

Model Optimization and Tuning Phase Template

Date	10 JULY 2024
Team ID	SWTID1720111029
Project Title	Unveiling Climate Change Dynamics through Earth Surface Temperature Analysis
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining neural network models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (8 Marks):

Model	Tuned Hyperparameters
	Hyperparam1: optimizer
	Description: Optimizer for the model training.
Model 1	Hyperparam2: dropout_rate
RNN	Description: Dropout rate applied after each RNN layer.
	Hyperparam3: units
	Description: Number of units/neurons in each SimpleRNN layer.


```
def create_rnn_model(optimizer='adam', dropout_rate=0.2, units=100):
                model = Sequential()
                model.add(Input(shape=(X_train_scaled.shape[1], X_train_scaled.shape[2])))
                model.add(SimpleRNN(units, activation='relu', return_sequences=True))
                model.add(Dropout(dropout_rate))
                model.add(SimpleRNN(units, activation='relu'))
                model.add(Dropout(dropout rate))
                model.add(Dense(1))
                model.compile(optimizer=optimizer, loss='mse')
                return model
            model = KerasRegressor(build_fn=create_rnn_model, verbose=0)
            param_grid = {
                'optimizer': ['adam', 'rmsprop'],
                'dropout_rate': [0.1, 0.2, 0.3],
                'units': [50, 100, 150]
            random_search = RandomizedSearchCV(estimator=model, param_distributions=param_grid,
                                               n_iter=10, cv=3, verbose=2, random_state=42)
            random_search.fit(X_train_scaled, y_train_scaled)
           print("Best parameters found: ", random_search.best_params_)
            print("Best CV score: ", random_search.best_score_)
            best_model = random_search.best_estimator_
            test_loss = best_model.score(X_test_scaled, y_test_scaled)
            print("Test loss: ", test_loss)
           Hyperparam1: optimizer
           Description: Optimizer for the model training.
Model 2
           Hyperparam2: dropout_rate
 GRU
           Description: Dropout rate applied after each GRU layer.
           Hyperparam3: units
           Description: Number of units/neurons in each GRU layer.
```



```
def create_gru_model(optimizer='adam', dropout_rate=0.2, units=100):
    model = Sequential()
    model.add(Input(shape=(X_train_scaled.shape[1], X_train_scaled.shape[2])))
    model.add(GRU(units, activation='relu', return sequences=True))
    model.add(Dropout(dropout_rate))
    model.add(GRU(units, activation='relu'))
    model.add(Dropout(dropout_rate))
    model.add(Dense(1))
    model.compile(optimizer=optimizer, loss='mse')
    return model
model = KerasRegressor(build fn=create gru model, verbose=0)
param_grid = {
    'optimizer': ['adam', 'rmsprop'],
    'dropout_rate': [0.1, 0.2, 0.3],
    'units': [50, 100, 150]
random search = RandomizedSearchCV(estimator=model, param distributions=param grid,
                                   n_iter=10, cv=3, verbose=2, random_state=42)
random_search.fit(X_train_scaled, y_train_scaled)
print("Best parameters found: ", random_search.best_params )
print("Best CV score: ", random_search.best_score )
best model = random search.best estimator
test_loss = best_model.score(X_test_scaled, y_test_scaled)
print("Test loss: ", test_loss)
```

units_1, units_2, units_3: Number of units in the LSTM layers. These parameters control the complexity and capacity of the LSTM layers.

Model 3

LSTM

dropout_1, dropout_2, dropout_3: Dropout rate applied to the LSTM layers. Dropout is used for regularization, preventing overfitting by randomly setting a fraction of input units to zero at each update during training.

dense_units: Number of units in the dense (fully connected) layer. This parameter determines the size of the hidden layer in the network after the LSTM layers.

dropout_dense: Dropout rate applied to the dense layer. Similar to LSTM dropout, this parameter helps prevent overfitting in the dense layer.

learning_rate: Learning rate for the Adam optimizer. This parameter controls the step size taken during optimization and affects the speed and stability of training.

```
ass LSTMHyperModel(Hype
def build(self, hp):
                                     el(HyperModel):
                                                                                                                                                                                                                                                       ⑥↑↓占♀ⅰ
             model = Sequential()
model.add(Input(shape=(X_train_scaled.shape[1], 1)))
model.add(Bidirectional(LISTM(units=hp.Int('units_1', min_value=32, max_value=256, step=32), return_sequences=True)))
model.add(Bidirectional(LISTM(units=hp.Int('units_1', min_value=0.1, max_value=0.5, step=0.1)))
model.add(Bidirectional(LISTM(units=hp.Int('units_2', min_value=32, max_value=256, step=32), return_sequences=True)))
model.add(Bidirectional(LISTM(units=hp.Int('units_3', min_value=0.1, max_value=0.5, step=0.1)))
model.add(Dropout(rate=hp.Float('dropout_3', min_value=0.1, max_value=0.5, step=0.1)))
model.add(Dense(units=hp.Int('dense_units', min_value=32, max_value=256, step=32), activation='relu'))
model.add(Dropout(rate=hp.Float('dropout_dense', min_value=0.1, max_value=0.5, step=0.1)))
model.add(Dense(units=hp.Int('dropout_dense', min_value=0.1, max_value=0.5, step=0.1)))
model.add(Dense(1))
              model = Sequential()
               model.add(Dense(1))
               model.compile(optimizer=Adam(learning_rate=hp.Float('learning_rate', min_value=1e-4, max_value=1e-2, sampling='LOG')),
loss='mean_squared_error', metrics=['mae'])
               return model
   rom keras_tuner.tuners import RandomSearch
tuner = RandomSearch(
       LSTMHyperModel(),
       objective='val_loss',
       max_trials=10,
       executions_per_trial=2,
directory='hyperparameter_tuning',
project_name='lstm_temperature_prediction'
  arly_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)
tumer.search(X_train_scaled, y_train_scaled, epochs=50, validation_data=(X_test_scaled, y_test_scaled), callbacks=[early_stopping], verbose=2)
best_hps = tuner.get_best_hyperparameters(num_trials=1)[0]
best_model = tuner.hypermodel.build(best_hps)
 best_model.summary()
```


Final Model Selection Justification (2 Marks):

Final Model	Reasoning
	Model 3, the LSTM-based model with hyperparameter tuning, was chosen as the
	final optimized model for several reasons:
	Bidirectional LSTM Layers: Model 3 utilizes bidirectional LSTM layers,
	which can capture both past and future context in sequences, potentially
	improving the model's ability to understand temporal dependencies in the
	temperature data.
	Dropout Regularization: Dropout layers are incorporated after each
	LSTM layer, helping to prevent overfitting by randomly dropping neurons
	during training.
	Dense Layers: It includes dense layers with ReLU activation, which can
	introduce non-linearity and potentially capture complex patterns in the data.
	Hyperparameter Tuning: The use of keras_tuner allows for systematic
	exploration of hyperparameters like the number of units in LSTM layers,
	dropout rates, and learning rates of the optimizer. This tuning process helps
	find configurations that minimize validation loss, making the model more
	robust and less likely to overfit.
	Validation Strategy: The model is tuned based on validation loss, ensuring
	that the selected hyperparameters generalize well to unseen data (test set).
	Early Stopping: The EarlyStopping callback is used during
Model 3	hyperparameter tuning to prevent overfitting by stopping training when

validation loss stops improving, ensuring the final model is not tuned excessively to the training data.

Overall, Model 3 combines LSTM's ability to handle long-term dependencies with a systematic approach to hyperparameter tuning, making it a stronger candidate for optimized performance compared to Models 1 and 2, which lack the systematic hyperparameter optimization process.