$4x_1-3x_2+x_3=-8\\-2x_1+x_2-3x_3=-4\\x_1-x_2+2x_3=3$ Prisetimo se na koji način smo mi pokušavali da rešimo sisteme jednačina u osnovnoj i srednjoj školi. Pokušavali samo na neki način da sistem svedemo na jednu jednačinu sa jednom nepoznatom, pa da onda tu nepoznatu odredimo deljenjem i zamenimo je u neku od prethodnih jednačina da dobijemo drugu nepoznatu i tako redom.
Pokušavali samo na neki način da sistem svedemo na jednu jednačinu sa jednom nepoznatom, pa da onda tu nepoznatu odredimo deljenjem i zamenimo je u neku od prethodnih jednačina da dobijemo drugu nepoznatu i tako redom. Gausova eliminacija nije ništa drugo nego samo sistematizacija tog postupka. Krećemo tako što nam je cilj da eliminišemo promenljivu x_1 iz druge jednačine. U prvom koraku prvu jednačinu množimo sa $\frac{2}{4}=\frac{1}{2}$ i onda je dodamo drugoj:
$4\cdot rac{1}{2}x_1-3\cdot rac{1}{2}x_2+1\cdot rac{1}{2}x_3=-8\cdot rac{1}{2}$ $-2x_1+x_2-3x_3=-4$ Prvu jednačinu prepisujemo bez promene jer će nam u tom obliku biti potrebna u narednim koracima. Na taj način ne menjamo rešenje jer množenje jednačine konstanom ne utiče na rešenje.
Na taj način ne menjamo rešenje jer množenje jednačine konstanom ne utiče na rešenje. $4x_1-3x_2+x_3=-8\\0-\frac12x_2-\frac52x_3=-8$ Uklonili smo x_1 iz druge jednačine, sada ga uklanjamo i iz treće.
Uklonili smo x_1 iz druge jednačine, sada ga uklanjamo i iz treće. U sledećem koraku prvu jednačinu množimo sa $-\frac{1}{4}$ i onda je dodamo trećoj: $4\cdot-\frac{1}{4}x_1-3\cdot-\frac{1}{4}x_2+1\cdot-\frac{1}{4}x_3=-8\cdot-\frac{1}{4}$ $x_1-x_2+2x_3=3$
Prvu jednačinu prepisujemo bez promene jer će nam u tom obliku biti potrebna u narednim koracima. $4x_1-3x_2+x_3=-8$ $0-\frac14x_2+\frac74x_3=5$
Rezultat prethodnih operacija: $4x_1-3x_2+x_3=-8$ $0-\frac{1}{2}x_2-\frac{5}{2}x_3=-8$ $0-\frac{1}{4}x_2+\frac{7}{4}x_3=5$
Još uvek nemamo jednu jednačinu sa jednom nepoznatom, pa nastavljamo tako što koristimo drugu jednačinu da izbacim treće.
$0-rac{1}{4}x_2+rac{7}{4}x_3=5$ Drugu jednačinu prepisujemo bez množenja sa $-rac{1}{2}$ jer će nam u tom obliku biti potrebna u narednim koracima. $4x_1-3x_2+x_3=-8$
$0-rac{1}{2}x_2-rac{5}{2}x_3=-8$ $0-0+3x_3=9$ Sada smo sistem "konačno" dobili jednu jednačinu sa jednom nepoznatom. $4x_1-3x_2+x_3=-8$
$-rac{1}{2}x_2-rac{5}{2}x_3=-8$ $3x_3=9$ Upravo smo završili prvu fazu Gausove eliminacije koja se zove e <i>liminacija unapred</i> . Sada vrlo lako možemo da izračunamo x_3 :
$x_3=rac{9}{3}=3$ Zamenjujemo x_3 u drugu jednačinu i izračunavamo x_2 : $-rac{1}{2}x_2+rac{5}{2}\cdot 3=-8$
$2^{x_2}+2^{x_3}=6$ -6 $-\frac{1}{2}x_2=-8+\frac{15}{2}$ $-\frac{1}{2}x_2=-\frac{1}{2}$ $x_2=1$
$4x_1-3\cdot 1+3=-8$ $4x_1=-8$ $x_1=-2$ Upravo smo završili drugu fazu Gausove eliminacije koja se zove <i>zamena unazad</i> i time rešili sistem. Šta mislite da li je prethodni postupak primenjliv na sisteme veće od $3x3$?
Hajde da pokušamo da napišemo kod za metod koji smo koristili na prethodom primeru pa da vidimo da li može da se prin bilo koji sistem. Kod ćemo razdvojiti na manje celine. Prva celina je množenje prve vrste nekom vrednosti <i>p</i> i dodavanje drugoj vrsti. $A = [4, -3, 1; -2, 1, -3; 1, -1, 2]$
b=[-8,-4,3]' A = 4 -3 1 -2 1 -3 1 -1 2 b = -8
-4 3 [n,m]=size(A); p=2/4; for j=1:n %imamo n elemenata u svakoj vrsti
4.00000 -3.00000 1.00000 0.00000 -0.50000 -2.50000 1.00000 -1.00000 2.00000 Na koji način smo napisali prethodni kod: • #### Imamo jednu promenljivu j koja je brojač za kolone.
 #### Menjamo sve elemente druge vrste, zato imamo A(2,j). #### Na svaki element druge vrste dodajemo odgovarajući element prve vrste koji je u istoj koloni (koloni j) "iznad njega". #### Pre nego što uradimo dodavanje, element prve vrste množimo sa p. Na elemente treće vrste dodajemo elemente prve vrste pomnožene sa p. [n,m]=size(A); p=-1/4; for j=1:n A(3,j)=A(3,j) + A(1,j)*p;
A(3,j)=A(3,j) + A(1,j)*p; end A A = 4.00000 -3.00000 1.00000 0.00000 -0.50000 -2.50000 -1.00000 0.75000 2.75000
<pre>Spajamo prethodna dva isečka koda u jedan. A=[4,-3,1;-2,1,-3;1,-1,2] [n,m]=size(A); for i = 2:3 if i==2 p=2/4; else p=-1/4; end for j=1:n A(i,i)=A(i,i) + A(1,i)*p;</pre>
4.00000 -3.00000 1.00000 0.00000 -0.50000 -2.50000 0.00000 -0.25000 1.75000 Da li nam je potreban if ili možda postoji neki bolji način da odredimo p? A=[4,-3,1;-2,1,-3;1,-1,2]
<pre>A=[4,-3,1;-2,1,-3;1,-1,2] [n,m]=size(A); for i = 2:3 p = -A(i,1)/A(1,1); for j=1:n A(i,j)=A(i,j) + A(1,j)*p; end end A A = 4 -3 1</pre>
-2 1 -3 1 -1 2 A = 4.00000 -3.00000 1.00000 0.00000 -0.50000 -2.50000 0.00000 -0.25000 1.75000
Upoštavamo sad kod tako da pored prve vrste množimo i drugu vrstu odgovrajućim brojem i dodajemo na treću. A=[4,-3,1;-2,1,-3;1,-1,2] [n,m]=size(A); for k=1:2 %koristimo prvu i drugu vrstu da eliminišemo x1 i x2 for i = (k+1):3 %vrsta k koja se koristi za eliminaciju dodaje se na sve vrste posle nje do i tj. petlja ide od k+1 p = -A(i,k)/A(k,k) for j=1:n A(i,j)=A(i,j) + A(k,j)*p; end
end A end A end A = 4 -3 1 -2 1 -3 1 -1 2 p = 0.50000
p = 0.50000 p = -0.25000 A = 4.00000 -3.00000 1.00000 0.00000 -0.50000 -2.50000 0.00000 -0.25000 1.75000 p = -0.50000 A = 4.00000 -3.00000 1.00000 0.00000 -0.50000 -2.50000
end A = 4 -3 1 -2 1 -3 1 -1 2 b = -8
-8 -4 3 A = 4.00000 -3.00000 1.00000 0.00000 -0.50000 -2.50000 0.00000 -0.25000 1.75000 b = -8
-8 5 A = 4.00000 -3.00000 1.00000 0.00000 -0.50000 -2.50000 0.00000 0.00000 3.00000 b =
-8 -8 -8 9 Sada ste naučili kako funkcioniše prva faza Gausove eliminacije koja se zove eliminacija unapred. Cilj ove faze je ono što smo upravo uradili, a to je svojđenje matrice A na gornju trougaonu.
Prelazimo na drugu (i poslednju) fazu koja se naziva zamena unazad. Kao prvi korak odredićemo poslednje x , tj. x_3 . Upoštićemo odmah kod i pišemo x_n jer je n broj kolona matrice A , tj. broj promenjljivih.
x = 0 0 0 0 x = 0 0 0 x =
A b A = 4.00000 -3.00000 1.00000 0.00000 0.00000 0.00000 0.00000 3.00000 b =
$-rac{8}{-8}$ $-rac{9}{9}$ Određujemo sada x_2 tako što zamenjujemo x_3 u drugu jednačinu. $-rac{1}{2}x_2+rac{5}{2}\cdot 3=-8$
$x_2 = (-8 + \frac{15}{2}) \cdot -\frac{2}{1}$ $x_3 = (-8 + \frac{15}{2}) \cdot -\frac{2}{1}$ $x_4 = (-8 + \frac{15}{2}) \cdot -\frac{2}{1}$ $x_4 = (-8 + \frac{15}{2}) \cdot -\frac{2}{1}$ $x_4 = (-8 + \frac{15}{2}) \cdot -\frac{2}{1}$
Određujemo sada x_1 tako što zamenjujemo x_2 i x_3 u prvu jednačinu. $4x_1-3\cdot 1+3=-8$ $x_1=(-8-(-3\cdot 1+3))\cdot \frac{1}{4}$
s=A(1,2)*x(2)+A(1,3)*x(3); $x(1)=(b(1)-s)/A(1,1)$ $x = -2$ 1
Upoštavamo kod za x_1 . $=1;$
<pre>s=0; for j=(i+1):n s = s + A(i,j)*x(j); end x(j)=(b(j)-s)/A(j,j)</pre>
<pre>for j=(i+1):n s = s + A(i,j)*x(j);</pre>
<pre>for j = (i+1):n s = s + A(i,j)*x(j); end x(i) = (b(i)-s)/A(i,i) x = -2 1 3</pre>
<pre>for j=(i+1):n s = s + A(i,j)*x(j); end x(i)=(b(i)-s)/A(i,i) x = -2 1 3 Upoštavamo kod za sve promenjlive. x=zeros(n,1); for i=n:-1:1 s=0; for j=(i+1):n s = s + A(i,j)*x(j); end x(i)=(b(i)-s)/A(i,i); end x</pre>
<pre>for j=(i+1):n</pre>
for j = [i + 1] : n
For
For
For Y=1, Y=1, Y=1, Y=1, Y=1, Y=1, Y=1, Y=1,
Res
##################################
Table 1
Typoderavano kod za ava promingilwa.
The content of the
Total
Company Comp
speciment and or one promotion. **Promotion in claim and or one p
Specimen too to a ron promotive. Specimen too to a similarity unapped is among unapped is
Specimen to a series promotive.
High control and not partners the control of the co
Appendix the content of the promotion. Content of the promotion of the
The second secon
Applications of a region of the fall install unread control unable part of the fall install unread control
Substance but an an exemption. Substance but an an exemption. Substance but an an exemption. Substance but an exemption area of substance and an exemption are an exemption area of substance and an exemption area of substanc
September 15 of 15 miles 15 mil
Appearance of the response to the response to the response of the response to
September 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Gausova eliminacija

In [60]: function x=gauss_with_pivoting(A,b) [n,m]=size(A);**for** k=1:n-1 %pronalazimo makismalni element po apsulutnoj vrednosti u koloni k disp('Pre pivotinga') Α $[\max val, loc] = \max (abs(A(k:n,k)));$ %loc se racuna apsolutno za deo kolone koji prosleđujemo, a nama treba relativno u odnosu na celu k olonu. Šta bi bilo kada bi ostavili samo loc? loc = k+loc-1;temp = A(k,:);A(k,:) = A(loc,:);A(loc,:) = temp;temp = b(k);b(k) = b(loc);b(loc) = temp;disp('Posle pivotinga') Α **for** i = (k+1):np = -A(i,k)/A(k,k);**for** j=1:n A(i,j)=A(i,j) + A(k,j)*p;end b(i) = b(i) + b(k) *p;end end Α x=zeros(n,1);**for** i=n:-1:1 s=0;for j=i:n s = s + A(i,j) *x(j);x(i) = (b(i) - s) / A(i, i);end endfunction In [62]: format short A2=[5,0,2,3;-2,2,2,-3;0,1,1,4;6,2,2,4]; b2 = [1, -1, 2, 1]'; $x2 = gauss_with_pivoting(A2,b2)$ Pre pivotinga A =5 0 2 3 -2 2 2 -3 0 1 1 4 b = 1 -1 2 1 Posle pivotinga A =6 2 2 4 -2 2 2 -3 0 1 1 4 0 2 3 5 1 -1 2 1 Pre pivotinga A =6.00000 2.00000 2.00000 4.00000 2.66667 2.66667 -1.66667 0.00000 0.00000 1.00000 1.00000 4.00000 0.00000 -1.66667 0.33333 -0.33333 b =1.00000 -0.66667 2.00000 0.16667 Posle pivotinga A =2.00000 2.00000 4.00000 6.00000 0.00000 2.66667 2.66667 -1.66667 0.00000 1.00000 1.00000 4.00000 0.00000 -1.66667 0.33333 -0.33333 b =1.00000 -0.66667 2.00000 0.16667 Pre pivotinga A =6.00000 2.00000 2.00000 4.00000 0.00000 2.66667 2.66667 -1.66667 0.00000 0.00000 4.62500 0.00000 0.00000 2.00000 -1.37500 0.00000 b =1.00000 -0.66667 2.25000 -0.25000 Posle pivotinga A =6.00000 2.00000 2.00000 4.00000 0.00000 2.66667 2.66667 -1.66667 0.00000 2.00000 -1.37500 0.00000 0.00000 0.00000 4.62500 0.00000 b = 1.00000 -0.66667 -0.25000 2.25000 A =6.00000 2.00000 2.00000 4.00000 0.00000 2.66667 2.66667 -1.66667 2.00000 -1.37500 0.00000 0.00000 0.00000 0.00000 0.00000 b =1.00000 -0.66667 -0.25000 2.25000 x2 =-0.17568 -0.15541 0.20946 0.48649 Ako pogledamo poslednju matricu pred pivoting za naš primer vidimo da bi bez pivotinga u tom slučaju imali deljenje nulom. Kao deo informativnog gradiva dat je i optizovan kod uz pivoting. In [27]: | function x = gauss_vect_with_pivoting(A,b) [m,n] = size(A);Aaug = zeros(n,n);Aaug(1:n, 1:n) = A;Aaug(:,n+1)=b; **for** k=1:n-1 *pronalazimo makismalni element po apsulutnoj vrednosti u koloni k disp('Pre pivotinga') $[\max val, loc] = \max (abs(Aaug(k:n,k)));$ %loc se racuna apsolutno za deo kolonu koji prosleđujemo, a nama treba relativno u odnosu na ce lu kolonu. Šta bi bilo kada bi ostavili samo loc? loc = k+loc-1;temp = Aaug(k,:);Aaug(k,:) = Aaug(loc,:);Aaug(loc,:) = temp;disp('Posle pivotinga') Aaug **for** i=k+1:n m=-Aaug(i,k)/Aaug(k,k);Aaug(i,:) = Aaug(i,:) + m*Aaug(k,:);end end x=zeros(1,n);**for** i=n:-1:1 x(i) = (Aaug(i, n+1) - dot(Aaug(i, 1:n), x))/Aaug(i, i);end endfunction Da li Gausova eliminacija može da rezultuje pogrešnim rešenjem? • #### Sam postupak (algoritam) Gausove eliminacije ne sadrži grešku, ali GE može vratiti pogrešno rešenje ako vrednosti A ili bodstupaju od onih koje su originalno zadate. #### Zašto bi bilo odstupanja u vrednostima? • #### Jedan od banalnih razloga može biti da je neko prilikom unosa podataka pogrešio. • #### Drugi, mnogo realniji i češći razlog je da su vrednosti A i b takve da ne mogu da se potpuno tačno reprezentuju na računaru koji radi sa ograničenom preciznošću. Logično pitanje je na koji način možemo da proverimo da li je GE vratio pogrešno rešenje. ullet #### Prvi odgovor bio bi da jednostavno ubacimo dobijeno rešenje x u sistem i proverimo jednakost, tj. da pomnožimo x sa A i proverimo da li važi Ax = b. U nastavku ćemo pokazati da ostatak r=Ax-b nije pouzdana mera tačnosti kada brojeve reprezentujemo sa ograničenom preciznošću. Kod primera u nastavku računske operacije se izvršavaju na računaru koji može da smesti samo tri značajne cifre broja. To je namerno urađeno da bi se ilustrovao problem sa nepouzdanošću ostatka r. Savremeni računari mogu da smeste 16 značajnih cifara upotrebom tipa double, odnosno i njihov kapacitet je isto ograničen samo sa većim brojem cifara. In [63]: function x=gauss_lp(A,b) [n,m]=size(A);**for** k=1:n-1 **for** i = (k+1):nf_full_prec=-A(i,k)/A(k,k) %ispis dodat da bi se ilustrovao gubitak informacija zbog zaokru živanja $f=round_to_sig_fig(-A(i,k)/A(k,k),3)$ for j=k:n axf_full_prec=f*A(k,j) %ispis dodat da bi se ilustrovao gubitak informacija zbog zaokru živanja $A(i,j) = round_{to_sig_fig}(A(i,j) + round_{to_sig_fig}(f*A(k,j),3),3)$ end bxf_full_prec=f*b(k) %ispis dodat da bi se ilustrovao gubitak informacija zbog zaokruživanj $b(i) = round_to_sig_fig(b(i) + round_to_sig_fig(f*b(k), 3), 3)$ end end **for** i=n:-1:1 s=0; **for** j = (i+1):n $s = round_to_sig_fig(s + round_to_sig_fig(A(i,j)*x(j),3),3);$ $x(i) = round_{to}_{sig}_{fig}((b(i)-s)/A(i,i),3);$ end endfunction function r_val=round_to_sig_fig(val, sig_figs) temp = mat2str(val, sig_figs); r val = eval(temp); endfunction In [64]: A = [0.641, 0.242; 0.321, 0.122]b=[0.883,0.444]' A =0.64100 0.24200 0.32100 0.12200 b =0.88300 0.44400 In [65]: $x_low_pr = gauss_lp(A,b)$ $f_full_prec = -0.50078$ f = -0.50100 $axf_full_prec = -0.32114$ A =0.64100 0.24200 0.00000 0.12200 $axf_full_prec = -0.12124$ A =0.64100 0.24200 0.00000 0.00100 bxf full prec = -0.44238b =0.8830000 0.0020000 0.64100 0.24200 0.00000 0.00100 $x_low_pr =$ 0.62200 2.00000 In [66]: residual_lp=round_to_sig_fig(round_to_sig_fig(A*x_low_pr', 3)-b,3) residual_full_prec=A*x_low_pr'-b residual_lp = 0 0 residual full prec = -0.00029800 -0.00033800 Ako radimo u ograničenoj preciznosti od 3 značajne cifre, ostatak je 0 što ukazuje na to da je naše rešenje tačno. Međutim tačno rešenje se već na prvoj značajnoj cifri razlikuje od našeg rešenja. Kao što ćete videti u nastavku. In [67]: x_full_prec = gauss_with_pivoting(A,b) Pre pivotinga A =0.64100 0.24200 0.32100 0.12200 0.88300 0.44400 Posle pivotinga A =0.64100 0.24200 0.32100 0.12200 b =0.88300 0.44400 0.64100 0.24200 0.00000 0.00081 b =0.8830000 x full prec = 0.53462 2.23269 In [9]: x_full_prec - x_low_pr' ans = -0.087385 0.232692 Prethodni primer pokazuje nepouzdanost ostatka za određivanje greške. Zato ćemo u nastavku predavanja pokazati na koji način možemo da procenimo grešku. Ne moramo znati tačnu grešku ako smo uspeli da je procenimo na malu vrednost tj. nije nam važno koliko je tačno greška mala, već da je mala. Za procenu nam je od velikog značaja kondicioni broj matrice. Kondicioni broj funkcije • #### Kondicioni broj funkcije f(x) meri koliko promene ulaza x utiču na promene izlaza y. • #### Veliki kondicioni broj znači da male promene ulaza daju velike na promene izlaza. #### Tada kažemo da je funkcija loše uslovljena. • #### Ako ste ikad malo pomerili slavinu pod tušem, a voda je od hladne prešla na jako vrelu – to je loše uslovljena funkcija! Kondicioni broj matrice • #### U kontekstu rešavanja sistema linearnih jednačina kondicioni matrice A meri koliko male promene vektora b ili matrice A utiču na • #### Kao što smo već pomenuli male promene mogu biti posledica lošeg unosa podataka ili ograničenog kapaciteta računara za • #### Za izračunavanje kondicionog broja matrice značajan nam je koncept norme matrice koji ćemo ukratko objasniti u nastavku. Norma vektora i matrice • #### Norma matrice je relana vrednost koju dodeljujemo matrici. • #### Postoje različite norme matrice koje se razlikuju po načinu na koji na osnovu matrice izračunavamo jednu relanu vrednosti. • #### Detalji vezani za normu matrice predmet su linearne algebre, dok ćemo na ovom kursu pokazati samo neke od poznatih načina za određivanje norme matrice. Maksimum zbira apsolutnih vrednosti vrsta matrice: $\|A\|_{\infty} = \max_i \sum_{j=1}^n |A_{i,j}|$ In [68]: B=[1,2;1,-3.9999]norm(B, Inf) B =1.0000 2.0000 1.0000 -3.9999 ans = 4.9999Maksimum zbira apsolutnih vrednosti kolona matrice: $\|A\|_1 = \max_j \sum_{i=1}^n |A_{i,j}|$ In [69]: B=[1,2;1,-3.9999]norm(B, 1)1.0000 2.0000 1.0000 -3.9999 ans = 5.9999Sada kada smo objasnili normu matrice, daćemo definiciju kondicionog broja matrice: $cond(A) = \|A\| \|A^-1\|$ In [70]: cond(B) ans = 3.3698Kondicioni broj matrice i Gausova eliminacija Kondicioni broj matrice i vektor b• #### Ako u sistemu Ax=b, b nije tačno (zbog grešaka zaokruživanja npr.), koliko će se x razlikovati od tačnog rešenja? • #### Ako umesto b imamo $b+\Delta b$ onda važi sledeća nejednakost: $rac{\|\Delta x\|}{\|x\|} <= cond(A)rac{\|\Delta b\|}{\|b\|}$ ullet #### Dakle, relativna (procentualna) greška rešenja ograničena je ne samo sa relativnom greškom vektora b već i sa kondicionim brojem matrice A. • #### Kondicioni broj se na neki način može smatrati "pojačivačem" greške vektora. • #### Ako kondicioni broj matrice A veliki postoji mogućnost da će male promene vektora b rezultovati velikim promenama rešenja x, kao što ćete videti na sledećem primeru. • #### Termin "postoji mogućnost" upotrebljen je namerno jer je relativna greška rešenja samo ograničena pomoću prethone formule (upotrebljen je znak nejednakosti, a ne znak jednakosti). Kondicioni broj matrice i matrica A• #### Ako umesto A imamo neku matricu E koja se razlikuje od A (zbog grešaka zaokruživanja npr.) onda važi sledeća nejednakost: $rac{\|\Delta x\|}{\|x\|} <= cond(A)rac{\|E\|}{\|A\|}$ Primer rešavanja loše uslovljenog sistema pomoću Gausove eliminacije $-x_1 + 2x_2 = 3$ $-x_1+2.1x_2=3$ Grafik loše uslovljenog sistema. Da li primećujete nešto specifično na njemu? In [71]: %plot inline -w 600 -h 600 x1=linspace(-10,5,100); $x2 = (3+x1) \cdot /2;$ plot(x1,x2,"linewidth",10,"color", [1 0 0]) hold on; x2=(3+x1)./2.1;plot(x1,x2,"linewidth",10,"color", [0 0 1]) xlabel("X1"); ylabel("X2"); axis([-12,10,-4,5])hold off; x^2 0 X1 In [72]: A=[2,-1;2.1,-1]A =2.0000 -1.0000 2.1000 -1.0000 In [73]: cond(A) log10 (cond(A)) ans = 104.09ans = 2.0174In [74]: A=[2,-1;2.1,-1]; b1 = [3, 3];x1=gauss_with_pivoting(A,b1); Pre pivotinga A =2.0000 -1.0000 2.1000 -1.0000 b =3 3 Posle pivotinga A =2.1000 -1.0000 2.0000 -1.0000 b =3 3 A =2.10000 -1.00000 0.00000 -0.04762 b =3.00000 0.14286 Menjamo vrednost druge komponente vektora bIn [76]: A=[2,-1;2.1,-1]; b2=[3,3.1];x2=gauss with pivoting(A,b2) Pre pivotinga A =2.0000 -1.0000 2.1000 -1.0000 b =3.0000 3.1000 Posle pivotinga A =2.1000 -1.0000 2.0000 -1.0000 b =3.1000 3.0000 A =2.10000 -1.00000 0.00000 -0.04762 b =3.100000 0.047619 x2 =1.00000 -1.00000 In [206]: A b2 x1x2 A =2.0000 -1.0000 2.1000 -1.0000 b1 =3 3 b2 =3.0000 3.1000 x1 =-2.1147e-15 -3.0000e+00 x2 =1.00000 -1.00000 Izračunavamo gornju granicu relativne greške rešenja In [77]: | cond(A) *norm(b1-b2) /norm(b1) ans = 2.4534Pošto znamo rešenje, izračunavamo relativnu grešku rešenja In [78]: norm(x1-x2)/norm(x1)ans = 0.74536Relativna greska je preko ~75%, ali je opet drastično manja nego gornje ograničenje od ~245%. Red veličine kondicionog broja i relativna greška Postoji tvrđenje (koje nećemo dokazivati) pomoću koga možemo da povežemo relativnu grešku i red veličine kondicionog Ako imamo dve vrednosti x i \hat{x} , tada se one poklapaju u bar m-1 značajnih cifara ako važi: $\frac{\|x - \hat{x}\|}{\|x\|} \le 5 * 10^{-m}$ To znači da bi rešenje dobijeno pomoću GE imalo bar jednu značajnu cifru od tačnog rešenja, relativna greška mora da bude manja od $5*10^{-2}=0.05$ In [79]: cond(A) log10 (cond(A)) ans = 104.09ans = 2.0174Za naš primer vidimo da je kondicioni broj reda veličine takvog da odgovara približno broju 10 na stepen 2, što znači da naše rešenje potencijalno neće da se pokalapa sa tačnim rešenjem ni u jednoj cifri. Dakle, možemo da vidimo da nam vrednost log 10(cond(A)) može poslužiti kao mera broja cifara tačnog rešenja koje možemo da izgubimo ako imamo greške u podacima prilikom rešavanja nekog sistema. In [80]: m=1; %provervavamo da li imamo bar jednu istu cifru sta tačnim rešenjem $(norm(x1-x2)/norm(x1)) < 5*10^-m$ ans = 0Pogledaćmo sada jedan primer dobro uslovljenog sistema, tj. sistema kod koga matrica A ima malu vrednosti kodicionog $2x_1 - x_2 = 3$ $-2x_1-x_2=3$ In [81]: %plot inline -w 600 -h 600 x1=linspace(-10,5,100);x2=-(3-2*x1);plot(x1,x2,"linewidth",10,"color", [1 0 0]) hold on; x2=-(3+2*x1);plot(x1,x2,"linewidth",10,"color", [0 0 1]) xlabel("X1");ylabel("X2"); axis([-12,10,-25,20])hold off; 10 0 -10-20-10In [82]: A=[2,-1;-2,-1]cond(A) log10 (cond(A)) A =2 -1 -2 -1 ans = 2.0000ans = 0.30103

In [83]:	<pre>b1=[3,3]; b2=[3,3.1]; x1=gauss_with_pivoting(A,b1); x2=gauss_with_pivoting(A,b2); Pre pivotinga A =</pre>
	2 -1 -2 -1 b = 3 3 Posle pivotinga A =
	$A = \begin{bmatrix} 2 & -1 \\ -2 & -1 \end{bmatrix}$ $b = \begin{bmatrix} 3 & 3 \\ A = \end{bmatrix}$
	<pre>A = 2 -1 0 -2 b = 3 6 Pre pivotinga A =</pre>
	A = 2 -1 -2 -1 b = 3.0000 3.1000 Posle pivotinga A = 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4
	$ \begin{array}{r} 2 & -1 \\ -2 & -1 \end{array} $ $ b = 3.0000 3.1000 $
	$A = 2 - 1 \\ 0 - 2$ $b = 3.0000 6.1000$
In [84]:	A =
	3.0000 3.1000 x1 = 0 -3 x2 =
In [85]:	$-0.025000 \\ -3.050000$ $\cosh(A) * norm(b1-b2) / norm(b1)$ $ans = 0.047140$ $norm(x1-x2) / norm(x1)$
	ans = 0.018634 log10(cond(A)) ans = 0.30103 m=2;
	<pre>(norm(x1-x2)/norm(x1)) <5*10^-m ans = 1 Ponekad je velika vrednost kondiciong broja rezultat veoma različitih opsega u kojima se nalaze vrednosti matrice sistema. U takvim slučajevima skaliranje vrednosti na isti opseg može da smanji kondicioni broj. A=[0.6,135.4;22.0,-17000]</pre>
	cond(A) A = 0.60000 135.40000 22.00000 -17000.00000 ans = 21930.58677
In [90]:	A1=[0.6/135.4,135.4/135.4;22.0/17000,-17000/17000] cond(A1) A1 = 0.0044313 1.0000000 0.0012941 -1.0000000 ans = 349.32