Aflevering 5b

Øvelse U19. Lad $f: \mathbb{R}^2 \to \mathbb{R}$ være funktionen,

$$f(x,y) = 2x^3 + y^2 - 24x - 6y + 5.$$

a) Beregn de partielle afledede af funktionen f.

Jeg bestemmer de partielle afledede til funktionen f:

$$\frac{\partial}{\partial x}(f) = 6x^2 - 24$$

$$\frac{\partial}{\partial y}(f) = 2y - 6$$

b) Der er to kritiske punkter, (x_1, y_0) og (x_2, y_0) for f, og de har samme anden koordinat y_0 . Find y_0 .

Jeg bestemmer de kritiske punkter fra den givne information:

$$\frac{\partial}{\partial y} (f(x, y_0)) = 2 y_0 - 6 = 0 \Rightarrow y_0 = 3$$

For x_1 og x_2 :

$$\frac{\partial}{\partial y} \left(f(x, y_0) \right) = 6 x^2 - 24 \Rightarrow 6 x^2 = 24 \Rightarrow x^2 = 4$$

$$x^2 = 4 \Rightarrow x_1 = -2 \land x_2 = 2$$

Derved er de to kritiske punkter bestemt som

$$(-2,3) \land (2,3)$$

c) Beregn den største kritiske værdi, dvs. den største af de værdier som f anta punkter.

Jeg bestemmer funktionsværdierne for begge punkter og sammenligner værdierne:

For x_1 :

$$f(x,y) := 2x^3 + y^2 - 24x - 6y + 5$$

$$f(-2,3) = 2 \cdot (-2)^3 + 3^2 - 24 \cdot (-2) - 6 \cdot 3 + 5$$

$$f(-2,3) = 28$$
(1)

For x_2 :

$$f(2,3) = 2 \cdot 2^3 + 3^2 - 24 \cdot 2 - 6 \cdot 3 + 5$$

$$f(2,3) = -36$$
(2)

Den største kritiske værdi bestemmes til at være

$$f(-2,3) = 28.$$

d) Lad (x_1, y_0) være det kritiske punkt hvori den største kritiske værdi antag dobbelt partielle afledede af f i punktet (x_1, y_0) .

Jeg definerer først at:

$$(x_1, y_0) = (-2, 3)$$

Herefter kan jeg bestemme de partielle afledede i til punktet. Jeg bestemmer først de dobbelt partielle afledede:

$$\frac{\partial^2}{\partial x^2} (f(x,y)) = 12 x$$

$$\frac{\partial^2}{\partial x^2} (f(x,y)) = 2$$

Jeg bestemmer de dobbelt afledede i punktet:

$$\frac{\partial^2}{\partial x^2}(f(-2,3)) = 12 \cdot -2 = -24$$

$$\frac{\partial^2}{\partial x^2}(f(-2,3)) = 2$$

e) Udregn teststørrelsen D i andenordenskriteriet for det kritiske punkt (x_1, y_0) .

Jeg bestemmer teststørrelsen D, givet ved formlen nedenfor:

$$\mathbf{D} = \frac{\partial^2}{\partial x^2} (f(x, y)) \cdot \frac{\partial^2}{\partial y^2} (f(x, y)) - \left(\frac{\partial^2}{\partial x \partial y} (f(x, y)) \right)^2 = \mathbf{D} = 24 x$$

$$D = -24 \cdot 2 - 0^2 = D = -48$$

- f) Om det kritiske punkt (x_1, y_0) gælder et af følgende alternativer. Hvilket?
 - [1] Det er et lokalt minimum.
 - [2] Det er et lokalt maksimum.
 - [3] Det er et saddelpunkt.
 - [4] Det er ingen af de tre foregående, altså hverken ikke [1], [2] eller [3].

Da determinanten D < 0, har begge eigenværdier forskelligt fortegn, og der vil derfor være tale om et saddelpunkt. **Derved er svaret svarmulighed 3.**

g) Bestem det positive tal a som opfylder, at gradienten $\nabla f\left(a,\frac{5}{2}\right)$ er en enhedsvektor.

$$a = \boxed{}$$
.

Skriv dit svar, et helt tal mellem 0 og 99.

Jeg ved, at gradienten ∇f er en enhedsvektor når

$$\overrightarrow{\nabla} = \nabla f$$

Enhedsvektoren bestemmes ved

$$\overrightarrow{\nabla} = \frac{\nabla f}{|\nabla f|}$$

Derved er jeg interesseret i at bestemme ∇f når $|\nabla f|$ er 1. Gradienten er bestemt til:

$$\left(\frac{\partial}{\partial x}(f(x,y)), \frac{\partial}{\partial y}(f(x,y))\right)$$

$$6x^2 - 24, 2y - 6$$
(3)

Længden af vektoren bestemmes ved:

$$|\nabla f| = \sqrt{\left(\frac{\partial}{\partial x} \left(f(x,y)\right)\right)^2 + \left(\frac{\partial}{\partial y} \left(f(x,y)\right)\right)^2}$$

Jeg sætter denne længde = 1, og indsætter mine definitioner x=a og b=5/2:

$$1 = \sqrt{(6 \cdot a^2 - 24)^2 + (2 \cdot (\frac{5}{2}) - 6)^2} \xrightarrow{\text{solve for a}} [[a = 2], [a = -2]]$$

Det positive tal a, der opfylder at gradienten $\nabla f\left(a, \frac{5}{2}\right)$ må derfor være a=2.