EXERCICE 1 On considère la fonction g définie par

$$\begin{cases} g\left(x\right) = \frac{x^2}{\sin\left(x/2\right)} & \text{si } x \in \left]0, \pi\right] \\ g\left(0\right) = 0 \end{cases}$$

- 1. Il est clair que g est continue sur $[0, \pi]$ (quotient de fonctions continues, dénominateur non nul)
 - De plus, en écrivant $\forall x \in]0,\pi]\,,\;g\left(x\right)=2x\frac{x/2}{\sin x/2}$ et en remarquant que

$$\lim_{x \to 0} \frac{x/2}{\sin x/2} = \lim_{y \to 0} \frac{y}{\sin y} = 1$$

on obtient par produit, $\lim_{x\to 0}g\left(x\right)=0=g\left(0\right)$: d'où la continuité de g en 0, et par suite sur $\left[0,\pi\right]$.

2. D'autre part,
$$\forall x \in \left]0,\pi\right], \ \frac{g\left(x\right)-g\left(0\right)}{x} = \frac{x}{\sin\left(x/2\right)} = 2\frac{x/2}{\sin\left(x/2\right)},$$
 d'où

$$\lim_{x \to 0} \frac{g(x) - g(0)}{x} = 2$$

On en déduit que g est dérivable en 0, et que g'(0) = 2

3. g est clairement dérivable sur $[0, \pi]$, et

$$\forall x \in \left]0, \pi\right], \quad g'\left(x\right) = \frac{2x}{\sin\left(x/2\right)} - \frac{x^2\cos\left(x/2\right)}{2\sin^2\left(x/2\right)} = 4\frac{x/2}{\sin\left(x/2\right)} - 2\cos\left(x/2\right)\left(\frac{x/2}{\sin\left(x/2\right)}\right)^2$$

De
$$\lim_{x\to 0}\frac{x/2}{\sin x/2}=\lim_{x\to 0}\left(\frac{x/2}{\sin x/2}\right)^2=\lim_{x\to 0}\left(x/2\right)=1,$$
 on tire donc

$$\lim_{x \to 0} f'(x) = 2 = f'(0)$$

g' est donc continue en 0. Comme elle l'est banalement sur $]0,\pi]$, elle est finalement continue sur $[0,\pi]$ Conclusion :

$$g\in C^{1}\left(\left[0,\pi\right] \right)$$

EXERCICE 2 On considère la fonction f définie par :

$$f(x) = \frac{1}{2} \arctan x - \frac{1}{4} \arcsin \left(\frac{2x}{1+x^2}\right)$$

1. Soit $x \in \mathbb{R}$. Pour que f(x) existe, il faut que $\frac{2x}{1+x^2}$ soit dans l'intervalle [-1,1]. Or

$$-1 \leqslant \frac{2x}{1+x^2} \leqslant 1 \Longleftrightarrow -1-x^2 \leqslant 2x \leqslant 1+x^2$$

- La première inégalité revient à $x^2 + 2x + 1 \ge 0$, ce qui est vrai $((x+1)^2 \ge 0)$.
- La deuxième revient à $x^2 2x + 1 \ge 0$, ce qui est vrai $((x-1)^2 \ge 0)$.

Donc $\arcsin\left(\frac{2x}{1+x^2}\right)$ a bien un sens pour tout réel x. \arctan étant définie sur \mathbb{R} , on en déduit que

f est bien définie sur $\mathbb R$ (et continue par somme et composée)

2. $\underline{\text{D\'eriv\'ee}}$: f est dérivable en tout point x tel que $\frac{2x}{1+x^2} \notin \{-1,1\}$ (car \arcsin n'est pas dérivable en -1 et 1). L'étude précédente montre que

$$\frac{2x}{1+x^2} = 1 \Longleftrightarrow x = 1 \quad \text{et} \quad \frac{2x}{1+x^2} = -1 \Longleftrightarrow x = -1$$

Donc f est dérivable sur $\mathbb{R}\setminus\{-1,1\}$, et $\forall x\in\mathbb{R}\setminus\{-1,1\}$,

$$f'(x) = \frac{1}{2} \frac{1}{1+x^2} - \frac{1}{4} \frac{d}{dx} \left(\frac{2x}{1+x^2}\right) \frac{1}{\sqrt{1-\left(\frac{2x}{1+x^2}\right)^2}}$$

$$= \frac{1}{2} \frac{1}{1+x^2} - \frac{1}{2} \frac{1-x^2}{(1+x^2)^2} \frac{\sqrt{(1+x^2)^2}}{\sqrt{(1+x^2)^2 - 4x^2}}$$

$$= \frac{1}{2} \frac{1}{1+x^2} - \frac{1}{2} \frac{1-x^2}{(1+x^2)^2} \frac{1+x^2}{\sqrt{1+x^4 - 2x^2}}$$

$$= \frac{1}{2} \frac{1}{1+x^2} \left(1 - \frac{1-x^2}{\sqrt{(1-x^2)^2}}\right)$$

$$f'(x) = \frac{1}{2} \frac{1}{1+x^2} \left(1 - \frac{1-x^2}{|1-x^2|} \right) = \frac{1}{2} \frac{1}{1+x^2} \left(1 - \text{signe} \left(1 - x^2 \right) \right)$$

3. Simplifications

a) On suppose que $x \in]-1,1[$. Alors $1-x^2>0$,et $f'(x)=\frac{1}{2}\frac{1}{1+x^2}(1-1)=0$ f est donc constante sur]-1,1[. Comme f(0)=0 , on en déduit que

$$\forall x \in]-1,1[\,,\,f(x)=0\,]$$

 $\textit{Remarque}: \text{par continuit\'e de } f, \text{ on a alors n\'ecessairement } f\left(1\right) = f\left(-1\right) = 0$

b) $\frac{\text{On suppose que }x\in]1,+\infty[\text{. Alors ici }f'(x)=\frac{1}{2}\frac{1}{1+x^2}\left(1-(-1)\right)=\frac{1}{1+x^2}\text{Donc }\exists C\in\mathbb{R}\;/\;\forall x\in]1,+\infty[\;,\;f(x)=\arctan x+C\text{. Or}$

$$\left\{ \begin{array}{l} f(\sqrt{3}) = \frac{1}{2}\arctan\sqrt{3} - \frac{1}{4}\arcsin\left(\frac{2\sqrt{3}}{1+3}\right) = \frac{1}{2}\frac{\pi}{3} - \frac{1}{4}\frac{\pi}{3} = \frac{\pi}{12} & \text{et} \\ f(\sqrt{3}) = \arctan\sqrt{3} + C = \frac{\pi}{3} + C \end{array} \right. \Rightarrow C = \frac{\pi}{12} - \frac{\pi}{3} = -\frac{\pi}{4}$$

Ainsi

$$\forall x \in]1, +\infty[, f(x) = \arctan x - \frac{\pi}{4}]$$

c) On suppose que
$$x \in]-\infty, -1[$$
. On a encore $f'(x) = \frac{1}{1+x^2}$ Donc $\exists C' \in \mathbb{R} \ / \ \forall x \in]-\infty, -1[, \ f(x) = \arctan x + C'. \ \text{On trouve} \ f(-\sqrt{3}) = -\frac{\pi}{12} = -\frac{\pi}{3} + C'. \ \text{d'où}$ $\forall x \in]-\infty, -1[, \ f(x) = \arctan x + \frac{\pi}{4}]$

- **4.** On pose $\theta = \arctan x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ a) Alors $\tan \theta = x$, et

$$f\left(x\right) = \frac{\theta}{2} - \frac{1}{4}\arcsin\left(\frac{2\tan\theta}{1 + \tan^{2}\theta}\right) = \frac{\theta}{2} - \frac{1}{4}\arcsin\left(2\tan\theta\cos^{2}\theta\right)$$

Soit

$$f(x) = \frac{\theta}{2} - \frac{1}{4}\arcsin(\sin 2\theta)$$

- b) On distingue donc trois cas:
- $\quad \underline{\mathrm{Si}\; x \in]-1,1[},\, \mathrm{alors}\; -\frac{\pi}{4} < \arctan x < \frac{\pi}{4}\;,\, \mathrm{d'où}\; -\frac{\pi}{2} < 2\theta < \frac{\pi}{2}.\; \mathrm{Alors}\;$ $\arcsin(\sin 2\theta) = 2\theta$

Donc

$$f(x) = \frac{\theta}{2} - \frac{1}{4}2\theta = \boxed{0}$$

-
$$\underline{\text{Si }x\in]1,+\infty[}$$
, alors $\frac{\pi}{4}<\arctan x<\frac{\pi}{2}$, d'où $\frac{\pi}{2}<2\theta<\pi.$ Alors $\arcsin\left(\sin 2\theta\right)=\pi-2\theta$

Donc

$$f(x) = \frac{\theta}{2} - \frac{1}{4} \left(\pi - 2\theta \right) = \theta - \frac{\pi}{4} = \boxed{\arctan x - \frac{\pi}{4}}$$

- Si
$$x\in]-\infty,-1[$$
, alors $-\frac{\pi}{2}<\arctan x<-\frac{\pi}{4}$, d'où $-\pi<2\theta<-\frac{\pi}{2}$. Alors $\arcsin{(\sin{2\theta})}=-\pi-2\theta$

Donc

$$f(x) = \frac{\theta}{2} - \frac{1}{4} \left(-\pi - 2\theta \right) = \theta + \frac{\pi}{4} = \left[\arctan x + \frac{\pi}{4} \right]$$

Remarque: il est clair que f est impaire, donc on peut déduire $\overline{\operatorname{du}\operatorname{calcul}\operatorname{sur}]1}$, $+\infty[$ que

$$\forall x \in]-\infty, -1[, f(x) = -f(-x) = -\left(\arctan(-x) - \frac{\pi}{4}\right) = \arctan x + \frac{\pi}{4}$$

5. Courbe de *f* :

PROBLEME On considère la fonction f définie sur \mathbb{R} par

$$f(0) = 0$$
 et $\forall x \neq 0, \ f(x) = \frac{1}{x^2}e^{-1/x}$

1. Etude des variations de f

- a) i. Continuité en 0: pour $x \neq 0$, posons $y = \frac{1}{x}$, de sorte que $f\left(\frac{1}{y}\right) = y^2 e^{-y}$. Alors $\cdot \lim_{x \to 0+} f\left(x\right) = \lim_{y \to +\infty} \frac{y^2}{e^y} = 0 = f\left(0\right) \text{ (comparaison classique)}$
 - $\cdot \lim_{x \to 0-} f(x) = \lim_{y \to -\infty} y^2 e^{-y} = +\infty$ de manière immédiate.

Ainsi f est continue à droite en 0 mais n'est pas continue à gauche

ii. Dérivabilité en 0: f n'est évidemment pas dérivable à gauche (elle n'est pas continue). Etudions le taux de variations en 0+:

$$\forall x > 0, \ \tau(x) = \frac{f(x)}{x} = \frac{1}{x^3}e^{-1/x}$$

Le même changement qu'au dessus, $y=\frac{1}{x}$, donne donc $\lim_{x\to 0} au\left(x\right)=0$. Donc

f est dérivable à droite en 0 et $f'_d(0) = 0$

b) Dérivons f sur \mathbb{R}^* (elle y est de classe C^{∞})

$$\forall x \neq 0, \ f'(x) = \left(\frac{1}{x^4} - \frac{2}{x^3}\right)e^{-1/x} = \frac{1 - 2x}{x^4}e^{-1/x}$$

Le tableau de variations vient immédiatement, quand on a remarqué que $\lim_{x\to\pm\infty}e^{-1/x}=1$, donc $\lim_{\pm\infty}f=0$.

x	$-\infty$	0		1/2		$+\infty$
f'(x)	+		+	0	_	
	$+\infty$			$4e^{-2}$		
f(x)	7		7		X	
	0	0				0

L'axe (Ox) est ainsi asymptote à la courbe de f en $\pm \infty$, et l'axe (Oy) en 0^- .

2. Dérivées successives de la fonction f et polynômes associés

- a) Sur $]0,+\infty[$, f est le produit de la fonction $x\mapsto \frac{1}{x^2}$ de classe C^∞ et de la fonction composée de l'exponentielle, de classe C^∞ avec la fonction $x\mapsto -\frac{1}{x}$, également de classe C^∞ . Les théorèmes généraux permettent de conclure à $f\in C^\infty(]0,+\infty[\,,\mathbb{R})$
- b) Montrons par récurrence la proposition H(n) suivante

Il existe un polynôme
$$P_n \in \mathbb{R}\left[X\right]$$
 tel que $\forall x > 0, \ f^{(n)}\left(x\right) = \frac{P_n\left(x\right)}{r^{2n+2}}e^{-1/x}$

- i. La proposition H(0) est évidente avec le polynôme P=1.
- ii. Soit $n \in \mathbb{N}$. Supposons H(n) et montrons H(n+1) : par hypothèse de récurrence on a

$$\forall x > 0, \ f^{(n)}(x) = \frac{P_n(x)}{x^{2n+2}}e^{-1/x}$$

que l'on peut dériver

$$\forall x > 0, \ f^{(n+1)}(x) = \frac{P'_n(x)}{x^{2n+2}} e^{-1/x} - \frac{(2n+2)P_n(x)}{x^{2n+3}} e^{-1/x} + \frac{P_n(x)}{x^{2n+2}} \times \frac{1}{x^2} e^{-1/x}$$

$$= \frac{x^2 P'_n(x) - x(2n+2)P_n(x) + P_n(x)}{x^{2n+2}} e^{-1/x}$$

$$= \frac{x^2 P'_n(x) + [1 - 2(n+1)x]P_n(x)}{x^{2n+2}} e^{-1/x}$$

En posant

$$P_{n+1} = X^2 P'_n + [1 - 2(n+1)X] P_n$$
 (*)

(c'est bien un polynôme), on a bien H(n+1), i.e

$$\forall x > 0, \ f^{(n+1)}(x) = \frac{P_{n+1}(x)}{x^{2n+4}}e^{-1/x}$$

iii. H(n) est ainsi vraie pour tout $n \in \mathbb{N}$ et (*) permet d'obtenir le polynôme P_{n+1} à l'aide de P_n .

c) Calculons les premiers :

d) Le coefficient constant de P_n est $P_n(0)$. Mais en substituant 0 à X dans (*), il vient

$$P_{n+1}\left(0\right) = P_n\left(0\right)$$

Ce coefficient constant est indépendant de n et vaut donc 1 (celui de P_0 par exemple)

e) Montrons par récurrence que

$$K\left(n\right):\left\{ \begin{array}{l} \deg P_{n}=n\\ \text{Le coefficient dominant de }P_{n}\text{ est }a_{n}=\left(-1\right)^{n}\left(n+1\right)!\\ \text{i.}\quad K\left(0\right)\text{ et }K\left(1\right)\text{ sont vraies, vus les calculs du c).} \end{array} \right.$$

- ii. Soit $n \in \mathbb{N}^*$. Supposons K(n) et montrons K(n+1) : par hypothèse de récurrence

$$\deg X^2 P'_n = 2 + (n-1) = n+1$$
 et $[1-2(n+1)X]P_n = 1+n$

Donc d'après (*) et par somme

$$\deg P_{n+1} \leqslant n+1$$

Calculons pour conclure le coefficient de X^{n+1} dans P_{n+1} :

- · Dans $X^2P'_n$, c'est na_n
- · Dans $[1 2(n+1)X]P_n$, c'est $-2(n+1)a_n$
- Par somme, dans P_{n+1} , le coefficient de X^{n+1} est

$$(-n-2) a_n = -(n+2) (-1)^n (n+1)! = (-1)^{n+1} (n+2)! \neq 0$$

Ainsi

$$\begin{cases} \deg P_{n+1} = n+1 \\ \text{Le coefficient dominant de } P_{n+1} \text{ est } a_{n+1} = (-1)^{n+1} (n+2)! \end{cases}$$
 CQFD.

f) Calculons la limite à droite en 0 de $f^{(n)}: x \mapsto \frac{P_n(x)}{x^{2n+2}}e^{-1/x}$: déjà $\lim_{n \to \infty} P_n = P_n(0) = 1$. Il suffit donc de voir

$$\lim_{x \to 0+} \frac{1}{x^{2n+2}} e^{-1/x}$$

$$\lim_{x\to 0+}\frac{1}{x^{2n+2}}e^{-1/x}$$
 Comme en 1.a), on pose $y=1/x$, de sorte que
$$\lim_{x\to 0+}\frac{1}{x^{2n+2}}e^{-1/x}=\lim_{y\to +\infty}y^{2n+2}e^{-y}=0\quad \text{(comparaison classique)}$$

Ainsi
$$\lim_{0+} f^{(n)} = 0$$

On admet que cela entraine que f est de classe sur $[0, \infty[$ et que $\forall n \in \mathbb{N}, \ f^{(n)}(0) = 0.$

3. Nouvelles relations entre les polynômes P_n

On considère la fonction g définie sur $]0, \infty[$ par $g(x) = x^2 f(x)$.

a) Dérivons g (de classe C^{∞} sur $]0,\infty[$ évidemment) :

$$\forall x > 0, \ g'(x) = \frac{d}{dx}e^{-1/x} = \frac{1}{x^2}e^{-1/x} = f(x)$$

En dérivant n fois ce dernier résultat, il vient

$$\forall n \in \mathbb{N}, \ \forall x > 0, \ g^{(n+1)}(x) = f^{(n)}(x)$$

b) Soit $n \in \mathbb{N}^*$. Appliquons la formule de Leibniz au produit $g(x) = x^2 f(x)$: $\forall x > 0$

$$f^{(n)}\left(x\right) = g^{(n+1)}\left(x\right) = x^{2}f^{(n+1)}\left(x\right) + 2\left(n+1\right)xf^{(n)}\left(x\right) + \left(n+1\right)nf^{(n-1)}\left(x\right)$$

Soit

$$x^{2}f^{(n+1)}(x) = [1 - 2(n+1)x]f^{(n)}(x) - n(n+1)f^{(n-1)}(x)$$

D'après la question 2.b) il vient

$$x^{2} \frac{P_{n+1}(x)}{x^{2n+4}} e^{-1/x} = \left[\left[1 - 2(n+1)x \right] \frac{P_{n}(x)}{x^{2n+2}} - n(n+1) \frac{P_{n-1}(x)}{x^{2n-2}} \right] e^{-1/x}$$

En multipliant le tout par $x^{2n+2}e^{1/x} \neq 0$, on obtient

$$P_{n+1}(x) = [1 - 2(n+1)x]P_n(x) - n(n+1)x^2P_{n-1}(x)$$
 (\$)

En comparant avec la formule de récurrence (*) on a donc pour tout x > 0

$$[1 - 2(n+1)x]P_n(x) - n(n+1)x^2P_{n-1}(x) = x^2P'_n(x) + [1 - 2(n+1)x]P_n(x)$$

qui se simplifie en

$$P'_{n}(x) = -n(n+1)P_{n-1}(x) \qquad (\leqslant)$$

4. Etude des racines du polynôme P_n

a) Montrons par récurrence la proposition $L_{n}: \forall x > 0, \ P_{n}\left(x\right) \neq 0 \text{ ou } P_{n-1}\left(x\right) \neq 0$

(c'est-à-dire : $P_n(x)$ et $P_{n-1}(x)$ ne peuvent être simultanément nuls)

- i. $P_0(x) = 1$ et $P_1(x)$ ne peuvent pas être simultanément nuls puisque $P_0(x)$ ne l'est pas. D'où L_1 .
- ii. Soit $n \in \mathbb{N}^*$. Supposons L_n et montrons L_{n+1} : par l'absurde, si il existait un x > 0 tel que

$$P_{n+1}(x) = P_n(x) = 0$$

alors la relation (\$) donnerait

$$0 = -n(n+1)x^{2}P_{n-1}(x) \quad i.e. \quad P_{n-1}(x) = 0$$

On conclurait alors à $P_{n-1}(x) = P_n(x) = 0$, qui contredirait notre hypothèse de récurrence CQFD.

b) Supposons alors que pour $n \in \mathbb{N}$ et x > 0 on ait $P_n(x) = 0$. Alors $P_{n-1}(x) \neq 0$ d'après le a), et la formule (\leqslant) nous assure alors que

$$P'_n(x) \neq 0$$

puisque n et n + 1 ne sont pas nuls.

On peut alors dire que P'_n , continue sur \mathbb{R} , est de signe constant dans un voisinage de x, c'est-à-dire un intervalle contenant x (et dont x n'est pas extrémité), donc que P_n est strictement monotone sur cet intervalle. Comme $P_n(x) = 0$, P_n change nécessairement de signe en x.

c) On va montrer par récurrence que $\forall n \in \mathbb{N}^*$, P_n admet n racines réelles distinctes dans $]0, +\infty[$

 $\underline{\text{Initialisation}}: P_1 = 1 - 2X \text{ admet } 1 \text{ racine r\'eelle}: 1/2.$

<u>Hérédité</u> : supposons cette proposition vraie pour un rang $n \geqslant 1$.

On note $0 < x_1 < x_2 < \ldots < x_n$ les racines de P_n

i. P_n est de signe constant sur chaque intervalle $[0, x_1[\,,]x_1, x_2[\,,\dots,]x_{n-1}, x_n[$ (continue ne s'annulant pas). De plus $P_n(0) = 1 > 0$ donc P_n est positive sur $[0, x_1[\,.$ Enfin, on a vu que P_n changeait de signe en x_1, \dots, x_n (question b)). Elle est donc négative sur $]x_1, x_2[\,,$ positive sur $]x_2, x_3[\,,$ etc. On peut

conclure avec un peu d'imagination

$$\forall i \in [1, n-1], P_n$$
 est du signe de $(-1)^i$ sur $]x_i, x_{i+1}[$

Remarque: on peut aussi affirmer que P_n est du signe de $(-1)^n$ sur $]x_n, +\infty[$

ii. Soit alors $i \in [[1, n]]$ on a vu en b) qu'on pouvait écrire

$$\begin{cases} P_n(X) = (X - x_i) Q_n(X) \\ Q_n(x_i) = \lambda \neq 0 \end{cases}$$

En dérivant, il vient $P_{n}'\left(X\right)=Q_{n}\left(X\right)+\left(X-x_{i}\right)Q_{n}'\left(X\right)$. On en tire $P'\left(x_{i}\right)=Q_{n}\left(x_{i}\right)=\lambda$.

On a donc au voisinage de x_i

$$P_n\left(t\right) \underset{t \to x_i}{\sim} P'\left(x_i\right) \left(t - x_i\right)$$

Pour assurer le signe de $(-1)^i$ à droite et donc l'opposé à gauche de x_i , il faut fatalement que

le signe de
$$P'(x_i)$$
 soit $(-1)^i$

Remarque: on peut aussi dire que si $P'(x_i)$ avait le signe de $(-1)^{i+1}$, alors la monotonie de P_n au voisinage de x_i serait contradictoire avec les signes de P_n à gauche et à droite de x_i . Il faut faire deux cas et un dessin, avis aux artistes.

iii. La question 2.b) nous rappelle que

$$P_{n+1}(x_i) = x_i^2 P_n'(x_i) + [1 - 2(n+1)x_i] P_n(x_i) = x_i^2 P_n'(x_i)$$

Il s'ensuit assez banalement que $P_{n+1}(x_i)$ a le même signe que $P'_n(x_i)$, c'est-à-dire $(-1)^i$.

- iv. La limite de P_{n+1} en $+\infty$ est $(-1)^{n+1} \infty$, puisque $P_{n+1}(x) \sim (-1)^{n+1} (n+2)! x^{n+1}$ (question 2.d))
- v. Ainsi
 - · $P_{n+1}(0) = 1 > 0$ et $P_{n+1}(x_1) < 0$. Le théorème des valeurs intermédiaires¹ assure qu'il existe une racine de P_{n+1} , soit y_1 entre 0 et x_1 .
 - · $P_{n+1}(x_1) < 0$ et $P_{n+1}(x_2) > 0$. Le théorème des valeurs intermédiaires assure qu'il existe une racine de P_{n+1} , soit y_2 entre x_1 et x_2 .
 - · De la même manière, pour tout $i \in [[1, n]]$ on trouve une racine y_i entre x_{i-1} et x_i
 - Enfin $P(x_n)$ a le signe de $(-1)^n$ et la limite de P_{n+1} en $+\infty$ est $(-1)^{n+1} \infty$, ce qui entraîne l'existence d'un réel x_{n+1} supérieur à x_n tel que $P_{n+1}(x_{n+1})$ soit du signe de $(-1)^{n+1}$. Un dernière application du théorème des valeurs intermédiaires entre x_n et x_{n+1} assure l'existence d'une racine y_{n+1} de P_{n+1} supérieure à x_n

Bilan:

$$\frac{0 \quad y_1 \quad x_1 \quad y_2 \quad x_2 \quad \dots \quad x_{n-1} \quad y_n \quad x_n \quad y_{n+1} \quad x_{n+1} \quad + \infty}{P_{n+1} \quad + \quad 0 \quad - \quad 0 \quad + \quad \dots \quad (-1)^{n-1} \quad 0 \quad (-1)^n \quad 0 \quad (-1)^{n+1}} \quad .$$

On a construit n+1 racines distinctes $y_1 < y_2 < \ldots < y_{n+1}$ de P_{n+1} dans l'intervalle $[0, +\infty[$.

Cela amorce la récurrence et prouve donc

$$\forall n \in \mathbb{N}^*, \ P_n \text{ admet } n \text{ racines réelles distinctes dans }]0, +\infty[$$

¹ P_n est continue sur \mathbb{R}_+