Multiple Testing Project

2.2 P-value

1. Distribution of the p-value under the null

1.1 Show that for any α , $c_{\alpha} = F_H^{-1}(1-\alpha)$

We know that $\alpha = 1 - F_H(c_\alpha)$ from the definition of c_α .

$$\alpha = 1 - F_H(c_\alpha)$$

$$\alpha - 1 = -F_H(c_\alpha)$$

$$-(\alpha - 1) = F_H(c_\alpha)$$

$$1 - \alpha = F_H(c_\alpha)$$

$$F_H^{-1}(1-\alpha) = c_\alpha$$

$$c_{\alpha} = F_H^{-1}(1 - \alpha)$$

Q.E.D.

1.2 Show that the p-value of the test, as a function of the data X used, is given by $p(X) = 1 - F_H(T(X))$.

The p-value is defined as $p-value = inf\{\alpha : T(X) \in R_{\alpha}\}$

Which is to say that the p-value is the smallest α for which T(X) is in the region R_{α} of the probability distribution P_H

So the p-value is an instance of α , which is defined as $\alpha = 1 - F_H(c_\alpha)$ where c_α is chosen so that the equation is true. Therefore, if we replace c_α with our test statistic $T(\mathbf{X})$, we get a $p(\mathbf{X}) = 1 - F_H(\mathbf{X})$.

This matters because it highlights that the choice of α sets the minimum p-value for \mathbf{X} as $p(\mathbf{X})$ such that one rejects the hypothesis that X is from the same distribution as Y when $T(\mathbf{X}) > c_{\alpha}$.

===== **1.2 Show that the p-value of the test, as a function of the data X used, is given by $p(\mathbf{X}) = 1 - F_H(T(\mathbf{X}))$.

From the previous question we know, $F_H(c_\alpha) = 1 - \alpha$

$$F_H(c_\alpha) = 1 - P_H[T(\mathbf{X}) > c_\alpha]$$

$$P_H[T(\mathbf{X}) > c_{\alpha}] = 1 - F_H(c_{\alpha})$$

$$P_H[T(\mathbf{X}) > \mathbf{x}] = 1 - F_H(\mathbf{X})$$

$$p(\mathbf{X}) = 1 - F_H(\mathbf{X})$$

**1.3 Show that for any univariate random variable y with continuous distribution function F, the random variables F(y) and 1 - F(y) follow the uniform distribution.

1

We know that the CDF of a uniform distribution is as follows,

$$F(y) \begin{cases} 0 & y \le a \\ \frac{y-a}{b-a} & a \le y \le b \\ 1 & y \le b \end{cases}$$

$$1 - F(y) \begin{cases} 1 & y \le a \\ 1 - \frac{y-a}{b-a} & a \le y \le b \\ 0 & y \le b \end{cases}$$

$$1 - F(y) \begin{cases} 1 & y \le a \\ \frac{b-y}{b-a} & a \le y \le b \\ 0 & y \le b \end{cases}$$
$$1 - F(y) \begin{cases} 1 & y \le a \\ \frac{y-b}{a-b} & b \le y \le a \\ 0 & y \le b \end{cases}$$

$$1 - F(y) \begin{cases} 1 & y \le a \\ \frac{y - b}{a - b} & b \le y \le a \\ 0 & y \le b \end{cases}$$

which is the CDF for another unifrom random distribution.

**1.4 Using the above results, show that the p-value follows the uniform distribution under H.

$$\alpha = 1 - F_H(c_\alpha)$$

If $F_H(c_\alpha)$ follows a uniform distribution, $1 - F_H(c_\alpha)$ does too, as proven in the previous exercise.