Learning Visual Context by Comparison

Minchul Kim al., Lunit.

ECCV 2020 spotlight paper

2020-10-26 MI2RL Kyuri Kim

Introduction

- Contributions

- We present Attend-and Compare Module (ACM) for capturing the difference between an object of interest and its corresponding context. (**The necessity of comparison between related regions in an image**)

Fig. 1: An example of a comparison procedure for radiologists. Little differences indicate no disease (blue), the significant difference is likely to be a lesion (red).

- (1) We propose a novel context module called ACM that explicitly compares different regions, following the way radiologists read chest X-rays.
- (2) The proposed ACM captures multiple comparative self-attentions whose difference is beneficial to recognition tasks.
- (3) We demonstrate the effectiveness of ACM on three chest X-ray datasets and COCO detection & segmentation dataset with various architectures

Related Work

- Context Modeling

In the visual recognition domain recent self-attention mechanisms,

- SENet(Squeeze and excitation networks) CVPR 2018
- A Style-based Re-calibration Module (SRM) (Lunit)
- Convolutional block attention module (CBAM) ECCV 2018 (Lunit)

Works that explicitly tackle the problem of using context stem from using pixel-level pairwise relationships,

- Non-local neural networks (NL) CVPR 2018 (Kaiming He)
- Global-Context network (GC) 2019 (Microsoft)
- Criss-cross attention (CC) IEEE TPAMI 2020 & ICCV 2019

Related Work

- Context Modeling

- SENet(Squeeze and excitation networks)
 - "Our goal is to improve the representational power of a network by explicitly modelling the interdependencies between the channels of its convolutional features."
 - Learns to model channel-wise attention using the spatially averaged feature.

Non-local neural networks (NL)

- Calculate pixel-level pairwise relationship weights and aggregate (weighted average) the features from all locations according to the weights.

Figure 1: A Squeeze-and-Excitation block.

Weighted sum of All pixels with similarity

$$y_{i} = \frac{1}{C(x)} \sum_{j} f(x_{i}, x_{j}) g(x_{j})$$

$$g(x_{j}) = W_{g}x_{j}$$
weight*input pixel

Related Work

- Context Modeling

Criss-cross attention (CC)

- For semantic segmentation reduces the computation cost of NL by replacing the pairwise relationship attention maps with criss-cross attention block which considers only horizontal and vertical directions separately.
- NL and CC explicitly model the pairwise relationship between regions with affinity metrics, but the qualitative results in demonstrate a tendency to aggregate features only among foreground objects or among pixels with similar semantics.

Method

- Attend-and-Compare Module

1. Overview

- Attend-and-Compare Module (ACM) extracts an object of interest and the corresponding context to compare, and enhances the original image feature with the comparison result.

$$Y = f_{ACM}(X) = P(X + (K - Q)),$$
 (1)

Method

- Attend-and-Compare Module

- 2. Components of ACM
 - Object of Interest and Corresponding Context

$$K = \sum_{i,j \in H,W} \frac{\exp(W_K X_{i,j})}{\sum_{H,W} \exp(W_K X_{h,w})} X_{i,j},$$

① 1x1 conv for single ch.

② softmax for Normalize

(2)

③ Apply weighted avg.

- Channel Re-calibration

$$P = \sigma \circ \operatorname{conv}_{2}^{1 \times 1} \circ \operatorname{ReLU} \circ \operatorname{conv}_{1}^{1 \times 1}(\mu), \tag{3}$$

Method

- Attend-and-Compare Module

- 2. Components of ACM
 - Group Operation

$$K^g = \sum_{i,j \in H,W} \frac{\exp(W_K^g X_{i,j}^g)}{\sum_{H,W} \exp(W_K^g X_{h,w}^g)} X_{i,j}^g, \qquad (4) \qquad \text{- group conv. (\#G)}$$

- Loss Function

$$\ell_{\text{orth}}(K,Q) = \frac{K \cdot Q}{C},$$
 (5) - C= channel num.

$$\ell_{\text{task}} + \lambda \sum_{m}^{M} \ell_{\text{orth}}(K_m, Q_m),$$
 (6)

Placement of ACMs

Experiments

- Experiment Dataset

- 1) Emergency-Pneumothorax (Em-Ptx) and Nodule (Ndl) datasets for lesion localization in chest X-rays
- 2) Chest X-ray 14 dataset for multi-label classification
- 3) COCO 2017 dataset for object detection and instance segmentation.

⟨Emergency-Pneumothorax (Em-Ptx) Datasets⟩

(a) Emergency

(b) Non-emergency

Table 1: Results on Em-Ptx dataset. Average of 5 random runs are reported for each setting with standard deviation. RN stands for ResNet [14].

Method	AUC-ROC	JAFROC	Method	AUC-ROC	JAFROC
RN-50	86.78 ± 0.58	81.84 ± 0.64	RN-101	89.75±0.49	85.36 ± 0.44
RN-50 + SE [15]	93.05±3.63	89.19 ± 4.38	RN-101 + SE [15]	90.36±0.83	85.54 ± 0.85
			RN-101 + NL [36]		
RN-50 + CC [17]	87.73±8.66	83.32 ± 10.36	RN-101 + CC [17]	92.57±0.89	89.75±0.89
RN-50 + ACM	95.35 ± 0.12	94.16 ± 0.21	RN-101 + ACM	95.43 ± 0.14	94.47 ± 0.10

Results

Table 2: Performance with respect to varying module architectures and hyperparameters on Em-Ptx dataset. All the experiments are based on ResNet-50.

Module	AUC-ROC	JAFROC
None	86.78±0.58	81.84±0.64
X + (K - Q)	94.25±0.31	92.94 ± 0.36
PX	87.16±0.42	82.05±0.30
P(X+K)	94.96 ± 0.15	93.59 ± 0.24
P(X + (K -	$Q))$ 95.35 \pm 0.12	94.16 ± 0.21

(a) Ablations on K, Q and P.

#groups	AUC-ROC	JAFROC
8	90.96 ± 1.88	88.79 ± 2.23
32	95.35 ± 0.12	94.16 ± 0.21
64	95.08 ± 0.25	93.73 ± 0.31
128	94.89 ± 0.53	92.88 ± 0.53

(b) Ablations on number of groups.

λ	AUC-ROC	JAFROC
0.0	0 95.11±0.20	93.87±0.20
0.0	1 95.29 ± 0.34	94.09 ± 0.41
0.1	$0 95.35 \pm 0.12 $	94.16 ± 0.21
1.0	$0 95.30 \pm 0.17 $	94.04 ± 0.11

(c) Ablations on orthogonal loss weight λ .

⟨Nodule (Ndl) Datasets⟩

Table 3: Results on Ndl dataset. Average of 5 random runs are reported for each setting with standard deviation.

Method	AUC-ROC	JAFROC
ResNet-50	87.34 ± 0.34	77.35 ± 0.50
ResNet-50 + SE [15]	87.66 ± 0.40	77.57 ± 0.44
ResNet-50 + NL [36]	88.35 ± 0.35	80.51±0.56
ResNet-50 + CC [17]	87.72 ± 0.18	78.63 ± 0.40
ResNet-50 + ACM	88.60 ± 0.23	83.03±0.24

Results

⟨Chest X-ray 14 Datasets⟩

Table 5: Performance in average AUC of various methods on CXR14 dataset. The numbers in the bracket after model names are the input sizes.

Modules	DenseNet121(448)	ResNet-50(448)
None	(CheXNet [29]) 84.54	84.19
SE [15]	84.95	84.53
NL [36]	84.49	85.08
CC [17]	84.43	85.11
ACM	85.03	85.39

⟨COCO Datasets⟩

Table 6: Results on COCO dataset. All experiments are based on Mask-RCNN [13].

Method	AP ^{bbox}	AP ₅₀	AP_{75}^{bbox}	AP ^{mask}	AP ₅₀ ^{mask}	AP_{75}^{mask}
ResNet-50	38.59	59.36	42.23	35.24	56.24	37.66
ResNet-50+SE [15]	39.10	60.32	42.59	35.72	57.16	38.20
ResNet-50+NL [36]	39.40	60.60	43.02	35.85	57.63	38.15
ResNet-50+CC [17]	39.82	60.97	42.88	36.05	57.82	38.37
ResNet-50+ACM	39.94	61.58	43.30	36.40	58.40	38.63
ResNet-101	40.77	61.67	44.53	36.86	58.35	39.59
ResNet-101+SE [15]	41.30	62.36	45.26	37.38	59.34	40.00
ResNet-101+NL [36]	41.57	62.75	45.39	37.39	59.50	40.01
ResNet-101+CC [17]	42.09	63.21	45.79	37.77	59.98	40.29
ResNet-101+ACM	41.76	63.38	45.16	37.68	60.16	40.19
ResNeXt-101	43.23	64.42	47.47	39.02	61.10	42.11
ResNeXt-101+SE [15]	43.44	64.91	47.66	39.20	61.92	42.17
ResNeXt-101+NL [36]	43.93	65.44	48.20	39.45	61.99	42.33
ResNeXt-101+CC [17]	43.86	65.28	47.74	39.26	62.06	41.97
ResNeXt-101+ACM	44.07	65.92	48.33	39.54	62.53	42.44

Results

- Qualitative Results

- (L) Utilize pneumothorax regions as objects of interest and normal lung regions as the corresponding context.
- (R) Utilize the object of interest and the corresponding context in the natural image domain.

Conclusions

- Key idea is to extract an object of interest and a corresponding context and explicitly compare them to make the image representation more distinguishable.
- The qualitative analysis shows that ACM automatically learns dynamic relationships. The objects of interest and corresponding contexts are different yet contain useful information for the given task.