Constraint Satisfaction Problems (CSPs)

CS 221 Section - 11/02/18 Chinmayee Shah and Vivian Hsu

Agenda

- CSP Problem Modeling
- N-ary Constraints
- Elimination Example

- CSP Problem Modeling
- N-ary Constraints
- Elimination Example

Definition: Factor

Graph Variables:

$$X = (X_1, ..., X_n), X_i \in Domain_i$$
 where Factors:

$$f_1,...,f_m,$$

with each $f_j(X) \ge 0$

Definition: Constraint Satisfaction Problem (CSP)

A`CSP is a factor graph where all factors are constraints:

$$j=1,...,m$$
 for all

$$f_i(x) = 1$$

The constraint is satisfied iff

Definition: Consistent Assignments

An assignment x if Weight(x) = 1 (i.e., all constraints are satisfied.)

Factor Graph and CSP Applications

- Inferring relations from data
- Scheduling problems: event scheduling, resource and assembly scheduling
- Puzzles: sudoku, crosswards
- Satisfiability problems
- Map and graph coloring
- Object tracking
- Decoding noisy signals (images, messages etc.)

Setup:

- Have E events and T time slots
- Each event e must be put in exactly one time slot
- Each time slot t can have at most one event
- Event *e* only allowed at time slot *t* if (*e*, *t*) in *A*

Setup:

- Have E events and T time slots
- Each event e must be put in exactly one time slot
- Each time slot t can have at most one event
- Event *e* only allowed at time slot *t* if (*e*, *t*) in *A*

Formulation 1a:

• Variables for each event $eX_e \in \{1,...,T\}$

- Variables for each event $eX_e \in \{1,...,T\}$
- Constraints (only one event per time slot): for each pair of events e^{i} , enter e^{i} , enter e^{i}

- Variables for each event $eX_e \in \{1,...,T\}$
- Constraints (only one event per time slot): for each pair of events e^{i} , en e^{i} , en e^{i}

- Variables for each event $eX_e \in \{1,...,T\}$
- Constraints (only one event per time slot): for each pair of events e^{i} , en e^{i} , en e^{i}

- Variables for each event $eX_e \in \{1,...,T\}$
- Constraints (only one event per time slot): for each pair of events e^{i} , enter e^{i} , enter e^{i}
- Constraints (only schedule allowed times): for each event e, [ep, force A]

- Variables for each event $eX_e \in \{1,...,T\}$
- Constraints (only one event per time slot): for each pair of events e^{i} , enforc e^{i}
- Constraints (only schedule allowed times): for each event e, [ep, force A]

- Variables for each event $eX_e \in \{1,...,T\}$
- Constraints (only one event per time slot): for each pair of events e^{i} , enforc e^{i}
- Constraints (only schedule allowed times): for each event e, [ep, force A]

- Variables for each event $eX_e \in \{1,...,T\}$
- Constraints (only one event per time slot): for each pair of events_{$\neq e'$}, enforc $_{\neq X_{e'}}$
- Constraints (only schedule allowed times): for each event e, [ep,force A]

Formulation 1b:

• Variables for each event $eX_1,...,X_E$

Formulation 1b:

• Variables for each event $eX_1,...,X_E$

$$Domain_i = \{t : (i, t) \in A\}$$

Formulation 1b:

• Variables for each event $eX_1, ..., X_E$

$$Domain_i = \{t : (i, t) \in A\}$$

• Constraints (only one event per time slot): for each pair of events $\neq e'$, entry $e \times X_{e'}$

Formulation 2a:

• Variables for each time slot $Y_t \in \{1,...,E\} \cup \{\emptyset\}$

- Variables for each time slot $Y_t \in \{1,...,E\} \cup \{\emptyset\}$
- Constraints (each event is scheduled exactly once): for each event e, enforce for exactly one t]

- Variables for each time slot $Y_t \in \{1,...,E\} \cup \{\emptyset\}$
- Constraints (each event is scheduled exactly once): for each event e, enforce for exactly one t]
- Constraints (only schedule allowed times): for each time slot t, enforce \emptyset or $(Y_t,t) \in A$

- Variables for each time slot $Y_t \in \{1,...,E\} \cup \{\emptyset\}$
- Constraints (each event is scheduled exactly once): for each event e, enforce for exactly one t]
- Constraints (only schedule allowed times): for each time slot t, enforce \emptyset or $(Y_t,t)\in A$

Formulation 2a:

• Variables for each time slot Y_1 ;..., Y_T

Formulation 2a:

• Variables for each time slot Y_1 ;..., Y_T

$$Domain_i = \{e : (e,i) \in A\} \cup \{\emptyset\}$$

Formulation 2a:

• Variables for each time slot Y_1 ;..., Y_T

$$Domain_i = \{e : (e,i) \in A\} \cup \{\emptyset\}$$

• Constraints (each event is scheduled exactly once): for each event e, enforce for exactly one t]

- CSP Problem Modeling
- N-ary Constraints
- Elimination Example

- From event scheduling:
 - Constraints (each event is scheduled exactly once): for each event e, enforce

 $[Y_t = e \text{ for exactly one } t]$

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:

Initialization: $[A_0 = 0]$

i	0	1	2	3	4
Y_{i}		3	1	2	1
A_i	0				

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:

Initialization: $[A_0 = 0]$

Processing: $[A_i = A_{i-1} + 1[Y_i = e]]$

i	0	1	2	3	4
Y_i		3	1	2	1
A_{i}	0				

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:

Initialization: $[A_0 = 0]$

i	0	1	2	3	4
Y_i		3	1	2	1
A_i	0				

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:

Initialization: $[A_0 = 0]$

i	0	1	2	3	4
Y_{i}		3	1	2	1
A_i	0	0			

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:

Initialization: $[A_0 = 0]$

i	0	1	2	3	4
Y_{i}		3	1	2	1
A_{i}	0	0	1		

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:

Initialization: $[A_0 = 0]$

i	0	1	2	3	4
Y_i		3	1	2	1
A_{i}	0	0	1	1	

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:

Initialization: $[A_0 = 0]$

Processing: $[A_i = \min(A_{i-1} + 1[Y_i = e], 2)]$

i	0	1	2	3	4
Y_{i}		3	1	2	1
A_{i}	0	0	1	1	2

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:

Initialization: $[A_0 = 0]$

Processing: $[A_i = \min(A_{i-1} + 1[Y_i = e], 2)]$

Final Output: $1[A_T = 1]$

i	0	1	2	3	4
Y_{i}		3	1	2	1
A_i	0	0	1	1	2

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:

Initialization: $[A_0 = 0]$

Processing: $[A_i = \min(A_{i-1} + 1[Y_i = e], 2)]$

Final Output: $1[A_T = 1]$

i	0	1	2	3	4
Y_{i}		3	1	2	1
A_i	0	0	1	1	2

Key idea: Combine A_{i-1} and A_i into one variable B_i

Key idea: Combine A_{i-1} and A_i into one variable B_i

Key idea: Combine A_{i-1} and A_i into one variable B_i

Factors:

Initialization: $[B_I[0] = 0]$

Key idea: Combine A_{i-1} and A_i into one variable B_i

Factors:

Initialization: $[B_I[0] = 0]$

Processing: $[B_i[1] = \min(B_i[0] + 1[Y_i = e], 2)]$

Key idea: Combine A_{i-1} and A_i into one variable B_i

Factors:

Initialization: $[B_I[0] = 0]$

Processing: $[B_i[1] = \min(B_i[0] + 1[Y_i = e], 2)]$

Consistency: $[B_{i-1}[1] = B_i[0]]$

Key idea: Combine A_{i-1} and A_i into one variable B_i

Factors:

Initialization: $[B_I[0] = 0]$

Processing: $[B_i[1] = \min(B_i[0] + 1[Y_i = e], 2)]$

Consistency: $[B_{i-1}[1] = B_i[0]]$

Final Output: $1[B_T[1] = 1]$

- CSP Problem Modeling
- N-ary Constraints
- Elimination Example

Object Tracking

- •Sensors provide noisy information about an object's location (e.g., video frames)
- · Want to infer object's true location

Variables X_i: Location of object at position i

- Variables X_i: Location of object at position i
- Transition Factors $t_i(x_i, x_{i+1})$: object positions can't change too much

- Variables X_i: Location of object at position i
- Transition Factors $t_i(x_i, x_{i+1})$: object positions can't change too much
- Observation Factors $o_i(x_i)$: noisy information compatible with position

- Variables X_i: Location of object at position i
- Transition Factors $t_i(x_i, x_{i+1})$: object positions can't change too much
- Observation Factors $o_i(x_i)$: noisy information compatible with position

```
def t(x, y):
if x == y: return 2
if abs(x - y) == 1: return 1
return 0
```


- Variables X_i: Location of object at position i
- Transition Factors $t_i(x_i, x_{i+1})$: object positions can't change too much
- Observation Factors $o_i(x_i)$: noisy information compatible with position

Variable Elimination

Definition:

- **The invite** a variable X_i , consider all factors f_1 , ..., f_k , that depend on X_i
- Remove X_i and f_I , ..., f_k

$$f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$$

Add

• Eliminate X_I

- Eliminate X_I
- Factors that depend on X_I:
 - o_1 , t_1

- Eliminate X_I
- Factors that depend on X_I:
 - o_1 , t_1
- Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$

- Eliminate X₁
- Factors that depend on X_I :
 - o_1 , t_1
- Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^{\kappa} f_j(x)$
- $g_1(x_2) = \max_{x_1 \in \{0,1,2\}} o_1(x_1) \cdot t_1(x_1, x_2)$

- Eliminate X₁
- Factors that depend on X_I:
 - o_1 , t_1

• Add
$$f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$$

$$g_1(x_2) = \max_{x_1 \in \{0,1,2\}} o_1(x_1) \cdot t_1(x_1, x_2)$$

x_2	x_{I}	$o_I(x_I)$	$t_I(x_1, x_2)$	$o_{I}(x_{I}) \ t_{I}(x_{I}, x_{2})$	$g_1(x_2)$
0	0				
0	1				
0	2				
1	0				
1	1				
1	2				
2	0				
2	1				
2	2				

def t(x, y):
if x == y: return 2
if abs(x - y) == 1: return 1
return 0

def o1(x): return t(x, 0)def o2(x): return t(x, 2)def o3(x): return t(x, 2)

- Eliminate X_I
- Factors that depend on X_I:

•
$$o_1$$
, t_1

• Add
$$f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$$

$$g_1(x_2) = \max_{x_1 \in \{0,1,2\}} o_1(x_1) \cdot t_1(x_1, x_2)$$

x_2	x_1	$o_I(x_I)$	$t_{1}(x_{1},x_{2})$	$o_I(x_1) \ t_I(x_1, x_2)$	$g_1(x_2)$
0	0	2			
0	1	1			
0	2	0			
1	0	2			
1	1	1			
1	2	0			
2	0	2			
2	1	1			
2	2	0			

def t(x, y):
if x == y: return 2
if abs(x - y) == 1: return 1
return 0

def o1(x): return t(x, 0)def o2(x): return t(x, 2)def o3(x): return t(x, 2)

- Eliminate X_I
- Factors that depend on X_I:

•
$$o_1$$
, t_1

• Add
$$f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$$

$$g_1(x_2) = \max_{x_1 \in \{0,1,2\}} o_1(x_1) \cdot t_1(x_1, x_2)$$

x_2	x_{I}	$o_I(x_I)$	$t_I(x_1, x_2)$	$o_{I}(x_{1}) t_{I}(x_{1}, x_{2})$	$g_1(x_2)$
0	0	2	2		
0	1	1	1		
0	2	0	0		
1	0	2	1		
1	1	1	2		
1	2	0	1		
2	0	2	0		
2	1	1	1		
2	2	0	2		

def t(x, y):

if x == y: return 2

if abs(x - y) == 1: return 1 return 0

def o1(x): return t(x, 0)

def o2(x): return t(x, 2)

def o3(x): return t(x, 2)

- Eliminate X_I
- Factors that depend on X_I:
 - o_1 , t_1

• Add
$$f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$$

$$g_1(x_2) = \max_{x_1 \in \{0,1,2\}} o_1(x_1) \cdot t_1(x_1, x_2)$$

x_2	x_{I}	$o_I(x_I)$	$t_I(x_1, x_2)$	$o_{I}(x_{1}) t_{I}(x_{1}, x_{2})$	$g_1(x_2)$
0	0	2	2	4	
0	1	1	1	1	
0	2	0	0	0	
1	0	2	1	2	
1	1	1	2	2	
1	2	0	1	0	
2	0	2	0	0	
2	1	1	1	1	
2	2	0	2	0	

def t(x, y):
if x == y: return 2
if abs(x - y) == 1: return 1
return 0

def o1(x): return t(x, 0)def o2(x): return t(x, 2)def o3(x): return t(x, 2)

- Eliminate X_1
- Factors that depend on X_I:

•
$$o_1$$
, t_1

• Add
$$f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$$

$$g_1(x_2) = \max_{x_1 \in \{0,1,2\}} o_1(x_1) \cdot t_1(x_1, x_2)$$

x_2	x_{I}	$o_I(x_I)$	$t_1(x_1, x_2)$	$o_{I}(x_{I}) t_{I}(x_{I}, x_{2})$	$g_1(x_2)$
0	0	2	2	4	4: { <i>x</i> ₁ :0}
0	1	1	1	1	
0	2	0	0	0	
1	0	2	1	2	2: { <i>x</i> ₁ : 1}
1	1	1	2	2	
1	2	0	1	0	
2	0	2	0	0	1: { <i>x</i> ₁ : <i>1</i> }
2	1	1	1	1	
2	2	0	2	0	

def t(x, y):
if x == y: return 2
if abs(x - y) == 1: return 1
return 0

def o1(x): return t(x, 0)def o2(x): return t(x, 2)def o3(x): return t(x, 2) • Eliminate X_2

- Eliminate X_2
- Factors that depend on X₂:
 - o_2 , t_2 , g_1

- Eliminate X_2
- Factors that depend on X_2 :
- o_2 , t_2 , g_1 Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$

- Eliminate X_2
- Factors that depend on X₂:
 - o_2 , t_2 , g_1
- Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$
- $g_2(x_3) = \max_{x_2 \in \{0,1,2\}} g_1(x_2) \cdot o_2(x_2) \cdot t_2(x_2, x_3)$

- Eliminate X_2
- Factors that depend on X_2 :
 - o_2 , t_2 , g_1

• Add
$$f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$$

•
$$g_2(x_3) = \max_{x_2 \in \{0,1,2\}} g_1(x_2) \cdot o_2(x_2) \cdot t_2(x_2, x_3)$$

		2 ()))				
x_3	x_2	$g_1(x_2)$	$o_2(x_2)$	$t_2(x_2, x_3)$	$g_1(x_2) \ o_2(x_2) \ t_2(x_2, x_3)$	$g_2(x_3)$
0	0					
0	1					
0	2					
1	0					
1	1					
1	2					
2	0					
2	1					
2	2					

- Eliminate X_2
- Factors that depend on X_2 :
 - o_2 , t_2 , g_1

• Add
$$f_{new}(x) = \max_{x_i} \prod_{j=1}^{k} f_j(x)$$

•
$$g_2(x_3) = \max_{x_2 \in \{0,1,2\}} g_1(x_2) \cdot o_2(x_2) \cdot t_2(x_2, x_3)$$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	x_3	x_2	$g_1(x_2)$	$o_2(x_2)$	$t_2(x_2, x_3)$	$g_1(x_2) \ o_2(x_2) \ t_2(x_2, x_3)$	$g_2(x_3)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	4: { <i>x</i> ₁ :0}				
1 0 4: $\{x_I:0\}$ 1 1 2: $\{x_I:I\}$ 1 2 1: $\{x_I:I\}$ 2 0 4: $\{x_I:0\}$	0	1	2: { <i>x</i> ₁ : 1}				
1 1 2: $\{x_I: I\}$ 1 2 1: $\{x_I: I\}$ 2 0 4: $\{x_I: O\}$	0	2	1: { <i>x</i> ₁ : 1}				
1 2 1: $\{x_1: 1\}$ 2 0 4: $\{x_1: 0\}$	1	0	4: { <i>x</i> ₁ :0}				
2 0 4: {x ₁ :0}	1	1	2: { <i>x</i> ₁ : 1}				
	1	2	1: { <i>x</i> ₁ : 1}				
	2	0	4: { <i>x</i> ₁ :0}				
$\begin{bmatrix} 2 & 1 & 1 & 2 \\ & 1 & 1 & 1 \end{bmatrix}$	2	1	2: { <i>x</i> ₁ : 1}				

g_1	$-(X_2)-[t_2]$	X_3
	o_2	o_3

- Eliminate X_2
- Factors that depend on X_2 :
 - o_2 , t_2 , g_1

•
$$O_2$$
, I_2 , g_1
• Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$

•
$$g_2(x_3) = \max_{x_2 \in \{0,1,2\}} g_1(x_2) \cdot o_2(x_2) \cdot t_2(x_2, x_3)$$

x_3	x_2	$g_1(x_2)$	$o_2(x_2)$	$t_2(x_2, x_3)$	$g_1(x_2) \ o_2(x_2) \ t_2(x_2, x_3)$	$g_2(x_3)$
0	0	4: { <i>x</i> ₁ :0}	0			
0	1	2: { <i>x</i> ₁ : 1}	1			
0	2	1: { <i>x</i> ₁ : 1}	2			
1	0	4: { <i>x</i> ₁ :0}	0			
1	1	2: { <i>x</i> ₁ : 1}	1			
1	2	1: { <i>x</i> ₁ : 1}	2			
2	0	4: { <i>x</i> ₁ :0}	0			
2	1	2: { <i>x</i> ₁ : 1}	1			
			t			

g_1	$-(X_2)-[t_2]$	X_3
	o_2	o_3

- Eliminate X_2
- Factors that depend on X_2 :
 - o_2 , t_2 , g_1

• Add
$$f_{new}(x) = \max_{x_i} \prod_{j=1}^{k} f_j(x)$$

•
$$g_2(x_3) = \max_{x_2 \in \{0,1,2\}} g_1(x_2) \cdot o_2(x_2) \cdot t_2(x_2, x_3)$$

x_3	x_2	$g_1(x_2)$	$o_2(x_2)$	$t_2(x_2,x_3)$	$g_1(x_2) \ o_2(x_2) \ t_2(x_2, x_3)$	$g_2(x_3)$
0	0	4: { <i>x</i> ₁ :0}	0	2		
0	1	2: { <i>x</i> ₁ : 1}	1	1		
0	2	1: { <i>x</i> ₁ : 1}	2	0		
1	0	4: { <i>x</i> ₁ :0}	0	1		
1	1	2: { <i>x</i> ₁ : 1}	1	2		
1	2	1: { <i>x</i> ₁ : 1}	2	1		
2	0	4: { <i>x</i> ₁ :0}	0	0		
2	1	2: { <i>x</i> ₁ : 1}	1	1		

g_1	$-(X_2)-[t_2]$	X_3
	o_2	o_3

$g_2(x_3)$	

- Eliminate X_2
- Factors that depend on X_2 :
 - o_2 , t_2 , g_1

• Add
$$f_{new}(x) = \max_{x_i} \prod_{j=1}^{k} f_j(x)$$

•
$$g_2(x_3) = \max_{x_2 \in \{0,1,2\}} g_1(x_2) \cdot o_2(x_2) \cdot t_2(x_2, x_3)$$

x_3	x_2	$g_1(x_2)$	$o_2(x_2)$	$t_2(x_2,x_3)$	$g_1(x_2) o_2(x_2) t_2(x_2, x_3)$	$g_2(x_3)$
0	0	4: { <i>x</i> ₁ :0}	0	2	0	
0	1	2: { <i>x</i> ₁ : 1}	1	1	2	
0	2	1: { <i>x</i> ₁ : 1}	2	0	0	
1	0	4: { <i>x</i> ₁ :0}	0	1	0	
1	1	2: { <i>x</i> ₁ : 1}	1	2	4	
1	2	1: { <i>x</i> ₁ : 1}	2	1	2	
2	0	4: { <i>x</i> ₁ :0}	0	0	0	
2	1	2: { <i>x</i> ₁ : 1}	1	1	2	

- Eliminate X_2
- Factors that depend on X_2 :
 - o_2 , t_2 , g_1

• Add
$$f_{new}(x) = \max_{x_i} \prod_{j=1}^{k} f_j(x)$$

•
$$g_2(x_3) = \max_{x_2 \in \{0,1,2\}} g_1(x_2) \cdot o_2(x_2) \cdot t_2(x_2, x_3)$$

		$x_2 \in \{0,1,2\}$			T	T
x_3	x_2	$g_1(x_2)$	$o_2(x_2)$	$t_2(x_2, x_3)$	$g_1(x_2) \ o_2(x_2) \ t_2(x_2, x_3)$	$g_2(x_3)$
0	0	4: { <i>x</i> ₁ :0}	0	2	0	2: $\{x_1: 1, x_2: 1\}$
0	1	2: { <i>x</i> ₁ : 1}	1	1	2	
0	2	1: { <i>x</i> ₁ : 1}	2	0	0	
1	0	4: { <i>x</i> ₁ :0}	0	1	0	4: $\{x_1: 1, x_2: 1\}$
1	1	2: { <i>x</i> ₁ : 1}	1	2	4	
1	2	1: { <i>x</i> ₁ : 1}	2	1	2	
2	0	4: { <i>x</i> ₁ :0}	0	0	0	4: $\{x_1: 1, x_2: 2\}$
2	1	2: { <i>x</i> ₁ : 1}	1	1	2	

 $|o_3|$

$$\max_{x_3 \in \{0,1,2\}} g_2(x_3) \cdot o_3(x_3)$$

$$\max_{x_3 \in \{0,1,2\}} g_2(x_3) \cdot o_3(x_3)$$

x_3	$g_2(x_3)$	$o_3(x_3)$	$g_2(x_3) o_3(x_3)$	Optimal Weight
0				
1				
2				

$$\max_{x_3 \in \{0,1,2\}} g_2(x_3) \cdot o_3(x_3)$$

x_3	$g_2(x_3)$	$o_3(x_3)$	$g_2(x_3) o_3(x_3)$	Optimal Weight
0	2: $\{x_1: 1, x_2: 1\}$	0		
1	4: $\{x_1: 1, x_2: 1\}$	1		
2	4: $\{x_1: 1, x_2: 2\}$	2		

$$\max_{x_3 \in \{0,1,2\}} g_2(x_3) \cdot o_3(x_3)$$

x_3	$g_2(x_3)$	$o_3(x_3)$	$g_2(x_3) o_3(x_3)$	Optimal Weight
0	2: $\{x_1: 1, x_2: 2\}$	0	0	
1	4: $\{x_1: 1, x_2: 1\}$	1	4	
2	4: $\{x_1: 1, x_2: 2\}$	2	8	

$$\max_{x_3 \in \{0,1,2\}} g_2(x_3) \cdot o_3(x_3)$$

x_3	$g_2(x_3)$	$o_3(x_3)$	$g_2(x_3) o_3(x_3)$	Optimal Weight
0	2: $\{x_1: 1, x_2: 2\}$	0	0	8: $\{x_1: 1, x_2: 2, x_3: 2\}$
1	4: $\{x_1: 1, x_2: 1\}$	1	4	
2	4: $\{x_1: 1, x_2: 2\}$	2	8	