Pričakovana vrednost, varianca

Nataša Kejžar

Povzetek

Spoznali boste kako:

- generiramo vzorce iz končnih in neskončnih populacij
- računamo kvantile v populaciji in na vzorcu
- narišemo gostoto, verjetnostno funkcijo, porazdelitveno funkcijo
- s simulacijami preverjamo pristranskost cenilke: ugotovili smo, da je povprečna ocena natančnejša, če naredimo večje število simulacij

Nekaj osnovnih verjetnostnih izrazov, ki se v statistiki pogosto uporabljajo

Pričakovana vrednost

• izračun po definiciji

$$E(X) = \sum_{i=1}^{\infty} x_i p(x_i)$$
$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

• lastnosti

$$E(aX) = a \cdot E(X)$$

$$E(X + Y) = E(X) + E(Y)$$

- Jensenova neenakost: za konkavno funkcijo f velja (za konveksno pa ravno obratno)
- https://www.statlect.com/fundamentals-of-probability/Jensen-inequality

$$f(E(X)) \ge E(f(X))$$

Varianca

• po definiciji

$$var(X) = E\left[(X - E(X))^2 \right]$$

• lastnosti

$$var(X) = E(X^2) - E(X)^2$$

$$var(aX) = a^2 \cdot var(X)$$

$$var(X + Y) = var(X) + var(Y) + 2 \cdot cov(X, Y)$$

$$var(X) = E_Y(var(X|Y)) + var_Y(E(X|Y))$$

- izračun variance za diskretne spremenljivke (za izračun ${\cal E}(X)$ glej zgoraj)

$$var(X) = \sum_{i=1}^{\infty} x_i^2 p(x_i) - E(X)^2$$

Kovarianca

• po definiciji

$$cov(X,Y) = E[(X - E(X))(Y - E(Y))]$$

• lastnosti

$$cov(X, Y + Z) = cov(Y + Z, X) = cov(X, Y) + cov(X, Z)$$

Naloge

- 1. Pomoč za porazdelitve v R: help(Distributions). Za vzorec velikosti 1000 iz porazdelitve $N(120, 30^2)$ narišite:
 - a. verjetnostno porazdelitev (hist, parameter probability, breaks, ali s knjižnico ggplot2)
 - Kaj je gostota porazdelitve? Kaj dobimo, če narišemo rezultate funkcije density?
 - Na histogram dodajte še pričakovano vrednost za to spremenljivko (abline, parameter v; ali geom_vline)
 - Na histogram dodajte še gostoto normalne porazdelitve (uporabite funkciji dnorm in curve, parameter add=TRUE; ali stat_function)
 - b. porazdelitveno funkcijo (ecdf) Ponovite isto za vzorec velikosti 10. Komentirajte opažanja.
- 2. Povprečna porodna teža novorojenčka v Sloveniji je 3.300 gramov, večina donošenih novorojenčkov ob rojstvu tehta med 2.500 in 4.100 grami.
 - a. Če velja, da je teža novorojenčkov v populaciji normalno porazdeljena in da sta spodnja in zgornja meja 5. in 95. percentil, z R izračunajte, kolikšen je standardni odklon teže novorojenčkov.
 - b. Izračunajte interkvartilni razmik za težo.
 - c. V katerem percentilu se nahaja novorojenček, ki je težak 2900 g?
 - d. Iz teoretične porazdelitve izberite vzorec 5, 50, 500 enot in na vzorcu izračunajte percentil za novorojenčka s 2900 grami. Primerjajte in komentirajte rezultata.
 - e. Za izbran vzorec s 500 enotami izračunajte 90% **interval zaupanja za povprečje**. Primerjajte ga z intervalom, ki so ga poročali na začetku naloge. Komentirajte.
- 3. Teoretične nalogice:
 - a. pokažite s pomočjo definicije za varianco, da drži $var(X) = E(X^2) E(X)^2$
 - b. pokažite s pomočjo vsote varianc, da drži $var(2X) = 4 \cdot var(X)$
 - c. pokažite, da varianco končne populacije (velikosti N) lahko zapišemo tudi kot

$$var(X) = \frac{1}{2N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} (x_i - x_j)^2.$$

- 4. Verjetnostna porazdelitev končne populacije, ki vas zanima, je predstavljena v spodnji tabeli pod nalogo. V njej je 1500 enot.
 - a. Izračunajte pričakovano vrednost populacije v R.
 - po definiciji
 - tako da zapišete populacijo v vektor (funkcija rep)
 - b. Izračunajte varianco populacije v R. Zakaj izračun s funkcijo var da drugačen rezultat?
 - c. Iz populacije bi radi izbrali vzorec velikosti 15 s ponavljanjem. Zapišite kodo v R. (sample)
 - d. Iz populacije bi radi izbrali vzorec velikosti 15 brez ponavljanja. Zapišite kodo v R.

X	1	2	3	4	5
$\overline{p(X)}$	1/15	1/5	4/15	2/5	1/15

- 5. Naj bo spremenljivka X porazdeljena po $Bernoulli(\pi = 0.85)$.
 - a. Generirajte 100 opazovanj. (uporabite npr. runif ali sample)
 - b. Izračunajte po definiciji E(X) in var(X).
 - c. Vemo, da je vsota neodvisnih, enako porazdeljenih Bernoullijevih spremenljivk porazdeljena po

- binomski porazdelitvi $(Y = \sum_{i=1}^n X_i \sim Bin(n,\pi))$. Pokažite to s simulacijo velikega vzorca. d. Izpeljite, da velja $var(Y) = n \cdot \pi(1-\pi)$.
- 6. Radi bi primerjali povprečni teži dveh velikih skupin morskih prašičkov. Prva skupina so tisti, ki so hišni ljubljenčki v Evropi, druga tisti iz ZDA. V ta namen zberemo enako velika vzorca.
 - a. Kateri statistični test bi uporabili? Kaj lahko poveste o kovarianci teh dveh skupin?
 - b. Simulirajte populacijsko kovarianco v R (funkcija cov) za naslednji spremenljivki (predpostavite lahko, da sta teži v populaciji pribl. normalno porazdeljeni):
 - X_{EU} in X_{ZDA} (koliko je populacijska kovarianca?)
 - X_{EU} in $X_{EU} X_{ZDA}$ (kaj pričakujete?)
 - c. Izračunajte kovarianco teoretično.
- 7. Imate normalno porazdeljeno spremenljivko $(X \sim N(0,1))$. Grafično preverite rezultat iz Rice-a (6. poglavje), da je $X^2 \sim \chi^2_{df=1}$.
 - a. izberite dovolj velik vzorec iz N(0,1).
 - b. narišite gostoto kvadriranih vrednosti
 - c. dodajte gostoto porazdelitve χ_1^2
- 8. Imate dve neodvisni spremenljivki X_1 in X_2 , ki sta porazdeljeni po χ^2 porazdelitvi z df_1 in df_2 stopinjami prostosti.
 - a. Grafično preverite, da je $X_1 + X_2 = X_3$, kjer je $X_3 \sim \chi^2_{df_1 + df_2}$.
 - b. Naj bosta sedaj $X_1 \sim \chi^2_{df_1}$ in $X_3 \sim \chi^2_{df_1+df_2}$ neodvisni spremenljivki. Ali mislite, da velja tudi $X_3 X_1 = X_2$, kjer je $X_2 \sim \chi^2_{df_2}$? Komentirajte zakaj.
 - Narišite porazdelitev spremenljivke $X_3 X_1$.
 - c. Kako mislite, da je porazdeljena razlika dveh neodvisnih standardno normalno porazdeljenih spremenljivk? Zakaj (oblika, variabilnost)? Preverite grafično.
- 9. Generirajte vrednosti za N=10 enot veliko populacijo s kodo pod nalogo. Vse naslednje primere v Rzakodirajte tako, da boste lahko kadarkoli spremenili vrednosti enot in tudi število enot.
 - a. Izračunajte povprečje po formuli $\mu = 1/N \sum_{i=1}^{N} x_i$.
 - b. Posebej seštejte pozitivne in negativne odmike od povprečja.
 - c. Izračunajte varianco po obeh formulah, ki ste jih omenili na predavanjih.
 - d. Izmislite si poljubno vrednost a in izračunajte vsoto kvadriranih odmikov (VKO) od te vrednosti. Za izračun te količine naredite funkcijo.
 - e. Za različne vrednosti ajev (npr. med [4,10]) izračunajte vsoto kvadriranih odmikov in dvojice narišite na graf. Z rdečo označite vrednost $N\sigma^2$ (pri kateri vrednosti a se pojavi?).

```
set.seed(1)
x = sample(x = 1:10, size=10,replace=TRUE)
```

- 10. Odgovorite:
 - a. S kakšnim namenom za izračun variance kvadriramo odmike od povprečja?
 - b. Kaj se dogaja z VKO pri različnih vrednostih a? Pri katerem a je v splošnem VKO najmanjši? Zakaj?
 - c. Ponovite prejšnjo vajo z N=20 enot, ki lahko zavzamejo vrednosti 0 ali 1. Kakšne vrednosti aboste vzeli za risanje grafa in zakaj?
- 11. Izračunajte delež vrednosti nad 132 za vzorec n=1000, ki ga dobite iz porazdelitve $N(120,30^2)$. Primerjajte dobljeni delež z verjetnostjo, ki jo izračunamo iz gostote (pnorm).
 - a. Primerjajte rezultate, ki jih dobite iz vzorca iz 10 enot in vzorca iz 1000 enot. Kje so bistvene razlike in zakaj pride do njih?

- 12. Zapišite intuitivno cenilko za populacijsko povprečje.
 - a. Pokažite teoretično, da je cenilka nepristranska.
 - b. Pokažite to s simulacijami na velikosti vzorca 10 iz $N(120, 30^2)$:
 - generirajte 1000 vzorcev (uporabite for zanko ali replicate); za vsak vzorec izračunajte oceno za povprečje in te ocene shranite v nov vektor
 - če je cenilka nepristranska, morajo ocene variirati okrog populacijskega povprečja; preverite
 - c. Narišite graf
 - d. Izračunajte pričakovano vrednost