本试卷适用范围 工学院本科二年级

南京农业大学试卷(2013.1.)

2012-2013 学年第 1 学期 课程类型: 必修 试卷类型: A

课程 <u>线性代数</u> 班级	学号	姓名	成绩_
说明: 1. 本试卷共 4 页. 2. 请将解答写在答:	题纸上,试卷自己	2保留.	
一. 选择题(每小题3分	分, 共 24 分)		
1.若 $a_{1i}a_{23}a_{35}a_{44}a_{5j}$ 是五	阶行列式中带有了	E号的一项,则 i,j 的	勺值为 ()
(A) $i = 1, j = 3.$	(B) $i=2, j$	= 3.	
(C) $i = 1, j = 2.$	(D) $i=2, j$	=1.	
2.设 A 为四阶矩阵,且 $ $.	A = 2,把 A 按列	引分块为 $A = (A_1, A_2,$	A_3, A_4),其
中 A_j ($j = 1,2,3,4$) 是 A_j	4的第 j 列,则行	列式 $\left A_2,-A_1,A_3,A_4\right $	等于 ()
(A) -2 . (B)) 2. (C)	1. (D) 0.	
3. 下列四个3×4矩阵中	,是行最简形的为	J	()
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$). (B)	$ \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}. $	
(C) $ \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix} $	(D)	$ \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}. $	
4.向量组 α_1 , $\alpha_{2,}$, \cdots ,	α_s 的秩为 r ,则		()
(A) 必定 r < s.			

二. 填空题 (每小题 3 分, 共 24 分)

1.设
$$A = (1, 2, 3), B = (1, 1, 1), 则(A^TB)^2 =$$

- 2. 设矩阵 $A = \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}$, E 为 2 阶单位矩阵,矩阵 B 满足 BA = B + 2E,则 B =______.
- 3. 设矩阵 $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$,则 $A^* =$.
- 4. 设矩阵 $A = \begin{pmatrix} k & 1 & 1 \\ 1 & k & 1 \\ 1 & 1 & k \end{pmatrix}$,且 R(A) = 2,则 k =______.
- 5.设向量组 A: $\alpha_1,\alpha_2,\alpha_3$ 线性无关,则常数l,m满足条件_____时,向量组 B: $l\alpha_2-\alpha_1,m\alpha_3-\alpha_2,\alpha_1-\alpha_3$ 也线性无关.
- 6. 设向量组 $\alpha_1 = \begin{pmatrix} a \\ 2 \\ 10 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} -2 \\ 1 \\ 5 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 1 \\ 4 \end{pmatrix}$, 又设 $\beta = \begin{pmatrix} 1 \\ b \\ c \end{pmatrix}$. 则a, b, c

满足条件 $_{----}$ 时, β 可由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示,且表示唯一.

- 7.设 3 阶方阵 A 的特征值为 1,-1,2,则 $|-2A^{-1}+3A-2E|=$ ______.
- 8.已知二次型 $f(x_1,x_2)=a(x_1^2+x_2^2)+4x_1x_2$ 经正交变换 x=Py 可化成标准形 $f=4y_1^2$,则 a=_______.
- 三. (本题 8 分) 计算行列式:

$$D = \begin{vmatrix} 2 & -5 & 1 & 2 \\ -3 & 7 & -1 & 4 \\ 5 & -9 & 2 & 7 \\ 4 & -6 & 1 & 2 \end{vmatrix}.$$

四. (本题8分)设

$$A = \begin{pmatrix} 0 & a_1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & a_2 & \cdots & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & 0 & a_{n-1} \\ a_n & 0 & 0 & \cdots & 0 & 0 \end{pmatrix}, \quad \sharp \vdash a_i \neq 0 \ (i = 1, 2, \dots, n), \quad \sharp \vdash A^{-1}.$$

五. (本题 8 分)设矩阵

$$A = \begin{pmatrix} 2 & -1 & -1 & 1 \\ 1 & 1 & -2 & 1 \\ 4 & -6 & 2 & -2 \end{pmatrix}$$
, 求矩阵 A 的列向量组的最大无关组,并把不属

于最大无关组的列向量用最大无关组线性表示.

- 六. (本题 8 分)设 4×5 矩阵 A 的秩为 3, 5×2 矩阵 B 的秩为 2, 且 AB = 0, 证明: 若向量 α 是齐次线性方程组 Ax = 0 的解,则非齐次线性方程组 $By = \alpha$ 必有唯一解.
- 七. (本题 8 分)设 n 阶可逆矩阵 $A = (\alpha_1, \alpha_2, \dots, \alpha_n)$, α_i 为 n 维列向量 $(i = 1, 2, \dots, n)$, β 为 n 维非零列向量,且与 $\alpha_1, \alpha_2, \dots, \alpha_{n-1}$ 均正交,证明:矩阵 $B = (\alpha_1, \alpha_2, \dots, \alpha_{n-1}, \beta)$ 可逆.
- 八. (本题共 3 小题, 依次为 2 分, 8 分和 2 分, 共 12 分) 设二次型 $f(x,y,z) = 2x^2 + 3y^2 + 3z^2 + 4yz$,
 - 1.写出二次型 f 的矩阵;
 - 2.求一个正交变换化f为标准形;
 - 3.问 f(x, y, z) = 1 是三维空间中的何种曲面?

出卷人: 张新华

线性代数(A)答案及评分标准:

一. CBDD CABB

二. (1)
$$6 \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{pmatrix}$$
 (2) 1 (3) $\begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix}$ (4) -2 (5) $lm \neq 1$ (6) $a \neq -4$,但 b, c 任意 (7) 9 (8) $a = 2$

三. -9

七.	即证向量组 α_1 ,	$\alpha_2, \cdots,$	$\alpha_{\text{n-1}}$,	β 线性无关
----	--------------------	---------------------	-------------------------	--------------

$$\Leftrightarrow k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_{n-1} \alpha_{n-1} + k_n \beta = 0, \dots 2$$

上式两边左乘 β^T ,得:

$$k_1 \boldsymbol{\beta}^T \boldsymbol{\alpha}_1 + k_2 \boldsymbol{\beta}^T \boldsymbol{\alpha}_2 + \dots + k_{n-1} \boldsymbol{\beta}^T \boldsymbol{\alpha}_{n-1} + k_n \boldsymbol{\beta}^T \boldsymbol{\beta} = 0.$$

$$\mathbb{E} \beta^T \alpha_i = 0, (i = 1, 2, \dots, n-1), \quad \beta^T \beta \neq 0,$$

从而
$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_{n-1}\alpha_{n-1} = 0$$
.

又因 A 可逆,故
$$\alpha_1$$
, α_2 ,…, α_{n-1} 线性无关, …… 2 分

所以
$$k_1 = k_2 = \cdots = k_{n-1} = 0$$
.

因此,
$$\alpha_1$$
, α_2 ,…, α_{n-1} , β 线性无关………………2 分

$$(2) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}, \dots 4$$

$$f = 2x'^2 + 5y'^2 + z'^2$$
,4 \Re