FRUSTRATING THE KONDO EFFECT THROUGH CHARGE FLUCTUATIONS: FROM THE AUXILIARY MODEL TO THE BULK

ABHIRUP MUKHERJEE

Emergent Phenomena in Quantum Matter IISER Kolkata, Mohanpur

MAY 29, 2023

OUTLINE OF THE DISCUSSION

OUTLINE OF THE DISCUSSION

- Some **preliminaries**: Hubbard model, DMFT, and the Anderson impurity model
- What, then, are the **questions**?
- Explaining the Mott MIT: the **extended** Anderson impurity model
- Some more questions!
- Tiling with the extended Anderson impurity model

THE HUBBARD MODEL

THE HUBBARD MODEL: WHAT AND WHY

$$H_{\text{hub}} = -t \sum_{i,j} (c_{i\sigma}^{\dagger} c_{j\sigma} + \text{h.c.}) + U \sum_{i} n_{i\uparrow} n_{i\downarrow} - \mu N$$

 $U/t = 0 \longrightarrow \text{free electron model}$

 $U/t = \infty \longrightarrow \text{array of free spins}$

Is there a transition at finite U/t?

THE HUBBARD MODEL: WHAT AND WHY

Believed to describe the physics of the cuprates

- inert spacer layers render the material quasi-2D
- physics happens in the Cu-O planes
- 3d-electrons from copper hybridise with the oxygen p-orbitals

Might also describe superconducting Nickelate (replace Cu with Ni) and organic charge transfer salts

^oKeimer et al., Nature (2015); Souza1 and Pouget, JPCM (2013); Qin et al., Annu. Rev. Condens. Matter Phys (2022); Kitatani at al., NPR Quantum Mater (2020)

THE HUBBARD MODEL IN INFINITE DIMENSIONS

$$H_{\text{hub}} = -t \sum_{\langle i,j \rangle} \left(c_{i\sigma}^{\dagger} c_{j\sigma} + \text{h.c.} \right) + U \sum_{i} n_{i\uparrow} n_{i\downarrow} - \mu N$$

$$N \times z \text{ terms}$$
N terms

In order to retain competition between *t* and *U*:

$$t \rightarrow t/\sqrt{z}$$

Enormously simplifies calculations: $\Sigma(\vec{k},\omega) = \sum_{\vec{r}} e^{i\vec{k}\cdot\vec{r}} \Sigma(\vec{r},\omega), \quad \Sigma(\vec{r},\omega) \sim z^{-r/2}$

$$\Sigma(\vec{k},\omega) = \Sigma_{\text{local}}(\omega)$$
: lattice self-energy becomes independent of momentum
How to calculate this local self-energy? DMFT!

¹Miiller-Hartmann, Z. Phys. B-Condensed Matter (1989); Metzner and Vollhardt, PRL (1989); Georges et al, RMP (1996)

■ Replace fluctuations by an **effective mean field** h(y), where y is some order parameter.

$$J\sum_{i}S_{i}^{z}S_{i+1}^{z}\rightarrow h\sum_{i}S_{i}^{z},h=\beta Jm$$

- Replace fluctuations by an **effective mean field** h(y), where y is some order parameter.
- Construct a **self-consistency equation** for the simplified model, typically of the form: y = f(h).

$$m = \tanh(h)$$

- Replace fluctuations by an **effective mean field** h(y), where y is some order parameter.
- Construct a **self-consistency equation** for the simplified model, typically of the form: y = f(h).
- By starting with some **guess value** h_{guess} for the mean-field, calculate the order parameter y_{guess} corresponding to the guess field.

$$h = 0.01 \implies m = 0.02(say)$$

- Replace fluctuations by an **effective mean field** h(y), where y is some order parameter.
- Construct a **self-consistency equation** for the simplified model, typically of the form: y = f(h).
- By starting with some **guess value** h_{guess} for the mean-field, calculate the order parameter y_{guess} corresponding to the guess field.
- From the consistency equation, the order parameter gives the next value of the field: $h = f_{\text{next}}^{-1}(y_{\text{guess}})$, leading to an **updated mean-field Hamiltonian**.

$$h = 0.01 \implies m = 0.02 \implies h_{\text{next}} = \arctan(0.02)$$

- Replace fluctuations by an **effective mean field** h(y), where y is some order parameter.
- Construct a **self-consistency equation** for the simplified model, typically of the form: y = f(h).
- By starting with some **guess value** h_{guess} for the mean-field, calculate the order parameter y_{guess} corresponding to the guess field.
- From the consistency equation, the order parameter gives the next value of the field: $h = f_{\text{next}}^{-1}(y_{\text{guess}})$, leading to an **updated mean-field Hamiltonian**.
- **Keep solving** this updated Hamiltonian until the order parameter resulting from subsequent iterations does not change.

$$h = 0.059 \implies h_{\text{next}} = \arctan(0.0591) \implies h_{\text{next}} = \arctan(0.0589)$$

■ Replace fluctuations by an **effective mean field** h(y), where y is some order parameter.

$$\Sigma(\vec{k},\omega) \to \Sigma_{loc}(\omega)$$

- Replace fluctuations by an **effective mean field** h(y), where y is some order parameter.
- Construct a **self-consistency equation** for the simplified model, typically of the form: y = f(h).

$$G_{loc} = 1/(\omega - t^2 G_{loc} - \Sigma_{loc})$$

The RHS is the impurity Greens function of an **Anderson impurity model** with bath described by G_{loc} !

- Replace fluctuations by an **effective mean field** h(y), where y is some order parameter.
- Construct a **self-consistency equation** for the simplified model, typically of the form: y = f(h).
- By starting with some **guess value** h_{guess} for the mean-field, calculate the order parameter y_{guess} corresponding to the guess field.

Create SIAM with Hubbard U and trial G_{loc} as the bath Greens function. Solve SIAM to obtain Σ_{loc}

- Replace fluctuations by an **effective mean field** h(y), where y is some order parameter.
- Construct a **self-consistency equation** for the simplified model, typically of the form: y = f(h).
- By starting with some **guess value** h_{guess} for the mean-field, calculate the order parameter y_{guess} corresponding to the guess field.
- From the consistency equation, the order parameter gives the next value of the field: $h = f_{\text{next}}^{-1}(y_{\text{guess}})$, leading to an **updated mean-field Hamiltonian**.

From G_{loc} and Σ_{loc} , calculate the impurity Greens function, using

$$G_{\rm imp} = 1/\left(\omega - t^2 G_{\rm loc} - \Sigma_{\rm loc}\right)$$

By the self-consistency equation, this is also the bath Greens function for next iteration.

- Replace fluctuations by an **effective mean field** h(y), where y is some order parameter.
- Construct a **self-consistency equation** for the simplified model, typically of the form: y = f(h).
- By starting with some **guess value** h_{guess} for the mean-field, calculate the order parameter y_{guess} corresponding to the guess field.
- From the consistency equation, the order parameter gives the next value of the field: $h = f_{\text{next}}^{-1}(y_{\text{guess}})$, leading to an **updated mean-field Hamiltonian**.
- **Keep solving** this updated Hamiltonian until the order parameter resulting from subsequent iterations does not change.

The problem then reduces to finding a SIAM with $G_{imp} = G_{bath}$.

This is done iteratively, through a "self-consistency loop".

DMFT RESULTS ON THE BETHE LATTICE IN $d = \infty$, AT 1/2-FILLING

Local spectral function **acquires a gap** at a critical value of $\frac{U}{D}$ (~ 3)

Constitutes a zero temperature Mott metal-insulator transition

Good metal with broad peak ⇒ "Bad" metal with sharp peak ⇒ Mott insulator

DMFT RESULTS ON THE BETHE LATTICE IN $d = \infty$, AT 1/2-FILLING

Transition is not bi-continuous, scales do not vanish simultaneously on both sides

T = 0 second order point replaced by a first order line at finite temperatures

Leads to a **metal-insulator coexistence region**, with a finite gap as well as central peak

Localised d- or f-electron hybridising with conduction bath

$$H_{\mathsf{SIAM}} = \sum_{k} \epsilon_{k} n_{k\sigma} + \epsilon_{d} n_{d\sigma} + U n_{d\uparrow} n_{d\downarrow} + \sum_{k} \left[V(k) c_{k\sigma}^{\dagger} c_{d\sigma} + \text{h.c.} \right]$$

$$H_{\text{SIAM}} = \sum_{k} \epsilon_{k} n_{k\sigma} + \epsilon_{d} n_{d\sigma} + U n_{d\uparrow} n_{d\downarrow} + \sum_{k} \left[V(k) c_{k\sigma}^{\dagger} c_{d\sigma} + \text{h.c.} \right]$$

impurity strongly coupled to bath

Gapless excitations are supported; spectral function has central peak

$$H_{\text{SIAM}} = \sum_{k} \epsilon_{k} n_{k\sigma} + \epsilon_{d} n_{d\sigma} + U n_{d\uparrow} n_{d\downarrow} + \sum_{k} \left[V(k) c_{k\sigma}^{\dagger} c_{d\sigma} + \text{h.c.} \right]$$

$$V/U \rightarrow 0$$

crossover to decoupled local moment

spectral function acquires gap only at $U/V = \infty$

No phase transition as *U* is tuned!

- The standard 1/2-filled SIAM has no local moment phase!
- Cannot explain the Mott MIT of DMFT
- Self-consistency must be inserting additional physics.

■ Is there a minimal but effective quantum impurity model that describes the Mott MIT of the 1/2-filled Hubbard model on the Bethe lattice in $d = \infty$?

- Is there a minimal but effective quantum impurity model that describes the Mott MIT of the 1/2-filled Hubbard model on the Bethe lattice in $d = \infty$?
- What are the **fluctuations that destroy the metal** and lead to the insulating phase? Can we obtain a universal theory for these competing tendencies?

- Is there a minimal but effective quantum impurity model that describes the Mott MIT of the 1/2-filled Hubbard model on the Bethe lattice in $d = \infty$?
- What are the **fluctuations that destroy the metal** and lead to the insulating phase? Can we obtain a universal theory for these competing tendencies?
- Can such an impurity model explain the **presence of two solutions** in the coexistence region? What about the spinodals and the first order line?

- Is there a minimal but effective quantum impurity model that describes the Mott MIT of the 1/2-filled Hubbard model on the Bethe lattice in $d = \infty$?
- What are the **fluctuations that destroy the metal** and lead to the insulating phase? Can we obtain a universal theory for these competing tendencies?
- Can such an impurity model explain the **presence of two solutions** in the coexistence region? What about the spinodals and the first order line?
- What is the origin of the **quantum critical fluctuations** observed recently above the finite temperature second-order critical point?

- Is there a minimal but effective quantum impurity model that describes the Mott MIT of the 1/2-filled Hubbard model on the Bethe lattice in $d = \infty$?
- What are the **fluctuations that destroy the metal** and lead to the insulating phase? Can we obtain a universal theory for these competing tendencies?
- Can such an impurity model explain the **presence of two solutions** in the coexistence region? What about the spinodals and the first order line?
- What is the origin of the **quantum critical fluctuations** observed recently above the finite temperature second-order critical point?
- What is the theory for the infrared gapless excitations **precisely at the MIT**?

EXTENDING THE ANDERSON IMPURITY MODEL

Add some additional terms in the Hamiltonian

- an explicit Kondo term
- a local correlation on bath site connected to the impurity

EXTENDING THE ANDERSON IMPURITY MODEL

Add some additional terms in the Hamiltonian

- an explicit Kondo term
- a local correlation on bath site connected to the impurity

$$H = H_{KE} + V \sum_{\sigma} \left(c_{d\sigma}^{\dagger} c_{0\sigma} + \text{h.c.} \right) + \frac{1}{2} U \left(\hat{n}_{d\uparrow} - \hat{n}_{d\downarrow} \right)^{2} + J \vec{S}_{d} \cdot \vec{S}_{0} + \frac{1}{2} U_{b} \left(\hat{n}_{0\uparrow} - \hat{n}_{0\downarrow} \right)^{2}$$

Check how the Hamiltonian looks like at low energies!

1. Separate the Hamiltonian into a tower of energy scales

Kinetic energy of non-interacting problem provides an obvious scheme.

$$\epsilon_0 > \epsilon_1 > \dots > \epsilon_N$$

Check how the Hamiltonian looks like at low energies!

2. Integrate out the high energy degrees of freedom

Involves removing number fluctuations in these states:

$$c_{\mathsf{UV}}^{\dagger}, c_{\mathsf{UV}} \to n_{\mathsf{UV}}$$

Check how the Hamiltonian looks like at low energies!

3. Obtain renormalisation of remaining degrees of freedom

Virtual number fluctuations are taken into account:

$$g^2 c_{\text{UV}}^{\dagger} c_{\text{IR,1}}^{\dagger} G_{\text{UV}} c_{\text{IR,2}} c_{\text{UV}} \sim g^* c_{\text{IR,1}}^{\dagger} c_{\text{IR,2}}$$

$$\Delta J(D) = \frac{1}{\omega - D/2 + J/4} \rho(D) J \left(J + 4U_b \right)$$

Similar equations for V and U; U_b is marginal

A closer look at the RG equation for J

In terms of dimensionless couplings $g = \rho (J + 2U_b)$ and $\gamma = -2\rho U_b$:

$$\Delta g \sim g^2 - \gamma^2$$

A closer look at the RG equation for J

In terms of dimensionless couplings $g = \rho (J + 2U_b)$ and $\gamma = -2\rho U_b$:

$$\Delta g \sim g^2 - \gamma^2$$

 U_b acts in two ways:

- lacktriangle The first term represents an **effective Kondo** RG flow with reduced strength g
- The second term is a **new term that competes** with the effective Kondo effect

A closer look at the RG equation for J

In terms of dimensionless couplings $g = \rho (J + 2U_b)$ and $\gamma = -2\rho U_b$:

$$\Delta g \sim g^2 - \gamma^2$$

 U_b acts in two ways:

- lacktriangledown The first term represents an **effective Kondo** RG flow with reduced strength g
- The second term is a **new term that competes** with the effective Kondo effect

Kondo effect is **destroyed** when the terms become of equal strength:

$$g = \gamma \implies r = -U_b/J = 0.25$$

T = 0 Phase Diagram

PHASE DIAGRAM

Red phase: weakly correlated metal

- *V*, *J* are relevant; broad spectral function
- Effective Hamiltonian: $H_{KE}^* + V^* (c_{d\sigma}^{\dagger} c_{0\sigma} + \text{h.c.}) + J^* \vec{S}_d \cdot \vec{S}_0$
- Ground state has both spin and charge content;

PHASE DIAGRAM

Blue phase: strongly correlated metal

- J relevant, V irrelevant; sharp spectral function
- Effective Hamiltonian: $H_{KE}^* + J^* \vec{S}_d \cdot \vec{S}_0 + \frac{U_b}{2} (n_{0\uparrow} n_{0\downarrow})^2$
- Ground state has only spin Kondo singlet;

PHASE DIAGRAM

Violet phase: local moment

- V, J are irrelevant; gapped spectral function
- Effective Hamiltonian: $H_{KE}^* + \frac{U^*}{2} (n_{0\uparrow} n_{0\downarrow})^2$
- Ground state reduces to a decoupled moment;

REFERENCES I