www.crackjee.xyz

))))))))))))

The s-Block Elements

CHAPTER

10

 KO₂ (potassium super oxide) is used in oxygen cylinders in space and submarines because it

[2002]

- (a) absorbs CO₂ and increases O₂ content
- (b) eliminates moisture
- (c) absorbs CO₂
- (d) produces ozone.
- 2. The metallic sodium disolves in liquid ammonia to form a deep blue coloured solution. The deep blue colour is due to formation of: [2002]
 - (a) solvated electron, $e(NH_3)_x^-$
 - (b) solvated atomic sodium, Na(NH₃)_v
 - (c) $(Na^+ + Na^-)$
 - (d) $NaNH_2 + H_2$
- 3. A metal M readily forms its sulphate MSO₄ which is water-soluble. It forms its oxide MO which becomes inert on heating. It forms an insoluble hyroxide M(OH)₂ which is soluble in NaOH solution. Then M is [2002]
 - (a) Mg
- (b) Ba
- (c) Ca
- (d) Be.
- 4. In curing cement plasters water is sprinkled from time to time. This helps in [2003]
 - (a) developing interlocking needle-like crystals of hydrated silicates
 - (b) hydrating sand and gravel mixed with cement
 - (c) converting sand into silicic acid
 - (d) keeping it cool
- 5. The substance **not** likely to contain CaCO₃ is
 - (a) calcined gypsum (b) sea shells [2003]
 - (c) dolomite
- (d) a marble statue

[2003]

6. The solubilities of carbonates decrease down the magnesium group due to a decrease in

- (a) hydration energies of cations
- (b) inter-ionic attraction
- (c) entropy of solution formation
- (d) lattice energies of solids
- 7. Which one of the following processes will produce hard water? [2003]
 - (a) Saturation of water with MgCO₃
 - (b) Saturation of water with CaSO₄
 - (c) Addition of Na₂SO₄ to water
 - (d) Saturation of water with CaCO₃
- 8. One mole of magnesium nitride on the reaction with an excess of water gives: [2004]
 - (a) two moles of ammonia
 - (b) one mole of nitric acid
 - (c) one mole of ammonia
 - (d) two moles of nitric acid
- 9. Based on lattice energy and other considerations which one of the following alkali metal chlorides is expected to have the highest melting point? [2005]
 - (a) RbCl
- (b) KCl
- (c) NaCl
- (d) LiCl
- 10. The ionic mobility of alkali metal ions in aqueous solution is maximum for [2006]
 - (a) Li⁺
- (b) Na⁺
- (c) K
- (d) Rb⁺
- 11. The products obtained on heating LiNO₂ will be: [2011RS]
 - (a) $\text{Li}_2\text{O} + \text{NO}_2 + \text{O}_2$ (b) $\text{Li}_3\text{N} + \text{O}_2$
 - (c) $\text{Li}_2\text{O} + \text{NO} + \text{O}_2$ (d) $\text{Li}_3\text{NO}_3 + \text{O}_2$
- 12. What is the best description of the change that occurs when Na₂O(s) is dissolved in water?

[2011RS]

www.crackjee.xyz

c-46

Chemistry

- Oxide ion accepts sharing in a pair of (a) electrons
- (b) Oxide ion donates a pair of electrons
- (c) Oxidation number of oxygen increases
- (d) Oxidation number of sodium decreases
- 13. Which of the following on thermal decomposition yields a basic as well as acidic oxide? [2012]
 - (a) NaNO₃
- (b) KClO₃
- (c) CaCO₃
- (d) NH₄NO₃
- The first ionisation potential of Na is 5.1 eV. The value of electron gain enthalpy of Na⁺ will be [2013]
 - (a) $-2.55 \, \text{eV}$
- (b) $-5.1 \, \text{eV}$
- (c) $-10.2 \, \text{eV}$
- (d) $+2.55 \, \text{eV}$
- 15. Stability of the species Li_2 , Li_2 and

Li₂⁺ increases in the order of:

[2013]

- (a) $\text{Li}_2 < \text{Li}_2^+ < \text{Li}_2^-$ (b) $\text{Li}_2^- < \text{Li}_2^+ < \text{Li}_2$
- (c) $\text{Li}_2 < \text{Li}_2^- < \text{Li}_2^+$ (d) $\text{Li}_2^- < \text{Li}_2 < \text{Li}_2^+$

- Which one of the following alkaline earth metal 16. sulphates has its hydration enthalpy greater than its lattice enthalpy? [JEE M 2015]
 - $BaSO_4$
- (b) SrSO₄
- $CaSO_{4}$
- (d) BeSO₄
- The main oxides formed on combustion of Li, Na and K in excess of air are, respectively:

[JEE M 2016]

- (a) Li_2O_2 , Na_2O_2 and KO_2
- (b) Li_2O , Na_2O_2 and KO_2
- (c) Li₂O, Na₂O and KO₂
- (d) LiO_2 , Na_2O_2 and K_2O_3
- 18. Both lithium and magnesium display several similar properties due to the diagonal relationship; however, the one which is incorrect [JEE M 2017]
 - Both form basic carbonates (a)
 - Both form soluble bicarbonates
 - Both form nitrides
 - Nitrates of both Li and Mg yield NO₂ and O_2 on heating

	Answer Key														
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
(a)	(a)	(d)	(a)	(a)	(a)	(b)	(a)	(c)	(d)	(a)	(b)	(c)	(b)	(b)	
16	17	18													
(d)	(b)	(a)													

SOLUTIONS

- $2KO_2 + 2H_2O \rightarrow 2KOH + H_2O_2 + O_2$. KO_2 is used as an oxidising agent. It is used as air purifier in space capsules. Submarines and breathing masks as it produces oxygen and remove carbon dioxide.
- 2. The alkali metals dissolve in liquid ammonia without evolution of hydrogen. The metal loses electrons and combine with ammonia molecule.

 $M \longrightarrow M^+$ (in liquid ammonia)

+e⁻(ammoniated)

$$M + (x + y) NH_3 \rightarrow [M(NH_3)_x]^+ + e^-(NH_3)_y$$

- It is ammoniated electron which is responsible for colour.
- 3. Sulphate of alkaline earth metal are sparingly soluble or almost not soluble in water whereas BeSO₄ is soluble in water due to high degree of solvation. Be(OH)₂ is insoluble in water but soluble in NaOH. BeO + 2NaOH----- \rightarrow Na₂BeO₂ + H₂O
- 4. Setting of cement is exothermic process which develops interlocking crystals of hydrated silicates
- 5. Gypsum is CaSO₄.2H₂O

www.crackjee.xyz

The s-Block Elements

c**-47**

- 6. (a) As we move down the group, the lattice energies of carbonates remain approximately the same. However the hydration energies of the metal cation decreases from Be⁺⁺ to Ba⁺⁺, hence the solubilities of carbonates of the alkaline earth metal decrease down the group mainly due to decreasing hydration energies of the cations from Be⁺⁺ to Ba⁺⁺.
- 7. **(b)** Permanent hardness of water is due to chlorides and sulphates of calcium and magnesium i.e CaCl₂, CaSO₄, MgCl₂ and MgSO₄.
- 8. (a) $Mg_3N_2 + 6H_2O \Longrightarrow 3Mg(OH)_2 + 2NH_3$
- 9. (c) LiCl has partly covalent character. Other halides are ionic in nature. Lattice energy decreases with increase of ionic radius of cation, anion being the same. Larger is the lattice energy, the higher will be m. pt. hence NaCl will have highest lattice energy.
- 10. (d) Smaller the size of cation higher is its hydration energy and greater is its ionic mobility hence the correct order is $Li^+ < Na^+ < K^+ < Rb^+$
- 11. (a) $4\text{LiNO}_3 \rightarrow 2\text{Li}_2\text{O} + 4\text{NO}_2 + \text{O}_2$
- **12. (b)** $O^{2-}(base) + H_2O(acid) \rightarrow OH^-(C.B.) +$

 $OH^{-}(C.A.)$

O²⁻ acts as Lewis base.

13. (c) Calcium carbonate on thermal decomposition gives CaO (Basic oxide) and CO₂ (Acidic oxide)

$$CaCO_3 \xrightarrow{\Delta} CaO + CO_2 \uparrow$$

Basic oxide Acidic oxide

14. **(b)** : For Na \longrightarrow Na⁺ + e⁻ IE₁ = 5.1 eV : For Na⁺ + e⁻ \longrightarrow Na EF = -5.1 eV

(because the reaction is reverse) **15. (b)** $\text{Li}_2 = \sigma 1s^2 \sigma^* 1s^2 \sigma 2s^2$

∴ Bond order =
$$\frac{1}{2}(4-2) = 1$$

Li₂⁺ = $\sigma 1s^2 \sigma^* 1s^2 \sigma 2s^1$
B.O. = $\frac{1}{2}(3-2) = 0.5$
Li₂⁻ = $\sigma 1s^2 \sigma^* 1s^2 \sigma 2s^2 \sigma^* 2s^1$

B.O. =
$$\frac{1}{2}(4-3) = 0.5$$

The bond order of Li_2^+ and Li_2^- is same but Li_2^+ is more stable than Li_2^- because Li_2^+ is smaller in size and has 2 electrons in antibonding orbitals whereas Li_2^- has 3 electrons in antibonding orbitals. Hence Li_2^+ is more stable than Li_2^- .

- 16. (d) In alkaline earth metals, ionic size increases down the group. The lattice energy remains constant because sulphate ion is so large, so that small change in cationic size does not make any difference. On moving down the group the degree of hydration of metal ions decreases very much leading to decrease in solubility.
- **18.** (a) Mg can form basic carbonate like 3MgCO₃ . Mg(OH)₂ . 3H₂O ↓ While Li can form only carbonate (Li₂CO₃) not basic carbonate.