Grupo I

3) v Temos que

$$6 \rightarrow \psi \Leftrightarrow 76 \vee \psi$$

$$\iff 76 \vee \psi$$

$$\Leftrightarrow \psi$$

$$\Leftrightarrow \psi$$

$$\Leftrightarrow \psi$$

$$tautabyi$$

Logo, 6 > y é toutobgis

4) F Pretendences averigear so

\$\phi(n) \(\vert \) \rightary \(\phi(n+1) \) \(\vert \),

\$\paralle (n) \(\vert \) \rightary \(\phi(n) \) \(\vert \) \(\ve

6. V
$$A = \{\emptyset, 1, 2, \{1,3\}\}$$

$$B = \{1, 2, \{1\}, 2\} = \{1, 2, \{1\}\}\}$$

$$Nok-se gue |B| = \#B = 3$$

$$N-delements de B$$

Au {IB1} = Au{3} = {
$$\emptyset$$
, 1,2,3, {1,3}}
{3, \emptyset ,2,1} \subseteq { \emptyset , 1,2,3, {1,3}}

```
Grupo 11
   Po: 343 é divisirel por 3
   P1: A some dos elgenismos do mimero 343

é 10
    Pz: 10 é divisival por 3
        (p1 1 7 p2) → 7 po
   7 ( VneA (N>O > tyeA NyZ>O))
 (=> ]neA 7 (n>0 >> HyeA ny²>0)
 => IneA (x>o 17 (tyEA my2>o))
 => ]nea (x>o 1 Jyea 7 (ny2>o))
  (>> In EA (x10 1 FyEA xcy2 0)
K: FREA (N>ON FYEA NYZEO)
```

3. A,B,C subconjuntes de 7/2 Escolhendo A = {1}, sabemos que pretendemos encontrar Bectsis que 1¢ BUC, de mode a que An (Buc) = Ø. Se $B = \{1\}$, $\overline{B} = \mathbb{Z} \setminus \{1\}$. Se C= {2}, entro BUC = Z\{1}. Portants, um= possível resposta é $A = \{1\}$, $B = \{1\}$, $C = \{2\}$. $A = \{a \in IN : \exists n \in IN \ a = 4 \times 1\}$ = $\{4, 8, 12, 16, 20, 24, \dots\}$ = $\{4, 8, 12, 16, 20, 24, \dots\}$ = $\{4, 8, 12, 16, 20, 24, \dots\}$ AUB = conjunts dos naturais pores NI(AUB) = {a EIN: mé injury.

1)
$$\varphi = (p_0 \leftrightarrow 7p_1)$$

$$\psi = (p_1 \rightarrow p_0)$$

a) $y \Rightarrow y$ é toutologie se o seu valor légicos 1 para todos os casos de valores légicos de por pi

Tems

20	P1	7P1	Po es 7/2	P1→p0	γ>Ψ
1	1	0	0	1	1
1	0	1	1	1	1
0	1	0	1	0	0
0	0	1	0	1	1

Podemos Comprovar, usudo a tabela, que 4 > 4 nos e uma tantología.

Podemos un με primeirs withs de bebels que y tem velor topio 1 mos y tem velor topio 0. Logo, nos i suficienti.

P:
$$\int_{X_{0}}^{X_{0}} y + y = 0$$

 $\int_{X_{0}}^{X_{0}} y + y = 0 \iff (x_{0}^{3} + 1) y = 0$
 $f(x_{0}^{3} + 1) = 0 \qquad y = 0$
 $f(x_{0}^{3} + 1) = 0 \qquad y = 0$
 $f(x_{0}^{3} + 1) = 0 \qquad y = 0$

a) Is valores possiveis pore n seriam -3,0 out f, sends entro $x \neq -1$, $n^3 \cdot y + y \cdot 80$ será <math>0 para y = 0 e $n \approx 5$ para $t \approx 0$ $t \approx 0$

Pare $A = \{-1\}$, Pi variable of x = -1)

fare A foir exist $x \in A$ (x = -1)tal que pare todo $y \in A$ (y = -1)so resifree $x^3y + y = 0$. $p(x) = 3 + 12 + 48 + ... + 3 \times 4^m = 4^{m+1} = 1^m$

① N=1 $3+12=4^{1+1}-1 = 15=16-1$ $Logo, p(1) = 3\times4^{1}$ V

Logo, p(K+1) i verdeduis.

Por ① 1 ②, ple Principio de Induges Estentimed pere IV,
p(n) i verdeduis, pare todo n e (N.

4.
$$(A \cup B) \cap \overline{A \cup B} = (A \cup B) \cap (\overline{A \cup B})$$

 $= (A \cup B) \cap (\overline{A \cup B})$
 $= (A \cap \overline{A}) \cup B$
 $= \emptyset \cup B = B$.