N91-28213

PROPULSION STUDIES FOR ADVANCED MANNED LAUNCH SYSTEMS

Vehicle Analysis Branch Space Systems Division NASA Langley Research Center

Presented by: D. Freeman

THE NEXT MANNED SPACE TRANSPORTATION SYSTEM

- Satisfy people/payload requirements
- Improve cost effectiveness
- Increase reliability
- Increase margins

MANNED SPACE TRANSPORTATION OPTIONS SCHEDULE

DESIGN FOR OPERATIONS, RELIABILITY AND SAFETY

Technology Advantage Applied to:

- Operations streamlining
- Robust subsystems
- Improved reliability
- Assured mission success
- Safety

Not Maximum Payload

ADVANCED MANNED LAUNCH SYSTEM CONCEPTS

VEHICLE DESIGN PROCESS

REFERENCE STME ENGINE

REFERENCE STBE ENGINE

LIFT-OFF THRUST-TO-WEIGHT TRADE

FULLY REUSABLE, ALL LOX/LH $_{\mathrm{2}}$

THRUST SPLIT TRADE AT LIFT-OFF

FULLY REUSABLE, ALL LOX/LH2

• Chose 7 engines on booster, 4 engines on orbiter

AMLS REUSABLE BOOSTERS

AMLS CONCEPT PROPULSION TRADES

SINGLE FUEL VERSUS DUAL FUEL

- All vehicles designed to same reference mission (polar, 12 klb) and same technology level
- Boosters use methane or hydrogen as main propellant (STME/STBE engine)

ADVANTAGES OF THE ALL-HYDROGEN VEHICLE

- Reduced development costs
 - Delete STBE-type engine development (traded off against slightly increased vehicle dry weight)
- Reduced production costs
 - Increased line production of one type of engine
- Simpler operations
 - Common engine systems used on both stages
 - Elimination of hydrocarbon fuel and associated storage, handling, and management organization structure
- Environmental factors
 - · Hydrogen fuel cleaner burning
 - Reduced engine maintenance
 - Elimination of detrimental hydrocarbon exhaust byproducts

SSME VERSUS SINGLE-POSITION STME

FULLY REUSABLE, ALL LOX/LH2 VEHICLE

DUAL-POSITION NOZZLE TRADE FULLY REUSABLE, ALL LOX/LH2

ENGINE-OUT CAPABILITY TRADE FULLY REUSABLE, ALL LOX/LH2 VEHICLE

- At least 4 engines required on both the booster and orbiter
- Increased vehicle reliability brings about:
 - Quantitative reduction in recurring costs
 - · Qualitative increase in crew and mission safety

ENGINE THRUST-TO-WEIGHT RATIO TRADE

FULLY REUSABLE, ALL LOX/LH₂

Constant O/F ratio and I_{SP} for all cases

AMLS OXIDIZER/FUEL RATIO TRADE FULLY REUSABLE

CONCLUSIONS

- Development of a new hydrocarbon booster engine (like the STBE) for next-generation manned systems may not be cost effective
- Development of a new hydrogen engine (like the STME) for nextgeneration manned systems could prove cost effective for use as a main (and booster) propulsion system
- Use of a dual-position nozzle would probably not be beneficial for a design-for-operations system like AMLS
- An increase in oxidizer-to-fuel ratio from the current SSME level of 6 to approximately 7 would be beneficial in reducing future launch system weights

TECHNOLOGY EFFECT ON ROCKET LAUNCH VEHICLE WEIGHT

ADVANCED SSTO VEHICLE TECHNOLOGIES

PRATT & WHITNEY VMR FLOW SCHEMATIC

ADVANCED VARIABLE-MIXTURE RATIO ENGINE HYDROGEN/OXYGEN

Mode	1	2	SSME (109%)	
O/F Ratio	12	6	6.026	
Nozzle	Retracted	Extended	Single-position	
Expansion Ratio	40	150	77.5	
Vacuum Thrust, lb	254,500	176,900	512,300	
Vacuum Isp, sec	362	467	452	
Chamber Press., psia	4,000	2,700	3260	
SL Thrust, lb	234,580	142,832*	417,300	
SL Thrust/Weight	109.5	66.68°	60	

*Area ratio of $\varepsilon = 40$

TRANSITION MACH NUMBER TRADE (VMR ENGINE) INITIAL TRADE

COMPARISON OF PROPULSION CHARACTERISTICS

TIME AVERAGED SPECIFIC IMPULSE

DRY WEIGHT SENSITIVITY TO PROPULSION TYPE

CONCLUSIONS

- Application of advanced technologies could allow introduction of rocket-powered SSTO vehicle for 2015 IOC
 - Low dry weight compared to two-stage and airbreathers
 - Lower operation costs than two-stage
- Application of variable-mixture-ratio technology and cooled, vaneless turbines could greatly benefit advanced vehicles
 - Lower specific impulse
 - Higher T.W ratio
 - Higher bulk density

·		
•		

PRESENTATION 1.3.9

NATIONAL AEROSPACE PLANE (NASP)