Computational Data Analytics for Economists

Lecture 4

Optimal Policy Learning

Outline

- 1 Learning Policies from CATEs?
- Optimal Policy Learning
- 3 Applications
- 4 Extensions

Literature

- Athey and Wager (2018): "Efficient Policy Learning", download.
- Kitagawa and Tetenov (2018): "Who Should Be Treated? Empirical Welfare Maximization Methods for Treatment Choice", Econometrica, 86(2), pp. 591-616, download.

Targeting Treatments

Possible Questions:

- Who should receive the offer to participate in a training program?
- How should we design the eligibility criteria of a welfare program?
- Who should receive a direct fund-raising mail to increase charitable giving?
- Who should be solicited during electoral campaigning?

⇒ Optimal policy rules can improve the allocation of limited resources, e.g., to save budget or to improve welfare

What are Policy Rules?

- Determine the allocation of treatments to individuals with different observable covariates
- Purpose is to find a policy rule π based on the covariates $X \to \{-1, 1\}$
- The policy rule $\pi(X_i)$ is 1 when individual i is assigned to the treatment and -1 otherwise
- Policy rules are often called assignment rule, individualised treatment rule (ITR), personalised treatment rule, etc.
- Policy rules are closely related to treatment effects (CATEs)
- But instead of estimating the effect, we want to learn an optimal policy rule

Notation

- $W_i = 1$ when individual i is treated and $W_i = -1$ otherwise
- Potential outcomes are $Y_i(w)$ for $w \in \{-1, 1\}$
- Observed outcome:

$$Y_i = Y_i(-1) + \frac{1 + W_i}{2} (Y_i(1) - Y_i(-1))$$

• Outcome under policy rule $\pi(X_i)$:

$$Y_i(\pi(X_i))$$

Individual causal effect:

$$\delta_i = Y_i(1) - Y_i(-1)$$

• CATEs:

$$\delta(x) = E[\delta_i | X_i = x]$$

Approach Based on CATEs

Optimal policy rule:

$$\pi^* = \pi(\delta_i) = 1\{\delta_i > 0\} - 1\{\delta_i \le 0\}$$

CATE based policy rule:

$$\pi(\delta(X_i)) = 1\{\delta(X_i) > 0\} - 1\{\delta(X_i) \le 0\}$$

- The selection of a policy rule is a classification problem
- CATEs are not targeted at this classification problem

Simple Example

- $X \sim N(0,1)$
- $Y(1) = (X 1/3)^2$
- $Y(0) = -(X 1/3)^2$

Reference: Qian and Murphy (2011)

CATEs are Not Suited to Find Optimal Policies

- Treating everybody is optimal
- ATEs find optimal policy rule ($MSE_{ATE} = 9.4$), even though linear prediction of CATEs approximate the individual treatment effects better ($MSE_{ATE} > MSE_{CATE} = 7.8$)

Policy Learning Approach

• In the optimal case, we select $Y_i(1)$ when $\delta_i > 0$ and $Y_i(-1)$ when $\delta_i < 0$, such that

$$\pi^* = \max_{\pi} E[Y_i(\pi(X_i))]$$

ullet This is equivalent to selecting the π that minimises the regret function

$$R(\pi) = E[Y_i(\pi^*(X_i))] - E[Y_i(\pi(X_i))]$$

- → minimax regret criterion (Manski, 2004)
- The regret is the gap between the optimal and estimated policy
- Type I regret: due to mistakenly choosing an inferior treatment
- Type II regret: due to mistakenly rejecting a superior treatment innovation

How Can We Do This in Practice?

Define a policy value function

$$Q(\pi) = E[Y_i(\pi(X_i))]$$

or

$$Q(\pi) = E[Y_i(\pi(X_i))] - \frac{1}{2}E[Y_i(1) + Y_i(-1)]$$

= $\frac{1}{2}E[\pi(X_i) \{Y_i(1) - Y_i(-1)\}]$

• Estimate the policy $\hat{\pi}(X_i)$ that maximises $Q(\pi)$

$$\hat{\pi} = \max_{\pi} \hat{Q}(\pi)$$

• Main Challenge: How to estimate $\hat{Q}(\pi)$? \Rightarrow Q-learning

Modified Outcome Method

Inverse Probability Weighting (IPW):

$$\hat{Q}(\pi) = \frac{1}{N} \sum_{i=1}^{N} \left[\frac{1\{W_i = \pi(X_i)\}Y_i}{p_{\pi}(X_i)} \right]$$

with
$$p_{\pi}(X_i) = Pr(W_i = \pi(X_i)|X_i)$$

Augmented IPW:

$$\hat{Q}(\pi) = rac{1}{N} \sum_{i=1}^{N} \left[rac{1\{W_i = \pi(X_i)\}(Y_i - \mu_{\pi}(X_i)}{p_{\pi}(X_i)} + \mu_{\pi}(X_i)
ight]$$

with
$$\mu_{\pi}(X_i) = E[Y_i|W_i = \pi(X_i),X_i]$$

Maximization of these non-smooth functions is difficult

Reference: Zhang, Tsiatis, Laber, Davidian (2012)

Inverse Probability Weighting (IPW)

$$E[Q(\pi)|X_{i} = x] = E\left[\frac{1\{W_{i} = \pi(X_{i})\}Y_{i}}{p_{\pi}(X_{i})} \middle| X_{i}\right]$$

$$\stackrel{LIE}{=} E\left[\frac{1\{W_{i} = \pi(X_{i})\}Y_{i}}{p_{\pi}(X_{i})} \middle| W_{i} = \pi(X_{i}), X_{i}\right] p_{\pi}(X_{i})$$

$$= E\left[Y_{i}|W_{i} = \pi(X_{i}), X_{i}\right]$$

$$= E\left[Y_{i}(\pi(X_{i}))|W_{i} = \pi(X_{i}), X_{i}\right]$$

$$\stackrel{CIA}{=} E\left[Y_{i}(\pi(X_{i}))|X_{i}\right]$$

Alternative Policy Value Function

· Define the alternative policy value function

$$Q(\pi) = E[Y_i(\pi(X_i))] - E[Y_i(-\pi(X_i))]$$

= $E[\pi(X_i) \{Y_i(1) - Y_i(-1)\}]$

Then

$$\hat{Q}(\pi) = \frac{1}{N} \sum_{i=1}^{N} \hat{\pi}(X_i) \hat{\Gamma}_i$$

• We can estimate the score $\hat{\Gamma}_i$ using sample splitting

Score Functions

IPW:

$$\hat{\Gamma}_i = \frac{W_i}{\hat{p}_{\pi}(X_i)} Y_i$$

• Beygelzimer and Langford (2009) ("offset"):

$$\hat{\Gamma}_i = \frac{W_i}{\hat{p}_{\pi}(X_i)} \left(Y_i - \frac{\max(Y_i) + \min(Y_i)}{2} \right)$$

• Zhao, Zeng, Laber, Song, Yuan, and Kosorok (2015):

$$\hat{\Gamma}_{i} = \frac{W_{i}}{\hat{p}_{\pi}(X_{i})} \left(Y_{i} - \frac{\hat{\mu}_{+1}(X_{i}) + \hat{\mu}_{-1}(X_{i})}{2} \right)$$

Athey and Wager (2018) (DML):

$$\hat{\Gamma}_i = \hat{\mu}_{+1}(X_i) - \hat{\mu}_{-1}(X_i) + W_i \frac{Y_i - \hat{\mu}_{\pi}(X_i)}{\hat{p}_{\pi}(X_i)}$$

Weighted Classification Representation

Note that the policy value function

$$\hat{Q}(\pi) = \frac{1}{N} \sum_{i=1}^{N} \hat{\pi}(X_i) \hat{\Gamma}_i$$

equals

$$\hat{Q}(\pi) = \frac{1}{N} \sum_{i=1}^{N} \hat{\pi}(X_i) sign(\hat{\Gamma}_i) |\hat{\Gamma}_i|$$

- Classification of $sign(\Gamma_i)$ with weights $|\Gamma_i|$
- Intuitively:
 - Misclassification hurts more when the (absolute) treatment effects are large
 - Misclassification of individuals with almost zero effects is not very costly

Reference: Zhao, Zeng, Rush, and Kosorok (2012)

Objective Function

 Zhang, Tsiatis, Davidian, Zhang, and Laber (2012) note that we can solve the weighted classicfication problem by

$$\min_{\pi} \sum_{i=1}^{N} |\Gamma_i| \left(1 \{ \Gamma_i > 0 \} - \hat{\pi}(X_i) \right)^2$$

- We have to find some classification function for $\hat{\pi}(X_i)$ that minimises the objective function
- The estimated policy rule $\hat{\pi}(X_i)$ maximises $Q(\pi)$

Policy Learning Algorithm

- 1 Split the data in two samples A and B
- ② Use ML to estimate $\hat{\mu}_{+1}^A(X_i)$, $\hat{\mu}_{+1}^A(X_i)$, and $\hat{p}_{+1}^A(X_i)$ in Sample A; as well as $\hat{\mu}_{+1}^B(X_i)$, $\hat{\mu}_{+1}^B(X_i)$, and $\hat{p}_{+1}^B(X_i)$ in Sample A
- 3 Estimate your preferred score function $\hat{\Gamma}_i$, for example,

$$\begin{split} \hat{\Gamma}_{i}^{A} &= \hat{\mu}_{+1}^{B}(X_{i}) - \hat{\mu}_{-1}^{B}(X_{i}) + W_{i} \frac{Y_{i} - \hat{\mu}_{\pi}^{B}(X_{i})}{\hat{p}_{\pi}^{B}(X_{i})} \\ \hat{\Gamma}_{i}^{B} &= \hat{\mu}_{+1}^{A}(X_{i}) - \hat{\mu}_{-1}^{A}(X_{i}) + W_{i} \frac{Y_{i} - \hat{\mu}_{\pi}^{A}(X_{i})}{\hat{p}_{-1}^{A}(X_{i})} \end{split}$$

- ① Use ML to classify $sign(\hat{\Gamma}_i^A)$ with weight $|\hat{\Gamma}_i^A|$ in order to obtain the probability $\hat{q}_i^A(X_i) = Pr(\hat{\pi}^A(X_i) = 1)$. Proceed equivalently in sample B and obtain $\hat{q}_i^B(X_i)$.
- **5** Implement the policy rule $\pi(\hat{X}_i) = 2 \cdot 1\{\hat{q}_i^A(X_i) + \hat{q}_i^B(X_i) > 1\} 1$

Classification Methods

Classification Trees

- In contrast to regression trees, classification trees use different performance measures
- These measures are targeted to minimise the impurity (instead of the regression fit)
- Entropy or Gini index
- Logistic LASSO
- Support Vector Machines (partition data in two samples)

Regret Bounds

Kitagawa and Tetenov (2018):

$$R(\hat{\pi}) = \mathscr{O}_P\left(\frac{M}{\eta}\sqrt{\frac{VC(\Pi)}{N}}\right)$$

• Cortes, Mansour, and Mohri (2010) and Swaminathan and Joachims (2015):

$$R(\hat{\pi}) = \mathscr{O}_P\left(\sqrt{V^* rac{log(N)VC(\Pi)}{N}}\right)$$

Athey and Wager (2018):

$$R(\hat{\pi}) = \mathcal{O}_P\left(\sqrt{V^*log\left(\frac{V_{max}}{V^*}\right)\frac{VC(\Pi)}{N}}\right)$$

- $Y_i \leq M$ and $\eta \leq p_{\pi}(X_i) < 1 \eta$
- $V^* = V(\pi^*)$ is semiparametrically efficient variance for $Q(\pi)$
- V_{max} is sharp bound on worst case efficient variance $sup_{\pi}V(\pi)$
- $VC(\Pi)$ is policy class with Vapnik-Chervonenkis dimension

Regularity Conditions

Athey and Wager (2018):

- Uniform consistency of $\hat{\mu}_{\pi}(X_i)$ and $\hat{p}_{\pi}(X_i)$
- $\sqrt[4]{N}$ -convergence of $\hat{\mu}_{\pi}(X_i)$ and $\hat{p}_{\pi}(X_i)$
- $VC(\Pi)$ needs to have bounded complexity

Further Results:

- $\hat{Q}_{DML}(\pi)$ is semi-parametrically efficient
- $\bullet \ \sqrt{N}(\hat{Q}_{DML}(\pi) Q(\pi)) \overset{d}{\rightarrow} N(0, V(\pi))$
- $V(\pi)$) = $Var(\pi(X_i)\delta(X_i)) + E\left[\frac{Var(Y(-1)|X_i))}{\hat{p}_{-1}(X_i)} + \frac{Var(Y(+1)|X_i))}{\hat{p}_{+1}(X_i)}\right]$

Simulation Exercise

Application: California's GAIN program

- Welfare-to-work program that provides participants with a mix of educational resources and job search assistance MDRC conducted a randomised experiment
- Randomly chosen registrants were eligible to receive GAIN benefits immediately, whereas others were embargoed from the program
- Significant impact on earnings 9-years following the randomisation
- ⇒ **Question:** Can we to prioritize treatment to some subgroups of GAIN registrants who are particularly likely to benefit from it?

Application: California's GAIN program (cont.)

Source: Athey and Wager (2018)

Application: California's GAIN program (cont.)

Estimated Improvement (in 1,000 dollar)

Method	Estimated Improvement	Width of Bound
causal forest	0.095	0.026
IPW depth 2	0.073	0.026
AIPW depth 1	0.065	0.026
AIPW depth 2	0.098	0.026

ATE = 0.141 to 0.208

Source: Athey and Wager (2018)

Comparison of In- and Out-of-Sample Policy Rules

We expect polarisation when in-sample and hold-out-sample rules align

Source: Athey and Wager (2018)

Budget constraints

Substract cost (e.g., Kitagawa and Tetenov, 2018):

$$\hat{\Gamma}_i^{Budget} = \hat{\Gamma}_i - c_i$$

• Fix number of participants (e.g., Bhattacharya and Dupas, 2012):

$$\hat{\pi}_i^{Budget} = 2 \cdot 1\{\hat{\pi}(X_i) \ge \bar{\pi}\} - 1$$

 Combination of both enables to fix the number of participants when the cost of participation vary

Application: Job Corps

Outcome Variable: Treatment Rule:	30-Month Post-Program Earnings, No Treatment Cost		30-Month Post-Program Earnings, \$774 Cost for Each Assigned Treatment	
	Share of Population to Be Treated	Est. Welfare Gain per Population Member	Share of Population to Be Treated	Est. Welfare Gain per Population Member
Treat everyone	1	\$1,180 (\$464, \$1,896)	1	\$404 (-\$313, \$1,121)
EWM quadrant rule	0.95	\$1,340 (\$441, \$2,239)	0.8	\$643 (-\$258, \$1,544)
EWM linear rule	0.96	\$1,364 (\$398, \$2,330)	0.69	\$792 (-\$177, \$1,761)
EWM linear rule (with (education) ² and (education) ³)	0.88	\$1,489 (\$374, \$2,603)	0.75	\$897 (-\$214, \$2,008)
Linear regression plug-in rule	0.98	\$1,152	0.86	\$527
Linear regression plug-in rule (with (education) ² and (education) ³)	0.95	\$1,263	0.91	\$547
Nonparametric plug-in rule	0.91	\$1,693	0.78	\$996

Source: Kitagawa and Tetenov (2018)

Batch vs. Bandit Algorithms

Batch

- Historical dataset
- Potentially optimal policy rules change over time
- Then findings cannot be extrapolated to the future

Bandit

- Data arrives sequentially (typically online data)
- Treatment decisions are made sequentially
- Presence of exploration vs. exploitation trade-off
- Example: targeted online advertisements
- Reference: Dimakopoulou, Zhou, Athey, and Imbens (2018)

Further Extensions

Multiple treatments

```
(e.g., Frölich, 2008, Kallus, 2017, Zhou, Athey, Wager, 2018)
```

Ordered treatments

```
(e.g., Chen, Fu, He, Kosorok, and Liu, 2018)
```

Dynamic treatments

(e.g., Zhang and Zhang, 2018, Zhao, Zheng, Laber, and Kosorok, 2015)

Continuous treatments

```
(e.g., Chen, Zheng, and Kosorok, 2016, Athey and Wager, 2018)
```

Ethical Concerns?

- Statistical discrimination even if we omit critical variable (e.g., gender, migration, etc.)
- Examples: hiring decisions, flight prices, program assignments
- More or less than discrimination than humans?
- Targeting rules also have the potential to reduce discrimination, but it has to be used appropriately
- Current scandals: Cambridge Analytica