Algorithm	Example			
Base b Expansion:	b = 8, n = 250			
<pre>int[] baseExpansion(int b,int n) {</pre>	5 0,11 200			
int[]arr = new int[];	250 = 31.8 + 2			
inti = 0;	$(n=31, a_0=2)$			
while $(n > 0)$ {				
arr[i]=n Mod b;	31 = 3.8 + 7			
$n = \lfloor n/b \rfloor;$	$(n=3, a_1=7)$			
i + +;	3 = 0.8 + 3			
}	$(n=0, a_2=3)$			
}				
Find $b^n \text{ Mod } m$	Find 3 ¹⁰¹ Mod 100			
(1) Compute $n = (a_k a_1 a_0)_2$	$(1) 101 = (1100101)_2$			
(2) Compute $r_k = b^k \text{ Mod } m$	$= 2^6 + 2^5 + 2^2 + 2^0$			
(3)	= 64 + 32 + 4 + 1 $\therefore 3^{101} = 3^{64}3^{32}3^{4}3^{1}$			
$b^n \operatorname{Mod} m =$				
$r_0^{a_0}r_1^{a_1}\dots r_k^{a_k} \operatorname{Mod} m$	(2) All congruence modulo 100 3 ² ≡ 9			
r_0 r_1 r_k Mod m	$3^{2} \equiv 9$ $3^{4} \equiv 9^{2} \equiv 81$			
	$3^8 \equiv 81^2 \equiv 61$			
	$3^{16} \equiv 61^2 \equiv 21$			
	$3^{32} \equiv 21^2 \equiv 41$			
	$3^{64} \equiv 41^2 \equiv 81$			
	(3) $3^{101} \equiv 3^{64}3^{32}3^43^1$			
	≡ 81.41.81.3			
	≡3 (mod 100)			
Euclidean Algorithm	gcd(414,1076)			
int gcd(int a, int b) {				
Int temp ;	1076 Mod 414 = 248			
$while(b! = 0) \{$	414 Mod 248 = 166			
temp = b;	248 Mod 166= 82			
b = a % b;	166 Mod 82=2			
a = temp;	82 Mod 2 = 0			
}	By extension, if $d = gcd(a,b) \Rightarrow d = as + bt$			
}	$IIu = gtu(u,b) \Rightarrow u = us + bt$			
Reverse Euclidean				
gcd(414,1076) = 2 = 166				
	(248-166·1)·2 2+166·3			
	2+(414-248·1)·3			
= 414.3				
	-(1076-414-2)-5			
	3-1076.5			
Depth First Search: Spanning	a(1)			
Trees	e(2)			
(1) Randomly choose one vertex	1(3)			
(2) Add its neighbors that has not	g(4) h(7)			
been searched until the end	G f(5)			
(3) Backtrack to search unmarked for	c(6)			
neighbors				
Breadth First Search	9 9 700			
(1) Randomly choose one vertex				
(2) Add in all its adjacent vertices	e(2) h(3) v(4)			
(3) Repeat for all vertices until all				
vertices are marked	a(a) c(a) d(r)			
	I			

Vert.	Лdj.Vert.
а	bbccd
b	aacde
c	aabd
d	abce
e	bde

Prim's Algorithm	bf,ab,i			
(1) Choose any edge with min	3 1 2 5			
weight	4 / 3 8 4 0			
(2) Among adjacent vertices,	4 2 4 8			
choose one of minimum weight	3 3 1			
(3) Stop when we have $n-1$	1 1 2 1			
edges				
Kruskal's Algorithm	Same as Prim's Algorithm			
(1) Sort all edges in order of	(1) bf,cd,kl,ab,cg,fj,bc,ae ,			
increasingweight	fg, hl, ij, jk, ef, gh, ei, gk, dh			
(2) Select the edges s.t. it joins two	(2) Select from the list and reject			
distinctcomponents	any that closes a circuit or overlaps			

Chapter 7: Graphs

(3) Stop when after n-1 edges

Туре	Edges	Multiple Edges?	Loops?	
Simple Graph	Undirected	No	No	
Multigraph	Undirected	Yes	No	
Pseudograph	Undirected	Yes	Yes	

a is ADJACENT to d
a is INCIDENT to edge ab
g is ISOLATED
A LEAF has degree 1

Degree sum=2×edges

$$|\mathbf{E}(\mathbf{K}_{\mathbf{n}})| = {n \choose 2}$$

COMPLETE BIPARTITE GRAPH denoted $K_{m,n}$, no.edges = mn

incidence	ac	ac	ab	ab	bc
а	1	1	1	1	0
b	0	0	1	1	1
с	1	1	0	0	1

LIST

No. of paths from i to j

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} A^2 = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 2 & 1 \\ 2 & 1 & 2 \end{pmatrix} A^3 = \begin{pmatrix} 7 & 5 & 5 \\ 5 & 3 & 4 \\ 5 & 4 & 3 \end{pmatrix}$$

An EULER CIRCUIT is a simple circuit that contains every vertex edge

A connected graph has Euler circuit iff every vertex is of even deg

An **EULER PATH** is a simple path which is not a circuit and contains all the edges and vertices → A graph has an Euler path iff it is connected

and all vertices, but two, have even degrees.

 $\begin{tabular}{ll} \textbf{Chapter 8: Trees -} A TREE is a connected \\ graph with$ **NO** $cycles \end{tabular}$

b and d are CHILDREN of a b and d are SIBLINGS f, g, d, e are LEAVES c, b, a are INTERNAL VERTICES a,c are ANCESTORS of d b, d, f, g are DESCENDANTS of a

An m-ary is **FULL** if every internal vertex has exactly m children.

An **ORDERED ROOTED TREE** is a rooted tree in which children of each vertex are ordered. E.g. for T2, the left subtree of c is the subtree rooted at a while the right subtree if a single vertex e

- A tree with n ≥ 2 vertices has at least two vertices of deg(1)
- A tree with n vertices has n-1 edges
- A full m-ary tree \dot{w} i internal vertex has n = m i + 1 vertices
- Suppose full m-ary tree with n vertices, i internal vertices and l leaves, then

Chapter 3: The Integers

Divisibility

Write $d \mid n$ if d divides n if n = dk for some $k \in \mathbb{Z}$ if $a \mid b, b \mid c \rightarrow a \mid c$ if $a \mid b, a \mid c \rightarrow a \mid mb + nc$ a is Congruent to b modulo m if $m \mid (a - b)$

$$a \equiv b \pmod{m} \rightarrow m \mid (a - b)$$

 $a \equiv b \pmod{m}$ iff $a \mod m = b \mod m$

if
$$a \equiv b \pmod{m} \& c \equiv d \pmod{m}$$

 $\Rightarrow a + c \equiv b + d \pmod{m} \& ac = bd \pmod{m}$
 $q = n \text{ Div } d$ $r = n \text{ Mod } d$

Prime Numbers and GCD

A positive integer is:

- PRIME if it has exactly 2 +ve divisors, 1 and itself;
- COMPOSITE if it has more than 2 +ve divisors

If n is composite, then it has a divisor d with $1 < d \le \sqrt{n}$

 \rightarrow if n does not have a divisor with $1 < d \le \sqrt{n}$, n is prime

Fundamental Theorem of Arithmetic:

Every +ve integer > 1 has a divisor which is prime

- \rightarrow every +ve integer greater than 1 can be written uniquely as a product of primes. E.g. $100 = 2^25^5$; $999 = 3^337$
- \rightarrow gcd $(a,b) = p_1^{\min\{a_1,b_1\}} p_2^{\min\{a_2,b_2\}} \dots p_n^{\min\{a_n,b_n\}}$
- → $lcm(a, b) = p_1^{\max\{a_1, b_1\}} p_2^{\max\{a_2, b_2\}} \dots p_n^{\max\{a_n, b_n\}}$

An integer a s.t. a a b a b b a is called an inverse of a modulo a.

The inverse of a modulo m exists iff gcd(a, m) = 1

 \rightarrow if c,d are inverses, $c \equiv d \pmod{m}$

Chapter 4: Mathematical Induction

Let P(n) be the proposition that ...

Basis Step: P(1) is true since...

Inductive Step: Assumer that P(1), ..., P(k) are true. Then

Working here to prove that P(k+1) is true

Thus P(k+1) is true.

Therefore, by Mathematical Induction, *proposition* for all *domain*

Chapter 5: Counting

$$P(n,r) = n(n-1) \dots (n-r+1) = \frac{n!}{(n-r)!}$$
$$\binom{n}{r} = \frac{P(n,r)}{r!} = \frac{n!}{(n-r)!} \cdot \frac{1}{r!} = \binom{n}{n-r}$$

With Repetition:

Permu:
$$\frac{n!}{k_1! k_2! \dots} \quad Combi: \frac{(r+n-1)!}{r! (n-1)!} = \binom{n+r-1}{r}$$

Binomia

$$(a+b)^n = a^n + \binom{n}{1}a^1b^1 + \dots + \binom{n}{i}a^{n-i}b^i$$

$$\sum_{k=0}^n \binom{n}{k} = \binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n} = 2^n$$

$$\sum_{k=0}^n (-1)^k \binom{n}{k} = \binom{n}{0} - \binom{n}{1} + \dots + (-1)^n \binom{n}{n} = 0$$

$$\sum_{k=0}^n 2^k \binom{n}{k} = 3^n$$

Pascal's Identity: $\binom{n+1}{r} = \binom{n}{r-1} + \binom{n}{r}$

- Tree with $n \geq 2$ vertices has at least two vertices of degree 1
- Tree with n vertices has n − 1 edges → sum of deg = 2 n − 2
- A full m-ary tree \dot{w} i internal vertex has n = m i + 1 vertices
- Suppose full m-ary tree with n vertices, i internal vertices and l leaves, then

$$n = m i + 1 = \frac{m l - 1}{m - 1}$$

$$i = \frac{n - 1}{m} = \frac{l - 1}{m - 1}$$

$$l = \frac{n(m - 1) + 1}{m} = i(m - 1) + 1$$

- A rooted m-ary tree of height h is **BALANCED** if all leaves are at level h or h-1
- In an m-ary tree there are at most m^k vertices at level k. If the height is h, there are at most m^h leaves.