RELATIONS BINAIRES

1 Généralités

Définition 1.1 Relation binaire

On appelle **relation binaire** sur un ensemble E toute partie \mathcal{R} de E^2 . Pour $(x,y) \in E^2$, la proposition $(x,y) \in \mathcal{R}$ se notera alors plutôt $x\mathcal{R}y$ et on dira dans ce cas que x est en relation avec y.

Point de vue «naïf»

Une relation binaire \mathcal{R} définie sur un ensemble E peut également être vue comme une propriété que chaque couple $(x,y) \in E^2$ est susceptible d'avoir ou non. C'est souvent le point de vue qu'on adopte en pratique.

Exemple 1.1

 $<,>,\leqslant,\geqslant$ définissent des relations binaires sur $\mathbb{N},\mathbb{Z},\mathbb{Q},\mathbb{R}$.

La relation de divisibilité | est une relation binaire sur \mathbb{N}, \mathbb{Z} .

Soit $p \in \mathbb{Z}$. La relation \equiv_p définie sur \mathbb{Z} par $x \equiv_p y \iff p|x-y$ est une relation binaire sur \mathbb{Z} .

Soit $a \in \mathbb{R}$. La relation \equiv_a définie sur \mathbb{R} par $x \equiv_a y \iff \exists k \in \mathbb{Z}, y = x + ka$ est une relation binaire sur \mathbb{R} .

Définition 1.2

Soit \mathcal{R} une relation binaire sur un ensemble E .

- ▶ On dit que \mathcal{R} est **réflexive** si pour tout $x \in E$, $x\mathcal{R}x$.
- ▶ On dit que \mathcal{R} est symétrique si pour tout $(x,y) \in E^2$, $x\mathcal{R}y \iff y\mathcal{R}x$.
- ▶ On dit que \mathcal{R} est antisymétrique si pour tout $(x,y) \in E^2$, $(x\mathcal{R}y \to y\mathcal{R}x) \implies x = y$.
- ▶ On dit que \mathcal{R} est transitive si pour tout $(x, y, z) \in E^3$, $(x\mathcal{R}y \to y\mathcal{R}z) \implies x\mathcal{R}z$.

Exemple 1.2

Les relations \leq, \geq sont réflexives, antisymétriques et transitives sur \mathbb{R} .

Les relations <,> sont transitives sur \mathbb{R} .

La relation | est réflexive sur \mathbb{N} et \mathbb{Z} , antisymétrique sur \mathbb{N} et non sur \mathbb{Z} , et transitive sur \mathbb{N} et \mathbb{Z} .

La relation $\equiv_{\mathfrak{p}}$ est réflexive, symétrique et transitive sur \mathbb{Z} .

La relation \equiv_{α} est réflexive, symétrique et transitive sur \mathbb{R} .

La relation « être équivalent en $\mathfrak a$ » est une relation réflexive, symétrique et transitive sur les fonctions définies au voisinage de $\mathfrak a$.

La relation « être négligeable en a » est une relation transitive sur les fonctions définies au voisinage de a.

La relation « être dominée en $\mathfrak a$ » est une relation réflexive et transitive sur les fonctions définies au voisinage de $\mathfrak a$.

Les relations \subset , \supset sont des relations réflexives, antisymétriques et transitives sur $\mathcal{P}(\mathsf{E})$ où E est un ensemble.

2 Relation d'équivalence

Définition 2.1 Relation d'équivalence

On appelle relation d'équivalence sur un ensemble E toute relation binaire réflexive, symétrique et transitive.

Exemple 2.1

La relation $\equiv_{\mathfrak{p}}$ est une relation d'équivalence sur \mathbb{Z} .

La relation \equiv_{α} est une relation d'équivalence sur \mathbb{R} .

La relation « être équivalent en α » est une relation d'équivalence sur les fonctions définies au voisinage de α (elle porte donc bien son nom).

Définition 2.2 Classe d'équivalence

Soient E un ensemble muni d'une relation d'équivalence \mathcal{R} et $\mathfrak{a} \in E$.

On appelle classe d'équivalence de a l'ensemble des $x \in E$ tels que aRx.

Exemple 2.2

Si \mathbb{Z} est muni de la relation d'équivalence $\equiv_{\mathfrak{p}}$ et si $\mathfrak{a} \in \mathbb{Z}$, alors la classe d'équivalence de \mathfrak{a} est $\{\mathfrak{a} + k\mathfrak{p}, k \in \mathbb{Z}\}$.

Proposition 2.1 Partition d'un ensemble en classes d'équivalence

Soit \mathcal{R} une relation d'équivalence sur un ensemble E. Alors les classes d'équivalences forment une **partition** de E, c'est-à-dire que

- ► toute classe d'équivalence est non vide;
- ▶ la réunion des classes d'équivalence est égale à E;
- ▶ deux classes d'équivalence sont soit disjointes soit confondues.

3 Relation d'ordre

Définition 3.1 Relation d'ordre

On appelle **relation d'ordre** sur un ensemble E toute relation binaire réflexive, antisymétrique et transitive.

Exemple 3.1

Les relations \leq , \geq sont des relations d'ordre sur \mathbb{R} .

La relation | est une relation d'ordre sur \mathbb{N} et non sur \mathbb{Z} .

Les relations \subset , \supset sont des relations d'ordre sur $\mathcal{P}(\mathsf{E})$.

Remarque. Si \preccurlyeq est une relation d'ordre sur un ensemble E. La relation binaire \succcurlyeq définie sur E par $\forall (x,y) \in E^2$, $x \succcurlyeq y \iff y \preccurlyeq x$ est également une relation d'ordre.

Définition 3.2 Ordre total ou partiel

Soit E un ensemble muni d'une relation d'ordre \leq . On dit que E est totalement ordonné par \leq (ou que l'ordre défini par \leq est total) si $\forall (x,y) \in E^2$, $x \leq y$ ou $y \leq x$. Sinon on dira que E est partiellement ordonné par \leq (ou que l'ordre défini par \leq est partiel).

Exemple 3.2

 \leq et \geq définissent un ordre total sur $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$.

| définit un ordre partiel sur \mathbb{N} .

 \subset , \supset définissent un ordre partiel sur $\mathcal{P}(\mathsf{E})$ dès que $\mathrm{card}(\mathsf{E}) \geqslant 2$.

Définition 3.3 Majorant, minorant

Soit A une partie d'un ensemble E muni d'une relation d'ordre \leq . Soit $\mathfrak{m} \in E$.

- ▶ On dit que m est un minorant de A si $\forall x \in A$, $m \leq x$. On dit alors que A est minorée.
- ▶ On dit que \mathfrak{m} est un majorant de A si $\forall x \in A, x \leq \mathfrak{m}$. On dit alors que A est majorée.
- ▶ On dit que A est bornée si elle est minorée et majorée.

Définition 3.4 Plus petit élément, plus grand élément

Soit A une partie d'un ensemble E muni d'une relation d'ordre. Soit $\mathfrak{m} \in E$.

- ▶ On dit que \mathfrak{m} est un **plus petit élément** ou un **minimum** de A si \mathfrak{m} est un minorant de A et si $\mathfrak{m} \in A$.
- ▶ On dit que \mathfrak{m} est un **plus grand élément** ou un **maximum** de A si \mathfrak{m} est un majorant de A et si $\mathfrak{m} \in A$.

Proposition 3.1 Unicité du minimum et du maximum

Soit A une partie d'un ensemble muni d'une relation d'ordre.

- ▶ Si A admet un minimum, il est unique : on le note min A.
- ▶ Si A admet un maximum, il est unique : on le note max A.

Exemple 3.3

Si on considère la relation de divisibilité sur \mathbb{N} , 0 est le maximum de \mathbb{N} (aussi surprenant que cela puisse paraître) et 1 est le minimum de \mathbb{N} . La partie $\{2,3\}$ n'admet ni maximum, ni minimum.

ATTENTION! Une partie d'un ensemble ordonné n'admet pas toujours de maximum ou de minimum. Par exemple, dans \mathbb{R} muni de la relation d'ordre \leq , [0,1[admet 0 pour plus petit élément mais n'admet pas de plus grand élément.

Définition 3.5 Borne inférieure et borne supérieure

Soit A une partie d'un ensemble muni d'une relation d'ordre.

- ▶ Si l'ensemble des minorants de A admet un plus grand élément, on l'appelle **borne inférieure** de A et on le note inf A.
- ▶ Si l'ensemble des majorants de A admet un plus petit élément, on l'appelle **borne supérieure** de A et on le note sup A.

Exemple 3.4

Dans \mathbb{R} muni de la relation d'ordre \leq ,]1,+ ∞ [admet 1 pour borne inférieure mais n'admet pas de borne supérieure.

On munit $\mathcal{P}(\mathsf{E})$ de la relation d'ordre \subset et on se donne \mathcal{X} une partie de $\mathcal{P}(\mathsf{E})$. Alors $\inf \mathcal{X} = \bigcap_{\mathsf{A} \in \mathcal{X}} \mathsf{A}$ et

$$\sup \mathcal{X} = \bigcup_{A \subset \mathcal{X}} A.$$

Soit A une famille finie de \mathbb{N} que l'on munit de la relation d'ordre de la divisibilité. Alors inf A est le pgcd des éléments de A tandis que sup A est le ppcm de ces eléments.

Proposition 3.2

Soit A une partie d'un ensemble muni d'une relation d'ordre.

- \blacktriangleright Si A admet un minimum, alors il admet une borne inférieure et min $A=\inf A$.
- \blacktriangleright Si A admet un maximum, alors il admet une borne supérieure et max $A=\sup A$.