This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

CLEAN COPY OF ALL CLAIMS

(amended) A cyclohexenonequinolinoyl derivative of the formula I

$$\mathbb{R}^4$$
 \mathbb{R}^3 \mathbb{R}^3

where:

R¹ is hydrogen, nitro, halogen, cyano, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxyiminomethyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, C_1 - C_6 -alkylthio, C_1 - C_6 -haloalkylthio, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -haloalkylsulfonyl, C_1 - C_6 -alkylsulfonyl, aminosulfonyl, C_1 - C_6 -alkyl)aminosulfonyl,

N, N-di-(C₁-C₆-alkyl) aminosulfonyl,

N-(C₁-C₆--alkylsulfonyl)amino,

N-(C₁-C₆-haloalkylsulfonyl)amino,

N-(C₁-C₆-alkyl)-N-(C₁-C₆-alkylsulfonyl)amino,

N-(C₁-C₆--alkyl)-N-(C₁-C₆-haloalkylsulfonyl)amino,

phenoxy, heterocyclyloxy, phenylthio or heterocyclylthio, it being possible for the four last-mentioned radicals to be partially or fully halogenated and/or to carry one to three of the following

substituents:

nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl,

C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

R², R³ are hydrogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl or halogen;

R4 is a compound IIa or IIb

where

IIa

IIb

R⁵ is halogen, OR⁷, SR⁷, SOR⁸, SO₂R⁸, OSO₂R⁸, POR⁸R⁹, OPR⁸R⁹,

OPOR⁸R⁹, OPSR⁸R⁹, NR¹⁰R¹¹, ONR¹¹R¹², N-linked heterocyclyl or O-(N-linked heterocyclyl), it being possible for the heterocyclyl radical of the two last-mentioned substituents to be partially or fully halogenated and/or to carry one to three of the following radicals: nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

R⁶ is nitro, halogen, cyano, C₁-C₆-alkyl,

C₁-C₆-haloalkyl, di-(C₁-C₆-alkoxy)methyl,

di-(C₁-C₆-alkylthio)methyl,

 $(C_1-C_6-alkoxy)(C_1-C_6-alkylthio)$ methyl, hydroxyl,

C₁-C₆-alkoxy, C₁-C₆-haloalkoxy,

C₁-C₆-alkoxycarbonyloxy, C₁-C₆-alkylthio,

C₁-C₆-haloalkylthio, C₁-C₆-alkylsulfinyl,

C₁-C₆-haloalkylsulfinyl, C₁-C₆-alkylsulfonyl,

C₁-C₆-haloalkylsulfonyl, C₁-C₆-alkylcarbonyl,

C₁-C₆-haloalkylcarbonyl, C₁-C₆-alkoxycarbonyl or

C₁-C₆-haloalkoxycarbonyl;

or

two radicals , which are linked to the same carbon, together form an -O-(CH_2)_m-O-, -O-(CH_2)_m-S-, -S-(CH_2)_m-S-, -O-(CH_2)_n- or -S-(CH_2)_n chain which is unsubstituted or substituted by one to three radicals from the following group: halogen, cyano, $\text{C}_1\text{-C}_4\text{-alkyl}$, $\text{C}_1\text{-C}_4\text{-haloalkyl}$ or $\text{C}_1\text{-C}_4\text{-alkyl}$, alkoxycarbonyl;

or

two radicals , which are linked to the same carbon, together form a -(CH_2)_p chain which possibly is interrupted by oxygen or sulfur and/or is unsubstituted or substituted by one to four radicals from the following group:

34

halogen, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl or C₁-C₄-

alkoxycarbonyl;

or

two radicals, which are linked to the same carbon, together form a methylidene group which is unsubstituted or substituted by one or two radicals from the following group: halogen, hydroxyl, formyl, cyano, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, C₁-C₆-alkylthio, C₁-C₆-haloalkylthio, C₁-C₆-alkylsulfinyl, C₁-C₆-haloalkylsulfinyl, C₁-C₆-alkylsulfonyl or C₁-C₆haloalkylsulfonyl;

or

two radicals, which are linked to the same carbon, together with this carbon form a carbonyl group;

or

two radicals, which are linked to different carbons, together form a -(CH₂)_n chain which is unsubstituted or substituted by one to three radicals from the following group: halogen, C₁-C₆-alkyl, C₁-C₆-alkoxy, hydroxyl or C₁-C₆alkoxycarbonyl;

 R^7 is C₁-C₆,-alkyl, C₃-C₆-alkenyl, C₃-C₆-haloalkenyl, C₃-C₆-alkynyl, C₃-C₆-haloalkynyl, C₃-C₆-cyloalkyl, C₁-C₂₀-alkylcarbonyl, C₂-C₆-alkenylcarbonyl, C₂-C₆-alkynylcarbonyl, C₃-C₆-cyloalkylcarbonyl, C₁-C₆-alkoxycarbonyl, C₃-C₆-alkenyloxycarbonyl, C₃-C₆-alkynyloxycarbonyl, $(C_1-C_{20}-alkylthio)$ carbonyl, C₁-C₆-alkylaminocarbonyl, C₃-C₆-alkenylaminocarbonyl, C₃-C₆-alkynylaminocarbonyl,

 $N,N-di-(C_1-C_6-alkyl)$ aminocarbonyl,

N-(C_3 - C_6 -alkenyl)-N-(C_1 - C_6 -alkyl) aminocarbonyl,

 $N-(C_1-C_6-alkoxy)-$

 C_1 - C_6 -alkoxyimino- C_1 - C_6 -alkyl, N-(C₁-C₆-alkylamino) imino-C₁-C₆-alkyl or N,N-di-(C₁-C₆-alkylamino)imino-C₁-C₆-alkyl, it being possible for the above-mentioned alkyl, cycloalkyl and alkoxy radicals to be partially or fully halogenated and/or to carry one to three of the following groups: cyano, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, di- $(C_1$ - C_4 - alkyl)amino, C_1 - C_4 alkylcarbonyl, C_1 - C_2 -alkoxycarbonyl, C_1 - C_3 -alkoxy- C_1 - C_4 alkoxycarbonyl, di-(C₁-C₄-alkyl)amino-C₁-C₄-alkoxycarbonyl, hydroxycarbonyl, C_1 - C_4 -alkylaminocarbonyl, di- $(C_1$ - C_4 alkyl)aminocarbonyl, aminocarbonyl, C₁-C₄-alkylcarbonyloxy or C₃-C₆-cycloalkyl; phenyl, heterocyclyl, phenyl-C₁-C₆-alkyl, heterocyclyl-C₁-C₆-alkyl, phenylcarbonyl-C₁-C₆-alkyl, heterocyclylcarbonyl-C₁-C₆-alkyl, phenylcarbonyl, heterocyclylcarbonyl, phenoxycarbonyl, heterocyclyloxycarbonyl, phenoxythiocarbonyl, heterocyclyloxythiocarbonyl, phenoxy-C₁-C₆-alkylcarbonyl, heterocyclyloxy-C₁-C₆-alkylcarbonyl, phenylaminocarbonyl, N-(C₁-C₆-alkyl)-N-(phenyl)aminocarbonyl, heterocyclylaminocarbonyl, N-(C₁-C₆-alkyl)-N-(heterocyclyl)aminocarbonyl, phenyl-C₂-C₆-

N-(C_3 - C_6 -alkynyl)-N-(C_1 - C_6 -alkyl) aminocarbonyl,

N-(C_1 - C_6 -alkyl) aminocarbonyl, N-(C_3 - C_6 -alkenyl)- $N-(C_1-C_6-alkoxy)$ aminocarbonyl , $N-(C_3-C_6-alkynyl)$

N- $(C_1-C_6$ -alkoxy) aminocarbonyl, di- $(C_1-C_6$ -alkyl)aminothiocarbonyl, C₁-C₆-alkylcarbonyl-C₁-C₆-alkyl,

carry one to three of the following radicals:

alkenylcarbonyl or heterocyclyl-C₂-C₆-alkenylcarbonyl, it being

possible for the phenyl and the heterocyclyl radical of the 20 lastmentioned substituents to be partially or fully halogenated and/or to

nitro, cyano, C₁-C₄-alkyl, C₁-C₄-halogenalkyl, C₁-C₄-alkoxy or C₁-C₄-

haloalkoxy;

 $\mathsf{R}^8,\mathsf{R}^9$ are $\mathsf{C}_1\text{-}\mathsf{C}_6\text{-}\text{alkyl},\,\mathsf{C}_3\text{-}\mathsf{C}_6\text{-}\text{alkenyl},\,\mathsf{C}_3\text{-}\mathsf{C}_6\text{-}\text{haloalkenyl},\,\mathsf{C}_3\text{-}\mathsf{C}_6\text{-}\text{alkynyl},\,\mathsf{C}_3\text{-}\mathsf{C}_6\text{-}\text{haloalkynyl},\,\mathsf{C}_3\text{-}\mathsf{C}_6\text{-}\text{alkoxyl},\,\mathsf{nydroxyl},\,\mathsf{C}_1\text{-}\mathsf{C}_6\text{-}\text{alkoxyl},\,\mathsf{amino},\,\mathsf{C}_1\text{-}\mathsf{C}_6\text{-}\text{alkylamino},\,\mathsf{C}_1\text{-}\mathsf{C}_6\text{-}\text{alkylamino},\,\mathsf{di}\text{-}(\mathsf{C}_1\text{-}\mathsf{C}_6\text{-}\text{alkyl})\,\mathsf{amino}\,\mathsf{or}\,\mathsf{di}\text{-}(\mathsf{C}_1\text{-}\mathsf{C}_6\text{-}\text{alkyl})\,\mathsf{amino}\,\mathsf{or}\,\mathsf{di}\text{-}(\mathsf{C}_1\text{-}\mathsf{C}_6\text{-}\text{alkyl})\,\mathsf{amino}\,\mathsf{or}\,\mathsf{di}\text{-}(\mathsf{C}_1\text{-}\mathsf{C}_6\text{-}\text{alkyl})\,\mathsf{amino}\,\mathsf{or}\,\mathsf{di}\text{-}(\mathsf{C}_1\text{-}\mathsf{C}_6\text{-}\text{alkyl})\,\mathsf{amino}\,\mathsf{or}\,\mathsf{di}\text{-}(\mathsf{c}_1\text{-}\mathsf{c}_2\text{-}\text{alkyl})\,\mathsf{amino}\,\mathsf{or}\,\mathsf{c}_1\text{-}\mathsf{c}_2\text{-}$ alkyl amino, $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}$ alkyl amino, $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}$ alkoxycarbonyl, $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}$ alkyl amino- $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}$ alkoxycarbonyl, aminocarbonyl, aminocarbonyl, aminocarbonyl, aminocarbonyl, $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}$ alkylcarbonyloxy or $\mathsf{C}_3\text{-}$ alkyl) aminocarbonyl, aminocarbonyl, $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}$ alkylcarbonyloxy or $\mathsf{C}_3\text{-}$ alkyl)

phenyl, heterocyclyl, phenyl- C_1 - C_6 -alkyl, heterocyclyl- C_1 - C_6 -alkyl, phenoxy, heterocyclyloxy, it being possible for the phenyl and the heterocyclyl radical of the last-mentioned substituents to be partially or fully halogenated and/or to carry one to three of the following radicals:

nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

 $R^{10} \quad \text{is C_1-C_6-alkyl, C_3-C_6-alkenyl, C_3-C_6-alkynyl, C_3-C_6-alkynyl, C_3-C_6-alkynyl, C_3-C_6-alkynyloxy, amino, C_1-C_6-alkylamino, di-(C_1-C_6-alkyl)amino or C_1-C_6-alkylcarbonylamino, where the abovementioned alkyl, cycloalkyl and alkoxy radicals may be partially or fully halogenated and/or may carry one to three radicals from the following group:$

cyano, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, di- $(C_1$ - C_4 -alkyl)amino, C_1 - C_4 -alkylcarbonyl, C_1 - C_4 -alkoxycarbonyl, C_1 - C_4 -alkoxycarbonyl, di- $(C_1$ - C_4 -alkyl)amino- C_1 - C_4 -alkoxycarbonyl,

C'cnt

hydroxycarbonyl, C_1 - C_4 -alkylaminocarbonyl, di- $(C_1$ - C_4 -alkyl)aminocarbonyl, aminocarbonyl, C_1 - C_4 -alkylcarbonyloxy or C_3 - C_6 -cycloalkyl;

phenyl, heterocyclyl, phenyl-C₁-C₆-alkyl or heterocyclyl-C₁-C₆-alkyl, where the phenyl or heterocyclyl radical of the four last-mentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

 R^{11} , R^{12} are C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl or C_1 - C_6 -alkylcarbonyl;

I is 0 to 6;

m is 2 to 4;

n is 1 to 5;

p is 2 to 5;

and their agriculturally useful salts.

- 2. (amended) A cyclohexenonequinolinoyl derivative of the formula I as claimed in claim 1 where
 - R¹ is halogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₁-C₆-alkylthio, heterocyclyloxy or phenylthio, it being possible for the two last-mentioned radicals to be partially or fully halogenated and/or to carry one to three of the substituents mentioned below: nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;
 - is halogen, OR⁷, SR⁷, SOR⁸, SO₂R⁸, OSO₂R⁸, OPR⁸R⁹, OPOR⁸R⁹ OPSR⁸R⁹, NR¹⁰R¹¹ or N-bonded heterocyclyl, which is unsubstituted or partially or fully halogenated and/or carries one to three of the following radicals:
 - nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy .
- 3. (twice amended) A cyclohexenonequinolinoyl derivative of the formula I as

() cont

claimed in claim I, where

- is halogen, OR⁷, NR¹⁰R¹¹ or N-bonded heterocyclyl which is unsubstituted or partially or fully halogenated and/or carries one to three of the following radicals:

 nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄
 - nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy.
- (twice amended) A cyclohexenonequinolinoyl derivative of the formula I as claimed in claim 1, where
 - R^7 is C_1 - C_6 -alkyl, C_1 - C_{20} -alkylcarbonyl, C_1 - C_6 -alkoxycarbonyl, $(C_1$ - C_{20} -alkylthio)carbonyl, N_1 -di- $(C_1$ - C_6 -alkyl)aminocarbonyl, phenyl, phenylcarbonyl or phenoxy- C_1 - C_6 -alkylcarbonyl, it being possible for the phenyl radical of the three last-mentioned substituents to be partially or fully halogenated and/or to carry one to three of the following radicals: nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

 R^{10} is C_1 - C_6 -alkyl or C_1 - C_6 -alkoxy;

 R^{11} is C_1 - C_6 -alkyl.

- (twice amended) A cyclohexenonequinolinoyl derivative of the formula I as claimed in claim 1, where
 - is nitro, halogen, cyano, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, di- $(C_1$ - C_6 -alkoxy)methyl, di- $(C_1$ - C_6 -alkylthio)methyl, $(C_1$ - C_6 -alkoxy) $(C_1$ - C_6 -alkylthio)methyl, hydroxyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, C_1 - C_6 -alkoxycarbonyloxy, C_1 - C_6 -alkylthio, C_1 - C_6 -haloalkylthio, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -haloalkylsulfinyl, C_1 - C_6 -haloalkylsulfonyl, C_1 - C_6 -haloalkylsulfonyl, C_1 - C_6 -haloalkylcarbonyl, C_1 - C_6 -haloalkylcarbonyl, C_1 - C_6 -haloalkoxycarbonyl or C_1 - C_6 -haloalkoxycarbonyl;

or

two radicals, which are linked to the same carbon, together form

C'ent

an -O-(CH₂)_m-O-, -O-(CH₂)_m-S-, -S-(CH₂)_m-S-, -O-(CH₂)_n- or -S-(CH₂)_n chain which is unsubstituted or substituted by one to three radicals from the following group :

halogen, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl or C₁-C₄-alkoxycarbonyl;

or

two radicals , which are linked to the same carbon, together form a $-(CH_2)_p$ chain which possibly is interrupted by oxygen or sulfur and which is unsubstituted or substituted by one to four radicals from the following group :

halogen, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl or C_1 - C_4 -alkoxycarbonyl ; or

two radicals, which are linked to the same carbon, together with this carbon form a carbonyl group.

r.) 6.

A process for preparing compounds of the formula I as claimed in claim 1 where R⁵ = halogen, which comprises reacting a cyclohexanedione derivative of the formula III,

$$(R^6)_1$$
 R^3
 R^2
 R^2
 R^3
 R^2

where the variables R^1 to R^3 , and I are each as defined in claim 1, with a halogenating agent.

7. A process for preparing compounds of the formula I as claimed in claim 1 where R⁵ = OR⁷, OSO₂R⁸, OPR⁸R⁹, OPOR⁸R⁹ or OPSR⁸R⁹, which comprises reacting a cyclohexanedione derivative of the formula III,

$$(R^6)_1$$
 R^3
 R^7
 R^7
 R^7

where the variables R^1 to R^3 , and I are each as defined in claim 1, with a compound of the formula $IV\alpha$, $IV\beta$, $IV\gamma$, $Iv\delta$ or $IV\varepsilon$,

$$L^1-R^7$$
 L^1-SO_2 R^8 $L^1-PR^8R^9$ $L^1-POR^8R^9$ $L^1-PSR^8R^9$ (IV α) (IV β) (IV γ) (IV δ) (IV δ)

where the variables R⁷ to R⁹ are each as defined in claim 1 and L¹ is a nucleophilically replaceable leaving group.

8. A process for preparing compounds of the formula I as claimed in claim 1 where $R^5 = OR^7$, SR^7 , POR^8R^9 , $NR^{10}R^{11}$, $ONR^{11}R^{12}$, N-linked heterocyclyl or O-(N-linked heterocyclyl), which comprises reacting a compound of the formula I α (\equiv I where $R^5 = \text{halogen}$, OSO_2R^8),

$$(R^6)_1 \xrightarrow{\mathbb{R}^3} \mathbb{R}^2$$
and/or
$$(R^6)_1 \xrightarrow{\mathbb{R}^5} \mathbb{R}^3$$

I where R5= halogen or OSO₂R8

where the variables R^1 to R^3 , R^6 and I are each as defined in claim 1, with a compound of the formula $V\alpha,V\beta,V\gamma,V\delta,V\varepsilon,V\eta,V\vartheta$,

where the variables R^7 to R^{12} are each as defined in claim 1, if appropriate in the presence of a base.

9. A process for preparing compounds of the formula I as claimed in claim 1, where $R^5 = SOR^8$, SO_2R^8 , which comprises reacting a compound of the formula I β (\equiv I where $R^5 = SR^8$),

$$(R^{6})_{1} \xrightarrow{R^{3}} R^{2}$$
and/or
$$(R^{6})_{1} \xrightarrow{R^{5}} R^{2}$$

I where R5= SR8

where the variables R¹ to R⁸ and I are each as defined in claim 1, with an oxidizing agent.

- 10. (twice amended) A composition, comprising a herbicidally effective amount of at least one cyclohexenonequinolinoyl derivative of the formula I or an agriculturally useful salt of formula I as claimed in claim 1 and auxiliaries which are conventionally used for formulating crop protection agents.
- 11. (twice amended) A process for preparing a composition as claimed in claim 10, which comprises mixing a herbicidally effective amount of at least one cyclohexenonequinolinoyl derivative of the formula I or an agriculturally useful salt of formula I and auxiliaries which are conventionally used for formulating crop protection agents.
- 12. A method for controlling undesirable vegetation, which comprises allowing a herbicidally effective amount of at least one cyclohexenonequinolinoyl derivative

of the formula I or an agriculturally useful salt of formula I as claimed in claim 1 to act on plants, their habitat and/or on seeds.

14. (amended) A cyclohexenonequinolinoyl derivative of the formula I

$$\mathbb{R}^4$$
 \mathbb{R}^3
 \mathbb{R}^3

where:

is hydrogen, nitro, halogen, cyano, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxyiminomethyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, C_1 - C_6 -alkylthio, C_1 - C_6 -haloalkylthio, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -haloalkylsulfinyl, C_1 - C_6 -alkylsulfonyl, aminosulfonyl, C_1 - C_6 -alkylsulfonyl, aminosulfonyl, C_1 - C_6 -alkylsulfonyl,

N, N-di-(C₁-C₆-alkyl) aminosulfonyl,

N-(C₁-C₆--alkylsulfonyl)amino,

N-(C₁-C₆-haloalkylsulfonyl)amino,

 $N-(C_1-C_6-alkyl)-N-(C_1-C_6-alkylsulfonyl)amino,$

N-(C₁-C₆--alkyl)-N-(C₁-C₆-haloalkylsulfonyl)amino,

phenoxy, heterocyclyloxy, phenylthio or heterocyclylthio, it being possible for the four last-mentioned radicals to be partially or fully halogenated and/or to carry one to three of the following substituents:

nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl,

 C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

R², R³ are hydrogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl or halogen;

R4 is a compound IIa

where

[Ia

is halogen, OR⁷, SR⁷, SOR⁸, SO₂R⁸, OSO₂R⁸, POR⁸R⁹, OPR⁸R⁹, OPOR⁸R⁹, OPSR⁸R⁹, NR¹⁰R¹¹, ONR¹¹R¹², N-linked heterocyclyl or O-(N-linked heterocyclyl), it being possible for the heterocyclyl radical of the two last-mentioned substituents to be partially or fully halogenated and/or to carry one to three of the following radicals: nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

 $\int_{3}^{3} c d$

R⁶ is nitro, halogen, cyano, C₁-C₆-alkyl,

C₁-C₆-haloalkyl, di-(C₁-C₆-alkoxy)methyl,

di-(C₁-C₆-alkylthio)methyl,

 $(C_1-C_6$ -alkoxy) $(C_1-C_6$ -alkylthio)methyl, hydroxyl,

 C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy,

 C_1 - C_6 -alkoxycarbonyloxy, C_1 - C_6 -alkylthio,

 C_1 - C_6 -haloalkylthio, C_1 - C_6 -alkylsulfinyl,

C₁-C₆-haloalkylsulfinyl, C₁-C₆-alkylsulfonyl,

C₁-C₆-haloalkylsulfonyl, C₁-C₆-alkylcarbonyl,

 C_1 - C_6 -haloalkylcarbonyl, C_1 - C_6 -alkoxycarbonyl or C_1 - C_6 -haloalkoxycarbonyl;

or

two radicals , which are linked to the same carbon, together form an -O-(CH_2)_m-O-, -O-(CH_2)_m-S-, -S-(CH_2)_m-S-, -O-(CH_2)_n- or -S-(CH_2)_n chain which is unsubstituted or substituted by one to three radicals from the following group: halogen, cyano, $\text{C}_1\text{-C}_4\text{-alkyl}$, $\text{C}_1\text{-C}_4\text{-haloalkyl}$ or $\text{C}_1\text{-C}_4\text{-alkyl}$, alkoxycarbonyl;

or

two radicals , which are linked to the same carbon, together form a -(CH_2)_p chain which possibly is interrupted by oxygen or sulfur and/or is unsubstituted or substituted by one to four radicals from the following group:

halogen, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl or C_1 - C_4 -alkoxycarbonyl;

or

two radicals , which are linked to the same carbon, together form a methylidene group which is unsubstituted or substituted by one or two radicals from the following group: halogen, hydroxyl, formyl, cyano, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-

 0^3 cr $^{\frac{1}{2}}$

 C_6 -alkoxy, C_1 - C_6 -haloalkoxy, C_1 - C_6 -alkylthio, C_1 - C_6 -haloalkylthio, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -haloalkylsulfinyl, C_1 - C_6 -alkylsulfonyl;

or

two radicals, which are linked to the same carbon, together with this carbon form a carbonyl group;

or

two radicals , which are linked to different carbons, together form a -(CH_2)_n chain which is unsubstituted or substituted by one to three radicals from the following group: halogen, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, hydroxyl or C_1 - C_6 -alkoxycarbonyl;

0.3 cm

 $\label{eq:R7} \textbf{R7} \qquad \textbf{is C_1-C_6,-alkyl, C_3-C_6-alkenyl, C_3-C_6-alkynyl, C_3-C_6-alkynyl, C_3-C_6-alkynyl, C_3-C_6-cyloalkyl, C_1-C_20-alkylcarbonyl, C_2-C_6-alkenylcarbonyl, C_2-C_6-alkynylcarbonyl, C_3-C_6-cyloalkylcarbonyl, C_1-C_6-alkoxycarbonyl, C_3-C_6-alkenyloxycarbonyl, C_3-C_6-alkynyloxycarbonyl, $(C_1$-C_20-alkylthio)carbonyl, C_1-C_6-alkylaminocarbonyl,$

C₃-C₆-alkenylaminocarbonyl,

C₃-C₆-alkynylaminocarbonyl,

N,N-di-(C₁-C₆-alkyl)aminocarbonyl,

N-(C₃-C₆-alkenyl)-N-(C₁-C₆-alkyl) aminocarbonyl,

N-(C_3 - C_6 -alkynyl)-N-(C_1 - C_6 -alkyl) aminocarbonyl,

 $N-(C_1-C_6-alkoxy)-$

N-(C_1 - C_6 -alkyl) aminocarbonyl, N-(C_3 - C_6 -alkenyl)-

 $N-(C_1-C_6-alkoxy)$ aminocarbonyl , $N-(C_3-C_6-alkynyl)$ -

N-(C_1 - C_6 -alkoxy) aminocarbonyl, di-(C_1 - C_6 -alkyl)-

aminothiocarbonyl, C₁-C₆-alkylcarbonyl-C₁-C₆-alkyl,

C₁-C₆-alkoxyimino-C₁-C₆-alkyl,

N-(C_1 - C_6 -alkylamino) imino- C_1 - C_6 -alkyl or

N,N-di-(C₁-C₆-alkylamino)imino-C₁-C₆-alkyl, it being possible for

the above-mentioned alkyl, cycloalkyl and alkoxy radicals to be partially or

fully halogenated and/or to carry one to three of the following groups:

cyano, C₁-C₄-alkoxy, C₁-C₄-alkylthio, di-(C₁-C₄- alkyl)amino, C₁-C₄-

alkylcarbonyl, C₁-C₄-alkoxycarbonyl, C₁-C₄-alkoxy-C₁-C₄-alkoxycarbonyl,

di-(C₁-C₄-alkyl)amino-C₁-C₄-alkoxycarbonyl, hydroxycarbonyl, C₁-C₄-

alkylaminocarbonyl, di-(C₁-C₄-alkyl)aminocarbonyl, aminocarbonyl, C₁-C₄-

alkylcarbonyloxy or C₃-C₆-cycloalkyl;

phenyl, heterocyclyl, phenyl-C₁-C₆-alkyl, heterocyclyl-C₁-C₆-alkyl,

 C^3 col

phenylcarbonyl- C_1 - C_6 -alkyl, heterocyclylcarbonyl- C_1 - C_6 -alkyl, phenylcarbonyl, heterocyclylcarbonyl, phenoxycarbonyl, heterocyclyloxycarbonyl, phenoxythiocarbonyl, heterocyclyloxythiocarbonyl, phenoxy- C_1 - C_6 -alkylcarbonyl, heterocyclyloxy- C_1 - C_6 -alkylcarbonyl, phenylaminocarbonyl, N-(C_1 - C_6 -alkyl)-N-(phenyl)aminocarbonyl, heterocyclylaminocarbonyl, N-(C_1 - C_6 -alkyl)-N-(heterocyclyl)aminocarbonyl, phenyl- C_2 - C_6 -alkenylcarbonyl or heterocyclyl- C_2 - C_6 -alkenylcarbonyl, it being possible for the phenyl and the heterocyclyl radical of the 20 last-mentioned substituents to be partially or fully halogenated and/or to carry one to three of the following radicals:

nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -halogenalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

R⁸,R⁹ are C₁-C₆-alkyl, C₃-C₆-alkenyl, C₃-C₆-haloalkenyl, C₃-C₆-alkynyl, C₃-C₆-alkynyl, C₃-C₆-alkynyl, C₃-C₆-cycloalkyl, hydroxyl, C₁-C₆-alkoxy, amino, C₁-C₆-alkylamino, C₁-C₆-alkylamino, di-(C₁-C₆-alkyl) amino or di-(C₁-C₆-haloalkyl)amino, it being possible for the abovementioned alkyl, cycloalkyl and alkoxy radicals to be partially or fully halogenated and/or to carry one to three of the following groups: cyano, C₁-C₄-alkoxy, C₁-C₄-alkylthio, di-(C₁-C₄-alkyl) amino, C₁-C₄-alkoxycarbonyl, C₁-C₄-alkoxycarbonyl, C₁-C₄-alkoxycarbonyl,

()3 en

di-(C_1 - C_4 -alkyl)amino- C_1 - C_4 -alkoxycarbonyl, hydroxycarbonyl, C_1 - C_4 -alkylaminocarbonyl, di-(C_1 - C_4 -alkyl)aminocarbonyl, aminocarbonyl, C_1 - C_4 -alkylcarbonyloxy or C_3 - C_6 -cycloalkyl;

phenyl, heterocyclyl, phenyl- C_1 - C_6 -alkyl, heterocyclyl- C_1 - C_6 -alkyl, phenoxy, heterocyclyloxy, it being possible for the phenyl and the heterocyclyl radical of the last-mentioned substituents to be partially or fully halogenated and/or to carry one to three of the following radicals: nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

13 ent

is C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -haloalkenyl, C_3 - C_6 -alkynyl, C_3 - C_6 -haloalkynyl, C_3 - C_6 -cycloalkyl, hydroxyl, C_1 - C_6 -alkoxy, C_3 - C_6 -alkynyloxy, amino, C_1 - C_6 -alkylamino, di- $(C_1$ - C_6 -alkyl)amino or C_1 - C_6 -alkylcarbonylamino, it being possible for the abovementioned alkyl, cycloalkyl and alkoxy radicals to be partially or fully halogenated and/or to carry one to three radicals from the following group:

cyano, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, di- $(C_1$ - C_4 -alkyl)amino, C_1 - C_4 -alkylcarbonyl, C_1 - C_4 -alkoxycarbonyl, C_1 - C_4 -alkoxycarbonyl, di- $(C_1$ - C_4 -alkyl)amino- C_1 - C_4 -alkoxycarbonyl, hydroxycarbonyl, C_1 - C_4 -alkylaminocarbonyl, di- $(C_1$ - C_4 -

alkyl)aminocarbonyl, aminocarbonyl, C_1 - C_4 -alkylcarbonyloxy or C_3 - C_6 -cycloalkyl;

phenyl, heterocyclyl, phenyl- C_1 - C_6 -alkyl or heterocyclyl- C_1 - C_6 -alkyl, it being possible for the phenyl or heterocyclyl radical of the four last-mentioned substituents to be partially or fully halogenated and/or to carry one to three of the following radicals: nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -

 R^{11} , R^{12} are C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl or C_1 - C_6 -alkylcarbonyl;

I is 0 to 6;

haloalkoxy;

m is 2 to 4;

n is 1 to 5;

p is 2 to 5;

and their agriculturally useful salts.

- 15. (amended) A cyclohexenonequinolinoyl derivative of the formula I as claimed in claim 14, where
 - R¹ is halogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₁-C₆-alkylthio, heterocyclyloxy or phenylthio, it being possible for the two last-mentioned radicals to be partially or fully halogenated and/or to carry one to three of the substituents mentioned below:

nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-

13 cm

haloalkoxy;

radicals:

is halogen, OR^7 , SR^7 , SOR^8 , SO_2R^8 , OSO_2R^8 , OPR^8R^9 , $OPOR^8R^9$ OPSR $^8R^9$, $NR^{10}R^{11}$ or N-bonded heterocyclyl which is unsubstituted or partially or fully halogenated and/or carries one to three of the following radicals: nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy.

 (amended) A cyclohexenonequinolinoyl derivative of the formula I as claimed in claim 14, where

is halogen, OR⁷, NR¹⁰R¹¹ or N-bonded heterocyclyl which is unsubstituted or partially or fully halogenated and/or carries one to three of the following

nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy.

17. (amended) A cyclohexenonequinolinoyl derivative of the formula I as claimed in claim 14, where

 R^7 is C_1 - C_6 -alkyl, C_1 - C_{20} -alkylcarbonyl, C_1 - C_6 -alkoxycarbonyl, $(C_1$ - C_{20} -alkylthio)carbonyl, N,N-di- $(C_1$ - C_6 -alkyl)aminocarbonyl, phenyl, phenylcarbonyl or phenoxy- C_1 - C_6 -alkylcarbonyl, it being possible for the phenyl radical of the three last-mentioned substituents to be partially or fully halogenated

(3 ent

and/or to carry one to three of the following radicals: nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

 R^{10} is C_1 - C_6 -alkyl or C_1 - C_6 -alkoxy;

 R^{11} is C_1 - C_6 -alkyl.

18. A process for preparing compounds of the formula I as claimed in claim 14 where R⁵ = halogen, which comprises reacting a cyclohexanedione derivative of the formula III,

$$(R^6)_1 \xrightarrow{Q} Q \xrightarrow{R^3} R^2$$

where the variables R¹ to R³, and I are each as defined in claim 14, with a halogenating agent.

19. A process for preparing compounds of the formula I as claimed in claim 14 where R⁵ = OR⁷, OSO₂R⁸, OPR⁸R⁹, OPOR⁸R⁹ or OPSR⁸R⁹, which comprises reacting a cyclohexanedione derivative of the formula III,

where the variables R^1 to R^3 , and I are each as defined in claim 14, with a compound of the formula $IV\alpha$, $IV\beta$, $IV\gamma$, $Iv\delta$ or $IV\varepsilon$,

$$L^1-R^7$$
 L^1-SO_2 R^8 $L^1-PR^8R^9$ $L^1-POR^8R^9$ $L^1-PSR^8R^9$ (IV α) (IV β) (IV γ) (IV δ) (IV ϵ)

where the variables R⁷ to R⁹ are each as defined in claim 14 and L¹ is a nucleophilically replaceable leaving group.

20. A process for preparing compounds of the formula I as claimed in claim 14 where $R^5 = OR^7$, SR^7 , POR^8R^9 , $NR^{10}R^{11}$, $ONR^{11}R^{12}$, N-linked heterocyclyl or O-(N-linked heterocyclyl), which comprises reacting a compound of the formula I α (\equiv I where R^5 = halogen, OSO_2R^8),

$$(R^6)_1 \xrightarrow{R^3} R^2$$
 and/or
$$(R^6)_1 \xrightarrow{R^5} R^3$$

I where R⁵= halogen or OSO₂R⁸

where the variables R^1 to R^3 , and I are each as defined in claim 14, with a compound of the formula $V\alpha,V\beta,V\gamma,V\delta,V\varepsilon,V\eta,V\vartheta$,

where the variables R⁷ to R¹² are each as defined in claim 14, if appropriate in the presence of a base.

21. A process for preparing compounds of the formula I as claimed in claim 14 where $R^5 = SOR^8$, SO_2R^8 , which comprises reacting a compound of the formula I β (\equiv I where $R^5 = SR^8$),

$$(R^6)_1 \xrightarrow{\mathbb{R}^3} \mathbb{R}^2$$
and/or
$$(R^6)_1 \xrightarrow{\mathbb{R}^3} \mathbb{R}^2$$

I where R5= SR8

where the variables R¹ to R⁵, R⁷, R⁸ and I are each as defined in claim 14, with an oxidizing agent.

22. (amended) A composition, comprising a herbicidally effective amount of at least one cyclohexenonequinolinoyl derivative of the formula I or an agriculturally useful salt of formula I as claimed in claim 14 and auxiliaries which are

- conventionally used for formulating crop protection agents.
- 23. (amended) A process for preparing a composition as claimed in claim 22, which comprises mixing a herbicidally effective amount of at least one cyclohexenonequinolinoyl derivative of the formula I or an agriculturally useful salt of formula I and auxiliaries which are conventionally used for formulating crop protection agents.
- 24. A method for controlling undesirable vegetation, which comprises allowing a herbicidally effective amount of at least one cyclohexenonequinolinoyl derivative of the formula I or an agriculturally useful salt of formula I as claimed in claim 14 to act on plants, their habitat and/or on seeds.