Task 7.1P

Original audio sample

X1

X2

Original spectrogram

X1 spectrogram

X2 spectrogram

S1, S2, S (S1+S2)

Hann window technique

Longer window frame

Shorter window frame

Boxcar window technique

Longer window frame

Shorter window frame

Hamming window technique

Longer window frame

Shorter window frame

With respect to the Hann Window and Hamming Window techniques respectively, when the window length was shortened, the 2 sinusoidal signals s1(t) and s2(t) of different frequencies were clear and there was close to no disturbance of other signals as seen in both graphs.

With respect to the Boxcar Window technique, when the window length was shortened, the 2 sinusoidal signals s1(t) and s2(t) of different frequencies were clear but the disturbance of other signals were very visible. This means that this technique was not able to truncate signals properly.