Linear Algebra

Clontz & Lewis

Module I

Module E Section E.0

Section E.1

Section E.2

Section V.

Section V.1

Section V.3 Section V.4

Module S

Section S.1 Section S.2

Section S.3

Section A.1 Section A.2

Section A.3

Module M

Section M.1 Section M.2

Module (

Section G

Section G

Section G

Linear Algebra

Clontz & Lewis

January 12, 2018

Linear Algebra

Clontz & Lewis

Module I

Module E

Section E.0 Section E.1

Section E.2

Module \

ction v.t

Section V.1

Section V.3 Section V.4

Module S

Section S.1

Section S.2

Module A

Section A.1 Section A.2

Section A.3

Section A.s

Module M

Section M.1

Section M.2 Section M.3

Module G

Section G.

Section G.

Section G.3

Module I: Introduction

Module I

Section E.0 Section E.1

Section E.2

Section V.3

Section V.4

Section A.1 Section A.2

Section A.3

Section M.2

Remark I.0.1

This brief module gives an overview for the course.

Linear Algebra

Clontz & Lewis

Module I Section I.0

Module E

Section E.0

Section E.1

Madula V

Section V

ction V.

Section V.

Section V.3 Section V.4

Module S

Section S.1

Section S 3

Module A

Section A.1 Section A.2

Section A.3

.

Section M.1

Section M.2

Module C

Section G.

Section G

Section G.3

Module I Section 0

Module I Section I.0

Module F

Section E.0

Section E.1

Section E.2 Module V

Module V Section V. Section V.

Section V.: Section V.:

Module S

Section S

. . . .

Module A

Section A.1 Section A.2 Section A.3

Modulo

Section M.1 Section M.2

Section M.2 Section M.3

Module G

Section G

Section G.:

Remark I.0.1

What is Linear Algebra?

Linear algebra is the study of **linear maps**.

- In Calculus, you learn how to approximate any function by a linear function.
- In Linear Algebra, we learn about how linear maps behave.
- Combining the two, we can approximate how any function behaves.

Section I.0

Module E
Section E.0
Section E.1
Section E.2

Module V Section V.: Section V.: Section V.: Section V.:

Module S

Section S.2 Section S.3

Section A.1 Section A.2 Section A.3

Module N

Section M.1 Section M.2 Section M.3

Module G

Section G.2 Section G.3

Remark I.0.2

What is Linear Algebra good for?

- Linear algebra is used throughout several fields in higher mathematics.
- In computer graphics, linear algebra is used to help represent 3D objects in a 2D grid of pixels.
- Linear algebra is used to approximate differential equation solutions in a vast number of engineering applications (e.g. fluid flows, vibrations, heat transfer) whose solutions are very difficult (or impossible) to find precisely.
- Google's search engine is based on its Page Rank algorithm, which ranks websites by computing an eigenvector of a matrix.

Module I Section I.0

Module E Section E.0 Section E.1

Module V
Section V.:
Section V.:
Section V.:

Module S

Section S.:

Section S

Module A

Section A.1 Section A.2 Section A.3

Module N

Section M.1 Section M.2

Module G

Section G.1 Section G.2 Section G.3

Remark I.0.3

What will I learn in this class?

By the end of this class, you will be able to:

- Solve systems of linear equations. (Module E)
- Identify vector spaces and their properties. (Module V)
- Analyze the structure of vector spaces and sets of vectors. (Module S)
- Use and apply the algebraic properties of linear transformations. (Module A)
- Perform fundamental operations in the algebra of matrices. (Module M)
- Use and apply the geometric properties of linear transformations. (Module G)

Section I 0

Module E Section E.0

Section E.1

Section E.2

Module V

Section V.
Section V.

Section V.

Section V.3 Section V.4

Module S

Section 5.1

Section S.3

Module A

Section A.1 Section A.2

Section A.3

Module M

Section M.1 Section M.2

Section M.2 Section M.3

Module G

Section G

Section (

Section G.3

Module E: Solving Systems of Linear Equations

Module E Section E.0

Section E.1 Section E.2

Module \

Section V.

Section V.2 Section V.3

Section V.3

Section V.

Module 3

Section S.2

Section S.3

Module

Section A.1 Section A.2

Section A.3 Section A.3

.

Module I

Section M.1 Section M.2

Section M.2 Section M.3

Module (

Section G

Section C

Section G.3

How can we solve systems of linear equations?

Module E

Section E.0 Section E.1

Section A 2

Section M.2

At the end of this module, students will be able to...

- E1. Systems as matrices. ... translate back and forth between a system of linear equations and the corresponding augmented matrix.
- **E2.** Row reduction. ... put a matrix in reduced row echelon form.
- E3. Systems of linear equations. ... compute the solution set for a system of linear equations.

Module E

Section E.1 Section E.2

Section A.1 Section A 2

Section M.1 Section M 2

Readiness Assurance Outcomes

Before beginning this module, each student should be able to...

- Determine if a system to a two-variable system of linear equations will have zero, one, or infinitely-many solutions by graphing.
- Find the unique solution to a two-variable system of linear equations by back-substitution.
- Describe sets using set-builder notation, and check if an element is a member of a set described by set-builder notation.

Section 1.0

Module E
Section E.0
Section E.1
Section E.2

Section V.0 Section V.1 Section V.2 Section V.3

Section V. Section V.

Module S

Section S

NA - July A

Section A.1 Section A.2 Section A.3

Module 1

Section M.1 Section M.2 Section M.3

Module G

Section G.2 Section G.3 The following resources will help you prepare for this module.

- Systems of linear equations (Khan Academy): http://bit.ly/2121etm
- Solving linear systems with substitution (Khan Academy): http://bit.ly/1SlMpix
- Set builder notation: https://youtu.be/xnfUZ-NTsCE

Linear Algebra

Clontz & Lewis

Module I

Module E

Section E.0 Section E.1

Section E.2

Module \

Section V.

C--ti-- V

Section V.3 Section V.4

Module S

Section S.1

Section S.3

Module A

Section A.1 Section A.2

Section A.3

Section A

Module M

Section M.1

Section M.2

Module G

Section G.:

Section G

Section G.3

Module E Section 0

Section M.2 Section M.3

Definition E.0.1

A **linear equation** is an equation of the variables x_i of the form

$$a_1x_1+a_2x_2+\cdots+a_nx_n=b.$$

A **solution** for a linear equation is a Euclidean vector

that satisfies

$$a_1s_1+a_2s_2+\cdots+a_ns_n=b$$

(that is, a Euclidean vector that can be plugged into the equation).

Section E.0 Section E.1

Section E.2

Section V.3 Section V.4

Section A.1

Section A.2 Section A.3

Section M.2 Section M.3

Remark E.0.2

In previous classes you likely used the variables x, y, z in equations. However, since this course often deals with equations of four or more variables, we will often write our variables as x_i , and assume $x = x_1, y = x_2, z = x_3, w = x_4$ when convenient.

Section M.2

Definition E.0.3

A system of linear equations (or a linear system for short) is a collection of one or more linear equations.

$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2$
 \vdots \vdots \vdots \vdots \vdots $a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m$

Its solution set is given by

$$\left\{ \begin{bmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{bmatrix} \middle| \begin{bmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{bmatrix} \text{ is a solution to all equations in the system} \right\}.$$

Remark E.0.4

When variables in a large linear system are missing, we prefer to write the system in one of the following standard forms:

Original linear system:

 $3x_1 - 2x_2 + 4x_3 = 0$

 $x_1 + 3x_3 = 3$

 $-x_2 + x_3 = -2$

Verbose standard form:

$$1x_1 + 0x_2 + 3x_3 = 3$$

$$3x_1 - 2x_2 + 4x_3 = 0$$

$$0x_1 - 1x_2 + 1x_3 = -2$$

Concise standard form:

$$x_1 + 3x_3 = 3$$

 $3x_1 - 2x_2 + 4x_3 = 0$
 $-x_2 + x_3 = -2$

Module I

Module E Section E.0

Section E.1

Section E.2

Module \
Section V.

Section V.2 Section V.3

Section V.3 Section V.4

Module S

Section 5.1

Section S.3

Module

Section A.1 Section A.2

Section A.3

Module I

Section M

Section M.2 Section M.3

Module G

Section G.

Section G

Section G.3

Definition E.0.5

A linear system is **consistent** if its solution set is non-empty (that is, there exists a solution for the system). Otherwise it is **inconsistent**.

Section G.: Section G.:

Section G.3 Section G.3

Fact E.0.6

All linear systems are one of the following:

• Consistent with one solution: its solution set contains a single vector, e.g.

$$\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix} \right\}$$

• Consistent with infinitely-many solutions: its solution set contains

infinitely many vectors, e.g.
$$\left\{ \begin{bmatrix} 1\\2-3a\\a \end{bmatrix} \middle| a \in \mathbb{R} \right\}$$

• **Inconsistent**: its solution set is the empty set $\{\} = \emptyset$

Section I (

Module

Section E.0 Section E.1

Section E.2

Module '

Section V

Section V

Section V.3

Section V.4

Module S

C C :

Section S.

Saction S

NA - de de A

Section A.1

Section A.2

Section A.3

.

Module I

Section IVI.

Section M.2 Section M.3

Module (

iviodule C

Section (

Section

Section G

Activity E.0.7 (\sim 10 min)

All inconsistent linear systems contain a logical **contradiction**. Find a contradiction in this system to show that its solution set is \emptyset .

$$-x_1+2x_2=5$$

$$2x_1-4x_2=6$$

Section E.0 Section E.1

Section E.2

Section V.3

Section V.4

Section A.1

Section A.2

Section A.3

Section M.2

Section M.3

Activity E.0.8 (\sim 10 min)

Consider the following consistent linear system.

$$-x_1 + 2x_2 = -3$$
$$2x_1 - 4x_2 = 6$$

$$2x_1 - 4x_2 = 6$$

Section M.2 Section M.3

Module 0

Section G

Section

Section G.

Activity E.0.8 (\sim 10 min)

Consider the following consistent linear system.

$$-x_1 + 2x_2 = -3$$

$$2x_1 - 4x_2 = 6$$

Part 1: Find three different solutions for this system.

Activity E.0.8 (\sim 10 min)

Consider the following consistent linear system.

$$-x_1 + 2x_2 = -3$$
$$2x_1 - 4x_2 = 6$$

Part 1: Find three different solutions for this system.

Part 2: Let $x_2 = a$ where a is an arbitrary real number, then find an expression for x_1 in terms of a. Use this to write the solution set $\left\{\begin{bmatrix}?\\a\end{bmatrix}\middle|a\in\mathbb{R}\right\}$ for the linear system.

Activity E.0.9 (\sim 10 min)

Consider the following linear system.

$$x_1 + 2x_2 - x_4 = 3$$

 $x_3 + 4x_4 = -2$

Describe the solution set

$$\left\{egin{bmatrix} ?\ a\ ?\ b \end{bmatrix} \middle| a,b \in \mathbb{R}
ight\}$$

to the linear system by setting $x_2 = a$ and $x_4 = b$, and then solving for x_1 and x_3 .

Section F 0

Section E.1 Section E.2

Section A.1 Section A 2

Section M.1 Section M 2

Observation E.0.10

Solving linear systems of two variables by graphing or substitution is reasonable for two-variable systems, but these simple techniques won't usually cut it for equations with more than two variables or more than two equations. For example,

$$-2x_1 - 4x_2 + x_3 - 4x_4 = -8$$
$$x_1 + 2x_2 + 2x_3 + 12x_4 = -1$$
$$x_1 + 2x_2 + x_3 + 8x_4 = 1$$

has the exact same solution set as the system in the previous activity, but we'll want to learn new techniques to compute these solutions efficiently.

Linear Algebra

Clontz & Lewis

Module I

Module E

Section E.0 Section E.1

Section E.2

Module \

Section V.C

Section V.

Section V.3 Section V.4

Module S

Section 5.1

Section S.3

Module A

Section A.1 Section A.2

Section A.3

.

Section M.1

Section M.1 Section M.2

Module G

Section G.

Section G

Section G.3

Module E Section 1

Remark E.1.1

The only important information in a linear system are its coefficients and constants.

Original linear system:

 $3x_1 - 2x_2 + 4x_3 = 0$

 $x_1 + 3x_3 = 3$

 $-x_2 + x_3 = -2$

Verbose standard form:

$$1x_1 + 0x_2 + 3x_3 = 3$$

$$3x_1 - 2x_2 + 4x_3 = 0$$

$$0x_1 - 1x_2 + 1x_3 = -2$$

$$0x_1 - 1x_2 + 1x_3 = -2$$

Coefficients/constants:

Module C

Section G

Section G.:

Definition E.1.2

A system of m linear equations with n variables is often represented by writing its coefficients and constants in an **augmented matrix**.

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n = b_1$$

 $a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n = b_2$
 \vdots \vdots \vdots \vdots
 $a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n = b_m$

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{bmatrix}$$

Section G

Example E.1.3

The corresopnding augmented matrix for this system is obtained by simply writing the coefficients and constants in matrix form.

Linear system:

$$x_1 + 3x_3 = 3$$

 $3x_1 - 2x_2 + 4x_3 = 0$
 $-x_2 + x_3 = -2$

Augmented matrix:

$$\begin{bmatrix} 1 & 0 & 3 & 3 \\ 3 & -2 & 4 & 0 \\ 0 & -1 & 1 & -2 \end{bmatrix}$$

Definition E.1.4

Two systems of linear equations (and their corresponding augmented matrices) are said to be **equivalent** if they have the same solution set.

For example, both of these systems share the same solution set $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

$$3x_1 - 2x_2 = 1$$

$$x_1 + 4x_2 = 5$$

Therefore these augmented matrices are equivalent:

$$\begin{bmatrix} 3 & -2 & 1 \\ 1 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 3 & -2 & 1 \\ 4 & 2 & 6 \end{bmatrix}$$

 $3x_1 - 2x_2 = 1$ $4x_1 + 2x_2 = 6$

Module I Section I.0

Section E.1 Section E.2

Module V Section V.0 Section V.1 Section V.2 Section V.4

Module Section S

Section S.: Section S.:

Module A Section A.1 Section A.2

Section A

Section M.1 Section M.2

Module G Section G.:

Section G.2 Section G.3

Activity E.1.5 (\sim 10 min)

Following are seven procedures used to manipulate an augmented matrix. Label the procedures that would result in an equivalent augmented matrix as **valid**, and label the procedures that might change the solution set of the corresponding linear system as **invalid**.

- a) Swap two rows.
- b) Swap two columns.
- Add a constant to every term in a row.
- d) Multiply a row by a nonzero constant.

- e) Add a constant multiple of one row to another row.
- f) Replace a column with zeros.
- g) Replace a row with zeros.

Section I.0

Section E.1 Section E.2

Section V.3 Section V.3 Section V.3 Section V.4

Module 9

Section S.

Module A Section A.1

Section A.1 Section A.2 Section A.3

Module

Section M.1 Section M.2 Section M.3

Module G

Section G.1 Section G.2 Section G.3

Definition E.1.6

The following **row operations** produce equivalent augmented matrices:

- 1 Swap two rows.
- 2 Multiply a row by a nonzero constant.
- 3 Add a constant multiple of one row to another row.

Whenever two matrices A, B are equivalent (so whenever we do any of these operations), we write $A \sim B$.

Activity E.1.7 (\sim 10 min)

Consider the following (equivalent) linear systems.

(A)

(B)

$$-2x_1 + 4x_2 - 2x_3 = -8 \qquad x_1 - 2x_2 + 2x_3 = 7$$

$$x_1 - 2x_2 + 2x_3 = 7$$

$$3x_1 - 6x_2 + 4x_3 = 15$$

$$2x_3 = 6$$

 $-2x_3 = -6$

$$x_1 - 2x_2 + 2x_3 = 7$$
 $x_1 - 2x_2 + 2x_3 = 7$

$$-2x_1 + 4x_2 - 2x_3 = -8$$

$$3x_1 - 6x_2 + 4x_3 = 15$$

$$x_3 = 3$$

 $-2x_3 = -6$

$$x_1 - 2x_2 + 2x_3 = 7$$

 $x_1 - 2x_2 = 1$

$$2x_3 = 6$$

 $x_3 = 3$

0 = 0

$$3x_1 - 6x_2 + 4x_3 = 15$$

Section E.1

Section V.3

Section A.1

Section A.3

Section M.1

Consider the following (equivalent) linear systems.

$$(A) \qquad \qquad (C) \qquad \qquad (E)$$

$$-2x_1 + 4x_2 - 2x_3 = -8$$
 $x_1 - 2x_2 + 2x_3 = 7$ $x_1 - 2x_2 = 1$
 $x_1 - 2x_2 + 2x_3 = 7$ $2x_3 = 6$ $x_3 = 3$
 $3x_1 - 6x_2 + 4x_3 = 15$ $-2x_3 = -6$ $0 = 0$

$$(B) (D)$$

$$x_1 - 2x_2 + 2x_3 = 7$$
 $x_1 - 2x_2 + 2x_3 = 7$ $x_1 - 2x_2 + 2x_3 = 7$ $2x_3 = 6$ $3x_1 - 6x_2 + 4x_3 = 15$ $-2x_3 = -6$ $3x_1 - 6x_2 + 4x_3 = 15$

Part 1: Rank the six linear systems from hardest to solve to easiest to solve.

Linear Algebra

Clontz & Lewis

Section E.1

Section A.1

Section M.1

Activity E.1.7 (\sim 10 min)

Consider the following (equivalent) linear systems.

(A) (C) (E)
$$-2x_1 + 4x_2 - 2x_3 = -8 x_1 - 2x_2 + 2x_3 = 7 x_1 - 2x_2 = 1$$
$$x_1 - 2x_2 + 2x_3 = 7 2x_3 = 6 x_3 = 3$$
$$3x_1 - 6x_2 + 4x_3 = 15 -2x_3 = -6 0 = 0$$

$$(B) (D)$$

$$x_1 - 2x_2 + 2x_3 = 7$$
 $x_1 - 2x_2 + 2x_3 = 7$ $2x_3 = 6$
 $-2x_1 + 4x_2 - 2x_3 = -8$ $x_3 = 3$ $2x_3 = 6$
 $3x_1 - 6x_2 + 4x_3 = 15$ $-2x_3 = -6$ $3x_1 - 6x_2 + 4x_3 = 15$

 $x_1 - 2x_2 + 2x_3 = 7$

Part 1: Rank the six linear systems from hardest to solve to easiest to solve. Part 2: Determine the row operation necessary in each step to transform the hardest system's augmented matrix into the easiest.

Section G.2 Section G.3

Observation E.1.8

We can rewrite the previous in terms of augmented matrices

$$\begin{bmatrix} -2 & 4 & -2 & | & -8 \\ 1 & -2 & 2 & | & 7 \\ 3 & -6 & 4 & | & 15 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 2 & | & 7 \\ -2 & 4 & -2 & | & -8 \\ 3 & -6 & 4 & | & 15 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 2 & | & 7 \\ 0 & 0 & 2 & | & 6 \\ 3 & -6 & 4 & | & 15 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 2 & | & 7 \\ 0 & 0 & 2 & | & 6 \\ 3 & -6 & 4 & | & 15 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 2 & | & 7 \\ 0 & 0 & 2 & | & 6 \\ 0 & 0 & -2 & | & -6 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 2 & | & 7 \\ 0 & 0 & 1 & | & 3 \\ 0 & 0 & -2 & | & -6 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 0 & | & 1 \\ 0 & 0 & 1 & | & 3 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

The system was simplified by changing as many numbers in the matrix to 0 and 1 as possible. This simplest matrix equivalent to a given matrix is called its "reduced row echelon form".

Linear Algebra

Clontz & Lewis

Module I Section I.0

Module E
Section E.0
Section E.1
Section E.2

Module V
Section V.0
Section V.1
Section V.2
Section V.3

Section S. Section S.

Module A

Section A Section A Section A

Module M

Section M.1 Section M.2 Section M.3

Module G

Section G.2 Section G.3 Activity E.1.9 (\sim 10 min)

A matrix is in reduced row echelon form (RREF) if

- **1** The leading term (first nonzero term) of each nonzero row is a 1. Call these terms **pivots**.
- 2 Each pivot is to the right of every higher pivot.
- 3 Each term above or below a pivot is zero.
- 4 All rows of zeroes are at the bottom of the matrix.

(C)

(D)

Circle the leading terms in each example, and label it as RREF or not RREF.

 $\begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

 $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & -1 \end{bmatrix}$

(E)

(F)

 $\begin{bmatrix} 0 & 1 & 0 & 7 \\ 1 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

(B)

(A)

 $\begin{bmatrix} 1 & 2 & 4 & 3 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

[1 0 2 | −3]

 $\begin{bmatrix}
1 & 0 & 2 & -3 \\
0 & 3 & 3 & -3 \\
0 & 0 & 0 & 0
\end{bmatrix}$

 $\begin{bmatrix} 1 & 0 & 0 & | & 4 \\ 0 & 1 & 0 & | & 7 \\ 0 & 0 & 1 & | & 0 \end{bmatrix}$

Section V.3 Section V.3 Section V.3

Module S

Section S.2 Section S.3

Module A

Section A.2 Section A.3

Module N

Section M.1 Section M.2

Module G Section G.1

Section G.1 Section G.2 Section G.3

Remark E.1.10

It is important to understand the **Gauss-Jordan elimination** algorithm that converts a matrix into reduced row echelon form.

A video outlining how to perform the Gauss-Jordan Elimination algorithm by hand is available at https://youtu.be/Cq0Nxk2dhhU. Practicing several exercises outside of class using this method is recommended.

In the next section, we will learn to use technology to perform this operation for us, as will be expected when applying row-reduced matrices to solve other problems.

Linear Algebra

Clontz & Lewis

Module I

Module E

Section E.0 Section E.1

Section E.2

Module V

Section V.

section V.

Section V.2 Section V.3

Section V.3

Module S

Section S.1

Section S.

Module A

Section A.1 Section A.2

Section A.3

Section A

Module M

Section M.1

Section M.2

Section M.2

iviodule (

Section G.

Section (

Section G.

Module E Section 2

Activity E.2.1 (\sim 10 min)

Free browser-based technologies for mathematical computation are available online.

- Go to http://www.cocalc.com and create an account.
- Create a project titled "Linear Algebra Team X" with your appropriate team number. Add all team members as collaborators.
- Open the project and click on "New"
- Give it an appropriate name such as "Class E.2 workbook". Make a new Jupyter notebook.
- Click on "Kernel" and make sure "Octave" is selected.
- Type A=[1 3 4 ; 2 5 7] and press Shift+Enter to store the matrix $\begin{bmatrix} 1 & 3 & 4 \\ 2 & 5 & 7 \end{bmatrix}$ in the variable A.
- Type rref(A) and press Shift+Enter to compute the reduced row echelon form of A.

Module I Section I.0

Module E Section E.0

Section E.1

Section E.2

Module \
Section V.
Section V.

Section V.3 Section V.4

Module S

Section S.

Section S

Madula A

Module A Section A.1

Section A.1 Section A.2 Section A.3

.

Module I

Section M.1 Section M.2

Section M.3 Section M.3

Module 0

Module G

Section (

Section G.3

Remark E.2.2

If you need to find the reduced row echelon form of a matrix during class, you are encouraged to use CoCalc's Octave interpreter.

You can change a cell from "Code" to "Markdown" or "Raw" to put comments around your calculations such as Activity numbers.

Section G Section G

Section G.2 Section G.3

Activity E.2.3 (\sim 10 min)

Consider the system of equations.

$$3x_1 - 2x_2 + 13x_3 = 6$$

$$2x_1 - 2x_2 + 10x_3 = 2$$

$$-x_1 + 3x_2 - 6x_3 = 11$$

Convert this to an augmented matrix and use CoCalc to compute its reduced row echelon form. Write these on your whiteboard, and use them to write a simpler yet equivalent linear system of equations. Then find its solution set.

Activity E.2.4 (\sim 10 min)

Consider our system of equations from above.

$$3x_1 - 2x_2 + 13x_3 = 6$$
$$2x_1 - 2x_2 + 10x_3 = 2$$
$$-x_1 - 3x_3 = 1$$

Convert this to an augmented matrix and use CoCalc to compute its reduced row echelon form. Write these on your whiteboard, and use them to write a simpler yet equivalent linear system of equations. Then find its solution set.

Section E.0 Section E.1

Section E.2

Section V.3

Section V.4

Section A.1

Section A.2

Section A.3

Section M.2

Section M.3

Activity E.2.5 (\sim 10 min)

Consider the following linear system.

$$x_1 + 2x_2 + 3x_3 = 1$$
$$2x_1 + 4x_2 + 8x_3 = 0$$

$$2x_1 + 4x_2 + 8x_3 = 0$$

Section E.0

Section E.1

Section E.2

Section V.3

Section V.4

Section A.1

Section A.2 Section A.3

Section M.2

Activity E.2.5 (\sim 10 min)

Consider the following linear system.

$$x_1 + 2x_2 + 3x_3 = 1$$

$$2x_1 + 4x_2 + 8x_3 = 0$$

Part 1: Find its corresponding augmented matrix A and use CoCalc to find RREF(A).

Activity E.2.5 (\sim 10 min)

Consider the following linear system.

$$x_1 + 2x_2 + 3x_3 = 1$$

 $2x_1 + 4x_2 + 8x_3 = 0$

Part 1: Find its corresponding augmented matrix A and use CoCalc to find RREF(A).

Part 2: How many solutions does the corresponding linear system have?

Activity E.2.6 (\sim 10 min)

Section E.0

Section E.1 Section E.2

Section V.3

Section V.4

Section A.1 Section A.2 Section A.3

Section M.2

Section M.3

Consider the simple linear system equivalent to the system from the previous problem:

$$x_1 + 2x_2 = 4$$
$$x_3 = -1$$

Module I

Marilla F

Section E.0

Section E.1

Section E.2

Module \

Section V

Section V

Section V.

Section V.3

Section V.

Module

Section S 1

Section S

Section

Module A

Section A.1 Section A.2

Section A.2 Section A.3

Madula

Module

Section M.2

Section IVI.2

Module 0

Section (

Section

Section G

Activity E.2.6 (\sim 10 min)

Consider the simple linear system equivalent to the system from the previous problem:

$$x_1 + 2x_2 = 4$$
$$x_3 = -1$$

Part 1: Let $x_1 = a$ and write the solution set in the form $\left\{ \begin{bmatrix} a \\ ? \\ ? \end{bmatrix} \middle| a \in \mathbb{R} \right\}$.

Activity E.2.6 (\sim 10 min)

Consider the simple linear system equivalent to the system from the previous problem:

$$x_1 + 2x_2 = 4$$
$$x_3 = -1$$

Part 1: Let $x_1 = a$ and write the solution set in the form $\left\{ \left| \begin{array}{c} a \\ ? \\ ? \end{array} \right| \mid a \in \mathbb{R} \right\}$.

$$\begin{cases}
\begin{bmatrix} ? \\ h \end{bmatrix} & h \in \mathbb{R}
\end{cases}$$

Part 2: Let $x_2 = b$ and write the solution set in the form $\left\{ \begin{bmatrix} ? \\ b \end{bmatrix} \middle| b \in \mathbb{R} \right\}$.

$$\begin{bmatrix} ! \\ b \\ ? \end{bmatrix} \mid b \in \mathbb{R}$$

Activity E.2.6 (\sim 10 min)

Consider the simple linear system equivalent to the system from the previous problem:

$$x_1 + 2x_2 = 4$$
$$x_3 = -1$$

Part 1: Let $x_1 = a$ and write the solution set in the form $\left\{ \left| \begin{array}{c} a \\ ? \\ ? \end{array} \right| \mid a \in \mathbb{R} \right\}$.

$$\begin{bmatrix} a \\ ? \\ ? \end{bmatrix} \mid a \in \mathbb{R}$$

Part 2: Let $x_2 = b$ and write the solution set in the form $\left\{ \left| \begin{array}{c} f \\ b \end{array} \right| \mid b \in \mathbb{R} \right\}$.

$$\left\{ \begin{bmatrix} ? \\ b \\ ? \end{bmatrix} \middle| b \in \mathbb{R} \right\}$$

Part 3: Which of these was easier? What features of the RREF matrix

$$\begin{bmatrix} 1 & 2 & 0 & | & 4 \\ 0 & 0 & 1 & | & -1 \end{bmatrix}$$
 caused this?

Section E.0

Section E.1

Section E.2

Section A.1

Section M.2

Definition E.2.7

Recall that the pivots of a matrix in RREF form are the leading 1s in each non-zero row.

The pivot columns in an augmented matrix correspond to the **bound variables** in the system of equations. The remaining variables are called free variables.

To efficiently solve a system in RREF form, we may assign letters to free variables and solve for the bound variables.

Section G

Section G.:

Activity E.2.8 (∼10 min)

Find the solution set for the system

$$2x_1 - 2x_2 - 6x_3 + x_4 - x_5 = 3$$

-x₁ + x₂ + 3x₃ - x₄ + 2x₅ = -3
x₁ - 2x₂ - x₃ + x₄ + x₅ = 2

by assigning letters to the free variables and solving for the bound variables in the simplified system given by row-reducing its augmented matrix.

Observation E.2.9

The solution set to the system

$$2x_1 - 2x_2 - 6x_3 + x_4 - x_5 = 3$$

$$-x_1 + x_2 + 3x_3 - x_4 + 2x_5 = -3$$

$$x_1 - 2x_2 - x_3 + x_4 + x_5 = 2$$

may be written as

$$\left\{ \begin{bmatrix} 1+5a+2b\\1+2a+3b\\a\\3+3b\\b \end{bmatrix} \middle| a,b \in \mathbb{R} \right\}.$$

Section I.0

Module E Section E.

Section E.1 Section E.2

Module V
Section V.0
Section V.1
Section V.2
Section V.3

Section V.

Module 5

Section S

Section S

Module /

Section A.2 Section A.3

. . . .

Section M.

Module 0

Section G.1 Section G.2

Remark E.2.10

Don't forget to correctly express the solution set of a linear system, using set-builder notation for consistent systems with infintely many solutions.

- Consistent with one solution: e.g. $\left\{\begin{bmatrix}1\\2\\3\end{bmatrix}\right\}$
- Consistent with infinitely-many solutions: e.g. $\left\{ \begin{vmatrix} 1 \\ 2-3a \\ a \end{vmatrix} \mid a \in \mathbb{R} \right\}$
- Inconsistent: Ø

Linear Algebra

Clontz & Lewis

Module I

Module E

Section E.0 Section E.1

Section E.2

Module V

tion V.U

Section V.

Section V.3 Section V.4

Module S

Section S.1

Section S.

Section A.1

Section A.2 Section A.3

Section

Module M

Section M.1

Section M.2

Module G

C--+:-- C

Section C

Section G.3

Module V: Vector Spaces

Module E Section E.0

Section E.1 Section E.2

Module V

Section V.:

Section V.3

Section V.4

Section S.1

Section S.3

Section A.1 Section A.2

Section A.3 Section A.4

Module N

Section M.1 Section M.2

Module

Section G.

Section G.2

What is a vector space?

Module I Section I.0

Module E Section E.0 Section E.1 Section E.2

Module V
Section V.0
Section V.1
Section V.2
Section V.3

Module S Section S.1 Section S.2 Section S.3

Module A
Section A.1
Section A.2
Section A.3
Section A.4

Section M.1 Section M.2

Module G Section G.1 Section G.2 At the end of this module, students will be able to...

- **V1. Vector property verification.** ... show why an example satisfies a given vector space property, but does not satisfy another given property.
- **V2. Vector space identification.** ... list the eight defining properties of a vector space, infer which of these properties a given example satisfies, and thus determine if the example is a vector space.
- **V3**. **Linear combinations.** ... determine if a Euclidean vector can be written as a linear combination of a given set of Euclidean vectors.
- **V4. Spanning sets.** ... determine if a set of Euclidean vectors spans \mathbb{R}^n .
- **V5. Subspaces.** ... determine if a subset of \mathbb{R}^n is a subspace or not.

Module I Section I.0

Section E.0 Section E.1 Section E.2

Module V
Section V.0
Section V.1
Section V.2

Section V.

Section S. Section S.

Module A

Section A.1 Section A.2 Section A.3

Module I

Section M.1 Section M.2 Section M.3

Section G.1 Section G.2

Readiness Assurance Outcomes

Before beginning this module, each student should be able to...

- Add Euclidean vectors and multiply Euclidean vectors by scalars.
- Add complex numbers and multiply complex numbers by scalars.
- Add polynomials and multiply polynomials by scalars.
- Perform basic manipulations of augmented matrices and linear systems E1,E2,E3.

Module I Section I.0

Section E.1 Section E.2

Module V

Section V.1 Section V.2 Section V.3 Section V.4

Module 9

Section S.2 Section S.3

Module A

Section A.1 Section A.2 Section A.3

Module

Section M.1 Section M.2

Module G

Section G.1 Section G.2 Section G.3 The following resources will help you prepare for this module.

- Adding and subtracting Euclidean vectors (Khan Acaemdy): http://bit.ly/2y8AOwa
- Linear combinations of Euclidean vectors (Khan Academy): http://bit.ly/2nK3wne
- Adding and subtracting complex numbers (Khan Academy): http://bit.ly/1PE3ZMQ
- Adding and subtracting polynomials (Khan Academy): http://bit.ly/2d5SLGZ

Linear Algebra Clontz &

Lewis

Module I

Module E Section E.0

Section E.1

Jection L.2

Section V.0

LIOII V.U

Section V.1

Section V.3

Section V.4

Module 3

Section S.1

Section S.3

Module A

Section A.1 Section A.2

Section A.3

Section M.1

Section M.2

Module G

Section G.1

Section G.

Section G.3

Module V Section 0

Activity V.0.1 (\sim 20 min)

Consider each of the following vector properties. Label each property with \mathbb{R}^1 , \mathbb{R}^2 , and/or \mathbb{R}^3 if that property holds for Euclidean vectors/scalars $\mathbf{u}, \mathbf{v}, \mathbf{w}$ of that dimension.

Addition associativity.

$$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}.$$

Addition commutivity.

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
.

Addition identity.

There exists some z where v + z = v.

Addition inverse.

There exists some $-\mathbf{v}$ where v + (-v) = z.

5 Addition midpoint uniqueness.

There exists a unique **m** where the distance from **u** to **m** equals the distance from m to v.

6 Scalar multiplication associativity. $a(b\mathbf{v})=(ab)\mathbf{v}.$

- Scalar multiplication identity.
- 8 Scalar multiplication relativity.

There exists some scalar c where either cv = w or cw = v.

Scalar distribution.

 $1\mathbf{v}=\mathbf{v}$.

$$a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}.$$

• Vector distribution.

$$(a+b)\mathbf{v}=a\mathbf{v}+b\mathbf{v}.$$

Orthogonality.

There exists a non-zero vector **n** such that \mathbf{n} is orthogonal to both \mathbf{u} and \mathbf{v} .

Bidimensionality.

$$\mathbf{v} = a\mathbf{i} + b\mathbf{j}$$
 for some value of a, b .

A **vector space** V is any collection of mathematical objects with associated addition and scalar multiplication operations that satisfy the following properties. Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ belong to V, and let a, b be scalar numbers.

- Addition associativity.
 u + (v + w) = (u + v) + w.
- Addition commutivity.
 - $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$.
- Addition identity.
 There exists some z where
 v + z = v.
- Addition inverse.
 There exists some -v where
 v + (-v) = z.

- Scalar multiplication associativity.
 a(bv) = (ab)v.
- Scalar multiplication identity.
 1v = v.
- Scalar distribution. a(u + v) = au + av.
- Vector distribution. (a + b)v = av + bv.

Section LC

Module E Section E.0

Section E.1

Section E.2

Module \

Section V.0

Section V. Section V.

Section V.3

Section V.4

Module S

Section S.1

Section S.3

Module /

Section A.1 Section A.2

Section A.3

NA - July

Module I

Section M.1 Section M.2

Section M.2 Section M.3

Module (

Section G

Section G.

Section G.:

Definition V.0.3

The most important examples of vector spaces are the **Euclidean vector spaces** \mathbb{R}^n , but there are other examples as well.

Linear Algebra

Clontz & Lewis

Module I

Module I

Section E.0 Section E.1

Section E.

Section V

Section V.1

Section V.2 Section V.3

Section V.4

iviodule 5

Section S.1

Section S.3

Module A

Section A.1 Section A.2

Section A.3

.

Section M.1

Section M.2

Module (

Section G

Section G

Section G.

Module V Section 1

Definition V.1.1

A **vector space** V is any collection of mathematical objects with associated addition and scalar multiplication operations that satisfy the following properties. Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ belong to V, and let a, b be scalar numbers.

- Addition associativity. $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}.$
- Addition commutivity.
 - $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$.
- Addition identity. There exists some **z** where v + z = v.
- Addition inverse. There exists some $-\mathbf{v}$ where v + (-v) = z.

- Scalar multiplication associativity. $a(b\mathbf{v}) = (ab)\mathbf{v}$.
- Scalar multiplication identity. $1\mathbf{v} = \mathbf{v}$.
- Scalar distribution. $a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$.
- Vector distribution. $(a+b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}$.

Module I Section I.0

Section E.0 Section E.1

Section V.0 Section V.1 Section V.2 Section V.3

Module S Section S.:

Section S.2 Section S.3

Module A Section A.1 Section A.2 Section A.3

Module N

Section M.1 Section M.2

Module G

Section G.1 Section G.2 Section G.3

Remark V.1.2

The following sets are examples of vector spaces, with the usual/natural operations for addition and scalar multiplication.

- \mathbb{R}^n : Euclidean vectors with n components.
- \mathbb{R}^{∞} : Sequences of real numbers (v_1, v_2, \dots) .
- $\mathbb{R}^{m \times n}$: Matrices of real numbers with m rows and n columns.
- ℂ: Complex numbers.
- \mathcal{P}^n : Polynomials of degree n or less.
- \mathcal{P} : Polynomials of any degree.
- $C(\mathbb{R})$: Real-valued continuous functions.

Module A Section A.1

Section A.2 Section A.3

Module I

Section M.1 Section M.2

Module G

Section G.: Section G.:

Section G.2 Section G.3 Activity V.1.3 (\sim 25 min)

Consider the following set that models motion along the curve $y = e^x$. Let $V = \{(x,y): y = e^x\}$. Let vector addition be defined by $(x_1,y_1) \oplus (x_2,y_2) = (x_1+x_2,y_1y_2)$, and let scalar multiplication be defined by $c \odot (x,y) = (cx,y^c)$.

Activity V.1.3 (\sim 25 min)

Consider the following set that models motion along the curve $y = e^x$. Let $V = \{(x, y) : y = e^x\}$. Let vector addition be defined by $(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 y_2)$, and let scalar multiplication be defined by $c \odot (x, y) = (cx, y^c).$

Part 1: Which of the vector space properties are satisfied by V paired with these operations?

- Addition associativity. $\mathbf{u} \oplus (\mathbf{v} \oplus \mathbf{w}) = (\mathbf{u} \oplus \mathbf{v}) \oplus \mathbf{w}.$
- Addition commutivity. $\mathbf{u} \oplus \mathbf{v} = \mathbf{v} \oplus \mathbf{u}$.
- Addition identity. There exists some **z** where $\mathbf{v} \oplus \mathbf{z} = \mathbf{v}$.
- Addition inverse. There exists some $-\mathbf{v}$ where $v \oplus (-v) = z$.

- Scalar multiplication associativity. $a \odot (b \odot \mathbf{v}) = (ab) \odot \mathbf{v}.$
- Scalar multiplication identity. $1 \odot \mathbf{v} = \mathbf{v}$.
- Scalar distribution. $a \odot (\mathbf{u} \oplus \mathbf{v}) = (a \odot \mathbf{u}) \oplus (a \odot \mathbf{v}).$
- Vector distribution. $(a+b)\odot \mathbf{v}=(a\odot \mathbf{v})\oplus (b\odot \mathbf{v}).$

Activity V.1.3 (\sim 25 min)

Consider the following set that models motion along the curve $y = e^x$. Let $V = \{(x, y) : y = e^x\}$. Let vector addition be defined by $(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 y_2)$, and let scalar multiplication be defined by $c \odot (x, y) = (cx, y^c).$

Part 1: Which of the vector space properties are satisfied by V paired with these operations?

- Addition associativity. $\mathbf{u} \oplus (\mathbf{v} \oplus \mathbf{w}) = (\mathbf{u} \oplus \mathbf{v}) \oplus \mathbf{w}.$
- Addition commutivity. $\mathbf{u} \oplus \mathbf{v} = \mathbf{v} \oplus \mathbf{u}$.
- Addition identity. There exists some **z** where $\mathbf{v} \oplus \mathbf{z} = \mathbf{v}$.
- Addition inverse. There exists some $-\mathbf{v}$ where $\mathbf{v} \oplus (-\mathbf{v}) = \mathbf{z}$.

- Scalar multiplication associativity. $a \odot (b \odot \mathbf{v}) = (ab) \odot \mathbf{v}.$
- Scalar multiplication identity. $1 \odot \mathbf{v} = \mathbf{v}$.
- Scalar distribution. $a \odot (\mathbf{u} \oplus \mathbf{v}) = (a \odot \mathbf{u}) \oplus (a \odot \mathbf{v}).$
- Vector distribution. $(a+b)\odot \mathbf{v}=(a\odot \mathbf{v})\oplus (b\odot \mathbf{v}).$

Part 2: Is V a vector space?

Module I Section I.0

Module E

Section E.0 Section E.1 Section E.2

Section V.0 Section V.1 Section V.2 Section V.3

Section V.

Section S. Section S.

Section S.3

Section A.1 Section A.2 Section A.3

Module I

Section M.1 Section M.2 Section M.3

Module G

Section G.2 Section G.3

Activity V.1.4 (\sim 10 min)

Let
$$V = \{(a,b) \mid a,b \in \mathbb{R}\}$$
, where $\begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$) $\oplus \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} a_1 + b_1 + a_2 + b_2 \\ a_1^2 + b_1^2 \end{bmatrix}$ and

$$c \odot \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} a_1^c \\ a_2 + c \end{bmatrix}$$
. Show that this is not a vector space by finding a

counterexample that does not satisfy one of the vector space properties.

- Addition associativity.
 u ⊕ (v ⊕ w) = (u ⊕ v) ⊕ w.
- Addition commutivity. $u \oplus v = v \oplus u$.
- Addition identity.
 There exists some z where
 v ⊕ z = v.
- Addition inverse.
 There exists some −v where
 v ⊕ (−v) = z.

 Scalar multiplication associativity.

$$a\odot(b\odot\mathbf{v})=(ab)\odot\mathbf{v}.$$

- Scalar multiplication identity.
 1 ⊙ v = v.
- Scalar distribution. $a \odot (\mathbf{u} \oplus \mathbf{v}) = (a \odot \mathbf{u}) \oplus (a \odot \mathbf{v}).$
- Vector distribution. $(a + b) \odot \mathbf{v} = (a \odot \mathbf{v}) \oplus (b \odot \mathbf{v}).$

Section M.2

Definition V.1.5

A linear combination of a set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ is given by $c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_m \mathbf{v}_m$ for any choice of scalar multiples c_1, c_2, \ldots, c_m .

For example, we say $\begin{bmatrix} 3 \\ 0 \\ 5 \end{bmatrix}$ is a linear combination of the vectors $\begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$

since

$$\begin{bmatrix} 3 \\ 0 \\ 5 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

Section I.0

Module E Section E.0

Section E.1

Section E.2

Section \

Section V.1

Section V.3

Section V.4

Module S

Section S

Section 5.2

. . . .

Section A.1

Section A.2

Section A.3

Module N

Section M

Section M.2 Section M.3

Module (

Wodule C

Section (

Section G.

Lewis

Definition V.1.6

The **span** of a set of vectors is the collection of all linear combinations of that set:

$$\mathsf{span}\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_m\}=\{c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_m\mathbf{v}_m\,|\,c_i \text{ is a real number}\}$$

Section E.0

Section E.2

Section V.1

Section V.3 Section V.4

Section A.1 Section A.2

Section A.3

Section M.2

Activity V.1.7 (\sim 10 min) Consider span $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

Section E.0 Section E.1

Section E.2

Section V.1

Section V.3

Section V.4

Section A.1

Section A.2

Section A.3

Section M.2

Section M.3

Activity V.1.7 (\sim 10 min)

Consider span $\left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$.

Part 1: Sketch $c \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ in the xy plane for c = 1, 3, 0, -2.

Section E.0 Section E.1

Section E.2

Section V.1

Section V.3

Section A.1

Section A.2 Section A.3

Section M.2 Section M.3

Activity V.1.7 (\sim 10 min)

Consider span $\left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$.

Part 1: Sketch $c \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ in the xy plane for c = 1, 3, 0, -2.

Part 2: Sketch a representation of all the vectors given by span $\left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$ in the xy plane.

Section E.0

Section E.2

Section V.1

Section V.3 Section V.4

Section A.1 Section A.2

Section A.3

Section M.2

Activity V.1.8 (\sim 10 min)

Consider span $\left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix} \right\}$.

Section V.3

Section A.2

Section M.2

Section M.3

Activity V.1.8 (\sim 10 min)

Consider span $\left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix} \right\}$.

Part 1: Sketch the following linear combinations in the xy plane: $1 \begin{vmatrix} 1 \\ 2 \end{vmatrix} + 0 \begin{vmatrix} -1 \\ 1 \end{vmatrix}$,

$$0\begin{bmatrix}1\\2\end{bmatrix}+1\begin{bmatrix}-1\\1\end{bmatrix},\ 2\begin{bmatrix}1\\2\end{bmatrix}+0\begin{bmatrix}-1\\1\end{bmatrix},\ 2\begin{bmatrix}1\\2\end{bmatrix}+1\begin{bmatrix}-1\\1\end{bmatrix}.$$

Activity V.1.8 (\sim 10 min)

Consider span $\left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix} \right\}$.

Part 1: Sketch the following linear combinations in the xy plane: $1 \begin{vmatrix} 1 \\ 2 \end{vmatrix} + 0 \begin{vmatrix} -1 \\ 1 \end{vmatrix}$,

$$0\begin{bmatrix}1\\2\end{bmatrix}+1\begin{bmatrix}-1\\1\end{bmatrix},\ 2\begin{bmatrix}1\\2\end{bmatrix}+0\begin{bmatrix}-1\\1\end{bmatrix},\ 2\begin{bmatrix}1\\2\end{bmatrix}+1\begin{bmatrix}-1\\1\end{bmatrix}.$$

Part 2: Sketch a representation of all the vectors given by span $\left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix} \right\}$ in the xy plane.

Section E.0

Section E.1

Section E.2

Section V.1

Section V.3

Section V.4

Section A.1

Section A.2

Section A.3

Section M.2

Section M.3

Activity V.1.9 (\sim 5 min)

Sketch a representation of all the vectors given by span $\left\{\begin{bmatrix} 6 \\ -4 \end{bmatrix}, \begin{bmatrix} -2 \\ 3 \end{bmatrix}\right\}$ in the xy plane.

Linear Algebra

Clontz & Lewis

Module I

Module E

Section E.0 Section E.1

Section E.

Section V

Section V.

Section V.2 Section V.3 Section V.4

Module S

Section S.1

Section S.3

Module A

Section A.1 Section A.2

Section A.3

Module M

Section M.1

Section M.2

Module (

Section G.

Section G

Section G.3

Module V Section 2

Section I.0

.

Module E Section E.0

Section E.1

Section E.2

Module \

Section V.0

Section V.1 Section V.2

Section V.3

Section V.

Module S

.....

Section S.2

Section S.3

Module 4

Section A.1

Section A.2

Section A.3

Module

Module I

Section M.2

Section M.2 Section M.3

Module G

C--+:-- C

Section

Section

Section C

Activity V.2.1 (\sim 15 min)

The vector $\begin{bmatrix} -1 \\ -6 \\ 1 \end{bmatrix}$ belongs to span $\left\{ \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix}, \begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix} \right\}$ exactly when the vector

equation $x_1 \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix} + x_2 \begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ -6 \\ 1 \end{bmatrix}$ holds for some scalars x_1, x_2 .

Section V.2

Section A.1

Section A.2

Section A.3

Section M.2

Activity V.2.1 (\sim 15 min)

The vector
$$\begin{bmatrix} -1 \\ -6 \\ 1 \end{bmatrix}$$
 belongs to span $\left\{ \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix}, \begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix} \right\}$ exactly when the vector equation $x_1 \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix} + x_2 \begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ -6 \\ 1 \end{bmatrix}$ holds for some scalars x_1, x_2 .

Part 1: Reinterpret this vector equation as a system of linear equations.

Section E.0 Section E.1

Section E.2

Section V.2

Section A.1 Section A.2 Section A.3

Section M.2

Activity V.2.1 (\sim 15 min)

The vector
$$\begin{bmatrix} -1 \\ -6 \\ 1 \end{bmatrix}$$
 belongs to span $\left\{ \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix}, \begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix} \right\}$ exactly when the vector equation $x_1 \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix} + x_2 \begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ -6 \\ 1 \end{bmatrix}$ holds for some scalars x_1, x_2 .

Part 1: Reinterpret this vector equation as a system of linear equations.

Part 2: Solve this system. (Remember, you should use a calculator to help find RREF.)

Section E.0

Section V.2

Section A.1

Section M.2

Activity V.2.1 (\sim 15 min)

The vector
$$\begin{bmatrix} -1 \\ -6 \\ 1 \end{bmatrix}$$
 belongs to span $\left\{ \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix}, \begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix} \right\}$ exactly when the vector $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} -1 \end{bmatrix}$ $\begin{bmatrix} -1 \end{bmatrix}$

equation $x_1 \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} + x_2 \begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ -6 \\ 1 \end{bmatrix}$ holds for some scalars x_1, x_2 .

Part 1: Reinterpret this vector equation as a system of linear equations.

Part 2: Solve this system. (Remember, you should use a calculator to help find RREF.)

Part 3: Given this solution, does $\begin{bmatrix} -1 \\ -6 \\ 1 \end{bmatrix}$ belong to span $\left\{ \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix}, \begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix} \right\}$?

Module I

Module E Section E.0

Section E.1 Section E.2

Module V

Section V.2 Section V.3

Section V.4

iviodule 3

Section S.2

Section S.3

Module /

Section A.1 Section A.2 Section A.3

Modulo I

Section M.1 Section M.2

Section M.2 Section M.3

Module G

Section G.: Section G.:

Section G.3

Fact V.2.2

A vector **b** belongs to span $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ if and only if the linear system corresponding to $[\mathbf{v}_1 \dots \mathbf{v}_n | \mathbf{b}]$ is consistent.

Section E.0

Section E.1 Section E.2

Section V.2 Section V.3

Section V.4

Section A.1 Section A.2

Section A.3

Section M.2

Remark V.2.3

To determine if **b** belongs to span $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$, find RREF $[\mathbf{v}_1 \dots \mathbf{v}_n | \mathbf{b}]$.

Section E.0

Section E.1

Section V.2 Section V.3

Section V.4

Section A.1 Section A.2

Section A.3

Section M.2

Section M.3

Activity V.2.4 (\sim 10 min)

appropriate matrix.

Determine if
$$\begin{bmatrix} 3 \\ -2 \\ 1 \\ 5 \end{bmatrix}$$
 belongs to span $\left\{ \begin{bmatrix} 1 \\ 0 \\ -3 \\ 2 \end{bmatrix}, \begin{bmatrix} -1 \\ -3 \\ 2 \\ 2 \end{bmatrix} \right\}$ by row-reducing an

$$\left\{ \begin{array}{c} 0 \\ -3 \\ 2 \end{array} \right.$$

Section LC

Module F

Module E Section E.0

Section E.1

Section E.2

Module \

Section V.

Section V.

Section V.2

Section V.3

Section V.4

Module S

Section S 1

Section S

Section 5.

Module A

Section A.1

Section A.2

Section A.3

Module

Section M.2

Section M.2 Section M.3

Module (

iviodule G

Section (

Section

Section G

Activity V.2.5 (\sim 5 min)

Determine if
$$\begin{bmatrix} -1 \\ -9 \\ 0 \end{bmatrix}$$
 belongs to span $\left\{ \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix}, \begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix} \right\}$ by row-reducing an

appropriate matrix.

Section I.0

Section E.0 Section E.1 Section E.2

Section V.0 Section V.1 Section V.2

Section V.2 Section V.3 Section V.4

Module S Section S.1

Section 5.1

Module A

Section A.1 Section A.2 Section A.3

Module N

Section M.1 Section M.2 Section M.3

Module G

Section G.1 Section G.2

Observation V.2.6

So far we've only discussed linear combinations of Euclidean vectors. Fortunately, many vector spaces of interest can be reinterpreted as an **isomorphic** Euclidean space \mathbb{R}^n ; that is, a Euclidean space that mirrors the behavior of the vector space exactly.

Section E.0

Section E.1

Section E.2

Section V.2

Section V.3

Section A.1 Section A.2

Section A.3

Section M.2

Section M.3

Activity V.2.7 (\sim 5 min)

We previously checked that
$$\begin{bmatrix} 3 \\ -2 \\ 1 \\ 5 \end{bmatrix}$$
 does not belong to span $\left\{ \begin{bmatrix} 1 \\ 0 \\ -3 \\ 2 \end{bmatrix}, \begin{bmatrix} -1 \\ -3 \\ 2 \\ 2 \end{bmatrix} \right\}$.

Does
$$f(x) = 3x^3 - 2x^2 + x + 5$$
 belong to

span
$$\{x^3 - 3x + 2, -x^3 - 3x^2 + 2 + 2x + 2\}$$
?

Section E.0

Section E.1

Section E.2

Section V.2

Section V.3

Section V.4

Section A.1

Section A.2

Section A.3

Section M.2

Section M.3

Activity V.2.8 (\sim 10 min)

Does the matrix $\begin{bmatrix} 3 & -2 \\ 1 & 5 \end{bmatrix}$ belong to span $\left\{ \begin{bmatrix} 1 & 0 \\ -3 & 2 \end{bmatrix}, \begin{bmatrix} -1 & -3 \\ 2 & 2 \end{bmatrix} \right\}$?

Module I

Module E

Section E.0

Section E.1 Section E.2

Module \

Section V

Section V.1 Section V.2

Section V.3

Section V.3

Module S

C C 1

Section S.2

Section S

Madula

Section A.1

Section A.2 Section A.3

Module I

Section M.1 Section M.2

Section M.2 Section M.3

Module (

ection G

Section

Section G.3

Activity V.2.9 (\sim 5 min)

Does the complex number 2i belong to span $\{-3+i, 6-2i\}$?

Linear Algebra Clontz &

Lewis

Module I

Module E

Section E.0 Section E.1

Section E.:

Module \

Section V

Section V

Section V.3

Section V.4

Module 5

Section S.1

Section S.3

Module A

Section A.1 Section A.2

Section A.3

Decelon 7t.

Module M

Section M.1

Section M.2

Section M.3

iviodule (

Section G.

Section G

Section G.

Module V Section 3

Section I C

Module E

Section E.0 Section E.1

Section E.1 Section E.2

Module \

Section V. Section V.

Section V.2 Section V.3

Section V.4

Module S

Section S.1

Section S.2

Module A

Section A.1 Section A.2 Section A.3

.

Control

Section M.2 Section M.3

Module (

Module (

Section G Section G

Section G.

Activity V.3.1 (\sim 5 min)

How many vectors are required to span \mathbb{R}^2 ? Sketch a drawing in the xy plane to support your answer.

- (a) 1
- (b) 2
- (c) 3
- (d) 4
- (e) Infinitely Many

Section E.0 Section E.1

Section E.2

Section V.3

Section V.4

Section A.1 Section A.2

Section A.3

Section M.2 Section M.3

Activity V.3.2 (\sim 5 min)

How many vectors are required to span \mathbb{R}^3 ?

- (a) 1
- (b) 2
- (c)
- Infinitely Many

Section E.0

Section E.1

Section E.2

Section V.3

Section V.4

Section A.1

Section A.2

Section A.3

Section M.2

Fact V.3.3

At least n vectors are required to span \mathbb{R}^n .

Section E.0

Section E.1

Section E.2

Section V.3

Section A.1

Section A.2

Section A.3

Section M.2

Section M.3

Activity V.3.4 (\sim 10 min)

Choose a vector $\begin{bmatrix} a \\ b \end{bmatrix}$ in \mathbb{R}^3 that is not in span $\left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix} \right\}$ by ensuring $\begin{bmatrix} 1 & -2 & | & a \\ -1 & 0 & | & b \\ 0 & 1 & | & c \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & | & 0 \\ 0 & 1 & | & 0 \\ 0 & 0 & | & 1 \end{bmatrix}.$ (Why does this work?)

Section E.0 Section E.1

Section E.2

Section V.3

Section V.4

Section A.1

Section A.2

Section A.3

Section M.2 Section M.3

Fact V.3.5

The set $\{\mathbf{v}_1,\ldots,\mathbf{v}_m\}$ fails to span all of \mathbb{R}^n exactly when RREF $[\mathbf{v}_1\ldots\mathbf{v}_m]$ has a row of zeros:

$$\begin{bmatrix} 1 & -2 \\ -1 & 0 \\ 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -2 & | & a \\ -1 & 0 & | & b \\ 0 & 1 & | & c \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & | & 0 \\ 0 & 1 & | & 0 \\ 0 & 0 & | & 1 \end{bmatrix}$$

Section E.0

Section E.1

Section E.2

Section V.3

Section V.4

Section A.1

Section A.2

Section A.3

Section M.2

Section M.3

Activity V.3.6 (\sim 5 min)

 $\mathbb{R}^4 = \operatorname{span} S$?

Consider the set of vectors
$$S = \left\{ \begin{bmatrix} 2\\3\\0\\-1 \end{bmatrix}, \begin{bmatrix} 1\\-4\\3\\0 \end{bmatrix}, \begin{bmatrix} 2\\0\\0\\3 \end{bmatrix}, \begin{bmatrix} 0\\3\\5\\7 \end{bmatrix}, \begin{bmatrix} 3\\13\\7\\16 \end{bmatrix} \right\}$$
. Does

$$\left(egin{bmatrix} 0 \ -1 \end{bmatrix} \right)$$

$$\begin{bmatrix} 0 \\ -1 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 3 \end{bmatrix}$$

$$\begin{bmatrix} 5 \\ 7 \end{bmatrix}$$
, $\begin{bmatrix} 7 \\ 1 \end{bmatrix}$

$$\begin{bmatrix} 13 \\ 7 \end{bmatrix}$$
 . Does

Section G.2 Section G.3

Activity V.3.7 (\sim 10 min)

Consider the set of third-degree polynomials

$$S = \{2x^3 + 3x^2 - 1, 2x^3 + 3, 3x^3 + 13x^2 + 7x + 16, -x^3 + 10x^2 + 7x + 14, 4x^3 + 3x^2 + 10x^3 + 10x^3$$

Does $\mathcal{P}^3 = \operatorname{span} S$?

Linear Algebra Clontz &

Lewis

Module I

Module E Section E.0

Section E.0

Section E.2

iviodule v

Section V.:

Section V.

Section V.3

Section V.4

Module 5

Section S.1

Section S.2

Mandada A

Section A.1 Section A.2

Section A.3

Section A

Module M

Section M.1

Section M.2

Module (

Section G.

Section G

Section G.3

Module V Section 4

Section E.0

Section E.1 Section E.2

Section V.3

Section V.4

Section A.1 Section A.2

Section A.3

Section M.2

Section M.3

Definition V.4.1

A subset of a vector space is called a **subspace** if it is itself a vector space.

Section E.0 Section E.1

Section E.2

Section V.3 Section V.4

Section A.1

Section A 2 Section A.3

Section M.2

Remark V.4.2

To prove that a subset S is a subspace of a vectorspace V, you need only verify that the operations on V restrict to the subset S; that is you must check two things:

- The set is **closed under addition**: i.e. for any $x, y \in S$, x + y is also in S.
- The set is closed under scalar multiplication: i.e. for any $x \in S$ and scalar $c \in \mathbb{R}$, the product $c\mathbf{x}$ is also in S.

Section A.1 Section A.2

Section A.3

Section M.2

Section M.3

Activity V.4.3 (∼15 min)

Let
$$S = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \middle| x + 2y + z = 0 \right\}.$$

Section E.0

Section E.1 Section E.2

Section V.3

Section V.4

Section A.1

Section A.2

Section A.3

Section M.2

Section M.3

Activity V.4.3 (\sim 15 min)

Let
$$S = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \middle| x + 2y + z = 0 \right\}.$$

$$\begin{vmatrix} x_1 \\ y_1 \end{vmatrix}$$
 and $\mathbf{w} = \begin{vmatrix} x_2 \\ y_2 \end{vmatrix}$

well.

Part 1: Let $\mathbf{v} = \begin{bmatrix} x_1 \\ y_1 \\ z_3 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} x_2 \\ y_2 \\ z_3 \end{bmatrix}$. Show that if $\mathbf{v}, \mathbf{w} \in S$, then $\mathbf{v} + \mathbf{w} \in S$ as

Section V.4

Section A.1

Section A.2

Section A.3

Section M.2

Activity V.4.3 (\sim 15 min)

Let
$$S = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \middle| x + 2y + z = 0 \right\}.$$

Part 1: Let
$$\mathbf{v} = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}$$
 and $\mathbf{w} = \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}$. Show that if $\mathbf{v}, \mathbf{w} \in S$, then $\mathbf{v} + \mathbf{w} \in S$ as

well.

Part 2: Let
$$\mathbf{v} = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}$$
 and let $c \in \mathbb{R}$. Show that if $\mathbf{v} \in S$, then $c\mathbf{v} \in S$ as well.

Therefore S is a subspace of \mathbb{R}^3

Section E.0 Section E.1

Section E.2

Section A.1

Section A.3

Section M.3

Activity V.4.4 (\sim 10 min)

multiplication.

Prove that $P = \{ax^2 + b \mid a, b \in \mathbb{R}\}$ is a subspace of the vector space of all degree-two polynomials by showing it is closed under addition and scalar

Section V.3

Section V.4

Section A.2

Section M.2

Section E.0

Section E.1 Section E.2

Section V.3

Section V.4

Section A.1

Section A.2

Section A.3

Section M.2

Section M.3

Activity V.4.5 (\sim 10 min)

Let P be the set of all positive real numbers. Determine if P is a subspace of $\mathbb R$ or not.

Section E.0 Section E.1 Section E.2

Section V.3 Section V.4

Section A.1 Section A.2

Section A.3

Section M.2

Section M.3

Remark V.4.6

Since 0 is a scalar and $0\mathbf{v} = \mathbf{0}$ for any vector \mathbf{v} , a set that is closed under scalar multiplication must contain the zero vector.

Therefore, if a set does **not** contain the zero vector, it is **not** a subspace.

Section E.0

Section E.1

Section E.2

Section V.3

Section V.4

Section A.1

Section A.2

Section A.3

Section M.2 Section M.3

Activity V.4.7 (\sim 10 min)

Consider the subset of \mathbb{R}^2 where at least one coordinate of each vector is 0.

Determine if this is a subspace of \mathbb{R}^2 or not.

Module 5

Section S.

Section S

Section 9

.. . . .

Section A.1

Section A.2

Section A

Section A.3

Module

Module I

Section M.1 Section M.2

Section IVI.

Section M.3

iviounie (

Section G.

Section

Section G.3

Activity V.4.8 (\sim 5 min)

Show that the set of 2×2 matrices

$$S = \left\{ \begin{bmatrix} a & b \\ -b & -a \end{bmatrix} : a, b \text{ are real numbers} \right\}$$

is a subspace of $\mathbb{R}^{2\times 2}$.

Section I.0

Module E

Section E.0 Section E.1

Section E.1 Section E.2

Module \

Section V. Section V.

Section V.2 Section V.3

Section V.4

Section V.

Module S

Section S.

Section S

Module A

Section A.1 Section A.2

Section A.2 Section A.3

Mariana I

Module I

Section M.

Section M.2

Section M.3

Module G

Section G.:

Section (

Section G.

Activity V.4.9 (~10 min)

Let W be a subspace of a vector space V. How are span W and W related?

- (a) span W is bigger than W
- (b) span W is the same as W
- (c) span W is smaller than W

Section E.0

Section E.1

Section E.2

Section V.3

Section V.4

Section A.1

Section A.2

Section A.3

Section M.2

Section M.3

Fact V.4.10

If S is a subset of a vector space V, then span S is a subspace of V. In fact, it is the smallest subspace of V containing S.

Module I

Module E

Section E.0 Section E.1

Section E.2

Module \

Section V.

Section V.

Section V.3

Section V.4

Module S

Section S.1

Section 5.2

Module A

Section A.1

Section A.2 Section A.3

C -- 4:---

NA - July NA

Wiodule Wi

Section M.1

Section M.2

Section M.3

Module G

ection G

Section (

Section G.3

Module S: Structure of vector spaces

Module I

Module E Section E.0

Section E.1

Section E.2

Module \

Section V.

Section V.2 Section V.3

Section V.4

 $\mathsf{Module}\;\mathsf{S}$

Section S.1 Section S.2

Section 5

Section A.1

Section A.2 Section A.3

Madula

Section M.1

Section M.2 Section M.3

Module

ection G

Section (

Section G

What structure do vector spaces have?

Section I.0

Section E.0 Section E.1 Section E.2

Section V.0 Section V.1 Section V.2 Section V.3 Section V.4

Module S Section S.1

Section S.2 Section S.3

Section A.1 Section A.2 Section A.3

Module 1

Section M.1 Section M.2

Module G Section G.1 Section G.2 At the end of this module, students will be able to...

- **S1. Linear independence.** ... determine if a set of Euclidean vectors is linearly dependent or independent.
- **S2.** Basis verification. ... determine if a set of Euclidean vectors is a basis of \mathbb{R}^n .
- **S3.** Basis computation. ... compute a basis for the subspace spanned by a given set of Euclidean vectors.
- **S4. Dimension.** ... compute the dimension of a subspace of \mathbb{R}^n .
- **S5. Abstract vector spaces.** ... solve exercises related to standards V3-S4 when posed in terms of polynomials or matrices.
- **S6. Basis of solution space.** ... find a basis for the solution set of a homogeneous system of equations.

Module I Section I.0

Section E.0

Section E.1 Section E.2

Module Section V

Section V.2 Section V.3 Section V.4

Module S

Section S

Module /

Section A.1 Section A.2

Section A.3

Module

Section M.1 Section M.2

Section M.

Module G

Section G.: Section G.:

Readiness Assurance Outcomes

Before beginning this module, each student should be able to...

- Add Euclidean vectors and multiply Euclidean vectors by scalars.
- Perform basic manipulations of augmented matrices and linear systems E1,E2,E3.
- Apply linear combinations and spanning sets V2,V3.

Module I Section I.0

Section E.0 Section E.1

Section V.0 Section V.1 Section V.2 Section V.3

Module S

Section S.

Module /

Section A.1 Section A.2 Section A.3

Module I

Section M.1 Section M.2

Module G

Section G.1 Section G.2 Section G.3 The following resources will help you prepare for this module.

- Adding and subtracting Euclidean vectors (Khan Acaemdy): http://bit.ly/2y8AOwa
- Linear combinations of Euclidean vectors (Khan Academy): http://bit.ly/2nK3wne
- Adding and subtracting complex numbers (Khan Academy): http://bit.ly/1PE3ZMQ
- Adding and subtracting polynomials (Khan Academy): http://bit.ly/2d5SLGZ

Linear Algebra

Clontz & Lewis

Module I

Module E Section E.0

Section E.1

Section E.2

Section V

Section V.:

Section V.2 Section V.3 Section V.4

Section S.1

Section S.2

.

Section A.1 Section A.2

Section A.3

.

Section M.1

Section M.2

Module C

Section G.

Section G.

Module S Section 1

Module I

Module E Section E.0

Section E.1 Section E.2

Module \(\)
Section \(\)

Section V.2 Section V.3

Section V.3

Module

Section S.1

Section S

Section S

Module

Section A.1

Section A.2 Section A.3

Module I

Section M

Section M.2

Module G

Section G.

Section (

Activity S.1.1 (\sim 15 min)

In the previous module, we considered

$$S = \left\{ \begin{bmatrix} 2\\3\\0\\-1 \end{bmatrix}, \begin{bmatrix} 2\\0\\0\\3 \end{bmatrix}, \begin{bmatrix} 3\\13\\7\\16 \end{bmatrix}, \begin{bmatrix} -1\\10\\7\\14 \end{bmatrix}, \begin{bmatrix} 4\\3\\0\\2 \end{bmatrix} \right\}$$

and showed that span $S \neq \mathbb{R}^4$. Find two vectors from this set that are linear combinations of the other three vectors.

Module I

Module E

Section E.0 Section E.1

Section E.2

Module \(\)
Section \(\)

Section V.2 Section V.3

Section V.3 Section V.4

Module S

Section S.1 Section S.2

Section S.3

Module /

Section A.1 Section A.2

Section A.3

Modula

Section M.1 Section M.2

Section M.3

Module G

Section G.1

Section G

Section G.

Definition S.1.2

We say that a set of vectors is **linearly dependent** if one vector in the set belongs to the span of the others. Otherwise, we say the set is **linearly independent**.

Section I.0

Section E.0 Section E.1

Section E.1 Section E.2

Module 1

Section V.2 Section V.3

Section V.

Module S

Section S.1 Section S.2

Decelor D.

Module A

Section A.1 Section A.2 Section A.3

Madulad

Module N

Section M.1 Section M.2

Section M.3

Module G

Section G.

Section G.3

Activity S.1.3 (\sim 10 min)

Suppose $3\mathbf{v}_1 - 5\mathbf{v}_2 = \mathbf{v}_3$, so the set $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly dependent. Is the vector equation $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 = \mathbf{0}$ consistent with one solution, consistent with infinitely many solutions, or inconsistent?

Section E.0

Section E.1

Section E.2

Section V.3

Section V.4

Section S.1

Section A.1

Section A.2

Section A.3

Section M.2

Section M.3

Fact S.1.4

The set $\{\mathbf{v}_1, \dots \mathbf{v}_n\}$ is linearly dependent if and only if $x_1\mathbf{v}_1 + \dots + x_n\mathbf{v}_n = \mathbf{0}$ is consistent with infinitely many solutions.

Section

Section

Module 4

Section A.1 Section A.2

Section A.2 Section A.3

Modulo

C ... M

Section M.1

Module G

Module G

Section C

Section G

Activity S.1.5 (\sim 10 min)

Find

RREF
$$\begin{bmatrix} 2 & 2 & 3 & -1 & 4 & 0 \\ 3 & 0 & 13 & 10 & 3 & 0 \\ 0 & 0 & 7 & 7 & 0 & 0 \\ -1 & 3 & 16 & 14 & 2 & 0 \end{bmatrix}$$

and mark the part of the matrix that demonstrates that

$$S = \left\{ \begin{bmatrix} 2\\3\\0\\-1 \end{bmatrix}, \begin{bmatrix} 2\\0\\0\\3 \end{bmatrix}, \begin{bmatrix} 3\\13\\7\\16 \end{bmatrix}, \begin{bmatrix} -1\\10\\7\\14 \end{bmatrix}, \begin{bmatrix} 4\\3\\0\\2 \end{bmatrix} \right\}$$

is linearly dependent.

Module I

Module F

Section E.0

Section E.1 Section E.2

Module '

Section V.

Section V

Section V.2

Section V.3

Module S

Section S.1

Section 5.2

.

Section A.1

Section A.2

Section A.3

Module N

.....

Section M.2

Section M.2 Section M.3

Module (

C--+:-- C

Section (

Section G.:

Fact S.1.6

A set of Euclidean vectors $\{\mathbf{v}_1, \dots \mathbf{v}_n\}$ is linearly dependent if and only if RREF $[\mathbf{v}_1 \dots \mathbf{v}_n]$ has a column without a pivot position.

Section E.0 Section E.1

Section E.2

Section V.3

Section V.4

Section S.1

Section A.1 Section A.2

Section A.3

Section M.2

Section M.3

Activity S.1.7 (\sim 5 min)

Is the set of Euclidean vectors

linearly dependent or

linearly independent?

Section E.0

Section E.1

Section E.2

Section V.3

Section V.4

Section S.1

Section A.1

Section A.2

Section A.3

Section M.2

Section M.3

Activity S.1.8 (\sim 10 min)

Is the set of polynomials $\{x^3+1, x^2+2, 4-7x, 2x^3+x\}$ linearly dependent or linearly independent?

Linear Algebra

Clontz & Lewis

Module I

Module E Section E.0

Section E.1

Section E.2

iviodule v

Section V.

Section V.2 Section V.3

Section V.4

Module S

Section S.1

Section S.3

Module A Section A.1

Section A.2 Section A.3

Section A

Module M

Section M.1

Section M.2

Module (

Section G.

Section G

Section G.3

Module S Section 2

Section E.0 Section E.1

Section E.2

Section V.3

Section V.4

Section S.2

Section A.1 Section A.2

Section A.3

Section M.2

Section M.3

Activity S.2.1 (\sim 10 min)

Last time we saw that $\{x^3 + 1, x^2 + 2, 4 - 7x, 2x^3 + x\}$ is linearly independent. Show that it spans \mathcal{P}^3 .

Section E.0

Section E.1 Section E.2

Section V.3

Section V.4

Section S.2

Section A.1

Section A.2

Section A.3

Section M.2

Definition S.2.2

A basis is a linearly independent set that spans a vector space.

Section E.0

Section E.1

Section E.2

Section V.3 Section V.4

Section S.2

Section A.1 Section A.2

Section A.3

Section M.2

Section M.3

Observation S.2.3

A basis may be thought of as a collection of building blocks for a vector space, since every vector in the space can be expressed as a unique linear combination of basis vectors.

Section V.

Section V.2

Section V.3 Section V.4

Module

Section S.1

Section S.2

Section S.:

Section A.1 Section A.2 Section A.3

Madula

Section M.

Section M.1 Section M.2 Section M.3

Module G

Section G.1

Section G.:

Activity S.2.4 (\sim 15 min)

Which of the following sets are bases for \mathbb{R}^4 ?

$$\left\{ \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1\\1 \end{bmatrix} \right\}$$

$$\left\{ \begin{bmatrix} 2\\3\\0\\-1 \end{bmatrix}, \begin{bmatrix} 2\\0\\0\\3\\1 \end{bmatrix}, \begin{bmatrix} 3\\13\\7\\16 \end{bmatrix}, \begin{bmatrix} -1\\10\\7\\14 \end{bmatrix}, \begin{bmatrix} 4\\3\\0\\2 \end{bmatrix} \right\}$$

$$\left\{ \begin{bmatrix} 5\\5 \end{bmatrix}, \begin{bmatrix} -2\\1 \end{bmatrix}, \begin{bmatrix} 4\\1 \end{bmatrix}, \begin{bmatrix} 4\\3\\0\\2 \end{bmatrix} \right\}$$

$$\left\{ \begin{bmatrix} 2\\3\\0\\0 \end{bmatrix}, \begin{bmatrix} 2\\0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 4\\3\\0\\1\\3 \end{bmatrix}, \begin{bmatrix} -3\\0\\1\\3\\0\\-1 \end{bmatrix}, \begin{bmatrix} 2\\3\\0\\0\\2 \end{bmatrix}, \begin{bmatrix} 4\\3\\0\\1\\3 \end{bmatrix}, \begin{bmatrix} 3\\6\\1\\1\\5 \end{bmatrix} \right\}$$

$$\left\{ \begin{bmatrix} 5\\3\\0\\-1 \end{bmatrix}, \begin{bmatrix} -2\\1\\0\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\1\\3 \end{bmatrix} \right\}$$

Section I.0

Module E Section E.0

Section E.1 Section E.2

Module '

Section V.

Section V.3 Section V.4

Module S

Section S.:

Section S.2

NA - dud - A

Section A.1 Section A.2

Section A.2 Section A.3

Module I

Module I

Section M.1 Section M.2

Section IVI.2 Section M.3

Module G

Section G.1

Section G

Section G.

Activity S.2.5 (\sim 10 min)

If $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ is a basis for \mathbb{R}^4 , that means RREF $[\mathbf{v}_1 \mathbf{v}_2 \mathbf{v}_3 \mathbf{v}_4]$ doesn't have a column without a pivot position, and doesn't have a row of zeros. What is RREF $[\mathbf{v}_1 \mathbf{v}_2 \mathbf{v}_3 \mathbf{v}_4]$?

Section M.2

Fact S.2.6

The set $\{\mathbf v_1,\dots,\mathbf v_m\}$ is a basis for $\mathbb R^n$ if and only if m=n and

$$\mathsf{RREF}[\mathbf{v}_1 \dots \mathbf{v}_n] = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}.$$

That is, a basis for \mathbb{R}^n must have exactly n vectors and its square matrix must row-reduce to the identity matrix containing all zeros except for a downward diagonal of ones.

Section E.0

Section E.1

Section V.3

Section V.4

Section S.2

Section A.1

Section A.2

Section A.3

Section M.2

Activity S.2.7 (\sim 10 min)

Consider the set

Section E.0

Section E.1

Section E.2

Nodule V

Section V

Section V

Section V.2

Section V.

Section V.

Module 5

Section S.1

Section S.2

Section S

Section A.1

Section A.2

Section A.3

Modula

Module I

Section M.1 Section M.2

Section M.2 Section M.3

Module 0

Module G

Section (

Section G.

Activity S.2.7 (\sim 10 min)

Consider the set
$$\left\{ \begin{bmatrix} 2\\3\\0\\1 \end{bmatrix}, \begin{bmatrix} 2\\0\\1\\-1 \end{bmatrix}, \begin{bmatrix} 2\\-3\\2\\-3 \end{bmatrix}, \begin{bmatrix} 1\\5\\-1\\0 \end{bmatrix} \right\}$$
.

Part 1: Use RREF
$$\begin{bmatrix} 2 & 2 & 2 & 1 \\ 3 & 0 & -3 & 5 \\ 0 & 1 & 2 & -1 \\ 1 & -1 & -3 & 0 \end{bmatrix}$$

make the set linearly independent.

to identify which vector may be removed to

Section S.2

Section M.2

Section M.3

Consider the set $\left\{ \begin{bmatrix} 2\\3\\0 \end{bmatrix}, \begin{bmatrix} 2\\0\\1 \end{bmatrix}, \begin{bmatrix} 2\\-3\\2 \end{bmatrix}, \begin{bmatrix} 1\\5\\-1 \end{bmatrix} \right\}$.

Activity S.2.7 (\sim 10 min)

Part 1: Use RREF
$$\begin{bmatrix} 2 & 2 & 2 & 1 \\ 3 & 0 & -3 & 5 \\ 0 & 1 & 2 & -1 \\ 1 & -1 & -3 & 0 \end{bmatrix}$$
 to identify which vector may be removed to

make the set linearly independent.

Part 2: Find a basis for span $\left\{ \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ -3 \\ 2 \end{bmatrix}, \begin{bmatrix} 5 \\ -1 \\ 0 \end{bmatrix} \right\}.$

Linear Algebra

Clontz & Lewis

Module I

Module E Section E.0

Section E.1

Section E.2

Module \

Section V.

Section V.

Section V.3 Section V.4

Module

Section S.

Section 5.2

Module A

Section A.1 Section A.2

Section A.3

Mandada NA

Section M.1

Section M.2

Module (

Section G.

Section G.

Module S Section 3

Section I.0

Module E Section E.0

Section E.1 Section E.2

Module \
Section V

Section V.2 Section V.3

Section V.4

Section S 1

Section S.2 Section S.3

Madula

Section A.1 Section A.2

Section A.3

Modula

Section M.1 Section M.2

Section IVI.2 Section M.3

Module (

Section G.:

Section G

Section G.3

Fact S.3.1

To compute a basis for the subspace span $\{\mathbf{v}_1, \dots, \mathbf{v}_m\}$, simply remove the vectors corresponding to the non-pivot columns of RREF $[\mathbf{v}_1 \dots \mathbf{v}_m]$.

Section S.3

Section A.1

Section A.2

Section A.3

Section M.2

Section M.3

Activity S.3.2 (\sim 10 min)

Find all subsets of
$$S = \left\{ \begin{bmatrix} 2\\3\\0\\1\\-1 \end{bmatrix}, \begin{bmatrix} 2\\0\\1\\2\\-3 \end{bmatrix}, \begin{bmatrix} 2\\5\\-1\\0 \end{bmatrix} \right\}$$
 that are a basis for span S

by changing the order of the vectors in \bar{S} .

Section E.0 Section E.1

Section E.2

Section V.3

Section V.4

Section S.3

Section A.1

Section A.2

Section A.3

Section M.2

Section M.3

Activity S.3.3 (\sim 10 min)

Assume $\mathbf{w}_1 \neq \mathbf{w}_2$ are distinct vectors in V, which has a basis containing a single vector: $\{\mathbf{v}\}$. Could $\{\mathbf{w}_1, \mathbf{w}_2\}$ be a basis?

Section E.0

Section E.1 Section E.2

Section V.3

Section V.4

Section S.3

Section A.1

Section A.2 Section A.3

Section M.2

Fact S.3.4

All bases for a vector space are the same size.

Section E.0

Section E.1 Section E.2

Section V.3 Section V.4

Section S.3

Section A.1

Section A.2 Section A.3

Section M.2

Section M.3

Definition S.3.5

The dimension of a vector space is given by the cardinality/size of any basis for the vector space.

Section S.3

Section A.1 Section A.2 Section A.3

Section M.2

Activity S.3.6 (\sim 15 min)

Find the dimension of each subspace of \mathbb{R}^4 .

$$\mathsf{span}\left\{\begin{bmatrix}1\\0\\0\\0\end{bmatrix},\begin{bmatrix}0\\1\\0\\0\end{bmatrix},\begin{bmatrix}0\\0\\1\\0\end{bmatrix},\begin{bmatrix}0\\0\\1\\1\end{bmatrix}\right\}$$

$$\mathsf{span}\left\{ \begin{bmatrix} 2\\3\\0\\-1 \end{bmatrix}, \begin{bmatrix} 2\\0\\0\\3 \end{bmatrix}, \begin{bmatrix} 4\\3\\0\\2 \end{bmatrix}, \begin{bmatrix} -3\\0\\1\\3 \end{bmatrix} \right\}$$

$$\mathsf{span} \left\{ \begin{bmatrix} 2 \\ 3 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} 3 \\ 13 \\ 7 \\ 16 \end{bmatrix}, \begin{bmatrix} -1 \\ 10 \\ 7 \\ 14 \end{bmatrix}, \begin{bmatrix} 4 \\ 3 \\ 0 \\ 2 \end{bmatrix} \right\} \quad \mathsf{span} \left\{ \begin{bmatrix} 2 \\ 3 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 4 \\ 3 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} -3 \\ 0 \\ 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 3 \\ 6 \\ 1 \\ 5 \end{bmatrix} \right\}$$

$$\mathsf{span}\left\{ \begin{bmatrix} 2\\3\\0\\-1 \end{bmatrix}, \begin{bmatrix} 4\\3\\0\\2 \end{bmatrix}, \begin{bmatrix} -3\\0\\1\\3 \end{bmatrix}, \begin{bmatrix} 3\\6\\1\\5 \end{bmatrix} \right\}$$

$$\mathsf{span}\left\{ \begin{bmatrix} 5\\3\\0\\-1 \end{bmatrix}, \begin{bmatrix} -2\\1\\0\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\1\\3 \end{bmatrix} \right\}$$

Section I.0

Module E

Section E.0 Section E.1

Section E.1 Section E.2

Module

Section \

Section 1

Section V

Section V.3

Section V.4

Module S

.....

Section S

Section S.3

Module A

Section A.1

Section A.2

Section A.3

Maritia

iviodule

Section IVI.

Section M.2 Section M.3

Module G

Section G 1

Section G

Section G.3

Activity S.3.7 (\sim 5 min)

What is the dimension of the vector space of 7th-degree (or less) polynomials \mathcal{P}^7 ?

a) 6

b) 7

c) 8

d) infinite

Section I

Module F

Section E.0 Section E.1

Section E.1

Module

Section \

Section \

Section V

Section V.3

Section V.4

Module S

Section S 1

Section S.

Section S.3

Module A

Section A.1

Section A.2

Section A.3

NA - July 1

Module

Section IVI.1 Section M.2

Section IVI.

Module G

Section G.1

Section G

Section G.

Activity S.3.8 (\sim 5 min)

What is the dimension of the vector space of all polynomials \mathcal{P} ?

a) 6

b) 7

c) 8

d) infinite

Section I.0

Section E.0 Section E.1

Module V
Section V.0
Section V.1
Section V.2
Section V.3

Module S

Section 5.2 Section 5.3

Module A

Section A.1 Section A.2 Section A.3

Madula

Section M.1 Section M.2

Module G

Section G.1 Section G.2 Section G.3

Observation S.3.9

Several interesting vector spaces are infinite-dimensional:

- The space of polynomials \mathcal{P} (consider the set $\{1, x, x^2, x^3, \dots\}$).
- The space of continuous functions $C(\mathbb{R})$ (which contains all polynomials, in addition to other functions like $e^x = 1 + x + x^2/2 + x^3/3 + \ldots$).
- The space of real number sequences \mathbb{R}^{∞} (consider the set $\{(1,0,0,\dots),(0,1,0,\dots),(0,0,1,\dots),\dots\}$).

Section E.0

Section E.1 Section E.2

Section V.3

Section V.4

Section S.3

Section A.1

Section A.2 Section A.3

Section M.2 Section M.3

Fact S.3.10

Every vector space with finite dimension, that is, every vector space with a basis of the form $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is isomorphic to a Euclidean space \mathbb{R}^n :

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_n\mathbf{v}_n \leftrightarrow egin{bmatrix} c_1 \ c_2 \ dots \ c_n \end{bmatrix}$$

Module I

Module E Section E.0

Section E.0

Section E.2

Module \

Section V.

Section V.

Section V.3 Section V.4

.

Section S.1

Section S.

Section 5.3

Module A

Section A.1 Section A.2

Section A.3

Section A.

Module M

Section M.1

Section M.2

Section M.3

Module G

Section G.

Section

Section G.3

Module A: Algebraic properties of linear maps

Section E.0

Section E.1

Section E.2

Section V.3

Section V.4

Module A

Section A.1 Section A.2

Section A.3

Section M.2

Section M.3

How can we understand linear maps algebraically?

Module I Section I.0

Module E Section E.0 Section E.1 Section E.2

Section V. Section V. Section V. Section V.

Module S Section S.1

Section S.3

Module A

Section A.1 Section A.2 Section A.3

Module N

Section M.1 Section M.2

Module G

Section G.2 Section G.2 At the end of this module, students will be able to...

- **A1. Linear map verification.** ... determine if a map between vector spaces of polynomials is linear or not.
- **A2. Linear maps and matrices.** ... translate back and forth between a linear transformation of Euclidean spaces and its standard matrix, and perform related computations.
- **A3. Injectivity and surjectivity.** ... determine if a given linear map is injective and/or surjective.
- **A4. Kernel and Image.** ... compute a basis for the kernel and a basis for the image of a linear map.

Module I Section I.0

Module E Section E.0 Section E.1 Section E.2

Module V Section V.0 Section V.2 Section V.3 Section V.4

Module S Section S.1

Section S.2 Section S.3 Module A

Section A.1 Section A.2 Section A.3

Module N

Section M.1 Section M.2

Module G

Section G.1 Section G.2 Section G.3

Readiness Assurance Outcomes

Before beginning this module, each student should be able to...

- State the definition of a spanning set, and determine if a set of Euclidean vectors spans \mathbb{R}^n **V4**.
- State the definition of linear independence, and determine if a set of Euclidean vectors is linearly dependent or independent **S1**.
- State the definition of a basis, and determine if a set of Euclidean vectors is a basis **S2,S3**.
- Find a basis of the solution space to a homogeneous system of linear equations
 \$6.

Linear Algebra

Clontz & Lewis

Module I

Module E

Section E.0 Section E.1

Section E.2

Module \

Section V.

Section V.

Section V.3 Section V.4

Module S

Section S.1

Section S.

Module A

Section A.1

Section A.2

Section A

Module M

Module M

Section M.1

Section M.2

Module (

Section G.

Section G

Section G.

Module A Section 1

Section I.

Section E.1 Section E.2

Section V.0 Section V.1 Section V.2 Section V.3

Module S

Section S.: Section S.:

Module

Section A.1 Section A.2 Section A.3

Module

Section M.1 Section M.2 Section M.3

Section G.1 Section G.2

Definition A.1.1

A linear transformation (also known as a linear map) is a map between vector spaces that preserves the vector space operations. More precisely, if V and W are vector spaces, a map $T:V\to W$ is called a linear transformation if

1 $T(\mathbf{v} + \mathbf{w}) = T(\mathbf{v}) + T(\mathbf{w}) for any \mathbf{v}, \mathbf{w} \in V.$

2 $T(c\mathbf{v}) = cT(\mathbf{v})$ for any $c \in \mathbb{R}, \mathbf{v} \in V$.

In other words, a map is linear when vector space operations can be applied before or after the transformation without affecting the result.

Section E.0 Section E.1

Section E.2

Section V.3

Section V.4

Section A.1 Section A.2

Section A.3

Section M.2

Section M.3

Definition A.1.2

Given a linear transformation $T: V \to W$, V is called the **domain** of T and W is called the **co-domain** of T.

Linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$

Linear Algebra Clontz &

Lewis

Section A.1 Section A 2

Section M.2

Example A.1.3

Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x - z \\ 3y \end{bmatrix}$$

To show that T is linear, we must verify...

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix} + \begin{bmatrix} u \\ v \\ w \end{bmatrix}\right) = T\left(\begin{bmatrix} x+u \\ y+v \\ z+w \end{bmatrix}\right) = \begin{bmatrix} (x+u) - (z+w) \\ 3(y+v) \end{bmatrix}$$

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) + T\left(\begin{bmatrix} u \\ v \\ w \end{bmatrix}\right) = \begin{bmatrix} x - z \\ 3y \end{bmatrix} + \begin{bmatrix} u - w \\ 3v \end{bmatrix} = \begin{bmatrix} (x + u) - (z + w) \\ 3(y + v) \end{bmatrix}$$

And also...
$$T\left(c\begin{bmatrix}x\\y\\z\end{bmatrix}\right) = T\left(\begin{bmatrix}cx\\cy\\cz\end{bmatrix}\right) = \begin{bmatrix}cx - cz\\3cy\end{bmatrix} \text{ and } cT\left(\begin{bmatrix}x\\y\\z\end{bmatrix}\right) = c\begin{bmatrix}x - z\\3y\end{bmatrix} = \begin{bmatrix}cx - cz\\3cy\end{bmatrix}$$

Therefore T is a linear transformation.

4□ > 4同 > 4 = > 4 = > ■ 900

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x+y \\ x^2 \\ y+3 \\ y-2x \end{bmatrix}$$

To show that T is not linear, we only need to find one counterexample.

$$T\left(\begin{bmatrix}0\\1\end{bmatrix} + \begin{bmatrix}2\\3\end{bmatrix}\right) = T\left(\begin{bmatrix}2\\4\end{bmatrix}\right) = \begin{bmatrix}6\\4\\7\\0\end{bmatrix}$$

$$T\left(\begin{bmatrix}0\\1\end{bmatrix}\right)+T\left(\begin{bmatrix}2\\3\end{bmatrix}\right)=\begin{bmatrix}1\\0\\4\\1\end{bmatrix}+\begin{bmatrix}5\\4\\6\\-1\end{bmatrix}=\begin{bmatrix}6\\4\\10\\0\end{bmatrix}$$

Since the resulting vectors are different, T is a linear transformation.

Section E.0

Section A.1

Section M.2

4□ > 4同 > 4 = > 4 = > ■ 900

Section E.0

Section E.1

Section E.2

Section V.3

Section A.1

Section A.2

Section A.3

Section M.2

Section M.3

Activity A.1.5 (\sim 5 min)

Show that $T: \mathbb{R}^2 \to \mathbb{R}^4$ defined by

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x+y \\ x^2 \\ y+3 \\ y-2x \end{bmatrix}$$

is not linear by showing that $2T \begin{pmatrix} 1 \\ 1 \end{pmatrix} \neq T \begin{pmatrix} 2 & 1 \\ 1 \end{pmatrix}$.

Section I.0

Module E Section E.0

Section E.1 Section E.2

Module \(\)
Section \(\)

Section V.

Section V.3 Section V.4

Module 5

Section S.2

Section S.3

Module

Section A.1 Section A.2

Section A.3

Module N

Section M.1 Section M.2

Section M.2 Section M.3

Module G

Section G.1

Section G

Fact A.1.6

A map between Euclidean spaces $T: \mathbb{R}^n \to \mathbb{R}^m$ is linear exactly when every component of the output is a linear combination of the variables of \mathbb{R}^n .

Section G.1 Section G.2

Section G.

Example A.1.7

You can quickly identify

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x - z \\ 3y \end{bmatrix}$$

as linear because x-z and 3y are linear combinations of x,y,z. But

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x+y \\ x^2 \\ y+3 \\ y-2x \end{bmatrix}$$

cannot be linear because x^2 and y+3 are not linear combinations of x,y (even though x+y and y-2x are).

Activity A.1.8 (\sim 3 min)

Recall the following rules from calculus, where $D: \mathcal{P} \to \mathcal{P}$ is the derivative map defined by $D(f) = \frac{df}{dx}$ for each polynomial f.

$$D(f+g) = \frac{df}{dx} + \frac{dg}{dx}$$

$$D(cf) = c\frac{df}{dx}$$

What can we conclude from these rules?

- a) \mathcal{P} is not a vector space
- b) D is a linear map
- c) D is not a linear map

Section E.0

Section E.1 Section E.2

Section V.3

Section V.4

Section A.1 Section A.2

Section A.3

Section M.2

Section M.3

Activity A.1.9 (\sim 12 min)

Consider the following two polynomial maps.

$$S: \mathcal{P}^4 \to \mathcal{P}^3$$
 given by $S(f(x)) = 2f'(x) - f''(x)$

$$T:\mathcal{P}^2 o \mathcal{P}^2$$
 given by $T(f(x)) = f'(x) + x^2$

Module G

Section G Section G

Section G.:

Activity A.1.9 (\sim 12 min)

Consider the following two polynomial maps.

$$S: \mathcal{P}^4 \to \mathcal{P}^3$$
 given by $S(f(x)) = 2f'(x) - f''(x)$

$$T: \mathcal{P}^2 \to \mathcal{P}^2$$
 given by $T(f(x)) = f'(x) + x^2$

Part 1: Compare $S(x^2 + x)$ with $S(x^2) + S(x)$, and compare $T(x^2 + x)$ with $T(x^2) + T(x)$. Which of these maps is definitely not linear?

Activity A.1.9 (\sim 12 min)

Consider the following two polynomial maps.

$$S: \mathcal{P}^4 \to \mathcal{P}^3$$
 given by $S(f(x)) = 2f'(x) - f''(x)$
 $T: \mathcal{P}^2 \to \mathcal{P}^2$ given by $T(f(x)) = f'(x) + x^2$

Part 1: Compare $S(x^2 + x)$ with $S(x^2) + S(x)$, and compare $T(x^2 + x)$ with $T(x^2) + T(x)$. Which of these maps is definitely not linear?

Part 2: Verify that S(f+g) = 2f'(x) + 2g'(x) - f''(x) - g''(x) is equal to S(f) + S(g) for all polynomials f, g.

S(t) + S(g) for all polynomials t, g.

Section G.2 Section G.3

Activity A.1.9 (\sim 12 min)

Consider the following two polynomial maps.

$$S: \mathcal{P}^4 \to \mathcal{P}^3$$
 given by $S(f(x)) = 2f'(x) - f''(x)$

$$T: \mathcal{P}^2 \to \mathcal{P}^2$$
 given by $T(f(x)) = f'(x) + x^2$

Part 1: Compare $S(x^2 + x)$ with $S(x^2) + S(x)$, and compare $T(x^2 + x)$ with $T(x^2) + T(x)$. Which of these maps is definitely not linear?

Part 2: Verify that S(f+g) = 2f'(x) + 2g'(x) - f''(x) - g''(x) is equal to S(f) + S(g) for all polynomials f, g.

Part 3: Verify that S(cf) = cS(f) for all real numbers c and polynomials f. Is S linear?

Linear Algebra

Clontz & Lewis

Module I

Module E

Section E.0 Section E.1

Section E.2

Module \

Section V

Section V.

Section V.3 Section V.4

Module S

Section S.1

Section S.2

Module A

Section A.1 Section A.2

Section A.3

Section A

Module M

Section M.1

Section M.2

Module (

Section G.

Section G

Section G.3

Module A Section 2

Section G

Section G.

Remark A.2.1

Recall that a linear map $T: V \to W$ satisfies

- 1 $T(\mathbf{v} + \mathbf{w}) = T(\mathbf{v}) + T(\mathbf{w})$ for any $\mathbf{v}, \mathbf{w} \in V$.
- 2 $T(c\mathbf{v}) = cT(\mathbf{v})$ for any $c \in \mathbb{R}, \mathbf{v} \in V$.

In other words, a map is linear when vecor space operations can be applied before or after the transformation without affecting the result.

Activity A.2.2 (\sim 5 min)

Suppose $T: \mathbb{R}^3 \to \mathbb{R}^2$ is a linear map, and you know $T \left(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and

$$T\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = \begin{bmatrix}-3\\2\end{bmatrix}. \text{ Compute } T\left(\begin{bmatrix}3\\0\\0\end{bmatrix}\right).$$

(a)
$$\begin{bmatrix} 6 \\ 3 \end{bmatrix}$$

(b)
$$\begin{bmatrix} -9 \\ 6 \end{bmatrix}$$
 (d) $\begin{bmatrix} 6 \\ -4 \end{bmatrix}$

Section G.

Section (

Section

Section G.

Activity A.2.3 (\sim 3 min)

Suppose $T: \mathbb{R}^3 \to \mathbb{R}^2$ is a linear map, and you know $T \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and

$$\mathcal{T}\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = \begin{bmatrix}-3\\2\end{bmatrix}. \text{ Compute } \mathcal{T}\left(\begin{bmatrix}1\\0\\1\end{bmatrix}\right).$$

(a)
$$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 3 \\ -1 \end{bmatrix}$$
 (d) $\begin{bmatrix} 5 \\ -8 \end{bmatrix}$

Section V.3

Section A.1 Section A.2

Section A.3

Section M.2

Section M.3

Activity A.2.4 (\sim 2 min)

Suppose $T: \mathbb{R}^3 \to \mathbb{R}^2$ is a linear map, and you know $T \left(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and

$$T\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = \begin{bmatrix}-3\\2\end{bmatrix}. \text{ Compute } T\left(\begin{bmatrix}-2\\0\\-3\end{bmatrix}\right).$$

(a)
$$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 (c) $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$

$$\begin{array}{ccc} 0) & \begin{bmatrix} 3 \\ -1 \end{bmatrix} & \text{(d) } \begin{bmatrix} 5 \\ -8 \end{bmatrix} \end{array}$$

Activity A.2.5 (\sim 5 min)

Suppose $T: \mathbb{R}^3 \to \mathbb{R}^2$ is a linear map, and you know $T\left(\left| egin{matrix} 1 \\ 0 \\ 0 \end{array} \right| \right) = \left[egin{matrix} 2 \\ 1 \end{array} \right]$ and

$$T\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = \begin{bmatrix}-3\\2\end{bmatrix}$$
. Do you have enough information to compute $T(\mathbf{v})$ for any

- $\mathbf{v} \in \mathbb{R}^3$?
- (a) Yes.
- No, exactly one more piece of information is needed.
- No, an infinite amount of information would be necessary to compute the transformation of infinitely-many vectors.

Section E.0 Section E.1

Section E.1 Section E.2

Section V.0 Section V.1 Section V.2 Section V.3

Section V.3 Section V.4

Section S.1

Section S.2 Section S.3

Module /

Section A.1 Section A.2

Decelon /

Section M

Section M.1 Section M.2

Module G

Section G.: Section G.:

Fact A.2.6

Consider any basis $\{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ for V. Since every vector \mathbf{v} can be written *uniquely* as a linear combination of basis vectors, $x_1\mathbf{b}_1 + \dots + x_n\mathbf{b}_n$, we conclude that

$$T(\mathbf{v}) = T(x_1\mathbf{b}_1 + \cdots + x_n\mathbf{b}_n) = x_1T(\mathbf{b}_1) + \cdots + x_nT(\mathbf{b}_n).$$

Therefore any linear transformation $T: V \to W$ can be defined by just describing the values of $T(\mathbf{b}_i)$.

Put another way, the basis vectors **determine** the transformation T.

Section I.0

Module E Section E.0

Section E.1

Section E.2

Section V

Section V.2 Section V.3

Section V.3 Section V.4

Module S

Section S.

Section 5.2

Module A Section A.1

Section A.2 Section A.3

.

Module

Section M.1 Section M.2

Section M.2 Section M.3

Module G

Section G.

Section C

Section G.

Definition A.2.7

Since linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is determined by the standard basis $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$, it's convenient to store this information in the $m \times n$ standard matrix $[T(\mathbf{e}_1) \cdots T(\mathbf{e}_n)]$.

Example A.2.8

Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be the linear map determined by the following values for Tapplied to the standard basis of \mathbb{R}^3 .

$$T(\mathbf{e}_1) = T \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$
 $T(\mathbf{e}_3) = T \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$

Then the standard matrix corresponding to T is

$$\begin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) & T(\mathbf{e}_3) \end{bmatrix} = \begin{bmatrix} 3 & -1 & 5 \\ 2 & 4 & 0 \end{bmatrix}.$$

 $T\left(\mathbf{e}_{2}
ight)=T\left(egin{array}{c} 0 \ 1 \ 0 \end{array}
ight)=egin{bmatrix} -1 \ 4 \end{array}$

Section M.2

Activity A.2.9 (\sim 5 min)

TODO Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x + 3z \\ 2x - y - 4z \end{bmatrix}$$

Write the matrix corresponding to this linear transformation with respect to the standard basis.

Section I.0

Module E

Section E.0 Section E.1

Section E.1 Section E.2

Module \

Section V.

Section \

Section V.

Section V.3

Section V.4

Module S

Section S 1

6 .. 6

Cari C

.

Module

Section A.1 Section A.2

Section A.2

Section A

Module I

Module 1

Section M.2

Section IVI.2 Section M.3

Martine C

Wodule C

Section

Section

Section G.

Activity A.2.10 (∼5 min)

Let $\mathcal{T}:\mathbb{R}^3 o \mathbb{R}^2$ be the linear transformation given by the standard matrix

$$\begin{bmatrix} 3 & -2 & -1 \\ 4 & 5 & 2 \end{bmatrix}.$$

Compute
$$T \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
.

Section E.0

Section E.1

Section E.2

Section V.3

Section V.4

Section A.1

Section A.2

Section A.3

Section M.2

Section M.3

Activity A.2.11 (\sim 10 min)

Let $D: \mathcal{P}^3 \to \mathcal{P}^2$ be the derivative map D(f(x)) = f'(x). (Earlier we showed this is a linear transformation.)

Section E.0 Section E.1

Section E.2

Section V.3

Section A.1 Section A.2 Section A.3

Section M.2

Activity A.2.11 (\sim 10 min)

Let $D: \mathcal{P}^3 \to \mathcal{P}^2$ be the derivative map D(f(x)) = f'(x). (Earlier we showed this is a linear transformation.)

Part 1: Write down an equivalent linear transformation $T: \mathbb{R}^4 \to \mathbb{R}^3$ by converting $\{1, x, x^2, x^3\}$ and $\{D(1), D(x), D(x^2), D(x^3)\}$ into appropriate vectors in \mathbb{R}^4 and ₹3

Section E.0

Section E.1 Section E.2

Section A.1 Section A.2

Section M.2

Activity A.2.11 (\sim 10 min)

Let $D: \mathcal{P}^3 \to \mathcal{P}^2$ be the derivative map D(f(x)) = f'(x). (Earlier we showed this is a linear transformation.)

Part 1: Write down an equivalent linear transformation $T: \mathbb{R}^4 \to \mathbb{R}^3$ by converting $\{1, x, x^2, x^3\}$ and $\{D(1), D(x), D(x^2), D(x^3)\}$ into appropriate vectors in \mathbb{R}^4 and

Part 2: Write the standard matrix corresponding to T.

Linear Algebra

Clontz & Lewis

Module I

Module E

Section E.0 Section E.1

Section E.2

Module \

Section V.

Section V.

Section V.3

Section V.4

iviodule 5

Section S.1

Section S.3

Module A

Section A.1 Section A.2

Section A.3

December 7th

Module M

Section M.1

Section M.2

Module (

Section G.

Section G

Section G.3

Module A Section 3

Section E.0

Section E.1 Section E.2

Section V.3

Section V.4

Section A.1 Section A.2

Section A.3

Section M.2

Section M.3

Definition A.3.1

Let $T:V\to W$ be a linear transformation. T is called **injective** or **one-to-one** if T does not map two distinct values to the same place. More precisely, T is injective if $T(\mathbf{v}) \neq T(\mathbf{w})$ whenever $\mathbf{v} \neq \mathbf{w}$.

Section V.3

Section V.4

Section A.1

Section A.2

Section A.3

Section M.2

Section M.3

Activity A.3.2 (\sim 5 min)

Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be given by

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix}.$$

The standard matrix of T is thus $\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$.

Is T injective?

Section V.3

Section V.4

Section A.1

Section A.2

Section A.3

Section M.2

Section M.3

Activity A.3.3 (\sim 5 min)

Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x \\ y \end{bmatrix}.$$

The standard matrix of T is thus $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$. Is *T* injective?

Section E.0 Section E.1

Section E.2

Section V.3

Section V.4

Section A.1 Section A.2

Section A.3

Section M.2

Section M.3

Definition A.3.4

Let $T:V\to W$ be a linear transformation. T is called **surjective** or **onto** if every element of W is mapped to by an element of V. More precisely, for every $\mathbf{w} \in W$, there is some $\mathbf{v} \in V$ with $T(\mathbf{v}) = \mathbf{w}$.

Activity A.3.5 (\sim 5 min)

Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be given by

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix}.$$

The standard matrix of T is thus $\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$.

Is T surjective?

Section A.1 Section A.2

Section A.3

Section M.2

Section M.3

Activity A.3.6 (\sim 5 min)

Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x \\ y \end{bmatrix}.$$

The standard matrix of T is thus $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$. Is T surjective?

Section V.2 Section V.3

Section V.4

Module S

Section S.2

Section S.3

Module A

Section A.1 Section A.2

Section A.3

Section A.

Module M

C---:-- M

Section M.2 Section M.3

Madula

Section G

Section

Section G.:

Definition A.3.7

Let $T:V\to W$ be a linear transformation. The **kernel** of T is an important subspace of V defined by

$$\ker T = \big\{ \mathbf{v} \in V \mid T(\mathbf{v}) = \mathbf{0} \big\}$$

Section E.0

Section E.1

Section E.2

Section V.3

Section V.4

Section A.1 Section A.2

Section A.3

Section M.2

Section M.3

Activity A.3.8 (\sim 5 min)

Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be given by the standard matrix $\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$. Find the kernel of T.

Section E.0

Section E.1

Section E.2

Section V.3

Section V.4

Section A.1

Section A.2

Section A.3

Section M.2

Section M.3

Activity A.3.9 (\sim 5 min)

Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be given by the standard matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$. Find the kernel of T.

Section I

Module F

Section E.0 Section E.1

Section E.1 Section E.2

Module \

Section V

Section \

Section V.3

Section V.

Section V.4

Module 5

Section S.2

Section S.3

. . . .

Section A.1

Section A.2

Section A.3

.

Module N

Section M.

Section M.2 Section M.3

Module 0

Section G.

Section C

Section

Section G.

Activity A.3.10 (\sim 10 min)

Let $\mathcal{T}:\mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation given by the standard matrix

$$A = \begin{bmatrix} 3 & 4 & -1 \\ 1 & 2 & 1 \end{bmatrix}.$$

Section E.0

Section E.1

Section E.2

Module \

Section V

Section \

Section V.2

Section V.

Section V.

Module 5

Section S.1

Section S 2

Module

Section A.1

Section A.2

Section A.3

.

Module N

Section M.1 Section M.2

Section M.2 Section M.3

Module 0

Section G

Section

Section G.

Section G

Activity A.3.10 (~10 min)

Let $T:\mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation given by the standard matrix

$$A = \begin{bmatrix} 3 & 4 & -1 \\ 1 & 2 & 1 \end{bmatrix}.$$

Part 1: Write a system of equations whose solution set is the kernel.

Section A.2 Section A.3

Section M.2 Section M.3

Activity A.3.10 (\sim 10 min)

Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation given by the standard matrix

$$A = \begin{bmatrix} 3 & 4 & -1 \\ 1 & 2 & 1 \end{bmatrix}.$$

Part 1: Write a system of equations whose solution set is the kernel.

Part 2: Use RREF(A) to solve the system of equations and find the kernel of T.

Section S

Section S

Section S

Module 4

Section A.

Section A.2 Section A.3

Section A.

Module N

Section M.1 Section M.2

Section M. Section M.

Module G

Section G.

Section (

Section G.

Activity A.3.10 (\sim 10 min)

Let $\mathcal{T}:\mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation given by the standard matrix

$$A = \begin{bmatrix} 3 & 4 & -1 \\ 1 & 2 & 1 \end{bmatrix}.$$

Part 1: Write a system of equations whose solution set is the kernel.

Part 2: Use RREF(A) to solve the system of equations and find the kernel of T.

Part 3: Find a basis for the kernel of T.

Section E.0 Section E.1

Section E.2

Section V.3

Section V.4

Section A.1 Section A.2

Section A.3

Section M.2

Section M.3

Definition A.3.11

Let $T:V\to W$ be a linear transformation. The **image** of T is an important subspace of W defined by

Im $T = \{ \mathbf{w} \in W \mid \text{ there is some } v \in V \text{ with } T(\mathbf{v}) = \mathbf{w} \}$

Section E.0

Section E.1

Section E.2

Section V.3

Section V.4

Section A.1

Section A.2 Section A.3

Section M.2

Section M.3

Activity A.3.12 (\sim 5 min)

Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be given by the standard matrix $\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$. Find the image of T.

Section E.0

Section E.1 Section E.2

Section V.3

Section V.4

Section A.1

Section A.2

Section A.3

Section M.2

Section M.3

Activity A.3.13 (\sim 5 min)

Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be given by the standard matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$. Find the image of T.

Section E.0

Section E.1

Section E.2

Section V.3

Section V.4

Section A.1

Section A.2

Section A.3

Section M.2

Section M.3

Activity A.3.14 (\sim 10 min)

Let $\mathcal{T}:\mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation given by the standard matrix

$$A = \begin{bmatrix} 3 & 4 & -1 \\ 1 & 2 & 1 \end{bmatrix}.$$

Section E.0

Section E.1 Section E.2

Section V.3

Section A.1

Section A.2

Section A.3

Section M.2

Section M.3

Activity A.3.14 (\sim 10 min)

Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation given by the standard matrix

$$A = \begin{bmatrix} 3 & 4 & -1 \\ 1 & 2 & 1 \end{bmatrix}.$$

Part 1: Find a convenient set of vectors $S \subseteq \mathbb{R}^2$ such that span S = Im T.

Section M.2 Section M.3

Activity A.3.14 (\sim 10 min)

Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation given by the standard matrix

$$A = \begin{bmatrix} 3 & 4 & -1 \\ 1 & 2 & 1 \end{bmatrix}.$$

Part 1: Find a convenient set of vectors $S \subseteq \mathbb{R}^2$ such that span $S = \operatorname{Im} T$.

Part 2: Find a convenient basis for the image of T.

Section I.0

Section E.0 Section E.1 Section E.2

Section V.0 Section V.1 Section V.2 Section V.3 Section V.4

Module S

Section S.

C -- 4:-- 0

Madula /

Section A.1

Section A.2

Section A.3 Section A.4

Module N

Module I

Section M.1 Section M.2

Section M.2

Module (

Module G

Section G.

Section G.:

ection E.2

Observation A.3.15

Let $T: V \to W$ be a linear transformation with corresponding matrix A.

- If A is a matrix corresponding to T, the kernel is the solution set of the homogeneous system with coefficients given by A.
- If A is a matrix corresponding to \mathcal{T} , the image is the span of the columns of A.

Linear Algebra

Clontz & Lewis

Module I

Module E Section E.0

Section E.1

Section E.2

Module \

Section V

Section V.

Section V.3 Section V.4

Module S

Section 5.1

Section S.3

Module A

Section A.1 Section A.2

Section A.2 Section A.3

Section A.4

Madula M

Section M.1

Section M.2

Module (

Section G

Section G

Section G.3

Module A Section 4

Module I Section I.0

Module E Section E.0 Section E.1 Section E.2

Module V Section V.0 Section V.2 Section V.2 Section V.4

Module S

Section S.2 Section S.3

Section A.1 Section A.2

Section A.3 Section A.4

Module I

Section M.1 Section M.2

Module G

Section G.1 Section G.2 Section G.3

Observation A.4.1

Let $T: V \to W$. We have previously defined the following terms.

- T is called injective or one-to-one if T does not map two distinct values to the same place.
- T is called surjective or onto if every element of W is mapped to by some element of V.
- The **kernel** of T is the set of all things that are mapped to $\mathbf{0}$. It is a subspace of V.
- The image of T is the set of all things in W that are mapped to by something in V. It is a subspace of W.

Section E.0

Section E.1

Section V.3

Section A.2

Section A.3

Section A.4

Section M.2

Section M.3

Activity A.4.2 (\sim 5 min)

Let $T: V \to W$ be a linear transformation where ker $T = \{0\}$. Can you answer either of the following questions about T?

- (a) Is T injective?
- (b) Is T surjective?

(Hint: If $T(\mathbf{v}) = T(\mathbf{w})$, then what is $T(\mathbf{v} - \mathbf{w})$?)

Section E.0

Section E.1 Section E.2

Section V.3

Section V.4

Section A.1 Section A.2 Section A.3

Section A.4

Section M.2

Section M.3

Fact A.4.3

A linear transformation T is injective **if and only if** ker $T = \{0\}$. Put another way, an injective linear transformation may be recognized by its trivial kernel.

Section E.0

Section E.1

Section E.2

Section V.3

Section V.4

Section A.1

Section A.2

Section A.3

Section A.4

Section M.2

Section M.3

Activity A.4.4 (\sim 5 min)

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation where Im $T = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \\ -1 \end{bmatrix} \right\}$.

Can you answer either of the following questions about T?

- (a) Is T injective?
- (b) Is T surjective?

Section E.0

Section E.1 Section E.2

Section V.3

Section V.4

Section A.1 Section A.2

Section A.3

Section A.4

Section M.2

Section M.3

Fact A.4.5

A linear transformation $T:V\to W$ is surjective if and only if Im T=W. Put another way, a surjective linear transformation may be recognized by its same codomain and image.

Section A 2 Section A.3 Section A.4

Activity A.4.6 (\sim 15 min)

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map with standard matrix A. Sort the following claims into two groups of equivalent statements.

- T is injective
- T is surjective
- The kernel of T is trivial.
- The columns of A span \mathbb{R}^m
- The columns of A are linearly independent
- Every column of RREF(A) has a pivot.
- Every row of RREF(A) has a pivot.

- (h) The image of T equals its codomain.
- The system of linear equations given by the augmented matrix $\begin{bmatrix} A & \mathbf{b} \end{bmatrix}$ has a solution for all $\mathbf{b} \in \mathbb{R}^m$
- The system of linear equations given by the augmented matrix $A \mid \mathbf{0} \mid$ has exactly one solution.

Section E.0

Section E.1 Section E.2

Section V.3

Section V.4

Section A.1 Section A.2

Section A.3

Section A.4

Section M.2

Definition A.4.7

If $T: V \to W$ is both injective and surjective, it is called **bijective**.

Module I Section I.0

Module E Section E.0

Section E.0 Section E.1 Section E.2

Module V Section V. Section V.

Section V.3 Section V.4

Module 9

Section S.

Module A

Section A.1 Section A.2

Section A.3 Section A.4

Module M

Section M.1 Section M.2

Module G

Section G.1 Section G.2

Section G.3

Activity A.4.8 (\sim 5 min)

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a bijective linear map with standard matrix A. Label each of the following as true or false.

- (a) The columns of A form a basis for \mathbb{R}^m
- (b) RREF(A) is the identity matrix.
- (c) The system of linear equations given by the augmented matrix $[A \mid \mathbf{b}]$ has exactly one solution for all $\mathbf{b} \in \mathbb{R}^m$.

Activity A.4.9 (~10 min)

Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be given by

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 2x + 3y \\ x - y \\ x + 3y \end{bmatrix}.$$

- (a) T is neither injective nor surjective
- (b) T is injective but not surjective
- (c) T is surjective but not injective
- (d) T is bijective.

Activity A.4.10 (\sim 5 min)

Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} 2x + y - z \\ 4x + y + z \end{bmatrix}.$$

- T is neither injective nor surjective
- T is injective but not surjective
- T is surjective but not injective
- T is bijective.

Section G.

Activity A.4.11 (\sim 5 min)

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} 2x + y - z \\ 4x + y + z \\ 6x + 2y + z \end{bmatrix}.$$

- (a) T is neither injective nor surjective
- (b) T is injective but not surjective
- (c) T is surjective but not injective
- (d) T is bijective.

Section G.: Section G.:

Section G.3

Activity A.4.12 (\sim 5 min)

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} 2x + y - z \\ 4x + y + z \\ 6x + 2y \end{bmatrix}.$$

- (a) T is neither injective nor surjective
- (b) T is injective but not surjective
- (c) T is surjective but not injective
- (d) T is bijective.

Module I

Module E Section E.0

Section E.1

Section E.2

Section V.

Section V.2 Section V.2

Section V.3 Section V.4

Module S

Section S.1

Section S.3

Module A

Section A.1 Section A.2 Section A.3

Module M

Section M.1 Section M.2

Section M.3

Module G

Section G.

Section G.3

Module M: Understanding Matrices Algebraically

Module E Section E.0

Section E.1

Section E.2

Module \

Section V

Section V

Section V.3

Section V.4

Module S

Section S.1

Section S.3

Module A

Section A.1 Section A.2 Section A.3

Module M

wodule w

Section M.1 Section M.2

Section IVI.2 Section M.3

iviodule

ection G

Section 0

Section G.

What algebraic structure do matrices have?

Module

Section V.2 Section V.3

Section V.

iviodule 3

Section S.2

Module A

Section A.1

Section A.2 Section A.3

Module M

Section M.1 Section M.2 Section M.3

Module G

Section G.1

Section G.3

At the end of this module, students will be able to...

- M1. Matrix Multiplication. ... multiply matrices.
- M2. Invertible Matrices. ... determine if a square matrix is invertible or not.
- M3. Matrix inverses. ... compute the inverse matrix of an invertible matrix.

Section I.0

Section E.0 Section E.1 Section E.2

Section V.: Section V.: Section V.: Section V.:

Module S

Section S.

Madula /

Section A.1

Section A.1 Section A.2 Section A.3

Module M

Section M.1 Section M.2

Module G

Section G.1 Section G.2

Readiness Assurance Outcomes

Before beginning this module, each student should be able to...

- Compose functions of real numbers
- Solve systems of linear equations E3
- Find the matrix corresponding to a linear transformation A1
- Determine if a linear transformation is injective and/or surjective A3
- Interpret the ideas of injectivity and surjectivity in multiple ways

Section 1.0

Module E Section E.0

Section E.1

Section E.2

Module \(\)
Section \(\)

Section V

Section V.3

Section V.4

Module S

Section S.1

Section 5.2 Section 5.3

Module

Section A.1 Section A.2

Section A.2

.

Module M

Section M.1 Section M.2

Section M.3

Module G

ection G.

Section (

Section G.:

The following resources will help you prepare for this module.

• Function composition (Khan Academy): http://bit.ly/2wkz7f3

Linear Algebra

Clontz & Lewis

Module I

Module E

Section E.0 Section E.1

Section E.2

Module \

Section V.(

C--Li-- V

Section V.3

Section V.4

Module 5

Section S.1

Section S.3

Module A

Section A.1 Section A.2

Section A.3

.

Section M.1

Section M.2

Module 0

Section G.

Section G

Section G.

Module M Section 1

Module I

Module I

Section E.0 Section E.1

Section E.1

Module

Section \

Section '

Section V

Section V.3

Section V.

Module S

Section S

Section

Section S

.

Section A.1 Section A.2

Section A.3

Module

Section M.1 Section M.2 Section M.3

Module (

iviodule (

Section

Section G.

Activity M.1.1 (\sim 5 min)

Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be given by the standard matrix $B = \begin{bmatrix} 2 & 1 & -3 \\ 5 & -3 & 4 \end{bmatrix}$ and

 $S:\mathbb{R}^2 o\mathbb{R}^4$ be given by the standard matrix $A=egin{bmatrix}1&2\\0&1\\3&5\\-1&-2\end{bmatrix}$.

What is the domain of the composition map $S \circ T$?

- (a) R
- (b) \mathbb{R}^2
- (c) \mathbb{R}^3
- (d) ℝ²

Section E.0 Section E.1

Section E.2

Section V.3

Section A.1 Section A.2

Section M.1 Section M.2 Section M.3

Activity M.1.2 (\sim 2 min)

Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be given by the standard matrix $B = \begin{bmatrix} 2 & 1 & -3 \\ 5 & -3 & 4 \end{bmatrix}$ and

 $S:\mathbb{R}^2 o \mathbb{R}^4$ be given by the standard matrix $A=egin{bmatrix} 1 & 2 \ 0 & 1 \ 3 & 5 \ -1 & -2 \end{bmatrix}$. What is the codomain of the same X:

What is the codomain of the composition map $S \circ T$?

Section E.0

Section M.1 Section M.2

Section M.3

Activity M.1.3 (\sim 2 min)

Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be given by the standard matrix $B = \begin{bmatrix} 2 & 1 & -3 \\ 5 & -3 & 4 \end{bmatrix}$ and

Let
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
 be given by the standard matrix $B = \begin{bmatrix} 2 & 1 \\ 5 & -3 \end{bmatrix}$. $S: \mathbb{R}^2 \to \mathbb{R}^4$ be given by the standard matrix $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 3 & 5 \\ -1 & -2 \end{bmatrix}$.

The standard matrix of $S \circ T$ will lie in which matrix space?

- (a) 4×3 matrices
- (b) 4×2 matrices
- (c) 3×2 matrices
- (d) 2×3 matrices
- (e) 2×4 matrices
- (f) 3×4 matrices

Section E.0 Section E.1

Section E.2

Section V.3

Section V.4

Section A.1

Section A.2

Section A.3

Section M.1 Section M.2

Section M.3

Activity M.1.4 (\sim 15 min)

Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be given by the standard matrix $B = \begin{bmatrix} 2 & 1 & -3 \\ 5 & -3 & 4 \end{bmatrix}$ and

 $S: \mathbb{R}^2 \to \mathbb{R}^4$ be given by the standard matrix $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 3 & 5 \end{bmatrix}$.

Section I (

Section I.0

Module I

Section E.0 Section E.1

Section E.2

Module \

Section V.

Section V

Section \

Section V.3

Section V.

Marilla C

Module S

Section S

Section S

Section 3

Module A

Section A.1

Section A.2

Section A.3

Module

Module

Section M.1 Section M.2

Section M.2 Section M.3

Module G

Wodule G

Section

Section G.

Activity M.1.4 (\sim 15 min)

Let $T:\mathbb{R}^3 o \mathbb{R}^2$ be given by the standard matrix $B=\begin{bmatrix} 2 & 1 & -3 \\ 5 & -3 & 4 \end{bmatrix}$ and

 $S:\mathbb{R}^2 o\mathbb{R}^4$ be given by the standard matrix $A=egin{bmatrix}1&2\\0&1\\3&5\\-1&-2\end{bmatrix}$.

Part 1: Compute $(S \circ T)(\mathbf{e}_1)$

Section E.0

Section E.1

Section E.2

Section V.3

Section A.1

Section A.2 Section A.3

Section M.1 Section M.2

Section M.3

Activity M.1.4 (\sim 15 min)

Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be given by the standard matrix $B = \begin{bmatrix} 2 & 1 & -3 \\ 5 & -3 & 4 \end{bmatrix}$ and

 $\mathcal{S}:\mathbb{R}^2 o\mathbb{R}^4$ be given by the standard matrix $\mathcal{A}=\left[egin{array}{cc}1&2\\0&1\\3&5\end{array}
ight].$

Part 1: Compute $(S \circ T)(\mathbf{e}_1)$

Part 2: Compute $(S \circ T)(\mathbf{e}_2)$

Section E.0 Section E.1

Section E.2

Section V.3

Section A.1

Section A.2

Section A.3

Section M.1

Section M.2 Section M.3

Activity M.1.4 (\sim 15 min)

Let $T:\mathbb{R}^3 \to \mathbb{R}^2$ be given by the standard matrix $B=\begin{bmatrix} 2 & 1 & -3 \\ 5 & -3 & 4 \end{bmatrix}$ and

 $\mathcal{S}:\mathbb{R}^2 o\mathbb{R}^4$ be given by the standard matrix $\mathcal{A}=\left[egin{array}{ccc}1&2\\0&1\\3&5\end{array}\right].$

Part 1: Compute $(S \circ T)(\mathbf{e}_1)$

Part 2: Compute $(S \circ T)(\mathbf{e}_2)$

Part 3: Compute $(S \circ T)(\mathbf{e}_3)$.

Section E.0 Section E.1

Section M.1

Section M.2 Section M.3

Activity M.1.4 (\sim 15 min)

Let $T:\mathbb{R}^3 \to \mathbb{R}^2$ be given by the standard matrix $B=\begin{bmatrix} 2 & 1 & -3 \\ 5 & -3 & 4 \end{bmatrix}$ and

 $\mathcal{S}:\mathbb{R}^2 o\mathbb{R}^4$ be given by the standard matrix $\mathcal{A}=\left[egin{array}{ccc}1&2\\0&1\\3&5\end{array}\right].$

Part 1: Compute $(S \circ T)(\mathbf{e}_1)$

Part 2: Compute $(S \circ T)(\mathbf{e}_2)$

Part 3: Compute $(S \circ T)(\mathbf{e}_3)$.

Part 4: Find the standard matrix of $S \circ T$.

Section E.0 Section E.1

Section E.2

Section V.3

Section A.1

Section A.2 Section A.3

Section M.1

Section M.2 Section M.3

Activity M.1.5 (\sim 2 min)

Let $T:\mathbb{R}^2 \to \mathbb{R}^3$ be given by the matrix $B=\begin{bmatrix} 2 & 3 \\ 1 & -1 \\ 0 & -1 \end{bmatrix}$ and $S:\mathbb{R}^3 \to \mathbb{R}^2$ be given

by the matrix $A = \begin{bmatrix} -4 & -2 & 3 \\ 0 & 1 & 1 \end{bmatrix}$.

What is the domain of the composition map $S \circ T$?

- (a) \mathbb{R}

Section E.0 Section E.1

Section E.2

Section V.3

Section A.1

Section A.2 Section A.3

Section M.1 Section M.2

Section M.3

Activity M.1.6 (\sim 2 min)

Let $T:\mathbb{R}^2 \to \mathbb{R}^3$ be given by the matrix $B=\begin{bmatrix} 2 & 3 \\ 1 & -1 \\ 0 & -1 \end{bmatrix}$ and $S:\mathbb{R}^3 \to \mathbb{R}^2$ be given

by the matrix $A = \begin{bmatrix} -4 & -2 & 3 \\ 0 & 1 & 1 \end{bmatrix}$.

What is the codomain of the composition map $S \circ T$?

- (a) \mathbb{R}

Section A.2

Section M.1

Section M.2 Section M.3

Activity M.1.7 (\sim 2 min)

Let
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
 be given by the matrix $B = \begin{bmatrix} 2 & 3 \\ 1 & -1 \\ 0 & -1 \end{bmatrix}$ and $S: \mathbb{R}^3 \to \mathbb{R}^2$ be given

by the matrix $A = \begin{bmatrix} -4 & -2 & 3 \\ 0 & 1 & 1 \end{bmatrix}$.

The standard matrix of $S \circ T$ will lie in which matrix space?

- (a) 2×2 matrices
- (b) 2×3 matrices
- (c) 3×2 matrices
- (d) 3×3 matrices

Section E.0

Section E.1

Section E.2

Module \

Section V

Section \

Section \

Section V.3

Section V

Section V.

iviodule :

Section S

Section S

C C

Section 5.3

Module A

Section A.1

Section A.2

Section A.3

Module

Module I

Section M.1 Section M.2

Section M.3

Module G

ection G. ection G

Section

Section G.:

Activity M.1.8 (\sim 10 min)

Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be given by the matrix $B = \begin{bmatrix} 2 & 3 \\ 1 & -1 \\ 0 & -1 \end{bmatrix}$ and $S: \mathbb{R}^3 \to \mathbb{R}^2$ be given

by the matrix $A = \begin{bmatrix} -4 & -2 & 3 \\ 0 & 1 & 1 \end{bmatrix}$.

Find the standard matrix of $S \circ T$.

Section E.0

Section E.1

Section E.2

Section V.3

Section A.1 Section A.2

Section A.3

Section M.1 Section M.2

Section M.3

Activity M.1.9 (\sim 5 min)

Let $T: \mathbb{R}^1 \to \mathbb{R}^4$ be given by the matrix $B = \begin{bmatrix} 3 \\ -2 \\ 1 \\ 1 \end{bmatrix}$ and $S: \mathbb{R}^4 \to \mathbb{R}^1$ be given by

the matrix $A = \begin{bmatrix} 2 & 3 & 2 & 5 \end{bmatrix}$.

Find the standard matrix of $S \circ T$.

Section I.

Module E Section E.0 Section E.1

Section E.1 Section E.2

Module Section \

Section V.2 Section V.3

Section V.4

Module 2

Section S.

Section 5.

Module A

Section A.1 Section A.2 Section A.3

Module I

Section M.1 Section M.2 Section M.3

Module G

Section G.1

Section G. Section G.

Definition M.1.10

We define the product of a $m \times n$ matrix A and a $n \times k$ matrix B to be the $m \times k$ standard matrix (denoted AB) of the composition map of the two corresponding linear functions.

Section E.0

Section E.1

Section E.2

Section V.3

Section V.4

Section A.1

Section A.2

Section A.3

Section M.1

Section M.2

Section M.3

Fact M.1.11

If AB is defined, BA need not be defined, and if it is defined, it is in general different from AB.

Section A.1

Section A.2

Section A.3

Section M.1

Section M.2 Section M.3

Activity M.1.12 (\sim 10 min)

Let $A = \begin{bmatrix} 3 & 1 & -1 \\ 2 & 0 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix}$. Compute AB.

Section E.0 Section E.1

Section E.2

Section V.3

Section V.4

Section A.1 Section A.2

Section A.3

Section M.1 Section M.2

Section M.3

Let
$$A = \begin{bmatrix} 3 & 1 & -1 \\ 2 & 0 & 4 \\ -1 & 3 & 5 \end{bmatrix}$$
 and $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$. Compute AX

$$\begin{bmatrix} y \\ z \end{bmatrix}$$

Observation M.1.14

Consider the system of equations

$$3x + y - z = 5$$
$$2x + 4z = -7$$
$$-x + 3y + 5z = 2$$

We can interpret this as a **matrix equation** AX = B where

$$A = \begin{bmatrix} 3 & 1 & -1 \\ 2 & 0 & 4 \\ -1 & 3 & 5 \end{bmatrix} \qquad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \qquad B = \begin{bmatrix} 5 \\ -7 \\ 2 \end{bmatrix}$$

$$X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$B = \begin{bmatrix} 5 \\ -7 \\ 2 \end{bmatrix}$$

For this reason, we will swap out the use of Euclidean vectors $\mathbf{x} \in \mathbb{R}^n$ and $n \times 1$ matrices X whenever it is convenient.

Linear Algebra

Clontz & Lewis

Module I

Module E Section E.0

Section E.1

Section E.2

Module \

Section V.

Section V.

Section V.3 Section V.4

Module S

Section S.1

Section S.3

Module A

Section A.1 Section A.2

Section A.3

Section M.1

Section M.2

Module G

Section G.

Section G

Section G.3

Module M Section 2

Section E.0

Section E.1

Section E.2

Section V.3

Section V.4

Section A.1

Section A.2

Section A.3

Section M.2

Section M.3

Activity M.2.1 (\sim 5 min)

Let $A = \begin{bmatrix} 2 & 7 & -1 \\ 0 & 3 & 2 \\ 1 & 1 & -1 \end{bmatrix}$. Find a 3×3 matrix I such that IA = A, that is,

$$\begin{bmatrix} ? & ? & ? \\ ? & ? & ? \\ ? & ? & ? \end{bmatrix} \begin{bmatrix} 2 & 7 & -1 \\ 0 & 3 & 2 \\ 1 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 7 & -1 \\ 0 & 3 & 2 \\ 1 & 1 & -1 \end{bmatrix}$$

Section S.

Section 5

Module A

Section A.1 Section A.2 Section A.3

Section /

Module I

Section M.1 Section M.2

Section M.2 Section M.3

Module G

Section 6

Section (

Section G.:

Definition M.2.2

The identity matrix I_n (or just I when n is obvious from context) is the $n \times n$ matrix

$$I_n = egin{bmatrix} 1 & 0 & \dots & 0 \ 0 & 1 & \ddots & \vdots \ \vdots & \ddots & \ddots & 0 \ 0 & \dots & 0 & 1 \end{bmatrix}.$$

It has a 1 on each diagonal element and a 0 in every other position.

Section E.0

Section E.1

Section E.2

Module \
Section V

Section V Section V

Section V.3

Section V.4

Module

Section S.1

Section S

Section 5

Module A

Section A.1 Section A.2

Section A

Section A.3

Module N

iviodule

Section M.1 Section M.2

Section M.2 Section M.3

Module 0

Section G

Section

Section

Section G

Fact M.2.3

For any square matrix A, IA = AI = A:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 7 & -1 \\ 0 & 3 & 2 \\ 1 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 7 & -1 \\ 0 & 3 & 2 \\ 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 7 & -1 \\ 0 & 3 & 2 \\ 1 & 1 & -1 \end{bmatrix}$$

Linear Algebra

Clontz & Lewis

Activity M.2.4 (\sim 15 min)

Each row operation can be interpreted as a type of matrix multiplication.

Module

Module E Section E.0

Section E.1

Section E.2

Section V.0

Section V.1 Section V.2

Section V.3 Section V.4

Module S Section S.1

Section S.2 Section S.3

Section A.1 Section A.2 Section A.3

Module I

Section M.1 Section M.2

Section G.

Section G.1 Section G.2

Section G.

Section G.

Activity M.2.4 (\sim 15 min)

Each row operation can be interpreted as a type of matrix multiplication.

Part 1: Tweak the identity matrix slightly to create a matrix that doubles the third row of A:

$$\begin{bmatrix} ? & ? & ? \\ ? & ? & ? \\ ? & ? & ? \end{bmatrix} \begin{bmatrix} 2 & 7 & -1 \\ 0 & 3 & 2 \\ 1 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 7 & -1 \\ 0 & 3 & 2 \\ 2 & 2 & -2 \end{bmatrix}$$

Activity M.2.4 (\sim 15 min)

Each row operation can be interpreted as a type of matrix multiplication.

Part 1: Tweak the identity matrix slightly to create a matrix that doubles the third row of A:

$$\begin{bmatrix} ? & ? & ? \\ ? & ? & ? \\ ? & ? & ? \end{bmatrix} \begin{bmatrix} 2 & 7 & -1 \\ 0 & 3 & 2 \\ 1 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 7 & -1 \\ 0 & 3 & 2 \\ 2 & 2 & -2 \end{bmatrix}$$

Part 2: Create a matrix that swaps the second and third rows of A:

$$\begin{bmatrix} ? & ? & ? \\ ? & ? & ? \\ ? & ? & ? \end{bmatrix} \begin{bmatrix} 2 & 7 & -1 \\ 0 & 3 & 2 \\ 1 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 7 & -1 \\ 1 & 1 & -1 \\ 0 & 3 & 2 \end{bmatrix}$$

Module G

Section G.2 Section G.3

Activity M.2.4 (\sim 15 min)

Each row operation can be interpreted as a type of matrix multiplication.

Part 1: Tweak the identity matrix slightly to create a matrix that doubles the third row of A:

$$\begin{bmatrix} ? & ? & ? \\ ? & ? & ? \\ ? & ? & ? \end{bmatrix} \begin{bmatrix} 2 & 7 & -1 \\ 0 & 3 & 2 \\ 1 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 7 & -1 \\ 0 & 3 & 2 \\ 2 & 2 & -2 \end{bmatrix}$$

Part 2: Create a matrix that swaps the second and third rows of A:

Part 3: Create a matrix that adds 5 times the third row of A to the first row:

$$\begin{bmatrix} ? & ? & ? \\ ? & ? & ? \\ ? & ? & ? \end{bmatrix} \begin{bmatrix} 2 & 7 & -1 \\ 0 & 3 & 2 \\ 1 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 2+5 & 7+5 & -1-5 \\ 0 & 3 & 2 \\ 1 & 1 & -1 \end{bmatrix}$$

Section I.0

Section E.1 Section E.2

Section V.

Section V.2 Section V.3 Section V.4

Module S

Section S.2

Section S.3

Section A.1 Section A.2 Section A.3

Section A

Module I

Section M.1 Section M.2

Section G.1

Section G.3

Fact M.2.5

If R is the result of applying a row operation to I, then RA is the result of applying the same row operation to A.

This means that for any matrix A, we can find a series of matrices R_1, \ldots, R_k corresponding to the row operations such that

$$R_1R_2\cdots R_kA=\mathsf{RREF}(A).$$

That is, row reduction can be thought of as the result of matrix multiplication.

Module I Section I.0

Module E Section E.0 Section E.1 Section E.2

Section V.0 Section V.1 Section V.2 Section V.3 Section V.4

Section S.1 Section S.2 Section S.3

Module A Section A.1 Section A.2 Section A.3 Section A.4

Module M Section M.1

Section M.2 Section M.3 Module G

Module G Section G.1

Activity M.2.6 (\sim 15 min)

Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear map with standard matrix A. Sort the following items into groups of statements about T.

- (a) T is injective (i.e. one-to-one)
- (b) T is surjective (i.e. onto)
- (c) *T* is bijective (i.e. both injective and surjective)
- (d) AX = B has a solution for all $m \times 1$ matrices B
- (e) AX = B has a unique solution for all $m \times 1$ matrices B
- (f) AX = 0 has a unique solution.

- (g) The columns of A span \mathbb{R}^m
- (h) The columns of A are linearly independent
- (i) The columns of A are a basis of \mathbb{R}^m
- (j) Every column of RREF(A) has a pivot
- (k) Every row of RREF(A) has a pivot
- (I) m = n and RREF(A) = I

Section E.0

Section E.1

Section V.3

Section M.2

Activity M.2.7 (\sim 5 min)

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map with matrix A. If T is injective, which of the following cannot be true?

- (a) A has strictly more columns than rows
- A has the same number of rows as columns (i.e. A is square)
- (c) A has strictly more rows than columns

Section I.0

Module I

Section E.0 Section E.1

Section E.

Module Section V

Section V

Section V.3

Section V.3

Module S

Section S

Section S

Module A

Section A.1 Section A.2

Section A.: Section A.:

Module

C

Section M.1

Module (

Module G

Section G

Section G

Activity M.2.8 (\sim 5 min)

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map with matrix A. If T is surjective, which of the following cannot be true?

- (a) A has strictly more columns than rows
- (b) A has the same number of rows as columns (i.e. A is square)
- (c) A has strictly more rows than columns

Section I.0

Section E.0

Section E.1 Section E.2

Module V Section V

Section V.2 Section V.3 Section V.4

Section V.

Section S.

Section S Section S

Module A

Section A.1 Section A.2

Marilala

Section M.1 Section M.2

Section G.1 Section G.2

Section G.3

Activity M.2.9 (\sim 5 min)

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map with matrix A. If T is bijective, which of the following cannot be true?

- (a) A has strictly more columns than rows
- (b) A has the same number of rows as columns (i.e. A is square)
- (c) A has strictly more rows than columns

Linear Algebra Clontz &

Lewis

Section E.0

Section E.1

Section V.3 Section V.4

Section A.1 Section A.2

Section A.3

Section M.2

Section M.3

Module M Section 3

Section I.0

Section E.0 Section E.1

Section E.1 Section E.2

Section V.0 Section V.1 Section V.2 Section V.3 Section V.4

Module S

Section S Section S

Module /

Section A.1 Section A.2 Section A.3

Module

Section M.1 Section M.2

Section M.3

Section G.1

Definition M.3.1

Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear map with standard matrix A.

- If T is a bijection and B is any \mathbb{R}^n vector, then T(X) = AX = B has a unique solution X.
- So we may define an **inverse map** $T^{-1}: \mathbb{R}^n \to \mathbb{R}^n$ by setting $T^{-1}(B) = X$ to be this unique solution.
- Let A^{-1} be the standard matrix for T^{-1} . We call A^{-1} the **inverse matrix** of A, so we also say that A is **invertible**.

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the bijective linear map defined by $T\left(\begin{vmatrix} x \\ y \end{vmatrix} \right) = \begin{vmatrix} 2x - 3y \\ -3x + 5y \end{vmatrix}$. It can be shown that T is bijective and has the inverse map

$$\mathcal{T}^{-1}\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 5x + 3y \\ 3x + 2y \end{bmatrix}.$$

Section E.0

Section E.2

Section M.2

Section M.3

Activity M.3.2 (\sim 10 min)

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the bijective linear map defined by $T\left(\begin{vmatrix} x \\ y \end{vmatrix} \right) = \begin{vmatrix} 2x - 3y \\ -3x + 5y \end{vmatrix}$. It can be shown that T is bijective and has the inverse map

$$T^{-1}\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 5x + 3y \\ 3x + 2y \end{bmatrix}.$$

Part 1: Compute
$$(T^{-1} \circ T) \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$
.

Activity M.3.2 (\sim 10 min)

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the bijective linear map defined by $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 2x - 3y \\ -3x + 5y \end{bmatrix}$. It can be shown that T is bijective and has the inverse map

$$T^{-1}\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 5x + 3y \\ 3x + 2y \end{bmatrix}.$$

Part 1: Compute $(T^{-1} \circ T) \begin{pmatrix} -2 \\ 1 \end{pmatrix}$.

Part 2: If A is the standard matrix for T and A^{-1} is the standard matrix for T^{-1} , what must $A^{-1}A$ be?

Section E.0

Section E.1

Section E.2

Section V.3

Section V.4

Section A.1

Section A.2

Section A.3

Section M.2 Section M.3

Observation M.3.3

 $T^{-1} \circ T = T \circ T^{-1}$ is the identity map for any bijective linear transformation T. Therefore $A^{-1}A = AA^{-1} = I$ is the identity matrix for any invertible matrix A.

Section E.0

Section E.1

Section E.2

Section V.3

Section V.4

Section A.1

Section A.2

Section A.3

Section M.2

Section M.3

Activity M.3.4 (\sim 20 min)

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be given by the matrix $A = \begin{bmatrix} 2 & -1 & -6 \\ 2 & 1 & 3 \\ 1 & 1 & 4 \end{bmatrix}$.

Section E.0

Section E.1

Section E.2

Section V.3

Section V.4

Section A.1

Section A.2

Section A.3

Section M.2

Section M.3

Activity M.3.4 (\sim 20 min)

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be given by the matrix $A = \begin{bmatrix} 2 & -1 & -6 \\ 2 & 1 & 3 \\ 1 & 1 & 4 \end{bmatrix}$.

Part 1: Solve $T(X) = \mathbf{e}_1$ to find $T^{-1}(\mathbf{e}_1)$.

Section E.0

Section E.1

Section E.2

Section V.3

Section V.4

Section A.1 Section A.2

Section A.3

Section M.2

Section M.3

Activity M.3.4 (\sim 20 min)

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be given by the matrix $A = \begin{bmatrix} 2 & -1 & -6 \\ 2 & 1 & 3 \\ 1 & 1 & 4 \end{bmatrix}$.

Part 1: Solve $T(X) = \mathbf{e}_1$ to find $T^{-1}(\mathbf{e}_1)$.

Part 2: Solve $T(X) = \mathbf{e}_2$ to find $T^{-1}(\mathbf{e}_2)$.

Section E.0

Section E.1 Section E.2

Module \

Section V. Section V.

Section V.

Section V.3

Section V.

Module 3

Section S.

Section S

Section 5.3

Module A

Section A.1 Section A.2

Section A.3

Modulo

Module I

Section IVI.1

Section M.3

Module G

ection (

Section

Section G

Activity M.3.4 (\sim 20 min)

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be given by the matrix $A = \begin{bmatrix} 2 & -1 & -6 \\ 2 & 1 & 3 \\ 1 & 1 & 4 \end{bmatrix}$.

Part 1: Solve $T(X) = \mathbf{e}_1$ to find $T^{-1}(\mathbf{e}_1)$.

Part 2: Solve $T(X) = \mathbf{e}_2$ to find $T^{-1}(\mathbf{e}_2)$.

Part 3: Solve $T(X) = \mathbf{e}_3$ to find $T^{-1}(\mathbf{e}_3)$.

Section E.0 Section E.1

Section E.2

Module \
Section V

Section V.

Section V.2

Section V.: Section V.:

Section V.

Section S

Section S

Section S.2

Madula

Wodule F

Section A.1 Section A.2

Section A.2 Section A.3

.

Module

Section M.1 Section M.2

Section M.3

Module G

Section G.

Section

Section G

Activity M.3.4 (~20 min)

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be given by the matrix $A = \begin{bmatrix} 2 & -1 & -6 \\ 2 & 1 & 3 \\ 1 & 1 & 4 \end{bmatrix}$.

Part 1: Solve $T(X) = \mathbf{e}_1$ to find $T^{-1}(\mathbf{e}_1)$.

Part 2: Solve $T(X) = \mathbf{e}_2$ to find $T^{-1}(\mathbf{e}_2)$.

Part 3: Solve $T(X) = \mathbf{e}_3$ to find $T^{-1}(\mathbf{e}_3)$.

Part 4: Compute A^{-1} , the standard matrix for T^{-1} .

Section M.2 Section M.3

Observation M.3.5

We could have solved these three systems simultaneously by row reducing the matrix $[A \mid I]$ at once.

$$A = \begin{bmatrix} 2 & -1 & -6 & 1 & 0 & 0 \\ 2 & 1 & 3 & 0 & 1 & 0 \\ 1 & 1 & 4 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 & -2 & 3 \\ 0 & 1 & 0 & -5 & 14 & -18 \\ 0 & 0 & 1 & 1 & -3 & 4 \end{bmatrix}$$

Section E.0

Section E.1

Section E.2

Section V.3

Section V.4

Section A.1

Section A.2

Section A.3

Section M.2

Section M.3

Activity M.3.6 (\sim 10 min)

Find the inverse A^{-1} of the matrix $A = \begin{bmatrix} 1 & 3 \\ 0 & -2 \end{bmatrix}$ by row-reducing $[A \mid I]$.

Section E.0

Section E.1

Section E.2

Section V.3

Section V.4

Section A.1

Section A.2

Section A.3

Section M.2

Section M.3

Activity M.3.7 (\sim 10 min)

Is the matrix $\begin{bmatrix} 2 & 3 & 1 \\ -1 & -4 & 2 \\ 0 & -5 & 5 \end{bmatrix}$ invertible? Give a reason for your answer.

イロト イ押ト イラト イラト

Module I

Module E

Section E.0 Section E.1

Section E.2

Module \

Section V

Section V

Section V.3

Section V.4

Module S

C C 1

Section S.2

Section A.1

Section A.2 Section A.3

Section F

Module I

Section M.:

Section M.2 Section M.3

Module G

Section G.1

Section C

Section G.3

Observation M.3.8

A matrix $A \in \mathbb{R}^{n \times n}$ is invertible if and only if $RREF(A) = I_n$.

Module I

Module E Section E.0

Section E.1

Section E.2

Module V

Section V.:

Section V.

Section V.3 Section V.4

Module S

Section S.1

Section 5.2

Module A

Section A.1 Section A.2

Section A.3

Module M

Section M.1

Section M.2

Module G

Section G.

Section G

Section G.:

Module G: Geometry of Linear Maps

Section I.0

Module E Section E.0

Section E.1 Section E.2

Module \

Section V.

Section V.2

Section V.4

Module 5

Section S.2

Madula

Section A.1 Section A.2 Section A.3

Section A.

Module N

Section M.1 Section M.2 Section M.3

Module G

iviodule G

Section

Section G.3

How can we understand linear maps geometrically?

Module I Section I.0

Section E.1 Section E.2

Section V.0 Section V.2 Section V.3 Section V.4

Module S

Section S.

Module A

Section A.1 Section A.2

Module I

Section M.1 Section M.2

Module G

Section G.: Section G.: At the end of this module, students will be able to...

- **G1. Row operations.** ... represent a row operation as matrix multiplication, and compute how the operation affects the determinant.
- **G2. Determinants.** ... compute the determinant of a square matrix.
- **G3.** Eigenvalues. ... find the eigenvalues of a 2×2 matrix.
- **G4. Eigenvectors.** ... find a basis for the eigenspace of a square matrix associated with a given eigenvalue.

Module I

Section E.0 Section E.1 Section E.2

Section V.: Section V.: Section V.: Section V.: Section V.:

Section S.1 Section S.2

Module

Section A.1 Section A.2 Section A.3

Module N

Section M.1 Section M.2

Module G

Section G.1 Section G.2

Readiness Assurance Outcomes

Before beginning this module, each student should be able to...

- Calculate the area of a parallelogram.
- Find the matrix corresponding to a linear transformation of Euclidean spaces
 A1.
- Recall and use the definition of a linear transformation A2.
- Find all roots of quadratic polynomials (including complex ones), and be able
 to use the rational root theorem to find all rational roots of a higher degree
 polynomial.
- Interpret the statement "A is an invertible matrix" in many equivalent ways in different contexts.

Section E.0

Section E.1

Section V.3

Section A.2

Section A.3

Section M.2

Module G

The following resources will help you prepare for this module.

- Finding the area of a parallelogram (Khan Academy): http://bit.ly/2B05iWx
- Factoring quadratics (Khan Academy): http://bit.ly/1XjfbV2
- Finding complex roots of quadratics (Khan Academy): http://bit.ly/1HH3yAA

Linear Algebra Clontz &

Lewis

Section E.0

Section E.1

Section V.3

Section V.4

Section A.1 Section A.2

Section A.3

Section M.2

Section G.1

Module G Section 1

Module

Section G.1 Section G.2 Section G.3

Activity G.1.1 (\sim 5 min)

The image below illustrates how the linear transformation $T_1: \mathbb{R}^2 \to \mathbb{R}^2$ given by the standard matrix $A_1 = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$ transforms the unit square.

- (a) What is the area of the transformed unit square?
- (b) Find two vectors that were stretched/compressed by the transformation (not sheared), and compute how much those vectors were stretched/compressed.

Section E.0 Section E.1

Section M.2

Section G.1

Activity G.1.2 (\sim 5 min)

The image below illustrates how the linear transformation $T_2: \mathbb{R}^2 \to \mathbb{R}^2$ given by the standard matrix $A_2 = \begin{bmatrix} 3 & 3 \\ 0 & 2 \end{bmatrix}$. transforms the unit square.

- (a) What is the area of the transformed unit square?
- Find at least one vector that was stretched/compressed by the transformation (not sheared), and compute how much those vectors were stretched/compressed.

Section V

Section V.2 Section V.3

Section V.

Module S

Section S.1

Section S

Module

Section A.1 Section A.2

Section A.2

Module N

Section M.1

Section M.2 Section M.3

Module C

Section G.1

Section

Section G

Observation G.1.3

It's possible to find two non-parallel vectors that are stretched by the transformation given by A_2 :

The process for finding such vectors will be covered later in this module.

Section E.0

Section E.1

Section A.2

Section M.2

Section M.3

Section G.1

Activity G.1.4 (\sim 5 min)

Consider the linear transformation given by the standard matrix $A_3 = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$.

- Sketch the transformation of the unit square (the parallelogram given by the columns of the standard matrix).
 - Compute the area of the transformed unit square.

Section E.0 Section E.1

Section E.2

Section V.3

Section A.2 Section A.3

Section M.2

Section M.3

Section G.1

Activity G.1.5 (\sim 5 min)

Consider the linear transformation given by the standard matrix $A_4 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

- (a) Sketch the transformation of the unit square.
- (b) Compute the area of the transformed unit square.

Section E.0 Section E.1

Section E.2

Section V.3

Section A.2

Section A.3

Section M.2 Section M.3

Section G.1

Activity G.1.6 (\sim 5 min)

Consider the linear transformation given by the standard matrix $A_5 = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$.

- (a) Sketch the transformation of the unit square.
- (b) Compute the area of the transformed unit square.

Section I.0

Section E.0 Section E.1 Section E.2

Module \
Section V.

Section V.2 Section V.3 Section V.4

Section S.

Section S.2

Module A

Section A.1 Section A.2 Section A.3

Module

Section M.1 Section M.2

Module G

Module G Section G.1

Section G. Section G.

Remark G.1.7

The area of the transformed unit square measures the factor by which all areas are transformed by a linear transformation.

We will define the **determinant** of a square matrix A, or det(A) for short, to be this factor. But what properties must this function satisfy?

The transformation of the unit square by the standard matrix $\begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$ is illustrated below. What is $\det([\mathbf{e}_1 \ \mathbf{e}_2]) = \det(I)$, that is, by what factor has the area of the unit square been scaled?

Section V.3

Section E.0 Section E.2

- Section A.3

Section G.1

- Section M.2

a) 0

Cannot be determined

Linear Algebra

Clontz & Lewis

Section E.0 Section E.1

Section E.2

Section A.1

Section A.3

Section M.2 Section M.3

Section G.1

Activity G.1.9 (\sim 2 min)

The transformation of the unit square by the standard matrix $[\mathbf{v} \ \mathbf{v}]$ is illustrated below: both $T(\mathbf{e}_1) = T(\mathbf{e}_2) = \mathbf{v}$. What is $\det([\mathbf{v} \ \mathbf{v}])$, that is, by what factor has area been scaled?

- a) 0
- c)
- Cannot be determined

Linear Algebra

Clontz & Lewis

Section E.0 Section E.1 Section E.2

Activity G.1.10 (\sim 5 min)

The transformations of the unit square by the standard matrices $[\mathbf{v} \ \mathbf{w}]$ and $[\mathbf{c} \mathbf{v} \ \mathbf{w}]$ are illustrated below. How are $det([\mathbf{v} \ \mathbf{w}])$ and $det([\mathbf{c} \mathbf{v} \ \mathbf{w}])$ related?

- Section A.1 Section A.3
- Section M.2
- Section G.1

- a) $det([\mathbf{v} \ \mathbf{w}]) = det([c\mathbf{v} \ \mathbf{w}])$
- b) $c + \det([\mathbf{v} \ \mathbf{w}]) = \det([c\mathbf{v} \ \mathbf{w}])$
- c) $c \det([\mathbf{v} \ \mathbf{w}]) = \det([c\mathbf{v} \ \mathbf{w}])$

```
Linear Algebra
```

Lewis

Section I.0

Module F

Section E.0 Section E.1

Section E.2

Module V Section V.0

Section V.1 Section V.2

Section V.3 Section V.4

Module

Section S.2

Module /

Section A.1 Section A.2

Section A Section A

Module N

Section M.1 Section M.2 Section M.3

Module (

Section G.1

Section G.2 Section G.3

Activity G.1.11 (\sim 5 min)

The transformations of unit squares by the standard matrices $[\mathbf{u} \ \mathbf{w}]$, $[\mathbf{v} \ \mathbf{w}]$ and $[\mathbf{u} + \mathbf{v} \ \mathbf{w}]$ are illustrated below. How is $\det([\mathbf{u} + \mathbf{v} \ \mathbf{w}])$ related to $\det([\mathbf{u} \ \mathbf{w}])$ and $\det([\mathbf{v} \ \mathbf{w}])$?

- a) $det([\mathbf{u} \ \mathbf{w}]) = det([\mathbf{v} \ \mathbf{w}]) = det([\mathbf{u} + \mathbf{v} \ \mathbf{w}])$
- b) $det([\mathbf{u} \ \mathbf{w}]) + det([\mathbf{v} \ \mathbf{w}]) = det([\mathbf{u} + \mathbf{v} \ \mathbf{w}])$
- c) $det([\mathbf{u} \ \mathbf{w}]) det([\mathbf{v} \ \mathbf{w}]) = det([\mathbf{u} + \mathbf{v} \ \mathbf{w}])$

Section M.2 Section M.3

Section G.1

Section G.3 Section G.3

Definition G.1.12

The **determinant** is the unique function det : $\mathbb{R}^{n \times n} \to \mathbb{R}$ satisfying the following three properties:

P1: det(I) = 1

P2: $det([\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_n]) = 0$ whenever two columns of the matrix are identical.

P3: $\det[\cdots c\mathbf{v} + d\mathbf{w} \cdots] = c \det[\cdots \mathbf{v} \cdots] + d \det[\cdots \mathbf{w} \cdots]$, assuming all other columns are equal.

Linear Algebra

Clontz & Lewis

Section I.

Module E

Section E.0 Section E.1

Section E.2

Module V
Section V.0

Section V.2 Section V.3

Section V.4

Module

Section S

Module A Section A.1

Section A.2 Section A.3

Madula N

Section M.

Section M.2 Section M.3

Module G

Section G.1

Section G.2 Section G.3

Observation G.1.13

What happens if we had a multiple of one column to another?

The base of both parallelograms is \mathbf{v} , while the height has not changed. Thus

$$det([\mathbf{v} \quad \mathbf{w} + c\mathbf{v}]) = det([\mathbf{v} \quad \mathbf{w}])$$

Section E.0

Section E.1

Section A.1

Section A 2 Section A.3

Section M.2

Section G.1

Observation G.1.14

Swapping columns can be obtained from a sequence of adding column multiples.

$$\begin{split} \det([\textbf{v} & \textbf{w}]) &= \det([\textbf{v} + \textbf{w} & \textbf{w}]) \\ &= \det([\textbf{v} + \textbf{w} & \textbf{w} - (\textbf{v} + \textbf{w})]) \\ &= \det([\textbf{v} + \textbf{w} & -\textbf{v}]) \\ &= \det([\textbf{v} + \textbf{w} - \textbf{v} & -\textbf{v}]) \\ &= \det([\textbf{w} & -\textbf{v}]) \\ &= -\det([\textbf{w} & \textbf{v}]) \end{split}$$

So swapping two columns results in a negation of the determinant. Therefore, determinants represent a signed area, since they are not always positive.

Module I Section I.0

Module E Section E.0 Section E.1

Module V
Section V.0
Section V.1
Section V.2
Section V.3

Section V.3 Section V.4

Section S.2

Module A Section A.1 Section A.2

Section A.

Module N

Section M.1 Section M.2

Module G

Section G.1 Section G.2

Section G.2 Section G.3

Fact G.1.15

We've shown that the column versions of the three row-reducing operations a matrix may be used to simplify a determinant:

(a) Multiplying a column by a scalar multiplies the determinant by that scalar:

$$c \det([\cdots \mathbf{v} \cdots]) = \det([\cdots c \mathbf{v} \cdots])$$

(b) Swapping two columns changes the sign of the determinant:

$$\det([\cdots \ \textbf{v} \ \cdots \ \textbf{w} \ \cdots]) = -\det([\cdots \ \textbf{w} \ \cdots \])$$

(c) Adding a multiple of a column to another column does not change the determinant:

$$\det([\cdots \mathbf{v} \cdots \mathbf{w} \cdots]) = \det([\cdots \mathbf{v} + c\mathbf{w} \cdots \mathbf{w} \cdots])$$

Section I.0

Section E.0

Section E.1 Section E.2

Section V.
Section V.

Section V.3 Section V.4

Module S

Section S.1 Section S.2

Module A

Section A.1 Section A.2 Section A.3

Module

Section M.1 Section M.2 Section M.3

Module G

Section G.1

Section G.3

Activity G.1.16 (\sim 5 min)

The transformation given by the standard matrix A scales areas by 4, and the transformation given by the standard matrix B scales areas by 3. How must the transformation given by the standard matrix AB scale areas?

- (a) 1
- (b) 7
- (c) 12
- (d) Cannot be determined

Section E.0

Section E.1

Fact G.1.17

Since the transformation given by the standard matrix AB is obtained by applying

det(AB) = det(A) det(B)

the transformations given by A and B, it follows that

Section E.2

Section V.3

Section V.4

Section A.1 Section A.2

Section A.3

Section M.2

Section M.3

Section G.1

↓□▶ ←□▶ ←□▶ ←□▶ □ ♥Q♥

Module I

Module E

Section E.0 Section E.1

Section E.2

Module \

Section V.C

Section V.

Section V.2 Section V.3

Section V.4

Module 5

Section S.1

Section S

Madula A

Section A.1 Section A.2

Section A.3

Section A

Module M

Section M.1

Section M.2

Module (

C--+:-- C

Section G.1

Section G.3

Module G Section 2

Section I.

Module E Section E.0

Section E.1

Section E.2

Module Section \

Section V

Section V

Section V.3

Section V.4

Module S

C C 1

Section S

Section S.

Module

Section A.1

Section A.2

Section A

Section A.3

NA - July

Module I

Section IVI

Section M.2 Section M.3

Module G

Section G.

Section G.2

Section G.3

Definition G.2.1

The **transpose** of a matrix is given by rewriting its columns as rows and vice versa:

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}^T = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$

Section I.0

Module E

Section E.0 Section E.1 Section E.2

Module V Section V.

Section V.3

Module S

Section S.1

Section 9

Section S

Module A

Section A.1 Section A.2 Section A.3

Madula

iviodule i

Section M.1 Section M.2 Section M.3

Module 0

Section G.

Section G.2

Section G.3

Fact G.2.2

It is possible to prove that the determinant of a matrix and its transpose are the same. For example, let $A = \begin{bmatrix} 3 & 3 \\ 0 & 2 \end{bmatrix}$, so $A^T = \begin{bmatrix} 3 & 0 \\ 3 & 2 \end{bmatrix}$; both matrices scale the unit square by 6, even though the parallelograms are not congruent.

Lewis

Section E.0 Section E.1 Section E.2

Section M.2 Section M.3

Section G.2

Fact G.2.3

We previously figured out that column operations can be used to simplify determinants; since $det(A) = det(A^T)$, we can also use row operations:

- 1 Multiplying rows by scalars: $\det \begin{bmatrix} \vdots \\ cR \\ \vdots \end{bmatrix} = c \det \begin{bmatrix} \vdots \\ R \\ \vdots \end{bmatrix}$
- ② Swapping two rows: $\det \begin{bmatrix} \vdots \\ R \\ \vdots \\ S \end{bmatrix} = -\det \begin{bmatrix} \vdots \\ S \\ \vdots \\ R \\ \vdots \end{bmatrix}$
- 3 Adding multiples of rows to other rows: det $\begin{vmatrix} \vdots \\ R \\ \vdots \\ S \end{vmatrix} = \det \begin{vmatrix} \vdots \\ R+cS \\ \vdots \\ S \end{vmatrix}$

Section E.0 Section E.1

Section E.2

Section V.3

Section A.1

Section A.2

Section A.3

Section M.2

Section M.3

Section G.2

Activity G.2.4 (\sim 10 min)

Compute the determinant of $\begin{bmatrix} 2 & 4 \\ 2 & 3 \end{bmatrix}$ by row reducing it to a nicer matrix.

For example, $\det \begin{bmatrix} 2 & 4 \\ 2 & 3 \end{bmatrix} = 2 \det \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$.

Section I.

Module E

Section E.0 Section E.1

Section E.2

Module Section V

Section V.2 Section V.3

Section V.3 Section V.4

Module S

Section S

Section S

Section S

Module A

Section A.1 Section A.2

Section A.2

Module

Section M

Section M.2 Section M.3

Module G

Section G.1 Section G.2

Section G.3

Fact G.2.5

This same process allows us to prove a more convenient formula:

$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$$

In higher dimensions, the formulas become unreasonable. For example, the formula for 4×4 matrices has 24 terms!

Section G.2

Activity G.2.6 (\sim 5 min)

The following image illustrates the transformation of the unit cube by the matrix

$$\begin{bmatrix} 3 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

This volume is equal to which of the following areas?

(a)
$$\det \begin{bmatrix} 3 & 1 \\ 1 & 1 \end{bmatrix}$$
 (b) $\det \begin{bmatrix} 3 & 1 \\ 1 & 0 \end{bmatrix}$ (c) $\det \begin{bmatrix} 3 & 1 \\ 0 & 1 \end{bmatrix}$

(b) det
$$\begin{vmatrix} 3 & 1 \\ 1 & 0 \end{vmatrix}$$

(c)
$$\det \begin{bmatrix} 3 & 1 \\ 0 & 1 \end{bmatrix}$$

(d)
$$\det \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

Section V.3 Section V.4

Module S

Section S Section S

Module

Section A.1 Section A.2 Section A.3

Section A

Module

Section M.1 Section M.2 Section M.3

Module G

Section G.1 Section G.2 Section G.3 If column i of a matrix is \mathbf{e}_i , then both column and row i may be removed without changing the value of the determinant. For example, the second column of the following matrix is \mathbf{e}_2 , so:

$$\det\begin{bmatrix} 3 & 0 & -1 & 5 \\ 2 & 1 & 4 & 0 \\ -1 & 0 & 1 & 11 \\ 3 & 0 & 0 & 1 \end{bmatrix} = \det\begin{bmatrix} 3 & -1 & 5 \\ -1 & 1 & 11 \\ 3 & 0 & 1 \end{bmatrix}$$

Therefore the same holds for the transpose:

$$\det \begin{bmatrix} 3 & 2 & -1 & 3 \\ 0 & 1 & 0 & 0 \\ -1 & 4 & 1 & 0 \\ 5 & 0 & 11 & 1 \end{bmatrix} = \det \begin{bmatrix} 3 & -1 & 3 \\ -1 & 1 & 0 \\ 5 & 11 & 1 \end{bmatrix}$$

Geometrically, this is the fact that if the height is 1, the base \times height formula reduces to the area/volume/etc. of the n-1 dimensional base.

Section E.0

Section E.1

Section E.2

Section V.3

Section V.4

Section A.1

Section A.2

Section A.3

Section M.2

Section G.2

Activity G.2.8 (\sim 5 min)

Compute det $\begin{bmatrix} 1 & 0 & 0 \\ 1 & 5 & 12 \\ 3 & 2 & -1 \end{bmatrix}$.

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶

```
Linear Algebra
  Clontz &
    Lewis
Section E.0
Section E.1
```

```
Activity G.2.9 (\sim5 min)
```

Compute det $\begin{bmatrix} 0 & 3 & -2 \\ 1 & 5 & 12 \\ 0 & 2 & -1 \end{bmatrix}$.

Section V.3 Section V.4

(b) 0

(c) 1

Section G.2

Section A.1 Section A.3

Section M.2

イロト イボト イラト イラト

Section A.1 Section A.2

Section A.3

Section M.2

Section G.2

Activity G.2.10 (\sim 10 min)

Compute det

(a) 3

(b) 6

(c) 9

(d) 12

```
Linear Algebra
```

Section E.0

Section E.1 Section E.2

Section V.3

Section V.4

Section A.1

Section A.2

Section A.3

Section M.2

Section G.2

Activity G.2.11 (\sim 15 min)

Compute det $\begin{bmatrix} 2 & 3 & 5 & 0 \\ 0 & 3 & 2 & 0 \\ 1 & 2 & 0 & 3 \\ -1 & -1 & 2 & 2 \end{bmatrix}.$

Observation G.2.12

Section A.1 Section A.2

Section A.3

Section M.2 Section M.3

$$\det\begin{bmatrix} 2 & 3 & 5 & 0 \\ 0 & 3 & 2 & 0 \\ 1 & 2 & 0 & 3 \\ -1 & -1 & 2 & 2 \end{bmatrix} = (-1)(0) \det\begin{bmatrix} 2 & 3 & 5 & 0 \\ 0 & 3 & 2 & 0 \\ 2 & 0 & 3 \\ 1 & -1 & 2 & 2 \end{bmatrix} + (1)(3) \det\begin{bmatrix} 2 & 3 & 5 & 0 \\ 0 & 3 & 2 & 0 \\ 1 & 2 & 0 & 3 \\ -1 & -1 & 2 & 2 \end{bmatrix} + (1)(0) \det\begin{bmatrix} 2 & 3 & 5 & 0 \\ 0 & 3 & 2 & 0 \\ 1 & 2 & 0 & 3 \\ -1 & -1 & 2 & 2 \end{bmatrix} + (1)(0) \det\begin{bmatrix} 2 & 3 & 5 & 0 \\ 0 & 3 & 2 & 0 \\ 1 & 2 & 0 & 3 \\ -1 & -1 & 2 & 2 \end{bmatrix}$$
$$= 3 \det\begin{bmatrix} 2 & 5 & 0 \\ 1 & 0 & 3 \\ -1 & 2 & 2 \end{bmatrix} + (-1)(2) \det\begin{bmatrix} 2 & 3 & 0 \\ 1 & 2 & 3 \\ -1 & -1 & 2 \end{bmatrix}$$

This technique is called **Laplace expansion** or **cofactor expansion**.

```
Linear Algebra
  Clontz &
    Lewis
```

Section E.0

Section E.1

Section E.2

Section V.3

Section V.4

Section A.1

Section A.2

Section A.3

Section M.2

Section G.2

Activity G.2.13 (\sim 10 min)

Compute det $\begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 3 & 2 & -1 \\ 1 & 2 & 0 & 3 \\ -1 & -3 & 2 & -2 \end{bmatrix}$

Module I

Module E

Section E.0 Section E.1

Section E.

Section V

Section V.

Section V.:

Section V.3 Section V.4

Module S

Section S.1

Section S.3

Module A

Section A.1 Section A.2

Section A.3 Section A.4

Module M

Section M.1

Section M.2

Module (

Section G.

Section G.2 Section G.3 Module G Section 3

Section G.

Section G.1 Section G.2 Section G.3

Activity G.3.1 (\sim 5 min)

An invertible matrix M and its inverse M^{-1} are given below:

$$M = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \qquad M^{-1} = \begin{bmatrix} -2 & 1 \\ 3/2 & -1/2 \end{bmatrix}$$

Compute det(M) and $det(M^{-1})$.

Section E.0 Section E.1

Section E.2

Section V.3

Section A.1 Section A.2

Section A.3

Section M.2

Section M.3

Section G.3

Activity G.3.2 (\sim 5 min)

Suppose the matrix M is invertible, so there exists M^{-1} with $MM^{-1} = I$. It follows that $det(M) det(M^{-1}) = det(I)$.

What is the only number that det(M) cannot equal?

(a) -1

(b) 0

(c) 1

(d) $\frac{1}{\det(M^{-1})}$

Section E.0 Section E.1

Section E.2

Section V.3

Section V.4

Section A.1

Section A.2

Section A.3

Section M.2

Section M.3

Section G.3

Fact G.3.3

- For every invertible matrix M, $det(M^{-1}) = \frac{1}{\det(M)}$.
- Furthermore, a square matrix M is invertible if and only if $det(M) \neq 0$.

Section V.

Section E.0 Section E.1 Section E.2

Module S

Section S.1

Section S Section S

Module

Section Section

Section A.3 Section A.4

Section A

Module I Section M

Section M.2 Section M.3

Module G Section G.1

Section G.2 Section G.3 It is easy to see geometrically that

$$A \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

It is less obvious (but easily verified by computation) that

$$A \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \end{bmatrix} = 3 \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

Section E.0

Section E.1 Section E.2

Section V.3

Section A.1

Section A.2 Section A.3

Section M.2

Section M.3

Section G.3

Definition G.3.5

Let $A \in \mathbb{R}^{n \times n}$. An **eigenvector** is a vector $\mathbf{x} \in \mathbb{R}^n$ such that $A\mathbf{x}$ is parallel to \mathbf{x} . In other words, $A\mathbf{x} = \lambda \mathbf{x}$ for some scalar λ .

We call this λ an **eigenvalue** of A.

Section E.0 Section E.1

Section A.1

Section A.3

Section M.2

Section G.3

Observation G.3.6

Since $\lambda \mathbf{x} = \lambda (I\mathbf{x})$, we can find the eigenvalues and eigenvectors satisfying $A\mathbf{x} = \lambda \mathbf{x}$ by inspecting $(A - \lambda I)\mathbf{x} = \mathbf{0}$.

- Since we already know that $(A \lambda I)\mathbf{0} = \mathbf{0}$ for any value of λ , we are more interested in finding values of λ such that $A - \lambda I$ has a nontrivial kernel.
- Thus RREF($A \lambda I$) must have a non-pivot column, and therefore $A \lambda I$ cannot be invertible.
- Since $A \lambda I$ cannot be invertible, our eigenvalues must satisfy $\det(A - \lambda I) = 0.$

Module I

Section 1.

Module E Section E.0

Section E.

Section E.2

Module \
Section V.

Section V.

Section V.2 Section V.3

Section V.

Section V.

Module S

C C :

Section :

Section 5

.

Section A

Section A.2

Section A.3

Module

Module I

Section IVI.1 Section M.2

Section M.2 Section M.3

Module (

Section G.:

Section (

Section G.3

Definition G.3.7

Computing $det(A - \lambda I)$ results in the **characteristic polynomial** of A.

For example, when $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, we have

$$A - \lambda I = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} 1 - \lambda & 2 \\ 3 & 4 - \lambda \end{bmatrix}$$

Thus the characteristic polynomial of A is

$$\det\begin{bmatrix} 1-\lambda & 2\\ 3 & 4-\lambda \end{bmatrix} = (1-\lambda)(4-\lambda) - 6 = \lambda^2 - 5\lambda - 2$$

Section E.0

Section E.1

Section E.2

Section V.3

Section V.4

Section A.1

Section A.2

Section A.3

Section M.2

Section G.3

Activity G.3.8 (\sim 15 min)

Activity G.3.8 (\sim 15 min)

Compute $\det(A - \lambda I)$ to find the characteristic polynomial of $A = \begin{bmatrix} 6 & -2 & 1 \\ 17 & -5 & 5 \\ -4 & 2 & 1 \end{bmatrix}$.

Module E Section E.0

Section E.1

Module V

Section V.0

Section V.2 Section V.3

Section V.4
Module S

Section S.1

Section S.2 Section S.3

Section A.1

Section A.2 Section A.3 Section A.4

Module M

Section M.1 Section M.2

Module G Section G.

Section G.1 Section G.2 Section G.3 Let $A = \begin{bmatrix} 2 & 2 \\ 0 & 3 \end{bmatrix}$.

Module I

Module E

Module E

Section E.0 Section E.1

Section E.1

Module \

Section V

Section 1

Section

Section V.3

Section V.4

Module S

Section S.1

Section S.2

Dection 5

Section A.1

Section A.2

Section A.3

Section A.

Madula

Module I

Section M.1 Section M.2

Section M.2 Section M.3

Module (

Section G

Section (

Section G.3

Let $A = \begin{bmatrix} 2 & 2 \\ 0 & 3 \end{bmatrix}$.

Part 1: Compute $det(A - \lambda I)$ to determine the characteristic polynomial of A.

Let
$$A = \begin{bmatrix} 2 & 2 \\ 0 & 3 \end{bmatrix}$$
.

Part 1: Compute $det(A - \lambda I)$ to determine the characteristic polynomial of A.

Part 2: Find the roots of the characteristic polynomial to determine the eigenvalues of A.

Section G.2 Section G.3 **Activity G.3.9** (\sim 15 min)

Let
$$A = \begin{bmatrix} 2 & 2 \\ 0 & 3 \end{bmatrix}$$
.

Part 1: Compute $det(A - \lambda I)$ to determine the characteristic polynomial of A.

Part 2: Find the roots of the characteristic polynomial to determine the eigenvalues of A.

Part 3: Compute the kernel of the transformation given by

$$A - 2I = \begin{bmatrix} 2 - 2 & 2 \\ 0 & 3 - 2 \end{bmatrix}$$

to determine all the eigenvectors associated to the eigenvalue 2.

Section G.2 Section G.3 Activity G.3.9 (\sim 15 min)

Let
$$A = \begin{bmatrix} 2 & 2 \\ 0 & 3 \end{bmatrix}$$
.

Part 1: Compute $det(A - \lambda I)$ to determine the characteristic polynomial of A.

Part 2: Find the roots of the characteristic polynomial to determine the eigenvalues of A.

Part 3: Compute the kernel of the transformation given by

$$A - 2I = \begin{bmatrix} 2 - 2 & 2 \\ 0 & 3 - 2 \end{bmatrix}$$

to determine all the eigenvectors associated to the eigenvalue 2.

Part 4: Compute the kernel of the transformation given by A-3I to determine all the eigenvectors associated to the eigenvalue 3.

Section I.0

Module E Section E.0

Section E.1 Section E.2

Module

Section V.2 Section V.3

Section V.3 Section V.4

Module S

Section S.2

Section 5.3

Module A

Section A.1 Section A.2

Section A.3

Module I

Module I

Section M.

Section M.2 Section M.3

Module (

Module G

Section G

Section G.3

Definition G.3.10

The kernel of the transformation given by $A - \lambda I$ contains all the eigenvectors associated with λ . Since kernel is a subspace of \mathbb{R}^n , we call this kernel the **eigenspace** associated with the eigenvalue λ .

Section E.0

Section E.1

Section E.2

Section V.3

Section V.4

Section A.1

Section A.2

Section A.3

Section M.2

Section M.3

Section G.3

Activity G.3.11 (\sim 15 min)

Find all the eigenvalues and associated eigenspaces for the matrix

$$A = \begin{vmatrix} 3 & -2 & 1 \\ 0 & 2 & 8 \\ 0 & 2 & 2 \end{vmatrix}$$

Section A.1 Section A.2

Section A.3

Section M.2 Section M.3

Section G.3

Activity G.3.11 (\sim 15 min)

Find all the eigenvalues and associated eigenspaces for the matrix

$$A = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 2 & 8 \\ 0 & 2 & 2 \end{bmatrix}.$$

Part 1: Compute $det(A - \lambda I)$ to determine the characteristic polynomial of A.

Section G.2

Activity G.3.11 (\sim 15 min)

Find all the eigenvalues and associated eigenspaces for the matrix

$$A = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 2 & 8 \\ 0 & 2 & 2 \end{bmatrix}.$$

Part $\bar{1}$: Compute $\det(A - \lambda I)$ to determine the characteristic polynomial of A.

Part 2: Find the roots of the characteristic polynomial $(3 - \lambda)(\lambda^2 - 4\lambda - 12)$ to determine the eigenvalues of A.

Activity G.3.11 (\sim 15 min)

Find all the eigenvalues and associated eigenspaces for the matrix

$$A = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 2 & 8 \\ 0 & 2 & 2 \end{bmatrix}.$$

Part 1: Compute $det(A - \lambda I)$ to determine the characteristic polynomial of A.

Part 2: Find the roots of the characteristic polynomial $(3 - \lambda)(\lambda^2 - 4\lambda - 12)$ to determine the eigenvalues of A.

Part 3: Compute the kernels of $A - \lambda I$ for each eigenvalue $\lambda \in \{-2, 3, 6\}$ to determine the respective eigenspaces.

Section I.0

Section E.0

Section E.1 Section E.2

Module Section V

Section V.2 Section V.3 Section V.4

Module 9

Section S

Module A

Section A.1 Section A.2 Section A.3

Section A

Module I

Section M.1 Section M.2

Module G Section G.1

Section G.2 Section G.3

Observation G.3.12

Recall that if a is a root of the polynomial $p(\lambda)$, the **multiplicity** of a is the largest number k such that $p(\lambda) = q(\lambda)(\lambda - a)^k$ for some polynomial $q(\lambda)$.

For this reason, the **algebraic multiplicity** of an eigenvalue is its multiplicity as a root of the characteristic polynomial.

Section G.3

Example G.3.13

If
$$A = \begin{bmatrix} 3 & 1 & -1 \\ 0 & 3 & 3 \\ 0 & 0 & -1 \end{bmatrix}$$
, the characteristic polynomial is $p(\lambda) = (\lambda - 3)^2(\lambda + 1)$.

The eigenvalues are 3 (with algebraic multiplicity 2) and -1 (with algebraic multiplicity 1).

Module I

Module E Section E.0

Section E.0 Section E.1

Modulo V

Section V.0

Section V.

Section V.3 Section V.4

Module S

Section S.1 Section S.2

Section S.3

Module A

Section A.1 Section A.2 Section A.3

Section A

Module M

Section M.1

Section M.2

Module (

Section G.1

Section G.3 Section G.4 Module G Section 4

Module I Section I.0

Module E Section E.0 Section E.1 Section E.2

Module V Section V.0 Section V.2 Section V.2 Section V.4

Module S Section S.

Section S.2 Section S.3

Module A Section A.1 Section A.2 Section A.3

Module N

Section M.1 Section M.2

Module G

Section G.1 Section G.3 Section G.4

Observation G.4.1

Recall from last class:

- To find the eigenvalues of a matrix A, we need to find values of λ such that $A \lambda I$ has a nontrivial kernel. Equivalently, we want values where $A \lambda I$ is not invertible, so we want to know the values of λ where $\det(A \lambda I) = 0$.
- $det(A \lambda I)$ is a polynomial with variable λ , called the **characteristic polynomial** of A. Thus the roots of the characteristic polynomial of A are exactly the eigenvalues of A.
- Once an eigenvalue λ is found, the **eigenspace** containing all **eigenvectors x** satisfying $A\mathbf{x} = \lambda \mathbf{x}$ is given by $\ker(A \lambda I)$.

Section E.0

Section V.3

Section V.4

Section A.1

Section A.3

Section M.2

Section G.4

Activity G.4.2 (\sim 5 min) Let $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.

Module E Section E.0

Section E.1 Section E.2

Module \

Section V.

Section V

Section V.3

Section V.3

Module S

.

Section S.2

Section S.3

.

Section A.1

Section A.2

Section A.3

Section A.

Module I

C

Section M.2

Section M.3

Module G

Section G.1

Section G

Section G.3 Section G.4 Activity G.4.2 (\sim 5 min)

Let $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.

Part 1: Compute the eigenvalues of A.

Section M.2

Section G.4

Section E.0

Activity G.4.2 (\sim 5 min)

Let $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.

Part 1: Compute the eigenvalues of A.

Part 2: Sketch a picture of the transformation of the unit square. What about this picture reveals that A has no real eigenvectors?

Section E.0 Section E.1

Section E.2

Section V.3

Section V.4

Section A.1 Section A.2

Section A.3

Section M.2

Section M.3

Section G.4

Activity G.4.3 (\sim 5 min)

If A is a 4×4 matrix, what is the largest number of eigenvalues A can have?

- (a) 3
- (b) 4
- (c)
- 6 (d)
- (e) It can have infinitely many

Section I.0

Section E.0 Section E.1

Section E.1 Section E.2

Section V

Section V.2 Section V.3

Section V.4

Module 2

Section S.2

Decelon D.

Section A.1 Section A.2

Section A.2 Section A.3

Module N

Section M.1 Section M.2 Section M.3

Module G

Section G.1 Section G.2

Section G.2 Section G.3 Section G.4

Observation G.4.4

An $n \times n$ matrix may have between 0 and n real-valued eigenvalues. But the Fundamental Theorem of Algebra implies that if complex eigenvalues are included, then every $n \times n$ matrix has exactly n eigenvalues (counting algebraic multiplicites).

Section V.3

Section A.1 Section A.2

Section A.3

Section M.2

Section M.3

Section G.4

Activity G.4.5 (\sim 5 min)

The matrix
$$A = \begin{bmatrix} 1 & -2 & 1 \\ -1 & 0 & 1 \\ -1 & -2 & 3 \end{bmatrix}$$
 has characteristic polynomial $-\lambda(\lambda-2)^2$.

Find the dimension of the eigenspace of A associated to the eigenvalue 2 (the dimension of the kernel of A - 2I).

Section V.3

Section A.1

Section A.2 Section A.3

Section M.2

Section M.3

Section G.4

Activity G.4.6 (\sim 5 min)

The matrix $B = \begin{bmatrix} -3 & -9 & 5 \\ -2 & -2 & 2 \\ -7 & -13 & 9 \end{bmatrix}$ has characteristic polynomial $-\lambda(\lambda-2)^2$.

Find the dimension of the eigenspace of B associated to the eigenvalue 2 (the dimension of the kernel of B-2I).

Section E.0

Section E.2

Section V.3

Section A.2

Section A.3

Section M.2 Section M.3

Section G.4

Observation G.4.7

In the first example, the (2 dimensional) plane spanned by $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 4 \\ -2 \\ 0 \end{bmatrix}$ was

preserved. In the second example, only the (one dimensional) line spanned by $\begin{bmatrix} 1\\0 \end{bmatrix}$

is preserved.

Section I.0

Section E.0 Section E.1 Section E.2

Module Section \

Section V.2 Section V.3 Section V.4

Module S

Section S.1

Section S.3

Module 4

Section A.1 Section A.2 Section A.3

NA-dula N

Section M.1 Section M.2 Section M.3

Module G

Section G.1 Section G.2

Section G.3 Section G.4

Definition G.4.8

While the **algebraic multiplicity** of an eigenvalue is its multiplicity as a root of the characteristic polynomial, the **geometric multiplicity** of an eigenvalue is the dimension of its eigenspace.

Section E.0 Section E.1 Section E.2

Module V

Section V.2 Section V.3 Section V.4

Module S

Section S.1 Section S.2

Section 5.

Section A.1 Section A.2 Section A.3

Module N

Section M.1 Section M.2 Section M.3

Module G

Section G.1 Section G.2 Section G.4

Fact G.4.9

As we've seen, the geometric multiplicity may be different than its algebraic multiplicity, but it cannot exceed it.

This fact is explored deeper and explained in Math 316, Linear Algebra II

Module I

Module E

Section E.0

Section E.1 Section E.2

Section E.

Section V

Section V.

Section V.

Section V

Section V.3

Section V.4

Module S

C C 1

Section S 2

Section S.3

Maritalia

Section A.1

Section A.2

Section A.3

Module

Module

Section M.

Section M.2 Section M.3

Module 0

iviouule G

Section (

Section G.3 Section G.4

Activity G.4.10 (~20 min)

Consider the 4×4 matrix

$$\begin{bmatrix} -3 & 1 & 2 & 1 \\ -9 & 5 & -2 & -1 \\ 31 & -17 & 6 & 3 \\ -69 & 39 & -18 & -9 \end{bmatrix}$$

Module I

Module E

Section E.0

Section E.1

Section E.2

Section V

Section V

Section V

Section V.3

Section V.4

Module 5

Section S 1

Section S

Section

. . . .

iviodule A

Section A.1

Section A.2 Section A.3

Section A

Module

iviodule

Section M

Section M.2 Section M.3

Module (

iviouule C

Section G

Section G.3 Section G.4 Activity G.4.10 (\sim 20 min)

Consider the 4×4 matrix

 $\begin{bmatrix} -3 & 1 & 2 & 1 \\ -9 & 5 & -2 & -1 \\ 31 & -17 & 6 & 3 \\ -69 & 39 & -18 & -9 \end{bmatrix}$

Part 1: Use technology (e.g. Wolfram Alpha) to find its characteristic polynomial.

Section I (

Module E

Section E.0 Section E.1

Section E.2

Module \
Section V

Section V

Section V.

Section V.3 Section V.4

Module S

.

Section 5

C -- 4:-- 1

.

iviodule /

Section A.1 Section A.2

Section A.2 Section A.4

Module N

iviodule i

Section M.

Section M.2

Module G

Section G

Section G.

Section G.3 Section G.4

Activity G.4.10 (~20 min)

Consider the 4×4 matrix

$$\begin{bmatrix} -3 & 1 & 2 & 1 \\ -9 & 5 & -2 & -1 \\ 31 & -17 & 6 & 3 \\ -69 & 39 & -18 & -9 \end{bmatrix}$$

Part 1: Use technology (e.g. Wolfram Alpha) to find its characteristic polynomial.

Part 2: Find the algebraic and geometric multiplicities for both eigenvalues.

Module I

Module E

Section E.0 Section E.1

Section E.2

Module V

Section V.0

Section V.:

Section V.2

Section V.4

Module 3

Section 5..

Section S

Madula A

Section A.1 Section A.2

Section A.3

iviodule ivi

Section M.1 Section M.2

Section M 3

Module (

Section G.

Section G

Section G.3

Module X: Applications

Clontz & Lewis

Module I

Module E

Section E.0 Section E.1

Section E.:

Module V

Section V

Section V

Section V.3 Section V.4

Module S

Section S.1

Section S.3

Module A

Section A.1 Section A.2

Section A.3

Module M

Section M.1 Section M.2

Section M 3

iviodule C

Section G.

Section G

Section G.3

Module X Section 1

Clontz & Lewis

Section E.1

Section A.3

Section M.2

Observation X.1.1

Consider the truss pictured below with two fixed anchor points and a 10000 N load (assume all triangles are equilateral).

The horizontal and vertical forces must balance at each of the five intersecting nodes. For example, at the bottom left node

Apply basic trig: thus

$$F_{1,v} = F_1 \sin(60^\circ) \qquad F_1 \sin(60^\circ) + N_1$$

$$F_{1,h} = F_1 \cos(60^\circ) \qquad F_1 \cos(60^\circ) + N_{1,h} + F_1$$

We adhere to the convention that a compression force on a strut is positive, while a negative force represents tension.

Clontz & Lewis

Module I Section I.0

Module E Section E.0

Section E.1 Section E.2

Module \

Section V. Section V.

Section V.3

Section V.4

Module S

Section S.

Section S.

Section A.1 Section A.2 Section A.3

Module N

Section M.1 Section M.2

Module 0

Section G.1 Section G.2

Section G.2 Section G.3

Activity X.1.2 (\sim 10 min)

Consider the truss pictured below with two fixed anchor points and a 10000 N load (assume all triangles are equilateral).

From the bottom left node we obtained 2 equations in the four variables

- F_1 (compression force on strut one)
- $N_{1,v}$ and $N_{1,h}$ (horizontal and vertical components of the normal force from the left anchor)
- F_2 (compression force on strut 2).

Clontz & Lewis

Module I Section I.0

Section E.0 Section E.1

Module \(\)
Section \(\)

Section V.1 Section V.2 Section V.3

Module S

Section S.3 Section S.3

Module A Section A.: Section A.:

Module M Section M.1 Section M.2

Module G

Section G.2 Section G.3

Activity X.1.2 (\sim 10 min)

Consider the truss pictured below with two fixed anchor points and a 10000 N load (assume all triangles are equilateral).

From the bottom left node we obtained 2 equations in the four variables

- *F*₁ (compression force on strut one)
- $N_{1,v}$ and $N_{1,h}$ (horizontal and vertical components of the normal force from the left anchor)
- F_2 (compression force on strut 2).

Part 1: Determine how many total equations there will be after accounting for all of the nodes, and and list all of the variables. You do not need to actually determine all of the equations.

+ (\sin

Observation X.1.4

The determined part of the solution is

$$N_{1,\nu} = N_{2,\nu} = 5000$$
 $F_1 = F_4 = F_7 = -5882.4$
 $F_3 = F_5 = 5882.4$

So struts 1,4,7 are in tension, while struts 3 and 5 are compressed.

The forces on struts 2 and 6 (and the horizontal normal forces) are not strictly determined in this setting.

Clontz & Lewis

Module I

Module E

Section E.0 Section E.1

Section E.2

Module V

Section V.:

Section V.

Section V.3 Section V.4

Module S

Section 5.1

Section S.3

Module A

Section A.1 Section A.2

Section A.3

Module M

Section M.1 Section M.2

Section M 3

iviouule (

Section G.

Section G.

Section G.3

Module X Section 2

Clontz & Lewis

Section E.0 Section E.1 Section E.2

Section M.2

Activity X.2.1 (\sim 10 min)

A \$700,000,000,000 Problem:

In the picture below, each circle represents a webpage, and each arrow represents a link from one page to another.

Based on how these pages link to each other, write a list of the 7 webpages in order from most imporant to least important.

Section I.0

Module E Section E.0

Section E.1 Section E.2

Module \(\)
Section \(\)

Section V.1 Section V.2 Section V.3 Section V.4

Module S

Section S.

Module A

Section A.1 Section A.2

Section A.2 Section A.3

Module I

Section M.1 Section M.2

Module (

Section G.1

Section C

Section G.

Observation X.2.2 The \$700,000,000,000 Idea:

Links are endorsements.

- 1 A webpage is important if it is linked to (endorsed) by important pages.
- 2 A webpage distributes its importance equally among all the pages it links to (endorses).

Example X.2.3

Consider this small network with only three pages. Let x_1, x_2, x_3 be the importance of the three pages respectively.

- ① x_1 splits its endorsement in half between x_2 and x_3
- 2 x_2 sends all of its endorsement to x_1
- 3 x_3 sends all of its endorsement to x_2 .

This corresponds to the **page rank** system

$$x_2 = x_1$$

$$\frac{1}{2}x_1 + x_3 = x_2$$

$$\frac{1}{2}x_1 = x_3$$

- Section E.0 Section E.1
- Section E.2

- Section A.1
- Section A.3

- Section M.2 Section M.3

Example X.2.4

$$x_2 = x_1$$

$$\frac{1}{2}x_1 + x_3 = x_2$$

$$\frac{1}{2}x_1 = x_3$$

We can summarize the left hand side of the system by putting its coefficients into a

page rank matrix
$$A = \begin{bmatrix} 0 & 1 & 0 \\ \frac{1}{2} & 0 & 1 \\ \frac{1}{2} & 0 & 0 \end{bmatrix}$$
, and store the right hand side of the system as

the vector
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
.

Thus, computing the imporance of pages on a network is equivalent to solving the matrix equation $A\mathbf{x} = \mathbf{x}$.

Section E.0 Section E.1

Section A.1 Section A 2 Section A.3

Section M.2

Activity X.2.5 (\sim 5 min)

A page rank vector for a page rank matrix A is a vector x satisfying Ax = x. This vector describes the relative importance of webpages on the network described by Α.

Thus, the \$700,000,000,000 problem is what kind of problem?

- A bijection problem
- A calculus problem
- A determinant problem
- An eigenvector problem

Section E.0 Section E.1 Section E.2

Module \

Section V.

Section V.2 Section V.3

Section V.3 Section V.4

Module S

Wioduic 5

Section 9

Section

. . . .

Section A.1

Section A.1

Section A.2 Section A.3

Module I

Section M

Section M.2 Section M.3

Module (

Section G. Section G.

Section G.

Section G.

Activity X.2.6 (\sim 10 min)

Find a page rank vector \mathbf{x} satisfying $A\mathbf{x} = \mathbf{x}$ (an eigenvector associated to the eigenvalue 1) for the following network's page rank matrix A.

$$A = \begin{bmatrix} 0 & 1 & 0 \\ \frac{1}{2} & 0 & 1 \\ \frac{1}{2} & 0 & 0 \end{bmatrix}$$

Section E.0 Section E.1

Section E.2

Section V.4

Section A.1 Section A.2

Section A.3

Section M.2

Section M.3

Observation X.2.7

Row-reducing
$$A - I = \begin{bmatrix} -1 & 1 & 0 \\ \frac{1}{2} & -1 & 1 \\ \frac{1}{2} & 0 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$
 yields the basic

eigenvector
$$\begin{bmatrix} 2\\2\\1 \end{bmatrix}$$
.

Therefore, we may conclude that pages 1 and 2 are equally important, and both pages are twice as important as page 3.

Clontz & Lewis

Section E.0

Section E.1 Section E.2

Section V.3 Section V.4

Section A.1

Section A.2 Section A.3

Section M.2

Section M.3

Activity X.2.8 (\sim 10 min)

Compute the 7×7 page rank matrix for the following network.

For example, since website 1 distributes its endorsement equally between 2 and 4,

the first column is

 $\frac{1}{2}$

Section E.0 Section E.1 Section E.2

Section V.3 Section V.4

Section A.1 Section A.2 Section A.3

Section M.2 Section M.3

Activity X.2.9 (\sim 10 min)

Find a page rank vector for the transition matrix.

$$A = \begin{bmatrix} 0 & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 1 & 0 & 0 & \frac{1}{2} \\ 0 & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$

Which webpage is most important?

C--ti-- C

Section S

Marital

Module A Section A.1

Section A.2 Section A.3

Module N

Section M.

Section M.2 Section M.3

Module C

Section G

Section G.2 Section G.3

Observation X.2.10

Since a page rank vector for the network is given by \mathbf{x} , it's reasonable to consider page 2 as the most important page.

$$\mathbf{x} = \begin{bmatrix} 2 \\ 4 \\ 2 \\ 2.5 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$