Number of zero-xor subsets

You are given an integer N. Consider set $S=\{0,\ 1,\ldots,\ 2^N-1\}$. How many subsets $A\subset S$ with $\bigoplus_{x\in A}x=0$ (\oplus denotes xor operation) are there?

Print your answer modulo $(10^9 + 7)$.

Note that the xorsum of an empty set is zero!

Input Format

The first line contains one integer T, the number of testcases.

The next $oldsymbol{T}$ lines contain one integer $oldsymbol{N}$ each.

Output Format

Output T lines. Each line is one number, answer to the problem modulo $10^9 + 7$.

Constraints

 $1 \leq T \leq 10000$

 $1 \le N \le 10^{18}$

Sample Input

2 1 2

Sample Output

2 4

Explanation

For N=1 there are 2 sets - \varnothing and $\{0\}$.

For N=2 there are 4 sets - \emptyset , $\{0\}$, $\{1, 2, 3\}$, $\{0, 1, 2, 3\}$.