CS262a Bayesian Networks

⊚ Tingfeng Xia @ UCLA

Winter Quarter, 2022

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 4.0 International" license.

Preface

I shall organize everything based on the chapters later.

1 Propositional Logic

1.1 Principle Logical Forms

Inconsistent. Something that never holds; $Mods(\cdot) = Pr(\alpha) = 0$

Valid. Something that always holds; $Mods(\cdot) = \Omega$; $Pr(\alpha) = 1$

Equivalent. $Mods(\alpha) = Mods(\beta)$

Mutual Exclusive. $Mods(\alpha) \cap Mods(\beta) = \emptyset$

Exhaustive. $Mods(\alpha) \cup Mods(\beta) = \Omega$

Entailment / Implication. $\alpha \models \beta \triangleq Mods(\alpha) \subseteq Mods(\beta)$

1.2 Equivalent Forms

- $Mods(\alpha \wedge \beta) = Mods(\alpha) \cap Mods(\beta)$
- $Mods(\alpha \vee \beta) = Mods(\alpha) \cup Mods(\beta)$
- $\operatorname{Mods}(\neg \alpha) = \overline{\operatorname{Mods}(\alpha)}$

1.3 Instantiation Agreement

Two instantiation, each of which can cover a subset of different variables, are said to be compatible with each other if they argree on all common variables. Denoted as $\mathbf{x} \sim \mathbf{y}$.

1.4 Information Theory

Entropy.

$$ENT(X) = -\sum_{x} Pr(x) \log Pr(x)$$
 (1.1)

where $0 \log 0 = 0$ by convention. With a higher entropy, we say that it is more chaotic.

Conditional Entropy.

$$\mathrm{ENT}(X|Y) = \sum_{y} \Pr(y) \mathrm{ENT}(X|y) \quad \text{where} \quad \mathrm{ENT}(X|y) = -\sum_{x} \Pr(x|y) \log \Pr(x|y) \quad (1.2)$$

Conditioning never increases the entropy, i.e.

$$ENT(X|Y) \le ENT(X)$$
 (1.3)

Mutual Information

$$MI(X;Y) = \sum_{x,y} Pr(x,y) \log \frac{Pr(x,y)}{Pr(x)Pr(y)}$$
(1.4)

$$= ENT(X) - ENT(X|Y) \tag{1.5}$$

$$= ENT(Y) - ENT(Y|X) \tag{1.6}$$

Conditional Mutual Information

$$MI(X;Y|Z) = \sum_{x,y,z} Pr(x,y,z) \log \frac{Pr(x,y|z)}{Pr(x|z)Pr(y|z)}$$
(1.7)

$$= ENT(X|Z) - ENT(X|Y,Z)$$
(1.8)

$$= ENT(Y|Z) - ENT(Y|X,Z)$$
(1.9)

2 Probability Calculus

2.1 Bayesian Conditioning

Bayesian Condition is specified by the formula

$$\Pr(\alpha|\beta) = \frac{\Pr(\alpha \wedge \beta)}{\Pr(\beta)} \tag{2.1}$$

In particular, not to be confused with Bayesian inference (to be added later).

2.2 Independence and Notations

Independence.

$$\alpha \perp \!\!\!\perp \beta \iff \Pr(\alpha|\beta) = \Pr(\alpha) \vee \Pr(\beta) = 0$$
 (2.2)

$$\iff \Pr(\alpha \land \beta) = \Pr(\alpha)\Pr(\beta)$$
 (2.3)

Conditional Independence.

$$(\alpha \perp \!\!\!\perp \beta)|\gamma \iff \Pr(\alpha|\beta \wedge \gamma) = \Pr(\alpha|\gamma) \vee \Pr(\beta \wedge \gamma) = 0 \tag{2.4}$$

$$\iff \Pr(\alpha \land \beta | \gamma) = \Pr(\alpha | \gamma) \Pr(\beta | \gamma) \lor \Pr(\gamma) = 1 \tag{2.5}$$

Set Independence

$$I_{\Pr}(X, Z, Y) \iff (x \perp \!\!\!\perp y)|z, \quad \forall x, y, z \in X, Y, Z$$
 (2.6)

3 Bayesian Networks

3.1 Soft Evidence

3.1.1 All Things Considered Method

We normalize / rescale w according to new evidence.

$$\Pr'(w) = \begin{cases} \frac{\Pr'(\beta)}{\Pr(\beta)} \Pr(w) & \text{if } w \vDash \beta\\ \frac{\Pr'(\neg\beta)}{\Pr(\neg\beta)} \Pr(w) & \text{if } w \vDash \neg\beta \end{cases}$$
(3.1)

The closed form is called the Jefferey's Rule.

Jeffery's Rule

$$Pr'(\alpha) = qPr(\alpha|\beta) + (1 - q)Pr(\alpha|\neg\beta)$$
(3.2)

Jeffery's Rule - General Case

$$Pr'(\alpha) = \sum_{i=1}^{n} Pr'(\beta_i) Pr(\alpha|\beta_i)$$
(3.3)

3.1.2 Nothing-else Considered Method

Odds.

$$O(\beta) = \frac{\Pr(\beta)}{\Pr(\neg\beta)} \tag{3.4}$$

Bayes Factor

$$k = \frac{O'(\beta)}{O(\beta)} = \frac{Pr'(\beta)/\Pr'(\neg \beta)}{\dots}$$
(3.5)

from where we can expand and organize

$$Pr'(\beta) = \frac{kPr(\beta)}{kPr(\beta) + Pr(\neg\beta)}$$
(3.6)

Closed Form Solution.

$$\Pr'(\alpha) = \frac{k\Pr(\alpha \wedge \beta) + \Pr(\alpha \wedge \neg \beta)}{k\Pr(\beta) + \Pr(\neg \beta)}$$
(3.7)

3.2 Noisy Sensors

$$O'(\beta) = \underbrace{\frac{1 - f_n}{f_p}}_{k^+} O(\beta) \qquad O'(\beta) = \underbrace{\frac{f_n}{1 - f_p}}_{k^-} O(\beta)$$
(3.8)

3.3 Markov Assumptions

$$Markov(G) = \{I_{Pr}(V, Parents(V), ND(V))\}_{V}$$
(3.9)

where ND means non-descendants, and includes all nodes except for V, Parents(V) and Descendants(V) (all the way till leaf)

3.4 Graphoid Axioms

Symmetry.

$$I_{\Pr}(X, Z, Y) \iff I_{\Pr}(Y, Z, X)$$
 (3.10)

Decomposition.

$$I_{\Pr}(X, Z, Y \cup W) \implies I_{\Pr}(X, Z, Y) \wedge I_{\Pr}(X, Z, W)$$
 (3.11)

Weak Union.

$$I_{\Pr}(X, Z, Y \cup W) \implies I_{\Pr}(X, Z \cup Y, W)$$
 (3.12)

Contraction.

$$I_{\Pr}(X, Z, Y) \wedge I_{\Pr}(X, Z \cup Y, W) \implies I_{\Pr}(X, Z, Y \cup W)$$
 (3.13)

Triviality.

$$I_{\Pr}(X, Z, \emptyset)$$
 (3.14)

3.5 Positive Graphoid Axioms

... includes everything from Graphoid Axioms (Section 3.4) and in addition has

Intersection.

$$I_{\Pr}(X, Z \cup W, Y) \wedge I_{\Pr}(X, Z \cup Y, W) \implies I_{\Pr}(X, Z, Y \cup W)$$
 (3.15)

3.6 D-seperation Linear Prune Theorem

3.7 D-separation Properties

Soundness.

$$\operatorname{dsep}_{G}(X, Z, Y) \implies I_{\Pr}(X, Z, Y) \tag{3.16}$$

(Weak) Completeness. There exists a parametrization Θ that for every DAG G such that

$$I_{\Pr}(X, Z, Y) \iff \operatorname{dsep}_G(X, Z, Y)$$
 (3.17)

4 Inference by Factor Elimination

4.1 Elimination Trees

Variables. vars(i) denotes the variables mentioned at node i. vars(i,j) denotes all variables mentioned in nodes to the i-side of the graph (inclusive). Hence, it holds that $vars(i) \subseteq vars(i,j)$.

Separators.

$$S_{ij} \triangleq vars(i,j) \cap vars(j,i) \tag{4.1}$$

Clusters.

$$C_i \triangleq vars(i) \cup \bigcup_j S_{ij}$$
 (4.2)

5 Inference by Conditioning

5.1 Run time

6 Compiling Bayesian Networks

6.1 Network Polynomials

The network polynomial is a summation over all instantiations of a network,

$$f \triangleq \sum_{z} \prod_{\theta_{x|u} \sim z} \theta_{x|u} \prod_{\lambda_{x} \sim z} \lambda_{x} \tag{6.1}$$

6.2 AC Properties

AC Size. of an AC is defined as the number of edges in the circuit.

AC Complexity. is the size of smallest AC that represents the network polynomial.

Decomposable. At each \star node, we need

$$vars(AC_A) \cap vars(AC_B) = \emptyset \tag{6.2}$$

Deterministic. At each + node, we require at most one positive input is non-zero for all *complete instantiation*.

Smooth. At each + node, we require

$$vars(AC_A) = vars(AC_B) \tag{6.3}$$

AC for Marginals. requires decomposable and smooth. This guarantees that subcircuits are of complete variable instantiations.

AC for Marginals and MPE. requires all three above: decomposable, deterministic, and smooth. The additional determinism guarantees a 1-to-1 mapping between sub-circuits and complete variable instantiations.

6.3 AC Derivative Probabilistic Implications

$$\frac{\partial f}{\partial \lambda_{\mathbf{x}}}(\mathbf{e}) = \Pr(\mathbf{x}, \mathbf{e} - X) \tag{6.4}$$

and

$$\theta_{\mathbf{x}|\mathbf{u}} \frac{\partial f}{\partial \theta_{\mathbf{x}|\mathbf{u}}}(\mathbf{e}) = \Pr(\mathbf{x}, \mathbf{u}, \mathbf{e})$$
 (6.5)