(Growth mixture models)

Cécile Proust-Lima & Hélène Jacqmin-Gadda

Department of Biostatistics, INSERM U897, University of Bordeaux II

INSERM workshop 205 - june 2010 - Saint Raphael

# Analysis of change over time

## Linear mixed model (LMM) for describing change over time :

- Correlation between repeated measures (random-effects)
- Single mean profile of trajectory
  - → Restricted to homogeneous populations

## Yet, frequently populations are heterogeneous:

- → Latent group structure linked to a behavior, a disease, ...
  - Trajectories of disability before death (Gill, 2010)
  - Trajectories of alcohol use in young adults (Muthén, 1999)
  - Cognitive declines in the elderly (Proust-Lima, 2009a)
  - Progression of prostate cancer after treatment (Proust-Lima, 2009b)



# PSA trajectories after radiation therapy (1)



# PSA trajectories after radiation therapy (2)



# Trajectories of verbal fluency in the elderly (1)



# Trajectories of verbal fluency in the elderly (2)



# Latent class mixed models / growth mixture models / heterogeneous mixed models

Accounts for both individual variability and latent group structure (Verbeke,1996; Muthén, 1999)

- → Extension of LMM to account for heterogeneity
- → Extension of LCGA to account for individual variability

#### Two submodels:

- Probability of latent class membership
- Class-specific trajectory
  - → both according to covariates/predictors

## Outline of the talk

## Methodology

- Latent class linear mixed model
- Estimation methods
- Posterior classification
- Goodness of fit evaluation

## Application

- PAQUID cohort of cognitive aging
- Heterogeneous profiles of verbal fluency and predictors

#### Discussion



# Probability of latent class membership

Population of N subjects (subscript i, i = 1, ..., N)

**G** latent homogeneous classes (subscript g, g = 1, ..., G)

Discrete latent variable  $c_i$  for the latent group structure :

 $c_i = g$  if subject i belongs to class g (g = 1, ..., G)

→ Every subject belongs to only one latent class

Probability of latent class membership explained according to covariates  $X_{1i}$  (multinomial logistic regression):

$$\pi_{ig} = P(c_i = g|X_{1i}) = rac{e^{\xi_{0g} + X'_{1i}\xi_{1g}}}{\sum_{l=1}^{G} e^{\xi_{0l} + X'_{1i}\xi_{1l}}}$$

with  $\xi_{0G}=0$  and  $\xi_{1g}=0$  i.e. class G= reference class

# Class-specific LMM: notations and simple example

Change over time of a longitudinal outcome Y:

- $Y_{ij}$  repeated measure for subject i at occasion  $j, j = 1, ..., n_i$
- $t_{ij}$  time of measurement at occasion  $j, j = 1, ..., n_i$ Number & times of measurements can differ across subjects

Linear change over time (without adjustment for covariates):

$$Y_{ij}|_{c_i=g}=u_{0ig}+u_{1ig}\times t_{ij}+\epsilon_{ij}$$

Class-specific random-effects  $(u_{0ig}, u_{1ig})' \sim N((\mu_{0g}, \mu_{1g})', B_g)$ 

- $\mu_{0g}$  and  $\mu_{1g}$  class-specific mean intercept and slope
- $B_g$  class-specific variance-covariance (usually  $B_g = B$  or  $B_g = w_g^2 B$ )

Independent errors of measurement  $\epsilon_{ii} \sim N(0, \sigma_{\epsilon}^2)$ 

# Class-specific LMM : General formulation

$$Y_{ij}|_{c_i=g}=Z'_{ij}u_{ig}+X'_{2ij}\beta+X'_{3ij}\gamma_g+\epsilon_{ij}$$

 $Z_{ij}$ ,  $X_{2ij}$ ,  $X_{3ij}$ : 3 different vectors of covariates without overlap

- $\rightarrow Z_{ii}$  vector of time functions :
  - $Z_{ij} = (1, t_{ij}, t_{ii}^2, t_{ii}^3, ...)$  for polynomial shapes
  - $Z_{ij} = (B_1(t_{ij}), ..., B_K(t_{ij}))$  for shapes approximated by splines
  - $Z_{ij} = (f_1(t_{ij}), ..., f_K(t_{ij}))$  for shapes defined by a set of K parametric functions
- $\rightarrow$   $X_{2ii}$  set of covariates with common effects over classes  $\beta$
- ightarrow  $X_{3ij}$  set of covariates with class-specific effects  $\gamma_g$

# Estimation of the parameters

#### Estimation of $\theta_G$ for a fixed number of latent classes G:

- → in a Bayesian framework (Komarek, 2009; Elliott, 2005)
- → in a maximum likelihood framework (Verbeke, 1996; Muthén, 1999, 2004; Proust, 2005)

$$L(\theta_G) = \sum_{i=1}^{N} \ln \left( \sum_{g=1}^{G} P(c_i = g | X_{1i}, \theta_G) \times \phi_{ig}(Y_i | c_i = g; X_{2i}, X_{3i}, Z_i, \theta_G) \right)$$

#### with

 $X_{2i}, X_{3i}, Z_i$ : matrices of  $n_i$  row vectors  $X_{2ij}, X_{3ij}, Z_{ij}$  resp.  $\phi_{ig}$  pdf of  $MVN(X_{2i}\beta + X_{3i}\gamma_g + Z_i\mu_g, Z_iB_gZ_i' + \sigma_\epsilon^2I_{n_i})$ 

## Estimation of LCLMM

## Estimation of $\hat{\theta}_G$ for a fixed G

★ Multiple possible maxima ⇒ grid of initial values ★

## Selection of the optimal number of latent classes :

- Bayesian Information Criterion (BIC) (Bauer, 2003)
- Deviance Information Criterion (DIC, DIC<sub>3</sub>,etc) (Celeux, 2006)
- Other possible tests (Lo, 2001; Nylund, 2007)

## Programs available:

- Mplus (Muthén, 2001)
- R function GLMM\_MCMC in mixAK package (Komarek, 2009)
- R function hlme in lcmm package (Proust-Lima, 2010)
- GLLAMM in Stata (Rabe-Hesketh, 2005)



## Posterior classification

Posterior probability of class membership

For a subject i in latent class g:

$$\begin{split} \hat{\pi}_{ig} &= P(c_i = g | X_i, \underline{Y_i}, \hat{\theta}) \\ &= \frac{P(c_i = g | X_{1i}, \hat{\theta}) \phi_{ig}(\underline{Y_i} | c_i = g, \theta)}{\sum_{l=1}^{G} P(c_i = l | X_{1i}, \hat{\theta}) \phi_{il}(\underline{Y_i} | c_i = l, X_{2i}, X_{3i}, Z_i, \hat{\theta})} \end{split}$$

Posterior classification :  $\hat{c}_i = \operatorname{argmax}_g(\hat{\pi}_{ig})$ 

→ Class in which the subject has the highest posterior probability

## Goodness-of-fit 1: Classification

Is the classification very discriminative? Or is it ambiguous?

Table of posterior classification:

| Final | #     | Mean of the probabilities of belonging to each class |     |                                                 |    |                                                 |
|-------|-------|------------------------------------------------------|-----|-------------------------------------------------|----|-------------------------------------------------|
| class |       | 1                                                    |     | g                                               |    | G                                               |
| 1     | $N_1$ | $\frac{1}{N_1} \sum_{i=1}^{N_1} \hat{\pi}_{i1}$      |     | $\frac{1}{N_1} \sum_{i=1}^{N_1} \hat{\pi}_{ig}$ |    | $\frac{1}{N_1} \sum_{i=1}^{N_1} \hat{\pi}_{iG}$ |
| :     |       | :                                                    | 100 |                                                 |    | :                                               |
| g     | $N_g$ | $\frac{1}{N_g} \sum_{i=1}^{N_g} \hat{\pi}_{i1}$      |     | $\frac{1}{N_g} \sum_{i=1}^{N_g} \hat{\pi}_{ig}$ |    | $\frac{1}{N_g} \sum_{i=1}^{N_g} \hat{\pi}_{iG}$ |
| ÷     |       | :                                                    |     |                                                 | 1. | ÷                                               |
| G     | $N_G$ | $\frac{1}{N_G} \sum_{i=1}^{N_G} \hat{\pi}_{i1}$      |     | $\frac{1}{N_G} \sum_{i=1}^{N_G} \hat{\pi_{ig}}$ |    | $\frac{1}{N_G} \sum_{i=1}^{N_G} \hat{\pi}_{iG}$ |

# Goodness-of-fit 2: Longitudinal predictions

Does the longitudinal model correctly fit the data?

Class-specific marginal (M) & subject-specific (SS) predictions :

- 
$$\hat{Y}_{ijg}^{(M)} = X_{2ij}^T \hat{\beta} + X_{3ij}^T \hat{\gamma}_g + Z_{ij}^T \hat{\mu}_g$$

$$-\hat{Y}_{ijg}^{(SS)} = X_{2ij}^T \hat{\beta} + X_{3ij}^T \hat{\gamma}_g + Z_{ij}^T \hat{\mu}_g + Z_{ij}^T \hat{\mu}_{ig}$$

with bayes estimates 
$$\hat{\mathbf{u}}_{ig} = \omega_g^2 B Z_i^T V_{ig}^{-1} (Y_i - X_{2i} \hat{\beta} + X_{3i} \hat{\gamma}_g + Z_i \hat{\mu}_g)$$

Weighted average over classes (and corresponding residuals):

$$\hat{Y}_{ij}^{(M)} = \sum_{g=1}^{G} \hat{\pi}_{ig} \hat{Y}_{ijg}^{(M)} \qquad \hat{R}_{ij}^{(M)} = Y_{ij} - \hat{Y}_{ij}^{(M)}$$

$$\hat{Y}_{ij}^{(SS)} = \sum_{g=1}^{G} \hat{\pi}_{ig} \hat{Y}_{ijg}^{(SS)} \qquad \hat{R}_{ij}^{(SS)} = Y_{ij} - \hat{Y}_{ij}^{(SS)}$$

# 4 kinds of possible analyses in LCLMM

- 1. Exploration of unconditioned and unadjusted trajectories
  - no covariates in the LMM & the class-membership model
     → raw heterogeneity
- 2. Exploration of unconditioned adjusted trajectories
  - covariates in the LMM
    - ightarrow residual heterogeneity after adjustment for known factors of change over time
- 3. Exploration of conditioned unadjusted trajectories
  - covariates in the class-membership model
    - → heterogeneity explained by 'targeted' factors
- 4. Exploration of conditioned and adjusted trajectories
  - covariates in the class-membership model & the LMM
    - → residual heterogeneity explained by 'targeted' factors



## PAQUID cohort

## Population-based prospective cohort of cognitive aging

- 3777 subjects of 65 years and older in South West France (random selection from electoral rolls)
- Follow-up every 2-3 years :



#### At each visit:

- Neuropsychological battery
- Two phase diagnosis of dementia
- & Information about health, activities, etc



# Verbal fluency trajectories

Verbal fluency impaired early in pathological aging (Amieva, 2008)

- → description of heterogeneous trajectories
- Verbal fluency measured by IST (Isaacs Set Test)
- Quadratic trajectory according to time from entry
- Patients included:
  - . Not initially demented
  - . At least one measure at IST in T0 T17
- Covariates of interest :
  - . First evaluation effect (adjustment in the LMM)
  - . Gender, education, age at entry (classes predictors)

# Heterogeneity predicted by gender, education and age

Estimation for a varying number of latent classes :

| G  | p* | L        | BIC     | Frequency of the latent classes (%) |      |      |      |      |
|----|----|----------|---------|-------------------------------------|------|------|------|------|
|    |    |          |         | 1                                   | 2    | 3    | 4    | 5    |
| 1  | 11 | -40651.3 | 81392.4 | 100                                 |      |      |      |      |
| 2  | 18 | -40104.8 | 80356.6 | 51.3                                | 48.7 |      |      |      |
| 3  | 25 | -40015.7 | 80235.6 | 29.6                                | 50.6 | 19.8 |      |      |
| 4  | 32 | -39941.3 | 80144.0 | 30.7                                | 47.6 | 3.3  | 18.4 |      |
| _5 | 39 | -39922.2 | 80163.0 | 31.4                                | 1.8  | 31.4 | 20.7 | 14.7 |

<sup>\*</sup> number of parameters

## Trajectories of verbal fluency in the elderly



## Predictors of class-membership

| predictor    | class | estimate | SE    | p-value  |
|--------------|-------|----------|-------|----------|
| male         | 1     | 0.051    | 0.219 | 0.817    |
| male         | 2     | 0.115    | 0.197 | 0.561    |
| male         | 3     | 0.530    | 0.291 | 0.068    |
| male         | 4     | 0        |       |          |
| education+   | 1     | 5.150    | 0.587 | < 0.0001 |
| education+   | 2     | 1.742    | 0.298 | < 0.0001 |
| education+   | 3     | 4.379    | 1.158 | 0.0001   |
| education+   | 4     | 0        |       |          |
| age at entry | 1     | -0.447   | 0.046 | < 0.0001 |
| age at entry | 2     | -0.215   | 0.027 | < 0.0001 |
| age at entry | 3     | -0.173   | 0.040 | < 0.0001 |
| age at entry | 4     | 0        |       |          |

## Posterior classification table

| Final classif. | Number of subjects (%) | Mean of the class-membership probabilities in class (in %):  1 2 3 4 |      |          |      |
|----------------|------------------------|----------------------------------------------------------------------|------|----------|------|
|                |                        | ı                                                                    |      | <u> </u> | 7    |
| 1              | 1083 (30.7%)           | 81.1                                                                 | 14.4 | 4.5      | <0.1 |
| 2              | 1679 (47.6%)           | 9.7                                                                  | 74.0 | 5.5      | 10.8 |
| 3              | 117 (3.3%)             | 10.8                                                                 | 20.4 | 67.7     | 1.1  |
| 4              | 648 (18.4%)            | <0.2                                                                 | 19.2 | 0.7      | 80.1 |
|                |                        |                                                                      |      |          |      |

# Weighted marginal predictions and observations





# Advantages of LCLMM

- Accounts for 2 sources of variability
  - . individual variability through random-effects
    - $\rightarrow$  inference possible
  - . latent group structure
    - → mean profiles of trajectory (different from LCGA)
- MAR assumption for missing data and dropout
- Individually varying time (age / exact follow-up)
- Includes flexibly covariates :
  - → different questions addressed



## Limits of LCLMM

- Starting values & local solutions (Hipp, 2006)
  - . vary the starting values extensively
  - compare various solutions to determine the stability of the model
  - . assess the frequency of the solution
- Interpretation of the latent classes (Bauer, 2003 + discutants)
   Flexible model that can fit better homogeneous populations
  - → relevant assumption of latent groups
  - → evaluation of goodness-of-fit
- Linear models for Gaussian outcomes only
  - → same extension for nonlinear mixed models
  - → same extension for multivariate mixed models



## References

- Amieva H, Le Goff M, Millet X, et al. (2008). Annals of Neurology, 64, 492:8
- Bauer DJ, Curran PJ (2003). Psychol Meth,8(3), 338:63 (+ discutants 364:93)
- Elliott MR, Ten Have TR, Gallo J, et al. (2005). Biostatistics, 6, 119:43.
- Gill TM, Gahbauer EA, Han L, Allore HG (2010). The New England journal of medicine, 362, 1173:80
- Hipp JR, Bauer DJ (2006). Psychological methods, 11(1), 36:53
- Komarek A (2009). Computational Statistics and Data Analysis, 53(12), 3932:47
- Lo Y, Mendell NR, Rubin DB (2001). Biometrika, 88(3), 767:78
- Muthén B0, Shedden K (1999). Biometrics, 55(2), 463:9
- Muthén LK, Muthén BO (2004). Mplus user's guide. www.statmodel.com
- Nylund KL, Asparouhov T, Muthén BO (2007). Structural Equation Modeling,14,535:69
- Proust C, Jacqmin-Gadda H (2005). Computer Methods and Programs in Biomedicine,78,165:73
- Proust-Lima C, Joly P, Jacqmin-Gadda H (2009a). Computational Statistics and Data Analysis,53,1142:54
- Proust-Lima C, Taylor J (2009b). Biostatistics, 10,535:49
- Rabe-Hesketh S, Skrondal A, Pickles A (2004). Psychometrika, 69, 167:90
- Verbeke G, Lesaffre E (1996). Journal of the American Statistical Association,91(433),217:21

