Requirement:

We will analyze the how many students are having good performance and how many are having b ad performance.

We will find number of students who are fail and number of students who are pass

Data Source: https://www.kaggle.com/spscientist/students-performance-in-exams

In [67]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

In [68]:

```
data = pd.read_csv('StudentsPerformance.csv')
data.head()
```

Out[68]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	female	group B	bachelor's degree	standard	none	72	72	74
1	female	group C	some college	standard	completed	69	90	88
2	female	group B	master's degree	standard	none	90	95	93
3	male	group A	associate's degree	free/reduced	none	47	57	44
4	male	group C	some college	standard	none	76	78	75

In [69]:

```
data['gender'].value_counts()
```

Out[69]:

female 518 male 482

Name: gender, dtype: int64

Data Cleaning

In [70]:

```
print("Is there any null value in the dataset:",data.isnull().values.any())
```

Is there any null value in the dataset: False $% \left(1\right) =\left(1\right) +\left(1$

let's check any missing value

In [71]:

```
print("We need to check null details:",data.isnull().sum())

We need to check null details: gender 0
```

```
We need to check null details: gender race/ethnicity 0 parental level of education 0 lunch 0 test preparation course 0 math score 0
```

```
reading score writing score dtype: int64
```

0

0

Size of data Frame

```
In [72]:
```

```
print(data.shape)
(1000, 8)
```

let's understand the basic information of data frame

```
In [73]:
```

```
data.describe()
```

Out[73]:

	math score	reading score	writing score
count	1000.00000	1000.000000	1000.000000
mean	66.08900	69.169000	68.054000
std	15.16308	14.600192	15.195657
min	0.00000	17.000000	10.000000
25%	57.00000	59.000000	57.750000
50%	66.00000	70.000000	69.000000
75%	77.00000	79.000000	79.000000
max	100.00000	100.000000	100.000000

let's take the min and max marks for math_score,reading_score and writing_score

```
In [74]:
data['math score'].min()
Out[74]:
0
In [75]:
data['math score'].max()
Out[75]:
100
In [76]:
data['reading score'].min()
Out[76]:
```

In [77]:

17

```
data['reading score'].max()
```

```
Out[77]:
100
In [78]:
data['writing score'].min()
Out[78]:
10
In [79]:
data['writing score'].max()
Out[79]:
100
let's take passing marks 35
In [80]:
pass_marks = 35
Let's understand bar chart between math score and students
In [81]:
import seaborn as sns
p = sns.countplot(x="math score", hue = "gender", data=data)
                                         gender
                                           female
  25
  20
```


Observation:

There is x-axis shows math score and y axis shows the count from 0 to 25

Let's understand bar chart between writing score and students

```
In [82]:
```


Let's understand bar chart between reading score and students

In [83]:

```
import seaborn as sns
p = sns.countplot(x="reading score", hue = "gender", data=data)
```


How many students passed in Math Exam

In [84]:

```
data['MathPassStatus'] = np.where(data['math score'] < pass_marks, 'Fail', 'Pass')
data['MathPassStatus'].value_counts()</pre>
```

Out[84]:

Pass 978 Fail 22

Name: MathPassStatus, dtype: int64

We found total passed students: 978 and failed: 22

How many students passed in Writing Exam

In [85]:

```
data['WritingPassStatus'] = np.where(data['writing score']<pass_marks,'Fail','Pass')
data['WritingPassStatus'].value_counts()</pre>
```

Out[85]:

Pass 983 Fail 17

Name: WritingPassStatus, dtype: int64

We found total Passed students: 983 and failed: 17

How many students passed in Reading

```
In [86]:
```

```
data['ReadingPassStatus'] = np.where(data['reading score']<pass_marks,'Fail','Pass')
data['ReadingPassStatus'].value_counts()</pre>
```

Out[86]:

```
Pass 985
Fail 15
```

Name: ReadingPassStatus, dtype: int64

We found total Passed students: 985 and failed: 15

Let's understand number of passed and failed students based on parental level of education in Math Exam

In [87]:

```
p=sns.countplot(x="parental level of education", hue = 'MathPassStatus', data = data)
plt.setp(p.get_xticklabels(), rotation=90)
```

Out[87]:

[None, None, None]

Highest pass students belong to some college as parental level of education

Let's understand number of passed and failed students based on parental level of education in Writing Exam

In [88]:

```
p=sns.countplot(x="parental level of education", hue = 'WritingPassStatus', data = data)
_= plt.setp(p.get_xticklabels(), rotation=90)
```



```
some college - some college - some high school - so
```

Highest Passed students in writing exam belong to associate's degree

Let's understand number of passed and failed students based on parental level of education in Reading

In [89]:

```
p=sns.countplot(x="parental level of education", hue = 'ReadingPassStatus', data = data)
_= plt.setp(p.get_xticklabels(), rotation=90)
```


let check how many students are passed in all subjects

In [90]:

Out[90]:

```
Pass 971
Fail 29
```

Name: Overall_passStudents, dtype: int64

In [91]:

```
p = sns.countplot(x='parental level of education', hue = 'Overall_passStudents', data= data)
_ = plt.setp(p.get_xticklabels(), rotation=90)
```


Find the percentage of Marks

In [92]:

```
data['total_marks'] = data['math score']+data['writing score']+data['reading score']
data['percentage'] = data['total_marks']/3
data.head()
```

Out[92]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score	MathPassStatus	WritingPassStatus	ReadingPas
0	female	group B	bachelor's degree	standard	none	72	72	74	Pass	Pass	
1	female	group C	some college	standard	completed	69	90	88	Pass	Pass	
2	female	group B	master's degree	standard	none	90	95	93	Pass	Pass	
3	male	group A	associate's degree	free/reduced	none	47	57	44	Pass	Pass	
4	male	group C	some college	standard	none	76	78	75	Pass	Pass	
4											Þ

In [93]:

Let assign the grades

above 75 = A Grade

65 to 75 = B Grade

55 to 65 = C Grade

45 to 55 = D Grade

35 to 45 = E Grade

In [95]:

```
def GetGrade(percentage,Overall_passStudents):
   if (Overall_passStudents == 'F'):
        return 'F'
    if (percentage>=75):
       return 'A'
    if (percentage>=65):
       return 'B'
    if (percentage>=55):
       return 'C'
    if (percentage>=45):
       return 'D'
    if (percentage>=35):
       return 'E'
    else:
       return 'Fail'
data['Grade'] = data.apply(lambda x : GetGrade(x['percentage'], x['Overall_passStudents']), axis=1)
data.Grade.value_counts()
```

Out[95]:

```
A 324
B 277
C 208
D 137
E 36
Fail 18
Name: Grade, dtype: int64
```

In [97]:

```
p = sns.countplot(x= 'Grade',data=data,order = ['A','B','C','D','E','Fail'],palette = "muted")
plt.show()
```


In [98]:

```
p = sns.countplot(x= 'parental level of education', hue = 'Grade', data=data)
_ = plt.setp(p.get_xticklabels(), rotation=90)
```


bachelor's degree	some college barents master's degree	n _v1	o high school	some high school			
In []:							