Course Code: 19BM1T01

PRAGATI ENGINEERING COLLEGE: SURAMPALEM (AUTONOMOUS)

I B.Tech I Semester Supplementary Examinations, July - 2024

LINEAR ALGEBRA AND DIFFERENTIAL EQUATIONS

(Common to all branches)

Time: 3 hours Max. Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks

		Questions	BTL	CO	Marks
		UNIT – I			
1.	a)	Determine the rank of the matrix $A = \begin{bmatrix} 3 & 0 & 2 & 2 \\ -1 & 7 & 4 & 9 \\ 7 & -7 & 0 & -5 \end{bmatrix}$ by reducing into Echelon form.	K2	CO1	7M
	b)	Test for consistency of the following system of equations and if so solve them $x + 2y + 2z = 2, 3x - y + 3z = -4, x + 4y + 6z = 0$	К3	CO1	7M
		OR			
2.		Obtain Eigen values and their corresponding Eigen vectors of the matrix $A = \begin{bmatrix} 5 & -2 & 0 \\ -2 & 6 & 2 \\ 0 & 2 & 7 \end{bmatrix}$	K3	CO1	14M
		UNIT – II			
3.		Verify Cayley - Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$.	К3	CO2	14M
		Make use of it find the inverse of A and A ⁴			
		OR		•	
4.		Reduce the quadratic form $3x^2 + 5y^2 + 3z^2 - 2yz + 2zx - 2xy$ in to the canonical form by orthogonal linear transformation. And hence find rank, index and signature and also write the nature of the quadratic form.	К3	CO2	14M
		UNIT – III			
5.	a)	Solve $(y^4 + 2y)dx + (4xy^3 + 2y^4 + 2x)dy = 0$.	K2	CO3	7M
	b)	The number of bacteria in a culture was initially 100 and increased to 332 in one hour. Find the number of bacteria in a culture after 1.5 hours.	К3	CO3	7M
		OR			

6.	a)	Solve $(y.logy)dx + (x-logy)dy = 0$.	K2	CO3	7M
	b)	The air is maintained at 30°C and the temperature of the body cools			
		from 80°C to 60°C in 12 minutes, find the temperature of the body	K3	CO3	7M
		after 24 minutes.			
		UNIT – IV			
7.	a)	Solve $(D^2 - 5D + 4)y = 2e^{3x} + 5Sin 2x$.	К3	CO4	7M
	b)	Solve $(D^2 - 3D + 2)y = e^x \cos 2x$.	К3	CO4	7M
		OR			
8.		Utilize method of variation of parameters to solve $(D^2 + 9)y = \tan 3x$.	К3	CO4	14M
		UNIT – V			
9.	a)	Evaluate $\frac{\partial w}{\partial u}$ and $\frac{\partial w}{\partial v}$ if $w = xy + yz + zx$, $x = u + v$, $y = u - v$, $z = uv$	K2	CO5	7M
	b)	Find the minimum value of $x^2 + y^2 + z^2$, given that $ax + by + cz = p$.	K3	CO5	7M
		OR			
10.	a)	If $u=3x+2y-z$, $v=x-2y+z$ and $w=x(x+2y-z)$ then find the	K2	CO5	7M
		Jacobian.			
	b)	Examine extremes of the function $f(x, y) = xy + \frac{a^3}{x} + \frac{a^3}{y}$	K3	CO5	7M