$\tau_{1}^{#2} + \alpha$	$\tau_{1-}^{#1} + \alpha$	$\sigma_{1}^{#2} + \alpha$	$\sigma_{1^{-}}^{*1} \dagger^{lpha}$	$\tau_{1+}^{#1} + \alpha \beta$	$\sigma_{1^+}^{*2} \dagger^{\alpha\beta}$	$\sigma_{1^+}^{*1} + ^{lphaeta}$	
0	0	0	0	$-\frac{i}{\sqrt{2}(kr_5+k^3r_5)}$	$\frac{1}{\sqrt{2} (k^2 r_5 + k^4 r_5)}$		$\sigma_{1^{+}lphaeta}^{\#1}$
0	0	0	0	$-\frac{i(6k^2r_5+t_1)}{2k(1+k^2)^2r_5t_1}$	$\frac{6k^2r_5+t_1}{2(k+k^3)^2r_5t_1}$	$\frac{1}{\sqrt{2} \; (k^2 r_5 + k^4 r_5)}$	$\sigma_{1}^{\#2}{}_{lphaeta}$
0	0	0	0	$\frac{6k^2r_5+t_1}{2(1+k^2)^2r_5t_1}$	$\frac{i(6k^2r_5+t_1)}{2k(1+k^2)^2r_5t_1}$	$\frac{i}{\sqrt{2} (kr_5 + k^3 r_5)}$	$ au_{1}^{\#1}{}_{lphaeta}$
$-\frac{2ik}{t_1+2k^2t_1}$	0	$\frac{\sqrt{2}}{t_1+2k^2t_1}$	0	0	0	0	$\sigma_{1^- lpha}^{\# 1}$
$\frac{i\sqrt{2}k(2k^2r_5-t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{-2 k^2 r_5 + t_1}{(t_1 + 2 k^2 t_1)^2}$	$\frac{\sqrt{2}}{t_1+2k^2t_1}$	0	0	0	$\sigma_{1^- lpha}^{\# 2}$
0	0	0	0	0	0	0	$\tau_{1^{-}}^{\#1}{}_{\alpha}$
$\frac{-4k^4r_5+2k^2t_1}{(t_1+2k^2t_1)^2}$	0	$-\frac{i\sqrt{2}k(2k^2r_5-t_1)}{(t_1+2k^2t_1)^2}$	$\frac{2ik}{t_1+2k^2t_1}$	0	0	0	$ au_{1^{-}\alpha}^{\#2}$

 $\tau_{0^{+}}^{\#2} \sigma_{0^{-}}^{\#1}$

0

0

0

0

0

 $\tau_0^{\#1}$

 $\frac{i \sqrt{2} k}{(1+2k^2)^2 t_1}$

 $2k^{2}$

 $\frac{1}{(1+2k^2)^2t_1}$

0

0

$\omega_{0^{-}}^{\#1}$ †	$f_{0+}^{#2}$ †	$f_{0+}^{#1}$ †	$\omega_{0^{+}}^{*1}$ †	
0	0	$-i\sqrt{2}kt_1$	$-t_1$	$\omega_{0}^{\#1}$
0	0	$-2k^2t_1$	$i\sqrt{2} kt_1$	$f_{0}^{#1}$
0	0	0	0	$f_0^{#2}$
0	0	0	0	$\omega_{0^{ ext{-}}}^{\#1}$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^+\alpha\beta}^{\#1}$	$\omega_{2}^{\#1}{}_{\alpha\beta\chi}$
$\omega_{2}^{\#1} \dagger^{\alpha\beta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2+}^{\#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	<u>t</u> 1 2

	$\sigma_{2^{+}lphaeta}^{\#1}$	$ au_2^{\#1}_{lphaeta}$	$\sigma_{2-\alpha\beta\chi}^{\#1}$
$\sigma_{2}^{\#1} \dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$ au_{2}^{\#1} \dagger^{lphaeta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{t_1}$

$f_{1-}^{#2} \dagger^{\alpha}$	$f_{1}^{#1}\dagger^{lpha}$	$\omega_{1}^{#2} \dagger^{\alpha}$	$\omega_{1^{ ext{-}}}^{#1}\dagger^{lpha}$	$f_{1^+}^{#1} \dagger^{\alpha\beta}$	$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	$\omega_{1^+}^{*1} \dagger^{lphaeta}$	
0	0	0	0	$\frac{ikt_1}{3\sqrt{2}}$	$-\frac{t_1}{3\sqrt{2}}$	$k^2 r_5 + \frac{t_1}{6}$	$\omega_{1}^{\#1}{}_{lphaeta}$
0	0	0	0	$-\frac{1}{3}\bar{l}kt_1$	<u>t1</u> 3	$-\frac{t_1}{3\sqrt{2}}$	$\omega_{1}^{\#2}{}_{lphaeta}$
0	0	0	0	$\frac{k^2t_1}{3}$	<u> </u>	$-\frac{ikt_1}{3\sqrt{2}}$	$f_{1+\alpha\beta}^{\#1}$
$-ar{\imath} k t_1$	0	$\frac{t_1}{\sqrt{2}}$	$k^2 r_5 - \frac{t_1}{2}$	0	0	0	$\omega_{1^-}^{\#1}{}_{lpha}$
0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0	$\omega_{1-\alpha}^{\#2}$
0	0	0	0	0	0	0	$f_{1^{-}\alpha}^{\#1}$
0	0	0	ikt_1	0	0	0	$f_{1^-\alpha}^{\#2}$

$\tau_{2+}^{\#1\alpha\beta} - 2ik\sigma_{2+}^{\#1\alpha\beta} == 0$	$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	$t_{1}^{#1\alpha} == 0$	$\tau_{1}^{\#2\alpha} + 2ik \sigma_{1}^{\#2\alpha} == 0$	$t_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	r ₀ +2 == 0	$J_{0^{-}}^{\#1} == 0$	SO(3) irreps	Source constraints
5	3	ω	ω	1	1	1	#	
	$-2ik \sigma_{2+}^{\#1\alpha\beta} == 0$	$+ i k \sigma_{1+}^{\#2\alpha\beta} == 0$ $- 2 i k \sigma_{2+}^{\#1\alpha\beta} == 0$	$= 0$ + $i k \sigma_{1+}^{\#_{2}^{2} \alpha \beta} == 0$ - $2 i k \sigma_{2+}^{\#_{1}^{1} \alpha \beta} == 0$	$+2ik \sigma_{1}^{\#2\alpha} == 0$ $= 0$ $+ik \sigma_{1}^{\#2\alpha\beta} == 0$ $-2ik \sigma_{2}^{\#1\alpha\beta} == 0$	$i k \sigma_{0+}^{\#1} == 0$ $+ 2 i k \sigma_{1-}^{\#2\alpha} == 0$ $= 0$ $+ i k \sigma_{1+}^{\#2\alpha\beta} == 0$ $- 2 i k \sigma_{2+}^{\#1\alpha\beta} == 0$	0 $i k \sigma_{0+}^{\#1} == 0$ $+ 2 i k \sigma_{1-}^{\#2\alpha} == 0$ $= 0$ $+ i k \sigma_{1+}^{\#2\alpha\beta} == 0$ $- 2 i k \sigma_{2+}^{\#1\alpha\beta} == 0$	0 $i k \sigma_{0+}^{\#1} == 0$ $+ 2 i k \sigma_{1}^{\#2\alpha} == 0$ $+ i k \sigma_{1+}^{\#2\alpha\beta} == 0$ $- 2 i k \sigma_{2+}^{\#1\alpha\beta} == 0$	$= 0 = 0 \int_{1^{+}}^{\#2\alpha} = 0 \int_{1^{+}}^{\#2\alpha\beta} = 0 \int_{2^{+}}^{\#1\alpha\beta} = 0$

? $\frac{?}{\ln^{\mu}}$ /	Quadratic pole	<u>.</u>
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Pole residue:	$\frac{1}{r_5 t_1^2 p^2} > 0$
	Polarisations:	2

Unitarity conditions

 $\frac{i \sqrt{2} k}{(1+2k^2)^2 t_1}$

0

 $\tau_{0}^{\#1}$ †

 $\tau_{0^{+}}^{\#2}$ †

 $r_5 > 0 \&\& t_1 < 0 || t_1 > 0$

(No massive particles)