ĆWICZENIE NR 29A

POMIAR WSPÓŁCZYNNIKA ROZSZERZALNOŚCI LINIOWEJ METALI METODĄ ELEKTRYCZNĄ

I. Zestaw przyrządów:

- 1. Czujnik mikrometryczny do pomiaru wydłużenia drutu
- 2. Zasilacz prądu stałego: wydajność prądowa = 5A, U_{wy} = min. 10V
- 3. Cyfrowy miernik temperatury.

II. Schemat układu pomiarowego

III. Przygotowanie zestawu pomiarowego do pracy:

- 1. Sprawdzić zgodność elementów układu pomiarowego z powyższą listą.
- 2. Ustawić czujnik mikrometryczny tak, by duża wskazówka pokrywała się z cyfrą "0" jego skali na obwodzie. W tym celu należy ostrożnie przekręcić pierścień czujnika.

W trakcie pomiarów <u>nie dotykamy</u> czujnika mikrometrycznego !!!

3. Włączyć miernik temperatury i odczytać jego wskazanie – temperaturę początkową (pokojową) $\mathbf{t_o}$. Przyjąć, że długość początkowa $\mathbf{L_o}$ badanego drutu w temperaturze początkowej $\mathbf{t_o}$ wynosi

$$L_0 = (0.890 \pm 0.004)$$
[m] – dla 1 zestawu

$$L_0 = (0.900 \pm 0.004)$$
[m] – dla 2 zestawu

$$L_0 = (0.905 \pm 0.004)$$
[m] – dla 3 zestawu

IV. Przebieg pomiarów:

1. W obecności prowadzącego zajęcia – pokrętła regulacji ograniczenia prądowego i napięciowego ustawić w lewym skrajnym położeniu (takiemu położeniu odpowiada wartość 0A i 0V). Włączyć zasilacz. Ustawić napięcie bez obciążenia na ok. 7,5V i nie zmieniać.

(W pewnych typach zasilaczy, aby ustawić napięcie trzeba nastawić minimalną wartość prądu. W zasilaczach NDN i MPC należy tak pokręcić pokrętłem regulacji prądowej, by zgasła dioda cc a zaświeciła się dioda cv).

W niektórych zasilaczach napięcie wyjściowe jest już ustawione i na pokrętło regulacji napięciowej jest założona blokada.

Wartość prądu w obwodzie zmieniać od 0 co ok. 0,4 A - do chwili osiągnięcia temperatury ok. $140\,^{\circ}\text{C}$.

- 2. Po każdorazowym ogrzaniu drutu odczekać około 5 min., aby ustabilizowała się temperatura. Zanotować uzyskaną temperaturę t i wskazanie ΔL czujnika mikrometrycznego.
- 3. Pomiary przeprowadzać do temperatury drutu nie większej niż 140 °C.

V. Opracowanie wyników:

1. Sporządzić wykres zależności względnego wydłużenia drutu $\frac{\Delta L}{L_o}$ od przyrostu

temperatury ΔT ($\Delta T = t - t_o$). Dla wybranych punktów z początkowego, środkowego i końcowego zakresu temperatur zaznaczyć pola niepewności. Z nachylenia wykresu wyznaczyć współczynnik rozszerzalności liniowej α badanego materiału.

- 2. Metodą regresji liniowej wyznaczyć, a następnie omówić, parametry prostej $y = Ax \pm B$ (gdzie: $y = \Delta L/L_o$, $x = \Delta T$, $A = \alpha$, niepewność $\Delta A = \Delta \alpha$) oraz współczynnik korelacji r. Nanieść na wykres prostą najlepszego dopasowania. Porównać parametry tej prostej z wartością α wyznaczoną w punkcie 1 i przedyskutować wnioski płynące z tych porównań.
- 3. Wyniki pomiarów i obliczeń umieścić w tabelce.

VI. Proponowane tabele pomiarowe

L_{o}	ΔL_{o}	t_{o}	t	Δt	ΔT	ΔL'	Δ(ΔL')
m	m	°C	°C	°C	°C	m	m

ΔL	Δ(ΔL)	$\frac{\Delta L}{L_0}$	$\Delta \left(\frac{\Delta L}{L_o} \right)$	z wykresu	z regresji		Aa
				α	α=A	Δα=ΔΑ	$\frac{\Delta \alpha}{\alpha}$
m	m			1/K	1/K	1/K	%
•••							