Question 1. Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles. Donner la définition de $\ll (u_n)_{n \in \mathbb{N}}$ est négligeable devant $(v_n)_{n \in \mathbb{N}}$ au voisinage de $+\infty \gg$.

Question 2. Soient $a \in \mathbb{R}^*$ et $(u_n)_{n \in \mathbb{N}}$ une suite qui tend vers 0. Donner un équivalent au voisinage de $+\infty$ de $(1 + u_n)^a - 1$.

Exercice 1. Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ les suites définies par

$$\forall n \in \mathbb{N}^*, \quad u_n = n^3 - \sqrt{n^2 + 1} \quad \text{et} \quad v_n = \ln(n) - 2n^2.$$

Déterminer si l'une des deux suites est négligeable devant l'autre.

Exercice 2. Montrer que $\sqrt{4n+1} - \sqrt{4n} \underset{n \to +\infty}{\sim} \frac{1}{4\sqrt{n}}$.

Exercice 3. Déterminer un équivalent simple de la suite définie par

$$\forall n \in \mathbb{N}^* \quad u_n = \frac{5\ln n + 2}{2n + 1 + 3^n}$$

Réponses.

Nom: Prénom:

Interro 1 le 10/09.

Question 1. Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles. Donner la définition de $\ll (u_n)_{n\in\mathbb{N}}$ est équivalente à $(v_n)_{n\in\mathbb{N}}$ au voisinage de $+\infty \gg$.

Question 2. Soit $(u_n)_{n\in\mathbb{N}}$ une suite qui tend vers 0. Donner un équivalent au voisinage de +∞ de e^{u_n} − 1.

Exercice 1. Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ les suites définies par

$$\forall n \in \mathbb{N}^*, \quad u_n = n^3 - \sqrt{n^2 + 1} \quad \text{et} \quad v_n = \ln(n) - 2n^3.$$

 $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont-elles équivalentes au voisinage de $+\infty$?

Exercice 2. Montrer que $\frac{1}{n \ln(n)} + \frac{1}{2^n} = o_{n \to +\infty} \left(\frac{1}{\ln(n)} \right)$.

Exercice 3. Déterminer un équivalent simple de la suite définie par

$$\forall n \in \mathbb{N}^* \quad u_n = \sqrt{1 + \frac{3}{n\sqrt{n}}} - 1$$

Réponses.