Algebraic Curves

David Wiedemann

Table des matières

1	Affi	ne algebraic sets	2
	1.1	Recollection on commutative algebra	2
	1.2	Polynomial rings	4
	1.3	Affine spaces and algebraic sets	4
	1.4	Ideals of a set of points and the nullstellensatz	5
L	ist	of Theorems	
	1	Lemme	2
	2	Lemme	2
	3	Lemme	2
	4	Theorème	3
	5	Theorème	3
	6	Theorème (Gauss Lemmma)	3
	7	Theorème (Euler's theorem)	4
	1	Definition	4
	8	Lemme	5
	9	Corollaire	5
	10	Lemme	6
	11	Lemme	6
	12	Theorème (Hilbert's Nullstellensatz)	6
	13	Theorème (Weak Nullstellensatz)	6
	14	Corollaire	6

Lecture 1: Introduction

Fri 25 Feb

Let K be a field, given a set of polynomials $S = \{f_1, \ldots\}$, we can consider $V(S) = \{(x_1, \ldots) \in K^n | f_i(x_1, \ldots) = 0 \forall i \}.$

Notice that if $a_1, \ldots \in K[x_1, \ldots]$ then also $\sum_i a_i(x) f_i(x) = 0$ only depends on the ideal generated by S.

If I(S) happens to be prime, we call V an algebraic variety.

1 Affine algebraic sets

1.1 Recollection on commutative algebra

All rings are commutative and with unit. Let R be a ring.

— R is an integral domain, or just domain if there are no zero divisors, ie, $\forall a,b \in R$ s.t.

$$a.b = 0 \implies a = 0 \text{ or } b = 0$$

- Any domain can be embedded into it's quotient ring.
- A proper ideal I is maximal if it's not contained in any other proper ideal
- A proper ideal *I* is prime if

$$\forall a, b \in R, ab \in I \implies a \in I \text{ or } b \in I$$

— A proper ideal *I* is radical if

$$a^n \in I \implies a \in I$$

— For any ideal $I \subset R$, the radical \sqrt{I} is the smallest radical ideal containing

Lemme 1
$$-I \subset R \text{ is maximal} \iff R/I \text{ is a field}$$

Lemme 2
$$I \subset R$$
 is prime $\iff R/I$ is a domain

Lemme 3 radical
$$\iff R/I$$
 has no nilpotent elements.

Given a subset $S \subset R$ we can consider the ideal generated by S

$$I(S) = \left\{ \sum_{i} a_i s_i \right\}$$

I is finitely generated if I = I(S) with S finite.

— We say that R is Noetherian $/\exists$ a chain of strictly increasing ideals. Equivalently, every ideal is finitely generated.

Theorème 4

In fact, hilbert's basis theorem says that, if R is Noetherian, then R[x] is noetherian.

In particular $K[x_1, \ldots, x_n]$ is Noetherian

- I is in principal if it is generated by one element.
- A domain is called a principal ideal domain (PID) if every ideal is principal.
- $a \in R$ is irreducible if a is not a unit, nor zero and if

$$a = b.c$$

then either b or c are units.

- A pid $(a) \subset R$ is prime \iff a is irreducible.
- R is a UFD if R is a domain and elements in R can be factored uniquely up to units and reordering into irreducible elements.

Theorème 5

 $R \text{ is a } UFD \implies R[x] \text{ is a } UFD$

And, if R is a PID, then R is a UFD

Theorème 6 (Gauss Lemma)

- R is a UFD and $a \in R[X]$ irreducible, then also $a \in Q(R)[X]$ is irreducible.
- Localization

Let R be a domain, if $S \subset R$ is a multiplicative subset, then the localization of R at S is defined as

$$S^{-1}R = \left\{ x \in Q(R) | x = \frac{a}{b}, b \in S \right\}$$

If M is an R-module, we have similarly

$$S^{-1}M = \left\{\frac{m}{s}|m\in M, s\in M\right\}/\left\{\frac{m}{s} = \frac{m'}{s'}\iff ms' = sm'\right\}$$

If $p \subset R$ is a prime ideal, then it's complement is a multiplicative subset and we define

$$R_p = (R \setminus p)^{-1}R$$

- There is a 1-1 correspondence between $p \subset R$ prime and ideals of R_p , furthermore R_p is a local ring
- Localization is exact, in particular, given $I \subset p$ the short exact sequence

$$o \to I \to R \to R/I \to 0$$

gets sent to

$$0 \to I_p \to R_p \to (R/I)_p \to 0$$

ie. localization commutes with taking quotients.

1.2 Polynomial rings

For $a \in \mathbb{N}^n$, we set

$$X^a = X_1^{a_1} \dots \in k[X_1, \dots]$$

Thus for any $F \in k[X_1, \ldots, X_n]$, we can write it as

$$F = \sum_{a \in \mathbb{N}^n} \lambda_a X^a$$

F is homogeneous or a form of degree d if the coefficients $\lambda_a = 0$ unless $a_1 + \ldots + a_n = d$.

Any F can be written uniquely as $F = F_0 + \ldots + F_d$ where F_i is a form of degree i

The derivative of $F = \sum_{a \in \mathbb{N}^n} \lambda_a X^a$ with repsect to X_i is $F_{X_i} = \frac{\partial F}{\partial X_i}$. If F is a form of degree d we have

Theorème 7 (Euler's theorem)

$$\sum_{i=1}^{n} \frac{\partial F}{\partial X_i} X_i = dF$$

Lecture 2: Affine space and algebraic sets

Wed 02 Mar

1.3 Affine spaces and algebraic sets

Let k be a field.

Definition 1

For every $n \geq 0$ the affine n -space \mathbb{A}^n_k the set k^n .

In particular \mathbb{A}^0 is a point, \mathbb{A}^1 is a line, \mathbb{A}^2 the affine plane.

Given a subset $S \subset k[X_1, \ldots, X_n]$ of polynomials, we set

$$V(S) = \{x = (x_1, \dots, x_n) \in \mathbb{A}^n | f(x_1, \dots, x_n) = 0 \forall f \in S\}$$

If S is finite, we write $V(f_1, \ldots, f_k)$ for V(S).

If the set S is a singleton, then we call V(S) a hyperplane.

Any subset of \mathbb{A}^n V algebraic if V = V(S) for some subset of polynomials.

Lemme 8

- Let $S \subset k[X_1, ..., X_n]$ and I the ideal generated by S, then V(S) = V(I).
- Let $\{I_{\alpha}\}$ be a collection of ideals, then

$$V(\bigcup_{\alpha} I_{\alpha}) = \bigcap_{\alpha} V(I_{\alpha})$$

- If $I \subset J$ then $V(J) \subset V(I)$
- For polynomials $f, g \in k[x_1, ..., x_n]$, then $V(f) \cup V(g) = V(f \cdot g)$ For ideals I, J ideals, then $V(I) \cup V(J) = V(I \cdot J)$ where $IJ = \{fg | f \in I, g \in J\}$
- For $a = (a_1, ..., a_n) \in \mathbb{A}^n, v(\{x_1 a_1, ...\}) = \{a\}$

Preuve

- 1. Let $h \in \sum_i f_i g_i \subset I$ with $f_i \in S$ and $x \in V(S)$, then $f_i(x) = 0 \forall i$ hence $h(x) = 0 \implies x \in V(I) \implies V(S) \subset V(I)$. Furthermore, if $x \in V(I)$, then in particular $f(x) = 0 \forall f \in S \subset I$, hence $x \in V(S)$ and $V(S) \supset V(I)$
- 2. Let $x \in V(\cup I_{\alpha})$, then for any α and $f \in I_{\alpha}$, we must have f(x) = 0, hence $x \in V(I_{\alpha}) \implies x \in \bigcap_{\alpha} V(I_{\alpha})$.

 Conversely, if $x \in \bigcap_{\alpha} V(I_{\alpha})$ and $f \in \bigcup_{\alpha} I_{\alpha}$, then $f \in I_{\alpha}$ for some α , then f(x) = 0 hence $x \in V(\bigcup_{\alpha} I_{\alpha})$

By Hilbert's basis theorem $k[x_1, \ldots, x_n]$ is Noetherian hence every ideal is finitely generated.

Corollaire 9

Every algebraic set $V \subset \mathbb{A}^n$ is of the form

$$V = V(f_1, \dots, f_k) = V(f_1) \cap \dots \cap V(f_k)$$

1.4 Ideals of a set of points and the nullstellensatz

Using the previous section, we have a map

$$V: \{ \text{ Ideals in } k[X_1, \dots, X_N] \} \mapsto \{ \text{ algebraic sets in } \mathbb{A}^n \}$$

Conversely, for any subset $X \subset \mathbb{A}^n$ we define

$$I(X) := \{ f \in k[X_1, \dots, X_N] | f(x) = 0 \forall x \in X \} \subset k[X_1, \dots, X_N]$$

Lemme 10

- 1. If $X \subset Y$ then $I(X) \supset I(Y)$
- 2. For $J \subset k[X_1, \dots, X_N]$ an ideal $I(V(J)) \supset J$
- 3. For $W \subset \mathbb{A}^n$ algebraic, V(I(W)) = W

Preuve

- 1. Let $f \in I(Y)$, then f vanishes on X and hence f in I(X)
- 2. $I(V(J)) = \{ f \in k[x_1, \dots, x_n] | f(x) = 0 \forall x \in V(J) \} \supset J$
- 3. By definition $V(I(X)) \supset X$ for any X. If in addition, if X = V(J) algebraic, then $V(I(X)) = V((I(V(J)))) \subset V(J) = X$

There are essentially two reasons why $I(V(J)) \supseteq J$ in general

- 1. $J = (x^n) \subset k[x] \implies V(x^n) = \{0\} \text{ and } I(\{0\}) = (x)$
- 2. $(x^2 + 1) \subset \mathbb{R}[x]$ and $I(\emptyset) = \mathbb{R}[X]$

Lemme 11

For any $X \subset \mathbb{A}^n$, I(X) is a radical ideal

Preuve

If
$$f^n \in I(X)$$
 for some n , then $f(x)^n = 0$ and hence $f(x) = 0$

So the first phenomenon is related to the fact that J is not radical, the second is related to the fact that $\mathbb R$ is not algebraically closed.

Theorème 12 (Hilbert's Nullstellensatz)

Let K be algebraically closed, $J \subset k[X_1, ..., X_n]$, then

$$I(V(J)) = \sqrt{J}$$

Using this, there is a one to one correspondence

{ radical ideals in $k[X_1, \ldots, X_n]$ } \leftrightarrow { algebraic subsets of \mathbb{A}^n }

Theorème 13 (Weak Nullstellensatz)

Let K be algebraically closed, every maximal ideal $I \subset K[X_1, ..., X_n]$ is of the form $I = \{x_1 - a_1, ..., x_n - a_n\}$ with $a = (a_i) \in \mathbb{A}^n$

Corollaire 14

Let $I \subset K[X_1, ..., X_n]$ be any ideal, then V(I) is a finite set $\iff k[X_1, ..., X_n]$ is a finite dimensional K- vector space.

In this case

$$|V(I)| \leq \dim_k k[X_1, \dots, X_n] / I$$

Preuve

Let $I \subset k[X_1, ..., X_n]$ be any ideal and $P_1, ..., P_n \subset V(I)$ distinct.

We can choose (Exercise) $F_1, \ldots, F_r \in K[X_1, \ldots, X_n]$ s.t. $F_i(P_j) = \delta_{ij}$, then we write f_1, \ldots, f_r for the residues of F_1, \ldots, F_r in $K[X_1, \ldots, X_n]/I$.

We claim f_1, \ldots, f_r are linearly independent.

Indeed suppose $\sum_i \lambda_i f_i = 0$, this implies $\sum_i \lambda_i F_i \in I$ hence $0 = \sum_i \lambda_i F_i(P_j)$ which implies $\lambda_j = 0$, hence the f_i are linearly independent.

It follows that $\dim_k K[X_1, \dots, X_n]/I < \infty \implies |V(I)| < \infty$ and in this case $\dim_k K[X_1, \dots, X_n]/I \ge |V(I)|$.

Now assume V(I) is a finite set $\{P_1, \ldots, P_r\} \subset \mathbb{A}^n$ and write $P_i = (a_{i1}, \ldots, a_{in})$ and define $F_j = \prod_{i=1}^r (X_j - a_{ij})$.

By construction $F_j \in I(V(I)) = \sqrt{I}$

 $\exists N > 0 \text{ such that } F_i^N \in I.$

Hence $f_j^N = 0$ in $K[X_1, \dots, X_n]/I$, but $f_j^N = (x_j^{Nr}) + lower order terms$.

This means that X_j^{Nr} is a K-linear combination of $\{1,\ldots,X_j^{Nr-1}\}$.

This means that X_i^s is a linear combination for any s > 0.

Hence taking products for different j's, we see that the set $\{x_1^{m_1}, \ldots, x_n^{m_n}\}$ generates $K[X_1, \ldots, X_n]_{/I}$

Due to these theorems, we'll always suppose K is algebraically closed.