Practice Questions for Jan 22, 2019

1. Shade the appropriate part of each Venn-diagram below based on its caption. For each case, show the formula to compute the corresponding cardinality in terms of |A|, |B|, |C|, $|A \cap B|$, $|A \cap B \cap C|$, etc. Here, Ω = Universe of Discourse (see the text-book for Universe of Discourse, if needed).

2. The Venn-diagram below shows two subsets $A, B \subseteq \Omega$ = Universe of Discourse. The numbers in the diagram show the size of the various subsets; thus, |A - B| = 1, $|A \cap B| = 2$, |B - A| = 4, and $|\Omega - (A \cup B)| = 8$. We chose these sizes so that the sizes of $16 = 2^{2^2}$ subsets X_1 to X_{16} of Ω that can be formed from A and B using union, intersection, and complement are distinct. We write the intersection $X \cap Y$ below simply as XY; thus, $AA^c = A \cap A^c = \emptyset = BB^c$.

Shade the part of the venn-diagram in each of 16 cases below (continued to next page) representing the given set X_i and show the size $|X_i|$.

