Homework 8

Hunter Schwartz

Problem 1

Figure 1: Spectral radius of the S_{σ} matrix dependent on choice of σ .

This plot depicts a trend common to the Successive Over-Relaxation method and why it is useful. At the endpoints of the domain when $\sigma = 0, 2$, the spectral radius of the S_{σ} matrix approaches 1, which implies the inability of the method to converge. For intermediate values of σ , the spectral radius $\rho(S_{\sigma}) < 1$, so the method will in fact converge for any initial condition. When $\sigma = 1$, the method is equivalent to Gauss-Seidel, and the spectral

radius is ≈ 0.6 , representing the good convergence that we expect. However, the SOR method has the ability to perform much better in this case, reaching a minimum spectral radius of ≈ 0.25 when $\sigma \approx 1.25$.

Figure 2: Number of iterations required for SOR method to converge within a tolerance of 10^{-8} .

As expected from our results about how the spectral radius depends of σ , we see that the method converges over the whole range of σ , but performs best at intermediate values. Again, the Gauss-Seidel method performs well, converging in ≈ 40 iterations, but is beat by the method when $\sigma \approx 1.25$, where the spectral radius attains its minimum.

I am uncertain about the brief spike in improvement for $\sigma \approx 0.6$. There is potentially a possibility that our initial condition $x_0 = [1 \ 1 \ 1]^{\top}$ happens to be roughly orthogonal to the eigenvector associated with the eigenvalue of maximum magnitude of S_{σ} in this range. If this were the case, then the convergence of the method would be dominated by the eigenvalue of second-largest magnitude, which would be faster (at least no slower) than for other initial conditions. Regardless, the method still performs better for $\sigma \approx 1.25$.