Course Final Project Supervised Machine Learning: Classification

IBM Machine Learning Professional Certificate

By Omar Shariff Mailan

Contents

- Dataset Description and Information
- Main Objective of the Project
- Exploratory Data Analysis
- Machine Learning Model Application
- Analysis and Insights
- Model Flaws and Next Steps

- Double A Housing Finance offers home loans and operates in cities, towns, and rural areas. When customers want to apply for a home loan, they first fill out an online application. The company then checks if the customer is eligible for a loan based on the information provided. This information includes details like gender, marital status, education, number of dependents, income, loan amount, and credit history.
- To make this process faster and easier, the company wants to automate the eligibility checks in real-time. They need help to identify which customer groups are eligible for loans so they can focus on reaching out to those people.
- This is a typical supervised classification task, where we aim to predict whether a loan will be approved or not. Below are the details of the dataset we will use.

Variable	Description
Loan_ID	Unique Loan ID
Gender	Male/ Female
Married	Applicant married (Y/N)
Dependents	Number of dependents
Education	Applicant Education (Graduate/ Under Graduate)
Self_Employed	Self employed (Y/N)
ApplicantIncome	Applicant income
CoapplicantIncome	Coapplicant income
LoanAmount	Loan amount in thousands
Loan_Amount_Term	Term of loan in months
Credit_History	credit history meets guidelines
Property_Area	Urban/ Semi Urban/ Rural
Loan_Status	Loan approved (Y/N)

Sample values:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Property_Area	Loan_Status
0	LP001002	Male	No	0	Graduate	No	5849	0.0	NaN	360.0	1.0	Urban	Υ
1	LP001003	Male	Yes	1	Graduate	No	4583	1508.0	128.0	360.0	1.0	Rural	N
2	LP001005	Male	Yes	0	Graduate	Yes	3000	0.0	66.0	360.0	1.0	Urban	Υ
3	LP001006	Male	Yes	0	Not Graduate	No	2583	2358.0	120.0	360.0	1.0	Urban	Y
4	LP001008	Male	No	0	Graduate	No	6000	0.0	141.0	360.0	1.0	Urban	Y

	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History
count	614.000000	614.000000	592.000000	600.00000	564.000000
mean	5403.459283	1621.245798	146.412162	342.00000	0.842199
std	6109.041673	2926.248369	85.587325	65.12041	0.364878
min	150.000000	0.000000	9.000000	12.00000	0.000000
25%	2877.500000	0.000000	100.000000	360.00000	1.000000
50%	3812.500000	1188.500000	128.000000	360.00000	1.000000
75%	5795.000000	2297.250000	168.000000	360.00000	1.000000
max	81000.000000	41667.000000	700.000000	480.00000	1.000000

<clas< td=""><td>ss 'pandas.core.fra</td><td>me.DataFrame'></td><td></td></clas<>	ss 'pandas.core.fra	me.DataFrame'>								
RangeIndex: 614 entries, 0 to 613										
Data	columns (total 13 o									
#	Column	Non-Null Count	Dtype							
0	Loan_ID	614 non-null	object							
1	Gender	601 non-null	object							
2	Married	611 non-null	object							
3	Dependents	599 non-null	object							
4	Education	614 non-null	object							
5	Self_Employed	582 non-null	object							
6	ApplicantIncome	614 non-null	int64							
7	CoapplicantIncome	614 non-null	float64							
8	LoanAmount	592 non-null	float64							
9	Loan_Amount_Term	600 non-null	float64							
10	Credit_History	564 non-null	float64							
11	Property_Area	614 non-null	object							
12	Loan_Status	614 non-null	object							
dtype	dtypes: float64(4), int64(1), object(8)									

• Finding for Null values

Loan_ID	0
Gender	13
Married	3
Dependents	15
Education	0
Self_Employed	32
ApplicantIncome	0
CoapplicantIncome	0
LoanAmount	22
Loan_Amount_Term	14
Credit_History	50
Property_Area	0
Loan_Status	0

Preprocessing the dataset

```
1 # fill in the missing values for numerical terms using mean
2 df['LoanAmount'] = df['LoanAmount'].fillna(df['LoanAmount'].mean())
3 df['Loan_Amount_Term'] = df['Loan_Amount_Term'].fillna(df['Loan_Amount_Term'].mean())
4 df['Credit_History'] = df['Credit_History'].fillna(df['Credit_History'].mean())

1 # fill in the missing values for categorical terms using mode
2 df['Gender'] = df["Gender"].fillna(df['Gender'].mode()[0])
3 df['Married'] = df["Married"].fillna(df['Married'].mode()[0])
4 df['Dependents'] = df["Dependents"].fillna(df['Dependents'].mode()[0])
5 df['Self_Employed'] = df["Self_Employed"].fillna(df['Self_Employed'].mode()[0])
```

No more Null or missing values

Main Objective of the Project

- To conduct a correlation matrix to determine significant variables or attributes that has a strong relationship and detect patterns or trends.
- To build different classification models to help identify faster on which customers are eligible for loans.
- To improve the applied classification models of at least 5%.

Understanding customer attributes through Visualization Dashboard

Categorical Attributes Results Showed:

- 1. Male
- 2. Married
- 3. No dependents
- 4. A Bachelors Degree Holder
- 5. Private Employed
- 6. Has a Semi-Urban Property
- 7. Has an active loan

• Understanding numerical attributes of Applicants Income, Coapplicants Income and Credit History

Correlation Matrix

The Correlation Matrix was used to show the relationship between attributes that has a strong and significant factors in determining the eligibility for a loan.

Based on the results, it shows that Applicants Income, Loan Amount and its Total Income, has significant correlation and will be used for model testing

- 0.0

- -0.2

Removing unnecessary columns

2 cols = ['ApplicantIncome', 'CoapplicantIncome', "LoanAmount", "Loan_Amount_Term", "Total_Income", 'Loan_ID', 'CoapplicantIncomeLog'] 3 df = df.drop(columns=cols, axis=1) 4 df.head() ✓ 0.0s												
	Gender	Married	Dependents	Education	Self_Employed	Credit_History	Property_Area	Loan_Status	ApplicantIncomeLog	LoanAmountLog	Loan_Amount_Term_Log	Total_Income_Log
0	Male	No	0	Graduate	No	1.0	Urban	Y	8.674197	4.993232	5.888878	8.674197
	Male	Yes		Graduate	No	1.0	Rural	N	8.430327	4.859812	5.888878	8.714732
2	Male	Yes	0	Graduate	Yes	1.0	Urban	Υ	8.006701	4.204693	5.888878	8.006701
3	Male	Yes		Not Graduate	No	1.0	Urban	Υ	7.857094	4.795791	5.888878	8.505525
4	Male	No	0	Graduate	No	1.0	Urban	Y	8.699681	4.955827	5.888878	8.699681

Final Label Encoding

Train-Test Split

Model Training: Using Logistic Regression

```
from sklearn.model_selection import cross_val_score
   3 def classify(model, x, y):
          x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)
          model.fit(x_train, y_train)
         print("Accuracy is", model.score(x_test, y_test)*100)
         # cross validation - it is used for better validation of model
         # eq: cv-5, train-4, test-1
         score = cross_val_score(model, x, y, cv=5)
          print("Cross validation is",np.mean(score)*100)
 ✓ 0.0s
   1 from sklearn.linear_model import LogisticRegression
   2 model = LogisticRegression()
     classify(model, X, y)
 √ 0.2s
Accuracy is 77.27272727272727
Cross validation is 80.9462881514061
```

Model Training: Using Random Forest and Extra Trees Classifier

```
1 from sklearn.ensemble import RandomForestClassifier,ExtraTreesClassifier
      model = RandomForestClassifier()
      classify(model, X, y)
 ✓ 0.5s
Accuracy is 79.87012987012987
Cross validation is 78.82980141276823
    model = ExtraTreesClassifier()
   2 classify(model, X, y)
 ✓ 0.3s
Accuracy is 74.02597402597402
Cross validation is 76.87724910035986
```

Additional Model Training and Improvements for increase accuracy

Based on previous study others already performed model algorithms, but in this case, I applied K-Nearest Neighbors (KNN) algorithm and Feature Engineering for an increase accuracy of at least 5%

```
K-Nearest Neighbors (KNN) classification
    1 # Define features and target variable
    2 X = df.drop(columns=['Loan Status']) # Features
    3 y = df['Loan_Status'] # Target variable
    5 # Split the data into training and testing sets
    6 from sklearn.model selection import train test split
    7 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
  ✓ 0.0s
    1 from sklearn.preprocessing import StandardScaler
    3 # Standardize the features
    4 scaler = StandardScaler()
    5 X_train = scaler.fit_transform(X_train)
    6 X_test = scaler.transform(X_test)
  ✓ 0.0s
```

Additional Model Training and Improvements for increase accuracy

K-Nearest Neighbors (KNN)

```
1 from sklearn.neighbors import KNeighborsClassifier
  2 from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
  4 # Initialize KNN with a chosen number of neighbors (e.g., 5)
  5 knn = KNeighborsClassifier(n_neighbors=5)
  7 # Fit the model on the training data
  8 knn.fit(X_train, y_train)
 10 # Make predictions on the test data
 11 y_pred = knn.predict(X_test)
 13 # Evaluate the model
 14 accuracy = accuracy_score(y_test, y_pred)
 15 print("Accuracy:", accuracy)
 16 print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))
 17 print("Classification Report:\n", classification_report(y_test, y_pred))
✓ 0.0s
Accuracy: 0.7621621621621621
Confusion Matrix:
[[ 30 35]
[ 9 111]]
Classification Report:
              precision
                          recall f1-score support
                           0.46
                                     0.58
                 0.77
                                                65
                           0.93
                                     0.83
                                                120
                                     0.76
                                                185
   accuracy
                           0.69
                                     0.71
                                               185
                           0.76
                                                185
```

Additional Model Training and Improvements for increase accuracy

Hyperparameter optimization or Tuning KNN using GridSearchCV

```
from sklearn.model selection import GridSearchCV
      # Define parameter grid
      param_grid = {'n_neighbors': range(1, 20)}
     # Initialize grid search
      grid_search = GridSearchCV(KNeighborsClassifier(), param_grid, cv=5)
      grid_search.fit(X_train, y_train)
     # Best parameters and score
  11 print("Best Parameters:", grid_search.best_params_)
     print("Best Score:", grid_search.best_score_)
  13
 ✓ 0.2s
Best Parameters: {'n_neighbors': 9}
Best Score: 0.8158139534883722
```

Additional Model Training and Improvements for increase accuracy

Application of Feature Engineering in adding an Income-to-Loan ratio

```
1  # Define features (X) and target variable (y)
2  X = df.drop(columns=['Loan_Status'])  # Assuming Loan_Status is the target
3  y = df['Loan_Status']
4
5  # Optional: Check feature set after adding new feature
6  print(X.head())
7
8
5]  \( \square 0.0s \)
```

Additional Model Training and Improvements for increase accuracy

Application of Feature Engineering in adding an Income-to-Loan ratio

Additional Model Training and Improvements for increase accuracy

Application of Feature Engineering in adding an Income-to-Loan ratio

```
1 from sklearn.neighbors import KNeighborsClassifier
     from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
  4 # Initialize KNN with a chosen number of neighbors (e.g., 5)
   5 knn = KNeighborsClassifier(n_neighbors=5)
  7 # Fit the model on the training data
   8 knn.fit(X_train, y_train)
       (variable) y_pred: ndarray t data
  11  y pred = knn.predict(X_test)
 13 # Evaluate the model
  14 accuracy = accuracy_score(y_test, y_pred)
  15 print("Accuracy:", accuracy)
  16 print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))
  17 print("Classification Report:\n", classification_report(y_test, y_pred))
 ✓ 0.0s
Accuracy: 0.7675675675676
Confusion Matrix:
[[ 27 38]
[ 5 115]]
Classification Report:
                          recall f1-score support
              precision
                  0.84
                           0.42
                                     0.56
                                                 65
                           0.96
                                     0.84
                                                120
                                     0.77
                                                185
   accuracy
                           0.69
                                     0.70
                                                185
                           0.77
                                     0.74
                                                185
```

Analysis and Insights

- Profile shows that majority of the clients are Male, Married, with minimal dependents, a degree holder, owns a semi-urban property, privately employed and has an active loan. This can be used as a premium target for the right loan application.
- Numerical Attributes shows that an average income of at least 5,500, Coapplicants Income of at least 1,500 and a credit history of less than 0.84
- It also shows that Applicants Income, Loan Amount and its Total Income, has significant correlation impact in terms of loan approval and was used for model training and testing.

Analysis and Insights

- Model Application of K-Nearest Neighbors (KNN) model helps us determine which clients or LoanID will have a Loan Approval.
 Further fine tuning the KNN Model using GridSearchCV increases its accuracy from 0.76 to 0.82, about 11% increase improvement.
- Application of this model helps the company make faster decision making by helping their process faster and easier in determining their client groups that are eligible for loans.

Model Flaws and Next Steps

- One thing that needs to be addressed in this case was the percent accuracy that needs to be further improve. Accuracy of a model should be greater than 0.90 to have an accurate result with minimal errors. Kindly apply Gradient Boosting Machines (GBM), Support Vector Machines (SVM), AdaBoost to achieve higher accuracy.
- Another one, is biased testing in terms of homogeneity because it only assumes nearby points that are similar. We should consider the type of industry that it reflects, in this case it's a financial business, we need to carefully assess other aspects such as credit history, property location and etc. This was not conducted due to limited time constraint.
- Lastly, would be the Data Imbalance checking, if the dataset has more approved loans than the rejected one, this could result to biases to majority class leading to false-positive.