SEMINAR 1

Problema 1. Să se determine mulțimile X, Y a.î.

(i) $X \cup Y = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, (ii) $X \cap Y = \{4, 6, 9\}$, (iii) $X \cup \{3, 4, 5\} = \{1, 3, 4, 5, 6, 8, 9\}$, (iv) $Y \cup \{2, 4, 8\} = \{2, 4, 5, 6, 7, 8, 9\}$.

Soluție: Din (ii) avem $\{4,6,9\} \subset X,Y$. Trebuie să vedem care sunt elementele ce trebuiesc adăugate la mulțimea $\{4,6,9\}$ pentru a fi îndeplinite condițiile condițiile (iii) și (iv).

$$\underbrace{X \cap Y = \{4,6,9\}}_{X \cup \{3,5\}} \underbrace{Y \cup \{2,8\}}_{\{2,4,5,6,7,8,9\}} \quad \text{4 este în } X \neq Y$$

Obţinem $X = \{1, 4, 6, 8, 9\}$ şi $Y = \{4, 5, 6, 7, 9\}$. Vedem că acestea verifică toate condiţiile.

Problema 2. Fie funcția $f: \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z}, f(x,y) = x^2 - y^2$. Arătați că $\text{Im}(f) = \mathbb{Z} \setminus \{4k + 2 | k \in \mathbb{Z}\}$. Cu Im(f) am notat imaginea funcției f. $\text{Im}(f) = \{z \in \mathbb{Z} \mid (\exists)(x,y) \in \mathbb{Z} \times \mathbb{Z} \text{ a. î. } f(x,y) = z\}$.

Soluţie: Notăm clasele de resturi modulo 4 cu: $\hat{0} = \{4k \mid k \in \mathbb{Z}\}$, $\hat{1} = \{4k+1 \mid k \in \mathbb{Z}\}$, $\hat{2} = \{4k+2 \mid k \in \mathbb{Z}\}$, $\hat{3} = \{4k+3 \mid k \in \mathbb{Z}\}$. După cum se știe din clasa a XII-a acestea se pot aduna și înmulți. Astfel avem $\hat{0}^2 = \hat{0}$, $\hat{1}^2 = \hat{1}$, $\hat{2}^2 = \hat{0}$, $\hat{3}^2 = \hat{1}$. De exemplu considerăm $(4k+3) \in \hat{3}$. $(4k+3)^2 = 16k^2 + 24k + 9 = 4(4k^2 + 6k + 2) + 1 \in \hat{1}$. Deci pentru $x \in \mathbb{Z} \Rightarrow \hat{x}^2 \in \{\hat{0}, \hat{1}\}$. Pentru $x, y \in \mathbb{Z}$ avem $x^2 - y^2 \in \{\hat{0}, \hat{1}, -\hat{1} = \hat{3}\}$. Acest calcul arată că $\nexists z \in \mathbb{Z}$. a.î. $z^2 \in \hat{2}$. Deci avem incluziunea " \subseteq ".

"⊇": Pentru numerele de tipul $4k, 4k+1, 4k+3, k \in \mathbb{Z}$ arătăm că sunt diferențe de pătrate de numere întregi.

$$4k = (k+1)^2 - (k-1)^2 = (k+1+k-1)(k+1-k+1) = 2k \cdot 2 = 4k$$

$$4k+1 = (2k+1)^2 - (2k)^2 \text{ si } 4k+3 = (2k+2)^2 - (2k+1)^2$$

Problema 3. Fie funcția $f: \longrightarrow \mathbb{R}$, $f(x,y) = (x-\sqrt{2})^2 + (y-\frac{1}{3})^2$. Arătați că f este injectivă. $(\mathbb{Z}^2 = \mathbb{Z} \times \mathbb{Z}.)$

Soluție: f(x,y) este pătratul distanței în plan de la (x,y) la $(\sqrt{2},\frac{1}{3})=\omega$. Din definiție f este injectivă $\Leftrightarrow [(\forall)(x,y)\neq (x',y')\in\mathbb{Z}^2\Rightarrow f(x,y)\neq f(x',y').$

Fie $f(x,y) = f(x',y') \Leftrightarrow (x-\sqrt{2})^2 + (y-\frac{1}{3})^2 = (x'-\sqrt{2})^2 + (y'-\frac{1}{3})^2$. Desfacem pătratele, reducem termenii asemenea și obținem

$$x^2 - x'^2 + y^2 - y'^2 - \frac{2}{3}(y - y') = 2\sqrt{2}(x - x')$$

Ştim că $x,y,x',y'\in\mathbb{Z}$. Dacă $x\neq x'$ atunci $\sqrt{2}=\frac{x^2-x'^2+y^2-y'^2-\frac{2}{3}(y-y')}{2(x-x')}\in\mathbb{Q}$, ceea ce este absurd. Deci x=x'. Egalitatea devine $y^2-y'^2-\frac{2}{3}(y-y')=0\Leftrightarrow (y-y')(y+y'-\frac{2}{3})=0$. Dacă $y\neq y'$ atunci $y+y'=\frac{2}{3}\in\mathbb{Z}$, ceea ce este o contradinție. Deci avem și y=y'. Am obținut: $f(x,y)=f(x',y')\Rightarrow (x,y)=(x',y')$, adică f este injectivă.

Problema 4. Considerăm funția $f: \mathcal{P}(\{1,2,3,4\}) \longrightarrow \mathcal{P}(\{1,2\}) \times \mathcal{P}(\{1,3\})$, definită prin $f(A) = (A \cap \{1,2\}, A \cap \{1,3\})$. Să se expliciteze f și să se verifice dacă este injectivă sau surjectivă.

1

SEMINAR 1

Soluție: $|\mathcal{P}(\{1,2,3,4\})| = 2^4$. În general numărul submulțimilor mulțimii $[n] = \{1,2,\ldots,n\}$ este 2^n . Deci numărul elementelor mulțimii $\mathcal{P}(\{1,2\}) \times \mathcal{P}(\{1,3\})$ este $2^2 \cdot 2^2 = 2^4 = 16$.

De exemplu $f(\emptyset) = (\emptyset, \emptyset) = f(\{4\}), f(\{1\}) = (\{1\}, \{1\}) = f(\{1, 4\})$. Deci f nu este injectivă. Cum f o funcție între mulțimi de același cardinal și f nu este injectivă, atunci nu poate fi nici surjectivă.

De exemplu ($\{1\},\emptyset$) \notin Im(f). $\{1\}$ pe prima componentă se obține din intersecția mulțimii $\{1,2\}$ cu $\{1\}$, $\{1,3\}$, $\{1,4\}$ sau cu $\{1,3,4\}$. Dar pe a două poziție avem intersecția dintre $\{1,3\}$ și una dintre aceste mulțimi iar această intersecție este diferită de \emptyset . Similar(\emptyset , $\{1\}$) \notin Im(f).

Problema 5. Fie $a, b \in \mathbb{N}^*$, $A = [a] = \{1, 2, ..., a\}$, $B = [b] = \{1, 2, ..., b\}$. Arătați că:

(i) Numărul funcțiilor $f: A \longrightarrow B$ este b^a .

funcțiilor de la A la B.

- (ii) Dacă $a \leq b$, numărul funcțiilor injective $A \longrightarrow B$ este $\frac{b!}{(b-a)!}$.
- (iii) Numărul funcțiilor strict crescătoare $A \longrightarrow B$ este $C_b^a = \binom{b}{a}$. (iv) Numărul funcțiilor crescătoare $A \longrightarrow B$ este $C_{a+b-1}^a = \binom{a+b-1}{a}$. Solutie:
- (i) Pentru (\forall) $j \in [a], f(j) \in [b]$. Deci f(j) poate lua oricare dintre cele b valori. O funcție între două mulțimi finite este caracterizată de mulțimea valorilor sale, adică de imagine, care în acest caz este $f(1), f(2), \ldots, f(a)$, sau fără virgule $f(1)f(2) \ldots f(a)$. Deci fiecare funcție de la A la B poate fi gândită ca un cuvânt de lungime a cu litere în alfabetul [b]. Astfel numărul funcțiilor de la A la B este egal cu numărul cuvintelor de lungime a cu litere în alfabetul [b]. Cum fiecare literă a cuvântului poate lua b valori, numărul acestor cuvinte este b^a , care este și numărul tuturor
- (ii) Funcțiile injective $f:A\longrightarrow B$ se identifică cu acele cuvinte lungime a cu litere distincte în alfabetul [b]. Deci prima literă poate lua b valori, dar odatfixată această literă următoarea literă poate fi oricare dintre cele b elemente, mai puțin cea aleasă pe prima poziție, deci pentru a doua poziție avem la dispoziție b-1 alegeri. Similar, pentru a treia poziție, odată fixate valorile primelor două poziții, vom avea b-2 alegeri. În sfârșit pentru ultima vom avea b-a+1 alegeri. Deci mulțimea funcțiilor injective $f:A\longrightarrow B$ este $b(b-1)(b-2)\dots(b-a+1)=\frac{b!}{(b-a)!}$.
- (iii) Fie $f: A \longrightarrow B$, f strict crescătoare $\Leftrightarrow 1 \leq f(1) = x_1 < f(2) = x_2 < \ldots < f(a) = x_a \leq b$. Deci a da o funcție strict crescătoare de la A la $B \Leftrightarrow$ a da un șir de elemente $1 \leqslant x_1 < x_2 <$ $\dots x_a \leq b \Leftrightarrow$ a da o submulțime cu a elemente a lui B. Numărul acestor submulțimi, prin definiție este C_b^a , în notație anglo-americană $\binom{b}{a}$.
- (iv) Fie $f:A\longrightarrow B$, f crescătoare. Imaginea unei astfel de funcții este $1\leqslant f(1)=x_1\leqslant$ $f(2) = x_2 \leqslant \ldots \leqslant f(a) = x_a \leqslant b \Leftrightarrow 1 \leqslant x_1 < x_2 + 1 < x_3 + 2 < \ldots x_a + a - 1 \leqslant b + a - 1.$ Deci a da o funcție crescătoare este echivalent cu a da o submulțime de cardinal a din mulțimea $\{1, 2, \dots, b+a-1\}$. Numărul acestor submulțimi este prin definiție $C_{b+a-1}^a = {b+a-1 \choose a}$.

Problema 6. (Principiul includerii-excluderii) Pentru orice mulțime finită X notăm cu |X|cardinalul acesteia, adică numărul de elemente. Fie A_1, \ldots, A_n mulțimi finite. Atunci

$$|\bigcup_{i=1}^{n} A_i| = \sum_{K \subset [n]} (-1)^{|K|+1} |\bigcap_{i \in K} A_i|.$$

Pentru n=2, avem formula binecunoscută $|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|$.

Soluție: Pentru n=2 formula de mai sus se demonstrază ușor și foarte intuitiv cu diagrame Venn. De fapt, orice element din $A_1 \cup A_2$ este sau din A_1 sau din A_2 , cele din intersecția $A_1 \cap A_2$ fiind numărate și în A_1 și în A_2 . Deci trebuie să le scădem o dată.

SEMINAR 1

Se face inducție după n. Să demonstrăm $P2 \longrightarrow P3$: Avem trei mulțimi finite, A_1, A_2, A_3 și vom considera $A_1 \cup A_2$ o mulțime și A_3 a doua mulțime. APlicăm P2. Deci

$$\begin{split} |A_1 \cup A_2 \cup A_3| &= |(A_1 \cup A_2) \cup A_3| = |A_1 \cup A_2| + |A_3| - |(A_1 \cup A_2) \cap A_3|, \text{folosind } P2 \text{ obţinem} = \\ &= |A_1| + |A_2| - |A_1 \cap A_2| + |A_3| - |(A_1 \cap A_3) \cup (A_2 \cap A_3)| = \\ &= |A_1| + |A_2| + |A_3| - |A_1 \cap A_2| - |A_1 \cap A_3| - |A_2 \cap A_3| + |A_1 \cap A_2 \cap A_3| \\ \text{Temă Demonstrați} \ P3 \longrightarrow P4 \ \text{și} \ Pn \longrightarrow P(n+1). \end{split}$$

Problema 7. Să se determine numărul funțiilor surjective $[k] \longrightarrow [n]$, unde $k \ge n$.

Soluție: Numărul funcțiilor surjective este n^k minus numărul funcțiilor ce nu sunt surjective. O funcție $f:[k] \longrightarrow [n]$ dacă există cel puțin $i \in [n]$ a.î. $i \notin \text{Im}(f)$.

Notăm cu $N_i = \{f : [k] \longrightarrow [n] | i \notin \operatorname{Im}(f) \}$. Funcțiile ce nu sunt surjective sunt cele din $\bigcup_{i=1}^n N_i$, iar numărul acestora, folosind principiul includerii-excluderii este $|\bigcup_{i=1}^n N_i| = \sum_{K \subset [n]} (-1)^{|K|+1} |\bigcap_{i \in K} N_i|$. $|N_i| = (n-1)^k$, pentru că N_i este mulțimea funcțiilor de la mulțimea [k] la mulțimea $[n] \setminus \{i\}$ de cardinal n-1. Similar pentru o mulțime de indici $K \subset [n]$, de cardinal p, avem avem $|\bigcap_{i \in K} N_i| = (n-p)^k$.

Deci numărul funcțiilor surjective este $n^k - |\bigcup_{i=1}^n N_i| = n^k - \sum_{K \subset [n]} (-1)^{|K|+1} |\bigcap_{i \in K} N_i| = n^k + \sum_{K \subset [n]} (-1)^{|K|} |\bigcap_{i \in K} N_i| = n^k + \sum_{p=1, K \subset [n], |K|=p} (-1)^{|K|} |\bigcap_{i \in K} N_i| = n^k + \sum_{p=1}^n (-1)^p C_n^p (n-p)^k = n^k - C_n^1 (n-1)^k + C_n^2 (n-2)^k - \dots (-1)^{n-1} C_n^{n-1} 1^k.$