0.1 H18 数学選択

1 (1)F/K が 2 次拡大であれば $\alpha \in F \setminus K$ の最小多項式の根は $a+b\sqrt{\beta}$ の形で表せる.この $\sqrt{\beta}$ を添加した体は F となる.

2 次の中間体の一つを $M=K(\sqrt{\beta})$ $(\beta \in K)$ とする. L/M は 2 次拡大であるから, $L=M(\sqrt{\gamma})$ $(a,b \in K, \gamma=a+b\sqrt{\beta})$ と表せる.

 $b \neq 0$ のとき. $(\gamma^2 - a)^2 = b^2 \beta$ より $x^4 - 2ax^2 + (a^2 - b^2 \beta) = 0$ の根は $\pm \sqrt{a \pm b\sqrt{\beta}}$ である. この多項式が可約なら $K(\sqrt{a + b\sqrt{\beta}})/K$ は 2 次拡大である. $(\sqrt{a + b\sqrt{\beta}})^2 = a + b\sqrt{\beta}$ より $K(\sqrt{a + b\sqrt{\beta}}) = K(\sqrt{\beta}) = M$ となる. これは矛盾. よって多項式は既約である.

b=0 のとき $\delta=\sqrt{\beta}+\sqrt{\gamma}$ とすると $(\delta-\sqrt{\beta})^2=\gamma=a^2$ より $\delta^2+\beta-a^2=2\sqrt{\beta}\delta$. よって $\delta^4+2(\beta-a^2)\delta^2+(\beta-a^2)^2=4\beta\delta^2$ より $x^4-2(a^2+\beta)x^2+(\beta-a^2)^2=0$ の根は $\pm\sqrt{\beta}\pm\sqrt{\gamma}$ である. 標数 が 2 でないから $K(\sqrt{\beta},\sqrt{\gamma})/K$ は Galois 拡大である. Galois 群は $\{\mathrm{id},\sigma,\tau,\tau\circ\sigma\}$ $(\sigma(\sqrt{\beta})=\sqrt{\beta},\sigma(\sqrt{\gamma})=\sqrt{\gamma},\tau(\sqrt{\beta})=-\sqrt{\beta},\tau(\sqrt{\gamma})=\sqrt{\gamma}\}$ である.

このとき任意の $f \in \operatorname{Gal}(K(\sqrt{\beta},\sqrt{\gamma})/K)$ に対して $f(\delta) \neq \delta$ であるから, $K(\delta)/K$ は 4 次拡大である.すなわち $x^4 - 2(a^2 + \beta)x^2 + (\beta - a^2)^2$ は既約である.

 $(2)b \neq 0$ のとき、 $a^2 - b^2\beta = c^2$ $(c \in K)$ である、 $\sqrt{a + b\sqrt{\beta}}\sqrt{a - b\sqrt{\beta}} = \sqrt{a^2 - b^2\beta} = c \in K$ より $K(\sqrt{a + b\sqrt{\beta}}) \ni \sqrt{a - b\sqrt{\beta}}$ である、よって L/K は Galois 拡大である。

 $\sigma \in \operatorname{Gal}(L/K)$ について $\sigma(\sqrt{a+b\sqrt{\beta}}) = \sqrt{a-b\sqrt{\beta}}$ とする.このとき $\sigma^2(\sqrt{a+b\sqrt{\beta}}) = \sigma(\sqrt{a-b\sqrt{\beta}}) = \sigma(c/\sqrt{a+b\sqrt{\beta}}) = c/\sqrt{a-b\sqrt{\beta}} = \sqrt{a+b\sqrt{\beta}}$ より $\sigma^2 = \operatorname{id}$ である.すなわち $\operatorname{Gal}(L/K)$ は位数 2 の元を二つもつ.

 $\operatorname{Gal}(L/K)$ は位数 4 の群であるから, $\mathbb{Z}/4\mathbb{Z},\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ のいずれかである.位数 2 の元を二つもつ群は $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ であるから, $\operatorname{Gal}(L/K) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ である.

よって中間体の数は $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ の部分群の数であるから 5 である. 非自明な中間体は 3 個ある.