AMENDMENTS TO THE CLAIMS

1. (Previously presented) An organometallic transition metal compound of the formula (I)

$$R^{1}$$

$$R^{1}$$

$$R^{4}$$

$$R^{3}$$

$$R^{3}$$

$$R^{2}$$

$$R^{4}$$

$$R^{5}$$

$$R^{1}$$

$$R^{3}$$

$$R^{2}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{3}$$

$$R^{4}$$

$$R^{3}$$

$$R^{4}$$

$$R^{3}$$

$$R^{4}$$

$$R^{3}$$

$$R^{4}$$

$$R^{5}$$

$$R^{4}$$

$$R^{5}$$

$$R^{4}$$

$$R^{5}$$

$$R^{4}$$

$$R^{5}$$

$$R^{5}$$

$$R^{4}$$

$$R^{5}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{5}$$

$$R^{4}$$

$$R^{5}$$

$$R^{5}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{5}$$

$$R^{4}$$

$$R^{5}$$

$$R^{5}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{5}$$

$$R^{5}$$

$$R^{5}$$

$$R^{5}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{5}$$

$$R^{5}$$

$$R^{5}$$

$$R^{5}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{5}$$

$$R^{5$$

where

M¹ is an element of group 3, 4, 5 or 6 of the Periodic Table of the Elements or the lanthanides,

X are identical or different and are each halogen, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{22} -aryl, alkylaryl or arylalkyl each having from 1 to 10 carbon atoms in the alkyl part and from 6 to 22 carbon atoms in the aryl part, $-OR^6$ or $-NR^6R^7$, where two radicals X may also be joined to one another,

n is a natural number from 1 to 4 which corresponds to the oxidation number of M¹ minus 2,

R¹ is hydrogen or a cyclic, branched or unbranched C₁-C₂₀-alkyl radical, a C₂-C₂₀-alkenyl radical, an arylalkyl radical having from 1 to 10 carbon atoms in the alkyl part and from 6 to 22 carbon atoms in the aryl part or a C₄-C₂₄ heteroaromatic radical selected from the group consisting of substituted or unsubstituted thienyl radicals or of substituted or unsubstituted furyl radicals,

R² is a substituted or unsubstituted C₆-C₄₀-aryl radical,

- R³ is hydrogen or a cyclic, branched or unbranched C₁-C₂₀-alkyl radical, C₂-C₂₀-alkenyl radical, an arylalkyl radical having from 1 to 10 carbon atoms in the alkyl part and from 6 to 22 carbon atoms in the aryl part, or the radicals R² and R³ together form a ring system,
- R⁴ is hydrogen or a cyclic, branched or unbranched C₁-C₂₀-alkyl radical, a C₂-C₂₀-alkyl radical, an arylalkyl radical having from 1 to 10 carbon atoms in the alkyl part and from 6 to 22 carbon atoms in the aryl part,
- R⁵ is a cyclic, branched or unbranched C₁-C₂₀-alkyl radical, a C₂-C₂₀-alkenyl radical, an arylalkyl radical having from 1 to 10 carbon atoms in the alkyl part and from 6 to 22 carbon atoms in the aryl part, and
- is a divalent group CR⁸R⁹-CR¹⁰R¹¹, where R⁸, R⁹, R¹⁰ and R¹¹ are identical or different and are each hydrogen or a trimethylsilyl group, a C₁-C₁₀-alkyl group, a C₁-C₁₀-fluoroalkyl group, a C₆-C₁₀-fluoroaryl group, a C₆-C₁₀-aryl group, a C₈-C₄₀-arylalkenyl group, a C₇-C₄₀-arylalkyl group or a C₇-C₄₀-alkylaryl group or two adjacent radicals together with the atoms connecting them may form a saturated or unsaturated ring having from 4 to 15 carbon atoms.
- 2. (Original) An organometallic transition metal compound of the formula (I) as claimed in claim 1,

where

M¹ is an element of group 4 of the Periodic Table of the Elements,

n is 2,

 R^1 is C_1 - C_{10} -alkyl,

R³ is hydrogen or a C₁-C₁₀-alkyl radical,

R⁴ is hydrogen or a C₁-C₁₀-alkyl radical,

R⁵ is a C₁-C₁₀-alkyl radical and

Z is CH_2 - CH_2 .

- 3. (cancelled)
- 4. (cancelled)

_{-5.}-3

(Previously presented) A catalyst system for the polymerization of olefins comprising at least one organometallic transition metal compound as claimed in claim 1 and at least one cocatalyst as cation-forming compound.

-6.4 -7.5 (Original) A catalyst system as claimed in claim 5 which further comprises a support. (Previously presented) A process for preparing polyolefins by polymerization or copolymerization of at least one olefin in the presence of a catalyst system as claimed in claim 5.

8. (cancelled)

-98

(currently amended) A process for preparing an organometallic transition metal compound, which comprises reacting a biscyclopentadienyl ligand system as claimed in elaim 3 or a bisanion prepared therefrom with a transition metal compound, the biscyclopentadienyl ligand system comprising a compound of formula (II):

$$R^{1}$$
 R^{5}
 R^{5}
 R^{4}
 R^{3}
 R^{5}
 R^{4}
 R^{3}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{4}
 R^{5}
 R^{4}
 R^{5}
 R^{5}
 R^{7}

or its double bond isomers,

where

is hydrogen or a cyclic, branched or unbranched C₁-C₂₀-alkyl radical, a C₂-C₂₀-alkyl radical, an arylalkyl radical having from 1 to 10 carbon atoms in the alkyl part and from 6 to 22 carbon atoms in the aryl part or a C₄-C₂₄ heteroaromatic

	radical selected from the group consisting of substituted or unsubstituted thienyl
	radicals or of substituted or unsubstituted furyl radicals,
R ²	is a substituted or unsubstituted C ₆ -C ₄₀ -aryl radical,
R ³	is hydrogen or a cyclic, branched or unbranched C _I -C ₂₀ -alkyl radical, C ₂ -C ₂₀ -
	alkenyl radical, an arylalkyl radical having from 1 to 10 carbon atoms in the alkyl
	part and from 6 to 22 carbon atoms in the aryl part,
	or the radicals R ² and R ³ together form a ring system,
R ⁴	is hydrogen or a cyclic, branched or unbranched C ₁ -C ₂₀ -alkyl radical, a C ₂ -C ₂₀ -
	alkenyl radical, an arylalkyl radical having from 1 to 10 carbon atoms in the alkyl
	part and from 6 to 22 carbon atoms in the aryl part.
R ⁵	is a cyclic, branched or unbranched C ₁ -C ₂₀ -alkyl radical, a C ₂ -C ₂₀ -alkenyl radical,
	an arylalkyl radical having from 1 to 10 carbon atoms in the alkyl part and from 6
	to 22 carbon atoms in the aryl part,
	and ,
<u>Z</u>	is a divalent group CR ⁸ R ⁹ -CR ¹⁰ R ¹¹ , where R ⁸ , R ⁹ , R ¹⁰ and R ¹¹ are identical or
	different and are each hydrogen or a trimethylsilyl group, a C ₁ -C ₁₀ -alkyl group, a
	C ₁ -C ₁₀ -fluoroalkyl group, a C ₆ -C ₁₀ -fluoroaryl group, a C ₆ -C ₁₀ -aryl group, a C ₈ -
	C ₄₀ -arylalkenyl group, a C ₇ -C ₄₀ -arylalkyl group or a C ₇ -C ₄₀ -alkylaryl group or two
	adjacent radicals together with the atoms connecting them form a saturated or
	unsaturated ring having from 4 to 15 carbon atoms.

$$R^{1}$$
 R^{2}
 R^{3}
 R^{4}
 R^{3}
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 R^{5}
 R^{4}
 R^{5}
 R^{4}

or its double bond isomers,

where

- R¹ is hydrogen or a cyclic, branched or unbranched C₁-C₂₀-alkyl radical, a C₂-C₂₀-alkenyl radical, an arylalkyl radical having from 1 to 10 carbon atoms in the alkyl part and from 6 to 22 carbon atoms in the aryl part or a C₄-C₂₄ heteroaromatic radical selected from the group consisting of substituted or unsubstituted thienyl radicals or of substituted or unsubstituted furyl radicals,
- R^2 is a substituted or unsubstituted C_6 - C_{40} -aryl radical,
- R^3 is hydrogen or a cyclic, branched or unbranched C_1 - C_{20} -alkyl radical, C_2 - C_{20} -alkenyl radical, an arylalkyl radical having from 1 to 10 carbon atoms in the alkyl part and from 6 to 22 carbon atoms in the aryl part, or the radicals R^2 and R^3 together form a ring system,
- is hydrogen or a cyclic, branched or unbranched C₁-C₂₀-alkyl radical, a C₂-C₂₀-alkenyl radical, an arylalkyl radical having from 1 to 10 carbon atoms in the alkyl part and from 6-to 22 carbon atoms in the aryl part,
- is a cyclic, branehed or unbranched C₁-C₂₀-alkyl radical, a C₂-C₂0-alkenyl radical, an arylalkyl radical having from 1 to 10 carbon atoms in the alkyl part and from 6 to 22 carbon atoms in the aryl part, and
- Z is a divalent group CR⁸R⁹-CR¹⁰R¹¹, where R⁸, R⁹, R¹⁰ and R¹¹ are identical or different and are each hydrogen or a trimethylsilyl group, a C₁-C₁₀-alkyl group, a

 C_1 - C_{10} -fluoroalkyl group, a C_6 - C_{10} -fluoroaryl group, a C_6 - C_{10} -aryl group, a C_8 - C_{40} -arylalkenyl group, a C_7 - C_{40} -arylalkyl group or a C_7 - C_{40} -alkylaryl group or two adjacent radicals together with the atoms connecting them form a saturated or unsaturated ring having from 4 to 15 carbon atoms.

11.6

(Previously presented) A catalyst system as claimed in claim 5 further comprise a metal compound of the formula (VII)

$$M^{3}(R^{13})_{r}(R^{14})_{s}(R^{15})_{t}$$
 (VII)

wherein

M³ is an alkali metal, an alkaline earth metal or a metal of group 13 of the Periodic Table,

R¹³ is hydrogen, C₁-C₁₀-alkyl, C₆-C₁₅-aryl, alkylaryl or arylalkyl each having from 1 to 10 carbon atoms in the alkyl part and from 6 to 20 carbon atoms in the aryl part,

R¹⁴ and R¹⁵ are identical or different and are each hydrogen, halogen, C₁-C₁₀-alkyl, C₆-C₁₅-aryl, alkylaryl, arylalkyl or alkoxy each having from 1 to 10 carbon atoms in the alkyl radical and from 6 to 20 carbon atoms in the aryl radical,

r is an integer from 1 to 3,

and

s and t are integers from 0 to 2, where the sum r+s+t corresponds to the valence of M³.

(Previously presented) A catalyst system as claimed in claim 11 wherein M³ is boron, aluminum, gallium, indium or thallium.