Laws of Logic Discrete Mathematic Andrei Bulato

Discrete Mathematics - Laws of Logic

Previous Lecture

- Truth tables
- Tautologies and contradictions
- Logic equivalences

Discrete Mathematics - Laws of Logic

Logic Equivalences

lacktriangle Compound statements Φ and Ψ are said to be logically equivalent if the statement Φ is true (false) if and only if Ψ is true (respectively, false)

The truth tables of Φ and Ψ are equal

- For any choice of truth values of the primitive statements (propositional variables) of Φ and $\Psi,$ formulas Φ and Ψ have the same truth value
- If Φ and Ψ are logically equivalent, we write

 $\Phi \Leftrightarrow \Psi$

Discrete Mathematics - Laws of Logic

Why Logic Equivalences

To simplify compound statements

``If you are a computer science major or a freshman and you are not a computer science major or you are granted access to the Internet, then you are a freshman or have access to the Internet"

To convert complicated compound statements to certain `normal form' that is easier to handle

Conjunctive Normal Form

Example Equivalences

Implication and its contrapositive

р	q	$p \to q$	$\neg q \rightarrow \neg p$
0	0	1	1
0	1	1	1
1	0	0	0
1	1	1	1

- All tautologies are equivalent to T
- All contradictions are equivalent to F

Equivalences and Tautologies

• Theorem Compound statements Φ and Ψ are logically equivalent if and only if $\Phi \leftrightarrow \Psi$ is a tautology.

Proof

Suppose that $\, \Phi \Leftrightarrow \Psi . \,$ Then these statements have equal truth tables

р	q	 Φ	Ψ	$\Phi \leftrightarrow \Psi$
		 		1
0	1	 1	1	1
1	0	 0	0	1
		 		1

Discrete Mathematics - Propositional Logic II

Equivalences and Tautologies (cntd)

Suppose now that $\Phi \leftrightarrow \Psi$ is a tautology. This means that for any choice of the truth values of Φ and $\Psi, \qquad \Phi \leftrightarrow \Psi$ is true.

If Φ is true, then Ψ must also be true.

If $\,\Phi\,$ is false, then to make the formula $\,\Phi \,{\leftrightarrow}\, \Psi\,$ true $\,\Psi\,$ must also be false.

Q.E.D.

Discrete Mathematics - Laws of Logic

Laws of Logic

Double negation

 $\neg\neg p \Leftrightarrow p$

р	¬р	¬¬p
0	1	0
1	0	1

Discrete Mathematics - Laws of Logic

Laws of Logic (cntd)

DeMorgan's laws

 $\neg \; (p \land q) \Leftrightarrow \neg p \lor \neg q$

 $\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$

р	q	¬р	$\neg q$	p∧q	¬ (p ∧ q)	$\neg p \lor \neg q$
0	0	1	1	0	1	1
0	1	1	0	0	1	1
1	0	0	1	0	1	1
1	1	0	0	1	0	0

Discrete Mathematics - Laws of Logic

Example

Construct the negation of

'Miguel has a cell phone and he has a laptop'

'Heather will go to the concert or Steve will go to the concert'

Discrete Mathematics - Laws of Logic

'Algebraic' Laws of Logic

 $\begin{array}{cccc} \bullet & p \wedge (q \wedge r) & \Leftrightarrow & (p \wedge q) \wedge r \\ & p \vee (q \vee r) & \Leftrightarrow & (p \vee q) \vee r \end{array} \qquad \begin{array}{c} \text{Associative laws} \end{array}$

 $\begin{array}{ccc} \bullet & p \wedge (q \vee r) & \Leftrightarrow & (p \wedge q) \vee (p \wedge r) \\ p \vee (q \wedge r) & \Leftrightarrow & (p \vee q) \wedge (p \vee r) \end{array} \qquad \begin{array}{c} \text{Distributive laws} \end{array}$

 $\begin{array}{cccc} \bullet & p \wedge p & \Leftrightarrow & p \\ p \vee p & \Leftrightarrow & p \end{array} \qquad \begin{array}{c} \text{Idempotent laws} \end{array}$

Discrete Mathematics - Laws of Logic

Discrete Mathematics - Laws of Logic

Example

Simplify the statement

$$\neg (q \lor r) \lor \neg (\neg q \lor p) \lor r \lor p$$

Expressing Connectives

- Some connectives can be expressed through others
 - ${}^{\bullet} p \oplus q \Leftrightarrow \neg (p \leftrightarrow q)$
 - $\qquad \qquad p \leftrightarrow q \quad \Leftrightarrow \quad (p \to q) \land (q \to p)$

Discrete Mathematics - Laws of Logic

Discrete Mathematics - Laws of Logic

Example

"If you are a computer science major or a freshman and you are not a computer science major or you are granted access to the Internet, then you are a freshman or have access to the Internet"

- p 'you can access the Internet from campus'
- q 'you are a computer science major'
- r 'you are a freshman'

Example

Simplify the statement

 $(p \vee q) \leftrightarrow (p \rightarrow q)$

First Law of Substitution

- Suppose that the compound statement $\,\Phi\,$ is a tautology. If $\,p\,$ is a primitive statement that appears in Φ and we replace each occurrence of p by the same statement q, then the resulting compound statement Ψ is also a tautology.
- Let $\Phi = (p \rightarrow q) \lor (q \rightarrow p)$, and we substitute p by $p \lor (s \oplus r)$

Therefore $((p \lor (s \oplus r)) \to q) \lor (q \to (p \lor (s \oplus r))$ is a tautology

Second Law of Substitution

- lacktriangle Let Φ be a compound statement, p an arbitrary (not necessarily primitive!) statement that appears in Φ , and let q be a statement such that $p \Leftrightarrow q$. If we replace one or more occurrences of p by q, then for the resulting compound statement $\,\Psi\,$ we have $\,\Phi \Leftrightarrow \Psi.$
- Let $\Phi = (p \rightarrow q) \lor (q \rightarrow p)$, and we substitute the first occurrence of p by $p \lor (p \land q)$. Recall that $p \Leftrightarrow p \lor (p \land q)$ by Absorption Law.

$$(\mathsf{p} \to \mathsf{q}) \lor (\mathsf{q} \to \mathsf{p}) \quad \Leftrightarrow \quad ((\mathsf{p} \lor (\mathsf{p} \land \mathsf{q})) \to \mathsf{q}) \lor (\mathsf{q} \to \mathsf{p}).$$

Discrete Mathematics – Laws of Logic

Homework

Exercises from the Book: No. 1ai, 2, 6a, 6b, 14a (page 66)

- Express conjunction and disjunction through implication and negation $(\mbox{\ensuremath{}^{\circ}})$