RIEMANN MAPPING THEOREM

Let $\theta \neq U \subseteq \mathbb{C}$ be open connected. Issume that every zero. free analytic function on U has an analytic square root. Then U is comparably equivalent to \mathbb{D} .

Recall that we have proved the existence of an injective holomorphic function $fo:U\to D$. Now consider the family

Fr: = { f: U = D: |f(zo)| >, |fo(zo)|},

where $Z_0 \in U$ is fixed. Note that $f_0'(Z_0) \neq 0$.

Since If is compact, $\exists g \in \mathcal{F}$ s.t. $\forall f \in \mathcal{F}$

|9(Zo) | > |f(Zo) |. We claim that 9(U) = D.

Assume contrary, i.e., $g(U) \subseteq D$. Then $\exists a \in D \setminus g(U)$ sit. Consider the function $\varphi_a \cdot g$. Clearly, $\varphi_a \cdot g$ this function is analytic ξ zero-free, hence admits an analytic square root, say λ , i.e., $\lambda^2 = \varphi_a \cdot g$.

It is easy) to see that he is zero-free, as he is zero-free, and 1-1, atherwise he would not be 1-1.

Put
$$b = f(: h = h(z_0))$$
. Consider

 $f := \varphi_0 \cdot L$. \mathcal{B}_{g_0} Then $f(\overline{z}_0) = \varphi_0(h) = 0$.

Now absence that $g = \varphi_0 \cdot h^2 = \varphi_0 \cdot (\varphi_0 \cdot f)^2$
 $= \varphi_0 \cdot (\varphi_0^2 \cdot f)$
 $= (\varphi_0 \cdot \varphi_0^2) \cdot of$
 $= (\varphi_0 \cdot \varphi_0^2) \cdot of$
 $= |(\varphi_0 \cdot \varphi_0^2) \cdot of|(z_0)|$
 $= |(\varphi_0 \cdot \varphi_0^2) \cdot of|(z_0)|$
 $= |(\varphi_0 \cdot \varphi_0^2) \cdot of|(z_0)|$

So from (x) one obtains that

 $|g'(\overline{z}_0)| < (1 - |\varphi_0 \cdot \varphi_0^2(0)|^2) |f'(z_0)|$
 $\leq |f'(\overline{z}_0)| < (1 - |\varphi_0 \cdot \varphi_0^2(0)|^2) |f'(z_0)|$

On the other hand f , being the composition of two injective maps, in injective, and furthermore $|f'(\overline{z}_0)| > |f'(\overline{z}_0)| > |f'(\overline{z}_0)|$. This implies that

f ∈ ft, which challenges the assumption that g is the maximizer.

Remark 1. If g is a maximiger of $\{|f(z_0)|:f\in\mathcal{F}\}$ then $g(z_0)=0$. Otherwise, consider (a o g, where a:= g(zo) \$0. Then $|(\varphi_a \circ g)'(z_o)| = |\varphi_a'(a)g'(z_o)| = \frac{1}{1-|a|^2}|g'(z_o)| > |g'(z_o)|$ From this, it follows that qo g & Ft, which is not possible. 2. Let 9 be as above. Suppose $f:U \to D$ is holomorphic & $f(z_0) = 0$. Then $f \circ g':D \to D$ fines origin. From Schwarz's lemma, one has $\forall z \in D$, $|(f \circ g')(z)| \leq |z|$, which implies that $|f(\omega)| \leq |g(\omega)|$, $\forall \omega \in V$, and also $|(f \circ g^{-1})'(o)| = |f'(z_o) \cdot \frac{1}{g'(z_o)}| \le |f'(z_o)| \le |g'(z_o)|.$ Furthermore, if equality occurs in $|f(\omega)| \le |g(\omega)|$ for some $\omega \ne Z_0$ or in $|f'(Z_0)| \le |g'(Z_0)|$ iff $f = \lambda g$, for some $|\lambda| = 1$. NOTE: All that we have used here regarding is $g: U \to D$ is highline and holomorphic and $g(z_0) = 0$. Uniqueness! -Obs: Suppose 9, 92: U -> D are bijective holomorphie maps and 9, (Zo) = 9, (Zo) = 0. Then 9,92 E dut (D) and it fines origin. From this $g_1 = \lambda g_2$, for some $|\lambda| = 1$.

Let U be as before. Then I! bijective holomorphic function 9: U -D satisfying 9(20) +0 & 9'(20)>0. Proof! - The existence of such a map has already been established. We now firove the uniqueness. Let 9, & 9, are two such maps. From the preseious observation, we get $g_1 = \lambda g_2$ for some $|\lambda|=1$. This yields that $g_1(z_0)=\lambda g_2(z_0)$. Fince both 9, (Zo) and 92 (Zo) are positive, we obtain that \$70. Hence 7=1.