# Scientific computing for geophysical problems

#### 2. Digital signal processing

Léonard Seydoux

September 2024 at the institut de physique du globe de Paris.









leonard-seydoux/scientific-computing-for-geophysical-problems

# Analog and digital signals

- Analog signals  $\boldsymbol{x}(t)$  are continuous in time and amplitude
- Digital signals x[n] are discrete in time and amplitude (sampling rate, vertical resolution)



# Digital signal processing in music

24 bits

▶ 0:00 / 0:05 → ● :

correspond to 16,777,216
levels and 1.6MB

8 bits

correspond to 256 levels, but only 95kB

## Signal processing as a system

A system  ${\mathcal S}$  maps an input signal x(t) to an output signal y(t)

$$x(t) \longrightarrow \mathcal{S} \longrightarrow y(t)$$

### Linear systems

The system  ${\cal S}$  is **linear** if it satisfies the following property

$$ax_1(t) + bx_2(t) \longrightarrow \mathcal{S}$$
  $\longrightarrow ay_1(t) + by_2(t)$ 

## Time-invariant systems

The system  ${\cal S}$  is **time-invariant** if it satisfies the following property



# Linear and time-invariant systems

 ${\cal S}$  is linear and time-invariant (LTI) if it satisfies both properties:

- ullet Linearity:  $\mathcal{S}\{ax_1(t)+bx_2(t)\}=ay_1(t)+by_2(t)$
- Time-invariance:  $\mathcal{S}x(t- au)=y(t- au)$

Linear and time-invariant systems are fully modeled by the impulse response

### Impulse response

The impulse response h(t) of a system  $\mathcal S$  is the output of the system when the input is the Dirac delta function  $\delta(t)$ 



### Impulse response

The impulse response h(t) of a system  $\mathcal S$  is the output of the system when the input is the Dirac delta function  $\delta(t)$ 



#### Impulse response

The impulse response h(t) of a system  $\mathcal S$  is the output of the system when the input is the Dirac delta function  $\delta(t)$ 



#### Convolution

The impulse response h(t) of a system  ${\cal S}$  is the output of the system when the input is the Dirac delta function  $\delta(t)$ 



#### Convolution

The output signal y(t) of a system  $\mathcal S$  is the convolution of the input signal x(t) with the impulse response h(t) such as

$$y(t) = \int_{-\infty}^{+\infty} x( au) h(t- au) d au$$



# Example: adding reverb to a piano record

The impulse response i(t) of a large hall

The original piano record  $\boldsymbol{x}(t)$  in a dry room



▶ 0:00 / 0:05 **- ♦**) :

Convolution theorem to get the piano record y(t) as if it was played in the hall

$$y(t) = rac{1}{T} \int_0^T x( au) i(t- au) d au$$

The piano record y(t) as if it was played in the hall

# Fourier transform (continuous)

The Fourier transform of a signal x(t) is defined as

$$\hat{x}(f) = \int_{-\infty}^{+\infty} x(t) e^{-i\omega t} dt$$

- The Fourier transform is linear:  $\mathcal{F}\{ax_1(t)+bx_2(t)\}=a\hat{x}_1(\omega)+b\hat{x}_2(\omega)$
- Convolution in time is multiplication in frequency:  $\mathcal{F}\{x(t)*h(t)\}=\hat{x}(\omega)\hat{h}(\omega)$

# Sampling

The sampling of a continuous signal x(t) at a every period  $\Delta t$  is defined as

$$x[n] = x(t) \coprod_{\Delta t} (t)$$

where the sampling rate is defined as  $f_s = \Delta t^{-1}.$ 



#### Discrete-time Fourier transform

The Discrete-time Fourier transform (DTFT) of a discrete signal x[n] is defined as

$$\hat{x}(\omega) = \mathcal{F}x[n] = \sum_{n=-\infty}^{+\infty} x[n]e^{-i\omega n}$$

- ullet The DTFT is linear:  $\mathcal{F}\{ax_1+bx_2\}(\omega)=a\hat{x}_1(\omega)+b\hat{x}_2(\omega)$
- Convolution in time is multiplication in frequency:  $\mathcal{F}\{x*h\}(\omega)=\hat{x}(\omega)\hat{h}(\omega)$

## Sampling and aliasing

In the spectral domain, sampling duplicates the spectrum at every multiple of the sampling rate  $\omega_s$ .

$$\hat{x}(\omega) = \sum_{n=-\infty}^{+\infty} x(\omega - n\omega_s)$$

Sampling theorem: a signal can be reconstructed if  $\omega_s \geq 2\omega_{max}$ 



