

FIG. 3: (Color online) Dimensionless relative standard deviation σ_Z/L of the position of the movable piston as a function of the mass ratio M/m, for several values of the coefficient of normal restitution of the gas α , as indicated in the insert. The curves are guides for the eye. In all the cases, the coefficient of restitution for the gas-movable piston collisions is $\alpha_P = 0.99$.

III. COMPRESSIBILITY AND EFFECTIVE TEMPERATURE

To measure the facility of the system to be compressed, define a coefficient of compressibility k by

$$k \equiv -\frac{1}{\langle V \rangle} \left(\frac{\partial \langle V \rangle}{\partial p_L} \right)_{v_W},\tag{7}$$

where p_L is the pressure of the granular gas in the vicinity of the movable piston and V is the volume (area) of the system. The derivative in the above equation is computed at constant value of all the parameters defining the system, α , α_P , N_z and v_W , except $p_L = Mg_0/W$, as it follows from the definition of the pressure. In the following, p_L will be modified by changing the mass of the piston M, keeping g_0 and W unchanged. The reason for this choice is twofold. First, changing g_0 is equivalent to modifying v_W and, second, increasing