

How to Choose Priors

- Weakly-informative priors (aka "flat", "vague", "diffuse priors")
 - Provide minimal information
 - Coefficient of linear regression centered around 0: $\beta \sim Normal(0, 10)$
- Regularizing priors
 - Known information about the parameter
 - Parameter is positive: $\sigma \sim HalfCauchy(0,5)$
 - Parameter close to zero, above/below a number, or in a range
 - $\beta \sim Laplace(0,1)$ (lasso prior) encourages sparsity
 - $\beta \sim Normal(0,1)$ discourages extreme values
- Informative priors
 - Strong priors from previous knowledge (expert opinion, studies)
 - From experimental data: $\beta_1 \sim Normal(2.5, 0.5^2)$
 - From previous data, about 5% of cases positive: $p \sim Beta(2,38)$
- Prior elicitation
 - Compute least informative distribution given constraints
 - Estimate distribution using maximum entropy to satisfy constraints
 - E.g., beta distribution with 90% of mass between 0.1 and 0.7

- Communicating a Bayesian Analysis
- Probabilistic Programming
- Posterior-Based Decisions

Communicating the Model of a Bayesian Analysis

1. Communicate assumptions / hypothesis

- Describe priors and probabilistic models
- E.g., coin-flip distributions:

$$\begin{cases} \theta \sim \mathsf{Beta}(\alpha, \beta) \\ y \sim \mathsf{Binomial}(n = 1, p = \theta) \end{cases}$$

2. Communicate Bayesian analysis result

- Describe posterior distribution
- Summarize location and dispersion
- Mean (or mode, median)
- Std dev
 - Misleading for skewed distributions
- Highest-posterior density (HPD)
 - Shortest interval containing a portion of probability density (e.g., 95% or 50%)
 - Amount is arbitrary (e.g., ArviZ defaults to 94%)

Kruschke diagram

Confidence Intervals vs Credible Intervals

- People confuse:
 - Frequentist confidence intervals with
 - Bayesian credible intervals
- In the frequentist framework, there is a true (unknown) parameter value
 - A confidence interval may or may not contain the true parameter value
 - Interpretation of a 95% confidence interval
 - No: "There is a 95% probability that the true value is in this interval"
 - Yes: "If repeated many times, 95% of intervals would contain the true value"
- In the Bayesian framework, parameters are random variables
 - Interpretation of a 95% Bayesian credible interval
 - "There is a 95% probability that the true parameter lies within this interval, given the observed data"
 - Bayesian credible interval is intuitive

Confidence Intervals vs Credible Intervals (ELI5)

Confidence Interval (Frequentist)

- Imagine fishing in a lake without seeing the fish
- You throw your net
- 95% confidence interval: "If I threw this net 100 times, about 95 nets would catch the fish"
- Important: Once the net is thrown, it either caught the fish or not. The 95% makes sense across many attempts

Credible Interval (Bayesian)

- Imagine a magical map showing where fish probably are, based on past observations
- 95% credible interval: "Given my map, there's a 95% chance the fish is inside this part of the lake."
- The fish's location is uncertain, and probability describes your belief

Key Difference

- Confidence interval (Frequentist): Probability from repeating experiments
 - It's about the procedure, not the specific interval
- Credible interval (Bayesian): Probability describes your belief about the value, given the data
 - It's about this interval

- Communicating a Bayesian Analysis
- Probabilistic Programming
- Posterior-Based Decisions

Bayesian Statistics

- Given:
 - The "knows"
 - Model structure (modeled as a graph of probability distributions)
 - Data, observations (modeled as constants)
 - The "unknowns"
 - Model parameters (modeled as probability distributions)
- Use Bayes' theorem to condition unknowns to knowns hoping to reduce the uncertainty about the unknowns

- Problem
 - Most probabilistic models are analytically intractable
- Solution
 - Probabilistic programming
 - · Specify a probabilistic model using code
 - Solve models using numerical techniques

Probabilistic Programming Languages

• Steps:

- 1. Specify models using code
- 2. Numerical models solve inference problems without user understanding
 - Universal inference engines
 - PyMC3: flexible Python library for probabilistic programming
 - Theano: library to define, optimize, evaluate mathematical expressions using tensors
 - ArviZ: library to interpret probabilistic model results

Pros:

- Compute results without analytical closed form
- Treat model solving as a black box
- Focus on model design, evaluation, interpretation
- Probabilistic programming languages impact like Fortran on scientific computing
 - Build algorithms, ignore computational details

Coin Example: Numerical Solution (1/3)

- Assume you know the true value of θ (not true in general)
- Observe samples of the variable y
- Model the prior θ and the likelihood $y|\theta$

$$\left\{ egin{aligned} & heta \sim \mathsf{Beta}(lpha=1,eta=1) \ & Y \sim \mathsf{Binomial}(n=1,p= heta) \end{aligned}
ight.$$

- Run inference
- Generate samples of the posterior
- Summarize posterior
 - E.g., Highest-Posterior Density (HPD)

Coin Example: Numerical Solution (2/3)

- Generate data from ground truth model
- Build PyMC model matching mathematical model
- PyMC uses NUTS sampler, computes 4 chains
- No trace diverges
- Kernel density estimation (KDE) for posterior (should be Beta)
- Traces appear "noisy" and non-diverging (good)
- Numerical summary of posterior: mean, std dev, HDI
- $\mathbb{E}[\hat{\theta}] \approx 0.324$
- $Pr(\hat{\theta} \in [0.031, 0.653]) = 0.94$

Coin Example: Numerical Solution (3/3)

- Compute single
 KDE for all chains
- Rank plot to check results
- Histograms should look uniform, exploring different (and all) posterior regions
- Plot single KDE with all statistics

- Communicating a Bayesian Analysis
- Probabilistic Programming
- Posterior-Based Decisions

Posterior-Based Decisions

- Sometimes describing the posterior is not enough
 - You need to make decisions based on our inference
- E.g., is the coin fair $(\theta = 0.5)$ or biased?
 - Since $\mathbb{E}[\hat{\theta}] = 0.324$ it seems that the coin is biased
 - You can't rule out that the coin in unbiased since
 - HPI = [0.03, 0.65]
 - 0.5 ∈ *HPI*
- If you want a sharper decision, you need to:
 - Collect more data to reduce the spread of the posterior
 - Define a more informative prior

Savage-Dickey Density Ratio

- The Savage-Dickey ratio tests a point null-hypotheses in Bayesian inference
- Idea: compare prior and posterior densities at a single point θ_0

$$BF_{01} = \frac{p(\theta_0|H_1)}{p(\theta_0|\mathcal{D}, H_1)}$$

where:

- $p(\theta_0|H_1)$ is the *prior* density θ under the alternative hypothesis H_1 , evaluated at θ_0
- $p(\theta_0|\mathcal{D}, H_1)$ is the *posterior* density θ under H_1 evaluated at θ_0

Bayes Factor (BF)	Interpretation
1 - 3	Not enough evidence
3 - 10	Substantial evidence
10 - 100	Strong evidence
> 100	Decisive evidence

• **Intuition**: this ratio shows how much data changes belief about θ_0 $SCIEN \stackrel{\bullet}{C}E$ If posterior density at θ_0 is much smaller than prior density, Bayes factor ACADEM Y uggests strong evidence against H_0

Savage-Dickey Density Ratio: Example

- H₀: "coin is fair"
- The prior for H_0 is 0.87
- The posterior for H₀ is 1.15
- \$BF_{10} = \$

ROPE: Region of Practical Equivalence

- ROPE = an interval for a parameter where all values inside are considered "equivalent"
 - H_0 : "coin is fair" iff $\theta = 0.5$ is impractical
 - ROPE: $\theta \in [0.45, 0.55]$ is equivalent to 0.5
- Hypothesis testing with ROPE and HPI
 - Compare ROPE (Region Of Practical Equivalence) with HPI (Highest-Posterior Interval)
 - If HPI is within ROPE, no effect: H₁ is rejected
 - If HPI is outside ROPE, there is an effect: H_0 is rejected
 - If HPI overlaps with ROPE, result is inconclusive
- Decide ROPE before analysis based on domain knowledge
 - Picking it after analysis is like picking the p-value threshold after seeing the p-value

Loss Function: Motivation

- You need to make decisions based on our inference
- For many problems, decision cost is asymmetric
 - E.g., cost of a bad decision > benefit of a good decision
 - E.g., vaccines may cause overreaction, but benefits outweigh risks
- To make the best decision, measure:
 - Benefits of a correct decision
 - Cost of a mistake
 - Decide trade-off between benefits and costs using a loss function
 - Use loss we function for decisions
- Loss quantifies "how bad is an estimation mistake?"
 - Larger loss indicates worse estimation

Loss Function

- Aka "cost function"
 - The inverse is known as "objective", "fitness", "utility function"
- Use a function to measure the difference between:
 - The true value θ ; and
 - The estimated value $\hat{\theta}$

Loss	Expression	Point estimate
Quadratic loss	$(heta - \hat{ heta})^2$	Mean of posterior
Absolute loss	$ heta-\hat{ heta} $	Median of posterior
1-0 loss	$I(heta eq \hat{ heta})$	Mode of posterior

- Making decisions in Bayesian statistics using loss function
 - Goal: pick a single value $\hat{\theta}$
 - ullet You don't know the true value heta
 - Estimate θ in terms of the posterior distribution
 - Find the value $\hat{\theta}$ that minimizes the expected loss function

