ONE PARAMETER MODELS CONT'D

DR. OLANREWAJU MICHAEL AKANDE

JAN 17, 2020

ANNOUNCEMENTS

- Tentative dates for quizzes:
 - Quiz I: Wed, Feb 12
 - Quiz II: Wed, Apr 1
- Homework 1 now online, due Thursday, Jan 23.
- My office hours are confirmed:
 - Wed 9:00 10:00am and Thur 11:45 12:45pm
- No lab on Monday; MLK day.
- Occasional short (timed) "participation" quizzes from next week.
 - Will usually be available on Sakai under "Tests & Quizzes"
 - Must take at the beginning of class if present
 - Must take between 11:45am and 1:00pm if absent

OUTLINE

- Beta-binomial (cont'd)
 - Example
 - Cautionary tale: parameters at the boundary
 - Marginal likelihood
 - Posterior prediction
 - Truncated priors
- Introduction to the Poisson-Gamma model
 - Recap of the distributions
 - Conjugacy

BETA-BINOMIAL CONT'D

BETA-BINOMIAL RECAP

Binomial likelihood:

$$L(y; heta) = inom{n}{y} heta^y (1- heta)^{n-y}$$

+ Beta Prior:

$$\pi(heta) = rac{1}{B(a,b)} heta^{a-1} (1- heta)^{b-1} = \operatorname{Beta}(a,b)$$

⇒ Beta posterior:

$$\pi(heta|y)=rac{1}{B(a+y,b+n-y)} heta^{a+y-1}(1- heta)^{b+n-y-1}= ext{Beta}(a+y,b+n-y).$$

• Recall: for Beta(a, b),

$$\blacksquare \ \mathbb{E}[Y] = \frac{a}{a+b}$$

$$lacksquare \mathbb{V}[Y] = rac{ab}{(a+b)^2(a+b+1)}$$

- Step 1. State the question:
 - What is the prevalence of an infectious disease in a small city?
 - Why? High prevalence means more public health precautions are recommended.
- Step 2. Collect the data:
 - Suppose you collect a small random sample of 20 individuals.
- Step 3. Explore the data:
 - Count the number of infected individuals in the sample.
 - Let Y be the corresponding random variable.

- Step 4. Formulate and state a modeling framework:
 - lacktriangle Parameter of interest: heta is the fraction of infected individuals in the city.
 - lacksquare Sampling model: a reasonable model for Y can be $\mathrm{Bin}(20, heta)$

- Step 4. Formulate and state a modeling framework:
 - Prior specification: information from previous studies infection rate in "comparable cities" ranges from 0.05 to 0.20 with an average of 0.10. So maybe a standard deviation of roughly 0.05?
 - What is a good prior? The **expected value** of θ close to 0.10 and the **variance** close to 0.05.
 - Possible option: Beta(3.5, 31.5) or maybe even Beta(3, 32)?

- Step 4. Formulate and state a modeling framework:
 - Under Beta(3, 32), $Pr(\theta < 0.1) \approx 0.67$.
 - Posterior distribution for the model:

$$(\theta|Y=y) = \text{Beta}(a+y, b+n-y)$$

lacksquare Suppose Y=0. Then, $(heta|Y=y)=\mathrm{Beta}(3,32+20)$

- Step 5. Check your models:
 - Compare performance of posterior mean and posterior probability that $\theta < 0.1$. See pages 5 to 7 of the Hoff book (the section on sensitivity analysis).
 - Under Beta(3, 52),
 - $ightharpoonup \Pr(heta < 0.1 | Y = y) pprox 0.92.$ More confidence in low values of heta.
 - lacksquare For $\mathbb{E}(heta|Y=y)$, we have

$$\mathbb{E}(\theta|y) = \frac{a+y}{a+b+n} = \frac{3}{52} = 0.058.$$

■ Recall that the prior mean is a/(a+b)=0.09. Thus, we can see how that contributes to the prior mean.

$$\mathbb{E}(heta|y) = rac{a+b}{a+b+n} imes ext{prior mean} + rac{n}{a+b+n} imes ext{sample mean}$$
 $= rac{a+b}{a+b+n} imes rac{a}{a+b} + rac{n}{a+b+n} imes rac{y}{n}$
 $= rac{35}{52} imes rac{3}{35} + rac{20}{52} imes rac{0}{n} = rac{3}{52} = 0.058.$

- Step 6. Answer the question:
 - People with low prior expectations are generally at least 90% certain that the infection rate is below 0.10. Again, see pages 5 to 7 of the Hoff book.
 - $\pi(\theta|Y)$ is to the left of $\pi(\theta)$ because the observation Y=0 provides evidence of a low value of θ .
 - $\pi(\theta|Y)$ is more peaked than $\pi(\theta)$ because it combines information and so contains more information than $\pi(\theta)$ alone.
 - The posterior expectation is 0.058.
 - The posterior mode is 0.04.
 - Note, for Beta(a,b), the mode is $\frac{a-1}{a+b-2}$.
 - The posterior probability that $\theta < 0.1$ is 0.92.

CAUTIONARY TALE: PARAMETERS AT THE BOUNDARY

- Tuyl et al. (2008) discuss potential dangers of using priors that have a < 1 with data that are all 0's (or b < 1 with all 1's). They consider data on adverse reactions to a new radiological contrast agent.
- Let θ_N : probability of a bad reaction using the new agent.
- Current standard agent causes bad reactions about 15 times in 10000, so one might think 0.0015 is a good guess for θ_N .
- How do we choose a prior distribution?

- One might consider a variety of choices centered on 15/10000 = 0.0015:
 - Prior 1: Beta(1,666) (mean 0.0015; 1 prior bad reaction in 667 administrations)
 - Prior 2: Beta(0.05,33.33) (mean 0.0015; 0.05 prior bad reactions in 33.38 administrations)
 - Prior 3: Beta(1.6, 407.4) (mode 0.0015; 409 prior administrations)
 - Prior 4: Beta(1.05, 497) (median 0.0015; 498.05 prior administrations)
- Does it matter which one we choose?

- Let's take a closer look at properties of these four prior distributions, concentrating on the probability that $\theta_N < 0.0015$.
- That is, new agent not more dangerous than old agent.

	Be(1,666)	Be(0.05,33.33)	Be(1.6,407.4)	Be(1.05,497)
Prior prob	0.632	0.882	0.222	0.500
Post prob (0 events)	0.683	0.939	0.289	0.568
Post prob (1 event)	0.319	0.162	0.074	0.213

- Suppose we have a single arm study of 100 subjects.
- Consider the two most likely potential outcomes:
 - 0 adverse outcomes observed
 - 1 adverse outcome observed

PROBLEMS WITH THE PRIORS

- After just 100 trials with no bad reactions, the low weight (33.38 prior observations) prior indicates one should be 94% sure the new agent is equally safe as (or safer than) the old one.
- The low weight prior largely assumes the conclusion we actually hope for (that the new agent is safer), thus it takes very little confirmatory data to reach that conclusion.
- Is this the behavior we want?
- Take home message: be very careful with priors that have a < 1 with data that are all 0's (or b < 1 with all 1's).
- Given that we know the adverse event rate should be small, we might try a restricted prior e.g. Unif(0,0.1).
- In all cases, how many trials would we need, assuming no adverse reactions, to be 95% sure that the new agent is as safe as (or safer than) the old one? (Homework question!)

MARGINAL LIKELIHOOD

Recall that the marginal likelihood is

$$L(y) = \int L(y; \theta) p(\theta) d\theta.$$

- What is the marginal likelihood for the Beta-binomial?
- We have

$$egin{aligned} L(y) &= \int L(y; heta)p(heta)\mathrm{d} heta \ &= \int_0^1 inom{n}{y} heta^y (1- heta)^{n-y} rac{1}{B(a,b)} heta^{a-1} (1- heta)^{b-1} d heta \ &= inom{n}{y} rac{B(a+y,\,b+n-y)}{B(a,b)}, \end{aligned}$$

by the integral definition of the Beta function.

 Deriving the marginal likelihood for conjugate distributions is often relatively straightforward.

Posterior predictive distribution

- Let's go back to Bernoulli data. Suppose $y_i, \ldots, y_n \stackrel{iid}{\sim} \mathrm{Bernoulli}(\theta)$.
- We may wish to predict a new data point y_{n+1} .
- We can do so using the posterior predictive distribution $p(y_{n+1}|y_{1:n})$.
- Why are we not including the parameter in the posterior predictive distribution?
- Recall that we have conditional independence of the y's given θ .
- Generally,

$$egin{split} p(y_{n+1}|y_{1:n}) &= \int p(y_{n+1}, heta|y_{1:n})\,d heta \ &= \int p(y_{n+1}| heta,y_{1:n})p(heta|y_{1:n})\,d heta \ &= \int p(y_{n+1}| heta)p(heta|y_{1:n})\,d heta. \end{split}$$

Posterior predictive distribution

- When we talk about the posterior predictive distribution for Bernoulli data, we are really referring to $p(y_{n+1} = 1|y_{1:n})$ and $p(y_{n+1} = 0|y_{1:n})$.
- Then,

$$p(y_{n+1}=1|y_{1:n}) = \int p(y_{n+1}=1| heta) p(heta|y_{1:n}) \, d heta \ = \ldots \ = \ldots$$

which simplifies to what? In class!

- lacksquare What then is $p(y_{n+1}=0|y_{1:n})$?
- Posterior predictive pmf therefore takes the form

$$p(y_{n+1}|y_{1:n}) = rac{a_n^{y_{n+1}}b_n^{1-y_{n+1}}}{a_n+b_n}; \quad y_{n+1} = 0,1.$$

• What are a_n and b_n ?

PRIORS WITH RESTRICTED SUPPORT

- As we have seen, when dealing with rare events, we might expect the true proportion to be very small.
- In that case, we might want to try a restricted prior, e.g. Unif(0,0.1).
- Even when we don't have rare events, we might still desire truncation if we are certain the true proportion lies within (a, b) with 0 < a < b < 1.
- It is therefore often really useful to incorporate truncation.
- Let $\theta =$ probability of a randomly-selected student making an A in this course.
- You may want to rule out very low & very high values perhaps $\theta \in [0.35, 0.6]$ with probability one.
- How to choose a prior restricted to this interval?

UNIFORM PRIORS

- One possibility is to just choose a uniform prior.
- When the parameter θ is a probability, the typical uniform prior would correspond to beta(1,1).
- This is uniform on the entire (0,1) interval.
- However, we can just as easily choose a uniform prior on a narrower interval Unif(a,b) with 0 < a < b < 1.
- Perhaps not flexible enough.
- Would be nice if we could pick a flexible beta density and then truncate it to (a,b).

TRUNCATED RANDOM VARIABLES

- Suppose we have some arbitrary random variable $\theta \sim f$ with support Θ .
- For example, $\theta \sim \mathrm{Beta}(c,d)$ has support on (0,1).
- Then, we can modify the density $f(\theta)$ to have support on a sub-interval $[a,b] \in \Theta.$
- The density $f(\theta)$ truncated to [a,b] is

$$f_{[a,b]}(heta) = rac{f(heta)1[heta \in [a,b]]}{\int_a^b f(heta^\star) \mathrm{d} heta^\star},$$

with 1[A] being the indicator function that returns 1 if A is true & 0 otherwise.

TRUNCATED BETA DENSITY

- Suppose to characterize the prior probability of earning an A, you poll a sample of students from a former STA 602 course and find that 10 earned an A and 10 earned a B (or lower).
- Therefore, you go with a beta(10,10) prior truncated to [0.35, 0.6].
- In R we can calculate the truncated beta density at p via

```
p <- seq(0,1,length=1000)
f1 <- dbeta(p,10,10)
f2 <- dbeta(p,10,10)*as.numeric(p>0.35 & p<0.6)/(pbeta(0.6,10,10) - pbeta(0.3,10,10))
f3 <- dunif(p,0.35,.6)
plot(p,f2,type='l',col='green4',xlim=c(0,1),ylab='Density', xlab=expression(theta),
    ylim=c(0,6))
lines(p,f1,type='l',col='blue')
lines(p,f3,type='l',col='red4')
labels <- c("beta(10,10)", "truncated beta","unif(0.35,.6)")
legend("topright", inset=.05, labels, lwd=2, lty=c(1,1,1), col=c('blue4','green4','red</pre>
```


TRUNCATED BETA DENSITY

What would that look like?

TRUNCATED BETA DENSITY

The truncated density by itself would look like

Truncated beta

- How to sample truncated random variables?
- First start with the pdf for an untruncated distribution such as $heta \sim \mathrm{Beta}(c,d).$
- Suppose we then want to sample $\theta \sim \text{Beta}_{[a,b]}(c,d)$. How can we do that? One popular method is the inverse-cdf method.
- The inverse cdf is useful for generating random variables in general, especially for generating truncated random variables.
- lacksquare Suppose we have $heta \sim f$, for some arbitrary continuous density f.
- According to probability integral transform, for any continuous random variable θ , the random variable $U = F(\theta)$ has a Unif(0,1) distribution. Note that F is the cdf.
- Thus, to use the inverse-cdf method to sample $\theta \sim f$, first sample $u \sim \mathrm{Unif}(0,1)$, then set $\theta = F^{-1}(u)$.

- lacktriangle As an example, suppose we want to sample $heta \sim \mathrm{Beta}(c,d)$ through the inverse cdf method.
- Very easy. Just do the following in R.

```
u <- runif (1, 0, 1)
theta <- qbeta(u,c,d)
```

- That is, first sample from a uniform distribution.
- Then, transform it using the inverse cdf of the $\mathrm{Beta}(c,d)$ distribution.
- Viola!

- $lacksymbol{\blacksquare}$ Back to the original problem: how to sample $heta \sim \mathrm{Beta}_{[a,b]}(c,d)$?
- If we had the inverse cdf of Beta(c,d) truncated to [a,b], then we could use the inverse cdf method. Easy enough! Let's find that inverse cdf.
- Let f, F and F^{-1} denote the pdf, cdf and inverse-cdf without truncation and let A = [a, b].
- lacktriangle Recall that the density f(heta) truncated to [a,b] is

$$f_A(heta) = f_{[a,b]}(heta) = rac{f(heta)1[heta \in [a,b]]}{\int_a^b f(heta^\star) \mathrm{d} heta^\star} = rac{f(heta)1[heta \in [a,b]]}{F(b) - F(a)}.$$

Therefore, the truncated cdf

$$F_A(z) = \Pr[heta \leq z] = rac{F(z) - F(a)}{F(b) - F(a)}.$$

■ Not enough though. We need the truncated inverse cdf.

lacksquare To find the inverse cdf $F_A^{-1}(u)$, let $F_A(z)=u.$ That is, set

$$u=F_A(z)=rac{F(z)-F(a)}{F(b)-F(a)}$$

and solve for z as a function of u.

lacktriangle Re-expressing as a function of F(z),

$$F(z) = \{F(b) - F(a)\}u + F(a).$$

lacktriangle Applying the untruncated inverse cdf F^{-1} to both sides, we have

$$z = F^{-1}[\{F(b) - F(a)\}u + F(a)] = F_A^{-1}(u).$$

- We now have all the pieces to use the inverse-cdf method to sample $\theta \sim f_A$, that is, f truncated to A.
- First draw a Unif(0,1) random variable

```
u <- runif (1, 0, 1)
```

Next, apply the linear transformation:

$$u^{\star} = \{F(b) - F(a)\}u + F(a).$$

- Finally, plug u^\star into the untruncated cdf $\theta = F^{-1}(u^\star)$.
- lacktriangleq Note we can equivalently sample $u^\star \sim runif(1,F(a),F(b)).$

INTRO TO THE POISSON-GAMMA MODEL

Poisson distribution recap

- ullet $Y \sim \operatorname{Po}(heta)$ denotes that Y is a Poisson random variable.
- The Poisson distribution is commonly used to model count data consisting of the number of events in a given time interval.
- lacktriangle The Poisson distribution is parameterized by heta and the pmf is given by

$$\Pr[Y=y| heta] = rac{ heta^y e^{- heta}}{y!}; \quad y=0,1,2,\ldots; \quad heta>0.$$

Also,

$$\mathbb{E}[Y] = \mathbb{V}[Y] = \theta.$$

■ Suppose $y_i, \ldots, y_n \stackrel{iid}{\sim} \operatorname{Po}(\theta)$.

What is the best guess (MLE) for the Poisson parameter?

GAMMA DENSITY RECAP

- The gamma density will be useful as a prior for parameters that are strictly positive.
- If $heta \sim \operatorname{Ga}(a,b)$, we have the pdf

$$f(heta) = rac{b^a}{\Gamma(a)} heta^{a-1} e^{-b heta}.$$

Properties:

$$\mathbb{E}[heta] = rac{a}{b}; \ \mathbb{V}[heta] = rac{a}{b^2}.$$

POISSON-GAMMA MODEL

■ Generally, it turns out that if

```
• f(y_i; \theta): y_i, \ldots, y_n \overset{iid}{\sim} \operatorname{Po}(\theta), and
```

$$\blacksquare$$
 $\pi(\theta): \theta \sim \operatorname{Ga}(a,b)$,

then the posterior distribution is also a gamma distribution.

- Can we derive the posterior distribution and its parameters? Let's do some work on the board!
- Updating a gamma prior with a Poisson likelihood leads to a gamma posterior - we once again have conjugacy!
- Specifically, we have.

$$\pi(heta|\{y_i\}): heta|\{y_i\} \sim \mathrm{Ga}(a+\sum y_i, b+n).$$

This is the Poisson-Gamma model. We will dive deeper with examples next time.