

Prueba I Métodos Matemáticos

Licenciatura en Física - 2015IPGG

Algo de tensores

a).- Considere dos tensores de rango dos, A_{ij} y B_{ij} . Suponga que $A_{ij} = A_{ji}$ y $B_{ij} = -B_{ji}$, entonces A_{ij} es llamado simétrico y B_{ij} es antisimétrico. Muestre que $A_{ij}B_{ij} = 0$. Note que este es un resultado general independientemente del rango del tensor: la contracción de un tensor simétrico y un tensor antisimétrico es nula.

b).- Determine la validez de las siguientes ecuaciones indiciales. Si no son válidas, justifique:

- $a_{ij} = b_{ik}c_jd_k$
- $\bullet \ \phi = m_{ii} + n_{ii} x_{ii}$
- $L_{ijk} = \epsilon_{imn} r_{jm} p_{kn}$
- \bullet x = y
- $d_n = \epsilon_{lkn} q_l \epsilon_{ijk} r_i u_j$
- $\bullet \ a_k = r_{ijk}\eta_{ij} + S_{ijklm}f_ig_{jl}$
- $\bullet \ y_3 = q_{ij3}z_{ij}$

Misceláneos

- Si $\psi = (\mathbf{r} \times \mathbf{a}) \cdot (\mathbf{r} \times \mathbf{b})$, muestre que $\nabla \psi = \mathbf{b} \times (\mathbf{r} \times \mathbf{a}) + \mathbf{a} \times (\mathbf{r} \times \mathbf{b})$. Donde $\mathbf{a} \times \mathbf{b}$ son vectores constantes.
- Si **A** es un campo vectorial constante y unitario, muestre que $\mathbf{A} \cdot [\nabla (\mathbf{v} \cdot \mathbf{A}) \nabla \times (\mathbf{v} \times \mathbf{A})] = \nabla \cdot \mathbf{v}$.
- Evalúe $\nabla \times \nabla \left[\exp \left(i \mathbf{k} \cdot \mathbf{r} \right) \right]$

Ecuaciones de onda electromagnéticas

Las ecuaciones de Maxwell (en vacío) en un espacio libre de cargas y de corrientes de conducción se resumen como sigue:

$$\nabla \cdot \mathbf{E}(\mathbf{r}, t) = 0$$

$$\nabla \cdot \mathbf{B}(\mathbf{r}, t) = 0$$

$$\nabla \times \mathbf{E}(\mathbf{r}, t) = -\frac{\partial}{\partial t} \mathbf{B}(\mathbf{r}, t)$$

$$\nabla \times \mathbf{B}(\mathbf{r}, t) = \frac{1}{c^2} \frac{\partial}{\partial t} \mathbf{E}(\mathbf{r}, t)$$

Halle las ecuaciones de onda para las componentes de los campos electromagnéticos: $B_i(\vec{\mathbf{r}},t)$ y $E_i(\vec{\mathbf{r}},t)$.

Interacción entre dipolos eléctricos puntuales

El potencial eléctrico de un dipolo situado en el origen y cuyo momento dipolar es \mathbf{p} está dado por la siguiente expresión:

$$\phi\left(\mathbf{r}\right) = \frac{1}{4\pi\varepsilon_0} \frac{\mathbf{p} \cdot \mathbf{r}}{r^3}.$$

Se tiene un segundo dipolo puntual, cuyo momento dipolar es \mathbf{P} y el cual está ubicado en la posición \mathbf{r} respecto al primer dipolo. La energía potencial de este dipolo está dada por $U(\mathbf{r}) = -\mathbf{P} \cdot \mathbf{E}(\mathbf{r})$, siendo $\mathbf{E}(\mathbf{r})$ el campo eléctrico debido al primer dipolo.

- Determine la fuerza sobre **P** debido a la presencia de **p** mediante la expresión $\mathbf{F} = -\nabla U(\mathbf{r})$.
- Determine la condición para que ambos dipolos no interactúen, esto es ${\bf F}={\bf 0}.$