26.11.2024

Marcus Zibrowius Jan Hennig

Topologie I Blatt 6

So fern nicht weiter spezifiziert arbeiten wir in der Kategorie der lokal kompakt erzeugten, schwach Hausdorff Räume und bezeichnen diese Kategorie mit **Top**, bzw. der punktierten Version **Top**_{*}.

1 | Stegreiffragen: Faserungen und ...

Alle Fragen sollten lediglich eine kurze Antwort benötigen:

- (a) Wahr oder falsch: $\operatorname{pr}_1: \{(x,y) \in \mathbb{R}^2 \mid y=0 \text{ oder } x=y\} \to \mathbb{R}$ ist eine Faserung.
- (b) Was ist die universelle Eigenschaft des Smash-Produkts? (Kommt Ihnen diese bekannt vor?)

2 | Smash-Produkte

Seien X, Y, Z Objekte in **Top**_{*}.

- (a) Zeigen Sie, dass es folgende natürliche Isomorphien gibt:
 - (i) $(X \times Y)_+ \cong X_+ \wedge Y_+$
 - (ii) $X \wedge Y \cong Y \wedge X$
 - (iii) $* \wedge X \cong *$
 - (iv) $S^0 \wedge X \cong X$
 - (v) $X \wedge (Y \vee Z) \cong (X \wedge Y) \vee (X \wedge Z)$
 - (vi) $X \wedge (Y \wedge Z) \cong (X \wedge Y) \wedge Z$
- (b) Zeigen Sie, dass die Assoziativität (vi) für $X = Y = (\mathbb{Q}, 0)$ und $Z = (\mathbb{Z}, 0)$ nicht gilt. (Hinweis: \mathbb{Z} ist lokal kompakt, aber \mathbb{Q} nicht. Betrachten Sie die Quotientenabbildungen.)

3 | Kokomposition

Seien X, Y, Z, T Objekte in **Top*** und $f: X \to Y, g: Y \to Z$ Morphismen.

(a) Zeigen Sie, dass $[Z,T] \xrightarrow{g^*} [Y,T] \xrightarrow{f^*} [X,T]$ genau dann eine exakte Sequenz von punktierten Mengen ist, wenn für alle $t: Y \to T$ gilt:

$$t \circ f \simeq \text{const}_* \quad \Leftrightarrow \quad \exists \overline{t} \colon Z \to T \colon \ \overline{t} \circ g \simeq t$$