Analysis of a Complex Kind Week 3

Lecture 1: The Complex Derivative

Petra Bonfert-Taylor

Quick Review from Calculus

Let $f:(a,b)\to\mathbb{R}$ be a real-valued function of a real variable, and let $x_0\in(a,b)$. The function f is differentiable at x_0 if

$$\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}$$

exists. If so, we call this limit the *derivative of f at x*₀ and denote it by $f'(x_0)$.

 $\frac{f(x) - f(x_0)}{x - x_0}$ is the slope of the secant line through the points $(x_0, f(x_0))$ and (x, f(x)).

Secant Becomes Tangent

As x approaches x_0 , the slope of the secant line changes:

In the limit, the slopes approach the slope of the tangent line to the graph of f at x_0 .

Examples

No Derivative

The derivative does not always exist! Here is an example:

The graph of f does not have a tangent line at x_0 !

The Complex Derivative

Definition

A complex-valued function f of a complex variable is *(complex) differentiable* at $z_0 \in domain(f)$ if

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} \text{ exists.}$$

If this limit exists, it is denoted $f'(z_0)$ or $\frac{df}{dz}(z_0)$ or $\frac{d}{dz}f(z)\Big|_{z=z_0}$.

Example:

• f(z) = c (a constant function, $c \in \mathbb{C}$). Let $z_0 \in \mathbb{C}$ be arbitrary. Then

$$\frac{f(z) - f(z_0)}{z - z_0} = \frac{c - c}{z - z_0} = 0 \to 0 \text{ as } z \to z_0.$$

Thus f'(z) = 0 for all $z \in \mathbb{C}$.

Other Forms of the Difference Quotient

Instead of

$$\frac{f(z)-f(z_0)}{z-z_0}$$

we often write $z = z_0 + h$ (where $h \in \mathbb{C}$), and the difference quotient becomes

$$\frac{f(z_0+h)-f(z_0)}{h}$$
 or simply $\frac{f(z+h)-f(z)}{h}$,

where we'll take the limit as $h \rightarrow 0$.

Further examples:

• f(z) = z. Then

$$\frac{f(z_0+h)-f(z_0)}{h}=\frac{(z_0+h)-z_0}{h}=\frac{h}{h}=1\to 1 \text{ as } h\to 0.$$

So f'(z) = 1 for all $z \in \mathbb{C}$.

More Examples

• $f(z) = z^2$. Then

$$\frac{f(z_0+h)-f(z_0)}{h}=\frac{(z_0+h)^2-z_0^2}{h}=\frac{2z_0h+h^2}{h}=2z_0+h\to 2z_0 \text{ as } h\to 0.$$

Thus f'(z) = 2z for all $z \in \mathbb{C}$.

• $f(z) = z^n$. Then

$$\frac{f(z_0 + h) - f(z_0)}{h} = \frac{(z_0 + h)^n - z_0^n}{h} \\
= \frac{(z_0^n + nhz_0^{n-1} + \frac{n(n-1)}{2}h^2z_0^{n-2} + \dots + h^n) - z_0^n}{h} \\
= nz_0^{n-1} + h\left(\frac{n(n-1)}{2}z_0^{n-2} + \dots\right) \to nz_0^{n-1} \text{ as } h \to 0.$$

Thus $f'(z) = nz^{n-1}$ for all $z \in \mathbb{C}$.

Differentiation Rules

Theorem

Suppose f and g are differentiable at z, and h is differentiable at f(z). Let $c \in \mathbb{C}$. Then

- ② (f+g)'(z) = f'(z) + g'(z).
- **3** $(f \cdot g)'(z) = f'(z)g(z) + f(z)g'(z).$
- **5** $(h \circ f)'(z) = h'(f(z))f'(z).$

Examples

•
$$f(z) = 5z^3 + 2z^2 - z + 7$$
. Then
 $f'(z) = 5 \cdot 3z^2 + 2 \cdot 2z - 1 = 15z^2 + 4z - 1$.

•
$$f(z) = \frac{1}{z}$$
. Then
 $f'(z) = \frac{z \cdot 0 - 1 \cdot 1}{z^2} = \frac{-1}{z^2}$.

•
$$f(z) = (z^2 - 1)^n$$
. Then $f'(z) = n(z^2 - 1)^{n-1} \cdot 2z$.

•
$$f(z) = (z^2 - 1)(3z + 4)$$
. Then $f'(z) = (2z)(3z + 4) + (z^2 - 1) \cdot 3$.

•
$$f(z) = \frac{z}{z^2 + 1}$$
. Then

$$f'(z) = \frac{(z^2 + 1) - z \cdot 2z}{(z^2 + 1)^2} = \frac{1 - z^2}{(1 + z^2)^2}.$$

A Non-Example

Let f(z) = Re(z). Write z = x + iy and $h = h_x + ih_y$. Then

$$\frac{f(z+h)-f(z)}{h}=\frac{(x+h_x)-x}{h}=\frac{h_x}{h}=\frac{\operatorname{Re}h}{h}.$$

Does this have a limit as $h \rightarrow 0$?

- $h \to 0$ along real axis: Then $h = h_x + i \cdot 0$, so Re h = h, and thus the quotient evaluates to 1, and the limit equals 1.
- $h \to 0$ along imaginary axis: Then $h = 0 + i \cdot h_y$, so Re h = 0, and thus the quotient evaluates to 0, and the limit equals 0.
- $h_n = \frac{i^n}{n}$, then $\frac{\operatorname{Re} h_n}{h_n} = \frac{\operatorname{Re} i^n}{i^n} = \begin{cases} 1 & \text{if } n \text{ is even} \\ 0 & \text{if } n \text{ is odd} \end{cases}$ has no limit as $n \to \infty$.

f is not differentiable anywhere in \mathbb{C} .

Another Non-Example

Let $f(z) = \overline{z}$. Then

$$\frac{f(z+h)-f(z)}{h}=\frac{\overline{z}+\overline{h}-\overline{z}}{h}=\frac{\overline{h}}{h}.$$

- If $h \in \mathbb{R}$ then $\frac{\overline{h}}{h} = 1 \rightarrow 1$ as $h \rightarrow 0$.
- If $h \in i\mathbb{R}$ then $\frac{\overline{h}}{h} = -1 \to -1$ as $h \to 0$.

Thus $\frac{\overline{h}}{h}$ does not have a limit as $h \to 0$, and f is not differentiable anywhere in \mathbb{C} .

Differentiability Implies Continuity

Fact

If f is differentiable at z_0 then f is continuous at z_0 .

Proof:

$$\lim_{z \to z_0} (f(z) - f(z_0)) = \lim_{z \to z_0} \left(\frac{f(z) - f(z_0)}{z - z_0} \cdot (z - z_0) \right) = f'(z_0) \cdot 0 = 0.$$

Note however that a function can be continuous without being differentiable (we'll see an example shortly).

Analytic Functions

Definition

A function f is *analytic* in an open set $U \subset \mathbb{C}$ if f is (complex) differentiable at each point $z \in U$.

A function which is analytic in all of $\mathbb C$ is called an *entire* function.

Examples:

- ullet polynomials are analytic in $\mathbb C$ (hence entire).
- rational functions $\frac{p(z)}{q(z)}$ are analytic wherever $q(z) \neq 0$.
- $f(z) = \overline{z}$ is not analytic.
- f(z) = Re z is not analytic.

Another Example

Let $f(z) = |z|^2$. Then

$$\frac{f(z+h)-f(z)}{h} = \frac{|z+h|^2 - |z|^2}{h}$$

$$= \frac{(z+h)(\overline{z}+\overline{h}) - |z|^2}{h}$$

$$= \frac{|z|^2 + z\overline{h} + h\overline{z} + h\overline{h} - |z|^2}{h}$$

$$= \overline{z} + \overline{h} + z \cdot \frac{\overline{h}}{h}.$$

Thus...

- If $z \neq 0$ then the limit as $h \rightarrow 0$ does not exist.
- If z = 0 then the limit equals 0, thus f is differentiable at 0 with f'(0) = 0.
- f is not analytic anywhere.
- Note: f is continuous in C!

Next Up...

The Cauchy Riemann Equations!