MT5830 - 5 Fuchsian groups (1) O Let $g \in PSL(2, \mathbb{Z})$ with standard $g(z) = \frac{az+b}{cz+d}$ and let $r = \frac{1}{2}$. Suppose hepsi(2,2) with standard Sorm $h(z) = \frac{a'z+b'}{c'z+d'}$ and $h \in B(g, \frac{1}{2})$. Then $\|(a-a',b-b',c-c',d-d')\| < \frac{1}{2}$ which guarantees |a-a'|, |b-b'|, |c-c'|, |dd|/<-Therefore a'=a, b'=b, c'=c, d'=d and we can conclude that g = h $B(g,r) \cap PSL(7,2) = \{g\}.$ Thus PSL(2,2) is derivete and

Thus PSC(1,2) is control when

PSL(2,Q) is not discrete. Let g∈PSL(2,Q) with standard form $g(z) = \frac{az+b}{cz+d}$, (ad-bc=1), $a,b,c,d \in \mathbb{R}$), and let r>0 be given. Consider $g_n \in PSL(2,Q)$ defined by $g_{k}(z) = \frac{(a+k)z}{\sqrt{1+2k}} + \frac{b}{\sqrt{1+2k}}$ C VI+dR VI+dR (Note that this has been normalised). Then $\|g - g_R\| \rightarrow 0$ as $k \rightarrow \infty$ large enough and so if we pick k to guarantee 119-9n11 < r, then

 $B(g,r) \cap PSL(2,a) \supseteq \{g,g_k\}$ and so PSL(2,a) is not desirete (since $g \neq g_k$). Let $\Gamma \leq PSL(2, R)$ be Freehrian. 2) Suppose $g_R \in \Pi$ such that $g_R \rightarrow g \in PSL(2, IR)$ (in the IR4 metric). We want to show $g \in \Gamma$. Proof: It follows that $g_R g_{RH}^{-1} \to Id \in \Gamma$. Since 1 is discrete, we can find v >0 such that B(Id, r) n M = {Id}. Therefore for all sufficiently large k, we must have $g_k g_{k+1}^{-1} = Id$. Therefore for all sufficiently large k $g_k = g_{k+1}$ and so $g \in \Gamma$, since $g_k \to g$ and the sequence g_k is eventually constant. Note that subgroups of PSL(2,1R) need

Note that subgroups of PSL(2,1R) need not be closed, for example PSL(2,a). Also, discrete sets need not be closed, for example $\{l_n: n \in \mathbb{Z}\}$.

3) Let (X,d) be a metric space, $K \subseteq X$ be compact & PCX discrete and closed.

Suppose KNP is infinite. We can therefore

find a sequence X_k of distinct points

with $X_k \in K \cap P$ for all K. Since K is

compact, we can find a convergent

subsequence $X_{n_k} \to X \in K$. Since Pis closed $X \in P$. Therefore

B(x, r) n P is infinite for all r>0, which contradicts P discrete.

If we do not assume P closed, then X = IR, K = [0,1] and $P = \{ \ln : n \in \mathbb{Z}^+ \}$ pointes a counter example.

(4) Suppose $K \subseteq IH^2$ is bounded. Then (5) K ⊆ B(Z,r) for some Z,∈H², r>0. Let $C_1 = \{ \{ sup \} | \exists 1 : \exists \in B(\exists o, \land) \} < \infty$ and $C_2 = \inf \left\{ | \operatorname{Im}(z) : z \in \mathbb{B}(z_0, r) \right\} > 0.$ Setting C = max { C, /cz} does the job. In the other direction, suppose K = 1H2 is such that for some C>1 (i) $|z| \leq C$ (ii) $|m(z)\rangle \geq \frac{1}{C}$ for all zek. Let $r = \sup \left\{ d_{H^2}(i, z) : z \in K \right\} < \infty$.

Then $K \subseteq B(i, r)$ and is therefore bounded as required.

(5)(=>) Suppose $\Gamma \subseteq PSL(2, \mathbb{R})$ is a finite Fuehrian group. Then for $Z \in \mathbb{H}^2$ we have:

 $|\Gamma(z)| = |\{g(z): g \in \Gamma\}| \leq |\Gamma| < \infty$.

(=) Suppose $\Gamma \leq PSL(2, IR)$ is a Fuehman group such that for all $z \in IH^2$ the set $\Gamma(z)$ is finite.

Fix $z \neq i$ & suppose Γ is infinite. Therefore $g(z) = \omega$ for some $\omega \in \mathbb{H}^2$ & infinite many, $g \in \Gamma$. Consider the orbit of i and note that

Since Γ aits properly discontinuously $\Gamma(i) \cap B_{H^2}(W, d_{H^2}(i, z))$ Γ compact ball

is finite. Since Γ acts by isometry, for every $g \in \Gamma$ with $g(z) = \omega$, we have $g(i) \in B_{H^2}(\omega, d_{H^2}(i, \bar{z}))$

Then since g is an isometry, there are only 2 possible locations for g(z), However one of these choices is orientation reversing.)

(a) Suppose $\Gamma = PSL(2, \mathbb{R})$ is Fuchsian, let $z \in \mathbb{H}^2$ be arbitrary and fix $\omega \in \Gamma(z)$. Since Γ acts properly discontinuously $\Gamma(z) \cap B_{\mathbb{H}^2}(\omega, l_2)$ is finite. Let

is finite. Let $V \neq W$ $V = \frac{1}{2} \min \left\{ d_{H^2}(w, v) : V \in B_{H^2}(w, \frac{1}{2}) \cap \Gamma(\frac{1}{2}) \right\}$

>0 (think about why the is strictly positive). Hence $B_{H^2}(w,r) \cap \Gamma(z) = \{w\}$ and we may conclude $\Gamma(w)$ is desirete.

(=) Suppose $\Gamma \in PSL(2,1R)$ is such that $\Gamma(z)$ is directe for all $z \in H^2$. Suppose Γ is not discrete and so we can find $g_n \in \Gamma$ such that $g_n \neq g$ $\forall n$ and $g_n \rightarrow g$ (in R^4 metric). Counter $\Gamma(i)$ and $\Gamma(2i)$, which are both discrete. Since $g_n(i) \rightarrow g(i)$ & $g_n(2i) \rightarrow g(2i)$ (in d_{H^2} & 1·1) we conclude that for large enough n $g_n(i) = g(i)$ & $g_n(2i) = g(2i)$. Since $g \in PSi(2,1R)$ is determined by its action on any two points we conclude $g_n = g$ for large n. A contradiction.