9. The Stochastic Growth Model

Yvan Becard PUC-Rio

Macroeconomics I, 2023

Production Is Back

- ▶ In previous lectures, we analyzed optimal behavior under uncertainty in the context of a pure exchange economy with stochastic endowments
- ► Today, we consider a simple production economy with stochastic technology
- ► We study the stochastic neoclassical growth model, also referred to as the real business cycle (RBC) model
- ▶ This is the last of four lectures on complete markets

Lecture Outline

- 1. Model Setup
- 2. Central Planner
- 3. Time Zero Trading: Arrow-Debreu
- 4. Implied Wealth Dynamics
- 5. Sequential Trading: Arrow
- 6. Equivalence of Allocations

- 7. Financing the Firms
- 8. Recursive Formulation
- 9. Recursive: Central Planner
- 10. Recursive: Sequential Trading
- 11. Recursive Competitive Equilibrium
- 12. Exercise

Main Reference: Ljungqvist and Sargent, 2018, Recursive Macroeconomic Theory, Fourth Edition, Chapter 12

1. Model Setup

The Stochastic Growth Model

- ▶ The environment resembles that of the standard neoclassical growth model
- ► The key difference is that technology is now stochastic
- ▶ We also make two minor changes
- 1. The labor supply is not inelastic anymore, leading to labor supply decisions
- 2. We introduce a second type of firm that builds capital, so as to induce more trades among agents and price more items, in particular the capital stock

Stochastic Event

- ▶ In each period $t \ge 0$, there is a realization of a stochastic event $s_t \in S$
- \triangleright The stochastic event s_t is an aggregate, or economy-wide, state variable
- ▶ Let the history of events until t be $s^t = [s_0, s_1, \ldots, s_t]$
- ightharpoonup The history s^t is publicly observable

Probabilities

- As usual, the unconditional probability of observing a particular sequence of events s^t is given by probability measure $\pi_t(s^t)$
- ► For $t > \tau$, the probability of observing s^t conditional on the realization of history s^τ is $\pi_t(s^t|s^\tau)$
- Again, the initial state s_0 in period 0 is nonstochastic, ie $\pi_0(s_0) = 1$

Households

A representative household has preferences over streams of consumption $c_t(s^t)$ and leisure $\ell_t(s^t)$

$$\sum_{t=0}^{\infty} \sum_{s^t} \beta^t u[c_t(s^t), \ell_t(s^t)] \pi_t(s^t), \qquad \beta \in (0, 1)$$

u satisfies the usual Inada conditions

$$u(0,\ell) = u(c,0) = 0 \qquad \lim_{c \to 0} u_c(c,\ell) = \lim_{\ell \to 0} u_\ell(c,\ell) = \infty$$

$$u_c, u_\ell > 0, \ u_{cc}, u_{\ell\ell} < 0 \qquad \lim_{c \to \infty} u_c(c,\ell) = \lim_{\ell \to 1} u_\ell(c,\ell) = 0$$

8

Work or Chill

▶ In each period, the household is endowed with one unit of time that can be either devoted to leisure $\ell_t(s^t)$ or labor $n_t(s^t)$

$$1 = \ell_t(s^t) + n_t(s^t)$$

- ▶ If the utility function did not depend on leisure, $u[c(s^t)]\pi_t(s^t)$, the household would choose $\ell_t(s^t) = 0$ and $n_t(s^t) = 1$ for all t, ie an inelastic labor supply
- ▶ Here, because households value leisure, they end up choosing $n_t(s^t) < 1$

Why Do We Have a Representative Household?

- As soon as we assume complete markets, which is the case in this model, we can rationalize the representative household construct as follows
- Assume there are I consumers named $i=1,2,\ldots,I$, and all consumers have the same utility function $u^i[c_t^i(s^t),\ell_t^i(s^t)]=u[c_t^i(s^t),\ell_t^i(s^t)]$
- ▶ Each consumer receives idiosyncratic labor productivity shocks $e_t^i(s^t)n_t^i(s^t)$, but optimally trades state-price securities to insure the risk away
- ▶ In sum, there is no idiosyncratic risk in this economy, only aggregate risk

Production Function

Output is produced according to the production function

$$A_t(s^t)F[k_t(s^{t-1}), n_t(s^t)]$$

- Notice capital in period t depends on the state in period t-1
- $ightharpoonup A_t(s^t)$ is a stochastic process of Harrod-neutral technology shocks
- ▶ *F* satisfies the standard assumptions

$$F(0,n) = F(k,0) = 0 \qquad \lim_{k \to 0} F_k(k,n) = \lim_{n \to 0} F_n(k,n) = \infty$$

$$F_k, F_n > 0, \ F_{kk}, F_{nn} < 0 \qquad \lim_{k \to \infty} F_k(k,n) = \lim_{n \to \infty} F_n(k,n) = 0$$

▶ Write the function in intensive form: $F(k,n) \equiv nf(\hat{k})$ where $\hat{k} \equiv \frac{k}{n}$

Constraints

Output goods are consumption and investment goods

$$c_t(s^t) + i_t(s^t) \le A_t(s^t) F[k_t(s^{t-1}), n_t(s^t)]$$

Capital accumulates according to

$$k_{t+1}(s^t) = (1 - \delta)k_t(s^{t-1}) + i_t(s^t)$$

▶ Capital $k_{t+1}(s^t)$, to be used in production in t+1, is built in advance in t

Consolidated Constraint

- ▶ The investment good $i_t(s^t)$ can take negative values, meaning the capital stock is reversible, ie it can be freely reconverted into consumption
- ► Consumption, however, cannot be negative
- ▶ Plug the law of motion of capital into the resource constraint

$$c_t(s^t) + k_{t+1}(s^t) - (1 - \delta)k_t(s^{t-1}) \le A_t(s^t)F[k_t(s^{t-1}), n_t(s^t)]$$

2. Central Planner

Problem of the Central Planner

- ▶ The planner chooses an allocation $\{c_t(s^t), \ell_t(s^t), i_t(s^t), n_t(s^t), k_{t+1}(s^t)\}_{t=0}^{\infty}$ to maximize the utility function, subject to
 - ► The time constraint
 - ► The resource constraint
 - ightharpoonup The initial capital stock k_0
 - ▶ The stochastic process for the level of technology $A_t(s^t)$

Lagrangian

Write a Lagrangian, in which we directly plug the time constraint

$$\mathcal{L} = \sum_{t=0}^{\infty} \sum_{s^t} \beta^t \pi_t(s^t) \left\{ u[c_t(s^t), 1 - n_t(s^t)] + \mu_t(s^t) \left[A_t(s^t) F[k_t(s^{t-1}), n_t(s^t)] + (1 - \delta) k_t(s^{t-1}) - c_t(s^t) - k_{t+1}(s^t) \right] \right\}$$

 $ightharpoonup \mu_t(s^t)$ is a process of Lagrange multipliers on the resource constraint

First-Order Conditions

 \blacktriangleright For each t and s^t , the first-order conditions are

$$c_t : u_c(s^t) = \mu_t(s^t)$$

$$n_t : u_\ell(s^t) = u_c(s^t) A_t(s^t) F_n(s^t)$$

$$k_{t+1} : \pi_t(s^t) u_c(s^t) = \beta \sum_{s^{t+1} \mid s^t} u_c(s^{t+1}) \pi_{t+1}(s^{t+1}) [A_{t+1}(s^{t+1}) F_k(s^{t+1}) + 1 - \delta]$$

Notation

▶ In the FOC for capital, note that

$$\sum_{s^{t+1}} = \sum_{s^t} \sum_{s^{t+1}\mid s^t}$$

where the summation over $s^{t+1}|s^t$ means we sum over all possible histories \tilde{s}^{t+1} such that $\tilde{s}^t=s^t$

Summations over histories and events are different

$$\sum_{s^{t+1}|s^t} \neq \sum_{s_{t+1}}$$

Summing Over Histories

Summing Over Events

$$t-2$$

$$t-1$$

t trading period

$$t+1$$

$$\sum_{s_{t+1}}$$

3. Time Zero Trading: Arrow-Debreu Securities

Three Types of Agents

- Let's solve the competitive equilibrium with time 0 trading of a complete set of dated- and history-contingent Arrow-Debreu securities
- ► Trades occur among three representative agents
- 1. The representative household
- 2. A representative goods producer, which we call type I firm
- 3. A representative capital producer, which we call type II firm

Model Diagram

Actions

- ▶ Households own the initial capital stock k_0 , sell it to capital producers at date 0, rent out labor services to and buy goods from goods producers
- Goods producers rent labor from households, rent capital from capital producers, produce, sell output goods to households and capital producers
- ightharpoonup Capital producers buy initial k_0 from households, buy investment goods from goods producers, produce capital, rent out capital to goods producers

Problem of the Household

The household maximizes

$$\sum_{t=0}^{\infty} \sum_{s^t} \beta^t u[c_t(s^t), 1 - n_t(s^t)] \pi_t(s^t)$$

$$\sum_{t=0}^{\infty} \sum_{s^t} q_t^0(s^t) c_t(s^t) \leq \sum_{t=0}^{\infty} \sum_{s^t} w_t^0(s^t) n_t(s^t) + p_{k0} k_0$$

- $lackbox{ } q_t^0(s^t)$ is the price of one unit of output/consumption contingent on history s^t
- $lackbox{ }w_t^0(s^t)$ is the price of one unit of labor contingent on history s^t
- $ightharpoonup p_{k0}$ is the price of one unit of the initial capital stock

Interpretation

- ▶ We are at time 0, markets open, and all trading takes place
- At time 0, the consumer sells her entire lifetime income stream, made of labor income $\sum_{t=0}^{\infty} \sum_{s^t} w_t^0(s^t) n_t(s^t)$ and a one-off capital sale $p_{k0}k_0$
- ▶ The consumer sells her labor to firm I and her capital to firm II
- With the proceeds, the consumer buys an infinite sequence of consumption claims $\sum_{t=0}^{\infty} \sum_{s^t} q_t^0(s^t) c_t(s^t)$ from firm I, the goods producer
- ▶ At the end of period 0, when trading is complete, markets close forever

Lagrangian

► Write a Lagrangian

$$\mathcal{L} = \sum_{t=0}^{\infty} \sum_{s^t} \beta^t u[c_t(s^t), 1 - n_t(s^t)] \pi_t(s^t)$$

$$+ \eta \left[\sum_{t=0}^{\infty} \sum_{s^t} w_t^0(s^t) n_t(s^t) + p_{k0} k_0 - \sum_{t=0}^{\infty} \sum_{s^t} q_t^0(s^t) c_t(s^t) \right]$$

 $ightharpoonup \eta$ is the unique Lagrange multiplier on the time 0 budget constraint

First-Order Conditions

► The first-order conditions are

$$c_t(s^t): \quad \beta^t u_c(s^t) \pi_t(s^t) = \eta q_t^0(s^t)$$

 $n_t(s^t): \quad \beta^t u_\ell(s^t) \pi_t(s^t) = \eta w_t^0(s^t)$

Goods Producer – Firm of Type I

- ► The goods producer, or firm I, operates the production technology
- ▶ At time 0, the firm enters into state-contingent contracts for each t and each s^t to rent capital $k_t^I(s^t)$ and labor services $n_t(s^t)$ and sell output $y_t(s^t)$
- ▶ It trades with households over labor services $n_t(s^t)$ and goods $c_t(s^t)$ and it trades with capital producers over capital services $k_t^I(s^t)$ and goods $i_t(s^t)$

Problem of the Goods Producer

► The goods producer maximizes

$$\sum_{t=0}^{\infty} \sum_{s^t} \left\{ q_t^0(s^t) [c_t(s^t) + i_t(s^t)] - r_t^0(s^t) k_t^I(s^t) - w_t^0(s^t) n_t(s^t) \right\}$$
subject to
$$c_t(s^t) + i_t(s^t) \le A_t(s^t) F[k_t^I(s^t), n_t(s^t)]$$

- $ightharpoonup r_t^0(s^t)$ is the price for renting capital, ie the rental rate
- \blacktriangleright Note that all variables in this problem are conditioned on the history s^t

First-Order Conditions

▶ Plug the constraint into the objective

$$\max \sum_{t=0}^{\infty} \sum_{s,t} \left\{ q_t^0(s^t) A_t(s^t) F[k_t^I(s^t), n_t(s^t)] - r_t^0(s^t) k_t^I(s^t) - w_t^0(s^t) n_t(s^t) \right\}$$

► The first-order conditions are

$$k_t^I(s^t): q_t^0(s^t)A_t(s^t)F_k(s^t) = r_t^0(s^t)$$

 $n_t(s^t): q_t^0(s^t)A_t(s^t)F_n(s^t) = w_t^0(s^t)$

Capital Producer – Firm of Type II

- ► The capital producer operates a technology to transform output goods (ie investment goods) into capital goods
- \triangleright At time 0, it enters into state-contingent contracts for each t and each s^t
- ▶ It purchases initial capital k_0 from households and builds new capital $k_{t+1}^{II}(s^t)$ by purchasing investment goods $i_t(s^t)$ from goods producers
- lacktriangle It earns revenues by renting out capital $r_{t+1}^0(s^{t+1})k_{t+1}^{II}(s^t)$ to goods producers

Problem of the Capital Producer

► The capital producer maximizes profit

$$\begin{split} -p_{k0}k_0^{II} + \sum_{t=0}^{\infty} \sum_{s^t} \left\{ r_t^0(s^t)k_t^{II}(s^{t-1}) - q_t^0(s^t)i_t(s^t) \right\} \\ \text{subject to} \qquad k_{t+1}^{II}(s^t) = (1-\delta)k_t^{II}(s^{t-1}) + i_t(s^t) \end{split}$$

Note that some variables are conditioned on s^{t-1} , others on s^t

Who Bears the Risk?

- ▶ Capital in period 0 k_0^{II} is bought without any uncertainty about the rental price $r_0^0(s_0)$ in that period
- ▶ But for any future period t, investment in capital $k_t^{II}(s^{t-1})$, conditioned on s^{t-1} , is made without knowing the rental price $r_t^0(s^t)$, conditioned on s^t
- ➤ So firm II must deal with the risk associated with capital being assembled one period prior to becoming an input for production and yielding a return
- Firm I, on the other hand, can choose how much capital $k_t^I(s^t)$ to rent in period t conditioned on history s^t , ie it faces no risk at all

Problem of the Capital Producer

Plug the capital accumulation constraint into the objective and rearrange

$$k_0^{II} \left\{ -p_{k0} + r_0^0(s_0) + q_0^0(s_0)(1-\delta) \right\}$$

$$+ \sum_{t=0}^{\infty} \sum_{s^t} k_{t+1}^{II}(s^t) \left\{ -q_t^0(s^t) + \sum_{s^{t+1}|s^t} [r_{t+1}^0(s^{t+1}) + q_{t+1}^0(s^{t+1})(1-\delta)] \right\}$$

- ▶ Profit is a linear function of investments in capital k_0^{II} and $k_{t+1}^{II}(s^t)$
- ▶ What must happen to the two terms in curly brackets {...}?

Details of the Computation

$$-p_{k0}k_{0}^{II} + \sum_{t=0}^{\infty} \sum_{s^{t}} \left\{ r_{t}^{0}(s^{t})k_{t}^{II}(s^{t-1}) - q_{t}^{0}(s^{t})k_{t+1}^{II}(s^{t}) + q_{t}^{0}(s^{t})(1-\delta)k_{t}^{II}(s^{t-1}) \right\}$$

$$= -p_{k0}k_{0}^{II} + r_{0}^{0}(s_{0})k_{0}^{II} + q_{0}^{0}(s_{0})(1-\delta)k_{0}^{II} + \sum_{t=0}^{\infty} \sum_{s^{t}} -q_{t}^{0}(s^{t})k_{t+1}^{II}(s^{t})$$

$$+ \sum_{t=1}^{\infty} \sum_{s^{t}} \left\{ r_{t}^{0}(s^{t})k_{t}^{II}(s^{t-1}) + q_{t}^{0}(s^{t})(1-\delta)k_{t}^{II}(s^{t-1}) \right\}$$

$$= k_{0}^{II} \left\{ -p_{k0} + r_{0}^{0}(s_{0}) + q_{0}^{0}(s_{0})(1-\delta) \right\} + \sum_{t=0}^{\infty} \sum_{s^{t}} -q_{t}^{0}(s^{t})k_{t+1}^{II}(s^{t})$$

$$+ \sum_{t=0}^{\infty} \sum_{s^{t}} \sum_{s^{t+1}|s^{t}} \left\{ r_{t+1}^{0}(s^{t+1})k_{t+1}^{II}(s^{t}) + q_{t+1}^{0}(s^{t+1})(1-\delta)k_{t+1}^{II}(s^{t}) \right\}$$

$$= k_{0}^{II} \left\{ -p_{k0} + r_{0}^{0}(s_{0}) + q_{0}^{0}(s_{0})(1-\delta) \right\}$$

$$+ \sum_{t=0}^{\infty} \sum_{s^{t}} k_{t+1}^{II}(s^{t}) \left\{ -q_{t}^{0}(s^{t}) + \sum_{s^{t+1}|s^{t}} [r_{t+1}^{0}(s^{t+1}) + q_{t+1}^{0}(s^{t+1})(1-\delta)] \right\}$$

Perfect Competition Means Zero Profit

- lacksquare If the terms in curly brackets are positive, the firm wants infinite k_0^{II}, k_{t+1}^{II}
- lacksquare If the terms in curly brackets are negative, the firm wants zero k_0^{II}, k_{t+1}^{II}
- ▶ In equilibrium: 1) perfect competition implies zero profits; 2) supply equals demand, meaning capital cannot be zero or infinite, $0 < k_0^{II}, k_{t+1}^{II} < \infty$
- ► We conclude that the two terms in curly brackets from the firm's profit equation must be equal to zero: this is the zero-profit condition

First-Order Conditions

Based on the preceding, equilibrium prices satisfy

$$p_{k0} = r_0^0(s_0) + q_0^0(s_0)(1 - \delta)$$

$$q_t^0(s^t) = \sum_{s^{t+1}|s^t} [r_{t+1}^0(s^{t+1}) + q_{t+1}^0(s^{t+1})(1 - \delta)]$$

Summary of Necessary Conditions

Households

$$\beta^t u_c(s^t) \pi_t(s^t) = \eta q_t^0(s^t)$$
$$\beta^t u_\ell(s^t) \pi_t(s^t) = \eta w_t^0(s^t)$$

Goods producer or firm I

$$q_t^0(s^t)A_t(s^t)F_k(s^t) = r_t^0(s^t)$$

$$q_t^0(s^t)A_t(s^t)F_n(s^t) = w_t^0(s^t)$$

Capital producer or firm II

$$p_{k0} = r_0^0(s_0) + q_0^0(s_0)(1 - \delta)$$

$$q_t^0(s^t) = \sum_{s^{t+1}|s^t} [r_{t+1}^0(s^{t+1}) + q_{t+1}^0(s^{t+1})(1 - \delta)]$$

Equilibrium

- ▶ In equilibrium, markets clear, ie supply equals demand
- Let's compute the equilibrium price and quantities in the three markets
- 1. Labor market
- 2. Capital market
- 3. Goods market

Labor Market Equilibrium

- ▶ Labor supply is set by the household's FOC for labor
- ► Labor demand comes from the goods producer's (firm I) FOC for labor
- Combine the two

$$\beta^t u_\ell(s^t) \pi_t(s^t) = \eta q_t^0(s^t) A_t(s^t) F_n(s^t)$$

Capital Market Equilibrium

- Capital supply comes from the capital producer's (firm II) FOC
- ▶ Capital demand comes from the goods producer's (firm I) FOC for capital
- ► Combine the two

$$q_t^0(s^t) = \sum_{s^{t+1}|s^t} q_{t+1}^0(s^{t+1}) [A_{t+1}(s^{t+1}) F_k(s^{t+1}) + 1 - \delta]$$

Goods Market Equilibrium

- Supply of goods comes from the goods producer (firm I)
- ▶ Demand for goods comes from households and capital producers (firm II)
- By Walras' law, or by virtue of the resource constraint at equality, the goods market is in equilibrium

$$A_t(s^t)F[k_t(s^{t-1}), n_t(s^t)] = c_t(s^t) + i_t(s^t)$$

Consumption—Labor Choice

▶ Plug the household's consumption FOC into the labor market equilibrium equation

$$\frac{u_{\ell}(s^t)}{u_c(s^t)} = A_t(s^t)F_n(s^t) = w_t(s^t)$$

- ► This is the intratemporal labor supply—consumption decision
- The marginal rate of substitution (MRS) between leisure and consumption $\frac{u_{\ell}(s^t)}{u_c(s^t)}$ equals the relative price of leisure, ie the wage $w_t(s^t)$

Euler Equation

▶ Plug the household's consumption FOC into the capital market equilibrium equation

$$\pi_t(s^t)u_c(s^t) = \beta \sum_{s^{t+1}|s^t} u_c(s^{t+1})\pi_{t+1}(s^{t+1})[A_{t+1}(s^{t+1})F_k(s^{t+1}) + 1 - \delta]$$

- ► This is the intertemporal consumption—saving decision, the Euler equation
- ► The MRS between consumption today and tomorrow $\frac{u_c(s^t)}{\beta E_0 u_c(s^{t+1})}$ equals the relative price of consumption, ie the (expected) interest rate

Equivalence

- ► The previous two expressions are identical to the central planner's first-order conditions
- ► The allocation in the competitive equilibrium with time 0 trading is the same as the Pareto efficient allocation

4. Implied Wealth Dynamics

Change the Numeraire

- ► In the Arrow-Debreu world, trades are only executed at time 0
- ▶ We can still compute how the household's wealth evolves over time
- For this we need to express all prices, wages, and rental rates in terms of time t, history s^t consumption goods
- ▶ In other words, we change the numeraire

Deflating

► We obtain

$$q_{\tau}^{t}(s^{\tau}) \equiv \frac{q_{\tau}^{0}(s^{\tau})}{q_{t}^{0}(s^{t})} = \beta^{\tau - t} \frac{u_{c}(s^{\tau})}{u_{c}(s^{t})} \pi_{\tau}(s^{\tau}|s^{t})$$

$$w_{\tau}^{t}(s^{\tau}) \equiv \frac{w_{\tau}^{0}(s^{\tau})}{q_{t}^{0}(s^{t})}$$

$$r_{\tau}^{t}(s^{\tau}) \equiv \frac{r_{\tau}^{0}(s^{\tau})}{q_{t}^{0}(s^{t})}$$

Notice that

$$q_t^t(s^t) = \frac{q_t^0(s^t)}{q_t^0(s^t)} = 1$$

Wealth

- ▶ In lecture 7, we computed households' financial wealth as total wealth minus the present value of current and future endowment streams
- ▶ Here, we subtract the present value of current and future labor income
- ▶ Household wealth, or the value of all current and future net claims, in time t, history s^t consumption goods is

$$\Upsilon_t(s^t) \equiv \sum_{\tau=t}^{\infty} \sum_{s^{\tau}|s^t} \left\{ q_{\tau}^t(s^{\tau}) c_{\tau}(s^{\tau}) - w_{\tau}^t(s^{\tau}) n_{\tau}(s^{\tau}) \right\}$$

Rewriting Wealth

$$\Upsilon_t(s^t) \equiv \sum_{\tau=t}^{\infty} \sum_{\tau=t} \left\{ q_{ au}^t(s^{ au}) c_{ au}(s^{ au}) - w_{ au}^t(s^{ au}) n_{ au}(s^{ au})
ight\}$$

$$= \sum_{\tau=t}^{\infty} \sum_{s^{\tau}|s^{t}} \left\{ q_{\tau}^{t}(s^{\tau}) \left[A_{\tau}(s^{\tau}) F[k_{\tau}(s^{\tau-1}), n_{\tau}(s^{\tau})] + (1-\delta) k_{\tau}(s^{\tau-1}) - k_{\tau+1}(s^{\tau}) \right] - w_{\tau}^{t}(s^{\tau}) n_{\tau}(s^{\tau}) \right\}$$

$$= \sum_{\tau=t}^{\infty} \sum_{s=t} \left\{ q_{\tau}^{t}(s^{\tau}) \left[A_{\tau}(s^{\tau}) \left[F_{k}(s^{\tau}) k_{\tau}(s^{\tau-1}) + F_{n}(s^{\tau}) n_{\tau}(s^{\tau}) \right] + (1-\delta) k_{\tau}(s^{\tau-1}) - k_{\tau+1}(s^{\tau}) \right] - w_{\tau}^{t}(s^{\tau}) n_{\tau}(s^{\tau}) \right\}$$

 $= \sum_{\tau=t}^{\infty} \sum_{s^{\tau} \mid s^{t}} \left\{ r_{\tau}^{t}(s^{\tau}) k_{\tau}(s^{\tau-1}) + q_{\tau}^{t}(s^{\tau}) \left[(1-\delta) k_{\tau}(s^{\tau-1}) - k_{\tau+1}(s^{\tau}) \right] \right\}$

$$= r_t^t(s^t)k_t(s^{t-1}) + q_t^t(s^t)(1-\delta)k_t(s^{t-1}) + \sum_{\tau=t+1}^{\infty} \sum_{s^{\tau-1}|s^t} \left\{ \sum_{s^{\tau}|s^{\tau-1}} \left[r_{\tau}^t(s^{\tau}) + q_{\tau}^t(s^{\tau})(1-\delta) \right] - q_{\tau-1}^t(s^{\tau-1}) \right\} k_{\tau}(s^{\tau-1})$$

$$= \left[r_t^t(s^t) + 1 - \delta \right] k_t(s^{t-1})$$

Second line: resource constraint; Third: Euler's theorem; Fourth: firm's FOCs; Fifth: rearrange; Sixth: $q_t^t(s^t) = \frac{q_t^0(s^t)}{\sigma^0(s^t)} = 1$ and zero-profit condition implying curly bracket terms equal zero

Wealth Is Capital

We find that the wealth of the representative household, excluding its labor income, is

$$\Upsilon_t(s^t) = \left[r_t^t(s^t) + 1 - \delta \right] k_t(s^{t-1})$$

- Households invest all their wealth in the capital stock
- ► The entire capital stock is held by households

5. Sequential Trading: Arrow Securities

Sequential Trading

- ▶ We now study the same economy with sequential trading
- ▶ All markets reopen in each period
- 1. Goods market
- 2. Labor market
- 3. Capital market

Households

- ▶ At each date $t \ge 0$ after history s^t , the household brings in assets $\tilde{a}_t(s^t)$, ie claims to time t consumption that it bought in period t-1
- ▶ In addition, the household earns new labor income $\tilde{w}_t(s^t)n_t(s^t)$ by selling labor services to goods producers
- ▶ It uses these revenues to buy consumption goods $\tilde{c}_t(s^t)$ and claims to time t+1 consumption whose payment is contingent on the realization of s_{t+1}

Budget Constraint

▶ The household faces a sequence of budget constraints; the time t, history s^t budget constraint is

$$\tilde{c}_t(s^t) + \sum_{s^{t+1}} \tilde{a}_{t+1}(s_{t+1}, s^t) \tilde{Q}_t(s_{t+1}|s^t) \le \tilde{w}_t(s^t) \tilde{n}_t(s^t) + \tilde{a}_t(s^t)$$

- $\tilde{Q}_t(s_{t+1}|s^t)$ is the pricing kernel: the price of one unit of consumption at time t+1 contingent on the realization s_{t+1} at t+1 when history at t is s^t
- ▶ $\{\tilde{a}_{t+1}(s_{t+1}, s^t)\}$ is a vector of claims on time t+1 consumption, ie there is one element of the vector for each value of time t+1 realization of s_{t+1}

No Ponzi Scheme

- ► To rule out Ponzi schemes, we must impose borrowing constraints on the household's asset position
- ▶ Without these borrowing constraints, the household would find it optimal to borrow as much as possible and roll over debt forever
- What is the maximal amount the household can repay?

Natural Debt Limit

▶ Let's compute the state-contingent natural debt limit

$$\sum_{\tau=t}^{\infty} \sum_{s^{\tau}|s^{t}} \tilde{w}_{\tau}^{t}(s^{\tau}) \tilde{n}_{\tau}^{\max}(s^{\tau})$$

- The maximum the agent could earn and repay is if she promises to work $\tilde{n}_{\tau}^{\max} = 1$ for all τ and s^{τ} if necessary
- ▶ But this is not credible as $\tilde{\ell}_{\tau} = 0$ would ruin her utility

Arbitrary Borrowing Constraint

- ▶ We can impose that indebtedness in any state next period $-\tilde{a}_{t+1}(s_{t+1}, s^t)$ is bounded by some arbitrary constant
- ► As long as the budget constraint is bounded, equilibrium forces ensure that the household holds the market portfolio
- Let's impose $\tilde{a}_{t+1}(s_{t+1}, s^t) \geq 0$, ie wealth can never be negative

Problem of the Household

► The household maximizes

$$\begin{split} \sum_{t=0}^{\infty} \sum_{s^t} \beta^t u[\tilde{c}_t(s^t), 1 - \tilde{n}_t(s^t)] \pi_t(s^t) \\ \text{subject to} \quad \tilde{c}_t(s^t) + \sum_{s^{t+1}} \tilde{a}_{t+1}(s_{t+1}, s^t) \tilde{Q}_t(s_{t+1}|s^t) \leq \tilde{w}_t(s^t) \tilde{n}_t(s^t) + \tilde{a}_t(s^t) \\ \quad \text{and} \quad \tilde{a}_{t+1}(s_{t+1}, s^t) \geq 0 \end{split}$$

Lagrangian

Write a Lagrangian

$$\mathcal{L} = \sum_{t=0}^{\infty} \sum_{s^t} \left\{ \beta^t u [\tilde{c}_t(s^t), 1 - \tilde{n}_t(s^t)] \pi_t(s^t) + \eta_t(s^t) \left[\tilde{w}_t(s^t) \tilde{n}_t(s^t) + \tilde{a}_t(s^t) - \tilde{c}(s^t) - \sum_{s_{t+1}} \tilde{a}_{t+1}(s_{t+1}, s^t) \tilde{Q}_t(s_{t+1}|s^t) \right] + \nu_t(s^t, s_{t+1}) \tilde{a}_{t+1}(s^{t+1}) \right\}$$

- $ightharpoonup \eta_t(s^t)$ are multipliers on the flow budget constraint
- $ightharpoonup
 u_t(s^t,s_{t+1})$ are multipliers on the borrowing constraint

First-Order Conditions

► The FOCs are

$$\tilde{c}_{t}(s^{t}) : \beta^{t} u_{c}[\tilde{c}_{t}(s^{t}), 1 - \tilde{n}_{t}(s^{t})] \pi_{t}(s^{t}) - \eta_{t}(s^{t}) = 0$$

$$\tilde{n}_{t}(s^{t}) : -\beta^{t} u_{\ell}[\tilde{c}_{t}(s^{t}), 1 - \tilde{n}_{t}(s^{t})] \pi_{t}(s^{t}) + \eta_{t}(s^{t}) \tilde{w}_{t}(s^{t}) = 0$$

$$\{\tilde{a}_{t+1}(s_{t+1}, s^{t})\}_{s_{t+1}} : -\eta_{t}(s^{t}) \tilde{Q}_{t}(s_{t+1}|s^{t}) + \nu_{t}(s^{t}, s_{t+1}) + \eta_{t+1}(s_{t+1}, s^{t}) = 0$$

▶ They hold for all s_{t+1}, t, s^t

Nonbinding Borrowing Constraint

- ▶ We conjecture that the arbitrary debt limit is not binding
- ▶ As a result, the Lagrange multipliers $\nu_t(s^t, s_{t+1})$ are all equal to zero
- Let's rewrite the FOCs with $\nu_t(s^t, s_{t+1}) = 0$

Rewriting the First-Order Conditions

▶ The optimal static consumption—labor choice is

$$\tilde{w}_t(s^t) = \frac{u_{\ell}[\tilde{c}_t(s^t), 1 - \tilde{n}_t(s^t)]}{u_c[\tilde{c}_t(s^t), 1 - \tilde{n}_t(s^t)]}$$

The optimal dynamic consumption—saving choice is

$$\tilde{Q}_t(s_{t+1}|s^t) = \beta \frac{u_c[\tilde{c}_{t+1}(s^{t+1}), 1 - \tilde{n}_{t+1}(s^{t+1})]}{u_c[\tilde{c}_t(s^t), 1 - \tilde{n}_t(s^t)]} \pi_t(s^{t+1}|s^t)$$

Goods Producer – Firm of Type I

▶ At each date $t \ge 0$ after history s^t , the goods producer solves the usual static problem

$$\max_{\tilde{n}_{t}(s^{t}), \tilde{k}_{t}^{I}(s^{t})} \left\{ A_{t}(s^{t}) F[\tilde{k}^{I}(s^{t}), \tilde{n}_{t}(s^{t})] - \tilde{r}_{t}(s^{t}) \tilde{k}_{t}^{I}(s^{t}) - \tilde{w}_{t}(s^{t}) \tilde{n}_{t}(s^{t}) \right\}$$

First-Order Conditions

► The FOCs are

$$\begin{split} \tilde{k}_t^I(s^t) : \quad \tilde{r}_t(s^t) &= A_t(s^t) F_k(s^t) \\ \tilde{n}_t(s^t) : \quad \tilde{w}_t(s^t) &= A_t(s^t) F_n(s^t) \end{split}$$

- ▶ The firm makes zero profit and its size is indeterminate
- ► The firm is willing to produce any quantity of output that the market demands so long as the two FOCs are satisfied

Capital Producer – Firm of Type II

- ► The capital producer's problem is a two-period problem
- 1. At the end of period t after history s^t , the firm decides how much capital $\tilde{k}_{t+1}^{II}(s^t)$ to produce and store; the cost of one unit of $\tilde{k}_{t+1}^{II}(s^t)$ is 1
- 2. In the next period t+1, the firm earns a stochastic rental revenue $\tilde{r}_{t+1}(s^{t+1})\tilde{k}_{t+1}^{II}(s^t)$ and a deterministic liquidation value $(1-\delta)\tilde{k}_{t+1}^{II}(s^t)$
- ▶ To finance its operations, the firm issues Arrow securities to households
- $lackbox{ We use prices } \tilde{Q}_t(s_{t+1}|s^t) ext{ to express future income streams in today's value}$

Problem of the Capital Producer

▶ At each date $t \ge 0$, the capital producer solves

$$\max_{\tilde{k}_{t+1}^{II}(s^t)} \tilde{k}_{t+1}^{II}(s^t) \left\{ -1 + \sum_{s_{t+1}} \tilde{Q}_t(s_{t+1}|s^t) \left[\tilde{r}_{t+1}(s^{t+1}) + 1 - \delta \right] \right\}$$

- ▶ The price of one unit of capital today in terms of today's output goods is one
- ► The zero-profit condition is

$$1 = \sum_{s_{t+1}} \tilde{Q}_t(s_{t+1}|s^t) \left[\tilde{r}_{t+1}(s^{t+1}) + 1 - \delta \right]$$

6. Equivalence of Allocations

Equivalence of Allocations

▶ Time 0 trading and sequential trading are equivalent if

$$\{c_t(s^t), \ell_t(s^t), n_t(s^t), i_t(s^t), k_{t+1}(s^t)\}_{t=0}^{\infty} = \{\tilde{c}_t(s^t), \tilde{\ell}_t(s^t), \tilde{n}_t(s^t), \tilde{i}_t(s^t), \tilde{k}_{t+1}(s^t)\}_{t=0}^{\infty}$$

➤ To show the equivalence of allocations, we employ the guess and verify method used in lecture 7; this is left as an exercise

Guess and Verify

▶ The trick is to guess that the prices in the sequential equilibrium satisfy

$$\tilde{Q}_t(s_{t+1}|s^t) = q_{t+1}^t(s^{t+1})$$
$$\tilde{w}_t(s^t) = w_t(s^t)$$
$$\tilde{r}_t(s^t) = r_t(s^t)$$

▶ We also guess that the household chooses the following asset portfolios

$$\tilde{a}_{t+1}(s_{t+1}, s^t) = \Upsilon_{t+1}(s^{t+1})$$
 for all s_{t+1} and t

Initial Capital

- ▶ We have to show that the agent can afford these asset portfolios
- ▶ In doing that, we will find that the required initial wealth is

$$\tilde{a}_0 = [r_0^0(s_0) + 1 - \delta]k_0 = p_{k0}k_0$$

- ➤ The household starts out at time 0 owning the initial capital stock
- ▶ This is different from lecture 7 where initial wealth \tilde{a}_0^i was zero for all i

7. Financing the Firms

Financing the Goods Producer

- ► In each period, the goods producer must remunerate workers and capital owners, ie capital producers
- ► The goods producer finances these expenses by selling output in the very same period to consumers and capital producers
- ightharpoonup The firm makes zero profit or loss for all t and s^t
- ► Thus it does not need to issue debt to finance its operations

Financing the Capital Producer

- ▶ By contrast, the capital producer finances its purchases of capital by issuing Arrow securities, ie one-period-ahead state-contingent claims, to households
- ▶ To produce $\tilde{k}_{t+1}^{II}(s^t)$ units of capital today in period t, firm II issues claims that promise to pay $[\tilde{r}_{t+1}(s^{t+1}) + 1 \delta]\tilde{k}_{t+1}^{II}(s^t)$ goods tomorrow in state s_{t+1}
- Express these payouts in units of today's time t good

$$\sum_{s_{t+1}} \tilde{Q}_t(s_{t+1}|s^t) \left[\tilde{r}_{t+1}(s^{t+1}) + 1 - \delta \right] \tilde{k}_{t+1}^{II}(s^t)$$

Zero Profit, Zero Net Worth

- ► The capital producer makes zero profit, implying that it breaks even by issuing these claims and then repaying them next period with interest
- ► It follows that the capital producer has zero net worth, or zero equity, and is entirely financed by debt; in other words, it has infinite leverage

Positive Wealth

► The household's wealth is given by

$$\tilde{a}_t(s^t) = \Upsilon_t(s^t) = [\tilde{r}_t(s^t) + 1 - \delta]\tilde{k}_t(s^{t-1})$$

- ► The wealth of the household is equal to the value of firm II, ie the value of the capital stock
- ▶ The capital producer is entirely owned by its unique creditor, the household

Nonbinding Constraint

- ► The household willingly holds the capital stock
- ► Equilibrium prices entice the household to enter each period with a strictly positive net asset level
- ► We confirm the correctness of our conjecture that the zero debt limit is never binding

Unique Creditor

▶ The household is the only creditor of the capital producer

$$\tilde{a}_{t}(s^{t}) = [\tilde{r}_{t}(s^{t}) + 1 - \delta]\tilde{k}_{t}(s^{t-1})$$

$$\sum_{s_{t+1}} \tilde{a}_{t+1}(s_{t+1}, s^{t})\tilde{Q}(s_{t+1}|s^{t}) = \underbrace{\sum_{s_{t+1}} [\tilde{r}_{t+1}(s^{t+1}) + (1 - \delta)]\tilde{Q}_{t}(s_{t+1}|s^{t})}_{= 1 \text{ by firm II's FOC}} \tilde{k}_{t+1}(s^{t})$$

Thus the household budget constraint can be written as

$$\tilde{c}_{t}(s^{t}) + \sum_{s^{t+1}} \tilde{a}_{t+1}(s_{t+1}, s^{t}) \tilde{Q}_{t}(s_{t+1}|s^{t}) \leq \tilde{w}_{t}(s^{t}) \tilde{n}_{t}(s^{t}) + \tilde{a}_{t}(s^{t})$$
$$\tilde{c}_{t}(s^{t}) + \tilde{k}_{t+1}(s^{t}) \leq \tilde{w}_{t}(s^{t}) \tilde{n}_{t}(s^{t}) + [\tilde{r}_{t}(s^{t}) + 1 - \delta] \tilde{k}_{t}(s^{t-1})$$

Useless Capital Producer

- ► The capital producer is entirely owned by the household and there is no financing friction between the two agents
- ► Therefore, the household can play the role of the capital producer by renting out the capital stock directly to the goods producer (firm I)
- ► In other words, we can get rid of the capital producer without changing anything to the equilibrium conditions

Equivalent Model Diagram

8. Recursive Formulation

Equivalence

- ▶ We established identical equilibrium allocations in the
- 1. Complete-market Arrow-Debreu economy with all trading at time 0
- 2. Complete-market Arrow economy with sequential trading

Arbitrary Process

- ► The finding holds for any arbitrary technology process
- $ightharpoonup A_t(s^t)$ is a measurable function of the history of events s^t
- ► These events s^t , in turn, are governed by some arbitrary probability measure $\pi_t(s^t)$

Huge State Space

- ▶ In this general setup, all prices $\{\tilde{Q}_t(s_{t+1}|s^t), \tilde{w}_t(s^t), \tilde{r}_t(s^t)\}$ and quantities $\{k_{t+1}(s^t), c_t(s^t), \ell_t(s^t)\}$ depend on the entire history of events s^t
- ▶ They are time-varying functions of all past events $\{s_{\tau}\}_{\tau=0}^{t}$
- ➤ To obtain a recursive formulation, we need to make further assumptions on the exogenous process for technology

The Stochastic Event Is Markov

The first assumption we make is that the stochastic event s_t is governed by a Markov process, $[s \in S, \pi(s'|s), \pi_0(s_0)]$

$$\begin{aligned} \pi_0(s_0) &= 1 \\ \pi_t(s^t) &= \pi(s_t|s_{t-1})\pi(s_{t-1}|s_{t-2})\dots\pi(s_1|s_0)\pi_0(s_0) \\ \pi_t(s^t|s^\tau) &= \pi(s_t|s_{t-1})\pi(s_{t-1}|s_{t-2})\dots\pi(s_{\tau+1}|s_\tau) \quad \text{for } t > \tau \end{aligned}$$

Technology Is a Time-Invariant Function

▶ The second assumption is that aggregate technology is a time-invariant function of its level in the last period and the current stochastic event s_t

$$A_t(s^t) = A[A_{t-1}(s^{t-1}), s_t]$$

► Let's consider the multiplicative version

$$A_t(s^t) = s_t A_{t-1}(s^{t-1}) = s_0 s_1 \dots s_t A_{-1}$$

State Variables

▶ What are the state variables?

State Variables

- ▶ What are the state variables?
- ► There are two exogenous aggregate state variables
- 1. The current value of the stochastic event s
- 2. The current technology level A
- ► There is one endogenous aggregate state variable
- 3. The beginning-of-period capital stock K

Aggregate State of the Economy

- ▶ Thanks to our two assumptions, the state vector $X \equiv \begin{bmatrix} K & A & s \end{bmatrix}$ is a complete summary of the economy's current position
- ▶ It is all that is needed for a planner to compute an optimal allocation
- ▶ It is all that is needed for the "invisible hand", ie households and firms, to call out prices and implement the first-best allocation

9. Recursive Formulation: Central Planner

Problem of the Central Planner

- Let C, N, K denote objects in the planning problem that correspond to c, n, k in the decentralized economy
- ightharpoonup The central planner chooses C, N, K' to maximize the utility function of the representative household

Bellman Equation

► The Bellman equation writes

$$v(K, A, s) = \max_{C, N, K'} \left\{ u(C, 1 - N) + \beta \sum_{s'} \pi(s'|s) v(K', A', s') \right\}$$

subject to

$$K' + C \le AF(K, N) + (1 - \delta)K$$
$$A' = As'$$

Policy Functions

▶ Using the definition of the state vector $X \equiv \begin{bmatrix} K & A & s \end{bmatrix}$, we denote the optimal policy functions as

$$C = \Omega^{C}(X)$$
$$N = \Omega^{N}(X)$$
$$K' = \Omega^{K}(X)$$

Equation A' = As' and the Markov transition density $\pi(s'|s)$ induce a transition density $\Pi(X'|X)$ on the state X

First-Order Conditions

Define for convenience

$$U_c(X) \equiv u_c[\Omega^C(X), 1 - \Omega^N(X)] \qquad F_k(X) \equiv F_k[K, \Omega^N(X)]$$

$$U_\ell(X) \equiv u_\ell[\Omega^C(X), 1 - \Omega^N(X)] \qquad F_n(X) \equiv F_n[K, \Omega^N(X)]$$

► The first-order conditions are

$$U_{\ell}(X) = U_{c}(X)AF_{n}(X)$$

$$1 = \beta \sum_{X'} \Pi(X'|X) \frac{U_{c}(X')}{U_{c}(X)} [A'F_{K}(X') + 1 - \delta]$$

10. Recursive Formulation: Sequential Trading

Endogenous State

- ▶ Relative to lecture 8, we now have an endogenous state variable, namely the aggregate capital stock K_t
- ▶ How do we deal with this in a competitive economy?
- ightharpoonup We use a "Big K, little k" device

Price Taker vs Price Maker

- So far we have assumed that each individual firm and household is a price taker, ie each acts as if their decisions do not affect current or future prices
- \triangleright In sequential market setting, prices depend on the state, of which K_t is part
- ▶ But of course, in the aggregate, agents choose the motion of capital K_t , and so trough their combined actions they determine prices, ie are price makers
- ▶ "Big K, little k" is a device that makes them ignore this fact when they solve their individual decision problem

Big K, Little k

- ▶ Big *K* is an endogenous state variable, useful to forecast prices, but which agents regard as beyond their control
- ▶ Small *k* is chosen by firms and consumers
- ▶ In the equilibrium, after firms and consumers have optimized, we set

$$K = k$$

Price System

- ▶ We specify price functions (prices are functions of the aggregate state *X*)
 - ightharpoonup r(X) is the rental price of capital
 - \blacktriangleright w(X) is wage rate for labor
 - ightharpoonup Q(X'|X) is the price of a claim to one unit of consumption next period when next period's state is X' and this period's state is X
- ▶ All are measured in units of this period's consumption good

Perceived Law of Motion

 \blacktriangleright We take as given an arbitrary perceived law of motion for K

$$K' = G(X)$$

- ► This equation together with A' = As' and a given subjective transition density $\hat{\pi}(s'|s)$ induce a subjective transition density $\hat{\Pi}(X'|X)$ for state X
- ▶ The perceived law of motion of K and the transition probability $\hat{\Pi}(X'|X)$ describe the beliefs of the household

Household Problem

▶ Let *J* be the value function; the Bellman equation writes

$$J(a, X) = \max_{c, n, \bar{a}(X')} \left\{ u(c, 1 - n) + \beta \sum_{X'} J[\bar{a}(X'), X'] \hat{\Pi}(X'|X) \right\}$$

subject to

$$c + \sum_{X'} Q(X'|X)\bar{a}(X') \leq w(X)n + a \quad \text{and} \quad \bar{a}(X') \geq 0$$

- ▶ $X \equiv \begin{bmatrix} K & A & s \end{bmatrix}$ is the vector of state variables
- ▶ *a* is the household's individual wealth in units of current goods
- $lacktriangleq \bar{a}(X')$ is next period's wealth in units of next period's consumption goods

First-Order Conditions

The first-order conditions are

$$\bar{u}_{\ell}(a, X) = \bar{u}_{c}(a, X)w(X)$$
$$Q(X'|X) = \beta \frac{\bar{u}_{c}[\sigma^{a}(a, X; X'), X']}{\bar{u}_{c}(a, X)}\hat{\Pi}(X'|X)$$

where the household's optimal policy functions are

$$c = \sigma^c(a, X);$$
 $n = \sigma^n(a, X);$ $\bar{a}(X') = \sigma^a(a, X; X')$

and for convenience

$$\bar{u}_c(a, X) \equiv u_c[\sigma^c(a, X), 1 - \sigma^n(a, X)]$$

$$\bar{u}_\ell(a, X) \equiv u_\ell[\sigma^c(a, X), 1 - \sigma^n(a, X)]$$

Problem of the Goods Producer

▶ The static problem of the goods producer writes

$$\max_{k,n} \{ AF(k,n) - r(X)k - w(X)n \}$$

► The zero-profit conditions are

$$r(X) = AF_k(k, n)$$
$$w(X) = AF_n(k, n)$$

Problem of the Capital Producer

▶ The problem of the capital producer writes

$$\max_{k'} k' \left\{ -1 + \sum_{X'} Q(X'|X)[r(X') + 1 - \delta] \right\}$$

► The zero-profit condition is

$$1 = \sum_{X'} Q(X'|X)[r(X') + 1 - \delta]$$

11. Recursive Competitive Equilibrium

Equilibrium

- So far we have taken the price functions r(X), w(X), Q(X|X'), the perceived law of motion K' = G(X), and $\hat{\Pi}(X'|X)$ as given arbitrarily
- ▶ We now impose equilibrium conditions on these objects and make them outcomes in the analysis; we impose

$$K = k$$

Imposing equality afterward makes the household and firms be price takers

Debt Supply and Debt Demand

► The supply of state-contingent debt issued by the capital producer must be equal to the demand for debt coming from the household

$$\bar{a}(X') = [r(X') + 1 - \delta]K'$$

Beginning-of-period assets must also satisfy

$$a(X) = [r(X) + 1 - \delta]K$$

Rewriting the Budget Constraint

▶ Plug the previous conditions into the household's budget constraint

$$\sum_{X'} Q(X'|X)[r(X') + 1 - \delta]K' = [r(X) + 1 - \delta]K + w(X)n - c$$

▶ Use the capital producer's FOC $\sum_{X'} Q(X'|X)[r(X') + 1 - \delta] = 1$ and the fact that K' is predetermined when entering next period

$$K' = [r(X) + 1 - \delta]K + w(X)n - c$$

Rewriting the Budget Constraint

Plug in the equilibrium prices

$$K' = [AF_k(k, n) + 1 - \delta]K + AF_n(k, n)n - c$$

▶ Set K = k, $N = n = \sigma^n(a, X)$, $C = c = \sigma^c(a, X)$, and use Euler's theorem

$$K' = AF[K, \sigma^n(a, X)] + (1 - \delta)K - \sigma^c(a, X)$$

▶ Use the equilibrium condition $a = [r(X) + 1 - \delta]K$

$$K' = AF\{K, \sigma^{n}([r(X) + 1 - \delta]K, X)\} + (1 - \delta)K - \sigma^{c}([r(X) + 1 - \delta]K, X)$$

Actual Law of Motion

▶ We have expressed K' only as a function of the current aggregate state $X = \begin{bmatrix} K & A & s \end{bmatrix}$

$$K' = AF\{K, \sigma^{n}([r(X) + 1 - \delta]K, X)\} + (1 - \delta)K - \sigma^{c}([r(X) + 1 - \delta]K, X)$$

▶ This is the actual law of motion of K' that is implied by the household's and firms' optimal decisions

Perceived Law of Motion

▶ Remember the perceived law of motion of capital

$$K' = G(X)$$

- ▶ We want *G* not to be arbitrary but to be an outcome
- ▶ We want to find an equilibrium perceived law of motion

Rational Expectations

► For this we impose rational expectations: we require that the perceived and actual laws of motions be identical, by equating the previous two equations

$$G(X) = AF\{K, \sigma^{n}([r(X) + 1 - \delta]K, X)\} + (1 - \delta)K - \sigma^{c}([r(X) + 1 - \delta]K, X)$$

- ▶ The perceived law of motion G affects decisions σ^c and σ^n via the problem of the household, therefore the right side is itself an implicit function of G
- ▶ In turn, *G* and prices imply an actual law of motion of capital
- lacktriangle Mathematically, G is a fixed point: the equation maps a perceived G and a price system into an actual G

Rational Expectations

- ► Rational expectations mean that the agent's perception is consistent with the equilibrium outcome
- ▶ The previous equation requires that the perceived law of motion for the capital stock G(X) equal the actual law of motion
- ► The actual law is determined jointly by the decisions of the household and the firms in a competitive equilibrium

Recursive Competitive Equilibrium

A recursive competitive equilibrium with Arrow securities is a price system r(X), w(X), Q(X'|X), a perceived law of motion K' = G(X) and associated induced transition density $\hat{\Pi}(X'|X)$, a borrowing limit $\bar{a}(X')$, a household value function J(a,X), and decision rules $\sigma^c(a,X)$, $\sigma^n(a,x)$, $\sigma^a(a,X;X')$ such that

- 1. Given r(X), w(X), Q(X'|X), $\hat{\Pi}(X'|X)$, the functions $\sigma^c(a,X)$, $\sigma^n(a,X)$, $\sigma^a(a,X;X')$ and the value function J(a,X) solve the household's problem
- 2. For all X, r(X) and w(X) solve the goods producer's problem

$$r(X) = AF_k \{ K, \sigma^n([r(X) + (1 - \delta)]K, X) \}$$

$$w(X) = AF_n \{ K, \sigma^n([r(X) + (1 - \delta)]K, X) \}$$

Recursive Competitive Equilibrium

3. Q(X'|X) and r(X) satisfy the zero-profit condition

$$1 = \sum_{X'} Q(X'|X)[r(X') + 1 - \delta]$$

4. G(X), r(X), $\sigma^c(a, X)$, $\sigma^n(a, X)$ satisfy the law of motion of capital $G(X) = AF\{K, \sigma^n([r(X) + 1 - \delta]K, X)\} + (1 - \delta)K - \sigma^c([r(X) + 1 - \delta]K, X)$

5. The perceived transition density equals the actual one

$$\hat{\pi} = \pi$$

Remarks

- ► Item 1 enforces optimization by the household, given the prices it faces and its expectations
- ► Item 2 requires that the goods producer break even at every capital stock and labor supply chosen by the household
- ▶ Item 3 requires that the capital producer break even
- ► Market clearing is implicit when item 4 requires that the perceived and actual laws of motion of capital be equal
- ▶ Item 5 and the equality of perceived and actual G imply that $\hat{\Pi} = \Pi$
- ▶ Thus, items 4 and 5 impose rational expectations

Solving the System

- ► One could attack directly the fixed point problem at the heart of the equilibrium definition
- ▶ Instead we guess a candidate *G* and a price system
- ► Then we verify that they form an equilibrium

Using the Planning Problem

- ▶ Which candidates should we pick?
- ► Remember the welfare theorems: a competitive equilibrium is Pareto efficient
- ightharpoonup Thus as our candidates for G and prices we turn to the planning problem

Using the Planning Problem

▶ For G we choose the planner decision rule for K'

$$K' = \Omega^K(X)$$

▶ For prices we also choose those of the planner

$$r(X) = AF_k(X)$$

$$w(X) = AF_n(X)$$

$$Q(X'|X) = \beta \Pi(X'|X) \frac{U_c(X')}{U_c(X)} [A'F_K(X') + 1 - \delta]$$

Equivalence

▶ In equilibrium the household's decision rules for consumption and labor matches those of the planner

$$\Omega^{C}(X) = \sigma^{c}([r(X) + 1 - \delta]K, X)$$

$$\Omega^{N}(X) = \sigma^{n}([r(X) + 1 - \delta]K, X)$$

► The key to verifying the guesses is to show that the FOCs for firms and the household are satisfied at these guesses; we leave this as an exercise

Conclusion

- Economic phenomena are dynamic and uncertain
- ▶ We have studied two ways to model these phenomena
- ► The first way is to use Arrow-Debreu or Arrow general equilibrium structures and search for optimal actions
- ► These optimal actions are conditional on the sequence of realizations of all past and present random variables

Conclusion

- ► The second way is to use recursive methods and search for equilibrium decision or policy rules
- ► These rules specify current actions as a function of a limited number of state variables that summarize all the necessary information
- ► Lucas and Prescott (1971) and Mehra and Prescott (1980) introduced the notion of recursive competitive equilibrium
- ▶ It is widely used today in macroeconomics and finance

12. Exercise

Exercise – Equivalence of Allocations

- 1. Prove the equivalence of allocations of Section 6 between the time 0 trading and sequential trading equilibria.
- 2. Verify that the guesses in Section 11 are correct, ie that the recursive competitive equilibrium with sequential trading matches the recursive equilibrium of the central planner.