## Function Approximation Gradient Descent and Linear Models

#### Marius Lindauer





Leibniz Universität Hannover



### Overview

 Represent a (state-action/state) value function with a parameterized function instead of a table



• Which function approximator



### Function Approximators

- Many possible function approximators including
  - ▶ linear combinations of features
  - Neural networks
  - Decision trees
  - Nearest neighbors
  - Fourier / wavelet bases
- Focus on differentiable function approximators
- Let's start with linear feature representations



### Recap: Gradient Descent

- $\bullet$  Consider a function  $J(\mathbf{w})$  that is differentiable function of a parameter vector  $\mathbf{w}$
- ullet Goal is to find parameter ullet that minimizes J
- The gradient of  $J(\mathbf{w})$  is

$$\nabla J(\mathbf{w}) = \left[ \frac{\partial J}{\mathbf{w}_1} \dots \frac{\partial J}{\mathbf{w}_n} \right]$$

$$\mathbf{w}_t = \mathbf{w}_{t-1} - \alpha \nabla_w J(\mathbf{w})$$

where  $\alpha$  is the learning rate.



# Value Function Approximation for Policy Evaluation with an Oracle

- $\bullet$  First assume we could query any state s and an oracle would return the true value for  $V^\pi(s)$
- The objective was to find the best approximate representation of  $V^\pi$  given a particular parameterized function



### Stochastic Gradient Descent

- Goal: Find the parameter vector  ${\bf w}$  that minimizes the loss between a true value function  $V^\pi(s)$  and its approximation  $\hat{V}^\pi(s;{\bf w})$  as represented with a particular function class parameterized by  ${\bf w}$ .
- Generally use mean squared error and define the loss as

$$J(\mathbf{w}) = \mathbb{E}_{\pi}[(V^{\pi}(s) - \hat{V}^{\pi}(s; \mathbf{w}))^2]$$

• Use gradient descent to find a local minimum

$$\Delta \mathbf{w} = -\frac{1}{2} \alpha \nabla_{\mathbf{w}} J(\mathbf{w})$$

• Stochastic gradient descent (SGD) uses a finite number of samples to compute an approximate gradient:

$$\nabla_{\mathbf{w}} J(\mathbf{w}) = \nabla_{\mathbf{w}} \mathbb{E}_{\pi} [V^{\pi}(s) - \hat{V}^{\pi}(s; \mathbf{w})]^{2}$$
$$= \mathbb{E}_{\pi} [2(V^{\pi}(s) - \hat{V}^{\pi}(s; \mathbf{w})) \nabla_{\mathbf{w}} \hat{V}(s; \mathbf{w})]$$



## Model Free VFA Policy Evaluation

- In practice, we don't actually have access to an oracle to tell true  $V^\pi(s)$  for any state s
- Now consider how to do model-free value function approximation for prediction / evaluation / policy evaluation without a model



## Model Free VFA Prediction / Policy Evaluation

- Recall model-free policy evaluation
  - Following a fixed policy  $\pi$  (or had access to prior data)
  - Goal is to estimate  $V^{\pi}$  and/or  $Q^{\pi}$
- ullet Maintained a lookup table to store estimates  $V^\pi$  and/or  $Q^\pi$
- Updated these estimates after each episode (Monte Carlo methods) or after each step (TD methods)
- New: in value function approximation, change the estimate update step to include fitting the function approximator



## Model Free VFA Prediction / Policy Evaluation

ullet Use a feature vector to represent a state s

$$\mathbf{x}(s) = \begin{pmatrix} \mathbf{x}_1(s) \\ \mathbf{x}_2(s) \\ \dots \\ \mathbf{x}_n(s) \end{pmatrix}$$

 For table lookups, we have not really needed that because we only needed to know which table entry to look up



# Linear Value Function Approximation for Prediction With An Oracle

 Represent a value function (or state-action value function) for a particular policy with a weighted linear combination of features

$$\hat{V}(s; \mathbf{w}) = \sum_{j=1}^{n} \mathbf{x}_{j}(s) \mathbf{w}_{j} = \mathbf{x}(s)^{T} \mathbf{w}$$

Objective function is

$$J(\mathbf{w}) = \mathbb{E}[(V^{\pi}(s) - \hat{V}^{\pi}(s; \mathbf{w}))^2]$$

• Recall weight update:

$$\Delta \mathbf{w} = -\frac{1}{2} \alpha \nabla_{\mathbf{w}} J(\mathbf{w})$$

• Update (- step size × prediction error × feature value)

$$\Delta \mathbf{w} = -\frac{1}{2}\alpha(2(V^{\pi}(s) - \mathbf{x}(s)^{T}\mathbf{w}))\mathbf{x}(s)$$

