What is a Graph?

A graph G = (V,E) is composed of:

V: set of vertices

E: set of edges connecting the vertices in V

An edge e = (u,v) is a pair of vertices

Example:

 $V = \{a,b,c,d,e\}$

Applications

Examples

directed graph in-degree out-degree

Terminology: Path

path: sequence of vertices $v_1, v_2, \dots v_k$ such that consecutive vertices v_i and v_{i+1} are adjacent.

More Terminology

simple path: no repeated vertices

Even More Terminology

• connected graph: any two vertices are connected by some path

subgraph: subset of vertices and edges forming a graph

connected component: maximal connected subgraph. E.g., the graph below has 3 connected

components.

Subgraphs Examples

More...

tree - connected graph without cycles

forest - collection of trees

Connectivity

Let **n** = #vertices, and **m** = #edges

A complete graph: one in which all pairs of vertices are adjacent How many total edges in a complete graph?

• Each of the n vertices is incident to n-1 edges, however, we would have counted each edge twice! Therefore, intuitively, m = n(n-1)/2.

Therefore, if a graph is not complete, m < n(n-1)/2

$$n = 5$$

 $m = (5 * 4)/2 = 10$

More Connectivity

For a tree m = n - 1

$$\mathbf{n} = 5$$

$$\mathbf{m} = 4$$

If m < n - 1, G is not connected

$$\mathbf{n} = 5$$

$$\mathbf{m} = 3$$

Directed vs. Undirected Graph

An undirected graph is one in which the pair of vertices in a edge is unordered, $(v_0, v_1) = (v_1, v_0)$

A directed graph is one in which each edge is a directed pair of vertices, $\langle v_0, v_1 \rangle = \langle v_1, v_0 \rangle$

tail head

Graph Representations

Adjacency Matrix
Adjacency Lists

Adjacency Matrix

Let G=(V,E) be a graph with n vertices.

The adjacency matrix of G is a two-dimensional n by n array, say adj_mat

If the edge (v_i, v_j) is in E(G), adj_mat[i][j]=1

If there is no such edge in E(G), $adj_{mat[i][j]=0}$

The adjacency matrix for an undirected graph is symmetric; the adjacency matrix for a digraph need not be symmetric

Examples for Adjacency Matrix

directed: n²

 G_4

Graphs: Adjacency List

GRAPH ----- DEPTH FIRST TRAVERSAL

FIGURE 3.10 Example of a DFS traversal. (a) Graph. (b) Traversal's stack (the first subscript number indicates the order in which a vertex is visited, i.e., pushed onto the stack; the second one indicates the order in which it becomes a dead-end, i.e., popped off the stack). (c) DFS forest with the tree and back edges shown with solid and dashed lines, respectively.

GRAPH ----- BREADTH FIRST TRAVERSAL

FIGURE 3.11 Example of a BFS traversal. (a) Graph. (b) Traversal queue, with the numbers indicating the order in which the vertices are visited, i.e., added to (and removed from) the queue. (c) BFS forest with the tree and cross edges shown with solid and dotted lines, respectively.