29/3/12 MAIDIA

Gradients and Local Extrema

$$\frac{\partial f}{\partial t} = \frac{\partial x}{\partial t} = \frac{\partial x}{\partial t} = \frac{\partial x}{\partial t}$$

$$\vec{v} = (a, b, c) \qquad \frac{\vec{v}}{|\vec{v}|} = \left(\frac{a}{\sqrt{a^2 + b^2 + c^2}}, \frac{b}{\sqrt{a^2}}, \frac{c}{\sqrt{a^2}}\right)$$

Theorem

$$= \left(\frac{9x}{9t}, \frac{9x}{3t}, \frac{9x}{3t}\right) \cdot \frac{11011}{2t}$$

$$= \left(\frac{9x}{9t}, \frac{9x}{3t}, \frac{9x}{3t}\right) \cdot \frac{11011}{2t}$$

Definition Let f(x,y,z) be a 3-variable function with $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$ exist -then (noblo), $\nabla f = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z})$ us the gradient of C $f(x,y) = \nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$

Example 1
$$U = x^2 e^3 \pm 0 + (1,0,1)$$
, direction (1,0,1)

white $\frac{3f}{3x} = 2x e^3 \pm \frac{3f}{9y} = x$ (2,1,1)

 $\frac{3f}{3t} = x^2 e^9$

of (1,01) $\nabla x |_{(1,0,1)} = (2,1,1)$
 $\frac{3}{11511} = \left(\frac{1}{12}, \frac{1}{12}, 0\right)$
 $\frac{3u}{3v} = 2x \frac{1}{12} + 1x \frac{1}{12} + 1x 0 = \frac{3\sqrt{2}}{2}$
 $f(x,y)$

f(x) $f'(x) = 0$ f(x.) does not exists

 $f''(x) = 0$ local maximum (4)

 $f''(x) = 0$ local maximum (4)

 $f''(x) = 0$ neither

local minimums

local max or local min -> local extreme point

Theorem: If alterns local extreme at
$$(x_0, y_0)$$
, and

 $\frac{\partial f}{\partial x}|_{(x_0, y_0)}$, $\frac{\partial f}{\partial y}|_{(x_0, y_0)}$ exist then

 $\nabla f|_{(x_0, y_0)} = 0$

Theorem:

If has a 2nd continuous deruntive,

 $A \cdot \frac{\partial^2 f}{\partial x^2}$, $B = \frac{\partial^2 f}{\partial y^2}$, then if $A \in B^2 > 0$

If obtains local man

 $A \cdot 0$ lo

$$\frac{3y}{3y^{2}} = (-2)(4y - y^{2}) \qquad \frac{3^{2}f}{9x^{2}y^{2}} = (6 - 2x)(4 - 2y) \qquad \frac{3^{2}f}{9x^{2}y^{2}} = (6 - 2x^{2})(4 - 2y) \qquad \text{B}$$

$$\frac{3^{2}f}{3y^{2}} = (6x - x^{2})(-2) \qquad (AC - B^{2})$$

(3,2)
$$AC-B^2 = -t(-18) - 0^2 > 0$$

 $A = -8 < 0$ local max
(0,0) $AC-B^2 = 0$
(0,4) $AC-B^2 = 0 \times 0 - (G(-4))^2 < 0$ not extreme
(6,0) $AC-B^2 = 0 \times 0 - (-6(4))^2$ (0 not extreme
(6,4) $AC-B^2 = -10 \times 0 - (-6(4))^2$ (0 not extreme

fise y, x near o

80 (0,0) is not an extreme