Marek Małek, Marcin Serafin 14.03.2024 Laboratorium 02 Metoda najmniejszych kwadratów

1 Treść zadania

Celem zadania było zastosowanie metody najmniejszych kwadratów do predykcji, czy nowotwór jest złośliwy czy łagodny. Do rozwiązania należało wykorzystać bibliotekę **pandas** oraz typ **DataFrame**. Dostarczone zostały dwa zbiory danych:

- breast-cancer-train.dat
- breast-cancer-validate.dat

Oraz plik breast-cancer.labels, w którym zostały zawarte nazwy kolumn.

2 Rozwiązanie zadania

2.1 Wczytanie danych

W celu wczytania danych wykonano następujący fragment kodu:

```
with open("data\\breast-cancer.labels") as f:
    column_names = [line[:(len(line))-1] for line in f.readlines()]

breast_cancer_train = pd.io.parsers.read_csv("data\\breast-cancer-train.dat")
breast_cancer_train.columns = column_names

breast_cancer_validate = pd.io.parsers.read_csv("data\\breast-cancer-validate.dat")
breast_cancer_validate.columns = column_names
```

Dane zostały wczytane do odpowiednich zmiennych oraz przypisane zostały nazwy charakterystyk do kolumn ${\bf DataFramea}$

Widok pierwszych pięciu wierszy i pierwszych pięciu kolumn **DataFramea** zbioru danych **breast cancer train**:

	patient ID	${\bf Malignant/Benign}$	radius (mean)	texture (mean)	perimeter (mean)
0	842517	M	20.570000	17.770000	132.900000
1	84300903	M	19.690000	21.250000	130.000000
2	84348301	M	11.420000	20.380000	77.580000
3	84358402	M	20.290000	14.340000	135.100000
4	843786	M	12.450000	15.700000	82.570000

2.2 Wizualizacja pojedyńczej charakterystki

2.2.1 Histogram

Stworzono histogram klasyfikujący wśród ilu pacjentów wykryto nowotwór z danym średnim promieniem.

Wizualizacja 1: Historgram charakterystki radius (mean)

Na podstawie histogramu widać, że najwięcej pacjentów zostało zaklasyfikowanych do przedziału, gdzie wartość średnia promienia nowotrowru była między 10, a 15.

2.2.2 Wykres

Analogicznie do poprzedniego podpunktu stworzono wykres tej samej charakterystki.

Wizualizacja 2: Wykres charakterystki radius (mean)

Na podstawie wykresu można zauważyć, że najbardziej rzetelne dane znajdują się na przedziale 10-20. Wartości poza tym zakresem są o wiele rzadsze i można je traktować jako szum.

2.3 Reprezentacje danych

Stworzono reprezentacje danych zawartych w zbiorach w oparciu o wzory: Reprezentacja liniowa:

$$A_{\text{lin}} = \begin{bmatrix} f_{1,1} & f_{1,2} & \dots & f_{1,m} \\ f_{2,1} & f_{2,2} & \dots & f_{2,m} \\ f_{3,1} & f_{3,2} & \dots & f_{3,m} \\ \vdots & \vdots & \ddots & \vdots \\ f_{n,1} & f_{n,2} & \dots & f_{n,m} \end{bmatrix}$$

$$(1)$$

Reprezentacja kwadratowa (wybrano 4 parametry: radius (mean), perimeter (mean), area (mean), symmetry (mean)):

2.4 Wektor b oraz wagi reprezentacji

W celu znalezienia wag dla liniowych i kwadratowych reprezentacji użyto równania:

$$A^T A w = A^T b \tag{3}$$

gdzie wektor b jest zadany jako:

$$\begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} \text{ gdzie } \alpha_i = \begin{cases} 1 & \text{jeśli nowotwór jest złośliwy} \\ -1 & \text{wpp.} \end{cases}$$
 (4)

Przy tworzeniu wektora b użyto funkcji $\mathbf{np.where}$

```
b_train = np.where(breast_cancer_train['Malignant/Benign'] == 'M', 1, -1)
b_validate = np.where(breast_cancer_validate['Malignant/Benign'] == 'M', 1, -1)
```

2.5 Współczynnik uwarunkowania macierzy

Przy obliczeniu współczynnika uwarunkowania macierzy $\operatorname{cond}(A)$ oraz $\operatorname{cond}(A^T A)$ wykorzystano równania:

$$\operatorname{cond}(A) = ||A|| \cdot ||A^T|| \tag{5}$$

$$\operatorname{cond}(A^T A) = \operatorname{cond}(A)^2 \tag{6}$$

DataFrame reprezentujący obliczone wartości:

	$\mod(A^T A)$	cond (A)
reprezentacja liniowa reprezentacja najmniejszych kwadratów	$\begin{array}{ c c c } & 1.15 \cdot 10^{22} \\ & 9.02 \cdot 10^{17} \end{array}$	$\begin{array}{ c c c c c }\hline 3.39 \cdot 10^{18} \\ 2.56 \cdot 10^{14} \\ \hline \end{array}$

Tabela 1: DataFrame współczynników uwarunkowania macierzy

2.6 Przewidywanie nowotworu

W celu określenia czy dany nowotwór jest złośliwy czy nie pomnożono reprezentacje liniową oraz kwadratową przez uprzednio wyliczone odpowienie wektory wag. Dla otrzymanego wektora p zliczono liczbę wartości p_i takich, że $p[i] \leq 0$ (wtedy nowotwór prawdopodobnie był łagodny) oraz p[i] > 0 (wtedy prawdopodobnie nowotwór był złośliwy). Obliczono też liczbę przewidywań fałszywie dodatnich (przewidziano, że nowotwór był złośliwy, a tak naprawdę był łagodny) oraz fałszywie ujemnych (analogicznie do poprzedniego przykładu). Otrzymane wyniki zestawiono w ${\bf DataFramie}$

			Liczba przewidzianych	Liczba przewidzianych	
	Liczba fałszywie ujemnych	Liczba fałszywie dodatnich	nowotworów złośliwych	nowotworów łagodnych	Dokładność
Reprezentacja liniowa	2	6	63	196	96.91%
Reprezentacja najmnieszych kwadratów	5	15	69	190	92.27%

Tabela 2: DataFrame klasyfikacji fałszywie ujemnych i fałszywie dodatnich

3 Wnioski

Na podsatwie **Tabeli 2** w punktcie **2.6** można stwierdzić, że reprezentacja najmniejszych kwadratów osiągneła gorszy rezulatat, jako że liczba przypadków fałszywie dodatnich oraz fałszywie ujemnych była większa od wyniki reprezentacji liniowej. Podobnie było z dokładnością która była większa dla reprezentacji liniowej. Powodem była wąska selekcja parametrów. Jak podano w punkcie **2.3**, reprezentacja liniowa przyjęła wszystkie charakterystkich nowotworu, a reprezentacja kwadratowa tylko wybrane cechy. Jednakże, w punkcie **2.5** współczynnik uwarunkowania macierzy był większy w reprezentacji liniowej. W tym przypadku reprezentacja liniowa jest mniej wrażliwa na błędy ze względu na lepsze dopasowanie, stąd też niższy wspołczynnik uwarnkowania.

4 Bibliografia

- 1. http://heath.cs.illinois.edu/scicomp/notes/cs450_chapt03.pdf
- $2. \ \, \texttt{https://pythonnumericalmethods.berkeley.edu/notebooks/chapter16.00-Least-Squares-Regression.html}$