

FACULTY: School of Computing Science, SIT, UoG STUDENT: Lim Jing Chuan Jonathan(2300923) Ong Jia En, Darryl (2301402), Felix Chang (2301105), Ryan Oh Tian Guan (2300916), Chew Liang Zhi (2300948), James **Gonzales (2301136)**

Smart Plant Monitoring System

1. Abstract:

The **Smart Plant Monitoring System** leverages Raspberry Pi devices equipped with sensors and motors, coupled with MQTT protocol for seamless communication. This system offers users an intuitive Web Dashboard for efficient plant care management.

Monitor Conditions:

- Soil Moisture Level.
- 2. UV Level.
- 3. Temperature & Humidity Level.

DashBoard Features:

- Real-time insights into plant environment.
- 2. Perform action such as watering & lighting control.
- Convenient user interface for task execution.

2. Objective:

- 1. Provides users with a Web Dashboard using Node-RED to monitor their plants & enable them to perform actions.
- 2. Have 2x Paho-MQTT Client (Mosquitto Broker) Raspberry Pis equipped with sensors & motors respectively to monitor the plants & perform actions such as automated watering and light intensity controller.
- 3. Have 1x MQTT Server (Mosquitto & Node-Red) Raspberry Pi to receive & display the data on the Dashboard & send actions to Client.

4. Connection Circuit Layout:

5. Network Diagram:

3. Methodology:

To make this project flexible & scalable, four major parts of IoT Technology are applied.

They are as followed:

- **Sensors & Microcontroller**
- 2. Gateway & Network
- **Management Service**
- 4. Application

Sensors & Microprocessor		Gateway & Network	Management Service	Application
1.	Raspberry Pi connected via LAN for easy IoT node setup.	Python handle gateway functions,	MQTT for Device Communication. Z-score for	Smart Agriculture. Urban/Rural
2.	& scalable architecture.	JSON is utilized for formatting the data for	Sensor Data Collection.	farming. 3. Crop Monitoring
3.	Sensors:	the Node-Red Dashboard.	GPIO pins for Device Control.	& Management.
	Soil Moisture: for irrigation control. Water Pump: automated watering. Relay: high-power device control.	3. MQTT ensures seamless data forwarding from collection to Node-Red.	Multi-Threading for Thread Management. Exceptions for	4. Precision Farming.
•	ADC: precise analog data reading. Temp & Humidity: ambient condition		Exceptions for Error Handling. Data Processing: outlier detection &	
•	monitoring. UV Light: intensity detection. RGB LEDs: simulates	python	sensor data conversion.	
	plant growth lighting.	{JSON}		

6. Resources:

3x Raspberry Pi 4 Model B, 1x Router, Online documentation for Paho-MQTT, Mosquitto Broker & Node-RED,4x Sensors (UV Light, Temperature & Humidity, Ultrasonic, Moisture), 1x Motors (Submersible Water Pump), 3x LEDs (Light Intensity controller), Electrical Components (Breadboard, Jumper Wires, Resistors, ADC, etc.)

7. Conclusion:

Currently 3 Pis have been deployed with 2 as client and 1 as server. Cost price is about \$50 SGD for the sensor modules excluding the Pis.

Future expansion for this project is shown below:

- Adding live feed features.
- Explore integrating it with Amazon Alexa, SQLite3, Azure Al.
- Explore integrating it with LoRa.

8. References:

[1]M. Ghavami, "Development of Internet of Things based smart multi-sensors system for early prediction of plant growth," mspace.lib.umanitoba.ca, May 2022 https://mspace.lib.umanitoba.ca/items/50d315e2-20b6-485a-954d-695a4107cede [2]S. Balyan, H. Jangir, S. N. Tripathi, A. Tripathi, T. Jhang, and P. Pandey, "Seeding a Sustainable Future: Navigating the Digital Horizon of Smart Agriculture," Sustainability, vol. 16, no. 2, p. 475, Jan. 2024, doi: https://doi.org/10.3390/su16020475. [3]G. Journals, "IoT Based Agriculture and Transportation Surveillance," www.academia.edu, May 22, 2018.

https://www.academia.edu/36632828/IoT Based Agriculture and Transportation Surveilla nce?email work card=view-paper

