

Kapitel 5: Schaltnetze und Schaltwerke

- 5.1 Einführung und Überblick
- **5.2** Boolesche Funktionen und Boolesche Algebra
- 5.3 Schaltnetze
- 5.4 Schaltwerke

> Quellen

- M. Broy: "Informatik Eine grundlegende Einführung", Teil II, Springer-Verlag, 1992 (Kap. 2)
- U. Rembold, P. Levi: "Einführung in die Informatik für Naturwissenschaftler und Ingenieure", 3. Auflage, Hanser-Verlag, 1999 (Kap. 2.4)
- D. Werner u.a.: "Taschenbuch der Informatik", Fachbuchverlag Leipzig, 1995 (Kap. 3.2)
- F. Mayer-Lindenberg: "Konstruktion digitaler Systeme", Vieweg-Verlag, 1998 (Kap. 1)
- H.-P. Gumm, M. Sommer: "Einführung in die Informatik", 2. Auflage, Addison-Wesley, 1995 (Kap. IV.2)
- H. Dispert, H.-G. Heuck: "Einführung in die Technische Informatik und Digitaltechnik", Vorlesungsskript FH Kiel (Kap. 1-4),
 - http://www.e-technik.fh-kiel.de/~dispert/digital/digital/dig0_00.htm
- F. Flores: "Informatik für Ingenieure", Vorlesungsskript, TU Harburg, (Kap. 2, 4 und 5)
- Th. Schwentick: "Grundzüge der Informatik I", Vorlesungsskript, Uni Mainz, (Kap. 5)

5.1 Einführung und Überblick

- Ziel dieses Kapitels:
 - Annäherung an die Realisierung von Rechnern.
 - Zunächst "im kleinen": einfache digitale Schaltungen, wie sie im Innern eines Prozessors vorkommen.
 Im folgenden Kapitel: "im großen": Architektur von Rechensystemen
- Beschreibung digitaler Schaltungen auf der logischen Ebene
 - durch mathematische Modelle wie Boolesche Funktionen,
 Boolesche Terme und Boolesche Algebren (5.2)
 - durch Schaltnetze (5.3) aus zyklusfreien Graphen als Modelle der Realisierung Boolescher Funktionen
 - durch Schaltwerke (5.4) als Modelle für zustandsbehaftete digitale
 Systeme (Berücksichtigung von Gedächtnis/Speicher).

5.2 Boolesche Funktionen und Boolesche Algebra

Eine Schaltfunktion wird definiert durch eine Abbildung

$$f_s: \{0,1\}^n \rightarrow \{0,1\}^m$$
.

Sie bildet die Menge der binären n-Tupel von n *Eingängen* in die Menge der binären m-Tupel von m *Ausgängen* ab.

- Schaltfunktion kann als math. Abstraktion eines elektronischen Bausteins mit n Eingängen und m Ausgängen angesehen werden.
- In 5.2 und 5.3 werden nur solche Schaltfunktionen betrachtet, bei denen die Ausgänge nur von den Eingängen abhängen (Funktionen im math. Sinne, ohne Rückkopplung).
- Eine n-stellige Boolesche Funktion ist eine Funktion f:{0,1}ⁿ→{0,1}. Sie heißt für n=1 unär, für n=2 binär, ansonsten auch n-är. Zuordnung von Wahrheitswerten: 0 = falsch, 1 = wahr.
- Schaltfunktionen lassen sich als Kombinationen von Booleschen Funktionen auffassen:

$$f_s(x_1, ..., x_n) = (f^1(x_1, ..., x_n), ..., f^m(x_1, ..., x_n))$$

Wahrheitstafel einer Booleschen Funktion

• Eine n-stellige Boolesche Funktion f:{0,1}ⁿ→{0,1} kann über eine generische Wahrheitstafel (Wertetabelle) mit 2ⁿ Zeilen definiert werden:

X 1	X 2		X _{n-1}	Xn	f(x ₁ ,,x _n)
0	0	•••	0	0	f(0,0,,0,0)
0	0		0	1	f(0,0,,0,1)
1	1		1	0	f(1,1,,1,0)
1	1		1	1	f(1,1,,1,1)

• Da in jeder der 2ⁿ Zeilen entweder der Funktionswert 0 oder der Funktionswert 1 angenommen wird, existieren genau $2^{(2^n)}$ verschiedene Funktionen $f:\{0,1\}^n \rightarrow \{0,1\}$.

Beispiel: Einstellige Boolesche Funktionen

• Für n=1 ergeben sich aus 2⁽²ⁿ⁾ genau 4 Funktionen:

X 1	0(x ₁)	1 (x ₁)	Id(x ₁)	NOT(x ₁)
0	0	1	0	1
1	0	1	1	0

- Dabei bezeichnen
 - 0() die Null-Funktion f≡0,
 - 1() die Eins-Funktion f≡1,
 - Id() die Identitätsfunktion f(x₁)=x₁ und
 - NOT() die Negation (Verneinung, Inversion) $f(x_1)=\overline{x_1}$ (lies: x_1 negiert). Andere Schreibweisen: NICHT(), $f(x_1)=\neg x_1$.
- Die Negation ist f

 ür das Weitere von besonderer Bedeutung.

Beispiel: Wichtige 2-stellige Boolesche Funktionen

- Für n=2 ergeben sich aus 2⁽²ⁿ⁾ genau 16 Funktionen.
- Die für die Praxis wichtigen Funktionen sind:

X ₁	X ₂	AND (x ₁ ,x ₂)	OR (x ₁ ,x ₂)	XOR (X ₁ ,X ₂)	NAND (x1,x2)	NOR (x ₁ ,x ₂)	IMPL (x ₁ ,x ₂)	EQUIV (x ₁ ,x ₂)
0	0	0	0	0	1	1	1	1
0	1	0	1	1	1	0	1	0
1	0	0	1	1	1	0	0	0
1	1	1	1	0	0	0	1	1

Wichtige 2-stellige Boolesche Funktionen (2)

Andere Schreibweisen und Bezeichnungen:

AND (x ₁ ,x ₂)	OR (x ₁ ,x ₂)	XOR (x ₁ ,x ₂)	NAND (x ₁ ,x ₂)	NOR (x ₁ ,x ₂)	IMPL (x ₁ ,x ₂)	EQUIV (x ₁ ,x ₂)
X ₁ [^] X ₂	$X_1^{\vee} X_2$	X ₁ ⊕X ₂	$\overline{X_1}^{\wedge} X_2$	$\overline{X_1}^{\vee} X_2$	$X_1 \Rightarrow X_2$	X₁⇔X2
X ₁ *X ₂	X ₁ +X ₂	X1≠X2	X ₁ *X ₂	$\overline{X_1+X_2}$	\overline{X}_1+X_2	x ₁ =x ₂
UND	ODER	Exclusiv Oder	NICHT UND	NICHT ODER		
Kon- junktion	Dis- junktion	Anti- valenz	Sheffer- Funktion	Pierce- Funktion	Impli- kation	Äqui- valenz

n-stellige Boolesche Funktionen

- Satz:
 - Alle höherstelligen (n≥3) Booleschen Funktionen können durch Verknüpfung 2-stelliger Boolescher Funktionen erzeugt werden.
- Technisch sehr einfach realisieren lassen sich
 - n-faches NAND:

```
NAND(x<sub>1</sub>, ..., x<sub>n</sub>)
```

= NOT(AND(
$$x_1, ..., x_n$$
))
= NOT(AND(... AND(AND(x_1, x_2), x_3), ..., x_n)) = $\overline{x_1^* ...^* x_n}$

n-faches NOR:

NOR(
$$x_1, ..., x_n$$
) = NOT(OR($x_1, ..., x_n$))
= NOT(OR(...OR(OR(x_1, x_2), x_3), ..., x_n)) = $\overline{x_1 + ... + x_n}$

Kombination Boolescher Funktionen

- Durch die Kombination Boolescher Funktionen lassen sich andere Boolesche Funktionen erzeugen.
- Von besonderer Bedeutung:

 Funktionen oder Funktionenmengen, mit deren Hilfe sich alle
 Booleschen Funktionen erzeugen lassen (genannt lässt;
 Beschränkung auf wenige verschiedene Bauteile).
- <u>Satz</u>: Jede n-stellige Boolesche Funktion lässt sich durch NOT() und das binäre AND() und/oder OR() darstellen.
- <u>Satz</u>: Jede n-stellige Boolesche Funktion lässt sich ausschließlich durch binäre NOR-Funktionen darstellen.
- <u>Satz</u>: Jede n-stellige Boolesche Funktion lässt sich ausschließlich durch binäre NAND-Funktionen darstellen.
- Bemerkung: NOR() und NAND() sind damit von großer praktischer Bedeutung, da damit nur ein Komponententyp für die Realisierung benötigt wird.

Boolesche Algebra

 Die Menge {0,1} zusammen mit den binären Operationen OR() und AND() unter Benutzung von NOT() zur Invertierung erfüllt die Eigenschaften einer math. Struktur, die Boolesche Algebra genannt wird:

Ein Tripel (M,+,*) aus einer Menge M und zwei binären Funktionen +,* : MxM→M heißt *Boolesche Algebra* genau dann, wenn für alle x,y,z∈M gilt:

- Assoziativ-Gesetze: (x+y)+z = x+(y+z) und (x*y)*z = x*(y*z)

- Kommutativ-Gesetze: (x+y) = (y+x) und (x*y) = (y*x)

- Distributiv-Gesetze: x*(y+z) = (x*y)+(x*z) und

x+(y*z)=(x+y)*(x+z)

- Absorptions-Gesetze: x*(x+y) = x und x+(x*y) = x

— Neutrale Elemente: ∃ 0∈M mit 0+x=x und ∃ 1∈M mit 1*x=x

- Inverses Element: $\forall x \in M$ existiert $\overline{x} \in M$ mit

 $x*\overline{x}=0$ und $\overline{x}+x=1$

Beispiele von Booleschen Algebren

- ({0,1}, OR, AND) ist eine Boolesche Algebra:
 - OR entspricht +
 - AND entspricht *
 - 0 und 1 sind neutrale Elemente
 - Zu x∈ $\{0,1\}$ ist NOT(x) das inverse Element \overline{x} .
- Gegeben sei eine Menge M, sei P(M) deren Potenzmenge. Dann ist $(P(M), \cup, \cap)$ eine Boolesche Algebra:
 - − ∪ entspricht +
 - ∩ entspricht *
 - Ø und M sind neutrale Elemente, Ø entspricht 0, M entspricht 1.
 - Zu A∈M ist das Mengen-Komplement M\A das inverse Element.
- Sind B_1 , ..., B_n Boolesche Algebren, dann ist auch das Kreuzprodukt B_1x ... xB_n mit komponentenweisen Verknüpfungen eine Boolesche Algebra.

Rechenregeln für Boolesche Algebren

• Die folgenden wichtigen Rechenregeln gelten allgemein für jede Boolesche Algebra (M,+,*):

- Idempotenz:
$$x+x = x$$
 und $x*x = x$

- Doppelte Negation:
$$\overline{\overline{x}} = x$$

- De Morgansche Regeln:
$$(\overline{x+y}) = \overline{x} * \overline{y}$$
 und $(\overline{x*y}) = \overline{x} + \overline{y}$

Praktische Anwendung:

Überführung von Konjunktion in Disjunktion und umgekehrt

Dualitätsprinzip

- Zu jeder gültigen Rechenregel einer Booleschen Algebra gehört eine andere gültige (die duale) Rechenregel, die aus der ursprünglichen entsteht durch:
 - vertausche die Rollen von * und +
 - vertausche die Rollen von 0 und 1
- Beispiele für duale Regeln:
 - Idempotenzregeln
 - De Morgansche Regeln

Boolesche Terme

 Wahrheitstafeln sind für vielstellige Funktionen unhandlich, da die Anzahl 2ⁿ der Zeilen stark wächst.

- Eine weitere wichtige Repräsentierung Boolescher Funktionen bilden die *Booleschen Terme* (oder *Booleschen Ausdrücke*), implizit definiert durch:
 - Sei VAR= $\{x_1, x_2, ...\}$. Die x_i ∈ VAR heißen *Boolesche Variablen*.
 - Die Konstanten 0 und 1 sind Boolesche Terme.
 - Für jedes i ist x_i ein Boolescher Term.
 - Sind s und t Boolesche Terme, dann auch $\neg s$, ($s \lor t$) und ($s \land t$).
- Verwendet wurden hier die logischen Verknüpfungssymbole \neg , \vee und \wedge . Alternativ werden auch $\overline{}$, + und * verwendet.
- Festlegungen zur Vereinfachung der Schreibweise:
 - Weglassen v. Klammern: ¬ bindet stärker als ∧ bindet stärker als ∨.
 - In der ($^-$, +, *)-Schreibweise "geht Punkt- vor Strichrechnung", und der * kann auch entfallen: $x_1x_2:=x_1*x_2$

Boolesche Terme - Boolesche Funktionen

- Jedem Booleschen Term entspricht eine Boolesche Funktion:
 - ¬ entspreche der Negation bzw. NOT(),
 - A entspreche der Konjunktion * bzw. AND()
 - v entspreche der Disjunktion + bzw. OR()
 - Mittels Wahrheitstafeln kann damit jedem Booleschen Term t über den Booleschen Variablen $\{x_1, ..., x_n\}$ unmittelbar eine Boolesche Funktion

$$f_t: \{0,1\}^n \rightarrow \{0,1\}$$

zugeordnet werden.

• Satz:

Jede Boolesche Funktion $f:\{0,1\}^n \rightarrow \{0,1\}$ lässt sich durch einen Booleschen Term über $\{\neg, \land, \lor\}$ beschreiben.

Boolesche Terme ↔ Boolesche Funktionen (2)

Idee für einen Induktionsbeweis:

- Den einstelligen Booleschen Funktionen 0(), 1(), $Id(x_i)$ und $NOT(x_i)$ werden die Terme 0, 1, x_i und $\neg x_i$ zugeordnet.
- Sei f eine n+1-stellige Boolesche Funktion. Dann sind f_0 und f_1 mit $f_0(x_1, ..., x_n) := f(x_1, ..., x_n, 0)$ und $f_1(x_1, ..., x_n) := f(x_1, ..., x_n, 1)$ n-stellig und besitzen daher Terme t_0 und t_1 .
- Dann wird f definiert durch den Term $(x_{n+1} \wedge t_1) \vee (\neg x_{n+1} \wedge t_0)$.
- Daher heißt {¬, ∧, ∨} auch eine vollständige Basis.

Beispiel (Funktion Term)

X ₁	X 2	XOR (x ₁ ,x ₂)	
0	0	0	
0	1	1	$(\neg x_1 \land x_2) \Rightarrow XOR(x_1, x_2) = 1$
1	0	1	$(x_1 \land \neg x_2) \Rightarrow XOR(x_1, x_2) = 1$
1	1	0	

$$XOR(x_1,x_2) = 1 \Leftrightarrow \underbrace{(x_1 \land \neg x_2) \lor (\neg x_1 \land x_2)}_{}$$

zugehöriger Term

Normalformen von Booleschen Termen

• Ein Boolescher Term t über den Variablen $\{x_1, ..., x_n\}$ heißt in *disjunktiver* Normalform (DNF) genau dann, wenn t die Form

$$t = (a_{11} \wedge ... \wedge a_{1n}) \vee ... \vee (a_{k1} \wedge ... \wedge a_{kn})$$

besitzt, wobei jedes a_{ij} entweder x_j oder $\neg x_j$ entspricht. Ein Teilausdruck der Form $a_{i1} \land ... \land a_{in}$, heißt auch *Minterm*.

• Ein Boolescher Term t über den Variablen $\{x_1, ..., x_n\}$ heißt in *konjunktiver Normalform (KNF)* genau dann, wenn t die Form

$$t = (a_{11} \vee ... \vee a_{1n}) \wedge ... \wedge (a_{k1} \vee ... \vee a_{kn})$$

besitzt, wobei jedes a_{ij} entweder x_j oder $\neg x_j$ entspricht. Ein Teilausdruck der Form $a_{i1} \lor ... \lor a_{in}$ heißt auch *Maxterm*.

Anmerkung:

Jeder Minterm bzw. Maxterm enthält alle Booleschen Variablen $\{x_1, ..., x_n\}$ genau einmal, entweder in der Form x_i oder in der negierten Form $\neg x_i$.

Konstruktion der disjunktiven Normalform (DNF)

- Sei eine Boolesche Funktion $f:\{0,1\}^n \rightarrow \{0,1\}$ in Form einer Wertetafel gegeben.
- Jeder Zeile (b_1 ... b_n), $b_i \in \{0,1\}$, in der f den Funktionswert 1 hat ($f(b_1, ..., b_n) = 1$), wird ein Minterm $a_1 \land ... \land a_n$ zugeordnet, mit $a_i = x_i$, falls $b_i = 1$ und $a_i = -x_i$, falls $b_i = 0$,

d.h. im Falle einer 1 wird die zugehörige Variable x_j andernfalls deren Komplement $\neg x_i$ eingesetzt.

• Der gesuchte Term t ist die Disjunktion (\vee) aller dieser Minterme.

Beispiel

X ₁	X ₂	X 3	S (x ₁ ,x ₂ ,x ₃)
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Minterme

$$\neg X_1 \land \neg X_2 \land X_3$$

$$\neg X_1 \land X_2 \land \neg X_3$$

$$X_1 \land \neg X_2 \land \neg X_3$$

$$\mathbf{X_1}$$
 \wedge $\mathbf{X_2}$ \wedge $\mathbf{X_3}$

resultierender Term

 $S(x_1,x_2,x_3)$:

$$(\neg X_1 \land \neg X_2 \land X_3) \lor (\neg X_1 \land X_2 \land \neg X_3) \lor (X_1 \land \neg X_2 \land \neg X_3) \lor (X_1 \land X_2 \land X_3)$$

$$\overline{\mathbf{x}}_{1}\overline{\mathbf{x}}_{2}\mathbf{x}_{3} + \overline{\mathbf{x}}_{1}\mathbf{x}_{2}\overline{\mathbf{x}}_{3} + \mathbf{x}_{1}\overline{\mathbf{x}}_{2}\overline{\mathbf{x}}_{3} + \mathbf{x}_{1}\mathbf{x}_{2}\mathbf{x}_{3}$$
 (kompaktere Notation)

Konstruktion der konjunktiven Normalform (KNF)

- Sei eine Boolesche Funktion f:{0,1}ⁿ→{0,1} in Form einer Wertetafel gegeben.
- Jeder Zeile ($b_1 ext{...} b_n$), $b_i \in \{0,1\}$, in der f den Funktionswert 0 hat ($f(b_1, ..., b_n) = 0$), wird ein Maxterm $a_1 \wedge ... \wedge a_n$ zugeordnet, mit $a_j = x_j$, falls $b_j = 1$ und $a_j = \neg x_j$, falls $b_j = 0$,

d.h. im Falle einer 0 wird die zugehörige Variable x_j andernfalls deren Komplement $\neg x_i$ eingesetzt.

Der gesuchte Term t ist die Konjunktion (∧) aller dieser Maxterme.

Beispiel

X ₁	X ₂	X 3	S (x ₁ ,x ₂ ,x ₃)
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Maxterme

$$X_1 \vee X_2 \vee X_3$$

$$X_1 \lor \neg X_2 \lor \neg X_3$$

$$\neg X_1 \lor X_2 \lor \neg X_3$$

$$\neg X_1 \lor \neg X_2 \lor X_3$$

resultierender Term

 $S(x_{1},x_{2},x_{3}): (x_{1}\lor x_{2}\lor x_{3}) \land (x_{1}\lor \neg x_{2}\lor \neg x_{3}) \land (\neg x_{1}\lor x_{2}\lor \neg x_{3}) \land (\neg x_{1}\lor x_{2}\lor x_{3})$ $(x_{1}+x_{2}+x_{3}) * (x_{1}+\overline{x}_{2}+\overline{x}_{3}) * (\overline{x}_{1}+x_{2}+\overline{x}_{3}) * (\overline{x}_{1}+\overline{x}_{2}+x_{3})$

Komplexitätsmaße zur Beurteilung von Termen, z.B.:

- die Größe als die Anzahl der Operatoren
 - Kosten: Chipfläche, Ausschussquote, el. Leistungsaufnahme, ...
- die Tiefe als Maß für die Auswertungszeit.
 - Leistung: Max. Prozessortakt, max. Durchsatz in einem Router, ...

Anmerkungen

- Die durch DNF oder KNF beschriebenen Normalformen-Terme sind zwar prinzipiell f\u00fcr einen Schaltungsentwurf nutzbar, jedoch i.d.R. nicht minimal in Hinblick auf den Aufwand zur Realisierung.
- Gesucht werden daher für die praktische Realisierung äquivalente Minimalformen von Termen, die aus der Normalform hergeleitet werden können.
- Hierzu existieren Algorithmen (z.B. Karnaugh/Veitch, Quine/McCluskey, heuristische Verfahren), auf die hier nicht n\u00e4her eingegangen wird. ⇒ KV-Diagramme

5.3 Schaltnetze

- Motivation:
 - Boolesche Terme können einen wesentlichen Aspekt der technischen Realisierung nicht angemessen modellieren, nämlich die Mehrfachverwendung bereits ermittelter "Zwischenergebnisse".
- Diesen Mangel beheben Schaltnetze, auch kombinatorische Schaltwerke oder lineare Schaltungen genannt.
- Schaltnetze sind sehr anschauliche Graphen.
 - Die verwendeten graphischen Symbole für Boolesche Funktionen sind durch DIN 40900/12 genormt.
 - Daneben existiert eine ebenfalls weit verbreitete Notation als US ANSI-Norm.

Definition: Schaltnetz

Ein Schaltnetz ist ein gerichteter, zyklenfreier Graph, dessen Knoten von einem der Typen (a)-(e) sind. Die Knoten werden so angeordnet, dass die verbindenden Kanten "von links nach rechts" verlaufen und daher keine Pfeilspitzen benötigen.

- (a) Eingangs-Knoten:
 - mit Markierung aus {0, 1, x₁, ..., x_n},
 d.h. Konstante oder Boolesche Eingangsvariable,
 - nur ausgehende Kanten

0 •—

1 •—

X_i •

- (b) Ausgangs-Knoten:
 - mit Markierung aus $\{y_1, ..., y_m\}$, jede Ausgangsvariable muss genau einmal vorkommen,
 - nur einmündende Kanten

→ y_j

Definition: Schaltnetz (2)

(c) Verzweigungsknoten:

 eine eingehende Kante, zwei oder mehr ausgehende Kanten dienen der Verteilung eines Signals, z.B.

(d) unäre Gatter:

- eine eingehende Kante, eine ausgehende Kante
- NOT-Gatter mit Markierung 1 und O am Ausgang
- Id-Gatter mit Markierung 1 (Identität) (kaum Bedeutung)

Definition: Schaltnetz (3)

(e) 2-stellige logische Gatter:

- zwei eingehende Kanten, eine ausgehende Kante
- Markierungen vgl. Symbole

Beispiel 1: XOR

XOR als Schaltnetz basierend auf NOT, AND und OR-Gattern:

X 1	X ₂	XOR (x ₁ ,x ₂)
0	0	0
0	1	1
1	0	1
1	1	0

$$y = XOR(x_1, x_2) = (x_1 \land \neg x_2) \lor (\neg x_1 \land x_2)$$

Hier: Direkte Umsetzung der DNF für XOR

Beispiel 2: Universalität des NAND-Gatters

Schaltnetze für NOT, AND und OR basierend auf dem NAND-Gatter:

$$y = NOT(x) = \overline{x \wedge x}$$

$$y = AND(x_1, x_2) = \overline{\overline{x_1} \wedge \overline{x_2}}$$
$$= \overline{(\overline{x_1} \wedge \overline{x_2})} \wedge \overline{(\overline{x_1} \wedge \overline{x_2})}$$

$$y = OR(x_1, x_2) = \overline{x_1 \lor x_2} = \overline{x_1} \land \overline{x_2}$$
$$= \overline{(x_1 \land x_1)} \land \overline{(x_2 \land x_2)}$$

Technische Realisierung von Gattern

Schalter:

AND-Verknüpfung als Serienschaltung

OR-Verknüpfung als Parallelschaltung

- In elektronischen Schaltungen werden Gatter i.d.R. durch Transistoren realisiert.
- In integrierten Schaltkreisen (ICs) befinden sich heute viele Millionen von Transistoren.

Erweiterungen der Notation:

Gatter mit n Eingängen (vgl. 5.2):

Negation an Eingängen:

Beispiel (Implikation):

$$y = (x_1 \Rightarrow x_2) = \neg x_1 \lor x_2$$

Wichtige Schaltnetze

Im Folgenden:

- Beispiele praktisch relevanter Schaltnetze
- teilweise noch als separate Bausteine (Chips) gefertigt oder Teil eines hochintegrierten Bausteins
- Insbesondere im Inneren eines Prozessors verwendet

Übersicht

- Tore
- Encoder
- Decoder
- Multiplexer
- Demultiplexer
- Halbaddierer
- Volladdierer
- Arithmetisch-logische Einheit (ALU)

- kontrollierte Durchleitung (Tor) eines Eingangs oder einer Menge von Eingängen
 - Nutzung eines AND-Gatters
 - Unterscheidung von Daten- und Steuereingängen

Tor für Einzelsignal

$$y = \begin{cases} x & \text{falls s=1} \\ 0 & \text{sonst} \end{cases}$$

Tor für Signalgruppe (z.B. Bus)

- 1-aus-n Code am Eingang wird in einen dichten Code am Ausgang codiert
- Beispiel: n=8 (Ansatz auf beliebiges n übertragbar)

- Auswahl eines Ausgangs, Gegenstück zum Encoder
- n-Bit Dualzahl am Eingang wird decodiert in 1-aus-2ⁿ am Ausgang

C

C

Beispiel: n=2

							21	\mathbf{S}_0
S ₁	S ₀	e ₀	e ₁	e ₂	e ₃		1 5	\overline{S}_1 \overline{S}_0
0	0	1	0	0	0			
0	1	0	1	0	0			e_0
1	0	0	0	1	0			$\stackrel{\&}{\longrightarrow} e_{_1}$
1	1	0	0	0	1			
								e_2
								& — • e₃
		r			tz au erwei	f terbar		
							doub	le rail (s, \overline{s})

- Durchschalten eines von n Eingängen auf den (einzigen) Ausgang
- Auswahl des Eingangs über Steuereingänge, z.B. dual codiert
- Nutzung von Tor und Decoder
- Beispiel: n=4

Demultiplexer

- Gegenstück zum Multiplexer
- Durchschalten (Verteilen) des (einen) Eingangs auf einen von n Ausgängen
- Auswahl des Ausgangs über Steuereingänge, z.B. dual codiert
- Nutzung von Tor und Decoder
- Beispiel: n=4

Addition zweier Bits:

X ₁	X 2	S Sum	Ü Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

 $S = XOR(x_1,x_2)$ (Summe)

 $\ddot{U} = AND(x_1,x_2)$ (\ddot{U} bertrag, Carry)

 Addition zweier Bits mit Berücksichtigung des Übertrags der niederwertigeren Stelle:

Paralleladdierer

• Schaltnetz zur Addition von 4-Bit-Dualzahlen $a_3a_2a_1a_0$ und $b_3b_2b_1b_0$ aus 4 Volladdierern:

Paralleladdierer für n-Bit-Maschinenwörter

Prinzipiell: Erweiterung auf eine beliebige Maschinenwortlänge n.

Ripple Carry / Carry-Look-Ahead

Problem des n-Bit-Paralleladdierers:

Die Addition dauert mit jedem zusätzlichen Volladdierer länger, da das endgültige Ergebnis erst dann vorliegt, wenn die Überträge von rechts nach links vollständig verarbeitet sind (hohe Tiefe durch *Ripple Carry*).

Beispiel:

Ein Addierer benötige 1 CPU-Takt, 64-bit-CPU, dann: Addition zweier *unsigned int* dauert 64 Takte bis Carry gültig!

 Beschleunigung der Addition ist durch ein Carry-Look-Ahead-Schaltnetz möglich. Dabei werden alle Überträge gleichzeitig und unmittelbar aus den Eingangsgrößen errechnet (Preis: Größerer Hardware-Aufwand in Anzahl Gattern).

Carry-Look-Ahead

- Idee: Berechne Übertrag vor dem Addieren
- Nutze aus, dass jedes Bitpaar entweder
 - einen Übertrag erzeugt (1, 1) Funktion "generate": $g_i = a_i \wedge b_i$
 - einen Übertrag weiterleitet (1, 0)/(0, 1) "propagate": $p_i = a_i \vee b_i$
 - ein Übertrag c_i ergibt sich, wenn $g_i \vee (p_i \wedge c_{i-1})$

```
für i = 0: c_0 = a_0 \wedge b_0 = g_0

für i > 0: c_i = g_i \vee (p_i \wedge c_{i-1})

= (a_i \wedge b_i) \vee ((a_i \vee b_i) \wedge c_{i-1})

= (a_i \wedge b_i) \vee (a_i \wedge c_{i-1}) \vee (b_i \wedge c_{i-1})
```


Carry-Look-Ahead

Für den 4-Bit-Addierer:

$$c_0 = a_0 \wedge b_0 = g_0$$

$$c_1 = g_1 \lor (p_1 \land c_0) = g_1 \lor (p_1 \land g_0)$$

$$c_2 = g_2 \lor (p_2 \land c_1) = g_2 \lor (p_2 \land g_1 \lor (p_1 \land g_0))$$

= $g_2 \lor (p_2 \land g_1) \lor (p_2 \land p_1 \land g_0)$

$$c_{3} = g_{3} \lor (p_{3} \land c_{2})$$

$$= g_{3} \lor (p_{3} \land g_{2} \lor (p_{2} \land g_{1}) \lor (p_{2} \land p_{1} \land g_{0}))$$

$$= g_{3} \lor (p_{3} \land g_{2}) \lor (p_{3} \land p_{2} \land g_{1})$$

$$\lor (p_{3} \land p_{2} \land p_{1} \land g_{0})$$

- Maximale Tiefe: 3
- Maximaler Grad (Gatterinputs): 4
- 16- und 64-Bit-Addierer:
 - Durch Kaskadenbildung erreichbar

Quelle: R. Kaiser, M. Gergeleit. TGI WS 2014/15

Arithmetisch-logische Einheit (ALU)

• Eine arithmetisch-logische Einheit (Arithmetical Logical Unit, ALU)

ist ein Schaltnetz, das

- die wesentliche Komponente eines jeden Prozessors ist
- als Kern einen Paralleladdierer enthält
- andere Operationsarten durch zusätzliche Gatter realisiert, wie:
 - logische Operationen wie AND, OR, XOR, usw.
 - Subtraktion, Shift-Operationen, ...
- Auswahl der Operation F erfolgt über Steuersignale (Function Code)
- außer Ergebnis R (Result) werden Flags erzeugt, die Fehlersituationen (z.B. Überlauf) und Aussagen über das Ergebnis (z.B. =0, <0, >0, Übertrag) angeben.

5.4 Schaltwerke

- Motivation:
 Die bisher betrachteten Schaltnetze k\u00f6nnen zwar beliebige
 Boolesche Funktionen berechnen, k\u00f6nnen aber keine Werte speichern.
- Diese Möglichkeit entsteht, wenn die Zyklusfreiheit der Schaltnetze beschreibenden Graphen fallengelassen wird. Derartige Graphen, also Schaltnetze mit Rückkopplungen, die Ausgänge wieder auf Eingänge führen, werden Schaltwerke oder sequenzielle Schaltwerke genannt.

Prinzip eines Schaltwerks

Anmerkungen

- Typisch für Schaltwerke ist, dass durch Gatter-Signallaufzeiten zeitlich verzögerte Ausgänge als Eingangswerte erscheinen.
 - ⇒ Eingänge und Ausgänge zu diskreten *Zeitpunkten* betrachtet.
- Rückgekoppelte Signale können eine Wirkungsfolge (Sequenz) im Schaltnetz auslösen. Dabei können letztlich entstehen:
 - stabile Zustände: Rückkopplungsausgänge ändern sich nicht weiter
 - instabile Zustände: Rückkopplungsausgänge führen zu fortwährenden Änderungen an den Eingängen.
 - ⇒ Die mit instabilen Zuständen verbundenen komplexen Vorgänge interessieren hier nicht.
- Der Zustandsbegriff ist von zentraler Bedeutung.
- Die Zustandübergangsfunktion entspricht einem deterministischen endlichen Automaten (vgl. Vorlesung Informatik 2).

Asynchrones RS-Flip-Flop (Latch)

 RS-Flip-Flop als einfache bistabile Kippstufe aus zwei rückgekoppelten NOR-Gattern:

R	S	Z ^{t+1}	\overline{Z}^{t+1}	Funktion
0	0	Z ^t	$\overline{\mathbf{Z}}^{t}$	Speichern
0	1	1	0	Setzen
1	0	0	1	Löschen
(1)	(1)	-	-	-

R=1 S=1 ist unzulässig

- Es ist oft wünschenswert, dass eine an einem Eingang anliegende Information nur zu einem bestimmten Zeitpunkt verarbeitet werden soll. Ein solcher Zeitpunkt wird Takt (Clock) genannt.
- Ein Takt vereinfacht das Denken:
 - Abstraktion von komplexen zeitbezogenen Einschwingvorgängen, die abhängig von äußeren Bedingungen, Fertigungstoleranzen, usw. sein können.
 - Verzögerungszeiten (Gatterlaufzeiten) werden irrelevant, d.h.
 Wettläufe zwischen Signalen (Race Conditions) werden vermieden.
 - Verhalten wird zu diskreten Zeitpunkten betrachtet.
- Synchrone Schaltwerke sind solche, die auf einem Takt zur Verarbeitung basieren (weit verbreitet).
- Asynchrone Schaltwerke besitzen keinen Takt.
- Beispiel: Das bisher behandelte RS-Flip-Flop ist ein asynchrones Schaltwerk.

Synchrones RS-Flip-Flop (Gated Latch)

asynchrones RS-Flip-Flop mit zusätzlichem Takteingang T

D-Flip-Flop (Data Latch)

- Variation des synchronen RS-Flip-Flop: Nur ein Eingang (Data)
- Vermeidung der verbotenen Eingabe R=S=1
- Der zum Taktsignal vorliegende Eingabewert D wird gespeichert.

 \overline{Z}^{t+1}

 \overline{Z}^{t}

1

0

Wichtige Schaltwerke

- In einem Flip-Flop kann ein einzelnes Bit gespeichert werden.
- Wichtige Schaltwerke sind Zusammenfassungen von mehreren Flip-Flops und Schaltnetzen unter funktionalen Gesichtspunkten.
- Sie werden teilweise als separate Bausteine (Chips) gefertigt oder sind Teil eines hochintegrierten Bausteins. Insbesondere werden sie z.B. im Inneren eines Prozessors verwendet.
- Übersicht
 - Register
 - Schieberegister
 - Zähler

- Zusammenfassung von Flip-Flops mit gemeinsamem Takt und Toren
- Verwendung z.B. als Prozessorregister mit Wortbreite n

