Stat 134: Section 23

Ani Adhikari

April 24, 2017

Problem 1

Suppose *X* has uniform (0,1) distribution and $P(A|X=x)=x^2$. What is P(A)?

Ex 6.3.1 in Pitman's Probability

Recall that if X is a continuous random variable, $P(B) = \int P(B|X=x) f_X(x) dx$ for any event B.

Problem 2

Suppose (X, Y) has uniform distribution on $R = \{(x, y) | 0 \le y \le 1 - |x|, -1 \le x \le 1\}$. For x between -1 and 1, find:

- a. $P(Y \ge 1/2|X = x)$;
- b. P(Y < 1/2 | X = x);
- c. E(Y|X = x);
- d. Var(Y|X = x).

Ex 6.3.5 in Pitman's Probability

Sketch the region R. Note that once $f_Y(y|X=x)$ is found, parts a-d reduce to routine computations.

Problem 3

Suppose that Y and Z are random variables with the following joint density:

Draw a picture and find k first.

$$f(y,z) = \begin{cases} k(z-y) & \text{for } 0 \le y \le z \le 1\\ 0 & \text{otherwise} \end{cases}$$

for some constant k. Find

- a. the marginal distribution of Y;
- b. P(Z < 2/3|Y = 1/2).

Ex 6.2.7 in Pitman's Probability

Problem 4

Suppose that a point (X, Y) is chosen uniformly at random from the triangle $\{(x,y): x \geq 0, y \geq 0, x+y \leq 2\}$. Find a formula for $P(Y \leq y|X=x)$.

Ex 6.3.3 in Pitman's Probability