Somatosensation

Somatosensation subgroups

PROPRIOCEPTION

Sensing oneself (proprius → one's own).

EXTEROCEPTION

Sensing the outside world

INTEROCEPTION

Sensing the inside world

DRGs

Nerve fiber classification

	Muscle nerve	Cutaneous nerve ²	Fiber diameter (µm)	Conduction velocity (m/s)
Myelinated				
Large diameter	I	Αα	12-20	72–120
Medium diameter	II	Αβ	6–12	36–72
Small diameter	III	Αδ	1–6	4–36
Unmyelinated	IV	С	0.2-1.5	0.4-2.0

¹Sensory fibers from muscle are classified according to their diameter, whereas those from the skin are classified by conduction velocity. ²The types of receptors innervated by each type of fiber are listed in Table 22–2.

Receptors, Fibers and Modalities

Receptor type	Fiber group ¹	Fiber name	Modality
Cutaneous and subcutaneous mechanoreceptors			Touch
Meissner corpuscle	Αα,β	RA1	Stroking, flutter
Merkel disk receptor	Αα,β	SA1	Pressure, texture
Pacinian corpuscle ²	Αα,β	RA2	Vibration
Ruffini ending	Αα,β	SA2	Skin stretch
Hair-tylotrich, hair-guard	Αα,β	G1, G2	Stroking, fluttering
Hair-down	Αδ	D	Light stroking
Field	Αα,β	F	Skin stretch
C mechanoreceptor	C		Stroking, erotic touch
Thermal receptors			Temperature
Cool receptors	Αδ	III	Skin cooling (<25°C [77°F])
Warm receptors	C	IV	Skin warming (>35°C [95°F])
Heat nociceptors	Αδ	III	Hot temperature (>45°C [113°F])
Cold nociceptors	C	IV	Cold temperature (<5°C [41°F])
Nociceptors			Pain
Mechanical	Αδ	III	Sharp, pricking pain
Thermal-mechanical (heat)	Αδ	III	Burning pain
Thermal-mechanical (cold)	C	IV	Freezing pain
Polymodal	C	IV	Slow, burning pain
Muscle and skeletal mechanoreceptors			Limb proprioception
Muscle spindle primary	Αα	Ia	Muscle length and speed
Muscle spindle secondary	Αβ	II	Muscle stretch
Golgi tendon organ	Αα	Ib	Muscle contraction
Joint capsule receptors	Αβ	II	Joint angle
Stretch-sensitive free endings	Αδ	III	Excess stretch or force

¹See Table 22-1

From periphery to brain

Thalamus: Door to conciousness

The primary somatosensory cortex

Touch

Passive touch

How does "touch" work?

Cutaneous mechanoreceptor systems

	Type 1		Type 2	
	SA1	RA1 ¹	SA2	RA2 ²
Receptor	Merkel cell	Meissner corpuscle	Ruffini ending	Pacinian cor
Location	Tip of epidermal sweat ridges	Dermal papillae (close to skin surface)	Dermis	Dermis (dee
Axon diameter (µm)	7–11	6–12	6–12	6–12
Conduction velocity (ms)	40-65	35–70	35–70	35–70
Best stimulus	Edges, points	Lateral motion	Skin stretch	Vibration
Response to sustained indentation	Sustained with slow adaptation	None	Sustained with slow adaptation	None
Frequency range (Hz)	0–100	1–300		5-1,000
Best frequency (Hz)	5	50		200
Threshold for rapid indentation or vibration (best) (μ m)	8	2	40	0.01

¹Also called RA, QA, or FA1.

RA1, rapidly adapting type 1; RA2, rapidly adapting type 2; SA1, slowly adapting type 1; SA2, slowly adapting type 2.

²Also called PC or FA2.

Receptive fields in the skin

Digit representation follows a common plan

Plasticity in the somatosensory cortex

Elbert et al., 1995

Tactile sensing in robots

MEMS barometer

Inexpensive and Easily Customized Tactile Array Sensors using MEMS Barometers Chips

Yaroslav Tenzer, Leif P. Jentoft, Robert D. Howe Harvard School of Engineering and Applied Sciences

http://www.takktile.com/main:plans

Tactile sensing in robots

Tactile sensing in dexterous robot hands – review

Zhanat Kappassov^{a,*}, Juan-Antonio Corrales^b, Véronique Perdereau^a

^aInstitute of Intelligent Systems and Robotics, University of Pierre and Marie Curie, CC 173 - 4 Place Jussieu 75005, Paris, France ^bInstitut Francais de Mecanique Avancee, Campus de Clermont-Ferrand les Cezeaux BP265 63175 AUBIERE Cedex, France

Somatosensation

Pain

How pain is elicited

Nociceptor types

Referred pain

Neurogenic inflammation

Thunberg's illusion

Electrophysiology in Xenopus oocytes

A Thermosensitivity of TRP channels in Xenopus oocytes

Thermosensitivity of TRP channels

B Thermosensitivity of TRP channels in dorsal root ganglion cells

Pathways

Bradykinin

C Pathway to TRP channel opening

Sensitizing TRP channels

Navs and cold perception

Published: 14 June 2007

Sensory neuron sodium channel $Na_v 1.8$ is essential for pain at low temperatures

Katharina Zimmermann ☑, Andreas Leffler, Alexandru Babes, Cruz Miguel Cendan, Richard W. Carr, Jin-ichi Kobayashi, Carla Nau, John N. Wood & Peter W. Reeh

Nature 447, 856–859 (2007) | Cite this article

1035 Accesses 276 Citations 10 Altmetric Metrics

Congenital insensivity to pain (CIP)

Very often defects in SCN9A (Nav1.7)

→ Lack of Nav1.7 leads to no pain experience

Voltage-gated sodium channels

	Tissue	Na _v Subtype	Effect of Na _v Dysfunction on Physiology
,	Central nervous system	1.1, 1.2, 1.3, 1.6	Epilepsy, migraine, autism, ataxia ³⁶
E	Retina	1.8, 1.9	Altered visual processing ⁶²
(Olfactory sensory neurons	1.7	Anosmia ^{40,42}
	Sensory neurons and vagal sensory neurons innervating airways	1.7, 1.8, 1.9	Cough ^{36,68}
E	Heart muscle	1.5, 1.8	Brugada syndrome, QT syndrome, atrial fibrillation ^{66,67}
F	Nerves, musculature involved in ventilation	TTX-s Na _v s	Respiratory cessation (TTX poisoning) ⁶⁹
(Pancreatic β-cells	1.7	Diabetes ³⁶
ŀ	Skeletal muscle	1.4	Hyperkalaemic periodic paralysis, paramyotonia congenita, hypokalaemic periodic paralysis ³⁶
	Skin	1.7, 1.8	Pain disorders, paroxysmal itch ^{37,39}
	DRG neurons	1.6, 1.7, 1.8, 1.9	Pain disorders, paroxysmal itch ^{37,39,51}
ŀ	Metastatic cancer cells	1.1-1.9 and β-subunits	Ovarian, cervical, prostate, breast, colon, small cell lung cancer, melanoma, lymphoma ^{35,70,71}

Hyperexcitability of Nav1.7

© Minor, wikipedia

Pain killer development for Nav1.7

$$\begin{array}{c} \text{CI} \\ \text{H}_2\text{N} \\ \text{N-NH} \\ \end{array}$$
 PF-05089771 (1a)
$$\text{Nav1.7 IC}_{50} = 11 \text{ nmol/L} \\ \text{Nav1.5 IC}_{50} > 10 \text{ µmol/L} \\ \text{Nav1.5 IC}_{50} > 30 \text{ µmol/L} \\ \end{array}$$

$$\begin{array}{c} \text{AM-0466 (1b)} \\ \text{Nav1.7 IC}_{50} = 21 \text{ nmol/L} \\ \text{Nav1.5 IC}_{50} > 30 \text{ µmol/L} \\ \end{array}$$
 Nav1.5 IC}
$$\begin{array}{c} \text{Nav1.7 IC}_{50} = 3 \text{ nmol/L} \\ \text{Nav1.5 IC}_{50} = 110 \text{ nmol/L} \\ \end{array}$$
 Nav1.5 IC}
$$\begin{array}{c} \text{Maprotiline} \\ \text{Nav1.7 IC}_{50} = 50 \text{ nmol/L} \\ \end{array}$$
 Nav1.7 IC}
$$\begin{array}{c} \text{Nav1.7 IC}_{50} = 1.51 \text{ µmol/L} \\ \end{array}$$
 Article | Published: 17 July 2019

Discovery of aryl sulfonamide-selective Nav1.7 inhibitors with a highly hydrophobic ethanoanthracene core

Jin-tao Wang, Yue-ming Zheng, Yue-ting Chen, Min Gu, Zhao-bing Gao oxtimes & Fa-jun Nan oxtimes

Pain killer II

100

75

25

% Response

Article

Selective Na_V1.7 Antagonists with Long Residence **Time Show Improved Efficacy against Inflammatory** and Neuropathic Pain

Girish Bankar, 1 Samuel J. Goodchild, 1 Sarah Howard, 1 Karen Nelkenbrecher, 1 Matthew Waldbrook, 1 Michelle Dourado, 2 Noah G. Shuart, Sophia Lin, Clint Young, Zhiwei Xie, Kuldip Khakh, Elaine Chang, Luis E. Sojo, Andrea Lindgren, Sultan Chowdhury, Shannon Decker, Michael Grimwood, Jean-Christophe Andrez, Christoph M. Dehnhardt, Jodie Pang,² Jae H. Chang,² Brian S. Safina,² Daniel P. Sutherlin,² James P. Johnson, Jr.,¹ David H. Hackos,² C. Lee Robinette,1 and Charles J. Cohen1,3,4

¹Xenon Pharmaceuticals, Burnaby, BC V5G 4W8, Canada

²Genentech, South San Francisco, CA 94080, USA

³Lead Contact

*Correspondence: ccohen@xenon-pharma.com

https://doi.org/10.1016/j.celrep.2018.08.063

Opioids as pain killer

2 Sensory input + opiates/opioids

