Recitation #16: The Divergence, Integral, Ratio and Root Tests -Instructor Notes

Group work:

Problem 1 For each of the following, answer **True** or **False**, and explain why.

(a) If
$$\sum_{n=0}^{\infty} a_n$$
 converges, then $\sum_{n=0}^{\infty} (a_n + 0.001)$ converges.

- (b) Since $\int_{1}^{\infty} x \sin(\pi x) dx$ diverges then, by the Integral Test, $\sum_{n=0}^{\infty} n \sin(\pi n)$ diverges.
- (c) Since $\int_1^\infty \frac{1}{x^2} dx = 1$ then, by the Integral Test, $\sum_{k=1}^\infty \frac{1}{k^2} = 1$.

Instructor Notes: For part (b) we need f(x) to be a decreasing function for the Integral Test to (necessarily) hold. All groups should do all of the parts.

Problem 2 Assume $\sum_{k=0}^{\infty} a_k = L$ and $b_k = 8$ for all k.

- (a) What is $\lim_{k\to\infty} (a_k + b_k)$?
- (b) What is $\lim_{k\to\infty} \sum_{n=0}^k (a_n + b_n)$?
- (c) What is $\lim_{k \to \infty} \sum_{n=0}^{k} (a_{n+1} a_n)$?

Recitation #16: The Divergence, Integral, Ratio and Root Tests - Instructor Notes

Instructor Notes: This question was adapted from midterm #2 in Spring 2013. Students had difficulty distinguishing between a question dealing with sequences vs. a question dealing with series.

Problem 3 Determine if the following series converge or diverge.

(a)
$$\sum_{n=1}^{\infty} \frac{(7n+1)^2 \cdot 2^n}{5^n}$$

(b)
$$\sum_{n=1}^{\infty} a_n$$
, where $a_{n+1} = \frac{2n+5}{3n-1} \cdot a_n$ and $a_1 = 1$.

(c)
$$\sum_{n=0}^{\infty} \frac{n^2 + 2n + 1}{3n^2 + 1}$$

(d)
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$$

(e)
$$\sum_{k=1}^{\infty} \frac{(k!)^3}{(3k)!}$$

Instructor Notes: Let the students experiment with what tests to use. Perhaps give two problems per group.

Problem 4 How many terms are needed to estimate $\sum_{k=1}^{\infty} \frac{1}{k^2 + 1}$ to within 10^{-4} ? What is the estimate for the sum of the series?

Instructor Notes: This should be a straightforward calculation, but calculators may be needed.