SN54ALS160B THRU SN54ALS163B, SN54AS160 THRU SN54AS163 SN74ALS160B THRU SN74ALS163B, SN74AS160 THRU SN74AS163 SYNCHRONOUS 4-BIT DECADE AND BINARY COUNTERS

SDAS024A - D2661, APRIL 1982 - REVISED MAY 1986

- Internal Look-Ahead for Fast Counting
- Carry Output for n-Bit Cascading
- Synchronous Counting
- Synchronously Programmable
- Package Options include Plastic Small Outline Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs
- Dependable Texas Instruments Quality and Reliability

description

These synchronous, presettable counters feature an internal carry look-ahead for application in high-speed counting designs. The 'ALS160B, 'ALS162B, 'AS160, and 'AS162 are decade counters, and the 'ALS161B, 'ALS163B, 'AS161, and 'AS163 are 4-bit binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the count-enable inputs and internal gating. This mode of operation eliminates the output counting spikes that are normally assoasynchronous ciated with (ripple clock) counters. A buffered clock input triggers the four flip-flops on the rising (positive-going) edge of the clock input waveform.

SN54ALS', SN54AS' . . . J PACKAGE SN74ALS', SN74AS' . . . D OR N PACKAGE (TOP VIEW)

SN54ALS', SN54AS' . . . FK PACKAGE (TOP VIEW)

NC-No internal connection

These counters are fully programmable; that is, they may be preset to any number between 0 and 9, or 15. As presetting is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock pulse regardless of the levels of the enable inputs.

The clear function for the 'ALS160B, 'ALS161B, 'AS160, and 'AS161 is asynchronous and a low level at the clear input sets all four of the flip-flop outputs low regardless of the levels of the clock, load, or enable inputs. This synchronous clear allows the count length to be modified easily by decoding the Q outputs for the maximum count desired. The active-low output of the gate used for decoding is connected to the clear input to synchronously clear the counter to 0000 (LLLL).

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two count-enable inputs and a ripple carry output. Both count-enable inputs (ENP and ENT) must be high to count, and ENT is fed forward to enable the ripple carry output. The ripple carry output (RCO) thus enabled will produce a high-level pulse while the count is maximum (9 or 15 with Q_A high). This high-level overflow ripple carry pulse can be used to enable successive cascaded stages. Transitions at the ENP or ENT are allowed regardless of the level of the clock input.

These counters feature a fully independent clock circuit. Changes at control inputs (ENP, ENT, or $\overline{\text{LOAD}}$) that will modify the operating mode have no effect on the contents of the counter until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) will be dictated solely by the conditions meeting the stable setup and hold times.

The SN54ALS160B through SN54ALS163B and SN54AS160 through SN54AS163 are characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ALS160B through SN74ALS163B and SN74AS160 through SN74AS163 are characterized for operation from 0°C to 70°C.

logic symbols†

'ALS160B and 'AS160 logic diagram (positive logic)

[†] These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, and N packages.

^{&#}x27;ALS162B and 'AS162 decade counters are similar; however the clear is synchronous as shown for the 'ALS163B and 'AS163 binary counters.

logic symbols†

'ALS163B and 'AS163 logic diagram (positive logic)

[†] These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, and N packages.

^{&#}x27;ALS161B and 'AS161 synchronous binary counters are similar; however the clear is asynchronous as shown for the 'ALS160B and 'AS160 decade counters.

typical clear, preset, count, and inhibit sequences

'ALS160B, 'AS160, 'ALS162B, 'AS162

Illustrated below is the following sequence:

- 1. Clear outputs to zero ('ALS160B and 'AS160 are asynchronous; 'ALS162B and 'AS1162 are synchronous)
- 2. Preset to BCD seven
- 3. Count to eight, nine, zero, one, two, and three
- 4. Inhibit

typical clear, preset, count, and inhibit sequences

'ALS161B, 'AS161, 'ALS163B, 'AS163

Illustrated below is the following sequence:

- 1. Clear outputs to zero ('ALS161B and 'AS161 are asynchronous; 'ALS163B and 'AS163 are synchronous)
- 2. Preset to binary twelve
- 3. Count to thirteen, fourteen, fiften, zero, one, and two
- 4. Inhibit

SN54ALS160B THRU SN54ALS163B SN74ALS160B THRU SN74ALS163B SYNCHRONOUS 4-BIT DECADE COUNTERS

SDAS024A - D2661, APRIL 1982 - REVISED MAY 1986

Storage temperature range –65°C to 150°C

recommended operating conditions

					SN54ALS160B THRU SN54ALS163B		SN74ALS160B THRU SN74ALS163B			UNIT
				MIN	NOM	MAX	MIN	NOM	MAX	
VCC	Supply voltage			4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage			2			2			V
V_{IL}	Low-level input volt	age				0.7			0.8	V
IOH	High-level output cu	High-level output current				-0.4			-0.4	mA
IOL	Low-level output cu	ow-level output current				4			8	mA
fclock	Clock frequency					22	0		40	MHz
t	Pulse duration	CLR high or low		20			12.5			ns
t _W	ruise duration	'ALS160B, 'ALS161B C	LR low	20			15			115
		A, B, C, D		50			15			
		LOAD		20			15			
		=	'ALS160B, 'ALS161B	25			15			
t _{su}	Setup time before CLK↑	ENP, ENT	'ALS162B, 'ALS163B	20			15			ns
	belore CLK	'ALS160B, 'ALS161B	CLR inactive	10			10			
		'ALC460D 'ALC460D	CLR low	20			15			
		'ALS162B, 'ALS163B	CLR high (inactive)	10			10			
t _h	Hold time, all synch	ronous inputs after CLK↑		0			0			ns
TA	Operating free-air to	emperature		-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			SN54ALS160B THRU SN54ALS163B			SN74ALS160B THRU SN74ALS163B		
			MIN	TYP [†]	MAX	MIN	TYP†	MAX	
VIK	$V_{CC} = 4.5 \text{ V},$	$I_{I} = -18 \text{ mA}$			-1.5			-1.5	V
Voн	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V},$	$I_{OH} = -0.4 \text{ mA}$	V _{CC} -2			V _{CC} -2			V
Vol	$V_{CC} = 4.5 \text{ V},$	$I_{OL} = 4 \text{ mA}$		0.25	0.4		0.25	0.4	V
VoL	$V_{CC} = 4.5 \text{ V},$	IOL = 8 mA					0.35	0.5	V
lį	$V_{CC} = 5.5 \text{ V},$	V _I = 7 V			0.1			0.1	mA
lН	$V_{CC} = 5.5 \text{ V},$	V _I = 2.7 V			20			20	μΑ
Ι _{ΙL}	$V_{CC} = 5.5 V,$	V _I = 0.4 V			-0.2			-0.2	mA
IO [‡]	$V_{CC} = 5.5 \text{ V},$	V _O = 2.25 V	-30		-112	-30		-112	mA
Icc	V _{CC} = 5.5 V	_		12	21		12	21	mA

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[‡] The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.

'ALS160B, 'ALS161B switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	C _L = 50 R _L = 500 T _A = MII SN54ALS160 SN54ALS161 MIN M. 22 5 5 4 6	C_L = 50 pF, R_L = 500 Ω , T_A = MIN to SN54ALS160B SN54ALS161B		,	UNIT
			MIN	MAX	MIN	MAX	
fmax			22		40		MHz
^t PLH			5	34	5	20	
t _{PHL}	CLK	RCO	5	27	5	20	ns
t _{PLH}	0		4	19	4	15	
t _{PHL}	CLK	Any Q	6	25	6	20	ns
t _{PLH}		P00	3	18	3	13	
t _{PHL}	ENT	RCO	3	17	3	13	ns
t _{PHL}	CLR	Any Q	8	27	8	24	ns
tPHL	CLR	RCO	11	32	11	23	ns

'ALS162B, 'ALS163B switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	C _L R _L		ı		UNIT
			MIN	MAX	MIN	MAX	
f _{max}			35		40		MHz
^t PLH			5	25	5	20	
t _{PHL}	CLK	RCO	5	25	5	20	ns
t _{PLH}	011/		4	18	4	15	
t _{PHL}	CLK	Any Q	6	25	6	20	ns
t _{PLH}	ENT.	DCO	3	16	3	13	
t _{PHL}	ENT	RCO	3	16	3	13	ns

NOTE 1: Load circuit and voltage waveforms are shown in Section 1.

SN54AS160 THRU SN54AS163 SN74AS160 THRU SN74AS163 SYNCHRONOUS 4-BIT DECADE COUNTERS

SDAS024A - D2661, APRIL 1982 - REVISED MAY 1986

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC}		7 V
Input voltage		
Operating free-air temperature range:		
	SN74AS160 thru SN74AS163	0°C to 70°C
Storage temperature range		–65°C to 150°C

recommended operating conditions

					N54AS16 THRU N54AS16			SN74AS160 THRU SN74AS163		UNIT
				MIN	NOM	MAX	MIN	NOM	MAX	
VCC	Supply voltage			4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage			2			2			V
VIL	Low-level input volt	tage				0.8			0.8	V
ІОН	High-level output c	urrent				-2			-2	mA
loL	Low-level output cu	urrent	rent			20			20	mA
f _{clock}	Clock frequency			0		65	0		75	MHz
	Pulse duration	CLR high or low		7.7			6.7			20
t _W	Pulse duration	'ALS160, 'ALS161 CL	R low	10			8			ns
		A, B, C, D		10			8			
		LOAD		10	•		8			
t _{su}	Setup time	ENP, ENT		10			8			
'Su	before CLK↑	'ALS160, 'ALS161 CLF	R inactive	10			8			ns
		141 0400 141 0400	CLR low	14			12			
		'ALS162, 'ALS163	CLR high (inactive)	10			9			
th	Hold time, all synch	nronous inputs after CLK	•	2			0			ns
T _A	Operating free-air t	emperature		-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS			SN54AS160 THRU SN54AS163			SN74AS160 THRU SN74AS163		
				MIN	TYP†	MAX	MIN	TYP [†]	MAX	
٧ıK		$V_{CC} = 4.5 \text{ V},$	$I_{I} = -18 \text{ mA}$			-1.2			-1.2	V
Vон		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V},$	$I_{OH} = -2 \text{ mA}$	V _{CC} -2			V _{CC} -2			V
VOL		$V_{CC} = 4.5 \text{ V},$	$I_{OL} = 20 \text{ mA}$		0.25	0.5		0.25	0.5	V
	LOAD					0.3			0.3	
Ιį	ENT	V _{CC} = 5.5 V,	V _I = 7 V			0.2			0.2	mA
	All other					0.1			0.1	
	LOAD					60			60	
lін	ENT	$V_{CC} = 5.5 V$,	$V_{I} = 2.7 V$			40			40	μΑ
	All other	1				20			20	
	LOAD					-1.5			-1.5	
Ι _Ι L	ENT	V _{CC} = 5.5 V,	$V_{I} = 0.4 \ V$			-1			-1	mA
	All other		•			-0.5			-0.5	1 1
lo [‡]	•	V _{CC} = 5.5 V,	V _O = 2.25 V	-30		-112	-30		-112	mA
Icc		V _{CC} = 5.5 V			35	53		35	53	IIIA

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C. ‡ The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, I_{OS}.

'AS160, 'AS161 switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	((F	$C_L = 50 \text{ pF}$ $C_L = 50 \text{ pF}$ $R_L = 500 \Omega$ $A = MIN \text{ to}$ $AS160$	- , 2,		UNIT
			MIN	MAX	MIN	MAX	
f _{max}			65		75		MHz
^t PHL		RCO	2	14	2	12.5	
^t PLH	CLK	RCO (with LOAD high)	1	8.5	1	8	ns
^t PLH		RCO (with LOAD low)	3	17.5	3	16.5	
^t PLH	CLK	Any Q	1	7.5	1	7	20
^t PHL	OLIK	Ally Q	2	14	2	13	ns
^t PLH	ENT	BCO	1.5	10	1.5	9	ns
^t PHL	ENT	RCO	1	9.5	1	8.5	118
^t PHL	CLR	Any Q	2	14	2	13	ns
t _{PHL}	CLR	RCO	2	14	2	12.5	ns

'AS162, 'AS163 switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	SN54 <i>A</i>	V _{CC} = 4.5 C _L = 50 p R _L = 500 9 T _A = MIN t SN54AS162 SN54AS163		S162	UNIT	
			MIN	MAX	SN74A	MAX		
fmax			65		75		MHz	
t _{PHL}		RCO	2	14	2	12.5		
t _{PLH}	CLK	RCO (with LOAD high)	1	8.5	1	8	ns	
t _{PLH}		RCO (with LOAD low)	3	17.5	3	16.5		
t _{PLH}		Any O	1	7.5	1	7		
t _{PHL}	CLK	Any Q	2	14	2	13	ns	
t _{PLH}	ENT	500	1.5	10	1.5	9	ne	
t _{PHL}	LINI	RCO	1	9.5	1	8.5	ns	

NOTE 1: Load circuit and voltage waveforms are shown in Section 1.

APPLICATION INFORMATION

N-bit synchronous counters

This application demonstrates how the ripple mode carry circuit (Figure 1) and the carry-look-ahead circuit (Figure 2) can be used to implement a high-speed N-bit counter. The 'ALS160B, 'AS160, 'ALS162B, and 'AS162 will count in BCD and the 'ALS161B, 'AS161, 'ALS163B, and 'AS163 will count in binary. When additional stages are added, the f_{MAX} decreases in Figure 1, but remains unchanged in Figure 2.

Figure 1. Ripple Mode Carry Circuit

Figure 2. Carry-Look-Ahesd Circuit

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated