Computational learning and discovery

CSI 873 / MATH 689

Instructor: I. Griva

Wednesday 7:20 - 10 pm

Bayesian Belief Networks

- Naive Bayes assumption of conditional independence too restrictive
- But it's intractable without some such assumptions...
- Bayesian Belief networks describe conditional independence among *subsets* of variables
- → allows combining prior knowledge about (in)dependencies among variables with observed training data

Conditional Independence

Definition: X is conditionally independent of Y given Z if the probability distribution governing X is independent of the value of Y given the value of Z; that is, if

$$(\forall x_i, y_j, z_k) P(X = x_i | Y = y_j, Z = z_k) = P(X = x_i | Z = z_k)$$

more compactly, we write

$$P(X|Y,Z) = P(X|Z)$$

Naive Bayes uses cond. indep. to justify

$$P(X,Y|Z) = P(X|Y,Z)P(Y|Z)$$
$$= P(X|Z)P(Y|Z)$$

Bayesian Belief Networks: Example

Network represents a set of conditional independence assertions:

- Each node is asserted to be conditionally independent of its nondescendants, given its immediate predecessors.
- Directed acyclic graph

Bayesian Belief Networks: Example

Represents joint probability distribution over all variables

- e.g., P(Storm, BusTourGroup, ..., ForestFire)
- in general,

$$P(y_1,\ldots,y_n)=\prod\limits_{i=1}^n P(y_i|Parents(Y_i))$$

where $Parents(Y_i)$ denotes immediate predecessors of Y_i in graph

• so, joint distribution is fully defined by graph, plus the $P(y_i|Parents(Y_i))$

Learning Bayes Nets

Several variants of this learning task

- Network structure might be known or unknown
- Training examples might provide values of *all* network variables, or just *some*

If structure known and observe all variables

• Then it's easy as training a Naive Bayes classifier

Learning Bayes Nets

Suppose structure known, variables partially observable

e.g., observe ForestFire, Storm, BusTourGroup, Thunder, but not Lightning, Campfire...

- Similar to training neural network with hidden units
- In fact, can learn network conditional probability tables using gradient ascent!
- Converge to network h that (locally) maximizes P(D|h)

Learning Bayes Nets

EM algorithm can also be used. Repeatedly:

- 1. Calculate probabilities of unobserved variables, assuming h
- 2. Calculate new w_{ijk} to maximize $E[\ln P(D|h)]$ where D now includes both observed and (calculated probabilities of) unobserved variables

When structure unknown...

- Algorithms use greedy search to add/substract edges and nodes
- Active research topic

EM: expectation maximization

When to use:

- Data is only partially observable
- Unsupervised clustering (target value unobservable)
- Supervised learning (some instance attributes unobservable)

Some uses:

- Train Bayesian Belief Networks
- Unsupervised clustering
- Learning Hidden Markov Models

Converges to local maximum likelihood h and provides estimates of hidden variables z_{ij}

In fact, local maximum in $E[\ln P(Y|h)]$

- Y is complete (observable plus unobservable variables) data
- Expected value is taken over possible values of unobserved variables in Y

General EM framework

Given:

- Observed data $X = \{x_1, \ldots, x_m\}$
- Unobserved data $Z = \{z_1, \ldots, z_m\}$
- Parameterized probability distribution P(Y|h), where
 - $-Y = \{y_1, \ldots, y_m\}$ is the full data $y_i = x_i \cup z_i$
 - -h are the parameters

Determine:

• h that (locally) maximizes $E[\ln P(Y|h)]$

General EM framework

Define likelihood function Q(h'|h) which calculates $Y = X \cup Z$ using observed X and current parameters h to estimate Z

$$Q(h'|h) \leftarrow E[\ln P(Y|h')|h, X]$$

EM Algorithm:

Estimation (E) step: Calculate Q(h'|h) using the current hypothesis h and the observed data X to estimate the probability distribution over Y.

$$Q(h'|h) \leftarrow E[\ln P(Y|h')|h, X]$$

Maximization (M) step: Replace hypothesis h by the hypothesis h' that maximizes this Q function.

$$h \leftarrow \operatorname*{argmax}_{h'} Q(h'|h)$$

Each instance x generated by

- 1. Choosing one of the k Gaussians with uniform probability
- 2. Generating an instance at random according to that Gaussian

Given:

- Instances from X generated by mixture of k Gaussian distributions
- Unknown means $\langle \mu_1, \ldots, \mu_k \rangle$ of the k Gaussians
- Don't know which instance x_i was generated by which Gaussian

Determine:

• Maximum likelihood estimates of $\langle \mu_1, \ldots, \mu_k \rangle$

Think of full description of each instance as $y_i = \langle x_i, z_{i1}, z_{i2} \rangle$, where

- z_{ij} is 1 if x_i generated by jth Gaussian
- x_i observable
- z_{ij} unobservable

EM Algorithm: Pick random initial $h = \langle \mu_1, \mu_2 \rangle$, then iterate

E step: Calculate the expected value $E[z_{ij}]$ of each hidden variable z_{ij} , assuming the current hypothesis $h = \langle \mu_1, \mu_2 \rangle$ holds.

$$E[z_{ij}] = \frac{p(x = x_i | \mu = \mu_j)}{\sum_{n=1}^{2} p(x = x_i | \mu = \mu_n)}$$
$$= \frac{e^{-\frac{1}{2\sigma^2}(x_i - \mu_j)^2}}{\sum_{n=1}^{2} e^{-\frac{1}{2\sigma^2}(x_i - \mu_n)^2}}$$

M step: Calculate a new maximum likelihood hypothesis $h' = \langle \mu'_1, \mu'_2 \rangle$, assuming the value taken on by each hidden variable z_{ij} is its expected value $E[z_{ij}]$ calculated above. Replace $h = \langle \mu_1, \mu_2 \rangle$ by $h' = \langle \mu'_1, \mu'_2 \rangle$.

$$\mu_j \leftarrow \frac{\sum_{i=1}^m E[z_{ij}] \ x_i}{\sum_{i=1}^m E[z_{ij}]}$$