Machine Learning for Graphs and Sequential Data Exercise Sheet 05 Robustness of Machine Learning Models II

Problem 1: On slide 15 of the robustness chapter, we have defined an optimization problem for untargeted attacks, i.e. we aim to have the sample \hat{x} classified as **any** class other than the correct one:

$$\min_{\hat{\boldsymbol{x}}} \mathcal{D}(\boldsymbol{x}, \hat{\boldsymbol{x}}) + \lambda \cdot L(\hat{\boldsymbol{x}}, y)$$

The loss function is defined as:

$$L(\hat{\boldsymbol{x}}, y) = \left[Z(\hat{\boldsymbol{x}})_y - \max_{i \neq y} Z(\hat{\boldsymbol{x}})_i \right]_+,$$

where $[x]_+$ is shorthand for $\max(x, 0)$ and $Z(x)_i = \log f(x)_i$ (i.e. log probability of class i. Here, $L(\hat{x}, y)$ is positive if \hat{x} is classified correctly and 0 otherwise.

Provide an alternative loss function to turn this attack into a targeted attack, i.e. we aim to have the sample x classified as a *specific* target class t.

$$L(\hat{oldsymbol{x}},t) = \left[\max_{i
eq t} Z(\hat{oldsymbol{x}})_i - Z(\hat{oldsymbol{x}})_t
ight]_+$$

This loss is positive if \hat{x} is classified as a class that is **not** t, and is zero otherwise.

Problem 2: Recall from slide 41 the MILP constraints expressing the ReLU activation function. Show that a continuous relaxation on \boldsymbol{a} leads to the convex relaxation constraints on slide 54. That is, we replace the constraint $\boldsymbol{a}_i \in \{0,1\}$ with $\boldsymbol{a}_i \in [0,1]$.

We can combine the first two constraints on slide 41:

$$y_i \le x_i - l_i(1 - a_i)$$

 $y_i \le u_i \cdot a_i$

by expressing it as

$$y_i \leq \min(\boldsymbol{x}_i - \boldsymbol{l}_i(1 - \boldsymbol{a}_i), \boldsymbol{u}_i \cdot \boldsymbol{a}_i)$$

Note that we are free to choose any value for a_i between 0 and 1. We want to choose a_i so that it leads to the loosest-possible constraint on y_i , since this leads to the maximum 'leeway' to optimize the objective function. More formally,

$$oldsymbol{y}_i \leq \max_{oldsymbol{a}_i} \min(oldsymbol{x}_i - oldsymbol{l}_i(1 - oldsymbol{a}_i), oldsymbol{u}_i \cdot oldsymbol{a}_i)$$

Further note that the two terms in the $\min(\cdot, \cdot)$ are two linear functions in a_i . For $l_i < 0$, the former is a function with negative slope in a_i . We only need to consider the case $l_i < 0$, since if $l_i \ge 0$, we know that the unit is *stably active* and therefore linear.

The second term in the $\min(\cdot, \cdot)$ is a function with positive slope in a_i if $u_i > 0$. Again, we only need to consider this case since $u_i \leq 0$ implies that the unit is *stably inactive* and therefore $y_i = 0$.

Consequently, the function $\min(\boldsymbol{x}_i - \boldsymbol{l}_i(1 - \boldsymbol{a}_i), \boldsymbol{u}_i \cdot \boldsymbol{a}_i)$ maximal at the intersection of the two linear functions. Solving for \boldsymbol{a}_i we get:

$$x_i - (1 - a_i)l_i = a_i u_i$$

 $\Leftrightarrow a_i = \frac{x_i - l_i}{u_i - l_i}$

Plugging the expression of a_i into one of the original constraints, e.g. $y_i \leq a_i \cdot u_i$ we get:

$$egin{aligned} oldsymbol{y}_i & \leq rac{oldsymbol{x}_i - oldsymbol{l}_i}{oldsymbol{u}_i - oldsymbol{l}_i} oldsymbol{u}_i \ \Leftrightarrow oldsymbol{y}_i(oldsymbol{u}_i - oldsymbol{l}_i) - oldsymbol{u}_i oldsymbol{x}_i \leq oldsymbol{u}_i oldsymbol{l}_i, \end{aligned}$$

and therefore we have recovered the constraint of the convex relaxation.