## 2. előadás

## 2016. szeptember 19.

**Emlékeztető.** Korlátos és zárt [a, b] intervallumon folytonos függvények fontos tulajdonságaiból kettőt ismertünk meg:

- $\bullet$  [a, b]-n folytonos függvény korlátos,
- az abszolút szélsőértékek létezésére vonatkozó Weierstrass-tételt.

Most további fontos tulajdonságokat fogunk igazolni.

#### Bolzano-tétel.

Tegyük fel, hogy az  $f:[a,b] \to \mathbb{R}$  függvény

- $\bullet \ folytonos \ [a,b]\hbox{-}n,$
- $f(a) \cdot f(b) < 0$

 $(f\ a\ k\acute{e}t\ v\acute{e}gpontban\ k\"{u}l\"{o}nb\"{o}z\~{o}\ el\~{o}jel\~{u})$ 

$$\exists \, \xi \in (a,b),$$

ami gyöke az f függvénynek, azaz

$$f(\xi) = 0$$

#### Szemléletesen:



 $\mathbf{Megjegyz\acute{e}s}$ . A fenti ábra azt is illusztrálja, hogy f-nek az intervallumban több gyöke is lehet, és ezek az intervallumban "bárhol" elhelyezkedhetnek.  $\blacksquare$ 

Bizonyítás. (A Bolzano-féle felezési eljárással.)

Tegyük fel, hogy

$$f(a) < 0 < f(b)$$
.

A  $\xi$  számot egymásba skatulyázott zárt intervallumsorozat közös pontjaként fogjuk definiálni. Legyen

$$[x_0,y_0]:=[a,b]$$

Az intervallumot megfelezzük. Legyen

$$z_0 := \frac{a+b}{2}.$$

Három eset lehetséges:

- 1.  $f(z_0) = 0$ , ekkor  $\xi := z_0$  gyöke az egyenletnek.
- 2.  $f(z_0) > 0$  esetén legyen

$$[x_1,y_1]:=[a,z_0]$$

$$\xrightarrow[a]{\bullet} f(z_0)$$

$$f(a)\bullet$$

3.  $f(z_0) < 0$  esetén legyen

Az  $[x_1, y_1]$  intervallumot megfelezve is három eset lehetséges.

:

Az eljárást folytatjuk.

Vagy véges sok lépésben találunk olyan  $\xi$ -t, amelyre  $f(\xi) = 0$ , vagy nem. Az utóbbi esetben

• f(b)

 $\exists [x_n, y_n] \ (n \in \mathbb{N}) \text{ intervallumsorozat, amelyre}$ 

(i) 
$$[x_{n+1}, y_{n+1}] \subset [x_n, y_n] \ (\forall n \in \mathbb{N}),$$

(ii) 
$$f(x_n) < 0$$
,  $f(y_n) > 0 \ (\forall n \in \mathbb{N})$ 

(iii) 
$$y_n - x_n = \frac{b-a}{2^n} \ (\forall n \in \mathbb{N}).$$

A Cantor-féle közösrész tételből és (iii)-ből következik, hogy az intervallumsorozatnak pontosan egy közös pontja van. Legyen ez  $\xi$ , azaz

egyértelműen 
$$\exists \xi \in \bigcap_{n \in \mathbb{N}} [x_n, y_n] \neq \emptyset$$
.

A konstrukcióból következik, hogy

$$\xi = \lim(x_n) = \lim(y_n).$$

Mivel f folytonos  $\xi$ -ben, ezért

$$\lim (f(x_n)) = f(\xi) = \lim (f(y_n)).$$

De (ii)-ből

$$\lim (f(x_n)) \le 0 \le \lim (f(y_n)),$$

azaz  $f(\xi) \leq 0$  és  $f(\xi) \geq 0$ , ami csak úgy teljesülhet, ha  $f(\xi) = 0$ .

A bizonyítás hasonló, ha f(a) > 0 és f(b) < 0.

Megjegyzés. Az eljárással az f(x) = 0 egyenlet közelítő megoldásait is elő lehet állítani.

#### Bolzano-Darboux-tétel.

$$\left. \begin{array}{c} \textit{Ha az } f: [a,b] \rightarrow \mathbb{R} \textit{ f\"{u}ggv\'{e}ny} \\ \textit{folytonos } [a,b]\text{-}n \end{array} \right\} \quad \Longrightarrow \quad \begin{array}{c} \textit{f minden } f(a) \textit{ \'{e}s } f(b) \textit{ k\"{o}z\"{o}tti \'{e}rt\'{e}ket felvesz } [a,b]\text{-}n, \\ \textit{azaz ha } f(a) < f(b), \textit{ akkor} \\ \forall \textit{c} \in \big(f(a),f(b)\big)\text{-}hez \ \exists \, \xi \in (a,b): \ f(\xi) = \textit{c}. \end{array}$$

Bizonyítás. Alkalmazzuk a Bolzano-tételt a  $\varphi(x) := f(x) - c \ (x \in [a, b])$  függvényre.

**Definíció.** Legyen  $I \subset \mathbb{R}$  tetszőleges intervallum. Az  $f \in \mathbb{R} \to \mathbb{R}$  függvény **Darboux-tulajdonságú** I-n, ha minden  $a,b \in I$ , a < b esetén az f függvény minden f(a) és f(b) közötti értéket felvesz [a,b]-ben.

Az előzőek alapján a Bolzano–Darboux-tételt úgy is megfogalmazhatjuk, hogy a korlátos és zárt [a,b] intervallumon folytonos függvény Darboux-tulajdonságú [a,b]-n. Ennek felhasználásával viszonylag egyszerűen igazolhatók a tetszőleges  $I \subset \mathbb{R}$  intervallumon  $(I = (a,b), (a,b], (0,+\infty), (-\infty,+\infty),$  stb.) folytonos függvények alábbi tulajdonságai.

**Tétel.** Legyen  $I \subset \mathbb{R}$  tetszőleges intervallum, és tegyük fel, hogy az  $f: I \to \mathbb{R}$  függvény folytonos I-n. Ekkor

 $1^o\ f\ Darboux\text{-}tulajdonságú\ I\text{-}n,$ 

 $2^{\circ} \mathcal{R}_f$  intervallum, vagyis intervallum folytonos képe is intervallum.

Megjegyzés. Van Darboux-tulajdonságú NEM folytonos függvény is. ■

### Az inverz függvény folytonossága

**Emlékeztetünk** arra, hogy az  $f \in \mathbb{R} \to \mathbb{R}$  függvény invertálható, ha különböző értelmezési tartománybeli elemekhez különböző helyettesítési értékek tartoznak, azaz minden  $y \in \mathcal{R}_f$  elemhez létezik egyetlen olyan  $x \in \mathcal{D}_f$  elem, amelyre f(x) = y. Ebben az esetben f inverz függvénye:

$$f^{-1}: \mathcal{R}_f \ni y \mapsto x$$
, amelyre  $f(x) = y$ .

Tegyük fel, hogy f invertálható, és ábrázoljuk f és  $f^{-1}$  grafikonját egy olyan koordinátarendszerben, amelynek tengelyein az egységek egyenlő hosszúak. Vegyük f grafikonjának egy (x,y) pontját, azaz legyen y=f(x). Ekkor  $f^{-1}(y) = x$ , vagyis az (y, x) pont rajta van az  $f^{-1}$  függvény grafikonján. Ha egy pont két koordinátáját felcseréljük, akkor a pont tükörképét kapjuk meg a két tengely szögfelező egyenesére (vagyis az y = x egyenletű egyenesre) vonatkozóan. Ez azt jelenti, hogy f és  $f^{-1}$  – geometriailag – egymás tükörképei a szóban forgó szögfelezőre vonatkozóan:



 $\mathbf{Megjegyz}$ és. A következő egyszerű példa azt mutatja, hogy az f függvény folytonossága NEM "öröklődik" az  $f^{-1}$  inverz függvényre.

Példa. Ha

$$f(x) := \begin{cases} x, & \text{ha } 0 \le x < 1\\ 3 - x, & \text{ha } 1 < x \le 2, \end{cases}$$



akkor

$$f^{-1}(x) = \begin{cases} x, & \text{ha } 0 \le x < 1\\ 3 - x, & \text{ha } 1 \le x < 2. \end{cases}$$



Világos, hogy

- f folytonos a  $\mathcal{D}_f = [0,2] \setminus \{1\}$  halmazon, f invertálható és  $\mathcal{D}_{f^{-1}} = [0,2]$ ,  $f^{-1} \notin C\{1\}$ .

A következő tétel azt állítja, hogy ha feltesszük, hogy f invertálható, az értelmezési tartománya korlátos és zárt intervallum, továbbá f folytonos  $\mathcal{D}_f$ -en, akkor az inverz függvénye is folytonos.

Tétel. (Az inverz függvény folytonossága.)

$$\begin{array}{c}
Tegy\"{u}k \ fel, \ hogy \ az \ f: [a,b] \to \mathbb{R} \ f\"{u}ggv\'{e}ny \\
\bullet \ folytonos \ [a,b]-n, \\
\bullet \ \exists \ f^{-1}
\end{array}
\qquad \Rightarrow \qquad \begin{array}{c}
az \ f^{-1} \ f\"{u}ggv\'{e}ny \ folytonos \ a \\
\mathcal{D}_{f^{-1}} = \mathcal{R}_f \ halmazon.
\end{array}$$

**Bizonyítás.** Indirekt. Tegyük fel, hogy  $f^{-1}: \mathcal{R}_f \to [a,b]$  nem folytonos a  $\mathcal{D}_{f^{-1}} = \mathcal{R}_f$  halmazon, azaz

$$\exists y_0 \in \mathcal{R}_f$$
, hogy  $f^{-1} \notin C\{y_0\}$ .

A folytonosságra vonatkozó átviteli elvből  $\Longrightarrow \exists (y_n) \subset \mathcal{R}_f$  úgy, hogy

$$\lim(y_n) = y_0$$
, DE  $\lim_{n \to +\infty} f^{-1}(y_n) \neq f^{-1}(y_0)$ .

Legyen

$$x_n := f^{-1}(y_n)$$
 (azaz  $f(x_n) = y_n$ )  $(\forall n \in \mathbb{N}),$   
 $x_0 := f^{-1}(y_0)$  (azaz  $f(x_0) = y_0$ ).

Ekkor az indirekt feltétel alapján

$$\lim(x_n) \neq x_0.$$

Ez azt jelenti, hogy

(\*) 
$$\exists \delta > 0, \text{ hogy az } \{n \in \mathbb{N} \mid |x_n - x_0| \ge \delta\} \text{ halmaz végtelen.}$$

Az  $(x_n) \subset [a, b]$  sorozat korlátos, ezért a Bolzano–Weierstrass-féle kiválasztási tételből következik, hogy  $\exists (x_{n_k})$  konvergens részsorozata.

Legyen  $\overline{x} := \lim(x_{n_k})$ . Indirekt úton belátható, hogy  $\overline{x} \in [a, b]$ .

(\*)-ból következik, hogy az  $(x_{n_k})$  részsorozat megválasztható úgy, hogy

$$\overline{x} \neq x_0.$$

Mivel  $f \in C\{\overline{x}\}$  és  $\lim(x_{n_k}) = \overline{x}$ , ezért a folytonosságra vonatkozó átviteli elv alapján

$$\lim (f(x_{n_k})) = \lim (y_{n_k}) = f(\overline{x}).$$

Az  $(y_n)$  (vagyis az  $(f(x_n))$ ) sorozat határértéke  $y_0$  (vagyis  $f(x_0)$ ), és ez igaz minden részsorozatára is, következésképpen

$$\lim(y_{n_k}) = f(x_0),$$

ami azt jelenti, hogy  $f(\overline{x}) = f(x_0)$ . Az f függvény azonban invertálható, ezért  $\overline{x} = x_0$ , ami ellentmondásban van a  $(\triangle)$  relációval.

#### Tétel.

$$\begin{array}{c} \textit{Tegy\"{u}k fel, hogy az } f:[a,b] \to \mathbb{R} \ \textit{f\"{u}ggv\'{e}ny} \\ \bullet \ \textit{folytonos} \ [a,b]\text{-}n, \\ \bullet \ \exists \ f^{-1} \end{array} \end{array} \right\} \quad \Longrightarrow \quad \begin{array}{c} \textit{az } f \ \textit{f\"{u}ggv\'{e}ny szigor\'{u}an monoton} \\ \textit{(n\"{o}veked\~{o} vagy cs\"{o}kken\~{o})} \ [a,b]\text{-}n. \end{array}$$

#### Tétel.

Legyen  $I \subset \mathbb{R}$  tetszőleges intervallum •  $f: I \to \mathbb{R}$  folytonos I-n, •  $\exists f^{-1}$   $\mathcal{R}_f \text{ is intervallum,}$   $f^{-1} \text{ folytonos a } \mathcal{D}_{f^{-1}} = \mathcal{R}_f \text{ intervallumon.}$ 

# Szakadási helyek

**Definíció.** Legyen  $f \in \mathbb{R} \to \mathbb{R}$ . Az  $a \in \mathcal{D}_f$  pont az f függvény **szakadási helye**, ha  $f \notin C\{a\}$ .

Legyen  $f \in \mathbb{R} \to \mathbb{R}$ .

 $1^o$  Az  $a \in \mathcal{D}_f$ pont az f függvény **megszüntethető szakadási helye**, ha

$$\exists \, \lim_a f \ \, \text{véges határérték} \quad \text{és} \ \, \lim_a f \neq f(a).$$

 $2^o$  Az  $a \in \mathcal{D}_f$ pont az f függvény elsőfajú szakadási helye, ha

$$\exists \, \lim_{a \to 0} f \ \, \text{\'es} \ \, \exists \, \lim_{a \to 0} f, \ \, \text{ezek v\'egesek}, \quad \text{de} \ \, \lim_{a \to 0} f \neq \lim_{a \to 0} f.$$

3° Az egyéb szakadási pontokat **másodfajú szakadási helyeknek** nevezzük.