Validation of the MadAnalysis 5 implementation of CMS-SUS-16-033

Federico Ambrogi (HEPHY Vienna)
Jory Sonneveld (University of Hamburg)

email: federico.ambrogi@cern.ch - jory.sonneveld@desy.de

April 6, 2017

1 Setup

In this document, the MadAnalysis 5 implementation of the all-hadronic search for SUSY particles at the LHC at $\sqrt{s}=13$ TeV CMS-SUS-16-033 (see also arXiv:XXXXXXXXXX) is validated.

For this purpose, MC settings were provided by CMS to generate events with MadGraph MG5_aMC, showered with Pythia 8

Supersymmetric gluino production $pp \to \widetilde{g}\widetilde{g}$ is assumed with $\widetilde{g} \to b\bar{b}A$.

From the CMS-SUS-XPAG gitbub repository one can retrieve the cards used for MadGraph MG5_aMC event generation. The run card used in MadGraph MG5_aMC and proc card were retrieved from there. From the same repository the models can be retrieved.

This is needed for, for example, the fragmentation done with Pythia 8. For example, for T1bbbb this was used. The pythia settings are then retrieved from the CMS software github repository:

- Pythia8CUEP8M1Settings and
- Pythia8CommonSettings. Also:
- The genfragment file is used.

Models studied are shown in ??.

The search, which originally has more than 172 bins, is also divided into aggregate search regions, as shown together with the search results in Table 1.

The Pythia 6.4 settings were read from an external card and are given in Appendix A.

In MadAnalysis 5, to run DelphesMA5tune the CMS settings with an altered version of this DelphesMA5tune card, which can be found on the MadAnalysis Physics Analysis Database page, were used. The parameter changed in the DelphesMA5tune card was the b-tag parameter to obtain a b-tag efficiency of 70%, as shown in Appendix B. Cut flows and histograms of several observables are compared with those of CMS in the next sections.

1 SETUP 2

Figure 1: The T1tttt model. Versions with bottom and light quarks in the final state were also studied.

Figure 2: The T5qqqqVV model.

Figure 3: The T2tt model.

Table 1: Observed number of events and prefit background predictions in the aggregate search regions.

Region	$N_{ m jet}$	$N_{ ext{b-jet}}$	H_{T} [GeV]	$H_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	Lost- e/μ	$\tau \to \mathrm{had}$	$Z o u \bar{ u}$	QCD	Total Pred.	Obs.
1	500+	500+	2+	0	1056^{+27+59}_{-27-56}	939^{+18+71}_{-18-72}	$6530^{+50+380}_{-49-380}$	90^{+2+35}_{-2-30}	8615+68+400	8792
2	750+	1500+	3+	0	$33.4^{+4.6+2.9}_{-4.5-2.8}$	$\begin{array}{r} 32.3_{-3.1-3.6}^{+3.2+3.6} \\ 225_{-8-15}^{+8+14} \end{array}$	374^{+12+46}_{-12-42}	$0.62^{+0.06+0.24}_{-0.05-0.22}$	441^{+15+46}_{-14-42}	413
3	500+	500+	5+	0	212^{+10+15}_{-9-14}	225^{+8+14}_{-8-15}	763^{+18+47}_{-16-45}	53^{+2+20}_{-2-18}	1254^{+25+55}_{-24-53}	1202
4	750+	1500+	5+	0	$5.3^{+1.4+0.7}_{-1.2-0.6}$	$6.3^{+1.2+0.6}$	$55.8^{+4.8+7.6}_{-4.3-6.9}$	$0.30^{+0.05+0.12}_{-0.05-0.11}$	$67.7^{+5.5+7.6}_{-4.8-7.0}$	79
5	750+	1500+	9+	0	$0.00^{+0.44+0.00}_{-0.00-0.00}$	$0.00^{+0.46+0.00}_{-0.00-0.00}$	$0.00^{+0.64+0.00}_{-0.00-0.00}$	$0.01^{+0.02+0.00}_{-0.01-0.00}$	$0.0^{+1.1+0.0}_{-0.0-0.0}$	0
6	500+	500+	2+	2+	89+10+6	$91.1^{+5.6+5.4}_{-4.9-5.5}$	127^{+2+18}_{-2-18}	$15.4^{+0.6+9.6}_{-0.6-8.9}$	323^{+16+22}_{-13-21}	350
7	750+	750+	3+	1+	$59.0^{+7.1+3.9}_{-5.9-3.7}$	$53.8^{+4.5+3.5}_{-3.9-3.5}$	176^{+5+16}_{-4-15}	$4.4^{+0.3+1.7}_{-0.3-1.6}$	294^{+13+17}_{-11-16}	289
8	500+	500+	5+	3+	$11.8^{+3.5+0.9}_{-2.7-0.9}$	$14.9^{+2.5+1.5}_{-2.0-1.5}$	$11.6^{+0.6+4.9}_{-0.5-4.9}$	$6.6^{+0.5}_{-0.5}^{+7.3}_{-6.1}$	$44.8^{+6.1+9.0}_{-4.7-8.0}$	34
9	750+	1500+	5+	2+	$0.9^{+1.5+0.2}_{-0.6-0.2}$	$1.2^{+1.3+0.2}_{-0.6-0.2}$	$3.53^{+0.42+0.97}_{-0.29-0.96}$	$0.15^{+0.09+0.09}_{-0.07-0.08}$	$5.8^{+2.8+1.0}_{-1.1-1.0}$	10
10	750+	750+	9+	3+		$0.53^{+0.72+0.13}_{-0.31-0.13}$		$0.14^{+0.15+0.17}_{-0.13-0.01}$	$1.2^{+1.4+0.4}_{-0.4-0.3}$	3
11	300+	300+	7+	1+	329^{+12+21}_{-12-20}	381^{+10+22}_{-9-22}	194^{+8+38}_{-6-38}	69^{+1+29}_{-1-26}	973^{+23+57}_{-22-55}	896
12	750+	750+	5+	1+	$37.8^{+5.3+2.7}_{-4.5-2.5}$	$38.6^{+3.6+2.8}_{-3.1-2.8}$	$81.7^{+4.1+9.7}_{-3.6-9.6}$	$3.7^{+0.3+1.5}_{-0.3-1.3}$	$162^{+\overline{10}+\overline{11}}_{-8-10}$	151

2 Cut flow

This analysis is a multijet, missing transverse momentum and zero lepton analysis. The cut flows for the simplified model working points are given in Table 2, Table 3, and Table 4.

Table 2: Absolute cumulative efficiencies in % for each step of the event selection process for representative models of gluino pair production. The uncertainties are statistical. Uncertainties reported as 0.0 correspond to values less than 0.05%.

Select	tion	$pp \to \widetilde{g}\widetilde{g}, \widetilde{g} \to t\overline{t} \ \widetilde{\chi}_1^0$		$pp \to \widetilde{g}\widetilde{g}, \widetilde{g} \to b\overline{b}$	$\widetilde{\chi}_1^0$	$pp \to \widetilde{g}\widetilde{g}, \widetilde{g} \to q\overline{q} \ \widetilde{\chi}_1^0$		
		$m_{\widetilde{g}} = 1500 \text{GeV}$		$m_{\widetilde{q}} = 1500 \text{GeV}$		$m_{\widetilde{q}} = 1400 \text{GeV}$		
		$m_{\widetilde{\chi}_1^0} = 100 \mathrm{GeV}$		$m_{\widetilde{\chi}_1^0} = 100 \mathrm{GeV}$		$m_{\widetilde{\chi}_1^0} = 100 \mathrm{GeV}$		
$N_{ m jet}$ ≥ 2		100.0	0.0	100.0	0.0	100.00	0.0	
$H_{ m T}$	$> 300 \mathrm{GeV}$	100.0	0.0	100.0	0.0	100.0	0.0	
$H_{ m T}^{ m miss}$	$> 300 \mathrm{GeV}$	76.7	0.3	80.3	0.4	80.0	0.3	
$N_{ m muon}$	=0	48.6	0.4	79.8	0.4	80.0	0.3	
$N_{\text{isolated tracks}}^{(\text{muon})}$	=0	47.8	0.4	79.6	0.4	79.9	0.3	
Nolootron	=0	30.7	0.3	79.2	0.4	79.5	0.3	
$N_{\rm isolated\ tracks}^{ m (electron)}$	=0	29.7	0.3	78.7	0.4	79.1	0.3	
$N_{\text{isolated tracks}}^{(\text{hadron})}$	=0	28.3	0.3	78.0	0.4	78.3	0.3	
$\Delta\phi_{H_{ m T}^{ m miss}}$ $,j_1$	> 0.5	27.7	0.3	76.7	0.4	76.9	0.3	
$\Delta\phi_{H_{ m T}^{ m miss}}$ $,j_2$	> 0.5	25.2	0.3	69.2	0.5	69.8	0.3	
$\Delta\phi_{H_{ m T}^{ m miss}}$, j_3	> 0.3	23.7	0.3	63.9	0.5	64.4	0.3	
$\Delta\phi_{H_{ m T}^{ m miss}}$ $,j_4$	> 0.3	22.1	0.3	58.6	0.5	59.4	0.3	
Event qua	lity filter	21.8	0.3	57.7	0.5	58.7	0.3	
Select	tion	$pp \to \widetilde{g}\widetilde{g}, \widetilde{g} \to t\overline{t}$			$pp \to \widetilde{g}\widetilde{g}, \widetilde{g} \to b\overline{b} \ \widetilde{\chi}_1^0$		$\overline{\widetilde{\chi}_1^0}$	
			$m_{\widetilde{g}} = 1200 \text{GeV}$		$m_{\widetilde{g}} = 1000 \text{GeV}$		${ m GeV}$	
		$m_{\widetilde{\chi}_1^0} = 8000$	$m_{\widetilde{\chi}_1^0} = 800 \mathrm{GeV}$		$m_{\widetilde{\chi}_1^0} = 900 \text{GeV}$		GeV	
$N_{ m jet}$	≥ 2	100.0	0.0	92.5	0.1	99.6	0.0	
$H_{ m T}$.	$> 300 \mathrm{GeV}$	99.0	0.0	38.6	0.1	81.3	0.1	
$H_{ m T}^{ m miss}$	$> 300 \mathrm{GeV}$	14.9	0.1	14.1	01	19.1	0.1	
$N_{\rm muon}$	=0	9.6	0.1	13.9	0.1	19.1	0.1	
$N_{\rm isolated\ tracks}^{ m (muon)}$	= 0	9.2	0.1	13.6	0.1	19.1	0.1	
$N_{ m electron}$	=0	6.2	0.1	13.4	0.1	19.0	0.1	
$N_{\text{isolated tracks}}^{(\text{electron})}$	=0	5.8	0.1	13.1	0.1	18.8	0.1	
$N_{ m isolated\ tracks} \ N_{ m isolated\ tracks}^{ m (hadron)}$	=0	5.3	0.1	12.8	0.1	18.4	0.1	
$\Delta\phi_{H_{ m T}^{ m miss}}$ $,j_1$	> 0.5	5.3	0.1	12.8	0.1	18.4	0.1	
$\Delta\phi_{H_{ m T}^{ m miss}}$ $_{,j_2}$	> 0.5	4.5	0.1	11.4	0.1	16.9	0.1	
$\Delta\phi_{H_{ m T}^{ m miss}}$ $,j_3$	> 0.3	4.0	0.1	10.4	0.1	15.8	0.1	
$\Delta\phi_{H_{ m T}^{ m miss}}$ $,j_4$	> 0.3	3.6	0.1	9.6	0.1	14.8	0.1	
Event qua	lity filter	3.5	0.1	9.4	0.1	14.6	0.1	

Table 3: Absolute cumulative efficiencies in % for each step of the event selection process for representative models of squark pair production. The uncertainties are statistical. Uncertainties reported as 0.0 correspond to values less than 0.05%.

Select	$pp \to \widetilde{t} \ \overline{\widetilde{t}} \ , \widetilde{t} \to t \widetilde{\chi}_1^0$		$pp \to \widetilde{b} \ \overline{\widetilde{b}} \ , \widetilde{b} \ \to b \widetilde{\chi}_1^0$		$pp \to \widetilde{q} \ \overline{\widetilde{q}} \ , \widetilde{q} \ \to q \widetilde{\chi}_1^0$			
		$m_{\widetilde{t}} = 700 \text{GeV}$		$m_{\widetilde{h}} = 650 \text{GeV}$		$m_{\widetilde{q}} = 1000 \text{GeV}$		
		$m_{\widetilde{\chi}_1^0}^{\iota} = 50 \mathrm{GeV}$		$m_{\widetilde{\chi}_1^0} = 1 \mathrm{GeV}$		$m_{\widetilde{\chi}_1^0}^q = 100 \mathrm{GeV}$		
$N_{ m jet}$ ≥ 2		99.8	0.0	98.2	0.1	98.9	0.1	
$ {H_{ m T}}$	$> 300 \mathrm{GeV}$	96.4	0.1	95.4	0.1	98.6	0.1	
$H_{ m T}^{ m miss}$	$> 300 \mathrm{GeV}$	57.8	0.3	59.8	0.2	80.0	0.3	
$N_{ m muon}$	=0	46.6	0.3	59.6	0.2	79.9	0.3	
$N_{\rm isolated\ tracks}^{({ m muon})}$	=0	46.1	0.3	59.5	0.2	79.8	0.3	
$N_{\rm alastron}$	=0	37.4	0.3	59.2	0.2	79.6	0.3	
$N_{\rm isolated\ tracks}^{ m (electron)}$	=0	36.9	0.3	59.0	0.2	79.3	0.3	
$N_{\rm isolated\ tracks}^{ m (hadron)}$	=0	35.8	0.3	58.5	0.2	78.7	0.3	
$\Delta\phi_{H_{ m T}^{ m miss}}$, j_1	> 0.5	35.7	0.3	58.4	0.2	78.6	0.3	
$\Delta\phi_{H_{\mathrm{T}}^{\mathrm{miss}}}$ $, j_2$	> 0.5	34.0	0.3	55.7	0.2	74.5	0.3	
$\Delta\phi_{H_{ m T}^{ m miss}}$ $,j_3$	> 0.3	33.1	0.3	53.3	0.2	70.6	0.3	
$\Delta\phi_{H_{ m T}^{ m miss}}$ $,j_4$	> 0.3	31.8	0.3	51.6	0.2	67.9	0.3	
Event qua	lity filter	31.4	0.3	50.8	0.3	67.1	0.3	
Select	tion	$pp \to \widetilde{t} \ \overline{\widetilde{t}} \ , \widetilde{t} \ \to$	1	$pp \to \widetilde{b} \ \widetilde{b} \ , \widetilde{b} \ \to b \widetilde{\chi}_1^0$		$pp \to \widetilde{q} \ \overline{\widetilde{q}} \ , \widetilde{q} \ -$	$pp \to \widetilde{q} \ \overline{\widetilde{q}} \ , \widetilde{q} \ \to q \widetilde{\chi}_1^0$	
		$m_{\tilde{t}} = 300 \text{GeV}$		$m_{\tilde{b}} = 500 \text{GeV}$		$m_{\widetilde{q}} = 700$		
			$m_{\widetilde{\chi}_1^0} = 200 \text{GeV}$		$m_{\widetilde{\chi}_1^0} = 300 \mathrm{GeV}$		GeV	
$N_{ m jet}$	≥ 2	86.9	0.0	96.0	0.1	98.0	0.0	
$H_{ m T}$.	$> 300 \mathrm{GeV}$	23.3	0.0	68.0	0.1	91.3	0.1	
$H_{ m T}^{ m miss}$	$> 300 \mathrm{GeV}$	2.84	0.0	15.6	0.1	43.8	0.1	
$N_{ m muon}$	=0	2.16	0.0	15.6	0.1	43.8	0.1	
$N_{\rm isolated\ tracks}^{(m muon)}$	=0	2.10	0.0	15.5	0.1	43.7	0.1	
$N_{ m electron}$	= 0	1.60	0.0	15.4	0.1	43.5	0.1	
$N_{\rm isolated\ tracks}^{ m (electron)}$	=0	1.52	0.0	15.3	0.1	43.4	0.1	
$N_{\rm isolated\ tracks}^{ m (hadron)}$	=0	1.41	0.0	15.2	0.1	43.0	0.1	
$\Delta \phi_{H_{\mathrm{T}}^{\mathrm{miss}},j_1}$	> 0.5	1.40	0.0	15.1	0.1	42.9	0.1	
$\Delta\phi_{H_{ m T}^{ m miss}}$, j_2	> 0.5	1.03	0.0	14.1	0.1	41.1	0.1	
$\Delta\phi_{H_{ m T}^{ m miss}}$, j_3	> 0.3	0.85	0.0	13.5	0.1	39.6	0.1	
$\Delta\phi_{H_{ m T}^{ m miss}}$, j_4	> 0.3	0.73	0.0	13.1	0.1	38.4	0.1	
Event qua	lity filter	0.72	0.0	12.9	0.1	37.9	0.1	

Table 4: Absolute cumulative efficiencies in % for additional representative models of gluino pair production. The uncertainties are statistical. Uncertainties reported as 0.0 correspond to values less than 0.05%.

Select	ion	$pp \to \widetilde{g}\widetilde{g}, \widetilde{g} \to t\overline{b} W^{*-}\widetilde{\chi}_1^0$		$pp \to \widetilde{g}\widetilde{g}, \widetilde{g} \to q\overline{q} \ V\widetilde{\chi}_1^0$		$pp \to \widetilde{g}\widetilde{g}, \widetilde{g} \to t\overline{b} W^{*-}\widetilde{\chi}_1^0$		$pp \rightarrow$
		$m_{\widetilde{g}} = 1500 \mathrm{GeV}$		$m_{\widetilde{g}} = 1400 \mathrm{G}$	$m_{\widetilde{q}} = 1400 \text{GeV}$		$m_{\widetilde{q}} = 1100 \mathrm{GeV}$	
		$m_{\widetilde{\chi}_1^0} = 100$	$m_{\widetilde{\chi}_{1}^{0}} = 1000$	GeV	$m_{\widetilde{\chi}_1^0} = 700 \mathrm{GeV}$			
$N_{ m jet}$	≥ 2	100.0	0.0	100.0	0.0	100.0	0.0	
$H_{ m T}$	$> 300 \mathrm{GeV}$	100.0	0.0	100.0	0.0	98.5	0.1	
$H_{ m T}^{ m miss}$	$> 300 \mathrm{GeV}$	77.4	0.5	73.3	0.3	31.6	0.2	
$N_{ m muon}$	=0	56.0	0.5	61.4	0.4	25.5	0.2	
$N_{\rm isolated\ tracks}^{({ m muon})}$	=0	53.0	0.5	61.1	0.4	24.7	0.2	
$N_{\rm electron}$	=0	39.7	0.5	50.0	0.4	19.9	0.2	
$N_{\text{isolated tracks}}^{(\text{electron})}$	=0	36.8	0.5	49.3	0.4	19.1	0.2	
$N_{\text{isolated tracks}}^{(\text{hadron})}$	=0	34.8	0.5	47.7	0.4	18.4	0.2	
$\Delta\phi_{H_{ m T}^{ m miss}}$ $,j_1$	> 0.5	34.0	0.5	46.6	0.4	18.3	0.2	
$\Delta\phi_{H_{ m T}^{ m miss}}$, j_2	> 0.5	30.4	0.5	42.2	0.4	17.1	0.2	
$\Delta\phi_{H_{ m T}^{ m miss}}$ $,j_3$	> 0.3	28.0	0.5	39.5	0.4	16.2	0.2	
$\Delta\phi_{H_{ m T}^{ m miss}}$, j_4	> 0.3	25.9	0.5	37.1	0.4	15.1	0.2	
Event qual	lity filter	25.7	0.5	36.6	0.4	15.0	0.2	
				'		'	ı	1

3 Distributions of observables

In Figure 4 some kinematic distributions are shown.

Figure 4: Distributions of (a) $H_{\rm T}$, (b) $H_{\rm T}^{\rm miss}$, (c) the number of b-tagged jets, and (d) the number of jets from five representative gluino pair production signal models with $m_{\widetilde{g}} \gg m_{\widetilde{\chi}_1^0}$ after the baseline selection. Each plot ignores the baseline requirement (if any) for its respective variable. The last bin in each plot contains the overflow events. Only statistical uncertainties are shown.

Appendices

A Pythia 6.4 settings

The following settings in Pythia 6.4 as used in MadGraph 1.5.12 were read from an external card:

```
!... pythia_card.dat
!... Parton showering on or off
     MSTP(61)=1
     MSTP(71) = 1
!... Fragmentation/hadronization on or off
     MSTJ(1)=1
!... Multiple interactions on or off
     MSTP(81)=1
!...Don't stop execution after 10 errors
     MSTU(21) = 1
!... Set pdf to cteq611:
     MSTP(51)=10042 ! structure function chosen (external PDF CTEQ6L1)
     MSTP(52)=2! work with LHAPDF
     LHAPATH=/path/to/lhapdf/PDFSets
!... More settings:
     MSTJ(22)=2! Decay those unstable particles
     PARJ(71)=10 . ! for which ctau 10 mm
     MSTP(33)=0 ! no K factors in hard cross sections
     MSTP(2)=1! which order running alphaS
     PARP(82)=1.921 ! pt cutoff for multiparton interactions
     PARP(89)=1800. ! sqrts for which PARP82 is set
     PARP(90)=0.227! Multiple interactions: rescaling power
     MSTP(96)=6! CR (color reconnection parameters)
     PARP(77) = 1.016! CR
     PARP(78) = 0.538 ! CR
     PARP(80) = 0.1! Prob. colored parton from BBR
     PARP(83)=0.356 ! Multiple interactions: matter distribution parameter
     PARP(84)=0.651 ! Multiple interactions: matter distribution parameter
     PARP(62) = 1.025! ISR cutoff
     MSTP(91)=1! Gaussian primordial kT
     PARP(93) = 10.0! primordial kT-max
     MSTP(81)=21! multiple parton interactions 1 is Pythia default
     MSTP(82)=4! Defines the multi-parton model
```

In the pythia program pythia.f, the following settings were used:

```
!... pythia.f
```

```
C... Model, process
        CALL PYGIVE ('MSEL=0')
        CALL PYGIVE ('MSUB(186)=1') ! gg->QQbarA (MSSM)
        CALL PYGIVE ('KFPR(186,2) = 5') ! Q = b
C... Model params
             IMSS(4) = 2.
                              ! masses fixed by user',
             RMSS(5) = 30.
                             ! tan beta',
             RMSS(19) = 30. ! m_A',
             RMSS(1) = 100.
                             ! M1',
             RMSS(2) = 200.
                            ! M2',
             RMSS(3) = 800.
                            ! Mg',
                            ! mu',
             RMSS(4) = 200.
             RMSS(6) = 1000.
                              ! MS',
             RMSS(7) = 1000.
                              ! MS'
             RMSS(8) = 1000.
                              ! MS'.
             RMSS(9) = 1000.
             RMSS(10) = 1000.
                              ! MS',
             RMSS(11) = 1000.
                               ! MS'.
             RMSS(12) = 1000.
                               ! MS',
             RMSS(13) = 1000.
                               ! MS'.
             RMSS(14) = 1000.
                               ! MS',
             RMSS(15) = 2000.
                               ! Ab'
             RMSS(16) = 2000.
                               ! At',
             RMSS(17) = 2000.
                               ! Atau',
             CALL PYGIVE ('PMAS(36,1) = 30.')
C... Switch on decay of A -> mu+mu-:
             CALL PYGIVE ('MDME(429,1)=1') ! decay to mu+mu-',
C... Switch off all other decays:
             CALL PYGIVE ('MDME(420,1)=0')
                                             ! Higgs (H) decay into ddbar',
             CALL PYGIVE ('MDME(421,1)=0')
             CALL PYGIVE ('MDME(422,1)=0')
             CALL PYGIVE ('MDME(423,1)=0')
             CALL PYGIVE ('MDME(424,1)=0')
             CALL PYGIVE ('MDME(425,1)=0')
             CALL PYGIVE ('MDME(426,1)=0')
             CALL PYGIVE ('MDME(427,1)=0')
             CALL PYGIVE ('MDME(428,1)=0')
C... and these as well:
             CALL PYGIVE ('MDME(430,1)=0')
             CALL PYGIVE ('MDME(431,1)=0')
             CALL PYGIVE (^{\prime}MDME(^{\prime}502,1)=0^{\prime})
```

The dots indicate the missing incrementing numbers from 432 up to and including 501.

B delphesMA5tune settings

In MadAnalysis 5, to run DelphesMA5tune the following settings were used:

```
ma5>set main.fastsim.package = delphesMA5tune
```

and

```
ma5>set main.fastsim.detector = cms
```

The DelphesMA5tune card used for this analysis can be found on the MadAnalysis Physics Analysis Database page. It was adjusted to have an appropriate b-tag efficiency:

```
# b-tagging
module BTagging BTagging {
  set PartonInputArray Delphes/partons
  set JetInputArray JetEnergyScale/jets
  set BitNumber 0
 set DeltaR 0.5
  set PartonPTMin 1.0
  set PartonEtaMax 2.5
 # default efficiency formula (misidentification rate)
 add EfficiencyFormula \{0\} \{0.01\}
 # efficiency formula for c-jets (misidentification rate)
 add EfficiencyFormula {4} {0.20}
 # working point 60%
 # obtained from CMS-SUS-13-013, Section 9
 # efficiency formula for b-jets
 add EfficiencyFormula {5} {
                             (pt < 120.) * ((1.55e-6)*pt^3 + (-4.26e-4)*pt^2 +
                                (0.0391)*pt + (-0.496)) + 
                             (pt >= 120.) * ((-3.26e-4)*pt + 0.7681)
```