ELEKTRONİK DEVRELERİ II A1 Grubu 1. Arasınav

Not: Her iki soru da cevaplandırılacaktır. Sınav süresi <u>**90 dakika**</u>dır. Not ve kitap kullanılabilir. Soru 1.

- Şekil 1. de kullanılan kuvvetlendiricinin V_o/V_i gerilim kazancının tek kutuplu olduğu bilinmektedir. V_o/V_g gerilim kazancının orta frekans bölgesinde ölçülen değeri 100 dür. $C_1=27nF$, $C_2=150nF$, $r_i=100k\Omega$, $C_i=50pF$, $r_o=5k\Omega$ ve $C_o\cong 0$ dır. V_o/V_i gerilim kazancının üst kesim frekansı 100kHz dır.
- a) $V_{\text{o}}/V_{\text{g}}$ gerilim kazanç fonksiyonunun yüksek frekans bölgesindeki kutuplarını hesaplayınız.
- $b)V_o/V_g$ gerilim kazancının alt kesim frekansını bulunuz.
 - c) Devrenin üst kesim frekansını hesaplayınız.

Şekildeki devrede kullanılan kuvvetlendiricinin kazanç fonksiyonu

$$K(s) = 10^4 \frac{\omega_1 \omega_2}{(s + \omega_1)(s + \omega_2)}$$

biçimindedir. Kuvvetlendiricinin giriş direnci çok büyük, giriş kapasitesi çok küçük, çıkış direnci ve çıkış kapasitesi ihmal edilecek kadar küçüktür. R₁=1k Ω , ω_2 =1000 ω_1 , ω_1 =200 π rad/s dır.

ELEKTRONİK DEVRELERİ II B1 GrubuVize 1.

Not: Her iki soruda cevaplandırılacaktır. Süre 90 dakika dır. Not ve Kitap kullanılabilir.

Soru 1.-

Sekil 1. de verilen devrede kullanılan kuvvetlendiricinin kazanç fonksiyonu Vo/Vi =K(s), yük direnci devreye bağlı değilken

$$K(s) = \frac{V_o'}{V_i} = \frac{10^8 \pi}{s + 10^6 \pi}$$

bigimindedir. $r_i=100k\Omega$, $C_i=100pF$, $r_o=10k\Omega$ ve C_o=10pF tır.

- a) V_o/V_g kazancını orta frekans bölgesinde hesaplayınız.
- b) Devrenin alt kesim frekansının 20Hz ve asimptot eğiminin 40dB/dekat olması için C₁ ve C₂ kondansatörlerinin değerini hesaplayınız.

c) Devrenin üst kesim frekansını hesaplayınız.

Sekil 2. de kullanılan kuvvetlendiricinin giriş direnci çok büyük giriş kapasitesi çok küçük, çıkış direnci ve çıkış kapasitesi ihmal edilecek kadar küçüktür. Kuvvetlendiricinin kazanç fonksiyonu yüksüz durumda

$$K(s) = 10^3 \frac{\omega_1}{(s + \omega_1)}$$

biçimindedir. R=10k Ω , R₁=1k Ω , R₂=200k Ω dır

- a) V_o/V_i gerilim kazancını orta frekans bölgesinde hesaplayınız.
- $\omega_1 = 10^6 \text{rad/s}$ ise devrenin V_0/V_1 b) gerilim kazancının üst kesim frekansını hesaplayınız.

Şekil 1.

Şekil 2.

ELEKTRONİK DEVRELERİ II A1 grubu 2. yıliçi sınavı

Not: Süre 90 dakikadır. Not ve kitap kullanılabilir.

Soru 1.- Şekil 1. de kullanılan kuvvetlendiricinin yüksüz gerilim kazancı K=50 dir. Kuvvetlendiricinin girişine frekansı 10kHz olan kare dalga biçimi bir işaret uygulanmıştır. r_i =10k Ω , C_i =50pF, r_o =1k Ω ve C_o ihmal edilecek kadar küçüktür.

- a) C_1 ve C_2 kondansatörlerinin değerlerini herbirinden dolayı oluşan eğilmeyi % 0,5 alarak hesaplayınız.
- b) Çıkışta elde edilecek yükselme süresini, V_{q} 'nin yükselme süresini 10ns alarak hesaplayınız.
- c) V_o/V_g gerilim kazancının alt kesim frekansı ne kadardır?

Soru 2.- Şekil 2. de kullanılan kuvvetlendiricinin yüksüz gerilim kazancı K=100, giriş direnci r_i =100k Ω , giriş kapasitesi C_i =50pF çıkış direnci de r_o =5k Ω dur. C_o çıkış kapasitesi ihmal edilebilmektedir. Z_y empedansı devreye bağlandığında orta frekanslardaki V_o/V_g gerilim kazancı 70 olarak ölçülmüştür ve V_o/V_g kazancının üst kesim frekansı 50kHz olmaktadır. Devrenin band genişliğini arttırmak için

bağlanması gereken L endüktansının yerini belirtiniz ve değerini hesaplayınız.

ELEKTRONİK DEVRELERİ II

YARIYIL SONU SIRAVI

 ${f NOT}$: Süre ${f \underline{i}Kf \underline{i}}$ saattır. Ders notları ve kitaplardan yararlanılabilir.

Soru 1.-

Şekil 1. de kullanılan kuvvetlendiricinin açık çevrim gerilim kazancı

$$K(s) = 10^3 \frac{2\pi 10^4}{s + 2\pi 10^4}$$

açık çevrim giriş direnci $20k\Omega$, açık çevrim çıkış direnci de $5k\Omega$ dur.

- a) Orta frekans bölgesinde $V_{\text{o}}/V_{\text{g}}$ gerilim kazancını hesaplayınız.
- b) C_1 =100nF, C_2 =2,5 μ F ise alt kesim frekansını hesaplayınız.
- c) C_y=50pF ise üst kesim frekansını hesaplayınız.

- d) Girişe frekansı 1kHz olan kare dalga biçimi işaret uygulanınca darbe üstü eğilmesini bulunuz.
- e) Girişe yükselme süresi 50ns olan peryodik bir darbe uygulanınca C_y =50pF için çıkıştaki işaretin yükselme süresini hesaplayınız.

Soru 2.-

- a) Açık çevrim gerilim kazancı $K_0=100$ olan bir kuvvetlendiricinin çıkışına $4k\Omega'$ luk bir yük direnci bağlandığında devrenin V_0/V_i gerilim kazancı 80'e düşmektedir. Bu devrenin çıkış direnci nedir?
- b) r_i =50 $k\Omega$ olduğuna göre iç direnci R_g olan bir kaynakla sürülen devrenin kazancının V_o/V_o =50 olması için kaynak direnci ne olmalıdır?
- c) C_i=100pF olduğuna göre, bu devreyi iç direnci çok küçük olan ve yükselme süresi ihmal edilecek kadar küçük bir darbe kaynağı ile sürülürse çıkışta ölçülen yükselme süresi 50ns olmaktadır. Osiloskobun yükselme düresi 20ns ise devrenin çıkış kapasitesini hesaplayınız.
- d) R_g =10k Ω iken ve devrenin girişine seri kompanzasyon uygulandığında devrenin üst kesim frekansı ne kadar olur?

Soru 3-

Şekil 2. de görülen dolup-boşalma osilatör devre-sinde evirmeyen türden bir Schmitt tetikleme devresi kul-lanılmıştır. V_{IH} =3V ve V_{IL} =1,5V dur.

- a) Devrenin çalışmasını kısaca açıklayınız.
- b) Çıkıştaki işaretin frekansı f=1kHz ve darbe boşluk oranı 1/3 ise I_1 ve I_2 akımlarını hesaplayınız.
- c) I_1 ve I_2 akım kaynakları nasıl gerçekleştirilebilir? Akım kaynaklarını tasarlayarak, osilatörü bu akım kaynakları ile çiziniz.

ELEKTRONİK DEVRELERİ II B GRUPLARI 1. Yıliçi sınavı

NOT: Ders notu ve kitap kullanılabilir. Süre 60 dakikadır.

Soru:Şekildeki devrede kullanılan kuvvetlendiricinin yükleme etkisi gözönüne alındığında açık çevrim giriş direnci r_i =20k Ω , çıkış direnci r_o =1k Ω ve gerilim kazancı

$$K(s) = \frac{10^6 \pi}{s + 1000 \pi}$$

biçimindedir.

- a) V_o/V_g gerilim kazancının orta frekans bölgesinde aldığı değeri hesaplayınız. b) V_o/V_g gerilim kazancının üst kesim frekansını hesaplayınız.
- c) Devrenin alt kesim frekansının 10Hz ve frekansın azalması halinde asimptot eğiminin 40dB/dekat olması istendiğine göre C_1 ve C_2 kondansatörlerinin değerini hesaplayınız.

ELEKTRONİK DEVRELERİ II A GRUPLARI 1. Yıliçi sınavı

NOT: Ders notu ve kitap kullanılabilir. <u>Süre 60</u> dakikadır. Soru:

Şekildeki devrede kullanılan kuvvetlendiricinin yükleme etkisi gözönüne alındığında açık çevrim

büyüklükleri r_i =20k Ω , çıkış direnci r_o =1k Ω ve gerilim kazancı,

$$K(s) = \frac{10^5 \pi}{s + 500 \pi}$$

dir.

- a) V_o /V_g gerilim kazancının değerini orta frekans bölgesinde hesaplayınız.
- b) V_o / V_g kazancının üst kesim frekansını bulunuz. C_i ve C_o ihmal edilecektir.
- c) Alt kesim frekansı 20Hz ve azalma eğiminin 40dB/dekat olsun istendgine göre C_1 ve C_2 kondansatörlerinin degerini hesaplayınız.

ELEKTRONİK DEVRELERİ II

A ve C 1. Yarıyıl Sınavı

Not: Kendi not ve kitabınızı kullanabilirsiniz. Süre 60 dakikadır.

Soru 1.-

Şekil 1.de kullanılan kuvvetlendiricinin yüksüz gerilim kazanç fonksiyonu,

$$K(s) = \frac{2\pi.10^7}{s + 2\pi.10^4}$$

 $K(s) = \frac{2\pi.10^7}{s+2\pi.10^4}$ biçimindedir. Kuvvetlendiricinin yüksüz giriş direnci $r'_{i}=50k\Omega$, çıkış direnci $r'_{o}=1k\Omega$, giriş kapasitesi C_i = 50pF, çıkış kapasitesi ise ihmal edilecek kadar küçüktür.

- a) Orta frekans bölgesinde V_o/V_i gerilim kazancını hesaplayınız.
- b) Devrenin V_o/V_i gerilim kazancının alt kesim frerkansını hesaplayınız.
- Devrenin yüksek c) frekans bölgesinde V_o/V_i kazanç fonksiyonunu hesaplayınız.

ELEKTRONİK DEVRELERİ II

B ve D Grupları 1. yarıyıl

Not: Kendi not ve kitabınızı kullanabilirsiniz. Süre <u>60</u> dakikadır.

Soru 1.

Şekil 1. de kullanılan kuvvetlendiricinin gerilim kazancı

$$K(s) = \frac{2\pi \cdot 10^6}{s + 2\pi \cdot 10^3}$$

biçimindedir. Kuvvetlendiricinin giriş direnci çok büyük, çıkış direnci ise çok küçüktür.

- a) V_{o}/V_{g} gerilim kazancını orta frekans bölgesinde hesaplayınız.
- b) V_o/V_g gerilim kazancını alçak frekans bölgesinde hesaplayınız.
 c) V_o/V_g gerilim kazancının üst
- kesim frekansını hesaplayınız.

22.Aralık 1997

ELEKTRONİK DEVRELERİ II 2. Yıliçi sınavı soruları A ve C grupları

Not: Kendi not ve kitaplarınızı kullanabilirsiniz. Süre <u>60</u> dakikadır. **Soru:** Şekildeki devrede kullanılan kuvvetlendiricinin kazanç fonksiyonu,

$$K(s) = \frac{K_o \omega_1 \omega_2 \omega_3}{(s + \omega_1)(s + \omega_2)(s + \omega_3)}$$

biçiminde verilmiştir. Kuvvetlendiricinin giriş direnci sonsuz sayılacak kadar büyük, çıkış direnci ihmal edilecek kadar küçüktür. ω_1 =300 rad/s, ω_2 = ω_3 =10⁶ rad/s ve K_o=10⁴ olarak verilmiştir.

- a) Devrenin frekans eğrisinde tepe oluşmaması için R_2/R_1 oranının kritik değerini hesaplayınız.
- b) Devrenin osilasyon yapması hangi R_2/R_1 oranında meydana gelir?

22.12.1997

ELEKTRONİK DEVRELERİ II 2. Yıliçi sınavı B ve D grupları

Not: Kendi not ve kitaplarınızı kullanabilirsiniz. Süre <u>60</u> dakikadır. **Soru:**

Şekildeki devrede kullanılan kuvvetlendiricinin giriş direnci sonsuz alınacak kadar büyük, çıkış direnci ihmal edilecek kadar küçüktür. Kuvvetlendiricinin gerilim kazanç fonksiyonu

$$K_{\nu}(s) = \frac{K_o \omega_1 \omega_2}{(s + \omega_1)(s + \omega_2)}$$

biçimindedir. K_o=10^5, $\omega_1{=}100 \text{rad/s}$ ve $\omega_2{=}10^7 \text{rad/s}$ olduğuna göre

- a) Frekans eğrisinde tepe oluşmaması için R_2/R_1 oranının kritik değerini bulunuz.
- b) (a) bulunan kritik R_2/R_1 oranı için devrenin girişine ideal basamak fonksiyonu uygulandığında çıkış işaretinin yükselme süresini hesaplayınız.
- c) R_1 direnci yerine değeri C=10nF olan kondansatör kullanılırsa, R_2 =10k Ω olduğuna göre devrenin osilasyon yapmaması için K_0 'nun maksimum değeri nekadar olmalıdır?

6.1.1997

ELEKRONİK DEVRELERİ II B GRUPLARI 2. Yıliçi Sınavı

NOT: Kendi ders notunuzdan ve kendi kitabınızdan yararlanabilirsiniz. Süre 60 dakikadır. Soru:

Şekildeki devrede kullanılan tranzistorlar birbirinin aynıdır. $h_{FE}=\beta=200$, $f_T=450MHz$, $C_{cb'}=2.5pF$ dır.

- a) Orta frekanslara ilişkin $K_{vo}=v_o/v_g$ kazancını bulunuz. b) Kuvvetlendiricinin girişine ideal bir basamak işareti uygulandığında çıkıştan alınan işaretin t_r yükselme süresini bulunuz.
- c) Devrenin bant genişliğini daha da arttırmak için ne yapılabilir? Devreyi yeniden çizerek yeni bant genişliğini bulunuz. Bu durumda t_r yükselme süresi ne kadar olur?
- d) Devrenin girişine, iç direnci aynı değerde fakat f=1kHz'lik kare dalga veren bir sürücü kaynak bağlandığında darbe üstü eğilmesi ne kadar olur?

6.1.1997

ELEKRONİK DEVRELERİ II B GRUPLARI 2. Yıliçi Sınavı

NOT: *Kendi* ders notunuzdan ve *kendi* kitabınızdan yararlanabilirsiniz. Süre 60 dakikadır. **Soru:**

Şekildeki devrede kullanılan tranzistorlar birbirinin aynıdır. h_{FE} = β =200, f_T =450MHz, $C_{cb'}$ =2.5pF dır.

- a) Orta frekanslara ilişkin $K_{vo} = v_o/v_g$ kazancını bulunuz.
- b) Kuvvetlendiricinin girişine ideal bir basamak işareti uygulandığında çıkıştan alınan işaretin t_r yükselme süresini bulunuz.
- c) Devrenin bant genişliğini daha da arttırmak için ne yapılabilir? Devreyi yeniden çizerek yeni bant genişliğini bulunuz. Bu durumda t_r yükselme süresi ne kadar olur?
- d) Devrenin girişine, iç direnci aynı değerde fakat f=1kHz'lik kare dalga veren bir sürücü kaynak bağlandığında darbe üstü eğilmesi ne kadar olur?

10k

ELEKTRONİK DEVRELERİ II Final Sınavı Soruları

NOT: Kendi ders notunuzu ve kitabınızı kullanabilirsiniz. Süre $\frac{\dot{I}K\dot{I}}{\dot{I}}$ BUÇUK SAATTIR. SORU-1-

- a) Şekil 1.deki devrenin girişine orta frekanslarda sinüsoidal işaret uygulandığında V_0/V_g =50 ve $V_0/V_{\dot{I}}$ = 60 olmaktadır. Devrenin giriş direncini hesablayınız.
- **b)** Devrenin girişine yükselme süresi **trg=10nsn** olan kare dalga uygulanmıştır. Giriş direnci **r**_{io}=**10M** Ω , giriş kapasitesi **C**_{io}=**3.5pF** ve **50 MHz**. band genişliği olan osiloskopla devre-nin girişinde ölçülen yükselme süresi t_{ri}=0.23μsn olmaktadır. Devrenin giriş kapasitesini bulunuz.
- c) Kuvvetlendiricinin çıkış direnci $\mathbf{r_o} = \mathbf{5k\Omega}$, çıkış kapasitesi $\mathbf{C_o} = \mathbf{5pF}$ ise, aynı osiloskop kullanıldığında ölçülen yükselme süresi ne kadar olur.
- **d)** Kare dalganın frekansı **1kHz**. olduğunda, C_1 ve C_2 kondansatörlerinin her birinin oluşturduğu darbe üstü eğilmesinin % **0,5** olması için C_1 ve C_2 ne olmalıdır.
 - e) Devrenin alt ve üst kesim frekanslarını bulunuz.

SORU-2

Şekil 2. deki devrede kullanılan kuvvetlendiricinin gerilim kazanc fonksiyonu, **yükleme etkisi gözönüne alındığında**;

$$K(s) = 10^3 \frac{\omega_1 \omega_2}{(S + \omega_1)(S + \omega_2)}$$

- **a)** Devrenin **orta frekanslardaki kazancını** hesablayınız.
- **b)** Frekans eğrisinde **tepe oluşmaması için** ω_2 / ω_1 oranı en az ne olmalıdır? ($\omega_2 > \omega_1$)?
- c) $\omega_2 = 200\omega_1$ ve $\omega_1 = 2\pi.10^4$ rad/sn ise devrenin **üst kesim** frekansını bulunuz.

SORU 3-

Şekil 3. de kullanılan kuvvetlendirici ideal işlem-sel kuvvetlendiricidir.

- a) Devrenin **titreşim** (**osilasyon**) **frekansını** ve kuvvetlendiricinin **kazancını** belirleyen **b paramet-resini** veren ifadeleri **R, C ve k parametresi** cinsinden bulunuz.
- **b) b=3 ve C=100pF** olduğu bilindiğine göre devrenin **100kHz** de osilasyon yapması için **R**'in değeri ile **k parametresini** hesaplayınız.

Sekil 1

ELEKTRONİK DEVRELERİ II A Grubu 1. Yıl içi sınavı

Not: Süre **60 dakika**dır. Kendi not ve kitaplarınızı kullanabilirsiniz.

Soru: Şekildeki devrede kullanılan kuvvetlendiricinin yüksüz giriş direnci çok büyük, çıkış direnci ise çok küçüktür. Kuvvetlendiricinin yüksüz kazanç fonksiyonu,

$$K(s) = \frac{2\pi 10^8}{s + 2\pi 10^5}$$

olarak verilmiştir.

- a) V_{o} / V_{i} gerilim kazancını orta frekans bölgesinde hesaplayınız.
- b) Devrenin alt kesim frekansını hesaplayınız.
- c) Devrenin üst kesim frekansını hesaplayınız.

 $\begin{array}{lll} R_1{=}10k\Omega, & R_2{=}10k\Omega, & R_3{=}1k\Omega, \\ R_4{=}10k\Omega, \, R_5{=}2,5k\Omega, \, R_y{=}10k\Omega, \, C_1{=}1\mu\text{F}, \, C_2{=}800\text{nF} \end{array}$

9.11.1998

ELEKTRONİK DEVRELERİ II B GRUBU I. Vize sorusu

Not: Süre **60 dakika**dır. Kendi not ve kitaplarınızı kullanabilirsiniz.

Soru: Şekildeki devrede kullanılan kuvvetlendiricinin giriş direnci çok büyük, çıkış direnci ise çok lüçüktür. Kuvvetlendiricinin kazanç fonksiyonu

$$K(s) = \frac{2\pi 10^8}{s + 2\pi 10^5}$$

biçiminde verilmiştir.

- a) Orta frekans bölgesinde V_o/V_g = K_{vko} değerini hesaplayınız.
- b) Devrenin alt kesim frekansı 20Hz ve asimtotun azalma eğiminin 40db/dekat olabilmesi için C_1 ve C_2 kondansatörlerinin değerini hesaplayınız.
- c) Devrenin üst kesim frekansını hesaplayınız.

 $R_{g}=10k\Omega \text{, }R_{1}=100k\Omega \text{,}R_{2}=5k\Omega \text{, }R_{3}=20k\Omega \text{, }R_{4}=1k\Omega \text{, }R_{5}=10k\Omega \text{, }R_{6}=2k\Omega \text{, }R_{y}=20k\Omega \text{, }R_{1}=100k\Omega \text{, }R_{2}=10k\Omega \text{, }R_{3}=10k\Omega \text{, }R_{4}=10k\Omega \text{, }R_{5}=10k\Omega \text{,$

7.12.1998

ELEKTRONİK DEVRELERİ II A Grubu Vize 2 Soruları

Not: Kendi not ve kitaplarınızı kullanabilirsiniz. Süre 60 dakikadır.

Soru: Şekildeki devrede kullanılan kuvvetlendiricinin giriş direnci r_i çok büyük, giriş kapasitesi C_i çok küçük ve r_o çıkış direnci ile C_o çıkış kapasitesi ihmal edilecek kadar küçüktür. Kuvvetlendiricinin kazanç fonksiyonu

$$K(s) = K_o \frac{\omega_1 \omega_2}{(s + \omega_1)(s + \omega_2)}$$

biçiminde verilmiştir. $K_o = 1000$ olarak verilmiştir.

a) Frekans eğrisinde tepe oluşmaması için ω_2/ω_1 oranı hangi koşulu sağlamalıdır?

- b) $\xi=1/\sqrt{2}$ için $\omega_1=2\pi 10^4$ rad/s olduğuna göre devrenin girişine basamak biçimi bir işaret uygulandığında çıkışta elde edilen işaretin yükselme süresini hesaplayınız. Giriş işaretinin yükselme süresi ihmal edilecektir.
- c) Devrenin girişine frekansı f=10kHz olan kare dalga uygulandığında devrenin çıkışında oluşacak toplam darbe üstü eğilmesi ne kadar olur?
 - d) V_o/V_g gerilim kazancının alt kesim frekansını hesaplayınız.

7.12.1998

ELEKTRONİK DEVRELERİ II B Grubu Vize 2 Soruları

Not: Kendi not ve kitaplarınızı kullanabilirsiniz. Süre 60 dakikadır.

$$K(s) = K_o \frac{\omega_1 \omega_2}{(s + \omega_1)(s + \omega_2)}$$

biçimindedir. $K_0=1000$ ve $\omega_2=100\omega_1=10^6$ rad/s olarak verilmiştir.

a) Frekans eğrisinde tepe oluşmaması için R_3/R_2 oranı hangi koşulu sağlamalıdır?

- b) $\xi=1/\sqrt{2}$ için devrenin girişine basamak biçimi bir işaret uygulandığında çıkışta elde edilen işaretin yükselme süresini hesaplayınız. Giriş işaretinin yükselme süresi ihmal edilecektir.
- c) Devrenin girişine frekansı f=10kHz olan kare dalga uygulandığında çıkışta toplam darbe üstü eğilmesi % 2 olması isteniyor. C_1 ve C_2 kondansatörlerinin neden olduğu eğilmeleri eşit alarak C_1 ve C_2 kondansatörlerinin değerini hesaplayınız.
 - d) V_o/V_g gerilim kazancının alt kesim frekansını hesaplayınız.

ELEKTRONİK DEVRELERİ II Final Soruları

Not: Kendi kitap ve notlarınızı kullanabilirsiniz. Süre İKİ BUÇUK saattır.

Soru 1.- Şekil 1.de görülen devrede kullanılan kuvvetlendiricinin yüksüz kazancı K=500, giriş direnci r_i = $100k\Omega$ ve çıkış direnci r_o = $1k\Omega$ dur.

- a) Devrenin orta frekans bölgesinde V_o/V_i gerilim kazancını hesaplayınız.
- b) Devrenin geribeslemeli giriş direncini ve çıkış direncini hesaplayınız.
- c) R_2 direncine paralel C_1 = 10nF değerinde bir kondansatör bağlansa idi devrenin üst kesim frekansı ne olurdu?
- **Soru 2.** Şekil 2. de kullanılan kuvvetlendiricinin açık çevrim geri-lim kazancı K=1000, açık çevrim giriş direnci r_i =50k Ω ve çıkış direnci r_o =500 Ω dur. C_v =20pF
- a) Devrenin $V_{\text{o}}/V_{\text{g}}$ gerilim kazancını orta frekans bölgesinde hesaplayınız.
- b) Devrenin alt kesim frekansı 50Hz ve asimptot eğiminin 40dB/dekat olması için C_1 ve C_2 kondansatörlerinin değerini bulunuz.
- c) Devrenin üst kesim frekansını bulunuz. Üst kesim frekansını orta frekans bölgesi kazancını değiştirmeden en fazla arttırabilmek için devreye eklenmesi gereken

elemanın yerini ve değerini belirtiniz. Bu durumda devrenin girişine yükselme süresi t_{rg} = 10ns ve darbe süresi T_D = 1μ s olan periyodik darbeler uygulandığında çıkışta elde edilen darbenin yükselme süresini ve darbe üstü eğilmesini hesaplayınız.

Soru 3.- Şekil 3. de kullanılan kuvvetlendiricinin giriş direnci r_i çok büyüktür. r_o =5k Ω olarak verilmiştir. K_o =5 ve Z_3 yerine değeri 1mH olan bobin kullanıldığına göre devrenin f_o =1MHz de osilasyon yapması için Z_1 ve Z_2 empedansları yerine kullanılacak reaktif elemanların değerini hesaplayınız.

ELEKRONİK DEVRELERİ II

NOT: Kendi ders notunuzdan ve kendi kitabınızdan yararlanabilirsiniz. Süre 120 dakikadır.

Soru: 1.

Şekilde 1. görülen devrede kullanılan tranzistorlar birbirinin aynıdır. h_{FE} = β =200, f_T =450MHz, $C_{ch'}$ =2.5pF dır.

- a) Orta frekanslara ilişkin $K_{vo} = v_o/v_g$ kazancını bulunuz.
- b) Kuvvetlendiricinin girişine ideal bir basamak işareti uygulandığında çıkıştan alınan işaretin t_r yükselme süresini bulunuz.
- c) Devrenin bant genişliğini daha da arttırmak için ne yapılabilir? Devreyi yeniden çizerek yeni bant genişliğini bulunuz. Bu durumda t_r yükselme süresi ne kadar olur?
- d) Devrenin girişine, iç direnci aynı değerde fakat f=1kHz'lik kare dalga veren bir sürücü kaynak bağlandığında darbe üstü eğilmesi ne kadar olur?

Şekil 1.

Soru 2.

- a) Açık çevrim gerilim kazancı $K_o=100$ olan bir kuvvetlendiricinin çıkışına $4k\Omega'$ luk bir yük direnci bağlandığında devrenin V_o/V_i gerilim kazancı 80'e düşmektedir. Bu devrenin çıkış direnci nedir?
- b) r_i =50k Ω olduğuna göre iç direnci R_g olan bir kaynakla sürülen devrenin yük direnci bağlı iken, kazancının V_o/V_o =50 olması için kaynak direncinin değeri ne olmalıdır?
- c) C_i=100pF olduğuna göre, bu devreyi iç direnci çok küçük olan ve yükselme süresi ihmal edilecek kadar küçük bir darbe kaynağı ile sürülürse çıkışta ölçülen yükselme süresi 50ns olmaktadır. Osiloskobun yükselme düresi 20ns ise devrenin çıkış kapasitesini hesaplayınız.
- d) R_g =10 $k\Omega$ iken ve devrenin girişine endüktansla seri kompanzasyon uygulandığında endüktansın ve devrenin üst kesim frekansı ne kadar olur?

ANALOG ELEKTRONİK DEVRELERİ A Grubu

Not: Kendi ders notunuzu ve kitabınızı kullanabilirsiniz. Süre **50** dakikadır. **Soru**

Şekildeki devrede kullanılan kuvvetlendiricinin yüksüz gerilim kazancı K=2000, giriş direnci $r_i'=50k\Omega$ ve çıkış direnci $r_o'=500\Omega$ dur.

- (35) a) Devrenin V_o/V_g gerilim kazancını hesaplayınız.
- (35) b) Devrenin alt kesim frekansının 20Hz ve asimptot eğiminin 40dB/dekat olması istendiğine göre C_1 ve C_2 kondansatörlerinin değerini hesaplayınız.

(30) c) Devrenin üst kesim frekansını hesaplayınız.

ANALOG ELEKTRONİK DEVRELERİ A GRUBU YILİÇİ SINAV 1

Not: Süre 60 dakikadır. Kendi not ve kitabınızı kullanabilirsiniz.

a) $(V_i=0)$ sükûnet halinde $V_{E4}=0V$ olması için R_4 direncinin değeri ne kadar seçilmelidir?

b) V_o/V_i gerilim kazancını, r_i giriş direncini ve r_o çıkış direncini hesaplayınız.

Soru 2.- Şekil 2. de kullanılan işlemsel kuvvetlendiriciler idealdir.

- a) V_o/V_q kazancının orta frekans bölgesindeki gerilim kazancını hesaplayınız.
- b) Devrenin alt kesim frekansının 20Hz ve asimptot eğiminin 60dB/dekat olması istenmektedir. Belirtilen özelliği sağlayacak biçimde C₁, C₂ ve C₄ kondansatörlerinin değerini hesaplayınız.
 - c) Devrenin üst kesim frekansı ne kadardır?

ANALOG ELEKTRONİK DEVRELERİ MAZERET SINAVI

Not: Kendi not ve kitabınızı kullanabilirsiniz. Süre **120 dakika**dır. **Beş** sorudan <u>üçü</u> cevaplandırılacaktır.

Soru 1.-

a) Şekil 1. deki devrede kullanılan işlemsel kuvvetlendirici ideal kabul edilebildiğine göre, v_{o} çıkış geriliminin giriş gerilimleri ve dirençler cinsinden bağıntısını çıkartınız.

b) Devreyi öyle tasarlayınız ki

$$v_0 = -2v_1 + v_4 + 2v_5$$

olsun. Kullanılan en küçük direncin değeri $10k\Omega$ alınmalıdır.

Soru 2.-Şekil 2. de kullanılan tranzistorlar için $\beta=h_{Fe}=h_{Fe}=250$, $|V_{BE}|=0.6V$ ve $V_{T}=25mV$ olarak verilmiştir. $h_{re}\cong0$, $h_{oe}\cong0$ alınabilmektedir.

- a) R_6 direnci açık devre iken tranzistorların çalışma noktası akımlarını hesaplayınız. R_1 ve R_5 direncindeki gerilim düşümü ihmal edilebilir.
- b) Devrenin V_o/V_i gerilim kazancını, r_{if} giriş direncini ve r_{of} çıkış direncini geribeslemeli durumda hesaplayınız.

Soru 3.-

- a) Şekil 3. de B-Sınıfı güç kuvvetlendiricisi çıkışında maksimum P_y=10W lık bir güç elde edilebildiği ölçülmektedır. Maksimum güçte çıkış tranzistorları (T₁ ve T₂) üzerinde kalan gerilimin değerini hesaplayınız.
- b) T_1 ve T_2 'nin dayanması gereken maksimum kolektör-emetör gerilimi

Şekil 2.

V_{CEM} ile maksimum kolektör akımı I_{CM} değerlerine olmalıdır?

- c) β_{1min} = β_{2min} =25 olduğu dikkate alınırsa I_{omin} ne olmalıdır? Bu durumda T_3 üze7rinde harcanan gücü hesaplayınız.
- d) $V_{BE1} = |V_{BE2}| \approx V_{BE4}$ alarak R_A ve R_B arasındaki ilişkiyi belirleyeniz.

Soru 4.-

Şekil 4. deki CMOS OTA devresindeki transistorların parametreleri:

NMOS: $(KP)_N=10^{-4} \text{ A/V}^2$, $V_T=+1V$, $\lambda \approx 0$, $L=2\mu m$ PMOS: $(KP)_P=4.10^{-5} \text{ A/V}^2$, $V_T=-1V$, $\lambda \approx 0$, $L=2\mu m$

ve transistorların geçit genişlikleri

 $W_1 = W_1^{'} = 4\mu m$, $W_2 = W_2^{'} = 10\mu m$, $W_4 = W_4^{'} = 80\mu m$, $W_3 = W_3^{'} = 200\mu m$

olarak verilmiştir ve $I_T=100\mu\text{A}'\text{dir}$.

a) Sükûnet halinde ($v_1=v_1^{'}=0$ iken) S_1 düğümünün gerilimi nedir?

b)Girişe $(v_1-v_1)=100$ mV doğru gerilim uygulandığında i $_0$ çıkış akımının değeri ve yönü nedir?

c) Çıkışa C=10nF değerinde bir kondansatör bağlandıktan sonra girişe şekildeki işaret uygulanırsa C'nin uçlarındaki çıkış gerilimi zamana bağlı olarak nasıl değişir?

Soru 5.-

Şekil 5. deki iki katlı kuvvetlendiricide birinci katın I_1 sükûnet akımı, (T_3, T_4) akım kaynağı ile belirlenmiştir. Transistorlar için β_F =200, r_{oe} =100K, V_{BE} =0.7V olarak alınabilir. Sükûnette (v_i =0 için)

- a) I_1 =0,5 mA olması için R_4 direncinin değeri ne olmalıdır?
- b) Çıkış ucunun sükûnet doğru geriliminin V_0 =0V olması için I_2 ve R_3 'ün değerleri ne olmalıdır?
- c) Orta frekanslarda v_o/v_q küçük işaret kazancını hesaplayınız.
- d) C_E kondansatörü nedeni ile alçak frekanslarda meydana gelecek düşmenin köşe frekansının (-3dB frekansının) 20Hz olması için C_E'nin değeri ne olmalıdır?

20.11.2000 Doç. Dr. M. Sait Türköz

Analog Elektronik Devreleri A Grubu 1. Yıl içi Sınavı Soruları

Not: Kendi **Not ve Kitaplarınızı** kullanabilirsiniz. Soruların puanları yanlarında belirtilmiştir. Süre <u>BİR</u> saattir.

Şekildeki devrede kullanılan tranzistorlar için $h_{fe}=h_{FE}=200$, $|V_{BE}|=0.6V$ ve $V_T=25mV$ değerleri verilmiştir. Tranzistorların h_{re} ve h_{oe} parametreleri ihmal edilecek kadar küçüktür. T_1 ve T_2 tranzistorları eş tranzistorlardır.

- (30) a) Tranzistorların çalışma noktası kolektör akımlarını hesaplayınız.
- (30) b) Orta frekans bölgesinde V_o/V_q gerilim kazancını hesaplayınız.
- (20) c) Devrenin alt kesim frekansını hesaplayınız.
- (20) d) Devrenin üst kesim frekansını hesaplayınız.

Devrede kullanılan eleman değerleri:

Dirençler: R_g = 10kΩ, R_1 = R_5 = 100kΩ, R_2 = R_3 = R_4 = 47kΩ, R_6 = 10kΩ, R_7 = 270Ω, R_8 = 3,9kΩ, R_9 = 2kΩ ve R_V = 10kΩ

Kondansatörler: C_1 =0,1 μ F, C_2 =0,6 μ F, C_3 =100 μ F, C_4 ve C_5 kondansatörlerinin değerleri değişken işaretlerde kısa devre sayılacak kadar büyüktür.

$$+V_{CC}=10V$$
 $-V_{EE}=-10V$

Doç. Dr. M. Sait Türköz

Analog Elektronik A Grubu 2. Vize

Not: Kendi <u>Not ve Kitabınızı</u> kullanabilirsiniz. Süre <u>60 dakika</u>dır.

Soru.- Şekildeki devrede kullanılan kuvvetlendiricinin yüksüz gerilim kazancı K=1000, giriş direnci r'_i = $50k\Omega$ ve çıkış direnci r'_o = 500Ω olarak verilmiştir.

- (40) a) Orta frekans bölge-sinde V_o /V_i gerilim kazancını hesaplayınız.
- (30) b) Devrenin girişine darbe süresi $T_D=1\mu s$ olan periyodik bir darbe uygulandığında C_1 ve C_2 kondansatörlerinden her birinden kaynaklanan darbe üstü eğilmelerinin % 0,1 olması istendiğine göre C_1 ve C_2 kondansatörlerinin değerlerini hesaplayınız.
- (20) c) Devrenin alt ve üst kesim frekanslarını hesaplayınız.
- (10) d) Giriş darbesinin yükselme süresi ihmal edilecek kadar küçük olduğuna göre çıkışta elde edilen işaretin yükselme süresini hesaplayınız.

 $R_1 = 10k\Omega$, $R_2 = 20k\Omega$, $R_3 = 1k\Omega$, $R_4 = 20k\Omega$, $R_5 = 1k\Omega$, $R_y = 10k\Omega$, $C_3 = 50pF$

22.01.2001

Doç. Dr. M. Sait Türköz

ANALOG ELEKTRONİK DEVRELERİ A GRUBU FİNAL SORULARI

NOT: Kendi **not** ve **kitabınızı** kullanabilirsiniz. Süre **İKİ** saattir.

Soru 1.- Sekil 1. de kullanılan tranzistorlar icin $h_{fe}=h_{FE}=200$, $|V_{BE}|=0.6V$ ve $V_T=25mV$ değerleri verilmiştir. h_{re}≅0, $h_{oe} = 0$ dir. T_1 ve T_2 eş tranzistordur.

- (15)a) Tranzistorların çalışma noktası akımlarını hesaplayınız.
- b) V_o/V_i gerilim kazancını, r_i giriş direncini direncini çıkış r_{o} hesaplayınız.

Soru 2.- Şekil 2. de kullanılan

kuvvetlendiricinin yük-süz gerilim kazancı K=500, giriş direnci r'_i =50k Ω ve çıkış direnci r'_o =500 Ω olarak

- a) Orta frekans bölgesinde V_o/V_g gerilim kazancını hesaplayınız. (15)
- b) Devrenin alt kesim frekansının (15)10Hz ve asimptot eğiminin 40dB/dekat olması için C₁ ve C₂ kondansatörlerinin değerini bulunuz.
- c) Devrenin girişine darbe süresi T_D=5µs olan bir periyodik darbe uygulandığında darbe üstü eğilmesini hesaplayınız. $t_r=0,2\mu s$ olması için C_3 'ün değeri ne kadar olmalıdır?

Soru 3.-

- a) Şekil 3. de görülen push-pull B sınıfı kuvvetlendiricide (15) R_v =8 Ω 'luk yüke maksimum 25W güç aktaracak V_{CC} geriliminin değerini bulunuz. V_{CEsat}=1V tur.
- b) T_1 ve T_2 tranzistorlarında, (a) şıkkında bulunan V_{CC} gerilim değeri için maksimum ne kadar güç harcanır? Hesaplayınız.

12 Kasım 2001 Doç. Dr. M. Sait Türköz

Analog Elektronik Devreleri 1. Yarıyıl Sınav soruları

Not: Sınav süresi **60 dakikadır.** Kendi not ve kitaplarınızı kullanabilirsiniz. **Soru:**

Şekildeki devrede kullanılan kuvvetlendiricinin yüksüz büyüklükleri K=500, r'_i =50k Ω , r'_o =1k Ω olarak verilmiştir. Kuvvetlendiricinin giriş ve çıkış kapasiteleri ihmal edilecek kadar küçüktür.

- (40) a) Orta frekans bölgesinde v_o/V_i gerilim oranını hesaplayınız.
- (30) b) Alt kesim frekansının f_1 =50Hz ve asimptot eğiminin 40dB/dekat olabilmesi için C_1 ve C_3 kondansatörlerinin değerini hesaplayınız.
- (30) c) Devrenin üst kesim frekansı $f_2=100kHz$ ve asimptot eğiminin 40dB/dekat olabilmesi için C_2 ve C_4 kondansatörlerinin değerleri ne değerde seçilmelidir?

Eleman Değerleri:

 $R_1=R_2=5k\Omega$, $R_3=400k\Omega$, $R_4=5k\Omega$ ve $R_y=5k\Omega$

10 Aralık 2001

ANALOG ELEKTRONİK DEVRELERİ

Doç. Dr. M. Sait Türköz

Not:. Kendi not ve kitaplarınızı kullanabilirsiniz. Süre **60** dakikadır. **Soru:**

Şekildeki devrede kullanılan kuvvetlendiricinin yalın haldeki kazanç fonksiyonu,

$$\frac{V_o'}{V_i'} = K_v(s) = \frac{6\pi^2 10^{12} s}{(s + 100\pi)(s + 10^5\pi)(s + 6\pi 10^5)}$$

biçimindedir. Bu kuvvetlendirici için r_i =20k Ω , r_o =500 Ω , C_i =100pF ve C_o \cong 0 değerleri verilmiştir.

- (20) a) Devrenin orta frekans bölgesinde V_o/V_a gerilim oranını hesaplayınız.
- (30) b) Devrenin alt kesim frekansını hesaplayınız.
- (30) c) Devrenin girişine uygulanan işaret kaynağı, yükselme süresi ihmal edilebilen ve darbe süresi $T_D=20\mu s$ olan bir periyodik işaret olduğuna göre çıkış gerilimi V_o da oluşacak yükselme süresini hesaplayınız.
- (20) d) Devrenin üst kesim frekansını ve $T_D=20\mu s$ olduğuna göre darbe üstü eğilmesini hesaplayınız.

Eleman değerleri:

 $C_1=120nF$, $C_2=600nF$, $R_q=5k\Omega$, $R_v=5k\Omega$

14 Ocak 2002

ANALOG ELEKTRONİK DEVRLERİ Final Sınavı

Doç. Dr. M. Sait Türköz

Not: Kendi not ve kitabınızı kullanabilirsiniz. Süre 120 dakikadır.

Soru 1.- Şekil 1. de kullanılan kuvvetlendiricinin çıkış kapasitesi ihmal edilecek kadar küçüktür. Devrenin girişine V_g =0,1V değerinde sinüsoidal işaret uygulandığında V_i gerilimi, 80mV olarak ölçülüyor. R_y yükü devre dışı edildiğinde V_o gerilimi 8V, R_y =5k Ω değerinde yük bağlandığında V_o =5V olarak ölcülüyor.

- (10) a) Devrenin giriş ve çıkış dirençlerini hesaplayınız.
- (15) b) Devrenin girişine yükselme süresi ihmal edilecek kadar küçük bir darbe uygulandığında, devrenin girişinde ölçülen yükselme süresi $t_{\rm ri}$ =0,4 μ s olduğuna göre devrenin giriş kapasitesinin değerini hesaplayınız. Ölçü düzeninin etkisi ihmal edilecektir.
- (10) c) C_1 ve C_2 kondansatörlerinin değerini $T_D=10\mu s$ alınması durumunda her birinden kaynaklanacak eğilmeyi %1 alarak bulunuz.

Soru 2.- Şekil 2. de kullanılan kuvvetlendiricinin giriş direnci çok büyük, giriş kapasitesi, çıkış direnci ve çıkış kapasitesi ihmal edilecek kadar küçüktür. Kuvvetlendiricinin kazanç fonksiyonu,

$$K(s) = \frac{2\pi.10^6}{s + 2\pi.10^3}$$

olarak verilmiştir.

- (20) a) Devrenin üst kesim frekansını ve orta frekans bölgesi V_o/V_g gerilim kazancını R_3 =40k Ω için hesaplayınız.
- (15) b) Alt kesim frekansı 20Hz ve asimptot eğimi 40dB/dek. olacak biçimde C_1 ve C_2 kondansatörlerinin değerini hesaplayınız.

- **soru 3.-** Şekil 3. de kullanılan B sınıfı push-pull çıkış katında kullanılan tranzistorlar için I_{CM} =4A, V_{CESat} =1V, V_{CEM} =40V ve P_{tot} =5W değerleri verilmiştir.
- (20) a) R_y yük direncinin alabileceği minimum değeri bulunuz.
- (10) b) $R_v = 8\Omega$ için yüke aktarılabilecek maksimum güç P_{ymax} ve verim η_{max} değerlerini hesaplayınız.

Şekil 3.

11 Kasım 2002

ANALOG ELEKTRONİK DEVRELERİ

1. Yıl içi Sınav sorusu

Doç. Dr. M. Sait Türköz

Not: Sadece kendi not ve kitaplarınızı kullanabilirsiniz. Süre 60 dakikadır.

Soru:

Şekildeki devrede kullanılan kuvvetlendiricinin yüksüz büyüklükleri K=1000, r'_i =50k Ω ve r'_o =2k Ω olarak verilmiştir.

- (40) a) V_o/V_i gerilim oranını orta frekans bölgesinde hesaplayınız.
- (30) b) Devrenin alt kesim frekansının 20Hz ve asimptot eğiminin 40dB/dekat olması istendiğine göre C_1 ve C_3 kondansatörlerinin değerini hesaplayınız.,
- (30) c) Devrenin üst kesim frekansının 20kHz ve asimptot eğiminin 40dB/dekat olması için C₂ ve C₄ kondansatörlerinin değeri ne kadar olmalıdır?

16 Aralık 2002

ANALOG ELEKTRONİK DEVRELERİ 2. Yıl içi Sınavı

Doç. Dr. M. Sait Türköz

Not: Kendi not ve kitabınızı kullanabilirsiniz. Her hangi bir şekilde soru arşivi kullanılamaz. Süre <u>60</u> **dakika**dır

Soru:

- (20) a) Orta frekans bölgesinde kuvvetlendiricinin girişine iç direnci $R_g = 2k\Omega$ olan işaret kaynağı uygulanmıştır. İşaret kaynağı devreye bağlanmadığında uçları arasında ölçülen sinüzoidal işaretin genliği 0,25V değerindedir. Devreye bağlandığında kuvvetlendiricinin girişinde ölçülen gerilim 0,2V tepe değerine sahiptir. Kuvvetlendiricinin çıkışında yük açık devre edildiğinde ölçülen gerilimin tepe değeri 6V, $R_y = 5k\Omega$ değerinde bir yük bağlandığında ise çıkış gerilimi gerilimini tepe değeri 5V olmaktadır. Devrenin giriş ve çıkış direncinin değerini hesaplayınız.
- (40) b) İşaret kaynağı iç direnci R_g =2 $k\Omega$ olan ve yükselme süresi ihmal edilecek kadar küçük bir darbe kaynağı bağlandığında, bant genişliği ile giriş direnci çok büyük ve giriş kapasitesi 10pF olan bir osiloskop yardımı ile devrenin girişinde ölçülen yükselme süresi 211nS dir. Aynı osiloskop yükün uçları arasına bağlandığında çıkışta ölçülen yükselme süresi 200nS olmaktadır. Devrenin giriş ve çıkış kapasitelerini hesaplayınız.
- (10) c) Devrenin üst kesim frekansını hesaplayınız.
- (20) d) Devrenin girişine uygulanan darbenin süresi $1\mu S$ ise, C_1 ve C_2 kondansatörlerinin her birinden dolayı oluşacak eğilmenin % 0,5 olması istendiğine göre C_1 ve C_2 kondansatörlerinin değerini hesaplayınız.
- (10) e) Devrenin alt kesim frekansını hesaplayınız.

02 Ocak 2003

ANALOG ELEKTRONİK DEVRELERİ

Final Sınavı

Doç. Dr. M. Sait Türköz

Not: Kendi not ve kitaplarınızı kullanabilirsiniz. Süre İKİ Saattir. Çözümlü soru arşivi kullanılamaz.

Soru 1.- Şekil 1. de kullanılan kuvvetlendiricinin giriş direnci çok büyük, çıkış direnci ise çok küçüktür. Kuvvetlendiricinin kazanç fonksiyonu,

$$K(s) = \frac{10^6 \pi}{s + 100 \pi}$$

biçiminde verilmiştir.

- a) Orta frekans bölgesinde $V_{\text{o}}/V_{\text{g}}$ gerilim oranını bulunuz. (10)
- b) Devrenin alt kesim frekansını hesaplayınız. (10)
- (15)c) Devrenin üst kesim frekansını hesaplayınız.
- (10)d) Devrenin girişine uygulanan işaret darbe süresi T_D=0,1ms periyodik bir darbe ise çıkışta elde edilecek toplam eğilmeyi hesaplayınız.
- (5) e) Çıkışta elde edilecek yükselme süresi ne kadar olur.

Şekil 1.

Soru 2.- Şekil 2. de kullanılan eşlenik tranzistorlar için V_{CEM}=50V, I_{CM}=8A ve V_{CEsat}=1V değerleri verilmistir.

- (10)a) Yüke aktarılabilecek maksimum güç ve bu güç için verimi hesaplayınız.
- b) T₁ ve T₂ tranzistorlarında harcanabilecek maksimum güç ne kadardır? (10)
- c) Tranzistorun jonksiyon sıcaklığı en fazla T_{jmax} =150 C, ortam sıcaklığı T_a =40 C, jonksiyondan kılıfa ısıl direnç R_{thic}=3 C/W, kılıf soğutucu arası ısıl direnç R_{thch}=2,5 C/W ise, her bir tranzistor için kullanılması gereken soğutucunun ısıl direnci ne kadar olmalıdır?
- d) Tranzistorların her biri için kullanılan soğutucunun ısıl direnci R_{thha}=2 C/W ise belirtilen eşlenik tranzistorlar kullanılarak yüke en fazla güç aktaracak V_{CC} geriliminin değerini ve yüke aktarılacak maksimum güç değerini (c) de verilen ısıl dirençler yardımı ile hesaplayınız.

Şekil 2.

17 Kasım 2003

ANALOG ELEKTRONİK DEVRELERİ 1. Yıl içi Sınavı CRN10691

Doç. Dr. M. Sait Türköz

Not: Sadece kendi ders notunuzu ve kitaplarınızı kullanabilirsiniz. Çözümlü soru arşivi kullanılamaz. Süre **60 dakika**dır.

Soru 1.- Şekil 1. de kullanılan işlemsel kuvvetlendirici idealdir.

- (10) a) Devrenin orta frekans bölgesinde V_o/V_q gerilim kazancını hesaplayınız.
- (15) b) Devrenin alt kesim frekansını hesaplayınız.
- (15) c) Devrenin üst kesim frekansını hesaplayınız.

Şekil 1.

Soru 2.- Şekil 2. de kullanılan kuvvetlendiricinin yüksüz büyüklükleri K=400, r'_{o} =2k Ω olarak verilmiştir.

- (35) a) Orta frekans bölgesinde V_o/V_i gerilim oranını hesaplayınız.
- (15) b) Devrenin alt kesim frekansını hesaplayınız.

8 Aralık 2003

ANALOG ELEKTRONİK DEVRELERİ 2. YIL İÇİ SINAVI CRN10692

Doç. Dr. M. Sait Türköz

Not: Sadece kendi not ve kitaplarınızı kullanabilirsiniz. Çözümlü soru arşivi kullanılamaz. Süre 60 dakikadır.

Soru: Şekildeki devrede kullanılan kuvvetlendiricinin giriş direnci çok büyük, çıkış direnci ise çok küçüktür. Kuvvetlendiricinin kazanç fonksiyonu,

$$K(s) = \frac{2\pi 10^7}{s + 4\pi 10^4}$$

biçiminde verilmiştir.

- (30)
- a) Devrenin orta frekans bölgesinde V_o/V_g gerilim oranını hesaplayınız. b) Devrenin girişine darbe süresi $T_D = 5 \mu s$ olan periyodik bir darbe uygulanmıştır. Her bir kondansatör nedeniyle oluşacak darbe üstü eğilmesinin % 0,1 olması için C_1 ve C_2 kondansatörlerinin değerleri ne kadar olmalıdır?
- c) (b) deki darbe işareti devrenin girişine uygulandığında yükselme süresi ne kadar olur? (20)
- (20)d) Devrenin alt kesim frekansını (b) de bulunan kondansatör değerleri için hesaplayınız.

ANALOG ELEKTRONİK DEVRELERİ CRN 10691 Final Sınavı

Doç. Dr. M. Sait Türköz

Not: Sadece kendi not ve kitabınızı kullanabilirsiniz. Çözümlü soru arşivi kullanılamaz. Süre İKİ saattir.

Soru 1.- Şekil 1. de kullanılan kuvvetlendiricinin çıkış kapasitesinin çok küçük olduğu bilinmektedir.

(15)a) A noktasının gerilimi, orta frekan bölgesinde, devre bağlanmadığında 0,5V, devre bağlanınca 0,4V olmaktadır. В noktasının gerilimi R_y yükü bağlı değilken 10V, R_v yükü bağlandığında 8V ölçülmektedir. r_i ve r_o dirençlerinin değerini bulunuz.

- (15) b) V_g frekansı 250kHz olan sinüsoidal bir işaret olduğunda V_g ile V_o arasındaki faz farkı ϕ =-32 olduğuna göre devrenin üst kesim frekansını bulunuz.
- (10) c) Devrenin alt kesim frekansının 20Hz ve asimptot eğiminin 40dB/dek. olması için C_1 ve C_2 kondansatörlerinin değerlerini hesaplayınız.

Soru 2.- Şekil 2. de kullanılan kuvvet-lendiricinin giriş direnci çok büyük, çıkış direnci ise çok küçüktür. Kuvvetlendiricinin kazanç fonksiyonu,

$$\mathcal{K}(s) = \frac{\pi 10^8}{s + 2\pi 10^5}$$

biçiminde verilmiştir.

- (15) a) $V_{\text{o}}/V_{\text{g}}$ oranını orta frekans bölgesinde hesaplayınız.
- (15) b) C_1 ve C_2 kondansatörlerinin değerlerini, $T_D = 1 \mu s$ olan periyodik bir darbe uygulandığında her bir kondansatörün oluşturduğu eğilmeyi % 0,1 alarak hesaplayınız.

(10) c) Çıkışta oluşan yükselme süresi ne kadar olur? Giriş işareti ideal alınacaktır.

Soru 3.- (20) Şekil 3. de kullanılan eşlenik tranzistorlar için T_{jmax} =150 C, jonksiyondan ortama olan ısıl direnç R_{thja} =5 C/W olarak verilmiştir. V_{CEsat} =1V, T_a =50 C olarak verilmiştir. Simetrik beslemeli (Çift kaynak $\pm V_{CC}$) B sınıfı seri push-pull kuvvetlendiricide bu tranzistor çifti kullanılınca, R_y =4 Ω 'luk yüke maksimum gücü aktaracak V_{CC} geriliminin değerinin hesaplayınız. Bu V_{CC} gerilimi için yüke aktarılacak maksimum güç ne kadar olur? (V_{CEM} ve I_{CM} koşullarının sağlandığı varsayılacaktır.)

24 Kasım 2004

ANALOG ELEKTRONİK DEVRELERİ CRN11885

1. Yıl içi Sınavı

Doç. Dr. M. Sait Türköz

Not: Sadece kendi not ve kitabınızı kullanabilirsiniz. Çözümlü soru arşivi kullanılamaz. Süre 60 dakikadır.

Soru: Şekildeki devrede kullanılan kuvvetlendiricinin yükleme etkisi olmaksızın büyüklükleri:

$$K(s) = \frac{2\pi \cdot 10^6}{s + 2\pi \cdot 10^3} \qquad r'_i = 25k\Omega \qquad r'_o = 5k\Omega$$

biçiminde verilmiştir.

- a) V_o/V_g gerilim kazancını orta frekans bölgesinde hesaplayınız.
 b) Devrenin alt kesim frekansını hesaplayınız. (40)
- (30)
- c) Devrenin üst kesim frekansını hesaplayınız. (30)

15 Aralık 2004

ANALOK ELEKTRONİK DEVRELERİ CRN11885

2.Yıl içi Sınavı

Doç. Dr. M. Sait Türköz

Not: Kendi not ve kitabınızı kullanabilirsiniz. Çözümlü soru arşivi kullanılamaz. Süre **60 dakika**dır. **Soru:** Şekildeki devrede kullanılan kuvvetlendiricinin yüksüz kazancı K=500, giriş direnci çok büyük, çıkış direnci ise çok küçüktür.

- (40) a) Devrenin orta frekans bölgesinde V₀/V_i gerilim oranını hesaplayınız.
- (20) b) Devrenin girişine darbe süresi $5\mu s$ olan periyodik bir darbe uygulanıyor. C_1 ve C_3 kondansatörlerinin her birinden kaynaklanan darbe üstü eğilmesinin % 1 olması isteniyor. C_1 ve C_3 kondansatörlerinin değerini hesaplayınız.
- (10) c) (b) de bulunan C_1 ve C_3 için devrenin alt kesim frekansını hesaplayınız.
- (20) d) Devrenin üst kesim frekansının $f_2=1$ MHz ve asimptot eğiminin 40dB/dekat olması istendiğine göre C_2 ve C_4 kondansatörlerinin değerini hesaplayınız.
- (10) e) V₀ çıkış işareti darbede oluşacak yükselme süresini, giriş işaretini ideal ve (d) bulunan kondansatör değerleri için hesaplayınız.

12 Ocak 2005

ANALOG ELEKTRONİK DEVRELERİ CRN11885 Final Sınavı

Doç. Dr. M. Sait Türköz

Not: Kendi not ve kitabınızı kullanabilirsiniz. Sınavda çözümlü soru arşivi kullanılamaz. Süre **120 dakika**dır. Bulduğunuz sonuçları kendinizde kalacak biçimde not ediniz. Sonuçlarını bilmeyenin sınav kâğıdı hakkında bilgi verilmeyecektir.

Soru 1.- Şekil 1.de kullanılan kuvvetlendiricinin yüksüz gerilim kazancı K=1000, giriş direnci çok büyük çıkış direnci ise çok küçüktür.

- (30) a) Orta frekans bölgesinde V_o/V_q gerilim oranını hesaplayınız.
- (15) b) C₁ ve C₃ kondansatörlerinin değerlerini, devrenin girişine frekansı f=10kHz olan bir kare dalga uygulandığında her bir kondansatörden kaynaklanacak eğilmesi % 1 olacak biçimde bulunuz.
- (10) c) Devrenin üst kesim frekansı 50kHz ve asimptot eğimi 40dB/dekat olacak biçimde C_2 ve C_4 kondansatörlerinin değerini hesaplayınız.
- (10) d) Devrenin alt kesim frekansını ve darbede oluşacak yükselme süresini hesaplayınız.

Soru 2.-

- (15) a)Şekil 2. de kullanılan Push-Pull B sınıfı kuvvetlendiricide R_y = 4Ω 'luk yüke maksimum 50W aktaracak V_{CC} besleme gerilimi değerini hesaplayınız. V_{CEsat} =1V tur.
- (10) b) (a) da bulunan V_{CC} gerilim değeri için tranzistorlarda harcanan maksimum güç ne kadar olur?
- (10) c) Tranzistorlar için T_{jmax} =150 C, R_{thjc} =1,5 C/W, R_{thch} =2 C/W ise kullanılması gereken ortak soğutucunun ısıl direncini T_a =50 C alarak hesaplayınız.

10 Kasım 2005

Analog Elektronik Devreleri CRN11717 1. Yıl İçi Sınavı

Prof. Dr. M. Sait Türköz

Not: Kendi not ve kitabınızı kullanabilirsiniz. Süre 60 **dakika**dır. Çözümlü soru arşivi kullanılamaz. **Soru:**

Şekil.

Şekilde verilen kuvvetlendirici devrede kullanılan tranzistorlar için $h_{fe}=h_{FE}=250$, $|V_{BE}|=0.6V$ ve $V_T=25mV$ değerleri verilmiştir. $h_{re}\cong 0$ ve $h_{oe}\cong 0$ alınabilmektedir.

- (70) a) V_o/V_g gerilim kazancını orta frekans bölgesinde hesaplayınız.
- (30) b) C_1 ve C_2 kondansatörlerinin değerini, alt kesim frekansı 20Hz ve asimptot eğimi 40dB/dekat olacak biçimde hesaplayınız.

08 Aralık 2005

ANALOG ELEKTRONİK DEVRELERİ CRN11717 2. Yıl içi Sınavı

Prof. Dr. M. Sait Türköz

Şekil. de kullanılan kuvvetlendiricinin yüksüz gerilim kazancı K=500, giriş direnci r'_i =50 $k\Omega$ ve çıkış direnci $r'_0=500\Omega$ olarak verilmiştir.

- (40)
- a) Orta frekans bölgesinde V_o/V_g gerilim kazancını hesaplayınız. b) Kuvvetlendiricinin girişine darbe süresi $5\mu s$ olan bir periyodik darbe uygulandığında çıkışta (20)elde edilen darbe üstü eğilmesini hesaplayınız.
- c) Devrenin girişine (b) de belirtilen işaret uygulandığında çıkışta elde edilen işaretin yükselme (20)süresi ne kadar olur?
- d) Devrenin alt ve üst kesim frekanslarını hesaplayınız. (20)

06 Ocak 2006

ANALOG ELEKTRONİK DEVRELERİ CRN11717 Final Sınavı

Prof. Dr. M. Sait Türköz

Not: Kendi not ve kitabınızı kullanabilirsiniz. Çözümlü soru arşivi kullanılamaz. Süre 120 dakikadır.

Soru 1.- Şekil 1. de kullanılan kuvvetlendiricinin yüksüz giriş direnci $r'_{i}=50k\Omega$, çıkış direnci $r'_{o}=1k\Omega$ ve gerilim kazancı $K_{v\infty}=500$ olarak verilmiştir.

 $\begin{array}{lll} \mbox{(20)} & \mbox{a) Orta frekans bölgesinde} \\ \mbox{V}_0/\mbox{V}_i \mbox{ gerilim kazancını hesaplayınız.} \\ \mbox{(10)} & \mbox{b) } \mbox{C}_1 \mbox{ ve } \mbox{C}_3 \mbox{ kondansatörle-} \\ \end{array}$

rinin değerlerini, devrenin alt kesim frekansı 50Hz ve asimptot eğimi 40dB/dekat olacak biçimde hesaplayınız.

- (10) c) C₂ kondansatörünün değerini üst kesim frekansı 1MHz olacak biçimde bulunuz.
- (10) d) Devrenin giriş işareti periyodik ve darbe süresi $T_D=5\mu s$ olan bir işaret ise çıkışta oluşacak darbe üstü eğilmesini ve eğilmeyi hesaplayınız.

Soru 2.- (25) Şekil 2. de kullanılan eşlenik tranzistorlar için $T_{jmax}=150\,^{\circ}\text{C}$, jonksiyondan kılıfa olan ısıl direnç $R_{thjc}=3,5\,^{\circ}\text{C/W}$, kılıftan soğutucuya ısıl direnç $R_{thch}=1,5\,^{\circ}\text{C/W}$ ve soğutucunun ısıl direnci $R_{thha}=6\,^{\circ}\text{C/W}$ olarak verilmiştir. Eşlenik tranzistorlar için $V_{\text{CEsat}}=1V$, maksimum ortam sıcaklığı da $T_{amax}=50\,^{\circ}\text{C}$ tır. Bu Push-Pull kuvvetlendiricide yüke maksimum güç aktaracak V_{CC} gerilimi en fazla ne kadar olabilir? Bulunan V_{CC} gerilimi için P_{ymax} ve η_{max} ne kadar olur? (V_{CEM} ve I_{CM} koşullarının sağlandığı varsayılacaktır.)

Soru 3.- (25) Şekil 3. de kullanılan kuvvetlendiricinin giriş direnci çok büyük, çıkış direnci ise çok küçüktür. Bu kuvvetlendiricinin yüksüz gerilim kazancı $K_0=5$ dir. Devrenin sinüzoidal işaret üretebilmesi için R_2 direncinin ve osilasyon frekansının değerini hesaplayınız.

15 Kasım 2006

Analog Elektronik Devreleri CRN11394

Prof. Dr. M. Sait Türköz

Not: Kendi not ve ders kitabınızı kullanabilirsiniz. Çözümlü soru arşivi ve kitap kullanılamaz. Süre **60 dakika**dır.

Soru:

Şekildeki devrede kullanılan tranzistorlar için $h_{fe}=h_{FE}=250$, $|V_{BE}|=0.6V$ ve $V_T=25mV$ değerleri verilmiştir. $h_{oe}\cong 0$ ve $h_{re}\cong 0$ alınabilmektedir. C_{∞} ile gösterilen kondansatörler değişken işaret analizinde kısa devre kabul edilecektir.

- (30) a) Tranzistorların çalışma noktası kolektör akımlarını hesaplayınız.
- (50) b) V_o/V_g gerilim kazancını hesaplayınız.
- (20) c) Devrenin alt kesim frekansını hesaplayınız.

13 Aralık 2006

ANALOG ELEKTRONİK CRN11394 2. YILİÇİ SINAVI

Prof. Dr. M. Sait Türköz

Not: Kendi ders notunuzu ve kitabınızı kullanabilirsiniz. Çözümlü **soru arşivi** ve **çözümlü elektronik devre kitapları** kullanılamaz. Süre **60 dakika**dır.

Soru:

Şekildeki devrede kullanılan kuvvetlendiricinin yüksüz büyüklükleri:

$$K=1000 r'_i=50 k\Omega$$
 $r'_o=1 k\Omega$

olarak verilmiştir.

- (40) a) Orta frekans bölgesinde V_o/V_i gerilim oranını hesaplayınız.
- (25) b) Devrenin girişine darbe süresi $T_D=5\mu s$ olan ideal bir darbe uygulandığında V_o geriliminde oluşacak darbe üstü eğilmesini hesaplayınız.
- (25) c) (b) de sözü edilen darbe biçimi işaret, devrenin girişine uygulandığında çıkışta oluşacak yükselme süresini ve devrenin üst kesim frekansını hesaplayınız.
- (10) d) Devrenin alt kesim frekansını hesaplayınız.

ANALOG ELEKTRONİK CRN11394 FİNAL SINAVI

Prof. Dr. M. Sait Türköz

Not: Kendi ders notunuzu ve kitabınızı kullanabilirsiniz. Çözümlü **soru arşivi** ve **çözümlü elektronik devre kitapları** kullanılamaz. Süre **120 dakika**dır.

Soru 1.- Şekil 1. de kullanılan kuvvetlendiricinin kazanç fonksiyonu,

$$K(s) = 100 \frac{3\pi^2 10^{10}}{(s + \pi.10^5)(s + 3\pi.10^5)}$$

biçimindedir. Kuvvetlendiricinin giriş çıkış büyüklükleri:

 $C_i{=}100 pF, r_i{=}50 k\Omega, r_o{=}5 k\Omega$ ve $C_o{=}10 pF$ olarak verilmiştir.

- (10) a) Devrenin alt kesim frekansını hesaplayınız.
- (15) b) V_g ideal bir darbe kaynağı olduğuna göre çıkışta elde edilecek işaretin yükselme süresini ve devrenin üst kesim frekansını hesaplayınız.

Soru 2.- Şekil 2. de kullanılan kuvvetlendiricinin yalın haldeki kazanç fonksiyonu,

$$K(s) = 1000 \frac{2.\pi^2.10^{10}}{(s + \pi.10^4)(s + 2\pi.10^6)}$$

biçimindedir. Kuvvetlendiricinin giriş direnci çok büyük; giriş kapasitesi, çıkış kapasitesi ve çıkış direnci çok küçüktür.

- (10) a) Orta frekans bölgesinde V_o/V_g oranını hesaplayınız.
- (25) b) Tepe oluşmaksızın maksimum üst kesim frekansını sağlayan R₃ direncinin değerini ve bu durumdaki üst kesim frekansını hesaplayınız.
- **Soru 3.-** Şekil 3. de görülen B sınıfı Push-Pull çıkış katında kullanılan eşlenik Darlington tranzistorlar için h_{FE} =1000, V_{CEsat} =2V, $|V_{\text{BEsat}}|$ =1,5V değerleri verilmiştir. Bu tranzistorlar için

 T_{jmax} =150°C, T_{amax} =50°C, R_{thjc} =2,5°C/W, R_{thch} =1,5°C/W tur.

- (15) a) R_y =4 Ω 'luk yükte oluşacak maksimum çıkış gücünü ve R_2 direncinin alabileceği maksimum değeri bulunuz.
- (10) b) T_2 ve T_3 aynı soğutucuya bağlandığına göre soğutucunun R_{thha} ısıl direncini hesaplayınız.

Soru 4.- (15) Şekil 4. de kullanılan Schmitt tetikleme devresinin eşik gerilimleri V_{iL} =2V,

 V_{IH} =4V olarak verilmiştir. Bu devre ile darbe süresi $1\mu s$ ve frekansı 200kHz olan periyodik darbe biçiminde çıkış işareti elde edilmek istenmektedir. I_1 ve I_2 akımlarının değerlerini hesaplayınız.