Using monolingual data

$$p(\mathbf{e} \mid \mathbf{f}) = \frac{p_{LM}(\mathbf{e}) \times p_{TM}(\mathbf{f} \mid \mathbf{e})}{p(\mathbf{f})}$$

chain rule

$$p(\mathbf{e}, \mathbf{f}) = p_{LM}(\mathbf{e}) \times p_{TM}(\mathbf{f} \mid \mathbf{e})$$

chain rule

$$p(\mathbf{e}, \mathbf{f}) = p_{LM}(\mathbf{e}) \times p_{TM}(\mathbf{f} \mid \mathbf{e})$$

language model

translation model (conditional language model)

How much training data for each of these?

chain rule

$$p(\mathbf{e}, \mathbf{f}) = p_{LM}(\mathbf{e}) \times p_{TM}(\mathbf{f} \mid \mathbf{e})$$

language model

translation model (conditional language model)

maybe 1B words

Review: neural MT

Er, there's no decomposition here.

$$p(\mathbf{e} \mid \mathbf{f}) = p(\mathbf{e} \mid \mathbf{f})$$

Where did this go?

Is this data still useful?

language model

translation model (conditional language model)

maybe 1B words

MaxEnt (NN mumbo-jumbo term: "shallow fusion")

$$\log p(\mathbf{e} \mid \mathbf{f}) = \log p_{TM}(\mathbf{e} \mid \mathbf{f}) + \beta \log p_{LM}(\mathbf{e})$$

MaxEnt (NN mumbo-jumbo: "shallow fusion")

$$\log p(\mathbf{e} \mid \mathbf{f}) = \log p_{TM}(\mathbf{e} \mid \mathbf{f}) + \beta \log p_{LM}(\mathbf{e})$$

Tune this parameter on development set, once other models are learned

Note difference from Bayes' rule!

 "Deep fusion": output distribution a function of (fixed) LM hidden state and (learned) TM hidden state

• "Deep fusion": output distribution a function of (fixed) LM hidden state and (learned) TM hidden state

	De	-En	Cs-En		
	Dev	Test	Dev	Test	
NMT Baseline	25.51	23.61	21.47	21.89	
Shallow Fusion	25.53	23.69	21.95	22.18	
Deep Fusion	25.88	24.00	22.49	22.36	

	Development Set		Test Set			
	dev2010	tst2010	tst2011	tst2012	tst2013	Test 2014
Previous Best (Single)	15.33	17.14	18.77	18.62	18.88	-
Previous Best (Combination)	-	17.34	18.83	18.93	18.70	-
NMT	14.50	18.01	18.40	18.77	19.86	18.64
NMT+LM (Shallow)	14.44	17.99	18.48	18.80	19.87	18.66
NMT+LM (Deep)	15.69	19.34	20.17	20.23	21.34	20.56

- Idea 1: Train encoder-decoder on parallel and monolingual target-language data.
 - On monolingual data, set context to 0
 (essentially, train decoder without encoder).

- Idea 2: Very old idea: backtranslation
 - MT folklore: in English->Russian->English:
 "The spirit is willing, but the flesh is weak" ->
 "The vodka is good, but the meat is rotten"
- Basic idea: train two systems, backtranslate English to French, then retrain English French-English system on resulting data.

- Monolingual: Empty context vector
- Synthetic: Backtranslation

		BLEU					
name	training instances	newstest2014		newstest2015			
		single	ens-4	single	ens-4		
syntax-based (Sennrich and Haddow, 2015)		22.6	-	24.4	- 1		
Neural MT (Jea	an et al., 2015b)	-	-	22.4	-		
parallel	37m (parallel)	19.9	20.4	22.8	23.6		
+monolingual	49m (parallel) / 49m (monolingual)	20.4	21.4	23.2	24.6		
+synthetic	44m (parallel) / 36m (synthetic)	22.7	23.8	25.7	26.5		

Table 3: English→German translation performance (BLEU) on WMT training/test sets. Ens-4: ensemble of 4 models. Number of training instances varies due to differences in training time and speed.

Synthetic: Backtranslation

BLEU			
2014	2015		
28.8	29.3		
23.6	-		
23.7	1		
24.0	-		
25.9	26.7		
29.5	30.4		
30.8	31.6		
	2014 28.8 23.6 23.7 24.0 25.9 29.5		

Table 5: German→English translation performance (BLEU) on WMT training/test sets (newstest2014; newstest2015).

Synthetic: Backtranslation

phrase-based MT { par +s;

system	BLEU			
	WMT	IWSLT		
parallel	20.1	21.5		
+synthetic	20.8	21.6		
PBSMT gain	+0.7	+0.1		
NMT gain	+2.9	+1.2		

Table 8: Phrase-based SMT results (English→German) on WMT test sets (average of newstest201{4,5}), and IWSLT test sets (average of tst201{3,4,5}), and average BLEU gain from adding synthetic data for both PBSMT and NMT.

Synthetic: Backtranslation

Figure 1: Turkish→English training and development set (tst2010) cross-entropy as a function of training time (number of training instances) for different systems.

Figure 2: English→German training and development set (newstest2013) cross-entropy as a function of training time (number of training instances) for different systems.

Summary: LMs in NMT

- Monday's discussion:
 - Phrase-based MT may be better for adequacy.
 - Neural MT may be better for fluency.
- Do we need a LM if our MT is already fluent?
- More generally: if our discriminative model has enough capacity, do we need a strong prior?
- On the other hand: denoising the input seems to work!

Hybrid systems

- Monday's discussion:
 - Phrase-based MT may be better for adequacy.
 - Neural MT may be better for fluency.
- How can we combine these benefits?

Q: How would we combine a neural and an n-gram language model?

Q: How would we combine a neural and an n-gram language model?

interpolation of *k* LMs:

Neubig & Dyer 2016

$$P(w_i|\boldsymbol{c}) = \sum_{k=1}^{K} \lambda_k(\boldsymbol{c}) P_k(w_i|\boldsymbol{c})$$

interpolation of *k* LMs as matrix multiplication:

Neubig & Dyer 2016

$$P(w_i|\boldsymbol{c}) = \sum_{k=1}^K \lambda_k(\boldsymbol{c}) P_k(w_i|\boldsymbol{c})$$

interpolation of k LMs as matrix multiplication:

Probabilities p^{T}

Coefficients λ^{T}

Distribution matrix D

Neubig & Dyer 2016

$$P(w_i|\boldsymbol{c}) = \sum_{k=1}^K \lambda_k(\boldsymbol{c}) P_k(w_i|\boldsymbol{c})$$

heuristic interpolation of LMs (e.g. Kneser-Ney)

Probabilities p^{T} Heuristic interp. coefficients λ^{T}

$$\begin{bmatrix} \widehat{p}_1 \\ p_2 \\ \vdots \\ p_J \end{bmatrix} = \begin{bmatrix} d_{1,1} & d_{1,2} & \cdots & d_{1,N} \\ d_{2,1} & d_{2,2} & \cdots & d_{2,N} \\ \vdots & \vdots & \ddots & \vdots \\ d_{J,1} & d_{J,2} & \cdots & d_{J,N} \end{bmatrix} \begin{bmatrix} \widehat{\lambda}_1 \\ \widehat{\lambda}_2 \\ \vdots \\ \widehat{\lambda}_N \end{bmatrix}$$

Count-based probabilities $P_C(w_i = j | w_{i-n+1}^{i-1})$

Neubig & Dyer 2016

Probabilities p^{T} Heuristic interp. coefficients λ^{T}

Count-based probabilities $P_C(w_i = j | w_{i-n+1}^{i-1})$

Neubig & Dyer 2016

Probabilities
$$p^{\mathsf{T}}$$
 Result of softmax(NN(c))
$$\begin{bmatrix}
p_1 \\
p_2 \\
\vdots \\
p_J
\end{bmatrix} = \begin{bmatrix}
d_{1,1} & d_{1,2} & \cdots & d_{1,N} \\
d_{1,2} & d_{2,2} & \cdots & d_{2,N} \\
\vdots & \vdots & \ddots & \vdots \\
d_{J,1} & d_{J,2} & \cdots & d_{J,N}
\end{bmatrix} \begin{bmatrix}
\lambda_1 \\
\lambda_2 \\
\vdots \\
\lambda_N
\end{bmatrix}$$

Count-based probabilities $P_C(w_i = j | w_{i-n+1}^{i-1})$

Neubig & Dyer 2016

$$P(w_i|\boldsymbol{c}) = \sum_{k=1}^K \lambda_k(\boldsymbol{c}) P_k(w_i|\boldsymbol{c})$$

matrix interpretation of RNNLM

Probabilities p^{T} Result of softmax(NN(c))

$$\begin{bmatrix}
 p_1 \\
 p_2 \\
 \vdots \\
 p_J
\end{bmatrix} = \begin{bmatrix}
 1 & 0 & \cdots & 0 \\
 0 & 1 & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & 1
\end{bmatrix} \begin{bmatrix}
 \lambda_1 \\
 \lambda_2 \\
 \vdots \\
 \lambda_J
\end{bmatrix}$$

J-by-J identity matrix I

Neubig & Dyer 2016

$$P(w_i|\boldsymbol{c}) = \sum_{k=1}^K \lambda_k(\boldsymbol{c}) P_k(w_i|\boldsymbol{c})$$

matrix interpretation of RNNLM

Probabilities p^{T} Result of softmax(NN(c))

$$\begin{bmatrix}
 p_1 \\
 p_2 \\
 \vdots \\
 p_J
\end{bmatrix} = \begin{bmatrix}
 1 & 0 & \cdots & 0 \\
 0 & 1 & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & 1
\end{bmatrix} \begin{bmatrix}
 \lambda_1 \\
 \lambda_2 \\
 \vdots \\
 \lambda_J
\end{bmatrix}$$

J-by-J identity matrix I

Neubig & Dyer 2016

$$P(w_i|\boldsymbol{c}) = \sum_{k=1}^K \lambda_k(\boldsymbol{c}) P_k(w_i|\boldsymbol{c})$$

neural interpolation of count-based and RNNLM

Probabilities p^{T}

Result of softmax(NN(c))

$$\begin{bmatrix} p_1 \\ p_2 \\ \vdots \\ p_J \end{bmatrix} = \begin{bmatrix} d_{1,1} & \cdots & d_{1,N} & 1 & \cdots & 0 \\ d_{2,1} & \cdots & d_{2,N} & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ d_{J,1} & \cdots & d_{J,N} & 0 & \cdots & 1 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_{J+N} \end{bmatrix}$$

Count-based probabilities and J-by-J identity matrix

Neubig & Dyer 2016

$$P(w_i|\boldsymbol{c}) = \sum_{k=1}^K \lambda_k(\boldsymbol{c}) P_k(w_i|\boldsymbol{c})$$

matrix interpretation of RNNLM

Probabilities p^{T} Result of softmax(NN(c))

$$\begin{bmatrix}
 p_1 \\
 p_2 \\
 \vdots \\
 p_J
\end{bmatrix} = \begin{bmatrix}
 1 & 0 & \cdots & 0 \\
 0 & 1 & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & 1
\end{bmatrix} \begin{bmatrix}
 \lambda_1 \\
 \lambda_2 \\
 \vdots \\
 \lambda_J
\end{bmatrix}$$

J-by-J identity matrix I

Neubig & Dyer 2016

 Training: block dropout (force count-based interpolation weights to zero for first several epochs)

	Dist.	Interp.	PPL
(1)	KN	HEUR	140.8/156.5
(2)	δ	LSTM	105.9/116.9
(3)	KN	LSTM	135.2/149.1
(4)	KN, δ	LSTM -BlDO	108.4/130.4
(5)	KN, δ	LSTM +BlDO	95.3 /104.5

Neubig & Dyer 2016

- Training: block dropout (force count-based interpolation weights to zero for first several epochs).
- Other observations: seem to help with lowfrequency words (where count-based LMs tend to be better)

Arthur et al. 2016

 Observation: phrase-based MT better at adequacy (often due to handling of rare words).

Input: I come from <u>Tunisia</u>.

Reference: チュニジア の 出身です。

Chunisia no shusshindesu.

(I'm from Tunisia.)

System: ノルウェー の 出身です。

Noruue- no shusshindesu.

(I'm from Norway.)

Figure 1: An example of a mistake made by NMT on low-frequency content words.

Arthur et al. 2016

 Observation: phrase-based MT better at adequacy (often due to handling of rare words).

Input: I come from <u>Tunisia</u>.

Reference: チュニジア の 出身です。

Chunisia no shusshindesu.

(I'm from Tunisia.)

System: ノルウェー の 出身です。

Noruue- no shusshindesu.

(I'm from Norway.)

Figure 1: An example of a mistake made by NMT on low-frequency content words.

Arthur et al. 2016

- Observation: phrase-based MT better at adequacy (often due to handling of rare words).
- Basic idea: interpolate conditional neural LM with IBM Model 1 probabilities.

$$p_{o}(e_{i}|F, e_{1}^{i-1}) =$$

$$\begin{bmatrix} p_{l}(e_{i} = 1|F, e_{1}^{i-1}) & p_{m}(e = 1|F, e_{1}^{i-1}) \\ \vdots & \vdots \\ p_{l}(e_{i} = |V_{e}||F, e_{1}^{i-1}) & p_{m}(e = |V_{e}||F, e_{1}^{i-1}) \end{bmatrix} \begin{bmatrix} \lambda \\ 1 - \lambda \end{bmatrix}$$

Arthur et al. 2016

- Observation: phrase-based MT better at adequacy (often due to handling of rare words).
- Basic idea: interpolate conditional neural LM with IBM Model 1 probabilities.

Cyctom	BTEC			<u>KFTT</u>			
System	BLEU	NIST	RECALL	BLEU	NIST	RECALL	
pbmt	48.18	6.05	27.03	22.62	5.79	13.88	
hiero	52.27	6.34	24.32	22.54	5.82	12.83	
attn	48.31	5.98	17.39	20.86	5.15	17.68	
auto-bias	49.74*	6.11*	50.00	23.20^{\dagger}	5.59 [†]	19.32	
hyb-bias	50.34 [†]	6.10*	41.67	22.80 [†]	5.55 [†]	16.67	

Where to next?

- Coursework 2 due Monday (right before lecture).
- You've seen many things that are likely to be useful to you in Coursework 3.
- Next two weeks: more advanced ideas
 Including modeling more language phenomena
- Week 10: final lectures (won't need to understand these for coursework).