Gradient Flows for Statistical Computation

Trends and Trajectories

Sam Power, University of Bristol

Post-Bayes Workshop, University College London, 16 May 2025

Main ideas today

- Many statistical tasks reduce to solution of an optimisation problem
- Many common methods for these problems have 'gradient' structure
- Identifying these commonalities is useful for analysis, synthesis, progress
- Post-Bayes as a rich source of motivating applications

Collaborators

feel free to stop me at any point

Statistical Inference

Statistical Computing

Optimisation Problems

Three Main Characters

- Optimisation over Parameter Spaces (" $\Theta \subseteq \mathbf{R}^d$ ")
- Optimisation over Measure Spaces (" $\mathscr{P}\left(\mathscr{X}\right)$ "; $\mathscr{X}\subseteq\mathbf{R}^d$)
- Optimisation over 'Hybrid' Spaces (" $\Theta \times \mathscr{P}\left(\mathscr{X}\right)$ ")

Optimisation over Parameter Spaces

- Maximum Likelihood Estimation ('MLE'): $\max_{\theta} \sum_{i \in [N]} \log p_{\theta}(y_i)$
 - maybe incorporate a penalty term ('penalised MLE')
 - maybe use a more general loss ('M-Estimation')
- . Variational Approximation : $\min_{\theta} \mathsf{KL}\left(p_{\theta}, \pi\right)$
 - e.g. $\theta = (m, C), p_{\theta}(dx) = \mathcal{N}(dx; m, C);$ "best Gaussian fit"

Optimisation over Measure Spaces

• Sampling from an unnormalised distribution $\pi \propto \exp(-V)$

$$\min_{\mu} \mathsf{KL}(\mu, \pi) \sim \min_{\mu} \left\{ \mathbf{E}_{\mu} [V] + \mathcal{H}(\mu) \right\}$$

with
$$\mathcal{H}(\mu) = \int (\mu \log \mu - \mu)$$
 (special).

• (Nonparametric) Mean-Field Approximation

$$\min_{\mu_1, \cdots, \mu_d} \mathsf{KL}(\mu_1 \otimes \cdots \otimes \mu_d, \pi) \sim \min_{\mu} \left\{ \mathbf{E}_{\mu_1 \otimes \cdots \otimes \mu_d}[V] + \sum_{i \in [d]} \mathscr{H}(\mu_i) \right\}$$

• (integral probability metrics, information-theoretic divergences, etc. - see Zheyang's talk!)

Optimisation over Hybrid Spaces

- Latent Variable Models: impute $[x \mid \theta, y]$, optimise $[\theta \mid x; y]$ (EM)
- Unnormalised Models: sample $[x \mid \theta]$, optimise θ (CD / MC-MLE)
- Distributed Inference: sample local posterior, tilt for consensus (~EP)
- Opinion: more prevalent than you might expect; worth taking seriously

Optimisation by Local Search

Optimisation in Metric Spaces

Metrics

- Nothing too fancy just want enough structure to 'do good calculus'
- For parameter optimisation, $\Theta \subseteq \mathbf{R}^d$ can carry Euclidean metric.
- For measure optimisation, $\mathscr{P}\left(\mathscr{X}\right)$ can carry transport ('Wasserstein') metric.
- For hybrid optimisation, $\Theta \times \mathscr{P}\left(\mathscr{X}\right)$ can carry 'hybrid' metric

$$\mathsf{d}_{\mathsf{hyb}}\left(\big(\theta,\mu\big),\big(\theta',\mu'\big)\right) = \sqrt{\|\theta-\theta'\|_2^2 + \mathcal{T}_2^2\left(\mu,\mu'\right)}$$

Conceptual Optimisation Framework

OPT
$$\min_{x \in \mathcal{X}} f(x)$$

$$\mathsf{PPM} \qquad x_0 \mapsto \arg\min_{x \in \mathcal{X}} \left\{ f(x) + \frac{1}{2h} \cdot \mathsf{d} \left(x, x_0 \right)^2 \right\}$$

$$\mathsf{OW} \qquad \dot{x}_t = -\nabla f \left(x_t \right)$$

Specify a Metric Structure

Receive an Optimisation Algorithm

Gradient Flows on Parameter Spaces

. Task: $\min_{\theta \in \Theta} f(\theta)$

• ODE:
$$\dot{\theta}_t = -\nabla_{\theta} f(\theta_t)$$

• Time-Discretised Method: "Gradient Method"

Gradient Flows on Measure Spaces

. Task:
$$\min_{\mu \in \mathcal{P}(\mathcal{X})} \left\{ \mathcal{F}(\mu) + \mathcal{H}(\mu) \right\}$$

• PDE:
$$\partial_t \mu_t = -\nabla_{\mathcal{T},\mu} \{\mathcal{F} + \mathcal{H}\} (\mu_t)$$

• SDE:
$$\mathrm{d}X_t = -\nabla_x \delta_\mu \mathcal{F} \left(\mu_t, X_t\right) \, \mathrm{d}t + \sqrt{2} \mathrm{d}W_t$$

• Space-Time-Discretised Method: (Mean-Field) "Langevin Monte Carlo"

Gradient Flows on Hybrid Spaces

. Task:
$$\min_{\theta \in \Theta, \mu \in \mathcal{P}(\mathcal{X})} \left\{ \mathcal{F} \left(\theta, \mu \right) + \mathcal{H} \left(\mu \right) \right\}$$

$$\bullet \ \ \text{ODE-PDE:} \ \dot{\theta}_t = - \ \nabla_{\theta} \mathcal{F} \left(\theta_t, \mu_t\right), \ \partial_t \mu_t = - \ \nabla_{\mathcal{T}, \mu} \left\{ \mathcal{F} + \mathcal{H} \right\} \left(\theta_t, \mu_t\right)$$

• ODE-SDE:
$$\dot{\theta}_t = -\nabla_{\theta} \mathcal{F}\left(\theta_t, \mu_t\right)$$
, $\mathrm{d}X_t = -\nabla_x \delta_{\mu} \mathcal{F}\left(\theta_t, \mu_t, X_t\right) \, \mathrm{d}t + \sqrt{2} \mathrm{d}W_t$

Space-Time-Discretised Method: "Particle Gradient Descent"

A Word on Theory

- In each case, the theoretical picture is very clear for "convex" problems
- In each case, there exists a 'robust' notion of convexity / connectedness which yields guarantees for a larger class of problems
- These notions are ...
 - quite well-developed on Θ,
 - very well-developed on $\mathscr{P}\left(\mathscr{X}\right)$, and
 - still under development for hybrid spaces

Some Take-Aways

- Optimisation problems are widespread in statistical tasks
 - ... and often involve more than 'just' fixed-dimensional parameters.
- It is often possible to solve such problems "with gradient descent"
 - ... and we can even systematically concoct improvements on GD.
- Identifying these commonalities is useful for analysis, synthesis, progress
 - ... and many interesting questions still remain.