The SVD of Rank-1-Matrices

Let $u \in \mathbb{R}^m \setminus \{0\}$ and $v \in \mathbb{R}^n \setminus \{0\}$ be nonzero vectors and define $A := uv^T$. Find a reduced SVD of A and shortly explain why rank(A) = 1.

Solution:

We will in all detail derive the full and reduced SVD by following our recipe (your answer may be shorter!):

We have

$$A^T A = \|u\|^2 v v^T.$$

Following the recipe for computing the SVD of A we determine the eigenpairs of A^TA . We find

$$A^T A v = \|u\|^2 \|v\|^2 v,$$

which implies that v is an eigenvector to the positive (note: $u, v \neq 0$) eigenvalue $||u||^2 ||v||^2$.

- ullet Since A^TA is symmetric we know all eigenvectors are mutually orthogonal.
- However, any vector \mathbf{x} orthogonal to \mathbf{v} is eigenvector to the eigenvalue 0, since

$$A^T A \mathbf{x} = \|u\|^2 v \underbrace{v^T \mathbf{x}}_{=0} = 0 \cdot \mathbf{x}.$$

Therefore the eigenvalues of A^TA are given by

$$\lambda_1 = ||u||^2 ||v||^2, \ \lambda_2 = \dots = \lambda_n = 0,$$

with precisely r=1 positive one $(\Rightarrow rank(A)=1)$. Thus we find the singular values and right-singular vector by

$$v_1 := \frac{v}{\|v\|}, \ \sigma_1 = \|u\| \|v\| > 0.$$

Extend v_1 to the orthogonal matrix $V = \begin{pmatrix} | & & & \\ v_1 & \dots & & \\ | & & \end{pmatrix} \in \mathbb{R}^{n \times n}$ with orthonormal columns, where $v_2, \dots, v_n \in \ker(A)$.

Also set

$$\Sigma = \mathsf{diag}(\sigma_1, 0, \dots, 0) \in \mathbb{R}^{m \times n}.$$

• Following the recipe, the corresponding left-singular vector is given by

$$u_1 := \frac{Av_1}{\sigma_1} = \frac{1}{\|u\| \|v\|} uv^T \frac{v}{\|v\|} = \frac{u}{\|u\|} \underbrace{\frac{v^T v}{\|v\|^2}}_{=1} = \frac{u}{\|u\|}.$$

Extend u_1 to the orthogonal matrix $U = \begin{pmatrix} | & & \\ u_1 & \dots \end{pmatrix} \in \mathbb{R}^{m \times m}$ with orthonormal columns, where $u_2, \dots, u_m \in \ker(A^T)$.

• All in all we then obtain the full and reduced (as sum of rank-1 matrices) SVD

$$\Rightarrow A = U\Sigma V^T = ||u|| ||v|| u_1 v_1^T.$$