Homework 1

- 1. Evaluate the limit, if it exists.
 - (a) $\lim_{x \to -2} (3x 7)$.
 - (b) $\lim_{x \to 2} \frac{2-x}{\sqrt{x+2}-2}$.
- 2. If $2x \le g(x) \le x^4 x^2 + 2$ for all x, evaluate $\lim_{x \to 1} g(x)$.
- 3. Let

$$g(x) = \begin{cases} x & \text{if } x < 1\\ 3 & \text{if } x = 1\\ 2 - x^2 & \text{if } 1 < x \le 2\\ x - 3 & \text{if } x > 2 \end{cases}$$

- (a) i. $\lim_{x \to 1^-} g(x)$.
 - ii. $\lim_{x \to 1} g(x)$.
 - iii. g(1).
 - iv. $\lim_{x \to 2^-} g(x)$.
 - v. $\lim_{x \to 2^+} g(x)$. vi. $\lim_{x \to 2} g(x)$.
- (b) Sketch the graph of g.
- 4. Prove the statement using the ϵ, δ definition of a limit.
 - (a) $\lim_{x \to 4} (\frac{1}{2}x 1) = 1$.
 - (b) $\lim_{x \to 4} \frac{x^2 2x 8}{x 4} = 6$
 - (c) $\lim_{x \to a} \sqrt{x} = \sqrt{a}$ if a > 0.