

TEMA 2-1 LA CAPA DE ENLACE DE DATOS

Cátedra Tecnología de Sistemas

Cuestiones de diseño de la Capa de Enlace de Datos

- Proporcionar a la capa de Red una interfaz de servicio bien definida
- Manejar los errores de transmisión.
- Regular el flujo de datos para que los emisores rápidos no saturen a los receptores lentos.

Funciones de la Capa de Enlace de Datos

- Proporciona una interfaz de servicio bien definida en la capa de red.
- □ Regula el flujo de datos
 - Receptores lentos no sean saturados por emisores rápidos
- Limitaciones en la eficiencia de datos
 - Circuitos de comunicación cometen errores ocasionales
 - Tienen una tasa de datos finita
 - Retardo de propagación diferente de cero (entre el momento que se envía un bit y cuando se recibe)

Cuestiones de diseño de la Capa de Enlace de Datos

Relación entre: paquetes y tramas.

Cátedra Tecnología de Sistemas

Cuestiones de diseño de la Capa de Enlace de Datos

- 1. Servicios sin conexión no confirmación de recepción
- 2. Servicios sin conexión con confirmación de recepción
- 3. Servicio orientado a conexión con confirmación de

recepción.

•

- (a) Comunicación Virtual.
- (b) Comunicación Real.

Cuestiones de diseño de la Capa de Enlace de Datos

Entramado

- Para proveer servicios a la capa de red, la capa de enlace de datos debe usar el servicio que la capa física le proporciona.
- 2. Un buen diseño debe facilitar a un receptor el proceso de encontrar el inicio de las nuevas tramas ala tiempo que utiliza una pequeña parte del ancho de la banda del canal.
- 3. Hay cuatro métodos:
 - Conteo de bytes
 - 2. Byte bandera con relleno de byte
 - 3. Bits bandera con relleno de bits
 - 4. Violaciones de codificación de la capa física

Funciones de la Capa de Enlace de Datos

Control de errores de transmisión

- Una vez resuelto el problema de marcar el inicio y el fin de cada trama, llegamos al siguiente dilema: cómo asegurar que todas las tramas realmente se entreguen en el orden apropiado a la capa de red del destino.
- La manera normal de asegurar la entrega confiable de datos es proporcionar retroalimentación al emisor sobre lo que está ocurriendo al otro lado de la línea.

Funciones de la Capa de Enlace de Datos

Control de flujo

- Qué hacer con un emisor que quiere transmitir tramas de manera sistemática y a mayor velocidad que aquella con que puede aceptarlos el receptor.
- □ Por lo general se utilizan dos métodos.
 - Control de flujo basado en retroalimentación
 - Control de flujo basado en tasa.

Detección y Corrección de Errores

- □ Código de Corrección de Errores.
 - Código de Hamming
 - Códigos convencionales binarios
 - Códigos de Reed-Solomon
 - Códigos de verificación de paridad de baja densidad.
- Código de Detección de Errores
 - Paridad
 - Sumas de verificación
 - Pruebas de redundancia cíclica (CRC)

Verificación de protocolos

Modelos de máquinas de estado finito

Máquina de estados infinitos. Cada máquina de protocolo (emisor o receptor) siempre está en un estado específico en cualquier instante.

Modelos de red de Petri

- Tiene cuatro elementos básicos: lugares, transiciones, arcos y tokens.
- Sirven para detectar fallas de protocolo (al igual que la máquina de estados finitos).

Protocolos elementales de Enlace de Datos

Protocolo Simplex Utópico

- El emisor se ejecuta en la capa de enlace de datos de la máquina origen y el receptor se ejecuta en la capa de enlace de datos de la máquina destino.
- Es irreal ya que no maneja el control de flujo ni la corrección de errores.
- Protocolo Simplex de parada y espera para un canal libre de errores
 - Protocolo en que el emisor envía una trama y luego espera una confirmación de recepción antes de continuar.
- Protocolo Simplex de parada y espera para un canal ruidoso.

Cátedra Tecnología de Sistemas

Protocolos de ventana deslizante

- Protocolo de ventana deslizante de un bit
- Protocolo que utiliza retroceso N
- Protocolo que utiliza repetición selectiva

Ejemplos de Protocolos de Enlace de Datos

- □ HDLC Control de Enlace de Alto Nivel
 - Originalmente protocolo de Mainframes de IBM (SDLC). Aceptado como estándar internacional por ISO (fue modificado, llamándolo: HDLC).
 - Es un protocolo orientado a bit.

Capa de Enlace de Datos en Internet

Computadora personal doméstica que funciona como host de Internet.

PPP — Protocolo Punto a Punto

Bytes	1	1	1	1 or 2	Variable	2 or 4	1
	0					¥	9/
	Flag 01111110	Address 11111111	Control 00000011	Protocol	Payload	Checksum	Flag 01111110
					ננ		

El antecesor es el SLIP, PPP nace para líneas punto a punto y se convierte en un estándar oficial de Internet.

Tiene protocolo de control de enlace (LCP, activa líneas, negociar, desactivarlas) y protocolo de control de red (NCP, negocia opciones de capa de red)

Formato de trama PPP.

Cátedra Tecnología de Sistemas