Curves You Should Know

Graph	Cartesian	Parametric	Polar
$\Delta x \qquad m = \frac{\Delta y}{\Delta x}$	y = mx + b	$x = at$ $y = ct + b,$ where $m = \frac{c}{a}$	$r(\theta) = \frac{b}{\sin \theta - m \cos \theta}$
(0.c)	y = c	x = at + b $y = c$	$r(\theta) = \frac{c}{\sin \theta}$
(d,0)	x = d	x = d $y = at + b$	$r(\theta) = \frac{d}{\cos \theta}$
R	$x^2 + y^2 = R^2$	$x = R \cos t$ $y = R \sin t,$ $0 \le t \le 2\pi$	$r(\theta) = R$

Graph	Cartesian	Parametric	Polar
(R < 0 flips across x-axis)	$x^2 + (y - R)^2 = 1$	$x = 2R \sin t \cos t$ $y = 2R \sin t \sin t,$ $0 \le t \le 2\pi$	$r(\theta) = 2R\sin\theta$
(R < 0 flips across y-axis)	$(x-R)^2 + y^2 = 1$	$x = 2R \cos t \cos t$ $y = 2R \cos t \sin t,$ $0 \le t \le 2\pi$	$r(\theta) = 2R\cos\theta$
$(0 \le t \le n\pi \text{ crosses } x\text{-axis } n \text{ times})$	$x^2 + y^2 = \arctan^2\left(\frac{y}{x}\right)$	$x = t \cos t$ $y = t \sin t,$ $0 \le t \le 2\pi$	$r(\theta) = \theta$
$(0 \le t \le n\pi \text{ crosses } x\text{-axis } n \text{ times})$	$x^2 + y^2 = e^{2\arctan\left(\frac{y}{x}\right)}$	$x = e^{t} \cos t$ $y = e^{t} \sin t,$ $0 \le t \le 2\pi$	$r(\theta) = e^{\theta}$

Graph	Cartesian	Parametric	Polar
(R < 0 flips across x-axis)		$x = R(1 + \sin t) \cos t$ $y = R(1 + \sin t) \sin t,$ $0 \le t \le 2\pi$	$r(\theta) = R(1 + \sin \theta)$
$(R < 0 ext{ flips across } y ext{-axis})$	_	$x = R(1 + \cos t) \cos t$ $y = R(1 + \cos t) \sin t,$ $0 \le t \le 2\pi$	$r(\theta) = R(1 + \cos \theta)$
(C < 0 flips across x-axis) (Big/small $C = big/small inner loop)$		$x = (1 + C \sin t) \cos t$ $y = (1 + C \sin t) \sin t,$ $0 \le t \le 2\pi$	$r(\theta) = 1 + C\sin\theta$
(C < 0 flips across y-axis) $(Big/small C = big/small inner loop)$		$x = (1 + C\cos t)\cos t$ $y = (1 + C\cos t)\sin t,$ $0 \le t \le 2\pi$	$r(\theta) = 1 + C\cos\theta$

Graph	Cartesian	Parametric	Polar
(C < 0 flips across x-axis) $2C petals$		$x = \sin(Ct)\cos t$ $y = \sin(Ct)\sin t,$ $0 \le t \le 2\pi$ $C \text{ even}$	$r(\theta) = \sin(C\theta)$ $C \text{ even}$
$(C < 0 ext{ flips across } x ext{-axis})$ $C ext{ petals}$		$x = \sin(Ct)\cos t$ $y = \sin(Ct)\sin t,$ $0 \le t \le 2\pi$ $C \text{ odd}$	$r(\theta) = \sin(C\theta)$ $C \text{ odd}$
(C < 0 changes nothing) $2C petals$	_	$x = \cos(Ct)\cos t$ $y = \cos(Ct)\sin t,$ $0 \le t \le 2\pi$ $C \text{ even}$	$r(\theta) = \cos(C\theta)$ $C \text{ even}$
(C < 0 changes nothing) $C petals$		$x = \cos(Ct)\cos t$ $y = \cos(Ct)\sin t,$ $0 \le t \le 2\pi$ $C \text{ odd}$	$r(\theta) = \cos(C\theta)$ $C \text{ odd}$