Redes Neuronales Artificiales Práctica 1

1. Repaso

Para resolver los siguientes ejercicios se recomienda programar una solución utilizando el lenguaje Python junto las librerías NumPy y MatPlotLib.

1.1. Dados los siguientes vectores y matrices:

$$M = \begin{bmatrix} 3 & -9 & 0 & 5 \\ 2 & -5 & -3 & 1 \\ -1 & 5 & 8 & 4 \end{bmatrix} \quad A = \begin{bmatrix} -1 & 1 & 2 \end{bmatrix} \quad B = \begin{bmatrix} -4 & 2 & 1 & -1 \end{bmatrix}$$

Calcular:

- 1. $A \bullet M$
- 2. $A^T \bullet B$
- 3. $M \bullet B^T$
- 4. $A \bullet A^T$

1.2. Dadas las siguientes funciones:

1.
$$f_1(x) = \frac{1}{1 + exp(-x)}$$

2.
$$f_2(x) = tanh(x)$$

3.
$$f_3(x) = sign(x)$$

4.
$$f_4(x) = f_1(x) * (1 - f_1(x))$$

5.
$$f_5(x) = 1 - f_2(x)^2$$

Graficar en el intervalo $x\in[-2,2]$ a f_1,f_2 y f_3 por separado, y a f_1 con f_4 y f_2 con f_5 en la misma figura.