$9_{36} (K9a_9)$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -u^{19} - u^{18} + \dots + b - 1, -u^{19} + 3u^{18} + \dots + a + 2u, u^{20} - 2u^{19} + \dots + 2u + 1 \rangle$$

 $I_2^u = \langle b - 1, a + u + 1, u^2 + u + 1 \rangle$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 22 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I. \\ I_1^u = \langle -u^{19} - u^{18} + \dots + b - 1, \ -u^{19} + 3u^{18} + \dots + a + 2u, \ u^{20} - 2u^{19} + \dots + 2u + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{3} \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{19} - 3u^{18} + \dots + u^{2} - 2u \\ u^{19} + u^{18} + \dots + 2u + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{19} - u^{18} + \dots + 3u + 1 \\ u^{18} - u^{17} + \dots + u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{19} - 2u^{18} + \dots + u + 1 \\ u^{18} - u^{17} + \dots + 2u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{19} - 2u^{18} + \dots + u + 1 \\ u^{18} - u^{17} + \dots + 2u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{19} - 2u^{18} + \dots + u + 1 \\ u^{18} - u^{17} + \dots + 2u + 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $u^{19} 5u^{18} + 9u^{17} 18u^{16} + 24u^{15} 43u^{14} + 43u^{13} 64u^{12} + 51u^{11} 69u^{10} + 27u^9 40u^8 10u^7 4u^6 38u^5 + 14u^4 37u^3 + 11u^2 9u + 6$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_7, c_9	$u^{20} + 3u^{19} + \dots - u - 1$
c_2,c_5	$u^{20} + 2u^{19} + \dots - 2u + 1$
c_{3}, c_{6}	$u^{20} + 6u^{19} + \dots - 2u + 1$
c_4, c_8	$u^{20} - u^{19} + \dots + 8u - 4$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_7, c_9	$y^{20} - 21y^{19} + \dots - 13y + 1$
c_2, c_5	$y^{20} + 6y^{19} + \dots - 2y + 1$
c_{3}, c_{6}	$y^{20} + 18y^{19} + \dots - 86y + 1$
c_4, c_8	$y^{20} - 15y^{19} + \dots - 24y + 16$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.584423 + 0.858889I		
a = 0.243370 + 0.067189I	0.46628 - 2.30782I	1.88733 + 3.58910I
b = 0.199938 - 0.169761I		
u = -0.584423 - 0.858889I		
a = 0.243370 - 0.067189I	0.46628 + 2.30782I	1.88733 - 3.58910I
b = 0.199938 + 0.169761I		
u = -0.178424 + 0.888583I		
a = 0.314733 - 0.630728I	-1.44173 - 1.82256I	0.87459 + 5.12436I
b = -0.504299 - 0.392204I		
u = -0.178424 - 0.888583I		
a = 0.314733 + 0.630728I	-1.44173 + 1.82256I	0.87459 - 5.12436I
b = -0.504299 + 0.392204I		
u = 0.792511 + 0.823295I		
a = 1.20713 + 1.81447I	4.53977 + 0.19167I	9.73570 + 0.22109I
b = 0.53718 - 2.43181I		
u = 0.792511 - 0.823295I		
a = 1.20713 - 1.81447I	4.53977 - 0.19167I	9.73570 - 0.22109I
b = 0.53718 + 2.43181I		
u = -0.840464		
a = -0.636029	7.40368	12.6680
b = -0.534560		
u = -0.303359 + 1.135910I		
a = -0.484298 + 0.279243I	3.57238 - 3.88098I	8.06498 + 4.02252I
b = 0.170280 + 0.634831I		
u = -0.303359 - 1.135910I		
a = -0.484298 - 0.279243I	3.57238 + 3.88098I	8.06498 - 4.02252I
b = 0.170280 - 0.634831I		
u = 0.914869 + 0.748366I		
a = -0.87489 - 1.67983I	11.87210 - 3.56941I	11.71587 + 1.00735I
b = -0.45672 + 2.19157I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.914869 - 0.748366I		
a = -0.87489 + 1.67983I	11.87210 + 3.56941I	11.71587 - 1.00735I
b = -0.45672 - 2.19157I		
u = -0.791805 + 0.888234I		
a = -0.389342 - 0.061647I	6.53428 - 2.97363I	9.92336 + 2.68538I
b = -0.363039 + 0.297014I		
u = -0.791805 - 0.888234I		
a = -0.389342 + 0.061647I	6.53428 + 2.97363I	9.92336 - 2.68538I
b = -0.363039 - 0.297014I		
u = 0.764902 + 0.939137I		
a = -1.51148 - 1.52126I	4.18332 + 5.67427I	8.59597 - 5.66395I
b = -0.27254 + 2.58310I		
u = 0.764902 - 0.939137I		
a = -1.51148 + 1.52126I	4.18332 - 5.67427I	8.59597 + 5.66395I
b = -0.27254 - 2.58310I		
u = 0.795971 + 1.032250I		
a = 1.43808 + 1.21025I	10.9814 + 9.8846I	10.38252 - 5.77638I
b = 0.10460 - 2.44777I		
u = 0.795971 - 1.032250I		
a = 1.43808 - 1.21025I	10.9814 - 9.8846I	10.38252 + 5.77638I
b = 0.10460 + 2.44777I		
u = 0.175936 + 0.650679I		
a = -0.26288 + 1.68135I	1.21872 + 0.86143I	5.55325 + 0.99952I
b = 1.140270 - 0.124755I		
u = 0.175936 - 0.650679I		
a = -0.26288 - 1.68135I	1.21872 - 0.86143I	5.55325 - 0.99952I
b = 1.140270 + 0.124755I		
u = -0.331892		
a = 1.27519	0.859562	11.8650
b = 0.423225		

II.
$$I_2^u = \langle b-1, \ a+u+1, \ u^2+u+1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ u+1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ u+1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u-1 \\ 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u-1 \\ 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 4u + 11

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1,c_9	$(u-1)^2$
c_2, c_3, c_6	$u^2 + u + 1$
c_4, c_8	u^2
<i>C</i> 5	u^2-u+1
c ₇	$(u+1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_7, c_9	$(y-1)^2$
$c_2, c_3, c_5 \\ c_6$	$y^2 + y + 1$
c_4, c_8	y^2

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 + 0.866025I		
a = -0.500000 - 0.866025I	1.64493 - 2.02988I	9.00000 + 3.46410I
b = 1.00000		
u = -0.500000 - 0.866025I		
a = -0.500000 + 0.866025I	1.64493 + 2.02988I	9.00000 - 3.46410I
b = 1.00000		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_9	$((u-1)^2)(u^{20}+3u^{19}+\cdots-u-1)$
c_2	$(u^2 + u + 1)(u^{20} + 2u^{19} + \dots - 2u + 1)$
c_3, c_6	$(u^2 + u + 1)(u^{20} + 6u^{19} + \dots - 2u + 1)$
c_4, c_8	$u^2(u^{20} - u^{19} + \dots + 8u - 4)$
c_5	$(u^2 - u + 1)(u^{20} + 2u^{19} + \dots - 2u + 1)$
c_7	$((u+1)^2)(u^{20}+3u^{19}+\cdots-u-1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_7, c_9	$((y-1)^2)(y^{20} - 21y^{19} + \dots - 13y + 1)$
c_2,c_5	$(y^2 + y + 1)(y^{20} + 6y^{19} + \dots - 2y + 1)$
c_3, c_6	$(y^2 + y + 1)(y^{20} + 18y^{19} + \dots - 86y + 1)$
c_4, c_8	$y^2(y^{20} - 15y^{19} + \dots - 24y + 16)$