School of Mathematics and Physics, UQ

MATH1081 Advanced Discrete Mathematics Semester 1 2025 Problem Set 1

Michael Kasumagic, 44302669 Tutorial Group #3 Due 5pm Friday 28 March 2025

Question 1: 10 marks

Prove that XOR satisfies the associative law; that is:

$$p \oplus (q \oplus r) \equiv (p \oplus q) \oplus r$$
.

Solution:

Definition 1.1 (XOR). For two predicates, p and q, the XOR of them, denoted $p \oplus q \equiv (p \lor q) \land \sim (p \land q)$.

Theorem 1.1. XOR satisfies the associative law; that is: $p \oplus (q \oplus r) \equiv (p \oplus q) \oplus r$.

Proof. By considering all cases with a truth table.

p	q	r	$p \oplus q$	$q \oplus r$	$p \oplus (q \oplus r)$	$(p \oplus q) \oplus r$	$p \oplus (q \oplus r) \leftrightarrow (p \oplus q) \oplus r$
Τ	Τ	Τ	F	F	${ m T}$	${ m T}$	T
T	Τ	F	F	${ m T}$	${ m F}$	${ m F}$	T
T	\mathbf{F}	Τ	Т	${ m T}$	${ m F}$	${ m F}$	T
T	F	F	Γ	F	${ m T}$	${ m T}$	T
F	\mathbf{T}	Τ	Т	F	${ m F}$	${ m F}$	T
F	Τ	F	Т	${ m T}$	${ m T}$	${ m T}$	T
F	F	Τ	F	${ m T}$	${ m T}$	${ m T}$	T
F	F	F	F	F	${ m F}$	${ m F}$	T

As we can see in the final column, $p \oplus (q \oplus r)$ is logically equivalent to $(p \oplus q) \oplus r$, for all possible value combinations of (p, q, r).

Therefore XOR satisfies the associative law.

Which makes sense! Since the group $(\{T, F\}, \oplus)$ is isomorphic to $(\{0, 1\}, +)$ (which I won't prove here \odot).

Question 2: 10 marks

Using the laws of logical equivalence, prove that for any fixed $n \in \mathbb{N}$ and statement variables p, q_1, q_2, \ldots, q_n :

$$p \wedge (q_1 \oplus q_2 \oplus \ldots \oplus q_n) \equiv (p \wedge q_1) \oplus (p \wedge q_2) \oplus \ldots \oplus (p \wedge q_n)$$

Solution: Let's first make sure that \wedge distributes over \oplus .

Theorem 2.1. For three statement variables, $p, q_1, q_2, p \land (q_1 \oplus q_2) \equiv (p \land q_1) \oplus (p \land q_2)$.

Proof. By considering all cases with a truth table.

p	q_1	q_2	$q_1 \oplus q_2$	$p \wedge q_1$	$p \wedge q_2$	$\mathcal{L} := p \wedge (q_1 \oplus q_2)$	$\mathcal{R} := (p \wedge q_1) \oplus (p \wedge q_2)$	$\mathcal{L} \leftrightarrow \mathcal{R}$
Т	Τ	Τ	F	Τ	Τ	F	\mathbf{F}	Т
T	Τ	F	Τ	${ m T}$	\mathbf{F}	Γ	${ m T}$	T
T	F	Τ	Т	\mathbf{F}	Τ	T	${ m T}$	T
T	F	F	F	\mathbf{F}	\mathbf{F}	F	${ m F}$	T
F	\mathbf{T}	Τ	F	\mathbf{F}	\mathbf{F}	F	${ m F}$	T
F	T	F	Т	\mathbf{F}	\mathbf{F}	F	${ m F}$	T
F	\mathbf{F}	Τ	F	\mathbf{F}	\mathbf{F}	F	${ m F}$	T
F	F	F	F	F	\mathbf{F}	F	F	T

As we can see in the final column, $p \wedge (q_1 \oplus q_2)$ is logically equivalent to $(p \wedge q_1) \oplus (p \wedge q_2)$, for all possible value combinations of (p, q, r).

Therefore \wedge distributes over \oplus .

Theorem 2.2. For a fixed $n \in \mathbb{N}$, and statement variables $p, q_1, q_2, \ldots, q_n, p \land (q_1 \oplus q_2 \oplus \ldots \oplus q_n) \equiv (p \land q_1) \oplus (p \land q_2) \oplus \ldots \oplus (p \land q_n).$

Note: I will express $(q_1 \oplus q_2 \oplus \ldots \oplus q_n) \equiv \bigoplus_{i=1}^n q_i$.

Proof. Suppose $n \in \mathbb{N}$ is fixed and p, q_1, q_2, \ldots, q_n are statement variables.

Let's consider
$$p \wedge \left(\bigoplus_{i=1}^{n} q_i\right) \equiv p \wedge \left(q_1 \oplus \bigoplus_{i=2}^{n} q_i\right)$$
.

Let's define a statement variable $r_2 = \bigoplus_{i=2}^n q_i$.

Then we can rewrite the statement $p \wedge \left(\bigoplus_{i=1}^n q_i\right) \equiv p \wedge (q_1 \oplus r_2)$.

We can apply Theorem 2.1,
$$p \wedge \left(\bigoplus_{i=1}^n q_i\right) \equiv (p \wedge q_1) \oplus \left(p \wedge \bigoplus_{i=2}^n q_i\right)$$
.

We can repeat this for $r_3 = \bigoplus_{i=3}^n q_i$, and applying Theorem 2.1,

$$p \wedge \left(\bigoplus_{i=1}^{n} q_i\right) \equiv (p \wedge q_1) \oplus (p \wedge q_2) \oplus (p \wedge r_3) \equiv (p \wedge q_1) \oplus (p \wedge q_2) \oplus \left(p \wedge \bigoplus_{i=3}^{n} q_i\right)$$

We can continue this process, repeatedly taking $r_k = \bigoplus_{i=k}^n q_i$, $k \leq n$, and then distributing $p \wedge$, according to Theorem 2.1.

Eventually, when
$$k = n$$
, $r_k \equiv r_n \equiv \bigoplus_{i=k=n}^n q_i \equiv q_n$,

and
$$p \wedge \left(\bigoplus_{i=1}^{n} q_i\right) \equiv \bigoplus_{i=1}^{n-1} (p \wedge q_i) \oplus (p \wedge r_n) \equiv \bigoplus_{i=1}^{n} (p \wedge q_i).$$

which is equivalent to $(p \wedge q_1) \oplus \ldots \oplus (p \wedge q_n)$, which is what we wanted to show.

Therefore,
$$p \wedge (q_1 \oplus q_2 \oplus \ldots \oplus q_n) \equiv (p \wedge q_1) \oplus (p \wedge q_2) \oplus \ldots \oplus (p \wedge q_n)$$

Question 3: 10 marks

Show that the following argument is valid, using the rules of inference and/or logical equivalences. Clearly label which rule you used in each step.

1.
$$r \rightarrow \sim a$$

2.
$$\sim r \rightarrow \sim b$$

3.
$$\sim c \rightarrow a$$

4.
$$\sim c \rightarrow b$$

Solution:

1.
$$r \to \sim a$$

2.
$$\sim r \rightarrow \sim b$$

$$3. \sim c \rightarrow a$$

4.
$$\sim c \rightarrow b$$

5.
$$a \to \sim r$$
 (Contrapositive of 1.)

6.
$$a \rightarrow \sim b$$
 (Transitivity of 5. and 2.)

7.
$$\sim b \rightarrow c$$
 (Contrapositive of 4.)

8.
$$a \to c$$
 (Transitivity of 6. and 7.)

9.
$$\sim c \rightarrow \sim a$$
 (Contrapositive of 8.)
10. $(\sim c \rightarrow a) \land (\sim c \rightarrow \sim a)$ (Conjunction of 3. and 9.)

11.
$$(c \lor a) \land (c \lor \sim a)$$
 (Logically Equivalent to 10. (Def. of \rightarrow))

12.
$$c \lor (a \land \sim a)$$
 (Logically Equivalent to 10. (Distributivity))

13.
$$c \lor \bot$$
 (Logically Equivalent to 10. (Negation))

 $\therefore c$

Question 4: 10 marks

Let D be some domain, and let p(x) and q(x) be predicates in the variable $x \in D$. Write the following English sentences symbolically, i.e., using logical symbols, logical operations, and/or quantifiers. Your answers should not contain any English other than possibly the phrase "such that".

- (a) p(x) is never true.
- (b) p(x) is a necessary condition for q(x).
- (c) It is impossible for p(x) and q(x) to both be true for the same value of x.
- (d) Every x satisfies exactly one of p(x) or q(x) (not both).
- (e) There is exactly one value of x (no more, no less) for which p(x) is true.

Solution:

- (a) $\forall x \in D, \sim p(x)$
- (b) $\forall x \in D, q(x) \to p(x)$
- (c) $\forall x \in D, \sim (q(x) \land p(x))$
- (d) $\forall x \in D, (p(x) \land \sim q(x)) \lor (q(x) \land \sim p(x))$
- (e) $\exists x \in D : p(x) \land \forall y \in D, \ p(y) \to (y = x)$

Question 5: 10 marks

- (a) Prove that for all integers $n \in \mathbb{N}$, if n is prime and n > 2 then n is odd.
- (b) Prove that for all integers $n \in \mathbb{N}$, if $n^2 + 3$ is prime then n is even.
- (c) Prove that for all integers $n \in \mathbb{N}$, if $n^2 1$ is prime then $n^2 + 1$ is also prime.

Solution: (a)

Proof. The statement's contrapositive is $\forall n \in \mathbb{N}, n > 2, n \text{ is even } \rightarrow n \text{ is composite.}$

Suppose $n \in \mathbb{N}$, n > 2 and n is even.

Then $n = 2k, k \in \mathbb{Z}$.

Hence, $2 \mid 2k \iff 2 \mid n$.

Therefore n is composite.

Therefore, $\forall n \in \mathbb{N}, n > 2$, n is even $\rightarrow n$ is composite.

Therefore, $\forall n \in \mathbb{N}, n > 2$, n is prime $\rightarrow n$ is odd.

Solution: (b)

Proof. The statement's contrapositive is $\forall n \in \mathbb{N}, n \text{ is odd} \rightarrow n^2 + 3 \text{ is composite.}$

Suppose $n \in \mathbb{N}$ and n is odd.

Then, $n = 2k + 1, k \in \mathbb{Z}$.

Hence, $n^2 + 3 = (2k + 1)^2 + 3 = 4k^2 + 4k + 1 + 3 = 4k^2 + 4k + 4$.

So, $n^2 + 3 = 2(2k^2 + 2k + 2) \iff 2 \mid n^2 + 3$.

Therefore, n is even. Therefore, $\forall n \in \mathbb{N}, n \text{ is odd} \rightarrow n^2 + 3 \text{ is composite.}$

Therefore, $\forall n \in \mathbb{N}, \ n^2 + 3 \text{ is prime} \to n \text{ is even.}$

Solution: (c)

Proof. The statement's contrapositive is $\forall n \in \mathbb{N}, \ n^2 + 1$ is composite $\rightarrow n^2 - 1$ is composite Suppose $n \in \mathbb{N}, \ n^2 + 1$ is composite.

We note that $n^2 - 1$ can be factorised into (n+1)(n-1).

For n=1, $(n+1)(n-1)=2\cdot 0=0\notin\mathbb{N}$, so we can discard this case.

For n=2, $(n+1)(n-1) = 3 \cdot 1 = 3$, is not composite!

However, $n^2 + 1 = 5$, is not composite. Since the premise of the implication is not true, we can actually discard this case.

For n>2, n+1>2, $n-1\geq 2$.

Which means, $n^2 - 1$ can be factorised into at least two factors.

This is the definition of composite, hence, $n^2 - 1$ is composite.

Therefore $\forall n \in \mathbb{N}, \ n^2 + 1 \text{ is composite} \rightarrow n^2 - 1 \text{ is composite}.$

Therefore $\forall n \in \mathbb{N}, \ n^2 - 1 \text{ is prime} \to n^2 + 1 \text{ is prime}.$

Question 6: 10 marks

- (a) Prove that there are infinitely many odd integers $n \in \mathbb{N}$ for which n and n+100 are both composite.
- (b) Prove that there are infinitely many odd integers $n \in \mathbb{N}$ for which $n, n+2, n+4, n+6, \ldots, n+1000$ are all composite.

Solution: (a)

Proof. Directly.

Suppose $k \in \mathbb{N}$.

Choose $n = 5(2k+1) \in \mathbb{N}$.

Then $5 \mid n$, since 5 is trivially a factor.

Hence n is composite.

Consider, $n = 5(2k+1) = 10k + 5 = 2(5k+2) + 1 \iff 2 \nmid n$.

Hence, n is odd.

Consider n + 100 = 5(2k + 1) + 100 = 25k + 5 + 100 = 25k + 105 = 5(5k + 21).

Since $5 \mid (n+100)$, then n+100 is composite.

Consider n + 100 = 5(2k + 1) + 100 = 25k + 5 + 100 = 25k + 105 = 2(12k + 100)

 $52) + (k+1) \iff 2 \nmid (n+100).$

Hence, n + 100 is odd.

Since there are infinite natural numbers k, there are infinite n = 5(2k + 1)s.

Therefore, there are infinitely many odd integers, n for which n and n+100 are composite. \Box

Solution: (b)

Proof. Directly.

Suppose $k \in \mathbb{N}$.

Choose n = 2(1001!k + 1) + 1. Therefore, n is odd.

$$n = 2(1001!k + 1) + 1$$

$$= 2 \cdot 1001!k + 2 + 1$$

$$= 2 \cdot 1001!k + 3$$

$$= 3\left(\frac{2 \cdot 1001!k}{3} + 1\right)$$

Therefore, n is composite.

Next, we'll consider n+2

$$n+2 = 2(1001!k+1) + 3$$

$$= 2 \cdot 1001!k + 2 + 3$$

$$= 2 \cdot 1001!k + 5$$

$$= 5\left(\frac{2 \cdot 1001!k}{5} + 1\right)$$

Therefore, n+2 is composite.

Finally, we'll consider n + 1000

$$n + 1000 = 2(1001!k + 1) + 1001$$

$$= 2 \cdot 1001!k + 2 + 1001$$
$$= 2 \cdot 1001!k + 1003$$
$$= 1001 (2 \cdot 1000!k + 1)$$

Therefore, n is composite.

In general, for every $m \in \{0, 2, 4, \dots, 1000\}$, we can always factorise the expression

$$n + m = 2(1001!k + 1) + 1 + m = (m + 1)\left(\frac{2 \cdot 1001!k}{m + 1} + 1\right)$$

which shows that all of these numbers we've found are composite.

Since there are infinite natural numbers k, there are infinite n's = 2(1001!k + 1) + 1 with n + m, $\forall m \in \{0, 2, ..., 1000\}$ are all composite.

Therefore, there are infinitely many odd integers, n for which n + m, $\forall m \in \{0, 2, ..., 1000\}$ are composite.