1 Trigonometrie

$$\begin{split} \sin(0) &= 0, \ \sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}, \ \sin(\frac{\pi}{2}) = 1, \ \sin(\pi) = 0, \ \sin(\frac{3\pi}{4}) = \frac{\sqrt{2}}{2} \\ \cos(0) &= 1, \ \cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}, \ \cos(\frac{\pi}{2}) = 0, \ \cos(\pi) = -1, \ \cos(\frac{3\pi}{4}) = -\frac{\sqrt{2}}{2} \\ \tan(x) &= \frac{\sin(x)}{\cos(x)} \\ \sin(2x) &= 2\sin(x)\cos(x) \\ \sin(2x) &= 2\sin(x)\cos(x) \\ \sin(\alpha + \beta) &= \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta) \\ \cos(\alpha + \beta) &= \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta) \\ \cos^2(x) &= \frac{1 + \cos(2x)}{2} \\ \sin^2(x) + \cos^2(x) &= 1 \end{split}$$

2 Mengen

2.1 Definitionen

Obere/Untere Schranke: $\exists b \in \mathbb{R} \ \forall a \in A: \ a \leq b, \ \exists c \in \mathbb{R} \ \forall a \in A: \ a \geq c$

Supremum: kleinste obere Schranke sup A grösste untere Schranke inf A

Maximum/Minimum: $\sup A \in A$, $\inf A \in A$

2.2 Identitten

$$A+B:=\{a+b|a\in A,b\in B\}$$

$$\sup(A+B)=\sup A+\sup B,\ \inf(A+B)=\inf A+\inf B$$

$$\sup(A\cup B)=\max\{\sup A,\sup B\},\ \inf(A\cup B)=\min\{\inf A,\inf B\}$$

3 Komplexe Zahlen

3.1 Polarform

3.2 Identitäten

$$\overline{z} = x - iy$$

$$z^{-1} = \frac{\overline{z}}{|z|^2}$$

$$(a,b) \cdot (c,d) = (ac - bd, ad + bc)$$

$$i = \sqrt{-1}$$

$$i^2 = -1$$

$$|z|^2 = z\overline{z}$$

$$|zw|^2 = (zw) \cdot \overline{(zw)} = |z|^2 |w|^2$$

4 Grenzwert

4.1 Dominanz

Für
$$x \to +\infty$$
: ... $< \log(\log(x)) < \log(x) < x^{\alpha} < \alpha^{x} < x! < x^{x}$
Für $x \to 0$: ... $< \log(\log(x)) < \log(x) < (\frac{1}{x})^{\alpha}$

4.2 Tipps

$$\lim_{x \to a} \frac{\sin \odot}{\odot} = 1 \text{ mit } \odot \xrightarrow{x \to a} 0$$

$$\lim_{x \to a} (1 + \frac{1}{\odot})^{\odot} = e \text{ mit } \odot \xrightarrow{x \to a} \infty$$

$$\lim_{x \to a} (1 + \odot)^{\frac{1}{\odot}} = e \text{ mit } \odot \xrightarrow{x \to a} 0$$

4.3 Wurzeltrick

$$\lim_{x \to \infty} \sqrt{\alpha} + \beta = \lim_{x \to \infty} (\sqrt{\alpha} + \beta) \frac{\sqrt{\alpha} - \beta}{\sqrt{\alpha} - \beta}$$

4.4 $e^{\log(x)}$ -Trick

Anforderung: Term der Form $f(x)^{g(x)}$ mit Grenzwert "0", " ∞^0 " oder "1 ∞ " für $x \to 0$

Grundsatz:
$$\lim_{x\to a} f(x)^{g(x)} = \lim_{x\to a} e^{g(x)\cdot \log(f(x))}$$

4.5 Satz von Bernoulli-de l'Hôpital

Anforderung: Term der Form $\frac{f(x)}{g(x)}$ mit Grenzwert entweder " $\frac{0}{0}$ " oder " $\frac{\infty}{\infty}$ " mit $g'(x) \neq 0$. Falls die Grenzwerte $0 \neq \infty$ verschieden sind, kann man umformen: $\frac{f(x)}{\frac{1}{g(x)}}$.

Grundsatz:
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g(x)}$$

Zwei Polizisten zu benutzen mit sin, cos, tan oder -1^n ... sonst induktion: $a_{n+1} \ge a_n \Rightarrow a_{n+2} \ge a_{n+1}$ oder direct. Mit eine recursive folge, um Grenzwert zu finden, setzen a_n mit a und a finden. Oder direct mit $a_{n+1} - a_n \ge 0$.

2

5 Reihen

Konvergenzkriterien 5.1

	Eignung	Bemerkung	
Limes des allgemeinen		zeigt nur Divergenz	
Glieds			
Majoranten- und Mino-		ersten Glieder spielen keine	
rantenkriterium		Rolle	
Quotientenkriterium	a_n mit Faktoren wie $n!$,	gleiche Folgerung wie	
	a^n , oder Polynome	Wurzelkriterium	
Wurzelkriterium	$a_n = (b_n)^n$	gleiche Folgerung wie Quo-	
		tientenkriterium	
Leibnitz-Kriterium	alternierende Reihe		
Absolute Konvergenz	sin, cos		

Limes des allgemeinen Glieds

Bemerkung: Mit dieser Methode lsst sich nur die Divergenz beweisen, nicht jedoch die Konvergenz.

- 1. $\sum_{n} a_n$ gegeben
- 2. Grenzwert $\lim_{n\to\infty} a_n$ berechnen
 - falls Grenzwert $\neq 0 \Rightarrow$ divergent
 - falls Grenzwert = $0 \Rightarrow$ keine Aussage

Majoranten- und Minorantenkriterium

Es seien $a_n, b_n > 0$ mit $a_n \ge b_n \ \forall n$ ab einem gewissen n_0 . Dann gilt:

$$\sum_{n} a_{n} \text{ konvergent} \Rightarrow \sum_{n} b_{n} \text{ konvergent} \quad \text{(Majorantenkriterium)}$$

$$\sum_{n} b_{n} \text{ divergent} \Rightarrow \sum_{n} a_{n} \text{ divergent} \quad \text{(Minorantenkriterium)}$$

Vergleichskriterium

- 1. $\sum_{n} a_n$ und $\sum_{n} b_n$ gegeben mit $a_n, b_n > 0$
- 2. Grenzwert $\lim_{n\to\infty} \frac{a_n}{b_n}$ berechnen
 - falls Grenzwert = 0:
 - $-\sum_n a_n$ divergent $\Rightarrow \sum_n b_n$ divergent $-\sum_n b_n$ konvergent $\Rightarrow \sum_n a_n$ konvergent
 - falls Grenzwert = ∞ :
 - $\sum_n a_n$ konvergent $\Rightarrow \sum_n b_n$ konvergent $\sum_n b_n$ divergent $\Rightarrow \sum_n a_n$ divergent

Quotientenkriterium

- 1. $\sum_{n} a_n \text{ mit } a_n \neq 0 \text{ gegeben}$
- 2. Grenzwert $\lim_{n \mapsto \infty} |\frac{a_{n+1}}{a_n}|$ berechnen
 - falls Grenzwert $> 1 \Rightarrow$ divergent
 - falls Grenzwert $\langle 1 \Rightarrow \mathbf{konvergent} \rangle$
 - falls Grenzwert = $1 \Rightarrow$ keine Aussage

Wurzelkriterium

- 1. $\sum_{n} a_n \text{ mit } a_n \neq 0 \text{ gegeben}$
- 2. Grenzwert $\lim_{n\to\infty} \sqrt[n]{|a_n|}$ berechnen
 - falls Grenzwert $> 1 \Rightarrow$ divergent
 - falls Grenzwert $< 1 \Rightarrow$ konvergent
 - falls Grenzwert = $1 \Rightarrow$ keine Aussage

Leibniz-Kriterium

- 1. $\sum_{n} (-1)^n a_n$ gegeben
- 2. konvergent, falls:
 - (a) $a_n \geq 0$
 - (b) $\lim_{n\to\infty} a_n = 0$
 - (c) a_n monoton fallend

Absolute Konvergenz

- 1. $\sum_{n} (-1)^n a_n$ gegeben
- 2. **konvergent**, falls $\sum_{n} |a_n|$ konvergent

5.2 Geometrische Reihe

Reihe der Form $\sum_{k=0}^{\infty} a \cdot r^k$ mit der **Partialsumme**:

$$S_N = \frac{a - ar^{N+1}}{1 - r}$$

Konvergent, falls 0 < |r| < 1 mit Grenzwert:

$$\sum_{k=0}^{\infty} ar^k = \frac{a}{1-r}$$

5.3 Potenzreihe

Reihe der Form $\sum_{0}^{\infty} a_n x^n$. Konvergent, falls $|x| < \rho$. In diesem Gebiet darf man die Reihe ableiten und integrieren.

$$\rho = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$

$$\rho = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}}$$

5.3.1 Tipps

$$\cos(x) = \sum_{0}^{\infty} \frac{(-1)^{n} x^{2n}}{(2n)!}$$
$$\sin(x) = \sum_{0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{(2n+1)!}$$
$$e^{x} = \sum_{0}^{\infty} \frac{x^{n}}{n!}$$

6 Stetigkeit

6.1 Stetigkeitskriterien

Weierstrass-Kriterium

Fr alle $\epsilon > 0$ gibt es ein $\delta(\epsilon, a) > 0$, sodass fr alle $|x - a| < \delta$ gilt:

$$|f(x) - f(a)| < \epsilon$$

Gleichmssige Stetigkeit

Fr alle $\epsilon > 0$ gibt es ein $\delta(\epsilon) > 0$, sodass fr alle $|x - y| < \delta$ gilt:

$$|f(x) - f(y)| < \epsilon$$

Bemerkung: Ist f stetig und kompakt, dann ist sie auch gleichmssig stetig.

Lipschitz-Stetigkeit

Es existiert eine Konstante $L \in \mathbb{R}$, sodass:

$$|f(x) - f(y)| \le L|f(x) - f(y)| \quad \forall x, y \in \Omega$$

Bemerkung: Ist f' auf Ω beschrukt, so ist f Lipschitz-stetig. Lipschitz-Stetigkeit impliziert gleichmssige Stetigkeit.

Punktweise Konvergenz

 $f_n(x)$ konvergiert punktweise falls:

$$\forall x \in \Omega \quad \lim_{n \to \infty} f_n(x) = f(x)$$

Gleichmssig Konvergenz

Grundsatz: Falls eine Folge stetiger Funktionen f_n gleichmssig gegen f konvergiert, ist f stetig.

 $f_n(x)$ konvergiert gleichmssig falls:

$$\lim_{n \to \infty} \sup |f_n(x) - f(x)| = 0$$

5

Bemerkung: Gleichmssige Konvergenz impliziert punktweise Konvergenz.

7 Differenzialrechnung

Eine stetige Funktion ist differenzierbar, falls der Grenzwert $f'(x_0)$ existiert:

$$f'(x_0) := \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

7.1 Umkehrsatz

$$(f^{-1})'(y) = \frac{1}{f'(x)}$$

7.2 Mittelwertsatz

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

7.3 Taylorpolynom

Das Taylorpolynom m-ter Ordnung von f(x) an der Stelle x = a

$$P_m^a(x) := f(a) + f'(a)(x - a) + \frac{1}{2}f''(a)(x - a)^2 + \dots + \frac{1}{m!}f^{(m)}(a)(x - a)^m$$

mit dem Fehlerterm $R_m^a(x)$, wobei ξ zwischen a und b liegt:

$$R_m^a(x) = \frac{f^{(m+1)}(\xi)}{(m+1)!}(x+a)^{m+1}$$
, wobei $f(x) = P_m^a(x) + R_m^a(x)$

7.4 Hauptsatz von calculus

$$f(x) = \int_{1}^{m(x)} g(t)dt$$

$$f'(x) = g(m(x)) * \frac{d}{dx}m(x)$$

wo m(x) hat der Form ax^b und $l\epsilon \mathbb{R}$

8 Integration

8.1 Elementare Integrale

f(x)	F(x)
x^{α}	$\frac{x^{\alpha+1}}{\alpha+1} + C$
$\frac{1}{x}$	$\log(x) + C$
$\frac{1}{x^2}$	$\frac{1}{x} + C$
$\sin(x)$	$-\cos(x) + C$
$\cos(x)$	$\sin(x) + C$

8.2 Regeln

Direkter Integral
$$\int f(g(x))g'(x) \ dx = F(g(x))$$

Partielle Integration $\int f' \cdot g \ dx = f \cdot g - \int f \cdot g' \ dx$
mit Polynomen $\int \frac{p(x)}{q(x)} \ dx \Rightarrow \text{Partialbruchzerlegung}$
Substitution $\int_a^b f(\varphi(t))\varphi'(t) \ dt = \int_{\varphi(a)}^{\varphi(b)} f(x) \ dx \text{ mit } x = \varphi(t)$

8.3 Tipps

$$\int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx = -\log|\cos(x)|$$

$$\int \frac{1}{x - \alpha} = \log(x - \alpha)$$

$$\int \frac{1}{1 + x^2} = \arctan(x)$$

$$\int \sinh(x) = \cosh(x) + C$$

$$\int \cosh(c) = \sinh(s) + C$$

9 Differentialgleichungen

9.1 Grundbegriffe

Ordnung: höchste vorkommende Ableitung

linear: alle y-abhängigen Terme kommen linear vor (keine Terme wie zum Beispiel

 y^2 , $(y'')^3$, $\sin(y)$, $e^{y'}$)

homogen: Gleichung ohne Störfunktionen

Störfunktion: Term, der rein von der Funktionsvariablen x abhängt

9.2 Methoden

	Problem	Anforderungen
Trennung der Variablen	$y' = \frac{dy}{dx} = h(x) \cdot g(y)$	1. Ordnung
Variation der Konstanten	$y' = \frac{dy}{dx} = h(x)y + b(x)$	1. Ordnung
		inhomogen
Euler-Ansatz	$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_0 y = 0$	n. Ordnung
		linear
		homogen
Direkter Ansatz	$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_0 y = b(x)$	n. Ordnung
		linear
		inhomogen

9.2.1 Trennung der Variable

$$y' + x \tan y = 0, \ y(0) = \frac{\pi}{2}$$
 umformen
$$\frac{dy}{dx} = -x \tan y$$

konstante Lösungen $y(x) \equiv 0$ erfüllt jedoch $y(0) \equiv \frac{\pi}{2}$ nicht

Trennung
$$\frac{dy}{\tan y} = -xdx$$

integrieren
$$\int \frac{\cos y}{\sin y} dy = -\int x dx \Rightarrow \log|\sin y| = -\frac{x^2}{2} + C$$
$$\Rightarrow |\sin y| = e^C e^{\frac{-x^2}{2}} \Rightarrow \sin y = \pm e^C e^{\frac{-x^2}{2}} = Ce^{\frac{-x^2}{2}}$$

Anfangsbedingung gebrauchen $\sin(y(0)) = \sin(\frac{\pi}{2}) = 1 \Rightarrow C = 1$

Lösung
$$y(x) = \arcsin(e^{\frac{-x^2}{2}})$$

9.2.2 Variation der Konstanten

Grundsatz: $y(x) = y_{\text{homo}}(x) + y_p(x)$

$$y' - y = 1, \ y(0) = 0$$

homogener Ansatz y' = y

konstante Lösungen $y(x) \equiv 0$

Trennung
$$\frac{dy}{y} = dx \Rightarrow \int \frac{dy}{y} = \int dx \Rightarrow \log|y| = x$$

homogene Lösung
$$y_{\text{homo}}(x) = Ae^x, \ A = e^C \in \mathbb{R}$$

partikulärer Ansatz
$$y_p(x) = A(x)e^x$$

einsetzen
$$A'e^x + Ae^x - Ae^x = 1 \Rightarrow A' = e^{-x} \Rightarrow A(x) = \int e^{-x} dx = -e^{-x}$$

partikuläre Lösung $y_p(x) = -1$

Lösung
$$y(x) = Ae^x - 1$$
 mit Anfangsbedingung $A = 1$
 $\Rightarrow y(x) = e^x - 1$

9.2.3 Euler-Ansatz

$$y'' - 2y' - 8y = 0, \ y(1) = 1, y'(1) = 0$$

Euler-Ansatz
$$y(x) = e^{\lambda x}$$

einsetzen
$$\lambda^2 e^{\lambda x} - 2\lambda e^{\lambda x} - 8e^{\lambda x} = 0$$

charakt. Polynom
$$\lambda^2 - 2\lambda - 8 = (\lambda - 4)(\lambda + 2) = 0$$

Nullstellen 4, -2

allgemeine Lösung
$$y(x) = Ae^{4x} + Be^{-2x}$$

Anfangsbedingung gebrauchen $y(1) = Ae^4 + Be^{-2} = 1$, $y'(1) = 4Ae^4 - 2Be^{-2} = 0$

$$\Rightarrow A = \frac{1}{3}e^{-4}, B = \frac{2}{3}e^{2}$$

Lösung
$$y(x) = \frac{1}{3}e^{4x-4} + \frac{2}{3}e^{2-2x}$$

Bemerkung: Zu einer m-fachen Nullstelle λ gehören die m linear unabhängigen Lösungen $e^{\lambda x}$, $x \cdot e^{\lambda x}$, ..., $x^{m-1} \cdot e^{\lambda x}$. Zur m-fachen Nullstelle $\lambda = 0$ gehören die Lösungen $1, x, \ldots, x^{m-1}$.

9.2.4 Direkter Ansatz

Grundsatz: $y(x) = y_{\text{homo}}(x) + y_p(x)$

Inhomogener Term $b(x)$	Ansatz für $y_p(x)$	zu bestimmen
Polynom	$Ax^2 + Bx + C$	A, B, C
ce^{kx}	Ae^{kx}	A
$c\sin(kx)$ oder $c\cos(kx)$	$A\sin(kx) + B\cos(kx)$	A, B

$$y'' - y' + \frac{1}{4}y = \cos(x)$$
 homogener
$$y'' + y' + \frac{1}{4}y = 0$$
 Euler-Ansatz anwenden
$$\lambda^2 + \lambda + \frac{1}{4} = (\lambda + \frac{1}{2})^2 = 0$$
 homogene Lösung
$$\Rightarrow y_{\text{homo}}(x) = Ae^{-\frac{x}{2}} + Bx \cdot e^{-\frac{x}{2}}$$
 Ansatz wählen
$$y_p(x) = a\cos(x) + b\sin(x)$$

$$\Rightarrow y_p'(x) = -a\sin(x) + b\cos(x), \ y_p''(x) = -a\cos(x) - b\sin(x)$$
 Einsetzen
$$(-a + b + \frac{a}{4})\cos(x) + (-b - a + \frac{1}{4}b)\sin(x) = \cos(x)$$
 Koeffizientenvergleich
$$-\frac{3}{4}a + b = 1, \ -a - \frac{3}{4}b = 0$$
 partikuläre Lösung
$$y_p(x) = -\frac{12}{25}\cos(x) + \frac{16}{25}\sin(x)$$
 Lösung
$$y(x) = Ae^{-\frac{x}{2}} + Bx \cdot e^{-\frac{x}{2}} - \frac{12}{25}\cos(x) + \frac{16}{25}\sin(x)$$

9.3 Komplexe zahlen

Falls der charakteristische Polynom ist komplex und hat der form $a + i\sqrt{b}$, dann hat die homogene Losung die form:

$$y(x) = e^{ax}(c_1 cos(\sqrt{b}x) + C_2 sin(\sqrt{b}x))$$

Wo a ist die komplexe losung von charakteristische polynom.

10 Vektorfelder

10.1 Operatoren

10.1.1 Differenzial

$$df = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \dots & \dots & \dots \\ \frac{\partial f_m}{\partial x_1} & \dots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

10.1.2 Gradient

$$\operatorname{grad}(f) = \nabla f = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \dots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}$$

Der Gradient zeigt in die Richtung der maximalen Zuwachsrate von f und seine Luge ist gleich der maximalen nderung von f.

10.1.3 Hessematrix

$$\operatorname{Hess}(f) = \begin{pmatrix} \frac{\partial^2 f}{\partial^2 x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \cdots & \cdots & \cdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_2^2} \end{pmatrix}$$

Falls a hat in x0 nur positive eigenwerte dann ist es eine maximalstelle, falls sie hat nur negative eingewerte dann ist es eine minimalstelle, falls sie hat beide dann ist es ein sattelpunkt.

10.1.4 Rotation

Fr ein Vektorfeld \vec{v} mit Komponenten v_1, v_2, v_3 :

$$\operatorname{rot}(\vec{v}) = \nabla \times \vec{v} = \begin{pmatrix} \frac{\partial v_3}{\partial y} - \frac{\partial v_2}{\partial z} \\ \frac{\partial v_1}{\partial z} - \frac{\partial v_3}{\partial x} \\ \frac{\partial v_2}{\partial x} - \frac{\partial v_1}{\partial y} \end{pmatrix}$$

10.2 Divergenz

$$\operatorname{div}(v) = \frac{\partial v_1}{\partial x} + \frac{\partial v_2}{\partial y} + \dots$$

10.3 Integrabilitatsbedigungen

$$\frac{\vartheta v_i}{\vartheta x_j} = \frac{\vartheta v_j}{\vartheta x_i}, \forall i \neq j$$

Falls diese ist erfllt dann ist der Feld ein Potenzialfeld und konservativ.

10.4 Potenzialfeld

Ein potenzialfled ist konservativ. Der potenzial Φ eines Potenzialfeld:

$$\nabla \Phi \doteq v$$

Bemerkung: Falls $rot(\vec{v}) = 0$, dann ist \vec{v} konservativ.

11 Wegintegral

11.1 Standard Methode

Grundsatz:
$$\int_{\gamma} \vec{v} \cdot d\vec{s} := \int_{a}^{b} \vec{v}(\vec{\gamma}(t)) \cdot \dot{\vec{\gamma}}(t) \ dt$$

10

$$\vec{v} = \begin{pmatrix} y \\ 0 \end{pmatrix}, \ \gamma : [0, 2\pi] \mapsto \mathbb{R}^2, \ t \mapsto \begin{pmatrix} t - \sin(t) \\ 1 - \cos(t) \end{pmatrix}$$
 parametrisieren hier bereits gegeben
$$\gamma \text{ ableiten } \dot{\gamma} = \begin{pmatrix} 1 - \cos(t) \\ \sin(t) \end{pmatrix}$$
 in Formel einsetzen
$$\int_{\gamma} \vec{v} \cdot d\vec{s} = \int_{0}^{2\pi} \begin{pmatrix} 1 - \cos(t) \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 - \cos(t) \\ \sin(t) \end{pmatrix} dt$$

$$= \int_{0}^{2\pi} (1 - \cos(t))^2 \ dt = \int_{0}^{2\pi} (1 - 2\cos(t) + \cos^2(t)) \ dt$$
 Lösung
$$2\pi - 0 + \pi = 3\pi$$

11.2 In Potenzialfeldern

Anforderung: Das Vektorfeld \vec{v} ist **konservativ**(= Potenzialfeld, der Weg ist egal). Es existiert ein Potenzial.

$$\begin{aligned} \mathbf{Grundsatz:} & \int_{\gamma} \vec{v} \cdot d\vec{s} = \Phi(\mathrm{Ende}) - \Phi(\mathrm{Anfang}) \\ \vec{v} &= \begin{pmatrix} e^{xy}(1+xy) \\ e^{xy}x^2 \end{pmatrix}, \text{ Kreisbogen von } (1,0) \text{ nach } (-1,0) \\ \text{gleichsetzen:} & \vec{v} &= \begin{pmatrix} e^{xy}(1+xy) \\ e^{xy}x^2 \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} \frac{\partial \Phi}{\partial x} \\ \frac{\partial \Phi}{\partial y} \end{pmatrix} = \nabla \Phi \\ & \frac{\partial \Phi}{\partial y} &= e^{xy}x^2 \Rightarrow \Phi = \int e^{xy}x^2 \ dy = xe^{xy} + C(x) \\ \text{ableiten:} & \frac{\partial \Phi}{\partial x} &= e^{xy} + xye^{xy} + C' \stackrel{!}{=} e^{xy} + xye^{xy} \\ &\Rightarrow C' &= 0 \Rightarrow C = \text{const.} \end{aligned}$$

$$\begin{aligned} \mathbf{Potenzial:} & \Phi &= xe^{xy} + \text{const.} \\ \mathbf{L\ddot{o}sung:} & \int_{\gamma} \vec{v} \cdot d\vec{s} &= \Phi(-1,0) - \Phi(1,0) = -1 + C - 1 - C = 2 \end{aligned}$$

11.3 Satz von Green

Anforderung: Der Rand muss im positiven mathematischen Sinn umlaufen werden (d.h. im Gegenuhrzeigersinn)

$$\begin{aligned} \textbf{Grundsatz:} \quad & \int_{\gamma=\partial C} \vec{v} \cdot d\vec{s} = \int_{C} (\frac{\partial v_2}{\partial x} - \frac{\partial v_1}{\partial y}) \; dx dy \\ & \vec{v} = \binom{x+y}{y}, \; \text{Kreisbogen mit Radius 1 um } (0,0) \\ \text{Rotation berechnen:} \quad & rot(\vec{v}) = \frac{\partial v_2}{\partial x} - \frac{\partial v_1}{\partial y} = 0 - 1 = -1 \\ \text{Normalbereich:} \quad & E = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 \leq 1\} \\ \text{in Formel einsetzen:} \quad & \int_{\gamma} \vec{v} \cdot d\vec{s} = \int_{E} -1 \; dx dy = -\mu(E) = -\pi \end{aligned}$$

11.4 Tips

parametrisierung eines kreises: $x=r^*\cos(t)$ y= $r^*\sin(t)$ dxdy= rdrdt dxdy= $|rs \times rt|$

12 Flussintegrale oberflacheintegrale

12.1 1 methode

- 1. Die flache parametrisieren nach u
 und v: $\Phi_1(u,v), \Phi_2(u,v), \Phi_3(u,v)$.
- 2. berechnen $\Phi_u = \frac{\vartheta \Phi}{\vartheta u}$ und $\Phi_v = \frac{\vartheta \Phi}{\vartheta v}$. Und krossprodukt berechnen $\Phi_u \times \Phi_v$
- 3. benutzen die Formel:

$$\int_{S} v * n do = \pm \int_{a}^{b} \int_{c}^{d} v(\Phi(u, v)) * (\Phi_{u} \times \Phi_{v}) du dv$$

12.2 Gauss

$$\int_{\vartheta V} v * n do = \int_{V} div(v) d\mu$$

13 Flächenintegral

13.1 Normalbereich

Grundsatz:
$$\Omega = \{(x,y) \in \mathbb{R}^2 | a \le x \le b, f(x) \le y \le g(x) \}$$

$$\int_{\Omega} F \ d\mu = \int_a^b dx \int_{f(x)}^{g(x)} dy \ F(x,y)$$

$$\int_{\Omega} xy \ d\mu, \ \Omega = \{(x, y) \in \mathbb{R}^2 | y \ge x^2, x \ge y^2 \}$$

als Normalbereich schreiben: $\Omega = \{(x,y) \in \mathbb{R}^2 | 0 \le x \le 1, x^2 \le y \le \sqrt{x} \}$

in Formel einsetzen:
$$\int_{\Omega} xy \ d\mu = \int_0^1 dx \int_{x^2}^{\sqrt{x}} dy xy = \int_0^1 dx \ x \Big[\frac{y^2}{2}\Big]_{x^2}^{\sqrt{x}}$$
$$= \int_0^1 \Big(\frac{x^2}{2} - \frac{x^5}{2}\Big) dx = \frac{1}{12}$$

13.2 Satz von Green

Grundsatz:
$$\mu(C) = \int_{\gamma = \partial C} \vec{v} \cdot d\vec{s}$$
, falls $rot(\vec{v}) = 1$

Flächeninhalt der Ellipse E, berandet durch $x = a\cos(\theta), y = b\sin(\theta)$

Rand parametrisieren:
$$\gamma: [0, 2\pi] \mapsto \mathbb{R}^2, \ \theta \mapsto \begin{pmatrix} a\cos(\theta) \\ b\sin(\theta) \end{pmatrix}$$

Vektorfeld auswählen:
$$\vec{v}_1 = \begin{pmatrix} 0 \\ x \end{pmatrix}$$
 oder $\vec{v}_2 = \begin{pmatrix} -y \\ 0 \end{pmatrix}$

Wegintegral ausrechnen $\mu(E) = \pi ab$

14 Kurvendiskussion

kritischer Punkt: $p_0 \in \Omega$ für welchen $\operatorname{rank}(df(p_0)) < \min\{m, n\}$ gilt

Kandidaten fr Extrema: $p_0 \in \Omega$ fr welchen $df(p_0) = 0$ gilt

14.1 Extremwertaufgaben ohne Nebenbedingungen

1. Kandidaten fr Extrema finden df(x) = 0

2. Bestimmung:

- (a) $\operatorname{Hess}(f)(p_0)$ positiv definit \Rightarrow lokales Minimum
- (b) $\operatorname{Hess}(f)(p_0)$ negativ definit \Rightarrow lokales Maximum
- (c) $\operatorname{Hess}(f)(p_0)$ indefinit \Rightarrow Sattelpunkt

14.2 Extremwertaufgaben mit Nebenbedingungen

gegeben: f = xyz mit Nebenbedinung $x^2 + y^2 + z^2 = 1$

Lagrange-Bedingung: $L = f - \lambda g = xyz - \lambda(x^2 + y^2 + z^2 - 1)$

kritische Punkte von L: dL = 0

 $\frac{\partial L}{\partial x} = 0 \Rightarrow \lambda = \frac{yz}{2x}$ $\frac{\partial L}{\partial y} = 0 \Rightarrow \lambda = \frac{xz}{2u}$

 $\frac{\partial y}{\partial L} = 0 \Rightarrow \lambda = \frac{xy}{2z}$

Lambdas gleichsetzen: $x^2 = y^2 = z^2 \wedge g \Rightarrow 3x^2 = 1 \Rightarrow x = \pm \frac{1}{\sqrt{3}}$

Kandidaten: $\left(\pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}\right)$

in f einsetzen: $f\left(\pm\frac{1}{\sqrt{3}}, \pm\frac{1}{\sqrt{3}}, \pm\frac{1}{\sqrt{3}}\right) = \pm\frac{1}{3\sqrt{3}}$

13

Vorgehen um alle Kandidaten zu finden:

- 1. Lagrange-Bedinung anwenden (mssen alle Nebenbedingung erfllen)
- 2. Kandidaten der Nebenbedingung falls g differenzierbar:
 - (a) nicht-regulre Punkte finden mit dg = 0
 - (b) gefundene Punkte mit Nebenbedingung berprfen

falls g nicht differenzierbar:

- (a) nicht-regulre Punkte der Teilstcke des Randes
- (b) Eckpunkte des Gebietes berprfen