Lecture 23. Gaussian Mixture Models.

COMP90051 Statistical Machine Learning

Lecturer: Ben Rubinstein

This lecture

- Unsupervised learning
 - Diversity of problems
 - * k-means refresher
- Gaussian mixture model (GMM)
 - A probabilistic approach to clustering
 - * The GMM model
 - GMM clustering as an optimisation problem
- Starting Expectation-Maximisation (EM) algorithm

Unsupervised Learning

A large branch of ML that concerns with learning the structure of the data in the absence of labels

Main learning paradigms so far

- Supervised learning: Overarching aim is making predictions from data
- We studied methods in the context of this aim: e.g. linear/logistic regression, DNN, SVM
- We had instances $x_i \in \mathbb{R}^m$, i = 1, ..., n and corresponding labels y_i for model fitting, aiming to predict labels for new instances
- Can be viewed as a function approximation problem, but with a big caveat: ability to generalise is critical
- Bandits: a setting of partial supervision where subroutine in contextual bandits requires supervised learning

Now: Unsupervised learning

- In unsupervised learning, there is no dedicated variable called a "label"
- Instead, we just have a set of points $x_i \in \mathbb{R}^m$, i = 1, ..., n
- Aim of unsupervised learning is to explore the structure (patterns, regularities) of data

The aim of "exploring the structure" is vague

Unsupervised learning tasks

- Diversity of tasks fall into unsupervised learning category
 - * Clustering (now)
 - Dimensionality reduction (autoencoders)
 - Learning parameters of probabilistic models (before/now)
- Applications and related tasks are numerous :
 - * Market basket analysis. E.g., use supermarket transaction logs to find items that are frequently purchased together
 - Outlier detection. E.g., find potentially fraudulent credit card transactions
 - Often unsupervised tasks in (supervised) ML pipelines

(Refresher?) k-means clustering

- 1. Initialisation: choose k cluster centroids randomly
- 2. <u>Update</u>:
 - a) Assign points to the nearest* centroid
 - b) Compute centroids under the current assignment
- 3. <u>Termination</u>: if no change then stop
- 4. Go to Step 2
- *Distance represented by choice of metric typically L_2 Still one of the most popular data mining algorithms.

Refresher: k-means clustering

Requires specifying the number of clusters in advance

Measures
"dissimilarity" using
Euclidean distance

Finds "spherical" clusters

An iterative optimization procedure

Data: Old Faithful Geyser Data: waiting time between eruptions and the duration of eruptions

Figure: Bishop, Section 9.1

Mini Summary

- Unsupervised learning
 - * Face value: drop labels from training. That's it
 - * Actually: catch-all for many many ML tasks, even as steps in supervised learning pipelines
- Refresher: k-means
 - Import next as we introduce GMMs

Next: The Gaussian mixture model

Gaussian Mixture Model

A probabilistic view of clustering. Simple example of a latent variable model.

Modelling uncertainty in data clustering

- k-means clustering assigns each point to exactly one cluster
 - Does this make sense for points that are between two clusters?
 - Clustering is often not well defined to begin with!
- Like k-means, a probabilistic mixture model requires the user to choose the number of clusters in advance
- Unlike k-means, the probabilistic model grants us power to express uncertainly about the origin of each point
 - * Each point originates from cluster c with probability w_c , c=1,...,k
- That is, each point still originates from one particular cluster (aka component), but we are not sure from which one
- Next
 - * Clustering becomes model fitting in probabilistic sense. Philosophically satisfying.
 - Individual components modelled as Gaussians
 - Fitting illustrates general Expectation Maximization (EM) algorithm

Clustering: probabilistic model

Data points x_i are independent and identically distributed (i.i.d.) samples from a mixture of K distributions (components)

Each component in the mixture is what we call a cluster

In principle, we can adopt any probability distribution for the components, however, the normal distribution is a common modelling choice \rightarrow Gaussian Mixture Model

Normal (aka Gaussian) distribution

Recall that a 1D Gaussian is

$$\mathcal{N}(x|\mu,\sigma) \equiv \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

And a d-dimensional Gaussian is

$$\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) \equiv (2\pi)^{-\frac{d}{2}}|\boldsymbol{\Sigma}|^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right)$$

- * Σ is a PSD symmetric $d \times d$ matrix, the covariance matrix
- * $|\Sigma|$ denotes determinant
- * No need to memorize the full formula.

Gaussian mixture model (GMM): One point

- Cluster assignment of point
 - Multinomial distribution on k outcomes
 - * P(Z = j) described by $P(C_j) = w_j \ge 0$ with $\sum_{j=1}^k w_j = 1$
- Location of point
 - Each cluster has its own Gaussian distribution
 - Location of point governed by its cluster assignment
 - * $P(X|Z=j) = \mathcal{N}(\mu_j, \Sigma_j)$ class conditional density
- Model's parameters: w_j , μ_j , Σ_j , j=1,...,k

From marginalisation to mixture distribution

- When fitting the model to observations, we'll be maximising likelihood of observed portions of the data (the X's) not the latent parts (the Z's)
- Marginalising out the Z's derives the "familiar" mixture distribution
- Gaussian mixture distribution:

$$P(\mathbf{x}) \equiv \sum_{j=1}^{k} w_j \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)$$

$$\equiv \sum_{j=1}^{K} P(C_j) P(x|C_j)$$

- A convex combination of Gaussians
- Simply marginalisation at work

Mixture and individual component densities are re-scaled for visualisation purposes

Figure: Bishop

Clustering as model estimation

- Given a set of data points, we assume that data points are generated by a GMM
 - Each point in our dataset originates from our mixture distribution
 - * Shared parameters between points: independence assumption!!
- Clustering now amounts to finding parameters of the GMM that "best explains" observed data
- Call upon old friend MLE principle to find parameter values that maximise $p(x_1, ..., x_n)$

Mini Summary

- GMM is just another D-PGM
- Some variables are observed some latent
- Convenient to model location as generated by cluster assignment
- Shared clusters arise from independence b/w points
- Mixture distribution arises algebraically from marginalisation

Next: MLE to fit the model, again motivating EM algorithm

Motivating (again) Expectation-Maximisation Algorithm

We want to implement MLE but we have unobserved r.v.'s that prevent clean decomposition as happens in fully observed settings

Fitting the GMM

Modelling the data points as independent, aim is to find $P(C_j)$, μ_j , Σ_j , j=1,...,k that maximise $P(x_1,...,x_n) = \prod_{i=1}^n \sum_{j=1}^k P(C_j) P(x_i|C_j)$ where $P(x|C_j) \equiv \mathcal{N}(x|\mu_j,\Sigma_j)$ Can be solved analytically?

 Taking the derivative of this expression is pretty awkward, try the usual log trick

$$\log P(\mathbf{x}_1, \dots, \mathbf{x}_n) = \sum_{i=1}^n \log \left(\sum_{j=1}^k P(C_j) P(\mathbf{x}_i | \mathbf{C}_j) \right)$$

→ Expectation-Maximisation (EM)

Motivation of EM

- Consider a parametric probabilistic model $p(X|\theta)$, where X denotes data and θ denotes a vector of parameters
- According to MLE, we need to maximise $p(X|\theta)$ as a function of θ
 - * equivalently maximise $\log p(X|\theta)$

- There can be a couple of issues with this task
- Sometimes we don't observe some of the variables needed to compute the log likelihood
 - * Example: GMM cluster membership Z is not known in advance
- Sometimes the form of the log likelihood is inconvenient to work with
 - Example: taking a derivative of GMM log likelihood results in a cumbersome equation

Expectation-Maximisation (EM) Algorithm

- Initialisation Step:
 - * Initialize K clusters: C_1 , ..., C_K (μ_i, Σ_i) and $P(C_i)$ for each cluster j.
- Iteration Step:
 - * Estimate the cluster of each datum $p(C_i | x_i)$

Re-estimate the cluster parameters

 $(\mu_j, \Sigma_j), p(C_j)$ for each cluster j

Summary

- Unsupervised learning
 - Diversity of problems
- Gaussian mixture model (GMM)
 - * A probabilistic approach to clustering
 - * The GMM model
 - GMM clustering as an optimisation problem
- MLE: Motivating Expectation Maximization (EM)

Next lecture: Getting to the bottom of EM