

CYW943907AEVAL1F

Evaluation Kit User Guide

Doc. No. 002-18703 Rev. **

Cypress Semiconductor 198 Champion Court San Jose, CA95134-1709 Phone (USA): 800.858.1810

Phone (Intnl): +1.408.943.2600

www.cypress.com

Copyrights

© Cypress Semiconductor Corporation, 2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Contents

Saf	ety Info	ormation	5
1.	Intro	duction	6
	1.1	CYW943907AEVAL1F EVK Contents	6
	1.2	CYW943907AEVAL1F Board Details	8
	1.3	WICED Studio Development System Overview	9
	1.4	WICED Studio Code Examples	
	1.5	Kit Code Examples	12
	1.6	Getting Started	12
	1.7	IOT Resources and Technical Support	12
	1.8	Additional Learning Resources	12
	1.9	Document Conventions	13
	1.10	Acronyms	13
2.	Softv	vare Installation	14
	2.1	Before You Begin	14
	2.2	Install Software	
3.	Kit O	peration	18
	3.1	Theory of Operation	18
	3.2	On-board programmer/Debugger and Serial interface Chip	
	3.3	CYW943907AEVAL1F Kit Connection	
		3.3.1 Verifying Driver Installation	19
		3.3.2 Troubleshooting	20
		3.3.3 External Power Supply	20
	3.4	Building, Programming, and Debugging CYW943907AEVAL1F EVK	21
		3.4.1 Building and Programming a Project for CYW943907AEVAL1F in WICED Studio IDE	21
		3.4.2 Troubleshooting	24
		3.4.3 Debugging a Project using Breakpoints	25
4.	Hard	ware	29
	4.1	Bootstrap	29
	4.2	User Switches	30
	4.3	LED	30
	4.4	Reset Control	31
	4.5	Ethernet	_
	4.6	Micro SD Connector/Slot	
	4.7	JTAG Connector	
		4.7.1 On-board Programmer/Debugger and Serial Interface Chip	
		4.7.2 External JTAG	35

	4.8	Conne	ectors	36
		4.8.1	WICED Header	36
		4.8.2	Arduino-Compatible Headers	38
	4.9	UART	Port Configuration on CYW943907AEVAL1F Kit	39
	4.10	Extern	nal ADC	39
	4.11	PWM.		40
5.	Code	Exam	ples	42
	5.1	Using	Code Examples	42
	5.2	GPIO		42
		5.2.1	Project Description	42
		5.2.2	Hardware Connections	42
		5.2.3	Verify Output	43
	5.3	Config	g_join_ping	43
		5.3.1	Project Description	43
		5.3.2	Hardware Connections	43
		5.3.3	Flow Chart	44
		5.3.4	Verify Output	45
	5.4	Adc_n	neasure	47
		5.4.1	Project Description	47
		5.4.2	Hardware Connections	47
		5.4.3	Flow Chart	48
		5.4.4	Access Point Credentials	49
		5.4.5	Verify Output	49
	5.5	Publis	h_subscribe_aws	50
		5.5.1	Project Description	50
		5.5.2	Hardware Connections	51
		5.5.3	Flow Chart	51
		5.5.4	Verify Output	52
Rev	ision I	History	·	59
	Docu	ment R	Pevision History	59

Safety Information

The CYW943907AEVAL1F EVK is intended for use as a development platform for hardware or software in a laboratory environment. The board is an open-system design, which does not include a shielded enclosure. Due to this reason, the board may cause interference with other electrical or electronic devices in close proximity. In a domestic environment, this product may cause radio interference. In such cases, take adequate preventive measures. Also, do not use this board near any medical equipment or RF devices.

Attaching additional wiring to this product or modifying the product operation from the factory default may affect its performance and cause interference with other apparatus in the immediate vicinity. If such interference is detected, suitable mitigating measures must be taken.

The CYW943907AEVAL1F contains electrostatic discharge (ESD)-sensitive devices. Electrostatic charges readily accumulate on the human body and any equipment, and can discharge without detection. Permanent damage may occur on devices subjected to high-energy discharges. Proper ESD precautions are recommended to avoid performance degradation or loss of functionality. Store unused CYW943907AEVAL1F in the protective shipping package.

End-of-Life/Product Recycling

This kit has an end-of-life cycle of five years from the year of manufacturing mentioned on the back of the box. Contact your nearest recycler for discarding the kit.

General Safety Instructions

ESD Protection

ESD can damage boards and associated components. Cypress recommends that the user perform procedures only at an ESD workstation. If an ESD workstation is not available, use appropriate ESD protection by wearing an antistatic wrist strap attached to the chassis ground (any unpainted metal surface) on the board when handling parts.

Handling Boards

CYW943907AEVAL1F boards are sensitive to ESD. Hold the board only by its edges. After removing the board from its box, place it on a grounded, static-free surface. Use a conductive foam pad if available. Do not slide the board over any surface. Any physical action on CYW943907AEVAL1F such as changing wires, jumper settings, or measuring voltages can cause stress on the CYW943907AEVAL1F printed circuit board assembly (PCBA). You must ensure that the PCBA has proper support on the bottom side to avoid stress on the PCBA when the EVK is in operation.

1. Introduction

Thank you for your interest in the CYW943907AEVAL1F Evaluation Kit (EVK). The CYW943907AEVAL1F EVK enables customers to evaluate and develop single-chip Wi-Fi applications using CYW43907 devices.

The CYW943907AEVAL1F EVK uses WICEDTM Studio 5.0 (or later) to develop and debug your CYW43907 project. CYW943907AEVAL1F EVK offers footprint-compatibility with Arduino shields. In addition, the kit features an RJ-45 Ethernet connector, a Micro-SD-card slot, and onboard programmer/debugger and serial bridge chip. The CYW943907AEVAL1F EVK supports only 3.3 V as the operating voltage.

Older revisions of the same kit were named BCM943907AEVAL1F_2 and BCM943907AEVAL1F. CYW43907 and BCM43907 refer to the same device.

WICED Studio 5.0 (or later) supports application development using a WICED development board (CYW943907AEVAL1F). The development system is compatible with the Windows, OS X, and Linux operating systems. This document provides instructions for utilizing peripherals, such as I2C or SPI, in WICED sample applications using the WICED Studio Integrated Development Environment (IDE).

Note: This document applies to WICED Studio 5.0 (or later).

The CYW943907AEVAL1F EVK is available through the Cypress Online Store or through our distributors.

1.1 CYW943907AEVAL1F EVK Contents

The CYW943907AEVAL1F EVK includes the following:

- One CYW943907AEVAL1F Evaluation Board with assembled Arduino headers
- One USB 2.0 Type-A to Micro-B cable

Figure 1-1. CYW943907AEVAL1F Kit Contents

Inspect the contents of the kit. If you find any part missing, contact your nearest Cypress sales office for assistance: www.cypress.com/support.

Hardware Not Included With the Kit

The CYW943907AEVAL1F EVK does not come with all the hardware needed to perform the demonstrations documented in this guide.

The following hardware is not included with this kit:

- RJ-45 Ethernet cable
- SD-Card
- External power supply
- Dual external antenna
- Potentiometer
- Jumper Wires

1.2 CYW943907AEVAL1F Board Details

The CYW943907AEVAL1F board consists of the blocks shown in Figure 1-2 and Figure 1-3.

- 1. Reset Switch (SW2)
- 2. RJ45 Connector (J14)
- 3. Micro USB (Programming and Debugging) (J5)
- 4. 5-12V Power Input (J8)
- 5. WICED Header (J6)
- 6. Arduino Header (J13)
- 7. User Switch 1 (SW3)
- 8. User Switch 2 (SW1)
- 9. Arduino Header (J9)
- 10. PCB Antenna-Main (ANT1)
- 11. Connector for External Antenna 1 (J1)
- 12. CYW43907 Type 1GC Module (Murata) (U14)
- 13. PCB Antenna-Diversity (ANT0)
- 14. Connector for External Antenna 0 (J2)
- 15. On-board /External JTAG Switch (SW4)
- 16. External JTAG Header (J3)
- 17. Arduino Header (J10)
- 18. Arduino Header (J12)
- 19. External PHY chip(U12) BCM5241
- 20. External ADC Chip (U3)
- 21. µSD Connector/slot (J7)

Figure 1-2. CYW943907AEVAL1F Evaluation Board

Figure 1-3. CYW943907AEVAL1F Evaluation Board (Back View)

1.3 WICED Studio Development System Overview

WICED Studio 5.0 (or later) supports application development using the WICED Evaluation Board (CYW943907AEVAL1F EVK). Tabs and their location in the WICED IDE are as shown in Figure 1-4.

Figure 1-4 illustrates the following:

- 1. Edit your application firmware.
- 2. Help Window that contains instructions on building and downloading applications.
- 3. Explore existing applications/firmware and library of the Software Development Kit (SDK).
- 4. View Build messages in the Console window.
- 5. Create and edit Make Targets for the platform to build your Application/Project.

Figure 1-4. WICED IDE

1.4 WICED Studio Code Examples

WICED Studio includes libraries and code examples supporting both Bluetooth and Wi-Fi platforms. Selecting the 43xxx_Wi-fi Filter will show only Wi-Fi platform related files in the project explorer as shown in Figure 1-5.

Application examples can speed up the design process by serving as templates for development. Code examples are located under the apps category (in the Project explorer window), as shown in Figure 1-6. Code examples under apps are further grouped into demo, snip, test, waf (WICED Application Framework), and wwd (WICED Wi-Fi Driver Application) directories.

The demo directory contains applications that combine various WICED features into a single application. The snip directory contains application snippets that demonstrate how to use various WICED libraries and API functions. The test directory contains applications that are used for simple test and utility. The waf directory contains applications that are part of WICED Application framework, for instance, the bootloader. The wwd directory contains applications that are developed using the low level wwd API calls and do not rely on higher level WICED APIs. Located within each subdirectory in the apps folder is a README.txt that lists and summarizes the applications located within the folder. It should also be noted that not all applications are supported in all platforms. The snip directory contains a README.txt with a matrix on what applications are supported in what platforms. For more details on the WICED software stack and APIs, review the Application notes and documents available in the doc folder < WICED SDK installation folder>/WICED-Studio-5.0/43xxx_Wi-Fi/doc. WICED-QSG204 available in the same path is a good document to start with.

Figure 1-5. Filter for Wi-Fi Code Example in WICED Studio

Figure 1-6. Code Examples under apps Category

```
C/C++ - 43xxx_Wi-Fi/apps/snip/scan/scan.c - Eclipse
<u>File Edit Source Refactor Navigate Search Project Run WICED Platform Window Help</u>
                                                                        | 📭 🗁 | 🥸 ▼ 🔦 ▼ 📆 | 🖎 🕪 🕕 🔳 🕒 🎝. 🖘 .㎡ 👼 🎀 | 43xxx_Wi-Fi
🕒 Project Explorer 🛭 🗎 👺 💆 📅 🗖 🗎 README.txt 🕜 platform.c 🔝 Makefile 🗎 make 🗎 README.txt.
                                                                                                        lc scan.c ⊠
                                             93
                                                apps
       🗁 demo
     > 🗁 snip
                                                void application_start( )
     > 🎘 test
                                             97
                                                   wiced_init( );
     > 🎘 waf
                                             99
     > 🗁 wwd
                                            100
                                                    while(1)
        README.txt
                                            101

    doc

                                            102
                                                       wiced_time_t scan_start_time;
wiced_time_t scan_end_time;
   > 🌦 include
                                                       wiced_time_t scan_end_t
app scan data t scan data;
                                            103
                                            104
   > 🍃 libraries
                                            105
   > 🗁 platforms
                                                       /* Initialize the semaphore that will tell us when the scan is complete */
                                            106
   > 🌦 resources
                                            107
108
                                                       wiced_rtos_init_semaphore(&scan_data.semaphore);
scan_data.result_count = 0;
   > 🗁 tools
   > 🇁 WICED
                                                       109
                                                                                                                             SSID\n" ) );
                                            110
     x .cproject
                                            111
     gdbinit_attach
     x .project
                                            113
     CHANGELOG.txt
                                                       wiced time get time(&scan start time);
                                            114
     LICENSE.txt
                                            115
                                                       wiced_wifi_scan_networks(scan_result_handler, &scan_data );
     make
                                            116
                                            117
                                                       /* Wait until scan is complete */
     make.exe
                                                       wiced_rtos_get_semaphore(&scan_data.semaphore, WICED_WAIT_FOREVER);
wiced_time_get_time(&scan_end_time);
     Makefile
                                            119
     README.txt
                                            120
     version.txt
                                                       WPRINT_APP_INFO( ("\nScan complete in %ly milliseconds\n", (unsigned long )(scan_end_time - scan
```


1.5 Kit Code Examples

In addition to the examples available in WICED Studio, this EVK includes a few additional code examples, which can be used to quickly evaluate CYW43907 using this kit. These examples are described in the Code Examples chapter.

1.6 Getting Started

To learn quickly about CYW943907AEVAL1F EVK, refer to the CYW943907AEVAL1F Quick Start Guide inside the kit box.

This user guide will help you get acquainted with CYW943907AEVAL1F EVK:

- The Software Installation chapter describes the installation of the kit software. This includes extracting the required files for WICED Studio 5.0 (or later).
- The Kit Operation chapter describes the major sections of the kit such as the on-board programmer/debugger chip, reset control, headers, programming and debugging of the kit, SD card interface, and Ethernet interface.
- The Hardware chapter describes the CYW943907AEVAL1F EVK hardware and its different blocks.
- The Code Examples chapter describes code examples that will help you understand how to get started with WLAN basic examples.

1.7 IOT Resources and Technical Support

Cypress provides a wealth of data at www.cypress.com/internet-things-iot to help you to select the right IoT device for your design, and quickly and effectively integrate the device into your design. Cypress provides customer access to a wide range of information, including technical documentation, schematic diagrams, product bill of materials, PCB layout information, and software updates. Customers can acquire technical documentation and software from the Cypress Support Community website (https://community.cypress.com).

For assistance, go to: www.cypress.com/support, or contact our customer support at +1(800) 541-4736 Ext. 2 (in the USA), or +1 (408) 943-2600 Ext. 2 (International).

1.8 Additional Learning Resources

Visit CYW943907AEVAL1F EVK and CYW43907 for additional learning resources including datasheets and application notes.

1.9 Document Conventions

Table 1-1. Document Conventions for Guides

Convention	Usage
Courier New	Displays file locations, user entered text, and source code: C:\cd\icc\
Italics	Displays file names and reference documentation.
[Bracketed, Bold]	Displays keyboard commands in procedures: [Enter] or [Ctrl] [C]
File > Open	Represents menu paths: File > Open > New Project
Bold	Displays commands, menu paths and icon names in procedures: Click the File icon and then click Open .
Times New Roman	Displays an equation: 2 + 2 = 4
Text in gray boxes	Describes Cautions or unique functionality of the product.

1.10 Acronyms

Table 1-2. List of Acronyms used in this Document

Acronym	Definition	
SPI	Serial Peripheral Interface	
EVK	Evaluation Kit	
SDK	Software Development Kit	
WICED	Wireless Internet Connectivity for Embedded Devices	
JTAG	Joint Test Action Group	
I ² C	Inter-Integrated Circuit	
MQTT	Message Queue Telemetry Transport	
POR	Power-on-Reset	
PMU	Power Management Unit	
VTRIM	Voltage Trimming	
LPO	Low Power Oscillator	
GPIO	General Purpose Input Output	
UART	Universal Asynchronous Receiver/Transmitter	
AWS	Amazon Web Services	
IDE	Integrated Development Environment	
WLAN	Wireless Local Area Network	

2. Software Installation

This chapter describes the steps to install the software tools and packages on a PC for using the CYW943907AEVAL1F EVK. This includes the WICED IDE in which the projects will be built and used for programming.

2.1 Before You Begin

All Cypress software installations require administrator privileges. Ensure that you have the required privileges on the system for successful installation. Before you install the kit software, close any other Cypress software that is currently running. Ensure you have installed WICED Studio 5.0 (or later).

2.2 Install Software

Follow these steps to install the CYW943907AEVAL1F Evaluation Kit software:

 Download and install WICED Studio 5.0 (or later) from this web page. Following is a screenshot of the Installer Window when opened.

- 2. Select two Folders, one for the IDE and the other for the SDK. The folder for the SDK contains the Framework for developing Wi-Fi applications.
- 3. As a last step in installation, installer will ask to select between Wi-Fi and Bluetooth platform. Select 43xxx Wi-Fi as default.
- Download the CY943907AEVAL1F_KitPackage.zip software from here. The software is available as a zip file
- 5. Locate the WICED Wi-Fi-SDK directory in your PC. The default location is *C:\Users\<user name>\Documents\WICED-Studio-5.0\43xxx_Wi-Fi*, as shown in Figure 2-1. However, it may be in a different location depending on the path you choose when installing WICED Studio.

X Home Share View « WICED-Studio-5.0 » 43xxx Wi-Fi Search 43xxx_Wi-Fi ۵ Name Date modified Type Size 🖈 Quick access 5/29/2017 5:17 PM apps File folder Documents doc 5/29/2017 5:17 PM File folder Downloads include 5/29/2017 5:17 PM File folder Pictures libraries 5/29/2017 5:17 PM File folder Desktop platforms 5/29/2017 5:17 PM File folder 5/29/2017 5:17 PM File folder resources pesit tools 5/29/2017 5:17 PM File folder Rev04 WICED 5/29/2017 5:17 PM File folder wifi .cproject 5/29/2017 5:17 PM CPROJECT File 14 KB OneDrive - Cypres .gdbinit_attach 5/29/2017 5:17 PM GDBINIT_ATTACH... 1 KB 5/29/2017 5:17 PM PROJECT File .project 3 KB This PC API_updates.txt 5/29/2017 5:17 PM Text Document 10 KB Desktop CHANGELOG.txt 5/29/2017 5:17 PM Text Document 65 KB Documents LICENSE.txt 5/29/2017 5:17 PM Text Document 7 KB Downloads make 5/29/2017 5:17 PM File 4 KB Music make.exe 5/29/2017 5:17 PM 71 KB Application Makefile 5/29/2017 5:17 PM File 17 KB Pictures ProjectZeroExploits.txt 5/29/2017 5:17 PM Text Document 3 KB Videos README.txt 5/29/2017 5:17 PM Text Document 15 KB Sindows7_OS (C version.txt 5/29/2017 5:17 PM Text Document 1 KB 🚼 Lenovo_Recover Code (Y:) Docs (Z:) 20 items

Figure 2-1. WICED SDK Directory

6. Copy the CY943907AEVAL1F_KitPackage.zip file and extract to a temporary location such as "temp". The zip file will extract two directories called "apps" and "resources" inside the temp/CYW943907AEVAL1F_KitPackage/ directory. Select both of them, Copy (CTRL+C) and paste (CTRL+V) into C:\Users\\user name>\Documents\\WICED\-Studio\-5.0\43xxx_Wi\-Fi\). Choose the option to merge with existing folders.

Alternately, copy the CY943907AEVAL1F_KitPackage.zip to the location specified above and use the **Extract Here** option if you have 7-Zip or other unzip utility. The zip file should be merged to the existing folders. If WICED Studio 5.0 (or later) is opened with 43xxx_Wi-Fi as the WICED Filter (Figure 1-5), then the new folders appear as shown in Figure 2-2.

Figure 2-2. Setup Package in WICED Studio 5.0 (or later)

- 7. The CY943907AEVAL1F_KitPackage.zip package contains three code examples which add to the existing set of examples available in WICED Studio 5.0 or later. Unzipping creates the kits directory under apps, and adc_measure in the resources\apps directory.
 - After unzipping, if the projects are not visible in WICED Studio 5.0 (or later), then right-click the top most folder (43xxx Wi-Fi) and click **Refresh**, as shown in Figure 2-3.

Figure 2-3. Refresh Top Folder

3. Kit Operation

This chapter introduces you to the CYW943907AEVAL1F EVK and the features that will be used as part of Kit operation. Features such as Wi-Fi connection and programming/debugging are discussed in this chapter. The chapter also describes the USB-UART that can be used to communicate with the CYW43907 device on this EVK.

3.1 Theory of Operation

Figure 3-1 illustrates the block diagram of the CYW943907AEVAL1F EVK. This board contains BCM943907/CYW43907 based SiP which is a Type1GC Wireless module. This module is an embedded network controller solution from Murata. This board also contains a USB-Serial interface / JTAG programmer / debugger.

This board features Arduino form-factor compatible headers, which enables Arduino shields to be plugged on top, extending its capabilities. This board also features two user switches, two user LEDs, an RJ-45 connector for Ethernet, and a reset switch for the wireless module.

Figure 3-1. Block Diagram of CYW943907AEVAL1F EVK

3.2 On-board programmer/Debugger and Serial interface Chip

An FT-2232-HQ chip is used for onboard programming, debugging and USB-Serial functionality. It connects to the computer over a USB interface and connects to the CYW43907 based SiP module over JTAG and UART pins. Alternately, you can use the External JTAG connector (J3) along with switch **SW4** (in all closed positions) in order to use JTAG from connectors such as Olimex.

3.3 CYW943907AEVAL1F Kit Connection

The CYW943907AEVAL1F EVK can be powered by the following options:

- External power supply
- USB

When using external power supply, you should use a 5 V - 12 V, 2A power supply with 2.1 mm DC Jack (center pin positive). When powered from USB, there are two logical USB devices: a USB-JTAG device and a USB-UART device. Drivers for the CYW943907AEVAL1F EVK are automatically installed during the WICED SDK installation process. When you connect the kit for first time to your PC, it will initiate the driver search as shown in Figure 3-2.

Figure 3-2. Driver Software Installation

3.3.1 Verifying Driver Installation

To verify the successful completion of driver installation, perform these steps:

- 1. Right-click My Computer > Properties.
- 2. In the System Properties window, select **Device Manager**.
 - a. The WICED USB Serial Port is listed under Ports (COM & LPT) as shown in Figure 3-3.
 - b. The WICED USB JTAG Port is listed under WICED USB JTAG Devices as shown in Figure 3-3.

In Figure 3-3, the Device Manager window identifies the WICED USB Serial COM port as COMXX. The assigned port number varies between systems. If the device displays two WICED USB Serial Ports (WICED USB Serial port and WICED USB JTAG Port) instead of one, then follow the link mentioned in this post.

Figure 3-3. Verifying Device Driver Installation

3.3.2 Troubleshooting

If an error occurred during the automatic driver installation process, the driver may be manually installed from the following directory: *<WICED-SDK>\Drivers\Windows\wiced_uart*.

If the CYW943907AEVAL1F EVK does not appear in the Device Manager, verify that the +3V3 LED is turned ON and check the USB cable.

3.3.3 External Power Supply

The CYW943907AEVAL1F EVK can be supplied using an external power supply (5V-12V, 2A), using a 2.5 mm DC Jack with center pin positive. When using external power supply and also connecting a USB cable (for programming/debugging or USB-UART), the voltage on the external power supply should be greater than that of the USB supply, if not the kit will be actually sourcing its power from USB rather than the external power supply.

3.4 Building, Programming, and Debugging CYW943907AEVAL1F EVK

- 3.4.1 Building and Programming a Project for CYW943907AEVAL1F in WICED Studio IDE To build and program a project for CYW943907AEVAL1F EVK, perform the following steps:
- 1. To open the WICED IDE on Windows PC, go to Start > All Programs > Cypress > WICED-Studio.
- 2. Select 43xxx_Wi-Fi in the WICED Target selector drop-down box as shown in Figure 1-5. Building a project requires a corresponding make target, located in the Make Target window. All Applications should go under the apps directory. The make target path will contain the directory hierarchy starting from apps with directory names separated by a period. The project name is followed by a hyphen and then the platform name. Finally, the actions to be performed after the build are specified such as download and run. For example, to build, download, and run the application scan which exists in apps\snip\scan, create the following make target:

```
snip.scan-CYW943907AEVAL1F download run
```

This project will periodically scan for Wi-Fi access points and will list them using the serial to USB connection on the kit.

Note: By default, kit comes pre-programmed with the same snip.scan example.

Perform these steps to create the make target, build, program, and test application scan:

3. Right-click 43xxx_Wi-Fi in Make Target window as shown in Figure 3-4 and click New...

Figure 3-4. Creating New Make Target

4. Enter snip.scan-CYW943907AEVAL1F download run in the Target name field and click the **OK** button **Note:** The list of all commands that can be provided in the Make target is listed in *WICED-SDK* installation directory>/ 43xxx Wi-Fi/Makefile.

snip.scan-CYW943907AEVAL1F download run indicates the following:

snip = directory inside apps folder

scan = Sub-directory and name of the application to be built. For example, to build the console application under *test* directory in *apps*, then use test.console instead of snip.scan.

CYW943907AEVAL1F = Board/platform name

download = Indicates download to target

run = Resets the target and starts execution

5. Double-click (alternately, right-click and select **Build Target**) the Clean Make Target to remove any output from the previous build. It is recommended to do Make clean when any new files are added or removed to the corresponding Target.

Note: Ensure that you have connected CYW943907AEVAL1F EVK to the same PC via USB prior to executing the build target.

6. Double-click (alternatively right-click and select **Build Target**) the snip.scan-CYW943907AEVAL1F download run make target to build and download it to the CYW943907AEVAL1F EVK. The project is built and programmed into the CYW943907AEVAL1F EVK, as shown in Figure 3-5.

Figure 3-5. Successful Build and Program

- 7. To view output messages with a terminal emulation program (such as Tera Term), follow these steps:
 - a. Start the terminal emulation program.
 - b. Set the Terminal ID to **VT100** and New-Line **Receive** to **AUTO**. Other settings should be left at the default settings.

c. In the Terminal Emulator, initiate a connection with the Serial port number from the Device Manager on the PC as shown in Figure 3-3.

Note: Exact Port number will vary with the corresponding PC port.

- d. Press the **Reset** button (see Figure 1-1) on the CYW943907AEVAL1F EVK to view the application start-up messages.
- 8. The output of the Terminal Emulation program should be similar to what is shown in Figure 3-6.

Figure 3-6. Console Output

3.4.2 Troubleshooting

If a download_dct error message is displayed despite connecting the board, follow the steps outlined in this post.

3.4.3 Debugging a Project using Breakpoints

After programming a project, it is possible to debug it in CYW943907AEVAL1F EVK using the built in debugger.

Note that the scan example used in Building and Programming a Project for CYW943907AEVAL1F in WICED Studio IDE section is also used here. Steps outlined in Building and Programming a Project for CYW943907AEVAL1F in WICED Studio IDE should be first followed with a slight change (adding -debug to the Make Target command and removing run). Instead of

snip.scan-CYW943907AEVAL1F download run

The following make command should be used:

snip.scan-CYW943907AEVAL1F-debug download

If <code>-debug</code> is not added then it will be built for release. The important difference between the debug and release configurations is optimization. Debug is built with no optimization and release is built with optimization. It is possible to debug without using <code>-debug</code> as well, but with many variables and lines optimized away, many breakpoints might not get hit.

It should be noted that Breakpoints must be placed after starting a debug session in WICED Studio 5.0 or later. If there are any breakpoints that were created prior to the start of debug session, their properties must be changed to be enabled for all Threads.

Perform these steps to debug the project:

- 1. Execute the make target described above to download the project to the device.
- 2. Click the arrow next to the **Debug** icon as shown in Figure 3-7 and select 43xxx-Wi-Fi_Debug_Windows. The Confirm Perspective Switch dialog appears; click the **Yes** button. The Debug session starts and halts in the start GCC.s file.

Note:

- The Confirm Perspective Switch dialog is not displayed if you have previously selected the Remember my decision checkbox in the Confirm Perspective Switch dialog.
- If any MakeFile/Build error occurs, then clean (using the *Clean* make target), re-build, and download to the CYW943907AEVAL1F EVK again. The Debug session starts and halts in the start GCC.s file.
- In the Debug Perspective, the Project explorer window goes away by default. To view the source files, switch back to the "C/C++" perspective.
- To switch between perspectives use the "C/C++" or "Debug" icon at the top right corner of screen.

Figure 3-7. Debugging Project

- 3. Open the scan.c file from the Project Explorer window. Click on the line with WPRINT_APP_INFO("Waiting for scan results...\n")); and press the [Ctrl +Shift+B] keys on your keyboard. A Blue hollow circle along with a check mark appears next to the line number, as shown in Figure 3-8.
- 4. From the main menu, click **Run** > **Resume**. Execution will stop at the breakpoint that you added. To continue after hitting the breakpoint, click **Resume** again.
- 5. To disable the breakpoint, press the [Ctrl+Shift+B] keys again on the same line, or deselect the corresponding checkbox in the Breakpoints window.

Note: If the Breakpoint window does not appear, then choose **Window** > **Show View** > **Breakpoints**.

6. To terminate the Debugging session, click **Run** > **Terminate**, or click on the red Square icon. Once you terminate the session, click on "**C/C++**" in the upper right corner to return to the C/C++ perspective.

Figure 3-8. Placing Breakpoint in Code

7. If Breakpoints are created prior to starting the current Debug session, they will not be associated with the current thread and will be indicated with a Blue circle without a check mark. To enable the Breakpoints in the current thread, associate the properties from the Breakpoints window with the current thread.

Note: If you do not see any breakpoints in the Breakpoints window, click the **Show Breakpoints Supported by Selected Target** icon as shown in Figure 3-9. The breakpoints are displayed.

8. Right-click the desired breakpoint checkbox and click **Breakpoint Properties...** Click the **last_built.elf** check box, as shown in Figure 3-10. The check mark appears before the actual breakpoint indicating its association with the current execution.

Figure 3-9. Show Breakpoints Icon

Figure 3-10. Enabling Breakpoint for Current Execution

4. Hardware

This chapter describes the CYW943907AEVAL1F EVK hardware and its different blocks, such as Bootstrap, reset control, Arduino-compatible headers, and module connectors.

The schematic is available at the following location after installing the software from Software Installation.

<WICED SDK Directory>\43xx Wifi\platforms\CYW943907AEVAL1F\schematics.

4.1 Bootstrap

Bootstrap options available in the CYW943907AEVAL1F EVK are shown in Table 4-1. The pins are sampled at power-on reset (POR) to determine various operating modes. Sampling occurs a few milliseconds after an internal POR or de-assertion of the external POR. After the POR, each pin assumes the GPIO or alternative function specified in CYW43907 Alternate GPIO function table in the CYW43907 Datasheet.

Care should be taken to ensure gSPI mode and SDIO Host are not turned on at the same time since they share the same set of lines. For more information regarding bootstrap options, refer to the CYW43907 Datasheet.

Bootstrap options other than GPIO_7 and GPIO_13, are not available for the user to modify in this board.

To change Bootstrap options for GPIO_7 and GPIO_13, refer the "Bootstraps, Flash" page of schematics.

Table 4-1. Bootstrap Options Available in CYW943907AEVAL1F EVK

Di-	Chron Franchica	Strap Pull	
Pin	Strap Function	Chip Default	Board Default
GPIO_1	gSPI Mode 0 = Enable gSPI Mode 1 = Disable gSPI Mode	0	0
GPIO_7	WCPU Boot Mode: 0 = TCROM Boot 1 = TCMSRAM Boot	0	1 R135=10K to WLAN_VDDIO
GPIO_11	ACPU Boot Mode: 0 = SOCROM Boot 1 = SOCSRAM Boot	0	0
GPIO_13	SDIO Mode: 0 = SDIO Device 1 = SDIO Host	0	1 R141=10K to WLAN_VDDIO
GPIO_15	PMU VTRIM_enable 0 = VTRIM disable 1 = PMU VTRIM enabled Note: GPIO_15 is not a strap option for the B0 silicon revision of the device.	0	0
RF_SW_CTRL_5	Host DAP Clock Sel 1 = Enable XTAL clock for DAP sub system 0 = Disable Use Test clock TCK for DAP sub system	0	0

Pin	Strap Function	Strap Pull		
Pill		Chip Default	Board Default	
	PMU resource initialization mode selection			
RF_SW_CTRL_7	1 = Mode 1	0	0	
	0 = Mode 2			
	LPO(Low Power oscillator) Selection:			
RF_SW_CTRL_9	0 = LPO from HIB (Hibernation Block)	0	0	
	1 = Internal 32KHz LPO			

4.2 User Switches

There are two user switches available on the board named USER_1 and USER_2. Table 4-2 shows the Pin names and Enumeration used in WICED for the switches.

Table 4-2. User Switch available on the board

Switch	CYW43907 Pin Name	WICED_ENUM_ID	Alternate Enumeration in WICED
USER_1 (SW3)	PWM_5	WICED_GPIO_18	WICED_BUTTON1
USER_2 (SW1)	GPIO_8	WICED_GPIO_4	WICED_BUTTON2

Figure 4-1. User Switch Circuit Diagram

4.3 LED

There are two user LEDs available named LED_1 and LED_2. Table 4-3 shows the Pin name and Enumeration used in WICED for these LEDs.

Table 4-3. User LED Available on the Board

Switch	CYW43907 Pin Name	WICED_ENUM_ID	Alternate Enumeration in WICED
LED_1	PWM_3	WICED_GPIO_16	WICED_LED1
LED_2	GPIO_9	WICED_GPIO_5	WICED_LED2

Figure 4-2. User LED Circuit Diagram

4.4 Reset Control

CYW43907 device can be reset using the "Target Reset" switch **SW2** or a reset command from the on-board programmer/debugger and serial interface chip, as shown in Figure 4-3. The CYW43907/BCM43907 datasheet states that HIB_REG_ON_IN needs to be delayed by at least 2 cycles of the 32.768 kHz clock after VBAT and VDDIO have reached 90% of their final values. To ensure proper boot up, the RC delay circuit for HIB_REG_ON_IN is essential as shown in Figure 4-4.

Figure 4-3. Reset Circuit Diagram

Figure 4-4. HIB_REG_ON_IN RC Delay Circuit

4.5 Ethernet

The ethernet MAC Controller in the CYW43907 interfaces to an external PHY chip BCM5241 using the Media Independent Interface (MII) as shown in Figure 4-5. The same signals are also listed in Table 4-4. CYW43907 also supports Reduced Media Independent Interface (RMII). The controller can transmit and receive data at 10 Mbps and 100 Mbps.

Table 4-4. CYW43907 EMAC to PHY Chip Connection

SL. NO	CYW43907 Pin Name	Net Name in Schematic	BCM5241 Pin Name
1	RMII_G_RXC	MII_RXC	RXC
2	RMII_G_COL	MII_COL	COL/ENERGYDET
3	RMII_G_CRS	MII_CRS	CRS/STANDBY
4	RMII_G_TXC	MII_TXC_RMII_REF_CLK	TXC
5	RMII_G_TXD0	MII_TXD0	TXD0
6	RMII_G_TXD1	MII_TXD1	TXD1
7	RMII_G_TXD2	MII_TXD2	TXD2
8	RMII_G_TXD3	MII_TXD3	TXD3
9	RMII_G_RXD0	MII_RXD0	RXD0/PHYAD0
10	RMII_G_RXD1	MII_RXD1	RXD1/ANEN_L
11	RMII_G_RXD2	MII_RXD2	RXD2/F100
12	RMII_G_RXD3	MII_RXD3	RXD3/ISOLATE
13	RMII_MDIO	MII_MDIO	MDIO
14	RMII_MDC	MII_MDC	MDC
15	RMII_G_TXEN	MII_TXEN	TXEN
16	RMII_G_RXDV	MII_RXDV_CRS_DV	RXDV
17	PWM_2	PWM_2	RESET_L

Figure 4-5. Ethernet MAC Controller to External PHY Connection

4.6 Micro SD Connector/Slot

Micro SD connector is connected to the SDIO Interface of CYW43907. CYW43907 supports both SDIO 3.0 Host and device modes. Figure 4-6 shows the interface between Micro SD connector and CYW43907. Same signals are also listed in Table 4-5.

Table 4-5. Micro SD Connector signals

SL. NO	CYW43907 Based SIP Pin Name	Micro SD Connector/Slot Name
1	SDIO_DATA_0	DAT0
2	SDIO_DATA_1	DAT1
3	SDIO_DATA_2	DAT2
4	SDIO_DATA_3	CD/DAT3
5	SDIO_CMD	CMD
6	SDIO_CLK	CLK
7	PWM_0	DETECT

Figure 4-6. Micro SD Connector Circuit Diagram

4.7 JTAG Connector

4.7.1 On-board Programmer/Debugger and Serial Interface Chip

The on-board programmer/debugger chip uses JTAG to program/debug CYW43907 based SiP module.

Table 4-6 shows the connection between CYW43907 and On-board Programmer/Debugger chip. In addition to the connections listed in the table, JTAG_SEL and GPIO_8_TAP_SEL lines have been pulled high to make sure programming/debugging is enabled through JTAG in in CYW43907.

SL. No	CYW43907 Based SIP Pin Name	On-board Programmer/Debugger Connection
1	GPIO_2_JTAG_TCK	FTDI_JTAG_TCK
2	GPIO_3_JTAG_TMS	FTDI_JTAG_TMS
3	GPIO_4_JTAG_TDI	FTDI_JTAG_TDI

FTDI_JTAG_TDO

FTDI_JTAG_TRST

GPIO_5_JTAG_TDO

GPIO_6_JTAG_TRST_L

Table 4-6. Connection between CYW43907 and On-board Programmer/Debugger

4.7.2 External JTAG

4 5

To use External JTAG connector (J3), set all positions in switch **SW4** to closed and connect your external JTAG debugger. Ensure the drivers for the debugger hardware are installed in the same PC where WICED Studio is installed. When using Olimex connectors, for example Olimex_ARM-USB-TINY-H, add "JTAG=Olimex_ARM-USB-TINY-H" in your make target to debug. Figure 4-7 shows the relevant part of the schematic for connecting an External JTAG device. Figure 4-8 shows the connection between Olimex and the CYW943907AEVAL1F EVK.

SW4 FTDI JTAG TRST 12 GPIO 6 JTAG TRST N GPIO 4 JTAG TDI FTDI_JTAG TDI 11 9999 FTDI JTAG TDO 3 10 TDO FTDI_JTAG TMS 4 9 8 9 GPIO 2 JTAG TCK FTDI JTAG TCK 5 8 9 10 TSM-105-02-S-DV JTAG HEADER

Figure 4-7. External JTAG Connector Circuit Diagram

For JTAG from U4 -> SW4: All open For External JTAG from J3 -> SW4: All Close

Figure 4-8. JTAG to Olimex Connection

4.8 Connectors

4.8.1 WICED Header

J6 is the WICED header available on CYW943907AEVAL1F EVK. This is a 44-pin header containing I2C, SDIO, UART, SPI, PWM lines, and I/Os. Note that some signals are shared with Arduino header (UART0 Tx/Rx) and On-board Programmer/debugger chip (UART1). Table 4-7 illustrates the J6 pinout.

Table 4-7. WICED Header Pinout

Eval Board Header	CYW43907 Pin Name	WICED Enumeration	Alternate Enumeration
J6.1	PWM_4	WICED_GPIO_17	WICED_PWM_5
J6.2	PWM_5	WICED_GPIO_18	WICED_BUTTON1
J6.3	I2S0_MCK	WICED_GPIO_28	WICED_I2S_1
J6.4	I2S0_SD_OUT	WICED_GPIO_32	WICED_I2S_1
J6.5	I2S0_SCK_BCLK	WICED_GPIO_29	WICED_I2S_1
J6.6	I2S0_WS_LRCLK	WICED_GPIO_30	WICED_I2S_1
J6.7	PWM_3	WICED_GPIO_16	WICED_LED1
J6.8	GND	N/A	N/A
J6.9	SPI_1_CLK	WICED_GPIO_38	WICED_SPI_2
J6.10	I2S1_SD_OUT	WICED_GPIO_37	WICED_I2S_3
J6.11	SPI_1_MISO	WICED_GPIO_39	WICED_SPI_2
J6.12	SPI_0_CLK	WICED_GPIO_20	WICED_SPI_1
J6.13	SPI_1_MOSI	WICED_GPIO_40	WICED_SPI_2
J6.14	SPI_0_MOSI	WICED_GPIO_21	WICED_SPI_1

Eval Board Header	CYW43907 Pin Name	WICED Enumeration	Alternate Enumeration
J6.15	SPI_1_CS	WICED_GPIO_41	WICED_SPI_2
J6.16	SPI_0_CS	WICED_GPIO_22	WICED_SPI_1
J6.17	SPI_0_MISO	WICED_GPIO_19	WICED_SPI_1
J6.18	UART0_RXD_IN	WICED_PERIPHERAL_PIN_3	WICED_UART_2
J6.19	GND	N/A	N/A
J6.20	UART0_TXD_OUT	WICED_PERIPHERAL_PIN_4	WICED_UART_2
J6.21	USB2_HOST_DEV_SEL	N/A	N/A
J6.22	UARTO_CTS_IN	WICED_PERIPHERAL_PIN_5	WICED_UART_2
J6.23	I2C_0_SCL	WICED_GPIO_49	WICED_I2C_1
J6.24	UART0_RTS_OUT	WICED_PERIPHERAL_PIN_6	WICED_UART_2
J6.25	I2C_0_SDA	WICED_GPIO_48	WICED_I2C_1
J6.26	I2S1_MCK	WICED_GPIO_33	WICED_I2S_3
J6.27	I2S1_WS_LRCLK	WICED_GPIO_35	WICED_I2S_3
J6.28	GND	N/A	N/A
J6.29	I2S1_SCK_BCLK	WICED_GPIO_34	WICED_I2S_3
J6.30	SDIO_DATA_1	WICED_GPIO_45	N/A
J6.31	SDIO_DATA_0	WICED_GPIO_44	N/A
J6.32	SDIO_CLK	WICED_GPIO_42	N/A
J6.33	SDIO_CMD	WICED_GPIO_43	N/A
J6.34	SDIO_DATA_3	WICED_GPIO_47	N/A
J6.35	SDIO_DATA_2	WICED_GPIO_46	N/A
J6.36	RF_SW_CTRL_6_UART1_RXD	WICED_PERIPHERAL_PIN_1	WICED_UART_1
J6.37	UART1_TXD	WICED_PERIPHERAL_PIN_2	WICED_UART_1
J6.38	RF_SW_CTRL_8_UART2_RXD	WICED_PERIPHERAL_PIN_7	WICED_UART_3
J6.39	UART2_TXD	WICED_PERIPHERAL_PIN_8	WICED_UART_3
J6.40	HIB_WAKE	N/A	N/A
J6.41	HIB_LPO_SEL	N/A	N/A
J6.42	HIB_REG_ON_IN	N/A	N/A
J6.43	USB2_DN	N/A	N/A
J6.44	USB2_DP	N/A	N/A

4.8.2 Arduino-Compatible Headers

J9, J13, J12 and J10 are the Arduino headers available in the CYW943907AEVAL1F EVK. Table 4-8 shows the pinout of the Arduino Header. Note the following points while connecting an Arduino shield to the board:

- 5V pin of Header (J9) is not connected to the board.
- The maximum current that an Arduino shield can sink from the board depends on the application that is running. In general, 100 mA is the worst case scenario.
- The Arduino Analog reference is connected to the 3V3 (3.3V) power supply through R21 which is not populated by default. In other words, the analog reference is not driven by default.
- An external ADC attached to CYW43907 helps to achieve Analog functionality on the Arduino headers.

Table 4-8. Arduino Header Pinout

Eval Board Header	CYW43907 Pin Name/ Kit Signal Name	ARDUINO Header Name	WICED Enumeration	Alternate Enumeration
J10.1	GPIO_0	D0	WICED_GPIO_1	N/A
J10.2	GPIO_1	D1	WICED_GPIO_2	N/A
J10.3	GPIO_13	D2	WICED_GPIO_9	N/A
J10.4	GPIO_7	D3	WICED_GPIO_3	WICED_PWM_6
J10.5	GPIO_14	D4	WICED_GPIO_10	N/A
J10.6	GPIO_16	D5	WICED_GPIO_12	WICED_PWM_3
J10.7	GPIO_15	D6	WICED_GPIO_11	WICED_PWM_4
J10.8	I2S0_SD_IN	D7	WICED_GPIO_31	WICED_I2S_1
J12.1	I2S1_SD_IN	D8	WICED_GPIO_36	WICED_I2S_3
J12.2	PWM_4	D9	WICED_GPIO_17	WICED_PWM_5
J12.3	GPIO_11	D10	WICED_GPIO_7	WICED_PWM_2
J12.4	GPIO_10	D11	WICED_GPIO_6	WICED_PWM_1
J12.5	GPIO_12	D12	WICED_GPIO_8	N/A
J12.6	GPIO_9	D13	WICED_GPIO_5	WICED_LED2
J12.7	GND	GND	N/A	N/A
J12.8	ARD_AREF	AREF	N/A	N/A
J12.9	I2C_1_SDA	SDA	WICED_GPIO_50	WICED_I2C_2
J12.10	I2C_1_SCL	SCL	WICED_GPIO_51	WICED_I2C_2
J13.1	ARD_AD0	A0	N/A	N/A
J13.2	ARD_AD1	A1	N/A	N/A
J13.3	ARD_AD2	A2	N/A	N/A
J13.4	ARD_AD3	A3	N/A	N/A
J13.5	ARD_AD4_SDA	A4	N/A	N/A
J13.6	ARD_AD5_SCL	A5	N/A	N/A
J9.1	NC	NC	N/A	N/A
J9.2	ARD_IOREF	IOREF	N/A	N/A
J9.3	ARD_RESET	RESET	N/A	N/A
J9.4	3V3	3.3V	N/A	N/A
J9.5	NC	5V	N/A	N/A

Eval Board Header	CYW43907 Pin Name/ Kit Signal Name	ARDUINO Header Name	WICED Enumeration	Alternate Enumeration
J9.6	GND	GND	N/A	N/A
J9.7	GND	GND	N/A	N/A
J9.8	VIN_EXT	VIN	N/A	N/A

4.9 UART Port Configuration on CYW943907AEVAL1F Kit

The CYW43907 has three UART ports: slow UART, fast UART, and GCI UART. Slow UART and GCI UART are 2-wire interfaces while fast UART is a 4-wire interface that can support up to a 3 Mbps baud rate. Slow UART is routed to the On-board Programmer/de-bugger chip for UART to USB communication. The UART peripherals are defined in platforms/CYW943907AEVAL1F/platform.c. Following table (also available in platforms/CYW943907AEVAL1F/platform.h) shows the UART pins available on the Kit.

WICED Peripheral Enumeration ID	Pin Name on CYW43907	MURATA Module Pin Name	Header Pin Number	WICED Enumeration
WICED_PERIPHERAL_PIN_1	RF_SW_CTRL_6	RF_SW_CTRL_6_UART1_RXD	J6:36	WICED_UART_1
WICED_PERIPHERAL_PIN_2	RF_SW_CTRL_7	RF_SW_CTRL_7_UART1_TXD	J6:37	WICED_UART_1
WICED_PERIPHERAL_PIN_3	UART0_RXD	UART0_RXD_IN	J6:18	WICED_UART_2
WICED_PERIPHERAL_PIN_4	UART0_TXD	UART0_TXD_OUT	J6:20	WICED_UART_2
WICED_PERIPHERAL_PIN_5	UART0_CTS	UARTO_CTS_IN	J6:22	WICED_UART_2
WICED_PERIPHERAL_PIN_6	UART0_RTS	UART0_RTS_OUT	J6:24	WICED_UART_2
WICED_PERIPHERAL_PIN_7	RF_SW_CTRL_8	RF_SW_CTRL_8_UART2_RXD	J6:38	WICED_UART_3
WICED_PERIPHERAL_PIN_8	RF_SW_CTRL_9	RF_SW_CTRL_9_UART2_TXD	J6:39	WICED_UART_3

4.10 External ADC

CYW43907 does not have any in-built ADC block. Analog measurements from the Arduino header analog pins is achieved using an external ADC chip (MAX11615) connected to CYW43907 through an I2C interface (I2C_0 module-Slave Address 0x33). Table 4-9 lists the connections between CYW43907 and the external ADC Circuit diagram is shown in Figure 4-9.

Table 4-9. External ADC Connection

I2C Line	CYW43907 Pin Name	WICED Enumeration	Alternate Enumeration
SDA	I2C_0_SDA	WICED_GPIO_48	WICED_I2C_1
SCL	I2C_0_SCL	WICED_GPIO_49	WICED_I2C_1

Figure 4-9. External ADC Circuit Diagram

4.11 PWM

There are six dedicated PWM outputs available on CYW43907. These PWMs can be multiplexed onto different pins. You can find their definitions in platforms/CYW943907AEVAL1F/platform.c inside WICED Studio. The PWMs can be re-assigned to other pins by changing the first argument of the platform_pwm_t platform_pwm_peripherals structure in platform.c. Table 4-10 through Table 4-15 show the possible combinations and their Arduino header locations.

Table 4-10. WICED_PWM_1 Combinations

Pin MUX Selection	Header Pin	Header Name
PIN_GPIO_10 (DEFAULT)	J12.4	Arduino D11 (MOSI)
PIN_GPIO_0	J10.1	Arduino D0
PIN_GPIO_8	-	-
PIN_GPIO_12	J12.5	Arduino D12 (MISO)
PIN_GPIO_14	=	=
PIN_GPIO_16	J10.6	Arduino D5
PIN_PWM_0	-	-

Table 4-11. WICED_PWM_2 Combinations

Pin MUX Selection	Header Pin	Header Name
PIN_GPIO_11 (DEFAULT)	J12.3	Arduino D10
PIN_GPIO_1	J10.1	Arduino D0
PIN_GPIO_7	J10.4	Arduino D3
PIN_GPIO_9	J12.9	Arduino SCK
PIN_GPIO_13	J10.3	Arduino D2
PIN_GPIO_15	J10.7	Arduino D6
PIN_PWM_1	=	-

Table 4-12. WICED_PWM_3 Combinations

Pin MUX Selection	Header Pin	Header Name
PIN_GPIO_16 (DEFAULT)	J10.6	Arduino D5
PIN_GPIO_8	_	=
PIN_GPIO_0	J10.1	Arduino D0
PIN_GPIO_10	J12.4	Arduino D11 (MOSI)
PIN_GPIO_12	J12.5	Arduino D12 (MISO)
PIN_GPIO_14	_	-
PIN_PWM_2	-	-

Table 4-13. WICED_PWM_4 Combinations

Pin MUX Selection	Header Pin	Header Name
PIN_GPIO_15 (DEFAULT)	J10.7	Arduino D6
PIN_GPIO_1	J10.1	Arduino D0
PIN_GPIO_7	J10.4	Arduino D3
PIN_GPIO_9	J12.9	Arduino SCK
PIN_GPIO_11	J12.3	Arduino D10
PIN_GPIO_13	J10.3	Arduino D2
PIN_PWM_3	-	-

Table 4-14. WICED_PWM_5 Combinations

Pin MUX Selection	Header Pin	Header Name
PIN_PWM_4 (DEFAULT)	J6.1	Arduino A1
PIN_GPIO_0	J10.1	Arduino D0
PIN_GPIO_8	-	_
PIN_GPIO_10	J12.4	Arduino D11 (MOSI)
PIN_GPIO_12	J12.5	Arduino D12 (MISO)
PIN_GPIO_14	-	-
PIN_GPIO_16	J10.6	Arduino D5

Table 4-15. WICED_PWM_6 Combinations

Pin MUX Selection	Header Pin	Header Name
PIN_GPIO_7 (DEFAULT)	J10.4.4	Arduino D3
PIN_GPIO_1	J10.1	Arduino D0
PIN_GPIO_9	J12.9	Arduino SCK
PIN_GPIO_11	J12.3	Arduino D10
PIN_GPIO_13	J10.3	Arduino D2
PIN_GPIO_15	J10.7	Arduino D6
PIN_PWM_5	-	-

5. Code Examples

This chapter demonstrates the functionality of CYW43907 devices using the CYW943907AEVAL1F EVK code examples. Download and extract the zip file from the CYW943907AEVAL1F EVK web page as specified in Install Software section. The code examples once un-zipped can be viewed in WICED Studio 5.0 (or later). In addition to the added examples there are already many apps (snip.gpio, test.console, and so on) that are available in WICED Studio 5.0.

5.1 Using Code Examples

Code examples already added can be compiled after creating Make Targets. Refer to Building and Programming a Project for CYW943907AEVAL1F in WICED Studio IDE for the process of creating targets.

Create the following three Make Targets in WICED Studio 5.0 (or later):

- "snip.gpio-CYW943907AEVAL1F download run" for the gpio example which is already present in WICED Studio.
- "kits.CYW943907AEVAL1F.config_join_ping-CYW943907AEVAL1F download run" for the config_join_ping project.
- "kits.CYW943907AEVAL1F.publish_subscribe_aws-CYW943907AEVAL1F download run" for the aws publish and subscribe project.
- "kits.CYW943907AEVAL1F.adc_measure-CYW943907AEVAL1F download run" for the adc_measure project.

5.2 GPIO

5.2.1 Project Description

The gpio project demonstrates toggling of LEDs and turning them off when one of the User switches is pressed.

The apio project consists of the following files:

- gpio.c: This file contains the main application function application_start() which is the entry point and execution of the firmware application.
- gpio.mk: This is the makefile which adds the source of the application.

5.2.2 Hardware Connections

No specific hardware connections are required for this project because all connections are hardwired on the CYW943907AEVAL1F EVK.

5.2.3 Verify Output

Perform these steps to verify the output:

Create and run a Make Target for the <code>gpio</code> project using the description specified in Building and Programming a Project for CYW943907AEVAL1F in WICED Studio IDE.

After initialization of the platform, LEDs will keep flashing (toggling). When a User switch is pressed, corresponding LED turns off.

The example also prints a message to the debug UART at startup. Open a Terminal Emulation program and connect to the WICED serial port as detailed in step 8 in the section UART Port Configuration on CYW943907AEVAL1F Kit to see the message printed at startup.

5.3 Config_join_ping

5.3.1 Project Description

The <code>config_join_ping</code> project demonstrates connectivity between CYW943907AEVAL1F EVK and a Wi-Fi access point. This example is based on existing examples available in the WICED Studio 5.0 (or later) SDK namely, <code>apps/snip/scan</code>, <code>apps/snip/dct_read_write</code> and <code>test/console</code>. On startup, this application shows a console through which the user can enter commands to scan, configure, join, and ping Wi-Fi access points.

The config join ping project consists of the following files:

- config_join_ping.c: This file contains the main application function application_start() which is the entry point and execution of the firmware application. It also contains the function definitions for joining, pinging, printing Wi-Fi configuration, scanning Wi-Fi and the scan result handler.
- config_join_ping.mk: This is the makefile which adds the sources, components (in this application, console and ping are used), and the name of the application. Note that the name of the makefile must match the name of the project folder for the make process to work properly. Also, the "NAME" string in the makefile must be unique among all projects in the apps folder.

5.3.2 Hardware Connections

No specific hardware connections are required for this project because all connections are hardwired on the CYW943907AEVAL1F EVK.

5.3.3 Flow Chart

Figure 5-1 illustrates the config_join_ping flow chart.

Figure 5-1. config_join_ping Flow Chart

5.3.4 Verify Output

Perform these steps to verify the output:

Create and run a Make Target for the <code>config_join_ping</code> project using the description specified in Building and Programming a Project for CYW943907AEVAL1F in WICED Studio IDE. Open a Terminal Emulation program and connect to the WICED serial port as detailed in step 8 in the section UART Port Configuration on CYW943907AEVAL1F Kit.

After initialization of the platform, Wi-Fi and other components, the cursor will stop and wait for you to enter commands.

Type the command help to see the list of available commands as shown in Figure 5-2.

Figure 5-2. Initial Console Output

```
COM27 - Tera Term VT
                                                                                                                          \mathbf{x}
                                                                                                                  File Edit Setup Control Window Help
Starting WICED v5.0.0-RC9-e0dfde4
Platform CYW943907AEVAL1F initialised
Started ThreadX v5.6
Initialising NetX_Duo v5.7_sp2
Creating Packet pools
WLAN MAC Address : D8:C4:6A:55
WLAN MAC Address : D8:C4:6A:55:75:40
WLAN Firmware : w10: Apr 18 2017 17:21:53 version 7.15.168.87 (r66465
WLAN CLM : API: 12.1 Data: 7.17.2 Compiler: 1.26.3 ClmImport: 1.
0.32 Inc Compiler: 1.31.3 Inc ClmImport: 1.36.3 Creation: 2017-04-18 17:
Type help to know more about commands ...
   ĥelp
help [<command> [<example_num>]]
      - Print help message or command example.

loop (times) [ (semicolon_separated_commands_list) ]

- Loops the commands inside [ ] for specified number of times.

config (STA name and pass key)

- adds AP settings to DCT
       join
                 Joins station set in DCT
       print_config
                  prints current wifi configuration
                  prints current wifi configuration
       ping (ip address)
                  pings wifi configuration
       disconnect
                 reset board
```

Type the command scan to find the list of available Wi-Fi access points as shown in Figure 5-3.

Figure 5-3. Scan Output

Type the command <code>config</code> <SSID> <password>. This command writes the given configuration in the Device Configuration Table (DCT). These values are stored in flash memory on the board.

Type the command print_config to validate if the SSID and password match and are appropriately written in the DCT.

Type the command <code>join</code>. The <code>join</code> command joins the network specified by the SSID and password from the DCT. Ping the Access point (usually 192.168.1.1) or 8.8.8.8 (IP address of Google, if your AP is connected to internet) and check if the network is up and responding. The message "Ping Reply 11ms" is displayed as shown in Figure 5-4.

Figure 5-4. Join and Ping

```
File Edit Setup Control Window Help

> join
Joining: CY-IOT-HOTSPOT
Successfully joined: CY-IOT-HOTSPOT
Obtaining IPv4 address via DHCP
DHCP CLIENT hostname WICED IP
IPv4 network ready IP: 10.40.2.90
Setting IPv6 link-local address
IPv6 network ready IP: FE80:0000:0000:DAC4:6AFF:FE55:7540
> ping 10.40.2.1
PING 10.40.2.1
Ping Reply 11ms
> 
|
```


To disconnect from the access point, use the command disconnect.

The console component maintains a history of commands typed, which can be accessed using the **Up/Down** arrow keys.

5.4 Adc measure

5.4.1 Project Description

This project demonstrates measuring values from the external ADC chip on the board and posting the values to a web page accessible from the WLAN network. This code example is based on existing code example (apps/demo/temp_control) available in the WICED Studio 5.0 (or later). On startup, the adc_measure code example joins the Wi-Fi Access Point specified in the wifi_config_dct.h file and starts a web page where the ADC count is reported.

The project consists of the following files:

- adc_measure.c: This file contains the main application function application_start() which is the entry point
 and execution of the firmware application. It also contains the function definitions for initializing, conducting
 ADC measurement, starting the web page, and processing an ADC update.
- adc_measure.mk: This is the makefile which adds the sources, components (in this application, component HTTP_server, device_configuration, Xively, SNTP and Gedday are used) and the name of the application. It also adds the required resources for the web page which is available in the resources/apps directory.
- *i2c.c*: This file contains the required function definitions for initializing and taking ADC samples from the external ADC (MAX 11615) available in the CY9W43907AEVAL1F EVK.
- wifi_config_dct.h: This file contains the Wi-Fi Access Point credentials (SSID and pass phrase key) and soft AP credentials. Enter the client access point name and password credentials prior to building the application. These are specified as CLIENT_AP_SSID and CLIENT_AP_PASSPHRASE. Note that the security type may also have to be changed if the access point does not use WPA2 security. The Wi-Fi access point must be connected to the internet to get the current time using Network Time protocol (NTP). If the Wi-Fi access point is not connected to the internet, then it will assume 00:00:00 UTC time and will start the web page.

5.4.2 Hardware Connections

Connect a potentiometer (10 k Ω) between VCC and GND with the center terminal connected to channel 1 of the ADC (pin A1 in the Arduino header) as shown in Figure 5-5. If you do not have a potentiometer to test, then you can connect a wire between VCC and ADC channel 2 (to simulate full scale) or a wire between GND and ADC channel 1 (to simulate zero scale). Alternately, you can connect an adjustable DC power supply to ADC channel 1.

Figure 5-5. Potentiometer Connection

5.4.3 Flow Chart

Figure 5-6 illustrates the adc_measure flow chart.

Figure 5-6. adc_measure Flow Chart

5.4.4 Access Point Credentials

Enter your credentials (SSID and pass phrase key) in wifi_config_dct.h file. The CLIENT_AP_SSID macro should be updated with your access point's SSID, the CLIENT_AP_PASSPHRASE macro should be updated with your access point's pass phrase key, and the CLIENT_AP_SECURITY macro should be updated with the security type of your access point. This is "WICED_SECURITY_WPA2_MIXED_PSK" if the access point uses WPA2-PSK. If the AP uses different security then choose the correct one defined in

enum wiced security t from 43xxx Wi-Fi\WICED\WWD\include\wwd constants.h.

5.4.5 Verify Output

Create and run a Make Target for the adc_measure project similar to the procedure provided in Building, Programming, and Debugging CYW943907AEVAL1F EVK. If connection to the Wi-Fi access point is successful, then wait for NTP time request to complete. Output of the terminal program should be similar to the screenshot in Figure 5-7.

Figure 5-7. NTP Success

```
File Edit Setup Control Window Help

Starting WICED v5.0.0-RC9-e0dfde4
Platform CYW943907AEUALIF initialised
Started ThreadX v5.6
Initialising NetX_Duo v5.7_sp2
Creating Packet pools
WLAN MAC Address: D8:C4:6A:55:75:40
WLAN Firmware: wl0: Apr 18 2017 17:21:53 version 7.15.168.87
654) FWID 01-d4eac896
WLAN CLM: API: 12.1 Data: 7.17.2 Compiler: 1.26.3 ClmImp
1.26.12 Creation: 2015-01-10 11:06:18 Inc Data: 9.10.32 Inc Compi
1.31.3 Inc ClmImport: 1.36.3 Creation: 2017-04-18 17:19:47
I2C Initialization
I2C Device Probe
I2C Device Probe
I2C Device Connected at address: 0x33
Sending ADC setup byte
Joining: CY-I0T-HOTSPOT
Successfully joined: CY-I0T-HOTSPOT
Obtaining IPv4 address via DHCP
DHCP CLIENT hostname WICFD IP
IPv4 network ready IP: 10.40.2.124
Setting IPv6 link-local address:
IPv6 network ready IP: FE80:0000:0000:0000:DAC4:6AFF:FE55:7540
Getting NTP time... Sending global request ... success
Current time is: 2017-05-19T10:05:00.064464
```

Enter the IP address as the URL in your web browser, as shown in the terminal output in Figure 5-7. For example, 10.40.2.124. The browser will show the output as shown in Figure 5-8. It should be noted that the PC and CYW943907AEVAL1F EVK should be connected to the same access point. Rotate the potentiometer and verify that the value shown on web page changes accordingly. One easy way to validate the correct functioning is to rotate the potentiometer to one of the extremes and observe if the full scale value appears. In case you do not have access to a potentiometer, then you can use an adjustable power supply or wires to connect 3.3V and GND to the ADC input alternatively.

Figure 5-8. Webpage

5.5 Publish_subscribe_aws

5.5.1 Project Description

This project demonstrates publishing a message to a *Thing* in the Amazon Web Services (AWS) cloud and subscribing to the same messages. A *Thing* is a representation of a specific device or logical entity. For more information, refer to the AWS Documentation. This example is based on existing code example (apps/aws_iot/publish and apps/aws_iot/subscribe.) available in WICED Studio 5.0 (or later). On startup, the publish_subscribe_aws code example joins a Wi-Fi access point specified in the wifi_config_dct.h file, connects to AWS, subscribes to the specified topic and then alternately tries to publish LIGHT ON and LIGHT OFF messages.

The project consists of the following files:

- publish_subscribe.c: This file contains the main application function application_start() which is the
 entry point and execution of the firmware application. It also contains the function definitions for initializing,
 publishing and subscribing to AWS.
- publish_subscribe_aws.mk: This is the makefile which adds the sources, protocols, components (in this application, the MQTT component is used) and the name of the application. It also adds the required resources for the web page which are available in the resources/apps directory. Note that this project uses certificates from apps/aws iot directory.
- wifi_config_dct.h: This file contains the Wi-Fi access point credentials (SSID and pass phrase key) and soft AP credentials. The user should enter the client access point name and password credentials prior to building the application. These are specified as CLIENT_AP_SSID and CLIENT_AP_PASSPHRASE. Note that the security type may also have to be changed if the access point does not use WPA2 security. The Wi-Fi access point must have access to the internet to connect with AWS.

5.5.2 Hardware Connections

No specific hardware connections are required for this project because all connections are hardwired on the CYW943907AEVAL1F EVK.

5.5.3 Flow Chart

5.5.4 Verify Output

5.5.4.1 Set up an AWS Account and Create a Thing, Policy, and Certificate

An AWS account allows you to view AWS account activity, view usage reports, and manage AWS Security Credentials. When you sign up for AWS, your AWS account is automatically signed up for all services in AWS, including AWS IoT. You are charged only for the services that you use.

For more information about AWS IOT, see the help pages of AWS here.

To set up a new account, perform these steps:

- 1. Open https://aws.amazon.com and choose Create an AWS Account.
- 2. Follow the online instructions. Part of the sign-up procedure involves receiving a phone call and entering a PIN using the phone keypad.
- 3. In the Console Home page, select your AWS Region in this example Asia pacific (Singapore) is used, and choose the **AWS IoT** service. The AWS IoT Console window appears.

Create a Thing

To create a Thing, perform these steps:

1. In the AWS IoT Console window, choose **Registry** > **Things** on the left-hand panel, and then click the **Create** button as shown in Figure 5-9.

× 🧻 AWS IoT ■ Secure https://ap-southeast-1.console.aws.amazon.com/iotv2/home?region=ap-southeast-1#/think Services v Resource Groups v vikas vadlamudi 🕶 Singap Welcome to the new AWS IoT Console. Take me to the old console **Dismiss** Things Create **AWS** IoT (?)Dashboard bulb test NO TYPE NO TYPE Connect Registry

Figure 5-9. Create Thing

- Each Thing is uniquely identified by its name. Assign a name in the Name field, and click the Create thing button. For example, 943907_led.
 - **Note:** It is possible to exchange messages without a need to create a thing (by having a certificate with an attached policy), but it is recommended by AWS to create the same.
- 3. In the created Thing window, click the left arrow to navigate back to the AWS IoT Console window.

Create a Policy

To create a policy, perform these steps:

- In the AWS IoT Console window, go to Security > Policies, and then click the Create button. The Create a
 policy window appears.
- 2. Assign a policy name in the **Name** field. For example, led.
- 3. In Add statement, specify the Action as iot:*.
- 4. Assign a Amazon Resource Name (ARN) in the **Resource ARN** field. To use a wildcard, change the last part of Resource ARN from "arn:aws:iot:us-east-
 - 1:xxxxxxxxxxx:topic/replaceWithATopic" to "arn:aws:iot:us-east-1:xxxxxxxxxx:*".

Notes:

- Use the region that you selected when you set up your account.
- Replace xxxxxxxxxxx with the appropriate value for your ARN.
- In the ARN name, ensure to change "topic/replaceWithATopic" to "*", where "*" indicates all topics. If you want to use the certificates only for a specific topic (in our case, "943907_led_onoff" is the one defined as WICED_TOPIC macro in *publish_subscribe.c*), use the following Resource ARN "arn:aws:iot:us-east-1:xxxxxxxxxxxx:943907 led onoff".
- 5. Select the check box Allow Effect and then click the Create button as shown in Figure 5-10.
- 6. In the created policy window, click to navigate back to the AWS IoT Console window.

Figure 5-10. Create policy

Create a Certificate for a Thing

To create a certificate, perform these steps:

- 1. In the AWS IoT Console window, go to **Registry > Things**, and then click the created Thing (for example: 943907 led). The created Thing window appears.
- 2. In the left navigation pane, click Security and then click the Create certificate button as shown in Figure 5-11.

Figure 5-11. Create Certificate

AWS IoT

3. On the Certificate created page, click the Download button for the certificate and private key to save each of them to your PC.

Notes:

- The certificate and private key cannot be revisited later for download and must be saved while creating the Certificate.
- Backup the existing <WICED-SDK>\43xxx Wi-Fi\resources\apps\aws iot\client.cer and rename the downloaded certificate as client.cer in the <WICED-SDK>\43xxx_Wi-Fi\resources\apps\aws iot\.
- Backup the existing <WICED-SDK>\43xxx Wi-Fi\resources\apps\aws iot\privkey.cer and rename the downloaded private key as privkey.cer in <WICED-SDK>\43xxx_Wi-Fi\resources\apps\aws iot\.
- 4. Click the Activate button and then click the Attach a policy button as shown in Figure 5-12. The Add authorization to certificate window appears (see Figure 5-13).

Figure 5-12. Activate and Attach policy

5. Select the check box next to the policy you want to choose and then click the **Attach policy** button, as shown in Figure 5-13.

Figure 5-13. Select policy

- 6. In the created policy window, click to navigate back to the AWS IoT Console window.
- 7. Go to **Security > Certificates**. The Certificates window appears.
- 8. Click the created certificate. The Certificate ARN window appears.
- 9. Click **Policies** in the left-hand panel to validate if the correct policy is linked.
- 10. Click **Things** in the left-hand panel to validate if the correct Thing is linked.
- 11. Click the specific Thing. The Thing ARN window appears.
- 12. In left navigation pane, choose **Interact**.
- 13. Copy the Endpoint from the HTTPS tab as shown in Figure 5-14.

Figure 5-14. Endpoint

- 14. Navigate to the *publish_subscribe.c* file to update the MQTT_BROKER_ADDRESS macro with the endpoint address copied from **HTTPS** tab. Remove the first string before "." In endpoint and replace it with * and copy it to the REGION macro. In this case, it is "*.iot.ap-southeast-1.amazonaws.com".
- 15. The created Thing, policy and certificate are used to interact with the AWS IoT.

5.5.4.2 Access Point Credentials

Enter your credentials (SSID and pass phrase key) in the wifi_config_dct.h file. The CLIENT_AP_SSID macro should be updated with your access point's SSID, the CLIENT_AP_PASSPHRASE macro should be updated with your access point's pass phrase key and the CLIENT_AP_SECURITY macro should be updated with the security type of your access point. This is "WICED_SECURITY_WPA2_MIXED_PSK" if your access point uses WPA2-PSK. If your AP uses different security then choose correct one defined in enum wiced_security_t from 43xxx_Wi-Fi\WICED\WWD\include\wwd constants.h.

5.5.4.3 Build, Program, and Verify

Your Wi-Fi access point must be connected to the internet to verify the example. Build and program the publish_subscribe_aws example using a similar procedure to the one provided in Building, Programming, and Debugging CYW943907AEVAL1F EVK. Once programmed, the CYW943907AEVAL1F EVK will try to connect to AWS IoT and subscribe to the specified topic. After that if you press switch USER_1 it will turn LED_1 on and off alternatively as shown in Figure 5-15. Note that this is being done over the cloud. That is, pushing the switch publishes a message to the cloud. The LED turns on in response to a notification from the cloud. You can also see observe the messages inside the AWS console itself. In the AWS IoT Console window, go to **Dashboard** > **Messages published** and you should be able to see the number of messages exchanged as shown in Figure 5-15.

Figure 5-15. Publish Subscribe Output

Figure 5-16. Messages Published

Revision History

Document Revision History

Document Title: CYW943907AEVAL1F Evaluation Kit User Guide Document Number: 002-18703			
Revision	Issue Date	Origin of Change	Description of Change
**	06/22/2017	KAVS	Initial version of the kit guide.