Dernière mise à jour Informatique		Claire GAUDY - Denis DEFAUCHY		
28/11/2022 4 - Algorithmes dichotomiques		TD 4-1 - Recherche dans un tableau trié		

Informatique

4 Algorithmes dichotomiques

TD 4-1 Recherche dans un tableau trié

Dernière mise à jour	Informatique	Claire GAUDY - Denis DEFAUCHY		
28/11/2022	4 - Algorithmes dichotomiques	TD 4-1 - Recherche dans un tableau trié		

Exercice 1: Recherche par dichotomie dans un tableau trié

Méthode Python

Python propose la recherche d'un terme dans une liste à l'aide de l'instruction : x in L

Ce n'est évidemment pas celle que nous allons utiliser. Vous devrez créer les algorithmes renvoyant les mêmes résultats.

Recherche simple

Soit une liste de N entiers distincts L triés par ordre croissant. On souhaite déterminer la présence d'un élément x dans L.

Question 1: Proposer une fonction $recherche_simple(x,L)$ qui renvoie le booléen indiquant la présence (True) ou non (False) de x dans L par recherche itérative sur tous les éléments de L

Question 2: Donner la complexité en temps de cette fonction dans le meilleur et le pire des cas

Question 3: Si ce n'est pas le cas, faites-en sorte que votre fonction soit en 0(1) dans le meilleur des cas

Recherche par dichotomie

Le principe de la recherche par dichotomie dans une liste triée est le suivant :

- Retourner **False** si L est vide
- Définir les indices de recherche notés $I_q = 0$ (indice gauche) et $I_d = N 1$ (indice droite)
- Tant que $I_g \le I_d$ répéter la procédure suivante :

$$\circ I_m = \operatorname{int}\left(\frac{I_g + I_d}{2}\right)$$

$$\circ$$
 $T_m = L[I_m]$

 \circ Si $x = T_m$, retourner **True**

o Si
$$x < T_m$$
, $I_d = I_m - 1$

o Si
$$x > T_m$$
, $I_g = I_m + 1$

- A la sortie de la boucle, retourner False

Remarques:

- Il est possible que $I_g > I_d$, il faut donc bien faire le test \leq et non \neq (Cf. remarque 1 en fin de sujet)
- Il est important de bien exclure le terme du milieu s'il n'est pas égal à x avec les -1 et +1 (Cf. remarque 2 en fin de sujet)
- Préférer inclure le test $x=T_m$ dans la boucle comme proposé ci-dessus afin de simplifier la rédaction

Question 4: Proposer une fonction itérative $recherche_dicho(x, L)$ qui renvoie le booléen indiquant la présence (True) ou non (False) de x dans L par dichotomie Question 5: Vérifiez votre code en cherchant 1, 2, 3 et 4 dans [1,2,3].

Dernière mise à jour	Informatique	Claire GAUDY - Denis DEFAUCHY		
28/11/2022	4 - Algorithmes dichotomiques	TD 4-1 - Recherche dans un tableau trié		

Complexité

On donne le code suivant :

Question 6: Recopier ce code, l'exécuter et identifier le rôle de la méthode sort sur les listes

Question 7: Proposer une évolution de la fonction recherche_dicho en une fonction recherche_dicho_it(x,L) afin qu'elle renvoie, en plus de Vrai ou Faux, le nombre d'itérations de la boucle while et la valeur de $\lfloor \log_2(N) \rfloor$ (N étant le nombre d'éléments de la liste)

Remarques:

- Utiliser floor pour avoir la partie entière
- Importer log du module math puis regarder l'aide à l'aide de help(log) pour savoir l'utiliser

Question 8: Utiliser cette fonction pour rechercher -1 dans une liste de N entiers choisis aléatoirement dans [0, 100*N] et triée. Modifier la valeur de N et comparer le nombre d'itérations avec l'ordre de grandeur de $log_2(N)$

Question 9: Pourquoi a-t-on choisi x=-1 ? Que peut-on conjecturer sur la complexité de l'algorithme de dichotomie ?

Question 10: Donner la complexité en temps de cette fonction dans le meilleur et dans le pire des cas

Dernière mise à jour Informatique		Claire GAUDY - Denis DEFAUCHY		
28/11/2022	4 - Algorithmes dichotomiques	TD 4-1 - Recherche dans un tableau trié		

Validation de la fonction

Nous allons mettre en place une fonction qui vérifie que votre fonction de recherche fonctionne, en supposant que L est bien triée. Pour cela, il faut connaître toutes les situations possibles lors de l'appel de la recherche :

- 1: Lest vide
- x est dans L:
 - Nombre d'éléments de L pair
 - 2 : x est en première place
 - 3 : x est en dernière place
 - 4 : x est dans la liste, sans être ni premier, ni dernier
 - o Nombre d'éléments de L impair
 - 5 : x est en première place
 - 6 : x est en dernière place
 - 7 : x est dans la liste, sans être ni premier, ni dernier
- x n'est pas dans L:
 - o Nombre d'éléments de L pair
 - 8 : x est plus petit que le premier élément de L
 - 9 : x est plus grand que le dernier élément de L
 - 10 : x est compris entre le premier et le dernier élément de L, sans toutefois être présent dans L
 - o Nombre d'éléments de L impair
 - 11 : x est plus petit que le premier élément de L
 - 12 : x est plus grand que le dernier élément de L
 - 13 : x est compris entre le premier et le dernier élément de L, sans toutefois être présent dans L

Question 11: Proposer une fonction test(f) qui vérifie que votre fonction de recherche f en argument renvoie le bon résultat dans toutes les configurations possibles, auquel cas elle renverra True, sinon False

Question 12: Vérifier que votre fonction recherche_dicho est correcte

Dernière mise à jour	Informatique	Claire GAUDY - Denis DEFAUCHY		
28/11/2022	4 - Algorithmes dichotomiques	TD 4-1 - Recherche dans un tableau trié		

Remarque 1

Avec la version de la fonction de recherche qu'il est proposé de réaliser, il est possible que $I_g > I_d$ à la dernière itération. En effet, nous avons programmé un « milieu gauche » avec $i_m = (i_g + i_d)//2$. Imaginons rechercher 0 dans [1,2]:

Itération	0	1
$i_g = i_m + 1$	0	0
$i_d = i_m - 1$	1	-1
i_m	0	FIN
$L[i_m]$	1 > 0	FIIN

Ce serait identique en recherchant 3 dans [1,2] avec un « milieu droite » $i_m = (i_g + i_d + 1)//2$, ce qui conduirait à la fin à :

Itération	0	1
$i_g = i_m + 1$	0	2
$i_d = i_m - 1$	1	1
i_m	1	FIN
$L[i_m]$	2 < 3	FIIN

J'ai proposé à la fin du corrigé trois autres versions de la recherche qui permettent d'avoir $i_g=i_d$ à la fin du while, si cela vous intéresse.

A RETENIR : En dichotomie, bien mettre le test \leq et non ! =

Dernière mise à jour Informatique		Claire GAUDY - Denis DEFAUCHY		
28/11/2022	4 - Algorithmes dichotomiques	TD 4-1 - Recherche dans un tableau trié		

Remarque 2

Lorsque l'on n'exclut pas les milieux de la recherche suivante, trois choix peuvent induire un comportement problématique du programme :

- Indice milieu : Soit n le nombre de termes de L
 - o $i_m = (i_g + i_d)//2$: « Milieu gauche » car si n impair (ex n=3 : (0+2)//2=1), c'est bien le milieu, mais si n pair (ex n=2 : (0+1)//2=0), c'est le terme à gauche du milieu
 - o $i_m = (i_g + i_d + 1)//2$: « Milieu droite »
- Inclusion de i_m dans i_g et i_d , que i_g ou que i_d
- Inclusion ou non du test $x=L[i_m]$ et choix du test des conditions $x\geq L[i_m]$ ou $x>L[i_m]$ si le test $x=L[i_m]$ n'est pas réalisé

Illustrons l'un des problèmes pouvant être rencontrés, par exemple en cherchant x=3 dans la liste [1,2,3] avec un milieu gauche :

Itération	0	1	2	3
i_g	0	1	1	
i_d	2	2	2	
i_m	1	1	1	
$L[i_m]$	2	2	2	

Ce serait identique en recherchant 1 dans [1,2,3] avec un « milieu droite » $i_m = (i_g + i_d + 1)//2$:

Itération	0	1	2	3
i_g	0	0	0	
i_d	2	1	1	
i_m	1	1	1	
$L[i_m]$	2	2	2	

La solution consiste donc, puisque l'élément recherché n'est pas en position de l'indice milieu, de l'exclure de l'intervalle de recherche suivant... De chaque côté!

A RETENIR : En dichotomie, préférer exclure le milieu des sous listes et préférer inclure le test $x=L[i_m]$