Master of Science Thesis

Title Subtitle

Name

November 30, 2019

Title Subtitle

Master of Science Thesis

For obtaining the degree of Master of Science in Aerospace Engineering at Delft University of Technology

Name

November 30, 2019

Delft University of Technology

Copyright ${}^{\raisebox{-.5ex}{$\tiny C}}$ Aerospace Engineering, Delft University of Technology All rights reserved.

DELFT UNIVERSITY OF TECHNOLOGY DEPARTMENT OF AERODYNAMICS

The undersigned hereby certify that they have read and recommend to the Faculty of Aerospace Engineering for acceptance the thesis entitled "Title" by Name in fulfillment of the requirements for the degree of Master of Science.

Dated: November 30, 2019

Supervisors:

Reader 1

Reader 3

Reader 4

Table of Contents

Li	st of	Figures	vii
Li	st of	Tables	ix
1	Sca	lar Flux Modelling	1
	1.1	Background on Navier Stokes and scalar fluxes	1
Ri	hling	ranhy	3

vi Table of Contents

List of Figures

viii List of Figures

List of Tables

x List of Tables

Chapter 1

Scalar Flux Modelling

In this chapter, an overview of the theory related to scalar flux and turbulence modelling is discussed. First, background on

1.1 Background on Navier Stokes and scalar fluxes

Fluid flows are governed by the Navier Stokes equations which can be expressed by equations 1.1 and 1.2 for incompressible flow of a Newtonian fluid without body forces. In these equations, u_i is the i-th component of the instantaneous velocity field, p is the instantaneous pressure field and ν is the kinematic viscosity of the fluid.

$$\frac{\partial u_i}{\partial t} = u_j \frac{\partial u_i}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \nu \frac{\partial^2 u_i}{\partial x_j^2} \tag{1.1}$$

$$\frac{\partial u_j}{\partial x_i} = 0 \tag{1.2}$$

Along with these conservation of mass and momentum equations, simulations concerning the transport of a passive scalar quantity ϕ require an additional transport equation given in 1.3 without a source term. In equation 1.3, ϕ is considered a passive scalar because it has no effect on material and flow properties and Γ is the relevant molecular diffusivity parameter. For simulations concerning passive heat transfer, the instantaneous temperature (θ) can be identified as the scalar quantity with thermal diffusivity α as the relevant diffusivity constant.

$$\frac{\partial \phi}{\partial t} + u_j \frac{\partial \phi}{\partial x_j} = \Gamma \frac{\partial^2 \phi}{\partial x_j^2} \tag{1.3}$$

The Navier Stokes equations can be solved exactly by resolving all time and length scales accurately by using a Direct Numerical Simulation (DNS) method. However, the computational effort to accurately resolve all fluid length and time scales for industry relevant flows is made impossible due to turbulence. Turbulence can be characterised as a collection of eddies over a range of different scales which are chaotic and unsteady in nature. The multi-scale proper-

ties of these turbulent eddies can be understood based on energy cascade and Kolmogorov's hypothesis for a fully turbulent flow at sufficiently high Reynold's number (Re) expressed in equation 1.4, with characteristic velocity \mathcal{U} and length scale \mathcal{L} .

$$Re = \frac{\mathcal{U}\mathcal{L}}{\nu} \tag{1.4}$$

The largest eddies in the flow can be characterised with length scale l_0 , characteristic velocity scale u_0 and time scale τ_0 for which the Reynolds number Re_0 is comparable to the flow Re. However, these large eddies are unstable and break-up to transfer energy to smaller eddies which undergo a similarly successive break-up process until a point of sufficiently small eddies with stable motion is reached where molecular viscosity acts to dissipate the kinetic energy of the eddies. According to Kolmogorov's hypothesis, these small scale eddies are statistically isotropic and exhibit universal behaviour that can be determined by ν and dissipation rate ϵ . Based on unit analysis, the characteristic length η , velocity u_{η} and time τ_{η} scales of these small scale Kolmogorov eddies are identified in equations 1.5-1.7 [1].

$$\eta = \left(\frac{\nu^3}{\epsilon}\right)^{1/4} \tag{1.5}$$

$$u_{\eta} = (\nu \epsilon)^{1/4} \tag{1.6}$$

$$\tau_{\eta} = \left(\frac{\nu}{\epsilon}\right)^{1/2} \tag{1.7}$$

The ratio between the largest and smallest turbulent scales can be expressed as a function of flow Re number as expressed in equations 1.8 and 1.9. As can be identified, the range of turbulent scales increase exponentially with flow Reynolds number. A DNS requires sufficiently small cell size and time step to accurately resolve the smallest eddies along with a suitable computational domain to capture the geometry and large eddies. Therefore, with current computational resources, DNS of industry relevant flows, where Re can be in the order of 10^{6-8} , is impossible.

$$\frac{\eta}{l_0} = Re^{-3/4} \tag{1.8}$$

$$\frac{\tau_{\eta}}{\tau_0} = Re^{-1/2} \tag{1.9}$$

An alternative to DNS is the Large Eddy Simulation (LES) method where only the large energy containing eddies of turbulence are solved for and the smallest eddies are modelled.

Bibliography

[1] Stephen B. Pope. Turbulent Flows. Cambridge University Press, Cambridge, 2000. ISBN 9780511840531. doi: 10.1017/CBO9780511840531. URL http://ebooks.cambridge.org/ref/id/CBO9780511840531.

4 Bibliography

