

OWNERSHIP STATEMENT

This document, the data contained in it and copyright therein are owned by Bayer Cropscience. No part of the document or any information contained therein may bodisclosed to any third party without the prior written authorisation of Bayer CropScience.

The summaries and evaluations contained in this document are based on unpublished proprietary data submitted for the purpose of the assessment undertaken by the regulatory. authority. Other registration authorities should not grant, amend, or renew a registration on the either:

• From Bayer CropScience; or
• From other applicants once the period of data pracetion has expired. basis of the summaries and evaluation of pupublished proprietary data contained in this document unless they have received the data on which the summaries and evaluation are based,

Version history

	T	Doğument identific and
Date	Data points containing amendments or additions ¹ and brief description	Oversion number
	<i>→</i>	
1 7. 1.1		
SANCO/10180/20	lat applicants adopt a similar approach to snowing revisions an	d version history as outlined in
SANCO/10100/20	713 Chapter 4 110w to revise an Assessment Report	
	Ŏ. Ž. Ž.	
	ST X X & A	
		. J. J J
		Ç
		<i>J</i>
O,		
~Q		
* %		
4		
Ž, ž		
Ÿ		
, Ö		
J 2		
	at applicants adopt a similar approach to showing revision on 13 Chapter 4 How to revise an Assessment Report	

Table of Contents

		ď
CP 9	FATE AND BEHAVIOUR IN THE ENVIRONMENT Fate and behaviour in soil Rate of degradation in soil Laboratory studies Field studies Soil dissipation studies Mobility in the soil Laboratory studies Lysimeter studies Field leaching studies	#⊘ ;
CP 9.1	Fate and behaviour in soil.	′ }
CP 9.1.1	Rate of degradation in soil	, } <i>i</i> ?i
CP 9.1.1.1	Laboratory studies	Y
CP 9.1.1.2	Laboratory studies Field studies V.	`
CP 9.1.1.2.1	Soil dissipation studies	; }, (
CP 9.1.1.2.2	Soil accumulation studies	
	Mobility in the soil	}
CP 9.1.2.1	Laboratory studies	}
CP 9.1.2.2	Lysimeter studies S S S S S S S S S S S S S S S S S S S	}
CP 9.1.2.3	Field leaching studies	}
CP 9.1.3	Estimation of concentrations in soil	}
CP 9.2	Fate and behaviour in water and sediment	Į
CP 9.2.1	Aerobic mineralisation in surface water	
CP 9.2.2	Water/sediment study 11	
CP 9.2.3	Irradiated water/sediment study)
CP 9.2.4	Estimation of concentrations in groundwater 2	2
CP 9.2.4.1	Calculation of concentrations in groundwater	,
CP 9.2.4.2	Additional field tests & 15	,
CP 9.2.5	Estimation of concentrations in surface water and sediments)
CP 9.3	Fate and beliavious in air	L
CP 9.3.1	Route and rate Ordegradation in air and transport via air	L
CP 9.4	Estimation of concentrations for other routes of exposure	L
8		
, Ö		
~0		
.1		
4		
Š		
	Mobility in the soil Laboratory studies Lysimeter studies Field leaching studies Sestimation of concentrations in soil Fate and behaviour intwater and sediment Aerobic mineralisation in surface water Water/sediment study ITALITY SESTIMENT STUDIES Estimation of concentrations in groundwater Calculation of concentrations in groundwater Additional field tests Estimation of concentrations in sufface water and sediment Fate and behaviour in air Route and rate of degradation in air and transport via air Estimation of concentrations for other routes of exposure 21 Estimation of concentrations for other routes of exposure 21	
Ö		

CP 9 FATE AND BEHAVIOUR IN THE ENVIRONMENT

Introduction

Isoxaflutole is an herbicidal active substance and was included into Annex I of Directive 91 Directive 2002/68/EC (dated 11th of July 2003) on 1st of October 2003.

This dossier contains only summaries of studies, which were not available at the time of the Armex I inclusion of isoxaflutole and were therefore not evaluated during the first EU review of this compound. All other studies, which were already submitted by Bayer for the Annex I inclusion, are contained in the Monograph and in the baseling dossier (D-699256-01) CropScience.

Intended application pattern

The formulation is intended for use as a hobicide against broad leaf weeds and grass weeds and maize. The critical use pattern for this formulation is summarised as follows.

Intended application pattern, & **Table 9-1:**

Стор	Timing of application	Number of Qappl	interval [days]	Maximum Arbel rate [L/ha]	Maximum application rate, individual treatment [g a.s./ha] isoxaflutole
Maize, Pre-emergence	BBCH 00 13		Ø - 0	0.417	\$ 100

Compounds addressed in this document.

In addition to the active substance(s) the following metabolites were addressed in this document.

Table 9-2: Active substance and metabolites addressed in this document

Report name	Molecular formula	Occurrence
Structure	molar mass	
IUPAC name	Other names / codes	
CAS name		
[CAS registry number]	4	5 5
Isoxaflutole (parent substance)	C H ₁₂ F ₃ N O ₄ S	
Q ŞO₂CH₃	C F 112 F3 N O4 S	Parent substance used as
	₿59.32 g/mol	test material in all
	359.32 g/mol 5°	reports & O
N'		
`O \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
CF ₃		
(5-cyclopropyl-1,2-oxazol-4-yl)-[2-methylythfonyl-4	Isoxaflutole A	
(5-cyclopropyl-1,2-oxazol-4-yl)-[2-methylstrlfonyl-4-cyclopropyl-4-isoxazol-4-yl)	Isoxaflutole Common name RPA 201772 RPA 591428 AE B197278	
	TRPA 201772	
(methylsulfonyl)-4-(trifluoromethyl)phenyl (9CI)	RPA 591428	
(CAS)	AE B197278	
(CAS) Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	BCS-AP121981	Parent substance used as test material in all reports Soil, aerobic Soit naerobic
**************************************	.C ₁₅ H ₁₂ F ₃ N O ₄ S 359.5 g/mol	0°
	Cur Hua Fa N O	Soil, agrobic
	359 35/g/mol	Soil anaerobic
	359.3 g/mol	Soft photolysis
		Abiotic hydrolysis
V & CN		
2-cycloproporcarbonyl-3-(2-methylsulfonyl-4-		
2-cyclopropolicarbonyl-3-(2-methylsulfonyl-4-	RPA 2023	
trifluoromethylphenyl)-3-oxopromanenitrile (IUXC)		
Danzan Arranan an itrila & (aval & rany larrany l	DCC DSORO	
(methysulfonyl)-b-oxo-4-(triff)uoromethyl)- (CAS)	DKN "O"	
CAS no: 143701.75-1	DKN O	
Benzoic acid & A & V	D. 9	
	Ž	
© © SO2CH3 CO SO	C ₉ H ₇ F ₃ O ₄ S	Soil, aerobic
	268.22 g/mol	Soil, anaerobic
HO WIND OF STATE		Soil photolysis
CAS no: 143701-75-1 Benzoic acid HO CP3 2-mesyl-4-triffnoromethylbonzoic acid (IUPQC)		
2-mesyl-4-triffdoromethylbonzoic acid (IUPAC)	RPA 203328	
Benzoic aco, 2-(methylsulfonyl)-4 (trifluoromethyl)-	AE B197555	
(CAS) Si Wi Wi Wi	Pyrasulfotole-benzoic	
CAS no 14299 -06-/U	acid	
y & A T	BCS-AB49990 BA	
2-mesyl-4-triffnoromethylbenzoic acid (IUPAC) Benzoic acid, 2-(methylsulonyl)-4-(trifluoromethyl)- (CAS) CAS no 142994-06-7	IFT acid	
	11 1 4014	1

Donart name	Molooulou formanis	Оселительс
Report name Structure	Molecular formula molar mass	Occurrence ©
CAS name	Cinci names / codes	
[CAS registry number]		Occurrence
RPA 205834		
Enamine-amidine tautomeric forms:	$C_{15}H_{14}F_3NO_4S$	Soil aerobic
O O SO2CH3	36 \$\infty 4 g/mol	Soil, anactobic
		Water/Sediment
H_2N' \hookrightarrow CF_3		
^		
O O SO ₂ CH _{3 A O}		
	y zy zo zi	
HN HN		
I III CAS OF SU		
2-(1-aminomethylidene)-1-cyclopropyle3-(2-moyl-4-	RPA 203834 5	
trifluoromethylphenyl)propano 1,3-dione (IDPAC)	AE 069229 🖤 🧑	
CAS no: n.a.	BES-BY16134€	
IUPAC name [CAS name [CAS registry number] RPA 205834 Enamine-amidine tautomeric forms: O O SO ₂ CH ₃ H ₂ N CF ₃ 2-(1-aminomethylidene)-1-cyclopropyle3-(2-moyl-4-trifluoromethylphenyl)propane 1,3-dione (ILPAC) CAS no: n.a. Met 14 O OF OF SO ₂ CH ₃ (2Z)-3-fordroxy-2-{hydroxy[2-(amethylculfonyl)-4-		
O ON ON SACHO S	CANA FANOC SU	Photolysis buffer
	377 g/mol	\$
CNO LOY LOY		
	C ₁ ×H ₁₄ F ₃ NO ₅ S ₄ 377 g/mol	
(2Z)-3-hydroxy-2-{hydroxy[2-(methylailfonyl)-4-	M14 Peak 14 AE Code None	
(trifkingromethyl)phellyl]methyl}-5-oxohex2	Peak 14 D	
enenitrile (IUPA 🗬	AE Code None	
CAS no: n.a.	BCS Sode: None	
(2Z)-3-hydroxy-2-{hydroxy[2-(methyloilfonyl)-4-(triffuromethyl)phenyl]methyl}-5-oxohex 2-enenitrile (IUPAC)CAS no: n.a. Met 20 OH SO ₂ CH	F. Comments	
	O ₁₅ H ₁₂ F ₃ N O ₄ S	Photolysis, buffer
	359 g/mol	i nowlysis, outlet
	9 337 g/IIIOI	
CINCAL CERT		
CNS S		
CEL CEL		
(2Z,4Z)-2-hydroxy 2-(metrylsulfonyl)-4-	M20	
(trifluoromethylyphenyl) (trifluoromethylyphenyl) (trifluoromethylyphenyl) (trifluoromethylyphenyl) (trifluoromethylyphenyl)	Peak 20	
enenitae (IUPAC)	AE Code: None	
CAS no: n. A	BCS Code: None	
		1

CP 9.1 Fate and behaviour in soil

Information of this and the following sections (CP 9.1.1 and CP 9.1.2) are already given in the MCA. Please refer to the corresponding section in the MCA.

CP 9.1.1 Rate of degradation in soil

For further information on the fate and behaviour in soil please refer to MCA Section 7, points 7, and 7.1.2.

CP 9.1.1.1 Laboratory studies

For information on laboratory studies please refer to MCA Section % points 7.1.2.1

CP 9.1.1.2 Field studies

For information on field studies please refer to MCA Section 7, point 7.1.2.2

CP 9.1.1.2.1 Soil dissipation studies

For information on field dissipation studies please refer to MCA Section 7, point 7.1.22/1.

CP 9.1.1.2.2 Soil accumulation studies

For information on field accumulation studies please refers to MCA Section 7, point 7.1.2.2.2.

CP 9.1.2 Mobility in the soil

For information on mobility studies Please refer to MCA Section 7, point 7.1.4.

CP 9.1.2.1 Laboratory studies

For information on laboratory studies please refer to MCA Section 7, point 7.1.4.1

CP 9.1.2.2 "Lysimeter studies

For information on lysimeter studies please refer to MCA Section 7, point 7.1.4.2.

CP 9,1.2.3 Field leaching studies

For information on field waching studies please refer to MCA Section 7, point 7.1.4.3.

CP 9.1.3 Estimation of concentrations in soil

New calculations were performed to reflect findings from new studies presented in the active substance dossier, section 7. Fate and behavior in the environment". In addition these calculations considered the most recent guidance documents for exposure calculations.

Calculations of predicted environmental concentrations in soil (PEC_{soil}) are presented below.

Predicted environmental concentrations in soil (PECs)

Endpoints for PEC_{soil}

Table 9.1.3-1: Modelling input parameters for isoxaflutole

Endpoint	Isoxaflutole and metabolites
	Value used for modelling O
Isoxaflutole	
DT ₅₀ [days] (non-referenced field DT ₅₀)	
RPA 202248	
DT ₅₀ [days]	53.48° 67 67
Maximum occurrence [%]	
Molecular mass correction	
RPA 203328	
DT ₅₀ [days]	maximum initial PEC soil was calculated, therefore no DT 50 ie
	noeded) w
Maximum occurrence [%]	
Molecular mass correction	7 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
A Non-normalized worst-case field 25% fr	
B conservative approach using a pseudo-SI	FØDT _M Ø Ø Ø Ø Ø Ø
^C conservative approach	
D molar masses of isoxaflutol	
E molar mass of RPA 203328, divided by t	the molar mass of foxaflutole of the molar mass of foxaflutole

PECsoil modelling approach

Calculations were based on a simple first tier approach (Excel sheet) assuming even distribution of the compound in upper 0-5 cm soil layer. A standard soil density of 5 g/cm was assumed.

Crop interception will reduce the amount of a compound reaching the soil and therefore this has been taken into account depending on the growth stage at application. The interception rates follow the recommendations of the FOCOS groundwater guidance paper (FOCUS 2002) for maize.

PECsoil for isoxaflutole and its metabolites

For isoxaflutore, the metabolites RPA 202248 and RPA 203328 were considered.

Report	3; 2013;M-469725-01
Title:	Predicted Environmental Concentrations of Isoxaflutole and its Major Metabolites
Y	RPA 202248 and RPA 203328 in Soil (PEC _{soil}) Following Application at 100 g/ha
@ \	to Maize in Europe
Document No.	\$\hbar{4},4697\\\ 5-01\hbar{1},\bar{VC}13\\\ 007M)
Guidelines	EU Commission, 2000, Guidance Document on Persistence in Soil (Working
	Document), 9188/VI/97 rev.8
	FOCUS 997, Soil persistence models and EU registration
	FOCUS, 2002, Generic Guidance for FOCUS Groundwater Scenarios, Version
	1.1 \$ "
GĽP: Ö	No (calculation)

Methods and Materials: The predicted environmental concentrations in soil (PEC_{soil}) of isoxaflutole and its metabolites were estimated using a simple first tier approach (Excel sheet). Detailed application data used for simulation of PEC_{soil} were compiled in Table 9.1.3-3.

Substance Specific Parameters: PEC_{soil} calculations were based on the DT₅₀ of 2.8 days (worst case of field studies; non-normalized) for the parent compound isoxaflutole, further compound opecific input parameters are summarized below.

Table 9.1.3-2: Input parameters for PEC_{soil} for isoxatiotole and its metabolites

Compound	DT ₅₀ [days]	Max. occurrence soil	Motar mass [g/mol]	Molar mass correction
Isoxaflutole	2.8	1000°	359	
RPA 202248	53.4	190	V 259	
RPA 203328	_ a	\$462.0 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	° ≥ 268, ≥	268/359 b

a maximum initial PEC_{soil} calculated, therefore no DT₅₀ needed

Table 9.1.3-3: Application patter used for PEC soil calculations of iso calculations

Individual Crop	FOCUS Crop Used for Interception	Rate Property Season [g a.s. ha]	Applica Interval	Plant Interception	Stage	Amount Reaching the Soil per Season application
Maize – GAP and simulation	nQize		days	\$ [%] \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	00-73	[g a.s./ha] 1 × 100

Findings: The (annual) maximum PEC solvalues for is saflutole and its metabolites are summarised in the following table. The maximum, short-term and ong-term PEC soil values and the time weighted average values (TWA, a) of is saflutole and its metabolites are provided thereafter exemplarily for 1 × 100 g a.s./ha. No PEC with time of time-weighted average concentrations have been calculated for the metabolite RPA 200328.

Table 9.1.3- 4: (Annual) Maximum PEC of isoxaflutole and its metabolites for the uses assessed

Use pattern		/Isoxatintole / [pag/kg]	RPA 202248 [mg/kg]	RPA 203328 [mg/kg]
Maize, 1 × 10	0 g a.s./ha	0.1353	0.1333	0.0617
	`			

b molar mass of RPA 203328, divided by the molar mass of isoxativitole

Table 9.1.3-5: PEC_{soil} (actual) and TWA_{soil} of isoxaflutole (1 × 100 g a.s./ha)

		Isoxat	flutole		
	Time	PECsoil	TWA _{soil}		
	[days]	[mg/kg]	[mg/kgD		
Initial	0	0.1333			
	1	0.1041	041181		
Short term	2	0.0813	√0,7052 %		
	4	0.0495	<i>‰</i> 0.0846 <i>‰</i>		
	7	0.0236	0.0633		
	14	0.0942	0.0373		
I am a tamas	21	0.0007	0.0255C		
Long term	28	© :0001	0.01 $^{\circ}$		
	50	0.0000	,°> 0.00±08 ~		
	100	№ 0. 060 0 №	Ø:0054 Q		

Table 9.1.3-6: PECsoil (actual) and TWAsoil of RPA 202248 (1 100 gals./ha)

	d())	, ~	~	~ "	X. 1	p."	, S
	, O		\$ 1	RPA 2	02248		
	Time	~	PECsoil			TWAsoil	Š
	[days] 🖗		[mg/kg]) Y	[mg/kg]	
Initial	0 %	-0	02333 /	Ç o	Q		
*	V W		0.1316	. 4		0.13235	
Short term		Ŵ Y	0.1299	^		0.1816	
**	<u> </u>		04266	\$`.	Ž	√0.1299√)
₩	Ş 7, Q	0	0 1218~		¥ &	, 0.12 75	
		U Å	ð.11 12 Ú		Ő	0.12/19	
I of term	<u></u>	,	0.1675	Ž,	4.	% 1167	
Long term	L 28	~~~	0.0927	Š,	Ŵ ;	© 7.1118	
Long term	50	, O' ×	9 .069 %		7	^{IJ} 0.0981	
	100	y , Q	0.036	0	Q.	0.0747	

Table 9.1.3-7: PEGoil (actual) of RPA 20\$28 (12 100 ga.s./ha)

	V 150	$\mathscr{O}_{s'}$. λ		
			, 🗸 🔪 , RPA 2	203328
	, S	Time	Csoil O	TWAsoil
Ç		[days]	mg/kg]	[mg/kg]
	Initial O	30	Ø 0.0,6 0 07	
		A 1 0 2	'A % /	

CP 9.2 Fate and behaviour in water and sediment

CP 9.2.1 Aerobic mineralisation in surface water

For information on a robic mineralisation in surface water studies please refer to MCA Section 7, point 7.2.22.

CP 9.2.2 Water/sediment study

For information on water/sediment studies please refer to MCA Section 7, point 7.2.2.3.

CP 9.2.3 Irradiated water/sediment study

For information on irradiated water/sediment studies please refer to MCA Section 7, point 7

CP 9.2.4 Estimation of concentrations in groundwater

New calculations were performed, to reflect findings from new studies presented in the action substance dossier, section 7 "Fate and behavior in the environment". In addition these calculation trations in groundwater (PEC,) are presented below. consider the most recent guidance documents for exposure calculations.

Calculations of predicted environmental concentrations in groundw

Endpoints for PECgw

Table 9.2.4-1: Modelling input parameters for iso

Endpoint	isoxadutole and metabolites & Q
	Value used for modelling
Isoxaflutole @#	
Aqueous solubility [mg/L]	√ √ 6.2@0°C) ₂₀
Vapour pressure [Pa]	$(29^{3}\text{C})_{\circ}$
DT ₅₀ soil [days]	0.9x(geomean) A
K _{oc} [L/kg]	√ √79.8 (mean) B √ √ √
1/n	Ø 35 D € 7
RPA 202248	
Aqueous solubility mg/L	♥
Vapour pressure (Pa]	(
DT ₅₀ soil [days	O (5.5 geomean)
K _{oc} [L/kg]	34.9 (mean)
1/n 📡 🛴	0.8 TO D
Formation fraction	O O F
RPA 203328	
Aqueous solubility [mg/L]	2 110000 (20°C) 0 (20°C)
Vapour pressure [Pa]	
DT ₅₀ soil [day Q	11.4 (geomean)
K _{oc} [L/kg]	1.17 (mean)
1/n A	0.649
Formation fraction	1 E
A Geometric mean of normalized fie	eld DT ₅₀ from laboratory trials (2013a & c, M-464596-01-1 &
1 VI-#104699-U1-11	
B Arithmetic mean K _{OC} from a range	
^C Geometric mean laboratory DT 50	from laboratory trials (2013a & b, M-464596-01-1 & M-
464592-01-10	
D Excluding sediment	
E Conser witive worst-case	

PECgw modelling approach

The predicted environmental concentrations in groundwater (PEC $_{\mathrm{gw}}$) for the active substance were calculated using the simulation models PEARL and PELMO following the recommendations of the FOCUS working group on groundwater scenarios.

The leaching calculations were run over 26 years, as proposed for pesticides which may be applied every year. The simulation length increases to 46 and 66 years for pesticides which are applied only every second and third year, respectively. The first six years are a 'warm up' period; only the last 200 years were considered for the assessment of the leaching potential. The 80th percentile of the average annual groundwater concentrations in the percolate at 1 m depth under a treated plantation were evaluated and were taken as the relevant PEC_{GW} values. In respect to the assessment of a potential groundwater contamination this shallow depth reflects a worst case. The effective long-term groundwater concentrations will be even lower due to dilution in the groundwater layer.

According to FOCUS, the calculations were conducted based on mean soil half-lives, referenced to standard temperature and moisture conditions, crop interception will reduce the amount of a compound reaching the soil and therefore this has been taken into accound depending on the growth stage at application. The interception rates follow the FOCUS recommendations (Table 9.2.4-2).

Table 9.2.4-2: FOCUS groundwater crop interception values.

	Cropstage Cropstage Constage C	0
Crop		enescence Ripening
	BBC stage	
	00 - 09 📞 10 89 🔊 20 - 39 🗸 😽 40 89	90 - 99
maize	0 0 0 25 50 50 75 27	90

CP 9.2.4.1 Calculation of concentrations in groundwater

Predicted environmental concentrations in groundwater (PECgw)

For isoxaflutole, the metabolites RPA 202248 and RPA 203828 were assessed.

Report:	3; \$2013;M-469721-01
Title:	Predicted Environmental Concentrations of Isoxaflutole and its metabolites RPA
	202248 and RP 203328 in Goundwater (PEC _{sw}) Following Application to
	Maize h Europe at 100 g/ha
Document No:	M-469721, 1-1 (XC/13/007L)
Guidelings.	FQCUS 2000, S&NCQ \$21/2600
	BOCUS 2011, Generic Guidance for FOCUS Groundwater Assessments, v. 2.0
GL . F∜∕	No (calculation)

Materials and Methods: The predicted divironmental concentrations in groundwater (PEC_{gw}) for isoxaflutole and its metabodies were calculated using the simulation models FOCUS PELMO (version 4.4.4) and FOCUS PELMO (version 5.5.3). Detailed application data used for simulation of PEC_{gw} were convoiled in Table 9.2.4 P- 1.

Table 9.2.4.1-1: Comparison of simulated and actual use pattern

	FOCUS Crop Used for Interception	Application				Amount Reaching
Individual Crop		Rate per Season	Interval	Plant Interception	BBCH Stag	the Soil per Season
_		[g a.s./ha]	[days]	[%]		[g a.s./ha] 💸
Maize – GAP and simulation	maize	1 × 100	-	0	40 0-13	Y × 100 7

Application dates for the simulation runs were defined following the cop event dates of the respecti crop and scenario (Table 9.2.4.1- 2) as given by FOCUS (2000) Crop intercontion was taken account according to the BBCH growth stage, as recommended by FOCOS (2011)

crop and scenario (Table 9.2.4.1- 2) as given by 130 COS (2000), crop interception was taken into
account according to the BBCH growth stage, as recommended by FOCOS (2001).
account according to the BBC11 growth stage, as 1550 inherided by 100 55 (2001).
Table 9.2.4.1-2: First application dates and related information for isoxaffotole accused for the
Table 9.2.4.1-2: First application dates and related information for soxaffetole accused for the 4
simulation runs
Individual cropy Single application dates and related information for isoxativole as used for the simulation runs Individual cropy Single application
Individual critical and Maize
Single application D S
Individual cropy Shrigle application Repeat Indexval for App. Events Every year
Individual cropy Single application Repeat Interval for App. Events Every year
Individual cropy Single application Repeat Interval for App. Events Application Technique Spray
Absolute / Relative of Absolute /
Scenario Vist App. Date
The May be the second of the s
1st Mayo 5th May 5th M
Sim May 27
5th Way 5th May 5th May 5th May 5th May 5th Mag
5 th May 25 th May 15th May
1st May 7th March 20 April
April 20 April

modelling of isoxaflutole and its metabolites are summarised in Further input parame **Table 9.2.4.1**

Table 9.2.7 3: Substance specific and model related input parameter for PECgw calculation of isoxaflutole and its metabolites.

\mathcal{A}	Parameter 2	,	. Onit	Aso xaflutole	RPA 202248	RPA 203328
´ [Molar mass	, ([g/mol]	ູ©໌ 359	359	268
	Water solubility (20)。C%	[mg/L]	6.2	22660	110000
	Vapour Pressure (2	0 (C)	[Y el]	[*] 3.22E-07	0	0
	Freandlich Exponen	at s	U[-] √0	0.935	0.876	0.649
	Plant uptake factor		ř[-]	0.0	0.5	0.5
√	D T ₅₀ (20° C) (1	Ø	[days]	0.9	15.5	11.4
Ÿ	K_{oc}		[mL/g]	79.8	34.9	1.17
ñ	K. A.	,	[mL/g]	46.3	20.2	0.68

Findings: PEC_{gw} were evaluated as the 80th percentile of the mean annual leachate concentration at 1 m soil depth. PECgw values for isoxaflutole and its metabolites RPA 202248 and RPA 20332 given in the following tables.

Table 9.2.4.1-4: Maize: PECgw (PEARL and PELMO) of isoxaflutole and its metabolites RPA RPA 203328 $(1 \times 100 \text{ g a.s./ha})$

	Igovot	flutala	DD 🗘	202248	RPA 2	203328
		Isoxaflutole				203328 @
	PEARL	PELMO	PEARL	PEL M	PEARW	PELMO
FOCUS Scenario	PEC_{gw}	PECgw	PE Cgw	PECgw	PE gw	PEO _{gw}
	[µg/L]	[µg/L]	[µg/L]	[jug/L] & °	[ng/L] &	
	< 0.001	< 0.001	© 0.004	→ 0.001 ©	%.200 O	_\$0.084&°
	< 0.001	<0.001 《	0.02	\$\frac{1}{2} 0.00\$	1.00	0.329
	< 0.001	<0.001	Ø, ® 13 💍	1 1 1 1 1 1 1 1 1 1	* 00 3 95 L	0.328
	< 0.001	<0.001	, ©0.036 ©	©.033 ₄	_€ 0.573 [©]	Ø.497
	< 0.001	< 0.001	\sim 0.00 7	© 0.010 °C	© 0.0 % 4	0.11
	< 0.001	<0.0001 (**	y 0,001 %	y 0,001 «	, 0 ,5 30	0.620
	< 0.001	6 0:001 &	, 49 .001, \$	7 0.001	& .001 <i>Q</i> i	€0.001
	< 0.001	√<0.001°	<0.001	~~<0.00°	© 0.023°	°√0.009

Conclusion: There are no concerns for ground vater from the active substance is oxaflutole and its metabolite RPA 202248 in accordance with the use pattern for the current formulation. For the nonrelevant metabolite RPA 20328, the result of the simulations showed a maximum concentration of $1.0 \ \mu g \cdot L^{-1}$.

The metabolite RPA 203328 is not biologically active and has been declared non-relevant during the European review process for Annex I inclusion. The non-relevance of RPA 203328 according to rasoned or: Sanco/221/2000-rev.10 is also described in Document N4 of this submission and supported by on the residue definition in plants.

¹ Reasoned opinion of EFSA prepared by the Pesticides Unit (PRAPeR) on the modification of the residue definition for isoxaflutole. EFSA Scientific Report (2009) 323, 1-26

CP 9.2.5 Estimation of concentrations in surface water and sediment

New calculations were performed, to reflect findings from new studies presented in the wrive substance dossier, section 7 "Fate and behavior in the environment". In addition these calculations consider the most recent guidance documents for exposure calculations.

Calculations of predicted environmental concentrations in surface water (PEC_{sw}) are presented below.

Endpoints for PEC_{sw}

Table 9.2.5- 1: Modelling input parameters for isoxaflutole and its metabolites

Isoxaflutole :	
Endpoint	Value used for modelling O' & O'
isoxaflutole	
Aqueous solubility [mg/L]	
Vapour pressure [Pa]	3.22 × 10 (20°C)
DT ₅₀ soil [days]	3.22 × 10° (20°C)
K _{oc} [L/kg]	\mathbf{A}
1/n Q	
DT ₅₀ total system [days]	
DT_{50} water [days]	936C U 3
DT ₅₀ sediment [days]	9.36/1000 ^{F, D}
RPA 202248	
Aqueous solubility [mg/L]	
DT ₅₀ soil [days]	\$\frac{15.5}{2} \times \frac{1}{2}
(geo mean laboratory)	
	34(9 E 27
1 1/n	© 3 3 0.876 E ♥
Maximum in soil	√ √ √ 100 €
Formation fraction	
DT ₅₀ total system [days]	100 0 100 0 10
	237 237 2237
DT ₅₀ sediment [days] Maximum in water/sediment [%]	237/1000 ^D
Maximum in water/sediment [%]	0 70.3
RPA 203328	
Maximum in water/sediment [%] RPA 203328 Aqueous solubility mg/L DT ₅₀ soil [days] (geo-mean laboratory) K _{oc} [L/kg] 1/n	¥
Aqueous solubility fing/L DT ₅₀ soil [days] (geo-mean lab gratory)	110000
(geo-mean laboratory)	
K _{oc} [L/kg]	
1/n Maximum in soil [%]	Y .Q
Maximus in soil [%]	62.0
Maximum in water/sediment [%]	10.8
Formation fraction	62.0 10.8 n.a.
DT ₅₀ total system [days]	1000
DT ₅₀ water [days]	Q ^y 1000
DT ₅₀ sediment days	1000
RPA 205884	
Aqueous folubility [mg/L]	29
DT ₅₀ sort day	1000 (worst-case)
Maximum in soil [%] Maximum in water/sediment [%] Formation fraction DT ₅₀ total system [days] DT ₅₀ water [days] DT ₅₀ sedimen [days] RPA 205834 Aqueous olubility [mg/L] DT ₅₀ son [days] Maximum in soil [%]	0 (default)
	-
Maximum in soil [%]	
Maximum in water [%]	-
Maximum in total system [%]	26.4
Formation fraction	n.a.

Isoxaflutole :		0
Endpoint	Value used for modelling	W.
DT ₅₀ water [days]	76.2 ^C	
DT ₅₀ sediment [days]	76.2 °	
DT ₅₀ total system [days]	76.2 °	

- A Geometric mean of normalized field DT₅₀ from aerobic soils (2013, M-464596-01-1)
- ^B Arithmetic mean K_{OC} from a range of 4 soils and 1 sediment
- ^C Geometric mean, degradation DT₅₀
- ^D 1000 days used for Step 3 calculations
- E Arithmetic mean K_{OC} and Freundlich exponent from a range of 13 soils (Scluding sediment
- F Arithmetic mean K_{OC} from a range of 3 soils
- n.a. not assessed

PEC_{sw} modelling approach

Calculation of PEC values for the active substances according to FOCUS

FOCUS_{sw} is a four step tiered approach

Step 1: In this, the most conservative step all inputs are considered as a single loading to the water body and a worst-case PEC_{sw} and PEC_{sw} is calculated.

Step 2: A refinement is made whereby individual loading into the water body from different entry routes are considered. Scenarios are also considered for Northern and Southern Europe separately but no specific crop scenarios are defined.

Step 3: An exposure assessment using realistic worst-case scenarios is made. The scenarios are representative of agricultural conclusions in Europe and consider weather, soil, crop and different water-bodies. Simplations use the models PRZM, MAPRO and TOXSWA.

Step 4: PEC values are refined by considering mitigation measure. For specific scenario descriptions on a case-by-case basis.

Predicted environmental concentrations in surface water (PECsw) and sediment (PECsed)

PECsw and PECsed for soxaffatole and metabolites

For isoxaflutore, the metabolites TVA 202248, BVA 203328 and RPA 205834 were assessed.

Report	4; ;2013;M-469717-01	
Title	Predicted Environmental Concentrations in Surface Water (PE	
1	PLAC sed) for Isoxaflutolo and its metabolites RPA 202248, RPA	A 205834 and
	RPA 203328, Following Application to Maize at 100 g/ha	
Document No.	Å-46€ 17-0₺ (VC/13/007K)	
Guideline	FOSUS 2003, SAO CO/4802/2001 rev 2	
O F	ÖČUS, 2007, SANCO/10422/2005 v. 2.0	
GLP:	Jo (calculation)	

Materials and Methods: Predicted environmental concentrations in surface water and sediment (PEC_{sv} and PEC_{sed}) of isoxaflutole and its metabolites RPA 202248, RPA 203328 and RPA 205834 have been calculated for the use in maize in Europe.

At FOCUS Step 2 the application period was set to March to May. Details of the parameters used in the calculations are summarised in Table 9.2.5-2.

Table 9.2.5- 2: Comparison of actual and calculated use pattern (for FOCUS step &2)

	FOCUS Crop Used for	Application				Amount Reaching
Individual Crop		Rate per Season	Interval	Plant Interception	≪Growth ∀ Stage	the Soil per Season
•	Interception	[g a.s./ha]	[days]	[%] Q	BBCH	[g a.s./hay
Maize, GAP and simulation identical	maize	1× 100		0.0,	· 00-13	100

At FOCUS step 3, actual application dates were determined by the PAT pesticite application timer) included within SWASH. Details of the parameters used in the calculations are summarised below.

Table 9.2.5-3: Application dates of isosaflutaje for the FOCUS Step Scalculations

			6.8	~~	V	\sim	0	
I	Parameter	Ź,		pp. Date 1st April 6 April	Maiz 1 x 100 Absolu	e §		ate
F	PAT start date					Q	- O	
r	el./absolute	&, "	Š	4 0	Absøl	eite 🦠		
	Annl meth@d			" '	ground s	pray		
(appl. type)	, b			& AM	2)	& '	
1	appl. type)		<i>w</i> .	S L) 1C)′ ×		1
F	appl. type) No of appl. PAT window rang Appl. interval Application				3 0	4	<i>\\</i>	
	Appl. interval	<u> </u>			24 I	<u> </u>	3	
	Application Details		A.	S S		P	Γ Start D Oth April 6th April	ate
(1)	Det@s 203 04 05	j at	» Öź	1 st April 6 th April ×		7 2	0 th April	
	D4 , 6		2 0 2	6'©Äpril ¥) 2	6 th April	-
	O5 ₄		O 2	6 April 6 April 6 April 6 April 6 April	A	2	6 th April	
I I V I			<u> </u>	5 th April 9th April 7th April	Ò		9 th April	
Q.F	R1		~ 1	9#April @	8	2	6 th April	
, ~Q <u>F</u>	R2 0 4			7th April		2	2 nd April	
E E	R3		* <u>~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~</u>	7 th April		2	2 nd April	l
E L	R4		№ 27	March			7 th April	
4				7				
Compound spe	fic input date ar	e summa	arisêd b	elow for	(Table 9	.2.5- 4).	
Compound spec								

Table 9.2.5-4: Substance parameters used for isoxaflutole and its metabolites

Parameter	Unit	Isoxaflutole	RPA 202248	RPA 203328	RPA 205834
Molar Mass	g/mol	359	359	268	361
Water Solubility	mg/L	6.2	22660	110000	29
Vapour Pressure	Pa	3.22e-7	-	- , "	
Q_{10}	-	2.58	-	J-A	- 9 8 4
Koc	mL/g	79.8	₹ .9	L .17	1000
Degradation			T.	l Øʻ	
Soil	days	0.9	15.5	_6¥11.4	
Total System	days	0.36	ຶ້ 237	√ 1000 g	0 76.2 P
Water	days	0.36	237	№ 199 00 💍	76 .2
Sediment	days	0.36/1000	237/1000*	, \$\tilde{\pi}\)	76.2 76.2 76.2 76.2
Max Occurrence		4 .			
Water / Sediment	%		7,003 S	1008	25.4
Soil	%	L3 - 2	#00 D	© 2.0	

^{* 1000} days used for Step 3 calculations

Findings:

Step 1 and 2: The maximum PEC values for Stops 1 and 2 are given in the Pables Selow.

Table 9.2.5- 5: Maximum PECsw and PECsd values for isoxalutole and its metabolites at Step 1& 2

Use pattern FOCUS		₩		RPA	2022	V 0	03328	RPA 2	205834
II ce nattern	scenario	PCsw [µg/L]	PEC [μg/kg]	PICEsw [hrg/L]	∠PECsed○ D [μg/kg]	PEC _{sw} [μg/L]	PEC _{sed} [μg/kg]	PECsw [μg/L]	PEC _{sed} [μg/kg]
	Step Step	⊃″31.0 5 5″		32.50		15.48 ×	0.18	1.02	0.00
1× 100 g a.s./ha	SEU Single SEU Single	©.92 0.92	0.2 % 0.44	\$ 95 \$\display\1.27	2.07 3.92	249 4.91	0.03 0.06	0.39 0.54	$0.00 \\ 0.00$

Step 3: The maximum PECs of values for relevant FOCUS Step 3 scenarios are given in the tables below. Time dependent PEC values on the risk assessment.

Table 9.2.5-6: Maximum PEC_{sw} and PEC_{sed} of isoxaflutole and RPA 202248 for all scenarios at Step 3 following application to maize (1 × 100 g a.s./ha)

		of isoxaflutole and e (1 × 100 g a.s./ha		all scenarios at Step 3
Compound	Isoxai	flutole	RPA 2	202248
FOCUS scenario	PECsw	PECsed	PEC _{sw}	PEC _{sed}
	[µg/L]	[µg/kg]	[μg/L] 🕰	[μg/kg] [©] [©] [©]
D3 (ditch)	0.524	0.074	0.335	0.057
D4 (pond)	0.021	0.005	0.0	0.016 0.0154 0.054
D4 (stream)	0.442	0.018	0r.P1Ž	\$ 0.016\text{Q} \ \text{\$\infty} \ \text
D5 (pond)	0.021	0.004	·Q.023	\$\tag{0.054}\text{\text{\$\tilde{O}\$}}\text{\$\text{\$\tilde{O}\$}\$}\text{\$\text{\$\text{\$\tilde{O}\$}\$}}\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\}\$}}}}\$}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
D5 (stream)	0.446	Ø.011	~ 0.00 ©	Q.Q15 Q Q
D6 (ditch)	0.524	(0.064)°	° 0,363 °	(a).129~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
R1 (pond)	0.021	0'0,0 6 4 &	/ % 022	0.039
R1 (stream)	0.363	, © 029 ©	Q1.688	O.P6 & 6
R2 (stream)	0.482	0.022	D 1.468 ~	40 .216
R3 (stream)	0.513	(L) 0. 05 4	Ø:061 👋 🗀	0.00 ©
R4 (stream)	0.362	× 0.043 2	4.208	S 0.690 Q

Step 4: The maximum PEC and PEC sed values for isoxaflutole for relevant FOCUS step 4 scenarios and different buffer zones are given in the tables below. Time-weighted average concentrations (7d-TWA_{sw}) are included in this summary, because they were used in the risk assessment (for 5 m buffer only).

Maximum PEC and 7d-TWA values and PC csed of isoxatotole for all scenarios at Step **Table 9.2.5-7:** of following application to maine (1 × 100 g.a.s./ha) at different buffer zones

Compound			Asoxaflutole T	S *	
FOCUS scenario	PECsw	PEC se	76 TWAR	PEC _{sw}	PEC _{sed}
	ຶ່ [μ g (Ψ]	O [μg/kg]	🍇 [μg/🏝]	[µg/L]	[µg/kg]
Buffer 5		, Sm		10)m
D3 (ditch)	0.172	0.0250	Ã.0170	0.091	0.013
D4 (pond)	0:019	0.003	0.0056	0.014	0.003
(stream)	3 .186	~0,0 08 &	0.00203	0.099	0.004
D5 (pond)	Q0.019	©0.004°	0.000077	0.014	0.003
D5 (stream)	Q.1888	Ů 0.0 03	0.00121	0.100	0.003
D6 (ditch)	. 172 ~ ~	g00022	0.000212	0.091	0.013
R1 (poled)	0.019	Õ.004	0.00210	0.014	0.003
R1 Otream	0.1 5 3	_U 0.012	0.00395	0.081	0.010
RC (stream)	2 03 ° ♀	0.009	0.00259	0.107	0.005
R3 (stream)	©0.216	0.023	0.00992	0.114	0.013
R4 Stream	0.182	0.041	0.0194	0.182	0.040
a woorst-case d-TWA	values				

... rate of degradation in air and transport via air
... on on route and rate of degradation in air and transport via air please refer to MCA 20
... on 7, points 7.3.1 and 7.3.2.

CP 9.4 Estimation of concentrations for other routes of exposure.

There are no other routes of exposure if the product is its elegated agricultural practice.