

Movie Recommendation System

Popcorn Predictors - Team number 2

(Ethan Iwama, Meghna Sharma, Eren Kaval, Cherron Griffith, Santiago Bernheim, Patrick Wang)

About...

Goal: Recommend movies using user preferences and movie metadata

Dataset: TMDB 5000 Movie Dataset

Techniques: Demographic Filtering, Content-Based Filtering, Collaborative Filtering

<u>Tools:</u> Data cleaning (pandas & numpy)

JSON parsing for structured metadata

Visualization (Seaborn & Matplotlib)

Data Cleaning

Exploratory Data Analysis (EDA) was conducted on both datasets to identify missing values, correct column data types, and uncover significant relationships relevant to our project goal.

movies = head()
movies = info()
movies = shape()
movies = dtypes

movie_id 0
title 0
cast 0
crew 0
dtype: int64

01.

Corrected column data types and extracted relevant values from columns containing lists of Python dictionaries

02.

Handled missing values by ensuring they were properly represented according to the column data type, without discarding too much data

03.

Refined the dataset to include only columns relevant to our project

04.

Created visualizations to uncover significant relationships within the data

Column Selection

Chose columns most relevant to our project objectives:

- Performance Metrics: popularity, vote_average, revenue, budget
- Attributes: genres, language, runtime, title
- **People Involved:** actors, directors

Movies Dataset: <class 'pandas.core.frame.DataFrame'> RangeIndex: 4803 entries, 0 to 4802 Data columns (total 20 columns):

Data	cordining (corar 50 cor	umris):		
#	Column	Non-Null Count	Dtype	
0	budget	4803 non-null	int64	
1	genres	4803 non-null	object	
2	homepage	1712 non-null	object	
3	id	4803 non-null	int64	
4	keywords	4803 non-null	object	
5	original_language	4803 non-null	object	
6	original_title	4803 non-null	object	
7	overview	4800 non-null	object	
8	popularity	4803 non-null	float64	
9	production_companies	4803 non-null	object	
10	production_countries	4803 non-null	object	
11	release_date	4802 non-null	object	
12	revenue	4803 non-null	int64	
13	runtime	4801 non-null	float64	
14	spoken_languages	4803 non-null	object	
15	status	4803 non-null	object	
16	tagline	3959 non-null	object	
17	title	4803 non-null	object	
18	vote_average	4803 non-null	float64	
19	vote_count	4803 non-null	int64	
<pre>dtypes: float64(3), int64(4), object(13)</pre>				

Handling Null Values

Obvious Null Values:

Missing values after	joining and cleaning:
id	0
title	0
original_language	0
genres	0
budget	0
revenue	0
runtime	0
popularity	0
vote_average	0
vote_count	0
release_date	1
release_year	1
director	30
main_actors	0

Hidden Null Example:

genre_n	ames
	[]
	[]
	[]
	[]
	[]
	[]
	[]

- The compiler did not catch all null values, so additional steps were necessary
- Adjusted null values to match the column data type
 - for columns containing lists, replaced empty lists with [Unknown]
 - set missing integer values to 0 and missing object (string) values to "Unknown"

Key Observations: Value Distributions

Key Observations: Column Correlations

Key Observations: Genres

Key Observations: Actors & Directors

Key Observations: Languages

Next Steps

- Baseline Model Development: Create weighted function metric (IMDB model could be used as reference) that would use vote averages and counts to recommend top rated movies
- <u>Content-Based Filtering:</u> After determining top movies, use cleaned dataset used for analysis and train machine learning models using features to recommend movies that are similar
 - o Based on initial impression a KNN method makes sense
 - Other considerations: Tree based methods
- Model Evaluation and Visualization: Evaluate the models using various methods such as precision & recall
 - Precision: "Among movies recommended, how many are actually relevant to the user?"
 - Recall: "Of all the relevant movies, how many did we successfully recommend to the user?"

Thankyou...

Popcorn Predictors - Team number 2

(Ethan Iwama, Meghna Sharma, Eren Kaval, Cherron Griffith, Santiago Bernheim, Patrick Wang)