

PHYSICAL MEDIA

Physical Media

Physical Media

Physical Media

Copper

- Coaxial Cable Thick or Thin
- Unshielded Twisted Pair CAT 3,4,5,5e&6

Optical Fiber

- Multimode
- Singlemode

Wireless

- Short Range
- Medium Range (Line of Sight)
- Satellite

Copper Media: Coaxial Cable

- Coaxial cable is a coppercored cable surrounded by a heavy shielding and is used to connect computers in a network.
- Outer conductor shields the inner conductor from picking up stray signal from the air.
- High bandwidth but lossy channel.
- Repeater is used to regenerate the weakened signals.

Category	Impedance	Use
RG-59	75 Ω	Cable TV
RG-58	50 Ω	Thin Ethernet
RG-11	50 Ω	Thick Ethernet

Copper Media: Coaxial Cable

Category	Impedance	Use
RG-59	75 Ω	Cable TV
RG-58	50 Ω	Thin Ethernet
RG-11	50 Ω	Thick Ethernet

Copper Media: Twisted Pair

- Twisted-pair is a type of cabling that is used for telephone communications and most modern Ethernet networks.
- A pair of wires forms a circuit that can transmit data. The pairs are twisted to provide protection against crosstalk, the noise generated by adjacent pairs.
- There are two basic types, shielded twisted-pair (STP) and unshielded twisted-pair (UTP).

Copper Media: Twisted Pair

h S

Shielded Twisted Pair (STP)

- . Speed and throughput: 10-100 Mbps
- Cost per node: Moderately expensive
- · Media and connector size: Medium to Large
- · Maximum cable length: 100m (short)

Unshielded Twisted Pair (UTP)

- · Cost per node: Least Expensive
- Media and connector size: Small
- · Maximum cable length: 100m (short)

Unshielded Twisted Pair (UTP)

- Consists of 4 pairs (8 wires) of insulated copper wires typically about 1 mm thick.
- The wires are twisted together in a helical form.
- Twisting reduces the interference between pairs of wires.
- High bandwidth and High attenuation channel.
- Flexible and cheap cable.
- Category rating based on number of twists per inch and the material used
- CAT 3, CAT 4, CAT 5, Enhanced CAT 5 and now CAT 6.

- UTP comes in several categories that are based on the number of twists in the wires, the diameter of the wires and the material used in the wires.
- Category 3 is the wiring used primarily for telephone connections.
- Category 5e and Category 6 are currently the most common Ethernet cables used.

- Bandwidth 16 Mhz
- **11.5 dB Attenuation**
- 100 ohms Impedance
- Used in voice applications and 10baseT (10Mbps) Ethernet

- 20 MHz Bandwidth
- 7.5 dB Attenuation
- 100 ohms Impedance
- Used in 10baseT (10Mbps) Ethernet

- 100 MHz Bandwidth
- 24.0 dB Attenuation
- 100 ohms Impedance
- Used for high-speed data transmission
- Used in 10BaseT (10 Mbps) Ethernet & Fast Ethernet (100 Mbps)

- 150 MHz Bandwidth
- 24.0 dB Attenuation
- 100 ohms Impedance
- Transmits high-speed data
- Used in Fast Ethernet (100 Mbps), Gigabit Ethernet (1000 Mbps) & 155 Mbps ATM

- 250 MHz Bandwidth
- 19.8 dB Attenuation
- 100 ohms Impedance
- Transmits high-speed data
- Used in Gigabit Ethernet (1000 Mbps) & 10 Gig Ethernet (10000 Mbps)

Fiber Media

- Optical fibers use light to send information through the optical medium.
- It uses the principal of total internal reflection.
- Modulated light transmissions are used to transmit the signal.

Fiber Technology

A glass optical fiber is about twice the size of a human hair.

Light Used In Fiber Optics

 Fiber optic systems transmit using infrared light, invisible to the human eye, because it goes further in the optical fiber at those wavelengths.

Wavelength-Division Multiplexing Allows Transmitting Multiple Signals

Fiber Optic Cable

- Protects the fibers wherever they are installed
- May have 1 to >1000 fibers

What are optical fibers

- Thin strands of pure glass
- Carry data over long distances
- At very high speeds
- Fiber can be bent or twisted

Fiber optic technology

- Sources
- Transmission medium
- Detectors

Fig: The fiber optic communication system

Sources of light

- Light emitting diodes
- Lasers

Sources

- Modulate electrical signals into optical signals
- Mostly modulate at 850nm, 1300nm and 1550 nm
- Lasers give high intensity, high frequency light
- LEDs are economical

Transmission medium

- Optical fiber is replacing copper
- Light is used as the carrier of information
- Much higher data rate

The optical fiber

Physics of optical fibers

- Index of refraction of material: ratio of speed of light in vacuum to speed of light in medium
- Refraction of light: bending of light as it travels from one media to another

Refraction of light

- Speed of light changes as it across the boundary of two media
- Angles w.r.t normal

Refraction Indices

Vacuum......1.00000 (exactly) Air1.00029 Alcohol1.329 Diamond 2.417 Glass 1.5 ■ Ice 1.309 Sodium Chloride (Salt) 1.544 Sugar Solution (80%) 1.49 Water (20 C) 1.333

Snell's Law

 Critical angle: Angle of incidence at which angle of refraction = 90°

Total internal reflection

Trapping light in the fiber

Fibers can be bent!!

Fig: Illustration of total internal reflection

Types of optical fibers

- Single mode
 - only one signal can be transmitted
 - use of single frequency
- Multi mode
 - Several signals can be transmitted
 - Several frequencies used to modulate the signal

Splices and Connectors

- To connect to fibers mechanically or by fusion
- Lot of signal loss possible
- Very accurate alignment necessary
- Most important cost factor
- Now being replaced by optical amplifiers

Optical Receivers

- Must be very sensitive
- Capable of picking up and amplifying signals of nanowatts
- Photodiodes and phototransistors
- These devices get 'turned ON' by light
- Produce photocurrent

Advantages of optical fibers

- Can carry much more information
- Much higher data rates
- Much longer distances than co-axial cables
- Immune to electromagnetic noise
- Light in weight
- Unaffected by atmospheric agents

Total Internal Reflection

I < critical angle, refraction

I = critical angle, refraction

I > critical angle, reflection

- Light travels through the optical media by the way of total internal reflection.
- Modulation scheme used is intensity modulation.
- Two types of Fiber media :
 - Multimode
 - Singlemode
- Multimode Fiber can support less bandwidth than Singlemode Fiber.
- Singlemode Fiber has a very small core and carry only one beam of light. It can support Gbps data rates over > 100 Km without using repeaters.

Single and Multimode Fiber

Single-mode fiber

- Carries light pulses along single path
- Uses Laser Light Source

Multimode fiber

Many pulses of light generated by LED travel at different angles

- The bandwidth of the fiber is limited due to the dispersion effect.
- Distance Bandwidth product of a fiber is almost a constant.
- Fiber optic cables consist of multiple fibers packed inside protective covering.
- **62.5/125 μm (850/1310 nm) multimode fiber**
- 50/125 µm (850/1310 nm) multimode fiber
- 10 µm (1310 nm) single-mode fiber

- Very useful in difficult terrain where cable laying is not possible.
- Provides mobility to communication nodes.
- Right of way and cable laying costs can be reduced.
- Susceptible to rain, atmospheric variations and Objects in transmission path.

Wireless Media

- Indoor: 10 50m: BlueTooth, WLAN
- Short range Outdoor: 50 200m: WLAN
- Mid Range Outdoor: 200m 5 Km: GSM, CDMA, WLAN Point-to-Point, Wi-Max
- Long Range Outdoor: 5 Km 100 Km: Microwave Point-to-Point
- Long Distance Communication : Across Continents : Satellite Communication

Frequency Bands

Band	Range	Propagatio n	Application
VLF	3–30 KHz	Ground	Long-range radio navigation
LF	30–300 KHz	Ground	Radio beacons and navigational locators
MF	300 KHz-3 MHz	Sky	AM radio
HF	3–30 MHz	Sky	Citizens band (CB), ship/aircraft communication
VHF	30–300 MHz	Sky and line-of-sight	VHF TV, FM radio
UHF	300 MHz-3 GHz	Line-of- sight	UHF TV, cellular phones, paging, satellite
SHF	3–30 GHz	Line-of- sight	Satellite communication
EHF	30–300 GHz	Line-of- sight	Long-range radio navigation

Wireless LAN

Terrestrial Microwave

- Microwaves do not follow the curvature of earth
- Line-of-Sight transmission
- Height allows the signal to travel farther
- Two frequencies for two way communication
- Repeater is used to increase the distance Hop-by-Hop

Satellite Communication

