

(b) It's worth noting that Og' is class conditional. Solving for (0) leaving y arbitrary in the subscript, Vea = Imp(y1x)+ = Imp(x11184)+ = Imp(x12104) = 0 Ver & inp(x11104) = 0 since the other terms don't compain Oy Very & in (Ogi) (1-0gi) = 0 since p. Semulic distribution Vôy = [x111000 + (1-x11) In(1-041)] =0 \[\left[\frac{\tilde{\chi}_{(1)}}{\hat{\chi}_{(1)}} - \frac{1 - \tilde{\chi}_{(1)}^{(1)}}{1 - \hat{\chi}_{(1)}^{(1)}} \] = 0 we only take the derivative of the class conditional) $\frac{\sum_{i=1}^{n} x_{i1}y_{i1}y_{i}}{n_{y_{i1}y_{i}} (\hat{\theta}_{y_{i1}y_{i}}^{(i)})} - \frac{n_{y_{i1}y_{i}} - \sum_{i=1}^{n} x_{i1}y_{i1y_{i}}}{n_{y_{i1}y_{i}} (\hat{\theta}_{y_{i1}y_{i}}^{(i)})} = 0$ ny oging - ny og og Extyry = ny Extyry - ny og Extyry : ôy" = = = xilying , ye fong This implies that for a particular class y, Oy is the Sum of all oci across that class y No of observations in that class y with y left arbitrary in the derivation and (g'a) class conditional.

(c) Like (by), (by) is also class conditional solving for O's leaving y arbitrary in the subscript, Veg 2 in ρ(y,1π) + & inp(x,10(1))+ & inp(x,210(2)) = 0 では、これp(x1210gi)=0 since the other terms don't contain by Tog 2) In [ey: (x12) -(ey: +1)] = 0 sma pr 12 a foreto distribution Voy ≥ [Inoy, - (03,+1) In xi2] =0 Oging - En In Xing = 0 i ôy = nsig , yesong This implies that for a particular class y, ô(x) is the Sum of the In X12 across that class y with y left arbitrary in the derivation and By being class conditional.

Problem 2:

(a) Implementing the naïve Bayes classifier derived in problem 1, I was able to obtain a vector of the parameters θ_y^i for i=1,2,3...,57 where the first 54 are for the Bernoulli distribution and the last 3 for the Pareto distribution as well as for $y=\{0,1\}$ since those parameters are class conditional. I was also able to obtain $\pi=0.39397$. The parameters obtained using the solutions from Problem 1 are implemented on the training data are shown below:

Using the parameters obtained from the training data, I then predicted on the testing data using the following rule where for each $x_{0,d}$ observed, the y_0 predicted is:

$$y_0 = argmax_y p(y_0 = y | \pi) \prod_{d=1}^{D} p_d(x_{0,d} | \theta_y^d)$$

Finally. comparing the ground truth in the test data for the class y data point with the model prediction y', the following table can be obtained:

	Ground Truth y = 0	Ground Truth y = 1
Model Prediction y' = 0	53	4
Model Prediction y' = 1	3	33

Prediction accuracy =
$$\frac{53+33}{93} = 0.925$$

(b) The following is the stem plot for the 54 Bernoulli parameters for each class:

The file "spambase.names" consists of words and characters commonly found in an email. Dimension 16 and 52 in the file correspond to the word "free" and the character "!" respectively. Comparing that to the stemplot above, in dimension 16 and 52, it can be seen that the value of the Bernoulli parameter for class y = 1 (spam email) is larger than that for class y = 0 (non-spam email). This pushes up the probability of the email being classified as a spam once these dimensions (for the word "free" and character "!") are present since $p_d(x_{0,d}|\theta_y^d)$ for d=16 and d=52 would be larger for y=1 than for y=0. This makes intuitive sense since "free" and "!" are elements commonly found in spam emails.

(c) By implementing the k-NN algorithm which is done by firstly finding the k points closest to each X (a vector of all 57 dimensions of x for each of the 93 inputs of X in the testing data) defining the distance between the X in the training data and testing data as the l_1 distance of $\sum_{d=1}^{57} |X_{test,d} - X_{train,d}|$, secondly returning the majority vote of y (whether there are more y = 1 or y = 0 classes in the k closest points based on the training data for that X), thirdly breaking ties in both steps at random, lastly repeating the classification for all 93 observations of X in the testing data and for k = 1 to 20, the following plot of prediction accuracy against k is obtained:

From the above plot of prediction accuracy against k, it can be deduced that the highest prediction accuracy occurs when k=9, giving a prediction accuracy of 0.903 (or 90.3%) whilst the lowest prediction accuracy occurs when k=3, giving a prediction accuracy of 0.860 (or 86.0%). It is also worth noting that since ties are broken at random, a slightly different graph is produced each time the algorithm is run.

- (d) The steepest ascent algorithm for this part is carried out via the following steps:
 - 1. Using training data $(X_1, y_1), ..., (X_{4508}, y_{4508})$, where X_i is 58 x 1 vector of all dimensions and y_i is a scalar representing the class, define a vector that is 58 x 1 called $w^{(1)} = \vec{0}$
 - 2. For iteration t = 1, 2, ..., 10000, update $w^{(t+1)} = w^{(t)} + \eta_t \sum_{i=1}^{4508} \left(1 \sigma_i (y_i, w^{(t)})\right) y_i X_i$ where $\eta_t = \frac{1}{10^5 \sqrt{(t+1)}}$ and $\sigma_i (y_i, w^{(t)}) = \frac{e^{y_i X_i^T w}}{1 + e^{y_i X_i^T w}}$
 - 3. Obtain logistic regression objective training function, $L = \sum_{i=1}^{4508} \ln \sigma_i(y_i, w^{(t)})$

The following graph of L against iteration number is obtained after coding the above steps:

The reason why the pattern looks strange is because the logistic regression objective training function L is not changing monotonically, it oscillates between a high value and low value after every iteration. Usually, after running all the iterations, the w that corresponds to the iteration that yielded the largest L would be chosen and used to predict in the test data. In this case, the highest value of L obtained after 10000 iterations is -2382.312 obtained during the 9998th iteration.

(e) For "Newton's method", the main change compared to steepest ascent is to change the way $w^{(t)}$ is updated. At iteration t, now set $w^{(t+1)} = w^{(t)} - \eta_t (\nabla_w^2 L)^{-1} \nabla_w L$ where $\eta_t = \frac{1}{\sqrt{(t+1)}}$ and only do 100 iterations. The following is the graph of L against iteration number for Newton's method:

	Ground Truth y = -1 Ground Truth y = 1	
Model Prediction y' = -1	54	6
Model Prediction y' = 1	2	31

Prediction accuracy =
$$\frac{54+31}{93}$$
 = 0.914

For this part, there is indeed a need to predict in the testing data to obtain the prediction accuracy. To do that, after running all the iterations, the w that corresponds to the iteration that yielded the largest L would be chosen. In this case, the highest value of L obtained after 10000 iterations is -750.7107 obtained during the $42^{\rm nd}$ iteration and lasting all the way till the $100^{\rm th}$ iteration. The corresponding vector w used for prediction is shown below with "newcolumn" being w_0 and the other V_i being the value of w corresponding to the respective dimension of X:

	<u> </u>	V18	-0.4874418958	V35	-1.7230387233		
V1	-0.6201652608	V 18	-0.48/4418958	V36	0.4675550791		
V2	-0.1652014104	V19	0.1818564196				
V3	-0.4859882879	V20	0.5153830487	V37	-1.0828028276		
V4	0.6559388180	V21	0.6654690561	V38	1.5877920961		
V5	1.1136687338	V22	1.3657795459	V39	-0.5722115589		
V6	0.2640306777	V23	0.9549713150	V40	-0.0987794236		
V7	2.4910464106	V24	1.7468889501	V41	-6.3716405002		
V8	0.9832908593	V25	-3.6883380165	V42	-2.5331903316	V52	1.3532155385
V9	0.2639803414	V26	-0.2325684906	V43	-1.2286304922	V52	1,5552155565
V10	0.3582122463	V27	-6.2792906974	V44	-1.7571863307	V53	1.9016671537
V11	-0.4387315790	V28	2.1928061100	V45	-1.0421209934	V54	-0.9006894507
V12	-0.3387495125	V29	-0.6371493500	V46	-2.4493541620		
V13	-0.9788182684	V30	-0.3746895691	V47	0.2762629460	V55	-0.0019486469
V14	0.8514318482	V31	-2.2364983547	V48	-2.2746944104	V56	0.0056613509
V15	1.3307721660	V32	-1.5763510142	V49	-0.2580654409	VF7	0.0000500545
V16	1.5606466670	V33	-0.7866088825	V50	0.1838076557	V57	0.0008598616
V17	1.0485624924	V34	1.0528741029	V51	-0.3356871486	newcolumn	-1.9971222713