

Estrutura de Dados II

Prof. Me. Pietro M. de Oliveira

<u>Definição</u>: conjunto finito de elementos $T = \{R, E, D\}$

Pode ser vazio, $T = \emptyset$

Três subconjuntos disjuntos:

Raiz (R)

Subárvore binária Esquerda (E)

Subárvore binária Direita (D)

Exemplo:

$$T_A = \{R_A, E_A, D_A\}$$

 $R_A = \{A\}$

$$E_A = T_B$$

$$D_A = T_C$$

Alguns termos utilizados para os vértices:

Raiz é o nó inicial, não possui um nó pai

Considere o nó **v** com uma subárvore cuja raíz é **w**:

diz-se que **v** é <u>pai</u> de **w**

diz-se que w é filho de v

Dois nós que possuem o mesmo pai são ditos <u>irmãos</u>

Um nó sem filhos é chamado de folha.

Ancestral e descendente

Caminho na árvore: descer e subir

Nível de um nó

- Nível da raiz é N₀ = 0
- Nível de um nó F é igual ao nível de seu pai P mais o valor 1

$$N_F = N_P + 1$$

Altura da árvore

É igual ao valor do maior nível de todos os nós

Exemplo:

Ancestral × descendente Árvore (Estrutura de dados) × Árvore (Planta real) "Estrutura de ponta acbeça"

Árvores Estritamente Binárias

Árvores Estritamente Binárias

- Estrutura nó:
 - Dado, pai, esquerda, direita

Definição: todo nó não folha deve conter os dois filhos.

número de nós =
$$(2*f)-1$$

Árvores Estritamente Binárias

Exemplo

Árvores Binária Completa

Árvore binária completa

É necessariamente uma "estritamente binária" Todos os nós folha estão no mesmo nível Nó não folha não pode possuir subárvore vazia

