

(An Autonomous Institute Affiliated to VTU, Belagavi)

Shavige Malleshwara Hills, Kumaraswamy Layout, Bengaluru-560078

DEPARTMENT OF MATHEMATICS

COURSE: MATHEMATICS FOR COMPUTER ENGINEERS

COURSE CODE : 21MAT31A

MODULE – 2 : EIGEN VALUES & EIGEN VECTORS

Question Bank

O No	Questions
Q.No	Questions
	r2 21
1.	a) Find the characteristic polynomial and the eigenvalue of the matrix $A = \begin{bmatrix} 3 & 2 \\ 3 & 8 \end{bmatrix}$.
	b) Find the characteristic polynomial and the eigenvalue and corresponding eigenvectors of the
	matrix $A = \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix}$.
2.	a) Find the characteristic polynomial and the eigenvalue of the matrix $A = \begin{bmatrix} 6 & -3 & 1 \\ 3 & 0 & 5 \\ 2 & 2 & 6 \end{bmatrix}$.
	b) Find the characteristic polynomial and the eigenvalue and corresponding eigenvectors of the
	$ \text{matrix } A = \begin{bmatrix} 3 & 6 & 7 \\ 3 & 3 & 7 \\ 5 & 6 & 5 \end{bmatrix}. $
3.	[3 0 -1]
J.	a) Is $\lambda = 4$ an eigenvalue of matrix $A = \begin{bmatrix} 3 & 0 & -1 \\ 2 & 3 & 1 \\ -3 & 4 & 5 \end{bmatrix}$? If so, find one corresponding
	eigenvector.
	b) Is $\lambda = 3$ an eigenvalue of matrix $A = \begin{bmatrix} 1 & 2 & 2 \\ 3 & -2 & 1 \\ 0 & 1 & 1 \end{bmatrix}$? If so, find one corresponding
	b) is $\lambda = 3$ an eigenvalue of matrix $A = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 1 & 1 \end{bmatrix}$? If so, find one corresponding
	eigenvector.
4.	a) Find a basis for the eigenspace corresponding to eigenvalue $\lambda=1.5$ for the matrix
	$A = \begin{bmatrix} 5 & 0 \\ 2 & 1 \end{bmatrix}$.
	b) Find a basis for the eigenspace corresponding to eigenvalue $\lambda = 2$ for the matrix
	[4 -1 6]
	$A = \begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 9 \end{bmatrix}.$
	L2 -1 8J
5.	a) Prove that if v_1, v_2, \dots, v_r are eigenvectors that correspond to distinct eigenvalues
J.	$\lambda_1, \lambda_2, \dots, \lambda_r$ of an $n \times n$ matrix A, then the set $\{v_1, v_2, \dots, v_r\}$ is linearly independent.
	b) Show that λ^{-1} is an eigenvalue of A^{-1} , If λ be an eigenvalue of an invertible matrix A .
	F 4 2 03
6.	a) Find the characteristic polynomial and the eigenvalue of the matrix $A = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$.
	Also, verify that eigenvalues of A^2 are squares of those of eigenvalues of matrix A .
	b) Find the characteristic polynomial and the eigenvalue of the matrix $A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$. Also,
	verify that eigenvalues of A^2 are squares of those of eigenvalues of matrix.

DAYANANDA SAGAR COLLEGE OF ENGINEERING

(An Autonomous Institute Affiliated to VTV, Belagavi)
Shavige Malleshwara Hills, Kumaraswamy Layout, Bengaluru-560078

DEPARTMENT OF MATHEMATICS

7.	a) Find the eigenspace of the matrix $A = \begin{bmatrix} 16 & -4 & -2 \\ 3 & 3 & -6 \\ 2 & -8 & 11 \end{bmatrix}$ for $\lambda = 15$. b) Find the eigenspace of the matrix $A = \begin{bmatrix} 0 & -6 & 3 \\ 2 & -13 & 6 \\ 4 & -24 & 11 \end{bmatrix}$ for $\lambda = -1$.
	b) Find the eigenspace of the matrix $A = \begin{bmatrix} 0 & -6 & 3 \\ 2 & -13 & 6 \\ 4 & -24 & 11 \end{bmatrix}$ for $\lambda = -1$.
8.	a) Find the eigenspace of the matrix $A = \begin{bmatrix} 2 & 13 & 0 \\ 4 & -24 & 11 \end{bmatrix}$ for $\lambda = 1$. b) Find the value of h in the matrix $A = \begin{bmatrix} 16 & -4 & -2 \\ 3 & 3 & -6 \\ 2 & -8 & 11 \end{bmatrix}$ for $\lambda = 5$. $\begin{bmatrix} 5 & -2 & 6 & -1 \\ 0 & 3 & h & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ such that the eigenspace for $\lambda = 5$
	b) Find the value of h in the matrix $A = \begin{bmatrix} 3 & 2 & 0 & -1 \\ 0 & 3 & h & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ such that the eigenspace for $\lambda = 5$
_	is two dimensional.
9.	a) Define diagonalizable and diagonalize the matrix $A = \begin{bmatrix} 1 & 0 \\ 6 & -1 \end{bmatrix}$, if possible.
	a) Define diagonalizable and diagonalize the matrix $A = \begin{bmatrix} 1 & 0 \\ 6 & -1 \end{bmatrix}$, if possible. b) Define diagonalizable and diagonalize the matrix $A = \begin{bmatrix} 3 & -1 \\ 1 & 5 \end{bmatrix}$, if possible.
10.	a) Show that the matrix $A = \begin{bmatrix} 3 & 1 & -1 \\ -2 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$ is diagonalizable. Hence, find P such that $P^{-1}AP$ is a diagonal matrix
	is a anafonial mati mi
	b) Show that the matrix $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$ is diagonalizable. Hence, find P such that
	$P^{-1}AP$ is a diagonal matrix.
11.	a) Show that the matrix $A = \begin{bmatrix} 1 & 1 & i \\ 1 & 0 & i \\ -i & -i & 1 \end{bmatrix}$ is diagonalizable. Also, find the eigenvectors of A . b) Show that the matrix $A = \begin{bmatrix} 0 & i & i \\ i & 0 & i \\ i & i & 0 \end{bmatrix}$ is diagonalizable. Also, find the eigenvectors of A .
	b) Show that the matrix $A = \begin{bmatrix} 0 & t & t \\ i & 0 & i \\ i & i & 0 \end{bmatrix}$ is diagonalizable. Also, find the eigenvectors of A.
12.	a) Find the matrix A, if the eigenvectors of a 3×3 matrix A corresponding to eigenvalues
	1,1,3 are $[1,0,-1]^T$, $[0,1,-1]^{\bar{T}}$ and $[1,1,0]^T$ respectively. b) Find the matrix A , whose eigenvalues are 1,1,1 and corresponding eigenvectors are
	$[-1,1,1]^T$, $[1,-1,1]^T$ and $[1,1,-1]^T$ respectively.
13.	a) Find a formula for A^n , given that $A = PDP^{-1}$, where $A = \begin{bmatrix} 7 & 2 \\ -4 & 1 \end{bmatrix}$, $P = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix}$
	and $D = \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix}$.
	b) Compute A^n , given that $A = PDP^{-1}$, where $A = \begin{bmatrix} -2 & 12 \\ -1 & 5 \end{bmatrix}$, $P = \begin{bmatrix} 3 & 4 \\ 1 & 1 \end{bmatrix} \& D = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$.
14.	a) Compute A^8 , where $A = \begin{bmatrix} 4 & -3 \\ 2 & -1 \end{bmatrix}$.
	b) Compute A^4 , where $A = \begin{bmatrix} -3 & 12 \\ -2 & 7 \end{bmatrix}$.
15.	a) Given that A is symmetric matrix and $D = P^{-1}AP$, then show that P is an orthogonal
	matrix. b) Show that product of two orthogonal matrix of the same order is also an orthogonal matrix.

DAYANANDA SAGAR COLLEGE OF ENGINEERING

(An Autonomous Institute Affiliated to VTV, Belagavi)
Shavige Malleshwara Hills, Kumaraswamy Layout, Bengaluru-560078

DEPARTMENT OF MATHEMATICS

16.	$\lceil l_1 m_1 n_1 \rceil$
	a) Find the conditions that a matrix $A = \begin{bmatrix} l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \\ l_3 & m_3 & n_3 \end{bmatrix}$ is an orthogonal matrix.
	$\begin{bmatrix} l_3 & m_3 & n_3 \end{bmatrix}$
	b) Show that $ A = \pm 1$, if A is an orthogonal matrix.
17.	a) Find the symmetric matrix B for the quadratic form $Q = 2x_1^2 + x_2^2 + 3x_1x_2$.
	b) Find the symmetric matrix B for the quadratic form $Q = x_1^2 - 5x_2^2 + 4x_3^2 + 2x_1x_2 - 1$
	$4x_1x_3 + 6x_2x_3$.
18.	a) Find the orthogonal transform which transforms the quadratic form $Q = x_1^2 + 3x_2^2 + 3x_3^2 + 3x_4^2 + 3$
	$3x_3^2 - 2x_2x_3$ to canonical form.
	b) Find the orthogonal transform which transforms the quadratic form $Q = 3x_1^2 + 5x_2^2 +$
	$3x_3^2 - 2x_2x_3 + 2x_1x_3 - 2x_1x_2$ to canonical form.
19.	a) Find the canonical form which transforms the quadratic form $Q = x_1^2 + 3x_2^2 + 3x_3^2 - 3x_1^2 + 3x_2^2 + 3x_2^2 + 3x_3^2 + 3x_1^2 + 3x_2^2 $
	$2x_2x_3$.
	b) Find the canonical form which transforms the quadratic form $Q = 17x_1^2 + 17x_2^2 - 100$
	$30x_1x_2$.
20.	a) Find the canonical form which transforms the quadratic form $Q = 5x_1^2 + 26x_2^2 +$
	$10x_3^2 + 4x_2x_3 + 6x_1x_2 + 14x_1x_3.$
	b) Find the canonical form which transforms the quadratic form $Q=2{x_1}^2+2{x_2}^2+2{x_1}{x_2}$.