Crash Course in Quantum Mechanics for Quantum Computing Qubits, Pauli Algebra, Bloch Sphere & Density Matrices

Antonije Mirkovic

August 26, 2025

Contents

1	Refresher: Schrödinger Equation & Observables	1
	1.1 States and dynamics	1
	1.2 Observables and Born rule	2
2	Dirac Notation and Linear Algebra Basics	2
3	Qubits and Tensor Products	2
	3.1 Single qubit	2
	3.2 Two qubits and tensor products	
4	Pauli Matrices, Algebra, and Unitaries	3
5	Projective Measurements	3
6	Bloch Sphere and the $SU(2) \leftrightarrow SO(3)$ Map	3
	6.1 Coordinates and geometry	3
	6.2 Rotations from unitaries	4
7	Density Matrices, Mixed States, and Partial Trace	4
	7.1 Density matrices	4
	7.2 Reduced density matrix and partial trace	5
	7.3 Thermal states (Gibbs states)	5
8	Worked Mini-Examples	5
9	Exercises	5

1 Refresher: Schrödinger Equation & Observables

1.1 States and dynamics

A quantum state is a unit vector $|\psi(t)\rangle$ in a complex Hilbert space \mathcal{H} (finite-dimensional here). The evolution is (for time-independent Hamiltonian \hat{H})

$$i\hbar \partial_t |\psi(t)\rangle = \hat{H} |\psi(t)\rangle \implies |\psi(t)\rangle = e^{-i\hat{H}t/\hbar} |\psi(0)\rangle,$$
 (1)

where $U(t)=e^{-i\hat{H}t/\hbar}$ is unitary.

1.2 Observables and Born rule

Observables are represented by Hermitian operators $\hat{A} = \hat{A}^{\dagger}$. If $\hat{A} | a_k \rangle = a_k | a_k \rangle$, then measuring \hat{A} in state $|\psi\rangle$ returns a_k with probability $|\langle a_k | \psi \rangle|^2$. Expectation values are $\langle \hat{A} \rangle_{\psi} = \langle \psi | \hat{A} | \psi \rangle$.

Proposition 1 (Reality of eigenvalues). If $\hat{A} = \hat{A}^{\dagger}$, then its eigenvalues are real.

Proof.
$$\hat{A}|v\rangle = \lambda |v\rangle \Rightarrow \langle v|\hat{A}|v\rangle = \lambda \langle v|v\rangle$$
. But $\langle v|\hat{A}|v\rangle$ is real since \hat{A} is Hermitian. As $\langle v|v\rangle > 0$, $\lambda \in \mathbb{R}$.

QC connection. Because U(t) is unitary, quantum gates are unitary matrices. Hamiltonians generate gates via exponentials.

2 Dirac Notation and Linear Algebra Basics

Fix an orthonormal basis $\{|i\rangle\}_{i=1}^d$ of $\mathcal{H} \simeq \mathbb{C}^d$. Every vector $|\psi\rangle = \sum_i c_i |i\rangle$ with $\sum_i |c_i|^2 = 1$. Operators act linearly, and in a basis are $d \times d$ matrices. The adjoint is the conjugate transpose.

Proposition 2 (Spectral theorem (finite-dim.)). Every Hermitian \hat{A} has an orthonormal eigenbasis and $\hat{A} = \sum_k a_k |a_k\rangle \langle a_k|$.

Proposition 3 (Commuting observables). If Hermitians \hat{A} , \hat{B} commute and have nondegenerate spectra, they share an eigenbasis. In the degenerate case, each eigenspace of \hat{A} can be chosen to diagonalize \hat{B} simultaneously.

QC connection. Simultaneous eigenbases underlie measurement in different registers and controlled gates.

3 Qubits and Tensor Products

3.1 Single qubit

The two-dimensional Hilbert space $\mathcal{H} \simeq \mathbb{C}^2$ with computational basis $|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. A pure state is $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$, $|\alpha|^2 + |\beta|^2 = 1$.

3.2 Two qubits and tensor products

For systems A, B, the joint space is $\mathcal{H}_A \otimes \mathcal{H}_B$ (dimension multiplies). If $|\psi\rangle_A = \alpha |0\rangle + \beta |1\rangle$ and $|\phi\rangle_B = \gamma |0\rangle + \delta |1\rangle$ then

$$|\psi\rangle \otimes |\phi\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \otimes \begin{pmatrix} \gamma \\ \delta \end{pmatrix} = \begin{pmatrix} \alpha\gamma \\ \alpha\delta \\ \beta\gamma \\ \beta\delta \end{pmatrix} = \alpha\gamma |00\rangle + \alpha\delta |01\rangle + \beta\gamma |10\rangle + \beta\delta |11\rangle. \tag{2}$$

Operators combine via the Kronecker product: $(A \otimes B)(C \otimes D) = (AC) \otimes (BD)$.

QC connection. Multi-qubit gates are built from tensor products (e.g. $X \otimes I$, CNOT, etc.).

4 Pauli Matrices, Algebra, and Unitaries

The Pauli matrices

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 (3)

satisfy

$$\sigma_i^2 = 1, \qquad {\sigma_i, \sigma_j} = 2\delta_{ij}1, \qquad [\sigma_i, \sigma_j] = 2i\,\epsilon_{ijk}\sigma_k.$$
 (4)

Any Hermitian 2×2 matrix can be written as

$$\hat{A} = a_0 \mathbb{1} + \boldsymbol{a} \cdot \boldsymbol{\sigma}, \qquad \boldsymbol{\sigma} = (\sigma_x, \sigma_y, \sigma_z), \ \boldsymbol{a} \in \mathbb{R}^3.$$
 (5)

Similarly any unitary in SU(2) can be written as

$$U = \exp\left(-\frac{i}{2} \alpha \, \boldsymbol{n} \cdot \boldsymbol{\sigma}\right), \qquad \|\boldsymbol{n}\| = 1, \tag{6}$$

which is a rotation of angle α about axis n on the Bloch sphere (see §6).

Proposition 4 (Exponentiation identity). For any unit vector $n \in \mathbb{R}^3$ and real α ,

$$e^{-i\frac{\alpha}{2}\boldsymbol{n}\cdot\boldsymbol{\sigma}} = \cos\frac{\alpha}{2}\mathbb{1} - i\sin\frac{\alpha}{2}(\boldsymbol{n}\cdot\boldsymbol{\sigma}).$$
 (7)

Proof. Use $(\boldsymbol{n} \cdot \boldsymbol{\sigma})^2 = \mathbb{1}$ from the Pauli anticommutation relation. Expand the exponential into even/odd power series: $e^{xM} = \sum_{k \geq 0} \frac{x^{2k}}{(2k)!} M^{2k} + \sum_{k \geq 0} \frac{x^{2k+1}}{(2k+1)!} M^{2k+1}$ with $M = \boldsymbol{n} \cdot \boldsymbol{\sigma}$, $M^2 = \mathbb{1}$ gives the result.

QC connection. Single-qubit rotations $R_x(\theta) = e^{-i\theta\sigma_x/2}$, etc., are elementary gates.

5 Projective Measurements

A projective measurement in basis $\{|i\rangle\}$ is given by projectors $P_i = |i\rangle\langle i|$ with $\sum_i P_i = 1$. For state ρ (density matrix, §7), outcome i occurs with

$$p(i) = \text{Tr}(P_i \rho), \qquad \rho \mapsto \rho_i = \frac{P_i \rho P_i}{\text{Tr}(P_i \rho)}.$$
 (8)

For pure $\rho = |\psi\rangle\langle\psi|$ this is the familiar $p(i) = |\langle i|\psi\rangle|^2$ and post-measurement state $|i\rangle$.

QC connection. Readout in computational basis uses $P_0 = |0\rangle \langle 0|$, $P_1 = |1\rangle \langle 1|$.

6 Bloch Sphere and the $SU(2) \leftrightarrow SO(3)$ Map

6.1 Coordinates and geometry

Any single-qubit *pure* state (up to global phase) can be written as

$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\phi}\sin\frac{\theta}{2}|1\rangle, \quad \theta \in [0, \pi], \ \phi \in [0, 2\pi).$$
 (9)

The associated Bloch vector in \mathbb{R}^3 is

$$\mathbf{r} = (x, y, z) = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta), \qquad ||\mathbf{r}|| = 1.$$
 (10)

For a mixed state, $||r|| \le 1$ (see §7).

Figure 1: Bloch sphere with state r and Pauli axes.

6.2 Rotations from unitaries

For $U = \exp(-\frac{i}{2}\alpha \, \boldsymbol{n} \cdot \boldsymbol{\sigma}) \in SU(2)$ and density ρ , the transformed state is $\rho' = U\rho U^{\dagger}$. In Bloch-vector form (§7), this induces a real-space rotation:

$$\rho = \frac{1}{2}(\mathbb{1} + \boldsymbol{r} \cdot \boldsymbol{\sigma}) \implies \rho' = \frac{1}{2}(\mathbb{1} + (R_{\boldsymbol{n}}(\alpha)\boldsymbol{r}) \cdot \boldsymbol{\sigma}), \tag{11}$$

where $R_n(\alpha) \in SO(3)$ is the 3D rotation by angle α about n. Thus SU(2) double-covers SO(3).

QC connection. Any single-qubit unitary is a (possibly global-phase–lifted) rotation of the Bloch vector.

7 Density Matrices, Mixed States, and Partial Trace

7.1 Density matrices

An ensemble $\{(p_k, |\psi_k\rangle)\}$ is represented by

$$\rho = \sum_{k} p_k |\psi_k\rangle \langle \psi_k|, \qquad p_k \ge 0, \quad \sum_{k} p_k = 1.$$
 (12)

Properties: ρ is Hermitian, positive semidefinite, and $\operatorname{Tr} \rho = 1$. A state is *pure* iff $\rho = |\psi\rangle\langle\psi|$; equivalently $\operatorname{Tr}(\rho^2) = 1$.

Proposition 5 (Purity bound). For qubits, writing $\rho = \frac{1}{2}(1 + r \cdot \sigma)$ with $r \in \mathbb{R}^3$,

$$\operatorname{Tr}(\rho^2) = \frac{1}{2}(1 + ||r||^2) \le 1 \iff ||r|| \le 1,$$
 (13)

with equality iff ρ is pure.

Proof. Compute
$$\rho^2 = \frac{1}{4}(\mathbb{1} + 2\boldsymbol{r} \cdot \boldsymbol{\sigma} + (\boldsymbol{r} \cdot \boldsymbol{\sigma})^2)$$
 and use $(\boldsymbol{r} \cdot \boldsymbol{\sigma})^2 = \|\boldsymbol{r}\|^2 \mathbb{1}$. Then $\operatorname{Tr}(\rho^2) = \frac{1}{4}\operatorname{Tr}((1 + \|\boldsymbol{r}\|^2)\mathbb{1}) = \frac{1}{2}(1 + \|\boldsymbol{r}\|^2)$.

7.2 Reduced density matrix and partial trace

For a bipartite system AB with joint state ρ_{AB} , the reduced state of A is

$$\rho_A = \operatorname{Tr}_B(\rho_{AB}) = \sum_j (\mathbb{1}_A \otimes \langle j|) \, \rho_{AB} \, (\mathbb{1}_A \otimes |j\rangle), \tag{14}$$

for any orthonormal basis $\{|j\rangle\}$ of B.

Example 1 (Bell state reduction). Let $|\Phi^{+}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ and $\rho_{AB} = |\Phi^{+}\rangle \langle \Phi^{+}|$. Then $\rho_{A} = \text{Tr}_{B}(\rho_{AB}) = \frac{1}{2}\mathbb{1}$ (the maximally mixed state). Hence each qubit alone is mixed although ρ_{AB} is pure.

7.3 Thermal states (Gibbs states)

For Hamiltonian H at inverse temperature $\beta = 1/(k_B T)$, the equilibrium state is

$$\rho_{\beta} = \frac{e^{-\beta H}}{Z}, \qquad Z = \text{Tr}\left(e^{-\beta H}\right). \tag{15}$$

For a qubit with $H = E\sigma_z$, $Z = 2\cosh(\beta E)$ and

$$\rho_{\beta} = \frac{1}{2} \Big(\mathbb{1} - \tanh(\beta E) \, \sigma_z \Big) \quad \Longrightarrow \quad \boldsymbol{r} = (0, 0, -\tanh(\beta E)). \tag{16}$$

Low-T limit $\beta E \to \infty$: $\mathbf{r} \to (0, 0, -1)$ (ground state $|1\rangle$ for this convention). High-T limit $\beta E \to 0$: $\mathbf{r} \to \mathbf{0}$ (maximally mixed).

QC connection. Noise and thermalization push Bloch vectors toward the origin (depolarization).

8 Worked Mini-Examples

Example 2 (Basis change of a qubit operator). Let $A = \begin{pmatrix} a & t \\ t & b \end{pmatrix}$ in basis $\{|\psi_1\rangle, |\psi_2\rangle\}$. Define new basis $|\phi_1\rangle = \frac{1}{\sqrt{2}}(|\psi_1\rangle + |\psi_2\rangle)$, $|\phi_2\rangle = \frac{1}{\sqrt{2}}(|\psi_1\rangle - |\psi_2\rangle)$ with change-of-basis $S = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$. Then $A' = S^{\dagger}AS$. Compute explicitly to get $A' = \begin{pmatrix} \frac{a+b}{2} + t & \frac{a-b}{2} \\ \frac{a-b}{2} & \frac{a+b}{2} - t \end{pmatrix}$.

Example 3 (Projective measurement on a two-qubit state). Let $|\chi\rangle = \frac{1}{6}(2|00\rangle - 5|01\rangle + 2|10\rangle + \sqrt{3}|11\rangle$). The probability to measure the second qubit in $|1\rangle$ is $p = ||-5/6||^2 + ||\sqrt{3}/6||^2 = \frac{25}{36} + \frac{3}{36} = \frac{28}{36} = \frac{7}{9}$. The post-measurement (normalized) state is proportional to $(-5)|01\rangle + \sqrt{3}|11\rangle$, i.e. $|\chi'\rangle = \frac{-5|01\rangle + \sqrt{3}|11\rangle}{\sqrt{28}}$.

Example 4 (Tensor-product operators).
$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \otimes \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \end{pmatrix}$$
, $\begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -i & 0 \\ 0 & -1 & 0 & i \\ i & 0 & 1 & 0 \\ 0 & -i & 0 & -1 \end{pmatrix}$.

9 Exercises

- **E1. Normalization.** Let $|\psi\rangle = (2+i)|0\rangle + (1-2i)|1\rangle$. Normalize it and write in the form $\cos(\theta/2)|0\rangle + e^{i\phi}\sin(\theta/2)|1\rangle$ (give θ,ϕ).
- **E2. Pauli algebra.** Prove $\{\sigma_i, \sigma_i\} = 2\delta_{ij}\mathbb{1}$ and $[\sigma_i, \sigma_i] = 2i\epsilon_{ijk}\sigma_k$ directly.

- E3. Matrix exponential with Pauli. Using Prop. 4, compute explicitly $U = e^{-i\frac{\pi}{3}\hat{n}\cdot\sigma}$ for $\hat{n} = \frac{1}{\sqrt{3}}(1,1,1)$.
- **E4. Basis change.** With $A = \begin{pmatrix} a & t \\ t & b \end{pmatrix}$ and $|\phi_{\pm}\rangle = \frac{1}{\sqrt{2}}(|\psi_1\rangle \pm |\psi_2\rangle)$, find A' in the $\{|\phi_+\rangle, |\phi_-\rangle\}$ basis (verify the worked example).
- **E5.** Measurement & post-state. For $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ in computational basis, compute p(0) and post-measurement state conditioned on outcome 0. Repeat in the X-basis $\{|\pm\rangle\}$.
- **E6. Tensor products.** Expand $(\sigma_z \otimes \sigma_x) |\Phi^+\rangle$ where $|\Phi^+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$.
- **E7. Bloch coordinates.** For $|\psi\rangle = \frac{1}{\sqrt{5}}(2|0\rangle + i|1\rangle)$, compute (x,y,z) and plot it on the Bloch sphere. Which Pauli measurement is most biased?
- **E8. Unitary** \Rightarrow **rotation.** Show that $R_x(\theta) = e^{-i\theta\sigma_x/2}$ rotates the Bloch vector by angle θ about the x-axis. (Hint: conjugate $\sigma_{u,z}$ by $R_x(\theta)$ and use Pauli algebra.)
- **E9. Purity and Bloch length.** Given $\rho = \frac{1}{2}(\mathbb{1} + \mathbf{r} \cdot \boldsymbol{\sigma})$, compute $\text{Tr}(\rho^2)$ and show $\text{Tr}(\rho^2) = 1 \iff \|\mathbf{r}\| = 1$.
- **E10. Partial trace.** Let $\rho_{AB} = |\Psi\rangle \langle \Psi|$ with $|\Psi\rangle = \sqrt{p} |00\rangle + \sqrt{1-p} |11\rangle$. Find $\rho_A = \text{Tr}_B(\rho_{AB})$ and its eigenvalues. For which p is ρ_A maximally mixed?
- **E11. Non-separability of Bell state.** Prove that $|\Phi^{+}\rangle$ cannot be written as $|a\rangle \otimes |b\rangle$ for any single-qubit states $|a\rangle$, $|b\rangle$.
- **E12. Thermal qubit.** For $H = E\sigma_z$, compute ρ_β and its Bloch vector $(0, 0, -\tanh \beta E)$. Give the $T \to 0$ and $T \to \infty$ limits.
- **E13. Sudden quench (Gibbs** \to **new basis).** Start from the thermal state for $H_z = E\sigma_z$ at temperature T. At t = 0 switch to $H_x = E\sigma_x$. Express $\rho(0)$ in the eigenbasis of H_x and write the Liouville-von Neumann equation $\dot{\rho}(t) = -\frac{i}{\hbar}[H_x, \rho(t)]$. Solve for $\rho(t)$ and give r(t).
- **E14. Commuting observables.** Let $A, B \in \text{Herm}(2)$ commute and have nondegenerate spectra. Prove they are diagonal in the same basis.
- **E15. Two-qubit operator matrices.** Expand $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \otimes \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ into 4×4 matrices.
- **E16. Expectation from** ρ . For $\rho = \frac{1}{2}(\mathbb{1} + \boldsymbol{r} \cdot \boldsymbol{\sigma})$ and observable $A = a_0 \mathbb{1} + \boldsymbol{a} \cdot \boldsymbol{\sigma}$, show $\text{Tr}(\rho A) = a_0 + \boldsymbol{a} \cdot \boldsymbol{r}$.

Tip for study. When in doubt, rewrite everything in Pauli/Bloch form: operators $\leftrightarrow (a_0, \mathbf{a})$ and states $\leftrightarrow \mathbf{r}$. Many identities become dot/cross products.