$$f(\theta) = \begin{cases} 0 & \theta \neq \frac{1}{2} \\ 0 & \theta = \frac{1}{2} \end{cases}$$

$$f(\theta|y) \neq f(y|\theta) = \begin{cases} 0 & \text{when } \theta \neq \frac{1}{2} \\ 0 & \text{when } \theta = \frac{1}{2} \end{cases}$$

$$f(y|\theta) = \begin{cases} 0 & \text{when } \theta \neq \frac{1}{2} \\ 0 & \text{when } \theta = \frac{1}{2} \end{cases}$$

$$f(y|\theta) = \begin{cases} 0 & \text{when } \theta \neq \frac{1}{2} \\ 0 & \text{when } \theta = \frac{1}{2} \end{cases}$$

$$f(y|\theta) = \begin{cases} 0 & \text{when } \theta \neq \frac{1}{2} \\ 0 & \text{when } \theta \neq \frac{1}{2} \end{cases}$$

$$f(y|\theta) = \begin{cases} 0 & \text{when } \theta \neq \frac{1}{2} \\ 0 & \text{when } \theta \neq \frac{1}{2} \end{cases}$$

$$f(y|\theta) = \begin{cases} 0 & \text{when } \theta \neq \frac{1}{2} \\ 0 & \text{when } \theta \neq \frac{1}{2} \end{cases}$$

$$f(y|\theta) = \begin{cases} 0 & \text{when } \theta \neq \frac{1}{2} \\ 0 & \text{when } \theta \neq \frac{1}{2} \end{cases}$$

$$f(y|\theta) = \begin{cases} 0 & \text{when } \theta \neq \frac{1}{2} \\ 0 & \text{when } \theta \neq \frac{1}{2} \end{cases}$$

$$f(y|\theta) = \begin{cases} 0 & \text{when } \theta \neq \frac{1}{2} \\ 0 & \text{when } \theta \neq \frac{1}{2} \end{cases}$$

$$f(y|\theta) = \begin{cases} 0 & \text{when } \theta \neq \frac{1}{2} \\ 0 & \text{when } \theta \neq \frac{1}{2} \end{cases}$$

$$f(y|\theta) = \begin{cases} 0 & \text{when } \theta \neq \frac{1}{2} \\ 0 & \text{when } \theta \neq \frac{1}{2} \end{cases}$$

$$f(y|\theta) = \begin{cases} 0 & \text{when } \theta \neq \frac{1}{2} \\ 0 & \text{when } \theta \neq \frac{1}{2} \end{cases}$$

2. It should rarely (never) be used: [Cromwell's rule] prior probability of 0/1 should be avoided.

3. Exception: 0/1 probability can apply to statements that are logically true/ false. E.g. 2+2=4

1. Beta dis	tribution		
0~Beta(2,B)	$f(\theta) = 0$		
*			
Beta (1,1)			
,			
$\Gamma(n+1)$			

coin: 0 ~ Beta(α,β) Bernoulli y, y, y, y,	
Bernoulli y, yr, yv,	
$f(\theta \chi) =$	

coin
$$\theta \sim \text{Beta}(\alpha, \beta)$$

 $X \sim \text{Bin}(n, \theta)$

$$f(\theta|x)$$
if $\alpha=1$, $\beta=1$

$$f(\theta)=1$$
{e<[0,1]}
$$f(x)$$

If all possible coins or all possible probabilities are equally likely, then all possible outcomes X are equally likely

Z Normal distribution	exercise:
$\mu \sim N(\nu, \omega^{\nu})$	backetball team: 0~N(/s,62)
$X u \sim N(u, 6^{v})$ 6^{v} is known	individual player: X10 ~N(0,42)
	player A mode 85% of free
	throws in this year
	What is the posterier expected
	value of her career percenting
	`
	'

Concept question: normal priors, normal likelihood

Blue graph = prior

Red lines = data in order: 3, 9, 12

(a) Which plot is the posterior to just the first data value?

Blue graph = prior Red lines = data in order: 3, 9, 12 **(b)** Which graph is posterior to all 3 data values?

Figure 1: Sequentially updating a Gaussian mean starting with a prior centered on $\mu_0=0$. The true parameters are $\mu^*=0.8$ (unknown), $(\sigma^2)^*=0.1$ (known). Notice how the data quickly overwhelms the prior, and how the posterior becomes narrower. Source: Figure 2.12 [Bis06].

3. Gamma distribution

Yi~Pois(X)

erg. Bus: X= 1/10