PneumoCaT CTVdb Serotype Determination Reference Document

Software Version 1.2

Introduction

This Document contains summary tables describing the genetic variant information included in PneumoCaT V1.2 available from the Github repository. (https://github.com/phe-bioinformatics/PneumoCaT). These tables are designed to be useful for troubleshooting PneumoCaT outputs and investigating potential serotype variants.

This information is updated from the original tables included in the manuscript (Kapatai et al. 2016) and is designed to be human readable, this information is also included in the yaml files included in the CTVdb in the repository. Usage/interpretation notes are included in this document to further aid users.

The variants described are collated from previously described genetic variants (referenced) and novel discriminatory variants described in the Kapatai et al 2016 publication. These variant positions are constantly under validation by ourselves and from feedback from external users and we encourage users with <u>potentially important</u> variants (i.e more than one example) to get in touch via the GitHub repository or via twitter @PneumoCaT and let us know about them. We fully expect the CTVdb to evolve as further genetic variants are described and their corresponding phenotypic serotypes are determined and validated.

This document consists of a summary table describing all serogroups that are determined by the CTVdb and information on genetic and structural differences. Further reference tables are provided listing the individual genetic sequences used for each serogroup.

Please note: The genetic determinants described in this document are those used in version 1.2 of PneumoCaT as available from Github. Users may create their own custom CTVdb and in this case or in the case of users of previous versions of PneumoCaT these tables may not be a reliable reference.

For further details please refer to the original manuscript – but note the publication refers to PneumoCaT v1.0:

Kapatai, G. et al., 2016. Whole genome sequencing of *Streptococcus pneumoniae*: development, evaluation and verification of targets for serogroup and serotype prediction using an automated pipeline. PeerJ, 4, p.e2477.

Contents

Introduction	
Summary Table	3
Genetic serotype determinants by serogroup	6
Serogroup 6	6
7A, 7F	6
Genogroup 7B, 7C and 40	6
Serogroup 9	7
9N,9L	7
Serogroup 10	7
Serogroup 11	8
Genogroup 12, 44, 46	8
Serogroup 15	9
Serogroup 18	9
19B, 19C	9
Serogroup 22	10
Serogroup 23	10
Genogroup 25A, 25F and 38	10
Serogroup 28	11
Genogroup 33A, 33F, 37	11
Genogroup 33B, 33D	12
Genogroup 35A, 35C and 42	12
Serogroup 41	12
References	13

Summary Table

Serogroup	Serotype	Distinguishing genetic features	Functional Effect	
6	6A/6B and 6C/6D	A>G 583 in <i>wciP</i>	amino acid substitution (Ser195Asn) which results to different rhamnose-ribitol linkages (1 \rightarrow 3 in 6A/6C and 1 \rightarrow in 6B/6D) (Mavroidi et al. 2007; Sheppard et al. 2010; Ko et al. 2013)	
	6A/6C and 6B/6D and 6E	$wciNlpha$ in 6A and 6B / $wciNlpha$ in 6C and 6D $wciN\gamma$ in 6E	Allele $wciN\alpha$ encodes for galactosyl-transferase whereas $wciN\theta$ is 200 bp shorter and encodes for a glycosyl-transferase - consistent with changes in structure (Park et al. 2007) . $WciN\gamma$ is a chimeric form of $wciN\alpha$ (75%) and $wciN\theta$ (25%).	
7 and 40	7A/7F	Frameshift mutation insT 587 in 7A wcwD gene	Loss of function of glycosyltransferase leading to loss of side branch for 7A (Mavroidi et al. 2007)	
			"Mixed: ['07A','07F']" result corresponds to 7A phenotype	
	7B/7C/40	SNPs in wcwK	Amino acid changes - wcwK encodes for a GT but 7C and 40 structure not known	
9	9A/9V	Frameshift mutation delG 722 in 9A wcjE	Loss of function of O-acetyltranferase leads to differences in acetylation	
	9L/9N	SNPs in genes wchA, wcjA, wcjB and wzy	Amino acid changes - wcjA and wcjB encode for glycosyltranferases (GT) and changes in these are consistent with presence of glucose in 9N instead of galactose present in residue 3 of the polysaccharide repeat unit of the other three serotypes (Mavroidi et al. 2007)	
	9A/9V/9L/9N	Presence of an additional O-acetyltransferase encoded by <i>wcjD</i> in 9A-9V	Differences in acetylation	
10	10A/10B/10C/10F	10A/10B carries gene wcrG, whereas	wcrH encodes for GT and is responsible for side branch linkage	
		10C/10F carries genes wcrH and wciG	Galf(1-6)Galp present in 10F but not in 10A; wcrG encodes for GT and it catalyze the linkage of Galp(1-6) side branch in 10A (Aanensen et al. 2007)	
	10A/10B/10C/10F	10A/10C have wcrCα whereas 10B/10F have wcrCβ	<i>wcrC6</i> allele is described as <i>wcrF</i> and both genes encode for glucosyltransferases and are responsible for the differences observed in the linkage between galactose and ribitol-5-phosphate(Yang et al. 2011)	
11	11A/11B/11C/11D/11F	Genes wcwC and wcjE are present in 11A, 11D and 11F whereas gene wcwR is present in 11B/C	wcwC, wcjE and wcwR are acetyltransferase genes - differences in acetylation	
	11A/11B/11C/11D/11F	Frameshift mutation delA 130 in gct in	Presence of Gro-1P correlates with an intact gct gene in types	
		11B and 11F	11A and 11C; gct is frameshifted in types 11F and 11B	
			Rib-ol is present in the CPS instead of Gro (Mavroidi et al. 2007)	

	11A/11D/11F	wcrL pos 334: codon AAT (Asn) in 11A;	wcrL encodes for a GT - donor sugar for WcrL is GlcpNAc in types 11F,		
		codon ACT (Ser) in 11D and codon GCT (Ala) in 11F	11B, and 11C but Glcp in type 11A (Mavroidi et al. 2007)		
12, 44, 46	12A/B/F/44/46	SNPs in genes wcxD and wcxF	Both genes encode for GTs present only in this genogroup (Mavroidi et al. 2007) effect on sugar chain unknown (no structure for 12B, 44 and 46)		
15	15A/15B/15C/15F	15F has 4 additional genes; glf, rmlB, rmlD and wcjE	glf, rmlB and rmlD are involved in sugar biosynthesis; wcjE encodes for an acetyltranferase.		
	15A/15B/15C	15A wzd has 69% identity in the last 300 bps when compared to the 15B/C allele	wzd is involved in translocation of mature CPS to the cell surface and thus is responsible for determining the length of the capsule polysaccharide chain		
	15B/15C difference in TA tandem repeat region		wciZ encodes for an O-acetyltransferase - differences in acetylation.		
		near position 413 of wciZ, leading to frameshift in 15C (Bentley et al. 2006)	*15B, 15B/C and 15C results can be assigned.		
16	16A, 16F	Stage 1 mapping against CPS operon refs only			
17	17A, 17F	Stage 1 mapping against CPS operon refs only			
18	18A/18B/18C/18F	18F has an extra acetyltransferase gene (wcxM) and type 18A lacks the acetyltransferase gene wciX (Mavroidi et al., 2007)	Differences in acetylation		
	18B/18C	G>T 168 in wciX leads to early stop codon in 18B (Mavroidi et al., 2007)	wciX encodes for an acetyltransferase - difference in acetylation		
19	19A, 19F	Stage 1 mapping against CPS operon refs only			
	19B/19C	19B lacks genes wchU, (HG264)and glf	wchU encodes for a putative GT and could be responsible for the additional glucose in the capsular polysaccharide repeat unit of 19C; glf encodes for a UDP-galactopyranose mutase whereas HG264 has no functional product.		
22	22A/22F	wcwA and wcwC share no similarity between 22A and 22F.	wcwA, encoding for a putative glycosyl-transferase and wcwC, encoding for a putative O-acetyltranferase - structure for 22A unknown		
23	23A/23B/23F	distinct wzy sequence in all serotypes	wzy encodes for a polymerase and differences in sequence should account for the different polymerization linkages (Mavroidi et al., 2007) - structures for 23A and 23B unknown		
	23A/23B/23F	<i>wchA</i> is identical in 23B and 23F but distinct in 23A.	wchA encodes for a glycosyl-1-phosphatase transferase (Aanensen et al., 2007) - structures for 23A and 23B unknown		

25 and 38	25A/25F/38	wcyV missing in 38(Mavroidi et al., 2007)	wcyV, wcyD and wcyC encode for GTs (Aanensen et al. 2007)- no structures		
	25A/25F/38	wcyDα in serogroup 25 and $wcyDβ$ in serotype 38	available for 25A, 25F or 38		
	25A/25F/38	SNPs in wcyC (Table S4)	-		
28	28A/28F	SNPs in wciU (Table S5)	wciU encodes for a GT - no structures available		
33 and 37	33A/33F/37	37 carries tts - a transferase gene	tts is responsible for the polysaccharide capsule synthesis in 37(Waite et al., 2003)		
	33A/33F	Frameshift mutation insT 433 in 33F <i>wcjE</i> gene	Loss of function of O-acetyltranferase leads to differences in acetylation (Mavroidi et al., 2007)		
	33B/33D	wciNα in 33B / $wciNβ$ in 33C	wciN α encodes for a putative glycosyltranferase whereas wciN α encodes for a putative galactosyltransferase - consistent with differences in structure		
	33C	Stage 1 mapping against CPS operon refs only			
35 and 42	35B, 35F	Stage 1 mapping against CPS operon refs only			
	35A/35C/42	SNPs in genes mnp1, wcrL and wzh	<i>mnp1</i> encodes for a putative nucleotidyltranferase (NDP-mannitol pathway), <i>wcrL</i> , a GT and <i>wzh</i> , a protein-tyrosine phosphatase - consistent with differences in structure		
	35A/35C/42	Frameshift mutation insA 248 in 35A wcrK (Mavroidi et al., 2007)	wcrK encodes for a GT - consistent with differences in structure		
41	41A/41F	Frameshift mutation delG 23 in 41A <i>wcrX</i> (Mavroidi et al., 2007)	wcrX encodes for a acetyltranferase - differences in acetylation		
47	47A, 47F	Stage 1 mapping against CPS operon refs only			

Genetic serotype determinants by serogroup

Serogroup 6

Gene	variant	6A	6B	6C	6D	6A(6E)	6B(6E)
wci∧	allele	wciNα	wciNα	wciNβ	wciNβ	wciNy	wciNγ
wciP	583	[AGT, 194, S]	[AAT, 194, N]	[AGT, 194, S]	[AAT, 194, N]	[AGT, 194, S]	[AAT, 194, N]

Genetic variant 6E is denoted by the predicted serological type with 6E indicated in brackets.

7A, 7F

Gene	variant	7A	7F
wcwD	pseudo	Y, [[587, 588], GT]	N, [[587, 588], G]

In our experience isolates serotyped as 7A often report from PneumoCaT as [mixed: 7A, 7F] rather than 7A. Further investigation required.

Genogroup 7B, 7C and 40

Gene	position	07B	07C	40
wcwK	46	[GAT, D, 15]	[GGT, G, 15]	[AAT, N, 15]
wcwK	145	[CTT, L, 48]	[CTT, L, 48]	[TTT, F, 48]
wcwK	385	[TTT, F, 128]	[TGT, C, 128]	[ACT, T, 128]
wcwK	487	[ACT, T, 162]	[GCT, A, 162]	[ACT, T, 162]
wcwK	706	[CAT, H, 235]	[CAT, H, 235]	[TAT, Y, 235]
wcwK	880	[CTT, L, 293]	[CTT, L, 293]	[TTT, F, 293]
wcwK	928	[AAT, N, 309]	[AAT, N, 309]	[AGT, S, 309]
wcwK	937	[GCA, A, 312]	[GAA, E, 312]	[GAA, E, 312]
wcwK	946	[GGT, G, 315]	[GGT, G, 315]	[GAT, D, 315]

Targets in bold red are the main serotype determining positions.

Differences in the other positions are indicated with a "+" at the end of the serotype result and should be checked with serology.

Future updates to the CTVdb after investigations may remove the need for inclusion of these targets in the CTVdb

Gene	variant	9A	9V	9N	9L
wcjD	detected	Υ	Υ	N	N
wcjE	pseudo	Y, [[721, 722], '-']	N, [[721, 722], G]		

9N/9L determining variants shown on next page.

9N,9L

Gene	Proposed Function	Position	9N	9L
wchA	UDP-glucosyl-1-phosphate transferase	504	[TCT, 168, S]	[TAT, 168, Y]
wchA	UDP-glucosyl-1-phosphate transferase	879	[TCA, 293, S]	[CCA, 293, P]
wcjA	Glycosyltransferase	414	[TAT, 138, Y]	[CAT, 138, H]
wcjA	Glycosyltransferase	429	[AGT, 143, S]	[GGT, 143, G]
wcjA	Glycosyltransferase	528	[GGT, 176, G]	[GAT, 176, D]
wcjA	Glycosyltransferase	636	[AAT, 212, N]	[GAT, 212, D]
wcjA	Glycosyltransferase	852	[TCA, 284, S]	[GCA, 284, A]
wcjA	Glycosyltransferase	957	[ACT, 319, T]	[ATT, 319, I]
wcjB	Glycosyltransferase	789	[ACC, 263, T]	[GCC, 263, A]
wzy	repeat unit polymerase	846	[AAC, 282, N]	[GAC, 282, D]

Serogroup 10

Gene	variant	10A	10B	10C	10F
wcrG	detected	Υ	Υ	N	N
wcrH	detected	N	N	Υ	Υ
wciG	detected	N	N	Υ	Υ
wcrC	allele	wcrCα	wcrC6	wcrCα	wcrC6

Gene	variant	11A	11B	11C	11D	11F
wcwC	detected	Υ	N	N	Υ	Υ
wcjE	detected	Υ	N	N	Υ	Υ
wcwR	detected	N	Υ	Υ	N	N
gct	pseudo (130delA)	N	Υ	N	N	Υ
wcrL	pos 334	AAT			ACT	GCT

Genogroup 12, 44, 46

Genes	Position	12A	12B	12F	44	46
wcil	allele	wcilα	wcilα	wcilß	wcilα	wcilα
wcxD	781	[TTG, 260, L]	[TTG, 260, L]	[TTG, 260, L]	[TTG, 260, L]	[ATG, 260, M]
wcxD	793	[TAT, 264, Y]	[TAT, 264, Y]	[TAT, 264, Y]	[TAT, 264, Y]	[CAT, 264, H]
wcxD	805	[TCA, 268, S]	[TCA, 268, S]	[TCA, 268, S]	[TCA, 268, S]	[CCA, 268, P]
wcxD	809	[ATG, 269, M]	[ATG, 269, M]	[ATG, 269, M]	[ATG, 269, M]	[ACT, 269, T]
wcxD	812	[GCA, 270, A]	[GTA, 270, V]	[GTA, 270, V]	[GTA, 270, V]	[GTA, 270, V]
wcxD	845	[GCT, 281, A]	[GCT, 281, A]	[GCT, 281, A]	[GCT, 281, A]	[GTT, 281, V]
wcxF	256	[GCC, 85, A]	[GCC, 85, A]	[GCC, 85, A]	[GCC, 85, A]	[ACC, 85, T]
wcxF	560	[CTT, 186, L]	[CTT, 186, L]	[CTT, 186, L]	[CCT, 186, P]	[CTT, 186, L]
wcxF	703	[ATA, 234, I]	[CTA, 234, L]	[CTA, 234, L]	[CTA, 234, L]	[CTA, 234, L]
wcxF	787	[CTA, 262, L]	[CTA, 262, L]	[CTA, 262, L]	[ATA, 262, I]	[CTA, 262, L]
wcxF	889	[GTT, 296, V]	[GTT, 296, V]	[GTT, 296, V]	[GTT, 296, V]	[ATT, 296, I]
wcxF	916	[GGT, 305, G]	[GGT, 305, G]	[GGT, 305, G]	[GCT, 305, A]	[AGT, 305, S]
wcxF	1120	[GCC, 373, A]	[GCC, 373, A]	[GCC, 373, A]	[ACC, 373, T]	[GCC, 373, A]
wzy	251	[ATT, 83, I]	[ACT, 83, T]	[ACT, 83, T]	[ACT, 83, T]	[ACT, 83, T]

Gene	variant	15A	15B	15C	15F
wzd	allele	wzdα	wzdβ	wzdβ	
glf	detected	N	N	N	Υ
rmlB	detected	N	N	N	Υ
rmID	detected	N	N	N	Υ
wcjE	detected	N	N	N	Υ
wciZ	pseudo		N, [412, 417]	Y, [412, 417]	

PneumoCaT can detect mixed populations of 15B and 15C and thus can report 15B, 15C or 15B/C results. We have not tested the sensitivity of mixed serotype detection.

Serogroup 18

Gene	variant	18A	18B	18C	18F
glf	detected	N	Υ		
wciX	detected	N	Υ	Υ	Υ
wcxM	detected	N	N	N	Υ
wciX	pseudo		Y, [[168, 171], TGA]	N, [[168, 171], GGA]	N, [[168, 171], GGA]

19B, 19C

Gene	variant	19B	19C
HG264	detected	N	Υ
glf	detected	Ν	Υ
wchU	detected	N	Υ

We are aware that some 19C variants may not have HG264. As it has no known function, this determining variant *may* be removed in future updates.

Gene	variant	22A	22F
wcwA	detected	Υ	N
wcwC	detected	Υ	N

Serogroup 23

Gene	variant	23A	23B	23F
wchA	allele	wchΑα	wchΑβ	wchΑβ
wzy	allele	wzyα	wzyγ	wzyβ

Genogroup 25A, 25F and 38

Gene	position	25A	25F	38
wcyD	allele	wcyDα	wcyDα	wcyDв
wcyV	detected	N	N	Υ
wcyC	429	[GCT, 143, A]	[ACT, 143, T]	[GCT, 143, A]
wcyC	465	[ACA, 155, T]	[AAA, 155, K]	[ACA, 155, T]
wcyC	573	[GAA, 191, E]	[GGA, 191, G]	[GAA, 191, E]
wcyC	660	[CGA, 220, R]	[CTA, 220, L]	[CGA, 220, R]
wcyC	891	[ATG, 297, M]	[CTG, 297, L]	[ATG, 297, M]
wcyC	903	[TGG, 301, W]	[CGG, 301, R]	[TGG, 301, W]

Gene	position	28A	28F
wciU	118	[TGT, 39, C]	[TAT, 39, Y]
wciU	214	[ATA, 71, I]	[ATG, 71, M]
wciU	253	[ATG, 84, M]	[CTG, 84, L]
wciU	736	[CAA, 245, Q]	[AAG, 245, K]
wciU	739	[CCA, 246, P]	[TCA, 246, S]
wciU	742	[GTT, 247, V]	[GCT, 247, A]
wciU	751	[GTA, 250, V]	[ATA, 250, I]
wciU	769	[AGT, 256, S]	[AAT, 256, N]
wciU	781	[AAA, 260, K]	[AAT, 260, N]
wciU	838	[TCA, 279, S]	[CCA, 279, P]
wciU	880	[GCT, 293, A]	[GTT, 293, V]
wciU	883	[GGA, 294, G]	[GAA, 294, E]
wciU	892	[GAA, 297, E]	[GAT, 297, D]
wciU	895	[CAA, 298, Q]	[CGA, 298, R]
wciU	913	[GTA, 304, V]	[GCA, 304, A]
wciU	985	[ACG, 328, T]	[ATG, 328, M]
wciU	1024	[ATA, 341, I]	[GTT, 341, V]
wciU	1027	[GCA, 342, A]	[CCA, 342, P]
wciU	1036	[TGT, 345, C]	[TGG, 345, W]

Genogroup 33A, 33F, 37

Gene	variant	33A	33F	37
wcjE	pseudo	N, [[433, 434], T]	Y, [[433, 434], TA]	
tts	detected	N	N	Υ

Genogroup 33B, 33D

Gene	variant	33B	33D
wciN	allele	wciNα	wciNβ

Genogroup 35A, 35C and 42

Gene	position	35A	35C	42
wcrK	pseudo	[1, [248, 249], GA]	[0, [248, 249], G]	[0, [248, 249], G]
mnp1	198	[CGC, 66, R]	[TGC, 66, C]	[TGC, 66, C]
mnp1	288	[GTT, 96, V]	[CTT, 96, L]	[CTT, 96, L]
mnp1	456	[GGC,152, G]	[GAC, 152, D]	[GAC, 152, D]
mnp1	540	[GAC, 180, D]	[GCC, 180, A]	[GCC, 180, A]
mnp1	564	[GAT, 188, D]	[AAT, 188, N]	[AAT, 188, N]
mnp1	594	[CAC, 198, H]	[TAT, 198, Y]	[TAT, 198, Y]
wcrL	453	[CAG, 151, Q]	[CAG, 151, Q]	[CGG, 151, R]
wzh	465	[AGG, 155, R]	[AGG, 155, R]	[ATG, 155, M]
wzh	525	[CGT, 175, R]	[CGT, 175, R]	[CCT, 175, P]
wzh	528	[TAT, 176, Y]	[TAT, 176, Y]	[GAT, 176, D]
wzh	567	[CAG, 189, Q]	[CAG, 189, Q]	[CGT, 189, R]

Serogroup 41

Gene	variant	41A	41F
wcrX	pseudo	Y, [[23, 24], '-']	N, [[23, 24], G]

References

- Aanensen, D.M. et al., 2007. Predicted Functions and Linkage Specificities of the Products of the Streptococcus pneumoniae Capsular Biosynthetic Loci. *Journal of Bacteriology*, 189(21), pp.7856–7876.
- Bentley, S.D. et al., 2006. Genetic Analysis of the Capsular Biosynthetic Locus from All 90 Pneumococcal Serotypes. PLoS Genetics, 2(3), p.e31.
- Kapatai, G. et al., 2016. Whole genome sequencing of *Streptococcus pneumoniae*: development, evaluation and verification of targets for serogroup and serotype prediction using an automated pipeline. *PeerJ*, 4, p.e2477.
- Ko, K.S., Baek, J.Y. & Song, J.-H., 2013. Capsular gene sequences and genotypes of " serotype 6E" Streptococcus pneumoniae isolates. *Journal of clinical microbiology*, 51(10), pp.3395–9.
- Mavroidi, A. et al., 2007. Genetic Relatedness of the Streptococcus pneumoniae Capsular Biosynthetic Loci. Journal of Bacteriology, 189(21), pp.7841–7855.
- Park, I.H. et al., 2007. Discovery of a new capsular serotype (6C) within serogroup 6 of Streptococcus pneumoniae. *Journal of Clinical Microbiology*, 45(4), pp.1225–1233.
- Sheppard, C.L. et al., 2010. Streptococcus pneumoniae isolates expressing a capsule with epitopes of both serotypes 6A and 6B. *Clinical and Vaccine Immunology*, 17(11), pp.1820–1822.
- Yang, J. et al., 2011. Comparative structural and molecular characterization of Streptococcus pneumoniae capsular polysaccharide serogroup 10. *The Journal of biological chemistry*, 286(41), pp.35813–22.