Colle L1PR-4 A1

1 Question de cours

- a) Soit E un \mathbb{K} -espace vectoriel. Donner la définition de F, sous-espace vectoriel de E. Quels sont les sous-espaces vectoriels dits triviaux?
- b) Donner un exemple de sous-espace vectoriel. Justifier votre exemple.

2 Exercice

On considère la fonction f donnée par :

$$f(x) = \arcsin(\frac{2x}{1+x^2}) - 2\arctan(x)$$

- a) Déterminer le domaine de définition de f.
- b) Etudier la parité de f.
- c) Calculer la valeur de f aux points suivants : 0,1 et $\sqrt{3}$. Donner sa limite "à droite de son ensemble de définition".
- d) Calculer sa dérivée.
- e) Reformuler f sur [0,1].

Colle L1PR-4 A2

1 Question de cours

- a) Donner le domaine de définition de la fonction arctangente. Calculer sa dérivée.
- b) Dessiner les graphes des fonctions tangente et arctangente en faisant apparaître les limites et valeurs particulières que vous connaissez. Attention à la propreté.

2 Exercice

a) Soit E un \mathbb{R} -espace vectoriel. On munit le produit cartésien $E \times E$ de l'addition usuelle :

$$(x,y) + (u,v) = (x+u, y+v)$$

et de la multiplication externe par les complexes définie par

$$(a+ib)(x,y) = (ax - by, ay + bx)$$

Montrer que $E \times E$ est un \mathbb{C} -espace vectoriel. On l'appelle complexifié de E.

b) Soient F et G deux sous-espaces vectoriels de E. Montrer que :

$$F + G = F \cap G \Leftrightarrow F = G$$

Colle L1PR-4 B1

1 Question de cours

Dire, sans justifier, si les assertions suivantes sont vraies ou fausses. Si elles sont fausses, corrigez-les.

- a) La fonction arctan est une bijection de \mathbb{R} dans \mathbb{R} .
- b) $\forall x, y \in \mathbb{R}, \ tan(x) = tan(y) \Leftrightarrow \exists k \in \mathbb{Z} \ / \ x = y + k\pi$
- c) $\forall x \in [-1, 1], tan(artan(x)) = x$
- d) La fonction arctan est paire
- e) La dérivée de la fonction arctan est paire
- f) $\forall x \in [-1/2, 0] \cos(\arccos(x)) = x$

2 Exercices

- 1. Soient $F = \{(x, y, z) \in \mathbb{R}^3 \ x + y z = 0\}$ et $G = \{(a b, a + b, a 3b) \ \tilde{a}, b \in \mathbb{R}\}.$
 - i) Montrer que F et G sont des sous-espaces vectoriels de \mathbb{R}^3 .
 - ii) Déterminer $F \cap G$.
- 2. Soient F, G et H des sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E. Comparer :
 - i) $F \cap (G+H)$ et $(F \cap G) + (F \cap H)$.
 - ii) $F + (G \cap H)$ et $(F + G) \cap (F + H)$.

Colle L1PR-4 B2

1 Question de cours

- a) Donner la définition d'un espace vectoriel E.
- b) Donner un exemple d'espace vectoriel SANS justifier.

2 Exercice

1. Soit:

$$f_a(x) = arctan(\frac{a+x}{1-ax})$$

- a) On suppose a>0. Etudier cette fonction sur son domaine de définition.
- b) Idem pour a < 0.
- 2. Soient a et b deux réels tels que $ab \neq 1$. Montrer que :

$$arctan(a) + arctan(b) = arctan(\frac{a+b}{1-ab}) + \lambda \pi$$

où λ est donné tel que :

$$\lambda = \begin{cases} 0 & \text{si } ab < 1\\ 1 & \text{si } ab > 1 \text{ et } a > 0\\ -1 & \text{si } ab > 1 \text{ et } a < 0 \end{cases}$$

Colle L1PR-4 C1

1 Question de cours

- a) Donner sans justifier trois exemples fondamentaux d'espaces vectoriels (section 4.2 du cours).
- b) Donner un exemple d'un ensemble de \mathbb{R}^2 qui n'est pas un sous-espace vectoriel de \mathbb{R}^2 . Justifier.

2 Exercice

a) Soit $\theta = \arctan(1/5)$. Calculer $\tan(4\theta - \frac{\pi}{4})$. En déduire la formule de Machin :

$$\frac{\pi}{4} = 4\arctan(1/5) - \arctan(1/239).$$

- b) On souhaite montrer la formule de Machin d'une autre manière. Pour cela on pose $z=(5-i)^4(1+i)$, $a=\arctan(\frac{1}{5})$ et $b=\arctan(\frac{1}{239})$.
 - i) Montrer que -a est un argument de 5-i
 - ii) Montrer que -b est un argument de z
 - iii) En déduire la formule de Machin modulo 2π .
 - iv) En démontrant que $\forall n \in \mathbb{N}$:

$$arctan(\frac{1}{n}) \in [0, \frac{\pi}{4}]$$

déduire la formule de Machin.

Colle L1PR-4 C2

1 Question de cours

Donner les domaines de départ et d'arrivée ainsi que les dérivées des fonctions arcsin et arccos.

2 Exercice

- 1. Soit $F = (u_n) \in \mathbb{R}^N$. $\forall n \in \mathbb{N}, u_{n+2} = nu_{n+1} + u_n$. Montrer que F est un sous-espace vectoriel d'un espace vectoriel que l'on précisera.
- 2. Les parties de $F(\mathbb{R}, \mathbb{R})$ suivantes sont-elles des sous-espaces vectoriels? Justifier.
 - i) $\{f: \mathbb{R} \to \mathbb{R} / \text{f est monotone}\}$
 - ii) $\{f: \mathbb{R} \to \mathbb{R} / \text{ f s'annule en } 0\}$
 - iii) $\{f: \mathbb{R} \to \mathbb{R} / \text{ f s'annule}\}$
 - iv) $\{f: \mathbb{R} \to \mathbb{R} \mid f \text{ est impaire}\}\$

AUTRES EXERCICES

Exercice 1

Soit E, l'espace des fonctions continues de $\mathbb R$ dans $\mathbb R$. On note P l'ensemble des fonctions paires de E et I l'ensemble des fonctions impaires.

- 1. Montrer que P et I munis de structures bien choisies sont des sous-espaces vectoriels de E.
- 2. Montrer que $P \bigoplus I = E$

Exercice 2

- 1. Montrer que pour tout $x \in [-1,1]$, $arcsin(x) + arccos(x) = \frac{\pi}{2}$
- 2. Soit $x \in \mathbb{R}$, u = sin(arctan(x)) et v = cos(arctan(x)). Déterminer le signe de v. Puis à l'aide de $\frac{u}{v}$ et $u^2 + v^2$ déterminer des expressions de u et v en fonction de x sans passer par les formules trigonométriques.

Exercice 3

Soit $\omega \in \mathbb{C}$. On note $\omega \mathbb{R} = \{\omega x \mid x \in \mathbb{R}\}$. Montrer que $\omega \mathbb{R}$ est un sous-espace vectoriel de \mathbb{C} vu comme \mathbb{R} -espace vectoriel. À quelle condition $\omega \mathbb{R}$ est-il un sous-espace vectoriel de \mathbb{C} vu comme \mathbb{C} -espace vectoriel?

Exercice 4

Soient F, G, F_0, G_0 des sous-espaces vectoriels de E tels que $F \cap G = F_0 \cap G_0$. Montrer que

$$(F + (G \cap F_0)) \cap (F + (G \cap G_0)) = F.$$