

My first project as a data scientist: SPACE Y

Daniel Obed Ortega Vázquez

April 17, 2025

TABLE OF CONTENTS

- 1. Executive summary
- 2. Introduction
- 3. Methodology
- 4. Results
- 5. Conclusions
- 6. Appendix

EXECUTIVE SUMMARY

- SpaceY is a new commercial rocket launch provider aiming to compete with SpaceX.
- SpaceX offers launch services starting at \$62 million for missions where sufficient fuel is reserved to enable recovery of the first-stage rocket booster for reuse.
- According to public statements, the cost to manufacture a Falcon 9 first-stage booster is estimated to exceed **\$15 million**, excluding research and development costs or profit margins.
- This report presents models that, based on mission parameters such as payload mass and target orbit, can predict the likelihood of a successful first-stage landing with 83.3% accuracy.
- These predictions provide SpaceY with a strategic advantage by allowing the company to estimate launch costs more precisely—enabling them to place more competitive bids against SpaceX.

INTRODUCTION

- SpaceX advertises Falcon 9 rocket launches at a cost of \$62 million when the first stage can be recovered and reused.
- The first stage alone is estimated to cost over **\$15 million** to manufacture, excluding R&D recovery or profit margins.
- However, depending on mission parameters—such as **payload mass**, **target orbit**, or specific **customer requirements**—
 SpaceX may forgo recovering the first stage.
- As a result, this report seeks to accurately predict the likelihood of a successful first-stage landing, using it as a proxy to estimate launch costs.

METHODOLOGY

Data Collection

API

- Retrieved historical launch data from an open-source SpaceX REST API.
- Used **GET requests** to access and parse the SpaceX launch data.
- Filtered the dataset to include only **Falcon 9** launches.
- Handled missing values by replacing classified mission payload masses with the mean payload mass of known entries.

Web Scraping

- Collected additional launch data from the Wikipedia page titled "List of Falcon 9 and Falcon Heavy Launches."
- Accessed the page using its Wikipedia URL.
- Extracted all column names from the **HTML table headers**.
- Parsed the table and converted it into a structured Pandas DataFrame for analysis.

Data Wrangling

- Explored the dataset to identify an appropriate target label for training supervised learning models.
- Performed exploratory analysis including:
 - Count of launches per launch site
 - Frequency and distribution of each **orbit type**
 - Analysis of mission outcomes by orbit category
- Created a binary training label named 'Class', derived from the 'Outcome' column, to indicate the success or failure of first-stage booster landings:

Landing Outcome Labeling:

- Class = 0 → First-stage booster did not land successfully:
 - 'None None': Landing **not attempted**
 - 'None ASDS': **Attempt not possible** due to launch failure
 - 'False ASDS': **Drone ship landing failed**
 - 'False Ocean': Ocean landing failed
 - 'False RTLS': Ground pad landing failed
- Class = 1 → First-stage booster landed successfully:
 - 'True ASDS': **Drone ship landing succeeded**
 - 'True RTLS': Ground pad landing succeeded
 - 'True Ocean': Ocean landing succeeded

Exploratory Data Analysis (EDA)

- EDA with SQL
 - Loaded the dataset into an IBM Db2 instance.
 - Executed **SQL queries** to explore and retrieve insights on:
 - Launch sites
 - Payload masses
 - Booster versions
 - Mission outcomes
 - Booster landings
- EDA with Visualization
 - Imported the dataset into a **Pandas DataFrame** for visual analysis.
 - Used Matplotlib and Seaborn to create visualizations for deeper insight:
 - Flight Number vs. Payload Mass
 - Flight Number vs. Launch Site
 - Payload Mass vs. Launch Site
 - Orbit Type vs. Landing Success Rate
 - Flight Number vs. Orbit Type
 - Payload Mass vs. Orbit Type
 - Launch Year vs. Success Rate
- (†) Plots used to identify trends and relationships between mission parameters and launch outcomes.

```
# Plot a line chart with x axis to be the extracted year and y axis to be the success rate
sns.lineplot(data=df, x='Date', y='Class', estimator='mean', color='skyblue')
plt.ylabel('Success rate')
plt.xlabel('Date')
plt.show()
```


Data Visualization

- Launch Sites Location Analysis
 - Utilized the Folium Python library for interactive geographic mapping.
 - Mapped the locations of all SpaceX launch sites.
 - Plotted individual launch markers indicating success or failure at each site.
 - Calculated distances from each launch site to nearby infrastructure and landmarks:
 - Railways
 - Highways
 - Coastlines
 - Cities

- Built an **interactive dashboard** using **Plotly Dash** to allow real-time data exploration for stakeholders.
- Key features include:
 - Pie chart displaying launch success rates, color-coded by launch site
 - Scatter plot of Payload Mass vs. Landing Outcome, color-coded by booster version
 - Includes a range slider to filter by payload mass
 - Features a dropdown menu to select between all sites or individual launch sites
- Deployed the dashboard as a **static web application** using **Heroku**: IBM Applied Data Science Capstone Dashboard

Predictive Analysis (Modeling)

- Imported essential libraries and defined a function to generate a confusion matrix:
 - pandas
 - nump
 - matplotlit
 - seabor
 - scikit-learn (skleam)
- Loaded the cleaned DataFrame created during the data collection phase.
- Added the 'Class' column, previously created during data wrangling, as the target label.
- Standardized the features to ensure uniformity in model training.
- Split the dataset into training and test sets.
- Model Training
- Trained and evaluated the following classification models:
 - Logistic Regression
 - Support Vector Machine (SVM)
 - Decision Tree Classifier
 - K-Nearest Neighbors (KNN) Classifier
- Model Optimization
- Performed cross-validated grid search to find the optimal hyperparameters for each model.
- Utilized Scikit-learn's GridSearchCV for automated hyperparameter tuning.
- Model Evaluation
- Assessed model accuracy on the test set.
- Selected the best-performing model based on evaluation metrics, including accuracy and confusion matrix results.

yhat=logreg_cv.predict(X_test)
plot_confusion_matrix(Y_test,yhat)

EDA WITH VISUALIZATION RESULTS

- Flight Number vs. Payload Mass
- First-stage landing success shows a positive correlation with the number of launch attempts (FlightNumber), suggesting improvement over time.
- Conversely, there is a negative correlation with payload mass, indicating that heavier payloads are associated with a lower likelihood of successful landings.
- Flight Number vs. Launch Site
- Early first-stage landing failures were primarily associated with CCAFS SLC-40, indicating this site was heavily used during the initial testing and development phase.
- Payload Mass vs. Launch Site
- CCAFS SLC-40 and KSC LC-39A appear
 to be the preferred sites for heavier
 payload missions, possibly due to their
 infrastructure and proximity to the
 ocean, which facilitates risk mitigation.

Year vs. Success Rate

• The success rate of first-stage landings has shown a positive trend year over year since 2013, reflecting continuous improvements in technology, mission planning, and landing techniques.

Flight Number vs. Orbit Type

Across all **orbit types**, there is a **positive correlation** between **flight number** and **first-stage recovery**, suggesting that **SpaceX has become increasingly successful at landing boosters** as launch experience accumulates.

Payload Mass vs. Orbit Type

- For Geostationary Transfer Orbit (GTO) missions, heavier payloads tend to reduce the likelihood of successful firststage recovery, likely due to fuel constraints.
- In contrast, for International Space Station (ISS) missions, heavier payloads are positively associated with successful landings—possibly because these missions typically target lower orbits, allowing for more fuel to be reserved for landing.

EDA WITH SQL RESULTS

- The team at SpaceY set out to answer several targeted questions using SQL:
- What launch sites has SpaceX used?
 - CCAFS LC 40
 - CCAFS SLC 40
 - KSC LC 39A
 - VAFB SLC 4E
- Do launch site and date records for sites beginning with 'CCA' overlap?
 - The last launch from CCAFS LC 40 occurred on 2016-08-14.
 - The first launch from CCAFS SLC 40 occurred on 2017-12-15.
 - According to Wikipedia, Cape Canaveral Space Launch Complex 40 was renamed in 2017.
- What is the total payload mass carried by boosters launched under NASA's CRS (Commercial Resupply Services) program?
 - 45,596 kg total.
- What is the average payload mass carried by the F9 v1.1 booster version?
 - 340 kg on average.
- When was the first successful landing on a ground pad achieved?
 - On 2015-12-22, more than five years after the first Falcon 9 launch on 2010-06-04.

1. Boosters with Successful Drone

Ship Landings

Criteria: Payload mass between

4,000 kg and 6,000 kg

Boosters:

- •F9 FT B1021.1
- •F9 FT B1023.1
- •F9 FT B1029.2
- •F9 FT B1038.1
- •F9 B4 B1042.1
- •F9 B4 B1045.1
- •F9 B5 B1046.1

2. Landing Outcomes Count (from 2010-06-04 to 2017-03-20)

Ranked in descending order:

- 1.10 No attempt
- 2.5 Failure (drone ship)
- 3.5 Success (drone ship)
- 4.3 Controlled (ocean)
- 5.3 Success (ground pad)
- 6.2 Failure (parachute)
- 7.2 Uncontrolled (ocean)
- 8.1 Precluded (drone ship)

3. Booster Versions with Maximum Payload Mass

Boosters:

- •F9 B5 B1048.4
- •F9 B5 B1048.5
- •F9 B5 B1049.4
- •F9 B5 B1049.5
- •F9 B5 B1049.7
- •F9 B5 B1051.3
- •F9 B5 B1051.4
- •F9 B5 B1051.6
- •F9 B5 B1056.4
- •F9 B5 B1058.3
- •F9 B5 B1060.2
- •F9 B5 B1060.3

4. Failed Drone Ship Landings in 2015 Landing Outcome – Booster Version – Launch Site:

- •Failure (drone ship) F9 v1.1 B1012 CCAFS
- LC 40
- •Failure (drone ship) F9 v1.1 B1015 CCAFS LC 40

5. Mission Outcomes (Total Count)

- •99 Success
- •1 Failure (in flight)
- •1 Success (payload status unclear)

INTERACTIVE MAP WITH FOLIUM RESULTS

PLOTLY DASH DASHBOARD RESULTS

- Explore the Dashboard
- Stakeholders can explore and interact with the data in real time via the interactive dashboard:
 IBM Applied Data Science Capstone Dashboard
- The dashboard enables users to visualize trends, filter data, and gain insights dynamically.
- Key Observations from the Dashboard:
- VAFB SLC 4E recorded the heaviest successful booster landing.
- KSC LC 39A has the highest booster landing success rate among all launch sites.
- Payloads under 5,300 kg are associated with the highest landing success rates.
- In contrast, payloads over 5,300 kg tend to have the lowest booster landing success rates.

PREDICTIVE ANALYSIS (CLASSIFICATION) RESULTS

Model Performance Summary

- All **four models** achieved the **same accuracy** score: **83.33**%.
- The confusion matrices for the top-performing models were identical, indicating a four-way tie in performance.

Key Issue: False Positives

- A major issue across the models is the false positive rate.
- Specifically, the models incorrectly predicted a successful landing for the 1st stage booster in 3 out of 18 test samples.
- This suggests a tendency to overpredict successful landings, which could lead to misleading performance expectations in realworld applications.

CONCLUSIONS AND STRATEGIC RECOMMENDATIONS

Key Findings

- Using the models developed in this report, SpaceY can predict with 83.3% accuracy whether SpaceX will successfully land the 1st stage booster.
- According to public statements, **SpaceX reports that each 1st stage** booster costs over \$15 million to manufacture.
- This predictive capability gives SpaceY a competitive edge, allowing it to make more informed and strategic bids when competing with SpaceX.
- If SpaceX fails to recover the 1st stage, the total launch cost could rise from the list price of \$62 million to approximately \$77 million, factoring in the \$15M+ loss.

Opportunities for Improvement and Future Work

1. Finalize and Retrain Best Model

- 1. Freeze the best-performing model and hyperparameters.
- **2.** Retrain using the full dataset (training + test) to improve model generalization.

*Note: This approach enhances predictive power but eliminates the ability to re-evaluate test accuracy.

2. Incorporate Additional Launch Data

1. Continuously update the model as **new SpaceX launch data** becomes available to improve accuracy and relevance.

3. Subdivide the Prediction Task

- 1. Split the current model into two sequential predictions:
 - 1. Will SpaceX attempt to land the 1st stage booster?
 - 2. Will SpaceX succeed in that attempt?
- 2. This granularity can help SpaceY evaluate both **risk and cost implications** more accurately.

4. Develop a Booster Reuse Model

- 1. Create a related model to predict whether SpaceX will use a previously flown 1st stage.
- 2. This would help anticipate when **SpaceX bids might include a discount**, giving SpaceY a **clearer pricing forecast**.