MA2: $(\operatorname{sgn} \sin n)_{n=1}^{\infty}$

Tommy Chu

Zadání

Zjistěte, jestli je posloupnost $(\operatorname{sgn} \sin n)_{n=1}^{\infty}$ periodická.

Periodickou posloupností se myslí taková posloupnost $(a_n)_{n=1}^{\infty}$, pro které existuje perioda $T \in \mathbb{N}$ taková, že pro všechna $n \in \mathbb{N}$ platí $a_n = a_{n+T}$.

Funkce sgn : $\mathbb{R} \to \{-1,0,1\}$ zobrazuje záporná čísla na -1, nulu na 0 a kladná čísla na 1.

Pomocná tvrzení

Tvrzení 1. Pokud má posloupnost $(\operatorname{sgn} \sin n)_{n=1}^{\infty}$ periodu $T \in \mathbb{N}$, pak $T \geq 7 > 2\pi$.

 $D\mathring{u}kaz$. $T \geq 6$ plyne přímo z výčtu prvních prvků:

$$1, 1, 1, (-1), (-1), (-1), 1, \cdots$$

T=6 lze vyvrátit protipříkladem: $sgn sin(1+5 \cdot T)=-1 \neq 1=sgn sin(1)$.

Tvrzení 2. Nechť je $a \in \mathbb{N}$. Neexistuje $k \in \mathbb{Z}$, pro které platí $a = k\pi$.

 $D\mathring{u}kaz$. Platí triviálně pro k=0. Pro $k\neq 0$ by muselo platit $\pi=\frac{a}{k}\in\mathbb{Q}$, což je ve sporu s tím, že π je iracionální číslo.

Řešení

Posloupnost $(\operatorname{sgn} \sin n)_{n=1}^{\infty}$ není periodická.

 $D\mathring{u}kaz$. Pro spor předpokládejme, že posloupost $(a_n)_{n=1}^{\infty}$, kde $a_n = \operatorname{sgn} \sin n$, je periodická s periodou $T \in \mathbb{N}$.

Zřejmě platí $\sin 1 > 0$, tedy $a_1 = 1$. Podle předpokladu dále platí $a_1 = a_{1+T}$. Pro a_{1+T} se stejným znaménkem proto existuje $z \in \mathbb{Z}$ takové, že $2\pi z < 1 + T < 2\pi z + \pi$ (slovy: 1 + T leží v intervalu, na kterém je sinus kladný). Z Tvrzení 2 jsou zde nutně ostré nerovnosti a z Tvrzení 1 navíc platí $z \neq 0$ (z pohledu vnitřní funkce sin jsme v jiné periodě). Po odečtení $2\pi z$ obdržíme $0 < 1 + T - 2\pi z < \pi$. Označme tuto fázi $\varphi_1 \coloneqq 1 + T - 2\pi z$.

Nyní může nastat jeden ze dvou případů: 1. $\varphi_1=1$, nebo 2. $\varphi_1\neq 1$. Oba případy vyvrátíme.

- 1. Z rovnosti $\varphi_1=1$ dostáváme spor: $\varphi_1=1\implies 1+T-2\pi z=1\implies \pi=\frac{T+1}{2z}\in\mathbb{Q}$
- 2. Označme $\Delta \varphi \coloneqq \varphi_1 1$. Protože $\varphi_1 \in (0,\pi)$ a zároveň $\varphi_1 \neq 1$, tak $\Delta \varphi \in (-1,0) \cup (0,\pi-1)$. Uvažujme pro teď případ $0 < \Delta \varphi < \pi 1$. Ukážeme, že po maximálně $\lceil \frac{\pi}{\Delta \varphi} \rceil$ periodách se změní posloupnosti $(\sin n)_{n=1}^{\infty}$ znaménko, tedy vyvrátíme existenci periody T posloupnosti $(\operatorname{sgn} \sin n)_{n=1}^{\infty}$.

Pár prvních prvků vybrané posloupnosti $(\operatorname{sgn}\sin(1+nT))_{n=1}^{\infty}$ mohou mít shodné znaménko, nicméně každou periodou se fáze ve vnitřní funkci sinus posouvá o $\Delta \varphi$. V konečném počtu m

'period' nastane $1+m\cdot\Delta\varphi>\pi$ a znaménko skočí do záporných hodnot. Protože $\Delta\varphi<\pi$, nehrozí přeskočení intervalu délky π z kladných hodnot sinu opět do kladných.

V případě $\Delta \varphi \in (-1,0)$ by byl důkaz analogický. Fáze by se zmenšovala až do doby, kdy po m 'periodách' dosáhne $1+m\cdot\Delta \varphi < 0$ a změní se znaménko.

Závěr: S předpokladem, že posloupnost $(\operatorname{sgn} \sin n)_{n=1}^{\infty}$ je periodická, jsme došli ke sporu. Posloupnost žádnou periodu nemá.

