Optimization and Computational Linear Algebra – Brett Bernstein

Recitation 6

It may be helpful if after recitation you try to re-solve these problems by yourself, and use them as additional study problems for the class.

1. When solving the least squares problem

$$\min_{x} \|Ax - b\|^2$$

we obtained the normal equations

$$A^T A x = A^T b.$$

- (a) Under what conditions is A^TA invertible?
- (b) If $A^T A$ is not invertible, must the normal equations still have a solution?

Solution.

(a) $A^T A$ is invertible when $\ker(A) = 0$ (which is equivalent to saying the columns of A are linearly independent). Note, this is also exactly when A has a left inverse, and one such left inverse is given by the pseudoinverse

$$A^+ = (A^T A)^{-1} A^T.$$

(b) Yes. Note that $A^TAx = A^Tb$ has a solution exactly when $A^Tb \in \operatorname{im}(A^TA)$. But $\operatorname{im}(A^TA) = \operatorname{im}(A^T)$ (follows from the solutions to homework questions 3.3 and 3.4), so we obtain the result.

For a quick sketch of why $\operatorname{im}(A^TA) = \operatorname{im}(A^T)$ first note that $\operatorname{im}(A^TA) \subseteq \operatorname{im}(A^T)$ is relatively easy to see. Furthermore, $\ker(A^TA) = \ker(A)$ since Ax = 0 if and only if $x^TA^TAx = 0$. This implies $\operatorname{rank}(A^TA) = \operatorname{rank}(A)$ by the fundamental theorem. But we know $\operatorname{rank}(A) = \operatorname{rank}(A^T)$ so $\dim \operatorname{im}(A^TA) = \dim \operatorname{im}(A^T)$ completing the sketch.

2. Let $b \in \mathbb{R}^n$, let $A \in \mathbb{R}^{n \times 2}$ have the form

$$A = \begin{bmatrix} 1 & t_1 \\ 1 & t_2 \\ \vdots & \vdots \\ 1 & t_n \end{bmatrix},$$

and let $x^* \in \mathbb{R}^2$ be a minimizer for the least squares problem

$$\min_{x} \|Ax - b\|^2.$$

Prove that $\sum_{i=1}^{n} (Ax^* - b)_i = 0$. [Note: In linear regression terminology, this is the statement that the residuals have zero mean.]

Solution. Since $Ax^* = P_{im(A)}(b)$ we have $Ax - b \perp im(A)$. But the all 1's vector **1** is in im(A), so

$$0 = \mathbf{1}^{T} (Ax^* - b) = \sum_{i=1}^{n} (Ax^* - b)_{i}.$$

3. For any $\alpha \in \mathbb{R}^3$ define the function $f_\alpha : \mathbb{R} \to \mathbb{R}$ by $f_\alpha(x) = \alpha_1 + \alpha_2 x + \alpha_3 x^2$. Given a dataset $(t_1, y_1), \ldots, (t_n, y_n) \in \mathbb{R}^2$ show how to solve the least squares problem

$$\min_{\alpha} \sum_{i=1}^{n} (f_{\alpha}(t_i) - y_i)^2.$$

Solution. Define a matrix $A \in \mathbb{R}^{n \times 3}$ by

$$A = \begin{bmatrix} 1 & t_1 & t_1^2 \\ 1 & t_2 & t_2^2 \\ \vdots & \vdots & \vdots \\ 1 & t_n & t_n^2 \end{bmatrix}.$$

Then we have

$$\sum_{i=1}^{n} (f_{\alpha}(t_i) - y_i)^2 = ||A\alpha - y||^2,$$

where $y \in \mathbb{R}^n$ has y_i as its *i*th component. Thus we can obtain the solution by solving the normal equations

$$A^T A \alpha = A^T y$$

for α .

- 4. Let $A \in \mathbb{R}^{m \times n}$ have linearly independent columns.
 - (a) Give an expression for $P_{im(A)}$ in terms of the QR-factorization of A.
 - (b) Give an expression for $P_{im(A)}$ in terms of A.

Solution.

- (a) The QR factorization lets us write A = QR where Q has orthonormal columns and R is upper triangular. Here the columns of Q form an orthonormal basis for im(A) so we have $P_{im(A)} = QQ^T$ by the previous lab.
- (b) If x^* is a minimizer for $||Ax b||^2$ then $Ax^* = P_{im(A)}(b)$. Thus we have

$$P_{\text{im}(A)} = A(A^T A)^{-1} A^T = AA^+.$$

5. If Q is orthogonal prove that $\langle x, y \rangle = \langle Qx, Qy \rangle$ for all $x, y \in \mathbb{R}^n$.

Solution. Note that

$$\langle Qx, Qy \rangle = (Qx)^T (Qy) = x^T Q^T Qy = x^T y = \langle x, y \rangle.$$

6. Let U be a subspace of \mathbb{R}^n . Show that $\dim(U) + \dim(U^{\perp}) = n$.

Solution. Let v_1, \ldots, v_k be a basis for U and let w_1, \ldots, w_p be a basis for U^{\perp} . We claim that $v_1, \ldots, v_k, w_1, \ldots, w_p$ is a basis for \mathbb{R}^n (so that k+p=n). First note that the list is linearly independent by a result from lab 2 since $U \cap U^{\perp} = \{0\}$: if $v \in U \cap U^{\perp}$ then $\langle v, v \rangle = 0$ so v = 0. We know that our list spans \mathbb{R}^n since homework 5 shows that any vector $u \in \mathbb{R}^n$ can be written as u = x + y where $x \in U$ and $y \in U^{\perp}$.

7. Consider the block matrices

$$J = \begin{bmatrix} A & B \end{bmatrix} \in \mathbb{R}^{m \times (n+k)}$$
 and $Q = \begin{bmatrix} C \\ D \end{bmatrix} \in \mathbb{R}^{(n+k) \times p}$

where $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{m \times k}$, $C \in \mathbb{R}^{n \times p}$ and $D \in \mathbb{R}^{k \times p}$. Compute JQ and Qx where $x \in \mathbb{R}^p$.

Solution.
$$JQ = AC + BD$$
 and $Qx = \begin{bmatrix} Cx \\ Dx \end{bmatrix}$.

8. Let $f, g : [0, 1] \to \mathbb{R}$ be defined by f(x) = 1 and g(x) = x. Recall that the continuous functions from [0, 1] to \mathbb{R} form a vector space with inner product

$$\langle p, q \rangle = \int_0^1 p(t)q(t) dt.$$

- (a) Show that f, g are linearly independent.
- (b) We just showed that f, g is a basis for $\operatorname{Span}(f, g)$. Call this basis B. Define the coordinatization function $\Phi_B : \operatorname{Span}(f, g) \to \mathbb{R}^3$ by

$$\Phi_B(\alpha_1 f + \alpha_2 g) = \alpha.$$

That is, it maps a vector in Span(f, g) to its vector of coefficients. Compute $\Phi_B(j)$ where j(x) = 4x - 3.

- (c) Compute an orthonormal basis C for $\mathrm{Span}(f,g)$.
- (d) Compute $\Phi_C(j)$ where j(x) = 4x 3.
- (e) Let $k(x) = x^2$. Compute $P_{\text{Span}(f,g)}(k)$.
- (f) In what sense is $P_{\text{Span}(f,g)}(k)$ the best approximation of k.

Solution.

(a) Note that g is not constant, so it is not a scalar multiple of f.

- (b) $\Phi_B(j) = (-3, 4)$.
- (c) We apply Gram-Schmidt. Let $u_1 = f$ since ||f|| = 1. Define $w_2 : [0,1] \to \mathbb{R}$ by

$$w_2 = g - \langle g, u_1 \rangle u_1 = x - \int_0^1 t \, dt = x - 1/2.$$

Then we set $u_2 = w_2/||w_2||$ where

$$||w_2||^2 = \int_0^1 (x - 1/2)^2 dx = \int_{-1/2}^{1/2} u^2 du = \frac{1}{12}$$

so $u_2 = \sqrt{12}(x - 1/2)$.

- (d) $\Phi_C(i) = (-1, 4/\sqrt{12})$
- (e) Recall that

$$P_{\text{Span}(f,g)}(k) = \langle k, u_1 \rangle u_1 + \langle k, u_2 \rangle u_2.$$

Computing we have

$$\langle k, u_1 \rangle = \int_0^1 x^2 dx = 1/3$$

 $\langle k, u_2 \rangle = \sqrt{12} \int_0^1 x^3 - x^2/2 dx = \sqrt{12} (1/4 - 1/6) = \frac{1}{\sqrt{12}}.$

Thus

$$P_{\text{Span}(f,g)}(k) = 1/3 + (x - 1/2) = x - 1/6.$$

(f) By definition, $P_{\text{Span}(f,g)}(k)$ is the minimizer of

$$\min_{h \in \operatorname{Span}(f,g)} \|h - k\|^2$$

where

$$||h - k||^2 = \int_0^1 (h(x) - k(x))^2 dx.$$

9. We can also use coordinatization for \mathbb{R}^n . If we have a basis $B = v_1, \ldots, v_n$ for \mathbb{R}^n then we can define the coordinatization (or change-of-basis) map $\Phi_B : \mathbb{R}^n \to \mathbb{R}^n$ by

$$\Phi_B(\alpha_1 v_1 + \dots + \alpha_n v_n) = \alpha.$$

(a) Let B denote the basis (1,0), (-1,1) for \mathbb{R}^2 . Compute

$$\Phi_B\left(\begin{bmatrix}1\\0\end{bmatrix}\right), \quad \Phi_B\left(\begin{bmatrix}-1\\1\end{bmatrix}\right), \quad \text{and} \quad \Phi_B\left(\begin{bmatrix}0\\1\end{bmatrix}\right).$$

(b) Suppose $B = v_1, \ldots, v_n$ is a basis for \mathbb{R}^n . Give the matrices corresponding to Φ_B and Φ_B^{-1} (possible since $\Phi_B : \mathbb{R}^n \to \mathbb{R}^n$ is linear and invertible).

(c) For which bases B of \mathbb{R}^n does Φ_B preserve inner products? That is, for which bases B does

$$\langle \Phi_B(x), \Phi_B(y) \rangle = \langle x, y \rangle$$

for all $x, y \in \mathbb{R}^n$?

Solution.

(a)

$$\Phi_B\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\0\end{bmatrix},$$

$$\Phi_B\left(\begin{bmatrix} -1\\1 \end{bmatrix}\right) = \begin{bmatrix} 0\\1 \end{bmatrix},$$

$$\Phi_B\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}1\\1\end{bmatrix}.$$

- (b) Let $A \in \mathbb{R}^{n \times n}$ denote the matrix with v_i as its ith column. Then $\Phi_B = A^{-1}$ and $\Phi_B^{-1} = A$.
- (c) Orthonormal bases (see question 5 above).