Import Libraries ¶

In [17]:

```
import pandas as pd
import matplotlib.pyplot as pit
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
```

Loading Dataset

In [5]:

```
data = pd.read_csv(r"C:\Users\hp\Desktop\PROJECT\diabetes.csv")
data
```

Out[5]:

768 rows × 9 columns

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFun
0	6	148	72	35	0	33.6	
1	1	85	66	29	0	26.6	
2	8	183	64	0	0	23.3	
3	1	89	66	23	94	28.1	
4	0	137	40	35	168	43.1	
763	10	101	76	48	180	32.9	
764	2	122	70	27	0	36.8	
765	5	121	72	23	112	26.2	
766	1	126	60	0	0	30.1	
767	1	93	70	31	0	30.4	

Checking for Missing Values

In [6]:

1 sns.heatmap(data.isnull())

Out[6]:

<AxesSubplot:>

Correlation Matrix

In [7]:

```
correlation = data.corr()
print(correlation)
```

	Pregnanci	es Glud	ose	BloodPressure	SkinThick	ίn	
ess \							
Pregnancies	1.0000	00 0.129	9459	0.141282	-0.08	31	
672							
Glucose	0.1294	59 1.000	9000	0.152590	0.05	57	
328							
BloodPressure	0.1412	82 0.152	2590	1.000000	0.20) 7	
371							
SkinThickness	-0.0816	72 0.057	7328	0.207371	1.00	90	
000						-	
Insulin	-0.0735	35 0.331	L357	0.088933	0.43	36	
783						0.450	
BMI	0.0176	83 0.221	071	0.281805	0.392		
573	0.0270	03 01223	.0, _	0.202003	0.552		
DiabetesPedigreeFunction	-0.0335	23 0.137	7337	0.041265	0.18	₹3	
928	0.0555	25 0.15/	557	0.041203	0.10	,,	
	0.5443	41 0.263)E1/	0.239528	-0.11	כו	
Age 970	0.3443	41 0.203))14	0.239320	-6.11	.5	
	0 2210	00 0 466	04	0.065060	0.0=	7.4	
Outcome	0.2218	98 0.466	281	0.065068	0.07	4	
752							
	- 1.						
_	Insulin	BM]		abetesPedigreeF.		`	
Pregnancies	-0.073535	0.017683			.033523		
Glucose	0.331357	0.221071			.137337		
BloodPressure	0.088933	0.281805			.041265		
SkinThickness	0.436783	0.392573	3	0	0.183928		
Insulin	1.000000	0.197859)	0	0.185071		
BMI	0.197859	1.000000)	0	.140647		
DiabetesPedigreeFunction	0.185071	0.140647	7	1	.000000		
Age	-0.042163	0.036242	<u> </u>	0	.033561		
Outcome	0.130548	0.292695	5	0	.173844		
	Age	Outcome	و				
Pregnancies	0.544341	0.221898					
Glucose	0.263514						
BloodPressure	0.239528	0.065068					
SkinThickness	-0.113970	0.074752					
Insulin	-0.042163						
		0.130548					
BMI Dishets Dedicus Function	0.036242	0.292695					
DiabetesPedigreeFunction	0.033561	0.173844					
Age	1.000000	0.238356					
Outcome	0.238356	1.000000)				

In [8]:

1 sns.heatmap(correlation)

Out[8]:

<AxesSubplot:>

Train Test Split

In [12]:

```
1  X = data.drop("Outcome",axis=1)
2  Y = data["Outcome"]
3
4  X_train , X_test , Y_train , Y_test = train_test_split(X,Y,test_size = 0.2)
5  X_train
```

Out[12]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFun
430	2	99	0	0	0	22.2	
543	4	84	90	23	56	39.5	
477	7	114	76	17	110	23.8	
335	0	165	76	43	255	47.9	
127	1	118	58	36	94	33.3	
261	3	141	0	0	0	30.0	
723	5	117	86	30	105	39.1	
275	2	100	70	52	57	40.5	
457	5	86	68	28	71	30.2	
265	5	96	74	18	67	33.6	

614 rows × 8 columns

Training the model

```
In [18]:
    model = LogisticRegression()
 2
    model.fit(X_train,Y_train)
 3
C:\Users\hp\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:
814: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown i
n:
    https://scikit-learn.org/stable/modules/preprocessing.html (https://sc
ikit-learn.org/stable/modules/preprocessing.html)
Please also refer to the documentation for alternative solver options:
   https://scikit-learn.org/stable/modules/linear model.html#logistic-reg
ression (https://scikit-learn.org/stable/modules/linear model.html#logisti
c-regression)
  n_iter_i = _check_optimize_result(
Out[18]:
```

LogisticRegression()

Making prediction

```
In [19]:
1 predictions = model.predict(X_test)
In [20]:
1 print(predictions)
000010]
Evaluation
In [23]:
1 accuracy = accuracy_score(predictions, Y_test)
 print(accuracy)
0.7792207792207793
In [ ]:
1
In [ ]:
```

1