Teoria de la Probabilitat

Continguts

1	Esp	ais de Probabilitat	3												
	1.1	Definició axiomàtica d'espai de probabilitat													
		Teorema (Desigualtats de Bonferroni)	4												
	1.2	Probabilitat condicionada	1												
	1.3	Independència	6												
	1.4	Espai producte	7												
		Teorema (d'extensió o de Carathéodory)	7												
	1.5	Lema de Borel-Cantelli	7												
2	Var	Variables Aleatòries													
	2.1	Definició de variable aleatòria. Llei d'una v.a	G												
	2.2	Moments d'una v.a. Desigualtats de Markov i Chebyshev	1												
		Teorema (Desigualtat de Markov)	2												
		Teorema (Desigualtat de Chebyshev)	2												
	2.3	Vectors de variables aleatòries. Independència de v.a	2												
		Teorema	4												
3	Variables Aleatòries Discretes 16														
	3.1	Definicions i conceptes relacionats. Funció generadora de probabilitat 1	.(
	3.2		8												
	3.3	Distribucions condicionades i esperança condicionada	2(
	3.4	Suma de variables aleatòries discretes (Aplicació 1)	2(
	3.5	Arbres de Galton-Watson (Aplicació 2)	21												
		Teorema (Galton)	22												
4	Var	iables Aleatòries Contínues 2	12												
	4.1	Mesures de probabilitat absolutament contínues. Funció de densitat 2):												
		Teorema (Radon-Nikodym)	25												
	4.2	Models de variables aleatòries absolutament contínues	24												
	4.3	Distribucions conjuntes i marginals. Independència i distribucions condicionades 2	26												
		4.3.1 Independència	27												
		4.3.2 Distribucions condicionades	27												
		4.3.3 Esperança condicionada	27												
	4.4		35												

4.4.1	Cas univariat .																28
4.4.2	Cas multivariat																28

1 Espais de Probabilitat

1.1 Definició axiomàtica d'espai de probabilitat

Definició 1.1.1

Un espai de probabilitat és un espai de mesura (Ω, \mathcal{A}, p) , tal que $p(\Omega) = 1$.

- Ω s'anomena **espai mostral**.
- \bullet A se l'anomena conjunt d'esdeveniments o successos.
- p se l'anomena funció de probabilitat.

Observació 1.1.2 $\mathcal{A} \subseteq \mathcal{P}(\Omega)$ és una σ -àlgebra:

- $\sigma 1) \varnothing \in \mathcal{A}$
- $\sigma 2) A \in \mathcal{A} \iff \overline{A} \in \mathcal{A}$
- $\sigma 3$) Si $\{A_n\}_{n\geq 1}$ és una seqüència de successos en $\mathcal{A} \implies \bigcup_{n\geq 1} A_n \in \mathcal{A}$

Observació 1.1.3 Recordem que p és una mesura i, per tant:

- $p1) p(\emptyset) = 0$
- $p2) \ \forall A \in \mathcal{A}, \ p(A) \ge 0$
- p3) Si $\{A_n\}_{n\geq 1}$ és una seqüència de successos en \mathcal{A} disjunts 2 a 2 $(A_i\cap A_j=\varnothing\,si\,i\neq j)$, aleshores

$$p\bigg(\bigcup_{n>1} A_n\bigg) = \sum_{n>1} p(A_n)$$

Vegem les primeres propietats dels espais de probabilitat:

Proposició 1.1.4

Per un espai de probabilitat (Ω, \mathcal{A}, p) es compleix que:

- (i) $A \in \mathcal{A} \implies p(\overline{A}) = 1 p(A)$
- (ii) Si $A, B \in \mathcal{A}, A \subseteq B \implies p(A) \leq p(B)$

(iii) Si
$$A_1, \ldots, A_r \in \mathcal{A}$$
, $i A_i \cap A_j \neq \emptyset$ $(i \neq j)$, aleshores $p\left(\bigcup_{i=1}^r A_i\right) = \sum_{i=1}^r p(A_i)$

- (iv) Si $A, B \in \mathcal{A}, A \subseteq B \implies p(B A) = p(B) p(A)$
- (v) Successions monòtones:

a) Si
$$A_1 \subseteq A_2 \subseteq A_3 \subseteq \ldots \subseteq A_i \in \mathcal{A} \implies p\left(\bigcup_{n>1} A_n\right) = \lim_{n \to \infty} p(A_n)$$

b) Si
$$A_1 \supseteq A_2 \supseteq A_3 \supseteq \ldots \supseteq A_i \in \mathcal{A} \implies p\left(\bigcap_{n>1} A_n\right) = \lim_{n \to \infty} p(A_n)$$

3

Si ara tenim un espai de probabilitat (Ω, \mathcal{A}, p) , i successos A_1, A_2, \ldots, A_i en general <u>no</u> disjunts, aleshores <u>no</u> és cert que $p\left(\bigcup_{i=1}^r A_r\right) = \sum_{i=1}^r p(A_i)$. En aquest cas, tenim la següent fita:

Lema 1.1.5 (Fita de la unió)

Siguin A_1, A_2, \ldots, A_r successos en (Ω, \mathcal{A}, p) , aleshores

$$p\bigg(\bigcup_{i=1}^r A_i\bigg) \le \sum_{i=1}^r p(A_i)$$

Teorema (Desigualtats de Bonferroni) (1.1.6)

Siguin A_1, \ldots, A_r successos en (Ω, \mathcal{A}, p) . Denotem per $I \subseteq \{1, \ldots, r\} : = [r]$,

$$A_I = \bigcap_{i \in I} A_i$$

$$S_k = \sum_{\substack{I \subseteq [r] \\ |I| = k}} p(A_I)$$

Aleshores, si:

- 1) t és parell, $p\left(\bigcup_{i=1}^r A_i\right) \ge \sum_{i=1}^t (-1)^{i+1} \cdot S_i$
- 2) t és senar, $p\left(\bigcup_{i=1}^r A_i\right) \leq \sum_{i=1}^t (-1)^{i+1} \cdot S_i$

Exemple 1.1.7

1.2 Probabilitat condicionada

Definició 1.2.1

Sigui (Ω, \mathcal{A}, p) un espai de probabilitat, i $B \in \mathcal{A}$ amb p(B) > 0.

Per $A \in \mathcal{A}$, la probabilitat condicionada de A amb B és:

$$p(A \mid B) = \frac{p(A \cap B)}{p(B)}$$

Observació 1.2.2 $p(A \mid B)$ mesura la probabilitat de que el succés A ocorri sabent que B ha succeït.

Observació 1.2.3 Si prenem

$$P_B \colon \mathcal{A} \to \mathbb{R}$$

 $A \mapsto P_B(A) = P(A \mid B)$

Aleshores P_B és una funció de probabilitat sobre Ω, \mathcal{A}

De fet, si definim $\mathcal{A}_B = \{A \cap B : A \in \mathcal{A}\}$, aleshores \mathcal{A}_B és una σ -àlgebra i P_B també defineix una probabilitat sobre (Ω, \mathcal{A}_B) .

Proposició 1.2.4

Siguin $A_1, \ldots, A_r \in \mathcal{A}$, tals que $p(A_i) > 0$, $A_i \cap A_j = \emptyset$ si $i \neq j$ i $\bigcup_{i=1}^r A_i = \Omega$ $(\{A_i\}_{i=1}^r$ és una partició de $\Omega)$

- (i) Teorema de la probabilitat total: $\forall A \in \mathcal{A}, p(A) = \sum_{i=1}^{r} p(A \mid A_i) \cdot p(A_i).$
- (ii) <u>Fórmula de Bayes</u>: si $A \in \mathcal{A}$, p(A) > 0,

$$p(A_j \mid A) = \frac{p(A \mid A_j) \cdot p(A_j)}{\sum_{i=1}^r p(A \mid A_i) \cdot p(A_i)}$$

Molts cops serà més senzill calcular probabilitats condicionades. Vegem un exemple:

Exemple 1.2.5 (La ruïna del jugador)

Partim d'un capital de k unitats $(k \ge 0)$ i volem aconseguir un capital de N unitats $(N \ge k)$ de la següent forma:

Llancem una moneda equilibrada, guanyant (surt cara) o perdent (surt creu) una unitat amb probabilitat $\frac{1}{2}$. El joc acaba si:

- 1. Ens quedem sense capital.
- 2. Assolim un capital igual a N

Calcularem la probabilitat de perdre.

No és bona idea intentar codificar tots els casos possibles i sumar les seves probabilitats (no tirades $\to \infty$).

Anem a resoldre el problema usant el teorema de la probabilitat total.

 A_k = "el jugador, amb capital inicial igual a k, s'arruïna" (Volem calcular $p(A_k)$).

Escrivim $p(A_k) = p_k$. Aleshores $p_0 = 1$, $p_N = 0$.

Definim B = "la primera tirada de la moneda és cara". Aleshores B i \overline{B} defineixen una partició de Ω .

Usem el teorema de probabilitat total:

$$p(A_k) = p(A_k \mid B)p(B) + p(A_k \mid \overline{B})p(\overline{B})$$

$$= p(A_k \mid B) \cdot \frac{1}{2} + p(A_k \mid \overline{B}) \cdot \frac{1}{2}$$

$$= \frac{1}{2} \cdot \left(\underbrace{p(A_k \mid B)}_{p(A_{k+1})} + \underbrace{p(A_k \mid \overline{B})}_{p(A_{k-1})} \right)$$

$$p_k = \frac{1}{2}(p_{k+1} + p_{k-1}); \quad p_0 = 1, \ p_N = 0$$

Resolent la recurrència tenim:

$$p_k = 1 - \frac{k}{N}$$

Si $k \in o(N)$, aleshores assimptòticament el jugador s'acabarà arruïnant.

1.3 Independència

Definició 1.3.1

Dos successos A i B (del mateix espai (Ω, \mathcal{A}, p)) són **independents** si $p(A \cap B) = p(A) \cdot p(B)$.

Observació 1.3.2

- Si p(B) > 0, A i B independents $\iff p(A \mid B) = p(A)$
- $\bullet\,$ El successos \varnothing i Ω són independents amb qualsevol altre succés B
- Si A i B són independents, A i \overline{B} també. (De fet tenim que A i B són independents $\iff \overline{A}$ i \overline{B} són independents).

Definició 1.3.3

Donada una família de successos $\{A_i\}_{i\in I}$, es diu que és **independent** si:

$$\forall J \subseteq I \text{ amb } |J| < \infty, \text{ es t\'e: } p\bigg(\bigcap_{j \in J} A_j\bigg) = \prod_{j \in J} p(A_j)$$

Observació 1.3.4 Donats $\{A_i\}_{i=1,\dots,r}$ successos, poden ser independents dos a dos però no com a conjunt.

1.4 Espai producte

Donats dos espais de probabilitat $(\Omega_1, \mathcal{A}_1, p_1)$ i $(\Omega_2, \mathcal{A}_2, p_2)$, volem combinar-los en un sol espai amb espai mostral $\Omega_1 \times \Omega_2$.

Això ja ho hem fet en el cas discret, però en general:

- Prenem com a espai mostral $\Omega_1 \times \Omega_2$
- Prenem com a σ -àlgebra $\sigma(\mathcal{A}_1 \times \mathcal{A}_2)$ (la més petita σ -àlgebra que conté $\mathcal{A}_1 \times \mathcal{A}_2$).
- Com definim p a $(\Omega_1 \times \Omega_2, \mathcal{A}_1 \times \mathcal{A}_2)$? Voldríem que $p(A_1 \times A_2) = p(A_1) \cdot p(A_2) \quad \forall A_i \in \mathcal{A}_i$. Per definir p necessitarem el següent teorema:

Teorema (d'extensió o de Carathéodory) (1.4.1)

Sigui p_0 una funció de probabilitat en una àlgebra \mathcal{A}_0 . Sigui $\mathcal{A} = \sigma(\mathcal{A}_0)$.

Aleshores p_0 es pot extendre a una funció de probabilitat p sobre \mathcal{A} que coincideix amb p_0 en \mathcal{A}_0 . A més, p és única.

En el nostre cas, quina àlgebra agafem?

$$\underbrace{(\mathcal{A}_1 \times \mathcal{A}_2)^*}_{\mathcal{A}_0}$$
 = totes les unions finites d'elements de $\mathcal{A}_1 \times \mathcal{A}_2$.

Es comprova que $\sigma((A_1 \times A_2)^*) = \sigma(A_1 \times A_2)$ i apliquem el teorema.

1.5 Lema de Borel-Cantelli

Sigui (Ω, \mathcal{A}, p) un espai de probabilitat.

Definició 1.5.1

Donada $\{A_n\}_{n\geq 1}$ un successió de successos,

$$\lim \sup A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$$

$$\lim \inf A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k$$

Observació 1.5.2 Tant $\lim \sup A_n \text{ com } \lim \inf A_n \text{ són successos.}$

Definició 1.5.3

Si $\{A_n\}_{n\geq 1}$ és una successió de successos amb $\limsup A_n = \liminf A_n$, aleshores $\{A_n\}_{n\geq 1}$ té **l'imit** i l'escriurem $\lim A_n = \limsup A_n$.

Propietats 1.5.4

Sigui $\{A_n\}_{n\geq 1}$ una successió de successos:

- (i) $\limsup A_n = \{ \omega \in \Omega \colon \omega \text{ pertany a un nombre infinit de } A_i's \}$
- (ii) $\liminf A_n = \{ \omega \in \Omega : \exists m = m(\omega) \text{ tal que } \omega \in A_r \text{ si } r \geq m(\omega) \}$
- (iii) $\lim \inf A_n \subseteq \lim \sup A_n$

Si ara $\lim\sup A_n=\lim\inf A_n=\lim A_n$, podem intercanviar $\lim\sup p$:

Proposició 1.5.5

Sigui $\{A_n\}_{n\geq 1}$ una successió de successos amb $\lim A_n=A$. Aleshores, $p(A)=\lim p(A_n)$.

El següent lema ens dóna condicions suficients molt senzilles per a calcular $p(\lim \sup A_n)$.

Lema 1.5.6 (Borel-Cantelli)

Sigui (Ω, \mathcal{A}, p) un espai de probabilitat i $\{A_n\}_{n\geq 1}$ una successió de successos. Aleshores:

(i) Si
$$\sum_{n>1} p(A_n) < \infty \implies p(\limsup A_n) = 0$$

(ii) Si els
$$\{A_n\}_{n\geq 1}$$
 són successos independents i $\sum_{n\geq 1} p(A_n) = \infty \implies p(\limsup A_n) = 1$

Observació 1.5.7 No podem treure la condició d'independència de (ii). Si prenem $A_n=E$ succés amb 0< p(E)<1, aleshores $\sum\limits_{n\geq 1}p(A_n)=\sum\limits_{n\geq 1}p(E)$, els A_n no són independents i $p(\lim\sup A_n)=p(E)<1$.

2 Variables Aleatòries

2.1 Definició de variable aleatòria. Llei d'una v.a.

Sigui $(\Omega, \mathcal{A}, \beta)$ un espai de probabilitat. Volem estudiar funcions de Ω amb imatge en \mathbb{R} .

Definició 2.1.1

Una variable aleatòria és una funció $X: \Omega \to \mathbb{R}$ tal que per tot borelià $B \in \mathcal{B}, X^{-1}(B) \in \mathcal{A}$.

Per tant, una variable aleatòria és una funció mesurable entre els espais de mesura (Ω, \mathcal{A}, p) i $(\mathbb{R}, \mathcal{B}, \lambda)$.

Exemple 2.1.2

(1) Les funcions constants són variables aleatòries:

$$\begin{array}{ccc} X \colon \Omega \to \mathbb{R} & \\ \omega \mapsto c & \end{array} \text{ Si prenem } B \in \mathcal{B}, \, X^{-1}(B) = \begin{cases} \varnothing & \text{si } c \notin B \\ \Omega & \text{si } c \in B \end{cases}$$

(2) Variables aleatòries indicadores:

Sigui
$$A \in \mathcal{A}$$
, definim $\mathbb{1}_A \colon \Omega \to \mathbb{R}$ on $\mathbb{1}_A(\omega) = \begin{cases} 0 & \text{si } \omega \notin A \\ 1 & \text{si } \omega \in A \end{cases}$

Aleshores,
$$B \in \mathcal{B}, \mathbb{1}_A^{-1}(B) = \begin{cases} \varnothing & \text{si } \{0,1\} \nsubseteq B \\ A & \text{si } 1 \in B, \quad 0 \notin B \\ \overline{A} & \text{si } 1 \notin B, \quad 0 \in B \end{cases}$$

$$\Omega \quad \text{si } \{0,1\} \nsubseteq B$$

(3) Si X i Y són v.a., aleshores X + Y, $X \cdot Y$, |X|, etc. són v.a. En general, si $q \colon \mathbb{R}^2 \to \mathbb{R}$ és una funció mesurable, aleshores g(X,Y) és una v.a.

Estem dient que $\forall B \in \mathcal{B}, \{\omega \in \Omega : X(\omega) \in B\}$ és un succés i, per tant, podem calcular $P(\{\omega \in \Omega : X(\omega) \in B\}) \equiv P(X \in B)$.

Exemple 2.1.3

$$P(X \le 1) = P(\{\omega \in \Omega \colon X(\omega) \in (-\infty, 1)\})$$

Les v.a. permeten traslladar l'estructura d'espai de probabilitat de (Ω, \mathcal{A}, p) en $(\mathbb{R}, \mathcal{B})$, donant lloc a mesures que no provenen de la mesura de Lebesgue.

9

Definició 2.1.4

Siguin (Ω, \mathcal{A}, p) un espai de probabilitat i X una v.a.

La mesura de probabilitat induïda per X és una mesura de probabilitat sobre $(\mathbb{R}, \mathcal{B})$ definida per

$$p_X \colon \mathcal{B} \to \mathbb{R}$$

 $B \mapsto p_X = P(\{\omega \in \Omega \colon X(\omega) \in B\})$

Observació 2.1.5 $(\mathbb{R}, \mathcal{B}, p_X)$ és un espai de probabilitat.

De teoria de la mesura, és equivalent veure que $[\forall B \in \mathcal{B}, X^{-1}(B) \text{ \'es } de \mathcal{A}]$ a veure que $[l'antiimatge de qualsevol interval \in \mathcal{A}].$

Per tant, per saber si una funció és una v.a. només cal veure si l'antiimatge dels intervals són de A.

La següent definició dóna una funció en \mathbb{R} que codifica molta informació de X:

Definició 2.1.6

Donada X v.a., la funció de distribució de probabilitat de X és:

$$F_X \colon \mathbb{R} \to [0,1]$$

 $x \mapsto P(X \le x)$

Propietats 2.1.7

(i) Si
$$x_1 \le x_2 \implies F_X(x_1) \le F_X(x_2)$$

(ii)
$$\lim_{x \to -\infty} F_X(x) = 0$$
, $\lim_{x \to +\infty} F_X(x) = 1$

(iii) $F_X(x)$ és contínua per la dreta: $\forall x, \lim_{h\to 0^+} F_X(x+h) = F_X(x)$

Observació 2.1.8

•
$$P(X > x) = 1 - P(X \le x) = 1 - F_X(x)$$

•
$$P(x_1 < X \le x_2) = P(X \le x_2) - P(X \le x_1) = F_X(x_2) - F_X(x_1)$$

Observació 2.1.9 Les propietats (i), (ii), (iii) de $F_X(x)$ són de fet suficients.

Si una funció F(x) satisfà (i), (ii), (iii), aleshores és funció de probabilitat d'una variable aleatòria.

2.2 Moments d'una v.a. Desigualtats de Markov i Chebyshev

Siguin (Ω, \mathcal{A}, p) uns espai de probabilitat i X una v.a.

Definició 2.2.1

L'esperança de X és:

$$\mathbb{E}[X] = \int_{\Omega} X dp = \int_{\mathbb{R}} x \, dp_X$$

Més en general, si $f: \mathbb{R} \to \mathbb{R}$ és una funció mesurable,

$$\mathbb{E}[f(x)] = \int_{\Omega} f(x)dp = \int_{\mathbb{R}} f(x) dp_X$$

Observació 2.2.2 De teoria de la mesura, cal recordar que una funció g és integrable sii |g| ho és (En general, $\mathbb{E}[f(x)]$ està definida sii $\mathbb{E}[|f(x)|] < +\infty$).

Si particularitzem f:

Definició 2.2.3

 $f(x) = X^r \implies \mathbb{E}[X^r]$ és el moment r-èssim.

Definició 2.2.4

Si $\mathbb{E}[X] = p < +\infty$, $\mathbb{E}[(X - p)^r]$ és el moment normalitzat r-èssim.

En particular, si r = 2, $\mathbb{E}[(X - p)^2] = \mathbb{V}ar[X]$ és la **variància** de X.

Definició 2.2.5

Si $f(x) = x(x-1)\dots(x-r+1) \implies \mathbb{E}[f(x)] = \mathbb{E}[(X)_r]$ és el moment factorial r-èssim.

Proposició 2.2.6 (Propietats de l'esperança i la variància)

- Si c és la v.a. constant, $\mathbb{E}[c] = c$ i $\mathbb{V}ar[c] = 0$
- <u>Linealitat</u>: si $a,b \in \mathbb{R}$ i X,Y v.a., $\mathbb{E}[aX+bY]=a\mathbb{E}[X]+b\mathbb{E}[Y]$
- $A \in \mathcal{A}, X = \mathbb{1}_A, \mathbb{E}[\mathbb{1}_A] = P(A)$
- $|\mathbb{E}[X]| \leq \mathbb{E}[|X|]$
- $\mathbb{V}ar[c \cdot X] = c^2 \cdot \mathbb{V}ar[X]$
- $\bullet \ \mathbb{V}ar[c+X] = \mathbb{V}ar[X]$
- $\mathbb{V}ar[X] = \mathbb{E}[X^2] (\mathbb{E}[X])^2$

Observació 2.2.7 Si $\mathbb{E}[|X|^p] < +\infty$, aleshores podem utilitzar tots els resultats de teoria dels espais L_p . Així doncs tenim les següents conseqüències:

- <u>Hölder</u>: p, q > 0, $\frac{1}{p} + \frac{1}{q} = 1$, $\mathbb{E}[|X|^p] < +\infty$, $\mathbb{E}[|Y|^q] < +\infty$ $\Longrightarrow \mathbb{E}[|XY|] \le \mathbb{E}[|X|^p]^{\frac{1}{p}} \cdot \mathbb{E}[|Y|^q]^{\frac{1}{q}} \quad (\mathbb{E}[|XY|]^{pq} \le \mathbb{E}[|X|^p]^q \cdot \mathbb{E}[|Y|^q]^p)$
- Cauchy-Schwartz: si $\mathbb{E}[X^2], \mathbb{E}[Y^2] < +\infty$, aleshores $\mathbb{E}[XY]^2 \leq \mathbb{E}[X^2] \cdot \mathbb{E}[Y^2]$
- Minkowski: si $\mathbb{E}[|X|^p]$, $\mathbb{E}[|Y|^p] < +\infty \implies \mathbb{E}[|X+Y|^p]^{\frac{1}{p}} \le \mathbb{E}[|X|^p]^{\frac{1}{p}} + \mathbb{E}[|Y|^p]^{\frac{1}{p}}$

Teorema (Designaltat de Markov) (2.2.8)

Sigui X un v.a. que pren valors positius i a > 0. Aleshores:

$$P(X \ge a) \le \frac{\mathbb{E}[X]}{a}$$

El següent resultat dóna estimacions quantitatives de quant es dispersa una v.a. en relació a la seva esperança:

Teorema (Designaltat de Chebyshev) (2.2.9)

Sigui X una v.a. en (Ω, \mathcal{A}, p) amb $\mathbb{E}[X], \mathbb{V}ar[X] < +\infty$. Aleshores, $\forall k > 0$

$$P(|X - \mathbb{E}[X]| \ge k \cdot \mathbb{V}ar[X]^{\frac{1}{2}}) \le \frac{1}{k^2}$$

També es pot escriure:

$$P(|X - \mathbb{E}[X]| \ge k) \le \frac{\mathbb{V}ar[X]}{k^2}$$

2.3 Vectors de variables aleatòries. Independència de v.a.

Donat un espai de probabilitat (Ω, \mathcal{A}, p) considerem les v.a. X_1, \ldots, X_n . Cadascuna d'elles defineix una distribució de probabilitat sobre \mathbb{R} .

Aleshores podem considerar el vector $(X_1, \ldots, X_n) \colon \Omega \to \mathbb{R}^n$.

Definició 2.3.1

Un vector $(X_1, \ldots, X_n) \colon \Omega \to \mathbb{R}^n$ és un **vector de variables aleatòries** (o una v.a. multidimensional), si per tot $B \in \mathcal{B}_n$ (Borelians en \mathbb{R}^n), $(X_1, \ldots, X_n)^{-1}(B) \in \mathcal{A}$.

Com $\Pi_i \colon \mathbb{R}^n \to \mathbb{R}$ (projecció en la i-èssima component) és una funció mesurable, aleshores

$$\Pi_i(X_1, \dots, X_n) \colon \Omega \xrightarrow{(X_1, \dots, X_n)} \mathbb{R}^n \xrightarrow{\Pi_i} \mathbb{R}$$

$$\omega \longmapsto (X_1, \dots, X_n)(\omega) \longmapsto X_i(\omega)$$

 $\equiv X_i(\omega)$ és una v.a. (en el sentit unidimensional).

De la mateixa manera que vam fer per les v.a. unidimensionals, podem considerar les antiimatges només en intervals.

Definició 2.3.2

Donat un espai de probabilitat (Ω, \mathcal{A}, p) , i un vector de v.a. $(X_1, \ldots, X_n) = \vec{X}$, aleshores la funció de distribució de probabilitat de \vec{X} és $F_{\vec{X}}(x_1, \ldots, x_n)$ definida per:

$$F_{\vec{X}} \colon \mathbb{R}^n \to [0, 1] \subseteq \mathbb{R}$$
$$(x_1, \dots, x_n) \mapsto P\Big((X_1 \le x_1) \cap (X_2 \le x_2) \cap \dots \cap (X_n \le x_n)\Big) = P\Big(\bigcap_{i=1}^n X_i \le x_i\Big)$$

Vegem propietats de la funció de distribució pel cas n=2 (Per n>2, és idèntic):

Lema 2.3.3

(i) Si
$$x_1' \geq x_1, \, x_2' \geq x_2 \implies F_{\vec{X}}(x_1', x_2') \geq F_{\vec{X}}(x_1, x_2)$$

(ii)
$$\lim_{(x_1, x_2) \to (+\infty, +\infty)} F_{\vec{X}}(x_1, x_2) = 1$$
 $\lim_{(x_1, x_2) \to (-\infty, -\infty)} F_{\vec{X}}(x_1, x_2) = 0$

(iii)
$$\lim_{(h_1,h_2)\to(0^+,0^+)} F_{\vec{X}}(x_1+h_1,x_2+h_2) = F_{\vec{X}}(x_1,x_2)$$
 (contínua "per dalt")

Observació 2.3.4 Aquestes 3 condicions són necessàries i suficients per a definir una v.a. multidimensional.

Observació 2.3.5

• Si tenim $F_{\vec{X}}(x_1, x_2)$ associada a $\vec{X} = (X_1, X_2)$, aleshores

$$\lim_{x_2 \to +\infty} F_{\vec{X}}(x_1, x_2) = \lim_{x_2 \to +\infty} P\Big((X_1 \le x_1) \cap (X_2 \le x_2) \Big) = P(X_1 \le x_1) = F_{\vec{X}}(x_1)$$

A aquesta funció $\Big(\lim_{x_1\to+\infty}F_{\vec{X}}(x_1,x_2)\Big)$ se l'anomena funció de distribució marginal.

• Prenem un rectangle en \mathbb{R}^2 i $\vec{X} = (X, Y)$ v.a. multidimensional:

$$P(a < X \leq b, \, c < Y \leq d) = F_{\vec{X}}(b,d) - F_{\vec{X}}(a,d) - F_{\vec{X}}(b,c) + F_{\vec{X}}(a,c)$$

Definició 2.3.6

Sigui (Ω, \mathcal{A}, p) un espai de probabilitat i $\{x_i\}_{i \in I}$ un conjunt de v.a. Direm que $\{x_i\}_{i \in I}$ són **independents** si: $\forall k, \forall i_1, \ldots, i_k \subseteq I, \forall B_1, \ldots, B_k \in \mathcal{B}$

$$P(X_{i_1} \in B_1, X_{i_2} \in B_2, \dots, X_{i_k} \in B_k) = \prod_{j=1}^k P(X_{i_j} \in B_j)$$

Si ara prenem X_1, \ldots, X_k v.a., aleshores si són independents,

$$F_{X_1,\dots,X_k}(x_1,\dots,x_k) = P(X_1 \le x_1, X_2 \le x_2,\dots,X_k \le x_k) = \prod_{j=1}^k P(X_j \le x_j) = \prod_{j=1}^k F_{X_j}(x_j)$$

Observació 2.3.7 Si X i Y són v.a. independents i f, g funcions mesurables, aleshores f(X) i g(Y) són també independents.

Observació 2.3.8 Si $F_{X_1,...,X_k}(x_1,...,x_k) = \prod_{j=1}^k F_{X_j}(x_j)$, aleshores les v.a. $X_1,...,X_k$ són independents.

En quant al càlcul de moments, tenim el següent resultat:

Teorema (2.3.9)

Siguin X_1, \ldots, x_k v.a. independents. Aleshores, si $\mathbb{E}[X_i] < +\infty$, es compleix que

$$\mathbb{E}\bigg[\prod_{i=1}^k X_i\bigg] = \prod_{i=1}^k \mathbb{E}[X_i]$$

Vam veure que l'operador esperança és lineal, però això no és cert en general per la variància. De fet, en el segon cas obtenim un terme connector anomenat covariància.

Definició 2.3.10

Donades dues v.a. X, Y, la **covariància** de X i Y (Cov(X, Y)) és:

$$Cov(X,Y) = \mathbb{E}\Big[(X - \mathbb{E}[X]) \cdot (Y - \mathbb{E}[Y])\Big]$$

Si ara desenvolupem aquesta expressió, obtenim: $Cov(X,Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$.

Observem que si X i Y són independents, aleshores $X - \mathbb{E}[X]$ i $Y - \mathbb{E}[Y]$ també ho són i, per tant:

$$Cov(X,Y) = \mathbb{E}\Big[(X - \mathbb{E}[X]) \cdot (Y - \mathbb{E}[Y])\Big] = \mathbb{E}\Big[X - \mathbb{E}[X]\Big] \cdot \Big[Y - \mathbb{E}[Y]\Big] = (\mathbb{E}[X] - \mathbb{E}[X]) \cdot (\mathbb{E}[Y] - \mathbb{E}[Y]) = 0$$

Observació 2.3.11 $Cov(X,Y) = 0 \implies X$ i Y independents.

Si ara calculem la variància d'una suma, obtenim:

$$\mathbb{V}ar[X+Y] = \mathbb{V}ar[X] + \mathbb{V}ar[Y] + 2 \cdot Cov(X,Y)$$

Observació 2.3.12 Si X i Y són independents, Cov(X,Y) = 0 i per tant, $\mathbb{V}ar[X+Y] = \mathbb{V}ar[X] + \mathbb{V}ar[Y]$.

En general, això és cert per n v.a. independents:

$$\mathbb{V}ar\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbb{V}ar[X_i]$$
 si $\{X_i\}_{i=1}^{n}$ són independents.

Vegem ara propietats de la covariància:

Propietats 2.3.13

- (i) Cov(c, X) = 0 (c és una constant)
- (ii) Si c és una constant, Cov(c+X,Y) = Cov(X,Y)
- (iii) Cov(X, X) = Var[X]
- (iv) Cov(X, Y) = Cov(Y, X)
- (v) $Cov(aX + bY, Z) = a \cdot Cov(X, Z) + b \cdot Cov(Y, Z)$

Definició 2.3.14

Anomenem coeficient de correlació de Pearson $(\rho(X,Y))$ a:

$$\rho(X,Y) = \frac{Cov(X,Y)}{\mathbb{V}ar[X]^{\frac{1}{2}} \cdot \mathbb{V}ar[Y]^{\frac{1}{2}}} \in [-1,1]$$

Observació 2.3.15

Sabem que la igualtat en Cauchy-Schwartz es dóna quan $\exists a$ tal que $a \cdot X = Y$. A més, Cov(aX + b, Y) = Cov(aX, Y). Per tant,

$$Y = aX + b \iff \rho(X, Y) \in \{\pm 1\}$$

Així doncs, com més proper sigui $\rho(X,Y)$ a ± 1 , millor serà una aproximació lineal de Y usant X.

3 Variables Aleatòries Discretes

3.1 Definicions i conceptes relacionats. Funció generadora de probabilitat

Sigui (Ω, \mathcal{A}, p) un espai de probabilitat i X una variable aleatòria.

Definició 3.1.1

X és una variable aleatòria discreta si Im(X) és numerable.

Si X és una variable aleatòria discreta, $Im(X) = \{x_i\}_{i>1}$.

X ve completament determinada pels valors $p(X = x_i) = p_i$.

Definició 3.1.2

Anomenem funció de distribució de X a:

$$F_X(x) = p(X \le x) = \sum_{x_i \le x} p_i$$

Definició 3.1.3

Sigui $A \in \mathcal{B}$, la mesura de probabilitat induïda sobre \mathbb{R} és:

$$p_X(A) = \sum_{\substack{x_i \in A \\ x_i \in Im(X)}} p_i$$

En particular, si $Im(X) \cap A = \emptyset$ aleshores $p_X(A) = 0 \implies$ obtenim una probabilitat puntual (hi ha punts de \mathbb{R} amb probabilitat > 0, a diferència de la mesura de Lebesgue).

Definició 3.1.4

Definim l'esperança matemàtica com:

$$\mathbb{E}[X] = \int_{\Omega} X dp \xrightarrow{\text{def. de } \int_{\Omega}} \sum_{i \ge 1} x_i \cdot p(X = x_i) = \sum_{i \ge 1} x_i \cdot p_i$$

Més en general, si g(x) és una funció mesurable,

$$\mathbb{E}[g(X)] = \sum_{i \ge 1} g(x_i) \cdot p(X = x_i)$$

En particular,

$$\mathbb{E}[X^k] = \sum_{i \ge 1} x_i^k \cdot p_i$$

$$\mathbb{V}ar[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \sum_{i \ge 1} x_i^2 \cdot p_i - \left(\sum_{i \ge 1} x_i \cdot p_i\right)^2$$

Definició 3.1.5

Prenem X, Y variables aleatòries discretes amb Im(X), Im(Y) numerables. El **vector de variables aleatòries** (X, Y) ve completament caracteritzat per:

$$p_{(X,Y)}(x_i, y_j) = p(X = x_i, Y = y_j)$$
 $(x_i \in Im(X); y_i \in Im(Y))$

Aleshores, tenim les següents propietats:

(i) X i Y són independents
$$\iff \forall x_i \in Im(X), \ \forall y_j \in Im(Y), \ p_{(X,Y)}(x_i,y_j) = p_X(x_i) \cdot p_Y(y_j)$$

(ii) Si
$$X, Y$$
 són independents, $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Sigui X una variable aleatòria discreta amb $Im(X) \subseteq \mathbb{N}_{\geq 0}$. En aquesta situació, tenim la següent definició:

Definició 3.1.6

La funció generadora de probabilitat associada a X és:

$$G_X(z) = \sum_{i \ge 0} p(X = i) \cdot z^i = \sum_{i \ge 0} p_i \cdot z^i$$

Una funció generadora de probabilitat és un objecte formal. En particular, $G_X(z) = \mathbb{E}[z^X]$.

Si ens mirem les funcions generadores de probabilitat com funcions (en \mathbb{C}), aleshores compleixen el següent:

Proposició 3.1.7

- 1. $G_X(0) = p(X = 0)$
- 2. $G_X(1) = 1$. A més, si $|z| \le 1$ $(z \in \mathbb{C}) \implies |G_X(z)| \le 1$ Per tant, $G_X(z)$ (com a sèrie de potències) té radi de convergència ≥ 1 .

3.
$$\mathbb{E}[X] = \frac{d}{dz} G_X(z)|_{z=1}$$

- 4. Més en general, $\mathbb{E}[(X)_k] = \frac{d^k}{dz^k} G_X(z)_{|z=1}$ En particular, $\mathbb{V}ar[X] = G_X''(1) + G_X'(1) - (G_X'(1))^2$
- 5. Si $z \in \mathbb{R}$, $z \in [0, 1]$, aleshores $G_X(z)$ és una funció creixent.

La propietat fonamental de les funcions generadores de probabilitat és que permeten estudiar fàcilment sumes de variables aleatòries independents.

Proposició 3.1.8

Siguin X, Y variables aleatòries discretes independents amb imatge en \mathbb{N} , i amb funcions generadores de probabilitat $G_X(z)$, $G_Y(z)$. Aleshores:

$$G_{X+Y}(z) = G_X(z) \cdot G_Y(z)$$

Corol·lari 3.1.9

Si X_1, \ldots, X_N són variables aleatòries discretes independents amb imatge en \mathbb{N} , aleshores:

$$G_{X_1+...+X_N}(z) = \prod_{i=1}^N G_{X_i}(z)$$

3.2 Models de variables aleatòries discretes

Seguidament veurem famílies importants de variables aleatòries discretes:

1) <u>Variable aleatòria Bernoulli</u>: $X \sim B(p)$ (un sol paràmetre) Modela el llançament d'una moneda amb probabilitat d'èxit igual a p:

$$p(X = 1) = p, \quad p(X = 0) = 1 - p$$

- $G_X(z) = p \cdot z + (1 p)$ (és una funció entera)
- $\mathbb{E}[X] = p$
- $\mathbb{V}ar[X] = p \cdot (1-p)$

2) Binomial: $X \sim Bin(p, n)$ (o bé B(p, n))

Nombre d'èxits al tirar una moneda n vegades. L'èxit individual té probabilitat p, i cada tirada de la moneda és independent de la resta.

$$\implies X = Y_1 + \ldots + Y_n \text{ on } Y_i \sim B(p)$$

$$p(X=i) = \binom{n}{i} \cdot p^{i} \cdot (1-p)^{n-i} \qquad i = 0, \dots, n$$

- $G_X(z) = (p \cdot z + (1-p))^n$ (és una funció entera)
- $\mathbb{E}[X] = n \cdot p$
- $\mathbb{V}ar[X] = n \cdot p \cdot (1-p)$

3) Poisson:
$$X \sim Po(\lambda)$$

$$p(X = k) = \frac{1}{k!} \cdot \lambda^k \cdot e^{-\lambda} \quad (k \in \mathbb{N}_{\geq 0})$$

- $G_X(z) = e^{\lambda(z-1)}$ (és una funció entera)
- $\mathbb{E}[X] = \lambda$
- $\bullet \ \mathbb{V}ar[X] = \lambda$

4) Uniforme:
$$X \sim U(N)$$
 (on $Im(X) = \{1, 2, ..., N\}$)

$$p(X=k) = \frac{1}{n}$$

•
$$G_X = \frac{1}{N} \cdot \frac{1 - z^N}{1 - z} \cdot z$$
 (sing. evitable en z = 1)

$$\bullet \ \mathbb{E}[X] = \frac{N+1}{2}$$

$$\bullet \ \mathbb{V}ar[X] = \frac{N^2 - 1}{12}$$

5) Geomètrica: $X \sim Geom(p) \quad (p \in (0,1))$

Nombre de tirades d'una moneda (amb probabilitat d'èxit = p) fins aconseguir el primer èxit.

$$p(X = k) = (1 - p)^{k-1} \cdot p$$
 $k = 1, 2, ...$

•
$$G_X(z) = \frac{p \cdot z}{1 - (1 - p) \cdot z}$$
 (té un pol en $z = \frac{1}{1 - p}$)

•
$$\mathbb{E}[X] = \frac{1}{p}$$

•
$$\mathbb{V}ar[X] = \frac{1-p}{p^2}$$

6) Binomial negativa: $X \sim BinN(r, p)$

Variable aleatòria que compta el nombre de tirades necessàries per aconseguir r èxits. $(Im(X) = \{r, r+1, r+2, \ldots\})$

$$p(X = k) = {k-1 \choose r-1} \cdot p^r \cdot (1-p)^{k-r}$$

Podem interpretar una binomial negativa com una suma de geomètriques independents.

•
$$G_X(z) = \left(\frac{p \cdot z}{1 - (1 - p) \cdot z}\right)^r$$

$$\bullet \ \mathbb{E}[X] = \frac{r}{p}$$

•
$$\mathbb{V}ar[X] = r \cdot \frac{1-p}{p^2}$$

3.3 Distribucions condicionades i esperança condicionada

Siguin X,Y dues variables aleatòries discretes. Volem definir la noció de condicionar una variable aleatòria a l'altra (" $Y \mid X$ ").

Definició 3.3.1

Donat x amb p(X = x) > 0, diem que la funció de probabilitat condicionada de Y amb X és, per aquest valor de x:

$$p_{Y|X}(y,x) = p(Y = y \mid X = x)$$

Definició 3.3.2

Amb les mateixes condicions que abans, la funció de distribució de probabilitat condicionada és:

$$F_{Y|X}(y,x) = p(Y \le y \mid X \le x)$$

Observació 3.3.3 Si X i Y són independents, $X \mid Y = y \sim X$

Definició 3.3.4

L'esperança condicionada de Y a X = x és:

$$\psi(x) = \mathbb{E}[Y \mid X = x] = \sum_{y \in Im(Y)} (y \cdot p_{Y|X})(y, x)$$

Amb aquesta definició estem definint una variable aleatòria $E[Y \mid X]$ que pren el valor $\psi(x)$ amb probabilitat p(X = x).

Proposició 3.3.5

$$\mathbb{E}\big[\mathbb{E}[Y \mid X]\big] = \mathbb{E}[Y]$$

Observació 3.3.6
$$\mathbb{E}[Y] = \sum_{x \in Im(X)} \mathbb{E}[Y \mid X = x] \cdot p(X = x)$$

Observació 3.3.7 $\mathbb{E}[Y \mid X]$ és la millor aproximació de Y com a funció de X.

3.4 Suma de variables aleatòries discretes (Aplicació 1)

Ja hem vist que si X i Y són variables aleatòries discretes amb imatge en \mathbb{N} , aleshores si són independents, $G_{X+Y}(z) = G_X(z) \cdot G_Y(z)$

Si fem Z = X + Y:

$$G_Z(z) = \sum_{n \ge 0} p(Z=n) \cdot z^n = \sum_{r \ge 0} p(X=r) \cdot z^r \cdot \sum_{s \ge 0} p(Y=s) \cdot z^s$$

$$\implies p(Z=n) = \sum_{r+s=n} p(X=r) \cdot p(Y=s) = \underbrace{\sum_{m=0}^{n} p(X=m) \cdot p(Y=n-m)}_{Convoluci\acute{o}}$$

Aplicant aquest principi de l'ús de funcions generadores, tenim que:

- 1. $X_1, X_2, \dots, X_n \sim Ber(p)$ independents $\implies X_1 + X_2 + \dots + X_n \sim Bin(n, p)$
- 2. $X_1, X_2, \dots, X_n \sim Geom(p)$ independents $\implies X_1 + X_2 + \dots + X_n \sim BinN(n, p)$
- 3. $X_1 \sim Po(\lambda_1), X_2 \sim Po(\lambda_2), X_1, X_2$ independents

$$G_{X_1}(z) = e^{-\lambda_1} \cdot e^{\lambda_1 \cdot z}$$

$$G_{X_2}(z) = e^{-\lambda_2} \cdot e^{\lambda_2 \cdot z}$$

$$\implies G_{X_1 + X_2}(z) = e^{-(\lambda_1 + \lambda_2)} \cdot e^{(\lambda_1 + \lambda_2) \cdot z}$$

$$\implies X_1 + X_2 \sim Po(\lambda_1 + \lambda_2)$$

3.5 Arbres de Galton-Watson (Aplicació 2)

Sigui X una variable aleatòria discreta amb $Im(X) \subseteq \mathbb{N}_{\geq 0}$. Considerem el següent procés estocàstic:

Arbre de Galton-Watson

$$Z_0 = 1$$

En les següents generacions, el nombre de fills ve donat per la v.a. X.

 $Z_1={\bf n}^{\rm o}$ de fills del primer individu (generació 0), seguint X.

 $Z_2 = n^{\circ}$ de fills dels individus de la generació 1.

.

 $Z_n={\bf n}^{\rm o}$ de descendents en la generació n-èssima.

<u>Propietat fonamental</u>: el nombre de descendents d'un individu és independent del nombre de descendents de qualsevol altre individu.

Lema 3.5.1 Sigui N una variable aleatòria amb imatge en $\{1, 2, 3, \ldots\}$. X_1, X_2, X_3, \ldots variables aleatòries independents (i independents amb N), amb $X_i \sim X$. Prenem $Y = X_1 + X_2 + \ldots + X_N$

$$\implies G_Y(z) = G_N(G_X(z))$$

Proposició 3.5.2

$$G_{Z_{n+m}}(z) = G_{Z_n}(G_{Z_m}(z))$$
. En particular $G_{Z_n}(z) = G_X \circ \stackrel{n}{\dots} \circ G_X(z)$

Observació 3.5.3 Podem calcular $\mathbb{E}[Z_n]$ i $\mathbb{V}ar[Z_n]$ a partir de la seva funció generadora de probabilitat:

$$\mathbb{E}[Z_n] = \mathbb{E}[X]^n$$

$$\mathbb{V}ar[Z_n] = \begin{cases} n \cdot \mathbb{V}ar[X] & \text{si } \mathbb{E}[X] = 1\\ \\ \frac{\mathbb{V}ar[X] \cdot (\mathbb{E}[X]^n - 1)}{\mathbb{E}[X] - 1} & \text{si } \mathbb{E}[X] \neq 1 \end{cases}$$

Ara, la pregunta que ens fem és: quan hi haurà extinció?

Si fem
$$A_n = \{Z_n = 0\}$$
 \Longrightarrow $Extinció = \bigcup_{n \ge 1} A_n$

$$\implies p(Extinció) = p(\bigcup_{n \ge 1} A_n)$$

$$A_1 \subseteq A_2 \subseteq A_3 \subseteq \dots$$

 $\begin{array}{c} \text{Extingit a la primera gen} \implies \text{Extingit a la segona gen.} \implies \dots \\ \text{Extingit a la segona gen.} \implies \text{Extingit a la primera...} \end{array} \right\} \implies$

⇒ Tenim una successió creixent de successos.

$$A_1 \subseteq A_2 \subseteq A_3 \subseteq \dots$$
 és creixent $\implies p(Extinció) = \lim_{n \to \infty} p(A_n) = \lim_{n \to \infty} p(Z_n = 0)$

Teorema (Galton) (3.5.4)

Si
$$\mathbb{E}[X] = \mu$$
; $p(X = 0) \ge 0$

I sigui α la solució més petita positiva de l'equació $G_X(z) = z$ (Aleshores $p(Extinció) = \alpha$)

1. Si
$$\mu < 1 \implies \alpha = 1$$
 (règim subcrític)

2. Si
$$\mu = 1 \implies \alpha = 1$$
 (sempre que $\mathbb{V}ar[X] \neq 0$) (règim crític)

3. Si
$$\mu > 1 \implies 0 < \alpha < 1$$
 (règim supercrític)

4 Variables Aleatòries Contínues

4.1 Mesures de probabilitat absolutament contínues. Funció de densitat

Sigui (Ω, \mathcal{A}, p) un espai de probabilitat, amb probabilitat induïda en $(\mathbb{R}, \mathcal{B}, p_X)$ (quan prenem la variable aleatòria X).

Definició 4.1.1

Siguin μ_1, μ_2 mesures sobre un espai de mesura (X, \mathcal{A}) , diem que μ_1 és **absolutament** contínua respecte μ_2 ($\mu_1 << \mu_2$) si $\forall A \in \mathcal{A}$,

$$\mu_2(A) = 0 \implies \mu_1(A) = 0$$

Definició 4.1.2

Una variable aleatòria X és **absolutament contínua** (o contínua per abreujar), si $p_X \ll \lambda$ (λ és la mesura de Lebesgue).

Observació 4.1.3 Les variables aleatòries discretes <u>no</u> són absolutament contínues: Si $p(X = a) = P_a > 0$ i prenem $B = \{a\}$, tenim $\lambda(\{a\}) = 0$, però $p_X(\{a\}) = P_a > 0$

El teorema fonamental que ens permet traduir p_X (si X és absolutament contínua) a càlculs usant la mesura λ , és el següent:

Teorema (Radon-Nikodym) (4.1.4)

Sigui (X, \mathcal{A}) un espai mesurable i μ_1, μ_2 mesures sobre (X, \mathcal{A}) amb $\mu_1 \ll \mu_2$. Aleshores, existeix una funció f_{μ_1}, μ_2 -mesurable tal que

$$\forall A \in \mathcal{A}, \, \mu_1(A) = \int_A f_{\mu_1} d\mu_2$$

A més, f_{μ_1} és única μ_2 -gairebé arreu

Definició 4.1.5

La funció f_{μ_1} és la **funció de densitat** de la mesura μ_1 respecte a μ_2 . En el nostre context, X és una variable aleatòria absolutament contínua, i

$$\left(\mathbb{R}, \mathcal{B}, \underbrace{\lambda}_{\mu_{2}}\right) \left\{ \underset{\mu_{1}}{\Longrightarrow} p_{X} << \lambda \right\} \xrightarrow{R-N} \forall B \in \mathcal{B}, \quad p_{X}(B) = \int_{B} f_{X} d\lambda$$

Definició 4.1.6

La funció f_X s'anomena funció de densitat de probabilitat de X.

Observació 4.1.7 En la literatura, s'escriu $f_{\mu_1} = \frac{d\mu_1}{d\mu_2}$ (Derivada de Radon-Nikodym).

Proposició 4.1.8

Si X és una variable aleatòria absolutament contínua, amb funció de densitat de probabilitat $f_X(x)$:

1. $f_X(x) \ge 0 \lambda$ -gairebé arreu

2.
$$F_X(x) = \int_{(-\infty,x)} f_x d\lambda; \qquad \int_{\mathbb{R}} f_X d\lambda = 1$$

3.
$$p(X = x) = \int_{\{x\}} f_X d\lambda = 0 \,\forall x \in \mathbb{R}$$

4. Si
$$f_X$$
 és integrable Riemann, $F_X(x) = \int_{-\infty}^x f_X(x) dx$ i $\frac{dF_X(x)}{dx} = f_X(x)$

Observació 4.1.9 Tota funció mesurable f(x) que compleixi:

$$\int_{\mathbb{R}} f d\lambda = 1, \quad f(x) \ge 0 \qquad \lambda\text{-gaireb\'e arreu}.$$

Aleshores $\exists X$ variable aleatòria absolutament contínua per la qual $f(x) = f_X(x)$. En aquest context, tenim:

$$\mathbb{E}[X] = \int_{\Omega} X dp = \int_{\mathbb{R}} x dp_X \stackrel{R=N}{=} \int_{\mathbb{R}} x \underbrace{f_X(x) d\lambda}_{dp_X} \underset{sif_X int.R.}{=} \int_{-\infty}^{+\infty} x f_X(x) dx$$

En particular,

$$\mathbb{V}ar[X] = \int_{-\infty}^{+\infty} x^2 f_X(x) dx - \left(\int_{-\infty}^{+\infty} x f_X(x) dx \right)^2$$

4.2 Models de variables aleatòries absolutament contínues

1. <u>Uniforme</u>: $X \sim U([a, b])$ (Tria un nombre uniformement a l'atzar en l'interval [a, b]).

$$f_X(x) = \frac{1}{b-a} \mathbb{1}_{[a,b]}(x)$$
$$\mathbb{E}[X] = \frac{b+a}{2}$$
$$\mathbb{V}ar[X] = \frac{(b-a)^3}{12}$$

2. Exponencial: $X \sim Exp(\lambda)$ (S'usa per modelar el tipus de vida d'un aparell. És l'anàleg continu de la Poisson).

$$f_X(x) = \lambda \cdot e^{-\lambda \cdot x} \cdot \mathbb{1}_{[0, +\infty)}(x)$$
$$\mathbb{E}[X] = \frac{1}{\lambda}$$
$$\mathbb{V}ar[X] = \frac{1}{\lambda^2}$$

3. Normal: $X \sim N(\mu, \sigma^2)$ $(\mu \in \mathbb{R}, \sigma > 0)$

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
$$\mathbb{E}[X] = \mu$$
$$\mathbb{V}ar[X] = \sigma^2$$

4. Gamma: $X \sim \Gamma(\lambda, \tau)$

$$f_X(x) = \frac{1}{\Gamma(\tau)} \cdot \lambda^{\tau} \cdot x^{\tau - 1} \cdot e^{-\lambda x} \cdot \mathbb{1}_{[0, +\infty)}(x)$$
$$\mathbb{E}[X] = \frac{\tau}{\lambda}$$
$$\mathbb{V}ar[X] = \frac{\tau}{\lambda^2}$$

5. Weibull: $X \sim Weib(\alpha, \beta)$

$$f_X(x) = \alpha \cdot \beta \cdot x^{\beta - 1} \cdot e^{-\alpha \cdot x^b} \cdot \mathbb{1}_{[0, +\infty)}(x)$$
$$\mathbb{E}[X] = \alpha^{-\frac{1}{\beta}} \cdot \Gamma(1 + \frac{1}{\beta})$$
$$\mathbb{V}ar[X] = \alpha^{-\frac{2}{\beta}} (\Gamma(1 + \frac{2}{\beta}) - \Gamma^2(1 + \frac{1}{\beta}))$$

6. Beta: $X \sim \beta(a, b)$

$$f_X(x) = \frac{\Gamma(a+b)}{\Gamma(a) \cdot \Gamma(b)} \cdot x^{a-1} \cdot (1-x)^{b-1} \cdot \mathbb{1}_{[0,1]}(x)$$
$$\mathbb{E}[X] = \frac{a}{a+b}$$
$$\mathbb{V}ar[X] = \frac{a \cdot b}{(a+b)^2 \cdot (a+b+1)}$$

7. Cauchy: $X \sim Cauchy$

$$f_X(x) = \frac{1}{\pi \cdot (1 + x^2)} \quad (x \ge 0)$$

Cap dels $\mathbb{E}[X^k]$ és finit.

4.3 Distribucions conjuntes i marginals. Independència i distribucions condicionades

Ara farem el mateix que per una variable en el cas de tenir vectors de variables aleatòries. Ho farem per vectors (X_1, X_2) , però és fàcilment generalitzable a vectors de dimensió > 2. Sigui (X, Y) un vector de variables aleatòries. (X, Y) indueix $p_{(X,Y)}$ mesura de probabilitat en \mathbb{R}^2 .

Definició 4.3.1

(X,Y) és un vector absolutament continu si $p_{(X,Y)} << \lambda_{\mathbb{R}^2}$. Per Radon - Nikodym, (X,Y) té una funció de densitat:

$$B \in \mathcal{B}_{\mathbb{R}^2}, \ p_{(X,Y)}(B) = \iint_B f_{(X,Y)} d\lambda_{\mathbb{R}^2}$$

Definició 4.3.2

 $f_{X,Y}(x,y)$ és la funció de densitat conjunta de X i Y. Si ara $B = (a_1, a_2) \times (b_1, b_2)$ i $f_{(X,Y)}(x,y)$ és integrable Riemann,

$$p_{(X,Y)}(B) = \iint_B f_{(X,Y)} d\lambda_{\mathbb{R}^2} = \int_{a_1}^{a_2} \int_{b_1}^{b_2} f_{(X,Y)}(x,y) dy dx$$

A partir de $f_{(X,Y)}(x,y)$ podem extreure la funció de densitat de X i de Y integrant:

Definició 4.3.3

Donat un vector de variables aleatòries (X, Y) amb funció de densitat conjunta $f_{(X,Y)}(x, y)$, les **funcions de densitat marginals** són:

$$f_X(x) = \int_{-\infty}^{+\infty} f_{(X,Y)}(x,y) \, dy$$

$$f_Y(y) = \int_{-\infty}^{+\infty} f_{(X,Y)}(x,y) \, dx$$

A partir de la funció de densitat conjunta podem definir la funció de distribució:

$$F_{(X,Y)}(x,y) = P(X \le x, Y \le y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{(X,Y)}(x,y) \, dy \, dx$$

Observació 4.3.4 Si $f_{X,Y}(x,y)$ és integrable Riemann $\implies F_{(X,Y)}(x,y)$ és $\mathcal{C}^2(\mathbb{R}^2)$ i

$$\frac{\partial^2 F_{(X,Y)}}{\partial x \partial y}(x,y) = \frac{\partial^2 F_{(X,Y)}}{\partial y \partial x}(x,y) = f_{(X,Y)}(x,y)$$

Observació 4.3.5 Si $g: \mathbb{R}^2 \to \mathbb{R}$ és una funció mesurable, g(X,Y) és una variable aleatòria i es compleix:

$$\mathbb{E}[g(X,Y)] = \iint_{\mathbb{R}^2} g(x,y) \cdot f_{(X,Y)}(x,y) \, dx \, dy$$

4.3.1 Independència

Si (X, Y) és un vector aleatori i X, Y són independents, aleshores $F_{X,Y}(x, y) = F_X(x) \cdot F_Y(y)$. Ara si $F_{(X,Y)}$ és \mathcal{C}^2 i les F_X , F_Y són derivables (això sempre passa en el cas absolutament continuu), llavors

$$f_{(X,Y)}(x,y) = \frac{\partial^2 F_{(X,Y)}}{\partial x \partial y} = \frac{\partial F_X}{\partial x} \cdot \frac{\partial F_Y}{\partial y} = f_X(x) \cdot f_Y(y)$$

Per tant, X i Y variables aleatòries absolutament contínues són independents sii

$$f_{(X,Y)}(x,y) = f_X(x) \cdot f_Y(y)$$

Notació: si (X,Y) és un vector aleatori,

$$\mathbb{E}[(X,Y)] = (\mathbb{E}[X], \mathbb{E}[Y])$$

$$\mathbb{V}ar[(X,Y)] = \begin{pmatrix} \mathbb{V}ar[X] & Cov(X,Y) \\ Cov(X,Y) & \mathbb{V}ar[Y] \end{pmatrix} \underset{SiX,Yind}{=} \begin{pmatrix} \mathbb{V}ar[X] & 0 \\ 0 & \mathbb{V}ar[Y] \end{pmatrix}$$

4.3.2 Distribucions condicionades

Siguin X, Y variables aleatòries absolutament contínues, amb funció de densitat conjunta $f_{(X,Y)}(x,y)$ i marginals $f_X(x)$, $f_Y(y)$. Sigui x tal que $f_X(x) > 0$.

Definició 4.3.6

La veriable aleatòria $Y \mid X = x$ és una variable aleatòria que té com a funció de distribució:

$$F_{Y|X}(y,x) = \frac{1}{f_X(x)} \cdot \int_{-\infty}^{y} f_{(X,Y)}(x,u) du$$

Si $f_{(X,Y)}(x,y)$ és integrable respecte a y, aleshores, $F_{Y|X}(y,x)$ és derivable respecte a y, i es compleix:

$$f_{Y|X}(y,x) = \frac{\partial F_{Y|X}(y,x)}{\partial y} = \frac{f_{(X,Y)(x,y)}}{f_X(x)}$$

4.3.3 Esperança condicionada

En les condicions d'abans, definim:

$$\mathbb{E}[Y \mid X = x] = \int_{-\infty}^{+\infty} u \cdot f_{Y|X}(u, x) \, du = \psi(x) \implies \mathbb{E}[Y \mid X] = \psi(X)$$

Totes les propietats que vam veure en el cas discret per l'esperança condicionada s'apliquen aquí de la mateixa manera. En particular:

Proposició 4.3.7

$$\mathbb{E}[\mathbb{E}[Y \mid X]] = \mathbb{E}[Y]$$
 (si (X, Y) és abs. cont.)

4.4 Funcions de v.a. absolutament contínues i aplicacions

Sigui $\overrightarrow{X} = (X_1, \dots, X_n)$ un vector aleatori absolutament continuu i $G : \mathbb{R}^n \to \mathbb{R}^n$ una funció bijectiva.

Com relacionem $f_{(X_1,\ldots,X_n)}(x_1,\ldots,x_n)$ amb $f_{(Y_1,\ldots,Y_n)}(y_1,\ldots,y_n)$?

4.4.1 Cas univariat

Sigui X una variable aleatòria absolutament contínua amb funció de densitat $f_X(x)$. Sigui $g: \mathbb{R} \to \mathbb{R}$ una funció bijectiva, derivable i estrictament creixent. Considerem ara g(X) = Y (i $g^{-1} = h$). Aleshores,

$$f_Y(u)$$
 i $f_X(h(u)) \cdot h'(u)$ són iguals $\lambda - gairebé per tot$

Observació 4.4.1 Si g no és bijectiva o no és estrictament creixent, en general l'anàlisi és més complicat.

4.4.2 Cas multivariat

 $G(\overrightarrow{X}) = \overrightarrow{Y}$ on G és bijectiva i $\mathcal{C}^1(\mathbb{R}^n)$, aleshores, de manera similar al cas anterior, tenim:

$$f_{(Y_1,\ldots,Y_n)}(y_1,\ldots,y_n) = f_{(X_1,\ldots,X_n)}(G^{-1}(y_1,\ldots,y_n)) \cdot |Jac G^{-1}(y_1,\ldots,y_n)|$$