Chapter 1

線形代数

線形代数は、高次元に立ち向かうための強力な道具となる。

どれだけ高次元に話を広げたとしても、「関係」を語る言葉の複雑さが増すことはない。 この章では、そんな状況を実現するための理論を追いかけていく。

Contents

1	線形	代数		1
	1.1	ベクト	、ルの作り方	3
		1.1.1	移動の表現としてのベクトル	3
		1.1.2	高次元への対応:数ベクトル	5
		1.1.3	ベクトルの和	6
		1.1.4	ベクトルのスカラー倍	8
		1.1.5	一次結合	9
		1.1.6	基底	9
	1.2	ベクト	、ルの測り方	10

1.1 ベクトルの作り方

1.1.1 移動の表現としてのベクトル

平面上のある点の位置を表すのに、よく使われるのが**直交座標**である。 直交座標では、x 軸と y 軸を垂直に張り、

- 原点 O からの x 軸方向の移動量(x 座標)
- 原点 O からの y 軸方向の移動量 (y 座標)

という2つの数の組で点の位置を表す。

座標とは、「x 軸方向の移動」と「y 軸方向の移動」という2回の移動を行った結果である。 右にどれくらい、上にどれくらい、という考え方で平面上の「位置」を特定しているわけだが、単 に「移動」を表したいだけなら、点から点へ向かう矢印で一気に表すこともできる。

ある地点から別のある地点への「移動」を表す矢印をベクトルという。

ベクトルが示す、ある地点からこのように移動すれば、この地点にたどり着く…といった「移動」の情報は、相対的な「位置関係」を表す上で役に立つ。

座標とベクトルの違い

座標は「位置」を表すものだが、ベクトルは「移動」を表すものにすぎない。

座標は「原点からの」移動量によって位置を表すが、ベクトルは始点の位置にはこだわらない。

たとえば、次の2つのベクトルは始点の位置は異なるが、同じ向きに同じだけ移動している矢印 なので、同じベクトルとみなせる。

このような「同じ向きに同じだけ移動している矢印」は、平面内では平行な関係にある。 つまり、平行移動して重なる矢印は、同じベクトルとみなすことができる。 1.1. ベクトルの作り方 5

移動の合成とベクトルの分解

ベクトルは、各方向への移動の合成として考えることもできる。

純粋に「縦」と「横」に分解した場合は直交座標の考え方によく似ているが、必ずしも直交する 方向のベクトルに分解する必要はない。

1.1.2 高次元への対応:数ベクトル

2次元以上の空間内の「移動」を表すには、「縦」と「横」などといった 2 方向だけでなく、もっと多くの方向への移動量を組み合わせて考える必要がある。

また、4次元を超えてしまうと、矢印の描き方すら想像がつかなくなってしまう。それは、方向となる軸が多すぎて、どの方向に進むかを表すのが難しくなるためだ。

そこで、一旦「向き」の情報を取り除くことで、高次元に立ち向かえないかと考える。

移動を表す矢印は「どの方向に進むか」と「どれくらい進むか」という向きと大きさの情報を持っているが、その「どれくらい進むか」だけを取り出して並べよう。

こうして単に「数を並べたもの」もベクトルと呼ぶことにし、このように定義したベクトルを数 ベクトルという。

数を並べるとき、縦と横の2通りがある。それぞれ列ベクトル、行ベクトルとして定義する。

単に「ベクトル」と言った場合は、列ベクトルを指すことが多い。

行ベクトルは、列ベクトルを横倒しにしたもの(列ベクトルの転置)と捉えることもできる。

1.1.3 ベクトルの和

ベクトルによって数をまとめて扱えるようにするために、ベクトルどうしの演算を定義したい。

ベクトルどうしの足し算は、同じ位置にある数どうしの足し算として定義する。

i番目の数がaとbの両方に存在していなければ、その位置の数どうしの足し算を考えることはできない。

そのため、ベクトルの和が定義できるのは、同じ次元を持つ(並べた数の個数が同じ)ベクトル どうしに限られる。

移動の合成としてのイメージ

数ベクトルを「どれくらい進むか」を並べたものと捉えると、同じ位置にある数どうしを足し合わせるということは、同じ向きに進む量を足し合わせるということになる。

たとえば、x 軸方向に a_1 、y 軸方向に a_2 進んだ場所から、さらに x 軸方向に b_1 、y 軸方向に b_2 進む…というような「移動の合成」を表すのが、ベクトルの和である。

平行四辺形の法則

[Topo 1: 平行移動しても同じベクトルなので…]

ベクトルの差:逆向きにしてから足す

[Todo 2: irobutsu-linear-algebra 2.1.2 ベクトルの差]

矢に沿った移動で考える

[Topo 3: 手持ちの画像を参考に、和と差の両方について書く]

1.1.4 ベクトルのスカラー倍

「どれくらい進むか」を表す数たち全員に同じ数をかけることで、向きを変えずにベクトルを「引き伸ばす」ことができる。

ここで向きごとにかける数を変えてしまうと、いずれかの方向に多く進むことになり、ベクトルの向きが変わってしまう。そのため、「同じ」数をかけることに意味がある。

そこで、ベクトルの定数倍(スカラー倍)を次のように定義する。

1.1.5 一次結合

ベクトルを「引き伸ばす」スカラー倍と、「つなぎ合わせる」足し算を組み合わせることで、ある ベクトルを他のベクトルを使って表すことができる。

[Topo 4: 平行四辺形で図を描き直す]

このように、スカラー倍と和のみを使った形を一次結合もしくは線形結合という。

1.1.6 基底

3次元までのベクトルは、矢印によって「ある点を指し示すもの」として定義できる。 しかし、4次元以上の世界に話を広げるため、ベクトルを単に「数を並べたもの」として再定義した。

点を指し示すためのもう一つの概念として、座標がある。

座標も結局は矢印と同様に、x軸方向にこのくらい進み、y軸方向にこのくらい進む、というように、「進む方向」と「進む長さ」を持つ。

単なる数の並びを、向きと大きさを持つ量として復元するための道具が、基底である。

1.2 ベクトルの測り方

Under	const	ruction		
			=/	
			~~~	

# **Zebra Notes**

Туре	Number
todo	4