Insiemi disgiunti se $A \cap B = \emptyset$

Proprietà distributiva $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $e \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

DeMorgan $C(A \cup B) = CA \cap CB \ e \ C(A \cap B) = CA \cup CB$

Partizione di X Una famiglia di sottoinsiemi di X tali che:

- nessuno è vuoto;

- sono a due a due disgiunti;

- la loro unione è tutto X (= ricoprimento).

P(X) è **insieme delle parti** (o insieme **quoziente**) di X ed è una partizione.

Siano A, B finiti con |A| = n e |B| = m allora $|A \times B| = n \cdot m$

Funzione $f: A \to B$ t.c. $\forall a \in A \exists ! b \in B \mid (a,b) \in \Gamma$ dove Γ è il grafico di f b = f(a) **immagine di a** $Im(f) = f(A) = \{b \in B \mid b = f(a) \text{ per qualche } a \in A\}$ **immagine di f** $f^{-1}(b) = \{a \in A \mid f(a) = b\}$ **controimmagine di b**

Due funzioni sono **equivalenti** se hanno stesso dominio, stesso codominio e stesso grafico.

Funzione **identità**: $id_A: A \to A$, $id_A(a) = a \quad \forall a \in A$

Una funzione $f: A \to B$ f(a) = b è:

- **Iniettiva** se: $\forall a_1, a_2 \in A$ $a_1 \neq a_2 \Rightarrow f(a_1) \neq f(a_2)$ oppure $f(a_1) = f(a_2) \Rightarrow a_1 = a_2$
- Suriettiva se: Im(f) = B ossia $\forall b \in B \ \exists a \in A \mid f(a) = b$
- Biettiva se sia iniettiva che suriettiva

Composizione di funzioni Siano $f: A \to B$ e $g: B \to C$ $g \circ f: A \to C$ $(g \circ f)(a) = g(f(a))$

Vale la proprietà associativa: $(h \circ g) \circ f = h \circ (g \circ f)$

ATTENZIONE: in generale $g \circ f \neq f \circ g$

Se $g \circ f$ iniettiva, allora f iniettiva Se $g \circ f$ suriettiva, allora g suriettiva Se f e g iniettiva, allora $g \circ f$ iniettiva Se f e g suriettive, allora $g \circ f$ suriettiva Se $g \circ f$ è biettiva, allora f iniettiva e g suriettiva

Funzione inversa di $f: A \to B$ è la funzione $g: B \to A$ tale che: $g \circ f = id_A$ $f \circ g = id_B$

f invertibile sse è biettiva

l'inversa, se esiste, è unica f^{-1}

Due insiemi sono equipotenti se hanno la stessa cardinalità |A| = |B|

Se $f: A \to B$ è iniettiva, allora $|A| \le |B|$

Se $f: A \to B$ è suriettiva, allora $|A| \ge |B|$

Un insieme A è infinito se $B \subset A$ e |A| = |B| (equipotente ad un suo sottoinsieme proprio) $I_n = \{1,2,3,...,n\}$ insieme finito dei numeri naturali

Siano A e B finiti: $|A \cup B| = |A| + |B| - |A \cap B|$

Siano A,B,C finiti: $|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$

Combinatoria

Permutazioni = scambio dell'ordine di n elementi di una sequenza (anagrammi)

- Semplici:

- Con ripetizioni:

numero di volte che ogni elemento compare(!)

Disposizioni = raggruppamento ordinato di k elementi estratti da un insieme che ne contiene n.

- Semplici:

$$\frac{n!}{(n-k)!}$$

- Con ripetizioni: n^k

Combinazioni = raggruppamento di k elementi, presi in qualunque ordine, formato a partire da n elementi.

- Semplici:

$$\frac{n!}{(n-k)!\,k!}$$

- Con ripetizioni: (n + k - 1)!

$$\frac{(n+k-1)}{(n-1)!k!}$$

Coefficiente binomiale:
$$\binom{n}{k} = \frac{n!}{(n-k)! \, k!}$$

(ovvero combinazioni semplici)

Binomio di newton:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k = \sum_{k=0}^n \binom{n}{k} y^{n-k} x^k$$

Come scegliere cosa usare:

	L'ORDINE CONTA	L'ORDINE NON CONTA
ELEMENTI DISTINTI	Disposizioni semplici	Combinazioni semplici
ELEMENTI RIPETUTI	Disposizioni con ripetizione	Combinazioni con ripetizione

ALGORITMO DI EUCLIDE (MCD)

MCD(a, b) con $a, b \in \mathbb{Z}$ e $b \neq 0$

$$a = b \cdot q_1 + r_1 b = r_1 \cdot q_2 + r_2 r_1 = r_2 \cdot q_3 + r_3 \vdots$$

$$r_{n-2} = r_{n-1} \cdot q_n + r_n r_{n-1} = r_n \cdot q_3 + 0$$

 $r_{n-2} = r_{n-1} \cdot q_n + r_n$ \rightarrow $r_n = MCD(a,b)$ ultimo resto non nullo

ripercorrendo la catena di uguaglianze (partendo dalla riga del MCD) trovo l'identità di Bèzout: $d = A \cdot a + B \cdot b$ con $A, B \in \mathbb{Z}$

Equazione diofantea: ax + by = c $con a, b, c \in \mathbb{Z}$ $eb \neq 0$

$$ax + by = c \quad con \ a, b, c \in \mathbb{Z} \ e \ b \neq 0$$

Ha soluzione sse $MCD(a, b) \mid c$

Teorema fondamentale dell'aritmetica (fattorizzazione unica)

Ogni numero intero $\neq 0$ si scrive in modo unico come prodotto tra numeri primi.

Permutazione su X è una biezione $\sigma: X \to X$

L'insieme di tutte le permutazioni su $X \ ensuremath{\stackrel{\circ}{\circ}} \ S_X$

 $S_X \neq \emptyset$ infatti $id \in S_X$

L'operazione su S_X è la composizione

(in generale non commutativa)

Permutazioni su n elementi: $S_n |S_n| = n!$

Potenze: $\sigma^n = \sigma \circ \sigma \circ \cdots \circ \sigma \ (n \ volte)$ $\sigma^0 = id$

Ciclo di lunghezza 2= scambio o trasposizione (in questo caso $\sigma^{-1}=\sigma$)

La composizione di due cicli in generale non è un ciclo.

Due cicli sono **disgiunti** se hanno intersezione nulla → cicli disgiunti commutano!

Ogni permutazione si scrive in modo unico come prodotto (composizione) tra cicli disgiunti.

Tipo di una permutazione = lunghezza di ogni suo ciclo disgiunto

I *k*-cicli in S_n sono $\binom{n}{k}(k-1)!$

$$\binom{n}{k}(k-1)$$

Ogni permutazione si può scrivere come prodotto di trasposizioni (la scrittura non è unica).

Parità = numero di scambi che formano la permutazione.

Si può determinare anche a partire dal tipo: se k pari, allora il k-ciclo è dispari (e viceversa)

Periodo = minimo intero k > 0 tale che $\sigma^k = id$ $per(\sigma) = mcm(tipo di \sigma)$

Classe di resto mod N

$$[a]_N = \{b \in \mathbb{Z} \mid b \equiv a \bmod N\} = \{a + kN \mid k \in \mathbb{N}\}\$$

Le classi di resto mod N formano una partizione di Z

Rappresentante canonico:

Ogni classe di resto mod N ha un unico rappresentante r tale che $0 \le r \le N-1$

$$\mathbb{Z}_N = \{ classi \ di \ resto \ mod \ N \} \qquad |\mathbb{Z}_N| = N$$

Inverso moltiplicativo:

$$[a]_N$$
 invertibile in \mathbb{Z}_N sse $MCD(a, N) = 1$

$$\mathbb{Z}_N^* = \big\{ [a]_N \mid [a]_N \text{ invertibile} \big\}$$

 $[a]_N^{-1}$ si trova calcolando l'identità di Bèzout per a e N

$$1 = A \cdot a + B \cdot b \qquad \rightarrow \qquad [a]_N^{-1} = [A]_N$$

Zero-divisore:

 $[a]_N$ è uno zero-divisore sse non è invertibile in \mathbb{Z}_N , ovvero sse $MCD(a,N) \neq 1$

La **funzione di Eulero** ci dice quanti elementi contiene
$$\mathbb{Z}_N^*$$
, $\varphi(N) = |\mathbb{Z}_N^*|$ ovvero il numero di elementi che so

ovvero il numero di elementi che sono co-primi con N, ovvero il numero di elementi invertibili in \mathbb{Z}_N .

 $se\ N = p \quad primo$:

$$\bullet \quad \varphi(p) = p - 1$$

•
$$\varphi(p^2) = p(p-1)$$

•
$$\varphi(p^n) = p(p-1)$$

• $\varphi(p^n) = p^{n-1}(p-1)$ con $n \in \mathbb{N}$

Siano $n, m \in \mathbb{Z}_{>1}$ e $MCD(n, m) = 1 \rightarrow \varphi(n \cdot m) = \varphi(n) \cdot \varphi(m)$

Strutture algebriche (A, *)

A semigruppo se * associativa

A monoide se è semigruppo e ∃ elemento neutro

A gruppo se è monoide e ogni elemento ammette un inverso.

Commutativo/abeliano se associativo + commutativo

Convenzione: $\bullet \mathbb{Z}$, \mathbb{Q} , \mathbb{R} , \mathbb{Z}_N sono gruppi rispetto alla somma.

• \mathbb{R}^* , \mathbb{Q}^* , \mathbb{Z}_N^* sono gruppi rispetto al prodotto.

• S_n è gruppo rispetto alla composizione.

Gruppo prodotto:

$$Siano\left(G_{1},*_{1}\right)=\left(a_{1},b_{1}\right) \quad \left(G_{2},*_{2}\right)=\left(a_{2},b_{2}\right) \ allora \quad G_{1}\times G_{2}=\left(a_{1}*_{1}a_{2},b_{1}*_{2}b_{2}\right)$$

 $G_1 \times G_2$ commutativo sse G_1 e G_2 sono commutativi.

|G| = ordine di G

Se
$$|G_1| = n$$
 e $|G_2| = m$ allora $|G_1 \times G_2| = n \cdot m$

SOTTOGRUPPI H è sottogruppo di G, e si scrive $H \leq G$, se:

$$a, b \in H \rightarrow a * b \in H$$

 $H \neq \emptyset$ perchè $e \in H$

- l'elemento neutro di H coincide con quello di G;
- $\forall x \in H$, l'inverso di x in H coincide con l'inverso di x in G.

Criterio per i sottogruppi Sia (G,*) *gruppo e H* \subseteq G allora H \leq G sse:

•
$$H \neq \emptyset$$

•
$$\forall x, y \in H \quad x * y^{-1} \in H$$

Sia (G,*) gruppo e $H_1, H_2 \leq G$ allora $H_1 \cap H_2 \leq G$

L'unione di sottogruppi non è in generale un sottogruppo!

Sottogruppi di $\mathbb Z$ hanno la forma $N\mathbb Z$ per un opportuno $N\in\mathbb N$

Laterale sinistro di H in G $gH = \{gh \mid h \in H\}$

Laterale destro di H in G $Hg = \{hg \mid h \in H\}$

G : *rappresentante* del laterale

Se f iniettivo \rightarrow Monomorfismo

Se f surjettivo \rightarrow Epimorfismo

Se f biettivo \rightarrow Isomorfismo

Se $G_1 = G_2 \rightarrow Endomorfismo$

Isomorfismo

+ → Automorfismo

endomorfismo

Teorema di Lagrange Sia *G* finito e $H \le G$ allora |H| divide |G|

$$f: G_1 \to G_2$$
 ben definita se $\forall x, y \in G_1$ $x = y \to f(x) = f(y)$
 $f: G_1 \to G_2$ omomorfismo se $\forall x, y \in G_1$ $f(x *_1 y) = f(x) *_2 f(y)$

Sia f omomorfismo: $\bullet f(e_1) = e_2$

•
$$f(x^n) = (f(x))^n \quad \forall x \in G_1, \forall n \in \mathbb{Z}$$

 $sia H \leq G_1 \ allora \ f(H) \leq G_2$

 $sia\ K \leq G_2\ allora\ f^{-1}(K) \leq G_1$

$$f(G_1) = Im(f) \leq G_2$$

$$\ker(f) = \{x \in G_1 \mid f(x) = e_2\} \le G_1$$

f è un monomorfismo (iniettivo) sse $ker(f) = \{e_1\}$

Se esiste un isomorfismo $f: G_1 \to G_2$ si scrive $G_1 \cong G_2$ ovvero sono *isomorfi*. Due gruppi isomorfi hanno le stesse proprietà.

```
GRUPPI CICLICI
```

Sia
$$H = \{x^n \mid n \in \mathbb{Z}\} \le G$$

siano $z, w \in H$ t. c. $z = x^n e w = x^m$
se $z * w^{-1} = x^n * x^{-m} = x^{n-m} \in H$ allora $H = \langle x \rangle$ sottogruppo ciclico generato da x
se $\exists x \in G$ t. c. $\langle x \rangle = G$ allora G è gruppo ciclico e x è un suo generatore
G ciclico \rightarrow G abeliano (commutativo)
G non abeliano \rightarrow non ciclico

In \mathbb{Z}_N i generatori sono tutti i $[a]_N$ invertibili rispetto alla moltiplicazione (ovvero $[a]_N \in \mathbb{Z}_N^*$)

Sia G ciclico: • Se G infinito allora $G \cong \mathbb{Z}$

• Se |G| = N allora $G \cong \mathbb{Z}_N$

Periodo di $x \in G$ = ordine di $\langle x \rangle$ $per(x) = |\langle x \rangle|$ Se per(x) = d finito allora d è il minimo $n \in \mathbb{Z}$ tale che $x^n = e$

Per il teorema di Lagrange: per(x) divide |G| e $x^{per(x)} = e$

 $G \ ciclico \ sse \ |G| = per(x) \quad con \ x \in G$

 $Sia \mathbb{Z}_n \times \mathbb{Z}_m$ gruppo prodotto: se MCD(n,m) > 1 allora $\mathbb{Z}_n \times \mathbb{Z}_m$ non è ciclico

 $\mathbb{Z}_n \times \mathbb{Z}_m$ cliclico \leftrightarrow MCD(n, m) = 1

CONGRUENZE $ax \equiv b \mod N$ ovvero calcolo ax - kN = b (equazione diofantina)

Come si risolve:

- 1) Esiste soluzione sse $MCD(a, N) \mid b$ quindi applico Euclide
- 2) Risolvo l'identità di Bèzout $1 = A \cdot a + B \cdot b$
- 3) Trovo $x \equiv rappresentante canonico mod N$