INF-BIOx121 2017

RNA-seq differential expression analysis

Arvind Sundaram Sep 18-20, 2017

RNA-seq analysis

Introduction

Arvind Sundaram Sep 18, 2017

Outcome

- * Explain what is RNA-seq
- * Get an insight on how the data is analysed
- List different types of RNA-seq methods
- * Tailor data analysis pipeline based on the organism and the hypothesis being investigated

Outcome

- * After this module you should be able to perform:
 - * Differential gene expression analysis within pair-wise comparison using a reference genome
 - Understand overall statistics such as mapping percentage, find potential outliers, list DE genes
 - Extract and present biological meaning of the DE genes

Transcriptome

A transcriptome is a snapshot in time of all RNAs present in a sample isolated from a given cell, tissue or organism

Limit...

de novo approach

http://www.ensembl.org/info/about/speciestree.html https://www.thinglink.com/scene/645083259847311362

Transcriptome

Study individual variation

Transcription

Copying information from DNA to a RNA molecule for regulation or translation to protein

Eukaryotic mRNA processing

Eukaryotic mRNA processing

Splicing

Obtaining transcriptome

- * Sanger sequencing
 - mRNA converted to the more stable cDNA
 - cDNA cleaved and ligated into vectors
 - * Vectors amplified (cloned) in *E. coli*
 - * DNA isolated = cDNA library
 - Sequenced on Sanger
 - Low throughput
 - * High accuracy

* Quantitative RT-PCR

- * qRT-PCR requires knowledge of gene sequence
- Hard manual work
- Low throughput
- * Expression level relative to control (house-keeping gene)

* Microarray

- * Requires gene sequences for probe design
- * High throughput compared to qRT-PCR
- * Possibility of outsourcing
- * Expression results relative to all probes

- * RNA-seq
 - * Transcriptome and expression in one go
 - * No need for gene sequence information
 - * High throughput
 - * Can be outsourced
 - Costly, but effective
 - * Expression results relative to all transcripts

Needs a different mindset

- * Transcriptome = mRNA
- * mRNA = Protein
- * Protein = Biological relevance

* Things are seldom as simple as clear cut...

Things to remember

- * RNA decay
- RNA editing
- * RNA splicing
- * Translation regulation
- * RNA interference

- Heavily dependent on proper experimental design
- * Enormous amounts of data
- * No straight forward analysis
- Usually no clear-cut story from individual gene expressions

Experimental design is very important.

ERCC https://tools.thermofisher.com/content/sfs/manuals/cms_086340.pdf
PhiX

Mapping sequence data

