

Steven Labalme

February 12, 2023

Contents

1	UV-VIS ANALYSIS OF IODINE	1
2	TITLE	5

List of Figures

1	The absorption spectrum of gaseous I_2 between $\lambda = 5000 - 6500 \text{Å}$
2	Birge-Sponer plot for the B state
3	Morse potential curves
1	Infrared absorption spectrum of air (background spectrum)
2	The five primary vibrational bands in a sample of air
3	Rovibrational absorption spectrum of HCl
4	Fitting data on the rovibrational transition wavenumbers $\bar{\nu}$ of HCl vs. a parameter m related
	to the rotational energy level from which such a rovibrational transition begins
5	Morse potential curve

List of Tables

1	Peaks and their corresponding transitions	4
2	Calculated spectroscopic constants and their reported values	•
1	Infrared-active vibrational modes in air molecules	(
2	Calculated spectroscopic constants and their reported values	,
3	Calculated energy constants and their reported values	8

Steven Labalme 12 January 2023

 $26~{\rm January}~2023$

1 UV-VIS ANALYSIS OF IODINE

Figure 1: The absorption spectrum of gaseous I_2 between $\lambda = 5000 - 6500 \,\text{Å}$.

v'	v''	$\omega~({ m cm}^{-1})$	v'	v''	$\omega~({ m cm}^{-1})$	v'	v''	$\omega~({ m cm}^{-1})$
						10	2	16463
						11	2	16575
						12	2	16680
			13	1	17001	13	2	16789
14	0	17316	14	1	17102	14	2	16891
15	0	17418	15	1	17205	15	2	16992
16	0	17519	16	1	17304	16	2	17091
17	0	17614	17	1	17400	17	2	17190
18	0	17708	18	1	17494	18	2	17283
19	0	17803	19	1	17590	19	2	17379
20	0	17895	20	1	17680	20	2	17470
21	0	17985	21	1	17771	21	2	17562
22	0	18070	22	1	17857			
23	0	18158	23	1	17943			
24	0	18241	24	1	18027			
25	0	18321	25	1	18109			
26	0	18399	26	1	18188			
27	0	18480	27	1	18264			
28	0	18552	28	1	18341			
29	0	18628						
30	0	18698						
31	0	18768						
32	0	18835						
33	0	18900						
34	0	18960						
35	0	19022						
36	0	19080						
37	0	19138						
38	0	19193						
39	0	19245						
40	0	19297						
41	0	19342						
42	0	19391						
43	0	19432						
44	0	19474						

Table 1: Peaks and their corresponding transitions.

Figure 2: Birge-Sponer plot for the B state.

	$ar{ u}_e'$	$ar{ u}_e'x_e'$	D_e'	D_0'	$ar{ u}_e^{\prime\prime}$	$ar{ u}_e^{\prime\prime}x_e^{\prime\prime}$	$D_e^{\prime\prime}$	$D_0^{\prime\prime}$	T_e
Calculated values	132.62	1.0279	4277.2	4211.1	216.10	1.2583	9278.5	9170.7	12 604
Literature values ^{1,2}	125.69	0.764	4112	4046	214.50	0.614	12244	12 137	15 769.01

Table 2: Calculated spectroscopic constants and their reported values.

Note that the units for all values in Table 2 is cm^{-1} .

Figure 3: Morse potential curves.

References

(1) Huber, K. P.; Herzberg, G. H. In NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Linstrom, P. J., Mallard, W. G., Eds., https://doi.org/10.18434/T4D303; National Institute of Standards and Technology: Gaithersburg MD, 20899; Chapter Constants of Diatomic Molecules.

(2) McNaught, I. J. The Electronic Spectrum of Iodine Revisited. J. Chem. Educ. 1980, 57, 101–105.

Steven Labalme 26 January 2023

2 February 2023

2 TITLE

Figure 1: Infrared absorption spectrum of air (background spectrum).

Figure 2: The five primary vibrational bands in a sample of air.

Wavenumber Range (cm ⁻¹)	Molecule	Vibrational Band
630-710	CO_2	Bending
1250-2150	H_2O	Bending
2240-2400	CO_2	Asymmetric stretch
3400-4000	$_{\mathrm{H_2O}}$	Asymmetric & symmetric stretch
5100-5600	$\mathrm{H}_2\mathrm{O}$	Combo band

Table 1: Infrared-active vibrational modes in air molecules.

Figure 3: Rovibrational absorption spectrum of HCl.

Figure 4: Fitting data on the rovibrational transition wavenumbers $\bar{\nu}$ of HCl vs. a parameter m related to the rotational energy level from which such a rovibrational transition begins.

	$B_e~({ m cm}^{-1})$	$\alpha_e \ ({ m cm}^{-1})$	$ar{ u}_0~(\mathrm{cm}^{-1})$	
Calculated values	10.50	0.3053	2886	
Literature values	10.59^{1}	0.3072^{1}	2991^{1}	

Table 2: Calculated spectroscopic constants and their reported values.

Figure 5: Morse potential curve.

	$\bar{ u}_e~(\mathrm{cm}^{-1})$	x_e	$D_e~({ m eV})$	$r_e \ (ext{\AA})$
Calculated values	2990	0.01741	5.320	1.281
Literature values	2991^{1}	0.01766^{1}	5.319^{1}	1.275^{1}

Table 3: Calculated energy constants and their reported values.

References

(1) Huber, K. P.; Herzberg, G. H. In NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Linstrom, P. J., Mallard, W. G., Eds., https://doi.org/10.18434/T4D303; National Institute of Standards and Technology: Gaithersburg MD, 20899; Chapter Constants of Diatomic Molecules.

(2) McNaught, I. J. The Electronic Spectrum of Iodine Revisited. J. Chem. Educ. 1980, 57, 101–105.