Mobile App Size, Rating & Installs **Prediction**

Group #14

Sanath Davis 10088657

Capstone Term 1

Final Project Presentation

13 Dec 2022

Bindia Biju 100886575

Mobile App Size, Rating & Installs Prediction

Group #14

Bindya Biju ID: 100886575 Sanath Davis ID: 100884693

Abstract

The final project report document takes the reader through the final design of various experiments on the dataset and their results. It reiterates the motivation behind the project and delves into the details of the dataset. The existing projects based on similar datasets are also explored. A concluding note is also attained.

Keywords: google, play store, price, size, category, installs, ratings

1. Introduction

In this day and age of mobile apps, every small decision made by mobile app developers will affect the sales of an app. There are many crucial decisions to be made, like the price of an app or the size of an app, which would lead to maximum profits, better user ratings, and the maximum number of installs. These decisions might vary depending on the category of the app.

Figure 1. Details of an app in Google Play Store (Representative image)

After our machine learns this dataset, it would then be able to predict the ratings and number of installs an app would get given a particular size, category, and price. Also, we

1.

Motivation

Target Audience: Mobile App Developers and Companies

Our project would be very helpful to Mobile app developers to

- Decide what their app size should be
- Predict the rating they will get

Dataset Link:

Google Play Store Apps

https://www.kaggle.co m/datasets/gauthamp1 0/google-playstore-app

6

Problem Statements

- What should be the size of an app to get more installs?
- Predict the Rating of an app
- Predict the Number of Installs of an app

2.

Related Works

Why our work stands out

- Most of the related works referenced in our paper are doing various data analyses
- But most are not doing actual prediction
- Also, our project compares a large number of models including ensemble models and we do Hyperparameter tuning too
- We are also focusing on less common features like Size,
 Rating and Installs

OUR APPROACH

Ideas, methods, designs

Machine Learning System

Exploratory Data Analysis

Box whisker plots

Density plots

Correlation

Pandas Profile Report

Scatter Plots

Histograms

Data pre processing

Cleaning

Remove unwanted columns

Remove unnecessary symbols

Feature Engineering

Create new relevant features from existing features

Encoding

Convert strings and booleans to numeric data type for conduction regression

Modelling

Regression Models used

Predicting App Ratings

Regression	
Linear (Baseline)	
Random Forest	
Bayesian ARD	
Bayesian ridge	
Linear SVR	
Epsilon SVR	

Ensemble Model	
Random Forest	
Bagging Regressor	-
XG Boost Regressor	
Voting Regressor	-

Conclusion and Insights

	Category	Minimum Size	Maximum Size	Best Size Range to get Maximum Installs
	Adventure	0.045 MB	1100 MB	800-900 MB
ት +	Maps & Navigation	0.016 MB	382 MB	150-200 MB
	Role Playing	0.043 MB	1500 MB	1000-1200 MB

Figure 6. Best Size range in different categories

Random Forest

In our observation, Hyper Parameter Tuned Random Forest Model gave the best predictions

Predicting App Ratings

Regression	MSE	МАРЕ
Linear (Baseline)	4.221	4354160987210370.0
Random Forest	0.4	0.07
Bayesian ARD	2.058	4369784657954465.5
Bayesian ridge	2.054	4354193448350276.5
Linear SVR	2.508	3135247702318329.5
Epsilon SVR	Taking too much time to fit	Taking too much time to fit

Figure 7. Results from multiple regression models

Ensemble Model	MSE	МАРЕ	
Random Forest	0.4	0.07	
Bagging Regressor	2.08	5121046823101658	
XG Boost Regressor	0.45	10671825510858	
Voting Regressor	0.45	10448593663074	

Figure 8. Results from different ensemble regression models

Tuned Model	Best Parameters	MSE Improvement	MAPE Improvement
Random Forest (Randomise d Search)	{'n_estimators': 200, 'min_samples_split': 5, 'min_samples_leaf': 4, 'max_features': 'auto', 'max_depth': 10, 'bootstrap': True}	3.2 %	4.08%
Support Vector Regressor (Grid Search)	{'C': 10.0, 'gamma': 0.01}	50%	70%
XG Boost Regressor (Randomise d Search)	{'subsample': 0.8999999999999999999999999999999999999	.01 %	175%

Figure 9. Improvements from Hyper-parameter Tuning

Key Findings

1

All models performed better than the baseline

2

Random forest gave the least error rates while predicting app ratings

3

All ensemble methods we tried gave low MSE rates

4

Hyperparameter tuning improved prediction performances.

5

MSE and MAPE are useful in comparing models. Some models are not suitable for the dataset

6

There might be other features which influence the app ratings and number of installs

Thanks!

Any questions?

You can find us at

- sanath.davis@dcmail.ca
- bindia.biju@dcmail.ca

Special thanks to all the people who made and released these awesome resources for free:

- Presentation template by <u>SlidesCarnival</u>
- Photographs by <u>Unsplash</u>