LCD Interfacing (16X2)

Pin Descriptions for LCD

Pin	Symbol	I/O	Descriptions	
1	VSS		Ground	
2	VCC		+5V power supply	
3	VEE		Power supply to contr	ol contrast
4	RS	I	RS=0 to select comma RS=1 to select data re	
5	R/W	I	R/W=0 for write, R/W=1 for read	used by the
6	Е	I/O	Enable	LCD to latch
7	DB0	I/O	The 8-bit data bus	information
8	DB1	I/O	The 8-bit data bus	presented to
9	DB2	I/O	The 8-bit data bus	its data bus
10	DB3	I/O	The 8-bit data bus	
11	DB4	I/O	The 8-bit data bus	
12	DB5	I/O	The 8-bit data bus	
13	DB6	I/O	The 8-bit data bus	
14	DB7	I/O	The 8-bit data bus	

- Send displayed information or instruction command codes to the LCD
- Read the contents of the LCD's internal registers

LCD Command Codes

Code (Hex)	Command to LCD Instruction Register
1	Clear display screen
2	Return home
4	Decrement cursor (shift cursor to left)
6	Increment cursor (shift cursor to right)
5	Shift display right
7	Shift display left
8	Display off, cursor off
Α	Display off, cursor on
С	Display on, cursor off
E	Display on, cursor blinking
F	Display on, cursor blinking
10	Shift cursor position to left
14	Shift cursor position to right
18	Shift the entire display to the left
1C	Shift the entire display to the right
80	Force cursor to beginning to 1st line
C0	Force cursor to beginning to 2nd line
38	2 lines and 5x7 matrix

Addresses of 16x2 LCD

80	81	82	83	84	85	86	87	88	89	8A	8B	8C	8D	8E	8F
CO	C1	C2	C3	C4	C5	C6	C7	C8	C9	CA	СВ	СС	CD	CE	CF

LCD INTERFACING TO 8051

To send any of the commands to the LCD, make pin RS=0. For data, make RS=1. Then send a high-to-low pulse to the E pin to enable the internal latch of the LCD.

```
MOV A, #'N'
                                                                           ;display letter N
; calls a time delay before sending next data/command
                                                                           ; call display subroutine
                                                            ACALL DATAWRT
;P1.0-P1.7 are connected to LCD data pins D0-D7
                                                            ACALL DELAY
                                                                           ; give LCD some time
;P2.0 is connected to RS pin of LCD
                                                                  A,#'O'
                                                                          ;display letter O
                                                            MOV
                                                            ACALL DATAWRT ; call display subroutine
;P2.1 is connected to R/W pin of LCD
                                                            SJMP AGAIN
                                                                           ;stay here
                                                     AGAIN:
;P2.2 is connected to E pin of LCD
                                                     COMNWRT:
                                                                           ; send command to LCD
             0 H
       ORG
                                                            MOV P1,A
                                                                           ; copy reg A to port 1
                                                                  P2.0
                                                                           :RS=0 for command
            A,#38H ; INIT. LCD 2 LINES, 5X7 MATRIX
                                                            CLR
                                                                  P2.1 ; R/W=0 for write
                                                            CLR
       ACALL COMNWRT ; call command subroutine
                                                            SETB P2.2
                                                                           ;E=1 for high pulse
       ACALL DELAY ; give LCD some time
                                                            ACALL DELAY
                                                                           ; give LCD some time
           A, #0EH ; display on, cursor on
                                                                  P2.2
                                                                           ;E=0 for H-to-L pulse
                                                            CLR
                                                            RET
       ACALL COMNWRT ; call command subroutine
                                                                           ;write data to LCD
                                                     DATAWRT:
       ACALL DELAY ; give LCD some time
                                                                  P1,A
                                                                           ; copy reg A to port 1
                                                            MOV
       MOV A, #01 ; clear LCD
                                                            SETB P2.0
                                                                           ;RS=1 for data
       ACALL COMNWRT ; call command subroutine
                                                                  P2.1
                                                                           ;R/W=0 for write
                                                            CLR
                                                            SETB P2.2
                                                                           ;E=1 for high pulse
       ACALL DELAY ; give LCD some time
                                                            ACALL DELAY
                                                                           ; give LCD some time
       MOV A, #06H ; shift cursor right
                                                                           ;E=0 for H-to-L pulse
                                                            CLR
                                                                  P2.2
       ACALL COMNWRT ; call command subroutine
                                                            RET
                                                    DELAY:
                                                                  R3,#50
                                                                           ;50 or higher for fast CPUs
                                                            MOV
       ACALL DELAY ; give LCD some time
                                                    HERE2:
                                                            MOV R4, \#255; R4 = 255
       MOV A, #84H ; cursor at line 1, pos. 4
                                                     HERE:
                                                            DJNZ R4, HERE ; stay until R4 becomes 0
       ACALL COMNWRT ; call command subroutine
                                                            DJNZ R3, HERE2
       ACALL DELAY ; give LCD some time
                                                            RET
                                                            END
```


STEPPER MOTOR INTERFACING

- > A Stepper motor is a widely used device that translates electrical pulses into mechanical movement.
- ➤ In applications such as disk drives, dot matrix printers & robotics, the stepper motor is used for position control
- > Stepper motors commonly have a permanent magnet 'rotor' (also called shaft) surrounded by a 'stator'.

Stator Windings Configuration

Driving Stepper motor

Normal 4 Step Sequence

CLOCKWISE	STEP	WINDING A	WINDING B	WINDING C	WINDING D	COUNTER CLOCKWISE
	1	1	1	0	0	
	2	0	1	1	0	
	3	0	0	1	1	
—	4	1	0	0	1	

Wave Drive 4 step sequence

CLOCKWISE	STEP	WINDING A	WINDING B	WINDING C	WINDING D	COUNTER CLOCKWISE
	1	1	0	0	0	
	2	0	1	0	0	
	3	0	0	1	0	
1	4	0	0	0	1	

Driving Stepper motor

Half step 8-step sequence Step Sequence

CLOCKWISE	STEP	WINDING A	WINDING B	WINDING C	WINDING D	COUNTER CLOCKWISE
	1	1	0	0	0	1
	2	1	1	0	0	
	3	0	1	0	0	
	4	0	1	1	0	
	5	0	0	1	0	
	6	0	0	1	1	
	7	0	0	0	1	
•	8	1	0	0	1	

Stepper Motor Program

Assuming two stepper motors are interfaced to 8051 with ULN2803 drivers.

Program for normal 4-step sequence (clock wise)

ORG 0H

BACK: MOV A,#0CCH

MOV P1,A

ACALL DELAY

DELAY:

RET

MOV A,#66H MOV R0,#0FFH

MOV P1,A LOOP2: MOV R1,#80H

ACALL DELAY LOOP1: DJNZ R1,LOOP1

MOV A,#33H DJNZ R0,LOOP2

MOV P1,A

ACALL DELAY

MOV A,#99H

MOV P1,A

ACALL DELAY

SJMP BACK

END

Stepper Motor Program

Assuming two stepper motors are interfaced to 8051 with ULN2803 drivers.

Program for wave drive 4-step sequence (clock wise)

ORG 0H

BACK: MOV A,#88H

MOV P1,A

ACALL DELAY

MOV A,#44H

MOV P1,A

ACALL DELAY

MOV A,#22H

MOV P1,A

ACALL DELAY MOV A,#11H

MOV P1,A

ACALL DELAY

SJMP BACK

END

DELAY:

MOV R0,#0FFH

LOOP2: MOV R1,#80H

LOOP1: DJNZ R1,LOOP1

DJNZ R0,LOOP2

RET

Stepper Motor Program

Assuming two stepper motors are interfaced to 8051 with ULN2803 drivers.

Program for half step 8-step sequence (clock wise)

ORG 0H

BACK: MOV A,#88H MOV A,#22H

MOV A,#44H

ACALL DELAY

MOV P1,A MOV P1,A

ACALL DELAY DELAY:

MOV A,#0CCH MOV A,#33H MOV R0,#0FFH

MOV P1,A MOV P1,A LOOP2: MOV R1,#80H

ACALL DELAY LOOP1: DJNZ R1,LOOP1

DJNZ R0,LOOP2

MOV A,#11H

ACALL DELAY

MOV P1,A MOV P1,A RET

MOV A,#66H MOV A,#99H

MOV P1,A MOV P1,A

ACALL DELAY ACALL DELAY

SJMP BACK

END