Package 'qPCR.CFX.process'

July 4, 2022

July 4, 2022
Type Package
Title Real-time qPCR data processing
Version 0.1.0
Author Dimitris Kokoretsis
Maintainer Dimitris Kokoretsis <dkokoret@gmail.com></dkokoret@gmail.com>
Description Calculates relative quantity of gene targets from real-time qPCR data (Cq values), exported from the Bio-Rad CFX Connect real-time PCR software.
License MIT
Encoding UTF-8
LazyData true
RoxygenNote 7.2.0
Imports data.table, ggplot2, ggthemes
Suggests testthat (>= 3.0.0)
Config/testthat/edition 3
Roxygen list(markdown = TRUE)
R topics documented:
qPCR_analysis_expression1qPCR_analysis_ntc2qPCR_analysis_std_curve3qPCR_analysis_unk_rxns3qPCR_analysis_wrap4
Index 5

2 qPCR_analysis_ntc

```
qPCR_analysis_expression
```

Real-time qPCR relative quantity calculation.

Description

Calculates the relative quantity of target genes between one control sample and one or more test samples. Based on one or multiple reference genes.

Usage

```
qPCR_analysis_expression(unkdata, refgene, efficiencies = NULL, control = NULL)
```

Arguments

unkdata A data. frame containing the technical replicate means of the unknown reac-

tions. Result from qPCR_analysis_unk_rxns function.

refgene Character vector with the name(s) of the reference gene(s).

efficiencies A data. frame containing the efficiencies of each primer pair. The \$efficiencies

data.table resulting from the qPCR_analysis_stdcurve function. Defaults

to NULL, which assumes all primer pairs' efficiency being equal to 100%.

control Character. The name of the control sample, against which all other samples will

be compared. Defaults to the 1st sample alphabetically.

Details

Applies the Pfaffl calculation method, accounting for different primer efficiencies (Pfaffl, 2001). The common-base calculation method described by Ganger et al. 2017 is followed, which gives identical results to the Pfaffl method. If efficiencies are not entered (NULL), it defaults to the delta-delta-Ct method (Livak & Schmittgen, 2001).

Value

A data. table with the calculated expression of each sample, biological replicate and target gene.

qPCR_analysis_ntc Real-time qPCR non-template control processing.

Description

Parses primary qPCR data (Cq values) and summarizes results for non-template controls. Compatible with Cq data exported from Bio-Rad CFX Connect real-time PCR machine.

Usage

```
qPCR_analysis_ntc(d)
```

Arguments

d

data.frame, Cq value data exported from Bio-Rad CFX Connect real-time PCR machine.

Value

A data.table with primer targets and Cq values, each row being a non-template control reaction.

```
qPCR_analysis_std_curve
```

Real-time qPCR standard curve and primer efficiency calculation.

Description

Parses primary qPCR data (Cq values) and calculates primer efficiencies based on standard curve serial dilutions. Compatible with Cq data exported from Bio-Rad CFX Connect real-time PCR machine.

Usage

```
qPCR_analysis_std_curve(d, plot = TRUE)
```

Arguments

d data.frame, Cq value data exported from Bio-Rad CFX Connect real-time PCR

machine.

plot Logical. If TRUE, also draws and returns the standard curves on a scatter plot

with trend lines. Defaults to TRUE.

Details

Standard curve slopes and resulting efficiencies are calculated by fitting the Cq values (y) against the log(starting quantity) (x) on a linear model (function $lm(y^x)$).

Value

A list of 3 elements:

- \$data: A data.table with the Cq values against log(Starting quantity) for each target gene.
- \$efficiencies: A data.table with the calculated efficiencies for each target gene.
- \$plot: The scatter plot with the drawn standard curves, if requested. Points are technical means, error bars are technical standard deviations.

```
qPCR_analysis_unk_rxns
```

Real-time qPCR unknown sample reaction processing.

Description

Parses primary qPCR data (Cq values) and calculates technical means for each sample, biological replicate and gene. Compatible with Cq data exported from Bio-Rad CFX Connect real-time PCR machine.

Usage

```
qPCR_analysis_unk_rxns(d)
```

Arguments

d

 ${\tt data.frame, Cq\ value\ data\ exported\ from\ Bio-Rad\ CFX\ Connect\ real-time\ PCR\ machine.}$

Value

A data.table with Cq values for each sample, biological replicate and gene.

qPCR_analysis_wrap

Real-time qPCR result processing.

Description

Performs the whole processing of real-time qPCR data (Cq values), including non-template control summary, standard curve analysis and expression analysis. Compatible with Cq data exported from Bio-Rad CFX Connect real-time PCR machine.

Usage

```
qPCR_analysis_wrap(
   d,
   refgene,
   control = NULL,
   std.curve = TRUE,
   std.curve.plot = TRUE
)
```

Arguments

 ${\tt d} \qquad \qquad {\tt data.frame, Cq\ value\ data\ exported\ from\ Bio-Rad\ CFX\ Connect\ real-time\ PCR}$

machine.

refgene Character vector with the name(s) of the reference gene(s).

control Character. The name of the control sample, against which all other samples will

be compared. Defaults to the 1st sample alphabetically.

qPCR_analysis_wrap 5

std.curve Logical. Determines whether or not to calculate efficiencies from standard curves or not. If FALSE, standard curve reactions will be ignored and efficiencies

of 100% will be assumed. Defaults to TRUE.

std.curve.plot Logical. Determines whether or not to plot standard curve data in a scatter plot with trend lines. Defaults to TRUE.

Value

A list of 4 elements:

• $NTC: Results from qPCR_analysis_ntc function.$

• \$std.curve: Results from qPCR_analysis_std_curve function.

• \$unk.rxn: Results from qPCR_analysis_unk_rxns function.

• \$expression: Results from qPCR_analysis_expression function.

Index

```
qPCR_analysis_expression, 1
qPCR_analysis_ntc, 2
qPCR_analysis_std_curve, 3
qPCR_analysis_unk_rxns, 3
qPCR_analysis_wrap, 4
```