PRIMERA INSTANCIA EVALUATIVA	
Materia: Análisis Matemático 2	Docente: Ing. Pablo E Godino
Modalidad: Presencial	Fecha: 04/10/2021

Reservado para el alumno

Alumno:	Carrera: Inteligencia Artificial
DNI:	Cuatrimestre: Primero
	Turno: Noche

Esc. Puntuac. 60 a 63 pts = 4 64 a 66 pts = 5 67 a 69 pts = 6 70 a 75 pts = 7 76 a 85 pts = 8 86 a 95 pts = 9 + de 95 pts = 10

Reservado para el docente
NOTA

- Criterio de Evaluación: Se evaluará la claridad con la que se expresan los cálculos y resultados y metodología aplicada en la resolución de la situación matemática planteada. Se debe enviar las capturas de pantalla de los ejercicios resueltos en papel a la mensajería de la materia. Todos los archivos con nombre y apellido y DNI.
- Modalidad de Evaluación: Desarrollo práctico de las consignas planteadas (en forma virtual, a través de la PC, en presencia del profesor, en el horario de clase, con webcam encendida.

DESARROLLO DE LA PRIMERA INSTANCIA EVALUATIVA

Actividad Nº1: Estudio de Función (35 ptos.)

- ✓ Realizar el estudio de la función y = (x-2)(x-6)(x+7).
- ✓ Gráfico, Dominio y Recorrido.
- ✓ Calcular Raíces, Puntos críticos y Puntos de inflexión.
- ✓ Determinar: Intervalos de POSITIVIDAD Y NEGATIVIDAD. Intervalos de CRECIMIENTO y DECRECIMIENTO. Intervalos de CONCAVIDAD hacia arriba y/o hacia abajo.

Actividad Nº2: DERIVADA de una función (20 ptos.)

$$f(x) = (x-5)^3 e^x$$
$$f(x) = \left(\ln(5x^2)\right)\left(e^{5x^4}\right)$$

Actividad Nº 3: DERIVADA de una función (20 ptos.)

$$f(x) = (5x + 29)^5 (\cos^2 x)$$
$$f(x) = \frac{2x^3 + 3}{2x + 15}$$

Actividad Nº 4: Recta tangente (25 ptos.)

Dar la ecuación de la recta tangente que pasa por el punto x = 3 de la función planteada en la Actividad N^{o} 1.

FINAL DE LA PRIMERA INSTANCIA EVALUATIVA