B.Tech. 2nd Semester Examination, 2021

MA 202: ENGINEERING MATHEMATICS- II

Full Marks: 70 Time: 3 Hours

Group A (Answer any Five questions) 1. $2 \times 5 = 10$ Suppose R^3 is a vector space over R with (a, b, c) + (d, e, f) = (a + d, b + e, c + d, b)2 a) f) and $\alpha * (a, b, c) = (\alpha a, \alpha b, \alpha c)$. Show that for the subset $S = \{(a, b, c) : a = a \in S \}$ 2b = 3c} is a subspace or not. Verify whether the differential equation $(\cos y + y \cos x)dx + (\sin x - y \cos x)dx$ 2 b) $x \sin y$)dy = 0 is exact or not. c) Determine k so that the vectors (1,2,1), (k,1,1) and (1,1,2) are linearly 2 independent (k \in R). Find the inverse Laplace transform of the function 2 d) Suppose u, v, w are linearly independent vectors. Prove that the set S is linearly 2 e) independent where $S = \{u + v - 2w, u - v - w, u + w\}.$ 2 f) Show that the mapping $F: \mathbb{R}^2 \to \mathbb{R}^3$ defined by F(x+y) = (x+3, 2y, x+y) is

linear or not.

Find the co-efficient matrix and augmented matrix and then find their respective 2. ranks and find the solutions (if exist) of the following system of linear equations

$$1+1+2+1=5$$

$$x + 2y - 3z + 2t = 2$$
, $2x + 5y - 8z + 6t = 5$, $3x + 4y - 5z + 2t = 4$

3. Solve the following integral equation using Laplace Transform.

$$y'(t) + 3y(t) + 2 \int_0^t y(t) dt = t \text{ given } y(0) = 1.$$

Find the inverse Laplace transform of the following functions. 4.

$$2+3=5$$

i)
$$f(s) = \frac{s}{(s+1)(s^2-4s+13)}$$
 ii) $f(s) = \frac{e^{-2s}(s^2+s+1)}{s^2+4s+5}$

ii)
$$f(s) = \frac{e^{-2s}(s^2 + s + 1)}{s^2 + 4s + 5}$$

5. Solve the general solution of the differential equation $p = \log(px - y)$ and hence find the singular solution where $p = \frac{dy}{dx}$.

a) Show that the integral $\int_a^b \frac{dx}{(x-a)\sqrt{b-x}}$ is convergent or divergent. 6.

- b) Using Beta and Gamma functions to prove that $\int_0^{\pi/2} \sin^4 x \cos^5 x \, dx = \frac{8}{315}$.
- 7. a) Let V be a real vector space with $\{\alpha, \beta, \gamma\}$ as a basis. Prove that the set 4+1=5 $\{\alpha + \beta + \gamma, \beta + \gamma, \gamma\}$ is also a basis of *V*.
 - b) Determine k so that the set $s = \{(1,2,1), (k,3,1), (2,k,0)\}$ dependent in \mathbb{R}^3 .
- Let $G: \mathbb{R}^3 \to \mathbb{R}^2$ be defined by (x, y, z) = (2x + 3y z, 4x y + 2z). Find the 8. 5 matrix A relative to the bases $S = \{(1,1,0), (1,2,3), (1,3,5)\}$ and S' = $\{(1,2),(2,3)\}.$

9. If
$$A = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{bmatrix}$$
, show that $A^2 - 10A + 16I_3 = 0$. Hence obtain A^{-1} .

10 Evaluate f(22) by interpolation formula using the following table: 5

X	20	25	30	35	40	45
f(x)	354	332	291	260	231	204

Group C (Answer any Three Questions)

 $10 \times 3 = 30$

- 11. a) A mapping $T(x_1, x_2, x_2) = (x_1 + x_2 + x_3, 2x_1 + x_2 + 2x_3, x_1 + 2x_2 + x_3), (x_1, x_2, x_3) \in \mathbb{R}^3$. Show that T is a linear mapping. Find $Ker\ T$ and the dimension of $Ker\ T$.
 - b) Solve the Linear equation with higher degree $(D^2 + 2D + 5)y = xe^x$ where $D \equiv \frac{d}{dx}$.
 - c) Solve the following Bernoulli's equation $\frac{dy}{dx} + \frac{y \log y}{x} = \frac{y}{x^2} (\log y)^2$

5+3+2=10

- 12. a) Find the Characteristic polynomial and then Eigen value and the Eigen vectors corresponding to the matrix $A = \begin{pmatrix} 2 & 4 \\ -1 & 6 \end{pmatrix}$.
 - b) Then show that A satisfy the Cayley Hamilton Theorem and find the matrix P and D such that P is nonsingular and $D = P^{-1}AP$ is diagonal matrix.

(2+1+2)+(2+3)=10

- 13. a) Using Newton Raphson method find the root of the equation $e^x 3x \sin x = 0$ correct upto five decimal places.
 - b) Evaluate the integral $I = \int_0^1 \frac{1}{1+x} dx$ by using i) Trapezoidal rule and ii) Simpson $\frac{1}{3}$ rd rule with h = 0.5.

5+(2+3)=10

- 14. a) Discuss the convergence of $\int_0^\infty \frac{\cos x}{\sqrt{1+x^3}} dx$
 - b) Solve the differential equation $\frac{dy}{dx} = \frac{3x-4y-2}{3x-4y-3}$.
 - e) Solve the differential equation (x y + 3)dx = (2x 2y + 5)dy.

3+4+3=10

- 15. a) Find the root of the equation $x^x 2x + 2 = 0$ in the interval $0 \le x \le 1$ using bisection method correct to three decimal places.
 - b) Using Laplace Transform solve the following Differential equation y'' 4y' + 4y = x given that y(0) = 0, y'(0) = 1
 - c) Find the Order and Degree of the following ordinary differential equation $(y^n)^3 + (y^n)^4 + y = 0$

$$4+4+(1+1)=10$$