

1) Construa um A. F. M

- a) $T(M) = \{ a^n b^k c^m | n, k, m = 0 \quad n+k \text{ seja par} \quad k+m \text{ seja impar} \}$
- b) $T(M) = \{ a^n(b,c)^* \mid n + \#b' \text{s não seja divisível por 3 } \}.$
- c) $T(M) = \{ x \mid x (1, 2, 3)^* \text{ o somatório dos elementos de x seja múltiplo de 4} \}$
- d) $T(M) = \{a^n y c^k x a^m \mid n,m,k \ 1, x,y \ (a,b)^* \ \#a's em y \ n \ \#a's em x \ m \}$
- e) Construa um AFND M de n estados, cujo AFD equivalente possua 2ⁿ⁻¹ estados.
- f) $T(M) = \{ x \mid x (0, 1)^* \mid x \text{ seja um número binário cujo decimal correspondente seja divisível por 5} \}$

2) Construa a G.R. correspondente aos AFs 1b e 1f.

3) Construa um AFD Mínimo $M \mid T(M) = L(G)$, onde G é definida por:

 $\mathbf{A} \qquad \mathbf{a} \mathbf{B} \mid \mathbf{b} \mathbf{A} \mid \mathbf{a}$

 \mathbf{B} $\mathbf{b}\mathbf{B} \mid \mathbf{a}\mathbf{A} \mid \mathbf{b}$

 $C \qquad aD \mid bC \mid b$

D aC | bD | a

D

4) Minimize M e Determine T(M), onde M é dado por:

 \mathbf{C}

D

5) Construa a E.R. correspondente às seguintes L.R.:

- a) $\{x \mid x \ (a, b, c)^* \ \#b$'s é par x não possui os sub-strings "aa" e "cc" $\}$
- b) $\{x \mid x \ (a, b)^* \ |x| \text{ seja impar} \ x \ não possua b's consecutivos}\}$
- c) { x | x (a, b, c)* os a's apareçam em sequencias alternadas de tamanho par (> 0) e ímpar, separadas por sequencias de tamanho ímpar de b's e c's }
- d) $\{x \mid x (0,1)^* x \text{ seja um binário divisível por 3} \}$
- e) $\{x \mid x (0, 1)^* \# \text{ de strings "01" seja igual ao } \# \text{ de strings "10" } \}$
- f) $L = \{ x \mid x \ (a,b,c,d) + x \ começa \ com "ad", termina \ com "da" \ e \ não \ possui "da" \ em seu interior \}$

6) Construa um A.F. correspondente a cada E.R. abaixo:

- a) $(b^{?}ab^{?}ab^{?}a)*b^{?}$
- b) (aa | bb | (ab | ba) (aa | bb)* (ab | ba))*
- c) A ER resultante do item 6b.

7) Proponha algoritmos (caso existam) para:

- a) Dado um AF M, construir um AF M' | $T(M') = T(M)^R$ (ou seja, M' aceite a linguagem reversa de M)
- b) Dado um A.F. M, verificar se T(M) é vazia, finita ou infinita.
- c) Transformar um AFNDε em um AFD sem ε-transições

8) Responda e justifique às seguintes questões:

- a) É decidível se duas LR são iguais? Em caso positivo, descreva a(s) forma(s) pelas quais podemos mostrar essa igualdade; em caso negativo, justifique.
- b) Dado um A.F. M sobre Σ , é decidível se $T(M) = \Sigma^*$?
- c) A ordem em que os estados INALCANÇÁVEIS e MORTOS são eliminados influi no A.F. mínimo resultante?
- d) A diferença entre duas Linguagens Regulares é também uma Linguagem Regular?

9) Sejam L1 e L2 às seguintes L.R.:

L1 =
$$\{ x \mid x \ (a, b)^* \# a \text{ 's \'e \'impar } x \text{ n\~ao possui "bb" } \}$$

L2 = $\{ y \mid y \ (a, b)^* \# b \text{ 's \'e \'impar} \}$

Pede-se (usando as propriedades dos AF's):

- a) Construa um AF M \mid T(M) = L1 L2
- **b)** Verifique formalmente se L2 L1
- 10) Construa o AF M' | T(M') seja o complemento de T(M), onde:
- a) $T(M) = \{ a(a|b)*aa | aa(a|b)*a \}$
- b) $T(M) = \{ x \mid x \ (a, b)^* \ \# \ a's + \# b's \ é \ par \ não \ divisível \ por \ 3 \}$
- 11) Verifique, usando AF e suas propriedades, se as ER's (1²1² (00²11²)*0²0²) e (1|0)² (10|01)* (1|0)² são equivalentes.
- **12)** As linguagens abaixo são regulares? Se sim, construa um AF; senão, use o Lema do Bombeamento para provar que não são Regulares:
- a) $L = \{ a^n (b,c)^* \mid n \ 0 \ \#b's = n + \#a's \}$
- b) $L = \{ ww \mid w (a,b)^* \}$
- c) $L = \{ a^n y \mid n = 1, y = (a,b)^* \#a's em y = n \}$
- d) $L = \{a^n y \mid n = 1, y (a,b)^* \# \underline{a} \text{ 's em } y \le n \}$
- e) $L = \{x \ c \ y \mid x,y \ (a,b)^* \ x^R \ y \}$
- f) $L = \{ x \mid x (a,b)^* \#'ab' = \#'ba' \}$