« Résolution » des équations du 2nd degré

$$ax^2 + bx + c = 0$$

Étape préliminaire : On vérifie que l'on n'a pas d'identité remarquable

Ex:
$$\star x^2 - 2x + 1 = 0 \stackrel{\text{id. rem.}}{\Longleftrightarrow} (x - 1)^2 = 0 \stackrel{\text{eq. prod nul.} x}{\Longleftrightarrow} x - 1 = 0 \Longleftrightarrow x = 1$$

 $\star x^2 - 2x - 3 = 0 \longrightarrow \text{Pas d'identit\'e remarquable}$

Étape 1 : On calcule $\Delta = b^2 - 4ac$

Ex:
$$\star$$
 Pour $x^2 - 2x - 3 = 0$, on a $\Delta = (-2)^2 - 4 \times 1 \times (-3) = 4 + 12 = 16$
 \star Pour $7x^2 + x + 9 = 0$, on a $\Delta = (1)^2 - 4 \times 7 \times (9) = 1 - 252 = -251$
 \star Pour $x^2 - 2x + 1 = 0$, on a $\Delta = (-2)^2 - 4 \times 1 \times (1) = 0$

Étape 2 : On calcule le signe de Δ

Ex:
$$\star \text{Pour } x^2 - 2x - 3 = 0, \text{ on a } \Delta > 0$$

 $\star \text{Pour } 7x^2 + x + 9 = 0, \text{ on a } \Delta < 0$
 $\star \text{Pour } x^2 - 2x + 1 = 0, \text{ on a } \Delta = 0$

Étape 3 : Selon le signe de Δ , on conclut :

Si
$$\Delta < 0$$
 Si $\Delta = 0$ Si $\Delta > 0$ Alors l'équation admet une solution unique : $x_0 = \frac{-b}{2a}$ $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$

Étape 4 : On note $\mathcal{S} = \{...\}$