1、简述文件系统和数据库系统之间的区别与联系。					
	5、证明为什	么两阶段封守	锁协议能够仍	录证事务集合	的可串行化。
2、//简述何时需要建立聚簇索引,以及它的优缺点。	6、对于下列 调度序列;			图中行化?	如果是冲突ī
	T 1	T 2	Т 3	T 4	Т 5
		Read(A)			
	Read(Q)				
					Read(C)
	Write(Q)	<u> </u>	<u> </u> 	D 1/4)	<u> </u>
				Read(A)	
3、设关系模式 $R(A, B, C)$ 上有多值依赖 $A \rightarrow B$ 成立。如果已知 R 的当前关系中存在着三个元组		Write(O)		11046(11)	
3、设关系模式 $R(A, B, C)$ 上有多值依赖 $A \rightarrow \rightarrow B$ 成立。如果已知 R 的当前关系中存在着三个元组 $(a,b1,c1)$ 、 $(a,b2,c2)$ 、 $(a,b3,c3)$,那么这个关系中至少还应该存在哪些元组?	Write(B)	Write(Q)		1000(12)	
	Write(B)	Write(Q)	Read(Q)	11000(11)	
	Write(B)	Write(Q)	Read(Q) Read(M)	2000(17)	
	Write(B)	Write(Q)	.	Read(Q)	
	Write(B)	Write(Q)	.		
	Write(B)	Write(Q)	.	Read(Q)	Read(M) Write(M)

一、简答题(24分)

4、//考虑关系 r₁ (A, B, C), r₂ (C, D, E) 和 r₃ (E, F), A, C, E 分别是其主码, 假定 r₁有 1000 个元组, r₂

有 1500 个元组, r_3 有 750 个元组,估计 r_1 $\bowtie r_2$ $\bowtie r_3$ 的大小,并给出一个计算连接的高效策略。

二、综合题(21分)。

(一)数据库设计(9分)

某企业的人力资源管理需求如下:

企业有员工,员工需要关注的信息包括:员工号、员工姓名、性别、所在部门、出生日期、年龄、民族、亲属信息;企业有若干部门,部门需要关注的信息包括:部门编号、部门名称、部门地址;企业有若干岗位,岗位需要关注的信息包括:岗位名称、岗位职责;每个员工都隶属于一个部门,一个部门有多个员工,一个部门有一个负责人;一个员工可以承担多个岗位的工作职责,一个岗位可以有多个员工承担;一个部门可以拥有多个岗位,一个岗位也可以在多个部门中存在。员工的亲属信息关注身份证号码、与员工的关系和姓名,员工有多位亲属。要求:

- 1、用 E-R 图表示上述内容。
- 2、将 E-R 图转换成相应的关系模式。

(二) 规范化 (9分)

给定关系模式 R(P, W, X, Y, Z),其上的函数依赖集 $F=\{Z \rightarrow X, X \rightarrow P, XY \rightarrow WP, XYP \rightarrow ZW\}$,要求: 1、计算 $(Z)^+$ 。 2、求 F 的正则覆盖 F_c 。

- 3、求 R 的一个候选码。
- 4、将R分解,使其满足BCNF且分解具有无损连接性。
- 5、将 R 分解, 使其满足 3NF 且分解具有无损连接性与保持依赖性。

(三) 证明题(3分)

给定关系模式 R,其上的函数依赖集 F,及其分解 $\{R_1, R_2\}$,证明如果 $R_1 \cap R_2 \rightarrow R_1$ 属于 F^+ ,则 R_1 和 R_2 是 R 的无损分解。

三、运算题(共45分)

有关系模式 S(sno,sname,dno,sex,dorm,monitor), C(cno,ctitle,credit), SC(sno,cno,sore), D(dno,dname)。 关系 S、C、SC 和 D 分别表示学生信息、课程信息、学生选课情况和院系信息。其属性分别表示如下: sno—学生编号,sname—学生姓名,dno—院系编号,sex—性别,dorm—宿舍,monitor—班长,cno—课程编号,ctitle—课程名称,credit—课程学分,score—成绩,dname—院系名称。 关系模式的实例如下:

S

sno	sname	dno	sex	dorm	monitor
s1	赵晨	d1	M	101	s1
s2	许亮	d2	M	101	
s3	肖莹	d1	F	201	s1
s4	陈静	d3	F	201	
s5	王勤勤	d1	M	101	s1

 \mathbf{C}

cno	ctitle	credit
c1	计算机组成原理	4
c2	离散数学	3
c3	数据库系统	4
c4	计算机网络	4

SC

sno	cno	score
s1	c1	80
s1	c2	75
s1	c3	45
s2	c2	70
s3	c1	90
s3	c2	60

D

dno	dname
d1	计算机学院
d2	物理学院
d3	化学学院
d4	生命科学学院

(一)针对上述实例,给出下列表达式的结果(只写出结果即可,无需计算过程,每小题 3 分,共 24 分)

1. $\prod_{\text{sname}} (\sigma_{\text{sex}='M'}(S))$

2, snoGcount(cno)(SC)

 $3 \cdot \prod_{\text{dname}} (D) - \prod_{\text{dname}} (S \bowtie D)$

4, \prod ctitle((σ sno='s1' \wedge score>60(SC)) \bowtie (C))

 $5 \cdot \prod_{a.sno} (\sigma_{a.score < b.score \land b.sno='s2' \land a.cno= 'c2' \land b.cno='c2'} (\rho_a \ (SC) \times \rho_b (SC)))$

6. \prod sname (\prod sno,cno(SC) $\div \prod$ cno(σ sno='s3'(SC)) \bowtie S)

3、查询与自己的班长住在同一个宿舍的学生学号。

7, $\{t \mid \exists r \in C (t[ctitle] = r[ctitle] \land r[cno] = c1')\}$

4、查询获得"计算机网络"课程最高分的学生学号。

8, $\{t \mid \exists r \in D \ (t[dno] = r[dno]) \land \tau \exists v \in S \ (v[dno] = t[dno]) \}$

5、查询学生人数最少的院系名称。

(二)对于上述关系模式,用 SQL 完成下列操作(只写出 SQL 即可,不需要执行结果,每小题 3分,共 21分)

6、查询被所有学生都选修的课程名称。

1、查询化学学院学生姓名,按照学生姓名降序排序。

7、如果学生某门课的考试成绩低于该门课的平均成绩,则将该学生该门课的考试成绩提高5%。

2、查询没有选修 "c1"课程的学生学号。

なるな

小

討 ::

::线::::

- 一、简答题(24分)
- 1、简述文件系统和数据库系统之间的区别与联系。

区别:

文件系统	数据库系统
程序和数据有一定的联系	程序和数据分离
用操作系统中的存取方法对数据进行 管理	用 DBMS 对数据进行管理
实现以文件为单位的数据共享	实现以记录和字段为单位的数据共享
用文件将数据长期保存在外存上	用数据库统一存储数据

联系:均为数据组织的管理技术,均有数据管理软件管理数据,程序与数据之间用存取方法进行转换,数据库系统是基于文件系统的。

评分细则: 本题 4 分, 区别和联系各占 2 分, 回答不完全者酌情给分

2、简述何时需要建立聚簇索引,以及它的优缺点。

如果经常需要按照某搜索码(在文件中查找记录的属性或属性集)做查找或者排序操作,可在该搜索码上建立聚簇索引,使得数据文件的记录顺序按照搜索码的顺序排序。

优点:利用搜索码上的聚簇索引,可以基于搜索码属性做高效的查找和排序操作;聚簇索引可以采用稀疏方式存储,节省索引的存储成本。

缺点:聚簇索引要求数据文件的记录顺序按照搜索码的顺序排序,因而在一个关系上只能建立一个聚簇索引。如果基于非聚簇索引(辅助索引)的搜索码进行查找操作,成本会相对高一些。

评分细则:本题4分,优点和缺点各占2分,回答不完全者酌情给分

3、设关系模式 R(A, B, C)上有多值依赖 $A \rightarrow B$ 成立。如果已知 R 的当前关系中存在着三个元组 (a, b1, c1)、(a, b2, c2)、(a, b3, c3),那么这个关系中至少还应该存在哪些元组?

(a b1 c2), (a b2 c1), (a b1 c3), (a b3 c1), (a b2 c3), (a b3 c2)

评分细则: 本题 4 分, 回答不完全者酌情给分

4、考虑关系 r_1 (A, B, C), r_2 (C, D, E) 和 r_3 (E, F), A, C, E 分别是其主码,假定 r_1 有 1000 个元组, r_2 有 1500 个元组, r_3 有 750 个元组,估计 $r_1 \bowtie r_2 \bowtie r_3$ 的大小,并给出一个计算连接的高效策略。

连接 r_1 和 r_2 会产生一个至多 1000 个元组的关系,因为 C 是 r_2 的主码。同样,将该结果与 r_3 相连,会产生一个至多 1000 个元组的关系,因为 E 是 r_3 的主码。这样最终的结果关系会至多 1000 个元组。

计算连接的一个有效的策略是在 C 属性上为关系 r_2 创建索引,在 E 属性上为 r_3 创建索引,这样对于 r_1 中的任一个元组,使用 r_2 的索引来查找匹配 r_1 中的 C 值的至多一个元组;使用 r_3 的索引查找匹配 r_2 中 E 值的至多一个元组。

评分细则:本题 4 分,估计大小和连接策略各占 2 分,回答不完全者酌情给分 5、证明为什么两阶段封锁协议能够保证事务集合的可串行化。

采用反证法,假定两阶段封锁协议不能保证可串行化,则存在一个遵循两阶段封锁协议的事务集合 T_0 , T_1 , …, T_{n-1} 产生了一个非串行的调度,那么在其优先图中会有一个环。不失一般性,假定优先图中的环是 T_0 T_1 T_2 … T_{n-1} T_0 ,让 a_i 对应事务 T_i 获得到最后一个锁的时间(即事务 T_i 的封锁点)。因而对于所有的事务 T_i 〈 T_j ,都有 a_i 〈 a_j ,对于这个环,我们就有 a_0 a_1 a_2 … a_{n-1} a_0 ,存在矛盾,因此假设不成立。

所以, 两阶段封锁协议能够保证事务集合的可串行化。

评分细则:本题4分,回答不完全者酌情给分

6、对于下列调度,判断其是否为冲突可串行化?如果是冲突可串行化的,给出与之等价的一个串行调度序列,如果不是,请说明理由。

T 1	T ₂	T ₃	T 4	T 5
	Read(A)	- 0		- 3
D 1(0)				
Read(Q)				
				Read(C)
Write(Q)				
			Read(A)	
	Write(Q)			
Write(B)				
		Read(Q)		
		Read(M)		
			Read(Q)	
			Read(M)	
				Read(M)

答: 画出优先图:

图中没有环, 所以是可串行化的。

等价的串行调度为: T₁ T₂ T₃ T₄ T₅ 或 T₁ T₂ T₄ T₃ T₅

评分细则:本题 4分,可串行化判断和调度序列各占 2分,回答不完全者酌情给分

二、综合题(21分)

(一)数据库设计(9分)

某企业的人力资源管理需求如下:

企业有员工,员工需要关注的信息包括:员工号、员工姓名、性别、 所在部门、出生日期、年龄、民族、亲属信息;企业有若干部门,部门需 要关注的信息包括:部门编号、部门名称、部门地址;企业有若干岗位, 岗位需要关注的信息包括:岗位名称、岗位职责;每个员工都隶属于一个 部门,一个部门有多个员工,一个部门有一个负责人;一个员工可以承担 多个岗位的工作职责,一个岗位可以有多个员工承担;一个部门可以拥有 多个岗位,一个岗位也可以在多个部门中存在。员工的亲属信息关注身份 证号码、与员工的关系和姓名,员工有多位亲属。

要求:

- 1、用 E-R 图表示上述内容。
- 2、将 E-R 图转换成相应的关系模式。

关系模式:

部门(部门编号,部门名称,部门地址,负责人员工编号)

岗位(岗位名称,岗位职责)

员工(员工编号,员工姓名,性别、出生日期、年龄、民族、所在部门编号)

员工亲属(员工编号,身份证号,与员工的关系,姓名)

拥有(部门编号,岗位名称)

承担(员工编号,岗位名称)

评分细则:本题9分,第1题5分,第2题4分,回答不完全者酌情给分

(二) 规范化 (9分)

给定关系模式 R(P, W, X, Y, Z), 其上的函数依赖集 $F=\{Z \rightarrow X, X \rightarrow P, XY \rightarrow WP, XYP \rightarrow ZW\}$,

要求: 1、计算 $(Z)^{+}$ 。 2、求 F 的正则覆盖 F_{c} 。

- 3、求 R 的一个候选码。
- 4、将 R 分解, 使其满足 BCNF 且分解具有无损连接性。
- 5、将 R 分解, 使其满足 3NF 且分解具有无损连接性与保持依赖性。

答: 1、{Z, X, P}

- $2, \{Z \rightarrow X, X \rightarrow P, XY \rightarrow WZ\}$
- 3、(X,Y)或(Y,Z)
- 4、(X, Z)(Z, P)(W, Y, Z)或(X, P)(X, Z)(W, Y, Z)
- 5、(X, Z)(X, P)(X, Y, W, Z)或(X, P)(X, Y, W, Z)

评分细则:本题 9 分,第 1 题 1 分,第 2 至 5 题每题 2 分,回答不完全者酌情给分

(三) 证明题(3分)

给定关系模式 R, 其上的函数依赖集 F, 及其分解 $\{R1, R2\}$, 证明如果 $R1 \cap R2 \rightarrow R1$ 属于 F+, 则 R1 和 R2 是 R 的无损分解。

答: 假设 $\forall r \in R$,分解得到 r_1 , r_2 ,只需证明 $r = r_1 | \times | r_2$ 。

容易知道, $\forall t \in r$, $t \in r_1 \times |r_2|$, 所以 $r \subset r_1 \times |r_2|$

$$\Leftrightarrow \alpha = R_1 \cap R_2$$
, $\beta = R_1 - \alpha$, $\gamma = R_2 - \alpha$

 $\forall t \in r_1 \mid \times \mid r_2$, $\notin t[\alpha \beta] \in r_1$, $t[\alpha \gamma] \in r_2$;

设 $t[\alpha\beta]$ 在 r 里面对应元组为 t_1 ,则 $t_1[\alpha] = t[\alpha]$, $t_1[\beta] = t[\beta]$;

设 $t[\alpha\gamma]$ 在 r 里面对应元组为 t_2 ,则 t_2 $[\alpha] = t[\alpha]$, $t_2[\gamma] = t[\gamma]$;

由 $\alpha \rightarrow R_1$ 得 $\alpha \rightarrow \beta$,又因为 $t_1[\alpha] = t_2[\alpha] = t[\alpha]$,得 $t_1[\beta] = t_2[\beta]$,所以 $t_2[\beta] = t[\beta]$,所以 $t_2 = t$,所以 $t \in r$;

得 $r_1 > < | r_2 \subset r_0$

因此 $r = r_1 | \times | r_2$ 得证。

评分细则:本题3分,回答不完全者,酌情给分

- 三、运算题(共45分)
- (一)针对上述实例,给出下列表达式的结果(只写出结果即可,无需计算过程,每小题3分,共24分)

1, Π_{sname} ($\sigma_{\text{sex}='M'}$ (S))

Sname	
赵晨	
许亮	
王勤勤	

评分细则:结果集关系模式错误得0分,结果集关系模式正确得1分,完全正确得3分

2, snoGcount (cno) (SC)

Sno	count (cno)
S1	3
S2	1
S3	2

评分细则:结果集关系模式错误得0分,结果集关系模式正确得1分,完全正确得3分

3,
$$\Pi_{\text{dname}}$$
 (D) $-\Pi_{\text{dname}}$ (S \bowtie D)

Dname

生命科学学院

评分细则:结果集关系模式错误得0分,结果集关系模式正确得1分,完全正确得3分

4. Π ctitle((σ sno=' s1' \wedge score>60(SC)) \bowtie (C))

 ${\tt Ctitle}$

计算机组成原理

离散数学

评分细则:结果集关系模式错误得0分,结果集关系模式正确得1分,完全正确得3分

 $\text{5. } \prod_{\text{a. sno}} \left(\sigma_{\text{a. score} \land \text{b. score} \land \text{b. sno=' s2'}} \right. \\ \left. \wedge_{\text{b. cno=' c2'}} \right. \left. \left(\rho_{\text{a}} \right. \left(\text{SC} \right) \times \rho_{\text{b}} \left(\text{SC} \right) \right) \right)$

a. sno

S3

评分细则:结果集关系模式错误得0分,结果集关系模式正确得1分,完全正确得3分

6. Π sname (Π sno, cno(SC) \div Π cno(σ sno=' s3' (SC)) \bowtie S)

Sname 赵晨 肖莹

评分细则:结果集关系模式错误得0分,结果集关系模式正确得1分,完全正确得3分

7, { t | $\exists r \in C$ (t[ctitle]=r[ctitle] \land r[cno]=' c1')}

ctitle

计算机组成原理

评分细则:结果集关系模式错误得0分,结果集关系模式正确得1分,完全正确得3分

8, { t | $\exists r \in D \ (t[dno] = r[dno]) \land \neg \exists v \in S \ (v[dno] = t[dno]) }$

dno d4

评分细则:结果集关系模式错误0分,结果集关系模式正确1分,元组正确2分

- (二)对于上述关系模式,用 SQL 完成下列操作(只写出 SQL 即可,不需要执行结果,每小题 3分,共 21分)
- 1、查询化学学院学生姓名,按照学生姓名降序排序。

Select sname

From s, d

Where d. dno = s. dno and dname = '化学学院'

Order by sname desc;

评分细则: 需要 2 个表作连接,连接正确得 1 分,选择条件正确得 1 分,排序正确得 1 分

2、查询没有选修 "c1"课程的学生学号。

Select sno

From s

Where sno not in (select sno

from sc

where cno = 'c1');

评分细则:子查询正确的得2分。完全正确的得3分。 3、查询与自己的班长住在同一个宿舍的学生学号。

Select a.sno

From s a, s b

Where a. monitor=b. sno and a. dorm=b. dorm;

评分细则: 需要 2 个相同的表作连接,连接正确得 2 分,选择条件正确得 1 分。

4、查询获得"计算机网络"课程最高分的学生学号。

Select sno

From sc natural join c

Where ctitle='计算机网络'and

score = (select max(score) from sc, c

where sc. cno=c. cno and ctitle='计算机网络')

评分细则: 三个查询条件,每个条件1分。

5、查询学生人数最少的院系名称。

Select dname

From d

Where dno in (select dno from s

group by dno

having count(*) >= all (select count(*) from s group by dno))

评分细则: group by 和 having 各 1 分, >=all 得 1 分

6、查询被所有学生都选修的课程名称。

Select ctitle

From c

```
Where not exists ( select *
                   from s
                   where not exists ( select *
                                    from sc
                                    where
                                                             and
                                             s. sno=sc. sno
sc. cno=c. cno))
或
Select ctitle
  From c
  Where not exists ( (select sno
                   From s)
                 Except
                (select sno
                   From sc
                   Where sc. cno=c. cno))
或
Select ctitle
  From c
  Where cno in (select cno
                from sc
                group by cno
                having count(*) = (select count(*) from s))
评分细则:基本结构正确的得2分;完全正确的得3分。
7、如果学生某门课的考试成绩低于该门课的平均成绩,将该学生该门课的考试
成绩提高5%。
Update sc
Set score=score*1.05
Where score <(select avg(score) from sc sc1 where sc1. cno=sc. cno)
```

评分细则: update/set 正确的得1分,子查询正确的得2分。