

Dimensional Modeling:

Module 1

Agenda

- Dimensional Modeling:
- Star, Snowflake, and Fact Constellation Schemas,
- OLAP in the data warehouse,
- major features and functions,
- OLAP models- ROLAP and MOLAP,
- and the difference between OLAP and OLTP.

What is a Data Warehouse?

- Defined in many different ways, but not rigorously.
 - A decision support database that is maintained separately from the organization's operational database
 - Support information processing by providing a solid platform of consolidated, historical data for analysis.
- "A data warehouse is a <u>subject-oriented</u>, <u>integrated</u>, <u>time-variant</u>, and <u>nonvolatile</u> collection of data in support of management's decision-making process."—W. H. Inmon
- Data warehousing:
 - The process of constructing and using data warehouses

Data Warehouse—Subject-Oriented

- Organized around major subjects, such as customer, product, sales
- Focusing on the modeling and analysis of data for decision makers, not on daily operations or transaction processing
- Provide a simple and concise view around particular subject issues by excluding data that are not useful in the decision support process

Data Warehouse—Integrated

- Constructed by integrating multiple, heterogeneous data sources
 - relational databases, flat files, on-line transaction records
- Data cleaning and data integration techniques are applied.
 - Ensure consistency in naming conventions, encoding structures, attribute measures, etc. among different data sources
 - E.g., Hotel price: currency, tax, breakfast covered, etc.
 - When data is moved to the warehouse, it is converted.

Data Warehouse—Time Variant

- The time horizon for the data warehouse is significantly longer than that of operational systems
 - Operational database: current value data
 - Data warehouse data: provide information from a historical perspective (e.g., past 5-10 years)
- Every key structure in the data warehouse
 - Contains an element of time, explicitly or implicitly
 - But the key of operational data may or may not contain "time element"

Data Warehouse—Nonvolatile

- A physically separate store of data transformed from the operational environment
- Operational update of data does not occur in the data warehouse environment
 - Does not require transaction processing, recovery, and concurrency control mechanisms
 - Requires only two operations in data accessing:
 - initial loading of data and access of data

OLTP vs. OLAP

	OLTP	OLAP
users	clerk, IT professional	knowledge worker
function	day to day operations	decision support
DB design	application-oriented	subject-oriented
data	current, up-to-date detailed, flat relational isolated	historical, summarized, multidimensional integrated, consolidated
usage	repetitive	ad-hoc
access	read/write index/hash on prim. key	lots of scans
unit of work	short, simple transaction	complex query
# records accessed	tens	millions
#users	thousands	hundreds
DB size	100MB-GB	100GB-TB
metric	transaction throughput	query throughput, response

Why a Separate Data Warehouse?

- High performance for both systems
 - DBMS— tuned for OLTP: access methods, indexing, concurrency control, recovery
 - Warehouse—tuned for OLAP: complex OLAP queries, multidimensional view, consolidation
- Different functions and different data:
 - missing data: Decision support requires historical data which operational DBs do not typically maintain
 - <u>data consolidation</u>: DS requires consolidation (aggregation, summarization) of data from heterogeneous sources
 - data quality: different sources typically use inconsistent data representations, codes and formats which have to be reconciled
- Note: There are more and more systems which perform OLAP analysis directly on relational databases

Data Warehouse: A Multi-Tiered Architecture

Data Sources

Data Storage

OLAP Engine Front-End Tools

Three Data Warehouse Models

Enterprise warehouse

 collects all of the information about subjects spanning the entire organization

Data Mart

- a subset of corporate-wide data that is of value to a specific groups of users. Its scope is confined to specific, selected groups, such as marketing data mart
 - Independent vs. dependent (directly from warehouse) data mart

Virtual warehouse

- A set of views over operational databases
- Only some of the possible summary views may be materialized

Extraction, Transformation, and Loading (ETL)

Data extraction

get data from multiple, heterogeneous, and external sources

Data cleaning

detect errors in the data and rectify them when possible

Data transformation

convert data from legacy or host format to warehouse format

Load

 sort, summarize, consolidate, compute views, check integrity, and build indicies and partitions

Refresh

propagate the updates from the data sources to the warehouse

Metadata Repository

- Meta data is the data defining warehouse objects. It stores:
- Description of the structure of the data warehouse
 - schema, view, dimensions, hierarchies, derived data defn, data mart locations and contents
- Operational meta-data
 - data lineage (history of migrated data and transformation path), currency of data (active, archived, or purged), monitoring information (warehouse usage statistics, error reports, audit trails)
- The algorithms used for summarization
- The mapping from operational environment to the data warehouse
- Data related to system performance
 - warehouse schema, view and derived data definitions
- Business data
 - business terms and definitions, ownership of data, charging policies

From Tables and Spreadsheets to **Data Cubes**

- A data warehouse is based on a multidimensional data model which views data in the form of a data cube
- A data cube, such as sales, allows data to be modeled and viewed in multiple dimensions
 - **Dimension tables**, such as item (item_name, brand, type), or time(day, week, month, quarter, year)
 - Fact table contains measures (such as dollars_sold) and keys to each of the related dimension tables
- In data warehousing literature, an n-D base cube is called a base cuboid. The top most 0-D cuboid, which holds the highest-level of summarization, is called the apex cuboid. The lattice of cuboids forms a data cube.

Cube: A Lattice of Cuboids

Conceptual Modeling of Data Warehouses

- Modeling data warehouses: dimensions & measures
 - Star schema: A fact table in the middle connected to a set of dimension tables
 - Snowflake schema: A refinement of star schema where some dimensional hierarchy is normalized into a set of smaller dimension tables, forming a shape similar to snowflake
 - <u>Fact constellations</u>: Multiple fact tables share dimension tables, viewed as a collection of stars, therefore called <u>galaxy schema</u> or fact constellation

Example of Star Schema

Example of Snowflake Schema

Fact Constellation Shema

- Fact constellations: Multiple fact tables share dimension tables, viewed as a collection of stars, therefore called galaxy schema or fact constellation.
- This Schema is commonly used for data warehouses, since it can model multiple and interrelated subjects.
- For data marts, the star or snowflake schema are commonly used both are geared toward modeling single subjects, although the star schema is more popular and efficient.

Example of Fact Constellation

A Concept Hierarchy: Dimension (location)

Multidimensional Data

 Sales volume as a function of product, month, and region

Produ Month

Dimensions: *Product, Location, Time* Hierarchical summarization paths

A Sample Data Cube

Cuboids Corresponding to the Cube

Typical OLAP Operations

- Roll up (drill-up): summarize data
 - by climbing up hierarchy or by dimension reduction
- Drill down (roll down): reverse of roll-up
 - from higher level summary to lower level summary or detailed data, or introducing new dimensions
- Slice and dice: project and select
- Pivot (rotate):
 - reorient the cube, visualization, 3D to series of 2D planes
- Other operations
 - drill across: involving (across) more than one fact table
 - drill through: through the bottom level of the cube to its back-end relational tables (using SQL)

Typical OLAP Operations

Explaining OLAP Concept with Cube PowerPoint Graphics

3-dimensional Cube in Data Warehousing Example

with dimensions Location, Quarter, Product categories

Example: You want to summarize sales by specific product, by the time, and by store location.

These are data cube dimensions.

What Is a Slice in Online Analytical Processing

OLAP Slice

Slice is a term for a dimension which is held constant for all cells so that multi-dimensional information can be shown in a two-dimensional physical space of a spreadsheet or pivot table.

Source: Wikipedia

Dicing - OLAP Operation Explanation Template

Dicing is an operation of creating a sub-cube from the main one. (...) add your own description here

Roll-up - OLAP Operation Explanation Template

Summarizing data along a dimension (unlike dicing, it's not picking a sub-cube).

(...) add your own description here

Drill-down OLAP Operation Explanation Template

Drill-down is an operation opposite to roll-up. (...) add your own description here

Pivoting Rotation - OLAP Operation Explanation Template

Pivoting allows to see another perspective on the dataset, by rotating the whole cube in space.

(...) add your own description here

Design of Data Warehouse: A Business Analysis Framework

- Four views regarding the design of a data warehouse
 - Top-down view
 - allows selection of the relevant information necessary for the data warehouse
 - Data source view
 - exposes the information being captured, stored, and managed by operational systems
 - Data warehouse view
 - consists of fact tables and dimension tables
 - Business query view
 - sees the perspectives of data in the warehouse from the view of end-user

Data Warehouse Design Process

- Top-down, bottom-up approaches or a combination of both
 - <u>Top-down</u>: Starts with overall design and planning (mature)
 - Bottom-up: Starts with experiments and prototypes (rapid)

From software engineering point of view

- Waterfall: structured and systematic analysis at each step before proceeding to the next
- Spiral: rapid generation of increasingly functional systems, short turn around time, quick turn around

Typical data warehouse design process

- Choose a business process to model, e.g., orders, invoices, etc.
- Choose the <u>grain</u> (<u>atomic level of data</u>) of the business process
- Choose the dimensions that will apply to each fact table record
- Choose the measure that will populate each fact table record

Data Warehouse Usage

- Three kinds of data warehouse applications
 - Information processing
 - supports querying, basic statistical analysis, and reporting using crosstabs, tables, charts and graphs
 - Analytical processing
 - multidimensional analysis of data warehouse data
 - supports basic OLAP operations, slice-dice, drilling, pivoting
 - Data mining
 - knowledge discovery from hidden patterns
 - supports associations, constructing analytical models, performing classification and prediction, and presenting the mining results using visualization tools

OLAP Server Architectures

Relational OLAP (ROLAP)

- Use relational or extended-relational DBMS to store and manage warehouse data and OLAP middle ware
- Include optimization of DBMS backend, implementation of aggregation navigation logic, and additional tools and services
- Greater scalability
- Multidimensional OLAP (MOLAP)
 - Sparse array-based multidimensional storage engine
 - Fast indexing to pre-computed summarized data
- Hybrid OLAP (HOLAP) (e.g., Microsoft SQLServer)
 - Flexibility, e.g., low level: relational, high-level: array
- Specialized SQL servers (e.g., Redbricks)
 - Specialized support for SQL queries over star/snowflake schemas

S.NO	ROLAP	MOLAP
1.	ROLAP stands for Relational Online Analytical Processing.	While MOLAP stands for Multidimensional Online Analytical Processing.
2.	ROLAP is used for large data volumes.	While it is used for limited data volumes.
3.	The access of ROLAP is slow.	While the access of MOLAP is fast.
4.	In ROLAP, Data is stored in relation tables.	While in MOLAP, Data is stored in multidimensional array.
5.	In ROLAP, Data is fetched from data-warehouse.	While in MOLAP, Data is fetched from MDDBs database.
6.	In ROLAP, Complicated sql queries are used.	While in MOLAP, Sparse matrix is used.
7.	In ROLAP, Static multidimensional view of data is created.	While in MOLAP, Dynamic multidimensional view of data is created.

Summary

- Data warehousing: A multi-dimensional model of a data warehouse
 - A data cube consists of dimensions & measures
 - Star schema, snowflake schema, fact constellations
 - OLAP operations: drilling, rolling, slicing, dicing and pivoting
- Data Warehouse Architecture, Design, and Usage
 - Multi-tiered architecture
 - Business analysis design framework
 - Information processing, analytical processing, data mining, OLAM (Online Analytical Mining)
- Implementation: Efficient computation of data cubes
 - Partial vs. full vs. no materialization
 - Indexing OALP data: Bitmap index and join index
 - OLAP query processing
 - OLAP servers: ROLAP, MOLAP, HOLAP
- Data generalization: Attribute-oriented induction

Thank you