Thermal effects on wellbore stress

Strongly time dependent

$$\frac{\partial T}{\partial t} = \alpha_T \nabla^2 T$$

 $\alpha \rightarrow$ strongly dependent of the silica content of the rock.

Under steady-state conditions,

$$\Delta \sigma_{\theta\theta}^T = \frac{\alpha_T E \Delta T}{1 - \nu}$$

Time-temperature effects

Stability through cooling?

© Cambridge University Press Zoback, *Reservoir Geomechanics* (Fig. 6.14c pp. 194 and Fig. 6.3 pp. 173)

Rock strength anisotropy

© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 4.12, pp. 106)

Rock strength anisotropy effects on breakouts

© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 6.16a,b pp. 199)

Two mechanisms

- Stresses exceed intact rock strength
- Stresses activate slip on weak bedding planes

© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 6.16c pp. 199)

Chemical effects

• Water Activity $(A_w \sim \frac{1}{\text{salinity}})$ can to increased pore pressure

S_{Hmax} from breakout data

$$S_{Hmax} = \frac{(C_0 + 2P_p + \Delta P + \Delta \sigma^T) - S_{hmin}(1 + 2\cos(\pi - w_{bo}))}{1 - 2\cos(\pi - w_{bo})}$$

Example

© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 7.7 pp. 223)

Wellbore stability

Defining a "stable" wellbore

© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 10.1a,b pp. 304)

Emperical model: Maximum 90° breakouts

Comprehensive model

