Pattern Recognition

(EE5907R)

Jiashi FENG

Email: elefjia@nus.edu.sg

Outlines

- Unsupervised Feature Extraction (PCA, NMF,...)
- Supervised Feature Extraction (LDA, GE, ...)
- Clustering and Applications
- Gaussian Mixture Model and Boosting
- Support Vector Machine
- Deep Learning

Generative vs. Discriminative

- We want to classify the data x into labels y. A generative model learns the joint probability distribution p(x,y) and a discriminative model learns the conditional probability distribution p(y|x).
- Suppose we have the following data in the form (x, y): (1,0), (1,0), (2,0), (2, 1)
- p(x,y) is

	y = 0	y = 1	
x = 1	1/2	0	
x = 2	1/4	1/4	

• p(y|x) is

	$y = 0 \qquad \qquad y = 1$		
x = 1	1	0	
x = 2	1/2	1/2	

Generative vs. Discriminative

• Generative model $p(Data, No\ Zebra)$ (The artist) $p(Data, No\ Zebra)$ of p(Data, Zebra) of p(Data,

Generative Models

Gaussian Mixture Model and other mixture model

Hidden Markov Model

Discriminative Models

Nearest neighbor

Shakhnarovich, Viola, Darrell 2003 Berg, Berg, Malik 2005

•••

Neural Networks

LeCun, Bottou, Bengio, Haffner 1998 Rowley, Baluja, Kanade 1998

...

Support Vector Machines

Guyon, Vapnik Heisele, Serre, Poggio, 2001

• • •

Generative: Gaussian Mixture Model (GMM)

Mixture Models

• Formally a Mixture Model is the weighted sum of a number of probability density functions (pdfs) where the weights are determined by a distribution, π

$$p(x) = \pi_1 f_1(x) + \pi_2 f_2(x) + ... + \pi_K f_K(x)$$
 where $\sum_{i=1}^K \pi_i = 1$
$$p(x) = \sum_{i=1}^K \pi_i f_i(x)$$

Gaussian Mixture Models

• GMM: the weighted sum of a number of Gaussians where the weights are determined by a distribution, π

$$p(x) = \pi_1 N(x | \mu_1, \Sigma_1) + \pi_2 N(x | \mu_2, \Sigma_2) + ... + \pi_K N(x | \mu_K, \Sigma_K)$$
 where $\sum_{i=1}^K \pi_i = 1$
$$p(x) = \sum_{i=1}^K \pi_i N(x | \mu_i, \Sigma_i)$$

Gaussian Mixture Models

- Rather than identifying clusters by "nearest" centroids
- Fit a Set of K Gaussians to the unlabeled data
- Maximum Likelihood over a mixture model

- There are K components. The i'th component is called ω_i
- Component ω_i has an associated mean vector μ_i

- There are K components. The i'th component is called ω_i
- Component ω_i has an associated mean vector μ_i
- Each component generates data from a Gaussian model with mean μ_i and covariance matrix $\sigma^2 I$

- There are K components. The i'th component is called ω_i
- Component ω_i has an associated mean vector μ_i
- Each component generates data from a Gaussian model with mean μ_i and covariance matrix $\sigma^2 I$

Assume that each data point is generated according to the following recipe:

1. Pick a component at random. Choose component i with probability $P(\omega_i)$.

- There are K components. The i'th component is called ω_i
- Component ω_i has an associated mean vector μ_i
- Each component generates data from a Gaussian model with mean μ_i and covariance matrix $\sigma^2 I$

Assume that each data point is generated according to the following recipe:

- 1. Pick a component at random. Choose component i with probability $P(\omega_i)$.
- 2. Data point $\sim N(\mu_i, \sigma^2 I)$

The General GMM Assumption

- There are K components. The i'th component is called ω_i
- Component ω_i has an associated mean vector μ_i
- Each component generates data from a Gaussian model with mean μ_i and covariance matrix Σ_i

Assume that each data point is generated according to the following recipe:

- 1. Pick a component at random. Choose component i with probability $P(\omega_i)$.
- 2. Data point $\sim N(\mu_i, \Sigma_i)$

The EM Algorithm

 Expectation-maximization (EM) is a method for finding maximum likelihood (or maximum a posteriori) estimate of parameter(s) in statistical model, where the model depends on unobserved latent variables.

Latent variables are the key properties for EM.

The EM Algorithm

- EM is an iterative method which alternates between performing an Expectation (E) step and a Maximization (M) step
 - E-step computes the expectation of the log-likelihood evaluated using the current estimated distributions for the latent variables based on the parameters inferred from previous step
 - M-step computes parameters maximizing the expected log-likelihood from the E-step. These parameter-estimates are then used to determine the distribution of the latent variables in the next E-step.

become constants here.

Simple Example

Let events be "grades in a class"

```
w_1 = Gets \text{ an } A P(A) = \frac{1}{2}

w_2 = Gets \text{ a} B P(B) = \mu

w_3 = Gets \text{ a} C P(C) = 2\mu

w_4 = Gets \text{ a} D P(D) = \frac{1}{2} - 3\mu

(Note 0 \le \mu \le 1/6)
```

Assume we want to estimate μ from data. In a given class, there were

a A's b B's c C's d D's

What's the maximum likelihood estimate of μ given a, b, c, d?

Trivial Statistics

$$P(A) = \frac{1}{2}$$
 $P(B) = \mu$ $P(C) = 2\mu$ $P(D) = \frac{1}{2} - 3\mu$

P(a, b, c, d |
$$\mu$$
) = K($\frac{1}{2}$)^a(μ)^b(2μ)^c($\frac{1}{2}$ - 3μ)^d

$$\log P(a, b, c, d \mid \mu) = \log K + a \log \frac{1}{2} + b \log \mu + c \log 2\mu + d \log (\frac{1}{2} - 3\mu)$$

FOR MAX LIKE
$$\mu$$
, SET $\frac{\partial Log P}{\partial \mu} = 0$

$$\frac{\partial \text{LogP}}{\partial \mu} = \frac{b}{\mu} + \frac{2c}{2\mu} - \frac{3d}{1/2 - 3\mu} = 0$$

$$K = \frac{(a+b+c+d)!}{a!b!c!d!}$$

Gives max like
$$\mu = \frac{b+c}{6(b+c+d)}$$

So if class got

Α	В	С	D
14	6	9	10

Max like
$$\mu = \frac{1}{10}$$

Same Problem with Latent Information

Someone tells us that

Number of High grades (A's + B's) = h

Number of C's = c

Number of D's = d

What is the max likelihood estimate of μ now?

REMEMBER

$$P(A) = \frac{1}{2}$$

$$P(B) = \mu$$

$$P(C) = 2\mu$$

$$P(D) = \frac{1}{2} - 3\mu$$

$$\log P(h, c, d \mid \mu, b) = \log K(h-b,b,c,d) + (h-b) \log \frac{1}{2} + b \log \mu + c \log 2\mu + d \log (\frac{1}{2}-3\mu)$$

latent variable

Same Problem with Latent Information

Someone tells us that

Number of High grades (A's + B's) = h

Number of C's = c

Number of D's = d

What is the max likelihood estimate of μ now?

We can answer this question circularly:

REMEMBER

 $P(A) = \frac{1}{2}$

 $P(B) = \mu$

 $P(C) = 2\mu$

 $P(D) = \frac{1}{2} - 3\mu$

EXPECTATION

If we know the value of μ we could compute the expected value of b

Since the ratio a:b should be the same as the ratio ½ : μ

$$E_{\mu}(b) = \frac{\mu}{\frac{1}{2} + \mu} h$$

MAXIMIZATION

If we know the expected values of b we could compute the maximum likelihood value of μ

$$\mu = \frac{E_{\mu}(b) + c}{6(E_{\mu}(b) + c + d)}$$

Already computed as in slide #19

EM for This Problem

We begin with a guess for μ We iterate between **EXPECTATION** and **MAXIMIZATION** to improve our estimates of b and μ .

REMEMBER

 $P(A) = \frac{1}{2}$

 $P(B) = \mu$

 $P(C) = 2\mu$

 $P(D) = \frac{1}{2} - 3\mu$

Define $\mu(t)$ the estimate of μ on the t'th iteration

b(t) the estimate of b on t'th iteration

 $\mu(0) = initial guess$

$$b(t) = \frac{\mu(t)h}{\frac{1}{2} + \mu(t)} = E[b | \mu(t)]$$

$$\mu(t+1) = \frac{b(t)+c}{6(b(t)+c+d)}$$

= max like est of μ given b(t)

Continue iterating until converged.

Good news: Converging to local optimum is assured.

Bad news: We have "local" optimum.

EM Convergence

- Convergence proof based on fact that $Prob(data \mid \mu)$ must increase or remain same between each iteration [NOT OBVIOUS, BUT NOT STUDY HERE]
- But it can never exceed 1
- So it must therefore converge

Back to Learning of GMM

Remember:

We have unlabeled data $x_1 x_2 \dots x_N$

We know there are *K* components

We know $P(\omega_1) P(\omega_2) P(\omega_3) \dots P(\omega_k)$, σ

We don't know $\mu_1 \mu_2 ... \mu_k$

Hidden variables z_k^n indicating which component k the datum n is sampled from

Compute Likelihood

We define:

The define:
$$\pi_i = P(\omega_i) \quad \text{where} \quad \sum_i \pi_i = 1$$

$$z_i = p(\omega_i|x) = \frac{P(\omega_i)p(x|\omega_i)}{\sum_{j=1}^K P(\omega_j)p(x|\omega_j)}$$

$$z_k^n = p(\omega_k|x_n)$$

Identify a likelihood function

$$p(x_1,\ldots,x_N|\pi,\mu)=\prod_{n=1}^N p(x_n|\pi,\mu)$$
 x_n 's were drawn independently
$$=\prod_{n=1}^N \sum_{k=1}^K p(x_n|\omega_k,\mu_k)P(\omega_k)$$

Maximum Likelihood over a GMM

Identify a log-likelihood function

$$\ln p(x_1, \dots, x_n | \pi, \mu) = \sum_{n=1}^N \ln \left[\sum_{k=1}^K p(x_n | \omega_k, \mu_k) P(\omega_k) \right]$$

Compute and set partials to 0

$$\frac{\partial \ln p(x_1, \dots, x_n | \pi, \mu)}{\partial \mu_k} = \sum_{n=1}^{N} \frac{1}{p(x_n | \pi, \mu)} \frac{\partial \sum_{k=1}^{K} N(x_n | \mu_k) P(\omega_k)}{\partial \mu_k}$$

$$= \sum_{n=1}^{K} \frac{P(\omega_k)}{p(x_n | \pi, \mu)} \frac{\partial N(x_n | \mu_k)}{\partial \mu_k}$$

$$= \sum_{n=1}^{N} \frac{P(\omega_k) N(x_n | \mu_k)}{p(x_n | \pi, \mu)} \frac{\partial \ln f(x)}{\partial \mu_k}$$

$$= \sum_{n=1}^{N} \frac{P(\omega_k) N(x_n | \mu_k)}{p(x_n | \pi, \mu)} \frac{\partial \ln N(x_n | \mu_k)}{\partial \mu_k}$$

see next slide

Maximum Likelihood over a GMM

$$\frac{\partial \ln p(x_1, \dots, x_n | \pi, \mu)}{\partial \mu_k} = \sum_{n=1}^{N} p(\omega_k | x_n) \frac{\partial \ln \exp\left(-\frac{1}{2\sigma^2} (x_n - \mu_k)^2\right)}{\partial \mu_k}$$

$$= \sum_{n=1}^{N} z_k^n \left(-\frac{1}{2\sigma^2} \frac{\partial (x_n - \mu_k)^2}{\partial \mu_k} \right)$$

$$= \sum_{k=1}^{N} z_k^n \frac{x_n - \mu_k}{\sigma^2} = 0$$
 set partials to 0

EM for General GMMs

We don't know $P(\omega_1), P(\omega_2), \dots, P(\omega_K), \mu_1, \mu_2, \dots, \mu_K, \Sigma_1, \Sigma_2, \dots, \Sigma_K$

Similarly, after compute the log likelihood and take partials to 0, we have

$$\mu_k = \frac{\sum_{n=1}^N z_k^n x_n}{\sum_{n=1}^N z_k^n}$$

$$\Sigma_k = \frac{\sum_{n=1}^{N} z_k^n (x_n - \mu_k) (x_n - \mu_k)^T}{\sum_{n=1}^{N} z_k^n}$$

$$\pi_k = \frac{\sum_{n=1}^N z_k^n}{N}$$

Summary: EM for GMMs

- Initialize the parameters
 - Evaluate the log likelihood

• Expectation-step: Compute the expectation

- Maximization-step: Re-estimate Parameters
 - Evaluate the log likelihood
 - Check for convergence

EM for GMMs

 E-step: Compute "expected" classes of all data points for each class

$$z_k^n = \frac{\pi_k N(x_n | \mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j N(x_n | \mu_j, \Sigma_j)}$$

where
$$\pi_k = p(\omega_k)$$

EM for GMMs

M-Step: Re-estimate Parameters

$$\mu_k^{new} = \frac{\sum_{n=1}^{N} z_k^n x_n}{\sum_{n=1}^{N} z_k^n}$$

$$\Sigma_k^{new} = \frac{\sum_{n=1}^{N} z_k^n (x_n - \mu_k^{new}) (x_n - \mu_k^{new})^T}{\sum_{n=1}^{N} z_k^n}$$

$$\pi_k^{new} = p(\omega_k)^{new} = \frac{\sum_{n=1}^N z_k^n}{N}$$

Latent variables become constants here.

Gaussian **Mixture** Model Example: Start

After 1st iteration

After 2nd iteration

After 3rd iteration

After 4th iteration

After 5th iteration

After 6th iteration

After 20th iteration

Relationship to K-means

- K-means makes hard decisions.
 - Each data point gets assigned to a single cluster.
- GMM makes soft decisions.
 - Each data point yields a posterior
- Potential problem:
 - Incorrect number of Mixture Components

Incorrect Number of Gaussians

Incorrect Number of Gaussians

GMM for Classification

- Train universal GMM, and then adapt it for individual class, and finally do classification
 - Widely used in speech recognition
- Note that we can initiate GMM by using K-means

Another Application

Discriminative: Boosting

Example Task

Object detection and recognition is formulated as a classification problem.

The image is partitioned into a set of overlapping windows

... and a decision is taken at each window about if it contains a target object or not.

Formulation

Formulation: binary classification

Features x =

 X_1 X_2 X_3 \cdots X_N

 X_{N+1} X_{N+2} ... X_{N+M}

Labels y = -1 +1 -1

Training data: each image patch is labeled as containing the object or background

Test data

Classification function

 $\hat{y} = F(x)$ where F(x) belongs to some family of functions

Minimize misclassification error

Why Boosting?

- A simple algorithm for learning robust classifiers
 - Freund & Shapire, 1995
 - Friedman, Hastie, Tibshhirani, 1998
- Provides efficient algorithm for sparse visual feature selection
 - Tieu & Viola, 2000
 - Viola & Jones, 2003
- Easy to implement, not requires external optimization tools

Boosting

Defines a classifier using an additive model:

Boosting

Defines a classifier using an additive model:

We need to define a family of weak classifiers

 $f_k(x)$ from a family of weak classifiers

It is a sequential procedure:

Weak learners from the family of lines

Each data point has

a class label:

$$y_t = \begin{cases} +1 & \bullet \\ -1 & \bullet \end{cases}$$

and a weight:

$$w_t = 1$$

Weak classifier $h \Rightarrow p(error) = 0.5$ it is at chance

This one seems to be the best

We set a new problem for which the current classifier performs at chance again

Each data point has

a class label:

$$y_t = \begin{cases} +1 & \bullet \\ -1 & \bullet \end{cases}$$

We update the weights:

$$w_t \leftarrow w_t \exp\{-y_t F(x_t)\}$$

Each data point has

a class label:

$$y_t = \begin{cases} +1 & \bullet \\ -1 & \bullet \end{cases}$$

We update the weights:

$$w_t \leftarrow w_t \exp\{-y_t F(x_t)\}$$

The strong (non-linear) classifier is built as the combination of all the weak (linear) classifiers.

Boosting

 For different cost function and minimization algorithm, the result is a different flavor of Boosting

- We shall introduce gentleBoosting
 - It is simple to implement and numerically stable.

Boosting

Boosting fits the additive model

$$F(x) = f_1(x) + f_2(x) + f_3(x) + \dots$$

by minimizing the exponential loss

$$J(F) = \sum_{t=1}^{N} e^{-y_t F(x_t)}$$
Training samples

The exponential loss is a differentiable upper bound to the misclassification error.

Exponential Loss

Squared error

$$J = \sum_{t=1}^{N} [y_t - F(x_t)]^2$$

Exponential loss

$$J = \sum_{t=1}^{N} e^{-y_t F(x_t)}$$

Boosting

Sequential procedure. At each step m we add

$$F(x) \leftarrow F(x) + f_m(x)$$

to minimize the residual loss

$$(\phi_m) = \arg\min_{\phi} \sum_{t=1}^N J\left(y_t, F(x_t) + f(x_t; \phi)\right)$$
 Parameters of the weak classifier Desired output input weak classifier

gentleBoosting

• At each iteration:

We chose $f_m(x)$ that minimizes the cost:

$$J(F + f_m) = \sum_{t=1}^{N} e^{-y_t(F(x_t) + f_m(x_t))}$$

Instead of doing exact optimization, gentle Boosting minimizes the approximation of the error:

$$J(F) \propto \sum_{t=1}^N e^{-y_t F(x_t)} (y_t - f_m(x_t))^2$$
 At each iterations we just need to solve a weighted least squares problem Weights at this iteration

Weak Classifiers

 The input is a set of weighted training samples (x,y,w)

 Regression stumps: simple but commonly used in object detection.

$$f_m(x) = a[x_k < \theta] + b[x_k \ge \theta]$$
 Four parameters: $\phi = [a, b, \theta, k]$
$$= \begin{bmatrix} a = E_w(y \mid x < \theta) \\ \theta \end{bmatrix}$$

Features -> Weak Detectors

Haar filters and integral image

Viola and Jones, ICCV 2001

The average intensity in the block is computed with four sums independently of the block size.

Features -> Weak Detectors

For screen detection, we may collect a set of part templates from a set of training objects to build feature set.

Weak 'detector' Produces many false alarms.

Second weak 'detector'
Produces a different set of false alarms.

Cascade of classifiers

What is the motivation: some negative samples may be rejected based on few features!

We want the complexity of the 3 features classifier with the performance of the 100

features classifier:

Select a threshold with high recall for each stage.

We increase precision using the cascade

Output of Face Detector on Test Images

Other detection tasks

Facial Feature Localization

Profile Detection

Male vs. female

Profile Detection

"Head in the coffee beans problem"

Can you find the head in this image?

Weakness of Boosting

- Features are extracted at fixed positions, and thus not deformable (not perfect for deformable objects)
- No mechanism for handling occlusion
- Extension to "deformable model" + "and/or model"?

Papers to Read and Study

Friedman, Hastie, Tibshirani.

Additive Logistic Regression: a Statistical View of Boosting (1998). Pdf

Robert E. Schapire.

The boosting approach to machine learning: An overview.

In D. D. Denison, M. H. Hansen, C. Holmes, B. Mallick, B. Yu, editors, *Nonlinear Estimation and Classification*. Springer, 2003.

Postscript or gzipped postscript.

Ron Meir and Gunnar Rätsch.

An introduction to boosting and leveraging.

In Advanced Lectures on Machine Learning (LNAI2600), 2003. Pdf.