FACTOR

/VARIABLES objectif_annoncé_23 introduction_24 perspectives_leçon_25 orie ntation_conseil_26
 structuration_27 indices_strgie_28 questions_29 feed_back_30 info_31
/MISSING LISTWISE
/ANALYSIS objectif_annoncé_23 introduction_24 perspectives_leçon_25 orien tation_conseil_26
 structuration_27 indices_strgie_28 questions_29 feed_back_30 info_31
/PRINT INITIAL KMO EXTRACTION
/CRITERIA MINEIGEN(1) ITERATE(25)
/EXTRACTION PC
/ROTATION NOROTATE
/SAVE REG(ALL)
/METHOD=CORRELATION.

Analyse factorielle

[Jeu_de_données1] C:\Users\DELL\Downloads\Maquette-études-autonomy.sav

Indice KMO et test de Bartlett

	Indice de Kaiser-Meyer-Olkir d'échantillonnage.	,913	
	Test de sphéricité de Bartlett	Khi-deux approx.	577,950
		ddl	36
		Signification	,000

Qualités de représentation

	Initiales	Extraction
objectif_annoncé_23	1,000	,510
introduction_24	1,000	,590
perspectives_leçon_25	1,000	,683
orientation_conseil_26	1,000	,660
structuration_27	1,000	,596
indices_strgie_28	1,000	,528
questions_29	1,000	,379
feed_back_30	1,000	,391
info_31	1,000	,491

Méthode d'extraction : Analyse en composantes principales.

Variance totale expliquée

	Valeurs propres initiales		Sommes extra	ites du carré des	
Composante	Total	% de la variance	% cumulé	Total	% de la variance
1	4,829	53,653	53,653	4,829	53,653
2	,778	8,649	62,301		
3	,749	8,321	70,623		
4	,655	7,275	77,897		
5	,532	5,907	83,804		
6	,437	4,859	88,663		
7	,376	4,177	92,840		
8	,340	3,774	96,615		
9	,305	3,385	100,000		

Variance totale expliquée

Sommes ...

Composante	% cumulé
1	53,653
2	
3	
4	
5	
6	
7	
8	
9	

Méthode d'extraction : Analyse en composantes principales.

Matrice des composantes^a

Com	posante
COILL	podunto

	1
objectif_annoncé_23	,714
introduction_24	,768
perspectives_leçon_25	,827
orientation_conseil_26	,813
structuration_27	,772
indices_strgie_28	,727
questions_29	,615
feed_back_30	,625
info_31	,700

Méthode d'extraction : Analyse en composantes principales.

a. 1 composantes extraites.

RELIABILITY

```
/VARIABLES=MIC_1 MIA_2 MERE_3 MEIN_4 MIS_5 MEID_6 MIA_7 MIC_8 MERE_9 MIS_
10 AM_11 MEID_12 MEIN_13
    AM_14
    /SCALE('ALL VARIABLES') ALL
    /MODEL=ALPHA
    /SUMMARY=TOTAL.
```

Fiabilité

Echelle: ALL VARIABLES

Récapitulatif de traitement des observations

		N	%
Observations	Valide	122	73,1
	Exclu ^a	45	26,9
	Total	167	100,0

a. Suppression par liste basée sur toutes les variables de la procédure.

Statistiques de fiabilité

Alpha de	Nombre
Cronbach	d'éléments
,633	14

Statistiques de total des éléments

	Moyenne de l'échelle en cas de suppression d'un élément	Variance de l'échelle en cas de suppression d'un élément	Corrélation complète des éléments corrigés	Alpha de Cronbach en cas de suppression de l'élément
MIC_1	56,5000	104,731	,412	,591
MIA_2	57,6803	104,484	,406	,592
MERE_3	55,7459	117,315	,105	,636
MEIN_4	56,1066	100,030	,523	,571
MIS_5	57,2951	98,061	,478	,574
MEID_6	58,5574	105,736	,313	,606
MIA_7	57,5902	102,046	,494	,578
MIC_8	56,9426	103,674	,405	,591
MERE_9	57,0738	123,143	-,110	,687
MIS_10	57,6475	102,610	,375	,594
AM_11	59,2377	124,067	-,116	,677
MEID_12	56,3443	106,393	,421	,593
MEIN_13	56,4180	105,667	,386	,596
AM_14	59,7705	128,492	-,217	,681

RELIABILITY

/VARIABLES=MIC_1 MIA_2 MERE_3 MEIN_4 MIS_5 MEID_6 MIA_7 MIC_8 MERE_9 MIS_ 10 AM_11 MEID_12 MEIN_13

/SCALE('ALL VARIABLES') ALL

/MODEL=ALPHA

/SUMMARY=TOTAL.

Fiabilité

Echelle: ALL VARIABLES

Récapitulatif de traitement des observations

		N	%
Observations	Valide	123	73,7
	Exclu ^a	44	26,3
	Total	167	100,0

a. Suppression par liste basée sur toutes les variables de la procédure.

Statistiques de fiabilité

Alpha de	Nombre
Cronbach	d'éléments
,686	13

Statistiques de total des éléments

	Moyenne de l'échelle en cas de suppression d'un élément	Variance de l'échelle en cas de suppression d'un élément	Corrélation complète des éléments corrigés	Alpha de Cronbach en cas de suppression de l'élément
MIC_1	54,6341	109,070	,472	,646
MIA_2	55,8130	110,284	,423	,652
MERE_3	53,8862	123,233	,132	,689
MEIN_4	54,2520	105,338	,554	,633
MIS_5	55,4228	103,295	,503	,636
MEID_6	56,6911	112,658	,302	,669
MIA_7	55,7398	107,456	,524	,639
MIC_8	55,0813	108,616	,446	,648
MERE_9	55,2033	131,885	-,141	,743
MIS_10	55,7805	108,615	,384	,656
AM_11	57,3659	132,414	-,143	,733
MEID_12	54,4797	111,268	,471	,649
MEIN_13	54,5772	111,918	,393	,657

Régression

Variables introduites/éliminées^a

Modèle	Variables introduites	Variables éliminées	Méthode
1	REGR factor score 2 for analysis 1, REGR factor score 1 for analysis 1, REGR factor score 1 for analysis 1 ^b	·	Introduire

- a. Variable dépendante : IGM
- b. Toutes les variables demandées ont été introduites.

Récapitulatif des modèles^b

				Erreur standard
Modèle	R	R-deux	R-deux ajusté	de l'estimation
1	,071 ^a	,005	-,024	3,26996

- a. Prédicteurs : (Constante), REGR factor score 2 for analysis 1, REGR factor score 1 for analysis 1, REGR factor score 1 for analysis 1
- b. Variable dépendante : IGM

ANOVA^a

Мс	odèle	Somme des carrés	ddl	Carré moyen	F	Sig.
1	Régression	5,625	3	1,875	,175	,913 ^b
	Résidu	1101,344	103	10,693		
	Total	1106,969	106			

- a. Variable dépendante : IGM
- b. Prédicteurs : (Constante), REGR factor score 2 for analysis 1, REGR factor score 1 for analysis 1, REGR factor score 1 for analysis 1

Coefficients^a

		Coefficients no	on standardisés	Coefficients standardisés	
Modèle B Erreur standa				Bêta	t
1	(Constante)	12,116	,317		38,263
	REGR factor score 1 for analysis 1	-,150	,477	-,048	-,315
	REGR factor score 1 for analysis 1	,304	,466	,099	,654
	REGR factor score 2 for analysis 1	-,058	,328	-,018	-,176

Coefficients^a

			Statistiques de colinéarité		
Modèle		Sig.	Tolérance	VIF	
1	(Constante)	,000			
	REGR factor score 1 for analysis 1	,753	,417	2,400	
	REGR factor score 1 for analysis 1	,515	,425	2,350	
	REGR factor score 2 for analysis 1	,860	,966	1,035	

a. Variable dépendante : IGM

Diagnostics de colinéarité^a

				Proportions de la variance		
Modèle	Dimension	Valeur propre	Index de condition	(Constante)	REGR factor score 1 for analysis 1	
1	1	1,781	1,000	,00	,11	
	2	1,034	1,313	,57	,00	
	3	,947	1,372	,43	,00	
	4	,238	2,739	,00	,88,	

Diagnostics de colinéarité^a

Proportions de la variance

		i roportiono do la validito			
Modèle	Dimension	REGR factor score 1 for analysis 1	REGR factor score 2 for analysis 1		
1	1	,11	,02		
	2	,01	,36		
	3	,01	,59		
	4	,87	,04		

a. Variable dépendante : IGM

Statistiques des résidus^a

	Minimum	Maximum	Moyenne	Ecart type	N
Prévision	11,6072	12,8128	12,1160	,23037	107
Résidu	-9,02593	7,96665	,00000	3,22336	107
Prévision standardisée	-2,209	3,024	,000	1,000	107
Résidu standardisé	-2,760	2,436	,000	,986	107

a. Variable dépendante : IGM

Graphiques

Tracé P-P normal de régression Résidus standardisés

DATASET ACTIVATE Jeu_de_données1.

SAVE OUTFILE='C:\Users\DELL\Downloads\Maquette-études-autonomy.sav' /COMPRESSED.

GET

 $\label{lownloads} $$ FILE='C:\Users\DELL\Downloads\Maquette-\'etudes-autonomy.sav'. DATASET NAME Jeu_de_donn\'ees1 WINDOW=FRONT.$