Integrals

1

- $\int_0^{10\pi} |\sin x| \, \mathrm{d}x \, \mathrm{is}$
- (b) 8 (d) 18

- $I_n = \int_{0}^{\pi/4} \tan^n x \, dx \text{ then } \lim_{n \to \infty} n[I_n + I_{n+2}] \text{ equals}$

[2002]

[2002]

- (a) $\frac{1}{2}$ (b) 1 (c) ∞ (d) zero

- $\int_{0}^{2} [x^{2}] dx \text{ is}$

- (a) $2-\sqrt{2}$ (b) $2+\sqrt{2}$ (c) $\sqrt{2}-1$ (d) $-\sqrt{2}-\sqrt{3}+5$ (a) $\frac{1}{n+1}+\frac{1}{n+2}$ (b) $\frac{1}{n+1}$ 4. $\int_{-\pi}^{\pi} \frac{2x(1+\sin x)}{1+\cos^2 x} dx$ is [2002] (c) $\frac{1}{n+2}$ (d) $\frac{1}{n+1}-\frac{1}{n+2}$.

 (a) $\frac{\pi^2}{4}$ (b) π^2 8. $\lim_{n\to\infty} \sum_{r=1}^{n} \frac{1}{n} e^{\frac{r}{n}}$ is [2002] (c) zero (d) $\frac{\pi}{2}$ (a) e+1 (c) 1-e (d) e-1 (d) e

- (c) zero (d) $\frac{\pi}{2}$ (c) 1-eIf f(a+b-x)=f(x) then $\int_{a}^{b} xf(x)dx$ is equal to 9. The value of $\int_{-2}^{3} |1-x^2| dx$ is

(a)
$$\frac{a+b}{2} \int_{a}^{b} f(a+b+x)dx$$

- (b) $\frac{a+b}{2} \int f(b-x)dx$
- (c) $\frac{a+b}{2} \int_{a}^{b} f(x)dx$
- (d) $\frac{b-a}{2} \int_{a}^{b} f(x) dx$.

Let f(x) be a function satisfying f'(x) = f(x) with f(0)=1 and g(x) be a function that satisfies

 $f(x) + g(x) = x^2$. Then the value of the integral

$$\int_{0}^{1} f(x)g(x)dx, \text{ is}$$
 [2003]

- (a) $e + \frac{e^2}{2} + \frac{5}{2}$ (b) $e \frac{e^2}{2} \frac{5}{2}$
- (c) $e + \frac{e^2}{2} \frac{3}{2}$ (d) $e \frac{e^2}{2} \frac{3}{2}$.
- [2002] 7. The value of the integral $I = \int_{0}^{1} x(1-x)^n dx$ is

[2003]

- [2004]

- [2004]

- **10.** The value of $I = \int_{0}^{\pi/2} \frac{(\sin x + \cos x)^2}{\sqrt{1 + \sin 2x}} dx$ is

[2004]

- (a) 3 (c) 2
- (b) 1
- (d) 0

M-132-

Mathematics

11. If
$$\int_{0}^{\pi} xf(\sin x)dx = A \int_{0}^{\pi/2} f(\sin x)dx$$
, then A is **16.** If $I_{1} = \int_{0}^{1} 2^{x^{2}} dx$, $I_{2} = \int_{0}^{1} 2^{x^{3}} dx$, $I_{3} = \int_{1}^{2} 2^{x^{2}} dx$

(c)
$$\frac{\pi}{4}$$

12. If
$$f(x) = \frac{e^x}{1 + e^x}$$
, $I_1 = \int_{f(-a)}^{f(a)} xg\{x(1-x)\}dx$ (a) $I_2 > I_1$ (b) $I_1 > I_2$ (c) $I_3 = I_4$ (d) $I_3 > I_4$

and $I_2 = \int_{f(-a)}^{f(a)} g\{x(1-x)\}dx$, then the value

of
$$\frac{I_2}{I_1}$$
 is

[2004]

(a) 1 (b) 3 (c) -1 (d) 2
13. If
$$\int \frac{\sin x}{\sin(x-\alpha)} dx = Ax + B \log \sin(x-\alpha), +C,$$
 then value of (A, B) is [2004]

- (a) $(-\cos\alpha, \sin\alpha)$
- (b) $(\cos \alpha, \sin \alpha)$
- (c) $(-\sin\alpha,\cos\alpha)$
- (d) $(\sin \alpha, \cos \alpha)$

14.
$$\int \frac{dx}{\cos x - \sin x}$$
 is equal to [2004]

(a)
$$\frac{1}{\sqrt{2}} \log \left| \tan \left(\frac{x}{2} + \frac{3\pi}{8} \right) \right| + C$$

(b)
$$\frac{1}{\sqrt{2}}\log\left|\cot\left(\frac{x}{2}\right)\right| + C$$

(c)
$$\frac{1}{\sqrt{2}} \log \left| \tan \left(\frac{x}{2} - \frac{3\pi}{8} \right) \right| + C$$

(d)
$$\frac{1}{\sqrt{2}} \log \left| \tan \left(\frac{x}{2} - \frac{\pi}{8} \right) \right| + C$$

15.
$$\int \left\{ \frac{(\log x - 1)}{1 + (\log x)^2} \right\}^2 dx$$
 is equal to [2005]

(a)
$$\frac{\log x}{(\log x)^2 + 1} + C$$
 (b) $\frac{x}{x^2 + 1} + C$

(b)
$$\frac{x}{x^2+1} + C$$

(c)
$$\frac{xe^x}{1+x^2} + C$$

(c)
$$\frac{xe^x}{1+x^2} + C$$
 (d) $\frac{x}{(\log x)^2 + 1} + C$

and
$$I_4 = \int_{1}^{2} 2^{x^3} dx$$
 then

(a)
$$I_2 > I_1$$

(b)
$$I_1 > I_2$$

(c)
$$I_3 = I_2$$

(d)
$$I_3 > I_4$$

17. The value of $\int_{-\pi}^{\pi} \frac{\cos^2 x}{1 + a^x} dx$, a > 0, is

- (c) $\frac{\pi}{2}$ (d) 2π

18. The value of integral, $\int_{2}^{6} \frac{\sqrt{x}}{\sqrt{9-x} + \sqrt{x}} dx$ is

[2006]

[2004] 19.
$$\int_{0}^{\pi} xf(\sin x)dx$$
 is equal to [2006]

(a)
$$\pi \int_{0}^{\pi} f(\cos x) dx$$
 (b) $\pi \int_{0}^{\pi} f(\sin x) dx$

(b)
$$\pi \int_{0}^{\pi} f(\sin x) dx$$

(c)
$$\frac{\pi}{2} \int_{0}^{\pi/2} f(\sin x) dx$$
 (d) $\pi \int_{0}^{\pi/2} f(\cos x) dx$

$$(d) \pi \int_{0}^{\pi/2} f(\cos x) dx$$

20.
$$\int_{-\frac{3\pi}{2}}^{-\frac{\pi}{2}} [(x+\pi)^3 + \cos^2(x+3\pi)] dx$$
 is equal to

(a)
$$\frac{\pi^4}{32}$$
(c)
$$\frac{\pi}{2}$$

(b)
$$\frac{\pi^4}{32} + \frac{\pi}{2}$$

(c)
$$\frac{\pi}{2}$$

(d)
$$\frac{\pi}{4} - 1$$

м-133 Integrals

- **21.** The value of $\int_{0}^{a} [x] f'(x) dx$, a > 1 where [x]denotes the greatest integer not exceeding x is
 - (a) $af(a) \{f(1) + f(2) + \dots f([a])\}$
 - (b) $[a]f(a) \{f(1) + f(2) + \dots f([a])\}$
 - (c) $[a]f([a]) \{f(1) + f(2) + \dots f(a)\}$
 - (d) $af([a]) \{f(1) + f(2) + \dots f(a)\}$
- 22. $\int \frac{dx}{\cos x + \sqrt{3} \sin x}$ equals [2007]
 - (a) $\log \tan \left(\frac{x}{2} + \frac{\pi}{12} \right) + C$
 - (b) $\log \tan \left(\frac{x}{2} \frac{\pi}{12} \right) + C$
 - (c) $\frac{1}{2} \log \tan \left(\frac{x}{2} + \frac{\pi}{12} \right) + C$
 - (d) $\frac{1}{2} \log \tan \left(\frac{x}{2} \frac{\pi}{12} \right) + C$
- 23. Let $F(x) = f(x) + f\left(\frac{1}{x}\right)$, where $f(x) = \int_{1}^{x} \frac{\log t}{1+t} dt$, Then F(e) equals
 - (a) 1 (c) 1/2
- The solution for x of the equation

$$\int_{-7}^{x} \frac{dt}{t\sqrt{t^2 - 1}} = \frac{\pi}{2} \text{ is}$$
 [2007]

- (a) $\frac{\sqrt{3}}{2}$

- 25. Let $I = \int_{0}^{1} \frac{\sin x}{\sqrt{x}} dx$ and $J = \int_{0}^{1} \frac{\cos x}{\sqrt{x}} dx$. Then
 - which one of the following is true?
 - (a) $I > \frac{2}{3}$ and J > 2 (b) $I < \frac{2}{3}$ and J < 2
 - (c) $I < \frac{2}{3}$ and J > 2 (d) $I > \frac{2}{3}$ and J < 2

- **26.** The value of $\sqrt{2} \int \frac{\sin x dx}{\sin \left(x \frac{\pi}{4}\right)}$ is [2008]
 - (a) $x + \log |\cos(x \frac{\pi}{4})| + c$
 - (b) $x \log |\sin(x \frac{\pi}{4})| + c$
 - (c) $x + \log |\sin(x \frac{\pi}{4})| + c$
 - (d) $x \log |\cos \left(x \frac{\pi}{4}\right)| + c$
- 27. $\int [\cot x] dx$, where [.] denotes the greatest
 - integer function, is equal to: [2009]
- Let p(x) be a function defined on **R** such that p'(x) = p'(1-x), for all $x \in [0, 1]$, p(0) = 1 and p
 - (1) = 41. Then $\int_{0}^{\infty} p(x) dx$ equals

- **29.** The value of $\int_{0}^{1} \frac{8 \log(1+x)}{1+x^2} dx$ is [2011]
 - (a) $\frac{\pi}{8} \log 2$ (b) $\frac{\pi}{2} \log 2$
- (c) $\log 2$ (d) $\pi \log 2$ 30. Let [.] denote the greatest integer function then
 - the value of $\int_{0}^{1.5} x \left[x^{2} \right] dx$ is:. [2011 RS]

- **31.** If the

$$\int \frac{5\tan x}{\tan x - 2} dx = x + a \ln \left| \sin x - 2\cos x \right| + k,$$
then *a* is equal to: [2012]

- then a is equal to: (a) -1
- (b) -2
- (c) 1
- (d) 2

ww.cracki e .

м-134-

If $g(x) = \int \cos 4t \, dt$, then $g(x + \pi)$ equals

[2012]

(a)
$$\frac{g(x)}{g(\pi)}$$

(b)
$$g(x) + g(p)$$

(c)
$$g(x) - g(p)$$

(d)
$$g(x) . g(p)$$

33. If
$$\int f(x)dx = \psi(x)$$
, then $\int x^5 f(x^3)dx$ is equal to [2013]

(a)
$$\frac{1}{3} \left[x^3 \psi(x^3) - \int x^2 \psi(x^3) dx \right] + C$$

(b)
$$\frac{1}{3}x^3\psi(x^3) - 3\int x^3\psi(x^3)dx + C$$

(c)
$$\frac{1}{3}x^3\psi(x^3) - \int x^2\psi(x^3)dx + C$$

(d)
$$\frac{1}{3} \left[x^3 \psi(x^3) - \int x^3 \psi(x^3) dx \right] + C$$

34. Statement-1: The value of the integral

$$\int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\tan x}}$$
 is equal to $\pi/6$

Statement-2:
$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(a+b-x)dx.$$

[2013]

- (a) Statement-1 is true; Statement-2 is true; Statement-2 is a correct explanation for Statement-1.
- (b) Statement-1 is true; Statement-2 is true; Statement-2 is not a correct explanation for Statement-1.
- (c) Statement-1 is true; Statement-2 is false.
- (d) Statement-1 is false; Statement-2 is true.
- The intercepts on x-axis made by tangents to

thecurve, $y = \int_{0}^{x} |t| dt$, $x \in \mathbb{R}$, which are parallel

to the line y = 2x, are equal to: [2013]

- (a) ± 1
- (b) ± 2
- (c) ± 3
- (d) ± 4

Mathematics

36. The integral $\int \left(1+x-\frac{1}{x}\right)e^{x+\frac{1}{x}}dx$ is equal to

(a)
$$(x+1)e^{x+\frac{1}{x}} + c$$
 (b) $-xe^{x+\frac{1}{x}} + c$

(b)
$$-xe^{x+\frac{1}{x}} +$$

(c)
$$(x-1)e^{x+\frac{1}{x}}+c$$
 (d) $xe^{x+\frac{1}{x}}+c$

(d)
$$xe^{x+\frac{1}{x}} + c$$

37. The integral $\int_{0}^{\pi} \sqrt{1+4\sin^2\frac{x}{2}-4\sin\frac{x}{2}} dx$ equals:

(a)
$$4\sqrt{3} - 4$$

(a)
$$4\sqrt{3}-4$$
 (b) $4\sqrt{3}-4-\frac{\pi}{3}$

(c)
$$\pi - 4$$

(c)
$$\pi - 4$$
 (d) $\frac{2\pi}{3} - 4 - 4\sqrt{3}$

38. The integral
$$\int \frac{dx}{x^2(x^4+1)^{3/4}}$$
 equals : [2015]

(a)
$$-(x^4+1)^{\frac{1}{4}}+c$$
 (b) $-\left(\frac{x^4+1}{x^4}\right)^{\frac{1}{4}}+c$

(c)
$$\left(\frac{x^4+1}{x^4}\right)^{\frac{1}{4}} + c$$
 (d) $(x^4+1)^{\frac{1}{4}} + c$

39. The integral $\int_{2}^{4} \frac{\log x^2}{\log x^2 + \log(36 - 12x + x^2)} dx$

is equal to:

(a) 1

40. The integral
$$\int \frac{2x^{12} + 5x^9}{(x^5 + x^3 + 1)^3} dx$$
 is equal to:

[2016]

[2015]

(a)
$$\frac{x^5}{2(x^5+x^3+1)^2}+C$$

(b)
$$\frac{-x^{10}}{2(x^5+x^3+1)^2}+C$$

Integrals

м-135

(c)
$$\frac{-x^5}{\left(x^5 + x^3 + 1\right)^2} + C$$

(d)
$$\frac{x^{10}}{2(x^5+x^3+1)^2}+C$$

where C is an arbitrary constant.

41. The integral
$$\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{dx}{1 + \cos x}$$
 is equal to : [2017]

(b) -2 (d) 4

42. Let $I_n = \int \tan^n x \, dx$, $(n > 1) \cdot I_4 + I_6 = a \tan^5 x + bx^5$ + C, where C is constant of integration, then the ordered pair (a, b) is equal to:

(a)
$$\left(-\frac{1}{5}, 0\right)$$
 (b) $\left(-\frac{1}{5}, 1\right)$

(b)
$$\left(-\frac{1}{5},1\right)$$

(c)
$$\left(\frac{1}{5}, 0\right)$$
 (d) $\left(\frac{1}{5}, -1\right)$

(d)
$$\left(\frac{1}{5}, -1\right)$$

Answer Key														
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
(a)	(b)	(d)	(b)	(c)	(d)	(d)	(b)	(d)	(c)	(b)	(d)	(b)	(a)	(d)
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
(b)	(b)	(b)	(d)	(c)	(b)	(c)	(c)	(d)	(b)	(c)	(c)	(a)	(d)	(c)
31	32	33	34	35	36	37	38	39	40	41	42			
(d)	(b, c)	(c)	(d)	(a)	(d)	(b)	(b)	(a)	(d)	(c)	(c)			

LUTIONS

1. (a)
$$I = \int_{0_{\pi}}^{10\pi} |\sin x| \, dx = 10 \int_{0}^{\pi} |\sin x| \, dx$$
$$= 10 \int_{0}^{10\pi} \sin x \, dx$$

 $[\because |\sin x| \text{ is periodic with period } \pi \text{ and } \sin x > 0 \text{ if } 0 < x < \pi]$

$$I = 20 \int_{0}^{\pi/2} \sin x \, dx = 20 \left[-\cos x \right]_{0}^{\pi/2} = 20$$

2. **(b)**
$$I_n + I_{n+2} = \int_0^{\pi/4} \tan^n x (1 + \tan^2 x) dx$$

$$= \int_0^{\pi/4} \tan^n x \sec^2 x dx = \left[\frac{\tan^{n+1} x}{n+1} \right]_0^{\pi/4}$$

$$= \frac{1-0}{n+1} = \frac{1}{n+1}$$

$$\therefore I_n + I_{n+2} = \frac{1}{n+1} \Rightarrow \lim_{n \to \infty} n [I_n + I_{n+2}]$$

$$= \lim_{n \to \infty} n \cdot \frac{1}{n+1} = \lim_{n \to \infty} \frac{n}{n+1}$$

$$= \lim_{n \to \infty} \frac{n}{n \left(1 + \frac{1}{n}\right)} = 1$$

3. **(d)**
$$\int_{0}^{2} \left[x^{2} \right] dx = \int_{0}^{1} \left[x^{2} \right] dx + \int_{1}^{\sqrt{2}} \left[x^{2} \right] dx + \int_{0}^{\sqrt{3}} \left[x^{2} \right] + \int_{\sqrt{3}}^{2} \left[x^{2} \right] dx$$
$$= \int_{0}^{1} 0 dx + \int_{1}^{\sqrt{2}} 1 dx + \int_{\sqrt{2}}^{\sqrt{3}} 2 dx + \int_{\sqrt{3}}^{2} 3 dx$$
$$= \left[x \right]_{1}^{\sqrt{2}} + \left[2x \right]_{\sqrt{2}}^{\sqrt{3}} + \left[3x \right]_{\sqrt{3}}^{2}$$

M-136-

$$= \sqrt{2} - 1 + 2\sqrt{3} - 2\sqrt{2} + 6 - 3\sqrt{3}$$
$$= 5 - \sqrt{3} - \sqrt{2}$$

4. (b) $\int_{-\pi}^{\pi} \frac{2x (1+\sin x)}{1+\cos^2 x} dx$

$$= \int_{-\pi}^{\pi} \frac{2x \, dx}{1 + \cos^2 x} + 2 \int_{-\pi}^{\pi} \frac{x \sin x}{1 + \cos^2 x} dx$$

$$= 0 + 4 \int_0^{\pi} \frac{x \sin x \, dx}{1 + \cos^2 x}; \left[\because \int_{-a}^{a} f(x) \, dx = 0 \right]$$

if f(x) is odd

$$=2\int_{0}^{a} f(x) dx \text{ if } f(x) \text{ is even.}$$

$$I = 4 \int_0^{\pi} \frac{(\pi - x) \sin (\pi - x)}{1 + \cos^2 (\pi - x)} dx$$

$$I = 4 \int_0^{\pi} \frac{(\pi - x) \sin x}{1 + \cos^2 x} dx$$

$$\Rightarrow I = 4\pi \int_0^{\pi} \frac{\sin x \, dx}{1 + \cos^2 x} - 4 \int \frac{x \sin x \, dx}{1 + \cos^2 x}$$

$$\Rightarrow 2I = 4\pi \int_0^{\pi} \frac{\sin x}{1 + \cos^2 x} dx$$

put $\cos x = t \implies -\sin x \, dx = dt$

$$\therefore I = -2\pi \int_{1}^{-1} \frac{1}{1+t^2} dt = 2\pi \int_{-1}^{1} \frac{1}{1+t^2} dt$$

$$=2\pi \left[\tan^{-1}t\right]^{1}$$

$$= 2\pi \left[\tan^{-1} 1 - \tan^{-1} \left(-1 \right) \right]$$

$$=2\pi\left[\frac{\pi}{4}-\left(\frac{-\pi}{4}\right)\right]=2\pi\cdot\frac{\pi}{2}=\pi^2$$

5. (c) $I = \int_{a}^{b} x f(x) dx = \int_{a}^{b} (a+b-x) f(a+b-x) dx$ 9. (d) $\int_{-2}^{3} |1-x^2| dx = \int_{-2}^{3} |x^2-1| dx$

$$= (a+b) \int_{a}^{b} f(a+b-x)dx - \int_{a}^{b} xf(a+b-x)dx$$

$$= (a+b) \int_{a}^{b} f(x) dx - \int_{a}^{b} xf(x)dx$$
Now $|x^{2}-1| = \begin{cases} x^{2}-1 & \text{if } x \leq -1 \\ 1-x^{2} & \text{if } -1 \leq x \leq x \end{cases}$

$$= (a+b) \int_{a}^{b} f(x) dx - \int_{a}^{b} xf(x)dx$$

$$\therefore \text{Integral is}$$

Mathematics $[\because \text{ given that } f(a+b-x)=f(x)]$

$$2I = (a+b) \int_{a}^{b} f(x) dx$$

$$\Rightarrow I = \frac{(a+b)}{2} \int_{a}^{b} f(x) dx$$

6. (d) Given $f'(x) = f(x) \Rightarrow \frac{f'(x)}{f(x)} = 1$

$$\log f(x) = x + c \Rightarrow f(x) = e^{x+c}$$

$$f(0) = 1 \Rightarrow f(x) = e^x$$

$$\therefore \int_{0}^{1} f(x)g(x)dx = \int_{0}^{1} e^{x}(x^{2} - e^{x})dx$$

$$= \int_{0}^{1} x^{2} e^{x} dx - \int_{0}^{1} e^{2x} dx$$

$$= \left[x^{2}e^{x}\right]_{0}^{1} - 2\left[xe^{x} - e^{x}\right]_{0}^{1} - \frac{1}{2}\left[e^{2x}\right]_{0}^{1}$$

$$=e-\left|\frac{e^2}{2}-\frac{1}{2}\right|-2[e-e+1]=e-\frac{e^2}{2}-\frac{3}{2}$$

7. **(d)**
$$I = \int_{0}^{1} x(1-x)^n dx = \int_{0}^{1} (1-x)(1-1+x)^n dx$$

$$= \int_{0}^{1} (1-x)x^{n} dx = \left[\frac{x^{n+1}}{n+1} - \frac{x^{n+2}}{n+2} \right]_{0}^{1}$$

$$=\frac{1}{n+1}-\frac{1}{n+2}$$

8. (b) $\lim_{n\to\infty} \sum_{n=0}^{\infty} \frac{1}{n} e^{\frac{r}{n}}$ [Using definite integrals as

$$=\int_{0}^{1}e^{x}dx=e-1$$

(d)
$$\int_{-2}^{3} |1 - x^2| dx = \int_{-2}^{3} |x^2 - 1| dx$$

Now
$$|x^2 - 1| = \begin{cases} x^2 - 1 & \text{if } x \le -1 \\ 1 - x^2 & \text{if } -1 \le x \le 1 \\ x^2 - 1 & \text{if } x \ge 1 \end{cases}$$

∴ Integral is

M-137 Integrals

$$\int_{-2}^{-1} (x^{2} - 1) dx + \int_{-1}^{1} (1 - x^{2}) dx + \int_{1}^{3} (x^{2} - 1) dx$$

$$= \left[\frac{x^{3}}{3} - x \right]_{-2}^{-1} + \left[x - \frac{x^{3}}{3} \right]_{-1}^{1} + \left[\frac{x^{3}}{3} - x \right]_{1}^{3}$$

$$= \left(-\frac{1}{3} + 1 \right) - \left(-\frac{8}{3} + 2 \right) + \left(\frac{27}{3} - \frac{2}{3} \right) - \left(\frac{1}{3} - 1 \right)$$

$$= \frac{2}{3} + \frac{2}{3} + \frac{4}{3} + 6 + \frac{2}{3} = \frac{28}{3}$$
12. (d)
$$f(x) = \frac{e^{x}}{1 + e^{x}} \Rightarrow f(-x) = \frac{e^{-x}}{1 + e^{-x}}$$

$$= \frac{1}{e^{x} + 1}$$

$$\therefore f(x) + f(-x) = 1 \, \forall \, x$$
Now
$$I_{1} = \int_{f(-a)}^{f(a)} xg\{x(1 - x)\}dx$$

$$= \int_{f(-a)}^{f(a)} (1 - x)g\{x(1 - x)\}dx$$

10. (c)
$$I = \int_{0}^{\frac{\pi}{2}} \frac{(\sin x + \cos x)^2}{\sqrt{1 + \sin 2x}} dx$$

We know $[(\sin x + \cos x)^2 = 1 + \sin 2x]$, so

$$I = \int_{0}^{\frac{\pi}{2}} \frac{(\sin x + \cos x)^{2}}{(\sin x + \cos x)} dx$$

$$= \int_{0}^{\frac{\pi}{2}} (\sin x + \cos x) dx$$

$$\left[\because \sin x + \cos x > 0 \text{ if } 0 < x < \frac{\pi}{2} \right]$$

or
$$I = \left[-\cos x + \sin x \right]_0^{\frac{\pi}{2}} = 2$$

11. **(b)** Let
$$I = \int_{0}^{\pi} x f(\sin x) dx$$

$$= \int_{0}^{\pi} (\pi - x) f(\sin x) dx$$

$$= \int_{0}^{\pi} (\pi - x) f(\sin x) dx$$

$$= \frac{1}{\sqrt{2}} \log \left| \tan \left(\frac{\pi}{4} + \frac{\pi}{4} \right) \right|$$

$$= \int_{0}^{\pi} (\pi - x) f(\sin x) dx = \pi \cdot 2 \int_{0}^{\pi} f(\sin x) dx$$

$$= \frac{1}{\sqrt{2}} \log \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right|$$

$$= \frac{1}{\sqrt{2}} \log \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right|$$

$$= \int_{0}^{\pi} (\sin x) dx \Rightarrow A = \pi$$
 15. **(d)**
$$\int_{0}^{\pi} \frac{(\log x - 1)^{2}}{(1 + (\log x)^{2})^{2}} dx$$

$$= \int_{0}^{\pi} \frac{1 + (\log x)^{2} - 21}{[1 + (\log x)^{2}]^{2}} dx$$

2. **(d)**
$$f(x) = \frac{e^x}{1 + e^x} \Rightarrow f(-x) = \frac{e^x}{1 + e^{-x}}$$

 $= \frac{1}{e^x + 1}$
 $\therefore f(x) + f(-x) = 1 \ \forall \ x$
Now $I_1 = \int_{f(-a)}^{f(a)} xg\{x(1 - x)\}dx$
 $= \int_{f(-a)}^{f(a)} (1 - x)g\{x(1 - x)\}dx$

$$\left[u \operatorname{sing} \int_{a}^{b} f(x) \, dx \, a = \int_{a}^{b} f(a+b-x) \, dx \right]$$

$$= I_{2} - I_{1} \Rightarrow 2I_{1} = I_{2}$$
3. **(b)**
$$\int \frac{\sin x}{\int_{a}^{b} dx} \, dx = \int_{a}^{b} \frac{\sin(x-\alpha+\alpha)}{\int_{a}^{b} dx} \, dx$$

13. **(b)**
$$\int \frac{\sin x}{\sin(x-\alpha)} dx = \int \frac{\sin(x-\alpha+\alpha)}{\sin(x-\alpha)} dx$$
$$= \int \frac{\sin(x-\alpha)\cos\alpha + \cos(x-\alpha)\sin\alpha}{\sin(x-\alpha)} dx$$
$$= \int \{\cos\alpha + \sin\alpha\cot(x-\alpha)\} dx$$
$$= (\cos\alpha)x + (\sin\alpha)\log\sin(x-\alpha) + C$$
$$\therefore A = \cos\alpha, B = \sin\alpha$$

$$\left[\because \sin x + \cos x > 0 \text{ if } 0 < x < \frac{\pi}{2}\right] \qquad 14. \quad \textbf{(a)} \qquad \int \frac{dx}{\cos x - \sin x} = \int \frac{dx}{\sqrt{2} \cos\left(x + \frac{\pi}{4}\right)}$$

$$= \frac{1}{\sqrt{2}} \int \sec\left(x + \frac{\pi}{4}\right) dx$$

$$= \frac{1}{\sqrt{2}} \log\left|\tan\left(\frac{\pi}{4} + \frac{x}{2} + \frac{\pi}{8}\right)\right| + C$$

$$x) f(\sin x) dx$$

$$= \frac{1}{\sqrt{2}} \log\left|\tan\left(\frac{x}{4} + \frac{x}{2} + \frac{\pi}{8}\right)\right| + C$$

$$= \frac{1}{\sqrt{2}} \log\left|\tan\left(\frac{x}{4} + \frac{x}{2} + \frac{\pi}{8}\right)\right| + C$$

15. **(d)**
$$\int \frac{(\log x - 1)^2}{(1 + (\log x)^2)^2} dx$$

$$= \int \frac{1 + (\log x)^2 - 2\log x}{\left[1 + (\log x)^2\right]^2} dx$$

$$= \int \left[\frac{1}{(1 + (\log x)^2)} - \frac{2\log x}{(1 + (\log x)^2)^2}\right] dx$$

M-138 Mathematics

$$= \int \left[\frac{e^t}{1+t^2} - \frac{2t e^t}{(1+t^2)^2} \right] dt \text{ put } \log x = t$$

$$\Rightarrow dx = e^t dt$$

$$= \int e^t \left[\frac{1}{1+t^2} - \frac{2t}{(1+t^2)^2} \right] dt$$

Which is of the form $\int e^x (f(x) + f'(x)) dx$ $= \frac{e^t}{1+t^2} + c = \frac{x}{1+(\log x)^2} + c$

16. (b)
$$I_1 = \int_0^1 2^{x^2} dx$$
, $I_2 = \int_0^1 2^{x^3} dx$,

$$I_{3} = \int_{0}^{1} 2^{x^{2}} dx, I_{4} = \int_{0}^{1} 2^{x^{3}} dx \ \forall 0 < x < 1, x^{2} > x^{3}$$
$$\Rightarrow \int_{0}^{1} 2^{x^{2}} dx > \int_{0}^{1} 2^{x^{3}} dx \ \Rightarrow I_{1} > I_{2}$$

17. (b) Let
$$I = \int_{-\pi}^{\pi} \frac{\cos^2 x}{1 + a^x} dx$$
(1)

$$=\int_{-\pi}^{\pi}\frac{\cos^2\left(-x\right)}{1+a^{-x}}dx$$

Using
$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$

$$= \int_{-\pi}^{\pi} \frac{\cos^2 x}{1 + a^x} dx \qquad(2)$$

Adding equations (1) and (2) we get

$$2I = \int_{-\pi}^{\pi} \cos^2 x \left(\frac{1+a^x}{1+a^x}\right) dx = \int_{-\pi}^{\pi} \cos^2 x \, dx$$
$$= 2\int_{0}^{\pi} \cos^2 x \, dx$$
$$= 2 \times 2\int_{0}^{\frac{\pi}{2}} \cos^2 x \, dx = 4\int_{0}^{\frac{\pi}{2}} \sin^2 x \, dx$$
$$\Rightarrow I = 2\int_{0}^{\frac{\pi}{2}} \sin^2 x \, dx = 2\int_{0}^{\frac{\pi}{2}} (1-\cos^2 x) \, dx$$

$$\Rightarrow I = 2 \int_{0}^{\frac{\pi}{2}} dx - 2 \int_{0}^{\frac{\pi}{2}} \cos^{2} x \, dx$$
$$\Rightarrow I + I = 2 \left(\frac{\pi}{2}\right) = \pi \Rightarrow I = \frac{\pi}{2}$$

18. (b)
$$I = \int_{3}^{6} \frac{\sqrt{x}}{\sqrt{9-x} + \sqrt{x}} dx$$
 ...(1)

$$I = \int_{3}^{6} \frac{\sqrt{9 - x}}{\sqrt{9 - x} + \sqrt{x}} dx \qquad \dots (2)$$

[using
$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(a+b-x)dx$$
]

$$2I = \int_{3}^{6} dx = 3 \implies I = \frac{3}{2}$$

19. (d)
$$I = \int_{0}^{\pi} xf(\sin x)dx = \int_{0}^{\pi} (\pi - x)f(\sin x)dx$$
$$= \pi \int_{0}^{\pi} f(\sin x)dx - I$$
$$\Rightarrow 2I = \pi \int_{0}^{\pi} f(\sin x)dx$$
$$0$$

$$I = \frac{\pi}{2} \int_{0}^{\pi} f(\sin x) dx = \pi \int_{0}^{\pi/2} f(\sin x) dx$$
$$= \pi \int_{0}^{\pi/2} f(\cos x) dx$$

20. (c)
$$I = \int_{-\frac{3\pi}{2}}^{-\frac{\pi}{2}} [(x+\pi)^3 + \cos^2(x+3\pi)] dx$$

$$I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} [t^3 + \cos^2 t] dt = 2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2 t dt$$
[using the property of even and odd function]

$$= \int_{0}^{\frac{\pi}{2}} (1 + \cos 2t) dt = \frac{\pi}{2} + 0$$

Integrals M-139

Integrals
21. (b) Let a = k + h where k is an integer such that [a] = k and $0 \le h < 1$

$$\int_{1}^{a} [x]f'(x)dx = \int_{1}^{2} 1f'(x)dx + \int_{2}^{3} 2f'(x)dx + \int_{2}^{k} (k-1)dx + \int_{2}^{k+h} kf'(x)dx$$

$$= \{f(2) - f(1)\} + 2\{f(3) - f(2)\} + 3\{f(4) - f(3)\} + \dots + (k-1)\{f(k) - f(k-1)\} + k\{f(k+h) - f(k)\}$$

$$= -f(1) - f(2) - f(3) - (k+h) + kf(k+h) = [a]f(a) - \{f(1) + f(2) + f(3) + \dots + f([a])\}$$

22. (c)
$$I = \int \frac{dx}{\cos x + \sqrt{3} \sin x}$$

$$\Rightarrow I = \int \frac{dx}{2\left[\frac{1}{2}\cos x + \frac{\sqrt{3}}{2}\sin x\right]}$$

$$= \frac{1}{2} \int \frac{dx}{\left[\sin\frac{\pi}{6}\cos x + \cos\frac{\pi}{6}\sin x\right]}$$
$$= \frac{1}{2} \cdot \int \frac{dx}{\sin\left(x + \frac{\pi}{6}\right)}$$
$$\Rightarrow I = \frac{1}{2} \cdot \int \csc\left(x + \frac{\pi}{6}\right) dx$$

But we know that

$$\int \csc x \, dx = \log |(\tan x/2)| + C$$

$$I = \frac{1}{2} \cdot \log \tan \left(\frac{x}{2} + \frac{\pi}{12} \right) + C$$

23. (c) Given
$$F(x) = f(x) + f\left(\frac{1}{x}\right)$$
, where

$$f(x) = \int_{1}^{x} \frac{\log t}{1+t} dt$$

$$\therefore F(e) = f(e) + f\left(\frac{1}{e}\right)$$

$$\Rightarrow F(e) = \int_{1}^{e} \frac{\log t}{1+t} dt + \int_{1}^{1/e} \frac{\log t}{1+t} dt \dots (A)$$

Now for solving,
$$I = \int_{1}^{1/e} \frac{\log t}{1+t} dt$$

$$\therefore \text{ Put } \frac{1}{t} = z \Rightarrow -\frac{1}{t^2} dt = dz \Rightarrow dt = -\frac{dz}{z^2}$$
and limit for $t = 1 \Rightarrow z = 1$ and for $t = 1/e$

$$\Rightarrow z = e$$

$$\therefore I = \int_{1}^{e} \frac{\log\left(\frac{1}{z}\right)}{1 + \frac{1}{z}} \left(-\frac{dz}{z^{2}}\right)$$

$$= \int_{1}^{e} \frac{(\log 1 - \log z) \cdot z}{z + 1} \left(-\frac{dz}{z^{2}}\right)$$

$$= \int_{1}^{e} -\frac{\log z}{(z + 1)} \left(-\frac{dz}{z}\right) \qquad [\because \log 1 = 0]$$

$$= \int_{1}^{e} \frac{\log z}{z(z + 1)} dz$$

$$\therefore I = \int_{1}^{e} \frac{\log t}{t(t + 1)} dt$$

[By property $\int_{a}^{b} f(t)dt = \int_{a}^{b} f(x)dx$]

Equation (A) becomes

$$F(e) = \int_1^e \frac{\log t}{1+t} dt + \int_1^e \frac{\log t}{t(1+t)} dt$$
$$= \int_1^e \frac{t \cdot \log t + \log t}{t(1+t)} dt = \int_1^e \frac{(\log t)(t+1)}{t(1+t)} dt$$
$$\Rightarrow F(e) = \int_1^e \frac{\log t}{t} dt$$

Let
$$\log t = x$$
 $\therefore \frac{1}{t} dt = dx$

[for limit t = 1, x = 0 and $t = e, x = \log e = 1$]

$$\therefore F(e) = \int_0^1 x \ dx \quad F(e) = \left[\frac{x^2}{2}\right]_0^1$$

$$\Rightarrow F(e) = \frac{1}{2}$$

24. (d)
$$\int_{\sqrt{2}}^{x} \frac{dt}{t\sqrt{t^2 - 1}} = \frac{\pi}{2}$$

$$\therefore \left[\sec^{-1} t \right]_{\sqrt{2}}^{x} = \frac{\pi}{2}$$

м-140-**Mathematics**

$$\left[\because \int \frac{dx}{x\sqrt{x^2 - 1}} = \sec^{-1} x\right]$$

$$\Rightarrow \sec^{-1} x - \sec^{-1} \sqrt{2} = \frac{\pi}{2}$$

$$\Rightarrow \sec^{-1} x - \frac{\pi}{4} = \frac{\pi}{2} \Rightarrow \sec^{-1} x = \frac{\pi}{2} + \frac{\pi}{4}$$

$$\Rightarrow \sec^{-1} x = \frac{3\pi}{4} \Rightarrow x = \sec \frac{3\pi}{4}$$

$$\Rightarrow x = -\sqrt{2}$$

$$27. (c) Let I = \int_0^{\pi} [\cot x] dx$$

$$= \int_0^{\pi} [\cot x] dx = \int_0^{\pi} [\cot x] dx = \int_0^{\pi} [\cot x] dx$$
We get
$$2I = \int_0^{\pi} ([\cot x] + [-\pi] dx = \int_0^{\pi} (-1) dx$$

25. (b) We know that
$$\frac{\sin x}{x} < 1$$
, for $x \in (0, 1)$

$$\Rightarrow \frac{\sin x}{\sqrt{x}} < \sqrt{x} \text{ on } x \in (0, 1)$$

$$\Rightarrow \int_{0}^{1} \frac{\sin x}{\sqrt{x}} dx < \int_{0}^{1} \sqrt{x} dx = \left[\frac{2x^{3/2}}{3}\right]_{0}^{1}$$

$$\Rightarrow \int_{0}^{1} \frac{\sin x}{\sqrt{x}} dx < \frac{2}{3} \Rightarrow I < \frac{2}{3}$$
Also $\frac{\cos x}{\sqrt{x}} < \frac{1}{\sqrt{x}}$ for $x \in (0, 1)$

$$\Rightarrow \int_{0}^{1} \frac{\cos x}{\sqrt{x}} dx < \int_{0}^{1} x^{-1/2} dx = \left[2\sqrt{x}\right]_{0}^{1} = 2$$

$$\Rightarrow \int_{0}^{1} \frac{\cos x}{\sqrt{x}} dx < 2 \Rightarrow J < 2$$

26. (c) Let
$$I = \sqrt{2} \int \frac{\sin x dx}{\sin \left(x - \frac{\pi}{4}\right)}$$
 put $x - \frac{\pi}{4} = t$ **29.** (d) $I = \int_{0}^{1} \frac{8 \log(1+x)}{1+x^2} dx$

$$\Rightarrow dx = dt \Rightarrow I = \sqrt{2} \int \frac{\sin\left(t + \frac{\pi}{4}\right)}{\sin t} dt$$

$$= \frac{\sqrt{2}}{\sqrt{2}} \int \left(\frac{\sin t + \cos t}{\sin t}\right) dt$$

$$\Rightarrow I = \int (1 + \cot t) dt = t + \log|\sin t| + c_1$$

$$= x - \frac{\pi}{4} + \log\left|\sin\left(x - \frac{\pi}{4}\right)\right| + c_1$$

$$= x + \log\left|\sin\left(x - \frac{\pi}{4}\right)\right| + c \quad \text{(where } c = c_1 - \frac{\pi}{4}$$

(c) Let
$$I = \int_0^{\pi} [\cot x] dx$$
(1)
= $\int_0^{\pi} [\cot (\pi - x)] dx = \int_0^{\pi} [-\cot x] dx$ (2)

Adding two values of I in eqⁿ s (1) & (2), We get

$$2I = \int_0^{\pi} ([\cot x] + [-\cot x]) dx$$

$$= \int_0^{\pi} (-1) dx$$

$$[\because [x] + [-x] = -1, \text{ if } x \notin z \text{ and } [x] + [-x] = 0, \text{ if } x \in z]$$

$$= [-x]_0^{\pi} = -\pi \quad \Rightarrow I = -\frac{\pi}{2}$$

28. (a)
$$p'(x) = p'(1-x)$$

 $\Rightarrow p(x) = -p(1-x) + c$
at $x = 0$
 $p(0) = -p(1) + c \Rightarrow 42 = c$
Now, $p(x) = -p(1-x) + 42$
 $\Rightarrow p(x) + p(1-x) = 42$
 $\Rightarrow I = \int_{0}^{1} p(x)dx$...(i)
 $\Rightarrow I = \int_{0}^{1} p(1-x)dx$...(ii)
on adding (i) and (ii),
 $2I = \int_{0}^{1} (42) dx \Rightarrow I = 21$

9. (d)
$$I = \int_{0}^{1} \frac{8 \log(1+x)}{1+x^{2}} dx$$
Put $x = \tan \theta$,
$$\therefore \frac{dx}{d\theta} = \sec^{2} \theta \Rightarrow dx = \sec^{2} \theta d\theta$$

$$\therefore I = 8 \int_{0}^{\pi/4} \frac{\log(1+\tan \theta)}{1+\tan^{2} \theta} . \sec^{2} \theta d\theta$$

$$I = 8 \int_{0}^{\pi/4} \log(1+\tan \theta) d\theta ...(i)$$

$$= 8 \int_{0}^{\pi/4} \log\left[1+\tan\left(\frac{\pi}{4}-\theta\right)\right] d\theta$$

$$= 8 \int_{0}^{\pi/4} \log\left[1+\frac{1-\tan \theta}{1+\tan \theta}\right] d\theta$$

Integrals M-141

$$= 8 \int_{0}^{\pi/4} \log \left[\frac{2}{1 + \tan \theta} \right] d\theta$$

$$= 8 \int_{0}^{\pi/4} [\log 2 - \log(1 + \tan \theta)] d\theta$$

$$I = 8 \cdot (\log 2) [x]_{0}^{\pi/4} - 8 \int_{0}^{\pi/4} \log(1 + \tan \theta) d\theta$$

$$I = 8 \cdot \frac{\pi}{4} \cdot \log 2 - I \text{ [From equation (i)]}$$

$$\Rightarrow 2I = 2\pi \log 2$$

$$\therefore I = \pi \log 2$$

$$\int_{0}^{1.5} x \left[x^{2} \right] dx = \int_{0}^{1} x \left[x^{2} \right] dx + \int_{1}^{\sqrt{2}} x \left[x^{2} \right] dx + \int_{\sqrt{2}}^{1.5} x \left[x^{2} \right] dx$$

$$= \int_{0}^{1} x \cdot 0 \, dx + \int_{1}^{\sqrt{2}} x dx + \int_{\sqrt{2}}^{1.5} 2x dx$$

$$= 0 + \left[\frac{x^{2}}{2} \right]_{1}^{\sqrt{2}} + \left[x^{2} \right]_{\sqrt{2}}^{1.5}$$

$$= \frac{1}{2} (2 - 1) + (2 \cdot 25 - 2) = \frac{1}{2} + 0 \cdot 25$$

$$= \frac{1}{2} + \frac{1}{4} = \frac{3}{4}$$

31. (d)
$$\int \frac{5\tan x}{\tan x - 2} dx = \int \frac{5\frac{\sin x}{\cos x}}{\frac{\sin x}{\cos x} - 2} dx$$

$$= \int \left(\frac{5\sin x}{\cos x} \times \frac{\cos x}{\sin x - 2\cos x}\right) dx$$

$$= \int \frac{5\sin x dx}{\sin x - 2\cos x}$$

$$= \int \left(\frac{4\sin x + \sin x + 2\cos x - 2\cos x}{\sin x - 2\cos x}\right) dx$$

$$= \int \frac{(\sin x - 2\cos x) + (4\sin x + 2\cos x)}{\sin x - 2\cos x} dx$$

$$= \int \frac{(\sin x - 2\cos x) + 2(\cos x + 2\sin x)}{(\sin x - 2\cos x)} dx$$

$$= \int \frac{\sin x - 2\cos x}{\sin x - 2\cos x} dx + 2 \int \left(\frac{\cos x + 2\sin x}{\sin x - 2\cos x}\right) dx$$

$$= \int dx + 2 \int \frac{\cos x + 2\sin x}{\sin x - 2\cos x} dx$$

$$I_1 = \int dx \text{ and } I_2 = 2 \int \frac{\cos x + 2 \sin x}{\sin x - 2 \cos x} dx$$
put $\sin x - 2 \cos x = t$

$$\Rightarrow (\cos x + 2 \sin x) dx = dt$$

$$\therefore I_2 = 2 \int \frac{dt}{t} = 2 \ln t + C$$

$$= 2 \ln (\sin x - 2 \cos x) + C$$
Hence,
$$I_1 + I_2 = \int dx + 2 \ln (\sin x - 2 \cos x) + c$$

$$= x + 2 \ln |(\sin x - 2 \cos x)| + k \Rightarrow a = 2$$

32. **(b, c)**
$$g(x+\pi) = \int_{0}^{x+\pi} \cos 4t \, dt$$

$$= \int_{0}^{x} \cos 4t \, dt + \int_{x}^{\pi+x} \cos 4t \, dt$$

$$= g(x) + \int_{0}^{\pi} \cos 4t \, dt$$
(from graph of $\cos 4t$, it is clear that
$$\int_{x}^{\pi+x} \cos 4t \, dt = \int_{0}^{\pi} \cos 4t \, dt$$

$$= g(x) + g(\pi) = g(x) - g(\pi)$$
(: from graph of $\cos 4t$, $g(\pi) = 0$)

33. (c) Let
$$\int f(x)dx = \psi(x)$$

Let $I = \int x^5 f(x^3)dx$
put $x^3 = t$
 $\Rightarrow 3x^2 dx = dt$

$$I = \frac{1}{3} \int 3 \cdot x^2 \cdot x^3 \cdot f(x^3) \cdot dx$$

$$= \frac{1}{3} \int t f(t) dt = \frac{1}{3} \left[t \int f(t) dt - \int f(t) dt \right]$$

$$= \frac{1}{3} \left[t \psi(t) - \int \psi(t) dt \right]$$

$$= \frac{1}{3} \left[x^3 \psi(x^3) - 3 \int x^2 \psi(x^3) dx \right] + c$$

$$= \frac{1}{3} x^3 \psi(x^3) - \int x^2 \psi(x^3) dx + c$$

 $\mathsf{W} \qquad \mathsf{W} \qquad \mathsf{W}$

V . C

M-142-

34. **(d)** Let
$$I = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\tan x}}$$

$$= \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\tan\left(\frac{\pi}{2} - x\right)}}$$

$$= \int_{\pi/6}^{\pi/3} \frac{\sqrt{\tan x} \, dx}{1 + \sqrt{\tan x}} \dots (1)$$
Also, given

$$I = \int_{\pi/6}^{\pi/3} \frac{\sqrt{\tan x} \, dx}{1 + \sqrt{\tan x}} \qquad ...(2)$$

By adding (1) and (2), we get

$$2I = \int_{\pi/6}^{\pi/3} dx$$

$$\Rightarrow I = \frac{1}{2} \left[\frac{\pi}{3} - \frac{\pi}{6} \right] = \frac{\pi}{12},$$

statement-1 is false

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(a+b-x)dx$$

It is fundamental property.

35. (a) Since,
$$y = \int_{0}^{x} |t| dt$$
, $x \in R$
therefore $\frac{dy}{dx} = |x|$
But from $y = 2x$, $\frac{dy}{dx} = 2$
 $\Rightarrow |x| = 2 \Rightarrow x = \pm 2$
Points $y = \int_{0}^{\pm 2} |t| dt = \pm 2$

$$\therefore \text{ equation of tangent is} y-2=2(x-2) \text{ or } y+2=2(x+2)$$

$$\Rightarrow x\text{-intercept} = \pm 1.$$

36. (d) Let
$$I = \int \left(1 + x - \frac{1}{x}\right) e^{x + \frac{1}{x}} dx$$
$$= \int e^{x + \frac{1}{x}} dx + \int \left(x - \frac{1}{x}\right) e^{x + \frac{1}{x}} dx$$

$$= x e^{x+\frac{1}{x}} - \int x \left(1 - \frac{1}{x^2}\right) e^{x+\frac{1}{x}} dx$$

$$+ \int \left(x - \frac{1}{x}\right) e^{x+\frac{1}{x}} dx$$

$$= x e^{x+\frac{1}{x}} - \int \left(x - \frac{1}{x}\right) e^{x+\frac{1}{x}} dx$$

$$+ \int \left(x - \frac{1}{x}\right) e^{x+\frac{1}{x}} dx$$

$$= x e^{x+\frac{1}{x}} + C$$
37. **(b)** Let $I = \int_0^{\pi} \sqrt{1 + 4 \sin^2 \frac{x}{2} - 4 \sin \frac{x}{2}} dx$

$$= \int_0^{\pi/3} \left(1 - 2 \sin \frac{x}{2}\right) dx + \int_{\pi/3}^{\pi} \left(2 \sin \frac{x}{2} - 1\right) dx$$

$$\left[\because \sin \frac{x}{2} = \frac{1}{2} \Rightarrow \frac{x}{2} = \frac{\pi}{6}\right]$$

$$\Rightarrow x = \frac{\pi}{3}, \frac{x}{2} = \frac{5\pi}{6} \Rightarrow x = \frac{5\pi}{3}$$

$$= \left[x + 4 \cos \frac{x}{2}\right]_0^{\pi/3} + \left[-4 \cos \frac{x}{2} - x\right]_{\pi/3}^{\pi}$$

$$= \frac{\pi}{3} + 4 \frac{\sqrt{3}}{2} - 4 + \left(0 - \pi + 4 \frac{\sqrt{3}}{2} + \frac{\pi}{3}\right)$$

$$= 4\sqrt{3} - 4 - \frac{\pi}{3}$$
38. **(b)** $I = \int \frac{dx}{x^2(x^4 + 1)^{3/4}} = \int \frac{dx}{x^3(1 + x^{-4})^{3/4}}$

88. **(b)**
$$I = \int \frac{dx}{x^2 (x^4 + 1)^{3/4}} = \int \frac{dx}{x^3 (1 + x^{-4})^{3/4}}$$
Let $x^{-4} = y$

$$\Rightarrow -4x^{-3} dx = dy$$

$$\Rightarrow dx = \frac{-1}{4}x^3 dy$$

$$\therefore I = \frac{-1}{4} \int \frac{x^3 dy}{x^3 (1 + y)^{3/4}} = \frac{-1}{4} \int \frac{dy}{(1 + y)^{3/4}}$$

Integrals м-143

$$= \frac{-1}{4} \times 4(1+y)^{1/4} = -(1+x^{-4})^{1/4} + C$$
$$= -\left(\frac{x^4+1}{x^4}\right)^{1/4} + C$$

39. (a)
$$I = \int_{2}^{4} \frac{\log x^{2}}{\log x^{2} + \log(36 - 12x + x^{2})} dx$$

$$I = \int_{2}^{4} \frac{\log x^{2}}{\log x^{2} + \log(6 - x)^{2}} dx \qquad ...(i)$$

$$I = \int_{2}^{4} \frac{\log(6 - x)^{2}}{\log(6 - x)^{2} + \log x^{2}} dx \qquad ...(ii)$$
Adding (i) and (ii)
$$2I = \int_{2}^{4} dx = [x]_{2}^{4} = 2$$

$$2I = \int_{2}^{4} dx = [x]_{2}^{4} = 2$$

40. (d)
$$\int \frac{2x^{12} + 5x^9}{(x^5 + x^3 + 1)^3} dx$$
Dividing by x^{15} in numerator and denominator

$$\int \frac{\frac{2}{x^3} + \frac{5}{x^6} dx}{\left(1 + \frac{1}{x^2} + \frac{1}{x^5}\right)^3}$$

Substitute
$$1 + \frac{1}{x^2} + \frac{1}{x^5} = t$$

$$\Rightarrow \left(\frac{-2}{x^3} - \frac{5}{x^6}\right) dx = dt$$

$$\Rightarrow \left(\frac{2}{x^3} + \frac{5}{x^6}\right) dx = -dt$$
This gives

$$\int \frac{\frac{2}{x^3} + \frac{5}{x^6} dx}{\left(1 + \frac{1}{x^2} + \frac{1}{x^5}\right)^3} = \int \frac{-dt}{t^3} = \frac{1}{2t^2} + C$$
$$= \frac{1}{2\left(1 + \frac{1}{x^2} + \frac{1}{x^5}\right)^2} + C$$

41. (c)
$$I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{dx}{1 + \cos x}$$
 ...(i)

 $=\frac{x^{10}}{2(x^5+x^3+1)^2}+C$

$$I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{dx}{1 - \cos x} \qquad ...(ii)$$

$$Using \int_{a}^{\frac{\pi}{4}} f(x) dx = \int_{a}^{b} f(a + b - x) dx$$

$$Adding (i) and (ii)$$

$$2I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{2}{\sin^2 x} dx$$

$$I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \csc^2 x \, dx$$

$$I = -(\cot x)_{\pi/4}^{3\pi/4} = -\left[\cot \frac{3\pi}{4} - \cot \frac{\pi}{4}\right] = 2$$

42. (c)
$$I_n = \int \tan^n x \, dx, n > 1$$

Let $I = I_4 + I_6$

$$= \int (\tan^4 x + \tan^6 x) dx = \int \tan^4 x \sec^2 x \, dx$$
Let $\tan x = t$

$$\Rightarrow \sec^2 x \, dx = dt$$

$$\therefore I = \int t^4 dt$$

$$= \frac{t^5}{5} + C$$

$$= \frac{1}{5} \tan^5 x + C \Rightarrow \text{On comparing, we have}$$

$$a = \frac{1}{5}, b = 0$$