Geometric Control of Coupled Stochastic PDE Systems under Regulatory Constraints:

A Framework for Financial Systemic Risk Stabilization

Han Shen Independent Researcher

July 4, 2025

Abstract

We propose a novel theoretical framework to study the stabilization of coupled stochastic partial differential equation (SPDE) systems through geometric constraints on their underlying base manifolds. Motivated by the dynamics of highly interconnected financial markets, we treat each SPDE subsystem as an evolving market component, whose interaction is governed by coupling kernels. Regulatory mechanisms are modeled as geometric constraints or boundary conditions on each subsystem's base manifold. The aim is to design such regulatory geometries to ensure global stability, prevent blow-up, and mitigate systemic risk propagation. Preliminary ideas, models, and possible analytical directions are recorded here for further development.

1. Introduction and Motivation

The global financial system is inherently a high-dimensional, stochastic, and highly coupled dynamical system. Systemic crises—such as the 2008 financial crash—often emerge from the failure of local mechanisms to prevent runaway behaviors in the coupled network.

In this note, we explore the possibility of modeling financial subsystems as stochastic PDEs, interacting via coupling terms, and governed by geometric structures (e.g., boundary conditions, curvature) imposed by regulatory authorities. The goal is to find geometric and analytic conditions under which the entire system exhibits stability (in the sense of boundedness, invariant measures, or ergodicity).

2. Theoretical Framework

Let $\{X_t^{(i)}\}_{i=1}^n$ denote a collection of n SPDE subsystems, each defined on a compact Riemannian manifold (\mathcal{M}_i, g_i) , and let the system evolve under the following coupled dynamics:

$$dX_t^{(i)} = \left[A_i X_t^{(i)} + F_i(X_t^{(1)}, \dots, X_t^{(n)}) \right] dt + B_i dW_t^{(i)}, \quad i = 1, \dots, n$$
 (1)

Here:

- A_i is a differential operator (e.g., Laplace–Beltrami operator) on \mathcal{M}_i ;
- F_i represents inter-subsystem coupling, possibly nonlinear and state-dependent;

- B_i is a noise operator, modeling stochastic perturbations;
- $W_t^{(i)}$ are independent cylindrical Wiener processes.

2.1. Interpretation in Financial Systems

- Each $X_t^{(i)}$ models the evolution of a financial submarket (e.g., a credit market, derivative market, or interbank lending system).
- The base manifold \mathcal{M}_i encodes regulatory geometry: constraints, bounded leverage, transaction restrictions.
- The coupling term F_i models systemic risk propagation: information spillovers, liquidity contagion, etc.

3. Geometric Regulation as Control Strategy

We define a geometric regulator \mathcal{R} acting on each subsystem:

 $\mathcal{R}_i: \mathcal{M}_i \mapsto \text{modified geometry (e.g., boundary, curvature)}$

Possible design strategies include:

- 1. Imposing Dirichlet or Robin-type boundary conditions to simulate market circuit-breakers;
- 2. Adjusting curvature tensors to model frictions or asymmetric information;
- 3. Constraining the spectrum of A_i or the strength of F_i ;
- 4. Defining a dynamic feedback regulation that adapts $\mathcal{M}_i(t)$ over time.

4. Goals and Research Questions

- 1. Under what conditions on $\{\mathcal{M}_i\}$ and $\{F_i\}$ does the full coupled system possess a global attractor or invariant measure?
- 2. Can the geometry be designed to eliminate blow-up solutions?
- 3. How can we interpret curvature or boundary behavior in financial terms (e.g., liquidity, information asymmetry)?
- 4. What are the optimal regulation policies minimizing systemic volatility?

5. Future Directions

This document serves as an initial sketch for future mathematical and computational investigation. Next steps include:

- Studying simplified two-subsystem models with linear coupling;
- Numerical experiments on coupled stochastic heat equations on different manifolds;
- Exploring infinite-dimensional Lyapunov methods;

• Investigating applications to specific financial products (e.g., structured derivatives, CDO networks).

Acknowledgments

This note is a work-in-progress inspired by interdisciplinary ideas across stochastic dynamics, financial mathematics, and differential geometry.

Author Contact: shenhan.math@gmail.com