

	Romarches ->	5
->	slow to check flow is	s continous
	Dienery derivalle go	
	is infinite and imag	inary of flas
	B(x)=1 cool	ارمَ
	= 1 = 0	[1, 2]
	g.(x)=.√1-x = √-1	en [2,3]
3	nd doubable on ever	is continoues
y.) If function fco is han we find picas	not a polynomia and then 30 116
i d	9 function (CD) is how we find (CD) & finite definite, fun or (0,60) then f(2) is is continous.	uti d'agal antas docivalle. Honce
	es de oue continoi	
<u></u>	Janoc, cot, cosec o	
		(0001)

1 1

of continues function Ote Continues (0.1) Brand the Roll's Theorem. and desivación de les continues en therefore 6) PCX is continous on [23]. (C) f (D) = (D) 2 - 5(D) + 6 g (3) = 0 seemed all the thouse condition of Roll's theorem of alisty so thereford puch that f'co=0 f(x) = x° -5x+6 f(x) = 2c-5 f'(0) = 0 20-5=0 C= 5 0 [C= 2.5] (C2,3) Hence, Roll's theorem verified.

Sund Veryly the Room & Theorean 29 the Been as food is continues on forth Sunce Coso always takes a value detuning -1 to 1. from to donivable on (0,79) (c) f (d) = 9 f (z) = 0 one ellal no CECa, D Buch Unos fres o f'(x)= 2cos2x f1(c) = 2(0) 2c 20220=6 Casasc Cos 2c = Cos D 2C= IF > C= IP (C (0, 13))

ours Verify the Rolles theorem

10 fcx>= (x2 -4x+3)e2x on (1) 3]

(ii) f(x)= (x-a) "(x-6)" on [a,6]

Languarge & Mean Value Theorem:
Let f (20 lu a function defines on [a,b] usuch that
(a) f(x) is continous on Ca,6)
(b) f(oc) is derivable on ca, D
There exist atleast one real no. E [a, b] such that \[\begin{align*} alig
B(x) (bylo)
tan o
a b >x glad-glad b-a
Youly the dangeringe's Mean Value Theorem when the of Co is
$f(\infty) = 2\infty - \infty^2$ on Co , D

Since, every polynomial are

continous and derivable consumer wfw is continuing on tout by a desirable on and All the conditions of Language's Mai · a secal no e Ca, 6) Such that 8(w-fa) - g'co -D; b & (0) = 5-50 p(w=0 Byom Egin D 0xx 1-0 = 2-2c 1=2-20 C= 1 (CO,1) oues Use Mean Value Incomm to

Since Sul B Coope Com Consol Home Black is continued come

Proud To worden and governor

ceause pagages - pros as

Picos ec

B& 60-0" By Egy"(1)

 $\frac{C_{X}-C_{Y}}{C_{X}-C_{Y}}=C_{X}$

OSCER

C" < C" < C" < C"

2 C" K C" 7 L Z C" Mullipe, by it.

5 50 5 62-1200 . Ald 1 woulder

03	Vesil	gy Mean	n Valu	e Theo	wom if
	BCX):	$= \beta in \propto$	on [里,题	1
,7	1 11 12				- T
كسعه) g (00) =	= 21/3	on C-	[] را	
	and the second second		4		
grap) fras	$= 1 \propto 1$	an	(C-1, 1)	14
nos?	that	ream No	rlue In	lovam	to prom
	Ç.,050	x. log	< 200	C1+2) <	to perou
				1 1 1	V'a
,	· •	•			
		,			
e4. 10	r riet				
-					

#	Ly Jaylos is The overn With
	of a function f(x) is defined on
	(2) 1. 1'. 1" Dn-1 Ore continous &
	for se lon Caja+nje
	(b) nth derivative of a flx) easts in Ca, a+n) then
***	in (a, a+n) then
	Then There exist atleast one seal
- 1	Then There ienist atleast one seal no. 0.0<0<1
	$ \frac{1}{y}uch + hat = f(a) + hf(a) + h^{2}f'(b) + h^{2}f''(b) + h^{2}f''$
	fato- fa tripo 1
	(n-v) 16
	+hn fn(a+oh)
	20 Demonina
	KW/TYCHT VOS
_	
+	

Jayror Sving:

gornflow cam be expained into infinite of defined as

fatn=fw+nf'a+n f"a)+---~

Remork:

Put h=x-a in above taylor

f(a+x-0)=f(a)=f(a)+(x-a)f(a)+
(x-a)f(a)+

(02-003 f "(a) + - - - d

this obesies also known as taylor 2 apriles in the power of (x-a).

Quest) Show that log (a+h) = loga+h-b2+

Soln By taylor socies

fa+n)= f0+hg(a)+n2f"(a)+---D.

By the Egin no. 1

Let BCXD = log X - gaz= laga B'(a) = a $\beta'(\alpha) = \bot$ $\beta''(\alpha) = -\bot$ α^2 pullestituting these values in eq. O. log (a+n) = log a+n(1) + b2 (-1)+--0; Expand the Since in the power of (x-12)? zoen the Taylor Beries will be B(Z+x-Z) = f(Z) + (x-Z) f(Z) +2 35-03-2 J. (1) P1111 (x) = & inx

Ques	of (x-7)?
	of (a-14)?
Sol	The Taylor socies will be
, %	8(2+x-2)=8(2)+(2-2)8'(2)+
	€3-D2)2 8"(D)+20
7 131,	Now
	$f(x) = \tan^{-1}x \implies \tan^{-1}g$
	$\int_{-1+x^2}^{1} \left(\frac{1}{4} \right) = \frac{1}{1+(2)^2}$
	$\int_{0}^{1} (x) = (1+x^{2})^{-1}$ $= -(1+x^{2}) d(1+x^{2})$
	dx
	$= -(1+x^2) 2x$ $= -2x(1+x^2) \Rightarrow \beta''(2)$
Mide	= - D (1+ 2)2. Putting in Egm D.
ST AL	
	& tan-100 = tan-1(1) + (2-2) (1+(2))
9.	$\frac{-(x-4)^2(\frac{1}{2})(1+\frac{1}{2})^2-0}{2}$
- 1	

//__

Machanin Dieconami Set far is defuned on [o, i) D & B' & " - " Contin our on Co. il Dg" arist on Co.D. There would a o co. D ifuch that 800 - 800+ x 800+ 21 8"00+ + 2m f " (02)

Maclowin Series:

If f(x) posses be all derivative Entur f(x) can be unpand into infinite series

f(x)= f(0)+x f'6)+x f"(0)+

rust respond the Beies of Sinx with the

The moclowin series

$$f(x) = f(0) + \alpha f(0) + \frac{1}{2!} f''(0) + \frac{1}{$$

Sinx=x+x3+--- 0

Ques 4) Evaluate lim (1 - Cose cx) Soln lim 1 - Governo = $\lim_{x\to 0} \frac{\sin x - x}{x \sin x} = \frac{0}{0}$ Applying L'Hobital Rule Applying L'Hopital Rule lim -sinsc 2-30 -25inx+cosx+803x = 0/1. = finite value. Evaluate lim x.tan_ x - tan I = a xoSoln Applying L'Hossit al Rule

L' Hofital Rule:

3f dim f(x) take the forum them dim f(x) = f(x) them and f(x) = f(x)

polovided & (a) +0 4 91(x) +0.

Jos 0/0

provided f'(x) = exist = finite.

Quest) Evaluate the lim x-Sinx

Sola lim $x - \sin x - 0$

Apply L'Hopital Rule.

lim 1- Cosx. 2->0 322-

Apply L'Hopital Rule

lim 0+ Sinx - 0 0000

	Apply L' Hopit al Rule.
	lim (0300 0-30 6
	-61
ons 3.)	Eximx - eximx
ouss3)	Evaluate lim Logo (er-ca)
Soln	$\lim_{\Sigma \to a} \lim_{\Sigma \to a} (\Sigma - a) = \infty$
	Applying L'Hobital Rille.
	lim 22-e2 - 0
	x->a e2(x-a) 0
<u>)</u>	Applying L' Hobit al Rule. lim ex = ea 2-30 ex + a-osex = ea
	= 1/1. Finite value

det y = lim (Con Cot'x Thing log both side Logy = tim log (lim cosx cal coc) logy = lim dog Col2x log Cosx = 000 logy = lim log Cosac = 0 Apply L'Hopital Rule. logy = lim Kosxx - Sinsc 200 Rtanic Secesc logy = lim - tamor Secox logy = lim _-1 = -12 =) logy = = = y= e-1/2 /m (0820 t 2x=e-1/2

When nis + ve 16 = 6-D! = 5!

Evaluate lim (cosex) ans Soln. (Coseco) 150 = 000 y = Eor lim Cosecx roogs logy = lim Cosi_L dog Conecx. = 0 x0 logy = lim Log Cosecx Afthe L'Hopital Rul logy = lim /conecx - Comex tonx logy = lim -x-totax

ours) Evaluate of 00/2 e-23 doc oues?) revaluate of 10-00 doc ours) unaluate of x3 e-xdx Ques 9) rivaluate of 26 8-22 dx Jype-3 form (log ox) ndoc. 100) Evaluate for (log Ex) dx cen Put log x = - t

Beta, gama Functions: Gamma Functions! The gamma function is defined $\Gamma(m) = \int_{-\infty}^{\infty} e^{-\infty} x^{m-1} dx \quad (m > 0)$ ris function is also known as

$$= \int_{0}^{\infty} e^{-5t} t^{4} dt$$

$$= \int_{0}^{\infty} t^{-5t} t^{4} dt$$

$$= \int_{0}^{\infty} t^{-5t} t^{4} dt$$

$$= \int_{0}^{\infty} t^{-5t} t^{4} dt$$

$$fut$$
 $5t = V$

$$dt = Idv$$

$$dt = I dv.$$

$$-(150)e^{-v} v^{y} dv$$

Type ? orme-anda Put axr = t Praluate Put x= +14 t'y dt tme-tt-yodt (ii)