December 2009

1. If
$$f(x) = 2x \arctan 2x - \frac{1}{2} \ln(1 + 4x^2) + \arcsin(\frac{2}{3})$$
, a) find $f'(x)$, and simplify your answer. [4]
b) evaluate $f'(\frac{1}{2})$ Ans: $2 \arctan 2x$, $\frac{\pi}{2}$

Evaluate the following limits; use the symbols $-\infty$ or $+\infty$ when appropriate:

3. a)
$$\lim_{x \to \infty} \left(1 + \frac{4}{x} \right)^{2x}$$
 Ans: e^{8} , 0, 18

b)
$$\lim_{x \to 0^+} e^{-\frac{2}{x}} \ln x$$
 [3]

c)
$$\lim_{x \to 0} \frac{e^{6x} - 6x - 1}{x^2}$$

4.. Perform the operations:

a) $\int \frac{2x+1}{\sqrt{x-3}} dx$

$$2\left[\frac{2}{3}(x-3)^{\frac{3}{2}} + 7(x-3)^{\frac{1}{2}}\right] + C$$

Ans:

b)
$$\int \frac{9x-1}{(x-3)(x^2+4)} dx$$

$$2\ln|x-3| - \ln(x^2+4) + \frac{3}{2} \tan^{-1}(x/2) + C$$
 [5]

c)
$$\int x \sec^{-1} x \, dx$$
 $\frac{1}{2} \left(x^2 \sec^{-1} x - \sqrt{x^2 - 1} \right) + C$ [3]

e)
$$\int_{0}^{\frac{1}{2}} \frac{\arcsin x}{\sqrt{1-x^2}} dx$$
 $\frac{\pi^2}{72}$ [3]

f)
$$\int e^{3x} \sin x \, dx \qquad \frac{e^{3x}}{10} \left(-\cos x + 3\sin x \right) + C \qquad [5]$$

g)
$$\int \frac{1}{\sqrt{9x^2 - 16}} dx$$
 $\frac{1}{3} \left(\ln 3x + \sqrt{9x^2 - 16} \right) + C$ [5]

4. Evaluate the improper integral:

a)
$$\int_{1}^{\frac{2}{\sqrt{3}}} \frac{dx}{x\sqrt{x^2-1}}$$
 $\frac{\pi}{6}$

Ans:

b)
$$\int_{4}^{\infty} \frac{dx}{x \ln x}$$
 D

5. Solve the differential equation satisfying the given conditions:

$$2y\frac{dy}{dx} = y^2 - 1$$
, $y > 0$, $y(0) = 2$
$$\ln\left|\frac{y^2 - 1}{3}\right| = x$$
 [4]

6. Find the exact area of the region between the curves $y = \frac{2}{x} - 1$ and y = 2 - x. [4]

Please draw a picture and shade the region. $\frac{3}{2} - \ln 4$ sq. units

- 7. Let *R* be the region bounded by $y = \sin(x^2)$ and the *x*-axis on $[0, \sqrt{\pi}]$.
 - a) Find the exact volume of the solid obtained from revolving *R* about the *y*-axis. [3]
 - b) Set up, but do not attempt to evaluate, the integral required to find the volume of the solid obtained from revolving

R about the x-axis. $2\pi cu.units \qquad \int \pi \sin^2(x^2) dx \qquad [2]$

8. Determine whether the sequence converges or diverges; if it converges, say what it converges to:

a)
$$\left\{1+\cos\left[\left(2n+1\right)\frac{\pi}{2}\right]\right\}$$
 C to 1

b)
$$\left\{ (-1)^n \frac{3n^2 + n - 2}{n^2} \right\}$$
 D: $\lim_{n \to \infty} a_n \, dne$ [1]

9. Answer True (T) or False (F). If your answer is 'False', give an example to illustrate. [3]

a) If
$$\lim_{n\to\infty} |a_n| \neq 0$$
, then $\lim_{n\to\infty} a_n \neq 0$ ______ T [1]

b) If
$$\lim_{n \to \infty} a_n = 0$$
, then $\sum_{n=1}^{\infty} \sin a_n$ converges ______ F ex. $a_n = \frac{1}{n}$ [2]

10. Find the sum of the series $\sum_{n=0}^{\infty} \left(\frac{3^{n+1} + 2^n}{4^n} \right).$ Sum is 14

11. Classify each of the following series as convergent or divergent, and briefly justify your answer.

a)
$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n^2} \right)$$
 D: $\sum \frac{1}{n^2} C$ [3]

b)
$$\sum_{n=1}^{\infty} \left(\frac{2n-e}{n^2} \right)^{2n}$$

c)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n^3 - 1}}{n^2 + 1}$$

D by LCT with
$$\sum \frac{1}{\sqrt{n}}$$
 which D [3]

d)
$$\sum_{n=0}^{\infty} \frac{(n!)^2}{(2n)!}$$

12. Classify each of the following series as absolutely convergent, conditionally convergent, or divergent. Briefly justify your answer.

a)
$$\sum_{n=1}^{\infty} \left(-1\right)^n \frac{\arctan n}{n^3 + 1}$$

AC by LCT with
$$\sum \frac{1}{n^2}$$
 which C [3]

b)
$$\sum_{n=1}^{\infty} \left(-1\right)^n \cos \frac{1}{n}$$

c)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{n^2 + 1}$$

13. Determine the radius and interval of convergence of the series:

$$\sum_{n=1}^{\infty} \frac{3^{n-1} \left(x+1\right)^n}{n \sqrt{n+1}}$$

$$\left[-\frac{4}{3}, -\frac{2}{3}\right]$$
 [5]

14. Let
$$f(x) = \ln(x+1)$$
.

- a) Write the first 5 non-zero terms of the Maclaurin series for f.
- b) Find a formula for the nth term, and write the series in sigma notation.

$$x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \frac{1}{5}x^5$$
.....

$$\sum_{n=1}^{\infty} \left(-1\right)^{n+1} \frac{x^n}{n}$$