Mid Semester Evaluation:

Robust Controller Design Using H-infinity Loop-Shaping

Ayush Pandey • 12IE32001

Overview

Background Study

- Preliminary mathematics
- MIMO framework
- Coprime factorisation and LFT
- Algebraic Riccati equation
- Loop shaping
- H_m control theory
- H_∞ controller design using loop shaping

Progress

- Preliminary mathematics
- Coprime factorisation : SISO
- MIMO framework: Beginner

Progress - Preliminary mathematics

Vector spaces

- Banach spaces
- Hilbert spaces
- I₂ and L₂ space in time
- L₂ and H₂ spaces (Laplace Transforms)
- L_{_} and H_{_} spaces

Induced norms and gains

- Matrix norm
- Induced norm
- G-induced norm (Transfer matrix, G)
- Measure of size of signal for performance specification

Progress - Coprime factorisation over RH

For SISO systems

- Minimal realization and coprimeness
- Euclid's algorithm for polynomials
- Bezout identity

For MIMO systems

- Bezout identity
- Left and right coprime factors
- Doubly coprime factorisation

Results

Solved a SISO system to find out normalised right coprime factorization for the following transfer function:

$$N(s)'N(s) + M(s)'M(s) = 1$$

Also, singular value of column matrix of normalized coprime factors was calculated to be 1, which is obvious from the definition.

Progress - MIMO framework

Gain calculation

- Depends on input direction as well.
 - For same norms of input and output, the gain is different.
 - Proved this with examples.
- Singular value calculation gives a good measure of gain for different frequencies

Singular values and H_m norm

- Singular values from eigen values
- The H-infinity norm at a particular frequency is equal to the maximum singular value of the matrix at that frequency (for MIMO systems)
- This norm is also referred to as worst case attenuation

Results and simulations I

```
matlab Code SISO:

a=[1 0;4 -3];
b=[0;1];
c=[1 1];
d =0;
H=ss(a,b,c,d);
title('SISO Singular Values');
figure(1)
grid on
sigma(H)
```

```
MATLAB Code MIMO:
```

```
am=[-1 0 ;0 -3];
bm=[0 1;2 1];
cm=[1 2;1 0];
dm=0;
Hm=ss(am,bm,cm,dm);
title('MIMO Singular Values');
figure(2)
grid on
sigma(Hm)
```

The simulation results obtained were verified by hand calculations and the values obtained were same.

Results and Simulations II

Results and Simulations III

Schedule

Goals for end semester

- Complete understanding using different examples and simulations of preliminaries to robust control
 - a. Coprime factorisation
 - b. LFT
- 2. Loop-shaping
- 3. Beginning with H_m control theory

References

Kemin Zhou et. al. Robust and Optimal Control 1995

Thank You