```
LINEAR REGRESSION DATA
```

In [10]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
```

In [8]:

```
data1 = pd.read_csv(r"C:\Users\AKHILA\Downloads\1_2015.csv")
```

In [9]:

data1.describe()

Out[9]:

	Happiness Rank	Happiness Score	Standard Error	Economy (GDP per Capita)	Family	Health (Life Expectancy)	Freedom
count	158.000000	158.000000	158.000000	158.000000	158.000000	158.000000	158.000000
mean	79.493671	5.375734	0.047885	0.846137	0.991046	0.630259	0.428615
std	45.754363	1.145010	0.017146	0.403121	0.272369	0.247078	0.150693
min	1.000000	2.839000	0.018480	0.000000	0.000000	0.000000	0.000000
25%	40.250000	4.526000	0.037268	0.545808	0.856823	0.439185	0.328330
50%	79.500000	5.232500	0.043940	0.910245	1.029510	0.696705	0.435515
75%	118.750000	6.243750	0.052300	1.158448	1.214405	0.811013	0.549092
max	158.000000	7.587000	0.136930	1.690420	1.402230	1.025250	0.669730
4							•

In [11]:

data1.head()

Out[11]:

	Country	Region	Happiness Rank	Happiness Score	Standard Error	Economy (GDP per Capita)	Family	Health (Life Expectancy)	F
0	Switzerland	Western Europe	1	7.587	0.03411	1.39651	1.34951	0.94143	
1	Iceland	Western Europe	2	7.561	0.04884	1.30232	1.40223	0.94784	
2	Denmark	Western Europe	3	7.527	0.03328	1.32548	1.36058	0.87464	
3	Norway	Western Europe	4	7.522	0.03880	1.45900	1.33095	0.88521	
4	Canada	North America	5	7.427	0.03553	1.32629	1.32261	0.90563	
4		_	_	_	_			1	

In [12]:

data1.tail()

Out[12]:

	Country	Region	Happiness Rank	Happiness Score	Standard Error	Economy (GDP per Capita)	Family	Health (Life Expectancy)	Fı
153	Rwanda	Sub- Saharan Africa	154	3.465	0.03464	0.22208	0.77370	0.42864	
154	Benin	Sub- Saharan Africa	155	3.340	0.03656	0.28665	0.35386	0.31910	1
155	Syria	Middle East and Northern Africa	156	3.006	0.05015	0.66320	0.47489	0.72193	1
156	Burundi	Sub- Saharan Africa	157	2.905	0.08658	0.01530	0.41587	0.22396	
157	Togo	Sub- Saharan Africa	158	2.839	0.06727	0.20868	0.13995	0.28443	ı
4 6									

In [13]:

```
data1.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 158 entries, 0 to 157
Data columns (total 12 columns):
    Column
                                    Non-Null Count Dtype
                                    -----
0
    Country
                                    158 non-null
                                                   object
 1
    Region
                                   158 non-null
                                                   object
 2
    Happiness Rank
                                   158 non-null
                                                   int64
 3
    Happiness Score
                                   158 non-null
                                                   float64
 4
    Standard Error
                                   158 non-null
                                                   float64
 5
    Economy (GDP per Capita)
                                                   float64
                                   158 non-null
 6
    Family
                                   158 non-null
                                                   float64
 7
    Health (Life Expectancy)
                                   158 non-null
                                                   float64
 8
    Freedom
                                   158 non-null
                                                   float64
 9
    Trust (Government Corruption) 158 non-null
                                                   float64
                                                   float64
10 Generosity
                                   158 non-null
 11 Dystopia Residual
                                    158 non-null
                                                   float64
dtypes: float64(9), int64(1), object(2)
memory usage: 14.9+ KB
```

In [14]:

```
data1.columns
```

Out[14]:

```
Index(['Country', 'Region', 'Happiness Rank', 'Happiness Score',
       'Standard Error', 'Economy (GDP per Capita)', 'Family',
       'Health (Life Expectancy)', 'Freedom', 'Trust (Government Corruptio
n)',
       'Generosity', 'Dystopia Residual'],
      dtype='object')
```

In [15]:

sns.pairplot(data1)

Out[15]:

<seaborn.axisgrid.PairGrid at 0x1fe4fa25190>

In [16]:

```
sns.displot(data1['Freedom'])
```

Out[16]:

<seaborn.axisgrid.FacetGrid at 0x1fe545c94d0>

In [17]:

```
new_data1 = data1[['Happiness Rank', 'Happiness Score',
   'Standard Error', 'Economy (GDP per Capita)', 'Family',
   'Health (Life Expectancy)', 'Freedom', 'Trust (Government Corruption)',
   'Generosity', 'Dystopia Residual']]
```

In [18]:

```
sns.heatmap(new_data1.corr())
```

Out[18]:

<Axes: >

MODEL BUILDING FOR DATA1

In [19]:

```
X = new_data1[['Happiness Rank', 'Happiness Score',
    'Standard Error', 'Economy (GDP per Capita)', 'Family',
    'Health (Life Expectancy)', 'Trust (Government Corruption)',
    'Generosity', 'Dystopia Residual']]
y = data1['Freedom']
```

In [21]:

```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.30)
```

```
In [22]:
```

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(X_train,y_train)
```

Out[22]:

```
LinearRegression
LinearRegression()
```

In [24]:

```
#Prediction
predX = lr.predict(X_test)
print(predX)
```

```
[0.62453962 0.48895909 0.3887443 0.66573731 0.41483713 0.25147207 0.2443236 0.51506286 0.46058424 0.59632617 0.53221435 0.24520173 0.46858129 0.58419561 0.41685166 0.53489455 0.31865778 0.44011625 0.53866218 0.39505185 0.53164933 0.42182889 0.38243466 0.46635209 0.60354277 0.45527026 0.20091261 0.30631689 0.6512724 0.57723779 0.60322881 0.4229416 0.43440833 0.41626831 0.61755439 0.39724233 0.26309463 0.5298249 0.49093038 0.64016108 0.10017369 0.17260508 0.4769477 0.66021869 0.28480765 0.55692497 0.37036783 0.11883106]
```

In [25]:

```
#Accuracy
print(lr.score(X_test,y_test))
```

0.9999955087324011

In [26]:

```
plt.scatter(y_test,predX)
```

Out[26]:

<matplotlib.collections.PathCollection at 0x1fe5804d190>

DATA 2

In [27]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

In [28]:

```
data2 = pd.read_csv(r"C:\Users\AKHILA\Downloads\4_Drug200.csv")
```

In [29]:

data2.describe()

Out[29]:

	Age	Na_to_K
count	200.000000	200.000000
mean	44.315000	16.084485
std	16.544315	7.223956
min	15.000000	6.269000
25%	31.000000	10.445500
50%	45.000000	13.936500
75%	58.000000	19.380000
max	74.000000	38.247000

In [30]:

data2.head()

Out[30]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY

In [31]:

data2.tail()

Out[31]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
195	56	F	LOW	HIGH	11.567	drugC
196	16	М	LOW	HIGH	12.006	drugC
197	52	М	NORMAL	HIGH	9.894	drugX
198	23	М	NORMAL	NORMAL	14.020	drugX
199	40	F	LOW	NORMAL	11.349	drugX

In [32]:

data2.columns

Out[32]:

Index(['Age', 'Sex', 'BP', 'Cholesterol', 'Na_to_K', 'Drug'], dtype='objec
t')

In [33]:

sns.pairplot(data2)

Out[33]:

<seaborn.axisgrid.PairGrid at 0x1fe5801e0d0>

In [34]:

```
#Changing High, Normal and Low to 2, 1 and 0 respectively...
BP = {"BP":{"LOW":0,"NORMAL":1,"HIGH":2}}
data2 = data2.replace(BP)
Cholesterol = {"Cholesterol":{"LOW":0,"NORMAL":1,"HIGH":2}}
data2 = data2.replace(Cholesterol)
data2
```

Out[34]:

	Age	Sex	BP	Cholesterol	Na_to_K	Drug
0	23	F	2	2	25.355	drugY
1	47	М	0	2	13.093	drugC
2	47	М	0	2	10.114	drugC
3	28	F	1	2	7.798	drugX
4	61	F	0	2	18.043	drugY
195	56	F	0	2	11.567	drugC
196	16	М	0	2	12.006	drugC
197	52	М	1	2	9.894	drugX
198	23	М	1	1	14.020	drugX
199	40	F	0	1	11.349	drugX

200 rows × 6 columns

In [35]:

```
sns.displot(data2['BP'])
```

Out[35]:

<seaborn.axisgrid.FacetGrid at 0x1fe580a1650>

In [36]:

```
new_data2 = data2[['Age', 'BP', 'Cholesterol', 'Na_to_K']]
```

In [37]:

```
sns.heatmap(new_data2.corr())
```

Out[37]:

<Axes: >

MODEL BUILDING FOR DATA2

In [38]:

```
X = new_data2[['Age', 'Cholesterol', 'Na_to_K']]
y = data2['BP']
```

In [39]:

```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.30)
```

In [40]:

```
from sklearn.linear_model import LinearRegression
```

```
In [41]:
```

```
lr=LinearRegression()
lr.fit(X_train,y_train)
```

Out[41]:

```
LinearRegression
LinearRegression()
```

In [42]:

```
#Prediction
predX = lr.predict(X_test)
print(predX)
```

```
[1.23841392 1.23072263 1.03160715 1.23108124 1.22226682 1.05516537 0.98868878 0.92616347 1.05516375 1.26518257 1.15913418 0.97170118 0.95071506 1.1920163 0.86384882 0.90074657 1.20160695 1.10109498 1.24977656 1.11134019 1.1365969 1.14711042 1.00025615 0.91728279 1.22031298 0.98893481 1.19730414 1.16033698 1.0529568 1.05137644 1.27602965 1.1605424 1.23058139 1.1892954 1.10247716 1.01907854 1.11352342 0.91459748 1.1631028 0.92957931 1.25872482 1.12921236 0.86797911 1.10071873 1.21715257 1.07726067 1.13209191 1.2956641 1.27438726 0.86892208 1.11292479 1.18576759 1.11521296 1.0193755 1.1126615 1.18999666 1.31843808 1.01562787 0.96851743 0.96875359]
```

In [43]:

```
#Accuracy
print(lr.score(X_test,y_test))
```

-0.0452325646804046

In [44]:

plt.scatter(y_test,predX)

Out[44]:

<matplotlib.collections.PathCollection at 0x1fe589bb410>

DATA 3

In [48]:

data3 = pd.read_csv(r"C:\Users\AKHILA\Downloads\7_Uber.csv")
data3

Out[48]:

	Unnamed: 0	key	fare_amount	pickup_datetime	pickup_longitude	pick
0	24238194	2015-05-07 19:52:06.0000003	7.5	2015-05-07 19:52:06 UTC	-73.999817	
1	27835199	2009-07-17 20:04:56.0000002	7.7	2009-07-17 20:04:56 UTC	-73.994355	
2	44984355	2009-08-24 21:45:00.00000061	12.9	2009-08-24 21:45:00 UTC	-74.005043	
3	25894730	2009-06-26 08:22:21.0000001	5.3	2009-06-26 08:22:21 UTC	-73.976124	
4	17610152	2014-08-28 17:47:00.000000188	16.0	2014-08-28 17:47:00 UTC	-73.925023	
199995	42598914	2012-10-28 10:49:00.00000053	3.0	2012-10-28 10:49:00 UTC	-73.987042	
199996	16382965	2014-03-14 01:09:00.0000008	7.5	2014-03-14 01:09:00 UTC	-73.984722	
199997	27804658	2009-06-29 00:42:00.00000078	30.9	2009-06-29 00:42:00 UTC	-73.986017	
199998	20259894	2015-05-20 14:56:25.0000004	14.5	2015-05-20 14:56:25 UTC	-73.997124	
199999	11951496	2010-05-15 04:08:00.00000076	14.1	2010-05-15 04:08:00 UTC	-73.984395	
000000	•					

200000 rows × 9 columns

In [49]:

data3.describe()

Out[49]:

	Unnamed: 0	fare_amount	pickup_longitude	pickup_latitude	dropoff_longitude	dro
count	2.000000e+05	200000.000000	200000.000000	200000.000000	199999.000000	1!
mean	2.771250e+07	11.359955	-72.527638	39.935885	-72.525292	
std	1.601382e+07	9.901776	11.437787	7.720539	13.117408	
min	1.000000e+00	-52.000000	-1340.648410	-74.015515	-3356.666300	
25%	1.382535e+07	6.000000	-73.992065	40.734796	-73.991407	
50%	2.774550e+07	8.500000	-73.981823	40.752592	-73.980093	
75%	4.155530e+07	12.500000	-73.967154	40.767158	-73.963658	
max	5.542357e+07	499.000000	57.418457	1644.421482	1153.572603	
4						

In [50]:

data3.head()

Out[50]:

	Unnamed: 0	key	fare_amount	pickup_datetime	pickup_longitude	pickup_lat
0	24238194	2015-05-07 19:52:06.0000003	7.5	2015-05-07 19:52:06 UTC	-73.999817	40.73
1	27835199	2009-07-17 20:04:56.0000002	7.7	2009-07-17 20:04:56 UTC	-73.994355	40.72
2	44984355	2009-08-24 21:45:00.00000061	12.9	2009-08-24 21:45:00 UTC	-74.005043	40.74
3	25894730	2009-06-26 08:22:21.0000001	5.3	2009-06-26 08:22:21 UTC	-73.976124	40.79
4	17610152	2014-08-28 17:47:00.000000188	16.0	2014-08-28 17:47:00 UTC	-73.925023	40.74
4						•

In [51]:

```
data3.tail()
```

Out[51]:

	Unnamed: 0	key	fare_amount	pickup_datetime	pickup_longitude	picku
199995	42598914	2012-10-28 10:49:00.00000053	3.0	2012-10-28 10:49:00 UTC	-73.987042	
199996	16382965	2014-03-14 01:09:00.0000008	7.5	2014-03-14 01:09:00 UTC	-73.984722	
199997	27804658	2009-06-29 00:42:00.00000078	30.9	2009-06-29 00:42:00 UTC	-73.986017	
199998	20259894	2015-05-20 14:56:25.0000004	14.5	2015-05-20 14:56:25 UTC	-73.997124	
199999	11951496	2010-05-15 04:08:00.00000076	14.1	2010-05-15 04:08:00 UTC	-73.984395	
4						

In [52]:

```
data3.info()
```

```
RangeIndex: 200000 entries, 0 to 199999
Data columns (total 9 columns):
 #
    Column
                       Non-Null Count
                                        Dtype
    -----
                       -----
    Unnamed: 0
0
                       200000 non-null int64
 1
    key
                       200000 non-null object
 2
    fare_amount
                       200000 non-null float64
 3
    pickup_datetime
                       200000 non-null object
 4
    pickup_longitude
                       200000 non-null float64
 5
    pickup_latitude
                       200000 non-null float64
 6
    dropoff longitude 199999 non-null float64
 7
    dropoff_latitude
                       199999 non-null float64
 8
    passenger_count
                       200000 non-null
                                        int64
dtypes: float64(5), int64(2), object(2)
```

<class 'pandas.core.frame.DataFrame'>

In [53]:

```
data3.columns
```

memory usage: 13.7+ MB

Out[53]:

RANDOM FOREST

In [54]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
```

In [55]:

```
df1=pd.read_csv(r"C:\Users\AKHILA\Downloads\C1_Ionosphere.csv")
df1
```

Out[55]:

	1	0	0.99539	-0.05889	0.85243	0.02306	0.83398	-0.37708	1.1	0.03760	 -1
0	1	0	1.00000	-0.18829	0.93035	-0.36156	-0.10868	-0.93597	1.00000	-0.04549	 -(
1	1	0	1.00000	-0.03365	1.00000	0.00485	1.00000	-0.12062	0.88965	0.01198	 -(
2	1	0	1.00000	-0.45161	1.00000	1.00000	0.71216	-1.00000	0.00000	0.00000	 (
3	1	0	1.00000	-0.02401	0.94140	0.06531	0.92106	-0.23255	0.77152	-0.16399	 -(
4	1	0	0.02337	-0.00592	-0.09924	-0.11949	-0.00763	-0.11824	0.14706	0.06637	 -(
345	1	0	0.83508	0.08298	0.73739	-0.14706	0.84349	-0.05567	0.90441	-0.04622	 -(
346	1	0	0.95113	0.00419	0.95183	-0.02723	0.93438	-0.01920	0.94590	0.01606	 (
347	1	0	0.94701	-0.00034	0.93207	-0.03227	0.95177	-0.03431	0.95584	0.02446	 (
348	1	0	0.90608	-0.01657	0.98122	-0.01989	0.95691	-0.03646	0.85746	0.00110	 -(
349	1	0	0.84710	0.13533	0.73638	-0.06151	0.87873	0.08260	0.88928	-0.09139	 -

350 rows × 35 columns

In [56]:

df1.describe()

Out[56]:

	1	0	0.99539	-0.05889	0.85243	0.02306	0.83398	-0.:
count	350.000000	350.0	350.000000	350.000000	350.000000	350.000000	350.000000	350.0
mean	0.891429	0.0	0.640330	0.044667	0.600350	0.116154	0.549284	0.1;
std	0.311546	0.0	0.498059	0.442032	0.520431	0.461443	0.493124	0.5
min	0.000000	0.0	-1.000000	-1.000000	-1.000000	-1.000000	-1.000000	-1.00
25%	1.000000	0.0	0.471517	-0.065388	0.412555	-0.024868	0.209105	-0.0
50%	1.000000	0.0	0.870795	0.016700	0.808620	0.021170	0.728000	0.0
75%	1.000000	0.0	1.000000	0.194727	1.000000	0.335317	0.970445	0.4
max	1.000000	0.0	1.000000	1.000000	1.000000	1.000000	1.000000	1.00

8 rows × 34 columns

In [57]:

df1.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 350 entries, 0 to 349
Data columns (total 35 columns):

Jata #	Columns (to		-Null Count): Dtype
0	1	350		int64
1	0	350	non-null	int64
2	0.99539	350	non-null	float64
3	-0.05889	350	non-null	float64
4	0.85243	350	non-null	float64
5	0.02306	350	non-null	float64
6	0.83398	350	non-null	float64
7	-0.37708	350	non-null	float64
8	1.1	350	non-null	float64
9	0.03760	350	non-null	float64
10	0.85243.1	350	non-null	float64
11	-0.17755	350	non-null	float64
12	0.59755	350	non-null	float64
13	-0.44945	350	non-null	float64
14	0.60536	350	non-null	float64
15	-0.38223	350	non-null	float64
16	0.84356	350	non-null	float64
17	-0.38542	350	non-null	float64
18	0.58212	350	non-null	float64
19	-0.32192	350	non-null	float64
20	0.56971	350	non-null	float64
21	-0.29674	350	non-null	float64
22	0.36946	350	non-null	float64
23	-0.47357	350	non-null	float64
24	0.56811	350	non-null	float64
25	-0.51171	350	non-null	float64
26	0.41078	350	non-null	float64
27	-0.46168	350	non-null	float64
28	0.21266	350	non-null	float64
29	-0.34090	350	non-null	float64
30	0.42267	350	non-null	float64
31	-0.54487	350	non-null	float64
32	0.18641	350	non-null	float64
33	-0.45300	350	non-null	float64
34	g	350	non-null	object
dtype	es: float64	(32)	, int64(2),	object(1)

memory usage: 95.8+ KB

```
In [58]:
```

```
g = {"g":{"g":1,"b":2}}
df1 = df1.replace(g)
df1
```

Out[58]:

	1	0	0.99539	-0.05889	0.85243	0.02306	0.83398	-0.37708	1.1	0.03760	 -1
0	1	0	1.00000	-0.18829	0.93035	-0.36156	-0.10868	-0.93597	1.00000	-0.04549	 -(
1	1	0	1.00000	-0.03365	1.00000	0.00485	1.00000	-0.12062	0.88965	0.01198	 -(
2	1	0	1.00000	-0.45161	1.00000	1.00000	0.71216	-1.00000	0.00000	0.00000	 (
3	1	0	1.00000	-0.02401	0.94140	0.06531	0.92106	-0.23255	0.77152	-0.16399	 -(
4	1	0	0.02337	-0.00592	-0.09924	-0.11949	-0.00763	-0.11824	0.14706	0.06637	 -(
345	1	0	0.83508	0.08298	0.73739	-0.14706	0.84349	-0.05567	0.90441	-0.04622	 -(
346	1	0	0.95113	0.00419	0.95183	-0.02723	0.93438	-0.01920	0.94590	0.01606	 (
347	1	0	0.94701	-0.00034	0.93207	-0.03227	0.95177	-0.03431	0.95584	0.02446	 (
348	1	0	0.90608	-0.01657	0.98122	-0.01989	0.95691	-0.03646	0.85746	0.00110	 -(
349	1	0	0.84710	0.13533	0.73638	-0.06151	0.87873	0.08260	0.88928	-0.09139	 -

350 rows × 35 columns

In [59]:

```
df1["g"].value_counts()
```

Out[59]:

224
 126

Name: g, dtype: int64

In [60]:

```
x = df1.drop("g",axis=1)
y = df1["g"]
```

In [61]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.40)
```

```
In [62]:
```

```
from sklearn.ensemble import RandomForestClassifier
rfc = RandomForestClassifier()
rfc.fit(x_train,y_train)
```

Out[62]:

```
RandomForestClassifier
RandomForestClassifier()
```

In [63]:

```
rf = RandomForestClassifier()
```

In [64]:

```
params = {"max_depth":[1,2,3,4,5],
    "min_samples_leaf":[2,4,6,8,10],
    "n_estimators":[1,3,5,7]
}
```

In [65]:

```
from sklearn.model_selection import GridSearchCV
gs = GridSearchCV(estimator=rf,param_grid=params,cv=2,scoring='accuracy')
gs.fit(x_train,y_train)
```

Out[65]:

```
► GridSearchCV
► estimator: RandomForestClassifier
► RandomForestClassifier
```

In [66]:

```
rf_best = gs.best_estimator_
rf_best
```

Out[66]:

```
RandomForestClassifier
RandomForestClassifier(max_depth=4, min_samples_leaf=6, n_estimators=7)
```

In [67]:

```
from sklearn.tree import plot_tree
plt.figure(figsize=(40,40))
plot_tree(rf_best.estimators_[4],feature_names=None,class_names=['Yes','No'])
```

Out[67]:

```
\nvalue = [128, 82]\nclass = Yes'),
  \nclass = No'),
  Text(0.5, 0.7, 'x[17] <= -0.761 \setminus gini = 0.326 \setminus gini = 107 \setminus gini = 12
8, 33]\nclass = Yes'),
  class = No'),

    | value = [128, 20] \\    | value = [128
  Text(0.5, 0.3, 'x[2] \le 0.698 / gini = 0.149 / gini = 90 / gini = 125,
11]\nclass = Yes'),
  Text(0.3333333333333333, 0.1, 'gini = 0.367\nsamples = 23\nvalue = [25,
8]\nclass = Yes'),
  Text(0.66666666666666, 0.1, 'gini = 0.057\nsamples = 67\nvalue = [100,
3]\nclass = Yes'),
  Text(0.83333333333333334, 0.3, 'gini = 0.375 \nsamples = 8 \nvalue = [3, 9]
\nclass = No')]
```

```
RANDOM FOREST FROM 64 1 A ≤ 0.11
                   gini = 0.476
                 samples = 136
                value = [128, 82]
df2=pd.read_csv(r"CC\@SSr⇒\A\CSLA\Downloads\C10_Loan1.csv")
df2
                             x[17] \le -0.761
\frac{1}{1}gini = 0.0
                                gini = 0.326
     samples = 29
                              samples = 107
   value = [0, 49]
Home Owner __Marital Status
                           Almalallacome 12 con Borrower
                                class = Yes
           Yes
                                                      No
0
                     Single
                                          x[33] \le N0.951
1
           No
                    Married
gini = 0.0
                                    100
                                             gini = 0.234
2
           No
                                     70
                   sapinples = 9
                                            samples = 98
                 valше<sub>іе</sub> [0, 13]
3
           Yes
                                    120
                                         value = [1½8, 20]
                   class = No
                                             class ⇒⁄e¥es
                                     95
4
           No
5
           No
                    Married
                                                      No
                              x[2] \stackrel{60}{\leq} 0.698
                                                         gini = 0.375
6
           Yes
                   Divorced
                                gini 220 0.149
                                                         samples = 8
                               samples = 90
7
                     Single
           No
                                                     Yes
                                                         value = [3, 9]
                             value = [125, 11]
                                                           class = No
8
           No
                    Married
                                                      No
                                class^{75} = Yes
           No
                     Single
                                     90
                                                     Yes
                   gini = 0.367
                                             gini = 0.057
                  samples = 23
                                            samples = 67
                 value = [25, 8]
                                          value = [100, 3]
df2.describe()
                   class = Yes
                                             class = Yes
```

Out[72]:

Annual I	ncome
----------	-------

count	10.000000
mean	104.000000
std	45.631373
min	60.000000
25%	77.500000
50%	92.500000
75%	115.000000
max	220.000000

In [73]:

```
df2.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 4 columns):
    Column
                        Non-Null Count Dtype
    ----
                        -----
 0
    Home Owner
                        10 non-null
                                       object
 1
    Marital Status
                       10 non-null
                                       object
    Annual Income
                       10 non-null
                                        int64
    Defaulted Borrower 10 non-null
 3
                                       object
dtypes: int64(1), object(3)
memory usage: 452.0+ bytes
In [74]:
Home_Owner = {"Home Owner":{"Yes":1,"No":2}}
df2 = df2.replace(Home_Owner)
Defaulted_Borrower = {"Defaulted Borrower":{"Yes":1,"No":2}}
df2 = df2.replace(Defaulted_Borrower)
Marital_Status = {"Marital Status":{"Divorced":0, "Single":1, "Married":2}}
```

Out[74]:

df2

df2 = df2.replace(Marital_Status)

	Home Owner	Marital Status	Annual Income	Defaulted Borrower
0	1	1	125	2
1	2	2	100	2
2	2	1	70	2
3	1	2	120	2
4	2	0	95	1
5	2	2	60	2
6	1	0	220	2
7	2	1	85	1
8	2	2	75	2
9	2	1	90	1

In [75]:

```
df2["Home Owner"].value_counts()
```

```
Out[75]:
```

2 7 1 3

Name: Home Owner, dtype: int64

```
In [76]:
df2["Defaulted Borrower"].value_counts()
Out[76]:
2
     7
     3
Name: Defaulted Borrower, dtype: int64
In [77]:
x = df2.drop("Marital Status",axis=1)
y = df2["Marital Status"]
In [78]:
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.40)
In [79]:
from sklearn.ensemble import RandomForestClassifier
rfc = RandomForestClassifier()
rfc.fit(x_train,y_train)
Out[79]:
▼ RandomForestClassifier
RandomForestClassifier()
In [80]:
rf = RandomForestClassifier()
In [81]:
params = {"max_depth":[1,2,3,4,5],
 "min_samples_leaf":[2,4,6,8,10],
 "n_estimators":[1,3,5,7]
 }
In [82]:
from sklearn.model_selection import GridSearchCV
gs = GridSearchCV(estimator=rf,param_grid=params,cv=2,scoring='accuracy')
gs.fit(x_train,y_train)
Out[82]:
             GridSearchCV
 ▶ estimator: RandomForestClassifier
       ▶ RandomForestClassifier
```

```
In [83]:
```

```
rf_best = gs.best_estimator_
rf_best
```

Out[83]:

```
RandomForestClassifier
RandomForestClassifier(max_depth=1, min_samples_leaf=2, n_estimators=5)
```

In [84]:

```
from sklearn.tree import plot_tree
plt.figure(figsize=(40,40))
plot_tree(rf_best.estimators_[4],feature_names=None,class_names=['Yes','No'])
```

Out[84]:

```
[Text(0.5, 0.5, 'gini = 0.444\nsamples = 4\nvalue = [0, 4, 2]\nclass = N o')]
```

gini = 0.444 samples = 4 value = [0, 4, 2] class = No

In []:		