

<u>Internships – Problem Definitions</u>

E&TC Branch

This document outlines the problem definitions for the Internships being conducted at CopperCloud IOTech starting June 2020.

Note: More details on these use cases will be provided once the internship begins, and NDA (non-disclosure agreement) is in place.

Problem Definitions:

#	Problem Space	So	Solution Space		Expected Learning	
				Ou	tcomes	
1	Domain: Communication	1.	Develop a hybrid loT network of Radio Mesh (self-	1.	Design of radio mesh network	
	Problem statement:		healing network) & WiFi.			
	Extend range of WiFi-based IoT		Radio mesh to extend range	2.	Use of the 2.4 GHz 6-	
	deployment to 1 KM radius.		to 1 Km, and WiFi to provide		channel nRF24L01	
			connectivity to the Cloud.		radio platform	
	Solution should work in both LOS					
	(Line of Sight) and NLOS (No	2.	Develop a protocol to bounce	3.	Design of messaging	
	Line of Sight) conditions		messages around LOS		protocol on different	
			(Line of Sight) and detect		communication	
	Business use case:		when nodes go offline.		systems	
	Deploying IoT Solutions in NLOS (No Line of Sight) conditions, and	3.	Recommended equipment/platforms:	4.	Communication protocol between IoT	
	to cover a very large area		nRF24L01 with PA LNA antenna (for extended range)		Embedded Device and Cloud using MQTT and JSON	
			• ESP8266 for MCU and WiFi connectivity	5.	Basics of Relational Databases	
			MySQL Database hosted on AWS Cloud	6.	Agile methodology to execute projects	

2 Domain: Energy

Problem statement:

Power an IoT device off-grid, outdoors.

Business use case:

Deploying IoT Solutions in hardto-reach terrain, or where AC grid power not easily available

- Solar + LIPO battery powered IoT Device
- In case of low battery, exception should be logged on cloud database
- Recommended equipment/platforms
 - ESP8266/NodeMCU
 - Solar panel 8 to 12V
 - TP4056 LIPO charge controller
 - MySQL Database hosted on AWS Cloud

- Basics of solar power as applied to IoT
- Design LIPO battery charging system, and integrate it with a portable solar generation unit
- Power budgeting and management on embedded platforms
- Communication
 protocol between IoT
 Embedded Device and
 Cloud using MQTT and
 JSON
- Basics of Relational Databases
- Agile methodology to execute projects

Note: These 2 capabilities are not disjoint from each other. These are meant to be used in conjunction in the following field conditions for deployment:

- (a) area of coverage is large (beyond 200 feet radius)
- (b) line of sight between devices is not assured
- (c) AC grid power is inaccessible
- (d) Inaccessible terrain where frequent maintenance is not practicable