Chapter 4: Threads

Objectives

- To introduce the notion of a thread—a fundamental unit of CPU utilization that forms the basis of multithreaded computer systems
- To discuss the APIs for the Pthreads, Windows, and Java thread libraries
- To explore several strategies that provide implicit threading
- To examine issues related to multithreaded programming
- To cover operating system support for threads in Windows and Linux

Motivation

- Most modern applications are multithreaded
- Threads run within application
- Multiple tasks with the application can be implemented by separate threads
 - Update display
 - Fetch data
 - Spell checking
 - Answer a network request
- Process creation is heavy-weight while thread creation is light-weight
- Can simplify code, increase efficiency
- Kernels are generally multithreaded

Multithreaded Server Architecture

Benefits

- Responsiveness may allow continued execution if part of process is blocked, especially important for user interfaces
- Resource Sharing threads share resources of process, easier than shared memory or message passing
- Economy cheaper than process creation, thread switching lower overhead than context switching
- Scalability process can take advantage of multiprocessor architectures-each thread run parallel on diff processor

Multicore Programming

- Multicore or multiprocessor systems putting pressure on programmers, challenges include:
 - Dividing activities
 - Balance
 - Data splitting
 - Data dependency
 - Testing and debugging
- Parallelism implies a system can perform more than one task simultaneously
- Concurrency supports more than one task making progress
 - Single processor / core, scheduler providing concurrency

Multicore Programming (Cont.)

- Types of parallelism
 - Data parallelism distributes subsets of the same data across multiple cores, same operation on each
 - Task parallelism distributing threads across cores, each thread performing unique operation
- □ As # of threads grows, so does architectural support for threading
 - CPUs have cores as well as hardware threads
 - Consider Oracle SPARC T4 with 8 cores, and 8 hardware threads per core

Concurrency vs. Parallelism

Concurrent execution on single-core system:

Parallelism on a multi-core system:

Single and Multithreaded Processes

single-threaded process

multithreaded process

User Threads and Kernel Threads

- User threads management done by user-level threads library
- □ Three primary thread libraries:
 - POSIX Pthreads
 - Windows threads
 - Java threads
- Kernel threads Supported by the Kernel
- □ Examples virtually all general purpose operating systems, including:
 - Windows
 - Solaris
 - Linux
 - Tru64 UNIX
 - Mac OS X

Multithreading Models

- Many-to-One
- One-to-One
- Many-to-Many

Many-to-One

- Many user-level threads mapped to single kernel thread
- One thread blocking causes all to block
- Multiple threads may not run in parallel on muticore system because only one may be in kernel at a time
- Few systems currently use this model
- Examples:
 - Solaris Green Threads
 - GNU Portable Threads

One-to-One

- Each user-level thread maps to kernel thread
- Creating a user-level thread creates a kernel thread
- More concurrency than many-to-one
- Number of threads per process sometimes restricted due to overhead
- Examples
 - Windows
 - Linux
 - Solaris 9 and later

Many-to-Many Model

- Allows many user level threads to be mapped to many kernel threads
- Allows the operating system to create a sufficient number of kernel threads
- Solaris prior to version 9
- Windows with the *ThreadFiber* package

Thread Libraries

- Thread library provides programmer with API for creating and managing threads
- Two primary ways of implementing
 - Library entirely in user space
 - Kernel-level library supported by the OS

Java Threads

- Java threads are managed by the JVM
- Typically implemented using the threads model provided by underlying OS
- Java threads may be created by:

```
public interface Runnable
{
    public abstract void run();
}
```

- Extending Thread class
- Implementing the Runnable interface

Java Multithreaded Program

```
class Sum
  private int sum;
  public int getSum() {
   return sum;
  public void setSum(int sum) {
   this.sum = sum;
class Summation implements Runnable
  private int upper;
  private Sum sumValue;
  public Summation(int upper, Sum sumValue) {
   this.upper = upper;
   this.sumValue = sumValue;
  public void run() {
   int sum = 0;
   for (int i = 0; i \le upper; i++)
      sum += i;
   sumValue.setSum(sum);
```


Java Multithreaded Program (Cont.)

```
public class Driver
  public static void main(String[] args) {
   if (args.length > 0) {
     if (Integer.parseInt(args[0]) < 0)</pre>
      System.err.println(args[0] + " must be >= 0.");
     else {
      Sum sumObject = new Sum();
      int upper = Integer.parseInt(args[0]);
      Thread thrd = new Thread(new Summation(upper, sumObject));
      thrd.start();
      try {
         thrd.join();
         System.out.println
                  ("The sum of "+upper+" is "+sumObject.getSum());
       catch (InterruptedException ie) { }
   else
     System.err.println("Usage: Summation <integer value>"); }
```


Example -2

```
class ThreadA extends Thread{
   public void run() {
     for(int i = 1; i <= 5; i++) {
       System.out.println("From Thread A with i = "+ -1*i);
     System.out.println("Exiting from Thread A ...");
class ThreadB extends Thread {
  public void run() {
    for(int j = 1; j <= 5; j++) {
     System.out.println("From Thread B with j= "+2* j);
    System.out.println("Exiting from Thread B ...");
class ThreadC extends Thread{
   public void run() {
     for(int k = 1; k \le 5; k++) {
        System.out.println("From Thread C with k = "+ (2*k-1));
     System.out.println("Exiting from Thread C ...");
```


Example -2 (cont..)

```
public class Main {
   public static void main(String args[]) {
       ThreadA a = new ThreadA();
       ThreadB b = new ThreadB();
       ThreadC c = new ThreadC();
       a.start();
       b.start();
       c.start();
       System.out.println("... Multithreading is over ");
From Thread A with i = -1
From Thread A with i = -2
From Thread A with i = -3
From Thread B with j= 2
From Thread A with i = -4
From Thread A with i = -5
Exiting from Thread A ...
... Multithreading is over
From Thread C with k = 1
From Thread B with j= 4
From Thread B with j= 6
From Thread B with j= 8
```


Implicit Threading

- Growing in popularity as numbers of threads increase, program correctness more difficult with explicit threads
- Creation and management of threads done by compilers and run-time libraries rather than programmers
- Three methods explored
 - Thread Pools
 - OpenMP
 - Grand Central Dispatch
- Other methods include Microsoft Threading Building Blocks (TBB), java.util.concurrent package

Operating System Examples

- Windows Threads
- Linux Threads

Windows Threads

- Windows implements the Windows API primary API for Win 98, Win NT, Win 2000, Win XP, and Win 7
- Implements the one-to-one mapping, kernel-level
- Each thread contains
 - A thread id
 - Register set representing state of processor
 - Separate user and kernel stacks for when thread runs in user mode or kernel mode
 - Private data storage area used by run-time libraries and dynamic link libraries (DLLs)
- The register set, stacks, and private storage area are known as the context of the thread

Windows Threads (Cont.)

- ☐ The primary data structures of a thread include:
 - ETHREAD (executive thread block) includes pointer to process to which thread belongs and to KTHREAD, in kernel space
 - KTHREAD (kernel thread block) scheduling and synchronization info, kernel-mode stack, pointer to TEB, in kernel space
 - □ TEB (thread environment block) thread id, user-mode stack, thread-local storage, in user space

Windows Threads Data Structures

Linux Threads

- ☐ Linux refers to them as *tasks* rather than *threads*
- Thread creation is done through clone() system call
- clone() allows a child task to share the address space of the parent task (process)
 - Flags control behavior

flag	meaning
CLONE_FS	File-system information is shared.
CLONE_VM	The same memory space is shared.
CLONE_SIGHAND	Signal handlers are shared.
CLONE_FILES	The set of open files is shared.

struct task_struct points to process data structures
(shared or unique)

