Math 5365:Computer Literacy & Programming; Mathematical Foundations of Data Science with Applications on the MAPLE and MATLAB Platforms Graph Partition/ Spectral Clustering

• First: select a region of interest

How to select the object automatically?

• We care about two terms: graph and cuts

• What are graphs?

Nodes

- usually pixels
- sometimes samples

Edges

- weights associated (W(i,j))
- E.g. RGB value difference

• What are cuts?

- Each "cut" \rightarrow points, W(i,j)
- Optimization problem
- W(i,j) = |RGB(i) RGB(j)|

Go back to our selected region

- Each "cut" \rightarrow points, W(i,j)
- Optimization problem
- W(i,j) = |RGB(i) RGB(j)|

Go back to our selected region

- Each "cut" \rightarrow points, W(i,j)
- Optimization problem
- W(i,j) = |RGB(i) RGB(j)|

We want highest sum of weights

- Each "cut" \rightarrow points, W(i,j)
- Optimization problem
- W(i,j) = |RGB(i) RGB(j)|

We want highest sum of weights

- Each "cut" -> edge weight
 W(i,j)
- Optimization problem W(i,j) = |RGB(i) RGB(j)|

These cuts give low weights W(i,j) = |RGB(i) - RGB(j)| is low

We want highest sum of weights

- Each "cut" \rightarrow points, W(i,j)
- Optimization problem W(i,j) = |RGB(i) RGB(j)|

These cuts give high points W(i,j) = |RGB(i) - RGB(j)| is high

Optimization solver

Solver Example Recursion:

- 1. Grow
- 2. If W(i,j) low
 - 1. Stop
 - 2. Continue

• Result : Isolation

 Graph partitioning and community detection refer to the division of the vertices in a graph based on the connection patterns of the edges;

 The most common approach is to divide vertices in groups, such that most edges connect members from the same group;

Graph partitioning (the number of groups is given)

Community detection (the number of groups is unknown)

Graph bisection

- Partitioning in an arbitrarily number of parts can be realized by repeated graph bisection;
- The number of edges between the two groups is called cut size;
- Can be thought as a generalized min cut problem

An optimal solution would require to examine all the possible partitions of the network in two groups of sizes n_1 and n_2 respectively. This is:

$$\frac{n!}{n_1!n_2!} = \frac{n!}{n_1!(n-n_1)}$$

Clustering Objectives

- Traditional definition of a "good" clustering:
 - 1. Points assigned to same cluster should be highly similar.
 - 2. Points assigned to different clusters should be highly dissimilar.
- Apply these objectives to the graph representation

Graph Cuts

- > Express partitioning objectives as a function of the "edge cut" of the partition.
- Cut: Set of edges with only one vertex in a group.
 We want to find the minimal cut between groups.
 The groups that has the minimal cut would be the partition

Graph Cut Criteria (continued)

- > Criterion: Normalised-cut (Shi & Malik,'97)
 - -Consider the connectivity between groups relative to the density of each group.

$$\min \ Ncut(A,B) = \frac{cut(A,B)}{vol(A)} + \frac{cut(A,B)}{vol(B)}$$

- Normalise the association between groups by *volume*.
 - Vol(A): The total weight of the edges originating from group A.
 - Why use this criterion?
 - Produces more balanced partitions.

Spectral Graph Theory

- > Possible approach
 - Represent a similarity graph as a matrix
 - Apply knowledge from Linear Algebra...
- The eigenvalues and eigenvectors of a matrix provide global information about its structure.

- Spectral Graph Theory
 - Analyse the "spectrum" of matrix representing a graph.
 - Spectrum: The eigenvectors of a graph, ordered by the magnitude(strength) of their corresponding eigenvalues.

$$\Lambda = \{\lambda_1, \lambda_2, ..., \lambda_n\}$$

Matrix Representations

- > Adjacency (affinity) matrix (A)
 - -nxn matrix
 - $A = [w_{ij}]$: edge weight between vertex x_i and x_j

	<i>X</i> ₁	x_2	<i>X</i> ₃	X ₄	<i>X</i> ₅	<i>X</i> ₆
<i>X</i> ₁	0	8.0	0.6	0	0.1	0
<i>x</i> ₂	8.0	0	8.0	0	0	0
<i>X</i> ₃	0.6	0.8	0	0.2	0	0
X ₄	0	0	0.2	0	0,8	0.7
X ₅	0.1	0	0	0.8	0	0.8
<i>x</i> ₆	0	0	0	0.7	0.8	0

- Important properties:
 - Symmetric matrix
 - ⇒ Eigenvalues are <u>real</u>
 - ⇒Eigenvector could span <u>orthogonal base</u>

Matrix Representations

- > Degree matrix (D)
 - n x n diagonal matrix
 - $D(i,i) = \sum_{j} w_{ij}$: total weight of edges incident to vertex x_i

	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> ₃	X ₄	<i>X</i> ₅	<i>X</i> ₆
<i>X</i> ₁	1.5	0	0	0	0	0
<i>X</i> ₂	0	1.6	0	0	0	0
$X_{\mathcal{J}}$	0	0	1.6	0	0	0
<i>X</i> ₄	0	0	0	1.7	0	0
X_5	0	0	0	0	1.7	0
<i>X</i> ₆	0	0	0	0	0	1.5

- Important application:
 - Normalise adjacency matrix

Matrix Representations

> Laplacian matrix (L)

- *n x n* symmetric matrix

L	_	D	- A

	<i>X</i> ₁	<i>x</i> ₂	X3	X ₄	<i>X</i> ₅	<i>X</i> ₆
<i>X</i> ₁	1.5	-0,8	-0.6	0	-0.1	0
<i>x</i> ₂	-0.8	1.6	-0.8	0	0	0
<i>X</i> ₃	-0.6	-0,8	1.6	-0.2	0	0
X ₄	0	0	-0.2	1.7	-0,8	-0.7
<i>X</i> ₅	-0.1	0	0	-0,8	1.7	-0.8
<i>x</i> ₆	0	0	0	-0.7	-0,8	1.5

Important properties:

- Eigenvalues are non-negative real numbers
- Eigenvectors are real and orthogonal
- Eigenvalues and eigenvectors provide an insight into the connectivity of the graph...

Another option - normalized Laplasian

- > Laplacian matrix (L)
 - *n x n* symmetric matrix

,	$D^{-0.5} \cdot (D-A) \cdot D^{-0.5}$							
1.00	-0.52	-0.39	0.00	-0.06	0.00			
-0.52	1.00	-0.50	0.00	0.00	0.00			
-0.39	-0.50	1.00	-0.12	0.00	0.00			
0.00	0.00	-0.12	1.00	0.47-	0.44-			
-0.06	0.00	0.00	-0.47	1.00	0.50-			
0.00	0.00	0.00	0.44-	0.50-	1.00			

- Important properties:
 - Eigenvectors are real and normalized

Find An Optimal Min-Cut

> Express a bi-partition (A,B) as a vector

$$p_{i} = \begin{cases} +1 & \text{if } x_{i} \in A \\ -1 & \text{if } x_{i} \in B \end{cases} = p^{T} L p$$
Laplacian matrix

- The Laplacian is semi positive
- The Rayleigh Theorem shows:
 - The minimum value for $\min Ncut(A, B)$ is given by the 2^{nd} smallest eigenvalue of the Laplacian L.
 - The optimal solution for p is given by the eigenvector corresponding λ_2 , referred as the *Fiedler Vector*.

Bisection of a graph

The Laplacian L = D - A is often used to partition a graph into two approximately equal size pieces with a small number of edges between the two pieces.

$$L\mathbf{v}_1 = 0, \mathbf{v}_1 = (1,1,1...1)$$

This means:
$$\mathbf{v}_1 \perp \mathbf{v}_2 \Rightarrow \mathbf{v}_2 = \left(\underbrace{+,+,...+,0,..0,\underbrace{-,-,...-}_{\text{a "half"}}}\right)$$

 $\mathbf{v}_2 = \arg \max_{\mathbf{v} \perp \mathbf{v}_1} |A\mathbf{v}|^2$, the second singular vector (Fiedler vector)

Courant's Nodal Domain Theorem

In graphs: a "nodal domain" is a maximal connected induced subgraph consisting entirely of "positive" and "negative" vertices.

Courant's Nodal Domain Theorem

Courant's Nodal Domain Theorem for elliptic operators on manifolds. Given the self-adjoint second order differential equation $L[u] + \lambda \rho u = 0 \ (\rho > 0)$

for a domain D with arbitrary homogeneous boundary conditions; if its eigenfunctions are ordered according to increasing eigenvalues, then the nodes of the n-th eigenfunction divide the domain into no more than n subdomains.

Spectral Bisection Algorithm

 π

1. Pre-processing

Build Laplacian matrix L of the graph

	<i>X</i> ₁	<i>x</i> ₂	<i>X</i> ₃	X ₄	<i>X</i> ₅	<i>X</i> ₆
<i>X</i> ₁	1.5	-0.8	-0.6	0	-0.1	0
<i>x</i> ₂	-0.8	1.6	-0.8	0	0	0
<i>X</i> ₃	-0.6	-0.8	1.6	-0.2	0	0
X4	0	0	-0.2	1.7	-0.8	-0.7
<i>X</i> ₅	-0.1	0	0	-0.8	1.7	-0.8
<i>X</i> ₆	0	0	0	-0.7	-0.8	1.5

2. Decomposition

Find eigenvalues X and eigenvectors A of the matrix L

2.2

	0.4	0.2	0.1	0.4	-0.2	-0.9
	0.4	0.2	0.1	-0,	0.4	0.3
_	0.4	0.2	-0.2	0.0	-0.2	0.6
_	0.4	-0,4	0.9	0.2	-0.4	-0.6
	0.4	-0.7	-0.4	-0.8	-0.6	-0.2
	0.4	0,7	-0.2	0.5	0.8	0.9

_	Map vertices to
	corresponding
	components of λ

x ₁	0.2
\mathbf{x}_2	0.2
x ₃	0.2
\mathbf{x}_4	-0.4
x ₅	-0.7
x ₆	-0.7

Spectral Bi-partitioning Algorithm

The matrix which represents the eigenvector of the laplacian the eigenvector matched to the corresponded eigenvalues with increasing order

0.41	-0.41	0.65-	0.31-	0.38-	0.11
0.41	-0.44	0.01	0.30	0.71	0.22
0.41	-0.37	0.64	0.04	0.39-	0.37-
0.41	0.37	0.34	0.45-	0.00	0.61
0.41	0.41	0.17-	0.30-	0.35	0.65-
0.41	0.45	0.18-	0.72	0.29-	0.09

Recursive bi-partitioning (Hagen et al.,'91)

- > Partition using only one eigenvector at a time
- > Use procedure recursively
- > Example: Image Segmentation
 - Uses 2nd (smallest) eigenvector to define optimal cut
 - Recursively generates two clusters with each cut

Texture Feature

Hierarchy of nodal domains

Spectral Clustering of graphs (by SVD)

If one is clustering the rows of a matrix where the matrix elements are real numbers, then one selects a value for k and computes the top k-singular vectors.

The rows of the matrix are projected onto the space spanned by the top k-singular vectors and k-means clustering is used to find k clusters in this lower dimensional space.

Spectral Clustering of Data (by SVD)

$$\mathbf{X} = [\mathbf{f}_1, \dots \mathbf{f}_n] \in R^{n \times N}$$
 (a data matrix), $\mathbf{m} = \frac{1}{n} \sum_{k=1}^{n} \mathbf{f}_k$ (the centroid), $\mathbf{F} = [\mathbf{f}_1 - \mathbf{m}, \dots \mathbf{f}_n - \mathbf{m}]$ (variances),

$$\mathbf{Cov} = \frac{1}{N-1} \mathbf{F} \mathbf{F}^{T}, \quad \mathbf{Cov} \, \mathbf{u}_{k} = \sigma_{k} \mathbf{u}_{k}, \quad \underbrace{\sigma_{1} \geq \sigma_{2} \geq \dots \sigma_{N}}_{\text{only } n-1 \text{ eigenvalues } \neq 0!} \dots \sigma_{N} \mapsto \mathbf{U} = \left[\mathbf{u}_{1}, \mathbf{u}_{2}, \dots \mathbf{u}_{n-1}\right]$$

U forms the orthonormal basis in R^{n-1} : $(\mathbf{f}_k - \mathbf{m}) \mapsto \mathbf{g}_k = \mathbf{U}(\mathbf{f}_k - \mathbf{m}) \in R^{n-1}$

$$\Rightarrow \mathbf{f}_k = \mathbf{U}^T \mathbf{g}_k + \mathbf{m}$$

 $\mathbf{U}^{T}\mathbf{U}$, the projecton onto the subspace $[\mathbf{u}_{1},\mathbf{u}_{2},...\mathbf{u}_{n-1}]$;

 $(1 - \mathbf{U}^T \mathbf{U})$, the projecton onto the orthogonal subspace

The (n-1)-dimensional representation vectors : $\varphi_k = \mathbf{U}^T \mathbf{U} \mathbf{f}_k + (1 - \mathbf{U}^T \mathbf{U}) \mathbf{m}$