Research Notes

Andy Pickering

February 11, 2017

Contents

1 Feb 11, 2017 2

1 Feb 11, 2017

So after correcting (I think) N^2 , it appears that we don't get gammas near 0.2 after all.... Trying now to summarize what i've done:

- $\bullet \ \ Identify\ patches\ (overturns)\ in\ Chameleon\ profiles\ using\ potential\ temperature.\ \ \texttt{FindPatches_EQ14_Raw.}$
- ullet Compute $N^2,\,T_z,\,\chi,\,{
 m and}\,\epsilon$ for each patch. N^2 and T_z are computed with two different methods. Compute_N2_dTdz_ChamProfiles_V2.m
- 'line' method: fit line to T,density to get slope.
- 'bulk' method: From Smyth et al. N^2 is computed from the bulk T_z using a linear fit of density to temperature; $\sigma = \alpha \theta$, and then $N^2 = -\frac{g}{\rho_o} \alpha T_{z < bulk}$ (Fig 1). Fit_rho_vs_T.m.
- Compute $\Gamma = \frac{N^2 \chi}{2 \epsilon T_z^2}$ from above values (Fig 2).

Figure 1: Fit of potential density to potential temperature for EQ14 chameleon profiles.

Figure 2: $log_{10}[\Gamma]$ for EQ14 patches. For (1) 1m binned data (2) 'bulk' N^2 and T_z (3) 'line' N^2 and T_z . Dashed line shows $\Gamma=0.2$