# Data Ethics in Machine Learning & Data Mining

## **Lecture 2 (Part A)**

#### Dr. Vassilis S. Kontogiannis

Reader in Computational Intelligence

Email: V.Kodogiannis@westminster.ac.uk

https://scholar.google.co.uk/citations?user=meTTcLAAAAAJ&hl=en&oi=aox\*



### Ethical Issues in Data Mining (DM) and Machine Learning (ML) systems



## Introduction

## Data Mining (DM) and Machine Learning (ML) systems:

- can automate a lot of tedious and dangerous work now.
- are already part of our life.
- are trusted with making important decisions

## But DM and ML systems:

- have innate biases which do not coincide with social norms and have no ethical grounds.
- fail in a way which is not humanly interpretable.
- can have negative economic and social impact –eliminate jobs.
- have some security issues chat bots, autonomous cars, etc.

## Challenges in DM & ML domains

In recent years, IT companies, such as Facebook and Google have:

- transformed themselves into data companies.
- built world-class Al research groups.
- accumulated a lot of Big Data about customers, not publicly available.
- made better digital marketing due to user profiling and personalization.

#### What's next?

- Both fields follow boom & bust cycle;
- Is society ready to accept ML/DM systems?

## Some ethics definitions

- Ethics or moral philosophy a branch of philosophy that involves systematizing, defending, and recommending concepts of right and wrong conduct.
- Ethics vs. Laws vs. Religion

  these terms have a common root but do not coincide.
- Data ethics How data affects human well-being - positively and negatively.
- Ethical values autonomy, equality, etc.

**Ethics in real life** 



## **Ethics of Technology**

Definition: is an interdisciplinary research area concerned with all moral and ethical aspects of technology in society. (Luppicini, 2008) It views society and technology as interrelated and aims to:

- use technology ethically.
- prevent misuses.
- guide new technological advances.
- benefit society.



**Ethics, Society and Technology** 

Vassilis S. Kontogiannis

## **Current ethical DM/ML problems**

- Fairness,Discrimination
- Ownership
- Transparency
- Privacy
- Accountability

- Anonymity
- Confidentiality
- Identity
- Reputation

#### Ethical DM/ML cases

- The Facebook emotions study (2014) psychological research
- Panama papers (2016) use of hacked data
- Cambridge Analytica case (2018) psychological profiling

#### Ethical DM/ML cases in the near future:

- Autonomous cars
- Autonomous weapons
- meaningful human control?
- Internet of things (IoT)
- Personalized medicine (genomic information)
- Social Credit System

#### **Ethical DM/ML issues**

- Innovators are restricted to the given state of scientific and technical knowledge.
- Each technical innovation brings risks and benefits.
- How to manage risks, when implementing an innovation?

#### How to solve ethical issues

- What approach is best for solving DM/ML ethical issues?
  - > strict national regulation vs. international regulation vs. looser code of ethics?
- Different approaches/priorities:
  - development of technology
  - businesses growth; more investments in DS/ML field
  - public interest
- Innovation first or Regulation first policy.

## Legislation

- Falls behind technological progress for most DM/ML ethical concerns.
- A long tradition of regulation for consumer, security, and privacy protection in the USA.
- EU scores ahead in 2018 with GDPR.

## Data privacy:

- has been already a major concern for public opinion and a political issue.
- has been already introduced into legislation.

#### While other DM/ML ethical issues:

- are still a subject of debate and are not fully introduced into legislation.
- there are similar issues in other fields regulated by other laws.

#### **GDPR**

Legally binding regulation, not a directive or a recommendation. Expanded definition of **personal data** – including **person's name**, **location**, **online identifiers**, **biometrics**, **genetic information**, etc.

#### **GDPR PERSONAL DATA**

The EU's General Data Protection Regulation defines personal data as any information related to a person that can be used to directly or indirectly identify them, including:



## **GDPR** – requirements for data protection

#### 1. Big data analytics must be fair.

No bias and discrimination. Consumers should be awarded for data collection. Processing should be transparent.

#### 2. Permission to process data.

Unambiguous consent from users. User consent for data use by third parties.

#### 3. Purpose limitation.

No further processing incompatible with the original purpose.

#### 4. Holding on data.

Using only data you need to process for a specific purpose.

#### 5. Accuracy.

Incorrect data must be dismissed. Big data should not represent a general population. Hidden biases in data should be considered in final results. No discrimination during profiling.

#### 6. Individual rights and access to data.

Individuals should be allowed to access their own data.

#### 7. Security measures and risk.

Security risks should be specifically addressed during processing.

#### 8. Accountability.

Big data processing without a defined hypothesis might cause problems. Biased profiling, too.

#### 9. Controllers and processors.

No clear definition as both operations are performed by ML algorithms.

## **Current issues in ML algorithms**

- ➤ Hard to explain the final decision to users since ML systems look like black boxes (NN-based algorithms).
- Some of the current ML algorithms behave unfair.
- DM/ML systems need to be used by professionals outside engineering/math communities.
- DM/ML systems should be incorporated into social and legal systems.

## Bias issues in DM/ML algorithms

Types of biases we are interested in:

- Algorithmic bias (feature or model selection)
- Data bias (biased or irrelevant data)
- Interpretability/Transparency of DM/ML systems (model bias)

## Bias issues in DM/ML algorithms



## **Data bias**

- ➢ is the most important component of the bias of the whole DM/ML system now; comes from data sampling.
- > is a responsibility of the designer of the DM/ML system to deal with it.
- ➢ is due to various standards for datasets; no strict requirements for data content; each dataset is biased to some extent.

## Sources of data bias

#### 1. Data is a social mirror.

If training data reflects existing social biases against a minority, the algorithm is going to incorporate it.

### 2. The sample size disparity.

Less data available about minorities – models of minorities tend to be worse than those of the general population.

#### 3. Cultural differences.

The statistical patterns that apply to the majority might be invalid within a minority group. A variable positively correlated with the target in the general population might be negatively correlated in a minority group — diverse names in ethnic groups.

### 4. Undesired complexity.

Many different overlapping minorities data groups – the combination of separate classifiers for them is complex.

## 5. Noise and the meaning of 5% error.

Error value can depend on the type of data or on the ML algorithm itself.

#### **Data bias reduction**

The data bias can be reduced by:

- gathering more data from different sources, thus avoiding sampling bias.
- removing variables in data associated with bias, e.g. age, sex, etc.
- ➤ talking to domain experts, where DM/ML systems will be used, in order to get more information (incorporation of external knowledge!).

## **Algorithmic bias**

- encompasses data bias.
- leads to discrimination and unfairness.
- is introduced during the development and testing stage.
- is produced by human/programmer cognitive biases.
- has unintentional nature.

## Algorithmic bias reduction

- ➢ first identify it talk to domain experts, where DM/ML systems will be used, to get more information.
- introduce de-biasing algorithms and use de-biased datasets.
- perform external auditing and apply special regulations.
- increase algorithmic transparency.

## Algorithmic interpretability/explainability:

- is especially important for automatic medical diagnostic software.
- relates to the legitimacy of decisions in social/business systems.
- leads to Accuracy vs. Explainability trade-off in various fields of applications.



## **DM/ML** algorithm interpretability

#### **Interpretable DM/ML algorithms:**

Decision forests, linear models, Naïve Bayes, Fuzzy systems and KNN classifiers (White Box)

## Non-interpretable ML algorithms:

Neural networks, SVM, kernel methods, etc. (Black Box)

## Principles of accountable algorithms

### 1. Responsibility

Who is responsible, if users are harmed?

### 2. Explainability

How much of the algorithm code and data will be disclosed?

#### 3. Accuracy

Sources of error and their effect? Worst case scenario?

#### 4. Fairness

Potential damages to different (social) groups by your algorithms?

## **Application of ML algorithms**

## Ethically complicated cases of DM/ML algorithms:

- gender-biased results (discrimination)
- racist outcome classification of black people as "gorillas" (discrimination, fairness)
- resume filtering based on age and sex in HR industries (discrimination, fairness)
- invisible calculation of credit score (transparency, accountability)
- data brokers (confidentiality)
- Uber taxis price forming (transparency, fairness)
- predictive policing (discrimination, fairness)
- personal and psychological profiling (privacy, discrimination, confidentiality)

## What are the consequences?

## What can happen, if we do not oppose biases in DM/ML systems?

- Businesses will use biased datasets for greater profits.
- DM/ML developers will apply evaluation metrics which can amplify biases – gender or race specific.
- ➤ The wide application of DM/ML algorithms will strengthen bias and polarization in society.
- Social tension and distrust to Intelligent systems and technologies will arise.

## **Example Application: Credit score computation**

- Credit score is a numeric expression, measuring people's or company's credit-worthiness.
- Banks use it for decision-making for credit application.
- Depends on credit history.
- It indicates how dependable an individual or a company is.

## **Scorecard algorithm**

**Def**: a standard and easy to understand credit scoring algorithm. A Binary problem:

1<sup>st</sup> class - default - a customer fails to pay install.

2<sup>nd</sup> class - a customer pays regular installments for a given time period.

#### It consists of:

- building and training a statistical or a ML model.
- applying the chosen model to assign a score to every credit application.

## Scorecard algorithm

- Use of ML algorithms as logistic regression, random trees, boosting, neural networks, generalized additive models
- Use of Area under curve (AUC) based on ROC analysis for model evaluation, Gini coefficients
- The data should be comprehensive allowing few missing values, and including as many data points as possible from the financial records of customers and their payment history

## **Current** issues

- Customers with no credit history need to be set into predefined groups.
- ➤ Wide introduction of automated credit score aims to make markets more efficient and low cost financial services but introduces algorithmic bias.
- Incomplete data can influence negatively the accuracy of the final results.

## **Ethical issues**

- protection of personal data necessary for credit score calculation
- explainability and transparency of the used ML algorithm
- introduction of bias danger of discrimination for ethnic minorities by implicit correlation
- lack of accuracy, objectivity, and accountability of credit score computation

## Solving ethical issues

- use of interpretable DM/ML algorithms/models
- preparation of training data samples to avoid bias
- protection of personal data against breaches through anonymization
- training all employees to work with DM/ML algorithms and know their biases
- continuous human supervision of DM/ML algorithms