

Universidad de Granada

Doble Grado en Ingeniería Informática y Matemáticas

Topología I

Autor: Jesús Muñoz Velasco

Índice general

1.	\mathbf{Esp}	acios Topológicos										5
	1.1.	Topología métrica.	La topología	usual	$de \mathbb{R}^n$					 		6

1. Espacios Topológicos

Definición 1.1. Un **espacio topológico** es una par (X, \mathcal{T}) , donde $X \neq \emptyset$ es un conjunto y $\mathcal{T} \subset \mathcal{P}(X)$ es una familia de subconjuntos de X.

- (A1) $\emptyset, X \in \mathcal{T}$.
- (A2) Si $\{U_i\}_{i\in I} \subset \mathcal{T}$, entonces $\bigcup_{i\in I} U_i \in \mathcal{T}$.
- (A3) Si $U_1, U_2 \in \mathcal{T}$, entonces $U_1 \cap U_2 \in \mathcal{T}$.

A la familia \mathcal{T} se le llama **topología** en el conjunto X. A los elementos de \mathcal{T} se les llama **abiertos** en el espacio topológico (X, \mathcal{T}) .

Observación. De (A1) podemos concretar que si $U_1, \ldots, U_k \in \mathcal{T}$, entonces $\bigcap_{i=1}^{\infty} U_i \in \mathcal{T}$. En general, si $\{U_i\}_{i=1}^{\infty} \in \mathcal{T}$, entonces $\bigcup_{i=1}^{\infty}$ no tiene por qué ser abierto.

Ejemplo.

- •) Topología trivial: Sea $X \neq \emptyset$, $\mathcal{T}_t = \{\emptyset, X\} \Rightarrow (X, \mathcal{T}_t)$ es un e.t¹.
- •) Topología discreta: Sea $X \neq \emptyset$, $\mathcal{T}_{disc} = \mathcal{T}_D = \mathcal{P}(X) \Rightarrow (X, \mathcal{T}_D)$ es un e.t.
- •) Topología del punto incluido: Sea $X \neq \emptyset$, $x_0 \in X$ $\mathcal{T}_{x_0} = \{\emptyset\} \cup \{U \subset X : x_0 \in U\} \Rightarrow (X, \mathcal{T}_{x_0})$ es un e.t.
- •) Topología cofinita: (o topología de los complementos finitos) Sea $X \neq \emptyset$, $\mathcal{T}_{CF} = \{\emptyset\} \cup \{U \subset X : X \setminus U \text{ es finito}\} \Rightarrow (X, \mathcal{T}_{CF}) \text{ es un e.t.}$

$$X \setminus \left(\bigcup_{i \in I} U_i\right) = \bigcap_{i \in I} (X \setminus U_i) \text{(intersección de finitos es finito)}$$
$$X \setminus (U_1 \cap U_2) = (X \setminus U_1) \cup (X \setminus U_2) \text{(unión de finitos es finito)}$$

- •) Topología conumerable: (o topología de los complementos numerables) Sea $X \neq \emptyset$, $\mathcal{T}_{CF} = \{\emptyset\} \cup \{U \subset X : X \setminus U \text{ es numerable}\} \Rightarrow (X, \mathcal{T}_{CF})$ es un e.t.
- •) \mathbb{R} , $\mathcal{T} = \{\emptyset, \mathbb{R}, \mathbb{Q}, \mathbb{R} \setminus \mathbb{Q}\}, \Rightarrow (\mathbb{R}, \mathcal{T})$ es un e.t.
- •) Topología de Sierpinski: $X = \{a, b\}, \ \mathcal{T} = \{\emptyset, \{a\}, X\} \Rightarrow (X, \mathcal{T})$ es un e.t.
- •) Topología de Sorgenfrey: $X = \mathbb{R}, \mathcal{T}_S, U \in \mathcal{T}_S \iff \forall x \in U \exists \varepsilon > 0$ tal que $[x, x + \varepsilon) \subset U$. (es un caso particular del punto incluido, \mathcal{T}_a).

¹A partir de ahora notaremos así a un espacio topológico

Observación. En $X = \{x\}$ solo existe una topología, $\mathcal{T} = \{\emptyset, \{x\}\}$ (todas las topologías son la misma).

Ejercicio 1. Determinar todas las topologías en un conjunto con 2 elementos.

Ejercicio 2. Sea (X, \mathcal{T}) e.t. Demostrar que $\mathcal{T} = \mathcal{T}_{disc} \iff \{x\} \in \mathcal{T} \ \forall x \in X$.

1.1. Topología métrica. La topología usual de \mathbb{R}^n

Definición 1.2. Un **espacio métrico** es un par (X, d) donde $X \neq \emptyset$ es un conjunto y $d: X \times X \to \mathbb{R}$ es una aplicación que verifica:

- **(D1)** $d(x,y) \ge 0 \ \forall x,y \in X$. Además, $d(x,y) = 0 \iff x = y$.
- **(D2)** (simetría) $d(x,y) = d(y,x) \ \forall x,y, \in X$.
- **(D3)** (designaldad triangular) $d(x,z) \leq d(x,y) + d(y,z) \ \forall x,y,z \in X$

A la aplicación d la llamaremos **distancia**.

Ejercicio 1.1.1. (D2) + (D3) + $2^{\mathbf{a}}$ parte de (D1) se deduce $1^{\mathbf{a}}$ parte de (D1) luego $d: X \times X \to [0, \infty)$

Definición 1.3. (X, d) e.m. $x \in X, r > 0$, se definen:

 \bullet) La **bola** (abierta) de centro x y radio r como

$$B(x,r) = \{ y \in X : d(x,y) < r \} \subset X$$

 \bullet) La **bola cerrada** de centro x y radio r como

$$\overline{B}(x,r) = \{ y \in X : d(x,y) \leqslant r \} \subset X$$

 \bullet) La **esfera** de centro x y radio r como

$$S(x,r) = \{ y \in X : d(x,y) = r \} \subset X$$

Algunas propiedades que se deducen de la definición anterior son:

- •) $\overline{B}(x,r) = B(x,r) \cup S(x,r)$
- •) $S(x,r) = \overline{B}(x,r) \setminus B(x,r)$
- •) Si s < r, entonces $\overline{B}(x,x) \subset B(x,r)$

Ejemplo. (Espacio euclídeo \mathbb{R}^n) En \mathbb{R}^n consideramos la **distancia usual**,

$$d(x,y) = ||x - y|| = \sqrt{\sum_{i=1}^{2} (x_i - y_i)^2}$$

Al espacio métrico (\mathbb{R}^n, d) lo denominaremos **Espacio Euclídeo**.

•) Si
$$n = 1$$
, $d(x, y) = |x - y|$,

$$B(x,r) = (x-r, x+r)$$
$$\overline{B}(x,r) = [x-r, x+r]$$
$$S(x,r) = \{x, y\}$$

•) En n=2 tenemos

 $B(x,r) \equiv {\rm disco}$

 $\overline{B}(x,r) \equiv \text{disco cerrado}$

 $S(x,r) \equiv \text{circunferencia}$

•) En n=3 tenemos:

 $B(x,r) \equiv \text{bola}$

 $\overline{B}(x,r) \equiv \text{bola cerrada}$

 $S(x,r) \equiv \text{esfera}$

Ejemplo. $X \neq \emptyset$ se define la **distancia discreta** como

$$d_{disc}(x,y) = \begin{cases} 0 & \text{si } x = y \\ 1 & \text{si } x \neq y \end{cases}$$

Con la distancia así definida tenemos:

$$B(x,y) = \left\{ \begin{array}{ll} X & \text{si} & r > 1 \\ \{x\} & \text{si} & r \leqslant 1 \end{array} \right.$$

$$\overline{B}(x,y) = \begin{cases} X & \text{si } r \geqslant 1\\ \{x\} & \text{si } r < 1 \end{cases}$$

$$S(x,y) = \begin{cases} X \setminus \{x\} & \text{si} \quad r = 1\\ \emptyset & \text{si} \quad r \neq 1 \end{cases}$$