Support Vector Machines

Nipun Batra

July 21, 2025

IIT Gandhinagar

IDEA: DRAW A SEPARATING HYPER PLANE

IDEA: MAXIMIZE THE MARGIN

SUPPORT VECTORS: POINTS ON BOUNDARY MARGIN

HYPERPLANE VIS # DIMENSIONS

HYPERPLANE VIS # DIMENSIONS

HOW TO DEFINE?

P: Any point on plane Po: One point on plane

3: I nector to plane at Po

P and Po lie on plane

PPo= x-x. lies on

BIW II HIPER PLANES

$$\int \vec{\omega} \cdot \vec{x} + \mathbf{b}_2 = 0$$

DISTANCE BIW II HYPER PLANES

$$\vec{\omega} \cdot \vec{x} + b_2 = \vec{D}$$

$$\vec{d} + \vec{d} \cdot \vec{d} + \vec{d} \cdot \vec{d} + b_1 = \vec{D} \cdot \vec{d} \cdot \vec{d} + b_1 = \vec{D} \cdot \vec{d} \cdot \vec{d} + b_1 = \vec{D} \cdot \vec{d} \cdot \vec{d} \cdot \vec{d} + b_2 = \vec{D} \cdot \vec{d} \cdot \vec{d} \cdot \vec{d} + b_3 = \vec{D} \cdot \vec{d} \cdot \vec{d} \cdot \vec{d} + b_4 = \vec{D} \cdot \vec{d} \cdot \vec{d} \cdot \vec{d} \cdot \vec{d} + b_4 = \vec{D} \cdot \vec{d} \cdot \vec{d} \cdot \vec{d} \cdot \vec{d} \cdot \vec{d} \cdot \vec{d} + \vec{d} \cdot \vec$$

Equation of two planes is:

$$\mathbf{w} \cdot \mathbf{x} + b_1 = 0$$

$$\mathbf{w} \cdot \mathbf{x} + b_2 = 0$$

Equation of two planes is:

$$\mathbf{w} \cdot \mathbf{x} + b_1 = 0$$
$$\mathbf{w} \cdot \mathbf{x} + b_2 = 0$$

For a point $\vec{x_1}$ on plane 1 and $\vec{x_2}$ on plane 2, we have:

Equation of two planes is:

$$\mathbf{w}\cdot\mathbf{x}+b_1=0$$

$$\mathbf{w} \cdot \mathbf{x} + b_2 = 0$$

For a point $\vec{x_1}$ on plane 1 and $\vec{x_2}$ on plane 2, we have:

$$\overrightarrow{x_2} = \overrightarrow{x_1} + t\mathbf{w}$$
 $D = |t\mathbf{w}| = |t|||\mathbf{w}||$

Equation of two planes is:

$$\mathbf{w} \cdot \mathbf{x} + b_1 = 0$$
$$\mathbf{w} \cdot \mathbf{x} + b_2 = 0$$

For a point $\vec{x_1}$ on plane 1 and $\vec{x_2}$ on plane 2, we have:

$$\overrightarrow{x_2} = \overrightarrow{x_1} + t\mathbf{w}$$
 $D = |t\mathbf{w}| = |t|||\mathbf{w}||$

We can rewrite as follows:

1

Equation of two planes is:

$$\mathbf{w} \cdot \mathbf{x} + b_1 = 0$$
$$\mathbf{w} \cdot \mathbf{x} + b_2 = 0$$

For a point $\vec{x_1}$ on plane 1 and $\vec{x_2}$ on plane 2, we have:

$$\overrightarrow{x_2} = \overrightarrow{x_1} + t\mathbf{w}$$
 $D = |t\mathbf{w}| = |t|||\mathbf{w}||$

We can rewrite as follows:

$$\mathbf{w} \cdot \mathbf{x}_2 + b_2 = 0$$

$$\Rightarrow \mathbf{w} \cdot (\mathbf{x}_1 + t\mathbf{w}) + b_2 = 0$$

Equation of two planes is:

$$\mathbf{w} \cdot \mathbf{x} + b_1 = 0$$
$$\mathbf{w} \cdot \mathbf{x} + b_2 = 0$$

For a point $\vec{x_1}$ on plane 1 and $\vec{x_2}$ on plane 2, we have:

$$\overrightarrow{x_2} = \overrightarrow{x_1} + t\mathbf{w}$$
 $D = |t\mathbf{w}| = |t| ||\mathbf{w}||$

We can rewrite as follows:

$$\mathbf{w} \cdot \mathbf{x}_2 + b_2 = 0$$

$$\Rightarrow \mathbf{w} \cdot (\mathbf{x}_1 + t\mathbf{w}) + b_2 = 0$$

$$\Rightarrow \mathbf{w} \cdot \mathbf{x}_1 + t \|\mathbf{w}\|^2 + b_1 - b_1 + b_2 = 0 \Rightarrow t = \frac{b_1 - b_2}{\|\mathbf{w}\|^2} \Rightarrow D = t \|\mathbf{w}\| = \frac{b_1 - b_2}{\|\mathbf{w}\|}$$

FORMULATION

FORMULATION

EDRMULATION

FORMULATION

GDAL: MAXIMIZE MARGIN

=) MAXIMIZE 2

[[W])

⇒ MINIMIZE 111511

S.T. (ome ctly label points i.e. if y = -1

ਲ.ਕੇ+b ≤ −1 if yi= +1

y; (v. x+b ≥1)

Primal Formulation

Objective

Minimize
$$\frac{1}{2}||\mathbf{w}||^2$$

s.t. $y_i(w.x_i+b) \geq 1 \ \forall i$

Primal Formulation

Objective

$$\begin{aligned} & \text{Minimize } \frac{1}{2}||\mathbf{w}||^2 \\ & \text{s.t. } y_i(w.x_i+b) \geq 1 \ \, \forall i \end{aligned}$$

Q) What is $||\mathbf{w}||$?

Primal Formulation

Objective

Minimize
$$\frac{1}{2}||\mathbf{w}||^2$$

s.t. $y_i(w.x_i + b) \ge 1 \ \forall i$

Q) What is $||\mathbf{w}||$?

$$w = \begin{bmatrix} w_1 \\ w_2 \\ \dots \\ w_n \end{bmatrix}$$

$$||\mathbf{w}|| = \sqrt{w^T w}$$

$$= \sqrt{\begin{bmatrix} w_1, w_2, \dots w_n \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \dots \\ w_n \end{bmatrix}}$$

EXAMPLE (IN 10)

$$\begin{bmatrix} x & y \\ 1 & 1 \\ 2 & 1 \\ -1 & -1 \\ -2 & -1 \end{bmatrix}$$

Separating Hyperplane: wx + b = 0

$$y_i(w_ix_i+b)\geq 1$$

$$egin{array}{cccc} x_1 & y & & \Rightarrow y_i(w_ix_i+b) \geq 1 \ 2 & 1 & \Rightarrow 1(w_1+b) \geq 1 \ -1 & -1 & -1 \ -2 & -1 \ \end{array} egin{array}{cccc} \Rightarrow 1(2w_1+b) \geq 1 \ \Rightarrow -1(-w_1+b) \geq 1 \ \Rightarrow -1(-2w_1+b) \geq 1 \ \end{array}$$

$$w_{min} = 1, b = 0$$
$$w.x + b = 0$$
$$x = 0$$

Minimum values satisfying constraints $\Rightarrow w=1$ and b=0 \therefore Max margin classifier $\Rightarrow x=0$

Primal Formulation is a Quadratic Program

Generally;

$$\Rightarrow$$
 Minimize Quadratic(x)

$$\Rightarrow$$
 such that, Linear(x)

Question

$$x = (x_1, x_2)$$

minimize $\frac{1}{2}||x||^2$

$$: x_1 + x_2 - 1 \ge 0$$

MINIMIZE QUADRATIC S.L. LINEAR

Converting to Dual Problem

 $Primal \Rightarrow Dual Conversion using Lagrangian multipliers$

Minimize
$$\frac{1}{2}||\bar{w}||^2$$

s.t. $y_i(\bar{w}.x_i+b) \geq 1$
 $\forall i$

$$L(\bar{w}, b, \alpha_1, \alpha_2, ... \alpha_n) = \frac{1}{2} \sum_{i=1}^d w_i^2 - \sum_{i=1}^N \alpha_i (y_i (\bar{w}.\bar{x}_i + b) - 1) \quad \forall \quad \alpha_i \ge 0$$

$$\frac{\partial L}{\partial b} = 0 \Rightarrow \sum_{i=1}^n \alpha_i y_i = 0$$

Converting to Dual Problem

$$\bar{w} = \sum_{i=1}^{N} \alpha_i y_i \bar{x}_i$$

$$L(\bar{w}, b, \alpha_1, \alpha_2, ... \alpha_n) = \frac{1}{2} \sum_{i=1}^{d} w_i^2 - \sum_{i=1}^{N} \alpha_i (y_i (\bar{w}.\bar{x}_i + b) - 1)$$

$$= \frac{1}{2} ||\bar{w}||^2 - \sum_{i=1}^{N} \alpha_i y_i \mathbf{w}.\bar{x}_i - \sum_{i=1}^{N} \alpha_i y_i b + \sum_{i=1}^{N} \alpha_i$$

$$= \sum_{i=1}^{N} \alpha_i + \frac{(\sum_i \alpha_i y_i \bar{x}_i) (\sum_j \alpha_j y_j \bar{x}_j)}{2} - \sum_i \alpha_i y_i (\sum_j \alpha_j y_j \bar{x}_j) \bar{x}_i$$

 $\frac{\partial L}{\partial w} = 0 \Rightarrow \bar{w} - \sum_{i=1}^{n} \alpha_i y_i \bar{x}_i = 0$

Converting to Dual Problem

$$L(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \bar{x}_i \cdot \bar{x}_j$$

$$\begin{array}{ll} \text{Minimize } \|\bar{w}\|^2 \Rightarrow & \text{Maximize } L(\alpha) \\ s.t & s.t \\ y_i\left(\bar{w}, x_i + b\right) \geqslant 1 & \sum_{i=1}^N \alpha_i y_i = 0 \ \forall \ \alpha_i \geq 0 \end{array}$$

Question

Question:

$$\alpha_i (y_i (\bar{w}, \bar{x}_i + b) - 1) = 0 \quad \forall i \text{ as per KKT slackness}$$

What is α_i for support vector points?

Answer: For support vectors,

$$\bar{w}.\bar{x_i} + b = -1$$
 (+ve class)
 $\bar{w}.\bar{x_i} + b = +1$ (+ve class)

$$y_i(\bar{w} \cdot \bar{x}_i + b) - 1) = 0$$
 for $i = \{\text{support vector points}\}$
 $\therefore \alpha_i \text{ where } i \in \{\text{support vector points}\} \neq 0$
For all non-support vector points $\alpha_i = 0$

EXAMPLE (IN 10)

$$\begin{bmatrix} x_1 & y \\ 1 & 1 \\ 2 & 1 \\ -1 & -1 \\ -2 & -1 \end{bmatrix}$$

$$L(\alpha) = \sum_{i=1}^{4} \alpha_i - \frac{1}{2} \sum_{i=1}^{4} \sum_{j=1}^{4} \alpha_i \alpha_j y_i y_j \bar{x}_i \bar{x}_j \qquad \alpha_i \ge 0$$
$$\sum_i \alpha_i y_i = 0 \qquad \alpha_i (y_i (\bar{w}.\bar{x}_i + b - 1)) = 0$$

$$L(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}) = \alpha_{1} + \alpha_{2} + \alpha_{3} + \alpha_{4}$$

$$-\frac{1}{2} \{\alpha_{1}\alpha_{1} \times (1*1) \times (1*1) + \alpha_{1}\alpha_{2} \times (1*1) \times (1*2) + \alpha_{1}\alpha_{3} \times (1*-1) \times (1*1)$$
...
$$\alpha_{4}\alpha_{4} \times (-1*-1) \times (-2*-2)\}$$

How to Solve? \Rightarrow Use the QP Solver!!

For the trivial example,

We know that only $x = \pm 1$ will take part in the constraint actively.

Thus,
$$\alpha_2, \alpha_4=0$$
By symmetry, $\alpha_1=\alpha_3=\alpha$ (say) & $\sum y_i\alpha_i=0$

$$L(\alpha_1,\alpha_2,\alpha_3,\alpha_4)=2\alpha$$

$$-\frac{1}{2}\left\{\alpha^2(1)(-1)(1)(-1)\right\}$$

$$\underset{\alpha}{\textit{Maximize}} \quad 2\alpha - \frac{1}{2}(4\alpha^2)$$

$$\frac{\partial}{\partial \alpha} \left(2\alpha - 2\alpha^2 \right) = 0 \Rightarrow 2 - 4\alpha = 0$$

$$\Rightarrow \alpha = 1/2$$

$$\therefore \alpha_1 = 1/2 \ \alpha_2 = 0; \ \alpha_3 = 1/2 \ \alpha_4 = 0$$

$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \bar{x}_i = 1/2 \times 1 \times 1 + 0 \times 1 \times 2$$

$$+1/2 \times -1 \times -1 + 0 \times -1 \times -2$$

$$= 1/2 + 1/2 = 1$$

Finding b:

For the support vectors we have, $y_i(\mathbf{w} \cdot \overrightarrow{x_i} + b) - 1 = 0$ or, $y_i(\bar{\mathbf{w}} \cdot \bar{x_i} + b) = 1$ or, $y_i^2(\bar{w} \cdot \bar{x_i} + b) = y_i$ or, $\bar{w}, \bar{x_i} + b = y_i \ (\because y_i^2 = 1)$ or, $b = y_i - w \cdot x_i$ In practice, $b = \frac{1}{N_{SV}} \sum_{i=1}^{N_{SV}} (y_i - \bar{w}\bar{x_i})$

Obtaining the Solution

$$b = \frac{1}{2} \{ (1 - (1)(1)) + (-1 - (1)(-1)) \}$$

$$= \frac{1}{2} \{ 0 + 0 \} = 0$$

$$= 0$$

$$\therefore w = 1 \& b = 0$$

Making Predictions

Making Predictions

$$\hat{y}(x_i) = SIGN(w \cdot x_i + b)$$

For $x_{test} = 3$; $\hat{y}(3) = SIGN(1 \times 3 + 0) = +$ ve class

Making Predictions

Alternatively,

$$\begin{split} \hat{y}\left(x_{TEST}\right) &= \mathsf{SIGN}\left(\bar{w} \cdot \bar{x}_{TEST} + b\right) \\ &= \mathsf{SIGN}\left(\sum_{i=1}^{N_S} \alpha_j y_j x_j \cdot x_{test} + b\right) \end{split}$$

In our example,

$$\begin{split} &\alpha_1 = 1/2; \alpha_2 = 0; \quad \alpha_3 = 1/2; \alpha_4 = 0 \\ &\hat{y}(3) = \mathsf{SIGN}\left(\frac{1}{2} \times 1 \times (1 \times 3) + 0 + \frac{1}{2} \times (-1) \times (-1 \times 3) + 0\right) \\ &= \mathsf{SIGN}\left(\frac{6}{2}\right) = \mathsf{SIGN}(3) = +1 \end{split}$$