# 3) EXPERIMENTOS FATORIAIS

Os experimentos fatoriais não constituem um delineamento experimental, e sim um esquema orientado de desdobramento de graus de liberdade de tratamentos e podem ser instalados em qualquer dos delineamentos experimentais.

Vamos considerar um fatorial 2x2, com os fatores: Adubação (A) e Calcário (C), nos

níveis: Adubação:  $A_0 = \text{sem adubo}$ ;

 $A_1 = com adubo$ 

Calcário:  $C_0 = \text{sem calcário}$ ;

 $C_1 = com calcário$ 

Graficamente, podemos considerar:



Nos casos (a) e (b) não há interação.

No caso (c) existe uma interação devida à diferença na grandeza de resposta.

No caso (d) existe uma interação devida à diferença na direção da resposta.

## Casualização dos tratamentos

Um experimento fatorial 2x3, com 2 níveis de Calagem ( $C_0$  e  $C_1$ ) e 3 níveis de Adubação ( $A_1$ ,  $A_2$ , e  $A_3$ ) poderia ter a seguinte casualização, se fosse instalado em blocos ao acaso:

| 1º Bloco | 2º Bloco | 2º Bloco | 4º Bloco |
|----------|----------|----------|----------|
| $C_1A_1$ | $C_1A_3$ | $C_0A_2$ | $C_0A_1$ |
| $C_0A_2$ | $C_1A_2$ | $C_1A_2$ | $C_0A_3$ |
| $C_1A_2$ | $C_0A_1$ | $C_0A_3$ | $C_1A_2$ |
| $C_1A_3$ | $C_1A_1$ | $C_1A_1$ | $C_1A_1$ |
| $C_0A_1$ | $C_0A_3$ | $C_1A_3$ | $C_0A_2$ |
| $C_0A_3$ | $C_0A_2$ | $C_0A_1$ | $C_1A_3$ |

Esquema da análise de variância preliminar

| Causa da variação | G.L. |
|-------------------|------|
| Tratamentos       | 5    |
| Blocos            | 3    |
| Resíduo           | 15   |
| Total             | 23   |

Os graus de liberdade de tratamentos devem ser desdobrados de acordo com o esquema fatorial 2x3, ficando:

Esquema de análise de variância com desdobramento dos graus de liberdade de tratamentos, de acordo com o esquema fatorial 2x3:

| Causa da variação | G.L. |
|-------------------|------|
| Calagens (C)      | 1    |
| Adubações (A)     | 2    |
| Interação CxA     |      |
| Tratamentos       | 5    |
| Blocos            | 3    |
| Resíduo           | 15   |
| Total             | 23   |

# 3.2 Análise e interpretação de um experimento fatorial com dois fatores

# 3.2.1 Com interação não significativa

**Exemplo:** Vamos considerar os dados de um experimento, em blocos casualizados, no esquema fatorial 3x3, em que foram estudados os efeitos de 3 peneiras comerciais, associadas a 3 densidades de plantio, na produtividade do amendoim (*Arachis hipogaea* L.) variedade Tatu V53.

As peneiras comerciais (P) e as Densidades de plantio (D) estudadas foram:

 $P_1$  = peneira 18 (crivos circulares com Ø de 18/64 polegada)

 $P_2$  = peneira 20 (crivos circulares com Ø de 20/64 polegada)

 $P_3$  = peneira 22 (crivos circulares com Ø de 22/64 polegada)

 $D_1 = 10$  plantas por metro linear

 $D_2 = 15$  plantas por metro linear

 $D_3 = 20$  plantas por metro linear

O ensaio constou de 3 blocos, num total de 27 parcelas, cada uma com 4 linhas de 7 metros de comprimento, espaçadas de 0,50 m, com uma área de 14 m² por parcela. As duas linhas externas de cada parcela, e 1 m de cada rua, foram consideradas como bordadura, fazendo-se as avaliações apenas nas duas linhas centrais, o que resultou numa área útil de 6 m² por parcela.

Uma das características estudadas foi a produção média de amendoim em vagem, por planta, cujos dados, em gramas, são apresentados abaixo:

| Tratamantas   |       | Blocos |       | Tataia   |
|---------------|-------|--------|-------|----------|
| Tratamentos — | 1     | 2      | 3     | — Totais |
| $1 - P_1D_1$  | 11,82 | 12,03  | 12,55 | 36,40    |
| $2-P_1D_2$    | 12,34 | 14,08  | 12,13 | 38,55    |
| $3 - P_1D_3$  | 13,41 | 12,98  | 13,35 | 39,74    |
| $4 - P_2D_1$  | 6,97  | 10,26  | 9,02  | 26,25    |
| $5 - P_2D_2$  | 8,96  | 9,02   | 9,84  | 27,82    |
| $6 - P_2D_3$  | 8,48  | 9,66   | 8,50  | 26,64    |
| $7 - P_3D_1$  | 7,53  | 7,67   | 7,81  | 23,01    |
| $8 - P_3D_2$  | 6,71  | 7,87   | 9,49  | 24,07    |
| $9-P_3D_3$    | 7,82  | 9,44   | 9,37  | 26,63    |
| Totais        | 84,04 | 93,01  | 92,06 | 269,11   |

Inicialmente, devemos proceder a análise de variância preliminar, que é a análise comum de um experimento em blocos casualizados, com 9 tratamentos e 3 blocos:

$$\begin{split} &C = \frac{G^2}{IJ} = \frac{269,11^2}{9*3} = 2.682,2293 \\ &SQ_{total} = \sum_{i=1}^{J} \sum_{j=1}^{J} x_{ij}^2 - C = 11,82^2 + 12,03^2 + ... + 9,37^2 - C = 126,6588 \\ &SQ_{Tratamento} = \frac{1}{J} \sum_{i=1}^{J} T_i^2 - C = \frac{1}{3} \Big( 36,40^2 + 38,55^2 + ... + 26,63^2 \Big) - C = 111,4428 \\ &SQ_{Bloco} = \frac{1}{I} \sum_{i=1}^{J} B_j^2 - C = \frac{1}{9} \Big( 84,04^2 + 93,01^2 + 92,06^2 \Big) - C = 5,3957 \end{split}$$

A análise de variância preliminar é apresentada a seguir:

| Causa da variação | G.L. | SQ       | QM      | F       |
|-------------------|------|----------|---------|---------|
| Tratamentos       | 8    | 111,4428 | 13,9304 | 22,70** |
| Blocos            | 2    | 5,3957   | 2,6979  | 4,40*   |
| Resíduo           | 16   | 9,8203   | 0,6138  | -       |
| Total             | 26   | 126,6588 | -       | -       |

Para tratamentos, verificamos que o teste é significativo (P<0,01), indicando que os tratamentos apresentam efeitos diferentes sobre a produção média de amendoim em vagem, por planta.

Devemos proceder ao desdobramento dos 8 graus de liberdade de tratamentos, organizando um quadro auxiliar, relacionando os níveis dos 2 fatores:

| (3)            | $\mathbf{D}_1$ | $\mathbf{D_2}$ | $\mathbf{D_3}$ | Totais de P |
|----------------|----------------|----------------|----------------|-------------|
| $P_1$          | 36,40          | 38,55          | 39,74          | 114,69      |
| $P_2$          | 26,25          | 27,82          | 26,64          | 80,71       |
| P <sub>3</sub> | 23,01          | 24,07          | 26,63          | 73,71       |
| Totais de D    | 85,66          | 90,44          | 93,01          | 269,11      |

Dessa forma, os totais de Peneiras e de Densidades são totais de 9 parcelas.

$$\begin{split} \mathrm{SQ}_{\mathrm{Peneiras}} &= \frac{1}{9} \Big( 114,69^2 + 80,71^2 + 73,71^2 \Big) - C = 106,7778 \\ \mathrm{SQ}_{\mathrm{Densidades}} &= \frac{1}{9} \Big( 85,66^2 + 90,44^2 + 93,01^2 \Big) - C = 3,0917 \end{split}$$

Para o cálculo da soma de quadrados da Interação PxD, devemos fazer:

$$SQ_{PxD} = SQ_{PxD} = SQ_{Tratamento} - SQ_{P} - SQ_{D} = 111,4428 - 106,78 - 3,09 = 1,57$$

As hipóteses de nulidade para este experimento são:

**Peneiras (P)** –  $H_0$ : As 3 Peneiras apresentam efeitos semelhantes sobre a produção média de vagens por planta.

**Densidades (D)** – **H<sub>0</sub>:** As 3 Densidades apresentam efeitos semelhantes sobre a produção média de vagens por planta.

**Interação**  $PxD - H_0$ : Os fatores Peneiras e Densidades agem de modo independente sobre a produção média de vagens por planta.

Análise de variância do experimento fatorial.

| Causa da variação | G.L. | SQ         | QM      | F           |
|-------------------|------|------------|---------|-------------|
| Peneiras (P)      | 2    | 106,7778   | 53,3889 | 86,98**     |
| Densidades (D)    | 2    | 3,0917     | 1,5459  | $2,52^{NS}$ |
| Interação PxD     | 4    | 1,5733     | 0,3933  | $0,64^{NS}$ |
| (Tratamentos)     | (8)  | (111,4428) | -       | -           |
| Blocos            | 2    | 5,3957     | 2,6979  | 4,40*       |
| Resíduo           | 16   | 9,8203     | 0,6138  | -           |
| Total             | 26   | 126,6588   | -       | -           |

#### Conclusões:

# a) Interação PxD

O teste não foi significativo (P>0,05). Não rejeitamos H<sub>0</sub>. Logo, os efeitos das Peneiras sobre a produção média de amendoim em vagem por planta, independem da densidade (ou viceversa).

# b) Peneiras (P)

O teste foi significativo (P<0,01). Rejeitamos  $H_0$ . Logo, as peneiras apresentam efeitos diferentes sobre a produção média de vagens por planta.

#### c) Densidades (D)

O teste não foi significativo (P>0,05). Não rejeitamos H<sub>0</sub>. Logo, as densidades apresentam efeitos semelhantes sobre a produção média de vagens por planta.

# Teste de Tukey para Peneiras (P)

$$\overline{x}_{P1} = \frac{114,69}{9} = 12,74g \qquad \overline{x}_{P2} = \frac{80,71}{9} = 8.97g \qquad \overline{x}_{P3} = \frac{73,71}{9} = 8,19g$$

$$\Delta = q\sqrt{\frac{QM_{Res}}{r}} = 3,65\sqrt{\frac{0,6138}{9}} = 0,95g$$

$$\overline{Tratamento} \qquad \overline{x}_{P1} = 12,74 \text{ a} \qquad \overline{x}_{P2} = 8,97 \text{ b} \qquad \overline{x}_{P3} = 19 \text{ b}$$

**Conclusão:** a média de produção de amendoim por vagem, por planta, obtida para  $P_1$  é significativamente superior às obtidas para  $P_2$  e  $P_3$ , que, não diferem entre si.

# 3.2.2 Com interação significativa

**Exemplo:** Vamos considerar dados de um experimento inteiramente casualizado, com 4 repetições, no esquema fatorial 3x2, para testar os efitos de 3 recipientes ( $R_1$ ,  $R_2$ ,  $R_3$ ) para produção de mudas e 2 espécies de eucaliptos ( $E_1$ ,  $E_2$ ), quanto ao desenvolvimento das mudas. Os Recipientes e as espécies testadas foram:

 $R_1$  = saco plástico pequeno ;  $R_2$  = saco plástico grande ;  $R_3$  = laminado

 $E_2$  = Eucalyptus citriodora;  $E_2$  = Eucalyptus grandis

As alturas médias das mudas, em cm, aos 80 dias de idade são apresentadas a seguir:

| Twotomontos   |      | Totais |      |      |        |
|---------------|------|--------|------|------|--------|
| Tratamentos   | 1    | 2      | 3    | 4    | Totais |
| $1 - R_1E_1$  | 26,2 | 26,0   | 25,0 | 25,4 | 102,6  |
| $2 - R_1E_2$  | 24,8 | 24,6   | 26,7 | 25,2 | 101,3  |
| $3 - R_2E_1$  | 25,7 | 26,3   | 25,1 | 26,4 | 103,5  |
| $4-R_2E_2$    | 19,6 | 21,1   | 19,0 | 18,6 | 78,3   |
| $5 - R_3E_1$  | 22,8 | 19,4   | 18,8 | 19,2 | 80,2   |
| $6 - R_3 E_2$ | 19,8 | 21,4   | 22,8 | 21,3 | 85,3   |
|               |      |        |      |      | 551,2  |

Ouadro da análise de variância

| Causa da variação | G.L. | SQ     | QM    | F       |
|-------------------|------|--------|-------|---------|
| Tratamentos       | 5    | 175,70 | 35,14 | 27,45** |
| Resíduo           | 18   | 23,09  | 1,28  | -       |
| Total             | 23   | 198,79 | -     | -       |

Verificamos que o teste é significativo a 1% de probabilidade, indicando que os tratamentos apresentam efeitos diferentes sobre as alturas das mudas.

Devemos proceder ao desdobramento dos 5 graus de liberdade de tratamentos.

## Quadro auxiliar

| (4)            | $R_1$ | R <sub>2</sub> | R <sub>3</sub> | TOTAIS DE E |
|----------------|-------|----------------|----------------|-------------|
| $\mathbf{E_1}$ | 102,6 | 103,5          | 80,2           | 286,3       |
| $\mathbb{E}_2$ | 101,3 | 78,3           | 85,3           | 264,9       |
| TOTAIS DE R    | 203,9 | 181,8          | 165,5          | 551,2       |

$$\begin{split} &\mathrm{SQ_R} = \frac{1}{8} \Big( 203.9^2 + 181.8^2 + 165.5^2 \Big) - C = 92.86 \\ &\mathrm{SQ_E} = \frac{1}{12} \Big( 286.3^2 + 264.9^2 \Big) - C = 19.08 \\ &\mathrm{SQ_{RxE}} = \mathrm{SQ_{Tratamentos}} - \mathrm{SQ_R} - \mathrm{SQ_E} \\ &\mathrm{SQ_{RxE}} = 175.70 - 92.86 - 19.08 = 63.76 \end{split}$$

# Quadro de análise de variância do fatorial:

| Causa da variação | G.L. | SQ       | QM    | F       |
|-------------------|------|----------|-------|---------|
| Recipientes (R)   | 2    | 92,86    | 46,43 | 36,27** |
| Espécies (E)      | 1    | 19,08    | 19,08 | 14,91** |
| Interação RxE     | 2    | 63,76    | 31,88 | 24,91** |
| (Tratamentos)     | (5)  | (175,70) | -     | -       |
| Resíduo           | 18   | 23,09    | 1,28  | -       |
| Total             | 23   | 198,79   | -     | -       |

Verificamos que o teste F para a interação foi significativa (P<0,01), indicando existir uma dependência entre os efeitos dos fatores Recipientes (R) e Espécies (E). Então, as conclusões que poderíamos tirar para os efeitos principais de recipientes (R) e de Espécies (E) ficam prejudicadas, pois:

- Os efeitos dos Recipientes dependem da Espécie utilizada; ou
- Os efeitos das Espécies dependem do recipiente utilizado.

Então, devemos proceder ao desdobramento da Interação RxE, o que pode ser feito de duas maneiras:

- a) Para estudar o comportamento das Espécies dentro de cada recipiente;
- b) Para estudar o comportamento dos Recipientes dentro de cada espécie.

# Desdobramento da Interação RxE para estudar o comportamento das Espécies dentro de cada recipiente;

$$\begin{split} &\mathrm{SQ_{Esp\acute{e}cie}}\,\mathrm{d.}\ R_1 = \frac{1}{4}\Big(102,\!6^2 + 101,\!3^2\Big) - \frac{203,\!9^2}{8} = 0,\!21\\ &\mathrm{SQ_{Esp\acute{e}cie}}\,\mathrm{d.}\ R_2 = \frac{1}{4}\Big(103,\!5^2 + 78,\!3^2\Big) - \frac{181,\!8^2}{8} = 79,\!38\\ &\mathrm{SQ_{Esp\acute{e}cie}}\,\mathrm{d.}\ R_3 = \frac{1}{4}\Big(80,\!2^2 + 85,\!3^2\Big) - \frac{165,\!5^2}{8} = 3,\!25 \end{split}$$

Análise de variância para estudo dos efeitos de Espécies em cada recipiente

| Causa da variação          | G.L. | SQ    | QM    | F                  |
|----------------------------|------|-------|-------|--------------------|
| Espécies d. R <sub>1</sub> | 1    | 0,21  | 0,21  | 0,16 <sup>NS</sup> |
| Espécies d. R <sub>2</sub> | 1    | 79,38 | 79,38 | 62,02**            |
| Espécies d. R <sub>3</sub> | 1    | 3,25  | 3,25  | $2,54^{NS}$        |
| Resíduo                    | 18   | 23,09 | 1,28  | -                  |

## Conclusões:

- a) Quando se utiliza o Recipiente  $R_1$  (saco plástico pequeno), não há diferença significativa (P>0,05) no desenvolvimento das mudas das 2 Espécies;
- **b)** Quando se utiliza o Recipiente  $R_2$  (saco plástico grande), há diferença significativa (P<0,01) no desenvolvimento das mudas das 2 Espécies, sendo melhor para a espécie  $E_1$  (*Eucalyptus citriodora*);
- **c)** Quando se utiliza o Recipiente R<sub>3</sub> (laminado), não há diferença significativa (P>0,05) no desenvolvimento das mudas das 2 Espécies.

**Exercício:** Proceder ao desdobramento da Interação RxE para estudar o comportamento dos recipientes dentro de cada espécie.

Os resultados do experimento podem ser resumidos na seguinte tabela:

|                | $\mathbf{R_1}$ | $R_2$          | $\mathbb{R}_3$ |
|----------------|----------------|----------------|----------------|
| $\mathbf{E_1}$ | 25,7 <b>aA</b> | 25,9 <b>aA</b> | 20,1 <b>bA</b> |
| $\mathbf{E_2}$ | 25,3 <b>aA</b> | 19,6 <b>bB</b> | 21,3 <b>bA</b> |

- **a, b** Para cada espécie, médias de recipientes seguidas de mesma letra minúscula não diferem significativamente entre si.
- A, B Para cada recipiente, médias de espécies seguidas de mesma letra maiúscula não diferem entre si.