Importing Libraries

In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

Importing Datasets

In [2]:

df=pd.read_csv(r"C:\Users\user\Downloads\C10_air\csvs_per_year\csvs(Dataset)\madrid_2007.
df

Out[2]:

	date	BEN	со	EBE	MXY	имнс	NO_2	NOx	ОХҮ	O_3	
0	2007- 12-01 01:00:00	NaN	2.86	NaN	NaN	NaN	282.200012	1054.000000	NaN	4.030000	1
1	2007- 12-01 01:00:00	NaN	1.82	NaN	NaN	NaN	86.419998	354.600006	NaN	3.260000	
2	2007- 12-01 01:00:00	NaN	1.47	NaN	NaN	NaN	94.639999	319.000000	NaN	5.310000	
3	2007- 12-01 01:00:00	NaN	1.64	NaN	NaN	NaN	127.900002	476.700012	NaN	4.500000	1
4	2007- 12-01 01:00:00	4.64	1.86	4.26	7.98	0.57	145.100006	573.900024	3.49	52.689999	1
225115	2007- 03-01 00:00:00	0.30	0.45	1.00	0.30	0.26	8.690000	11.690000	1.00	42.209999	
225116	2007- 03-01 00:00:00	NaN	0.16	NaN	NaN	NaN	46.820000	51.480000	NaN	22.150000	
225117	2007- 03-01 00:00:00	0.24	NaN	0.20	NaN	0.09	51.259998	66.809998	NaN	18.540001	
225118	2007- 03-01 00:00:00	0.11	NaN	1.00	NaN	0.05	24.240000	36.930000	NaN	NaN	
225119	2007- 03-01 00:00:00	0.53	0.40	1.00	1.70	0.12	32.360001	47.860001	1.37	24.150000	
225120 rows × 17 columns											

Data Cleaning and Data Preprocessing

In [3]:

df=df.dropna()

In [4]:

```
df.columns
```

```
Out[4]:
```

In [5]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 25443 entries, 4 to 225119
Data columns (total 17 columns):
    Column
             Non-Null Count Dtype
    -----
             -----
---
0
    date
             25443 non-null object
 1
    BEN
             25443 non-null float64
 2
    CO
             25443 non-null float64
 3
    EBE
             25443 non-null float64
 4
    MXY
             25443 non-null float64
 5
             25443 non-null float64
    NMHC
 6
    NO_2
             25443 non-null float64
 7
    NOx
             25443 non-null float64
 8
    OXY
             25443 non-null float64
 9
    0 3
             25443 non-null float64
 10
    PM10
             25443 non-null float64
 11
    PM25
             25443 non-null float64
 12
    PXY
             25443 non-null float64
 13
    SO 2
             25443 non-null float64
 14
    TCH
             25443 non-null float64
 15
    TOL
             25443 non-null float64
 16 station 25443 non-null int64
dtypes: float64(15), int64(1), object(1)
memory usage: 3.5+ MB
```

In [8]:

```
data=df[['station', 'TCH', 'TOL']]
data
```

Out[8]:

	station	тсн	TOL
4	28079006	1.94	21.200001
21	28079024	1.54	8.440000
25	28079099	1.84	15.010000
30	28079006	2.23	21.330000
47	28079024	1.53	8.400000
225073	28079006	1.28	7.850000
225094	28079099	1.33	3.340000
225098	28079006	1.28	4.560000
225115	28079024	1.44	0.510000
225119	28079099	1.32	2.410000

25443 rows × 3 columns

Line chart

In [9]:

```
data.plot.line(subplots=True)
```

Out[9]:

array([<AxesSubplot:>, <AxesSubplot:>], dtype=object)

Line chart

```
In [10]:
```

```
data.plot.line()
```

Out[10]:

<AxesSubplot:>

Bar chart

In [11]:

b=data[0:50]

In [12]:

b.plot.bar()

Out[12]:

<AxesSubplot:>

Histogram

In [13]:

data.plot.hist()

Out[13]:

<AxesSubplot:ylabel='Frequency'>

Area chart

In [14]:

data.plot.area()

Out[14]:

<AxesSubplot:>

Box chart

In [15]:

data.plot.box()

Out[15]:

<AxesSubplot:>

Pie chart

In [17]:

```
b.plot.pie(y='station' )
```

<AxesSubplot:ylabel='station'>

Scatter chart

In [18]:

```
data.plot.scatter(x='station' ,y='TOL')
```

Out[18]:

<AxesSubplot:xlabel='station', ylabel='TOL'>

In [19]:

```
df.info()
```

Int64Index: 25443 entries, 4 to 225119 Data columns (total 17 columns): Column # Non-Null Count Dtype _____ -----0 date 25443 non-null object 1 BEN 25443 non-null float64 2 CO 25443 non-null float64 3 EBE 25443 non-null float64 4 MXY 25443 non-null float64 5 NMHC 25443 non-null float64 6 NO 2 25443 non-null float64 7 25443 non-null float64 NOx8 0XY 25443 non-null float64 9 0_3 25443 non-null float64 10 PM10 25443 non-null float64 11 PM25 25443 non-null float64 12 PXY 25443 non-null float64 13 SO 2 25443 non-null float64 14 TCH 25443 non-null float64 15 25443 non-null float64 TOL station 25443 non-null int64 dtypes: float64(15), int64(1), object(1) memory usage: 3.5+ MB

<class 'pandas.core.frame.DataFrame'>

```
In [20]:
```

```
df.describe()
```

Out[20]:

	BEN	СО	EBE	MXY	NMHC	NO_2
count	25443.000000	25443.000000	25443.000000	25443.000000	25443.000000	25443.000000
mean	1.146744	0.505120	1.394071	2.392008	0.249967	58.532683
std	1.278733	0.423231	1.268265	2.784302	0.142627	37.755029
min	0.130000	0.000000	0.120000	0.150000	0.000000	1.690000
25%	0.450000	0.260000	0.780000	0.960000	0.160000	31.285001
50%	0.770000	0.400000	1.000000	1.500000	0.220000	54.080002
75%	1.390000	0.640000	1.580000	2.855000	0.300000	79.230003
max	30.139999	9.660000	31.680000	65.480003	2.570000	430.299988
4						>

In [21]:

```
df1=df[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3', 'PM10', 'PXY', 'SO_2', 'TCH', 'TOL', 'station']]
```

EDA AND VISUALIZATION

In [22]:

sns.pairplot(df1[0:50])

Out[22]:

<seaborn.axisgrid.PairGrid at 0x220851bf4f0>

In [23]:

```
sns.distplot(df1['TOL'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[23]:

<AxesSubplot:xlabel='TOL', ylabel='Density'>

In [24]:

sns.heatmap(df1.corr())

Out[24]:

<AxesSubplot:>

TO TRAIN THE MODEL AND MODEL BULDING

```
In [25]:
```

```
In [26]:
```

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear Regression

In [27]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[27]:

LinearRegression()

In [28]:

```
lr.intercept_
```

Out[28]:

28079009.445346206

In [29]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[29]:

	Co-efficient
BEN	-33.295002
со	18.460482
EBE	0.804154
MXY	-1.028983
NMHC	-39.893319
NO_2	0.107691
NOx	-0.033843
OXY	5.073755
O_3	-0.026383
PM10	0.148810
PXY	7.137987
SO_2	0.184490
тсн	25.579256
TOL	3.013003

In [30]:

```
prediction =lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[30]:

<matplotlib.collections.PathCollection at 0x22094aff3a0>

ACCURACY

```
In [31]:
lr.score(x_test,y_test)
Out[31]:
0.15658034817295796
In [32]:
lr.score(x_train,y_train)
Out[32]:
0.16040101066333845
Ridge and Lasso
In [33]:
from sklearn.linear_model import Ridge,Lasso
In [34]:
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
Out[34]:
Ridge(alpha=10)
Accuracy(Ridge)
In [35]:
rr.score(x_test,y_test)
Out[35]:
0.15651166203018474
In [36]:
rr.score(x_train,y_train)
Out[36]:
0.1603509695403328
In [37]:
la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[37]:
Lasso(alpha=10)
```

```
In [38]:
```

```
la.score(x_test,y_test)
```

Out[38]:

0.011348336385610946

Accuracy(Lasso)

```
In [39]:
la.score(x_train,y_train)
Out[39]:
0.014633893408507292
```

Accuracy(Elastic Net)

```
In [40]:
from sklearn.linear_model import ElasticNet
en=ElasticNet()
en.fit(x_train,y_train)
Out[40]:
ElasticNet()
In [41]:
en.coef_
Out[41]:
                              , -0.
array([-7.99120661, 0.
                                           , 0.09725735, -0.
        0.05781774, -0.05434256, 0.61204634, -0.05206503, 0.17822584,
        0.7630782 , -0. , 0.
                                              0.92763063])
In [42]:
en.intercept_
Out[42]:
28079045.32997434
In [43]:
```

prediction=en.predict(x_test)

```
In [44]:
en.score(x_test,y_test)
Out[44]:
```

Evaluation Metrics

```
In [45]:
```

```
from sklearn import metrics
print(metrics.mean_absolute_error(y_test,prediction))
print(metrics.mean_squared_error(y_test,prediction))
print(np.sqrt(metrics.mean_squared_error(y_test,prediction)))
36 73147362190291
```

36.73147362190291 1543.4894917284475 39.28726882500803

0.06558933566008651

Logistic Regression

```
feature_matrix.shape

Out[48]:
(25443, 14)

In [49]:
target_vector.shape

Out[49]:
(25443,)
```

```
In [50]:
```

from sklearn.preprocessing import StandardScaler

```
In [51]:
fs=StandardScaler().fit_transform(feature_matrix)
In [52]:
logr=LogisticRegression(max_iter=10000)
logr.fit(fs,target_vector)
Out[52]:
LogisticRegression(max_iter=10000)
In [53]:
observation=[[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
In [54]:
prediction=logr.predict(observation)
print(prediction)
[28079099]
In [55]:
logr.classes_
Out[55]:
array([28079006, 28079024, 28079099], dtype=int64)
In [56]:
logr.score(fs,target_vector)
Out[56]:
0.8146838030106512
In [57]:
logr.predict_proba(observation)[0][0]
Out[57]:
1.082753977181323e-19
In [58]:
logr.predict_proba(observation)
Out[58]:
```

Random Forest

array([[1.08275398e-19, 1.80383815e-19, 1.00000000e+00]])

```
In [59]:
```

```
from sklearn.ensemble import RandomForestClassifier
```

```
In [60]:
```

```
rfc=RandomForestClassifier()
rfc.fit(x_train,y_train)
```

Out[60]:

RandomForestClassifier()

In [61]:

In [62]:

```
from sklearn.model_selection import GridSearchCV
grid_search = GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="accuracy")
grid_search.fit(x_train,y_train)
```

Out[62]:

In [63]:

```
grid_search.best_score_
```

Out[63]:

0.8256597417181359

In [64]:

```
rfc_best=grid_search.best_estimator_
```

In [65]:

```
from sklearn.tree import plot_tree

plt.figure(figsize=(80,40))
plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['a','b','c','d'],f
```

Out[65]:

```
[\text{Text}(2271.8571428571427, 1993.2, 'NOx <= 38.025 \mid ngini = 0.666 \mid nsamples = 0.666 
11245\nvalue = [6051, 5651, 6108]\nclass = c'),
 Text(1175.7857142857142, 1630.8000000000002, 'EBE <= 0.995\ngini = 0.355
nsamples = 2669 nvalue = [262, 3302, 635] nclass = b'),
 Text(637.7142857142857, 1268.4, 'TCH <= 1.345\ngini = 0.474\nsamples = 14
19\nvalue = [195, 1512, 511]\nclass = b'),
 Text(318.85714285714283, 906.0, 'EBE <= 0.655\ngini = 0.607\nsamples = 77
4\nvalue = [174, 582, 452]\nclass = b'),
 samples = 372\nvalue = [130, 427, 30]\nclass = b'),
 Text(79.71428571428571, 181.1999999999999999, 'gini = 0.219\nsamples = 56\n
value = [77, 11, 0] \setminus (ass = a'),
 Text(239.1428571428571, 181.199999999999, 'gini = 0.29\nsamples = 316\n
value = [53, 416, 30]\nclass = b'),
 Text(478.2857142857142, 543.599999999999, 'NMHC <= 0.215 \cdot i = 0.471 \cdot i
samples = 402\nvalue = [44, 155, 422]\nclass = c'),
 Text(398.57142857142856, 181.1999999999982, 'gini = 0.345\nsamples = 339
\nvalue = [40, 68, 419]\nclass = c'),
 Text(558.0, 181.1999999999982, 'gini = 0.141\nsamples = 63\nvalue = [4,
87, 3] \nclass = b'),
 Text(956.5714285714284, 906.0, 'NOx <= 33.115\ngini = 0.148\nsamples = 64
5\nvalue = [21, 930, 59]\nclass = b'),
 samples = 526\nvalue = [16, 766, 27]\nclass = b'),
 Text(717.4285714285713, 181.1999999999999, 'gini = 0.528 \nsamples = 35 \n
value = [9, 35, 11]\nclass = b'),
 Text(876.8571428571428, 181.199999999999, 'gini = 0.06\nsamples = 491\n
value = [7, 731, 16] \setminus class = b'),
 Text(1116.0, 543.59999999999, 'BEN <= 0.47\ngini = 0.308\nsamples = 119
\nvalue = [5, 164, 32]\nclass = b'),
 Text(1036.2857142857142, 181.1999999999999, 'gini = 0.471 \nsamples = 48
\nvalue = [1, 51, 28] \setminus class = b'),
 Text(1195.7142857142856, 181.199999999999, 'gini = 0.126\nsamples = 71
\nvalue = [4, 113, 4] \setminus ass = b'),
 Text(1713.8571428571427, 1268.4, 'TOL <= 1.175\ngini = 0.178\nsamples = 1
250\nvalue = [67, 1790, 124]\nclass = b'),
 Text(1514.5714285714284, 906.0, 'NOx <= 31.66\ngini = 0.054\nsamples = 10
35\nvalue = [21, 1596, 24]\nclass = b'),
 Text(1434.8571428571427, 543.599999999999, 'TCH <= 1.315\ngini = 0.039\n
samples = 992\nvalue = [11, 1543, 20]\nclass = b'),
 Text(1355.142857142857, 181.1999999999982, 'gini = 0.086\nsamples = 397
\nvalue = [8, 602, 20] \setminus class = b'),
 Text(1514.5714285714284, 181.1999999999982, 'gini = 0.006\nsamples = 595
\nvalue = [3, 941, 0] \setminus class = b'),
 value = [10, 53, 4]\nclass = b'),
 Text(1913.1428571428569, 906.0, 'NOx <= 17.35\ngini = 0.57\nsamples = 215
\nvalue = [46, 194, 100] \setminus class = b'),
 Text(1753.7142857142856, 543.599999999999, 'TOL <= 1.515\ngini = 0.094\n
samples = 53\nvalue = [3, 78, 1]\nclass = b'),
 Text(1673.9999999999, 181.199999999982, 'gini = 0.168\nsamples = 26
\nvalue = [3, 40, 1] \setminus class = b'),
 Text(1833.4285714285713, 181.1999999999982, 'gini = 0.0\nsamples = 27\nv
alue = [0, 38, 0] \setminus nclass = b'),
 nsamples = 162 nvalue = [43, 116, 99] nclass = b'),
 Text(1992.8571428571427, 181.1999999999982, 'gini = 0.454\nsamples = 52
\nvalue = [7, 59, 18] \setminus ass = b'),
 Text(2152.285714285714, 181.1999999999982, 'gini = 0.633\nsamples = 110
\nvalue = [36, 57, 81] \setminus class = c'),
 Text(3367.928571428571, 1630.8000000000002, 'BEN <= 1.315\ngini = 0.628\n
```

```
samples = 8576\nvalue = [5789, 2349, 5473]\nclass = a'),
  Text(2869.7142857142853, 1268.4, 'OXY <= 0.625\ngini = 0.617\nsamples = 5
539\nvalue = [2539, 1788, 4469]\nclass = c'),
  Text(2550.8571428571427, 906.0, 'TCH <= 1.395\ngini = 0.581\nsamples = 13
22\nvalue = [1216, 6, 355]\nclass = a'),
  Text(2391.428571428571, 543.599999999999, 'OXY <= 0.415\ngini = 0.38\nsa
mples = 790\nvalue = [1006, 108, 194]\nclass = a'),
  Text(2311.7142857142853, 181.1999999999982, 'gini = 0.094\nsampies = 285
\nvalue \neq [468, 12, 12]\nclass = a'),
  Text(2471.142857142857, 181.19999999999982, 'gini = 0.502\nsamples = 505
\nvalue = [538, 96, 182]\nclass = a'),
  Text(2710.285714285714, 543.599999999999, \CO <= 0.265\ngini = 0.586\nsa
mples = 532\nualue [210, 47%, 161\nclass b'),
  Text(2630.5714285714284), 181.199999999999982, \'gini\ = 0.217\nsamples = 165
\langle nvalue \rangle = \langle [13, \langle 222, \langle 17 \rangle \rangle \rangle = b'),
 97, 256, 144]\nclass = b'),
TO (BC*US1016)714284, 906.0, 'TCH <= 1.465\ngini = 0.544\nsamples = 42
17\nvalue = [1323, 1202, 4114]\nclass = c'),
  = 3273 \text{ nvalue} = [1172, 518, 3462] \text{ nclass} = c'),
Accuração (1100) - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 -
\nvalue = [149, 16, 9]\nclass = a'),
2\nvalue = [1023, 502, 3453]\nclass = c'),
Text(3347.99999999999, 543.59999999999, 'CO <= 0.295\ngini = 0.586\ns Ridges Regrasion: 0.160354949540332852]\nclass = b'),
  Text(3268.285714285714, 181.1999999999982, 'gini = 0.172\nsamples = 252
Lassburearession:0:074639899408507292
  Text(3427.7142857142853, 181.1999999999982, 'gini = 0.565\nsamples = 692
\nvalue = [145, 307, 619]\nclass = c'), 

E | 256 | C. | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 14
7\nvalue = [3250, 561, 1004]\nclass = a'),
Lbeystie 522 gress 571: 628 5468 3863 6106 5 WelC <= 0.255 \ngini = 0.269 \nsamples = 24
8\nvalue = [58, 337, 5]\nclass = b'),
samples = 217\nvalue = [17, 335, 0]\nclass = b'),
Random Farestis suitable for this dataset ini = 0.413\nsamples = 30\n
value = [14, 34, 0]\nclass = b'),
  Text(3746.5714285714284, 181.1999999999982, 'gini = 0.02\nsamples = 187
\nvalue = [3, 301, 0] \setminus class = b'),
  Text(4145.142857142857, 906.0, '0_3 <= 14.59\ngini = 0.424\nsamples = 278
9\nvalue = [3192, 224, 999]\nclass = a'),
  Text(3985.7142857142853, 543.599999999999, 'PXY <= 2.935 \setminus 100 = 0.519\n
samples = 1714\nvalue = [1651, 186, 864]\nclass = a'),
  Text(3905.99999999995. 181.199999999982. 'gini = 0.549\nsamples = 134
```