INDUCTIVE LEARNING CLASSIFICATION AND REGRESSION TREE

Bor-shen Lin bslin@cs.ntust.edu.tw http:www.cs.ntust.edu.tw/~bslin

DECISION TREE

Cited from AI, A modern approach, Russel Norvig

DECISION TREE

- Every non-leaf node is attached with a question based on some property
- Every leaf node is assigned a class
 - Yes/No here
- Every branch onto a node is associated with a condition for the question applied at its parent node
- Every instance can be classified to specific class after going through the decision tree
- Is helpful for decision making
- It can be generated manually or automatically

INDUCTIVE METHODS

- What is induction?
 - Find common rules from cases/experiences
- Human is able to use inductive methods
 - Find classification rules for things
 - Construct ontologies for things (classification trees)
- Induction can help to make decision
 - Apply a school: reputation, site, fee, gender,
 - Find mates: economy, character, look, shape, ...
 - Find jobs: money, load, distance, prospect, ...
 - Invest: fund, risk, reward, value, ...
 - Buy a house/car or choose restaurants ...
- Can computers perform inductive learning?

CASES FOR DECISION

Input X

Output Y

	income	height	weight	look	school	PASS
А	32k	172	66	А	X Univ.	YES
В	35k	166	56	В	C Univ.	NO
С	29k	180	79	В	T Univ.	YES
D	25k	175	65	А	U Univ.	NO
E	40k	169	75	С	Y Univ.	NO

VECTOR SPACE MODEL

- Input X (domain): high dimensional vector
 - X = [32k, 172, 66, A+, X-Univ]
- Output Y(range): YES(+)/NO(-)
 - Y = [YES]
- Y = f(X) f: classifier function

PRACTICE: VECTOR SPACE MODEL

- Represent a decision issue as vector space model
 - Input X, output Y
 - Question, Property
- Example
 - Apply a school
 - Find a mate
 - Look for a job
 - Perform investment
 - Buy a car
 - Buy a house

 \mathbf{Y} \mathbf{X}_1 \mathbf{X}_2 \mathbf{X}_3 \mathbf{X}_4

	RISK	Credit history	Debt	Collateral	Income
E1	High	Bad	High	None	<15k
E2	High	Unknown	High	None	15k-35k
E3	Moderate	Unknown	Low	None	15k-35k
E4	High	Unknown	Low	None	<15k
E5	Low	Unknown	Low	None	>35k
E6	Low	Unknown	Low	Adequate	>35k
E7	High	Bad	Low	None	<15k
E8	Moderate	Bad	Low	Adequate	>35k
E9	Low	Good	Low	None	>35k
E10	Low	Good	High	Adequate	>35k
E11	High	Good	High	None	<15k
E12	Moderate	Good	High	None	15k-35k
E13	Low	Good	High	None	>35k
E14	High	Bad	High	None	15k-35k

PRACTICE: PARTITION OF DATA

- Please partition the data E1~E14 according to the property X1 (credit history)
- Please partition the data E1~E14 according to property X4 (income)

- Generate decision tree according to the training data automatically
- o How?
 - Apply a question about some property for a tree node
 - e.g.: "What is the income of the customer?"
 - The training data could be partitioned based on some question
 - \circ e.g. < 15k, 15k-35k, > 35k
 - Which question should be asked first?
 - → according to entropy!

Entropy: Measure of Uncertainty

- Degree of chaos for a distribution
- Uncertainty about the observation (picking a ball)

ENTROPY

- Definition(Information Theory, Shannon)
 - For distribution $p(m_i)$ of $M = \{ m_1, m_2, ..., m_n \}$ $I(M) \equiv \sum_i p(m_i) \log_2(1/p(m_i)) = -\sum_i p(m_i) \cdot \log_2(p(m_i))$
- Measure of average amount of information
 - Information for the outcome m_i : $log_2(1/p(m_i))$
 - The lower $p(m_i)$ is, the more the information
 - e.g. "finding living creature on Mars"
 - probability=1 \rightarrow no information (entropy = 0)
 - A MUST has no news-value e.g. "the sun rises from the east

Entropy: Measuring Degrees of Chaos / Purification

• the lower the entropy for a set is, the higher the homogeneity

PRACTICE: COMPUTATION OF ENTROPY

The higher the entropy, the higher the chaos

$$-(1/2) * log_2(1/2) - -[(1/4) * (1/2) * log_2(1/2) = 2 bits$$

= 1 bit

$$-[(1/4) * log_2(1/4)]*2$$

$$= 2 \text{ bits}$$
 $= 3 \text{ bits}$

$$-[(1/4) * \log_2(1/4)]*4 - [(1/8) * \log_2(1/8)]*8$$

LEARNED DECISION TREE

Questions: Income? Credit History? Debt?

Classes: high risk, moderate risk, low risk

- Produce decision tree according to the training data
- Training set C
 - $C = \{ E1, E2, ..., E14 \}$ for root node of tree
 - P(high) = 6/14, P(moderate) = 3/14, P(low) = 5/14
 - Entropy for set C

$$I(C) = -(6/14) \cdot \log_2(6/14) - (3/14) \cdot \log_2(3/14)$$
$$-(5/14) \cdot \log_2(5/14) = 1.531 \text{ bits}$$

- Goal of Learning Algorithm
 - The data set will be partitioned into smaller sets by applying a question.
 - In the leaf nodes, all data are of the same output category, and the partition is stopped.
 - Entropy is 0 for leaf nodes
 - Good decision tree → reduce the entropy to 0 more quickly

- For current node, a question (property) Q in a set of questions is asked (e.g. income? Collateral? Debt? 或Credit history?)
- The question Q can partition the set C into smaller sets (C \rightarrow C1, C2, ..., C_n)
 - E.g. income? \rightarrow <15k, 15k-35k, >35k
- Which question is selected among questions?
 - Q*: maximum entropy reduction
- Once Q* is determined, apply ID3 for children (C_i's)
 - If set C_i has the entropy of 0, this set is not further processed.
 - Otherwise, call ID3 recursively for C_i with the rest of the questions.

MAXIMUM ENTROPY REDUCTION

- If S is divided into subsets $C_1 \sim C_n$ through applying the question Q_P for property P
 - $E(Q_p) = \sum_{i=1}^{n} (|C_i|/|C|) \cdot I(C_i)$ average entropy
 - $Gain(Q_p) = I(C) E(Q_p)$ entropy reduction
 - Choose P with maximum Gain among all properties $Q^* = \operatorname{argmax}_P(Gain(Q_P))$

MAXIMUM ENTROPY REDUCTION

- For root node, I(C) = 1.531 bits
- Apply Q="income?" at root node, C can be partitioned
 - C1= {E1,E4,E7,E11} C2={E2,E3,E12,E14} C3= {E5,E6,D8,E9,E10,E13}
 - E(income) = (4/14)*I(C1)+(4/14)*I(C2)+(6/14)*I(C3)= (4/14)*0+(4/14)*1+(6/14)*0.650=0.564 bits
 - Entropy reduction : Gain(income) = 1.531 0.564 = 0.967 bits
- Similarly, other gains can be obtained
 - $Gain(credit\ history) = 1.531-1.265 = 0.266$
 - Gain(debt)=1.531-0.95=0.581
 - Gain(collateral) = 1.531 0.775 = 0.756
- Optimal question Q*="income?" (highest gain)

INDUCTIVE LEARNING ALGORITHM

- Training data $\{d_i\} = \{(\underline{x}_i, y_i)\}, \underline{x}_i \text{ properties}, y_i \text{ class}$
- A set of questions $Q = \{Q_P\}$ based on the properties
- 1. Initially, current set C includes all data $\{d_i\}$
- 2. For each d_i in C, first calculate the entropy of C, I(C). If the entropy is small, stop spanning from current set.
- 3. For each question Q_P , generate sub-sets of C by applying question Q_P . Find the entropies for these sets respectively, and calculate the average entropy $E(Q_P)$.
- 4. Choose question Q^* with maximum entropy reduction as question of current set C, and apply the partition of C by Q^* to obtain the sub-sets.
- 5. Perform step 2-4 for the sub-sets respectively.

DECISION TREE IS NOT UNIQUE

System Architecture

LEARNED DECISION TREE

Questions: Income? Credit History? Debt?

Classes: high risk, moderate risk, low risk

- A simple tree is obtained
 - Minimum depth tree
 - Greedy algorithm (select optimal question locally)
- There may be irrelevant properties
 - e.g. "Collateral" is not an relevant property and is ignored automatically because it is ineffective in entropy reduction
 - Some properties may be noises that interfere the classification if the training data is insufficient

- There may be classification errors
 - There might be noises (inconsistencies) for a large amount of training data (e.g. different outputs for the same input).
 - The learning is stopped if entropy is lower than a threshold (need not be 0)
 - Use majority vote to make final decision

- The property need to be categorical data for ID3
 - If property P is numeric, binary test can be achieved by applying a threshold Z (such as the *income* in previous example)
 P? → P≤Z or P > Z
 - Optimal Z for property P can be obtained (maximum entropy reduction for all possible Z's)
- A question may combine several properties
 - Question: (income < 15k & debt == 'none')?
- Entropy is not the only indication of purification
 - Could be used for clustering (unsupervised learning)
 - Use distance or similarity as indicator

BN AND CART

o BN

- The information for classification is stored in the probabilities
- Decision function based on *numerical computation*
 - Decision is made from probabilistic point of view
- Statistical dependency among variables may be assumed to simplify the computation of probabilities.

CART

- The information for classification is stored in the decision rules that might be *meaningful* for humans
- Decision function based on *classification rules*
 - Explicit rules associated with the decision can be given.
 - Can give a reason & deduct rules
 - Automatic learning for decision rules
- Statistical dependency among variables can be learned.

- In ID3, there is a strong bias in favor of properties with many outcomes (more branches)
 - It is not fair to compare directly the properties with different number of outcomes
 - Those properties with more outcomes tends to have lower average entropy (and thus have higher chance to defeat others) because of finer partition.
- Normalization on entropy
 - Split-info(P)=- $\Sigma_i((|C_i|/|C|)\log_2(|C_i|/|C|))$
 - Gain-ratio(P) = Gain(P) / Split-info(P)
 - Maximum gain ratio instead of maximum gain
- o Tools: Weka, R, Matlab, Python

APPLICATION DOMAINS OF CART

- Classification
- Clustering
 - Example: clustering models (such as GMM or HMM) according to their attributes
 - Similarity/distance of models can be used as the indicator of closeness
- Regression
 - Input are categorical(discrete) features while output is continuous variable
 - Example: prediction of speed based on attributes (date, time of day...)
 - Variance of speed as indicator of closeness

POTENTIAL APPLICATIONS

Marketing:

Who will buy product F?

→ Those who buy A & B!

X

		-	У
	Buy A	Buy B	 Buy F
1	YES	YES	 YES
2	YES	NO	 NO
3	NO	YES	 YES

POTENTIAL APPLICATIONS

• Classifying major customers with different ranks (e.g. according to sales/profits/clicks)

APPLICATIONS

- Suitable for classifying categorical data
- If the input features contain numerical data, they need first be converted into categorical data
 - Regions of value
 - Vector quantization
- The knowledge learned is stored in the *decision tree* (or *decision rules*)
 - e.g. if(income > 100k && look == A) accept = true

REFERENCES

• Data Mining: concepts, models, methods, and algorithms

Mehmed Kantardzic

Wiley Inter-Science