Agricuture Production in India from 2001-2014

Data Analysis used ML

```
In [27]:
```

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
from sklearn import svm
```

In [28]:

```
data = pd.read_csv("C:/Users/pc/Desktop/Agriculture/datasets1.csv")
data.head(10)
```

Out[28]:

	Crop	State	Cost of Cultivation (`/Hectare) A2+FL	Cost of Cultivation (`/Hectare) C2	Cost of Production ('/Quintal) C2	Yield (Quintal/ Hectare)
0	ARHAR	Uttar Pradesh	9794.05	23076.74	1941.55	9.83
1	ARHAR	Karnataka	10593.15	16528.68	2172.46	7.47
2	ARHAR	Gujarat	13468.82	19551.90	1898.30	9.59
3	ARHAR	Andhra Pradesh	17051.66	24171.65	3670.54	6.42
4	ARHAR	Maharashtra	17130.55	25270.26	2775.80	8.72
5	COTTON	Maharashtra	23711.44	33116.82	2539.47	12.69
6	COTTON	Punjab	29047.10	50828.83	2003.76	24.39
7	COTTON	Andhra Pradesh	29140.77	44756.72	2509.99	17.83
8	COTTON	Gujarat	29616.09	42070.44	2179.26	19.05
9	COTTON	Haryana	29918.97	44018.18	2127.35	19.90

In [29]:

```
data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 49 entries, 0 to 48
Data columns (total 6 columns):
```

#	Column	Non-Null Count	Dtype			
0	Crop	49 non-null	object			
1	State	49 non-null	object			
2	Cost of Cultivation (`/Hectare) A2+FL	49 non-null	float64			
3	Cost of Cultivation (`/Hectare) C2	49 non-null	float64			
4	Cost of Production (`/Quintal) C2	49 non-null	float64			
5	Yield (Quintal/ Hectare)	49 non-null	float64			
dtyp	dtypes: float64(4), object(2)					

memory usage: 2.4+ KB

data.describe()

Out[30]:

	Cost of Cultivation (`/Hectare) A2+FL	Cost of Cultivation (`/Hectare) C2	Cost of Production (`/Quintal) C2	Yield (Quintal/ Hectare)
count	49.000000	49.000000	49.000000	49.000000
mean	20363.537347	31364.666735	1620.537755	98.086735
std	13561.435306	20095.783569	1104.990472	245.293123
min	5483.540000	7868.640000	85.790000	1.320000
25%	12774.410000	19259.840000	732.620000	9.590000
50%	17022.000000	25909.050000	1595.560000	13.700000
75%	24731.060000	35423.480000	2228.970000	36.610000
max	66335.060000	91442.630000	5777.480000	1015.450000

In [31]:

data.corr()

Out[31]:

	Cost of Cultivation (`/Hectare) A2+FL	Cost of Cultivation (`/Hectare) C2	Cost of Production (`/Quintal) C2	Yield (Quintal/ Hectare)
Cost of Cultivation (`/Hectare) A2+FL	1.000000	0.981225	-0.434422	0.863400
Cost of Cultivation (`/Hectare) C2	0.981225	1.000000	-0.497092	0.866424
Cost of Production ('/Quintal) C2	-0.434422	-0.497092	1.000000	-0.487272
Yield (Quintal/ Hectare)	0.863400	0.866424	-0.487272	1.000000

In [32]:

data.groupby('Crop').sum()

Out[32]:

	Cost of Cultivation (`/Hectare) A2+FL	Cost of Cultivation (`/Hectare) C2	Cost of Production (`/Quintal) C2	Yield (Quintal/ Hectare)
Crop				
ARHAR	68038.23	108599.23	12458.65	42.03
COTTON	141434.37	214790.99	11359.83	93.86
GRAM	58597.55	96543.87	8963.00	52.79
GROUNDNUT	106413.91	140940.38	13523.19	51.44
MAIZE	83050.75	119186.49	3872.83	153.99
MOONG	35593.35	53881.98	14950.50	20.98
PADDY	114050.70	178841.11	3638.67	231.48
RAPESEED AND MUSTARD	61302.45	106117.16	7077.97	71.60
SUGARCANE	260823.58	398275.13	493.24	3952.48
WHEAT	68508.44	119692.33	3068.47	135.60

In [33]:

data.groupby('Crop').sum().plot(kind='bar', figsize=(12,5));

In [34]:

sns.pairplot(data=data, hue='Crop', palette='Set2')

Out[34]:

<seaborn.axisgrid.PairGrid at 0x5894ed58c8>

- ---

```
In [35]:
print(data.groupby('Crop').size())
Crop
ARHAR
                       5
COTTON
                       5
                       5
GRAM
GROUNDNUT
MAIZE
                       5
MOONG
                       5
PADDY
                       5
RAPESEED AND MUSTARD
                       5
SUGARCANE
                       5
dtype: int64
In [36]:
print(data.groupby('State').size())
State
Andhra Pradesh
Bihar
                 1
Gujarat
Haryana
                 5
Karnataka
Madhya Pradesh
                 3
Maharashtra
                 6
Orissa
Punjab
Rajasthan
                 5
Tamil Nadu
                 2
Uttar Pradesh
West Bengal
                 1
dtype: int64
In [11]:
X = data[['Cost of Cultivation (`/Hectare) A2+FL','Cost of Cultivation (`/Hectare) C2','Cost of Pr
oduction (`/Quintal) C2','Yield (Quintal/ Hectare) ']]
y = data['Crop']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=0)
X, val = train test split(X, test size=0.2)
print(len(val), 'validation examples')
print(len(X), 'train examples')
print(len(y), 'test examples')
10 validation examples
39 train examples
49 test examples
In [12]:
from sklearn.preprocessing import StandardScaler
st x= StandardScaler()
X train= st x.fit transform(X train)
X test= st x.transform(X test)
print(X_train)
print(X test)
[[-0.77366872 -0.72101221 -0.08120948 -0.36666819]
 [-0.24126739 -0.2948391 -0.81133114 -0.28265292]
 [-1.00699702 -1.14570671 3.60520259 -0.40072228]
 [-0.12741955 -0.10772275 -0.83877722 -0.26454389]
 [-0.51941111 -0.59467114 0.22095916 -0.3693257 ]
 [-0.2088321 \quad 0.1539046 \quad -0.73302343 \quad -0.25452128]
 [ 0.13844256 -0.09649335  0.2389483  -0.35467143]
 [-0.50704278 -0.70021123 1.60435169 -0.38785234]
 [-0.4533209 -0.5824843 -0.86042177 -0.3162894 ]
```

```
[ 0.01895862 -0.08139315  0.79379364 -0.36029017]
 [-0.51628226 -0.58024823 -1.08231105 -0.24267638]
 [ 2.47431889  2.79602195 -1.33069549  2.47166601]
 [-0.55291062 -0.6358255
                        0.55193485 -0.375172221
 [-1.07339664 -1.12691919 0.84546661 -0.39430629]
 [ 0.10767992 -0.08332454  0.62200698 -0.3602522 ]
 [-0.85119345 -0.68173547 -0.31880218 -0.35660762]
  [ -0.45328483 \ -0.25460586 \ -0.07501536 \ -0.34237096 ] 
 [-0.50055336 - 0.61676065 - 0.03020827 - 0.36165689]
 [-0.71891314 -0.73725992 0.46013965 -0.37737416]
 [-0.56351888 - 0.49720421 0.20733208 - 0.36423847]
 [ \ 0.32824168 \ \ 0.26607932 \ -0.70180853 \ -0.24370142]
 [ \ 0.56134521 \ \ 0.88049082 \ \ 0.31296373 \ -0.31313835]
 [-0.36910071 -0.52424458 -0.22479106 -0.35372232]
 [-0.66392931 -0.60844602 -0.26498308 -0.35432975]
 [-0.49693125 -0.54186384 -0.92766729 -0.28766422]
 [ 0.35540718  0.02467282  1.36299017 -0.37031277]
 [ 0.62183193  0.55926966  0.42078514 -0.33018438]
 [-0.43293759 -0.21944706 -0.34364848 -0.33003252]
 [-0.58909359 -0.4561088 -0.72826879 -0.31617551]
 [-0.27084856 -0.37678277 1.76708271 -0.38136042]
 [-0.77435138 -0.42842369 0.25869098 -0.36841455]
 [-0.13711136 -0.01214948 -0.76352296 -0.27289606]
 [ 3.14822889  2.68200828 -1.36029643  3.44936381]]
[[-0.70589754 -0.79184014 0.53759239 -0.38029742]
 [-0.2653755 -0.32496733 0.98650074 -0.3726286 ]
 [-1.02339817 -1.08453666 0.369592 -0.39035799]
 [-0.27290625 -0.18940513 -0.79599414 -0.26674583]
 [ \ 0.26191629 \ \ 0.04177751 \ -0.79718934 \ -0.25752047]
 [-0.56758639 - 0.45278135 - 0.04315487 - 0.35421586]
 [ 0.56784365  0.59410256  0.75460489 -0.33804301]
 [-0.86047177 -0.92204256  0.04068393 -0.37980388]]
In [13]:
lda = LinearDiscriminantAnalysis()
lda.fit(X_train, y_train)
lda prediction = lda.predict(X test)
print('Accuracy of LDA classifier on training set: {:.2f}'
    .format(lda.score(X_train, y_train)))
print('Accuracy of LDA classifier on test set: {:.2f}'
    .format(lda.score(X test, y test)))
print(accuracy_score(lda_prediction, y_test))
print(confusion matrix(lda prediction, y test))
print(classification report(lda prediction, y test))
Accuracy of LDA classifier on training set: 0.64
Accuracy of LDA classifier on test set: 0.10
0.1
[[0 0 0 0 0 1 0 0 0 0]
 [0 1 0 0 0 0 1 0 0 0]
 [0 0 0 0 0 1 0 1 0 0]
 [1 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 1 0 0 0]
 [0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 0 1 0]
 [0 0 1 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 0 0 0]
 [0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0]]
                                                 support
                    precision recall f1-score
                        0.00
                                0.00
                                           0.00
             ARHAR
                                                       1
             COTTON
                        1.00
                                 0.50
                                           0.67
                                                       2
                        0.00
                                 0.00
                                           0.00
              GRAM
          GROUNDNUT
                        0.00
                                  0.00
                                           0.00
                                                       1
             MAIZE
                        0.00
                                  0.00
                                           0.00
              MOONG
                        0.00
                                  0.00
                                           0.00
                                                       0
                        0.00
                                 0.00
             PADDY
                                           0.00
                                                       1
```

RAPESEED AND MUSTARD

0.00

0.00

0.00

```
SUGARCANE
            0.00 0.00
                           0.00
             0.00
                    0.00
                            0.00
     WHEAT
                                      1
                            0.10
  accuracy
                                    1.0
                           0.07
            0.10 0.05
                                     1.0
 macro avq
             0.20
weighted avg
                    0.10
                           0.13
                                     1.0
```

E:\Anaconda3\lib\site-packages\sklearn\metrics_classification.py:1272: UndefinedMetricWarning: Pr ecision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

warn prf(average, modifier, msg start, len(result))

E:\Anaconda3\lib\site-packages\sklearn\metrics_classification.py:1272: UndefinedMetricWarning: Re call and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_di vision` parameter to control this behavior.

warn prf(average, modifier, msg start, len(result))

Accuracy of SVC model on training set: 0.54

Accuracy of SVC on test set: 0.10

accuracy

macro avg weighted avg

In [14]:

0.1

```
[[0 0 0 0 0 0 0 0]
[0 1 0 0 0 0 0 0 0]
 [0 0 0 0 0 2 0 1 0]
 [1 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 3 0 1]
 [0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 0]
 [0 0 1 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 0 0]]
                    precision recall f1-score
                                                   support
                        0.00 0.00
1.00 1.00
                        0.00
                                            0.00
                                                         Λ
              ARHAR
             COTTON
                                            1.00
                                                         1
                                 0.00
                        0.00
                                             0.00
              GRAM
                                                         3
          GROUNDNUT
                         0.00
                                   0.00
                                             0.00
                         0.00
                                  0.00
              MAIZE
                                            0.00
                                                         4
                        0.00
                                  0.00
              MOONG
                                            0.00
                                                         0
                       0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
              PADDY
RAPESEED AND MUSTARD
                                                         1
          SUGARCANE
                                                         Ω
```

0.11 0.11

0.10

```
E:\Anaconda3\lib\site-packages\sklearn\metrics\_classification.py:1272: UndefinedMetricWarning: Pr ecision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
```

0.10

0.11

0.10

1.0

1.0

10

_warn_prf(average, modifier, msg_start, len(result))

0.10

E:\Anaconda3\lib\site-packages\sklearn\metrics_classification.py:1272: UndefinedMetricWarning: Re call and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_di vision` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

In [15]:

```
svm = SVC()
svm.fit(X_train, y_train)
print('Accuracy of svm on training set: {:.2f}'
```

```
.format(svm.score(X train, y train)))
print('Accuracy of svm on test set: {:.2f}'
    .format(svm.score(X_test, y_test)))
svm prediction = svm.predict(X test)
print(accuracy_score(svm_prediction, y_test))
print(confusion matrix(svm prediction, y test))
print(classification_report(svm_prediction, y_test))
Accuracy of svm on training set: 0.54
Accuracy of svm on test set: 0.10
0.1
[[0 0 0 0 0 0 0 0]
 [0 1 0 0 0 0 0 0 0]
 [0 0 0 0 0 2 0 1 0]
 [1 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 3 0 1]
 [0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 0]
 [0 0 1 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 0]]
                     precision recall f1-score
                                                    support
                         0.00 0.00
1.00 1.00
              ARHAR
                                              0.00
             COTTON
                                              1.00
                                                           1
                         0.00
                                  0.00
               GRAM
                                              0.00
                                                           3
          GROUNDNUT
                          0.00
                                    0.00
                                              0.00
                                                           1
              MAIZE
                          0.00
                                    0.00
                                              0.00
                                                           4
                         0.00
                                  0.00
                                             0.00
              MOONG
                                                          0
                        0.00 0.00
0.00 0.00
              PADDY
                                             0.00
RAPESEED AND MUSTARD
                                            0.00
                                                          1
                         0.00
          SUGARCANE
                                  0.00
                                             0.00
                                                          0
                                                    10
                                              0.10
           accuracy
                                           0.11
                       0.11 0.11
0.10 0.10
                                                         1.0
          macro avq
                                            0.10
        weighted avg
                                                         10
E:\Anaconda3\lib\site-packages\sklearn\metrics\ classification.py:1272: UndefinedMetricWarning: Pr
ecision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use
`zero_division` parameter to control this behavior.
  warn prf(average, modifier, msg start, len(result))
E:\Anaconda3\lib\site-packages\sklearn\metrics\_classification.py:1272: UndefinedMetricWarning: Re
call and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_di
vision` parameter to control this behavior.
  warn prf(average, modifier, msg start, len(result))
In [16]:
print(SVC prediction)
['GRAM' 'GROUNDNUT' 'GRAM' 'MAIZE' 'MAIZE' 'GRAM' 'MAIZE' 'MAIZE' 'COTTON'
 'RAPESEED AND MUSTARD']
In [17]:
KNN model = KNeighborsClassifier(n_neighbors=10)
KNN model.fit(X train, y train)
print('Accuracy of K-NN classifier on training set: {:.2f}'
    .format(KNN_model.score(X_train, y_train)))
print('Accuracy of K-NN classifier on test set: {:.2f}'
    .format(KNN_model.score(X_test, y_test)))
KNN prediction = KNN model.predict(X test)
print(accuracy_score(KNN_prediction, y_test))
print(confusion matrix(KNN_prediction, y_test))
print(classification report(KNN prediction, y test))
Accuracy of K-NN classifier on training set: 0.59
Accuracy of K-NN classifier on test set: 0.20
[[0 0 1 0 0 2 0 0 0 0]
 [0 1 0 0 0 0 1 0 0 0]
 [0 0 0 0 0 0 0 0 0]
 [1 0 0 0 0 0 0 0 0 0]
```

```
[0 0 0 0 0 0 1 0 1 0]
 [0 0 0 0 0 0 0 0 0]
 [0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0]
 [0 0 0 0 0 0 0 1 0 0]
 [0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 1 0 0 0]]
                       precision recall f1-score
                                                        support
                            0.00
                                      0.00
                                                 0.00
                                                               3
               ARHAR
                            1.00
                                      0.50
                                                 0.67
                                                               2
              COTTON
                            0.00
                GRAM
                                      0.00
                                                 0.00
                                                               0
           GROUNDNUT
                           0.00
                                      0.00
                                                 0.00
                                                               1
               MAIZE
                            0.00
                                      0.00
                                                 0.00
                            0.00
                                      0.00
                                                 0.00
               MOONG
                                                               0
               PADDY
                            0.00
                                      0.00
                                                 0.00
                                                               0
RAPESEED AND MUSTARD
                            1.00
                                      1.00
                                                 1.00
                                                               1
           SUGARCANE
                            0.00
                                      0.00
                                                 0.00
                                                               0
                            0.00
                                      0.00
                                                 0.00
               WHEAT
                                                               1
                                                 0.20
                                                              1.0
            accuracy
                            0.20
                                      0.15
           macro avg
                                                 0.17
                                                              10
                                                 0.23
        weighted avg
                            0.30
                                      0.20
                                                              1 0
```

E:\Anaconda3\lib\site-packages\sklearn\metrics_classification.py:1272: UndefinedMetricWarning: Pr ecision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

E:\Anaconda3\lib\site-packages\sklearn\metrics_classification.py:1272: UndefinedMetricWarning: Re call and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_di vision` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

In [21]:

```
k_range = range(1, 20)
scores = []
for k in k_range:
    KNN = KNeighborsClassifier(n_neighbors = k)
    KNN.fit(X_train, y_train)
    scores.append(KNN.score(X_test, y_test))
plt.figure()
plt.xlabel('k')
plt.ylabel('accuracy','0')
plt.scatter(k_range, scores)
plt.xticks([0,5,10,15,20])
```

Out[21]:

```
([<matplotlib.axis.XTick at 0x5894cff0c8>, <matplotlib.axis.XTick at 0x5894d57388>, <matplotlib.axis.XTick at 0x5894d53448>, <matplotlib.axis.XTick at 0x5894d9e908>, <matplotlib.axis.XTick at 0x5894d9ee48>], <a list of 5 Text xticklabel objects>)
```


T-- [001

```
ın [ZZ]:
```

print(KNN prediction)

```
['ARHAR' 'GROUNDNUT' 'ARHAR' 'MAIZE' 'WHEAT' 'RAPESEED AND MUSTARD'
 'COTTON' 'MAIZE' 'COTTON' 'ARHAR']
In [23]:
NB model = GaussianNB()
NB model.fit(X train,y train)
print('Accuracy of GaussianNB on training set: {:.2f}'
     .format(NB model.score(X train, y train)))
print('Accuracy of GaussianNB on test set: {:.2f}'
     .format(NB model.score(X_test, y_test)))
NB prediction = NB model.predict(X test)
print(accuracy_score(NB_prediction, y_test))
print(confusion matrix(NB prediction, y test))
print(classification report(NB prediction, y test))
Accuracy of GaussianNB on training set: 0.72
Accuracy of GaussianNB on test set: 0.50
0 5
[[0 0 1 0 1 0 0 0 0]
 [0 1 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 1 0 0]
 [1 0 0 0 0 0 0 0 0]
 [0 0 0 0 1 0 0 0 0]
 [0 0 0 0 0 2 0 0 0]
 [0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 1 0]
 [0 0 0 0 0 1 0 0 0]]
                      precision
                                recall f1-score
                                                     support
                                  0.00
1.00
              ARHAR
                          0.00
                                              0.00
              COTTON
                          1.00
                                              1.00
                                                           1
                          0.00
                                    0.00
                                              0.00
               GRAM
                                                           1
           GROUNDNUT
                          0.00
                                    0.00
                                               0.00
                                                           1
              MOONG
                          0.50
                                    1.00
                                              0.67
                                                           1
                          0.67
                                   1.00
                                              0.80
              PADDY
                                                           2
RAPESEED AND MUSTARD
                         0.00
                                   0.00
                                              0.00
                          1.00
                                   1.00
                                              1.00
           SUGARCANE
                                                           1
               WHEAT
                          0.00
                                    0.00
                                              0.00
                                                           1
                                              0.50
                                                          1.0
           accuracy
                          0.35 0.44
           macro avg
                                              0.39
                                                          1.0
        weighted avg
                          0.38
                                    0.50
                                              0.43
                                                          1.0
E:\Anaconda3\lib\site-packages\sklearn\metrics\ classification.py:1272: UndefinedMetricWarning: Pr
ecision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use
`zero division` parameter to control this behavior.
  warn prf(average, modifier, msg start, len(result))
E:\Anaconda3\lib\site-packages\sklearn\metrics\_classification.py:1272: UndefinedMetricWarning: Re
call and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_di
vision` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
In [24]:
clf = DecisionTreeClassifier()
clf.fit(X train, y_train)
print(clf)
DecisionTreeClassifier(ccp alpha=0.0, class weight=None, criterion='gini',
                       max_depth=None, max_features=None, max_leaf_nodes=None,
                       min impurity decrease=0.0, min impurity split=None,
```

min_samples_leaf=1, min_samples_split=2,

random state=None, splitter='best')

min weight fraction leaf=0.0, presort='deprecated',

```
print('Accuracy of Decision Tree classifier on training set: {:.2f}'
        .format(clf.score(X_train, y_train)))
print('Accuracy of Decision Tree classifier on test set: {:.2f}'
         .format(clf.score(X test, y test)))
clf prediction = clf.predict(X test)
print(accuracy score(clf prediction, y test))
print(confusion matrix(clf prediction, y test))
print(classification_report(clf_prediction, y_test))
Accuracy of Decision Tree classifier on training set: 1.00
Accuracy of Decision Tree classifier on test set: 0.50
0.5
[[0 0 0 0 1 0 0 0 0]
  [0 1 0 0 0 0 0 0 0]
  [1 0 1 0 0 0 0 0 0]
  [0 0 0 0 0 1 0 0 0]
  [0 0 0 0 1 0 0 0 0]
  [0 0 0 0 0 0 0 0]
  [0 0 0 0 0 0 1 0 0]
  [0 0 0 0 0 0 0 1 0]
  [0 0 0 0 0 2 0 0 0]]
                                          precision recall f1-score
                                                                                                     support
                                                0.00 0.00
1.00 1.00
                            ARHAR
                                                                                       0.00
                           COTTON
                                                                                       1.00
                                                                                                                  1
                                                 1.00
                                                                  0.50
                                                                                         0.67
                             GRAM
                                                                                                                  2
                             MATZE
                                                  0.00
                                                                     0.00
                                                                                         0.00
                                                 0.50
                            MOONG
                                                                      1.00
                                                                                         0.67
                                                                                                                  1
                                                0.00
                                                                   0.00
                            PADDY
                                                                                        0.00
                                                                                                                 0
                                                1.00 1.00
1.00 1.00
0.00 0.00
RAPESEED AND MUSTARD
                                                                                       1.00
                     SUGARCANE
                                                                                      1.00
                                                                                                                 1
                            WHEAT
                                                                                        0.00
                                                                                                                  2
                                                                                        0.50
                      accuracy
                                                                                                             1.0
                                               0.50 0.50
                                                                                      0.48
                                                                                                               10
                     macro ava
               weighted avg
                                                0.55
                                                                   0.50
                                                                                       0.50
                                                                                                                10
E:\Anaconda3\lib\site-packages\sklearn\metrics\ classification.py:1272: UndefinedMetricWarning: Pr
ecision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use
 `zero division` parameter to control this behavior.
     warn prf(average, modifier, msg start, len(result))
\verb|E:\Anaconda3\lib\site-packages\sklearn\metrics\_classification.py:1272: Undefined \verb|MetricWarning:Re| | Re| | 
call and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_di
vision` parameter to control this behavior.
   warn prf(average, modifier, msg start, len(result))
In [26]:
C \text{ range} = \text{range}(1, 20)
scores = []
for C in C range:
       clf = DecisionTreeClassifier()
        clf.fit(X train, y_train)
        scores.append(clf.score(X test, y test))
plt.figure()
plt.xlabel('C')
plt.ylabel('accuracy')
plt.scatter(C_range, scores)
plt.xticks([0,5,10,15,20])
Out[26]:
([<matplotlib.axis.XTick at 0x5894dd9388>,
   <matplotlib.axis.XTick at 0x5894d120c8>,
   <matplotlib.axis.XTick at 0x5894d09048>,
   <matplotlib.axis.XTick at 0x5894e026c8>,
   <matplotlib.axis.XTick at 0x5894e02d48>],
  <a list of 5 Text xticklabel objects>)
```


In [56]:

```
print(clf_prediction)
```

['ARHAR' 'ARHAR' 'MOONG' 'PADDY' 'MAIZE' 'GRAM' 'PADDY' 'PADDY' 'COTTON' 'GRAM']

In []: