# **Problem H**

## **Powerful Magic Squares**

Input: Standard Input
Output: Standard Output
Time Limit: 4 Seconds

You may already know magic squares. Here we introduce a more powerful one. Suppose we have a 5x5 square filled with numbers from 1 to 25, every number appear EXACTLY once, like this:



the sum of every row, every col, every diagonal(including non-main diagonals) are ALL the same. for example, 14 + 20 + 21 + 2 + 8 = 19 + 8 + 22 + 11 + 5 = 1 + 24 + 17 + 15 + 8 = 19 + 2 + 15 + 23 + 6 = 65. you may calculate these 20 sums yourself, then, you'll know I am talking about.

This kind of squares (20 sums are ALL the same) is called POWERFUL MAGIC SQUARES. Your task is: given a uncompleted square, count the number of powerful magic squares that can be obtained by completing the square.

### Input

The first line of the input contains a single integer n(1 <= n <= 15000), the number of test cases followed. For each case, there are five lines containing the uncompleted squares. Blank squares are represented as '--'. Filled numbers are always between 1 and 25. every test case is followed by a blank line except the last one.

The input format is always correct.

#### Output

For each test case, print the case number and the number of squares obtained, like shown below.

## Sample Input

### **Output for Sample Input**

| 2           | Case 1: 1 |
|-------------|-----------|
| 1 7 13 19   | Case 2: 0 |
| 14 20 21 2  |           |
| 22 3 9 15   |           |
| 10 11 17 23 |           |
|             |           |
|             |           |
| 1 2 3       |           |
| 4 5 6       |           |
| 7 8 9       |           |
|             |           |
|             |           |

Problemsetter: Rujia Liu, Member of Elite Problemsetters' Panel