$\mathbf{B2}$ AB=5, BC=6, CA=4 の \triangle ABC がある。

- (1) cos A の値を求めよ。
- (2) \triangle ABC の面積 S を求めよ。また、 $\sin B$ の値を求めよ。
- (3) 直線 BC 上に ∠BAD = 90°となるような点 Dをとる。△ACD の外接円の半径を求めよ。 (配点 20)

$$(3) \frac{3}{9}$$

B3 4次方程式 $x^4-kx^2+4=0$ ……① がある。ただし、k は実数の定数である。

- (1) k=5 のとき, 方程式①を解け。
- (2) 方程式①が異なる4つの実数解をもつようなkの値の範囲を求めよ。
- (3) 方程式①が異なる4つの実数解をもち、その4つの解の値を数直線上にとった4点が等間隔に並ぶ。このとき、kの値と4つの実数解を求めよ。 (配点 20)

(3)
$$\mathcal{L} = \frac{20}{3}$$
, $\mathcal{L} = \frac{\pm \sqrt{6}}{3}$

【選択問題】 数学B受験者は,次のB4 \sim B8 のうちから2題を選んで解答せよ。

- **B4** 座標平面上に、円 $C_1: x^2+y^2=2$ 、円 $C_2: x^2+y^2-6ax-2ay+10a^2-18=0$ がある。 ただし、a は正の定数である。
 - (1) a=1 のとき, 円 C_2 の中心の座標と半径を求めよ。
 - (2) 円 C_1 上の点 (-1, 1) における接線 ℓ の方程式を求めよ。また、接線 ℓ と円 C_2 が接するとき、 α の値を求めよ。
 - (3) (2)のとき,円 C_1 と C_2 の共通接線のうち,円 C_1 上の接点 (p,q) が第3象限にあるものを m とする。このとき,p,qの値とmの方程式を求めよ。 (配点 20)

(1)
$$(3,1)$$
, $3\sqrt{2}$
(2) $(2-4+2=0)$, $a=2$
(3) $P=-\frac{1}{5}$, $4=-\frac{7}{5}$, $2+7y+10=0$

- **B5** 関数 $y = \sin \theta + \sqrt{3} \cos \theta$ ……① がある。
 - (1) $\theta = \frac{\pi}{3}$ のとき, yの値を求めよ。
 - (2) 関数①を $y = r\sin(\theta + \alpha)$ $(r > 0, -\pi < \alpha \le \pi)$ の形に変形するとき, $r \ge \alpha$ の値を求めよ。また, $0 \le \theta \le \pi$ のとき, y のとり得る値の範囲を求めよ。
 - (3) 関数①のグラフを θ 軸方向に $\frac{\pi}{6}$ だけ平行移動したグラフを表す関数を $y = p\sin\theta + q\cos\theta \text{ とするとき, 定数 } p, \ q \text{ の値を求めよ。 さらに, このとき, } 0 \leq \theta < 2\pi$ において, $(p+1)\sin\theta + (q+\sqrt{3})\cos\theta = \frac{\sqrt{2}}{\sqrt{3}-1}$ を満たす θ の値を求めよ。 (配点 20)

$$(1)$$
 $\sqrt{3}$

1/4

1

$$(2) \quad \gamma = 2, \quad \alpha = \frac{\pi}{3}, \quad -3 \leq 4 \leq 2$$

$$(3) p=\sqrt{3}, q=1, D=\frac{7}{12\pi}, \frac{23\pi}{12\pi}.$$

- ${f B6}$ 関数 $f(x)=x^3-3x^2+2$ があり、座標平面上で曲線 C:y=f(x) を考える。
 - (1) f'(x) を求めよ。また、点 (-1, f(-1)) における C の接線の方程式を求めよ。
 - (2) t は実数とする。点 (t, f(t)) における C の接線 ℓ の方程式を求めよ。また、接線 ℓ が点 (0, 2) を通るとき、t の値を求めよ。
 - (3) 点(2, a) を通る Cの接線がちょうど2本存在するような定数 a の値を求めよ。

(1)
$$f(z) = 3x^2 - 6x$$
, $f = 9x + 7$

$$(2) H = (3t^2-6t)\chi - 2t^3+3t^2+2$$
, $T = 0, \frac{3}{2}$

$$(3) \ \alpha = -2, -3$$

- **B7** 数列 $\{a_n\}$ は等差数列で、 $a_1+a_2+a_3=243$ 、 $a_2+a_3=160$ である。また、数列 $\{b_n\}$ は 公比が正の等比数列で、 $b_2=16$ 、 $b_3+b_4=320$ である。
 - (1) 数列 {a_n} の一般項 a_n を n を用いて表せ。
 - (2) 数列 {b_n} の一般項 b_n を n を用いて表せ。
 - (3) 数列 $\{a_n\}$ の初項から第n項までの和が最大となるときのnをNとするとき,N の値を求めよ。さらに, b_n の一の位の数を c_n (n=1, 2, 3, ……)とするとき, $\sum\limits_{k=1}^{N}a_kc_k$ の値を求めよ。

$$(3) M = 42, 8778.$$

- $oxed{B8}$ OA = 3, OB = 4, $\angle AOB = 60^\circ$ の $\triangle OAB$ があり、辺 AB を 1:2 に内分する点を C, 線分 OC の中点を M とする。また、 $\overrightarrow{AP} = k \overrightarrow{AM}$ (k は実数) となる点 P をとり、 $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$ とする。
 - (1) \overrightarrow{OC} を \overrightarrow{a} , \overrightarrow{b} を用いて表せ。また、内積 $\overrightarrow{a} \cdot \overrightarrow{b}$ の値を求めよ。
 - (2) \overrightarrow{OP} を k, \overrightarrow{a} , \overrightarrow{b} を用いて表せ。また、点 P が直線 OB 上にあるとき、k の値を求めよ。
 - (3) $\angle AOP = 90^{\circ}$ となるとき、kの値を求めよ。また、このとき $\triangle OAP$ の面積を求めよ。

(配点 20)

(1)
$$\overrightarrow{OC} = \frac{2}{3}\overrightarrow{a} + \frac{1}{3}\overrightarrow{b}$$
, $\overrightarrow{O} \cdot \overrightarrow{b} = 6$
(2) $\overrightarrow{OP} = (-\frac{2}{3}\overrightarrow{k})\overrightarrow{a} + \frac{2}{6}\overrightarrow{b}$, \cancel{E}_{2}
(3) $= \cancel{E} = \frac{9}{5}$, \cancel{O}