25/07/1	3
---------	---

Atiyah-Singer Index Theorem Seminar.

The Index Problem Waterlin Zakharevich).

Index Problem.

Def-: A Clifford module W is graded if W=Wo⊕W, and v∈V interchanges the Wi.

Def: A Clifford bundle S is graded if S=SoDS, and the interchanging action respects Metric and connection.

We can think of this as a sequence

$$O \rightarrow C^{\infty}(S_o)$$
 $\xrightarrow{\mathcal{D}_+}$ $C^{\infty}(S_i)$ $\longrightarrow 0$

 \mathbb{Z}_{ef} : Ind(D)=dim(kerD+)-dim(kerD_-).

Example: Consider the de Rham complex with grading (-1) on Ω^2 . Then $\operatorname{Ind}(D) = X(S)$.

Super Math! Equivalently, a grading on a Clifford bundle is $E:S \rightarrow S$ a self-adjoint, parallel involution satisfying Ec(v)+c(v)E=0. B(L2(S)) is a superalgebra with the same grading operator: $B_0(L^2(S))$ - preserves grading $B_1(L^2(S))$ - reverses grading. Definition: The supertrace is $Tr_s(A) = Tr(EA)$. Theorem: The supertrace vanishes on supercommutators. 1.e. To[A,B]= 0 if A,B are Hilbert-Schmidt, or A is torce class. Proof: $\frac{AB \text{ browns}}{\text{Tr}_{s}([A,B]_{s}) = \text{Tr}(EAB - E(-1) BA)}$ $= \text{Tr}((-1)^{AB}AB - (-1)^{A(A)A(B)}EBA)$ $= \text{Tr}(EAB - (-1)^{(A(A)A(B))}BEA)$ Prop: If A is a smoothing operator, $Tr_s(A) = fr_s(k(m,m))vo$.

Going back to Ind(D)... Let P be the projection onto ker-D. Than $Ind(D) = Tr_s(P)$. Think: kerD is graded (kerD+, kerD_), and Trs. heeps track of this grading. Prop: Let I be rapidly decreasing with f(0)=1. Then $Tr_s(f(D^2)) = Ind(D)$. In fact it suffices that $f = O(x^{-N})$ for N large enough. f=g+h where g(0)=0 and h is a bump f^{-c} containing only the g-core-value of D in its support, so f-hat T-rd(D) = $Tr_s(h(D^2))$. So, it suffices to show that $T_{is}(g(D^2)) = 0$. Write g=xggz. Then $g(D^2)=D^2g_1(D^2)g_2(D^2)=\frac{1}{2}[Dg_1(D^2),Dg_2(D^2)]_{S}$ Why dain? \frac{1}{2}[\ldots] = \frac{1}{2}(\mathbb{D}^2_g(\mathbb{D}^1)g_1(\mathbb{D}^1)g_2(\mathbb{D}^1) - (-1) \frac{deg(\mathbb{D}_g(\mathbb{D}_g(\mathbb{D}_g(\mathbb{D}_g(\mathbb{D}^2)g_2(\mathbb{D}^2)g_2(\mathbb{D}^2)g_2(\mathbb{D}^2)\right).

To show
$$\deg(g(D^2)=0$$
.

 $S_{\lambda}=S_{\lambda+}+S_{\lambda}$.

 $S_{\delta}=S_{\lambda}++S_{\lambda}$.

 $S_{\delta}=S_{\delta}++S_{\lambda}$.

 $S_{\delta}=S_{\delta}++S_{\delta}$.

If M-) M is a k-fold covering of M and S, D are natural lifts, then

$$Ind(D) = kInd(D)$$
.

Jheorem: Let $t \mapsto D_t$ be a continuous map $[0,1] \longrightarrow B(W^{ht}, W^h)$ for all k, where D_t are Dirac operators satisfying $\| \leq \|_{L^{\infty}}^{2} \leq C_{k} (\| \leq \|_{k}^{2} + \| D_{k} \|_{k}^{2})$ uniformally in £. Ilan Ind(Do)=Ind(D1) Proof: Consider operators (D+i): Why Wk+1 = "resolvents" Claim that these vary confinuously. $(\mathcal{D}_{t}+i)'-(\mathcal{D}_{t}+i)'=(\mathcal{D}_{t}+i)(\mathcal{D}_{t}-\mathcal{D}_{t})(\mathcal{D}_{t}+i)'$ So $(1+D_{\ell}^2)^{-N}$ is cts, and so since from a previous fh^{-1} $Ind(D_{\ell}) = Ir_3(1+D_{\ell}^2)^{-N}$ is a continuously varying integer, it must be constant.

Readi. In the de Rham complex
$$\Omega^2$$
 was gooded by $(-1)^2$

Ind(D) = $\frac{1}{4\pi}\int (4r\Theta_1^0 - 4r\Theta_1^1 + 4r\Theta_1^2)$ vol,

 $\Theta_1 = \frac{1}{b}K - K$,

 $K^0 = K^2 = 0$ (because the book seg \mathbb{Z})

 $K' = R_{icci}$ curvature operatur.

So, $4r\Theta_1^0 = 4r\Theta_1^2 = \frac{1}{b}K$,

 $4r\Theta_1^1 = \frac{1}{b}K \cdot 2 - K = -\frac{2}{3}K$.

Thus,

 $Trd(D) = \frac{1}{4\pi}\int_M K \text{ vol}$,

and since $Trd(D) = X(S)$, we have proved the Gauss-Bornet Theorem.

Propi Let as FEErd Sx. Then tro (asF)=To(a) tr(F). Let enmen be an ON basis. For Ec [1,...,2m], €=TTe; ECL(TxM) Propilet C= ZC_E, Than To(c)= (-2i) C11,1123 We have that $T_s(c) = T(i^m c)$; so this is equivalent to $T(c) = 2^m c_0 = 1$ his is an exercise in Roe