

ANSWER KEY	5						
1. (4)	2. (1)	3. (14)	4. (2)	5. (39)	6. (2)	7. (2)	8. (4)
(2)nathongo		11. (4) thongo	12. (62)	13. (7) hongo			
1 7. (79)	18. (2)	19. (4)	20. (3)	21. (2)	22. (1)	23. (2)	24. (1)
25. (2) mathongo	26. (4)	27. (2)	28. (3)	29. (2)	30. (4)		
1. (4)							
	uous at $x = \frac{\pi}{2}$						
Now, solving	L. H. L. at $x = \frac{\pi}{2}$ we $\frac{\sin 4x \cdot \cos 6x}{\sin 6x \cos 4x} = 1$	2/3 mathanaa					
$x \rightarrow \frac{\pi^+}{2}$	$x o rac{\pi^+}{2}$	· · · · · · · · · · · · · · · · · · ·					
Similarly, on	simplification for R.	H. L. we get					
$\lim_{x \to a} (1 + c)$	$(\cos x)^{rac{\lambda}{ \cos x }} = e^{x o rac{\pi}{2}^{-}}$	$=e^{\lambda}$ mathongo					
$x \rightarrow \frac{\pi}{2}$ $\cdot \cdot $							
For continuous	// mathongo						
$f\left(\frac{\pi}{2}\right) = f\left(\frac{\pi}{2}\right)$							
$\Rightarrow \lambda = \frac{2}{3}, \;\; \mu$							
Now.							
/ \	()	/ - X					
$=9\left(\frac{2}{3}\right)+6$	$\left(\frac{2}{3}\right)+\left(e^{\frac{2}{3}}\right)^6-e^{60}$	$\left(\frac{2}{3}\right)$					
$=6+4+e^4$	$-e^4$ mathongo						
=10							
2. (1)							
	$\frac{1 - x + x^2}{\sec x - \cos x} + \log_e \left(1 + x + x^2 \right)$						
$\stackrel{\text{//}}{\longrightarrow} \lim_{k \to \infty} \frac{(\ln (1+k))}{(\ln (1+k))}$	$\frac{\left(-x^2+x^4 ight)\left(\cos x ight)}{\left(-\cos^2 x ight)}=k$	///, x = 0					
$\rightarrow \lim_{x \to 0} \frac{1}{x}$	$\frac{1-\cos^2 x}{\left(\ln\left(1+x^2+x^4\right)\right)} = \kappa$	$\cos x$					
Taking L.H.S	$=\lim_{x o 0} \frac{\sqrt{y}}{\max\{1-\cos^2 x\}}$	///. mathongo					
$\left(\frac{\ln(1+x)}{x^2}\right)$	$\frac{x^2+x^4}{+x^4}$ $x^2(1+x^2)\cos x$						
$= \lim_{x \to 0} \frac{}{}$	$\left(\frac{\sin^2 x}{x^2}\right)x^2$						
$\left(\frac{\ln(1+x)}{x^2}\right)$	$\left(\frac{x^2+x^4}{+x^4}\right) \left(1+x^2\right)\cos x$						
$=\lim_{x\to 0}$	$\left(\frac{\sin^2 x}{x^2}\right)$						
$=\frac{(1)(1+0)1}{(1)}$	mathongo						
Now equating	with R.H.S we get,	k = 1					

Answer Keys and Solutions

