目录

数字图像处理-课堂练习1 数字图像处理-课堂练习2 数字图像处理-课堂练习1的编程 运行结果 数字图像处理-课堂练习2的编程

运行结果

计创18 181002222 连月菡

数字图像处理-课堂练习1

课堂练习1

▶ 腾妍骤堂
加板书

1

• 以下是一小块灰度图像区域(<u>5*5</u>,灰度级是8,像素取值为0~7), 统计每个灰度级值的个数,并画出一个直方图(两种:绝对值;归 一化值)。₀ — /

 你从画出的直方图中能够得出什么结论?(把画出的直方图拍照,发 我微信中,写上名字)(怎么把这个图变成256灰度级呢?)

0	3	6	1	1
1	4	5	0	0
1	0	0	7	0
1	0	2	0	3
6	0	0	0	1

11111

利用Excel对数据进行处理:

		Α	В	С	D	E
	1	0	3	6	1	1
	2	1	4	5	0	0
:	3	1	0	0	7	0
	4	1	0	2	0	3
	5	6	0	0	0	1

绝对值:

归一化值:

结论:由上可以看出直方图的形状相同。无论是归一化前还是归一化后,不同灰度级值之间的比例是不变的。

如果需要得到256灰度级,只需要

灰度级
$$\times$$
 (256 ÷ 32), 其中灰度级 \in [0,7]

数字图像处理-课堂练习2

课堂练习2

#

以下是一小块彩色图像区域(5*5,每个像素点有3个值),转换成灰度图像。转换后的前2行发我微信。

0, 230, 230	120, 127, 230	60, 120, 210	70, 210, 232	100, 102, 101
103, 120, 230	40, 20, 30	50, 30, 60	90, 98, 89	90, 30, 20
100, 107, 0	0, 137, 248	0, 255, 250	70, 1, 121	0, 10, 24
1, 23, 149	0, 0, 0	2, 2, 2	0, 255, 0	0, 0, 255
6, 110, 120	0, 250, 1	0, 23, 21	20, 120, 130	1, 1, 1

现场只需要做前2行 ② 0.3 R + D. 5 9 G + D. 11 B

公式1:

$$(R+G+B) \div 3$$

	Α	В	С	D
14				
15	第一行			
16	0	230	230	153.333
17	120	127	230	159
18	60	120	210	130
19	70	210	232	170.667
20	100	102	101	101
21	第二行			
22	103	120	230	151
23	40	20	30	30
24	50	30	60	46.6667
25	90	98	89	92.3333
26	90	30	20	46.6667

公式2:

0.3R + 0.59G + 0.11B

	Α	В	С	D
14				
15	第一行			
16	0	230	230	161
17	120	127	230	136.23
18	60	120	210	111.9
19	70	210	232	170.42
20	100	102	101	101.29
21	第二行			
22	103	120	230	127
23	40	20	30	27.1
24	50	30	60	39.3
25	90	98	89	94.61
26	90	30	20	46.9

数字图像处理-课堂练习1的编程

课堂练习1的编程

•以下是一小块灰度图像区域(5*5,灰度级是8,像素取值为0~7),用C++编程统计一下每个灰度值的个数,存入一个数组中(如果对于大的图像就需要对统计的直方图进行归一化到0~1之间)。并画出一个示意图(直方图顺时针旋转90°),从上到下为灰度,统计数量画出星号。你从画出的直方图中能够得出什么结论?

0	3	6	7		
7	4	5	0	0	
1	0	0	7	0	
1	0	2	0	3	
6	0	0	0	1	

#

● 腦州康堂

*编程采用的环境是 Visual Studio 2019 Community-Microsoft Visual C++ 2019

```
{
    int x; cin >> x;
    a[i][j] = x;
    b[x]++;
}
for (int i = 0; i < 8; ++i)//输出结果
{
    cout << i << "|";
    for (int j = 0; j < b[i]; ++j)
        cout << "*";
    cout << endl;
}
return 0;
}</pre>
```

运行结果

```
Microsoft Visual Studio 调试控制台
请输入5*5个数字: 0 3 6 7 7
 4 5 0 0
 0 0 7 0
 0 2 0 3
60001
0 *******
1
2
3
4
5
6
7
 ***
 *
 **
 *
 *
 **
 ****
C:\Users\yuehan lian\source\repos\s
```

数字图像处理-课堂练习2的编程

.Wr

课堂练习2的编程

•七、以下是一小块彩色图像区域(5*5),用C++编程转换成灰度图像,存入一个数组中。转换算法自选。

	0, 230, 230	120, 127, 230	60, 120, 210	70, 210, 232	100, 102, 101
Ì	103, 120, 230	40, 20, 30	50, 30, 60	90, 98, 89	90, 30, 20
	100, 107, 0	0, 137, 248	0, 255, 250	70, 1, 121	0, 10, 24
	1, 23, 149	0, 0, 0	2, 2, 2	0, 255, 0	William 295 to the party of the Wall
	6, 110, 120	0, 250, 1	0, 23, 21	20, 120, 130	1, 1, 1

```
#include<iostream>
#include<queue>
using namespace std;
queue<double> q;
//Author:计创18 181002222 连月菡
void print(double a[][101])//输出保存灰度图像数据的二维数组
{
    for (int i = 0; i < 5; ++i) {
       for (int j = 0; j < 5; ++j)
           printf("%51f ", a[i][j]);
       cout << endl;//每5行换一次行,确保美观
   }
}
void algorithm1(int n) {
    double r, g, b;
   int x, y;
   x = y = 0;
    double a[101][101];
    for (int i = 0; i < n/3; ++i)
       r = q.front(); q.pop();//提取红绿蓝三种分量
       g = q.front(); q.pop();
       b = q.front(); q.pop();
       a[x][y++] = (r + g + b) / 3.0; //第一种算法
    // cout << x << " " << y << a[x][y-1] << end];
       if (y == 5) {
           x++; y = 0;
       }
    print(a);
}
void algorithm2(int n) {
   double r, g, b;
   int x, y;
   x = y = 0;
    double a[101][101];
    for (int i = 0; i < n / 3; ++i)
```

```
r = q.front(); q.pop();//提取红绿蓝三种分量
       g = q.front(); q.pop();
       b = q.front(); q.pop();
       a[x][y++] = 0.3*r + 0.59*g + 0.11*b; // 第二种算法
       if (y == 5) {
           x++; y = 0;
       }
   print(a);
}
int main()
   int n;
   cout << "请输入彩色图像区域方格个数: ";
   n *= 3;//因为彩色图像方格里有RGB三个数字
   for (int i = 0; i < n; ++i)
       double x;
       cin >> x;
       q.push(x);
   }
   int op;
   cout << "请选择转换算法: " << end1 << "0:(R+G+B)/3"
<<endl<<"1:0.3R+0.59G+0.11B" << endl;
   cout << "输入数字0或1: ";
   cin >> op;
   if (!op)
       algorithm1(n);// (R+G+B)/3
   else
       algorithm2(n);// 0.3R+0.59G+0.11B
   while (!q.empty()) {
       q.pop();//每一次运行后,将队列q清空
   return 0;
}
```

运行结果

```
请选择转换算法:
0: (R+G+B)/3
1:0. 3R+0. 59G+0. 11B
输入数字0或1: 0
153. 333333
                159.000000
                                 130.000000
                                                 170.666667
                                                                  101.000000
151.000000
                30.000000
                                 46.666667
                                                 92. 333333
                                                                  46.666667
69. 000000
                128. 333333
                                 168.333333
                                                 64.000000
                                                                  11.333333
57.666667
                0.000000
                                 2.000000
                                                 85.000000
                                                                  85.000000
78.666667
                83.666667
                                 14.666667
                                                 90.000000
                                                                  1.000000
```

请选择转换算剂 0: (R+G+B)/3 1:0. 3R+0. 59G+ 输入数字0或1:	0. 11B			
161. 000000	136. 230000	111. 900000	170. 420000	101. 290000
127. 000000	27.100000	39. 300000	94. 610000	46. 900000
93. 130000	108. 110000	177. 950000	34. 900000	8. 540000
30. 260000	0.000000	2.000000	150. 450000	28.050000
79. 900000	147. 610000	15. 880000	91. 100000	1.000000