

Report Number: 16893

166 South Carter, Genoa City, WI 53128

Code of Federal Regulations 47 Part 95 – Personal Radio Services

Subpart G—Low Power Radio Service (LPRS)
Subpart E – Technical Regulations
Section 95.629

THE FOLLOWING MEETS THE ABOVE TEST SPECIFICATION

Formal Name: Care Trak Double Beep Transmitter

Kind of Equipment: Portable transmitter used to track Alzheimer patients.

Frequency Range: 216.0125 MHz to 216.9875 MHz

Test Configuration: Body worn device tested when mounted to 3-Axis Fixture on test table.

Model Number(s): CT-11

Model(s) Tested: CT-11

Serial Number(s): 1

Date of Tests: April, 2011

Test Conducted For: Care Trak International, Inc.

1202 Walnut St.

Murphysboro, IL 62966, USA

NOTICE: "This test report relates only to the items tested and must not be used by the client to claim product

endorsement by NVLAP or any agency of the U.S. Government". Please see the "Description of Test

Sample" page listed inside of this report.

© Copyright 1983 - 2011 D.L.S. Electronic Systems, Inc.

COPYRIGHT NOTICE

This report must not be reproduced (except in full), without the approval of D.L.S. Electronic Systems, Inc.

Care Trak International, Inc. CT-11 Double Beep Transmitter

16893

166 South Carter, Genoa City, WI 53128

SIGNATURE PAGE

Tested By:

Moy 2, 20

Cooper LaFond Test Engineer

Reviewed By:

William Stumpf OATS Manager

Approved By:

Brian Mattson General Manager

Care Trak International, Inc. CT-11 Double Beep Transmitter

16893

166 South Carter, Genoa City, WI 53128

Table of Contents

i.	Cover Page	 1
ii.	NVLAP Certificate of Accreditation	
1.0	Summary of Test Report	
2.0	Introduction	
3.0	Test Facilities	
4.0	Description of Test Sample	6
5.0	Test Equipment	
6.0	Test Arrangements	
7.0	Test Conditions	
8.0	Modifications Made To EUT For Compliance	
9.0	Results	
10.0	Conclusion	
Apper	ndix A – Test Photos	10
Apper	ndix B – Measurement Data	19
1.0	Frequency Stability	19
2.0		
3.0		
4.0	<u>.</u>	
5.0	• • • • • • • • • • • • • • • • • • • •	

Care Trak International, Inc. CT-11 Double Beep Transmitter 16893

Report Number: 16893

166 South Carter, Genoa City, WI 53128

1.0 Summary of Test Report

It was determined that the Care Trak CT-11 Double Beep Transmitter, complies with the requirements of CFR 47 Part 95 Subpart E and Subpart G.

Applicable Technical Requirements Tested:

Section	Description	Procedure	Note	Compliant?
95.629(b)(2)	Frequency Stability	TIA-603-C	3	Yes
95.1013(a)	Max ERP	TIA-603-C	1,2	Yes
95.629(b)(1)	Occupied Bandwidth	2.1049	1	Yes
95.635(c)(1)	Spurious Emissions at Antenna Port	TIA-603-C	4	Yes
95.635(c)(1)	Radiated Spurious Emissions	TIA-603-C	1, 2	Yes

Note 1: Tested in 3 orthogonal planes.

Note 2: Radiated emission measurement.

Note 3: Near field probe utilized for measurement.

Note 4: Conducted measurement.

2.0 Introduction

In April, 2011 the Care Trak Double Beep Transmitter, Model CT-11, as provided by Care Trak International, Inc. was tested to the requirements of CFR 47 Part 95 Subpart G & Subpart E Section 95.629. To meet these requirements, the procedures contained within this report were performed by personnel of D.L.S Electronic Systems, Inc.

Care Trak International, Inc. CT-11 Double Beep Transmitter

16893

166 South Carter, Genoa City, WI 53128

3.0 Test Facilities

D.L.S. Electronic Systems, Inc. is a full service EMC/Safety Testing Laboratory accredited to ISO 17025. NVLAP Certificate and Scope can be viewed at http://www.dlsemc.com/certificate. Our facilities are registered with the FCC, Industry Canada, and VCCI.

Wisconsin Test Facility:

D.L.S. Electronic Systems, Inc. 166 S. Carter Street Genoa City, Wisconsin 53128

Wheeling Test Facility:

D.L.S. Electronic Systems, Inc. 1250 Peterson Drive Wheeling, IL 60090

4.0 Description of Test Sample

Description:

LPRS Tracking Transmitter. It has a pulse transmission for security purposes. (no audio)

Type of Equipment / Frequency Range:

Portable tracking transmitter

Frequencies used: 216.0125 MHz to 216.9875 MHz

Physical Dimensions of Equipment Under Test:

Length: 1 inch x Width: 1 inch x Height: 1 inch (round)

Power Source:

3.6 VDC battery

Internal Frequencies:

31 kHz, 216 MHz

16893

4.0 **Description of Test Sample (continued)**

Transmit / Receive Frequencies Used For Test Purpose:

Low channel: 216.0125 MHz, Middle channel: 216.4875 MHz, High channel: 216.9875 MHz

Type of Modulation(s) / Antenna Type:

OOK / PCB Loop Antenna

Description of Circuit Board(s) / Part Number:

Driver Board:	41-464-0120
Main Board:	41-646-0115
Microprocessor:	PIC24F08KA101

Report Number: 16893

166 South Carter, Genoa City, WI 53128

5.0 Test Equipment

A list of the equipment used can be found in the table below. All primary equipment was calibrated against known reference standards with a verified traceable path to NIST.

D.L.S. Wisconsin – S2 FCC registration 90531

Radiated Emissions

Description	Manufacturer	Model	Serial	Frequency Range	Cal	Cal Due
		Number	Number		Dates	Dates
Receiver	Rohde & Schwarz	ESI 26	837491/010	20 Hz – 26 GHz	5/10	5/11
Preamplifier	Rohde & Schwarz	TS-PR10	032001/004	9 kHz – 1 GHz	1/11	1/12
Antenna	EMCO	3146	1205	200 MHz – 1 GHz	7/09	7/11
Preamp	Miteq	AMF-6D- 100200-50	313936	1GHz-10GHz	5/10	5/11
Horn Antenna	EMCO	3115	9903-5731	1-18GHz	6/09	6/11

Substitution

Description	Manufacturer	Model	Serial	Frequency Range	Cal	Cal Due
		Number	Number		Dates	Dates
Signal	Marconi	2022A	119026	10 kHz – 1 GHz	7/10	7/11
Generator						
Dipole	Com-Power	AD-100	40140	400 MHz – 1 GHz		
Antenna Set						

Frequency Stability

Description	Manufacturer	Model	Serial	Frequency Range	Cal	Cal Due
		Number	Number		Dates	Dates
Spectrum Analyzer	Hewlett Packard	8591A	3009A00700	20 Hz – 1.8 GHz	9/10	9/11
Temperature	Tenney	BTC	748-23	N/A		
Chamber	Benchmaster					

Care Trak International, Inc. CT-11 Double Beep Transmitter

16893

166 South Carter, Genoa City, WI 53128

6.0 Test Arrangements

Part 95 Emissions Measurement Arrangement:

All emission measurements were performed at D.L.S. Electronic Systems, Inc. and set up according to TIA-603-C, unless otherwise noted.

7.0 Test Conditions

Normal Test Conditions:

Temperature and Humidity:

75°F at 31% RH

Supply Voltage:

3.6 VDC

8.0 Modifications Made To EUT For Compliance

None noted at time of test.

9.0 Results

FCC Part 95 Measurements were performed in accordance with Code of Federal Regulations 47 Part 95.629. Graphical and tabular data can be found in Appendix B at the end of this report.

10.0 Conclusion

The Care Trak Double Beep Transmitter, model CT-11 provided by Care Trak International, Inc., was tested in April, 2011 **meets** the requirements of CFR 47 Part 95 Subpart G & Subpart E Section 95.629.

Care Trak International, Inc. CT-11 Double Beep Transmitter

16893

166 South Carter, Genoa City, WI 53128

Appendix A – Test Photos

Radiated Spurious & ERP - Setup 1

Company: Model Tested: Report Number:

Care Trak International, Inc. CT-11 Double Beep Transmitter

16893

Radiated Spurious & ERP - Setup 2

Care Trak International, Inc. CT-11 Double Beep Transmitter

16893

Radiated Spurious & ERP - Setup 3

Company: Model Tested: Care Trak International, Inc. CT-11 Double Beep Transmitter Report Number:

16893

Substitution Measurement - Setup 1

Care Trak International, Inc. CT-11 Double Beep Transmitter

16893

166 South Carter, Genoa City, WI 53128

Substitution Measurement - Setup 2

Company: Model Tested: Care Trak International, Inc. CT-11 Double Beep Transmitter Report Number:

16893

Frequency Stability - Setup 1

Company: Model Tested: Report Number: Care Trak International, Inc. CT-11 Double Beep Transmitter

16893

Frequency Stability - Setup 2

Company: Model Tested: Report Number: Care Trak International, Inc. CT-11 Double Beep Transmitter

16893

Spurious Conducted – Setup 1

Company: Model Tested: Care Trak International, Inc. CT-11 Double Beep Transmitter Report Number:

16893

Spurious Conducted – Setup 2

Report Number: 16893

166 South Carter, Genoa City, WI 53128

Appendix B – Measurement Data

1.0 Frequency Stability

Rule Part: FCC 95.629(b)(2); FCC Part 2.1055

Test Procedure: TIA-603-C (2.2.2)

Limit: Limit Standard Band LPRS = 50 ppm

Results: Pass

Notes: The EUT was set to transmit an un-modulated carrier and a near field

probe was used to measure the transmitter frequency via a scalar network analyzer (SNA). The EUT settled for a period of 15 minutes sufficient to stabilize the oscillator circuit at each temperature and voltage. A constant temperature of 20 °C was used for the voltage variation frequency stability

test.

Voltage Deviations: Nominal = 3.6 VDC

+15% = 4.14 VDC -15% = 3.06 VDC

Equation(s): $PPM = \left(\frac{f_{measured}}{f_{Assigned}} - 1\right) \cdot 10^6$

 $Margin = Limit - |PPM_{measured}|$

Calculation: $PPM = \left(\frac{216.01383}{216.0125} - 1\right) \cdot 10^6 = 6.16$

Margin = 50 - |6.16| = 43.84

Report Number: 16893

Table – 1 Channel 1 Frequency Deviations over Temperature

		Channel 1					
Temp. (deg C)	Freq. Meas. (MHz)	Ref. Freq. (MHz)	Deviation (PPM)	Limit (PPM)	Margin		
50	216.01383	216.0125	6.16	50	43.84		
40	216.01355	216.0125	4.86	50	45.14		
30	216.01340	216.0125	4.17	50	45.83		
20	216.01333	216.0125	3.84	50	46.16		
10	216.01323	216.0125	3.38	50	46.62		
0	216.01288	216.0125	1.76	50	48.24		
-10	216.01213	216.0125	-1.71	50	48.29		
-20	216.01098	216.0125	-7.04	50	42.96		
-30	216.00930	216.0125	-14.81	50	35.19		

Table – 2 Channel 20 Frequency Deviations over Temperature

		Channel 20					
Temp. (deg C)	Freq. Meas. (MHz)	Ref. Freq. (MHz)	Deviation (PPM)	Limit (PPM)	Margin		
50	216.48735	216.4875	-0.69	50	49.31		
40	216.48690	216.4875	-2.77	50	47.23		
30	216.48665	216.4875	-3.93	50	46.07		
20	216.48648	216.4875	-4.71	50	45.29		
10	216.48623	216.4875	-5.87	50	44.13		
0	216.48590	216.4875	-7.39	50	42.61		
-10	216.48493	216.4875	-11.87	50	38.13		
-20	216.48385	216.4875	-16.86	50	33.14		
-30	216.48203	216.4875	-25.27	50	24.73		

Care Trak International, Inc. CT-11 Double Beep Transmitter

16893

Table – 3 Channel 40 Frequency Deviations over Temperature

		Channel 40					
Temp. (deg C)	Freq. Meas. (MHz)	Ref. Freq. (MHz)	Deviation (PPM)	Limit (PPM)	Margin		
50	216.98553	216.9875	-9.08	50	40.92		
40	216.98550	216.9875	-9.22	50	40.78		
30	216.98568	216.9875	-8.39	50	41.61		
20	216.98595	216.9875	-7.14	50	42.86		
10	216.98638	216.9875	-5.16	50	44.84		
0	216.98658	216.9875	-4.24	50	45.76		
-10	216.98645	216.9875	-4.84	50	45.16		
-20	216.98573	216.9875	-8.16	50	41.84		
-30	216.98450	216.9875	-13.83	50	36.17		

Table – 4 Channel 1 Frequency Deviations over Battery Voltage

	Channel 1					
Voltage Deviation	Freq. Meas. (MHz)	Ref. Freq. (MHz)	Deviation (PPM)	Limit (PPM)	Margin	
15%	216.01353	216.0125	4.77	50	45.23	
0%	216.01293	216.0125	1.99	50	48.01	
-15%	216.01240	216.0125	-0.46	50	49.54	

Report Number: 16893

Table – 5 Channel 20 Frequency Deviations over Battery Voltage

Tuble of Chamber 20 Frequency Betrations over Buttery voltage							
		Channel 20					
Voltage Deviation	Freq. Meas. (MHz)	Ref. Freq. (MHz)	Deviation (PPM)	Limit (PPM)	Margin		
15%	216.48700	216.4875	-2.31	50	47.69		
0%	216.48655	216.4875	-4.39	50	45.61		
-15%	216.48600	216.4875	-6.93	50	43.07		

Table – 6 Channel 1 Frequency Deviations over Battery Voltage

<u> </u>							
		Channel 40					
Voltage Deviation	Freq. Meas. (MHz)	Ref. Freq. (MHz)	Deviation (PPM)	Limit (PPM)	Margin		
15%	216.98623	216.9875	-5.85	50	44.15		
0%	216.98573	216.9875	-8.16	50	41.84		
-15%	216.98523	216.9875	-10.46	50	39.54		

Report Number: 16893

166 South Carter, Genoa City, WI 53128

2.0 Max ERP

Rule Part: FCC 95.1013 (a); FCC Part 2.1046(a)

Test Procedure: Part 2.1046(a)

Limit: Applies to LPRS standard band s, 25 kHz bandwidth.

 $Limit(25kHz\ BW) = \begin{cases} 20dBm, & f = f_0 \\ 30dBc, & 12.5kHz \le f < 22.5kHz \\ 43 + 10\log P_c\ (dBc), & f \ge 22.5kHz \end{cases}$

 $Limit(f \ge 22.5kHz) = 43 + 10 \cdot \log P_{Carrier} = 43 + 10 \cdot \log(0.00001W) = -7dB$

Results: Pass

Notes: The EUT was set to transmit an un-modulated carrier and a receiving

antenna three meters away was used to measure field strength. A

substitution antenna then replaces the EUT and power is applied until the value of the EUT field strength measurement is reached. This is the value of the ERP minus the cable loss and antenna gain, see equation below. All measurements were taken on a "standard test site" in accordance with

TIA-603-C.

Equation(s): $ERP = LVL(dBm) + CBL(dB) + G_{Antenna}(dBi) + dBd_{Conversion}(dB)$

ERP = Effective Radiated Power LVL = Level of Signal Generator

CBL = Cable Loss G = Gain of Antenna

dBd = Referenced to Dipole Conversion

Calculation: ERP = -26.5dBm + -5.14dB + 2.15dBi + -2.15dBd = -31.6dBm

Repo

Care Trak International, Inc. CT-11 Double Beep Transmitter

Report Number: 16893

166 South Carter, Genoa City, WI 53128

Tested By: Cooper LaFond

Tested At: DLS Electronic Systems, Genoa City, WI

Company:

Model Tested:

Test Site: OATS 2

Measurement Parameters:RBW=100 kHzVBW=300 kHz

Peak Detector

Sweep Time = 5ms Temperature = 75 °F Relative Humidity = 31%

Table – 7 Field Strength Measurements for Ch. 1, 20, & 40

Table – 7 Melu Sueligiii Mea	Polariz	
	V	Н
LPRS Standard Band Channel	1	1
Freq. of Peak (MHz)	216.004008	215.993944
1/4 Wavelength (m)	0.347	0.347
Field Strength (dB(uV/m))	63.8	60.7
Sub. Meas. (dBm)	-26.5	-34.5
LPRS Standard Band Channel	20	20
Freq. of Peak (MHz)	216.46492	216.464886
1/4 Wavelength (m)	0.346	0.346
Field Strength (dB(uV/m))	59.0	56.6
Sub. Meas. (dBm)	-31.5	-38.5
LPRS Standard Band Channel	40	40
Freq. of Peak (MHz)	216.965932	216.96493
1/4 Wavelength (m)	0.345	0.345
Field Strength (dB(uV/m))	61.4	58.2

Care Trak International, Inc. CT-11 Double Beep Transmitter

16893

Table – 8 ERP Calculations for Ch. 1, 20, & 40

Channel	Polarization	Power Out (dBm)	CBL Loss (dB)	Dipole Gain (dBi)	dBd Conv. (dB)	Level (dBm)	Limit (dBm)	Margin (dB)
1	V	-26.5	-5.14	2.15	-2.15	-31.6	20	51.6
20	V	-31.5	-5.14	2.15	-2.15	-36.6	20	56.6
40	V	-29.5	-5.15	2.15	-2.15	-34.6	20	54.6
1	Н	-34.5	-5.14	2.15	-2.15	-39.6	20	59.6
20	Н	-38.5	-5.14	2.15	-2.15	-43.6	20	63.6
40	Н	-36.5	-5.15	2.15	-2.15	-41.6	20	61.6

Care Trak International, Inc. CT-11 Double Beep Transmitter

16893

166 South Carter, Genoa City, WI 53128

3.0 Occupied Bandwidth

Rule Part: FCC 95.629(b)(1); FCC Part 2.1049

Test Procedure: FCC Part 2.1046(a)

Limit: 25 kHz

Results: Pass

Report Number: 16893

166 South Carter, Genoa City, WI 53128

Tested By: Cooper LaFond

Tested At: DLS Electronic Systems, Genoa City, WI

Test Site: OATS 2

Measurement Parameters: RBW = 100 Hz

VBW = 300 Hz Sweep Time = 3s Span = 2 kHz Temperature = 75 °F Relative Humidity = 31%

Occupied Bandwidth Measurement = 284.57 Hz

Date: 27.APR.2011 11:15:15

Report Number: 16893

166 South Carter, Genoa City, WI 53128

4.0 Spurious Emissions at Antenna Terminal (Conducted)

Rule Part: FCC 95.635 (c); FCC Part 2.1051(a)

Test Procedure: TIA-603-C (2.2.13)

Limit: Applies to LPRS standard band s, 25 kHz bandwidth.

$$Limit(25kHz\ BW) = \begin{cases} 20dBm, & f = f_0 \\ 30dBc, & 12.5kHz \le f < 22.5kHz \\ 43 + 10\log P_c\ (dBc), & f \ge 22.5kHz \end{cases}$$

 $Limit(f \ge 22.5kHz) = 43 + 10 \cdot \log P_{Carrier} = 43 + 10 \cdot \log(0.00001W) = -7dB$

Results: Pass

Notes: Emissions were measured

Equation(s): $ERP = LVL(dBm) + CBL(dB) + G_{Antenna}(dBi) + dBd_{Conversion}(dB)$

ERP = Effective Radiated Power LVL = Level of Signal Generator

CBL = Cable Loss G = Gain of Antenna

dBd = Referenced to Dipole Conversion

Calculation: ERP = -26.5dBm + -5.14dB + 2.15dBi + -2.15dBd = -31.6dBm

Report Number: 16893

166 South Carter, Genoa City, WI 53128

Tested By: Cooper LaFond

Tested At: DLS Electronic Systems, Genoa City, WI

Test Site: OATS 2

Measurement Parameters: RBW = 100 kHz

VBW = 300 kHz

Peak Detector

Sweep Time = 5ms Temperature = 20 °C

Table – 9 Spurious Emissions at the Antenna Port

Harmonic Number	Freq (MHz)	Level (dBm)	Cable Loss (dB)	Total Level (dBm)	Level Relative to Carrier (dBc)	Limit (dBc)	Margin (dB)
1	72.18	-46.3	0.6	-45.7	-35.3	-7	28.3
2	144.35	-33.8	0.8	-33.0	-22.6	-7	15.6
3	216.49	-11.2	0.8	-10.4	0.0	N/A	N/A
4	288.68	-28.2	1.0	-27.2	-16.8	-7	9.8
5	360.85	-36.5	1.1	-35.4	-25.0	-7	18.0
6	432.98	-41.0	1.1	-39.9	-29.5	-7	22.5
7	505.15	-46.0	1.2	-44.8	-34.4	-7	27.4
8	577.33	-51.7	1.3	-50.4	-40.0	-7	33.0
9	649.48	-54.3	1.4	-52.9	-42.5	-7	35.5
10	721.65	-57.7	1.5	-56.2	-45.8	-7	38.8
11	793.80	-54.9	1.5	-53.4	-43.0	-7	36.0
12	865.97	-50.5	1.5	-49.0	-38.6	-7	31.6
13	938.12	-40.5	1.5	-39.0	-28.6	-7	21.6
14	1010.30	-46.1	2.0	-44.1	-33.7	-7	26.7

Report Number: 16893

166 South Carter, Genoa City, WI 53128

5.0 Radiated Spurious Emissions

Rule Part: FCC 95.635 (c); FCC Part 2.1053

Test Procedure: TIA-603-C

Limit: Applies to LPRS standard band s, 25 kHz bandwidth.

 $Limit(25kHz\ BW) = \begin{cases} 20dBm, & f = f_0 \\ 30dBc, & 12.5kHz \le f < 22.5kHz \\ 43 + 10\log P_c\ (dBc), & f \ge 22.5kHz \end{cases}$

 $Limit(f \ge 22.5kHz) = 43 + 10 \cdot \log P_{Carrier} = 43 + 10 \cdot \log(0.00001W) = -7dB$

Results: Pass

Notes: The EUT was set to transmit an un-modulated carrier and a receiving

antenna three meters away was used to measure field strength. A

substitution antenna then replaces the EUT and power is applied until the value of the EUT field strength measurement is reached. This is the value of the ERP minus the cable loss and antenna gain, see equation below. All measurements were taken on a "standard test site" in accordance with

TIA-603-C.

Equation(s): $ERP = LVL(dBm) + CBL(dB) + G_{Antenna}(dBi) + dBd_{Conversion}(dB)$

ERP = Effective Radiated Power LVL = Level of Signal Generator

CBL = Cable Loss G = Gain of Antenna

dBd = Referenced to Dipole Conversion

Calculation: ERP = -47.0dBm + -6.44dB + 2.15dBi + -2.15dBd = -53.4dBm

Report Number: 16893

166 South Carter, Genoa City, WI 53128

Tested By: Cooper LaFond

Tested At: DLS Electronic Systems, Genoa City, WI

Test Site: OATS 2

Measurement Parameters: RBW 100 kHz

VBW 300 kHz = Sweep Time 5ms Temperature 75 °F Relative Humidity 31%

Polarization	Frequency (MHz)	Level (dBuV/m)	Sub. Meas (dBm)	Cable Loss (dB)	Dipole Gain (dBi)	ERP Conv. (dBd)	Level (dBm)	Level Relative to Carrier (dBc)	Limit (dBc)	Margin
V	288.002004	45.0	-47.0	-6.44	2.15	-2.15	-53.4	-33.4	-7	26.4
V	360.007014	38.4	-54.4	-7.29	2.15	-2.15	-61.7	-41.7	-7	34.7
V	432.022044	34.5	-60.8	-8.17	2.15	-2.15	-69.0	-49.0	-7	42.0
			Cb	Cabla				Laurel		
Polarization	Frequency (MHz)	Level (dBuV/m)	Sub. Meas (dBm)	Cable Loss (dB)	Dipole Gain (dBi)	ERP Conv. (dBd)	Level (dBm)	Level Relative to Carrier (dBc)	Limit (dBc)	Margin
Polarization H	• •		Meas	Loss	Gain	Conv.		Relative to Carrier	_	Margin 31.4
	(MHz)	(dBuV/m)	Meas (dBm)	Loss (dB)	Gain (dBi)	Conv. (dBd)	(dBm)	Relative to Carrier (dBc)	(dBc)	

Report Number: 16893

166 South Carter, Genoa City, WI 53128

Table - 11 Radiated Spurious Emissions with Transmitter set to Channel 20

Polarization	Frequency (MHz)	Level (dBuV/m)	Sub. Meas (dBm)	Cable Loss (dB)	Dipole Gain (dBi)	ERP Conv. (dBd)	Level (dBm)	Level Relative to Carrier (dBc)	Limit (dBc)	Margin
V	288.637002	43.9	-48.0	-6.44	2.15	-2.15	-54.4	-34.4	-7	27.4
V	360.797586	36.1	-57.0	-7.29	2.15	-2.15	-64.3	-44.3	-7	37.3
V	432.957316	33.0	-62.8	-8.17	2.15	-2.15	-71.0	-51.0	-7	44.0
	_		Sub.	Cable	Dipole	ERP	_	Level		
Polarization	Frequency (MHz)	Level (dBuV/m)	Meas (dBm)	Loss (dB)	Gain (dBi)	Conv. (dBd)	Level (dBm)	Relative to Carrier (dBc)	Limit (dBc)	Margin
Polarization H					Gain	Conv.		to Carrier	_	Margin 33.2
	(MHz)	(dBuV/m)	(dBm)	(dB)	Gain (dBi)	Conv. (dBd)	(dBm)	to Carrier (dBc)	(dBc)	

Table - 12 Radiated Spurious Emissions with Transmitter set to Channel 40

Polarization	Frequency (MHz)	Level (dBuV/m)	Sub. Meas (dBm)	Cable Loss (dB)	Dipole Gain (dBi)	ERP Conv. (dBd)	Level (dBm)	Level Relative to Carrier (dBc)	Limit (dBc)	Margin
V	289.299735	50.3	-41.7	-6.44	2.15	-2.15	-48.1	-28.1	-7	21.1
V	361.631993	39.7	-53.0	-7.29	2.15	-2.15	-60.3	-40.3	-7	33.3
V	433.957014	37.5	-57.3	-8.17	2.15	-2.15	-65.5	-45.5	-7	38.5
Polarization	Frequency (MHz)	Level (dBuV/m)	Sub. Meas (dBm)	Cable Loss (dB)	Dipole Gain (dBi)	ERP Conv. (dBd)	Level (dBm)	Level Relative to Carrier (dBc)	Limit (dBc)	Margin
Polarization			Meas	Loss	Gain	Conv.		Relative to Carrier		Margin 26.4
	(MHz)	(dBuV/m)	Meas (dBm)	Loss (dB)	Gain (dBi)	Conv. (dBd)	(dBm)	Relative to Carrier (dBc)	(dBc)	

END OF REPORT

Revision #	Date	Comments	By
1.0		Preliminary Release	C.L.
1.1	5-2-2011	Filled in model info & corrected to CT-11	JS
1.2	5-3-2011	Added to description (pg 6), & corrections (ie. KHz to kHz)	JS