

Report 17.09.20

17/09/2020

Matteo Perotti
Luca Bertaccini
Pasquale Davide Schiavone
Stefan Mach

Professor Luca Benini Integrated Systems Laboratory ETH Zürich

Tiny Floating-Point Unit

- Microcode
- PAPER: FP comparison

SNITCH

- Snitch RISC-V Processing Element with Streaming Registers (RV32[I|E]MAFDZifenceiZicsrXssrXfrep)
 - Support for FP32 and FP64
 - 32-bit INT register file
 - 64-bit FP register file
- Snitch paper: https://arxiv.org/abs/2002.10143
- "A general-purpose, single-stage, single-issue core tuned for utmost energy efficiency. Aiming to maximize the compute/control ratio (making the FPU the dominant part of the design) mitigating the effects of deep pipelines and dynamic scheduling"

SNITCH

Tiny FPU

Snitch

Compile with F/D extensions enabled (e.g. fadd.s f1,f2,f3)

Modify the decoder to forward the instructions to the Microcode module

- FSM generates the ALU operations needed to compute FP instructions on an INT datapath and forwards the inputs to the INT datapath
- The FSM has internal registers ("shadow register") to store the operands and the partial results

Microcoded instructions:

- Comparison: FEQ.S, FLT.S, FLE.S
- FADD.S, FSUB.S
- FMUL.S

Shadow registers:

- Three 32-bit registers: op_a/op_b/partial_result (rounding)
- FSM state
- Tag: 5 bits
- Flags to handle denormals: 3 bits
- 4 bits more for FADD.S

	MICROCODE	SEGGER SW EMULATION (avg)	TINY FPU
FEQ_S	2 cycles	10 cycles	2 cycles
FLT_S	5 cycles (max)	11 cycles	2 cycles
FLE_S	5 cycles (max)	10 cycles	2 cycles
FMUL_S	18 cycles	39.3 cycles	18 cycles
FADD_S	~30 cycles	49.5 cycles	10-13 cycles
FSUB_S	FADD_S latency + 1 cycle	62.2 cycles	10-13 cycles

DATE21 Paper

Comparison:

- 1. State-of-the-Art FPU
- 2. Tiny FPU
- 3. Optimized SW library
- 4. libgcc

The microcode implementation is still ongoing, we will not include it in the paper

DATE21: Paper content

- Main focus of the paper: Energy efficiency
- Benchmark: 20x20 MATMUL + IDLE time
- I.e. we need to periodically compute a matmul. Changing the period will change the idle time

ETH Zürich | 10 |

Next steps

- Complete the paper
- Complete the microcode FP32 implementations (FMADD.S)
- Find area cost of the microcode