Package 'FinCal'

October 12, 2022

Title Time Value of Money, Time Series Analysis and Computational Finance
Description
Package for time value of money calculation, time series analysis and computational finance.
Version 0.6.3
Date 2016-07-27
Author Felix Yanhui Fan <nolanfyh@gmail.com></nolanfyh@gmail.com>
Imports ggplot2, reshape2, RCurl
Maintainer Felix Yanhui Fan <nolanfyh@gmail.com></nolanfyh@gmail.com>
License GPL (>= 2)
<pre>URL http://felixfan.github.io/FinCal/</pre>
RoxygenNote 5.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2016-07-29 06:40:54
R topics documented:
bdy
bdy2mmy
candlestickChart
cash.ratio
coefficient.variation
cogs
current.ratio

ear2bey		2
ear2hpr		2
EIR		3
EPS		4
financial.leverage		
fv		
fv.annuity		
fv.simple		
fv.uneven		
geometric.mean		
get.ohlc.google		
get.ohlc.yahoo		
get.ohlcs.google		0
get.ohlcs.yahoo		0
gpm		1
harmonic.mean		2
hpr		2
hpr2bey		3
hpr2ear		
hpr2mmy		
irr		
irr2		
lineChartMult		
lt.d2e		
mmy2hpr		
n.period		
npm		
npv		0
pmt		1
pv	3	2
pv.annuity		3
pv.perpetuity		3
pv.simple		4
pv.uneven	3.	5
quick.ratio		
r.continuous		
r.perpetuity		
sampling.error		
1 0		
SFRatio		
Sharpe.ratio		
slde		
total.d2e		
twrr		1
volumeChart		1
was		2

 bdy
 3

 wpr
 43

 Index
 44

 bdy
 Computing bank discount yield (BDY) for a T-bill

Description

Computing bank discount yield (BDY) for a T-bill

Usage

```
bdy(d, f, t)
```

Arguments

d the dollar discount, which is equal to the difference between the face value of

the bill and the purchase price

f the face value (par value) of the bill

t number of days remaining until maturity

See Also

bdy2mmy

Examples

```
bdy(d=1500,f=100000,t=120)
```

bdy2mmy

Computing money market yield (MMY) for a T-bill

Description

Computing money market yield (MMY) for a T-bill

Usage

```
bdy2mmy(bdy, t)
```

Arguments

bdy bank discount yield

t number of days remaining until maturity

4 candlestickChart

See Also

bdy

Examples

```
bdy2mmy(bdy=0.045,t=120)
```

candlestickChart

Technical analysts - Candlestick chart: show prices for each period as a continuous line. The box is clear if the closing price is higher than the opening price, or filled red if the closing is lower than the opening price.

Description

Technical analysts - Candlestick chart: show prices for each period as a continuous line. The box is clear if the closing price is higher than the opening price, or filled red if the closing is lower than the opening price.

Usage

```
candlestickChart(ohlc, start = NULL, end = NULL, main = "", ...)
```

Arguments

ohlc	output from get.ohlc.yahoo or get.ohlc.google
start	start date to plot, if not specified, all date in ohlc will be included
end	end date to plot
main	an overall title for the plot
	Arguments to be passed to ggplot

See Also

```
get.ohlc.yahoo
get.ohlc.google
```

```
# google <- get.ohlc.yahoo("GOOG",start="2013-07-01",end="2013-08-01"); candlestickChart(google)
# apple <- get.ohlc.google("AAPL",start="2013-07-01",end="2013-08-01"); candlestickChart(apple)</pre>
```

cash.ratio 5

cash.ratio cash ratio – Liquidity ratios measure the firm's ability to satisfy its short-term obligations as they come due.

Description

cash ratio – Liquidity ratios measure the firm's ability to satisfy its short-term obligations as they come due.

Usage

```
cash.ratio(cash, ms, cl)
```

Arguments

cash cash

ms marketable securities
cl current liabilities

See Also

```
current.ratio
quick.ratio
```

Examples

```
cash.ratio(cash=3000,ms=2000,cl=2000)
```

coefficient.variation Computing Coefficient of variation

Description

Computing Coefficient of variation

Usage

```
coefficient.variation(sd, avg)
```

Arguments

sd standard deviation avg average value

6 cogs

See Also

```
Sharpe.ratio
```

Examples

```
coefficient.variation(sd=0.15,avg=0.39)
```

cogs Cost of goods sold and ending inventory under three methods (FIFO,LIFO,Weighted average)

Description

Cost of goods sold and ending inventory under three methods (FIFO,LIFO,Weighted average)

Usage

```
cogs(uinv, pinv, units, price, sinv, method = "FIFO")
```

Arguments

uinv	units of beginning inventory
pinv	prince of beginning inventory
units	$nx1\ vector$ of inventory units. inventory purchased ordered by time (from first to last)
price	nx1 vector of inventory price. same order as units
sinv	units of sold inventory
method	inventory methods: FIFO (first in first out, permitted under both US and IFRS), LIFO (late in first out, US only), WAC (weighted average cost, US and IFRS)

```
cogs(uinv=2,pinv=2,units=c(3,5),price=c(3,5),sinv=7,method="FIFO")
cogs(uinv=2,pinv=2,units=c(3,5),price=c(3,5),sinv=7,method="LIFO")
cogs(uinv=2,pinv=2,units=c(3,5),price=c(3,5),sinv=7,method="WAC")
```

current.ratio 7

current.ratio	
---------------	--

current ratio – Liquidity ratios measure the firm's ability to satisfy its short-term obligations as they come due.

Description

current ratio – Liquidity ratios measure the firm's ability to satisfy its short-term obligations as they come due.

Usage

```
current.ratio(ca, cl)
```

Arguments

ca current assets
cl current liabilities

See Also

```
cash.ratio
quick.ratio
```

Examples

```
current.ratio(ca=8000,cl=2000)
```

ddb

Depreciation Expense Recognition – double-declining balance (DDB), the most common declining balance method, which applies two times the straight-line rate to the declining balance.

Description

Depreciation Expense Recognition – double-declining balance (DDB), the most common declining balance method, which applies two times the straight-line rate to the declining balance.

Usage

```
ddb(cost, rv, t)
```

8 debt.ratio

Arguments

cost cost of long-lived assets

rv residual value of the long-lived assets at the end of its useful life. DDB does not

explicitly use the asset's residual value in the calculations, but depreciation ends once the estimated residual value has been reached. If the asset is expected to have no residual value, the DB method will never fully depreciate it, so the DB method is typically changed to straight-line at some point in the asset's life.

t length of the useful life

See Also

slde

Examples

```
ddb(cost=1200,rv=200,t=5)
```

debt.ratio

debt ratio – Solvency ratios measure the firm's ability to satisfy its long-term obligations.

Description

debt ratio – Solvency ratios measure the firm's ability to satisfy its long-term obligations.

Usage

```
debt.ratio(td, ta)
```

Arguments

td total debt ta total assets

See Also

```
total.d2e
lt.d2e
financial.leverage
```

```
debt.ratio(td=6000,ta=20000)
```

diluted.EPS 9

di	1	ιıt	ed	F	PS

diluted Earnings Per Share

Description

diluted Earnings Per Share

Usage

```
diluted.EPS(ni, pd, cpd = 0, cdi = 0, tax = 0, w, cps = 0, cds = 0, iss = 0)
```

Arguments

ni	net income
pd	preferred dividends
cpd	dividends on convertible preferred stock
cdi	interest on convertible debt
tax	tax rate
W	weighted average number of common shares outstanding
cps	shares from conversion of convertible preferred stock
cds	shares from conversion of convertible debt
iss	shares issuable from stock options

See Also

EPS

iss

was

```
diluted.EPS(ni=115600,pd=10000,cdi=42000,tax=0.4,w=200000,cds=60000)
diluted.EPS(ni=115600,pd=10000,cpd=10000,w=200000,cps=40000)
diluted.EPS(ni=115600,pd=10000,w=200000,iss=2500)
diluted.EPS(ni=115600,pd=10000,cpd=10000,cdi=42000,tax=0.4,w=200000,cps=40000,cds=60000,iss=2500)
```

10 discount.rate

discount.rate

Computing the rate of return for each period

Description

Computing the rate of return for each period

Usage

```
discount.rate(n, pv, fv, pmt, type = 0)
```

Arguments

n	number of periods
pv	present value
fv	future value
pmt	payment per period
type	payments occur at the end of each period (type=0); payments occur at the be-

ginning of each period (type=1)

See Also

```
fv.simple
fv.annuity
fv
pv
pmt
n.period
```

```
discount.rate(n=5,pv=0,fv=600,pmt=-100,type=0)
```

ear 11

ear

Convert stated annual rate to the effective annual rate

Description

Convert stated annual rate to the effective annual rate

Usage

```
ear(r, m)
```

Arguments

r stated annual rate

m number of compounding periods per year

See Also

```
ear.continuous
hpr2ear
ear2bey
ear2hpr
```

Examples

```
ear(r=0.12,m=12)
ear(0.04,365)
```

ear.continuous

Convert stated annual rate to the effective annual rate with continuous compounding

Description

Convert stated annual rate to the effective annual rate with continuous compounding

Usage

```
ear.continuous(r)
```

Arguments

r stated annual rate

12 ear2hpr

```
See Also
```

```
ear
r.norminal
```

Examples

```
ear.continuous(r=0.1)
ear.continuous(0.03)
```

ear2bey

bond-equivalent yield (BEY), 2x the semiannual discount rate

Description

bond-equivalent yield (BEY), 2 x the semiannual discount rate

Usage

```
ear2bey(ear)
```

Arguments

ear

effective annual rate

See Also

ear

Examples

```
ear2bey(ear=0.08)
```

ear2hpr

Computing HPR, the holding period return

Description

Computing HPR, the holding period return

Usage

```
ear2hpr(ear, t)
```

EIR 13

Arguments

ear effective annual rate

t number of days remaining until maturity

See Also

hpr2ear ear hpr

Examples

```
ear2hpr(ear=0.05039,t=150)
```

EIR

Equivalent/proportional Interest Rates

Description

An interest rate to be applied n times p.a. can be converted to an equivalent rate to be applied p times p.a.

Usage

```
EIR(r, n = 1, p = 12, type = c("e", "p"))
```

Arguments

r interest rate to be applied n times per year (r is annual rate!)

n times that the interest rate r were compounded per year

p times that the equivalent rate were compounded per year

type equivalent interest rates ('e',default) or proportional interest rates ('p')

```
# monthly interest rat equivalent to 5% compounded per year EIR(r=0.05,n=1,p=12)
# monthly interest rat equivalent to 5% compounded per half year EIR(r=0.05,n=2,p=12)
# monthly interest rat equivalent to 5% compounded per quarter EIR(r=0.05,n=4,p=12)
# annual interest rate equivalent to 5% compounded per month EIR(r=0.05,n=12,p=1)
```

14 EPS

```
# this is equivalent to
ear(r=0.05,m=12)

# quarter interest rate equivalent to 5% compounded per year
EIR(r=0.05,n=1,p=4)

# quarter interest rate equivalent to 5% compounded per month
EIR(r=0.05,n=12,p=4)

# monthly proportional interest rate which is equivalent to a simple annual interest
EIR(r=0.05,p=12,type='p')
```

EPS

Basic Earnings Per Share

Description

Basic Earnings Per Share

Usage

```
EPS(ni, pd, w)
```

Arguments

ni net income

pd preferred dividends

w weighted average number of common shares outstanding

See Also

```
diluted.EPS
was
```

```
EPS(ni=10000,pd=1000,w=11000)
```

financial.leverage 15

financial.leverage	financial leverage - Solvency ratios measure the firm's ability to sat-
	isfy its long-term obligations.

Description

financial leverage – Solvency ratios measure the firm's ability to satisfy its long-term obligations.

Usage

```
financial.leverage(te, ta)
```

Arguments

```
te total equity
ta total assets
```

See Also

```
total.d2e
lt.d2e
debt.ratio
```

Examples

```
financial.leverage(te=16000,ta=20000)
```

fv

Estimate future value (fv)

Description

Estimate future value (fv)

Usage

```
fv(r, n, pv = 0, pmt = 0, type = 0)
```

Arguments

r	discount rate, or the interest rate at which the amount will be compounded each period
n	number of periods
pv	present value
pmt	payment per period
type	payments occur at the end of each period (type=0); payments occur at the beginning of each period (type=1)

16 fv.annuity

See Also

```
fv.simple
fv.annuity
pv
pmt
n.period
discount.rate
```

Examples

```
fv(0.07,10,1000,10)
```

fv.annuity

Estimate future value of an annuity

Description

Estimate future value of an annuity

Usage

```
fv.annuity(r, n, pmt, type = 0)
```

Arguments

r discount rate, or the interest rate at which the amount will be compounded each

period

n number of periods
pmt payment per period

type payments occur at the end of each period (type=0); payments occur at the be-

ginning of each period (type=1)

See Also

fv

```
fv.annuity(0.03,12,-1000)
fv.annuity(r=0.03,n=12,pmt=-1000,type=1)
```

fv.simple 17

fv.simple

Estimate future value (fv) of a single sum

Description

Estimate future value (fv) of a single sum

Usage

```
fv.simple(r, n, pv)
```

Arguments

r discount rate, or the interest rate at which the amount will be compounded each

period

n number of periods

pv present value

See Also

fv

Examples

```
fv.simple(0.08,10,-300)
fv.simple(r=0.04,n=20,pv=-50000)
```

fv.uneven

Computing the future value of an uneven cash flow series

Description

Computing the future value of an uneven cash flow series

Usage

```
fv.uneven(r, cf)
```

Arguments

r stated annual rate
cf uneven cash flow

18 get.ohlc.google

See Also

```
fv.simple
```

Examples

```
fv.uneven(r=0.1, cf=c(-1000, -500, 0, 4000, 3500, 2000))
```

geometric.mean

Geometric mean return

Description

Geometric mean return

Usage

```
geometric.mean(r)
```

Arguments

r

returns over multiple periods

Examples

```
geometric.mean(r=c(-0.0934, 0.2345, 0.0892))
```

get.ohlc.google

Download stock prices from Google Finance (open, high, low, close, volume)

Description

Download stock prices from Google Finance (open, high, low, close, volume)

Usage

```
get.ohlc.google(symbol, start = "2013-01-01", end = "today")
```

Arguments

```
symbol symbol of stock, e.g. AAPL, GOOG, SPX
```

start date, e.g., 2013-07-31 end end date, e.g., 2013-08-06 get.ohlc.yahoo 19

See Also

```
get.ohlc.yahoo
get.ohlcs.google
```

Examples

```
# get.ohlc.google(symbol="AAPL")
# get.ohlc.google(symbol="AAPL",start="2013-08-01")
# get.ohlc.google(symbol="AAPL",start="2013-07-01",end="2013-08-01")
```

get.ohlc.yahoo

Download stock prices from Yahoo Finance (open, high, low, close, volume, adjusted)

Description

Download stock prices from Yahoo Finance (open, high, low, close, volume, adjusted)

Usage

```
get.ohlc.yahoo(symbol, start = "firstDay", end = "today", freq = "d")
```

Arguments

```
symbol symbol of stock, e.g. AAPL, GOOG, SPX
start start date, e.g., 2013-07-31
end end date, e.g., 2013-08-06
freq time interval, e.g., d:daily, w:weekly, m:monthly
```

See Also

```
get.ohlcs.yahoo
get.ohlc.google
```

```
# get.ohlc.yahoo(symbol="AAPL")
# get.ohlc.yahoo(symbol="AAPL",start="2013-08-01",freq="d")
# get.ohlc.yahoo(symbol="AAPL",start="2013-07-01",end="2013-08-01",freq="w")
```

20 get.ohlcs.yahoo

get.ohlcs.google	Batch download stock prices from Google Finance (open, high, low, close, volume)
get.onies.googie	

Description

Batch download stock prices from Google Finance (open, high, low, close, volume)

Usage

```
get.ohlcs.google(symbols, start = "2013-01-01", end = "today")
```

Arguments

```
symbols symbols of stock, e.g. AAPL, GOOG, SPX start start date, e.g., 2013-07-31 end end date, e.g., 2013-08-06
```

See Also

```
get.ohlc.google
get.ohlcs.yahoo
```

Examples

```
# get.ohlcs.google(symbols=c("AAPL","GOOG","SPY"))
# get.ohlcs.google(symbols=c("AAPL","GOOG","SPY"),start="2013-01-01")
# get.ohlcs.google(symbols=c("AAPL","GOOG","SPY"),start="2013-01-01",end="2013-07-31")
```

get.ohlcs.yahoo Batch download stock prices from Yahoo Finance (open, high, low, close, volume, adjusted)

Description

Batch download stock prices from Yahoo Finance (open, high, low, close, volume, adjusted)

Usage

```
get.ohlcs.yahoo(symbols, start = "firstDay", end = "today", freq = "d")
```

gpm 21

Arguments

```
symbols symbols of stock, e.g. AAPL, GOOG, SPX start start date, e.g., 2013-07-31 end end date, e.g., 2013-08-06
```

freq time interval, e.g., d:daily, w:weekly, m:monthly

See Also

```
get.ohlc.yahoo
get.ohlcs.google
```

Examples

```
# get.ohlcs.yahoo(symbols=c("AAPL","GOOG","SPY"),freq="d")
# get.ohlcs.yahoo(symbols=c("AAPL","GOOG","SPY"),start="2013-01-01",freq="m")
```

gpm

gross profit margin – Evaluate a company's financial performance

Description

gross profit margin - Evaluate a company's financial performance

Usage

```
gpm(gp, rv)
```

Arguments

gp gross profit, equal to revenue minus cost of goods sold (cogs)

rv revenue (sales)

See Also

npm

```
gpm(gp=1000,rv=20000)
```

22 hpr

harmonic.mean

harmonic mean, average price

Description

harmonic mean, average price

Usage

```
harmonic.mean(p)
```

Arguments

p

price over multiple periods

Examples

```
harmonic.mean(p=c(8,9,10))
```

hpr

Computing HPR, the holding period return

Description

Computing HPR, the holding period return

Usage

```
hpr(ev, bv, cfr = 0)
```

Arguments

ev ending value
bv beginning value
cfr cash flow received

See Also

```
twrr
hpr2ear
hpr2mmy
```

```
hpr(ev=33,bv=30,cfr=0.5)
```

hpr2bey 23

hpr2bey

bond-equivalent yield (BEY), 2 x the semiannual discount rate

Description

bond-equivalent yield (BEY), 2 x the semiannual discount rate

Usage

```
hpr2bey(hpr, t)
```

Arguments

hpr holding period return

t number of month remaining until maturity

See Also

hpr

Examples

```
hpr2bey(hpr=0.02, t=3)
```

hpr2ear

Convert holding period return to the effective annual rate

Description

Convert holding period return to the effective annual rate

Usage

```
hpr2ear(hpr, t)
```

Arguments

hpr holding period return

t number of days remaining until maturity

See Also

ear

hpr

ear2hpr

24 irr

Examples

```
hpr2ear(hpr=0.015228,t=120)
```

hpr2mmy

Computing money market yield (MMY) for a T-bill

Description

Computing money market yield (MMY) for a T-bill

Usage

```
hpr2mmy(hpr, t)
```

Arguments

hpr holding period return

t number of days remaining until maturity

See Also

hpr

mmy2hpr

Examples

```
hpr2mmy(hpr=0.01523,t=120)
```

irr

Computing IRR, the internal rate of return

Description

Computing IRR, the internal rate of return

Usage

irr(cf)

Arguments

cf

cash flow,the first cash flow is the initial outlay

irr2 25

See Also

```
pv.uneven
npv
```

Examples

```
# irr(cf=c(-5, 1.6, 2.4, 2.8))
```

irr2

Computing IRR, the internal rate of return

Description

This function is the same as irr but can calculate negative value. This function may take a very long time. You can use larger cutoff and larger step to get a less precision irr first. Then based on the result, change from and to, to narrow down the interval, and use a smaller step to get a more precision irr.

Usage

```
irr2(cf, cutoff = 0.1, from = -1, to = 10, step = 1e-06)
```

Arguments

cf cash flow,the first cash flow is the initial outlay cutoff threshold to take npv as zero from smallest irr to try to largest irr to try

step increment of the irr

See Also

irr

```
# irr2(cf=c(-5, 1.6, 2.4, 2.8))
# irr2(cf=c(-200, 50, 60, -70, 30, 20))
```

26 lineChart

iss	calculate the net increase in common shares from the potential exer-
	cise of stock options or warrants

Description

calculate the net increase in common shares from the potential exercise of stock options or warrants

Usage

```
iss(amp, ep, n)
```

Arguments

amp average market price over the year
ep exercise price of the options or warrants

n number of common shares that the options and warrants can be convened into

See Also

```
diluted.EPS
```

Examples

```
iss(amp=20,ep=15,n=10000)
```

lineChart

Technical analysts - Line charts: show prices for each period as a continuous line

Description

Technical analysts - Line charts: show prices for each period as a continuous line

Usage

```
lineChart(ohlc, y = "close", main = "", ...)
```

Arguments

ohlc	output from get.ohlc.yahoo or get.ohlc.google
У	y coordinates: close, open, high, low or adjusted (yahoo data only)
main	an overall title for the plot
	Arguments to be passed to ggplot

lineChartMult 27

See Also

```
get.ohlc.yahoo
get.ohlc.google
```

Examples

```
# google <- get.ohlc.yahoo("GOOG"); lineChart(google)
# apple <- get.ohlc.google("AAPL"); lineChart(apple)</pre>
```

lineChartMult

Technical analysts - Line charts: show prices for each period as a continuous line for multiple stocks

Description

Technical analysts - Line charts: show prices for each period as a continuous line for multiple stocks

Usage

```
lineChartMult(ohlcs, y = "close", main = "", ...)
```

Arguments

```
ohlcs output from get.ohlc.yahoo.mult or get.ohlc.google.mult
y y coordinates: close, open, high, low or adjusted (yahoo data only)
main an overall title for the plot
... Arguments to be passed to ggplot
```

See Also

```
get.ohlcs.yahoo
get.ohlcs.google
lineChart
```

```
# googapple <- get.ohlcs.yahoo(c("GOOG","AAPL"),start="2013-01-01");
# lineChartMult(googapple)
# googapple <- get.ohlcs.google(c("GOOG","AAPL"),start="2013-01-01");
# lineChartMult(googapple)</pre>
```

28 mmy2hpr

lt.d2e	long-term debt-to-equity – Solvency ratios measure the firm's ability to satisfy its long-term obligations.
	te sains, it tens term consumers.

Description

long-term debt-to-equity – Solvency ratios measure the firm's ability to satisfy its long-term obligations.

Usage

```
lt.d2e(ltd, te)
```

Arguments

ltd long-term debt te total equity

See Also

```
total.d2e
debt.ratio
financial.leverage
```

Examples

```
lt.d2e(ltd=8000,te=20000)
```

mmy2hpr

Computing HPR, the holding period return

Description

Computing HPR, the holding period return

Usage

```
mmy2hpr(mmy, t)
```

Arguments

mmy money market yield

t number of days remaining until maturity

n.period 29

See Also

```
bdy2mmy
hpr2mmy
hpr
```

Examples

```
mmy2hpr(mmy=0.04898, t=150)
```

n.period

Estimate the number of periods

Description

Estimate the number of periods

Usage

```
n.period(r, pv, fv, pmt, type = 0)
```

Arguments

r discount rate, or the interest rate at which the amount will be compounded each

period

pv present value fv future value

pmt payment per period

type payments occur at the end of each period (type=0); payments occur at the be-

ginning of each period (type=1)

See Also

```
pv
fv
pmt
discount.rate
```

```
n.period(0.1,-10000,60000000,-50000,0)
n.period(r=0.1,pv=-10000,fv=60000000,pmt=-50000,type=1)
```

30 npv

npm

net profit margin – Evaluate a company's financial performance

Description

net profit margin - Evaluate a company's financial performance

Usage

```
npm(ni, rv)
```

Arguments

ni net income rv revenue (sales)

See Also

gpm

Examples

```
npm(ni=8000,rv=20000)
```

npν

Computing NPV, the PV of the cash flows less the initial (time = 0) outlay

Description

Computing NPV, the PV of the cash flows less the initial (time = 0) outlay

Usage

```
npv(r, cf)
```

Arguments

r discount rate, or the interest rate at which the amount will be compounded each

period

cf cash flow,the first cash flow is the initial outlay

pmt 31

See Also

```
pv.simple
pv.uneven
irr
```

Examples

```
npv(r=0.12, cf=c(-5, 1.6, 2.4, 2.8))
```

pmt

Estimate period payment

Description

Estimate period payment

Usage

```
pmt(r, n, pv, fv, type = 0)
```

Arguments

r discount rate, or the interest rate at which the amount will be compounded each

period

n number of periods

pv present value fv future value

type payments occur at the end of each period (type=0); payments occur at the be-

ginning of each period (type=1)

See Also

pv fv n.period

```
pmt(0.08,10,-1000,10)
pmt(r=0.08,n=10,pv=-1000,fv=0)
pmt(0.08,10,-1000,10,1)
```

32 pv

рν

Estimate present value (pv)

Description

Estimate present value (pv)

Usage

```
pv(r, n, fv = 0, pmt = 0, type = 0)
```

Arguments

r discount rate, or the interest rate at which the amount will be compounded each

period

n number of periods

fv future value

pmt payment per period

type payments occur at the end of each period (type=0); payments occur at the be-

ginning of each period (type=1)

See Also

```
pv.simple
pv.annuity
fv
pmt
n.period
discount.rate
```

```
pv(0.07,10,1000,10)
pv(r=0.05,n=20,fv=1000,pmt=10,type=1)
```

pv.annuity 33

					٠		
pν	ลเ	٦r	าเ	1	1	t.	V

Estimate present value (pv) of an annuity

Description

Estimate present value (pv) of an annuity

Usage

```
pv.annuity(r, n, pmt, type = 0)
```

Arguments

r discount rate, or the interest rate at which the amount will be compounded each

period

n number of periods

pmt payment per period

type payments occur at the end of each period (type=0); payments occur at the be-

ginning of each period (type=1)

See Also

pν

Examples

```
pv.annuity(0.03,12,1000)
pv.annuity(r=0.0425,n=3,pmt=30000)
```

pv.perpetuity

Estimate present value of a perpetuity

Description

Estimate present value of a perpetuity

Usage

```
pv.perpetuity(r, pmt, g = 0, type = 0)
```

pv.simple

Arguments

r discount rate, or the interest rate at which the amount will be compounded each

period

pmt payment per period growth rate of perpetuity

type payments occur at the end of each period (type=0); payments occur at the be-

ginning of each period (type=1)

See Also

```
r.perpetuity
```

Examples

```
pv.perpetuity(r=0.1,pmt=1000,g=0.02)
pv.perpetuity(r=0.1,pmt=1000,type=1)
pv.perpetuity(r=0.1,pmt=1000)
```

pv.simple

Estimate present value (pv) of a single sum

Description

Estimate present value (pv) of a single sum

Usage

```
pv.simple(r, n, fv)
```

Arguments

r discount rate, or the interest rate at which the amount will be compounded each

period

n number of periods

fv future value

See Also

pν

```
pv.simple(0.07,10,100)
pv.simple(r=0.03,n=3,fv=1000)
```

pv.uneven 35

pv.uneven

Computing the present value of an uneven cash flow series

Description

Computing the present value of an uneven cash flow series

Usage

```
pv.uneven(r, cf)
```

Arguments

r discount rate, or the interest rate at which the amount will be compounded each

period

cf uneven cash flow

See Also

```
pv.simple
npv
```

Examples

```
pv.uneven(r=0.1, cf=c(-1000, -500, 0, 4000, 3500, 2000))
```

quick.ratio

quick ratio – Liquidity ratios measure the firm's ability to satisfy its short-term obligations as they come due.

Description

quick ratio – Liquidity ratios measure the firm's ability to satisfy its short-term obligations as they come due.

Usage

```
quick.ratio(cash, ms, rc, cl)
```

Arguments

ms marketable securities

rc receivables

cl current liabilities

36 r.norminal

See Also

```
current.ratio
cash.ratio
```

Examples

```
quick.ratio(cash=3000,ms=2000,rc=1000,cl=2000)
```

r.continuous

Convert a given norminal rate to a continuous compounded rate

Description

Convert a given norminal rate to a continuous compounded rate

Usage

```
r.continuous(r, m)
```

Arguments

r norminal rate

m number of times compounded each year

See Also

```
r.norminal
```

Examples

```
r.continuous(0.03,4)
```

r.norminal

Convert a given continuous compounded rate to a norminal rate

Description

Convert a given continuous compounded rate to a norminal rate

Usage

```
r.norminal(rc, m)
```

r.perpetuity 37

Arguments

rc continuous compounded rate

m number of desired times compounded each year

See Also

```
r.continuous
ear.continuous
```

Examples

```
r.norminal(0.03,1)
r.norminal(0.03,4)
```

r.perpetuity

Rate of return for a perpetuity

Description

Rate of return for a perpetuity

Usage

```
r.perpetuity(pmt, pv)
```

Arguments

pmt payment per period pv present value

See Also

```
pv.perpetuity
```

```
r.perpetuity(pmt=4.5,pv=-75)
```

38 SFRatio

sampling.error

Computing Sampling error

Description

Computing Sampling error

Usage

```
sampling.error(sm, mu)
```

Arguments

sm sample mean mu population mean

Examples

```
sampling.error(sm=0.45, mu=0.5)
```

SFRatio

Computing Roy's safety-first ratio

Description

Computing Roy's safety-first ratio

Usage

```
SFRatio(rp, rl, sd)
```

Arguments

rp portfolio return

rl threshold level return

sd standard deviation of portfolio retwns

See Also

```
Sharpe.ratio
```

```
SFRatio(rp=0.09,rl=0.03,sd=0.12)
```

Sharpe.ratio 39

O.I.			
Shar	മ	rat	- 1 ^

Computing Sharpe Ratio

Description

Computing Sharpe Ratio

Usage

```
Sharpe.ratio(rp, rf, sd)
```

Arguments

rp	portfolio return		
rf	risk-free return		

sd standard deviation of portfolio retwns

See Also

```
coefficient.variation
SFRatio
```

Examples

```
Sharpe.ratio(rp=0.038,rf=0.015,sd=0.07)
```

slde

Depreciation Expense Recognition – Straight-line depreciation (SL) allocates an equal amount of depreciation each year over the asset's useful life

Description

Depreciation Expense Recognition – Straight-line depreciation (SL) allocates an equal amount of depreciation each year over the asset's useful life

Usage

```
slde(cost, rv, t)
```

Arguments

cost cost of long-lived assets

rv residual value of the long-lived assets at the end of its useful life

t length of the useful life

40 total.d2e

See Also

ddb

Examples

```
slde(cost=1200,rv=200,t=5)
```

total.d2e

total debt-to-equity – Solvency ratios measure the firm's ability to satisfy its long-term obligations.

Description

total debt-to-equity – Solvency ratios measure the firm's ability to satisfy its long-term obligations.

Usage

```
total.d2e(td, te)
```

Arguments

td total debt te total equity

See Also

```
total.d2e
debt.ratio
financial.leverage
```

```
total.d2e(td=6000,te=20000)
```

twrr 41

twrr

Computing TWRR, the time-weighted rate of return

Description

Computing TWRR, the time-weighted rate of return

Usage

```
twrr(ev, bv, cfr)
```

Arguments

ev ordered ending value list
bv ordered beginning value list
cfr ordered cash flow received list

See Also

hpr

Examples

```
twrr(ev=c(120,260),bv=c(100,240),cfr=c(2,4))
```

volumeChart

Technical analysts - Volume charts: show each period's volume as a vertical line

Description

Technical analysts - Volume charts: show each period's volume as a vertical line

Usage

```
volumeChart(ohlc, main = "", ...)
```

Arguments

ohlc output from get.ohlc.yahoo or get.ohlc.google

main an overall title for the plot

... Arguments to be passed to ggplot

42 was

See Also

```
get.ohlc.yahoo
get.ohlc.google
```

Examples

```
# google <- get.ohlc.yahoo("GOOG");
# volumeChart(google)
# apple <- get.ohlc.google("AAPL");
# volumeChart(apple)</pre>
```

was

calculate weighted average shares – weighted average number of common shares

Description

calculate weighted average shares - weighted average number of common shares

Usage

```
was(ns, nm)
```

Arguments

ns n x 1 vector vector of number of shares

nm n x 1 vector vector of number of months relate to ns

See Also

```
EPS diluted.EPS
```

```
s=c(10000,2000);m=c(12,6);was(ns=s,nm=m)
s=c(11000,4400,-3000);m=c(12,9,4);was(ns=s,nm=m)
```

wpr 43

wpr

Weighted mean as a portfolio return

Description

Weighted mean as a portfolio return

Usage

```
wpr(r, w)
```

Arguments

r returns of the individual assets in the portfolio

w corresponding weights associated with each of the individual assets

```
wpr(r=c(0.12, 0.07, 0.03), w=c(0.5, 0.4, 0.1))
```

Index

bdy, 3, 4 bdy2mmy, 3, 3, 29	irr2, 25 iss, 9, 26
<pre>candlestickChart, 4 cash.ratio, 5, 7, 36 coefficient.variation, 5, 39 cogs, 6</pre>	lineChart, 26, 27 lineChartMult, 27 lt.d2e, 8, 15, 28
current.ratio, <i>5</i> , <i>7</i> , <i>36</i>	mmy2hpr, 24, 28
ddb, 7, 40 debt.ratio, 8, 15, 28, 40 diluted.EPS, 9, 14, 26, 42 discount.rate, 10, 16, 29, 32	$\begin{array}{c} \text{n.period, } 10, 16, 29, 31, 32 \\ \text{npm, } 21, 30 \\ \text{npv, } 25, 30, 35 \end{array}$
ear, 11, 12, 13, 23 ear.continuous, 11, 11, 37 ear2bey, 11, 12	pmt, 10, 16, 29, 31, 32 pv, 10, 16, 29, 31, 32, 33, 34 pv.annuity, 32, 33 pv.perpetuity, 33, 37
ear2hpr, 11, 12, 23 EIR, 13	pv.simple, <i>31</i> , <i>32</i> , <i>34</i> , <i>35</i> pv.uneven, <i>25</i> , <i>31</i> , <i>35</i>
EPS, 9, 14, 42	quick.ratio, 5, 7, 35
financial.leverage, 8, 15, 28, 40 fv, 10, 15, 16, 17, 29, 31, 32 fv.annuity, 10, 16, 16 fv.simple, 10, 16, 17, 18	r.continuous, 36, 37 r.norminal, 12, 36, 36 r.perpetuity, 34, 37
fv.uneven, 17 geometric.mean, 18 get.ohlc.google, 4, 18, 19, 20, 27, 42 get.ohlc.yahoo, 4, 19, 19, 21, 27, 42 get.ohlcs.google, 19, 20, 21, 27 get.ohlcs.yahoo, 19, 20, 20, 27 gpm, 21, 30	sampling.error, 38 SFRatio, 38, 39 Sharpe.ratio, 6, 38, 39 slde, 8, 39 total.d2e, 8, 15, 28, 40, 40 twrr, 22, 41
harmonic.mean, 22 hpr, 13, 22, 23, 24, 29, 41 hpr2bey, 23 hpr2ear, 11, 13, 22, 23 hpr2mmy, 22, 24, 29	volumeChart, 41 was, 9, 14, 42 wpr, 43
irr, 24, 25, 31	