An Introduction to Radio Interferometry

4-2 Complex visibilities of an interferometric array

Interferometric array observation towards a infinitely distant, monochromatic source

$$E_A$$
, E_B , E_C , E_D , , , E_C

Interferometric array observation towards a infinitely distant, monochromatic source

$$E_A = E_0 \cos(kx - \omega t + \phi_0)$$

With correlators, we can evaluate each of the following terms:

$$<(E_A + E_B + E_C + E_D + E_E + \cdots)^2>$$
 $=++++$
 $+<2E_AE_B>+<2E_AE_C>+<2E_AE_D>+<2E_AE_E>$
 $+<2E_BE_C>+<2E_BE_D>+<2E_BE_E>$
 $+<2E_CE_D>+<2E_CE_E>$
 $+<2E_DE_E>$

Interferometric array observation towards a infinitely distant, monochromatic source

 θ' light source

$$E_A = E_0 \cos(kx - \omega t + \phi_0)$$

With correlators, we can evaluate each of the following terms:

$$<(E_A + E_B + E_C + E_D + E_E + \cdots)^2>$$
 $=++++$
 $+<2E_AE_B>+<2E_AE_C>+<2E_AE_D>+<2E_AE_E>$
 $+<2E_BE_C>+<2E_BE_D>+<2E_BE_E>$
 $+<2E_CE_D>+<2E_CE_E>$
 $+<2E_DE_E>$

Form of each cross-term

$$<2E_0^2 \cos(kx - \omega t + \phi_0) \cos(k(x + \Delta x) - \omega t + \phi_0) >$$

$$= <\cos(k\Delta x) > + <\cos(2kx - 2\omega t + 2\phi_0 + k\Delta x) >, \qquad \Delta x = nB_{min} \sin\theta'$$

$$= \cos\left(\frac{2\pi}{\lambda}nB_{min}\sin\theta'\right) \sim \cos\left(\frac{2\pi}{\lambda}nB_{min}\theta'\right)$$

$$E_{A}$$
, E_{B} , E_{C} , E_{D} , E_{C}

NSYSU EMI Online Lecture Series Hauyu Baobab Liu (呂浩宇),
Department of Physics

$$E_A = E_0 \cos(kx - \omega t + \phi_0)$$

With correlators, we can evaluate each of the following terms:

$$<(E_A + E_B + E_C + E_D + E_E + \cdots)^2>$$
 $=++++$
 $+<2E_AE_B>+<2E_AE_C>+<2E_AE_D>+<2E_AE_E>$
 $+<2E_BE_C>+<2E_BE_D>+<2E_BE_E>$
 $+<2E_CE_D>+<2E_CE_E>$

$$<2E_0^2 \cos(kx - \omega t + \phi_0) \cos(k(x + \Delta x) - \omega t + \phi_0) >$$

$$= <\cos(k\Delta x) > + <\cos(2kx - 2\omega t + 2\phi_0 + k\Delta x) >, \qquad \Delta x = B_{ij} \sin \theta'$$

$$= \cos\left(\frac{2\pi}{\lambda}B_{ij}\sin\theta'\right) \sim \cos\left(\frac{2\pi}{\lambda}B_{ij}\theta'\right)$$

$$E_A = E_0 \cos(kx - \omega t + \phi_0)$$

With correlators, we can evaluate each of the following terms:

$$<(E_A + E_B + E_C + E_D + E_E + \cdots)^2>$$
 $=++++$
 $+<2E_AE_B>+<2E_AE_C>+<2E_AE_D>+<2E_AE_E>$
 $+<2E_BE_C>+<2E_BE_D>+<2E_BE_E>$
 $+<2E_CE_D>+<2E_CE_E>$

General expression for the cross (cosine) correlation of antennae i and j:

$$<2E_0^2 \cos(kx - \omega t + \phi_0) \cos(k(x + \Delta x) - \omega t + \phi_0) >$$

$$= <\cos(k\Delta x) > + <\cos(2kx - 2\omega t + 2\phi_0 + k\Delta x) >, \qquad \Delta x = B_{ij} \sin\theta'$$

$$= \cos\left(\frac{2\pi}{\lambda}B_{ij}\sin\theta'\right) \sim \cos\left(2\pi\frac{B_{ij}}{\lambda}\theta'\right) \equiv \cos(2\pi u_{ij}\theta') \qquad \text{Separation of antennae i and j}$$

correlator

thermal

noise

Evaluating Complex visibility of a point source at θ' (i.e., Dirac delta function) taken from antennae i and j

n: nearly independent of frequency

A \(\text{B} \(\text{C} \) \(\text{D} \) \(\text{correlator} \)

$$< 2E_0^2 \cos(kx - \omega t + \phi_0) \cos(k(x + \Delta x) - \omega t + \phi_0) >$$

$$= < \cos(k\Delta x) > + < \cos(2kx - 2\omega t + 2\phi_0 + k\Delta x) >, \qquad \Delta x = B_{ij} \sin \theta'$$

$$= \cos\left(\frac{2\pi}{\lambda}B_{ij}\sin\theta'\right) \sim \cos\left(2\pi\frac{B_{ij}}{\lambda}\theta'\right) \equiv \cos(2\pi u_{ij}\theta') \qquad \text{Separation of antennae i and j}$$

Evaluating Complex visibility of a point source at θ' (i.e., Dirac delta function) taken from antennae i and j

$$< 2E_0^2 \cos(kx - \omega t + \phi_0) \cos(k(x + \Delta x) - \omega t + \phi_0) >$$

$$= < \cos(k\Delta x) > + < \cos(2kx - 2\omega t + 2\phi_0 + k\Delta x) >, \qquad \Delta x = B_{ij} \sin \theta'$$

$$= \cos\left(\frac{2\pi}{\lambda}B_{ij}\sin\theta'\right) \sim \cos\left(\frac{2\pi}{\lambda}B_{ij}\theta'\right) \qquad \text{Separation of antennae i and j}$$

Evaluating Complex visibility of a point source at θ' (i.e., Dirac delta function) taken from antennae i and j

Evaluating Complex visibility for continuous intensity distribution

$$V_{ij} = \int A(\theta) \widetilde{P(\theta)} e^{i2\pi \mathbf{u}_{ij}\theta} d\theta$$

$$< 2E_0^2 \cos(kx - \omega t + \phi_0) \cos(k(x + \Delta x) - \omega t + \phi_0) >$$

$$= < \cos(k\Delta x) > + < \cos(2kx - 2\omega t + 2\phi_0 + k\Delta x) >, \qquad \Delta x = B_{ij} \sin \theta'$$

$$= \cos\left(\frac{2\pi}{\lambda}B_{ij}\sin\theta'\right) \sim \cos\left(\frac{2\pi}{\lambda}B_{ij}\theta'\right) \qquad \text{Separation of antennae i and j}$$

Evaluating Complex visibility of a point source at θ' (i.e., Dirac delta function) taken from antennae i and j

Evaluating Complex visibility for continuous intensity distribution

$$V_{ij} = \int A(\theta) \widetilde{P(\theta)} e^{i2\pi u_{ij}\theta} d\theta$$

Mathematical form of fourier transform

$$< 2E_0^2 \cos(kx - \omega t + \phi_0) \cos(k(x + \Delta x) - \omega t + \phi_0) >$$

$$= < \cos(k\Delta x) > + < \cos(2kx - 2\omega t + 2\phi_0 + k\Delta x) >, \qquad \Delta x = B_{ij} \sin \theta'$$

$$= \cos\left(\frac{2\pi}{\lambda}B_{ij}\sin\theta'\right) \sim \cos\left(\frac{2\pi}{\lambda}B_{ij}\theta'\right) \qquad \text{Separation of antennae i and j}$$

- 1. The cross-correlations produced from any pair of antennae in an interferometric array are not different from those of a 1D, 2-element interferometer.
- 2. The integrated measurements of an interferometric array are a collection of the complex visibilities measured from individual baselines (i.e., pair of antennae).
- 3. The response function of an interferometric array is very similar to the interference pattern of a diffraction grating.