

Programa de Asignatura

Historia del programa

Lugar y fecha de elaboración	Participantes	Observaciones (Cambios y justificaciones)
Cancún, Qroo. 1 de Junio de 2011	MC Juan Felipe Pérez Vázquez MC Mijail Armenta Aranceta Dra. Diana Cobos	Se modificó el temario debido a la actualización del programa educativo 2011 de Ingeniería Industrial

Relación con otras asignaturas

Anteriores	Posteriores
	Asignatura(s)
	a) Estadística analitica
	b) Investigación de operaciones
	c) Ingeniería de métodos
No aplica	
	Tema(s)
	a) Prueba de Hipótesis
	b) Distribuciones muestrales

Nombre de la asignatura	Departamento o Licenciatura
Probabilidad y estadística	Ingeniería Industrial

Ciclo CI	lave	Créditos	Área de formación curricular
1 - 1 IIC	0319	6	Profesional Asociado y Licenciatura Básica

Tipo de asignatura	Horas de estudio			
	HT	HP	TH	НІ
Taller	16	32	48	48

Objetivo(s) general(es) de la asignatura

Objetivo cognitivo

Explicar los métodos estadísticos básicos para el entendimiento de los problemas de ingeniería.

Objetivo procedimental

Aplicar las leyes básicas de la probabilidad y los métodos estadísticos para la determinación del comportamiento de las variables involucradas en una situación dada y en problemas reales que se presentan en las diferentes ramas de la ingeniería industrial.

Objetivo actitudinal

Fomentar el trabajo colaborativo para la obtención de resultados a problemas de probabilidad y estadística.

Unidades y temas

Unidad I. ESTADISTICA DESCRIPTIVA

Clasificar datos para el cálculo de las medidas de muestras de "n" elementos agrupados.

1) Medid	as de localización
	a) Media
	b) Mediana
	c) Moda
	d) Percentiles
	e) Cuartiles

- 2) Medidas de variabilidad
 - a) Rango
 - b) Rango intercuartil
 - c) Varianza

d) Desviación estándar
e) Coeficiente de variación
Unidad II. INTRODUCCIÓN A LA PROBABILIDAD
Explicar los conceptos fundamentales de probabilidad y estadística; el manejo de datos estadísticos y su organización para la aplicación de cálculos probabilísticos.
1) El concepto de probabilidad
2) Los enfoques de asignación de probabilidad
3) Experimentos y espacios muestrales
4) Teoremas básicos de probabilidad
5) Técnicas de conteo
Unidad III. DISTRIBUCIONES DE PROBABILIDAD Revisar las principales distribuciones de probabilidad para la solución de ejercicios típicos aplicados a la ingeniería industrial.
1) Distribuciones discretas
a) Binomial
b) Poisson
2) Distribuciones continuas
a) Distribución uniforme
b) Distribución normal
c) Normal estándar
d) Aproximaciones de la distribución binomial a la normal

e) Aproximación de la distribución de Poisson a la normal

Unidad IV. DISTRIBUCIONES MUESTRALES

Usar distribuciones	muestrales para	la solución de pro	oblemas específicos	relacionados con la i	ngeniería industrial.

1) Conceptos básicos 2) Distribución del muestreo 3) Error estándar 4) Teorema del límite central a) Media y varianza de una diferencia de medias 5) Distribuciones del muestreo 6) Distribuciones Bernoulli a) Distribución de la suma de variables b) Media y varianza de una proporción c) Media y varianza de una diferencia de proporciones 7) Distribución Ji¿cuadrado 8) Distribución t ¿Student¿ 9) Distribución F 10) Distribución exponencial

Unidad V. ESTIMACIÓN Y PRUEBA DE HIPÓTESIS

Aplicar pruebas de hipótesis en análisis de casos y experimentos o encuestas para la obtención de conclusiones de procesos de investigación.

- 1) Concepto de estimación y estimación puntual
- 2) Intervalos de confianza
- 3) Pruebas de hipótesis
- 4) Concepto y tipos de hipótesis: simples y compuesta
- 5) Bondad de ajuste

Docente

Actividades que promueven el aprendizaje

Preguntas guía	Preparación y resolución de casos prácticos
0 0	Preparación de estudio de caso
Presentación de un estudio de caso	Lectura de materiales impresos
Mapas conceptuales	Lectura de materiales impresos
	Investigación bibliográfica
Aprendizaje basado en problemas	— 1

Estudiante

Trabajos de forma colaborativa

Actividades de aprendizaje en Internet

http://citeseer.ist.psu.edu/ http://mathworld.wolfram.com/topics/ProbabilityandStatistics.html

Criterios y/o evidencias de evaluación y acreditación

Criterios	Porcentajes
Exámenes	30
Proyecto integrador	30
Tareas	20

Ejercicios en clase	20
Total	100

Fuentes de referencia básica

Bibliográficas

Anderson S. (1999). Estadística para Administración y Economía. South Western College. ISBN 9789687529417 Devore, Jay L. (2006). Probabilidad y Estadistica en Ciencias Básicas e Ingenierías (1ª ED.). Ed.Thomson Paraninfo. ISBN 9706864571

Hines, W. Probabilidad y Estadística para Ingeniería y Administración. CECSA. 1995. ISBN 9789682612329

Soong T. T. (2004). Fundamentals of probability and statistics for engineers. John Whiley & Sons.

Walpole, R. y Mayers, R. (2000). Probabilidad y Estadística para Ingenieros. Prentice Hall. ISBN 9789701702642

Web gráficas

No aplica

Fuentes de referencia complementaria

Bibliográficas

Canavos, G. (1994). Probabilidad y Estadística/Aplicaciones y Métodos. McGraw Hill. ISBN 9789684518568 Kazmier Leonard J. (1999). Estadística aplicada a la administración y a la economía. Mc Graw Hill. ISBN 9789701019627 Lipschutz, S. (2000). Probabilidad. McGraw Hill. ISBN 9789701021798

Richard L. y McClave T. Probabilidad y Estadística para Ingeniería. Iberoamérica. ISBN 9706250220

Web gráficas

No aplica

Perfil profesiográfico del docente

Académicos

Contar con licenciatura en contaduría, matemáticas, administración o afines.

Docentes

Tener experiencia docente mínimo de tres años a nivel superior en asignaturas de estadística y probabilidad.

Profesionales

Tener experiencia docente mínimo de tres años a nivel superior en asignaturas de estadística y probabilidad.