

UNIVERSITY OF PETROLEUM & ENERGY STUDIES, DEHRADUN

Prog	gram	B. Tech SCS	Semester	II
Cou	rse	Mathematics II	Course Code	MATH 1005
Sess	ion	Jan-May 2018	Topic	Posets and Lattices

- 1. Show that if S be the set of all numbers and R is a relation in S defined by "a is less then or equal to b $(a \le b)$ " is a partial order relation.
- **2.** Define Hasse diagram.
 - (a) Let $A=\{2, 3, 4, 6, 12, 36, 48\}$ be a non-empty set and R be a partial order relation of divisibility on A. i.e. if $a, b \in A$ then a divides b. draw the Hasse diagram of the Relation.
 - (b) Let $A=\{1, 2, 3, 5, 6, 10, 15, 30\}$ be a non-empty set and R be a partial order relation of divisibility on A. i.e. if $a, b \in A$ then a divides b. draw the Hasse diagram of the Relation.
- **3.** Define partial order relation with example.
- **4.** Show that if N be the set of all natural numbers. The relation R in N defined by $aRb \Leftrightarrow a$ divides b is a Partial order relation.
- 5. Let $A = \{2, 3, 4, 6, 8, 12, 24, 48\}$ and R be a partial order relation of divisibility on A. Let B = $\{4, 6, 12\}$ be a subset of A. Find
 - (a) All upper bounds of B
 - (b) All lower bounds of B
 - (c) The least upper bound of B
 - (d) The greatest lower bound of B
- **6.** Show that the set L of all factors of 12 under divisibility forms a lattice.
- 7. Show that the lattices given by the following diagrams are not distributive.

- **8.** Define complemented and distributive lattice.
- **9.** Prove that the lattice given by the following diagram is modular.

10. Determine whether the posets represented by following Hasse diagrams are lattices.

