Universität Rostock Institut für Mathematik Prof. Dr. Martin Redmann Franziska Schulz

Wahrscheinlichkeitstheorie und Mathematische Statistik Übungsblatt 12

Aufgabe 12.1

Gegeben sei eine Folge von Würfelwürfen X_1, X_2, \ldots und \mathcal{F}_n die von X_1, \ldots, X_n erzeugte σ -Algebra. Finden Sie, wenn möglich, für jedes der folgenden Ereignisse das kleinste $n \geq 1$, sodass das Ereignis in \mathcal{F}_n enthalten ist.

- i) Die ersten drei Würfe zeigen das gleiche Ergebnis.
- ii) In der Folge X_1, X_2, \ldots kommt mindestens einmal eine "1" vor.
- iii) Die erste "6" tritt spätestens beim 11. Wurf auf.
- iv) Unter den ersten 22 Würfen gibt es höchstens eine "1", höchstens zwei "2", . . . , höchstens sechs "6".

Aufgabe 12.2

Angenommen, X_1, \ldots, X_n seien integrierbare und u.i.v. Zufallsvariablen auf dem Wahrscheinlichkeitsraum $(\Omega, \mathcal{F}, \mathbb{P})$. Wir setzen $\mathcal{F}_0 = \{\emptyset, \Omega\}$ sowie $\mathcal{F}_k = \sigma(X_1, \ldots, X_k)$. Für welche Parameter $c = \mathbb{E}X_1$ handelt es sich bei den folgenden Prozessen um Martingale bezüglich $(\mathcal{F}_k)_{k=0,\ldots,n}$?

- i) $(M_k)_{k=0,...,n}$ mit $M_0 = 0$ und $M_k = \sum_{j=1}^k X_j, k \ge 1$.
- ii) $(N_k)_{k=0,\dots,n}$ mit $N_0=1$ und $N_k=\prod_{j=1}^k X_j, k\geq 1$.

Aufgabe 12.3

Beweisen Sie Theorem 7.13 für stochastische Prozesse mit rechtsstetigen Pfaden.

Aufgabe 12.4

Simulieren Sie mehrere Pfade von Poisson-Prozessen mit verschiedenen Parametern a basierend auf der Darstellung in Lemma 7.16.

Abgabe: Mittwoch, 16.07.2025 bis 9.00 Uhr, online bei Stud.IP unter Aufgaben, im PDF Format.