

deeplearning.ai

Basics of Neural Network Programming

Logistic Regression

Logistic Regression

Given
$$x$$
, want $\hat{y} = P(y=1|x)$
 $x \in \mathbb{R}^{n}x$
Parareters: $w \in \mathbb{R}^{n}x$, $b \in \mathbb{R}$.
Output $\hat{y} = \sigma(w^{T}x + b)$
Output $\hat{y} = \sigma(z)$

deeplearning.ai

Basics of Neural Network Programming

Logistic Regression cost function

Logistic Regression cost function

Given
$$\{(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})\}$$
, want $\hat{y}^{(i)} \approx y^{(i)}$.

Given $\{(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})\}$, want $\hat{y}^{(i)} \approx y^{(i)}$.

Loss (error) function: $\int_{\mathcal{C}} (\hat{y}, y) = \frac{1}{2} (\hat{y} - y)^2$

If $y = 1$: $\int_{\mathcal{C}} (\hat{y}, y) = -\log \hat{y} \in \text{Mont log} \hat{y} \text{ large}$, wat \hat{y} large.

If $y = 0$: $\int_{\mathcal{C}} (\hat{y}, y) = -\log (1 - \hat{y}) \in \text{Mont log} + \hat{y}$ large $\int_{\mathcal{C}} \text{Mont log} + (1 - y) \log (1 - \hat{y}) \log (1 - \hat{y})$

Andrew Ng