# Basi di Dati – Corso B – Appello: 22 settembre 2016

| Cognome, Nome | Matricola |
|---------------|-----------|
|               |           |

### Domanda 1.

Si consideri lo schema della base dati "Torneo" contenente le informazioni relative a tornei di tennis cui partecipano giocatori ciascuno con tessera della Federazione Nazionale Tennis e facente parte della squadra di un circolo.

CIRCOLO(Nome, Indirizzo, Città)

SQUADRA(NomeSquadra, Circolo)

GIOCATORE(<u>TesseraGiocatore</u>, Squadra)

PARTITA(NumeroPartita, Giocatore1, Giocatore2, Sede, Vincitore).

Gli attributi sottolineati sono le chiavi primarie delle relazioni, mentre vincoli di integrità referenziali sono: "Squadra" referenzia SQUADRA, "Giocatore1", "Giocatore2" e "Vincitore" referenziano GIOCATORE, "Sede" e "Circolo" referenziano CIRCOLO.

Specificare con un'espressione SQL la domanda: "Per ciascun circolo, trovare quanti suoi giocatori hanno perso tutte le partite."

NOTA: precisare la progettazione spiegando gli eventuali sottoproblemi risolti. Dire se è necessario usare in qualche SELECT il "DISTINCT" motivando la risposta data.

#### Domanda 2.

Facendo riferimento allo schema "Torneo" dell'esercizio precedente:

- **A.** Scrivere un'espressione in algebra relazionale che risponda alla domanda che segue:

  Dire quali giocatori hanno sempre vinto "in casa" (ovvero, quando hanno giocato nella sede del proprio circolo di appartenenza).
- **B.** Rappresentare in notazione ad albero l'espressione ottenuta ed eseguirne l'ottimizzazione logica.
- **C.** Nel calcolo dei predicati su tuple con dichiarazione di range trovare quali giocatori hanno giocato nel torneo ma non hanno vinto nessuna partita.

#### Domanda 3.

**A.** Mostrare un esempio semplice (una relazione R ed un insieme di dipendenze funzionali F) per cui l'algoritmo di normalizzazione in BCNF non può essere in grado di mantenere la località delle dipendenze.

**B.** Dire quali dipendenze funzionali sono espresse nel seguente schema ER:



# Domanda 4.

Dati R(Matricola, CorsoLaurea, CodCorso, Crediti) e F = { Matricola → CorsoLaurea, CodCorso → Crediti } dire se R è in 3FN e se non lo è decomporla.

Attenzione: non è facile come appare. Fare tutti i passaggi.

# Domanda 5.

A proposito di indici:

- **A.** Indicare le principali differenze tra indici densi e indici sparsi.
- **B.** Descrivere o mostrare graficamente un piccolo esempio di indice clusterizzato.

### Domanda 6.

Si consideri un file di log L con il seguente contenuto in seguito ad un crash:

```
<T1,START>; <T2,START>; <T1,BS(t1[A],5),AS(t1[A],10)>;<T2,BS(t2[B],3),AS(t2[B],5)>;<
T3, START>; <T2,COMMIT>; -- checkpoint --; <T3,BS(t3[C],3),AS(t3[C],5)>;<
T3,ABORT> crash!
```

- **A.** Quali politiche di gestione del buffer adotta il DBMS che ha generato il log?
- **B.** Indicare il contenuto del record di checkpoint.
- **C.** Descrivere l'algoritmo di ripristino corrispondente alle politiche del buffer descritte nella risposta alla domanda A e mostrarne l'esecuzione sul log L.