

Scaling Data Science

Lecture 6: Introduction to Hashing

Anirban Dasgupta

Computer Science and Engineering
IIT GANDHINAGAR

Outline

- Outline:
 - Hash tables and hash functions
 - Universal hashing
 - Chaining
 - Multiplicative hashing

Querying

Present?

Naïve algorithm: linear in dataset size

Hash Table

- Elements come from universe U, but we need to store only n items, n < |U|
- Hash table
 - array of size m
 - Hash function $h: U \rightarrow \{0,1, ... m-1\}$
- We typically use $m \ll |U|$ as well as m < n
 - Collisions happen when $x \neq y$, but h(x) = h(y)

Hash functions

- In theory, we design for worst-case behaviour of data
 - Need to choose hash function "randomly"
- Hash family $H = \{h_1, h_2, ...\}$
 - When creating hash table, a single function $h \in H$ is chosen randomly
 - We then analyse the expected query time
- However...

Hash functions

- In theory, we design for worst-case behaviour of data
 - Need to choose hash function "randomly"
- Hash family $H = \{h_1, h_2, ...\}$
 - When creating hash table, a single function $h \in H$ is chosen randomly
 - We then analyse the expected query time
- Since the algo has to carry around the "description" of the hash function, it needs log(|H|) bits of storage
 - |H| cannot too big, in particular, it cannot be the set $[m]^U$, all possible functions

 We need to create small hash families H such that choosing from it gives a function with "good behaviour"

- We need to create small hash families H such that choosing from it gives a function with "good behaviour"
- Uniform: $\Pr_{h \in H}[h(x) = i] = \frac{1}{m}$ for all x and i

- We need to create small hash families H such that choosing from it gives a function with "good behaviour"
- Uniform: $\Pr_{h \in H}[h(x) = i] = \frac{1}{m}$ for all x and i
 - Not enough
- Universal: $\Pr_{h}[h(x) = h(y)] = \frac{1}{m}$ for all $x \neq y$

- We need to create small hash families H such that choosing from it gives a function with "good behaviour"
- Uniform: $\Pr_{h \in H}[h(x) = i] = \frac{1}{m}$ for all x and i
 - Not enough
- Universal: $\Pr_{h}[h(x) = h(y)] = \frac{1}{m}$ for all $x \neq y$
- Near Universal: $\Pr_h[h(x) = h(y)] \le \frac{2}{m}$ for all $x \ne y$

Chaining

 When collisions happen, we store elements using a linked list from that location

Chaining

- When collisions happen, we store elements using a linked list from that location
- l(x) = length of chain at position h(x)
- Expected time to query $x = O(1 + E_h[l(x)])$
 - Same for insert and delete

Analyzing chaining

• Need to bound $E_h[l(x)]$

• For
$$x \neq y$$
, define $C_{xy} = \begin{cases} 1 & if \ h(x) = h(y) \\ 0 & else \end{cases}$

Analyzing chaining

• Need to bound $E_h[l(x)]$

• For
$$x \neq y$$
, define $C_{xy} = \begin{cases} 1 & if \ h(x) = h(y) \\ 0 & else \end{cases}$

•
$$E_h[l(x)] = E_h[\sum_y C_{xy}]$$

Analyzing chaining: universal hashing

• Need to bound $E_h[l(x)]$

• For
$$x \neq y$$
, define $C_{xy} = \begin{cases} 1 & if \ h(x) = h(y) \\ 0 & else \end{cases}$

•
$$E_h[l(x)] = E_h[\sum_y C_{xy}] = \sum_y \Pr[h(x) = h(y)] = \frac{n}{m}$$

Multiplicative hashing

- How to design small + universal hash family?
- Prime multiplicative hashing:
 - Fix a prime number p > |U|
 - $H = \{ h_a(x) = (ax \mod p) \mod m, a \in \{1, ... p 1\} \}$
 - Choosing a hash function is same as choosing $a \in \{1, ..., p-1\}$

Multiplicative hashing

- $H = \{ h_a(x) = (ax \bmod p) \bmod m, a \in \{1, ... p 1\} \}$
- This family satisfies $\Pr_{h}[h(x) = h(y)] \le \frac{1}{m}$
- Intuition: $h_a(x) h_a(y) = (a(x y) \mod p) \mod m$
- There are at most $\frac{p-1}{m}$ values in $\{1, ..., p-1\}$ that are divisible by m

Multiplicative hashing

- $H = \{ h_a(x) = (ax \bmod p) \bmod m, a \in \{1, ... p 1\} \}$
- This family satisfies $\Pr_{h}[h(x) = h(y)] \le \frac{1}{m}$
- Intuition: $h_a(x) h_a(y) = (a(x y) \mod p) \mod m$
- There are at most $\frac{p-1}{m}$ values in $\{1, \dots p-1\}$ that are divisible by m
- What is the probability of choosing a such that $(a(x y) \mod p)$ is one of these numbers?

A property of prime numbers

WLOG
$$x - y \in [1, p - 1]$$

Property: For every $t, z \in [1, p-1]$ there exists unique $a \in [1, p-1]$ such that $az \mod p = t$

This would imply that probability of choosing collision-causing a

$$\leq \frac{p-1}{m} \times \frac{1}{p-1} = \frac{1}{m}$$

A property of prime numbers

WLOG
$$x - y \in [1, p - 1]$$

<u>Property</u>: For every $t, z \in [1, p-1]$ there exists unique $a \in [1, p-1]$ such that $az \mod p = t$

By contradiction. If not, then $\exists a, b \in [1, p-1]$ such that $(a-b)z \bmod p = 0$.

But this cannot be as p is prime.

k-wise universal

• For any distinct $(x_1, ..., x_k)$ and any (not necessarily distinct) $(y_1, ..., y_k)$,

$$\Pr[h(x_1) = y_1 \land \cdots h(x_k) = y_k] = m^{-k}$$

• Needs only $O(k \log n)$ bit of storage

Summary

Hashing

- Simple and versatile
- Main issue is design of good hash functions, much researched area
- (near) universality guarantees small chain sizes
- Other alternatives to chaining exist, e.g. open addressing, cuckoo hashing

References:

- Primary reference for this lecture
 - Algorithms and models of computation by Jeff Erickson: http://jeffe.cs.illinois.edu/teaching/algorithms/
- Others
 - Algorithms, by Cormen, Leiserson and Rivest
 - Randomized Algorithms by Mitzenmacher and Upfal.

Thank You!!

Scalable Data Science

Lecture 7: Bloom Filters

Anirban Dasgupta

Computer Science and Engineering
IIT GANDHINAGAR

Querying

IP seen by switch?

10.0.21.102

Solutions

- Universe U, but need to store a set of n items, $n \ll |U|$
- Hash table of size *m*:
 - Space $O(n \log |U|)$
 - Query time $O\left(\frac{n}{m}\right)$

Solutions

- Universe U, but need to store a set of n items, $n \ll |U|$
- Hash table of size m:
 - Space $O(n \log |U|)$
 - Query time $O\left(\frac{n}{m}\right)$
- Bit array of size |U|
 - Space = |U|
 - Query time O(1)

Querying, Monte Carlo style

- In hash table construction, we used random hash functions
 - we never return incorrect answer
 - query time is a random variable
 - These are Las Vegas algorithms

• In Monte-Carlo randomized algorithms, we are allowed to return incorrect answers with (small) probability, say, δ

Bloom filter

[Bloom, 1970]

- A bit-array B, |B| = m
- k hash functions, h_1, h_2, \dots, h_k , each $h_i \in U \rightarrow [m]$

Bloom filter

- A bit-array B, |B| = m
- k hash functions, h_1, h_2, \dots, h_k , each $h_i \in U \to [m]$

Operations

- *Initialize(B)*
 - for $i \in \{1, ... m\}$, B[i] = 0

- Insert(B, x)
 - for $i \in \{1, ... k\}$, $B[h_i(x)] = 1$
- Lookup (B, x)
 - If $\Lambda_{i \in \{1,...k\}} B[h_i(x)]$, return PRESENT, else ABSENT

Bloom Filter

• If the element x has been added to the Bloom filter, then Lookup(B,x) always return PRESENT

Bloom Filter

• If the element x has been added to the Bloom filter, then Lookup(B,x) always return PRESENT

- If x has not been added to the filter before?
 - Lookup sometimes still return PRESENT

Designing Bloom Filter

- Want to minimize the probability that we return a false positive
- Parameters m = |B| and k = number of hash functions
- $k = 1 \Rightarrow$ normal bit-array

What is effect of changing k?

Effect of number of hash functions

- Increasing k
 - Possibly makes it harder for false positives to happen in Lookup because of $\bigwedge_{i \in \{1,...k\}} B[h_i(x)]$

- But also increases the number of filled up positions
- We can analyse to find out an "optimal k"

False positive analysis

- m = |B|, n elements inserted
- If x has not been inserted, what is the probability that Lookup(B,x) returns PRESENT?

False positive analysis

- m = |B|, n elements inserted
- If x has not been inserted, what is the probability that Lookup(B, x) returns PRESENT?
- Assume $\{h_1,h_2,\dots h_k\}$ are independent and $\Pr[h_i(\cdot)=j]=\frac{1}{m}$ for all positions j
- $\Pr[h_i(x) = 0] = \left(1 \frac{1}{m}\right)^{kn} \approx e^{-kn/m}$

False positive analysis

• The expected number of zero bits $\approx me^{-kn/m}$ w.h.p.

•
$$Pr[Lookup(B, x) = PRESENT) = (1 - e^{-kn/m})^k$$

• Can we choose k to minimize this probability

Choosing number of hash functions

- $p = e^{-kn/m}$
- Log (False Positive) =

$$\log(1 - p)^k = k \log(1 - p) = -\frac{m}{n} \log(p) \log(1 - p)$$

Minimized at $p = \frac{1}{2}$, i.e. $k = m \log(2)/n$

Bloom filter design

• This "optimal" choice gives false positive = $2^{-m \log(2)/n}$

• If we want a false positive rate of
$$\delta$$
 , set $m = \left\lceil \frac{\log\left(\frac{1}{\delta}\right)n}{\log^2(2)} \right\rceil$

Example: If we want 1% FPR, we need 7 hash functions and total 10n bits

Applications

- Widespread applications whenever small false positives are tolerable
- Used by browsers
 - to decide whether an URL is potentially malicious: a BF is used in browser, and positives are actually checked with the server.
- Databases e.g. BigTable, HBase, Cassandra, Postgrepsql use BF to avoid disk lookups for non-existent rows/columns
- Bitcoin for wallet synchronization....

Handling deletions

- Chief drawback is that BF does not allow deletions
- Counting Bloom Filter

[Fan et al 00]

- Every entry in BF is a small counter rather than a single bit
- Insert(x) increments all counters for $\{h_i(x)\}$ by 1
- Delete(x) decrements all $\{h_i(x)\}$ by 1
- maintains 4 bits per counter
- False negatives can happen, but only with low probability

Other Extensions

- Many recent work on Bloom filters
 - Can we do with less hashing?
 - Can BFs be compressed (needed for distributed systems)
 - Are there better structures that use less space, less randomness and less memory lookups?

References:

- Primary reference for this lecture
 - Survey on Bloom Filter, Broder and Mitzenmacher 2005, https://www.eecs.harvard.edu/~michaelm/postscripts/im2005b.pdf
 - http://www.firatatagun.com/blog/2016/09/25/bloom-filters-explanation-use-cases-and-examples/
- Others
 - Randomized Algorithms by Mitzenmacher and Upfal.

Thank You!!

Scalable Data Science

Lecture 8: Streaming model, counting distinct elements

Anirban Dasgupta

Computer Science and Engineering
IIT GANDHINAGAR

Large Data

- Data is massive, growing faster than our ability to store or index
- Predicted growth of data @ 1.7Mb/person/second
 [Forbes]
- Scientific data:
 - Large Hadron Collider
 - Gravitational wave detector
 - Personalized genome sequences

Handling velocity + volume

- Can we process data without explicitly storing all of it in memory? E.g. in a network switch,
 - which IPs have most packets passing through a switch
 - has traffic pattern changed overnight?

Handling velocity + volume

- Can we process data without explicitly storing all of it in memory? E.g. in a network switch,
 - which IPs have most packets passing through a switch
 - has traffic pattern changed overnight?

- We have to give up on exact answer, and rely on...
 - approximation: return answer close to truth
 - randomization: be correct only with high probability

Streaming model: sketches

- Data is assumed to come as a stream of values
 - e.g. bytes seen when reading off a tape-drive
 - destination IPs seen by a network switch
- Size of universe/stream is much large compared to available memory
 - typically assume memory is poly(log)
 - Can make limited (possibly single) pass over data
 - Will create a "sketch": a summary data structure used to answer queries at the end

Streaming problem: distinct count

- Universe is U, number of distinct elements = n, stream size is m
 - Example: U = all IP addresses

```
10.1.21.10, 10.93.28,1,....,98.0.3.1,....10.93.28.1.....
```

- IPs can repeat
- Want to estimate the number of distinct elements in the stream

Other applications

- Universe = set of all k-grams, stream is generated by document corpus
 - need number of distinct k-grams seen in corpus
- Universe = telephone call records, stream generated by tuples (caller, callee)
 - need number of phones that made > 0 calls

Solutions

- Naïve solution : $O(n \log(U))$ space
 - store all the elements, sort and count distinct
 - store a hash map, insert only if not present in map
- Bit array: O(|U|) space
 - bits initialized to 1 only if element seen in stream

Can we do this in less space? Not when exact solution needed!!

Approximations

- (ϵ, δ) –approximations
 - Algorithm will use random hash functions
 - Will return an answer \hat{n} such that

$$(1 - \epsilon)n \le \hat{n} \le (1 + \epsilon)n$$

— This will happen with probability $1-\delta$ over the randomness of the algorithm

First effort

- Stream length: *m*, universe size: *n*
- Proposed algo: Given space S, sample S items from the stream
 - Find the number of distinct elements in this set: \hat{n}
 - return $\hat{n} \times \frac{m}{S}$

First effort

- Stream length: m, distinct elements: n
- Proposed algo: Given space S, sample S items from the stream
 - Find the number of distinct elements in this set: \hat{n}
 - return $\hat{n} \times \frac{m}{S}$
- Not a constant factor approximation
 - -1,1,1,1,....1,2,3,4,....,n-1 m-n+1

Linear Counting

- Bit array B of size m, initialized to all zero
- Hash function $h: [u] \longrightarrow [m]$
- When seeing item x, set B[h(x)] = 1

Linear Counting

- Bit array B of size m, initialized to all zero
- Hash function $h: [n] \to [m]$
- When seeing item x, set B[h(x)] = 1

- $z_m =$ Number of zero entries
- Return estimate $-m \log(\frac{z_m}{m})$

Linear Counting Analysis

- Pr[position remaining 0] = $\left(1 \frac{1}{m}\right)^n \approx e^{-\frac{n}{m}}$
- Expected number of positions at zero = $E[z_m] = me^{-n/m}$

- Using tail inequalities we can show this is concentrated
- Typically useful only for $m = \Theta(n)$, often useful in practice

Flajolet Martin Sketch

- Components
 - "random" hash function $h: U \to 2^{\ell}$ for some large ℓ
 - -h(x) is a ℓ —length bit string
 - initially assume it is completely random, can relax
- zero(v) = position of rightmost 1 in bit representation of v= $\max\{i, 2^i \ divides \ v\}$
 - zeros(10110) = 1, zeros(110101000) = 3

Flajolet Martin Sketch

Initialize:

- Choose a "random" hash function $h: U \to 2^{\ell}$
- $-z \leftarrow 0$

Process(x)

- if
$$zeros(h(x)) > z$$
, $z \leftarrow zeros(h(x))$

Estimate:

- return $2^{z+1/2}$

Example

	h(.)
0	0110101
0	1011010
0	1000100
	1111010

Space usage

- We need $\ell \ge C \log(n)$ for some $C \ge 3$, say
 - by birthday paradox analysis, no collisions with high prob

- Sketch: z, needs to have only $O(\log \log n)$ bits!!!
- Total space usage = $O(\log n + \log \log n)$

Intuition

- Assume hash values are uniformly distributed
- The probability that a uniform bit-string
 - is divisible by 2 is ½
 - is divisible by 4 is ¼
 - **—**
 - is divisible by 2^k is $\frac{1}{2^k}$
- We don't expect any of them to be divisible by $2^{\log_2(n)+1}$

Formalizing intuition

- S = set of elements that appeared in stream
- For any $r \in [\ell], j \in S$, $X_{rj} = \text{indicator of } zeros(h(j)) \ge r$
- $Y_r = \text{number of } j \in S \text{ such that } zeros(h(j)) \ge r$

$$Y_r = \sum_{j \in S} X_{rj}$$

• Let \hat{z} be final value of z after algo has seen all data

• $Y_r > 0 \leftrightarrow \hat{z} \geq r$, equivalently, $Y_r = 0 \leftrightarrow \hat{z} < r$

• $Y_r > 0 \leftrightarrow \hat{z} \geq r$, equivalently, $Y_r = 0 \leftrightarrow \hat{z} < r$

•
$$E[Y_r] = \sum_{j \in S} E[X_{rj}]$$
 $X_{rj} = \begin{cases} 1 & \text{with prob } \frac{1}{2^r} \\ 0 & \text{else} \end{cases}$

•
$$E[Y_r] = \frac{n}{2^r}$$
 $var(Y_r) = \sum_{j \in S} var(X_{rj}) \le \sum_{j \in S} E[X_{rj}^2]$

• $var(Y_r) \le \sum_{j \in S} E[X_{rj}^2] \le n/2^r$

$$\Pr[Y_r > 0] = \Pr[Y_r \ge 1] \le \frac{E[Y_r]}{1} = \frac{n}{2^r}$$

• $var(Y_r) \le \sum_{j \in S} E[X_{rj}^2] \le n/2^r$

$$\Pr[Y_r > 0] = \Pr[Y_r \ge 1] \le \frac{E[Y_r]}{1} = \frac{n}{2^r}$$

$$\Pr[Y_r = 0] \le \Pr[|Y_r - E[Y_r]| \ge E[Y_r]] \le \frac{var(Y_r)}{E[Y_r]^2} \le \frac{2^r}{n}$$

Upper bound

Returned estimate $\hat{n} = 2^{\hat{z}+1/2}$

 $a = \text{smallest integer with } 2^{a+1/2} \ge 4n$

$$\Pr[\hat{n} \ge 4n] = \Pr[\hat{z} \ge a] = \Pr[Y_a > 0] \le \frac{n}{2^a} \le \frac{\sqrt{2}}{4}$$

Lower bound

Returned estimate $\hat{n} = 2^{\hat{z}+1/2}$

 $b = \text{largest integer with } 2^{b+1/2} \le n/4$

$$\Pr\left[\hat{n} \le \frac{n}{4}\right] = \Pr\left[\hat{z} \le b\right] = \Pr[Y_{b+1} = 0] \le \frac{2^{b+1}}{n} \le \frac{\sqrt{2}}{4}$$

Understanding the bound

• By union bound, with prob $1 - \frac{\sqrt{2}}{2}$,

$$\frac{n}{4} \le \hat{n} \le 4n$$

- Can get somewhat better constants
- Need only 2-wise independent hash functions, since we only used variances

Improving the probabilities

- To improve the probabilities, a common trick: median of estimates
- Create $\widehat{z_1}$, $\widehat{z_2}$,...., $\widehat{z_k}$ in parallel
 - return median
- Expect at most $\frac{\sqrt{2}}{4}$ of them to exceed 4n

Improving the probabilities

- To improve the probabilities, a common trick: median of estimates
- Create $\widehat{z_1}$, $\widehat{z_2}$,...., $\widehat{z_k}$ in parallel
 - return median
- Expect at most $\frac{\sqrt{2}}{4}k$ of them to exceed 4n
- But if median exceeds 4n, then $\frac{k}{2}$ of them does \Rightarrow using Chernoff bound this prob is $\exp(-\Omega(k))$

Improving the probabilities

- To improve the probabilities, a common trick: median of estimates
- Create $\widehat{z_1}$, $\widehat{z_2}$,...., $\widehat{z_k}$ in parallel
 - return median

- Using Chernoff bound, can show that median will lie in $\left[\frac{n}{4},4n\right]$ with probability $1-\exp(-\Omega(k))$.
- Given error prob δ , choose $k = O(\log(\frac{1}{\delta}))$

Summary

- Streaming model—useful abstraction
 - Estimating basic statistics also nontrivial

- Estimating number of distinct elements
 - Linear counting
 - Flajolet Martin

k-MV sketch

Developed in an effort to get better accuracy

- Additional capabilities for estimating cardinalities of union and intersection of streams
 - If S_1 and S_2 are two streams, can compute their union sketch from individual sketches of S_1 and S_2

[kMV sketch slides courtesy Cohen-Wang]

Sampling via hashing: Thought experiment

• Suppose $h: U \to [0,1]$ is random hash function such that $h(x) \sim U[0,1]$ for all $x \in U$

- Maintain min-hash value y
 - initialize y ← 1
 - For each item x_i , $y \leftarrow \min(y, h(x_i))$

[kMV sketch slides courtesy Cohen-Wang]

Example

	h(.)
	0110101
0	1011010
0	1000100
	1111010

Intuition

• What information does *y* have about the number of distinct elements *n* ?

• Expectation of minimum is $E[\min_{i} h(x_i)] = \frac{1}{n+1}$

Why is expectation of min =
$$\frac{1}{n+1}$$
?

- Imagine a circle instead of [0, 1]
- Choose n+1 points uniformly at random

Why is expectation of min = $\frac{1}{n+1}$?

- Imagine a circle instead of [0, 1]
- Choose n+1 points uniformly at random
- n+1 intervals are formed
- Expected length of each interval is $\frac{1}{n+1}$

Why is expectation of min = $\frac{1}{n+1}$?

- Imagine a circle instead of [0, 1]
- Choose n+1 points uniformly at random
- n+1 intervals are formed
- Expected length of each interval is $\frac{1}{n+1}$
- Think of the first point as the place to cut the circle!

[kMV sketch slides courtesy Cohen-Wang]

k-minimum value sketch

Initialize:

$$-y_1, \dots y_k \leftarrow 1, \dots 1$$

Process(x):

- For all $j \in [k]$, $y_j \leftarrow \min(y_j, h(x_i))$

Estimate:

- return median-of-means $(\frac{1}{y_1}, ..., \frac{1}{y_k})$

Median-of-means

- Given (ϵ, δ) , choose $k = \frac{c}{\epsilon^2} \log(\frac{1}{\delta})$
- Group $t_1, \dots t_k$ into $\log(\frac{1}{\delta})$ groups of size $\frac{c}{\epsilon^2}$ each
- Find mean (t_i) for each group: Z_1 , ... $Z_{\log(\frac{1}{\delta})}$

• Return $\hat{n} = \text{median of } Z_1, \dots Z_{\log(\frac{1}{\delta})}$

Example

	h1	h2	h3	h4
0	.45	.19	.10	.92
0	.35	.51	.71	.20
0	.21	.07	.93	.18
	.14	.70	.50	.25

Complexity

- Total space required = $O(k \log n) = O(\frac{1}{\epsilon^2} \log n \log(\frac{1}{\delta}))$
 - can be improved
 - don't need floating points, can use $h: U \to 2^{\ell}$ as before
 - can do with k-wise universal hash functions

- Update time per item = O(k)
 - However, can show that most items will not result in updates

Theoretical Guarantees

With probability $1 - \delta$, returns \hat{n} satisfies

$$(1 - \epsilon)n \le \hat{n} \le (1 + \epsilon)n$$

Proof is simple application of expectation and Chernoff bound

Merging

• For two stream S_1 and S_2 use same set of hash functions

• For each $j \in [k]$, find min (y_j, y'_j)

• Gives estimate of $|S_1 \cup S_2|$

References:

- Primary reference for this lecture
 - Lecture notes by Amit Chakrabarti: http://www.cs.dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf

- Others
 - Blum, Hopcroft, Kannan.
 - Sketch techniques for approximate query processing, Graham Cormode.
 http://dimacs.rutgers.edu/~graham/pubs/papers/sk.pdf

Thank You!!

Scalable Data Science

Lecture 9: Frequent Elements

Anirban Dasgupta

Computer Science and Engineering
IIT GANDHINAGAR

Streaming model revisited

- Data is seen as incoming sequence
 - can be just element-ids, or ids +frequency updates

Arrival only streams

- Arrival + departure
 - Negative updates to frequencies possible
 - Can represent fluctuating quantities, e.g.

Frequency Estimation

- Given the input stream, answer queries about item frequencies at the end
 - Useful in many practical applications e.g. finding most popular pages from website logs, detecting DoD attacks, database optimization

- Also used as subroutine in many problems
 - Entropy estimation, itemset mining etc

[Slides courtesy of Graham Cormode]

Frequency estimation

Q1. Can we create a data structure, sketch, sublinear in the data size to answer all frequency queries accurately?

Frequency estimation in one pass

- Q1. Can we create a data structure, sketch, sublinear in the data size to answer all frequency queries accurately?
 - No
- Q2. Can we create a sketch to estimate frequencies of the "most frequent" elements exactly?

Frequency estimation in one pass

- Q1. Can we create a data structure, sketch, sublinear in the data size to answer all frequency queries exactly?
 - No
- Q2. Can we create a sketch to answer frequencies of the "most frequent" elements exactly?
 - No
- Q3. Sketch to estimate frequencies of "most frequent" elements approximately?

Frequency estimation in one pass

- Q1. Can we create a data structure, sketch, sublinear in the data size to answer all frequency queries exactly?
 - No
- Q2. Can we create a sketch to answer frequencies of the "most frequent" elements exactly?
 - No
- Q3. Sketch to estimate frequencies of "most frequent" elements approximately?
 - YES!

Approximate Heavy Hitters

- Given an update stream of length m, find out all elements that occur "frequently"
 - e.g. at least 1% of the time
 - cannot be done in sublinear space, one pass
- Find out elements that occur at least ϕm times, and none that appears $<(\phi-\epsilon)m$ times
 - Error ϵ
 - Related question: estimate each frequency with error $\pm \epsilon m$

Starting with a puzzle

[J. Algorithms, 1981] Suppose we have a list of N numbers, representing votes of N processors on result of some computation. We wish to decide if there is a majority vote and what that vote is.

- By J.S. Moore
- Did not talk about streaming solution, but proposed solution is
- Strict majority: >N/2

Majority Algorithm

- Arrivals only model
- Start with a counter set to zero
- For each item
 - if counter = 0, pick new item and increment counter
 - else if new item is same as item in hand, increment counter
 - else decrement counter

Majority Algorithm

- Start with a counter set to zero
- For each item
 - if counter = 0, pick new item and increment counter
 - else if new item is same as item in hand, increment counter
 - else decrement counter
- If there is a majority item, it is in hand at the end
- Proof: Since majority occurs > N/2 times, not all occurrences can be cancelled out

Frequent [Misra-Gries]

Keep k counters and items in hand

Initialize:

Set all counters to 0

Process(x)

- if x is same as any item in hand, increment its counter
- else if number of items < k, store x with counter = 1
- else drop x and decrement all counters

Query(q)

If q is in hand return its counter, else 0

Frequent

- f_x be the true frequency of element x
- At the end, some set of elements is stored with counter values
- If query y in hand, $\widehat{f_y} = \text{counter value, else } \widehat{f_y} = 0$

Example

Theoretical Bound

<u>Claim</u>: No element with frequency > m/k is missed at the end

Theoretical Bound

<u>Claim</u>: No element with frequency > m/k is missed at the end

Intuition: Each decrement (including drop) is charged with k arrivals. Therefore, will have some copy of an item with frequency > m/k

Stronger Claim

Choose $k=\frac{1}{\epsilon}$. For every item x, with frequency f_x the algo can return an estimate \widehat{f}_x such that

$$f_{\chi} - \epsilon m \le \widehat{f_{\chi}} \le f_{\chi}$$

Stronger Claim

Choose $k=\frac{1}{\epsilon}$. For every item x, with frequency f_x the algo can return an estimate $\widehat{f_x}$ such that

$$f_{x} - \epsilon m \le \widehat{f}_{x} \le f_{x}$$

Same intuition, whenever we drop a copy of item x, we also drop k-1 copies of other items

Summary

- Simple deterministic algorithm to estimate heavy hitters
 - Works only in the arrival model
- Proposed in 1982, rediscovered multiple times with modifications
- Also basis of matrix low rank approximation
- Our next lecture will discuss other algorithms

References:

- Primary references for this lecture
 - Lecture slides by Graham Cormode http://dmac.rutgers.edu/Workshops/WGUnifyingTheory/Slides/cormode.pdf
 - Lecture notes by Amit Chakrabarti: http://www.cs.dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf
 - Sketch techniques for approximate query processing, Graham Cormode. http://dimacs.rutgers.edu/~graham/pubs/papers/sk.pdf

Thank You!!

