OSNOVE UMETNE INTELIGENCE 2022/23

informirani preiskovalni algoritmi (IDA*) lokalni preiskovalni algoritmi

Pridobljeno znanje s prejšnjih predavanj

neinformirano preiskovanje

- iterativno poglabljanje
 - povečevanje omejitve globine
 - popoln, optimalen, časovna zahtevnost $O(b^d)$, prostorska zahtevnost O(bd)
 - kombinira prednosti iskanja v širino in iskanja v globino
- dvosmerno iskanje
 - potrebno poznavanje končnega stanja
 - časovna zahtevnost o(b^{d/2})
- cenovno-optimalno iskanje
 - razvija vozlišče, ki ima najmanjšo skupno ceno dosedanje poti -g(n), fronta urejena kot prioritetna vrsta
 - popoln, optimalen, časovna in prostorska zahtevnost $O(b^{1+|C^*/\epsilon|})$
 - potrebna detekcija ciljnega vozlišča šele ob njegovem razvijanju
- informirano (hevristično) preiskovanje
 - požrešno iskanje
 - vedno razvijemo najbolj obetavno vozlišče glede na hevristično oceno, vozlišča urejena v prioritetni vrsti
 - f(n)=h(n)
 - nepopoln, neoptimalen, možnost ciklanja
 - A*
- f(n)=g(n)+h(n)
- vozlišča urejena v prioritetni vrsti
- popoln in optimalen, če je hevristika dopustna (ne precenjuje cene do cilja)

Pregled

- preiskovanje prostora stanj
 - informirani preiskovalni algoritmi
 - hevristično preiskovanje (primer)
 - požrešno preiskovanje
 - A
 - IDA*
 - kakovost hevrističnih funkcij
 - lokalni preiskovalni algoritmi in optimizacijski problemi
 - plezanje na hrib
 - simulirano ohlajanje
 - lokalno iskanje v snopu

Algoritem IDA*

- iterative-deepening A*
- deluje analogno kot **iterativno poglabljanje** (izvaja **preiskovanje v globino** z različnimi mejami), vendar za mejo ne uporabljamo globine, temveč vrednost funkcije f(n)
 - za mejo na začetku izberemo vrednost f(n) začetnega vozlišča
 - na vsaki iteraciji razvijemo vsa vozlišča z $f(n) \le$ mejni vrednosti
 - za naslednjo iteracijo izberemo mejo, ki je najmanjši f(n) še nerazvitih vozlišč

```
procedure ida_star(root)
  bound := h(root)
  path := [root]
  loop
    t := search(path, 0, bound)
    if t = FOUND then return (path, bound)
    if t = ∞ then return NOT_FOUND
    bound := t
  end loop
end procedure
```

```
function search (path, g, bound)
  node := path.last
 f := g + h \pmod{p}
  if f > bound then return f
  if is goal (node) then return FOUND
  min := \infty
  for succ in successors (node) do
   if succ not in path then
      path.push(succ)
      t := search (path, g + cost (node, succ), bound)
      if t = FOUND then return FOUND
      if t < min then min := t
      path.pop()
    end if
  end for
  return min
end function
```

Algoritem IDA*

- primer:
 - podane so vrednost f(n) (= g(n) + h(n)) vozlišč
 - simuliraj preiskovanje z IDA*
- generirana vozlišča
 - 1. iteracija, meja=1: a/1, b/2, c/1, f/1, j/3, g/2
 - 2. iteracija, meja=2: a/1, b/2, d/10, e/10, c/1, f/1, j/3, g/2, k/4
 - 3. iteracija, meja=3: a/1, b/2, d/10, e/10, c/1, f/1, j/3, l/4, g/2, k/4
 - 4. iteracija, meja=4: a/1, b/2, d/10, e/10, c/1, f/1, j/3, l/4

Učinkovitost algoritma IDA*

- redundanca: ponovno generiranje velikega števila vozlišč
- neučinkovit, če prevladujejo vozlišča z zelo raznolikimi vrednostmi funkcije f(n)
- vendar: v spominu hrani samo trenutno pot (podobno kot pri iskanju v globino) in ne vseh vozlišč kot A*
- želimo si, da je IDA* optimalen glede na: <u>ceno</u> najdene rešitve, <u>porabljen prostor</u> in <u>porabljen čas</u>:
 - to je možno, če IDA* razvije najmanjše potrebno število vozlišč, čemur rečemo,
 da jih razvija v prioritetnem vrstnem redu
 - IDA* razvija vozlišča v prioritetnem vrstnem redu, če je hevristična ocena h(n) **monotona** ali **konsistentna** (monotone/consistent). To je res, kadar za vsaki povezani vozlišči n in n' velja (trikotniška neenakost): $h(n) \le c(n,n') + h(n')$ in h(g) = 0 za vsako končno vozlišče g
 - če je hevristika monotona/konsistentna, je tudi dopustna (!)

Učinkovitost algoritma IDA*

- poenostavitev: za zagotovitev razvijanja vozlišč v prioritetnem vrstnem redu ni nujno potrebno, da velja monotonost za hevristiko h, temveč **že zadošča, da je monotona cenilna funkcija** f (= g + h)
- cenilna funkcija f je monotona, če za vsak par povezanih vozlišč n in n' velja f(n) <= f(n')
- primer nemonotone funkcije *f* :
 - meja za f je enaka 5, vendar pa vozlišče z f=3 razvijemo pred vozlišči z f=1 in f=2
- premislek izziv (objavi odgovor na forumu)!
 - Ali dopustna hevristična funkcija h zagotavlja, da je cenilna funkcija f monotona?
 - Ali za monotone cenilne funkcije f velja, da zadoščajo pogoju iz izreka o dopustnosti hevristik h?

Pregled

- preiskovanje prostora stanj
 - informirani preiskovalni algoritmi
 - hevristično preiskovanje (primer)
 - požrešno preiskovanje
 - A,
 - IDA*
 - kakovost hevrističnih funkcij
 - lokalni preiskovalni algoritmi in optimizacijski problemi
 - plezanje na hrib
 - simulirano ohlajanje
 - lokalno iskanje v snopu

Kakovost hevrističnih funkcij

- primer: igra 8 ploščic
- povprečna dolžina rešitve je 22 korakov
- povprečni faktor vejanja je 3
 (2 potezi možni v vogalu, 3 ob robu, 4 v sredini)
- izčrpno preiskovanje bi torej pregledalo prostor 3²² stanj (za 3x3); na srečo je dosegljivih le približno 9!/2 = 181,440 stanj
- hevristična funkcija lahko učinkovito zmanjša prostorsko in časovno ceno iskanja
- pri iskanju ustrezne hevristike si pomagamo s poznavanjem problema

Kakovost hevrističnih funkcij

- primeri hevrističnih funkcij:
 - h_1 število ploščic, ki niso na pravem mestu (za primer na desni: $h_1 = 8$)
 - h_2 vsota manhattanskih razdalj ploščic do pravega mesta (za primer na desni: $h_2 = 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18$)
- kakovost h lahko ocenimo:
 - s številom generiranih vozlišč
 - z efektivnim faktorjem vejanja (koliko vozlišč N je algoritem generiral, da je na globini d našel rešitev)

	števii	lo generiranih	n vozlišč	efektivni faktor vejanja		
Globina	IDS	A*(h ₁)	A*(h ₂)	IDS	A*(h ₁)	A*(h ₂)
2	10	6	3	2,45	1,79	1,79
4	112	13	12	2,87	1,48	1,45
6	680	20	18	2,73	1,34	1,30
8	6384	39	25	2,80	1,33	1,24
10	47127	93	39	2,79	1,38	1,22
12	3644035	227	73	2,78	1,42	1,24
14	?	539	113	?	1,44	1,23
16	?	1301	211	?	1,45	1,25
18	?	3056	363	?	1,46	1,26
20	?	7276	676	?	1,47	1,27
22	?	18094	1219	?	1,48	1,28
24	?	39135	1641	?	1,48	1,26

7	2	4
5		6
8	3	1

Kako do idej za hevristike?

- želimo imeti dopustne hevristike:
 - s čim višjimi vrednostmi
 - s sprejemljivo ceno (časom) izračuna
- v prejšnjem primeru je h_2 boljša od h_1 (ker $h_2(n) \ge h_1(n)$ za vsak n, pravimo, da h_2 dominira h_1)
- pridobivanje hevristik:
 - iz poenostavljenega (relaksiranega) problema:
 - "ploščico lahko prestavimo na poljubno (tudi neprazno) polje"
 - "ploščico lahko prestavimo na poljubno (tudi nesosednje) prazno polje"
 - "ploščico lahko prestavimo na <u>sosednje</u> (tudi <u>neprazno</u>) polje"
 - z vzorci podproblemov (osredotočimo se npr. samo na iskanje rešitve za del problema)
 - z izkušnjami in uteževanjem kriterijev (npr. oddaljenost od cilja, število sosednjih ploščic, ki ne mejijo na ciljno mesto ipd.)

Start State

Goal State

Pregled

- preiskovanje prostora stanj
 - informirani preiskovalni algoritmi
 - hevristično preiskovanje (primer)
 - požrešno preiskovanje
 - A*
 - IDA*
 - kakovost hevrističnih funkcij
 - lokalni preiskovalni algoritmi in optimizacijski problemi
 - plezanje na hrib
 - simulirano ohlajanje
 - lokalno iskanje v snopu

Lokalni preiskovalni algoritmi

- namesto sistematičnega preiskovanja možnih poti od začetka do cilja izvajajo <u>iterativno</u> ocenjevanje in spreminjanje podanih stanj
 - izberi začetno množico stanj (eno ali več njih)
 - poišči sosednja stanja od trenutnega, pri tem ne ohranjaj poti
 - ponavljaj do ustavitvenega pogoja
- koristni v primerih:
 - če nas zanima samo kakovost rešitve (stanja) in ne tudi pot do cilja (primer: pri igri 8 ploščic je pot pomembna, pri problemu 8 kraljic pa ne)
 - za reševanje optimizacijskih problemov, kjer je podana kriterijska funkcija za oceno kakovosti rešitve
- prednosti:
 - majhna poraba prostora
 - v praksi najdejo dober približek rešitve v prostorih, ki so s sistematičnimi preiskovalnimi algoritmi neobvladljivi

Lokalni preiskovalni algoritmi

- primer: 4 kraljice na šahovnici
- kriterijska funkcija: maksimiziramo (minus) število kraljic, ki se medsebojno napadajo
- če želimo ohraniti zaporedje korakov, ki vodijo do rešitve, je najdena iskalna pot pomembna, sicer pa ne; najdena iskalna pot za desni problem:
 - B0 na B3
 - D0 na D2
 - A0 na A1

Plezanje na hrib

- angl. hill-climbing search (ali: greedy local search)
- premikaj se po prostoru stanj v smeri najboljše izboljšave kriterijske funkcije
- primer problema 8 kraljic:
 - kot "soseda" trenutnega stanja definiramo stanje, kjer 1 kraljico premaknemo na drugo polje znotraj istega stolpca
 - skupaj: 8x7=56 sosednih stanj
 - kriterijska funkcija: število kraljic, ki se napadajo (na zgornji sliki je prikazana vrednost kriterijske funkcije, če kraljico iz vsakega stolpca premaknemo na izbrano mesto znotraj stolpca), izvajamo minimizacijo
 - lokalno iskanje lahko "obtiči" v lokalnem optimumu (primer na spodnji sliki: h=1, vendar ima vsak sosed stanja višjo vrednost funkcije)
 - v 14% lokalno iskanje najde rešitev v 4 korakih, v 86% obtiči v lokalnem maksimumu po 3 korakih (vseh stanj je 17 milijonov)

Lokalni preiskovalni algoritmi

- preiskujejo prostor stanj z namenom najti globalni maksimum glede na vrednost kriterijske funkcije
 - optimalni algoritem: najde globalni maksimum
- težave:
 - lokalni maksimumi ("vrhovi")
 - področja, kjer ima kriterijska funkcija konstantno vrednost (rame, planote)
 - grebeni (za plezanje navzgor je najprej potreben sestop po pobočju grebena)

Plezanje na hrib

 možnost obtičanja v lokalnem maksimumu (najden cikel pri preiskovanju)

ABCD

Reševanje iz lokalnih maksimumov

- koraki vstran: če ima naslednje stanje isto vrednost kriterijske funkcije, dovolimo premik v to stanje (korak "vstran", angl. sideways move)
 - upamo, da smo na "rami" in ne na "planoti"
 - smiselno je omejiti število dovoljenih korakov vstran
 - primer: pri problemu 8 kraljic verjetnost uspeha naraste s 14% na 94%
- stohastično plezanje na hrib: iz množice boljših stanj, verjetnostno izberemo naslednje stanje (pri čemer upoštevamo, da imajo boljša stanja večjo verjetnost izbora)
- naključni ponovni zagon: večkrat poženi plezanje na hrib iz naključnih začetnih stanj, dokler ne najdeš rešitve
 - če je verjetnost uspeha enega zagona p, je v povprečju potrebnih 1/p zagonov
 - za problem 8 kraljic:
 - $p = 0.14 \Rightarrow$ potrebnih je 7 zagonov (skupaj približno 22 korakov)
 - če dovolimo tudi korake vstran (p = 0.94), je potrebnih $1/0.94 \approx 1.06$ zagonov

Reševanje iz lokalnih maksimumov

Local Search score over time

In 1 Local Search run, do not confuse starting initialized score, best score, step score and move score.

Pregled

- preiskovanje prostora stanj
 - informirani preiskovalni algoritmi
 - hevristično preiskovanje (primer)
 - požrešno preiskovanje
 - A*
 - IDA*
 - kakovost hevrističnih funkcij
 - lokalni preiskovalni algoritmi in optimizacijski problemi
 - plezanje na hrib
 - simulirano ohlajanje
 - lokalno iskanje v snopu

Simulirano ohlajanje

- angl. simulated annealing
- optimizacijski algoritem, ki izvira iz fizikalnih lastnosti v metalurgiji (ko je jeklo tekoče, so molekule v njem bolj gibljive; ko se ohlaja, se strjuje in molekule se umirjajo)
- analogija:
 - generiramo naključne sosede trenutnega stanja
 - če najdemo boljše stanje, ga vedno izberemo
 - če najdemo slabše stanje, ga izberemo z določeno verjetnostjo
 - verjetnost izbire neoptimalnega stanja s časom pada (nižanje temperature)
- analogija: zibanje igralne površine, da žogice skočijo iz lokalnih optimumov (na sliki: iščemo lokalne minimume)

```
for t \leftarrow 1 to \infty do  T \leftarrow schedule[t]  if T = 0 then return current  next \leftarrow \text{a randomly selected successor of } current  \Delta E \leftarrow \text{Value}[next] - \text{Value}[current]  if \Delta E > 0 then current \leftarrow next else current \leftarrow next only with probability e^{\Delta E/T}
```


Simulirano ohlajanje - demo

iskanje globalnega maksimuma

Simulirano ohlajanje

- za vsako slabše vozlišče naključno odločimo, ali ga izberemo kot naslednika
- če je vozlišče boljše, ga vedno izberemo za naslednika
- sčasoma (s padom temperature) simulirano ohlajanje preide v navadno plezanje na hrib

for $t \leftarrow 1$ to ∞ do $T \leftarrow schedule[t]$ if T = 0 then return *current* $next \leftarrow$ a randomly selected successor of current $\Delta E \leftarrow \text{Value}[next] - \text{Value}[current]$ if $\Delta E > 0$ then $current \leftarrow next$ else $\mathit{current} \leftarrow \mathit{next}$ only with probability $e^{\Delta \ E/T}$

 $\max \square = e^{\Delta/t}$

Demo

https://haseebq.com/n-queens-visualizer/

Lokalno iskanje v snopu

- algoritem:
 - v spominu hrani k aktualnih stanj namesto enega
 - izberi *k* optimalnih stanj od sosedov aktualnih stanj
 - ponavljaj do ustavitvenega pogoja
- ni enako kot k vzporednih iskanj, ker ocenjujemo kakovost cele generacije iskanj (ne neodvisnih vzporednih iskanj)
- problemi:
 - celoten snop k iskanj obtiči v lokalnih maksimumih
 - rešitev: stohastično iskanje v snopu: izberi naključne naslednike z verjetnostjo, ki je sorazmerna njihovi kakovosti

generiraj *k* naključnih začetnih stanj

generiraj sosede

izberi k najboljših naslednikov

ponavljaj...

Primer izpitne naloge

• 3. izpit, 7. 9. 2018

3. NALOGA (25t):

Rešujemo problem iskanja izhoda iz hodnika, ki ga sestavljajo štiri sobe (prikazano na desni sliki). V eni izmed sob se nahaja robot, ki se lahko na vsakem koraku lahko premakne za 1 sobo v levo (L) ali v desno (D).

4 3 2 1 → izhod

Problem želimo rešiti s preiskovanjem v snopu, ki na vsakem koraku hrani 2 aktualni stanji (k=2). Preiskovanje začnemo s stanjema, ki sta prikazani na spodnji sliki (ti dve stanji smo izbrali naključno, pika prikazuje lokacijo robota). Kot kriterijsko funkcijo najdene rešitve uporabljamo razdaljo od izhoda (vrednost kriterijske funkcije za robota v vsaki posamezni sobi je prikazana na zgornji skici).

Naloge:

- a) (10t) Nariši zaporedje stanj pri preiskovanju, ki ga nadaljuj vse dokler ne najdemo končnega stanja (robot se premakne skozi desno (črtkano) stranico labirinta).
- b) (10t) Denimo, da namesto "navadnega" iskanja v snopu uporabljamo stohastično iskanje v snopu. Za generirane rešitve v 2. (nasledniki začetnega vozlišča) in 3. iteraciji preiskovanja izračunaj verjetnosti, da bo sosed izbran za naslednjo iteracijo.
- c) (5t) V katero družino algoritmov spada iskanje v snopu? Naštej še tri druge algoritme iz iste družine, ki jih poznaš.

