Armónicos Esféricos

Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

7 de junio de 2022

Agenda Armónicos esféricos

- Polinomios asociados de Legendre
 - Definición, Fórmula de Rodrigues, Ecuación diferencial
 - Relaciones de recurrencia, generatriz, ortogonalidad
 - Ejemplos y representación gráfica
- Armónicos esféricos
 - Armónicos esféricos: generalidades, ortogonalidad y expansiones
 - Relaciones de recurrencia y valores extremos $Y_I^m(\theta,\varphi)$
 - Representación Gráfica
 - Algunos armónicos esféricos
- Sección
- Recapitulando

• Los polinomios asociados de Legendre son una "generalización" de los Polinomios de Legendre que nos lleva a los Armónicos esféricos.

- Los polinomios asociados de Legendre son una "generalización" de los Polinomios de Legendre que nos lleva a los Armónicos esféricos.
- La generalización es $P_I^m(x) = (-1)^m (1-x^2)^{m/2} \frac{d^m}{dx^m} P_I(x)$, donde, P_I^0 son las funciones originales de Legendre.

- Los polinomios asociados de Legendre son una "generalización" de los Polinomios de Legendre que nos lleva a los Armónicos esféricos.
- La generalización es $P_I^m(x) = (-1)^m (1-x^2)^{m/2} \frac{d^m}{dx^m} P_I(x)$, donde, P_I^0 son las funciones originales de Legendre.
- La fórmula de Rodrigues será $P_I(x) = \frac{1}{2^l I!} \frac{d^l}{dx^l} \left[\left(x^2 1 \right)^l \right] \Rightarrow P_I^m(x) = \frac{(-1)^m}{2^l I!} \left(1 x^2 \right)^{m/2} \frac{d^{l+m}}{dx^{l+m}} \left(x^2 1 \right)^l$

- Los polinomios asociados de Legendre son una "generalización" de los Polinomios de Legendre que nos lleva a los Armónicos esféricos.
- La generalización es $P_I^m(x) = (-1)^m (1-x^2)^{m/2} \frac{d^m}{dx^m} P_I(x)$, donde, P_I^0 son las funciones originales de Legendre.
- La fórmula de Rodrigues será $P_l(x) = \frac{1}{2^l l!} \frac{d^l}{dx^l} \left[\left(x^2 1 \right)^l \right] \Rightarrow P_l^m(x) = \frac{(-1)^m}{2^l l!} \left(1 x^2 \right)^{m/2} \frac{d^{l+m}}{dx^{l+m}} \left(x^2 1 \right)^l$
- Los polinomios asociados de Legendre son solución de la ecuación de Legendre generalizada

$$(1-x^2)\frac{d^2}{dx^2}P_I^m(x) - 2x\frac{d}{dx}P_I^m(x) + \left[I(I+1) - \frac{m^2}{1-x^2}\right]P_I^m(x) = 0$$

• y equivalentemente en su forma autoadjunta

$$\frac{\mathrm{d}}{\mathrm{d}x}\left[\left(1-x^2\right)\frac{\mathrm{d}}{\mathrm{d}x}P_I^m(x)\right]+\left[I(I+1)-\frac{m^2}{1-x^2}\right]P_I^m(x)=0$$

- Los polinomios asociados de Legendre son una "generalización" de los Polinomios de Legendre que nos lleva a los Armónicos esféricos.
- La generalización es $P_I^m(x) = (-1)^m (1-x^2)^{m/2} \frac{d^m}{d \vee m} P_I(x)$, donde, P_{L}^{0} son las funciones originales de Legendre.
- La fórmula de Rodrigues será $P_I(x) = \frac{1}{2^{I}I} \frac{d^I}{dx^I} \left| (x^2 1)^I \right|$ $P_{l}^{m}(x) = \frac{(-1)^{m}}{2^{l}} (1 - x^{2})^{m/2} \frac{d^{l+m}}{dx^{l+m}} (x^{2} - 1)^{l}$
- Los polinomios asociados de Legendre son solución de la ecuación de Legendre generalizada

$$(1-x^2)\frac{d^2}{dx^2}P_I^m(x) - 2x\frac{d}{dx}P_I^m(x) + \left[I(I+1) - \frac{m^2}{1-x^2}\right]P_I^m(x) = 0$$

• y equivalentemente en su forma autoadjunta

$$\frac{\mathrm{d}}{\mathrm{d}x}\left[\left(1-x^2\right)\frac{\mathrm{d}}{\mathrm{d}x}P_I^m(x)\right] + \left[I(I+1) - \frac{m^2}{1-x^2}\right]P_I^m(x) = 0$$

• Como m^2 aparece en la ecuación diferencial es costumbre acotar $-m \le l \le m$. Además se puede demostrar que $P_l^m \propto P_l^{-m}$ de la forma $P_{l}^{-m}(x) = (-1)^{m} \frac{(l-m)!}{(l+m)!} P_{l}^{m}(x).$

 Las relaciones de recurrencia para los polinomios asociados de Legendre son mas complicadas y variadas:

$$\begin{split} P_{l}^{m+1}(x) + \frac{2mx}{(1-x^{2})^{1/2}} P_{l}^{m}(x) + (l+m)(l-m+1) P_{l}^{m-1}(x) &= 0 \\ (2l+1)x P_{l}^{m}(x) - (l+m) P_{l-1}^{m}(x) - (l-m+1) P_{l+1}^{m}(x) &= 0 \\ (2l+1) \left(1-x^{2}\right)^{1/2} P_{l}^{m}(x) - P_{l-1}^{m+1}(x) + P_{l+1}^{m+1}(x) &= 0 \\ (2l+1) \left(1-x^{2}\right)^{1/2} P_{l}^{m}(x) - (l-m+1)(l-m+2) P_{l+1}^{m-1}(x) + (l+m)(l+m-1) P_{l-1}^{m-1}(x) &= 0 \\ \left(1-x^{2}\right)^{1/2} \left(P_{l}^{m}(x)\right)' - \frac{1}{2}(l+m)(l-m+1) P_{l}^{m-1}(x) + \frac{1}{2} P_{l}^{m+1}(x) &= 0 \\ \left(1-x^{2}\right)^{1/2} \left(P_{l}^{m}(x)\right)' - (l+m)(l-m+1) P_{l}^{m-1}(x) - \frac{mx}{(1-x^{2})^{1/2}} P_{l}^{m}(x) &= 0 \end{split}$$

 Las relaciones de recurrencia para los polinomios asociados de Legendre son mas complicadas y variadas:

$$\begin{split} P_{l}^{m+1}(x) + \frac{2mx}{\left(1-x^{2}\right)^{1/2}} P_{l}^{m}(x) + (l+m)(l-m+1) P_{l}^{m-1}(x) &= 0 \\ (2l+1)x P_{l}^{m}(x) - (l+m) P_{l-1}^{m}(x) - (l-m+1) P_{l+1}^{m}(x) &= 0 \\ (2l+1) \left(1-x^{2}\right)^{1/2} P_{l}^{m}(x) - P_{l-1}^{m+1}(x) + P_{l+1}^{m+1}(x) &= 0 \\ (2l+1) \left(1-x^{2}\right)^{1/2} P_{l}^{m}(x) - (l-m+1)(l-m+2) P_{l+1}^{m-1}(x) + (l+m)(l+m-1) P_{l-1}^{m-1}(x) &= 0 \\ \left(1-x^{2}\right)^{1/2} \left(P_{l}^{m}(x)\right)' - \frac{1}{2}(l+m)(l-m+1) P_{l}^{m-1}(x) + \frac{1}{2} P_{l}^{m+1}(x) &= 0 \\ \left(1-x^{2}\right)^{1/2} \left(P_{l}^{m}(x)\right)' - (l+m)(l-m+1) P_{l}^{m-1}(x) - \frac{mx}{\left(1-x^{2}\right)^{1/2}} P_{l}^{m}(x) &= 0 \end{split}$$

• La función generatriz para los polinomios de Legendre es $\mathcal{A}_m(x,t) \equiv \frac{(-1)^m(2m-1)!!}{(1-2xt+t^2)^{m+1/2}} = \sum_{s=0}^{\infty} (1-x^2)^{-1/2} P_{s+m}^m(x) t^s$

 Las relaciones de recurrencia para los polinomios asociados de Legendre son mas complicadas y variadas:

$$\begin{split} P_{l}^{m+1}(x) + \frac{2mx}{\left(1-x^{2}\right)^{1/2}} P_{l}^{m}(x) + (l+m)(l-m+1) P_{l}^{m-1}(x) &= 0 \\ (2l+1)x P_{l}^{m}(x) - (l+m) P_{l-1}^{m}(x) - (l-m+1) P_{l+1}^{m}(x) &= 0 \\ (2l+1) \left(1-x^{2}\right)^{1/2} P_{l}^{m}(x) - P_{l-1}^{m+1}(x) + P_{l+1}^{m+1}(x) &= 0 \\ (2l+1) \left(1-x^{2}\right)^{1/2} P_{l}^{m}(x) - (l-m+1)(l-m+2) P_{l+1}^{m-1}(x) + (l+m)(l+m-1) P_{l-1}^{m-1}(x) &= 0 \\ \left(1-x^{2}\right)^{1/2} \left(P_{l}^{m}(x)\right)' - \frac{1}{2}(l+m)(l-m+1) P_{l}^{m-1}(x) + \frac{1}{2} P_{l}^{m+1}(x) &= 0 \\ \left(1-x^{2}\right)^{1/2} \left(P_{l}^{m}(x)\right)' - (l+m)(l-m+1) P_{l}^{m-1}(x) - \frac{mx}{(1-x^{2})^{1/2}} P_{l}^{m}(x) &= 0 \end{split}$$

- La función generatriz para los polinomios de Legendre es $A_m(x,t) \equiv \frac{(-1)^m(2m-1)!!}{(1-2xt+t^2)^{m+1/2}} = \sum_{s=0}^{\infty} (1-x^2)^{-1/2} P_{s+m}^m(x) t^s$
- La ortogonalidad de los polinomios asociados de Legendre son: $\int_{-1}^{1} P_{p}^{m}(x) P_{q}^{m}(x) \mathrm{d}x \equiv \int_{0}^{\pi} P_{p}^{m}(\cos \theta) P_{q}^{m}(\cos \theta) \sin \theta \mathrm{d}\theta = \frac{2}{2p+1} \frac{(p+m)!}{(p-m)!} \delta_{pq} \text{ y} \qquad \int_{-1}^{1} P_{p}^{m}(x) P_{p}^{n}(x) \mathrm{d}x = \frac{(p+m)!}{m(p-m)!} \delta_{mn}$

Polinomios		cartesiana		polares
$\frac{P_0^0(x)}{P_1^{-1}(x)}$	=	1		
$P_1^{-1}(x)$	=	$\frac{1}{2}(1-x^2)^{1/2}$	=	$rac{1}{2}$ sen $ heta$
$P_1^0(x)$	=	×	=	$\cos \theta$
$P_1^1(x)$	=	$-(1-x^2)^{1/2}$	=	- sen $ heta$
$P_2^{-2}(x)$	=	$\frac{1}{8}(1-x^2)$	=	$\frac{1}{8}$ sen θ
$P_2^{-1}(x)$	=	$\frac{1}{2}x\left(1-x^2\right)^{1/2}$	=	$\frac{1}{2}\cos\theta\sin\theta$
$P_2^0(x)$	=	$\frac{1}{2}(3x^2-1)$	=	$\frac{1}{2}(3\cos^2\theta-1)$
$P_{2}^{1}(x)$	=	$-3x\left(1-x^2\right)^{1/2}$	=	$-3\cos\theta\sin\theta$
$P_2^2(x)$	=	$3(1-x^2)$	=	$3 \operatorname{sen} \theta$

• Definimos los armónicos esféricos en función de los polinomios asociados de Legendre como $Y_l^m(\theta,\varphi) \equiv \sqrt{\frac{2l+1}{4\pi}\frac{(l-m)!}{(l+m)!}}P_l^m(\cos\theta)e^{im\varphi}$

- Definimos los armónicos esféricos en función de los polinomios asociados de Legendre como $Y_l^m(\theta,\varphi) \equiv \sqrt{\frac{2l+1}{4\pi}\frac{(l-m)!}{(l+m)!}}P_l^m(\cos\theta)e^{im\varphi}$
- Estas funciones forman una base ortonomal de funciones con producto interno $\int_0^{2\pi} \mathrm{d}\varphi \int_0^\pi \sin\theta \mathrm{d}\theta \left[Y_{l_1}^{m_1}(\theta,\varphi) \right]^* Y_{l_2}^{m_2}(\theta,\varphi) = \delta_{l_1 l_2} \delta_{m_1 m_2}$

- Definimos los armónicos esféricos en función de los polinomios asociados de Legendre como $Y_I^m(\theta,\varphi) \equiv \sqrt{\frac{2I+1}{4\pi}\frac{(I-m)!}{(I+m)!}}P_I^m(\cos\theta)e^{im\varphi}$
- Estas funciones forman una base ortonomal de funciones con producto interno $\int_0^{2\pi} \mathrm{d}\varphi \int_0^\pi \sin\theta \mathrm{d}\theta \left[Y_{l_1}^{m_1}(\theta,\varphi) \right]^* Y_{l_2}^{m_2}(\theta,\varphi) = \delta_{l_1 l_2} \delta_{m_1 m_2}$
- Cualquier función $f(\theta, \varphi)$ puede ser expandida como $f(\theta, \varphi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} c_{lm} Y_{l}^{m}(\theta, \varphi) \Leftrightarrow$ $c_{lm} = \langle Y_{l}^{m} \mid f(\theta, \varphi) \rangle = \int_{0}^{2\pi} \mathrm{d}\varphi \int_{0}^{\pi} \sin\theta \mathrm{d}\theta \ Y_{l}^{m}(\theta, \varphi)^{*} f(\theta, \varphi)$

- Definimos los armónicos esféricos en función de los polinomios asociados de Legendre como $Y_I^m(\theta,\varphi) \equiv \sqrt{\frac{2I+1}{4\pi}\frac{(I-m)!}{(I+m)!}}P_I^m(\cos\theta)e^{im\varphi}$
- Estas funciones forman una base ortonomal de funciones con producto interno $\int_0^{2\pi} \mathrm{d}\varphi \int_0^{\pi} \sin\theta \mathrm{d}\theta \left[Y_{l_1}^{m_1}(\theta,\varphi) \right]^* Y_{l_2}^{m_2}(\theta,\varphi) = \delta_{l_1 l_2} \delta_{m_1 m_2}$
- Cualquier función $f(\theta, \varphi)$ puede ser expandida como $f(\theta, \varphi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} c_{lm} Y_{l}^{m}(\theta, \varphi) \Leftrightarrow c_{lm} = \langle Y_{l}^{m} \mid f(\theta, \varphi) \rangle = \int_{0}^{2\pi} d\varphi \int_{0}^{\pi} \sin\theta d\theta Y_{l}^{m}(\theta, \varphi)^{*} f(\theta, \varphi)$
- Esta expansión puede interpretarse como unaexpansión multipolar: la expansión de Laplace: $f(\theta,\varphi) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} C_{\ell}^{m} Y_{\ell}^{m}(\theta,\varphi) \ C_{0}^{0}$ representa el monopolo; C_{1}^{-1} , C_{1}^{0} y C_{1}^{1} representan el dipolo, etc, etc.

- Definimos los armónicos esféricos en función de los polinomios asociados de Legendre como $Y_I^m(\theta,\varphi) \equiv \sqrt{\frac{2I+1}{4\pi}\frac{(I-m)!}{(I+m)!}}P_I^m(\cos\theta)e^{im\varphi}$
- Estas funciones forman una base ortonomal de funciones con producto interno $\int_0^{2\pi} \mathrm{d}\varphi \int_0^{\pi} \sin\theta \mathrm{d}\theta \left[Y_{l_1}^{m_1}(\theta,\varphi) \right]^* Y_{l_2}^{m_2}(\theta,\varphi) = \delta_{l_1 l_2} \delta_{m_1 m_2}$
- Cualquier función $f(\theta, \varphi)$ puede ser expandida como $f(\theta, \varphi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} c_{lm} Y_l^m(\theta, \varphi) \Leftrightarrow c_{lm} = \langle Y_l^m \mid f(\theta, \varphi) \rangle = \int_0^{2\pi} \mathrm{d}\varphi \int_0^{\pi} \sin\theta \mathrm{d}\theta \ Y_l^m(\theta, \varphi)^* f(\theta, \varphi)$
- Esta expansión puede interpretarse como unaexpansión multipolar: la expansión de Laplace: $f(\theta,\varphi) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} C_{\ell}^{m} Y_{\ell}^{m}(\theta,\varphi) \ C_{0}^{0}$ representa el monopolo; C_{1}^{-1} , C_{1}^{0} y C_{1}^{1} representan el dipolo, etc, etc.
- Podemos re-escribir la expresión anterior como $f(\theta,\varphi) = C + C_i n^i + C_{ij} n^i n^j + C_{ijk} n^i n^j n^k + C_{ijk\ell} n^i n^j n^k n^\ell + \cdots$. Los n^i son las componentes de un vector unitario en la dirección θ y φ . C es el monopolo; los tres C_i , representan el dipolo, etc

Relaciones de recurrencia

 A partir de las relaciones de recurrencia de las funciones asociadas de Legendre, obtenemos:

$$\begin{split} \cos\theta Y_l^m &= \left[\frac{(l-m+1)(l+m+1)}{(2l+1)(2l+3)}\right]^{1/2} Y_{l+1}^m + \left[\frac{(l-m)(l+m)}{(2l-1)(2l+1)}\right]^{1/2} Y_{l-1}^m, \\ e^{\pm i\varphi} &\sin\theta Y_l^m = \mp \left[\frac{(l\pm m+1)(l\pm m+2)}{(2l+1)(2l+3)}\right]^{1/2} Y_{l+1}^{m\pm 1} \pm \left[\frac{(l\mp m)(l\mp m-1)}{(2l-1)(2l+1)}\right]^{1/2} Y_{l-1}^{m\pm 1}. \end{split}$$

Relaciones de recurrencia

 A partir de las relaciones de recurrencia de las funciones asociadas de Legendre, obtenemos:

$$\begin{split} \cos\theta Y_l^m &= \left[\frac{(l-m+1)(l+m+1)}{(2l+1)(2l+3)}\right]^{1/2} Y_{l+1}^m + \left[\frac{(l-m)(l+m)}{(2l-1)(2l+1)}\right]^{1/2} Y_{l-1}^m, \\ e^{\pm i\varphi} &\sin\theta Y_l^m = \mp \left[\frac{(l\pm m+1)(l\pm m+2)}{(2l+1)(2l+3)}\right]^{1/2} Y_{l+1}^{m\pm 1} \pm \left[\frac{(l\mp m)(l\mp m-1)}{(2l-1)(2l+1)}\right]^{1/2} Y_{l-1}^{m\pm 1}. \end{split}$$

• Para $\theta=0$, el valor de φ se vuelve irrelevante, y todo Y_l^m con dependencia de φ desaparece y como $P_l(1)=1$, entonces $Y_l^m(0,\varphi)=\sqrt{\frac{2l+1}{4\pi}}\delta_{m0}$

Relaciones de recurrencia

 A partir de las relaciones de recurrencia de las funciones asociadas de Legendre, obtenemos:

$$\begin{split} \cos\theta Y_l^m &= \left[\frac{(l-m+1)(l+m+1)}{(2l+1)(2l+3)}\right]^{1/2} Y_{l+1}^m + \left[\frac{(l-m)(l+m)}{(2l-1)(2l+1)}\right]^{1/2} Y_{l-1}^m, \\ e^{\pm i\varphi} &\sin\theta Y_l^m = \mp \left[\frac{(l\pm m+1)(l\pm m+2)}{(2l+1)(2l+3)}\right]^{1/2} Y_{l+1}^{m\pm 1} \pm \left[\frac{(l\mp m)(l\mp m-1)}{(2l-1)(2l+1)}\right]^{1/2} Y_{l-1}^{m\pm 1}. \end{split}$$

- Para $\theta=0$, el valor de φ se vuelve irrelevante, y todo Y_l^m con dependencia de φ desaparece y como $P_l(1)=1$, entonces $Y_l^m(0,\varphi)=\sqrt{\frac{2l+1}{4\pi}}\delta_{m0}$
- Para $\theta = \pi$ tendremos $Y_l^m(\pi, \varphi) = (-1)^l \sqrt{\frac{2l+1}{4\pi}} \delta_{m0}$.

Representación Gráfica

Wikipedia https://commons.wikimedia.org/wiki/File: Sphericalfunctions.svg

Algunos armónicos esféricos

Armónico	Esféricas	Cartesianas
$Y_0^0(\theta,\varphi)$	$=\frac{1}{\sqrt{\Lambda\pi}}$	
$Y_1^1(heta,arphi)$	$=-\sqrt{\frac{3}{8\pi}} \operatorname{sen} \theta e^{i\varphi}$	$=-\sqrt{\frac{3}{8\pi}}(x+iy)/r$
$Y_1^0(heta,arphi)$	$=\sqrt{\frac{3}{4\pi}}\cos\theta$	$=\sqrt{\frac{3}{4\pi}}z/r$
$Y_1^{-1}(\theta,\varphi)$	$=+\sqrt{rac{3}{8\pi}}\operatorname{sen} heta e^{-iarphi}$	$=\sqrt{\frac{3}{8\pi}}(x-iy)/r$
$Y_2^2(\theta,\varphi)$	$=\sqrt{rac{5}{96\pi}}$ 3 sen 2 $ heta$ e 2iarphi	$=3\sqrt{\frac{5}{96\pi}}\left(x^2-y^2+2ixy\right)/r^2$
$Y_2^1(\theta,\varphi)$	$=-\sqrt{rac{5}{24\pi}}$ 3 sen $ heta\cos heta e^{iarphi}$	$=-\sqrt{\frac{5}{24\pi}}3z(x+iy)/r^2$
$Y_2^0(\theta,\varphi)$	$=\sqrt{\frac{5}{4\pi}}\left(\frac{3}{2}\cos^2\theta-\frac{1}{2}\right)$	$= \sqrt{\frac{5}{4\pi}} \left(\frac{3}{2} z^2 - \frac{1}{2} r^2 \right) / r^2$
$Y_2^{-1}(\theta,\varphi)$	$=\sqrt{\frac{5}{24\pi}}$ 3 sen θ cos $\theta e^{-i\varphi}$	$=+\sqrt{\frac{5}{24\pi}}3z(x-iy)/r^2$
$Y_2^{-2}(\theta,\varphi)$	$=\sqrt{\frac{5}{96\pi}}3 \operatorname{sen}^2 \theta e^{-2i\varphi}$	$=3\sqrt{\frac{5}{96\pi}}\left(x^2-y^2-2ixy\right)/r^2$
$Y_3^3(\theta,\varphi)$	$=-\sqrt{rac{7}{2880\pi}}$ 15 sen $^3 heta e^{3iarphi}$	$= -\sqrt{\frac{7}{2880\pi}} 15 \left[x^3 - 3xy^2 + i \left(3x^2y - y^3 \right) \right] / r^3$
$Y_3^2(\theta,\varphi)$	$=\sqrt{rac{7}{480\pi}}15\cos heta ext{sen}^2 hetae^{2iarphi}$	$=\sqrt{\frac{7}{480\pi}}15z\left(x^2-y^2+2ixy\right)/r^3$
$Y^1_3(heta,arphi)$	$=-\sqrt{rac{7}{48\pi}}\left(rac{15}{2}\cos^2 heta-rac{3}{2} ight)\operatorname{sen} heta e^{iarphi}$	$=-\sqrt{\frac{7}{48\pi}}\left(\frac{15}{2}z^2-\frac{3}{2}r^2\right)(x+iy)/r^3$
$Y_3^0(\theta,\varphi)$	$=\sqrt{\frac{7}{4\pi}}\left(\frac{5}{2}\cos^3\theta-\frac{3}{2}\cos\theta\right)$	$=\sqrt{\frac{7}{4\pi}}z\left(\frac{5}{2}z^2-\frac{3}{2}r^2\right)/r^3$
$Y_3^{-1}(\theta,\varphi)$	$=+\sqrt{\frac{7}{48\pi}}\left(\frac{15}{2}\cos^2\theta-\frac{3}{2}\right)\sin\theta e^{-i\varphi}$	$=\sqrt{\frac{7}{48\pi}}\left(\frac{15}{2}z^2-\frac{3}{2}r^2\right)(x-iy)/r^3$
$Y_3^{-2}(\theta,\varphi)$	$= \sqrt{\frac{7}{480\pi}} 15 \cos \theta \sin^2 \theta e^{-2i\varphi}$	$= \sqrt{\frac{7}{480\pi}} 15z \left(x^2 - y^2 - 2ixy \right) / r^3$
$Y_3^{-3}(\theta,\varphi)$	$=+\sqrt{\frac{7}{2880\pi}}15\mathrm{sen}^3\theta e^{-3i\varphi}$	$= \sqrt{\frac{7}{2880\pi}} 15 \left[x^3 - 3xy^2 - i \left(3x^2y - y^3 \right) \right] / r^3$

Título transparencia

•

Recapitulando

En presentación consideramos

