MST Trivia

a) False

By a counter example. Suppose the shortest path between any two vertices e = (u, v) must be part of some MST. From Theorem 4.20, e cannot be the heaviest edge in any cycle in an arbitrary graph G. Say length of edge e = (a, b) = 3 with length of edges (b, c) = (a, c) = 2, then e is the shortest path between ab and the heaviest edge in cycle abc. This contradicts with the inferred fact that e cannot be heaviest edge in a cycle. Thus, the statement is false.

b) False

This proof assumes that graph G = (V, E) contains at least a pair of vertices $u, v \in V$ that are not connected by some edge $e \in E$.

By a counter example. Suppose edge $e_m = (u, v)$ is the unique heaviest edge in G, and $e_1 = (v, w) \in E$ while $f_1 = (w, u) \notin E$. Graph $G = (\{u, v, w\}, \{e_m, e_1\})$. Then MST $T \in G$ connects u, v, w with edges e_m, e_1 , and thus $e_m \in T$ which is an MST.

c) True

Let e = (v, w) be the unique lightest edge in some cycle C' of graph G = (V, E). Let T be an MST of G that does not contain e. We prove the statement by contradiction showing that T does not have the minimum possible total cost.

Since T is an MST, there exists a path P in T from v to w. Since e = (v, w), cycle C consisting of P and e is the only cycle in $(V, T \cup \{e\})$. Let u be the first node after v along P and edge e' = (v, u). Since e is the lightest edge in C, |e'| > |e|. We claim that $T' = (T - \{e'\}) \cup \{e\}$ is also a MST: T' is connected, since T is connected, and any path that uses e' can be rerouted via e; T is also acyclic, since C is the only cycle in $(V, T \cup \{e\})$, and no long exists after breaking e'. Since |e'| > |e|, the total cost of T' is less than that of T, as desired. Thus, e must be part of any MST.

d) True

For the set of non-unique lightest edges E' consisting of $e_1 = (u_1, v_1), e_2 = (u_2, v_2), ..., e_k = (u_k, v_k)$ $(k \ge 1)$ where u's and v's may refer to the same vertices, each e_i is a lightest edge in graph G = (V, E). Taking u_i as either vertex of e_i , e_i is then the shortest path between u_i and $(V - \{u_i\})$. According to Theorem 4.17, with u_i as the subset of nodes S in theorem statement, e_i is contained in some MST of G. Therefore, the statement is true.

e) True

According to Theorem 4.20, if edge e = (u, v) is the heaviest edge in a cycle C in graph G, then e does not belong to any MST. Thus, the statement is true.