Analysis of different Lyapunov function constructions for interconnected hybrid systems

Guosong Yang¹ Daniel Liberzon¹ Andrii Mironchenko²

¹Coordinated Science Laboratory University of Illinois at Urbana-Champaign Urbana, IL 61801, U.S.

²Faculty of Computer Science and Mathematics University of Passau Innstraße 33, 94032 Passau, Germany

55th IEEE Conference on Decision and Control December 12, 2016

■ Hybrid systems: dynamical systems exhibiting both continuous and discrete behaviors

Hybrid systems: dynamical systems exhibiting both continuous and discrete behaviors

Modeling framework [GST12; CT09]

Hybrid systems: dynamical systems exhibiting both continuous and discrete behaviors

Modeling framework [GST12; CT09]

Interconnected hybrid systems

Hybrid system
$$x=(x_1,x_2)$$

 Hybrid systems: dynamical systems exhibiting both continuous and discrete behaviors

Modeling framework [GST12; CT09] Interconnected hybrid systems

 Hybrid systems: dynamical systems exhibiting both continuous and discrete behaviors

Modeling framework [GST12; CT09] Interconnected hybrid systems

 Generalized ISS Lyapunov function for each subsystem

 Hybrid systems: dynamical systems exhibiting both continuous and discrete behaviors

Modeling framework [GST12; CT09] Interconnected hybrid systems

- Generalized ISS Lyapunov function for each subsystem
- Small-gain conditions (SG)

 Hybrid systems: dynamical systems exhibiting both continuous and discrete behaviors

Modeling framework [GST12; CT09] Interconnected hybrid systems

- Generalized ISS Lyapunov function for each subsystem
- Small-gain conditions (SG)
- Non-ISS dynamics in subsystems

■ Non-ISS jumps: average dwell-time (ADT) [HM99]

[[]HM99] J. P. Hespanha and A. S. Morse, "Stability of switched systems with average dwell-time," in 38th IEEE Conf. Decis. Control, vol. 3, 1999, pp. 2655–2660

[[]HLT08] J. P. Hespanha, D. Liberzon, and A. R. Teel, "Lyapunov conditions for input-to-state stability of impulsive systems," Automatica, vol. 44, no. 11, pp. 2735–2744, 2008

[[]LNT14] D. Liberzon, D. Nešić, and A. R. Teel, "Lyapunov-based small-gain theorems for hybrid systems," IEEE Trans. Automat. Contr., vol. 59, no. 6, pp. 1395–1410, 2014

[[]Das+12] S. Dashkovskiy, M. Kosmykov, A. Mironchenko, and L. Naujok, "Stability of interconnected impulsive systems with and without time delays, using Lyapunov methods," Nonlinear Anal. Hybrid Syst., vol. 6, no. 3, pp. 899–915, 2012

Description

Description**

Description**

Description**

Description**

Description*

Descriptio

- Non-ISS jumps: average dwell-time (ADT) [HM99]
- Non-ISS flows: reverse ADT (RADT) [HLT08]

[[]HM99] J. P. Hespanha and A. S. Morse, "Stability of switched systems with average dwell-time," in 38th IEEE Conf. Decis. Control, vol. 3, 1999, pp. 2655–2660

[[]HLT08] J. P. Hespanha, D. Liberzon, and A. R. Teel, "Lyapunov conditions for input-to-state stability of impulsive systems," Automatica, vol. 44, no. 11, pp. 2735–2744, 2008

[[]LNT14] D. Liberzon, D. Nešić, and A. R. Teel, "Lyapunov-based small-gain theorems for hybrid systems," IEEE Trans. Automat. Contr., vol. 59, no. 6, pp. 1395–1410, 2014

[[]Das+12] S. Dashkovskiy, M. Kosmykov, A. Mironchenko, and L. Naujok, "Stability of interconnected impulsive systems with and without time delays, using Lyapunov methods," Nonlinear Anal. Hybrid Syst., vol. 6, no. 3, pp. 899–915, 2012

Proprocessing Proprocessing Systems

Proprocessing Systems

**Proprocessin

- Non-ISS jumps: average dwell-time (ADT) [HM99]
- Non-ISS flows: reverse ADT (RADT) [HLT08]
- Strategy 1 [LNT14]:

[[]HM99] J. P. Hespanha and A. S. Morse, "Stability of switched systems with average dwell-time," in 38th IEEE Conf. Decis. Control, vol. 3, 1999, pp. 2655–2660

[[]HLT08] J. P. Hespanha, D. Liberzon, and A. R. Teel, "Lyapunov conditions for input-to-state stability of impulsive systems," Automatica, vol. 44, no. 11, pp. 2735–2744, 2008

[[]LNT14] D. Liberzon, D. Nešić, and A. R. Teel, "Lyapunov-based small-gain theorems for hybrid systems," IEEE Trans. Automat. Contr., vol. 59, no. 6, pp. 1395–1410, 2014

[[]Das+12] S. Dashkovskiy, M. Kosmykov, A. Mironchenko, and L. Naujok, "Stability of interconnected impulsive systems with and without time delays, using Lyapunov methods," Nonlinear Anal. Hybrid Syst., vol. 6, no. 3, pp. 899–915, 2012

Proprocessing Proprocessing Systems

Proprocessing Systems

**Proprocessin

- Non-ISS jumps: average dwell-time (ADT) [HM99]
- Non-ISS flows: reverse ADT (RADT) [HLT08]
- Strategy 1 [LNT14]:
 - ADT/RADT modifications for ISS Lyapunov functions for subsystems

[[]HM99] J. P. Hespanha and A. S. Morse, "Stability of switched systems with average dwell-time," in 38th IEEE Conf. Decis. Control, vol. 3, 1999, pp. 2655–2660

[[]HLT08] J. P. Hespanha, D. Liberzon, and A. R. Teel, "Lyapunov conditions for input-to-state stability of impulsive systems," Automatica, vol. 44, no. 11, pp. 2735–2744, 2008

[[]LNT14] D. Liberzon, D. Nešić, and A. R. Teel, "Lyapunov-based small-gain theorems for hybrid systems," IEEE Trans. Automat. Contr., vol. 59, no. 6, pp. 1395–1410, 2014

[[]Das+12] S. Dashkovskiy, M. Kosmykov, A. Mironchenko, and L. Naujok, "Stability of interconnected impulsive systems with and without time delays, using Lyapunov methods," Nonlinear Anal. Hybrid Syst., vol. 6, no. 3, pp. 899–915, 2012

Description

**Table *

- Non-ISS jumps: average dwell-time (ADT) [HM99]
- Non-ISS flows: reverse ADT (RADT) [HLT08]
- Strategy 1 [LNT14]:
 - ADT/RADT modifications for ISS Lyapunov functions for subsystems
 - **2** SG for stability of the interconnection

[[]HM99] J. P. Hespanha and A. S. Morse, "Stability of switched systems with average dwell-time," in 38th IEEE Conf. Decis. Control, vol. 3, 1999, pp. 2655–2660

[[]HLT08] J. P. Hespanha, D. Liberzon, and A. R. Teel, "Lyapunov conditions for input-to-state stability of impulsive systems," Automatica, vol. 44, no. 11, pp. 2735–2744, 2008

[[]LNT14] D. Liberzon, D. Nešić, and A. R. Teel, "Lyapunov-based small-gain theorems for hybrid systems," IEEE Trans. Automat. Contr., vol. 59, no. 6, pp. 1395–1410, 2014

[[]Das+12] S. Dashkovskiy, M. Kosmykov, A. Mironchenko, and L. Naujok, "Stability of interconnected impulsive systems with and without time delays, using Lyapunov methods," Nonlinear Anal. Hybrid Syst., vol. 6, no. 3, pp. 899–915, 2012

**Total Control of the Co

- Non-ISS jumps: average dwell-time (ADT) [HM99]
- Non-ISS flows: reverse ADT (RADT) [HLT08]
- Strategy 1 [LNT14]: increase feedback gains
 - 1 ADT/RADT modifications for ISS Lyapunov functions for subsystems
 - **2** SG for stability of the interconnection

[[]HM99] J. P. Hespanha and A. S. Morse, "Stability of switched systems with average dwell-time," in 38th IEEE Conf. Decis. Control, vol. 3, 1999, pp. 2655–2660

[[]HLT08] J. P. Hespanha, D. Liberzon, and A. R. Teel, "Lyapunov conditions for input-to-state stability of impulsive systems," Automatica, vol. 44, no. 11, pp. 2735–2744, 2008

[[]LNT14] D. Liberzon, D. Nešić, and A. R. Teel, "Lyapunov-based small-gain theorems for hybrid systems," IEEE Trans. Automat. Contr., vol. 59, no. 6, pp. 1395–1410, 2014

[[]Das+12] S. Dashkovskiy, M. Kosmykov, A. Mironchenko, and L. Naujok, "Stability of interconnected impulsive systems with and without time delays, using Lyapunov methods," Nonlinear Anal. Hybrid Syst., vol. 6, no. 3, pp. 899–915, 2012

Proprocessing Proprocessing Systems

Proprocessing Systems

**Proprocessin

- Non-ISS jumps: average dwell-time (ADT) [HM99]
- Non-ISS flows: reverse ADT (RADT) [HLT08]
- Strategy 1 [LNT14]: increase feedback gains
 - ADT/RADT modifications for ISS Lyapunov functions for subsystems
 - **2** SG for stability of the interconnection
- Strategy 2 [Das+12]:

[[]HM99] J. P. Hespanha and A. S. Morse, "Stability of switched systems with average dwell-time," in 38th IEEE Conf. Decis. Control, vol. 3, 1999, pp. 2655–2660

[[]HLT08] J. P. Hespanha, D. Liberzon, and A. R. Teel, "Lyapunov conditions for input-to-state stability of impulsive systems," Automatica, vol. 44, no. 11, pp. 2735–2744, 2008

[[]LNT14] D. Liberzon, D. Nešić, and A. R. Teel, "Lyapunov-based small-gain theorems for hybrid systems," IEEE Trans. Automat. Contr., vol. 59, no. 6, pp. 1395–1410, 2014

[[]Das+12] S. Dashkovskiy, M. Kosmykov, A. Mironchenko, and L. Naujok, "Stability of interconnected impulsive systems with and without time delays, using Lyapunov methods," Nonlinear Anal. Hybrid Syst., vol. 6, no. 3, pp. 899–915, 2012

Proprocessing Proprocessing Systems

Proprocessing Systems

**Proprocessin

- Non-ISS jumps: average dwell-time (ADT) [HM99]
- Non-ISS flows: reverse ADT (RADT) [HLT08]
- Strategy 1 [LNT14]: increase feedback gains
 - 1 ADT/RADT modifications for ISS Lyapunov functions for subsystems
 - 2 SG for stability of the interconnection
- Strategy 2 [Das+12]:
 - I SG for a generalized Lyapunov function for the interconnection

[[]HM99] J. P. Hespanha and A. S. Morse, "Stability of switched systems with average dwell-time," in 38th IEEE Conf. Decis. Control, vol. 3, 1999, pp. 2655–2660

[[]HLT08] J. P. Hespanha, D. Liberzon, and A. R. Teel, "Lyapunov conditions for input-to-state stability of impulsive systems," Automatica, vol. 44, no. 11, pp. 2735–2744, 2008

[[]LNT14] D. Liberzon, D. Nešić, and A. R. Teel, "Lyapunov-based small-gain theorems for hybrid systems," IEEE Trans. Automat. Contr., vol. 59, no. 6, pp. 1395–1410, 2014

[[]Das+12] S. Dashkovskiy, M. Kosmykov, A. Mironchenko, and L. Naujok, "Stability of interconnected impulsive systems with and without time delays, using Lyapunov methods," Nonlinear Anal. Hybrid Syst., vol. 6, no. 3, pp. 899–915, 2012

Proprocessing Proprocessing Systems

Proprocessing Systems

**Proprocessin

- Non-ISS jumps: average dwell-time (ADT) [HM99]
- Non-ISS flows: reverse ADT (RADT) [HLT08]
- Strategy 1 [LNT14]: increase feedback gains
 - 1 ADT/RADT modifications for ISS Lyapunov functions for subsystems
 - **2** SG for stability of the interconnection
- Strategy 2 [Das+12]:
 - I SG for a generalized Lyapunov function for the interconnection
 - 2 ADT/RADT modification for stability of the interconnection

[[]HM99] J. P. Hespanha and A. S. Morse, "Stability of switched systems with average dwell-time," in 38th IEEE Conf. Decis. Control, vol. 3, 1999, pp. 2655–2660

[[]HLT08] J. P. Hespanha, D. Liberzon, and A. R. Teel, "Lyapunov conditions for input-to-state stability of impulsive systems," Automatica, vol. 44, no. 11, pp. 2735–2744, 2008

[[]LNT14] D. Liberzon, D. Nešić, and A. R. Teel, "Lyapunov-based small-gain theorems for hybrid systems," IEEE Trans. Automat. Contr., vol. 59, no. 6, pp. 1395–1410, 2014

[[]Das+12] S. Dashkovskiy, M. Kosmykov, A. Mironchenko, and L. Naujok, "Stability of interconnected impulsive systems with and without time delays, using Lyapunov methods," Nonlinear Anal. Hybrid Syst., vol. 6, no. 3, pp. 899–915, 2012

Proprocessing Proprocessing Systems

Proprocessing Systems

**Proprocessin

- Non-ISS jumps: average dwell-time (ADT) [HM99]
- Non-ISS flows: reverse ADT (RADT) [HLT08]
- Strategy 1 [LNT14]: increase feedback gains
 - 1 ADT/RADT modifications for ISS Lyapunov functions for subsystems
 - **2** SG for stability of the interconnection
- Strategy 2 [Das+12]: cannot apply to mixed non-ISS dynamics
 - I SG for a generalized Lyapunov function for the interconnection
 - 2 ADT/RADT modification for stability of the interconnection

[[]HM99] J. P. Hespanha and A. S. Morse, "Stability of switched systems with average dwell-time," in 38th IEEE Conf. Decis. Control, vol. 3, 1999, pp. 2655–2660

[[]HLT08] J. P. Hespanha, D. Liberzon, and A. R. Teel, "Lyapunov conditions for input-to-state stability of impulsive systems," Automatica, vol. 44, no. 11, pp. 2735–2744, 2008

[[]LNT14] D. Liberzon, D. Nešić, and A. R. Teel, "Lyapunov-based small-gain theorems for hybrid systems," IEEE Trans. Automat. Contr., vol. 59, no. 6, pp. 1395–1410, 2014

[[]Das+12] S. Dashkovskiy, M. Kosmykov, A. Mironchenko, and L. Naujok, "Stability of interconnected impulsive systems with and without time delays, using Lyapunov methods," Nonlinear Anal. Hybrid Syst., vol. 6, no. 3, pp. 899–915, 2012

Proprocessing Proprocessing Systems

Proprocessing Systems

**Proprocessin

- Non-ISS jumps: average dwell-time (ADT) [HM99]
- Non-ISS flows: reverse ADT (RADT) [HLT08]
- Strategy 1 [LNT14]: increase feedback gains
 - 1 ADT/RADT modifications for ISS Lyapunov functions for subsystems
 - **2** SG for stability of the interconnection
- Strategy 2 [Das+12]: cannot apply to mixed non-ISS dynamics
 - I SG for a generalized Lyapunov function for the interconnection
 - 2 ADT/RADT modification for stability of the interconnection
- In this work, we provide a thorough study on
 - ▶ the effects of ADT/RADT modifications on feedback gains
 - the applicability of the two strategies

[HM99] J. P. Hespanha and A. S. Morse, "Stability of switched systems with average dwell-time," in 38th IEEE Conf. Decis. Control, vol. 3, 1999, pp. 2655–2660

[HLT08] J. P. Hespanha, D. Liberzon, and A. R. Teel, "Lyapunov conditions for input-to-state stability of impulsive systems," Automatica, vol. 44, no. 11, pp. 2735–2744, 2008

[LNT14] D. Liberzon, D. Nešić, and A. R. Teel, "Lyapunov-based small-gain theorems for hybrid systems," IEEE Trans. Automat. Contr., vol. 59, no. 6, pp. 1395–1410, 2014

[Das+12] S. Dashkovskiy, M. Kosmykov, A. Mironchenko, and L. Naujok, "Stability of interconnected impulsive systems with and without time delays, using Lyapunov methods," Nonlinear Anal. Hybrid Syst., vol. 6, no. 3, pp. 899–915, 2012

Description

**The property of the property of

Table of contents

Preliminaries for hybrid systems

2 Interconnected hybrid systems

Modifying ISS Lyapunov functions

4 Conclusion

$$\dot{x} \in F(x, u),$$
 $(x, u) \in \mathcal{C},$
 $x^+ \in G(x, u),$ $(x, u) \in \mathcal{D}.$

■ State $x \in \mathcal{X} \subset \mathbb{R}^n$, input $u \in \mathcal{U} \subset \mathbb{R}^m$

$$\dot{x} \in F(x, u),$$
 $(x, u) \in \mathcal{C},$
 $x^+ \in G(x, u),$ $(x, u) \in \mathcal{D}.$

- State $x \in \mathcal{X} \subset \mathbb{R}^n$, input $u \in \mathcal{U} \subset \mathbb{R}^m$
- Flow set $\mathcal{C} \subset \mathcal{X} \times \mathcal{U}$, flow map $F : \mathcal{X} \times \mathcal{U} \rightrightarrows \mathbb{R}^n$

$$\dot{x} \in F(x, u),$$
 $(x, u) \in \mathcal{C},$
 $x^+ \in G(x, u),$ $(x, u) \in \mathcal{D}.$

- State $x \in \mathcal{X} \subset \mathbb{R}^n$, input $u \in \mathcal{U} \subset \mathbb{R}^m$
- Flow set $\mathcal{C} \subset \mathcal{X} \times \mathcal{U}$, flow map $F : \mathcal{X} \times \mathcal{U} \rightrightarrows \mathbb{R}^n$
- Jump set $\mathcal{D} \subset \mathcal{X} \times \mathcal{U}$, jump map $G : \mathcal{X} \times \mathcal{U} \rightrightarrows \mathcal{X}$

$$\dot{x} \in F(x, u),$$
 $(x, u) \in \mathcal{C},$
 $x^+ \in G(x, u),$ $(x, u) \in \mathcal{D}.$

- State $x \in \mathcal{X} \subset \mathbb{R}^n$, input $u \in \mathcal{U} \subset \mathbb{R}^m$
- Flow set $\mathcal{C} \subset \mathcal{X} \times \mathcal{U}$, flow map $F : \mathcal{X} \times \mathcal{U} \rightrightarrows \mathbb{R}^n$
- Jump set $\mathcal{D} \subset \mathcal{X} \times \mathcal{U}$, jump map $G : \mathcal{X} \times \mathcal{U} \rightrightarrows \mathcal{X}$
- Solutions $x : \operatorname{dom} x \to \mathcal{X}$ defined on hybrid time domains

$$dom x = \bigcup_{j=0,1,...} [t_j, t_{j+1}] \times \{j\}$$

$$\dot{x} \in F(x, u),$$
 $(x, u) \in \mathcal{C},$
 $x^+ \in G(x, u),$ $(x, u) \in \mathcal{D}.$

- State $x \in \mathcal{X} \subset \mathbb{R}^n$, input $u \in \mathcal{U} \subset \mathbb{R}^m$
- Flow set $\mathcal{C} \subset \mathcal{X} \times \mathcal{U}$, flow map $F : \mathcal{X} \times \mathcal{U} \rightrightarrows \mathbb{R}^n$
- Jump set $\mathcal{D} \subset \mathcal{X} \times \mathcal{U}$, jump map $G : \mathcal{X} \times \mathcal{U} \rightrightarrows \mathcal{X}$
- Solutions $x : \operatorname{dom} x \to \mathcal{X}$ defined on hybrid time domains

$$\operatorname{dom} x = \bigcup_{j=0,1,\dots} [t_j, t_{j+1}] \times \{j\}$$

Input-to-state stability

$$\dot{x} \in F(x, u),$$
 $(x, u) \in \mathcal{C},$
 $x^+ \in G(x, u),$ $(x, u) \in \mathcal{D}.$

■ State $x \in \mathcal{X} \subset \mathbb{R}^n$, input $u \in \mathcal{U} \subset \mathbb{R}^m$

Definition

A hybrid system is input-to-state stable (ISS) w.r.t. a set $\mathcal{A} \subset \mathcal{X}$ if there exist $\beta \in \mathcal{KL}, \gamma \in \mathcal{K}_{\infty}$ such that all solution pairs (x,u) satisfy

$$|x(t,j)|_{\mathcal{A}} \le \beta(|x(0,0)|_{\mathcal{A}}, t+j) + \gamma(||u||_{(t,j)}) \qquad \forall (t,j) \in \operatorname{dom} x.$$

Input-to-state stability

$$\dot{x} \in F(x, u),$$
 $(x, u) \in \mathcal{C},$
 $x^+ \in G(x, u),$ $(x, u) \in \mathcal{D}.$

■ State $x \in \mathcal{X} \subset \mathbb{R}^n$, input $u \in \mathcal{U} \subset \mathbb{R}^m$

Definition

A hybrid system is input-to-state stable (ISS) w.r.t. a set $\mathcal{A} \subset \mathcal{X}$ if there exist $\beta \in \mathcal{KL}, \gamma \in \mathcal{K}_{\infty}$ such that all solution pairs (x,u) satisfy

$$|x(t,j)|_{\mathcal{A}} \le \beta(|x(0,0)|_{\mathcal{A}}, t+j) + \gamma(||u||_{(t,j)}) \qquad \forall (t,j) \in \text{dom } x.$$

■ In the absence of inputs, ISS becomes global asymptotic stability (GAS)

Definition 1

A locally Lipschitz function $V:\mathcal{X} \to \mathbb{R}_{\geq 0}$ is a candidate ISS Lyapunov function w.r.t \mathcal{A} if

 \exists bounds $\psi_1, \psi_2 \in \mathcal{K}_{\infty}$ s.t. $\psi_1(|x|_A) \leq V(x) \leq \psi_2(|x|_A)$ for all $x \in \mathcal{X}$;

[CT09] C. Cai and A. R. Teel, "Characterizations of input-to-state stability for hybrid systems," Syst. & Control Lett., vol. 58, no. 1, pp. 47-53, 2009

Definition 1

A locally Lipschitz function $V: \mathcal{X} \to \mathbb{R}_{\geq 0}$ is a candidate ISS Lyapunov function w.r.t \mathcal{A} if

- \exists bounds $\psi_1, \psi_2 \in \mathcal{K}_{\infty}$ s.t. $\psi_1(|x|_A) \leq V(x) \leq \psi_2(|x|_A)$ for all $x \in \mathcal{X}$;
- \supseteq \exists an input gain $\chi \in \mathcal{K}_{\infty}$ and a rate $\phi \in C^0(\mathbb{R}_{>0}, \mathbb{R})$ with $\phi(0) = 0$ s.t.

$$V(x) \ge \chi(|u|) \Rightarrow \nabla_v V(x) \le -\phi(V(x)) \qquad \forall (x, u) \in \mathcal{C}, \forall v \in F(x, u);$$

ISS Lyapunov functions for hybrid systems

7 / 22

Definition 1

A locally Lipschitz function $V: \mathcal{X} \to \mathbb{R}_{\geq 0}$ is a candidate ISS Lyapunov function w.r.t \mathcal{A} if

- \exists bounds $\psi_1, \psi_2 \in \mathcal{K}_{\infty}$ s.t. $\psi_1(|x|_{\mathcal{A}}) < V(x) < \psi_2(|x|_{\mathcal{A}})$ for all $x \in \mathcal{X}$:
- \supseteq \exists an input gain $\chi \in \mathcal{K}_{\infty}$ and a rate $\phi \in C^0(\mathbb{R}_{>0}, \mathbb{R})$ with $\phi(0) = 0$ s.t.

$$V(x) \ge \chi(|u|) \Rightarrow \nabla_v V(x) \le -\phi(V(x)) \qquad \forall (x, u) \in \mathcal{C}, \forall v \in F(x, u);$$

 \exists a positive definite rate $\alpha \in C^0(\mathbb{R}_{\geq 0}, \mathbb{R}_{\geq 0})$ such that

$$V(y) \le \max\{\alpha(V(x)), \chi(|u|)\} \qquad \forall (x, u) \in \mathcal{D}, \forall y \in G(x, u).$$

[CT09]

[CT13]

Definition 1

A locally Lipschitz function $V: \mathcal{X} \to \mathbb{R}_{\geq 0}$ is a candidate ISS Lyapunov function w.r.t \mathcal{A} if

- \exists bounds $\psi_1, \psi_2 \in \mathcal{K}_{\infty}$ s.t. $\psi_1(|x|_{\mathcal{A}}) < V(x) < \psi_2(|x|_{\mathcal{A}})$ for all $x \in \mathcal{X}$:
- \supseteq \exists an input gain $\chi \in \mathcal{K}_{\infty}$ and a rate $\phi \in C^0(\mathbb{R}_{>0}, \mathbb{R})$ with $\phi(0) = 0$ s.t.

$$V(x) \ge \chi(|u|) \Rightarrow \nabla_v V(x) \le -\phi(V(x)) \qquad \forall (x, u) \in \mathcal{C}, \forall v \in F(x, u);$$

 \exists a positive definite rate $\alpha \in C^0(\mathbb{R}_{\geq 0}, \mathbb{R}_{\geq 0})$ such that

$$V(y) \le \max\{\alpha(V(x)), \chi(|u|)\} \qquad \forall (x, u) \in \mathcal{D}, \forall y \in G(x, u).$$

It is an ISS Lyapunov function if $\phi(r) > 0$ and $\alpha(r) < r$ for all r > 0.

Definition 1

A locally Lipschitz function $V: \mathcal{X} \to \mathbb{R}_{\geq 0}$ is a candidate ISS Lyapunov function w.r.t \mathcal{A} if

- \exists bounds $\psi_1, \psi_2 \in \mathcal{K}_{\infty}$ s.t. $\psi_1(|x|_A) \leq V(x) \leq \psi_2(|x|_A)$ for all $x \in \mathcal{X}$;
- \supseteq \exists an input gain $\chi \in \mathcal{K}_{\infty}$ and a rate $\phi \in C^0(\mathbb{R}_{>0}, \mathbb{R})$ with $\phi(0) = 0$ s.t.

$$V(x) \ge \chi(|u|) \Rightarrow \nabla_v V(x) \le -\phi(V(x)) \qquad \forall (x, u) \in \mathcal{C}, \forall v \in F(x, u);$$

 \exists a positive definite rate $\alpha \in C^0(\mathbb{R}_{>0}, \mathbb{R}_{>0})$ such that

$$V(y) \le \max\{\alpha(V(x)), \chi(|u|)\} \qquad \forall (x, u) \in \mathcal{D}, \forall y \in G(x, u).$$

It is an ISS Lyapunov function if $\phi(r) > 0$ and $\alpha(r) < r$ for all r > 0.

Proposition 1 ([CT09, Prop. 2.7])

A hybrid system is ISS if it admits an ISS Lyapunov function.

Table of contents

Preliminaries for hybrid systems

Interconnected hybrid systems

Modifying ISS Lyapunov functions

4 Conclusion

Interconnection of two hybrid subsystems

• Hybrid system with state $x=(x_1,x_2)$

$$\dot{x}_1 = f_1(x), \dot{x}_2 = f_2(x), \quad x \in \mathcal{C},$$

 $x_1^+ = g_1(x), x_2^+ = g_2(x), \quad x \in \mathcal{D}.$

Interconnection of two hybrid subsystems

- Hybrid system with state $x=(x_1,x_2)$ $\dot{x}_1=f_1(x), \dot{x}_2=f_2(x), \quad x\in\mathcal{C},$ $x_1^+=g_1(x), x_2^+=g_2(x), \quad x\in\mathcal{D}.$
- Each x_i -subsystem regards x_i as an input

Interconnection of two hybrid subsystems

■ Hybrid system with state $x=(x_1,x_2)$ $\dot{x}_1=f_1(x), \dot{x}_2=f_2(x), \quad x\in\mathcal{C},$

$$\dot{x}_1 = f_1(x), \dot{x}_2 = f_2(x), \quad x \in \mathcal{C},$$

 $x_1^+ = g_1(x), x_2^+ = g_2(x), \quad x \in \mathcal{D}.$

■ Each x_i -subsystem regards x_j as an input

Assumption 1

Each x_i -subsystem (with input x_j) admits a candidate ISS Lyapunov function $V_i: \mathcal{X}_i \to \mathbb{R}_{\geq 0}$ with bounds ψ_{1i}, ψ_{2i} , an input gain χ_i , and rates ϕ_i, α_i .

Interconnection of two hybrid subsystems

Hybrid system with state $x=(x_1,x_2)$ $\dot{x}_1=f_1(x), \dot{x}_2=f_2(x), \quad x\in\mathcal{C},$

$$\dot{x}_1 = f_1(x), \dot{x}_2 = f_2(x), \quad x \in \mathcal{C},$$

 $x_1^+ = g_1(x), x_2^+ = g_2(x), \quad x \in \mathcal{D}.$

■ Each x_i -subsystem regards x_j as an input

Assumption 1

Each x_i -subsystem (with input x_j) admits a candidate ISS Lyapunov function $V_i: \mathcal{X}_i \to \mathbb{R}_{\geq 0}$ with bounds ψ_{1i}, ψ_{2i} , an input gain χ_i , and rates ϕ_i, α_i .

$$\begin{split} \text{For all } x &= (x_1, x_2) \in \mathcal{C}, \\ V_1(x_1) &\geq \gamma_1(V_2(x_2)) \quad \Rightarrow \quad \nabla_{f_1(x)} V_1(x_1) \leq -\phi_1(V_1(x_1)), \\ V_2(x_2) &\geq \gamma_2(V_1(x_1)) \quad \Rightarrow \quad \nabla_{f_2(x)} V_2(x_2) \leq -\phi_2(V_2(x_2)) \\ \text{with } \gamma_i(r) &:= \chi_i(\psi_{ij}^{-1}(r)) \text{ for } i = 1, 2 \end{split}$$

Interconnection of two hybrid subsystems

Hybrid system with state $x = (x_1, x_2)$ $\dot{x}_1 = f_1(x), \dot{x}_2 = f_2(x), \quad x \in \mathcal{C}.$

$$\begin{split} \dot{x}_1 &= f_1(x), \dot{x}_2 = f_2(x), \quad x \in \mathcal{C}, \\ x_1^+ &= g_1(x), x_2^+ = g_2(x), \quad x \in \mathcal{D}. \end{split}$$

■ Each x_i -subsystem regards x_j as an input

Assumption 1

Each x_i -subsystem (with input x_j) admits a candidate ISS Lyapunov function $V_i: \mathcal{X}_i \to \mathbb{R}_{\geq 0}$ with bounds ψ_{1i}, ψ_{2i} , an input gain χ_i , and rates ϕ_i, α_i .

 $For all x = (x_1, x_2) \in \mathcal{C},$

$$V_1(x_1) \ge \gamma_1(V_2(x_2)) \quad \Rightarrow \quad \nabla_{f_1(x)} V_1(x_1) \le -\phi_1(V_1(x_1)),$$

$$V_2(x_2) \ge \gamma_2(V_1(x_1)) \quad \Rightarrow \quad \nabla_{f_2(x)} V_2(x_2) \le -\phi_2(V_2(x_2))$$

with $\gamma_i(r) := \chi_i(\psi_{ij}^{-1}(r))$ for i = 1, 2

■ Small-gain condition (SG): the composition $\gamma_1 \circ \gamma_2 < \mathrm{Id}$

Assumption 1

Each x_i -subsystem (with input x_j) admits a candidate ISS Lyapunov function $V_i: \mathcal{X}_i \to \mathbb{R}_{\geq 0}$ with bounds ψ_{1i}, ψ_{2i} , a gain χ_i , and rates ϕ_i, α_i .

(SG1) The composition $\gamma_1 \circ \gamma_2 < \operatorname{Id}$ with $\gamma_i(r) := \chi_i(\psi_{1j}^{-1}(r))$ for i = 1, 2.

Assumption 1

Each x_i -subsystem (with input x_j) admits a candidate ISS Lyapunov function $V_i: \mathcal{X}_i \to \mathbb{R}_{\geq 0}$ with bounds ψ_{1i}, ψ_{2i} , a gain χ_i , and rates ϕ_i, α_i .

(SG1) The composition
$$\gamma_1 \circ \gamma_2 < \operatorname{Id}$$
 with $\gamma_i(r) := \chi_i(\psi_{1j}^{-1}(r))$ for $i = 1, 2$.

Lemma 1. ([JMW96, Lemma A.1])

Provided that

$$\gamma_1 \circ \gamma_2 < \mathrm{Id},$$

[JMW96] Z.-P. Jiang, I. M. Y. Mareels, and Y. Wang, "A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems,"

Automatica, vol. 32, no. 8, pp. 1211–1215, 1996

Assumption 1

Each x_i -subsystem (with input x_j) admits a candidate ISS Lyapunov function $V_i: \mathcal{X}_i \to \mathbb{R}_{>0}$ with bounds ψ_{1i}, ψ_{2i} , a gain χ_i , and rates ϕ_i, α_i .

(SG1) The composition $\gamma_1 \circ \gamma_2 < \operatorname{Id}$ with $\gamma_i(r) := \chi_i(\psi_{1j}^{-1}(r))$ for i = 1, 2.

Lemma 1. ([JMW96, Lemma A.1])

Provided that

$$\gamma_1 \circ \gamma_2 < \mathrm{Id}$$
,

there exists a gain $\rho \in \mathcal{K}_{\infty}$ satisfying $\rho \in \mathcal{C}^1$ and $\rho'>0$ on $\mathbb{R}_{>0}$ s.t.

$$\gamma_1^{-1}(r) > \rho(r) > \gamma_2(r) \qquad \forall r > 0.$$

[JMW96] Z.-P. Jiang, I. M. Y. Mareels, and Y. Wang, "A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems,"

Automatica, vol. 32, no. 8, pp. 1211–1215, 1996

Assumption 1

Each x_i -subsystem (with input x_j) admits a candidate ISS Lyapunov function $V_i: \mathcal{X}_i \to \mathbb{R}_{\geq 0}$ with bounds ψ_{1i}, ψ_{2i} , a gain χ_i , and rates ϕ_i, α_i .

(SG1) The composition $\gamma_1 \circ \gamma_2 < \mathrm{Id}$ with $\gamma_i(r) := \chi_i(\psi_{1j}^{-1}(r))$ for i = 1, 2.

Proposition 2

Suppose Assumption 1 and (SG1) hold. Then $V(x) := \max\{\rho(V_1(x_1)), V_2(x_2)\}$ with ρ in Lemma 1 is a candidate Lyapunov function for the interconnection.

Assumption 1

Each x_i -subsystem (with input x_j) admits a candidate ISS Lyapunov function $V_i: \mathcal{X}_i \to \mathbb{R}_{\geq 0}$ with bounds ψ_{1i}, ψ_{2i} , a gain χ_i , and rates ϕ_i, α_i .

(SG1) The composition $\gamma_1 \circ \gamma_2 < \operatorname{Id}$ with $\gamma_i(r) := \chi_i(\psi_{1j}^{-1}(r))$ for i = 1, 2.

Proposition 2

Suppose Assumption 1 and (SG1) hold. Then $V(x) := \max\{\rho(V_1(x_1)), V_2(x_2)\}$ with ρ in Lemma 1 is a candidate Lyapunov function for the interconnection.

Proposition 3 ([LNT14, Th. III.1 and Cor. III.2])

Suppose Assumption 1 and (SG1) hold with ISS Lyapunov functions V_1, V_2 . Then V defined in Proposition 2 is a Lyapunov function and ensures GAS.

[LNT14] D. Liberzon, D. Nešić, and A. R. Teel, "Lyapunov-based small-gain theorems for hybrid systems," IEEE Trans. Automat. Contr., vol. 59, no. 6, pp. 1395–1410, 2014

Table of contents

Preliminaries for hybrid systems

2 Interconnected hybrid systems

Modifying ISS Lyapunov functions

4 Conclusion

Candidate exponential ISS Lyapunov functions

Definition 2

A candidate ISS Lyapunov function with rates ϕ, α satisfying

$$\phi(r) \equiv cr, \qquad \alpha(r) \equiv e^{-d}r$$

for some constants $c, d \in \mathbb{R}$ is a candidate exponential ISS Lyapunov function with rate coefficients c, d.

It is an exponential ISS Lyapunov function if c, d > 0.

Assumption 2

Each x_i -subsystem admits a candidate exponential ISS Lyapunov function $V_i: \mathcal{X}_i \to \mathbb{R}_{\geq 0}$ with bounds ψ_{1i}, ψ_{2i} , a gain χ_i , and rate coefficients c_i, d_i .

Assumption 2 holds with V_1, V_2 and rate coefficients $c_1, c_2 \le 0 < d_1, d_2$

[[]HLT08] J. P. Hespanha, D. Liberzon, and A. R. Teel, "Lyapunov conditions for input-to-state stability of impulsive systems," Automatica, vol. 44, no. 11, pp. 2735–2744, 2008

[[]CTG08] C. Cai, A. R. Teel, and R. Goebel, "Smooth Lyapunov functions for hybrid systems Part II: (Pre)Asymptotically stable compact sets," IEEE

Trans. Automat. Contr., vol. 53, no. 3, pp. 734–748, 2008

■ Assumption 2 holds with V_1, V_2 and rate coefficients $c_1, c_2 \le 0 < d_1, d_2$

[[]HLT08] J. P. Hespanha, D. Liberzon, and A. R. Teel, "Lyapunov conditions for input-to-state stability of impulsive systems," Automatica, vol. 44, no. 11, pp. 2735–2744, 2008

[[]CTG08] C. Cai, A. R. Teel, and R. Goebel, "Smooth Lyapunov functions for hybrid systems Part II: (Pre)Asymptotically stable compact sets," IEEE

Trans. Automat. Contr., vol. 53, no. 3, pp. 734–748, 2008

- Assumption 2 holds with V_1, V_2 and rate coefficients $c_1, c_2 \le 0 < d_1, d_2$
- Consider solutions that jump fast enough

[[]HLT08] J. P. Hespanha, D. Liberzon, and A. R. Teel, "Lyapunov conditions for input-to-state stability of impulsive systems," Automatica, vol. 44, no. 11, pp. 2735–2744, 2008

[[]CTG08] C. Cai, A. R. Teel, and R. Goebel, "Smooth Lyapunov functions for hybrid systems Part II: (Pre)Asymptotically stable compact sets," IEEE Trans. Automat. Contr., vol. 53, no. 3, pp. 734–748, 2008

- Assumption 2 holds with V_1, V_2 and rate coefficients $c_1, c_2 \le 0 < d_1, d_2$
- Consider solutions that jump fast enough
- A solution x admits a reverse average dwell-time (RADT) $\tau_a^* > 0$ [HLT08] if $j-k \geq (t-s)/\tau_a^* N_0^* \qquad \forall \, t \geq s$ with an integer $N_0^* \geq 1$.

[[]HLT08] J. P. Hespanha, D. Liberzon, and A. R. Teel, "Lyapunov conditions for input-to-state stability of impulsive systems," Automatica, vol. 44, no. 11, pp. 2735–2744, 2008

[[]CTG08] C. Cai, A. R. Teel, and R. Goebel, "Smooth Lyapunov functions for hybrid systems Part II: (Pre)Asymptotically stable compact sets," IEEE

Trans. Automat. Contr., vol. 53, no. 3, pp. 734–748, 2008

- Assumption 2 holds with V_1, V_2 and rate coefficients $c_1, c_2 \le 0 < d_1, d_2$
- Consider solutions that jump fast enough
- A solution x admits a reverse average dwell-time (RADT) $\tau_a^* > 0$ [HLT08] if $j k \geq (t s)/\tau_a^* N_0^* \qquad \forall \, t \geq s$

with an integer $N_0^* \ge 1$.

■ [CTG08] Equivalently, $\operatorname{dom} x = \operatorname{dom} \tau$ for an RADT timer τ with

$$\begin{split} \dot{\tau} &= 1/\tau_a^*, & \tau \in [0, N_0^*], \\ \tau^+ &= \max\{0, \tau - 1\}, & \tau \in [0, N_0^*]. \end{split}$$

[[]HLT08] J. P. Hespanha, D. Liberzon, and A. R. Teel, "Lyapunov conditions for input-to-state stability of impulsive systems," Automatica, vol. 44, no. 11, pp. 2735–2744, 2008

[CTG08] C. Cai, A. R. Teel, and R. Goebel, "Smooth Lyapunov functions for hybrid systems Part II: (Pre)Asymptotically stable compact sets," IEEE Trans. Automat. Contr., vol. 53, no. 3, pp. 734-748, 2008

- Assumption 2 holds with V_1, V_2 and rate coefficients $c_1, c_2 \leq 0 < d_1, d_2$
- Consider solutions that jump fast enough
- Consider the augmented interconnection with state (x_1, x_2, τ)

- Assumption 2 holds with V_1, V_2 and rate coefficients $c_1, c_2 \le 0 < d_1, d_2$
- Consider solutions that jump fast enough
- Consider the augmented interconnection with state (x_1, x_2, τ)
- [MYL14, Prop. 6] Provided that $\tau_a^* < -d_i/c_i$, there exists an $L_i \in (-c_i\tau_a^*, d_i)$ s.t.

$$W_i(x_i, \tau) := e^{-L_i \tau} V_i(x_i)$$

is an exponential ISS Lyapunov function

- Assumption 2 holds with V_1, V_2 and rate coefficients $c_1, c_2 \le 0 < d_1, d_2$
- Consider solutions that jump fast enough
- Consider the augmented interconnection with state (x_1, x_2, τ)
- [MYL14, Prop. 6] Provided that $\tau_a^* < -d_i/c_i$, there exists an $L_i \in (-c_i \tau_a^*, d_i)$ s.t.

$$W_i(x_i, \tau) := e^{-L_i \tau} V_i(x_i)$$

is an exponential ISS Lyapunov function

- Assumption 2 holds with V_1, V_2 and rate coefficients $c_1, c_2 \le 0 < d_1, d_2$
- Consider solutions that jump fast enough
- Consider the augmented interconnection with state (x_1, x_2, τ)
- [MYL14, Prop. 6] Provided that $\tau_a^* < -d_i/c_i$, there exists an $L_i \in (-c_i \tau_a^*, d_i)$ s.t.

$$W_i(x_i, \tau) := e^{-L_i \tau} V_i(x_i)$$

is an exponential ISS Lyapunov function

■ To establish GAS via SG, it requires $\gamma_1 \circ \gamma_2 < \text{Id with } \gamma_i(r) := \chi_i(\psi_{1i}^{-1}(e^{L_i N_0^*}r))$ for i = 1, 2

Equivalently:

(SG2) There exists an $\varepsilon > 0$ such that $\gamma_1 \circ \gamma_2 < \mathrm{Id}$ with $\gamma_i(r) := \chi_i(\psi_{1j}^{-1}((1+\varepsilon)r))$ for i=1,2.

■ Equivalently:

(SG2) There exists an $\varepsilon > 0$ such that $\gamma_1 \circ \gamma_2 < \mathrm{Id}$ with $\gamma_i(r) := \chi_i(\psi_{1j}^{-1}((1+\varepsilon)r))$ for i=1,2.

Theorem 5

Suppose Assumption 2 holds with rate coefficients $c_1, c_2 \leq 0 < d_1, d_2$. Provided that (SG2) is satisfied, the GAS estimate holds for every solution with a small enough RADT.

■ Equivalently:

(SG2) There exists an $\varepsilon>0$ such that $\gamma_1\circ\gamma_2<\mathrm{Id}$ with $\gamma_i(r):=\chi_i(\psi_{1j}^{-1}((1+\varepsilon)r))$ for i=1,2.

Theorem 5

Suppose Assumption 2 holds with rate coefficients $c_1, c_2 \le 0 < d_1, d_2$. Provided that (SG2) is satisfied, the GAS estimate holds for every solution with a small enough RADT.

Before RADT modification

(SG1) The composition $\gamma_1 \circ \gamma_2 < \mathrm{Id}$ with $\gamma_i(r) := \chi_i(\psi_{1j}^{-1}(r))$ for i = 1, 2.

■ Equivalently:

(SG2) There exists an $\varepsilon > 0$ such that $\gamma_1 \circ \gamma_2 < \mathrm{Id}$ with $\gamma_i(r) := \chi_i(\psi_{1j}^{-1}((1+\varepsilon)r))$ for i=1,2.

Theorem 5

Suppose Assumption 2 holds with rate coefficients $c_1, c_2 \le 0 < d_1, d_2$. Provided that (SG2) is satisfied, the GAS estimate holds for every solution with a small enough RADT.

Before RADT modification

(SG1) The composition $\gamma_1 \circ \gamma_2 < \mathrm{Id}$ with $\gamma_i(r) := \chi_i(\psi_{1j}^{-1}(r))$ for i = 1, 2.

■ (SG2) is generic in (SG1) (in particular, they are equivalent for linear gains)

4日 > 4周 > 4 至 > 4 至 >

■ Equivalently:

(SG2) There exists an $\varepsilon > 0$ such that $\gamma_1 \circ \gamma_2 < \mathrm{Id}$ with $\gamma_i(r) := \chi_i(\psi_{1j}^{-1}((1+\varepsilon)r))$ for i=1,2.

Theorem 5

Suppose Assumption 2 holds with rate coefficients $c_1, c_2 \le 0 < d_1, d_2$. Provided that (SG2) is satisfied, the GAS estimate holds for every solution with a small enough RADT.

Before RADT modification

(SG1) The composition $\gamma_1 \circ \gamma_2 < \operatorname{Id}$ with $\gamma_i(r) := \chi_i(\psi_{1j}^{-1}(r))$ for i = 1, 2.

- (SG2) is generic in (SG1) (in particular, they are equivalent for linear gains)
- RADT modification does not substantially increase the feedback gains

Assumption 2 holds with V_1, V_2 and rate coefficients $c_1, c_2 > 0 \ge d_1, d_2$

[[]HM99] J. P. Hespanha and A. S. Morse, "Stability of switched systems with average dwell-time," in 38th IEEE Conf. Decis. Control, vol. 3, 1999, pp. 2655–2660

[[]CTG08] C. Cai, A. R. Teel, and R. Goebel, "Smooth Lyapunov functions for hybrid systems Part II: (Pre)Asymptotically stable compact sets," IEEE

Trans. Automat. Contr., vol. 53, no. 3, pp. 734–748, 2008

Assumption 2 holds with V_1, V_2 and rate coefficients $c_1, c_2 > 0 \ge d_1, d_2$

[[]HM99] J. P. Hespanha and A. S. Morse, "Stability of switched systems with average dwell-time," in 38th IEEE Conf. Decis. Control, vol. 3, 1999, pp. 2655–2660

[[]CTG08] C. Cai, A. R. Teel, and R. Goebel, "Smooth Lyapunov functions for hybrid systems Part II: (Pre)Asymptotically stable compact sets," IEEE

Trans. Automat. Contr., vol. 53, no. 3, pp. 734–748, 2008

- Assumption 2 holds with V_1, V_2 and rate coefficients $c_1, c_2 > 0 \ge d_1, d_2$
- Consider solutions that jump slowly enough

[[]HM99] J. P. Hespanha and A. S. Morse, "Stability of switched systems with average dwell-time," in 38th IEEE Conf. Decis. Control, vol. 3, 1999, pp. 2655–2660

[[]CTG08] C. Cai, A. R. Teel, and R. Goebel, "Smooth Lyapunov functions for hybrid systems Part II: (Pre)Asymptotically stable compact sets," IEEE

Trans. Automat. Contr., vol. 53, no. 3, pp. 734–748, 2008

- Assumption 2 holds with V_1, V_2 and rate coefficients $c_1, c_2 > 0 \ge d_1, d_2$
- Consider solutions that jump slowly enough
- A solution x admits an average dwell-time (ADT) $\tau_a > 0$ [HM99] if

$$j - k \le (t - s)/\tau_a + N_0 \qquad \forall t \ge s$$

with an integer $N_0^* \geq 1$.

[CTG08] C. Cai, A. R. Teel, and R. Goebel, "Smooth Lyapunov functions for hybrid systems Part II: (Pre)Asymptotically stable compact sets," IEEE

Trans. Automat. Contr., vol. 53, no. 3, pp. 734–748, 2008

[[]HM99] J. P. Hespanha and A. S. Morse, "Stability of switched systems with average dwell-time," in 38th IEEE Conf. Decis. Control, vol. 3, 1999, pp. 2655–2660

- Assumption 2 holds with V_1, V_2 and rate coefficients $c_1, c_2 > 0 \ge d_1, d_2$
- Consider solutions that jump slowly enough
- \blacksquare A solution x admits an average dwell-time (ADT) $\tau_a>0$ [HM99] if

$$j - k \le (t - s)/\tau_a + N_0 \qquad \forall t \ge s$$

with an integer $N_0^* \ge 1$.

■ [CTG08] Equivalently, $\operatorname{dom} x = \operatorname{dom} \tau$ for an ADT timer τ with

$$\dot{\tau} = [0, 1/\tau_a], \quad \tau \in [0, N_0],$$

$$\tau^+ = \tau - 1, \quad \tau \in [1, N_0].$$

[HM99] J. P. Hespanha and A. S. Morse, "Stability of switched systems with average dwell-time," in 38th IEEE Conf. Decis. Control, vol. 3, 1999, pp. 2655–2660

[CTG08] C. Cai, A. R. Teel, and R. Goebel, "Smooth Lyapunov functions for hybrid systems Part II: (Pre)Asymptotically stable compact sets," IEEE

Trans. Automat. Contr., vol. 53, no. 3, pp. 734–748, 2008

- Assumption 2 holds with V_1, V_2 and rate coefficients $c_1, c_2 > 0 \ge d_1, d_2$
- Consider solutions that jump slowly enough
- Consider the augmented interconnection with state (x_1, x_2, τ)

- Assumption 2 holds with V_1, V_2 and rate coefficients $c_1, c_2 > 0 > d_1, d_2$
- Consider solutions that jump slowly enough
- Consider the augmented interconnection with state (x_1, x_2, τ)
- [MYL14, Prop. 5] Provided that $\tau_a > -d_i/c_i$, there exists an $L_i \in (-d_i, c_i \tau_a)$ s.t.

$$W_i(x_i, \tau) := e^{L_i \tau} V_i(x_i)$$

is an exponential ISS Lyapunov function

- Assumption 2 holds with V_1, V_2 and rate coefficients $c_1, c_2 > 0 > d_1, d_2$
- Consider solutions that jump slowly enough
- Consider the augmented interconnection with state (x_1, x_2, τ)
- [MYL14, Prop. 5] Provided that $\tau_a > -d_i/c_i$, there exists an $L_i \in (-d_i, c_i \tau_a)$ s.t.

$$W_i(x_i, \tau) := e^{L_i \tau} V_i(x_i)$$

is an exponential ISS Lyapunov function

- Assumption 2 holds with V_1, V_2 and rate coefficients $c_1, c_2 > 0 > d_1, d_2$
- Consider solutions that jump slowly enough
- Consider the augmented interconnection with state (x_1, x_2, τ)
- [MYL14, Prop. 5] Provided that $\tau_a > -d_i/c_i$, there exists an $L_i \in (-d_i, c_i \tau_a)$ s.t.

$$W_i(x_i, \tau) := e^{L_i \tau} V_i(x_i)$$

is an exponential ISS Lyapunov function

■ To establish GAS via SG, it requires $\gamma_1 \circ \gamma_2 < \text{Id with } \gamma_i(r) := e^{L_i N_0} \chi_i(\psi_{1,i}^{-1}(r))$ for i = 1, 2

Equivalently:

(SG3) There exists an $\varepsilon > 0$ such that $\gamma_1 \circ \gamma_2 < \mathrm{Id}$ with $\gamma_i(r) := (1+\varepsilon)e^{-d_i}\chi_i(\psi_{1i}^{-1}(r))$ for i=1,2.

■ Equivalently:

(SG3) There exists an
$$\varepsilon>0$$
 such that $\gamma_1\circ\gamma_2<\mathrm{Id}$ with $\gamma_i(r):=(1+\varepsilon)e^{-d_i}\chi_i(\psi_{1j}^{-1}(r))$ for $i=1,2.$

Theorem 6

Suppose Assumption 2 holds with rate coefficients $c_1,c_2>0\geq d_1,d_2$. Provided that (SG3) is satisfied, the GAS estimate holds for every solution with a large enough ADT.

■ Equivalently:

(SG3) There exists an $\varepsilon>0$ such that $\gamma_1\circ\gamma_2<\mathrm{Id}$ with $\gamma_i(r):=(1+\varepsilon)e^{-d_i}\chi_i(\psi_{1j}^{-1}(r))$ for i=1,2.

Theorem 6

Suppose Assumption 2 holds with rate coefficients $c_1, c_2 > 0 \ge d_1, d_2$. Provided that (SG3) is satisfied, the GAS estimate holds for every solution with a large enough ADT.

Before ADT modification

(SG1) The composition $\gamma_1 \circ \gamma_2 < \operatorname{Id}$ with $\gamma_i(r) := \chi_i(\psi_{1j}^{-1}(r))$ for i = 1, 2.

■ Equivalently:

(SG3) There exists an $\varepsilon>0$ such that $\gamma_1\circ\gamma_2<\mathrm{Id}$ with $\gamma_i(r):=(1+\varepsilon)e^{-d_i}\chi_i(\psi_{1j}^{-1}(r))$ for i=1,2.

Theorem 6

Suppose Assumption 2 holds with rate coefficients $c_1, c_2 > 0 \ge d_1, d_2$. Provided that (SG3) is satisfied, the GAS estimate holds for every solution with a large enough ADT.

Before ADT modification

(SG1) The composition $\gamma_1 \circ \gamma_2 < \operatorname{Id}$ with $\gamma_i(r) := \chi_i(\psi_{1j}^{-1}(r))$ for i = 1, 2.

Unlike (SG2) for RADT, (SG3) is not generic in (SG1)

■ Equivalently:

(SG3) There exists an
$$\varepsilon>0$$
 such that $\gamma_1\circ\gamma_2<\mathrm{Id}$ with $\gamma_i(r):=(1+\varepsilon)e^{-d_i}\chi_i(\psi_{1j}^{-1}(r))$ for $i=1,2.$

Theorem 6

Suppose Assumption 2 holds with rate coefficients $c_1, c_2 > 0 \ge d_1, d_2$. Provided that (SG3) is satisfied, the GAS estimate holds for every solution with a large enough ADT.

Before ADT modification

(SG1) The composition
$$\gamma_1 \circ \gamma_2 < \mathrm{Id}$$
 with $\gamma_i(r) := \chi_i(\psi_{1j}^{-1}(r))$ for $i = 1, 2$.

- Unlike (SG2) for RADT, (SG3) is not generic in (SG1)
- ADT modification substantially increases the feedback gains

Non-ISS jumps: an alternate construction

- Assumption 2 holds with rate coefficients $c_1, c_2 > 0 \ge d_1, d_2$
- Linear gains: $\gamma_1(r) \equiv \xi_1 r$ and $\gamma_2(r) \equiv \xi_2 r$ for some constant $\xi_1, \xi_2 > 0$
- Construct a candidate exponential Lyapunov function for the interconnection
- Establish GAS under ADT
- Advantage: it requires (SG1: $\xi_1 \xi_2 < 1$) instead of (SG3: $\xi_1 \xi_2 < e^{d_1 + d_2}$)
- Disadvantage: it requires linear gains

Table of contents

Preliminaries for hybrid systems

2 Interconnected hybrid systems

Modifying ISS Lyapunov functions

4 Conclusion

Stability of interconnected hybrid systems

- Stability of interconnected hybrid systems
- Lyapunov function constructions based on small-gain conditions

- Stability of interconnected hybrid systems
- Lyapunov function constructions based on small-gain conditions
- Non-ISS subsystems: ADT/RADT modifications

- Stability of interconnected hybrid systems
- Lyapunov function constructions based on small-gain conditions
- Non-ISS subsystems: ADT/RADT modifications

Dynamics	Small-gain condition	Remark
ISS subsystems	(SG1)	
Non-ISS flows	(SG2)	Generic in (SG1)
Non-ISS jumps	(SG3)	Not generic in (SG1)
Non-ISS jumps	(SG1)	Linear gains
Non-ISS flow and jump	(SG4)	Not generic in (SG1)
Non-ISS flow and jump	(SG1)	Linear gains

Future research topics

■ Generalization for hybrid network of more than 2 subsystems

Future research topics

- Generalization for hybrid network of more than 2 subsystems
- Modifying non-exponential ISS Lyapunov functions

