Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Московский институт электронной техники».

Институт микроприборов и систем управления имени Л.Н. Преснухина

Методические указания к выполнению курсового проекта «Проектирование гибко-жестких печатных плат в Altium Designer»

По курсу «Проектирование печатных плат»

Москва, Зеленоград

Оглавление

Оглавление	2
Общая информация	3
Определение компоновки проекта	4
Определение стека	5
Определение гибких и жестких зон	9
Особенности подготовки правил разводки топологии	20
Особенности разводки топологии	23
Добавление механических элементов крепежа	26
Особенности выпуска комплекта конструкторский документации	28
Литература	35

Общая информация

В данном указании описано как с помощью Altium Designer спроектировать гибко-жесткую (Rigid-Flex) печатную плату. Гибко-жесткая печатная плата состоит из нескольких областей с различным стеком, что позволяет выделить жесткие (Rigid) и гибкие (Flex) зоны. Гибко-жесткую печатную плату может быть полезно применять в случаях, когда изделие должно иметь сложную объемную структуру или необходимо вписаться в малый объем, а разбиение на несколько маленьких печатных с добавлением соединителей необоснованно усложняет изделие с одновременным снижением его надежности. Гибкие части в этом случае выступают в роли шлейфов между участками и при этом обладают достаточной прочностью.

Другое частое применение гибко-жестких печатных плат — размещение выносных датчиков на гибких частях или размещение некоторых компонентов на некоторой сложной по форме поверхности.

При проектировании опирались на рекомендации ООО «Резонит» [12, 13].

В текущем методическом указании приведены не все использованные приемы разводки топологии и выпуска конструкторской документации на печатный узел, показаны только особенности построения проекта с гибкожесткой печатной платой.

Последняя версия данного методического указания вместе с остальными по предмету «Проектирование печатных плат» находится на github в отдельном репозитории автора [6].

Определение компоновки проекта

При проектировании гибко-жестких плат необходимо как можно раньше определиться с компоновкой печатной платы, расположением основных компонентов и геометрией гибких и жестких зон.

Нужно помнить, что проектирование печатной платы в CAD-системах идет в развертке и последующие правки на разведенной гибко-жесткой печатной плате как правило гораздо сложнее, чем у обычных жестких плат.

Решено спроектировать небольшое автономное цифровое устройство, центральным мозгом которого является микроконтроллер STMicroelectronics STM32F103RBT6 [14]. Компоновка выбрана в виде пяти одинаковых граней кубика (кроме нижней грани) плюс дополнительная внутренняя грань. На передней грани расположен разъем для подключения ТГТ-экрана (в проект печатной платы не входит) через FPC-разъем Molex 503480-1000 [15] и модуль подсветки на контроллере Texas Instruments TPS61160DRVT [16] с восьми светодиодами Vishay VLMW1300 [17]. На боковых гранях расположены по четыре контактные части под мембранные кнопки. Микроконтроллер расположен на верхней грани. На задней грани располагается вертикальный USB-C разъем Molex 217182-0001 [18] для подачи управления и зарядки, а также служебные кнопки и контактные точки для шлейф-зонда Tag-Connect TC2030-CTX-NL-STDC14 [19],совместимого c программатором STMicroelectronics STLINK-V3 [20]. На внутренней грани расположены основной контроллер зарядки и питания Analog Devices LTC4067EDE [21] и трехпиновый разъем Molex 53398-4003 [22] для подключения LiPolаккумулятора с контролем нагрева. Сам LiPol-аккумулятор располагается в получающемся внутреннем объеме и в проект печатной платы не входит. Предлагаемая компоновка показана ниже.

Определение стека

Проектируемое устройство довольно простое, поэтому воспользуемся минимальным по сложности стеком гибко-жесткой платы, где жесткая часть четырехслойная, а гибкая — двухслойная.

Общий вид стека показан на рисунке ниже. Несмотря на то, что технология позволяет изготавливать гибко-жесткие печатные платы с несимметричным стеком, гораздо технологичное будет, если стек сделать симметричным. Также гораздо технологичное выходит, если жесткие части одинаковы по всей печатной плате.

Полиимидная пленка выступает в качестве центрального ядра и находится во всех частях печатной платы. Соответственно, слои металлизации Int1 и Int2, накатанные вокруг полиимидного ядра, будут доступны на всей плате. Жесткая часть получается как бы наращенная поверх гибкого ядра через дополнительные препреги и слои металлизации Тор и Bottom доступны для разводки только в жесткой части.

В Altium Designer в последних версиях поддерживается два режима работы с гибко-жесткими платами. Включаются они в редакторе стека по кнопке ниже.

В режиме Rigid/Flex (Advanced) появляется возможность задать субстеки, а также их расположение по отношению друг к другу. Затем эти субстеки необходимо присвоить выделенным областям (Board Region) в печатной плате. Также в этом режиме гораздо удобнее задавать линии сгиба (Bending Lines).

По кнопке + Add создаются ветки (Branch) и субстеки (Substack). Множественные ветки в текущем проекте не нужны, будем добавлять субстеки к основной ветви Board. Определим два субстека Rigid для жесткой части, гибкий – Flex для гибкой. Полная схема созданные ветвей и субстеков показывается в выпадающем списке.

При выборе субстека на уровне основной ветви, можно его поименовать и дать описание, как показано ниже для жесткой части.

Далее отредактируем стек жесткой части. По ДЛКМ переходим в него. Исходя из рекомендаций ООО «Резонит» [12] определим его в следующем виде.

Центральное ядро — полиимидная пленка толщиной 0,1 мм с толщиной фольги 18 мкм DuPont AP 8545R [23]. Поверх центрального ядра с обоих сторон укажем адгезивную пленку толщиной 25 мкм DuPont Pyralux LF0100 [24]. Далее по два слоя препрега FR-4 Tg170 толщиной по 69 мкм. В качестве жестких внешних ядер возьмем FR-4 Tg170 толщиной 0,51 мм с фольгой 35 мкм [25], при этом фольгу оставим только для внешнего слоя. Окончательно нанесем финишное покрытие ENIG (для гибко-жестких плат не рекомендовано использовать финишное покрытие оправлением припоем) и паяльную маску.

В жесткой части в данном стеке доступны только сквозные отверстия.

После возвращаемся на корневой уровень и субстеку Flex переключаем режим материалов в Individual (т.к. они не будут по слоям совпадать с жестким стеком) и также укажем ввод в пределы жесткого стека некоторых элементов гибкой части на 0,5 мм (Intrusion).

При правке гибкого субстека удалим все слои до адгезива. Затем с обоих сторон нанесем покровную пленку (Coverlay) DuPont Pyralux LF0110 толщиной 25 мкм.

Также этому субстеку необходимо включить галку Is Flex.

Также надо учесть, что переходные отверстия в используемом стеке в гибкой части доступны только по предварительному согласованию с технологом производителя, в базовой версии стека они недоступны. Т.к. в текущем проекте гибкая часть выступает в роли шлейфов между жесткими зонами без установки на нее компонентов, то нам это подходит.

В итоговом режиме, на верхнем уровне структура стека должна выглядеть приблизительно как показано ниже.

Для дальнейших расчетов нам отсюда понадобятся толщины жесткой части T=1,61 мм и гибкой части t=0,23 мм.

Определение гибких и жестких зон

После того, как определен стек и выбраны самые высокие компоненты, можно переходить к расчету и определению гибких и жестких зон. В проекте решено жесткие части выполнить в виде скругленных квадратов 30×30 мм. Зоны поворотов гибких частей на 90° углов решено построить так, чтобы поверхности плат создавали прямой угол со сдвигом $H_{90} = 10$ мм, как показано ниже. Соответственно, можно посчитать, как будет выглядеть геометрия гибких участков для поворотов на 90° (показан вид сбоку для сгиба).

Можно вывести следующие соотношения размеров

$$H = x_{90} + R_{90} + T/2$$
, где

 R_{90} - радиус сгиба областей под 90° ,

 x_{90} - отступ от зоны сгиба до жесткой части,

T — толщина жесткой части пп.

Отсюда общая длина шлейфа на 90° получается из соотношения

$$L_{90} = 2x_{90} + \frac{2\pi R_{90}}{4}$$

Выбранное производство [13] требует либо иметь сглаженный переход от гибкой к жесткой части минимального радиуса 1 мм либо внедрить в твердую часть вырез минимального диаметра 1 мм. Мы остановимся на сглаженном переходе. Область этого перехода также не стоит сгибать, значит появляется дополнительное ограничение $x \ge R_{\min PL} \ge 1$ мм. Общая длина шлейфа рекомендована не меньше 5 мм.

Также нужно помнить, что на радиус сгиба двуслойной гибкой части есть свое ограничение $R \ge 10 \times t$, где t — толщина гибкой части [13]. Если гибкая часть имеет более двух слоев, то требование минимального радиуса сгиба ужесточается до $R \ge 20 \times t$.

Отсюда можно вывести несколько соотношений, по которым будем выбирать длину шлейфа L_{90} и радиус сгиба R_{90} :

$$\begin{cases} x_{90} + R_{90} = H_{90} - T / 2 \approx 9, 2 \text{ mm} \\ L_{90} = 2x_{90} + \frac{\pi R_{90}}{2} \\ x_{90} \ge 1 \text{ mm} \\ R_{90} \ge 10t \approx 2, 3 \text{ mm} \\ L_{90} \ge 5 \text{ mm} \end{cases}$$

Для проектирования удобно, если шлейф имеет целую длину, путь это будет значение $L_{90}=16~\mathrm{mm}$. Отсюда можно вывести значение для радиуса сгиба $R_{90}\approx 5,57~\mathrm{mm}$ и отступа $x_{90}\approx 3,62~\mathrm{mm}$. Оба эти значения проходят по ограничениям с запасом, что дает запас на неточность изготовления.

Для поворота на 180° можно вывести аналогичные соотношения исходя из рисунка, дополнительно проконтролировав, насколько торчит за пределы платы гибкий шлейф E_{180} . Расстояние H_{180} выберем равным 10 мм, чтобы можно было встречные платы соединить стандартной стойкой высотой 10 мм.

$$\begin{cases} 2R_{180} = H_{180} + T \approx 11,6 \text{ MM} \\ L_{180} = 2x_{180} + \pi R_{180} \\ E_{\text{max}} = x_{180} + R_{180} < 10 \text{ MM} \\ x_{180} \ge 1 \text{ MM} \\ R_{180} \ge 10t \approx 2,3 \text{ MM} \\ L_{180} \ge 5 \text{ MM} \end{cases}$$

Здесь сразу получается радиус сгиба $R_{180}\approx 5,8\,\mathrm{mm}$. Выберем длину шлейфа $L_{180}=22\,\mathrm{mm}$, тогда отступ выходит $x_{180}\approx 1,9\,\mathrm{mm}$ и шлейф торчит за пределы плат на $E_{\mathrm{max}}=7,7\,\mathrm{mm}$. По всем ограничениям проходим с запасом, что дает запас на неточность изготовления.

Можно переходить к указанию зон. Дальнейшее справедливо для режима гибко-жестких плат Rigid/Flex (Advanced).

Для удобства формирования герберов и работы с зонами дополнительно к основному слою M5 Board, где будет находится общий контур печатной платы, доопределим два дополнительных механических слоя, M17 Rigid Board (только для жестких зон) и M18 Flex Board (только для гибких зон).

Гибко-жестка печатная плата проектируется в развертке, поэтому общий вид развертки будет приблизительно следующим. Углы жестких зон сгладим радиусом 6 мм. Ширины шлейфов возьмем по 8 мм.

В слое Rigid Board создадим 6 сглаженных прямоугольников, а в слое Flex Board пять контуров шлейфов. В контурах шлейфов добавляем сглаживающие уголки.

Далее выбираем последовательно контур каждой зоны и по команде Design — Board Shape — Create Board Region from Selected Primitives (D, S, R) создаем поочередно все зоны. При создании зон режим редактирования перескачет в Board Planning Mode (1), в котором также можно определять зоны. В этом режиме также можно определять зоны, но он не очень удобен для задания хоть сколько-нибудь сложных геометрий.

После создания всех зон, необходимо им всем задать нужный субстек. Жестким участкам присвоим субстек Rigid, гибким – Flex.

В режиме 3D-будет удобно проконтролировать разложение субстеков по зонам.

Также решено гибкие части закрывать защитной покрывной пленкой. В гибкой зоне зоне нужно выполнить команду ПКМ — Coverlay Actions — Add Coverlay или в свойствах субстека кнопка Add Coverlay. В 3D-режиме гибкие части с покрывной пленкой будут иметь голубой цвет.

Далее нужно задать шлейфам линии сгиба. Линия создается задается в режиме Board Planning Mode через команду Place — Define Bending Line (P, E). Их необходимо построить поперек гибких зон с привязкой к середине. В настройках указывается радиус и угол сгиба. Радиусы были посчитаны ранее (5,57 мм для углов 90°, 5,8 мм для 180°), знак углам введем отрицательным, чтобы направление сгиба было вглубь от плоскости экрана.

В режиме 3D можно по команде View - 3D View Control - Fold/Unfold (Num5) свернуть и развернуть гибко-жесткую печатную плату, чтобы увидеть, как она будет выглядеть в свернута в 3D.

Дополнительно через две настройки еще можно управлять режимом сворачивания. В настройках жестких зон есть галка 3D Locked, с помощью которой можно выбрать, какая из жестких зон будет опорной (останется в плоскости экрана), тогда остальные будут сворачиваться относительно нее. В настройках линий сгиба есть поле Fond Index, целыми числами в котором с указывается порядок выполнения сгибов.

Далее по идее можно переходить к собственно разводке топологии. Однако, прежде чем к этому переходить, стоит сначала в 3D проанализировать заготовку гибко-жесткой печатной платы в свернутом состоянии, чтобы убедиться, что проведенные выше вычисления размеров гибких зон и

параметров линий сгиба корректны. К сожалению, 3D-режим в Altium Designer не позволяет удобно измерить размеры в 3D, для этого придется перенести ее в механический САПР.

По команде File — Export — Step 3D экспортируем заготовку печатной платы в формат step и проанализируем его в MCAD. После указания имени экспортированного файла в окне настроек экспорта укажем, что плату надо экспортировать в свернутом состоянии Export Folded Board и единой деталью Export As Single Part. Остальные настройки на текущем этапе не имеют значения, т.к. компонентов на печатной плате еще нет.

В MCAD после импорта step-файла измерим следующие размеры:

- сдвиг для поворотов на 90° (H_{90}), получился 10,09 мм

- расстояние между параллельными платами (H_{180}) на повороте 180° , получилось 10,18 мм

- размер вылета шлейфа ($E_{\rm max}$) на повороте 180°, получилось 7,9 мм

Размеры получились с небольшой ошибкой, чем были рассчитаны изначально. Связано это с тем, что в расчетах не учитывалась физическая толщина гибкой части и модель ее сгиба. На текущем этапе рекомендовано подобрать параметры радиусов сгиба R_{90} и R_{180} , чтобы получить более чистую 3D-модель.

При подборе были обновлены значения $R_{90} = 5{,}15\,\mathrm{mm}$ и $R_{180} = 5{,}71\,\mathrm{mm}$, введем их в соответствующие параметры линий сгиба.

Подготовка контура печатной платы закончена, можно переходить к разводке топологии.

Особенности подготовки правил разводки топологии

Подготовка правил разводки топологий гибко-жестких печатных плат требует учета нескольких дополнительных моментов по отношению к обычной жесткой печатной плате.

Если в проекте есть линии с контролируемым импедансом и используется инструмент профиля импедансов, то расчеты необходимо провести расчеты на всех субстеках. Нужно помнить, что т.к. в жесткой и гибкой части стек все-таки отличается, то и значения ширин/зазоров в общем случае даже для одинакового слоя, но в разных стеках будут отличаться. В примере необходимо подготовить правила для дифпары USB на 90 Ом дифференциального сопротивления. Решено остановиться на следующих размерах для жесткой части:

Слои Тор и Bottom -0.3 мм/0.15 мм/0.3 мм (w/gap/w);

Слои Int1 и Int2 -0.15 мм/0.2 мм/0.15 мм (w/gap/w).

Для гибкой части:

Слои Тор и Bottom недоступны;

Слои Int1 и Int2 – 0.2 мм/0.2 мм/0.2 мм (w/gap/w).

В правилах Routing - Width и Routing - Differential pairs Routing появляется переключатель стека. Эти правила теперь содержат в себе несколько независимых правил, действующих в пределах соответствующего стека. Управляется в выпадающем списке Show values for layer stack. Соответственно, нужно заполнить размеры ширин для всех стеков.

Ниже показано правило ширин Width для жесткой и гибкой части.

Для USB-цепей, определенных в классе USB, сошлемся на профиль импеданса D90, также для жесткой и гибкой части.

Примечание: по состоянию на версию Altium Desginer 24.10 присутствует баг. При разводке режимы интерактивной разводки берут размеры из правил с учетом жесткой и гибкой части, и все работает ожидаемо. А вот проверка DRC по непонятной причине игнорирует размеры для гибкой зоны и использует размеры жесткой зоны. Обойти это можно, добавив комнату под размер гибкой зоны и добавив дополнительное правило

с запросом WithInRoom(). Или можно использовать запрос InLayerStackRegion(), где указать имя зоны субстека.

Также необходимо будет отредактировать правило Manufacturing — Board Outline Clearance, действующей на металлизированные слои (OnCopper). Строке Outline Edge укажем стандартные зазоры 0,25 мм для фрезеруемых контуров [13]. Для строки границы между зонами (Split Continuation) нужно определить свой список зазоров. Зазор до разводки цепей (Arc и Track) нужно поставить 0, чтобы можно было провести цепи через границу. SMT-падам и полигональным объектам поставим зазор 0,25 мм — стандартный зазор от границ платы, кроме того сплошные заливки по гибким частям делать нежелательно. Сквозным падам и отверстиям поставим зазор 1 мм. Положение монтажных отверстий мы будем контролировать вручную.

Особенности разводки топологии

При использовании гибкий частей как шлейфов между жесткими зонами, стоит подумать, на каком слое что разводить. В обычном типовом четырехслойном стеке как правило, основная разводка ведется на внешних слоях Тор и Bottom, на втором слое Int1 как правило земля, на третьем слое Int2 питание и часть управления. В выбранном гибко-жестком стеке слой Int1 становится верхним слоем для гибкой части, на нем будем располагать земляную цепь. А слой Int2 становится нижним слоем для гибкой части, в нем будем разводить питание и управляющие цепи между жесткими зонами.

При этом, с учетом выбранной конструкции может даже выйти так, что слои поменяются местами. Например, на грани Inner на слое Тор вы оставим

только разъем к LiPol-аккумулятору, а компоненты из цепи питания переместим на слой Bottom. В этом случае, на слое Int1 в этой зоне будут цепи питания и управления, а на слое Int2 будет земля.

Выбранное производство [13] настоятельно рекомендует для надежности добавить относительно широкие медные полоски по краям гибкой части с отступом от края гибкой части на 0,25 мм. В каждом из гибких переходов добавим таких защитных линий на слои Int1 и Int2 шириной 0,5 мм и подключим к цепи GND. Также на слое Int1 сразу добавим несколько широких линий, имитирующих земляную заливку, т.к. использование именно заливок на гибких частях технологически нежелательно. При последующей работе с земляными заливками нужно будет проследить, чтобы данные линии к ней присоединились.

При разводке цепей при переходе между жесткой и гибкой зоной будут автоматически перестраиваться ширины в зависимости от правил ширин. В примере это видно по разводке USB-цепи.

На гибких зонах не стоит без необходимости поворачивать цепи, а также цепи лучше если расположены более-менее равномерно по всей ширине шлейфа. Ну и при подводе к гибким зонам нужно помнить про зазор 1 мм от отверстий до перехода между зонами.

При работе с заливками не нужно без необходимости добавлять их на гибкие зоны. Можно в гибкие в зоны добавить зоны запрета заливок в виде Кеероut-ов с запретом на заливки или вырезы в полигонах Polygon Cutout. Или формировать заливки индивидуально для каждой жесткой зоны.

При финализации шелкографии можно развернуть позиционные обозначения так, чтобы их было удобно читать будущему пользователю устройства, т.е. в свернутом состоянии, а не в развертке. В примере это имеет смысл для боковых и задней грани.

Добавление механических элементов крепежа

Если гибко-жесткая плата при сворачивании будет иметь элементы крепежа, то можно еще до передачи проекта конструктору-механика, внести их в проект, чтобы иметь возможность как можно ранее учитывать их в проекте.

В проекте грани Back и Inner заворачиваются друг на друга и будут располагаться параллельно на расстоянии 10 мм. Предполагается, что будут использованы стойки на 10 мм. Стойки M2,5х10 расположим на обратной стороне на грани Inner, а винты M2,5 их крепящие – на той же грани, но сверху.

В 3D-режиме в свернутом режиме будет хорошо видно, как они установлены.

Для того, чтобы винт и стойка не порождали ошибки Component Clearance, добавим все механическое компоненты в класс Mech и размерим им накалываться друг на друга.

В текущей версии Altium Desginer есть одна особенность с использованием правила Component Clearance для проверки 3D-режима. Пусть, например, установлен компонентам зазор по вертикали 2 мм, а по горизонтали 0,2 мм.

Если в 3D-режиме плата развернута, то ошибок не показывается. Однако, если плату свернуть, то появляется большое число ошибок. При этом, если покрутить модель, то визуально никаких наложений не видно.

Связано это с тем, что при сворачивании гибко-жесткой печатной платы у компонентов очевидно меняются координаты по X и по Y. А вот правило зазоров компонентов Component Clearance это не учитывает и продолжает работать в плоскости экрана. Из-за этого полноценно использовать это правило для определения зазоров в 3D-режиме невозможно.

Особенности выпуска комплекта конструкторский документации

В своей основе комплект КД для печатного узла на гибко-жесткой печатной плате не сильно отличается от комплекта КД печатного узла на плате на жестком основании.

Гибко-жесткая печатная плата всегда является сборочной единицей, т.к. изготавливается из нескольких составляющих. Основной конструкторский документ на нее - Спецификация. При выборе обозначения гибко-жесткой печатной платы по справочнику ОК 012-93 [11] точного кода для гибкожестких печатных плат там нет, но их можно отнести к группе 68728х «Оборудование электротермическое, электросварочное и для диффузионной Устройства сварки. магнитопроводящие, токопроводящие, Монтаж механический электроизолирующие, электромонтажные. Устройства электромонтажные. Монтаж механический Элементы электромонтажные / Панели, платы с элементами объемного монтажа шириной, мм».

Как правило, спецификация на печатный узел, схема электрическая принципиальная Э3, перечень элементов ПЭ3 и ведомость покупных ВП

выполняются по обычным правилам без каких-либо особенностей (в примере не показаны).

Сборка печатного узла обычно идет в развернутом виде на ровном столе, поэтому сборочный чертеж также выглядит по-обычному. Кроме того, что стоит подробнее нанести габаритные размеры с указанием размеров шлейфов. И позиционные обозначения компонентов не надо поворачивать для удобства чтения в свернутом виде, как в шелкографии, а надо оставить их в обычной ориентации виде, чтобы было удобнее монтажнику.

В документации на собственно гибко-жесткую печатную плату в спецификации необходимо указать используемые материалы диэлектриков.

		Фармал	Зана	703.	Обазначение	Наименование 💆 Примеча
Перв. примен.	420:59E8345:03W					<u> Документация</u>
/Jeps	75.5ZW	A3			MПСУ.687281024C5	Сбарочный чертеж
		A4	\dashv		MTC9.687281.024.01	Данные праектирования
		717			MTC9.687281024T5M	Данные конструкции
		П				
W 4						<u>Материалы</u>
Справ. №		Н		1		Стеклотекстолит FR-4 HiTg170 Слаи 1-2
		Н				0,51мм (фальга 18мкм) 3–4
		Н	-	2		Полиимидная пленка DuPont Слои 2- AP8545R O,1mm (фольга 18мкм)
		Н				אריסטין אריטאר ט, ויוויו וויין וויין אריסטין אריסטין אריסטין וויין וויין וויין אריסטין
9				3		Нетекучий эпоксидный препрег
Подг. и дапа		Н	\Box			Тд170 70мкм
₍₂₀₀₎ /		Н		4		Адгезивная пленка DuPant Pyralux
S.						25мкм
५५६ 🖊 मुक्त		Ц		_		
Med		Н	\dashv	5		Покрывная пленка DuPont Pyralux LFO110 25мкм
W BHO		Н				LFUTIU ZOMKM
вэам п						
'	Н	Н				
u dana		Н				
/Jody		Uzw	/lui	m	№ дакум. Подп. Дата	МПСУ.687281.024
Инд. № подп		Раз Про Зам	ραδ.	/s	ту - Бокуун. — Тоот. — Дото (банов Гриходыка Пялин	Плата печатная гибко-жесткая лит Лист Лист 1 лит Лист Лист 1

В сборочном чертеже на гибко-жесткую печатную плату на основном виде нужно привести жесткие и гибкие зоны, а также привести расшифровки стека этих частей. В ТТ также нужно указать соответствующие пункты.

- 1 *Размеры для справок
- 2 Общие допуски по ГОСТ 30893.1-2002: H12, h12, IT 12/2
- 3 Неуказанные предельные отклонения размеров между осями двух любых отверстий ±0,1мм
- 4 Смещение центра металлизированного отверстия относительно центра контактной плошадки не более 0.1мм
- 5 Плата должна соответствовать ГОСТ23752-79, группа жесткости 3. Класс точности 5 по ГОСТ Р 53429-2009
- 6 Проводящий рисунок на плате выполнить в соответствии с данными проектирования МПСУ.687281.024Д1 и данными конструкции МПСУ.687281.024Т5М
- 7 Шероховатость обрабатываемой поверхности Rz40
- 8 Геометрия жестких слоев показана в зонах А. Стек показан в табл1.
- 9 Геометрия гибких частей показана в зонах Б. Стек показан в табл.2
- 10 На наружных жестких слоях платы защитная паяльная маска по технологии изготовителя
- 11 Покрытие жестких слоев платы О-Н(68)3 Зл-Ко(99,5)0,25
- 12 Покрытие гибких слоев платы защитной пленкой DuPont Pyralux LF0110 по технологии производителя

Основной вид приводится в развернутом виде.

Расшифровку стека можно сделать как вид сбоку или через использование Layer Stack Legend для соответствующих участков печатной платы.

	Cnoŭ Top Overlay Top Solder Top Surface Finish Top Layer Dielectric 6 Int1 (GND)	0,03 0,00 0,04 0,51 0,07 0,07 0,03	Tun cnon Legend Solder Mask Surface Finish Signal Dielectric Dielectric Dielectric Adhesive	Материал SunChemical XV501-T LDI O-H(68)3 3л-Ко(99,5)0,25 Фольга 35мкм Стеклотекстолит FR-4 HiTg170 0,51мм Нетекучий эпоксидный препрег Тg170 70мкм Нетекучий эпоксидный препрег Тg170 70мкм
	Top Solder Top Surface Finish Top Layer Dielectric 6	0,00 0,04 0,51 0,07 0,07 0,03	Solder Mask Surface Finish Signal Dielectric Dielectric	O-H(68)3 3л-Ко(99,5)0,25 Фольга 35мкм Стеклотекстолит FR-4 HITg170 0,51мм Нетекучий эпоксидный препрег Тg170 70мкм
	Top Surface Finish Top Layer Dielectric 6	0,00 0,04 0,51 0,07 0,07 0,03	Surface Finish Signal Dielectric Dielectric Dielectric	O-H(68)3 3л-Ко(99,5)0,25 Фольга 35мкм Стеклотекстолит FR-4 HITg170 0,51мм Нетекучий эпоксидный препрег Тg170 70мкм
	Top Layer Top Layer Dielectric 6	0,04 0,51 0,07 0,07 0,03	Signal Dielectric Dielectric Dielectric	Фольга 35мкм Стеклотекстолит FR-4 HiTg170 0,51мм Нетекучий эпоксидный препрег Tg170 70мкм
	— Dielectric 6	0,51 0,07 0,07 0,03	Dielectric Dielectric Dielectric	Стеклотекстолит FR-4 HiTg170 0,51мм Нетекучий эпоксидный препрег Tg170 70мкм
	T	0,07 0,03	Dielectric	Нетекучий эпоксидный препрег Tg170 70мкм
	T	0,03		Нетекучий эпоксидный препрег Тg170 70мкм
	T	-,	Adhesive	
	— Int1 (GND) —	0.02		Адгезивная пленка DuPont Pyralux 25мкм
	_	0,02	Signal	Фольга 35мкм
		0,10	Dielectric	Полиимидная пленка DuPont AP8545R 0,1мм
	— Int2 (PWRnSIG)	0,02	Signal	Фольга 35мкм
	— Dielectric 7	0,03	Adhesive	Адгезивная пленка DuPont Pyralux 25мкм
	_	0,07	Dielectric	Нетекучий эпоксидный препрег Тg170 70мкм
	_	0,07	Dielectric	Нетекучий эпоксидный препрез Tg170 70мкм
	_	0,51	Dielectric	Стеклотекстолит FR-4 HiTg170 0,51мм
	— Bottom Layer	0,04	Signal	Фольга 35мкм
	— Bottom Surface Finish	0,00	Surface Finish	O-H(68)3 Зл-Ko(99,5)0,25
	- Bottom Solder	0,03	Solder Mask	SunChemical XV501-T LDI
	— Bottom Overlay		Legend	
	Общая толщина: 1,6	1		
Габл.2	Спой	Толшина	Tun enon A	Латериал
	— Flex Top Coverlay	0.03		покрывная пленка DuPont Pyralux LF0100 25мкм
	— Dielectric 6	0.03		дгезивная пленка DuPont Pyralux 25мкм
	— Int1 (GND)	0.02		Рольга 35мкм
		0,10	-	Толиимидная пленка DuPont AP8545R 0,1мм
	— Int2 (PWRnSIG)	0,02	Signal 4	р _{ольга} 35мкм
	— Dielectric 7	0,03	Adhesive A	Адгезивная пленка DuPont Pyralux 25мкм
	— Flex Bottom Coverlay	0,03	Solder Mask Γ	Токрывная пленка DuPont Pyralux LF0100 25мкм

Перед экспортом герберов нужно обновить контура печатной платы и ее зон. В слое Board M5 должен быть полный внешний контур печатной платы, в слое M17 Rigid Board – контура жестких частей, в слое M18 Flex Board – контура гибких частей.

При экспорте герберов (данных конструкции) кроме слоев с металлизацией, паяльной маски, шелкографии, контура печатной платы и файлов сверловки, еще нужно экспортировать слои с контуром гибкой части (Flex Board) и слои с покрывной маской (Тор и Bottom Flex Coverlay). Слой с контурами жестких частей экспортировать необязательно, он выводится из общего контура печатной платы.

В данных проектирования необходимо расписать назначение экспортированных герберов.

	*		_	20.1827							
Перв. примен.	81.02		Фа	йл				МПСУ.687281.02	4T5M.7z		
	6872		Источник Altium Designer								
	MTCY		Формат Gerber mm, 4:4, RS-274X				S-274X				
	W		Сл	ой				Имя файла			
			Шелкография верхнего слоя				Я	МПСУ.687281.024Т5М.GTO			
			Паяльная маска вер (негативный слой)				слоя	МПСУ.687281.024	4T5M.GTS		
			Металлизация верхнего слоя				поя	МПСУ.687281.024	4T5M.GTL		
Ne.		Металлизация первого внутреннего слоя Int1				ого вн	утреннего	МПСУ.687281.024T5M.G1			
Cnpae.		Металлизация еторого внутрен слоя Int2					нутреннего	МПСУ.687281.024Т5М.G2			
			Me	таллизаци	ия нижн	его сл	юя	МПСУ.687281.024	4T5M.GBL		
			Паяльная маска нижнего слоя (негативный слой)				него с	лоя	МПСУ.687281.024Т5M.GBS		
			Ше	елкография	я нижне	ео сло	Я	МПСУ.687281.024	4T5M.GBO		
			Ко	нтур плат	ы			МПСУ.687281.024	4T5M.GM5		
_	_	Контур гибкой части						МПСУ.687281.024T5M.GM18			
u dama	ama			крывная пл сти	пенка в	ерхнеа	го слоя гибкой	МПСУ.687281.024	4T5M.GCT2		
Подп. и д			Покрыеная пленка нижнего слоя гибкой части					МПСУ.687281.024	4T5M.GCB2		
٦		Формат тт, 4:4						•			
в. Ме подл.		Сквозные металлизированные отверстия						МПСУ.687281.024	4T5M-plated.txt		
Инв. №		Сквозные неметаллизированные отверстия					занные	МПСУ.687281.024	4T5M-Nonplated.txt		
Взам. инв. №		Сквозные металлизированные слотовы отверстия Сквозные неметаллизированные слотовые отверстия					нные слотовь	^{је} МПСУ.687281.024	4T5M-Slot-plated.txt		
							занные	МПСУ.687281.024 Nonplated.txt	4T5M-Slot-		
na		\Box									
Подп. и дата		\dashv			\vdash	+	1	МПСУ.68728	31.024Д1		
logu.		⇉			1				Лит. Масса М	lacuma	
		Изм. Ј Разра		№ докум. Иванов	Подп.	Дата	Плата печа	ная гибко-жесткая _У		1:1	
'n.	П	Прове	_	Приходько			1				
Ме подп.		Т. кон ЗамЛі	_	Лялин	-	+	Данные	проектирования	Лист Листов	1	
Ž.		ЗамДі Н. кон	•	- invited	-	+	ł		МИЭТ	ATEMBIŘ (OBATERBOK) CHTET	

Литература

- 1. Лопаткин, А. Проектирование печатных плат в Altium Designer. [Электронный ресурс] Электрон. дан. М. : ДМК Пресс, 2016. 400 с. Режим доступа: http://e.lanbook.com/book/93565
- 2. Суходольский В.Ю. Altium Designer: сквозное проектирование функциональных узлов РЭС на печатных платах: учеб. Пособие. 2-е изд., перераб. и доп. СПб.: БХВ-Петербург, 2014. 560 с.
- 3. Желобаев А.Л. Методические указания к лабораторным работам по курсу «САПР Altium Designer»: М.:МИЭТ, 2019 104с.
- 4. Приходько Д.В., Айрапетян А.А. Учебно-методическое пособие по работе с библиотеками в Altium Designer: учеб. Пособие. М.: МИЭТ, 2022 180 с.

Перечень ресурсов сети «Интернет»

- 5. Репозиторий автора с учебной библиотекой https://github.com/dee3mon/StudentsLibraryGIT
- 6. Репозиторий автора с учебными материалами по Altium Designer https://github.com/dee3mon/altium-methodic
- 7. Репозиторий автора с шаблонами для Altium Designer https://github.com/dee3mon/altium-templates
- 8. Онлайн-документация
 Altium
 Designer

 https://www.altium.com/documentation/altium-designer
- 9. Тематический форум electronix.ru, раздел «Разрабатываем ПП в САПР PCB development», https://electronix.ru/forum/index.php?showforum=17, доступно после свободной регистрации
- 10. Сайт Eurointech, раздел «Учебные материалы» http://www.eurointech.ru/education/selftraining/
- 11. Общероссийский классификатор изделий и конструкторских документов ОК 012-93 http://classinform.ru/ok-eskd/kod
- 12. Раздел «Гибко-жесткие печатные платы» базы знаний ООО «Резонит» https://www.rezonit.ru/directory/baza-znaniy/tekhnologiya-izgotovleniya-pechatnykh-plat-v-kartinkakh/gibko-zhestkie-pechatnye-platy/

- 13. Раздел «Технологические возможности/ Стандартные гибко-жесткие печатные платы» ООО «Резонит» https://www.rezonit.ru/pcb/gibko-zhestkie/serial/
- 14. Микроконтроллер
 STMicroelectronics
 STM32F103RBT6

 https://www.st.com/en/microcontrollers-microprocessors/stm32f103rb.html
- 15. FPC-разъем Molex 503480-1000 https://www.molex.com/en-us/products/part-detail/5034801000
- 16. Модуль контроля подсветки светодиодов Texas Instruments TPS61160DRVT https://www.ti.com/product/TPS61161
- 17. Белый светодиод Vishay VLMW1300 https://www.vishay.com/en/product/82435/
- 18. Вертикальный USB-C разъем Molex 217182-0001 https://www.molex.com/en-us/products/part-detail/2171820001
- 19. Шлейф-зонд Tag-Connect TC2030-CTX-NL-STDC14 https://www.tag-connect.com/product/tc2030-ctx-6-pin-cable-for-arm-cortex
- 20. Программатор STMicroelectronics STLINK-V3 https://www.st.com/en/development-tools/stlink-v3set.html
- 21. Контроллер зарядки и питания Analog Devices LTC4067EDE https://www.analog.com/en/products/ltc4067.html
- 22. Разъем Molex 53398-4003 https://www.molex.com/en-us/products/part-detail/533984003
- 23. Полиимидная пленка DuPont AP 8545R https://www.dupont.com/electronics-industrial/pyralux-ap.html
- 24. Адгезивная пленка DuPont Pyralux LF0100 https://www.dupont.com/electronics-industrial/pyralux-lf.html
- 25. Стеклотекстолит FR-4 Tg170 https://www.rezonit.ru/upload/spetsifikatsii/KB-6167_H1170.pdf

Каналы Youtube с видеоуроками по Altium Designer

26. ОфициальныйканалAltiumDesignerhttps://www.youtube.com/channel/UCpCi8Hpe4nIg4qvy2vpCGNQ

- 27. Канал Алексея Сабунина https://www.youtube.com/user/SabuninAlexey
- 28. Плейлист «Altium Designer» на канале Сергея Булавинова https://www.youtube.com/playlist?list=PLgUwXvgNkHQJ3G5UoLGMfHJM2c-m4Afdx
- 29. Канал официального представительства Altium Russia https://www.youtube.com/channel/UCvZ_kyV4ATrQfjmtVpuj0LQ
- 30. Плейлист «Altium Designer» на канале консультационного цента АМКАД https://www.youtube.com/watch?v=PcStOG7sRqk&list=PLUk9KaCJSP-UAcH1uLu6mOQmDTmZGCND8
- 31. Канал Robert Feranec автора образовательного сообщества Fedevel Academy https://www.youtube.com/user/matarofe/featured

Разработчик:

Ст. преподаватель Института МПСУ

Приходько Д.В.