Homework #1

Sam Fleischer

April 8, 2016

Problem 1	٠.	٠	 ٠	•	 •	•	 	•	•	•		 •	•	٠	•		•	•	•	•	•	•		٠	•		•	•	•	 •	•	٠	•	•	2	2
Problem 2							 									 																			;	5

UC Davis Applied Mathematics (MAT207C)

Problem 1

Find the two-term asymptotic expansion for small ε for all real roots x of the below equations.

(a)
$$\varepsilon^2 x^3 - x + \varepsilon = 0$$

(b)
$$\varepsilon \exp(x^2) = 1 + \frac{\varepsilon}{1 + x^2}$$

(a) First note that if $\varepsilon = 0$, then x = 0. Let $x = x_0 + x_1 \varepsilon + x_2 \varepsilon^2 + \dots$ Then

$$\varepsilon^{2}(x_{0} + x_{1}\varepsilon + x_{2}\varepsilon^{2} + \dots)^{3} - (x_{0} + x_{1}\varepsilon + x_{2}\varepsilon^{2} + \dots) + \varepsilon = 0$$

$$\Longrightarrow \varepsilon^{2}(x_{0}^{3} + 3x_{0}^{2}x_{1}\varepsilon + (3x_{0}^{2}x_{2} + 3x_{0}x_{1}^{2})\varepsilon^{2} + \dots) - (x_{0} + x_{1}\varepsilon + x_{2}\varepsilon^{2} + \dots) + \varepsilon = 0$$

$$\Longrightarrow x_{0} = 0 \quad \text{and} \quad x_{1} = 1 \quad \text{and} \quad x_{2} = 0 \quad \text{and} \quad x_{3} = 0 \quad \text{and} \quad x_{4} = 0$$

$$\Longrightarrow \varepsilon^{2}(x_{1}^{3}\varepsilon^{3} + \dots) - (x_{1}\varepsilon + x_{5}\varepsilon^{5} + \dots) + \varepsilon = 0$$

$$\Longrightarrow x_{5} = 1$$

$$\Longrightarrow x = \varepsilon + \varepsilon^{5} + O(\varepsilon^{6})$$

Next we rescale to find the other two roots. Let $x = \varepsilon^{-1} y$. Then

$$\varepsilon^{-1} y^3 - \varepsilon^{-1} y + \varepsilon = 0$$
$$\implies y^3 - y + \varepsilon^2 = 0$$

Let $y = y_0 + y_1 \varepsilon + y_2 \varepsilon^2 + \dots$ Then

$$(y_0 + y_1 \varepsilon + y_2 \varepsilon^2 + \dots)^3 - (y_0 + y_1 \varepsilon + y_2 \varepsilon^2 + \dots) + \varepsilon^2 = 0$$

$$\Rightarrow (y_0^3 + 3y_0^2 y_1 \varepsilon + (3y_0^2 y_2 + 3y_1^2) \varepsilon^2 + \dots) - (y_0 + y_1 \varepsilon + y_2 \varepsilon^2 + \dots) + \varepsilon^2 = 0$$

$$\Rightarrow y_0^3 - y_0 = 0 \iff y_0 = 0, \pm 1 \quad \text{and} \quad (3y_0^2 - 1) y_1 = 0 \implies y_0^2 = \frac{\chi}{3} \text{ or } y_1 = 0$$

$$\Rightarrow 3y_0^2 y_2 - y_2 + 1 = 0 \implies y_2 = \frac{1}{1 - 3y_0^2}$$

If $y_0 = 0$, then $y_2 = 1$. If $y_0 = \pm 1$, then $y_2 = -\frac{1}{2}$. Thus the asymptotic solutions are

- $y = \varepsilon^2 + O(\varepsilon^3)$ (this matches with the asymptotic solution reached above).
- $y = \pm 1 \frac{1}{2}\varepsilon^2 + O(\varepsilon^3)$. These are impossible to get in the original scaling since as $y \to \pm 1$, $x \to \pm \infty$.

Thus, the asymptotic solutions are

$$x \approx \varepsilon + \varepsilon^5$$
 and $x \approx \frac{\pm 1 - \frac{1}{2}\varepsilon^2}{\varepsilon}$

(b) First, make the substitution $y = x^2$:

$$\varepsilon \exp(y) = 1 + \frac{\varepsilon}{1+y}$$

and note that as $\varepsilon \to 0$, we expect $y \to \infty$. Thus $1 + \frac{\varepsilon}{1+y} \approx 1$. Thus,

$$\varepsilon \exp(y) \approx 1$$

$$\implies y \approx \log(\varepsilon^{-1})$$

UC Davis Applied Mathematics (MAT207C)

Thus $y = \log(\varepsilon^{-1}) + g(\varepsilon)$ where $g(\varepsilon) = o(\log(\varepsilon^{-1}))$. Then

$$\varepsilon \exp(\log(\varepsilon^{-1}) + g(\varepsilon)) = 1 + \frac{\varepsilon}{1 + \log(\varepsilon^{-1}) + g(\varepsilon)}$$

$$\Rightarrow \varepsilon \exp(\log(\varepsilon^{-1})) \exp(g(\varepsilon)) = 1 + \frac{\varepsilon}{1 + \log(\varepsilon^{-1}) + g(\varepsilon)}$$

$$\Rightarrow \exp(g(\varepsilon)) = 1 + \frac{\varepsilon}{1 + \log(\varepsilon^{-1}) + g(\varepsilon)}$$

$$\Rightarrow g(\varepsilon) = \log\left(1 + \frac{\varepsilon}{1 + \log(\varepsilon^{-1}) + g(\varepsilon)}\right)$$

$$= \frac{\varepsilon}{1 + \log(\varepsilon^{-1}) + g(\varepsilon)} - \frac{1}{2}\left(\frac{\varepsilon}{1 + \log(\varepsilon^{-1}) + g(\varepsilon)}\right)^2 + \dots$$

We can use the Taylor expansion of $\log(1+x)$ since $\frac{\varepsilon}{1+\log(\varepsilon^{-1})+g(\varepsilon)}\to 0$ as $\varepsilon\to 0$. Then

$$\begin{split} g(\varepsilon) &\approx \frac{\varepsilon}{1 + \log \left(\varepsilon^{-1}\right) + g(\varepsilon)} \\ &\approx \frac{\varepsilon}{\log \left(\varepsilon^{-1}\right)} \end{split}$$

Note $\frac{\varepsilon}{\log(\varepsilon^{-1})} = o(\log(\varepsilon^{-1}))$ since

$$\lim_{\varepsilon \to 0} \frac{\frac{\varepsilon}{\log(\varepsilon^{-1})}}{\log(\varepsilon^{-1})} = \frac{\varepsilon}{\left(\log(\varepsilon^{-1})\right)^2} = 0$$

Thus $y \approx \log(\varepsilon^{-1}) + \frac{\varepsilon}{\log(\varepsilon^{-1})}$, and hence the asymptotic solutions are

$$x \approx \pm \sqrt{\log(\varepsilon^{-1}) + \frac{\varepsilon}{\log(\varepsilon^{-1})}}$$

Problem 2

The Exponential integral function is defined as

$$\operatorname{Ei}(x) = \int_{x}^{\infty} \frac{\exp(-s)}{s} \mathrm{d}s.$$

Derive an asymptotic expansion for $\mathrm{Ei}(x)$ for large x. Use a computer (e.q. expint(x) in MATLAB) to check the accuracy of your expansion for different values of x and for different numbers of terms. Discuss your results.

By integration by parts,

$$\int_{x}^{\infty} \frac{\exp(-s)}{s} ds = \frac{-\exp(-s)}{s} \Big|_{x}^{\infty} - \int_{x}^{\infty} \frac{\exp(-s)}{s^{2}} ds$$
$$= \frac{\exp(-x)}{x} - \left[\frac{-\exp(-s)}{s^{2}} \right]_{x}^{\infty} - 2 \int_{x}^{\infty} \frac{\exp(-s)}{s^{3}} ds \Big]$$

:

$$= \exp(-x) \left[\frac{(-1)^0 0!}{x} + \frac{(-1)^1 1!}{x^2} + \frac{(-1)^2 2!}{x^3} + \dots + \frac{(-1)^n n!}{x^{n+1}} \right] + R_n(x)$$

where

$$R_n(x) = (-1)^{n+1} (n+1)! \int_x^\infty \frac{\exp(-s)}{s^{n+2}} ds$$

Thus the asymptotic expansion for Ei(x) for large x is

Ei(x) ~ exp(-x)
$$\sum_{n=0}^{\infty} \frac{(-1)^n n!}{x^{n+1}}$$
.

This is a divergent series in n, but converges to 0 as $x \to \infty$ when n is fixed. The following graph shows the error between the asymptotic expansion and the exponential integral function, as calculated by MATLAB and graphed in Python.

