Quality & Features

Dr. Tushar Sandhan

What is the need

- Quantitative assessment
 - o performance evaluation of image processing algorithms
 - e.g. denoising, compression
- Quantitative achievement
 - o performance improvement via optimization based methods
 - e.g. enhance images to minimize MSE or improve PSNR

What is the need

- Quantitative assessment
 - o performance evaluation of image processing algorithms
 - e.g. denoising, compression
- Quantitative achievement
 - o performance improvement via optimization based methods
 - e.g. enhance images to minimize MSE or improve PSNR

- Full reference measure
 - need a clear GT or reference image
- Generic error
 - op norm
 - o minkowski norm

$$d_p(\mathbf{x}, \mathbf{y}) = \left(\sum_{i=1}^N |e_i|^p\right)^{1/p}$$
 where $e_i = x_i - y_i$

Mean sq error (MSE)

- PSNR
 - o *L* is dynamic range

- Full reference measure
 - o need a clear GT or reference image
- Generic error
 - *p* − norm
 - o minkowski norm
- Mean sq error (MSE)

- PSNR
 - \circ *L* is dynamic range

$$d_p(\mathbf{x}, \mathbf{y}) = \left(\sum_{i=1}^N |e_i|^p\right)^{1/p} \quad \text{where} \quad e_i = x_i - y_i$$

$$MSE(\mathbf{x}, \mathbf{y}) = \frac{1}{N} \sum_{i=1}^{N} (x_i - y_i)^2$$

- Full reference measure
 - o need a clear GT or reference image
- Generic error
 - *p* − norm
 - o minkowski norm
- Mean sq error (MSE)

- PSNR
 - *L* is dynamic range

$$d_p(\mathbf{x}, \mathbf{y}) = \left(\sum_{i=1}^N |e_i|^p\right)^{1/p} \quad \text{where} \quad e_i = x_i - y_i$$

$$MSE(\mathbf{x}, \mathbf{y}) = \frac{1}{N} \sum_{i=1}^{N} (x_i - y_i)^2$$

$$PSNR = 10 \log_{10} \frac{L^2}{MSE}$$

MSE

- Good metric for optimization based methods
 - MSE: convex and differentiable
 - o parameter-free, memoryless
 - o energy minimization methods: relation to energy
- Uniformity with data communication signal measurements
- Distance metric

MSE

- Good metric for optimization based methods
 - MSE: convex and differentiable
 - o parameter-free, memoryless
 - energy minimization methods: relation to energy
- Uniformity with data communication signal measurements
- Distance metric
 - nonnegativity: $d_p(\mathbf{x}, \mathbf{y}) \ge 0$
 - symmetry: $d_p(\mathbf{x}, \mathbf{y}) = d_p(\mathbf{y}, \mathbf{x})$
 - identity: $d_p(\mathbf{x}, \mathbf{y}) = 0$ if and only if $\mathbf{x} = \mathbf{y}$
 - triangular inequality: $d_p(\mathbf{x}, \mathbf{z}) \leq d_p(\mathbf{x}, \mathbf{y}) + d_p(\mathbf{y}, \mathbf{z})$

reference image

- Image representation
 - o summarize image content via set of numbers (e.g. a vector)
 - capture important image properties
 - object recognition
 - image matching
 - segmentation (via supervised learning)

- Image representation
 - o summarize image content via set of numbers (e.g. a vector)
 - o capture important image properties
 - object recognition
 - image matching
 - segmentation (via supervised learning)

- Type of features
 - o local, global
 - capture only certain property
 - texture, color, shape
 - · deformation, object relative relations
 - motion

Panorama

Panorama

Depth estimation

Depth estimation

Object tracking

Segmentation

- Feature detector
 - o for a given image, outputs interesting locations (e.g. x, y)
 - o tells nothing about the image properties at that region
 - o capture important regions
 - corner detector

- Feature detector
 - o for a given image, outputs interesting locations (e.g. x, y)
 - o tells nothing about the image properties at that region
 - capture important regions
 - corner detector

- Feature descriptor
 - o for a given image, outputs interesting properties via feature vector
 - o encode interesting info into a series of stable numbers
 - o stability in the sense that those numbers do not change drastically over image transformations (invariant)
 - o e.g. scale, rotation invariance
 - o capture important properties of regions
 - Local binary pattern

- Feature detector
 - o for a given image, outputs interesting locations (e.g. x, y)
 - o tells nothing about the image properties at that region
 - o capture important regions
 - corner detector

- Feature descriptor
 - o for a given image, outputs interesting properties via feature vector
 - o encode interesting info into a series of stable numbers
 - o stability in the sense that those numbers do not change drastically over image transformations (invariant)
 - o e.g. scale, rotation invariance
 - o capture important properties of regions
 - Local binary pattern

- Without feature detector
 - uniform sampling

- Without feature detector
 - uniform sampling

- Feature combination
 - o local to global transition

Feature detector

- Interest points
 - o robust to
 - noise
 - distortions
 - transformations
 - distinctive
 - why are they located mostly at
 - line endings
 - intersection of edges
 - local extrema points

Extract keypoints Feature descriptors

Clustering

Visual vocabulary

- Local Binary Pattern
 - texture and local pattern detection
 - o textures have no specific definition
 - o complex patterns having more sub-patterns

- Local Binary Pattern
 - texture and local pattern detection
 - o textures have no specific definition
 - o complex patterns having more sub-patterns

The value of the LBP code of a pixel (x_c, y_c) is given by:

$$LBP_{P,R} = \sum_{p=0}^{P-1} s(g_p - g_c)2^p$$
 $s(x) = \begin{cases} 1, & \text{if } x \ge 0; \\ 0, & \text{otherwise.} \end{cases}$

- Local Binary Pattern
 - texture and local pattern detection
 - o textures have no specific definition
 - o complex patterns having more sub-patterns

The value of the LBP code of a pixel (x_c, y_c) is given by:

$$LBP_{P,R} = \sum_{p=0}^{P-1} s(g_p - g_c)2^p$$
 $s(x) = \begin{cases} 1, & \text{if } x \ge 0; \\ 0, & \text{otherwise.} \end{cases}$

1*1 + 1*2 + 1*4 + 1*8 + 0*16 + 0*32 + 0*64 + 0*128 = **15**

courtesy: Ojala

- Invariant to
 - ilumination
 - shadow, reflection, brightness
 - relative difference between intensities remain same
 - o rotation?

- Invariant to
 - ilumination
 - shadow, reflection, brightness
 - relative difference between intensities remain same
 - o rotation?

Invariant to

- ilumination
 - shadow, reflection, brightness
 - relative difference between intensities remain same
- o rotation?

Invariant to

- ilumination
 - shadow, reflection, brightness
 - relative difference between intensities remain same
- o rotation?

- Local Binary Pattern
 - o 8 neighborhood gives 256 possible LBP codes
 - each pixel gets one of the codes
 - LBP histogram 256D
 - probability of occurrence of each LBP code

- Local Binary Pattern
 - o 8 neighborhood gives 256 possible LBP codes
 - each pixel gets one of the codes
 - LBP histogram 256D
 - probability of occurrence of each LBP code

LBP to global descriptor

Haar features

Face detection

Haar filters (based on Haar wavelets)

Conclusion

- Statistical descriptors
- LBP
- Haar

