Exam notes

Functional dependencies

Trivial FD: $X \to Y$ is trivial if: $Y \subset X$.

Non-trivial FD: see above.

Superkey: Superset of a candidate key.

Candidate key: Minimal set of a key.

Primary key: Candidate key chosen by designer.

Prime attributes: Attributes contained in candidate key.

Closure of **FDs**: Set of all dependencies that include F and all those that can be inferred from F. Denoted as F^+ .

Closure of **set of attributes**: Maximum set of attributes that can be inferred from the provided set of attributes.

Normalization

Database design principle to

- 1. reduce redundancy
- 2. avoid complexities
- 3. organize data in a consistent way.
- 4. eliminate duplicates

but loses out on

query efficiency

1NF: No multivalued attributes, i.e. only simple values.

2NF: Parts of the candidate key must not be functional dependent on non-prime attributes.

- Example: $\{{f A},{f B}\}:$ $\overbrace{{f A} o C,D,E}^{
 m illegal}$
 - ⇒ No arrows from part of candidate key!

Decompose: Make new table containing LHS and RHS. Remove RHS from origin table.

3NF: Non-prime attributes must not be functionally determined by other non-prime attributes.

- ullet Equivalent to no transitive dependencies: ${f A}
 ightarrow \overrightarrow{B}
 ightarrow C$
 - ⇒ No arrows starting from non-prime attributes!

Decompose: Make new table containing LHS and RHS. Remove RHS from origin table.

BCNF: No dependencies from non-key attributes to key attributes.

- Example: $\{{f A},{f B}\} o \overbrace{C o{f A}}^{
 m illegal}$
 - ⇒ No arrows pointing towards prime attributes!

Decompose: Remove one of the prime-attributes!

NB: BCNF is lossless, but it is not dependency preserving!

Losslessness: Decomposition is lossless if we can recover initial table by performing multiple joins.

Dependency preservation: We do not lose dependencies. True if all dependencies can be inferred from the current set.

Triggers

Can not modify the database schema; solely DML (Data Manipulation Language) for data-level operations.

Invoked automatically.

Defined in terms of the event that invokes it, and the action it performs.

May operate either **BEFORE** or **AFTER** the execution of the event that invokes it.

Storage

Main memory vs. disk:

- Data access from disk is typically 2 orders of magnitude slower.
- Data in main memory is volatile, while non-volatile for disk.
- Disk is solely mechanical moving parts, while main memory is completely electronic.

Each time we read from disk, we retrieve a *block* of records. Size of these *blocks* is fixed, but depends on the OS.

Indexes

Index: data structure that facilitates quicker access to a data.

- can be used for both main memory and disk!
- stored in a data file.

Primary index: Indexes on the primary key (ordered on key).

- → Dense index: Has exactly one index entry for each search key value.
- $\bullet \to \frac{\text{Sparse index}}{\text{Sparse index}}$: Has fewer index entries than search key values.

Clustering index: Indexes on a non-key field (ordered on field).

- → One index entry of each (distinct!) value of the field.
- → Each index points to first data block of records for search key.

Secondary index: Not ordered on the index's search key (purely a mess!)

Multi-level index: Structure of index on index until all entries of the top-level structure fit into 1 disk block.

→ Pin top-level index in main memory (RAM).

B^+ -trees

- multi-leveled indexing structure
- tailored for disk-based data organization: aligns with disk block sizes, so very efficient for disk storage and access.
- · grows horizontally by splitting the root.

↓ Operation	Average	Worst case
Search	$O(\log n)$	$O(\log n)$
Insert	$O(\log n)$	$O(\log n)$
Delete	$O(\log n)$	$O(\log n)$

Balanced: all paths from root to a leaf have the same length.

→ guarantees good search performance!

Authorization

Preparing SQL statements they are compiled only once, but executed multiple times!

SQL injection attacks: Using dynamic SQL queries with user inputs, people can inject malicious statements!

• Fix: Bind inputs to variables and then sanitize them!

Sanitize: Filters matching the input to patterns and stripping it from invalid patterns.

The Database Administrator (**DBA**) can **grant permissions**:

```
GRANT *privileges* ON *object* TO *identity* WITH GRANT OPTION;
```

Transitive granting: Allows users to grant other users privileges: with grant option.

There are the following privileges:

SELECT:
INSERT:
DELETE:
UPDATE:

REFERENCES: the right to include an attribute in a foreign key.

Revoking privileges can be done using

```
REVOKE *privileges* ON *object* FROM *identities* <CASCADE/RESTRICT>
```

where <cascade/restrict> revolves around transitive granted privileges.

To create roles

```
CREATE ROLE Paymaster;

GRANT UPDATE(salary) ON Payroll TO Paymaster;

GRANT Paymaster TO amoeller WITH GRANT OPTION;
```

NoSQL

■ Not Only SQL.

Motivation

- · Huge amounts of data
- High performance (response time)
- Consistency less important
- Scalability (relational model too restrictive!)
 - ⇒ Often done using distributed databases!

Data-model: "Master-slave replication or master-master replication and sharding." Commonly hashing and range partitions is used to localize data.

Categories of systems:

- 1. Document-based: MongoDB
- → Normalized: Decompose into several documents of similar structure and content
- → Denormalized: All information in one document
- 1. Key-value stores: Voldemort (builds on DynamoDB)
- 2. Column-based / wide-column: Apache HBase
- 3. Graph-based: Neo4j

CRUD: Create, Read, Update, Delete (+ Search) operations provided through API.

CAP properties: Goals when replicating data across distributed network:

- C: Consistency (same value among replicas)
- A: Availability (successful read/writes)
- P: Partition tolerance (robust under network failure)

Note: In DBMS consistency was integrity constraints, now we only want identical replicas!

CAP theorem: Impossible to guarantee all three: C, A, P.

→ NoSQL systems slack on C: consistency.

Keywords:

- No schema required, instead semi-structured data such as JSON, XML!
- · Less powerful query languages!
- · May provide multiple version storage.

Recovery strategies

Idempotent: If a system crashes during the recovery stage, the new recovery must still give correct results.

Cascading rollback: A transaction fails or aborts, and as a result, all other transactions that read data modified by the failed transaction must also be rolled back.

Checkpointing: process where the system periodically writes all modified (*dirty*) pages from memory to disk.

- improves **recovery** efficiency
- ensures a consistent state can be restored after unexpected crash.

Shadow-paging: copy-on-write technique for avoiding in-place updates of pages

- when a page is modified (dirty), the system writes changes to a new (shadow) page instead of overwriting the old.
- upon commit the page table pointer is switched to the new page (**atomic**!). \approx no-undo / no-redo

⇒ possible to use both techniques, but often redundant because both handle recovery well.

Write ahead logging (WAL): maintain "before image" in log (main-memory!), flush to disk before overwritten with "after image" on disk

Undo: rollback changes of uncommited transactions

Redo: reapply changes of *commited* transactions after a crash.

Steal: uncommited dirty pages can be written, so you need to undo them.

• e.g. to save space in main memory you flush the dirty pages more often.

Force: committed pages are immediately written (forced!) to disk, so you do not need to repeat them (no-redo).

• generally not favorable because it leads to a ton of continuously costly I/Os

	Steal	No-steal	
Force	Undo / no-redo	No-undo / no-redo	
No-force	Undo / redo	No-undo / redo	

Undo/redo:

- 1. Undo all transactions that has a log entry of "start" but no "commit".
- 2. Redo all transactions that has a long entry of "start" and "commit".

ARIES: Recovery algorithm implemented in many IBM related databases.

Based on 3 key ideas:

- 1. Write Ahead Logging: Log changes **before** writing them to disk.
- 2. Repeat history during redo: *Reapply all actions, including uncommited, to reconstruct state*
- 3. Logging changes during undo: When undoing, **log each undo action**, so crash during recovery is safe (**idempotent**)

Using a 3-phase recovery:

- 1. Analysis: Identify dirty pages and active transactions.
- 2. Redo: Repeat history.
- 3. Undo: Roll back any uncommited transactions using the log.

Transactions

- Multiuser DBMS systems on single-threaded CPUs are interleaved.
- · Provides mechanism for logical units of database processing.

<u>Database access operations</u>: Done by reading database item into *a program variable*, and then writing the *program variable value* to a database item.

Def. = (Transaction): A unit of work defined by a BEGIN TRANSCATION and END TRANSACTION.

Isolation level: Defines degree to which transactions are isolated!

- 1. **SERLIAZABLE**: guarantees transactions behave as though they were serial.
- 2. REPEATABLE READ: read and write locks on rows (not on ranges)!
 - → no dirty reads!
 - → phantoms: new rows can still be inserted
- 3. READ COMMITTED: read and write locks on rows, but read locks released immediately after reading.
 - → no dirty reads, but because read locks are released you can get different values.
- 4. **READ UNCOMMITED**: no read locks!
 - → very risky!
- (!) Isolation levels are a personal choice, which affects how you see the database state!

Isolation level (highest to lowest!)	Dirty reads allowed?	Unrepeatable reads allowed?	Phantom reads allowed?	Concurrency
SERIALIZABLE	No	No	No	Low
REPEATABLE READ	No	No	Yes	Medium
READ COMMITED	No	Yes	Yes	High
READ UNCOMMITED	Yes	Yes	Yes	Very High

Overview of problems:

1. Dirty reads:

- A transaction updates a database item and then fails for some reason.
- Updated item is accessed by another transaction before it is changed back to its original value.

2. Unrepeatable reads:

- A transaction reads the same item twice.
- · Another transaction changes the value between first and second read

3. Lost update:

• Two transactions access same item rendering its value incorrect.

4. Phantom reads:

- A transaction queries for an item twice.
- Another transaction inserts an item matching the query between first and second read.

Concurrency control

Schedule: Order in which transactions or operations are performed.

→ Example: for

 $T_1: R_1(X), W_1(X)$ $T_2: R_2(X)$

can be interleaved in many different ways!

 $\begin{array}{lll} 1: & R_1(X), W_1(X), R_2(X) & \Rightarrow \text{Serial} \\ 2: & R_2(X), R_1(X), W_1(X) & \Rightarrow \text{Serial} \\ 3: & R_1(X), R_2(X), W_1(X) & \Rightarrow \text{Concurrent} \end{array}$

Relevant for: consistency and isolation!

Conflict: Occurs when you have

- 1. actions from at least 2 transactions
- 2. one of them is a write
- 3. they are on the same attribute

Conflict equivalent: If transactions I and J do not conflict, we may swap their order to produce a new schedule S'. We then denote S and S' are **conflict equivalent**.

• Note: conflicting operations must maintain their relative order!

Serializable: A transaction that is (conflict) equivalent to a serial schedule.

Precedence graphs:

- 4. For every transaction make a node.
- 5. Draw directed edge from i to j if

 $RW: R_i(X), \dots, W_j(X)$ $WR: W_i(X), \dots, R_j(X)$ $WW: W_i(X), \dots, W_j(X)$

- 3. If there is a cycle (despite labeling of attributes!) then it is NOT serializable.
- 4. To obtain the serializable schedule, follow the arrows from end to end. Note; there may be several.

There are different types of schedules:

1. Cascadeless schedule: Mitigates cascading rollbacks

"Every transaction reads only items written by committed transactions"

2. Strict schedule: Mitigates cascading rollbacks

"Transaction can neither read or write item until <u>the last</u> transaction that wrote it has committed."

⇒ Transactions can only read committed values!

3. Recoverable schedule:

"No transaction commits until <u>all</u> transactions that have written an item that it read have committed"

Locking

Binary locks (mutex locks): Ensures safe access to data by having

- (1) Locked: data is <u>not</u> accessible by other
- (0) Unlocked: data is available for access

Important: Once locked, no other transaction can read or write the data item!

This is different than shared- and exclusive locks.

Description:

A lock needs to be acquired before any read or write, and must unlock again after completing all operations; it unlocks only items it currently has a lock on, and requests locks only for items it currently has no lock on.

Shared- and exclusive locks (multiple-mode locking):

- Shared lock (S): Allows multiple transactions to read the data item.
 - Note: Shared locks are unique for transactions and hence are not "shared"!
- Exclusive lock (X): Allows one transaction to write (and also read, if needed).
- Unlock (U): ...
- Lock-conversion: A transaction can <u>upgrade</u> a shared- to an exclusive lock, or <u>downgrade</u> an exclusive- to a shared lock.

Description:

A transaction must acquire a shared or exclusive lock prior to reading, and an exclusive lock prior to writing, and it must unlock again after all its operations are completed; it issues lock requests only for items it does not already hold a lock on, and it issues unlock requests only for items it holds a lock on.

2-phase locking (2PL):

- 1. Phase 1 (growing phase):
 - Transaction may request locks
 - Transactions may not unlock locks
 - (Can convert (upgrade): $S(X) \rightarrow E(X)$)
- 2. Phase 2 (shrinking phase):
 - Transactions may not request locks
 - Transactions may unlock locks
 - (Can convert (downgrade): $E(X) \rightarrow S(X)$)

(!) When the first locks is released, the transaction moves from phase 1 to phase 2.

 \Longrightarrow

Deadlocks: Cycle of transactions all waiting for another to unlock a data item.

Validation (optimistic) concurrency control: Do the work on *local copies only*, before committing check if there is any issues; if so abort and restart, otherwise write changes to database.

1. Read phase:

- Read and write operations are made in local workspace (copy of relevant data only!)
- 2. Validation phase: (check serializability!)
 - Assign timestamps when starting validation, check for R/W, W/W conflicts from older transactions.

3. Write phase:

· Local changes are written to database if validation is successful.

Validation is based on 3 steps: For all other recent: $TS(T_i) < TS(T_i)$

- 1. T_i executes all 3 phases before T_i begins (serial execution!)
- 2. T_j completes its write phase before T_i starts its write phase, and does not change any items read.

$$write_set(T_i) \cap read_set(T_i) = \emptyset$$

3. T_j completes its read phase before T_i starts its read phase, and does not change any item that is read or written to.

$$\begin{aligned} & write_set(T_j) \ \cap \ read_set(T_i) = \emptyset \\ & write_set(T_j) \ \cap \ write_set(T_i) = \emptyset \end{aligned}$$

 \Rightarrow and one of these steps must be true!

==Multi-version 2-phase locking w. certify locks ==: Allows a transaction T' to read a data item X while it is write-locked by a conflicting transaction T.

- \Rightarrow 3 locks: read, write (now not exclusive, reads possible), and certify (fully exclusive).
- 1. When T wants to write X, it creates a second version X' after obtaining a write-lock.
- 2. Other transactions continue reading X.
- 3. When T is ready to commit, it obtains a *certify*-lock on X'.
- 4. Committed version X becomes X'.
- 5. T releases certify-lock.

Core idea:

Instead of just read and write (shared and exclusive, respectively), we now have three locks, read, write, certify (shared, shared with reads, exclusive, respectively). With this, we can allow some reads while an item is write locked, but transactions may have be delay when waiting to certify and deadlocks may occur.

Snapshot isolation: Each transaction sees a snapshot of the database at the time it started.

⇒ No read locks, only write locks!

Granularity locking

Def. (Granularity): Size of a lockable unit of data

→ coarse: entire database

- → fine: tuple or attribute of relation
 - \implies <u>significantly</u> affects concurrency performance:
- low degree of concurrency for coarse granularity!
- · high degree of concurrency for fine granularity!

Rule of thumb:

"We want to choose granularity to reflect the typical access size of transactions"

Granularity hierarchy: B-tree structure of coarse and finer granularity:

Core idea: Writing to B-tree family indexes could lock a lot of pages, as all index access starts at the root. A more optimistic approach holds shared locks on non-leaf nodes, and exclusive locks on the leaf, unless a split becomes necessary.

To manage this hierarchy we introduce 3 more locks:

- Intention-shared (IS): indicates that a shared lock(s) will be requested on some descendant nodes(s)
- Intention-exclusive (IX): indicates that an exclusive lock(s) will be requested on some descendant node(s)
- **Shared-intention-exclusive** (SIX): indicates that the current node is locked in shared mode but an exclusive lock(s) will be requested on some descendant nodes(s)
 - ⇒ typically when you want to read a node and want an exclusive lock on a descendant node.

Timestamping

- Every transaction gets a *timestamp*; $ST_1 \rightarrow TS(T_1) = 1$.
- Resolves at what point in time the transactions should see the state of information in.

Single version:

- 1. $R(X) : W_{TS}(X) \leq TS(T_i)$
- If the write-timestamp is younger than yours, then you should not be allowed to read.
 - \Rightarrow if allowed: $R_{TS}(X) = \max(R_{TS}(X), TS(T_i))$
 - \Rightarrow else abort and rollback.
- 2. $W(X): W_{TS}(X) \leq TS(T_i) \text{ AND } R_{TS}(X) \leq TS(T_i)$
- Same as before, but now also if someone younger has written the value, then you should not be allowed to change it at an earlier time.
 - \Rightarrow if allowed: $W_{TS}(X) = \max(W_{TS}(X), TS(T_i))$
 - \Rightarrow else abort and rollback.

Multi version: Reads will always be okay, but not necessarily for writes.

- 1. R(X): always allowed, but read version with highest W_{TS} that is $\leq TS(T_i)$
- 2. W(X): find version with highest W_{TS} that is still $\leq TS(T_i)$. If $R_{TS} \leq TS(T_i)$, then it is allowed. Then make a new version with $R_{TS} = W_{TS} = TS(T_i)$.
 - (!) Storage (RAM and disk) is required to maintain multiple versions!

Relational algebra

- Set of (basic!) operations for the relational model.
- Working with mathematical sets, duplicates are automatically eliminated!
- · Operations are nested in sequences.
- Can not compute recursive closures! ⇒ not Turing complete.

SELECTION, $\sigma_{\text{Condition}}(\text{Relation})$; specify a subset of tuples that satisfy a condition.

· Resulting schema is unchanged!

PROJECTION, $\pi_{\text{attributes: }a_1,...}(\text{Relation})$; specify a subset of attributes.

RENAMING, $\rho_{a_1 \to b_1}(\text{Relation})$; rename relation or attributes.

CARTESIAN PRODUCT, $R \times S$; cross join all tuples that can be constructed by combining two tuples from either relation.

• Essentially just adding the relations together.

THETA JOIN, $R \bowtie_{\theta} S \equiv \sigma_{\theta}(R \times S)$; combine tuples through θ -condition from two relations into single, "longer" tuples.

\Rightarrow Variations of join:

- EQUIJOIN, ...; only = comparison used, and combines pairs of attributes that have identical values in every tuple.
- NATURAL JOIN, R * S; equijoin on attributes of the same name.
- OUTER JOIN, $R \bowtie, \bowtie, \bowtie S$; keep all tuples in R, or all those in S, or all those in both relations regardless of whether they have matching tuples in the other relation.

Aggregate functions and grouping; SUM, AVERAGE, MINIMUM, ...

group attributes \mathfrak{J} aggregate functions (Relation)

Set operations

- Arguments must have the same schema!
- Result will again have the same schema!

DIVISION, $A \div B$; return tuples from A which match all tuples from B in all attributes.

• Result schema is Attributes of A – Attributes of B = X

UNION, $R \cup S$; combines tuples of the two relations and will contain all tuples in either or both.

INTERSECTION, $R \cap S$; combines all tuples that are in both relations

DIFFERENCE, R-S; all tuples that are in R but not in S.

Relational calculus

- Identical expressive power as relational algebra.
- *Two types of calculi; **TRC** and **DRC***: both have same expressive power!
- (!) Query languages are based on **relational calculus***, whilst their *implementations* are based on **relational algebra**. This is because **relational calculus** is:
 - 1. declarative: describes what you want, not how to get it

2. non-procedural: does not specify the steps to compute the result

Tuple relational calculus

• Expresses results as sets of tuples that satisfy a condition.

$$\{ t \mid \text{Relation}(t) \land (\text{Conditions}(t)) \}$$

Conditions are boolean expressions, consisting of operations

$$=$$
 \neq \leq,\geq $<,>$

and connected through logical operators

Also with quantifiers

called bound if quantified, otherwise free.

Safety: possible to write expressions that generates infinite relations!

- Example: $\{ t \mid \neg \text{Employee}(t) \}$; all those tuples that are not employees! \implies safe queries must return:
- 1. only values from the active domain (values actually appearing in the database!),
- 2. must be finite
- Example: $\{ t \mid \operatorname{Person}(t) \land \neg \operatorname{Employee}(t) \}$; all people who are not employees!

Domain relational calculus

• Now expresses results as ranges over single values from domains of attributes!

$$\{x_1,\ldots,x_n \mid \text{Relation}(x_1,\ldots,x_n) \land (\text{Conditions}(x_1,\ldots,x_n))\}$$

where x_1, \ldots, x_n are attributes of the relation.

Assertions

General integrity constraints are also available in TRC and DRC.

 \Rightarrow expressed as predicates that must <u>always</u> be fulfilled!

Example:

- Algebra: $\sigma_{\text{Price}<0}(\text{Product}) = \emptyset$
- TRC: $\neg \exists f(\operatorname{Product}(f) \land f. \operatorname{Price} < 0)$
- DRC: $\neg \exists I, N, P, C(\operatorname{Product}(I, N, P, C) \land P < 0)$

Query evaluation

Overview of query processing:

Optimization in relational algebra is done by decomposing the query into blocks!

Query block: a single SELECT-FROM-WHERE expression (possibly with GROUP BY and HAVING).

- ⇒ each block is then optimized separately!
- which data is needed?
- where is the data, and how do we retrieve it (e.g. index)?
- how large is the expected result?

Pipelining: Do not wait for 1 operation to finish, but instead pass the results of a previous operator to the next operator - without waiting to complete the previous operation!

For this, we need to consider the type of operations.

Types of selection queries:

- 1. Point query; Condition on a single value
 - \rightarrow very high selectivity!
- 2. Range range; Condition is on a range of values
 - ightarrow selectivity depends
- 3. Conjunction; Combines logically two conditions with AND
 - ightarrow selectivity often high
- 4. Disjunction; Combines logically two conditions with or
 - ightarrow selectivity often low

Condition selectivity: Determined via. catalog information

$$Selectivity = \frac{Tuples \ satisfying \ condition}{Total \ number \ of \ tuples \ in \ the \ relation}$$

Projections are generally straightforwards, but removing duplicates can require sorting/hashing!

Aggregates can require different strategies depending on the operator:

- MIN, MAX: full table scan or index-based search (!)
- SUM, COUNT, AVG: dense indexes (!) or full table scan (materialized views can be good?)

Executing selection for *point query*:

- Linear search (brute-force!)
- · Binary search, if: "ordered"
- · Index-based search, if: "key attribute"

Executing selection for *conjunction/disjunction*:

· Start with most selective condition!

```
\implies Join is by far the most costly operation! NB: strategies work on a block basis.
```

Overview of join strategies:

- Nested loop join (brute-force!)
- · Index-based join
- · Sort-merge join

Hash join
 (Explained below...)

Semi-join: Returns only (!) rows from one relation that has at least 1 match with the other relation.

- Example: $R \ltimes_A S = X$ with R(A, B) and S(A, C, D, ...) yields X(A, B)
- Reduces the number of tuples, which is beneficial in especially *distributed systems* where you are concerned *how much data is transferred*!
- Useful for *unnesting* **EXISTS**, **IN**, **ANY** subqueries because it only cares about 1 match.

Anti-join: Returns only (!) rows from the first relation where it can not find a match in the second relation.

Useful for unnesting negation subqueries; NOT EXISTS, NOT IN, ALL because it rejects all matching rows.

Join selection factor: Ratio of tuples in one relation that is expected to be joined with tuples in the other relation.

• Generally, for optimization we want tuples of the *outer relation* to match many tuples of the *inner relation* because we load outer relation blocks less often.

Nested loop join: $\mathcal{O}(n^2)$

- Number of buffers in main memory determines how many blocks of the inner relation we can process simultaneously.
- Relation size of the outer dominates the cost.
- Can be be used to implement LEFT/RIGHT/FULL OUTER JOIN;
 - \rightarrow if LEFT use the left relation as the outer relation and pad with nulls!

Index-based join:

Sort-merge join:

• *Most efficient* join is the **merge join**. To efficiently do this, we first *sort* the relations (or store them stored!) and *loads pairs of blocks* into memory and scans them!

External sorting: Sorting algorithm suitable for large files on disk that do not fit entirely in main memory, such as most database files.

• We sort large files that do not fit in main memory, typically using a sort-merge strategy where subfiles, runs, of the main file are sorted and these runs are then merged.

Hash join:

Query optimization

Goal: Transform query into faster, equivalent query.

Two types of optimization:

- 1. Heuristic (logical) optimization
 - ⇒ query tree (relational algebra)!
- 2. Cost-based (physical) optimization

Comparison:

Heuristic approach is more efficient to generate, but may not yield the optimal query plan. *Cost-based* approach relies heavily on statistics gathered.

Heuristic optimization

• Translate into query tree of relational algebra and optimize.

Translate SQL query directly into tree:

- 1. leaves as input tables
- 2. apply operations sequential and build up

Steps to optimize:

- 1. Apply selections and projections <u>early</u> (consider which are most restrictive!).
- 2. Break up *conjunctive selections* into sequence of σ .
- 3. Transform $\sigma_C(R \times S) \Longrightarrow R \bowtie_C S$

Cost-based optimization

• Estimate and compare costs of queries with *different* strategies and choose the one *with the lowest* estimate.

- Most common strategy: Bottom-up on the query tree, choose the best algorithm for implementing each operation.
- (!) Need to define a loss-function.

Approach:

- · Parameterize statistics on input relations
- · Compare algorithm choices for operators
- Consider CPU-time, I/O-time, communication time, main-memory usage, or combinations.

Statistics: Stored in system catalog.

- number of records (tuples), r
- record size, R
- number of blocks, b
- blocking factor; how many records per block, bfr
- selectivity of an attribute, sl
- selection cardinality of an attribute, $s = sl \cdot r$
- join cardinality (estimated number of tuples from join)
 most important value for joins.

Data mining

· Discovery of new information in terms of patterns or rules from vast amounts of data.

Association rules: Correlations between items in large datasets that appear to be associated with each other.

Example: What items are frequently bought together?

$$\{ milk, butter, flour \} \xrightarrow{yields \text{ association}} [milk \Rightarrow butter]$$

- 1. Support: percentage of transactions that contains all items in the rule (prevalence)
- 2. **Confidence**: ratio between the transactions containing LHS, and how many of these transactions that contain the RHS (*strength*)

Apriori principle (monotonicity):

Any subset of a frequent itemset but also be frequent
 ⇒ Any set that is not frequent can not be the subset of a frequent one! (downward closure/anti-

monotinicity) **Approach**

- 1. Split into 1-itemsets, and calculate thresholds.
- 2. Scratch any below the thresholds.
- 3. Perform joins on all (remaining) combinations of 1-itemsets to create 2-itemsets.
- 4. Repeat

Classification: Learning a model able to describe different classes of data.

• Supervised as the classes to be learned are predetermined

K-means clustering:

- (Initialization; partition objects into k sets.)
- Compute centroids of each cluster: $\mu_C = rac{1}{|C|} \sum_{x_i \in C} x_i$
- · Assign objects to nearest centroid.
- · Repeat.

Total-distance measure : $TD = \sqrt{\sum_{j=1}^k TD^2(C_j)}$

• for "good" clusters we generally want low TD.

Decision-tree classifiers: Flow-chart tree performing decision based on class predictions.

- Nodes are attributes, branches are outcomes, and leaves are predictors.
 Building: created top-down!
- 1. Calculate total entropy based on predictors (YES/NO typically): $E_{tot} = -\sum_{i=1}^{n_{pred}} p_i \cdot \log_2(p_i)$
- 2. Calculate entropy and information gain for each attribute (consider only data for that attribute!):

$$egin{aligned} E(A) &= -\sum_{i=1}^{n_{ ext{pred}}} p_i \cdot \log_2(p_i) \ G(A) &= E_{tot} - \sum_{i=1}^{n_{ ext{outcomes}}} rac{|O_i|}{|O|} \cdot E(T) \end{aligned}$$

- 3. Use the attribute with highest information gain.
- 4. Repeat (now considering the data subsection)

Data warehouses

Traditional databases are optimized for querying and updating; **OLTP**; "Online <u>Transactional</u> Processing". However, data warehouses are different:

OLAP: "Online Analytical Processing", supports analysis of complex data (mostly *read-access*! - selectivity depends...)

DSS: "Decision Support Systems", otherwise known as *EIS*; "Executive Information Systems" or *MIS*; "Management Information Systems"

⇒ supports making organization decisions based on historical data.

Typically;

- 1. multiple databases
- 2. recurrent and predictable analysis
- 3. software designed specifically for requirements

Views vs. Warehouse: Alike because both have read-only extracts, but

- Warehouses are persistent storage, while views are materialized on demand!
- and the structure is not at all alike (relational vs. multidimensional)!

Best database (OLTP) compromise is a normalized and distributed (scalability!) database.

Comparison with traditional databases:

- Warehouses optimized for data access, whilst databases for transactional and integrity measures.
- · Warehouses emphasize historical data
- Warehouses are nonvolatile (not changed or deleted!)

Structure:

 \Rightarrow

- 1. Extract, transform, load (ETL): cleaning and reformatting data fetched from databases
- 2. Data warehouse: sends data to OLAP or data mining

ETL (Extract, transform, load):

- Process of inserting data from transactional database(s).
 - * different source databases with different schemas
- Cleaning, validity, and quality of data.
 - * incomplete data is corrected and backflushed to database
- Convert data to model of data warehouse
 - (!) Loading so much data is challenging, so typically it goes offline for regular intervals!

Data modelling: Typically, measures are related to several attributes in a N-dimensional grid. Reasons for this is:

- 1. Better query performance
- 2. Non-volatile
- 3. High predictability based on expected analysis
- Example: sales per. region/product/time period

Multi-dimensional schemas: Data organized in hyper cubes.

- Dimension table: Tuples of attributes of the dimension (typically denormalized!)
- Fact table: Each tuple is a recorded fact, containing a measure or observed attribute(s). Identified with pointer(s) to dimension table!
- How to do SQL queries in such structure? ⇒ aggregates and GROUP BY.

Star schema: Fact table with a single table for each dimension (creates star-pattern!).

Snowflake schema: Dimensional tables from a star schema are organized into a hierarchy by normalizing them (creating branches and giving a snowflake-pattern!)

Galaxy schema (fact constellation): set of tables that share some dimension tables (\Rightarrow multiple fact tables).

- Essentially, a collection of star schemas.
- Hard to manage and support but very flexible.

Navigating a warehouse by following functionalities;

- 1. Roll-up: move up in hierarchy (along 1 dimensional axis), so aggregate from smaller to larger regions (fine → coarse).
- 2. *Drill-down*: opposite of roll-up, so coarse → fine
- 3. Pivoting: rotate the reading axis
- slice and dice (projections), sorting, selection, derived attributes

Major challenges: Quality control, complexity, evolution of source databases, change in usage.

Distributed database systems

Distributed computing system:

- Number of processing sites / nodes.
- Interconnected by computer network.
- Cooperate in performing tasks.
- Achieves more computing power, but with overhead of coordination.

Distributed database (DDB):

- Process unit of execution (transaction!) in distributed manner.
- Collection of multiple logically related databases.
- Distributed over computer network.
- DDBMS; "Distributed Database Management System", manages transparency to user

Transparency: Hide implementation details from end users. Users do not worry about operational details of network!

- · Location transparency: access from any location
- Naming transparency: access to any named object from any site (requires unambiguous names!)
- Fragmentation transparency: allows storing tuples or attributes at different sites
- Replication transparency: allows storing copies of data at multiple sites
 ⇒ improves reliability (system running efficiently) and availability (system continuously available)!

Query and update decomposition: A query or update must be decomposed into subqueries that can be executed at the individual sites.

Horizontal fragmentation (sharding): Horizontal subset of relation with tuples satisfying selection condition: $\sigma_C(R)$.

Derived horizontal fragmentation: Partitioning of primary relation to secondary relation via foreign keys. Meaning related data is fragmented in the same way.

Complete horizontal fragmentation: Every tuple in R satisfies C_1 OR ... C_n .

Disjoint complete horizontal fragmentation: No tuple in R satisfies $(C_i \text{ AND } C_j), i \neq j$.

Reconstruct R using **UNION**.

Vertical fragmentation: Vertical subset of relation as a subset of columns, $\Pi_{L_i}(R)$.

(!): Each fragment must contain the primary key of the relation!

Reconstruct R using **FULL OUTER JOIN**.

Complete vertical fragmentation: Set of vertical fragments include all attributes in R and share only primary key attributes.

$$L_1 \cup L_2 \cup \ldots \cup L_n = \operatorname{ATTRS}(R)$$

 $L_i \cap L_j = \operatorname{PK}(R), \forall (i,j)$

Mixed/hybrid fragmentation: Combination of vertical and horizontal fragmentation; $\Pi_{L_i}(\sigma_{C_i}(R))$.

Fragmentation *schema*: Definition of a *set* of fragments. Includes all tuples and attributes in database.

Allocation schema: Describes distribution of fragments to sites of distributed databases; fully, partially replicated, or partitioned.

Homogeneous distributed database system: All sites of database system have *identical* setup (same database software system!), e.g. Oracle, DB2, Sybase, etc.

(!) Underlying OS may be different: Linux, Windows, Unix, etc.

Heterogeneous distributed database system (Federated): Each site may run different database system, but data access is a single schema.

⇒ Each site must adhere to centralized access policy.

Issues:

- 1. Differences in data model (relational, object oriented, hierarchical, network, etc.)
- 2. Differences in constraints
- 3. Differences in query language

Catalog management

Catalog: databases with metadata about distributed database system

Centralized catalogs: Entire catalog is stored in single site.

⇒ Easy to implement, but overload and bottleneck possible and also little reliability.

Fully replicated catalogs: Each site stores copy of entire catalog. Updates are broadcasted.

⇒ Faster reads locally, but bottleneck for write-intensive loads.

Partially replicated catalogs: Each site stores catalog information on data stored at the site. System tracks catalog entries from original site and sites with copies.

⇒ Updating copies may be delayed until access to data occurs.

Query processing

- Optimization criterion: minimize data transfer across network!
- e.g. use semi-joins and in general consider data transfer!

Approach:

The input query is translated into an algebraic query on global relations, then mapped to separate queries on fragments, then optimized globally (typically with respect to communication cost), and finally optimized locally.

MapReduce: Efficient and scalable distributed processing automatically parallelized with runtime system.

- Easy to distribute chunks, balance workload, handle node failure.
- 1. Split data into chunks handled in distributed manner.
- 2. Map each record into key-value pairs in a list; "a" \rightarrow {"a", 1}
- 3. Sort the list based on the key value.
- 4. Reduce key-value pairs by merging to a list of all values.
- Example: Inverted-index (counting word occurrences)
- Example: Sort-merge join

Concurrency control and recovery

main global consistency and ==recover all copies with consistency==

Primary site technique: Single site serves as coordinator for transaction management. Concurrency control and commits managed by primary site.

• In 2PL this site manages locks.

Disadvantages: overload primary site and primary site failure (⇒ entire system will be inaccessible!)

Recovery: Designated backup site (shadow of primary site).

Primary copy technique: A data item partition is designed a *primary copy*. Simply lock the primary copy of the data item.

Advantage: no overload of site

Disadvantage: identification of primary copy complex, distributed directory must be maintained

Voting: Send lock requests to sites with the data item, and if majority of sites grants lock then the transactions gets the data item

7

2PC (2-phase commit): Transaction commits only when all nodes agree.

If anything fails, then abort. Each node has it's own recovery scheme.

Global recovery manager maintains information.

Phase 1: All (participating) databases signal coordinator their part of the transaction has ended.

Phase 2: If all votes (messages back to coordinator) is positive, then coordinator sends commit message. If not, then all participants undo locally.

⇒ If failure after "ready-to-commit" but before receiving "global-commit", the local site will be blocked (does not know what to do)!

 \Longrightarrow

3PC (*3-phase commit*): Add "pre-commit" message to 2PC *between* voting and global decision. Coordinator receives all pre-commit messages *and then* sends global decision.

- ⇒ Means that participants receiving such a message know that all participants have voted commit!
 - No blocking!

Misc

Parallel database: Builds on multiprocessor architecture, which can be either

- 1. tightly coupled with shared primary memory and disk storage,
- 2. loosely coupled with secondary disk storage, but separate primary memory.

There are 2 main ways of scaling a *database system*; adding more resources or adding a new system.

Horizontal scaling: When new systems (server racks!) are added to the existing system. This involves sharding (splitting data across servers) and hence distributing the database system.

Vertical scaling: When new resources (CPU, RAM, etc.) are added to the existing system. This is easier to implement, and simply involves upgrading the current machine!

SQL is (*typically!*) **vertical scaling** because it does not easily *distribute across several nodes*. However, modern SQL databases are capable of horizontal scaling!

NoSQL is (*typically!*) **horizontal scaling** because it is designed to run on *several server nodes*. However, naturally they are also vertical scaling!