a)

b)

c)

f)

g)

K=50

K=100

K=250

b) P, PI, PD controller together from top to bottom respectively

For P controller the value of Kc >= 16 gives unstable output For PI controller, the value of Kc >= 12 gives unstable output For PD controller, the value of Kc >= 9 gives unstable output

All are unstable outputs

c)

Case $1 - Underdamped (1/s^2 + s + 1)$

Output

Error

Case 2 : Critically damped (1/(s+1)^2)

Output

Error

Case 3 : Over Damped (1/(s+1)(s+2))

Error

f) Yes, For underdamped systems, the Kc = 500 is also stable for the transfer function of $1/(s^2+100s+1)$ but for $1/s^2+10s+1$, the response became unstable

