

Det skapende universitet

Kapittel 10

Ett- og toutvalgs hypotesetesting

TMA4240 H2006: Eirik Mo

www.ntnu.no

mo@math.ntnu.no (utarbeidet av Mette Langaas), TMA4240 H2006

2

Estimering og hypotesetesting

	0 0 1	
Fenomen	Bilkjøring	Høyden til stu- denter
Spørsmål	Hvor stor andel av studentene synes de er flinkere enn gjen- nomsnittet til å kjøre bil?	Hvor høye er stu- dentene?
Populasjon	Alle studenter, eller evt. menn og kvinner som to populasjoner.	Alle studenter, eller evt. menn og kvin- ner som to popu- lasjoner.
Parameter	Andelen <i>p</i> som synes de er flink- ere enn gjennomsnittet.	Forventet høyde, μ .
Utvalg	Alle studenter som svarte på spørreundersøkelse.	Alle studenter som svarte på spørre- undersøkelse.
Data, u.i.f og representa- tive?	Flinkere eller ikke enn gjennom- snittet.	Høyden.

Estimering og hypotesetesting

Fenomen	Bilkjøring	Høyden til studenter
Estimator	$\hat{p} = \frac{X}{n}$, X antall som synes de er flinkere enn gjennomsnittet av n spurte.	$\hat{\mu} = \bar{X}$ gjennomsnit-tlig høyde.
Størrelse med kjent fordeling	For store n , og p ikke for nært 0 eller 1, så er $Z=\frac{\hat{p}-p}{\sqrt{\hat{p}(1-\hat{p})/n}}$ tilnærmet normalfordelt	$T=rac{ar{X}-\mu}{S/\sqrt{n}}$ t-fordelt med $n-1$ frihetsgrader.

www.ntnu.no

mo@math.ntnu.no (utarbeidet av Mette Langaas), TMA4240 H2006

Estimering og hypotesetesting

Fenomen	Bilkjøring	Høyden til studenter
Kvantiler i fordeling	$-z_{lpha/2}$ og $z_{lpha/2}$	$-t_{\alpha/2,(n-1)}$ og
		$t_{\alpha/2,(n-1)}$
Intervall	$[\hat{p}-z_{\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}},$	$[\bar{X}-t_{\alpha/2,(n-1)}]\frac{s}{\sqrt{n}},$
	$\hat{p} + Z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$	$\bar{X} + t_{\alpha/2,(n-1)} \frac{s}{\sqrt{n}}$
Hypotesetesting:	Er andelen av studen-	Er dette årets
	ter som synes de er	mannlige studen-
	flinkere enn gjennom-	ter høyerer enn
snittet til å kjøre bil		gjennomsnittet
større enn 0.5? Tror		for værnepliktige,
	flere menn enn kvin-	179.8cm? Er bygg-
	ner at de er gode	studenter høyere enn
	sjåfører?	studenter fra marin?

Hypotese

DEF 10.1: En statistisk hypotese er en antakelse eller påstand om egenskaper ved en eller fl ere populasjoner.

Nullhypotese: Hypotesen vi vil undersøke om vi har grunnlag fra data for å forkaste. En bestemt verdi for en parameter.

Alternativ hypotese: Hvis vi forkaster nullhypotesen så aksepterer vi den alternative hypotesen. Ofte mer enn en verdi for en parameter (større enn, mindre enn og ulik).

www.ntnu.no

mo@math.ntnu.no (utarbeidet av Mette Langaas), TMA4240 H2006

Kvalitetskontroll av skruer

- Produksjon av skruer.
- Lengden på produsert skrue skal være 15 mm.
- Tar jevnlig stikkprøve fra prosessen, for å sjekke om skruene som produseres er 15 mm lange.
- Hvis stikkprøven tyder på at de produserte skruene ikke er 15 mm, må maskinen som lager skruene kalibreres på nytt.
- Hvilken nullhypotese og alternativ hypotese vil vi undersøke?

Hypotesetesting og rettsak

- Spørsmål: Er grunn til å tro at skruene som produseres ikke er 15 mm lange?
- Statistisk hypotesetesting: Undersøke om det er nok bevis som underbygger at skruene ikke er 15 mm lange. Som i rettssak: tiltalte er antatt uskyldig til han er bevist skyldig.
- Null hypotesen: skruene som produseres er 15 mm.
- Alternativ hypotese: skuene som produseres er ikke 15 mm.

 $H_0: \mu = 15$ mm vs. $H_1: \mu \neq 15$ mm

www.ntnu.no

mo@math.ntnu.no (utarbeidet av Mette Langaas), TMA4240 H2006

0

7

To typer feil

- DEF 10.2: Forkasting av nullhypotesen når denne er sann, kalles en type-I-feil.
 - Vi vil være sikre på at skruene ikke er 15 mm før vi bestemmer oss for å stoppe produksjonen for å kalibrere.
 Produksjonsstopp for kalibrering av maskin gjør at produsenten taper penger pga. forsinket produksjon.
- DEF 10.3: Å ikke forkaste nullhypotesen når den er gal, kalles en type-II-feil.
 - Vi vil gjerne kalibrere maskinen på nytt hvis skruene som produseres ikke er 15 mm. For lange og for korte skruer påfører kjøper problemer.

Type-I og type-II-feil

	H_0 sann	H_0 falsk
Aksepter H ₀	Korrekt	Type-II feil
Forkast H ₀	Type-I feil	Korrekt

www.ntnu.no

mo@math.ntnu.no (utarbeidet av Mette Langaas), TMA4240 H2006

10

Ett utvalg: test for μ med σ kjent

	Generell fremgangsmåte	Kvalitetskontroll av skruer
0	$X_1, X_2,, X_n$ u.i.f. normal (μ, σ)	Stikkprøve (utvalg) av $n = 10$
	der σ er kjent.	skruer, antar normalfordeling og
		kjenner $\sigma = 0.1$ mm.
1	To-sidig test	Er grunn til å tro at skruene
		som produseres ikke er 15 mm
		lange?
	$H_0: \mu=\mu_0$ vs. $H_1: \mu eq\mu_0$	$H_0: \mu = 15$ vs. $H_1: \mu \neq 15$
2	Signifikansnivå α bestemmes.	Velger $\alpha = 0.05$
3	Testobservator $Z_0 = rac{ar{X} - \mu_0}{\sigma/\sqrt{n}}$ er under H_0 standard normalfordelt	
	Forkast H_0 hvis $z_0>z_{rac{lpha}{2}}$ eller $z_0<-z_{rac{lpha}{2}}.$	

Ett utvalg: test for μ med σ kjent

	Generell fremgangsmåte	Kvalitetskontroll av skruer
4	$Z_{\frac{\alpha}{2}}$	$Z_{\frac{0.05}{2}} = 1.96$
	Observerer \bar{x} fra utvalget (stikkprøven)	$\bar{x} = 15.05 \text{ mm}.$
	Beregner $z=rac{ar{x}-\mu_0}{\sigma/\sqrt{n}}$	$z_0 = \frac{15.05 - 15}{0.1/\sqrt{10}} = 1.58$
	Sammenligner $-z_{\frac{\alpha}{2}}$, z_0 og $z_{\frac{\alpha}{2}}$	-1.96<1.58<1.96
	Forkast H_0 og konkluder med	Beholder H_0 . Har ikke sterke
	H_1 , eller behold H_0 .	nok bevis for at $\mu \neq$ 15mm.

www.ntnu.no

mo@math.ntnu.no (utarbeidet av Mette Langaas), TMA4240 H2006

12

Ett utvalg: tosidig test for μ med σ kjent

- $X_1, X_2, ..., X_n$ u.i.f. normal (μ, σ) der σ er kjent.
- To-sidig test:
 - 1. $H_0: \mu = \mu_0$ vs. $H_1: \mu \neq \mu_0$
 - 2. Signifikansnivå α bestemmes.
 - 3. Testobservator under H_0 er Z_0 . $Z_0 = \frac{\bar{X} \mu_0}{\sigma / \sqrt{n}}$ er under H_0 standard normalfordelt.

Forkast H_0 hvis $|Z_0| > Z_{\frac{\alpha}{2}}$.

4. Beregn \bar{x} fra utvalget, og videre $z_0 = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}}$. Sammenlign z_0 og $z_{\frac{\alpha}{2}}$, og forkast H_0 hvis $|z_0| > z_{\frac{\alpha}{2}}$.

Kvalitetskontroll av skruer

- Produksjon av skruer.
- Lengden på produsert skrue skal være 15 mm.
- Tar jevnlig stikkprøve fra prosessen, for å sjekke om skruene som produseres er 15 mm lange.
- Hvis stikkprøven tyder på at de produserte skruene ikke er 15 mm, må maskinen som lager skruene kalibreres på nytt.
- Hvordan skal vi bestemme om maskinen skal rekalibreres?

www.ntnu.no

mo@math.ntnu.no (utarbeidet av Mette Langaas), TMA4240 H2006

14

Hypoteser og tester

Hypoteser:

- Nullhypotese (H₀): Hypotesen vi vil undersøke om vi har grunnlag fra data for å forkaste. Inneholder en bestemt verdi for en parameter.
- Alternativ hypotese (H₁): Hypotesen vi aksepterer dersom vi forkastar nullhypotesen. Ofte mer enn en verdi for en parameter.

Statistisk hypotesetesting: Undersøke om dataene gir tilstrekkelig "bevis" for at den alternative hypotesen er sann.

To typer tester:

- To-sidig test: $H_0: \theta = \theta_0 \mod H_1: \theta \neq \theta_0$
- En-sidig test:
 - $H_0: \theta \ge \theta_0$ (evt. $\theta = \theta_0$) mot $H_1: \theta < \theta_0$, eller
 - $H_0: \theta \leq \theta_0$ (evt. $\theta = \theta_0$) mot $H_1: \theta > \theta_0$

To typer feil

- Type-I: forkaste H_0 gitt at H_0 er sann. Justismord.
- Type-II-feil: ikke forkaste H_0 gitt at H_0 er falsk. La skyldig tiltalt gå fri.

	H₀ sann	H_0 falsk
Aksepter H ₀	Korrekt	Type-II feil
Forkast H ₀	Type-I feil	Korrekt

www.ntnu.no

mo@math.ntnu.no (utarbeidet av Mette Langaas), TMA4240 H2006

16

Ett utvalg: tosidig test for μ med σ kjent [10.5]

- $X_1, X_2, ..., X_n$ u.i.f. $N(\mu, \sigma^2)$ der σ er kjent.
- To-sidig test:
 - 1. $H_0: \mu = \mu_0$ vs. $H_1: \mu \neq \mu_0$
 - 2. Signifikansnivå α bestemmes.
 - 3. Testobservator under H_0 er Z_0 . $Z_0 = \frac{\bar{X} \mu_0}{\sigma / \sqrt{n}}$ er under H_0 standard normalfordelt.

Regel: Forkast H_0 hvis $|Z_0| > z_{\frac{\alpha}{2}}$.

4. Beregn \bar{x} fra utvalget, og videre $z_0 = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}}$. Sammenlign z_0 og $z_{\frac{\alpha}{2}}$, og forkast H_0 hvis $|z_0| > z_{\frac{\alpha}{2}}$.

P-verdi [10.4]

DEF 10.5: En P-verdi er det laveste nivået hvor den observerte

verdien til testobservatoren er signifikant.

Utregning: P-verdi = P(for det vi har observert eller noe verre | H_0

er sann)

Steg: — Bestem null- og alternativ hypotese.

Velg testobservator.

— Beregn *P*-verdien basert på testobservatoren.

 Bestem om vi vil forkaste eller beholde nullhypotesen basert på P-verdien og kunnskap om systemet.

Tilleggsinformasjon: Kan også gjøre hypotesetesting basert på signifikansnivå og forkastningsregion og oppgi *P*-verdi som tilleggsinformasjon.

www.ntnu.no

mo@math.ntnu.no (utarbeidet av Mette Langaas), TMA4240 H2006

18

Kvalitetskontroll: lengde av skruer

- X_1, X_2, \dots, X_n er lengden på n skruer.
- Anta at $X_1, X_2, ..., X_n$ er u.i.f $N(\mu, \sigma^2 = 0.1^2)$.

Estimering	Hypotesetest	
Gi et anslag (punktestimat) og in-	Undersøk om det er grunn til å	
tervall (konfidensintervall) der vi	tro at de produserte skruene ikke	
har 95% tillit til at sann lengde for	er 15 mm lange (test hypotese).	
produserte skruer ligger.	Bruk signifikansnivå 5%. $H_0: \mu =$	
15 vs. $H_1: \mu \neq 15$		
$Z=rac{ar{X}-\mu}{\sigma/\sqrt{n}}$ er standard normalfordelt, $Z_0=rac{ar{X}-\mu_0}{\sigma/\sqrt{n}}$		

Kvalitetskontroll: lengde av skruer

Estimering	Hypotesetest
95% konfidensintervall for μ .	Forkast H_0 hvis $z_0 > z_{\frac{\alpha}{2}}$ eller $z_0 <$
$\bar{\mathbf{X}} - \mathbf{Z}_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} < \mu < 1$	$-z_{rac{lpha}{2}}$. Behold H_0 hvis $-z_{rac{lpha}{2}} < z_0 < z_{rac{lpha}{2}}$ dvs. behold hvis $ar{x} - z_{rac{lpha}{2}} = z_{rac{ar{\sigma}}{\sqrt{n}}} < z_{ ac{ar{\sigma}}{\sqrt{n}}} < z_{ ac{ar{\sigma}}{\sqrt{n}} < z_{ ac{ar{\sigma}}{\sqrt{n}}} < z_{ ac{ar{\sigma}}{\sqrt{n}} < z_{ ac{ar{\sigma}}{\sqrt{n}}} < z_{ ac{ar{\sigma}}{\sqrt{n}}} < z_{ ac{ar{\sigma}}{\sqrt{n}} < z_{ ac{ar{\sigma}}{\sqrt{n}} < z_{ ac{ar{\sigma}}{\sqrt{n}}} < z_{ ac{ar{\sigma}}{\sqrt{n}}} < z_{ ac{ar{\sigma}}{\sqrt{n}} < z_{ ac{ar{\sigma}}{\sqrt{n}} < z_{ ac{ar{\sigma}}{\sqrt{n}}} < z_{ ac{ar{\sigma}}{\sqrt{n}} < z_{ ac{ar{\sigma}}{\sqrt{n}}} < z_{ ac{ar{\sigma}}{\sqrt{n}}} < z_{ ac{ar{\sigma}}{\sqrt{n}}} < z_{ ac{ar{\sigma}}{\sqrt{n}}} < z_{ a$
$\bar{X} + Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$	$z_{\frac{\alpha}{2}}$ dvs. behold hvis $\bar{x} - z_{\frac{\alpha}{2}} \frac{\bar{\sigma}}{\sqrt{n}} < z_{\frac{\alpha}{2}}$
2 \(\psi \)	$\mu_0 < \bar{\mathbf{X}} + \mathbf{Z}_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$
95 % konfidensintervall: [14.99,	$ z_0 = 1.58, z_{0.025} = 1.96, dermed$
15.11]	ikke forkast <i>H</i> ₀ . <i>p</i> -verdi 0.11.

- Hvis et $(1 \alpha)100\%$ konfidensintervall inneholder μ_0 vil vi med en tosidig hypotesetest med signifikansnivå α ikke forkaste H_0 på nivå α .
- Hvis et $(1 \alpha)100\%$ konfidensintervall ikke inneholder μ_0 vil vi med en tosidig hypotesetest med signifikansnivå α forkaste H_0 på nivå α .

www.ntnu.no

mo@math.ntnu.no (utarbeidet av Mette Langaas), TMA4240 H2006

20

Ett utvalg: ensidig test for μ med σ kjent [10.5]

- $X_1, X_2, ..., X_n$ u.i.f. $N(\mu, \sigma^2)$ der σ er kjent.
- En-sidig test (større):
 - 1. $H_0: \mu = \mu_0$ vs. $H_1: \mu > \mu_0$
 - 2. Signifikansnivå α bestemmes.
 - 3. Testobservator $Z_0 = \frac{\bar{X} \mu_0}{\sigma / \sqrt{n}}$ er under H_0 standard normalfordelt. Forkast H_0 hvis $Z_0 > Z_{\alpha}$.
 - 4. Observerer \bar{x} fra utvalget, beregn $z_0 = \frac{\bar{x} \mu_0}{\sigma/\sqrt{n}}$. Sammenlign z_0 og z_α , og forkast H_0 hvis $z_0 > z_\alpha$.
- En-sidig test (mindre):
 - $H_0: \mu = \mu_0$ $H_1: \mu < \mu_0$
 - ...
 - Forkast H_0 hvis $z < z_{\alpha}$.

Ett utvalg: ensidig test for μ med σ ukjent [10.7]

- $X_1, X_2, ..., X_n$ u.i.f. $N(\mu, \sigma^2)$ der σ er ukjent. $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$.
- En-sidig test (større):
 - 1. $H_0: \mu = \mu_0$ vs. $H_1: \mu > \mu_0$
 - 2. Signifikansnivå α bestemmes.
 - 3. Testobservator $T_0 = \frac{\bar{X} \mu_0}{s/\sqrt{n}}$ er under H_0 t-fordelt med n-1 frihetsgrader.

Forkast H_0 hvis $T_0 > t_{\alpha,(n-1)}$.

- 4. Beregn \bar{x} og s fra utvalget, og videre $t_0 = \frac{\bar{x} \mu_0}{s/\sqrt{n}}$. Sammenlign t_0 og $t_{\alpha,(n-1)}$, og forkast H_0 hvis $t > t_{\alpha,(n-1)}$.
- En-sidig test (mindre):
 - $H_0: \mu = \mu_0$ $H_1: \mu < \mu_0$
 - ...
 - Forkast H_0 hvis $t_0 < t_{\alpha,(n-1)}$.

www.ntnu.no

mo@math.ntnu.no (utarbeidet av Mette Langaas), TMA4240 H2006

22

Ett utvalg: tosidig test for μ med σ ukjent [10.7]

- $X_1, X_2, ..., X_n$ u.i.f. $N(\mu, \sigma^2)$ der σ er ukjent. $S^2 = \frac{1}{n-1} \sum_{i=1}^{n-1} (X_i \bar{X}_i)^2$.
- To-sidig test:
 - 1. $H_0: \mu = \mu_0$ vs. $H_1: \mu \neq \mu_0$
 - 2. Signifikansnivå α bestemmes.
 - 3. Testobservator $T_0 = \frac{\bar{X} \mu_0}{s/\sqrt{n}}$ er under H_0 t-fordelt med n-1 frihetsgrader.

Forkast H_0 hvis $|T_0| > t_{\frac{\alpha}{2},(n-1)}$.

4. Beregn \bar{x} og s fra utvalget, og videre $t_0 = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$. Sammenlign t_0 og $t_{\frac{\alpha}{2},(n-1)}$, og forkast H_0 hvis $|t_0| > t_{\frac{\alpha}{2},(n-1)}$.

Signifikansnivå og teststyrke

Definerer

$$\alpha = P(\text{Type I-feil})$$

 $\beta = P(\text{Type II-feil})$

- **Signifikansnivået** for en test = $P(\text{Type I-feil}) = \alpha$.
- Styrken for en test er sannsynligheten for å forkaste H₀ når et bestemt alternativ er sant (DEF 10.4), dvs.
 Styrken = 1 P(Type II-feil, bestemt alternativ) = 1 β.

Har at

- Reduserer $\alpha \Rightarrow \beta$ øker og 1 β (styrken) minker.
- Øker $n \Rightarrow \alpha$ minker, β minker og 1 β (styrken) øker.

www.ntnu.no

mo@math.ntnu.no (utarbeidet av Mette Langaas), TMA4240 H2006

24

Teststyrke, illustrasjon

- Tester hypotesen $H_1: \mu = \mu_0 \mod H_1: \mu < \mu_0$.
- Forkastar H_0 dersom $z_0 < -z_\alpha$, eller ekvivalent $\bar{x} < k$, der $k = \mu_0 z_\alpha \sigma / \sqrt{n}$.
- Anta sann verdi $\mu = \mu_1$, hva er teststyrken 1 β ?

Fartskontroll med laser

- Ved fartskontroll benytter ofte politiet laser til å måle farten til bilene.
- Hvis Y er målt fart (km/t) til en tilfeldig valgt bil, antar vi at Y er normalfordelt med forventning μ og standardavvik $\sigma=1.5$ km/t.
- Politiet gjennomfører en fartskontroll i en 50-sone der farten til hver bil måles med en lasermåling.
- Politiet vil fastsette en verdi k slik at sannsynligheten for at en bilist feilaktig beskyldes for fartsovertredelse blir høyst 0.01.
- a) Formuler hypotesetest og finn minste verdi *k* kan være.
- b) Hva er sannsynligheten for at en bilist som kjører i 55 km/t ikke blir beskyldt for fartsovertredelse?
- c) Hvor mange målinger må vi har for å oppdager at bilisten kjører for fort med styrke 0.95 når bilisten kjører i 55 km/t?

Fasit: k=53.5, ikke beskyldt=0.16, minst 2 observasjoner.

www.ntnu.no

mo@math.ntnu.no (utarbeidet av Mette Langaas), TMA4240 H2006

26

Fartskontroll med laser

- Ved fartskontroll benytter ofte politiet laser til å måle farten til bilene.
- Hvis Y er målt fart (km/t) til en tilfeldig valgt bil, antar vi at Y er normalfordelt med forventning μ og standardavvik $\sigma = 1.5$ km/t.
- Politiet gjennomfører en fartskontroll i en 50-sone der farten til hver bil måles med en lasermåling.
- Politiet vil fastsette en forkastningsregel slik at sannsynligheten for at en bilist feilaktig beskyldes for fartsovertredelse blir høyst 0.01.
- a) Formuler hypotesetest og finn forkastningsregel.
- b) Hva er sannsynligheten for at en bilist som kjører i 55 km/t ikke blir beskyldt for fartsovertredelse?
- c) Hvor mange målinger må vi har for å oppdager at bilisten kjører for fort med styrke 0.95 når bilisten kjører i 55 km/t?

Fasit: k=53.5, ikke beskyldt=0.16, minst 2 observasjoner.

Hypotesetest: generell fremgangsmåte

	Generell fremgangsmåte	Kvalitetskontroll av skruer
0	Observasjoner $X_1, X_2,, X_n$	Stikkprøve (utvalg) av $n = 10$
	u.i.f. fra fordeling med kjente og	skruer, antar normalfordeling og
	ukjente parametere.	kjenner $\sigma = 0.1$ mm.
1	Ensidig eller to-sidig test	Er grunn til å tro at skruene
		som produseres ikke er 15 mm
		lange?
	H_0 vs. H_1	$H_0: \mu = 15$ vs. $H_1: \mu \neq 15$
2	Signifikansnivå α bestemmes.	Velger $\alpha = 0.05$
3	Testobservator: størrelse med	$Z_0 = rac{ar{X} - \mu_0}{\sigma / \sqrt{n}}$ er under H_0 standard
	kjent fordeling under nullhypote-	normalfordelt
	sen.	
	Forkasningsområde fra	Forkast H_0 hvis $z_0 > z_{\frac{\alpha}{2}}$ eller
	$P(\text{forkaste } H_0 H_0 \text{ sann}) \leq \alpha.$	$z_0<-z_{rac{lpha}{2}}$.

www.ntnu.no

mo@math.ntnu.no (utarbeidet av Mette Langaas), TMA4240 H2006

28

Hypotesetest: generell fremgangsmåte

	Generell fremgangsmåte	Kvalitetskontroll av skruer
4	Konklusjon basert på obser- vasjoner	$z_{\frac{0.05}{2}} = 1.96, \bar{x} = 15.05 \text{ mm}.$
		$z_0 = \frac{15.05 - 15}{0.1/\sqrt{10}} = 1.58$ $-1.96 < 1.58 < 1.96$
	Forkast H_0 og konkluder med H_1 , eller behold H_0 .	Beholder H_0 . Har ikke sterke nok bevis for at $\mu \neq 15$ mm.
5	Tilleggsinformasjon: <i>p</i> -verdi=P(det vi har observert eller noe verre <i>H</i> ₀ er sann), teststyrke ved bestemt alternativ	<i>p</i> -verdi 0.11.

Hypoteser og tester

Hypoteser:

- Nullhypotese (H₀): Hypotesen vi vil undersøke om vi har grunnlag fra data for å forkaste. Inneholder en bestemt verdi for en parameter.
- Alternativ hypotese (H₁): Hypotesen vi aksepterer dersom vi forkastar nullhypotesen. Ofte mer enn en verdi for en parameter.

Statistisk hypotesetesting: Undersøke om dataene gir tilstrekkelig "bevis" for at den alternative hypotesen er sann.

To typer tester:

- To-sidig test: $H_0: \theta = \theta_0 \mod H_1: \theta \neq \theta_0$
- En-sidig test:
 - $H_0: \theta \ge \theta_0$ (evt. $\theta = \theta_0$) mot $H_1: \theta < \theta_0$, eller
 - $H_0: \theta \leq \theta_0$ (evt. $\theta = \theta_0$) mot $H_1: \theta > \theta_0$

www.ntnu.no

mo@math.ntnu.no (utarbeidet av Mette Langaas), TMA4240 H2006

30

To typer feil

- Type-I: forkaste H_0 gitt at H_0 er sann. Justismord.
- Type-II-feil: ikke forkaste H_0 gitt at H_0 er falsk. La skyldig tiltalt gå fri.

	<i>H</i> ₀ sann	H_0 falsk
Aksepter H ₀	Korrekt	Type-II feil
Forkast H ₀	Type-I feil	Korrekt

Signifikansnivå og teststyrke

Definerer

$$\alpha = P(\text{Type I-feil})$$
 $\beta = P(\text{Type II-feil})$

- **Signifikansnivået** for en test = $P(\text{Type I-feil}) = \alpha$.
- **Styrken** for en test er sannsynligheten for å forkaste H_0 når et bestemt alternativ er sant (DEF 10.4), dvs.

Styrken = $1 - P(\text{Type II-feil, bestemt alternativ}) = <math>1 - \beta$.

www.ntnu.no

mo@math.ntnu.no (utarbeidet av Mette Langaas), TMA4240 H2006

32

Teststyrke, illustrasjon

- Tester hypotesen $H_1: \mu = \mu_0 \mod H_1: \mu < \mu_0$.
- Forkastar H_0 dersom $z_0 < -z_\alpha$, eller ekvivalent $\bar{x} < k$, der $\mathbf{k} = \mu_0 - \mathbf{z}_{\alpha} \sigma / \sqrt{\mathbf{n}}$.
- Anta sann verdi $\mu = \mu_1$, hva er teststyrken 1 β ?

Utvalgsstørrelse [10.9]

- Ensidig test, σ kjent.
 - $H_0: \mu = \mu_0$ vs. $H_1: \mu > \mu_0$
 - Hvis vi ønsker å ha sannsynlighet (1β) for å oppdage $\mu = \mu_0 + \delta$ (for gitt δ) og ønsker signifikansnivå α , må vi minst ha utvalgsstørrelse

$$n = \frac{(z_{\alpha} + z_{\beta})^2 \sigma^2}{\delta^2}$$

- Tosidig test, σ kjent.
 - $H_0: \mu = \mu_0$ vs. $H_1: \mu \neq \mu_0$
 - Som over, da blir minst utvalgsstørrelsen (tilnærmet)

$$n = \frac{(z_{\frac{\alpha}{2}} + z_{\beta})^2 \sigma^2}{\delta^2}$$

www.ntnu.no

mo@math.ntnu.no (utarbeidet av Mette Langaas), TMA4240 H2006

34

To utvalg: eksempler

- Betong: to ulike oppskrifter, A og B, skal sammenlignes. Er det forskjell i styrken ("crushing strength") for betong fra oppskrift A og fra oppskrift B?
- Sykdom: tester ut ny blodtrykksmedisin. Er den nye medisinen bedre enn den nåværende markedsledende blodtrykksmedisin?
- Kosthold: får jeg en vektreduksjon på mer enn 10 kg hvis jeg følger Dr Fedon Lindbergs kostråd i et halvt år? (balanse i blodsukker, lav glykemisk indeks)
- Bildekk: to typer dekk, A og B, skal sammenlignes mhp slitasje.
 Slites A og B dekk forskjellig?

To utvalg: statistisk situasjon

- Ønsker å sammenligne to populasjoner basert på et u.i.f. utvalg fra hver populasjon.
- Nå: Studerer en egenskap som kan sies å være normalfordelt i hver populasjon,
- og ønsker å utføre en hypotesetest om forholdet medllom forveningsverdiene i de to populasjonene
- Sammenligningene kan være parvise eller ikke parvise.
- I 10.12 ser vi på egenskaper som er binomisk fordelt.

www.ntnu.no

mo@math.ntnu.no (utarbeidet av Mette Langaas), TMA4240 H2006

36

10.8: To utvalg, normalfordeling

Situasjon:

—
$$X_1^A, X_2^A, ..., X_{n_1}^A$$
 er u.i.f., $X_i^A \sim N(\mu_A, \sigma_A^2)$.

—
$$X_1^B, X_2^B, ..., X_{n_2}^B$$
 er u.i.f., $X_i^B \sim N(\mu_B, \sigma_B^2)$.

Problemstilling: Vil teste hypotesen

$$H_0: \mu_A - \mu_B = d_0 \mod H_1: \mu_A - \mu_B \neq d_0$$

(Alternativt: $H_1 : \mu_A - \mu_B < d_0$ eller $H_1 : \mu_A - \mu_B > d_0$)

Hypotesetest, tre tilfelle:

1.
$$\sigma_A^2$$
 og σ_B^2 kjente.

2.
$$\sigma_A^2 = \sigma_B^2 = \sigma^2$$
, der σ^2 er ukjent

3.
$$\sigma_A^2 \neq \sigma_B^2$$
, σ_A^2 og σ_B^2 ukjente.

To utvalg, normalfordeling (forts.)

1. $\sigma_A^2 \log \sigma_B^2$ kjente: Bruker at

$$Z_0=rac{(ar{X}_A-ar{X}_B)-d_0}{\sqrt{rac{\sigma_A^2}{n_1}+rac{\sigma_B^2}{n_2}}}\sim extstyle N(0,1) \quad ext{under H_0}.$$

Forkast H_0 dersom $|z_0|>z_{\frac{\alpha}{2}}$, der z_0 er observert verdi for Z_0 .

- 2. $\sigma_A^2 = \sigma_B^2 = \sigma^2$, der σ^2 er ukjent: T-fordeling med $n_A + n_B 2$ frihetsgrader.
- 3. $\sigma_A^2 \neq \sigma_B^2$, σ_A^2 og σ_B^2 ukjente: Se læreboka.

www.ntnu.no

mo@math.ntnu.no (utarbeidet av Mette Langaas), TMA4240 H2006

38

To utvalg, normalfordeling (forts.)

- 1. $\sigma_A^2 \log \sigma_B^2$ kjente: Normalfordeling.
- 2. $\sigma_A^2 = \sigma_B^2 = \sigma^2$, der σ^2 er ukjent:
 - Estimator for σ^2 :

$$S_p^2 = \frac{1}{n_A + n_B - 2} \left[\sum_{i=1}^{n_A} (X_i^A - \overline{X}_A)^2 + \sum_{j=1}^{n_B} (X_j^B - \overline{X}_B)^2 \right]$$

Bruker at

$$T_0 = \frac{(\overline{X}_A - \overline{X}_B) - d_0}{S_p \sqrt{\frac{1}{n_A} + \frac{1}{n_B}}}$$

er t-fordelt med $n_A + n_B - 2$ frihetsgrader under H_0 . Forkast H_0 dersom $|t_0| > t_{\frac{\alpha}{2},(n_A+n_B-2)}$, der t_0 er observert verdi for T_0 .

3. $\sigma_A^2 \neq \sigma_B^2$, σ_A^2 og σ_B^2 ukjente: Se læreboka.

Parvist eksempel: Dekkslitasje

Spørsmål: Er slitasjen for A-dekka større enn for B-dekka? **Forsøk:** Utstyr *n* tilfeldig valgte biler med to dekk av type A og to av type B.

- La X_i , i = 1, ..., n være slitasje til type A-dekka på de n bilene (gj.snitt over to dekk).
- La Y_i , i = 1, ..., n være slitasje til de tilsv. parene av type B-dekk (gj.snitt over to dekk).
- Da er $D_i = X_i Y_i, i = 1, ..., n$ uavhengige, og $D_i \sim N(\mu_D, \sigma_D^2)$.

Observasjoner:

— n = 15 forsøk med observerte verdier $\bar{d} = 0.72$ og $s_d^2 = 0.97$.

www.ntnu.no

mo@math.ntnu.no (utarbeidet av Mette Langaas), TMA4240 H2006

40

Parvist eksempel: Dekkslitasje

Hypotesetest:

—
$$H_0: \mu_D=\mu_0 \mod H_1: \mu_D>\mu_0$$
 , der $\mu_0=0.$

 $T_0 = \frac{\bar{D} - \mu_0}{S_D / \sqrt{n}} = \frac{\bar{D} - 0}{S_D / \sqrt{n}}$ er *t*-fordelt med n - 1 frihetsgrader under H_0 .

Gjennomfør testen som for ett utvalg.

Hypotesetest av varians (10.13)

- Inspirert av eksamen, august 2003, oppgave 1.
 - En laborant skal undersøke måleusikkerheten til et instrument som benyttes til å bestemme konsentrasjonen av et stoff i en oppløsning.
 - Det gjennomføres n målinger med instrumentet på en oppløsning.
 - Observasjonene X_1, X_2, \dots, X_n kan antas å være uavhengige og normalfordelte med forventning μ og varians σ^2 .
- I oppgaven arbeider man med kjent konsentrasjon av stoffet, men vi skal her anta at konsentrasjonen er ukjent.
- Vi kan tenke oss at produsenten av måleinstrumentet reklamerer med at måleusikkerheten i instrumentet ikke er høyere enn $\sigma_0^2=0.04$. Vi ønsker å teste om dette er tilfellet.
- Data fra oppgaven: n = 10, $\sum_{i=1}^{10} (x_i \bar{x})^2 = 0.43$ og $\alpha = 0.05$.

www.ntnu.no

mo@math.ntnu.no (utarbeidet av Mette Langaas), TMA4240 H2006

42

[10.13] Hypotesetest av varians

- La $X_1, X_2, ..., X_n$ være et tilfeldig utvalg fra en populasjon som beskrives av en normalfordeling med forventning μ og varians σ^2 .
- $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$ er en estimator for σ^2 (forventningsrett, men ikke SME).
- Størrelsen $V = \frac{(n-1)S^2}{\sigma^2}$ er kjikvadrat-fordelt med n-1 frihetsgrader.

Laban strakk seg ikke lenger, men smaker den bedre?

- Vi ønsker å finne ut om studenter synes at Nidar Laban smaker bedre enn COOP Seigmenn. Formuler spørsmålet som en hypotesetest.
- Etter seigmann-strekkingen på forelesningen, svarte de studentene som hadde strukket (og spist) både Laban og Seigmenn på hvilket av merkene som smakte best.
- Data: n = 51 studenter svarte, av disse likte x = 30 studenter Laban bedre enn COOP Seigmann.
- Gjennomfør testen. Hva blir konklusjonen?
- Hva ville konklusjonen blitt hvis vi hadde observert samme andel, $\hat{p} = \frac{30}{51} = 0.59$, men
 - n = 10 og x = 6,
 - n = 100 og x = 59.

www.ntnu.no

mo@math.ntnu.no (utarbeidet av Mette Langaas), TMA4240 H2006

44

[10.11] Hypotesetest av en andel

- X er antall suksesser i et binomisk forsøk med parametere antallet n og andelen p.
- Vi vil teste en hypotese om p, dvs. relatere p til bestemte verdier (ensidig eller tosidig test).
- Estimator $\hat{p} = \frac{X}{n}$, der $E(\hat{p}) = p$ og $Var(\hat{p}) = \frac{p(1-p)}{n}$.
- Forkastningsområdet kan enten finnes fra
 - binomisk fordeling: relatert til verdien av X, trenger å finne forkastningsområde fra tabell over kumulativ binomisk fordeling,
 - fra normaltilnærming av \hat{p} når n er stor, og np > 5, n(1-p) > 5 og p ikke er nær 0 eller 1.

$$Z_0 = \frac{\hat{p} - p_0}{\sqrt{\frac{1}{n}p_0(1 - p_0)}}$$

er tilnærmet standard normalfordelt under H_0 .

Studenter og bilkjøring

 Her angir n antall studenter i utvalget som hadde sertifikat, og x antall studenter som svarte at de er "bedre enn gjennomsnittet av Norges befolkning" til å kjøre bil.

	n	X	<u>x</u>
Menn	102	50	0.49
Kvinner	37	9	0.24
Alle	139	59	0.42

 a) Finn punktestimat og 99% konfidensintervall for andelen av studenter som synes sine kjøreegenskaper er "bedre enn gjennomsnittet".

Fasit:
$$0.42 \pm 2.576 \sqrt{\frac{0.42 \cdot (1-0.42)}{139}} = [0.32, 0.53].$$

www.ntnu.no

mo@math.ntnu.no (utarbeidet av Mette Langaas), TMA4240 H2006

46

Studenter og bilkjøring

	n	X	<u>x</u>
Menn	102	50	0.49
Kvinner	37	9	0.24
Alle	139	59	0.42

 b) La p være sannsynligheten for at en tilfeldig valgt student synes han/hun er bedre enn gjennomsnittet til å kjøre bil. Ville hypotesen

$$H_0: p = 0.5 \text{ vs. } H_0: p \neq 0.5$$

blitt forkastet? Hvilke signifikansnivå ville ført til forkastning? Baser resonnementet på fasit fra a), dvs. uten regning. Hvilke hypoteser (valg av p_0) ville ikke blitt forkastet på nivå 0.01?

Studenter og bilkjøring, forts.

	n	Х	<u>x</u>
Menn	102	50	0.49
Kvinner	37	9	0.24
Alle	139	59	0.42

- c) Finn punktestimat og 99% konfidensintervall for differensen mellom andelen av mannlige studenter og kvinnlige studenter som synes sine kjøreegenskaper er "bedre enn gjennomsnittet".
 Fasit: [0.03, 0.47].
- d) La p_1 være sannsynligheten for at en tilfeldig valgt mannlig student synes han er bedre enn gjennomsnittet til å kjøre bil, og tilsvarende p_2 for kvinner. Ville hypotesen

$$H_0: p_1 - p_2 = 0$$
 vs. $H_0: p_1 - p_2 \neq 0$

blitt forkastet? Hvilke signifikansnivå ville ført til forkastning? Baser resonnementet på fasit fra c), dvs. uten regning. Hvilke hypoteser ville ikke blitt forkastet på nivå 0.01?

www.ntnu.no

mo@math.ntnu.no (utarbeidet av Mette Langaas), TMA4240 H2006

48

Lovlydige bilførere?

- BOT: Kjøring med motorvogn på eller over sperrelinje og/eller i sperreområde begrenset av heltrukken linje, på fortau, gangveg/gangbane, sykkelveg/sykkelbane og gang- og sykkelveg/gang- og sykkelbane. Kr. 2500,- sub. 5 dgs fengsel.
- Målinger av kryssing av hvit heltrukket sperrelinje ved fartsdemperé ved bussholdeplass Gløshaugen Nord (29.03.2004, fra 08:20 til 08:35).
 - n=antall observasjoner
 - X=antall bilister som kjører rundt fartsdemperen (over hvit heltrukket sperrelinje).

	n	X	<u>x</u>
Menn	74	29	0.39
Kvinner	37	10	0.27
Alle	111	39	0.35

Lovlydige bilførere?

	n	X	<u>x</u>
Menn	74	29	0.39
Kvinner	37	10	0.27
Alle	111	39	0.35

- a) Er det grunn til å tro at det er flere enn 25% av bilistene som svinger rundt fartsdemperen?
 (Fasit: forkast ensidig test på nivå 0.01, p-verdi= 0.004)
- b) Er det grunn til å tro at kvinner og menn er like lovlydige i denne situasjonen?
 (Fasit: ikke forkast tosidig hypotese, p-verdi 0.21)

www.ntnu.no

mo@math.ntnu.no (utarbeidet av Mette Langaas), TMA4240 H2006