

Protein Purification Lecture 1

Module Overview & Introduction to Bioprocessing

I'll be with you shortly

Robert Byrne

robert.byrne@associate.atu.ie

Intro

robert.byrne@nibrt.ie

What is This Lecture About?

- Brief Overview of Course Content
- > Forms of Assessment
- Methods of Delivery
- > Required Reading
- **Questions**

Semester 1 Jan 2025 – April 2025

Your subjects this semester:

- Bio-Validation
 - Carl Bermingham
- Protein Purification
 - Robbie Byrne
 - Thursday 6pm 7pm
- Bioanalytics
 - Maja Kristek

Course Content

- 1) Introduction to downstream processing (DSP) & protein purification.
- 2) The design and operation of an effective protein recovery and capture systems centrifugation & filtration.
- 3) Theory and principle of chromatography for purification.
- 4) Chromatographic methods for purification.
- 5) Viral exclusion technologies for protein purification.
- 6) Quality control aspects of protein purification

Module Breakdown

Number of lectures

- 9 lectures
- Start January 23rd 2025
- Finish 28th April 2025 Final Lecture is April 3rd
- No lecture on an assessment week
- No lecture during mid-term break

Assessment details

Continuous assessments & Project (100%)

Assessment: Theory

- MCQ Multiple Choice Questions & LAQ Long answer Questions
 - MCQ 1 Week 5 (10%)
 - MCQ 2 Week 10 (10%)
 - LAQ Week 12 (30%). 50% of marks
- Mini Project (ca. 5000 words)
 - Can be suggested by the student or assigned by the lecturer.
 - Assigned / agreed by end of week 2/3 of course.
 - Optional Outline of project plan due end of week 6

Final report due 24th April -2025	40% of marks
• Introduction / Background / References	<i>5%</i>
 Analysis / Discussion / Conclusions 	15%
 Main body of report content 	20%

Recorded project presentation – Mandatory - 10% of marks (28th April 2025)

10

Timetable 2025

				7
Lecturer Name: Carl Bermingham			Lecturer Name: Robbie Byrne	Le
Module Title: Bio-validation		Module Title: Protein Purification	М	
Week Number	Dates	Lecture Day & Time	Lecture Details Thursday 6pm – 7pm	Le
1	W/C Jan 20 th	Lecture 1 and Course Overview	Lecture 1 and Course Overview	Le
2	W/C Jan 27 th	Lecture 2	Lecture 2: DSP Protein Recovery – Harvest	Le
3	W/C Feb 3 rd	Lecture 3	Lecture 3: Filtration	Le
4	W/C Feb 10 th	MCQ 1 10%	Lecture 4: Protein Biochemistry and Protein Handling	Le
5	W/C Feb 17 th	Lecture 4	MCQ 1 10%	М
6	W/C Feb 24 th	Lecture 5	Lecture 5: Principles of Chromatography	Le
7	W/C Mar 3 rd	Lecture 6	Lecture 6: Modes of Chromatography	Le
8	W/C Mar 10 th	MCQ 2 10%	Lecture 7: Process-Scale Chromatography	Le
9	W/C Mar 17 th	Lecture 7	Lecture 8: Viral Clearance	М
10	W/C Mar 24 th	Lecture 8	MCQ 2 10%	Le
11	W/C Mar 31st	Lecture 9	Lecture 9: QA and QC Aspects of Purification	Le
			Easter Break	
12	W/C April 14 th	LAQ 30%	LAQ 30% April 17 th	LA
13	W/C Apr 21st	Project reports due (40%)	Project reports due (40%)	Pr
14	Apr 28 th	Project Presentations Due (10%)	Project Presentations Due (10%)	Pr
			AUDDTO	

Lecturer Name: Maja Kristek
Module Title: Bioanalytics
Lecture Details
Lecture 1 and Course Overview
Lecture 2
Lecture 3
Lecture 4
MCQ 1 (10%)
Lecture 5
Lecture 6
Lecture 7
MCQ 2 10%
Lecture 8
Lecture 9
LAQ 30%
Project reports due (40%)
Project Presentations Due (10%)

Course Delivery

- Lecturer Course Notes.
 - Available on Moodle in blocks at regular intervals.
 - Will be in pdf format with embedded slides.
 - Aim to cover all material by end week 11 of the course.
- Live or recorded lectures live lectures to take place each Thursday at 6PM (IRE time) unless otherwise advised.
 - These online lectures will be in tutorial format.
 - Will utilise supplemental slide material to support course notes where relevant.
 - **Recommended reading material** from course textbook.
 - Supplemental reading from course textbook as relevant.
 - Relevant articles posted on Moodle.

6

Every week you will receive...

- Live lecture (link provided on main course page)
- Lecture notes (pdf)
- Relevant reading material
- Links to websites
- Link to recorded live lecture

Introduction to the Biopharmaceutical Industry

Biopharmaceutical Production Process Overview

Overview of Bioprocessing

What is Bioprocessing?

Bioprocessing uses organisms or biologically derived macromolecules to carry out enzymatic reactions or to manufacture products.

NIBRT©

17

Pharmaceutical -v- Biopharmaceutical

Traditional Pharmaceutical:

• Biopharmace

What are Biopharmaceuticals/Biologics?

"A biological medicine is a medicine that contains one or more active substances made by or derived from a biological source"

-European Medicines Agency

They are not chemically synthesised

Pharmaceutical -v- Biopharmaceutical

Chemical (small molecules)	Biological (large molecules)
Less complex production process	Complex production process
Product robust; Can be taken as tablet	Fragile product ; would be destroyed in the gastrointestinal system, administered by injection
Low risk of product degradation or contamination	High risk of product degradation or contamination
Process is well defined and losses are low	High process variability and losses; 30% and up
Simple analytical techniques used	Complex analytical techniques required

So Why Biologics?

- > Small molecule drugs often lack specificity which can cause off-target interactions and side-effects
- ➤ Biologics can be engineered to **bind with extreme precision** resulting in less side effects and lower toxicity
- ➤ Biologics can target complex molecular processes that small molecules cannot can treat diseases such as cancer or autoimmune diseases

Small molecules

VS.

Introduction to the Biopharmaceutical Industry

Biopharmaceutical Production Process Overview

Overview of Bioprocessing

Upstream: Cell Culture

- Thaw vial of cells from working cell bank
- Expand culture to desired production volume
- Maximise product expression

Goals of Upstream Processing

- 1. Start growing cells that produce the protein.
- 2. Grow enough cells to make enough product ('scaling up').
- 3. Keep cells healthy to ensure high quality protein product.
- 4. Maintain structural integrity of the protein.

Walsh, Gary. Pharmaceutical biotechnology: concepts and applications. John Wiley & Sons, 2007.

Harvest Options

Downstream Processing

- ➤ Biopharmaceutical downstream processing consists of those **operations required for the recovery of product** from the manufacturing process stream, concentration and purification, followed by product formulation and filling (*not covered here*)
- Typical downstream processes include:-
 - Harvest and protein extraction from cells where required
 - Cell separation depth filtration and centrifugation
 - Product concentration and buffer exchange tangential flow filtration (TFF) and diafiltration
 - Protein purification and polishing chromatography
 - Viral reduction (if required)
 - Lyophilisation of product
 - CIP and SIP of process equipment

Protein Recovery & Purification

Goals of Downstream Processing

- 1. Concentrate the protein
- 2. Remove impurities
- 3. Inactivate and remove viruses
- 4. Maintain structural integrity of the protein

Ultrafiltration

Chromatography

Formulation and Filling

Formulation

- Adjust protein concentration, if necessary.
- Add excipients and/or stabilisers.

Filling

- Product is sterilised by filtration.
- > Then aseptically filled into pre-sterilised containers.

Lyophilisation can be performed for stabilisation and preservation.

Introduction to the Biopharmaceutical Industry

Biopharmaceutical Production Process Overview

Thank You

