

Matrizes: Operações com matrizes, matriz identidade

Resumo

Adição de matrizes

Vamos considerar duas Matrizes A e B do mesmo tipo (ou seja a soma de duas matrizes só ocorre se elas tiverem o mesmo número de linhas e colunas em comum). Denominamos matriz soma de A e B à matriz C=A+B, do mesmo tipo que A e B de tal forma que cada um de seus elementos é igual a soma dos elementos correspondentes de A e B.

Ex:

$$\begin{pmatrix}
1 & 5 \\
4 & 3 \\
0 & 2
\end{pmatrix} + \begin{pmatrix}
0 & -1 \\
2 & 2 \\
5 & 3
\end{pmatrix} = \begin{pmatrix}
1 & 4 \\
6 & 5 \\
5 & 5
\end{pmatrix}$$

Os elementos a soma é correspondente ou seja o termo c11=a11+b11-> c11=1+0 ->c11=1, e assim por diante.

Subtração de matrizes

Considere duas matrizes A e B do tipo (mxn) a maneira é similar da soma, subtrai-se termo por termo correspondente:

Ex:

$$\begin{pmatrix} 3 & 8 \\ 4 & 2 \end{pmatrix} - \begin{pmatrix} 8 & 2 \\ 3 & 0 \end{pmatrix} = \begin{pmatrix} -5 & 6 \\ 1 & 2 \end{pmatrix}$$

Multiplicação de matrizes

• Multiplicação de um número real por uma matriz: Considere um número real k. Multiplicar este número real por uma matriz qualquer é simplesmente multiplicar todos os elementos dessa matriz por esse número k.

$$3 \times \left(\begin{array}{cccc} 3 & 8 & 12 \\ 4 & 2 & -7 \\ 15 & -45 & 20 \end{array}\right) = \left(\begin{array}{cccc} 9 & 24 & 36 \\ 12 & 6 & -21 \\ 45 & -135 & 60 \end{array}\right)$$

Multiplicação de matrizes

- Condição para existência do produto: A m x n . B n x p = C m x p de A deve ser igual ao de linhas de B, se isso acontecer, resulta-se uma matriz C com o número de linhas de A e colunas de B.
- Multiplicação: Linhas da primeira matriz são multiplicados por colunas da matriz segundo

Ex 1:

$$\begin{pmatrix} 0 & 2 \\ 8 & 2 \end{pmatrix} \times \begin{pmatrix} 3 & 1 \\ 5 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 2 \\ 8 & 2 \end{pmatrix} \times \begin{pmatrix} 3 & 1 \\ 5 & 4 \end{pmatrix} = \begin{pmatrix} 0 \times 3 + 2 \times 5 & 0 \times 1 + 2 \times 4 \\ 8 \times 3 + 2 \times 5 & 8 \times 1 + 2 \times 4 \end{pmatrix} = \begin{pmatrix} 10 & 8 \\ 34 & 16 \end{pmatrix}$$

Ex 2:

$$\begin{pmatrix} 0 & 2 & 1 \\ 6 & 5 & 2 \\ 4 & 2 & 5 \end{pmatrix} \times \begin{pmatrix} -2 & 1 & 0 \\ 8 & 4 & 1 \\ 2 & 7 & -1 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 2 & 1 \\ 6 & 5 & 2 \\ 4 & 2 & 5 \end{pmatrix} \times \begin{pmatrix} -2 & 1 & 0 \\ 8 & 4 & 1 \\ 2 & 7 & -1 \end{pmatrix} = \begin{pmatrix} 0 \times (-2) + 2 \times 8 + 1 \times 2 & 0 \times 1 + 2 \times 4 + 1 \times 7 & 0 \times 0 + 2 \times 1 + 1 \times (-1) \\ 6 \times (-2) + 5 \times 8 + 2 \times 2 & 6 \times 1 + 5 \times 4 + 2 \times 7 & 6 \times 0 + 5 \times 1 + 2 \times (-1) \\ 4 \times (-2) + 2 \times 8 + 5 \times 2 & 4 \times 1 + 2 \times 4 + 5 \times 7 & 4 \times 0 + 2 \times 1 + 5 \times (-1) \end{pmatrix} = \begin{pmatrix} 18 & 15 & 1 \\ 32 & 40 & 3 \\ 18 & 47 & -3 \end{pmatrix}$$

Igualdade entre as matrizes

Quando as matrizes tem o mesmo tipo como A= $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$ e B= $\begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{bmatrix}$ dizemos que se A=B ou seja

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{bmatrix}, \text{ então } a_{11} = b_{11}, a_{12} = b_{12}, a_{21} = b_{21} \text{ etc. Em outras palavras, se existe a}$$

igualdade entre as matrizes, então os elementos nas mesmas posições são iguais.

Matriz identidade

A matriz identidade é uma matriz quadrada de ordem n, em que todos os elementos da diagonal principal são iguais a 1 e os outros elementos são iguais a 0. O símbolo é I_n . Uma outra forma de representar a matriz

identidade é pela lei de formação
$$a_{ij} \begin{cases} 1, \text{ se } i = j \\ 0, \text{ se } i \neq j \end{cases}$$

Exemplos:

$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad I_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Exercícios

- **1.** Sejam a e b números reais tais que a matriz $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ satisfaz a equação $A^2 = aA + bI$, em que I é a matriz identidade de ordem 2. Logo, o produto ab é igual a
 - **a)** -2.
 - **b)** -1.
 - **c)** 1.
 - **d)** 2.
- 2. Uma matriz B possui i linhas e j colunas e seus elementos são obtidos a partir da expressão bij = i 2j. Seja uma matriz A =(aij)2x3cujos elementos da primeira coluna são nulos e I₂ a matriz identidade de ordem 2, tal que AB =I₂. O valor numérico do maior elemento da matriz A é igual a
 - **a)** 0
 - **b)** 1
 - **c)** 2
 - **d)** 3
- Uma matriz A de ordem 2 transmite uma palavra de 4 letras em que cada elemento da matriz representa uma letra do alfabeto. A fim de dificultar a leitura da palavra, por se tratar de informação secreta, a matriz A é multiplicada pela matriz B = $\begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix}$ obtendo-se a matriz codificada B.A. Sabendo que a

matriz B.A é igual a $\begin{bmatrix} -10 & 27 \\ 21 & -39 \end{bmatrix}$, podemos afirmar que a soma dos elementos da matriz A é:

- **a)** 48
- **b)** 46
- **c)** 47
- **d)** 49
- **e)** 50

- **4.** Sendo a um número real, considere a matriz $\begin{pmatrix} 1 & a \\ 0 & -1 \end{pmatrix}$. Então A^{2017} é igual a:
 - a) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
 - **b)** $\begin{pmatrix} 1 & a \\ 0 & -1 \end{pmatrix}$
 - c) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
 - d) $\begin{pmatrix} 1 & a^{2017} \\ 0 & 1 \end{pmatrix}$
- **5.** Para combater a subnutrição infantil, foi desenvolvida uma mistura alimentícia composta por três tipos de suplementos alimentares: I, II e III. Esses suplementos, por sua vez, contêm diferentes concentrações de três nutrientes: A, B e C. Observe as tabelas a seguir, que indicam a concentração de nutrientes nos suplementos e a porcentagem de suplementos na mistura, respectivamente.

Nutriente	Concentração dos Suplementos Alimentares (g/kg)			
	I	II	III	
A	0,2	0,5	0,4	
В	0,3	0,4	0,1	
С	0,1	0,4	0,5	

Suplemento Alimentar	Quantidade na Mistura (%)	
I	45	
II	25	
III	30	

A quantidade do nutriente C, em g/kg, encontrada na mistura alimentícia é igual a:

- **a)** 0,235
- **b)** 0,265
- **c)** 0,275
- **d)** 0,295

- 6. Tatiana e Tiago comunicam-se entre si por meio de um código próprio dado pela resolução do produto entre as matrizes A e B, ambas de ordem 2×2 ,onde cada letra do alfabeto corresponde a um número, isto é, a=1,b=2,c= 3,z=26. Por exemplo, se a resolução de A.B for igual a $\begin{bmatrix} 1 & 13 \\ 15 & 18 \end{bmatrix}$, logo a mensagem recebida é amor. Dessa forma, se a mensagem recebida por Tatiana foi flor e a matriz $B = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}$,
 - então a matriz A é:

$$\mathbf{a)} \begin{bmatrix} -8 & 7 \\ -8 & 10 \end{bmatrix}$$

$$\mathbf{b)} \begin{bmatrix} -6 & 6 \\ -7 & 11 \end{bmatrix}$$

c)
$$\begin{bmatrix} -8 & 5 \\ -7 & 11 \end{bmatrix}$$

$$\mathbf{d}) \begin{bmatrix} -6 & -7 \\ 6 & 11 \end{bmatrix}$$

- 7. Considere a seguinte operação entre as matrizes: $\begin{pmatrix} 6 & 2 \\ 4 & 3 \end{pmatrix}$. K = $\begin{pmatrix} -6 \\ 1 \end{pmatrix}$. A soma de todos os elementos da matriz K é:
 - **a)** 1
 - **b)** 3
 - **c)** 4
 - **d)** 7

8. Um criador de cães observou que as rações das marcas A, B, C e D contêm diferentes quantidades de três nutrientes, medidos em miligramas por quilograma, como indicado na primeira matriz abaixo. O criador decidiu misturar os quatro tipos de ração para proporcionar um alimento adequado para seus cães. A segunda matriz abaixo dá os percentuais de cada tipo de ração nessa mistura.

	Α	В	С	D	percentuais	de mistura
nutriente 1	 	370	450	290 7		35%
nutriente 1 nutriente 2 nutriente 3	340	520	305	485		25%
nutriente 3	145	225	190	260	С	30%
	_			_	D	10%

Quantos miligramas do nutriente 2 estão presentes em um quilograma da mistura de rações?

- a) 389 mg.
- **b)** 330 mg.
- c) 280 mg.
- **d)** 210 mg.
- e) 190 mg.
- 9. Sejam $A = \begin{pmatrix} 1 & 1 & 2 \\ 4 & -3 & 0 \end{pmatrix} e B = \begin{pmatrix} 5 & 0 & -3 \\ 1 & -2 & 6 \end{pmatrix} e B^t$ é a transposta de B. O produto da matriz A pela matriz B^t é:

a)
$$\begin{pmatrix} 9 & 2 & 10 \\ -8 & 6 & 0 \\ 21 & -21 & -6 \end{pmatrix}$$

b)
$$\begin{pmatrix} 5 & 0 & -6 \\ 4 & 6 & 0 \end{pmatrix}$$

c)
$$\begin{pmatrix} 5 & 4 \\ 0 & 6 \\ -6 & 0 \end{pmatrix}$$

$$\mathbf{d}) \begin{pmatrix} -1 & 11 \\ 20 & 10 \end{pmatrix}$$

$$\mathbf{e)} \begin{pmatrix} -1 & 10 \\ -2 & 1 \end{pmatrix}$$

10. Uma metalúrgica produz parafusos para móveis de madeira em três tipos, denominados soft, escareado e sextavado, que são vendidos em caixas grandes, com 2000 parafusos e pequenas, com 900, cada caixa contendo parafusos dos três tipos. A tabela 1, a seguir, fornece a quantidade de parafusos de cada tipo contida em cada caixa, grande ou pequena. A tabela 2 fornece a quantidade de caixas de cada tipo produzida em cada mês do primeiro trimestre de um ano.

Tabela 1

Parafusos / caixa	Pequena	Grande
Soft	200	500
Escareado	400	800
Sextavado	300	700

Tabela 2

Caixas / mês	JAN	FEV	MAR
Pequena	1500	2200	1300
Grande	1200	1500	1800

$$A = \begin{bmatrix} 200 & 500 \\ 400 & 800 \\ 300 & 700 \end{bmatrix} e B = \begin{bmatrix} 1500 & 2200 & 1300 \\ 1200 & 1500 & 1800 \end{bmatrix}$$

Associando as matrizes

às tabelas 1 e 2, respectivamente, o produto

A × B fornece

- a) o número de caixas fabricadas no trimestre.
- b) a produção do trimestre de um tipo de parafuso, em cada coluna.
- c) a produção mensal de cada tipo de parafuso.
- d) a produção total de parafusos por caixa.
- e) a produção média de parafusos por caixa

Gabarito

1. A

$$A^{2} = aA + bI \Leftrightarrow \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = a \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} + b \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$\Leftrightarrow \begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} a+b & 2a \\ 0 & a+b \end{bmatrix}$$
$$\Leftrightarrow \begin{cases} a+b=1 \\ 2a=4 \end{cases}$$
$$\Leftrightarrow \begin{cases} a=2 \\ b=-1 \end{cases}.$$

Logo a.b=2.(-1)=-2

2. B

Pelo enunciado, $A = (a_{ij})_{2x3} e$ $AB = I_2$. Além disso, $B = (b_{ij})_{3x2}$ tem a lei de formação $b_{ij} = i-2j$

portanto B =
$$\begin{pmatrix} -1 & -3 \\ 0 & -2 \\ 1 & -1 \end{pmatrix}$$
. Sendo assim:

$$\begin{split} A \cdot B &= I_2 \Leftrightarrow \begin{pmatrix} 0 & a & b \\ 0 & c & d \end{pmatrix} \cdot \begin{pmatrix} -1 & -3 \\ 0 & -2 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\ \Leftrightarrow \begin{pmatrix} b & -2a - b \\ d & -2c - d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\ \Leftrightarrow \begin{pmatrix} a &= -1 \\ b &= 1 \\ c &= -\frac{1}{2} \\ d &= 0 \end{split}$$

O maior elemento é o B que vale 1.

3. C

$$B \cdot A = \begin{bmatrix} -10 & 27 \\ 21 & -39 \end{bmatrix} \Rightarrow \begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix} \cdot \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} -10 & 27 \\ 21 & -39 \end{bmatrix}$$

$$\begin{bmatrix} 3a - c & 3b - d \\ -5a + 2c & -5b + 2d \end{bmatrix} = \begin{bmatrix} -10 & 27 \\ 21 & -39 \end{bmatrix}$$

$$\begin{cases} 3a - c \\ -5a + 2c \end{cases} \Rightarrow \begin{cases} a = 1 \\ c = 13 \end{cases}$$

$$\begin{cases} 3b - d \\ -5b + 2d \end{cases} \Rightarrow \begin{cases} b = 15 \\ d = 18 \end{cases}$$

$$a + b + c + d = 1 + 13 + 15 + 18 = 47$$

4. B

$$\begin{split} A^2 &= \begin{pmatrix} 1 & a \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & a \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\ A^2 &= I \\ A^4 &= A^2 \cdot A^2 = I \cdot I = I \\ A^6 &= A^4 \cdot A^2 = I \cdot I = I \\ \vdots \\ A^{2016} &= A^{2014} \cdot A^2 = I \cdot I = I \\ A^{2017} &= A^{2016} \cdot A = I \cdot A = A \rightarrow A^{2017} = \begin{pmatrix} 1 & a \\ 0 & -1 \end{pmatrix} \end{split}$$

5. D

Conforme dados das tabelas: $C = 0, 1 \cdot 0, 45 + 0, 4 \cdot 0, 25 + 0, 5 \cdot 0, 30 \rightarrow C = 0, 295 \text{ g/kg}$

6. B

Flor =
$$\begin{bmatrix} 6 & 12 \\ 15 & 18 \end{bmatrix} e A = \begin{bmatrix} x & y \\ z & w \end{bmatrix}$$
$$\begin{bmatrix} x & y \\ z & w \end{bmatrix} \cdot \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 12 \\ 15 & 18 \end{bmatrix}$$
$$\begin{bmatrix} x + 2y & -x + y \\ z + 2w & -z + w \end{bmatrix} = \begin{bmatrix} 6 & 12 \\ 15 & 18 \end{bmatrix}$$
$$\begin{bmatrix} x & y \\ z & w \end{bmatrix} = \begin{bmatrix} -6 & 6 \\ -7 & 11 \end{bmatrix}$$

7. A

Para realizar a multiplicação k tem que ser uma matriz 2x1 dessa forma $K = \begin{pmatrix} x \\ y \end{pmatrix}$. Logo,

$$\begin{pmatrix} 6 & 2 \\ 4 & 3 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -6 \\ 1 \end{pmatrix}$$

$$\begin{cases} 6x + 2y = -6 \\ 4x + 3y = 1 \end{cases}$$

$$\begin{cases} -18x - 6y = 18 \\ 8x + 6y = 2 \end{cases}$$

$$-10x = 20 \rightarrow x = -2$$

$$6 \cdot (-2) + 2y = -6 \rightarrow 2y = 6 \rightarrow y = 3$$

Somando os elementos de K = x+y=-2+3=1

8. A

Fazendo o produto das matrizes

$$\begin{bmatrix} 340 & 520 & 305 & 485 \end{bmatrix} \cdot \begin{bmatrix} 35\% \\ 25\% \\ 30\% \\ 10\% \end{bmatrix} = 340 \cdot 0,35 + 520 \cdot 0,25 + 305 \cdot 0,30 + 485 \cdot 0,10 = 389 \text{ mg.}$$

9. C

$$\begin{pmatrix} 1 & 1 & 2 \\ 4 & -3 & 0 \end{pmatrix} \cdot \begin{pmatrix} 5 & 1 \\ 0 & -2 \\ -3 & 6 \end{pmatrix} = \begin{pmatrix} 5+0-6 & 1-2+12 \\ 20+0+0 & 4+6+0 \end{pmatrix} = \begin{pmatrix} -1 & 11 \\ 20 & 10 \end{pmatrix}$$

10. C

Se cada linha da matriz A representa o tipo de parafuso e cada coluna da matriz B represente o mês da produção, o produto das matrizes será a produção mensal de cada tipo de parafuso.