

Ref: CR-131-1-09-SATB-B

Page: 1/17 Issue: B Date: 2010/05/11

3. Calibration at 1747.00 MHz

A. Calibration parameters.

Label	1800 38.58		
Epsilon			
Sigma	1.33 S/m 21°C 0.18 dB		
Temperature			
Cable loss			
Coupler loss	20.22 dB		
Waveguide S11	-13.13 dB		
Low limit detection	0.833 V/m (0.92 mW/kg)		

Calibration curves ei=f(V) (i=1,2,3) allow to obtain E-field value using the formula:

$$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$

Ref: CR-131-1-09-SATB-B

Page: 1/17

55 75 75 75 75

Issue: B

Date: 2010/05/11

Calibration coefficients for the three dipoles in CW:

Sensitivity in liquid:

Liquid	Epsilon	Sigma (S/m)	CF dipole 1 (W.kg-1 (mV)-1)	CF dipole 2 (W.kg-1 (mV)-1)	CF dipole 3 (W.kg-1 (mV)-1)
Head	38.56	1.33	37.12	38.56	50.42
Body	51.99	1.49	36.66	37.99	49.66

B. Isotropy.

- Axial isotropy:

0.050 dB

- Hemispherical isotropy:

0.076 dB

C. Linearity.

- Linearity:

0.03 dB

Ref: CR-131-1-09-SATB-B

Page: 1/17

Issue: B

Date: 2010/05/11

4. Calibration at 1880.00 MHz

A. Calibration parameters.

Label	1900		
Epsilon	38.33		
Sigma	1.44 S/m		
Temperature	21°C		
Cable loss	0.19 dB		
Coupler loss	21.14 dB		
Waveguide S11	-26,91 dB		
Low limit detection	0.797 V/m (0.91 mW/kg)		

Calibration curves ei=f(V) (i=1,2,3) allow to obtain E-field value using the formula:

$$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$

Ref: CR-131-1-09-SATB-B

Page: 1/17 Issue: B

Date: 2010/05/11

Calibration coefficients for the three dipoles in CW:

Sensitivity in liquid:

Liquid	Epsilon	Sigma (S/m)	CF dipole 1 (W.kg-1 (mV)-1)	CF dipole 2 (W.kg-1 (mV)-1)	CF dipole 3 (W.kg-1 (mV)-1)
Head	38.35	1.45	41.05	42.35	55.45
Body	52.12	1.52	40.42	41.12	54.75

B. Isotropy.

- Axial isotropy:

0.050 dB

- Hemispherical isotropy:

0.076 dB

C. Linearity.

- Linearity:

 $0.03 \, \mathrm{dB}$

Ref: CR-131-1-09-SATB-B

Page: 1/17

Issue: B

Date: 2010/05/11

5. Calibration at 1950.00 MHz

A. Calibration parameters.

Label	2000		
Epsilon	38.18		
Sigma	1.48 S/m		
Temperature	21°C		
Cable loss	0.18 dB		
Coupler loss	20.09 dB		
Waveguide S11	-30.09 dB		
Low limit detection	0.788 V/m (0.93 mW/kg)		

Calibration curves ei=f(V) (i=1,2,3) allow to obtain E-field value using the formula:

$$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$

Ref: CR-131-1-09-SATB-B

Page: 1/17 Issue: B Date: 2010/05/11

Calibration coefficients for the three dipoles in CW:

Sensitivity in liquid:

Liquid	Epsilon	Sigma (S/m)	CF dipole 1 (W.kg-1 (mV)-1)	CF dipole 2 (W.kg-1 (mV)-1)	CF dipole 3 (W.kg-1 (mV)-1)
Head	38.18	1.45	41.91	43.15	56.44
Body	54.05	1.52	41.01	42.41	55.65

B. Isotropy.

- Axial isotropy:

0.050 dB

- Hemispherical isotropy:

0.076 dB

C. Linearity.

- Linearity:

0.03 dB

Ref: CR-131-1-09-SATB-B

Page: 1/17

Issue: B

Date: 2010/05/11

6. Calibration at 2450.00 MHz

A. Calibration parameters.

	10.10 10.10		
Label	2450 37.45		
Epsilon			
Sigma	1.75 S/m		
Temperature	21°C 0.22 dB		
Cable loss			
Coupler loss	21.52 dB		
Waveguide S11	-13.66 dB		
Low limit detection	0.794 V/m (1.07 mW/kg)		

Calibration curves ei=f(V) (i=1,2,3) allow to obtain E-field value using the formula:

$$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$

Ref: CR-131-1-09-SATB-B

Page: 1/17 Issue: B Date: 2010/05/11

Calibration coefficients for the three dipoles in CW:

Sensitivity in liquid:

Liquid	Epsilon	Sigma (S/m)	CF dipole 1 (W.kg-1 (mV)-1)	CF dipole 2 (W kg-1 (mV)-1)	CF dipole 3 (W kg-1 (mV)-1)
Head	37.45	1.75	51.18	53.87	70.48
Body	53.70	1.95	50.35	52.98	69.78

B. Isotropy.

- Axial isotropy:

0.050 dB

- Hemispherical isotropy:

0.076 dB

C. Linearity.

- Linearity:

0.03 dB