1.1 NUMBERS - ROUNDING - SCIENTIFIC FORM

NOTATION FOR SETS OF NUMBERS

Remember the following known sets of numbers:

$$N = \{0, 1, 2, 3, 4, ...\}$$
 natural

$$Z = \{0, \pm 1, \pm 2, \pm 3, ...\}$$
 integers

$$Q = \{\frac{a}{b}: a,b \in \mathbb{Z}, b \neq 0\}$$
 rational (fractions of integers)

Known irrational numbers:

$$\sqrt{2}$$
, $\sqrt{3}$, $\sqrt{5}$ and all \sqrt{a} where a is not a perfect square $\pi = 3.14159...$

To indicate particular subsets we use the indices +,-, * as follows:

$$Z^{+} = \{1, 2, 3, ...\}$$
 positive integers

$$Z^{-} = \{-1, -2, -3, ...\}$$
 negative integers

$$Z^* = \{\pm 1, \pm 2, \pm 3, ...\}$$
 non-zero integers i.e. $Z^* = Z - \{O\}$

Similar notations apply for the other sets above.

For intervals of real numbers we use the following notations:

$$x \in [a,b]$$
 for $a \le x \le b$

$$x \in]a,b[or x \in (a,b)$$
 for $a < x < b$

$$x \in [a,b[or x \in [a,b)$$
 for $a \le x < b$

$$x \in [a, +\infty[or x \in [a, +\infty)$$
 for $x \ge a$

$$x \in]-\infty,a]$$
 or $x \in (-\infty,a]$ for $x \le a$

$$x \in]-\infty,a] \cup [b,+\infty[$$
 for $x \le a$ or $x \ge b$

I have to continue my notes with a — not so pleasant — discussion about rounding of numbers. The numerical answer to a problem is not always **exact** and we have to use some rounding.

♦ DECIMAL PLACES VS SIGNIFICANT FIGURES

Consider the number

123.4567

There are two ways to round up the number by using fewer digits:

- In a specific number of decimal places (d.p.)

in 1 d.p.	123.5
in 2 d.p.	123.46
in 3 d.p.	123.457

We can also round up before the decimal point:

to the nearest integer	123
to the nearest 10	120
to the nearest 100	100

- In a specific number of **significant figures (s.f.)**: for the position of cutting we start counting from the first non-zero digit:

in 4 s.f.	123.5
in 5 s.f.	123.46
in 6 s.f.	123.457

But also

in 2 s.f.	120
in 1 s.f.	100

Notice that the number at the critical position

remains as it is if the following digit is 0, 1, 2, 3, 4 Increases by 1 if the following digit is 5, 6, 7, 8, 9

EXAMPLE 1

Consider the number

0.04362018

in de	ecimal places	in sig	nificant figures
in 2 d.p.	0.04	in 2 s.f.	0.044
in 3 d.p.	0.044	in 3 s.f.	0.0436
in 4 d.p.	0.0436	in 4 s.f.	0.04362
in 6 d.p.	0.043620	in 5 s.f.	0.043620

<u>Important remark:</u> In the final IB exams the requirement is to give the answers either in **exact** form or **in 3 s.f**. . For example

exact form	in 3sf
$\sqrt{2}$	1.41
2π	6.28
12348	12300

♦ THE SCIENTIFIC FORM a×10k

Any number can be written in the form

$$a \times 10^k$$
 where $1 \le a < 10$

We simply move the decimal point after the first non-zero digit. For example, the number

$$123.4567$$
 can be written as 1.234567×10^2

Indeed,

$$1.234567 \times 10^2 = 1.234567 \times 100 = 123.4567$$

Notice that

we moved the decimal point 2 positions to the left

$$\Rightarrow k = 2$$

Even for a "small" number, say

we can find such an expression:

Notice that

we moved the decimal point 5 positions to the right

$$\Rightarrow$$
 k = -5

NOTICE:

 They may ask us to give the number in scientific form but also in 3 s.f. Then

$$1.2345 \times 10^2 \cong 1.23 \times 10^2$$

 $1.2345 \times 10^{-5} \cong 1.23 \times 10^{-5}$

• Most calculators use the symbol E±-- for the scientific notation:

The notation 1.2345E+02 means 1.2345×10^2

The notation 1.2345E-05 means 1.2345×10^{-5}

EXAMPLE 2

(a) Give the scientific form of the numbers

$$x = 100000$$
 $y = 0.00001$ $z = 4057.52$ $w = 0.00107$

(b) Give the standard form of the numbers

$$s = 4.501 \times 10^7$$
 $t = 4.501 \times 10^{-7}$

Solution

(a) $x = 1 \times 10^5$

$$y = 1 \times 10^{-5}$$

 $z = 4.05752 \times 10^3$

$$W = 1.07 \times 10^{-3}$$

(b) s = 45010000

t = 0.0000004501

EXAMPLE 3

Consider the numbers

$$x = 3 \times 10^7$$
 and $y = 4 \times 10^7$

Give x+y and xy in scientific form.

Solution

$$x+y = 7 \times 10^7$$
 [add 3+4]

[keep the same exponent]

$$xy = 12 \times 10^{14}$$
 [multiply 3×4]

[add exponents]

=
$$1.2 \times 10^{15}$$
 [modify a so that $1 \le a < 10$]

EXAMPLE 4

Consider the numbers

$$x = 3 \times 10^7$$
 and $y = 4 \times 10^9$

Give x+y and xy in scientific form.

Solution

For addition we must modify y (or x) in order to achieve similar forms

$$X = 3 \times 10^7$$

$$y = 4 \times 10^9 = 400 \times 10^7$$

$$x+y = 403 \times 10^7$$
 [add 3+400]

[keep the same exponent]

=
$$4.03 \times 10^{9}$$
 [modify a so that $1 \le a < 10$]

For multiplication there is no need to modify y:

$$xy = 12 \times 10^{16}$$
 [multiply 3×4]

[add exponents]

=
$$1.2 \times 10^{17}$$
 [modify a so that $1 \le a < 10$]