

# Accuracy and Precision

They mean slightly different things!

### Accuracy

Accuracy is how close a measured value is to the actual (true) value.

### **Precision**

Precision is how close the measured values are to each other.

## **Examples**

Here is an example of several values on the <u>number line</u>:



### And an example on a Target:



Example: Hitting the Post

1 of 3 29/10/20, 7:24 pm

Accuracy and Precision

If you are playing football and you always hit the right goal post instead of scoring, then you are **not** accurate, but you **are** precise!



### How to Remember?

- aCcurate is Correct (a bullseye).
- pRecise is Repeating (hitting the same spot, but maybe not the correct spot)

## Bias (don't let precision fool you!)

When we measure something several times and all values are close, they **may** all be wrong if there is a "**Bias**"

Bias is a systematic (built-in) error which makes all measurements wrong by a certain amount.

#### **Examples of Bias**

- The scales read "1 kg" when there is nothing on them
- You always measure your height wearing shoes with thick soles.
- A stopwatch that takes half a second to stop when clicked

In each case **all** measurements are wrong by the same amount. That is bias.

## Degree of Accuracy

Degree of Accuracy depends on the instrument we are measuring with. But as a general rule:

The Degree of Accuracy is half a unit each side of the unit of measure.

#### **Examples:**

When an instrument measures in "1"s any value between 6½ and 7½ is measured as "7"



When an instrument measures in "2"s any value between **7** and **9** is measured as **"8"** 



(Notice that the arrow points to the same spot, but the measured values are different!

Read more at <u>Errors in Measurement</u>.)

We should show final values that match the accuracy of our least accurate value used.

Example: We are told the dog is about 2 feet high.

We can convert that to 609.6 mm, but that suggests we know the height to within 0.1 mm!



So we should use 600 mm

<u>Question 1 Question 2 Question 3 Question 4 Question 5 Question 6</u> <u>Question 7 Question 8 Question 9 Question 10</u>

Copyright © 2017 MathsIsFun.com

3 of 3 29/10/20, 7:24 pm