Back Prof / Gradients

May / Nehr · vector : When MX= V diag (16)+ 15) ..., "n") Dan't forget Behinger nomes

COS SIM- $\frac{ab}{Mall 11611}$ See bordout If $xy = z \rightarrow \mathcal{L}$, and we have an upstream derivative $\frac{\partial \mathcal{L}}{\partial z}$.

$\frac{\partial \log \mathbf{X} }{\partial \mathbf{X}}$	=	$(\mathbf{X}^T)^{-1}$
$rac{\partial \mathcal{L}_i}{\partial \mathbf{X}}$	=	$\mathbf{W}^T rac{\partial \mathcal{L}_i}{\partial (\mathbf{W}\mathbf{X})}$
$rac{\partial \mathcal{L}_i}{\partial \mathbf{W}}$	=	$rac{\partial \mathcal{L}_i}{\partial (\mathbf{W}\mathbf{x})}\mathbf{x}^T$
$rac{\partial \mathcal{L}_i}{\partial \mathbf{X}}$	=	$2 \frac{\partial \mathcal{L}_i}{\partial (\mathbf{X} \mathbf{X}^T)} \mathbf{X}$

$$\begin{split} \frac{\partial \mathcal{L}}{\partial \mathbf{X}} &= \frac{\partial \mathbf{Z}}{\partial \mathbf{X}} \frac{\partial \mathcal{L}}{\partial \mathbf{Z}} = \frac{\partial \mathcal{L}}{\partial \mathbf{Z}} \mathbf{Y}^T & \quad (\mathbf{Y}^T \text{is on the right}) \\ \frac{\partial \mathcal{L}}{\partial \mathbf{Y}} &= \frac{\partial \mathbf{Z}}{\partial \mathbf{Y}} \frac{\partial \mathcal{L}}{\partial \mathbf{Z}} &= \mathbf{X}^T \frac{\partial \mathcal{L}}{\partial \mathbf{Z}} & \quad (\mathbf{X}^T \text{is on the left}) \end{split}$$

Regularization La Min dist or who smaller Li. Sponsity - 280 2019
remember 2 intrent

Too much my con undertit

$\mathbf{c} \longrightarrow \ell$, with	$\mathbf{W} \in \mathcal{R}^{h imes m}, \mathbf{x} \in \mathcal{R}^m, \mathbf{c} \in \mathcal{R}^h$:
	$\begin{aligned} \frac{\partial \ell}{\partial \mathbf{x}} &= \frac{\partial \mathbf{c}}{\partial \mathbf{x}} \frac{\partial \ell}{\partial \mathbf{c}} = \underbrace{\mathbf{w}^T}_{m \times h} \frac{\partial \ell}{\partial \mathbf{c}} & (\mathbf{W}^T \text{is on the left}) \\ \frac{\partial \ell}{\partial \mathbf{W}} &= \frac{\partial \mathbf{c}}{\partial \mathbf{W}} \frac{\partial \ell}{\partial \mathbf{c}} &= \frac{\partial \ell}{\partial \mathbf{c}} \underbrace{\mathbf{x}^T}_{h \times m} (\mathbf{x}^T \text{is on the right}) \end{aligned}$

Convolution

Log-Whellhood: S= Tip(x x/t)

S= Tip(x x/t)

S= Tip(x), yil 0)

Softmas: eguprob

arguno = P p (xto) p(y 1x,0)

log &= \(\text{Log } p(xy | \text{B}) \)

Binomial = p(y) p(x | y)

P(10) = \(\text{P}^{12} \)

note = \(\text{Log} \)

log t= 2 log P(x18)

Standard Output Size: (w-w+tapod +1,"")/filen

Pooled Output: (w-wp +1, h-hp +1) /files Chs. Ws.d) . # filters
(or output apply)

Operations: (a kither) - 2019 output (filter + (filter -1)) - 2019 Q 00 Ocutpent x (Filter = 1)

Activations

	Saturates flat		Differentiable continuous	Zig Zag alwoys parthe	I dentity
tanh	મુહ	(±)	yes	n o	yes
RelU	~n	0	no	મુહ	no
Phelu	no મુલ (-)		na	Mo	No
ELV			ho	no	ho
Signold	v	es(t)	ges	Hes	ho
Exp	ye	s (-)	yes	yes	no

KNN/Lineam

KNN- slow test, high um, low blas

Linear - High was , low von

Expectation + Estimators

Eg Amaton 10 1/2 : [6] - 0 Von: [(8-16)2] Chen: ECX+y7= ECx7+ BBy7

Bofnm-RV & volve itela For rem 0 of 0