Background- HCA₂ receptor

Hydroxycarboxylic Acid Receptor 2 (GPR109A) is a G protein-coupled receptor

Activated by short-chain hydroxycarboxylic acids, notably niacin and beta hydroxybutyrate

Expressed in adipocytes and immune cells like macrophages

Suggesting a possible role it could play in the immune responses and inflammation

HCA₂ Signalling Pathways

How do we study the real-time function of the HCA₂ receptor in living cells?

Bystander biosensors to investigate β-arrestin signalling

RUPATH biosensors to investigate G protein signalling

Image Sourced from: DiBerto, J.F., Smart, K., Olsen, R.H.J. and Roth, B.L. (2022). Agonist and antagonist TRUPATH assays for G protein-coupled receptors. *STAR Protocols*, 3(2), p.101259.

PROJECT AIMS

Use molecular biology techniques to clone the untagged human HCA₂ receptor from linear DNA.

Utilize genetically encoded biosensors to investigate the signalling pathways of the HCA₂ receptor.

- Bystander BRET for arrestin recruitment
- TRUPATH for Gi1 and Gi2

METHODS

Successful Construction of the untagged HCA₂ Plasmid

Control

HCA₂ Plasmid

BH0706 - hHCA2 6167 bp

Conclusion

- Successful generation of the plasmid containing HCA₂ receptor
- It was used to show arrestin recruitment using a Bystander Assay
- G protein activation of Gi1 and Gi2 was seen using a TRUPATH assay
- HCA₂ receptor displays stronger potency of Niacin in G-protein assay than in arrestin assay.
- BRET biosensors proved effective tools for studying HCA₂
 receptor function

