MAJOR PROJECT II

FINAL REPORT

ON

Web Scraping And Prediction Of Selling Prices Using BeautifulSoup And Random Forest Regressor

Submitted By

Sandeep Kumar	Rishank Gupta	Mayank Shekhar	Bedabandhu Sahoo
500062372	500062486	500063785	500063049

Under the guidance of

Dr. Rohit Tanwar

Assistant Professor - Selection Grade Department of Systemics, School of Computer Science

Department of Cybernetics, School of Computer Science UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Dehradun-248007 May - 2021 **PROJECT TITLE:** Web Scraping And Prediction Of Selling Prices Using BeautifulSoup And Random Forest Regressor.

ABSTRACT:

Information Analysis has been an extraordinary assistance in understanding information in a few zones like financial exchange, endeavors, climate, power interest, cost and utilization of items like fuel, power, and so on It outfits relationship with significant information that is essential to make taught decisions.

In this venture we pursue fabricating our own informational collection shaped by scratching sites. Further, the educational list is to be cleaned, to take out the various irregularities that arise in the assortment and is to be imagined. After that further suitable investigation is done on the information like expectation of MRP of vehicles.

*Keywords - Data Analysis, scraping, data-set, Machine Learning, WebApp.

CONTENT

TITLE	Page No.
INTRODUCTION	4-5
PROBLEM STATEMENT	5
OBJECTIVE	5
OBJECTIVE ACHIEVED	6
METHODOLOGY	6
TOOLS	6
DATA GATHERING AND PREPROCESSING	7
RESULTS	7-8
OUTPUT	9
SYSTEM REQUIREMENTS	10
PROJECT FLOW	10
SCHEDULE (PERT CHART)	11
REFERENCES	12
APPROVAL	13

INTRODUCTION:

Whether you're a scientist analysing earthquake data to predict the next "big one", or are in health-care analysing patient wait times to better staff your ER, understanding data is crucial to making better, data informed decisions. However, you need to run over this information in a productive way, so information is gotten in less time so that additional time can be spent on dissecting this gathered information. Although one may have collected data, cleaning it becomes more important to have a much more unambiguous data set.

Data collection is gathering (from relevant sources), the various measures and information related to certain variables in question present in a system. Information can be gathered by different methods like meetings to generate new ideas, interviews, reviews, contextual investigations, web publicizing and so on. In this project, we look at gathering data by scraping a website.

Web scraping is used to collect large information from websites. It is a computerized strategy used to extricate a lot of information from sites. The data on the websites are unstructured. Web scratching helps gather these unstructured information and store it in an organized structure. There are various approaches to scratch sites like online Services, APIs or composing your own code [1].

Data Cleaning is the process of identifying and removing errors in the data. While gathering and joining information from different sources into an information stockroom, guaranteeing high information quality and consistency turns into a huge, frequently costly and continually testing task. Without spotless and right information the handiness of Data Mining and information warehousing is relieved. This paper examines the issue of information purging and the ID of expected blunders in informational indexes [2]. So the point becomes to improve the information quality.

Regular information quality problems(anomalies) incorporate conflicting information shows among sources like various shortenings or equivalent words; information section blunders like spelling botches, conflicting information designs, missing, deficient, obsolete or in any case mistaken characteristic qualities, information duplication, insignificant items or information. Data that is incomplete or inaccurate is known as dirty data [3]. The different kinds of irregularities happening in information that must be wiped out. The kind of oddities can be

ordered under a few sorts of it. In view of this arrangement we assess and contrast existing methodologies for information purging and regard to the sorts of inconsistencies took care of and dispensed with by them [3].

Information cleaning offers the principal administrations for information cleaning, for example, characteristic determination, arrangement of tokens, choice of grouping calculation, choice of comparability work, choice of end work and union capacity and so forth. [3]. To clean data we make use of Tableau software.

After the cleaning part we utilized irregular woodland regressor and utilized various ascribes accessible to us to infer connection among them and the selling cost of vehicles, to anticipate our qualities and contrast them with our accessible dataset.

PROBLEM STATEMENT:

To choose a car ,which is also a hefty investment, a lot of time is wasted by every individual to reduce that time we used random forest regressor to help make better and fast choices, the model makes use of multiple attributes of car like facilities, engine, transmission, safety etc to make a differentiated choice.

OBJECTIVE:

- Gathering data by web scraping in Python.
- Cleaning the gathered data and converting it into a dataset.
- Analysis on the basis of the gathered dataset.
- Splitting the dataset for testing and training.
- Predicting the MRP of cars and comparing them to testing data.
- Creating a WebApp that will show Output.

OBJECTIVE ACHIEVED:

- Gathered data by web scraping in Python.
- Cleaning the gathered data and converted it into a dataset.
- Analysing on the basis of the gathered dataset.
- Successfully predicted the MRP of cars after applying regression.
- Created a WebApp GUI for Output.

METHODOLOGY:

We will use a combination of iterative and incremental process models (Agile SDLC model) with focus on process adaptability. This will break the project into small incremental builds. These builds are provided in iterations. Each iteration will last from about one to three weeks.

- Requirement Analysis
- Gathering Data
- Building Data Set
- Cleaning Data Set
- Pre processing of data
- Visualizing results
- applying random forest regressor

TOOLS:

- Python version 3.7 (current available)
- Packages : BeautifulSoup, requests, pandas, numpy, matplotlib
- Windows text editor or equivalent software
- Tableau Software
- Microsoft excel or equivalent spreadsheet software
- JupyterLab

DATA GATHERING AND PREPROCESSING

Data set after Scrapping

Figure 3: Data set after cleaning

Data set after required modification to be used as input for algorithms

Car Name	Year	Selling_Price	e	Present_	Price	Kms	Driven	Fuel	Type	Seller_Type	Transmission	Owner
ritz	2014	3	.35		5.59		27000	Petro	ol	Dealer	Manual	0
sx4	2013	3 4	.75		9.54		43000	Diese	el	Dealer	Manual	0
ciaz	2017	7	.25		9.85		6900	Petro	ol	Dealer	Manual	0
wagon r	2011	. 2	.85		4.15		5200	Petro	ol	Dealer	Manual	0
swift	2014	Į.	4.6		6.87		42450	Diese	el	Dealer	Manual	0
vitara brezza	2018	9	.25		9.83		2071	Diese	el	Dealer	Manual	0
ciaz	2015	6	.75		8.12		18796	Petro	ol	Dealer	Manual	0
s cross	2015	5	6.5		8.61		33429	Diese	el	Dealer	Manual	0
ciaz	2016	8	.75		8.89		20273	Diese	el	Dealer	Manual	0

Figure 4: Data set after required modification

RESULTS:

We used a car dataset for testing our model. And our findings are:-

Figure 5: Regression of price and mileage

Figure 6: Regression of mean price – mile

Figure 7: Correctness in mean price

OUTPUT:

Figure 8: Prediction of Selling Price after applying regression.

SYSTEM REQUIREMENTS:

Table 1: Hardware Requirements

Hardware Components	Configuration				
Processor	Intel i5 7200				
Processor Speed	2.5 GHz				
RAM Size	8 GB				
OS	Windows 10				
GPU	NVIDIA GeForce GTX 940M				
VRAM	2GB				

PROJECT FLOW:

SCHEDULE (PERT CHART): Resource Gathering **START** Start Date: 01.02.2021 End Date: 14.02.2021 Requirement Analysis Design Architecture Start Date: 15.02.2021 Start Date: 21.02.2021 End Date: 20.02.2021 End Date: 05.03.2021 Coding Algorithm Design Start Date: 16.03.2021 Start Date: 06.03.2021 End Date:15.04.2021 End Date: 15.03.2021 Testing Deployment Start Date: 16.04.2021 Start Date: 21.04.2021 End Date: 20.04.2021 End Date: 22.04.2021 Documentation **END** Start Date: 23.04.2021 End Date: 25.04.2021

REFERENCES:

- [1]. Agile Methodology & Model: Guide for So ware Development & Tes ng. 1 9.
- [2]. Data Cleaning: Current Approachesand Issues IVaishali Chandrakant Wangikar and 2Ratnadeep R. Deshmukh IMCA Department, Maharashtra Academy of Engineering, Alandi,
- [3]. Pune (MS), India,2Deptartment of Computer Science & IT, Dr. Babasaheb Ambedkar Marathwada
- [4]. University, Aurangabad (MS), IndiaE-mail: vaishali.wangikar@gmail.com, ratnadeep_deshmukh@yahoo.co.in
- [5]. Interna onal Journal for Research in Applied Science & Engineering Technology (IJRASET) ©IJRASET: All Rights are Reserved 335 Web Informa on Retrieval Using Python and Beau fulSoup Pra ksha Ashiwall, S.R.Tandan2, Priyanka Tripathi3, Rohit Miri4 Department of Computer Science and Engineering 1,2,4Dr. C V Raman University, Bilaspur, CG, India 3Na onal Instute of Technical Teach
- [6]. Exploi ng web scraping in a collabora ve filteringbased approach to web adver singEloisa Vargiu1, 2, Mirko Urru11. Dipar mento di Matema ca e Informa ca, Università di Cagliari, Italy. 2. Barcelona Digital Technology Centre, SpainCorrespondence: Eloisa Vargiu. Address: Barcelona Digital Technology Center, Italy. Email: evargiu@bdigital.org.
- [7]. Kabir, Syed Muhammad. (2014). Methods of Data Collec on.

