Capabilities: Effects for Free (Supplementary Material with Proofs)

1 OC Proofs

- ▶ **Lemma 1** (OC Canonical Forms). Unless the rule used is ε -Subsume, the following are true:
- 1. If $\Gamma \vdash x : \tau$ with ε then $\varepsilon = \emptyset$.
- 2. If $\Gamma \vdash v : \tau$ with ε then $\varepsilon = \emptyset$.
- 3. If $\Gamma \vdash v : \{\bar{r}\}$ with ε then v = r and $\{\bar{r}\} = \{r\}$.
- **4.** If $\Gamma \vdash v : \tau_1 \rightarrow_{\varepsilon'} \tau_2$ with ε then $v = \lambda x : \tau.e$.

Proof.

- 1. The only rule that applies to variables is $\varepsilon\textsc{-Var}$ which ascribes the type \varnothing .
- 2. By definition a value is either a resource literal or a lambda. The only rules which can type values are ε -RESOURCE and ε -ABS. In the conclusions of both, $\varepsilon = \emptyset$.
- 3. The only rule ascribing the type $\{\bar{r}\}$ is ε -RESOURCE. Its premises imply the result.
- **4.** The only rule ascribing the type $\tau_1 \to_{\varepsilon'} \tau_2$ is ε -ABS. Its premises imply the result.

▶ Theorem 2 (OC Progress). If $\Gamma \vdash e : \tau$ with ε and e is not a value or variable, then $e \longrightarrow e' \mid \varepsilon$, for some e', ε .

Proof. By induction on $\Gamma \vdash e : \tau$ with ε .

Case: ε -VAR, ε -RESOURCE, or ε -ABS. Then e is a value or variable and the theorem statement holds vacuously.

Case: ε -APP. Then $e=e_1\ e_2$. If e_1 is not a value or variable it can be reduced $e_1 \longrightarrow e_1' \mid \varepsilon$ by inductive assumption, so $e_1\ e_2 \longrightarrow e_1'\ e_2 \mid \varepsilon$ by E-APP1. If $e_1=v_1$ is a value and e_2 a non-value, then e_2 can be reduced $e_2 \longrightarrow e_2' \mid \varepsilon$ by inductive assumption, so $e_1\ e_2 \longrightarrow v_1\ e_2' \mid \varepsilon$ by E-APP2. Otherwise $e_1=v_1$ and $e_2=v_2$ are both values. By inversion on ε -APP and canonical forms, $\Gamma \vdash v_1: \tau_2 \to_{\varepsilon'} \tau_3$ with \varnothing , and $v_1=\lambda x: \tau_2.e_{body}$. Then $(\lambda x: \tau.e_{body})v_2 \longrightarrow [v_2/x]e_{body} \mid \varnothing$ by E-APP3.

Case: ε -OPERCALL. Then $e = e_1.\pi$. If e_1 is a non-value it can be reduced $e_1 \longrightarrow e'_1 \mid \varepsilon$ by inductive assumption, so $e_1.\pi \longrightarrow e'_1.\pi \mid \varepsilon$ by E-OPERCALL1. Otherwise $e_1 = v_1$ is a value. By inversion on ε -OPERCALL and canonical forms, $\Gamma \vdash v_1 : \{r\}$ with $\{r.\pi\}$, and $v_1 = r$. Then $r.\pi \longrightarrow \text{unit} \mid \{r.\pi\}$ by E-OPERCALL2.

Case: ε -Subsume. If e is a value or variable, the theorem holds vacuously. Otherwise by inversion on ε -Subsume, $\Gamma \vdash e : \tau'$ with ε' , and $e \longrightarrow e' \mid \varepsilon$ by inductive assumption.

▶ Lemma 3 (OC Substitution). If $\Gamma, x : \tau' \vdash e : \tau$ with ε and $\Gamma \vdash v : \tau'$ with \varnothing then $\Gamma \vdash [v/x]e : \tau$ with ε .

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

Proof. By induction on the derivation of $\Gamma, x : \tau' \vdash e : \tau$ with ε .

Case: ε -VAR. Then e=y is a variable. Either y=x or $y\neq x$. Suppose y=x. By applying canonical Forms to the theorem assumption $\Gamma, x: \tau' \vdash e: \tau'$ with \varnothing , hence $\tau'=\tau$. [v/x]y=[v/x]x=v, and by assumption, $\Gamma \vdash v: \tau'$ with \varnothing , so $\Gamma \vdash [v/x]y:\tau$ with \varnothing .

Otherwise $y \neq x$. By applying canonical forms to the theorem assumption $\Gamma, x : \tau' \vdash y : \tau$ with \emptyset , so $y : \tau \in \Gamma$. Since $\lceil v/x \rceil y = y$, then $\Gamma \vdash y : \tau$ with \emptyset by ε -VAR.

Case: ε -RESOURCE. Because e = r is a resource literal then $\Gamma \vdash r : \{r\}$ with \varnothing by canonical forms. By definition [v/x]r = r, so $\Gamma \vdash [v/x]r : \{\bar{r}\}$ with \varnothing .

Case: ε -APP. By inversion $\Gamma, x : \tau' \vdash e_1 : \tau_2 \to_{\varepsilon_3} \tau_3$ with ε_A and $\Gamma, x : \tau' \vdash e_2 : \tau_2$ with ε_B , where $\varepsilon = \varepsilon_A \cup \varepsilon_B \cup \varepsilon_3$ and $\tau = \tau_3$. From inversion on ε -APP and inductive assumption, $\Gamma \vdash [v/x]e_1 : \tau_2 \to_{\varepsilon_3} \tau_3$ with ε_A and $\Gamma \vdash [v/x]e_2 : \tau_2$ with ε_B . By ε -APP $\Gamma \vdash ([v/x]e_1)([v/x]e_2) : \tau_3$ with $\varepsilon_A \cup \varepsilon_B \cup \varepsilon_3$. By simplifying and applying the definition of substitution, this is the same as $\Gamma \vdash [v/x](e_1 \ e_2) : \tau$ with ε .

Case: ε -OperCall. By inversion $\Gamma, x : \tau' \vdash e_1 : \{\bar{r}\}$ with ε_1 and $\tau = \text{Unit}$ and $\varepsilon = \varepsilon_1 \cup \{r.\pi \mid r \in \bar{r}, \pi \in \Pi\}$. By inductive assumption, $\Gamma \vdash [v/x]e_1 : \{\bar{r}\}$ with ε_1 . Then by ε -OperCall, $\Gamma \vdash ([v/x]e_1).\pi$: Unit with $\varepsilon_1 \cup \{r.\pi \mid r.\pi \in \bar{r} \times \Pi\}$. By simplifying and applying the definition of substitution, this is the same as $\Gamma \vdash [v/x](e_1.\pi) : \tau$ with ε .

Case: ε -Subsume. By inversion, $\Gamma, x : \tau' \vdash e : \tau_2$ with ε_2 , where $\tau_2 <: \tau$ and $\varepsilon_2 \subseteq \varepsilon$. By inductive hypothesis, $\Gamma \vdash [v/x]e : \tau_2$ with ε_2 . Then $\Gamma \vdash [v/x]e : \tau$ with ε by ε -Subsume.

▶ Theorem 4 (OC Preservation). If $\Gamma \vdash e_A : \tau_A$ with ε_A and $e_A \longrightarrow e_B \mid \varepsilon$, then $\tau_B <: \tau_A$ and $\varepsilon_B \cup \varepsilon \subseteq \varepsilon_A$, for some $e_B, \varepsilon, \tau_B, \varepsilon_B$.

Proof. By induction on the derivation of $\Gamma \vdash e_A : \tau_A$ with ε_A and then the derivation of $e_A \longrightarrow e_B \mid \varepsilon$.

Case: ε -VAR, ε -RESOURCE, ε -UNIT, ε -ABS. Then e_A is a value and cannot be reduced, so the theorem holds vacuously.

Case: ε -App. Then $e_A = e_1 \ e_2$ and $\Gamma \vdash e_1 : \tau_2 \longrightarrow_{\varepsilon_3} \tau_3$ with ε_1 and $\Gamma \vdash e_2 : \tau_2$ with ε_2 and $\tau_B = \tau_3$ and $\varepsilon_A = \varepsilon_1 \cup \varepsilon_2 \cup \varepsilon_3$. In each case we choose $\tau_B = \tau_A$ and $\varepsilon_B \cup \varepsilon = \varepsilon_A$.

Subcase: E-APP1. Then $e_1 \ e_2 \longrightarrow e_1' \ e_2 \mid \varepsilon$. By inversion on E-APP1, $e_1 \longrightarrow e_1' \mid \varepsilon$. By inductive hypothesis and ε -Subsume $\Gamma \vdash v_1 : \tau_2 \longrightarrow_{\varepsilon_3} \tau_3$ with ε_1 . Then $\Gamma \vdash e_1' \ e_2 : \tau_3$ with $\varepsilon_1 \cup \varepsilon_2 \cup \varepsilon_3$ by ε -APP.

Subcase: E-APP2. Then $e_1 = v_1$ is a value and $e_2 \longrightarrow e_2' \mid \varepsilon$. By inversion on E-APP2, $e_2 \longrightarrow e_2' \mid \varepsilon$. By inductive hypothesis and ε -Subsume $\Gamma \vdash e_2' : \tau_2$ with ε_2 . Then $\Gamma \vdash v_1 \ e_2' : \tau_3$ with $\varepsilon_1 \cup \varepsilon_2 \cup \varepsilon_3$ by ε -APP.

Subcase: E-APP3. Then $e_1 = \lambda x : \tau_2.e_{body}$ and $e_2 = v_2$ are values and $(\lambda x : \tau_2.e_{body}) \ v_2 \longrightarrow [v_2/x]e_{body} \mid \varnothing$. By inversion on the rule ε -APP used to type $\lambda x : \tau_2.e_{body}$, we know $\Gamma, x : \tau_2 \vdash e_{body} : \tau_3$ with ε_3 . $e_1 = v_1$ and $e_2 = v_2$ are values, so $\varepsilon_1 = \varepsilon_2 = \varnothing$ by canonical forms. Then by the substitution lemma, $\Gamma \vdash [v_2/x]e_{body} : \tau_3$ with ε_3 and

```
\varepsilon_A = \varepsilon_B = \varepsilon.
```

Case: ε -OPERCALL. Then $e_A = e_1.\pi$ and $\Gamma \vdash e_1 : \{\bar{r}\}$ with ε_1 and $\tau_A = \text{Unit}$ and $\varepsilon_A = \varepsilon_1 \cup \{r.\pi \mid r \in \bar{r}, \pi \in \Pi\}$.

Subcase: E-OPERCALL1. Then $e_1.\pi \longrightarrow e'_1.\pi \mid \varepsilon$. By inversion on E-OPERCALL1, $e_1 \longrightarrow e'_1 \mid \varepsilon$. By inductive hypothesis and application of ε -Subsume, $\Gamma \vdash e'_1 : \{\bar{r}\}$ with ε_1 . Then $\Gamma \vdash e'_1.\pi : \{\bar{r}\}$ with $\varepsilon_1 \cup \{r.\pi \mid r \in \bar{r}, \pi \in \Pi\}$ by ε -OPERCALL.

Subcase: E-OPERCALL2. Then $e_1 = r$ is a resource literal and $r.\pi \longrightarrow \text{unit} \mid \{r.\pi\}$. By canonical forms, $\varepsilon_1 = \emptyset$. By ε -UNIT, $\Gamma \vdash \text{unit}$: Unit with \emptyset . Therefore $\tau_B = \tau_A$ and $\varepsilon \cup \varepsilon_B = \{r.\pi\} = \varepsilon_A$.

▶ Theorem 5 (OC Single-step Soundness). If $\Gamma \vdash e_A : \tau_A$ with ε_A and e_A is not a value, then $e_A \longrightarrow e_B \mid \varepsilon$, where $\Gamma \vdash e_B : \tau_B$ with ε_B and $\tau_B <: \tau_A$ and $\varepsilon_B \cup \varepsilon \subseteq \varepsilon_A$, for some $e_B, \varepsilon, \tau_B, \varepsilon_B$.

Proof. If e_A is not a value then the reduction exists by the progress theorem. The rest follows by the preservation theorem.

▶ **Theorem 6** (OC Multi-step Soundness). If $\Gamma \vdash e_A : \tau_A$ with ε_A and $e_A \longrightarrow^* e_B \mid \varepsilon$, where $\Gamma \vdash e_B : \tau_B$ with ε_B and $\tau_B <: \tau_A$ and $\varepsilon_B \cup \varepsilon \subseteq \varepsilon_A$.

Proof. By induction on the length of the multi-step reduction.

Case: Length 0. Then $e_A = e_B$ and $\tau_A = \tau_B$ and $\varepsilon = \emptyset$ and $\varepsilon_A = \varepsilon_B$.

Case: Length n+1. By inversion the multi-step can be split into a multi-step of length n, which is $e_A \longrightarrow^* e_C \mid \varepsilon'$, and a single-step of length 1, which is $e_C \longrightarrow e_B \mid \varepsilon''$, where $\varepsilon = \varepsilon' \cup \varepsilon''$. By inductive assumption and preservation theorem, $\Gamma \vdash e_C : \tau_C$ with ε_C and $\Gamma \vdash e_B : \tau_B$ with ε_B , where $\tau_C <: \tau_A$ and $\varepsilon_C \cup \varepsilon' \subseteq \varepsilon_A$. By single-step soundness, $\tau_B <: \tau_C$ and $\varepsilon_B \cup \varepsilon'' \subseteq \varepsilon_C$. Then by transitivity, $\tau_B <: \tau$ and $\varepsilon_B \cup \varepsilon' \cup \varepsilon'' = \varepsilon_B \cup \varepsilon \subseteq \varepsilon_A$.

2 CC Proofs

- ▶ **Lemma 7** (CC Canonical Forms). Unless the rule used is ε -Subsume, the following are true:
- 1. If $\hat{\Gamma} \vdash x : \hat{\tau}$ with ε then $\varepsilon = \emptyset$.
- 2. If $\hat{\Gamma} \vdash \hat{v} : \hat{\tau} \text{ with } \varepsilon \text{ then } \varepsilon = \varnothing$.
- 3. If $\hat{\Gamma} \vdash \hat{v} : \{\bar{r}\}$ with ε then $\hat{v} = r$ and $\{\bar{r}\} = \{r\}$.
- **4.** If $\hat{\Gamma} \vdash \hat{v} : \hat{\tau}_1 \rightarrow_{\varepsilon'} \hat{\tau}_2$ with ε then $\hat{v} = \lambda x : \tau.\hat{e}$.

Proof. Same as for OC.

▶ **Theorem 8** (CC Progress). If $\hat{\Gamma} \vdash \hat{e} : \hat{\tau}$ with ε and \hat{e} is not a value, then $\hat{e} \longrightarrow \hat{e}' \mid \varepsilon$, for some \hat{e}', ε .

Proof. By induction on the derivation of $\hat{\Gamma} \vdash \hat{e} : \hat{\tau}$ with ε .

Case: ε -Module. Then $\hat{e} = \operatorname{import}(\varepsilon_s) \ x = \hat{e}_i$ in e. If \hat{e}_i is a non-value then $\hat{e}_i \longrightarrow \hat{e}'_i \mid \varepsilon$ by inductive assumption and $\operatorname{import}(\varepsilon_s) \ x = \hat{e}_i$ in $e \longrightarrow \operatorname{import}(\varepsilon_s) \ x = \hat{e}'_i$ in $e \mid \varepsilon$ by E-Module1. Otherwise $\hat{e}_i = \hat{v}_i$ is a value and $\operatorname{import}(\varepsilon_s) \ x = \hat{v}_i$ in $e \longrightarrow [\hat{v}_i/x] \operatorname{annot}(e, \varepsilon_s) \mid \varnothing$ by E-Module2.

▶ Lemma 9 (CC Substitution). If $\hat{\Gamma}, x : \hat{\tau}' \vdash \hat{e} : \hat{\tau}$ with ε and $\hat{\Gamma} \vdash \hat{v} : \hat{\tau}'$ with \varnothing then $\hat{\Gamma} \vdash [\hat{v}/x]\hat{e}_A : \hat{\tau}$ with ε .

Proof. By induction on the derivation of $\hat{\Gamma}, x : \hat{\tau}' \vdash \hat{e} : \hat{\tau}$ with ε .

Case: ε -Module. Then the following are true.

- 1. $\hat{e} = \mathtt{import}(\varepsilon_s) \ x = \hat{e}_i \ \mathtt{in} \ e$
- 2. $\hat{\Gamma}, y : \hat{\tau}' \vdash \hat{e}_i : \hat{\tau}_i \text{ with } \varepsilon_i$
- **3.** $y : erase(\hat{\tau}_i) \vdash e : \tau$
- 4. $\hat{\Gamma}, y : \hat{\tau}' \vdash \text{import}(\varepsilon_s) \ x = \hat{e}_i \ \text{in} \ e : \text{annot}(\tau, \varepsilon_s) \ \text{with} \ \varepsilon_s \cup \varepsilon_i$
- 5. $\varepsilon_s = \texttt{effects}(\hat{ au}_i) \cup \texttt{ho-effects}(\texttt{annot}(au, \varnothing))$
- **6.** $\hat{\tau}_A = \mathtt{annot}(\tau, \varepsilon)$
- 7. $\hat{\varepsilon}_A = \varepsilon_s \cup \varepsilon_i$

By applying inductive assumption to (2) $\hat{\Gamma} \vdash [\hat{v}/x]\hat{e}_i : \hat{\tau}_i$ with ε_i . Then by ε -Module $\hat{\Gamma} \vdash \text{import}(\varepsilon_s) \ y = [\hat{v}/x]\hat{e}_i$ in $e : \text{annot}(\tau_i, \varepsilon_s)$ with $\varepsilon_s \cup \varepsilon_i$. By definition of substitution, the form in this judgement is the same as $[\hat{v}/x]\hat{e}$.

- ▶ Lemma 10 (CC Approximation 1). If effects($\hat{\tau}$) $\subseteq \varepsilon$ and ho-safe($\hat{\tau}$, ε) then $\hat{\tau}$ <: annot(erase($\hat{\tau}$), ε).
- ▶ Lemma 11 (CC Approximation 2). If ho-effects($\hat{\tau}$) $\subseteq \varepsilon$ and safe($\hat{\tau}, \varepsilon$) then annot(erase($\hat{\tau}$), ε) <: $\hat{\tau}$.

Proof. By simultaneous induction on derivations of safe and ho-safe.

Case: $\hat{\tau} = \{\bar{r}\}\ \text{Then }\hat{\tau} = \mathtt{annot}(\mathtt{erase}(\hat{\tau}), \varepsilon)$ and the results for both lemmas hold immediately.

Case: $\hat{\tau} = \hat{\tau}_1 \to_{\varepsilon'} \hat{\tau}_2$, effects $(\hat{\tau}) \subseteq \varepsilon$, ho-safe $(\hat{\tau}, \varepsilon)$ It is sufficient to show $\hat{\tau}_2 <$: annot(erase $(\hat{\tau}_2), \varepsilon$) and annot(erase $(\hat{\tau}_1), \varepsilon$) <: $\hat{\tau}_1$, because the result will hold by S-EFFECTS. To achieve this we shall inductively apply lemma 1 to $\hat{\tau}_2$ and lemma 2 to $\hat{\tau}_1$.

From $\mathsf{effects}(\hat{\tau}) \subseteq \varepsilon$ we have $\mathsf{ho\text{-effects}}(\hat{\tau}_1) \cup \varepsilon' \cup \mathsf{effects}(\hat{\tau}_2) \subseteq \varepsilon$ and therefore $\mathsf{effects}(\hat{\tau}_2) \subseteq \varepsilon$. From $\mathsf{ho\text{-safe}}(\hat{\tau}, \varepsilon)$ we have $\mathsf{ho\text{-safe}}(\hat{\tau}_2, \varepsilon)$. Therefore we can apply lemma 1 to $\hat{\tau}_2$.

From $\mathsf{effects}(\hat{\tau}) \subseteq \varepsilon$ we have $\mathsf{ho\text{-effects}}(\hat{\tau}_1) \cup \varepsilon' \cup \mathsf{effects}(\hat{\tau}_2) \subseteq \varepsilon$ and therefore $\mathsf{ho\text{-effects}}(\hat{\tau}_1) \subseteq \varepsilon$. From $\mathsf{ho\text{-safe}}(\hat{\tau}, \varepsilon)$ we have $\mathsf{ho\text{-safe}}(\hat{\tau}_1, \varepsilon)$. Therefore we can apply lemma 2 to $\hat{\tau}_1$.

Case: $\hat{\tau} = \hat{\tau}_1 \to_{\varepsilon'} \hat{\tau}_2$, ho-effects $(\hat{\tau}) \subseteq \varepsilon$, safe $(\hat{\tau}, \varepsilon)$ It is sufficient to show annot(erase $(\hat{\tau}_2), \varepsilon) <: \hat{\tau}_2$ and $\hat{\tau}_1 <:$ annot(erase $(\hat{\tau}_1), \varepsilon)$, because the result will hold by S-Effects. To achieve this we shall inductively apply lemma 2 to $\hat{\tau}_2$ and lemma 1 to $\hat{\tau}_1$.

From ho-effects($\hat{\tau}$) $\subseteq \varepsilon$ we have effects($\hat{\tau}$ ₁) \cup ho-effects($\hat{\tau}$ ₂) $\subseteq \varepsilon$ and therefore ho-effects($\hat{\tau}$ ₂) $\subseteq \varepsilon$. From safe($\hat{\tau}$, ε) we have safe($\hat{\tau}$ ₂, ε). Therefore we can apply lemma 2 to $\hat{\tau}$ ₂.

From ho-effects($\hat{\tau}$) $\subseteq \varepsilon$ we have effects($\hat{\tau}_1$) \cup ho-effects($\hat{\tau}_2$) $\subseteq \varepsilon$ and therefore effects($\hat{\tau}_1$) $\subseteq \varepsilon$. From safe($\hat{\tau}, \varepsilon$) we have ho-safe($\hat{\tau}_1, \varepsilon$). Therefore we can apply lemma 1 to $\hat{\tau}_1$.

▶ **Lemma 12** (CC Annotation). *If the following are true:*

```
1. \hat{\Gamma} \vdash \hat{v}_i : \hat{\tau}_i \text{ with } \varnothing
```

- 2. $\Gamma, y : \mathtt{erase}(\hat{\tau}_i) \vdash e : \tau$
- 3. $effects(\hat{\tau}_i) \cup ho\text{-effects}(annot(\tau,\emptyset)) \cup effects(annot(\Gamma,\emptyset)) \subseteq \varepsilon_s$
- **4.** ho-safe $(\hat{ au}_i, arepsilon_s)$

Then $\hat{\Gamma}$, annot (Γ, ε_s) , $y : \hat{\tau}_i \vdash \text{annot}(e, \varepsilon_s) : \text{annot}(\tau, \varepsilon_s)$ with ε_s .

Proof. By induction on the derivation of $\Gamma, y : \texttt{erase}(\hat{\tau}_i) \vdash e : \tau$. When applying the inductive assumption, e, τ , and Γ may vary, but the other variables are fixed.

Case: T-VAR. Then e = x and $\Gamma, y : erase(\hat{\tau}_i) \vdash x : \tau$. Either x = y or $x \neq y$.

Subcase 1: x = y. Then $y : \operatorname{erase}(\hat{\tau}_i) \vdash y : \tau$ so $\tau = \operatorname{erase}(\hat{\tau}_i)$. By ε -Var, $y : \hat{\tau}_i \vdash x : \hat{\tau}_i$ with \varnothing . By definition $\operatorname{annot}(x, \varepsilon_s) = x$, so (5) $y : \hat{\tau}_i \vdash \operatorname{annot}(x, \varepsilon_s) : \hat{\tau}_i$ with \varnothing . By (3) and (4) we know $\operatorname{effects}(\hat{\tau}_i) \subseteq \varepsilon_s$ and ho-safe $(\hat{\tau}_i, \varepsilon_s)$. By the approximation lemma, $\hat{\tau}_i <: \operatorname{annot}(\operatorname{erase}(\hat{\tau}_i), \varepsilon_s)$. We know $\operatorname{erase}(\hat{\tau}_i) = \tau$, so this judgement can be rewritten as $\hat{\tau}_i <: \operatorname{annot}(\tau, \varepsilon_s)$. From this we can use ε -Subsume to narrow the type of (5) and widen the approximate effects of (5) from \varnothing to ε_s , giving $y : \hat{\tau}_i \vdash \operatorname{annot}(x, \varepsilon_s) : \operatorname{annot}(\tau, \varepsilon_s)$ with ε_s . Finally, by widening the context, $\hat{\Gamma}$, $\operatorname{annot}(\Gamma, \varepsilon_s)$, $\hat{\tau}_i \vdash \operatorname{annot}(x, \varepsilon_s) : \operatorname{annot}(\tau, \varepsilon_s)$ with ε_s .

Subcase 2: $x \neq y$. Because $\Gamma, y : \operatorname{erase}(\hat{\tau}_i) \vdash x : \tau$ and $x \neq y$ then $x : \tau \in \Gamma$. Then $x : \operatorname{annot}(\tau, \varepsilon_s) \in \operatorname{annot}(\Gamma, \varepsilon_s)$ so $\operatorname{annot}(\Gamma, \varepsilon_s) \vdash x : \operatorname{annot}(\tau, \varepsilon_s)$ with \varnothing by ε -VAR. By definition $\operatorname{annot}(x, \varepsilon_s) = x$, so $\operatorname{annot}(\Gamma, \varepsilon_s) \vdash \operatorname{annot}(x, \varepsilon_s) : \operatorname{annot}(\tau, \varepsilon_s)$ with \varnothing . Applying ε -Subsume gives $\operatorname{annot}(\Gamma, \varepsilon_s) \vdash \operatorname{annot}(x, \varepsilon_s) : \operatorname{annot}(\tau, \varepsilon_s)$ with ε_s . By widening the context $\hat{\Gamma}$, $\operatorname{annot}(\Gamma, \varepsilon_s)$, $y : \hat{\tau}_i \vdash \operatorname{annot}(\tau, \varepsilon_s)$ with ε' .

Case: T-RESOURCE. Then $\Gamma, y : \mathtt{erase}(\hat{\tau}_i) \vdash r : \{r\}$. By ε -RESOURCE, $\hat{\Gamma}$, annot $(\Gamma, \varepsilon), y : \hat{\tau}_i \vdash r : \{r\}$ with \varnothing . Applying definitions, $\mathtt{annot}(r, \varepsilon) = r$ and $\mathtt{annot}(\{r\}, \varepsilon_s) = \{r\}$, so this judgement can be rewritten as $\hat{\Gamma}$, $\mathtt{annot}(\Gamma, \varepsilon), y : \hat{\tau}_i \vdash \mathtt{annot}(e, \varepsilon_s) : \mathtt{annot}(\tau, \varepsilon_s)$ with \varnothing . By ε -Subsume, $\hat{\Gamma}$, $\mathtt{annot}(\Gamma, \varepsilon_s), y : \hat{\tau}_i \vdash \mathtt{annot}(e, \varepsilon_s) : \mathtt{annot}(\tau, \varepsilon_s)$ with ε_s .

Case: T-ABS. Then $\Gamma, y: \operatorname{erase}(\hat{\tau}_i) \vdash \lambda x: \tau_2.e_{body}: \tau_2 \to \tau_3$. Applying definitions, (5) $\operatorname{annot}(e, \varepsilon_s) = \operatorname{annot}(\lambda x: \tau_2.e_{body}, \varepsilon_s) = \lambda x: \operatorname{annot}(\tau_2, \varepsilon_s).\operatorname{annot}(e_{body}, \varepsilon_s)$ and $\operatorname{annot}(\tau, \varepsilon_s) = \operatorname{annot}(\tau_2 \to \tau_3, \varepsilon_s) = \operatorname{annot}(\tau_2, \varepsilon_s) \to_{\varepsilon_s} \operatorname{annot}(\tau_3, \varepsilon_s)$. By inversion on T-ABS, we get the sub-derivation (6) $\Gamma, y: \operatorname{erase}(\hat{\tau}_i), x: \tau_2 \vdash e_{body}: \tau_2$. We shall apply the inductive assumption to this judgement with an unannotated context consisting of $\Gamma, x: \tau_2$. To be a valid application of the lemma, it is required that $\operatorname{effects}(\operatorname{annot}(\Gamma, x: \tau_2, \emptyset) \subseteq \varepsilon_s$. We already know $\operatorname{effects}(\operatorname{annot}(\Gamma, \emptyset)) \subseteq \varepsilon_s$ by assumption (3). Also by

 $annot(e, \varepsilon_s) : annot(\tau, \varepsilon)$ with ε .

assumption (3), ho-effects(annot($\tau_2 \to \tau_3,\varnothing$)) $\subseteq \varepsilon_s$; then by definition of ho-effects, effects(annot(τ_2,\varnothing)) \subseteq ho-effects(annot($\tau_2 \to \tau_3,\varnothing$)), so effects(annot($x:\tau_2,$)) ε_s) $\subseteq \varepsilon_s$ by transitivity. Then by applying the inductive assumption to (6), $\hat{\Gamma}$, annot(Γ,ε_s), annot($x:\tau_2,\varepsilon_s$), $y:\hat{\tau}_i \vdash \text{annot}(e_{body},\varepsilon_s)$: annot(τ_3,ε_s) with ε_s . By ε -ABS, $\hat{\Gamma}$, annot(Γ,ε_s), $y:\hat{\tau}_i \vdash \lambda x: \text{annot}(\hat{\tau}_2,\varepsilon_s)$.annot(ε_s): annot(ε_s): annot(ε_s) annot(ε_s) with ε_s . By applying the identities from (5), this judgement can be rewritten as $\hat{\Gamma}$, annot(ε_s), ε_s : annot(ε_s): annot(ε_s): annot(ε_s) with ε_s . Finally, by applying ε -Subsume, $\hat{\Gamma}$, annot(ε_s), ε_s : $\hat{\tau}_i \vdash \text{annot}(\varepsilon_s)$: annot(ε_s) with ε_s .

Case: T-APP. Then $\Gamma, y: \operatorname{erase}(\hat{\tau}_i) \vdash e_1 \ e_2 : \tau_3$ and by inversion $\Gamma, y: \operatorname{erase}(\hat{\tau}_i) \vdash e_1 : \tau_2 \to \tau_3$ and $\Gamma, y: \operatorname{erase}(\hat{\tau}_i) \vdash e_2 : \tau_2$. By applying the inductive assumption to these judgements, $\hat{\Gamma}$, annot $(\Gamma, \varepsilon_s), y: \hat{\tau}_i \vdash \operatorname{annot}(e_1, \varepsilon_2) : \operatorname{annot}(\tau_2, \varepsilon_s) \to_{\varepsilon_s} \operatorname{annot}(\tau_3, \varepsilon_s)$ with ε_s and $\hat{\Gamma}$, annot $(\Gamma, \varepsilon_s), y: \hat{\tau} \vdash \operatorname{annot}(e_2, \varepsilon_s) : \operatorname{annot}(\tau_2, \varepsilon_s)$ with ε_s . Then by ε -APP, we get $\hat{\Gamma}$, annot $(\Gamma, \varepsilon_s), y: \hat{\tau} \vdash \operatorname{annot}(e_1, \varepsilon_s)$ annot (e_1, ε_s) annot (e_1, ε_s) is annot (e_1, ε_s) annot (e_1, ε_s) annot (e_1, ε_s) is annot (e_1, ε_s) is annot (e_1, ε_s) annot (e_1, ε_s) annot (e_1, ε_s) annot (e_1, ε_s) is annot (e_1, ε_s) annot (e_1, ε_s)

Case: T-OPERCALL. Then $\Gamma, y: \operatorname{erase}(\hat{\tau}_i) \vdash e_1.\pi: \operatorname{Unit}$. By inversion we get the subderivation $\Gamma, y: \operatorname{erase}(\hat{\tau}_i) \vdash e_1: \{\bar{r}\}$. Applying the inductive assumption, $\hat{\Gamma}$, $\operatorname{annot}(\Gamma, \varepsilon), y: \hat{\tau}_i \vdash \operatorname{annot}(e_1, \varepsilon_s): \operatorname{annot}(\{\bar{r}\}, \varepsilon_s)$ with ε_s . By definition, $\operatorname{annot}(\{\bar{r}\}, \varepsilon_s) = \{\bar{r}\}$, so this judgement can be rewritten as $\hat{\Gamma}$, $\operatorname{annot}(\Gamma, \varnothing), y: \hat{\tau}_i \vdash e_1: \{\bar{r}\}$ with ε_s . By ε -OPERCALL, $\hat{\Gamma}$, $\operatorname{annot}(\Gamma, \varnothing), y: \hat{\tau} \vdash \operatorname{annot}(e_1.\pi, \varepsilon_s): \{\bar{r}\}$ with $\varepsilon_s \cup \{\bar{r}.\pi\}$. All that remains is to show $\{\bar{r}.\pi\} \subseteq \varepsilon$. We shall do this by considering which subcontext left of the turnstile is capturing $\{\bar{r}\}$. Technically, $\hat{\Gamma}$ may not have a binding for every $r \in \bar{r}$: the judgement for e_1 might be derived using S-Resources and ε -Subsume. However, at least one binding for some $r \in \bar{r}$ must be present in $\hat{\Gamma}$ to get the original typing judgement being subsumed, so we shall assume without loss of generality that $\hat{\Gamma}$ contains a binding for every $r \in \bar{r}$.

Subcase 1: $\{\bar{r}\} = \hat{\tau}$. By assumption (3), effects $(\hat{\tau}) \subseteq \varepsilon_s$, so $\bar{r}.\pi \subseteq \{r.\pi \mid r \in \bar{r}, \pi \in \Pi\} = \text{effects}(\{\bar{r}\}) \subseteq \varepsilon_s$.

Subcase 2: $r: \{\bar{r}\} \in \operatorname{annot}(\Gamma, \varepsilon_s)$. Then $\bar{r}.\pi \in \operatorname{effects}(\{\bar{r}\}) \subseteq \operatorname{effects}(\operatorname{annot}(\Gamma, \emptyset))$, and by assumption (3) $\operatorname{effects}(\operatorname{annot}(\Gamma, \emptyset)) \subseteq \varepsilon_s$, so $\bar{r}.\pi \in \varepsilon_s$.

Subcase 3: $r: \{\bar{r}\} \in \hat{\Gamma}$. Because $\Gamma, y: \mathtt{erase}(\hat{\tau}) \vdash e_1: \{\bar{r}\}$, then $\bar{r} \in \Gamma$ or $r = \tau$. If $r \in \mathtt{annot}(\Gamma,\varnothing)$ then subcase 2 holds. Else $r = \mathtt{erase}(\hat{\tau})$. Because $\hat{\tau} = \{\bar{r}\}$, then $\mathtt{erase}(\{\bar{r}\}) = \{\bar{r}\}$, so $\hat{\tau} = \tau$; therefore subcase 1 holds.

▶ Theorem 13 (CC Preservation). If $\hat{\Gamma} \vdash \hat{e}_A : \hat{\tau}_A$ with ε_A and $\hat{e}_A \longrightarrow \hat{e}_B \mid \varepsilon$, then $\hat{\Gamma} \vdash \hat{e}_B : \hat{\tau}_B$ with ε_B , where $\hat{e}_B <: \hat{e}_A$ and $\varepsilon \cup \varepsilon_B \subseteq \varepsilon_A$, for some $\hat{e}_B, \varepsilon, \hat{\tau}_B, \varepsilon_B$.

Proof. By induction on the derivation of $\hat{\Gamma} \vdash \hat{e}_A : \hat{\tau}_A$ with ε_A and then the derivation of $\hat{e}_A \longrightarrow \hat{e}_B \mid \varepsilon$.

Case: ε -IMPORT. Then by inversion on the rules used, the following are true:

```
1. \hat{e}_A = \text{import}(\varepsilon_s) \ x = \hat{v}_i \ \text{in } e
```

- 2. $x : erase(\hat{\tau}_i) \vdash e : \tau$
- 3. $\hat{\Gamma} \vdash \hat{e}_i : \hat{\tau}_i \text{ with } \varepsilon_1$
- **4.** $\hat{\Gamma} \vdash \hat{e}_A : \mathtt{annot}(\tau, \varepsilon_s) \ \mathtt{with} \ \varepsilon_s \cup \varepsilon_1$
- **5.** $\operatorname{effects}(\hat{ au}_i) \cup \operatorname{ho-effects}(\operatorname{annot}(au, \varnothing)) \subseteq \varepsilon_s$
- **6.** ho-safe $(\hat{\tau}_i, \varepsilon_s)$

Subcase 1: E-IMPORT1. Then $\operatorname{import}(\varepsilon_s) \ x = \hat{e}_i \ \operatorname{in} \ e \longrightarrow \operatorname{import}(\varepsilon_s) \ x = \hat{e}'_i \ \operatorname{in} \ e \mid \varepsilon$ and by inversion, $\hat{e}_i \longrightarrow \hat{e}'_i \mid \varepsilon$. By inductive assumption and subsumption, $\hat{\Gamma} \vdash \hat{e}'_i$: $\hat{\tau}'_i$ with ε_1 . Then by ε -IMPORT, $\hat{\Gamma} \vdash \operatorname{import}(\varepsilon_s) \ x = \hat{e}'_i \ \operatorname{in} \ e : \operatorname{annot}(\tau, \varepsilon_s) \ \operatorname{with} \ \varepsilon_s$.

Subcase 2: E-IMPORT2. Then $\hat{e}_i = \hat{v}_i$ is a value and $\varepsilon_1 = \emptyset$ by canonical forms. Apply the annotation lemma with $\Gamma = \emptyset$ to get $\hat{\Gamma}, x : \hat{\tau}_i \vdash \mathtt{annot}(e, \varepsilon_s) : \mathtt{annot}(\tau, \varepsilon_s)$ with ε_s . From assumption (4) and canonical forms we have $\hat{\Gamma} \vdash \hat{v} : \hat{\tau}_i$ with \emptyset . Applying the substitution lemma, $\hat{\Gamma} \vdash [\hat{v}_i/x]\mathtt{annot}(e, \varepsilon) : \mathtt{annot}(\tau, \varepsilon_s)$ with ε_s . Then $\varepsilon \cup \varepsilon_B = \varepsilon_A = \varepsilon_s$ and $\tau_A = \tau_B = \mathtt{annot}(\tau, \varepsilon_s)$.

▶ Theorem 14 (CC Single-step Soundness). If $\hat{\Gamma} \vdash \hat{e}_A : \hat{\tau}_A$ with ε_A and \hat{e}_A is not a value, then $\hat{e}_A \longrightarrow \hat{e}_B \mid \varepsilon$, where $\hat{\Gamma} \vdash \hat{e}_B : \hat{\tau}_B$ with ε_B and $\hat{\tau}_B <: \hat{\tau}_A$ and $\varepsilon_B \cup \varepsilon \subseteq \varepsilon_A$, for some \hat{e}_B , ε , $\hat{\tau}_B$, and ε_B .

▶ Theorem 15 (CC Multi-step Soundness). If $\hat{\Gamma} \vdash \hat{e}_A : \hat{\tau}_A$ with ε_A and $\hat{e}_A \longrightarrow^* e_B \mid \varepsilon$, then $\hat{\Gamma} \vdash \hat{e}_B : \hat{\tau}_B$ with ε_B , where $\hat{\tau}_B <: \hat{\tau}_A$ and $\varepsilon_B \cup \varepsilon \subseteq \varepsilon_A$, for some $\hat{\tau}_B$, ε_B .

Proof. The same as for **OC**.