Wire Shark

Capturing HTTP Traffic.

Task 1: Start Wireshark and capture packets.

Task 2: Filter HTTP packets and analyze them.

Part 2: Analyzing TCP/IP Traffic.

Task 1: Filter TCP packets.

Task 2: Analyze TCP handshake and investigate Data Transfer and Termination.

Part 3: Capturing and Analyzing UDP Traffic

Task 1: Generate UDP traffic and capture packets

Task 2: Filter and analysis UDP Packets

Step 4: Observe the source and destination ports, length, and data

Г	24 0.984 10.90.46.5	172.224.169.8	UDP	83 55428 → 443 Len=41
	25 1.117 172.224.169.8	10.90.46.5	UDP	74 443 → 55428 Len=32
	26 1.308 10.90.46.5	172.224.169.8	UDP	83 55428 → 443 Len=41
	27 1.499 172.224.169.8	10.90.46.5	UDP	73 443 → 55428 Len=31
	28 1.534 10.90.1.208	255.255.255.255	UDP	60 63299 → 8610 Len=16
	29 1.536 10.90.1.208	255.255.255.255	UDP	60 63299 → 8610 Len=16
	20 1 62E 10 00 10 170	10 00 255 255	NIDNIC	OO Nama GUARY NE THOCCE-AAL

Destination Address: 10.90.46.5

[Stream index: 5]

User Datagram Protocol, Src Port: 443, Dst Port: 55428

Source Port: 443 Destination Port: 55428 Length: 40

Checksum: 0xbc73 [unverified] [Checksum Status: Unverified]

[Stream index: 5]

[Stream Packet Number: 2]

> [Timestamps]

UDP payload (32 bytes)

Data (32 bytes)

Data: 51530eed6b9cc4426ae92ccd9876ca564b0264c5009d3079422d814106b4a4fe

[Length: 32]

Step 5: Compare the simplicity of UDP headers with TCP headers.

UDP TCP

Header Size 8 bytes 20-60 bytes

Part 4: Comparing TCP and UDP by filling in the following tables. Save your work (e.g., in an MS Word document)

Task 1: Fill in the following table and provide reasons.

Feature	TCP or UDP	Reasons
Reliability and Connection Establishment	TCP	TCP is a connection-oriented protocol that ensures reliable communication. It establishes a connection using a three-way handshake

Data Integrity and Ordering	TCP provides error checking, retransmission, and ordering of packets to ensure data integrity. It ensures that data is received in the correct sequence. UDP, does not guarantee ordering or delivery.
-----------------------------	--

Task 2: Identify the use Cases and Performance of TCP and UDP.

Feature	ТСР	UDP
Use Cases	Web browsing (HTTP/HTTPS), email (SMTP, IMAP, POP3), file transfer (FTP)	Real-time applications like VoIP, video streaming, online gaming, and DNS
Performance	Slower due to connection establishment, error checking, and retransmissions	Faster because it is connectionless, has low overhead, and does not wait for acknowledgments or retransmit lost packets.

Raghad Alsuhaibani