

<u>Home</u> Gameboard

Maths

Radians-problems involving area 5ii

Radians-problems involving area 5ii

Figure 1 shows a sector OAB of a circle, centre O and radius $8\,\mathrm{cm}$. The angle AOB is $46\,^\circ$.

Figure 1: Sector *AOB*.

Convert angle to radians Part A

Express $46\,^\circ$ in radians, correct to 3 significant figures.

Arc length Part B

Find the length of the arc AB.

Area of sector Part C

Find the area of the sector OAB.

<u>Gameboard</u> <u>Home</u>

Maths

Radians-problems involving area 1ii

Radians-problems involving area 1ii

Figure 1: The sector OAB.

A sector OAB of a circle of radius $r\,\mathrm{cm}$ has angle $\theta\,\mathrm{radians}$. The length of the arc of the sector is $12\,\mathrm{cm}$ and the area of the sector is $36\,\mathrm{cm}^2$ (see Figure 1).

First equation Part A

By considering the length of the arc of the sector, write down an equation involving r and θ , where one side of the equation is a numerical constant.

The following symbols may be useful: r, theta

Second equation Part B

By considering the area of the sector, write down another equation involving r and θ , where one side of the equation is a numerical constant.

The following symbols may be useful: r, theta

Hence show that $r=6\mathrm{cm}$ and find the value of $ heta.$	
Part D Area of segment	
Find the area of the segment bounded by the arc AB and the chord $AB.$ Answer to 3 sf.	
Used with permission from UCLES A-level Maths papers, 2003-2017.	
Gameboard:	
STEM SMART Double Maths 24 - Radians, Trigonometric Reciprocals & t-Formulae	
All materials on this site are licensed under the Creative Commons license , unless stated otherwise.	

Maths

Radians and Trig Functions 1i

Radians and Trig Functions 1i

A curve has equation $y = \sin(ax)$, where a is a positive constant and x is in radians.

Part A Period

State the period of $y = \sin(ax)$, giving your answer in an exact form in terms of a.

The following symbols may be useful: a, pi, t

Part B $\sin(ax) = k$

Given that $x=\frac{1}{5}\pi$ and $x=\frac{2}{5}\pi$ are the two smallest positive solutions of $\sin(ax)=k$, where k is a positive constant, find the values of a and k.

Find the value of a.

The following symbols may be useful: a

Find the value of k.

The following symbols may be useful: k

Give the smallest positive solution.

The following symbols may be useful: a, pi, x

Give the second smallest positive solution.

The following symbols may be useful: a, pi, x

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Double Maths 24 - Radians, Trigonometric Reciprocals & t-Formulae

Maths

Small Angle Approximations 3ii

Small Angle Approximations 3ii

Part A Expression

Use the small angle approximation to write an approximate expression for $(\cos \theta + 5)(1 + \sin(2\theta))$ in powers of θ up to θ^2 .

The following symbols may be useful: theta

Part B Approximation

Use your answer from the above part to work out an approximate value for $(\cos \theta + 5)(1 + \sin(2\theta))$ when $\theta = 0.075$. Give your answer to 3 significant figures.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Double Maths 24 - Radians, Trigonometric Reciprocals & t-Formulae

<u>eboard</u> Maths

Functions

Graph Sketching

Sketching Reciprocal Trigonometric Functions

Sketching Reciprocal Trigonometric Functions

Part A Sketch $2 \sec x + 2$

Sketch the graph of $y=2\sec x+2$ in the interval $0^\circ \le x \le 360^\circ.$

Part B Sketch $\cot{(x+\frac{\pi}{4})}-1$

Sketch the graph of $y=\cot{(x+\frac{\pi}{4})}-1$ in the interval $0\leq x\leq 2\pi$.

Part C Sketch $-\csc{\frac{x}{2}}-3$

Sketch the graph of $y=-\csc{\frac{x}{2}}-3$ in the interval $-2\pi \leq x \leq 2\pi$.

Created for isaacphysics.org by Matthew Rihan

Gameboard:

STEM SMART Double Maths 24 - Radians, Trigonometric Reciprocals & t-Formulae

<u>Home</u>

<u>Gameboard</u>

Maths

Advanced Trig Identities 2ii

Advanced Trig Identities 2ii

Part A
$$2 an^2 heta - rac{1}{\cos heta}$$

Express $2 \tan^2 \theta - \frac{1}{\cos \theta}$ in terms of $\sec \theta$.

The following symbols may be useful: sec(), theta

Part B Solve

Hence solve, for $0^\circ < \theta < 360^\circ$, the equation

$$2 an^2 heta-rac{1}{\cos heta}=4$$

Give the smallest solution to three significant figures.

Give the second smallest solution to four significant figures.

Give the second largest solution to four significant figures.

Give the largest solution to three significant figures.

Maths

Functions

Graph Sketching

Sketching Inverse Trigonometric Functions

Sketching Inverse Trigonometric Functions

Part A Sketch $\arcsin \frac{x}{3} + \frac{\pi}{2}$

Sketch the graph of $y = \arcsin \frac{x}{3} + \frac{\pi}{2}$.

Part B Sketch $2\arctan(x-1)$

Sketch the graph of $y=2\arctan{(x-1)}$.

Part C Sketch $\arccos\left(-\frac{x}{2} + \frac{1}{2}\right) - \frac{\pi}{3}$

Sketch the graph of $y=\arccos{(-\frac{x}{2}+\frac{1}{2})}-\frac{\pi}{3}$.

Created for isaacphysics.org by Matthew Rihan

Gameboard:

STEM SMART Double Maths 24 - Radians, Trigonometric Reciprocals & t-Formulae

<u>Home</u> <u>Gameboard</u>

Maths

Functions: Reciprocal Trig 1i

Functions: Reciprocal Trig 1i

Part A Sketch

Sketch the graph of $y = \csc x$ for $0 < x < 4\pi$.

Easier question?

eta in terms of lphaPart B

It is given that $\csc\alpha=\csc\beta$, where $\frac{1}{2}\pi<\alpha<\pi$ and $2\pi<\beta<\frac{5}{2}\pi$. By using your sketch, or otherwise, express β in terms of α .

The following symbols may be useful: alpha, beta, pi

Double angle an properties Part C

Write down the identity giving $\tan 2\theta$ in terms of $\tan \theta$.

The following symbols may be useful: cos(), sin(), tan(), theta

Used with permission from UCLES A-level Maths papers, 2003-2017.

 $\tan\phi\cot2\phi\tan4\phi$

Gameboard:

Part D

<u>STEM SMART Double Maths 24 - Radians, Trigonometric Reciprocals & t-Formulae</u>

<u>ameboard</u> Maths

Geometry

Trigonometry

t-Formulae Substitution

t-Formulae Substitution

Part A Substitution

Using the substitution $t = \tan \frac{\theta}{2}$, write the equation $2\cos \theta - 5\sin \theta = 2 - 5\tan \theta$ in the form f(t) = 0 where f(t) is a polynomial with integer coefficients and degree 4.

The following symbols may be useful: cos(), cosec(), cot(), sec(), sin(), t, tan()

Part B Solutions

Hence find all the solutions to the equation $2\cos\theta - 5\sin\theta = 2 - 5\tan\theta$ in the range $0 \le \theta < 2\pi$.

Give the smallest solution.

Give the second smallest solution to 3 significant figures.

Give the largest solution to 3 significant figures.

Created for isaacphysics.org by Matthew Rihan