	ות	כמה זהויות לוגיו
	$\neg (A \land B) \Leftrightarrow \neg A \lor \neg B$	 דה מורגן
	$\neg (A \lor B) \Leftrightarrow \neg A \land \neg B$	
	$A \rightarrow B \Leftrightarrow \neg A \lor B \Leftrightarrow \neg B \rightarrow \neg A$	גרירה
	$\neg(A \to B) \Leftrightarrow A \land \neg B$	
	$A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C)$	דיסטריבוטיביות
	$A \wedge (B \wedge C) \Leftrightarrow (A \wedge B) \wedge (A \wedge C)$ $A \wedge (B \vee C) \Leftrightarrow (A \wedge B) \vee (A \wedge C)$	
	קשור, אפשר להחליף את המשתנה בכל הקשירה	כלל $lpha$ -בביטוי עם משתנה משתנה אחר, שאינו בתחום
		שלילת לכל
		שלילת קיים
	$\forall x. (A \land B) \Leftrightarrow (\forall x. A) \land (\forall x. B)$	לכל – גם
	$\exists x. (A \lor B) \Leftrightarrow (\exists x. A) \lor (\exists x. B)$	קיים - או
		מוכת כדבועות
		<u>תורת הקבוצות ו</u>
	$A = B \Leftrightarrow \forall x. [(x \in A) \Leftrightarrow (x \in B)]$	שיוויון קבוצות
מכפלה קרטזית	$A \neq B \Leftrightarrow \exists x (x \notin A \lor x \notin B)$ הוא איבר של $A \notin B$	הכלה (אם כל איבר של
הגדרת זוג סדור	$A \subseteq B \iff \forall x. \mid (x \in A) \to (x \in B)$	
קבוצת החזקה	$ A \subseteq B \equiv \forall x \in A(x \in B) \ 27$ עמ' $(A \subseteq B) \Leftrightarrow [(A \cup B) = B]$	
קבוצה תת-הקבוצות של A	$[(A \subseteq B) \land (B \subseteq C)] \Rightarrow (A \subseteq C)$	(⊆ is transitive)
עוצמתה	$a \in A \Leftrightarrow \{a\} \subseteq A$	
:דוגמא	יבר של B שאינו ב- $(A \subseteq B) \Leftrightarrow [(A \subseteq B) \land \exists x (x \in B \land x \notin A \subseteq B)]$	ויש אי) [A]
	$(A \subset B) \Leftrightarrow [A \subseteq B \land B \not\subseteq A]$	
משפט	$A \not\subseteq B \Leftrightarrow \exists x (x \in A \land x \not\in B)$ עמ'	A אם ורק אם יש איבר של $[$
יש x שהוא איבר של A , ונ	$A \not\subseteq B \equiv \exists x \in A(x \not\in B)$	משפט
כל עצם, אם הוא איבר ש	$A = B \iff (A \subseteq B) \land (B \subseteq A)$	
, -		קבוצה ריקה מוכלת בכל קבו
<u>יחסים</u>	$[(A \cap B = \emptyset) \land (C \subseteq A)] \to (C \cap B = \emptyset)$	
יחס ASB יחס	$A \cup B = \{x \mid (x \in A) \mathbf{v}(x \in B)\}$	31'איחוד עמ
יחס הפוך	$[(A \cup B) \subseteq C] \Leftrightarrow [(A \subseteq C) \land (B \subseteq C)]$	p33
	$[x \in (A \cup B) \cup C] \Leftrightarrow [(x \in A \cup B) \lor (x \in A \cup B) \lor (x \in A \cup B) \lor (x \in A \cup B)$	$f \in C$)]
הרכבת יחסים	$(A \subseteq B) \Leftrightarrow (A \cup B = B)$ $[A \cup (B \cap C)] = [(A \cup B) \cap (A \cup C)]$ זפילוג	מוק ח
	$A \cap B = \{x (x \in A) \land (x \in B)\}$	חיתוך
יחס משלים	$[x \in (A \cap B) \cap C] \Leftrightarrow [(x \in A \cap B) \land (x \in A \cap B) \Leftrightarrow (A \cap B = A)$:∈C)]
יחס סימטרי	$(C \subseteq A \cap B) \Leftrightarrow (C \subseteq A \land C \subseteq B)$	
	$[A \cap (B \cup C)] = [(A \cap B) \cup (A \cap C)]$ פילוג	ח <i>וק ה</i> הפרש ⊦
יחס טרנסיטיבי	A\B = {x (x∈A) ∧ (x∉B)} A\B = A∩B°	
יחס רפלקָסיבי	1	(1.21)
בקבוצה A יחס שקילות רפלקס	A\B = A\(A∩B)	
אי רפלקסיבי	$ \begin{array}{lll} A \setminus B &= B^c \setminus A^c \\ (A \setminus B) &= A \Leftrightarrow (A \cap B) &= \emptyset \\ \end{array} $ p42	g26
אנטי סימטרי	A\B=∅ ⇔ A⊆B	
אנטי סימטרי חזק	(A\B=B\A) ⇔ A=B A∪(B\A) = A∪B	
(גם לא עם עצמו) סדר חלקי רפלקס	$ \begin{array}{c} A \cap (B \backslash A) \ = \ \emptyset \\ (B \subseteq A) \ \to \ [(B \cup (A \backslash B)) \ = \ A] \end{array} $	
סדר חלקי חזק אי רפלי	$(C\subseteq D) \rightarrow [(A\setminus D) \subseteq (A\setminus C)]$	p.42 g20
סדר מלא סדר חז	$(A\setminus B)\cup (B\setminus A) = (A\cup B)\setminus (A\cap B)$	p42 q30
סדר מלא חזק סדר חי	Symmetric Difference $A\Delta B = \{x \mid (x \in A) \mid x \in B\} v (x \in B)$	B) A (x∉ A)}
=b)	$A\Delta B = (A \setminus B) \cup (B \setminus A)$, , ,
איחוד יחסים	$A \cap (B \setminus C) = (A \setminus B) \cap (A \cap C)$ ש מובן ל U ש מובן ל	הקבוצה המשלימה (כאשר יי
מחלקת שקילות - מחלקת	$A\Delta B \Leftrightarrow (A \cap \overline{B}) \cup (\overline{A} \cap B)$	הפרש סימטרי
שמקיימים את יחס השקילוו	$A\Delta B \Leftrightarrow \bar{A}V\bar{B}$	
קבוצת המנה - קבוצת מחי	$(A \subseteq B) \Leftrightarrow (\overline{B} \subseteq \overline{A})$	
	$(A \cap B = \emptyset) \Leftrightarrow (A \subseteq \overline{B})$ $(B, \overline{A}) :: (A \cap B, \emptyset) \to (\overline{A} \cap \overline{B}, \emptyset)$	V.
<u>חלוקות</u>	$ \overline{B} = \overline{A} \Leftrightarrow [(A \cap B = \emptyset) \land (\overline{A} \cap \overline{B} = \emptyset)] $ $ \overline{A \cup B} \Leftrightarrow \overline{A} \cap \overline{B}$	דה-מורגן
חלוקה P של A היא קבוצת	$\overline{(A \cap B)} = (\overline{A} \cup \overline{B})$	-
המקיימת	$A \cap (B \lor C) \Leftrightarrow (A \cap B) \lor (A \cap C)$	זהות
$\left[n_{2} ight)$ הקבוצות זרות	$A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$ $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$	
משפט: קבוצת מחלקות הש	n	
	$(\overline{A\Delta B}) = A\Delta \overline{B} = \overline{A}\Delta B$	

$\langle a,b\rangle \equiv \{\{a,b\},a\}$	הגדרת זוג סדור
$A \times B = \left\{ \left\langle a, b \right\rangle \middle \ a \in A \land b \in B \right\}$	מכפלה קרטזית

$ P(A) = 2^{ A }$	עוצמתה
$P(\phi) = \{\phi\}$:דוגמא
$P(P(\phi)) = \{\{\phi\}, \phi\}$	
$P(A \cap B) = P(A) \cap P(B)$	משפט

 $P(A) = \{B | B \subseteq A\}$

 $\exists x \in AP(x) \equiv \exists x (x \in A \land P(x))$

P עצם, אם הוא איבר של A, אז הוא ניחן בתכונה $\forall x(x \in A \rightarrow P(x))$

 $S \in Pig(A{ imes}Big)$ תת קבוצה של

<u>יחסים</u> ASB

$S^{-1} = \left\{ \left\langle b, a \right\rangle \middle \left\langle a, b \right\rangle \in S \right\}$	יחס הפוך
$aSb \Leftrightarrow bS^{-1}a$	
$\langle a,c\rangle \in T \circ S \Leftrightarrow$	הרכבת יחסים
$\exists b \in B. [\langle a, b \rangle \in S \land \langle b, c \rangle \in T]$ $\overline{S} = (A \times B) - S$	יחס משלים
$S^{-1} = S$	יחס סימטרי
$\forall a, b \in A. \lceil \langle a, b \rangle \in S \to \langle b, a \rangle \in S \rceil$	
$\forall a, b, c \in A. [aSb \land bSc \to aSc]$	יחס טרנסיטיבי

רפלקסיבי וצה A $\forall a \in A.aSa$ רפלקסיבי + סימטרי + טרנסיטיבי שקילות פלקסיבי $\forall a \in A. \neg (aSa)$ י סימטרי $\forall a \in A \forall b \in B. \big[aSb \land bSa \to a = b \big]$ וי סימטרי חזק לא עם עצמו) $\forall a \in A \forall b \in A. [aSb \to \neg bSa]$ (≤) רפלקסיבי + אנטי סימטרי + טרנסיטיבי חלקי

(<) אי רפלקסיבי + טרנסיטיבי חלקי חזק $\forall a,b \in A. ig[aSb \lor bSaig]$ + סדר חלקי מלא +סדר חלקי חזק מלא חזק

 $\forall a, b \in A. [aSb \lor bSa \lor (a = b)]$

 $x(S \cup T)y \Leftrightarrow xSy \vee xTy$

מחלקת שקילות - מחלקת השקילות של x היא כל האיברים שמקיימים את יחס השקילות איתו $[x] = \{y | xSy\}$

קבוצת המנה - קבוצת מחלקות השקילות.

<u>חלוקות</u>

A של A היא קבוצת תת-קבוצות לא ריקות של P $\forall a \in A. \big[\exists m \in P. \ a \in m \big]$ $\forall m_1, m_2 \in P. \lfloor (m_1 \cap m_2 \neq \phi) \rightarrow (m_1 = m_2) \rfloor$ וצות זרות:

משפט: קבוצת מחלקות השקילות היא חלוקה.

<u>פונקציות</u>

הרכבה

 η כלל

יווט ווו עוכי	$a \mapsto a \mapsto$
	$\langle a,b\rangle \in S$
יחס מלא	לכל $a\in A$ קיים לפחות $b\in B$ אחד כך ש

 $\langle a,b\rangle \in S$

היא יחס מ A ל B א א ו-מלא היא יחס מ $f:A {
ightarrow} B$ פונקציה

פונקציה חח"ע 1. היחס ההפוך חד ערכי

 $\forall x, y \in A. [x \neq y \rightarrow f(x) \neq f(y)]^{-2}$

 $\forall x, y \in A. [f(x) = f(y) \rightarrow x = y]$.3 פונקציה על

 $\forall b \in B. \exists a \in A. \left\lceil f\left(a\right) = b \right\rceil \ .^2$

 $f:A \rightarrow B$ $g:B \rightarrow C$

 $g \circ f : A \to C \quad (g \circ f)(c) = g(f(c))$ $\lambda x. f(x) = f$

> פונקציה חח"ע ו-על. נקראת גם פ' שקילות פונקציה הפיכה

<u>הרכבת פונקציות</u>

$$(g \circ f) \circ h = g \circ (f \circ h)$$
 הרכבת פונקציות היא אסוציאטיבית אז $g \circ f$ הא $g \circ f$ הא $g \circ f$ על אז $g \circ f$ על אם $g \circ f$ אם $g \circ f$ הח"ע אם $g \circ f$ הח"ע אז $g \circ f$ הח"ע אם $g \circ f$ על אז $g \circ f$ הא $g \circ f$ על אז $g \circ f$ אם $g \circ f$ על אז $g \circ f$ אם $g \circ f$ על אז $g \circ f$ אם $g \circ f$ על אז $g \circ f$ אם $g \circ f$ על אז $g \circ f$ אם $g \circ f$ על אז $g \circ f$ אם $g \circ f$ על אז $g \circ f$ על אז $g \circ f$

 $,g:B {\,
ightarrow\,} A$ משפט: $f:A {\,
ightarrow\,} B$ הפיכה משפט

 $g \circ f = I_{\scriptscriptstyle A} \ \land \ f \circ g = I_{\scriptscriptstyle B} \ ^{\circ}$ $g=f^{-1}$:אם g קיימת היא יחידה ותסומן

חשבון עוצמות

מכפלה $|A \times B| = |A| \cdot |B|$ מספר היחסים בקבוצה $|P(A)| = 2^{|A|}$ קבוצת הפונקציות מ-A ל-B $|A \to B| = |B^A| = |B|^{|A|}$ ל A,B זרות $|A| + |B| = |A \cup B|$ לכל A,B $|A| + |B| = |(\{0\} \times A) \cup (\{1\} \times B)|$

> הפיכה $\exists f: A \to B \iff |A| = |B|$ הפיכה בת מניה אברה: א בת מניה בת מניה A בת מניה הגדרה:

הגדרה: קבוצה אינסופית יש לה תת-קבוצה בת מניה

משפט: לכל קבוצה סופית A, קיים n טבעי כך שקיימת $\left|A\right|=n$ הפיכה, ואז $f:\left\{0,1,...,n-1
ight\}
ightarrow A$

או בת מניה B או או בת מניה A בת מניה A משפט: אם A בת מניה או בת מניה או בת מניה או בת מניה

. Σ מעל סופי באורך באורך כל המחרוזות כל Σ^* , סופי Σ A אינסופית וקיימת $f: \Sigma^* o A$ פונקציה חלקית שהיא A אם A

> אם קיימת $f:A {\,\rightarrow\,} B$ אם קיימת.1 $|A| \leq |B|$ $A\!=\!\phi$ על או $f:B\! o\!A$ אם קיימת.

 $\left|A\right| \! \leq \! \left|B\right| \ \wedge \ \left|A\right| \! \neq \! \left|B\right|$ |A| < |B|

 $f:A \to B$ כלומר קיימת $f:A \to B$

אבל לא קיימת $g:A \rightarrow B$ אבל הפיכה

 $2^{|A|} = |P(A)| > |A|$ לכל קבוצה, A

. בעזרת שיטת האלכסון $f:N \to N^N$ הוכחה שלא קיימת

משפט קנטור-ברנשטיין

 $|A| \le |B| \land |B| \le |A| \implies |A| = |B|$ $\big|B\big| = \big|A\big| = \big|C\big|^{\ \ \mathrm{NT}} \big|A\big| = \big|C\big|^{\ \ \wedge \ \ } A \subseteq B \subseteq C$ כלל הסנדביץ': אם אם כלל

חשבון עוצמות אינסופיות כללי האריתמטיקה הבסיסיים הנוגעים בחיבור, כפל וחזקות של מספרים טבעיים תקפים גם לעוצמות אינסופיות. אי שויון חלש נשמר.

. אי שויון חזק אינו נשמר פעולות הפוכות – חיסור, חילוק, שורש, לוגריתם **אינן** ניתנות להכללה עבור עוצמות אינסופיות