Felix Biessmann<sup>1</sup>, Philipp Schmidt<sup>2</sup>

<sup>&</sup>lt;sup>1</sup>felix.biessmann@gmail.com

<sup>&</sup>lt;sup>2</sup>schmidtiphil@gmail.com

### **Disclaimers**

- (For us) This is just a hobby / open source project
- It has nothing to do with our job

### **Disclaimers**

- (For us) This is just a hobby / open source project
- It has nothing to do with our job

- Everyday loads of political content is published
- Too much text to handle by humans
- → Automated political bias prediction<sup>3</sup> required for
  - Political scientists
  - Journalists
  - Average media consumer

<sup>&</sup>lt;sup>3</sup>Bießmann [2016]; Merz et al. [2016]

- Everyday loads of political content is published
- Too much text to handle by humans
- $\rightarrow$  Automated political bias prediction<sup>3</sup> required for
  - Political scientists
  - Journalists
  - Average media consumer

<sup>&</sup>lt;sup>3</sup>Bießmann [2016]; Merz et al. [2016]

- Everyday loads of political content is published
- Too much text to handle by humans
- → Automated political bias prediction<sup>3</sup> required for
  - Political scientists
  - Journalists
  - Average media consumer

<sup>&</sup>lt;sup>3</sup>Bießmann [2016]; Merz et al. [2016]

- Everyday loads of political content is published
- Too much text to handle by humans
- → Automated political bias prediction<sup>3</sup> required for
  - Political scientists

Intro

Average media consumer

<sup>&</sup>lt;sup>3</sup>Bießmann [2016]; Merz et al. [2016]

- Everyday loads of political content is published
- Too much text to handle by humans
- → Automated political bias prediction<sup>3</sup> required for
  - Political scientists
  - Journalists
  - Average media consumer

<sup>&</sup>lt;sup>3</sup>Bießmann [2016]; Merz et al. [2016]

- Everyday loads of political content is published
- Too much text to handle by humans
- → Automated political bias prediction<sup>3</sup> required for
  - Political scientists
  - Journalists

Intro

• Average media consumer

<sup>&</sup>lt;sup>3</sup>Bießmann [2016]; Merz et al. [2016]

- Machine Learning models need fresh training data

- Machine Learning models need fresh training data
- But annotation budget is often limited:
  - Temporal constraints (before elections) Merz [2017]
  - Online news media (too much content)

- Machine Learning models need fresh training data
- But annotation budget is often limited:
  - Temporal constraints (before elections) Merz [2017]
  - Online news media (too much content)

- Machine Learning models need fresh training data
- But annotation budget is often limited:
  - Temporal constraints (before elections) Merz [2017]
  - Online news media (too much content)

- Machine Learning models need fresh training data
- But annotation budget is often limited:
  - Temporal constraints (before elections) Merz [2017]
  - Online news media (too much content)
- → How to select which texts to annotate?

- Train best model with limited budget
- Annotate difficult ones<sup>4</sup> first
- Why?
  - Intuition:
    - Model learns most from difficult examples
  - Math
    - Gradient of loss function larger for difficult examples

<sup>&</sup>lt;sup>4</sup>For which model is most uncertain.

- Train best model with limited budget
- Annotate difficult ones<sup>4</sup> first
- Why?

Intro 000

<sup>&</sup>lt;sup>4</sup>For which model is most uncertain.

- Train best model with limited budget
- Annotate difficult ones<sup>4</sup> first.
- Why?

Intro

- Intuition:
- Math:

<sup>&</sup>lt;sup>4</sup>For which model is most uncertain.

- Train best model with limited budget
- Annotate difficult ones<sup>4</sup> first.
- Why?
  - Intuition: Model learns most from difficult examples
  - Math:

<sup>&</sup>lt;sup>4</sup>For which model is most uncertain.

- Train best model with limited budget
- Annotate difficult ones<sup>4</sup> first.
- Why?
  - Intuition:

Model learns most from difficult examples

Math: Gradient of loss function larger for difficult examples

<sup>&</sup>lt;sup>4</sup>For which model is most uncertain.

#### Data

- All annotated German texts from https://manifestoproject.wzb.eu/
- Only texts with more than 1000 observed labels

- Basic text cleaning (regexps, stopwords)
- Unigram Bag-of-Words features
- Hashing Vectorizer

## Classification Model: Multinomial Logistic Regression

Manifestocode prediction is modelled as

$$p(y = k | \mathbf{x}) = \frac{e^{z_k}}{\sum_{j=1}^K e^{z_j}} \text{ with } z_k = \mathbf{w}_k^\top \mathbf{x}.$$
 (1)

With

- Labels  $y \in \{1, 2, \dots, K\}$  (manifesto code)
- $\mathbf{w}_1, \dots, \mathbf{w}_K \in \mathbb{R}^d$  weight vectors of kth manifesto code
- L<sub>2</sub> norm regularization of weights

## Active Learning Strategies

- Random Baseline: Uniform random sampling
- Uncertainty Sampling: Only top-prediction counts

$$\mathbf{x}_i = \underset{i,k}{\operatorname{argmax}} \left(1 - p(y = k | \mathbf{x}_i, \mathbf{W})\right) \tag{2}$$

Entropy Sampling: All predictions count

$$\mathbf{x}_i = \underset{i}{\operatorname{argmax}} \sum_k p(y = k | \mathbf{x}_i, \mathbf{W}) \log(p(y = k | \mathbf{x}_i, \mathbf{W}))$$
 (3)

Margin Sampling: Top 2 predictions count

$$\mathbf{x}_i = \underset{i}{\operatorname{argmin}} \left( p(y = k_1 | \mathbf{x}_i, \mathbf{W}) - p(y = k_2 | \mathbf{x}_i, \mathbf{W}) \right)$$
 (4

- Train model on 1%, 10%, 20%, ..., 100% of training data
- Vary sampling strategies to select from unlabelled texts
- Evaluate agains 'perfect' model trained on all data

### Results: 'Perfect' Reference Model

| manifesto code | precision | recall | f1-score | support |
|----------------|-----------|--------|----------|---------|
| 107            | 0.60      | 0.48   | 0.53     | 774     |
| 201            | 0.51      | 0.55   | 0.53     | 1194    |
| 202            | 0.63      | 0.57   | 0.60     | 983     |
| 305            | 0.46      | 0.59   | 0.52     | 783     |
| 403            | 0.52      | 0.48   | 0.50     | 1281    |
| 411            | 0.39      | 0.60   | 0.47     | 1535    |
| 501            | 0.61      | 0.55   | 0.58     | 1380    |
| 502            | 0.65      | 0.41   | 0.50     | 587     |
| 503            | 0.46      | 0.52   | 0.49     | 2083    |
| 506            | 0.63      | 0.48   | 0.54     | 1026    |
| 605            | 0.56      | 0.44   | 0.49     | 576     |
| 701            | 0.59      | 0.39   | 0.47     | 1123    |
| avg / total    | 0.50      | 0.48   | 0.48     | 17559   |

Table: Precision, recall, F1 score and number of instances per class.

# Active Learning Results



Median accuracy and the 5th/95th percentile across 100 repetitions

### Conclusion

- Political text analysis requires automation
- Automation requires annotations for training models
- Limited budged for annotations of political texts
- Active Learning
  - Helps to select which texts to annotate
  - Perfect model with 80% of data
  - Almost perfect (over 95%) with 50% of data
- → Active learning can speed up political annotations.
  - Demo: http://rightornot.info

- F. Bießmann. Automating political bias prediction. CoRR, abs/1608.02195, 2016. URL http://arxiv.org/abs/1608.02195.
- N. Merz. Alle wahlprogramme lesen? dauert nur 17 stunden. http://www.zeit.de/politik/deutschland/2017-08/bundestagswahl-wahlprogramme-parteien-computeranalyse, 2017.
- N. Merz, S. Regel, and J. Lewandowski. The manifesto corpus: A new resource for research on political parties and quantitative text analysis. Research & Politics, 3(2):2053168016643346, 2016. doi: 10.1177/2053168016643346. URL https://doi.org/10.1177/2053168016643346