

Arquitetura e Organização de Computadores

Centro Universitário 7 Setembro - Uni7 **Sistemas de Informação**

Aula 10

Prof. MSc Manoel Ribeiro

manoel@opencare.com.br

Subsistema de I/O

- Como a memória principal é volátil os computadores precisam de um sistema de armazenamento permanente das informações processadas.
- Também este sistema cumpre o papel de interação dos computadores com mundo exterior

Funções do Subsistema de I/O

- receber ou enviar informações ao meio exterior
- converter as informações (de entrada e saída) em uma forma inteligível para a máquina ou para o programador ou usuário

Dispositivos do Subsistema de I/O

- Dentre os diversos dispositivos de E/S podemos citar: teclado, mouse, monitor de vídeo, impressora, webcam, modem, dispositivos de armazenamento (ex.: disco rígido, CD/DVD – ROM, pen-drive).
- Esses dispositivos se interligam à UCP e memória principal através do barramento de expansão (externo)

Características do Subsistema de I/O

- Os dispositivos de E/S apresentam diferentes características, o que tornaria a comunicação entre UCP e periférico extremamente complicada, caso esta fosse realizada direta e individualmente (ex.: comunicação direta entre UCP e teclado, entre UCP e vídeo).
- Isso ocorre em função da grande diferença de velocidade entre UCP e os dispositivos de E/S, além de haver grandes diferenças de velocidade entre os próprios dispositivos, como por exemplo o disco rígido, que é mais rápido que o teclado.

Tabela 7.1: Dispositivos de E/S e sua velocidade de transmissão de dados

missão de dados					
Dispositivo	Taxa de transmissão (KB/s)				
Teclado	0,01				
Mouse	0,02				
Impressora matricial	1				
Modem	2 a 8				
Disquete	100				
Impressora laser	200				
Scanner	400				
CD-ROM	1000				
Rede local	500 a 6000				
Vídeo gráfico	60.000				
Disco rígido (HD)	2000 a 10.000				

Fonte: Adaptada de Monteiro (2007)

Forma de transmissão

- Além da velocidade, outro aspecto que diferencia os dispositivos de E/S é a sua forma de comunicação.
- A comunicação entre o núcleo do computador e os dispositivos de E/S poderia ser classificada em:
 - Paralela
 - Serial

Comunicação Paralela

 Comunicação paralela: a informação pode ser transmitida/recebida em grupos de bits de cada vez, isto é, um grupo de bits é transmitido simultaneamente de cada vez

	Transmissão	
	0 1	
	1 0	
	0 0	
<u></u>	1 1	
I I	0 1	R
	0 0	
	1 0	
	0 0	
Transmissor	Caractere 2 Caractere 1	Receptor

Comunicação Paralela

placa de vídeo AGP

placa de disco SCSI

Comunicação Serial

 Comunicação serial: a informação pode ser transmitida/recebida, bit a bit, um em seguida do outro

Comunicação Serial

Interface USB

Ethernet

Controlador de disco SATA

Metodologias de E/S

- Entrada e saída programada
- Entrada e saída controladas por interrupção
- Acesso direto à memória (DMA)

Entrada de Saída Programada

- Neste método, também chamado de pooling, a UCP precisa verificar constantemente se cada um dos dispositivos necessita de atendimento, ou seja, tudo depende da UCP.
- Por exemplo, se o disco quer transferir algum dado para a memória, a UCP deve ficar dedicada a esse processo de transferência até que esta seja concluída.
- A grande desvantagem é a subutilização da UCP, a qual, enquanto houver uma operação de transferência de dados, não realiza outras operações de processamento.

Entrada e saída controladas por interrupção

- Este método possibilita que a UCP não fique presa em espera ocupada até que um dispositivo esteja pronto para realizar a transferência de dados propriamente dita.
- Assim, a UCP dá início à operação emitindo uma instrução de E/S para a interface ou controlador do dispositivo em questão e, quando o dispositivo estiver pronto para a operação de transferência, recebe uma interrupção avisando que ela poderá começar.

Acesso direto à memória (DMA)

- A função do controlador (ou interface) é controlar seu dispositivo de E/S e manipular para ele o acesso ao barramento.
- Quando um programa necessida de uma operação de disco, por exemplo, ele envia um comando ao controlador de disco, que então emite comandos de busca e outras operações necessárias para que ocorra a transferência diretamente para memória principal.
- A UCP é avisada apenas no início e no final da operação de transferência entre dispositivo e memória principal.

Teclado

- O teclado é o principal dispositivo de interação homem computador, informando dados (texto) e comandos para o computador através de teclas utilizando comunicação serial.
- Para isso, é necessário que ele seja capaz de identificar a simbologia utilizada pelos seres humanos.
- Por isso, geralmente existe um teclado para cada língua (ex.: português, japonês) ou inclusive dentro do mesmo idioma podem existir adaptações de teclado para países diferentes. (ex.: para o Brasil (ABNT-2) e Portugal (Pt)).

Teclado

- Existem três tecnologias de fabricação de teclas: teclas mecânicas (de contato direto), teclas capacitivas; e teclas de efeito Hall, sendo que a mais utilizada é a tecnologia capacitiva.
- Nesse último tipo, as teclas funcionam à base da variação de capacitância (uma propriedade elétrica) do acoplamento entre duas placas metálicas, variação essa que ocorre quando uma tecla é pressionada.
- Com isso, essas teclas apresentam baixo custo e menor tamanho, além de não apresentarem contatos mecânicos, que podem oxidar com o tempo

Monitor de Vídeo

- O monitor de vídeo é um dispositivo de saída gera gera uma imagem em duas dimensões a partir de primitivas gráficas armazenada na memória, este processo chama-se renderização.
- As principais tecnologias utilizadas na sua fabricação são:
 - CRT (Tubos de Raios Catódicos)
 - LCD (Vídeos de Cristal Líquido)
 - LED (Diodos Emissores de Luz)
 - TDP (Vídeos com Tela Plana).

Monitor de Vídeo (resolução)

Tabela 7.2: Padrões de resolução mais comuns						
Data	Standard Padrão	Description Descrição	Typical Resolution Resolução típica	Number of Colors Número de Cores		
1981 1981	CGA CGA	Color Graphics Color Graphics Adapter Adaptador	640x200 640x200 160x200 160x200	2 2 16 16		
1984 1984	EGA EGA	Enhanced Graphics Enhanced Graphics Adapter Adaptador	640x350 640x350	16 from 64 16 de 64		
1987 1987	VGA VGA	Video Graphics Video Graphics Array Array	640x480 640x480 320x200 320x200	16 from 262,144 16 a partir de 262.144 256 256		
	SVGA SVGA	Super Video Graphics Super Video Graphics Array Array	800x600 800x600	256 to 16.7 million 256-16700000		
	8514/A 8514/A	IBM interlaced standard IBM interlaced standard	1024x768 1024x768	16 from 262,144 16 a partir de 262.144		
1990 1990	XGA XGA	Extended Graphics Array Extended Graphics Array	1024x768 1024x768	16.7 million 16700000		
	SXGA SXGA	Super Extended Graphics Array Super Extended Graphics Array	1280x1024 1280x1024	16.7 million 16700000		
	UXGA UXGA	Ultra XGA Ultra XGA	1600x1200 1600x1200	16.7 million 16700000		
	WXGA WXGA	Wide XGA Wide XGA	1366x768 1366x768	16.7 million 16700000		

