIF values (2.629, 1.15975, 2.38719) which are so less than 10 which is consider as benchmark for checking multicollinearity(normally greater than 10 considered as multicollinearity and between 3-8 considered to have some multicollinearity) there is no multicollinearity in the model(As the values are so less)

Similarly, for COLLIN test, the Condition Index isn't over 100 except in 1 case, where the eigen values is 0.00021086. In this case, there is a strong correlation between Price and the Feature mean values and so in this particular case of eigen value, to avoid multicollinearity, these can be combined instead of taking all of them in the model.

i. Test for presence of heteroscedasticity using White test. Do A WLS if needed. Comment on your findings.

When the p value of chisq is significant then there is heteroscedasticity as the p value of chisq (0.5992) is not significant(greater than 0.05) then there is no presence of heteroscedasticity.

From the residual by regressors plot, we observe that the residuals of Feature mean, Display mean and price per unit are spread evenly. So there is no heteroscedasticity.