Nome _____

Número _____ Curso ____

GRUPO I - Nas afirmações seguintes diga qual o seu valor lógico (V ou F). Cada resposta certa vale (0,5 val.), cada resposta errada vale (-0,25val.)

1. A expressão em coordenadas polares do lugar geométrico dos pontos que satisfazem $(x^2 + y^2)^2 = 2xy \wedge xy \geq 0$ é $\rho = \sqrt{\operatorname{sen}(2\theta)}$.

 $V \square F \square$

2. Se $G(x) = \int_{x}^{e^{x}} \ln(\sqrt{t}) dt$ então $G'(x) = \frac{1}{2}(xe^{x} - \ln(x))$.

/ F

3. Sabendo que $\int_{-1}^{0} f(x)dx = -2$ e $\int_{0}^{3} f(x)dx = 5$, então $\int_{-1}^{3} (7 - f(x))dx = 25$.

 $V \square F \square$

4. As séries $\sum_{n=1}^{\infty}\frac{1}{n^{3/4}}$ e $\sum_{n=1}^{\infty}3^{-n}$ são convergentes.

 $V \square F \square$

5. O valor de $\cos(\pi + arcsen(\frac{\sqrt{2}}{2}))$ é $-\frac{\sqrt{2}}{2}$.

 $V \square F \square$

6. O domínio da função $f(x)=2\arccos(\frac{x-1}{2})$ é [-1,3].

 $V \square F \square$

7. $P[e^{x^2}]' - [Pe^{x^2}]' = C, C \in \mathbb{R}$.

 $V \square F \square$

8. $P(f(x)\cos(x)) = \mathbf{sen}(x)Pf(x) + C$.

 $V \square F \square$

9. $\int_{-1}^{1} \frac{1}{x} dx = 0.$

V ____ F ___

10. A área da região plana compreendida entre o eixo OX e a curva $y = \frac{1}{x^2}$, quando se considera x > 1, vale 1 unidade de área.

 $V \square F \square$

11. Considere a região indicada na figura 1a) a sombreado, e seja B a área dessa região . A área B pode ser obtida como $B = \int_a^f |f(x)| dx - \int_b^c f(x) dx - \int_e^d f(x) dx$.

 $V \square F \square$

12. A expressão $\rho = 4\cos(\theta)$ com $\theta \in [0, \frac{\pi}{4}]$, representa o arco \widehat{OB} da figura 1(b).

 $V \square F \square$

13.	Seja a série de termos positivos $\sum_{n=1}^{\infty}u_n$. Se $\lim u_n=0$, então a série $\sum_{n=1}^{\infty}u_n$ é converge	ente. V F
14.	Dada a função $f(x) = \mathbf{sen}(x)$, a área da superfície gerada pela revolução da curva $y = -\frac{\pi}{2} \le x \le \frac{\pi}{2}$, em torno do eixo OX é dada por $2\pi \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \mathbf{sen}(x) \sqrt{1 + \cos^2(x)} dx$.	= f(x), para
15.	O comprimento de arco da curva $y=\ln(\cos(t))$ com $0\leq t\leq \frac{\pi}{4}$ é dado por $C=\int_0^{\frac{\pi}{4}}\sec(t)dt$	
16.	No integral $\int_{-1}^3 x \sqrt{1+x} dx$, fazendo a substituição $\sqrt{1+x}=t$, obtém-se o integral $2\int_0^2 (t^4 - t^4) dt$	$V igcup F igcup $ $(t-t^2)dt.$ $V igcup F igcup $
17.	A área limitada pelas curvas $y=-x \wedge y=(1+\cos(x))^2$, para $0\leq x\leq \pi$ é dada p $\int_0^\pi [(1+\cos(x))^2+x]dx.$	
		$V \square F \square$
18.	Considere o integral definido $\int_{37}^2 g(x) dx$ com $g(x) \leq 0$. Se o calcularmos obtemos o valor figura plana limitada por $2 \leq x \leq 37 \ \land \ g(x) \leq y \leq 0$.	r da área da V F F
19.	A primitiva da função $f(x) = x \ln(x)$ pode ser calculada da forma $Pf(x) = \frac{1}{2}[x^2 \ln(x) - P(x)]$	V[x].
20.	O valor de $\lim_{x\to 0} \frac{\int_0^x e^{t^2} dt}{x} = 1.$	V F
		V 1
	GRUPO II - Nas perguntas seguintes apresente todos os cálculos.	
1	Calcule o integral $\int_{-\pi}^{\pi} r \operatorname{sen} r dr$	

1. Calcule o integral $\int_0^{\pi} x \cdot \mathbf{sen} x \, dx$.

2	Considere a	rogião	nlana	definida	da forma	D -	— Sai <	$-x^2$	⊥ 🤈	Λ	n >	$\boldsymbol{\gamma}$	Λ	r	> U)
∠.	Considere a	regrao	prana	uemmua	ua mina	ν -	— 1 <i>9</i> –	-u	T 4	/ \	$y \leq$	ω	/ \	$u \leq$	_ U

(a) Represente no plano cartesiano a região D e escreva a expressão que permite calcular a sua área, usando integrais definidos.

(b) Escreva a expressão que permite calcular o volume do sólido obtido pela rotação da região D em torno do eixo OX, usando integrais definidos.

3. Calcule o integral impróprio $\int_{-\infty}^{-2} \frac{1}{(x+2)^2} dx.$

4. Estude a convergência da série $\sum_{n=1}^{+\infty} \frac{n!}{2^n}$.