Leaky Integrate-and-Fire, Rate Neurons

SEMT30003/4

This lecture covers:

- ► Leaky Integrate and Fire (LIF)
- Rate Neurons

Learning goals:

- What simplifications does the Leaky Integrate and Fire (LIF) model make?
- How to solve for the firing firing rate of a model LIF neuron given constant current?
- Connect the f-I curve to the idea of a rate neuron (rate coding)

Building on:

First-order ordinary differential equations

Membrane voltage dynamics

Building up to:

Visual system (+ rate neuron models)

Hodgkin Huxley model of the action potential

Topics in Computer Science Final exam question

Modelling Scales

Physiological, Quantitative

Biological Realism, Data needed to identify parameters

. Chemistry Biochemistry

Conductance Models:

Hodgkin–Huxley

Leaky Integrate and Fire:

► Simplify, fake the spikes

Rate Neurons:

Average rate of spikes only

Neural Mass/Field Models Cognitive Neuroscience

:

Phenomenological, Qualitative BLANK PAGE FOR NOTES UNUSED

Full Conductance Model e.g. Hodgkin-Huxley

Leaky Integrate-and-Fire (LIF)

Departs from physiology, but sufficient to build intuition Easy to integrate

Leaky Integrate-and-Fire (LIF)

LIF model:
$$\sqrt[C\dot{v}]{} = \frac{1}{R}(v_{\rm r} - v) + I$$
 if $v(t) > v_{\theta}$ then

MISTAKE: EQUILBRIUM (RESTING) $v(t) \leftarrow v_r$ POTENTIAL NEED NOT BE SAME AS RESET v_r , Emit a spike < SAME TOR SIMPLEITY. SMOWID RAD "E." SHOWID RAD "E."

v(t): membrane voltage

 $v_{\vartheta} \colon$ Threshold (spike when $v(t) > v_{\vartheta})$

 v_r : Reset voltage $(v(t) \leftarrow v_r \text{ after spike})$

R: Membrane resistance

C: Membrane capacitance

I: Current through the membrane

ASIDE (NOT IN COURSE NOTES)

- there are money models that simply voltage dynamics & "fake" the spike
- LIF not necessarily always "most" natural
- Exponential Integrate & Fire
- Zhi kuich Neuron
- Quadratic Integrate X Fine
- Multi (timescale) Quadratte Integrate & Fine

QIF STATE ABSTACT, NOT QUITE VOLTAGE

 $\chi(t) = \sqrt{1 \cdot t} \cdot \tan\left(c_0 + \sqrt{1 \cdot t}\right)$ (constant from initial condition)
IF SPIKES,
"BLOWS UP"N FINITE TIME

ο () π

"f–I" curve

- ▶ F-I curve maps applied current "I" \rightarrow spiking frequency "F"
- ► Shown today in the case of the Leaky Integrate-and-Fire (LIF) neuron

$$C\dot{v} = \frac{1}{R}(v_{\rm r} - v) + I$$

if $v(t) > v_{\vartheta}$ then $v(t) \leftarrow v_{\mathrm{r}}$ and emit a spike

Q: Solve for the spiking frequency f as a function of applied current I in the LIF model

$$C\dot{v} = \frac{1}{R}(v_{\rm r}-v) + I$$
 if $v(t) > v_{\vartheta}$ then $v(t) \leftarrow v_{\rm r}$ and emit a spike

Membrane voltage ODE:

ane voltage ODE: Find time
$$I$$

$$C\dot{v} = \frac{1}{R}(v_{\rm r} - v) + I$$

$$C\dot{v} = \frac{1}{R}(v_{\rm r} - v) + I$$

$$C\dot{v} = v_{\rm r} + I R - v$$
threshold v_{θ}

Find time T where voltage reaches

$$\frac{RC}{\tau}\dot{v} = \underbrace{v_{r} + IR}_{v_{\infty}} -$$

$$\tau\dot{v} = v_{\infty} - v$$

Spikes if $v_{\infty} \geq v_{\beta}$

 $v(\tau) = v_{\theta} \qquad e^{-T/\tau}S = \frac{v_{\infty} - v_{\theta}}{IR} \qquad \text{gov can add fixed} \qquad \text{absolute acfordator} \qquad \text{that here if you like}$ First-order ODE solution:

$$T = \tau \ln \left(\frac{IR}{v_{\infty} - v_{\vartheta}} \right) + T_{\text{ABS. ROPEACT}}$$

$$\underbrace{v(T)}_{v_{\vartheta}} = v_{\infty} + e^{-T/\tau} \underbrace{(v(0)}_{v_{\Gamma}} - v_{\infty})$$

Frequency is reciprocal of period $f = \frac{1}{T}$

What if we only care about the average number of spikes per unit time? Do we need to model spikes at all?

Rate Coding

- ▶ Only average # of spikes matters (over time and/or population).
- ▶ Exact timing of each spike is not used to encode information.

OK \approx for signals that change slowly (e.g. musculoskeletal dynamics low-pass filter spikes from $\alpha\text{-motor}$ neurons) or information represented in average population activity of many neurons.

Nice math: Continuously varying rates are differentiable: Calculus, ODEs, etc.

Nice machine learning: Differentiable nonlinearity emits "rate" rather than $\{0,1\}$

Rate Coding

- ▶ Only average # of spikes matters (over time and/or population).
- ▶ Exact timing of each spike is not used to encode information.

NOT rate coding:

- ▶ Phase code: Spike time relative to rhythmic activity carries information
- Timing code: Medial superior olive (or in owls: "nucleus laminaris") detects 10–700 μs Δt in sound arrival at left/right ears.
- ightharpoonup Anything that models single spikes or restricts neuronal outputs to $\{0,1\}$

IT ONLY SPIKE RATE MATTERS
SIMPLER TO TREAT NEURON AS
BLACK BOX FUNCTION FROM
ACTUATION -> RATE (FREQUENCY)

Exam

Leaky Integrate and Fire (LIF)

What physical phenomena do R, C, v(t), I, τ , $v_{\rm threshold}$, $v_{\rm reset}$ approximate?

Determine whether neuron will cross threshold for a given input —

What is the minimum current I_0 to elicit a spike? —

Solve the voltage equation forward in time from some initial condition —

F-I Curve

Solve for the spiking frequency f as a function of applied current I

What current I elicits spiking frequency f? —

How does the F-I curve change when R, C, I, v_{ϑ} , $v_{\rm r}$ increase/decrease?

Rate coding

What is rate coding; its pros/cons; what information does it capture/ignore? Are models that average over *populations* of neurons still rate coding? State example (from biology) where rate coding is a good/bad approximation.