Trí tuệ nhân tạo trong điều khiển

Convolution Neural Networks Mang noron tích chập

TÀI LIỆU SƯU TẬP

Review

Materials

What is CNNs?

- **✓** Convolution Neural Networks
 - **CNNs**

Applications

- ✓ Computer vision
 - * Face recognition
 - ❖ Scene labeling ✓
 - Image classification
 - Action recognition
 - Human pose estimation
 - ❖ Document analysis, CMUT-CNCP
- ✓ Natural language processing
 - Speech recognition
 - **❖** Text classification

Demo

- ✓ Demo:
 - Image classification: http://cs231n.stanford.edu/
 - **Lane detection**
 - Off-Road Scenes Segmentation and Classification
 - **❖** Self Driving Car
 - Handwritten digits recognition
 - * Facial expression recognition AP

BỞI HCMUT-CNCP

CNNs vs. Regular NNs

- ✓ Regular NNs: don't scale well to full images
 - **❖** CIFAR-10: image size 32x32x3
 - → A single fully-connected neuron in a first hidden

layer has 32*32*3 = 3072 weights

- **❖** Image size: 200x200x3
 - \Rightarrow 200*200*3 = 120,000 weights
 - Over fitting TAI LIỆU SƯU TẬP
- ✓ CNNs: Local connectivity MUT-CNCP

 Shared weights

What computers see pictures?

What We See

What Computers See

255	0	255
0	255	0
255	0	255

Input I

I ₁₁	I ₁₂	I ₁₃
I ₂₁	I_{22}	I_{23}
I ₃₁	I ₃₂	I ₃₃

Convolution Layer: 2 kernels (4 weights each) + 2 biases

Fully Connected Layer: 16 weights (regular NN) + 2 biases

 $\begin{array}{|c|c|c|c|c|}
\hline
k^{1}_{11} & k^{1}_{12} \\
\hline
k^{1}_{21} & k^{1}_{22}
\end{array}$

 $\begin{array}{|c|c|c|} k^{2}_{11} & k^{2}_{12} \\ \hline k^{2}_{21} & k^{2}_{22} \\ \end{array}$

Kernel 1

Kernel 2

 $w_1, ..., w_8 = [76.7 - 76.2 - 91.4 \ 24.8 - 92.7 \ 24.3 - 14.0 - 71.3]$ $w_9, ..., w_{16} = [-98.9 \ 69.6 \ 77.5 - 96.6 \ 18.9 - 53.8 - 96.0 \ 99.4]$ $b_3, b_4 = [-47.9 \ -60.0]$

 $b_3, ..., b_4 = [-47.9 -60.0]$

Questions

Q: Where do all parameters come from?

A: Backpropagation

Q: Why local connectivity?

Q: Why shared weights?

Pooling/Subsample layer

BACHKHOACNOD COM

Fully Connected Layer

By Cmglee - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=20206883

$$(fst g)(t):=\int_{-\infty}^{\infty}f(au)g(t- au)\,d au$$

- 1. Express each function in terms of a dummy variable au.
- 2. Reflect one of the functions: g(au) o g(- au).
- 3. Add a time-offset, t, which allows g(t- au) to slide along the au-axis.
- 4. Start t at $-\infty$ and slide it all the way to $+\infty$. Wherever the two functions intersect, find the integral of their product. In other words, at time t, compute the area under the function $f(\tau)$ weighted by the weighting function $g(t-\tau)$.

By Convolution_of_box_signal_with_itself.gif: Brian Ambergderivative work: Tinos (talk) - Convolution_of_box_signal_with_itself.gif, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=11003835

By Convolution_of_spiky_function_with_box.gif: Brian Ambergderivative work: Tinos (talk) - Convolution_of_spiky_function_with_box.gif, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=11003944

