

- 1. Num termômetro termoelétrico são obtidos os seguintes valores: -0,104mV para o ponto do gelo e +0,496mV para o ponto de vapor. Para uma dada temperatura **t**, observa-se o valor de 0,340mV. Sabendo que a temperatura varia linearmente no intervalo considerado, podemos dizer que o valor da temperatura **t** é:
  - a) 62°C
  - b) 66°C
  - c) 70°C
  - d) 74°C
  - e) N.d.a.
- 2. Quando um campo elétrico passa de um meio para outro, este em geral muda de direção e intensidade como uma espécie de "Lei de Snell", a qual diz:  $\epsilon_1 E_{1N} = \epsilon_2 E_{2N}, \text{ onde } \epsilon_1 \text{ e } \epsilon_2 \text{ são as constantes de permissividade dos respectivos meios e } E_{1N} \text{ e } E_{2N} \text{ são as componentes dos campos perpendiculares à superfície de separação dos meios. Tendo em vista a figura e se <math display="inline">\epsilon_2$  =  $5\epsilon_1$ , então a intensidade de  $E_2$  vale:
  - a)  $\frac{E_1 \text{sen } \theta}{5 \text{sen } 2\theta}$
  - b)  $\frac{5E_1\cos\theta}{\sin 2\theta}$
  - c)  $\frac{E_1 \cos \theta}{5 \cos 2\theta}$
  - d) 5E<sub>1</sub>
- d) 5E<sub>1</sub>
  e) 5E<sub>1</sub> tg θ
  3. Três bastões de mesmo comprimento L, um de alumínio, outro de latão e o terceiro de cobre, são emendados de modo a constituir um único bastão de comprimento 3L. Determine o coeficiente de dilatação

 $\epsilon_2$ 

$$\begin{array}{ll} \textbf{Dados:} & \alpha_{A\ell} = 24 \cdot 10^{-6} \text{o} \text{C}^{-1} \\ & \alpha_{Lat\tilde{a}o} = 20 \cdot 10^{-6} \text{o} \text{C}^{-1} \\ & \alpha_{Cu} = 16 \cdot 10^{-6} \text{o} \text{C}^{-1} \end{array}$$

linear do bastão resultante.

- a)  $20 \cdot 10^{-6} \text{oC}^{-1}$
- b)  $30 \cdot 10^{-6} \text{ C}^{-1}$
- c)  $35 \cdot 10^{-6} \text{ C}^{-1}$
- d)  $40 \cdot 10^{-6} \text{ C}^{-1}$
- e)  $42 \cdot 10^{-6} \text{ C}^{-1}$
- 4. Observe o campo elétrico uniforme  $E_0$ , mostrado nas figuras 1, 2 e 3. Vamos analisar as possíveis mudanças que ocorrem no campo elétrico no ponto  ${\bf x}$  quando vários elementos são adicionados.
  - Figura 1: Uma carga puntiforme negativa, Q é localizada, como mostrado. O campo elétrico no ponto x diminuirá;



II. Figura 2: Uma placa condutora de extensão infinita e neutra é localizada à esquerda do ponto x.
 O campo elétrico no ponto x permanecerá o mesmo;



III.Figura 3: Uma fina casca esférica condutora neutra é localizada envolvendo o ponto **x**. O campo elétrico no ponto **x** diminuirá.



É(são) verdadeira(s):

- a) somente I.
- b) I e III.
- c) somente II.
- d) todas são verdadeiras.
- e) todas são falsas.
- 5. Um quadrado foi montado com três hastes de alumínio e uma haste de aço, todas inicialmente à mesma temperatura. O sistema é, então, submetido a um processo de aquecimento, de forma que a variação de temperatura é a mesma em todas as hastes.

**Dados:**  $\alpha_{A\ell} = 24 \cdot 10^{-6o} \text{C}^{-1}$ ,  $\alpha_{A\varsigma o} = 12 \cdot 10^{-6o} \text{C}^{-1}$ Podemos afirmar que, ao final do processo de aquecimento, a figura formada pelas hastes estará mais próxima de um:



- a) quadrado.
- b) retângulo.
- c) losango.
- d) trapézio retângulo.
- e) trapézio isósceles.

| GABARITO |   |   |   |   |
|----------|---|---|---|---|
| 1        | 2 | 3 | 4 | 5 |
| D        | C | A | D | Е |