Ch 12	M 132 Dr. Kutai 2 Kinetics #4 ion Theory, Catalysis, Mechanisms	Name:
1. Describe conditions required for a reaction to take place.		
rea	raw an energy profile with for an endothermic reaction e actants, products, activated complex (AKA transition sta	te), and Ea (uncat). Use a broken line to indicate the
	rofile for the catalyzed reaction. Indicate Ea (cat). Comp	
	or the reaction 2 D + E + C \rightarrow W + Z, the rate law is action rate (increase, decrease, no change) if the following	
a.	Temperature is decreased	
b.	Concentration of E is increased	

c. A catalyst is added

4. The following mechanism has been proposed for the oxidation of HBr

Step 1 HBr +
$$O_2 \rightarrow HOOBr$$
 (slow)

Step 2 HOOBr + HBr
$$\rightarrow$$
 2 HOBr (fast)
Step 3 2 HOBr + 2 HBr \rightarrow 2 H₂O + Br₂ (fast)

- a. Write the overall balanced equation.
- b. Identify any catalyst and/or intermediates.
- c. What is the molecularity of the first step.
- d. Which is the rate-determining step.
- e. What is the rate law for step 3.
- 5. Why are termolecular elementary steps less likely than bimolecular steps?
- 6. The gas-phase decomposition of nitrous oxide is believed to occur via two elementary steps.

$$\begin{array}{lll} \text{Step 1} & N_2O \ \rightarrow \ N_2 \ + \ O \\ \text{Step 2} & N_2O + \ O \ \rightarrow \ N_2 \ + \ O_2 \end{array}$$

- a. Write the overall balanced equation.
- b. Experimentally, the rate law was found to be rate = $k[N_2O]$. This means the rate-determining step is $\frac{}{Expain}$.