

Métodos nãoparamétricos Felipe

Figueiredo

Normanuaue

iransformações

paramétricos

Resumo

Métodos não-paramétricos

Ou: o que fazer caso seus dados não sejam normais?

Felipe Figueiredo

Instituto Nacional de Traumatologia e Ortopedia

Sumário

- Normalidade
 - Visualização
 - Testes contra a normalidade
- 2 Transformações
 - Transformações
 - Exemplo
- Métodos não-paramétricos
 - Teste para 1 amostra
 - Testes para 2 amostras
 - Teste para 3 ou mais amostras
 - Correlação
- 4 Resumo

Métodos nãoparamétricos

> Felipe Figueiredo

Normalidade

Transformaçõe

Métodos naoparamétricos

A hipótese da normalidade

Métodos nãoparamétricos

> Felipe Figueiredo

Normalidade Visualização

Normalidade

Métodos não

Metodos nao paramétricos

Resumo

 Todos os métodos que vimos até aqui presumem que os dados são normalmente distribuídos

- Desvios da normalidade precisam ser contornados¹
- Veremos duas maneiras: transformações e alternativas
- Mas antes, como identificar essa necessidade?

¹há controvérsias: https://www.r-bloggers.com/
normality-tests-don't-do-what-you-think-they-do/ ≥ ∽٩०

Sumário

- Normalidade
 - Visualização
 - Testes contra a normalidade
- 2 Transformações
 - Transformações
 - Exemplo
- Métodos não-paramétricos
 - Teste para 1 amostra
 - Testes para 2 amostras
 - Teste para 3 ou mais amostras
 - Correlação
- Resumo

Métodos nãoparamétricos

> Felipe Figueiredo

Normalidade Visualização

Transformaçõe

Métodos nãoparamétricos

Dados normais

Métodos nãoparamétricos

Felipe Figueiredo

Normalidad

Visualização

Normalidade

Transformaçõe

Metodos naoparamétricos

Dados não-normais

Métodos nãoparamétricos

Felipe Figueiredo

Normalidad Visualização Normalidade

Transformaçõe

metodos naoparamétricos

Dados normais

Métodos nãoparamétricos

Felipe Figueiredo

Normalidad

Visualização

Normalidade

Transformaçõe

Metodos naoparamétricos

Dados não-normais

Métodos nãoparamétricos

Felipe Figueiredo

Normalidade Visualização Normalidade

Transformaçõe

Metodos naoparamétricos

Métodos nãoparamétricos

Felipe Figueiredo

Normalidad

Visualização

Normalidade

Transformaçõe

Métodos nãoparamétricos

Visualização - boxplot

Métodos nãoparamétricos

Felipe Figueiredo

Normalidad Visualização Normalidade

Transformaçõe

Métodos nãoparamétricos

O Q-Q plot

 Gráfico que compara os quantis da amostra com os quantis teóricos

- Adicionalmente uma reta "ideal" é sobreposta, como referência
- Dados normalmente distribuídos, ficam próximos da reta
- Quanto maior o desvio da normalidade, maior a distância à reta

Métodos nãoparamétricos

> Felipe Figueiredo

Normalidade Visualização

Transformaçõe

Métodos nãoparamétricos

Visualização - QQ plot

Métodos nãoparamétricos

Felipe Figueiredo

Normalidad Visualização Normalidade

Transformaçõe

Métodos nãoparamétricos

Sumário

- Normalidade
 - Visualização
 - Testes contra a normalidade
- 2 Transformações
 - Transformações
 - Exemplo
- Métodos não-paramétricos
 - Teste para 1 amostra
 - Testes para 2 amostras
 - Teste para 3 ou mais amostras
 - Correlação
- 4 Resumo

Métodos nãoparamétricos

> Felipe Figueiredo

Normalidad Visualização

Transformaçõe

Métodos nãoparamétricos

 Objetivo: é possível determinar se uma amostra veio de uma população normalmente distribuída? Métodos nãoparamétricos

> Felipe Figueiredo

Visualização

Normalidade

Transformaçõe

Métodos nãoparamétricos

²Lembre que **nunca** aceitamos uma hipótese – apenas deixamos de rejeitar sua recíproca.

Métodos nãoparamétricos

> Felipe Figueiredo

Visualização Normalidade

Transformaçõe

Métodos não paramétricos

Resumo

 Objetivo: é possível determinar se uma amostra veio de uma população normalmente distribuída?

Resposta curta: NÃO.

²Lembre que **nunca** aceitamos uma hipótese – apenas deixamos de rejeitar sua recíproca.

Métodos nãoparamétricos

> Felipe Figueiredo

Visualização Normalidade

Transformaçõe

Métodos não paramétricos

Resumo

 Objetivo: é possível determinar se uma amostra veio de uma população normalmente distribuída?

Resposta curta: NÃO.

²Lembre que **nunca** aceitamos uma hipótese – apenas deixamos de rejeitar sua recíproca.

Métodos nãoparamétricos Felipe

Figueiredo

Visualização Normalidade

Transformaçõe

Métodos não paramétricos

Resumo

 Objetivo: é possível determinar se uma amostra veio de uma população normalmente distribuída?

- Resposta curta: NÃO.
- Resposta longa: podemos examinar se há evidências para "aceitar" esta hipótese²

²Lembre que **nunca** aceitamos uma hipótese – apenas deixamos de rejeitar sua recíproca.

Alguns testes de normalidade

Métodos nãoparamétricos

Felipe Figueiredo

Visualização

Normalidade

Métodos não paramétricos

- Shapiro-Wilk
- Anderson-Darling
- Kolmogorov-Smirnov

Alguns testes de normalidade

Métodos nãoparamétricos

> Felipe Figueiredo

Visualização

Normalidade

Transformaçõe

Métodos não paramétricos

- Shapiro-Wilk
- Anderson-Darling
- Kolmogorov-Smirnov

Shapiro-Wilk

Métodos nãoparamétricos

> Felipe Figueiredo

Normalidad Visualização Normalidade

Transformaçõe

Métodos nãoparamétricos

Shapiro-Wilk

Métodos nãoparamétricos

Felipe Figueiredo

Normalidad Visualização Normalidade

Transformaçõe

Metodos naoparamétricos

Sumário

- Normalidade
 - Visualização
 - Testes contra a normalidade
- 2 Transformações
 - Transformações
 - Exemplo
- Métodos não-paramétricos
 - Teste para 1 amostra
 - Testes para 2 amostras
 - Teste para 3 ou mais amostras
 - Correlação
- Resumo

Métodos nãoparamétricos

> Felipe Figueiredo

Normalidade

Transformações

Exemplo

paramétricos

Transformações

 Algumas vezes, podemos aplicar uma transformação nos dados, para que eles se adequem às premissas requeridas

Transformações comuns incluem:

- logaritmo
- exponencial
- raiz quadrada
- potências
- Geralmente envolve tentativa e erro³
- Hipóteses sobre o problema ou desenho experimental ajudam

Figueiredo

Normalidade

Transformações

Métodos não-

Métodos nãoparamétricos Felipe

Sumário

- Normalidade
 - Visualização
 - Testes contra a normalidade
- 2 Transformações
 - Transformações
 - Exemplo
- Métodos não-paramétricos
 - Teste para 1 amostra
 - Testes para 2 amostras
 - Teste para 3 ou mais amostras
 - Correlação
- 4 Resumo

Métodos nãoparamétricos

> Felipe Figueiredo

Normalidade

Transformações
Exemplo

Métodos nãoparamétricos

Métodos nãoparamétricos Felipe

Figueiredo

Normalidade

Transformações
Transformações
Exemplo

Métodos não paramétricos

Resumo

Transformação sugerida: logaritmo.

Frequency

30

20

9

Histogram of log(x2)

Dados normais x dados transformados (log)

<ロト < 回 ト < 回 ト < 亘 ト < 亘 ト ラ 回 の Q ()

Métodos nãoparamétricos

Felipe Figueiredo

Normalidade

Transformações
Transformações
Exemplo

Métodos não-

Métodos nãoparamétricos

> Felipe Figueiredo

Normalidade

Transformações
Transformações
Exemplo

Métodos nãoparamétricos

Resumo

Dados normais (p-valor Shapiro-Wilk: 1.657e-09) x dados log-transformados (p-valor Shapiro-Wilk: 0.05032)

Sumário

- Normalidade
 - Visualização
 - Testes contra a normalidade
- 2 Transformações
 - Transformações
 - Exemplo
- Métodos não-paramétricos
 - Teste para 1 amostra
 - Testes para 2 amostras
 - Teste para 3 ou mais amostras
 - Correlação
- 4 Resumo

Métodos nãoparamétricos Felipe

Figueiredo

Normalidade

Transformaçõe

Métodos não paramétricos

1 amostra 2 médias

2 médias 3+ amostra Correlação

Teste para 1 amostra

Métodos nãoparamétricos Felipe

Figueiredo

Métodos não

1 amostra 2 médias

3+ amostra:

Correlação

Resumo

 Desvios da normalidade severos impactam os testes paramétricos

- Nesses casos, deve-se transformar os dados, se possível
- Caso não seja, deve-se usar um teste não-paramétrico

Teste para uma amostra

Ao invés do teste t, usar o teste de Wilcoxon (Capítulo 25)

Sumário

- Normalidade
 - Visualização
 - Testes contra a normalidade
- 2 Transformações
 - Transformações
 - Exemplo
- Métodos não-paramétricos
 - Teste para 1 amostra
 - Testes para 2 amostras
 - Teste para 3 ou mais amostras
 - Correlação
- 4 Resumo

Métodos nãoparamétricos Felipe

Figueiredo

Normalidade

Transformaçõe

Métodos não paramétricos

2 médias

3+ amostra Correlação

Testes para 2 amostras

Métodos nãoparamétricos Felipe

Figueiredo

Métodos não

1 amostra

2 médias

Correlação

Resumo

Dados normais

- amostras independentes ⇒ t-teste não-pareado
- amostras pareadas ⇒ t-teste pareado

Dados não-normais

- amostras independentes ⇒ Mann-Whitney (Capítulo 24)
- amostras pareadas ⇒ Wilcoxon (Capítulo 25)

Em termos práticos...

P: Estas amostras são significativamente diferentes?

Métodos nãoparamétricos Felipe

Figueiredo

Normalidade

Métodos não-

paramétricos

2 médias

3+ amostra Correlação

Resum

4 ≥ ▶ 4 ≥ ▶ ≥ 9 < 0</p>

Assumindo⁴ que elas são

- normalmente distribuídas, e
- independentes,

poderíamos fazer um teste t não-pareado.

Métodos nãoparamétricos

> Felipe Figueiredo

Normalidade

Transformaçõe

Métodos nao paramétricos

1 amostra

2 médias

3+ amostra Correlação

⁴pelo desenho experimental

Assumindo⁴ que elas são

- normalmente distribuídas, e
- independentes,

poderíamos fazer um teste t não-pareado.

Resultado: p-valor = 0.259

Pergunta

Isto significa que as amostras não são significativamente diferentes?

Métodos nãoparamétricos Felipe

Figueiredo

2 médias

⁴pelo desenho experimental

Assumindo⁴ que elas são

- normalmente distribuídas, e
- independentes,

poderíamos fazer um teste t não-pareado.

• Resultado: p-valor = 0.259

Pergunta

Isto significa que as amostras não são significativamente diferentes?

Métodos nãoparamétricos Felipe

Figueiredo

_ . .

Métodos não

paramétricos

2 médias

3+ amostras Correlação

Raciima

⁴pelo desenho experimental

Novamente...

Métodos nãoparamétricos Felipe

Figueiredo

Normalidade

Métodos não-

1 amostra

2 médias 3+ amostras

3+ amostra Correlação

Histogramas

Amostra 2

Métodos nãoparamétricos

Felipe Figueiredo

Normalidade

Métadas pão

paramétricos

1 amostra 2 médias

3+ amostras Correlação

QQ-plots

Theoretical Quantiles

Amostra 2

Theoretical Quantiles

Métodos nãoparamétricos

> Felipe Figueiredo

Normalidade

Transformaçõe

Métodos nãoparamétricos

1 amostra 2 médias

3+ amostras Correlação

Mann-Whitney

Teste t

p-valor = 0.259 (não significativo)

- Devemos rejeitar a hipótese de normalidade.
- Então o teste t não é apropriado!
- Substituto: teste de Mann-Whitney

Teste de Mann-Whitney

p-value = 0.0001346 (significativo)

Métodos nãoparamétricos

> Felipe Figueiredo

Normalidade

Transformaçõe

Métodos nãoparamétricos

2 médias

3+ amostra Correlação

Mann-Whitney

Teste t

p-valor = 0.259 (não significativo)

- Aplicando o teste de Shapiro-Wilk em x e y
 - x: p-valor = 5.515e-16
 - y: p-valor = 5.274e-09
- Devemos rejeitar a hipótese de normalidade.
- Então o teste t não é apropriado!
- Substituto: teste de Mann-Whitney

Teste de Mann-Whitney

p-value = 0.0001346 (significativo)

Métodos nãoparamétricos

> Felipe Figueiredo

Normalidade

Transformações

Métodos não paramétricos

2 médias

3+ amostras Correlação

Sumário

- Normalidade
 - Visualização
 - Testes contra a normalidade
- Transformações
 - Transformações
 - Exemplo
- Métodos não-paramétricos
 - Teste para 1 amostra
 - Testes para 2 amostras
 - Teste para 3 ou mais amostras
 - Correlação
- 4 Resumo

Métodos nãoparamétricos

> Felipe Figueiredo

Normalidade

Transformaçõe

Métodos nãoparamétricos 1 amostra

3+ amostras Correlação

Pocumo

Relembrando

Métodos nãoparamétricos Felipe

Figueiredo

Normandade

Hansionnações

paramétricos

2 médias

3+ amostras

Correlação

Resumo

 Para testar se há diferença significativa em 3 ou mais amostras

- Análise de Variâncias (ANOVA)
- Leva em conta as variâncias entre os grupos (inter)
- Leva em conta a variância em cada grupo (intra)
- H_0 : Todos os grupos são =
- H₁: pelo menos um grupo é significativamente ≠

Em termos práticos...

P: Estas amostras são significativamente diferentes?

Medições de qualidade do ar em NY

Métodos nãoparamétricos

Felipe Figueiredo

Normalidade

Transformaçõe

Métodos nãoparamétricos

2 médias 3+ amostras

3+ amostras Correlação

Kruskal-Wallis

ANOVA

p-valor = 0.0776 (não significativo)

- Shapiro-Wilk (Ozônio por mês):
 < 0.0001, 0.0628, 0.86689, 0.090325, < 0.0001
- Devemos rejeitar a hipótese de normalidade.
- Então o ANOVA não é apropriado!
- Substituto: teste de Kruskal-Wallis (Capítulo 30)

Teste de Kruskal-Wallis

p-value = 6.901e-06 (significativo)

Métodos nãoparamétricos Felipe

Figueiredo

Normalidade

Transformações

Métodos nãoparamétricos 1 amostra

2 médias 3+ amostras

3+ amostra Correlação

Sumário

- Normalidade
 - Visualização
 - Testes contra a normalidade
- 2 Transformações
 - Transformações
 - Exemplo
- Métodos não-paramétricos
 - Teste para 1 amostra
 - Testes para 2 amostras
 - Teste para 3 ou mais amostras
 - Correlação
- 4 Resumo

Métodos nãoparamétricos Felipe

Figueiredo

Normalidade

Transformações

paramétricos

2 médias 3+ amostras Correlação

Relembrando

Métodos nãoparamétricos

Figueiredo

Correlação

Felipe

Correlação

Ao invés da correlação linear de Pearson, usar a correlação de ranks de Spearman (Capítulo 17).

A correlação de Pearson associa dados numéricos

Mede a direção e força desta associação

Número de resultados no PUBMED

t-test: 61488

ANOVA: 431252

Wilcoxon: 19881

Mann-Whitney: 25571

Kruskal-Wallis: 11943

Shapiro-Wilk: 519

Kolmongorov-Smirnoff: 0

Anderson-Darling: 49

Chi-Square: 107277

OR: 221034

RR: 344996

Métodos nãoparamétricos Felipe

Figueiredo

Normandade

Iransformaçõe

Métodos não paramétricos

Resumo (teste oftálmico)

Table 37.1. Selecting a Statistical Test

Goal	Type of Data			
	Measurement (from Gaussian Population)	Rank, Score, or Measurement (from Non- Gaussian Population)	Binomial (Two Possible Outcomes)	Survival Time
Describe one group	Mean, SD	Median, interquartile range	Proportion	Kaplan Meier survival curve
Compare one group to a hypothetical value	One-sample t test	Wilcoxon test	Chi-square or Binomial test**	_
Compare two unpaired groups	Unpaired t test	Mann-Whitney test	Fisher's test (chi-square for large samples)	Log-rank test or Mantel-Haenszel*
Compare two paired groups	Paired t test	Wilcoxon test	McNemar's test	Conditional proportional hazards regression**
Compare three or more unmatched groups	One-way ANOVA	Kruskal-Wallis test	Chi-square test	Cox proportional hazard regression*
Compare three or more matched groups	Repeated-measures ANOVA	Friedman test	Cochrane Q**	Conditional proportional hazards regression**
Quantify association between two variables	Pearson correlation	Spearman correlation	Contingency coefficients**	
Predict value from another measured variable	Simple linear regression or Nonlinear regression	Nonparametric regression**	Simple logistic regression*	Cox proportional hazard regression*
Predict value from several measured or binomial variables	Multiple linear regression* or Multiple nonlinear regression**		Multiple logistic regression*	Cox proportional hazard regression*

^{*}Only briefly mentioned in this book.

Métodos nãoparamétricos

Felipe Figueiredo

rmalidade

Nátodoo não

paramétricos

^{**}Not discussed in this book.

Resumo (agora sim)

Goal	Measurement (from Gaussian Population)	Rank, Score, or Measurement (from Non- Gaussian Population)
Describe one group	Mean, SD	Median, interquartile range
Compare one group to a hypothetical value	One-sample t test	Wilcoxon test
Compare two unpaired groups	Unpaired t test	Mann-Whitney test
Compare two paired groups	Paired t test	Wilcoxon test
Compare three or more unmatched groups	One-way ANOVA	Kruskal-Wallis test
Compare three or more matched groups	Repeated-measures ANOVA	Friedman test
Quantify association between two variables	Pearson correlation	Spearman correlation

Métodos nãoparamétricos Felipe

Figueiredo

Normanuaue

nansionnaçõe.

paramétricos

Pós-aula

Métodos nãoparamétricos Felipe

Figueiredo

Normalidade

ITATISIOTTIAÇO

Métodos nãoparamétricos

Resumo

Leitura obrigatória

- Capítulo 37
- Capítulo 38

Leitura recomendada

Seções de métodos não-paramétricos dos capítulos mencionados na aula.