Undf Tulonial * Li Duilding a Visual probot model with URDF from Scratch <2×ml version = "1.0"?> < 500 bot name = "mg Nome of Robot"> Material definition { Limk I defination} { joint1 defination LIMK 2 definations Lion+2 defination) </probat> * Material defination Zmaterial Name = "Name of meterial" < colos sibga = "0 0 0.8 1"/> (material)

* Link defination Llink name = "Name of the link"> (Visual) < geomaty [geometry defination) </geomatry> > < 6 onigim sipy="0,00" xyz"000" LNisuel. Controls position and l orientation of much orelation to origin @ Gromaty defination < (yli-den langh="o.6" oradius="o.2"/>) < 500 x 5120 = "0.6 0.1 0.2"/> < Sphere nadius="0.2"/> For loading (ma basic sheps) < mosh filenane = "Pakage: // Usrdf_tudosid/moshes 11-11-ges .due"/> -) For loading the

24/6 @ Contact coefficient => This is done with a subelement of the collision tag called contest-coefficients. mu > faiction coefficient Ke > Stiffam coefficient Kd > Dampening coefficient. 3 Joint Pynamico => How the joint moves is defined by the dynamics tog for the joint. La There are two attended here: foriction => Static friction damping => physical damping Value.

RUE * Macros # Simple macono Lxaco: macoo na = de faut Doigin"> <000'gi~ xYZ="000" 5PZ="000"/> L/xaco:maco) (using it) <xacono: default-ooiigin/> @ Pagameterized macro paces < xaco: mcco nane = "default-inestial"</p> Params = 'mass'> Linestial Lmass value = "\$ [mass)" Limentia - ... 41montid3> </xaco:mato) I swing: H) 2xacro: defaut-inertial mass = "10"/>

5 Using a URDF in Gazebo

OGazebo plugin

to dynamically link to the ROS liborary that will tell Gazebo what to do.

in the URDF, oright before closing Woods) tag.

4 gazebo>

L Plugin name = "gazebo_sios-control"

filename = "libgazebo-sios-control.so"

L stobot Namespare>///sobot Namespare>

</plugin>

L/gazebo>

1 Toronsmission

> Foon every non fixed joint, we need to Specify a transmission, which tells Gazebo what to do with the joint. Example L'toransmission nome = "head Swivel-torans"> < type> transmission_Interface/Simple Toransmission Latuation name = "\$ head_swivel_motor"> Lmachanical Reduction> 1 /mechanical Reduction> 4/actuctos) Wolnt name="head_swive!"> Thandware Interface Position Joint Interface </hadware Interfaces </id> 4 to ansmission> Just toreale most of this chunk of code as boilesplate. Sorefers to Section of code that (have to be included in mans (places with little on so attention This should match!

3. Using the orobot State Publisher on your

2 6 6 E

has many relevant framer, it becomes quite a taske to publish them all to tf.

Will do this job for you.

The grobot State publisher helps you to boroadcast the State of your grobot the transform librars.

@ Kuming as a node

Sewiest way to own trel probot state publisher is as a mode.

=> You need two things to own the probot state
Publish on:

- (i) Undf xml probot description louded on the parameter Savor.
- (ii) A source that publishes the joint positions as a Senson msgo/Jointstate.

B Run

=> Adva Stat

#12

Ro

⇒ Now Sta

Void

4. Start using the KDL pensen

@ Building the KDL person

grosdap motall Kd1-purser

orusmike Kd1-parson

1 Using in your code

=> First add the KDL purser as a dependency to your parkey. xml.

Lown-depend parkage = "Kdl-Purser"/>
Lown-depend parkage = "Kdl-Purser"/>

= To Start using the KDL purser in your CH code, include the following file

Include LKd1-passer/Kd1-passer hpp

You can constrict a KOL tree from a widt in various forms.

-> Forom a file

-> From a parameter Sources

> From a xml clomert

La Erom a Voidt model

5. Using undf with probot-State-publisher

> First, we could the unoFmodel with all the

Joint State and transforms.

> Finally we sun all the parts together.

This disractories in funta Subdivided 7 Undf into different directories according to different sub cusumblins on Sub catagosis >Sub cetegony 1-Vo-> Version number -> Sub catagoris2 -VO Sub catagons will be siplaid by Scitches Lnane → Sub catagorio M - Vo -> Common. xacro This Contains macros described that are commo-1000 to different subdinatoria > materials. Undf. xacoro > This Contains description of all the material Sub category N_Vo -> filèname gazebo. xacono This Contains -> filename. trasmission. xcco (gazebo soldid) -> filenane: Undf.xcco. Codas This contain This is the complete xccro for the trasmission) file which was above two files (prototed to mello it complete. Codes

This disrectory was all the xeurol -7 grobots defined in undf directory to crede different assublices of grobots, (with different factures. > gazebo -> gazebo. undf. xcero (dir. ctors) This file/is which by files in a solut to add gazebo
Plugin ad add bauk Settings This contains test files to ensure of all the files work together) Perfortly. > do comento This generally contains exis files) (for all the) Enginearing drawing