## Capitolo 1

# Categorie

#### Definizione 1.0.1: Categoria

Una categoria C è data da una classe di oggetti  $\mathrm{Ob}(C)$  e  $\forall X,Y \in \mathrm{Ob}(C)$  da un insieme di morfismi da X a Y indicato con  $\mathrm{Hom}(X,Y) = \mathrm{Hom}_C(X,Y) = C(X,Y)$  e da una azione composizione di morfismi, cioè  $\forall X,Y,Z \in \mathrm{Ob}(C)$  (anche scritto  $X,Y,Z \in C$ ) un'operazione

$$C(X,Y) \times C(Y,Z) \to C(X,Z)(f,g) \qquad \mapsto g \circ f$$

tale che

- 0.  $C(X,Y) \cap C(X',Y') \neq \emptyset \implies X = X' \in Y = Y'$
- 1. <br/> <br/> è associativa, cioè  $\forall X,Y,Z,W\in C$ e  $\forall f\in C(X,Y)$ e<br/>  $\forall g\in C(Y,Z)$ e  $\forall h\in C(Z,W)$ allora

$$h \circ (q \circ f) = (h \circ q) \circ f$$

2.  $\forall X \in C$  esiste  $1_X = \mathrm{id}_X \in C(X,X)$  che è elemento neutro di X cioè  $\forall Y \in C$  e  $\forall f \in C(X,Y)$ ,

$$f \circ 1_X = f$$
 ,  $1_Y \circ f = f$ 

**Esempio 1.0.1.** La categoria degli insiemi Set che ha come oggetti tutti gli insiemi e  $\forall X, Y \in \text{Set}$  i morfismi  $\text{Set}(X, Y) = \{f : X \to Y\}$  le funzioni e  $\circ$  la composizione di funzioni

Osservazione. Se ho C tale che valgano solo 1. e 2. e non necessariamente 0. posso ottenere la categoria C' che soddisfa anche 0. ponendo Ob(C') := Ob(C) e

$$C'(X,Y) := \{X\} \times C(X,Y) \times \{Y\}$$

Esempio 1.0.2. Le categorie concrete, in cui gli oggetti sono insiemi con qualche struttura e i morfismi sono funzioni tra insiemi che preservano la struttura (con  $\circ$  sempre la composizione di funzioni). In particolare:

- La categoria **Grp** dei gruppi, dove gli oggetti sono i gruppi e i morfismi gli omomorfismi di gruppi
- La categoria Rng degli anelli
- Dato un anello A,la categoria  $\mathtt{A}-\mathtt{Mod}$  /  $\mathtt{Mod}-\mathtt{A}$  degli A-moduli sinistri / destri

- Dato un anello commutativo A, la categoria A Alg delle A-algebre
- La categoria Top degli spazi topologici (con funzioni continue come morfismi)

Nota. Dato  $f \in C(X,Y)$  si può indicare con  $f: X \to Y$  "come fosse una funzione"

**Esempio 1.0.3.** Le categorie discrete, cioè tali che gli unici morfismi sono  $1_X$  per ogni  $X \in C$ .

**Esempio 1.0.4.** C tale che  $\forall X,Y\in C,\ \#C(X,Y)=1,$  ottengo una relazione  $\leq$  su  $\mathrm{Ob}(C)$  in cui

$$X \preccurlyeq Y \iff C(X,Y) \neq \emptyset$$

e  $\preccurlyeq$ è riflessivo (perché  $\exists 1_X\in C(X,X)\forall X\in C)$ e transitivo, perché  $\exists \circ.$  Ne consegue che  $\preccurlyeq$ è un preordine

Viceversa, data una relazione di preordine  $\leq$  su un insieme (o una classe) S, ottengo una categoria C con  $\mathrm{Ob}(C) := S$  e  $\forall X, Y \in S$ ,

$$C(X,Y) := \begin{cases} \{f_{X,Y}\} & \text{se } X \preceq Y \\ \varnothing & \text{altrimenti} \end{cases}$$

con l'unica composizione possibile

Esempio 1.0.5 (Categoria Vuota). Prendendo  $Ob(C) = \emptyset$ 

Osservazione.  $\forall X \in C$  con C una categoria,  $\operatorname{End}_C(X) := C(X,X)$  è un monoide con  $\circ$ , ne consegue il prossimo esempio

Esempio 1.0.6 (Monoide). Una categoria con un solo oggetto è un monoide. Viceversa ogni monoide può essere visto come categoria di un solo oggetto.

Esempio 1.0.7 (Diagrammi). Possiamo definire categorie date da diagrammi, in cui si rappresentano i morfismi (non l'identità). Ad esempio:

$$\bullet \longrightarrow \bullet \qquad \bullet \Longrightarrow \bullet \qquad \bullet \longrightarrow \bullet \longleftarrow \bullet$$

sono tre categorie diverse, rispettivamente con 2, 2, e 3 oggetti

## Definizione 1.0.2: Categoria opposta

La categoria opposta di C è denotata  $C^{op}$  ed è definita da

$$Ob(C^{op}) := Ob(C) \quad C^{op}(X, Y) := C(Y, X)$$

con composizione in  $\circ^{op}$  data da  $f \circ^{op} g := g \circ f$ 

Osservazione.

$$(C^{op})^{op} = C$$

Esempio 1.0.8 (Categoria Prodotto). Siano  $C_{\lambda}$  per  $\lambda \in \Lambda$  delle categorie. Allora la categoria prodotto

$$C:=\prod_{\lambda\in\Lambda}C_\lambda$$

è definita da

$$\mathrm{Ob}(C) := \prod_{\lambda \in \Lambda} \mathrm{Ob}(C_{\lambda})$$

$$C((X_{\lambda})_{\lambda \in \Lambda}, (Y_{\lambda})_{\lambda \in \Lambda}) := \prod_{\lambda \in \Lambda} C_{\lambda}(X_{\lambda}, Y_{\lambda})$$

$$(g_{\lambda})_{\lambda \in \Lambda} \circ (f_{\lambda})_{\lambda \in \Lambda} := (g_{\lambda} \circ f_{\lambda})_{\lambda \in \Lambda}$$

Esempio 1.0.9 (Cateogoria Coprodotto). La categoria coprodotto

$$C := \coprod_{\lambda \in \Lambda} C_{\lambda}$$

è definita con  $\mathrm{Ob}(C) := \coprod_{\lambda \in \Lambda} \mathrm{Ob}(C_{\lambda})$  l'unione disgiunta.

$$\forall X,Y \in C \quad C(X,Y) := \begin{cases} C_{\lambda}(X,Y) & \text{ se } X,Y \in C_{\lambda} \text{ per qualche } \lambda \in \Lambda \\ \varnothing & \text{ altrimenti} \end{cases}$$

 $con \circ ovvia.$ 

#### Definizione 1.0.3: Sottocategoria

Sia C una categoria. Allora una sottocategoria C' di C è data da una sottoclasse  $\mathrm{Ob}(C')\subseteq \mathrm{Ob}(C)$  e  $\forall X,Y\in C'$  da un sottoinsieme  $C'(X,Y)\subseteq C(X,Y)$  tale che  $\circ$  si restringe a C' e  $1_X\in C'(X,X)$  per ogni  $X\in C'$ . In particolare C' è una categoria.

**Esempio 1.0.10.** Se C è un monoide (cateogoria di un oggetto), allora le sottocategorie non vuote di C sono i sottomonoidi.

#### Definizione 1.0.4: Sottocategoria Piena

Una sottocategoria C' di C si dice **piena** se C'(X,Y) = C(X,Y) per ogni $X,Y \in C'$ 

Osservazione. Una sottocategoria piena di C equivale a dare una sottoclasse di  $\operatorname{Ob}(C)$ 

Esempio 1.0.11 (Gruppi Abeliani). Ab  $\subseteq$  Grp sottocategoria piena dei gruppi abeliani. Similmente anche CRng  $\subseteq$  Rng sottocategoria piena degli anelli commutativi.

Oltre alle sotto-strutture sono anche importanti i quozienti, e anche qui possiamo dare una definizione astratta

#### Definizione 1.0.5: Congruenza

Una congruenza  $\sim$ su una categoria C è data da una relazione di equivalenza  $\sim$ su C(X,Y)  $\forall X,Y\in C$  tale che

$$\forall X,Y,Z \in C, \forall f,f' \in C(X,Y) \, \forall g,g' \in C(Y,Z) \quad f \sim f',g \sim g' \implies g \circ f \sim g' \circ f'$$
 equivalentemente  $g \sim g' \implies g \circ f \sim g' \circ f$  e  $h \circ g \sim h \circ g'$ 

#### Definizione 1.0.6: Quoziente

Sia  $\sim$ una congruenza su C,allora possiamo definire la categoria quoziente  $C/\sim$  definita da

$$\mathrm{Ob}(C/\sim) = \mathrm{Ob}(C) \quad (C/\sim)(X,Y) := C(X,Y)/\sim \quad \forall X,Y \in C$$

e  $\circ$  è indotta da quella di C, ossia

$$\overline{g}\circ\overline{f}:=\overline{g\circ f}$$

**Esempio 1.0.12** (Omotopia). Sia  $C = \text{Top e } \sim_h \text{l'omotopia, ossia } f, g: X \to Y$  sono omotope se  $\exists H: X \times [0,1] \to Y$  continue tali che

$$f(x) = H(x,0), \quad g(x) = H(x,1) \quad \forall x \in X$$

e si ottiene Toph := Top/  $\sim_h$ 

Esempio 1.0.13 (Gruppo quoziente). Sia G un gruppo (visto come monoide, ossia categoria di un oggetto) e sia  $H \triangleleft G$  e  $\sim$  su G data da  $a \sim b \iff aH = bH$ . Allora G/N è la categoria quoziente  $G/\sim$ . Viceversa ogni  $\sim$  congruenza su G si può scrivere in tal modo prendendo  $H = \{a \in G : a \sim 1\} \triangleleft G$  (esercizio).

#### Definizione 1.0.7: morfismo invertibile

Sia  $f: X \to Y$  un morfismo in una categoria C. Allora esso è invertibile a sinistra (destra) se  $\exists f': Y \to X$  tale che  $f' \circ f = 1_X$  ( $f \circ f' = 1_Y$ ).

Osservazione. f è invertibile a sinistra (destra) in C, allora f è invertibile a destra (sinistra) in  $C^{op}$ 

### Definizione 1.0.8: Isomorfismo

 $f: X \to Y$ è un **isomorfismo** se  $\exists f': Y \to X$  tale che  $f' \circ f = 1_X$  e  $f \circ f' = 1_Y$ 

Osservazione. f è isomorfismo se e solo se f è invertibile a destra e a sinistra.

Dimostrazione.

 $\implies$  ovvio

 $\iff \exists f', f'' \text{ tale che } f' \circ f = 1_X \text{ e } f \circ f'' = 1_Y, \text{ allora}$ 

$$f'\circ (f\circ f'')=f'=f''=(f'\circ f)\circ f''$$

e dunque f è invertibile.

In particolare dunque la f' della definizione di isomorfismo è unica e viene denotata  $f^{-1}$ 

#### Definizione 1.0.9

Siano  $X,Y\in C$ . Allora X e Y sono isomorfe  $(X\cong Y)$  se esiste un  $f:X\to Y$  isomorfismo.

Osservazione.  $1_X$  è isomorfismo e  $1_X^{-1} = 1_X$ . Se f isomorfismo allora  $f^{-1}$  isomorfismo e  $(f^{-1})^{-1} = f$ . Se f, g isomorfismi componibili, allora  $g \circ f$  è isomorfismo e  $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$ 

Ne segue che  $\cong$  è una relazione di equivalenza su  $\mathrm{Ob}(C)$ 

#### Definizione 1.0.10

Un morfismo  $f: X \to Y$  in C è detto **monomorfismo** se  $\forall Z \in C$  la funzione

$$f_*: C(Z,X) \longrightarrow C(Z,Y)$$
  
 $g \longmapsto f_*(g) = f \circ g$ 

è iniettiva

#### Definizione 1.0.11: Epimorfismo

f è un **epimorfismo** in C se è monomorfismo in  $C^{op}$ , ossia  $\forall Z \in C$  la funzione

$$f^*: C(Y,Z) \longrightarrow C(X,Z)$$
  
 $g \longmapsto f^*(g) = g \circ f$ 

è iniettiva.

**Proposizione 1.0.1.** f è invertibile a sinistra (destra), allora f è monomorfismo (epimorfismo)

Dimostrazione.Basta dimostrare che se f è invertibile a sinistra, allora è mono.

Sappiamo che  $\exists f': Y \to X$  tale che  $f' \circ f = 1_X$ . Dobbiamo dimostrare che  $f_*$  è iniettiva. Siano  $g, h \in C(Z, X)$  tali che  $f_*(g) = f_*(h)$ . Allora  $f \circ g = f \circ g$ , da cui  $f' \circ f \circ g = f' \circ f \circ h$  e dunque g = h

## Proposizione 1.0.2. Sia C concreta. Allora

f invertibile a sinistra (destra)  $\Longrightarrow$  f iniettiva (suriettiva)  $\Longrightarrow$  f mono (epi)

Dimostrazione. Non possiamo usare il trick della categoria opposta, perché non è detto che  $C^{op}$ sia ancora concreta.

Sia f' tale che  $f' \circ f = 1_X$   $(f \circ f' = 1_Y)$ , allora chiaramente f iniettiva (suriettiva) perché le composizioni  $1_X$  e  $1_Y$  sono biunivoche.

Se 
$$f$$
 è iniettiva, allora se  $f$  è suriettiva, allora  $\Box$ 

In generale non vale nessuna delle  $\iff$ .

**Esempio 1.0.14.** In Set se  $f: X \to Y$  è suriettiva, allora f è invertibile a sinistra. Infatti basta scegliere (AOC)  $f'(y) \in f^{-1}\{y\}$  per ogni  $y \in Y$ . Inoltre se  $X \neq \emptyset$  e  $f: X \to Y$  è iniettiva, allora f è invertibile a sinistra.

## Esercizio 1.0.1

In A-Mod, mostrare che  $f:M\to N$  iniettiva è invertibile a sinistra se e solo se  $\operatorname{Im}(f)\subseteq N$  è addendo diretto.

Mostrare che  $f:M\to N$  suriettiva è invertibile a destra se e solo se  $\mathrm{Ker}(f)\subseteq M$  è addendo diretto

Concludere che valgono sempre entrambe le implicazioni se e solo se A è semisemplice.

**Esempio 1.0.15.** In Set, se f è mono (epi), allora f è iniettiva (suriettiva).

Infatti, poniamo per assurdo  $f: X \to Y$  non iniettiva, dunque siano  $x, y \in X$  tali che f(x) = f(y). Allora preso  $Z = \{z\}$  e  $g, h: Z \to X$  tali che g(z) = x e h(z) = y abbiamo che  $f \circ g = f \circ h$  da cui g = h e dunque x = y

Supponiamo fnon suriettiva, mostrare per esercizio  $\exists g,h:Y\to Z$ tali che  $g\neq h$  ma  $g\circ f=h\circ f$ 

**Esempio 1.0.16.** In  $A-\operatorname{Mod} f:M\to N$  è mono (epi), allora f è iniettiva (suriettiva).

Infatti  $i: \operatorname{Ker} f \to M$  inclusione tale che  $f \circ i = 0$  e anche  $0: \operatorname{Ker} f \to M$  è tale che  $f \circ 0 = 0$ . Concludiamo che i = 0 e dunque  $\operatorname{Ker} f = 0$ .

Similmente  $\pi:N\to\operatorname{coKer} f$  è tale che  $\pi\circ f=0$  e se f è epi allora  $0=\pi$  e dunque  $\operatorname{coKer} f=0$  e dunque f è suriettiva.

Esempio 1.0.17. In Grp f mono (epi), allora f iniettiva (suriettiva)

Per mono  $\implies$  iniettiva si può usare la stessa dei moduli, mentre per l'altra è un po' più complicato, ma si dimostra che è vero lo stesso

**Esempio 1.0.18.** In Rng  $f: A \to B$  mono, allora f iniettiva.

Tuttavia f epi **non implica** f suriettiva. Ad esempio preso  $i: \mathbb{Z} \hookrightarrow \mathbb{Q}$  è epi, infatti  $\forall A$  anello esiste al più un omomorfismo  $\mathbb{Q} \to A$  ( $f: \mathbb{Q} \to A$  sia omomorfismo, allora  $f|_{\mathbb{Z}}$  è l'unico omomorfismo e  $f(\frac{a}{b}) = f(a)f(b)^{-1}$ ). Chiaramente però non è suriettiva.

#### Definizione 1.0.12: Funtore

Un funtore  $F: C \to D$  tra 2 categorie è dato da una funzione  $F: \mathrm{Ob}(C) \to \mathrm{Ob}(D)$  e  $\forall X, X' \in C$  una funzione  $F = F_{X,X'}: C(X,X') \to D(F(X),F(X'))$  tale che

$$F(g \circ f) = F(g) \circ F(f)$$

(se f e g sono componibili in C) e  $F(1_X) = 1_{F(X)}$  per ogni  $X \in C$ 

**Proposizione 1.0.3.** Sia F un funtore e f invertibile a sinistra (destra). Allora F(f) è invertibile a sinistra (destra)

Dimostrazione.  $\exists f'$  tale che  $f' \circ f = 1_X$ , allora  $F(f') \circ F(f) = F(f' \circ f) = F(1_X) = 1_{F(X)}$ .

Osservazione. Segue che f iso, allora F(f) iso e  $F(f)^{-1} = F(f^{-1})$ 

**Esempio 1.0.19.** Sia  $C' \subseteq C$  sottocategoria. Allora  $C' \to C$ ,  $X \mapsto X$  e  $f \mapsto f$  è un funtore

**Esempio 1.0.20.** Se  $\sim$  è una congruenza, allora  $C \to C/\sim$  è un funtore, con  $X \mapsto X$  e  $f \mapsto \overline{f}$ 

**Esempio 1.0.21** (Funtore dimenticante).  $C \to \mathsf{Set}$  con C categoria discreta e  $X \mapsto X, \, f \mapsto f$  è un funtore, che "dimentica" la struttura aggiunta.

Analogamente anche Rng  $\to$  Ab, con  $(A,+,\cdot) \to (A,+)$  è un funtore dimenticante.

Osservazione. Notare che il secondo funtore dimenticante non preserva gli epimorfismi. Sarebbe infatti  $i:\mathbb{Z}\to\mathbb{Q}$  l'inclusione è un'epimorfismo in Rng ma non in Ab

**Esempio 1.0.22.** Sia  $A \to B$  un omomorfismo di anelli. Allora la restrizione degli scalare è un funtore  $B - Mod \to A - Mod$ 

**Esempio 1.0.23.** Funtore tra 2 categorie discrete C e D è una funzione  $\mathrm{Ob}(C) \to \mathrm{Ob}(D)$ 

**Esempio 1.0.24.** Un funtore tra 2 preordini C e D è una funzione  $\mathrm{Ob}(C) \to \mathrm{Ob}(D)$  che preserva la relazione di preordine.

Esempio 1.0.25. Un funtore tra 2 monoidi è un omomorfismo di monoidi.

Più in generale dato G un monoide e una categoria C , un funtore  $G\to C$  è dato da  $X\in C$  e da un omomorfismo di monoidi  $G\to {\rm End}_C(X)$ 

Se G è un gruppo un funtore  $G \to C$  è dato da  $X \in C$  e un omomorfismo di gruppi  $G \to \operatorname{Aut}_C(X)$ . Ad esempio se  $C = \operatorname{Set}$  il funtore dà un'azione di un gruppo su un insieme. Similmente se  $C = \mathbb{K}$ -spazi vettoriali ho una rappresentazione di G.

**Esempio 1.0.26** (Funtore costante). Date C, D categorie preso  $Y \subseteq D$  si può considerare il funtore costante di valore  $Y, C \to D, X \mapsto Y$  e  $f \mapsto 1_Y$ 

**Esempio 1.0.27.** Presa  $\mathsf{Top}_*$ la categoria degli spazi topologici puntati, il gruppo fondamentale

$$\pi_1: \mathtt{Top}_* \to \mathtt{Grp}$$

è un funtore

Esempio 1.0.28.  $\forall n \in \mathbb{N}$  ci sono funtori di omologia (singolare)

$$H_n: \mathtt{Top} o \mathtt{Ab}$$

#### Teorema 1.0.4: Omomorfismo

Sia ~ una congruenza su C e  $F:C\to D$  un funtore tale che se  $f\sim f'$  in C allora F(f)=F(f'). Allora esiste un unico funtore  $\overline{F}:C/_{\sim}\to D$  tale che  $\overline{F}(\overline{f})=F(f)$  per ogni f morfismo di C

**Esempio 1.0.29.** Negli esempi precedenti se f e f' sono omotope, allora  $\pi_1(f) = \pi_1(f')$  e  $H_n(f) = H_n(f')$ , dunque inducono funtori

$$\pi_1: \mathtt{Toph}_* o \mathtt{Grp} \quad H_n: \mathtt{Toph} o \mathtt{Ab}$$

Nota. I funtori che abbiamo definito si dicono anche funtori covarianti

## Definizione 1.0.13: funtore controvariante

Un funtore controvariante  $C \to D$  è un funtore (covariante)  $C^{op} \to D$ .

**Esempio 1.0.30.**  $\forall n \in \mathbb{N}$  i funtori di coomologia (singolare) sono funtori controvarianti  $H^n : \text{Top}(\mathbf{h})^{op} \to \text{Ab}$ 

Esempio 1.0.31. Sia C una categoria,  $X \in C$ 

$$C(X,-):C\to \mathtt{Set}$$
 
$$Y\mapsto C(X,Y)\quad (f:Y\to Y')\mapsto (f_*:C(X,Y)\to C(X,Y'))$$
 
$$q\mapsto f\circ q$$

è un funtore perché  $(f' \circ f)_* = f'_* \circ f_*$ Analogamente

$$C(-,Y):C^{op}\to \mathtt{Set}$$
 
$$X\mapsto C(X,Y)\quad (f:X\to X')\mapsto (f^*:C(X',Y)\to C(X,Y))$$
 
$$g\mapsto g\circ f$$

Osservazione. C'è anche un funtore

$$\begin{split} C(-,=): C^{op} \times C &\to \mathtt{Set} \\ (X,Y) &\mapsto C(X,Y) \\ (f:X \to X',g:Y \to Y') &\mapsto (f^*:C(X',Y) \to C(X,Y), g_*:C(X,Y) \to C(X,Y')) \end{split}$$

**Esempio 1.0.32.** Per ogni gruppo G, preso il sottogruppo dei commutatori [G,G], allora per ogni  $f:G\to H$  omomorfismo di gruppi,  $f([G,G])\subseteq [H,H]$  quindi si ottiene un funtore

$$\begin{aligned} \mathtt{Grp} &\to \mathtt{Grp} \\ G &\mapsto [G,G] \\ (f:G \to H) &\to (f|_{[G,G]}:[G,G] \to [H,H]) \end{aligned}$$

e anche

$$\begin{split} \operatorname{Abel}: \operatorname{\mathsf{Grp}} \to \operatorname{\mathsf{Ab}} \\ G &\mapsto \frac{G}{[G,G]} \text{ (abelianizzato di } G \text{ )} \\ (f:G\to H) &\mapsto \left(\overline{f}:\frac{G}{[G,G]}\to \frac{H}{[H,H]}\right) \\ & \qquad \qquad G \xrightarrow{\quad f \quad } H \\ & \downarrow^p \quad \qquad \downarrow^q \\ & \stackrel{G}{\underset{[G,G]}{\longrightarrow}} \xrightarrow{\stackrel{H}{\underset{[H,H]}{\longrightarrow}}} \end{split}$$

## Esercizio 1.0.2

Indicando con Z(X) il centro di X,

- a. Mostrare che non esiste un funtore  $F:\operatorname{Rng}\to\operatorname{Rng}$  tale che  $\forall A\in\operatorname{Rng}$  F(A)=Z(A).
- b. Mostrare che non esiste un funtore  $F: \mathtt{Grp} \to \mathtt{Ab}$  tale che  $\forall G \in \mathtt{Grp}\ F(G) = Z(G)$ .

Supponiamo l'esistenza di F.

a. Se prendo  $i:\mathbb{C}\hookrightarrow\mathbb{H}$ , allora  $F(\mathbb{C})=\mathbb{C}$  e  $F(\mathbb{H})=\mathbb{R}$ . A tal punto però  $F(i):\mathbb{C}\to\mathbb{R}$  che non esiste perché altrimenti

$$-1 = F(i)(-1) = F(i)(i^2) = F(i)(i)^2$$

b. Consideriamo

$$\{(1),(12)\} \stackrel{i}{\hookrightarrow} S_3 \stackrel{\varepsilon}{\rightarrow} \{\pm 1\}$$

Allora  $\varepsilon \circ i = \mathrm{Id}_{C_2}$ . Allora avremmo

$$0_{\operatorname{End}(C_2)} = F(\varepsilon) \circ F(i) = F(\varepsilon \circ i) = F(\operatorname{id}_{C_2}) = \operatorname{id}_{C_2}$$

L'identità

$$id_C: C \to C \quad X \mapsto X \quad f \mapsto f$$

è un funtore Si possono comporre i funtori. Dati ad esempio

$$C \stackrel{F}{\to} D \stackrel{G}{\to} E$$

funtori, possiamo definire  $G\circ F:C\to E$  come  $X\mapsto G(F(X))$  e  $f\mapsto G(F(f))$  è un funtore.

La composizione è associativa e  $F \circ id_C = F = id_C \circ F$ 

In tal modo otteniamo una categoria Cat delle categorie (piccole<sup>1</sup>)

<sup>&</sup>lt;sup>1</sup>si potrebbe anche fare di tutte le categorie, ma per motivi insiemistici/logici dovremmo introdurre gli universi di Grothendieck e fare le cose per bene. Al fine di evitare questo inutile sforzo, ci limitiamo a considerare le categorie piccole.

#### Definizione 1.0.14

Un funtore  $F:C\to D$  è un isomorfismo se lo è in Cat, cioè se  $\exists G:D\to C$  funtore tale che  $G\circ F=\mathrm{id}_C=F\circ G$ 

#### Definizione 1.0.15: iniettivo e suriettivo

Un funtore  $F:C\to D$  è iniettivo/suriettivo se  $F:\mathrm{Ob}(C)\to\mathrm{Ob}(D)$  è iniettivo/suriettivo.

Nel caso in cui F sia sia iniettivo che suriettivo, è **biunivoco**.

## Definizione 1.0.16: Fedele e pieno

F è detto **fedele** (**pieno**) se  $\forall X, Y \in C, F : C(X,Y) \to D(F(X), F(Y))$  è iniettivo (suriettivo).

Nel caso in cui F sia sia fedele che pieno, si dice che è **pienamente fedele** 

#### Esercizio 1.0.3

 ${\cal F}$  funtore è isomorfismo se e solo se  ${\cal F}$  è pienamente fedele e biunivoco.

**Esempio 1.0.33.** Se  $C' \subseteq C$  è una sottocategoria, allora il funtore di inclusione  $i: C' \to C$  è iniettivo e fedele ed è pieno se e solo se  $C' \subseteq C$  è piena.

Ad esempio se  $\sim$  è una congruenza in C , allora il funtore quoziente  $C\to C/\sim$  è biunivoco e pieno.

Esempio 1.0.34. Un omomorfismo di monoidi (categorie di un oggetto) è iniettivo (suriettivo) se e solo se come funtore è fedele (pieno). In ogni caso è biunivoco.

**Esempio 1.0.35.** I funtori dimenticanti  $\mathbb{Z}-\mathtt{Mod}\to\mathtt{Ab}\ \mathrm{e}\ \mathbb{Z}-\mathtt{Alg}\to\mathtt{Rng}\ \mathrm{sono}$  isomorfismi.

Esempio 1.0.36. Anche  $Mod - A \cong A^{op} - Mod$  ed esiste un isomorfismo (anche se non sono categorie piccole).

#### Definizione 1.0.17

Un funtore  $F:C\to D$  è essenzialmente iniettivo/suriettivo se la funzione ridotta

$$Ob(C)/\cong \to Ob(D)/\cong$$

è iniettivo/suriettivo

Osservazione. Se  ${\cal F}$  è suriettivo allora  ${\cal F}$  è essenzialmente suriettivo. L'altra implicazione non vale. Ad esempio

$$(\bullet) \longrightarrow (\bullet \rightleftharpoons \bullet)$$

Nessuna delle implicazioni tra iniettiva e essenzialmente iniettiva è vera. Basti considerare

$$(\bullet) \longleftarrow (\bullet \rightleftharpoons \bullet)$$

per essenzialmente iniettiva  $\Longrightarrow$  iniettiva e

$$(ullet$$
  $ullet$   $) \longrightarrow (ullet$   $\Longleftrightarrow ullet$   $)$ 

per iniettiva  $\Longrightarrow$  essenzialmente iniettiva.

**Proposizione 1.0.5.** Sia  $F: C \to D$  un funtore pienamente fedele. Allora  $F \ \grave{e}$  essenzialmente iniettivo

Dimostrazione. Siano  $X,Y\in C$  tali che  $F(X)\cong F(Y)$  in D. Devo dimostrare che  $X\cong Y$  in C.

Sappiamo che esiste  $g: F(X) \to F(Y)$  isomorfismo in D. Poiché F è pieno esiste  $f \in C(X,Y)$  tale che F(f) = g. Analogamente  $\exists f' \in C(Y,X)$  tale che  $F(f') = g^{-1}$ .

$$F(f' \circ f) = F(f') \circ F(f) = g^{-1} \circ g = 1_{F(X) = F(1_X)}$$

Se F è fedele, allora  $f'\circ f=1_X$  e analogamente  $f\circ f'=1_Y$  da cui f è isomorfismo e duque  $X\cong Y$ 

#### Definizione 1.0.18: Trasformazione naturale

Siano  $F, F': C \to D$  funtori.

Una trasformazione naturale  $\alpha: F \to F'$  (si può anche scrivere  $\alpha: F \implies F'$ ) è il dato di un morfismo

$$\alpha_X : F(X) \to F'(X) \text{ in } D \ \forall X \in C$$

tale che  $\forall f: X \to Y$  morfismo di C il diagramma

$$F(X) \xrightarrow{F(f)} F(Y)$$

$$\downarrow^{\alpha_X} \qquad \downarrow^{\alpha_Y}$$

$$F'(X) \xrightarrow{F'(f)} F'(Y)$$

commuta in D, cioè  $\alpha_Y \circ F(f) = F'(f) \circ \alpha_X$ 

Esempio 1.0.37. Consideriamo i due funtori Abel :  $\operatorname{Grp} \to \operatorname{Grp}$  e id :  $\operatorname{Grp} \to \operatorname{Grp}$ . C'è una trasformazione naturale  $\alpha$  : id  $\to$  Abel definita per ogni  $G \in \operatorname{Grp}$  da

$$\alpha_G: G \longrightarrow \frac{G}{[G,G]}$$

$$a \longmapsto \alpha_G(a) = a[G,G]$$

è naturale perché  $\forall f:G \rightarrow H$  in  $\mathtt{Grp}$  il diagramma

$$\begin{array}{ccc} G & \xrightarrow{f} & H \\ \downarrow^{\alpha_G} & & \downarrow^{\alpha_H} \\ \frac{G}{[G,G]} & \xrightarrow{\overline{f}} & \frac{H}{[H,H]} \end{array}$$

Esempio 1.0.38. Supponendo di avere  $F, F': G \to \mathsf{Set}$  funtori (G gruppo visto come categoria con un oggetto), cioè G-insiemi (azioni di G su insiemi). Allora una trasformazione naturale  $\alpha: F \to F'$  è un morfismo di G-insiemi cioè una funzione  $\alpha: F(G) \to F'(G)$  tale che  $\alpha(gx) = g\alpha(x)$  per ogni  $g \in G$  e per ogni  $x \in F(G)$ .

Osservazione.  $\forall F:C\to D,$   $\mathrm{id}_F:F\to F$  data da  $(\mathrm{id}_F)_X=\mathrm{id}_{F(X)}$  per ogni  $X\in C$  è una trasformazione naturale.

#### Esercizio 1.0.4

Dati  $F, F', F'': C \to D$  funtori,  $\alpha: F \to F'$  e  $\beta: F' \to F''$  trasformazioni naturali, allora la composizione  $\beta \circ \alpha: F \to F''$  è definita da

$$\beta_X \circ \alpha_X =: (\beta \circ \alpha)_X : F(X) \to F''(X)$$

Mostrare che  $\alpha \circ \beta$  è una trasformazione naturale

La composizione dell'esercizio precedente è anche detta composizione verticale di trasformazioni naturali, per via di questo disegno esplicativo:

$$C \xrightarrow{F} D$$

$$\downarrow \beta \nearrow D$$

$$F''$$

Considerando funtori e trasformazioni naturali, si ottiene (assumiamo sempre C piccola) la categoria  $\operatorname{Fun}(C,D)$  (anche denotata  $D^C$ ) con oggetti i funtori  $C \to D$ , morfismi le trasformazioni naturali e composizione la composizione verticale.

#### Definizione 1.0.19

Data una categoria C, la categoria dei morfismi di C è

$$\mathtt{Mor}(C) := \mathtt{Fun}(\cdot \to \cdot, C)$$

che ha come oggetti esattamente  $\{f: \to X-Y: f \text{ morfismo di } C\}$  e trasformazioni naturali date da  $(X \xrightarrow{f} Y) \to (X' \xrightarrow{f'} Y')$  è data da  $(g: X \to X', h: Y \to Y')$  tale che

$$X \xrightarrow{f} Y$$

$$\downarrow^g \qquad \downarrow^h$$

$$X' \xrightarrow{f'} Y'$$

#### Definizione 1.0.20

Date  $F,G:C\to D$  funtori,  $\alpha:F\to G$  trasformazione naturale, allora  $\alpha$  è isomorfismo (naturale o di funtori) se è isomorfismo in Fun(C,D) cioè se  $\exists \beta:G\to F$  trasformazione naturale tale che  $\beta\circ\alpha=\mathrm{id}_F,\ \alpha\circ\beta=\mathrm{id}_G.$  In tal caso  $F\in G$  si dicono isomorfi (denotato  $F\cong G$ ).

Osservazione.  $\cong$  di funtori è una relazione di equivalenza

**Esempio 1.0.39.** Il primo gruppo di omologia si può vedere come l'abelianizzato del gruppo fondamentale. In linguaggio categorico abbiamo

$$\operatorname{\mathsf{Top}}_* \overset{\pi_1}{ o} \operatorname{\mathsf{Grp}} \overset{\operatorname{Abel}}{ o} \operatorname{\mathsf{Ab}}$$
 e 
$$\operatorname{\mathsf{Top}}_* o \operatorname{\mathsf{Top}} \overset{H_1}{ o} \operatorname{\mathsf{Ab}}$$
  $(X, x_0) \mapsto \operatorname{\mathsf{comp.}} \operatorname{c.p.a.} \operatorname{a} x_0$ 

sono funtori isomorfi

Osservazione.  $F\cong F'$  allora F e F' inducono la stessa funzione  $\mathrm{Ob}(C)/_{\cong}\to\mathrm{Ob}(D)/_{\cong}$  quindi F è essenzialmente iniettiva / suriettiva se e solo se F' lo è.

#### Esercizio 1.0.5

Mostrare che non necessariamente la precedente osservazione vale per le proprietà di iniettività e suriettività.

**Proposizione 1.0.6.** Se  $F \cong F'$  allora F è fedele/pieno se e solo se F' è fedele/pieno.

 $\begin{array}{l} \textit{Dimostrazione.} \ \ \text{Sia} \ \alpha: F \to F' \ \text{l'isomorfismo.} \ \ \text{Definiamo} \\ \overline{\alpha} = (g \mapsto \alpha_Y \circ F(F) \circ \alpha_X^{-1}) \ \text{Per ogni} \ X, Y \in C, \end{array}$ 



**Proposizione 1.0.7.**  $\alpha, \beta$  trasformazioni naturali inducono una trasformazione naturale  $\beta * \alpha : G \circ F \to G' \circ F'$ 

$$G(F(X)) \xrightarrow{G(\alpha_X)} G(F'(X))$$

$$\downarrow^{\beta_{F(X)}} \qquad \downarrow^{\beta_{F'(X)}}$$

$$G'(F(X)) \xrightarrow{G'(\alpha_X)} G'(F'(X))$$

dunque 
$$(\beta * \alpha)_X := \beta_{F'(X)} \circ G(\alpha_X) = G'(\alpha_x) \circ \beta_{F(X)}$$
.

Dimostrazione che è una trasformazione naturale. Vogliamo mostrare che b\*a è naturale, cioè  $\forall f:X\to Y$  in C il diagramma

$$G(F(X)) \xrightarrow{G(F(f))} G(F(X))$$

$$\downarrow^{(\beta*\alpha)_X} \qquad \downarrow^{(\beta*\alpha)_Y}$$

$$G'(F'(X)) \xrightarrow{G'(F'(f))} G'(F'(X))$$

commuta. Ma questo è vero perché

$$G'(F'(f)) \circ (\beta * \alpha)_X = G'(F'(f)) \circ G'(\alpha_x) \circ \beta_{F(X)} = G'(F'(f) \circ \alpha_X) \circ \beta_{F(X)} =$$

$$\stackrel{\alpha \text{ nat.}}{=} G'(\alpha_Y \circ F(f)) \circ \beta_{F(X)} = G'(\alpha_Y) \circ G'(F(f) \circ \beta_{F(X)}) =$$

$$\stackrel{\beta \text{ nat.}}{=} G'(\alpha_Y) \circ \beta_{F(Y)} \circ G(F(f)) = (\beta * \alpha)_Y \circ G(F(f))$$

Ovviamente è chiaro che si potrebbe definire allora la categoria delle trasformazioni naturali eccetera e andare avanti all'infinito. Per assiomatizzare queste cose in realtà bisognerebbe esplicitare che abbiamo definito le "2-frecce" e che quindi siamo in una 2-categoria

Nota (zione). Se  $\beta = \mathrm{id}_G$  invece di  $\mathrm{id}_G * \alpha$  si scrive  $G \circ \alpha$  (dunque con  $(G \circ \alpha)_X = G(\alpha_X)$ ). Se  $\alpha = \mathrm{id}_F$  invece di  $\beta * \mathrm{id}_F$  si scrive  $\beta \circ F$  (con  $(\beta \circ F)_X = \beta_{F(X)}$ ). In generale

$$\beta * \alpha = (\beta \circ F') \circ (G \circ \alpha) = (G' \circ \alpha) \circ (\beta \circ F)$$

Osservazione. Se  $\alpha,\beta$  sono isomorfismi, allora  $\beta*\alpha$  è isomorfismo. Questo significa che se

$$F \cong F', \quad G \cong G' \implies G \circ F \cong G' \circ F'$$

cioè l'isomorfismo di funtori è una congruenza su  $\mathtt{Cat}$ e quindi si ottiene la categoria  $\mathtt{Cat}/_{\cong}$ 

## Definizione 1.0.21: Equivalenza

Un funtore  $F:C\to D$  è un'equivalenza se  $\exists G:D\to C$  funtore tale che  $G\circ F\cong \mathrm{id}_G$  e  $F\circ G\cong \mathrm{id}_D$ .

Un tale G si dice un quasi-inverso di F.

Osservazione. F è un'equivalenza se e solo se  $\overline{F}$  in  $\mathtt{Cat}/_{\cong}$  è un isomorfismo.

Segue che se  $F \cong F'$ , allora F è un'equivalenza se e solo se F' è un'equivalenza e un quasi-inverso di F è unico a meno di isomorfismo e l'equivalente di categorie è una relazione di equivalenza su Cat

#### Definizione 1.0.22: Scheletro

Una sottocategoria piena  $C'\subseteq C$  è detta scheletro se  $\forall X\in C,\,\exists!X'\in C'$  tale che  $X\cong X'$ 

**Lemma 1.0.8.** Sia  $F: C \to D$  un funtore, e si supponga che  $\forall X \in C$ ,  $\alpha_X : F(X) \to F'(X)$  sia un isomorfismo in D. Allora  $F': Ob(C) \to Ob(D)$  Si estende in modo unico a un funtore  $F': C \to D$  tale che  $\alpha: F \to F'$  è isomorfismo.

#### Teorema 1.0.9: Finalmente un teorema

Un funtore  $F:C\to D$  è un'equivalenza se e solo se F è pienamente fedele e essenzialmente suriettivo

Osservazione. Non è necessario aggiungere l'ipotesi che F sia essenzialmente iniettivo perché come mostrato prima pienamente fedele implica essenzialmente iniettivo (ma non essenzialmente suriettivo).

**Esempio 1.0.40.** Supponiamo che  $C' \subseteq C$  sia una sottocategoria piena. Allora il funtore di inclusione  $C' \hookrightarrow C$  è pienamente fedele ed è essenzialmente suriettivo (quindi è un'equivalenza) se e solo se  $\forall X \in C$  esiste  $X' \in C'$  tale che  $X \cong X'$ .

Dimostrazione.

 $\implies$  Sia  $G:D\to C$  un quasi-inverso di F. Allora  $F\circ G\cong \mathrm{id}_G$  che è essenzialmente suriettivo, e dunque F è essenzialmente suriettivo. D'altra parte lo stesso  $F\circ G$  è fedele, e dunque G è fedele.

Ora, per ogni  $X, Y \in C$ ,

$$C(X,Y) \overset{F_{X,Y}}{\to} D(F(X),F(Y)) \overset{G_{F(X),F(Y)} \text{ inj}}{\to} C(G(F(X)),G(F(Y)))$$

poiché la composizione è biunivoca e G è fedele, allora entrambi devono essere biunivoci, ossia in particolare F è pienamente fedele.

 $\Leftarrow$  Consideriamo prima il caso di un'inclusione  $C' \subseteq C$  sottocategoria piena tale che  $\forall X \in C$  esista  $X' \in C$  tale che  $X \cong X'$ . Sia  $I : C' \to C$  il funtore di inclusione (pienamente fedele e essenzialmente suriettivo).

Allora  $\forall X \in C$  scelto (AoC) un isomorfismo  $\alpha_X : X \to \tilde{P}(X) \in C'$  e se  $X \in C'$  in particolare prendiamo  $\alpha_X = 1_X$ . Applico ora il lemma 1.0.8 con  $F = \mathrm{id}_C$  e dunque  $\exists !$  estensione di  $\tilde{P}$  a un funtore  $\tilde{P} : C \to C$  tale che  $\alpha : \mathrm{id}_C \to \tilde{P}$  è isomorfismo. Allora  $\exists !P : C \to C'$  funtore tale che  $\tilde{P} = I \circ P$  e P è un quasi-inverso di I poiché  $I \circ P = \tilde{P} \cong \mathrm{id}_C$  e  $P \circ I = \mathrm{id}_{C'}$ .

In generale, dato  $F:C\to D$  pienamente fedele. Siano allora  $I:C'\to C$  e  $J:D'\to D$  due scheletri. Per il caso qui fatto I,J sono equivalenze e siano  $P:C\to C'$  quasi-inverso di I e  $Q:D\to D'$  quasi-inverso di J.

$$C - F \to D$$

$$P \downarrow \uparrow I \qquad J \uparrow \downarrow Q$$

$$C' - F' \to D'$$

Sia  $F':=Q\circ F\circ I:C'\to D'$  come nel diagramma. Allora I,F,Q sono pienamente fedeli e essenzialmente suriettivi (I per definizione, F per ipotesi e Q perché è un'equivalenza e vale il punto ( $\Longrightarrow$ )) dunque F' è pienamente fedele e essenzialmente suriettivo.

F' è essenzialmente biunivoco, C' e D' sono scheletri, dunque F' è biunivoco, quindi isomorfismo e quindi equivalenza.

$$F = \mathrm{id}_D \circ F \circ \mathrm{id}_c \cong J \circ Q \circ F \circ I \circ P = J \circ F' \circ P$$

equivalenza perché lo sono J, F' e P

**Esempio 1.0.41.** Sia  $\sim$  una relazione d'equivalenza su un insieme X che vedo come categoria C con  $\mathrm{Ob}(C) = X$  e  $C(x,y) \neq \varnothing \iff x \sim y$ .

Il funtore  $C \to X/_{\sim}$  (categoria discreta) definito da  $x \mapsto \overline{x}$  è un'equivalenza poiché pienamente fedele e essenzialmente suriettiva.

#### Esercizio 1.0.6

Mostrare che ogni categoria equivalente a una categoria discreta è una relazione di equivalenza, ossia una categoria dove  $\forall X,Y \in C,\ C(X,Y) \neq O \iff x \sim y$  per una qualche  $\sim$  relazione di equivalenza.

## 1.1 Categorie preadditiva

#### Definizione 1.1.1: Categoria preadditiva

Una categoria preadditiva è una categoria  $\mathcal{A}$  con una struttura di gruppo abeliano (notazione: additivo) su  $\mathcal{A}(X,Y)$  per ogni  $X,Y\in\mathcal{A}$  ed è tale che la composizione di morfismi sia  $\mathbb{Z}$ -bilineare, ossia

$$g \circ (f + f') = g \circ f + g \circ f'$$
 e  $(g + g') \circ f = g \circ f + g' \circ f$ 

per ogni  $X, Y, Z \in \mathcal{A}, f, f' \in \mathcal{A}(X, Y)$  e  $g, g' \in \mathcal{A}(Y, Z)$ .

Osservazione. Si dice anche che  $\mathcal{A}$  è una Ab-Categoria. Si può studiare quando si può generare una categoria simile partendo da altre categorie invece di Ab ma non è argomento di questo corso.

Si può anche dire che  $\mathcal{A}$  è  $\mathbb{Z}$ -lineare. Più in generale  $\forall^2$  anello commutativo A una categoria A-lineare è una categoria  $\mathcal{A}$  con una struttura di A-modulo su  $\mathcal{A}(X,Y)$  tale che la composizione sia A-bilineare.

**Proposizione 1.1.1.** Se A è non commutativo, allora  $\forall a,b \in A$  e  $\forall f: X \rightarrow Y$  morfismo di A,

$$(ab)f = (ba)f$$

Dimostrazione.

$$(ab)f = a(bf) = a((bf) \circ 1_X) = (bf) \circ (a1_X) = f \circ (b(a1_X)) = f \circ (ba)1_X = (ba)f$$

**Esempio 1.1.1.** Sia A un anello, allora A-Mod è preadditiva. Infatti per ogni  $M,N\in (A-\mathsf{Mod}),\ A$ -Mod $(M,N)=\mathrm{Hom}_A(M,N)$  è un gruppo abeliano e  $\circ$  è  $\mathbb{Z}$ -bilineare. Se A è commutativo, allora A-Mod è anche A-lineare. Più in generale se B è una A-algebra allora B-Mod è A-lineare.

Osservazione. Sia  $X \in \mathcal{A}$  categoria A-lineare (quindi A commutativo). Allora  $\operatorname{End}_{\mathcal{A}}(X)$  è una A-algebra. Infatti ( $\operatorname{End}_{\mathcal{A}}(X)$ ,  $\circ$ ) è un monoide e  $\operatorname{End}_{\mathcal{A}}$  è A-modulo e  $\circ$  è A-lineare.

Quindi le categorie A-lineari con un solo oggetto sono A-algebre. In particolare le categorie preadditive con un solo oggetto sono anelli.

Osservazione. Sia  $\mathcal{A}$  preadditiva, allora  $\mathcal{A}^{op}$  è preadditiva con la stessa struttura di gruppo abeliano su  $\mathcal{A}^{op}(X,Y) = \mathcal{A}(Y,X)$  per ogni  $X,Y \in \mathcal{A}$ .

Osservazione. Se  $\mathcal{A}$  è preadditiva, allora  $\mathcal{A}' \subseteq \mathcal{A}$  sottocategoria tale che  $\mathcal{A}'(X,Y) < \mathcal{A}(X,Y)$  per ogni  $X,Y \in \mathcal{A}'$ , allora  $\mathcal{A}'$  è preadditiva. In particolare la condizione è sempre verificata per le categorie piene.

Sia  $\mathcal{A}$  preadditiva,  $\sim$  una congruenza tale che  $\forall X,Y\in\mathcal{A},\,\forall f,f',g\in\mathcal{A}(X,Y)$  allora  $f\sim f'\implies f+g\sim f'+g$ . In tale ipotesi  $\mathcal{A}/_{\sim}$  è preadditiva con  $\overline{f}+\overline{g}=\overline{f+g}$ . Data una tale congruenza, sia  $\forall X,Y\in\mathcal{A}$ 

$$\Im(X,Y)=\{f\in\mathcal{A}(X,Y):f\sim 0\}$$

e indichiamo con  $\mathfrak{I} \subseteq \mathcal{A}$  la collezione di tutti gli  $\mathfrak{I}(X,Y)$ . Allora vale la proprietà di ideale, gioè dati f,g morfismi di  $\mathcal{A}$  componibili,

$$f\circ \Im \ \mathrm{o} \ g\in \Im \implies g\circ f\in \Im$$

Se per esempio  $f \in \mathfrak{I}$  ossia  $f \sim 0$ , allora  $g \circ f \sim g \circ 0 = 0$  e dunque  $g \circ f \in \mathfrak{I}$ . Arriviamo dunque alla seguente definizione

#### Definizione 1.1.2

Definiamo un ideale  $\Im$  in una categoria preadditiva  $\mathcal{A}$  come  $\Im(X,Y)<\mathcal{A}(X,Y)$  per ogni $X,Y\in\mathcal{A}$  tale che

$$f \in \mathfrak{I} \circ g \in \mathfrak{I} \implies g \circ f \in \mathfrak{I}$$

 $<sup>^2</sup>$ normalmente in mezzo alla frase così avrei scritto esplicitamente "per ogni" ma trovavo divertente la quantità di  $\mathcal A$ e di Anella frase quindi ho valutato simpatico aggiungere anche un  $\forall$ 

Viceversa, dato  $\mathfrak{I}\subseteq\mathcal{A}$  ideale, si ottiene una congruenza  $\sim$  su  $\mathcal{A}$  definito da

$$f \sim f' \iff f' - f \in \mathfrak{I}(X,Y) \quad \forall X,Y \in \mathcal{A} \quad \forall f,f' \in \mathcal{A}(X,Y)$$

ed è tale che  $f \sim f' \implies f + g \sim f' + g$ .

In tali ipotesi si può anche denotare  $\mathcal{A}/\mathfrak{I}$  invece di  $\mathcal{A}/_{\sim}$ .

Una categoria  $\mathcal{C}$  può non avere nessuna struttura di categoria preadditiva (ad esempio se  $\exists X, Y \in \mathcal{C}$ ) tale che  $\mathcal{C}(X,Y) = \emptyset$  o averne più di una.

**Esempio 1.1.2.** G Possiamo pensare ad anelli A e B tali che  $(A, \cdot) \cong (B, \cdot)$  e  $(A, +) \not\cong (B, +)$ .

Ad esempio possiamo prendere  $A=\mathbb{Z}/4\mathbb{Z}$  e  $B=\mathbb{Z}/_{2\mathbb{Z}}[X]/(X^2)$ . Allora evidentemente

$$(A,+) \cong C_4 \ncong C_2 \times C_2 \cong B$$

ma gli elementi diversi da 0 e 1 di A sono  $\overline{2}$  e  $\overline{3}$  e sono tali che  $\overline{2}^2 = \overline{0}$ ,  $\overline{3}^2 = \overline{1}$  e  $\overline{2} \cdot \overline{3} = \overline{2}$ . Similmente in B abbiamo che  $\overline{X}^2 = \overline{0}$ ,  $\overline{1+X}^2 = \overline{1}$  e  $\overline{X} \cdot \overline{1+X} = \overline{X}$ 

#### Definizione 1.1.3

Un funtore  $F: \mathcal{A} \to \mathcal{B}$  tra categorie preadditive è additivo se

$$F_{X,Y}: \mathcal{A}(X,Y) \to \mathcal{B}(F(X),F(Y))$$

è omomorfismo di gruppi  $\forall X, Y \in \mathcal{A}$ .

Più in generale  $F: \mathcal{A} \to \mathcal{B}$  tra categorie A-lineari è detto A-lineare se  $F_{X,Y}$  è A-lineare  $\forall X,Y \in \mathcal{A}$ .

**Esempio 1.1.3.** Sia  $\mathcal{A}' \subseteq \mathcal{A}$  sottocategoria tale che  $\mathcal{A}'(X,Y) < \mathcal{A}(X,Y)$  per ogni  $X,Y \in \mathcal{A}'$ . Allora l'inclusione  $\mathcal{A}' \to \mathcal{A}$  è addditivo.

**Esempio 1.1.4.** Se  $\mathcal{A}$  è preadditiva e  $\mathfrak{I} \subseteq \mathcal{A}$  ideale, allora il funtore  $f: \mathcal{A} \to \mathcal{A}/\mathfrak{I}$  definito da  $X \mapsto X$  e  $f \mapsto \overline{f}$  è additivo.

#### Esercizio 1.1.1

Sia  $F: \mathcal{A} \to \mathcal{B}$  additivo tale che " $\mathfrak{I} = \ker F$ " cioè  $F(f) = 0, \forall f \in \mathfrak{I}$ , allora mostrare che esiste un unico  $\overline{F}: \mathcal{A}/\mathfrak{I} \to \mathcal{B}$  funtore additivo tale che  $F = \overline{F} \circ P$ 

**Esempio 1.1.5.** Siano A, B anelli (categorie preadditive con un solo oggetto), allora un funtore additivo  $A \to B$  è un omomorfismo di anelli.

Più in generale per ogni anello A e per ogni  $\mathcal{A}$  categoria preadditiva un funtore additivo  $A \to \mathcal{A}$  è dato da un oggetto  $X \in \mathcal{A}$  e un omomorfismo di anelli  $A \to \operatorname{End}_{\mathcal{A}}(X)$ . Quindi un A-modulo è un funtore additivo  $A \to \mathtt{Ab}$ 

**Esempio 1.1.6.** Sia  $A \to B$  un omomorfismo di anelli. Allora il funtore di restrizione degli scalari  $B-{\sf Mod} \to A-{\sf Mod}$  è additivo.