Отчёт по лабораторной работе №14

Имитационное моделирование

Ганина Таисия Сергеевна, НФИбд-01-22

Содержание

Сп	писок литературы	39
5	Выводы	38
	магазине	21 29
	4.3 Модель обслуживания двух типов заказов от клиентов в интернет-	
	4.1 Модель оформления заказов клиентов одним оператором 4.2 Построение гистограммы распределения заявок в очереди	9 16
4	Выполнение лабораторной работы	9
3	Теоретическое введение	7
2	Задание	6
1	Цель работы	5

Список иллюстраций

4.1	Модель оформления заказов клиентов одним оператором	10
4.2	Отчёт по модели оформления заказов в интернет-магазине	11
4.3	Модель оформления заказов клиентов одним оператором, упраж-	
	нение	13
4.4	Отчёт по модели оформления заказов в интернет-магазине, упраж-	
	нение	14
4.5	Построение гистограммы распределения заявок в очереди	16
4.6	Отчёт по модели оформления заказов в интернет-магазине при	
	построении гистограммы распределения заявок в очереди	17
4.7	Отчёт по модели оформления заказов в интернет-магазине при	
	построении гистограммы распределения заявок в очереди	18
4.8	Гистограмма распределения заявок в очереди	18
4.9	Модель обслуживания двух типов заказов от клиентов в интернет-	
	магазине	22
	Отчёт по модели оформления заказов двух типов	23
	Отчёт по модели оформления заказов двух типов	23
4.12	Модель обслуживания двух типов заказов с условием, что число	
	заказов с дополнительным пакетом услуг составляет 30% от общего	
	числа заказов	26
	Отчёт по модели оформления заказов двух типов заказов	27
	Модель оформления заказов несколькими операторами	30
	Отчет по модели оформления заказов несколькими операторами	31
4.16	Модель оформления заказов несколькими операторами с учетом	_
4 1 5	отказов клиентов	34
4.17	Отчет по модели оформления заказов несколькими операторами с	
	учетом отказов клиентов	35

Список таблиц

1 Цель работы

Реализовать модели обработки заказов и провести анализ результатов.

2 Задание

Реализовать с помощью gpss:

- модель оформления заказов клиентов одним оператором;
- построение гистограммы распределения заявок в очереди;
- модель обслуживания двух типов заказов от клиентов в интернет-магазине;
- модель оформления заказов несколькими операторами.

3 Теоретическое введение

GPSS (General Purpose Simulation System) — это один из первых специализированных языков программирования для имитационного моделирования, созданный в 1961 году американским инженером Джеффри Гордоном в корпорации IBM. Первоначально язык разрабатывался для нужд моделирования сложных логистических и производственных процессов в промышленных и военных системах, где требовался учёт случайных событий и взаимодействия большого количества объектов во времени.

GPSS стал знаковым инструментом в истории моделирования: он заложил основы событийного подхода и ввёл понятие транзакта как активного объекта, перемещающегося по блокам логики системы. Эти концепции впоследствии легли в основу многих других языков и программных сред моделирования. Благодаря модульной структуре и простой записи моделей, GPSS получил широкое распространение в университетах и научных учреждениях как средство обучения и анализа дискретных систем.

Практическое применение GPSS охватывает широкий спектр задач:

- Организация работы производственных цехов: моделирование потока деталей между станками, учёт времени обработки, простоев и загрузки оборудования;
- Системы массового обслуживания: моделирование очередей в банках, поликлиниках, аэропортах с целью оценки времени ожидания и необходимости в дополнительном персонале;

- Логистика и склады: моделирование перемещения товаров между зонами хранения, погрузки и разгрузки, анализ загрузки транспортных средств;
- Транспорт: моделирование движения автобусов, поездов, планирование расписаний с учётом времени на посадку и высадку пассажиров;
- Военные приложения: планирование операций снабжения, имитация действий в сложных логистических цепочках.

Одним из достоинств GPSS является то, что язык допускает использование случайных величин (например, времени обслуживания или интервалов между заявками), что позволяет создавать реалистичные модели, приближенные к поведению реальных систем. Также GPSS даёт возможность легко собирать статистику по ключевым метрикам: времени пребывания объектов в системе, загрузке ресурсов, количеству отказов и пр.

Несмотря на то, что с момента своего создания прошло более шестидесяти лет, GPSS продолжает использоваться как в учебных целях, так и в инженерной практике благодаря своей простоте, наглядности и эффективности в решении прикладных задач, связанных с анализом и оптимизацией дискретных процессов.

[1,2].

4 Выполнение лабораторной работы

4.1 Модель оформления заказов клиентов одним оператором

Порядок блоков в модели соответствует порядку фаз обработки заказа в реальной системе:

- 1) клиент оставляет заявку на заказ в интернет-магазине;
- 2) если необходимо, заявка от клиента ожидает в очереди освобождения оператора для оформления заказа;
- 3) заявка от клиента принимается оператором для оформления заказа;
- 4) оператор оформляет заказ;
- 5) клиент получает подтверждение об оформлении заказа (покидает систему).

Модель будет состоять из двух частей: моделирование обработки заказов в интернет-магазине и задание времени моделирования. Для задания равномерного распределения поступления заказов используем блок GENERATE, для задания равномерного времени обслуживания (задержки в системе) – ADVANCE. Для моделирования ожидания заявок клиентов в очереди используем блоки QUEUE и DEPART, в которых в качестве имени очереди укажем орегаtor_q Для моделирования поступления заявок для оформления заказов к оператору используем блоки SEIZE и RELEASE с параметром орегаtor — имени «устройства обслуживания».

Требуется, чтобы модельное время было 8 часов. Соответственно, параметр блока GENERATE – 480 (8 часов по 60 минут, всего 480 минут). Работа программы

начинается с оператора START с начальным значением счётчика завершений, равным 1; заканчивается – оператором TERMINATE с параметром 1, что задаёт ординарность потока в модели.

Таким образом, имеем (рис. 4.1).

```
; operator
GENERATE 15,4
QUEUE operator_q
SEIZE operator
DEPART operator_q
ADVANCE 10,2
RELEASE operator
TERMINATE 0
; timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 4.1: Модель оформления заказов клиентов одним оператором

После запуска симуляции получаем отчёт (рис. 4.2).

lab14_1.2.1	- REPORT											
		четве	рг, мая 0	1, 202	5 12:1	L:49						
	START TI		E							ES		
	0.0	000		480.00	0 !	9	1		0			
	NAME				VALUI	Ξ						
	OPERATOR			10	0001.0	00						
	OPERATOR_	_Q		10	0.000	00						
LABEL		T.O.C	BLOCK TY	DF.	FNTRY	COUNT	CURRE	IT CO	IINT RI	TRY		
211222		1	GENERATE	-		32		0		0		
		2	QUEUE			32		0		0		
		3	SEIZE			32		0		0		
		4	DEPART		:	32		0		0		
		5	ADVANCE		:	32				0		
		6	RELEASE			31		0		0		
		7	TERMINAT	Ξ		31		0		0		
		8	GENERATE			1		0		0		
		9	TERMINAT	Ξ		1		0		0		
FACILITY	FI	ITRIES	UTII	AVE.	TIME A	/ATT	OWNER I	PEND	TNTER	RETRY	DET.AY	
OPERATOR			0.639									
OHEHE		MAY C	ONT ENTE	v FNTD	V (O) 31	TE CON	IT AVE	TIME	7/17	· (-0)	DETDV	
QUEUE OPERATOR	Q	1	0 3:	2 ;	31	0.001	. AVE	0.021	AVI	0.671	0	
	_											
FEC XN							PARAME	ETER	VAI	LUE		
33	0	489.	786 3	3	5	6						
34	0	496.	081 3	4	0	1						
35	0	960.	000 3	5	0	8						

Рис. 4.2: Отчёт по модели оформления заказов в интернет-магазине

Результаты работы модели:

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0. Имена, используемые в программе модели: operator, operator_q.

Далее идёт информация о блоках текущей модели, в частности, ENTRY COUNT – количество транзактов, вошедших в блок с начала процедуры моделирования.

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 33 заказа от клиентов (значение поля OWNER=33), но одну заявку оператор не успел принять в обработку до окончания рабочего времени (значение поля ENTRIES=32). Полезность работы оператора составила 0, 639. При этом среднее время занятости оператора составило 9, 589 мин.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- МАХ=1 в очереди находилось не более одной ожидающей заявки от клиента;
- CONT=0 на момент завершения моделирования очередь была пуста;
- ENTRIES=32 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=31 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=0, 001 заявок от клиентов в среднем были в очереди;
- AVE.TIME=0.021 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=0, 671 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях:

- XN=33 порядковый номер заявки от клиента, ожидающей поступления для оформления заказа у оператора;
- PRI=0 все клиенты (из заявки) равноправны;
- BDT=489, 786 время назначенного события, связанного с данным транзактом;
- ASSEM=33 номер семейства транзактов;
- CURRENT=5 номер блока, в котором находится транзакт;
- NEXT=6 номер блока, в который должен войти транзакт.

Упражнение

Скорректируйте модель в соответствии с изменениями входных данных: интервалы поступления заказов распределены равномерно с интервалом 3.14 ± 1.7 мин; время оформления заказа также распределено равномерно на интервале 6.66 ± 1.7 мин. Проанализируйте отчёт, сравнив результаты с результатами предыдущего моделирования.

Я изменила строки GENERATE и ADVANCE (рис. 4.3).

```
; operator
GENERATE 3.14,1.7
QUEUE operator_q
SEIZE operator
DEPART operator_q
ADVANCE 6.66,1.7
RELEASE operator
TERMINATE 0
; timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 4.3: Модель оформления заказов клиентов одним оператором, упражнение

После запуска симуляции получаем отчёт (рис. 4.4).

lab14	_1.3.1 - REPO	RT								
		четверг	, мая 01,	2025 12:1	3:43					
	STAR'	TIME	END	TIME BLO	CKS F	ACILIT	IES	STORAG	ES	
		0.000	480	.000	9	1		0		
	N	AME		VALU	E					
	OPERA'	FOR		10001.0	00					
	OPERA:	ror_Q		10000.0	00					
LABE	L	LOC B	LOCK TYPE	ENTRY	COUNT	CURRE	NT CO	UNT RE	TRY	
	_		ENERATE	1						
				1	52		82		0	
		3 S	EIZE		70		0		D	
		4 D	EPART		70		0		0	
		5 A	DVANCE		70		1		D	
		6 R	ELEASE		69		0		D	
		7 T	ERMINATE		69		0		D	
		8 G	ENERATE		1		0		D	
		9 T	ERMINATE		1		0		0	
FACIL	TTV	ENTRIES	UTI. AV	F. TIME A	VATT.	OWNER	PFND	INTER	RETRY	DET.AY
		70								
QUEUE		MAX CON 82 8	T. ENTRY E	NTRY(0) A	VE.CON	T. AVE	.TIME	AVE	. (-0)	RETRY
OPER	ATOR_Q	82 8	2 152	1	39.096	12	3.461	12	4.279	0
FEC X	N PRI	BDT	ASSEM	CURRENT	NEXT	FARAM	ETER	VAL	UE	
7	1 0	BDT 480.40				•				
15	4 0		0 154							
15	5 0	960.00	0 155	0	8					

Рис. 4.4: Отчёт по модели оформления заказов в интернет-магазине, упражнение

Проанализируем отчёт:

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0. Имена, используемые в программе модели: operator, operator_q.

Далее идёт информация о блоках текущей модели, в частности, ENTRY COUNT –

количество транзактов, вошедших в блок с начала процедуры моделирования = 152.

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 71 заказа от клиентов (значение поля OWNER=71), но одну заявку оператор не успел принять в обработку до окончания рабочего времени (значение поля ENTRIES=70). Полезность работы оператора составила 0,991. При этом среднее время занятости оператора составило 6,796 мин.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- MAX= 82 в очереди находилось не более одной ожидающей заявки от клиента;
- CONT= 82 на момент завершения моделирования очередь была пуста;
- ENTRIES= 152 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)= 1 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT = 39,096 заявок от клиентов в среднем были в очереди;
- AVE. TIME = 123,461 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=124,279 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях.

4.2 Построение гистограммы распределения заявок в очереди

Требуется построить гистограмму распределения заявок, ожидающих обработки в очереди в примере из предыдущего упражнения. Для построения гистограммы необходимо сформировать таблицу значений заявок в очереди, записываемых в неё с определённой частотой.

Команда описания такой таблицы QTABLE имеет следующий формат: Name QTABLE A, B, C, D Здесь Name — метка, определяющая имя таблицы. Далее должны быть заданы операнды: А задается элемент данных, чьё частотное распределение будет заноситься в таблицу (может быть именем, выражением в скобках или системным числовым атрибутом (СЧА)); В задается верхний предел первого частотного интервала; С задает ширину частотного интервала — разницу между верхней и нижней границей каждого частотного класса; D задаёт число частотных интервалов.

Код программы будет следующим(рис. 4.5).

```
Waittime QTABLE operator_q,0,2,15
GENERATE 3.34,1.7
TEST LE Q$operator_q,1,Fin
SAVEVALUE Custnum+,1
ASSIGN Custnum,X$Custnum
QUEUE operator_q
SEIZE operator
DEPART operator_q
ADVANCE 6.66,1.7
RELEASE operator
Fin TERMINATE 1
```

Рис. 4.5: Построение гистограммы распределения заявок в очереди

Здесь Waittime — метка оператора таблицы очередей QTABLE, в данном случае название таблицы очереди заявок на заказы. Строка с оператором TEST по смыслу аналогично действиям оператора IF и означает, что если в очереди 0 или 1 заявка, то осуществляется переход к следующему оператору, в данном случае к оператору SAVEVALUE, в противном случае (в очереди более одной заявки) происходит переход к оператору с меткой Fin, то есть заявка удаляется из системы, не попадая на обслуживание. Строка с оператором SAVEVALUE с помощью операнда Custnum подсчитывает число заявок на заказ, попавших в очередь. Далее оператору ASSIGN присваивается значение СЧА оператора Custnum.

Получим отчет симуляции (рис. 4.6, 4.7).

	GPSS World	Simulation Rep	ort - labl	4_2.1.1		
	четве	pr, mas 01, 202	5 12:34:30			
		END TIM				
	0.000	353.89	5 10	1	0	
	NAME		VALUE			
(CUSTNUM	1	0002.000			
	FIN		10.000			
	OPERATOR		0003.000			
	OPERATOR_Q	_	0001.000			
1	NAITTIME	1	0000.000			
LABEL	LOC	BLOCK TYPE	ENTRY COU	NT CURRENT C	OUNT RETRY	
	1	GENERATE	102	0	0	
	2	TEST SAVEVALUE	102	0) 0	
	3	SAVEVALUE	55	0	0	
	4	ASSIGN	55	U		
	5	QUEUE	55	1	. 0	
	6	SEIZE	54	1	. 0	
				0	0	
	8	DEPART ADVANCE	53	0	0	
	9	RELEASE	53	o	0	
	10	TERMINATE	100	0	0	
FIN						
				ormine perio	THESE SERSE	
	ENTRIES	UTIL. AVE.	TIME AVAIL	. OWNER PEND	INTER RETRY	DELAY

Рис. 4.6: Отчёт по модели оформления заказов в интернет-магазине при построении гистограммы распределения заявок в очереди

	EPORT						
	8 ADV	ANCE		53	0	0	
	9 RELI	EASE		53	0	0	
FIN	10 TERM	MINATE	1	00	0	0	
FACILITY	ENTRIES UT:						
OPERATOR	54 0.	.987	6.470	1	98 0	0 0	1
OHEHE	MAY CONT	ENTRY ENT	TDV (0) N	UE CONT	AUF TIME	NVF (-0)	DETDV
ODEDATOD O	MAX CONT. 2 2	ENIKI EN	1 (U) A	1 652	10 629	10 924	NEIKI
OFERATOR_Q	2 2	33	1	1.652	10.626	10.02	. 0
TABLE	MEAN SI	D.DEV.	RAN	GE	RETRY	FREQUENCY	CUM.%
WAITTIME	10.709	2.702			0		
					.000	1	1.89
		0.0	000 -	2	.000	0	1.89
		2.0	000 -	4	.000	1	3.77
		4.0	000 -	6	.000	0	3.77
		6.0	000 -	8	.000	4	11.32
		8.0	000 -	10	.000	12	33.96
		10.0	000 -	12	.000	17	66.04
			000 -				92.45
		14.0	000 -	16	.000	4	100.00
	2572						
SAVEVALUE CUSTNUM	RETRY		ALUE 5.000				
COSINOM	0	5:	5.000				
CEC XN PRI	Ml	ASSEM (CURRENT	NEXT	PARAMETER	VALUE	
98 0							
					CUSTNUM	54.000	
FEC XN PRI					PARAMETER	VALUE	
103 0	356.553	103	0	1			

Рис. 4.7: Отчёт по модели оформления заказов в интернет-магазине при построении гистограммы распределения заявок в очереди

И гистограмму(рис. 4.8):

Рис. 4.8: Гистограмма распределения заявок в очереди

Упражнение

Требуется проанализировать отчёт и гистограмму по результатам моделирования.

Проанализируем отчёт:

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=353.895;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=10;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: custnum, fin, operator, operator_q, waittime.

• количество транзактов, вошедших в блок с начала процедуры моделирования ENTRY COUNT = 102;

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 98 заказов от клиентов (значение поля OWNER=98), но оператор успел принять в обработку до окончания рабочего времени только 54 (значение поля ENTRIES=54). Полезность работы оператора составила 0,987. При этом среднее время занятости оператора составило 6,470 мин.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- МАХ=2 в очереди находилось не более двух ожидающих заявок от клиента;
- CONT=2 на момент завершения моделирования в очереди было два клиента;
- ENTRIES=55 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;

- ENTRIES(0)=1 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=1,652 заявок от клиентов в среднем были в очереди;
- AVE. TIME=10,628 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=10,824 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

Также появилась таблица с информацией для гистограммы: частотность разделена на 15 частотных интервалов с шагом 2 и началом в 0, а также в таблице указана частота, количество обрабатываемых заявок.

В конце отчёта идёт информация о будущих событиях.

Проанализируем гистограмму:

Частотное распределение времени обработки заявок было сформировано на основе 15 равных интервалов шириной 2 минуты, начиная с нуля, в соответствии с заданными параметрами.

- Максимальное количество заявок (17) обрабатывалось в интервале 10–12 минут.
- Второй по частоте интервал 12–14 минут, в котором обрабатывалось 14 заявок.
- Третий по частоте 8–10 минут с 12 заявками.
- Во всех остальных интервалах количество заявок варьировалось от 0 до 4, что свидетельствует о низкой вероятности соответствующего времени обработки.

4.3 Модель обслуживания двух типов заказов от клиентов в интернет-магазине

Необходимо реализовать отличие в оформлении обычных заказов и заказов с дополнительным пакетом услуг. Такую систему можно промоделировать с помощью двух сегментов. Один из них моделирует оформление обычных заказов, а второй – заказов с дополнительным пакетом услуг. В каждом из сегментов пара QUEUE-DEPART должна описывать одну и ту же очередь, а пара блоков SEIZE-RELEASE должна описывать в каждом из двух сегментов одно и то же устройство и моделировать работу оператора. Код и отчет результатов моделирования следующие (рис. 4.9, 4.10, 4.11).

```
| lab14_3.gps
; order
GENERATE 15,4
QUEUE operator q
SEIZE operator
DEPART operator q
ADVANCE 10,2
RELEASE operator
TERMINATE 0
; order and service package
GENERATE 30,8
QUEUE operator q
SEIZE operator
DEPART operator q
ADVANCE 5,2
ADVANCE 10,2
RELEASE operator
TERMINATE 0
;timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 4.9: Модель обслуживания двух типов заказов от клиентов в интернет-магазине

lab14_3.1.	1 - REPORT							
	GPSS World	Simulation Re	port - labl	4 3.1.1				
	0100 110114	0211142402011 110	,,,,,					
	Werse	рг, мая 01, 20	25 12:47:39					
	START TIME	END TI	ME BLOCKS	FACILITIES	STORA	GES		
	0.000	480.0	00 17	1	0			
	NAME		VALUE					
	OPERATOR		10001.000					
	OPERATOR_Q		10000.000					
LABEL	LOC							
		GENERATE	32		0	0		
		QUEUE	32		4	0		
		SEIZE	28 28		0	0		
	4	DEPART	28		0	0		
	5	ADVANCE	28		1			
		RELEASE				0		
	7	TERMINATE GENERATE QUEUE	27		0	0		
	8	GENERATE	15		0	0		
			15		3	0		
		SEIZE	12		0	0		
		DEPART				0		
	12	ADVANCE	12		0	0		
	13	ADVANCE ADVANCE RELEASE TERMINATE	12		0	0		
	14	RELEASE	12		0	0		
	15	TERMINATE	12		0	0		
	16	GENERATE	1		0	0		
	17	TERMINATE	1		0	0		
	ENTRIES							
OPERATOR	40	0.947	11.365 1	42	0 0	0	7	

Рис. 4.10: Отчёт по модели оформления заказов двух типов

	OPERATO	R			10001.	000					
	OPERATO	R O			10000.						
LABEL		LOC	BLO	K TYPE	ENTR	Y COUNT	CURRE	NT COU	NT RE	ETRY	
		1	GENE	RATE		32		0		0	
		2				32		4		0	
		3	SEIZ	E		28		0		0	
		4	DEPA	ART		28		0		0	
		5	ADV	NCE		28		1		0	
		6	RELE	ASE		27		0		0	
		7	TERN	INATE		27		0		0	
		8	GENE	RATE		15		0		0	
		9	QUE	JΕ		15		3		0	
		10	SEIZ	E		12		0		0	
		11	DEPA	ART		12		0		0	
		12	ADV	NCE		12		0		0	
		13	ADV	NCE		12		0		0	
		14	RELE	ASE		12		0		0	
		15	TERM	INATE		12		0		0	
		16	GENE	RATE		1		0		0	
		17	TERN	INATE		1		0		0	
ACILITY	:				E. TIME .						DELAY
UEUE OPERATOR	₹_0			ENTRY E		AVE.CON					
EC XN	PRI	BDT		ASSEM	CURRENT	NEXT	PARAM	ETER	VAI	LUE	
	0			42	5	6				_	
	0			50		1					
49	0			49		8					
51	0	960	200	51	0	16					

Рис. 4.11: Отчёт по модели оформления заказов двух типов

Задание: проанализировать отчёт.

Результаты работы модели:

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=17;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

- количество транзактов, вошедших в блок:
 - первого типа заказов с начала процедуры моделирования ENTRY COUNT
 = 32;
 - второго типа(с дополнительными услугами) ENTRY COUNT = 15;
 - обработано 39 (потому что 12+27 = 39);

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 42 заказ от клиентов (значение поля OWNER=42), но оператор успел принять в обработку до окончания рабочего времени только 40 (значение поля ENTRIES=40). Полезность работы оператора составила 0,947. При этом среднее время занятости оператора составило 11,365 мин.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- МАХ=8 в очереди находилось не более двух ожидающих заявок от клиента;
- CONT=7 на момент завершения моделирования в очереди было 7 клиентов;

- ENTRIES=47 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=2 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=3,355 заявок от клиентов в среднем были в очереди;
- AVE.TIME=34,261 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=35,784 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях.

Упражнение

Нужно было скорректировать модель так, чтобы учитывалось условие, что число заказов с дополнительным пакетом услуг составляет 30% от общего числа заказов.

Из теории мы знаем, что:

Блок TRANSFER изменяет маршрут движения транзактов:

• TRANSFER [A],B,[C],[D]

3десь A — режим перехода; B — метка первого альтернативного блока; C — метка второго альтернативного блока; D — константа, используемая для относительной переадресации транзактов.

Будем использовать один блок order, а разделим типы заявок с помощью переходов оператором TRANSFER. Каждый заказ обрабатывается 10 ± 2 минуты, после этого зададим оператор TRANSFER, в котором укажем, что с вероятностью 0.7 происходит обработка заявки (переход к блоку dst2 Release operator), а с вероятностью 0.3 дополнительно заказ обрабатывается еще 5 ± 2 минуты (переход к блоку dst1 ADVANCE 5,2) и только после этого является обработанным (рис. 4.12).

```
; order
GENERATE 15,4
QUEUE operator_q
SEIZE operator
DEPART operator_q
ADVANCE 10,2
TRANSFER 0.3,dst2,dst1
dst1 ADVANCE 5,2
dst2 RELEASE operator
TERMINATE 0
; timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 4.12: Модель обслуживания двух типов заказов с условием, что число заказов с дополнительным пакетом услуг составляет 30% от общего числа заказов

Проанализируем результаты моделирования (рис. 4.13).

Tab14_3.3.1 - REPO	ORT				
c	PSS World Simulation	Deport - lab14	2 2 1		
9	FF35 WOITG SIMULACION	Report - labia	_3.3.1		
	четверг, мая 01,	2025 13:00:17			
STAR	RT TIME END 0.000 48	0.000 11		ORAGES 0	
	0.000	0.000 11	-	·	
	IAME	VALUE			
DST1 DST2		7.000			
	TOR	8.000 10001.000			
	TOR_Q	10001.000			
OPERA	11010	10000.000			
LABEL	LOC BLOCK TYPE				
	1 GENERATE 2 QUEUE	33 33	0	0	
	3 SEIZE	33	0	0	
	4 DEPART	33	0	0	
	5 ADVANCE	33	0	Ö	
	6 TRANSFER		0	ō	
DST1	7 ADVANCE	8	1	0	
DST2	8 RELEASE	32	0	0	
	9 TERMINATE	32	0	0	
	10 GENERATE	1	0	0	
	11 TERMINATE	1 1	0	0	
FACILITY	ENTRIES UTIL. A	VE. TIME AVAIL.	OWNER PEND II	NTER RETRY DEL	AY
OPERATOR	33 0.766	11.146 1	34 0	0 0	0
OUEUE	MAX CONT. ENTRY	ENTRY(0) AVE.CO	NT. AVE.TIME	AVE.(-0) RET	RY
OPERATOR Q	MAX CONT. ENTRY 1 0 33	25 0.05	4 0.781	3.220 0	
FEC XN PRI	BDT ROOFN	I CURRENT NEXT	DADAMETER	WATTE	
TEC XN PRI 34 0			PAKAMLILK	VALUE	
35 0	487.726 35				
36 0	960.000 36	0 10			

Рис. 4.13: Отчёт по модели оформления заказов двух типов заказов

Результаты работы модели:

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=11;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

- количество транзактов, вошедших в блок заказов с начала процедуры моделирования ENTRY COUNT = 33;
- второго типа (с дополнительными услугами) ENTRY COUNT = 8;
- обработано 32 заказа;

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 34 заказа от клиентов (значение поля OWNER=34), но оператор успел принять в обработку до окончания рабочего времени только 33 (значение поля ENTRIES=33). Полезность работы оператора составила 0,766. При этом среднее время занятости оператора составило 11,146 мин.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- МАХ=1 в очереди находилось не более двух ожидающих заявок от клиента;
- CONT=0 на момент завершения моделирования в очереди было ноль клиентов;
- ENTRIES=33 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=25 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=0,054 заявок от клиентов в среднем были в очереди;
- AVE. TIME=0.781 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=3,220 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях.

4.4 Модель оформления заказов несколькими операторами

В интернет-магазине заказы принимают 4 оператора. Интервалы поступления заказов распределены равномерно с интервалом 5 ± 2 мин. Время оформления заказа каждым оператором также распределено равномерно на интервале 10 ± 2 мин. обработка поступивших заказов происходит в порядке очереди (FIFO). Требуется определить характеристики очереди заявок на оформление заказов при условии, что заявка может обрабатываться одним из 4-х операторов в течение восьмичасового рабочего дня

Для задания количества доступных операторов в системе используется команда STORAGE operator 4, где operator — имя ресурса, а число 4 указывает на то, что одновременно могут работать четыре оператора.

На этапе обработки каждой заявки добавляется команда ENTER operator,1, обозначающая, что для начала обслуживания необходимо зарезервировать одного оператора (рис. 4.14).

```
operator STORAGE 4
GENERATE 5,2
QUEUE operator_q
ENTER operator,1
DEPART operator_q
ADVANCE 10,2
LEAVE operator,1
TERMINATE 0
; timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 4.14: Модель оформления заказов несколькими операторами

Упражнение

1. Проанализируем отчет (рис. 4.15).

Рис. 4.15: Отчет по модели оформления заказов несколькими операторами

Результаты работы модели:

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=0;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=1.

Имена, используемые в программе модели: operator, operator_q.

• количество транзактов, вошедших в блок заказов с начала процедуры моделирования ENTRY COUNT = 93; обработан 91 заказ;

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- МАХ=1 в очереди находилось не более двух ожидающих заявок от клиента;
- CONT=0 на момент завершения моделирования в очереди было ноль клиентов;
- ENTRIES=93 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=93 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=0,000 заявок от клиентов в среднем были в очереди;
- AVE. TIME=0,000 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=0,000 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

Далее идет информация про многоканальное устройство STORAGE (представляющее операторов, оформляющих заказы), и мы можем сделать такие выводы:

- Общее число заявок, направленных к операторам, составило 93.
- Значение коэффициента полезности (или загрузки) STORAGE составило 0,482.
- Среднее время, в течение которого один оператор был занят одной заявкой, составило 1,926 минуты.
- САР. = 4, что означает возможность одновременной работы до четырёх операторов.
- Максимальное число одновременно задействованных операторов: 4 то есть в некоторые моменты все операторы находились в работе.

• Минимальное число задействованных операторов: 0 — были периоды, когда ни один оператор не был занят.

В конце отчёта идёт информация о будущих событиях.

2. Изменим модель: требуется учесть в ней возможные отказы клиентов от заказа – когда при подаче заявки на заказ клиент видит в очереди более двух других заявок, он отказывается от подачи заявки, то есть отказывается от обслуживания (используем блок TEST и стандартный числовой атрибут Qj текущей длины очереди j).

Прочитаем информацию про TEST:

Блок TEST определяет направление движения транзакта в зависимости от выполнения условия, заданного алгебраическим соотношением:

TEST XX A,B,[C]

Здесь XX — знак логической операции: L — меньше, G — больше, E — равно, LE — меньше или равно, GE — больше или равно, NE — не равно; A, B — сравниваемые значения; C — метка блока, куда перемещается транзакт в случае невыполнения заданного условия.

В модель я добавила строчку TEST LE Q\$operator_q, 2, которая проверяет, сколько человек стоит в очереди к операторам. Если в очереди не больше двух клиентов, заявка идёт дальше на обработку. Если клиентов больше двух — заявка уходит из системы, имитируя отказ пользователя из-за слишком долгого ожидания.

Ранее в отчёте было видно, что длина очереди ни разу не превышала двух человек. Это связано с тем, что заявки поступали довольно редко, и операторы успевали справляться с потоком. Чтобы проверить, как система поведёт себя при большей нагрузке, я изменила параметры модели:

• Вместо GENERATE 5,2 теперь используется GENERATE 2,1, то есть заявки приходят чаще — примерно раз в 2 минуты с небольшим разбросом.

• Команда ADVANCE 10,2 заменена на ADVANCE 20,2, чтобы одна заявка обрабатывалась дольше — в среднем 20 минут.

Таким образом, модель теперь работает в условиях, когда операторов может не хватать, и появляется шанс, что очередь превысит допустимый предел в два человека. Это позволяет проверить, как сработает фильтрация через TEST, и насколько сильно это повлияет на общий поток заявок (рис. fig:015).

```
operator STORAGE 4
GENERATE 2,1
TEST LE Q$operator_q,2
QUEUE operator_q
ENTER operator_1
DEPART operator_q
ADVANCE 20,2
LEAVE operator,1
TERMINATE 0
; timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 4.16: Модель оформления заказов несколькими операторами с учетом отказов клиентов

3. Проанализируем полученный отчет (рис. 4.17).

LABEL	START T: 0.0 NAME OPERATOR OPERATOR	IME 000		мая 01, END 48	TIME 0.000	BLOC	KS F				GES		
LABEL	START T: 0.0 NAME OPERATOR OPERATOR	IME 000		END	TIME 0.000	BLOC	KS F				GES		
LABEL	NAME OPERATOR OPERATOR	000			0.000						GES		
LABEL	NAME OPERATOR OPERATOR			48		10		0					
LABEL	OPERATOR OPERATOR									1			
LABEL	OPERATOR					VALUE							
LABEL		_Q				00.00							
LABEL					100	001.00	0						
		LOC	BLO	CK TYPE	. F	NTRY	COUNT	CURRE	NT CO	UNT R	ETRY		
				ERATE									
		2	TES:	T		10	1		0		0		
		3	QUE	UE		10	1				0		
				ER		9	8		0		0		
				ART		9			0		0		
		6	ADV	ANCE VE		9	8		4		0		
						9			0		0		
				MINATE		9			0		0		
				ERATE			1		0		0		
		10	TER	MINATE			1		0		0		
OUFUE		MAX C	ONT.	ENTRY	ENTRY	(O) AV	E.CON'	r. AVE	.TIME	AV	E. (-0)	RETE	ξΥ
QUEUE OPERATOR	Q	3	3	101	4		2.915	1	3.854		14.425	138	-
STORAGE OPERATOR		CAP.	REM.	MIN. M	AX. E	NTRIE	S AVL	. AVE	.c. U	TIL.	RETRY	DELAY	7
OPERATOR		4	0	0	4	98	1	3.9	53 0	.988	0	3	
FEC XN I	PRI	BDT		ASSEM	CURF	RENT	NEXT	PARAM	ETER	VA	LUE		
FEC XN I	0	481.	105	241	0)	1						
96	0	486.	885	96 97	6	5	7						
97	0	494.	918	97	6	5	7						
98	0	496.	712	98	6	5	7						
99	0	498.	144	99 242	6	5	7						
242	0	960.	000	242	C)	9						

Рис. 4.17: Отчет по модели оформления заказов несколькими операторами с учетом отказов клиентов

Результаты работы модели:

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=10;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=0;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=1.

Имена, используемые в программе модели: operator, operator_q.

- количество транзактов, вошедших в блок заказов с начала процедуры моделирования ENTRY COUNT = 239;
- обработано 94 заказа;
- 138 человек отказались оставлять заявки, поскольку очередь была более двух заявок.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- MAX = 3 в очереди находилось не более трех ожидающих заявок от клиента(как и было указано);
- CONT = 3 на момент завершения моделирования в очереди было ноль клиентов;
- ENTRIES=101 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=4 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=2,915 заявок от клиентов в среднем были в очереди;
- AVE. TIME=13,854 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=14,425 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

Далее в отчёте представлена статистика по многоканальному устройству STORAGE, которое моделирует операторов, занимающихся оформлением заказов. Из данных видно следующее:

- К операторам было направлено 98 заявок от клиентов.
- Полезность работы (utilization) составила 0,988, то есть операторы были заняты почти всё время моделирования 98,8 % времени.

- В среднем один оператор тратил 3,953 минуты на обработку одной заявки.
- САР. = 4, что означает возможность одновременной работы до четырёх операторов.
- Максимальное число одновременно занятых операторов: 4.
- Минимальное число занятых операторов: 0 (были периоды простоя, хотя и редкие).

В конце отчёта идёт информация о будущих событиях.

5 Выводы

В ходе данной лабораторной работы я реализовала следующее:

- модель оформления заказов клиентов одним оператором;
- построение гистограммы распределения заявок в очереди;
- модель обслуживания двух типов заказов от клиентов в интернет-магазине;
- модель оформления заказов несколькими операторами.

Список литературы

- 1. GPSS-WORLD, основы имитационного моделирования на живых примерах [Электронный ресурс]. URL: https://habr.com/ru/articles/192044/.
- 2. М. К.Е. GPSS World. Основы имитационного моделирования различных систем. Москва: ДМК Пресс, 2004. 318 с.