PION 2024 模拟赛

HEZ

时间: 2024 年 11 月 14 日 08:30 ~ 13:00

题目名称	城市	烟火	道路	合唱
题目类型	传统型	传统型	传统型	传统型
目录	city	show	road	sing
可执行文件名	city	show	road	sing
输入文件名	city.in	show.in	road.in	sing.in
输出文件名	city.out	show.out	road.out	sing.out
每个测试点时限	1.0 秒	1.0 秒	1.0 秒	1.0 秒
内存限制	512 MiB	512 MiB	512 MiB	512 MiB
子任务数目	3	6	7	5
测试点是否等分	否	否	否	否

提交源程序文件名

对于 C++ i	吾言 city.cp	p show.cpp	road.cpp	sing.cpp
1,11 0 1 1	'H H			0 11

编译选项

对于 C++ 语言	-02 -std=c++14 -static
-----------	------------------------

注意事项(请仔细阅读)

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写,不需要建立子文件夹。
- 2. C++ 中函数 main() 的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
- 3. 若无特殊说明,结果的比较方式为全文比较(过滤行末空格及文末回车)。
- 4. 选手提交的程序源文件必须不大于 100KB。
- 5. 程序可使用的栈空间内存限制与题目的内存限制一致。
- 6. 只提供 Linux 格式附加样例文件。
- 7. 禁止在源代码中改变编译器参数(如使用 #pragma 命令), 禁止使用系统结构相 关指令(如内联汇编)和其他可能造成不公平的方法。
- 8. 评测时采用的机器配置为: Windows 11, i7-12700KF @3.60GHz, 32G, Lemonlime。使用的编译器版本为: x86_64-pc-msys GCC 13.3.0。上述时限以此配置为准。

PION 2024 模拟赛 城市 (city)

城市 (city)

【题目描述】

小 W 正处于一座巨大的王国之中,这个王国有 n 座 城市,第 i 座城市的编号为 i。为了实现城市与城市之间的通信,每座 城市 会通过一些 基站 收发信号。为了缓解压力和节约成本,每座城市根据自己的编号二进制表示选择使用的基站。具体来说,编号为 i 的 城市 会使用所有编号为 $j \in \text{onbit}(i)$ 的 基站,其中 onbit(i) 表示 i 二进制下为 1 的位(最低位为第 0 位)。例如:5 号城市会使用 0,2 号基站。

而随着时间的流逝,数据传输量越来越大,使得一部分城市之间的通讯越来越不顺畅,于是你决定通过光缆直接连接 **城市**。

对于一个集合 S,定义其 权值 $\operatorname{val}(S) = \sum_{x \in S} 2^x$ 。

在两个 城市 i,j 间连接一条光缆需要花费的代价为 i,j 使用的 基站 的并集的权值。同时,为了节约成本,你决定连最少的边。也就是说,建立直接连接的城市形成了一棵 树。

现在给出 l,r,请你求出为编号在 [l,r] 内城市建立直接连接的最小花费。也就是说,你需要求出包含 [l,r] 内所有点的 **最小生成树**。

【输入格式】

从文件 city.in 中读入数据。

输入的第一行包含两个正整数 n, m,分别表示城市个数和询问次数。接下来 m 行每行两个正整数 l, r,分别表示询问的左右端点。

【输出格式】

输出到文件 city.out 中。

对于每次询问,输出一行一个整数,表示最小花费。

【样例1输入】

1 2 1

2 1 2

【样例1输出】

1 3

PION 2024 模拟赛 城市 (city)

【样例2输入】

4 2

1 3

3 **2 4**

【样例2输出】

1 6

2 9

【样例3】

见选手目录下的 city/city3.in 与 city/city3.ans。这个样例满足子任务 1 的约束条件。

【样例 4】

见选手目录下的 city/city4.in 与 city/city4.ans。 这个样例满足子任务 2 的约束条件。

【样例5】

见选手目录下的 city/city5.in 与 city/city5.ans。这个样例满足子任务 3 的约束条件。

【数据范围】

对于所有测试数据保证: $1 \le n \le 10^9$, $1 \le m \le 10^5$, $1 \le l \le r \le n$ 。

子任务编号	$n \leq$	$m \leq$	分值
1	100	10^{4}	20
2	10^{4}	10^{4}	40
3	10^{9}	10^{5}	40

PION 2024 模拟赛 烟火 (show)

烟火 (show)

【题目描述】

在成功解决了城市之间的通讯难题之后,小 W 决定举行一场烟火表演。

小 W 对所有城市进行了归类, 第 i 座城市的种类为 a_i 。

对于一段连续城市区间 [l,r],定义一个种类是 **重要种类** 当且仅当在这段区间内这一种类的城市的数量 > 1,一个种类是 **其他种类** 当且仅当在这段区间内这一种类的城市的数量 = 1。定义一个城市是 **重要城市** 当且仅当该城市的种类是重要种类,一个城市是 **其他城市** 当且仅当该城市的种类是其他种类。

一段区间的城市能进行优美的烟火表演当且仅当重要城市互不相邻,且其他城市也 互不相邻。**也就是说,重要城市和其他城市交替出现**。

小 W 现在希望你求出把 n 座城市划分为若干个区间的方案,使得每个区间都能进行 优美的烟火表演。由于答案可能很大,你只需要输出答案 mod 325609。

【输入格式】

从文件 show.in 中读入数据。

第一行, 输入一个正整数 n, 表示城市数量。

第二行, 输入 n 个非负整数 a_i ,表示每个城市的种类。

【输出格式】

输出到文件 show.out 中。

输出一行一个非负整数,表示方案数取模后的结果。

【样例1输入】

1 5

2 1 2 1 3 1

【样例1输出】

1 6

PION 2024 模拟赛 烟火 (show)

【样例1解释】

有以下 6 种划分方式: {1}, {2}, {1}, {3}, {1} {1}, {2}, {1,3,1} {1}, {2,1,3,1} {1,2,1,3,1} {1,2,1}, {3}, {1}

【样例2输入】

1 9

2 3 2 5 6 9 6 5 2 3

【样例2输出】

1 4

【样例3】

见选手目录下的 show/show3.in 与 show/show3.ans。 这个样例满足子任务 1 的约束条件。

【样例 4】

见选手目录下的 show/show4.in 与 show/show4.ans。 这个样例满足子任务 2 的约束条件。

【样例5】

见选手目录下的 show/show5.in 与 show/show5.ans。这个样例满足子任务 3 的约束条件。

【样例6】

见选手目录下的 show/show6.in 与 show/show6.ans。 这个样例满足子任务 4 的约束条件。

【样例7】

见选手目录下的 show/show7.in 与 show/show7.ans。 这个样例满足子任务 5 的约束条件。 PION 2024 模拟赛 烟火 (show)

【样例8】

见选手目录下的 show/show8.in 与 show/show8.ans。 这个样例满足子任务 6 的约束条件。

【数据范围】

对于所有测试数据保证: $1 \le n \le 5 \times 10^5$, $1 \le a_i \le n$ 。

子任务编号	$n \le$	特殊性质	分值
1	300		20
2	3000	无	20
3	10^{5}		15
4		A	5
5	5×10^5	В	10
6		无	30

特殊性质 A: 保证 n 为奇数且 $a_1 = a_3 = \dots = a_n = 1$ 。

特殊性质 B: 保证 a_i 在 [1,n] 中随机生成。

道路 (road)

【题目描述】

小 W 需要在 m 座城市(编号为 $1 \sim m$)间建造一些公路。由于城市围成了一个环,在编号为 (i,j) 的两座城市间修建公路的代价为 $\min(|i-j|, m-|i-j|)$ 。

具体的,有 $2 \times n$ 座城市间的公路需要修建,小 W 已经确定了 n 个 A 类城市 $\{a_i\}$ 和 n 个 B 类城市 $\{b_i\}$,每条修建的道路恰好连接一个 A 类城市和一个 B 类城市。此外,每个城市恰好与一条道路相连。

也就是说,一个合法的修建公路的方案,构成将 A 类城市视作 左部点,B 类城市 视作 右部点 的 完全二分图 的一组 完美匹配。

你要做的便是帮小 W 最小化修建公路需要的代价。也就是说,你需要求出这张二分图的 最小权完美匹配。

【输入格式】

从文件 road.in 中读入数据。

本题的测试点包含有多组测试数据。

第一行输入一个正整数 T,表示测试数据组数。

对于每组测试数据:

第一行输入两个正整数 m,n,分别表示城市总数和一类城市的数量。

第二行输入 n 个非负整数 a_i ,表示 A 类城市。

第三行输入 n 个非负整数 b_i ,表示 B 类城市。

【输出格式】

输出到文件 road.out 中。

对于每组测试数据,输出一行一个整数,表示最小代价。

【样例1输入】

```
1 1 2 10 3 3 1 2 3 4 4 5 6
```

【样例1输出】

1 9

【样例1解释】

匹配方式为 (a_1,b_1) , (a_2,b_2) , (a_3,b_3) 时,代价为 3+3+3=9,容易证明这是最小代价。

【样例2输入】

```
1 1
2 20 5
3 1 13 8 15 19
4 2 6 20 11 7
```

【样例2输出】

1 14

【样例3】

见选手目录下的 road/road3.in 与 road/road3.ans。 这个样例满足子任务 1 的约束条件。

【样例 4】

见选手目录下的 road/road4.in 与 road/road4.ans。 这个样例满足子任务 2 的约束条件。

【样例 5】

见选手目录下的 road/road5.in 与 road/road5.ans。 这个样例满足子任务 3 的约束条件。

【样例6】

见选手目录下的 road/road6.in 与 road/road6.ans。 这个样例满足子任务 4 的约束条件。

【样例7】

见选手目录下的 road/road7.in 与 road/road7.ans。 这个样例满足子任务 5 的约束条件。

【样例8】

见选手目录下的 road/road8.in 与 road/road8.ans。 这个样例满足子任务 6 的约束条件。

【样例9】

见选手目录下的 road/road9.in 与 road/road9.ans。 这个样例满足子任务 7 的约束条件。

【数据范围】

对于所有数据,保证 $T \le 5 \times 10^5$, $\sum m \le 5 \times 10^7$, $\sum n \le 10^7$, $1 \le a_i, b_i \le m$,每组数据输入的 2n 个城市编号两两不同。

子任务编号	$\sum m \le$	$\sum n \le$	特殊性质	分值
1		10		5
2		20		5
3	10 ⁷	1000	无	10
4		5000		20
5		5×10^5	A	15
6		$0 \times 10^{\circ}$	工	35
7	5×10^7	10^{7}	无	10

特殊性质 A: 保证 $a_i < b_i$ 。

本题输入输出量较大,请使用较为快速的输入输出方式。

本题下发快速读入模板,需要的选手可自行取用。请选手注意在调用一次 read 函数之后不得使用其它的输入方式。

具体使用说明见选手目录下的 read.cpp。

合唱 (sing)

【题目描述】

顺利完成城市规划的小 W 准备举办一场庆功宴。

庆功宴上,p 个 bot 围着圆桌坐成一圈,并按顺时针顺序依次编号为 1,2,...,p。根据计划,他们会进行 q 次合唱,合唱内容为歌手李健的《贝加尔湖畔》。

为了活跃气氛,小 W 会使用一种看似随机的方式决定参与合唱的人选。每次合唱前,小 W 会选择三个整数 x,k,l 并从第 x 个 bot 开始沿顺时针方向 1,2,...,k 循环报数。前 l 个报到 k 的 bot 会参加此次合唱。为保证所有合唱都能顺利进行,bot 总数 p 是素数。可以证明当 $1 \le k < p$ 时,前 p 个报到 k 的 bot 各不相同。

小 T 也打算参加庆功宴。他认为编号为 i 的 bot 唱《贝加尔湖畔》的美妙度为 a_i ,而一次合唱的美妙度为所有演唱者的美妙度之和。现在他知道了每次合唱 x,k,l 的值,并希望你算出对应的美妙度,以便最优化听歌体验。

【输入格式】

第一行输入两个正整数 p,q, 分别表示 bot 个数和询问次数。

第二行输入 p 个正整数 a_i ,表示每个 bot 的美妙度。

接下来 q 行每行三个正整数,依次为每次合唱对应的 x, k, l。

【输入格式】

对于每次询问,输出一行一个整数,表示合唱的美妙度。

【样例1输入】

```
1 17 3
2 1 1 4 5 1 4 1 8 5 3 7 1 7 9 3 6 3
3 5 1 3
4 12 4 11
5 6 6 6
```

【样例1输出】

```
1 6 2 42 3 17
```

【样例2输入】

```
      1
      3
      5

      2
      4
      5
      3

      3
      1
      3

      4
      1
      1
      1

      5
      3
      1
      3

      6
      2
      1
      2

      7
      1
      2
      3
```

【样例2输出】

```
      1
      12

      2
      4

      3
      12

      4
      8

      5
      12
```

【样例3】

见选手目录下的 sing/sing3.in 与 sing/sing3.ans。 这个样例满足子任务 1 的约束条件。

【样例 4】

见选手目录下的 sing/sing4.in 与 sing/sing4.ans。 这个样例满足子任务 2 的约束条件。

【样例5】

见选手目录下的 sing/sing5.in 与 sing/sing5.ans。 这个样例满足子任务 3 的约束条件。

【样例6】

见选手目录下的 sing/sing6.in 与 sing/sing6.ans。 这个样例满足子任务 4 的约束条件。

【 样例 7 】

见选手目录下的 sing/sing7.in 与 sing/sing7.ans。 这个样例满足子任务 5 的约束条件。

【数据范围】

对于所有数据,保证 $1 \leq p,q \leq 10^5$, $1 \leq a_i \leq 10^9$, $1 \leq x,l \leq p$, $1 \leq k < p$, 且 p 为质数。

子任务编号	$p \leq$	$q \le$	特殊性质	分值
1	1000	1000	无	10
2	10^5	10^5 10^5	A	10
3			В	10
4			С	20
5			无	50

特殊性质 A: 保证 $a_i = i$ 。 特殊性质 B: 保证 $k \le 100$ 。

特殊性质 C: 令 k^{-1} 表示 k 在模 p 意义下的乘法逆元,保证 $k^{-1} \leq 100$ 。