VITMO

Анализ графовых данных и глубокое обучение

Азимов Рустам Высшая школа цифровой культуры

План курса

Познакомиться с методами машинного и глубокого обучения для работы с графовыми данными:

- Построение эмбеддингов для вершин: DeepWalk, Node2Vec
- Графовые нейронные сети (GNN): GCN, GraphSAGE, GAT...
- Анализ графов знаний (Knowledge graphs): TransE, BetaE
- **Генеративные графовые модели**: GraphRNN
- Практическое применение GNN

Пререквизиты

Желательны, но не обязательны знания в следующих областях:

- Машинное и глубокое обучение
- Теория графов и алгоритмы
- Теория вероятностей
- Математическая статистика

Желательные навыки программирования:

- Python
- sklearn, PyTorch

Инструменты

• PyG (PyTorch Geometric)

- PyG
 S
- Самая популярная библиотека для GNN
- <u>GraphGym</u> платформа для проектирования GNN
 - Реализовано множество модулей GNN
 - Упрощенный подбор гиперпараметров
 - Гибкая кастомизация
- NetworkX полезная библиотека для различных манипуляция над графами и сетевого анализа

Полезные ссылки

• GitHub репозиторий курса

- <u>Graph Representation Learning Book</u> Will Hamilton
- CS224W: Machine Learning with Graphs

Оценивание курса

- Практические домашние задания (2-3)
- Теоретические домашние задания (1-2)
- Проект (групповой на 2-3 человека)
- Экзамен (устный)

Правила сдачи заданий

LITMO

Экзамен

VİTMO

Машинное обучение для анализа графов

Почему графы?

Графы - это универсальный язык для описания и анализа сущностей с отношениями/взаимодействиями

Данные во многих областях естественным образом представляются в виде графов

Графы - универсальный язык

Графы в реальной жизни

VITMO

Социальные сети

Графы знаний

Молекулы

Программы

Графы в реальной жизни

VITMO

Компьютерные сети

Граф цитирований

Навигация

Современные ML инструменты

Современные ML инструменты

• Инструменты для глубокого обучения изначально спроектированы для анализа лишь подмножества графов

- Последовательности
- Сетки

Сложность анализа графов

- Сложная топологическая структура (нет пространственной локальности как в сетках)
- Нету начальной вершины или порядка обхода графа
- Граф часто динамичный
- Вершины могут иметь мультимодальные признаки

VS

Этот курс

Как мы можем спроектировать нейронные сети намного более общего применения?

Произвольные графы

Популярность GNN

Геторогенные графы

• Во многих областях данные могут быть представлены в виде геторогенного графа G = (V, E, R, T)

- \circ Вершины $v_i \in V$
- \circ Рёбра $(v_i, r, v_j) \in E$
- \circ Типы отношений $r \in R$
- У вершин и рёбер могут быть атрибуты/признаки

Пример гетерогенного графа

- ogbn-mag (Microsoft Academic Graph)
- Типы вершин: author, paper,
 institution и field of study
- Типы рёбер: writes,
 affiliated with, cites и has
 topic

Выбор подходящего представления ИТМО

Как построить граф?

0

- Что сделать вершинами?
- Что сделать рёбрами?
- Направленный vs ненаправленный
- Нужны ли веса на рёбрах?
- Какие типы вершин/рёбер?
- Какие признаки хранятся в вершинах/рёбрах?
- Нужен ли особый вид графа?
- От сделанного выбора зависит природа вопросов, на которые можно будет ответить в результате анализа графа

Двудольные графы

- Примеры двудольных графов
 - Авторы-Статьи
 - Пользователи-Фильмы
 - Покупатели-Товары
- Можно провести дополнительные рёбра и получить новые графы
 - Соавторы
 - Пользователи/покупатели со схожими вкусами

VITMO

Виды задач машинного обучения на графах

Виды graph ml задач

Node classification

Node classification

• Предсказываем признаки отдельных вершин

- Например, категоризация
 - Покупателей
 - о Товаров
 - Транзакций
 - Лекарств

Protein folding

Every protein is made up

 Белки, составленные из аминокислот, под действием магнитных и прочих воздействий сворачиваются в сложные 3D фигуры

• От этого зависят многие важные биологические функции

These amino acids interact

 Взаимодействие лекарств с белками и изменение процессов в организме для выздоровления

These shapes fold up on

Proteins can interact with

Protein folding

 Задача - предсказать 3D структуру белка, основываясь только на последовательности аминокислот

T1049 / 6y4f 93.3 GDT (adhesin tip)

- Experimental result
- Computational prediction

Image credit: DeepMind

AlphaFold

• Начиная с 1970-ых годов пытаются решить данную задачу

• Использование GNN позволило сделать прорыв и решить задачу с 90% точностью

Median Free-Modelling Accuracy

AlphaFold

• Идея - представить белок в виде графа (пространственного графа)

9 6

- Вершины аминокислоты
- Рёбра пространственная близость аминокислот

Spatial graph

Link prediction

Task: Learn node embeddings z_i such that $d(z_{cake1}, z_{cake2})$ $< d(z_{cake1}, z_{sweater})$

Users (2)

Interactions

"Vou might a

"You might also like"

Recommendation system

• Многие компании используют GNNs для более точных рекомендаций

- Pinterest
- o LinkedIn
- o Instagram
- Например, изображения (вершины) в Pinterest кодируются на основе взаимодействия пользователей и визуального контента
- Похожие вершины получают близкие представления (эмбеддинги)
- В итоге качество рекомендаций становится выше, чем после анализа только изображений

Взаимодействия лекарств

Query: How likely will Simvastatin and Ciprofloxacin, when taken together, break down muscle tissue?

Предсказание побочных эффектов ИТМО

Rank	Drug i	Drug j	Side effect r	Evidence
1	Pyrimethamine	Aliskiren	Sarcoma	Stage et al. 2015
2	Tigecycline	Bimatoprost	Autonomic neuropathy	
3	Omeprazole	Dacarbazine	Telangiectases	
4	Tolcapone	Pyrimethamine	Breast disorder	Bicker et al. 2017
5	Minoxidil	Paricalcitol	Cluster headache	
6	Omeprazole	Amoxicillin	Renal tubular acidosis	Russo et al. 2016
7	Anagrelide	Azelaic acid	Cerebral thrombosis	
8	Atorvastatin	Amlodipine	Muscle inflammation	Banakh et al. 2017
9	Aliskiren	Tioconazole	Breast inflammation	Parving et al. 2012
10	Estradiol	Nadolol	Endometriosis	

Zitnik et al., Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics 2018

Sub-graph level

VİTMO

Вершины - сегменты дорог

Время поездки предсказывается с помощью GNN

Traffic prediction

Graph-level task

Antibiotics are small molecular graphs

Nodes: Atoms

Edges: Chemical bonds

Konaklieva, Monika I. "Molecular targets of β -lactam-based antimicrobials: beyond the usual suspects." Antibiotics 3.2 (2014): 128-142.

Image credit: CNN

Antibiotic discovery

• Задача - предсказать нужные свойства графов (молекул)

Генерация новых молекул

Use case 1: Generate novel molecules with high drug likeness

Use case 2: Optimize existing molecules to have desirable properties

Симуляция изменений графа

A graph evolution task:

Goal: Predict how a graph will evolve over

Заключение

