Versuchsprotokoll W4

Messung von molaren Massen

10.06.2015

Alexander Schlüter, Tobias Holthaus

Gruppe 23/mi alx.schlueter@gmail.com holthaus.tobias@gmail.com

Inhaltsverzeichnis

1	Einführung		1
	1.1	Dampfdichtemethode	1
	1.2	Gefrierpunktserniedrigung	2
2	Versuch		5
	2.1	Bestimmung der molaren Masse einer Probesubstanz durch das Dampf-	
		dichteverfahren	5
		2.1.1 Ethanol	5
		2.1.2 Cyclohexan	6
	2.2	Bestimmung der molaren Masse einer Probesubstanz durch seine Gefrier-	
		punktserniedrigung	6
3	Diskussion		8
	3.1	Bestimmung der molaren Masse einer Probesubstanz durch das Dampf-	
		dichteverfahren	8
	3.2	Bestimmung der molaren Masse einer Probesubstanz durch seine Gefrier-	
		punktserniedrigung	8

1 Einführung

Ein Mol ist eine Stoffmenge von ca. $6,022\cdot 10^{23}$ Teilchen, was der Anzahl von Atomen in $12\,\mathrm{g}^{-12}\mathbf{C}$ entspricht. Die molare Masse M eines Stoffes ist dann die Masse eines Mols in der Einheit g/mol und lässt sich aus einer Probe mit Masse m und Stoffmenge ν berechnen:

$$M = \frac{m}{\nu} \tag{1.1}$$

1.1 Dampfdichtemethode

Bei der Dampfdichtemethode wird die molare Masse aus der Volumenausdehnung bei bekanntem Druck und Temperatur mithilfe der idealen Gasgleichung

$$pV = \nu RT \tag{1.2}$$

ermittelt.

Abbildung 1: Versuchsaufbau zur Dampfdichtemethode¹.

¹Markus Donath und Anke Schmidt. Anleitung zu den Experimentellen Übungen zur Optik, Wärmelehre und Atomphysik. Auflage Sommersemester 2015. Westfälische Wilhelms-Universität Münster. Physikalisches Institut, 2015.

Die molare Masse der Probesubstanz lässt sich aus den Werten unter Normalbedingungen für Molvolumen V_{m0} , Druck p_0 und Temperatur T_0 , und den im Versuch gemessenen Werten für Druck p, Temperatur T und Volumen V berechnen:

$$M = m \frac{V_{m0}}{V} \frac{p_0}{p} \frac{T}{T_0} \tag{1.3}$$

Beim Wiegen muss der Auftrieb in Luft beachtet werden. Wird eine Spritze einmal leer (m_1) und einmal mit einer Flüssigkeit gefüllt (m_2) auf derselben elektrischen Wage gewogen, so kann mit dem Volumen der Flüssigkeit $V_{\rm Fl}$ und der Dichte von Luft $\rho_L = 1,204\,{\rm g/L}$ die vom Auftrieb korrigierte Masse der Flüssigkeit berechnet werden:

$$m_{\rm Fl} = (m_2 - m_1) + \rho_L V_{\rm Fl}$$
 (1.4)

Da für ein Volumen von $V \leq 0.2 \,\mathrm{ml}$ der Korrekturterm kleiner als 1 mg ist und die im Praktikum verwendete Waage nur bis auf 10 mg genau misst, wird dies im folgenden vernachlässigt.

1.2 Gefrierpunktserniedrigung

Wird eine Substanz in einem Lösungsmittel gelöst, so verringert sich der Dampfdruck im Vergleich zum reinen Lösungsmittel um Δp_D . Nach dem Raoultschen Gesetz ist die relative Dampfdruckerniedrigung nur abhängig von der Teilchenanzahl der Substanz ν_S bzw. des Lösungsmittels ν_L , aber unabhängig von der Art der Teilchen:

$$\frac{\Delta p_D}{p_D} = \frac{\nu_S}{\nu_L} \tag{1.5}$$

Wie in Abb. 2 zu sehen, sinkt der Gefrierpunkt der Lösung aufgrund des verringerten Dampdruckes um ΔT . Hieraus lässt sich die molare Masse der gelösten Substanz errechnen:

$$M_S = K \frac{m_S}{m_L} \frac{1}{\Delta T} \tag{1.6}$$

 m_S ist die Masse der gelösten Substanz, m_L die Masse des Lösungsmittels und K ist die kryoskopische Konstante, welche vom Lösungsmittel abhängig ist und über die molare Schmelzenthalpie berechnet werden kann.

²Markus Donath und Anke Schmidt. Anleitung zu den Experimentellen Übungen zur Optik, Wärmelehre und Atomphysik. Auflage Sommersemester 2015. Westfälische Wilhelms-Universität Münster.

Abbildung 2: Dampfdruckkurven von Lösung, flüssigem und festem Lösungsmittel².

Physikalisches Institut, 2015.

Literatur

Donath, Markus und Anke Schmidt. Anleitung zu den Experimentellen Übungen zur Optik, Wärmelehre und Atomphysik. Auflage Sommersemester 2015. Westfälische Wilhelms-Universität Münster. Physikalisches Institut, 2015.