Grafika komputerowa Laboratorium

Stanislau Antanovich & Mykola Sharonov

Spis treści

1	Buo	dowa obiektu sterowanego	
	1.1	Opis zadania	
	1.2	Wymagania	
	1.3	Realizaja zadania	
2	Buc	dowa otoczenia	
	2.1	Opis zadania	
	2.2	Wymagania	
	2.3	Realizaja zadania	
3	Teksturowanie		
	3.1	Opis zadania	
	3.2	Wymagania	
	3.3		
4	Ste	rowanie obiektem głównym	
	4.1	Opis zadania	
	4.2	Wymagania	
		Realizacia zadania	

1 Budowa obiektu sterowanego

1.1 Opis zadania

Należy zbudować "robot rolniczy (łazik)" wykorzystując wyłącznie prymitywy bazujące na trójkącie. Obiekt ten będzie wykorzystywany na kolejnych zajęciach. W tworzonej grze komputerowej użytkownik będzie miał możliwość sterowania tym łazikiem.

1.2 Wymagania

Wymagania dotyczące budowy głósnego obiektu:

- Na ocenę 3: Obiekt złożony z co najmniej 10 brył elementarnych (walec, prostopadłościan, itp.) zbudowanych przy użyciu prymitywów bazujących na trójkącie.
- Na ocenę 4: Obiekt złożony z co najmniej 20 brył elementarnych (walec, prostopadłościan, itp.) zbudowanych przy użyciu prymitywów bazujących na trójkącie.
- Na ocenę 5: Obiekt złożony z co najmniej 25 brył elementarnych (walec, prostopadłościan, itp.) zbudowanych przy użyciu prymitywów bazujących na trójkącie oraz projekt napisany obiektowo w C++.

Możliwość zaimportowania łazika z programu graficznego (np. Blender) o budowie odpowiadającej co najmniej 25 bryłom elementarnym.

1.3 Realizaja zadania

2 Budowa otoczenia

2.1 Opis zadania

Należy zbudować elementy otoczenia, w którym będzie poruszał się robot rolniczy wykorzystując wyłącznie prymitywy bazujące na trójkącie. Elementy te będą wykorzystywane na kolejnych zajęciach i będą powiązanie z fabułą gry.

2.2 Wymagania

Wymagania dotyczące budowy otoczenia:

- Na ocenę 3: Przygotowanie otoczenia o podłożu płaskim oraz utworzenie dwóch obiektów dodatkowych (drzewo, bramka, budynek).
- Na ocenę 4: Przygotowanie otoczenia o podłożu nieregularnym (góra, stadion, wyboista ziemia) oraz utworzenie jednego obiektu dodatkowego.
- Na ocenę 5: Import otoczenia z programu graficznego (otoczenie o podłożu nieregularnym i minimum 1 obiekt dodatkowy).

2.3 Realizaja zadania

3 Teksturowanie

3.1 Opis zadania

Należy dokonać teksturowania według przedstawionych poniżej kryteriów.

3.2 Wymagania

Wymagania dotyczące dodania teksurowania.

- Na ocenę 3: Teksturowanie obiektów otoczenia oraz utworzenie autorskiego rozwiązania sterowaniem kamerą.
- Na ocenę 4: Jak na ocenę 3 oraz teksturowanie powierzchni.
- Na ocenę 5: Jak na ocenę 4 oraz teksturowanie obiektu, który będzie sterowany (minimum 3 bryły).

3.3 Realizacja zadania

4 Sterowanie obiektem głównym

4.1 Opis zadania

Należy dokonać sterowanie obiektem głównym.

4.2 Wymagania

Wymagania dotyczące sterowania obiektem głównym.

- Na ocenę 3: Realizacja prostego sterowanie przód-tył i obrót wokół własnej osi.
- Na ocenę 4: Implementacja prostej fizyki sterowania (w przypadku łazika różnica prędkości na gąsienicach lub oś skrętna).
- Na ocenę 5: Jak na ocenę 4 oraz implementacja podstawowych zagadnień fizycznych np. pęd ciała.

4.3 Realizacja zadania