FYZICKÁ VRSTVA

RNDr. Ing. Vladimir Smotlacha, Ph.D.

Katedra počítačových systémů
Fakulta informačních technologií
České vysoké učení technické v Praze
© Vladimír Smotlacha, 2019

Počítačové sítě BI-PSI LS 2018/19, Přednáška 8

https://courses.fit.cvut.cz/BI-PSI

OBSAH

- datový kanál a jeho vlastnosti
- kódování
- metalická media
- optická media
- bezdrátové spoje
- satelitní spoje

DATOVÝ KANÁL

Atributy

- jednosměrný x obousměrný
- point-to-point x multipoint (sdílené medium)
- problém přístupu k mediu
- analogový x digitální
- přenosová kapacita
- doba přenosu (zpoždění)
- chybovost

DATOVÝ KANÁL - PARAMETRY

- kapacita kanálu (bitrate, data rate, data speed, throughput, ...)
 - uvádí se v bitech za sekundu (b/s, bit/s, bps), vyjímečně v bytech za sekundu (B/s)
 - "kilo" znamená 1000 (nikoliv 1024), atd …
 - celkový počet přenesených bitů za sekundu včetně "overheadu"
- zpoždění (delay, latency)
 - doba průchodu kanálem od odeslání bitu do jeho přijetí
 - radiový signál šíření rychlostí světla
 - elektrický nebo optický signál (kabel "vlákno) podle typu média,
 přibližně 2/3 rychlosti světla

Bit x Baud

 Baud - jednotka modulační rychlosti (baud rate) udávající počet změn stavu přenosového média za jednu sekundu

- vztah Bd a bit/s závisí na kódování,
 - při kódování pomocí 2 hodnot 1 Bd odpovídá 1 bit/s , jinak ne
 - teoretický příklad:
 - modulace pomocí 4 napěťových úrovní:
 - . "00" ~ -10 V, "01" ~ -2 V, "10" ~ +2 V, "11" ~ +10 V
 - pak 1 Bd jsou 2 bit/s

Jednotka decibel slouží k porovnání dvou výkonů

$$L = 10 * log_{10} (P / P_0) [dB, W, W]$$

- 10 (20, 30, ..) dB znamená výkon10x (100x, 1000x) vyšší
- -10 (-20, -30, ..) dB znamená výkon 10x (100x, 1000x) nižší
- 3 dB znamená výkon 2x vyšší (log₁₀ 2 = 0.301...)
- pozn: výkon závisí na 2 mocnině napětí (P = U²/R), proto pro napětí platí jiný vzorec:

$$L = 20 * log_{10} (U / U_0) [dB, V, V]$$

- Odvozená absolutní jednotka dBm
 - definice: P = 0 dBm odpovídá výkonu 1mW

Pro daná kmitočtové pásmo a šum lze určit limitní kapacitu:

Nyquistova věta

$$C = 2 * B * log_2(V)$$

Shannonova věta

$$C = B * log_2 (1 + S/N)$$

- B šířka pásma, resp. max. kmitočet [Hz]
- C přenosová rychlost [b/s]
- V počet diskrétních hodnot
- S/N odstup signál-šum

KAPACITA KANÁLU - PŘÍKLAD

- telefonní kanál omezení kmitočtu 3 kHz
 - podle Nyquistovy věty nemůže přenášet více než 6 kb/s binárního signálu
 - pro zvýšení kapacity se musí zvýšit počet rozlišovaných úrovní
 - podle Shannonova teorému je při S/N= 30 dB (1000) maximální kapacita kanálu 30 kb/s

- ADSL šířka pásma je cca 1MHz
 - odstup S/N cca 40 dB, tedy 10000 (jen několik km od ústředny)
 - kapacita kanálu je tak max. 13 Mb/s

Paralelní přenos

- přenos několika bitů současně po samostatných vodičích
- taktovací signál hrana (strobe) nebo úroveň(enable) určuje platná data
- příklady: ATA, SCSI, Centronics, sběrnice procesoru, ...

Sériový přenos

- jednotlivé bity přenášeny sekvenčně po jednom vodiči
- příklady: RS-232 (V.24), RS-245

SYNCHRONNÍ PŘENOS

Varianty

- vysílač vysílá i samostatný hodinový signál
 - další vodič s hodinovým signálem strobe
 - např. I2C, paralelní komunikace, ...
- hodinový signál zakódován do přenášených dat
 - přijímací strana obnoví hodinový signál (clock recovery)
 - např. kódování Manchester

Vlastnosti

- lze přenášet velmi dlouhé bloky dat
- větší propustnost
- složitější hardware

ASYNCHRONNÍ PŘENOS

- taktovací frekvence ("hodiny") přijímače a vysílače jsou nezávislé
 - přenášená data obsahují značku začátku
 - např. start/stop bit v RS-232
 - nebo speciální znak
 - např. HDLC
- nastavuje se fáze hodin přijímače (nikoliv frekvence)

Vlastnosti

- větší overhead snižuje kapacitu kanálu
- přenášený blok dat má omezenou délku
- jednodušší implementace

Účel kódování

- přizpůsobení fyzikálním vlastnostem media
- samočinná detekce / oprava chyb (forward error detection / correction)
- sdílení media (FDMA, CDMA)

- účelem kódování není učinit data nečitelná pro ostatní
- neplést se šifrováním!

VLASTNOSTI KÓDOVÁNÍ

- přenos hodinového signálu
 - frekvenční synchronizace přijímače
 - obnovení hodinového signálu (clock recovery)
- šířka kmitočtového pásma (bandwidth)
- stejnosměrná složka je často nežádoucí:
 - transformátor nepřenese stejnosměrný signál
 - omezené kmitočtové pásmo
- přenosová rychlost
 - zmenšení využitého pásma (overhead)

ASYNCHRONNÍ SÉRIOVÝ PŘENOS

- přenášená sekvence
 - start bit
 - 5-8 datových bitů
 - volitelný paritní bit
 - stop bit
- start bit spustí "hodiny" přijímače
- stop bit odpovídá klidovému stavu

DALŠÍ DRUHY KÓDOVÁNÍ

Non-return to zero (NRZ)

dvě různé napěťové úrovně pro O / 1

NRZ inverted

0 – stejný stav, 1 – změna

Bipolární (Alternate Mark Inverzion)

- 3 různé napěťové úrovně
- 0 nulové napětí, 1 střídavě kladné/záporné
 - signál nemá stejnosměrnou složku

KÓD MANCHESTER

Dvojnásobná šířka pásma oproti NRZ

- synchronní přenos
 - každý bit obsahuje hodinový signál
- využití např. Ethernet IEEE 802.3

4 bity zakóduje do 5 bitů

- "0" max. 3x za sebou
 - snadné obnovení hodinového signálu (clock recovery)
- využití např. u 100BseTX a 100BaseFx

0	(0000)	11110	8	(1000)	10010
1	(0001)	01001	9	(1001)	10011
2	(0010)	10100	A	(1010)	10110
3	(0011)	10101	\bigcirc B	(1011)	10111
4	(0100)	01010	C	(1100)	11010
5	(0101)	01011	D /D	(1101)	11011
6	(0110)	01110	Eas	(1110)	11100
7	(0111)	01111	// F9	(1111)	11101

MODULACE

- nosný signál je ve své podstatě analogový
 - modulace je konverze do analogového signálu
- analogová modulace = analogový modulační signál
 - amplitudová, frekvenční, fázová modulace
- digitální modulace = digitální modulační signál
 - fázové (PSK, phase-shift keying), frekvenční (FSK), amplitudové
 (ASK) klíčování
 - kvadratická modulace (QAM, quadrature amplitude modulation)

MULTIPLEXOVÁNÍ

Sdílení media pro více nezávislých kanálů

- FDMA frekvenční multiplex
 - Frequency Division Multiple Access
- TDMA časový multiplex
 - Time Division Multiple Access
- CDMA
 - Code Division Multiple Access

Každý kanál má své vyhrazené frekvenční pásmo

- příklady
 - rozhlasové / televizní vysílání
 - ADSL a hlas na telefonní lince

Datové kanály se střídají v přístupu k media

- frame jednotka přenosu, obsahuje všechny kanálů
- příklady
 - GSM
 - DECT (přenosné telefony)

Několik vysílačů sdílí současně ten samý přenosový kanál

- rozprostřené (spread) spektrum modulovaný signál má větší datové pásmo než uživatelská data
- příklady:
 - síť CDMA2000 (3G mobilní telefony)

MULTIPLEX - SROVNÁNÍ

TELEFONNÍ LINKA

Datový kanál

- analogový modem
 - v hovorovém pásmu 3 kHz
 - max. 33.6 kb/s
- digitálně modulovaný signál DSL
 - resp. ADSL Asymmetric DSL

METALICKÁ MEDIA

- symetrická
 - kroucená dvojlinka (twisted pair)

- nesymetrická
 - koaxiální kabel

UTP / STP

STP

S/UTP

S/STP

Optické vlákno

OPTICKÉ KONEKTORY

ELEKTROMAGNETICKÉ SPEKTRUM

RADIOVÉ VLNY

100 kHz - 1 GHz (300 m - 30 cm)

- dlouhé vlny (LW) až velmi krátké (UHF)
- šíření
 - pozemní
 - ohyb za obzor (klesá se stoupající frekvencí)
 - odraz od ionosféry
 - jen určité vlnové délky, závisí i na vnějších podmínkách
 - sluneční aktivita, denní doba ...
- příklad
 - rozhlas, televize (analogové, DVB-T), GSM a CDMA (400-1900 MHz)

MIKROVLNY

300 MHz - 30 GHz (1 m - 10 cm)

- velmi krátké vlny (VHF) super krátké vlny (SHF)
- šíření
 - přímočaře
 - směrové antény
 - odraz, lom (reflexe, refraxe)
 - "multipath" znehodnocení signálu
- příklad
 - radioreléové trasy, WiFi, GPS, ...

INFRAČERVENÉ ZÁŘENÍ

- IR LED
 - dosah v řádu metrů

- IR laser / laser LED
 - dosah stovky metrů (ve vzduchu)
 - nespolehlivé: mlha, vlnění horkého vzduchu

SATELITNÍ KOMUNIKACE

- geostacionární
 - výška 35786 km nad rovníkem
 - rozestup min. 2°, tedy jen 180 "pozic"
- střední oběžná dráha
 - mezi 2000 35000 km (2 24 h)
 - polární dráhy
 - např. GPS, meteorologické satelity
- nízká oběžná dráha
 - pod 2000 km
 - např. Iridium

Děkuji za pozornost