URBS Training Course – Day 1

- Morning
 - URBS+ Upper Murray Data Install
 - URBS refresh lexicon/structure
 - UM Model structure
 - UM event data generation
 - Rainfall data generation exercise
- Afternoon
 - UM URBS ControlCentre
 - □ Running the Model
 - UM Calibration Exercise
 - Review and Q&A

URBS Training Course – Day 2

- Morning
 - Modelling Results
 - Recommended Parameters
 - Operational Considerations
 - FEWS-URBS integration
 - Q&A Discussion
- □ Afternoon
 - Meeting with MDBA and FEWS experts re operational issues

Input/Output - Files & Naming

- □ File locations
- Model files
 - Vector/rainfall
- □ Input Files
 - Static
 - Dynamic
- Output files
 - Static
 - Dynamic

Model Files

- □ Catchment definition file or URBS vector file
 - .u, .cdf, .vec
 - Catchment Data files .cat
- Rainfall definition file
 - .rai, .rdf
- □ But Suffixes are flexible to suit local preferences
- ☐ Most use .vec & .rdf

File Locations (default is run directory)

- URBS' File Locator Variables
 - URBS_RAIN=directory
 - □ where pluviograph files are located
 - URBS_RATS=directory
 - where rating table files are located.
 - URBS_GAUG=directory
 - where gauging station files are located.
 - URBS_INFS=directory
 - where inflow hydrograph files are located
 - URBS_RUNF=directory
 - Where rainfall-runoff files are located.
 - URBS_RETS=directory
 - where to place results.

Using the Ini Files to set Environment variables

```
[Real Time Parameters]

URBS_BF=25

URBS_BASF=FALSE

URBS_REAL=FALSE

[URBS Directories]

URBS_RATS=d:\urbs\upper_murray\calibration\ratings

URBS_RAIN=d:\urbs\upper_murray\calibration\201203\data

URBS_GAUG=d:\urbs\upper_murray\calibration\201203\data

URBS_INFS=d:\urbs\upper_murray\calibration\201203\data

DARTMOUTH=471.31

HUME=185.77
```


URBS Model File Naming Convention

Four file types

- Static Files
- Dynamic Files
- Output Files
- Run Log Files

Static Files – Created by the user

- ☐ Catchment vector file (*file.u*)
 - (can be created using CatchmentSim)
 - Optional catchment data file (file.cat)
- Rainfall definition file (file.rdf)
- □ Rating curve file(s) (*StationName.rat*)
 - 1 file for each water level station
- ☐ Dam storage data file(s) (*DamName.els*)
 - 1 file for each dam in the catchment

Note 1:

The last 2 files are required only if water level stations and dams are contained in the catchment vector file

Note 2:

The names of the gauging station file, rating curve file and the name in the catchment vector file must be the same

Dynamic Files - Created by Special Utilities

- □ Rainfall data files 1 file for each sub area in a model (basinID+subAreaID.r)
- □ Discharge and water level data files 1 file for each discharge and water level station (for discharge – StationNameq.g; for water level – StationName.g) up to 16 characters
- □ Hot start File (file.hst) explain later
- □ External inflow file (ForecastAreaName.i)
- □ Batch files to run model (eg run_catch.bat)

Common Output Files – Created by the model

□ '.csv' file □ '.cc' file □ '.prm' file □ '.h' file □ '.pqh' file □ '.o' file □ '.p' file □ '.hc' file '.q' file □ `.osd' file □ '.hst' file □ '.fs' file _a.csv file (TuFlow) □ '.a' file □ '.e' file _ e.csv file (TuFlow) r.csv file (TuFlow) □ 'DamName_cal.o' file ☐ _i.csv file (TuFlow) □ '.vbf' file

Run Log Files - Created by the ControlCentre

- urbsout.log contains on screen messages transmitted by the model
- □ urbserr.txt contains error and warning messages given by the model

Note: Look at these before you look at results

Static Input Files – more details

- □ Rating Table Files (.rat)
- ☐ Storage-Discharge files (.sq)
- ☐ Storage Elevation files (.els)
- Catchment Data files (.dat)

Rating Table Files (.rat)

- ☐ Header Line
- \square [/ dslocation = h]
- \square [k = kk]
- \square *n* PAIRS:
- \square $h_1 q_1$
- \Box h_2 q_2
- □ ..
- □ ..
- $\Box h_n q_n$

Rating Curve Files - Example

DAREBIN CREEK, IVANHOE

* AWRC: 229403

* Table: 3.01

* Modified

13 PAIRS: 0.0 0

0.2 0.17

0.4 0.72

0.6 1.62

0.8 3.99

1.0 8.85

1.2 16.2

1.4 26

1.6 37

1.0 57

1.8 50

2.0 65

2.5 110

3.0 170

Storage Discharge Files (.sq)

- ☐ Title/Header
- n No of Storage-Discharge pairs
- \square S_1 q_1
- \square S₂ q₂
- di ditto
- \square S_n q_n

The unit for storage values is ML. Discharge values are in cumecs.

MDBA URBS Training Course Sep 2016 (c) DCPM P/L

Storage-Elevation Files (.els)

- ☐ EL,A,V
- \square nn.nn, nn.nn, nn.nn
- nn.nn, nn.nn, nn.nn
- etc.

EL specifies the elevation in metres.

A specifies the storage area in hectares.

V specifies the storage volume in megalitres

Storage Elevation File - Example

EI,A,V

315,0,0

325,0,1

326,1,4

327,2,17

328,5,50

329,7,111

330,11,202

Dynamic Input Files - More Details

- □ Pluviograph files (.r)
- □ Rainfall runoff files (.rrf)
- □ Gauging Station files (.g)
- ☐ Flow files (.f)
- ☐ Inflow files (.i)

File format

- ☐ Pluviograph/Rainfall Runoff
- heading line
- □ comment line
- comment line
- □ comment line
- \Box t_{start} t_{inc} n
- \cup V_1
- \square v_2

- □ ..
- $\sqcup v$

Definitions ...

```
t_{start}=the Unix starting time (SECONDS)
```

 t_{inc} = the time increment (in SECONDS)

n = the number of values

Note the first value will be the rainfall that fell between the starting time and the next timestep

ie between t_{start} and $t_{start} + t_{inc}$

Values are in mm

Example Pluviograph file

```
Station: awrc 401012 rainfall
```

StartTime = Mon Feb 27 2012 09:00

EndTime = Tue Mar 13 2012 09:00

Created from file 401012p.raw on the Mon Jan 25 13:52:18 2016

1330297200 3600 360

0.00

0.00

0.00

0.00

1.60

1.60

0.20

Gauging Station/Inflow files

- heading line
- □ comment line
- □ comment line
- □ comment line
- \Box t_{start} t_{inc} n
- \cup v_o
- \square V_1
- \square V_2
- ш ..
- □ ..
- \square V_{j}

MDBA URBS Training Course Sep 2016 (c) DCPM P/L

Definitions ...

 t_{start} =the Unix starting time (SECONDS)

 t_{inc} = the time increment (in SECONDS)

n = the number of values

Values are in

metres for gauging stations cumecs for inflow files

Example Gauging Station File

Station: site 401204 mitta mitta river @ tallandoon StartTime = Mon Feb 27 2012 09:00 EndTime = Tue Mar 13 2012 09:00 Created from file 401204h.raw on the Mon Jan 25 13:52:26 2016 1330297200 3600 361 1.51 1.51 1.52 1.52 1.53 1.53 1.53 1.54 1.54 1.55 1.57 1.58 1.60 MDBA URBS Training Course Sep 2016 (c) DCPM P/L

Example CSV plot

Lets have a look around !!

Catchment Schematisation

- □ Typical catchment
- Catchment Definition file (Vector)
 - Overall format
 - Keywords
- □ Rating Curves
- □ Gauging Stations
- Pluviograph assignment

Reminder - URBS Syntax

- □ Place . after
 - Print, Input, store, get
 - location, end
- ☐ Place: after
 - no of items
 - Model, Uses, store
- Comments are within
- Otherwise free field

Reminder URBS Syntax - Files

- Dynamic file have a header + 3 comment lines + data in free format
- Rating curve specify the number of pairs
- □ ELS files uses commas to separate variables and values
- Case-insensitive

Upper Murray River to Albury

CatchmentSim output for Upper Murray Based on: 3" SRTM DEM data

Upper Murray River to Albury

3 Subcatchments Upper Murray Mitta Milta Below Hume

URBS Vector File Excerpt - Upper

```
Upper Murray to Hume Dam
MODEL: SPLIT
{Developed using CatchmentSIM by Terry Malone on 18-07-2016}
{Baseflow factors revised and McCallums added TM 20-08-2016}
USES: L, I
{The default parameters are for information only}
DEFAULT PARAMETERS: alpha = 0.3 \text{ m} = 0.8 \text{ beta} = 2.5 \text{ n} = 1 \text{ x} = 0.25
CATCHMENT DATA FILE = ..\..\vectors\upper.dat
RAIN #16 L = 12.40
STORE.
RAIN #17 L = 8.34
GET.
ROUTE THRU #19 L = 1.69
INPUT. MITTA: A=4741
PRINT.TALLANDOON:B0=0BR=0.95BC=0.05BM=1
{Drowned reach}
FACTOR=0.5
ROUTE THRU #2 L = 0.48
ADD RAIN #2 L = 0.48
{HUME DAM 1929}
baseflow=1
PRINT.HD INFLOW :B0=0 BR=0.95 BC=0.05 BM=1
{The normal fsl is 192.06. for dams with known outflows, the fsl should be the dam crest which should also be reflected in the sq curve}
{To generate a reverse routed inflow, first put an asterisk after the location hume, subsequent calibration runs should exclude the asterisk}
DAM ROUTE FSL=220 datafile=hume.els il=HUME location=hume REL=hd outflow.g file=hume.sq
PRINT.HD OUTFLOW
END OF CATCHMENT DATA.
```

MDBA URBS Training Course Sep 2016 (c) DCPM P/L

URBS Vector File Upper Excerpt (2):

95 PLUVIOGRAPHS:

LOCATION. upper002

1 SUBAREAS: 2

••••

LOCATION. upper096

1 SUBAREAS: 96

END OF PLUVIOGRAPH DATA.

11 RATING CURVES:

LOCATION. BIGGARA

LOCATION. BRINGENBONG

LOCATION. MARAGLE

LOCATION. PINEGROVE

LOCATION. BERRINGAMA

LOCATION. CUDGEWA_NORTH

LOCATION. R_JINGELLIC

LOCATION. CK_JINGELLIC

LOCATION. MCCALLUMS

LOCATION. TALLANDOON

LOCATION. YAMBLA

END OF RATING CURVE DATA.

URBS Vector File Upper Excerpt (3):

14 GAUGING STATIONS:

LOCATION. BIGGARA

LOCATION. KHANCOBAN *

LOCATION. BRINGENBONG

LOCATION. MARAGLE

LOCATION. PINEGROVE

LOCATION. BERRINGAMA

LOCATION. CUDGEWA_NORTH

LOCATION. R_JINGELLIC

LOCATION. CK_JINGELLIC

LOCATION. YAMBLA

LOCATION. MCCALLUMS

LOCATION. TALLANDOON

LOCATION. HD INFLOW

LOCATION. HD_OUTFLOW

END OF GAUGING STATIONS.

URBS Vector File Excerpt - Mitta

```
Mitta Mitta River to Tallandoon
 {Pre Dartmouth Dam}
 MODEL: SPLIT
 {Developed using CatchmentSIM by Terry Malone on 18-07-2016}
 USES: L
 {The default parameters are for information only}
 DEFAULT PARAMETERS: alpha = 0.3 \text{ m} = 0.8 \text{ beta} = 2.5 \text{ n} = 1 \text{ x} = 0.25
 CATCHMENT DATA FILE = ..\..\VECTORS\mitta.dat
RAIN #29 L = 9.00
 STORE.
 RAIN #30 L = 19.51
 GET.
 ROUTE THRU #5 L = 0.38
 ADD RAIN #5 L = 0.38
 PRINT.JOKERS CK: B0=0 BR=0.95 BC=0.05 BM=1
 {DARTMOUTH DAM 1979}
 baseflow=1
 PRINT.DD INFLOW: B0=0 BR=0.95 BC=0.05 BM=1
 {To generate a reverse routed inflow, first put an asterisk after the location dartmouth, subsequent calibration
 runs should exclude the asterisk}
 DAM ROUTE FSL=486.0 datafile=dartmouth.els location=dartmouth il=DARTMOUTH file=dartmouth.sq
PRINT.DARTMOUTH DAM
 PRINT.TALLANDOON:B0=0BR=0.95BC=0.05BM=1
 END OF CATCHMENT DATA.
MDBA URBS Training Course Sep 2016 (c) DCPM P/L
```


URBS Vector File Mitta Excerpt (2):

51 PLUVIOGRAPHS: LOCATION. mitta001

1 SUBAREAS: 1

.....

LOCATION. mitta051

1 SUBAREAS: 51

END OF PLUVIOGRAPH DATA.

6 RATING CURVES:

LOCATION. JOKERS_CK

LOCATION. HINNOMUNJIE

LOCATION. GIBBO_PK

LOCATION. DARTMOUTH_DAM

LOCATION. COLEMANS

LOCATION. TALLANDOON

END OF RATING CURVE DATA.

7 GAUGING STATIONS:

LOCATION. JOKERS_CK

LOCATION. HINNOMUNJIE

LOCATION. GIBBO_PK

LOCATION. DD_INFLOW

LOCATION. DARTMOUTH_DAM

LOCATION. COLEMANS

LOCATION. TALLANDOON

END OF GAUGING STATIONS.

MDBA URBS Training Course Sep 2016 (c) DCPM P/L

URBS Vector File Excerpt - Below

```
Murray R - Hume Dam to Albury
{with operate dam}
MODEL: SPLIT
{Developed using CatchmentSIM by Terry Malone on 18-07-2016}
USES: L
{The default parameters are for information only}
DEFAULT PARAMETERS: alpha = 0.3 \text{ m} = 0.8 \text{ beta} = 2.5 \text{ n} = 1 \text{ x} = 0.25
CATCHMENT DATA FILE = ..\..\vectors\below.dat
RAIN #7 L = 17.72
STORE.
RAIN #8 L = 15.69
GET.
ROUTE THRU #10 L = 1.28
INPUT. UPPER: A=15260
PRINT.HEYWOODS * :B0=0 BR=0.95 BC=0.025 BM=1
ROUTE THRU #14 L = 5.79
ADD RAIN #14 L = 5.79
GET.
PRINT.DOCTORS PT:B0=0 BR=0.95 BC=0.025 BM=1
ROUTE THRU #2 L = 3.70
ADD RAIN #2 L = 3.70
PRINT.ALBURY:B0=0 BR=0.95 BC=0.025 BM=1
END OF CATCHMENT DATA.
```


URBS Vector File Below Excerpt (2):

13 PLUVIOGRAPHS: LOCATION. below002

1 SUBAREAS: 2

LOCATION. below014

•••••

1 SUBAREAS: 14

END OF PLUVIOGRAPH DATA.

5 RATING CURVES:

LOCATION. HEYWOODS

LOCATION. KIEWA

LOCATION, BANDIANA

LOCATION. DOCTORS PT

LOCATION. ALBURY

END OF RATING CURVE DATA.

5 GAUGING STATIONS:

LOCATION. HEYWOODS

LOCATION. KIEWA

LOCATION. BANDIANA

LOCATION. DOCTORS PT

LOCATION. ALBURY

END OF GAUGING STATIONS.

MDBA URBS Training Course Sep 2016 (c) DCPM P/L

Upper Murray Rainfall Assignment

- □ Use Utility SUBRAIN to assign a virtual pluviograph for each subarea (this is is preferred approach for flood forecasting)
- ☐ (FEWS will do this in real time)
- ☐ Steps outside of FEWS: 3 steps
 - Generate '.raw' files
 - Convert to URBS .r and .g station files using C2U
 - Assign rainfall to each subarea using SUBRAIN

RAW Data Files – Pluviograph Data

```
AWRC 401009 Rainfall
Source: NSW Water Information
1/01/2010 0:00 0.0
1/01/2010 1:00 0.0
1/01/2010 2:00 0.0
1/01/2010 3:00 0.0
1/01/2010 4:00 0.0
1/01/2010 5:00 0.0
1/01/2010 6:00 0.0
1/01/2010 7:00 0.0
1/01/2010 8:00 0.2
1/01/2010 9:00 0.2
1/01/2010 10:00 0.2
1/01/2010 11:00 0.2
1/01/2010 12:00 0.2
1/01/2010 13:00 0.2
MDBA URBS Training Course Sep 2016 (c) DCPM P/L
```


RAW Data Files - Daily Rainfall Data

Station: 71042 Source: BoM Climate Information Pack: 01/02/2011 09:00:00 0.00 02/02/2011 09:00:00 0.00 03/02/2011 09:00:00 27.00 04/02/2011 09:00:00 31.00 05/02/2011 09:00:00 54.00 06/02/2011 09:00:00 68.40 07/02/2011 09:00:00 69.40 08/02/2011 09:00:00 69.40 09/02/2011 09:00:00 69.40 10/02/2011 09:00:00 69.40 11/02/2011 09:00:00 71.40 12/02/2011 09:00:00 100.40 13/02/2011 09:00:00 100.40 MDBA URBS Training Course Sep 2016 (c) DCPM P/L

RAW Data Files – Gauging Station data

AWRC 401001h Water Level Source: NSW Water 28/02/2012 1:00 1.173 28/02/2012 2:00 1.171 28/02/2012 3:00 1.17 28/02/2012 4:00 1.171 28/02/2012 5:00 1.184 28/02/2012 6:00 1.205 28/02/2012 7:00 1.209 28/02/2012 8:00 1.228 28/02/2012 9:00 1.233 28/02/2012 10:00 1.226 28/02/2012 11:00 1.22 28/02/2012 12:00 1.215 28/02/2012 13:00 1.215 28/02/2012 14:00 1.21 MDBA URBS Training Course Sep 2016 (c) DCPM P/L

Conversion to URBS Files

```
rem Batch file to generate urbs data files
set /p start=
set /p end=
rem Set start/end dates
set URBS DATE=%start%
set URBS_TIME=09:00:00
set END DATE=%end%
set END_TIME=09:00:00
rem Remove old files
rem del *.g, *.r
rem Regenerate urbs data files
d:\urbs\bin\c2u daily.stns -I -i24 -2 -e
d:\urbs\bin\c2u pluvio.stns -l -i1 -2 -e
d:\urbs\bin\c2u river.stns -l -i1 -2 -e
```


Example Station File (.stns)

```
401012.raw,BIGGARA.g
401549.raw, BRINGENBONG.q
401009.raw, MARAGLE.g
401014.raw,PINEGROVE.g
401201.raw,R_JINGELLIC.g
401013.raw,CK_JINGELLIC.g
401015.raw,YAMBLA.g
401203.raw, HINNOMUNJIE.g
401224.raw, DARTMOUTH.g
401224.raw,DARTMOUTH DAM.g
401211.raw,COLEMANS.g
401204.raw,TALLANDOON.g
401027.raw, HUME.g
401027.raw, HUME DAM.g
HD OUTFLOW.raw, HD OUTFLOW.q
```

409016.raw,HEYWOODS.g
402205.raw,BANDIANA.g
409017.raw,DOCTORS_PT.g
409001.raw,ALBURY.g
401208.raw,BERRINGAMA.g
401229.raw,CUDGEWA_NORTH.g
401217.raw,GIBBO_PK.g
402222.raw,KIEWA.g
401216.raw,JOKERS_CK.g
401220.raw,MCCALLUMS.g

Assign rainfall to each Subarea - SUBRAIN

- 1. Prepare a network file
- 2. Prepare a subarea file
- 3. Using SUBRAIN Generate the virtual subarea pluviographs (VSAP's)
- 4. Examine results incl. KML's Omit faulty stations
- 5. Repeat until satisfied

Using SubRain

- Used as follows
 SUBRAIN filename.net filename.sub
 Followed by switches
- Net file
 - Contains lists of stations that you want considered in the analysis
- Sub file
 - □ Contains subarea details in particular the lat/long of subarea centroid

SubRain Switches

- -3 for triangulation interpolation
- -b for the BoM net file format
- -c<n.n> continuing loss
- -d<directory for all data input and output files>
- -e use URBS starttime and endtime variables environment
- -i<n.n> data interval in hours
- -I<label> label for output rainfall files
- -n<nn> -> use the nn nearest stations
- -m<nn> -> 1 for row method (default) and 2 for col method
- -o<output file name>
- -pproject file name>
- -r<rainfall Directory with input raw data>
- -s<n.n> run Scale
- -t<n.n> iniTial loss
- -u<Urbs catchment definition file name>
- -w<rainfall directory for output rainfall data>

Using SubRain - Tips

- Always Always check the results file
- Comment out suspect stations
- Rerun until satisfied
- Rainfall not right no amount of modelling will give you an accurate answer

Network file – one file for all subs

```
UPPER MURRAY RIVER
217 RAINFALL STATIONS:
070217 COOMA AIRPORT AWS 1485821 -361739 p -99
071010 KIANDRA CHALET 1483000 -355300 p -99
071029 SPENCERS CREEK 1482100 -362600 p -99
071032 THREDBO AWS 1481709 -362929 p -99
071034 GUTHEGA POWER STATION 1482445 -362106 p -99
071035 MOONBAH (RIVERVIEW) 1483300 -362900 p -99
071042 INGEBYRA (GROSSES PLAINS) 1482804 -363608 p -99
072023 HUME RESERVOIR 1470158 -360614 p -99
83084 FALLS CREEK 1471632 -365215 d -99
83085 MOUNT HOTHAM 1470803 -365836 d -99
83090 OMEO 1473603 -370606 d -99
83095 ANGLERS REST (BUNDARRAH VALLEY) 1472440 -370001 d -99
END OF RAINFALL STATIONS.
```


Subarea file - one file for each sub

```
Upper Murray to Hume Dam
 95 SUBAREAS:
         1470157 -360644
  3
         1480219 -362402
         1480612 - 361328
  5
         1480322 -361348
         1480559 -355457
         1480351 - 360122
         1481717 - 360556
 93
         1471502 - 361646
 94
         1471553 -360952
 95
         1472127 -361450
 96
         1472434 - 361039
 END OF SUBAREAS.
MDBA URBS Training Course Sep 2016 (c) DCPM P/L
```


Generate VSAP's using SUBRAIN

```
echo off
del *.res
set /p start=
set /p end=
set /p event=
rem Set start/end dates
set URBS_DATE=%start%
set URBS TIME=09:00:00
set END DATE=%end%
set END_TIME=09:00:00
d:\urbs\bin\subrain.exe upper_m.net mitta.sub -lmitta -b -e -3
d:\urbs\bin\subrain.exe upper_m.net upper.sub -lupper -b -e -3
d:\urbs\bin\subrain.exe upper_m.net below.sub -lbelow -b -e -3
```


Interpolation Methodology - Triangulation

Interpolation Methodology – Triangulation Station Contours

Interpolation Methodology – Triangulation SubArea Contours

SUBRAIN 'res' file

								and the same
	UPPER MURRAY	RIVER						-
	217 RAINFALL	STATIONS:						
	"070217	COOMA AIRPORT AWS	148	5821	-3617	39	р	-99.0
	"071010	KIANDRA CHALET	148	3000	-3553	00	р	-99.0
	" 071029	SPENCERS CREEK	148	2100	-3626	00	р	-99.0
	"071032	THREDBO AWS	148	1709	-3629	29	р	-99.0
	"071034	GUTHEGA POWER STATIO	148	2445	-3621	06	р	-99.0
	"071035	MOONBAH (RIVERVIEW)	148	3300	-3629	00	р	-99.0
	"071042	INGEBYRA (GROSSES PL	148	2804	-3636	8 0	р	-99.0
Ö	072023	HUME RESERVOIR	147	0158	-3606	14	р	210.4
	"072056	BLOWERING DAM	148	1449	-3523	41	р	-99.0
	"072060	KHANCOBAN SMHEA	148	0835	-3613	31	p	-99.0
					310	IN ESTATE		- 3
	" 83071	FALLS CREEK	147	1700	-3652	00	d	-99.0
	"83081	MOUNT HOTHAM	147	0852	-3659	00	d	-99.0
	83084	FALLS CREEK	147	1632	-3652	15	d	236.4
	83085	MOUNT HOTHAM	147	0803	-3658	36	d	269.6
	83090	OMEO	147	3603	-3706	06	d	107.0
	83095	ANGLERS REST (BUNDAR	147	2440	-3700	01/	d	121.6
	END OF RAINFA	ALL STATIONS.						

Exercise ...

Objective:

To be able to run the SUBRAIN utility and assess changes in subarea rainfall depths due to: (a) omission of stations and (b) rainfall interpolation methodology.

- ☐ Go to 201203 sub-directory
- □ Open the KML file/Res files and view
- ☐ Edit the network file and omit McCallums (401220)
- □ Compare res and KML files
- ☐ Change Interpolation technique to nearest 3 stations
- □ Compare results
- Discussion

Modelling the Calibration Events

- A Modelling Refresh
- □ Upper Murray Event modelling using the ControlCentre

Runoff Routing Models

- ☐ SPLIT MODEL
 - Catchment routing
 - □ Lag proportional to √ Area
 - Rainfall assumed to be routed to centroid of sub-catchment
 - Usually assumed non-linear response
 - Channel routing
 - □ Lag proportional to River Length (or surrogate)
 - ☐ Usually assumed linear (Muskingum)

Catchment Routing

☐ Storage Equation

$$S_{catch} = \left\{ \frac{\beta \sqrt{A}(1+F)^2}{(1+U)^2} \right\} Q^m$$

□ Note – if not assessing urbanization or de-forestation U=0 and F=0

Catchment Routing

Parameters

```
■ Beta: lag parameter (1-9)
```

m : non-linearity parameter (0.6-1)

■ U : fraction Urbanised (0 - 1)

 \blacksquare F: fraction forested (0-1)

Channel Routing - Muskingum

☐ Storage Equation

$$S_{chnl} = \alpha f \frac{L}{\sqrt{S_c}} (xQ_u + (1-x)Q_d)^n$$

Channel Routing

Parameters

```
■ Alpha : lag Parameter (.1 – .5)
```

 \blacksquare n : Non-linearity parm (0.8-1.2)

f : Reach length factor (0.3 - 3)

X : Muskingum x parameter (0-0.5)

BaseFlow Modelling

- Baseflows are accumulated along drainage network
- □ Baseflow values can be overwritten
- Baseflow can vary over time:

$$Qb_i = BO + BR (Qb_{i-1} - BO) + BC (Qr)^{BM}$$

Baseflow Modelling

Day 1 Afternoon

Practical Session:

Calibrate one event and try to improve

Rerun all events

Discussion and Q&A

Day 1 Afternoon

Load the ControlCentre
Change the Common Settings
Run the 201203 event

ControlCentre - Common Settings

ControlCentre – Forecast Page

Exercise – Try to improve Calibration

Change alpha and beta and m Change loss parameters Change rainfall interpolation technique McCallums included/excluded Khancoban matching? Inclusion of IF make any difference Discussion

For Multi-Event calibration

- Routing Calibration parameters should not vary too much
- □ Each event needs to be weighted according to data availability & reliability
- Getting one event perfect does not guarantee a well calibrated model
- □ Always be suspicious of data (and even more of models ;-))

Day 2:

- ☐ Further from Day 1
- Model Results
 - Dartmouth Dam
 - Jingellic
 - Hume Dam
- □ Recommended Parameters
- Operational Considerations
- ☐ FEWS & URBS adding new events

IF + Triangulation + McCallums + SMS flows

-IF + Triangulation + McCallums + SMS flows

-IF+CL + Triangulation + McCallums + Khancoban Matched

IF + IDW/rows + McCallums + SMS flows

UPPER MURRAY TO HUME DAM (no forecast rainfall)

RUN DATED Wed Sep 07 08:36:38 2016 - FORECAST RUN FROM Mon Feb 27 2012 09:00 MODEL PARAMETERS: alpha=0.2500 m=0.80 beta= 4.00 IL= 90.0 CL= 7.00 dt=1.00h HUME=8116933.0

IF + Triangulation - McCallums + SMS flows

IF + Triangulation + McCallums - SMS flows

Reverse Routing - Increasing time interval

Reverse Routing - Smoothing

Criteria

Class	Score	Peak ratio	Volume ratio	Nash- Sutcliffe	Event magnitude	Quality of rainfall data
Excellent	5	<±10%	<±15%	≥0.95	90%	>2008
Good	4	<±15%	<±25%	≥0.90	75%	>2000
Fair	3			≥0.85	50%	>1990
Poor	2	<±50%	<±50%	≥0.50	25%	<1970
No data/exclude calibration	0	>±50%	>±50%	<0.5	0%	

Weighting Events

Event	Calibration parameters				Calibration performance ranking				
	IL	CL	Alpha	Beta	m	PR	VR	NS	Weight
197401	35	4.3	0.30	3.0	0.8	5	4	0	5%
197410	10	1.8	0.30	3.0	0.8	2	5	2	7%
197510	15	1.1	0.30	5.0	0.8	4	5	4	8%
198107	10	1.8	0.35	4.0	0.8	2	5	3	6%
198308	5	2.3	0.30	3.0	0.8	2	5	0	5%
199210	5	3.8	0.25	3.0	0.8	2	5	3	7%
199310	0	2.8	0.30	5.0	0.8	4	5	3	7%
199607	10	1.3	0.35	5.0	0.8	2	5	2	6%
199610	10	3.5	0.40	5.0	0.8	4	2	0	4%
199809	35	4.0	0.30	4.0	0.8	2	2	0	4%
201009	20	2.6	0.35	5.0	0.8	2	5	3	7%
201010	15	5.3	0.25	3.0	0.8	0	5	3	7%
201012	30	7.0	0.30	4.0	0.8	2	5	3	7%
201102	60	8.1	0.30	4.0	0.8	2	5	2	7%
201109	15	5.4	0.25	3.0	0.8	2	5	0	5%
201203	80	6.0	0.25	4.0	0.8	5	5	2	8%

Dartmouth Dam - Volume Inflow

Dartmouth Dam - Peak inflows

Jingellic - Flows

Hume Dam Volume Inflows

Hume Dam Peak Inflows

Recommended Parameters

Mitta Mitta

Perc	entile	IL (mm)	CL (mm/hr)	Alpha	Beta	m
	5 th	0	1.4	0.20	3.0	0.8
	95 th	68	7.6	0.43	5.3	0.8
Std Devi	iation		2.4	0.07	1.0	0.0
Recomme	ended	To suit antecedent conditions	4.1	0.27	4.0	0.8

Upper Murray

Percentile	IL (mm)	CL (mm/hr)	Alpha	Beta	М
5th	4	1.3	0.25	3.0	0.8
95th	65	7.3	0.36	5.0	0.8
Std Deviation		2.0	0.04	0.8	0.0
Recommended	To suit antecedent conditions	3.8	0.30	4.0	0.8

Below Hume Weir

Percentile	IL (mm)	CL (mm/hr)	Alpha	Beta	М
5th	0	1.4	0.30	3.0	0.8
95th	61	6.5	0.50	5.0	0.8
Std Deviation		1.9	0.08	0.9	0.0
Recommended	To suit antecedent Conditions	3.2	0.36	4.3	0.8

Operational Considerations

- Number of Rainfall stations???
- Dam Starting Levels and Initial Baseflow
- Antecedent Conditions
- FEWS-URBS

Rainfall Stations

- □ Upper Murray
 - Area approx. 15000 sq km
 - Realtime Pluvs ≈ 5 10
- ☐ Brisbane River: 14000 sq km
 - Realtime Pluvs ≈ 300
- ☐ Gold Coast Region: (excluding Logan)
 - Area approx = 1000 sq km
 - Real Time Pluvs ≈ 50

Dam Initial Base flows Dartmouth

Dam Initial Base flows Hume

Rainfall Stations

			And the second of the second o	
Event	Initial Los	ss (mm)	Rainfall in Preceding Month	
Event	Mitta Mitta	Upper Murray	Railliali ili Preceully Molitii	
197401		35	Above Average to Very Much Above Average	
197410		10	Above Average	
197510		15	Above Average to Very Much Above Average	
198107	15	10	Above Average to Highest on Record	
198308	10	10	Average to Above Average	
199210	0	5	Very Much Above Average to Highest on Record	
199310	35	0	Above Average to Very Much Above Average	
199607	0	10	Average	
199610	0	10	Above Average to Very Much Above Average	
199809	10	0	Average	
201009	25	10	Above Average to Very Much Above Average	
201010	40	20	Average to Above Average	
201012	35	30	Above Average to Very Much Above Average	
201102	90	60	Average to Above Average	
201109	5	15	Below Average to Average	
201203	10	25	Above Average to Very Much Above Average	

No strong correlation in the above data between rainfall in the preceding month and initial loss!!

BoM AWRA Model

Recommendations

- Calibrated parameters be adopted
- Review the existing real time rainfall station network to improve spatial and temporal rainfall event definition
- Continuing update with every event including ratings
- □ An investigation as to whether the BoM AWRA-L real time root zone soil moisture modelling can be used to estimate initial losses

Thank You

And remember ...

Pluralitas non est ponenda sine necessitate William of Ockham (1285 - 1349)

Or

Keep it simple

