				-	gramman and Astron	-	-	State Street Street				100000000000000000000000000000000000000	C 100	1		
Reg. No.	2	A	2	0	1	1	0	0	4	0	T	0	0	5	1	

B.Tech. DEGREE EXAMINATION, MAY 2023 OPEN BOOK EXAMINATION

Sixth Semester

18ECC206J - VLSI DESIGN

(For the candidates admitted from the academic year 2018-2019 to 2021-2022)

· Specific approved THREE text books (Printed or photocopy) recommended for the course

· Handwritten class notes (certified by the faculty handling the course / head of the department)

Time: 3 Hours Max. Marks: 100 Answer FIVE questions (Question No 1 is compulsory) 1.a.i. Design a Moore FSM model to detect the binary sequence "1011" in the 2 input string. Write a Verilog HDL behavioral modeling and test bench to verify it. ii. Implement the Boolean function. $F_1 = \sum m(1,2,4,7)$; $F_2 = \sum m(3,5,6,7)$ using suitable multiplexer. Multiplexer must be implemented in CMOS transmission gate logic in Verilog switch level model. Boolean function implementation in gate-level modeling. b. The statement that supports UDP is 1 (A) UDP can be defined inside (B) UDP can be instantiated inside modules modules (C) UDP supports in out ports (D) UDP can take both scalar and vector parts c. For the code segment given below always @(posedge clk) a=b; always @ (posedge clk) b=a; (A) Values of a and b are swapped (B) Values of a and b can be swapped depending on simulator (C) Values of a and b cannot be (D) Cannot determine swapped 2.a.i. Implement a 4-bit adder/subtractor architecture in a Verilog gate-level modeling. Write a related test bench program to check the functionality of the circuit. ii. Define user defined primitive (UDP) in Verilog modeling. Justify the role of UDP modeling in Verilog by design a positive edge-sensitive sequential UDP for a D-flip flop.

b.	For the code segment choose the right reg a; case x(a) 1'b0: statement1;			1	2		
	1'b1: statement2;						
	1'bx: statement3;						
	1'bz: statement4;						
	(A) Statement 1 is executed	(B)	Procedural continuous assignment				
	(C) Blocking assignment	(D)	Non-blocking assignment				
c.	If $A = 1^{\circ}b1$, $B = 2^{\circ}b11$, $C = 3^{\circ}b010$ then $Y = 2^{\circ}b11$	1	1	1	2		
			4'60110				
	(C) 3'b111	(D)	1'60				
3.a.i.	For a PMOS capacitor of area 100 $\mu m \times 100 \mu m$ operated at T=300 K,						2
	with $\phi_m = 5.2 eV$, $x_0 = 3nm$ and $N_D = 10$	1 cn	n ⁻³ . Determine				
	(i) Threshold voltage (V_T)						
	(ii) Maximum small-signal capa						
	(iii) Minimum small-signal capac(iv) Number of donor atom to						
	(iv) Number of donor atom to from $-0.327V$ to $-0.3V$.	00	added to sinte // more negative				
	110111 -0.327V to -0.3V.						
ii.	Determine the drain current expression major region of operation. Also derive of a MOS device.	n in e th	a MOS transistor, considering its e derivation of threshold voltage	9	2	2	3
ь	The low voltage on the gate of P-MOS	SFE	Γ forms	1	1	2	3
0.	(A) Channel of negative carriers	(B)	Channel is not formed				
			Channel of positive carriers				
			- FFDM astertial of the dened	1	1	2	3
c.	Consider a MOS structure with equilibrium FERMI potential of the doped silicon substrate is 0.3 eV. Electron affinity of Si is 4.15 eV and metal is						
	4.1eV. Find the built-in potential of th						
	(A) -0.8 eV	(B)	0.8 eV				
		(D)	−0.9 eV				
				9	2	3	1
4.a.i.	Define scaling in MOS transistor	and	d its significant type with an	,			
	illustration. Also demonstrate that						
	voltage scaling results in a reduction of	of the	e intrinsic delay with a factor 5,				
	while increasing the power dissipation						
::	Explain with necessary derivation the	9	2	4	3		
11.	inverter in detail.						
			agual to	1	1	4	2
b.	If $\beta_n = \beta_p$ in a CMOS inverter, then V						
	() uu	1	V_{ss}				
	(C) $0.5V_{dd}$	(D)	$2V_{dd}$				

- c. The number of transistor for implementing a 2-input XOR CMOS logic is 1 1 4 2
 - (A) 5

(B) 10

(C) 8

- (D) 9
- 5.a.i. Implement the Boolean function $F = \overline{AB + CD + E(F + G)}$ in a static CMOS logic, dynamic and domino CMOS logic. Do performance analysis on each style of implementation and suggest the efficient implementation.
 - ii. For the circuit shown below, assume that the pull-down device consists of 6 pass transistor in series with a device size of $0.5 \mu m/0.25 \mu m$ (replacing transistor M_n). Determine the maximum W/L size for the level restorer transistor for correct functionality.

b. _____is the function implemented by the circuit below.

(A) $A + BC + B\overline{C}$

(B) $\overline{A} + BC + \overline{B}C$

(C) $\bar{A} + BC + \bar{B}\bar{C}$

- (D) $A + B\bar{C} + B\bar{C}$
- c. In a body effect, substrate is biased with respect to
 - (A) Drain

(B) Source

(C) Gate

- (D) V_{SS}
- 6.a.i. Explain the dynamic and static power consumption in a typical CMOS 9 logic design. Also illustrate with an example and mathematical derivation how transistor sizing supports energy minimization.
 - ii. Design a two input XOR, XNOR and NAND logic in pass transistor logic 9 3 5 (PTL), complementary PTC and differential cascaded voltage switch logic (DCVSL). Perform analysis in terms of transistor count and voltage transfer characteristics for each logic.
 - b. How many transistor might bring up latch up effect in P-well structure?
 - (A) Two

(B) Three

(C) One

(D) Four

c.	Velocity of charged particle in a MOS	trai	nsistor is	1	1	3	1
			μ/E_{ds}				
	(C) $\mu * E_{ds}$	(D)	E_{ds} / μ				
7.a.i.	Discuss in detail the design strate	gies	to reduce RC delays in the	9	2	6	3
	interconnect used for CMOS logic de architecture to reduce propagation dela						
ii.	Explain with a neat sketch the fab	rica	tion techniques in a silicon on	9	2	6	2
	insulator to avoid latch-up effect in a (CMC	OS fabrication.				
b.	The photoresist layer is exposed to		Law of the State o		1	6	2
		(R)	Ultraviolet light	State.			-
	(C) I-C 11: 1:		LED				
c.	The commonly used bulk substrate in a		100 GL :			5	
			1	3	2		
	(C) Dhamb		Silicon-on-sapphire				
	(C) Thospholous	(D)	Silicon-di-oxide				
