Complete listing of claims:

- 1-8. (cancelled)
- 9. (original) A compound of the formula

$$R^3$$
 N
 K
 G
 R^5

or a pharmaceutically acceptable salt thereof, wherein

the dashed lines represent optional double bonds;

A is nitrogen or CH, or CCH₃

B is $-NR^1R^2$, $-CR^1R^2R^{10}$ $-C(=CR^2R^{11})R^1$, $-NHCR^1R^2R^{10}$, $-OCR^1R^2R^{10}$, $-SCR^1R^2R^{10}$, $-CR^2R^{10}NHR^1$, $-CR^2R^{10}OR^1$, $-CR^2R^{10}SR^1$ or $-COR^2$;

J and K are each independently nitrogen or carbon and both J and K are not nitrogens; D and E are each selected, independently, from nitrogen, CR^4 , C=O, C=S, sulfur, oxygen, CR^4R^6 and NR^8 ;

G is nitrogen or carbon;

the ring containing D, E, G, K, and J in formula I may be a saturated or unsaturated 5-membered ring and may optionally contain one or two double bonds and may optionally contain from one to three heteroatoms in the ring and may optionally have one or two C=O or C=S groups;

 R^1 is C_1 - C_6 alkyl optionally substituted with one or two substituents independently selected from hydroxy, fluoro, chloro, bromo, iodo, -O-(C_1 - C_4 alkyl), CF₃, -C(=O)O-(C_1 - C_4 alkyl), -OC(=O)(C_1 - C_4 alkyl), -OC(=O)N(C_1 - C_4 alkyl)(C_1 - C_2 alkyl), -NHCO(C_1 - C_4 alkyl), -COOH, -COO(C_1 - C_4 alkyl), -CONH(C_1 - C_4 alkyl), -CON(C_1 - C_4 alkyl), -S(C_1 - C_4 alkyl), -S(C_1 - C_4 alkyl), -SO₂(C_1 - C_4 alkyl), -SO₂NH(C_1 - C_4 alkyl) and -SO₂N(C_1 - C_4 alkyl)(C_1 - C_2 alkyl), wherein each of the C_1 - C_4 alkyl groups in the foregoing R^1 groups may optionally contain one or two double or triple bonds;

R² is C₁-C₁₂ alkyl which may optionally contain from one to three double or triple bonds, aryl or (C₁-C₄ alkylene)aryl, wherein said aryl and the aryl moiety of said (C₁-C₄ alkylene)aryl is selected from phenyl, naphthyl, thienyl, benzothienyl, pyridyl, quinolyl, pyrazinyl, pyrimidinyl, imidazolyl, furanyl, benzofuranyl, benzothiazolyl, isothiazolyl, pyrazolyl, pyrrolyl, indolyl, pyrrolopyridyl, oxazolyl and benzoxazolyl; C₃-C₈ cycloalkyl or (C₁-C₆ alkylene)(C₃-C₈ cycloalkyl), wherein one or two of the carbon atoms of said cycloalkyl and the 5 to 8 membered cycloalkyl moieties of said (C₁-C₆ alkylene)(C₃-C₈ cycloalkyl) may optionally and independently be replaced by an oxygen or sulfur atom or by NZ² wherein Z² is selected from hydrogen, C₁-C₄ alkyl, benzyl and C₁-C₄ alkanovl, and wherein each of the foregoing R² groups may optionally be substituted with from one to three substituents independently selected from chloro, fluoro, hydroxy and C₁-C₄ alkyl, or with one substituent selected from bromo, iodo, C₁-C₆ alkoxy, -OC(=O)(C₁-C₆ alkyl), -OC(=O)N(C₁-C₄ alkyl)(C_1 - C_2 alkyl), -S(C_1 - C_6 alkyl), amino, -NH(C_1 - C_2 alkyl), -N(C_1 - C_2 alkyl)(C_1 - C_4 alkyl), $-N(C_1-C_4 \text{ alkyl})-CO-(C_1-C_4 \text{ alkyl})$, $-NHCO(C_1-C_4 \text{ alkyl})$, -COOH, $-COO(C_1-C_4 \text{ alkyl})$, -CONH(C_1 - C_4 alkyl), -CON(C_1 - C_4 alkyl)(C_1 - C_2 alkyl), -SH, -CN, -NO₂, -SO(C_1 - C_4 alkyl), $-SO_2(C_1-C_4 \text{ alkyl})$, $-SO_2NH(C_1-C_4 \text{ alkyl})$ and $-SO_2N(C_1-C_4 \text{ alkyl})(C_1-C_2 \text{ alkyl})$;

-NR¹R² or CR¹R²R¹⁰ may form a saturated 3 to 8 membered carbocyclic ring which may optionally contain from one to three double bonds and wherein one or two of the ring carbon atoms of such 5 to 8 membered rings may optionally and independently be replaced by an oxygen or sulfur atom or by NZ³ wherein Z³ is hydrogen, C₁-C₄ alkyl, benzyl or C₁-C₄ alkanoyl;

 R^3 is hydrogen, C_1 - C_4 alkyl, -O(C_1 - C_4 alkyl), chloro, fluoro, bromo, iodo, (C_1 - C_2 alkylene)-O-(C_1 - C_2 alkyl), (C_1 - C_2 alkylene)-OH, or -S(C_1 - C_4 alkyl);

each R^4 is, independently, hydrogen, (C₁-C₆ alkyl), fluoro, chloro, bromo, iodo, hydroxy, cyano, amino, (C₁-C₂ alkylene)-OH, CF₃, CH₂SCH₃, nitro, -O(C₁-C₄ alkyl), -N(C₁-C₄ alkyl), -C(C₁-C₄ alkyl), -C(C₁-C₄ alkyl), -C(C₁-C₄ alkyl);

R⁶ is hydrogen, methyl or ethyl;

R⁸ is hydrogen or C₁-C₄ alkyl;

R⁵ is phenyl, pyridyl, pyrazinyl, pyrimidyl, pyridazinyl and wherein each of the foregoing R⁵ groups is substituted with from one to four substituents R¹³ wherein one to three

of said substituents may be selected, independently, from fluoro, chloro, C_1 - C_6 alkyl and $-O(C_1$ - C_6 alkyl) and one of said substituents may be selected from bromo, iodo, formyl, OH, $(C_1$ - C_4 alkylene)-OH, $(C_1$ - C_4 alkylene)-O- $(C_1$ - C_2 alkyl), -CN, $-CF_3$, $-NO_2$, $-NH_2$, $-NH(C_1$ - C_4 alkyl), $-N(C_1$ - C_2 alkyl) $(C_1$ - C_6 alkyl), $-OCO(C_1$ - C_4 alkyl), $(C_1$ - C_4 alkylene)-O- $(C_1$ - C_4 alkyl), $-C(=O)O(C_1$ - C_4 alkyl), $-C(=O)(C_1$ -

 R^7 is hydrogen, C_1 - C_4 alkyl, halo (<u>e.g.</u>, chloro, fluoro, iodo or bromo), hydroxy, -O(C_1 - C_4 alkyl), -C(=O)(C_1 - C_4 alkyl), -C(=O)O(C_1 - C_4 alkyl), -OCF₃, -CF₃, -CH₂OH or -CH₂O(C_1 - C_2 alkyl);

R¹⁰ is hydrogen, hydroxy, methoxy or fluoro;

R¹¹ is hydrogen or C₁-C₄ alkyl; and

10

with the proviso that: a) when both J and K are carbons and D is CR⁴ and E is nitrogen, then G can not be nitrogen; (b) when both J and K are carbons and D and G are nitrogens, then E can not be CR⁴ or C=O or C=S; (c) when both J and K are carbons and D and E are carbons, then G can not be nitrogen; (d) when G is carbon, it must be double banded to E; and (e) in the ring containing J, K, D, E and G, there can not be two double bonds adjacent to each other; and the pharmaceutically acceptable salts of such compounds.

- 10. (original) Compounds according to claim 9 wherein A is CH, J and K are carbon and D, E, and G are nitrogen.
- 11. (original) Compounds according to claim 9 wherein J and D are nitrogen, and K and G are carbon, and E is CH, CCH₃ or CC₂H₅.

12-17. (cancelled)

18. (original) A method of treating or preventing a disorder or condition, the treatment or prevention of which can be effected or facilitated by inhibiting CRH binding protein in a mammal, comprising administering to said mammal a CRH binding protein inhibiting amount of a compound according to claim 9.

- 19. (original) A pharmaceutical composition for treating or preventing a disorder or condition, the treatment or prevention of which can be effected or facilitated by inhibiting CRH binding protein in a mammal, comprising a CRH binding protein inhibiting amount of a compound according to claim 1 and a pharmaceutically acceptable carrier.
 - 22. (original) A compound of the formula

)

$$\mathbb{R}^3$$
 \mathbb{R}^3
 \mathbb{R}^5
 \mathbb{R}^5

or

$$R^3$$
 R^4
 R^5

wherein R^3N is C_1 - C_4 alkyl, R^7N is hydrogen, methyl, chloro, bromo, -COOH or -COO(C_1 - C_4 alkyl), T is chloro, bromo, iodo or triflate, R^8 is hydrogen or C_1 - C_4 alkyl and R^4 is hydrogen, (C_1 - C_6 alkyl), fluoro, chloro, bromo, iodo, hydroxy, cyano, amino, (C_1 - C_2 alkylene)-OH, CF_3 , CH_2SCH_3 , nitro, -O(C_1 - C_4 alkyl), -N(C_1 - C_4 alkyl)(C_1 - C_2 alkyl), -S(C_1 - C_4 alkyl), -CO(C_1 - C_4 alkyl), -C(=O)H or -C(=O)O(C_1 - C_4 alkyl);

23. (original) A compound according to claim 1 wherein said compound is:

7-(1-ethyl-propoxy)-5-methyl-3-(2,4,6-trimethyl-phenyl)-pyrazolo[1,5-a]pyrimidine; [2,5-Dimethyl-3-(2,4,6-trimethyl-phenyl)-pyrazolo[1,5-a]pyrimidin-7-yl]-(1-ethyl-propyl)-amine;

- (1-Ethyl-propyl)-[5-methyl-3-(2,4,6-trimethyl-phenyl)-pyrazolo[1,5-a]pyrimidin-7-yl]-amine;
- 7-(1-Ethyl-propoxy)-2,5-dimethyl-3-(2,4,6-trimethyl-phenyl)-pyrazolo[1,5-a]pyrimidine;
- [2,5-Dimethyl-3-(2,4,6-trimethyl-phenyl)-pyrazolo[1,5-a]pyrimidin-7-yl]-ethyl-propylamine;
- [6-Bromo-5-bromomethyl-3-(2,4,6-trimethyl-phenyl)-3H-[1,2,3]triazolo[4,5-b]pyridin-7-yl]-(1-ethyl-propyl)-amine;
- (1-Ethyl-propyl)-[5-methyl-3-(2,4,6-trimethyl-phenyl)-3H-[1,2,3]triazolo[4,5-b]pyridin-7-yl]-amine;
- [6-Bromo-5-methyl-3-(2,4,6-trimethyl-phenyl)-3H-[1,2,3]triazolo[4,5-b]pyridin-7-yl]-(1-ethyl-propyl)-methyl-amine;
- 7-(1-Ethyl-propoxy)-5-methyl-3-(2,4,6-trimethyl-phenyl)-3H-[1,2,3]triazolo[4,5-b]pyridine;
- 4-(1-Ethyl-propoxy)-2,5-dimethyl-7-(2,4,6-trimethyl-phenyl)-5H-pyrrolo[3,2-d]pyr imidine;
- (±)-2,5-Dimethyl-4-(tetrahydro-furan-3-yloxy)-7-(2,4,6-trimethyl-phenyl)-5H-pyrrolo-[3,2-d]pyrimidine;
- 2,5-Dimethyl-4-(S)-(tetrahydro-furan-3-yloxy)-7-(2,4,6-trimethyl-phenyl)-5H-pyrrolo-[3,2-d]pyrimidine;
- 2,5-Dimethyl-4-(1-propyl-butoxy)-7-(2,4,6-trimethyl-phenyl)-5H-pyrrolo[3,2-d]pyrimidine; or
- 4-sec-Butylsulfanyl-2,5-dimethyl-7-(2,4,6-trimethyl-phenyl)-5H-pyrrolo[3,2-d]pyrimidine;

or a pharmaceutically acceptable salt of such compound.

J