

1 **The Effect on the Lunar Exosphere of a Coronal Mass Ejection Passage**

2

3 R.M. Killen,^{1,3} D. M. Hurley^{2,3}, and W. M. Farrell,^{1,3}

4

5 ¹ Planetary Magnetospheres Branch

6 NASA Goddard Space Flight Center

7 Greenbelt, MD 20771

8 ² The Johns Hopkins University Applied Physics Laboratory

9 11100 Johns Hopkins Road

10 Laurel, MD 20723-6099

11 ³NASA Lunar Science Institute

12 NASA Ames Research Center

13 Moffett Field, CA 94035

14

15

16

17

18

19

20 *In preparation for J. Geophys. Res. Planets*

21 *SSLAM special issue*

22 *Oct. 10, 2011*

23

24

25

26

27 Pages: 62

28 Figures: 5

29 Tables: 10

30 Index Terms: 6250, 0328

31

31 Running Head: Effect of CME on the Lunar Exosphere

32

33 Corresponding Author:

34

35 Dr. Rosemary Killen

36 Planetary Magnetospheres Branch

37 Goddard Space Flight Center

38 Greenbelt, MD 20771

39 Rosemary.Killen@nasa.gov

40 301-286-6574

41

41 **Abstract**

42

43 Solar wind bombardment onto exposed surfaces in the solar system produces an energetic
44 component to the exospheres about those bodies. The solar wind energy and composition
45 are highly dependent on the origin of the plasma. Using the measured composition of the
46 slow wind, fast wind, solar energetic particle (SEP) population, and coronal mass ejection
47 (CME), broken down into their various components, we have estimated the total sputter
48 yield for each type of solar wind. We show that the heavy ion component, especially the
49 He^{++} and O^{+7} can greatly enhance the total sputter yield during times when the heavy ion
50 population is enhanced. Folding in the flux, we compute the source rate for several species
51 during different types of solar wind. Finally, we use a Monte Carlo model developed to
52 simulate the time-dependent evolution of the lunar exosphere to study the sputtering
53 component of the exosphere under the influence of a CME passage. We simulate the
54 background exosphere of Na, K, Ca, and Mg. Simulations indicate that sputtering increases
55 the mass of those constituents in the exosphere a few to a few tens times the background
56 values. The escalation of atmospheric density occurs within an hour of onset. The
57 decrease in atmospheric density after the CME passage is also rapid, although takes longer
58 than the increase. Sputtered neutral particles have a high probability of escaping the moon,

59 by both Jeans escape and photoionization. Density and spatial distribution of the
60 exosphere can be tested with the LADEE mission.

61

62 Keywords: Exosphere, Moon, Sputtering, Monte Carlo Simulation,

63

64

64

65 **1. Introduction**

66

67 The lunar exosphere is, in a sense, the visible interface between the lunar surface
68 and the interplanetary medium. Volatiles are degassed due to the effect of the solar flux
69 onto the surface, and both volatile and less volatile material can be ejected from the surface
70 by more energetic and violent processes such as sputtering by the solar wind, and by
71 hypervelocity impact of dust, meteoroids and, less often, asteroids and comets. Transport
72 of volatiles through the exosphere can lead to cold-trapping of volatiles in the polar
73 regions, and less permanent sequestration of volatiles on the nightside. These processes
74 are of practical interest to lunar explorers who may rely on polar-trapped volatiles, and to
75 those interested in space weather related phenomena that may impact earth-orbiting
76 spacecraft.

77 The lunar exosphere is sparse and highly variable. The multiple mechanisms
78 releasing constituents from the surface into the exosphere are time-varying, often with
79 comparable release rates. Meanwhile, lifetimes of particles in the atmosphere of the Moon
80 are similar to the timescale of the variability in the sources. Thus transient phenomena are
81 capable of contributing the bulk of the total atmosphere. In fact, the volatiles released by

82 an Apollo landed mission doubled the total atmospheric mass of the Moon temporarily
83 (Vondrak, 1992). One such transient phenomenon is the sputtering of excess material into
84 the atmosphere from an interplanetary coronal mass ejection (ICME). Although sputtering
85 does not provide the bulk of the lunar atmosphere during normal conditions, we consider
86 the enhancement that might result when an ICME impacts the lunar surface. Increased
87 space weathering events during the active phase of the solar cycle may lead to more rapid
88 cold-trapping of volatiles.

89 Furthermore, the exosphere is a source of ions in the solar wind interaction with the
90 moon (e.g. Winske et al., 1985; Cladis et al., 1994). Neutrals in the lunar exosphere are
91 subject to ionization by photons, protons, and electrons. Once ionized, they are accelerated
92 by the motional electric field of the solar wind and influence the solar wind interaction
93 through momentum transfer and plasma instabilities. The Solar Storm-Lunar Atmosphere
94 Modeling (SSLAM) Lunar Extreme Workshop (LEW) investigated the entire lunar surface-
95 exosphere-space plasma system during a space weather event at the moon (Farrell et al.,
96 this issue). The SSLAM LEW followed the effects of the solar storm of 2 May 1998 from its
97 effects on the lunar surface (Hurley et al., this issue), through the exosphere (this paper),
98 the exo-ionosphere (Sarantos et al., this issue), to the plasma interaction (Krauss-Varben et
99 al., this issue; Travnicek, this issue) and the resulting electromagnetic environment

100 (Zimmerman et al., this issue; Farrell et al. this issue) and its effects on dust (Stubbs et al,
101 this issue; Glenar et al., this issue). SSLAM provided the opportunity to examine feedback
102 between the components of the system. This paper presents the effects of the solar storm
103 on the exosphere, which is derived from the surface and provides feedback for the plasma
104 environment.

105 Because the morphology of the exosphere is a function not only of the rate at which
106 atoms are ejected, but also their energy distributions, radiation pressure, thermal
107 accommodation, sticking at the surface, and possible chemical reactivity, we consider four
108 species: Na, K, Mg, and Ca. The first two species are known to exist about the moon, having
109 been observed by ground-based telescopes (Potter and Morgan, 1985; 1986), and the latter
110 two are known to exist at Mercury (Bida et al., 2000; McClintock et al., 2009) and are
111 expected to also exist at the moon. Mg and Ca have not yet been detected in the ambient
112 lunar exosphere (Stern, 1999), although they were detected in the vapor plume after the
113 Lunar CRater Observation and Sensing Satellite (LCROSS) impact (Gladstone et al., 2010).
114 We use the measured solar wind composition, density and velocity for various solar wind
115 types, and we use the most recent information on sputtering by highly charged ions. We
116 first describe the Monte Carlo model, then we describe the solar wind measurements and

117 sputtering values that we employ, and next we show the models for the four species
118 considered.

119

120 **2. Lunar Atmospheric Model**

121 *2.1 Model History and background.*

122 In a surface-bounded exosphere, particles are not expected to interact with other
123 exospheric particles, but only interact with the surface (Stern, 1999; Killen et al., 2007).
124 Because the exosphere is collisionless, different species or different sources of a single
125 species can be modeled separately using Monte Carlo techniques without having to
126 incorporate interactions. This makes Monte Carlo modeling a useful tool for deciphering
127 important physical processes at play in the creation and maintenance not only of the lunar
128 exosphere but also of other exospheres in the solar system, including those at Mercury, Io
129 and Europa.

130 One can use various assumptions in the modeling to create a set of “base
131 atmospheres” that will have a characteristic distribution of particles for the assumed initial
132 distribution and physics involved. Different base atmospheres can be combined in
133 proportion to their source rates to produce an aggregate atmosphere. Although photon-
134 stimulated desorption (PSD) has been shown to provide the bulk of the lunar Na and K

135 atmosphere during normal conditions, we consider the enhancement that might result
136 when a CME impacts the lunar surface. Because the morphology of the exosphere is a
137 function not only of the rate at which atoms are ejected, but also their energy distributions,
138 radiation pressure, thermal accommodation and sticking at the surface, and possible
139 chemical reactivity, we consider four species, Na and K which are volatiles, and Mg and Ca
140 which are more refractory.

141 Crider and Vondrak (2000; 2002) developed a Monte Carlo model of the migration
142 of particles in a surface bounded exosphere for application to the Moon similar to those
143 developed by others (see Hodges, 1973; Arnold, 1979; Butler, 1997; Wurz and Lammer,
144 2003). The model follows the path of a particle under the effects of gravity and radiation
145 pressure once it is released into the exosphere with an energy selected from a distribution
146 function for the selected source process (section 2.2). In flight, one of three things can
147 happen. The particle may escape the planet's gravitational field, may be photoionized or
148 photodissociated, or may return to the surface. For the particles that return to the surface
149 intact, they may bounce elastically for another ballistic hop, they may thermalize or
150 exchange energy with the surface and be released with a new energy, or they may stick to
151 the surface. At some point, the particles will either be lost from the atmosphere or will
152 arrive in a cold trap. The Monte Carlo model records particle positions and velocities at

153 user-defined times, flux to specific points on the surface, and loss rates. Most components
154 of the model are modular such that various sources, losses, and physics can be selected by
155 the user to explore the effects these have on the atmosphere. These modules are described
156 in the following subsections.

157

158 *2.2 Model Description*

159 *2.2.1 Ballistic motion*

160 After release from the surface at a given position with velocity vector selected from
161 an appropriate distribution function, as discussed below, the model calculates the particle's
162 trajectory under gravity and radiation pressure using a fourth order Runge-Kutta (RK-4)
163 algorithm. Migrating particles follow a ballistic trajectory once released from the surface
164 because the lunar atmosphere is collisionless. Without radiation pressure, the final
165 position and time of flight can be found analytically assuming a spherical Moon (Vogel,
166 1966). Earlier lunar publications using this model have only used the analytic function and
167 no radiation pressure (Crider and Vondrak 2000; 2002). At Mercury, radiation pressure is
168 significant, especially for Na and K (see Potter et al., 2007) whereas at the Moon, the
169 radiation pressure is less important and can be ignored unless one is studying the lunar tail
170 region (e.g. Smyth and Marconi, 1995a; b). The RK-4 algorithm has been implemented to

171 follow the trajectory of the particles using the equation of motion (Killen et al., 2010;
172 Hurley, 2011). The results presented here use the equation of motion, but neglect radiation
173 pressure.

174 The current model assumes the Moon is a sphere with radius 1738 km. There are
175 large-scale topographic features that might affect bulk properties of the atmosphere, but at
176 present are not modeled except for cold traps. Small-scale effects, i.e. the "fairy castle"
177 effect (Hapke and Cassidy, 1978) also are not considered directly in the present work.

178

179 *2.2.2. Source functions*

180 The Monte Carlo model of the migrating gases takes a source function (including
181 spatial and energy distributions) and simulates the trajectories of large numbers of
182 particles (10^5 - 10^6). It is able to incorporate the different source functions required for the
183 different processes at work on the Moon, including photon-stimulated desorption, thermal
184 desorption, ion sputtering, micrometeoroid release, outgassing, or large impact events (see
185 e.g. Killen and Ip, 1999).

186 An input flux and spatial distribution is assigned as appropriate for the source: solar
187 UV radiation for photon-stimulated desorption, solar particle flux for ion sputtering, and
188 micrometeoritic or meteoritic flux for impact vaporization. At the Moon, solar wind flux

189 dies off with solar zenith angle due to the curvature of the Moon, unlike at Mercury where
190 the solar wind flux onto the surface depends on the locus of open magnetic field lines,
191 which is highly variable. Ion flux is greatly reduced on the night side of the Moon (Ogilvie
192 et al., 1996). When the Moon is inside the earth's magnetosphere it is shielded from the
193 solar wind, but it may traverse the plasma sheet, which contains high energy plasma rich in
194 oxygen ions from the Earth. Micrometeorite release, in contrast, is expected to be isotropic
195 over the surface of the Moon, at least within a factor of two. A cometary impact or asteroid
196 impact is localized to a specific position, and meteor streams are directional.

197 The ejected products are assigned an initial velocity from the surface drawn from
198 the distribution function appropriate to the release mechanism (Hofer, 1991; Roth, 1983).
199 Both source processes and surface interactions are species-dependent, resulting in various
200 energies and compositions of the ejected products. The solar wind ions implant themselves
201 into the regolith and cause physical and chemical sputtering with an efficiency dependent
202 on their kinetic and potential energy. Physical sputtering and backscattering are relatively
203 high-energy release mechanisms, whereas chemical sputtering and thermal processes eject
204 atoms at lower energies on average.

205 In order to correlate the source rate with an atmospheric distribution, we assign a
206 start time to the particles in the simulation at random within a specified time window. This

207 introduces a source rate into the model (the number of simulation particles in a simulation
208 time window), which enables scaling to a physical source rate after running. This is
209 possible because of the collisionless nature of the exosphere. Each modeled source is
210 described below.

211

212 2.2.2.1 Photon-stimulated desorption

213 Photon-stimulated desorption (PSD) was first suggested as a source for Mercury's sodium
214 exosphere by McGrath et al. (1986), and subsequently as a source for the lunar sodium
215 exosphere (Potter and Morgan, 1988). Subsequent laboratory work used electron-stimulated
216 desorption as a proxy for PSD to establish a desorption cross section of $Q = (3 \pm 1) \times 10^{-20} \text{ cm}^2$ at
217 5 eV (Yakshinskiy and Madey, 1999). The solar flux at $h\nu > 5\text{eV}$ is $2 \times 10^{14} \text{ photons cm}^{-2} \text{ s}^{-1}$, and
218 the surface number density of Na atoms, σ , is about $3 \times 10^{12} \text{ cm}^{-2}$. The PSD source flux calculated
219 using this rate would be

220

$$221 \Phi^{\text{PSD}} = F_{\text{ph}} \cos(\psi) Q \sigma / R, \quad (1)$$

222

223 where σ is the Na surface coverage, taken to be $f_{\text{Na}} \times 7.4 \times 10^{14} \text{ cm}^{-2}$, ψ is the solar zenith angle,
224 and R is the distance from the sun. The fractional abundance of lunar sodium is 0.005. The

225 theoretical cross section for PSD desorption was determined to be overly efficient unless the loss
226 processes for Na were also extremely efficient (e.g. Killen et al., 2001). Cassidy and Johnson
227 (2005) calculated a correction factor of a factor of three to account for trapping of the ejected
228 atoms in the regolith. In this model, we consider PSD yields beginning with the Yakshinskiy and
229 Madey (1999) yield reduced by a factor of three as suggested by Cassidy and Johnson (2005),
230 and subsequently consider the consequences of further reduction of yields in the absence of ion-
231 flux to the surface, and of an ion-flux enhancement of those baseline yields. Observations of the
232 lunar exosphere inside the Earth's magnetosphere (Potter et al., 2000) supported a feedback
233 between ion impact and photon-stimulated desorption (Sarantos et al., 2008; 2010). Sarantos et
234 al. (2008; 2010) suggested that the effective PSD yields consistent with the observations
235 were reduced by up to a factor of six from the experimental PSD yield by Yakshinskiy and
236 Madey (1999). The velocity of a particle released by PSD is taken from a thermal velocity
237 distribution with a temperature of 1200 K.

238

239 2.2.2.2 Impact vaporization

240 Vaporization due to meteoritic impact was considered as a possible source of the sodium
241 and potassium exospheres of Mercury (Morgan et al., 1988; Cremonese et al., 2005) and for the
242 moon (Potter and Morgan, 1988). The importance of impact vaporization was shown by Hunten

243 et al. (1998) who observed a brightening of the lunar sodium tail after the passage of the Moon
244 through the Leonid meteor stream. Impact-induced exospheres produced by micrometeoritic
245 debris of mass < 0.1 g were modeled for both Mercury and the Moon by Cintala (1992). More
246 recently, meteors of mass > 0.1 g were considered as sources of a transient atmosphere
247 (Mangano et al. 2007).

248 This model for impact vaporization is based on the impedance matching method
249 (Melosh, 1989; Morgan and Killen, 1998; Killen, 2003) and the total influx is an input
250 parameter.

251 Some differences in the current impact-vaporization code from that described in
252 Morgan and Killen (1998) are that the peak pressure of the impact is calculated using the
253 equations in Melosh (1989), chapters 3 and 4, and not using the approximation described
254 in Lange and Ahrens (1987). The peak pressure, P_p , is given by

255

$$256 P_p = \rho (C_t u_t + S_t u_t^2),$$

257

258 where ρ is the density in the target, u_t is the change in particle velocity across the shock in
259 the target, C_t has dimensions of velocity and is empirically determined, and S_t is
260 dimensionless and is also empirically determined. The constants C and S for the target and

261 impactor are input parameters and can be found in Melosh (1989) Table AII.2 for various
262 materials such as iron, diabase, sandstone, quartz, dunite and water. In addition to these
263 parameters the critical pressure for vaporization is a function of enthalpy required for
264 vaporization, H_v , which is an input parameter, for these runs set to that for regolith
265 determined by Cintala (1992). The temperature at which a given constituent vapor boils off
266 a mineral is the temperature of vaporization of the individual component (Ahrens and
267 O'Keefe, 1972). Thus the more volatile components will vaporize first, at significantly lower
268 impact velocities than those required for complete vaporization. We estimate the critical
269 pressure for vaporization of individual gases by scaling the critical pressure for
270 vaporization of regolith as defined by Cintala (1992) by the ratio of the enthalpies required
271 for vaporization (Chase *et al.*, 1985), given in Table 1. Our function for the minimum impact
272 velocity required for vaporization has the form of a quadratic:

273

$$v_{\min} = a + b \cdot m + c \cdot m^2, \quad (2)$$

275

276 where the constants a, b and c are given in Table 2 as a function of rock type and impactor
277 type. Aluminum was chosen as the impactor because the properties of aluminum are
278 closest to those of stony-iron meteorites, and it has been used in many laboratory tests. The

279 mean velocity of expansion of a vapor cloud created from a hyper-velocity impact is twice
280 the sound speed in the medium regardless of the impact velocity. For regolith the sound
281 speed is about 1.3 km/sec, thus the expansion velocity is on the order of 2 km/sec (Schultz,
282 1996), comparable to lunar escape velocity, 2.38 km/sec. The temperature derived from
283 this expansion speed is 5566 K. Because collisions with the regolith may decrease the
284 expansion velocity, the simulations shown in this paper assume a vapor temperature of
285 3000 K.

286 The observation of a 3000 K lunar exosphere at minimum column abundance inside the
287 Earth's magnetosphere was interpreted by Sarantos et al. (2008) to constrain the impact vapor
288 source at the Moon to approximately $\leq 8.5 \times 10^4$ cm⁻² s⁻¹, given a residence time in the lunar
289 exosphere of 6000 s from our Monte Carlo modeling.

290

291 2.2.2.3 Ion sputtering

292 Potter and Morgan (1988) recognized that a sputter source could produce the very
293 extended lunar sodium exosphere. Sputtering of Na by solar wind ions impinging onto the
294 surface of Mercury through the cusps of the magnetosphere was suggested by Potter and
295 Morgan (1990) to explain rapid variations in the observed Na exosphere, with high to mid-
296 latitude enhancements appearing and disappearing on intervals less than a day. At

297 Mercury, the solar wind only impacts the surface along open field lines, or near the open-closed
298 boundary region (Sarantos et al., 2007; Kallio and Janhunen, 2003), but the solar wind impacts
299 the entire sunward side of the Moon whenever the Moon is outside of the Earth's magnetosphere.
300 Kinetic energies of solar wind ions are on average 1 keV/amu, near where the sputtering
301 efficiency peaks (Johnson, 1990). Sputtering by H⁺, which normally accounts for 85% of the
302 total kinetic energy carried by the solar wind, is relatively inefficient. He²⁺ accounts for
303 about 13% of the kinetic energy carried by the normal (slow and fast) solar wind, and is
304 generally assumed to account for most of the space weathering effects. In addition,
305 although heavy ions (Z>6) account for only about 2% of the kinetic energy carried by the
306 normal solar wind, they also carry ~1 keV each in potential energy due to ionization
307 (Krachner et al., 2003). The sputter yield of protons is low, and the fraction of heavy ions in the
308 slow and fast solar wind is low. However, the fraction of heavy ions in the solar wind increases
309 dramatically in a CME or solar magnetic cloud. Sputtering yields by heavy ions have been
310 considered both theoretically (Sporn et al., 1997; Shemansky, 2003; Kallio et al., 2008) and
311 experimentally (Meyer et al., 2011) and have been shown to be orders of magnitude more
312 efficient than sputtering by protons.

313 The charge state of the impinging ion has little effect on the sputter efficiency of
314 highly conducting targets (conductors and semiconductors), but has considerable effect on

315 insulators (Aumayr and Winter, 2004). Sputtering of surfaces by highly charged projectiles
316 in which the potential energy of ionization contributes significantly to the yield is called
317 potential sputtering. Models for potential sputtering predict the formation of a short-lived
318 multiply excited atom with highly excited outer shell electrons, and with some empty inner
319 shells. Potential energy of the projectile is converted into kinetic energy of emitted
320 electrons and electronic excitation of a small surface area. In insulator targets, in which
321 perturbations of the electronic structure cannot be rapidly dissipated within the target,
322 structural surface modifications result: defect formation, desorption and sputtering.
323 Measured sputter yields of 1.5 keV Xe^{q+} onto Al₂O₃ show an approximately 40-fold increase
324 in the sputter yield due to Xe²⁸⁺ over that of Xe⁹⁺, and yields of SiO₂ bombarded by 1 keV
325 Ar^{q+} show a 2.6-fold increase in yield for Ar⁸⁺ over those of Ar⁺. Both of these materials
326 appear to have a finite sputter yield at zero kinetic energy of the projectile. On the other
327 hand, for a highly ionic oxide such as MgO, even though potential energy greatly increases
328 the sputter yield, potential energy does not induce sputtering in the absence of kinetic
329 energy of the projectile. Okabayashi et al. (2005) studied secondary ion emission from solid
330 surfaces irradiated with highly charged ions. In the case of a water adsorbed Si surface,
331 they found that the yield of H⁺ strongly depended on the charge state of the projectile, but

332 that the yield of Si^+ is independent of the charge for Ar^{q+} projectiles. Si^+ and SiOH^+ ions
333 were therefore ejected primarily by a kinetic sputtering process.

334 The normalized energy distribution for particles sputtered from a solid, $f(E_e)$, with the
335 energy E_e of the sputtered particle, has been given as (Sigmund, 1969)

336

337
$$f(E_e) = \frac{6E_b}{3 - 8\sqrt{E_b/E_e}} \frac{E_e}{(E_e + E_b)^3} \left\{ 1 - \sqrt{\frac{E_e + E_b}{E_c}} \right\} , \quad (3)$$

338

339 where E_b is the surface binding energy of the sputtered particle and E_c the cut-off energy for
340 sputtered atoms. The cut-off E_c , which is the maximum energy that can be imparted to a
341 sputtered particle by a projectile particle with energy E_i , is given by the limit imposed by a
342 binary collision between a projectile atom, m_1 , and the target atom, m_2 , (to be sputtered) as

343

344
$$E_c = E_i \frac{4m_1 m_2}{(m_1 + m_2)^2} . \quad (4)$$

345

346 *2.2.3 Surface interaction*

347 When the particle comes back into contact with the surface, there are a variety of
348 processes that can occur. These surface-atmosphere interactions in the extreme vacuum

349 environment of atmosphereless bodies introduce an array of interesting physics questions
350 that are still not well-studied, but can have an effect on atmospheric distribution. When the
351 atmospheric particle reencounters the planet, it may stick to the surface (discussed in
352 Section 2.2.4). It may adsorb to the surface long enough to partially or fully thermalize to
353 the local surface temperature and then be reemitted. Or it may rebound on contact
354 retaining all or most of its incident energy. The code allows the user to select from a wide
355 range of surface interactions. Comparing the results with different assumptions provides
356 insight into how the surface-atmosphere interface affects atmospheric properties.

357 The user specifies parameters for the energy exchange at the surface for particles
358 that return to the surface and are re-emitted. It includes a thermalization coefficient (w)
359 and a conservation coefficient (f) that governs the energy exchange between the particle
360 and the surface. The weights applied to v_t , a velocity from the Maxwellian distribution at
361 the local surface temperature (thermal accommodation) and to v_i the incident particle
362 velocity (rebound) total unity. This way, any degree of thermal accommodation is possible
363 with the code. The inbound and thermal velocities are added in quadrature with appropriate
364 weights to compute the outbound velocity. The conservation coefficient is applied afterward to
365 provide a separate means of damping particles:

$$366 v_f = \sqrt{f(wv_i^2 + (1-w)v_t^2)}$$

367

368 In all of the work presented here, we assume $f=1$, i.e., there is no separate damping of energy.

369 All of the energy exchange with the surface occurs through the thermal accommodation. We

370 used values of 0.2 and 0.5 for w as explained below.

371 If a particle is reemitted, the direction of release occurs with an isotropic angular

372 distribution. However, given the microstructure of the regolith, this is a simplification. The

373 reemitted particle is followed on all of its ballistic hops until it is lost from the system

374 either to sticking, escape, or photoionization.

375

376 *2.2.4 Loss processes*

377 *2.2.4.1 Sticking*

378 When the particle encounters the surface, the code determines whether the particle will

379 stick or be re-emitted depending on the sticking functions assigned to the simulation. If there is

380 no sticking, the particle is re-emitted as described in section 2.2.3 until it is lost by some other

381 process. For cold-trap sticking, the particle sticks if it lands in a cold-trap location as defined in

382 the simulation. The probability of sticking depends on the surface temperature for temperature-

383 dependent sticking.

384 For the Moon, we approximate the surface temperature (in Kelvin) by the function

385

$$T = 300 \cos^{1/4} \theta + 100, \quad \text{for } \theta < 90^\circ \quad (5)$$

387

388

389 where T is the surface temperature and θ is the solar zenith angle. The nightside temperature is
390 100 K.

391 For long-term sticking, the probability of sticking could be a function of temperature
392 or could be based on the surface composition. The user specifies a probability function for
393 sticking that can be based on the temperature, can be a day-night functionality, can allow
394 for a set number of bounces before sticking, can allow no sticking, or can be a fixed
395 probability where sticking is queried on every return to the surface. If a particle sticks to
396 the surface in the code, its time and position are recorded. This output is then available as
397 input for other runs where the distribution of adsorbed particles needs to be known.

398 Alternatively, the code can immediately consider the later reemission of a stuck particle.
399 For example, when nightside sticking is enabled, the code can assume that the particle is
400 reemitted at the dawn terminator by a specified release process (thermal desorption or
401 photon-stimulated desorption). This way, one can follow a particle until it is lost from the
402 planet by escape or photoionization rather than just recycling to the regolith.

403 In these simulations, sticking is applied as a temperature-based function. For each time
404 the particle comes into contact with the surface, the local surface temperature is queried. If the
405 temperature is below the setting, the particle sticks.

406

407 2.2.4.2 Photoionization

408 Photoionization rates depend on the ionization potential of the atom in question, and also
409 on the solar flux available with energy at or exceeding the ionization energy. Since most of this
410 energy comes in the form of UV radiation, the rate is dependent on the solar flux. The solar UV
411 flux is currently available on the LISIRD website (lasp.colorado.edu/LISIRD). We use the
412 ionization cross sections computed by Huebner et al. (1992) either for quiet sun or for active sun,
413 scaled to the orbital distance of the planet or moon at the time of observation. The rates are
414 summarized in Table 3. For sodium, there has been a controversy about the photoionization rate,
415 since the theoretical cross section from Chang and Kelly (1975) and the experimental cross
416 section from Hudson (1964); Hudson and Carter (1967) differ by a factor of 2.7. Both Huebner et
417 al. (1992) and Combi et al. (1997) recommend the theoretical cross section derived by Chang
418 and Kelly (1975). We have therefore adopted the theoretical cross section. Huebner et al. (1992)
419 did not publish a photoionization rate for calcium. However, Huebner calculated a rate of $7.0 \times 10^{-$

420 s^{-1} at quiet sun and $7.8 \times 10^{-5} s^{-1}$ for active sun. The corresponding excess energies of the
421 electrons are 0.38 eV and 0.47 eV, respectively (W. Huebner, personal communication).

422 The probability of photoionization or photodissociation during a given ballistic hop
423 is based on the photoionization time (Huebner et al., 1992; Verner et al., 1996) and the
424 time of flight in sunlight. If the particle remains intact and does not escape, the simulation
425 finds the location where the particle reencounters the surface. If that location is poleward
426 of a specified latitude (e.g. 85° for simulations of H₂O), the program calculates the
427 probability of the particle landing in a cold trap based on the total area in that latitude
428 range assumed to be a cold trap (Margot et al., 1999; Bussey et al., 2003).

429

430 2.2.4.3 Jeans Escape

431 The particle escapes the simulation when it crosses a predetermined boundary,
432 generally set at 20 radii from the surface. The Hill sphere is at 35 radii, where the
433 gravitational pull of Earth exceeds that of the moon.

434

435 *2.3. Steady State and Time-Dependent Models*

436 The model is run for many particles (usually 1 million) with a spatial and energy
437 distribution matching the release mechanism. The positions and velocities of the particles are

438 recorded at pre-determined timesteps. For steady state, one weights each model particle by the
439 source rate (Table 10). In steady state, the output time cadence is 1-minute intervals. For the
440 time dependent runs, a time cadence of 10 minutes was chosen. At each time step, particles are
441 weighted by the source rates from a time-profile. Binning the weighted model particles by
442 volume produces density. Similarly, binning along a line of sight computes column density.

443

444 **3. CME Passage**

445 *3.1 CME Introduction*

446 We have computed the total sputter yield on the lunar surface for an element normal to
447 the solar wind (i.e. there are no geometrical effects included.) The solar wind types considered
448 are fast wind, slow wind, and CME shock, bubble and flank. The density, velocity and fraction
449 of He^{++} assumed for each of these wind types are given in Table 4. The densest component is the
450 'CME', and the least dense is the magnetic bubble. The enrichment of heavy ions is species
451 dependent, as listed in Table 5. Both the magnetic bubble and CME driver gas are highly
452 enriched in heavy ions. Even in spite of the low density in the bubble, the sputter yield is
453 substantially increased above that in the solar wind. The composition of the fast solar wind and
454 slow wind are from vonSteiger et al. (2000) for south (fast wind) and minimum (slow wind).
455 Abundance ratios were all given relative to O. The Ne/O and Mg/O ratios were found to vary

456 from 0.26 to 0.38 for Ne/O and from 0.23 to 0.36 for Mg/O for central events in ICMEs
457 depending on whether the associated flare is none, C-flare, M-flare or X-flare, with X-flare being
458 the most intense and having the most enhanced Ne and Mg abundances. The values in Table 5
459 are for the M-flare associated ICME (Reinard, 2008). The values for S/O and Fe/O are from
460 Wurz et al. (1997). Note that Carter et al. (2010) give the Si XIII/O VIII flux as 0.3 whereas the
461 Si XIV/O VIII flux is given as 0.15. We have used the intermediate value of 0.18 consistent with
462 the Wurz et al. (2000) report that Si/O is elevated by a factor of 1.55 in the January 6, 1997,
463 CME. Although Gloeckler et al. (1999) report that the Si/O and Mg/O ratios in the May 1998
464 CME were consistent with those typical of the slow solar wind, the more usual state is for these
465 ions to be elevated by up to a factor of two in CMEs. We did not find information on the
466 composition of the shock and magnetic bubble except for the alpha/proton and O/He. Therefore
467 we used the same composition for the heavier ions for the three components of the CME.

468 Kinetic sputtering, a process in which kinetic energy is transferred from the incoming
469 ions to the substrate, resulting in the ejection of atoms and ions, is relatively well understood.
470 This is the dominant sputtering mechanism for metals and semiconductors. However, on
471 insulating surfaces such as oxides an additional mechanism is important in removal of atoms and
472 ions from surfaces: potential sputtering is attributed to ejection due to the potential energy of
473 ionization carried by ions, and is the dominant sputtering process on insulating surfaces for

474 highly charged ions impacting with kinetic energies < 25 keV/amu (Barghouty et al., 2011).

475 Barghouty et al. (2011) calculated the kinetic sputter yield in atoms/ion by solar wind protons

476 and heavy ions at 1 keV/amu as simulated by the SRIM/TRIM code. They then calculated the

477 enhanced sputtering due to the potential energy of ionization. This potential energy of ionization

478 was found to increase the yield by a factor of 1.3 to 1.9 depending on the species. Because the

479 yield depends on both the incoming ion and outgoing ion, we have taken the kinetic yield of a

480 given species by heavy ions in the solar wind to be the average of the yield of that species from

481 all heavy ion species in the table. We used equation 2 from Barghouty et al., 2011 to calculate

482 the potential sputter yield, except that we assumed the same alpha and beta for all elements. We

483 added the potential yield thus calculated to the kinetic sputter yield. The results are consistent

484 with the average potential yield + kinetic yield of about 1.4 times the kinetic sputter yield alone.

485 For He^{++} the potential sputter yield is slightly larger than the kinetic sputter yield. The increase in

486 the sputter yield due to potential energy assumed in this paper is thus very modest and is less

487 than a factor of 2 for all elements. Table 6 lists the sputter yield of neutrals (atom/ion) by

488 protons, and by He^{++} and heavy ions weighted by the proton yield. Table 7 gives the flux ($\text{cm}^{-2} \text{s}^{-1}$

489 $)^1$) of neutral elements resulting from kinetic plus potential sputtering of a KREEP soil for slow

490 wind, fast wind, and the 3 CME components as listed in Table 4; while Table 8 gives the

491 corresponding flux for kinetic sputtering only.

492 These results are more conservative than those from Meyer et al. (2011) based on sputter
493 yield of O from JSC-1A AGGL lunar simulant. They obtained an 80-fold increase in sputter
494 yield of O by Ar^+ over that from production by protons, and an additional factor of two for
495 incident Ar^{+9} . The measurements were obtained for a pressed sample. The sputter yield of O by
496 4 keV He^+ ions was given by Dukes et al. (2011) as 0.37. This is roughly an order of magnitude
497 larger than the sputter yield of O by protons. Our yields for He^{++} as a fraction of proton yields
498 range from 12.9 to 14.9 and our yields for heavy ions as a fraction of proton yields range from 61
499 to 83.

500 The calculated sputter yields for the impact of ions onto leaded glass by Shemansky
501 (2003) are much greater than those used here. The sputter yield of O^{+7} given by Shemansky is
502 about two orders of magnitude greater than that of O^+ ; thus the calculated yield of O^{+7} relative to
503 the yield of H^+ is about 2500 for 1 keV/amu ions. He calculates that the relative sputtering yield
504 of solar wind ions onto leaded glass is heavily weighted by the heavy ions, which are twice as
505 efficient as protons even when weighted by their relative abundance in the solar wind.

506 The flux of neutral elements resulting from sputtering of a KREEP soil for slow wind,
507 fast wind, shock, magnetic bubble gas and CME driver gas are listed in Table 8. The yields have
508 been weighted by the yield per incident ion type and the fraction of that ion in the solar wind as
509 listed in Table 5. The yield/ H^+ is the yield for sputtering by protons and is taken from Barghouty

510 et al. (2011, Table 3). The yield (He^{++}/H) is the relative yield of each species from the He^{++} ion
511 in the solar wind, and the yield (Heavy/H) is the weighted yield from all ions heavier than He for
512 the designated species. The yields differ because they are weighted by the composition.

513 The sputter yield of secondary ions by protons is taken from Elphic et al. (1991). The
514 yield from He^{++} is taken to be a factor of 10 higher than that for protons, and that for heavy ions
515 is taken to be a factor of 160 over that for protons. These yields are multiplied by the solar wind
516 flux to obtain the flux of secondary ions by sputtering of the five solar wind types (Table 9).

517 These values are not used in our simulations since we only simulate the neutral exosphere, but
518 they are used in the accompanying papers (Krauss-Varben et al.; Travnicek et al., this issue). The
519 sputter yield of secondary ions by He^{++} is taken to be a factor of ten times that for H^+ ; however
520 the secondary ion flux for incident H^+ and for incident He^+ appear to be similar even though
521 secondary ion yields for other elements lie on a power law curve as a function of nuclear
522 stopping power (Elphic et al., 1991). Oxygen is not listed in Table 4 because there is not a
523 measurable flux of O^+ secondary ions. Because the O ionization energy is relatively large, 13.6
524 eV, and the ionization probability depends exponentially on ionization energy, we expect the
525 relative secondary ion yield for O^+/Na^+ to be on the order of 10^{-7} , extending the curve in Elphic
526 et al. (1991, Figure 3). It is likely that the copious amounts of O^+ observed near the Moon
527 originated at the Earth.

528

529 **4. Simulations**

530

531 To investigate the effect of a CME passage at the moon we ran simulations for an ion-
532 sputtering source, impact vaporization source, and PSD source. We considered models for Na, K,
533 Ca and Mg, elements predicted to be observable in the lunar exosphere by instruments on the
534 LADEE spacecraft (Sarantos et al., 2011).

535

536 *4.1 Sodium*

537 The Na exosphere has been observed at the moon and has been shown to be variable. Our
538 simulations for the lunar sodium exosphere are shown in Figure 1, due to sputtering by a CME
539 (left) and slow solar wind (right). Figure 1 assumes that the atmosphere is in steady state. Both
540 left and right sides contain the same steady state PSD and impact vaporization background
541 sodium atmospheres in addition to the different sputtered components. The source rates are
542 listed in Table 9. The upper panels show density as a function of longitude and distance from the
543 moon with the Sun at the right. The lower panels show column abundance projected onto the
544 surface with the subsolar point at the center. We assumed that Na atoms stick for T<200 K, and

545 otherwise are re-emitted. Of the particles that stick, 50% of the atoms are re-emitted when the
546 surface warms up to 200 K again.

547 For the slow solar wind case (right side of Figure 1), the steady state distribution for
548 sputtering using the slow solar wind source rate is included. For the CME case (left side), the
549 steady state distribution from sputtering using the peak CME sputtering yields is added to the
550 PSD and impact vaporization background. The increased sputtering yield from the ICME has
551 two effects. First, the total Na atmospheric content is increased 6.9 times the ambient
552 atmosphere. Second, the scale height of the atmosphere increases owing to the increase in higher
553 energy sodium atoms from sputtering relative to PSD.

554

555 CME conditions typically persist for a few days when an ICME encounters the moon. Thus we
556 investigate a time dependent case that shows how the exosphere evolves from the slow solar
557 wind state to the enhanced CME state. In these time-dependent runs, the source rate is elevated
558 for a 2-day duration to approximate the passage of the ICME. Figure 2 shows the total
559 atmospheric mass of sodium (and other constituents discussed later) as a function of time during
560 the passage of the 48-hour ICME. Because it takes longer than 2 days for all sputtered sodium
561 atoms to be removed from the lunar system, the total sodium mass continues to increase
562 throughout the event, although it does not increase much after the first several hours. If CME

563 conditions had a longer duration, the exosphere would continue to approach the steady-state
564 ICME simulation on the left side of Figure 1. As the ICME turns off, there is a rapid decline in
565 the sodium atmosphere.

566

567 The Auxiliary Material contains movies of the time-evolution of the atmospheric enhancement
568 for the passing ICME. Movies of the time-dependent runs for Na, K, Ca and Mg, both for the
569 sputter component alone (Movies 1, 2, 3, and 4) and for the sum of all components including
570 sputter, PSD, and impact vaporization (Movies 5, 6, 7, and 8), are provided. The color scale is
571 the same for each movie, and is identical to the color scale in Figure 1. The movies show the
572 density averaged over latitude as a function of longitude and distance from the center of the
573 Moon, with the Sun on the right (identical to the top row of Figure 1).

574 Because sputtering is an energetic process, >95% of the sodium ejected by the CME escapes
575 the Moon or is photoionized. At the Hill radius, 84% reaches that distance without being
576 photoionized, and 11% is photoionized before reaching the Hill radius. Some (<5%) recycling
577 within the regolith occurs with the sticking and re-release selected for these runs, as likely occurs
578 on the Moon.

579

580

581 *4.2 Potassium*

582 Simulations for the lunar potassium exosphere due to sputtering in steady-state by a CME
583 (left) and slow solar wind (right), are plotted in Figure 3. The coordinate systems and the color
584 bar are the same as described above for sodium (Figure 1). We assumed that K atoms stick for
585 T<200 K and that 100% of the atoms that stick to the surface are re-emitted. This assumption of
586 sticking and re-emission causes the downside enhancement (left side of bottom panels above, at -
587 90 longitude), which would occur for Na under the same assumptions. Under steady-state CME
588 conditions, the total atmospheric content is 9.3 times that of the ambient K atmosphere.

589 For the 2-day CME run, the total mass of K in the atmosphere follows a pattern similar to
590 Na (Figure 2.) For both Na and K, the decline in atmospheric mass takes longer than the ramp-
591 up due to the recycling in the regolith included in the simulations. See also Ancillary Material,
592 movies 1 and 5 (Na) and 2 and 6 (K).

593 The photoionization rate for K is much faster than for Na. In addition, the heavier mass
594 of K makes ejected atoms slower than Na. Together, this causes a much greater portion, 45% of
595 K, to be photoionized before reaching the Hill sphere. These ions subsequently are picked up by
596 the solar wind. Some are driven back to the surface, depending on the location of ionization and
597 the direction of the motional electric field.

598

599 *4.3 Calcium*

600 Figure 4 shows the simulations for the lunar calcium exosphere for the CME (left) and
601 slow solar wind (right) plotted as for sodium. We assumed that any Ca atom that reencounters
602 the surface sticks to the surface with unit efficiency. Note that in comparing CME sputtering and
603 nominal solar wind sputtering, this choice was not very important because <1% of the sputtered
604 particles actually returned to the surface. However, the Ca released by impact vaporization is not
605 energetic enough to escape the Moon. Therefore the choice of sticking affects the background
606 atmosphere substantially. The CME causes a much more extended and denser exosphere than
607 the slow solar wind. The high sputtering yields for Ca produce an atmospheric enhancement of
608 36 times the nominal mass of Ca during a prolonged sputtering event on the Moon, based on the
609 calculated sputtering yield enhancements from the energetic component of the ICME flux.

610 For the time dependent case, the ramp up and ramp down times are much shorter for Ca
611 than for Na and K. Na and K are less strongly bound to the surface than Ca and Mg. Thus the
612 energy of sputtered Ca and Mg is greater than sputtered Na and K (eq. 3). It only takes 38
613 minutes for half of the Ca particles to reach $10 R_{\text{moon}}$, compared to 67 minutes for Na. In
614 contrast to Na and K, the total amount of Ca in the exosphere is back down to the background
615 level within a few hours of the end of CME conditions (see the Ancillary Material, movies 3 and
616 7).

617 The effect of the CME on the total mass of Ca in the exosphere is greater than for Na and
618 K by a factor of a few. This is because there is no PSD component of Ca in the exosphere. PSD
619 is the dominant source in steady state conditions for Na and K. Thus, the sputtered component is
620 a greater percentage of the total exosphere for Ca, and its resulting increase during a CME has a
621 greater relative effect.

622

623 *4.4 Magnesium*

624 Simulations for the lunar magnesium exosphere for the CME (left) and slow solar wind
625 (right) are plotted in Figure 5. We assumed that 100% of Mg atoms that reencounter the surface
626 stick are not re-emitted. The magnesium exosphere is more extended than sodium due to its
627 larger binding energy with the surface. The CME causes a much more extended exosphere than
628 the slow solar wind, and a factor of 15 increase in the number of magnesium atoms in the
629 exosphere. The magnesium is similar to calcium due to its similar binding energy with the
630 surface, but its scale height is larger due to its lesser mass. The time evolution of the Mg content
631 of the atmosphere during the time dependent run is also similar to Ca, owing to the high velocity
632 of the sputtered atoms, but it takes the longest to decay owing to its low mass, high velocity and
633 very long photoionization lifetime (see the Ancillary Material, movies 4 and 8). Like Ca, Mg
634 lacks a PSD component to the exosphere, which lends a greater relative contribution from the

635 sputtered component. The lifetime of Mg due to photoionization is 204 days, thus
636 photoionization can be neglected for this species.

637

638 **5. Discussion**

639 Using observations of the lunar atmosphere when the Moon is inside and outside of the
640 Earth's magnetosphere, respectively, Mendillo et al. (1999) concluded that solar wind sputtering
641 is not a significant source of the Na atmosphere of the moon. Using estimates of the solar wind
642 density, velocity and composition in the slow solar wind and a CME, we have estimated that a
643 ~10 fold increase in the lunar exospheric density due to sputtering alone could result from a
644 CME passage through the influence of sputtering by highly charged ions, including He^{++} that
645 may be highly enriched in the CME plasma. Wurz et al. (2007) argue that the potential sputter
646 enhancement is strongly dependent upon the ion dose and, after a removal of about a monolayer
647 from the oxide surface, the sputter yield for highly charged ions drops to about the values for
648 singly charged ions. As discussed by Barghouty et al. (2011), there was no metalization effect
649 observed in their measurements of sputtering by highly charged ions, thus the preferential
650 removal of oxygen from a surface monolayer is most likely not occurring on the lunar surface as
651 proposed by Wurz et al. (2007). Also, as discussed by Killen et al. (2004) ion-enhanced diffusion
652 will act to replenish the surface monolayer. The characteristic timescale for an element to reach

653 steady state in a normal solar wind is about 1200 years, which is the timescale for a 1 μm layer to
654 be overturned on the lunar surface. Thus fresh material is exposed by gardening, and brought to
655 the surface by diffusion on timescales shorter than timescales on which the elemental abundance
656 reaches its yield-weighted fractional abundance. Observations of the lunar exosphere during an
657 extended period of time, especially during solar maximum, could be of use in testing this
658 hypothesis.

659

660 **6. Conclusions**

661 Our simulations indicate that sputtering by the enhanced highly charged heavy ions in the
662 plasma associated with a CME can enhance the lunar exosphere content due to sputtering by
663 approximately a factor of ~ 10 , depending on the species. The enhanced flux in the CME plasma
664 is an additional important factor in enhancing the total sputter yield. The solar wind density and
665 velocity are being monitored by the STEREO spacecraft, and the heliosphere can be modeled
666 using the community model center at Goddard Space Flight Center. Future observations of the
667 lunar exosphere can be used, along with measurements of the solar wind, to test these results.

668 The Lyman Alpha Mapping Project (LAMP) onboard the Lunar Reconnaissance Orbiter is
669 conducting observations of the atmosphere that will further constrain the amounts of Mg and Ca
670 in the lunar atmosphere. LAMP observations in conjunction with these simulations can verify

671 the source rates for those species in the lunar exosphere. The Lunar Atmosphere and Dust
672 Environment Explorer (LADEE) spacecraft will also observe the atmosphere of the Moon. Its
673 planned launch in 2013 places the mission during solar maximum. Species expected to reside in
674 the lunar exosphere normally just below levels of detectability for a 1-s integration by the
675 LADEE UV spectrometer (Ca, Mg, and Al) (Sarantos et al., 2011) will be elevated above the
676 limit of detectability during the passage of a CME. Provided that the instrument can operate with
677 elevated particle fluxes, we will spatially resolve all of these species rather than just "smear"
678 them spatially in order to detect them. Likewise, species predicted to normally exist in the lunar
679 exosphere at levels just below detectability by the LADEE Neutral Mass Spectrometer (Si, O
680 and Al) (Sarantos et al., 2011) should be elevated above minimum detectable limits during the
681 CME passage. Thus LADEE will provide crucial data to test these predictions through the
682 neutral mass spectrometer and the UV spectrometer. Furthermore, LADEE will likely observe
683 the moon as it passes through a meteor shower, allowing it to quantify the contribution of impact
684 vaporization to the exosphere by observing the enhancement from a sudden increase in the
685 impact vaporization rate. This model can be used to simulate that process as well.

686 The enhanced exosphere from a CME increases the amount of photoions near the Moon.
687 Additionally, sputtering ejects a small percentage of species as ions (Elphic et al., 1991). The
688 results of this work feed into the hybrid plasma calculations of Krauss-Varben et al. (this issue).

689 Picked-up ions were detected downstream of the Moon by AMPTE and WIND (Hilchenbach et
690 al., 1993; Mall et al., 1998). More recently, Yokota et al. (2009) have detected photoions and
691 sputtered ions close to the Moon with Kaguya.

692

693 **Acknowledgments**

694

695 This work was supported by the National Aeronautics and Space Administration under

696 Grants NNX09AH51G and NNG05GA80G issued through the Planetary Atmospheres

697 Program and by cooperative agreement NNX09AH68A to the DREAM team of the NASA

698 Lunar Science Institute. The work was facilitated by the SSLAM Lunar Extreme Workshop

699 conducted by William Farrell and enhanced through the participation of the DREAM team.

700 We thank Walter Huebner for providing photoionization rates for calcium and magnesium.

701 We thank Kevin Tennyson for performing model runs.

702

703

703 **References**

704

705 **other papers for this special issue: Stubbs et al., Sarantos et al., Hurley et al., Farrell et al.,

706 Krauss-Varben et al., Glenar et al.**

707 Ahrens, T.J. and J.D. O'Keefe (1972), Shock melting and vaporization of Lunar rocks and

708 minerals, *Moon*, 4, 214-249.

709 Arnold, J.R. (1979), Ice in the lunar polar regions, *J. Geophys. Res.*, 84, B10, 5659-5668.

710 Aumayr, F. and H. Winter (2004), Potential sputtering, *Phil. Trans. R. Soc. Lond. A*, 362, 77-

711 102.

712 Barghouty, A.F., F.W. Meyer, P.R. Harris, J.H. Adams, Jr. (2011), Solar-wind protons and heavy

713 ions sputtering of lunar surface materials, *Nucl. Inst. and Methods B*, 269, 1310-1315.

714 Bida, T., R.M. Killen, and T.H. Morgan (2000), Discovery of Ca in the atmosphere of Mercury,

715 *Nature*, 404, 159-161.

716 Bussey, D. B. J., P. G. Lucey, D. Steutel, M.S. Robinson, P.D. Spudis, K.D. Edwards, (2003),

717 Permanent shadow in simple craters near the lunar poles, *Geophys. Res. Lett.*, 30 (6), 11-1,

718 doi:10.1029/2002GL016180.

719 Butler, B.J. (1997), The migration of volatiles on the surfaces of Mercury and the Moon, *J.*

720 *Geophys. Res.*, 102, E8, 19283-19292.

- 721 Carter, J. A., S. Sembay, and A. M. Read (2010), A high charge state coronal mass ejection seen
722 through solar wind charge exchange emission as detected by XMM-Newton, *Mon. Not. R.*
723 *Astron. Soc.*, 402, 867-878.
- 724 Cassidy, T. A. and R.E. Johnson (2005), Monte Carlo model of sputtering and other ejection
725 processes within a regolith, *Icarus*, 176 (2), 499-507, doi: [10.1016/j.icarus.2005.02.013](https://doi.org/10.1016/j.icarus.2005.02.013).
- 726 Chang, J.-J. and H.P. Kelly (1975), Photoabsorption of the neutral sodium atom: A many-body
727 calculation, *Phys. Rev. A*, 12, 92-98.
- 728 Chase, M.W., Jr. et al. (1985), JANAF Thermochemical Tables, *Journ. Phys. Ref. Data*, 14
729 *Suppl 1*, Am. Chem. Soc. and Am. Inst. Phys., Natl. Bureau Standards, Washington, DC.
- 730 Cintala, M.J. (1992), Impact-induced thermal effects in the lunar and Mercurian regoliths, *J.*
731 *Geophys. Res.*, 97, 947-973.
- 732 Cladis, J.B., W. E. Francis, and R. R. Vondrak (1994), Transport toward earth of ions sputtered
733 from the moon's surface by the solar wind, *J. Geophys. Res.*, 99 (A1), 53-64.
- 734 Combi, M.R., M.A. Disanti and U. Fink (1997), The Spatial Distribution of Gaseous Atomic
735 Sodium in the Comae of Comets: Evidence for Direct Nucleus and Extended Plasma
736 Sources, *Icarus*, 130, 336-354.

- 737 Cremonese, G., M. Bruno, V. Mangano, S. Marchi, and A. Milillo, (2005), Release of neutral
738 sodium atoms from the surface of Mercury induced by meteoroid impacts, *Icarus*, 177,
739 122-128.
- 740 Crider, D. H., R.R. Vondrak (2000), The solar wind as a possible source of lunar polar hydrogen
741 deposits, *J. Geophys. Res.*, 105, E11 , 26773-26782.
- 742 Crider, D.H., and R.R. Vondrak (2002), Hydrogen implantation and migration by solar wind
743 bombardment of the Moon, *Adv. Sp. Res.*, 30: (8), 1869-1874.
- 744 Dukes, C. A., W.-Y. Chang, M. Famá, and R. A. Baragiola (2011), Laboratory studies on the
745 sputtering contribution to the sodium atmospheres of Mercury and the Moon, *Icarus*, 212
746 (2), 463-469.
- 747 Elphic, R. C., H. O. Funsten, III, FB. L. Barraclough, D. J. McComas, M. T. Paffett, D. T.
748 Vaniman, and G. Heiken (1991), Lunar surface composition and solar wind-induced
749 secondary ion mass spectrometry, *Geophys. Res. Lett.*, 18, 2165-2168.
- 750 Gladstone, G. R., D. M. Hurley, K. D. Rutherford, P. D. Feldman, W. R. Pryor, J.-Y. Chaufray,
751 M. Versteeg, T. K. Greathouse, A. J. Steffl, H. Throop, J. W. Parker, D. E. Kaufmann, A.
752 F. Egan, M. W. Davis, D. C. Slater, J. Mukherjee, P. F. Miles, A. R. Hendrix, A. Colaprete,
753 and S. A. Stern (2010), LRO-LAMP Observations of the LCROSS Impact Plume, *Science*,
754 330, 472-476.

- 755 Farrell, W., Gross, J. Halekas and the DREAM Team (2011), Overview of the SSLAM -
- 756 Objectives, storm description, and Lunar Prospector observations. This issue.
- 757 Farrell, W. and M. Zimmerman, Polar crater ion inflow: Affect on trapped volatile resources.
- 758 This issue.
- 759 Glenar, D. and T. Stubbs, Spectroscopic changes in lunar horizon glow during a CME passage.
- 760 This issue.
- 761 Gloecker, G. L. A. Fisk, S. Hefti, N. A. Schwadron, T. H. Zurbuchen, F. M. Ipavich, J. Geiss,
- 762 P. Bochsler, R. F. Wimmer-Schweingruber (1999), Unusual composition of the solar wind
- 763 in the 2-3 May 1998 CME observed with SWICS on ACE, *Geophys. Res. Lett.*, 26 (2),
- 764 157-160, doi:10.1029/1998GL900166.
- 765 Hapke, B. W. and W.A. Cassidy (1978), Is the moon really as smooth as a billiard ball -
- 766 Remarks concerning recent models of sputter-fractionation on the lunar surface, *Geophys.*
- 767 *Res. Lett.*, 5, 297-300.
- 768 Hilchenbach, M., D. Hovestadt, B. Klecker, and E. Möbius (1993), Observations of energetic
- 769 lunar pick-up ions near Earth, *Adv. Space Res.*, 13 (10), 321-324.
- 770 Hodges, R.R. (1973), Helium and hydrogen in the lunar atmosphere, *J. Geophys. Res.*, 78, 8055-
- 771 8064.

- 772 Hofer, W.O. (1991), Angular Energy and Mass Distribution of Sputtered Particles In: *Sputtering*
773 by *Particle Bombardment III*, edited by R. Behrisch and K. Wittmaack, pp. 15-90,
774 Springer-Verlag, New York.
- 775 Hudson, R.D. (1964), Atomic Absorption Cross Section of Sodium Vapor Between 2400 and
776 1000 Å, *Phys. Rev.*, 135, A1212–A1217.
- 777 Hudson, R.D. and V.L. Carter (1967), Experimental values of the atomic absorption cross
778 section of potassium between 580 Angstroms and 1000 Angstroms, *Journ. Opt. Soc. Am.*,
779 57, 1471.
- 780
- 781 Huebner, W.F., J.J. Keady and S.P. Lyon (1992), Solar Photo Rates for planetary atmospheres
782 and atmospheric pollutants, *Astrophys. Sp. Sci.*, 195, 1-294.
- 783 Hunten, D.M., G. Cremonese, A.L. Sprague, R.E. Hill, S. Verani and R.W.H. Kozlowski
784 (1998), The Leonid meteor shower and the lunar sodium atmosphere, *Icarus*, 136, 298 -
785 303.
- 786 Hurley, D.M. (2011), Water and hydroxyl production on the moon following a CME passage.
787 This issue.
- 788 Hurley, D. M. (2011), Modeling of the Vapor Release from the LCROSS Impact: I. Parametric
789 Dependencies, *Journ. Geophys. Res. -Planets*, doi:2010JE003793, in press.

- 790 Johnson, R.E. (1990), *Energetic Charged-Particle Interactions with Atmospheres and Surfaces*,
791 Springer-Verlag, New York.
- 792 Kallio, E. and P. Janhunen (2003), Solar wind and magnetospheric ion impact on Mercury's
793 surface, *Geophys. Res. Lett.*, 30, # 17, SSC 2-1, CiteID 1877, doi:10.1029/2003GL017842.
- 794 Kallio, E., P. Wurz, R. Killen, S. McKenna-Lawlor, A. Milillo, A. Mura, S. Massetti, S. Orsini,
795 H. Lammer, P. Janhunen, W.-H. Ip (2008), On the impact of multiply charged heavy solar
796 wind ions on the surface of Mercury, the Moon and Ceres, *Planet. Space Sci.*, 56 #11, 1506-
797 1516.
- 798 Killen, R.M. (2003), Depletion of sulfur on the surface of asteroids and the Moon, *Met.*
799 *Planetary Sci.*, 38, 383-388.
- 800 Killen, R. M. and W.-H. Ip (1999), The Surface -bounded atmospheres of Mercury and the
801 Moon. *Rev. Geophys.*, 37, 361-406.
- 802 Killen, R.M., A.E. Potter, P. Reiff, M. Sarantos, B.V. Jackson, P. Hick, and B. Giles (2001),
803 Evidence for Space Weather at Mercury, *J. Geophys. Res. Planets*, 106, 20,509-20,525.
- 804 Killen, R.M., M. Sarantos, A.E. Potter and P. Reiff (2004), Source Rates and Ion Recycling
805 Rates for Na and K in Mercury's Atmosphere, *Icarus*, 171, 1-19.

- 806 Killen, R.M. et al., (2007), Processes that Promote and Deplete the Atmosphere of Mercury, In:
- 807 *Mercury, Space Science Reviews*, edited by A. Balogh, L. Ksanfomality and R. vonSteiger,
- 808 pp. 251-327, doi: 10.1007/s11214-007-9232-0.
- 809 Killen, R. M., A. E. Potter, D. M. Hurley, C. Plymate, and S. Naidu (2010), Observations of the
- 810 lunar impact plume from the LCROSS event, *Geophys. Res. Lett.*, 37, L23201,
- 811 doi:10.1029/2010GL045508.
- 812 Krachner, A., F. Aumayr, D.W.G. Sears, and M. Kareev (2003), Space weathering by highly
- 813 charged heavy ions in the solar wind, paper presented at the 66th Ann. Met. Soc. Meeting,
- 814 July 28-August 1, 2003, Munster, Germany, Abstract 5204.
- 815 Krauss-Varban, D. and P. Travnicek, Hybrid simulation of a CME-driven moon. This issue.
- 816 Lange, M.A. and T.J. Ahrens (1987), Atmospheric blow-off during accretion of the terrestrial
- 817 planetary atmospheres. *Icarus*, 69, 506-518.
- 818 Mall, U., E. Kirsch, K. Cierpka, B. Wilken, A. Söding, F. Neuauer, G. Gloeckler, and A. Galvin
- 819 (1998), Direct observation of lunar pick-up ions near the Moon, *Geophys. Res. Lett.*, 25
- 820 (20), 3799-3802.
- 821 Mangano, V., A. Milillo, A. Mura, S. Orsini, E. deAngelis, A.M. diLellis and P. Wurz (2007),
- 822 The contribution of impulsive meteoritic impact vapourization to the Hermean exosphere.
- 823 *Planetary and Space Science*, 55, 1541-1556.

- 824 Margot, J.L., D.B. Campbell, R.F. Jurgens and M.A. Slade (1999), Topography of the lunar
825 poles from radar interferometry: a survey of cold trap locations, *Science*, 284, 1658.
- 826 McClintock, W. E., R. J. Vervack, Jr., E. T. Bradley, R. M. Killen, N. Mouawad, A. L. Sprague,
827 M. H. Burger, S. C. Solomon, and N. R. Izenberg (2009), Mercury's Exosphere during
828 MESSENGER's Second Flyby: Detection of Magnesium and Distinct Distributions of
829 Neutral Species, *Science*, 324, 610-613.
- 830 McGrath, M. A., R.E. Johnson, and L.J. Lanzerotti (1986), Sputtering of sodium on the planet
831 Mercury, *Nature*, 323, 694-696.
- 832 Mendillo M, J. Baumgardner and J. Wilson (1999), Observational test for the solar wind
833 sputtering origin of the Moon's extended sodium atmosphere, *Icarus*, 137, 13-23.
- 834 Melosh, H.J. (1989), *Impact cratering: A geologic process*, Oxford Univ. Press, Oxford.
- 835 Meyer, F. W., P. R. Harris, C. N. Taylor, H. M Meyer, III, A. F. Barghouty, and J. H. Adams
836 (2011), Sputtering of lunar regolith simulant by protons and singly and multicharged Ar ions
837 at solar wind energies, *Nuc. Instr. And Meth. In Phys., Res. Sect. B.*, 269 (11), 1316-1320.
- 838 Morgan, T.H. and R.M. Killen (1998), Production mechanisms for faint but possibly detectable
839 coronae about asteroids, *Planet. Space Sci.*, 46, 843-850.
- 840 Morgan, T.H., H.A. Zook and A.E. Potter (1988), Impact-driven supply of sodium and potassium
841 to the atmosphere of Mercury, *Icarus*, 75, 156 - 170.

- 842 Okabayashi, N., K. Komaki, and Y. Yamazaki (2005), Potential sputtering and kinetic sputtering
- 843 from a water adsorbed Si(1 0 0) surface with slow highly charged ions, *Nuc. Instr. And Meth.*
- 844 *In Phys., Res. Sect. B.*, 232 (1-4), 244-248.
- 845 Ogilvie, K. W., J. T. Steinberg, R. J. Fitzenreiter, C. J. Owen, A. J. Lazarus, W. M. Farrell, and
- 846 R. B. Torbert (1996), Observations of the lunar plasma wake from the WIND spacecraft on
- 847 December 27, 1994, *Geophys. Res. Lett.*, 23 (10), 1255-1258.
- 848 Potter, A.E., R.M. Killen and T.H. Morgan (2000), Variation of lunar sodium during passage of
- 849 the Moon through the Earth's magnetotail., *J. Geophys. Res.*, 105, 15073-15084.
- 850 Potter, A.E., R.M. Killen and T.H. Morgan (2007), Solar radiation acceleration effects on
- 851 Mercury sodium emission, *Icarus*, 186, 571-580.
- 852 Potter, A.E. and T.H. Morgan (1985), Discovery of sodium in the atmosphere of Mercury,
- 853 *Science*, 229, 651-653.
- 854 Potter, A.E. and T.H. Morgan (1986), Discovery of sodium and potassium vapor in the
- 855 atmosphere of the moon, *Science*, 241, 675-680.
- 856 Potter, A.E. and T.H. Morgan (1988), Extended sodium exosphere of the moon, *Geophys. Res.*
- 857 *Lett.*, 15, 1515-1518.
- 858 Potter, A.E. and T.H. Morgan (1990), Evidence for magnetospheric effects on the sodium
- 859 atmosphere of Mercury, *Science*, 248, 835-838.

- 860 Reinard, A. A. (2008), Analysis of interplanetary coronal mass ejection parameters as a function
861 of energetics, source location, and magnetic structure, *Astrophys. J.*, 682 (2), 1289-1305.
- 862 Roth, J. (1983) Chemical Sputtering, In: *Sputtering by Particle Bombardment II*, edited by R.
863 Behrisch and K. Wittmaack, pp. 91-146, Springer-Verlag.
- 864 Sarantos, M., R.M. Killen and D. Kim (2007), Predicting the solar wind ion-sputtering source at
865 Mercury, *Planet. Space Sci.*, 55, 1584 - 1595, doi:10.1016/j.pss.2006.10.011.
- 866 Sarantos, M., R.M. Killen, A.S. Sharma, and J.A. Slavin (2008), Correlation between Lunar
867 Prospector electron flux measurements and the Lunar exosphere during passage through the
868 Earth's magnetosphere, *Geophys. Res. Lett.*, 35, L04105, doi: 10.1029/2007G032310.
- 869 Sarantos, M., R. M. Killen, A. S. Sharma and J. A. Slavin (2010), Sources of sodium in the lunar
870 exosphere: Modeling using ground-based observations of sodium emission and spacecraft
871 data of the plasma, *Icarus*, 205, 364-374.
- 872 Sarantos, M., R. M. Killen, D. A. Glenar, M. Benna, and T. J. Stubbs (2011), Metallic species,
873 oxygen and silicon in the lunar exosphere: upper limits and prospects for LADEE
874 measurements, *Journ. Geophys. Res.*, submitted.
- 875 Sarantos, M., R.M. Killen and D.M. Hurley (2011), Ions in the lunar exosphere and wake
876 resulting from a CME passage. This issue.
- 877 Schultz, P.H. (1996), Effect of impact angle on vaporization, *J. Geophys. Res.*, 101, 21117-

- 878 21136, 10.1029/96JE02266.
- 879 Shemansky, D.E. (2003), The role of solar wind heavy ions in the space environment, Presented
880 at the Rarefied Gas Dynamics 23rd Intl. Symposium: Topics in Astrophysics, Whistler,
881 British Columbia, Canada 20-25 July, 2002, *AIP Conf. Proc., 663*, edited by A.D.
882 *Ketsdever and E.P. Munz*, p. 687.
- 883 Sigmund, P. (1969), Theory of Sputtering I. Sputtering yield of amorphous and polycrystalline
884 targets. *Phys Rev., 184*, 383-416.
- 885 Smyth, W. H., and M.L. Marconi (1995), Theoretical overview and modeling of the sodium and
886 potassium atmospheres of Mercury, *Astrophys. J., 441*, 839-864.
- 887 Smyth, W. H., and M.L. Marconi (1995), Theoretical overview and modeling of the sodium and
888 potassium atmospheres of the Moon, *Astrophys. J., 443*, 371-392.
- 889 Sporn, M., G. Libiseller, T. Neidhart, M. Schmid, F. Aumayr, H.P. Winter, P. Varga, M. Grether,
890 D. Niemann, and N. Stolterfoht, (1997), Potential sputtering of clean SiO₂ by slow highly
891 charged ions, *Phys. Rev. Lett., 79*, 945-948.
- 892 Stern, S. A. (1999), The lunar atmosphere: History, status, current problems, and context, *Rev.*
893 *Geophys., 37*, 453-491.

- 894 Verner, D.A., G.J. Ferland, K.T. Korista, and D.G. Yakovlev (1996), Atomic Data for
895 Astrophysics. II. New Analytic Fits for Photoionization cross sections of atoms and ions,
896 *Astrophys. Journ.*, 465, 487-498.
- 897 Vogel, U. (1966), Molecular fluxes in the lunar atmosphere, *Planet. Space Sci.*, 14, 1233.
- 898 Vondrak, R.R. (1992), Lunar base activities and the lunar environment, In: *The Second*
899 *Conference on Lunar Bases and Space Activities of the 21st Century*, 1, 337-345 (SEE N93-
900 17414 05-91) NASA Johnson Space Flight Center.
- 901 vonStieger, R., N. A. Schwadron, L. A. Fisk, J. Geiss, S. Hefti, B. Wilken, R. F. Wimmer-
902 Schweingruber, and T. H. Zurbuchen (2000), Composition of the quasi-stationary solar
903 wind flows from Ulysses/Solar Wind Ion Composition Spectrometer, *J. Geophys. Res.*,
904 105, (A12), 27217-27238.
- 905 Winske, D., C. S. Wu, Y. Y. Li, Z. Z. Mou, and S. Y. Guo (1985), Coupling of newborn ions to
906 the solar wind by electromagnetic instabilities and their interaction with the bow shock, *J.*
907 *Geophys. Res.*, 90, 2713.
- 908 Wurz, P., F. M. Ipavich, A. B. Galvin, P. Bochsler, M. R. Aellig, R. Kallenbach, D. Hovestadt,
909 H. Grünwaldt, M. Hilchenbach, W. I. Axford, H. Balsinger, A. Bürgi, M. A. Coplan, J.
910 Geiss, F. Gliem, G. Gloeckler, S. Hefti, K. C. Hsieh, B. Klecker, M. A. Lee, S. Livi, G. G.
911 Managadze, E. Marsch, E. Möbius, M. Neugebauer, K. U. Reiche, M. Scholer, M. I.

- 912 Verigin, and B. Wilken (1997), Elemental Composition Before, During, and After the
913 January 6, 1997 CME Event Measured by CELIAS/SOHO, Presented at the 31st ESLAB
914 Symposium held 22-25 September, 1997, at ESTEC, Noordwijk, The Netherlands. in
915 *Correlated Phenomena at the Sun, in the Heliosphere and in Geospace*, Edited by A.
916 Wilson. European Space Agency, ESA SP-415, 1997. ISBN: 92-9092-660-0, p.395.
- 917 Wurz., P., P. Bochsler, and M. A. Lee (2000) Model for the mass fractionation in the January 6,
918 1997 coronal mass ejection, *J. Geophys. Res.* 105 (A12), 27239-27250.
- 919 Wurz, P., and H. Lammer (2003), Monte Carlo simulation of mercury's exosphere, *Icarus*, 164,
920 1-13.
- 921 Wurz, P., U. Rohner, J.A. Whitby, C. Kolb, H. Lammer, P. Dobniker, J.A. Martin-Fernandez
922 (2007), The lunar atmosphere: the sputtering contribution, *Icarus*, 191, 486-496.
- 923 Yakshinskiy, B.V. and T.E. Madey (1999), Photon-stimulated desorption as a substantial source
924 of sodium in the lunar atmosphere, *Nature*, 400, 642-644.
- 925 Yokota, S., Y. Saito, K. Asamura, T. Tanaka, M. N. Nishino, H. Tsunakawa, H. Shibuya, M.
926 Matsushima, H. Shimizu, F. Takahashi, M. Fujimoto, T. Mukai, and T. Terasawa (2009),
927 First direct detection of ions originating from the Moon by MAP-PACE IMA onboard
928 SELENE (KAGUYA), *Geophys. Res. Lett.*, 36, L11201, doi:10.1029/2009GL038185.

929 Zimmerman, M., T. Jackson and W. Farrell, Simulations of the plasma wake structure and
930 astronaut charging within a shadowed lunar crater during passage of a solar storm, This
931 issue.
932

932

933 **Figure Captions.**

934

935 Figure 1. Simulations for the composite lunar sodium exosphere due to sputtering by a CME
936 (left) and slow solar wind (right). Both left and right sides contain the same steady state PSD and
937 impact vaporization background sodium atmospheres in addition to the different sputtered
938 components. We assumed that Na atoms stick for $T < 200$ K, and otherwise are re-emitted. The
939 upper panels show density, with the sun at the right. The average value over all latitudes is
940 shown as a function of longitude and distance from the center of the Moon. Circles show the
941 locations of 5 and 10 R_{Moon} . The lower panels show column abundance projected onto the
942 surface with the subsolar point at the center.

943

944 Figure 2. Time-dependent simulations were performed for enhanced sputtering from a 2-day
945 ICME. The shaded region shows when the sputtering source rate is enhanced. The mass of each
946 constituent as a function of time is shown relative to its ambient exospheric mass. The time-
947 dependent runs are illustrated in two-dimensional projection in the movies in the Ancillary
948 Material. Movies 1, 2, 3 and 4 illustrate the time evolution of the sputter component of the Na,
949 K, Ca and Mg exospheres, respectively. Movies 5, 6, 7 and 8 for Na, K, Ca and Mg, respectively,

950 illustrate the time dependent evolution of the exospheres including the steady-state background
951 PSD (for Na and K only) and impact vaporization components with the time-dependent sputter
952 component co-added.

953

954 Figure 3. Simulations for the lunar potassium exosphere due to sputtering by a CME (left) and
955 slow solar wind (right), plotted as for sodium. We assumed that K atoms stick for $T < 200$ K and
956 that 100% of the atoms that stick to the surface are re-emitted. This assumption of sticking and
957 re-emission causes the downside enhancement (left side of bottom panels above, at -90
958 longitude), which would occur for Na under the same assumptions.

959

960 Figure 4. Simulations for the lunar calcium exosphere for the CME (left) and slow solar wind
961 (right) plotted as for sodium. We assumed that Ca atoms stick to the surface with unit efficiency.
962 Photon-stimulated desorption is not energetic enough to eject calcium or magnesium, but impact
963 vaporization is included. The CME produces a much denser exosphere than the slow solar wind.

964

965 Figure 5. Simulations for the lunar magnesium exosphere for the CME (left) and slow solar wind
966 (right) plotted as for sodium. We assumed that Mg atoms stick to the surface with unit efficiency.
967 The magnesium is more extended than sodium due to its larger binding energy with the surface,

968 which results in a higher ejection velocity. The CME causes a much denser exosphere than the
969 slow solar wind. Note that there is little difference between the slow and fast solar wind in terms
970 of sputtering efficiency. The magnesium is similar to calcium due to its similar binding energy
971 with the surface, but its scale height is larger due to its lesser mass.

972

972 Table 1. Enthalpy of vaporization for various minerals, metals and oxides

973

Material	Enthalpy of vaporization (MJ/kg)
FeS	1.150
Fe	6.272
diabase	8.500
regolith	9.643
MgO	10.46
SiO ₂	20.93

974

975 Table 2. Parameters to fit the minimum impact velocity as a function of distention.

976

Mineral	a	b	c
Al - enstatite	21.014	-14.154	3.058
Al - dunite	28.214	-27.23	7.812
Fe - enstatite	16.657	-11.371	2.5
Fe - dunite	18.893	-17.034	4.866

977

978

978

979 Table 3. Physical parameters for the Moon and Mercury

980

Body	Moon	Mercury
vesc (km/s)	2.376	4.25
g (m/s ²)	1.624	3.8
radius (km)	1738	2438
tphot (Na)	1.689E5	1.689E5 R _{orbit} ²
tphot (K)	4.510E4	4.510E4 R _{orbit} ²
tphot (Ca)	1.429E4	1.429E4 R _{orbit} ²
tphot (Mg)	1.770E6	1.770E6 R _{orbit} ²

981

982 Table 4. Density, velocity and He⁺⁺ fraction assumed for wind types

Wind type	f(He ⁺⁺)	density (cm ⁻³)	velocity (Km/s)
fast	0.02	5	450
slow	0.04	5	450
shock	0.001	20	600
bubble	0.100	3	650
CME	0.300	70	500

983

984

985 Table 5. Composition of the solar wind, shock, magnetic bubble and driver gas assumed

species ratio	fast wind	slow wind	shock	magnetic bubble	driver gas
alpha/proton	0.02	0.04	0.001	0.10	0.30
O/He	0.0137	0.0119	0.0322	0.0322	0.0322
C/O	0.683	0.670	0.380	0.380	0.380
N/O	0.111	0.088	0.08	0.08	0.08
Ne/O	0.082	0.104	0.32	0.32	0.32
Mg/O	0.105	0.143	0.29	0.29	0.29
Si/O	0.115	0.132	0.18	0.18	0.18
S/O	0.056	0.051	0.122	0.122	0.122
Fe/O	0.092	0.106	0.73	0.73	0.73

986

987 Table 6. Sputter yield of neutrals (atom/ion) of a KREEP surface by solar wind protons, helium

988 and heavy ions

element	Na	Mg	Al	Si	K	Ca	Ti	Fe	Mn	O
yield(H ⁺)	2.6E-4	2.4E-3	1.7E-3	3.9E-3	8.6E-5	2.9E-3	5.4E-4	1.3E-3	4.3E-5	2.4E-2
yield(He ⁺⁺ /H ⁺)	13.1	12.8	14.2	14.5	14.9	12.7	14.4	13.6	14.5	12.9
yield(heavy/H ⁺)	73	71	79	80	77	74	83	70	61.5	80

989

990

991

992 Table 7. Flux ($\text{cm}^{-2} \text{s}^{-1}$) of neutral elements resulting from kinetic plus potential sputtering of a
993 KREEP soil for slow wind, fast wind, and the 3 CME components

994

species	slow wind	fast wind	shock	mag. bubble	CME
Na	9.0E4	7.5E4	3.2E5	1.4E5	4.9E6
Mg	8.2E5	6.9E5	2.9E6	1.3E6	4.4E7
Al	6.1E5	5.0E5	2.1E6	9.7E5	3.5E7
Si	1.4E6	1.1E6	4.7E6	2.2E6	7.9E7
K	3.1E4	2.6E4	1.0E5	4.9E4	1.8E6
Ca	9.8E5	8.2E5	3.5E6	1.5E6	5.3E7
Ti	2.0E5	1.6E5	6.7E5	3.1E5	1.1E7
Fe	4.7E5	3.9E5	1.6E6	7.2E5	2.5E7
Mn	1.5E4	1.3E4	5.3E4	2.3E4	8.2E5

995

996 Table 8. Flux ($\text{cm}^{-2} \text{s}^{-1}$) of neutral elements resulting from kinetic sputtering only for a KREEP
997 soil for slow wind, fast wind, and the 3 CME components

998

999

species	slow wind	fast wind	shock	mag. bubble	CME
Na	7.3E4	6.6E4	3.2E5	1.0E5	3.2E6
Mg	6.7E5	6.1E5	2.9E6	9.3E5	2.9E7
Al	4.8E5	4.4E5	2.1E6	6.6E5	2.1E7
Si	1.1E6	9.8E5	4.7E6	1.5E6	4.7E7
K	2.4E4	2.2E4	1.0E5	3.3E4	1.0E6
Ca	8.0E5	7.3E5	3.5E6	1.1E6	3.5E7
Ti	1.5E5	1.4E5	6.6E5	2.1E5	6.6E6
Fe	3.8E5	3.4E5	1.6E6	5.2E5	1.6E7
Mn	1.2E4	1.1E4	5.2E4	1.7E4	5.2E5

1000

1001 Table 9. Sputter yield of secondary ions (ion/proton) of a KREEP surface by solar wind protons
 1002 and ratio of yield from He⁺⁺ and heavy ions to proton yield

1003

element	Na	Mg	Al	Si	K	Ca	Ti	Fe	Mn	O
yield/H ⁺	8E-6	1E-5	2E-5	6E-5	3E-6	2.E-5	1.E-6	3.E-6	2.E-7	-
yield(He ⁺⁺ /H ⁺)	10	10	10	10	10	10	10	10	10	-
yield(heavy/H ⁺)	160	160	160	160	160	160	160	160	160	-

1004

1005

1006 Table 10. Source rate (s^{-1}) for each species and process included in the simulations presented in

1007 Figures 1-5.

1008

species	PSD	Impact vaporization	Slow SW	CME
Na	9.49E21	1.79E21	8.54E21	4.65E23
K	3.80E21	2.81E20	2.94E21	1.71E23
Ca		2.95E22	9.30E22	5.03E24
Mg		3.08E22	7.78E22	4.18E24

1009

1010