Notes of "The Algebra of Vectors"

Jinxin Wang

1 Vectors and Linear Operations

1.1 Decomposition of Vectors

Theorem 1 (Theorem of Decomposition of Vectors in Plane and Space).

1.2 Application in Geometry Problems

1.2.1 Vectors in a Plane

Proposition 1. α, β, γ lie in a plane $\Leftrightarrow \exists \lambda, \mu, \nu$ that at least one of them is not equal to 0 such that

$$\lambda \alpha + \mu \beta + \nu \gamma = 0 \tag{1}$$

1.2.2 Points in a Line

Proposition 2. A, B, C lie in a line $\Leftrightarrow \exists s, t \in \mathbb{R}$ such that

$$\vec{OC} = s\vec{OA} + t\vec{OB} \wedge s + t = 1 \tag{2}$$

Definition 1. $(A, B, C) = \frac{\vec{AC}}{\vec{CB}}$

Remark 1. $(A, B, C) \in (-\infty, -1) \cup (-1, \infty)$

- 1.2.3 Ceva's Theorem
- 1.2.4 Menelaus' Theorem

2 Affine Coordinate System

3 Dot Product of Vectors

- 3.1 Definition of Dot Product
- 3.2 Properties of Dot Product
- 3.3 Dot Product in Coordinate Systems
- 3.4 应用
- 3.4.1 余弦定理
- 3.4.2 三条高线交于一点

4 Cross Product of Vectors

4.1 三个不共面向量的定向

两个不共线向量 α , β 的定向: 当从 α 转到 β 满足右手螺旋,则为右手系;满足左手螺旋,则为左手系。

三个不同面向量 α, β, γ 的定向: α, β 决定的平面将空间分成两个半空间。从 γ 指向的那一侧观察,若 α, β 组成右手系,则这三个向量组成右手系;若 α, β 组成左手系,则这三个向量组成左手系。

Properties of Orientation:

- When two vectors have a transposition, the orientation changes.
- When a vectors is replaced by its negative one, the orientation changes.

Remark 2. It seems to be related to determinant.

4.2 Definition of Cross Products of Vectors

4.3 Properties of Cross Products of Vectors

• Skew-symmetric

$$\alpha \times \beta = -\beta \times \alpha \tag{3}$$

• Double linearity

$$(\lambda \alpha) \times \beta = \lambda(\alpha \times \beta) = \alpha \times (\lambda \beta) \tag{4}$$

$$\alpha \times (\beta + \gamma) = \alpha \times \beta + \alpha \times \gamma, (\alpha + \beta) \times \gamma = \alpha \times \gamma + \beta \times \gamma \tag{5}$$

4.4 Cross Products of Vectors in Coordinate Systems

5 Mixed Product of Vectors

5.1 Double Cross Product

$$(\alpha \times \beta) \times \gamma = (\alpha \cdot \gamma)\beta - (\beta \cdot \gamma)\alpha \tag{6}$$

$$\alpha \times (\beta \times \gamma) = (\alpha \cdot \gamma)\beta - (\alpha \cdot \beta)\gamma \tag{7}$$

证明. Hint: 利用一个方便的坐标系来通过坐标进行验证。

Remark 3. 虽然证明过程依赖于坐标系的选取,但最终得到的等式并不依赖于坐标系的选取,甚至不依赖于坐标系,完全是向量之间的关系。

5.2 Mixed Product

几何意义:绝对值是以 α, β, γ 为边的平行六面体的体积。符号为三个向量组成的基的定向。 Properties of Mixed Product:

- α, β, γ in the same plane $\Leftrightarrow (\alpha, \beta, \gamma) = 0$
- $(\alpha, \beta, \gamma) = (\beta, \gamma, \alpha) = (\gamma, \alpha, \beta)$
- $\alpha \times \beta \cdot \gamma = (\alpha, \beta, \gamma) = \alpha \cdot \beta \times \gamma$
- Triple linearity

5.3 Mixed Product in Coordinate System

$$(\alpha, \beta, \gamma) = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} (e_1, e_2, e_3)$$
(8)

Specially, in a Cartesian coordinate system, $(e_1, e_2, e_3) = 1$. Therefore,

$$(\alpha, \beta, \gamma) = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
 (9)

5.4 Corollary and Application

5.4.1 Jacobi Identity

$$\alpha \times (\beta \times \gamma) + \beta \times (\gamma \times \alpha) + \gamma \times (\alpha \times \beta) = 0 \tag{10}$$

5.4.2 Lagrange Identity

$$\alpha \times \beta \cdot \gamma \times \delta = \begin{vmatrix} \alpha \cdot \gamma & \alpha \cdot \delta \\ \beta \cdot \gamma & \beta \cdot \delta \end{vmatrix}$$
 (11)

证明. Hint: Use mixed product.

5.4.3 Geometric Proof of Cramer Criterion in 3×3 Linear Systems