

IB Physics SL & HL Formula Sheet

Table of Contents		
Fundamental Constants	<u>1</u>	
Geometry and Trigonometry	<u>1</u>	
Unit Conversions	1	
Metric Prefixes	1	
<u>Uncertainty Calculations</u>	<u>1</u>	
Theme A: Space, Time and Motion	<u>2</u>	
Theme B: The Particulate Nature of Matter	<u>4</u>	
Theme C: Wave Behaviour	<u>6</u>	
Theme D: Fields	<u>Z</u>	
Theme E: Nuclear and Quantum Physics	<u>8</u>	

Symbol	Quantity	Approximate Value
g	Free fall acceleration (Earth's surface)	9.8 m s ⁻²
G Gravitational constant		$6.67 \times 10^{-11} N m^2 kg^{-2}$
N _A	Avogadro's constant	$6.022 \times 10^{23} mol^{-1}$
R	Gas constant	$8.31JK^{-1}mol^{-1}$
k_B	Boltzmann's constant	$1.38 \times 10^{-23} J K^{-1}$
σ	Stefan-Boltzmann constant	$5.67 \times 10^{-8} W m^{-2} K^{-4}$
k	Coulomb constant	$8.99 \times 10^9 \ N \ m^2 \ C^{-2}$
$arepsilon_0$ Free space permittivity		$8.85 \times 10^{-12} C^2 N^{-1} m^{-2}$
μ_0	Free space permeability	$4\pi \times 10^{-7} \ T \ m \ A^{-1}$
c Speed of light in a vacuum		$3.00 \times 10^8 \ m \ s^{-1}$
h	h Planck's constant $6.63 \times 10^{-34} J s$	
e Elementary charge		$1.60 \times 10^{-19} C$
m_e	Electron rest mass	$9.110 \times 10^{-31} \ kg = 0.000549u$ = 0.511 MeV c ⁻²
m_p	Proton rest mass	$1.673 \times 10^{-27} \ kg = 1.007276u = 938 \ MeV \ c$
m_n	Neutron rest mass	$1.675 \times 10^{-27} \ kg = 1.008665u = 940 \ MeV \ c$
u	Unified atomic mass unit	$1.661 \times 10^{-27} \ kg = 931.5 \ MeV \ c^{-2}$
S	Solar constant (Earth's surface)	$1.36 \times 10^3 W m^{-2}$
Ro	Fermi Radius	$1.20 \times 10^{-15} m$

Metric Prefixes		
Symbol	Prefix	Value
Р	peta-	1015
Т	tera-	1012
G	giga-	10 ⁹
М	mega-	10 ⁶
k	kilo-	10 ³
h	hecto-	10 ²
da	deca-	10 ¹
d	deci-	10-1
С	centi-	10-2
m	milli-	10-3
μ	micro-	10-6
n	nano-	10-9
р	pico-	10-12
f	femto-	10-15

Geometry and Trigonometry Equa	ntions
Circumference (circle)	$C = 2\pi r$
Area (triangle)	$A = \frac{1}{2}(bh)$
Area (circle)	$A = \pi r^2$
Curved Surface Area (cylinder)	$A=2\pi rh$
Surface Area (sphere)	$A = 4\pi r^2$
Volume (sphere)	$V = \frac{4}{3}\pi r^3$
Volume (cylinder)	$V = \pi r^2 h$
Volume (prism)	V = Ah
Volume (cuboid)	V = lwh
Trigonometric relationships	$\tan \theta = \frac{\sin \theta}{\cos \theta}$ $\sin^2 \theta + \cos^2 \theta = 1$
Vector Components	$\begin{aligned} A_H &= Acos\theta \\ A_V &= Asin\theta \\ A_H &= \text{horizontal component of vector } A, \\ A_V &= \text{vertical component of vector } A, \\ \theta &= \text{the angle relative to the horizontal} \end{aligned}$

Unit Conversions	
1 radian (rad)	$\frac{180^{\circ}}{\pi}$
Temperature (K)	Temperature (°C) $+ 273$
1 light year (ly)	$9.46\times10^{15}~m$
1 parsec (pc)	3.26 ly
1 astronomical unit (AU)	$1.50 \times 10^{11} m$
1 kilowatt-hour (kWh)	$3.60 \times 10^6 J$
hc	$1.99 \times 10^{-25} Jm = 1.24 \times 10^{-6} eVm$

Addition and Subtraction	$If: y = a \pm b$ then: $\Delta y = \Delta a + \Delta b$
Multiplication and Division	$1f: y = \frac{ab}{c}$ $then: \frac{\Delta y}{y} = \frac{\Delta a}{a} + \frac{\Delta b}{b} + \frac{\Delta c}{c}$
Exponentiation	$If: y = a^n$ then: $\frac{\Delta y}{y} = \left n \frac{\Delta a}{a} \right $

The	Theme A: Space, Time and Motion				
	A.1 Kinematics				
Unif	orm Acceleration Equations	$v=u+at$; $s=ut+\frac{1}{2}at^2$; $v^2=u^2+2as$; $s=\frac{v+u}{2}t$ v= final velocity, $u=$ initial velocity, $a=$ acceleration, $t=$ time, $s=$ displacement			
A.2	v = final velocity, u = initial velocity, a = acceleration, t = time, s = displacement A.2 – Forces & Momentum				
Frict	ion	$F_f \le \mu_s F_N$; $F_f = \mu_d F_N$ $F_f =$ frictional force, $F_N =$ normal reaction force, $F_N =$ static friction coefficient, $F_N =$ the dynamic friction coefficient			
Ноо	ke's Law for Springs	$F_H = -kx$ $F_H = \text{restoring force, k} = \text{spring constant, x} = \text{displacement from equilibrium}$			
Drag	Force in Fluids (Stokes' Law)	$F_d=6\pi\eta rv$ $F_d=$ drag force, $\eta=$ viscosity of fluid, r = radius of cross section, v = relative motion to fluid			
Buo	yant Force	$F_b = \rho V g$ $F_b = \text{buoyant force}, \rho = \text{density of displaced fluid}, V = \text{volume of displaced fluid}, g = \text{gravitational field strength}$			
Forc	e of Gravity (Weight)	$F_g=mg$ $F_g=$ gravitational force, m = mass of object, g = gravitational field strength			
Defi	nition of Momentum	p = mv p = momentum, m = mass, v = velocity			
Impi	ulse	$J=F\Delta t$ $J=$ impulse, $F=$ net force, $\Delta t=$ time interval			
New	rton's Second Law	$F=ma=rac{\Delta p}{\Delta t}$ $F=$ net force, $m=$ mass, $a=$ acceleration, $\Delta p=$ change in momentum, $\Delta t=$ time interval			
Cent	ripetal Acceleration	$a = \frac{v^2}{r} = \omega^2 r = \frac{4\pi^2 r}{T^2}$			
Rela	tionship between Tangential and Angular Velocity	a = acceleration, v = speed, r = radial distance, ω = angular speed, T = period $v = \frac{2\pi r}{T} = \omega r$			
Δ.3	– Work, Energy, and Power	v = tangential velocity, r = radial distance, T = period, ω = angular velocity			
Definition of Work $W = Fscos\theta$		$W = Fscos\theta$ $W = work done, F = force, s = displacement, \theta = angle between force and displacement$			
Defi	nition of Kinetic Energy	$E_K = \frac{1}{2} \text{mv}^2 = \frac{p^2}{2m}$			
Grav	vitational Potential Energy in a Uniform Field	E_K = kinetic energy, m = mass, v = speed, p = momentum $\Delta E_p = mg\Delta h$ $\Delta E_P = \text{change in gravitational potential energy, m = mass, g = gravitational field strength, } \Delta h = \text{change in height}$			
Defi	nition of Elastic Potential Energy	$E_H = \frac{1}{2}k\Delta x^2$ $E_H = \text{elastic potential energy, k} = \text{spring constant, } \Delta x = \text{compression or expansion of spring}$			
Pow	er	$P = \frac{\Delta W}{t} = Fv$			
Effic	iency	$P = power, \Delta W = work done, t = time, F = force, v = velocity$ $useful work out total work in = useful power out total work in = total power in$			
A.4	Rotational Mechanics	η = efficiency			
HL	Definition of Torque	$ au = Frsin \theta$ au = torque, F = force, r = radial distance to force, $ au = torque, F = torque, F$			
HL	Angular Acceleration Equations	$\Delta\theta = \frac{(\omega_l + \omega_f)}{2}t \qquad \omega_f = \omega_l + \alpha t \qquad \Delta\theta = \omega_l t + \frac{1}{2}\alpha t^2 \qquad \omega_f^2 = \omega_l^2 + 2\alpha\Delta\theta$ $\Delta\theta = \text{angular displacement}, \ \omega_l = \text{intial angular speed}, \ \omega_2 = \text{final angular speed}, \ \alpha = \text{angular acceleration}, \ t = \text{time}$			
HL	Moment of Inertia	$I = \Sigma mr^2$ I = moment of inertia, m = mass, r = radial distance			
HL	Newtons Second Law (Rotational)	$ au = I\alpha$ $ au = \text{net torque}, I = \text{moment of inertia}, \alpha = \text{angular acceleration}$			
HL	Definition of Angular Momentum	$L=I\omega$ $L=$ angular momentum, $I=$ moment of inertia, $\omega=$ angular velocity			
HL	Change in Angular Momentum	$\Delta L = \tau \Delta t$ $\Delta L = \Delta (I\omega)$ $\Delta L = \text{change in angular momentum}, \ \tau = \text{net torque}, \ t = \text{time}, \ I = \text{moment of inertia}, \ \omega = \text{angular speed}$			
HL	Rotational Kinetic Energy	$E_k = \frac{1}{2}I\omega^2 = \frac{L^2}{2I}$ $E_k = \text{rotational kinetic energy}, I = \text{moment of inertia}, \ \omega = \text{angular speed}, L = \text{angular momentum}$			

A.5 9	A.5 Special Relativity		
HL	Galilean Transformations	x' = x - vt $t' = t$ $u' = u - vx, u, t = position, speed, and time in first reference frame, x', u', t' = position, speed, and time in second reference frame, v = relative velocity of second reference frame to first reference frame$	
HL	Relativistic Transformations	$x' = \gamma(x - vt) = \gamma\left(t - \frac{vx}{c^2}\right)u' = \frac{u - v}{1 - \frac{uv}{c^2}}$ $x, u = \text{position and speed in first reference frame, } x', u' = \text{position and speed in second reference frame, } \gamma = \text{Lorentz factor,}$ $v = \text{relative velocity of second reference frame to first reference frame}$	
HL	Lorentz Factor	$\gamma = \frac{1}{\sqrt{\left(1 - \frac{v^2}{c^2}\right)}}$ $\gamma = \text{Lorentz factor, } v = \text{speed, } c = \text{speed of light}$	
HL	Spacetime interval	$(\Delta s)^2 = (c\Delta t)^2 - \Delta x^2$ Δs = spacetime interval, c = speed of light, Δt = time between events according to observer, Δx = distance between events acc. to observer	
HL	Time Dilation	$\Delta t = \gamma \Delta t_0$ Δt = relativistic time, γ = Lorentz factor, Δt_0 = proper time	
HL	Length Contraction	${\bf L} = \frac{{\bf L}_0}{\gamma}$ ${\bf L} = {\bf relativistic length}, \gamma = {\bf Lorentz factor}, \ L_0 = {\bf proper length}$	
HL	Space-time diagram angle	$\tan \theta = \frac{v}{c}$ θ = angle between axes of inertial frames of reference, v = relative speed of frames of reference, c = speed of light	

The	Thoma D. The Darticulate Nature of Matter			
Theme B: The Particulate Nature of Matter B.1 – Thermal Energy Transfers				
	Pensity $\rho = \frac{m}{V}$			
Dens	ity	$\rho = \frac{V}{V}$ $\rho = \text{density, m = mass, V = volume}$		
		$\overline{E}_k = \frac{3}{2}k_bT$		
Average Kinetic Energy of an Ideal Monatomic Gas				
		$ar{E}_k=$ average kinetic energy, $k_b=$ Boltzmann's constant, $T=$ temperature in Kelvin $Q=mc\Delta T\;;\;Q=mL$		
Spec	ific and Latent Heat	Q = heat, m = mass, c = specific heat capacity, L = specific latent heat		
Ther	mal Conduction	$\frac{\Delta Q}{\Delta t} = kA\frac{\Delta T}{\Delta x}$ $\frac{\Delta Q}{\Delta t} = \text{rate of heat transfer, k} = \text{conductivity constant, A} = \text{cross-sectional area, } \Delta T = \text{temperature difference, } \Delta x = \text{length of object}$		
Stefa	in-Boltzmann Law	$L = \sigma A T^4$ $L = luminosity/power, \sigma = Stefan-Boltzmann constant, A = surface area, T = temperature in Kelvin$		
Brigh	ntness as a Function of Distance	$b = \frac{L}{4\pi d^2}$ b = brightness/intensity, L = power of source, d = distance from source		
Wie	's Law	$\lambda_{max}T=2.9\times 10^{-3}$ mK $\lambda_{max}=$ peak wavelength of blackbody, T = temperature in Kelvin		
B.2	- Greenhouse Effect			
Defi	nition of Emissivity	$emissivity = \frac{power\ radiated\ per\ unit\ area}{\sigma T^{*}}$ $\sigma = \text{Stefan-Boltzmann\ constant,}\ T = \text{kelvin\ temperature}$		
Defi	nition of Albedo	$albedo = \frac{total\ scattered\ power}{total\ incident\ power}$		
В.3	– Ideal Gas Model			
Defi	nition of Pressure	$P = \frac{F}{A}$ $F = force, A = area$		
Amo	unt in Moles	$n = \frac{N}{N_A}$ n = amount in moles, N = number of particles, N _A = Avogadro's Constant		
Com	bined Gas Law	$\frac{PV}{T} = constant$ $P = pressure, V = volume, T = temperature$		
Idea	Gas Equation of State	$PV = nRT = Nk_BT$ pressure = P, V = volume, n = amount in moles, R = gas constant, T = temperature in Kelvin, N = number of particles, k_b = Boltzmann's constant		
Pres	sure of an Ideal Gas	$P = \frac{1}{3}\rho v^{2}$ $P = \text{pressure}, \rho = \text{density}, v = \text{average particle speed}$		
Inter	nal Energy of an Ideal Gas	$U = \frac{3}{2}nRT = \frac{3}{2}Nk_BT$ $U = \text{internal energy, n = number of moles, R = gas constant, T = temperature in Kelvin, N = number of particles, k_b = \text{Boltzmann's constant}$		
B.4	- Thermodynamics			
HL	First Law of Thermodynamics	$Q=\Delta U+W$ $Q=$ heat added, $\Delta U=$ change in internal energy, $W=$ work done by the gas		
HL	Work Done by a Gas	$W = P\Delta V$ $W = \text{work done by the gas, P} = \text{pressure, } \Delta V = \text{change in volume}$		
HL	Change in Internal Energy of an Ideal Gas	$\Delta U = \frac{3}{2} n R \Delta T = \frac{3}{2} N k_B \Delta T$ $\Delta U = \text{change in internal energy, n = moles, R = gas constant, } \Delta T = \text{change in temperature, N = number of particles, k}_b = \text{Boltzmann's constant}$		
HL	Entropy – Macroscopic Formula	$\Delta S = \frac{\Delta Q}{T}$ $\Delta S = \text{change in entropy, } \Delta Q = \text{heat transferred, T} = \text{temperature in Kelvin}$		
HL	Entropy – Microscopic Formula	$S = k_B \ln \Omega$ $S = \text{entropy}, k_b = \text{Boltzmann's constant}, \Omega = \text{number of microstates}$		
HL	Adiabatic Change of State Formula	$PV^{\frac{5}{3}} = constant$		
HL	Efficiency	$P = pressure, V = volume$ $\eta = \frac{useful\ work}{input\ energy}$		
HL	Carnot Efficiency	$\eta={ m efficiency}$ $\eta_{carnot}=1-\frac{T_c}{T_h}$ $=Correct { m efficiency} \ T={ m town earthy of field recovery} \ T={ m town earthy of$		
		η_{carnot} = Carnot efficiency, T_c = temperature of cold reservoir, T_c = temperature of hot reservoir		

D.F. Floatsis Cinneila			
B.5 – Electric Circuits	3.5 – Electric Circuits		
Definition of Electrical Current	$I = \frac{\Delta Q}{\Delta t}$		
	I = electrical current, q = charge, t = time		
Potential Difference (Voltage)	$V = \frac{W}{q}$		
	V = potential difference, W = work, q = charge		
Definition of Resistance	$R = \frac{V}{I}$		
	R = resistance, V = potential difference, I = current		
Resistivity	$\rho = \frac{Rl}{A}$ $\rho = \text{resistivity}, R = \text{resistance}, l = \text{length}, A = \text{cross-sectional area}$		
	· · · · · · · · · · · · · · · · · · ·		
Electrical Power	$P = VI = I^2 R = \frac{V^2}{R}$		
	P = power, V = potential difference, I = current, R = resistance		
	$I = I_1 = I_2 = \dots$ $V = V_1 + V_2 + \dots$ $R_s = R_1 + R_2 + \dots$		
Series Circuit Relationships	I = current in the circuit, V = total voltage across all elements, I_1 , I_2/V_1 , V_2 = current/voltage in circuit elements, R_s = equivalent resistance, R_1 , R_2 = resistances of circuit elements		
Parallel Circuit Relationships	$I = I_1 + I_2 + \dots$ $V = V_1 = V_2 + \dots$ $\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$		
	I = total current to parallel elements, V = voltage in each parallel branch, R _P = equivalent resistance, R ₁ , R ₂ = resistances of circuit elements		
	$\varepsilon = I(R+r)$		
Model of Internal Resistance	ε = emf, I = current, R = resistance of external circuit, r = internal resistance		

Th	Theme C: Wave Behaviour				
C.1	C.1 – Simple Harmonic Motion				
	$a = -\omega^2 x$				
Defi	ning Equation of SHM				
		$a = acceleration$, $\omega = angular$ frequency, $x = displacement$			
		$T = \frac{1}{f} = \frac{2\pi}{\omega}$			
Rela	tionship between Period and Frequency	$f = \omega$			
		T = period, f = frequency, ω = angular frequency			
		$T = 2\pi \sqrt{\frac{m}{k}}$			
Peri	od of a Mass-Spring System	$I = 2R\sqrt{k}$			
		T = period, m = mass, k = spring constant			
Peri	od of a Pendulum	$T = 2\pi \sqrt{\frac{l}{g}}$			
		T = period, $I = length$, $g = gravitational$ field strength			
		$x = x_0 \sin{(\omega t + \phi)}$			
HL	Displacement as a Function of Time				
		$x = displacement$, $x_0 = max displacement$, $\omega = angular frequency$, $t = time$, $\phi = phase angle$			
HL	Velocity as a Function of Time	$v = \omega x_0 \cos(\omega t + \phi)$			
	,	$v = velocity$, $\omega = angular$ frequency, $x_0 = max$ displacement, $t = time$, $\phi = phase$ angle			
		$v = \pm \omega \sqrt{(x_0^2 - x^2)}$			
HL	Velocity as a Function of Position	- 1. · · ·			
		$v = velocity$, $\omega = angular$ frequency, $x_0 = max$ displacement, $x = displacement$			
		$E_T=rac{1}{2}m\omega^2x_0^2$			
HL	Total Energy in SHM				
		E_T = total energy, m = mass, ω = angular frequency, x_0 = max displacement			
		$E_p=rac{1}{2}m\omega^2x^2$			
HL	Potential Energy as a Function of Position				
		Ep = potential energy, m = mass, ω = angular frequency, x = displacement			
C.2	- Travelling Waves				
	$v = f\lambda = \frac{\lambda}{T}$				
Wa	ve Equation				
	$v = wave speed, f = frequency, \lambda = wavelength, T = period of oscillation$				
C.3	- Refraction, Diffraction, Superposition and Interfe	rence			
		$\left rac{n_1}{n_2} = rac{\sin heta_2}{\sin heta_1} = rac{v_2}{v_1} ight.$			
Sne	l's Law				
		$n = index \text{ of refraction}, \theta = angle \text{ between normal and the ray, } v = speed \text{ of wave}$			
Con	structive Interference Condition	$path \ difference = n\lambda$			
		$n = integer number$, $\lambda = wavelength$			
		$path \ difference = (n + \frac{1}{2})\lambda$			
Des	tructive Interference Condition				
		$n = integer number$, $\lambda = wavelength$			
		$S = \frac{\lambda D}{d}$			
Two	Source Interference				
		$s = fringe spacing, \lambda = wavelength, D = distance between sources and screen, d = distance between sources$			
	Angle between Peak and Primary Minimum in Single-Slit	$\theta = \frac{\lambda}{b}$			
HL	Diffraction				
		θ = angle, λ = wavelength, b = slit width			
HL	Multi-Slit Interference	$n\lambda = dsin heta$			
		n = order, d = slit spacing, λ = wavelength, θ = angle			
		$n = \text{order}$, $\alpha = \text{sint spacing}$, $\lambda = \text{wavelength}$, $\theta = \text{angle}$			
	– Doppler Effect	$n=0$ ruer, $u=\sin s$ pating, $x=w$ aveiengui, $\sigma=a$ ngie			
	– Doppler Effect				
C.5	Doppler Effect opler Effect for Electromagnetic Waves	$\frac{\Delta f}{f} = \frac{\Delta \lambda}{\lambda} \approx \frac{v}{c}$			
C.5					
C.5		$\frac{\Delta f}{f} = \frac{\Delta \lambda}{\lambda} \approx \frac{v}{c}$ $f = \text{frequency, } \Delta f = \text{frequency shift, } \lambda = \text{wavelength, } \Delta \lambda = \text{wavelength shift, } v = \text{relative speed, } c = \text{speed of light}$			
C.5		$\frac{\Delta f}{f} = \frac{\Delta \lambda}{\lambda} \approx \frac{v}{c}$			
C.5		$\frac{\Delta f}{f} = \frac{\Delta \lambda}{\lambda} \approx \frac{v}{c}$ $f = \text{frequency, } \Delta f = \text{frequency shift, } \lambda = \text{wavelength, } \Delta \lambda = \text{wavelength shift, } v = \text{relative speed, } c = \text{speed of light}$ $Moving\ source: f' = f\left(\frac{v}{v \pm u_s}\right)$			
C.5	opler Effect for Electromagnetic Waves	$\frac{\Delta f}{f} = \frac{\Delta \lambda}{\lambda} \approx \frac{v}{c}$ $f = \text{frequency, } \Delta f = \text{frequency shift, } \lambda = \text{wavelength, } \Delta \lambda = \text{wavelength shift, } v = \text{relative speed, } c = \text{speed of light}$			
C.5	opler Effect for Electromagnetic Waves	$\frac{\Delta f}{f} = \frac{\Delta \lambda}{\lambda} \approx \frac{v}{c}$ $f = \text{frequency, } \Delta f = \text{frequency shift, } \lambda = \text{wavelength, } \Delta \lambda = \text{wavelength shift, } v = \text{relative speed, } c = \text{speed of light}$ $Moving\ source: f' = f\left(\frac{v}{v \pm u_s}\right)$			

The	Theme D: Fields				
	D.1 Gravitational Fields				
$F=rac{Gm_1m_2}{r^2}$					
New	ton's Law of Gravitation				
		$F=$ gravitational force, $G=$ gravitational constant, $m_1,m_2=$ mass, $r=$ distance			
Grav	itational Field Strength	$g = \frac{F}{m} = G \frac{M}{r^2}$			
	•	g = gravitational field strength, F = gravitational force, m = mass of object in field, M = mass of object creating field			
		$E_p = -\frac{Gm_1m_2}{r}$			
HL	Potential Energy of a Two-Mass System	r			
		E_p = gravitational potential energy, G = gravitational constant, M = mass, r = distance			
HL	Gravitational Potential	$V_g = -\frac{GM}{r}$			
	Gravitational Fotontial	V_0 = gravitational potential, G = gravitational constant, M = mass, r = distance			
		$g=-rac{\Delta V_g}{\Delta r}$			
HL	Relationship between Field and Potential	Δr			
		g = gravitational field strength, $\frac{\Delta v_g}{\Delta r}$ = rate of change of potential			
		$W = m\Delta V_g$			
HL	Work Done on a Mass Moving Across a Change in Potential	W = work done, m = mass, ΔV_g = change in gravitational potential			
HL	Escape Velocity	$v_{esc} = \sqrt{\frac{2GM}{r}}$			
		v_{esc} = escape speed, G = gravitational constant, M = central mass, r = distance from centre of central mass			
HL	Orbital Speed	$v_{orbital} = \sqrt{\frac{GM}{r}}$			
		$\sqrt{}$ v _{orbital} = orbital speed, G = gravitational constant, M = central mass, r = distance from centre of central mass			
D.2	2 – Electromagnetic Fields				
		$F = rac{kq_1q_2}{r^2}$, $k = rac{1}{4\piarepsilon_0}$			
Coul	omb's Law				
		$F=$ force, $k=$ Coulomb's constant, $q_1,q_2=$ charge, $r=$ distance, $\varepsilon_0=$ free space permittivity			
Defi	nition of Electric Field Strength	$E = \frac{F}{q}$			
		E = electric field strength, F = electric force, q = charge			
		$E = \frac{V}{d}$			
Field	Between Parallel Plates	a			
		E = electric field strength, V = voltage across plates, d = plate separation			
HL	Potential Energy of a Two-Charge System	$E_p = \frac{kQq}{r}$			
	3	E_p = potential energy, k = Coulomb's constant, q_1, q_2 = charge, r = distance			
		$V_e = -\frac{kQ}{r}$			
HL	Electric Potential				
		V_e = electric potential, k = Coulomb's constant, Q = charge, r = distance			
יט	Relationship between Field and Potential	$E = -rac{\Delta V_e}{\Delta r}$			
пL	relationship between rield and Potential	$E=$ electric field strength, $\frac{\Delta V_e}{\Delta r}=$ rate of change of electric potential			
		$W = q\Delta V_e$			
HL	Relationship between Potential Energy and Potential				
D.3	– Motion in Electromagnetic Fields	W = work done, q = charge, ΔV_e = change in electric potential			
		$F = qvBsin\theta$			
Mag	netic Force on a Moving Charge				
		$F = magnetic force, q = charge, v = velocity, B = magnetic field strength, \theta = angle between field and velocity F = BILsin\theta$			
Mag	netic Force on a Current-carrying wire				
		F = magnetic force, I = current, L = length, θ = angle between field and current $F = \mu_0 I_1 I_2$			
Fore	e Between Parallel Wires	$\frac{F}{L} = \frac{\mu_0 l_1 l_2}{r}$			
FUIC	C DELWEEN F BI BILLEY WILES	$rac{F}{I}=$ force per unit length, $\mu_0=$ free space permeability, $I_1,I_2=$ current, $r=$ separation distance			
D.4	l – Electromagnetic Induction	L to co γe. university, μη — nee space permeability, μ, μ — current, μ — separation distallite			
	-	$\Phi = BAcos\theta$			
HL	Definition of Magnetic Flux	Φ = magnetic flux, B = magnetic flux density, A = area, θ = angle between normal to area and field			
		$\varepsilon = -\frac{N\Delta\Phi}{\Delta t}$			
HL	Faraday's and Lenz's Laws	Δt			
		$arepsilon=$ induced emf, N = turns, $\Delta\Phi$ =change in magnetic flux, $\Delta t=$ change in time			
HL	Motional EMF	$\varepsilon = BvL$ $c = induced motional and R = magnetic flux density v = velocity L = length$			
		ε = induced motional emf, B = magnetic flux density, v = velocity, L = length			

Theme E: Nuclear and Quantum Physics		
E.1 – Atomic Structure		
Enei	gy of an Electromagnetic Wave	E = hf E = energy, h = Planck's constant, f = frequency
HL	Nuclear Radius Approximation	$R=R_0A^{rac{1}{3}}$ $R= ext{nuclear radius, } R_0= ext{Fermi radius, } A= ext{nucleon number}$
HL	Energy Levels of the Bohr Model of the Hydrogen Atom	$E = -\frac{13.6}{n^2} eV$ $E = \text{energy}, n = \text{energy level}$
HL	Quantized Angular Momentum of the Bohr Model of the Hydrogen Atom	$mvr = \frac{nh}{2\pi}$ $m = \text{electron mass}, v = \text{speed}, r = \text{orbital radius}, n = \text{energy level}, h = \text{Planck's constant}$
E.2	– Quantum Physics	
HL	Maximum Kinetic Energy of a Photoelectron	$E_{max}=hf-\Phi$ $E_{max}={ m maximum\ kinetic\ energy,\ h=Planck's\ constant,\ f=photon\ frequency,\ \Phi={ m work\ function}}$
HL	De Broglie Wavelength	$\lambda = \frac{h}{p}$ $\lambda = \text{wavelength, h} = \text{Planck's constant, p} = \text{momentum}$
HL	Compton Effect	$\lambda_f - \lambda_i = \Delta \lambda = \frac{h}{m_e c} (1 - \cos \theta)$ $\lambda_f = \text{final wavelength, } \lambda_i = \text{initial wavelength, } h = \text{Planck's constant, } m_e = \text{electron mass, } c = \text{speed of light, } \theta = \text{scattering angle}$
E.3	– Radioactive Decay	
Mas	s-Energy Equivalence	$\Delta E = \Delta mc^2$ $\Delta E = \text{energy,} \Delta m = \text{mass}$
HL	Radioactive Decay	$N=N_0e^{-\lambda \tau}$ $N=$ parent nuclide count at time t, $N_0=$ nuclide count at t = 0, $\lambda=$ decay constant, t = time
HL	Activity	$A = \lambda N = \lambda N_0 e^{-\lambda \tau}$ $A = \text{activity}, \ \lambda = \text{decay constant}, \ N = \text{parent nuclei count}, \ N_0 = \text{parent nuclei count at } t = 0, t = \text{time}$
HL	Half-Life	$T_{rac{1}{2}}=rac{ln2}{\lambda}$ $T_{rac{1}{2}}={ m halflife},\lambda={ m decayconstant}$
E.5 – Stellar Properties & Processes		
Pars	ec Definition	$d(parsec) = \frac{1}{p(arc - second)}$ $d = distance in parsecs, p = parallax angle in arcseconds$

