Lotta 101 2-3: Introduction to G Code

General

- NC-program codes and word are standardized in ISO 840-1973, ISO 841-1974, ISO 1056-1976, ISO 1057-1973.
- Usually a codeword signifies the same thing for different machines. Most of the preparatory codes are the same for various machine types
- Coordinate codes express machine specific coordinate information
- A single line of a NC program is called a block
- An example code block:

The Logic of a G code Block

Normally the NC words are written into a block in the following order:
 N G X Y Z I J K Q R D H F S T M

But NOTE:

- The CNC Controller parses and interprets an entire block at a time; all codewords are significant
- The controller may rearrange execution order should it be meaningful to do so
- When a block contains mutually conflicting codewords (those in the same modal group) the last written stays in effect (a Fanuc convention!)

G Code Structure and Reserved Words

- G Code Structure is simple:
 - There is no structure!
 - OK, there is a way to call
 Subprograms but that's it
 - Basic G Code is a sequence of operations with no branching, no looping, no repetitions of any kind
- There are specific G codes to assist in what are known as "canned cycles" such as peck drilling, boring etc

- G Code Character Set
 - O Program number (only numbers as program identifiers)
 - N Optional block number (seldom used these days)
 - GXYZIJKQRDHFSTM (codeword id's)
 - Digits 0 ... 9
 - Decimal Point (none of this decimal comma stuff)
 - Signs (+ and -)
 - / optional block bypass
 - % tape control (yes punched paper tape!)
 - TAB
 - LF CR (line feed; one or both together is OK)
 - Blank as codeword separator
 - () ordinary brackets for delimiting comments

G Code is Modal – the Concept

- Nearly everything a CNC machine does is modal on the G code level
- Examples:
 - Motion mode: is the machine set to move using rapid (uncoordinated) traverse, or coordinated tracking motion at feed speed, or perhaps one of the predefined canned work cycles?
 - Dimension mode: Are dimensions given in metric or imperial units?
 - Modal offsets: What coordinate calculation offset definitions might be in effect?
 - Etc etc.
- A Mode stays in effect until it is replaced a different Mode in the same Modal Group

G Code is Modal – the Actual Modal Groups

- Individual Modes (codewords) in the same Group are mutually exclusive; only one of those modes can be in effect at a time
- Example: Successive traverse and feeding motions:

G00 X-10. Y0.	
Z-5.	
G01 X10.	
Y-10.	
X0.	
Y0.	
G00 Z100.	

Wodar Groups					
#	Group	G Codes			
1	MOTION	{ G0, G1, G2, G3, G80, G81, G82, G83, G84, G85, G86, G87, G88, G89}			
2	Interpolation planes	{G17, G18, G19}			
3	Dimensions	{G90, G91}			
5	Spindle	{G93, G94}			
6	Units	{G20, G21}			
7	Diameter comp	{G40, G41, G42}			
8	Length comp	{G43, G44, G49}			
10	Canned cycle return	{G98, G99}			
12	Work Coordinates	{G54, G55, G56, G57, G58, G59}			

Preparatory Command G

•	G	preparatory	commands	tor motion	
		p. opa.ato. y	•••••		

- X, Y, Z Coordinates along machine axes
- A, B, C Coordinates along rotation axes
- U, V, W extra linear axis coordinates
- R arc radius, chamfering radius
- I, J, K arc center coordinates, fillets

- P, X Delay
- P subprogram number
- P, Q, R canned cycle parameters

F Feed speed

- S Spindle speed
- **H** (tool) length offset

Indicated Point (IP_):

 $IP_{=} == [X][Y][Z]$, where

- X == "X"nnn.nnn
- Y == "Y"nnn.nnn
- Z == "Z"nnn.nnn
- At least one of the arguments X Y Z must be given.

Fanuc-manuals call the IP_ dimension word

Esityksen tuotti

Takkatie 18, Pitäjänmäki, 00370 Helsinki puh. +358 44 912 9922

