두산 Rokey Boot Camp

스터디 주간 활동 보고서

팀명	Robo:Loop	제출자 성명	홍송은	
참여 명단	전효재, 홍송은, 김사웅			
모임 일시	2025 년 05 월 13 일 16 시 40 분 ~ 18 시 00 분			
장소	온라인 구글 미팅	출석 인원	3	
학습목표	 경사하강법과 비용 함수의 수식 구조와 원리를 이해하고, 딥러닝학습에서의 최적화 과정을 익힌다. 순전파, 손실 계산, 역전파, 파라미터 업데이트로 이루어진 딥러닝학습 루프의 전체 흐름을 이해한다. 사전 학습된 모델의 활용 방법을 파악하고, 실제 적용 방식에 대해학습한다. 수식과 모델 구조 간의 연관성을 이해하고, 개념을 단순 암기가 아닌설명 가능한 수준으로 체득한다. 			
학습내용	컴퓨터비전 3~4 주차 강의 기반 핵심 개념 및 중요 부분 정리 및 공유			

- 기울기 < 0 → 왼쪽으로 갈수록 함수값이 증가 ->
 오른쪽으로 이동 필요
- 학습률(α)은 이동 크기를 조절함
- 단계: 초기값 설정 → 기울기 계산 → 파라미터
 업데이트 → 반복 수행

$$\theta^{(n+1)} = \theta^{(n)} - \alpha \nabla_{\theta} J(\theta^{(n)})$$

수식	의미		
$\theta^{(n)}$	현재 n번째 반복에서의 파라미터 값		
$\theta^{(n+1)}$	업데이트된 다음 파라미터 값		
α	학습률(learning rate): 얼마나 크게 이동할지 결정하는 상수		
$\nabla_{\theta} J(\theta^{(n)})$	비용 함수 J에 대한 현재 파라미터 위치에서의 기울기(Gradient)		

- 비용 함수 (Cost Function)
 - 모델 예측과 실제값의 차이를 수치화한 함수
 - 목적: 이 값을 최소화하는 파라미터를 찾는 것
 - Mean Squared Error(MSE)
 - Binary Cross Entropy

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} [y_i \log(h_{\theta}(x_i)) + (1 - y_i) \log(1 - h_{\theta}(x_i))]$$

수식	의미
m	전체 샘플 수
y_i	i번째 샘플의 실제 정답값 (0 또는 1)
$h_{\theta}(x_i)$	i번째 입력에 대한 예측 확률 (0~1)
$y_i \log(h_{\theta}(x_i))$	정답이 1일 때 작동 → 예측값이 1에 가까울수록 손실 작음
$(1-y_i)\log(1-h_{\theta}(x_i))$	정답이 0일 때 작동 → 예측값이 0에 가까울수록 손실 작음
$-\frac{1}{m}$	전체 샘플에 대해 평균 손실 계산

• 전효재

Max pooling

- 사용하는 이유: 특징 추출의 핵심값 유지하면서 공간
 크기 축소/계산량 감소
- Mean pooling
 - 각 커널의 평균 값을 추출
 - 위 예시에선 아래와 같이 출력력2.5 4.54.25 3.75
- o Pretrained model
 - AlexNet ReLU 도입, Dropout 사용/간단한 구조
 - GoogLeNet Inception module 사용
 - VGGNet 3x3 작은 커널 반복 사용/일관된 구조로 단순화
 - ResNet Skip connection/딥러닝 모델 훈련 가능, 매우
 깊은 네트워크 학습 가능
- o Pretrained model VGG19 예시
 - 입력 224x224x3 출력 1x1 1000 개라벨
 - 출력 변경 방법: Linear(4096, 1000) -> Linear(4096, ?) 또는 Linear(1000, ?)을 추가하는 방법으로도 가능

• 김사웅

- □러닝 학습 루프는 순전파 → 손실 계산 → 역전파 →
 경사하강법의 4 단계로 이루어짐
- 경사하강법은 $w = w \eta \times \partial Loss/\partial w$ 수식으로 weight 를 업데이트함
- o weight 는 학습 초기에는 무작위로 랜덤 초기화된다.
- gradient 는 Loss 함수가 가장 빨리 증가하는 방향이고, 그 반대인 -gradient 가 Loss 를 줄이는 방향임

○ 이상적인 loss 함수는 아래로 볼록한(convex) 형태로. 하나의 전역 최솟값이 존재함 ○ 대표적인 convex loss 함수로는 회귀의 MSE. 로지스틱 회귀의 BCE 가 있음 。 실제 딥러닝 모델에서는 loss 함수가 대부분 비선형이며 convex 가 아님 。 ReLU. tanh 등의 비선형 활성화 함수와 수많은 파라미터 때문이며. loss surface 는 매우 복잡하고 고차원임 ○ 딥러닝에서는 saddle point(안장점)나 로컬 미니멈이 많아 학습 경로가 다양하고 불안정할 수 있음 ○ 학습률 설정이 중요하며, 같은 함수 위에서도 learning rate 에 따라 최적화 경로가 달라질 수 있음 $\partial Loss/\partial w1 = \partial Loss/\partial y_p red \times \partial y_p red/\partial h2 \times \partial h2/\partial h1 \times \partial h1/\partial w1$ 이번 스터디에서는 Pretrained model 모델을 알아봤다. 모델을 구성하는 층의 변화와 변화시키는 방법으로 풀링 방법을 사용하는 것을 배웠다. 모델의 구성을 알고 모델을 사용하는 방법으로 입출력 전효재 부분을 바꿔서 직접 모델을 구성 할 수 있다는 것을 알았다. 스터디를 하면서 수식적인 부분과 모델과 관계가 멀어 보였던 부분들이 배워가면서 연관성을 알게 되었다. 이번 스터디에서는 경사 하강법, 비용 함수, 선형 회귀, 활동평가 최소제곱법(OLS) 등 머신러닝 모델 학습의 핵심 개념의 수식을 집중적으로 분석했다. 경사 하강법의 수식 구조와 기울기의 의미를 시각적으로 이해함으로써, 단순한 암기가 아니라 개념적 흐름까지 체득할 수 있었다. 특히, 기울기의 부호와 이동 방향의 관계를 홍송은 그래프 예시와 함께 명확히 파악함. 전반적으로 개념 간 연관성과 수식의 구조를 함께 다루며, 단순 요약이 아닌 직접 계산하고 설명할 수 있는 수준으로 이해도를 끌어올리는 데 집중한 시간이었다.

		이번 스터디에서는 경사하강법(Gradient Descent)의 동작 원리와,	
	학습률(learning rate)의 크기에 따라 최적화 경로가 어떻게		
	김사웅	달라지는지를 시각적으로 이해하고자 했다. 딥러닝 모델이	
		학습하는 과정은 크게 순전파(Forward pass), 손실 계산(Loss),	
		역전파(Backpropagation), 그리고 경사하강법을 통한 weight	
		업데이트로 이루어진다. 이 중에서도 경사하강법은 손실을 줄이기	
		위해 파라미터를 어떻게 조정할지를 결정하는 핵심 단계로, 손실	
		함수의 기울기(gradient)를 계산하여 이를 기반으로 weight 를	
		업데이트한다. 이때 학습률은 gradient 에 곱해지는 스케일 값으로,	
		작으면 수렴이 느려지고, 크면 오히려 발산하거나 진동하며 학습이	
		불안정해질 수 있음을 알게 되었다. 중요하다고 하는 체인룰에 대해	
		공부하면서 다시 기초를 공부하게 되었다.	
	다양한 다던 그곳 비그 미 페이어 성게 여스		
	• 다양한 모델 구조 비교 및 레이어 설계 연습		
과제		○ VGG, ResNet 등 주요 CNN 모델의 구조를 정리	
		○ 각 레이어(Conv, Pooling, FC 등)의 역할과 이유를 이해	
		○ 레이어를 지나면서 feature map 의 크기 변화 계산	
	• 3	중복 방지를 위해 선택한 모델은 slack 에 공유	
향후 계획	• 주요 CNN 모델(VGG, ResNet 등)의 구조를 비교 분석하며 설계 원리를 익힌다.		
	• -	각 레이어의 역할과 구성이 모델 성능에 미치는 영향을 이해한다.	
	• f	eature map 크기 변화를 계산하며 레이어 설계 및 조정 능력을 키운다.	
		가양한 모델을 실습하며 직접 구조를 변경하고 최적화하는 연습을 진행한다.	
	l		

