Notes on Inference Devices

Santa Fe Institute

Edward G. Huang

Summer 2018

Notation and Definitions

- U Set of possible histories of the universe.
- u A history of the universe in U.
- X Setup function of an ID that maps $U \to X(U)$. A binary question concerning $\Gamma(u)$.
- x A binary question and a member of image X(U).
- Y Conclusion function of an ID that maps $U \to \{-1,1\}$. A binary answer of an ID for X(u) = x.
- y A single-valued answer, and member of image $Y(U) = \{0, 1\}$.
- Γ A function of the actual values of a physical variable over U, equivalent to $\Gamma(u) = S(t_i)(u)$.
- γ Possible value of a physical variable, a member of the image $\Gamma(U)$.
- δ Probe of any variable V parameterized by $v \in V$ such that :

$$\delta_v(v') = \begin{cases} 1 & \text{if } v = v' \\ -1 & \text{otherwise} \end{cases}$$

- \wp Set of probes over $\Gamma(U)$.
- $\mathcal{D} = (X, Y)$ An inference device, consisting of functions X and Y.
- \bar{F} Inverse. Given a function F over $U, F^{-1} = \bar{F} \equiv \{\{u : F(u) = f\} : f \in F(U)\}.$
- > Weak inference: a device \mathcal{D} weakly infers Γ iff $\forall \gamma \in \Gamma(U), \exists x \in X(U) \text{ s.t. } \forall u \in U,$ $X(u) = x \implies Y(u) = \delta_{\gamma}(\Gamma(u)).$
- >> Strong inference: a device (X_1, Y_1) strongly infers a device (X_2, Y_2) iff $\forall \delta \in \wp(Y_2)$ and all x_2 , $\exists x_1$ such that $X_1 = x_1 \implies X_2 = x_2, Y_1 = \delta(Y_2)$.

Turing Machines

Arora and Barak denote a Turing Machine T as $T=(\Gamma,Q,\delta)$ containing:

- 1. An alphabet Γ of a finite set of symbols that T's tapes can contain. We assume that Γ contains a special blank symbol B, start symbol S, and the numbers 0 and 1.
- 2. A finite set Q of possible states that T's register can be in. We assume that Q contains a special start state q_s and a special halt state q_h .
- 3. A transition function $\delta: Q \times \Gamma^k \to Q \times \Gamma^{k-1} \times \{L, S, R\}^k$, where $k \geq 2$, describing the rules T use in performing each step. The set $\{L, S, R\}$ denote the actions Left, Stay, and Right, respectively.

Suppose T is in state $q \in Q$ and $(\sigma_1, \sigma_2, \ldots, \sigma_k)$ are the symbols on the k tapes. Then $\delta(q, (\sigma_1, \ldots, \sigma_k)) = (q', (\sigma'_2, \ldots, \sigma'_k), z)$ where $z \in \{L, S, R\}^k$ and at the next step the σ symbols in the last k-1 tapes will be replaced by the σ' symbols, the machine will be in state q, and the k heads will move Left, Right or Stay.

Remark: Γ can be reduced to $\mathbb{B} = \{0, 1\}$ and k can be reduced to 1 without loss of computational power.

Inference of Turing Machines

Theorem Every Turing Machine can be weakly inferred by an inference device.

Proof Recall the definition of weak inference:

$$\mathcal{D} > \Gamma \ \text{iff} \ \forall \gamma \in \Gamma(U), \exists x \in X(U) \ \text{such that} \ \forall u \in U, X(u) = x \implies Y(u) = \delta_{\gamma}(\Gamma(u))$$

Theorem Every Turing Machine can be strongly inferred by an inference device.

Proof Recall the definition of strong inference:

$$(X_1,Y_1) >> (X_2,Y_2) \text{ iff } \forall \delta \in \wp(Y_2) \text{ and all } x_2, \exists x_1 \text{ such that } X_1 = x_1 \implies X_2 = x_2, Y_1 = \delta(Y_2)$$