As th remo	and an an anomal section of the dataset. The columns of the dataset doesn't have missing values, randomly values are deleted from the dataset. To this, function named to the dataset doesn't have missing values, randomly values are deleted from the dataset. To this, function named to the dataset doesn't have missing values, randomly values are deleted from the dataset. To this, function named to the dataset doesn't have missing values, randomly values are deleted from the dataset. To this, function named to the dataset doesn't have deleted from the dataset. To this, function named to the features of the dataset. Below is the coding features of the dataset. To this, function named to the coding features of the dataset. Below is the
new_prir prir 0 1 2 3 4 610 611 612 613 4 610 611 612 613 614	no samples to remove = random.sample(range(n samples),int(remove perc*n samples/100)) datal.iloc[:,col].where(datal.iloc[no_samples_to_remove,col] < 0 , inplace = True) return datal data=data.copy() data=remove_features(data,30,5) it(data) it(new_data) ALB ALP ALT AST BIL CHE CHOL CREA GGT PROT 38.5 52.5 7.7 22.1 7.5 6.93 3.23 106.0 12.1 69.0 38.5 70.3 18.0 24.7 3.9 11.17 4.80 74.0 15.6 76.5 46.9 74.7 36.2 52.6 6.1 8.84 5.20 86.0 33.2 79.3 43.2 52.0 30.6 22.6 18.9 7.33 4.74 80.0 33.8 75.7 39.2 74.1 32.6 24.8 9.6 9.15 4.32 76.0 29.9 68.7 22.0 416.6 5.9 110.3 50.0 5.57 6.30 55.7 650.9 68.5 24.0 102.8 2.9 44.4 20.0 1.54 3.02 63.0 35.9 71.3 29.0 87.3 3.5 99.0 48.0 1.66 3.63 66.7 64.2 82.0 33.0 NaN 39.0 62.0 20.0 3.56 4.20 52.0 50.0 71.0 36.0 NaN 100.0 80.0 12.0 9.07 5.30 67.0 34.0 68.0 rows x 10 columns ALB ALP ALT AST BIL CHE CHOL CREA GGT PROT 38.5 52.5 7.7 NaN 7.5 6.93 NaN 106.0 12.1 69.0 38.5 70.3 18.0 NaN 3.9 11.17 4.80 74.0 15.6 76.5 46.9 74.7 36.2 NaN 6.1 8.84 NaN NaN 33.2 NaN 43.2 52.0 30.6 22.6 18.9 7.33 4.74 80.0 33.8 75.7 39.2 74.1 32.6 24.8 9.6 9.15 4.32 NaN 29.9 68.7
the a data	d the the which features are randomly removed find_missing_features() function is defined. And find_missing_columns() fur tributes that have missing values and in the descending order of number of missing values. And this is all about the handling find_missing_features(data): data=data.copy() n_samples,n_features = data.shape missing_column=data.isna() missing_column=missing_column.any() missing_columns=[] for i in range(n_features): if missing_columns(i]: missing_columns.append(i) return missing_columns find_missing_columns(data): data_1=data.copy() missing_features = find_missing_features(data_1) n_samples,n_features = data_1.shape
k=fii prir k=fii [0, ['AI	zero_features_num = new_data.isnull() zero_features_num = zero_features_num.sum(axis=0) missing_features_column= zero_features_num.nlargest(len(missing_features)) missing_columns = [] missing_columns = list(missing_features_column.index.values) missing_columns.reverse() print(missing_columns) return missing_columns return missing_columns return missing_columns 1, 2, 4, 6, 8, 9] B', 'ALP', 'GGT', 'BIL', 'PROT', 'ALT', 'CHOL'] Naive mean method:- in this method, each missing features columns mean is calculated and replaced the missing values with the mean. For this method() function is defined. It takes the data and returns the total filled data. Here mean squared method is defined which
def	<pre>_method() function is defined. It takes the data and returns the total filled data. Here mean_squared method is defined whice lates mean squared_error of the predicted data and original data. mean_squared_error (data_1, data_2, perc): k= ((data_1-data_2)**2).sum() n= (perc/100)*615 k=k/n return k mean_method(data): data_1=data.copy() n_samples,n_features = data_1.shape missing_features=find_missing_features(data_1) for i in missing_features: mean = data_1.iloc[:, i].mean() mean = round(mean, 2) data_1.iloc[:, i].fillna(mean, inplace=True) return data_1 return data_1</pre>
new_mear prir percomse_percoprir for	<pre>all=[] tent=[] tt(true_data) i in range(9): percent.append(perc) data=true_data.copy() new_data=remove_features(data,perc,5) mean_data=mean_method(new_data) k=mean_squared_error(true_data,mean_data,perc) k=list(k) perc=perc+10 print("percent of the data is missing:",perc-10) #print(k) mse_all.append(sum(k)/10) tt(percent)</pre>
plt. plt. plt. 0 1 2 3 4 610 611 612 613 614 [615	
613 614 [615 perc perc perc perc perc perc perc	38.5 70.3 18.0 24.7 3.9 11.17 4.80 74.0 15.6 76.5 46.9 74.7 36.2 52.6 6.1 8.84 5.20 86.0 33.2 79.3 43.2 52.0 30.6 22.6 18.9 7.33 4.74 80.0 33.8 75.7 39.2 74.1 32.6 24.8 9.6 9.15 4.32 76.0 29.9 68.7
[338 6.35 Text	20, 30, 40, 50, 60, 70, 80, 90] .08338308943087, 640.1607543089431, 583.2234967479675, 287.73867247967485, 820.433079056910 862306233057, 577.5590562833913, 61.799361321138214, 379.9559711111111] (0.5, 1.0, 'Mean squared error as a function of percent of data removed over all the data' n squared error as a function of percent of data removed over all the data 800 700 900 100 Percent of data removed 900 100 Percent of data removed
3. F Now predethat h missi data Line	an see that from as the percent of the data removed changes the mean squared erroa changes irregularly as it is random. He clusted to evaluate the model is mean squared error. **Regression Model:-** same data interpolation is performing with the regression models i.e, Naive regression, ridge and lasso models. Here, we use fined functions i.e, find_missing_features() to remove the datapoints randomly from the dataset. Other functions to find the class missing values. so, the method that followed is first we find the which columns have missing values. Now we will find am any value features, the least missing feature is considered as y value and remaining features are considered as x-values, we walues using the regression models and we predict the missing values. **Pear Regression:-** **Inear_regression(x, y):** **w = np.dot(np.dot(np.linalg.inv(np.dot(x.T, x)), x.T), y) **w = np.reshape(w, (len(w), -1)) **return w**
def	<pre>predict(data, weights): predicted=np.dot(data, weights) return predicted linear_regression_fit(data): data_l=data.copy() # finding missing columns name in descending order missing_columns=find_missing_columns (data) #maintaining a copy of missing columns missing_columns_c=missing_columns.copy() for i in missing_columns: #removing a filled column after each iteration missing_columns_c.remove(i) all_data = data_l[data_l.columns.drop(missing_columns_c)] test_data = all_data[all_data.isna().any(axis=1)] #finding indices of missing samples data missing_samples_index = test_data.index #splitting data into train data and test data train_data = all_data.dropna(how='any', axis=0) test_data_t = test_data.dropna(how='any', axis=0) test_data_t = test_data.dropna(how='any', axis=0)</pre>
data= new_d linea print perc= mse_a perce print for i pd n m k k p p # m print print plt.p plt.x plt.y plt.t ['ALT	_all=[]
	<pre>i in range(9): percent.append(perc) data=true_data.copy() new_data=remove_features(data,perc,5) mean_data=linear_regression_fit(new_data) k=mean_squared_error(true_data,mean_data,perc) k=list(k) perc=perc+10 print("percent of the data is missing:",perc-10) #print(k) mse_all.append(sum(k)/10) it(percent) it(mse_all) plot(percent,mse_all) xlabel('Percent of data removed') ylabel('Mean squared error') title('Mean squared error as a function of percent of data removed over all the data') T', 'ALP', 'PROT', 'GGT', 'CHE', 'ALB', 'CHOL'] ALB ALP ALT AST BIL CHE CHOL CREA \</pre>
0 1 1 2 3 3 4 6 1 6 1 2 3 4 6 1 1 2 3 4 6 1 1 2 6 1 1 6 1 1 6 1 6 1 6 1 6 1 6 1	38.500000 52.500000 7.7 22.1 7.5 6.93 3.230000 106.0 38.500000 70.300000 18.0 24.7 3.9 11.17 6.056381 74.0 46.900000 74.700000 36.2 52.6 6.1 8.84 5.200000 86.0 43.200000 52.000000 30.6 22.6 18.9 7.33 4.740000 80.0 39.715680 74.100000 32.6 24.8 9.6 9.15 4.320000 76.0 1 17.017459 416.600000 5.9 110.3 50.0 5.57 6.180446 55.7 24.000000 102.800000 2.9 44.4 20.0 1.54 3.316803 63.0 29.000000 87.300000 3.5 99.0 48.0 1.66 3.630000 66.7 29.053833 67.344346 39.0 62.0 20.0 3.56 3.693227 52.0 36.00000 121.216760 100.0 80.0 12.0 9.07 5.300000 67.0 GGT PROT 12.100000 50.725068 27.764710 76.500000 33.200000 79.300000 33.800000 75.700000 29.900000 64.908339 650.900000 68.500000 71.634911 71.300000 95.532236 82.000000
0 1 2 3 4 610 611 612 613 614 [615 ['AI	50.000000 71.000000 34.000000 68.000000 rows x 10 columns] ALB ALP ALT AST BIL CHE CHOL CREA GGT PROT 38.5 52.5 7.7 22.1 7.5 6.93 3.23 106.0 12.1 69.0 38.5 70.3 18.0 24.7 3.9 11.17 4.80 74.0 15.6 76.5 46.9 74.7 36.2 52.6 6.1 8.84 5.20 86.0 33.2 79.3 43.2 52.0 30.6 22.6 18.9 7.33 4.74 80.0 33.8 75.7 39.2 74.1 32.6 24.8 9.6 9.15 4.32 76.0 29.9 68.7
perc ['PF perc ['AI perc ['AI perc ['PF perc [10, [138 7.69	ent of the data is missing: 30 OT', 'ALB', 'CREA', 'BIL', 'ALT', 'CHOL', 'ALP'] ent of the data is missing: 40 T', 'CHOL', 'ALP', 'PROT', 'GGT', 'CHE', 'BIL', 'ALB'] ent of the data is missing: 50 T', 'BIL', 'ALB', 'PROT', 'CHOL', 'ALP'] ent of the data is missing: 60 T', 'CHOL', 'ALP', 'PROT', 'GGT', 'CREA', 'BIL', 'ALB'] ent of the data is missing: 60 T', 'CHOL', 'ALP', 'PROT', 'GGT', 'CREA', 'BIL', 'ALB'] ent of the data is missing: 70 OT', 'ALP', 'GGT', 'AST', 'ALT', 'ALB', 'CHOL'] ent of the data is missing: 80 OT', 'ALP', 'CREA', 'AST', 'ALT', 'ALB', 'CHOL'] ent of the data is missing: 90 20, 30, 40, 50, 60, 70, 80, 90] .52860729705105, 855.8622665307139, 371.84139573004074, 267.7816059912692, 211.144811047006 9946225506888, 593.4844230263159, 526.1255707002268, 692.41718689224] (0.5, 1.0, 'Mean squared error as a function of percent of data removed over all the data' n squared error as a function of percent of data removed over all the data'
metri Rid	an see that from as the percent of the data removed changes the mean squared erroa changes irregularly as it is random. He coused to evaluate the model is mean squared error. ge regression:- ridge regression (x, y, lamda):
def	<pre>features=x.shape[1] w = np.dot(np.dot(np.linalg.inv(np.dot(x.T, x) + lamda*np.identity(features)), x.T), y) w = np.reshape(w, (len(w),-1)) return w ridge_regression_fit(data): data_l=data.copy() # finding missing columns name in descending order missing_columns=find_missing_columns(data) #maintaining a copy of missing_columns missing_columns_c=missing_columns. missing_columns_c=missing_columns.copy() for i in missing_columns: #removing a filled column after each iteration missing_columns_c.remove(i) all_data = data_l[data_l.columns.drop(missing_columns_c)] test_data = all_data[all_data.isna().any(axis=1)] #finding indices of missing samples data missing_samples_index = test_data.index #splitting data into train data and test data train_data = all_data.dropna(how='any', axis=0)</pre>
new_line prin pero mse_	_all=[]
prir for prir prir plt. plt. plt.	<pre>int(true_data) if in range(9): percent.append(perc) data=true_data.copy() new_data=remove_features(data,perc,5) mean_data=ridge_regression_fit(new_data) k=mean_squared_error(true_data,mean_data,perc) k=list(k) perc=perc+10 print("percent of the data is missing:",perc-10) #print(k) mse_all.append(sum(k)/10) it(percent) it(mse_all) plot(percent,mse_all) xlabel('Percent of data removed') ylabel('Mean squared error') title('Mean squared error as a function of percent of data removed over all the data') B', 'ALP', 'CREA', 'BIL', 'PROT', 'ALT', 'CHOL'] ALB ALP ALT AST BIL CHE CHOL \ 38.5 52.500000 7.700000 22.1 7.500000 6.93 3.230000</pre>
1 2 3 4 610 611 612 613 614 0 1 2 3 4 610 611 612 613	29.0 87.300000 3.500000 99.0 29.992125 1.66 3.630000 33.0 49.942454 39.000000 80.0 18.755176 3.56 4.200000 36.0 58.713158 100.000000 80.0 13.263519 9.07 5.300000 CREA GGT PROT 106.000000 12.1 69.000000 73.440432 15.6 76.500000 86.000000 33.2 80.666882 76.201805 33.8 70.972470 76.000000 29.9 68.700000 55.700000 650.9 68.500000 63.000000 35.9 46.537390 72.862859 64.2 82.000000 64.618610 50.0 56.660653
0 1 2 3 4 610 611 612 613 614 [615 ['AI perc ['PF	rows x 10 columns] ALB ALP ALT AST BIL CHE CHOL CREA GGT PROT 38.5 52.5 7.7 22.1 7.5 6.93 3.23 106.0 12.1 69.0 38.5 70.3 18.0 24.7 3.9 11.17 4.80 74.0 15.6 76.5 46.9 74.7 36.2 52.6 6.1 8.84 5.20 86.0 33.2 79.3 43.2 52.0 30.6 22.6 18.9 7.33 4.74 80.0 33.8 75.7 39.2 74.1 32.6 24.8 9.6 9.15 4.32 76.0 29.9 68.7
['AI perc ['AI perc ['PF perc ['PF perc ['AI perc ['PF perc ['AI perc ['AI perc ['AI Text	ent of the data is missing: 30 T', 'AST', 'ALB', 'PROT', 'CHOL', 'ALP'] ent of the data is missing: 40 T', 'ALB', 'CHOL', 'GGT', 'CREA', 'CHE', 'PROT', 'ALP'] ent of the data is missing: 50 OT', 'ALB', 'CHOL', 'ALP', 'GGT', 'CREA', 'CHE', 'AST', 'ALT'] ent of the data is missing: 60 OT', 'ALB', 'ALP', 'GGT', 'CHE', 'BIL', 'ALT', 'CHOL'] ent of the data is missing: 70 T', 'ALB', 'CHOL', 'ALP', 'PROT', 'GGT', 'CREA', 'BIL', 'AST'] ent of the data is missing: 80 OT', 'CHOL', 'CREA', 'CHE', 'ALT', 'ALB', 'ALP'] ent of the data is missing: 90 20, 30, 40, 50, 60, 70, 80, 90] .29568515034185, 242.32106586188192, 74.96635935395591, 217.6211566192611, 423.031431672607 146849792, 316.41904176466915, 1128.2198740579547, 498.4017222353967] (0.5, 1.0, 'Mean squared error as a function of percent of data removed over all the data' n squared error as a function of percent of data removed over all the data'
From we ca value	the above plot, we can say that as the the percent of data removed is increased mean squared error is increasing. And from an say that ridge regression performed on par with linear model. After experimenting with lambda values, lambda=0.1 is the conformation of the model. lasso_regression(x, y, lamda, iterations): x = np.array(x)
	<pre>y = np.array(y).reshape((len(y), 1)) n, features = x.shape w = np.zeros(shape=(features,1)) #print(w) w[0] = np.sum(y - np.dot(x[:, 1:], w[1:]))/n for i in range(iterations):</pre>
	<pre>lasso_regression_fit(data): data_l=data.copy() # finding missing columns name in descending order missing_columns=find_missing_columns(data) #maintaining a copy of missing columns missing_columns_c=missing_columns.copy() for i in missing_columns: #removing a filled column after each iteration missing_columns_c.remove(i) all_data = data_l[data_l.columns.drop(missing_columns_c)] test_data = all_data[all_data.isna().any(axis=1)] #finding indices of missing samples data missing_samples_index = test_data.index # # splitting data into train data and test data train_data = all_data.dropna(how='any', axis=0) test_data = test_data.dropna(axis=1) # splitting train data into x and y data x_data=train_data[i] # finding the lasso regression weights = lasso regression(x data, y data, 1, 1000)</pre>
data new_ line prir pero mse_ pero prir for	<pre>weights = lasso_regression(x_data,y_data,1,1000) #predicting weights with trained weights predict_data = predict(test_data, weights) test_data[i] = predict_data #Interpolating the dataset with predicted values for j, sample in enumerate(missing_samples_index): data_1.loc[sample, i] = test_data.loc[sample, i] return data_1 return data_1 reture_data.copy() data=remove_features(data,30,5) far_data=lasso_regression_fit(new_data) it(linear_data) i=10 all=[] ient=[] it(true_data) i i range(9): percent.append(perc) data=true_data.copy()</pre>
prir prir plt. plt. plt.	<pre>data=true_data.copy() new_data=tremove_features(data,perc,5) mean_data=lasso_regression_fit(new_data) k=mean_squared_error(true_data,mean_data,perc) k=list(k) perc=perc+10 print("percent of the data is missing:",perc-10) #print(k) mse_all.append(sum(k)/10) tt(percent) tt(mse_all) plot(percent,mse_all) xlabel('Percent of data removed') ylabel('Mean squared error') title('Mean squared error as a function of percent of data removed over all the data') OT', 'CHOL', 'ALP', 'CREA', 'BIL', 'AST', 'ALB', 'ALT']</pre>
	39.200000 74.100000 32.6 24.800000 9.600000 9.15 4.32
	rows x 10 columns] ALB ALP ALT AST BIL CHE CHOL CREA GGT PROT 38.5 52.5 7.7 22.1 7.5 6.93 3.23 106.0 12.1 69.0 38.5 70.3 18.0 24.7 3.9 11.17 4.80 74.0 15.6 76.5