برنامهریزی نیمهمعین برای طراحی الگوریتمهای تقریبی

جلسه هفتم: دوگانی

مرور

قضیه نهایی دوگانی (برای برنامهنویسی نیمهمعین)

maximize
$$C \bullet X$$

subject to $A_i \bullet X = b_i, \quad i = 1, 2, ..., m$
 $X \succeq 0.$

4.1.1 Theorem. If the semidefinite program (4.1) is feasible and has a finite value γ , and if there is a positive definite matrix \tilde{X} such that $A(\tilde{X}) = \mathbf{b}$, then the dual program

minimize
$$\mathbf{b}^T \mathbf{y}$$

subject to $\sum_{i=1}^m y_i A_i - C \succeq 0$ (4.2)

is feasible and has finite value $\beta = \gamma$.

كنج محدب بسته

4.2.1 Definition. Let $K \subseteq V$ be a nonempty closed set. K is called a closed convex cone if the following two conditions hold.

- (i) For all $\mathbf{x} \in K$ and all nonnegative real numbers λ , we have $\lambda \mathbf{x} \in K$.
- (ii) For all $\mathbf{x}, \mathbf{y} \in K$, we have $\mathbf{x} + \mathbf{y} \in K$.

(i) For all $\mathbf{x} \in K$ and all nonnegative real numbers λ , we have $\lambda \mathbf{x} \in K$.

(i) For all $\mathbf{x} \in K$ and all nonnegative real numbers λ , we have $\lambda \mathbf{x} \in K$. (ii) For all $\mathbf{x}, \mathbf{y} \in K$, we have $\mathbf{x} + \mathbf{y} \in K$.

$$<\!\!\!\! 0 = \{(x,y,z) \in \mathbb{R}^3: \, x \geq 0, y \geq 0, xy \geq z^2\}$$

(كنج بستني واژگون) كنج محدب بسته است

(i) For all $\mathbf{x} \in K$ and all nonnegative real numbers λ , we have $\lambda \mathbf{x} \in K$. (ii) For all $\mathbf{x}, \mathbf{y} \in K$, we have $\mathbf{x} + \mathbf{y} \in K$.

$$riangle = \{(x,y,z) \in \mathbb{R}^3: \, x \geq 0, y \geq 0, xy \geq z^2\}$$
کنج بستنی واژگون) کنج محدب بسته است

(i) For all $\mathbf{x} \in K$ and all nonnegative real numbers λ , we have $\lambda \mathbf{x} \in K$. (ii) For all $\mathbf{x}, \mathbf{y} \in K$, we have $\mathbf{x} + \mathbf{y} \in K$.

$$< 0 = \{(x, y, z) \in \mathbb{R}^3 : x \ge 0, y \ge 0, xy \ge z^2\}$$

(كنج بستني واژگون)كنج محدب بسته است

(i) For all $\mathbf{x} \in K$ and all nonnegative real numbers λ , we have $\lambda \mathbf{x} \in K$. (ii) For all $\mathbf{x}, \mathbf{y} \in K$, we have $\mathbf{x} + \mathbf{y} \in K$.

$$< 0 = \{(x, y, z) \in \mathbb{R}^3 : x \ge 0, y \ge 0, xy \ge z^2\}$$

(كنج بستنى واژگون) كنج محدب بسته است

• ب

convex cone if the following two conditions hold.

(i) For all $\mathbf{x} \in K$ and all nonnegative real numbers λ , we have $\lambda \mathbf{x} \in K$.

(ii) For all
$$\mathbf{x}, \mathbf{y} \in K$$
, we have $\mathbf{x} + \mathbf{y} \in K$.

$$< 0 = \{(x, y, z) \in \mathbb{R}^3 : x \ge 0, y \ge 0, xy \ge z^2\}$$

(كنج بستنى واژگون) كنج محدب بسته است

• الف) بسته

• ج) جمع

مسیر پیش رو

$$K^* := \{ \mathbf{y} \in V : \langle \mathbf{y}, \mathbf{x} \rangle \ge 0 \text{ for all } \mathbf{x} \in K \}$$

4.3.1 Definition. Let $K \subseteq V$ be a closed convex cone. The set

$$K^* := \{ \mathbf{y} \in V : \langle \mathbf{y}, \mathbf{x} \rangle \ge 0 \text{ for all } \mathbf{x} \in K \}$$

is called the dual cone of K.

4.3.1 Definition. Let $K \subseteq V$ be a closed convex cone. The set

$$K^* := \{ \mathbf{y} \in V : \langle \mathbf{y}, \mathbf{x} \rangle \ge 0 \text{ for all } \mathbf{x} \in K \}$$

is called the dual cone of K.

- الف) بسته:
- $\mathbf{y}^{\mathrm{T}}\mathbf{x} < 0$ خارج از $\mathbf{x} \cdot \mathbf{K}^*$ هست که \mathbf{y}
 - : | | y' | | << 1 براى 4+y' •

4.3.1 Definition. Let $K \subseteq V$ be a closed convex cone. The set

$$K^* := \{ \mathbf{y} \in V : \langle \mathbf{y}, \mathbf{x} \rangle \ge 0 \text{ for all } \mathbf{x} \in K \}$$

is called the dual cone of K.

- الف) بسته:
- $\mathbf{y}^{\mathrm{T}}\mathbf{x} < 0$ هست که $\mathbf{x} \cdot \mathbf{K}^*$ هست که \mathbf{y}
 - : | | y' | | << 1 براى y+y'
 - ب) ضرب

4.3.1 Definition. Let $K \subseteq V$ be a closed convex cone. The set

$$K^* := \{ \mathbf{y} \in V : \langle \mathbf{y}, \mathbf{x} \rangle \ge 0 \text{ for all } \mathbf{x} \in K \}$$

is called the dual cone of K.

- الف) بسته:
- $\mathbf{y}^{\mathrm{T}}\mathbf{x} < 0$ هست که $\mathbf{x} \cdot \mathbf{K}^*$ هست که \mathbf{y}
 - : | | y' | | << 1 براى y+y'
 - ب) ضرب
 - ا ج) جمع
 - $\langle y + y', x \rangle = \langle y, x \rangle + \langle y', x \rangle$ •

$$K^* := \{ \mathbf{y} \in V : \langle \mathbf{y}, \mathbf{x} \rangle \ge 0 \text{ for all } \mathbf{x} \in K \}$$

$$K^* := \{ \mathbf{y} \in V : \langle \mathbf{y}, \mathbf{x} \rangle \ge 0 \text{ for all } \mathbf{x} \in K \}$$

روگان ربع اول (
$$\mathbb{R}^n_+$$
) دوگان

$$K^* := \{ \mathbf{y} \in V : \langle \mathbf{y}, \mathbf{x} \rangle \ge 0 \text{ for all } \mathbf{x} \in K \}$$

ر
$$\mathbb{R}^n_+$$
دوگان ربع اول (

$$K^* := \{ \mathbf{y} \in V : \langle \mathbf{y}, \mathbf{x} \rangle \ge 0 \text{ for all } \mathbf{x} \in K \}$$

$$(\mathbb{R}^n_+)$$
 دوگان ربع اول

$$R^n$$
 دوگان

$$K^* := \{ \mathbf{y} \in V : \langle \mathbf{y}, \mathbf{x} \rangle \ge 0 \text{ for all } \mathbf{x} \in K \}$$

is called the dual cone of K.

4.2.3 Fact. Let $K \subseteq V$, $L \subseteq W$ be closed convex cones. Then

$$K \oplus L := \{ (\mathbf{x}, \mathbf{y}) \in V \oplus W : \mathbf{x} \in K, \mathbf{y} \in L \}$$

is again a closed convex cone, the direct sum of K and L.

$$(K \oplus L)^* = K^* \oplus L^*.$$

$$K^* := \{ \mathbf{y} \in V : \langle \mathbf{y}, \mathbf{x} \rangle \ge 0 \text{ for all } \mathbf{x} \in K \}$$

is called the dual cone of K.

4.2.3 Fact. Let $K \subseteq V$, $L \subseteq W$ be closed convex cones. Then

$$K \oplus L := \{ (\mathbf{x}, \mathbf{y}) \in V \oplus W : \mathbf{x} \in K, \mathbf{y} \in L \}$$

is again a closed convex cone, the direct sum of K and L.

$$(K \oplus L)^* = K^* \oplus L^*.$$

$$K^* := \{ \mathbf{y} \in V : \langle \mathbf{y}, \mathbf{x} \rangle \ge 0 \text{ for all } \mathbf{x} \in K \}$$

دوگان کنج بستنی واژگون
$$< (x,y,z) \in \mathbb{R}^3: \, x \geq 0, y \geq 0, xy \geq z^2 \}$$

$$K^* := \{ \mathbf{y} \in V : \langle \mathbf{y}, \mathbf{x} \rangle \ge 0 \text{ for all } \mathbf{x} \in K \}$$

دوگان کنج بستنی واژگون
$$< (x,y,z) \in \mathbb{R}^3: \, x \geq 0, y \geq 0, xy \geq z^2 \}$$

$$\mathbb{C}^* = \{(x, y, z) \in \mathbb{R}^3 : x \ge 0, y \ge 0, xy \ge \frac{z^2}{4}\} \subseteq \mathbb{R}^3$$

$$K^* := \{ \mathbf{y} \in V : \langle \mathbf{y}, \mathbf{x} \rangle \ge 0 \text{ for all } \mathbf{x} \in K \}$$

دوگان کنج بستنی واژگون
$$< = \{(x,y,z) \in \mathbb{R}^3: \, x \geq 0, y \geq 0, xy \geq z^2\}$$

$$<0^* = \{(x, y, z) \in \mathbb{R}^3 : x \ge 0, y \ge 0, xy \ge \frac{z^2}{4}\} \subseteq \mathbb{R}^3$$

الف) برای هر
$$ilde{f x} \geq (ilde{x}, ilde{y}, ilde{z})$$
 که $ilde{f y} = (ilde{z}, ilde{y}, ilde{z})$ و هر

$$ilde{\mathbf{y}}^T\mathbf{x} \geq 0$$
 داریم: $\mathbf{x} = (x,y,z) \in \circlearrowleft$

دوگان کنج بستن*ی* واژگون

$$< 0 = \{(x, y, z) \in \mathbb{R}^3 : x \ge 0, y \ge 0, xy \ge z^2\}$$

$$<0^* = \{(x, y, z) \in \mathbb{R}^3 : x \ge 0, y \ge 0, xy \ge \frac{z^2}{4}\} \subseteq \mathbb{R}^3$$

الف) برای هر
$$ilde{m{x}} \geq (ilde{x}, ilde{y}, ilde{z})$$
 که $ilde{m{y}} \geq ilde{z}^2/4$ و هر $ilde{m{y}} = (ilde{x}, ilde{y}, ilde{z})$ و هر

$$ilde{\mathbf{y}}^T\mathbf{x} \geq 0$$
 داريم: $\mathbf{x} = (x,y,z) \in riangle$

$$< 0 = \{(x, y, z) \in \mathbb{R}^3 : x \ge 0, y \ge 0, xy \ge z^2\}$$

$$<0^* = \{(x, y, z) \in \mathbb{R}^3 : x \ge 0, y \ge 0, xy \ge \frac{z^2}{4}\} \subseteq \mathbb{R}^3$$

الف) برای هر
$$ilde{x} \geq (ilde{x}, ilde{y}, ilde{z})$$
 که $ilde{y} \geq ilde{z}^2/4$ و هر $ilde{y} = (ilde{x}, ilde{y}, ilde{z})$ و هر

$$ilde{\mathbf{y}}^T\mathbf{x} \geq 0$$
 داريم: $\mathbf{x} = (x,y,z) \in riangle$

$$\tilde{\mathbf{y}}^T \mathbf{x} = \tilde{x}x + \tilde{y}y + \tilde{z}z$$

$$<\!\!0 = \{(x,y,z) \in \mathbb{R}^3: x \ge 0, y \ge 0, xy \ge z^2\}$$

$$<0^* = \{(x, y, z) \in \mathbb{R}^3 : x \ge 0, y \ge 0, xy \ge \frac{z^2}{4}\} \subseteq \mathbb{R}^3$$

الف) برای هر
$$ilde{m{x}} \geq (ilde{x}, ilde{y}, ilde{z})$$
 که $ilde{m{y}} \geq ilde{z}^2/4$ و هر $ilde{m{y}} = (ilde{x}, ilde{y}, ilde{z})$ و هر

$$ilde{\mathbf{y}}^T\mathbf{x} \geq 0$$
 داريم: $\mathbf{x} = (x,y,z) \in ext{<\!\!1}$

$$\tilde{\mathbf{y}}^T \mathbf{x} = \tilde{x}x + \tilde{y}y + \tilde{z}z
= 2\frac{\tilde{x}x + \tilde{y}y}{2} + \tilde{z}z$$

$$<\!\! 0 = \{(x,y,z) \in \mathbb{R}^3: x \ge 0, y \ge 0, xy \ge z^2\}$$

$$<0^* = \{(x, y, z) \in \mathbb{R}^3 : x \ge 0, y \ge 0, xy \ge \frac{z^2}{4}\} \subseteq \mathbb{R}^3$$

الف) برای هر
$$ilde{oldsymbol{x}} = (ilde{x}, ilde{y}, ilde{z})$$
 که $ilde{oldsymbol{y}} \geq ilde{z}^2/4$ و هر $ilde{oldsymbol{w}}$

$$ilde{\mathbf{y}}^T\mathbf{x} \geq 0$$
 داريم: $\mathbf{x} = (x,y,z) \in riangle$

$$\tilde{\mathbf{y}}^T \mathbf{x} = \tilde{x}x + \tilde{y}y + \tilde{z}z
= 2\frac{\tilde{x}x + \tilde{y}y}{2} + \tilde{z}z
\geq 2\sqrt{\tilde{x}x\tilde{y}y} + \tilde{z}z$$

$$<0^* = \{(x, y, z) \in \mathbb{R}^3 : x \ge 0, y \ge 0, xy \ge \frac{z^2}{4}\} \subseteq \mathbb{R}^3$$

الف) برای هر
$$ilde{x} \geq 0, ilde{y} \geq ilde{z}^2/4$$
 که $ilde{y} = (ilde{x}, ilde{y}, ilde{z})$ و هر $ilde{x}$

$$ilde{\mathbf{y}}^T\mathbf{x} \geq 0$$
 داريم: $\mathbf{x} = (x,y,z) \in riangle$

$$\tilde{\mathbf{y}}^T \mathbf{x} = \tilde{x}x + \tilde{y}y + \tilde{z}z
= 2\frac{\tilde{x}x + \tilde{y}y}{2} + \tilde{z}z
\geq 2\sqrt{\tilde{x}x\tilde{y}y} + \tilde{z}z
\geq 2\frac{|\tilde{z}|}{2}|z| + \tilde{z}z$$

$$<\!\!0 = \{(x,y,z) \in \mathbb{R}^3: x \ge 0, y \ge 0, xy \ge z^2\}$$

$$<0^* = \{(x, y, z) \in \mathbb{R}^3 : x \ge 0, y \ge 0, xy \ge \frac{z^2}{4}\} \subseteq \mathbb{R}^3$$

الف) برای هر
$$ilde{x} \geq 0, ilde{y} \geq 0, ilde{x} ilde{y} \geq ilde{z}^2/4$$
 که $ilde{y} = (ilde{x}, ilde{y}, ilde{z})$ و هر

$$ilde{\mathbf{y}}^T\mathbf{x} \geq 0$$
 داريم: $\mathbf{x} = (x,y,z) \in riangle$

ست (x,y,z) برای
$$ilde{y}=(ilde{x}, ilde{y}, ilde{z})$$
 که $ilde{y}=(ilde{x}, ilde{y}, ilde{z})$ یا $ilde{x}<0$ یا $ilde{y}=(ilde{x}, ilde{y}, ilde{z})$ هست

$$\tilde{y}^{\mathsf{T}}x < 0$$

$$\mathbf{v} = (\tilde{v}, \tilde{w}, \sqrt{\tilde{w}}) \in \mathcal{O} \qquad \mathbf{v} = (\tilde{v}, \tilde{w}, -\sqrt{\tilde{w}}) \in \mathcal{O}$$

$$\mathbf{x} = (\tilde{y}, \tilde{x}, \sqrt{\tilde{x}\tilde{y}}) \in \circlearrowleft \mathbf{x} = (\tilde{y}, \tilde{x}, -\sqrt{\tilde{x}\tilde{y}}) \in \circlearrowleft$$

$$< 0 = \{(x, y, z) \in \mathbb{R}^3 : x \ge 0, y \ge 0, xy \ge z^2\}$$

$$<0^* = \{(x, y, z) \in \mathbb{R}^3 : x \ge 0, y \ge 0, xy \ge \frac{z^2}{4}\} \subseteq \mathbb{R}^3$$

الف) برای هر
$$ilde{oldsymbol{x}} = (ilde{x}, ilde{y}, ilde{z})$$
 که $ilde{oldsymbol{y}} \geq ilde{z}^2/4$ و هر

$$ilde{\mathbf{y}}^T\mathbf{x} \geq 0$$
 داريم: $\mathbf{x} = (x,y,z) \in riangle$

وست (x,y,z) برای
$$ilde{y}=(ilde{x}, ilde{y}, ilde{z})$$
 که $ilde{y}=(ilde{x}, ilde{y}, ilde{z})$ یا $ilde{x}<0$ یا $ilde{y}=(ilde{x}, ilde{y}, ilde{z})$ هست $ilde{x}$

 $\mathbf{x}=(ilde{y}, ilde{x},\sqrt{ ilde{x} ilde{y}})\in ext{$<\!0$}$, $\mathbf{x}=(ilde{y}, ilde{x},-\sqrt{ ilde{x} ilde{y}})\in ext{$<\!0$}$.

$$\tilde{\mathbf{y}}^T \mathbf{x} = 2\tilde{x}\tilde{y} - \tilde{z}\sqrt{\tilde{x}\tilde{y}} < 2\tilde{x}\tilde{y} - 2\tilde{x}\tilde{y} = 0.$$

جداسازي

4.4.2 Theorem. Let $K \subseteq V$ be a closed convex cone, and let $\mathbf{b} \in V \setminus K$. Then there exists a vector $\mathbf{y} \in V$ such that

$$\langle \mathbf{y}, \mathbf{x} \rangle \geq 0$$
 for all $\mathbf{x} \in K$, and $\langle \mathbf{y}, \mathbf{b} \rangle < 0$.

4.4.2 Theorem. Let $K \subseteq V$ be a closed convex cone, and let $\mathbf{b} \in V \setminus K$. Then there exists a vector $\mathbf{y} \in V$ such that

$$\langle \mathbf{y}, \mathbf{x} \rangle \geq 0$$
 for all $\mathbf{x} \in K$, and $\langle \mathbf{y}, \mathbf{b} \rangle < 0$.

در K نزدیکترین نقطه به b در

4.4.2 Theorem. Let $K \subseteq V$ be a closed convex cone, and let $\mathbf{b} \in V \setminus K$. Then there exists a vector $\mathbf{y} \in V$ such that

$$\langle \mathbf{y}, \mathbf{x} \rangle \geq 0$$
 for all $\mathbf{x} \in K$, and $\langle \mathbf{y}, \mathbf{b} \rangle < 0$.

- x نزدیکترین نقطه به b در x
 - وجود دارد:

$$\langle \mathbf{y}, \mathbf{x} \rangle \geq 0$$
 for all $\mathbf{x} \in K$, and $\langle \mathbf{y}, \mathbf{b} \rangle < 0$.

- لزدیکترین نقطه به b در z
 - وجود دارد:
- است K با یک گوی بزرگ، فشرده است C

$$\langle \mathbf{y}, \mathbf{x} \rangle \geq 0$$
 for all $\mathbf{x} \in K$, and $\langle \mathbf{y}, \mathbf{b} \rangle < 0$.

- لزدیکترین نقطه به b در z
 - وجود دارد:
- K اشتراک K با یک گوی بزرگ، فشرده است
 - فاصله، روى C كمينه دارد.

$$\langle \mathbf{y}, \mathbf{x} \rangle \geq 0$$
 for all $\mathbf{x} \in K$, and $\langle \mathbf{y}, \mathbf{b} \rangle < 0$.

- » تزدیکترین نقطه به b در z
 - وجود دارد:
- اشتراک K با یک گوی بزرگ، فشرده است
 - فاصله، روى C كمينه دارد.
 - فقط یک کمینه دارد

$$\langle \mathbf{y}, \mathbf{x} \rangle \geq 0$$
 for all $\mathbf{x} \in K$, and $\langle \mathbf{y}, \mathbf{b} \rangle < 0$.

- در K نزدیکترین نقطه به b در z
 - وجود دارد:
- C = اشتراک K با یک گوی بزرگ، فشرده است
 - فاصله، روى C كمينه دارد.
 - فقط یک کمینه دارد

$$\langle \mathbf{y}, \mathbf{x} \rangle \geq 0$$
 for all $\mathbf{x} \in K$, and $\langle \mathbf{y}, \mathbf{b} \rangle < 0$.

- x نزدیکترین نقطه به b در z
 - وجود دارد:
- اشتراک K با یک گوی بزرگ، فشرده است C
 - فاصله، روى C كمينه دارد.
 - فقط یک کمینه دارد
 - C محدب است:

$$\langle \mathbf{y}, \mathbf{x} \rangle \geq 0$$
 for all $\mathbf{x} \in K$, and $\langle \mathbf{y}, \mathbf{b} \rangle < 0$.

- » تزدیکترین نقطه به b در z
 - وجود دارد:
- C اشتراک K با یک گوی بزرگ، فشرده است
 - فاصله، روى C كمينه دارد.
 - فقط یک کمینه دارد
 - C محدب است:

$$||b-z-\alpha(y-z)||^2$$

$$\langle \mathbf{y}, \mathbf{x} \rangle \geq 0$$
 for all $\mathbf{x} \in K$, and $\langle \mathbf{y}, \mathbf{b} \rangle < 0$.

- x نزدیکترین نقطه به b در z
 - وجود دارد:
- اشتراک K با یک گوی بزرگ، فشرده است
 - فاصله، روى C كمينه دارد.
 - فقط یک کمینه دارد
 - C محدب است:

$$||b-z-\alpha(y-z)||^2 = ||b-z||^2 + \alpha^2 ||(y-z)||^2 - \alpha(b-z)^{\mathsf{T}}(y-z)$$

$$\langle \mathbf{y}, \mathbf{x} \rangle \geq 0$$
 for all $\mathbf{x} \in K$, and $\langle \mathbf{y}, \mathbf{b} \rangle < 0$.

- در کا در
 - y = z b

$$\langle \mathbf{y}, \mathbf{x} \rangle \geq 0$$
 for all $\mathbf{x} \in K$, and $\langle \mathbf{y}, \mathbf{b} \rangle < 0$.

- در X نزدیکترین نقطه به b در z
 - y = z b
 - نشان میدهیم:
 - $\langle y, z \rangle = 0$ (li)
 - $\langle y, b \rangle < 0 \ (\smile$
- K در x در x در x در x در x در x

$$\langle \mathbf{y}, \mathbf{x} \rangle \geq 0$$
 for all $\mathbf{x} \in K$, and $\langle \mathbf{y}, \mathbf{b} \rangle < 0$.

$$y = z - b$$

$$\langle y, z \rangle = 0$$
 (الف •

$$\langle y, b \rangle < 0$$
 (•

$$\langle y, b \rangle = \langle y, z - y \rangle = \langle y, z \rangle - \langle y, y \rangle$$

$$\langle \mathbf{y}, \mathbf{x} \rangle \geq 0$$
 for all $\mathbf{x} \in K$, and $\langle \mathbf{y}, \mathbf{b} \rangle < 0$.

- x نزدیکترین نقطه به b در z
 - y = z b
 - نشان مىدھىم:
 - $\langle y, z \rangle = 0$ (الف

$$\langle \mathbf{y}, \mathbf{x} \rangle \geq 0$$
 for all $\mathbf{x} \in K$, and $\langle \mathbf{y}, \mathbf{b} \rangle < 0$.

- x نزدیکترین نقطه به b در z
 - y = z b
 - ، نشان میدهیم:
 - $\langle y, z \rangle = 0$ (الف

$$\langle \mathbf{y}, \mathbf{x} \rangle \geq 0$$
 for all $\mathbf{x} \in K$, and $\langle \mathbf{y}, \mathbf{b} \rangle < 0$.

- x نزدیکترین نقطه به b در x
 - y = z b
 - نشان میدهیم:
 - $\langle y, z \rangle = 0$ (الف

$$||b - z - \alpha z||^2 = ||b - z||^2 + \alpha^2 ||z||^2 - 2\alpha (b - z)^{\mathsf{T}} z$$

$$\langle \mathbf{y}, \mathbf{x} \rangle \geq 0$$
 for all $\mathbf{x} \in K$, and $\langle \mathbf{y}, \mathbf{b} \rangle < 0$.

- x نزدیکترین نقطه به b در z
 - y = z b •
 - نشان میدهیم:
 - $\langle y, z \rangle = 0$ (li)
- برای α کمی کوچکتر
 از صفر یا کمی
 بزرگتر از صفر

$$||b - z - \alpha z||^2$$
 = $||b - z||^2 + \alpha^2 ||z||^2 - 2\alpha (b - z)^T z$

$$\langle \mathbf{y}, \mathbf{x} \rangle \geq 0$$
 for all $\mathbf{x} \in K$, and $\langle \mathbf{y}, \mathbf{b} \rangle < 0$.

- x نزدیکترین نقطه به b در z
 - y = z b
 - نشان م*ی*دهیم:
 - $\langle y, z \rangle = 0$ (li)
 - $\langle y, b \rangle < 0 \ (\smile$
- K در x در x در x در x در x در x

$$\langle \mathbf{y}, \mathbf{x} \rangle \geq 0$$
 for all $\mathbf{x} \in K$, and $\langle \mathbf{y}, \mathbf{b} \rangle < 0$.

- ک نزدیکترین نقطه به b در z
 - y = z b
 - نشان میدهیم:
 - $\langle y, z \rangle = 0$ (li)
 - $\langle y, b \rangle < 0 \ (\smile$
- K در x در x در x در x در x در x

$$\langle \mathbf{y}, \mathbf{x} \rangle \geq 0$$
 for all $\mathbf{x} \in K$, and $\langle \mathbf{y}, \mathbf{b} \rangle < 0$.

$$y = z - b$$

$$\langle y, z \rangle = 0$$
 (li)

$$\langle y, b \rangle < 0$$
 (•

$$K$$
 در x در x برای x در x در x

$$\langle \mathbf{y}, \mathbf{x} \rangle \geq 0$$
 for all $\mathbf{x} \in K$, and $\langle \mathbf{y}, \mathbf{b} \rangle < 0$.

$$\langle y, x \rangle = \langle y, z + (x - z) \rangle$$

= $\langle y, x - z \rangle$

z نزدیکترین نقطه به b در z

$$y = z - b$$

نشان میدهیم:

$$\langle y, z \rangle = 0$$
 (li)

$$\langle y, b \rangle < 0 \ (\smile$$

$$K$$
 در x در x برای x در x در x در x

$$\langle \mathbf{y}, \mathbf{x} \rangle \geq 0$$
 for all $\mathbf{x} \in K$, and $\langle \mathbf{y}, \mathbf{b} \rangle < 0$.

K برای
$$x$$
 در $\langle y, x \rangle \geq 0$ در x

$$y = z - b$$
 •

$$\langle y, z \rangle = 0$$
 (iii)

$$\langle y, b \rangle < 0 \ (\smile$$

$$= \|b - z\|^2 + \alpha^2 \|x - z\|^2 - \alpha (b - z)^{\mathsf{T}} (x - z)$$

 $=\langle y, x-z\rangle$

$$\langle \mathbf{y}, \mathbf{x} \rangle \geq 0$$
 for all $\mathbf{x} \in K$, and $\langle \mathbf{y}, \mathbf{b} \rangle < 0$.

$$\langle y, x \rangle = \langle y, z + (x - z) \rangle$$

= $\langle y, x - z \rangle$

$$y = z - b$$
 •

$$\langle y, z \rangle = 0$$
 (الف

$$\langle y, b \rangle < 0$$
 (•

$$K$$
 در x در x برای x در x در x

$$||b - (z + \alpha(x - z))||^2 = ||b - z||^2 + \alpha^2 ||x - z||^2 - \alpha(b - z)^{\mathsf{T}}(x - z)$$

$$\langle \mathbf{y}, \mathbf{x} \rangle \geq 0$$
 for all $\mathbf{x} \in K$, and $\langle \mathbf{y}, \mathbf{b} \rangle < 0$.

$$\langle y, x \rangle = \langle y, z + (x - z) \rangle$$

= $\langle y, x - z \rangle \ge 0$

$$y = z - b$$

$$\langle y, z \rangle = 0$$
 (الف

$$\langle y, b \rangle < 0$$
 (•

$$K$$
 در x در x برای x در x در x

$$||b - (z + \alpha(x - z))||^2 = ||b - z||^2 + \alpha^2 ||x - z||^2 - \alpha(b - z)^{\mathsf{T}}(x - z)$$

4.3.1 Definition. Let $K \subseteq V$ be a closed convex cone. The set

$$K^* := \{ \mathbf{y} \in V : \langle \mathbf{y}, \mathbf{x} \rangle \ge 0 \text{ for all } \mathbf{x} \in K \}$$

is called the dual cone of K.

4.4.1 Lemma. Let $K \subseteq V$ be a closed convex cone. Then $(K^*)^* = K$.

4.3.1 Definition. Let $K \subseteq V$ be a closed convex cone. The set

$$K^* := \{ \mathbf{y} \in V : \langle \mathbf{y}, \mathbf{x} \rangle \ge 0 \text{ for all } \mathbf{x} \in K \}$$

is called the dual cone of K.

4.4.1 Lemma. Let $K \subseteq V$ be a closed convex cone. Then $(K^*)^* = K$.

$$b \in K \Rightarrow b \in K^{**}$$
 (الف

$$\langle y,b\rangle \geq 0: y \in K^*$$
 معادلا) به ازای هر •

$$: b \notin K \Rightarrow b \notin K^{**}$$
 (ب

$$x \in K$$
 برای هر $\langle y, x \rangle \geq 0$ و $\langle y, b \rangle < 0$ هست که y برای هر •

لم فاركاش

نسخه خطي

4.5.1 Lemma (Farkas). Let $A \in \mathbb{R}^{m \times n}$ be an $m \times n$ matrix, and let $\mathbf{b} \in \mathbb{R}^m$. Then

- Either the system $A\mathbf{x} = \mathbf{b}$, $\mathbf{x} \geq \mathbf{0}$ has a solution $\mathbf{x} \in \mathbb{R}^n$.
- Or the system $A^T \mathbf{y} \geq \mathbf{0}$, $\mathbf{b}^T \mathbf{y} < 0$ has a solution $\mathbf{y} \in \mathbb{R}^m$.

but not both.

نسخه خطي

4.5.1 Lemma (Farkas). Let $A \in \mathbb{R}^{m \times n}$ be an $m \times n$ matrix, and let $\mathbf{b} \in \mathbb{R}^m$. Then

- Either the system $A\mathbf{x} = \mathbf{b}$, $\mathbf{x} \geq \mathbf{0}$ has a solution $\mathbf{x} \in \mathbb{R}^n$.
- Or the system $A^T \mathbf{y} \geq \mathbf{0}$, $\mathbf{b}^T \mathbf{y} < 0$ has a solution $\mathbf{y} \in \mathbb{R}^m$.

but not both.

سخه کنجی:

$$A(\mathbf{x}) = \mathbf{b}, \mathbf{x} \in K,$$

666

maximize $C \bullet X$ subject to $A_i \bullet X = b_i, \quad i = 1, 2, ..., m$ $X \succeq 0.$

 $A: SYM_n \to \mathbb{R}^m$

maximize $C \bullet X$ subject to $A_i \bullet X = b_i, \quad i = 1, 2, ..., m$ $X \succeq 0.$

 $A: SYM_n \to \mathbb{R}^m$

4.5.2 Definition. Let $A: V \to W$ be a linear operator. A linear operator $A^T: W \to V$ is called an adjoint of A if

$$\langle \mathbf{y}, A(\mathbf{x}) \rangle = \langle A^T(\mathbf{y}), \mathbf{x} \rangle$$
 for all $\mathbf{x} \in V$ and $\mathbf{y} \in W$.

$$A^T(\mathbf{y}) = \sum_{i=1}^m y_i A_i.$$

$$A^T(\mathbf{y}) = \sum_{i=1}^m y_i A_i.$$

$$\langle \mathbf{y}, A(X) \rangle := \mathbf{y}^T A(X)$$

$$A^T(\mathbf{y}) = \sum_{i=1}^m y_i A_i.$$

$$\langle \mathbf{y}, A(X) \rangle := \mathbf{y}^T A(X) = \sum_{i=1}^n y_i (A_i \bullet X)$$

$$A^T(\mathbf{y}) = \sum_{i=1}^m y_i A_i.$$

$$\langle \mathbf{y}, A(X) \rangle := \mathbf{y}^T A(X) = \sum_{i=1}^n y_i (A_i \bullet X)$$

$$= (\sum_i y_i A_i) \bullet X$$

$$A^T(\mathbf{y}) = \sum_{i=1}^m y_i A_i.$$

$$\langle \mathbf{y}, A(X) \rangle := \mathbf{y}^T A(X) = \sum_{i=1} y_i (A_i \bullet X)$$

$$= (\sum_{i=1}^{n} y_i A_i) \bullet X = A^T(\mathbf{y}) \bullet X$$

$$A^T(\mathbf{y}) = \sum_{i=1}^m y_i A_i.$$

$$\langle \mathbf{y}, A(X) \rangle := \mathbf{y}^T A(X) = \sum_{i=1}^n y_i (A_i \bullet X)$$

$$= (\sum_{i=1}^{m} y_i A_i) \bullet X = A^T(\mathbf{y}) \bullet X =: \langle A^T(\mathbf{y}), X \rangle$$

الف) بسته:

- الف) بسته:
 - س) ضرب

- الف) بسته:
- س) ضرب
 - ج) جمع

4.5.5 Definition. Let $K \subseteq V$ be a closed convex cone. The system

$$A(\mathbf{x}) = \mathbf{b}, \ \mathbf{x} \in K$$

is called limit-feasible if there exists a sequence $(\mathbf{x}_k)_{k\in\mathbb{N}}$ such that $\mathbf{x}_k\in K$ for all $k\in\mathbb{N}$ and

$$\lim_{k \to \infty} A(\mathbf{x}_k) = \mathbf{b}.$$

4.5.6 Lemma (Farkas lemma for cones). Let $K \subseteq V$ be a closed convex cone, and $\mathbf{b} \in W$. Either the system

$$A(\mathbf{x}) = \mathbf{b}, \mathbf{x} \in K$$

is limit-feasible, or the system

$$A^T(\mathbf{y}) \in K^*, \langle \mathbf{b}, \mathbf{y} \rangle < 0$$

has a solution, but not both.