Total RNA extraction, cDNA synthesis, and qPCR

Jiao Wang

Abstract

Citation: Jiao Wang Total RNA extraction, cDNA synthesis, and qPCR. protocols.io

dx.doi.org/10.17504/protocols.io.iaucaew

Published: 05 Jun 2017

Protocol

Step 1.

Seed cells at a density of 1×10^5 cells/well in a 24-well plate. Culture cells under 5% CO₂, in a 95% humidified atmosphere at 37°C.

Step 2.

48 h post-transfection, the total cellular RNA is extracted using a Total RNA Extraction Kit (Promega, USA), according to the manufacturer's protocol stated as below.

Step 3.

Wash cells three times with the PBS. Strip cells with cell scraper, collect cells in a nuclease-free EP tube by centrifugation at 1000 rpm for 5 minutes, and then discard the supernatant.

Step 4.

Add 100 μ l of RNA lysate to the cell pellet, resuspend the cells with a pipette, transfer the lysate into a 1.5 ml nuclease-free EP tube, then add 100 μ l of the dilution, and mix the mixture by inverting four times.

Step 5.

Incubate the lysate at 70°C for 3 minutes to increase the RNA yield.

Step 6.

Centrifuge at $14,000 \times g$ for 5 minutes. Carefully aspirate the supernatant into a 1.5 ml nuclease-free EP tube.

Step 7.

Add 0.5 times the supernatant volume of anhydrous ethanol, mix 4 times with a pipette.

Step 8.

Remove the centrifuge column/collection tube, and transfer the mixture to the centrifuge column. If the volume of the mixture is greater than 750 µl, add the mixture in batches.

Step 9.

Centrifuge at $14,000 \times g$ for 1 minutes, discard the filtrate, and put the centrifuge column back into the collection tube.

Step 10.

Add 600 μ l wash buffer to the column, centrifuge at 14,000 \times g for 45 seconds, and discard the filtrate.

Step 11.

Take a nuclease-free tube, add 5 μ l of 10 \times DNase I buffer, 5 μ l of DNase I, and 40 μ l of nuclease-free water, and then gently mix them. The amount for extraction of a tube of RNA required by DNase I incubation is 50 μ l.

Step 12.

Add 50 μ l of freshly prepared DNase I incubation solution to the centrifuge tube and incubate at room temperature for 15 minutes.

Step 13.

Add 600 μ l RNA wash buffer to the column, centrifuge at 14,000 \times g for 45 seconds, and discard the filtrate.

Step 14.

Repeat step 13 once. And then centrifuge at $14,000 \times g$ for 2 minutes.

Step 15.

Transfer the centrifuge column into the elution tube, add 50 μ l of nuclease-free water to the spin-off membrane, incubate at room temperature for 2 minutes, and centrifuge at 14,000 \times g for 1 minute.

Step 16.

Add the elution solution to the center of the column, incubate at room temperature for 2 minutes, and centrifuge at $14,000 \times g$ for 1 minute to elute RNA again.

Step 17.

Determine the concentration of RNA by measuring the absorbance at 260 nm.

Step 18.

Prepare the reverse transcription reaction system (20 µl) as follows to synthesize cDNA:

 $5 \times RT$ Master Mix (TaKaRa, Japan) 4 μ l

RNA $2 \mu g$

RNase-free ddH₂O add up to 20 µl

Step 19.

Set up the RT-PCR reaction procedure as described below:

25°C 5 minutes

37°C 30 minutes

85°C 10 seconds

12°C 10 minutes

Step 20.

Prepare the following qPCR system (20 µl) on ice:

cDNA mixture 1 μl

 $2 \times \text{Top Green qPCR Super Mix (Transgen, China)}$ 10 μ l

upstream primer (10 mM) 1 μl

downstream primer (10 mM) 1 μl

 ddH_2O add up to 20 μ l

Step 21.

Set up the qPCR reaction procedure as described below:

Step 1 95°C 5 minutes

Step 2 95°C 30 seconds

55°C 30 seconds

72°C 10 seconds

40 Cycles in Step 2

Step 3 72°C 5 minutes

Step 4 4°C hold

Step 22.

Calculate relative gene expression by comparison of the CT value of the gene of interest with that of GAPDH which ia an internal control.