NUM UE9

Ida Hönigmann

December 7, 2021

1 Aufgabe 33:

 $\begin{aligned} \textit{Proof.} \quad & \text{ a) Wie letzte Woche gezeigt gilt } ||A||_{\infty} = \sup_{||x||_{\infty}=1} ||Ax||_{\infty}. \end{aligned}$ Sei $x \in \mathbb{K}^n$ mit $||x||_{\infty}=1$ beliebig. Also gilt $\max_{j=1,\dots,n} |x_j|=1$.

$$||Ax||_{\infty} = \max_{j=1,\dots,m} |(Ax)_j| = \max_{j=1,\dots,m} \left| \sum_{k=1}^n a_{jk} x_k \right| \le \max_{j=1,\dots,m} \sum_{k=1}^n |a_{jk}| \cdot |x_k| \le \max_{j=1,\dots,m} \sum_{k=1}^n |a_{jk}|$$

Sei $j \in \{1,...,m\}$ mit $\sum_{k=1}^n |a_{jk}|$ maximal. Falls $\sum_{k=1}^n |a_{jk}| = 0$ folgt $\forall k=1,...,n \forall j=1,...,m$: $a_{jk}=0$ und somit ist die Aussage klar. Sonst gilt für

$$x = \begin{pmatrix} sgn(a_{j1}) \\ sgn(a_{j2}) \\ \dots \\ sgn(a_{jn}) \end{pmatrix} \in \mathbb{K}^n \qquad ||x||_{\infty} = 1$$

$$||Ax||_{\infty} = \max_{l=1,\dots,m} \left| \sum_{k=1}^{n} a_{lk} x_k \right| = \max_{l=1,\dots,m} \left| \sum_{k=1}^{n} a_{lk} \cdot sgn(a_{jk}) \right| = \left| \sum_{k=1}^{n} |a_{jk}| \right| = \sum_{k=1}^{n} |a_{jk}| = \max_{j=1,\dots,m} \sum_{k=1}^{n} |a_{jk}|$$

Also folgt $||A||_{\infty} = \max_{j=1,...,m} \sum_{k=1}^{n} |a_{jk}|$.

b) Um $||A||_1 = \max_{k=1,\dots,n} \sum_{j=1}^m |a_{jk}|$ zu zeigen schauen wir uns zunächst folgendes an: Sei $x \in \mathbb{K}^n$ mit $||x||_1 = 1$ beliebig. Also gilt $\sum_{j=1}^n |x_j| = 1$.

$$|(Ax)_{j}| = \left| \sum_{k=1}^{n} a_{jk} x_{k} \right| \leq \left| \sum_{k=1}^{n} \max_{l=1,\dots,n} |a_{jl}| x_{k} \right| = \max_{l=1,\dots,n} |a_{jl}| \left| \sum_{k=1}^{n} x_{k} \right|$$

$$\leq \max_{l=1,\dots,n} |a_{jl}| \sum_{k=1}^{n} |x_{k}| = \max_{l=1,\dots,n} |a_{jl}| \cdot ||x||_{1} = \max_{l=1,\dots,n} |a_{jl}|$$

$$\implies ||Ax||_{1} = \sum_{j=1}^{m} |(Ax)_{j}| \leq \sum_{j=1}^{m} \max_{k=1,\dots,n} |a_{jk}| = \max_{k=1,\dots,n} \sum_{j=1}^{m} |a_{jk}|$$

Wähle $j \in \{1,...,n\}$ so, dass $\sum_{k=1}^{m} |a_{kj}|$ maximal ist. Sei $x \in \mathbb{K}^n$ mit $x_j = 1$ und $\forall l \neq j : x_l = 0$.

Dann gilt

$$|(Ax)_l| = \left| \sum_{k=1}^n a_{lk} x_k \right| = |a_{lj}|$$

$$||Ax||_1 = \sum_{k=1}^m |(Ax)_k| = \sum_{k=1}^m |a_{kj}| = \max_{j=1,\dots,n} \sum_{k=1}^m |a_{kj}|$$

Also folgt $||A||_1 = \max_{k=1,...,n} \sum_{j=1}^m |a_{jk}|$.

2 Aufgabe 34:

Proof. Sei $A \in \mathbb{K}^{n \times n}$... irreduzibel und diagonal dominant beliebig.

zz: A ist regulär

Angenommen A wäre nicht regulär, also $\exists x \in \mathbb{K}^n \setminus \{0\} : Ax = 0$. Dann folgt

$$0 = (Ax)_j = \sum_{l=1}^n a_{jl} x_l$$

$$\implies -a_{jj} x_j = \sum_{l=1, l \neq j}^n a_{jl} x_l$$

$$\implies |a_{jj}| \cdot |x_j| = |a_{jj} x_j| = \left| \sum_{l=1, l \neq j}^n a_{jl} x_l \right| \le \sum_{l=1, l \neq j}^n |a_{jl}| \cdot |x_l|.$$

Definieren wir nun $J := \{j \in \{1,...,n\} : |x_j| = ||x||_{\infty} \}$ und $K := \{k \in \{1,...,n\} : |x_k| < ||x||_{\infty} \}$. Offensichtlich gilt $J \cup K = \{1,...,n\}$ und $J \cap K = \emptyset$.

Fallunterscheidung:

1. Fall: $K = \emptyset$

Also gilt $|x_1| = |x_2| = \dots = |x_n|$.

$$|a_{jj}| \cdot |x_j| \le \sum_{l=1, l \ne j}^n |a_{jl}| \cdot |x_l|$$

$$\implies |a_{jj}| \le \sum_{l=1, l \ne j}^n |a_{jl}|$$

Was ein Widerspruch zu $\forall j \in \{1,...,n\}: |a_{jj}| \geq \sum_{l=1,l\neq j}^{n} |a_{jl}| \wedge \exists j \in \{1,...,n\}: |a_{jj}| > \sum_{l=1,l\neq j}^{n} |a_{jl}| \text{ ist.}$

2. Fall: $K \neq \emptyset$

Da A irreduzibel ist $\exists k \in K \exists j \in J : a_{jk} \neq 0$

$$|a_{jj}| \le \sum_{l=1, l \ne j}^{n} |a_{jl}| \frac{|x_l|}{|x_j|} = \sum_{l=1, l \ne j}^{n} |a_{jl}| \underbrace{\frac{|x_l|}{||x||_{\infty}}}_{\le 1 \land \exists l : < 1} < \sum_{l=1, l \ne j}^{n} |a_{jl}|$$

Was ein Widerspruch zu $\forall j \in \{1,...,n\}: |a_{jj}| \geq \sum_{l=1,l \neq j}^n |a_{jl}|$ ist.

In beiden Fällen folgt aus dem Widerspruch, dass A regulär ist.

zz: $\forall j = 1, ..., n : a_{jj} \neq 0$

Angenommen $\exists j \in \{1,...,n\} : a_{jj} = 0$. Da A diagonaldominant ist folgt

$$\sum_{k=1,k\neq j}^{n}|a_{jk}|\leq |a_{jj}|=0$$

$$\implies \forall k\in\{1,...,n\}:|a_{jk}|=0$$

Was im Widerspruch zur Regularität von A steht.

Also folgt, dass A regulär und $\forall j \in \{1, ..., n\} : a_{jj} \neq 0$.

3 Aufgabe 35:

Proof. Sei $A \in \mathbb{K}^{n \times n}$ irreduzibel und diagonaldominant beliebig.

1. Jacobi-Verfahren:

$$M := -D^{-1}(A - D) \text{ mit } D := \begin{pmatrix} a_{11} & & \\ & \ddots & \\ & & a_{nn} \end{pmatrix}$$

Nach 34 gilt $\forall j \in \{1,,,,n\} : a_{jj} \neq 0$ also gilt D ist regulär und somit existiert D^{-1} . Sei $\lambda \in \mathbb{K}$ beliebig mit $|\lambda| \geq 1$.

Da wir bei der Irreduzibarkeit nur Werte m_{ij} mit $i \neq j$ beachten gilt

$$M - \lambda I$$
 ist irreduzibel $\iff M = -D^{-1}(A - D)$ ist irreduzibel

Da eine Multiplikation mit $-D^{-1}$ nur die Zeilen skaliert gilt

$$-D^{-1}(A-D)$$
 ist irreduzibel $\iff A-D$ ist irreduzibel $\iff A$ ist irreduzibel (aus dem gleichen Grund wie oben)

Also folgt, dass $M - \lambda I$ irreduzibel ist.

Wir beobachten folgendes:

$$\forall i \neq j : M_{ij} = (-D^{-1}(A - D))_{ij} = (-D^{-1}A)_{ij} = -\frac{a_{ij}}{d_{ii}} = -\frac{a_{ij}}{a_{ii}}$$
$$\forall i : M_{ii} = (-D^{-1}\underbrace{(A - D)}_{(A - D)_{ii} = 0})_{ii} = 0$$

Nun folgt

$$\sum_{k=1,k\neq j}^{n} |(M-\lambda I)_{jk}| = \sum_{k=1,k\neq j}^{n} |M_{jk}| = \sum_{k=1,k\neq j}^{n} \left| -\frac{a_{jk}}{a_{jj}} \right| = \sum_{k=1,k\neq j}^{n} \frac{|a_{jk}|}{|a_{jj}|}$$

Da ${\cal A}$ diagonal
dominant ist folgt

$$\sum_{k=1, k \neq j}^{n} |a_{jk}| \le |a_{jj}| \implies \sum_{k=1, k \neq j}^{n} \frac{|a_{jk}|}{|a_{jj}|} \le 1 \le |\lambda|$$

Da $|(M-\lambda I)_{jj}|=|\lambda|$ folgt, dass $\sum_{k=1,k\neq j}^n |(M-\lambda I)_{jk}| \leq |(M-\lambda I)_{jj}|$. Für ein j gilt sogar $\sum_{k=1,k\neq j}^n \frac{|a_{jk}|}{|a_{jj}|} < 1$ also existiert ein j mit $\sum_{k=1,k\neq j}^n |(M-\lambda I)_{jk}| < |(M-\lambda I)_{jj}|$. Somit ist $M-\lambda I$ diagonal dominant.

Insgesamt können wir folgern, dass $M - \lambda I$ für alle λ mit $|\lambda| \geq 1$ regulär ist. Also ist λ kein Eigenwert von M. Daraus folgt $\rho(M) < 1$ und aus dem Satz über globale Konvergenz, dass das Jacobi-Verfahren konvergiert.

2. Gauss-Seidel-Verfahren:

$$M := -L^{-1}U$$
 mit $L_{jk} = \begin{cases} A_{jk} & \text{für } j \ge k \\ 0 & \text{sonst} \end{cases}$ und $U_{jk} = \begin{cases} A_{jk} & \text{für } j < k \\ 0 & \text{sonst} \end{cases}$

Es gilt L + U = A und L ist regulär, da $\forall i \in \{1, ..., n\} : A_{ii} \neq 0$. Also existiert L^{-1} .

Sei $\lambda \in \mathbb{K}$ mit $|\lambda| \geq 1$ beliebig.

 $M - \lambda I = -L^{-1}U - \lambda I$ ist regulär genau dann wenn $(-L)(-L^{-1}U - \lambda I) = U + \lambda L$ regulär ist.

Da A=L+U irreduzibel ist folgt, dass auch $\lambda L+U$ irreduzibel ist (folgt aus der Definition von irreduzibel).

Weiters gilt unter anderem wegen der Diagonaldominantheit von A, dass

$$\sum_{k=1, k \neq j}^{n} |(\lambda L + U)_{jk}| \le |\lambda| \sum_{k=1, k \neq j}^{n} |A_{jk}| \le |\lambda| \cdot |a_{jj}| = |(\lambda L + U)_{jj}|$$

Wobei ein j existiert für dass sogar $|\lambda| \sum_{k=1, k\neq j}^{n} |A_{jk}| < |\lambda| \cdot |a_{jj}|$. Also ist $\lambda L + U$ diagonal-dominant und somit regulär. Das impliziert die Regularität von $M - \lambda I$ was gleich wie beim Jacobi-Verfahren die Konvergenz impliziert.