Chapitre 5 — Calcul Matriciel — TD02

- **Exercice 1:** Dans toute la suite, M désigne la matrice $M = \begin{pmatrix} 5 & 6 & -9 \\ 2 & 1 & -3 \\ 2 & 2 & -4 \end{pmatrix}$ et I_3 désigne la matrice identité d'ordre 3.
 - 1. (a) Calculer $M^2 3M$ et exprimer cette matrice à l'aide de I_3 .
 - (b) En déduire que la matrice M est inversible et déterminer sa matrice inverse M^{-1} en fonction de M et I_3 .
 - 2. (a) Démontrer par récurrence qu'il existe deux suites de nombres réels $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ telles que, pour tout $n\in\mathbb{N}$, $M^n=a_nM+b_nI_3$. On précisera a_0 et b_0 et on montrera que (a_n) et (b_n) vérifient:

$$\forall n \in \mathbb{N} \quad \begin{cases} a_{n+1} = 3a_n + b_n \\ b_{n+1} = 4a_n \end{cases}$$

- (b) On note, pour tout $n \in \mathbb{N}$, $X_n = \begin{pmatrix} a_n \\ b_n \end{pmatrix}$. Déterminer la matrice A telle que, pour tout $n \in \mathbb{N}$, $X_{n+1} = AX_n$.
- 3. (a) Soit P la matrice définie par $P = \begin{pmatrix} 1 & -1 \\ 1 & 4 \end{pmatrix}$. Justifier que P est inversible et déterminer P^{-1} .
 - (b) Calculer P^1AP . On note D cette matrice.
 - (c) Démontrer que, pour tout $n \in \mathbb{N}$, $A^n = PD^nP^{-1}$.
 - (d) En déduire, pour tout $n \in \mathbb{N}$, les expressions de a_n et b_n en fonction de n.
- 4. (a) Déduire des questions précédentes, pour tout $n \in \mathbb{N}$, l'expression de M^n en fonction de n.
 - (b) Application: On considère trois suites (u_n) , (v_n) et (w_n) définies par $u_0 = 1$, $v_0 = 0$, $w_0 = 0$ et, pour tout $n \in \mathbb{N}$:

$$\begin{cases} u_{n+1} = 5u_n + 6v_n - 9w_n \\ v_{n+1} = 2u_n + v_n - 3w_n \\ w_{n+1} = 2u_n + 2v_n - 4w_n \end{cases}$$

Exercice 2: Partie A:

Dans toute cette partie, A désigne une matrice carrée d'ordre 2. On dit qu'un réel k est une valeur propre de A si il existe une matrice colonne non nulle X de taille 2×1 telle que AX = kX. On dit alors que la matrice X est associée à la valeur propre k.

1. Un exemple: Dans cette question uniquement, on suppose que $A = \begin{pmatrix} 5 & 2 \\ 3 & 4 \end{pmatrix}$.

Calculer AX en prenant $X = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ et en déduire une valeur propre de A.

On suppose à nouveau, dans la suite, que A est une matrice carrée d'ordre 2 quelconque.

- 2. Démontrer que si k est une valeur propre non nulle de A et si X est une matrice associée à k alors, pour tout $n \in \mathbb{N}$, $A^nX = k^nX$.
- 3. Démontrer que si k est une valeur propre de A, alors la matrice $A kI_2$ n'est pas inversible. On suppose dans la suite que la réciproque est également vraie.
- 4. (a) On note dans cette question $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, où a, b, c et d sont quatre réels quelconques.

 Déduire de la question précédente qu'un réel k est une valeur propre de A si et seulement si k est solution de l'équation $x^2 (a+d)x + ad bc = 0$ d'inconnue x.
 - (b) Application: Déterminer les valeurs propres de la matrice $A = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}$.
 - (c) Existe-t-il des matrices carrées d'ordre 2 qui n'admettent pas de valeur propre?

Partie B:

Le but de cette partie est de démontrer l'irrationalité de $\sqrt{2}$, c'est-à-dire de prouver qu'il n'existe pas d'entiers $p \in \mathbb{N}$ et $q \in \mathbb{N}^*$ tels que $\sqrt{2} = \frac{p}{q}$. Pour cela, on raisonne par l'absurde en supposant qu'il existe deux entiers $p \in \mathbb{N}$ et $q \in \mathbb{N}^*$ tels que $\sqrt{2} = \frac{p}{q}$, c'est-à-dire $p = q\sqrt{2}$.

Dans toute la suite, on considère les suites (u_n) et (v_n) définies par $u_0 = p$, $v_0 = q$ et pour tout entier $n \in \mathbb{N}$:

$$\begin{cases} u_{n+1} = -u_n + 2v_n \\ v_{n+1} = u_n - v_n \end{cases}$$

- 1. Démontrer que, pour tout $n \in \mathbb{N}$, $u_n \in \mathbb{Z}$ et $v_n \in \mathbb{Z}$.
- 2. On note, pour tout $n \in \mathbb{N}$, $X_n = \begin{pmatrix} u_n \\ v_n \end{pmatrix}$. On a alors, pour tout $n \in \mathbb{N}$, $X_{n+1} = AX_n$, où A est la matrice définie en question **4.b** de la **partie A**. Il s'ensuit que pour tout $n \in \mathbb{N}$, $X_n = A^n X_0$.
 - (a) Démontrer que X_0 est une matrice associée à une des valeurs propres de A que l'on précisera.
 - (b) En utilisant la question 2 de la **partie A**, en déduire, pour tout entier $n \in \mathbb{N}$, l'expression de u_n en fonction de n.
 - (c) Justifier qu'il existe un certain rang N tel que $-1 < u_n < 1$ et en déduire que p = 0.
- 3. Conclure.