

30ВНІШНЄ НЕЗАЛЕЖНЕ ОЦІНЮВАННЯ Зошит **1** 

### ПРОБНЕ

### ЗОВНІШНЄ НЕЗАЛЕЖНЕ ОЦІНЮВАННЯ

# З МАТЕМАТИКИ (ЗАВДАННЯ РІВНЯ СТАНДАРТУ)

Час виконання – 150 хвилин

Робота складається з 28 завдань різних форм. Відповіді до завдань 1—26 Ви маєте позначити в бланку  $\pmb{A}$ . Розв'язання завдань 27, 28 Ви маєте записати в бланку  $\pmb{B}$ .

Результат виконання **всіх** завдань буде зараховано як результат **державної підсумкової атестації** для випускників, які вивчали математику на **рівні стандарту**.

### Інструкція щодо роботи в зошиті

- 1. Правила виконання завдань зазначено перед кожною новою формою завдань.
- **2.** Рисунки до завдань виконано схематично, без строгого дотримання пропорцій.
- **3.** Відповідайте лише після того, як Ви уважно прочитали та зрозуміли завдання. Використовуйте як чернетку вільні від тексту місця в зошиті.
- 4. Намагайтеся виконати всі завдання.
- **5.** Ви можете скористатися довідковими матеріалами, наведеними на сторінках 2, 19, 20. Для зручності Ви можете їх відокремити відірвавши.

### Інструкція щодо заповнення бланків відповідей A та B

- **1.** У бланк A записуйте чітко, згідно з вимогами інструкції до кожної форми завдань, лише правильні, на Вашу думку, відповіді.
- **2.** Неправильно позначені, підчищені відповіді в бланку A буде зараховано як помилкові.
- 3. Якщо Ви позначили відповідь до якогось із завдань 1-20 у бланку A неправильно, то можете виправити її, замалювавши попередню позначку та поставивши нову, як показано на зразках:

  АБВГ
  АБВГД
- 4. Якщо Ви записали відповідь до якогось із завдань 21–26 неправильно, то можете виправити її, записавши новий варіант відповіді в спеціально відведених місцях бланка A.
- **5.** Виконавши завдання 27 та 28 у зошиті, акуратно запишіть їхні розв'язання в бланку  $\boldsymbol{\mathcal{B}}$ .
- **6.** Ваш результат залежатиме від загальної кількості правильних відповідей, записаних у бланку A, та правильного розв'язання завдань 27, 28 у бланку B.

Ознайомившись з інструкціями, перевірте якість друку зошита та кількість сторінок. Їх має бути 20.

Позначте номер Вашого зошита у відповідному місці бланка A так:



Зичимо Вам успіху!

賽 X

### ДОВІДКОВІ МАТЕРІАЛИ

### Таблиця квадратів від 10 до 49

| Десятки |      |      |      |      | Один | иці  |      |      |      |      |
|---------|------|------|------|------|------|------|------|------|------|------|
| десятки | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    |
| 1       | 100  | 121  | 144  | 169  | 196  | 225  | 256  | 289  | 324  | 361  |
| 2       | 400  | 441  | 484  | 529  | 576  | 625  | 676  | 729  | 784  | 841  |
| 3       | 900  | 961  | 1024 | 1089 | 1156 | 1225 | 1296 | 1369 | 1444 | 1521 |
| 4       | 1600 | 1681 | 1764 | 1849 | 1936 | 2025 | 2116 | 2209 | 2304 | 2401 |

### АЛГЕБРА І ПОЧАТКИ АНАЛІЗУ

### Формули скороченого множення

$$a^2 - b^2 = (a - b)(a + b)$$

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a-b)^2 = a^2 - 2ab + b^2$$

### Модуль числа

$$|a| = \begin{cases} a, \text{ якщо } a \ge 0, \\ -a, \text{ якщо } a < 0 \end{cases}$$

### Квадратне рівняння

$$ax^2 + bx + c = 0, \ a \neq 0$$

$$D = b^2 - 4ac$$
 – дискримінант

$$x_1 = \frac{-b - \sqrt{D}}{2a}, \ x_2 = \frac{-b + \sqrt{D}}{2a},$$
 якщо  $D > 0$ 

$$x_1 = x_2 = \frac{-b}{2a}$$
, якщо  $D = 0$ 

$$ax^2 + bx + c = a(x - x_1)(x - x_2)$$

### Степені

$$a^1$$
 =  $a, a^n$  =  $\underbrace{a \cdot a \dots \cdot a}_{n \text{ pasib}}$  для  $a \in R, n \in N, n \geqslant 2$ 

$$a^0 = 1$$
, де  $a \neq 0$   $\sqrt{a^2} = |a|$ 

$$a^{-n}=rac{1}{a^n}$$
 для  $a \neq 0, n \in N$ 

$$a^{\frac{m}{n}} = \sqrt[n]{a^m}, \ a > 0, \ m \in \mathbb{Z}, \ n \in \mathbb{N}, \ n \ge 2$$

$$a^x \cdot a^y = a^{x+y}$$
 
$$\frac{a^x}{a^y} = a^{x-y} \qquad (a^x)^y = a^{x+y}$$

$$\frac{a^x}{a^y} = a^{x-y}$$

$$(\alpha^x)^y = \alpha^{x \cdot y}$$

$$(ab)^x = a^x \cdot b^x$$
  $\left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$ 

$$\left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$$

### Логарифми

$$a > 0$$
,  $a \ne 1$ ,  $b > 0$ ,  $c > 0$ ,  $k \ne 0$ 

$$a^{\log_a b} = b \qquad \log_a a = 1 \qquad \log_a 1 = 0$$

$$\log_a(b \cdot c) = \log_a b + \log_a c$$

$$\log_a \frac{b}{c} = \log_a b - \log_a c$$

$$\log_a b^n = n \cdot \log_a b$$

$$\log_{a^k} b = \frac{1}{k} \cdot \log_a b$$

### Арифметична прогресія

$$a_n = a_1 + d(n-1)$$
  $S_n = \frac{a_1 + a_n}{2} \cdot n$ 

### Геометрична прогресія

$$b_n = b_1 \cdot q^{n-1}$$
  $S_n = \frac{b_1(q^n - 1)}{q - 1}$ ,  $(q \neq 1)$ 

### Теорія ймовірностей

### Комбінаторика

$$P(A) = \frac{k}{n}$$

$$P_n = 1 \cdot 2 \cdot 3 \cdot \dots \cdot n = n!$$
  $C_n^k = \frac{n!}{k! \cdot (n-k)!}$   $A_n^k = \frac{n!}{(n-k)!}$ 

Завдання 1-4 і 5-16 мають відповідно по чотири та п'ять варіантів відповіді, з яких лише один правильний. Виберіть правильний, на Вашу думку, варіант відповіді, позначте його в бланку A згідно з інструкцією. Не робіть інших позначок у бланку A, тому що комп'ютерна програма реєструватиме їх як помилки!

Будьте особливо уважні під час заповнення бланка A! Не погіршуйте власноручно свого результату неправильною формою запису відповідей

1. Група з 15 школярів у супроводі трьох дорослих планує автобусну екскурсію в заповідник. Оренда автобуса для екскурсії коштує 800 грн. Вартість вхідного квитка в заповідник становить 20 грн для школяра й 50 грн — для дорослого. Якої *мінімальної* суми грошей достатньо для проведення цієї екскурсії?

| АБ       |                   | В | Γ       |  |
|----------|-------------------|---|---------|--|
| 1050 грн | 1050 грн 1150 грн |   | 870 грн |  |
|          |                   |   |         |  |
|          |                   |   |         |  |
|          |                   |   |         |  |
|          |                   |   |         |  |

- **2.** На рисунку зображено графік залежності шляху S (у км), пройденого групою туристів, від часу t (у год). Яке з наведених тверджень є правильним?
  - А Зупинка тривала 4 години.
  - **Б** До зупинки туристи пройшли 20 км.
  - В Після зупинки туристи пройшли більшу відстань, ніж до зупинки.
  - **Г** Туристи зробили зупинку через 4 години після початку руху.





**3.** Сума довжин усіх ребер прямокутного паралелепіпеда, що виходять з однієї вершини, дорівнює 60 см. Визначте суму довжин *усіх* ребер цього паралелепіпеда.

| A      | Б      | В      | Γ      |
|--------|--------|--------|--------|
| 360 см | 240 см | 180 см | 120 см |



**4.** Розв'яжіть рівняння  $\frac{x}{10} = 2.5$ .

| A    | Б | В    | Γ  |
|------|---|------|----|
| 0,25 | 4 | 12,5 | 25 |



**5.** На рисунку зображено трапецію ABCD. Визначте градусну міру кута BCD, якщо  $\angle ADB = 35^{\circ}$ ,  $\angle BDC = 20^{\circ}$ .



| A             | Б    | В    | Г    | Д    |
|---------------|------|------|------|------|
| $125^{\rm o}$ | 165° | 155° | 145° | 140° |



**6.** На рисунку зображено графік функції y = f(x), визначеної на проміжку [-2; 4]. Укажіть точку екстремуму цієї функції.

| A          | Б          | В         | Γ         | Д         |
|------------|------------|-----------|-----------|-----------|
| $x_0 = -2$ | $x_0 = -1$ | $x_0 = 1$ | $x_0 = 3$ | $x_0 = 4$ |





7.  $(a-4)^2 - a^2 =$ 

| A        | Б       | В  | Г        | Д       |
|----------|---------|----|----------|---------|
| -8a + 16 | 8a + 16 | 16 | -4a + 16 | -4a + 8 |



8. Період T електромагнітних коливань у коливальному контурі, що складається з послідовно з'єднаних конденсатора ємністю C й котушки з індуктивністю L, обчислюють за формулою Томсона  $T=2\pi\sqrt{LC}$ . Визначте із цієї формули індуктивність L.

| A                      | Б                      | В                                       | Γ                          | Д                          |
|------------------------|------------------------|-----------------------------------------|----------------------------|----------------------------|
| $L = \frac{T}{2\pi C}$ | $L = \frac{2\pi C}{T}$ | $L = \frac{1}{C} \sqrt{\frac{T}{2\pi}}$ | $L = \frac{4\pi^2 C}{T^2}$ | $L = \frac{T^2}{4\pi^2 C}$ |



9.  $\frac{15^3}{3^2}$  =

| A | Б  | В   | Г   | Д   |
|---|----|-----|-----|-----|
| 5 | 15 | 125 | 375 | 675 |



- 10. Які з наведених тверджень є правильними?
  - І. Діагоналі будь-якого паралелограма рівні.
  - II. Протилежні кути будь-якого паралелограма рівні.
  - III. Відстані від точки перетину діагоналей будь-якого паралелограма до його протилежних сторін рівні.

| A       | Б            | В          | Г           | Д             |
|---------|--------------|------------|-------------|---------------|
| лише II | лише I і III | I, II, III | лише I i II | лише II і III |



**11.** Розв'яжіть систему рівнянь  $\begin{cases} 6(x+5)+10y=3,\\ 2x=y+4. \end{cases}$  Для одержаного розв'язку  $(x_0;y_0)$  укажіть *суму*  $x_0+y_0$ .

| A    | Б    | В   | Γ   | Д    |
|------|------|-----|-----|------|
| -2,5 | -3,5 | 3,5 | 6,5 | -1,5 |



**12.** Укажіть похідну функції  $f(x) = \frac{2x-3}{x}$ .

$$\mathbf{A} \quad f'(x) = \frac{3}{x^2}$$

$$\mathbf{B} \quad f'(x) = \frac{3}{x}$$

$$\mathbf{B} \quad f'(x) = \frac{4x - 3}{x^2}$$

$$\Gamma \quad f'(x) = -\frac{3}{x^2}$$

Д 
$$f'(x) = 2$$

**13.** Розв'яжіть нерівність  $4 \cdot 3^x < 3^x + 6$ .

| A                     | Б                     | В              | Г              | Д                     |
|-----------------------|-----------------------|----------------|----------------|-----------------------|
| $(-\infty; \log_9 6)$ | $(-\infty; \log_2 3)$ | $(-\infty; 2)$ | $(-\infty; 1)$ | $(-\infty; \log_3 2)$ |



**14.** Спростіть вираз  $2\cos(450^{\circ} + \alpha) - \sin \alpha$ .

| $\mathbf{A}$  | Б              | В                           | $\Gamma$                   | Д             |  |
|---------------|----------------|-----------------------------|----------------------------|---------------|--|
| $\sin \alpha$ | $-3\sin\alpha$ | $-2\cos\alpha - \sin\alpha$ | $2\cos\alpha - \sin\alpha$ | $3\sin\alpha$ |  |



**15.** Бісектриса кута A прямокутника ABCD перетинає сторону BC в точці K. Обчисліть площу чотирикутника AKCD, якщо BK = KC = 8 см.

| A                  | Б                  | В                  | Γ                  | Д                   |  |
|--------------------|--------------------|--------------------|--------------------|---------------------|--|
| $48~\mathrm{cm}^2$ | $72~\mathrm{cm}^2$ | 96 см <sup>2</sup> | $128\mathrm{cm}^2$ | $192~\mathrm{cm}^2$ |  |



16. Цукерку циліндричної форми висотою 10 см і радіусом основи 1 см запаковано в коробку, що має форму правильної трикутної призми (див. рисунок). Основи циліндра вписано у відповідні основи призми. Основи коробки (призми) виготовлено з поліетилену, а всі її бічні грані — з паперу. Визначте площу паперу, витраченого на виготовлення такої коробки. Укажіть відповідь, найближчу до точної. Витратами паперу на з'єднання граней коробки знехтуйте.



| A                  | Б                  | В                  | Γ                    | Д                   |
|--------------------|--------------------|--------------------|----------------------|---------------------|
| $55~\mathrm{cm}^2$ | $75~\mathrm{cm}^2$ | $105 \text{ cm}^2$ | $115\ \mathrm{cm}^2$ | $135~\mathrm{cm}^2$ |



У завданнях 17–20 до кожного з трьох рядків інформації, позначених цифрами, доберіть один правильний, на Вашу думку, варіант, позначений буквою. Поставте позначки в таблицях відповідей до завдань у бланку A на перетині відповідних рядків (цифри) і колонок (букви). Усі інші види Вашого запису в бланку A комп'ютерна програма реєструватиме як помилки!

Будьте особливо уважні під час заповнення бланка А! Не погіршуйте власноручно свого результату неправильною формою запису відповідей

17. Установіть відповідність між початком речення (1-3) і його закінченням (A-Д) так, щоб утворилося правильне твердження.

### Початок речення

- **1** Графік функції  $y = -x^3$
- **2** Графік функції  $y = \sqrt{x}$
- **3** Графік функції  $y = \cos x$

|   | $\mathbf{A}$ | Б | В | $\Gamma$ | Д |
|---|--------------|---|---|----------|---|
| 1 |              |   |   |          |   |
| 2 |              |   |   |          |   |
| 3 |              |   |   |          |   |

### Закінчення речення

- **А** розміщено лише в першій і другій координатних чвертях.
- **Б** мае з графіком рівняння  $x^2 + y^2 = 9$  лише одну спільну точку.
- ${\bf B}$  симетричний відносно осі y.
- Г симетричний відносно початку координат.



**18.** Установіть відповідність між початком речення (1-3) і його закінченням (A-Д) так, щоб утворилося правильне твердження.

### Початок речення

- **1** Трикутник, у якого центри вписаного й описаного кіл збігаються, зображено на
- **2** Трикутник, один із внутрішніх кутів якого дорівнює  $30^{\circ}$ , зображено на
- **3** Трикутник, у якого радіус описаного кола більший за 5 см, зображено на

### Закінчення речення

- **A** рис. 1.
- Б рис. 2.
- В рис. 3.
- Γ рис. 4.
- Д рис. 5.

|   | A | Б | В | $\Gamma$ | Д |
|---|---|---|---|----------|---|
| 1 |   |   |   |          |   |
| 2 |   |   |   |          |   |
| 3 |   |   |   |          |   |







Рис. 2



Рис. 3



Рис. 4



Рис. 5



**19.** Установіть відповідність між виразом (1–3) і проміжком (А – Д), якому належить значення цього виразу, якщо a=4,5.

Вираз

1 a-2,7

3  $\log_5 a$ 

|   | A | Б | В | $\Gamma$ | Д |
|---|---|---|---|----------|---|
| 1 |   |   |   |          |   |
| 2 |   |   |   |          |   |
| 3 |   |   |   |          |   |

 $\sqrt[3]{3,5-a}$ 

Проміжок

**A** (-2; 0)

**Б** (0; 1)

**B** (1; 2)

 $\Gamma$  (2; 3)

Д (3; 5)



**20.** Довжина кола основи конуса дорівнює  $36\pi$ , твірна нахилена до площини основи під кутом  $30^\circ$ . Установіть відповідність між відрізком (1–3) і його довжиною (А – Д).

Відрізок

- 1 радіус основи конуса
- 2 висота конуса
- **3** радіус сектора, що є розгорткою бічної поверхні конуса

|   | A | Б | В | Γ | Д |
|---|---|---|---|---|---|
| 1 |   |   |   |   |   |
| 2 |   |   |   |   |   |
| 3 |   |   |   |   |   |

Довжина відрізка

- **A**  $6\sqrt{3}$
- **Б** 18
- **B**  $12\sqrt{3}$
- $\Gamma$  6
- Д 36



Розв'яжіть завдання 21–26. Одержані числові відповіді запишіть у зошиті та бланку A. Відповідь записуйте лише десятковим дробом, урахувавши положення коми, по одній цифрі в кожній клітинці відповідно до зразків, наведених у бланку A.

- **21.** Автомобіль двічі заправляли пальним і щоразу по 40 л. Ціна пального, використаного під час першого заправлення, становила 20 грн за 1 л. Порівняно з нею ціна пального, використаного для другого заправлення, була більшою на 2,5 %.
  - **1.** Скільки *гривень* коштував 1 л пального, використаного для другого заправлення?



**2.** Скільки всього витрачено грошей (у грн) за ці два заправлення автомобіля пальним?



**22.** У ромб ABCD вписано квадрат KLMN, сторона KL якого перетинає діагональ AC в точці P (див. рисунок). AL=10 см, AP=8 см.



**1.** Обчисліть довжину сторони квадрата *KLMN* (у см).



Відповідь:

**2.** Обчисліть довжину діагоналі BD ромба ABCD (у см).



**23.** У прямокутній системі координат у просторі початком вектора  $\overrightarrow{AB}$  (9; 12; –8) є точка A(3; -7; 11).

**1.** Визначте ординату точки B.



Відповідь:

**2.** Обчисліть модуль вектора  $\overrightarrow{d} = 4\overrightarrow{AB} + \overrightarrow{BA}$ .



**24.** Суму n перших членів арифметичної прогресії  $(a_n)$  задано формулою:

$$S_n = \frac{5,2-0,8n}{2} \cdot n.$$

1. Визначте суму перших шести членів цієї прогресії.



Відповідь:

2. Визначте четвертий член цієї прогресії.



25. На діаграмі відображено інформацію про результати складання письмового заліку студентами певної групи. Комісія з якості освіти розпочинає перевірку відповідності виставлених оцінок змісту залікових робіт студентів і відбирає для перевірки декілька робіт навмання. Яка ймовірність того, що першою буде відібрано роботу з оцінкою D? Отриману відповідь округліть до *comux*.





Відповідь:

**26.** Тривалість зеленого сигналу світлофора на 15 с довша за тривалість червоного сигналу й у дванадцять разів довша за тривалість жовтого сигналу. Яка тривалість (у с) червоного сигналу, якщо тривалість зеленого сигналу відноситься до сумарної тривалості червоного й жовтого сигналів як 3 до 2?



Розв'яжіть завдання 27, 28. Запишіть у *бланку Б* послідовні логічні дії та пояснення всіх етапів розв'язання завдань, зробіть посилання на математичні факти, з яких випливає те чи інше твердження. Якщо потрібно, проілюструйте розв'язання завдань рисунками, графіками тощо.

- **27.** Задано функцію y = 2x + 8.
  - **1.** Для наведених у таблиці значень аргументу x і значень функції y визначте відповідні їм значення y та x.

| $\boldsymbol{x}$ | у |
|------------------|---|
| 0                |   |
|                  | 0 |
| 9                |   |

- **2.** Запишіть координати точки M перетину графіка заданої функції з віссю x.
- **3.** Знайдіть загальний вигляд первісних функції f(x) = 2x + 8.
- **4.** Знайдіть первісну F(x) функції f, графік якої проходить через точку M.
- **5.** Побудуйте графік функції F.
- **6.** Визначте область значень функції  $G(x) = 3 \cdot F(x) + 1$ .



- **28.** У правильній чотирикутній піраміді SABCD плоский кут при вершині S піраміди дорівнює  $\beta$ . Довжина апофеми піраміди дорівнює  $\delta$ .
  - 1. Зобразіть на рисунку задану піраміду й позначте кут β.
  - **2.** Визначте довжину сторони основи піраміди *SABCD*.
  - **3.** Визначте об'єм піраміди *SABCD*.



### Похідна функції

C,  $\alpha$  – сталі

$$(C)' = 0$$

$$x' = 1$$

$$(x^{\alpha})' = \alpha x^{\alpha - 1}$$

$$(\sqrt{x})' = \frac{1}{2\sqrt{x}} \qquad (e^x)' = e^x$$

$$(e^x)' = e^x$$

$$(\ln x)' = \frac{1}{x}$$

$$(\ln x)' = \frac{1}{x} \qquad (\sin x)' = \cos x$$

$$(\cos x)' = -\sin x$$

$$(\cos x)' = -\sin x \qquad (\operatorname{tg} x)' = \frac{1}{\cos^2 x}$$

$$(u + v)' = u' + v'$$
  $(u - v)' = u' - v'$ 

$$(u-v)'=u'-v'$$

$$(uv)' = u'v + uv' \qquad (Cu)' = Cu'$$

$$(Cu)' = Cu'$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

### Первісна функції та визначений інтеграл

| Функція <i>f</i> ( <i>x</i> )   | Загальний вигляд первісних $F(x) + C$ , $C$ — довільна стала |  |  |
|---------------------------------|--------------------------------------------------------------|--|--|
| 0                               | C                                                            |  |  |
| 1                               | x + C                                                        |  |  |
| $x^{\alpha}$ , $\alpha \neq -1$ | $\frac{x^{\alpha+1}}{\alpha+1} + C$                          |  |  |
| $\frac{1}{x}$                   | $\ln  x  + C$                                                |  |  |
| $e^x$                           | $e^x + C$                                                    |  |  |
| $\sin x$                        | $-\cos x + C$                                                |  |  |
| $\cos x$                        | $\sin x + C$                                                 |  |  |
| $\frac{1}{\cos^2 x}$            | tg x + C                                                     |  |  |

$$\int_{a}^{b} f(x)dx = F(x)\Big|_{a}^{b} = F(b) - F(a)$$
 — формула Ньютона-Лейбніца

### Тригонометрія

$$\sin \alpha = y_{\alpha} \quad \cos \alpha = x_{\alpha}$$

$$\sin^2 \alpha + \cos^2 \alpha = 1$$

$$\operatorname{tg}\,\alpha = \frac{\sin\alpha}{\cos\alpha}$$

$$1 + tg^2 \alpha = \frac{1}{\cos^2 \alpha}$$

$$\sin 2\alpha = 2\sin \alpha \cos \alpha$$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$$

$$\sin(90^{\circ} + \alpha) = \cos \alpha$$

$$\sin(180^{\circ} - \alpha) = \sin \alpha$$

$$cos(90^{\circ} + \alpha) = -sin \alpha$$
  $cos(180^{\circ} - \alpha) = -cos \alpha$ 

$$\cos(180^{\circ} - a) = -\cos a$$

$$\operatorname{tg}(90^{\circ} + \alpha) = -\frac{1}{\operatorname{tg}\alpha}$$

$$tg(180^{\circ} - \alpha) = -tg \ \alpha$$



### Таблиця значень тригонометричних функцій деяких кутів

| O. | рад   | 0  | $\frac{\pi}{6}$      | $\frac{\pi}{4}$      | $\frac{\pi}{3}$      | $\frac{\pi}{2}$ | π    | $\frac{3\pi}{2}$ | 2π   |
|----|-------|----|----------------------|----------------------|----------------------|-----------------|------|------------------|------|
| α  | град  | 0° | 30°                  | $45^{\rm o}$         | 60°                  | 90°             | 180° | 270°             | 360° |
|    | sin α | 0  | $\frac{1}{2}$        | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{3}}{2}$ | 1               | 0    | -1               | 0    |
|    | cos α | 1  | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{1}{2}$        | 0               | -1   | 0                | 1    |
|    | tg α  | 0  | $\frac{1}{\sqrt{3}}$ | 1                    | $\sqrt{3}$           | не існує        | 0    | не існує         | 0    |

## Довільний трикутник



$$p = \frac{\alpha + b + c}{2} \qquad \alpha + \beta + \gamma = 180^{\circ}$$

$$a^2 = b^2 + c^2 - 2bc \cos \alpha$$

$$\frac{a}{\sin a} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2R$$

R – радіус кола, описаного навколо трикутника АВС

$$S = \frac{1}{2}a \cdot h_a \quad S = \frac{1}{2}b \cdot c \cdot \sin \alpha \quad S = \sqrt{p(p-a)(p-b)(p-c)}$$

### Прямокутний трикутник

 $a^2 + b^2 = c^2$  (теорема Піфагора)

$$\frac{b}{c} = \cos \alpha$$
  $\frac{a}{c} = \sin \alpha$   $\frac{a}{b} = \tan \alpha$ 



### Паралелограм



$$S = ab \sin \gamma$$

 $S = ah_a$ 

### Прямокутник



$$S = ab$$

### Ромб



$$S = \frac{1}{2} d_1 d_2,$$

### Трапеція



$$S = \frac{a+b}{2} \cdot h,$$

 $d_1,\,d_2$  – діагоналі ромба a і b – основи трапеції

# Коло

Трикутники



$$L = 2\pi R$$

$$(x - x_0)^2 + (y - y_0)^2 = R^2$$



$$S = \pi R^2$$

# Эб'ємні фігури та тіла

### Пряма призма



$$V = S_{\text{och}} \cdot H$$

$$S_{\rm G} = P_{\rm och} \cdot H$$

### Правильна піраміда



$$V = \frac{1}{3} S_{\text{och}} \cdot H$$

$$S_{\rm G} = \frac{1}{2} \, P_{\rm och} \cdot m$$

### Циліндр



$$V = \pi R^2 H$$

$$S_6 = 2\pi RH$$

### Конус

$$V = \frac{1}{3} \pi R^2 H$$

$$S_6 = \pi R L$$

Куля, сфера

$$V = \frac{4}{3} \pi R^3$$

$$S = 4\pi R^2$$

### Координати та вектори

$$M(x_0, y_0, z_0)$$
 $A(x_1, y_1, z_1)$ 
 $B(x_2, y_2, z_2)$ 

$$x_0 = \frac{x_1 + x_2}{2}$$

$$x_0 = \frac{x_1 + x_2}{2}$$
  $y_0 = \frac{y_1 + y_2}{2}$   $z_0 = \frac{z_1 + z_2}{2}$ 

$$z_0 = \frac{z_1 + z_2}{2}$$

$$\overrightarrow{AB}(x_2-x_1, y_2-y_1, z_2-z_1)$$

$$|\overrightarrow{AB}(x_2 - x_1, y_2 - y_1, z_2 - z_1)|$$
  $|\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$ 

$$\vec{a}(a_1, a_2, a_3)$$
 $\vec{b}(b_1, b_2, b_3)$ 

$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cos \omega$$

### Кінець зошита