CIRCUITO RLC (SERIE)

PRÁCTICA 3

CURSO 2017/2018

	Nombres y Apellidos
1	
2	
3	
4	
5	

0

DATOS Y PUESTA A PUNTO DEL CIRCUITO

PUESTA A PUNTO

BOBINA	OSCILOS	COPIO	GENERA	DOR	СН1	
(Wdg)	Escalas CH1 CH2	Escala t (ms)	$V_{o}\left(V\right)$	v(Hz)	$V_{PP}\left(V ight)$	T (ms)
500	0.5 W	0,5	<i>≅</i> 2	<i>≅500</i>	4	2
1000	0,5 V	1	(ó ½ giro)	<i>≅250</i>	•	4

CARACTERIZACIÓN DE LAS SEÑALES

Completar para cada una de las señales: generador $-V_-$, resistencia $-V_{R^-}$, condensador $-V_{C^-}$ y bobina $-V_{L^-}$, una tabla. Para ello, primero, medir su tensión pico a pico (V_{PP}) y período (T), y luego, calcular a partir de ellas: su amplitud (V_o) , tensión eficaz (V_E) , frecuencia (V_O) y frecuencia angular -pulsación- (ω) .

- No tocar el generador, sólo los mandos del osciloscopio indicados.
- ① Las unidades entre paréntesis y los valores en las celdas vacías.

- Medir V_{PP} y T trabajando con una resolución de ½ subdivisión (0,05 ó 0,1).
- Indicar el valor de V_o , V_E , v y ω con un n^o de cifras significativas adecuado: el mismo que V_{PP} y T, respectivamente, al no evaluar la incertidumbre.
- ① <u>REDONDEO</u>: Si pico > 5, sumar $\ll 1$ » a lo retenido; si < 5, no sumar nada; si = 5, sumarle $\ll 1$ » si la última cifra retenida es impar, nada si es par.

① La frecuencia calculada, v, debe parecerse a la que indica el generador.

T IR A CANAL 2

RESISTENCIA

SEÑAL	V _{PP} ()	$V_o($	$V_E($	T()	v()	\omega()
V_R						

PERMUTAR: R CON C

CONDENSADOR

SEÑAL	V _{PP} ()	V _o ()	V _E ()	T()	v()	ω ()
Vc						

() PERMUTAR: C CON L

HACER UN «ZOOM» (variar escala CH2)

BOBINA

SEÑAL	V _{PP} ()	$V_o($	$V_E($	T()	v()	\omega()
V_L						
	A	A	A	•		

¡Ojo con la unidad! Por si cambia

2

MEDIDA DEL DESFASE ENTRE SEÑALES

T

PASAR A DUAL

DESFASE: $\phi = \pm 360^{\circ} \text{ M/N}$

Se toma «+»: si «V», la señal del generador de señales, es la 2ª señal Se toma «-»: si «V», la señal del generador de señales, es la 1ª señal

Completar las tablas que aparecen a continuación realizando las medidas y cálculos necesarios.

DESFASE BOBINA CON GENERADOR

DESFASE V _L CON V	1 ^a	2ª	M	N	ø ()
ϕ_L						
	1		†	1		

- Mover una señal para saber cuál es la «1ª» y cuál la «2ª».
- Medir M y N con una resolución de ½ subdivisión y con la misma escala.
- Redondear cada desfase a 3 cifras significativas. —

() PERMUTAR: LYC

DESHACER «ZOOM» (Escala CH2 0,5 V)

DESFASE CONDENSADOR CON GENERADOR

DESFASE V _C CON V	1 ^a	2 ^a	M	N	ø ()
ϕ_C						

() PERMUTAR: CYR

DESFASE RESISTENCIA CON GENERADOR

DESFASE V _R CON V	1 ^a	2ª	M	N	ø ()
ϕ						

B

VERIFICACIÓN DE RELACIONES TEÓRICAS

Indicar si se verifican las siguientes ecuaciones. Para ello:

- 1°) Sustituir en cada ecuación cada magnitud por su valor.
- 2º) Evaluar el valor de cada uno de los dos miembros de la ecuación.
- 3°) Considerando el 1^{er} miembro correcto, calcular el error relativo del 2° miembro respecto al 1°, es decir: $\varepsilon_{relativo} = (2^{\circ} 1^{\circ}) / 1^{\circ}$.
- 4°) Considerar que se verifican si $|\mathcal{E}_{rel}| \leq 1 \%$.
- Reflejar los cálculos y expresar los errores redondeados a dos cifras significativas.
- ① Si alguna, o todas, no se verifican, se debe a que no se ha tenido en cuenta la resistencia de la bobina.

(a)
$$\phi_{\rm C} = \phi - 90^{\rm o}$$
 Sí \square No \square

ullet ϕ es el desfase entre la señal de la resistencia y la señal del generador.

$$(b) \phi_{L} = \phi + 90^{\circ} \qquad Si \square No \square$$

(c)
$$V_o^2 = V_{Ro}^2 + (V_{Lo} - V_{Co})^2$$
 Sí \square No \square

- V_o es la amplitud de la señal del generador (de la señal «V»).
- ¡Ojo con la unidad de V_{Lo} ! Por si no es la misma que la de V_{Co} , V_{Ro} y V_o .

$$(d) \phi = -\arctan\left(\frac{V_{Lo} - V_{Co}}{V_{Ro}}\right)$$
 $Si \square No \square$

• ¡Ojo, la calculadora en grados sexagesimales: Modo «DEG»!

DETERMINACIÓN DE LA FRECUENCIA DE RESONANCIA

<u>PASO 1</u>: Hacer que en la pantalla del osciloscopio aparezca representada V_R frente a V (la figura de Lissajous correspondiente). Para ello:

IR A CANAL 2 (con escala CH2 0,5 V) PONER XY: ON

<u>PASO 2</u>: Variar la frecuencia del generador de señales hasta que la figura de la pantalla sea una recta entre el 1^{er} y 3^{er} cuadrante, que corresponde a un desfase de 0° entre V_R y V (a resonancia). Puede que haga falta:

- a) Cambiar el rango o la escala de frecuencias, y reempezar desde el menor valor de frecuencia.
- b) Variar las escalas del CH1 o del CH2 para apreciar bien la figura.

PASO 3: Hacer que aparezcan V_R y V frente al tiempo. Para ello:

Y observar que las dos señales están, efectivamente, en fase (se nota, por ejemplo, en que alcanzan máximos y mínimos a la vez). Para apreciarlo bien:

- a) Hacer un «zoom» en horizontal variando la escala del eje de tiempos.
- b) Variar la escala o del Canal 1 o del Canal 2.

<u>PASO 4</u>: Medir el período de las señales, el correspondiente a resonancia, midiendo el de una de ellas (tienen el mismo). Para ello:

- Usar una escala de tiempos adecuada (la menor en que se vea un período).
- Trabajar con una resolución de ½ subdivisión.

 $T_{resonancia} =$

<u>PASO 5</u>: Anotar la frecuencia que marca el generador (la de resonancia), y **apagar osciloscopio y generador.**

<u>PASO 6</u>: Calcular la frecuencia de resonancia del circuito a partir del período de resonancia medido con el osciloscopio (PASO 4).

- Reflejar el cálculo y redondear el resultado a cuatro cifras significativas.
- ① La frecuencia calculada debe parecerse a la que indicaba el generador.

$$V_{resonancia} = (experimental)$$

- ① Calcular el valor teórico esperado para la frecuencia de resonancia.
- Reflejar el cálculo y redondear a cuatro cifras.
- (i) <u>Bobina</u> 500 Wdg: L = 4.3 mH, C = 0.47 μ F.
- ① <u>Bobina 1000 Wdg</u>: L = 16.5 mH, $C = 1 \mu F$.
- ¡Hay que eliminar los prefijos! Y: $(1 \text{ Henrio} \times 1 \text{ Faradio})^{1/2} = 1 \text{ segundo}.$
- ① La frecuencia calculada debe parecerse a la que indicaba el generador.

$$V_{resonancia} = \frac{1}{2\pi\sqrt{LC}} =$$

$$V_{resonancia} = (teórica)$$

- ② Indicar cómo de bueno es el valor obtenido para la frecuencia de resonancia del circuito, el experimental, tras calcular el error relativo, en %, cometido respecto al valor teórico que tomamos como valor verdadero.
- ① $\mathcal{E}_{rel} = \mathcal{E}_{abs} / |V_{teórica}|$ siendo $\mathcal{E}_{absoluto} = V_{experimental} V_{teórica}$
- Reflejar el cálculo y expresar el resultado con un número de cifras significativas razonable: «dos».
- Considerar el valor obtenido bueno si $|\mathcal{E}_{rel}| < 1 \%$, aceptable si $|\mathcal{E}_{rel}|$ está comprendido entre el 1 y el 10 %, y malo si $|\mathcal{E}_{rel}|$ es > 10 %.