Ben Athiwaratkun

Email: pa338@cornell.edu Phone: 413-884-3087

EDUCATION

Cornell University

Fourth Year Phd Candidate in Statistics and Special Masters in Computer Science

Advisor: Andrew Gordon Wilson

Williams College

Bachelor of Arts in Mathematics and Economics with Honors in Mathematics, June 2012

• Benedict First Prize in Mathematics 2010, Magna Cum Laude, Phi Beta Kappa and Sigma Xi

RESEARCH EXPERIENCE

Improving Consistency-Based Semi-Supervised Learning with Weight Averaging

• Developed efficient a weight averaging method to improve generalization error on semi-supervised learning problems.

Sentence Manifold Traversal (paper pending)

Present

- Exploring sentence generation by traversing the manifold of sentence space for semantic changes.
- Exploring the use of kernel-based method and adversarial method for the manifold traversal.

Adversarial Deep Averaging Networks for Cross-Lingual Domain Adaptation (TACL 2018, conditional acceptance)

- Developed a model for domain adaptation between languages using adversarial training
- Experiments on English to Chinese sentiment classification show that our method significantly outperforms baselines such as a machine translation system.

Bayesian Variational Autoencoders (In submission)

• Exploring different formulations of Bayesian approach on variational autoencoders, with application for diverse sentence generation and semi-supervised learning.

Probabilistic Word Representations with Subword Information (ACL 2018)

- Developed a method that incorporates subword information to enhance the quality of word density representations.
- Our model can handle rare or out-of-vocabulary words, and be applied to other languages without further hyper parameter tuning.

Hierarchical Density Order Embeddings (ICLR, 2018)

- Developed a methodology to train Gaussian representations on hierarchical data.
- Achieved state-of-the-art for WordNet hypernym prediction and HyperLex lexical entailment

Multimodal Word Distributions (ACL, 2017)

 Exploring the use of multimodal distribution as word representation to capture meaning multiplicity of words.

Neural Language Model for Malware Classification (ICASSP 2017)

Summer 2016

- Applied neural language models (LSTMs, GRUs) to sequences of APIs to extract file features.
- Experimented with multiple attention mechanisms on sequences of API features for malware file detection.

RELEVANT WORK EXPERIENCE

Research Intern

Summer 2017 (AWS AI Lab, Palo Alto)

- Explored the idea of balancing dictionary-level and word-level representations for word embeddings using group sparsity regularization.
- Pivoted the idea and applied the subword structure to multimodal word distributions.

Research Intern

Summer 2016 (Microsoft Research, Redmond)

• Experimented with neural language model and attention mechanism, as well as character level convolutional neural networks for malware detection. Published a paper to ICASSP 2017.

Research Intern

Summer 2015 (Loop AI Labs, San Francisco)

- Trained recurrent neural network language models (RNN, GRU, LSTM) on large dataset to improve the semantics of embeddings for relationship extraction tasks
- Comparing word embeddings trained by multiple models such as word2vec, GloVe, WordRep, as well as embeddings evolved by supervised learning such as tree LSTM for relationship extraction

MACHINE LEARNING PROJECTS

Heuristics Optimization for Neural Network Training

Fall 2014

 Explored the use of simulated annealing, genetic algorithm, and dynamically dimension search for neural network training.

Book Rating Prediction

Spring 2014

 Used a probabilistic matrix factorization algorithm with collaborative constraint to predict book rating.

Movie Revenue Prediction

Spring 2014

Developed a neural network model with tailored cost function to perform movie revenue prediction.

Swingy Monkey - Reinforcement Learning

Spring 2014

• Developed a Q-Learning algorithm to train an agent to play a game (swingy monkey). The model successfully trained the agent to become increasingly more competent over time.

Pacman Tournament Spring 2014

• Used support vector machine, Kmeans++, and state machine algorithm for Pacman Final Project Tournament. Won 2nd place of all teams (Harvard CS181)

RELEVANT COURSEWORK

 Machine Learning, Heterogeneous Parallel Programming, Natural Language Processing for Social Interactions, Heuristics Optimization, Advanced Machine Learning, Database, Computer Vision

AWARDS

• International Physics Olympiad 2007, Silver Medal

TOOLBOXES

Deep Learning Tools: Torch, Theano, Pylearn2, Tensorflow, PyTorch

Programming Languages: Python, Lua, R, Matlab/Octave, Java, C++, C, SQL

PROFILE

LinkedIn: www.linkedin.com/in/benathi

din.com/in/benathi

Github: www.github.com/benathi

Personal Website: www.benathiwaratkun.com

Google Scholar: https://scholar.google.com/citations?user=KZpZTTQAAAAJ&hl=en