$$P(S_i = I) = P$$

$$P(S_1 = -1) = 9 = 1 - P$$

$$\varphi(x) = \left(\frac{\ell}{P}\right)^x$$

$$\mathcal{P}(S_n)$$
 is a mtgle.

$$T_x = \inf \{ n: S_n = x \}$$
 $(x \in \mathbb{Z})$

Then
$$P(T_a < T_b) = \frac{\varphi(b) - \varphi(o)}{\varphi(b) - \varphi(a)}$$
.

If
$$a \in \mathbb{Z}$$
 and $a < 0$ then $P(T_a < \infty) = \left(\frac{q}{\rho}\right)^{-\alpha}$.

Remark

Remark

$$\left\{ T_{\alpha} < \infty \right\} = \left\{ \inf_{n} S_{n} \leq \alpha \right\}.$$

(Since S_n is integer-valued, inf s_n is attained unless it is $-\infty$).

Thus for $0 > a \in \mathbb{Z}$, $P(\inf_{n} S_{n} \leq a) = (\frac{q}{p})^{-a}$,

So
$$P\left(-\inf_{n} S_{n} \ge -\alpha\right) = \left(\frac{2}{p}\right)^{-\alpha}$$

$$P(y \in \{0,1,2,...,\infty\}) = 1,$$

$$S_{O}$$
 $\lambda = \sum_{\kappa \in \mathbb{N}} \mathbf{1}_{\{\lambda^{> \kappa}\}}$

So
$$E(y) = \sum_{k \in \mathbb{N}} P(y \geqslant k)$$

$$= \sum_{k=1}^{\infty} \left(\frac{q}{p}\right)^{k}$$

$$= \frac{q}{p-q}$$

$$= \frac{q}{p-q}$$

In particular, E(y) < 0.

Then
$$E(T_b) = \frac{b}{p-2} = \frac{b}{E(\xi_i)}$$
.

$$\text{If } Z_n = S_n - (p-q)n.$$

Then
$$\mathbb{Z}_n = \sum_{m \leq n} \xi_m'$$
 where $\xi_n' = \xi_n - (p-2)$.

$$\xi'_1, \xi'_2, \xi'_3, \dots$$
 are independent, and $E(\xi'_n) = 0$.

Hence, for each n,
$$E(Z_{T_b \wedge n}) = E(Z_1) E(T_b \wedge n) = 0$$
.

Wald's

first Eqn

(
$$T_b \wedge N$$
 is a stopping time with $E(T_b \wedge N) < \infty$ and (Z_n) is a RW with $E(Z_i) = 0$).

But
$$Z_{T_b \wedge n} = \int_{T_b \wedge n} - (P-Q) T_b \wedge n$$

For each
$$\omega \in \{ T_b < \infty \}$$
,

for each $n > T_b(\omega)$,

 $S_{T_b \wedge n}(\omega) = S_{T_b}(\omega)$.

 $S_{T_b \wedge n}(\omega) = S_{T_b}(\omega)$.

So
$$S_{T_b \Lambda n} \rightarrow S_{T_b} = b$$
 a.s.
Also, $\inf_{m} S_m \leq S_{T_b \Lambda n} < b$.
and $O > E(\inf_{m} S_m) > -\infty$, $O < E(b) = b$.
So apply the P.C.T.

So
$$(P-q) E(T_b) = b$$
,
So $E(T_b) = \frac{b}{P-q}$.

Propr Let
$$0 < b \in \mathbb{Z}$$
.

Then $Var(T_b) = b \frac{1 - (p-e)^2}{(p-1)^3}$.

Pf Let S_k and Z_n be as before.

Apply Wald's 2^{n^d} equation.

More About Symmetric Simple RW (Reference: Feller, V.I.1)

 Ω path is a finite sequence $(k_0, x_0), \dots, (k_n, x_n) \in \mathbb{Z} \times \mathbb{Z}$

Such that $k_j = k_{j-1} + 1$ and $|X_j - X_{j-1}| = 1$ for each j = 1, ..., n. (usually $k_0 \ge 0$).

Such a path is said to be from (k_0, χ_0) to (k_1, χ_n) and is said to be of length n. Thus the length of the path is the number of Segments $(k_{j-1}, \chi_{j-1}) \longrightarrow (k_j, \chi_j)$.

The number of positive steps in such a path is

$$\alpha = \left| \left\{ j \in \{1, ..., n\} : \chi_{j-1} \chi_{j-1} = 1 \right\} \right|_{j}$$

and the number of negative steps is

$$b = \left| \left\{ j \in \{1, \dots, n\} : \chi_j - \chi_{j-1} = -1 \right\} \right|$$

Clearly
$$a + b = n$$
,
and $a - b = \sum_{j=1}^{n} (x_j - x_{j-1})$
 $= x_n - x_0$.

Hence
$$\alpha = \frac{n + (x_n - x_o)}{2}$$
, and $b = \frac{n - (x_n - x_o)}{2}$

Since a and b are integers $\geqslant 0$, $-n \leq x_n - x_0 \leq n$

and the integers n and $\chi_n - \chi_o$ are either both even or both odd.

Conversely, given integess

K., n, x., and xn such that

 $-n \in x_n - x_o \in n$ (this implies $n \ge 0$)

and such that n and $x_n - x_0$ are either both even or both odd, then the set of paths from (k_0, x_0) to $(k_0 + n, x_n)$ is in one-to-one correspondence with the set of α -element subsets of $\{1, ..., n\}$ $\{1, ..., n\} = \emptyset$ if n = 0, where $\alpha = \frac{n + (x_n - x_0)}{2}$.

So the number of such paths is $\binom{n}{a}$, which we'll denote by

 $N_{n, x_{n}-x_{o}}$

Of course, this is the same as

the number of paths from (0,0) to (n,x) where $x = x_n - x_0$.

The Reflection Principle (Desiré André, 1887).

Let x and y be integers > 0.

Then the number of paths from (0, x) to (n, y)that are 0 at some time is equal to the number of paths from (0, -x) to (n, y).

Pf

Let $(0, A_0)$, $(1, A_1)$,..., (n, A_n) be a path from (0, X) to (n, y) such that $A_k = 0$ for some $k \in \{1, ..., n-1\}$. Let K be the least such k. Let $A_k = \{1, ..., n-1\}$ for $A_k = \{1, ..., n-1\}$.

Then $(0, s'_0), (1, s'_1), ..., (n_1 s'_n)$ is a path from (0, -x) to (n, y), because each increment $S'_k - S'_{k-1}$, being either $S_k - S_{k-1}$, $-S_k - (-s_k)$

 $\Delta_{k}^{\prime} - \Delta_{k-1}^{\prime}$, being either $\underbrace{S_{k} - S_{k-1}}_{\pm 1}$, $\underbrace{-S_{k} - (-S_{k-1})}_{\mp 1}$, or $S_{k} - (-S_{k-1})$, and the third case only happens if k = K+1, so $S_{k} = \pm 1$, and $S_{k-1} = 0$.

The rust of the proof Consists of going back the other way...