第二季第 3 课:可表函子 I 映射到集合范畴上的函子范畴是一类特别重要的范畴,构成了可表函子问题的基本设定。为了引入相关概念,首先讨论单点集。单点集发出的共边 Hom 函子,构造了集合对象和态射集的同构。这是集合元素的态射式定义,它相当于用共边 Hom 函子构造了集合范畴上的恒等函子。

在 (有限维) 线性空间上可以构造线性对偶空间。对偶空间的元素是从原线性空间到域的线性函数。对偶空间相当于这样的线性函数构成的集合,它可以用线性空间范畴上反变 Hom 函子描述。这样通过反变 Hom 函子构造了线性对偶空间函子。

另一个常见的可表函子的例子是幂集的构造。幂集由子集族构成,而子集和特征函数是一一对应的,这样建立起了幂集和特征函数集在集合范畴中的同构。我们用反变 Hom 函子,把集合对象转化成集合到二元集的态射集,它就是特征函数集。这样通过反变 Hom 函子构造了幂集函子。

幂集函子的机构是许多数学问题的基础,如实分析和概率中的 sigma-环/sigma-代数,以及点集拓扑的公理。拓扑结构是在幂集的基础上,按照特定公理规定的子集族,是更精细的结构。类似于用特征函数作为态射集来构造幂集函子的过程,我们引入 Sierpiński 空间,用拓扑空间中的态射集,也就是连续函数的集合,来构造对应的函子,即通过反变 Hom 函子构造开集函子。

单点集 在同构的意义下可以把任意集合视为单点集出发的映射的集合

$$X = h^{1}X \tag{0.0.1}$$

如下图:

$$x_1 = \varphi_{x_1}(1)$$

$$1 = \{1\} \xrightarrow{\varphi_{x_2}} x_2 = \varphi_{x_2}(1)$$

$$x_3 = \varphi_{x_3}(1)$$

例 0.0.1: 恒等函子

一个范畴 $\mathcal C$ 到自身有**恒等函子** (identity functor):

$$\begin{split} \operatorname{Id}_{\mathcal{C}} : \mathcal{C} &\to \mathcal{C} \\ X &\mapsto \operatorname{Id}_{\mathcal{C}}(X) = X \\ Y &\mapsto \operatorname{Id}_{\mathcal{C}}(Y) = Y \\ \operatorname{Id}_{\mathcal{C}} : \mathcal{C}(X,Y) &\to \mathcal{C}(F(X),F(Y)) \\ f &\mapsto \operatorname{Id}_{\mathcal{C}}(f) = f \end{split} \tag{0.0.2}$$

例 0.0.2: 线性空间范畴上的遗忘函子

K-线性空间范畴 \mathbf{Vct}_K 是集合范畴的子范畴,有遗忘函子 $U:\mathbf{Vct}_K\to\mathbf{Set}$, \mathbf{Vct}_K 中的态射集是 \mathbf{Set} 中的态射集的子集,非线性的映射都被排除在外 $\mathbf{Vct}_K(X,Y)\subset\mathbf{Set}(UX,UY)$ 。

单位向量 $1 \in K$ 在 K-线性映射 $f \in \mathbf{Vct}_K(K,V) = h^K V$ 下的像 f(1) 决定了 f 本身,从集合范畴看,像的集合就是线性空间本身 $UV = \{f(1): f \in h^K V\}$,同构于态射集 $\mathbf{Vct}_K(K,V) = h^K V$ 。用遗忘函

子表述为:

$$\begin{split} U: \mathbf{Vct}_K &\to \mathbf{Set} \\ K &\mapsto UK \\ V &\mapsto UV \\ \mathbf{Vct}_K(K,V) = h^K V &\to \mathbf{Set}(UK,UV) \\ f &\mapsto Uf = f \end{split} \tag{0.0.3}$$

线性对偶函子 对偶空间的构造过程视为反变 Hom 函子, 称为对偶函子 (dual functor):

$$\begin{split} h_K: \mathbf{Vct}_K^{\mathrm{op}} &\overset{*}{\to} \mathbf{Vct}_K \\ V &\mapsto V^* = h_K(V) = \mathrm{Hom}(V,K) \\ W &\mapsto W^* = h_K(W) = \mathrm{Hom}(W,K) \\ h_K: \mathrm{Hom}(V,W) &\overset{*}{\to} \mathrm{Hom}(W^*,V^*) \\ f &\mapsto f^* \\ f^*: h_K(W) &\to h_K(V) \\ w^* &\mapsto f^*(w^*) = w^* \circ f \end{split} \tag{0.0.4}$$

它相当于拉回:

幂集函子 指标集 I 标记集合范畴 **Set** 中的对象得到集族 $\{X_i\}_{i\in I}$. 令 $X\in \mathbf{Set}$ 为集合,则 X 中的子集构成 的集族

$$\{X_i \mid X_i \subseteq X\}_{i \in I}$$

为 X 的子集族. 所有的子集构成的子集族称为**幂集** (power set), 记为

$$2^X = \{A \mid A \subseteq X\}$$

这里 2^X 中的 2 来源于二值集合 $2 = \{0,1\}$,利用它可以方便地讨论逻辑命题. 2 还体现在幂集 2^X 的势和集合 X 的势满足:

$$|2^X| = 2^{|X|}$$

从集合 $X \in \mathbf{Set}$ 到幂集 $2^X \in \mathbf{Set}$ 的诱导过程,可以理解为集合范畴 \mathbf{Set} 到自身的函子¹,即幂集函子.函数 $f: X \to Y$ 是集合范畴中的态射 $f \in \mathbf{Set}(X,Y)$,它可以以共变 $f \mapsto f_*$ 和反变 $f \mapsto f^*$ 两种方式构成幂集之间的态射。共变的 f_* 称为**推出 (pushforward)**,反变的 f^* 称为**拉回 (pullback)**,在泛函分析、微分几何、代数几何等领域都有类似的概念,范畴论中的伴随函子既是对这种概念的抽象.

具体而言,函数 $f: X \to Y$ 作为态射实现集合中的元素 $x \mapsto f(x)$ 的映射,推出 f_* 则实现了子集的映射,产生了从子集 $A \in 2^X$ 到**像 (image)**或**正向像 (direct image)** $f_*A = f(A) \in 2^Y$ 。幂集函子在推出 f_* 下构成了共变函子. 类似地,拉回 f^* 产生了从子集 $B \in 2^Y$ 到**原像 (preimage)**或**逆向像 (inverse image)** $f^*B = f^{-1}(B) \in 2^X$:

$$\begin{split} f_*: 2^X &\to 2^Y & f^*: 2^Y \to 2^X \\ A &\mapsto f_*A = f(A) & B &\mapsto f^*B = f^{-1}(B) \end{split} \tag{0.0.5}$$

幂集函子在拉回 f^* 下构成了反变函子. 注意到无论 $f \in \mathbf{Set}(X,Y)$ 作为集合的映射是否可逆, $f^*: 2^Y \to 2^X$ 作为幂集的态射都可逆:

- 1. 若 f 不是单射, $\exists x_1, x_2 \in X$ 使得有共同的值 $y = f(x_1) = f(x_2) \in Y$,则 $f: X \to Y$ 作为集合的态射不可逆. 不过 $f_*: 2^X \to 2^Y$ 作为幂集的态射可逆,包含 y 的集合 $B \in 2^Y$,其原像 $f^*B = f^{-1}(B) \in 2^X$ 包含 x_1, x_2 .
- 2. 若 f 不是满射,则 $Y-\operatorname{Im} f\neq\emptyset$ 非空, $Y-\operatorname{Im}$ 仍有原像 $f^*(Y-\operatorname{Im} f)=f^{-1}(Y-\operatorname{Im} f)=\emptyset\in 2^X.$ 共变和反变幂集函子整理如下:

相对而言反变的拉回有更多研究的价值。利用反变幂集函子 $f \to f^*$ 求原像的性质,可以讨论数学上常用 **特征函数** (characteristic function). 即通过子集 $A \in 2^X$ 诱导出取值在二元集 $2 = \{0,1\}$ 上的函数:

$$\chi_A: X \to 2$$

$$x \mapsto \chi_A(x) = \begin{cases} 1, & x \in A \\ 0, & x \notin A \end{cases}$$
 (0.0.6)

显然,子集 A 在特征函数下的像是 $\chi_A(A) = 1$ 。注意到 $\mathbf{Set}(X,2)$ 中所有的态射都是特征函数,单点集 1 在特征函数下的原像正是子集 A 本身,即 $\chi_A^*(1) = \chi_A^{-1}(1) = A$,于是集合 X 中的子集 A 和特征函数 χ_A 一一对应,范畴中关注集合 X 上特征函数的全体,即态射集:

$$h_2X = \mathbf{Set}(X,2) \simeq 2^X$$

在同构的意义下幂集和特征函数集视为相等。于是反变 Hom 函子 h_2 相当于幂集函子 $2^{(-)}$. 从反变 Hom 函子的角度容易理解下图中的态射复合规则:

¹即自函子,在后面章节将详细讨论

在 Y 中取子集 $B \in 2^Y$,记 Y 中的子集 $A = f^*B = f^{-1}(B)$ 为原像. 子集 B 对应特征函数 $\chi_B \in h_2Y$. 反变 Hom 函子 h_2 产生的函数集是特征函数的集合,特征函数 χ_B 按照反变 Hom 函子的复合律产生 X 上的特征函数:

$$(h_2 f)(\chi_B) = \chi_B \circ f \in h_2 X$$

它对应了子集 $A = f^*B = f^{-1}(B) \subseteq X$.

将来会了解到,反变幂集函子是二元集 $2 = \{0,1\}$ 表示的反变可表函子,这就是为什么把 X 的幂集记为 2^X . 并且常常记 $X \to Y$ 的函数集合为 $Y^X = h_Y X = \mathbf{Set}(X,Y)$. 反变幂集函子在拓扑、代数几何等方面的应用更加广泛,幂集函子通常指反变幂集函子,综合以上讨论写为:

$$\begin{split} h_2: \mathbf{Set}^\mathrm{op} &\to \mathbf{Set} \\ X &\mapsto h_2 X = 2^X \\ Y &\mapsto h_2 Y = 2^Y \\ \mathbf{Set}(X,Y) &\to \mathbf{Set}(2^Y,2^X) \\ f &\mapsto f^* \\ f^*: 2^Y &\to 2^X \\ B &\mapsto f^*(B) = f^{-1}(B) \end{split} \tag{0.0.7}$$

反变幂集函子、共变的推出 f_* 、反变的拉回 f^* ,这些概念在集合范畴有最一般的定义。在拓扑空间范畴中,体现开集函子和连续性。在实分析中,也用于描述**可测 (measurable)**性质:

例: 可测空间范畴

可测空间范畴记为 **Meas**,其对象为可测空间,其态射为可测函数。可测函数 $f \in \mathbf{Meas}(X,Y)$ 定义为:若 $B \subseteq Y$ 是 Y 中的可测集,则原像拉回 $f^*(B) = f^{-1}(B) \subseteq X$ 是 X 中的可测集。 Borel 集和 Borel 代数兼有拓扑和可测的性质,在 Borel 可测的情况,原像拉回在拓扑和可测方面的意义得到了统一。

Sierpiński 空间 在两点集 $S = \{0,1\}$ 上,除了平凡拓扑和离散拓扑外,只有两种拓扑

$$\tau_0 = \{\emptyset, \{0\}, S\}, \quad \tau_1 = \{\emptyset, \{1\}, S\}$$

二者同构,取拓扑空间 $(S, \mathcal{O}_S) = (S, \tau_1)$ 称为 Sierpiński 空间 (Sierpiński space). 对应开集,S 的所有闭集为 $\{\emptyset, \{0\}, S\}$. 因而 S 包含的单点集 $\{1\}$ 和 $\{0\}$ 分别为开集和闭集.

拓扑 τ_1 按照开集包含偏序构成全序集:

$$s_1 = \emptyset \hspace{1cm} \longrightarrow s_2 = \{1\} \hspace{1cm} \longrightarrow s_3 = X = \{0,1\}$$

拓扑中的子集标记为:

$$\tau_1 = \{s_1, s_2, s_3\} = \{\emptyset, \{1\}, S\}$$

前面用二值集合 $2 = \{0,1\}$ 讨论了子集和**特征函数 (characteristic function)**的对应关系,从而用反变 Hom 函子 h_2 构造了幂集函子,见 (0.0.7) 式.

拓扑结构是幂集的子集,前面我们用幂集函子的研究方式讨论了连续性,现在继续用幂集函子的研究方式讨论类似于特征函数的连续函数. 在拓扑空间范畴 \mathbf{Top} 中,对应着二值集 2 的就是两点 Sierpiński 空间 S. 令 $(X,\mathcal{O}_X)\in\mathbf{Top}$ 为拓扑空间,讨论拓扑空间范畴中的态射集 $\mathbf{Top}(X,S)$,它的形式类似于特征函数,但要求是连续函数:

$$\chi_U: X \to S$$

$$x \mapsto \chi_U(x) = \begin{cases} \{1\} & x \in U \\ \{0\} & x \notin U \end{cases}$$

在 Sierpiński 拓扑中 $\{1\}$ 不仅作为点存在,还是唯一的单点开集.若 χ_U 为连续函数,则开集 $\{1\}$ 在 χ_U 下的原像 $U=\chi_U^{-1}(\{1\})\in \xi$ 是开集.类似于特征函数,这里建立了开集 U 和连续函数 $\chi_U\in \mathbf{Top}[(X,\mathcal{O}_X),S]$ 的一一对应:

$$h_S(X,S) = \mathbf{Top}((X,\mathcal{O}_X),S) \simeq \mathcal{O}_X$$

在同构的意义下二者相等。类似 (0.0.7) 式有:

$$\begin{split} h_S: \mathbf{Top}^{\mathrm{op}} &\to \mathbf{Set} \\ (X, \mathcal{O}_X) &\mapsto h_S X = \mathbf{Top}((X, \mathcal{O}_X), S) = \mathcal{O}_X \\ (Y, \mathcal{O}_Y) &\mapsto h_S Y = \mathbf{Top}((Y, \mathcal{O}_Y), S) = \mathcal{O}_Y \\ \mathbf{Top}(X, Y) &\to \mathbf{Set}(\mathcal{O}_Y, \mathcal{O}_X) \\ f &\mapsto f^* \\ f^*: \mathcal{O}_Y &\to \mathcal{O}_X \\ V &\mapsto f^*(V) = f^{-1}(V) \end{split} \tag{0.0.8}$$