Predicting churn for CodeCombat players

By Jenny Temple

CodeCombat Background

CodeCombat gamifies coding to teach young people how to write code

Project Goal

- Identify users who will churn intervene to retain players
- Uncover drivers of churn
 develop strategies to
 extend user play

Data

- Data for users joining in March 2017
- User data (160k), level data(1.3M), event data (5.2M)

Methodology

Build a collection of models to predict churn at different game points

- Build features describing user experience at different game points
- To predict classification (churn/keep playing)
- Using five Random Forest models
- With tuned parameters

_			
Models	Use data through	To predict churn at	
Model 1	Level 5	Level 10	
Model 2	Level 10	Level 15	
Model 3	Level 15	Level 30	
Madal 4	Lavial 20	Lavial CO	
Model 4	Level 30	Level 60	
Model 5	Level 60	Level 100	

Results: Predictive Power

Results: Drivers of churn

What drives early churn?

- Registered account
- Time to complete levels
- Age
- Number of times started levels

What drives later churn?

- Number of times started levels
- Recent practice levels
- Rate of bugs in recent user code
- Time to complete mid-range levels

Results: Business recommendations

To retain players at higher game levels:

- Suggest practice levels
 - More frequently
 - More aggressively
- Provide additional support for users with bugs
 - Resources
 - Encouragement

Future Work

- Tune as hyperparameters:
 - Number of models
 - Granularity of data in features
- Design A/B tests based around drivers of churn

Contact

Jenny Temple

jennytemple@gmail.com

https://github.com/jennytemple

https://www.linkedin.com/in/jenny-temple/

Appendix

Appendix: Campaigns

Appendix: Predictive Power

Models	Use data through	To predict churn at	Baseline accuracy	Model accuracy	Baseline precision	Model precision
Model 1	Level 5	Level 10	0.60	0.72	0.60	0.73
Model 2	Level 10	Level 15	0.68	0.71	0.68	0.72
Model 3	Level 15	Level 30	0.84	0.87	0.84	0.87
Model 4	Level 30	Level 60	0.67	0.80	0.67	0.82
Model 5	Level 60	Level 100	0.60	0.78	0.60	0.77

Performance metric definitions

P = churn, N = no churn, T = correct prediction, F = incorrect prediction

Accuracy: (TP + TN)/n = % correct predictions

Precision: TP/(TP+FP) = % actually churn out of predicted to churn

Recall: TP/(TP+FN) = % correctly predicted to churn out of actually churn

F-1: 1/(.5/Precision + .5/Recall)