

Ţ <u>Help</u>

sandipan_dey >

<u>Syllabus</u> laff routines **Discussion** <u>Outline</u> <u>Community</u> <u>Course</u> **Progress** <u>Dates</u>

Week 7 due Nov 20, 2023 01:42 IST Completed

7.2.2 The Problem

There is a typo in the following video. In particular, in the slide

The error is circled in green in the above. The elements beta_0 and beta_1 of vector b should be reversed.

Thank you to Neon-007 for reporting.

Start of transcript. Skip to the end.

Dr. Robert van de Geijn: All right, so let's move right along.

And now ask the question, what if LU factorization fails?

Now, what do we mean by that?

Well, here's a simple example.

We're given a matrix A. And if we

66

Video

▲ Download video file

Transcripts

- **L** Download SubRip (.srt) file
- **▲** Download Text (.txt) file

Reading Assignment

0 points possible (ungraded)

Read Unit 7.2.2 of the notes. [LINK]

Done

⊞ Calculator

Submit

✓ Correct

Discussion

Topic: Week 7 / 7.2.2

Hide Discussion

Add a Post

Show all posts

~

by recent activity >

There are no posts in this topic yet.

×

Homework 7.2.2.1

1/1 point (graded)

Solve the following linear system, via the steps in Gaussian elimination that you have learned so far.

$$2\chi_0 + 4\chi_1 + (-2)\chi_2 = -10 \ 4\chi_0 + 8\chi_1 + 6\chi_2 = 20 \ 6\chi_0 + (-4)\chi_1 + 2\chi_2 = 18$$

Mark all that are correct:

The process breaks down.

There is no solution

Explanation

Answer: (a) and (c)

Solving this linear system via Gaussian elimination relies on the fact that its solution does not change if equations are reordered.

Now,

• By subtracting (4/2) = 2 times the first row from the second row and (6/2) = 3 times the first row from the third row, we get

$$2\chi_0 + 4\chi_1 + (-2)\chi_2 = -10$$
$$0\chi_0 + 0\chi_1 + 10\chi_2 = 40$$
$$0\chi_0 + (-16)\chi_1 + 8\chi_2 = 48$$

Now we've got a problem. The algorithm we discussed so far would want to subtract
((-16)/0) times the second row from the third row, which causes a divide-by-zero error.
Instead, we have to use the fact that reordering the equations does not change the answer,
swapping the second row with the third:

$$2\chi_0 + 4\chi_1 + (-2)\chi_2 = -10$$

 $0\chi_2 = 40$

$$0\chi_0 + 0\chi_1 + 10\chi_2 = 40$$

 $0\chi_0 + (-10)\chi_1 +$

at which point we are done transforming our system into an upper triangular system, and the backward substition can commence to solve the problem.

Submit

Answers are displayed within the problem

Video

Start of transcript. Skip to the end.

Dr. Robert van de Geijn: So hopefully you did the homework.

And what you noticed is that performing the first step of Gaussian eliminations with these equations was not a problem.

But then, when you tried to perform the next step, you did run into a problem.

▶ 0:00 / 0:00

X 66 ▶ 2.0x CC

Video

▲ Download video file

Transcripts

Previous

Next >

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

<u>Trademark Policy</u>

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

<u>Idea Hub</u>

Contact Us

Help Center

<u>Security</u>

Media Kit

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>