timed out. Could not transform laser scan into base frame RViz Total time: 0:00:01 Preview frame rate: 10 hiota: Previewing requires extra CPU time (especially at high-frame rates). Bill rate: OhitA Start preview (PulseAudioloput InputThread) Stream is a monitor PageRecord: Startingut[Started Input. PulseAudioInput: Input Thread[Input Thread started. ROSTime: 1206.36 ROS Elapsed: 17.77 Wall Time: 3413.54 Wall Elapsed: 73.93

F1/10

Autonomous Racing

Simultaneous Mapping Localization & Planning

Varundev Sukhil

CS 4501/SYS 4582 Spring 2019 Rice Hall 120

Limitations: Basic Path Planning

- High Level Path Assignments
 - 2nd right, 2nd right, 1st right, 1st left, 1st right

Race Lines

Occupancy Grid Mapping

Measurement Model

Measurement :

$$m_{x,y} = 1$$

LiDAR hit

$$m_{x,y} = 0$$

No occlusion

Map Cell:

$$Z = 1$$

Occupied

$$Z = 0$$

UnExplored

$$Z = -1$$

Free

• Measurement Model:

$$p(z|m_{x,y})$$

Occupancy Grid Mapping

$$\log odd_occ := \log \frac{p(z=1|m_{x,y}=1)}{p(z=1|m_{x,y}=0)} : \qquad \log odd_free := \log \frac{p(z=-1|m_{x,y}=0)}{p(z=-1|m_{x,y}=1)}$$

Log Probability for occupied cells

Log Probability for free cells

Registering the first Scan

Registering the first Scan

Scan Matching

Laser Scans w.r.t car at Time $t = t_1$

Laser Scans w.r.t car at Time $t = t_2$

Scan Matching

Laser Scans w.r.t car at Time $t = t_1$

Laser Scans w.r.t car at Time $t = t_2$

Scan matching: Hector Slam

Robot Pose
$$\boldsymbol{\xi} = (p_x, p_y, \psi)^{\mathrm{T}}$$

Impact coordinates of ith scan in world frame

Scan matching: Hector Slam

Evaluation of Gauss-Newton equation gives a step $\Delta \xi$ that minimizes the objective function

Raw LiDAR Scans

Scans after transforming by $\Delta \xi$ at each stage

Map Update

Multi-Resolution Map Representation

Saving the map

Saving the map

- ROS Package called
 MAP Server
- Allows saving a map currently being published over /map topic
- The saved map can be loaded for future tasks.

System Tf tree

Parameters for Hector SLAM: ROS

- map resolution
- map_update_distance_thresh
- map_update_angle_thresh
- laser_max_dist
- update_factor_free
- update_factor_occupied

Particle Filter

A Toy Example in 1 Dimension At time t = 1Robot Door Direction of motion Measurement Model p(z|x)**Belief State** bel(x)

At time t = 2, robot moves forward a certain distance

Particle Filter in 2D

$$W = \frac{\sum_{m} \sum_{n} (Amn - \overline{A})(Bmn - \overline{B})}{\sqrt{\left(\sum_{m} \sum_{n} (A_{mn} - \overline{A})^{2}\right) \left(\sum_{m} \sum_{n} (B_{mn} - \overline{B})^{2}\right)}}$$

Particle Weight

$$W = \frac{\sum_{m} \sum_{n} (Amn - \overline{A})(Bmn - \overline{B})}{\sqrt{\left(\sum_{m} \sum_{n} (A_{mn} - \overline{A})^{2}\right) \left(\sum_{m} \sum_{n} (B_{mn} - \overline{B})^{2}\right)}}$$

Particle Weight

Particle 1 W₁

$$W = \frac{\sum_{m} \sum_{n} (Amn - \overline{A})(Bmn - \overline{B})}{\sqrt{\left(\sum_{m} \sum_{n} (A_{mn} - \overline{A})^{2}\right) \left(\sum_{m} \sum_{n} (B_{mn} - \overline{B})^{2}\right)}}$$

Particle Weight

Particle 1 W₁

Particle 2 W₂

$$W = \frac{\sum_{m} \sum_{n} (Amn - \overline{A})(Bmn - \overline{B})}{\sqrt{\left(\sum_{m} \sum_{n} (A_{mn} - \overline{A})^{2}\right) \left(\sum_{m} \sum_{n} (B_{mn} - \overline{B})^{2}\right)}}$$

Particle	Weigh
Particle 1	W_1
Particle 2	W_2
Particle 3	W_3

$$W = \frac{\sum_{m} \sum_{n} (Amn - \overline{A})(Bmn - \overline{B})}{\sqrt{\left(\sum_{m} \sum_{n} (A_{mn} - \overline{A})^{2}\right) \left(\sum_{m} \sum_{n} (B_{mn} - \overline{B})^{2}\right)}}$$

Particle	Weigh
Particle 1	W_1
Particle 2	W_2
Particle 3	W_3
Particle 4	W_4

$$W = \frac{\sum_{m} \sum_{n} (Amn - \overline{A})(Bmn - \overline{B})}{\sqrt{\left(\sum_{m} \sum_{n} (A_{mn} - \overline{A})^{2}\right) \left(\sum_{m} \sum_{n} (B_{mn} - \overline{B})^{2}\right)}}$$

Particle	Weigh
Particle 1	W_1
Particle 2	W_2
Particle 3	W_3
Particle 4	W_4
Particle 5	W_5

$$W = \frac{\sum_{m} \sum_{n} (Amn - \overline{A})(Bmn - \overline{B})}{\sqrt{\left(\sum_{m} \sum_{n} (A_{mn} - \overline{A})^{2}\right) \left(\sum_{m} \sum_{n} (B_{mn} - \overline{B})^{2}\right)}}$$

Particle	Weight
Particle 1	$W_\mathtt{1}$
Particle 2	W_2
Particle 3	W_3
Particle 4	W_4
Particle 5	W_5
Particle 6	W_6

$$W = \frac{\sum_{m} \sum_{n} (Amn - \overline{A})(Bmn - \overline{B})}{\sqrt{\left(\sum_{m} \sum_{n} (A_{mn} - \overline{A})^{2}\right) \left(\sum_{m} \sum_{n} (B_{mn} - \overline{B})^{2}\right)}}$$

Particle	Weight
Particle 1	W_1
Particle 2	W_2
Particle 3	W_3
Particle 4	W_4
Particle 5	W_5
Particle 6	W_6

$$W_t \leftarrow W_{t-1_{\times}}Wt$$

Particles

Particle Filters in ROS

Adaptive Monte Carlo Localization Package

Localization for a robot moving in a 2D space

Localizes against a pre-existing map

min_particles

Default: 100

The minimum number of particles to be used for calculating correlation

max particles

Default: 500

The maximum number of particles to be used for calculating correlation

update_min_d

Default: 0.2m

The minimum translation movement required by the vehicle before an pose update is published

update_min_a

Default: $\pi/_6$ radians

The minimum angular movement required by the vehicle before an pose update is published

The initial mean position of the particles to initialize the particle filter

The covariance of particles distributed around the mean

Tf tree – Where does AMCL fit in

Input and Output Parameters

Input Parameters:

- 1. Laser Scan
- 2. Dead Reckoning/Odometry
- 3. Map

Output Parameters:

- 1. AMCL pose
- 2. Particle Cloud

