Kochen-Specker Systems:

An Algorithmic Approach to Proving Contradictions

Camilo Morales

Department of Mathematics University of California, Irvine

Vector Spaces

Figure 1: Vector Addition

Figure 2: Scalar Multiplication

Orthogonality

Figure 3: \vec{u} , \vec{v} , and \vec{w} are pairwise orthogonal.

Coloring

Coloring

Let S be a set of vectors and consider the value function $f: S \to \{0, 1\}$.

Let S be a set of vectors and consider the value function $f: S \to \{0, 1\}$.

$$f(\vec{u}) = 0$$
 $f(\vec{v}) = 0$ $f(\vec{w}) = 1$

Kochen-Specker, 1967

There is a finite set $S \subset \mathbb{R}^3$ such that there is no function $f: S \to \{0, 1\}$ satisfying

$$f(\vec{u}) + f(\vec{v}) + f(\vec{w}) = 1$$

for all triples $(\vec{u}, \vec{v}, \vec{w})$ of mutually orthogonal vectors in S.

$$\mathbb{R}^3 := \{(x, y, z) : x, y, z \in \mathbb{R}\}$$

Figure 4: A graphical representation of the set of 117 vectors in the original proof of the KS Theorem (Budroni et al, 2022).

A Kochen-Specker (KS) System

$$\mathcal{S}(\textit{N}) = \{ \vec{v} = (\textit{v}_1, \textit{v}_2, \textit{v}_3) \in \mathbb{Z}^3 : \textit{v}_1^2 + \textit{v}_2^2 + \textit{v}_3^2 \text{ divides a power of } \textit{N} \}$$

A Kochen-Specker (KS) System

$$S(N) = {\vec{v} = (v_1, v_2, v_3) \in \mathbb{Z}^3 : v_1^2 + v_2^2 + v_3^2 \text{ divides a power of } N}$$

Example

Let N=30 and suppose we want to determine whether $\vec{v}=(5,2,1)$ is an element of $\mathcal{S}(30)$. We verify that

$$5^2 + 2^2 + 1^1 = 25 + 4 + 1 = 30.$$

Thus, $\vec{v} \in \mathcal{S}(30)$.

What does our algorithm tell us?

Contradictions

Contradictions

If
$$f(\vec{u}) = 1$$
, $f(\vec{v}) = 1$, and $f(\vec{w}) = n$, then
$$f(\vec{u}) + f(\vec{v}) + f(\vec{w}) = 1 + 1 + n = 2 + n > 1.$$

Contradictions

If
$$f(\vec{u}) = 1$$
, $f(\vec{v}) = 1$, and $f(\vec{w}) = n$, then
$$f(\vec{u}) + f(\vec{v}) + f(\vec{w}) = 1 + 1 + n = 2 + n > 1.$$

```
In [3]: vector_coloring(30)
A contradiction has been identified from coloring (2, 1, 0), the cross product of (0, 0, 1) and (1, -2, 0).

Out[3]: False

In [4]: vector_coloring(462)
A contradiction has been identified from coloring (-3, 2, 8), the cross product of (2, -5, 2) and (4, 2, 1).

Out[4]: False

In [5]:
```

Finite KS Colorable Sets

Coloring	Vectors
0	(-1, 1, 1), (0, 0, 1), (0, 1, -1), (0, 1, 0), (0, 1, 1),
	(1, -2, 1), (1, -1, 1), (1, 0, 1), (1, 1, -2), (1, 1, -1),
	(1, 1, 0), (1, 1, 1), (1, 1, 2), (1, 2, 1)
1	(-2, 1, 1), (-1, 1, 2), (-1, 2, 1), (1, -1, 0), (1, -1, 2),
	(1, 0, -1), (1, 0, 0), (1, 2, -1), (2, -1, 1), (2, 1, -1),
	(2, 1, 1)

Finite KS Colorable Sets

Coloring	Vectors
0	(-1, 1, 1), (0, 0, 1), (0, 1, -1), (0, 1, 0), (0, 1, 1),
	(1, -2, 1), (1, -1, 1), (1, 0, 1), (1, 1, -2), (1, 1, -1),
	(1, 1, 0), (1, 1, 1), (1, 1, 2), (1, 2, 1)
1	(-2, 1, 1), (-1, 1, 2), (-1, 2, 1), (1, -1, 0), (1, -1, 2),
	(1, 0, -1), (1, 0, 0), (1, 2, -1), (2, -1, 1), (2, 1, -1),
	(2, 1, 1)

We are currently at depth 1.

We'll assume that (-1, 1, 1) is colored 0.

Enery wetter in our original finite set of vectors has been colored by assuming (-1, 1, 1) one colored by (1, 6, 6); 1, 6, 6, 1); 6, (6, 1, 6); 6, (1, 6, -1); 7, (1, 6, 1); 6, (1, 1, -1); 6, (1, 1, 1, -1); 6, (1, 1, 1, -1); 6, (1, 1, 1, -1); 6, (1, 1, 1, -1); 6, (1, 1, 1, -1)

We'll assume that (-1, 1, 1) is colored 1.

Further Assumptions and Future Directions

Further Assumptions and Future Directions

Acknowledgements

Thank you to Professor Manuel Reyes and the UCI SURF program for this opportunity!

References

- Ben-Zvi, Michael, et al. "A Kochen-Specker theorem for integer matrices and noncommutative spectrum functors." Journal of Algebra 491 (2017): 280-313.
- Budroni, Costantino, et al. "Kochen-specker contextuality."
 Reviews of Modern Physics 94.4 (2022): 045007.
- Cortez, Ida, and Manuel L. Reyes. "A set of integer vectors with no Kochen-Specker coloring." arXiv preprint arXiv:2211.13216 (2022).

Revisiting the Kochen-Specker (KS) Theorem

Let $\mathbb{M}_3(\mathbb{Z}[1/30]) \subseteq \mathbb{M}_3(\mathbb{Q}) \subset \mathbb{M}_3(\mathbb{R}) \subset \mathbb{M}_3(\mathbb{C})$ be sets over which quantum mechanical observables exist and let \mathbb{R} be the set over which classical quantities exist.

Revisiting the Kochen-Specker (KS) Theorem

Does there exist a set $\mathbb{Z}[1/N] \subseteq \mathbb{Z}[1/30]$ such that $\text{Proj}(\mathbb{M}_3(\mathbb{Z}[1/N]))$ is Kochen-Specker (KS) uncolorable?

Generalizing Orthogonality

Generalizing Orthogonality

Computing the dot product for each pair of vectors above will always yield 0:

$$(1,0,0)\cdot(0,1,0)=(1\cdot0)+(0\cdot1)+(0\cdot0)=0+0+0=0.$$

Generalizing Orthogonality

Let $\vec{u} = (u_1, u_2, \dots, u_n)$ and $\vec{v} = (v_1, v_2, \dots, v_n)$ be nonzero vectors in the vector space V^n . Then, \vec{u} and \vec{v} are orthogonal if and only if

$$\vec{u} \cdot \vec{v} = (u_1 \cdot v_1) + (u_2 \cdot v_2) + \cdots + (u_n \cdot v_n) = 0.$$

Revisiting Colorability and Uncolorability

Recall that

$$S(N) = {\vec{v} = (v_1, v_2, v_3) \in \mathbb{Z}^3 : v_1^2 + v_2^2 + v_3^2 \text{ divides a power of } N}.$$

Revisiting Colorability and Uncolorability

Recall that

$$S(N) = {\vec{v} = (v_1, v_2, v_3) \in \mathbb{Z}^3 : v_1^2 + v_2^2 + v_3^2 \text{ divides a power of } N}.$$

Suppose that the positive integer M divides the positive integer N. It follows that $S(M) \subseteq S(N)$. Furthermore,

$$\mathcal{S}(N)$$
 colorable $\implies \mathcal{S}(M)$ colorable,

and

$$\mathcal{S}(M)$$
 uncolorable $\implies \mathcal{S}(N)$ uncolorable.

Revisiting Colorability and Uncolorability

Recall that

$$S(N) = {\vec{v} = (v_1, v_2, v_3) \in \mathbb{Z}^3 : v_1^2 + v_2^2 + v_3^2 \text{ divides a power of } N}.$$

Ben-Zvi et al., 2017

If S(N) is KS uncolorable, then 6 divides N.

Bub, 1996

If 30 divides N, then the set S(N) is KS uncolorable.