Met <i>I</i>	l qa	rp I	Pro H	lis A 5	sn I	eu I	Leu I	Phe I	eu I 10	eu I	hr 1	le S	Ser I	le 15
Phe	Leu	Gly	Leu	Gly 20	Gln	Pro	Arg	Ser	Pro 25	Lys	Ser	Lys	Arg	30 Lys
Gly	Gln	Gly	Arg	Pro 35	Gly	Pro	Leu	Ala	Pro 40	Gly	Pro	His	Gln	Val 45
Pro	Leu	Asp	Leu	Val 50	Ser	Arg	Met	Lys	Pro 55	Tyr	Ala	Arg	Met	Glu 60
Glu	Tyr	Glu	Arg	Asn 65	Ile	Glu	Glu	Met	Val 70	Ala	Gln	Leu	Arg	Asn 75
Ser	Ser	Glu	Leu	Ala 80	Gln	Arg	Lys	Cys	Glu 85	Val	Asn	Leu	Gln	Leu 90
Trp	Met	Ser	Asn	Lys 95	Arg	Ser	Leu	Ser	Pro 100	Trp	Gly	Tyr	Ser	Ile 105
Asn	His	Asp	Pro	Ser 110	Arg	Ile	Pro	Val	Asp 115	Leu	Pro	Glu	Ala	Arg 120
Cys	Leu	Cys	Leu	Gly 125	Cys	Val	Asn	Pro	Phe 130	Thr	Met	Gln	Glu	Asp 135
Arg	Ser	Met	Val	Ser 140	Val	Pro	Val	Phe	Ser 145	Gln	Val	Pro	Val	Arg 150
Arg	Arg	Leu	Cys	Pro 155	Pro	Pro	Pro	Arg	Thr 160	Gly	Pro	Cys	Arg	Gln 165
Arg	Ala	Val	Met	Glu 170	Thr	Ile	Ala	Val	Gly 175	Cys	Thr	Cys	Ile	Phe

FIG. 1

aggegggcag cagetgcagg etgacettge agettggegg aatggactgg 50

ceteacaace tgetgttet tettaceatt tecatettee tggggetggg 100

ceageccagg agecccaaaa geaagaggaa ggggcaaggg eggeetggge 150

ceetggcece tgggeeteac caggtgcaac tggacetggt gteaeggatg 200

aaacegtatg eeegcatgga ggagtatgag aggaacateg aggagatggt 250

ggeecagetg aggaacaget cagagetgge eeagagaaag tgtgaggtea 300

acttgcaget gtggatgtee aacaagagga geetgtetee etggggetac 350

agcateaace aegaceccag eegtateeee gtggacetge eggaggeaeg 400

gtgeetgtg etgggetgtg tgaacecett caccatgcag gaggacegca 450

gcatggtgag egtgeeggtg tteagecagg tteetgtgeg eegeegeete 500

tgeecgecae egeecegcae agggeettge egecagegeg eagteatgga 550

gaccateget gtgggetgea eetgeatett etgaateaee tggeccagaa 600

gecaggccag cageeegaga ceatecteet tgeacetttg tgecaagaaa 650

ggectatgaa aagtaaacae tgaettttga aagcaag 687

FIG. 2

Met 1		Leu	Leu	Pro (31y	Leu	Leu	Phe	Leu '	Thr	Trp	Leu	His	Thr 15
Сув	Leu	Ala	His	His 20	Asp	Pro	Ser	Leu	Arg 25	Gly	His	Pro	His	Ser 30
His	Gly	Thr	Pro	His 35	Сув	Tyr	Ser	Ala	Glu 40	Glu	Leu	Pro	Leu	Gly 45
Gln	Ala	Pro	Pro	His 50	Leu	Leu	Ala	. Arg	Gly 55	Ala	Lys	Trp	Gly	Gln 60
Ala	Leu	Pro	Val	Ala 65	Leu	Val	Ser	Ser	Leu 70	Glu	Ala	Ala	Ser	His 75
Arg	Gly	Arg	, His	Glu 80	Arg	Pro	Ser	Ala	Thr 85	Thr	Gln	. Cys	Pro	Val 90
Leu	Arg	Pro	Glu	Glu 95	Val	Leu	Glu	Ala	Asp 100	Thr	His	Gln	Arg	Ser 105
Ile	Ser	Pro	Trp	Arg 110	Tyr	Arg	Val	. Asp	Thr 115	Asp	Glu	Asp	Arg	Tyr 120
Pro	Gln	Lys	Leu	Ala 125	Phe	Ala	Glu	Cys	Leu 130	Cys	Arg	Gly	Cys	Ile 135
Asp	Ala	Arg	Thr	Gly 140	Arg	g Glu	Thr	Ala	Ala 145	Leu	Asn	Ser	Val	Arg 150
Leu	Leu	Glr	n Ser	Leu 155	Leu	Val	Leu	Arg	Arg 160	Arg	J Pro	Cys	Ser	Arg 165
Asp	Gly	Se1	Gly	Leu 170	Pro	Thr	Pro	Gly	Ala 175		e Ala	Phe	His	Thr 180
Glu	ı Phe	: Ile	e His	Val 185	Pro	Val	Gly	y Cys	Thr 190		s Val	. Leu	Pro	Arg 195
Ser	val 197						FIG	à. 3						

gccaggtgtg caggccgctc caagcccagc ctgccccgct gccgccacca 50 tgacgeteet ecceggeete etgtttetga ectggetgea cacatgeetg 100 gcccaccatg acccctccct cagggggcac ccccacagtc acggtacccc 150 acactgctac teggetgagg aactgccct eggecaggee ecceacace 200 tgctggctcg aggtgccaag tgggggcagg ctttgcctgt agccctggtg 250 tccagcctgg aggcagcaag ccacaggggg aggcacgaga ggccctcagc 300 tacgacccag tgcccggtgc tgcggccgga ggaggtgttg gaggcagaca 350 cccaccagcg ctccatctca ccctggagat accgtgtgga cacggatgag 400 gaccgctatc cacagaagct ggccttcgcc gagtgcctgt gcagaggctg 450 tatcgatgca cggacggcc gcgagacagc tgcgctcaac tccgtgcggc 500 tgctccagag cctgctggtg ctgcgccgcc ggccctgctc ccgcgacggc 550 teggggetee ceacacetgg ggeetttgee ttecacaceg agtteateca 600 cgtccccgtc ggctgcacct gcgtgctgcc ccgttcagtg tgaccgccga 650 ggccgtgggg cccctagact ggacacgtgt gctccccaga gggcaccccc 700 tatttatgtg tatttattgt tatttatatg cctccccaa cactaccctt 750 ggggtctggg cattccccgt gtctggagga cagccccca ctgttctcct 800 catctccagc ctcagtagtt gggggtagaa ggagctcagc acctcttcca 850 gcccttaaag ctgcagaaaa ggtgtcacac ggctgcctgt accttggctc 900 cetgteetge teeeggette cettaceeta teaetggeet caggeceege 950 aggetgeete tteecaacet eettggaagt acceetgttt ettaaacaat 1000 tatttaagtg tacgtgtatt attaaactga tgaacacatc cccaaaa 1047

FIG. 4

ggcagcaggg accaagagag gcacgcttgc ccttttatga cat/cagagct 50 cctggttctt gctccttggg actctgggac ttacaccagt ggcacccctg 100 gctcnnnnn nnnnnaattc ggtacgaggc tggggttcag gcgggcagca 150 gctgcaggct gaccttgcag cttggcggaa tggactggcc tcacaacctg 200 ctgtttcttc ttaccatttc catcttcctg gggctgggcc agcccaggag 250 ccccaaaagc aagaggaagg ggcaagggcg gcctgggccc ctggtccctg 300 gccctcacca ggtgccactg gacctggtgt cacggatgaa accgtatgcc 350 cgcatggagg agtatgagag gaacatcgag gagatgttgg cccagctgag 400 gaacagttca gagctggccc agagaaagtg tgaggtcaac ttgcagctgt 450 ggatgtccaa caagaggagc ctgtctccct ggggctacag catcaaccac 500 gaccccagcc gtatccccgt ggacctccgg aggcacggtg cctgtgtctg 550 ggcttgtgtg aaccccttca ccatgcagga ggaccgcagc atggtgagcg 600 tgccggtgtt cagccaggtt cctgtgcgcc gccgcctctg cccgccaccg 650 ccccgcacag ggccttgccg ccagcgcgca gtcatggaga ccatcgctgt 700 gggctgcacc tgcatcttct gaatcgacct ggcccagaag ccaggccagc 750 agcccgagac catcctcctt gcacctttgt gccaagaaag gcctatgaaa 800 agtaaacact gacttttgaa agcaaaaaaa 830

FIG. 5

cacggatgag gaccgctatc cacagaagct ggccttcgcc gagtgcctgt 50
gcagaggctg tatcgatgca cggacgggcc gcgagacagc tgcgctcaac 100
tccgtgcggc tgctccagag cctgctggtg ctgcgccgcc ggccctgctc 150
ccgcgacggc tcggggctcc ccacacctgg ggcctttgcc ttccacaccg 200
agttcatcca cgtccccgtc ggctgcacct 230

FIG. 6

hIL17 hIL178 hIL17C	1
hIL17	16 SLEAIVKAGITIPRNPGCPNSEDKNFPRTVMVNLNIHNRNTNTNPKRSSD
hIL178	43 HQVPLDLVSRMKPYARMEEYERNIEEMVAQLR <u>NISS</u> ELAQRKCEVNLQLWM
hIL17C	51 LLARGAKWGQALPVALVSSLEAASHRGRHERPSATTQCPVLRPEEVLEAD
hIL17	66 YYNRSTSPWNLHRNEDPERYPSVIWEAKCRHLGCINADGNVDYHMNSVP1
hIL178	93 SNKRSLSPWGYSINHDPSRIIPVDIPEARCLCLGCVNPFTMQEDRSMVSVP
hIL17C	101 THQRSISPWRYRVDTDEDRYPQKLAFAECLCRGCIDARIGRETAALNSVR
hIL17 hIL178 hIL17C	116 Q Q E I . L. V. L. R. R. E. P. H. C. R. C.

FIG. 7A

JTWLHTCLAHHDP-SLRGHPHSHGTPHCYSAEELPLGQAP MOWPHNILFLITISIFIGLGOPPASPKSKRKGOGAPPGPLAPG 59294 62377

50 HLI ARGAKWGAALPVALVSSLEJAASHRGRHERPSATTOCOPVIRPEEVLE 48 DLIVS PAMKPYARM - - EEYERNIEIE MVAOLIANSSELAORKOEL 59294 62377

SPWARYAVDTDE DAYPOKLAFAECL CAGCIOAATGAET AALNSV MSNKRSLSPWGYSINHOPSRIPVOLPEARCLCLGCVNPFTHAGEDRSMV 100 DTHORS 8 59294 62377

RLLOSLLVLRRRPCSRDGSGLPTPGAFAFHTEFIHVPVGCTCVL · · · · PATGPCRORAVMETIAVGCTC 142 PVF. SOVPVRRRLCPPP মু 59294 62377

FIG. 7B

FIG. 8

FIG. 14

INHIBITION OF NITRIC OXIDE RELEASE DOES NOT BLOCK THE DETRIMENTAL EFFECTS OF IL 17 ON MATRIX BREAKDOWN OR SYNTHESIS

INHIBITION OF NO RELEASE ENHANCES IL $1-\alpha$ -INDUCED MATRIX BREAKDOWN BUT NOT MATRIX SYNTHESIS

FIG. 16

IL 17 HOMOLOGUE 1 (UNQ 516) HAS POSITIVE EFFECTS ON ARTICULAR CARTILAGE

FIG. 17

IL 17 HOMOLOGUE (UNQ 561) HAS DETRIMENTAL EFFECTS ON ARTICULAR CARTILAGE

FIG. 18