## **Car Resale Value Prediction**

Applied Data Science

## **Submitted by**

Sidharth G
Abijeeth Vasra T R
Arun Kalyan M
Kanishmithran J
Dinesh R R

# **Project ID PNT2022MID21557**

Department of Information Technology, Thiagarajar College of Engineering, Madurai - 625014.

**Institution Mentor:** Dr. C. Jeyamala **Industrial Mentor:** Prof Swetha

| SI. No | Content                               | Page No |
|--------|---------------------------------------|---------|
| 1      | Introduction                          | 3       |
| 2      | Literature Survey                     | 3       |
| 3      | <b>Ideation and Proposed Solution</b> | 4       |
| 4      | Requirement Analysis                  | 10      |
| 5      | Project Design                        | 12      |
| 6      | Project Planning & Scheduling         | 16      |
| 7      | Coding & Solutioning                  | 21      |
| 8      | Testing                               | 23      |
| 9      | Result                                | 24      |
| 10     | Advantages and Disadvantages          | 25      |
| 11     | Conclusion                            | 25      |
| 12     | Future Scope                          | 25      |
| 13     | Appendix                              | 26      |

#### 1.Introduction:

### 1.1 Project Overview:

The ability to anticipate a car's resale value based on characteristics such as miles driven and fuel type is helpful to users.

The sole goal of this general-purpose system for estimating resale value is to estimate the amount that the user can probably acquire.

So that the user can get an estimated value before reselling the car and avoid making a deal at a loss, we attempt to predict the amount of resale with the highest degree of accuracy.

### **Project Flow:**

- 1. To enter the input features, the user engages with the user interface (UI).
- 2. The integrated model analyzes the features of the entered input.
- 3. The prediction is displayed on the UI when the model has processed the input.

### 1.2 Purpose:

Making a system to forecast car resale value is primarily intended as a way to practice Python using Data Science. The system that forecasts the amount of resale value for cars is based on the user-provided parameters. The car's details are entered into the provided form by the user, and the value at which it will be sold is then predicted.

#### **2.Literature Survey**

### 2.1 Existing Problem

- 1) Predicting the Price of Used Cars using Machine Learning
- 2) Used Cars Price Prediction using Supervised Learning Techniques
- 3) Car Price Prediction Using Machine Learning
- 4) Used Car Price Prediction using K-Nearest Neighbor Based Model

### 2.2 References

http://ripublication.com/irph/ijict spl/ijictv4n7spl 17.pdf

https://www.researchgate.net/publication/343878698\_Used\_Cars\_Price\_Prediction\_using\_Supervised\_Learning\_Techniques

https://www.jetir.org/view?paper=JETIR2204621

https://www.ijirase.com/assets/paper/issue\_1/volume\_4/V4-Issue-3-686-689.pdf

#### 2.3 Problem Statement Definition

- 1. This project deals with the application of supervised machine learning techniques to predict the price of used cars in Mauritius.
- 2. Using Multiple Regression and Regression trees, the project tries to develop a statistical model which will be able to predict the price of a used car, based on previous consumer data and a given set of features. This project will also be comparing the prediction accuracy of these models to determine the optimal one
- 3. This project is going to predict the car cost with the help of machine learning algorithms which are made available by a python environment such as the Gradient Boosting Algorithm. The dataset comprises data related to different car brands with a set of parameters. The primary purpose is to design a model for a given dataset and predict the car price with better accuracy.
- 4. This paper proposed a supervised machine learning model using KNN (K Nearest Neighbor) regression algorithm to analyze the price of used cars. Through this experiment, the data was examined with different trained and test ratios. As a result, the accuracy of the proposed model is around 85%

## 3.Ideation and Proposed Solution:

### 3.1 Empathy Map Canvas



## 3.2 Ideation and Brainstorming

Step-1: Team Gathering, Collaboration and Select the Problem Statement



## Step-2: Brainstorm, Idea Listing and Grouping



# **Step-3: Idea Prioritization**



### 3.3 Proposed Solution



#### 3.4 Problem Solution Fit

| S. No | Parameter                                | Description                                                                                                                                                                                                                                                         |
|-------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.    | Problem Statement (Problem to be solved) | There are a lot of ambiguities in predicting the precise resale value of the car. Since it involves only manual calculation with human assumed factors.                                                                                                             |
| 2.    |                                          | The way a machine predicts a value based on certain factors is way better than arbitrary manual prediction, thus machine learning can be used to predict the value of a resalable car by including certain factors as attributes(Dependent variables) to the model. |

| 3. | Novelty / Uniqueness                  | The factors included are cumulative in nature, various factors affecting a car value is grouped into a single factor based on similarity  (Insurance documents, RC book maintenance are grouped to a factor credibility) those factors are used for prediction |
|----|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4. | Social Impact / Customer Satisfaction | Enables the customer to get a good idea about the used car prices and the features offered hence it motivates them to buy it.                                                                                                                                  |
| 5. | Business Model (Revenue Model)        | Almost 5 million used cars are being sold every year in india, thus the market of car resales is huge and thousands of car resale dealers who are in need of such digital and efficient solution to predict the resale value of a car                          |
| 6. | Scalability of the Solution           | Since it involves generalized attributes and not attributes associated with a particular type of car model or car manufacturer, this can be applied to predict the resale value of any car, even any vehicle with few limitations.                             |

# 4. Requirement Analysis

# **4.1 Function Requirement**

Following are the functional requirements of the proposed solution.

| FR No. | Functional Requirement (Epic) | Sub Requirement (Story / Sub-Task)                                                 |
|--------|-------------------------------|------------------------------------------------------------------------------------|
| FR-1   | User Registration             | Registration through Form Registration through Gmail Registration through Linkedin |

| FR-2   | User Confirmation        | Confirmation via Email Confirmation via OTP                                                                           |
|--------|--------------------------|-----------------------------------------------------------------------------------------------------------------------|
| FR-3   | User Profile             | View User's Personal details  Add a car to their favorites list                                                       |
| FR-4   | Car Registration         | User can input information like car's date of purchase, price, damages incurred etc.                                  |
| FR - 5 | Viewing Past Predictions | Users are able to view past predictions for the price of the car. (Graph displaying the price of the car for a month) |

# **4.2 Non-function Requirement**

Following are the non-functional requirements of the proposed solution.

| FR No. | Non-Functional Requirement | Description                                                                                                                                                                               |
|--------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NFR-1  | Usability                  | A Simple and effective User Interface with proper layout and good usage of icons ensures each user finds it easy to access and interact with the system.                                  |
| NFR-2  | Security                   | Ensures all the user credentials should be protected and there should be a mandatory password strength check while creating password. Two factor Authentication methods can also be used. |

| NFR-3 | Reliability  | The ML model which is responsible for predicting the price of the car should be reliable. Model should be accurate enough to predict prices. Error rate should be as minimum as possible. |
|-------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NFR-4 | Performance  | The system must provide a web page rendering images and texts upon receiving a request within a time of 8 seconds over a standard internet connection.                                    |
| NFR-5 | Availability | The website should be available to users 24x7. Any issues or errors will be addressed within the next 24 hours.                                                                           |
| NFR-6 | Scalability  | The system must be scalable enough to support 1,00,000 requests at the same time without crashing.                                                                                        |

# **5.Project Design**

# **5.1 Data Flow diagrams**

## Level - 0



Level - 1



### Level - 2



## **5.2 Solution and Technical Architecture**

## **Solution Architecture**



## **Technical Interface**

**Table-1: Components & Technologies:** 

| S. No | Component           | Description                                                                           | Technology                 |
|-------|---------------------|---------------------------------------------------------------------------------------|----------------------------|
| 1.    | User Interface      | The user interacts with application using Web UI                                      | HTML, CSS, JavaScript etc. |
| 2.    | Application Logic-1 | Logic for a process in the application                                                | Python                     |
| 3.    | Database            | The dataset containing car details is used for training the model to predict the rate | NoSQL.                     |
| 4.    | Cloud Database      | The dataset is stored in the IBM cloud                                                | IBM DB2.                   |

| 5. | File Storage                    | File storage requirements                                      | IBM Block Storage.                        |
|----|---------------------------------|----------------------------------------------------------------|-------------------------------------------|
| 6. | Machine Learning<br>Model       | It is responsible for predicting the resale value of the cars. | Regression Model                          |
| 7. | Infrastructure (Server / Cloud) | Application will be deployed in cloud.                         | Local, Cloud Foundry,<br>Kubernetes, etc. |

# **Table-2: Application Characteristics:**

| S. No | Characteristics             | Description                                                   | Technology                                                                                               |
|-------|-----------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 1.    | Open-Source<br>Frameworks   | Open-source frameworks used                                   | Flask, Python, IBM Cloud                                                                                 |
| 2.    | Security<br>Implementations | Security / access controls implemented, use of firewalls etc. | Encryptions                                                                                              |
| 3.    | Scalable Architecture       | Scalability of architecture consists of 3 tiers               | Web Server - HTML, CSS,<br>JavaScript  Application Server - Python<br>Flask  Database Server - IBM Cloud |
| 4.    | Availability                | User can access our application through cloud all the time    | IBM Cloud Hosting.                                                                                       |

| 5. | Performance | Multiple users can access the web application and can perform actions simultaneously | IBM Load Balance |
|----|-------------|--------------------------------------------------------------------------------------|------------------|
|----|-------------|--------------------------------------------------------------------------------------|------------------|

## **5.3 User Stories**

| User Type | Functional<br>Requirement<br>(Epic) | User Story<br>Number | User Story / Task                                                                                                      | Acceptance criteria                                                      | Priority | Release  |
|-----------|-------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------|----------|
| User      | Home Page                           | USN-1                | As a user, I can view the home page of the application.                                                                | I can view the home page of the application.                             | Low      | Sprint-1 |
| User      | Main Page                           | USN-2                | As a user, I can view the main page of the application where I can post my car details.                                | I can view the main page<br>and can successfully post<br>my car details. | High     | Sprint-2 |
| User      | Car Resale Value<br>Prediction      | USN-3                | As a user, I expect the application to predict<br>the resale value for the car details given<br>through the main page. | I can get the car resale value.                                          | High     | Sprint-3 |
| User      | View car resale value               | USN-4                | As a user, I can view the predicted resale value of the car.                                                           | I can view the predicted car resale value.                               | Medium   | Sprint-4 |

# **6.Project Planning and Scheduling**

# **6.1 Sprint Planning and Estimation**

| TITLE                                     | DESCRIPTION                                                                                      | DATE              |
|-------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------|
| Literature Survey & Information Gathering | Literature survey on the selected project and collecting other information                       | 28 SEPTEMBER 2022 |
| Prepare Empathy Map                       | Prepare Empathy Map Canvas to capture the user Pains & Gains, Prepare list of problem statements | 19 SEPTEMBER2022  |

| Ideation               | List the by organizing the brainstorming session and prioritize the top 3 ideas based on the feasibility & importance.                                | 19 SEPTEMBER2022  |  |  |  |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|--|--|
| Proposed Solution      | Prepare the proposed solution document, which includes the novelty, feasibility of idea, business model, social impact, scalability of solution, etc. | 23 SEPTEMBER 2022 |  |  |  |
| Problem Solution Fit   | Prepare problem - solution fit document.                                                                                                              | 30 SEPTEMBER 2022 |  |  |  |
| Solution Architecture  | Prepare a solution architecture document.                                                                                                             | 28 SEPTEMBER 2022 |  |  |  |
| Customer Journey       | Prepare the customer journey maps to understand the user interactions & experiences with the application (entry to exit).                             | 20 OCTOBER 2022   |  |  |  |
| Functional Requirement | Prepare the functional requirement document.                                                                                                          | 8 OCTOBER 2022    |  |  |  |
| Data Flow Diagrams     | Draw the data flow diagrams and submit for review.                                                                                                    | 9 OCTOBER2022     |  |  |  |

| Technology Architecture                                 | Prepare the technology architecture diagram.           | 10 OCTOBER 2022 |
|---------------------------------------------------------|--------------------------------------------------------|-----------------|
| Prepare Milestone &<br>Activity List                    | Prepare the milestones & activity list of the project. | 22 OCTOBER 2022 |
| Project Development -<br>Delivery of Sprint-1, 2, 3 & 4 | Develop & submit the developed code by testing it.     | IN PROGRESS     |

# **6.2 Sprint Delivery Schedule**

| Sprint   | Functional<br>Requirement<br>(Epic)      | User<br>Story<br>Number | 1. Collect dataset 2. Read dataset 3. Clean dataset 4. Split to independent and dependent variable |                                                                                                    | Story<br>points | Priorit<br>y | Team Members                                                         |  |  |  |
|----------|------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------|--------------|----------------------------------------------------------------------|--|--|--|
| Sprint-1 | Collection and preprocessing the dataset |                         |                                                                                                    |                                                                                                    | 20              | Low          | Sidharth<br>Abijeeth Vasra<br>Arun Kalyan<br>Kanishmithran<br>Dinesh |  |  |  |
| Sprint-2 | Model<br>Building                        |                         | 1.<br>2.<br>3.<br>4.                                                                               | Choose the model<br>Analyzing metrics of<br>model<br>Create Model<br>Save Model                    | 20              | Mediu<br>m   | Sidharth<br>Abijeeth Vasra<br>Arun Kalyan<br>Kanishmithran<br>Dinesh |  |  |  |
| Sprint-3 | Application<br>Building                  | USN-1<br>USN-2<br>USN-3 | 1.<br>2.<br>3.                                                                                     | Build python flask app     Build html pages namely homepage and predict page                       |                 | High         | Sidharth<br>Abijeeth Vasra<br>Arun Kalyan<br>Kanishmithran<br>Dinesh |  |  |  |
| Sprint-4 | Training and Deployment                  | USN-4                   | 1.<br>2.<br>3.<br>4.                                                                               | Train the model on IBM Register for IBM cloud Train the ML model on IBM Integrate flask with Model | 20              | Mediu<br>m   | Sidharth<br>Abijeeth Vasra<br>Arun Kalyan<br>Kanishmithran<br>Dinesh |  |  |  |

# Project Tracker, Velocity & Burndown Chart: (4 Marks)

| Sprint   | Total Story<br>Points | Duratio<br>n | Sprint Start<br>Date | Sprint End Date<br>(Planned) | Story Points<br>Completed (as<br>on Planned<br>End Date) | Sprint Release<br>Date (Actual) |
|----------|-----------------------|--------------|----------------------|------------------------------|----------------------------------------------------------|---------------------------------|
| Sprint-1 | 20                    | 6 Days       | 24 Oct 2022          | 29 Oct 2022                  | 20                                                       | 29 Oct 2022                     |
| Sprint-2 | 20                    | 6 Days       | 31 Oct 2022          | 05 Nov 2022                  | 20                                                       | 05 Nov 2022                     |
| Sprint-3 | 20                    | 6 Days       | 07 Nov 2022          | 12 Nov 2022                  | 20                                                       | 12 Nov 2022                     |
| Sprint-4 | 20                    | 6 Days       | 14 Nov 2022          | 19 Nov 2022                  | 20                                                       | 19 Nov 2022                     |

## **Burn-down Chart**

### **Burndown Chart**



## 6.3 Reports from JIRA



# 7. Coding and Solutioning

## 7.1 Home Page:



## 7.2 Prediction Page





## **Predict the Price!**

## The resale value predicted is \$ 19699.965761073345

- The user upon visiting the site will be displayed with a summary of what the project is all about, the user can get to know about the project and then go to the actual page.
- The page contains various fields of various types such as dropdown for categories, text fields for data, all the fields are made necessary.
- Once the user fills all the data and the predict button is selected, the data is transferred and the result is fetched, the result is converted in to Indian rupees for easy understanding.

```
def y_predict():
    regyear = int(request.form['regyear'])
powerps = float(request.form['powerps'])
    kms = float(request.form['kms'])
    regmonth = int(request.form.get('regmonth'))
    gearbox = request.form['gearbox']
damage = request.form['damaged']
    model = request.form.get('model_type')
    brand = request.form.get('brand')
    fuelType = request.form.get('fuel')
    vehicletype= request.form.get('vehicletype')
 'yearOfRegistration':regyear,'powerPS':powerps,'kilometer':kms,'monthOfRegistration':regmonth,'gearbox':gearbox,'notRepairedDamage':damage,
model':model,'brand':brand,'fuelType':fuelType,'vehicleType':vehicletype}
    print(new row)
    new_df = pd.DataFrame(columns=
  vehicleType','yearOfRegistration','gearbox','powerPS','model','kilometer','monthOfRegistration','fuelType','brand','notRepairedDamage'])
    new_df = new_df.append(new_row,ignore_index=True)
    labels = ['gearbox','notRepairedDamage','model','brand','fuelType','vehicleType']
    mapper = {}
    for i in labels:
         mapper[i] = LabelEncoder()
         mapper[i].classes_ = np.load(str('classes'+i+'.npy'),allow_pickle=True)
         tr = mapper[i].fit_transform(new_df[i])
    new_df.loc[:,i+'_Labels'] = pd.Series(tr,index=new_df.index)
labeled = new_df[ ['yearOfRegistration','powerPS','kilometer','monthOfRegistration'] + [x+"_Labels" for x in labels]]
    X = labeled.values
    print(X)
```

- From the above code snippet the user input is fetched from the user via request.form() method.
- A new data frame is created to send the values to the model to predict the price.
- The data is sent to the model in the IBM cloud to predict the value for the car

```
payload_scoring = {"input_data": [{"fields": ['f0','f1','f2','f3','f4','f5','f6','f7','f8','f9'], "values":X.tolist()}]}
    response_scoring = requests.post('https://us-south.ml.cloud.ibm.com/ml/v4/deployments/21e4b8df-05d1-4dc8-bbcd-b79874021e08/predictions?
version=2022-11-06', json=payload_scoring,headers={'Authorization': 'Bearer ' + mltoken})
    print("Scoring response")
    predictions = response_scoring.json()
    output = predictions['predictions'][0]['values'][0][0]
    print(output)
    return render_template('booking.html',ypred="The resale value predicted is $ "+str(output))
```

- The above code snippet is used to send the user inputs and fetch the output from the ML model present in IBM watson Studio.
- Payload Scoring sets the user inputs in the respective fields from f0 f9
- Response Scoring is used to send the inputs to the IBM watson studio and fetch the output from the model
- Thus a render template is used to print the predicted value in the Page

## 8.Testing

### **8.1 Test Cases**

#### **Missing Values:**

The trained ML model requires 4 feature inputs for predicting the output. Failing which, the model throws invalid Input error. All the fields in the html form have been marked required using CSS and thus the user must input all fields.

**Output:** User must input all the fields, failing which, form shows warning message "this field needs to be filled". Thus, there can be no errors in model prediction.

### **Invalid Input:**

The trained ML model requires only numerical input for all 4 features. Thus, if the user uses symbols such as a comma while input, the model may throw an error. To overcome the same, preprocessing script is deployed in the backend which removes all unwanted characters like comma, whitespaces etc. so that model gets required input.

**Output:** Due to python preprocessing script, model will get the desired input and thus will give accurate prediction.

# **8.2** User Acceptance Testing

| Test case ID             | Feature Type | Component              | Test Scenario                                                             | Prerequisite | Steps To Execute                                                                                                                                                                                                                                                                                                                                                                                                                                      | Test Data                                                                                | Expected Result                                            | Actual<br>Result          | Statu | Comments | TC for Automation(Y/N) | BUG ID | Executed By   |
|--------------------------|--------------|------------------------|---------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------|-------|----------|------------------------|--------|---------------|
| HomePage_TC_001          | UI           | Home Page              | Verify all the UI elements in<br>Home page rendered<br>properly           | Nil          | Enter URL and click go     Verify all the UI elements displayed or not                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                        | All the UI elements rendered properly                      | Working<br>as<br>expected | Pass  |          | N                      |        | Abijeeth      |
| HomePage_TC_002          | Functional   | Home Page              | Verify the Data Entry page can be reachable.                              | HTML         | Enter URL and click go     Verify all the UI elements displayed or not. 3.Press the Check Price button.                                                                                                                                                                                                                                                                                                                                               | -                                                                                        | User should navigate to Data<br>Entry Page                 | Working<br>as<br>expected | Pass  |          | N                      |        | Sidharth      |
| DataEntryPage_TC_001     | UI           | Data Entry<br>Page     | Verify all the UI elements in<br>Data Entry page rendered<br>properly     | Nil          | Enter JRL and click go     Verify all the UI elements displayed or not. 3.Press the Check Price button in the home page     Verify all the UI elements displayed or not                                                                                                                                                                                                                                                                               | -                                                                                        | All the UI elements rendered properly                      | Working<br>as<br>expected | Pass  |          | N                      |        | Arun          |
| DataEntryPage_TC_002     | Functional   | Data Entry<br>Page     | Verify user is able to enter<br>all values                                | HTML         | Enser URL and click go     Verify all the UI elements displayed or not. 3 Press the Check Price botton in the home page     4. Weify all Yell dements displayed or not     5. Verify if all Values can be entered                                                                                                                                                                                                                                     | 2011<br>January<br>190<br>125000<br>Automatic<br>No<br>Petrol<br>Audi<br>A4<br>Small car | User should be able to enter all values in data entry page | Working<br>as<br>expected | Pass  |          | N                      |        | Kanishmithran |
| DataEntryPage_TC_003     | Functional   | Data Entry<br>Page     | Verify the Output Display page can<br>be reachable.                       | NIL.         | 1. Enter VIX. and click go  VIX. all the UI elements displayed or not. 3. Press the Check Price button in the home page go, all the UI elements displayed or not. 3. Verify if all values can be entered 6. Press the submit Button                                                                                                                                                                                                                   | -                                                                                        | User should navigate to Output Display Page                | Working<br>as<br>expected | Pass  |          | N                      |        | Dineth        |
| OutputDisplayPage_TC_001 | UI           | Output<br>Display Page | Verify all the UI elements in<br>Output Display page<br>rendered properly | HTML         | 1 Enser URL and click go Verify all the UI elements displayed or not. 3 Press the Check Price button in the home page 4. Verify all the UI elements displayed or not 5. Verify fid I values can be entered 6. Press the submit Button 7. Verify all the UI elements displayed or not                                                                                                                                                                  | -                                                                                        | All the UI elements rendered properly                      | Working<br>as<br>expected | Pass  |          | N                      |        | Abijeeth      |
| OutputDisplayPage_TC_002 | Functional   | Output<br>Display Page | Verify user is able to get predicted result                               | ML and HTML  | Etmer URL and click go     Verly all the UII elements displayed on not. 3-Press the Check Price button in the home page     4. Verly all the UII elements displayed on not.     5. Verly fill all values can be netrated     6. Press the submit Button     7. Verly fill all build elements displayed or not.     8. Verly fill all values and be netrated     8. Verly fill all values and be not not.     8. Verly fill all values and be not not. | -                                                                                        | Predicted Car Resale Value is displayed on the page        | Working<br>as<br>expected | Pass  |          | N                      |        | Sidharth      |

## 9.Results

### **9.1 Performance Metrics**

## **Mean Squared Error:**

```
In [25]: from sklearn.metrics import mean_squared_error,mean_absolute_error
mse = mean_squared_error(Y_test, y_pred)
print(mse)
```

11837192.971239958

### Mean Absolute Error and Root Mean Squared Error:

```
In [26]: rmse = np.sqrt(mse)
    print(rmse)

mae = mean_absolute_error(Y_test, y_pred)
    print(mae)

3440.5221945570934
    1635.1608915188156
```

#### R2\_score:

```
In [17]: y_pred = regressor.predict(X_test)
print(r2_score(Y_test,y_pred))

0.834527626497731
```

#### 10.Advantages and Disadvantages

### Advantages

- The website makes it simple for users to sell their used cars. Because the model's accuracy is close to 80%, they can obtain the ideal amount for their car.
- With the help of this site, the user can find the resale value of a car to buy or to sell one, without intermediaries, so they need not to spend money.

#### **Disadvantages**

- As a result of the smaller number of observations, the dataset was rather limited for drawing significant conclusions. More information gathered may result in more reliable predictions.
- There may be more characteristics that are reliable predictors. Here are some examples of variables that could enhance the model: doors, gas mileage (mpg), color, time spent undergoing mechanical and cosmetic repairs, used-to-new ratio, and appraisal-to-trade ratio.

### 11.Conclusion

Hence, various factors that affect the resale value of the vehicles were explored and the near accurate resale value of the vehicle is found out. Since, there has been an increase in the trends of buying vehicles, the proposed system will help find the accurate price of vehicles.

The proposed system reduces the time taken to predict the resale value of the vehicle and improves the efficiency of the model. It is made to be easily understood to the customers and highly reliable, hence no feature scaling is required.

### 12. Future Scope

In the future, we can introduce a login option, allowing us to save user searches and their personal information. Additionally, we can add a chat option that enables users to engage with sellers. So, Whenever a user is interested, they can communicate with the seller and can negotiate the price and take further actions.

A VR model for the car can be added so that the user can get a 360-degree view of the car. In order to increase the performance, real time data shall be provided for price prediction and with historical data of car prices the accuracy of the system can be improved as well.

An android application could be developed in order to predict the resale value of the car as user interface for interacting with the customers who are not remotely available and for higher performance adaptive learning methodologies are taken into consideration and clusters of real time data are to be trained to predict the resale value.

### 13. Appendix

#### App.py:

```
import pandas as pd
import numpy as np
from flask import Flask, render template, Response, request
import pickle
from sklearn.preprocessing import LabelEncoder
import pickle
import requests
API KEY = "qwqXJFbBRzeK7VrTO9mnmGPjeNJOchWfASyjL-B6LO-U"
token response = requests.post('https://iam.cloud.ibm.com/identity/token',
data={"apikey":API KEY, "grant type": 'urn:ibm:params:oauth:grant-
mltoken = token response.json()["access token"]
header = {'Content-Type': 'application/json', 'Authorization': 'Bearer '
mltoken}
app = Flask( name )
filename = 'resale model.sav'
model rand = pickle.load(open(filename, 'rb'))
```

```
@app.route('/')
def index():
    return render template('index.html')
@app.route('/home')
def home():
    return render template('index.html')
@app.route('/predict')
def predict():
    return render template('booking.html')
@app.route('/y predict', methods=['GET', 'POST'])
def y predict():
    requear = int(request.form['requear'])
    powerps = float(request.form['powerps'])
    kms = float(request.form['kms'])
    regmonth = int(request.form.get('regmonth'))
    gearbox = request.form['gearbox']
    damage = request.form['damaged']
    model = request.form.get('model type')
    brand = request.form.get('brand')
    fuelType = request.form.get('fuel')
    vehicletype= request.form.get('vehicletype')
    new row =
{'yearOfRegistration':regyear,'powerPS':powerps,'kilometer':kms,'monthOfRe
gistration':regmonth,'gearbox':gearbox,'notRepairedDamage':damage,'model':
model, 'brand':brand, 'fuelType':fuelType, 'vehicleType':vehicletype}
    print(new row)
    new df =
pd.DataFrame(columns=['vehicleType','yearOfRegistration','gearbox','powerP
    new df = new df.append(new row,ignore index=True)
    labels =
    mapper = {}
    for i in labels:
        mapper[i] = LabelEncoder()
```

```
mapper[i].classes =
np.load(str('classes'+i+'.npy'),allow pickle=True)
        tr = mapper[i].fit transform(new df[i])
        new df.loc[:,i+' Labels'] = pd.Series(tr,index=new df.index)
    labeled = new df[
[x+" Labels" for x in labels]]
    X = labeled.values
   print(X)
   payload scoring = {"input data": [{"fields":
"values":X.tolist()}}
    response scoring = requests.post('https://us-
south.ml.cloud.ibm.com/ml/v4/deployments/21e4b8df-05d1-4dc8-bbcd-
json=payload scoring,headers={'Authorization': 'Bearer ' + mltoken})
    print("Scoring response")
    predictions = response scoring.json()
    output = predictions['predictions'][0]['values'][0][0]
    print(output)
    return render template('booking.html',ypred="The resale value
predicted is $ "+str(output))
    app.run(host='Localhost', debug=True, threaded=False)
```

#### Links

| GitHub Link       | https://github.com/IBM-EPBL/IBM-Project-32310-1660209166 |
|-------------------|----------------------------------------------------------|
| Project Demo Link | www.shorturl.at/ftyNV                                    |