Assignment -1

August 6, 2017

Problems:

1 Write a computer program for the standard Gauss elimination method(i.e without pivoting) and solve the following set of linear equations.

$$3.01x1 + 2.22x2 + 4.1x3 = 4.5 \tag{1}$$

$$1.00x1 + 3.21x2 + 5.3x3 = 5.1 (2)$$

$$0.3x1 - 0.44x2 + 6.6x3 = 7.1 \tag{3}$$

 ${\bf 2}$ $\,$ Extend the above program to include partial pivoting and solve the following set of linear equations .

$$2.54x1 + 1.3x2 + 2.1x3 = 4.4 (4)$$

$$0.00002x1 + 1.5x2 - 4.3x3 = 3.33 \tag{5}$$

$$3.1x1 + 6.1x2 + 14.2x3 = 7.22 \tag{6}$$

3 Write a program for Gauss-Jordan method to solve the second problem.

Always use double precision.

Important information

Your program should contain the following lines in the beginning.
! Lab No: ! Title: ! Date: dd/mm/year ! Name: Your name ! Roll No: !Email: youremailid@iitg.ernet.in
Your code should have enough commented lines for others to understand. The input and output should be clearly presented. For example in the above case your code should produce
The matrix A and vector B
Matrix A and vector be after elimination
Solutions: $x(1)=$
x(2)=
x(3)=
and up to $x(n)$