Climate Change

Claire Lee, Samyu Krishnasamy, Bianca Linares, Semin Ahn

Data Selection - Climate Change: Earth Surface Temperature Data

Global Land Temperatures By Major City

- dt (date)
- Average Temperature
- Average Temperature Uncertainty
- City
- Country
- Latitude
- Longitude

Global Land Temperatures By State

- dt (date)
- Average Temperature
- Average Temperature Uncertainty
- State
- Country

Goal: Analyze long-term climate trends to uncover regional variations in surface temperatures across major cities and states, focusing on:

- Identifying global warming patterns by observing changes in average temperatures over time.
- Comparing temperature trends between urban areas (major cities) and broader regions (states) to understand the impact of urbanization and industrialization.

Difficulties

- Finding datasets that were both relevant to the assignment and had enough data.
- Another difficulty was finding a dataset that was made by a credible source

Provenance: Kaggle/Berkeley Earth Surface Temperature Study

ETL Pipeline

Cloud Storage

Project Creation:

- Created a Google Cloud project to manage resources and permissions
- Enabled necessary APIs

BigQuery Dataset Setup:

- Navigated to BigQuery Console in the Google Cloud
- Created new datasets to organize and store transformed data

Data Upload:

- Uploaded transformed datasets directly to BigQuery tables
- Defined table schemas to match the structure of the transformed data

Data Accessibility:

- Ensured the data is securely stored and accessible for analysis

Analysis

	=====Major City=====			=====State=====		
ě	$average temperature \ average temperature uncertainty$		$average temperature \ average temperature uncertaint$			
coun	t 228175	228175	count	620027	620027.000000	
mean	18.125969	0.969343	mean	8.993111	1.287647	
std	10.024800	0.979644	std	13.772150	1.360392	
min	-26.772000	0.040000	min	-45.389000	0.036000	
25%	12.710000	0.340000	25%	-0.693000	0.316000	
50%	20.428000	0.592000	50%	11.199000	0.656000	
75%	25.918000	1.320000	75%	19.899000	1.850000	
max	38.283000	14.037000	max	36.339000	12.646000	

Challenges/Insights

Challenge 1: Managing Large Datasets

- Problem: Extracting and loading large datasets caused memory spikes and performance delays, especially with tools like pd.read_csv().
- Solution: Implemented chunked reading with Python's pandas to process data in smaller, manageable portions. Used bulk_write() in MongoDB to batch operations, improving insertion speed and efficiency.

Challenge 2: Cloud Integration Issues

- Problem: Establishing and maintaining a connection between Google Cloud and Google Colab was initially confusing, requiring proper authorization and active connections.
- Solution: Generated and managed credentials to ensure seamless integration. Troubleshot workflows to maintain connectivity, improving the pipeline's reliability.

Challenge 3: Duplicate Data Handling

- Problem: Inserting new data into the database often resulted in duplicate records, disrupting consistency.
- Solution: Employed bulk operations with upsert to ensure existing records were updated and new records inserted without duplication. Split data into smaller batches, reducing processing time and improving overall accuracy.

Technical Lessons:

- Scalability: Leveraged chunked processing and distributed systems to handle large datasets effectively.
- Cloud Expertise: Developed skills in integrating Google Cloud with analytical tools like Google Colab for seamless workflows.

Analytical Lessons:

- Visualization: Improved ability to identify and communicate trends and outliers through iterative experimentation.
- Team Coordination: Learned the importance of structured workflows and clear task delegation for project success.