Math 523H-Homework 9

- 1. Show that if g(x) is differentiable at x_0 and $g(x_0) \neq 0$ then 1/g(x) is differentiable at x_0 in two ways:
 - (a) Using the definition of the derivative as a limit.
 - (b) Using our third formulation of the derivative (Caratheodory formulation) (g is differentiable if there exists a function $\phi(x)$ continuous at x_0 such that $g(x) = g(x_0) + \phi(x)(x x_0)$).
- 2. Using one of the equivalent definition of the derivative show that $f(x) = \sqrt{x}$ is differentiable for x > 0 and that $g(x) = x^{1/3}$ is differentiable at $x \neq 0$. Show also that $x^{1/3}$ is not differentiable at x = 0.
- 3. Consider the function $f_n = x^n \sin(1/x^3)$ for $x \neq 0$ and f(0) = 0 where n is a non-negative integer. For which values of n is f(x) (a) continuous? (b) differentiable? (c) twice differentiable? when are the derivatives continuous? Hint: You may use that $\sin(x)$ and $\cos(x)$ are differentiable and their derivatives without proving it.
- 4. Prove that if f is differentiable at x_0 then

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0 - h)}{2h}$$

- 5. The function $\sin(x)$ is bijective on $[-\pi/2, \pi/2]$ and $\arcsin(x)$ is its inverse function. Compute the derivative of $\arcsin(x)$. Hint: You may use the derivative of $\sin(x)$ without proving it.
- 6. Let $f:[a,b] \to \mathbb{R}$ be continuous and n times differentiable on (a,b). Show that f(x) has n+1 zeros in [a,b] then there exists $\xi \in (a,b)$ such that $f^{(n)}(\xi) = 0$. Hint: Apply Rolle's theorem several times.
- 7. Let f be a continuous function on \mathbb{R} and define

$$G(x) = \int_0^{\sin(x)} f(t)dt$$

Show that G(x) is differentiable and and compute G'(x).

- 8. Compute
 - (a) $\lim_{x\to 0} (1+2x)^{1/x}$
 - (b) $\lim_{x\to 0} \frac{e^{2x}-\cos(x)}{x}$
 - (c) $\lim_{x\to 0} \left[\frac{1}{\sin(x)} \frac{1}{x} \right]$

- (d) $\lim_{x\to 0} \cos(x)^{1/x^2}$ (e) $\lim_{x\to 0} \frac{1-\cos(2x)-2x^2}{x^4}$.