Diskrete Signale

Literatur für Teil 2 der Vorlesung:

T. Frey, M. Bossert: Signal- und Systemtheorie, Teubner-Verlag

Kontinuierliche Signale

Ein (zeit-) kontinuierliches Signal wird durch eine reelle oder komplexe Funktion $f(t) \in \mathbb{R}$ (\mathbb{C}) einer reellen Veränderlichen $t \in \mathbb{R}$ dargestellt.

• Wertebereich: \mathbb{R} (\mathbb{C})

Definitionsbereich: ℝ

Zeitkontinuierliche Signale lassen sich nicht mit Hilfe von Digitalrechnern verarbeiten

Diskrete Signale

Ein (zeit-) diskretes Signal wird durch eine Folge reeller oder komplexer Zahlen $f_n = f(n) \in \mathbb{R}$ (\mathbb{C}), $n \in \mathbb{Z}$ dargestellt.

• Wertebereich: \mathbb{R} (\mathbb{C})

Definitionsbereich: Z

- Fall 1: von sich aus diskretes Signal,
 z.B. täglicher Börsenschlusskurs
- Fall 2: aus analogem Signal abgeleitet: $f_n = f(nT)$

Übersicht kontinuierliche und diskrete Signale

Abtastung + Quantisierung = A/D - Wandlung

Praktische Betrachtungen zu digitalen Signalen, die aus analogen abgeleitet sind

- Zeitkontinuierliches Signal f(t) wird in eine reine Zahlendarstellung übersetzt.
- Dadurch wird der Einsatz digitaler Übertragungsverfahren, digitaler Signalverarbeitung, digitaler Regelungen usw. möglich.
- Annahmen im Folgenden:
 - Abtastung des zeitkontinuierlichen Signals f(t) zu äquidistanten diskreten Zeitpunkten t=nT, T= konstant. T heißt Abtastintervall.
 - Einfluss der Amplitudenstufung bei Quantisierung vernachlässigbar wegen hoher Auflösung.
- Die Wahl des Abtastintervalls T werden wir im Abschnitt "Abtastung" behandeln.

Elementare diskrete Signale: Impulsfolge

Impuls zum Zeitpunkt Null:

$$\delta_n = \begin{cases} 1 & \text{für } n = 0 \\ 0 & \text{für } n \neq 0 \end{cases}$$

diskreter Deltaimpuls, Einheitsimpuls, Kronecker – Delta

Verschobener Impuls:

$$\delta_{n-n_0} = \begin{cases} 1 & \text{für } n = n_0 \\ 0 & \text{für } n \neq n_0 \end{cases}$$

Elementare diskrete Signale: Impulsfolge

Abtast- oder Ausblendeigenschaft:

$$f_n \cdot \delta_{n-n_0} = f_{n_0} \cdot \delta_{n-n_0}$$

Alle Werte der Folge bis auf einen werden ausgeblendet.

Daraus folgt:

$$\sum_{n=-\infty}^{\infty} f_n \cdot \delta_{n-n_0}$$

$$= \sum_{n=-\infty}^{\infty} f_{n_0} \delta_{n-n_0} = f_{n_0}$$

■ Andere Interpretation: Jede Folge f_{n_0} lässt sich als Summe (Überlagerung) verschobener und gewichteter Deltaimpulse darstellen.

Vergleich Impulsfolge δ_n und Dirac-Impuls $\delta(t)$

Dirac-Impuls zum Zeitpunkt Null:

$$\delta(t) = \left\{ \begin{array}{l} \textit{unendlich}, \text{ Gewicht 1 für } t = 0 \,, \\ +\infty \\ \text{d.h.} \quad \int\limits_{-\infty}^{+\infty} \delta(t) dt = 1 \\ 0 \quad \text{für } t \neq 0 \end{array} \right.$$

Verschobener Dirac:

$$\delta(t - t_0) = \begin{cases} \text{ unendlich, Gewicht 1 für } t = t_0 \\ 0 \quad \text{für } t \neq t_0 \end{cases}$$

Vergleich Impulsfolge δ_n und Dirac-Impuls $\delta(t)$

Abtast- oder Ausblendeigenschaft:

$$f(t) \cdot \delta(t - t_0) = f(t_0) \cdot \delta(t - t_0)$$

Alle Werte der Funktion bis auf einen werden ausgeblendet. Dieser bestimmt das *Gewicht* des Dirac-Impulses.

■ Daraus folgt:

$$\int_{-\infty}^{\infty} f(t)\delta(t - t_0)dt$$

$$= \int_{-\infty}^{\infty} f(t_0)\delta(t - t_0)dt$$

$$= f(t_0)$$

Elementare diskrete Signale: Diskreter Deltakamm

Der diskrete Deltakamm für $N \in \mathbb{N}$ ist gegeben durch

$$\sum_{k=-\infty}^{\infty} \delta_{n-kN}$$

Elementare diskrete Signale: (Einheits-) Sprungfolge

Einheitssprungfolge:

$$u_n = \left\{ \begin{array}{ll} 1 & \text{für } n \geq 0 \\ 0 & \text{für } n < 0 \end{array} \right.$$

Zusammenhang zwischen Impulsfolge und Sprungfolge

$$\delta_n = u_n - u_{n-1}$$

erste Differenz der Einheitssprungfolge (entspricht Ableitung in Zeitkontinuierlichen)

Summe von $-\infty$ bis n. (entspricht Integral im Zeitkontinuierlichen)

Elementare diskrete Signale: Exponentialfolge

Exponentialfolge:

$$f_n = a^n = e^{\beta n}, \ a, \beta \in \mathbb{C}, \ a = e^{\beta}$$

Abklingend für

$$|a| < 1 \text{ oder } \Re{\{\beta\}} < 0$$

Aufklingend für

$$|a| > 1 \text{ oder } \Re{\{\beta\}} > 0$$

Spezialfall: a reell:

Elementare diskrete Signale: Exponentialfolge, Cosinus- und Sinusfolgen

- Exponential folge: $f_n = a^n = e^{\beta n}, \quad a, \beta \in \mathbb{C}, a = e^{\beta}$
- Spezialfall der Exponentialfolge: $a=e^{j\omega}$, $\beta=j\omega$, somit β rein imaginär.

$$f_n = e^{j\omega n} = \underbrace{\cos(n\omega)}_{\text{Cosinusfolge}} + j \underbrace{\sin(n\omega)}_{\text{Sinusfolge}}$$

- Cosinus- und Sinusfolgen: Mit komplexen Exponentialfunktionen können Sinus- und Cosinusfolgen dargestellt werden.
 - Cosinusfolge: $\cos(n\omega + \phi) = \frac{1}{2} \left(e^{j\phi} e^{jn\omega} + e^{-j\phi} e^{-jn\omega} \right)$
 - Sinusfolge:

$$\sin(n\omega + \phi) = \frac{1}{2j} \left(e^{j\phi} e^{jn\omega} - e^{-j\phi} e^{-jn\omega} \right)$$

Frequenzperiodizität komplexer Exponentialfolgen

■ Jede komplexe Exponentialfolge f_n ist frequenzperiodisch, d.h. sie ergibt sich nicht nur für ω , sondern auch für andere Frequenzen $\omega \pm m \cdot 2\pi$, $m \in \mathbb{Z}$, denn

$$f(n) = e^{j(\omega + m2\pi)n} = e^{j\omega n}$$

■ Ein um $m \cdot 2\pi$ höherfrequentes komplexes Exponentialsignal hat die gleichen Abtastwerte wie seine niederfrequente Version:

Zeitperiodizität komplexer Exponentialfolgen

- Komplexe Exponentialfolgen sind frequenzperiodisch, aber nicht immer zeitperiodisch.
- Bedingung für die Zeitperiodizität einer abgetasteten Exponentialfolge nach N Abtastwerten:

$$e^{j\omega(n+N)} = e^{j\omega n}$$

 $\Rightarrow e^{j\omega N} = 1 \Leftrightarrow \omega N = m \cdot 2\pi, m \in \mathbb{Z}$

Das heißt, $\frac{\omega}{2\pi}$ muss eine rationale Zahl $\frac{m}{N}$ sein.

