Лекции курса «Алгебра», лекторы И.В. Аржанцев и Р.С. Авдеев

ФКН НИУ ВШЭ, 1-й курс ОП ПМИ, 4-й модуль, 2014/2015 учебный год

Лекция 2

Нормальные подгруппы. Факторгруппы и теорема о гомоморфизме. Центр группы. Прямое произведение групп. Факторизация по сомножителям. Разложение конечной циклической группы.

Определение 1. Подгруппа H группы G называется *нормальной*, если gH = Hg для любого $g \in G$.

Предложение 1. Для подгруппы $H \subseteq G$ следующие условия эквивалентны:

- (1) H нормальна;
- (2) $gHg^{-1} \subseteq H$ для любого $g \in G$;
- (3) $gHg^{-1} = H$ для любого $g \in G$.

Доказательство. (1) \Rightarrow (2) Пусть $h \in H$ и $g \in G$. Поскольку gH = Hg, имеем gh = h'g для некоторого $h' \in H$. Тогда $ghg^{-1} = h'gg^{-1} = h' \in H$.

- (2) \Rightarrow (3) Так как $gHg^{-1} \subseteq H$, остаётся проверить обратное включение. Для $h \in H$ имеем $h = gg^{-1}hgg^{-1} = g(g^{-1}hg)g^{-1} \subseteq gHg^{-1}$, поскольку $g^{-1}hg \in H$ в силу пункта (2), где вместо g взято g^{-1} .
- $(3)\Rightarrow (1)$ Для произвольного $g\in G$ в силу (3) имеем $gH=gHg^{-1}g\subseteq Hg$, так что $gH\subseteq Hg$. Аналогично проверяется обратное включение.

Условие (2) в этом предложении кажется излишним, но именно его удобно проверять при доказательстве нормальности подгруппы H.

Обозначим через G/H множество (левых) смежных классов группы G по нормальной подгруппе H. На G/H можно определить бинарную операцию следующим образом:

$$(g_1H)(g_2H) := g_1g_2H.$$

Зачем здесь нужна нормальность подгруппы H? Для проверки корректности: заменим g_1 и g_2 другими представителями g_1h_1 и g_2h_2 тех же смежных классов. Нужно проверить, что $g_1g_2H=g_1h_1g_2h_2H$. Это следует из того, что $g_1h_1g_2h_2=g_1g_2(g_2^{-1}h_1g_2)h_2$ и $g_2^{-1}h_1g_2$ лежит в H.

Ясно, что указанная операция на множестве G/H ассоциативна, обладает нейтральным элементом eH и для каждого элемента gH есть обратный элемент $g^{-1}H$.

Определение 2. Множество G/H с указанной операцией называется ϕ акторгруппой группы G по нормальной подгруппе H.

 Π ример 1. Если $G=(\mathbb{Z},+)$ и $H=n\mathbb{Z},$ то G/H — это в точности группа вычетов $(\mathbb{Z}_n,+)$.

Как представлять себе факторгруппу? В этом помогает теорема о гомоморфизме. Но прежде чем её сформулировать, обсудим ещё несколько понятий.

Определение 3. Пусть G и F — группы. Отображение $\varphi \colon G \to F$ называется гомоморфизмом, если $\varphi(ab) = \varphi(a)\varphi(b)$ для любых $a,b \in G$.

Замечание 1. Подчеркнём, что в этом определении произведение ab берётся в группе G, в то время как произведение $\varphi(a)\varphi(b)$ — в группе F.

Лемма 1. Пусть $\varphi \colon G \to F$ — гомоморфизм групп, и пусть e_G и e_F — нейтральные элементы групп G и F соответственно. Тогда:

- (a) $\varphi(e_G) = e_F$;
- (б) $\varphi(a^{-1}) = \varphi(a)^{-1}$ для любого $a \in G$.

Доказательство. (а) Имеем $\varphi(e_G) = \varphi(e_G e_G) = \varphi(e_G) \varphi(e_G)$. Теперь умножая крайние части этого равенства на $\varphi(e_G)^{-1}$ (например, слева), получим $e_F = \varphi(e_G)$.

(б) Имеем
$$\varphi(a^{-1})\varphi(a) = \varphi(a^{-1}a) = \varphi(e_G) = e_F$$
, откуда $\varphi(a^{-1}) = \varphi(a)^{-1}$.

Определение 4. Гомоморфизм групп $\varphi \colon G \to F$ называется *изоморфизмом*, если отображение φ биективно.

Упражение 1. Пусть $\varphi \colon G \to F$ — изоморфизм групп. Проверьте, что обратное отображение $\varphi^{-1} \colon F \to G$ также является изоморфизмом.

Определение 5. Группы G и F называют *изоморфными*, если между ними существует изоморфизм. Обозначение: $G \cong F$ (или $G \simeq F$).

В алгебре группы рассматривают с точностью до изоморфизма: изоморфные группы считаются «одинаковыми».

Теорема 1. (a) Всякая бесконечная циклическая группа G изоморфна группе $(\mathbb{Z},+).$

(б) Всякая циклическая группа порядка п изоморфна группе $(\mathbb{Z}_n, +)$.

Доказательство. Пусть $G = \langle g \rangle$. Тогда в первом случае изоморфизм устанавливает отображение $\langle g \rangle \to \mathbb{Z}$, $g^k \mapsto k$, а во втором — отображение $\langle g \rangle \to \mathbb{Z}_n$, $g^k \mapsto k \pmod{n}$.

 Π ример 2. Отображение $\varphi \colon \mathbb{R} \to \mathbb{R}_{>0}, \ a \mapsto e^a$, устанавливает изоморфизм между группами $(\mathbb{R},+)$ и $(\mathbb{R}_{>0},\times)$.

Определение 6. С каждым гомоморфизмом групп $\varphi: G \to F$ связаны его ядро

$$\operatorname{Ker}(\varphi) = \{ g \in G \mid \varphi(g) = e_F \}$$

и образ

$$Im(\varphi) = \{ a \in F \mid \exists g \in G : \varphi(g) = a \}.$$

Ясно, что $\mathrm{Ker}(\varphi)\subseteq G$ и $\mathrm{Im}(\varphi)\subseteq F$ — подгруппы.

Лемма 2. Гомоморфизм групп $\varphi \colon G \to F$ интективен тогда и только тогда, когда $\mathrm{Ker}(\varphi) = \{e_G\}.$

Доказательство. Ясно, что если φ инъективен, то $\operatorname{Ker}(\varphi) = \{e_G\}$. Обратно, пусть $g_1, g_2 \in G$ и $\varphi(g_1) = \varphi(g_2)$. Тогда $g_1^{-1}g_2 \in \operatorname{Ker}(\varphi)$, поскольку $\varphi(g_1^{-1}g_2) = \varphi(g_1^{-1})\varphi(g_2) = \varphi(g_1)^{-1}\varphi(g_2) = e_F$. Отсюда $g_1^{-1}g_2 = e_G$ и $g_1 = g_2$.

Следствие 1. Гомоморфизм групп $\varphi \colon G \to F$ является изоморфизмом тогда и только тогда, когда $\operatorname{Ker}(\varphi) = \{e_G\}$ и $\operatorname{Im}(\varphi) = F$.

Предложение 2. Пусть $\varphi \colon G \to F$ — гомоморфизм групп. Тогда подгруппа $\operatorname{Ker}(\varphi)$ нормальна в G.

Доказательство. Достаточно проверить, что $g^{-1}hg \in \mathrm{Ker}(\varphi)$ для любых $g \in G$ и $h \in \mathrm{Ker}(\varphi)$. Это следует из цепочки равенств

$$\varphi(g^{-1}hg) = \varphi(g^{-1})\varphi(h)\varphi(g) = \varphi(g^{-1})e_F\varphi(g) = \varphi(g^{-1})\varphi(g) = \varphi(g)^{-1}\varphi(g) = e_F.$$

Теорема о гомоморфизме. Пусть $\varphi \colon G \to F$ — гомоморфизм групп. Тогда группа $\operatorname{Im}(\varphi)$ изоморфна факторгруппе $G/\operatorname{Ker}(\varphi)$.

Доказательство. Рассмотрим отображение $\psi \colon G/\mathrm{Ker}(\varphi) \to F$, заданное формулой $\psi(g\mathrm{Ker}(\varphi)) = \varphi(g)$. Проверка корректности: равенство $\varphi(gh_1) = \varphi(gh_2)$ для любых $h_1, h_2 \in \mathrm{Ker}(\varphi)$ следует из цепочки

$$\varphi(gh_1) = \varphi(g)\varphi(h_1) = \varphi(g) = \varphi(g)\varphi(h_2) = \varphi(gh_2).$$

Отображение ψ сюръективно по построению и инъективно в силу того, что $\varphi(g) = e_F$ тогда и только тогда, когда $g \in \text{Ker}(\varphi)$ (т. е. $g\text{Ker}(\varphi) = \text{Ker}(\varphi)$). Остаётся проверить, что ψ — гомоморфизм:

$$\psi((g\mathrm{Ker}(\varphi))(g'\mathrm{Ker}(\varphi))) = \psi(gg'\mathrm{Ker}(\varphi)) = \varphi(gg') = \varphi(g)\varphi(g') = \psi(g\mathrm{Ker}(\varphi))\psi(g'\mathrm{Ker}(\varphi)).$$

Тем самым, чтобы удобно реализовать факторгруппу G/H, можно найти такой гомоморфизм $\varphi \colon G \to F$ в некоторую группу F, что $H = \mathrm{Ker}(\varphi)$, и тогда $G/H \cong \mathrm{Im}(\varphi)$.

 Π ример 3. Пусть $G=(\mathbb{R},+)$ и $H=(\mathbb{Z},+)$. Рассмотрим группу $F=(\mathbb{C}\setminus\{0\},\times)$ и гомоморфизм $\varphi\colon G\to F,\quad a\mapsto e^{2\pi\imath a}=\cos(2\pi a)+i\sin(2\pi a).$

Тогда $\mathrm{Ker}(\varphi) = H$ и факторгруппа G/H изоморфна окружности S^1 , рассматриваемой как подгруппа в F, состоящая из комплексных чисел с модулем 1.

Определение 7. *Центр* группы G — это подмножество

$$Z(G) = \{a \in G \mid ab = ba$$
для всех $b \in G\}$.

Ясно, что группа G абелева тогда и только тогда, когда Z(G) = G.

Предложение 3. Центр Z(G) является нормальной подгруппой группы G.

Доказательство. Сначала докажем, что Z(G) — подгруппа в G. Для этого надо показать, что $ab^{-1} \in Z(G)$ для любых $a, b \in Z(G)$. В самом деле, для произвольного элемента $g \in G$ имеем

$$ab^{-1}g = ab^{-1}(g^{-1})^{-1} = a(g^{-1}b)^{-1} = a(bg^{-1})^{-1} = a(g^{-1})^{-1}b^{-1} = agb^{-1} = gab^{-1}.$$

Далее, если $a \in Z(G)$ и $g \in G$, то

$$g^{-1}agb = g^{-1}gab = ab = bag^{-1}g = bg^{-1}ag$$

для всех $b \in G$. Значит, $g^{-1}ag \in Z(G)$ и подгруппа Z(G) нормальна.

Определим ещё одну важную конструкцию, позволяющую строить новые группы из имеющихся.

Определение 8. Прямым произведением групп G_1, \ldots, G_m называется множество

$$G_1 \times \ldots \times G_m = \{(g_1, \ldots, g_m) \mid g_1 \in G_1, \ldots, g_m \in G_m\}$$

с операцией $(g_1,\ldots,g_m)(g_1',\ldots,g_m')=(g_1g_1',\ldots,g_mg_m').$

Ясно, что эта операция ассоциативна, обладает нейтральным элементом $(e_{G_1}, \ldots, e_{G_m})$ и для каждого элемента (g_1, \ldots, g_m) есть обратный элемент $(g_1^{-1}, \ldots, g_m^{-1})$.

Замечание 2. Группа $G_1 \times \ldots \times G_m$ коммутативна в точности тогда, когда коммутативна каждая из групп G_1, \ldots, G_m .

Замечание 3. Если все группы G_1, \ldots, G_m конечны, то $|G_1 \times \ldots \times G_m| = |G_1| \cdot \ldots \cdot |G_m|$.

Следующий результат связывает конструкции факторгруппы и прямого произведения.

Теорема о факторизации по сомножителям. Пусть H_1, \ldots, H_m — нормальные подгруппы в группах G_1, \ldots, G_m соответственно. Тогда $H_1 \times \ldots \times H_m$ — нормальная подгруппа в $G_1 \times \ldots \times G_m$ и имеет место изоморфизм групп

$$(G_1 \times \ldots \times G_m)/(H_1 \times \ldots \times H_m) \cong G_1/H_1 \times \ldots \times G_m/H_m.$$

Доказательство. Прямая проверка показывает, что $H_1 \times ... \times H_m$ — нормальная подгруппа в $G_1 \times ... \times G_m$. Требуемый изоморфизм устанавливается отображением

$$(g_1,\ldots,g_m)(H_1\times\ldots\times H_m)\mapsto (g_1H_1,\ldots,g_mH_m).$$

Теорема 2. Пусть n = ml - pазложение натурального числа n на два взаимно простых множителя. Тогда имеет место изоморфизм групп

$$\mathbb{Z}_n \cong \mathbb{Z}_m \times \mathbb{Z}_l$$
.

Доказательство. Рассмотрим отображение

$$\varphi \colon \mathbb{Z}_n \to \mathbb{Z}_m \times \mathbb{Z}_l, \quad k \pmod{n} \mapsto (k \pmod{m}, k \pmod{l}).$$

Поскольку m и l делят n, отображение φ определено корректно. Ясно, что φ — гомоморфизм. Далее, если k переходит в нейтральный элемент (0,0), то k делится и на m, и на l, а значит, делится на n в силу взаимной простоты m и l. Отсюда следует, что гомоморфизм φ инъективен. Поскольку множества \mathbb{Z}_n и $\mathbb{Z}_m \times \mathbb{Z}_l$ содержат одинаковое число элементов, отображение φ биективно.

Следствие 2. Пусть $n \ge 2$ — натуральное число и $n = p_1^{k_1} \dots p_s^{k_s}$ — его разложение в произведение простых множителей (где $p_i \ne p_j$ при $i \ne j$). Тогда имеет место изоморфизм групп

$$\mathbb{Z}_n \cong \mathbb{Z}_{p_1^{k_1}} \times \ldots \times \mathbb{Z}_{p_s^{k_s}}.$$

Список литературы

- [1] Э.Б. Винберг. Курс алгебры. М.: Факториал Пресс, 2002 (глава 4, § 6 и глава 10, § 1)
- [2] А.И. Кострикин. Введение в алгебру. Основы алгебры. М.: Наука. Физматлит, 1994 (глава 4, § 2)
- [3] А.И. Кострикин. Введение в алгебру. Основные структуры алгебры. М.: Наука. Физматлит, 2000 (глава 1, § 4)
- [4] Сборник задач по алгебре под редакцией А.И.Кострикина. Новое издание. М.: МЦНМО, 2009 (глава 13, § 58, 60)