

WRANGLE AND ANALYZE DATA

Wrangle Report

JUNE 19, 2019
5TH PROJECT
Udacity Data Analysis Nanodegree

Contents

1	. Abstract	2
2	. Introduction	2
3	. Gathering Data	3
4	Assessing Data	4
	4.1 Visual Assessment	4
	4.2 Programmatic Assessment	4
	4.3 Quality issues	4
	4.4 Tidiness issues	5
5	. Cleaning Data	5
	5.1 Storing Data	5
6	. References	5
Γ	Γables	
Fi	igure 1: Tweets Attributes	3
Fi	igure 2: Tweet Image Prediction Data	3

1. Abstract

A lot of data around the word some of those data aren't cleared, structured, or organized, based on **DOMO** site "Over 2.5 quintillion bytes of data are created every single day, and it's only going to grow from there. By 2020, it's estimated that 1.7MB of data will be created every second for every person on earth."[1].

In this project I will practice what I learned in data wrangling Udacity's Data Analysis Nanodegree program. The dataset that I will be wrangling is the tweet archive of Twitter user @dog_rates, also known as WeRateDogs.

2. Introduction

WeRateDogs is a Twitter account that rates people's dogs with a humorous comment about the dog. "These ratings almost always have a denominator of 10. The numerators, though? Almost always greater than 10. 11/10, 12/10, 13/10, etc. Why? Because "they're good dogs Brent." WeRateDogs has over 4 million followers and has received international media coverage." [2]. So, I will use those tweets (dataset) to wrangling data.

In this project the data wrangling, which consists of:

- Gathering data, download resources from deferent references.
- Assessing data, for quality and tidiness issues.
- Cleaning data, clean the quality and tidiness issues that identified in previous step.

The most tools, libraries and programming language used in this project are:

- Python
- Pandas Library
- Numpy Library
- Requests Library
- Tweepy Library
- Json Library
- Matplotlib Library
- Jupyter Notebook
- Twitter's API

3. Gathering Data

In this section I will talk about gathering data in detail.

Data was gathered are from three deferent sources:

1- The WeRateDogs Twitter archive file (.csv) was provided and downloadable file in the Resources. This file include attributes for each tweet which are tweet id, timestamp, text, rating numerator, rating denominator, name, dog stage etc (See Figure 1). Then save it in dataframe named archive_df

Figure 1: Tweets Attributes

2- The tweet image predictions file was downloaded programmatically by using Requests library. What breed of dog is present in each tweet according to a neural network. The file sored in dataframe named img_df. (See Figure 2)

tweet_id	jpg_url	img_num	p1	p1_conf	p1_dog	p2	p2_conf	p2_dog	p3	p3_conf	p3_dog
892177421306343426	https://pbs.twimg.com	1	Chihuahua	0.323581	TRUE	Pekinese	0.0906465	TRUE	papillon	0.0689569	TRUE
891815181378084864	https://pbs.twimg.com	1	Chihuahua	0.716012	TRUE	malamute	0.078253	TRUE	kelpie	0.0313789	TRUE
891689557279858688	https://pbs.twimg.com	1	paper_towel	0.170278	FALSE	Labrador_retriever	0.168086	TRUE	spatula	0.0408359	FALSE
891327558926688256	https://pbs.twimg.com	2	basset	0.555712	TRUE	English_springer	0.22577	TRUE	German_short-haired_pointer	0.175219	TRUE
891087950875897856	https://pbs.twimg.com	1	Chesapeake_Bay_retriever	0.425595	TRUE	Irish_terrier	0.116317	TRUE	Indian_elephant	0.0769022	FALSE
890971913173991426	https://pbs.twimg.com	1	Appenzeller	0.341703	TRUE	Border_collie	0.199287	TRUE	ice_lolly	0.193548	FALSE
890729181411237888	https://pbs.twimg.com	2	Pomeranian	0.566142	TRUE	Eskimo_dog	0.178406	TRUE	Pembroke	0.0765069	TRUE
890609185150312448	https://pbs.twimg.com	1	Irish_terrier	0.487574	TRUE	Irish_setter	0.193054	TRUE	Chesapeake_Bay_retriever	0.118184	TRUE
890240255349198849	https://pbs.twimg.com	1	Pembroke	0.511319	TRUE	Cardigan	0.451038	TRUE	Chihuahua	0.0292482	TRUE
890006608113172480	https://pbs.twimg.com	1	Samoyed	0.957979	TRUE	Pomeranian	0.0138835	TRUE	chow	0.00816748	TRUE
889880896479866881	https://pbs.twimg.com	1	French_bulldog	0.377417	TRUE	Labrador_retriever	0.151317	TRUE	muzzle	0.0829811	FALSE
889665388333682689	https://pbs.twimg.com	1	Pembroke	0.966327	TRUE	Cardigan	0.0273557	TRUE	basenji	0.00463323	TRUE
889638837579907072	https://pbs.twimg.com	1	French_bulldog	0.99165	TRUE	boxer	0.00212864	TRUE	Staffordshire_bullterrier	0.00149818	TRUE
889531135344209921	https://pbs.twima.com	1	golden retriever	0.953442	TRUE	Labrador retriever	0.0138341	TRUE	redbone	0.00795775	TRUE

Figure 2: Tweet Image Prediction Data

3- Twitters's API, to get tweets that in Twitter archive by using Python's Tweepy library, and adding favorite count and retweet count. Then save the file as JSON format named tweet_json.txt and read this file and store it in dataframe named tweets_df.

4. Assessing Data

Assess data visually and programmatically for quality and tidiness issues using pandas.

4.1 Visual Assessment

Once I opened twitter_archive_enhanced.csv I assessed the data as following:

- Quality: html tags in source column of twitter archive. Like
 Twitter for iPhone
- Quality: None values instead NaNs valus.

4.2 Programmatic Assessment

Assessment was performed using the following methods by panadas library:

head()
 taill()
 info()
 duplicated()
 count()
 isnull()

value_counts()

4.3 Quality issues

- archive df
 - o timestamp and retweeted_status_timestamp are object type instead of datetime.
 - o source is HTML format.
 - o There are records have more than one dog stage.
 - o name has missing values with "None" instead of NaN.
 - o doggo, floofer, pupper, and puppo have missing values with "None" instead of NaN
 - There are 181 retweeted tweets
 - There are many columns in this dataframe making it hard to read, and some will not be needed for analysis.
 - There are tweets has denominator grater than 10 and has numerators less than 10.
- tweets df
 - o There are 166 retweeted. Keep only original tweets.

- img_df
 - There are 2075 images, but archive_df contain 2335 tweets. there are 260 missing (maybe some of tweets doesn't contain image).
 - o There are 66 images are duplicated.

4.4 Tidiness issues

- doggo, floofer, pupper, and puppo are unique columns instead one column "dog_stage"
- Merge all the 3 dataframe to one dataframe based on tweet_id.

5. Cleaning Data

This part of the data wrangling was performed in three stages: Define, Code and Test. In the first I made a copy for all the dataframes.

During the cleaning process I used the following methods and tools:

• merge()	to_datetime()	value_counts()
• copy()	• count()	• apply()
• info()	• replace()	• head()
• drop()	• Queries	• Loop
• np.isnan	• np.nan	
• astype()	• columns	

5.1 Storing Data

After I clean the data, now we have cleaned and structure data. I stored it into dataframe named f_df (final dataframe) then I save as csv by panada's to_csv() function and named as twitter_archive_master.

6. References

- 1- https://www.domo.com/solution/data-never-sleeps-6
- 2- Udacity: Data Wrangling section > Wrangle and Analyze Data Project > Project Overview