Constant

SUVAT <3

Acceleration

(Refer to physics notes if needed!)

1 Displacement - Time Graph

Velocity = Rate of change of displacement

Therefore if S = f(t) (displacement is a function of time), V = f'(t) and A = f''(t)

Displacement: 5km + (-5km) = 0km

Distance: 5km + 5km = 10km

Question!

- Const acc for 30s until 22ms-1
- Const 22ms for 7 s
- Const decc & comes to rest at endpoint.

1 (a) A:
$$\frac{40}{0.5}$$
 = 80 km h⁻¹ B: $\frac{20}{0.5}$ = 40 kmh⁻¹

C:
$$0 \text{ km h}^{-1}$$
 D: $\frac{40}{1} = 40 \text{ kmh}^{-1}$ E: $\frac{-100}{1.5} = -\frac{200}{3} = -66.7 \text{ kmh}^{-1}$

(b) Average velocity =
$$\frac{\text{total displacement}}{\text{total time}} = \frac{0}{4}$$

= 0 kmh⁻¹

(c) Average speed =
$$\frac{\text{total distance}}{\text{total time}} = \frac{100 + 100}{4}$$

= 50 kmh⁻¹

2 (a)
$$S=Vt=60\times2.5=150$$
 km at 2.5 hours
 $S=Vt=60\times0.75=45$ km from 3 to $3\frac{3}{4}$ hours
 $total=195$ km

(6)
$$\bar{V} = \frac{195}{3.75} = 52 \text{ kmh}^{-1}$$

3 (a)
$$V = \frac{S}{t} = \frac{12}{11-10} = 12 \text{ km h}^{-1}$$

(c)
$$3^{rd}$$
 Stage: $\frac{-15}{1.5} = -10 \text{kmh}^{-1}$
 4^{th} Stage: $\frac{3}{1} = 3 \text{kmh}^{-1}$

(d) Avg. speed =
$$\frac{12+15+3}{4} = \frac{30}{4} = 7.5 \text{ kmh}^{-1}$$

$$1(a)$$
 $a = \frac{v - u}{t} = \frac{9 - 0}{4} = 2.25 \text{ m/s}^{-2}$

(b)
$$S = \text{area under curve} = \frac{9 \times 4}{2} + 9 \times 8$$

= $18 + 72 = 90 \text{ m}$

$$2 (a) \qquad V(ms^{-1})$$

$$10 \qquad A \qquad \vdots$$

$$B \qquad 1/s$$

(b) Distance from A to B = area under curve =
$$30 \times 10 + \frac{12 \times 10}{2} = 300 + 60 = 360 \text{ m}$$

$$3(a) \alpha = \frac{v-u}{t} = \frac{8-0}{20} = 0.4 \text{ ms}^{-2}$$

(b)
$$a = \frac{V-V}{+} = \frac{0-8}{15} = -\frac{8}{15} = -0.533 \text{ ms}^2$$

(c) distance = area under curve =
$$\frac{8 \times 20}{2} + 40 \times 8 + \frac{15 \times 8}{2}$$

= $80 + 320 + 30 = 430 \text{ m}$

S-displacement

u- initial whocity

v - final velocity

a - acceleration -

t - time

From v-t-graph

$$\frac{v-u}{t} = \alpha$$

$$v = u + \alpha t$$

2) area under curve = displacement

$$S = \frac{(u+v)t}{2}$$

$$S = \frac{1}{2}(u + v)t$$

Conclusion!

$$y^2 = u^2 + 2as$$

$$S = ut + \frac{1}{2} at^{2}$$

$$S = vt - \frac{1}{2} at^{3}$$

 $v^2 = u^2 + 2as$ Each ones only have 4 variables

: I variable can be ignored!

$$SnP \text{ into } (5): 2 = \frac{7}{1} \left(N + A \right) \left(\frac{C}{A - A} \right)$$

$$S = \frac{1}{20} (v^2 - u^2)$$

Sub into
$$2: S=\frac{1}{2}(u + at + u) t$$

$$S=\frac{1}{2}(zutat)t$$

$$u=v-at \rightarrow s=ut-\frac{1}{2}at^2$$

Ex 9D

1.
$$v^2 = u^2 + 2as$$

$$V^{2} = 3^{2} + 2(2.5)(8)$$
$$V = \sqrt{3^{2} + 2(2.5)(8)}$$

2.
$$s=ut + \frac{1}{2} at^2$$

$$60 = 8 \times 6 + \frac{1}{2} \times 6^2 \times \alpha$$

$$0 = \frac{2}{3} = 0.667 \text{ ms}^{-1}$$

3.
$$y^2 = u^2 + 2as$$

$$A = \frac{-144}{2x36} = -2ms^{-2}$$

Gravitational Acceleration

Things fall & accelerate at 9.8 ms-2

When calculating dropping things: $S = ut + \frac{1}{2}at^2$ S I time taken = t