THE UNIVERSITY OF NEW SOUTH WALES

DEPARTMENT OF STATISTICS

Exercises for MATH3811/MATH3911, Statistical Inference/Higher Statistical Inference

Sufficiency

- 1. Use the factorization criterion to find a sufficient statistic for the parameter when X_1, X_2, \ldots, X_n are independent random variables each with distribution
 - a) $N(\mu, 1)$,
 - b) $N(0, \sigma^2)$,
 - c) Uniform $(\theta, \theta + 1)$,
 - d) Poisson (λ) .
 - e) Distribution with a density $f(x;\theta) = \theta(1+x)^{-(1+\theta)}, x > 0; \theta > 0.$
 - f) Distribution with a density $f(x;\theta) = e^{-(x-\theta)}I_{[\theta,\infty)}(x), -\infty < \theta < \infty.$

Check your answer in (d) using the definition of sufficiency.

Answers: a)
$$\sum_{i=1}^{n} X_i$$
; b) $\sum_{i=1}^{n} X_i^2$; c) $(X_{(1)}, X_{(n)})$; d) $\sum_{i=1}^{n} X_i$; e) $\sum_{i=1}^{n} \log(1 + X_i)$; f) $X_{(1)}$.

- 2. Let X_1, X_2, X_3 be a sample of size 3 from the Bernoulli (p) distribution. Consider the 2 statistics $S = X_1 + X_2 + X_3$ and $T = X_1X_2 + X_3$. Show that S is sufficient for p and T is not.
- 3. A random variable $X = (X_1, X_2)$ has the following distribution (with $1 < \theta < 3$):

(x_1, x_2)	(0,0)	(0,1)	(1,0)	(1,1)
$P(X_1 = x_1, X_2 = x_2)$	$\frac{1}{12}(12-7\theta+\theta^2)$	$\frac{\theta}{12}(4-\theta)$	$\frac{\theta}{12}(4-\theta)$	$\frac{\theta}{12}(\theta-1)$

Check whether $X_1 + X_2$ or X_1X_2 is sufficient for θ .

- 4. If X_1, X_2, \dots, X_n are independent Bernoulli (p) random variables, prove that X_1 is not sufficient for n.
- 5. Given that θ is an integer and that X_1 and X_2 are independent random variables which are Uniformly distributed on the integers $1, 2, \ldots, \theta$, prove that $X_1 + X_2$ is not sufficient for θ .
- 6. Suppose X_1, X_2, \ldots, X_n are independent discrete random variables each with probability function $f(x;\theta), \theta$ unknown. Prove that $(X_1, X_2, \ldots, X_{n-1})$ is not sufficient for θ .
- 7. Find a minimal sufficient statistic for the parameter when X_1, X_2, \ldots, X_n are independent random variables each with distribution
 - a) Poisson (λ) ,
 - b) $N(0, \sigma^2)$,
 - c) Gamma (α), (With a density $f(x,\alpha) = \frac{1}{\Gamma(\alpha)} \exp(-x) x^{\alpha-1}, x > 0$. (Here the Gamma function is defined as $\Gamma(\alpha) = \int_0^\infty e^{-x} x^{\alpha-1} dx$ and has the property $\Gamma(\alpha+1) = \alpha \Gamma(\alpha)$. In particular, for a natural number $n : \Gamma(n+1) = n!$ holds).
 - d) Uniform $(0, \theta)$.

- e) Uniform $(\theta, \theta + 1)$.
- f) Uniform (θ_1, θ_2) .
- 8. If X_1, X_2, \ldots, X_n are i.i.d. random variables with densities $f(x; \theta)$ given below, find a sufficient statistics for θ .
 - a) $f(x;\theta) = \theta x^{\theta-1} I_{(0,1)}(x), \theta \in (0,\infty).$
 - b) $f(x;\theta) = \frac{1}{6\theta^4} x^3 e^{-x/\theta} I_{(0,\infty)}(x), \theta \in (0,\infty).$

Answers: a) $\prod_{i=1}^n X_i$; b) $\sum_{i=1}^n X_i$.

- 9. (*Ex 2.12 from the textbook) Consider the linear model $E[\mathbf{Y}] = \mathbf{X}\beta$ where $\mathbf{Y} = (Y_1, Y_2, \dots, Y_n)'$ is a vector of n random variables with $V(Y_i) = \sigma^2, i = 1, 2, \dots, Cov[Y_i, Y_j] = 0, i \neq j$. Here \mathbf{X} is a $n \times p$ full-rank matrix of fixed constants and β is a vector of unkown parameters. Assume the elements of \mathbf{Y} are normally distributed. Show, by using the definition, that
 - a) When σ^2 is assumed to be known, $\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$ is minimal sufficient for β .
 - b) When σ^2 is also assumed to be unknown then the pair of statistics $[\hat{\beta}, (\mathbf{Y} \mathbf{X}\hat{\beta})'(\mathbf{Y} \mathbf{X}\hat{\beta})]$ is minimal sufficient for (β, σ^2) .
- 10. a) Find a vector statistic that is sufficient for the parameter vector $\theta = (\theta_1, \theta_2)'$ of the Beta distribution with a density

$$f(x; \theta_1, \theta_2) = \frac{1}{B(\theta_1, \theta_2)} x^{\theta_1 - 1} (1 - x)^{\theta_2 - 1} I_{(0,1)}(x)$$

(where $B(\theta_1, \theta_2) = \int_0^1 x^{\theta_1 - 1} (1 - x)^{\theta_2 - 1} dx$ and $\theta_1 > 0, \theta_2 > 0$ are unknown parameters.

b) Assume that $\theta_1 = \theta_2 = \psi$ holds. Find a minimal sufficient statistic for ψ .

Homework revision questions on probability (general 2801/2901 stuff)

- 11. How many children should a family be planning for if they want to have with probability 0.95 at least one boy and at least one girl? (Assuming that the probability of having a boy is the same as the probability of having a girl).
- 12. If $Z \sim N(0,1)$ find the density of Z^2 .
- 13. The two parameter Gamma distribution Gamma (α, β) has a density

$$f_X(x; \alpha, \beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \exp(-x/\beta)x^{\alpha-1}, x > 0$$

where $\alpha > 0$ and $\beta > 0$ are shape parameters. Show that if $X \sim \text{Gamma}(\alpha, \beta)$ then $EX = \alpha\beta, EX^2 = \beta^2\alpha(\alpha+1), Var(X) = \alpha\beta^2$.

2