CLASS 9 10.CIRCLES

1 EXERCISE 1

- 1. AD is a diameter of a circle and AB is a chord. If AD = 34cm, AB = 30cm, the distance of AB from the centre of the circle is:
 - (a) 17cm
 - (b) 15cm
 - (c) 4cm
 - (d) 8cm
- 2. In Fig. 1, if OA = 5cm, AB = 8cm and OD is perpendicular to AB, then CD is equal to:

Figure 1

- (a) 2cm
- (b) 3cm
- (c) 4cm
- (d) 5cm
- 3. If AB = 12cm, BC = 16cm and AB is perpendicular to BC, then the radius of the circle passing through the points \mathbf{A} , \mathbf{B} and \mathbf{C} is:
 - (a) 6cm
 - (b) 8cm
 - (c) 10cm

- (d) 12cm
- 4. In Fig. 2, if $\angle ABC = 20^{\circ}$, then $\angle AOC$ is equal to:

Figure 2

- (a) 20°
- (b) 40°
- (c) 60°
- (d) 10°
- 5. In Fig. 3, if AOB is a diameter of the circle and AC = BC, then $\angle CAB$ is equal to:

Figure 3

- (a) 30°
- (b) 60°
- (c) 90°
- (d) 45°
- 6. In Fig. 4, if $\angle OAB = 40^{\circ}$, then $\angle ACB$ is equal to:

Figure 4

- (a) 50°
- (b) 40°
- (c) 60°
- (d) 70°
- 7. In Fig. 5, if $\angle DAB = 60^{\circ}$, $\angle ABD = 50^{\circ}$, then $\angle ACB$ is equal to:

Figure 5

- (a) 60°
- (b) 50°
- (c) 70°
- (d) 80°
- 8. ABCD is a cyclic quadrilateral such that AB is a diameter of the circle circumscribing it and $\angle ADC = 140^{\circ}$, then $\angle BAC$ is equal to:
 - (a) 80°
 - (b) 50°
 - (c) 40°
 - (d) 30°
- 9. In Fig. 6, BC is a diameter of the circle and $\angle BAO = 60^{\circ}$. Then $\angle ADC$ is equal to:

Figure 6

- (a) 30°
- (b) 45°
- (c) 60°
- (d) 120°
- 10. In Fig. 7, $\angle AOB = 90^{\circ}$ and $\angle ABC = 30^{\circ}$, then $\angle CAO$ is equal to:

Figure 7

- (a) 30°
- (b) 45°
- (c) 90°
- (d) 60°