Modules in Mechanics of Materials Unit Conversion Factors

Density	$1 \text{ Mg/m}^3 =$	1	$\rm gm/cm^3$
	= =	62.42	lb/ft^3
	=	0.03613	lb/in^3
	=	102.0	$ m N/m^3$
Energy	1 J =	0.2390	calorie
	=	9.45×10^{-4}	Btu
	=	10^{7}	erg
	=	0.7376	ft-lb
	=	6.250×10^{18}	ev
Force	1 N =	10^{5}	d (dyne)
	=	0.2248	lbf
	=	0.1020	kg
	=	3.597	OZ
	=	1.124×10^{-4}	ton $(2000lb)$
Length	$1 \mathrm{m} =$	39.37	in
	=	3.281	ft
	=	10^{10}	Å
Mass	1 kg =	2.205	lb
	=	35.27	OZ
	=	1.102×10^{-3}	ton $(2000lb)$
Power	$1 \mathrm{W} =$	1	J/s
	=	0.7378	${ m ft\text{-}lb/s}$
	=	1.341×10^{-3}	hp
Stress	1 Pa =	1	N/m^2
	=	10	d/cm^2
	=	1.449×10^{-4}	psi
	=	1.020×10^{-7}	kg/mm^2
Toughness	$1 \text{ MPa}\sqrt{\text{m}} =$	0.910	$\text{ksi}\sqrt{\text{in}}$

Physical constants:

Boltzman constant $k = 1.381 \times 10^{-23} \text{ J/K}$

Gas constant R=8.314 J/mol-K Avogadro constant $N_A=6.022\times 10^{23}$ /mol Acceleration of gravity g=9.805 m/s²

3.11 Mechanics of Materials Fall 1999

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.