p-series For which values of p>0 is the series $\sum_{n=1}^{\infty}\frac{1}{n^p}$ convergent? Use integral test.

Let $f(x) = \frac{1}{x^p}$, then f is continuous, positive, and decreasing.

By integral test,
$$\sum_{n=1}^{\infty} \frac{1}{n^p} \sim \int_1^{\infty} \frac{1}{x^p} dx$$
.

We know that
$$\int_{1}^{\infty} \frac{1}{x^{p}} dx$$
 is convergent iff $p > 1$. Thus, $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ is convergent iff $p > 1$.

other Is $\sum_{n=2}^{\infty} frac 1n \ln n$ convergent? It's positive, decreasing, continuous for $x \geq 2$.

By integral test, $\sum_{n=2}^{\infty} \frac{1}{n \ln n} \sim \int_{2}^{\infty} \frac{1}{x \ln x} dx$. We can find the antiderivative for this function.

$$\begin{split} \int_{2}^{\infty} \frac{1}{x \ln x} dx &= \lim_{b \to \infty} \left[\int_{2}^{b} \frac{1}{x \ln x} dx \right] = \lim_{b \to \infty} \left[\ln \ln x \Big|_{2}^{b} \right] \\ &= \lim_{b \to \infty} \left[\ln \ln b - \ln \ln 2 \right] = \infty \end{split}$$

So by the integral test, the series diverges.