Small Variance Asymptotics for Non-parametric Bayesian Clustering

Abhishek Kumar | Manish Bera | Anubhav Mittal Supervised by: Dr. Piyush Rai CS698X 2017-18 II

November 16, 2019

Table of contents

- Introduction
- Dirichlet Process
 - Inference
 - Hard clustering
- Hierarchical Dirichlet process Mixture Models
- Extending to Exponential Family
 - Background
 - Bregman Hard clustering
- Evaluation

• Learning the correct model size is one of the biggest challenges

- Learning the correct model size is one of the biggest challenges
- Bayesian frameworks offer ways to model infinite mixture models and models in which we don't fix number of parameters upfront.

- Learning the correct model size is one of the biggest challenges
- Bayesian frameworks offer ways to model infinite mixture models and models in which we don't fix number of parameters upfront.
- Despite the huge success of Bayesian framework, simpler non-Bayesian methods such as k-means have been more popular, for large scale data due to their simplicity in implementation and high scalability.

- Learning the correct model size is one of the biggest challenges
- Bayesian frameworks offer ways to model infinite mixture models and models in which we don't fix number of parameters upfront.
- Despite the huge success of Bayesian framework, simpler non-Bayesian methods such as k-means have been more popular, for large scale data due to their simplicity in implementation and high scalability.
- In this project, we study recent attempts to reach midddleground, so that we get a non parametric model which is scalable.

- Learning the correct model size is one of the biggest challenges
- Bayesian frameworks offer ways to model infinite mixture models and models in which we don't fix number of parameters upfront.
- Despite the huge success of Bayesian framework, simpler non-Bayesian methods such as k-means have been more popular, for large scale data due to their simplicity in implementation and high scalability.
- In this project, we study recent attempts to reach midddleground, so that we get a non parametric model which is scalable.
- We start with a hard non-parameteric clustering algorithm.

- Learning the correct model size is one of the biggest challenges
- Bayesian frameworks offer ways to model infinite mixture models and models in which we don't fix number of parameters upfront.
- Despite the huge success of Bayesian framework, simpler non-Bayesian methods such as k-means have been more popular, for large scale data due to their simplicity in implementation and high scalability.
- In this project, we study recent attempts to reach midddleground, so that we get a non parametric model which is scalable.
- We start with a hard non-parameteric clustering algorithm.
- We then extend this algorithm to a hierarchical structure using Hierarchical Dirichlet process.

- Learning the correct model size is one of the biggest challenges
- Bayesian frameworks offer ways to model infinite mixture models and models in which we don't fix number of parameters upfront.
- Despite the huge success of Bayesian framework, simpler non-Bayesian methods such as k-means have been more popular, for large scale data due to their simplicity in implementation and high scalability.
- In this project, we study recent attempts to reach midddleground, so that we get a non parametric model which is scalable.
- We start with a hard non-parameteric clustering algorithm.
- We then extend this algorithm to a hierarchical structure using Hierarchical Dirichlet process.
- Finally, we generalize the clustering algorithm, to use bregman divergence instead of just euclidean distance.

For a random distribution to be G to be distributed according to a Dirichlet Process, its marginal distributions have to be Dirichlet distributed

For a random distribution to be G to be distributed according to a Dirichlet Process, its marginal distributions have to be Dirichlet distributed

Definition

(Ferguson) We say G is Dirichlet Process distributed with base distribution H and concentration parameter α , written as $G \sim DP(\alpha, H)$ if $(G(A_1), \ldots, G(A_r)) \sim Dir(\alpha H(A_1), \ldots, \alpha H(A_r))$ for every finite measurable partition A_1, \ldots, A_r of Θ which is support of H

For a random distribution to be G to be distributed according to a Dirichlet Process, its marginal distributions have to be Dirichlet distributed

Definition

(Ferguson) We say G is Dirichlet Process distributed with base distribution H and concentration parameter α , written as $G \sim DP(\alpha, H)$ if $(G(A_1), \ldots, G(A_r)) \sim Dir(\alpha H(A_1), \ldots, \alpha H(A_r))$ for every finite measurable partition A_1, \ldots, A_r of Θ which is support of H

• Intuitive roles for H and α as $\mathbb{E}[G(A)] = H(A)$ and $V[G(A)] = \frac{H(A)(1-H(A))}{\alpha+1}$

For a random distribution to be G to be distributed according to a Dirichlet Process, its marginal distributions have to be Dirichlet distributed

Definition

(Ferguson) We say G is Dirichlet Process distributed with base distribution H and concentration parameter α , written as $G \sim DP(\alpha, H)$ if $(G(A_1), \ldots, G(A_r)) \sim Dir(\alpha H(A_1), \ldots, \alpha H(A_r))$ for every finite measurable partition A_1, \ldots, A_r of Θ which is support of H

- Intuitive roles for H and α as $\mathbb{E}[G(A)] = H(A)$ and $V[G(A)] = \frac{H(A)(1-H(A))}{\alpha+1}$
- Constructions like Blackwell-MacQueen urn scheme and Stick breaking process ensure existence of DP.

• Let $G \sim DP(\alpha, H)$ and $\theta_1, \dots \theta_n$ be i.i.d. draws from G. Let $A_1, \dots A_r$ be a finite measurable partition of Θ and let $n_k = \# \{i : \theta_i \in A_k\}$

- Let $G \sim DP(\alpha, H)$ and $\theta_1, \dots \theta_n$ be i.i.d. draws from G. Let $A_1, \dots A_r$ be a finite measurable partition of Θ and let $n_k = \#$ $\{i : \theta_i \in A_k\}$
- Using conjugacy:

$$(G(A_1),\ldots,G(A_r)|\theta_1,\ldots\theta_n) \sim Dir(\alpha H(A_1)+n_1,\ldots,\alpha H(A_r)+n_r)$$

- Let $G \sim DP(\alpha, H)$ and $\theta_1, \dots \theta_n$ be i.i.d. draws from G. Let $A_1, \dots A_r$ be a finite measurable partition of Θ and let $n_k = \# \{i : \theta_i \in A_k\}$
- Using conjugacy: $(G(A_1), \ldots, G(A_r)|\theta_1, \ldots \theta_n) \sim Dir(\alpha H(A_1) + n_1, \ldots, \alpha H(A_r) + n_r)$
- Simple algebra yields: $G|\theta_1, \dots \theta_n \sim DP(\alpha + n, \frac{\alpha}{\alpha + n}H + \frac{n}{\alpha + n}\frac{\sum_{i=1}^n \delta_{\theta_i}}{n})$

- Let $G \sim DP(\alpha, H)$ and $\theta_1, \dots \theta_n$ be i.i.d. draws from G. Let $A_1, \dots A_r$ be a finite measurable partition of Θ and let $n_k = \# \{i : \theta_i \in A_k\}$
- Using conjugacy: $(G(A_1), \ldots, G(A_r)|\theta_1, \ldots \theta_n) \sim Dir(\alpha H(A_1) + n_1, \ldots, \alpha H(A_r) + n_r)$
- Simple algebra yields: $G|\theta_1, \dots \theta_n \sim DP(\alpha + n, \frac{\alpha}{\alpha + n}H + \frac{n}{\alpha + n}\frac{\sum_{i=1}^n \delta_{\theta_i}}{n})$
- The predictive distribution can be written as $\theta_{n+1} \in A | \theta_1, \dots \theta_n \sim \frac{1}{\alpha+n} (\alpha H(A) + \sum_{i=1}^n \delta_{\theta_i}(A))$ very very intuitive \odot

- Let $G \sim DP(\alpha, H)$ and $\theta_1, \dots \theta_n$ be i.i.d. draws from G. Let $A_1, \dots A_r$ be a finite measurable partition of Θ and let $n_k = \# \{i : \theta_i \in A_k\}$
- Using conjugacy: $(G(A_1), \ldots, G(A_r)|\theta_1, \ldots \theta_n) \sim Dir(\alpha H(A_1) + n_1, \ldots, \alpha H(A_r) + n_r)$
- Simple algebra yields: $G|\theta_1, \dots \theta_n \sim DP(\alpha + n, \frac{\alpha}{\alpha + n}H + \frac{n}{\alpha + n}\frac{\sum_{i=1}^n \delta_{\theta_i}}{n})$
- The predictive distribution can be written as $\theta_{n+1} \in A|\theta_1, \dots \theta_n \sim \frac{1}{\alpha+n}(\alpha H(A) + \sum_{i=1}^n \delta_{\theta_i}(A))$ very very intuitive \odot
- This sequence of predictive distributions is called Blackwell MacQueen Urn Scheme

- Let $G \sim DP(\alpha, H)$ and $\theta_1, \dots \theta_n$ be i.i.d. draws from G. Let $A_1, \dots A_r$ be a finite measurable partition of Θ and let $n_k = \# \{i : \theta_i \in A_k\}$
- Using conjugacy: $(G(A_1), \ldots, G(A_r)|\theta_1, \ldots, \theta_n) \sim Dir(\alpha H(A_1) + n_1, \ldots, \alpha H(A_r) + n_r)$
- Simple algebra yields: $G|\theta_1, \dots \theta_n \sim DP(\alpha + n, \frac{\alpha}{\alpha + n}H + \frac{n}{\alpha + n}\frac{\sum_{i=1}^n \delta_{\theta_i}}{n})$
- The predictive distribution can be written as $\theta_{n+1} \in A|\theta_1, \dots \theta_n \sim \frac{1}{\alpha+n}(\alpha H(A) + \sum_{i=1}^n \delta_{\theta_i}(A))$ very very intuitive \odot
- This sequence of predictive distributions is called Blackwell MacQueen Urn Scheme
- We have seen CRP and stick breaking process in class.

• Can be seen as infinite dimensional generalization of Dirichlet distribution.

- Can be seen as infinite dimensional generalization of Dirichlet distribution.
- ullet For a DPMM, we define a generative story as follows: Each new incoming point chooses a cluster c with probability π_c , and then generates an observation from the Gaussian distribution corresponding to that cluster

- Can be seen as infinite dimensional generalization of Dirichlet distribution.
- ullet For a DPMM, we define a generative story as follows: Each new incoming point chooses a cluster c with probability π_c , and then generates an observation from the Gaussian distribution corresponding to that cluster
- The means of the clusters are drawn from some prior distribution G_0 , and we fix the co-variance as $\sigma^2 I$.

- Can be seen as infinite dimensional generalization of Dirichlet distribution.
- For a DPMM, we define a generative story as follows: Each new incoming point chooses a cluster c with probability π_c , and then generates an observation from the Gaussian distribution corresponding to that cluster
- The means of the clusters are drawn from some prior distribution G_0 , and we fix the co-variance as $\sigma^2 I$.

d

$$\mu_1,, \mu_k \sim G_0$$

$$\pi \sim \text{Dir}(\frac{\alpha}{k}, \frac{\alpha}{k}, \frac{\alpha}{k})$$

$$z_1,, z_n \sim \text{Multinoulli}(\pi)$$

$$x_1,, x_n \sim \mathcal{N}(\mu_{z_i}, \sigma^2 I)$$

- Can be seen as infinite dimensional generalization of Dirichlet distribution.
- ullet For a DPMM, we define a generative story as follows: Each new incoming point chooses a cluster c with probability π_c , and then generates an observation from the Gaussian distribution corresponding to that cluster
- The means of the clusters are drawn from some prior distribution G_0 , and we fix the co-variance as $\sigma^2 I$.

0

$$\mu_1,, \mu_k \sim G_0$$
 $\pi \sim \text{Dir}(\frac{\alpha}{k}, \frac{\alpha}{k}, \frac{\alpha}{k})$
 $z_1,, z_n \sim \text{Multinoulli}(\pi)$
 $x_1,, x_n \sim \mathcal{N}(\mu_{z_i}, \sigma^2 I)$

• We use Gibbs sampling for inference in the model.

- We use Gibbs sampling for inference in the model.
- For each point x_i , we assign it to cluster c with probability $\frac{n_{-i,c}}{Z} \mathcal{N}(x_i | \mu_c, \sigma^2 I)$.

- We use Gibbs sampling for inference in the model.
- For each point x_i , we assign it to cluster c with probability $\frac{n_{-i,c}}{Z} \mathcal{N}(x_i | \mu_c, \sigma^2 I)$.
- With probability $\frac{\alpha}{Z}$. $\int \mathcal{N}(x_i|\mu,\sigma^2I)dG_0(\mu)$, we start a new cluster . For this newly formed cluster, we compute the means using the prior G_0 and the point x_i which created this cluster.

- We use Gibbs sampling for inference in the model.
- For each point x_i , we assign it to cluster c with probability $\frac{n_{-i,c}}{Z} \mathcal{N}(x_i | \mu_c, \sigma^2 I)$.
- With probability $\frac{\alpha}{Z}$. $\int \mathcal{N}(x_i|\mu,\sigma^2I)dG_0(\mu)$, we start a new cluster . For this newly formed cluster, we compute the means using the prior G_0 and the point x_i which created this cluster.
- After assigning cluster to each point, we compute the means of all clusters using the points assigned to them and the prior.

- We use Gibbs sampling for inference in the model.
- For each point x_i , we assign it to cluster c with probability $\frac{n_{-i,c}}{Z} \mathcal{N}(x_i | \mu_c, \sigma^2 I)$.
- With probability $\frac{\alpha}{Z}$. $\int \mathcal{N}(x_i|\mu,\sigma^2I)dG_0(\mu)$, we start a new cluster . For this newly formed cluster, we compute the means using the prior G_0 and the point x_i which created this cluster.
- After assigning cluster to each point, we compute the means of all clusters using the points assigned to them and the prior.
- Proceed in cyclic manner until convergence.

• We first define G_0 (the prior distribution over the means) as $\mathcal{N}(0, \rho I)$.

- We first define G_0 (the prior distribution over the means) as $\mathcal{N}(0, \rho I)$.
- Probability of starting new cluster :

$$\frac{\alpha}{Z}(2\pi(\rho+\sigma^2))^{-\frac{d}{2}}\cdot exp(-\frac{1}{2(\rho+\sigma^2)}||x_i||^2)$$

- We first define G_0 (the prior distribution over the means) as $\mathcal{N}(0, \rho I)$.
- Probability of starting new cluster : $\frac{\alpha}{Z}(2\pi(\rho+\sigma^2))^{-\frac{d}{2}} \cdot exp(-\frac{1}{2(\rho+\sigma^2)}||x_i||^2)$
- Probability of getting assigned to cluster c is : $\frac{n_{-i,c}}{7}(2\pi\sigma^2)^{-\frac{d}{2}} \cdot exp(-\frac{1}{2\sigma^2}||x_i \mu_c||^2)$

- We first define G_0 (the prior distribution over the means) as $\mathcal{N}(0, \rho I)$.
- Probability of starting new cluster : $\frac{\alpha}{Z}(2\pi(\rho+\sigma^2))^{-\frac{d}{2}} \cdot exp(-\frac{1}{2(\rho+\sigma^2)}||x_i||^2)$
- Probability of getting assigned to cluster c is : $\frac{n_{-i,c}}{7}(2\pi\sigma^2)^{-\frac{d}{2}} \cdot exp(-\frac{1}{2\sigma^2}||x_i \mu_c||^2)$
- In hard clustering, we make $\sigma^2 \rightarrow 0$.

- We first define G_0 (the prior distribution over the means) as $\mathcal{N}(0, \rho I)$.
- Probability of starting new cluster : $\frac{\alpha}{Z}(2\pi(\rho+\sigma^2))^{-\frac{d}{2}} \cdot exp(-\frac{1}{2(\rho+\sigma^2)}||x_i||^2)$
- Probability of getting assigned to cluster c is : $\frac{n_{-i,c}}{Z}(2\pi\sigma^2)^{-\frac{d}{2}}\cdot exp(-\frac{1}{2\sigma^2}||x_i-\mu_c||^2)$
- In hard clustering, we make $\sigma^2 \rightarrow 0$.
- The probabilities become binary(exact form in report) and resulting update turns out to be analogous to k-means where we assign the point to closest mean

- We first define G_0 (the prior distribution over the means) as $\mathcal{N}(0, \rho I)$.
- Probability of starting new cluster : $\frac{\alpha}{Z}(2\pi(\rho+\sigma^2))^{-\frac{d}{2}} \cdot exp(-\frac{1}{2(\rho+\sigma^2)}||x_i||^2)$
- Probability of getting assigned to cluster c is : $\frac{n_{-i,c}}{Z}(2\pi\sigma^2)^{-\frac{d}{2}}\cdot exp(-\frac{1}{2\sigma^2}||x_i-\mu_c||^2)$
- In hard clustering, we make $\sigma^2 \rightarrow 0$.
- The probabilities become binary(exact form in report) and resulting update turns out to be analogous to k-means where we assign the point to closest mean
- However one subtle difference is that if the distance to closest mean is is greater than $\lambda(\alpha)$, then the probabilities corresponding to each of the existing cluster falls to zero and we start a new cluster.

Underlying Objective function

• We will show in report that the hard clustering algorithm minimizes the objective function:

$$\min_{\{l_j\}_{j=1}^k} \sum_{c=1}^k \sum_{x \in l_c} ||x - \mu_c||^2 + \lambda k$$

where
$$\mu_c = \frac{\sum_{x_i \in I_c} x_i}{|I_c|}$$

Underlying Objective function

• We will show in report that the hard clustering algorithm minimizes the objective function:

$$\min_{\{l_j\}_{j=1}^k} \sum_{c=1}^k \sum_{x \in I_c} ||x - \mu_c||^2 + \lambda k$$

where
$$\mu_c = \frac{\sum_{x_i \in I_c} x_i}{|I_c|}$$

2 This is similar to the K-means algorithm, only value of k is not fixed and the objective penalizes large k.

Hard Clustering Algorithm

- Input: $x_1, ..., x_n, \lambda$: cluster penalty parameter.
- Output: Clustering of points in $l_1, ..., l_k$ and no. of cluster k.
 - Initialize $k=1, l_1=x_1,...,x_n, \mu_1=\frac{\sum x_i}{n}$ and $z_i=1$ for each point.
 - 2 Repeat until convergence:
 - For each point x_i ,
 - Compute distance from all means i.e. $d_{ic} = ||x_i \mu_c||^2$ for all c.
 - if $min_c d_{ic} > \lambda$, set $k = k + 1, z_i = k, \mu_k = x_i$.
 - Else, set $z_i = min_c d_{ic}$
 - Assign points x_i with $z_i = c$ to the cluster l_c .
 - $\bullet \ \ \text{For each cluster c,} \ \mu_{c} = \frac{\sum_{\mathbf{x}_{i} \in l_{c}} \mathbf{x}_{i}}{|l_{c}|}.$

ullet Assume that we have J data-sets with each having n_j data-points.

- Assume that we have J data-sets with each having n_j data-points.
- We want to learn clusters over these data-sets but we want them to share parameters and be related.

- Assume that we have J data-sets with each having n_j data-points.
- We want to learn clusters over these data-sets but we want them to share parameters and be related.
- HDP is a non parametric prior which allows mixture models to share components.

- Assume that we have J data-sets with each having n_j data-points.
- We want to learn clusters over these data-sets but we want them to share parameters and be related.
- HDP is a non parametric prior which allows mixture models to share components.

- Assume that we have J data-sets with each having n_j data-points.
- We want to learn clusters over these data-sets but we want them to share parameters and be related.
- HDP is a non parametric prior which allows mixture models to share components.

Definition

$$G_0|\gamma, H \sim DP(\gamma, H)$$
 $G_j|\alpha, G_0 \sim DP(\alpha, G_0)$
 $\phi_{jj}|G_j \sim G_j$ $\chi_{jj}|\phi_{jj} \sim F(\phi_{jj})$

where G_0 is global measure and G_j 's are specific to data-sets. This allows mixture models to share components.

- Assume that we have J data-sets with each having n_j data-points.
- We want to learn clusters over these data-sets but we want them to share parameters and be related.
- HDP is a non parametric prior which allows mixture models to share components.

Definition

$$G_0|\gamma, H \sim DP(\gamma, H)$$
 $G_j|\alpha, G_0 \sim DP(\alpha, G_0)$
 $\phi_{jj}|G_j \sim G_j$ $\chi_{jj}|\phi_{jj} \sim F(\phi_{jj})$

where G_0 is global measure and G_j 's are specific to data-sets. This allows mixture models to share components.

 There is a metaphor called Chinese Restaurant Franchise that gives an alternative view of HDP.

 Similar to previous case, we can achieve a hard clustering based algorithm by applying small variance asymptotics to HDP model.

- Similar to previous case, we can achieve a hard clustering based algorithm by applying small variance asymptotics to HDP model.
- One can show that HDP minimizes following objective :

$$\min_{\{l_p\}_{p=1}^g} \ \sum_{p=1}^g \sum_{x_i j \in I_p} ||x_{ij} - \mu_p||^2 + \lambda_I k + \lambda_g g$$

- Similar to previous case, we can achieve a hard clustering based algorithm by applying small variance asymptotics to HDP model.
- One can show that HDP minimizes following objective :

$$\min_{\{l_p\}_{p=1}^g} \ \sum_{p=1}^g \sum_{x_i j \in I_p} ||x_{ij} - \mu_p||^2 + \lambda_I k + \lambda_g g$$

- Similar to previous case, we can achieve a hard clustering based algorithm by applying small variance asymptotics to HDP model.
- One can show that HDP minimizes following objective :

$$\min_{\{l_p\}_{p=1}^g} \ \sum_{p=1}^g \sum_{x_i j \in I_p} ||x_{ij} - \mu_p||^2 + \lambda_I k + \lambda_g g$$

where k,g is total number of local and global clusters respectively. λ_I, λ_g are regularization parameters, I_p is the set points assigned to cluster p and $\mu_P = \frac{1}{|I_n|} \sum_{x_{ij} \in I_p} x_{ij}$

- Similar to previous case, we can achieve a hard clustering based algorithm by applying small variance asymptotics to HDP model.
- One can show that HDP minimizes following objective :

$$\min_{\{l_p\}_{p=1}^g} \ \sum_{p=1}^g \sum_{x_i j \in I_p} ||x_{ij} - \mu_p||^2 + \lambda_I k + \lambda_g g$$

where k,g is total number of local and global clusters respectively. λ_l,λ_g are regularization parameters, l_p is the set points assigned to cluster p and $\mu_p = \frac{1}{|l_p|} \sum_{x_{ij} \in l_p} x_{ij}$ The hard Gaussian HDP algorithm has not been shown here but will be there in report.

Definitions

Exponential family distribution :

$$p(\mathbf{x}|\theta) = h(\mathbf{x}) \exp(\langle \mathbf{x}, \theta \rangle - \psi(\theta))$$

Definitions

Exponential family distribution :

$$p(\mathbf{x}|\theta) = h(\mathbf{x}) exp(\langle \mathbf{x}, \theta \rangle - \psi(\theta))$$

Conjugate Prior :

$$p(\theta|\tau,\eta) = \exp(\langle \theta,\tau \rangle - \eta \psi(\theta) - m(\tau,\eta))$$

Posterior has same form as prior with $au= au+oldsymbol{x}_i$ and $\eta=\eta+1$

Definitions

Exponential family distribution :

$$p(\mathbf{x}|\theta) = h(\mathbf{x}) exp(\langle \mathbf{x}, \theta \rangle - \psi(\theta))$$

Conjugate Prior :

$$p(\theta|\tau,\eta) = exp(\langle \theta,\tau \rangle - \eta \psi(\theta) - m(\tau,\eta))$$

Posterior has same form as prior with $au= au+oldsymbol{x}_i$ and $\eta=\eta+1$

Definition

(Bregman, 1967) Let $\phi:S\to\mathbb{R}$ be a strictly convex function defined on convex set S such that ϕ is differentiable on interior of S. The bregman divergence is defined as $d_\phi=\phi(\mathbf{x})-\phi(\mathbf{y})-\langle\mathbf{x}-\mathbf{y},\nabla\phi(\mathbf{y})\rangle$

Bregman Divergence

• Squared euclidean distance is a bregman divergence with $\phi(\mathbf{x}) = \langle \mathbf{x}, \mathbf{x} \rangle$

Bregman Divergence

- Squared euclidean distance is a bregman divergence with $\phi(\mathbf{x}) = \langle \mathbf{x}, \mathbf{x} \rangle$
- If π is probability vector, then negative entropy $\phi(\pi) = \sum_{i=1}^{D} p_i \log p_i$ is a convex function. The corresponding bregman divergence is

$$d_{\phi}(m{\pi},m{x}) = \mathit{KL}(m{\pi}||m{x})$$

Bregman Divergence

- Squared euclidean distance is a bregman divergence with φ(x) = ⟨x, x⟩
 If π is probability vector, then negative entropy φ(π) = Σ^D_{i=1} p_i log p
- If π is probability vector, then negative entropy $\phi(\pi) = \sum_{j=1}^{D} p_j \log p_j$ is a convex function. The corresponding bregman divergence is

$$d_{\phi}(\boldsymbol{\pi}, \boldsymbol{x}) = \mathit{KL}(\boldsymbol{\pi}||\boldsymbol{x})$$

Definition

(Rockfellar 1970) Let ψ be a **proper**, **closed**, convex function with $\Theta = interior(domain(\psi))$. The pair (Θ, ψ) is called a convex function of legendre type if following are satisfied

- Θ is nonempty
- ullet ψ is strictly convex and differentiable on Θ
- $\forall \theta_b \in bd(\Theta), \lim_{\theta \to \theta_b} ||\nabla \psi(\theta)|| \to \infty, \theta \in \Theta$

Lemma

(Barndoff 1978) Let ψ be the cumulant function of a regular exponential family with natural parameter space $\Theta = dom(\psi)$. Then (Θ, ψ) is a convex function of legendre type

Lemma

(Barndoff 1978) Let ψ be the cumulant function of a regular exponential family with natural parameter space $\Theta = dom(\psi)$. Then (Θ, ψ) is a convex function of legendre type

Definition

(Rockfellar 1970) Let psi be a real valued function on \mathbb{R}^d . Then its conjugate function ψ^* is given by $\psi^*(t) = \sup\{\langle t, \theta \rangle - \psi(\theta)\}$

Lemma

(Barndoff 1978) Let ψ be the cumulant function of a regular exponential family with natural parameter space $\Theta = dom(\psi)$. Then (Θ, ψ) is a convex function of legendre type

Definition

(Rockfellar 1970) Let psi be a real valued function on \mathbb{R}^d . Then its conjugate function ψ^* is given by $\psi^*(t) = \sup\{\langle t, \theta \rangle - \psi(\theta)\}$

$$\psi^*(t) = \langle t, \theta^+ \rangle - \psi(\theta^+)$$

Lemma

(Barndoff 1978) Let ψ be the cumulant function of a regular exponential family with natural parameter space $\Theta = dom(\psi)$. Then (Θ, ψ) is a convex function of legendre type

Definition

(Rockfellar 1970) Let psi be a real valued function on \mathbb{R}^d . Then its conjugate function ψ^* is given by $\psi^*(t) = \sup\{\langle t, \theta \rangle - \psi(\theta)\}$

$$\psi^*(t) = \langle t, \theta^+ \rangle - \psi(\theta^+)$$

Theorem

(Rockfellar) Let ψ be proper, closed strictly convex function with conjugate function ψ^* . Let $\Theta = \operatorname{int}(\operatorname{dom}(\psi))$ and $\Theta^* = \operatorname{int}(\operatorname{dom}(\psi^*))$. If (θ, ψ) is a convex function of legendre type then

Theorem (cntd..)

- (θ^*, ψ^*) is a convex function of legendre type.
- (θ^*, ψ^*) and (θ, ψ) are called legendre duals of each other.
- The gradient function $\nabla \psi$ is a one to one function from open convex set Θ onto the open convex set Θ^* .
- $\nabla \psi^* = (\nabla \psi)^{-1}$

Theorem (cntd..)

- (θ^*, ψ^*) is a convex function of legendre type.
- (θ^*, ψ^*) and (θ, ψ) are called legendre duals of each other.
- The gradient function $\nabla \psi$ is a one to one function from open convex set Θ onto the open convex set Θ^* .
- $\nabla \psi^* = (\nabla \psi)^{-1}$

Let $oldsymbol{\mu}(heta)$ denote expectation parameter of an exponential family $oldsymbol{p}_{\psi, heta}$

Theorem (cntd..)

- (θ^*, ψ^*) is a convex function of legendre type.
- (θ^*, ψ^*) and (θ, ψ) are called legendre duals of each other.
- The gradient function $\nabla \psi$ is a one to one function from open convex set Θ onto the open convex set Θ^* .
- $\nabla \psi^* = (\nabla \psi)^{-1}$

Let $\mu(\theta)$ denote expectation parameter of an exponential family $p_{\psi,\theta}$ We know that $\mu(\theta) = \nabla \psi(\theta)$.

Theorem (cntd..)

- (θ^*, ψ^*) is a convex function of legendre type.
- (θ^*, ψ^*) and (θ, ψ) are called legendre duals of each other.
- The gradient function $\nabla \psi$ is a one to one function from open convex set Θ onto the open convex set Θ^* .
- $\nabla \psi^* = (\nabla \psi)^{-1}$

Let $\mu(\theta)$ denote expectation parameter of an exponential family $p_{\psi,\theta}$ We know that $\mu(\theta) = \nabla \psi(\theta)$. Let us define ϕ as conjugate of ψ .

Theorem (cntd..)

- (θ^*, ψ^*) is a convex function of legendre type.
- (θ^*, ψ^*) and (θ, ψ) are called legendre duals of each other.
- The gradient function $\nabla \psi$ is a one to one function from open convex set Θ onto the open convex set Θ^* .
- $\nabla \psi^* = (\nabla \psi)^{-1}$

Let $\mu(\theta)$ denote expectation parameter of an exponential family $p_{\psi,\theta}$ We know that $\mu(\theta) = \nabla \psi(\theta)$. Let us define ϕ as conjugate of ψ . Using theorem and lemma, (Θ,ψ) and $(int(dom(\phi)),\phi)$ are legendre dual of each other.

Theorem (cntd..)

- (θ^*, ψ^*) is a convex function of legendre type.
- (θ^*, ψ^*) and (θ, ψ) are called legendre duals of each other.
- The gradient function $\nabla \psi$ is a one to one function from open convex set Θ onto the open convex set Θ^* .
- $\nabla \psi^* = (\nabla \psi)^{-1}$

Let $\mu(\theta)$ denote expectation parameter of an exponential family $p_{\psi,\theta}$ We know that $\mu(\theta) = \nabla \psi(\theta)$. Let us define ϕ as conjugate of ψ . Using theorem and lemma, (Θ,ψ) and $(int(dom(\phi)),\phi)$ are legendre dual of each other.

More importantly,
$$\nabla \psi^{-1}(\mu) = \theta(\mu) = \nabla \phi(\mu)$$
 (1) $\Longrightarrow \phi(\mu) = \langle \theta(\mu), \mu \rangle - \psi(\theta(\mu))$ (2)

Relation with Exponential Family

Theorem

Let $p_{\psi,\theta}(\mathbf{x})$ be pdf of regular exponential family family distribution. Let ϕ be the conjugate of ψ . Let θ be natural parameter and μ be expectation parameter. Let d_{ϕ} be the bregman divergence derived from ϕ . Then $p_{\psi,\theta}(\mathbf{x})$ can be uniquely expressed as $p_{\psi,\theta}(\mathbf{x}) = \exp(-d_{\phi}(\mathbf{x},\mu))b_{\phi}(\mathbf{x})$ where $b_{\phi}(\mathbf{x}) = \exp(\phi(\mathbf{x}))h(\mathbf{x})$

Proof.

$$\begin{aligned} p_{\psi,\theta}(\mathbf{x}) &= h(\mathbf{x}) exp(\langle \mathbf{x}, \theta \rangle - \psi(\theta)) \\ &= h(\mathbf{x}) exp(\phi(\boldsymbol{\mu}) + \langle \mathbf{x} - \boldsymbol{\mu}, \nabla \phi(\boldsymbol{\mu}) \rangle) \\ &= h(\mathbf{x}) exp(-(\phi(\mathbf{x}) - \phi(\boldsymbol{\mu}) - \langle \mathbf{x} - \boldsymbol{\mu}, \nabla \phi(\boldsymbol{\mu}) \rangle) + \phi(\mathbf{x})) \\ &= exp(-d_{\phi}(\mathbf{x}, \boldsymbol{\mu})) b_{\phi}(\mathbf{x}) \text{ where } b_{\phi}(\mathbf{x}) = exp(\phi(\mathbf{x})) h(\mathbf{x}) \end{aligned}$$

Relation with Exponential Family

Theorem

Let $p_{\psi,\theta}(\mathbf{x})$ be pdf of regular exponential family family distribution. Let ϕ be the conjugate of ψ . Let θ be natural parameter and μ be expectation parameter. Let d_{ϕ} be the bregman divergence derived from ϕ . Then $p_{\psi,\theta}(\mathbf{x})$ can be uniquely expressed as $p_{\psi,\theta}(\mathbf{x}) = \exp(-d_{\phi}(\mathbf{x},\mu))b_{\phi}(\mathbf{x})$ where $b_{\phi}(\mathbf{x}) = \exp(\phi(\mathbf{x}))h(\mathbf{x})$

Proof.

$$\begin{aligned} p_{\psi,\theta}(\mathbf{x}) &= h(\mathbf{x}) exp(\langle \mathbf{x}, \theta \rangle - \psi(\theta)) \\ &= h(\mathbf{x}) exp(\phi(\boldsymbol{\mu}) + \langle \mathbf{x} - \boldsymbol{\mu}, \nabla \phi(\boldsymbol{\mu}) \rangle) \\ &= h(\mathbf{x}) exp(-(\phi(\mathbf{x}) - \phi(\boldsymbol{\mu}) - \langle \mathbf{x} - \boldsymbol{\mu}, \nabla \phi(\boldsymbol{\mu}) \rangle) + \phi(\mathbf{x})) \\ &= exp(-d_{\phi}(\mathbf{x}, \boldsymbol{\mu})) b_{\phi}(\mathbf{x}) \text{ where } b_{\phi}(\mathbf{x}) = exp(\phi(\mathbf{x})) h(\mathbf{x}) \end{aligned}$$

Bijection

Theorem

(Banerjee et al) There is a bijection between regular exponential families and regular bregman divergences

Examples

• For 1-d Gaussian distribution $p(x|\mu) = \frac{1}{\sqrt{2\pi}} exp(-\frac{(x-\mu)^2}{2})$, the corresponding bregman divergence is $(x-\mu)^2$

Bijection

Theorem

(Banerjee et al) There is a bijection between regular exponential families and regular bregman divergences

Examples

- For 1-d Gaussian distribution $p(x|\mu) = \frac{1}{\sqrt{2\pi}} exp(-\frac{(x-\mu)^2}{2})$, the corresponding bregman divergence is $(x-\mu)^2$
- For d-D multinoulli $p(\mathbf{x}|\mathbf{\pi}) = \frac{N!}{\prod_{j=1}^{d} x_j!} \prod_{j=1}^{D} q_j^{x_j}$, the corresponding bregman divergence is $\sum_{j=1}^{D} x_j \log(\frac{x_j}{\mu_i}) \sum_{j=1}^{D} (x_j \mu_j)$

Bijection

Theorem

(Banerjee et al) There is a bijection between regular exponential families and regular bregman divergences

Examples

- For 1-d Gaussian distribution $p(x|\mu) = \frac{1}{\sqrt{2\pi}} exp(-\frac{(x-\mu)^2}{2})$, the corresponding bregman divergence is $(x-\mu)^2$
- For d-D multinoulli $p(\mathbf{x}|\mathbf{\pi}) = \frac{N!}{\prod_{j=1}^{d} x_j!} \prod_{j=1}^{D} q_j^{x_j}$, the corresponding bregman divergence is $\sum_{j=1}^{D} x_j \log(\frac{x_j}{\mu_i}) \sum_{j=1}^{D} (x_j \mu_j)$

We can use this idea in the previous DP-means and HDP-means to obtain a new algorithm for hard clustering by replacing euclidean distance with above bregman divergence.

Bregman DP means

- Input $x_1, x_2, ... x_n, \lambda$
- Initialize $\mu_1 = \frac{1}{n} \sum_{i=1}^n x_i$
- **Assignment** For each x_i ,
 - Compute bregman divergence of the x_i with current cluster centers.
 - If $\min_c \ d_\phi(\mathbf{x}, \boldsymbol{\mu}_c) < \lambda$, then assign it to cluster $argmin \ d_\phi(\mathbf{x}, \boldsymbol{\mu})$
 - Else, define a new cluster with its mean as x_i and assign x_i to this cluster.
- Mean Update For each cluster, set its means $\mu_c = \frac{1}{|l_j|} \sum_{\mathbf{x} \in l_j} \mathbf{x}$ where l_j is the set of points in j^{th} cluster

Bregman DP means

- Input $x_1, x_2, ... x_n, \lambda$
- Initialize $\mu_1 = \frac{1}{n} \sum_{i=1}^n x_i$
- **Assignment** For each x_i ,
 - Compute bregman divergence of the x_i with current cluster centers.
 - ullet If $\min_c \ d_\phi({m x},{m \mu}_c) < \lambda$, then assign it to cluster $rgmin \ d_\phi({m x},{m \mu})$
 - Else, define a new cluster with its mean as x_i and assign x_i to this cluster.
- Mean Update For each cluster, set its means $\mu_c = \frac{1}{|l_j|} \sum_{\mathbf{x} \in l_j} \mathbf{x}$ where l_i is the set of points in j^{th} cluster

The corresponding algorithm for Hierarchical Dirichlet process is similar, where we replace euclidean distance with the above defined bregman divergence

Evaluation metrics

- NMI
- Custom Validation

NMI

$$\mathbb{NMI}(Y,C) = \frac{2 \times \mathbb{I}(Y;C)}{\mathbb{H}(Y) + \mathbb{H}(C)}$$

where:

- Y := class labels
- C := cluster labels

Custom Validation

- For each generated cluster label, we find the original cluster label that it maps to.
- We then find the accuracy of this mapping w.r.t. the clustering.

DP Means: No. of Clusters

DP Means: NMI

DP Means: Custom Validation

DP Means with Bregman Divergence: No. of Clusters

DP Means with Bregman Divergence: NMI

DP Means with Bregman Divergence: Custom Validation

Hierarchical DP: No. of Clusters

Hierarchical DP: NMI

Hierarchical DP: Custom Validation

Hierarchical DP with Bregman Divergence: No. of Clusters

Hierarchical DP with Bregman Divergence: NMI

Hierarchical DP with Bregman Divergence: Custom Validation

Things learnt from Project

- Never (ever) code a ML model in C++ (unless absolutely required) :p
- Learnt the concepts of Dirichlet and Hierarchical Dirichlet Prior
- Learnt about Bregman Divergences
- Learnt how small variance asymptotics can be useful

Thank You ©

