

Statistics

By: Muneera Alshunaifi

Outline

Introduction

WHAT IS ATTRITION

The Employee attrition occurs when an employee departs a company for a variety of reasons

WHY?

Many reasons such as monthly income or job role

SOLUTION

Build model that Predicts the appropriate reasons that led to the attrition decision in order to reduce the attrition within a company in the future

Data Description

- Obtained from kaggle.com
- Fictional dataset created by IBM data scientist
- 1470 rows, 35 columns

Data Description

Column Type	Description	Columns names		
Numeric columns	Related to personal information	age, distance_from_home, employee_number (id variable)		
	Related to income	hourly_rate, daily_rate, monthly_rate, monthly_income, percent_salary_hike		
	Related to time in	years_at_company, years_in_current_role,		
	company	years_since_last_promotion, years_with_curr_manager,		
		total_working_years		
	Others	num_companies_worked, standard_hours(to delete),		
		training_times_last_year, employee_count (to delete)		
Categorical columns	Binary	Attrition (Target variable), gender, over18 (to delete),		
		over_time		
	Nominal	department, education_field, job_role, marital_status		
		environment_satisfaction, job_satisfaction,		
	Ordinal	relationship_satisfaction,		
		work_life_balance,job_involvement,performance_rating		
		business_travel, education, job_level, stock_option_level		

Pre processing steps

EDA

Feature engineering

Scaling

Sampling

Part of the analysis using pandas profiling shows overview of the dataset

Using pandas profiling

Overview Reproduction Warnings 11 Overview Variable types Dataset statistics 32 NUM 17 Number of variables Number of observations 1470 CAT 13 0 **BOOL** 2 Missing cells Missing cells (%) 0.0% 0 **Duplicate rows** 0.0% Duplicate rows (%) Total size in memory 1.0 MiB Average record size in memory 722.8 B

Exploring the relations between
Attrition and other features in order to have future look to the modeling process.

Using Power BI

No segnificant corr between attrition and any feature

Correlations

Noticing class imbalance!

Count of Attrition

Feature engineering

- Exclude unnecessary features (over18, standard hours, employee count)
- Convert the attrition column from Yes, No to 1,0
- Split the data into 30% test and 70% train

Scaling

Using MinMax scaler

Sampling

USING HYBRID TECHNIQUE (SMOTE+ENN)

- ENN: algorithm for pattern recognition that predicts the pattern of an unknown test sample hinged on the highest gain of intraclass coherence
- ENN+SMOTE helps in doing extensive data cleaning.
- The misclassification by NN's samples from both the classes are removed.

Sampling

USING HYBRID TECHNIQUE (SMOTE+ENN)

Modeling and evaluation

Decision Tree

SVM

Ensemble:
AdaBoost

Models comparison

Optimization

Logistic regression

Decision Tree

AdaBoost

Models Comparison

Model	Resample	Precision	Recall	F1-score
Logistic Regression	actual	0.717949	0.459016	0.560000
Logistic Regression	smote+enn	0.270968	0.688525	0.388889
Decision Tree	actual	0.529412	0.147541	0.230769
Decision Tree	smote+enn	0.264901	0.655738	0.377358
SVM	actual	0.941176	0.262295	0.410256
SVM	smote+enn	0.276074	0.737705	0.401786
AdaBoost	actual	0.578947	0.360656	0.444444
AdaBoost	smote+enn	0.343511	0.737705	0.468750

Models Comparison

INSIGHT: SVM before sampling has best precision score , however we cannot decide yet if it's the best model or not

Models Comparison

Optimization

OPTIMIZING SVM

- Using GridSearchCV
- Best parameters were: C=1, Gamma=1, Kernel=RBF

Models Comparison: after optimizing

INSIGHT: the precision decreased in actual and increased in sampled

Models Comparison: after optimizing

Model	Resample	Precision	Recall	F1-score
Logistic Regression	actual	0.717949	0.459016	0.560000
Logistic Regression	smote+enn	0.270968	0.688525	0.388889
Decision Tree	actual	0.529412	0.147541	0.230769
Decision Tree	smote+enn	0.264901	0.655738	0.377358
SVM	actual	0.941176	0.262295	0.410256
SVM	smote+enn	0.276074	0.737705	0.401786
AdaBoost	actual	0.578947	0.360656	0.444444
AdaBoost	smote+enn	0.343511	0.737705	0.468750
SVM-Optimized	actual	0.692308	0.442623	0.540000
SVM-Optimized	smote+enn	0.500000	0.311475	0.383838

Conclusions

SVM AFTER OPTIMIZATION AND LOGISTIC REGRESSION MAY BE GOOD MODELS FOR OUR CASE

ADABOOST CLASSIFIER HAS THE LARGEST AUC AMONG ALL MODELS WE CAN SAY THAT ITS ALSO A GOOD CLASSIFIER

DECESION TREE SEEM TO HAVE BEEN OVERFITTED DUE TO LOW VOLUME DATA IF THE DATA WAS LARGER TREES WOULD PERFORM BETTER

