

YACHAY TECH UNIVERSITY

SYLLABUS

1. 6	1. General Information							
A.	SCHOOL	Physical Sciences and Nanotechnology	В.	MAJOR	Physics Nanotechnology			
C.	COURSE	Computational Physics I	D.	CODE	PHYS704/PHYSEDN17			
E.	SEMESTER	7th	F.	ACADEMIC TERM	April - August 2023			
G.	CURRICULAR UNIT	Professional	н.	MODALITY	Face to face			
l.	HOURS	200	J.	PROFESSORS	Wladimir Eduardo Banda Barragán			
K.	WEEKLY CLASS SCHEDULE	12:00 – 14:00 Tuesday 17:00 – 19:00 Thursday 11:00 – 13:00 Friday	L.	WEEKLY TUTORING SCHEDULE	15:00 - 16:00 Tuesday 16:00 - 17:00 Thursday			

2. Prerequisites and Corequisites							
PREREQUISITES	COREQUISITES						
COURSES	Code	COURSES	Code				
Mathematical Physics II	PHYS604						

3. Course Description

This course provides an introduction to basic methods and techniques used in computational physics as well as an overview of recent progress made in several areas of scientific computing. The course describes basic concepts of object-oriented programming and includes detailed step-by-step examples of how to optimally utilise computers and programming languages to solve problems in physics. Topics range from data analysis and approximation and optimisation of functions, through numerical calculus and differential equations, to matrix operations and spectral analysis. Each section of the course includes practical examples on different areas of science and technology in which computational physics has played a major role in the last decade.

4. Course Contribution to professional training

This course helps students to build programming skills for the design and implementation of software dedicated to applications in physical sciences.

5. Course objectives

- Develop object-oriented programming skills for scientific computing within Linux environments.
- Design algorithms and implement software (mainly in Python) dedicated to data analysis and visualisation.
- Apply numerical methods and computational techniques to model physical systems and solve differential equations.
- Use computational methods for research applications on astrophysics, electromagnetism, particle physics, classical mechanics, quantum mechanics, and other areas of physics.

6. Units / Contents /	6. Units / Contents / Hours / Evaluation Instruments								
CURRICULAR UNITS		CONTENTS	TEACHING HOURS	ACHING HOURS AND EXPERIMENTAL INDICATE LEARNING LEARNING		EVALUATION INSTRUMENTS			
UC.1 Data analysis visualisation	and	Introduction to computer science and scientific programming	2	2	5	Classwork (quizzes), homework (assignments), and exams.			
		Programming languages, errors and uncertainties in computations, and computer algorithms.	2	2	5	Classwork (quizzes), homework (assignments), and exams.			
	/	Object-oriented programming, data input/output, plotting, statistics, data fitting, and regression	2	2	5	Classwork (quizzes), homework (assignments), and exams.			
		Function approximation, interpolation and extrapolation, Spline approximation.	2	2	5	Classwork (quizzes), homework (assignments), and exams.			

UC.2 Linear algebra and matrices in physics	Array programming, vectors, matrices, and images	2	2	5	Classwork (quizzes), homework (assignments), and exams.
	Matrix operations, basic image processing, and visualisation tools	2	2	5	Classwork (quizzes), homework (assignments), and exams.
	Linear equation systems and eigenvalue problems	2	2	5	Classwork (quizzes), homework (assignments), and exams.
	Iterative methods for linear and non-linear systems	2	2	5	Classwork (quizzes), homework (assignments), and exams.
UC.3 Numerical calculus	Numerical differentiation	3	3	5	Classwork (quizzes), homework (assignments), and exams.
	Numerical integration	3	3	5	Classwork (quizzes), homework (assignments), and exams.
	Numerical optimisation, root-finding and extreme values of functions.	3	3	5	Classwork (quizzes), homework (assignments), and exams.
	Computational thinking for modelling and simulation in physics	3	3	5	Homework (Project), Classwork (Laboratory), Exam.

UC.4 Spectral analysis and Monte Carlo techniques	Fourier analysis, discrete Fourier transform and the Fast Fourier transform algorithm	2	2	6	Classwork (quizzes), homework (assignments), and exams.
	Wavelet analysis and discrete wavelet transform	2	2	6	Classwork (quizzes), homework (assignments), and exams.
	Introduction to Monte Carlo methods	2	2	6	Classwork (quizzes), homework (assignments), and exams.
	Monte Carlo simulations and applications	2	2	6	Classwork (quizzes), homework (assignments), and exams.
UC.4 Differential equations	Ordinary differential equations, and initial-value problems	3	3	5	Classwork (quizzes), homework (assignments), and exams.
	The Runge-Kutta methods, boundary-value and eigenvalue problems with applications	3	3	5	Classwork (quizzes), homework (assignments), and exams.
	Discrete and continuous nonlinear Dynamics	3	3	5	Classwork (quizzes), homework (assignments), and exams.
	Introduction to partial differential equations	3	3	5	Classwork (quizzes), homework (assignments), and exams.

TOTAL 48 48 104

7. L	7. Learning outcomes of the course							
	LEARNING OUTCOMES	STUDENT IS REQUIRED TO: (EVIDENCE OF LEARNING)						
A.	Develop object-oriented programming skills for scientific computing within Linux environments.	Submit quizzes on reading material and code developed in class (classwork). Hand in routines of code, scripts, and group reports (homework). Solve programming problems in exams (mid-term and final exams).						
В.	Design algorithms and implement software (mainly in Python) dedicated to data analysis and visualisation.	Submit quizzes on reading material and code developed in class (classwork). Hand in routines of code, scripts, and group reports (homework). Solve programming problems in exams (mid-term and final exams).						
C.	Apply numerical methods and computational techniques to model physical systems and solve problems in physics.	Submit quizzes on reading material and code developed in class (classwork). Hand in routines of code, scripts, and group reports (homework). Solve programming problems in exams (mid-term and final exams).						
D.	Use computational methods for research applications on astrophysics, electromagnetism, particle physics, classical mechanics, quantum mechanics, and other areas of physics.	Submit quizzes on reading material and code developed in class (classwork). Hand in routines of code, scripts, and group reports (homework). Solve programming problems in exams (mid-term and final exams).						

8. Methodology

- 1. Interactive lectures including theory and programming tasks.
- 2. Laboratory classwork including programming exercises and quizzes on reading material.
- 3. Individual and group projects including programming homework and research.

9. Information Sources (Bibliography)								
9.1 Main								
Author/s	Title of Work	Edition	Year of Publication	Publishing house - Country	Availability at YACHAY TECH Library			
Landau, Rubin	Computational physics: problem solving with python	3rd	2015	Wiley-VCH; John Wiley - Germany	530.0113 L2539c 2015			
9.2 Complementary								
Author/s	Title of Work	Edition	Year of Publication	Publishing house - Country	Availability at YACHAY TECH Library			
Pang, Tao	An introduction to computational physics	2nd	2006	Cambridge University Press – United States	530.0285 P1917a 2006			
Kong, Qingkai; Siauw, Timmy; Bayen, Alexandre	Python Programming And Numerical Methods: A Guide For Engineers And Scientists	1st	2020	Elsevier: https://pythonnumericalmethods.be rkeley.edu/notebooks/Index.html	En línea			

10.Student's Evaluation								
10.1. Evaluation during the course*								
Midterm Exam (M	Γ)	Formative Evaluation (FO)	Laboratory (LAB) ³	**	Final Exam (FI)		Total
1 Midterm Exam	30 %	Homework average (code routines and project reports)	20 %	Classwork average (reading quizzes and programming exercises)	20 %	1 Final Exam	30 %	100 %
Subtotal	30 %	Subtotal	20 %	Subtotal	20 %	Subtotal	30 %	
10.2. Makeup Exam								
N/A								

11. General considerations

- Students are responsible for ensuring the academic integrity of their submitted assignments and exams.
- Cheating in exams, plagiarising, and copying solutions from other students or from previous years' solutions are all breaches of academic integrity.
- Academic misconduct will be penalised according to the University's regulations.
- Assignment deadlines and exam dates will be discussed and agreed upon in class.

Based on the Academic Regime Regulation issued by the Higher Education Council (CES in Spanish) and the Academic Regime Regulation of Yachay Tech.

- (*) The percentages of each item are established in Art. 35 of Academic Regime Regulation of Yachay Tech.
- (**) In courses in which there is no laboratory item, place: N/A

Prepared by:	Reviewed by:	Approved by:		
PROFESSOR - PROFESSORS	MAJOR COORDINATOR - MAJOR DIRECTOR	DEAN – DIRECTOR		
SIGNATURE AND DATE:	SIGNATURE AND DATE:	SIGNATURE AND DATE:		