databases & dplyr

Lecture 16

Dr. Colin Rundel

The why of databases

Numbers every programmer should know

Task	Timing (ns)	Timing (µs)
L1 cache reference	0.5	
L2 cache reference	7	
Main memory reference	100	0.1
Random seek SSD	150,000	150
Read 1 MB sequentially from	250,000	250
memory		
Read 1 MB sequentially from SSD	1,000,000	1,000
Disk seek	10,000,000	10,000
Read 1 MB sequentially from disk	20,000,000	20,000
Send packet CA->Netherlands->CA	150,000,000	150,000

Implications for big data

Lets imagine we have a 10 GB flat data file and that we want to select certain rows based on a particular criteria. This requires a sequential read across the entire data set.

File Location	Performance	Time
in memory	$10 \text{ GB} \times (250 \mu\text{s}/1 \text{ MB})$	2.5 seconds
on disk (SSD)	$10 \text{ GB} \times (1 \text{ ms/1 MB})$	10 seconds
on disk (HD)	$10 \text{ GB} \times (20 \text{ ms/1 MB})$	200 seconds

This is just for *reading* sequential data, if we make any modifications (*writing*) or the data is fragmented things are much worse.

Blocks

So usually possible to grow our disk storage to accommodate our data. However, memory is usually the limiting resource, and if we can't fit everything into memory?

Create *blocks* - group related data (i.e. rows) and read in multiple rows at a time. Optimal size will depend on the task and the properties of the disk.

Linear vs Binary Search

Even with blocks, any kind of querying / subsetting of rows requires a linear search, which requires (N) accesses where N is the number of blocks.

We can do much better if we are careful about how we structure our data, specifically sorting' some (or all) of the columns.

- Sorting is expensive, $(N \log N)$, but it only needs to be done once.
- After sorting, we can use a binary search for any subsetting tasks ($(\log N)$).
- These "sorted" columns are known as indexes.
- Indexes require additional storage, but usually small enough to be kept in memory while blocks stay on disk.

and then?

This is just barely scratching the surface,

- Efficiency gains are not just for disk, access is access
- In general, trade off between storage and efficiency
- Reality is a lot more complicated for everything mentioned so far, lots of very smart people have spent a lot of time thinking about and implementing tools
- Different tasks with different requirements require different implementations and have different criteria for optimization

Databases

R & databases - the DBI package

Low level package for interfacing R with Database management systems (DBMS) that provides a common interface to achieve the following functionality:

- connect/disconnect from DB
- create and execute statements in the DB
- extract results/output from statements
- error/exception handling
- information (meta-data) from database objects
- transaction management (optional)

RSQLite

Provides the implementation necessary to use DBI to interface with an SQLite database.

```
1 library(RSQLite)
```

this package also loads the necessary DBI functions as well.

Once loaded we can create a connection to our database,

Example Table

```
employees = tibble(
            = c("Alice", "Bob", "Carol", "Dave", "Eve", "Frank"),
 2
     name
     email = c("alice@company.com", "bob@company.com",
 3
                 "carol@company.com", "dave@company.com",
 4
 5
                 "eve@company.com", "frank@comany.com"),
     salary = c(52000, 40000, 30000, 33000, 44000, 37000),
 6
     dept = c("Accounting", "Accounting", "Sales",
                 "Accounting", "Sales", "Sales"),
 8
 9
10
   dbWriteTable(con, name = "employees", value = employees)
12 ## [1] TRUE
13
14 dbListTables(con)
15 ## [1] "employees"
```

Removing Tables

```
dbWriteTable(con, "employs", employees)
2 ## [1] TRUE
3
4 dbListTables(con)
5 ## [1] "employees" "employs"
6
7 dbRemoveTable(con, "employs")
8 ## [1] TRUE
9
10 dbListTables(con)
11 ## [1] "employees"
```

Querying Tables

Databases queries are transactional (see ACID) and are broken up into 3 steps:

```
(res = dbSendQuery(con, "SELECT * FROM employees"))
   ## <SQLiteResult>
   ## SQL SELECT * FROM employees
   ## ROWS Fetched: 0 [incomplete]
   ##
            Changed: 0
 6
   dbFetch(res)
   ##
                         email salary
        name
                                          dept
   ## 1 Alice alice@company.com 52000 Accounting
   ## 2
        Bob
               bob@company.com 40000 Accounting
   ## 3 Carol carol@company.com 30000
                                          Sales
   ## 4 Dave dave@company.com 33000 Accounting
   ## 5 Eve eve@company.com 44000
                                          Sales
  ## 6 Frank frank@comany.com 37000
                                          Sales
15
   dbClearResult(res)
   ## [1] TRUE
```

For cenvenience

There is also dbGetQuery() for simpler use cases,

```
(res = dbGetQuery(con, "SELECT * FROM employees"))
##
                      email salary
                                         dept
      name
## 1 Alice alice@company.com 52000 Accounting
## 2
            bob@company.com 40000 Accounting
     Bob
## 3 Carol carol@company.com 30000
                                        Sales
## 4 Dave dave@company.com 33000 Accounting
           eve@company.com 44000
     Eve
                                        Sales
## 6 Frank frank@comany.com 37000
                                        Sales
```

Creating tables

```
1 dbCreateTable(con, "iris", iris)
   (res = dbSendQuery(con, "select * from iris"))
   ## <SQLiteResult>
  ## SOL select * from iris
6 ## ROWS Fetched: 0 [complete]
7 ##
           Changed: 0
8
   dbFetch(res)
  ## [1] Sepal.Length Sepal.Width Petal.Length Petal.Width Species
11 ## <0 rows> (or 0-length row.names)
1 dbFetch(res) %>% as tibble()
2 ## # A tibble: 0 × 5
  ## # ... with 5 variables: Sepal.Length <dbl>, Sepal.Width <dbl>, Petal.Length
   ## # Petal.Width <dbl>, Species <chr>
6 dbClearResult(res)
```

Adding to tables

```
dbAppendTable(con, name = "iris", value = iris)
   ## [1] 150
   ## Warning message:
 4 ## Factors converted to character
   res = dbSendQuery(con, "select * from iris")
   dbFetch(res) %>% as tibble()
   ## # A tibble: 150 x 5
         Sepal.Length Sepal.Width Petal.Length Petal.Width Species
   ##
                <db1>
                           <db1>
                                        <db1>
                                                    <dbl> <chr>
   ## 1
                  5.1
                             3.5
                                          1.4
                                                      0.2 setosa
   ## 2
                 4.9
                             3
                                          1.4
                                                      0.2 setosa
   ## 3
                 4.7
                             3.2
                                          1.3
                                                     0.2 setosa
10
   ## 4
                 4.6
                            3.1
                                         1.5
                                                     0.2 setosa
   ## 5
                             3.6
                                          1.4
                                                     0.2 setosa
   ## 6
                 5.4
                             3.9
                                          1.7
                                                     0.4 setosa
   ## 7
                 4.6
                             3.4
                                          1.4
13
                                                     0.3 setosa
14
   ## 8
                             3.4
                                          1.5
                                                     0.2 setosa
                 4.4
   ## 9
                             2.9
                                          1.4
                                                     0.2 setosa
15
  ## 10
                  4.9
                             3.1
16
                                          1.5
                                                      0.1 setosa
   ## # ... with 140 more rows
                                    Sta 523 - Fall 2022
```

Ephemeral results

```
1 res
 2 ## <SQLiteResult>
 3 ## SOL select * from iris
 4 ## ROWS Fetched: 150 [complete]
 5 ##
           Changed: 0
 6
   dbFetch(res) %>% as_tibble()
 8 ## # A tibble: 0 x 5
  ## # ... with 5 variables: Sepal.Length <dbl>, Sepal.Width <dbl>, Petal.Length
10 ## # Species <chr>
11
12 dbClearResult(res)
```

Closing the connection

```
1 con
2 ## <SQLiteConnection>
3 ## Path::memory:
4 ## Extensions: TRUE
5
6 dbDisconnect(con)
7 ## [1] TRUE
8
9 con
10 ## <SQLiteConnection>
11 ## DISCONNECTED
```

dplyr & databases

Creating a database

```
1 db = DBI::dbConnect(RSQLite::SQLite(), "flights.sqlite")
 2 ( flight tbl = dplyr::copy to(
 3
        db, nycflights13::flights, name = "flights", temporary = FALSE) )
           table<flights> [?? x 19]
# Source:
# Database: sqlite 3.39.4 [flights.sqlite]
    year month day dep time sched ...¹ dep d...² arr t...³ sched...⁴ arr d...⁵
   <int> <int> <int>
                        <int>
                                 <int>
                                         <dbl>
                                                  <int>
                                                          <int>
                                                                  <dbl>
   2013
                          517
                                    515
                                                    830
                                                            819
                                                                     11
             1
                   1
                                              2
    2013
             1
                   1
                          533
                                   529
                                              4
                                                    850
                                                            830
                                                                     20
 3
    2013 1
                   1
                          542
                                   540
                                              2
                                                    923
                                                            850
                                                                     33
   2013
                   1
                          544
                                   545
                                             -1
                                                   1004
                                                           1022
                                                                    -18
 4
             1
    2013
                   1
                          554
                                   600
                                             -6
                                                    812
                                                            837
                                                                    -25
 5
                                    558
    2013
                   1
                          554
                                                    740
                                                            728
                                                                     12
             1
                                             -4
                                   600
                                                            854
    2013
             1
                   1
                          555
                                             -5
                                                    913
                                                                     19
    2013
                   1
                          557
                                   600
                                             -3
                                                    709
                                                            723
                                                                    -14
 8
                                   600
                                             -3
                                                    838
                                                            846
    2013
                   1
                          557
                                                                     -8
                                             -2
                                                    753
10
    2013
                   1
                          558
                                   600
                                                            745
             1
                                                                      8
```

What have we created?

All of this data now lives in the database on the *filesystem* not in *memory*,

```
1 pryr::object size(db)
2.46 kB
 1 pryr::object size(flight tbl)
6.46 kB
 1 pryr::object size(nycflights13::flights)
40.65 MB
 1 fs::dir info(glob = "*.sqlite")
# A tibble: 1 × 18
        type size permiss...1 modification time user group
 path
  <fs::path> <fct> <fs:> <fs::per> <dttm>
                                                 <chr> <chr>
1 flights.sqlite file 21.1M rw-r--r- 2022-10-24 09:51:59 rund... staff
# ... with 11 more variables: device id <dbl>, hard links <dbl>,
#
   special device id <dbl>, inode <dbl>, block size <dbl>,
   blocks <dbl>, flags <int>, generation <dbl>, access time <dttm>,
                                 Sta 523 - Fall 2022
```

24

What is flight_tbl?

```
1 class(nycflights13::flights)
[1] "tbl df" "tbl"
                            "data.frame"
 1 class(flight tbl)
[1] "tbl SQLiteConnection" "tbl dbi"
[3] "tbl sql"
                         "tbl lazy"
[5] "tbl"
 1 str(flight tbl)
List of 2
 $ src :List of 2
  .. $ con :Formal class 'SQLiteConnection' [package "RSQLite"] with 8 slots
                         :<externalptr>
  .. .. ..@ ptr
  ....@ dbname
                             : chr "flights.sqlite"
  .. .. ..@ loadable.extensions: logi TRUE
  .. .. ..@ flags
                 : int 70
  .. .. ..@ vfs
                          : chr ""
  .. .. ..@ ref
                        :<environment: 0x123030200>
  .....@ bigint : chr "integer64"
  .....@ extended types : logi FALSE
  ..$ disco: NULL
                                   Sta 523 - Fall 2022
  ..- attr(*, "class")= chr [1:4] "src_SQLiteConnection" "src_dbi" "src_sql" "src"
```

Accessing existing tables

```
1 (dplyr::tbl(db, "flights"))
# Source: table<flights> [?? x 19]
# Database: sqlite 3.39.4 [flights.sqlite]
   year month day dep time sched ... dep d... arr t... sched... arr d... 5
   <int> <int> <int>
                       <int>
                             <int>
                                      <dbl> <int>
                                                        <int>
                                                                <dbl>
 1 2013
            1
                   1
                         517
                                  515
                                            2
                                                  830
                                                          819
                                                                   11
   2013
                                  529
                                                  850
                                                          830
                                                                   20
            1
                  1
                         533
                                            4
   2013
                                  540
                                                          850
                                                                   33
             1
                   1
                         542
                                                  923
   2013
            1
                                  545
                                                         1022
                                                                  -18
                  1
                         544
                                           -1
                                                 1004
   2013
             1
                                  600
                                           -6
                                                  812
                                                          837
                                                                  -25
                         554
             1
                                  558
                                                          728
                                                                   12
 6
   2013
                   1
                         554
                                           -4
                                                  740
   2013
                                  600
                                                          854
             1
                   1
                         555
                                           -5
                                                  913
                                                                   19
   2013
             1
                         557
                                  600
                                                  709
                                                          723
                   1
                                           -3
                                                                  -14
 8
    2012
             1
                                  6 N N
                                                  020
                                                          016
                          ににつ
                                                                    0
```

Using dplyr with sqlite

```
1 (oct_21 = flight_tbl %>%
2  filter(month == 10, day == 21) %>%
3  select(origin, dest, tailnum)
4 )
```

```
SQL [?? x 3]
# Source:
# Database: sqlite 3.39.4 [flights.sqlite]
   origin dest tailnum
   <chr> <chr> <chr>
 1 EWR
          CLT
                N152UW
 2 EWR
          IAH
                N535UA
                N5BSAA
 3 JFK
          MIA
 4 JFK
          SJU
                N531JB
 5 JFK
          BQN
                N827JB
 6 LGA
                N15710
          IAH
 7 JFK
          IAD
                N825AS
 8 EWR
          TPA
                N802UA
 9 LGA
          ATL
                N996DL
```

N627JB

10 JFK

FLL

```
dplyr::collect(oct 21)
# A tibble: 991 × 3
   origin dest tailnum
   <chr> <chr> <chr>
                N152UW
 1 EWR
          CLT
                N535UA
 2 EWR
          IAH
                N5BSAA
 3 JFK
          MIA
 4 JFK
          SJU
                N531JB
 5 JFK
                N827JB
          BON
 6 LGA
          IAH
                N15710
 7 JFK
                N825AS
          IAD
                N802UA
 8 EWR
          TPA
 9 LGA
          ATL
                N996DL
10 JFK
                N627JB
          FLL
# ... with 981 more rows
```

Laziness

dplyr / dbplyr uses lazy evaluation as much as possible, particularly when working with non-local backends.

- When building a query, we don't want the entire table, often we want just enough to check if our query is working / makes sense.
- Since we would prefer to run one complex query over many simple queries, laziness allows for verbs to be strung together.
- Therefore, by default dplyr
 - won't connect and query the database until absolutely necessary (e.g. show output),
 - and unless explicitly told to, will only query a handful of rows to give a sense of what the result will look like.
 - we can force evaluation via compute(), collect(), or collapse()

A crude benchmark

```
1 system.time({
2  (oct_21 = flight_tbl %>%
3    filter(month == 10, day == 21)
4    select(origin, dest, tailnum)
5  )
6 })
```

```
user system elapsed
0.003     0.000     0.003
```

```
1 system.time({
2  print(oct_21) %>%
3  capture.output() %>%
4  invisible()
5 })
```

```
user system elapsed
0.019 0.001 0.020
```

```
1 system.time({
2  dplyr::collect(oct_21) %>%
3   capture.output() %>%
4  invisible()
5 })
```

```
user system elapsed 0.039 0.005 0.044
```

dplyr -> SQL - show_query()

More complex queries

```
1 oct 21 %>%
 2
      group by(origin, dest) %>%
      summarize(n=n(), .groups = "drop")
# Source:
           SQL [?? x 3]
# Database: sqlite 3.39.4 [flights.sqlite]
   origin dest
                    n
   <chr> <chr> <int>
 1 EWR
          \mathsf{ATL}
                   15
 2 EWR
         AUS
 3 EWR
         AVL
                    1
         BNA
 4 EWR
 5 EWR
         BOS
                   17
```

4

6 EWR

7 EWR

8 EWR

9 EWR

10 EWR

BTV

BUF

BWI

CHS

CLE

```
oct 21 %>%
      group by(origin, dest) %>%
      summarize(n=n(), .groups = "drop") %>
      show query()
  4
<SOL>
SELECT `origin`, `dest`, COUNT(*) AS `n`
FROM (
  SELECT `origin`, `dest`, `tailnum`
  FROM `flights`
  WHERE ('month' = 10.0) AND ('day' = 21.0)
GROUP BY `origin`, `dest`
```

```
1 oct_21 %>%
2   count(origin, dest) %>%
3   show_query()

<SQL>
SELECT `origin`, `dest`, COUNT(*) AS `n`
FROM (
   SELECT `origin`, `dest`, `tailnum`
   FROM `flights`
WHERE (`month` = 10.0) AND (`day` = 21.0)
```

GROUP BY `origin`, `dest`

Sta 523 - Fall 2022

32

SQL Translation

In general, dplyr / dbplyr knows how to translate basic math, logical, and summary functions from R to SQL. dbplyr has a function, translate_sql(), that lets you experiment with how R functions are translated to SQL.

```
1 dbplyr::translate sql(x == 1 \& (y < 2 | z > 3))
\langle SQL \rangle \ \dot{x} = 1.0 \ AND \ (\dot{y} < 2.0 \ OR \ \dot{z} > 3.0)
  1 dbplyr::translate sql(x ^ 2 < 10)
\langle SQL \rangle (POWER(x, 2.0)) \langle 10.0
  1 dbplyr::translate sql(x %% 2 == 10)
\langle SQL \rangle ('x' % 2.0) = 10.0
  1 dbplyr::translate sql(mean(x))
<SQL> AVG(`x`) OVER ()
  1 dbplyr::translate sql(mean(x, na.rm=TRUE))
<SQL> AVG(`x`) OVER ()
```

```
1 dbplyr::translate_sql(sd(x))
Error in `sd()`:
! sd() is not available in this SQL variant

1 dbplyr::translate_sql(paste(x,y))

<SQL> CONCAT_WS(' ', `x`, `y`)

1 dbplyr::translate_sql(cumsum(x))

<SQL> SUM(`x`) OVER (ROWS UNBOUNDED PRECEDING)

1 dbplyr::translate_sql(lag(x))

<SQL> LAG(`x`, 1, NULL) OVER ()
```

Sta 523 - Fall 2022

34

Dialectic variations?

By default dbplyr::translate_sql() will translate R / dplyr code into ANSI SQL, if we want to see results specific to a certain database we can pass in a connection object,

```
1 dbplyr::translate_sql(sd(x), con = db)

<SQL> STDEV(`x`) OVER ()

1 dbplyr::translate_sql(paste(x,y), con = db)

<SQL> `x` || ' ' || `y`

1 dbplyr::translate_sql(cumsum(x), con = db)

<SQL> SUM(`x`) OVER (ROWS UNBOUNDED PRECEDING)

1 dbplyr::translate_sql(lag(x), con = db)

<SQL> LAG(`x`, 1, NULL) OVER ()
```

Sta 523 - Fall 2022

35

Complications?

```
1 oct_21 %>% mutate(tailnum_n_prefix = grepl("^N", tailnum))
Error: no such function: grepl

1 oct_21 %>% mutate(tailnum_n_prefix = grepl("^N", tailnum)) %>% show_query()

<SQL>
SELECT `origin`, `dest`, `tailnum`, grepl('^N', `tailnum`) AS `tailnum_n_prefix`
FROM `flights`
WHERE (`month` = 10.0) AND (`day` = 21.0)
```

SQL -> R / dplyr

Running SQL queries against R objects

There are two packages that implement this in R which take very different approaches,

- tidyquery this package parses your SQL code using the queryparser package and then translates the result into R / dplyr code.
- sqldf transparently creates a database with teh data and then runs the query using that database. Defaults to SQLite but other backends are available.

tidyquery

```
data(flights, package = "nycflights13")

tidyquery::query(
    "SELECT origin, dest, COUNT(*) AS n

FROM flights
WHERE month = 10 AND day = 21
GROUP BY origin, dest"

8 )
```

```
# A tibble: 181 × 3
   origin dest
                    n
   <chr> <chr> <int>
 1 EWR
          ATL
                    15
 2 EWR
          AUS
                     3
 3 EWR
          AVL
                     1
 4 EWR
                     7
          BNA
 5 EWR
          BOS
                    17
 6 EWR
          BTV
                     3
 7 EWR
          BUF
 8 EWR
          BWT
                     1
 9 EWR
          CHS
                     4
10 EWR
          CLE
                     4
# ... with 171 more rows
```

```
1 flights %>%
2 tidyquery::query(
3    "SELECT origin, dest, COUNT(*) AS n
4    WHERE month = 10 AND day = 21
5    GROUP BY origin, dest"
6 ) %>%
7 arrange(desc(n))
```

```
# A tibble: 181 \times 3
  origin dest
                     n
   <chr> <chr> <int>
 1 JFK
          LAX
                    32
 2 LGA
          ORD
                    31
 3 LGA
                    30
          ATL
          SFO
 4 JFK
                    24
 5 LGA
          CLT
                    22
 6 EWR
          ORD
                    18
 7 EWR
          SFO
                    18
 8 EWR
          BOS
                    17
 9 LGA
                    17
          MIA
10 EWR
          LAX
                    16
# ... with 171 more rows
```

Translating to dplyr

summarise(n = dplyr::n()) %>%

ungroup()

```
1 tidyquery::show_dplyr(
2    "SELECT origin, dest, COUNT(*) AS n
3    FROM flights
4    WHERE month = 10 AND day = 21
5    GROUP BY origin, dest"
6 )

flights %>%
  filter(month == 10 & day == 21) %>%
  group_by(origin, dest) %>%
```

sqldf

```
1 sqldf::sqldf(
2    "SELECT origin, dest, COUNT(*) AS n
3    FROM flights
4    WHERE month = 10 AND day = 21
5    GROUP BY origin, dest"
6 )
```

```
origin dest n
      EWR ATL 15
1
      EWR AUS 3
      EWR AVL 1
3
      EWR BNA 7
4
      EWR BOS 17
5
      EWR BTV 3
      EWR BUF 2
7
8
      EWR
          BWI
9
      EWR
          CHS 4
10
      EWR
           CLE 4
11
      EWR CLT 15
12
      EWR
           CMH 3
      EWR CVG 9
13
          DAY 4
14
      EWR
15
      EWR
          DCA 3
16
      EWR DEN 8
```

```
1 sqldf::sqldf(
2    "SELECT origin, dest, COUNT(*) AS n
3    FROM flights
4    WHERE month = 10 AND day = 21
5    GROUP BY origin, dest"
6 ) %>%
7    as_tibble() %>%
8    arrange(desc(n))
```

```
# A tibble: 181 × 3
   origin dest
                     n
   <chr> <chr> <int>
 1 JFK
          LAX
                    32
 2 LGA
          ORD
                    31
 3 LGA
          ATL
                    30
 4 JFK
          SFO
                    24
 5 LGA
          CLT
                    22
 6 EWR
          ORD
                   18
 7 EWR
          SFO
                   18
 8 EWR
          BOS
                   17
 9 LGA
          MIA
                   17
10 EWR
                    16
          LAX
# ... with 171 more rows
```

Closing thoughts

The ability of dplyr to translate from R expression to SQL is an incredibly powerful tool making your data processing workflows portable across a wide variety of data backends.

Some tools and ecosystems that are worth learning about:

- Spark sparkR, spark SQL, sparklyr
- DuckDB
- Apache Arrow