BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI K. K. BIRLA GOA CAMPUS SECOND SEMESTER, 2023-2024

COURSE HANDOUT(Part-II)

Date-15.01.2024

In addition to Part I (General Handout for all courses appended to the Time Table), this portion gives further specific details of the course

Course No : EEE F312 Course Title : Power Systems

Instructor-in-charge: Mahendra Singh Tomar

Course Description:

Modeling of Transmission Lines (short, medium and long), generator and transformer, load flow studies, optimal operations, symmetrical and unsymmetrical fault analysis, automatic generation and voltage control, transient stability and small signal stability.

Scope and Objectives:

The course aims at

- i. Understanding the structure and the basic components of power system studies
- ii. Understanding the numerical methods and their applications to power system studies such as load flow and transient stability analysis.
- iii. Symmetrical fault analysis.
- iv. Understanding of symmetrical components for analyzing the unsymmetrical faults.
- v. Small signal stability and large signal stability evaluation.

Text Book

[T] D P Kothari and I J Nagrath, "Power System Engineering", TMH, 1994.

Reference Books

[R1] J Duncan Glover, and Mulukutala S. Sharma, "Power System Analysis and Design", Thomson Brook/Cole, 3rd Edition, 2005

[R2] C. L. Wadhwa, "Electrical Power Systems", New Academic Science, 2012

Course Plan:

Lecture No	Main Topic	Sub Topics	Reference	
1	Introduction	Indian Power system scenario, Course contents	1.2	
2	Transmission line modeling	Inductance for single phase and 3-phase lines	2.1 to 2.8	
3	Transmission line modeling	Inductance for double circuit lines, bundled conductors, resistance, skin and proximity effect	2.9 to 2.12	
4	Transmission line modeling	Capacitance of lines	3.1 to 3.6	

5	Transmission line modeling	Effect of earth on capacitance	3.7 to 3.9
6	PU system	One-line diagram, Impedance diagram, Per unit system, Complex power	4.1 to 4.5
7	Insulators for overhead lines	Suspension insulators, potential distribution over string of suspension insulators, methods of equalizing the potential	Appendix G
8, 9	Characteristics and performance of transmission lines	Analysis of short and medium transmission lines	5.1 to 5.3
10, 11	Characteristics and performance of transmission lines	Long transmission lines, Equivalent circuit	5.4 to 5.8
12	Characteristics and performance of transmission lines	Power flow through a transmission line, Methods of voltage control	5.9, 5.10
13	Load flow studies	Introduction and importance	6.1, 6.2
14, 15	Load flow studies	Formation of Y-bus, load flow problem	6.3, 6.4
16, 17	Load flow studies	Gauss-Seidel method, Newton-Raphson method	6.5, 6.6
18, 19	Optimal system operation	Optimal operation, Unit commitment	7.1 to 7.3
20	Automatic generation and voltage control	Load frequency control	8.1, 8.2
21	Symmetrical fault analysis	Transient on a transmission line, short circuit of synchronous machine on no-load	9.1 to 9.3
22	Symmetrical fault analysis	Short of a loaded synchronous machine, selection of circuit breakers	9.4, 9.5
23	Symmetrical components	Symmetrical component transformation, phase shift in Star-Delta transformers	10.1 to 10.3
24	Symmetrical components	Sequence impedance of lines, synchronous machines and transformers	10.4 to 10.8
25	Symmetrical components	Construction of sequence networks	10.9
26, 27	Unsymmetrical fault analysis	Line to ground, line to line, double line to ground, and open conductor faults	11.1 to 11.6

28	Power system stability	Dynamics of synchronous machine	12.1, 12.2
29, 30	Power system stability	Power angle equation, steady state stability of simple systems	12.3 to 12.6
31, 32	Power system stability	Transient stability, equal area criterion	12.7, 12.8
33, 34	Power system transients	Types of transients, traveling waves	13.1 to 13.3
35	Power system transients	Generation of over voltages, protection of lines against lightning, protection against surges	13.4 to 13.6
36, 37	Circuit breakers	Transients, rating, arc extinction	14.1 to 14.3
38	Power system protection	Protective zones, relaying	15.1 to 15.3
39-41	Power system protection	Current and voltage transformers, relays	15.4, 15.5

Evaluation scheme:

Evaluation component	Duration	Weightage (%)	Date & Time	Evaluation type
Midsemester Examination	90 min	30	11/03/24, 4pm-5:30pm	СВ
Quizzes	-	15	To be announced later	OB
Assignment	-	15	To be announced later	OB
Comprehensive Examination	180 min	40	17/05/2024, FN	СВ

CB – Closed-book

OB – Open Text Book and/or handwritten Class Notes (in hard-copy format) only are permitted. Use of any other printed/photocopied material, softcopies and/or online material is not permitted.)

Chamber Consultation Hour: Monday 5pm to 6pm.

Make up policy: Make-up will be granted only on genuine grounds. Make-up will not be granted for Quizzes and Assignments.

Notices: Notices concerning the course will be displayed on the Moodle course web page.

Instructor-in-charge

EEE F312