

Back to our HPC Problem

Let's go back to our anomaly detection problem

The colored line on the top identifies anomalies (in orange)

Preprocessing

We proceed to standardize the data again

- This is not strictly needed for GMMs
- ...but many optimization algorithms are designed for standardized data

```
In [3]: tr_end, val_end = 3000, 4500

hpcs = hpc.copy()
tmp = hpcs.iloc[:tr_end]
hpcs[inputs] = (hpcs[inputs] - tmp[inputs].mean()) / tmp[inputs].std()
```

We separate the training, validation, and test set

```
In [79]: trdata = hpcs.iloc[:tr_end]
valdata = hpcs.iloc[tr_end:val_end]
tsdata = hpcs.iloc[val_end:]
```

■ This time, we keep the validation set distinct from the training set

Training and Number of Components

We now need to pick a number of components

We'll do this by using grid search and cross validation

- We would have used other method (e.g. elbow method or BIC)
- There are also <u>variants of GMMs</u> that can infer the number of components

```
In [88]: %%time
    opt = GridSearchCV(GaussianMixture(), {'n_components': [2, 4, 8]}, cv=5)
    opt.fit(trdata[inputs])
    print(f'Best parameters: {opt.best_params_}')

Best parameters: {'n_components': 2}
    CPU times: user 1min 13s, sys: 2min 56s, total: 4min 9s
    Wall time: 23 s
```

- While training is slow
- ...Generating the alarm signal is now much faster

```
In [89]: ldens = opt.score_samples(hpcs[inputs])
signal = pd.Series(index=hpcs.index, data=-ldens)
```

Inspecting the Alarm Signal

Let's have a look at the alarm signal

It's very similar to the one provided by KDE

Threshold Optimization

We can optimize the threshold in the usual fashion

The cost model is the same as before

```
In [91]: c alarm, c missed, tolerance = 1, 5, 12
         cmodel = util.HPCMetrics(c alarm, c missed, tolerance)
         th range = np.linspace(1e4, 1e9, 1000)
         th, val cost = util.opt_threshold(signal[tr_end:val_end],
                                                 valdata['anomaly'],
                                                 th range, cmodel)
         print(f'Best threshold: {th:.3f}')
         tr cost = cmodel.cost(signal[:tr end], hpcs['anomaly'][:tr end], th)
         print(f'Cost on the training set: {tr cost}')
         print(f'Cost on the validation set: {val cost}')
         ts cost = cmodel.cost(signal[val_end:], hpcs['anomaly'][val_end:], th)
         print(f'Cost on the test set: {ts cost}')
         Best threshold: 244251801.802
         Cost on the training set: 0
         Cost on the validation set: 239
         Cost on the test set: 275
```

The results are also similar to those from KDE

Behavior Clusters

Finally, we can have a look at how the model is using its components

- The results may vary, since some steps of the process are stochastic
- ...But typically one or more component will be use for a single, long job