Prof: T. S. Grigera — JTP: C. Grunfeld — AD: G. Sieben

Práctica 9 — Métodos numéricos

Esta práctica abarca los siguientes temas:

- Errores numéricos: errores de representación y de discretización. Propagación de errores.
- Métodos básicos de aproximación de funciones. Polinomios. Evaluación numérica de polinomios. Interpolación. Polinomio interpolante de Lagrange. Polinomios osculadores. Interpolación con splines.
- Ajuste de funciones. Ajuste por mínimos cuadrados como ajuste de máxima verosimilitud. Ajuste a una recta, a una función lineal en los parámetros y general
- Derivación numérica: diferencias finitas, interpolación
- Resolución de ecuaciones. Ecuaciones algebraicas de segundo y tercer grado. Raíces de polinomios. Raíces de funciones continuas: métodos de bisección, secante y regula falsi. Criterio de convergencia. Funciones derivables: método de Newton-Raphson. Puntos fijos: método de iteración, condiciones de validez. Sistemas de ecuaciones lineales.

Bibliografía: Press et al. (1992, caps. 1, 3, 5, 9, 15).

Problema 1. Polinomios. Implemente en Octave la rutina de ddpoly de *Numerical Recipes* (Press et al., 1992, p. 175) para evaluar un polinomio y sus primeras n derivadas. Compárela con una de función equivalente escrita utilizando las funciones polyval y polydev de Octave.

Problema 2. Interpolación. Utilice Matlab u Octave para construir las interpolaciones lineal, cúbica y con splines de las funciones tabuladas a continuación.

\boldsymbol{x}	$f_1(x)$	$f_2(x)$
0	1	0
1	0.99219767	0.63212056
2	0.87758256	0.86466472
3	0.43117652	0.95021293
4	-0.41614684	0.98168436
5	-0.99986235	0.99326205
6	-0.21079580	0.99752125
7	0.98751477	0.99908812
8	-0.14550003	0.99966454
9	-0.76469913	0.99987659
10	0.99779828	0.99995460

x	$f_3(x)$
-10	0.99004983
-8	0.98449644
-6	0.97260448
-4	0.93941306
-2	0.77880078
0	0
2	0.77880078
4	0.93941306
6	0.97260448
8	0.98449644
10	0.99004983

Para la última función deberá obtener un gráfico similar al que sigue. Observe las oscilaciones que aparecen al utilizar splines. ¿Aparecen para las otras funciones? ¿Puede explicar por qué? Ayuda: Puede verificar que la tabla de $f_3(x)$ corresponde a un muestreo de la función $f(x) = e^{-1/x^2}$ (y f(x = 0) = 0 para que resulte continua). ¿Qué le sucede a esta función en x = 0?

Problema 3. Ajuste por mínimos cuadrados. Utilice la función polyfit de Octave para ajustar los datos del archivo DatosAjPol.dat con un polinomio cúbico. Grafique los puntos junto con el ajuste e imprima los coeficientes del polinomio.

Problema 4. Método de Newton-Raphson. Escriba una implementación del método de Newton-Raphson en lenguaje C. El prototipo de la función debe ser double raizNR(void (*fun) (double x,double *f,double *df),double a,double b,double prec), donde a y b dan el intervalo que encierra a la raíz, prec es la precisión (absoluta) deseada y fun un puntero a una función que devuelve f(x) y f'(x) en f y df respectivamente, siendo f(x) la función cuya raíz el usuario desea encontrar. La función devolverá la raíz en el caso de convergencia exitosa, o bien imprimirá un mensaje de error si se excede un número razonable de iteraciones o la estimación de la raíz se escapa del intervalo [a,b]. Pruebe el algoritmo con las funciones $f(x) = x^2 - 2x$, $f(x) = e^x - 5x$.

Problema 5. Raíces de polinomios. Utilice la función roots() de Octave para encontrar las raíces de $p(x) = -2x^2 + 3x + 10$, $q(x) = 20x^5 + 18x^3 + x^2$. Intente refinar las raíces reales mediante la rutina de Newton-Raphson del ejercicio anterior.