MA3227 Numerical Analysis II

Topics for Midterm Exam

Simon Etter

2019/2020

Finite differences

Consistency and stability implies convergence theorem:

$$||u-u_n|| \leq ||\Delta_n^{-1}|| \, ||\Delta_n u + f||.$$

▶ Taylor expansion for computing the consistency error $\|\Delta_n u + f\|$.

Sparse LU

- ► Graph of sparse matrices, structural nonzeros, fill-in.
- ► Path theorems for matrix powers, inverses and the LU factorisation. Application only, no proofs.
- Runtimes of dense and sparse LU factorisation:

dense:
$$\mathcal{O}(N^3)$$
, sparse:
$$\begin{cases} \mathcal{O}(N) & \text{if } d = 1, \\ \mathcal{O}(N^{3/2}) & \text{if } d = 2, \\ \mathcal{O}(N^2) & \text{if } d = 3. \end{cases}$$

Orthogonal matrices

- ▶ Basic orthogonalisation procedure $\hat{b} = b \frac{a^T b}{a^T a} a$.
- ► Use of the basic orthogonalisation procedure in the Gram-Schmidt, Arnoldi and Lanczos algorithms.
- ▶ Arnoldi relation $AQ_k = Q_{k+1}H_k$.
- ▶ Lanczos theorem: A symmetric $\implies H_k$ tridiagonal.
- ightharpoonup QR factorisation A = QR.
- $ightharpoonup x = \arg\min \|Ax b\|_2 \iff x = R^{-1} Q^T b$

Krylov methods

Krylov algorithms:

$$x_k = p_{k-1}(A) b$$
 where $p_{k-1} = \underset{p_{k-1} \in \mathcal{P}_{k-1}}{\arg \min} \| (A p_{k-1}(A) - I) b \|.$

- ▶ GMRES and MinRes minimise 2-norm, CG minimises A^{-1} norm.
- ▶ Runtime GMRES is N matvecs plus $\mathcal{O}(Nk^2)$ other operations. Runtime MinRes and CG is N matvecs plus $\mathcal{O}(Nk)$ other operations.
- GMRES is applicable to any matrix. MinRes requires symmetry. CG requires symmetric positive definite.

Krylov methods (continued)

► Convergence estimate

$$||Ax_k - b|| \le C \min_{q_k \in \mathcal{P}} \max_{\lambda_\ell} \frac{|q_k(\lambda_\ell)|}{|q_k(0)|}$$

and its corollaries regarding scale-invariance, outliers and finite termination.

Application only, no proofs.

You may ignore alternating_eigenvalues() from lab 2.

▶ Convergence bound for intervals: if $\lambda_{\ell} \in [1, \kappa]$, then $\|Ax_k - b\| \le C \rho^k$ and $\rho \in (0, 1)$ is closer to 0 for κ closer to 1.

Jacobi and multigrid

Jacobi and Gauss-Seidel iterations:

Jacobi:
$$x_{k+1} = D^{-1} (b - (A - D) x_k),$$

Gauss-Seidel: $x_{k+1} = (D + U)^{-1} (b - Lx_k).$

► Error recursion formula

$$x_{k+1} = x_k + B(b - Ax_k) \implies x_{k+1} - x = (I - BA)(x_k - x)$$

You should know these formulae and be able to perform the iterations by hand.

and its consequences regarding convergence.

Root-finding algorithms

- You should be able to perform bisection, false position, Newton and secant methods by hand.
- ➤ You should be able to show the convergence result for Newton's method, but you may ignore secant and false position.
- Be informed about Broyden and gradient descent. No need to remember the formulae for Broyden's method.

Example question

Consider the 2×2 matrix

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 where $a, d \neq 0$.

Show that Gauss-Seidel converges at least twice as fast as Jacobi. For an actual exam question, I would clarify more precisely what is meant by twice as fast. Here, it will be clear once you see the answer on the next slide.

Hint. We have

$$x_k - x = R^k (x_0 - x)$$
 where $R = \begin{cases} -D^{-1} (A - D) & (Jacobi), \\ -(U + D)^{-1} L & (Gauss-Seidel). \end{cases}$

Answer. We know that $||x_k - x|| \le C |\lambda_{\max}|^k$ where λ_{\max} is the eigenvalue of largest magnitude of the two matrices R given above. For Jacobi, we compute

$$-D^{-1}(A-D) = -\begin{pmatrix} 0 & \frac{b}{a} \\ \frac{c}{d} & 0 \end{pmatrix}$$

and thus $|\lambda_{\max}| = \sqrt{rac{bc}{ad}}.$

For Gauss-Seidel, we compute

$$-(U+D)^{-1}L = -\begin{pmatrix} 0 & \frac{b}{a} \\ 0 & \frac{bc}{ad} \end{pmatrix}$$

and thus $|\lambda_{\max}| = \frac{bc}{ad}$.

We conclude $|\lambda_{\max}^{(Jac)}|^2 = |\lambda_{\max}^{(GS)}|$, i.e. Jacobi requires two steps to achieve the same error reduction as Gauss-Seidel achieves in a single step.

Example question

Let $A \in \mathbb{R}^{N \times N}$ be a dense and symmetric matrix with eigenvalues in the interval $[1,\kappa]$. Determine $\alpha \in \mathbb{R}$ such that if $\kappa = \mathcal{O}\big(N^{\tilde{\alpha}}\big)$ with $\tilde{\alpha} < \alpha$, then MinRes is asymptotically faster than LU factorisation, and if $\tilde{\alpha} > \alpha$ then MinRes is asymptotically slower than LU factorisation.

Hint. Under the assumptions above, the MinRes iterates x_k satisfy

$$||Ax_k - b|| \le C \rho^k \text{ with } \rho = 1 - \mathcal{O}(\kappa^{-1/2}),$$

and

$$k = \mathcal{O}(\log(\varepsilon)(1-\rho)^{-1}) = \mathcal{O}(\log(\varepsilon)\kappa^{1/2})$$

steps are required to achieve $||Ax_k - b|| \le \varepsilon$.

Answer. Since A is dense, the runtime of LU is $\mathcal{O}(N^3)$.

For MinRes, the runtime is k matrix-vector products and $\mathcal{O}(Nk)$ other operations. Since A is dense, the matrix-vector products dominate and the runtime is $\mathcal{O}(N^2k)$.

We know that MinRes requires $k = \mathcal{O}(\kappa^{1/2})$ to achieve a fixed error. The critical α is therefore $\alpha = 2$.

Example question

Consider the inner product

$$\langle p,q\rangle = \int_0^1 p(x) \, q(x) \, dx$$

defined for all polynomials $p, q \in \mathcal{P}_k = \{p(x) \mid p(x) = \sum_{\ell=0}^k c_k x^k\}$. Determine three polynomials p_0, p_1, p_2 such that $\langle p_k, p_\ell \rangle = 0$ if $k \neq \ell$ and

$$\mathsf{span}\{p_0\} = \mathcal{P}_0, \qquad \mathsf{span}\{p_0, p_1\} = \mathcal{P}_1, \qquad \mathsf{span}\{p_0, p_1, p_2\} = \mathcal{P}_2.$$

Answer. The polynomials can be found by applying the Gram-Schmidt algorithm to $1, x, x^2$. We compute:

$$p_0(x) = 1,$$
 $p_1(x) = x - \frac{\langle 1, x \rangle}{\langle 1, 1 \rangle} \, 1 = x - \frac{1}{2}$

$$p_{2}(x) = x^{2} - \frac{\langle x - \frac{1}{2}, x^{2} \rangle}{\langle x - \frac{1}{2}, x - \frac{1}{2} \rangle} \left(x - \frac{1}{2} \right) - \frac{\langle 1, x^{2} \rangle}{\langle 1, 1 \rangle} 1$$

$$= x^{2} - \left(x - \frac{1}{2} \right) - \frac{1}{3}$$

$$= x^{2} - x + \frac{1}{6}.$$

Example question

Perform a single step of Newton's method for

$$f(x,y) = \begin{pmatrix} x^2 - xy + 1 \\ 2xy - 2x - y + 5 \end{pmatrix}$$

and initial guess $(x_0, y_0) = (0, 1)$.

Answer. We compute

$$\nabla f(x,y) = \begin{pmatrix} 2x-y & -x \\ 2y-2 & 2x-1 \end{pmatrix} \implies \nabla f(0,1) = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

and

$$f(0,1)=\begin{pmatrix}1\\4\end{pmatrix}$$
.

Thus,

$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} - \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 4 \end{pmatrix} = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$$