

Genómica: técnicas y aplicaciones

Luis Rodrigo Arce Valdés

El ADN como herramienta para el estudio de la especiación y la hibridación:

De la genética a la genómica...

Genética

Estudia como son heredadas diferentes características empleando al gen como unidad de estudio:

- Estudio de uno o unos pocos loci.
- Secuenciación Sanger.
- Herramientas bioinformáticas sencillas.
- Desde marcadores electroforéticos hasta SNPs.

Genómica

Emplea la información de todo el genoma (o un muestreo importante de él) para estudiar caracteres heredables:

- Estudio simultaneo de muchos loci hasta genomas enteros.
- Secuenciación de nueva generación.
- Herramientas bioinformáticas complejas (Lenguajes de programación y Súper-computo).
- Desde SNPs hasta genomas enteros.

Si la genómica nos brinda MÁS información, ¿aún son útiles las herramientas genéticas?

Genética

Demo

\$40.00

\$7.00

\$81.00

\$1,190.00 - \$1,340.00

Your complete set up, ready to go!

- · miniPCR® mini8 thermal cycler (mini16 upgrade available)
- blueGel™ Electrophoresis System with Integrated Illuminator
- · Set of 3 micropipettes, various volumes
- · Fieldable carrying case with protective foam inserts

SKU: LB-2500-01

CATEGORIES: LAB IN A BOX KITS, LAB STARTER PACKS

SeeGreen™ All-in-One Agarose Tabs™, 20 pcs.

All-in-one tablets with pre-measured agarose, TBE, and SeeGreen™ stain.

TBE electrophoresis buffer, powder makes
600 ml

Electrophoresis Reagents Kit, Bulk: Agarose, TBE powder, SeeGreen™

Genómica

Cantidad	Unidad	Unidad SAT	Clave	Clave SAT Prod/Serv	Descripción	Marca	% Desc	P/U	Im porte
1.00	PZ	H87	N 01-R 3642L	12352200	SBFI-HF - 2,500 UNITS	NEB-R	0.00	10,000.7364	10,000.7364
1.00	PZ	H87	N01-R3642S	12352200	SBFI-HF - 500 UNITS	NEB-R	0.00	2,435.2443	2,435.2443
1.00	PZ	H87	N01-B7004S	12352200	NEBUFFER 4 AND BSA 6 ML	NEB-R	0.00	811.7481	811.7481
1.00	PZ	H87	N01-B70028	12352200	NEBUFFER 2 AND BSA	NEB-R	0.00	811.7481	811.7481
1.00	PZ	H87	N01-M0202S	12352204	T4DNA LIGASE- 20000 UNITS	NEB-R	0.00	2,110.5450	2,110.5450
1.00	PZ	H87	N01-E12018	12352200	QUICK BLUNTING KIT 20 RXNS	NEB-R	0.00	2,792.4134	2,792.4134
1.00	PZ	H87	N01-M0212S	12352200	KLENOW FRAGMENT (3'-5' EXO-) -	NEB-R	0.00	2,045.6052	2,045.6052
1.00	PZ	H87	N 01-M 0531S	12352200	PHUSION® HIGH-FIDELITY PCR MASTER MIX	NEB-R	0.00	6,169.2855	6,169.2855
1.00	pz	H87	N01-B1500S	12352200	NUCLEA SE-FREE WATER 25ML	NEB-R	0.00	876.6879	876.6879
1.00	pz	H87	N01-B1500L	12352200	NUCLEA SE-FREE WATER 100ML	NEB-R	0.00	2,045.6052	2,045.6052

TIEMPO DE ENTREGA DE 25 A 36 DIAS DESPUES DE CONFIRMAR EL PEDIDO

Observaciones:

Cesar David Rodriguez Ejecutivo de ventas zonahospitales@valaner.com Tel: 5525 5725 | Cel.55 5409 5920

Subtotal	30,099.62
Descuento I.V.A.	0.00 4,815.94
Total	34,915.56

PERO...

Cost per Raw Megabase of DNA Sequence

Cost per Genome

¿Cómo escoger la herramienta adecuada?

- Objetivos y pregunta de investigación.
- Recursos disponibles para la especie a estudiar.
- Presupuesto económico del proyecto.

¿Cómo escoger la herramienta adecuada?

- Objetivos y pregunta de investigación.
- Recursos disponibles para la especie a estudiar.
- Presupuesto económico del proyecto.

Marcadores moleculares

Los marcadores moleculares permiten la categorización (o identificación) inequívoca de individuos, poblaciones o especies.

Heredabilidad

Los marcadores moleculares permiten la categorización (o identificación) inequívoca de individuos, poblaciones o especies.

Estabilidad

Los marcadores moleculares permiten la categorización (o identificación) inequívoca de individuos, poblaciones o especies.

Discretos

Heredables, estables y discretos!

Grupos sanguíneos

ABO Blood Groups											
Antigen (on RBC)	Antigen A	Antigen B	Antigens A + B	Neither A or B							
Antibody (in plasma)	Anti-B Antibody Y Y Y Y Y	Anti-A Antibody ス ア ユ イ ア	Neither Antibody	Both Antibodies イ							
Blood Type	Type A Cannot have B or AB blood Can have A or O blood	Type B Cannot have A or AB blood Can have B or O blood	Type AB Can have any type of blood Is the universal recipient	Type 0 Can only have O blood Is the universal donor							

Existen tres tipos de marcadores moleculares

• Dominantes: Marcadores binarios en los que cada marcador se genotipa mediante pruebas de presencia o ausencia. Con al menos una copia positiva el individuo resultará positivo en la prueba. Por lo tanto, estos marcadores no distinguen homocigotos (+/+) vs del heterocigoto (+/-).

Existen tres tipos de marcadores moleculares

- Dominantes: Marcadores binarios en los que cada marcador se genotipa mediante pruebas de presencia o ausencia. Con al menos una copia positiva el individuo resultará positivo en la prueba. Por lo tanto, estos marcadores no distinguen homocigotos (+/+) del heterocigoto (+/-).
- Codominantes: Marcadores que pueden tener más de dos alelos por locus. Además, en estos se conoce el genotipo de los individuos, por lo que, se pueden distinguir organismos heterocigotos de los homocigotos.

Existen tres tipos de marcadores moleculares

- Dominantes: Marcadores binarios en los que cada marcador se genotipa mediante pruebas de presencia o ausencia. Con al menos una copia positiva el individuo resultará positivo en la prueba. Por lo tanto, estos marcadores no distinguen homocigotos (+/+) del heterocigoto (+/-).
- Codominantes: Marcadores que pueden tener más de dos alelos por locus. Además, en estos se conoce el genotipo de los individuos, por lo que, se pueden distinguir organismos heterocigotos de los homocigotos.
- Secuencias: Información directa del ADN y que pueden ser neutrales o codificantes.

Sistemas enzimáticos: alozimas e isozimas

Alozimas: variantes alélicas de una enzima (mismo locus). Isozimas: enzimas con misma función pero codificadas por distintos genes (loci).

Sistemas enzimáticos: alozimas e isozimas

RFLPs: Restriction Fragment Length Polymorphisms

RFLPs: Restriction Fragment Length

Polymorphisms

Sustituciones: ausencia/presencia de banda. Inserciones: diferencias en el tamaño de la banda.

Dominantes

Extracciones de ADN

Factores a considerar:

- + Cantidad de ADN
- + Calidad de ADN
- + Integridad de ADN
- + Precio
- + Método de secuenciación a emplear (Tradicional vs NextGeneration)
- + Tipo de tejido

Cantidad vs Calidad vs Integridad de ADN

PCR: Amplificación de regiones de interés

Secuenciación Sanger: Estudios por haplotipos

PCR amplified & denatured

Redes de haplotipos de mínima dispersión y microevolución

Inferencia demográfica histórica: BSP

Microsatélites: Marcadores codominantes altamente polimórficos

Al genotipificar microsatélites nos interesa conocer el tamaño (número de repeticiones) de cada alelo

В	С	D	E	F	G	Н	1	J	K	L	М	N	0	Р	Q	R
Individuo	Cyne02	Cyne02	Cac03	Cac03	Tmac03	Tmac03	Tmac06	Tmac06	Cyne12	Cyne12	Cac13	Cac13	Cac14	Cac14	Cac18	Cac18
Co09-CO13	254	276	176	180	147	147	134	136	154	160	184	184	154	154	241	249
Co09-SC01	268	274	184	188	141	145	134	136	167	171	182	184	164	168	241	251
Co09-SC02	256	270	174	194	153	160	134	134	169	173	188	192	152	168	247	251
Co09-SC03	260	285	184	190	151	158	134	138	171	177	190	216	164	166	251	255
Co09-SC04	262	266	174	176	158	162	134	134	167	169	180	208	164	166	237	249
Co09-SC05	260	301	176	176	156	158	134	136	156	156	180	194	162	164	247	251
Co09-SC06	260	270	174	178	156	158	134	134	160	160	200	200	162	170	241	255
Co09-SC07	272	280	178	178	156	160	134	134	167	171	180	222	156	166	237	241
Co09-SC08	262	268	178	178	145	162	134	134	160	173	160	170	152	166	237	237
Co09-SC10	270	276	172	178	156	160	134	134	152	158	168	200	152	158	237	247
Co09-SC11	252	264	176	182	155	158	134	136	171	171	176	176	150	168	239	255
Co09-SC12	262	270	178	182	156	162	134	136	160	160	186	214	166	170	243	247
Co09-SC14	280	285	178	180	156	158	134	136	177	183	186	192	162	166	241	253
Co09-SC15	264	266	174	178	155	160	134	134	167	171	180	194	154	166	237	251
Co09-SC16	260	260	168	176	153	176	134	136	171	183	178	192	154	156	243	249
Co09-SC18	274	323	176	178	143	162	134	136	154	179	178	186	164	166	241	241
Co09-SC19	272	291	176	190	151	156	136	136	15/	169	178	180	150	166	237	251

Agrupamientos mediante PCA

Evaluación de estructura e identificación de hibridación

Cuantificación de migración (contemporánea y ancestral)

Simulación de escenarios demográficos

MsVar

Demografía histórica en Migraine

Next Generation Sequencing Pipeline

Los tipos de librerías de secuenciación de nueva generación más comúnes en genómica

Profundidad de secuenciación por muestra

Secuenciación de Representación Reducida (RADseq)

Re-sequencing

Whole genome sequencing

Número de muestras por librería

Genómica de Poblaciones: RADseq

	1 enzima	2 enzimas
Sin Selección de Tamaño	Menos muestras Mas cobertura	
Con Selección de Tamaño		Más muestras Menos cobertura

Whole genome sequencing

Una librería de secuencias cortas

Mezcla secuencias largas y cortas

Secuenciación Ilumina: Secuencias cortas de alta

calidad

Run Time	9.5–19 hrs	4-24 hours	4-55 hours	12-30 hours	11-48 hours
Maximum Output	1.2 Gb	7.5 Gb	15 Gb	120 Gb	360 Gb*
Maximum Reads Per Run	4 million	25 million	25 million [†]	400 million	1.2 billion*
Maximum Read Length	2 × 150 bp	2 × 150 bp	2 × 300 bp	2 × 150 bp	2 × 150 bp
	Explore iSeq 100	Explore MiniSeg	Compare MiSeg	Compare NextSeq	Explore NextSeq

Flow Cell Bridge Amplification Cycles Sequencing Cycles

Reference genome:

Ischnura elegans iolscEleg1.1
 Submitter: WELLCOME SANGER INSTITUTE

Loc	Type	Name	RefSeq	INSDC	Size (Mb)	GC%	Protein	rRNA	tRNA	Other RNA	Gene	Pseudogene
	Chr	1	NC_060246.1	OV121100.1	170.58	38.9	2,950	-	86	536	2,155	42
	Chr	2	NC_060247.1	OV121101.1	148	38.5	2,463	-	109	401	1,816	8
	Chr	3	NC_060248.1	OV121102.1	139.04	38.8	2,362	1	131	316	1,742	12
	Chr	4	NC_060249.1	OV121103.1	138.07	38.5	1,909	-	91	375	1,441	3
	Chr	5	NC_060250.1	OV121104.1	137.53	38.5	2,059	-	156	272	1,510	6
	Chr	6	NC_060251.1	OV121105.1	126	38.5	1,986	-	175	316	1,611	15
	Chr	7	NC_060252.1	OV121107.1	118.3	38.5	1,679	-	65	300	1,242	9
	Chr	8	NC_060253.1	OV121108.1	118.12	38.4	1,877	1	200	345	1,490	4
	Chr	9	NC_060254.1	OV121109.1	115.52	38.3	1,572	3	181	317	1,385	12
	Chr	10	NC_060255.1	OV121110.1	108.62	38.1	1,433	3	90	249	1,034	5
	Chr	11	NC_060256.1	OV121111.1	103.41	38.4	1,324	-	84	236	1,050	2
	Chr	12	NC_060257.1	OV121112.1	94.74	38.2	1,575	-	95	277	1,225	4
	Chr	13	NC_060258.1	OV121113.1	21.32	38.0	445	-	5	192	450	1
	Chr	Х	NC_060259.1	OV121106.1	123.64	38.6	1,954	2	28	534	1,375	9
		МТ	-	OV121114.1	0.03	26.4	-	-	-	-	-	-
	Un	-	-	-	59.84	38.4	1,508	103	17	522	1,561	34

550

1000 & 2000

Oxford Nanopore: Secuencias largas de calidad moderada

Platform	Sequencer	Costs sequencing platform	Reads per run/lane	Output per run/lane	Maximal read lengths ¹	Average run duration
Sanger	ABI 3730xl	\$100,000	96	100 kbp	1000 bp	2-3 hours
454	GS FLX	\$450,000	1,000,000	700 mpb	1000 bp	24 hours
Illumina	HiSeq 3000	\$750,000	$300,000,000^2$	150 gbp^3	250 bp	4 days
Illumina	NextSeq500	\$250,000	400,000,000	120 gbp^3	150 bp	30 hours
Illumina	MiSeq	\$100,000	25,000,000	15 gbp ³	300 bp	24 hours
Ion Torrent	Proton II	\$224,000	330,000,000	66 gbp	200 bp	4 hours
Ion Torrent	PGM 318	\$50,000	5,000,000	2 gbp	400 bp	7 hours
PacBio	RS II	\$700,000	50,000	400 mbp	54 kbp	3 hours
Nanopore	MinION	\$1,000	$80,000^4$	490 mbp^4	150 kbp	n.a. ⁴

El formato FastQ incluye puntuaciones de calidad (probabilidad de lectura errónea de cada nucleótido)

Permeabilidad del genoma: Islas de especiación

Detección de adaptación: Loci outlier

Estudios de zonas híbridas: categorización de híbridos y clinas genómicas

Genes asociados a regiones de interés (barreras de aislamiento / adaptaciones)

Inferencia de historias demográficas complejas: allele frequency spectrum en dadi

Pangenómica

