DECODER

Introduction

The decoder in zero-riscy is responsible for decoding the instruction fetched from the instruction memory and generating the control signals.

Problem Statement

• understanding the difference between ISA and their Types

Design and Implementation:

• Block Diagram

- PC: signal from fetch module have ADDRESS_BITS { ex: [ADDRESS_BITS-1:0] PC,
 ADDRESS_BITS = 16 }
- JALR_TARGET: signal from ALU, if the instructions JALR ALU send pc which will be fetched
- BRANCH: signal from ALU, if the instructions {beq, bne, blt, ...} ALU send signal high
 or low based on its true or not
- INSTRUCTION: The instructions 32 bit { ex: lw instruction 111111111100 01001 010 00110 0000011 FFC4A303 }

- TARGET_PC: signal that have target PC calculations if the instruction is [branch, jal, jalr] ex: [ADDRESS_BITS-1:0] target pc.
- **OP**: first 7 bits of the instruction and it used to distinguish between difference Types { ex: LOAD 7'b0000011}
- funct3: Bits of instruction [14:12]
- **funct7**: Bits instruction [31:25]
- **READ_SEL1**: operand1 of the instruction { ex: x9 01001 }
- READ_SEL2: operand2 of the instruction { ex: x6 00110 }
- WRITE-SEL(RD): distention register to store the results in GPRs { ex : x5 }
- wEN: write Enable for GPRs
- IMM32: it's output signal after sign extend {ex: 11111111111111111111111111100 = -4}
- IMM12: original 12 bit of the imm instruction
- PC_O: The same PC input signal

Note: IMM32 Calculated based on the type of the instruction

ImmSrc ImmExt Type Description 00 {{20{Instr[31]}}, Instr[31:20]} I 12-bit signed immediate 01 {{20{Instr[31]}}, Instr[31:25], Instr[11:7]} S 12-bit signed immediate 10 {{20{Instr[31]}}, Instr[7], Instr[30:25], Instr[11:8], 1'b0} 13-bit signed immediate В 11 {{12{Instr[31]}}, Instr[19:12], Instr[20], Instr[30:21], 1'b0} J 21-bit signed immediate

Table 7.5 ImmSrc encoding.

_	31	: 25	24:20	19:15	14:12	11:7	6:0	
	fun	ct7	rs2	rs1	funct3	rd	ор	R-Type
	imm₁	1:0		rs1	funct3	rd	ор	I-Type
	imm₁	1:5	rs2	rs1	funct3	imm _{4:0}	ор	S-Type
	imm ₁	2,10:5	rs2	rs1	funct3	imm _{4:1,11}	ор	B-Type
	imm _{31:12} imm _{20,10:1,11,19:12}				rd	ор	U-Type	
					rd	ор	J-Type	
	fs3	funct2	fs2	fs1	funct3	fd	ор	R4-Type
-	5 bits	2 bits	5 bits	5 bits	3 bits	5 bits	7 bits	-

Figure B.1 RISC-V 32-bit instruction formats

Interfaces

Signals	Width	interface
PC	12-bit	Fetch module
JALR_TARGET	16-bit	ALU module
BRANCH	1-bit	ALU module
INSTRUCTION	32-bit	Fetch module
TARGET_PC	16-bit	Fetch module
ОР	7-bit	Controller
funct3	3-bit	Controller
funct7	7-bit	Controller
READ_SEL1	5-bit	GPR
READ_SEL2	5-bit	GPR , Encryption Accelerator
WRITE-SEL(RD)	5-bit	GPR
wEN	1-bit	GPR
IMM32	32-bit	Pipeline Registers
IMM12	12-bit	Pipeline Registers
PC_O	12-bit	Pipeline Registers