

15.415x Foundations of Modern Finance

Leonid Kogan and Jiang Wang MIT Sloan School of Management

Lecture 2: Market Prices and Present Value

Key Concepts

- State-space model for time and risk
- Arbitrage pricing
- Present value and future value
- Nominal vs. real cash flows and returns

Key Concepts

- State-space model for time and risk
- Arbitrage pricing
- Present value and future value
- Nominal vs. real cash flows and returns

State space model for time and risk

- Consider a simple model to capture the two elements in finance: time and risk.
- There are two dates: t = 0, 1.
- There are N possible economic states at t=1: $s=1,\ldots,N$, with probabilities p_1,p_2,\ldots,p_N .
- States and probabilities are known to all decision makers.

State-space model

- Assume frictionless financial market for simplicity.
- Assets can be traded at time t = 0 with payoffs at time t = 1.
- The price of an asset is P at t = 0 with payoff $X = (X_1, ..., X_N)$ at t = 1.
 - \blacksquare X is a random variable.
- A random payoff is given by the value of its payoff in each state and the corresponding probability:

$$[(X_1, ..., X_N); (p_1, ..., p_N)]$$

State prices

- Consider primitive state-contingent claims (Arrow-Debreu securities) that pay \$1 in a single state and nothing otherwise.
- Denote the price of the A-D claim on state j by ϕ_i , the state price for state j.
- No arbitrage requires that all state prices must be positive: $\phi_i > 0$ for all j.
- The market is called complete if one can effectively trade A-D securities on each state.
- Complete market is a useful abstraction.

Key Concepts

- State-space model for time and risk
- Arbitrage pricing
- Present value and future value
- Nominal vs. real cash flows and returns

- With the prices of A-D securities, we can price other assets/securities.
- Consider a two-state economy (N = 2) with three assets:
 - A-D securities, paying $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$,
 - Asset X paying $\begin{bmatrix} 3 \\ 5 \end{bmatrix}$.
- How is the price of the third asset related to the prices of the first two?
- Think of the third asset as a portfolio of the first two assets:

$$\begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3 \times \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 5 \times \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Claim: price of asset X is:

$$P = 3 \times \phi_1 + 5 \times \phi_2$$

- The third asset can be replicated as a portfolio of A-D securities: 3 units of A-D security 1, and 5 units of A-D security 2.
- By no arbitrage, its price must equal the price of the replication portfolio:
- No arbitrage requires:

$$P = 3 \phi_1 + 5 \phi_2$$

- If not, agents can generate arbitrage profits. How?
- Law of One Price: Two assets with the same payoff must have the same market price.
- If we have the prices of A-D securities, we can price all other securities: just replicate them as portfolios of A-D securities.
- What if we have prices of a bunch of "composite" securities?

Example. (Concept check)

Suppose there are two economic states next year.

- Safe government bond pays an interest rate of 5%;
- A stock with price \$100 yields the following payoff next year: (90,120).

What should be a proper set of state prices?

■ From the price and payoff of government bond:

$$100 = 105\phi_1 + 105\phi_2$$

From the price and payoff of the stock:

$$100 = 90\phi_1 + 120\phi_2$$

Solving for ϕ_1 and ϕ_2 yields:

$$(\phi_1, \phi_2) = \left(\frac{10}{21}, \frac{10}{21}\right)$$

Example. (Concept check)

Suppose there are two states next year. The payoff of a share of stock and the probabilities of the states are:

The state prices for the two states are:

$$(\phi_1, \phi_2) = (0.5, 0.4)$$

Questions:

- 1. What is the stock price today?
- 2. What is the expected rate of return of the stock?

Example (cont'd).

■ Stock price today:

$$P = \phi_1 X_1 + \phi_2 X_2 = 0.5 (90) + 0.4 (110) = 89$$

Expected rate of return on the stock, \bar{r} :

$$\bar{r} = \frac{E[X] - P}{P} = \frac{p_1 X_1 + p_2 X_2}{P} - 1 = \frac{0.4(90) + 0.6(110)}{89} - 1 = \frac{102}{89} - 1 = \frac{13}{89}$$

■ Given the expected return on the stock by the market, we have:

$$P(1+\bar{r}) = E[X] \implies P = \frac{E[X]}{1+\bar{r}} = \frac{102}{1+13/89} = 89$$

- In general, in a complete market we can value any cash flow by the noarbitrage principle (P1).
- Suppose the firm is considering a project yielding time-1 cash flow:

$$X = (X_1, X_2, ..., X_N)$$

■ Using prices of A-D securities, we can attach value to this cash flow as

$$P = \phi_1 X_1 + \dots + \phi_N X_N = PV$$

- This valuation formula encapsulates the arbitrage/relative pricing principle.
- PV is the present value of the project/asset/CF.
- PV is also given by the expected payoff and the expected rate of return.
- Key idea: Find traded assets with similar cash flows (in timing and risk), use their price/expected return to value the given asset.

Key Concepts

- State-space model for time and risk
- Arbitrage pricing
- Present value and future value
- Nominal vs. real cash flows and returns

Present value (PV)

Example 1. How much is a sure cash flow of \$1,000 in one year worth now?

Market: Safe assets traded in the market offer annual return of 2%.

A potential buyer of the sure CF also expects 2% return. Let the price she is willing to pay be P. Then:

$$P(1+0.02) = $1,000$$

Thus,

$$P = \frac{\$1,000}{1.02} = \$980$$

which is the CF's present value.

Observation: Present value properly adjusts for time.

Present value (PV)

Example 2. How much is a risky cash flow in one year with a forecasted value of \$1,000 worth now?

Market: Traded assets of similar risk offer expected annual return of 20%.

A potential buyer of the risky CF also expects 20% return. Let the price be P. Then:

$$P(1+0.20) = $1,000$$

Thus, the present value of the risky CF is:

$$P = \frac{\$1,000}{1.20} = \$833$$

Observation: Present value properly adjusts for risk.

Present value and discount rate

The current market value of a CF (its PV) is determined by

- its expected payoff;
- discounted at an appropriate discount rate,

where the discount rate is given by the expected rate of return on traded assets with similar cash flows (in timing and risk):

$$PV = \frac{E[CF]}{1 + \bar{r}}$$

Thus,

- the value of an asset (cash flow) is determined by the financial market (via the discount rate/expected rate of return/required rate of return);
- the discount rate properly adjusts for time and risk;
- the discount rate is also called the opportunity cost of capital (COC) return offered by similar assets traded in the market.

Present value (PV)

From now on, for simplicity, we will use r (instead of \bar{r}) to denote discount rates (unless noted otherwise).

Example. (A) \$10M (million) in 5 years or (B) \$15M in 15 years. Which is better if r = 5%?

$$PV_A = \frac{10}{1.05^5} = 7.84;$$
 $PV_B = \frac{15}{1.05^{15}} = 7.22$

Present value (PV)

Present vs future value

- We can bring \$ back from the future, discounting at the proper discount rate.
- We can also send \$ into the future, growing at the proper return rate.

Future value (FV)

- How much will \$1 today be worth in one year if the interest rate is 4%?
 - \$1 investable at a rate of return r = 4%;
 - FV in 1 year:

$$FV = 1 + r = \$1.04$$

■ FV in *T* years:

$$FV = \$1 \times (1+r) \times \dots \times (1+r)$$
$$= (1+r)^T$$

Example. Bank pays an annual interest of 4% on 2-year CDs and you deposit \$10,000. What is your balance two years later?

$$FV = \$10,000 \times (1 + 0.04)^2 = \$10,816$$

Present value (PV) and CF

Comparing cash flows:

Example. Drug company has developed a new flu vaccine and needs to choose between two strategies:

- Strategy A: To bring to market in 1 year, invest \$1B (billion) now and returns \$500M (million), \$400M and \$300M in years 1, 2 and 3, respectively.
- Strategy B: To bring to market in 2 years, invest \$200M in years 0 and 1, and returns \$300M in years 2 and 3.

How to value/compare the two strategies (i.e., their CFs)?

Present value (PV) and CF

$$PV(CF_1, CF_2, ..., CF_T) = \frac{CF_1}{(1+r)} + \frac{CF_2}{(1+r)^2} + \cdots + \frac{CF_T}{(1+r)^T}$$

Assume that r = 5%.

Strategy A:

Time	0	1	2	3
Cash Flow	-1,000	500.0	400.0	300.0
Present Value	-1,000	476.2	362.8	259.2
Total PV	98.2			

■ Strategy B:

Time	0	1	2	3
Cash Flow	-200	-200.0	300.0	300.0
Present Value	-200	-190.5	272.1	259.2
Total PV	140.8			

Firm should choose strategy B, and its value would increase by \$140.8M (vs. \$98.2M for strategy A).

Key Concepts

- State-space model for time and risk
- Arbitrage pricing
- Present value and future value
- Nominal vs. real cash flows and returns

Nominal vs real CFs

Example. Inflation is 4% per year. You expect to receive \$1.04 in one year, what is this CF really worth next year?

■ The inflation adjusted or real value of \$1.04 in a year is:

Real
$$CF = \frac{\text{Nominal } CF}{1 + \text{ inflation}} = \frac{\$1.04}{1 + 0.04} = \$1.00$$

- Nominal cash flows ⇒ expressed in actual-dollar cash flows.
- Real cash flows ⇒ expressed in constant purchasing power.
- \blacksquare At an annual inflation rate of i, we have:

$$(\text{Real } CF)_t = \frac{(\text{Nominal } CF)_t}{(1+i)^t}$$

http://www.tradingeconomics.com/country-list/inflation-rate

Nominal vs real rates

- Nominal rates of return \Rightarrow prevailing market rates.
- \blacksquare Real rates of return \Rightarrow inflation adjusted rates.

Example.

- \$1.00 invested at a 6% interest rate grows to \$1.06 next year.
- If inflation is 4% per year, then its real value is

$$\frac{\$1.06}{1.04} = 1.019$$

The real rate of return is 1.9%.

$$r_{\text{real}} = \frac{1 + r_{\text{nominal}}}{1 + i} - 1 \approx r_{\text{nominal}} - i$$

Nominal vs real CFs and rates

Example. Sales is \$1M this year and is expected to have a real growth of 2% next year. Inflation is expected to be 4%. The appropriate nominal discount rate is 5%. What is the present value of next year's sales revenue?

■ Next year's nominal sales forecast: (\$1M)(1.02)(1.04) = \$1.0608M.

$$PV = \frac{1.0608}{1.05} = 1.0103$$

■ Next year's real sales forecast: (\$1M)(1.02) = \$1.02M.

$$r_{\text{real}} = \frac{1 + r_{\text{nominal}}}{1 + i} - 1 = \frac{1.05}{1.04} - 1 = 0.9615\%$$

$$PV = \frac{1.02}{1.009615} = 1.0103$$

- For valuation calculations, treat inflation consistently.
 - Discount nominal cash flows using nominal discount rates.
 - Discount real cash flows using real discount rates.

Summary

- State-space model for time and risk
- Arbitrage/relative pricing
- Present value and future value
- Nominal and real cash flows and returns