```
1 # This is the dataset found in tensorflow
2 # With 100 classes containing 600 images each. There are 500 training images and 100 te
3 # The 100 classes in the CIFAR-100 are grouped into 20 superclasses. Each image comes w
4 # and a "coarse" label (the superclass to which it belongs).

1 import tensorflow as tf
2 import numpy as np
3 import pandas as pd
4 from tensorflow.keras import datasets, layers, models
5
```

Loading data from tf datasets

```
1 (x_train, y_train), (x_test, y_test)= datasets.cifar100.load_data()
   Downloading data from <a href="https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz">https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz</a>
   169009152/169001437 [===========] - 2s Ous/step
   1 x_train.shape, x_test.shape
                                    # 50000 for training, 10000 for testing
   ((50000, 32, 32, 3), (10000, 32, 32, 3))
1 y_train.shape
                          # y is 2 dim array, we want them in 1D so reshape
   (50000, 1)
1 y_train= y_train.reshape(-1,)
2 y_test= y_test.reshape(-1)
4 y_train.shape, y_test.shape
                                                                              # we got t
   ((50000,), (10000,))
1 x_train[0]
                             # seeing the 1st image in training set
   array([[[255, 255, 255],
           [255, 255, 255],
           [255, 255, 255],
           [195, 205, 193],
           [212, 224, 204],
           [182, 194, 167]],
          [[255, 255, 255],
            [254, 254, 254],
```

```
[254, 254, 254],
 [170, 176, 150],
[161, 168, 130],
[146, 154, 113]],
[[255, 255, 255],
[254, 254, 254],
[255, 255, 255],
[189, 199, 169],
 [166, 178, 130],
[121, 133, 87]],
[[148, 185, 79],
[142, 182,
            57],
[140, 179, 60],
[ 30, 17,
            1],
[ 65, 62,
            15],
[ 76, 77,
            20]],
[[122, 157,
            66],
[120, 155,
            58],
[126, 160,
            71],
[ 22, 16,
            3],
[ 97, 112, 56],
[141, 161, 87]],
[[ 87, 122, 41],
 [ 88, 122,
[101, 134, 56],
 [ 34, 36,
            10],
[105, 133,
            59],
[138, 173, 79]]], dtype=uint8)
```



```
1 plt.figure(figsize=(20,2)) # reducing the image size to have more clarity
```

```
2 plt.imshow(x_train[-1])
3 plt.show()

1 y_train[-3:-1]
```

lets keep all 100 classes in one list

array([3, 7])

```
1 Class_dictionary = {0: 'apple',
 2 1: 'aquarium_fish',
 3 2: 'baby',
 4 3: 'bear'
 5 4: 'beaver',
 6 5: 'bed',
 7 6: 'bee',
 8 7: 'beetle',
9 8: 'bicycle',
10 9: 'bottle',
11 10: 'bowl',
12 11: 'boy',
13 12: 'bridge',
14 13: 'bus',
15 14: 'butterfly',
16 15: 'camel',
17 16: 'can',
18 17: 'castle',
19 18: 'caterpillar',
20 19: 'cattle',
21 20: 'chair',
22 21: 'chimpanzee',
23 22: 'clock',
24 23: 'cloud',
25 24: 'cockroach',
26 25: 'couch',
27 26: 'crab',
28 27: 'crocodile',
29 28: 'cup',
30 29: 'dinosaur',
31 30: 'dolphin',
32 31: 'elephant',
33 32: 'flatfish',
34 33: 'forest',
```

```
35 34: 'fox',
36 35: 'girl',
37 36: 'hamster',
38 37: 'house',
39 38: 'kangaroo',
40 39: 'computer_keyboard',
41 40: 'lamp',
42 41: 'lawn_mower',
43 42: 'leopard',
44 43: 'lion',
45 44: 'lizard'
46 45: 'lobster',
47 46: 'man',
48 47: 'maple_tree',
49 48: 'motorcycle',
50 49: 'mountain',
51 50: 'mouse',
52 51: 'mushroom',
53 52: 'oak_tree',
54 53: 'orange',
55 54: 'orchid',
56 55: 'otter',
57 56: 'palm_tree',
58 57: 'pear',
59 58: 'pickup truck',
60 59: 'pine_tree',
61 60: 'plain',
62 61: 'plate',
63 62: 'poppy',
64 63: 'porcupine',
65 64: 'possum',
66 65: 'rabbit',
67 66: 'raccoon',
68 67: 'ray',
69 68: 'road',
70 69: 'rocket',
71 70: 'rose',
72 71: 'sea',
73 72: 'seal'
74 73: 'shark',
75 74: 'shrew',
76 75: 'skunk',
77 76: 'skyscraper',
78 77: 'snail',
79 78: 'snake',
80 79: 'spider',
81 80: 'squirrel',
82 81: 'streetcar',
83 82: 'sunflower',
84 83: 'sweet_pepper',
85 84: 'table',
86 85: 'tank',
87 86: 'telephone',
88 87: 'television',
89
   88: 'tiger',
```

```
90 89: 'tractor',
91 90: 'train',
92 91: 'trout',
93 92: 'tulip',
94 93: 'turtle',
95 94: 'wardrobe',
96 95: 'whale',
97 96: 'willow_tree',
98 97: 'wolf',
99 98: 'woman',
100 99: 'worm'}

1 Class_dictionary[88]
```

'tiger'

```
1 plt.figure(figsize=(20,2))  # reducing the image size to have more clarity
2 plt.imshow(x_train[-1])
3 plt.xlabel(Class_dictionary[y_train[-1]])
4 plt.show()
```



```
1 # plot for test set
2 plt.figure(figsize=(20,2))
3 plt.imshow(x_test[0])
4 plt.xlabel(Class_dictionary[y_test[0]])
5 plt.show()
```



```
1 plt.figure(figsize=(20,2))
2 plt.imshow(x_test[-1])
3 plt.xlabel(y_test[-1])
4 plt.show()
```

```
10 -
20 -
30 -
```

1 Class_dictionary[70]

class belongs to index 70

'rose'

```
1 # categorical conversion on y sets for vectorization on mubers
2 # Syntax: tf.keras.utils.to_categorical(y, num_classes=None, dtype="float32")
                                   # number of classes we have
4 num_classes= 100
6 # Import libraries for preprocessing images
7 from tensorflow.keras.utils import to categorical
9 # Normalize images
10 x_train = x_train.astype('float32')
11 x_test = x_test.astype('float32')
12 x_train /= 255
13 x_test /= 255
14 # Transform labels to one hot encoding
15 y_train = to_categorical(y_train)
16 y_test = to_categorical(y_test)
1 y_train[0]
                              # all are vectorized
```

```
1 x_train[0] # we have them in range of 0 to 1
```

```
array([[[1. , 1. , 1. ], [1. ], [1. ], [1. , 1. ], [1. , 1. ], [1. , 1. ], [1. , 1. ], [1. , 1. ], [0.7647059 , 0.8039216 , 0.75686276], [0.83137256 , 0.8784314 , 0.8 ], [0.7137255 , 0.7607843 , 0.654902 ]], [[1. , 1. , 1. ], [0.99607843 , 0.99607843 , 0.99607843], [0.99607843 , 0.99607843 , 0.99607843], ..., [0.66666667 , 0.6901961 , 0.5882353 ], [0.6313726 , 0.65882355 , 0.50980395],
```

```
[0.57254905, 0.6039216, 0.44313726]],
[0.99607843, 0.99607843, 0.99607843],
[1.
[0.7411765, 0.78039217, 0.6627451],
[0.6509804, 0.69803923, 0.50980395],
[0.4745098, 0.52156866, 0.34117648]],
[[0.5803922, 0.7254902, 0.30980393],
[0.5568628, 0.7137255, 0.22352941],
[0.54901963, 0.7019608, 0.23529412],
[0.11764706, 0.06666667, 0.00392157],
[0.25490198, 0.24313726, 0.05882353],
[0.29803923, 0.3019608, 0.07843138]],
[[0.47843137, 0.6156863, 0.25882354],
 [0.47058824, 0.60784316, 0.22745098],
[0.49411765, 0.627451, 0.2784314],
 [0.08627451, 0.0627451, 0.01176471],
 [0.38039216, 0.4392157, 0.21960784],
[0.5529412, 0.6313726, 0.34117648]],
[[0.34117648, 0.47843137, 0.16078432],
[0.34509805, 0.47843137, 0.15294118],
[0.39607844, 0.5254902, 0.21960784],
[0.13333334, 0.14117648, 0.03921569],
 [0.4117647, 0.52156866, 0.23137255],
[0.5411765 , 0.6784314 , 0.30980393]]], dtype=float32)
```

Will go for CNN with batch normalization model

```
1 # Import Libraries for CNN
2 from keras.models import Sequential
3 from keras.layers import Conv2D, Flatten, Dense, Activation, Dropout, BatchNormalizatio
4
5 from keras.layers.pooling import MaxPool2D
6 from keras.layers.core import Dense,Activation,Dropout,Flatten

1 model = Sequential()
2
3 model.add(Conv2D(256,(3,3),padding='same',input_shape=(32,32,3)))
4 model.add(BatchNormalization())
5 model.add(Activation('relu'))
6
7 model.add(Conv2D(256,(3,3),padding='same'))
8 model.add(BatchNormalization())
9 model.add(Activation('relu'))
```

```
10 model.add(MaxPool2D(pool size=(2,2)))
11 model.add(Dropout(0.2))
13 model.add(Conv2D(512,(3,3),padding='same'))
14 model.add(BatchNormalization())
15 model.add(Activation('relu'))
16
17 model.add(Conv2D(512,(3,3),padding='same'))
18 model.add(BatchNormalization())
19 model.add(Activation('relu'))
20 model.add(MaxPool2D(pool_size=(2,2)))
21 model.add(Dropout(0.2))
22
23 model.add(Conv2D(512,(3,3),padding='same'))
24 model.add(BatchNormalization())
25 model.add(Activation('relu'))
26
27 model.add(Conv2D(512,(3,3),padding='same'))
28 model.add(BatchNormalization())
29 model.add(Activation('relu'))
30 model.add(MaxPool2D(pool_size=(2,2)))
31 model.add(Dropout(0.2))
32
33 model.add(Conv2D(512,(3,3),padding='same'))
34 model.add(BatchNormalization())
35 model.add(Activation('relu'))
36
37 model.add(Conv2D(512,(3,3),padding='same'))
38 model.add(BatchNormalization())
39 model.add(Activation('relu'))
40 model.add(MaxPool2D(pool_size=(2,2)))
41 model.add(Dropout(0.2))
42
43 model.add(Flatten())
44 model.add(Dense(1024))
45 model.add(Activation('relu'))
46 model.add(Dropout(0.2))
47
48 model.add(Dense(100,activation='softmax'))
 1 model.summary()
```

```
max_pooling2d_1 (MaxPooling (None, 8, 8, 512)
                                                      0
2D)
dropout_1 (Dropout)
                           (None, 8, 8, 512)
                                                      0
conv2d 4 (Conv2D)
                           (None, 8, 8, 512)
                                                      2359808
batch_normalization_4 (Batc (None, 8, 8, 512)
                                                      2048
hNormalization)
                            (None, 8, 8, 512)
activation 4 (Activation)
                                                      0
conv2d 5 (Conv2D)
                            (None. 8, 8, 512)
```

```
batch normalization 5 (Batc (None, 8, 8, 512)
                                                2048
hNormalization)
activation_5 (Activation) (None, 8, 8, 512)
max_pooling2d_2 (MaxPooling (None, 4, 4, 512)
dropout_2 (Dropout)
                         (None, 4, 4, 512)
conv2d_6 (Conv2D) (None, 4, 4, 512) 2359808
batch_normalization_6 (Batc (None, 4, 4, 512)
                                                2048
hNormalization)
activation_6 (Activation)
                        (None, 4, 4, 512)
conv2d_7 (Conv2D)
                     (None, 4, 4, 512)
                                                2359808
batch_normalization_7 (Batc (None, 4, 4, 512)
                                                2048
hNormalization)
activation_7 (Activation) (None, 4, 4, 512)
max_pooling2d_3 (MaxPooling (None, 2, 2, 512)
                                                0
dropout_3 (Dropout)
                        (None, 2, 2, 512)
                         (None, 2048)
flatten (Flatten)
                         (None, 1024)
dense (Dense)
                                                2098176
activation_8 (Activation)
                         (None, 1024)
dropout_4 (Dropout)
                        (None, 1024)
dense 1 (Dense)
                         (None, 100)
                                                102500
______
Total params: 15,791,460
```

```
Trainable params: 15,784,292
Non-trainable params: 7,168
```

```
1 # compiling the model
2 from tensorflow.keras.optimizers import Adam
3 model.compile(loss='categorical_crossentropy',
               optimizer= Adam(learning_rate=1e-4),
               metrics=['accuracy'])
```

Training the model

```
2 model.fit(x train, y train, batch size= 64, epochs= 16, validation data=(x test, y test
   Epoch 1/16
   782/782 [=============== ] - 96s 104ms/step - loss: 3.8770 - accuracy:
   Epoch 2/16
   782/782 [============== ] - 80s 102ms/step - loss: 3.1106 - accuracy:
   Epoch 3/16
   782/782 [============== ] - 80s 102ms/step - loss: 2.5618 - accuracy:
   Epoch 4/16
   782/782 [============== ] - 80s 102ms/step - loss: 2.1818 - accuracy:
   Epoch 5/16
   782/782 [============== ] - 80s 102ms/step - loss: 1.8989 - accuracy:
   Epoch 6/16
   782/782 [=============== ] - 80s 102ms/step - loss: 1.6691 - accuracy:
   Epoch 7/16
   782/782 [============== ] - 80s 102ms/step - loss: 1.4850 - accuracy:
   Epoch 8/16
   782/782 [================= ] - 80s 102ms/step - loss: 1.3259 - accuracy:
   Epoch 9/16
   782/782 [============== ] - 80s 102ms/step - loss: 1.1837 - accuracy:
   Epoch 10/16
   782/782 [=============== ] - 80s 102ms/step - loss: 1.0506 - accuracy:
   Epoch 11/16
   782/782 [=============== ] - 80s 102ms/step - loss: 0.9333 - accuracy:
   Epoch 12/16
   782/782 [=============== ] - 80s 102ms/step - loss: 0.8218 - accuracy:
   Epoch 13/16
   782/782 [=============== ] - 80s 102ms/step - loss: 0.7241 - accuracy:
   Epoch 14/16
   782/782 [=============== ] - 80s 102ms/step - loss: 0.6329 - accuracy:
   Epoch 15/16
   782/782 [=============== ] - 80s 102ms/step - loss: 0.5572 - accuracy:
   Epoch 16/16
   782/782 [============== ] - 80s 102ms/step - loss: 0.4940 - accuracy:
   <keras.callbacks.History at 0x7f1a4031f390>
                                                                          1 # model accuarcy on test set
3 scores = model.evaluate(x_test, y_test)
4 print(f'accuracy on test set: {model.metrics_names[1]} of {scores[1]*100}')
   accuracy on test set: accuracy of 62.41000294685364
                                                                          1 # prediction
2 y pred= model.predict(x test)
1 print('predicted output: ', np.argmax(y_pred[3]) )
                                                          # comparing predicted
2 print('actual ouput: ', np.argmax(y_test[3]))
   predicted output:
   actual ouput: 51
```

```
1 # Class_dictionary[51]
                                         # checing what class is this
 1 print('predicted output: ', np.argmax(y_pred[50]) )
                                                                       # comparing predicte
 2 print('actual ouput: ', np.argmax(y_test[50]))
    predicted output: 4
    actual ouput: 4
 1 y_pred.shape
                        # y_pred is 2D ; so we should make it 1D
     (10000, 100)
 1 # from each index, we will take only the max mumber from each array of y test and y pre
 2 import numpy as np
 3 from numpy import argmax
 4 prediction = []
 5 true_labels = []
 7 # pred = model.predict(test_imxages)
 8 print(y_test.shape[0])
9 for i in range(y_test.shape[0]):
    prediction.append(argmax(y_pred[i]))
10
11 true_labels.append(argmax(y_test[i]))
    10000
 1 len(prediction), len(true_labels)
     (10000, 10000)
 1 true_labels[:5]
    [49, 33, 72, 51, 71]
 1 prediction[:5]
    [90, 33, 93, 51, 71]
 1 # Calculating f1 score
 3 from sklearn.metrics import f1_score
 4 print(f"f1 score: {f1_score(true_labels, prediction, average='weighted')}")
    f1 score: 0.6256260864142461
```

will put all the classes in the list for getting a classification

report on each class so that we get to know which class

```
1 # Name of all classes in CIFAR-100
 2 classes = ['beaver', 'dolphin', 'otter', 'seal', 'whale',
3 'aquarium' ,'fish', 'ray', 'shark', 'trout',
4 'orchids', 'poppies', 'roses', 'sunflowers', 'tulips',
 5 'bottles', 'bowls', 'cans', 'cups', 'plates',
 6 'apples', 'mushrooms', 'oranges', 'pears', 'sweet peppers',
7 'clock', 'computer keyboard', 'lamp', 'telephone', 'television', 'bed', 'chair', 'couch
8 'bee', 'beetle', 'butterfly', 'caterpillar', 'cockroach',
9 'bear', 'leopard', 'lion', 'tiger', 'wolf',
10 'bridge', 'castle', 'house', 'road', 'skyscraper',
11 'cloud', 'forest', 'mountain', 'plain', 'sea',
12 'camel', 'cattle', 'chimpanzee', 'elephant', 'kangaroo',
13 'fox', 'porcupine', 'possum', 'raccoon', 'skunk',
14 'crab', 'lobster', 'snail', 'spider', 'worm',
15 'baby', 'boy', 'girl', 'man', 'woman',
16 'crocodile', 'dinosaur', 'lizard', 'snake', 'turtle',
17 'hamster', 'mouse', 'rabbit', 'shrew', 'squirrel',
18 'maple', 'oak', 'palm', 'pine', 'willow',
19 'bicycle', 'bus', 'motorcycle', 'pickup truck', 'train',
20 'lawn-mower', 'rocket', 'streetcar', 'tank', 'tractor']
```

Classification Report

```
1 from sklearn.metrics import classification_report
2 print(classification_report(true_labels, prediction, target_names= classes))

shark 0.81 0.82 0.82 100

trout 0.66 0.79 0.72 100

orchids 0.68 0.30 0.42 100
```

Silairk	6.01	0.02	0.02	100	
trout	0.66	0.79	0.72	100	
orchids	0.68	0.30	0.42	100	
poppies	0.46	0.36	0.40	100	
roses	0.52	0.78	0.62	100	
sunflowers	0.73	0.40	0.52	100	
tulips	0.70	0.53	0.60	100	
bottles	0.53	0.72	0.61	100	_
bowls	0.88	0.58	0.70	100	_
cans	0.76	0.81	0.79	100	_
cups	0.52	0.62	0.57	100	_
plates	0.57	0.63	0.60	100	_
					_
apples	0.84	0.80	0.82	100	_
mushrooms	0.68	0.78	0.73	100	
oranges	0.59	0.60	0.59	100	
pears	0.81	0.71	0.76	100	_
sweet peppers	0.71	0.79	0.75	100	_
clock	0.50	0.53	0.52	100	_
computer keyboard	0.68	0.52	0.59	100	_
lamp	0.61	0.34	0.44	100	
telephone	0.91	0.69	0.78	100	
television	9 69	0 54	0 57	100	

113122, 11.111 101		CIVIV_Classificat	ion_chai roo.ipyi	ib - Colaboratory	
bed	0.54	0.59	0.56	100	
chair	0.60	0.58	0.59	100	
couch	0.54	0.51	0.52	100	
table	0.54	0.64	0.59	100	
wardrobe	0.69	0.56	0.62	100	
bee	0.39	0.44	0.41	100	
beetle	0.72	0.69	0.70	100	
butterfly	0.70	0.61	0.65	100	
caterpillar	0.45	0.54	0.49	100	
cockroach	0.68	0.84	0.75	100	
bear	0.61	0.49	0.54	100	
leopard	0.86	0.83	0.85	100	
lion	0.84	0.49	0.62	100	
tiger	0.68	0.68	0.68	100	
wolf	0.35	0.48	0.40	100	
bridge	0.51	0.52	0.51	100	
castle	0.46	0.32	0.38	100	
house	0.74	0.49	0.59	100	
road	0.88	0.84	0.86	100	
skyscraper	0.93	0.62	0.74	100	
cloud	0.32	0.55	0.40	100	
forest	0.70	0.69	0.70	100	
mountain	0.63	0.62	0.63	100	
plain	0.87	0.82	0.85	100	
sea	0.76	0.81	0.78	100	
camel	0.30	0.45	0.36	100	
cattle	0.82	0.82	0.82	100	
chimpanzee	0.75	0.67	0.71	100	
elephant	0.87	0.68	0.76	100	
kangaroo	0.54	0.78	0.64	100	
fox	0.61	0.92	0.74	100	
porcupine	0.69	0.66	0.68	100	
possum	0.77	0.62	0.69	100	
raccoon	0.81	0.52	0.63	100	
skunk	0.56	0.53	0.54	100	
anah	Ω 11	Ω //1	Δ 41	100	

