Step-1

4764-1.6-67P AID: 124

RID: 175 | 3/12/12

$$A = \begin{bmatrix} a_{11} & a_{12} & - & a_{1n} \\ a_{21} & a_{ij} & - & a_{2n} \\ - & - & - & - \\ a_{n1} & a_{n2} & - & a_{nn} \end{bmatrix}$$
 is an $n \times n$ matrix.

We know by definition that A^{r} is an $n \times n$ matrix such that ij^{th} entry b_{ij} of A^{r} is nothing but the ii^{th} entry a_{ji} of A.

$$A^{T} = \begin{bmatrix} a_{11} & a_{21} & - & a_{n1} \\ a_{12} & a_{ji} & - & a_{n2} \\ - & - & - & - \\ a_{1n} & a_{2n} & - & a_{nn} \end{bmatrix}$$

Step-2

Now, to reorder the rows of A, we use the interchange of rows R_i and R_j

Then we follow that except the ij^{th} entry of i^{th} row and j^{th} column, every other entry will be different from the entries of the same row or same column.

So, this reordering of A left the matrix different from A^{T} .

Similarly, any reordering of the rows and columns of A leave the other entries in the respective positions different.

Thus, the reordering of A and the transposition of A are different matrices.