Objetivos de aprendizaje Tema 11

Análisis Matemático I

Javier Gómez López

29 de diciembre de 2021

- 1. Conocer y comprender el enunciado de los siguientes resultados:
 - a) Regla de diferenciación de la función inversa

Teorema 1 (Regla de diferenciación de la inversa). Sean X e Y espacios normados, Ω un abierto de X, $f: \Omega \to Y$ una función inyectiva y $f^{-1}: B \to X$ su inversa, donde $B = f(\Omega)$. Supongamos que f es diferenciable en un punto $a \in \Omega$, y que $b = f(a) \in B^{\circ}$. Entonces, las siguientes afirmaciones son equivalentes:

- (i) f^{-1} es diferenciable en el punto b.
- (ii) f^{-1} es continua en b y Df(a) es un homeomorfismo lineal de X sobre Y.

En caso de que se cumplan (i) y (ii), se tiene: $Df^{-1}(b) = Df(a)^{-1}$.

b) Teorema de la función inversa global

Teorema 2 (función inversa global). Sea Ω un abierto de \mathbb{R}^N y $f \in C^1(\Omega, \mathbb{R}^N)$. Supongamos que f es inyectiva y que $det Jf(x) \neq 0$ para todo $x \in \Omega$. Entonces $W = f(\Omega)$ es abierto y f^{-1} es diferenciable con $Df^{-1}(f(x)) = Df(x)^{-1}$ para todo $x \in \Omega$. De hecho se tiene que $f^{-1} \in C^1(W, \mathbb{R}^N)$.

2. Conocer y comprender el teorema de la función inversa local, incluyendo su demostración.

Teorema (función inversa local). Sea Ω un abierto de \mathbb{R}^N y $f:\Omega\to\mathbb{R}^N$ una función diferenciable, es decir, $f\in D(\Omega,\mathbb{R}^N)$. Supongamos que la función diferencial Df es continua en un punto $a\in\Omega$ y que $det J(a)\neq 0$. Entonces existe un abierto U de \mathbb{R}^N , con $a\in U\subset\Omega$, para el que se verifican las siguientes afirmaciones:

- (i) f es inyectiva en U
- (ii) V = f(U) es un abierto de \mathbb{R}^N
- (iii) $det J f(x) \neq 0$ para todo $x \in U$
- (iv) Si $\varphi = f|_U$, entonces $\varphi^{-1} \in D(V, \mathbb{R}^N)$, con $D\varphi^{-1}(f(x)) = Df(x)^{-1}$ para todo $x \in U$.

Demostración. Usaremos cualquier norma en \mathbb{R}^N , y empezamos trabajando en un caso particular más cómodo, del que al final se deducirá fácilmente el caso general. Concretamente, suponemos por ahora que a = f(a) = 0 y que Df(a) = Id es la identidad en \mathbb{R}^N .

En este caso, la idea intuitiva en la que se basa el teorema está muy clara: en un entorno del origen, f debe comportarse de forma similar a como lo hace la identidad, una función

que cumple obviamente todas las afirmaciones del teorema. Así pues, procede trabajar con la diferencia entre ambas, es decir, la función $g: \Omega \to \mathbb{R}^N$ dada por

$$g(x) = x - f(x) \qquad \forall x \in \Omega$$

Es claro que g(0) = 0, así como que g es diferenciable con

$$Dq(x) = \operatorname{Id} - Df(x)$$
 $x \in \Omega$

Como, por hipótesis, Df es continua en el origen, vemos claramente que Dg también lo es, con Dg(0) = 0, luego existe $\delta_1 > 0$ tal que $B(0, \delta_1) \subset \Omega$ y

$$||Dg(x)|| \le 1/2 \quad \forall x \in B(0, \delta_1)$$

Por otra parte, recordemos que la continuidad de Df en el origen también implica la de la función $x \mapsto \det Jf(x)$, siendo $\det Jf(0) = 1$, luego existe $\delta_2 > 0$ tal que $B(0, \delta_2) \subset \Omega$ y

$$\det Jf(x) \neq 0 \qquad \forall x \in B(0, \delta_2)$$

Tomamos ahora $r = (1/3)\min\{\delta_1, \delta_2\}$ con lo cual tenemos:

$$x \in \mathbb{R}^N$$
, $||x|| < 3r \Rightarrow x \in \Omega$, $||Dg(x)|| \le 1/2$ y $\det Jf(x) \ne 0$ (1)

Como B(0,3r) es un subconjunto abierto y convexo de \mathbb{R}^N , un corolario de la desigualdad del valor medio nos asegura que q es lipschitziana en dicho abierto, más concretamente:

$$x, z \in B(x, 3r) \Rightarrow ||g(x) - g(z)|| \le (1/2)||x - z||$$
 (2)

En particular, tomando z = 0 tenemos

$$x \in B(x, 3r) \Rightarrow ||g(x)|| \le (1/2)||x||$$
 (3)

Llegamos al paso clave de la demostración, que consiste en usar el teorema del punto fijo de Banach, para probar lo siguiente:

■ Para cada $y_0 \in \overline{B}(0,r)$ existe un único $x_0 \in \overline{B}(0,2r)$ tal que $f(x_0) = y_0$. Además, si de hecho $||y_0|| < r$, se tiene también $||x_0|| < 2r$.

Fijado $y_0 \in \overline{B}(0,r)$, para $x \in \overline{B}(0,2r)$ se tiene

$$f(x) = y_0 \Longleftrightarrow g(x) = x - Y_0 \Longleftrightarrow g(x) + y_0 = x \tag{4}$$

luego buscamos un punto fijo de la función $x \mapsto g(x) + y_0$. Así pues, tomamos $E = \overline{B}(0,2r)$, que es un espacio métrico completo, subconjunto cerrado de \mathbb{R}^N , y definimos $h(x) = g(x) + y_0$ para todo $x \in E$. Usando (3) tenemos

$$||h(x)|| \le ||g(x)|| + ||y_0|| \le (1/2)||x|| + ||y_0|| \le 2r$$
 $\forall x \in E$

luego $h(E) \subset E$. Además, h es contractiva, pues de (2) deducimos claramente que,

$$||h(x) - h(z)|| = ||g(x) - g(z)|| \le (1/2)||x - z||$$
 $\forall x, z \in E$

Por el teorema del punto fijo, existe un único $x_0 \in E$ tal que $h(x_0) = x_0$ y, en vista de (4), x_0 es el único punto de $\overline{B}(0,2r)$ tal que $f(x_0) = y_0$. Por último, si $||y_0|| < 2r$, razonando como antes tenemos $||x_0|| = ||h(x_0)|| \le (1/2)||x_0|| + ||y_0|| \le r + ||y_0|| < 2r$. Queda así comprobada la afirmación \bullet , y el resto de la demostración se obtendrá ya sin dificultad.

Concretamente tomamos

$$U = B(0, 2r) \cap f^{-1}(B(0, r))$$

Como f es continua, el conjunto $f^{-1}(B(0,r))$ es abierto, luego U también es abierto, y es claro que $0 \in U \subset \Omega$. Comprobamos ahora todas las afirmaciones del teorema.

- (i) Si $x, z \in U$ verifican que f(x) = f(z), tomando $y_0 = f(x) \in B(0, r)$, de deducimos que existe un único $x_0 \in B(0, 2r)$ tal que $f(x_0) = y_0$, pero $x, z \in B(0, 2r)$, luego $x = z = x_0$ y hemos probado que f es inyectiva en U.
- (ii) Tomando V = f(U), es claro que $V \subset B(0,r)$ y comprobamos enseguida que se da la igualdad, con lo que V es una bola abierta. Para cada $y_0 \in B(0,r)$, usando de nuevo tenemos un $x_0 \in B(0,2r)$ tal que $f(x_0) = y_0$, pero entonces $x_0 \in U$, luego $y_0 \in f(U)$ como queríamos.
- (iii) Para $x \in U$ tenemos ||x|| < 3r y (1) nos dice que $\det Jf(x) \neq 0$.
- (iv) Usando la regla de diferenciación de la función inversa, y teniendo en cuenta (iii), basta probar que φ^{-1} es continua, y de hecho veremos que es lipschitziana.

Para $y_1, y_2 \in V$, sean $x_1 = \varphi^{-1}(y_1)$ y $x_2 = \varphi^{-1}(y_2)$, con lo que $x_1, x_2 \in U$, $f(x_1) = y_1$ y también $f(x_2) = y_2$. Por definición de g, tenemos $x_1 = y_1 + g(x_1)$ y $x_2 = y_2 + g(x_2)$. Por tanto, usando (2) obtenemos

$$||x_1 - x_2|| \le ||y_1 - y_2|| + ||g(x_1) + g(x_2)|| \le ||y_1 - y_2|| + (1/2)||x_1 - x_2||$$

Deducimos claramente que

$$||\varphi^{-1}(y_1) - \varphi^{-1}(y_2)|| = ||x_1 - x^*|| \le 2||y_1 - y_2||$$
 $\forall y_1, y_2 \in V$

Queda así probado el teorema cuando a = f(a) = 0 y Df(a) = Id. Completamos ahora la demostración, viendo que el caso general se deduce del que ya tenemos resuelto.

Sea $\Omega_0 = \{z \in \mathbb{R}^N : z + a \in \Omega\}$ que es un abierto de \mathbb{R}^N , como imagen inversa de Ω por una traslación, y verifica que $0 \in \Omega_0$. Como, por hipótesis, $\det Jf(a) \neq 0$, tenemos que T = Df(a) es biyectiva y usaremos su inversa. Consideramos entonces la función $f_0: \Omega_0 \to \mathbb{R}^N$ dada por

$$f_0(z) = T^{-1}((f(z+a) - f(a)) \qquad \forall z \in \Omega_0$$
(5)

que verifica $f_0(0) = 0$. La regla de la cadena nos dice que f_0 es diferenciable con

$$Df_0(z) = T^{-1} \circ Df(z+a) \qquad \forall z \in \Omega_0 \tag{6}$$

y en particular $Df_0(0)=T^{-1}\circ T=\mathrm{Id}$. También deducimos que $Df_0)$ es continua en el origen, pues para $z\in U_0$, se tiene

$$||Df_0(z) - Df_0(0)|| = ||T^{-1} \circ (Df(z+a) - T)|| \le ||T^{-1}|| ||Df(z+a) - Df(a)||$$

y bsata tener en cuenta que Df es continua en a. En resumen, f_0 verifica las hipótesis del teorema, en el caso particular que ya hemos resuelto.

Por tanto, tenemos $0 \in U_0 = U_0^{\circ} \subset \Omega_0$, con f_0 inyectiva en U_0 , el conjunto $V_0 = f_0(U_0)$ es abierto, $\det J f_0(z) \neq 0$ para todo $z \in U_0$ y $\varphi_0^{-1} \in D(V_0, \mathbb{R}^N)$ donde $\varphi_0 = f_0|_{U_0}$. Sólo queda hacer el camino de vuelta, traduciendo toda esta información en términos de f.

Para ello, sea $U=\{z+a:z\in U_0\}$ que claramente es un abierto de \mathbb{R}^N con $a\in U\subset\Omega$. A partir de (5) deducimos claramente que

$$f(x) = T(f_0(x-a)) + f(a) \qquad \forall x \in \Omega$$
 (7)

mientras que (6) se traduce en

$$Df(x) = T \circ Df_0(x - a) \qquad \forall x \in \Omega$$
 (8)

Comprobamos ya, de forma bastante rutinaria, que f tiene en U las propiedades requeridas.

- (i) Si $f(x_1) = f(x_2)$ con $x_1, x_2 \in U$, usando (7) tenemos $T(f_0(x_1 a)) = T(f_0(x_2 a))$, pero T es biyectiva, luego $f_0(x_1 a) = f_0(x_2 a)$. como $x_1 a, x_2 a \in U_0$ y f_0 es inyectiva en U_0 , concluimos que $x_1 = x_2$, luego f es inyectiva en U.
- (ii) Veamos que V = f(U) es abierto. Como V_0 es abierto y T es un homeomorfismo, $T(V_0)$ es abierto, y de (7) se deduce que $V = \{v \in \mathbb{R}^N : v f(a) \in T(V_0)\}$.
- (iii) Para $x \in U$ tenemos $x a \in U_0$, luego $\det Jf_0(x a) \neq 0$, así que $Df_0(x a)$ es biyectiva. Como T también lo es, deducimos de (8) que Df(x) es biyectiva, es decir, $\det Jf(x) \neq 0$.
- (iv) Si $\varphi = f|_U$, veamos la relación entre φ^{-1} y φ_0^{-1} . Para $y \in V$ se tiene $y f(a) \in T(V_0)$, luego $T^{-1}(y f(a)) \in V_0$, lo que permite tomar $x = (\varphi_0^{-1} \circ T^{-1})(y f(a)) + a \in U$, y usando (7) vemos claramente que f(x) = y. Esto prueba que

$$\varphi^{-1}(y) = (\varphi_0^{-1} \circ T^{-1})(y - f(a)) + a \qquad \forall y \in V$$

donde vemos claramente que φ^{-1} es continua. Como φ es diferenciable y $D\varphi(x) = Df(x)$ es biyectiva para todo $x \in U$, la regla de diferenciación de la función inversa nos dice que φ^{-1} es diferenciable con $D\varphi^{-1}(f(x)) = Df(x)^{-1}$ para todo $x \in U$.