МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Факультет обшей и прикладной физики

Отчёт по лабораторной работе 1.2.2 «Проверка закона вращательного движения на примере крестообразного маятника Обербека»

Выполнил: Студент гр. Б02-304 Головинов. Г.А.

1 Аннотация

Цель работы: Проверить справедливость основного уравнения вращательного движения тела вокруг закреплённой оси, получив зависимость углового ускорения от момента инерции тела и момента сил, прикладываемых к системе тел, проанализировать влияние сил.

Используемые инструменты: Крестообразный маятник Обербека (Рис. 1), весы, штангенциркуль, компьютер с программой «Kinetic», грузы различной массы.

2 Основные теоретические сведения

Рис. 1: Крестообразный маятник Обербека

Основное уравнение вращательного движения:

$$I\varepsilon = M \tag{1}$$

где $\varepsilon=\beta=\ddot{\varphi}$ — угловое ускорение тела, M — суммарный момент всех сил, действующих на тело, I — момент инерции тела

Некоторые необходимые в работе уравнения

Момент силы натяжения нити: $M_T = rT$, где r – радиус шкива.

Сила T выражается через $m_{\rm H}\ddot{y}=m_{\rm H}g-T$, где $m_{\rm H}=m_{\rm H}+m_{\rm F}$ – масса платформы с грузом

Получим:

$$M_T = m_{\rm H} r (q - \beta r) \tag{2}$$

Учитывая действие силы трения на маятник:

$$(I + m_{\rm H}r^2)\beta = m_{\rm H}gr - M_{\rm TD} \tag{3}$$

При проведении эксперимента получилось, что массы подвеса достаточно для медленного и равномерного вращения маятника. Это говорит, что $M_0 < m_{\rm n} gr = 0,001545~{
m H\cdot M}$

3 Результаты измерений и обработка данных

Рассчет момента инерции I маятника через график $\beta_0(M_T)$: Проводим 8 измерений с грузом m=100 г, чтобы получить случайную погрешность измерений β_0 :

Таблица 1: Результаты измерения k и β_0

k, Гц	σ_k	$eta_0,\mathrm{pag/c^2}$	σ_{eta_0}
-0,009043	0,00062	0,6165	0,00088
-0,008601	0,00094	0,6163	0,00130
-0,00779	0,00096	0,6104	0,00140
-0,007661	0,00051	0,6111	0,00053
-0,009521	0,00051	0,6219	0,00044
-0,008676	0,00073	0,6148	0,00082

По этим результатам по методу χ^2 получим:

$$\sigma_{\beta_0}^{rnd} = 0,000282 \text{ рад/c}^2$$
 (4)

 β_0 возьмем как среднее:

$$\langle \beta_0 \rangle = 0,615166 \text{ pag/c}^2 \tag{5}$$

Таблица 2: Результаты M_T по формуле (2)

m , Γ	r, cm	k, Гц	σ_k , Гц	$eta_0,\mathrm{pag/c^2}$	σ_{eta_0}	M_T , H·M	$\sigma_M H \cdot_M$
71	1,75	-0,00696	0,00046	0,39390	0,00042	0,012180	8,67E-5
109	1,75	-0,08549	0,00026	0,61517	0,00028	0,018692	8,78E-5
171	1,75	-0,01135	0,00071	0,98040	0,00110	0,029305	9,07E-5
209	1,75	-0,01227	0,00064	1,21100	0,00100	0,035803	9,31E-5
209	0,9	-0,01156	0,00067	0,64380	0,00130	0,018442	4,80E-5
171	0,9	-0,01052	0,00068	0,51980	0,00120	0,015090	4,67E-5
109	0,9	-0,00801	0,00065	0,31900	0,00100	0,009621	4,52E-5
70	0,9	-0,00742	0,00055	0,20220	0,00065	0,006179	4,46E-5

Погрешность M_T вычислять будем по формуле:

$$\sigma_M = \sqrt{\left(\frac{\sigma_m}{m}\right)^2 + \left(\frac{\sigma_g}{g}\right)^2} \tag{6}$$

Погрешность измерения штангенциркуля σ_r не будем учитывать, так как она много меньше измеренного радиуса шкива $r,\,\sigma_m{=}0,5$ г, $\sigma_g=0,01.$

Рис. 2: График зависимости $\beta_0(M_T)$


```
import matplotlib.pyplot as plt
    import numpy as np
    from scipy.optimize import curve_fit
    plt.figure(figsize=(6, 6))
    plt.ylim(0,1.5)
    plt.xlim(0,0.04)
    plt.rcParams['text.usetex'] = True
    b0 = [0.3939, 0.615166, 0.9804, 1.211, 0.6438, 0.5198,
     0.319, 0.2022]
    mt = [0.012189, 0.018713, 0.029356, 0.03588, 0.018453,
     0.015098, 0.009624, 0.00618]
    sigmab0 = [0.00042, 0.000282, 0.0011, 0.001, 0.0013,
10
     0.0012, 0.001, 0.00065]
    sigmam = [0.0002, 0.0002, 0.0003, 0.0004, 0.0002, 0.0002,
11
     0.0001, 0.0001]
12
    f = lambda k,x,b: k*x+b
13
    popt,pcov = curve_fit(f,mt,b0,sigma=sigmam)
15
    k,b = popt
    print(1/k,b)
16
    pp = []
17
    p1 = plt.errorbar(mt,b0,sigmam,sigmab0,fmt='.k',elinewidth
     =0.5, label=r"Experimental data")
    z = np.poly1d (np.polyfit(mt,b0,1))
19
    x=np.linspace(0,0.04,100)
    plt.plot(x,f(k,x,b),'r-',linewidth=1,label=r"Approximation
     y = kx + b ")
    print(-b/k)
22
23
24
    plt.title(r'$\beta_0(M_T)$')
    plt.legend(loc='upper left')
25
    plt.grid()
26
    plt.show()
27
```

Листинг 1: Код построения графика и апроксимации по методу χ^2

Видно, что экспериментальные точки довольно хорошо ложаться на прямую, что подтверждает справедливость основного уравнения вращательного движения.

При аппроксимации через метод χ^2 получаем прямую y=kx+b, где $k=34,1325,\,b=-0,0086.$ Все экспериментальные точки хорошо ложатся на прямую, что соответствует теории.

Пересечение с осью абсцисс при $M_0 = 0,00023792 \text{ H·м}$, что действительно много меньше $m_{\rm H}gr$, значит полученные данные соотносятся с наблюдением.

Определим момент инерции с помощью коэффициента наклона $k = I^{-1} \Rightarrow I = 0,029357 \text{ кг}\cdot\text{м}^2$, а погрешность составила $\sigma_I = 0,017782$

$$I = (0,029357 \pm 0,000239) \text{ кг} \cdot \text{m}^2$$

Погрешность составила около 1% (почему так – обсудим в выводах)

Рассчет момента инерции *I* **вторым способом** Зная массы грузов, их расстояния до оси вращения, их внешний и внутренний радиус мы можем рассчитать момент инерции системы маятник-грузы следующим образом:

$$I = I_0 + \sum_{i=1}^{4} (I_i + m_i R_i^2) \tag{7}$$

где I_0 – момент инерции маятника без грузов, а

$$I_i = \frac{1}{12}m_i h^2 + \frac{1}{4}m_i (a_1^2 + a_2^2)$$
 (8)

Найдем I_0 по аналогии с маятником с грузами:

Таблица 3: Результаты измерения для маятника без грузов

m , Γ	r, cm	β_0 , рад/ c^2	$\sigma_{eta_0},\mathrm{pag/c^2}$	$M_T, \text{ H} \cdot \text{M}$	$\sigma_M, \text{ H}\cdot_{\text{M}}$
53	0,9	1.592	0,0059	0,00467937	4,44E-05
70	0,9	2,092	0,0100	0,00618030	4,46E-05
109	0,9	3,298	0,0093	0,00962361	4,52E-05
170	0,9	5,187	0,0120	0,01500930	4,67E-05
209	0,9	6,533	0,0200	0,01845261	4,80E-05

Рис. 3: Зависимость $\beta_0(M_T)$ для маятника без грузов

Получим

$$I_0 = (0,002801 \pm 0,000148) \, \mathrm{kr} \cdot \mathrm{m}^2$$

Почему получилась такая погрешность – обсудим в выводах I_i вычисляем по формуле (8) и получаем

$$\sum_{i=1}^{4} (I_i + m_i R_i^2) = 0,0239 \text{ kg} \cdot \text{m}^2$$

Погрешность в данном случае вычисляем по формуле:

$$\sigma_{\sum I} = I \sqrt{\left(\frac{\sigma_m}{m}\right)^2 + \left(2\frac{\sigma R}{R}\right)^2} \tag{9}$$

Погрешностью измерения h, a_1, a_2 пренебрегаем, так как они были измерены с помощью штангенциркуля, а σ_R примем за 1 см. Итого получаем

$$I_i = (0.0239 \pm 0.0024) \text{ kg} \cdot \text{m}^2$$

А полный момент инерции получился

$$I = (0,0267 \pm 0,0024) \text{ kg} \cdot \text{m}^2$$

Получили значение момента инерции маятника двумя способами: с помощью графика $\beta_0(M_T)$ и с помощью теоретических соотношений (уравнения (7) и (8)). Они очень хорошо соотносятся (и даже почти попадают в интервал $\pm 1\sigma$)

3.1 Интересный колебательный процесс, который мы наблюдали во время выполнения работы

Изначально (несмотря на очень хорошую балансировку) нам не удавалось получить хорошие данные при измерении подъема и спуска груза, поэтому мы перешли в режим измерения спуска. Это улучшило ситуацию, однако в примерно половине случаев результаты имели явные колебания, которые не давали возможности доверять полученным значениям. Была выдвинута гипотеза — на результаты влиял способ намотки нити (по часовой или против), что не имело никакого физического смысла, однако оказалось правдой. Мы измерили самые «красивые» колебания, чтобы потом их нанести на график и вот что из этого получилось:

Рис. 4: Результаты измерений при «неправильной» намотке нити

Рис. 5: Результаты измерений при «неправильной» намотке нити (с вычетом прямой по MHK)

К сожалению, в установленное время не было возможности должным образом воспроизвести этот эффект после пересборки экспериментальной установки, поэтому эта часть работы требует продолжения и заключения.

4 Обсуждение результатов и выводы

В ходе работы мы проверили справедливость основного уравнения вращательного движения (рис. 2)

Также мы измерили момент инерции крестообразного маятника Обербека двумя способами: с помощью теоретических соотношений (уравнения (7)-(8)) и с помощью углового коэффициента зависимости $\beta_0(M_T)$

Полученные этими двумя методами значения очень хорошо соотносятся и почти попадают в пределы $\pm 1\sigma$ друг от друга (относительная погрешность $\varepsilon=9,05\%$). Можно сказать, что погрешность измерений была недооценена, поэтому получилось, что данные расходятся друг от друга более чем на $\pm 1\sigma$