1

Gate Assignment

SAMMETA SAIPOORNA EE23BTECH11055

Question

The voltage source $V_s = 10 \sqrt{2} \sin(20000\pi t)$ V has an internal resistance of 50 ohms. The RMS value of the current through R is ____ (in mA) (rounded off to one decimal place).

(GATE IN 2023)

Solution:

Parameter	Value
V_s	$10\sqrt{2}\sin(20000\pi t)$ V
R	??
$R_{\rm internal}$	50 ohms
$R_{\rm net}$	$R + R_{internal}$
TABLE I	

INPUT PARAMETERS

$$V(s) = ZI(s) \tag{1}$$

$$I_{\rm RMS} = \frac{V_{\rm RMS}}{|Z|} \cdot e^{-Z/Z} \tag{2}$$

$$\frac{V_{\text{RMS}}}{I_{\text{RMS}}} = Z = R + R_{\text{internal}} + Ls + \frac{1}{Cs}$$
 (3)

$$= 50 + 25 + \frac{s}{20000\pi} + \frac{20000\pi}{s} \tag{4}$$

$$V_{\rm RMS} = \frac{10\sqrt{2}}{\sqrt{2}} = 10\,\rm V \tag{5}$$

Putting
$$s = j\omega$$
 (6)

$$\frac{V(j\omega)}{I(j\omega)} = |Z| \tag{7}$$

$$=75 + \frac{20000\pi j}{20000\pi} + \frac{20000\pi}{20000\pi j} \tag{8}$$

$$=75+j-j\tag{9}$$

$$=75\tag{10}$$

$$I_{\text{RMS}} = \frac{10}{75} \times 1000 = \frac{2000}{15} \approx 133.3 \,\text{mA}$$
 (11)