Cl5438. Inteligencia Artificial II Clase 7: Redes Multicapas - Backpropagation Cap 20.5 Russel & Norvig Cap 4 Mitchell

Ivette C. Martínez

Universidad Simón Bolívar

31 de enero de 2013

Redes Multicapas de Unidades Sigmoidales

Unidades Sigmoidales

 $\sigma(x)$ es la función sigmoidal

$$\frac{1}{1+e^{-x}}$$

Buena propiedad: $\frac{d\sigma(x)}{dx} = \sigma(x)(1 - \sigma(x))$

Podemos derivar reglas del descenso de gradiente para entrenar:

- Una unidad sigmoidal
- ullet Redes multicapa de unidades sigmoidales o Backpropagation

Gradiente del error para una Unidad Sigmoidal

$$\begin{array}{rcl} \frac{\delta E}{\delta w_{i}} & = & \frac{\delta}{\delta w_{i}} \frac{1}{2} \sum_{d} (t_{d} - o_{d})^{2} \\ & = & \frac{1}{2} \sum_{d} \frac{\delta}{\delta w_{i}} (t_{d} - o_{d})^{2} \\ & = & \frac{1}{2} \sum_{d} 2 (t_{d} - o_{d}) \frac{\delta}{\delta w_{i}} (t_{d} - o_{d}) \\ & = & \sum_{d} (t_{d} - o_{d}) \left(-\frac{\delta o_{d}}{\delta w_{i}} \right) \\ & = & -\sum_{d} (t_{d} - o_{d}) \frac{\delta o_{d}}{\delta n e t_{d}} \frac{\delta n e t_{d}}{\delta w_{i}} \end{array}$$

Pero sabemos que:

$$\frac{\delta o_d}{\delta net_d} = \frac{\delta \sigma(net_d)}{\delta net_d} = o_d(1 - o_d)$$
$$\frac{\delta net_d}{\delta w_i} = \frac{\delta(\vec{(w)}.\vec{(x_d)})}{\delta w_i} = x_{i,d}$$

Entonces:

$$\frac{\delta E}{\delta w_i} = -\sum_d (t_d - o_d) o_d (1 - o_d) x_{i,d}$$

Algoritmo de Backpropagation

1: Inicializar todos los pesos de forma aleatoria 2: while NOT Condicion de parada do **for** cada ejemplo de entrenamiento e_i **do** 3: Calcular la salida de la red (o) para e_i 4: **for** Cada unidad de salida k **do** 5: 6: $\delta_k \leftarrow o_k (1 - o_k) (t_k - o_k)$ end for 7: for Cada unidad oculta h do 8: $\delta_h \leftarrow o_h(1-o_h) \quad \sum \quad w_{k,h}\delta_k$ 9. end for 10: 11: Actualizar cada peso de la red $w_{i,i}$: $w_{i,i} \leftarrow w_{i,i} + \Delta w_{i,i}$ donde $\Delta w_{i,i} = \eta \delta_i x_{i,i}$ end for 12: 13: end while

Más sobre Backpropagation

- Descenso del gradiente sobre el vector de pesos de la red completo
- Fácilmente generalizable para grafos dirigidos arbitrários
- Se encontrará un mínimo local del error, no necesariamente el mínimo error global
 - En la práctica, casi siempre funciona bien (se pueden realizar múltiples corridas)
- Algunas veces se incluye un momentun de los pesos

$$\Delta w_{i,j}(n) = \eta \delta_j x_{i,j} + \alpha \Delta w_{i,j}(n-1)$$

- Minimiza el error sobre los ejemplos de entrenamiento
 - Generalizará bien para ejemplos posteriores?
- El entrenamiento puede tomar miles de iteraciones → lento!
- El uso de la red despues del entrenamiento es muy rápido

Sea la siguiente función objetivo?

Input		Output
10000000	\rightarrow	10000000
01000000	\rightarrow	01000000
00100000	\rightarrow	00100000
00010000	\rightarrow	00010000
00001000	\rightarrow	00001000
00000100	\rightarrow	00000100
00000010	\rightarrow	00000010
0000001	\rightarrow	00000001

Puede ser aprendida?

Una Red

Representación aprendida en la capa intermedia:

Input	Hidden					Output		
Values								
10000000	\rightarrow	.89	.04	.08	\rightarrow	10000000		
01000000	\rightarrow	.01	.11	.88	\rightarrow	01000000		
00100000	\rightarrow	.01	.97	.27	\rightarrow	00100000		
00010000	\rightarrow	.99	.97	.71	\rightarrow	00010000		
00001000	\rightarrow	.03	.05	.02	\rightarrow	00001000		
00000100	\rightarrow	.22	.99	.99	\rightarrow	00000100		
00000010	\rightarrow	.80	.01	.98	\rightarrow	00000010		
00000001	\rightarrow	.60	.94	.01	\rightarrow	00000001		

Entrenamiento:

Codificación en la capa intermedia

Pesos de las entradas a una unidad intermedia

Convergencia de Backpropagation

Descenso del gradiente a algún mínimo local

- Quizás no sea un mínimo global...
- Agregar momentum
- Descenso del gradiente estocástico
- Entrenar varias redes con pesos iniciales diferentes

Naturaleza de la convergencia

- Inicializar pesos cerca de cero
- Luego, las redes iniciales son casi-lineales
- A medida que el entrenamiento progresa, incrementalmente se hacen posibles funciones no-lineales

Expresividad de las Redes Multicapas

Funciones Booleanas:

- Cualquier función booleana puede ser representada por una red con una sola capa oculta
- pero puede requerie un número exponencial (en el número de entradas) de unidades ocultas

Funciones Contínuas:

- Toda función contínua acotada puede ser aproximada con un un error arbitráriamente pequeño, por una red con una capa oculta [Cybenko 1989; Hornik et al. 1989]
- Cualquier función puede ser aproximada con una precición arbitraria por una red con dos capa ocultas [Cybenko 1988]

Ejemplo: Overfitting 1

Ejemplo: Overfitting 2

Ejemplo: Reconocimiento de caras

Typical input images

Aprendizaje de la pose facial con 90 % de precisión, y reconocimiento de 1-de-20 caras

Ejemplo: Reconocimiento de caras

Typical input images

http://www.cs.cmu.edu/ tom/faces.html

Backpropagation

```
function BACK-PROP-LEARNING(examples, network) returns a neural network
   inputs: examples, a set of examples, each with input vector x and output vector y
            network, a multilayer network with L layers, weights W_{i,i}, activation function g
   repeat
       for each e in examples do
            for each node j in the input layer do a_i \leftarrow x_i[e]
            for \ell = 2 to M do
                in_i \leftarrow \sum_i W_{j,i} a_j
                a_i \leftarrow a(in_i)
            for each node i in the output layer do
                \Delta_i \leftarrow g'(in_i) \times (y_i[e] - a_i)
            for \ell = M - 1 to 1 do
                for each node i in layer \ell do
                    \Delta_i \leftarrow q'(in_i) \sum_i W_{i,i} \Delta_i
                    for each node i in layer \ell + 1 do
                         W_{i,i} \leftarrow W_{i,i} + \alpha \times a_j \times \Delta_i
   until some stopping criterion is satisfied
```

Figure 20.25 The back-propagation algorithm for learning in multilayer networks.

return NEURAL-NET-HYPOTHESIS (network)