PHYSICS 20323/60323: Fall 2023 - LaTeX Example

1. The following questions refer to stars in the Table below.

Note: There may be multiple answers.

Name	Mass	Luminosity	Lifetime	Temperature	Radius
η Car.	60. M⊙	$10^6~{ m L}_{\odot}$	8.0×10^5 years		
ϵ Eri.	6.0 M⊙	10^3 L_{\odot}		20,000 K	
δ Scu.	2.0 M⊙		5.0×10^8 years		2 R⊙
β Cyg.	1.3 M⊙	3.5 L⊙			
α Cen.	1.0 M⊙				1 R ⊙
γ Del.	0.7 M⊙		4.5×10^10 years	5000 K	

(a) (4 points) Which of these stars will produce a planetary nebula.

(b) (4 points) Elements heavier than Carbon will be produced in which stars.

2. An electron is found to be in the spin state (in the z-basis):
$$\chi = A \begin{pmatrix} 3i \\ 4 \end{pmatrix}$$

(a) (5 points) Determine the possible values of A such that the state is normalized.

(b) (5 points) Find the expectation values of the operators S_x , S_y , S_z and \vec{S}^2 .

The matrix representations in the z-basis for the components of electron spin operators are given by:

$$S_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \qquad S_y = \frac{\hbar}{2} \begin{pmatrix} 0 & -\mathbf{i} \\ \mathbf{i} & 0 \end{pmatrix}; \qquad S_z = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

3. The average electrostatic field in the earth's atmosphere in fair weather is approximately given:

$$\vec{E} = E_0 (Ae^{-\alpha z} + Be^{-\beta z})\hat{z},\tag{1}$$

where A, B, α , β are positive constants and z is the height above the (locally flat) earth surface.

(a) (5 points) Find the average charge density in the atmosphere as a function of height

(b) (5 points) Find the electric potential as a function height above the earth.

Latex Example 31