

Worksheet 4: Error Detection & Encryption Solutions

Section A: Multiple Choice Questions

1. b) To detect errors in transmitted data

The parity bit is used for error detection in data transmission.

2. c) Parity block

Parity blocks can identify the exact corrupted bit by using row and column parity checks.

3. a) 0

The byte has four 1s (even number), so the even parity bit is 0 to keep the total number of 1s even.

4. b) Requires secure key distribution

Symmetric encryption uses the same key for encryption and decryption, which must be securely shared.

5. b) Private key

In asymmetric encryption, the private key decrypts messages encrypted with the public key.

6. c) ARQ

Automatic Repeat Request (ARQ) resends data if an error is detected.

7. **b) 1**

Sum = 14 + 22 + 9 = 45. Remainder of $45 \div 5$ is 0, but wait: $45 \div 5 = 9$ exactly, so remainder is 0. (Correction: The correct answer is 0, option a).

8. b) It doubles bandwidth usage

Echo check requires sending data back to the sender for verification, using twice the bandwidth.

9. d) All are detectable

Check digits can detect single-digit errors, transposition errors, and some multiple errors.

10. b) To make data unreadable to unauthorized users

Encryption's primary purpose is to ensure data confidentiality.

Section B: Short Answer Questions

6. Two causes of errors during data transmission:

- Electrical interference/noise (e.g., from power lines or other devices).
- Signal attenuation (weakening over long distances, leading to data corruption).

7. Even parity bit for the byte 1011001_:

- Count the 1s: 1 (first) + 0 + 1 + 1 + 0 + 0 + 1 = 4 (even).
- Parity bit must be 0 to keep the total number of 1s even.

8. How parity blocks localize errors:

- A parity block organizes data into rows and columns, with parity bits for each row and column.
- If an error occurs, the row and column parity checks will intersect at the corrupted bit, pinpointing its exact location.

9. Checksum calculation for 12, 25, 8, 19 (remainder ÷ 7):

- Sum = 12 + 25 + 8 + 19 = 64.
- $64 \div 7 = 9$ with remainder 1.
- Checksum = 1.

10. Symmetric vs. asymmetric encryption (two differences):

- 1. **Keys**: Symmetric uses one shared key; asymmetric uses public/private key pairs.
- 2. **Speed**: Symmetric is faster; asymmetric is slower due to complex calculations.

11. Private key is never shared in asymmetric encryption:

• The private key decrypts messages and must remain secret to ensure only the intended recipient can read them.

12. Real-world use of check digits:

• ISBNs (International Standard Book Numbers) use check digits to validate book codes.

Section C: Structured Questions

13. Echo Check Process:

• (a) Diagram:

text

Sender → Data → Receiver → Echoed Data → Sender (verifies)

• **(b) Disadvantage**: Doubles bandwidth usage, inefficient for large data.

14. Automatic Repeat Request (ARQ):

- (a) ACK and NAK roles:
 - ACK (Acknowledgment): Confirms error-free receipt.
 - o **NAK** (Negative Acknowledgment): Requests retransmission if errors are detected.
- **(b) Unsuitability for real-time streaming**: ARQ causes delays due to retransmissions, disrupting real-time playback.

15. ISBN-13 Check Digit Calculation

Given: 978-1-56619-909 (first 12 digits)

1. **Remove hyphens:** 978156619909

2. Sum odd positions (×1) + even positions (×3):

$$\circ$$
 Odd (1,3,5,7,9,11): 9 + 8 + 5 + 6 + 9 + 0 = 37

$$\circ$$
 Even (2,4,6,8,10,12): (7 + 1 + 6 + 1 + 9 + 9) \times 3 = 33 \times 3 = 99

3. **Total sum:** 37 + 99 = 136

4. Remainder when divided by 10: $136 \div 10 = 13 R6$

5. **Check digit:** 10 - 6 = 4

Result: Check digit = **4** → Full ISBN: 978-1-56619-909-4