

Photonic Reconfigurable Accelerators for Efficient Inference of CNNs with Mixed-Sized Tensors

Sairam Sri Vatsavai, Ishan G Thakkar Electrical and Computer Engineering, University of Kentucky, Lexington, KY 40508 ssr226@uky.edu, igthakkar@uky.edu

Need for Reconfigurability **Mapping of Convolution Weight Matrix**

Fixed-size VDPE leads to underutilization or partial sum latency

(Ansys Lumerical Simulations)

RAMM TPC N 31 20 16 CS_{FSR} 4.83nm 5 nm NA Radius 18.17 μm 17.5 μm NA No of CS Pairs 3 2 0 Insertion Loss (dB) 0.029 0.028 0 RMAM TPC N 43 28 22 CS_{FSR} 4.65 nm 5.35nm 4.54 nm Radius 18.98 μm 16.2 μm 19.49 μm No of CS Pairs 4 3 2 Insertion Loss (dB) 0.029 0.026 0.031	ata Rate (DR) (GS/s)	1	3	5	
CS _{FSR} 4.83nm 5 nm NA Radius 18.17 μm 17.5 μm NA No of CS Pairs 3 2 0 Insertion Loss (dB) 0.029 0.028 0 RMAM TPC A3 28 22 CS _{FSR} 4.65 nm 5.35nm 4.54 nm Radius 18.98 μm 16.2 μm 19.49 μm No of CS Pairs 4 3 2	RAMM TPC				
Radius 18.17 μm 17.5 μm NA No of CS Pairs 3 2 0 Insertion Loss (dB) 0.029 0.028 0 RMAM TPC N 43 28 22 CSFSR 4.65 nm 5.35nm 4.54 nm Radius 18.98 μm 16.2 μm 19.49 μm No of CS Pairs 4 3 2	••	31	20	16	
No of CS Pairs 3 2 0 Insertion Loss (dB) 0.029 0.028 0 RMAM TPC 28 22 N 43 28 22 CSFSR 4.65 nm 5.35nm 4.54 nm Radius 18.98 μm 16.2 μm 19.49 μm No of CS Pairs 4 3 2				NA	
Insertion Loss (dB) 0.029 0.028 0 RMAM TPC N 43 28 22 CS_{FSR} 4.65 nm 5.35nm 4.54 nm Radius 18.98 μm 16.2 μm 19.49 μm No of CS Pairs 4 3 2		18.17 μm	17.5 μm	NA	
RMAM TPC N 43 28 22 CS_{FSR} 4.65 nm 5.35nm 4.54 nm Radius 18.98 μm 16.2 μm 19.49 μm No of CS Pairs 4 3 2		3	2	0	
N 43 28 22 CS_{FSR} 4.65 nm 5.35nm 4.54 nm Radius 18.98 μm 16.2 μm 19.49 μm No of CS Pairs 4 3 2			0.028	0	
CS_{FSR} 4.65 nm 5.35nm 4.54 nm Radius 18.98 μm 16.2 μm 19.49 μm No of CS Pairs 4 3 2	RMAM TPC				
Radius 18.98 μm 16.2 μm 19.49 μm No of CS Pairs 4 3 2	••			22	
No of CS Pairs 4 3 2					
		18.98 μm	16.2 μm	19.49 μm	
Insertion Loss (dB) 0.029 0.026 0.031		4	•		
	Insertion Loss (dB)	0.029	0.026	0.031	

System Level Implementation

Reconfigurable VDPEs improve MRR utilization and throughput of MAM and AMM organizations

Evaluation

Vector Size Requirement of CNNs varies widely

- We compare our RAMM and RMAM accelerator architectures with variant of AMM design (CROSSLIGHT [6])
- We evaluate accelerators at 4-bit precision and across different DRs suc as 1 GS/s, 3 GS/s, and 5 GS/s.
- Results are normalized to RMAM at 1 GS/s.
- Our area proportionate outlook, provides improvements on gmean or the considered CNNs) up to $1.8\times$ in frames-per-second (FPS), and up 1.5× in FPS/W.

Conclusions

- We presented our novel reconfigurable VDPE design to introduce flexibility in Photonic MRR-based CNN accelerators.
- Our reconfigurable VDPE employs set of comb switches to enable dynamic maximization of the size compatibility between VDPEs and the CNN tensors that are processed using the VDPEs.
- Our evaluation of reconfigurable VDPE equipped -AMM (RAMM) and -MAM (RMAM) on modern CNNs with mixed-sized tensors sh substantial improvements in Frames-Per-Second (FPS) and FPS/V (energy efficiency), compared to the photonic MRR-based accelerators

References

convolutional neural networks", CoRR, 2019.

[9] K. He et al., "Deep residual

[10] F. Chollet, "Xception: Deep learning with depthwise separable convolutions", CoRR, 2016.

convolutional neural networks for mobile vision applications", CoRR,

[12] B. Zoph et al., "Learning scalable image recognition", CoRR,

[13] X. Zhang et al., "Shufflenet: convolutional neural network for [14] M. A. Al-Qadasi ., "Scaling up silicon photonic-based accelerators: Challenges and opportunities",

APL Photonics, 2022.