By Le Chen.

Computation for Figure 11.4 (partial)

Crated on Mon 04 Oct 2021 10:11:50 AM CDT

Let's compute the node with stock price 43.246

First input the data

```
\alpha = 0.30;
In[ • ]:=
          r = 0.08;
         h = \frac{1}{3};
          S = 43.246;
          Cu = 12.814;
          Cd = 0;
          \delta = 0;
          \sigma = 0.30;
         u = Exp[(r - \delta) h + \sigma \sqrt{h}];
         d = Exp[(r - \delta) h - \sigma \sqrt{h}];
```

Now compute p

$$ln[*] = \mathbf{p} = \frac{\mathbf{Exp}[\alpha \, \mathbf{h}] - \mathbf{d}}{\mathbf{u} - \mathbf{d}}$$

$$Out[*] = \mathbf{0.675363}$$

Now compute the expected payoff

```
ln[ \circ ] := X = p Cu + (1 - p) Cd
Out[ • ]= 8.6541
```

Now compute **△** and B

$$\Delta = \operatorname{Exp}[-\delta h] \frac{\operatorname{Cu} - \operatorname{Cd}}{\operatorname{S}(u - d)}$$

$$B = \operatorname{Exp}[-r h] \frac{\operatorname{u} \operatorname{Cd} - \operatorname{d} \operatorname{Cu}}{u - d}$$

Out[•]= 0.828701

Out[•] = -30.1385

Now compute the discounted rate y

$$lof * j = \gamma = \frac{1}{h} Log \left[\frac{\Delta S}{\Delta S + B} e^{\alpha h} + \frac{B}{\Delta S + B} e^{r h} \right]$$

$$Out * j = 1.25297$$

Finally, compute the discounted expected payoff

$$ln[\circ]:= X e^{-\gamma h}$$
Out[$\circ]= 5.69949$

We want to compare it with the other formula $\Delta S + B$

$$In[\circ] := \Delta S + B$$

$$Out[\circ] = 5.69949$$

They produce the same value!

Now let's try another α

 $ln[\circ] := \alpha = 0.40;$

Now compute p

$$ln[+]:= \mathbf{p} = \frac{\mathbf{Exp}[\alpha \ \mathbf{h}] - \mathbf{d}}{\mathbf{u} - \mathbf{d}}$$

Out[• J = 0.78013

Now compute the expected payoff

$$ln[\circ] = X = p Cu + (1-p) Cd$$
Out $[\circ] = 9.99659$

Now compute Δ and B has been computed in the previous case.

Now compute the discounted rate y

$$\log \left[\frac{\Delta S}{\Delta S + B} e^{\alpha h} + \frac{B}{\Delta S + B} e^{r h} \right]$$

Out[•]= 1.6856

Finally, compute the discounted expected payoff

In[•]:=
$$\mathbf{X} e^{-\gamma h}$$
Out[•]= 5.69949

They produce the same value! Different pairs of (α, γ) can produce the same option price, these pairs are called consistent pairs.