Verification of ensembles

Barbara G. Brown

Acknowledgments: Tom Hamill, Laurence Wilson, Tressa Fowler

How good is this ensemble forecast?

Questions to ask before beginning?

- How were the ensembles constructed?
 - Poor man's ensemble (distinct members)
 - Multi-physics (distinct members)
 - Random perturbation of initial conditions (anonymous members)
- How are your forecasts used?
 - Improved point forecast (ensemble mean)
 - Probability of an event
 - Full distribution

Approaches to evaluating ensemble forecasts

- As individual members
 - Use methods for continuous or categorical forecasts
- As probability forecasts
 - Create probabilities by applying thresholds or statistical post-processing
- As a full distribution
 - Use individual members or fit a distributions through post-processing

Evaluate each member as a separate, deterministic forecast

- Why? Because it is easy and important
 - If members are unique, it might provide useful diagnostics.
 - If members are biased, verification statistics might be skewed.
 - If members have different levels of bias, should you calibrate?
 - Do these results conform to your understanding of how the ensemble members were created?

Verifying a probabilistic forecast

- You cannot verify a probabilistic forecast with a single observation.
- The more data you have for verification, (as with other statistics) the more certain you are.
- Rare events (low probability) require more data to verify.
- These comments refer to probabilistic forecasts developed by methods other than ensembles as well.

Properties of a perfect probabilistic forecast of a binary event.

Forecast probability, v.

The Brier Score

Mean square error of a probability forecast

$$BS = \frac{1}{n} \sum_{i=1}^{n} (f_i - x_i)^2$$

where n is the number of forecasts

 f_i is the forecast prob on occasion i

 x_i is the observation (0 or 1) on occasion i

Weights larger errors more than smaller ones

0 0.3 1

Brier Score

$$BS = \frac{1}{n} \sum_{k=1}^{n} (f_k - x_k)^2 \quad \text{where}$$

 f_k = forecast probability on occasion k x_k = observation (0 or 1) on occasion k

BS can be decomposed into 3 components that represent important properties of the forecasts:

$$BS = \frac{1}{n} \sum_{i=1}^{I} N_i (f_i - \overline{x}_i)^2 - \frac{1}{n} \sum_{i=1}^{I} N_i (\overline{x}_i - \overline{x})^2 + \overline{x} (1 - \overline{x})$$
Reliability Resolution Uncertainty

Where the I is the number of discrete values of f (e.g., f_1 = 0.05, f_2 = 0.10, f_3 = 0.20, ... etc.) and

$$n = \sum_{i=1}^{I} N_i \qquad \overline{x}_i = \frac{1}{N_i^{\text{Copyright}}} \sum_{\substack{\text{UCAR 2015, all rights reserved.} \\ k \in N_i}} x_k \text{ and } \overline{x} = \frac{1}{n} \sum_{k=1}^{n} x_k = \frac{1}{N} \sum_{i=1}^{I} N_i \overline{x}_i$$

Components of the Brier Score

Reliability

Measures how well the conditional relative frequency of events matches the forecast

$$\frac{1}{n}\sum_{i=1}^{I}N_i(f_i-\overline{x}_i)^2$$

Resolution

Measures how well the forecasts distinguish situations with different frequencies of occurrence

$$\frac{1}{n} \sum_{i=1}^{I} N_i (\overline{x}_i - \overline{x})^2$$

Uncertainty

Measures the variability in the observations (i.e., the difficulty of the forecast situations)

$$\overline{x}(1-\overline{x})$$

Looking at Brier Score <u>components</u> is critical to understand forecast performance

Brier Skill Score (BSS)

$$BSS = \frac{RES - REL}{UNC}$$

BSS is a simple combination of the 3 components of the Brier Score (assumes "Sample Climatology" as the reference forecast)

Our friend, the scatterplot

Introducing the attribute diagram!

(close relative to the reliability diagram)

- Analogous to the scatter plot- same intuition holds.
- Data must be binned!
- Hides how much data is represented by each
- Expresses conditional probabilities.
- Confidence intervals can illustrate the problems with small sample sizes.

Attribute
diagram
shows
reliability,
resolution,
skill

Forecast probability y₁, all rights reserved.

Reliability Diagram Exercise

Discrimination

- Discrimination: The ability of the forecast system to clearly distinguish situations leading to the occurrence of an event of interest from those leading to the nonoccurrence of the event.
- Depends on:
 - Separation of means of conditional distributions
 - Variance within conditional distributions

Relative Operating Characteristic (ROC)

Measures the ability of the forecast to discriminate between events and non-events (resolution)

→ Plot hit rate H vs false alarm rate F using a set of varying probability thresholds to make the yes/no decision.

Interpretation of ROC

- Close to upper left corner good resolution
- Close to diagonal little skill
- Area under curve ("ROC area") is a useful summary measure of forecast skill
- **Perfect**: ROC area = 1
- No skill: ROC area = 0.5
- ROC skill score ROCS = 2(ROCarea-0.5)
- Not sensitive to bias.

- ROC is conditioned on the observations (i.e., given that Y occurred, what was the corresponding forecast?)
- Reliability and ROC diagrams are good Copyright UCAR 2015, all rights reserved.

Relative Operating Characteristic (ROC)

ROC example:

ROC diagram for T12< 5 °C at T+72. Shades indicate the different levels of statistical processing applied as shown in the key. The cross indicates the ROC (FAR, HR) of the ECMWF high-resolution deterministic model.

from "Verification of PREVIN site-specific probability forecasts", Met Office (http://www.metoffice.com/research/nwp/publications/nwp_gazette/dec01/verif.html)

Copyright UCAR 2015, all rights reserved.

Sharpness also important

"Sharpness"
measures the
specificity of
the probabilistic
forecast. Given
two reliable forecast
systems, the one
producing the
sharper forecasts
is preferable.

But: don't want sharp if not reliable. Implies unrealistic confidence.

Sharpness ≠ resolution

• Sharpness is a property of the forecasts alone; a measure of sharpness in Brier score decomposition would be how populated the extreme N_i 's are.

$$BS = \frac{1}{n} \sum_{i=1}^{I} N_i (f_i - \overline{x}_i)^2 - \frac{1}{n} \sum_{i=1}^{I} N_i (\overline{x}_i - \overline{x})^2 + \overline{x} (1 - \overline{x})$$

Sharpness for binary probability forecasts

For a binary probability forecast, sharpness is based on the distribution (histogram) of frequencies associated with each possible probability

Sometimes summarized using the variance of the distribution

Forecasts of a full distribution

- How is it expressed?
 - Discretely by providing forecasts from all ensemble members
 - A parametric distribution normal (ensemble mean, spread)
 - Smoothed function kernel smoother

Evaluating ensembles

Ensemble Calibration / Reliability

- By default, we assume all ensemble forecasts have the same number of members.
 Comparing forecasts with different number of members is an advanced topic.
- For a perfect ensemble, the observation comes from the same distribution as the ensemble.

Rank histogram examples

Rank histograms are a way to examine the calibration of an ensemble

Creating rank histograms

Rank histogram examples

Rank histograms are a way to examine the calibration of an ensemble

Verifying a continuous expression of a distribution (i.e. normal, Poisson, beta)

- Probability of any observation occurring is on [0,1] interval.
- Probability Integral Transformed (PIT) fancy word for how likely is a given forecast
- Still create a rank histogram using bins of probability of observed events.

Verifying a distribution forecast

Warnings about rank histograms

- Assume all samples come from the same climatology!
- A flat rank histogram can be derived by combining forecasts with offsetting biases
- See Hamill, T. M., and J. Juras, 2006: Measuring forecast skill: is it real skill or is it the varying climatology? *Quart. J. Royal Meteor. Soc.*, Jan 2007 issue
- Techniques exist for evaluating "flatness", but they mostly require much data.

Continuous and discrete rank probability scores

- Measures of accuracy for
 - Multiple category forecasts (e.g., precipitation type)

Rank Probability Score (RPS)

Continuous distributions (e.g., ensemble distribution)

Continuous Ranked Probability Score (CRPS)

 Relates to Brier score – for a forecast of a binary event, the RPS score is equivalent to the Brier score.

Rank Probability Scores

A good RPS score minimizes area

Ignorance score (for multi-category or ensemble forecasts)

A "local" score

IS =
$$\frac{1}{n} \sum_{i=1}^{n} \log_2(\hat{p}_{t,k^*(t)})$$

- $k^{*}(t)$ is the category that actually was observed at time t
- Based on information theory
- Only rewards forecasts with some probability in "correct" category
- Perfect score: 0 [i.e., $log_2(1) = 0$]

Final comments

- Know how and why your ensemble is being created.
- Use a combination of graphics and scores.
- Areas of more research
 - Verification of spatial forecasts
 - Additional intuitive measures of performance for probability and ensemble forecasts.

Measure	Attribute evaluated	Comments
Probability forecasts		
Brier score	Accuracy	Based on squared error
Resolution	Resolution (resolving different categories)	Compares forecast category climatologies to overall climatology
Reliability	Calibration	
Skill score	Skill	Skill involves <i>comparison</i> of forecasts
Sharpness measure	Sharpness	Only considers distribution of forecasts
Relative Operating Characteristic (ROC)	Discrimination	Ignores calibration
C/L Value	Value	Ignores calibration
Ensemble distribution		
Rank histogram	Calibration	Can be misleading
Spread-skill	Calibration	Difficult to achieve
CRPS	Accuracy	Squared difference between forecast and observed distributions Analogous to MAE in limit
log p score	Accuracy Copyright UCAR 2015, all r	Local score, rewards for correct category; infinite if observed category has 0 density

Useful references

- Good overall references for forecast verification:
 - (1) Wilks, D.S., 2006: Statistical Methods in the Atmospheric Sciences (2nd Ed). Academic Press, 627 pp.
 - (2) WMO Verification working group forecast verification web page, http://www.cawcr.gov.au/projects/verification/
 - (3) Jolliffe and Stephenson Book: Jolliffe, I.T., and D.B. Stephenson, 2012: Forecast Verification. A
 Practitioner's Guide in Atmospheric Science., 2nd Edition, Wiley and Sons Ltd.
- **Verification tutorial Eumetcal** (http://www.eumetcal.org/-learning-modules-)
- **Rank histograms**: Hamill, T. M., 2001: Interpretation of rank histograms for verifying ensemble forecasts. *Mon. Wea. Rev.*, **129**, 550-560.
- **Spread-skill relationships**: Whitaker, J.S., and A. F. Loughe, 1998: The relationship between ensemble spread and ensemble mean skill. *Mon. Wea. Rev.*, **126**, 3292-3302.
- Brier score, continuous ranked probability score, reliability diagrams: Wilks text again.
- **Relative operating characteristic**: Harvey, L. O., Jr, and others, 1992: The application of signal detection theory to weather forecasting behavior. *Mon. Wea. Rev.*, **120**, 863-883.
- Economic value diagrams:
 - (1)Richardson, D. S., 2000: Skill and relative economic value of the ECMWF ensemble prediction system.
 Quart. J. Royal Meteor. Soc., 126, 649-667.
 - (2) Zhu, Y, and others, 2002: The economic value of ensemble-based weather forecasts. *Bull. Amer. Meteor. Soc.*, 83, 73-83.
- Overestimating skill: Hamill, T. M., and J. Juras, 2006: Measuring forecast skill: is it real skill or is it the varying climatology? *Quart. J. Royal Meteor. Soc.*, Jan 2007 issue. http://tinyurl.com/kxtct

Reliability Diagram Exercise

