Lecture III (Part IV) – Network and Fleet Development

Airline Planning & Optimization (AE4423)

Bruno F. Santos

Network and Fleet Modelling

Content

- Model 1: Point-to-point network model
- Model 2: Hub-&-spoke network model
- Model 3: Fleet & network model

del

Simplifications

Simplest model

Add fleet

Add connections

- Several airlines provide the possibility for passengers to connect at a hub airport:
 - In H&S networks
 - demand is forecast according to the OD market
 - the flight leg demand depends on our decisions
 - hub airports guarantee connections between flights

 W_{63}

 Let's address the dichotomy between demand and supply:

Notation

Sets

N: set of airports (where *h* is the hub)

Decision variables

 w_{ii} : flow from airport i to airport j that transfers at the hub

 x_{ii} : direct flow from airport i to airport j

z_{ij}: number of flights from airport *i* to airport *j*

Parameters

q_{ii}: travel demand between airport *i* to airport *j*

 g_k = 0 if a hub is located at airport k;

 g_k = 1 otherwise

 d_{ij} : distance between airports i and j

Yield: revenue per RPK flown (average yield)

s: number of seats per aircraft

CASK: unit operation cost per ASK flown

sp: speed of the aircraft

LF: average load factor

AC: number of aircraft

LTO: landing and take-off time BT: aircraft avg. utilisation time

$$Max \ Profit = \sum_{i \in \mathbb{N}} \sum_{j \in \mathbb{N}} [Yield \times d_{ij}(x_{ij} + w_{ij}) - CASK \times d_{ij} \times S \times z_{ij}] \quad (OF)$$

s.t.:

$$x_{ij} + w_{ij} \le q_{ij}$$
 , $\forall i, j \in N$

(C1) All flow from each airport leave the airport, either through a hub or not

$$w_{ij} \le q_{ij} \times g_i \times g_j$$
, $\forall i, j \in \mathbf{N}$

(C1*) Transfer passengers are only if the hub is not the origin or the destination

$$x_{ij} + \sum_{m \in \mathbb{N}} w_{im} \times (1 - g_j) + \sum_{m \in \mathbb{N}} w_{mj} \times (1 - g_i) \le z_{ij} \times s \times LF \quad , \forall i, j \in \mathbb{N}$$
(C.2) Capacity verification in (C.2)

(C2) Capacity verification in each flight leg

$$\sum_{j \in N} z_{ij} = \sum_{j \in N} z_{ji} \quad , \forall i \in N$$

(C3) Balance between incoming and outgoing flights at each node

$$\sum_{i \in N} \sum_{j \in N} \left(\frac{d_{ij}}{sp} + LTO \right) \times z_{ij} \le BT \times AC$$

Use of aircraft limited to the number of aircraft and the block hours associated

How do constraints C2 work?

$$x_{ij} + \sum_{m \in \mathbb{N}} w_{im} \times (1 - g_j) + \sum_{m \in \mathbb{N}} w_{mj} \times (1 - g_i) \le z_{ij} \times s \times LF \quad , \forall i, j \in \mathbb{N}$$

For
$$i = 4$$
 and $j = 1$

$$x_{4,1} + \left[\left(w_{4,1} + w_{4,2} + w_{4,3} + \cdots \right) \times (1 - 0) \right] + \left[\left(w_{1,1} + w_{2,1} + w_{3,1} + \cdots \right) \times (1 - 1) \right] \le z_{4,1} \times s \times LF$$

• For i = 1 and j = 3

$$x_{1,3} + \left[\left(w_{1,1} + w_{1,2} + w_{1,3} + \cdots \right) \times (1-1) \right] + \left[\left(w_{1,3} + w_{2,3} + w_{3,3} + \cdots \right) \times (1-0) \right] \le z_{1,3} \times s \times LF$$

For i = 4 and j = 5

$$x_{4,5} + \left[\left(w_{4,1} + w_{4,2} + w_{4,3} + \cdots \right) \times (1-1) \right] + \left[\left(w_{1,5} + w_{2,5} + w_{3,5} + \cdots \right) \times (1-1) \right] \le z_{4,5} \times s \times LF$$

Problem 2

The FlyAtlantic Airline is starting its operations with a hub in the Azores Islands (Portugal). The company wants to connect the Portuguese main airports (Lisbon, Oporto, Funchal and Ponta Delgada) with the North American cities of Boston and Toronto (distances in Table 1). For this, the airline needs to define the most profitable network and the frequency of flights. For these operations, the airline has 4 aircraft of the same type (see Table 2). The company forecasts an average revenue 0.16€/RPK. Propose a network based on the forecasted average weekly demand provided in Table 3.

Table 1						
	Distances (km)					
Airport	PDL	LIS	OPO	FNC	YTO	BOS
PDL	0	1461	1536	975	4545	3888
LIS	1461	0	336	973	5790	5177
OPO	1536	336	0	1244	5671	5081
FNC	975	973	1244	0	5515	4851
YTO	4545	5790	5671	5515	0	691 _

5177

Fleet

Ta		
Param	_	
CASK	0,12	[\$/ASK]
LF	0,80	[%]
Seats	150	[units]
Speed	890	[km/h]
LTO	20	[min]
DT	12	[b/day]

[units]

Demand (pax/week)					
PDL	LIS	OPO	FNC	YTO	BOS
0	2509	1080	558	770	713
2509	0	216	112	360	333
1080	216	0	78	46	43
558	112	78	0	32	30
770	360	46	32	0	70
713	333	43	30	70	0
	0 2509 1080 558 770	0 2509 2509 0 1080 216 558 112 770 360	PDL LIS OPO 0 2509 1080 2509 0 216 1080 216 0 558 112 78 770 360 46	PDL LIS OPO FNC 0 2509 1080 558 2509 0 216 112 1080 216 0 78 558 112 78 0 770 360 46 32	PDL LIS OPO FNC YTO 0 2509 1080 558 770 2509 0 216 112 360 1080 216 0 78 46 558 112 78 0 32 770 360 46 32 0

Table 3

Problem 2 (solution)

OF:

316 821 €/week

AC Utilisation:

94,33%

Legend:

Pax (flights)

Note: Both ways flights and pax flows

- The problem:
 - given a set of airports from which an airline can operate;
 - knowing the demand in each specific flight-leg;
 - having a set of different aircraft types available, with specific characteristics (e.g., speed, seats, block hours);
 - define which flight legs to operate;
 - estimated number of passengers to transport;
 - define the flight frequency per leg; and
 - define the fleet size and composition.

- Objective function
 - minimize costs (satisfying the demand)
 - maximize revenues
- (OF) maximize profit
 - Constraints
- (C1) Demand verification: # pax ≤ demand
- (C2) Capacity: # pax in each leg ≤ seats available per leg
- (C3) Continuity constraint: #AC inbound = #AC outbound (per airport, per AC type)
- (C4) AC Productivity: hours of operation ≤ BT * # AC
- (C5) Range Constraint: Range ≤ distance → no flights
- (C6) Budget Constraint: #AC * Cost ≤ Budget

Notation

Sets

N: set of airports (where *h* is the hub)

K: set of aircraft types

LTO: landing and take-off time

time

 BT^k : aircraft type k avg. utilisation

 C^k : cost of purchasing aircraft type k

Decision variables

 w_{ii} : flow from airport i to airport i that transfers at the hub

 x_{ij} : direct flow from airport i to airport j

 $\mathbf{z}^{k_{ij}}$: number of flights from airport i to airport j with aircraft type

k

 AC^k : number of aircraft type k

Parameters

 q_{ii} : travel demand between airport i to airport j LF: average load factor

 g_h = 0 if a hub is located at airport h;

 $g_h = 1$ otherwise

 d_{ii} : distance between airports i and j

Yield: revenue per RPK flown (average yield)

 s^k : number of seats per aircraft type k

 $CASK^k$: unit operation cost per ASK flown by aircraft type k

 sp^k : speed of the aircraft type k

$$Max \ Profit = \sum_{i \in \mathbb{N}} \sum_{j \in \mathbb{N}} \left[Yield \times d_{ij} (x_{ij} + w_{ij}) - \sum_{k \in \mathbb{K}} (CASK^k \times d_{ij} \times s^k \times z_{ij}^k) \right]$$
 (OF)

s.t.:

$$x_{ij} + w_{ij} \le q_{ij} \quad , \forall i, j \in \mathbf{N} \tag{C1}$$

$$w_{ij} \le q_{ij} \times g_i \times g_j , \forall i, j \in \mathbf{N}$$
 (C1*

$$x_{ij} + \sum_{m \in \mathbb{N}} w_{im} \times (1 - g_j) + \sum_{m \in \mathbb{N}} w_{mj} \times (1 - g_i) \le \sum_{k \in \mathbb{K}} z_{ij}^k \times s^k \times LF \quad , \forall i, j \in \mathbb{N}$$
(C2)

$$\sum_{j \in N} z_{ij}^k = \sum_{j \in N} z_{ji}^k \quad , \forall i \in N, k \in K$$
 (C3)

$$\sum_{i \in N} \sum_{j \in N} \left(\frac{d_{ij}}{sp^k} + LTO \right) \times z_{ij}^k \le BT^k \times AC^k , k \in K$$
 (C4)

$$z_{ij}^k \le a_{ij}^k \qquad \to a_{ij}^k = \begin{cases} 10000 & if \ d_{ij} \le R^k \\ 0 & otherwise \end{cases}$$

(C5) Aircraft range used to define matrix $a^{k_{ij}}$ and constrain frequency to range limits

$$\sum_{k \in K} C^k \times AC^k \le B$$

(C6) Investment costs cannot be higher than the budget available

Problem 3

What if the FlyAtlantic Airline would have a fleet of different aircraft (see Table 1). How should we model a multi-fleet network model (aka, multi-class network model)? Would the results differ from the results obtained in Problem 2?

Table 1		
A310	A320	
0,12	0,11	[\$/ASK]
0,80	0,80	[%]
240	160	[units]
9600	5400	[km]
900	870	[km/h]
20	12	[min]
14	12	[h/day]
2	2	[units]
	A310 0,12 0,80 240 9600 900 20 14	A310 A320 0,12 0,11 0,80 0,80 240 160 9600 5400 900 870 20 12 14 12

Table 1

Problem 3 (solution)

OF:

533 985 €/week

AC Utilization:

A310 - 51,15% A320 - 99,90%

Legend:

Pax (flights A310; A320)

Note: Both ways flights and pax flows

Simplifications

The previous models represent an airline network development decision process in a simplified way. For instance:

- demand is static demand does not vary with the solutions obtained (e.g., frequency, direct vs connecting flight);
- no competition market share is assumed to be already considered when defining demand values;
- no passengers choice demand is reacting to the decisions according to the objective of the airline (i.e., maximise profit);
- possible aircraft routing discontinuity a total "time-budget" is considered for the entire fleet without checking routing feasibility;
- single scenario for a static future the uncertainty of the future network is not considered and the model runs for a single time period in the future.

— ... do you identify other simplifications?