MATH 300 Homework 12

Problem 1 For each $i \in \mathbb{N}$ let $A_i = \{z \in \mathbb{Z} : |z| < i\}$ and $B_i = \{z \in \mathbb{Z} : |z| \ge i\}$.

(a)

$$A_0 = \emptyset$$

$$A_1 = \{0\}$$

$$A_2 = \{-1, 0, 1\}$$

$$A_5 = \{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$$

(b)

$$B_0 = \mathbb{Z}$$

$$B_1 = \mathbb{Z} - \{0\}$$

$$B_2 = \mathbb{Z} - \{-1, 0, 1\}$$

$$B_5 = \mathbb{Z} - \{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$$

(c)
$$\bigcup_{i \in \{0,1,2,5\}} A_i = A_5$$

(d)
$$\bigcap_{i \in \{0,1,2,5\}} A_i = A_0$$

(e)
$$\bigcup_{i \in \{0,1,2,5\}} B_i = B_0$$

(f)
$$\bigcap_{i \in \{0,1,2,5\}} B_i = B_5$$

(g) We claim that
$$\bigcup_{i=0}^{n} A_i = A_n$$
.

First, assume $x \in A_n$. So $x \in A_i$ for some $i \in \{z \in \mathbb{N} : z \le n\}$ because n is in the set, and by definition $x \in \bigcup_{i=0}^n A_i$. Thus $A_n \subseteq \bigcup_{i=0}^n A_i$.

Next, assume $x \in \bigcup_{i=0}^{n} A_i$. So by definition, $x \in A_i$ for some $i \in \{z \in \mathbb{N} : z \leq n\}$. By definition of A_i , |x| < i.

Since n is the upper bound of the sum, $i \le n$, so |x| < n. Since A_n contains all the elements whose absolute value is less than $n, x \in A_n$. Thus $\bigcup_{i=0}^n A_i \subseteq A_n$.

Therefore, since the two sets are subsets of each other, they are equal.

(h) We claim that
$$\bigcap_{i=0}^{n} A_i = \emptyset$$
.

Assume $\bigcap_{i=0}^{n} A_i \neq \emptyset$. Then, there is an $x \in \bigcap_{i=0}^{n} A_i$. By the definition of intersection, $x \in A_i$ for all $i \in \{z \in \mathbb{N} : z \leq n\}$, and thus $x \in A_0$. But A_0 is the empty set and thus has no elements, so a contradiction ensues. Therefore, the intersection is empty.

(i) We claim that $\bigcup_{i=0}^{n} B_i = \mathbb{Z}$.

First, assume $x \in \bigcup_{i=0}^{n} B_i$. Since B_i is defined as $\{z \in \mathbb{Z} : |z| \ge i\}$, x must be an integer because every set in

the union contains only integers. Thus $\bigcup_{i=0}^{n} B_i \subseteq \mathbb{Z}$.

Next, assume $x \in \mathbb{Z}$. Since $B_0 = \mathbb{Z}$, $\mathbb{Z} \subseteq B_0$, and thus by the definition of subset $x \in B_0$. So x is in B_i for some $i \in \{z \in \mathbb{N} : z \le n\}$, so by definition of union $x \in \bigcup_{i=0}^n B_i$. Thus $\mathbb{Z} \subseteq \bigcup_{i=0}^n B_i$.

Therefore, since the two sets are subsets of each other, they are equal.

(j) We claim that $\bigcap_{i=0}^{n} B_i = B_n$.

First, assume $x \in \bigcap_{i=0}^n B_i$. Then, $x \in B_i$ for every $i \in \{z \in \mathbb{N} : z \leq n\}$, so $x \in B_n$. Thus $\bigcap_{i=0}^n B_i \subseteq B_n$.

Next, assume $x \in B_n$. By definition of B_i , $|x| \ge n$. So $|x| \ge i$ for all $i \in \{z \in \mathbb{Z} : z < n\}$. So by the definition of B_i , $x \in B_i$ for all $i \in \{z \in \mathbb{Z} : z < n\}$, and $x \in \bigcap_{i=0}^n B_i$. Thus, $B_n \subseteq \bigcap_{i=0}^n B_i$.

Therefore, since the two sets are subsets of each other, they are equal.

(k) We claim that $\bigcup_{i=0}^{\infty} A_i = \mathbb{Z}$.

First, assume $x \in \bigcup_{i=0}^{\infty} A_i$. Since A_i is defined as $\{z \in \mathbb{Z} : |z| < i\}$, A_i contains only integers for all $i \in \mathbb{N}$, so $x \in \mathbb{Z}$. Thus $\bigcup_{i=0}^{\infty} A_i \subseteq \mathbb{Z}$.

Next, assume $x \in \mathbb{Z}$. Since |x| < |x+1|, by the definition of $A_i, x \in A_{|x+1|}$. So $x \in A_i$ for some $i \in \{z \in \mathbb{N}\}$, and by definition of union $x \in \bigcup_{i=0}^{\infty} A_i$. Thus $\mathbb{Z} \subseteq \bigcup_{i=0}^{\infty} A_i$.

Therefore, since the two sets are subsets of each other, they are equal.

(1) We claim that $\bigcap_{i=0}^{\infty} A_i = \emptyset$.

Assume $\bigcap_{i=0}^{\infty} A_i \neq \emptyset$. Then, there is an $x \in \bigcap_{i=0}^{\infty} A_i$. By the definition of intersection, $x \in A_i$ for all $i \in \{z \in \mathbb{N}\}$, and thus $x \in A_0$. But A_0 is the empty set and thus has no elements, so a contradiction ensues. Therefore, the intersection is empty.

(m) We claim that $\bigcup_{i=0}^{\infty} B_i = \mathbb{Z}$.

First, assume $x \in \bigcup_{i=0} B_i$. Since B_i is defined as $\{z \in \mathbb{Z} : |z| \ge i\}$, x must be an integer because every set in

the union contains only integers. Thus $\bigcup_{i=1}^{\infty} B_i \subseteq \mathbb{Z}$.

Next, assume $x \in \mathbb{Z}$. Since $B_0 = \mathbb{Z}$, $\mathbb{Z} \subseteq B_0$, and thus by the definition of subset $x \in B_0$. So x is in B_i for some $i \in \{z \in \mathbb{N}\}$, so by definition of union $x \in \bigcup_{i=0}^{\infty} B_i$. Thus $\mathbb{Z} \subseteq \bigcup_{i=0}^{\infty} B_i$.

Therefore, since the two sets are subsets of each other, they are equal.

(n) We claim that $\bigcap_{i=0} B_i = \emptyset$.

Assume $\bigcap_{i=0}^{\infty} B_i \neq \emptyset$. So there is an $x \in \bigcap_{i=0}^{\infty} B_i$. Thus, $x \in B_i$ for every $i \in \{z \in \mathbb{N}\}$, and thus $x \in B_{|x+1|}$. By

the definition of $B_{|x+1|}$, then, |x| > |x+1|. But this is a contradiction, so there cannot be an $x \in \bigcap_{i=0} B_i$ and the set is therefore empty.

(o) We claim that $\bigcup_{i=n} A_i = \mathbb{Z}$.

First, assume $x \in \bigcup_{i=n}^{\infty} A_i$. Since A_i is defined as $\{z \in \mathbb{Z} : |z| < i\}$, A_i contains only integers for all $i \in \mathbb{N}$, so $x \in \mathbb{Z}$. Thus $\bigcup_{i=n}^{\infty} A_i \subseteq \mathbb{Z}$.

Next, assume $x \in \mathbb{Z}$. Since |x| < |x+1|, by the definition of $A_i, x \in A_{|x+1|}$. If |x+1| < n, then |x| < |x+1| < n, so $x \in A_n$ in this case. Thus $x \in A_i$ for some $i \in \{z \in \mathbb{N} : z \ge n\}$ by choosing the maximum of |x+1| and n, and by definition of union $x \in \bigcup_{i=0}^{\infty} A_i$. Thus $\mathbb{Z} \subseteq \bigcup_{i=n}^{\infty} A_i$.

Therefore, since the two sets are subsets of each other, they are equal.

(**p**) We claim that $\bigcap_{i=n} A_i = A_n$.

First, assume $x \in \bigcap_{i=n}^{\infty} A_i$. So $x \in A_i$ for every $i \in \{z \in \mathbb{N} : z \ge n\}$. So $x \in A_n$. Thus, $\bigcap_{i=n}^{\infty} A_i \subseteq A_n$. Next, assume $x \in A_n$. By the definition of A_n , |x| < n. So |x| < i for every $i \in \{z \in \mathbb{N} : z \ge n\}$. So by

definition of intersection, $x \in \bigcap_{i=n}^{\infty} A_i$. Thus, $A_n \subseteq \bigcap_{i=n}^{\infty} A_i$.

Therefore, since the two sets are subsets of each other, they are equal.

(q) We claim that $\bigcup_{i=n} B_i = B_n$.

First, assume $x \in B_n$. So $x \in B_i$ for some $i \in \{z \in \mathbb{N} : z \ge n\}$. So by definition of union, $x \in \bigcup_{i=1}^{\infty} B_i$. Thus

$$B_n \subseteq \bigcup_{i=n}^{\infty} B_i.$$

Nathan Bickel
Homework 12 MATH 300

Next, assume $x \in \bigcup_{i=n}^{\infty} B_i$. So $x \in B_i$ for some $i \in \{z \in \mathbb{N} : z \ge n\}$. By the definition of B_i , |x| > i, and since

n is the least element in the set, $|x| > i \ge n$. So $x \in B_n$, and thus $\bigcup_{i=n}^{\infty} B_i \subseteq B_n$.

Therefore, since the two sets are subsets of each other, they are equal.

(r) We claim that $\bigcap_{i=n}^{\infty} B_i = \emptyset$.

Assume $\bigcap_{i=n}^{\infty} B_i \neq \emptyset$. So there is an $x \in \bigcap_{i=n}^{\infty} B_i$. Thus, $x \in B_i$ for every $i \in \{z \in \mathbb{N} : z \geq n\}$. Since this guarantees that $x \in B_n$, $|x| \geq n$. Then, $|x+1| > |x| \geq n$, and so $|x+1| \in \{z \in \mathbb{N} : z \geq n\}$.

So $x \in B_{|x+1|}$. By the definition of $B_{|x+1|}$, then, |x| > |x+1|. But this is a contradiction, so there cannot be an $x \in \bigcap_{i=n}^{\infty} B_i$ and the set is therefore empty.

Problem 2 Let $A_i = \{0\} \cup \left\{\frac{1}{z} : z \in \mathbb{Z}^+, z \leq i\right\}$ for $i \in \mathbb{N}$, and let $n \in \mathbb{N}$.

(a) We claim that $\bigcap_{i=0}^{n} A_i = A_0$.

First, assume $x \in \bigcap_{i=0}^n A_i$. So $x \in A_i$ for every $i \in \{z \in \mathbb{N} : z \leq n\}$, and thus $x \in A_0$. Thus $\bigcap_{i=0}^n A_i \subseteq A_0$.

Next, assume $x \in A_0$. Then, x must be 0, because $\left\{\frac{1}{z}: z \in \mathbb{Z}^+, z \leq i\right\}$ is the empty set when i=0, as it does in this case, and thus the only element of A_0 is 0. For every $i \in \mathbb{N}$, $\{0\} \subseteq A_i$ by definition, so 0 must be in the intersection. So $x=0 \in \bigcap_{i=0}^n A_i$. Thus, $A_0 \subseteq \bigcap_{i=0}^n A_i$.

Therefore, since the two sets are subsets of each other, they are equal.

(b) We claim that $\bigcup_{i=0}^{n} A_i = A_n$.

First, assume $x \in A_n$. Then, $x \in A_i$ for some $i \in \{z \in \mathbb{N} : z \le n\}$, and $x \in \bigcup_{i=0}^n A_i$. Thus, $A_n \subseteq \bigcup_{i=0}^n A_i$.

Next, assume $x \in \bigcup_{i=0}^{n} A_i$. So for some $i \in \{z \in \mathbb{N} : z \leq n\}, x = 0 \text{ or } x = \frac{1}{z} \text{ where } z \leq i$. Since $i \leq n$,

 $z \leq i \leq n$ for every i. Since $z \leq n$, by definition $x \in A_n$. Thus, $\bigcup_{i=0}^n A_i \subseteq A_n$.

Therefore, since the two sets are subsets of each other, they are equal.

(c) We claim that $\bigcap_{i=0}^{\infty} A_i = A_0$.

First, assume $x \in \bigcap_{i=0}^{\infty} A_i$. So $x \in A_i$ for every $i \in \{z \in \mathbb{N}\}$, and thus $x \in A_0$. Thus $\bigcap_{i=0}^{\infty} A_i \subseteq A_0$.

Next, assume $x \in A_0$. Then, x must be 0, because $\left\{\frac{1}{z} : z \in \mathbb{Z}^+, z \leq i\right\}$ is the empty set when i = 0, as it does in this case, and thus the only element of A_0 is 0. For every $i \in \mathbb{N}$, $\{0\} \subseteq A_i$ by definition, so 0 must

be in the intersection. So
$$x = 0 \in \bigcap_{i=0}^{\infty} A_i$$
. Thus, $A_0 \subseteq \bigcap_{i=0}^{\infty} A_i$.

Therefore, since the two sets are subsets of each other, they are equal. \Box

(d) We claim that
$$\bigcup_{i=0}^{\infty} A_i = \{0\} \cup \left\{\frac{1}{z} : z \in \mathbb{Z}^+\right\}$$
.

First, assume $x \in \bigcup_{i=0}^{\infty} A_i$. So $x \in A_i$ for some $i \in \mathbb{N}$. If x = 0, then it is certainly in the union of $\{0\}$ with any other set. If $x = \frac{1}{z}$ where $z \le i$, then it is certainly in the union of $\left\{\frac{1}{z} : z \in \mathbb{Z}^+\right\}$ with any other set, so $x \in \{0\} \cup \left\{\frac{1}{z} : z \in \mathbb{Z}^+\right\}$, Thus, $\bigcup_{i=0}^{\infty} A_i \subseteq \{0\} \cup \left\{\frac{1}{z} : z \in \mathbb{Z}^+\right\}$.

Next, assume $x \in \{0\} \cup \left\{\frac{1}{z} : z \in \mathbb{Z}^+\right\}$. If x = 0, then $x \in A_0$. If $x = \frac{1}{z}$ for some $z \in \mathbb{Z}^+$, then $x \in A_z$ by definition because $z \le z$. So $x \in A_i$ for some $i \in \mathbb{N}$, and by definition of the union $x \in \bigcup_{i=0}^{\infty} A_i$. Thus $\{0\} \cup \left\{\frac{1}{z} : z \in \mathbb{Z}^+\right\} \subseteq \bigcup_{i=0}^{\infty} A_i$.

Therefore, since the two sets are subsets of each other, they are equal. \Box