Ingeniería para el Procesado Masivo de Datos Dr. Pablo J. Villacorta

Tema 1. Introducción a las Tecnologías Big Data

Noviembre de 2022

Objetivos del tema

- Comprender cuáles son las necesidades actuales de procesamiento de datos, sus causas y cómo son solventadas por las tecnologías big data.
- Entender el concepto de clúster de ordenadores y cuáles son las principales tecnologías distribuidas capaces de explotarlo.
- Conocer las herramientas principales que componen el ecosistema
 Hadoop, cuál es la finalidad de cada una y cómo se relacionan entre sí.

- Vivimos en una sociedad interconectada: la era del cliente
- El 90 % de los datos existentes se generaron en los últimos 2 años

Fuentes de datos en la actualidad

Interacciones persona – persona

- Email (texto), redes sociales (imágenes, vídeos, texto), foros de internet (texto)
- Datos no estructurados al contener la vida cotidiana de las personas

Interacciones persona – máquina

- Navegación en internet:
 - Logs generados cuando navegamos por sitios web
 - Datos generados cuando hacemos transacciones bancarias, compras online (viajes, entradas, hoteles, Amazon).
 - Representan interacciones digitales de un cliente con una empresa
- Datos estructurados o semi-estructurados

Interacciones entre máquinas

- Datos generados por sensores (Internet of Things, IoT)
- Datos perfectamente estructurados al estar generados por máquinas

2019 This Is What Happens In An Internet Minute

La Transformación Digital en torno al dato

- Más interacciones digitales que físicas entre personas y sus compañías
 - Energía, empresas de telefonía, tiendas online, banca online
 - Cada interacción genera datos que hablan de los clientes (nosotros)
 - ¡Nosotros evolucionamos más rápido que las compañías!
 - Hueco entre las compañías tradicionales y nuestra forma de vivir
- Transformación Digital para adaptarnos al nuevo cliente:
 - Centrarse en el cliente (customer centricity): mejorar su experiencia, prever sus necesidades y su comportamiento: analizando sus datos!
 - Centrarse en lo que ocurre en los canales digitales: genera datos!
 - Decisiones guiadas por los datos (convertirse en data driven)
 - (Big) Data Science: los clientes generan muchísimos datos

- En la **era del cliente**, éste genera **grandes cantidades de datos** que una sola máquina no puede almacenar ni procesar
 - Procesamiento distribuido entre varias máquinas (clúster), cada una no necesariamente muy potente (commodity hardware)
 - Si se necesita más capacidad (datos, memoria o CPU) se añaden nodos
- Datos no estructurados (imágenes, vídeo, documentos) que las BBDD relacionales no pueden manejar
 - Solución: BBDD NoSQL (Hadoop ya incluye una: Apache HBase)

¿Qué es un proyecto Big Data?

- Un proyecto de datos se considera Big Data cuando implica alguna de las tres V's
 - Volumen: cantidades de datos lo suficientemente grandes como para no poderse procesar con tecnologías tradicionales.
 - Velocidad: flujos de datos que van llegando en tiempo real y tienen que procesarse de manera continua según se van recibiendo.
 - Variedad: datos de fuentes diversas, estructuradas y no estructuradas (sean BBDD relacionales, no relacionales, datos de imágenes, sonido, etc.) que tienen que ser manejados y cruzados de manera conjunta.

¿Qué es un proyecto Big Data?

- Una definición mejor sería:
 - Un proyecto es big data cuando la mejor manera de resolverlo (más rápida, eficiente, sencilla) implica utilizar tecnologías big data

Causas de esa imposibilidad:

- Cantidades ingentes de datos inimaginables hace unos años.
- Datos de fuentes diversas, heterogéneas, poco estructuradas como documentos o imágenes/sonido, que aun así necesitamos almacenar y consultar (NoSQL).
- Datos dinámicos recibidos y procesados según llegan (flujos de datos o streams).

Tecnologías Big Data: conjunto de **tecnologías** y **arquitecturas** para almacenar, mover, acceder y procesar (incluido analizar) datos que eran muy difíciles o imposibles de manejar con tecnologías tradicionales.

Aspecto de un cluster en la actualidad

Mare Nostrum 4
Barcelona
Supercomputing
Center (CSIC)

Top 500 de clusters más potentes (Junio 2021)

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442,010.0	537,212.0	29,899
2	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592	148,600.0	200,794.9	10,096
3	Sierra - IBM Power System AC922, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94,640.0	125,712.0	7,438
4	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway, NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371
5	Perlmutter - HPE Cray EX235n, AMD EPYC 7763 64C 2.45GHz, NVIDIA A100 SXM4 40 GB, Slingshot-10, HPE D0E/SC/LBNL/NERSC United States	706,304	64,590.0	89,794.5	2,528

Top 500 de clusters más potentes (Junio 2021)

Superordenador Fukagu, cuyo desarrollo empezó en 2014

- Terremotos, tsunamis
- Nuevos materiales
- COVID-19

Historia de Hadoop y Spark

- ► Google (C++) Almacenamiento + procesamiento usando commodity hardware
 - 2003 Google File System (GFS) el germen de HDFS
 http://static.googleusercontent.com/media/research.google.com/es//archive/gfs-sosp2003.pdf
 - 2004 Map Reduce (Simplified Data Processing on Large Clusters). http://static.googleusercontent.com/media/research.google.com/es//archive/mapreduce-osdi04.pdf
- Apache Hadoop (Java)
 - 2002, Doug Cutting desarrolla Nutch. 2006, Hadoop se independiza de Nutch
 - 2008, se hace open-source (incluye una implementación abierta de MapReduce)
 - Adoptado en grandes empresas de todo el mundo a partir del año 2011
- Apache Spark (Scala) Motivado por procesos iterativos (Machine Learning)
 - 2009 Matei Zaharia (era su tesis doctoral en UC Berkeley, grupo AMPLab)
 - 2010 Open Source
 - 2014 Forma parte de Apache 2.0. Top Level Project
 - 2015 Más de 1000 contributors
 - 2016+ La mayoría de clústeres de Hadoop son migrados a Spark.

Historia de Hadoop y Spark

Apache Spark Timeline

By Favio Vázquez

Historia de Hadoop y Spark

Ambari

Provisioning, Managing and Monitoring Hadoop Clusters

Scripting

Machine Learning

Log Collector

Zookeeper Coordination

YARN Map Reduce v2

Distributed Processing Framework

Hadoop Distributed File System

Flume

Componentes de Hadoop

- HDFS (Hadoop Distributed File System): sistema de archivos distribuido inspirado en el GFS de Google, que permite distribuir los datos entre distintos nodos de un clúster, gestionando la distribución y la redundancia de forma transparente para el desarrollador que vaya a hacer uso de esos datos.
- Apache Hive: herramienta para acceder mediante sintaxis SQL a datos estructurados que están almacenados en un sistema de archivos distribuido como HDFS u otros similares. Las consultas SQL son traducidas automáticamente a trabajos de procesamiento distribuido
- **Apache Spark:** motor de procesamiento distribuido y bibliotecas de programación distribuida de propósito general, que opera siempre en la memoria principal (RAM) de los nodos del clúster. Desde hace unos años ha reemplazado totalmente a MapReduce al ser mucho más rápido.
- **Apache Kafka:** plataforma para manejo de eventos en tiempo real, que consiste en una cola de mensajes distribuida y masivamente escalable sobre un clúster de ordenadores para ser consumidos por uno o varios procesos externos (por ejemplo trabajos de Spark).

Distribuciones de Hadoop

- Todos los componentes de Hadoop se puede descargar e instalar de forma independiente (requiere configuración posterior)
- Distribución de Hadoop: producto software con todos los componentes de Hadoop pre-instalados en versiones que inter-operan bien entre ellas, y con soporte adicional.
- Sandbox: máquina virtual que emula un sistema operativo con el software preinstalado, listo para ejecutar sin requerir instalación.

Característica	Cloudera	Hortonworks	MapR
Componentes	Apache modificados y añadidos	Sólo Apache oficiales	Apache y añadidos
Versiones	Open-source (CDH) y de pago	Sólo 100 % open-source	Open-source y de pago
Sistema operativo	Linux (Windows: VM Ware)	Linux y Windows	Linux (Windows: VM Ware)
Año de creación	2008	2011	2009
Observaciones	Es la más extendida. Certificación muy popular.	Única para Windows, y única 100 % open-source	La más rápida y fácil de instalar

...eso es todo por hoy... :-)

Cualquier duda, consulta o comentario: mensaje a través de la plataforma!

www.unir.net