HW # 5 ME 6444 Nonlinear Systems Fall 2021

<u>Due Date:</u> Tuesday, 23 November

- 1. Averaging Autonomous System Consider the nonlinear system $\ddot{x} + \varepsilon(x^2 + \dot{x}^2 4)\dot{x} + x = 0$.
 - a. Use the method of averaging to find a periodic solution (i.e., limit cycle) for this system. Report the amplitude and phase of the limit cycle you find expect dependence on θ in the amplitude. You can assume an amplitude a_1 at a solution phase corresponding to $\theta = 0$.
 - b. Find the period of the limit cycle.
 - c. Generate a phase plane (using Maple, Mathematica, Matlab, etc.) to verify the limit cycle's existence.
- 2. Lindstedt-Poincaré and Multiple Scales Autonomous System Consider Rayleigh's equation: $\ddot{x} + \varepsilon \left(\frac{1}{3}\dot{x}^3 \dot{x}\right) + x = 0$ with initial conditions x(0) = a and $\dot{x}(0) = 0$. Carry-out a **first-order** approximation as follows:
 - a. Use Lindstedt-Poincaré's method to find an approximate solution for x(t).
 - b. Use the Multiple Scales approach to find an approximate solution for x(t).
 - c. Generate a phase plane (using Maple, Mathematica, Matlab, etc.) to verify the limit cycle's existence.