专业: 电气工程及其自动化

姓名:潘谷雨

学号: 3220102382

地点:紫金港东三 406

浙江大学实验报告

一. 实验目的

1.加深理解时序电路的工作原理。

- 2.学习时序电路的设计与调试。
- 3.了解时序集成电路的应用。

二. 实验仪器

实验箱电源与数字模块,74LS107型双 J--K 触发器,74LS11三输入与门,74LS55或非门芯片,74LS74型双 D 触发器,74LS00与非门。

三. 实验内容

- 1. 用 74LS107 型 JK 触发器和 74LS11 三输入与门设计一个 8421BCD 码的同步十进制加法计数器。
- 2. 用 74LS74 型 D 触发器和 74LS55 与或非门设计脉冲分配器电路。

四. 实验原理

- 1.8421BCD 码的同步十进制加法计数器
- (1) 画出状态转换图。

$$Q_3Q_2Q_1Q_0$$

 $0000 \rightarrow 0001 \rightarrow 0010 \rightarrow 0011 \rightarrow 0100$
 \uparrow
 $1001 \leftarrow 1000 \leftarrow 0111 \leftarrow 0110 \leftarrow 0101$

(2) 列出状态表,得出对JK的要求如下表所示。

СР	初态Qn				次态Qn+1				Qn → Qn+1对JK要求			
	Q_3	Q_2	Q_1	Q ₀	Q_3	Q_2	Q_1	Q_0	J_3K_3	J_2K_2	J ₁ K ₁	J_0K_0
0	0	0	0	0	0	0	0	1	0×	0×	0×	1×
1	0	0	0	1	0	0	1	0	0×	0×	1×	×1
2	0	0	1	0	0	0	1	1	0×	0×	×0	1×
3	0	0	1	1	0	1	0	0	0×	1×	×1	X1
4	0	1	0	0	0	1	0	1	0×	×0	0×	1×
5	0	1	0	1	0	1	1	0	0×	×0	1×	×1
6	0	1	1	0	0	1	1	1	0×	×0	×0	1×
7	0	1	1	1	1	0	0	0	1×	×1	×1	×1
8	1	0	0	0	1	0	0	1	× 0	0×	0×	1×
9	1	0	0	1	0	0	0	0	×1	0×	0×	×1

(3) 卡诺图求出 JK 的函数式。

3. 脉冲分配器

脉冲分配器的作用是产生多路序列脉冲。具体要求如下:

当 X= "1" 时, 电机正转: A => AB => BC => C => AC => A···· 当 X= "0" 时, 电机反转: A => AC => C => BC => B => AB => A····

(1) 画出状态转换图。

$$X=1 \text{ H} \rightarrow$$
 $X=0 \text{ H} \rightarrow$
 $Q_AQ_BQ_C$
 $Q_AQ_BQ_C$
 $100 \rightarrow 110 \rightarrow 010$
 $100 \rightarrow 101 \rightarrow 001$
 \uparrow
 \downarrow
 $101 \leftarrow 001 \leftarrow 011$
 $110 \leftarrow 010 \leftarrow 011$

(2) 列出状态表,得出对 D 的要求如下表所示。

Х	3	初态Q	n	次	态Qn+	1	对D的要求			
	\mathbf{Q}_A	Q_B	$Q_{\rm C}$	Q_A	Q_B	$Q_{\rm C}$	D _A	D _B	D _C	
0	1	0	0	1	0	1	1	0	1	
0	1	0	1	0	0	1	0	0	1	
0	0	0	1	0	1	1	0	1	1	
0	0	1	1	0	1	0	0	1	0	
0	0	1	0	1	1	0	0	1	0	
0	1	1	0	1	0	0	1	0	0	
1	1	0	0	1	1	0	1	1	0	
1	1	1	0	0	1	0	0	1	0	
1	0	1	0	0	1	1	0	1	1	
1	0	1	1	0	0	1	0	0	1	
1	0	0	1	1	0	1	1	0	1	
1	1	0	1	1	0	0	1	0	0	

(3) 卡诺图求出 D 的函数式。

五. 实验步骤及结果

- 1. 同步十进制加法计数器
- 1.1 仿真测试
- (1) 搭建电路

如图 1.1 搭建电路, $J_0 = K_0 = 1$, $J_1 = \overline{Q_3}Q_0$, $K_1 = Q_0$, $J_2 = Q_1Q_0$, $K_2 = Q_1Q_0$, $J_3 = Q_2Q_1Q_0$, $K_3 = Q_0$.

图 1.1 同步十进制加法计数器电路图

(2) 瞬态分析设置

设置瞬态分析(Time Domain(Transient)),参数为 Run To Time =30s。

- (3) 运行仿真分析程序
- (4) 查看仿真结果
- ①将 Q3Q2Q1Q0 初始状态设置为 0000,在 Probe 程序中显示输入计数脉冲与输出 Q0、Q1、Q2、Q3 的波形,结果如图 1.2 所示。
- ②将 Q3Q2Q1Q0 初始状态设置为 1111, 在 Probe 程序中显示输入计数脉冲与输出 Q0、Q1、Q2、Q3 的波形,结果如图 1.3 所示。

图 1.2 输入计数脉冲与输出 Q 仿真波形图 (初始 Q3Q2Q1Q0=0000)

实验名称: _____ 时序逻辑电路实验 _____ 姓名: _____ 潘谷雨 ____ 学号: _____ 3220102382

图 1.3 输入计数脉冲与输出 Q 仿真波形图(初始 Q3Q2Q1Q0=1111)

计数脉冲输入周期 2s 方波, JK 触发器下降沿触发,每过 2s 电路状态改变一次。当初始 Q3Q2Q1Q0 = 0000 时,Q3Q2Q1Q0 依次为 0000、0001、0010、0011、0100、0101、0110、0111、1000、1001,在下一个下降沿返回 0000,进入新一轮循环。当输出置成无效态,如初始 Q3Q2Q1Q0 = 1111 时,在第一个下降沿置为 0000,进入循环。

1.2 硬件测试

(1) 搭建电路

如图 1.1 搭建电路, JK 触发器与 74LS11 三输入与门的 14 脚 Vcc 接 5V 高电平, 7 脚接地。

(2) 手控脉冲

输出 Q3Q2Q1Q0 依次连发光管 L13、L14、L15、L16,用手控脉冲作为计数脉冲进行调试,每次下降 沿能让状态变化,变化规律遵从 8421BCD 码;输出 Q3Q2Q1Q0 设置成无效态 1111,在下一状态仍能变成 0000。

(3) 1Hz 计数脉冲

计数脉冲用实验箱 1Hz 信号,结果如下图所示。

电路能自启动,变化规律遵从 8421BCD 码,输出 Q3Q2Q1Q0 设置成无效态 1111,在下一状态仍能变成 0000,进入循环。

(4) 1024Hz 计数脉冲

计数脉冲接 1024Hz 方波,接通电源。

- ①示波器 CH1 测量计数脉冲 CP, CH2 测量输出 Q0,显示波形如图 1.4 所示。
- ②示波器 CH1 测量计数脉冲 CP, CH2 测量输出 Q1,显示波形如图 1.5 所示。
- ③示波器 CH1 测量计数脉冲 CP, CH2 测量输出 Q2, 显示波形如图 1.6 所示。
- ④示波器 CH1 测量计数脉冲 CP, CH2 测量输出 Q3, 显示波形如图 1.7 所示。

图 1.4 输入计数脉冲 CP 与输出 Q0 波形图

图 1.5 输入计数脉冲 CP 与输出 Q1 波形图

图 1.6 输入计数脉冲 CP 与输出 Q2 波形图

实验名称: _____ 时序逻辑电路实验 ____ 姓名: _____ 潘谷雨 ____ 学号: _____ 3220102382

图 1.7 输入计数脉冲 CP 与输出 Q3 波形图

计数脉冲输入 1.024kHz 方波,JK 触发器下降沿触发,电路自启动,一个周期内 Q3Q2Q1Q0 依次为 0000、0001、0010、0011、0100、0101、0110、0111、1000、1001,在下一个下降沿变为 0000,进入新一轮循环,波形与仿真相符,满足 8421BCD 码的同步十进制加法计数器要求。

2. 脉冲分配器

2.1 仿真测试

(1) 搭建电路

如图 2.1 搭建电路。

图 2.1 脉冲分配器电路图

(2) 瞬态分析设置

设置瞬态分析(Time Domain(Transient)),参数为 Run To Time =30s。

实验名称: _____ 时序逻辑电路实验 ____ 姓名: _____ 潘谷雨 ____ 学号: _____ 3220102382

(3)运行仿真分析程序

(4) 查看仿真结果

在 Probe 程序中显示输入计数脉冲 CP 与输出 QA、QB、QC 的波形, X 输入低电平时结果如图 2.2 所示, X 输入高电平时结果如图 2.3 所示。

图 2.2 输入计数脉冲 CP 与输出 QA、QB、QC 仿真波形图 (X=0)

图 2.3 输入计数脉冲 CP 与输出 QA、QB、QC 仿真波形图 (X=1)

计数脉冲输入周期 2s 方波, QA、QB、QC 均输出周期 12s 方波, 当 X= "0" 时, QB 超前 QA, QC 超前 QB, 相位差均为 120°, 当 X= "1" 时, QB 滞后 QA, QC 滞后 QB, 相位差均为 120°。

2.2 硬件测试

(1) 搭建电路

如图 2.1 搭建电路, D 触发器、74LS55 与 74LS00 芯片的 14 脚 Vcc 接 5V 高电平, 7 脚接地。

(2) 手控脉冲

用手控脉冲作为计数脉冲进行调试。实验中用实验箱 1Hz 信号作为手控脉冲,输出 QA、QB、QC 依次连发光管 L16、L15、L14,用逻辑开关 Y12 控制 X 高低电平。初始未接通电源 QA、QB、QC 均为 0,为无效态,接通后,QA 立即变为 1,QB、QC 保持 0,开始循环,电路能自启动。

X="0"时,显示结果如下,LED 灯右移,即电机反转。

X="1"时,显示结果如下,LED 灯左移,即电机正转。

(3) 1kHz 计数脉冲

用逻辑开关 Y12 控制 X 高低电平, 计数脉冲接实验箱 1024Hz 方波信号, 接通电源。X="0"时,

示波器 CH1 测量计数脉冲 CP, CH2 依次测量输出 QA、QB、QC, 波形分别如图 2.4、图 2.5、图 2.6 所示。 X="1"时, CH1 不变, CH2 依次测量输出 QA、QB、QC, 波形分别如图 2.7、图 2.8、图 2.9 所示。

图 2.4 输入计数脉冲与输出 QA 波形图 (X="0")

图 2.5 输入计数脉冲与输出 QB 波形图 (X="0")

图 2.6 输入计数脉冲与输出 QC 波形图 (X="0")

图 2.7 输入计数脉冲与输出 QA 波形图 (X="1")

图 2.8 输入计数脉冲与输出 QB 波形图 (X="1")

图 2.9 输入计数脉冲与输出 QC 波形图 (X="1")

计数脉冲输入 1.024kHz 方波, D 触发器上升沿触发, 电路自启动, 每次上升沿电路改变状态。

X= "0"时,一个周期内 QAQBQC 依次为 100、101、001、011、010、110,在下一个下降沿变为 100,进入新一轮循环,QB 超前 QA,QC 超前 QB,相位差均约为 120°,相当于电机反转。

X= "1"时,一个周期内 QAQBQC 依次为 100、110、010、011、001、101,在下一个下降沿变为 100,进入新一轮循环,QB 滞后 QA,QC 滞后 QB,相位差均为 120°,相当于电机正转。

实验体会和收获:

搭建电路需要注意细节,搭线时注意按顺序不遗漏管脚,导线长短与排布方式均需要分布合理,一鼓作气搭建完成,中途尽量不停顿中断。在实验中我学会了设计电路的方法,将课本上的理论知识应用到实际电路中,不仅巩固了理论学习,还体验到了理论知识转化为实际应用的乐趣。