Index of Notes

Ryan G

February 11, 2020

Contents

Preliminary		1
Using Org		2
Data Science Notes		2
Introduction to data science	IntroDataSci	2
.1 Supervised Learning		2
.2 Unsupervised Learning		2
Data Visualisation		2
Statistics Dump		2
Predictive Modelling		
Mathematics		3
Abstract Algebra		3
-	ГАСН	
.1 preliminary		3
	ATTACH	
Statistics ATT	ГАСН	4
Note Taking Manual		4
The manual for my strategy		4
Journal		4
Correspondence		4
Appendx		8
Org Scratch Space Template		

Preliminary

you might want this one

!!! Important In order to save on export just use a vim-macro @s is save and git export, this is way easier

Then you can just use F4 to execute the last macro over and over. so do <Esc> q s SPC f s SPC m e h h Enter then use F4 to save just append a 0 to the name of the default CSS !!!

TODO Write up notes on good coding style here
The Markdown Wiki

- Searching
 - Through Notes

SEARCH ~/Notes emacs vim Bash

Filename Not that I'm aware of :FZF <CR> ~/Notes cd ~/Notes ; =fzf File Contents (by Line ONLY!) Spc a o /; (occur-in-agenda-files) :Rg cd ~/Notes ; rg / (

- You Could also use Spc a o m to get tags
- Across Drive:

• If you know exactly where the file is you could also use helm-find-files; SPC f f

To search only agenda files use SPC a o / To search all files use helm-ag or use vim C-p, vim :rg
To search all file names use helm-locate which is SPC f L or use fzf

Using Org

Main Org Notes

TODO All these links point to 'org' files for some reason, I can't make the links behave.

Data Science Notes

Introduction to data science

IntroDataSci

Supervised Learning

- 1. Regression
 - (02/03) Simple and Multiple Linear Regression
- 2. Classification
- 3. Re-sampling Methods

¹find ~/Notes -name KEYWORD

l	Insur	pervised	Learnii	าด
•	Jusup	JCI VIJCU	LCuilli	

- 1. Principal Component Analysis (PCA)
- 2. Clustering

Data Visualisation

Using Data Visualization with ggplot2 (Part 2)

Statistics Dump

I've just taken that massive Word Document of statistics work and converted it to org as a sort of expermient

Time Series Analysis Stats Export Stats Export

Predictive Modelling

- All the PDF Notes
 - RelativeLink

Mathematics

Abstract Algebra

Abstract Algebra

Calculus ATTACH

preliminary

• Fundamental Theorem of Calculus

PDF Notes ATTACH

- Math Modelling Notes
 - LATEX Source
- Calculus Rules

Analysis

- 1. Notes All the notes I took in class are: Tex Source Files are Currently In This Directory
 - 1. Sets
 - 1. Sets

•

- 2. Sequences
 - 1. Sequences (Cauchy Criterion)
- 3. Series
 - 1. Series (Old)
 - 2. Series (Stewart Calculus Excerpt)
- 4. Limits
- 5. Continuity
- 6. Stu-vac
- 7. Complex Values
- 8. Complex Variables
- 9. Elementary Functions
- 10. Complex Integrals
- 11. Power Series (MD)
 - 1. Power Series Excerpt
- 2. Working The working is all handwritten so I couldn't attach it, there linked here in Dropbox.
- 3. TextBooks The textbooks can be found here in Dropbox Textbooks

Statistics ATTACH

- Time Series Analysis
 - PDF Version
 - * Word Document
 - * (02) Confidence and Prediction Intervals TimeSeries
 - · LATEX Source
- Stats Export
 - Simple Linear Regression

Note Taking Manual

NoteTaking

The manual for my strategy

Journal

Correspondence

1. Zheng

- (a) Email to Zheng Related to Damping Dear Dr Zheng, Sorry for the late reply, I've been really busy with Christmas.
 - i. Should k always be positive? I wasn't able to clearly interpret what the Bloom paper was trying to express with regard to any values for damping, it just wasn't clear to me. Instead what i did was:
 - A. Solve the Cross Product to given the Bloch Equations
 - B. Numerically Solve the Bloch Equations
 - C. Generate a Plot
 - D. Reduce the domain of the plot until the plot has a reasonable number of periods
 - E. Create a dynamic Plot allowing me to sweep a range of k values that produce any change.
 - A. Laboratory Frame
 - B. Math So in the laboratory frame:

$$\mathbf{B} = \begin{pmatrix} B_{\mathrm{RF}} \cdot \cos\left(\omega_{\mathrm{RF}} \cdot t + \phi_{0}\right) - k \cdot M_{y} \\ B_{\mathrm{RF}} \cdot \sin\left(\omega_{\mathrm{RF}} \cdot t + \phi_{0}\right) + k \cdot M_{x} \end{pmatrix} \mathbf{M} = \begin{pmatrix} M_{x} \\ M_{y} \\ M_{z} \end{pmatrix}$$

and hence:

$$\frac{d\mathbf{M}}{dt} = M \times B - \mathbf{R} \left(\mathbf{M} - M_0 \right)$$

$$= \begin{pmatrix} \gamma \left[B_0 y - kxz + B_{\text{RF}} z \sin \left(\phi + t \omega \right) \right] - R_2 x \\ \gamma \left[-B_0 x - kyz + B_{\text{RF}} z \cos \left(\phi + t \omega \right) \right] - R_2 y \\ \gamma \left[kx^2 + ky^2 - B_{\text{RF}} y \cos \left(\phi + t \omega \right) - B_{\text{RF}} x \sin \left(\phi + t \omega \right) \right] - R_1 \left(z - M_0 \right) \end{pmatrix}$$

If I solve this Differential Equation Numerically, I have no problem getting solutions for an arbitrarily long time period, although if we were to do something like a binomial pulse then the pulse duration would have to be much smaller in order to generate points corresponding to different IC's.

So for example using the following code I could solve for an entire 1 ms pulse, but because there are so many periods it isn't very useful:

C. Code

```
T1=4;
R1=1/T1;
R2=1/2;
MO=1;
=Pi;
IC={0,0,1};
length =0.1*10^-6;
=42.65*10^8;
=42.65*10^6;
Brf = 2*10^-3;
k=200*Brf
B0=11.7; (*11.7 Tesla Corresponding to 500 Mhz at-resonance Pulse *)
=*B0*1.000(* 2 N[Pi] *);
(*length=/;*)
BlochX=x'[t]==-R2 x[t]+ (B0 y[t]-k x[t] z[t]+Brf z[t] Sin[+t]);
BlochY=y'[t]==-R2 y[t]+ (-B0 x[t]-k y[t] z[t]+Brf z[t] Cos[+t ]);
BlochZ=z'[t]==-R1 (-M0+z[t])+ (k (x[t])^2+k (y[t])^2-Brf y[t] Cos[+t]-Brf x[t]
(s=NDSolve[BlochX, BlochY, BlochZ, x[0]==IC[[1]], y[0]==IC[[2]], z[0]==IC[[3]]
x[t_] = x[t] /. s[[1]];
y[t_] = y[t] /. s[[2]];
z[t_{-}] = z[t] /. s[[3]];
{x[length], y[length], z[length]}
Plot[x[t],{t,0,length}]
Plot[y[t],{t,0,length}]
Plot[z[t],{t,0,length}, PlotRange->Full]
z[ Range[0,length,length/100]]
```

D. Results

Figure 1: image-20191225113857809

E. Smaller Domain By reducing this to a 0.1 μ s pulse the results become more meaningful:

```
##### Choosing a $k$-value For a pulse of 0.1~\mu s, I tried a variety of k values, I found that only k values from -50 to about 5 made any significant difference, this is shown in the animation here https://ryangreenup.github.io/NMR-Project/Working/RadiationDamping/RadiationDamping.html#laboratory-frame
```

- F. Rotating Frame
- G. Math So in the rotating Frame:

$$\mathbf{B} = \begin{pmatrix} B_{\mathrm{RF}} \cdot \cos\left(0 \times t + \phi_{0}\right) - k \cdot M_{y} \\ B_{\mathrm{RF}} \cdot \sin\left(0 \times t + \phi_{0}\right) + k \cdot M_{x} \end{pmatrix} = \begin{pmatrix} B_{\mathrm{RF}} \cdot \cos\left(\phi_{0}\right) - k \cdot M_{y} \\ B_{\mathrm{RF}} \cdot \sin\left(\phi_{0}\right) + k \cdot M_{x} \end{pmatrix} \mathbf{M} = \begin{pmatrix} M_{x} \\ M_{y} \\ M_{z} \end{pmatrix}$$

and hence:

$$\frac{d\mathbf{M}}{dt} = M \times B - \mathbf{R} \left(\mathbf{M} - M_0 \right)$$

$$= \begin{pmatrix} \gamma \left[-kxz + \frac{y\Omega}{\gamma} + B_{RF}z\sin(\phi) \right] - R_2y \\ \gamma \left[-kyz - \frac{x\Omega}{\gamma} + B_{RF}z\cos(\phi) \right] - R_2y \\ \gamma \left[kx^2 + ky^2t - B_{RF}y\cos(\phi) - B_{RF}x\sin(\phi) \right] - R_1 \left(z - M_0 \right) \end{pmatrix}$$

This can just as easily be solved numerically and plotted

H. Code Clear["Global`*"] Remove["Global`*"] Clear [Derivative] T1=4;R1=1/T1;R2=1/2;MO=1;=0; $IC={0,0,1};$ length = $1*10^-3$; =42.65*10^6; Brf = $2*10^-3$; k=0.0001;=5000; (*length=/;*) BlochX=x'[t]==-R2 x[t]+ (-k x[t]* z[t]+(y[t])/+Brf z[t] Sin[]);BlochY=y'[t]==-R2 y[t]+ (-k y[t]*z[t]-(x[t])/+Brf z[t] Cos[]); $BlochZ=z'[t]==-R1 (-M0+z[t])+ (k (x[t])^2+k (y[t])^2-Brf y[t] Cos[]-Brf x[t] Start = -R1 (-M0+z[t])+ (k (x[t])^2+k (y[t])^2-Brf y[t] Cos[]-Brf x[t] Start = -R1 (-M0+z[t])+ (k (x[t])^2+k (y[t])^2-Brf y[t] Cos[]-Brf x[t] Start = -R1 (-M0+z[t])+ (k (x[t])^2+k (y[t])^2-Brf y[t] Cos[]-Brf x[t] Start = -R1 (-M0+z[t])+ (k (x[t])^2+k (y[t])^2-Brf y[t] Cos[]-Brf x[t] Start = -R1 (-M0+z[t])+ (k (x[t])^2+k (y[t])^2-Brf y[t] Cos[]-Brf x[t] Start = -R1 (-M0+z[t])+ (k (x[t])^2+k (y[t])^2-Brf y[t] Cos[]-Brf x[t] Start = -R1 (-M0+z[t])+ (k (x[t])^2+k (y[t])^2-Brf y[t] Cos[]-Brf x[t] Start = -R1 (-M0+z[t])+ (k (x[t])^2+k (y[t])^2-Brf y[t] Cos[]-Brf x[t] Start = -R1 (-M0+z[t])+ (k (x[t])^2-Brf x[t])+ (k (x[t])^2-Brf x[$

(s=NDSolve[BlochX, BlochY, BlochZ, x[0]=IC[[1]], y[0]=IC[[2]], z[0]=IC[[3]]

{x[length], y[length], z[length]};

x[t_] = x[t] /. s[[1]]; y[t_] = y[t] /. s[[2]]; z[t_] = z[t] /. s[[3]];

```
Plot[x[t],{t,0,length}, PlotRange->Full, PlotLabel->"X-Value of Magnetic Moment Plot[y[t],{t,0,length}, PlotRange->Full, PlotLabel->"X-Value of Magnetic Moment Plot[z[t],{t,0,length}, PlotRange->Full,PlotLabel->"X-Value of Magnetic Moment
```

```
(*z[ Range[0,length,length/100]]*)
```

I. Results

Figure 2: image-20191225120345717

J. Longer Pulse I could have also pulsed this longer in the rotating frame, a 100 s pulse returned:

Figure 3: image-20191225121305034

K. Choosing a k value In this case I only found that k values from -0.1 to 0.1 made any significant difference, the varying k values are shown in the animation here.

https://ryangreenup.github.io/NMR-Project/Working/RadiationDamping/RadiationDamping.html#rotating-frame

- ii. Length of Pulse
 - I set the phase of the pulse to 0^o rather than 90^o but I don't think that should make a significant difference
 - The strength of the RF-Pulse is 1 mT.
 - $i.e. B_{RF} = 10^{-3} T$
 - * I was able to practically solve the System for:
 - · 1 ms in the lab frame
 - · 100 s in the rotating frame
 - The length of the pulse wasn't really an issue, this issue was more so trying to interpret the solution, in the plots above the \$x\$-axis represents the number of seconds passed, so I found that a reasonable pulse length to visualise was:
 - 0.1 \$ μ \$s in the laboratory frame
 - 1 ms in the laboratory frame
- iii. Skype I'm a little preocupied with Christmas, would we be able to schedule a Skype following Boxing Day other than that any time works for me so how about?
 - 6:30 PM Sydney Time sounds good on the $27^{\rm th}$?

This was converted from 'md' to 'org' using 'pandoc -f gfm' at time: 2020-02-09T05-26-42

Appendx

You may need to configure customize RET org-export-html-extension

```
1 (setq org-html-extension "html")
```