Understanding and Improving Layer Normalization

Jingjing Xu, Xu Sun, Zhiyuan Zhang, Guanxiang Zhao, Junyang Lin MOE Key Lab of Computational Linguistics, School of EECS, Peking University {jingjingxu,xusun,zzy1210,zhaoguangxiang,linjunyang}@pku.edu.cn

What is layer normalization?

- Layer Normalization (LayerNorm) is a widely-used technique that scales the distributions of intermediate layers to have zero mean and unit standard deviation.
- It enables smoother gradients, faster training, and better generalization accuracy.

Figure 1:Illustration of LayerNorm.

How does LayerNorm work?

- The widely accepted explanation is that forward normalization brings distribution stability.
- However, recent studies show that the effects of batch normalization is closed related to optimization landscape, rather than the stability of input distribution.
- It is still unclear where the success of LayerNorm stems from.

How do we explore LayerNorm?

To investigate how LayerNorm works, we conduct a series of experiments on different models and tasks.

- Machine translation includes three widely-used datasets, WMT English-German, IWSLT 14
 German-English and IWSLT 15 English-Vietnamese.
- Language modeling includes a large dataset, Enwiki8.
- Text classification includes two sentence classification datasets: RT, and SST5.
- Image classification includes a widely-used dataset, MNIST.
- Dependency parsing uses English Penn TreeBank.

The bias and gain do not work in most cases.

- Dropping the bias and gain ("LayerNorm-simple") does not decrease the performance on six datasets. Surprisingly, it outperforms LayerNorm on four datasets and achieves SOTA on En-Vi translation.
- Experimental results show that current affine transformation mechanism has a potential risk of over-fitting and needs to be further improved.

	Machine Translation			Language Modeling		Classification		Parsing	
	En-De(+)	De-En(+	$\overline{)}$ En-Vi $(+)$	Enwiki8(-)	RT(+)	$\overline{\text{SST5}(+)}$	MNIST(+	PTB(+)	
Model Layers	12	12	12	12	4	4	3	3	
w/o Norm	Diverge	34.0	28.4	1.04	76.85	38.55	99.14	88.31	
LayerNorm	28.3	35.5	31.2	1.07	77.21	39.23	99.13	89.12	
LayerNorm-simple	28.4	35.5	31.6	1.07	76.66	40.54	99.09	89.19	

Table 1: The bias and gain do not work in most cases.

The derivatives of the mean and variance are more important to LayerNorm than forward normalization.

- We design a new method, called DetachNorm. It treats the mean and variance as changeable constants, rather than variables.
- The derivatives of the mean and variance bring higher improvements than forward normalization does. The derivative of variance is more important than that of mean for deeper networks.
- The derivative of mean μ re-centers $\frac{\partial \ell}{\partial x}$ to zero. The derivative of variance σ reduces the variance of $\frac{\partial \ell}{\partial x}$, which can be seen a kind of re-scaling.
- The derivative of variance is more important than that of mean for deeper networks.

Models	Machine Translation			Language Modeling	Classification			Parsing
	En-De I	De-En(+	$\overline{) \operatorname{En-Vi}(+)}$	Enwiki8(-)	RT(+)	$\overline{\text{SST5}(+)}$	MNIST(+	$\overline{) PTB(+) }$
Model Layers	12	12	12	12	4	4	3	3
w/o Norm	Diverge	34.0	28.4	1.04	76.85	38.55	99.14	88.31
DetachNorm	Diverge	33.9	27.7	1.12	76.40	40.04	99.10	89.79
Improvement	_	-0.1	-0.7	-0.08	-0.45	1.49	-0.04	1.48
Models	Machine Translation			Language Modeling		Parsing		
	En-De De-En(+) En-Vi(+)			Enwiki8(-)	RT(+)	PTB(+)		
Model Layers	12	12	12	12	4	4	3	3
DetachNorm	Diverge	33.9	27.7	1.12	76.40	40.04	99.10	89.79
LayerNorm-simple	28.4	35.5	31.6	1.07	76.66	40.54	99.09	89.19
Improvement	_	1.6	3.9	0.05	0.26	0.50	-0.01	-0.60

Table 2: The derivatives of the mean and variance matter.

AdaNorm

To address the over-fitting problem, we propose a normalization method, Adaptive Normalization.

$$z = \phi(y) \odot y = \phi(N(x)) \odot N(x) \tag{1}$$

It achieves better results on seven out of eight datasets.

Table 3:Results of LayerNorm and AdaNorm.

Models	Machine Translation			Language Model		Classification		
	En-De(+)	$\overline{\mathrm{De-En}(+)}$	En-Vi(+)	Enwiki8(-)	RT(+)	$\overline{\text{SST5}(+)}$	MNIST(+)	PTB(+)
w/o Norm	Diverge	34.0	28.4	1.04	76.85	38.55	99.14	88.31
LayerNorm	28.3	35.5	31.2	1.07	77.21	39.23	99.13	89.12
LayerNorm-simple	28.4	35.5	31.6	1.07	76.66	40.54	99.09	89.19
AdaNorm	28.5	35.6	31.4	1.07	77.50	40.54	99.35	89.23

Better Convergence

• Compared to AdaNorm, LayerNorm has lower training loss but higher validation loss. Lower validation loss proves that AdaNorm has better convergence.

Couclusions

- In this paper, we investigate how layer normalization works.
- Based on a series of experiments and theoretical analysis, we summarize some interesting conclusions.
- We find that the derivatives of the mean and variance are important to the success of LayerNorm by re-centering and re-scaling backward gradients. Furthermore, the bias and gain increase the risk of over-fitting and do not work in most cases.
- To address this problem, we propose a normalization method AdaNorm. Experiments show that AdaNorm outperforms LayerNorm on seven datasets.
- In the future work, we would like to explore more alternatives to LayerNorm from the perspective of gradient normalization.