## SOLUTION\_

The statistic he will use for process-control purposes is

$$T^{2} = \frac{10}{(1.23)(0.83) - (0.79)^{2}} \Big[ 0.83 (\bar{x}_{1} - 115.59)^{2} + 1.23 (\bar{x}_{2} - 1.06)^{2}$$
$$-2(0.79) (\bar{x}_{1} - 115.59) (\bar{x}_{2} - 1.06) \Big]$$



**FIGURE 11.7** The Hotelling  $T^2$  control chart for tensile strength and diameter, Example 11.1.

The data used in this analysis and the summary statistics are in Table 11.1, panels (a) and (b).

Figure 11.7 presents the Hotelling  $T^2$  control chart for this example. We will consider this to be phase I, establishing statistical control in the preliminary samples, and calculate the upper control limit from equation (11.20). If  $\alpha = 0.001$ , then the UCL is

$$UCL = \frac{p(m-1)(n-1)}{mn-m-p+1} F_{\alpha,p,mn-m-p+1}$$

$$= \frac{2(19)(9)}{20(10)-20-2+1} F_{0.001,2,20(10)-20-2+1}$$

$$= \frac{342}{179} F_{0.001,2,179}$$

$$= (1.91)7.18$$

$$= 13.72$$

This control limit is shown on the chart in Fig. 11.7. Notice that no points exceed this limit, so we would conclude that the process is in control. Phase II control limits could be calculated

■ TABLE 11.1 Data for Example 11.1

| Sample   | (a)<br>Means                           |                                                       | (b)<br>Variances and Covariances                        |                                                               |                  | (c)<br>Control<br>Chart<br>Statistics |         |  |
|----------|----------------------------------------|-------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------|------------------|---------------------------------------|---------|--|
| Number k | Tensile Strength $(\overline{x}_{1k})$ | Diameter $(\overline{x}_{2k})$                        | $s_{1k}^2$                                              | $s_{2k}^2$                                                    | S <sub>12k</sub> | $T_k^2$                               | $ S_k $ |  |
| 1        | 115.25                                 | 1.04                                                  | 1.25                                                    | 0.87                                                          | 0.80             | 2.16                                  | 0.45    |  |
| 2        | 115.91                                 | 1.06                                                  | 1.26                                                    | 0.85                                                          | 0.81             | 2.14                                  | 0.41    |  |
| 3        | 115.05                                 | 1.09                                                  | 1.30                                                    | 0.90                                                          | 0.82             | 6.77                                  | 0.50    |  |
| 4        | 116.21                                 | 1.05                                                  | 1.02                                                    | 0.85                                                          | 0.81             | 8.29                                  | 0.21    |  |
| 5        | 115.90                                 | 1.07                                                  | 1.16                                                    | 0.73                                                          | 0.80             | 1.89                                  | 0.21    |  |
| 6        | 115.55                                 | 1.06                                                  | 1.01                                                    | 0.80                                                          | 0.76             | 0.03                                  | 0.23    |  |
| 7        | 114.98                                 | 1.05                                                  | 1.25                                                    | 0.78                                                          | 0.75             | 7.54                                  | 0.41    |  |
| 8        | 115.25                                 | 1.10                                                  | 1.40                                                    | 0.83                                                          | 0.80             | 3.01                                  | 0.52    |  |
| 9        | 116.15                                 | 1.09                                                  | 1.19                                                    | 0.87                                                          | 0.83             | 5.92                                  | 0.35    |  |
| 10       | 115.92                                 | 1.05                                                  | 1.17                                                    | 0.86                                                          | 0.95             | 2.41                                  | 0.10    |  |
| 11       | 115.75                                 | 0.99                                                  | 1.45                                                    | 0.79                                                          | 0.78             | 1.13                                  | 0.54    |  |
| 12       | 114.90                                 | 1.06                                                  | 1.24                                                    | 0.82                                                          | 0.81             | 9.96                                  | 0.36    |  |
| 13       | 116.01                                 | 1.05                                                  | 1.26                                                    | 0.55                                                          | 0.72             | 3.86                                  | 0.17    |  |
| 14       | 115.83                                 | 1.07                                                  | 1.17                                                    | 0.76                                                          | 0.75             | 1.11                                  | 0.33    |  |
| 15       | 115.29                                 | 1.11                                                  | 1.23                                                    | 0.89                                                          | 0.82             | 2.56                                  | 0.42    |  |
| 16       | 115.63                                 | 1.04                                                  | 1.24                                                    | 0.91                                                          | 0.83             | 0.08                                  | 0.44    |  |
| 17       | 115.47                                 | 1.03                                                  | 1.20                                                    | 0.95                                                          | 0.70             | 0.19                                  | 0.65    |  |
| 18       | 115.58                                 | 1.05                                                  | 1.18                                                    | 0.83                                                          | 0.79             | 0.00                                  | 0.36    |  |
| 19       | 115.72                                 | 1.06                                                  | 1.31                                                    | 0.89                                                          | 0.76             | 0.35                                  | 0.59    |  |
| 20       | 115.40                                 | 1.04                                                  | 1.29                                                    | 0.85                                                          | 0.68             | 0.62                                  | 0.63    |  |
| Averages | $\bar{x}_1 = 115.59$                   | $\overline{\overline{x}}_2 = 1.06$ $\overline{s}_1^2$ | $\overline{s}_{2}^{2} = 1.23  \overline{s}_{2}^{2} = 0$ | $= 1.23 \ \overline{s}_2^2 = 0.83 \ \overline{s}_{12} = 0.79$ |                  |                                       |         |  |