Performing exploratory data analysis ,Feature engineering and Predictive modeling.

Title Slide:

- Title: Performing Exploratory Data Analysis, Feature Engineering, and Predictive Modeling
- Your Name

Slide 1: Introduction

Brief overview of the

Slide 2:

Exploratory
Title: Exploratory Data
Data Analysis
Analysis

(Eph)ition and importance of

EDA.

Key EDA tasks:

Data visualization

Slide 3: Data Visualization

Title: Data Visualization in

EDA

Types of EDA plots:

Scatter plots

Histograms

Box plots

Heatmaps

Slide 4: Data Summary

Statistics in

EDA

Mean, median, and mode

Variance and standard

deviation

Slide 5: Data Cleaning

- Title: Data Cleaning in EDA
- Handling missing data
- Outlier detection and treatment
- Data transformation (e.g., scaling)

Slide 6: Feature

Engineering gngineering

Definition and importance of

feature engineering.

Techniques for creating new

features:

Feature extraction

Feature transformation

Slide 7: Feature Extraction

- Title: Feature Extraction
- Principal Component Analysis (PCA)
- Text data vectorization (e.g., TF-IDF)
- Time series feature extraction (e.g., lag features)

Slide 8: Feature

Transformation

Transformation
Standardization and

normalization

Log transformation

Binning and discretization

Slide 9: Feature Selection

- Title: Feature Selection
- Methods for feature selection:
- Recursive Feature Elimination (RFE)
- Feature importance from tree-based models
- Univariate feature selection Slide 10: Predictive

Modeling Introduction to predictive modeling.

Steps in building a predictive model:

Data splitting Model selection

Slide 11: Data Splitting

- Title: Data Splitting
- Importance of training and testing data sets.
- Cross-validation techniques.

Slide 12: Model

Selection Selection

Types of models:

Linear regression

Decision trees

Random forests

Neural networks

Model selection criteria (e.g.,

accuracy F1 coord

Slide 13: Model Training and Evaluation

- Training the selected model.
- Model evaluation metrics:
- Mean Absolute Error (MAE)
- Mean Squared Error (MSE)
- ROC curve (for classification)

Slide 14: Conclusion

- Summarize the key points from each section.
- Highlight the importance of EDA, feature engineering, and predictive modeling in extracting insights from data.