

Funções escalares de várias variáveis

Topologia em \mathbb{R}^n

Objetivos:

- Compreender a noção de bola aberta; identificar conjuntos abertos, fechados, limitados e compactos.
- Identificar se um conjunto é aberto ou fechado a partir do conjunto fronteira.
- Compreender a definição de pontos fronteira e pontos de acumulação.

Definição 1: A <u>bola aberta</u> de centro $P \in \mathbb{R}^n$ e raio r > 0 é o conjunto dos pontos $X \in \mathbb{R}^n$ cuja distância ao ponto P é menor do que r. Indicaremos por $B_r(P)$. Assim,

$$B_r(P) = \{x \in \mathbb{R}^n; ||x - P|| < r\}$$

Quando n=1, a bola aberta $B_r(P)$ de centro P e raio r na reta é o intervalo aberto P = r, P = r.

Figure 1: Bola de centro P e raio r > 0 em \mathbb{R}

Quando n=2, a bola aberta $B_r(P)$ de centro P e raio r no plano \mathbb{R}^2 é o disco aberto. Se P=(a,b), então

$$B_r(a,b) = \left\{ (x,y) \in \mathbb{R}^2; \|(x,y) - (a,b)\| = \sqrt{(x-a)^2 + (y-b)^2} < r \right\}$$

Figure 2: Bola de centro P e raio r > 0 em \mathbb{R}^2

Quando n=3, a bola aberta $B_r(P)$ de centro P=(a,b,c) e raio r no espaço \mathbb{R}^3 é a esfera aberta

$$B_r(a, b, c) = \left\{ (x, y, z) \in \mathbb{R}^3; \quad \sqrt{(x-a)^2 + (y-b)^2 + (z-c)^2} < r \right\}$$

Figure 3: Bola de centro P e raio r > 0 em \mathbb{R}^3

Definição 2: Seja $D\subset \mathbb{R}^n$. Dizemos que D é um <u>conjunto aberto</u>, se dado $P\in D$ existir uma bola aberta $B_r(P)\subset D$.

Figure 4: Conjuntos abertos em \mathbb{R}^2

Os conjuntos \emptyset , \mathbb{R} , \mathbb{R}^2 , \mathbb{R}^3 e todas as bolas abertas são conjuntos abertos.

Definição 3: Seja $F \subset \mathbb{R}^n$. Dizemos que F é um <u>conjunto fechado</u>, se o complementar dele $D = \mathbb{R}^n \setminus F$ for aberto.

Observação:

(I) Os conjuntos

$$\overline{B_r(P)} = \{x \in \mathbb{R}^n; ||x - p|| \le r\}$$

são fechados. Eles são chamados de bolas fechadas.

Figure 5: Bola fechada em \mathbb{R}

Figure 6: Bola fechada em \mathbb{R}^2

(II) Os únicos conjuntos em \mathbb{R}^n abertos e fechados ao mesmo tempo são \emptyset e \mathbb{R}^n .

Definição 4: Seja $D \subset \mathbb{R}^n$. Um ponto $P \in \mathbb{R}^n$ (pertencente ou não a D) se diz ponto de fronteira de D se toda bola $B_r(P)$ interseta a D e também a seu complementar $\mathbb{R}^n \setminus D$. O conjunto formado por todos os pontos fronteira de D é chamado conjunto fronteira de D e denotado por Fr(D).

Figure 7: Pontos fronteira

Observação:

- (I) Um conjunto é fechado se contem todos os pontos de sua fronteira. Por exemplo, as bolas fechadas.
- (II) Se um conjunto contem pelo menos um ponto fronteira, então não é aberto. Por exemplo, o intervalo]0,1].

Figure 8: Conjuntos fechados

Definição 5: Seja $D \subset \mathbb{R}^n$. Dizemos que D é um <u>conjunto limitado</u>, se existir um raio r > 0 tal que $D \subset B_r(0)$.

Dizemos que D é não limitado se para qualquer $r>R_0$, existe algum ponto em D que não pertence a $B_r(0)$.

Figure 9: Conjuntos não limitados

Observação:

- (I) D também seria limitado se existir um raio r>0 tal que $D\subset\{(x_1,x_2,...x_n)\in\mathbb{R}^n: |x_i|< r, \forall i=1,...,n\}.$ Se n=2, esse conjunto seria um quadrado de lado r.
- (II) As bolas abertas e as bolas fechadas são conjuntos limitados.
- (III) O conjunto da Figura 4 (esquerda) é limitado. Já o conjunto da Figura 4 (direita) é não limitado, pois para qualquer r>3 sempre existirá um ponto (0,r+1) fora da bola $B_r(0)$.

Definição 6: Seja $D \subset \mathbb{R}^n$. Dizemos que D é um conjunto compacto se for fechado e limitado.

As bolas fechadas são compactas, as bolas abertas não o são.

Figure 10: Conjuntos compactos (esquerda) e não compactos (centro e direita)

Definição 7: Seja $D \subset \mathbb{R}^n$. Dizemos que $P \in \mathbb{R}^n$ (pertencente ou não a D) é um ponto de acumulação de D (p.a.) se qualquer bola aberta centrada em P contém pelo menos um ponto $x \in D$, $x \neq P$.

Os extremos de um intervalo aberto em \mathbb{R} são pontos de acumulação.

Exemplos

- 1. Os seguintes conjuntos são abertos:
 - (a) interior e exterior de uma elipse

Figure 11: Interior (esquerda) e exterior (direita) de uma elipse

(b) interior e exterior de um polígono

Figure 12: Interior (esquerda) e exterior (direita) de um polígono

(c) conjuntos definidos algebricamente por uma desigualdade. Por exemplo, $x^2-y^2>0$ ou $x^2-y^2<0$.

Figure 13: Conjunto dado por $x^2-y^2>0$ (esquerda) e $x^2-y^2<0$ (direita)

(d) O conjunto $B_r(a,b,c)\setminus\{(a,b,c)\}$

Figure 14: Bola furada em \mathbb{R}^2

- 2. Os seguintes conjuntos são fechados:
 - (a) uma elipse

Figure 15: Elipse

(b) um polígono

Figure 16: Polígono

(c) conjuntos definidos algebricamente por uma igualdade. Por exemplo, $x^2-y^2=0$, $x^2-y^2\leq 0$, $x^2-y^2\geq 0$, $4\leq x^2+y^2\leq 9$.

Figure 17: Conjuntos dados por $x^2-y^2=0$, $x^2-y^2\leq 0$, $x^2-y^2\geq 0$, $4\leq x^2+y^2\leq 9$ (respectivamente de esquerda a direita)

3. Os conjuntos definidos por uma igualdade e uma desigualdade. Por exemplo, $4 < x^2 + y^2 \le 9$ não são nem abertos nem fechados.

Figure 18: Conjuntos dados por $4 < x^2 + y^2 \le 9$

4. (a) A fronteira de um intervalo (fechado, aberto, aberto por um lado e fechado por o outro) está formada pelos extremos: Fr(]P-r,P+r[)=Fr([P-r,P+r])=Fr(]P-r,P+r])=Fr([P-r,P+r])

Figure 19: intervalos limitados com mesma fronteira

(b) A fronteira das bolas abertas e das bolas fechadas em \mathbb{R}^2 são circunferências: $Fr(B_r(a,b))=Fr(\overline{B_r(a,b)})=\{(x,y)\in\mathbb{R}^2\ :\ (x-a)^2+(y-b)^2=r^2\}$

Figure 20: Fronteira de bola aberta e de bola fechada em \mathbb{R}^2

(c) A fronteira das bolas abertas e das bolas fechadas em \mathbb{R}^3 são esferas: $Fr(B_r(a,b,c))=Fr(\overline{B_r(a,b,c)})=\{(x,y,z)\in\mathbb{R}^3: (x-a)^2+(y-b)^2+(z-c)^2=r^2\}$

Figure 21: Fronteira de bola aberta e de bola fechada em \mathbb{R}^3

5. Seja D um intervalo aberto de \mathbb{R} . Sejam $P \in D$ e $Q, R \notin D$.

Figure 22: Pontos de acumulação no interior e nos extremos do intervalo

Vemos que $P\in D$ é um p.a. de D, $Q\notin D$ é também um p.a. de D, mas $R\notin D$ não é um p.a. de D.

6. Seja $D =]a_1, c[\cup]c_b[$.

Figure 23: Pontos de acumulação em intervalos furados

Vemos que $c \notin D$ é um p.a. de D.

7. O ponto (a,b) é de acumulação do conjunto $\overline{B_r(a,b)}\setminus\{(a,b)\}.$

Figure 24: Ponto de acumulação da bola fechada furada em \mathbb{R}^2

8. Considere o conjunto D abaixo:

Figure 25: Pontos de acumulação em conjuntos fechados de \mathbb{R}^2

Temos que $P,Q\in D$ são p.a. de D e $R\notin D$ não é p.a. de D.

9. Considere o conjunto D abaixo:

Figure 26: Pontos de acumulação em conjuntos abertos de \mathbb{R}^2

Temos que $P \not\in D$ é um p.a. de D, $Q \in D$ é p.a., $R \not\in D$ é p.a. e $S \not\in D$ não é p.a.

Exercícios

1. Esboçar e determinar se os seguintes conjuntos são abertos, fechados, limitados e/ou compactos. Calcule os conjuntos fronteira.

(a) $A = \{(x, y) \in \mathbb{R}^2 : xy \neq 0\}.$

(b) $B = \{(x, y) \in \mathbb{R}^2 : x \ge 0, y \ge 0\}.$

- (c) $C = \{(x, y) \in \mathbb{R}^2 : y < 1 x^2\}.$
- (d) $D = \{(x, y) \in \mathbb{R}^2 : 0 \le y \le 1 x^2\}.$
- (e) $E = \{(x, y) \in \mathbb{R}^2 : y \ge 1 x^2\}.$
- (f) $F = \{(x, y) \in \mathbb{R}^2 : 3 < x^2 + y^2 < 9\}.$
- (g) $G = \{(x,y) \in \mathbb{R}^2 : 5 \le x^2 + y^2 \le 7\}.$
- (h) $H = \{(x, y) \in \mathbb{R}^2 : 5 \le x^2 + y^2 < 7\}.$

Respostas

1. (a) aberto, não fechado, não limitado e não compacto. $Fr(A)=\{\text{reta }x=0\}\cup\{\text{reta }y=0\}=\{0\}\times\mathbb{R}\cup\mathbb{R}\times\{0\}.$

(b) não aberto, fechado, não limitado, não compacto. $Fr(B) = \{0\} \times [0,+\infty) \cup [0,+\infty) \times \{0\}.$

(c) aberto,não fechado, não limitado, não compacto. $Fr(C) = \{(t, 1-t^2): t \in \mathbb{R}\}.$

(d) não aberto, fechado, limitado, compacto. $Fr(D)=\{(t,1-t^2):t\in [-1,1]\}\cup [-1,1]\times \{0\}.$

(e) não aberto, fechado, não limitado, não compacto. $Fr(E) = \{(t, 1-t^2): t \in \mathbb{R}\}.$

(f) aberto, não fechado, limitado, não compacto. $Fr(F)=\{(x,y)\in\mathbb{R}^2:x^2+y^2=3\}\cup\{(x,y)\in\mathbb{R}^2:x^2+y^2=9\}.$

(g) não aberto, fechado, limitado, compacto. $Fr(G)=\{(x,y)\in\mathbb{R}^2:x^2+y^2=5\}\cup\{(x,y)\in\mathbb{R}^2:x^2+y^2=7\}.$

(h) não aberto, não fechado, limitado, não compacto. $Fr(H)=\{(x,y)\in\mathbb{R}^2: x^2+y^2=5\}\cup\{(x,y)\in\mathbb{R}^2: x^2+y^2=7\}$

