CWRU DSCI351-451: Week06a Foundations of Inference

Roger H. French, JiQi Liu 25 September, 2018

Contents

6.1.1.1	Reading, Homeworks, Projects, SemProjects					 		1
6.1.1.2	Textbooks					 		1
6.1.1.3	Syllabus							3
6.1.1.4	Major Points for Distributions					 		3
	1.1.4.1 Normal expectations							3
6.	1.1.4.2 Skewness					 		3
6.	1.1.4.3 Convenient measures for normal distributions	s .				 		3
6.1.1.5	Next we'll see the following					 		3
6.	1.1.5.1 Central Limit Theorem					 		3
6.	1.1.5.2 Hypothesis Testing		 			 		3
6.	1.1.5.3 Trials and Errors		 			 		3
6.1.1.6	Cee-lo a good, no house advantage game					 		4
6.1.1.7	Cee-lo dice game					 		4
6.	1.1.7.1 Cee-lo without a bank (winner take all)					 		4
6.	1.1.7.2 The combinations in Cee-lo					 		4
6.	1.1.7.3 Probabilities[edit] $\dots \dots \dots \dots$					 		5
6.	1.1.7.4 Rolling the Dice on a Warm Night					 		5
6.1.1.8	Links		 			 		5

6.1.1.1 Reading, Homeworks, Projects, SemProjects

- Readings:
 - R4DS 7-8 Wrangle: Tibbles and readr for today
 - R4DS 9-16 More tidyverse Wrangling and then Programming for Thursday
- Homeworks
- Data Science Projects:
 - Proj. 1 Due
- 451 SemProjects:
- Friday Comm. Hour

_

6.1.1.2 Textbooks

- Peng: R Programming for Data Science
- Peng: Exploratory Data Analysis with R
- Open Intro Stats, v3
- Wickham: R for Data Science
- Hastie: Intro to Statistical Learning with R

Day:Date	Foundation	Practicum	Reading	Due		
w1a:Tu:8/28/18	ODS Tool Chain	R, Rstudio, Git				
w1b:Th:8/30/18	Setup ODS Tool Chain	Bash, Git, Twitter	PRP4-33	HW1		
w2a:Tu:9/4/18	What is Data Sci- ence	OIS:Intro2R	PRP35-64	HW1 Due		
w2b:Th:9/6/18	Data Analytic Style, Git	451SempProj, Git	PRP65-93, OI1-1.9	HW2		
w3a:Tu:9/11/18*	Struct. of Data Analysis	ISLR:Intro2R, Loops	PRP94-116, OIS3	HW2 Due		
w3b:Th:9/13/18*	OIS3 Intro to Data	GapMinder, Dplyr, Magrittr				
w4a:Tu:9/18/18	OIS3, Intro2Data part 2, Data	EDA: PET Degr.	EDA1-31	Proj1		
w4b:Th:9/20/18	Hypothesis Testing	GGPlot2 Tutorial	EDA32-58	HW3		
w5a:Tu:9/25/18	Distributions	SemProj RepOut1	R4DS1-3	HW3 Due		
w5b:Th:9/27/18	Wickham DSCI in Tidyverse	SemProj RepOut1	R4DS4-6	SemProj1,		
w6a:Tu:10/2/18	OIS Found. of Infer- ence	Inference	R4DS7-8	Proj1 Due		
w6b:Th:10/4/18		Midterm Review	R4DS9-16 Wrangle			
w7a:Tu:10/9/18*	Summ. Stats & Vis.	Data Wrangling				
w7b:Th:10/11/18*	MIDTERM EXAM			HW4		
w8a:Tu:10/16/18	Numerical Inference	Tidy Check Explore	OIS4	HW4 Due		
w8b:Th:10/18/18	Algorithms, Models	Pairwise Corr. Plots	OIS5.1-4	Proj 2, HW5		
Tu:10/23	CWRU FALL BREAK		R4DS17-21 Program			
w9b:Th:10/25/18	Categorical Infer	Predictive Analytics	OIS6.1,2			
w10a:Tu:10/30/18	SemProj	SemProj	OIS7	SemProj2 HW5 Du		
w10b:Th:11/1/18	Lin. Regr.	Lin. Regr.	OIS8	Proj.2 due		
w11a:Tu:11/6/18	Inf. for Regression	Curse of Dim.	OIS8	Proj 3		
w11b:Th:11/8/18	Model Accuracy	Training Testing	ISLR3	HW6		
w12a:Tu:11/13/18	Multiple Regr.	Mul. Regr. & Pred.	ISLR4	HW6 due		
w12b:Th:11/15/18	Classification		ISLR6			
w13a:Tu:11/20/18	Classification	Clustering	ISLR5	Proj 3 due		
Th:11/22/18	THANKSGIVING			Proj 4		
w14a:Tu:11/27/18	Big Data	Hadoop				
w14b:Th:11/29/18	InfoSec	VerisDB		SemProj3		
w15a:Tu:12/4/18	SemProj Re-					
w15b:Th:12/6/18	portOut3 SemProj Re- portOut3			Proj4		
	FINAL EXAM	Monday12/17, 12:00-3:00pm	Olin 313	SemProj4 due		

Figure 1: DSCI351-451 Syllabus

6.1.1.3 Syllabus

Open Intro Stats, v3

6.1.1.4 Major Points for Distributions

- Normal distribution is the basis of statistical expectations
- Geometric and Binomial Distributions are a form of expectations
- For two different way of posing questions
- Geometric: # of trials until success
- Binomial: P(given # of successes in given # of trials)

6.1.1.4.1 Normal expectations

- pnorm, gives us the expected probability of a given observed sample value
- for a given normal distribution

6.1.1.4.2 Skewness

- normal distribution is symmetrical
- if you have skewness (real data is "never" normal)
- check if a variable transformation can reduce skewness
- if so, then you statitstical analysis will be better

6.1.1.4.3 Convenient measures for normal distributions

- normalize the mean and standard deviation
- using Z scores, so that you can cross-compare sample and population results
- and check your normal expectations against your data
- and
- All of these normal distribution concepts
- Are the foundation of statistical analysis
- And of defining statistical significance
- You'll be using them in HWs, Projs. and SemProjs.

6.1.1.5 Next we'll see the following

6.1.1.5.1 Central Limit Theorem

- -> With Standard Errors (SE)
- \bullet -> and Confidence Intervals

6.1.1.5.2 Hypothesis Testing

- -> test statistic
- \rightarrow p values

6.1.1.5.3 Trials and Errors

- -> Type I errors
- -> Type II errors

6.1.1.6 Cee-lo a good, no house advantage game

- Cee-lo Dice Game
- Cee-lo Probabilities
- Rules and probabilities in readings cee-lo.txt
- Inference (Predicting the Future)

6.1.1.7 Cee-lo dice game

6.1.1.7.1 Cee-lo without a bank (winner take all)

In this version of the game,

• each round involves two or more players of equal status.

A bet amount is agreed upon and

• each player puts that amount in the pile or pot.

Each player then has to roll all three dice at once and

• must continue until a recognized combination is rolled.

Whichever player rolls the best combination

• wins the entire pot, and a new round begins.

In cases where two or more players tie for the best combination,

• they must have a shoot out to determine a single winner.

6.1.1.7.2 The combinations in Cee-lo

The combinations are similar to those described above, and can be ranked from best to worst as:

- 4-5-6
 - The highest possible roll. If you roll 4-5-6, you automatically win.
- Trips
 - Rolling three of the same number is known as rolling "trips".
 - Higher trips beat lower trips,
 - so 4-4-4 is better than * 3-3-3.
 - Any trips beats any established point.
- Point
 - Rolling a pair, and another number,
 - establishes the singleton as a "point".
 - A higher point beats a lower point,
 - so 2-2-6 is better than 5-5-2.
- 1-2-3
 - The lowest possible roll.
 - If you roll 1-2-3, you automatically lose.
- Any other roll is a meaningless combination and
 - must be rerolled until one of the above combinations occurs.

6.1.1.7.3 Probabilities[edit]

- With three six-sided dice there are $6 \times 6 \times 6$ or 216 possible permutations.
 - -4-5-6:6/216 = 2.77777778% (Automatic Win)
 - Trips: 6/216 = 2.777777778%
 - Point: 90/216 = 41.66666667%
 - -1-2-3:6/216 = 2.777777778% (Automatic Loss)
 - Meaningless permutations: 108/216 = 50%

6.1.1.7.4 Rolling the Dice on a Warm Night

- Human mystical thinking
- And beware the bank

6.1.1.8 Links

Checkout the R documentation Project

• R Doc Project