Advances in Quantitative MRI: Acquisition, Estimation, and Application

Gopal Nataraj

Dissertation Defense March 23, 2018

Dept. of Electrical Engineering and Computer Science University of Michigan

Example: flow imaging

¹figure borrowed from [Hope et al., 2013]

Example: diffusion imaging

qualitative fractional anisotropy (FA) directional FA²

²figure borrowed from www.diffusion-imaging.com

Example: myelin water imaging

³figure adapted from [Nataraj et al., 2017]

Goal: rapidly and accurately localize biomarkers from MR data

Goal: rapidly and accurately localize biomarkers from MR data

• biomarker measurable tissue property (e.g., flow rate) that indicates a biological process (e.g., blockage) characteristic to specific disorders (e.g., stroke)

Goal: rapidly and accurately localize biomarkers from MR data

- biomarker measurable tissue property (e.g., flow rate)
 that indicates a biological process (e.g., blockage)
 characteristic to specific disorders (e.g., stroke)
- localize produce quantitative MR images

Goal: rapidly and accurately localize biomarkers from MR data

- biomarker measurable tissue property (e.g., flow rate)
 that indicates a biological process (e.g., blockage)
 characteristic to specific disorders (e.g., stroke)
- localize produce quantitative MR images
- accurately physically realistic signal models
- rapidly fast acquisition, fast estimation

Goal: rapidly and accurately localize biomarkers from MR data

- biomarker measurable tissue property (e.g., flow rate)
 that indicates a biological process (e.g., blockage)
 characteristic to specific disorders (e.g., stroke)
- localize produce quantitative MR images
- accurately physically realistic signal models
- rapidly fast acquisition, fast estimation

Challenge: rapidly vs. accurately often competing goals

- more accurate models typically depend on more markers
- precisely estimating more markers usually requires longer scans and more computation

Advances in Quantitative MRI:

• Acquisition [Ch. 4]

How can we assemble fast, informative collections of scans to enable precise biomarker quantification?

Advances in Quantitative MRI:

• Acquisition [Ch. 4] How can we assemble fast, informative collections of scans to enable precise biomarker quantification?

• Estimation [Ch. 5]
Given accurate models and informative data,

how can we rapidly quantify these biomarkers?

Advances in Quantitative MRI:

• Acquisition [Ch. 4] How can we assemble fast, informative collections of scans to enable precise biomarker quantification?

- Estimation [Ch. 5]
 Given accurate models and informative data,
 - how can we rapidly quantify these biomarkers?
- Application [Ch. 6]
 Using these tools, can we design a state-of-the-art biomarker?

Advances in Quantitative MRI:

• Acquisition [Ch. 4] How can we assemble fast, informative collections of scans

• Estimation [Ch. 5]
Given accurate models and informative data.

how can we rapidly quantify these biomarkers?

to enable precise biomarker quantification?

Application [Ch. 6]
 Using these tools, can we design a state-of-the-art biomarker?

Advances in Quantitative MRI:

• Acquisition [Ch. 4] How can we assemble fast, informative collections of scans to enable precise biomarker quantification?

- Estimation [Ch. 5]
 Given accurate models and informative data,
- Application [Ch. 6]

how can we rapidly quantify these biomarkers?

Using these tools, can we design a state-of-the-art biomarker?

Advances in Quantitative MRI:

• Acquisition [Ch. 4] How can we assemble fast, informative collections of scans to enable precise biomarker quantification?

- Estimation [Ch. 5]
 Given accurate models and informative data,
 - how can we rapidly quantify these biomarkers?
- Application [Ch. 6]
 Using these tools, can we design a state-of-the-art biomarker?

References i

Nataraj, G., Nielsen, J.-F., and Fessler, J. A. (2017).

Myelin water fraction estimation from optimized steady-state sequences using kernel ridge regression.

In Proc. Intl. Soc. Mag. Res. Med., page 5076.