УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники Дисциплина «Дискретная математика»

Курсовая работа

Часть 1 Вариант 67

> Студент XXX XXX XXX P31XX

Преподаватель Поляков Владимир Иванович Функция $f(x_1, x_2, x_3, x_4, x_5)$ принимает значение 1 при $2 \le |x_1 1 x_5 - x_4 x_2 x_3| \le 4$ и неопределенное значение при $|x_1 1 x_5 - x_4 x_2 x_3| = 0$.

Таблица истинности

No	x_1	x_2	x_3	x_4	x_5	$x_1 1 x_5$	$x_4x_2x_3$	$x_1 1 x_5$	$x_4x_2x_3$	f
0	$\frac{\omega_1}{0}$	$\frac{x_2}{0}$	$\frac{x_3}{0}$	$\frac{x_4}{0}$	$\frac{x_3}{0}$	$\frac{x_1 x_5}{2}$	0	$\frac{x_1 x_5}{2}$	0	$\frac{J}{1}$
1	0	0	0	0	1	3	0	$\frac{2}{3}$	0	1
$\frac{1}{2}$	0	0	0	$\frac{0}{1}$	0	2	4	$\frac{3}{2}$	4	1
3	0	0	0	1	$\frac{0}{1}$	3	4	$\frac{2}{3}$	4	0
4	0	0	$\frac{0}{1}$	0	0	2	1	2	1	0
5	0	0	1	0	$\frac{0}{1}$	3	1	3	1	1
$\frac{6}{6}$	0	0	1	$\frac{0}{1}$	0	2	5	$\frac{3}{2}$	5	1
$\frac{6}{7}$	0	0	1	1	$\frac{0}{1}$	3	5	3	5	1
8	0	$\frac{0}{1}$	0	0	0	2	2	$\frac{3}{2}$	2	d
9	0	1	0	0	$\frac{0}{1}$	3	2	$\frac{2}{3}$	$\frac{2}{2}$	0
10	0	1	0	$\frac{0}{1}$	0	2	6	2	6	1
11	0	1	$\frac{0}{0}$	1	1	3	6	$\frac{2}{3}$	6	1
12	0	1	1	0	0	2	3	2	3	0
13	0	1	1	0	1	3	3	$\frac{2}{3}$	3	d
14	0	1	1	1	0	2	7	2	7	0
15	0	1	1	1	1	3	7	$\frac{2}{3}$	7	1
16	1	0	0	0	0	6	0	$\frac{3}{6}$	0	0
17	1	0	0	0	1	7	0	7	0	0
						6		6		
18	1	0	0	$\frac{1}{1}$	0	7	4	7	4	1
19	1	0	0		0	6	1	6	1	1
	1	0		0	_					0
21	1	0	1	0	1	7	1	7	1	0
22	1	0	1	1	0	6	5	6	5	0
23	1	0	1	1	1	7	5	7	5	1
24	1	1	0	0	0	6	2	6	2	1
25	1	1	0	0	1	7	2	7	2	0
26	1	1	0	1	0	6	6	6	6	d
27	1	1	0	1	1	7	6	7	6	0
28	1	1	1	0	0	6	3	6	3	1
29	1	1	1	0	1	7	3	7	3	1
30	1	1	1	1	0	6	7	6	7	0
31	1	1	1	1	1	7	7	7	7	d

Аналитический вид

Каноническая ДНФ:

 $f = \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, x_3 \, \overline{x_4} \, x_5 \vee \overline{x_1} \, \overline{x_2} \, x_3 \, x_4 \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, x_3 \, x_4 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x$

Каноническая КНФ:

 $f = (x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) (x_1 \lor x_2 \lor \overline{x_3} \lor x_4 \lor x_5) (x_1 \lor \overline{x_2} \lor x_3 \lor x_4 \lor \overline{x_5}) (x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor x_5) (x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor x_5) (x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor x_5) (x_1 \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor x_5) (x_1 \lor x_2 \lor \overline{x_3} \lor x_4 \lor x_5) (x_1 \lor x_2 \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) (x_1 \lor x_2 \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) (x_1 \lor \overline{x_2} \lor x_3 \lor x_4 \lor \overline{x_5}) (x_1 \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) (x_1 \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) (x_1 \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor \overline{x_5})$

Минимизация булевой функции методом Квайна-Мак-Класки

Кубы различной размерности и простые импликанты

	$K^0(f)$		K	$\Gamma^1(f)$		$K^2(f)$		Z(f)
m_0	00000		m_0 - m_1	0000X		m_0 - m_2 - m_8 - m_{10}	0X0X0	0000X
m_1	00001		m_0 - m_2	000X0	✓	m_8 - m_{10} - m_{24} - m_{26}	X10X0	00X01
m_2	00010	✓	m_0 - m_8	0X000	✓	m_2 - m_{10} - m_{18} - m_{26}	XX010	00X10
m_8	01000	✓	m_1 - m_5	00X01		m_5 - m_7 - m_{13} - m_{15}	0X1X1	0011X
m_5	00101	$\overline{}$	m_2 - m_6	00X10		m_{13} - m_{15} - m_{29} - m_{31}	X11X1	0101X
m_6	00110	✓	m_8 - m_{10}	010X0	✓	m_7 - m_{15} - m_{23} - m_{31}	XX111	1001X
m_{10}	01010	✓	m_2 - m_{10}	0X010	\checkmark			11X00
m_{18}	10010	✓	m_2 - m_{18}	X0010	✓			01X11
m_{24}	11000	✓	m_8 - m_{24}	X1000	✓			10X11
m_7	00111	√	m_6 - m_7	0011X				1110X
m_{11}	01011	✓	m_5 - m_7	001X1	✓			0X0X0
m_{19}	10011	✓	m_{10} - m_{11}	0101X				X10X0
m_{28}	11100	✓	m_5 - m_{13}	0X101	✓			XX010
m_{13}	01101	✓	m_{18} - m_{19}	1001X				0X1X1
m_{26}	11010	✓	m_{24} - m_{26}	110X0	✓			X11X1
m_{15}	01111	√	m_{24} - m_{28}	11X00				XX111
m_{23}	10111	✓	m_{18} - m_{26}	1X010	✓			
m_{29}	11101	✓	m_{10} - m_{26}	X1010	\checkmark			
m_{31}	11111	√	m_{13} - m_{15}	011X1	√			
			m_{11} - m_{15}	01X11				
			m_7 - m_{15}	0X111	✓			
			m_{19} - m_{23}	10X11				
			m_{28} - m_{29}	1110X				
			m_7 - m_{23}	X0111	✓			
			m_{13} - m_{29}	X1101	\checkmark			
			m_{29} - m_{31}	111X1	√			
			m_{23} - m_{31}	1X111	\checkmark			
			m_{15} - m_{31}	X1111	✓			

Таблица импликант

Вычеркнем строки, соответствующие существенным импликантам (это те, которые покрывают вершины, не покрытые другими импликантами), а также столбцы, соответствующие вершинам, покрываемым существенными импликантами. Затем вычеркнем импликанты, не покрывающие ни одной вершины.

Простые импликанты		0-кубы														
		0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
		0	0	0	0	0	0	1	1	1	0	0	0	1	1	1
		0	0	0	1	1	1	0	0	1	0	0	1	0	1	1
		0	0	1	0	1	1	1	1	1	1	1	1	0	0	0
			1	0	1	0	1	0	1	1	0	1	1	0	0	1
			1	2	5	6	7	10	11	15	18	19	23	24	28	29
A	0000X	X	X													
В	00X01		X		X											
С	00X10			X		X										
D	0011X					X	X									
Е	0101X							X	X							
F	1001X										X	X				
G	11X00													X	X	
Н	01X11								X	X						
I	10X11											X	X			
J	1110X														X	X
K	0X0X0	X		X				X								
L	X10X0							X						X		
M	XX010			X				X			X					
N	0X1X1				X		X			X						
О	X11X1									X						X
Р	P XX111						X			X			X			

Ядро покрытия:

$$T = \{\}$$

Таблица упрощению не подлежит

Метод Петрика:

Запишем булево выражение, определяющее условие покрытия всех вершин:

$$Y = (A \lor K) \ (A \lor B) \ (C \lor K \lor M) \ (B \lor N) \ (C \lor D) \ (D \lor N \lor P) \ (E \lor K \lor L \lor M) \ (E \lor H) \ (H \lor N \lor O \lor P)$$

$$(F \lor M) \ (F \lor I) \ (I \lor P) \ (G \lor L) \ (G \lor J) \ (J \lor O)$$

Приведем выражение в ДНФ. Достаточно рассмотреть термы наименьшего порядка, только они могут соответствовать минимальным покрытиям.

 $Y = A\,B\,C\,E\,F\,G\,J\,P\lor A\,B\,C\,E\,F\,G\,O\,P\lor A\,B\,C\,E\,F\,J\,L\,P\lor A\,B\,C\,F\,H\,J\,L\,P\lor A\,B\,D\,E\,G\,I\,M\,O\lor A\,B\,D\,G\,H\,I\,J\,M\lor A\,B\,D\,G\,H\,I\,J\,M\lor A\,C\,E\,F\,G\,I\,J\,N\lor A\,C\,E\,F\,G\,I\,N\,O\lor A\,C\,E\,F\,G\,J\,N\,P\lor A\,C\,E\,F\,G\,N\,O\,P\lor A\,C\,E\,F\,I\,J\,L\,N\lor A\,C\,E\,F\,J\,L\,N\,P\lor A\,C\,E\,G\,I\,J\,M\,N\lor A\,C\,E\,G\,I\,M\,N\,O\lor A\,C\,E\,I\,J\,L\,M\,N\lor A\,C\,F\,H\,I\,J\,L\,N\lor A\,C\,F\,H\,I\,J\,L\,N\,P\lor A\,C\,G\,H\,I\,J\,M\,N\lor A\,C\,G\,H\,I\,M\,N\,O\lor A\,C\,H\,I\,J\,L\,M\,N\lor A\,D\,E\,G\,I\,J\,M\,N\lor A\,D\,E\,G\,I\,M\,N\,O\lor A\,D\,E\,I\,J\,L\,M\,N\lor A\,D\,G\,H\,I\,J\,M\,N\lor A\,D\,G\,H\,I\,M\,N\,O\lor A\,D\,H\,I\,J\,L\,M\,N\lor B\,C\,E\,F\,G\,J\,K\,P\lor B\,C\,E\,F\,G\,K\,O\,P\lor B\,C\,E\,F\,G\,K\,O\,P\lor B\,C\,E\,F\,G\,K\,O\,P\lor B\,C\,E\,F\,G\,H\,J\,K\,P\lor B\,D\,E\,F\,G\,I\,K\,O\lor B\,D\,E\,F\,G\,I\,K\,O\lor B\,D\,E\,F\,G\,I\,K\,O\lor B\,D\,E\,F\,G\,I\,K\,O\lor B\,D\,E\,F\,G\,I\,K\,O\lor B\,D\,F\,G\,H\,I\,J\,K\,P\lor B\,D\,E\,G\,I\,K\,M\,O\lor B\,D\,F\,G\,H\,I\,J\,K\,L\,P\lor B\,D\,G\,H\,I\,J\,K\,M\lor B\,D\,G\,H\,I\,K\,M\,O\lor B\,D\,H\,I\,J\,K\,L\,M\lor M,$... (термы высших порядков)

Возможны следующие покрытия:

$$C_1 = \begin{cases} T \\ A \\ B \\ C \\ C \\ E \\ F \\ C \\ O000X \\ O0X01 \\ O0X01 \\ O0X01 \\ O0X01 \\ O0X01 \\ O0X10 \\ O0X11 \\ O0X1$$

$$C_{25} = \begin{cases} T\\ A\\ D\\ E\\ I\\ I\\ I\\ I\\ I I 1100X\\ X 10X01\\ X 10X11\\ X 10X01\\ X 11X00\\ X X010\\ X$$

Рассмотрим следующее минимальное покрытие:

$$C_{\min} = \begin{cases} 0000X \\ 00X10 \\ 0101X \\ 1001X \\ 11X00 \\ 0X1X1 \\ X11X1 \\ XX111 \end{cases}$$
$$S^{a} = 29$$
$$S^{b} = 37$$

Этому покрытию соответствует следующая МДНФ:

$$f = \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \vee \overline{x_1} \, \overline{x_2} \, x_4 \, \overline{x_5} \vee \overline{x_1} \, x_2 \, \overline{x_3} \, x_4 \vee x_1 \, \overline{x_2} \, \overline{x_3} \, x_4 \vee x_1 \, x_2 \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, x_3 \, x_5 \vee x_2 \, x_3 \, x_5 \vee x_3 \, x_4 \, x_5$$

Минимизация булевой функции на картах Карно

Определение МДНФ

 $f = \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \vee \overline{x_1} \, \overline{x_2} \, x_4 \, \overline{x_5} \vee \overline{x_1} \, x_2 \, \overline{x_3} \, x_4 \vee x_1 \, \overline{x_2} \, \overline{x_3} \, x_4 \vee x_1 \, x_2 \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, x_3 \, x_5 \vee x_2 \, x_3 \, x_5 \vee x_3 \, x_4 \, x_5$

Определение МКНФ

$$f = (\overline{x_1} \lor x_2 \lor x_4) (\overline{x_1} \lor \overline{x_2} \lor \overline{x_4}) (x_1 \lor \overline{x_3} \lor x_4 \lor x_5) (x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_5) (\overline{x_1} \lor x_2 \lor \overline{x_3} \lor x_5) (\overline{x_2} \lor x_3 \lor x_4 \lor \overline{x_5}) (x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5})$$

Преобразование минимальных форм булевой функции

Факторизация и декомпозиция МДНФ

$$f=\overline{x_1}\,\overline{x_2}\,\overline{x_3}\,\overline{x_4}\vee\overline{x_1}\,\overline{x_2}\,x_4\,\overline{x_5}\vee\overline{x_1}\,x_2\,\overline{x_3}\,x_4\vee x_1\,\overline{x_2}\,\overline{x_3}\,x_4\vee x_1\,x_2\,\overline{x_4}\,\overline{x_5}\vee\overline{x_1}\,x_3\,x_5\vee x_2\,x_3\,x_5\vee x_3\,x_4\,x_5$$
 $S_Q=37$ $\tau=2$ $f=x_3\,x_5$ $(\overline{x_1}\vee x_2\vee x_4)\vee\overline{x_1}\,\overline{x_2}$ $(\overline{x_3}\,\overline{x_4}\vee x_4\,\overline{x_5})\vee\overline{x_3}\,x_4$ $(\overline{x_1}\,x_2\vee x_1\,\overline{x_2})\vee x_1\,x_2\,\overline{x_4}\,\overline{x_5}$ $S_Q=32$ $\tau=4$ $\varphi=x_1\,\overline{x_2}$
$$\overline{\varphi}=\overline{x_1}\vee x_2$$

$$f=x_3\,x_5$$
 $(\overline{\varphi}\vee x_4)\vee\overline{x_1}\,\overline{x_2}$ $(\overline{x_3}\,\overline{x_4}\vee x_4\,\overline{x_5})\vee\overline{x_3}\,x_4$ $(\overline{x_1}\,x_2\vee\varphi)\vee x_1\,x_2\,\overline{x_4}\,\overline{x_5}$ $S_Q=32$ $\tau=5$ Декомпозиция нецелесообразна
$$f=x_3\,x_5$$
 $(\overline{x_1}\vee x_2\vee x_4)\vee\overline{x_1}\,\overline{x_2}\,\overline{x_3}\,\overline{x_4}\vee\overline{x_1}\,\overline{x_2}\,x_4\,\overline{x_5}\vee\overline{x_1}\,x_2\,\overline{x_3}\,x_4\vee x_1\,\overline{x_2}\,\overline{x_3}\,x_4\vee x_1\,x_2\,\overline{x_4}\,\overline{x_5}$ $S_Q=32$ $\tau=3$

Факторизация и декомпозиция МКНФ

$$f = (\overline{x_1} \lor x_2 \lor x_4) (\overline{x_1} \lor \overline{x_2} \lor \overline{x_4}) (x_1 \lor \overline{x_3} \lor x_4 \lor x_5) (x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_5) (\overline{x_1} \lor x_2 \lor \overline{x_3} \lor x_5)$$

$$(\overline{x_2} \lor x_3 \lor x_4 \lor \overline{x_5}) (x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5})$$

$$f = (\overline{x_1} \lor x_2 \lor x_4 (\overline{x_3} \lor x_5)) (\overline{x_1} \lor \overline{x_2} \lor \overline{x_4}) (x_1 \lor \overline{x_3} \lor x_5 \lor \overline{x_2} x_4) (\overline{x_2} \lor x_3 \lor x_4 \lor \overline{x_5})$$

$$(x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5})$$

$$F = (\overline{x_1} \lor x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5})$$

$$F = (\overline{x_1} \lor x_2 \lor x_4 (\overline{x_3} \lor x_5)) (\overline{x_1} \lor \overline{x_2} \lor \overline{x_4}) (x_1 \lor \overline{x_3} \lor x_5 \lor \varphi) (\overline{x_2} \lor x_3 \lor x_4 \lor \overline{x_5}) (\overline{\varphi} \lor x_1 \lor x_3 \lor \overline{x_5})$$

$$F = (\overline{x_1} \lor x_2 \lor x_4 (\overline{x_3} \lor x_5)) (\overline{x_1} \lor \overline{x_2} \lor \overline{x_4}) (x_1 \lor \overline{x_3} \lor x_5 \lor \varphi) (\overline{x_2} \lor x_3 \lor x_4 \lor \overline{x_5}) (\overline{\varphi} \lor x_1 \lor x_3 \lor \overline{x_5})$$

$$F = (\overline{x_1} \lor x_2 \lor x_4 (\overline{x_3} \lor x_5)) (\overline{x_1} \lor \overline{x_2} \lor \overline{x_4}) (x_1 \lor \overline{x_3} \lor x_5 \lor \varphi) (\overline{x_2} \lor x_3 \lor x_4 \lor \overline{x_5}) (\overline{\varphi} \lor x_1 \lor x_3 \lor \overline{x_5})$$

$$F = (\overline{x_1} \lor x_2 \lor x_4 (\overline{x_3} \lor x_5)) (\overline{x_1} \lor \overline{x_2} \lor \overline{x_4}) (\overline{x_1} \lor \overline{x_2} \lor \overline{x_4})$$

$$F = (\overline{x_1} \lor x_2 \lor x_4) (\overline{x_1} \lor \overline{x_2} \lor \overline{x_4}) (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3}) (\overline{x_1} \lor \overline{x_2} \lor \overline{x_4}) (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3}) (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3}) (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3}) (\overline{x_1} \lor \overline{x_2$$

Синтез комбинационных схем

Будем анализировать схемы на следующих наборах аргументов:

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 1, x_5 = 1]) = 0$$

$$f([x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 0, x_5 = 0]) = 0$$

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 0]) = 1$$

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 1]) = 1$$

Булев базис

Схема по упрощенной МДН Φ :

$$f = x_3 \, x_5 \, \left(\overline{x_1} \vee x_2 \vee x_4 \right) \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \vee \overline{x_1} \, \overline{x_2} \, x_4 \, \overline{x_5} \vee \overline{x_1} \, x_2 \, \overline{x_3} \, x_4 \vee x_1 \, \overline{x_2} \, \overline{x_3} \, x_4 \vee x_1 \, \overline{x_2} \, \overline{x_4} \, \overline{x_5} \quad \left(S_Q = 32, \tau = 3 \right)$$

Схема по упрощенной МКНФ:

$$f = (x_3 \vee \overline{x_5} \vee (\overline{x_2} \vee x_4) \ (x_1 \vee x_2 \vee \overline{x_4})) \ (\overline{x_1} \vee x_2 \vee x_4 \ (\overline{x_3} \vee x_5)) \ (\overline{x_1} \vee \overline{x_2} \vee \overline{x_4}) \ (x_1 \vee \overline{x_3} \vee x_5 \vee \overline{x_2} \ x_4) \quad (S_Q = 30, \tau = 4)$$

Сокращенный булев базис (И, НЕ)

Схема по упрощенной МДН Φ в базисе И, НЕ:

$$f = \overline{x_3 x_5 \overline{x_1} \overline{x_2} \overline{x_4}} \overline{x_1} \overline{x_2} \overline{x_3} \overline{x_4} \overline{x_1} \overline{x_2} \overline{x_4} \overline{x_5} \overline{x_1} \overline{x_2} \overline{x_3} \overline{x_4} \overline{x_1} \overline{x_2} \overline{x_3} \overline{x_4} \overline{x_1} \overline{x_2} \overline{x_3} \overline{x_4} \overline{x_1} \overline{x_2} \overline{x_3} \overline{x_4} \overline{x_5} \qquad (S_Q = 40, \tau = 6)$$

Схема по упрощенной МКН Φ в базисе И, НЕ:

$$f = \overline{x_1 \, \overline{x_2} \, \overline{x_4 \, \overline{x_3} \, \overline{x_5}}} \, \overline{x_1 \, x_2 \, x_4} \, \overline{x_1 \, x_3 \, \overline{x_5} \, \overline{\varphi}} \, \overline{x_2 \, \overline{x_3} \, \overline{x_4} \, x_5} \, \overline{\varphi \, \overline{x_1} \, \overline{x_3} \, x_5} \quad (S_Q = 37, \tau = 7)$$

$$\varphi = \overline{x_2} \, x_4$$

Универсальный базис (И-НЕ, 2 входа)

Схема по упрощенной МДН Φ в базисе И-НЕ с ограничением на число входов:

Схема по упрощенной МКНФ в базисе И-НЕ с ограничением на число входов:

$$f = \overline{x_1 \overline{\overline{x_2}} \overline{\overline{x_4}} \overline{\overline{x_3}} \overline{\overline{x_5}}} \overline{x_2 x_4} \overline{\overline{\overline{x_3}} \overline{\overline{x_2}} \overline{\overline{x_4}} \overline{\overline{\overline{x_1}}} \overline{\overline{\overline{x_2}} \overline{x_4}} \overline{\overline{\overline{x_1}} \overline{\overline{x_2}} \overline{x_4}} \overline{\overline{\overline{x_1}} \overline{x_3}} \overline{\overline{\overline{x_5}} \overline{\overline{x_2}} \overline{x_4}}$$
 $(S_Q = 48, \tau = 11)$

