Ali Akbar Septiandri

October 15, 2017

Universitas Al Azhar Indonesia

Daftar isi

- 1. k-Nearest Neighbours
- 2. Evaluasi dan Generalisasi

Deskripsi Dataset

- Iris dataset
- Pembuat: R.A. Fisher (1936)
- http://archive.ics.uci.edu/ml/
- 4 atribut: sepal length, sepal width, petal length, petal width
- 3 label: Iris Setosa, Iris Versicolour, Iris Virginica

Figure 1: Tanaman Iris

Iris Dataset

Data Baru

Data Baru

• Mencari referensi dari tetangga terdekat

- Mencari referensi dari tetangga terdekat
- Apa definisi "terdekat"?

- Mencari referensi dari tetangga terdekat
- Apa definisi "terdekat"?
- Metode umum: Euclidean distance

Euclidean Distance

$$d([x_1, x_2, ..., x_d], [y_1, y_2, ..., y_d]) = \sqrt{\sum_{i=1}^{d} (x_i - y_i)^2}$$

Masalah

Figure 2: Seberapa yakin kita dengan referensi terdekat?

• Mencari referensi dari beberapa (k) tetangga terdekat

- Mencari referensi dari beberapa (k) tetangga terdekat
- Melihat label mayoritas dari tetangga terdekat

- Mencari referensi dari beberapa (k) tetangga terdekat
- Melihat label mayoritas dari tetangga terdekat
- Perhatikan bahwa harus dihitung jaraknya dengan semua data yang ada

- Mencari referensi dari beberapa (k) tetangga terdekat
- Melihat label mayoritas dari tetangga terdekat
- Perhatikan bahwa harus dihitung jaraknya dengan semua data yang ada
- Kompleksitas: O(nd)

- Mencari referensi dari beberapa (k) tetangga terdekat
- Melihat label mayoritas dari tetangga terdekat
- Perhatikan bahwa harus dihitung jaraknya dengan semua data yang ada
- Kompleksitas: O(nd)
- Tidak mungkin kita hitung sendiri!

Algoritma Klasifikasi

- Diketahui
 - data latih $\{x_i, y_i\}$
 - x_i: nilai atribut
 - y_i: label kelas
 - instance uji x
- Algoritma:
 - 1. Hitung jarak $D(x, x_i)$ untuk semua x_i
 - 2. Pilih k tetangga terdekat dengan labelnya
 - 3. $\hat{y} = \text{mayoritas dari label tetangga terdekat}$

Prediksi

Klasifikasi k-NN

Figure 3: 7-NN pada data MNIST dengan data uji di paling kanan

Algoritma Regresi

- Diketahui
 - data latih $\{x_i, y_i\}$
 - x_i: nilai atribut
 - y_i: nilai numerik sebenarnya
 - instance uji x
- Algoritma:
 - 1. Hitung jarak $D(x, x_i)$ untuk semua x_i
 - 2. Pilih k tetangga terdekat dengan labelnya
 - 3. $\hat{y} = f(x) = \frac{1}{k} \sum_{j=1}^{k} y_{ij}$ (nilai rata-rata)

Regresi k-NN

Figure 4: Interpolasi dengan $\{1,2,3\}$ -NN

Regresi k-NN

Figure 5: Ekstrapolasi dengan $\{1,2,3\}$ -NN

Bagaimana cara memilih nilai k?

Memilih Nilai k

- Nilai yang besar o P(y) atau \bar{y}
- ullet Nilai yang kecil o terlalu variatif, batas keputusan yang tidak stabil

Memilih Nilai k

- ullet Nilai yang besar o P(y) atau $ar{y}$
- ullet Nilai yang kecil o terlalu variatif, batas keputusan yang tidak stabil
- Solusi: Gunakan data validasi!

Batas Keputusan

Figure 6: Pengaruh nilai k pada batas keputusan [DeWilde, 2012]

- Hasil seri:
 - 1. Gunakan jumlah k ganjil
 - 2. Acak, lemparan koin
 - 3. Prior probability
 - 4. 1-NN
- Missing values: harus diganti (impute)
- Rentan terhadap perbedaan rentang variabel

Perbedaan Rentang

Figure 7: Perbedaan rentang variabel bisa mengacaukan klasifikasi k-NN [Wibisono, 2015]

Pros & Cons

- Pros:
 - Tidak ada asumsi terhadap data, non-parametrik
 - Asymptotically correct
- Cons:
 - Harus mengganti nilai yang hilang
 - Sensitif terhadap kelas pencilan (data latih yang salah dilabeli)
 - Sensitif terhadap atribut yang irelevan
 - Mahal secara komputasi O(nd)

Evaluasi dan Generalisasi

Generalisasi Error

- Tujuan kita adalah menghasilkan model yang dapat bekerja baik pada semua data
- Tidak mungkin mendapatkan semua data
- Solusi: Gunakan data latih dan data uji

Generalisasi Error

- Training data: $\{x_i, y_i\}$
- Future data: $\{x_i,?\}$
- Target: Model bekerja baik pada future data

Mengapa?

Overfitting

- Model terlalu kompleks, terlalu fleksibel
- Mengenali dan memasukkan noise dari dalam data latih ke dalam model
- Mengenali pola yang tidak akan muncul lagi

Overfitting: Definisi

Model F dikatakan overfitting jika:

- 1. kita dapat menemukan model lain F'
- 2. dengan error lebih besar pada data latih: $E_{train}(F') > E_{train}(F)$
- 3. tetapi error lebih kecil pada data uji: $E_{gen}(F') < E_{gen}(F)$

Underfitting

- Model terlalu kaku, terlalu simpel
- Tidak berhasil menemukan pola yang penting
- ullet Masih ada model yang bisa menghasilkan E_{train} dan E_{gen} lebih rendah

Training, Validation, Testing sets

- Data latih: konstruksi classifier
- Data validasi: memilih algoritma dan parameter tuning
- Data uji: mengestimasi error rate secara umum
- Catatan: Bagi datanya secara acak!

Cross-validation

- Datanya kadang tidak cukup banyak untuk dibagi!
- Ide: latih dan uji secara bergantian
- Umumnya: 10-fold cross-validation

Ikhtisar

- k-Nearest Neighbours merupakan algoritma yang dapat dipakai untuk klasifikasi dan dan regresi
- Nilai k dalam algoritma k-NN perlu divalidasi
- k-NN bersifat non-parametrik

Pertemuan berikutnya

- Unsupervised learning
- k-Means clustering

Referensi

Burton DeWilde (26 Oktober 2012)

Classification of Hand-written Digits (3)

http://bdewilde.github.io/blog/blogger/2012/10/26/classification-of-hand-written-digits-3/

Okiriza Wibisono (16 September 2015)

kNN: Perhitungan Jarak, serta Batasan dan Keunggulan

https://tentangdata.wordpress.com/2015/09/16/knn-perhitungan-jarak-serta-keunggulan-dan-batasan/

Terima kasih