PS2

January 18, 2023

0.1 Problem Set 2

Daniela Santos Cárdenas, Ana Brás Monteiro

```
[1]: # Importing the necessary libraries
     import pandas as pd
     import statsmodels.formula.api as smf
     import numpy as np
     import pyblp
     from linearmodels.iv import IV2SLS
     from statsmodels.sandbox.regression.gmm import GMM
     from statsmodels.sandbox.regression import gmm
     from linearmodels.iv import IVGMM
     from scipy.linalg import block_diag
     import matplotlib.pyplot as plt
     pyblp.options.digits = 2
     pyblp.options.verbose = False
[2]: # Import data
     colnames=['mkt_id', 'prod_id', 'prod_share', 'prod_att1', 'prod_att2', _
      →'prod_att3', 'price', 'shifter1', 'shifter2', 'shifter3', 'group']
     df = pd.read_csv('.../data/Data.csv', names=colnames, header=None)
[4]: df.describe()
[4]:
```

```
mkt_id
                      prod_id
                                 prod_share
                                              prod_att1
                                                           prod_att2 \
                  970.000000 9.700000e+02
       970.000000
                                                          970.000000
                                             970.000000
count
                                              -0.030330
                                                           -0.004903
mean
        26.167010
                    10.430928 1.912517e-02
std
        14.485213
                     5.990177
                               6.025534e-02
                                                0.995995
                                                            0.999779
min
        1.000000
                     1.000000 3.019000e-07
                                               -2.985200
                                                           -3.104500
25%
        14.000000
                     5.000000 9.976725e-05
                                               -0.706257
                                                           -0.682220
                    10.000000 7.848100e-04
50%
        26.500000
                                               -0.064417
                                                            0.042951
75%
        39.000000
                    15.000000 5.950150e-03
                                                0.670627
                                                            0.681762
max
        50.000000
                    25.000000 5.582900e-01
                                                2.811000
                                                            3.690400
```

	prod_att3	price	shifter1	shifter2	shifter3	group
count	970.000000	970.000000	970.000000	970.000000	970.000000	970.000000
mean	-0.057823	5.577779	-0.029543	-0.012141	-0.044407	2.010309
std	1.016903	1.371331	1.007472	0.989332	0.977154	0.818956
min	-4.167300	1.328500	-2.850200	-4.096800	-3.251200	1.000000
25%	-0.706403	4.708150	-0.710245	-0.704515	-0.700940	1.000000
50%	-0.068317	5.527950	-0.055330	0.017694	-0.001928	2.000000
75%	0.620657	6.507125	0.688550	0.695118	0.590225	3.000000
max	3.231500	10.000000	3.275500	3.681100	3.272600	3.000000

0.2 2.1 Logit Demand

Question a)

Estimate an aggregate Logit model using OLS based on the following utility function that individual i derives from buying product j in market n:

$$u_{ijn} = \alpha p_{jn} + x_{jn}\beta + \xi_{jn} + \varepsilon_{ijn}$$

Dependent variable: $\delta_{jn} = log(\frac{s_{jn}}{s_{0n}})$

```
[5]: # Creating market shares
df['mkt_share'] = df.groupby('mkt_id')['prod_share'].transform('sum')

# Share of the outside good
df['mkt_share_out'] = 1 - df['mkt_share']

# Calculate log of ratio
df['utility'] = np.log(df['prod_share']/df['mkt_share_out'])
```

[6]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable: utility R-squared: 0.843 OLS Adj. R-squared: 0.842 Model: Method: Least Squares F-statistic: 1294. Wed, 18 Jan 2023 Prob (F-statistic): Date: 0.00 Time: 08:51:37 Log-Likelihood: -1491.9No. Observations: 970 AIC: 2994. Df Residuals: 965 BIC: 3018. Df Model: 4

	0 1						
=	==========	=====			======	=========	======
	СО	ef	std err	t	P> t	[0.025	0.975]

nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	0.9496	0.163	5.818	0.000	0.629	1.270
price	-1.3385	0.028	-47.054	0.000	-1.394	-1.283
prod_att1	2.4160	0.045	53.906	0.000	2.328	2.504
prod_att2	0.5124	0.045	11.319	0.000	0.424	0.601
prod_att3	0.3696	0.043	8.689	0.000	0.286	0.453
Omnibus:		2.	031 Durbin	 ı-Watson:		1.837
Prob(Omnibus	s):	0.	362 Jarque	-Bera (JB):		2.082
Skew:		0.	088 Prob(J	IB):		0.353
Kurtosis:		2.	857 Cond.	No.		26.7

Notes:

Covariance Type:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

11 11 11

Question b)

Estimate the same Logit model using Instrumental Variables (IV). Use the cost shifters as instruments, providing the results also for the 1st stage. How do your results change compared to the OLS case? Provide an intuition for the endogeneity bias. Calculate the mean across markets of own and cross price elasticities.

```
[7]: # Show first stage
ols_fs = smf.ols('price ~ 1 + prod_att1 + prod_att2 + prod_att3 +shifter1 +

→shifter2 + shifter3', data=df).fit()
print(ols_fs.summary())
```

OLS Regression Results

Dep. Variable:	price	R-squared:	0.519
Model:	OLS	Adj. R-squared:	0.516
Method:	Least Squares	F-statistic:	173.0
Date:	Wed, 18 Jan 2023	Prob (F-statistic):	3.50e-149
Time:	08:51:40	Log-Likelihood:	-1327.4
No. Observations:	970	AIC:	2669.
Df Residuals:	963	BIC:	2703.
Df Model:	6		

Covariance Type: nonrobust

=========	=======	=======	=======			
	coef	std err	t	P> t	[0.025	0.975]
Intercept	5.6208	0.031	183.015	0.000	5.561	5.681

=========	========			:=======	========	=======
Kurtosis:		2.9	974 Cond.	No.		5.22
Skew:		-0.0	012 Prob(J	IB):		0.974
Prob(Omnibus):	0.9	986 Jarque	e-Bera (JB):		0.052
Omnibus:		0.0	027 Durbir	n-Watson:		2.019
=========				.=======	========	
shifter3	0.4483	0.054	8.363	0.000	0.343	0.553
shifter2	0.4834	0.045	10.753	0.000	0.395	0.572
shifter1	0.4611	0.046	10.106	0.000	0.372	0.551
prod_att3	0.0175	0.064	0.274	0.784	-0.108	0.143
prod_att2	0.0592	0.061	0.970	0.332	-0.061	0.179
prod_att1	0.0768	0.062	1.249	0.212	-0.044	0.198

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
[8]: iv_logit = IV2SLS.from_formula('utility ~ 1 + [price ~ shifter1 + shifter2 + → shifter3] + prod_att1 + prod_att2 + prod_att3', data = df).fit()
iv_logit.summary
```

[8]: <class 'linearmodels.compat.statsmodels.Summary'>

IV-2SLS Estimation Summary

=======================================			
Dep. Variable:	utility	R-squared:	0.8400
Estimator:	IV-2SLS	Adj. R-squared:	0.8393
No. Observations:	970	F-statistic:	3905.7
Date:	Wed, Jan 18 2023	P-value (F-stat)	0.0000
Time:	08:51:42	Distribution:	chi2(4)
Cov. Estimator:	robust		

Parameter Estimates

========		.=======			========	========
	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI
Intercept	1.6129	0.2304	7.0003	0.0000	1.1613	2.0644
prod_att1	2.4668	0.0478	51.598	0.0000	2.3731	2.5605
prod_att2	0.5616	0.0491	11.435	0.0000	0.4653	0.6579
prod_att3	0.3725	0.0444	8.3935	0.0000	0.2855	0.4595
price	-1.4571	0.0417	-34.962	0.0000	-1.5388	-1.3754
========		=========	========	========	=========	========

Endogenous: price

Instruments: shifter1, shifter2, shifter3

Robust Covariance (Heteroskedastic)

Debiased: False

11 11 11

Since we expect the coefficients to be biased towards zero, using an instrument for price makes the coefficient be more negative.

Elasticities

```
Own-price elasticities: \epsilon_{jj} = \alpha p_{jn} (1 - s_{jn})
Cross-price elasticities: \epsilon_{jk} = -\alpha p_{kn} s_{kn}
```

```
[9]: # Own price elasticities
df['e_jj'] = iv_logit.params['price'] * df['price'] * (1 - df['prod_share'])
# Mean across markets
np.mean(df.e_jj)
```

[9]: -7.993652493251175

```
[10]: # Cross-price elasticities of any good j wrt k.

df['e_jk'] = - iv_logit.params['price'] * df['price'] * df['prod_share']

# Mean across markets

np.mean(df.e_jk)

# I tried weighting the means by market share but it doesn't change much. Not⊔

→ sure what's ideal.
```

[10]: 0.13366860095027963

Question c)

You will need to construct a GMM objective function with both demand and supply moments, with the price coefficient—entering in both moments (cross-equation restriction). How do your results change compared to the case with just IV?

```
[]: ## Resources that I used to learn about this:
# Carole's help
# Info on classes and OOP: https://realpython.com/
→python3-object-oriented-programming/
# GMM estimator: https://www.statsmodels.org/stable/generated/statsmodels.
→sandbox.regression.gmm.GMM.html#statsmodels.sandbox.regression.gmm.GMM
```

```
class GMMdemand(GMM):
    def momcond(self, params): # This is where we define moment conditions
        alpha, beta1, beta2, beta3, gamma1, gamma2, gamma3, k1, k2 = params #__
\rightarrow define params
        beta = np.array([beta1,beta2,beta3])
        gamma = np.array([gamma1,gamma2,gamma3])
        x = self.exog # endog, exog, instrument are inputs in the parent class
        z = self.instrument
        y = self.endog
        n_obs = z.shape[0] # Number of observations
        price = x[:, 0] # Price
        share = x[:, 1] # Market share
        exogenous_x = x[:, 2:] # Product characteristics
        log_share = y[:, 0] # Log market share
        # Moment conditions
        m1 = np.array(log_share - k1 * np.ones(n_obs) - alpha * price - beta.
 →dot(exogenous_x.T)).reshape(1,n_obs) # Demand side
        m2 = np.array(price - k2 * np.ones(n_obs) - gamma.dot(z.T) + 1/
 →(alpha*(1-share))).reshape(1,n_obs) # Supply side
        m1_all = np.concatenate((m1, m1, m1, m1, m1, m1, m1), axis = 0)
        m2_all = np.concatenate((m2, m2, m2, m2), axis = 0)
        # Instrument matrix
        instruments m1 = np.concatenate((np.ones(n_obs).reshape(1, n_obs),__
 \rightarrowexogenous_x.T, z.T), axis = 0)
        instruments_m2 = np.concatenate((np.ones(n_obs).reshape(1, n_obs), z.
\rightarrowT), axis = 0)
        instruments = block_diag(instruments_m1, instruments_m2).T
        errors = block_diag(m1_all, m2_all).T # had to transpose to get the
 \rightarrow right dimensions
        moments = instruments*errors # Creating here our Z'e
        return moments
model1 = GMMdemand(endog, exog, instrument, k_moms = 11, k_params=9) #_
\hookrightarrow Minimization
```

Optimization terminated successfully.

Current function value: 0.000107

Iterations: 23

Function evaluations: 25
Gradient evaluations: 25

 ${\tt Optimization} \ {\tt terminated} \ {\tt successfully}.$

Current function value: 0.000703

Iterations: 15

Function evaluations: 16 Gradient evaluations: 16

Optimization terminated successfully.

Current function value: 0.000703

Iterations: 3

Function evaluations: 6 Gradient evaluations: 6

Optimization terminated successfully.

Current function value: 0.000703

Iterations: 0

Function evaluations: 1 Gradient evaluations: 1

GMMdemand Results

Dep. Variable: ['y1', 'y2'] Hansen J: 1.363
Model: GMMdemand Prob (Hansen J): 0.506

Method: GMM

Date: Wed, 18 Jan 2023
Time: 08:52:03
No. Observations: 970

______ std err P>|z| [0.025]alpha -1.45470.042 -34.994 0.000 -1.536-1.373beta1 2.4612 0.048 51.808 0.000 2.368 2.554 beta2 0.5567 0.049 11.381 0.000 0.461 0.653 beta3 0.3752 0.044 8.479 0.000 0.288 0.462 gamma1 0.4867 0.033 14.865 0.000 0.423 0.551 0.032 16.008 0.000 0.452 gamma2 0.5154 0.579 0.4583 0.034 13.534 0.000 0.392 0.525 gamma3 k1 1.5994 0.230 6.959 0.000 1.149 2.050

k2 4.9140 0.037 132.727 0.000 4.841 4.987

```
[12]: results_GMM.params
```

Results don't look so different from what we got from IV, suggesting that the supply side doesn't seem to impact much the results.

0.2.1 Simulate a merger

For the merged firms (k,j) the supply side equation will be:

$$p_k = mc_k - \frac{1}{\alpha(1 - s_k - s_j)}$$

For the firms that don't merge, the supply side equation will be:

$$p_f = mc_f - \frac{1}{\alpha(1 - s_f)}$$

For all firms the demand side equation will be:

$$s_j = \frac{e^{k_1 + \alpha p_j + x_j \beta}}{1 + \sum_{k=1}^{J} e^{k_1 + \alpha p_k + x_k \beta}}$$

[14]: # Naming the results of GMM

```
alpha = results_GMM.params[0]
      beta1= results_GMM.params[1]
      beta2 = results_GMM.params[2]
      beta3 = results_GMM.params[3]
      gamma = results_GMM.params[4:7]
      k1 = results_GMM.params[7]
      k2 = results_GMM.params[8]
[15]: ## Compute mc pre merge
      mc= df['price'] + 1/(alpha*(1-df['prod_share'])) # marginal cost
[16]: price_iter = df.price
      difference = 1
      convergence = 1
[17]: # Solve for markets shares and prices to equate supply side and demand side
      while convergence >= 1e-10 :
          differencepre = difference
          price_d = price_iter
          # STEP 1: Use demand side eq. to get market shares using observed prices
          df['EXP'] = np.exp(k1 + alpha * price_d + beta1 * df['prod_att1'] + beta2 *__

    df['prod_att2'] + beta3 *df['prod_att3'])
          df['sumEXP_'] = df.groupby('mkt_id').transform('sum')['EXP']
          df['ms_d'] = df['EXP'] / (1 + df['sumEXP_']) # market share using demand_
       \rightarrow equation logit
          # STEP 2: Calculate new denominator for supply equation using new shares
       \rightarrow and parameters
          ## first need to compute market shares of merged firms
          df['first_ms2'] = np.where((df['first_firm']== 1), df['ms_d'], 0) # MS of_u
       \rightarrow largest firm
          df['second_ms2'] = np.where((df['second_firm'] == 1), df['ms_d'], 0) # MS of_
       ⇒second largest firm
          df_grouped = df.groupby('mkt_id')
```

```
df['first_ms'] = df_grouped.transform('sum')['first_ms2'] # column for ms_u
→of largest firm in each market
    df['second_ms'] = df_grouped.transform('sum')['second_ms2']
    ## denominator of price equation --> 1-si for unmerged firms and 1-si-sju
 \rightarrow for merged firms
    denominator = 1 - df['ms_d'] - df['first_firm']*df['second_ms'] -__
 →df['second_firm']*df['first_ms']
    # STEP 3: update prices
    price_iter = mc - (alpha*(denominator))**(-1)
    # Difference between demand and supply prices (euclidean distance), this is _{\sqcup}
→what we're minimizing
    difference = (price_d - price_iter).T.dot((price_d - price_iter))
    # difference between the difference in the last step and the difference in \Box
\hookrightarrow this step
    convergence = abs(differencepre - difference)
df['price_iter']=price_iter
convergence
```

[17]: 9.061462691306588e-11

Prices of the firms that merged increased, but not a lot. For the largest firms, prices dropped in some cases.

Market shares for largest firms before and after merge


```
[22]: df['diff']=(largest['ms_d']-largest['prod_share'])*100/largest['prod_share']
      df['diff'].describe()
[22]: count
               50.000000
              -42.892569
      mean
               35.606415
      std
              -94.658612
     min
      25%
              -73.725662
      50%
              -43.531750
      75%
              -18.540519
     max
               35.718083
     Name: diff, dtype: float64
```

Market shares decreased after the merge, specially for the largest firms in the different market. The median was a 43% decrease in market share.

0.3 2.2 Nested Logit Demand

Question a)

Estimate a Nested Logit Model using IV based on the following:

$$u_{ijn} = \alpha p_{jn} + x_{jn}\beta + \xi_{jn} + \zeta_{ign} + (1 - \sigma)\varepsilon_{ijn}$$

We'll estimate:

$$log(\frac{s_{jn}}{s_{0n}}) = \alpha p_{jn} + x_{jn}\beta + \sigma log(\frac{s_{jn}}{s_{on}}) + \xi_{jn}$$

Got help from https://pyblp.readthedocs.io/en/stable/_notebooks/tutorial/logit_nested.html

```
[24]: nest_logit = IVGMM.from_formula('utility ~ 1 + [price + sjn_sgn ~ shifter1 + → shifter2 + shifter3] + prod_att1 + prod_att2 + prod_att3', data=df)

res_nest_logit = nest_logit.fit()

res_nest_logit.summary
```

[24]: <class 'linearmodels.compat.statsmodels.Summary'>

IV-GMM Estimation Summary

______ Dep. Variable: R-squared: 0.8998 utility Estimator: IV-GMM Adj. R-squared: 0.8993 No. Observations: 970 F-statistic: 6272.3 Date: P-value (F-stat) Wed, Jan 18 2023 0.0000 Time: 08:53:53 Distribution: chi2(5) Cov. Estimator: robust

Parameter Estimates

========		=======	=======	=======	========	========
	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI
Intercept	0.3822	0.9661	0.3956	0.6924	-1.5112	2.2757
prod_att1	2.2253	0.1872	11.890	0.0000	1.8584	2.5921
prod_att2	0.3788	0.1441	2.6286	0.0086	0.0964	0.6612
prod_att3	0.2909	0.0744	3.9078	0.0001	0.1450	0.4369
price	-1.0505	0.3159	-3.3254	0.0009	-1.6696	-0.4313
sjn_sgn	0.2923	0.2268	1.2887	0.1975	-0.1522	0.7368

Endogenous: price, sjn_sgn

Instruments: shifter1, shifter2, shifter3

GMM Covariance Debiased: False

Robust (Heteroskedastic)

11 11 11

The price coefficient is lower than in the logit model which makes sense because now the log of share relative to the group takes some explanatory power. Sigma is 0.3 which means that the correlation of the within-group preference is not very strong.

Own-price elasticities

Products in a nest: $\epsilon_{jj} = \frac{\alpha p_{jn}}{1-\sigma} (1-\sigma s_{j|q,n} - (1-\sigma)s_{jn})$

```
[25]: results = pd.read_html(res_nest_logit.summary.tables[1].

→as_html(),header=0,index_col=0)[0]

alpha = results['Parameter'].values[4]
sigma = results['Parameter'].values[5]
```

```
[26]: # All the products are in a nest

df['e_jj_nest'] = (alpha * df['price'])/(1 - sigma) * (1 - sigma *

→(df['prod_share']/df['group_share']) - (1 - sigma) * df['prod_share'])

np.mean(df.e_jj_nest)
```

[26]: -7.876126607393623

Cross-price elasticities

Products in different nests: $\epsilon_{jk} = -\alpha p_{kn} s_{kn}$

Products in the same nest: $\epsilon jk = -\frac{\alpha p_{kn}}{1-\sigma}(\sigma s_{k|q,n} + (1-\sigma)s_{kn})$

Average cross-price elasticity:

$$\bar{\varepsilon_{jk}} = \frac{\sum_{g} \left(\sum_{jg} \varepsilon_{jg,kg} \times (N_g - 1) + \sum_{g' \neq g} \sum_{jg} \varepsilon_{jg,kg'} * (N - N_g) \right)}{N(N - 1)}$$

Mean within group elasticities:

$$\varepsilon_{within} = \frac{\sum_{m} \sum_{g} \left(\sum_{j} \varepsilon_{jgm,kgm} \times (N_{mg} - 1) \right)}{\sum_{m} \sum_{g} (N_{qm} - 1)}$$

where N_{mq} is the number of g-group products in market m.

Mean across group elasticities

$$\varepsilon_{across}^{-} = \frac{\sum_{m} \sum_{g' \neq g} \left(\sum_{j} \varepsilon_{jgm,kg'm} \times (N_m - N_{mg}) \right)}{\sum_{m} \sum_{g' \neq g} N_m - N_{mg}}$$

```
[27]: # Products in different nests
      df['diff'] = - alpha * df['price'] * df['prod_share']
      df['same'] = - (alpha * df['price'])/(1 - sigma) * ( sigma * (df['prod_share']/

→df['group_share']) + (1 - sigma) * df['prod_share'])
      N = sum(df.groupby(['prod_id', 'mkt_id']).transform('count')['group'])
      df['Ng'] = df.groupby(['group']).transform('count')['prod_share']
      df['Nm'] = df.groupby(['mkt_id']).transform('count')['group']
      df['Nmg'] = df.groupby(['group', 'mkt_id']).transform('count')['prod_share']
[28]: #Average cross-price elasticity
       (sum(df['same'] * (df['Ng']-1) + df['diff'] * (N - df['Ng']))) / (N * (N-1))
[28]: 0.19868297659816603
[29]: print(df[['mkt_id', 'prod_id', 'group', 'same','Nm', 'Ng', 'Nmg']].head(10))
         mkt_id prod_id group
                                          same
                                                Nm
                                                      Ng
                                                           Nmg
      0
               1
                                     0.003016
                                                20
                                                     330
                                                            10
                         1
      1
               1
                         2
                                 2 0.017505 20
                                                     320
                                                             5
      2
                         3
                                 2
               1
                                    0.068193 20
                                                     320
                                                             5
      3
                         4
                                 1 1.948488 20
                                                     320
                                                             5
               1
      4
               1
                         5
                                 3 0.006906 20
                                                     330
                                                            10
      5
               1
                         6
                                 2 1.640932 20 320
                                                             5
      6
                         7
               1
                                 1 0.006124 20
                                                     320
                                                             5
      7
               1
                         8
                                 3 0.013805 20
                                                     330
                                                            10
      8
               1
                         9
                                 2 0.011525
                                                     320
                                                             5
                                                20
      9
                        10
                                    0.049344
                                                20
                                                     320
                                                             5
[30]: # mean within group elasticities
      sum(df['same'] * (df['Nmg']-1)) / sum(df['Nmg'] - 1)
[30]: 0.3535715613562319
[31]: # mean across group elasticities
        (\operatorname{sum}(\operatorname{df}['\operatorname{diff}'] * (\operatorname{df}['\operatorname{Nm}'] - \operatorname{df}['\operatorname{Nmg}']))) / (\operatorname{sum}(\operatorname{df}['\operatorname{Nm}'] - \operatorname{df}['\operatorname{Nmg}']))
```

[31]: 0.09588551763000888

The average within group elasticity is much larger than the cross-group elasticities, which makes sense given the assumption of the structure of cross-elasticities in the nested logit model.

0.4 2.3 Random Coefficient Logit

```
[24]: colnames=['market_ids', 'product_ids', 'shares', 'prod_att1', 'prod_att2', __
       →'prod_att3', 'prices', 'shifter1', 'shifter2', 'shifter3', 'group']
      product_data = pd.read_csv('../data/Data.csv', names=colnames, header=None)
[25]: product_data['supply_instruments3'] = np.square(product_data['prod_att1'])
      product_data['supply_instruments4'] = np.square(product_data['prod_att2'])
      product_data['supply_instruments5'] = np.square(product_data['prod_att3'])
      product_data['demand instruments3'] = np.square(product_data['shifter1'])
      product_data['demand_instruments4'] = np.square(product_data['shifter2'])
      product_data['demand_instruments5'] = np.square(product_data['shifter3'])
[26]: product_data.rename(columns = {'shifter1': 'demand_instruments0',
                            'shifter2': 'demand instruments1',
                            'shifter3':'demand instruments2',
                           }, inplace = True)
[27]: print(product data.head(5))
                     product_ids
                                                        prod_att2 prod_att3
                                                                              prices
        market_ids
                                    shares
                                            prod_att1
     0
                                  0.000203
                                               0.73183
                                                         -0.81210
                                                                    0.478310
                                                                               7.2379
                  1
                               1
                  1
                               2
                                  0.000021
                                              -0.12528
                                                          0.38120
                                                                    -0.993350
                                                                               6.6680
     1
     2
                  1
                               3 0.000069
                                              -0.38789
                                                          1.28590
                                                                     1.455700
                                                                               7.7439
     3
                  1
                                 0.003820
                                              -0.69570
                                                                               4.6906
                                                          1.73850
                                                                     0.045094
     4
                               5 0.000411
                                               1.61170
                                                          0.72081
                                                                     1.189600
                                                                               8.2069
        demand_instruments0
                              demand_instruments1
                                                    demand_instruments2
                                                                          group
     0
                     0.52997
                                        -0.084624
                                                                1.00580
                                                                              3
                                                                              2
     1
                    -1.29360
                                          0.755780
                                                               -1.01510
                                                                              2
     2
                                                                2.27140
                     0.97370
                                          0.998150
     3
                    -0.26251
                                        -0.029154
                                                               -0.66998
                                                                              1
     4
                     1.36030
                                          0.487410
                                                                              3
                                                                0.39726
        supply_instruments3
                              supply_instruments4
                                                    supply_instruments5
     0
                    0.535575
                                          0.659506
                                                               0.228780
     1
                    0.015695
                                          0.145313
                                                               0.986744
     2
                    0.150459
                                          1.653539
                                                               2.119062
     3
                    0.483998
                                          3.022382
                                                               0.002033
                    2.597577
                                          0.519567
                                                                1.415148
        demand instruments3
                              demand instruments4
                                                    demand instruments5
     0
                    0.280868
                                          0.007161
                                                                1.011634
     1
                    1.673401
                                          0.571203
                                                                1.030428
     2
                    0.948092
                                          0.996303
                                                               5.159258
     3
                    0.068912
                                          0.000850
                                                               0.448873
     4
                    1.850416
                                          0.237569
                                                               0.157816
```

```
[28]: X1_formulation = pyblp.Formulation('1 + prices + prod_att1 + prod_att2 +
      →prod_att3')
     X2_formulation = pyblp.Formulation('0 + prices + prod_att1 + prod_att2 +__
      →prod att3')
     product_formulations = (X1_formulation, X2_formulation)
     product_formulations
[28]: (1 + prices + prod_att1 + prod_att2 + prod_att3,
      prices + prod_att1 + prod_att2 + prod_att3)
[29]: mc_integration = pyblp.Integration('monte_carlo', size=50,__
      ⇔specification_options={'seed': 0})
     mc_integration
[29]: Configured to construct nodes and weights with Monte Carlo simulation with
     options {seed: 0}.
[30]: mc_problem = pyblp.Problem(product_formulations, product_data,__
      →integration=mc_integration)
     mc_problem
[30]: Dimensions:
     _____
               Ι
                          K2
                    K1
     50
         970 2500
                    5
                          4
                               10
     Formulations:
                                   0
                                                      2
           Column Indices:
                                            1
                                                                3
     ______
      X1: Linear Characteristics 1
                                       prices
                                                  prod_att1 prod_att2
     prod_att3
     X2: Nonlinear Characteristics prices prod_att1 prod_att2 prod_att3
[31]: bfgs = pyblp.Optimization('bfgs', {'gtol': 1e-4})
     bfgs
```

[31]: Configured to optimize using the BFGS algorithm implemented in SciPy with analytic gradients and options {gtol: +1.0E-04}.

[32]: # Results with restricted diagonal matrix for random tastes using Monte Carlo

□ Integration.

results1 = mc_problem.solve(sigma=np.eye(4), optimization=bfgs)
results1

[32]: Problem Results Summary:

______ GMM Objective Gradient Hessian Hessian Clipped Weighting Matrix Covariance Matrix Step Value Norm Min Eigenvalue Max Eigenvalue Shares Condition Number Condition Number _____ +6.4E-01 +5.2E-05 +3.3E+00 +6.7E+01 0 +8.3E+01 +4.1E+04 ______

Cumulative Statistics:

=========	=======				========
Computation Time	•	Optimization Iterations	Objective Evaluations	Fixed Point Iterations	Contraction Evaluations
00:00:12	Yes	29	38	13624	42681
=========	========				========

Nonlinear Coefficient Estimates (Robust SEs in Parentheses):

_____ prices prod_att1 prod_att2 prod_att3 _____ ______ prices -1.6E-01 (+2.7E-01) prod_att1 +0.0E+00 +1.2E+00 (+2.0E-01) prod att2 +0.0E+00 +0.0E+00 +3.3E-01 (+5.4E-01)prod_att3 +0.0E+00 +0.0E+00 +0.0E+00 +4.3E-01 (+3.8E-01) ______

Beta Estimates (Robust SEs in Parentheses):

```
[33]: elasticities = results1.compute_elasticities()
```

```
[34]: #Example of the elasticity matrix for market 4

single_market = product_data['market_ids'] == 4
plt.colorbar(plt.matshow(elasticities[single_market]));
```


The diagonal of the first image consists of own elasticities and the diagonal of the second image consists of diversion ratios to the outside good.

```
[36]: means = results1.extract_diagonal_means(elasticities)
aggregates = results1.compute_aggregate_elasticities(factor=0.1)
```


[41]: # Results using unrestricted covariance matrix for random tastes using Monte

→Carlo integration.

results2 = mc_problem.solve(sigma=np.ones((4, 4)), optimization=bfgs)

results2

[41]: Problem Results Summary:

=====						
=====		======				
GMM	Objective	Gradient	Hessian	Hessian	Clipped	Weighting
Matr	ix Covarian	nce Matrix				
Step	Value	Norm	Min Eigenvalue	Max Eigenvalue	Shares	Condition
Numbe	er Conditio	on Number				
2	+1.2E-12	+7.3E-06	-1.4E-04	+4.7E+01	0	+9.8E+01
+1.3	E+18					
====					======	=========

Cumulative Statistics:

Computation Time	-	Optimization Iterations	Objective Evaluations	Fixed Point Iterations	Contraction Evaluations
00.00.10				17005	
00:00:18	Yes	26 	35 	17925 	55531

```
_____
     _____
                       prod_att1 prod_att2 prod_att3 | Sigma Squared:
     Sigma:
               prices
    prices
             prod_att1
                       prod_att2
                               prod_att3
              +6.0E-01
     prices
                                                           prices
    +3.6E-01
              +5.2E-01
                        -1.5E-01 -5.5E-01
              (+2.0E-01)
     (+2.4E-01) (+3.2E-01) (+2.9E-01) (+7.0E-01)
    prod_att1 +8.7E-01
                        -6.9E-01
                                                         prod_att1
    +5.2E-01
              +1.2E+00
                        -2.4E-02
                                  -7.8E-01
              (+3.9E-01) (+3.6E-01)
    (+3.2E-01) (+6.6E-01) (+1.0E+00)
                                 (+9.4E-01)
    prod_att2 -2.4E-01
                        -2.7E-01
                                  -3.7E-01
                                                         prod_att2
    -1.5E-01
              -2.4E-02
                        +2.6E-01
                                  -1.5E-01
              (+5.0E-01) (+8.0E-01)
                                 (+9.3E-01)
    (+2.9E-01) (+1.0E+00) (+5.3E-01) (+7.8E-01)
                                            +1.1E-01
                                  +9.9E-01
    prod att3
              -9.1E-01
                        -6.2E-04
                                                         prod att3
    -5.5E-01
              -7.8E-01
                        -1.5E-01
                                  +1.8E+00
              (+1.1E+00) (+4.3E-01) (+2.7E-01)
                                           (+9.2E-02)
     (+7.0E-01) (+9.4E-01) (+7.8E-01) (+2.1E+00)
    Beta Estimates (Robust SEs in Parentheses):
    ______
                        prod_att1 prod_att2
                                            prod_att3
                prices
     +2.7E+00
               -1.9E+00
                         +2.2E+00
                                   +8.2E-01
                                            +1.3E+00
     (+6.4E-01) (+2.0E-01) (+3.3E-01) (+3.5E-01) (+6.5E-01)
[43]: elasticities = results2.compute_elasticities()
[44]: #Example of the elasticity matrix for market 4
    single_market = product_data['market_ids'] == 4
```

Nonlinear Coefficient Estimates (Robust SEs in Parentheses):

plt.colorbar(plt.matshow(elasticities[single_market]));


```
[45]: means = results2.extract_diagonal_means(elasticities)
    aggregates = results2.compute_aggregate_elasticities(factor=0.1)

[46]: plt.hist(
        [means.flatten(), aggregates.flatten()],
        color=['red', 'blue'],
        bins=50
    );
    plt.legend(['Mean Own Elasticities', 'Aggregate Elasticities']);
```

