

Credit Card Approval Prediction

Credit Scoring

Assess creditworthiness using machine learning. Historical data predicts if an applicant is 'good' or 'bad'

Introduction

Access to credit cards plays a significant role in financial inclusion and economic participation. However, the traditional credit approval process can be time-consuming and subjective

Automated credit approval prediction systems powered by machine learning algorithms offer a faster and more objective alternative

This project seeks to leverage machine learning techniques to develop such a system, providing financial institutions with a reliable tool to assess creditworthiness accurately and efficiently

Project Roadmap

Business transparency **Understanding Data Understanding Data Preparation** Modeling **Evaluation** credit evaluation **Deployment**

Exploring the potential of machine learning to expedite credit decisions and foster

Unveiling hidden patterns in data crucial for precise credit card approval predictions

Creating and refining a clean dataset to improve the accuracy of predictive modeling

Customizing machine learning models to suit the unique characteristics of the dataset, optimizing their effectiveness in predicting credit card approvals

Conducted comparative analysis to identify and select the most effective model for

Integrating the most effective model seamlessly into banking systems to improve credit assessment processes and promote financial inclusion

Khyati Desai 4/25/2024

Business Understanding

Leveraging data-driven predictive models to revolutionize the credit approval process, enhancing efficiency and accuracy

The banking sector struggles to accurately evaluate client creditworthiness, often relying on error-prone manual processes

We develop accurate predictive models, providing insights to banks, fostering financial inclusion and empowerment

Using ML algorithms and historical data, we aim to predict credit card approvals accurately, optimizing decisions for financial institutions and empowering individuals financially

Exploratory Data Analysis

Skewed dataset – SMOTE

Khyati Desai 4/25/2024 EM 589

Data Preparation

Data Loading and Inspection

Loaded dataset
(`application_record.csv`)
containing features like
`ID`, `CODE_GENDER`,
`AMT_INCOME_TOTAL`

Data Merging

Combined datasets
('application_record.csv'
and 'credit_record.csv')
to enrich information for
analysis

Handling Duplicates

Removed duplicate records based on unique identifiers ('ID')

Feature Engineering

Created new features
(e.g.,
`YEARS_EMPLOYED`) for
better model
understanding

Handling Missing Values

Imputed missing values and encoded categorical variables (e.g., `NAME_INCOME_TYPE`, `OCCUPATION_TYPE`)

Data Visualization

Explored data
distribution and
relationships (e.g.,
`AMT_INCOME_TOTAL`
vs. `target`) for insights

Data Transformation

Processed date features
('DAYS_BIRTH',
'DAYS_EMPLOYED'),
computed 'AGE_YEARS',
and removed outliers

Handling Imbalance

Class imbalance
addressed using
Synthetic Minority
Oversampling Technique
(SMOTE) to ensure
balanced representation

Data Preparation

1. Credit Record

Columns:

- ID: A unique identifier for each record.
- Months_Balance: Indicates the number of months before the current month (e.g., 0 for the current month, -1 for the last month, and so on)
- Status: Represents the credit status, with codes ranging from 0 to 5, indicating different levels of overdue payments, and 'C' for paid off, and 'X' for no loan

Cleaning Procedure:

- Multiple entries exist for each ID due to different months of credit activity, ranging from the most recent month (0) to previous months (e.g., -1, -2, and so forth)
- Create a target column by consolidating the credit status values into a binary format (0 or 1) and selecting the maximum value among the categories
- Remove duplicate rows from the Credit Record dataset to streamline the data

	ID	MONTHS_BALANCE	STATUS
0	5001711	0	Х
1	5001711	-1	0
2	5001711	-2	0
3	5001711	-3	0
4	5001712	0	С

2. Application Record

Columns:

- Flag_Mobil, Flag_work_phone, Flag_email, Flag_phone: These columns are dropped as they are not deemed relevant for analysis.
- Name_Education_type: Certain education types are grouped under 'No GED.'
- Days_Birth: Converted to Age Years by dividing by 365 days.
- **Days_Employed:** Converted to Years_Employed (negative values are first inverted and then divided by 365 days), and values less than zero are discarded.
- Name_Family_Status: 'Civil Marriage' is replaced with 'Married.'
- Cnt_Family_Members: Only consider values less than or equal to 9.

Data Merging: Merge Application Record and Credit Record datasets based on the common ID column.

Modeling

Random Forest Classifier (RF)

- Parameters: 500 decision trees and a random state of 123
- Feature Selection: Implemented Recursive Feature Elimination (RFE)
- Purpose: complex datasets with high dimensionality
- Parameters: 500 decision trees, learning rate of 0.1, maximum depth of 8
- Feature Selection: Utilized Recursive Feature Elimination (RFE)
- Purpose: sequentially improvement of weak learners, increases accuracy

Gradient Boosting Classifier (GB)

XGBoost Classifier (XGB)

- Parameters: 500 decision tree, learning rate of 0.1, maximum depth of 8
- Feature Selection: Applied Recursive Feature Elimination (RFE)
- Purpose: efficiency, scalability, and high performance, complex relationships
- Parameters: Default parameters are used
- Feature Scaling: To ensure the model's convergence and stability
- Purpose: a baseline model for binary classification tasks, ease of interpretation

Logistic Regression (LR)

Feature Selection

Why RFE?

- Systematic
 evaluation of
 feature subsets,
 eliminating the
 least important
 features recursively
- Feature interactions: nonlinear relationships
- Adaptability to various algorithms and highdimensional datasets

Procedure

- Initially, all features are considered, and fits the model until the optimal number of features is reached
- Features are ranked based on metrics like feature coefficients or feature importances
- RFE class from the scikit-learn library is utilized, specifying the number of features to select

Model Performance

- RFE enhanced accuracy of RF model from 0.867 to 0.865 after feature selection
- Gradient Boosting Classifier: RFE improved accuracy from 0.87985 to 0.87917
- XGBClassifier: RFE improved accuracy from 0.88397 to 0.88136

Evaluation

 Confusion matrices were generated to visualize the models' performance in classifying approved and not approved credit card applications

Evaluation

 The evaluation process involved assessing the models' accuracy scores, F1 scores, precision scores, and recall score

Deployment

1. Serialization

 Serialization of the selected model to save its parameters and structure for easy access

2. Integration into Banking System

 Integration of the serialized model into the production environment, such as a banking system, where it receives credit card applications as input

3. Preprocessing of Input Data

data cleaning, categorical variable encoding, and feature scaling

Business Requirements and Security

 Processing of prediction results according to business requirements, including fraud detection and regulatory compliance checks

5. Communication to clients

 Routing of approved or denied credit card applications within the banking system and communication of decisions to applicants

6. Continuous Monitoring

 Integration of feedback loops and version control and documentation practices to improve model effectiveness and ensure reproducibility

Khyati Desai 4/25/2024 EM 589

Conclusion

Comparable Accuracy

Both gradient boosting and XGBoost models achieved similar levels of accuracy, indicating that they are effective in capturing patterns in the data

Trade-off in Efficiency

While Gradient Boosting showed a very high accuracy, it came at the cost of significantly longer computational time compared to XGBoost

Linear vs. Nonlinear Models

Logistic regression,
displayed inferior
performance compared to
random forest, due to its
linear relationship
assumption between
features and outputs.

Thank You!

-Contributors:

- Rithvik HS
- Khyati Desai
- Nisarg Shah
- Jaswanth Kumar Mannava
- Alekhyaa Nelluri