

Big Data Processing with MapReduce/Spark Programming Models

Hong-Linh Truong
Department of Computer Science
<u>linh.truong@aalto.fi</u>, <u>https://rdsea.github.io</u>

Schedule

- Overview
- MapReduce programming model
- Apache Spark
- Summary

Big data at large-scale

Recall: build your story

Data Governance and Quality of Analytics Build "Your own

Big Data Platform^{*}

Services/Platforms Design

> Core concepts, methods and technologies

Data Integration/Management

Play the roles of developer/users and of platform provider

Data Analytics/Processing

Example of a typical big data machine learning pipeline (hot area!)

Big data processing in our story: we are not just "data scientist"

Our learning goals: tasks in systems and application

- Understand the user/developer needs
- Understand how to build platforms to support the users/developers

Big data processing techniques in our focus

Programming models

- MapReduce
- Streaming Processing
- Workflows/Pipelines

Studied frameworks

- Apache Hadoop/Spark
- Apache Flink
- Apache Airflow

MapReduce programming model

- MapReduce is a programming model original from from Google
 - Various implementations/frameworks support MapReduce
 - Apache Hadoop (originally from Yahoo!) is the most famous one
- Support batch data processing for very large datasets
- Suitable for batch jobs in big data, e.g.,
 - Web search, document processing, ecommerce information
 - Extract, transform, data wrangling, and data cleansing tasks

MapReduce

https://hadoop.apache.org

Example of a real data

Look at the network monitoring data

PROVINCECODE, DEVICEID, IFINDEX, FRAME, SLOT, PORT, ONUINDEX, ONUID, TIME, SPEEDIN, SPEEDOUT XXN, 10XXXXXX023, 26XXXXXX8, 1, 2, 7, 39, 100XXXXXX2310207039, 01/08/2019 00:04:07, 148163, 49018 XXN, 10XXXXXX023, 26XXXXXX8, 1, 2, 7, 38, 100XXXXXXX2310207038, 01/08/2019 00:04:07, 1658, 1362 XXN, 10XXXXXXX023, 26XXXXXX8, 1, 2, 7, 9, 100XXXXXXX2310207009, 01/08/2019 00:04:07, 6693, 5185

Understand the MapReduce programming model

Parallelizing data

Sort/Shuffle

Group/Aggregation

Map & Reduce

Map:

- Receives <key,value>
- Outputs <key,value> new set of <key,value>

Reducer:

- Receives <key, Iterable[value]>
- Outputs <key,value>

Key ideas of MapReduce

- Data can be divided by "Map" operators
 - data processing tasks extract "intermediate results"
- Intermediate results can be aggregated through "Reduce" operators
 - data processing tasks produce a result from "intermediate results"
- We can glue "Map" and "Reduce" operators into a multistage data flow model
- Other possible operators:
 - Combiner: performs "Reduce" at local nodes
 - Partitioner: decides key/value for Reduce

Key ideas of MapReduce

Key points for the developers:

 should write only the main "logic": Map and Reduce operators

The runtime framework will

- handle data movement and input/output management for Map/Reduce tasks
- parallelizing tasks in multiple nodes

MapReduce concept in the original paper

```
map(String key, String value):

// key: document name

// value: document contents

for each word w in value:

EmitIntermediate(w, "1");

reduce(String key, Iterator values):

// key: a word

// values: a list of counts

int result = 0;

for each v in values:

result += ParseInt(v);

Emit(AsString(result));
```


User

Key point: parallelize workers to process a lot of input files and produce a lot of output files

Figure source: Jeffrey Dean and Sanjay Ghemawat. 2008.

MapReduce: simplified data processing on large clusters.

Hadoop MapReduce

- Hadoop supports the MapReduce programming model
 - Use nodes for computing tasks
 - Access data in HDFS and data partitioned in different nodes
 - Hadoop runtime automatically creates parallel tasks
 - YARN is used to run jobs
- Data management (HDFS) and data processing (MapReduce) is aligned nicely
 - Run in the same nodes \rightarrow data locality optimization


```
Examples - Map
                                                                   Output
                                           Input
public static class SpeedInMapper_
    extends Mapper<Object, Text, LongWritable , AverageWritable>{-
 private LongWritable id =new LongWritable();
 private AverageWritable averagecount = new AverageWritable();
 public void map(Object key, Text value, Context putput)
     throws IOException, InterruptedException {
     String valueString = value.toString();
                                                                 Parse the data to
     String[] record = valueString.split(",");
     id.set(Long.parseLong(record[7]));
                                                                get ONUID and
     averagecount.setAverage(Float.parseFloat(record[9]));
                                                                 SPEEDIN
     averagecount.setCount(1);
     output.write(id,averagecount);
```


Map (ONUID, (SPEEDIN, count))

Example - Reduce

Output

```
public static class SpeedInAverageReducer ....
    extends Reducer LongWritable, AverageWritable, LongWritable, FloatWritable> }
 private FloatWritable new result - new FloatWritable():
 public void reduce(LongWritable key, Iterable<AverageWritable> values,
                   Context context
                    ) throws IOException, InterruptedException {
   float avq = 0:
   int count = 0;
   for (AverageWritable val : values) {
                                                      Simple way to
       float current avg =val.getAverage();
       int current count =val.getCount();
                                                      determine the
       avg = avg + (current avg*current count);
       count = count + current count;
                                                      average as
                                                      "Reduce" operator
  new result.set(avg/count);
  context.write(key, new_result);
                                                            Reduce (ONUID, AVG)
```

Input

Driver: connect Map and Reduce operators

```
public static void main(String[] args) throws Exception {
   Configuration conf = new Configuration();
   Job job = Job.getInstance(conf, "simpleonuaverage");
   job.setJarByClass(SimpleAverage.class);
   job.setMapperClass(SpeedInMapper.class);
   job.setCombinerClass(SpeedInAverageCombiner.class);
   job.setReducerClass(SpeedInAverageReducer.class);
   job.setMapOutputKeyClass(LongWritable.class);
   job.setMapOutputValueClass(AverageWritable.class);
   job.setOutputKeyClass(LongWritable.class);
   job.setOutputValueClass(FloatWritable.class);
   FileInputFormat.addInputPath(job, new Path(args[0]));
   FileOutputFormat.setOutputPath(job, new Path(args[1]));
   System.exit(job.waitForCompletion(true) ? 0 : 1);
}
```


Example with Python using MRJob

```
class ONUSpeedinAverage(MRJob):
   def mapper(self, _, entry):
        provincecode deviceid ifindex frame slot port onuindex onuid timestamp speedin speedout= entry.split(",")
      #average speed is speedin with count = 1
       vield (onuid, (float(speedin),1))
  ## recalculate the new speedin average through an array of speedin average values
   def _recalculate_avg(self, onuid, speedin_avg_values):
        current speedin total = 0
       new avg count = 0
        for speedin avg, avg count in speedin avg values:
            current speedin total = current speedin total +(speedin avg*avg count)
            new avg count = new avg count + avg count
        new speedin avg = current speedin total/new avg count
        return (onuid, (new_speedin_avg, new_avg_count))
    def combiner(self, onuid, speedin avg values):
        yield self._recalculate_avg(onuid, speedin_avg_values)
   def reducer(self, onuid, speedin_avg_values):
        onuid, (speedin avg, avg count) = self. recalculate avg(onuid, speedin avg values)
   yield (onuid, speedin avg)
if name == ' main ':
   ONUSpeedinAverage.run()
```


Resource management and execution for MapReduce in clusters

A cluster of computing nodes can be managed by YARN or Mesos

Source:

http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

Schedule and monitoring for MapReduce

- A MapReduce program runs → MapReduce Job
 - includes many tasks (Map and Reduce processes + others)
- JobTracker
 - monitors the whole job (all tasks of a MapReduce program)
- TaskTracker
 - performs a task of the MapReduce applications
 - informs JobTracker about the state of the tasks

Monitoring MapReduce Jobs

Application application_1570429323498_0008

Logged in as: dr.who

→ Cluster

About
Nodes
Node Labels
Applications
NEW SAVING
SUBMITTED
ACCEPTED
RUNNING
EINISHED
EAILED
KILLED
Scheduler

→ Tools

	Application Metrics
Total Resource Preemp	oted: <memory:0, vcores:0=""></memory:0,>
Total Number of Non-AM Containers Preemp	oted: 0
Total Number of AM Containers Preemp	oted: 0
Resource Preempted from Current Atter	mpt: <memory:0, vcores:0=""></memory:0,>
Number of Non-AM Containers Preempted from Current Atter	mpt: 0
Aggregate Resource Allocat	tion: 5039065 MB-seconds, 973 vcore-seconds
Aggregate Preempted Resource Allocat	tion: 0 MB-seconds, 0 vcore-seconds
Show 20 ▼ entries	Search:

Show 20 ▼ entries							Search:
Attempt ID ▼	Started \$	Node ≎	Logs	\$		Nodes blacklisted by the app	\$ Nodes blacklisted by the system
<u>appattempt_1570429323498_0008_000001</u>		http://cluster-bdp-w- 3.c.bigmultidatstore.internal:8042	<u>Logs</u>	C	0		0
Showing 1 to 1 of 1 entries							First Previous 1 Next Last

Connecting MapReduce applications

Build complex MapReduce pipelines

Using big data storage/database as data exchange
We can use workflows to coordinate different MapReduce apps

Problems with MapReduce

- Strict Map & Reduce tasks connection → limitation
- Need more flexible in processing big data workloads
 - Batch data flows and streaming data flows
- Programming diversity support
 - Software engineering productivity

Apache Spark

https://spark.apache.org/

Apache Spark

- Cluster-based high-level computing framework
- "unified engine" for different types of big data processing
 - SQL/structured data processing
 - Machine learning
 - Graph processing
 - (Microbatching)streaming processing
- It is a powerful computing framework and system → an important service that a big data platform should support

Apache Spark

Can be run a top

- Hadoop (using HDFS and YARN)
- Mesos cluster
 - http://mesos.apache.org/
- Kubernetes
- Standalone machines

Figure source: http://spark.apache.org/

Key features

- Data is distributed in different nodes for processing
 - Like data distributed in different nodes in big storage/database
- Leverage parallel computing concepts to run multiple tasks
 - Parallel tasks, task pipeline, DAG of processing stages
- Program driver steers the execution of parallel tasks
 - Tasks are paralleled automatically and are scheduled with different underlying schedulers
- Key data operators
 - Transformations and actions on data

Spark Program: programming elements

SparkSession

- Act as a program driver to manage the execution of tasks
- SparkContext: manages connection to cluster, manage internal services

Data APIs

- Resilient Distributed Dataset (RDD)/DataFrames/DataSets
- Load and hold distributed data
- Transformation and action functions
- ML, Graph and Streaming functions and pipelines

Execution Model

Map into a resource in a cluster node

Driver manages operators and tasks in nodes

Common concepts: Driver, Nodes, Tasks

Figure source: http://spark.apache.org/docs/latest/cluster-overview.html

Spark application management: high-level view

Submission/Request

- Submit the Spark application for running
- Resource is provided for running the Driver

Launch

- The Driver requests resources for executors (through SparkContext)
- Establish executors across worker nodes

Execution

The driver starts to execute code and move data

Finish/Completion:

Finish, release executors

Spark program logic: typical steps

- Load data and distribute data
 - Data is immutable after created
 - Data partition in Spark: a partition is allocated in a node
- Perform transformation and action operators
 - Transformations: build plans for transforming data models
 - Actions: perform computation on data
- The developer mostly focuses on loading data and performing operators

Resilient distributed dataset (RDD)

Low-level data structure

Collection of data elements partitioned across nodes in the cluster

Create RDD

 Created by loading data from files (text, sequence file) including your local file system, HDFS, Cassandra, HBase, Amazon S3, etc.

Persist RDD

In memory or to files

Transformation operators

Transformations:

- Instructions about how to modify a RDD to have another RDD
- Only tell what to do: to build a DAG (direct acyclic graph) of RDDs
- lazy approach → doing at action operators

Wide transformation, cross data partitions, require shuffles

Action operators

- Compute the results for a set of transformations
 - Examples: count or average
- Actions: view, collect, write, calculation

RDD transformations and actions

Transformations

- map
- filter
- sample
- intersection
- groupByKey

Actions

- reduce()
- collect()
- count()
- saveAs...File()

Example with RDD

VendorID,tpep_pickup_datetime,tpep_dropoff_datetime,passenger_count,trip_distance,RatecodeID,store_and_fwd_fla g,PULocationID,DOLocationID,payment_type,fare_amount,extra,mta_tax,tip_amount,tolls_amount,improvement_surc harge,total_amount 2,11/04/2084 12:32:24 PM,11/04/2084 12:47:41 PM,1,1.34,1,N,238,236,2,10,0,0.5,0,0,0.3,10.8 2,11/04/2084 12:32:24 PM,11/04/2084 12:47:41 PM,1,1.34,1,N,238,236,2,10,0,0.5,0,0,0.3,10.8 2,11/04/2084 12:25:53 PM,11/04/2084 12:29:00 PM,1,0.32,1,N,238,238,2,4,0,0.5,0,0,0.3,4.8

as a text file

```
conf = SparkConf().setAppName("cse4640-rddshow").setMaster(args.master)
sc = SparkContext(conf=conf)
##modify the input data
rdd=sc.textFile(args.input_file)
## if there is a header we can filter it otherwise comment two lines
csvheader = rdd.first()
rdd = rdd.filter(lambda csventry: csventry != csvheader)
## using map to parse csv text entry
rdd=rdd.map(lambda csventry: csventry.split(","))
rdd.repartition(1)
rdd.saveAsTextFile(args.output_dir)
```


Example with RDD

Output: RDD with id index for columns

Shared variables

- Implement common patterns in parallel computing:
 - broadcast and global counter
- Variables used in parallel operations
 - variables are copied among parallel tasks
 - shared among tasks or between tasks and the driver
- Types of variables
 - broadcast variables: cache a value in all nodes
 - accumulators: a global counter shared across processes

Examples

```
sc = SparkContext(conf=conf)
bVar = sc.broadcast([5,10])
print("The value of the broadcast",bVar.value,sep=" ")
counter = sc.accumulator(0)
sc.parallelize([1, 2, 3, 4]).foreach(lambda x: counter.add(bVar.value[0]))
print("The value of the counter is ",counter.value,sep=" ")
```

Answer: https://tinyurl.com/yxaty238

Use cases:

- Broadcast variables: lookup tables
- Accumulators: monitoring/checkpoint counters

Spark SQL: DataFrames

- SparkSQL: enable dealing with structured data
- DataFrame
 - A distributed collection of tabular data
 - Organized into rows and named columns, similar to a table in relational database
 - Pandas and Spark DataFrames have similar concepts
 - But single machine versus multiple machines
 - RDD can be converted to DataFrame

DataFrame

```
inputFile =args.input_file
df =spark.read.csv(inputFile,header=True,inferSchema=True)
print("Number of partition",df.rdd.getNumPartitions())
df.show()
```

+			+-	+	+-		+			+		+
PROVINCECODE	DEVICEID	IFINDEX F	RAME S	LOT	PORT	ONUINDEX	l	ONUID		TIME	SPEEDIN	SPEEDOUT
+	+	+-	+-	+	+-		+			+		+
YN 1	3023	528	1	2	7	39	10	07039	01/08/2019	00:04:07	148163	49018
YN 1	3023	528	1	2	7	38	10	07038	01/08/2019	00:04:07	1658	1362
YN 1	3023	528	1	2	7	9	10	07009	01/08/2019	00:04:07	6693	5185
YN 1	3023	528	1	2	7	8	10	07008	01/08/2019	00:04:07	640	544
YN 1	3023	528	1	2	7	11	10	07011	01/08/2019	00:04:07	118	114
YN 1	3023	528	1	2	7	10	10	07010	01/08/2019	00:04:07	28514	
YN 1	3023	528	1	2	7	13	10	07013	01/08/2019	00:04:07	868699	23400
YN 1	3023	528	1	2	7		10	07015	01/08/2019	00:04:07	1822	1120
] YN] 1	3023	528	1	2	7		10	07017	01/08/2019	00:04:07	998069	117345
YN 1	3023	528	1	2 į	7		10	07016	01/08/2019	00:04:07	22402	1804
j YN j 1	3023	528	1	2 į	7 j		10		01/08/2019		640	
j YN j 1	3023	760	1	1	10		10		01/08/2019			
j YN j 1	3023	760	1	1	10		10		01/08/2019			
j YN j 1	3023	528	1	2 į	7 j		10		01/08/2019		0	0 i
j	3023	760	1	1	10		10		01/08/2019		2600890	54153
N 1	3023	528	1	2	7		10		01/08/2019		330	

Create DataFrame

DataFrames can be created from a Hive table, from Spark data sources, or another DataFrame

Load and save

- From Hive, JSON, CSV
- HDFS, local file, etc

and more

Formats and Sources supported by DataFrames

Source: https://databricks.com/blog/2015/02/17/introducing-dataframes-in-spark-for-large-scale-data-science.html

DataFrame Transformations

Several transformations can be done

- Think transformation for relational database or matrix
- Select
 - df.select("PROVINCECODE").show()
- Filter
 - df.filter(df['DEVICEID]).show()
- Groupby
 - df.groupBy("ONUID").count().show()
- Handle missing data
 - Drop duplicate rows, drop rows with NA/null data
 - Fill NA/null data

Actions with DataFrame

Actions

Return values calculated from DataFrame

Examples

• reduce, max, min, sum, variance and stdev

→ Distributed and parallel processing but it is done by the framework

Data Distribution

One task works on a partition at a time

→ Parallelism and performance are strongly dependent on number of partitions, tasks, CPU cores

Data distribution imbalance (skewness)

e.g.,

PYN,100XXXXX023,268XXXXX8,1,2,7,17,1005XXXXX2310207017,01/08/2019 00:04:07,998069,117345

PYN,100XXXXX023,268XXXXX8,1,2,7,16,1005XXXXX2310207016,01/08/2019 00:04:07,22402,1804

Assume that we have many data come from a province!

Data Distribution: Load balance

Imbalance processing

more data shuffle

 It is important to have well-balanced data distribution across nodes

Detection:

- look at runtime execution time to see problems or check your data
- Examples of solution:
 - Repartition
 - Broadcast
 - Change group keys

Example of a Spark program

```
#!/usr/bin/env python2
#encoding: UTF-8
# CS-E4640
import csv
import sys
from datetime import datetime
from pyspark.sql import SparkSession
import numpy as np
from pyspark.sql import functions as F
import argparse
                                                                   Session/Driver
parser = argparse.ArgumentParser()
parser.add argument('--input file', help='input data file')
parser.add argument('--output dir',help='output dir')
args = parser.parse args()
##define a context
spark = SparkSession.builder.appName("cse4640-onu").getOrCreate()
#NOTE: using hdfs:///.... for HDFS file or file:///
inputFile =args.input file
                                                                   Read data
df =spark.read.csv(inputFile,header=True,inferSchema=True)
#df.show()
print("Number of records", df.count())
exprs = {"SPEEDIN":"avg"}
                                                                      Apply operators
df2 = df.groupBy('ONUID').agg(exprs)
df2.repartition(1).write.csv(args.output file,header=True)
```


Results

Average speedin

df2 = df.groupBy('ONUID').agg(exprs)

ONUID, avg(SPEE	
1005€	0059,2089433.0
1005€	0045,1.0372027E7
1005	7061,1322842.0
1005€	5059,1.710654E7
1005€	3009,183.0
1005€	3035,990.0
1005€	9022,1576631.0
1005€	9056,246569.0
1005€	6006,32.0
1005€	5045,508326.0
1005€	0004,186.0
1005€	2047,3672.0
1005€	2028,54056.0
1005€	2005,537.0
1005€	9009,319535.5
1005€	3039,19238.5
1005€	6051,3123.5
1005€	5030,94192.0
1005€	4053,1099273.0
1005€	3026,14099.0
10056	4027,0.0

Spark application runtime view

Tasks:

 A unit of work executed in an executor, e.g., set of transformations for a data partition

Stage

- A set of tasks executed in many nodes for computing the same operation
- Move to a new stage: through shuffle operations

Job

 Runtime view of an action (produce a result), includes many stages

Pipelining, Shuffle and DAG

- Operations work in a pipeline without moving data across nodes
 - E.g., map->filter, select->filter
- Shuffle Persistent
 - Shuffle needs move data across nodes
 - Source tasks save shuffle files into local disks for data shuffle, then the target tasks will read data from source nodes
 - *Save time, recovery, fault tolerance*

Monitoring Spark: check Spark jobs in YARN

All Applications

∟ogged in as: anonymoι

Application History
About Applications FINISHED
FAILED KILLED
→ Tools

	Show 20 T	entries									:	Search:	
		ID 🔻	User ≎	Name \$	Application Type \$	Queue \$	Application Priority \$	StartTime \$	FinishTime \$	State \$	FinalStatus \$	Progress \$	Tracking UI \$
	application_	1570429323498_0009	mybdp	cse4640- nytaxicount	SPARK	default	0	Fri Oct 25 22:32:45 +0300 2019	N/A	RUNNING	UNDEFINED		Unassigned
	application_	<u>1570429323498_0008</u>	mybdp	cse4640- nytaxicount	SPARK	default	0	Fri Oct 25 22:22:08 +0300 2019	Fri Oct 25 22:25:15 +0300 2019	FINISHED	SUCCEEDED		<u>History</u>
j	application_	1570429323498_0007	truong	cse4640- nytaxicount	SPARK	default	0	Fri Oct 25 22:04:20 +0300 2019	N/A	RUNNING	UNDEFINED		Unassigned
	application_	1570429323498_0006	truong	cse4640- nytaxicount	SPARK	default	0	Fri Oct 25 22:00:33 +0300 2019	Fri Oct 25 22:01:54 +0300 2019	FINISHED	SUCCEEDED		<u>History</u>
	application_	1570429323498_0005	truong	PySparkShell	SPARK	default	0	Fri Oct 25 21:50:36 +0300 2019	Fri Oct 25 21:51:29 +0300 2019	FINISHED	SUCCEEDED		<u>History</u>
	Showing 1 to	o 5 of 5 entries										First Previous	1 Next Last

Monitoring Spark: Executors and tasks

Completed Jobs (4)

Job Id ▼	Description	Submitted Duration Stage		Stages: Succeeded/Total	Tasks (for all stages): Succeeded/Total
3	csv at NativeMethodAccessorImpl.java:0 csv at NativeMethodAccessorImpl.java:0	2019/10/27 20:09:14	31 s	3/3	279/279
2	count at NativeMethodAccessorImpl.java:0 count at NativeMethodAccessorImpl.java:0	2019/10/27 20:08:47	26 s	2/2	79/79
1	csv at NativeMethodAccessorImpl.java:0 csv at NativeMethodAccessorImpl.java:0	2019/10/27 20:07:49	57 s	1/1	78/78
0	csv at NativeMethodAccessorImpl.java:0 csv at NativeMethodAccessorImpl.java:0	2019/10/27 20:07:46	2 s	1/1	1/1

27 October 20:08

27 October 20:07

27 October 20:09

Example of Stages

Executors and tasks

▶ Aggregated Metrics by Executor

Tasks (200)

Page: 1	2	2 Pages. Jump to 1									. Show 100 items in a	a page. Go		
Index 🛦	ID	Attempt	Status	Locality Level	Executor ID	Host		Launch Time	Duration	GC Time	Shuffle Read Size / Records	Write Time	Shuffle Write Size / Records	Errors
0	238	0	SUCCESS	PROCESS_LOCAL	5	cluster-bdp-w-1.c.bigmultidatstore.internal	stdout stderr	2019/10/27 20:09:44	0.2 s		0.0 B / 0		0.0 B / 0	
1	239	0	SUCCESS	PROCESS_LOCAL	4	cluster-bdp-w-1.c.bigmultidatstore.internal	stdout stderr	2019/10/27 20:09:44	0.2 s		0.0 B / 0		0.0 B / 0	
2	240	0	SUCCESS	PROCESS_LOCAL	1	cluster-bdp-w-0.c.bigmultidatstore.internal	stdout stderr	2019/10/27 20:09:44	0.2 s		0.0 B / 0		0.0 B / 0	
3	241	0	SUCCESS	PROCESS_LOCAL	3	cluster-bdp-w-3.c.bigmultidatstore.internal	stdout stderr	2019/10/27 20:09:44	0.2 s		0.0 B / 0		0.0 B / 0	
4	242	0	SUCCESS	PROCESS_LOCAL	7	cluster-bdp-w-0.c.bigmultidatstore.internal	stdout stderr	2019/10/27 20:09:44	0.1 s	3 ms	0.0 B / 0		0.0 B / 0	
5	243	0	SUCCESS	PROCESS_LOCAL	2	cluster-bdp-w-3.c.bigmultidatstore.internal	stdout stderr	2019/10/27 20:09:44	0.2 s		0.0 B / 0		0.0 B / 0	
6	244	0	SUCCESS	PROCESS_LOCAL	5	cluster-bdp-w-1.c.bigmultidatstore.internal	stdout stderr	2019/10/27 20:09:44	0.2 s		0.0 B / 0		0.0 B / 0	
7	245	0	SUCCESS	PROCESS_LOCAL	4	cluster-bdp-w-1.c.bigmultidatstore.internal	stdout stderr	2019/10/27 20:09:44	0.2 s		0.0 B / 0		0.0 B / 0	
8	246	0	SUCCESS	PROCESS_LOCAL	1	cluster-bdp-w-0.c.bigmultidatstore.internal	stdout stderr	2019/10/27 20:09:44	0.2 s		0.0 B / 0		0.0 B / 0	
9	247	0	SUCCESS	PROCESS_LOCAL	3	cluster-bdp-w-3.c.bigmultidatstore.internal	stdout stderr	2019/10/27 20:09:44	0.2 s		0.0 B / 0		0.0 B / 0	
10	248	0	SUCCESS	PROCESS_LOCAL	7	cluster-bdp-w-0.c.bigmultidatstore.internal	stdout stderr	2019/10/27 20:09:44	0.1 s	3 ms	0.0 B / 0		0.0 B / 0	
11	249	0	SUCCESS	PROCESS_LOCAL	2	cluster-bdp-w-3.c.bigmultidatstore.internal	stdout stderr	2019/10/27 20:09:44	0.2 s		0.0 B / 0		0.0 B / 0	
12	251	0	SUCCESS	PROCESS_LOCAL	6	cluster-bdp-w-2.c.bigmultidatstore.internal	stdout	2019/10/27 20:09:44	11 ms		0.0 B / 0		0.0 B / 0	

Executors and tasks

Other important support of Spark

Mlib - Machine learning

- Distributed and parallel machine learning algorithms with big data and clusters
 - You might run many ML algorithms, but many of them are sequential

Streaming

Microbatching data processing in near-realtime

Graph Processing

Parallel computation for graphs

Summary

Facts:

- MapReduce and Spark are important frameworks
- A user/developer needs to learn to develop MapReduce/Spark applications
- A platform operator/provider offer services for managing resources, processing and monitoring

Thoughts:

- Think about the success of Apache Spark: rich ecosystems!
- Think if you combine data, different distributed programming supports for your big data platform

Summary

Focus:

- Learning objectives: do not just focus on "programming" at least in this course!
- Practical programming with MapReduce/Spark
- What about data ingestion with Spark: using Spark to process raw data in Hadoop and ingest high-level data into big databases?

Action:

- Link to other courses: interested in ML, try to use Spark for ML → move to ML with parallel processing
- Links to the previous lectures: check again Hadoop lectures

Thanks!

Hong-Linh Truong
Department of Computer Science

rdsea.github.io

