TR Local Convergence 0607

Jiaxin Hu

06/07/2020

I am not sure whether expression is the same as "module the orthogonal transformation" in our lost version

LOCAL CONVERGENCE PROPERTY FOR TR ALGORITHM 1 transformation "in our last version

Here we study the local convergence property of iterates generated by Algorithm 1.

Theorem 1 (Local Convergence). Assume the solution to each block update in the alternating optimization exists and is unique. Let $\mathcal{B}^* = (\mathcal{C}^*, \{M_k^*\})$ be a local minimizer of \mathcal{L} and assume the Hessian at \mathcal{B}^* is strictly negative definite in every direction except those tangent to the orthogonal transformation of M_k^* . Then the sequence $\mathcal{B}^{(t)} = \mathcal{C}^{(t)} \times \{M_k^{(t)}\}$ generated by alternating algorithm linearly converges to \mathcal{B}^* ; i.e.

$$\|\mathcal{B}^{(t)} - \mathcal{B}^*\|_F \le \rho^t (\|\mathcal{C}^{(0)} - \mathcal{C}\|_F + \sum_{k=1}^K \|M_k^{(0)} - M_K^*\|_F),$$

for any initialization $(C^{(0)}, \{M_k^{(0)}\})$ sufficiently close to $(C^*, \{M_k^*\})$. Here $t \in \mathbb{N}^+$ is the iteration number and $\rho \in (0,1)$ is a contraction parameter.

PROOF

Let $S: \mathbb{R}^d \to \mathbb{R}^d$ denote the update mapping that sends t-th iterate to (t+1)-th iterate, where $d = r_1 \dots r_K + \sum_k r_k (d_k - 1)$ is the number of decision variables. Then, $S(\mathcal{A}^{(t)}) = \mathcal{A}^{(t+1)}$ and $S(\mathcal{A}^*) = \mathcal{A}^*$.

According to the alternating algorithm, there are K + 1 micro-steps for each block of decision variables in one iteration. That implies S is composed by K + 1 block-wise mappings. Next we prove S is continuously differentiable through decomposing the S.

To decompose S, let $C_k : \mathbb{R}^{d-r_k(d_k-1)} \to \mathbb{R}^{r_k(d_k-1)}$ denote the mapping to obtain M_k given $(\mathcal{C}, M_1, \dots, M_{k-1}, M_{k+1}, \dots, M_K)$, for $\forall k \in [K]$ and let $C_{K+1} : \mathbb{R}^{d-r_1 \dots r_K} \to \mathbb{R}^{r_1 \dots r_K}$ denote the mapping to obtain \mathcal{C} given $\{M_k\}$:

$$C_k(\mathcal{C}, M_1, \dots, M_{k-1}, M_{k+1}, \dots, M_K) \stackrel{\Delta}{=} C_k$$
, where $\nabla_{M_k} \mathcal{L}(\mathcal{C}, M_1, \dots, M_{k-1}, C_k, M_{k+1}, \dots, M_K) = 0$ (1) and $C_{K+1}(\{M_k\}) \stackrel{\Delta}{=} C_{K+1}$, where $\nabla_{\mathcal{C}} \mathcal{L}(C_{K+1}, \{M_k\}) = 0$.

Because each block update exists a unique solution, there exists such a C_k satisfies the condition 1 and $\nabla_{M_k,M_k}\mathcal{L}(\mathcal{C},M_1,\ldots,M_{k-1},C_k,M_{k+1},\ldots,M_K)$ is non-singular $\forall k \in [K]$. By implicit function theorem, $C_k, \forall k \in [K]$ is continuously differentiable. Similarly, C_{K+1} is also continuously differentiable.

Then we define the block-wise mapping $S_k : \mathbb{R}^d \to \mathbb{R}^d$ based on C_k :

$$S_k(\mathcal{C}, \{M_k\}) \stackrel{\Delta}{=} (\mathcal{C}, M_1, \dots, M_{k-1}, C_k, M_{k+1}, \dots, M_K), \forall k \in [K]$$
$$S_{K+1}(\mathcal{C}, \{M_k\}) \stackrel{\Delta}{=} (C_{K+1}, \{M_k\})$$

Since C_k s are continuously differentiable, S_k , $\forall k \in [K+1]$ are continuously differentiable. The update mapping S can be decomposed as:

$$S(\mathcal{C}^{(t)}, \{M_k^{(t)}\}) = S_{K+1} \circ \cdots \circ S_1(\mathcal{C}^{(t)}, \{M_k^t\}).$$

Therefore S is continuously differentiable.

Next, we want to find the first order derivative of S at $(\mathcal{C}^*, \{M_k^*\})$. For simplicity, let $\mathcal{A} = (\mathcal{C}, \{M_k\})$ denote the decision variables. Define the function $F_k : \mathbb{R}^d \times \mathbb{R}^d \mapsto \mathbb{R}^{r_k(d_k-1)}$ for $\forall k \in [K]$ as:

$$F_k(\mathcal{A}, \mathcal{A}') \stackrel{\Delta}{=} \nabla_{M_k} \mathcal{L}(\mathcal{C}', M_1, \dots, M_k, M'_{k+1}, \dots, M'_{K+1})$$

Similarly, define $F_{K+1}: \mathbb{R}^d \times \mathbb{R}^d \mapsto \mathbb{R}^{r_1...r_K}$ as $F_{K+1}(\mathcal{A}, \mathcal{A}') = \nabla_{\mathcal{C}}\mathcal{L}(\mathcal{A})$. Let $F = (F_1, ..., F_{K+1})$. Using F, define $G: \mathbb{R}^d \mapsto \mathbb{R}^d$ as:

$$G(\mathcal{A}) \stackrel{\Delta}{=} F(S(\mathcal{A}), \mathcal{A}).$$

Intuitively, k-th block component of G can be considered as the partial derivative for M_k of \mathcal{L} , given the half-step iterate after updating M_k . Because each block update exists a unique solution, $G(\mathcal{A}) = 0$ holds in the neighborhood of (\mathcal{A}^*) . Differentiate the both side of $G(\mathcal{A}^*) = 0$, then we have:

$$\nabla G(\mathcal{A}^*) = \nabla_{\mathcal{A}} F(S(\mathcal{A}^*), \mathcal{A}) \nabla S(\mathcal{A}^*) + \nabla_{\mathcal{A}'} F(S(\mathcal{A}^*), \mathcal{A}^*) = 0$$
(2)

To solve $\nabla S(\mathcal{A}^*)$, the Hessian of \mathcal{L} at \mathcal{A}^* is:

$$H(\mathcal{A}^*) = \nabla^2 \mathcal{L} \left(\mathcal{C}^*, M_1^*, \cdots, M_K^* \right) = \begin{pmatrix} d_{CC}^2 \mathcal{L} & d_{CM_1}^2 \mathcal{L} & \cdots & d_{CM_K}^2 \mathcal{L} \\ d_{M_1C}^2 \mathcal{L} & d_{M_1M_1}^2 \mathcal{L} & \cdots & d_{M_1M_K}^2 \mathcal{L} \\ \vdots & \vdots & \ddots & \vdots \\ d_{M_KC}^2 \mathcal{L} & d_{M_KM_1}^2 \mathcal{L} & \cdots & d_{M_KM_K}^2 \mathcal{L} \end{pmatrix} = L + D + L^{\mathsf{T}},$$

Since $H(\mathcal{A}^*)$ is strictly negative-definite except the direction of orthogonal transformation, the diagonal block of $H(\mathcal{A}^*)$, D, is strictly negative definite and thus $(L+D)^{-1}$ invertible. Reorganized the equation 2, we can get $\nabla S(\mathcal{A}^*) = -(L+D)^{-1}L^T$.

Next, we construct the contraction relationship between iterates $\mathcal{B}^{(t+1)}$ and $\mathcal{B}^{(t)}$ using ∇S . For simplicity, let $\|\mathcal{A}, \mathcal{A}'\|_F$ denote the euclidean distance between two decision variables, where

$$\|A - A'\|_F = \|C - C'\|_F + \sum_{k=1}^K \|M_k - M'_K\|_F.$$

And we define the orthogonal transformation of \mathcal{A} . If \mathcal{A}' is an orthogonal transformation of \mathcal{A} , there are orthogonal matrices $\{P_k\} \in \mathbb{O}_{r_k}$ such that:

$$M_k P_k^T = M_k^*, \forall k \in [K]; \quad \mathcal{C}^{(t)} \times_1 P_1 \times_2 \cdots \times_K P_K = \mathcal{C}^*; \quad \Rightarrow \mathcal{B}(\mathcal{A}) = \mathcal{B}(\mathcal{A}')$$

In our context, let $A \in \Omega_O$ if A is an orthogonal transformation of A^* , otherwise let $A \in \Omega$. If $A \in \Omega_O$, then $A - A^*$ is a direction that tangent to the orthogonal transformation of A^* .

Here, we discuss two cases.

Case 1: The iterate $\mathcal{A}^{(t)} \in \Omega_O$.

For such $\mathcal{A}^{(t)}$, we have $\mathcal{B}(\mathcal{A}^{(t)}) = \mathcal{B}(\mathcal{A}^*)$. Trivially,

$$\left\| \mathcal{B}(\mathcal{A}^{(t)}) - \mathcal{B}(\mathcal{A}^*) \right\|_F = 0 \le \left\| \mathcal{A}^{(0)} - \mathcal{A}^* \right\|_F, \tag{3}$$

for any $\mathcal{A}^{(0)}$.

Case 2: The iterate $A^{(t)} \in \Omega$.

Therefore, $\mathcal{A}^{(t)} - \mathcal{A}^*$ is not on a direction that tangent to the orthogonal transformation of \mathcal{A}^* and thus $H(\mathcal{A}^*)$ is strictly negative definite on the direction $\mathcal{A}^{(t)} - \mathcal{A}^*$. For $\forall \mathcal{A}^{(t)} \in \Omega$, we have:

$$(\mathcal{A}^{(t)} - \mathcal{A}^*)^T H(\mathcal{A}^*) (\mathcal{A}^{(t)} - \mathcal{A}^*) < 0$$

$$\tag{4}$$

Consider the matrix $\nabla S(\mathcal{A}^*)^T H(\mathcal{A}^*) \nabla S(\mathcal{A}^*) - H(\mathcal{A}^*)$. Let $H, \nabla S$ be the short of $H(\mathcal{A}^*), \nabla S(\mathcal{A}^*)$. We have:

$$\nabla S(\mathcal{A}^*)^T H(\mathcal{A}^*) \nabla S(\mathcal{A}^*) - H(\mathcal{A}^*) = \nabla S H \nabla S - H$$

$$= (I - (L+D)^{-1}H)^T H (I - (L+D)^{-1}H) - H$$

$$= -H^T (L+D)^{-1,T} H - H(L+D)^{-1}H + H^T (L+D)^{-1,T} H (L+D)^{-1}H$$

$$= H^T (L+D)^{-1,T} \{ -(L+D) - (L+D)^T + H \} (L+D)^{-1}H$$

$$= H^T (L+D)^{-1,T} \{ -D \} (L+D)^{-1}H$$
(5)

Since D is negative definite, then -D is positive definite. For arbitrary $\mathcal{A}^{(t)} \in \Omega$, let $v \stackrel{\Delta}{=} \mathcal{A}^{(t)} - \mathcal{A}^*$. Due to equation , $Hv \neq 0$. Multiplying v on both side of equation 5 , we have:

$$v^{T}(\nabla SH\nabla S - H)v = v^{T}H^{T}(L+D)^{-1,T}\{-D\}(L+D)^{-1}Hv > 0$$

$$\Rightarrow -v^{T}Hv > -(\nabla Sv)^{T}H(\nabla Sv)$$

Pick a v which is an eigenvector of ∇S with eigenvalue λ , then:

$$-v^T H v > -\lambda^2 v^T H v; \quad \Rightarrow \lambda^2 < 1$$

That implies, for $\mathcal{A}^{(t)} \in \Omega$, the largest eigenvalue of ∇S that corresponds to eigenvectors in form of $\mathcal{A}^{(t)} - \mathcal{A}^*$ is smaller than 1. Therefore, $\|\nabla S(\mathcal{A}^{(t)} - \mathcal{A}^*)\|_F \le \rho \|\mathcal{A}^{(t)} - \mathcal{A}^*\|_F$ for $\forall \mathcal{A}^{(t)} \in \Omega$, where $\rho \in (0,1)$.

Consider the iterate $\mathcal{A}^{(t)} \in \Omega$, we have

This is my conjecture. Intuitively, I want to show the spectral radius of S' < 1 in the space Omega\Omega_O. Then use the result that Fnorm(Ax)\leq \rho(A) Fnorm(x).

$$\|S(\mathcal{A}^{(t)}) - S(\mathcal{A}^*)\|_F = \|\int_0^1 \nabla S(\mathcal{A}^* - u(\mathcal{A}^* - \mathcal{A}^{(t)}))(\mathcal{A}^* - \mathcal{A}^{(t)})du\|_F$$

$$\leq \int_0^1 \|\nabla S(\mathcal{A}^* - u(\mathcal{A}^* - \mathcal{A}^{(t)}))(\mathcal{A}^* - \mathcal{A}^{(t)})\|_F du. \tag{6}$$

Since $\nabla S(\mathcal{A})$ is continuous and $\rho < 1$, pick a $\epsilon > 0$ such that $\epsilon + \rho < 1$, there exists a $\delta > 0$ such that

If
$$\|\mathcal{A}^* - u(\mathcal{A}^* - \mathcal{A}^{(t)}) - \mathcal{A}^*\|_F \le \|\mathcal{A}^{(t)} - \mathcal{A}^*\|_F \le \delta$$
, then $\|\nabla S - \nabla S(\mathcal{A}^* - u(\mathcal{A}^* - \mathcal{A}^{(t)}))\|_F \le \epsilon$

Therefore, the inequality 6 becomes:

$$\left\| S(\mathcal{A}^{(t)}) - S(\mathcal{A}^*) \right\|_F \le \int_0^1 \left\| \nabla S(\mathcal{A}^* - u(\mathcal{A}^* - \mathcal{A}^{(t)})) (\mathcal{A}^* - \mathcal{A}^{(t)}) \right\|_F du.$$

$$\le (\rho + \epsilon) \left\| \mathcal{A}^{(t)} - \mathcal{A}^* \right\|_F$$

If any previous iterate $\mathcal{A}^{(t')}, t' < t$ is not in Ω_O , then we have :

$$\left\| \mathcal{A}^{(t)} - \mathcal{A}^* \right\|_F \le \rho^t \left\| \mathcal{A}^* - \mathcal{A}^{(0)} \right\|_F,$$

for $\mathcal{A}^{(0)}$ sufficiently closes to \mathcal{A}^* and is not a local maximizer. By the Lemma 3.1 of Han[2020], there exists a constant c such that:

$$\left\| \mathcal{B}(\mathcal{A}^{(t)}) - \mathcal{B}(\mathcal{A}^*) \right\|_F \le c \left\| \mathcal{A}^{(t)} - \mathcal{A}^* \right\|_F. \tag{7}$$

If there exists a iterate $\mathcal{A}^{(t')}$, t' < t such that $\mathcal{A}^{(t')} \in \Omega_O$, then we goes to case 1.

Combine the equation 3 and 7, we can summarize our local convergence as:

$$\left\|\mathcal{B}(\mathcal{A}^{(t)}) - \mathcal{B}(\mathcal{A}^*)\right\|_F \le c\rho^t \left\|\mathcal{A}^* - \mathcal{A}^{(0)}\right\|_F,$$

for some constant c and $\mathcal{A}^{(0)}$ sufficiently closes to \mathcal{A}^* and is not a local maximizer.