Department of Mathematics & Statistics

Course	Number	Section(s)
Mathematics	204/2	All, except EC
Examination	Date	Pages
Final	December 2012	2
Instructors		Course Examiner
E. Cohen, R. Mearns, F. Thaine		F. Thaine

Special Instructions: Donly approved calculators are allowed.

Answer 10 questions. All questions have equal value.

1. Using the Gauss-Jordan method (i.e. reduced row echelon form method), find all the solutions of the following system of equations

$$2x - 2y + 2u + 3v = 1$$

$$3x - 3y - z + 5u + 2v = 3$$

$$2x - 2y - 2z + 6u = -2$$

2. Let
$$M = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 3 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 3 \\ 0 & 1 \\ 2 & 0 \end{bmatrix}$.

- a) Calculate M^{-1} .
- b) Find the matrix C such that MC = B.
- 3. a) Use Cramer's rule to solve the following system of equations

$$2x + 3y = -2$$

$$x + 3z = -1$$

$$2y + z = 2$$

(No marks given if you don't use Cramer's rule.)

b) Calculate the determinant of the matrix $\begin{bmatrix} 1 & 2 & 0 & 2 \\ 1 & 0 & 2 & 3 \\ 0 & 3 & 1 & 1 \\ 2 & 1 & 1 & 0 \end{bmatrix}$.

- 4. Let \mathcal{L} be the line with parametric equations x = 2 + t, y = 1 t, z = 1 + 3t, and et $\mathbf{v} = (1, 2, 0)$. Find vectors \mathbf{w}_1 and \mathbf{w}_2 such that $\mathbf{v} = \mathbf{w}_1 + \mathbf{w}_2$, and such that \mathbf{w}_1 is parallel to \mathcal{L} and \mathbf{w}_2 is perpendicular to \mathcal{L} .
- 5. Let $P_1 = (1, -1, 1)$, $P_2 = (2, 1, -1)$ and $P_3 = (1, -2, -1)$.
 - a) Find the area of the triangle with vertices P_1 , P_2 and P_3 .
 - b) Find an equation of the plane containing P_1 , P_2 and P_3 .
- 6. Let \mathcal{L} be the line with parametric equations x=1+2t, y=2-3t, z=3-t, and let \mathcal{P} be the plane x+y+z-10=0.
 - a) Prove that \mathcal{L} and \mathcal{P} are parallel.
 - b) Find the distance between \mathcal{L} and \mathcal{P} .
- 7. Let $\mathbf{v}_1 = (2, -1, -2)$ and $\mathbf{v}_2 = (1, 2, -2)$.
 - a) Find scalars x and y such that $xv_1 + yv_2 = (5, -10, -2)$.
 - b) Find a vector v_3 such that $\{v_1, v_2, v_3\}$ is a basis of \mathbb{R}^3 . Justify your answer.
- 8. Let

$$A = \begin{bmatrix} 1 & 0 & -2 & 0 & -1 & 3 \\ 0 & 1 & 3 & 0 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 & -2 \end{bmatrix} \text{ and } X = \begin{bmatrix} x \\ y \\ z \\ u \\ v \\ u \end{bmatrix}.$$

Find a basis for the solution space of the homogeneous system of linear equations AX = 0.

- 9. Find the standard matrix for the composition of the following two linear operators on \mathbb{R}^2 : A rotation counterclockwise of 30° followed by a reflection about the y-axis.
- 10. Let $A = \begin{bmatrix} 2 & 1 & -1 \\ 0 & 2 & 0 \\ 0 & 1 & 3 \end{bmatrix}$. Find an invertible matrix P and a diagonal matrix D such that $P^{-1}AP = D$.
- 11. Let $A = \begin{bmatrix} -1 & 1 \\ -3 & 5/2 \end{bmatrix}$. Calculate A^{1000} .