~~					
SRN					

PES UNIVERSITY, BANGALORE-85

(Established under Karnataka Act 16 of 2013)

UE16 UE15MA101

END SEMESTER ASSESSMENT (ESA), B.TECH. I-SEMESTER - DECEMBER-2020 **UE15MA101-ENGINEERING MATHEMATICS-I**

(Common for All Branches)

1.	ne: 3 Hrs	Answer All Questions Max Max Max M	ks: 10				
1.	a)	if $y = e^{-nx}$, show that $(1 - x^2)y_{n+2} - (2n+1)xy_{n+3} - (n^2 + m^2)y_{n+3} = 0$. 7				
	b)	Find the radius of the curvature of the curve $r = a(1 - \cos\theta)$ at any point.	7				
10.25	c)	Verify Cauchy's mean value theorem for the function $f(x) = \log_e x$ and $g(x) = \frac{1}{x}$ in the interval [1, e]					
2.	a)	Use Euler's theorem for a homogeneous function to find the value of $xu_x + yu_y + zu_z$ given $u = sin^{-1} \left(\frac{x^3 + y^3 + z^3}{ax + by + cz} \right)$.	5				
	b)	Find $u_x, u_y, u_{xx}, u_{xy}, u_{yy}$ for $u = x^4 + y^3 + x^3y + xy^3$.	4				
	c)	Use Maclaurin's series to expand $log(1 + x)$ upto the term containing x^4 .	6				
	d)	Obtain the reduction formula for $\cos^n x$.	5				
3.	a)	Trace the curve $y^2(a-x) = x^3$, $a > 0$.	7				
	b)	Calculate the volume of the solid bounded by the planes $x = 0, y = 0, x + y + z = a$ and $z = 0.$	7				
	c)	Evaluate $\int_0^5 \int_0^{x^2} x(x^2 + y^2) dx dy$.	6				
1.	a)	Solve the differential equation $\frac{dy}{dx} + ycotx = 4xcosecx$ given $y = 0$ when $x = \frac{\pi}{2}$.	7				
	b)	Solve $(ylogy)dx + (x - logy)dy = 0$.	7				
	c)	Find the orthogonal trajectories of $r^n = a sinn \theta$.	7				
	a)	Find the complimentary function and particular integral of					
	b)	Solve $\frac{d^2y}{dx^2} + 4y = tan2x$ by the method of variation of parameters.	7				
			7				
	()	Solve $x^2 \frac{d^2 y}{dx^2} + 3x \frac{dy}{dx} + y = \frac{1}{(1-x)^2}$.	6				