

Report No.: ATE20151750

Page 1 of 115

APPLICATION CERTIFICATION FCC Part 15C On Behalf of PARTS EXPRESS INTERNATIONAL

Subwoofer Amplifier
Model No.: SPA2400DSP, SPA1200DSP

FCC ID: 2AF3C-SPA

Prepared for : PARTS EXPRESS INTERNATIONAL

Address : 725 Pleasant Valley Dr. Springboro, OHIO 45066 United States

Prepared by : ACCURATE TECHNOLOGY CO., LTD

Address : F1, Bldg. A&D, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

Report No. : ATE20151750
Date of Test : Aug 6-29, 2015
Date of Report : Sep 2, 2015

Report No.: ATE20151750

Page 2 of 115

TABLE OF CONTENTS

Descr	iption	Page
Tost E	Domont Contification	
	Report Certification	
1. G	ENERAL INFORMATION	5
1.1.	Description of Device (EUT)	5
1.2.	Carrier Frequency of Channels	
1.3.	Accessory and Auxiliary Equipment	6
1.4.	Description of Test Facility	
1.5.	Measurement Uncertainty	7
2. M	IEASURING DEVICE AND TEST EQUIPMENT	8
3. O	PERATION OF EUT DURING TESTING	9
3.1.	Operating Mode	
3.2.	Configuration and peripherals	
4. T	EST PROCEDURES AND RESULTS	10
5. P	OWER LINE CONDUCTED MEASUREMENT	11
5.1.	Block Diagram of Test Setup	11
5.2.	Power Line Conducted Emission Measurement Limits	
5.3.	Configuration of EUT on Measurement	11
5.4.	Operating Condition of EUT	
5.5.	Test Procedure	
5.6.	Power Line Conducted Emission Measurement Results	13
6. 6I	DB&20DB BANDWIDTH MEASUREMENT	19
6.1.	Block Diagram of Test Setup	19
6.2.	The Requirement For Section 15.247(a)(2)	
6.3.	EUT Configuration on Measurement	
6.4.	Operating Condition of EUT	
6.5.	Test Procedure	
6.6.	Test Result	20
7. M	IAXIMUM CONDUCTED (AVERAGE) OUTPUT POWER	33
7.1.	Block Diagram of Test Setup	33
7.2.	The Requirement For Section 15.247(b)(3)	
7.3.	EUT Configuration on Measurement	
7.4.	Operating Condition of EUT	
7.5.	Test Procedure	
7.6.	Test Result	34
8. P	OWER SPECTRAL DENSITY MEASUREMENT	41
8.1.	Block Diagram of Test Setup	41
8.2.	The Requirement For Section 15.247(e)	
8.3.	EUT Configuration on Measurement	
8.4.	Operating Condition of EUT	
8.5.	Test Procedure	
8.6.	Test Result	42
9. B	AND EDGE COMPLIANCE TEST	49
9.1.	Block Diagram of Test Setup	49
9.2.	The Requirement For Section 15.247(d)	

Page 3 of 115

9.3.	EUT Configuration on Measurement	49
9.4.	Operating Condition of EUT	49
9.5.	Test Procedure	
9.6.	Test Result	50
10. RA	DIATED SPURIOUS EMISSION TEST	72
10.1.	Block Diagram of Test Setup	72
10.2.	The Limit For Section 15.247(d)	
10.3.	Restricted bands of operation	74
10.4.	Configuration of EUT on Measurement	74
10.5.	Operating Condition of EUT	75
10.6.	Test Procedure	75
10.7.	The Field Strength of Radiation Emission Measurement Results	76
11. CO	ONDUCTED SPURIOUS EMISSION COMPLIANCE TEST	107
11.1.	Block Diagram of Test Setup	107
11.2.	The Requirement For Section 15.247(d)	107
11.3.	EUT Configuration on Measurement	
11.4.	Operating Condition of EUT	
11.5.	Test Procedure	
11.6.	Test Result	108
12. AN	TENNA REQUIREMENT	115
12.1.	The Requirement	
12.2.	Antenna Construction	

Report No.: ATE20151750

Page 4 of 115

Test Report Certification

Applicant : PARTS EXPRESS INTERNATIONAL

Manufacturer : PARTS EXPRESS INTERNATIONAL

EUT Description : Subwoofer Amplifier

(A) MODEL NO.: SPA2400DSP, SPA1200DSP

(B) Trade Mark.: N/A

(C) POWER SUPPLY: AC 110-240V~50/60Hz

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247:2015 ANSI C63.10: 2013

The EUT was tested according to DTS test procedure of KDB558074 D01 DTS Meas Guidance v03r04 Jan 2016 for compliance to FCC 47CFR 15.247 requirements

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247 limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.

Date of Test:	Aug 6-29, 2015
Date of Report :	Sep 2, 2015
Prepared by :	Mark Ther
	(Mark Chen, Engineer)
Approved & Authorized Signer :	Lemb
	(Sean Liu, Manager)

Report No.: ATE20151750

Page 5 of 115

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT : Subwoofer Amplifier

SPA2400DSP, SPA1200DSP

Model Number : (Note: These samples are same except for the model number is

different for the marketing requirement. So we prepare the

SPA2400DSP for test.)

Frequency Range : 802.11b/g/n(20MHz): 2412-2462MHz

802.11n(40MHz): 2422-2452MHz

Number of Channels : 802.11b/g/n (20MHz):11

802.11n (40MHz): 7

Antenna Gain : 0.6dBi

Type of Antenna : PCB Antenna

Power Supply : AC 110-240V~50/60Hz

Adapter information : N/A

Data Rate : 802.11b: 11, 5.5, 2, 1 Mbps

802.11g: 54, 48, 36, 24, 18, 12, 9, 6 Mbps

802.11n: up to 150Mbps

Modulation Type : CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM

Applicant : PARTS EXPRESS INTERNATIONAL Address : 725 Pleasant Valley Dr. Springboro, OHIO

45066 United States

Manufacturer : PARTS EXPRESS INTERNATIONAL Address : 725 Pleasant Valley Dr. Springboro, OHIO

45066 United States

Date of sample received: Aug 6, 2015
Date of Test: Aug 6-29 2015

Page 6 of 115

1.2. Carrier Frequency of Channels

802.11b, 802.11g, 802.11n (20MHz)

Channel	Frequency(MHz)	Channel	Frequency(MHz)
01	2412	07	2442
02	2417	08	2447
03	2422	09	2452
04	2427	10	2457
05	2432	11	2462
06	2437		

802.11n (40MHz)

Channel	Frequency(MHz)	Channel	Frequency(MHz)
		07	2442
		08	2447
03	2422	09	2452
04	2427		
05	2432		
06	2437		

1.3. Accessory and Auxiliary Equipment

Signal Source N/A

Report No.: ATE20151750

Page 7 of 115

1.4.Description of Test Facility

EMC Lab : Accredited by TUV Rheinland Shenzhen

Listed by FCC

The Registration Number is 752051

Listed by Industry Canada

The Registration Number is 5077A-2

Accredited by China National Accreditation Committee

for Laboratories

The Certificate Registration Number is L3193

Name of Firm : ACCURATE TECHNOLOGY CO. LTD

Site Location : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

1.5. Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2

Radiated emission expanded uncertainty = 3.08dB, k=2

(9kHz-30MHz)

Radiated emission expanded uncertainty = 4.42dB, k=2

(30MHz-1000MHz)

Radiated emission expanded uncertainty = 4.06dB, k=2

(Above 1GHz)

2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Туре	S/N	Calibrated dates	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 10, 2015	1 Year
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 10, 2015	1 Year
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 10, 2015	1 Year
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 10, 2015	1 Year
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 15, 2015	1 Year
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 15, 2015	1 Year
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 15, 2015	1 Year
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 15, 2015	1 Year
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 10, 2015	1 Year
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 10, 2015	1 Year
Highpass Filter	Wainwright Instruments	WHKX3.6/18 G-10SS	N/A	Jan. 10, 2015	1 Year
Band Reject Filter	Wainwright Instruments	WRCG2400/2 485-2375/2510 -60/11SS	N/A	Jan. 10, 2015	1 Year

Page 9 of 115

3. OPERATION OF EUT DURING TESTING

3.1. Operating Mode

The mode is used: 1.802.11b Transmitting mode

Low Channel: 2412MHz Middle Channel: 2437MHz High Channel: 2462MHz

2.802.11g Transmitting mode

Low Channel: 2412MHz Middle Channel: 2437MHz High Channel: 2462MHz

3.802.11n (20MHz) Transmitting mode

Low Channel: 2412MHz Middle Channel: 2437MHz High Channel: 2462MHz

4.802.11n (40MHz) Transmitting mode

Low Channel: 2422MHz Middle Channel: 2437MHz High Channel: 2452MHz

3.2. Configuration and peripherals

4. TEST PROCEDURES AND RESULTS

FCC Rules	Description of Test	Result
Section 15.207	Power Line Conducted Emission	Compliant
Section 15.247(a)(2)	6dB&20dB Bandwidth Test	Compliant
Section 15.247(e)	Power Spectral Density Test	Compliant
Section 15.247(b)(3)	Maximum Peak Output Power Test	Compliant
Section 15.247(d)	Band Edge Compliance Test	Compliant
Section 15.247(d) Section 15.209	Radiated Spurious Emission Test	Compliant
Section 15.247(d)	Conducted Spurious Emission Test	Compliant
Section 15.203	Antenna Requirement	Compliant

5. POWER LINE CONDUCTED MEASUREMENT

5.1.Block Diagram of Test Setup

(EUT: Subwoofer Amplifier)

5.2. Power Line Conducted Emission Measurement Limits

Frequency	Limit o	dB(μV)
(MHz)	Quasi-peak Level	Average Level
0.15 - 0.50	66.0 – 56.0 *	56.0 – 46.0 *
0.50 - 5.00	56.0	46.0
5.00 - 30.00	60.0	50.0

NOTE1: The lower limit shall apply at the transition frequencies.

NOTE2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

5.3. Configuration of EUT on Measurement

The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

5.4. Operating Condition of EUT

- 5.4.1. Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2. Turn on the power of all equipment.
- 5.4.3.Let the EUT work in test mode and measure it.

Page 12 of 115

5.5.Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.4: 2009 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESCS30) is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

5.6. Power Line Conducted Emission Measurement Results

PASS.

The frequency range from 150kHz to 30MHz is checked.

	Test mode: WIFI communicating(120V/60Hz)								
RESULT:	"RY08	19-3_	fin"						
2AM				.					
				Detector	Line	PE			
43.50					L1	GND			
40.60 36.10	11.1	56 56	15.4 19.9		L1 L1	GND GND			
RESULT:	"RY08	19-3_:	fin2"						
2AM									
Level dBµV	Transd dB				Line	PE			
					L1				
27.10					L1 L1	GND GND			
	"RY08:	19-2_£	in"						
	Transd	Limit	Margin	Detector	Line	PE			
	dB	dΒμV		Beteetol	LINC	1.0			
46.10	10.5	65 62	18.4	~		GND GND			
40.80	10.6	60	19.4		N	GND			
RESULT:	"RY08:	19-2_£	in2"						
'AM				.					
				Detector	Line	PE			
40.00	10.5	55	14.5		N	GND			
39.00 33.20	10.6 11.0				N N	GND GND			
	2AM Level 43.50 40.60 36.10 RESULT: 2AM Level dBμV 34.00 27.10 23.80 RESULT: AM Level dBμV 46.10 42.90 40.80 RESULT: AM Level dBμV 40.00 39.00	Level Transd dB 43.50 10.6 40.60 11.1 36.10 11.1 PRESULT: "RYOS 2AM Level Transd dB 40.00 11.0 27.10 11.1 23.80 11.1 PRESULT: "RYOS 2AM Level Transd dB μV dB 46.10 10.5 42.90 10.6 40.80 10.6 PRESULT: "RYOS 2AM Level Transd dB 40.00 10.5 39.00 10.6 39.00 10.6 PRESULT: "RYOS 2AM Level Transd dB 40.80 10.6 PRESULT: "RYOS 2AM Level Transd dB 40.80 10.6 PRESULT: "RYOS 2AM Level Transd dB 40.00 10.5 39.00 10.6	Level Transd Limit dBμV dB dBμV 43.50 10.6 60 40.60 11.1 56 36.10 11.1 56 36.10 11.1 56 RESULT: "RY0819-3_: 2AM Level Transd Limit dBμV dB dBμV 34.00 11.0 46 27.10 11.1 46 23.80 11.1 46 23.80 11.1 46 RESULT: "RY0819-2_f AM Level Transd Limit dBμV dB dBμV 46.10 10.5 65 42.90 10.6 62 40.80 10.6 60 RESULT: "RY0819-2_f AM Level Transd Limit dBμV dB dBμV 46.10 10.5 65 42.90 10.6 62 40.80 10.6 55 39.00 10.5 55 39.00 10.5 55	Level Transd Limit Margin dB μV dB μΣ	Level Transd Limit Margin Detector dBμV dB dBμV dB dBμV dB 43.50 10.6 60 16.6 QP 40.60 11.1 56 15.4 QP 36.10 11.1 56 19.9 QP RESULT: "RY0819-3_fin2" 2AM Level Transd Limit Margin Detector dBμV dB dBμV dB dBμV dB 34.00 11.0 46 12.0 AV 27.10 11.1 46 18.9 AV 23.80 11.1 46 22.2 AV RESULT: "RY0819-2_fin" YAM Level Transd Limit Margin Detector dBμV dB dBμV dB dBμV dB dBμV dB 46.10 10.5 65 18.4 QP 42.90 10.6 62 19.2 QP 40.80 10.6 60 19.4 QP RESULT: "RY0819-2_fin2" YAM Level Transd Limit Margin Detector dBμV dB dBμV d	Level Transd Limit Margin Detector Line dBμV dB dBμV dB 43.50 10.6 60 16.6 QP L1 40.60 11.1 56 15.4 QP L1 36.10 11.1 56 19.9 QP L1 RESULT: "RY0819-3_fin2" AM Level Transd Limit Margin Detector Line dBμV dB dBμV dB 34.00 11.0 46 12.0 AV L1 27.10 11.1 46 18.9 AV L1 23.80 11.1 46 22.2 AV L1 RESULT: "RY0819-2_fin" AM Level Transd Limit Margin Detector Line dBμV dB dBμV dB 46.10 10.5 65 18.4 QP N 42.90 10.6 62 19.2 QP N 40.80 10.6 60 19.4 QP N RESULT: "RY0819-2_fin2" AM Level Transd Limit Margin Detector Line dBμV dB dBμV dB 46.10 10.5 65 18.4 QP N 40.80 10.6 60 19.4 QP N 47.40 AN DETECTOR OF THE COLUMN AND ADDRESS AND ADDRE			

EASUREMENT	RESULT:	"RY08	19-11_	fin"			
3/19/2015 9:4							
Frequency MHz	Level dBµV		Limit dBµV	_	Detector	Line	PE
0.185000		10.5			~	L1	GND
0.555000 3.150000	39.20 38.30	10.7	56 56	16.8 17.7	~	L1 L1	GND GND
ÆASUREMENT	RESULT:	"RY08	19-11_	fin2"			
3/19/2015 9:4	5AM						
Frequency MHz	Level dBµV		Limit dBµV		Detector	Line	PE
	38.60			8.7		L1	GND
0 555000							
0.555000 1.420000	36.80 36.70	10.7	46 46	9.2 9.3		L1 L1	GND GND
MEASUREMENT 8/19/2015 9: Frequency MHz	36.70 **RESULT** 49AM	10.9 : "RYO8	46 319-12 Limit	9.3 _ fin" Margin	AV	L1	GND
1.420000 MEASUREMENT 8/19/2015 9: Frequency MHz 0.185000	36.70 RESULT 49AM Level dBµV	10.9 : "RYO8 Transd dB	46 319-12 Limit dBµV	9.3 _fin" Margin dB 19.3	AV Detector QP	Line N	GND PE GND
1.420000 MEASUREMENT 8/19/2015 9: Frequency MHz 0.185000	36.70 7 RESULT 49AM Level dBµV	10.9 : "RYO8 Transd dB	46 319-12 Limit dBµV 64 56	9.3 _ fin" Margin dB 19.3 16.8	Detector QP QP	Line	GND PE
1.420000 MEASUREMENT 8/19/2015 9: Frequency MHz 0.185000 0.555000 1.420000	36.70 **RESULT** 49AM** Level dB\(\psi\) V 45.00 39.20 39.30 **RESULT**	10.9 : "RYO8 Transd dB 10.5 10.7 10.9	46 319-12 Limit dBµV 64 56	9.3 _fin" Margin dB 19.3 16.8 16.7	Detector QP QP	Line N	GND PE GND GND
1.420000 MEASUREMENT 8/19/2015 9: Frequency MHz 0.185000 0.555000 1.420000	36.70 7 RESULT 49AM Level 45.00 39.20 39.30 7 RESULT 49AM Level	10.9 : "RYO8 Transd dB 10.5 10.7 10.9 : "RYO8	46 319-12 Limit dBµV 64 56 56 319-12	9.3 _fin" Margin dB 19.3 16.8 16.7 _fin2" Margin	Detector QP QP QP QP	Line N N	PE GND GND GND
1.420000 MEASUREMENT 8/19/2015 9: Frequency MHz 0.185000 0.555000 1.420000 MEASUREMENT 8/19/2015 9: Frequency MHz	36.70 7 RESULT 49AM	10.9 : "RYO8 Transd dB 10.5 10.7 10.9 : "RYO8	46 319-12 Limit dBμV 64 56 56 319-12 Limit dBμV	9.3 _fin" Margin dB 19.3 16.8 16.7 _fin2" Margin dB	Detector QP QP QP QP	Line N N	PE GND GND GND
1.420000 MEASUREMENT 8/19/2015 9: Frequency MHz 0.185000 0.555000 1.420000 MEASUREMENT 8/19/2015 9: Frequency MHz 0.430000 0.555000	36.70 7 RESULT 49AM Level 45.00 39.20 39.30 7 RESULT 49AM Level 49AM Level 4BµV 38.60	10.9 : "RYO8 Transd dB 10.5 10.7 10.9 : "RYO8 Transd dB 10.7 10.7	46 319-12 Limit dBµV 64 56 56 319-12 Limit dBµV 47 46	9.3 _fin" Margin dB 19.3 16.8 16.7 _fin2" Margin dB 8.7 9.2	Detector QP QP QP QP AV AV	Line N N N	PE GND GND GND

Emissions attenuated more than 20 dB below the permissible value are not reported.

The spectral diagrams are attached as below.

CONDUCTED EMISSION STANDARD FCC PART 15 B

EUT: Subwoofer Amplifier M/N:SPA2400DSP

Manufacturer: PARTS EXPRESS INTERNATIONAL

Operating Condition: WIFI Communicating Test Site: 1#Shielding Room

Operator: Ricky

Test Specification: L 120V/60Hz

Comment: Report NO.:ATE20151750 Start of Test: 8/19/2015 / 9:09:09AM

SCAN TABLE: "V 9K-30MHz fin"

___SUB_STD_VTERM2 1.70 Short Description: Start Stop Step Detector Meas. ΙF Transducer Frequency Frequency Width Time Bandw. QuasiPeak 1.0 s 150.0 kHz 100.0 Hz 9.0 kHz 200 Hz NSLK8126 2008 Average 150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008 Average

MEASUREMENT RESULT: "RY0819-3_fin"

8/	/19/2015 9:1	.2AM						
	Frequency	Level	Transd	Limit	Margin	Detector	Line	PΕ
	MHz	dΒμV	dB	dΒμV	dB			
	0.305000	43.50	10.6	60	16.6	QP	L1	GND
	3.170000	40.60	11.1	56	15.4	QP	L1	GND
	3.410000	36.10	11.1	56	19.9	QP	L1	GND

MEASUREMENT RESULT: "RY0819-3 fin2"

8/19/2015 9:13	2AM						
Frequency MHz	Level dBµV		Limit dBµV	Margin dB	Detector	Line	PE
1.765000	34.00	11.0	46	12.0		L1	GND
3.410000	27.10	11.1	46	18.9	AV	L1	GND
3.470000	23.80	11.1	46	22.2	AV	L1	GND

CONDUCTED EMISSION STANDARD FCC PART 15 B

EUT: Subwoofer Amplifier M/N:SPA2400DSP

Manufacturer: PARTS EXPRESS INTERNATIONAL

Operating Condition: WIFI Communicating Test Site: 1#Shielding Room

Operator: Ricky

Test Specification: N 120V/60Hz

Comment: Report NO.:ATE20151750 Start of Test: 8/19/2015 / 9:01:42AM

SCAN TABLE: "V 9K-30MHz fin"

_SUB_STD_VTERM2 1.70 Short Description: Start Stop Step Detector Meas. ΙF Transducer Frequency Frequency Width Time Bandw. 9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz NSLK8126 2008 Average QuasiÝeak 1.0 s 150.0 kHz 30.0 MHz 5.0 kHz 9 kHz NSLK8126 2008

Average

MEASUREMENT RESULT: "RY0819-2 fin"

8/19/2015	9:07AM						
Frequer	icy Le	vel Trans	d Limit	Margin	Detector	Line	PΕ
M	IHz d	BμV d	B dBµV	dB			
0.1800	000 46	.10 10.	5 65	18.4	QP	N	GND
0.2400	000 42	.90 10.	6 62	19.2	QP	N	GND
0.3000	000 40	.80 10.	6 60	19.4	QP	N	GND

MEASUREMENT RESULT: "RY0819-2_fin2"

8/19/20	15 9:0	7AM						
Freq	uency	Level	Transd	Limit	Margin	Detector	Line	PΕ
	MHz	dΒμV	dB	dΒμV	dB			
0.1	80000	40.00	10.5	55	14.5	AV	N	GND
0.2	40000	39.00	10.6	52	13.1	AV	N	GND
2.0	50000	33.20	11.0	46	12.8	AV	N	GND

CONDUCTED EMISSION STANDARD FCC PART 15 B

EUT: Subwoofer Amplifier M/N:SPA2400DSP

Manufacturer: PARTS EXPRESS INTERNATIONAL

Operating Condition: WIFI Communicating Test Site: 1#Shielding Room

Operator: Ricky
Test Specification: L 240V/60Hz

Comment: Report NO.:ATE20151750 Start of Test: 8/19/2015 / 9:42:59AM

SCAN TABLE: "V 9K-30MHz fin"

Short Description: SUB STD VTERM2 1.70

Start Stop Step Detector Meas. IF Transducer

Frequency Frequency Width Time Bandw.

9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz NSLK8126 2008

Average

150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Average

MEASUREMENT RESULT: "RY0819-11 fin"

8/19/2015 9:4	5AM						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.185000	44.90	10.5	64	19.4	QP	L1	GND
0.555000	39.20	10.7	56	16.8	QP	L1	GND
3.150000	38.30	11.1	56	17.7	OP	T.1	GND

MEASUREMENT RESULT: "RY0819-11 fin2"

8/19/2015 9:4	5AM						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.430000	38.60	10.7	47	8.7	AV	L1	GND
0.555000	36.80	10.7	46	9.2	AV	L1	GND
1.420000	36.70	10.9	46	9.3	AV	L1	GND

CONDUCTED EMISSION STANDARD FCC PART 15 B

EUT: Subwoofer Amplifier M/N:SPA2400DSP

Manufacturer: PARTS EXPRESS INTERNATIONAL

Operating Condition: WIFI Communicating Test Site: 1#Shielding Room

Operator: Ricky
Test Specification: N 240V/60Hz

Comment: Report NO.:ATE20151750 Start of Test: 8/19/2015 / 9:46:30AM

SCAN TABLE: "V 9K-30MHz fin"

Short Description: SUB STD VTERM2 1.70

Start Stop Step Detector Meas. IF Transducer Frequency Frequency Width Time Bandw.

9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz NSLK8126 2008

Average

150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Average

MEASUREMENT RESULT: "RY0819-12 fin"

8/19/2015 9:	4 9AM						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dΒμV	dB	dΒμV	dB			
0.185000	45.00	10.5	64	19.3	QP	N	GND
0.555000	39.20	10.7	56	16.8	QP	N	GND
1.420000	39.30	10.9	56	16.7	QP	N	GND

MEASUREMENT RESULT: "RY0819-12_fin2"

8/19/2015 9:4	9AM						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.430000	38.60	10.7	47	8.7	AV	N	GND
0.555000	36.80	10.7	46	9.2	AV	N	GND
1.480000	36.50	10.9	46	9.5	AV	N	GND

Report No.: ATE20151750

Page 19 of 115

6. 6DB&20DB BANDWIDTH MEASUREMENT

6.1.Block Diagram of Test Setup

6.2. The Requirement For Section 15.247(a)(2)

Section 15.247(a)(2): Systems using digital modulation techniques may operate in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

6.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.4. Operating Condition of EUT

- 6.4.1. Setup the EUT and simulator as shown as Section 5.1.
- 6.4.2. Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2412-2462 and 2422-2452MHz. We select 2412MHz, 2437MHz, 2462MHz and 2422MHz, 2437MHz, 2452MHz TX frequency to transmit.

6.5. Test Procedure

- 1. Set resolution bandwidth (RBW) = 100 kHz.
- 2. Set the video bandwidth (VBW) $\geq 3 \times RBW$.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

20dB bandwidth

- 1. Set resolution bandwidth (RBW) = 1%-5% OBW.
- 2. Set the video bandwidth (VBW) $\geq 3 \times RBW$.

Report No.: ATE20151750

Page 20 of 115

- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Once the reference level is established, the equipment is conditioned with typical modulating signals to produce the worst-case (i.e., the widest) bandwidth. Unless otherwise specified for an unlicensed wireless device, measure the bandwidth at the -20 dB levels with respect to the reference level

6.6.Test Result

The test was performed with 802.11b						
Channel	Frequency (MHz)	6dB Bandwidth (MHz)	20dB Bandwidth (MHz)	Limit (MHz)		
Low	2412	10.12	17.598	> 0.5MHz		
Middle	2437	10.12	17.135	> 0.5MHz		
High	2462	10.12	17.540	> 0.5MHz		

The test was performed with 802.11g						
Channel	Frequency (MHz)	6dB Bandwidth (MHz)	20dB Bandwidth (MHz)	Limit (MHz)		
Low	2412	16.60	19.740	> 0.5MHz		
Middle	2437	16.60	19.392	> 0.5MHz		
High	2462	16.60	19.624	> 0.5MHz		

The test was performed with 802.11n (Bandwidth: 20 MHz)						
Channel	Frequency (MHz)	6dB Bandwidth (MHz)	20dB Bandwidth (MHz)	Limit (MHz)		
Low	2412	17.84	20.904	> 0.5MHz		
Middle	2437	17.84	20.123	> 0.5MHz		
High	2462	17.84	19.472	> 0.5MHz		

The test was performed with 802.11n (Bandwidth: 40 MHz)							
Channel Frequency (MHz) 6dB Bandwidth (MHz) 20dB Bandwidth (MHz) Limit (MHz)							
Low	2422	36.56	40.84	> 0.5MHz			
Middle	2437	36.56	40.96	> 0.5MHz			
High	2452	36.56	40.96	> 0.5MHz			

The spectrum analyzer plots are attached as below.

6dB Bandwidth

802.11b Channel Low 2412MHz

802.11b Channel Middle 2437MHz

802.11b Channel High 2462MHz

802.11g Channel Low 2412MHz

802.11g Channel Middle 2437MHz

802.11g Channel High 2462MHz

802.11n Channel Low 2412MHz (20MHz)

802.11n Channel Middle 2437MHz(20MHz)

802.11n Channel High 2462MHz(20MHz)

802.11n Channel Low 2422MHz (40MHz)

802.11n Channel Middle 2437MHz(40MHz)

802.11n Channel High 2452MHz(40MHz)

20dB Bandwidth

802.11b Channel Low 2412MHz

802.11b Channel Middle 2437MHz

802.11b Channel High 2462MHz

802.11g Channel Low 2412MHz

Page 29 of 115

802.11g Channel Middle 2437MHz

802.11g Channel High 2462MHz

Page 30 of 115

802.11n Channel Low 2412MHz (20MHz)

802.11n Channel Middle 2437MHz(20MHz)

802.11n Channel High 2462MHz(20MHz)

802.11n Channel Low 2422MHz (40MHz)

802.11n Channel Middle 2437MHz(40MHz)

802.11n Channel High 2452MHz(40MHz)

7. MAXIMUM CONDUCTED (AVERAGE) OUTPUT POWER

7.1.Block Diagram of Test Setup

7.2. The Requirement For Section 15.247(b)(3)

Section 15.247(b)(3): For systems using digital modulation in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands: 1 Watt.

7.3.EUT Configuration on Measurement

The equipment is installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.4. Operating Condition of EUT

- 7.4.1. Setup the EUT and simulator as shown as Section 7.1.
- 7.4.2.Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2412-2462 and 2422-2452MHz. We select 2412MHz, 2437MHz, 2462MHz and 2422MHz, 2437MHz, 2452MHz TX frequency to transmit.

7.5.Test Procedure

- 7.5.1.The EUT was tested according to DTS test procedure of Jan, 2016 KDB558074 D01 DTS Meas Guidance v03r04 for compliance to FCC 47CFR 15.247 requirements.
- 7.5.2. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 7.5.3.Set RBW = 1-5% of the OBW, not to exceed 1 MHz, VBW \geq 3 x RBW, Sweep time = auto, Set span to at least 1.5 times the OBW, Detector = RMS.
- 7.5.4.Measurement the Maximum conducted (average) output power.

7.6.Test Result

The test was performed with 802.11b							
Channel	Frequency (MHz)	Peak Output Power (dBm)	Peak Output Power (mW)	Limits dBm / W			
Low	2412	12.36	17.22	30 dBm / 1 W			
Middle	2437	12.42	17.46	30 dBm / 1 W			
High	2462	12.22	16.67	30 dBm / 1 W			

The test was performed with 802.11g							
Channel Frequency (MHz) Peak Output Power (dBm) Peak Output Power (mW) Limits dBm / W							
Low	2412	10.56	11.38	30 dBm / 1 W			
Middle	2437	10.87	12.22	30 dBm / 1 W			
High	2462	11.13	12.97	30 dBm / 1 W			

The test was performed with 802.11n (20MHz)						
Channel	Frequency (MHz)	Peak Output Power (dBm)	Peak Output Power (mW)	Limits dBm / W		
Low	2412	10.50	11.22	30 dBm / 1 W		
Middle	2437	10.70	11.75	30 dBm / 1 W		
High	2462	10.84	12.13	30 dBm / 1 W		

The test was performed with 802.11n (40MHz)							
Channel	Frequency (MHz)	Peak Output Power (dBm)	Peak Output Power (mW)	Limits dBm / W			
Low	2422	8.87	7.71	30 dBm / 1 W			
Middle	2437	9.21	8.34	30 dBm / 1 W			
High	2452	9.45	8.81	30 dBm / 1 W			

The spectrum analyzer plots are attached as below.

802.11b Channel Low 2412MHz

802.11b Channel Middle 2437MHz

802.11b Channel High 2462MHz

802.11g Channel Low 2412MHz

802.11g Channel Middle 2437MHz

802.11g Channel High 2462MHz

802.11n Channel Low 2412MHz (20MHz)

802.11n Channel Middle 2437MHz (20MHz)

802.11n Channel High 2462MHz (20MHz)

802.11n Channel Low 2422MHz (40MHz)

802.11n Channel Middle 2437MHz (40MHz)

802.11n Channel High 2452MHz (40MHz)

Page 41 of 115

8. POWER SPECTRAL DENSITY MEASUREMENT

8.1.Block Diagram of Test Setup

8.2. The Requirement For Section 15.247(e)

Section 15.247(e): For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

8.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.4. Operating Condition of EUT

- 8.4.1. Setup the EUT and simulator as shown as Section 8.1.
- 8.4.2. Turn on the power of all equipment.
- 8.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2412-2462 and 2422-2452MHz. We select 2412MHz, 2437MHz, 2462MHz and 2422MHz, 2437MHz, 2452MHz TX frequency to transmit.

8.5. Test Procedure

8.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.

8.5.2.Measurement Procedure PKPSD:

This procedure must be used if maximum peak conducted output power was used to demonstrate compliance to the fundamental output power limit, and is optional if the maximum (average) conducted output power was used to demonstrate compliance.

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.

Page 42 of 115

- 3. Set the RBW $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 8.5.3. Measurement the maximum power spectral density.

8.6.Test Result

The test was performed with 802.11b										
Channel	Frequency (MHz)	Power Spectral Density (dBm)	Limits (dBm)							
Low	2412	-12.57	8 dBm							
Middle	2437	-11.66	8 dBm							
High	2462	-12.77	8 dBm							

The test was performed with 802.11g									
Channel	Frequency (MHz)	Power Spectral Density (dBm)	Limits (dBm)						
Low	2412	-10.54	8 dBm						
Middle	2437	-10.53	8 dBm						
High	2462	-10.36	8 dBm						

The test was performed with 802.11n (20MHz)										
Channel	Frequency (MHz)	Power Spectral Density (dBm)	Limits (dBm)							
Low	2412	-11.25	8 dBm							
Middle	2437	-10.43	8 dBm							
High	2462	-10.68	8 dBm							

The test was performed with 802.11n (40MHz)									
Channel	Frequency (MHz)	Power Spectral Density (dBm)	Limits (dBm)						
Low	2422	-11.63	8 dBm						
Middle	2437	-10.49	8 dBm						
High	2452	-10.61	8 dBm						

The spectrum analyzer plots are attached as below.

Center 2.412 Ghz

802.11b Channel Low 2412MHz

2.7 MHz/

Span 27 MHz

802.11b Channel High 2462MHz

802.11g Channel Low 2412MHz

802.11g Channel Middle 2437MHz

802.11g Channel High 2462MHz

802.11n Channel Low 2412MHz (20MHz)

802.11n Channel Middle 2437MHz (20MHz)

802.11n Channel High 2462MHz(20MHz)

802.11n Channel Low 2422MHz (40MHz)

802.11n Channel Middle 2437MHz(40MHz)

802.11n Channel High 2452MHz(40MHz)

Page 49 of 115

9. BAND EDGE COMPLIANCE TEST

9.1.Block Diagram of Test Setup

9.2. The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

9.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

9.4. Operating Condition of EUT

- 9.4.1. Setup the EUT and simulator as shown as Section 9.1.
- 9.4.2. Turn on the power of all equipment.
- 9.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2412-2462 and 2422-2452MHz MHz. We select 2412MHz, 2462MHz and 2422MHz, 2452MHz TX frequency to transmit.

9.5.Test Procedure

Conducted Band Edge:

9.5.1. The transmitter output was connected to the spectrum analyzer via a low loss cable.

Page 50 of 115

9.5.2.Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz.

Radiate Band Edge:

- 9.5.3. The EUT is placed on a turntable, which is 0.8m above the ground plane and worked at highest radiated power.
- 9.5.4. The turntable was rotated for 360 degrees to determine the position of maximum emission level.
- 9.5.5.EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 9.5.6.Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
- 9.5.7.RBW=1MHz, VBW=1MHz
- 9.5.8. The band edges was measured and recorded.

9.6.Test Result

The test was performed with 802.11b									
Frequency Result of Band Edge Limit of Band Edge									
(MHz)	(dBc)	(dBc)							
2412	43.14	> 20dBc							
2462	50.33	> 20dBc							

The test was performed with 802.11g									
Frequency Result of Band Edge Limit of Band Edge (MHz) (dBc) (dBc)									
2412	30.08	> 20dBc							
2462 45.56 > 20dBc									

The test was performed with 802.11n (20MHz)									
Frequency Result of Band Edge Limit of Band Edge (MHz) (dBc) (dBc)									
2412	31.26	> 20dBc							
2462	44.10	> 20dBc							

The test was performed with 802.11n (40MHz)									
Frequency Result of Band Edge Limit of Band Edge									
(MHz)	(dBc)	(dBc)							
2422	34.51	> 20dBc							
2452	29.77	> 20dBc							

802.11b Channel Low 2412MHz

802.11b Channel High 2462MHz

802.11g Channel Low 2412MHz

802.11g Channel High 2462MHz

802.11n Channel Low 2412MHz (20MHz)

802.11n Channel High 2462MHz (20MHz)

802.11n Channel Low 2422MHz (40MHz)

802.11n Channel High 2452MHz (40MHz)

Page 55 of 115

Radiated Band Edge Result

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:
 - Result = Reading + Corrected Factor
- 3. Display the measurement of peak values.

Test Procedure:

The EUT and its simulators are placed on a turntable, which is 1.5 meter high above ground(Above 1GHz). The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

Let the EUT work in TX modes then measure it. We select 2412MHz, 2462MHz TX frequency to transmit(802.11b/g/n20 mode). We select 2422MHz, 2452MHz TX frequency to transmit(802.11n40 mode).

During the radiated emission test, the spectrum analyzer was set with the following configurations:

- 1.The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz.
- 2.The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- 3.All modes of operation were investigated and the worst-case emissions are reported.

ACCURATE TECH

Report No.: ATE20151750 Page 56 of 115

Site: 1# Chamber

Tel:+86-0755-26503290 Fax:+86-0755-26503396

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Job No.: Ricky2015 #2155 Polarization: Horizontal

Standard: FCC PK Power Source: AC 120V/60Hz

Test item: Radiation Test Date: 15/08/21/
Temp.(C)/Hum.(%) 25 C / 55 % Time: 10/41/44

EUT: Subwoofer Amplifier Engineer Signature: Star Mode: TX Channel 1(802.11b) Distance: 3m

Model: SPA2400DSP
Manufacturer: PARTS

Note: Report NO.:ATE20151750

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2390.000	49.93	-6.31	43.62	74.00	-30.38	peak			
2	2390.000	39.70	-6.31	33.39	54.00	-20.61	peak		(1)	
3	2400.000	54.89	-6.28	48.61	74.00	-25.39	peak		*	
4	2400.000	44.58	-6.28	38.30	54.00	-15.70	peak		(1)	

Page 57 of 115

ACCURATE TECHNOLOGY CO., LTD. F1,Bldg,A,Changyuan New Material Port Keyuan Rd,

Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20151750

Job No.: Ricky2015 #2156 Polarization: Vertical

Standard: FCC PK Power Source: AC 120V/60Hz

 Test item:
 Radiation Test
 Date: 15/08/21/

 Temp.(C)/Hum.(%)
 25 C / 55 %
 Time: 10/44/33

EUT: Subwoofer Amplifier Engineer Signature: Star

Mode: TX Channel 1(802.11b) Distance: 3m

Model: SPA2400DSP Manufacturer: PARTS

Note: Report NO.:ATE20151750

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2390.000	48.83	-6.31	42.52	74.00	-31.48	peak			
2	2390.000	38.61	-6.31	32.30	54.00	-21.70	peak			
3	2400.000	55.90	-6.28	49.62	74.00	-24.38	peak			
4	2400.000	44.86	-6.28	38.58	54.00	-15.42	peak			

ACCURATE TECHNOLOGY CO., LTD.

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20151750

Page 58 of 115

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 15/08/21/ Time: 10/53/38

Engineer Signature: Star

Distance: 3m

Job No.: Ricky2015 #2158 Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %
EUT: Subwoofer Amplifier
Mode: TX Channel 11(802.11b)

Model: SPA2400DSP Manufacturer: PARTS

Note: Report NO.:ATE20151750

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.500	43.34	-6.04	37.30	74.00	-36.70	peak			
2	2483.500	34.25	-6.04	28.21	54.00	-25.79	peak			
3	2500.000	43.53	-6.00	37.53	74.00	-36.47	peak			
4	2500.000	33.67	-6.00	27.67	54.00	-26.33	peak			

Page 59 of 115

Site: 1# Chamber Tel:+86-0755-26503290

Fax:+86-0755-26503396

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Job No.: Ricky2015 #2157 Polarization: Vertical

Standard: FCC PK Power Source: AC 120V/60Hz

Test item: Radiation Test Date: 15/08/21/ Temp.(C)/Hum.(%) 25 C / 55 % Time: 10/49/32

EUT: Engineer Signature: Star Subwoofer Amplifier Mode: TX Channel 11(802.11b) Distance:

Model: SPA2400DSP Manufacturer: PARTS

Note: Report NO .: ATE20151750

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.500	44.39	-6.04	38.35	74.00	-35.65	peak			
2	2483.500	34.14	-6.04	28.10	54.00	-25.90	peak			
3	2500.000	42.04	-6.00	36.04	74.00	-37.96	peak			
4	2500.000	33.67	-6.00	27.67	54.00	-26.33	peak			

Report No.: ATE20151750 Page 60 of 115

ACCURATE TECHNOLOGY CO., LTD. F1,Bldg,A,Changyuan New Material Port Keyuan Rd,

Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Ricky2015 #2162

Standard: FCC PK

EUT:

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 % Subwoofer Amplifier

Mode: TX Channel 1(802.11g)

Model: SPA2400DSP Manufacturer: PARTS

Report NO .: ATE20151750 Note:

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 15/08/21/ Time: 11/20/29

Engineer Signature: Star

Distance: 3m

54.00

-6.45

peak

Note: Average measurement with peak detection at No.2&4

-6.28

47.55

53.83

4

2400.000

ACCURATE TECHNOLOGY CO., LTD.

Site: 1# Chamber Tel:+86-0755-26503290 F1, Bldg, A, Changyuan New Material Port Keyuan Rd, Fax:+86-0755-26503396 Science & Industry Park, Nanshan Shenzhen, P.R. China

Job No.: Ricky2015 #2161

Standard: FCC PK

Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 % EUT: Subwoofer Amplifier

Mode: TX Channel 1(802.11g)

SPA2400DSP Model: Manufacturer: PARTS

Report NO.:ATE20151750 Note:

Polarization: Vertical

Power Source: AC 120V/60Hz

Report No.: ATE20151750

Page 61 of 115

Date: 15/08/21/ Time: 11/16/11

Engineer Signature: Star

Distance: 3m

Page 62 of 115

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

ACCURATE TECHNOLOGY CO., LTD.

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20151750

Job No.: Ricky2015 #2159

Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 % EUT: Subwoofer Amplifier

Mode: TX Channel 11(802.11g)

Model: SPA2400DSP
Manufacturer: PARTS

Note: Report NO.:ATE20151750

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 15/08/21/ Time: 10/58/06

Engineer Signature: Star

Distance: 3m

Note: Average measurement with peak detection at No.2&4

-6.00

31.51

54.00

-22.49

peak

37.51

4

2500.000

Report No.: ATE20151750 Page 63 of 115

Site: 1# Chamber Tel:+86-0755-26503290

Fax:+86-0755-26503396

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 15/08/21/ Time: 11/12/47

Engineer Signature: Star

Distance: 3m

Job No.: Ricky2015 #2160

Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 % EUT: Subwoofer Amplifier

Mode: TX Channel 11(802.11g)

Model: SPA2400DSP Manufacturer: PARTS

Note: Report NO.:ATE20151750

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.500	55.49	-6.04	49.45	74.00	-24.55	peak			
2	2483.500	42.80	-6.04	36.76	54.00	-17.24	peak			
3	2500.000	44.56	-6.00	38.56	74.00	-35.44	peak			
4	2500.000	34.26	-6.00	28.26	54.00	-25.74	peak			

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20151750

Page 64 of 115

Job No.: Ricky2015 #2163 Polarization: Horizontal

Standard: FCC PK Power Source: AC 120V/60Hz
Test item: Radiation Test Date: 15/08/21/

Temp.(C)/Hum.(%) 25 C / 55 % Time: 11/24/33

EUT: Subwoofer Amplifier Engineer Signature: Star Mode: TX Channel 1(802.11n20) Distance: 3m

Model: SPA2400DSP
Manufacturer: PARTS

Note: Report NO.:ATE20151750

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2390.000	55.22	-6.31	48.91	74.00	-25.09	peak			
2	2390.000	43.59	-6.31	37.28	54.00	-16.72	peak			
3	2400.000	64.98	-6.28	58.70	74.00	-15.30	peak			
4	2400.000	53.89	-6.28	47.61	54.00	-6.39	peak			

Page 65 of 115

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Vertical

Job No.: Ricky2015 #2164 Polarization:

Standard: FCC PK Power Source: AC 120V/60Hz

Date: 15/08/21/ Temp.(C)/Hum.(%) 25 C / 55 % Time: 11/29/37

Subwoofer Amplifier EUT: Engineer Signature: Star

Distance: 3m Mode: TX Channel 1(802.11n20)

Model: SPA2400DSP Manufacturer: PARTS

Test item: Radiation Test

Report NO.:ATE20151750 Note:

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2390.000	50.07	-6.31	43.76	74.00	-30.24	peak			
2	2390.000	40.76	-6.31	34.45	54.00	-19.55	peak			
3	2400.000	63.32	-6.28	57.04	74.00	-16.96	peak			
4	2400.000	53.88	-6.28	47.60	54.00	-6.40	peak			

ATC®

Report No.: ATE20151750 Page 66 of 115

ACCURATE TECHNOLOGY CO., LTD. F1,Bldg,A,Changyuan New Material Port Keyuan Rd,

Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Ricky2015 #2166

Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Subwoofer Amplifier

Mode: TX Channel 11(802.11n20)

Model: SPA2400DSP Manufacturer: PARTS

Note: Report NO.:ATE20151750

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 15/08/21/ Time: 11/38/18

Engineer Signature: Star

Distance: 3m

Note: Average measurement with peak detection at No.2&4

-6.00

-6.00

41.36

32.15

74.00

54.00

-32.64

-21.85

peak

peak

47.36

38.15

3

4

2500.000

2500.000

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20151750

Page 67 of 115

Job No.: Ricky2015 #2165 Polarization: Vertical

Standard: FCC PK Power Source: AC 120V/60Hz

Test item: Radiation Test Date: 15/08/21/
Temp.(C)/Hum.(%) 25 C / 55 % Time: 11/34/50

EUT: Subwoofer Amplifier Engineer Signature: Star

Mode: TX Channel 11(802.11n20) Distance: 3m

Model: SPA2400DSP Manufacturer: PARTS

Note: Report NO .: ATE20151750

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.500	52.07	-6.04	46.03	74.00	-27.97	peak			
2	2483.500	42.89	-6.04	36.85	54.00	-17.15	peak			
3	2500.000	44.48	-6.00	38.48	74.00	-35.52	peak			
4	2500.000	35.10	-6.00	29.10	54.00	-24.90	peak			

Job No.:

Report No.: ATE20151750

Page 68 of 115

Site: 1# Chamber Tel:+86-0755-26503290

Fax:+86-0755-26503396

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Polarization: Horizontal Ricky2015 #2170

Standard: FCC PK Power Source: AC 120V/60Hz

Test item: Radiation Test Date: 15/08/21/ Temp.(C)/Hum.(%) 25 C / 55 % Time: 11/56/02

EUT: Engineer Signature: Star Subwoofer Amplifier

Mode: TX Channel 3(802.11n40) Distance: 3m

Model: SPA2400DSP Manufacturer: PARTS

Note: Report NO .: ATE20151750

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	2390.000	54.29	-6.31	47.98	74.00	-26.02	peak				
2	2390.000	44.25	-6.31	37.94	54.00	-16.06	peak				
3	2400.000	56.82	-6.28	50.54	74.00	-23.46	peak				
4	2400.000	45.78	-6.28	39.50	54.00	-14.50	peak				

Page 69 of 115

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

ACCURATE TECHNOLOGY CO., LTD.

Polarization: Vertical

Power Source: AC 120V/60Hz

Report No.: ATE20151750

Site: 1# Chamber Tel:+86-0755-26503290

Fax:+86-0755-26503396

Date: 15/08/21/ Time: 11/51/59

Engineer Signature: Star

Distance: 3m

Job No.: Ricky2015 #2169

Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 % EUT: Subwoofer Amplifier

Mode: TX Channel 3(802.11n40)

Model: SPA2400DSP Manufacturer: PARTS

Note: Report NO.:ATE20151750

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2390.000	55.55	-6.31	49.24	74.00	-24.76	peak			
2	2390.000	45.26	-6.31	38.95	54.00	-15.05	peak			
3	2400.000	57.57	-6.28	51.29	74.00	-22.71	peak			
4	2400.000	48.02	-6.28	41.74	54.00	-12.26	peak			

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20151750

Page 70 of 115

Job No.: Ricky2015 #2167 Polarization: Horizontal

Standard: FCC PK Power Source: AC 120V/60Hz

 Test item:
 Radiation Test
 Date: 15/08/21/

 Temp.(C)/Hum.(%)
 25 C / 55 %
 Time: 11/42/35

EUT: Subwoofer Amplifier Engineer Signature: Star Mode: TX Channel 9(802.11n40) Distance: 3m

Model: SPA2400DSP Manufacturer: PARTS

Note: Report NO .: ATE20151747

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.500	54.45	-6.04	48.41	74.00	-25.59	peak			
2	2483.500	44.58	-6.04	38.54	54.00	-15.46	peak			
3	2500.000	50.07	-6.00	44.07	74.00	-29.93	peak			
4	2500.000	40.89	-6.00	34.89	54.00	-19.11	peak			

Page 71 of 115

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Ricky2015 #2168 Job No.:

Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Subwoofer Amplifier

Mode: TX Channel 9(802.11n40)

SPA2400DSP Model: Manufacturer: PARTS

Note:

Report NO .: ATE20151750

Vertical Polarization:

Power Source: AC 120V/60Hz

Date: 15/08/21/ Time: 11/47/37

Engineer Signature: Star

(cm)

(deg.)

Distance: 3m

									limit1: limit2:	_
80									IIMICZ:	
		MarylolMark	of mathematinipum							
70			-\ 							
60		-								
50	Trapp-17-16-16-17-2-1944-19-6-4	<i>I</i>		Ma						
	and the property			J. William Harde	3	e di line	en mark		k dili	
40	RAMBERT Y				The state of the s	Nazajakanji jiryadi Mij	all the second second	which links almost	hin Albandanan	Appropriate to the same
	Augh.			4		Salar Sa				
30	Y NATY			f	during 3					
) very			6						
30	I very			•						
30 20) very									

(dBuV/m) (dBuV/m)

74.00

54.00

74.00

54.00

44.61

34.48

40.92

29.79

(dB)

-29.39

-19.52

-33.08

-24.21

peak

peak

peak

peak

Note: Average measurement with peak detection at No.2&4

(dBuV/m)

50.65

40.52

46.92

35.79

(dB)

-6.04

-6.04

-6.00

-6.00

(MHz)

1

2

3

4

2483.500

2483.500

2500.000

2500.000

Page 72 of 115

10. RADIATED SPURIOUS EMISSION TEST

10.1.Block Diagram of Test Setup

10.1.1.Block diagram of connection between the EUT and peripherals

10.1.2.Semi-Anechoic Chamber Test Setup Diagram

Below 1GHz

ANTENNA ELEVATION VARIES FROM 1 TO 4 METERS

FCC ID: 2AF3C-SPA

Page 73 of 115

Above 1GHz

ANTENNA ELEVATION VARIES FROM 1 TO 4 METERS

GROUND PLANE

10.2. The Limit For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

Page 74 of 115

10.3.Restricted bands of operation

10.3.1.FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

perii	nucu in any of the freque	ncy bands fisicu below.	
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	$\binom{2}{}$
13.36-13.41			

¹Until February 1, 1999, this restricted band shall be 0.490-0.510

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

10.4. Configuration of EUT on Measurement

The equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

²Above 38.6

Page 75 of 115

10.5. Operating Condition of EUT

10.5.1. Setup the EUT and simulator as shown as Section 10.1.

10.5.2. Turn on the power of all equipment.

10.5.3.Let the EUT work in TX modes measure it. The transmit frequency are 2412-2462 and 2422-2452MHz. We select 2412MHz, 2437MHz, 2462MHz and 2422MHz, 2437MHz, 2452MHz TX frequency to transmit.

10.6.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground(Below 1GHz). The EUT and its simulators are placed on a turntable, which is 1.5 meter high above ground(Above 1GHz). The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

The worst-case data rate for this channel to be 1Mbps for 802.11b mode and 6Mbps for 802.11g mode and 150Mbps for 802.11n mode, based on previous with 802.11 WLAN product design architectures.

The frequency range from 30MHz to 25000MHz is checked.

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

During the radiated emission test, the spectrum analyzer was set with the following configurations:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

Page 76 of 115

10.7. The Field Strength of Radiation Emission Measurement Results

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

- 2. *: Denotes restricted band of operation.
- 3. The fundamental radiated emissions were reduced by Band Reject Filter in the attached plots.
- 4. The EUT is tested radiation emission at each test mode (802.11 b/g/n) in three axes. The worst emissions are reported in all test mode and channels.
 - 5. The radiation emissions from 18-25GHz are not reported, because the test values lower than the limits of 20dB.