

Pré-Processamento de Dados

Luciano Barbosa

Motivação

- "Todo mundo faz mas ninguém fala"
- Boa parte do tempo gasto nesta etapa
- Dados incorretos podem distorcer os resultados das análises e modelos
- "Better data beats fancier algorithms"

Roteiro

- Ajuste de tipos
- Dados ausentes
- Discretização
- Normalização

Dados Ausentes

- Viés na ausência de dados
 - Ex: pessoas mais ricas tendem a não dizer renda em pesquisas

Remoção de Dados

- Remoção das instâncias: instâncias nas quais ao menos um dos atributos está faltando
 - Pro: simples
 - Con:
 - Possível viés se as instâncias removidas forem diferentes das não removidas
 - Pode remover boa parte dos dados
- Remoção de instâncias baseado na análise
- Remoção de variáveis com muitos valores ausentes

Imputação de Dados

- Imputar dados ausentes
- Média, mediana ou moda da variável
 - Problema se existem muitos valores ausentes
 - Pode atrapalhar no cálculo de correlações entre variáveis

Formas de Imputação

- Imputar um valor e criar outra variável indicando que o dado foi imputado
- Para dados categóricos: adicionar uma categoria de dados ausentes
- Amostra aleatória dos valores da variável ou baseado em uma distribuição (ex.: normal)

Formas de Imputação

- Para atributos categóricos:
 - Usar classificação para prever os valores ausentes de uma variável a partir das outras

- Para atributos numéricos:
 - Usar regressão para prever os valores ausentes de uma variável a partir das outras

Formas de Imputação

- KNN (https://github.com/iskandr/ fancyimpute):
 - Valor ausente definido pelos valores das instâncias mais próximas
 - Valor: média dos valores dos vizinhos

Discretização

- Transformar atributos contínuos em categóricos
- Decidir número de intervalos e seu tamanho
- Dois tipos
 - Supervisionada
 - Baseada em entropia: intervalos com mesma proporção de um rótulo
 - Não-supervisionada
 - Intervalos de mesma largura
 - Intervalos de mesma frequência

Supervisionada

O-Ring Failure	Temperature
Υ	53
Y	56
Y	57
N	63
N	66
N	67
N	67
N	67
N	68
N	69
N	70
Y	70
Y	70
Y	70
N	72
N	73
N	75
Y	75
N	76
N	76
N	78
N	79
N	80
N	81

 Passo 1: Calcular a entropia da classe

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

O-Ring Failure		
Y	N	
7	17	

E (Failure) = E(7, 17) = E(0.29, .71) = -0.29 x $log_2(0.29) - 0.71$ x $log_2(0.71) = 0.871$

Supervisionada

O-Ring Failure	Temperature
Υ	53
Y	56
Y	57
N	63
N	66
N	67
N	67
N	67
N	68
N	69
N	70
Y	70
Y	70
Y	70
N	72
N	73
N	75
Y	75
N	76
N	76
N	78
N	79
N	80
N	81

 Passo 2: Calcular entropia para a classe dada uma discretização

$$E(S|A) = \sum_{v \in A} \frac{|S_v|}{|S|} E(S_v)$$

		O-Ring Failure	
		Y	N
Temperature	<= 60	3	0
	> 60	4	17

E (Failure Temperature) = $P(=60) \times E(3,0) + P(>60) \times E(4,17) = 3/24 \times 0 + 21/24 \times 0.7 = 0.615$

Supervisionada

O-Ring Failure	Temperature
Y	53
Y	56
Y	57
N	63
N	66
N	67
N	67
N	67
N	68
N	69
N	70
Y	70
Y	70
Y	70
N	72
N	73
N	75
Υ	75
N	76
N	76
N	78
N	79
N	80
N	81

 Passo 3: Calcular o Information Gain

0.1.00

Information Gain =
$$E(S) - E(S|A)$$

Information Gain (Failure, Temperature) = 0.256

Gain = 0.256		O-Ring Failure	
		Y	N
Temperature	<= 60	3	0
	>60	4	17
Gain = 0.101	O-Ring Failure		
Temperature		Y	N
	<= 70	6	8
	>70	1	9
Gain = 0.148		O-Ring Failure	
		Υ	N
Temperature	<= 75	7	11
	>75	0	6

Cln.ufpe.br

Não-Supervisionada

Mesmo Intervalo

Mesmo frequência

Cln.ufpe.br

Normalização

- Útil para cálculo de distância entre instâncias com atributos com diferentes intervalos
- Intervalos: [0,1] ou [-1,1]
- Atributos com valores maiores podem dominar os com valores menores

Normalização por Min-Max

 Valores do atributo são ajustados para o intervalo [a,b] baseado no valor máximo e mínimo:

nimo:
$$v[i] = \frac{v[i] - min(v)}{max(v) - min(v)}(b - a) + a$$

For: $(X_1, Y_1) = (0, 0)$ $(X_2, Y_2) = (1, 1)$

Distance Equation Solution:

$$d = \sqrt{(2-1)^2 + (100 - 40)^2}$$
$$d = \sqrt{(1)^2 + (60)^2}$$

$$d = \sqrt{1 + 3600}$$

$$d = \sqrt{3}601$$

$$a = \sqrt{3601}$$

Distance Equation Solution:

$$d = \sqrt{(1-0)^2 + (1-0)^2}$$

$$d = \sqrt{(1)^2 + (1)^2}$$

$$d = \sqrt{1+1}$$

$$d = \sqrt{2}$$

Cln.ufpe.br

d = 60.008333

$$d = 1.414214$$

Normalização por Média e Desvio Padrão

- Média = 0
- Desvio padrão = 1

$$v[i] = \frac{v[i] - \bar{v}}{\sigma_{v}}$$

$$z = \begin{bmatrix} \frac{35-51}{17} \\ \frac{36-51}{17} \\ \frac{46-51}{17} \\ \frac{68-51}{17} \\ \frac{68-51}{17} \\ \frac{70-51}{17} \end{bmatrix} = \begin{bmatrix} -\frac{16}{17} \\ -\frac{15}{17} \\ -\frac{5}{17} \\ \frac{17}{17} \\ \frac{19}{17} \end{bmatrix} = \begin{bmatrix} -0.9412 \\ -0.8824 \\ -0.2941 \\ 1.0000 \\ 1.1176 \end{bmatrix}.$$