递推方程与 算法分析

递推方程

设序列 $a_0, a_1, ..., a_n, ...$,简记为 $\{a_n\}$,一个把 a_n 与某些个 a_i (i < n) 联系起来的等式叫做关于序列 $\{a_n\}$ 的递推方程

递推方程的求解:

给定关于序列 $\{a_n\}$ 的递推方程和若干初值,计算 a_n

递推方程的例子

Fibonacci数

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

递推方程:
$$f_n = f_{n-1} + f_{n-2}$$
 初值: $f_0 = 1, f_1 = 1$

$$f_0=1, f_1=1$$

数学家Fibonacci 意大利1170-1240

解:

$$f_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^{n+1}$$

Fibonacci数的存在

55

Hanoi塔问题

n个盘子从大到小顺序放在A 柱上,要把它们从 A 移到 C,每次移动 1个盘子,移动时不允许大盘压在小盘上。设计一种移动方法。

递归算法

- 算法 Hanoi (A, C, n) // n个盘子A到C
- 1. if n=1 then move (A, C) // 1个盘子A到C
- 2. else Hanoi (A, B, n-1)
- 3. move (A, C)
- 4. $\underline{\text{Hanoi}}(B, C, n-1)$
- 设n个盘子的移动次数为T(n)

$$T(n) = 2 T(n-1) + 1,$$

 $T(1) = 1,$

分析算法

$$T(n) = 2 T(n-1) + 1$$
, $T(1) = 1$,

$$T(n)=2^n-1$$

1 秒移1个,64个盘子要多少时间? 5000亿年! 千万亿次/秒,4个多小时

有没有更好的算法?

没有!这是一个难解的问题,不存在多项式时间的算法!

插入排序

```
算法 Insert Sort (A, n)
```

- 1. for $j \leftarrow 2$ to n
- 2. $x \leftarrow A[j]$
- 3. $i \leftarrow j-1$ // 把 A[j] 插入
- 4. while i > 0 and x < A[i] do
- 5. $A[i+1] \leftarrow A[i]$
- 6. $i \leftarrow i-1$
- 7. $A[i+1] \leftarrow x$

最坏情况下时间复杂度

插入排序:

设基本运算是元素比较,对规模为n的输入最坏情况下的时间复杂度W(n)

$$W(n)=W(n-1)+n-1$$

 $W(1)=0$

解为

$$W(n) = n(n-1)/2$$

小结

- 递推方程的定义及初值
- ・ 递推方程与算法时间复杂度的关系 Hanoi 塔的递归算法 插入排序的迭代算法