Michael Beaver CS 421, SP15 6 May 2015 Lab #4

- §5.1 7. Find context-free grammars for the following languages (with $n \ge 0$, $m \ge 0$).
- §5.1 7c. $L = \{a^n b^m : n \neq 2m\}$ Note $m = 0 \Rightarrow n \neq 0$, so $\lambda \notin L$.

$$S \to aCb \mid a \mid b$$

$$C \to A \mid B$$

$$A \rightarrow aA \mid a \mid \lambda$$

$$B \to aB \mid b \mid \lambda$$

- §7.1 4. Construct NPDAs that accept the following languages on $\Sigma = \{a, b, c\}$.
- §7.1 4e $L = \{a^3b^nc^n : n \ge 0\}$

§8.1 2. Show that the language $L = \{a^n : n \text{ is a prime number}\}$ is not context-free.

Assume L is context-free and therefore pumpable with the Pumping Lemma for CFLs. Suppose we have a string $w = a^q$, where q is a prime number such that $q \ge m$. We have that $w \in L$ and $|w| \ge m$. The string w can then be subdivided in the following fashion: $w = a^r a^s a^t a^u a^{q-r-s-t-u}$. We see that $s + u \ge 1$ and $s + t + u \le m$ satisfy our criteria for the Pumping Lemma for CFLs. We can pump w to generate strings of the following form:

$$w_i = a^r a^{si} a^t a^{ui} a^{q-r-s-t-u}$$

$$\Rightarrow w_i = a^{si+ui-s-u+q}$$

$$\Rightarrow w_i = a^{(s+u)(i-1)+q}.$$

Now consider i = q + 1: $w_{q+1} = a^{(s+u)(q+1-1)+q} = a^{(s+u+1)q}$. Notice that $w_{q+1} \notin L$ because (s+u+1)q is not a prime number. Therefore, L is not pumpable and is not context-free.

#QED

§8.2 17. Show that the language $L = \{a^n b^n : n \ge 0, n \text{ is not a multiple of 5} \}$ is context-free.

Let $L_1 = \{a^nb^n : n \geq 0\}$ and $L_2 = \{a^nb^n : n \text{ is a multiple of 5}\}$. We know that L_1 is not a regular language. We should be able to construct a finite automaton to accept L_2 , so it should be a regular language. We can construct NFAs for $L_{2a} = \{a^n : n \text{ is a multiple of 5}\}$ and $L_{2b} = \{b^n : n \text{ is a multiple of 5}\}$. From here we can concatenate $L_2 = L_{2a}L_{2b}$ since regular languages are closed under concatenation. It is easy to see that $L = L_1 \cap \overline{L_2}$. Since L_2 is regular, $\overline{L_2}$ is also regular. Thus, we have the conditions for regular intersection, which is closed for CFLs. It follows then that L is context-free.

#QED