

Al如何管理醫院?

郭昶甫 林口長庚醫院 風濕過敏免疫科 醫療AI核心實驗室 醫院醫學研究發展部

醫療AI的核心價值

去除繁雜干擾

AI圈選腎絲球,減少 病理醫師負擔。

嗓音沙啞偵測,降低語言治療師負擔。

專注醫病關係

醫療AI幫醫療人員 做好每一件小事, 最大化醫療核心技 能,保護醫病關係。 增進病人安全

利用AI強化影像或協助診斷,減少病患所需接受之檢查次數。

強化便利性

利用網站或APP協 助簡單診斷或看診 疑問/個案管理。

醫療AI可以處理的問題

- 1. 疾病與病患分類
 - 最常見的應用
 - 非結構化醫療資料分析與協助診斷
 - 影像與自然語言會是最重要的技術
- 2. 基礎生物流程預測
 - 需要大量計算的精準醫學相關應用(計算醫學/計算生物學)
- 3. 病患治療
 - 藥物開發,老藥新用
 - 治療流程與預後預測

FDA已經有許多項目核准,但仍是相對簡單的應用。

Approved applications are simple algorithms, but need many real-world data to support

醫療AI可以有多好?

- 放射科、病理科、皮膚科、眼科、肝膽胃腸科、心臟科
- 基準要跟人類專家一樣好
- 更好的一致性 (Better consistency)

Specialty	Images	Publication
Radiology/ neurology	CT head, acute neurological events	Titano et al. 27
	CT head for brain hemorrhage	Arbabshirani et al. ¹⁹
	CT head for trauma	Chilamkurthy et al.20
	CXR for metastatic lung nodules	Nam et al."
	CXR for multiple findings	Singh et al. ⁷
	Mammography for breast density	Lehman et al. ²⁶
	Wrist X-ray*	Lindsey et al.9
Pathology	Breast cancer	Ehteshami Bejnordi et al.
	Lung cancer (+driver mutation)	Coudray et al.22
	Brain tumors (+methylation)	Capper et al.45
	Breast cancer metastases*	Steiner et al.™
	Breast cancer metastases	Liu et al.34
Dermatology	Skin cancers	Esteva et al. ⁴⁷
	Melanoma	Haenssle et al.48
	Skin lesions	Han et al.49
Ophthalmology	Diabetic retinopathy	Gulshan et al.51
	Diabetic retinopathy*	Abramoff et al.31
	Diabetic retinopathy*	Kanagasingam et al. ³²
	Congenital cataracts	Long et al.38
	Retinal diseases (OCT)	De Fauw et al.56
	Macular degeneration	Burlina et al.52
	Retinopathy of prematurity	Brown et al.60
	AMD and diabetic retinopathy	Kermany et al.52
Gastroenterology	Polyps at colonoscopy*	Mort et al. ³⁶
	Polyps at colonoscopy	Wang et al. ²⁰
Cardiology	Echocardiography	Madani et al.23
	Echocardiography	Zhang et al.24

Prediction	n	AUC	Publication (Reference number)
In-hospital mortality, unplanned readmission, prolonged LOS, final discharge diagnosis	216,221	0.93*0.75+0.85#	Rajkomar et al. ⁹⁶
All-cause 3-12 month mortality	221,284	0.93	Avati et al. ⁹¹
Readmission	1,068	0.78	Shameer et al. ¹⁰⁶
Sepsis	230,936	0.67	Horng et al. ¹⁰²
Septic shock	16,234	0.83	Henry et al. ¹⁰³
Severe sepsis	203,000	0.85@	Culliton et al. ¹⁰⁴
Clostridium difficile infection	256,732	0.82++	Oh et al. ⁹³
Developing diseases	704,587	range	Miotto et al. ⁹⁷
Diagnosis	18,590	0.96	Yang et al.90
Dementia	76,367	0.91	Cleret de Langavant et al. ⁹²
Alzheimer's Disease (+ amyloid imaging)	273	0.91	Mathotaarachchi et al. ⁹⁸
Mortality after cancer chemotherapy	26,946	0.94	Elfiky et al. ⁹⁵
Disease onset for 133 conditions	298,000	range	Razavian et al. ¹⁰⁵
Suicide	5,543	0.84	Walsh et al.86
Delirium	18,223	0.68	Wong et al.100

醫療決策的彙整

- 問診
- 身體評估
- 心理評估
- 治療處置
- 藥物開立
- •

良好溝涌雲要時間

- 門診病人眾多
- 病歷、報告擅打時間

溝通

醫病共同決定

個人資訊的提供

- 症狀
- 生活史
- 過去病史
- 服藥情形
- 疾病歷程
- 疑問
- ...

直接醫療對AI的需求: 協助溝通

自然語言與穿戴式裝置 流程整合服務

- 自然語言辨識
 - 自動協助醫師快速完成病歷或自動完成病歷
 - 病患資訊到診前彙整 (語音、聊天機器人)
- 穿戴式裝置/流程整合
 - 主動異常偵測與提示
 - 穿戴式裝置:連續性監控,直接醫院整合

Apple watch – 心律不整監控

Empatica 偵測癲癇與管理

Viz.AI 中風影像分析與流程控制

聊天機器人

間接醫療服務

胚胎篩選

Embryo

selection

for IVF

語音與控制

Paramedic Mental dx of heart health attack, stroke

精神醫學

協助判讀 Radiology

與應用

Prevent blindness

癌症分類

Predict Promote death patient safety in-hospital

預測

基因體分析

穿戴裝置

K+

快速診斷

眼科應用

病安

病理診斷

糖尿病視網膜病變診斷

35 FDA-Approved AI related medical devices

- FDA AI Med approvals in 2018-early 2019
- Computer vision 電腦視覺
- Electrophysiology (EKG)電生 理
- 基本上都是診斷用途
- 整體核准的項目還很少
- 台灣: 尚未有相關核准

公司	核准日期	醫學專科	說明	
AliveCor	2014.09	心臟科	支援心房顫動的早期檢測	
Lumify	2016.01	放射科	超音波圖像診斷	
QbCheck	2016.03	精神科	多動症診斷和治療產品	l
InPen	2016.07	內分泌科	智慧胰島素注射筆與相關App	l
One Drop Blood Glucose	2016.11	內分泌科	糖尿病自主管理的應用程式與藍芽血糖監測器	l
Cantab Mobile		精神科、老人醫學 科	評估老年人記憶問題App工具	
EnsoSleep	2017.03	老人醫學科	利用機器學習分析睡眠質量,協助診斷睡眠障礙	l
AmCAD-US	2017.05	內分泌科、放射科	評估甲狀腺結節並對結節特徵進行分類	l
Lepu Medical	2017.11	心臟科	臨床靜態與動態心電圖分析系統,檢測心律不整問題	l
Subtle Medical	2017.12	放射科	AI影像處理軟體SubltePET,改善正子造影掃描影像品質	l
BioFlux	2017.12	心臟科	遠端心臟監控裝置,檢測心律不整之問題	
Bay Labs	2018.01	心臟科、放射科	提供超音波心電圖分析	l
Viz.AI	2018.02	放射科	分析電腦斷層攝影的圖像,協助中風之診斷	
Arterys Inc.	2018.02	放射科、腫瘤科	協助在CT和MR影像辨識肝臟和肺部的癌性病變	
Empatica	2018.02	神經內科	有助於癲癇發作之預測	
Cognoa	2018.02	精神科、神經內科	在應用程式中內置的演算法,有助於診斷兒童自閉症	\
Medtronic	2018.03	內分泌科	監測和預測血糖變化	
Idx	2018.04	眼科	使用視網膜圖像自主檢測糖尿病性視網膜病變	l
Icometrix	2018.04	放射科	利用深度學習的演算法,量化分析CT影像中,分析腦部損傷的 嚴重程度	
Imagen	2018.05	放射科	利用人工智慧演算法輔助偵測與診斷手腕部骨折的軟體	
NeuralBot	2018.05	放射科	為腦部健康評估的機器人輔助超音波系統提供演算法解決方案	
MindMotion Go	2018.05	骨科	老年人動作捕捉之演算法	l
DreaMed	2018.06	內分泌科	幫助醫療保健專業人員管理1型糖尿病	l
POGO	2018.06	心臟科	監測和預測血糖變化	l
Zebra Medical Vision	2018.07	放射科	可檢測與量化冠狀動脈鈣化狀況,並分析胸部X光片	
Aidoc	2018.08	放射科	標記頭部CT圖像和肺栓塞的腦出血	l
iCAD	2018.08	放射科	3D乳房X光片解決方案	
Briefcase	2018.08	急診醫學	針對時間敏感的患者進行分類和診斷	l
PhysiQ Heart Rhythm Module	2018.08	心臟科	偵測心房顫動	
RightEye Vision System	2018.09	眼科	開發眼球追蹤技術及紀錄分析系統,用於偵測視覺追蹤受損	
MaxQ	2018.11	急診醫學、放射科	開發急性顱內出血分類演算法	
ProFound AI	2018.12	腫瘤科	檢測並診斷可疑病變	l
ReSET-O	2018.12	精神科	提供物質濫用障礙的輔助治療	l
Verily	2019.01	心臟科	在Study Watch上開發ECG功能	l
Paige.AI	2019.03	病理學	輔助病理學試驗,提高癌症患者確診的速度和準確性	l

長庚醫院發展 - 鼻咽癌影像之病變處

- 病理科 莊文郁 醫師
- 背景:
 - 病理醫師圈選有特定意義的區域,做為機器學習素材,進行監督式(supervised)學習, 採用較適合影像學習的人工神經網絡 (artificial neural network)。

• 進度:

- 由本人對病理影像進行圈選,將各種特定意 義區域的病理影像擷取為小方塊,用來做後 續的機器學習與驗證。
- 準確率已達99%,持續新增影像測試中。
- 申請專利中。

長庚醫院發展 - 骨折偵測

長庚醫院發展 - 異常血球型態之鑑定

- 醫學檢驗科 曹國倩主任
 - 1.血球型態共有18種,有5種(如右圖)最常見。
 - 2.檢驗醫學科每天約有兩千例的CBC,有400 例是機器無法判讀類型,需由人工分類。
 - 目前正確率為99%

Lymphocyte

Monocyte

長庚醫院發展 - 免疫螢光自動判讀

- 高度正確性
- 自動化流程
- 預測自體免疫抗體

醫療服務支援

A. 防跌倒

B. 感染控制

C. 院內死亡預測

REF: Scalable and accurate deep learning with electronic health records

一般性服務/外部連結

- 一般性事務
 - 人事
 - 預約門診
 - 繳費
- 外部連結
 - 保險-最佳化申報
 - 財務
 - 病患服務預測

 Receive my consultation within a shorter number of waiting days

 Schedule patients within maximum of 60 waiting days

Workflow Analysis

 Achieve good clinical outcomes for my patients

挑戰

- 醫療法規
- 對黑盒子的憂慮
- 資料取得與整合
- 隱私權
- 基礎設施

法規

醫療器材軟體 Software as a Medical Device (SaMD)

- 美國食品衛生管理局 FDA guidelines
 - SaMD regulatory framework
 - De novo and 510(k) applications before approvals to enter the US market
- 基於SaMD,針對AI產品,但鬆綁法規,加入上市後修正規定
 - 原規範在產品核准後原則上不能修正,新架構考量AI持續改善的特性入法
- TFDA
 - 醫用軟體分類分級參考指引
 - 尚未有明確AI醫療軟體法規,可能會跟隨FDA建議

Figure 2- SaMD Landscape

Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD)

AI到底看到什麼?

資料取得與整合

• 資料取得不易,臨床試驗仍有需要

- Auto-extraction and de-identification
- Clinical Images
- Genomics
- Pathology

Central databases

AI research process

隱私權議題

- 病人隱私
- 疾病影像資料
- 自動偵測之合法性

基礎設施

- 錢
- •網路
- 計算
- 儲存
- 教育

結論

- · 醫療AI對醫院管理及醫療服務有正面影響
- 法規及資料因素,而非科技本身是快速部署的瓶頸
- 仍有許多挑戰,不容易快速解決
- 長期AI會內化到醫療服務

高速 設備

聯絡我們

E-Mail: a28510g@gmail.com

TEL: (03)328-1200 #2605

工程 整合

臨床場域

