

ELECTIVE 3 BLOCK LAYOUT REVIEW

ANALOG IC DESIGN IMPLEMENTATION

Puso, Rocxel Roi C. BSCPE4A

OUTLINE

- General Block Layout Guidelines
- Block Details
- General Layout Implementation
- Layout Takeaways
- Question and Answers

General Block Layout Guidelines

GENERAL BLOCK LAYOUT GUIDELINES

- \rightarrow Allotted Area: X = 750 λ (Maximum), Y = variable
- \triangleright Use 24 λ for main power and Ground line widths.
- Match devices properly.
- Avoid routing on active devices.
- Do not use poly when routing.
- Place pins at block edges.
- Keep the layout compact and the shape as regular as possible.
- Implement double via when routing.
- Implement double contact rows for Back gate.
- Use side shield.
- Create Dummies if applicable.
- ➤ Layout should be verified. (DRC and LVS).

OTHER LAYOUT CONSIDERATIONS

- Uniform Metal Orientation
- Avoid intersecting input and output lines
- Instances Label
- Same Size, Shape, Structure, Temperature, Orientation and Surroundings
- Close to minimum distances/Abutment
- Common Centroid Geometry: Cross-Quad/Interdigitation
- Non-Minimum Size Device

Block Details

Block Name	hfrcosc_comp_folded_Puso				
Circuit Name	Comparator using Folded Cascode Amplifier				
Actual Area	$X = 880\lambda$, $Y = 1080.5\lambda$				
Verifications	DRC, NCC, ERC(ANTENNA, WELLS)				

Schedule (3 hrs per ECEMIC3 Schedule)								
10 Nov 2023	17 Nov 2023	24 Nov 2023	28 Nov 2023	1 Dec 2023	5 Dec 2023	12 Dec 2023		
Placement	Placement	Placement	Placement	Placement	Placement/R outing	PPT		

Layout View

Verification Job: DRC

Verification Job: NCC(LVS)

NCC RESULTS

Verification Job: ERC

Verification Job: ANTENNA CHECK

```
Electric Messages
Checking Antenna rules for Metal-6...
Checking Antenna rules for Metal-3...
Checking Antenna rules for Polysilicon-1...
Checking Antenna rules for Metal-4...
Checking Antenna rules for Metal-5...
Checking Antenna rules for Metal-1...
Checking Antenna rules for Metal-2...
No antenna errors found (took 0.043 secs)
```

ANTENNA CHECK RESULTS

General Layout Implementation

How I Layout my Differential Pairs: PLACEMENT

Matching Guidelines:

Cross Quad
Shared Diffusion
Surround Dummies
Enclosed Guardring

THIS TYPE OF PLACEMENT APPLIES IN (mn19,mn15,mn20_dum)

How I Layout my Differential Pairs: ROUTING

Matching Guidelines:

Match the length of wires
Consider shielding input signals
Match the parasitics, both
resistance and capacitance
Keep aggressors away from the
differential pair

THIS TYPE OF ROUTING APPLIES IN (mn19,mn15,mn20_dum)

How I Layout my Differential Pairs: ROUTING

16

How I Layout my Differential Pairs: ROUTING

THIS TYPE OF ROUTING APPLIES IN (mn19,mn15,mn20_dum)

How I Layout my Current Mirrors: PLACEMENT

Matching Guidelines:

Place the current mirrors around the current reference
Surround dummies
Enclose with guardring

Schematic View

Layout View

THIS TYPE OF PLACEMENT APPLIES IN (mp0,mp1,mp7,mp8)

How I Layout my Current Mirrors: ROUTING

Matching Guidelines:

Connect all gate terminals
Connect the source terminals to BG
Connect the drain of each segment

Layout Takeaways

LAYOUT TAKEAWAYS

- Proper Layout Structure
- Correct sizing of metals and Transistors
- General Layout Rules
- Proper implementation of Layout design

Question and Answer

END OF PRESENTATION

THANK YOU

Elective 3 Block Layout Review

Analog IC Design Implementation