

#### CSC $3001 \cdot Assignment 2$

Due: 23:59, October 25th, 2024

#### **Instructions:**

- Homework problems must be carefully and clearly answered to receive full credit. Complete sentences that establish a clear logical progression are highly recommended.
- You must independently complete each assignment.
- You must submit your assignment in Blackboard with all necessary supplemental material.
- Late submission will not be graded.

### Question 1 (10 marks)

Show that  $n^4 - n^2$  is divisible by 12 whenever n > 0.

### Question 2 (10 marks)

Prove by induction that  $3^{2(n+2)} - 2^{2n}$  is divisible by 5 for all integers  $n \ge 0$ .

# Question 3 (10 marks)

Given an integer  $n \ge 1$ , define  $n! = n \times (n-1) \times \cdots \times 2 \times 1$  (in particular, 1! = 1). Moreover, by convention, define 0! = 1. The number n! is called the *factorial* of n. Prove by induction that

$$\int_0^\infty x^n e^{-ax} \, dx = \frac{n!}{a^{n+1}},$$

where a > 0 is a constant and all integers  $n \ge 0$ .

### Question 4 (10 marks)

For any non-negative integers  $a_1, a_2, \ldots, a_n$  and  $b_1, b_2, \ldots, b_n$ , the following inequality holds:

$$(a_1 + a_2 + \ldots + a_n) (b_1 + b_2 + \ldots + b_n) \ge (a_1b_1 + a_2b_2 + \ldots + a_nb_n).$$

### Question 5 (10 marks)

Let  $F_n$  denote the *n*-th Fibonacci number defined by  $F_0 = 0$ ,  $F_1 = 1$ , and  $F_n = F_{n-1} + F_{n-2}$  for  $n \ge 2$ .

1. For all integers  $n \geq 0$ , prove by induction that

$$F_{2n+1} = F_n^2 + F_{n+1}^2$$

2. For all integers  $n \geq 0$ , prove by induction that

$$F_{2n} = F_n(2F_{n+1} - F_n)$$

### Question 6 (10 marks)

Find and prove closed-form formulas for generating functions

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots$$

of the following sequences.

- 1.  $a_n = a^n$ , where  $a \in \mathbb{R}$ ;
- 2.  $a_n = {m \choose n}$ , where  $m \in \mathbb{N}$ ; For  $n \in \mathbb{N}^+$ , the combinatorial number  ${m \choose n} = \frac{m!}{n!(m-n)!}$  when  $n \leq m$ , and it is zero when n > m;

### Question 7 (10 marks)

Consider the Fibonacci sequence  $\{F_n\}$ , where  $F_0 = 0$ ,  $F_1 = 1$  and  $F_n = F_{n-1} + F_{n-2}$  for other n.

- 1. Calculate the closed form of the generating function f(x) of Fibonacci sequence  $F_n$ ;
- 2. Calculate  $\sum_{i=0}^{\infty} F_i$  and  $\sum_{i=0}^{\infty} (-1)^i F_i$ .

### Question 8 (10 marks)

Consider also the Fibonacci sequence  $\{F_n\}$ , determine the values of the sequences below. You can represent the value with n-Fibonacci number  $F_n$ .

- 1.  $S_n^1 = F_0 + F_1 + F_2 + \ldots + F_n$ ;
- 2.  $S_n^2 = F_0 + F_2 + F_4 + \ldots + F_{2n}$ .

# Question 9 (10 marks)

Prove the recursion formula  $r_n = \sum_{k=1}^n r_{k-1} r_{n-k}$  implies the explicit form  $r_n = \frac{1}{n+1} {2n \choose n}$  with  $r_0 = 1$ , which is just the n-th Catalan number.

Hint: Prove it using generating function, learn how to expand fractional binomials and fractional binomial coefficients. 5 marks for only closed form generating function.

# Question 10 (10 marks)

Give an alternative proof to the Distinct-Roots Theorem without using Generating Functions.

### Theorem 1. Distinct-Roots Theorem

Suppose a sequence  $(a_0, a_1, a_2, a_3, \ldots)$  satisfies a recurrence relation

$$a_k = Aa_{k-1} + Ba_{k-2}$$

If  $t^2 - At - B = 0$  has two distinct real roots r and s, then  $a_n = Cr^n + Ds^n$  for some C and D

If  $a_0$  and  $a_1$  are given, then C and D are uniquely determined.