Instructions. Development of Real-Time Systems – Assignment 3

Overview

In this assignment we will focus a bit more on the theoretical side. We will have a look at verifying real-time system by using the cyclic structured construct handled in the course and a simulation environment to automatically schedule a full timeline. The main purpose of the assignment is to expose the student to several ways of planning and verifying a real-time system in practice.

Theory assignment.

The following part of assignment is a purely theoretical task that requires no additional tools. The task is to find the largest possible frame size for the cyclic structured scheduler by following requirements 1,2 and 3 for finding the largest frame size. The following three task sets should be used:

Based on week 2: Cyclic Structured Scheduling

Ti(Pi, ei, Di) pi = period, ei = execution time, Di = Relative deadline

- 1. T1(15, 1, 14)
- 2. T2(20, 2, 26)
- 3. T3(22, 3)

If there is not deadline, we consider deadline the new time the task will appears. That is to say the period.

- \circ f \geq max(e1,e2,...,en) f \rightarrow f \geq = 3
- ∘ \exists i: mod(pi,f)= 0 f E {22, 20, 15, 11, 10, 5, 4, 3, 2, 1} → All the divisors of the period can be a feasible candidate.
- \circ 2*f gcd(pi,f) \leq Di for i= 1, 2, ..., n

O	$2^{-1} - gcu(p_1,1) \le D1 101 1-1,$	۷,, 11	
f	T1	T2	T3
22	$2 * 22 - \gcd(15, 22) = 44 - 1 = 43 \le 14 \text{ No}$	-	
20	$2 * 20 - \gcd(15, 20) = 40 - 5 = 35 \le 14 \text{ No}$		
15	$2 * 15 - \gcd(15, 15) = 40 - 15 = 25 \le 14 \text{ No}$	-	
10	$2 * 10 - \gcd(15, 10) = 20 - 5 = 15 \le 14 \text{ No}$		
5	$2 * 5 - \gcd(15, 5) = 10 - 5$ = $5 \le 14 \text{ Yes}$	$5 \cdot 2 * 5 - \gcd(20, 5) = 10 - 5$ = $5 \le 26 \text{ Yes}$	$2 * 5 - \gcd(22, 5) = 10 - 1$ $\leq 22 \text{ Yes}$

The optimal framesize is 5.

Ti(Pi, ei, Di) pi = period, ei = execution time, Di = Relative deadline

- 1. T1(4, 1)
- 2. T2(5, 2, 7)
- 3. T3(20, 5)
 - \circ $f \ge \max(e_1, e_2, \dots, e_n)$ $f \rightarrow f \ge 5$
 - ∘ \exists : mod(p_i,f)= 0 f E {20, 10, 5, 4, 2, 1} → All the divisors of the period can be a feasible candidate.
 - \circ 2*f-gcd(p_i,f) \leq D_i for i= 1, 2, ..., n

It is not feasible to find a period that fulfil the requirements. Job T3 should be splited in smaller parts.

Ti(Pi, ei, Di) pi = period, ei = execution time, Di = Relative deadline

- 1. T1(5, 0.1)
- 2. T2(7, 1)
- 3. T3(12, 6)
- 4. T4(45, 9)
 - \circ $f \ge \max(e_1, e_2, \dots, e_n)$ $f \rightarrow f \ge 9$
 - \circ ∃: mod(p_i,f)= 0 f E {45, 15, 12, 9, 7, 6, 5, 3, 2, 1} → All the divisors of the period can be a feasible candidate.
 - \circ 2*f − gcd(p_i,f) ≤ D_i for i= 1, 2, ..., n

f	T1	T2	Т3	T4
45	90 - 5 ≤ 5 No			
15	$30 - 5 \le 5 \text{ No}$			
12	$24 - 1 \le 5 \text{ No}$			
9	$18 - 1 \le 5 \text{ No}$			
7	$14 - 1 \le 5 \text{ No}$			
6	$12 - 1 \le 5 \text{ No}$			
5	$10 - 5 \le 5 \text{ Yes}$	$10 - 1 \le 7 \text{ No}$		
4	$8-1 \le 5$ No			
3	$6 - 1 \le 5 \text{ Yes}$	$6-1 \le 7 \text{ Yes}$	$6-3 \le 12 \text{ Yes}$	$6-3 \le 45 \text{ Yes}$

It is not feasible to find a period that fulfil the requirements. Job T3 and T4 should be splited in smaller parts.

Simulation assignment

The assignment is to use a real-time simulator to verify feasibility of a set of tasks. Input the tasks: Ti(Pi, ei, Di) pi = period, ei = execution time, Di = Relative deadline

- 1. T1(2, 0.5)
- 2. T2(3, 1.2),
- 3. T3(6, 0.5)

and the RM scheduler into the SimSo simulator. Use SimSo to schedule the task set Provide a report answering the following questions:

• What is the utilization factor of the system and what is the value for Urm(3).

$$U = \sum_{i=1}^{n} \frac{e_i}{P_i} = \frac{0.5}{2} + \frac{1.2}{3} + \frac{6}{0.5} = 0.7333 \qquad U_{rm}(n) = n(2^{1/n} - 1) \qquad U_{rm}(3) = 3(2^{1/3} - 1) = 0.7798$$

Simulator shows: 0,7410

• What is the minimum/maximum/average response time of all tasks?

Response time:				
Task	min	avg	max	std dev
TASK T1	0.600	0.600	0.600	0.000
TASK T2	2.800	6.511	8.400	1.924
TASK T3	0.100	0.100	0.100	0.000
TASK T4	17.300	17.300	17.300	0.000

• Is any task missing the deadline? Which task? Where? There is no task that miss the deadline

Input the tasks:

Ti(Pi, ei, Di) pi = period, ei = execution time, Di = Relative deadline

- 1. T1(2, 0.5, 1.9)
- 2. T2(5, 2)
- 3. T3(1, 0.1, 0.5)
- 4. T4(10, 5, 20)

and the EDF scheduler into the SimSo simulator. Use SimSo to schedule the task set.

Provide a report answering the following questions:

• What is the utilization factor of the system and what is the value for Urm(4).

The simulator says that the total utilization is 1.

	Total load	Payload	System load
PU1	1.0000	1.0000	0.0000
verage	1.0000	1.0000	0.0000

$$U = \sum_{i=1}^{n} \frac{e_i}{P_i} = \frac{0.5}{2} + \frac{2}{5} + \frac{0.1}{1} + \frac{5}{10} = 1.25 \qquad U_{rm}(n) = n(2^{1/n} - 1) \qquad U_{rm}(4) = 4(2^{1/4} - 1) = 0.7568$$

• What is the minimum/maximum/average response time of all tasks?

Response time:				
Task	min	avg	max	std dev
TASK T1	0.600	0.600	0.600	0.000
TASK T2	2.800	6.511	8.400	1.924
TASK T3	0.100	0.100	0.100	0.000
TASK T4	17.300	17.300	17.300	0.000

• Is any task missing the deadline? Which task? Where?

27100000	27.1	TASK T3_28 Terminated.
27100000	27.1	TASK T4_2 Executing on CPU 1
28000000	28.0	TASK T1_15 Activated.
28000000	28.0	TASK T3_29 Activated.
28000000	28.0	TASK T4_2 Preempted! ret: 1800000
28000000	28.0	TASK T3_29 Executing on CPU 1
28100000	28.1	TASK T3_29 Terminated.
28100000	28.1	TASK T1_15 Executing on CPU 1
28600000	28.6	TASK T1_15 Terminated.
28600000	28.6	TASK T4_2 Executing on CPU 1
29000000	29.0	TASK T3_30 Activated.
29000000	29.0	TASK T4_2 Preempted! ret: 1400000
29000000	29.0	TASK T3_30 Executing on CPU 1
29100000	29.1	TASK T3_30 Terminated.
29100000	29.1	TASK T4_2 Executing on CPU 1
30000000	30.0	Job TASK T4_2 aborted! ret:0.5
30000000	30.0	TASK T4_4 Activated.
30000000	30.0	TASK T2_7 Activated.

Task 4 fails at time 30 it exceeds the deadline.

• If a deadline is missed, could it be avoided by changing the scheduler?

The main problem here is the utilization is too high to allow the system work properly. Adding a new processor would fix the problem.

ANNEX

References: http://nptel.ac.in/courses/Webcourse-contents/IIT%20Kharagpur/Embedded%20systems/Pdf/Lesson-29.pdf

 $References: \underline{http://www.engr.iupui.edu/\sim dskim/Classes/ESW5004/RTSys\%20Lecture\%20Note\%20-\%20ch04\%20Clock-Driven\%20Scheduling.pdf}$

Minimum Context Switching:

- This constraint is imposed to minimize the number of context switches occurring during task execution. The simplest interpretation of this constraint is that a task instance must complete running within its assigned frame. Unless a task completes within its allocated frame, the task might have to be suspended and restarted in a later frame. This would require a context switch involving some processing overhead. To avoid unnecessary context switches, the selected frame size should be larger than the execution time of each task, so that when a task starts at a frame boundary it should be able to complete within the same frame. Formally, we can state this constraint as:
 - max({e}) < F where ei is the execution times of the of task Ti, and Fis the frame size.
 Note that this constraint imposes a lower-bound on frame size, i.e., frame size F must not be smaller than max({ei})
 - o To avoid preemption, want jobs to start and complete execution within a single frame: $f \ge max(e_1,e_2,...,e_n)$
- To minimize the number of entries in the cyclic schedule, the hyper-period should be an integer multiple of the frame size (⇒f divides evenly into the period of at least one task): ∃i: mod(p_i,f)= 0
- To allow scheduler to check that jobs complete by their deadline, should be at least one frame boundary between release time of a job and its deadline:
 2*f gcd(p_i,f) ≤ D_i for i= 1, 2, ..., n

References: http://britton.disted.camosun.bc.ca/GCD_LCM.htm

Greatest Common Divisor

The greatest common divisor (GCD), which is also known as the greatest common factor (GCF), of two or more integers is the largest integer that is a common divisor (factor) of all the given integers.

The greatest common divisor of two or more integers can be obtained in three steps:

STEP 1: Find the prime factorization of each integer.

$$375 = 3 \times 5^3$$

 $525 = 3 \times 5^2 \times 7$

STEP 2: List the common prime divisors (factors) with the least power of all the given integers.

$$375 = 3 \times 5^3 = 3 \times 5^2 \times 5$$

 $525 = 3 \times 5^2 \times 7 = 3 \times 5^2 \times 7$

Common Prime Divisors (Factors) with Least Power: 3 and 5²

STEP 3: Multiply the common prime divisors (factors) to find the greatest common divisor (factor).

$$3 \times 5^2 = 75$$

GCD (GCF) of 375 and 525 = 75

Least Common Multiple

The *least common multiple* (LCM), which is also known as the *least common denominator* (LCD) in fractions, of two or more integers is the smallest integer that is a common multiple (denominator) of all the given integers.

The least common multiple (denominator) of two or more integers can be obtained in three steps:

STEP 1: Find the prime factorization of each integer.

- $4 = 2^2$
- $10 = 2 \times 5$
- $45 = 3^2 \times 5$

STEP 2: List the prime divisors (factors) with the greatest power of all the given integers.

- $4 = 2^{2}$
- $10 = 2 \times 5$
- $45 = 3^2 \times 5$

Prime Divisors (Factors) with Greatest Power: 2², 3², and 5

STEP 3: Multiply the prime divisors (factors) to find the least common multiple (denominator).

$$2^2 \times 3^2 \times 5 = 180$$

LCM of 4, 10 and 45 = 180