Statistics and Estimation

Did you know?

The **likelihood** is the probability of the data as a function of the parameters.

Lecture goals

Conceptual:

- Describe the relationship between statistics and probability
- Define a statistical model
 - Contrast it with a random variable, and a distribution
- Define closed-form vs. numerical techniques
- Define, evaluate, and optimize a likelihood function

Practical:

- Fit a model
- Plot, sample the empirical distribution of a data set
- Diagnose quality of fit visually

Probability

- Reason about distributions.
 - Parameters are known
- Distributions can generate data.

Statistics

- Reason about data.
 - Data is known.
- Data can be fit to distributions.

Galvanize -> Caltrain Ford GoBike Trip Duration Histogram

How to do statistics

- Hypothesize a model
- Collect some data
- Fit the data to a model, to produce a distribution
- Use the distribution to infer properties of unseen data

Very simple example

We have a coin.

Model: Each flip is a Bernoulli trial with P(heads)=p.

Data: Flip the coin 100 times. 70 times it comes up heads.

Distribution: A Bernoulli distribution with p=0.7.

Inference: Someone offers you a wager with even odds on a flip of said coin. You accept, bet a quantity you're willing to lose, and call heads. (Repeat as many times as you feel is ethical.)

(side note: look up "money pump")

A Model

- A collection of distributions
 - Typically with the same parameterizations
 - Examples:
 - Model: Bernoulli distribution with parameter p.
 - One parameter
 - Model: Gaussian mixture model with n components, each with a weight, mean, and variance.
 - Unbounded number of parameters
- Fitting a model
 - Means selecting a single distribution from the collection.
 - A fit model is not "the model". It is a distribution with set parameters.

Question: What's the difference between a random variable and a distribution with set parameters?

Fitting a model

Means selecting a single distribution

Two broad strategies:

- Closed-form techniques
- Numerical techniques

A quick aside on math vs. data science

- Closed-form techniques
 - Sometimes more principled
 - Sometimes just born out of a poverty of compute
- Numerical techniques
 - Math is hard and compute is cheap
 - Not necessarily less accurate
 - The opening up of numerical and monte carlo methods by cheap compute is what made Data Science a distinct practice.
 - Gradient descent
 - Bootstrap
 - Maximum likelihood estimation
 - Sampling from graphically-represented joint distributions

Closed-form technique: method of moments

- Think of the distribution as a shape.
- Comparing the shape of the dataset to the shape of the distribution is computationally expensive.
- Find shape-summarizing statistics of the distribution (and dataset).
- Simply compare those statistics.

Moment: a shape-summarizing statistic

1st moment - mean - E[X]

2nd moment - variance - $E[(X-\mu)^2]$

3rd standard moment - skew - $E[((X-\mu)/\sigma)^3]$

4th standard moment - kurtosis - $E[((X-\mu)/\sigma)^4]$

nth standard moment - $E[(X-\mu)^n]$

Applying the method of moments

Set

```
moment_n(data) = moment_n(distribution)
```

For as many n as you need to resolve the parameters of the distribution.

- Left is evaluated on the data
- Right is an expression in terms of the distribution's parameters

Fitting a uniform distribution to the bike data

```
moment_1(data) = moment_1(uniform dist)
8.27 = (a+b)/2
```

```
moment_2(data) = moment_2(uniform dist)
1.97 = 1/12 * (b-a)^2
```

2 equations, 2 unknowns; a closed-form solution exists.

Numerical techniques

Did you know?

The **likelihood** is the probability of the data as a function of the parameters.

I'm getting ahead of myself again

An example

We have some data: x=1

And we have a distribution $N(\mu=3, \sigma=1)$

We might ask: What is pdf(x=1; μ =3, σ =1)? (About 0.054).

Next question: what will happen to the probability density as we vary x around 1?

Easy enough. What's the chance of drawing a pair of values [0, 1]? $pdf(x=[0,1]\;;\;\mu=3,\;\sigma=1)=pdf(x=0\;;\;\mu=3,\;\sigma=1)\;*\;pdf(x=1\;;\;\mu=3,\;\sigma=1)$ (about 0.00023)

What about for values around [0,1]?

You get it. It's a probability distribution. We can evaluate the probability of an outcome or a joint probability of a whole dataset.

Varying the parameters instead of the data

We have our function pdf(x=[0,1]; μ =3, σ =1)

What if we vary μ instead of the data?

The Likelihood Function

When the data is held fixed and the P (or pdf) is evaluated as a function of the parameters, P is called the

Likelihood function of parameters θ .

Whereas the probability is expressed as

$$P(x | \theta)$$

The likelihood is sometimes expressed

$$L(\theta; x)$$

Maximizing Likelihood

In our toy example, we varied μ . Furthermore, we found a local maximum likelihood as a function of μ . We could search the joint space of (μ , σ).

Maximum Likelihood Estimation

In this case, the maximum likelihood for the data x=[0,1] occurred at (μ =0.5, σ =0.5).

The parameter values that maximize the likelihood of the data are the **maximum likelihood estimate** for those parameters.

This provides us a **numerical technique counterpart** to the method of moments.

To apply it, we don't need to analyze potentially very complicated distributions.

All we need is a likelihood function, and a means to maximize it.

Galvanize -> Caltrain Bike Time Histogram

