EXERCISE SET 2.3

- 1. Let $f(x) = x^2 6$, $p_0 = 3$, and $p_1 = 2$. Find p_3 using each method.
 - (a) Secant method
- 2. Let $f(x) = -x^3 \cos x$, $p_0 = -1$, and $p_1 = 0$. Find p_3 using each method.
 - (a) Secant method
- Use the Secant method to find solutions accurate to within 10⁻⁴ for the following problems.

 - (a) $x^3 2x^2 5 = 0$, on [1, 4] (b) $x^3 + 3x^2 1 = 0$, on [-3, -2]

 - (c) $x \cos x = 0$, on $[0, \pi/2]$ (d) $x 0.8 0.2 \sin x = 0$, on $[0, \pi/2]$
- Use the Secant method to find solutions accurate to within 10⁻⁵ for the following problems.
 - (a) $2x \cos 2x (x 2)^2 = 0$ on [2, 3] and on [3, 4]
 - (b) $(x-2)^2 \ln x = 0$ on [1, 2] and on [e, 4]
 - (c) $e^x 3x^2 = 0$ on [0, 1] and on [3, 5]
 - (d) $\sin x e^{-x} = 0$ on [0, 1], on [3, 4] and on [6, 7]

Exercise Set 2.3 (Page 000)

1. a.
$$p_3 = 2.45454$$

b.
$$p_3 = 2.44444$$

Using the endpoints of the intervals as p₀ and p₁, we have the following.

a.
$$p_{11} = 2.69065$$

a.
$$p_{11} = 2.69065$$
 b. $p_7 = -2.87939$ c. $p_6 = 0.73909$ d. $p_5 = 0.96433$

c.
$$p_6 = 0.73909$$

$$d_{ne} = 0.96433$$