A. 電力供給(圖論 1)

Description

資訊鎮最近邁入工業化時代,建造了 N 座工業建築,其中前 K 座是發電廠而後 N-K 座是工廠。對於前 K 座建築中的第 i 座發電廠,需要 a_i 的資金才能啟動。另外,資訊鎮鎮長——芽芽さん規劃了 M 條電纜計畫,第 i 條電纜可以連接第 x_i 座和第 y_i 座建築,但需要花費 b_i 建造。

為了資訊鎮的欣欣向榮,必須讓每座工廠都開始運作,而工廠能順利運作的條件 是直接或間接(透過電纜經過若干個工廠、啟動或未啟動的發電廠)連接到至少一座 啟動的發電廠。除此之外,需要花費的資金當然越少越好。芽芽さん正忙著回覆各種 市政意見,沒空處理整個建造計畫。身為助手的你,請幫她計算在最佳規畫之下,需 要花費多少資金才能讓所有工廠都順利運作。

Input

第一行包含三個正整數 N, K, M,分別代表總建築數量、發電廠的數量和電纜計畫的數量。

第二行包含 K 個整數,其中 a_i 代表啟動第 i 座發電廠的資金。

接下來 M 行,每行包含三個整數 x_i, y_i, b_i ,代表連接的兩座建築編號以及建造第i 條電纜的花費。

- $1 \le K < N \le 2 \times 10^5$
- $1 \le M \le 2 \times 10^5$
- $0 \le a_i, b_i \le 10^9$
- $1 \le x_i, y_i \le N$
- $x_i \neq y_i$

Output

請輸出一個整數,代表讓所有工廠都順利運作的最小花費。若無論如何都無法讓 所有工廠順利運作,請輸出「-1」。

Sample 1

Input	Output
6 1 8	19
10	
1 2 1	
1 3 4	
1 4 2	
1 5 0	
2 3 2	
3 4 5	
4 5 4	
5 6 4	

Sample 2

Input	Output
8 3 9	17
3 4 2	
1 2 5	
1 4 1	
1 5 4	
2 3 1	
2 6 1	
4 7 5	
5 6 2	
6 8 4	
7 8 3	

Sample 3

Input	Output
3 1 1	-1
0	
2 3 100	

配分

在一個子任務的「測試資料範圍」的敘述中,如果存在沒有提到範圍的變數,則此變數的範圍為 Input 所描述的範圍。

子任務編號	子任務配分	測試資料範圍
1	0%	範例測試資料
2	20%	K = 1
3	20%	$a_i = 0$
4	60%	無特別限制

Hint

以下繪製範例測試資料的建築與電纜計畫。其中粗框點代表發電廠,其餘為工廠。 點內數值為建築編號。

Sample 1:啟動編號 1 發電廠

Sample 2: 啟動編號 1、3 發電廠

