SEMAINE DU 26/03 AU 30/03

1 Cours

Polynômes

Polynômes à une indéterminée à coefficients dans \mathbb{K} Définitions : polynôme à coefficients dans \mathbb{K} , ensemble $\mathbb{K}[X]$. Deux polynômes sont égaux si et seulement si leurs coefficients sont égaux. Polynômes pairs, impairs. $(\mathbb{K}[X], +, \times)$ est un anneau intègre commutatif. $(\mathbb{K}[X], +, \cdot)$ est un \mathbb{K} -espace vectoriel. Base canonique de $\mathbb{K}[X]$. Degré d'un polynôme. Degré d'une combinaison linéaire, d'un produit. Définition de $\mathbb{K}_n[X]$. $\mathbb{K}_n[X]$ est un sous-espace vectoriel de $\mathbb{K}[X]$. Base canonique de $\mathbb{K}_n[X]$. Famille de polynômes à degrés échelonnés. Fonction polynomiale associée à un polynôme. Racine d'un polynôme. Cas des polynômes pairs/impairs et des polynômes à coefficients réels. Polynôme dérivé. La dérivation est linéaire. Formule de Leibniz. Formule de Taylor.

Arithmétique de $\mathbb{K}[X]$ Relation de divisibilité. Division euclidienne. Algorithme de division euclidienne. Un polynôme P admet a pour racine si et seulement si il est divisible par X-a. Existence et unicité d'un PGCD unitaire ou nul. Algorithme d'Euclide pour les polynômes. Théorème de Bézout. Polynômes premiers entre eux. Lemme de Gauss. Un polynôme de degré n admet au plus n racines. Polynômes interpolateurs de Lagrange. Existence et unicité d'un PPCM unitaire ou nul.

Racines multiples Définition. Un polynôme de degré n admet au plus n racines comptées avec multiplicité. Caractérisation de la multiplicité d'une racine par les dérivées successives.

Factorisation Polynômes irréductibles. Définition et décomposition en facteurs irréductibles. Théorème de d'Alembert-Gauss. Polynômes irréductibles de $\mathbb{C}[X]$ et $\mathbb{R}[X]$. Polynôme scindé. Un polynôme est scindé **si et seulement si** il possède autant de racines comptées avec multiplicité que son degré. Lien coefficients/racines.

Fractions rationnelles

Corps des fractions rationnelles Définition. Opérations. Degré. Dérivation. $\mathbb{K}(X)$ est un \mathbb{K} -espace vectoriel et un corps.

Fonctions rationnelles, zéros et pôles Fonction rationnelle associée à une fraction rationnelle. Zéros et pôles d'une fraction rationnelle. Multiplicité d'un zéro ou d'un pôle.

Décomposition en éléments simples Partie entière. Décomposition en éléments simples sur \mathbb{C} et sur \mathbb{R} . Décomposition en éléments simples de $\frac{P'}{P}$ où P est scindé.

Sous-espaces affines

Sous-espaces affines Définition. Intersection de sous-espaces affines.

Équations linéaires Description de l'ensemble des solutions de f(x) = b d'inconnue $x \in E$ où $f \in \mathcal{L}(E, F)$ et $b \in F$.

2 Méthodes à maîtriser

- ▶ Pour résoudre des équations d'inconnue polynomiale, chercher dans un premier temps à déterminer le degré du polynôme inconnu
- ▶ Déterminer le reste d'une division euclidienne (utiliser les racines du diviseur).
- ▶ Montrer qu'un polynôme est nul en montrant qu'il admet une infinité de racines.
- ► Caractériser la multiplicité d'une racine via les dérivées successives.
- \blacktriangleright Passer de la décomposition en facteurs irréductibles sur $\mathbb{C}[X]$ à celle sur $\mathbb{R}[X]$.
- ▶ Utiliser la parité et le fait qu'un polynôme est à coefficients réels pour obtenir des racines à partir d'une racine donnée.
- ▶ Résoudre des systèmes polynomiaux symétriques en les inconnues.
- ▶ Exprimer une somme et un produit de racines à l'aide des coefficients du polynôme.
- lacktriangle Décomposition en éléments simples d'une fraction rationnelle F=P/Q :
 - · Calculer la partie entière.

- Factoriser le dénominateur en produit de facteurs irréductibles.
- Écrire la décomposition en éléments simples à l'aide de coefficients inconnus.
- Déterminer des coefficients ou des relations entre ceux-ci :
 - Le coefficient associé à un pôle simple a et P(a)/Q'(a);
 - Évaluer $(X a)^p F$ en un pôle a (DES dans \mathbb{C}) ou $(X^2 + aX + b)^p F$ en un racine de $x^2 + aX + b$ (DES dans \mathbb{R});
 - − Utiliser le fait que $F \in \mathbb{R}(X)$: les coefficients de la DES dans \mathbb{C} sont conjugués ;
 - Utiliser la parité éventuelle de la fraction rationnelle ;
 - Utiliser la limite de xF(x) quand x tend vers $+\infty$;
 - Évaluer en des valeurs particulières.
- \blacktriangleright Structure de l'ensemble des solutions d'une équation linéaire f(x) = b: solution particulière + solutions de l'équation homogène

3 Questions de cours

Soit $n \in \mathbb{N}^*$. Déterminer les racines de $P_n = (X+i)^n - (X-i)^n$. En déduire les valeurs de $A_n = \sum_{k=1}^{n-1} \cot n \frac{k\pi}{n}$ et

$$B_n = \prod_{k=1}^{n-1} \cot \frac{k\pi}{n}.$$

- ▶ Soit $n \in \mathbb{N}^*$. Déterminer la décomposition en éléments simples de $\frac{1}{X^n-1}$ dans $\mathbb{C}(X)$.
- ► Soit $P = \prod_{k=1}^{n} (X a_k)^{r_k} \in \mathbb{K}[X]$. Montrer que $\frac{P'}{P} = \sum_{k=1}^{n} \frac{r_k}{X a_k}$.