Estimating mutual information using sparse regression

Charles Zheng

Stanford University

December 12, 2016

(Joint work with Yuval Benjamini.)

Mutual information (Shannon 1948)

- $I(X; Y) \in [0, \infty]$. (0 if $X \perp Y$, ∞ if X = Y and X continuous.)
- Symmetry: I(X; Y) = I(Y; X).
- Data-processing inequality

$$I(X; Y) \ge I(\phi(X); \psi(Y))$$

equality for ϕ , ψ bijections

Applications of I(X; Y)

- Feature selection (Peng et al. 2005, Fleuret 2004, Bennesar et al. 2015)
- Structure learning for graphical models using conditional mutual information I(X; Y|Z) (Vastano and Swinney 1988, Cheng et al. 1997, Bach and Jordan 2002)
- Quantifying information capacity of neurons

Image credits: Quiroga et al. (2009).

How to estimate I(X; Y)

Suppose we observe pairs $(X_i, Y_i)_{i=1}^n$ iid from density p(x, y)

• Definition of mutual information:

$$I(X;Y) = \int \log \left(\frac{p(x,y)}{p(x)p(y)}\right) p(x,y) dx dy$$

- Simply using plugging in kernel density estimate $\hat{p}(x, y)$ leads to large bias (Beirlant et al. 2001)
- Jackknifed estimate gives better result (Ivanov and Rozhkova 1981)

$$\hat{I}(X;Y) = \frac{1}{n} \sum_{i=1}^{n} \log \left(\frac{\hat{p}_{-i}(x_i, y_i)}{\hat{p}_{-i}(x_i)\hat{p}_{-i}(y_i)} \right)$$

Problems in high dimensions

- Density estimation is known to have exponential complexity with respect to dimensionality.
- Many applications with high-dimensional X, Y.
 - Gene expression time series
 - Functional magnetic resonance imaging
- One approach is to assume joint multivariate normality of X, Y, but this reduces mutual information to a linear statistic.
- Other approaches: binning (Bialek et al. 1991, Paninski 2003), confusion matrix of a classifier (Treves 1997, Quiroga et al. 2009).

Idea: Use sparsity!

- Suppose that $Y \approx f(X) + \epsilon$, where f depends sparsely on X.
- Can we exploit the sparsity to obtain an estimate of I(X; Y)?

Our proposal

Suppose we observe pairs $(X_i, Y_i)_{i=1}^n$ iid from density p(x, y).

- **1** Estimate a (sparse) regression model for $\mathbf{E}[y|x]$.
- Estimate the noise model for Y.
- Estimate the identification risk p using cross-validation.
- **Q** Relate the identification risk to mutual information I(X; Y):

$$I(X;Y)\approx f(p)$$

where f is a function that we derive theoretically.

Multiple-response regression

- Pairs $(x_i, y_i)_{i=1}^n$, where X is p-dimensional and Y is q-dimensional.
- Data matrices $X_{n \times p}$, $Y_{n \times q}$.
- For each column of Y, fit sparse model $Y^{(i)} \approx X^T \beta^{(i)} + \epsilon$, e.g. by using elastic net (Zou 1998),

$$\hat{\beta}^{(i)} = \mathsf{argmin}_{\beta} || \boldsymbol{X}^T \beta^{(i)} - Y^{(i)} ||^2 + \lambda_2 || \beta^{(i)} ||_2^2 + \lambda_1 || \beta^{(i)} ||_1$$

Regression vs Identification loss

- Independent test set $(x_i^*, y_i^*)_{i=1}^k$.
- Use model to predict $\hat{y}_i^* = (x_i^*)^T \hat{B}$ for i = 1, ..., k.

Two ways to evaluate the predictive accuracy of the regression model:

• Regression (mean squared-error) loss:

$$MSE = \frac{1}{k} \sum_{i=1}^{k} ||y_i^* - \hat{y}_i^*||^2.$$

• Identification loss:

$$IdLoss_k = \frac{1}{k} \sum_{i=1}^{k} (1 - I\{\hat{y}_i^* \text{ is nearest neighbor of } y_i^*\}).$$

Cross-validated loss

Leave-k-out cross-validation (LkoCV) can be used for both squared-error loss and identification loss.

- Start with a dataset $(x_i, y_i)_{i=1}^N$.
- Let n = N k. Consider all $\binom{N}{k}$ partitions of the dataset into a test set (X, Y) and training set (X^*, Y^*) .
- For each partition, compute the loss.
- Define the LkoCV loss as the average loss over $\binom{N}{k}$ partitions.

Computational note. One can subsample to avoid computing all $\binom{N}{k}$ partitions. In particular, if m=N/k, then one can use m-fold cross-validation which uses m partitions that have disjoint test sets.

Identification loss and mutual information

Define the identification risk as the expected identification loss

$$IdRisk_k = \mathbf{E}[IdLoss_k]$$

• Define the Bayes risk as the identification risk given the *true* model parameters. Hence,

$$\mathsf{BayesRisk}_k \leq \mathsf{IdRisk}_k$$
.

• **High-dimensional result.** In a certain high-dimensional asymptotic regime, there exists a limiting functional relationship

Bayes risk =
$$\pi_k(\sqrt{2I(X;Y)})$$

Resulting estimator:

$$\hat{I}_{IdLoss}(X;Y) = \frac{1}{2}(\pi_k^{-1}(IdLoss_k))^2$$

where $IdLoss_k$ can either be the loss over a single test set of size k, or the LkoCV loss.

• Remark. Although $IdLoss_k$ is unbiased for $IdRisk_{k_1}g_k$ is nonlinear so

Gaussian example

To help think about these problems, consider a concrete example:

- Let $\boldsymbol{X} \sim N(0, I_d)$ and $\boldsymbol{Y} | \boldsymbol{X} \sim N(\boldsymbol{X}, \sigma^2 I_d)$.
- We draw stimuli $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)} \sim N(0, I_d)$ i.i.d.
- For each stimulus $\mathbf{x}^{(i)}$, we draw observations $\mathbf{y}^{(i,j)} = \mathbf{x}^{(i)} + \epsilon^{(i,j)}$, where $\epsilon^{(i,j)} \sim \mathcal{N}(0, \sigma^2 I_d)$.

Gaussian example

The mutual information is given by

$$I(\boldsymbol{X}; \boldsymbol{Y}) = \frac{d}{2} \log(1 + \frac{1}{\sigma^2}).$$

Define

$$Z_i = -\frac{1}{2\sigma^2}||Y^* - X_i||^2.$$

The Bayes risk can be written

$$\mathsf{BayesRisk} = \mathsf{Pr}[Z_* < \max_{i=1}^{K-1} Z_i].$$

- To make the problem even easier, we use another time-honored technique: the central limit theorem.
- Letting $d \to \infty$, the scores

$$Z_i = -\frac{1}{2\sigma^2}||\mathbf{Y} - \mathbf{x}||^2 = -\frac{1}{2\sigma^2}\sum_{i=1}^d ||Y_i - x_i||^2$$

have a jointly multivariate distribution in the limit:

$$\begin{bmatrix} Z_* \\ Z_1 \\ \vdots \\ Z_{K-1} \end{bmatrix} \xrightarrow{d} N \begin{pmatrix} \begin{bmatrix} -\frac{d}{2} \\ -\frac{d}{2} - \frac{d}{\sigma^2} \\ \vdots \\ -\frac{d}{2} - \frac{d}{\sigma^2} \end{bmatrix}, \begin{bmatrix} \frac{d}{2} & \frac{d}{2} & \cdots & \frac{d}{2} \\ \frac{d}{2} & \frac{d}{2} + \frac{2d}{\sigma^2} & \cdots & \frac{d}{2} + \frac{d}{\sigma^2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{d}{2} & \frac{d}{2} + \frac{d}{\sigma^2} & \cdots & \frac{d}{2} + \frac{2d}{\sigma^2} \end{bmatrix} \end{pmatrix}.$$

Assume $(Z_*, Z_1, \dots, Z_{K-1})$ have a normal distribution with the given moments.

We can compute

$$\mathsf{BayesRisk}_k = \mathsf{Pr}[Z_* < \max_{i=1}^{K-1} Z_i]$$

by writing

$$Z_i = \frac{\mathsf{Cov}(Z_*, Z_i)}{\mathsf{Var}(Z_*)} (Z_* - \mathbf{E}Z_*) + \sqrt{\mathsf{Var}(Z_i) - \frac{\mathsf{Cov}(Z_*, Z_i)^2}{\mathsf{Var}(Z_*)}} W_i,$$

where W_i are i.i.d. standard normal.

This yields

$$\Pr[Z_* < \max_{i=1}^{K-1} Z_i] = \Pr[N(\mu, \nu^2) < \max_{i=1}^{K-1} W_i]$$

where

$$\mu = \frac{\mathbf{E}[Z_* - Z_i]}{\sqrt{\frac{1}{2}\mathsf{Var}(Z_i - Z_j)}}, \ \nu^2 = \frac{\mathsf{Cov}(Z_* - Z_i, Z_* - Z_j)}{\frac{1}{2}\mathsf{Var}(Z_i - Z_j)}$$

for $i \neq j \neq K$.

Finally, we get

$$\mathsf{BayesRisk} = \mathsf{Pr}[Z_* < \max_{i=1}^{K-1} Z_i] \to \pi_K \left(\frac{\sqrt{d}}{\sigma}\right)$$

where

$$\pi_K(\mu) = 1 - \int_{-\infty}^{\infty} \phi(z-\mu)(1-\Phi(z))^{K-1} dz.$$

Sidenote: interpretation of π_K

The function $\pi_K(\mu)$ gives the probability that a $N(\mu,1)$ variable is smaller than the minimum of K-1 other N(0,1) variables (all independent.) Hence $\pi_K(0) = \frac{K-1}{K}$ due to symmetry. (This is also the misclassification rate from pure guessing.)

Legend: $K = \{$

Recall that

$$I(\boldsymbol{X}; \boldsymbol{Y}) = \frac{d}{2}\log(1 + \frac{1}{\sigma^2}),$$

while

BayesRisk_k =
$$\pi_K(\sqrt{d}/\sigma)$$
.

Hence Bayes risk is *not* a function of I(X; Y)!

Gaussian example: Low SNR limit

However, what if we consider a limit where the noise level σ^2 increases with d?

Fix some $\sigma_1^2 > 0$, and let $\sigma_d^2 = d\sigma_1^2$.

Then when d is large,

$$I(\boldsymbol{X}; \boldsymbol{Y}) = \frac{d}{2} \log(1 + \frac{1}{d\sigma_1^2}) \approx \frac{d}{2} \frac{1}{d\sigma^1} = \frac{1}{2\sigma_1^2}.$$

We get

Bayes risk =
$$\pi_k(\sqrt{2I(\boldsymbol{X};\boldsymbol{Y})})$$

in the limit!

Low SNR limit: generalization

In a sequence of gaussian models of increasing dimensionality with

$$\lim_{d\to\infty} I(\boldsymbol{X};\,\boldsymbol{Y}) \to \iota < 0,$$

we get an exact relationship between the limiting mutual information and the average Bayes error,

$$\mathsf{BayesRisk}_k = \pi_K(\sqrt{2\iota}).$$

This limiting relationship holds more generally!

Low SNR theorem

Theorem. Given an exponential family sequence model $p_d(x, y)$, for random variates $(\mathbf{X}^{[d]}, \mathbf{Y}^{[d]}) \sim p_d(\mathbf{X}, \mathbf{Y})$, we have

$$\lim_{d\to\infty} I(\boldsymbol{X}^{[d]},\boldsymbol{Y}^{[d]}) = \iota < \infty$$

for some constant $\iota < \infty$; and the limiting K-class average Bayes error is given by

$$\lim_{d\to\infty} ABE = \pi_K(\sqrt{2\iota}).$$

The low-SNR estimator of I(X; Y)

We are willing to bet that the relationship

$$\mathsf{ABE} \approx \pi_{\mathcal{K}}(\sqrt{2\iota})$$

holds in much greater generality than we managed to prove–namely, whenever $I(X; Y) \ll p$, and the scores Z_i are approximately jointly multivariate normal.

Based on these assumptions, our proposed estimator for mutual information is

$$\hat{l}_{ls}(\boldsymbol{X}; \boldsymbol{Y}) = \frac{1}{2} \pi_{\mathcal{K}}^{-1} (\widehat{\mathsf{ABE}})^2$$

where $\widehat{\mathsf{ABE}}$ is the test error of the classifier. (The subscript ls stands for low-SNR.)

Simulation study

Models.

• Multiple-response logistic regression model

$$X \sim N(0, I_p)$$
 $Y \in \{0, 1\}^q$ $Y_i | X = x \sim \mathsf{Bernoulli}(x^T B_i)$

where B is a $p \times q$ matrix.

Methods.

- Nonparametric: \hat{l}_0 naive estimator, \hat{l}_{α} anthropic correction.
- ML-based: \hat{I}_{CM} confusion matrix, \hat{I}_F Fano, \hat{I}_{LS} low-SNR method.

Fig 1. Low-dimensional results (q = 3)

Sampling distribution of \hat{I} for $\{p=3, B=\frac{4}{\sqrt{3}}I_3, K=20, r=40\}$. True parameter I(X;Y)=0.800 (dotted line.)

Naïve estimator performs best! \hat{l}_{LS} not effective.

Fig 2. High-dimensional results (q = 50)

Sampling distribution of \hat{I} for $\{p=50, B=\frac{4}{\sqrt{50}}I_{50}, K=20, r=8000\}$. True parameter I(X;Y)=1.794 (dashed line.)

Non-parametric methods extremely biased.

Fig 3. Dependence on n (q = 10)

Estimation path of \hat{I}_{LS} and \hat{I}_{α} as n ranges from 10 to 8000. $\{p=10,\ B=\frac{4}{\sqrt{10}}I_{10},\ K=20\}$. True parameter I(X;Y)=1.322 (dashed line.)

Legend:
$$\hat{l}_{LS}$$
, $\hat{l}_{-} = \hat{l}_{0.5}$, $\hat{l}_{-} = \hat{l}_{0.5}$, $\hat{l}_{-} = \hat{l}_{0.9}$.

Fig 4. Dependence on true I(X; Y) (q = 10)

$$\{p = 10, B = [0, 200] \times \frac{1}{\sqrt{10}}I_{10}, r = 1000, K = 20\}.$$

Estimated \hat{l} vs true l.

Bands depict 80% central percentiles.

Legend:
$$= \hat{l}_{LS}, = \hat{l}_0, = \hat{l}_{CM}, = \hat{l}_{F}.$$

Fig 5. Dependence on K given fixed N (q=10)

Sampling distribution of \hat{I}_{LS} for $\{p=10, B=\frac{4}{\sqrt{10}}I_{10}, N=80000\}$, and $K=\{5,10,15,20,\dots,80\}$, r=N/k. True parameter I(X;Y)=1.322 (dashed line.)

Decreasing variance as K increases. Bias at large and small K.

Fig 6. Non-identity B (q = 40)

p = 20 and q = 40, entries of B are iid N(0, 0.025). K = 20, r = 8000, true I(X; Y) = 1.86 (dashed line.)

Sampling distribution of \hat{l} .

Conclusions

- We derive a relationship between average Bayes error (ABE) and mutual information (MI), motivating a novel estimator \hat{I}_{LS} .
- Theory based on high dimensional, low SNR limit, where

$$\mathsf{ABE} \leftrightarrow \mathsf{MI}.$$

- In ideal settings for supervised learning, ABE can be estimated effectively and \hat{I}_{LS} can recover MI at much lower sample sizes than nonparametric methods.
- In simulations, \hat{I}_{LS} works better than Fano's inequality or the confusion matrix approach.

References

- Cover and Thomas. Elements of information theory.
- Muirhead. Aspects of multivariate statistical theory.
- van der Vaart. Asymptotic statistics.