- (I) This question is about reproving the theorem we went over in class. I want you to write down everything explicitly. Like word for word every step. And write as legibly as possible. You can type if you want (L*TrXonly).
 - i) Write down the definition of an injective mapping
 - ii) Write down the definition of a surjective mapping
 - iii) Write down an alternative definition for injectivity that holds true specifically for linear maps.
 - iv) Write down the definition of a linear map T being invertible.
 - v) Think about it.
 - vi) Prove that if $T \in \mathcal{L}(V, W)$ is invertible that is equivalent to T being injective and surjective
- (II) Now that we have talked about the inverse, it would be nice to figure out a practical way to compute the inverse of some linear map. We will use matrices to do this. This question is to motivate a method to find the inverse of a matrix (which I will show in class). Let $T \in \mathcal{L}(V, W)$ where V and W are finite dimensional.
 - i) Suppose we have some operators $A_1,...,A_n \in \mathcal{L}(W)$, such that $A_n \circ \cdots \circ A_1T = I$.
 - What is the inverse of T?
 - Are there any conditions on the A_i for the above equation to hold true?
 - What do the A_i correspond to in terms of a basis of W.
 - ii) The point above, suggests that instead of trying to directly write down the inverse of T, we want to apply successive linear transformations to T and "build up" T^{-1} from those. So let's consider some simple transformations that may be helpful. Let $w_1, ..., w_m$ be a basis of W and $v_1, ..., v_n$ be a basis for V.
 - i. In the previous part, you may have recognized that that A_i correspond to some change of basis in W (or well that is what you had to say). Let's try and come up with a few ways to act on the basis without changing it. Let's think of the simplest change: swap w_i and $w_j \neq j$.
 - ii. Suppose W is finite dimensional with dim W = 2. Let $A \in \mathcal{L}(W)$. Suppose A is the change of basis "swapping" w_1 and w_2 . Write down a matrix for a linear operation swapping these two (in the w basis).
 - iii. Now suppose dim W=3. Write down a matrix for swapping w_1 with w_3 .
 - iv. What would applying a matrix like this from the left or right, do to an arbitrary 3 by 3 matrix. What about n by n.
 - v. Now let's try something more complicated. Recall that if $w_1, ..., w_m$ is a basis, then $w_1 + w_2, w_2, ..., w_m$ is still a basis. Write down a matrix of operator A acting on a 2 dimensional vector space taking $w_1, w_2 \rightarrow w_1 + w_2, w_2$.
 - vi. Consider an arbitrary 2 by 2 matrix B. What does applying A to B on the right do? What does applying A to B on the left do?
 - vii. Write down the coefficients of a matrix related to a linear operator over some n dimensional space, which takes transforms the basis as:

$$w_1,...,w_m\to w_1,...,w_{i-1},w_i+w_j,w_{i+1},...,w_j,...,w_m$$

viii. Look at what you realized the 2 by 2 matrix does to an arbitrary matrix. Prove that the n dimensional thing, does the same to an n by n matrix.