Corrigé EFG_MATHE1_QE1

Question 1 (7 points)

$$\begin{cases} 3x + 2y - 4z = 5 & (1) \\ 2x - y + 3z = 1 & (2) \\ 5x + 8y - 18z = 13 & (3) \end{cases}$$

$$2 \cdot (1) : 6x + 4y - 8z = 10$$

$$-3 \cdot (2) - 6x + 3y - 9z = -3$$

$$(2'): 7y - 17z = 7$$

5·(1):
$$15x+10y-20z = 25$$

-3·(3): $-15x-24y+54z = -39$

$$-14y + 34z = -14$$

$$(3') \Leftrightarrow 7y - 17z = 7$$

Le système est simplement indéterminé.

Posons $z = \alpha$, $\alpha \in \square$

Dans (2'):
$$7y = 7 + 17\alpha \Leftrightarrow y = 1 + \frac{17}{7}\alpha$$

Dans (1): $3x = -2\left(1 + \frac{17}{7}\alpha\right) + 4\alpha + 5 \Leftrightarrow x = 1 - \frac{2}{7}\alpha$
 S_{-} , $=\left\{\left(1 - \frac{2}{7}\alpha; 1 + \frac{17}{7}\alpha; \alpha\right) / \alpha \in \Box\right\}$
 $=\left\{\left(\frac{19}{17} - \frac{2}{17}\alpha; \alpha; -\frac{7}{17} + \frac{7}{17}\alpha\right) / \alpha \in \Box\right\}$
 $=\left\{\left(\alpha; \frac{19}{2} - \frac{17}{2}\alpha; \frac{7}{2} - \frac{7}{2}\alpha\right) / \alpha \in \Box\right\}$

Question 2 (13 points)

Soit x le nombre de sacs traditionnels et soit y celui de sacs de sport. On obtient le système des contraintes :

$$\begin{cases} 12x + 25y \le 75 \cdot 60 \\ 4x + 2, 5y \le 800 \\ x \in \Box \quad (x \ge 0) \\ y \in \Box \quad (y \ge 0) \end{cases} \Leftrightarrow \begin{cases} 12x + 25y - 4500 \le 0 \\ 8x + 5y - 1600 \le 0 \\ x \in \Box \quad (x \ge 0) \\ y \in \Box \quad (y \ge 0) \end{cases}$$

Soit
$$d_1 = 12x + 25y - 4500 = 0 \Leftrightarrow y = -\frac{12}{25}x + 180$$
 $\begin{array}{c|c} x & 0 & 250 \\ \hline y & 180 & 60 \end{array}$

Point-test: O(0; 0): $12 \cdot 0 + 25 \cdot 0 - 4500 = -4500 \le 0$,

donc O appartient au demi-plan d'inéquation $12x + 25y - 4500 \le 0$ (demi-plan-solution)

Soit
$$d_2 = 8x + 5y - 1600 = 0 \Leftrightarrow y = -\frac{8}{5}x + 320$$
 $\begin{array}{c|c} x & 0 & 200 \\ \hline y & 320 & 0 \end{array}$

Point-test: O(0;0): $8 \cdot 0 + 5 \cdot 0 - 1600 = -1600 \le 0$,

donc O appartient au demi-plan d'inéquation $8x + 5y - 1600 \le 0$ (demi-plan-solution).

Soit $d_3 \equiv x = 0$ et soit $d_4 \equiv y = 0$.

Il faut considérer l'ensemble des points du plan dont les coordonnées sont positives.

Le bénéfice est donné par : B(x;y) = 12x + 9y.

Soit
$$\Delta_0 \equiv 12x + 9y = 0 \Leftrightarrow y = -\frac{4}{3}x$$

$$\frac{x \mid 0 \mid 30}{y \mid 0 \mid -40}$$

 Δ_{\max} passe par le point I , point d'intersection de d_1 avec d_2 .

$$I(x;y) \in d_1 \cap d_2 \Leftrightarrow$$

$$\begin{cases} y = -\frac{12}{25}x + 180 & (1) \\ y = -\frac{8}{5}x + 320 & (2) \end{cases}$$

(1) dans (2):
$$-\frac{12}{25}x + 180 = -\frac{8}{5}x + 320 \Leftrightarrow 28x = 3500 \Leftrightarrow x = 125$$

Dans (2):
$$y = -\frac{8}{5} \cdot 125 + 320 \Leftrightarrow y = 120$$
.

D'où: I(125; 120)

Le bénéfice est maximal pour la vente de 125 sacs traditionnels et 120 sacs de sport.

II vaut: $B(125;120) = 12 \cdot 125 + 9 \cdot 120 = 2580 \in$.

Question 3 (5 points)

$$f(x) = 3x^2 - 2x$$

1^{re} méthode : par la formule de dérivation :

$$f'(x) = 6x - 2$$

$$f'(2) = 6 \cdot 2 - 2 = 12 - 2 = 10$$

2e méthode : par la définition :

$$f(2+h) = 3 \cdot (2+h)^2 - 2 \cdot (2+h) = 3 \cdot (4+4h+h^2) - 4 - 2h = 3h^2 + 10h + 8$$

$$f(2) = 3 \cdot 2^2 - 2 \cdot 2 = 8$$

$$f(2+h)-f(2)=3h^2+10h$$

$$\frac{f(2+h)-f(2)}{h} = \frac{3h^2+10h}{h} = \frac{h(3h+10)}{h} = 3h+10$$

$$f'(2) = 3 \cdot 0 + 10 = 10$$

Question 4 (8 points)

X		-4		0		2		6	
f'(x)	_	0	+	0	+	0	****	0	+
				3					
f		-2		PI à	О	4		0	
		min		tangente		Max		min	
				horizontale					

Question 5 (9 points)

(a)
$$C(t) = 5000 \cdot (1,0115)^t$$

(b) $C(t) = 1,3 \cdot C(0)$
 $\Leftrightarrow 5000 \cdot (1,0115)^t = 1,3 \cdot 5000$ |: 5000
 $\Leftrightarrow 1,0115^t = 1,3$
 $\Leftrightarrow \log(1,0115)^t = \log 1,3$
 $\Leftrightarrow t \cdot \log(1,0115) = \log 1,3$
 $\Leftrightarrow t = \frac{\log 1,3}{\log 1,0115}$
 $t \approx 22,95$

Après 23 ans, le capital aura augmenté de 30 %.

(c)
$$C_1(t) = 5000 \cdot 1,0115^t$$

 $C_2(t) = 6000 \cdot 1,0102^t$
 $C_1(t) = C_2(t) \Leftrightarrow 5000 \cdot 1,0115^t = 6000 \cdot 1,0102^t$
 $\Leftrightarrow \frac{1,0115^t}{1,0102^t} = \frac{6000}{5000}$
 $\Leftrightarrow \left(\frac{1,0115}{1,0102}\right)^t = \frac{6}{5}$
 $\Leftrightarrow \log\left(\frac{1,0115}{1,0102}\right)^t = \log\frac{6}{5}$
 $\Leftrightarrow t \cdot \log\left(\frac{1,0115}{1,0102}\right) = \log\frac{6}{5}$
 $\Leftrightarrow t = \frac{\log\frac{6}{5}}{\log\left(\frac{1,0115}{1,0102}\right)}$
 $t \approx 141,77$

Après 142 ans, les deux capitaux auront acquis la même valeur.

Exercice 6 (8 points)

(a)

	VTT	COURSE	CITYBIKE	TOTAUX
HOMME	720 - 330 = 390	850	120:2=60	1800 - 500 = 1300
FEMME	500-50-120 = 330	900 - 850 = 50	0,24 · 500 = 120	500
TOTAUX	$0,4 \cdot 1800 = 720$	1800 - 720 - 180 = 900	60 + 120 = 180	1800

(b)
$$P(H \text{ et } VTT) = \frac{\text{nombre de cas favorables}}{\text{nombre de cas possibles}} = \frac{390}{1800} = \frac{13}{60} \approx 0,217$$
 (21,7%)

(c)
$$P(\text{V\'elo de course sachant que F}) = \frac{P(\text{v\'elo de course et F})}{P(\text{F})} = \frac{50}{500} = \frac{1}{10} = 0.1$$
 (10%)

Exercice 7 (5+5=10 points)

A. Tirage sans ordre de 4 boules parmi 8+5+2=15 boules.

(1) Nombre de tirages possibles : $C_{15}^4 = \frac{15!}{4! \cdot 11!} = 1365$

(2) (a) Evénement A : on tire 2 boules blanches parmi 8 et 2 boules noires parmi 2. Nombre de cas favorables : $C_8^2 \cdot C_2^2 = 28$

$$P(A) = \frac{28}{1365} = \frac{4}{195} \approx 0.021$$
 (2.1%)

(b) Evénement B : on tire 4 boules de la même couleur, donc 4 boules blanches parmi 8 ou 4 boules vertes parmi 5 – il n'y a que 2 boules noires...

Nombre de cas favorables : $C_8^4 + C_5^4 = 70 + 5 = 75$

$$P(B) = \frac{75}{1365} = \frac{5}{91} \approx 0,055$$
 (5,5%)

B. Tirage avec ordre et avec remise de 4 boules parmi 15 boules.

(1) Nombre de tirages possibles : $B_{15}^4 = 15^4 = 50625$

(2) (a) Evénement A : on tire 2 boules blanches parmi 8 sulvies de 2 boules noires parmi 2.

Nombre de cas favorables : $B_8^2 \cdot B_2^2 = 256$

$$P(A) = \frac{256}{50625} \approx 0,0051$$
 (0,51%)

(b) Evénement B: on tire 4 boules blanches parmi 8 ou 4 boules noires parmi 2 (car avec remise) ou 4 boules vertes parmi 5.

Nombre de cas favorables : $B_8^4 + B_2^4 + B_5^4 = 8^4 + 2^4 + 5^4 = 4737$

$$P(B) = \frac{4737}{50625} = \frac{1579}{16875} \approx 0,094 \quad (9,4\%)$$