# Busqueda en espais d'estats

Models d'intel·ligència artificial

# Busqueda

- Fonamental en molts dominis
  - Jocs, Planificació...
- Funciona molt bé en altres tipus de problemes
  - Diagnòstic, Control, Aprenentatge, ...
- És una tècnica molt general
  - Podem aplicar-la a problemes sense solució específica
  - Molt útil per aproximar
- Les tècniques de cerca són la base de molts sistemes intel·ligents

# Busqueda en espais d'estats

- Els **problemes de búsqueda** tindran
  - Un estat inicial
  - Una funció de succesió
    - Defineix els estats successors d'un estat i el cost per arribar a aquests estats
  - Un estat final
- Una **solució** és una seqüència d'estats (un plà) que ens porten de l'estat inicial a l'estat final

# **Exemple: Viatjar per Romania**

• **Espai d'estats**: Ciutats

• Funcio de succesió: Carreteres.

Cost: Distància

• **Estat inicial**: Arad

Comprovar si un estat és final:

Estat = Bucharest

• **Solució**: Seqüència de ciutats que ens porten d'Arad a Bucharest



# Exemple: Botelles d'aigua (I)

Tenim dues botelles d'aigua, una de 4 litres i una altra de 3 litres. Volem obtenir 2 litres d'aigua.

Podem omplir les botelles, buidar-les o trasvasar l'aigua d'una a l'altra.

- Espai d'estats: Estat de les botelles
- Funcio de succesió: Operacions de buidar, omplir i trasvasar
- **Estat inicial**: (0,0)
- Comprovar si un estat és final: Estat = (2,0)
- Solució: Seqüència d'operacions que ens porten de (0,0) a (2,0)

# Exemple: Botelles d'aigua (II) Observacions

- Tal com està formulat el problema, no poden haver-hi estats no enters.
- Alguns estats són impossibles d'aconseguir. Ex: (1, 2)
- Algunes accions no produeixen canvis.
  - Ex: (0,0) + buidar(4) = (0,0)

#### Exemple: Puzzle 8 (I)

Tenim un tauler de 3x3 amb 8 peces numerades del 1 al 8 i un espai buit. Volem moure les peces per aconseguir l'estat final.

- Espai d'estats: -
- Funcio de succesió: -
- Estat inicial: -
- Comprovar si un estat és final: -
- Solució: -







**Estat final** 

#### Exemple: Puzzle 8 (II)

- **Espai d'estats**: Les diferents posicions de les peces. *Quantes?*
- **Funcio de succesió**: Podem moure la peça buida en les 4 direccions. *Podem sempre fer els 4?*
- Estat inicial: P.e. el de la figura anterior
- Comprovar si un estat és final: Verificar que les peces estan a la posició correcta.
- **Solució**: Seqüència de moviments que ens porten a l'estat final



**Estat inicial** 



**Estat final** 

# Exemple: Puzzle 8 (III) Observacions

- El nombre d'estats és molt gran: 9! = 362.880 estats
- Solament quan la peça buida està al centre del tauler podem fer els 4 moviments
- No tots els estats tenen solució
- Hi ha moltes solucions
  - Quina és la millor?

# Situacions més complicades

- En els exemples anteriors, de cada estat coneixíem
  - Els estats successors
  - El cost de cada estat successor
- En altres problemes els resultat de cada acció és incert
- Veurem técniques per tractar algunes d'aquestes situacions
  - Métodes probabilístics: assignar probabilitats als estats successors
  - Métodes de cerca adversarial: els estats successors són determinats per un oponent

# Representació dels problemes de cerca Arbres de cerca

- Els problemes de cerca es poden representar com un arbre
- Els nodes són els estats
- Les arestes són les accions
- Els costos són els pesos de les arestes
- Podem aplicar algorismes de cerca de camins mínims
- L'espai de cerca ha de ser finit

## **Exemple: Viatjar per Romania**



- Els nodes ja visitats es mostren en gris
- Els oberts en blanc i els encara per visitar en linees discontínues.



# Definició

- Els algorismes de cerca són algorismes de propòsit general
  - Poden ser aplicats a qualsevol problema de cerca
  - Els problemes de cerca són un cas particular dels problemes de camins mínims

#### • Sortida:

- Una serie d'accions que ens porten de l'estat inicial a l'estat final
- El resultat pot ser una solució òptima en cost, óptima en temps o no tindre cap tipus de garantia d'optimalitat.

# Funcionament general

- Tindrem una llista d'estats coneguts pero per visitar anomenada frontera.
- Inicialment la frontera conté l'estat inicial.
- En cada iteració, agafarem un estat de la frontera, aplicarem la funció de succesió i afegirem els nous estats a la frontera.
  - Si l'estat és final, hem acabat.
  - Si la frontera està buida, no hi ha solució.
  - Per cada estat anotarem el seu pare, per poder reconstruir la solució.
- En cada iteració, podem aplicar una estratègia per decidir quin estat de la frontera agafem.

# Exemple de funcionament (Alternativa I)

- Frontera: {Arad}. Objectiu:
   Bucharest
- 1. Obrim **Arad**: {Z<A>, T<A>, **S<A>**},
- 2. Obrim **Sibiu**: {Z<A>, T<A>, A<S,A>, O<S,A>, **F<S,A>**, R<S,A>}
- Obrim Fagaras: {Z<A>, T<A>,
   A<S,A>, O<S,A>, R<S,A>, S<F,S,A>,
   B<F,S,A>}
- 4. Tenim la solució en la frontera. Cost: 140+99+211 = 450



# Exemple de funcionament (Alternativa II)

- Frontera: {Arad}. Objectiu: Bucharest
- 1. Obrim **Arad**: {Z<A>, T<A>, **S<A>**},
- 2. Obrim **Sibiu**: {Z<A>, T<A>, A<S,A>, O<S,A>, **F<S,A>**, R<S,A>}
- 3. Obrim **R.V**: {Z<A>, T<A>, A<S,A>, O<S,A>, R<S,A>, S<R,S,A>, **P<R,S,A>**, C<R,S,A>}
- Obrim Pitesti: {Z<A>, T<A>, A<S,A>,
   O<S,A>, R<S,A>, S<R,S,A>, P<R,S,A>,
   C<R,S,A>, R<P,R,S,A>,
   C<P,R,S,A>, B<P,R,S,A>}
- 5. Tenim la solució en la frontera. Cost: 140+80+97+101 = 418



#### **Exemple de funcionament**

#### **Observacions**

- En aquest exemple, els estats són les ciutats
- Problemes:
  - Poden apareixer estats repetits en la frontera
  - També es poden produir cicles
- L'ordre de les ciutats en la frontera determinarà:
  - Si trobem o no la solució
  - El cost de la solució
  - El temps d'execució i l'espai de memòria necessari



# Propietats dels algorismes de cerca

- Criteris per comparar algorismes de cerca
  - Completitud: Garantia de trobar una solució si existeix
  - Optimalitat: Garantia de trobar la solució òptima
  - Complexitat temporal: Temps d'execució
  - Complexitat espacial: Memòria necessària



# Búsqueda no informada

| - |   |   |  |  |  |
|---|---|---|--|--|--|
| 7 | 2 | 4 |  |  |  |
|   | 5 | 6 |  |  |  |
| 8 | 3 | 1 |  |  |  |

| 1.7 |   |   |  |  |
|-----|---|---|--|--|
| 7   | 2 | 4 |  |  |
| 5   | 6 |   |  |  |
| 8   | 3 | 1 |  |  |

| 7 |   | 4 |
|---|---|---|
| 5 | 2 | 6 |
| 8 | 3 | 1 |

|   | East. |   | 7  |
|---|-------|---|----|
| 7 | 2     | 4 |    |
| 5 | 3     | 6 |    |
| 8 | EO FE | b | 京先 |

#### Búsqueda no informada

#### **Característiques**

- No utilitza cap informació sobre el problema
- Aplica una estratègia de cerca fins que troba la solució
- Aquesta estratègia determina l'ordre en què s'exploraran els estats
- L'estrategia serà fixa, no pot canviar en funció del problema
- Alguns algorismes de cerca no informada:
  - Amplitud, Profunditat, Cost uniforme, Profunditat limitada, Profunditat iterativa

- Estrategia utilitzable quan totes les accions tenen el mateix cost
- ullet Explora tots els estats a una profunditat p abans d'explorar els estats a profunditat p+1
- Garanteix trobar la solució òptima
- Definim la **frontera** com una **cua** (FIFO)
- Els estats ja visitats es guarden en una llista o conjunt (per evitar cicles)



#### **Implementació**

```
def cerca_amplada(estat_inicial):
    """Cerca en amplada en un problema."""
    frontera = collections.deque([estat_inicial])
   visitats = set()
   while frontera:
        estat = frontera.popleft()
       visitats.add(estat)
        if es_solucio(estat):
            return estat
        for succesor in succesors(estat):
            if succesor not in visitats:
                frontera.append(succesor)
```

#### **Exemple: Botelles d'aigua (I)**

- Estat inicial: (0,0) Estat final:  $(2,*) \circ (*, 2)$
- Funcio de succesió: Operacions de buidar, omplir i trasvasar
- 1. Frontera =  $\{<(0,0)>\}$
- 2. Frontera =  $\{<(0,0),(3,0)>,<(0,0),(0,4)>\}$
- 3. Frontera =  $\{<(0,0),(0,4)>,<(0,0),(3,0),(0,0)>,<(0,0),(3,0),(3,4)>,<(0,0),(3,0),(0,3)>\}$
- 4. Frontera =  $\{<(0,0),(3,0),(0,0)>,<(0,0),(3,0),(3,4)>,<(0,0),(3,0),(0,3)>,$ <\(\mathref{0,0},(0,4),(0,0)>,<(0,0),(0,4),(3,4)>,<(0,0),(0,4),(3,1)>\}
- 5. ...

#### **Exemple: Botelles d'aigua (II)**

- Representació de l'arbre de cerca
  - Cada node és un parell de valors (a,b) que representen l'estat de les botelles
  - La busca en amplitud explora l'arbre per nivells
  - Podem observar que solament s'explora un nombre molt reduït de tots els possibles estats



#### **Propietats**

- Completitud: Sí
  - Si l'espai de cerca és finit, la solució es trobarà en algun moment
- Optimalitat: Sí
  - Si totes les accions tenen el mateix cost, la primera solució trobada serà òptima
- Complexitat temporal:  $O(b^d)$ 
  - ullet On b és el factor de ramificació i d és la profunditat de la solució
- Complexitat espacial:  $O(b^d)$ 
  - ullet On b és el factor de ramificació i d és la profunditat de la solució

#### **Problemes**

- La complexitat espacial és un problema real.
  - Per exemple, suposem que cada estat ocupa **1KB** i que el **factor de** ramificació és **10**.
  - Si la solució es troba a una profunditat de 10, necessitarem 10GB de memòria.
  - Si la solució es troba a una profunditat de **100**, necessitarem **10TB** de memòria.
  - Si la solució es troba a una profunditat de **1000**, necessitarem **10PB** de memòria.
- Típicament, ens quedarem sense espai abans de quedar-nos sense temps.

- L'estratègia de cerca en profunditat és similar a la de cerca en amplitud
- Utilitza una **pila** (LIFO) en lloc d'una cua
- Aquesta estratègia no garanteix trobar la solució òptima
- ullet L'algorisme arriva fins a una profunditat màxima m i després retrocedeix fins a trobar un camí alternatiu



#### Implementació (I)

```
def cerca_profunditat(estat_inicial):
    """Cerca en profunditat en un problema."""
    frontera = collections.deque([estat_inicial])
   while frontera:
        estat = frontera.pop()
        if es_solucio(estat):
            return estat
        for succesor in succesors(estat):
            if not cicle(problema, succesor):
                frontera.append(succesor)
```

#### **Exemple: Botelles d'aigua (I)**

- Estat inicial: (0,0) Estat final:  $(2,*) \circ (*, 2)$
- Funcio de succesió: Operacions de buidar, omplir i trasvasar
- 1. Frontera =  $\{<(0,0)>\}$
- 2. Frontera =  $\{<(0,0), (3,0)>, <(0,0), (0,4)>\}$
- 3. Frontera =  $\{<(0,0),(3,0),(0,0)>,<(0,0),(3,0),(3,4)>,<(0,0),(3,0),(0,3)>,<(0,0),(0,4)>\}$
- 4. Frontera =  $\{<(0,0),(3,0),(0,0),(3,0)>,<(0,0),(3,0),(0,0),(0,4)>$  $<(0,0),(3,0),(3,4)>,<(0,0),(3,0),(0,3)>,<(0,0),(0,4)>\}$
- 5. ...

#### **Exemple: Botelles d'aigua (II)**

- Representació de l'arbre de cerca
  - Cada node és un parell de valors (a,b) que representen l'estat de les botelles
  - La busca en profunditat explora l'arbre fins a trobar una solució
  - Si no troba una solució, torna enrere fins a trobar un camí alternatiu
  - Si les solucions son infinites,
     l'algorisme pot no acabar mai



#### **Propietats**

- Completitud: No
  - Si l'espai de cerca és finit, la solució es trobarà en algun moment
- Optimalitat: No
  - La primera solució trobada no té perquè ser òptima
- Complexitat temporal:  $O(b^m)$ 
  - ullet On b és el factor de ramificació i m és la profunditat màxima de l'arbre
  - Si m és molt gran, la complexitat temporal pot ser molt alta
- Complexitat espacial: O(bm)
  - ullet On b és el factor de ramificació i m és la profunditat màxima de l'arbre
  - La complexitat espacial és molt millor que la de la cerca en amplitud si no hi ha cicles
  - Si hi ha cicles, la complexitat espacial es la mateixa que la de la cerca en amplitud

#### Quan utilitzar-la?

- En la pràctica, la cerca en profunditat és molt més ràpida que la cerca en amplitud
- La cerca en profunditat no necessita tant espai com la cerca en amplitud
- La cerca en profunditat és molt útil quan:
  - El factor de ramificació és molt gran
  - La solució es troba a una profunditat molt baixa
  - No ens importa trobar la solució òptima
  - Verifiquem que no es creen cicles

#### Búsqueda en profundidad limitada

- La cerca en profunditat limitada és una variant de la cerca en profunditat
- En aquest cas, la cerca s'atura quan s'arriba a una profunditat màxima  $\it l$
- Si la solució es troba a una profunditat d>l, no es trobarà
- La cerca en profunditat limitada és completa si l és suficientment gran
- Ens permet evitar el problema de la cerca en profunditat quan les solucions son infinites

#### Búsqueda en profundidad limitada

#### **Implementació**

```
def cerca_profunditat_limitada(estat_inicial, 1):
    """Cerca en profunditat limitada en un problema."""
    frontera = collections.deque([estat_inicial])
    while frontera:
        estat = frontera.pop()
        if es_solucio(estat):
            return estat
        for succesor in succesors(estat):
            if not cicle(problema, succesor) and profunditat(succesor) < 1:</pre>
                frontera.append(succesor)
```

# Búsqueda en profundidad iterativa

- Solució al problema de la cerca en amplitud y la cerca en profunditat utilitzant una única estratègia
- La cerca en profunditat iterativa és una cerca en profunditat limitada amb l creixent
- Comença amb l=0 i va incrementant l fins a trobar la solució



Traçat de l'algorisme (I)

limit: 0









Traçat de l'algorisme (II)



Traçat de l'algorisme (III)



#### **Implementació**

```
def cerca_profunditat_iterativa(estat_inicial):
    """Cerca en profunditat iterativa en un problema."""
    l = 0
    while True:
        solucio = cerca_profunditat_limitada(estat_inicial, l)
        if solucio is not None:
            return solucio
        l += 1
```

#### **Propietats**

- Completitud: Sí
  - Si l'espai de cerca és finit, la solució es trobarà en algun moment
- Optimalitat: Sí
  - La primera solució trobada serà òptima
- Complexitat temporal i espacial: Com la de la cerca en profunditat (com a màxim)

- La cerca de cost uniforme és una variant de la cerca en amplitud
- En aquest cas, la frontera s'ordena segons el cost del camí a cada estat (cua de prioritat)
- Estats visitats: de manera iterativa, es van visitant tots els que tenen un cost menor que l'actual
- Sí totes les accions tenen el mateix cost, la cerca de cost uniforme és equivalent a la cerca en amplitud



#### **Exemple: Viatjar per Romania (I)**

- Estat inicial: Arad
- Funcio de succesió: Carreteres.
- **Cost**: Distància entre ciutats (en Km)
- Comprovar si un estat és final: Estat = Bucharest
- **Solució**: Seqüència de ciutats que ens porten d'Arad a Bucharest



#### **Exemple: Viatjar per Romania (II)**

- Representació de l'arbre de cerca
  - Cada node és un parell de valors (a,b) que representen l'estat de les botelles
  - La busca en amplitud explora l'arbre per nivells
  - Podem observar que solament s'explora un nombre molt reduït de tots els possibles estats



#### **Implementació**

```
def cerca_cost_uniforme(estat_inicial):
    """Cerca de cost uniforme en un problema."""
    frontera = priority_queue([(0, estat_inicial)])
   visitats = set()
   while frontera:
       cost_actual, estat = frontera.pop()
       visitats.add(estat)
        if es_solucio(estat):
            return estat
        for cost, succesor in succesors(estat):
            if succesor not in visitats:
                frontera.append(cost + cost_actual, succesor)
```

#### **Propietats**

- Completitud: Sí
  - Si l'espai de cerca és finit, la solució es trobarà en algun moment
- Optimalitat: Sí
  - La primera solució trobada serà òptima
- Complexitat temporal i espacial:  $O(b^C*/\epsilon+1)$ 
  - On b és el factor de ramificació i C\* és el cost de la solució òptima

## Gestió de fronteres

- La gestió de **fronteres** és un problema important en els algorismes de cerca
- Els algorismes que hem vist son tots molt semblants, la diferència està en com gestionen la frontera
  - Conceptualment sempre es tracta d'una cua amb prioritat
  - En la pràctica, per a les busquedes en profunditat i amplada **podem** utilitzar una cua o una pila
    - Per estalviar-nos el **sobrecost** de O(logn) de la cua de prioritat
  - Podriem, fins i tot, programar una implementació on pugam variar l'objecte frontera.



# Búsqueda informada

#### Definició

- L'algorisme de búsqueda de cost uniforme és un algoritme molt eficient, té, però alguns problemes
  - Busca en totes les direccions, sense tenir en compte la direcció cap a la solució
  - Per tant, analitza més estats dels que seria estrictament necessari
- En aquesta part de la unitat veurem técniques per solucionar aquestos problemes

### Heurístiques

- Una heurística és:
  - Una funció que ens permet estimar el cost d'arribar a la solució des d'un estat
  - Dissenyada per un problema concret
- Heurístiques per rutes:
  - Distància en línia recta (euclidiana)
  - Distància manhattan



# Heurístiques

#### **Exemple: Viatjar per Romania**

• **Heurística**: Distància en línia recta (euclidiana)



| Ciutat    | DLR |
|-----------|-----|
| Mehadai   | 241 |
| Neamt     | 234 |
| Oradea    | 380 |
| Pitesti   | 98  |
| Rimnicu   | 193 |
| Sibiu     | 253 |
| Timisoara | 329 |
| Urziceni  | 80  |
| Vaslui    | 199 |
| Zerind    | 374 |

 Si solament utilitzem la heurística per decidir quin estat de la frontera seguim:

## Búsqueda voraç

- Més eficient que la búsqueda de cost uniforme
- No garanteix trobar la solució òptima



- En verd la ruta correcta i en roig la nostra
- Que podem fer perqué el nostre algorisme trobi la solució correcta?



#### **Implementació**

```
def cerca_voraç(estat_inicial):
    """Cerca voraç en un problema."""
    frontera = priority_queue([(0, estat_inicial)])
    visitats = set()
    while frontera:
       cost_actual, estat = frontera.pop()
       visitats.add(estat)
        if es_solucio(estat):
            return estat
        for cost, succesor in succesors(estat):
            if succesor not in visitats:
                frontera.append(heuristica(succesor), succesor)
```

#### **Propietats**

- Completitud: Sí
  - Si l'espai de cerca és finit, trobarà una solució en algun moment
- Optimalitat: No
  - La primera solució trobada no té perquè ser òptima
- Complexitat temporal i espacial: O(bm)
  - On b és el factor de ramificació i m és la profunditat màxima de l'arbre

- L'algorisme **A**\* és una combinació de la búsqueda de cost uniforme i la búsqueda voraç
  - La búsqueda de cost uniforme ordena pel cost del camí o cost cap enrere: g(n)
  - La búsqueda voraç ordena pel cost de la heurística o cost endavant: h(n)
  - L'algorisme A\* ordena per la suma dels dos: f(n) = g(n) + h(n)
- Garanteix trobar la solució òptima (si h(n) és admissible)

#### **Exemple: Viatjar per Romania (I)**



#### **Exemple: Viatjar per Romania (II)**





#### **Exemple: Viatjar per Romania (III)**



#### **Implementació**

```
def cerca_a_estrella(estat_inicial):
    """Cerca A* en un problema."""
   frontera = priority_queue([(0, estat_inicial)])
   visitats = set()
   while frontera:
       cost_actual, estat = frontera.pop()
       visitats.add(estat)
        if es_solucio(estat):
            return estat
        for cost, succesor in succesors(estat):
            if succesor not in visitats:
                frontera.append(cost + cost_actual, succesor)
```

#### **Propietats**

- Completitud: Sí
- Optimalitat: Sí
- Complexitat temporal i espacial:  $O(b^d)$ 
  - ullet On b és el factor de ramificació i d és la profunditat de la solució
- Condició:
  - Aquestes propietats es compleixen si la heurística és admissible

# Heurístiques admissibles (I)

- Una heurística és **admissible** si:
  - No sobreestima el cost de la solució
  - És a dir, si el cost real de la solució és C, la heurística és admissible si  $h(n) \leq C$
- Si la heurística no és admissible:
  - L'algorisme A\* és equivalent a la búsqueda voraç
- Trobar una heurística admissible és un problema difícil.

# Construcció de heurístiques admissibles

**Exemple: Puzzle 8 (I)** 

- Técnica útil redüir el problema a un problema més senzill
- Relaxació de les regles del joc
  - 1. Permetre que les peces s'intercanviin entre elles
  - 2. Permetre que les peces es moguin a qualsevol posició, si està buida
  - 3. Permetre que les peces es moguin a qualsevol posició, sense restriccions (1+2)



**Estat inicial** 



**Estat final** 

# Construcció de heurístiques admissibles

#### **Exemple: Puzzle 8 (II)**

- La primera opció ens porta la heurística distància manhattan
  - Equival a un problema on hem de lliscar les peces fins a la seva posició.
  - Suma de les distàncies horitzontals i verticals de cada peça a la seva posició final
  - És admissible perquè no sobreestima el cost de la solució
- La tercera opció ens porta la heurística nombre de peces fora de lloc
  - Equival a un problema on hem de deixar directament en la seva posició.
  - Suma de les peces que no estan a la seva posició final
  - És admissible perquè no sobreestima el cost de la solució

# Propietat Óptima de les heurístiques admissibles (I)

- Si tenim una ruta óptima fins a  $n_d$  amb cost  $g(n_d)$ .
  - $n_g'$  serà una ruta subòptima fins a  $n_d$  amb cost  $g(n_d')$ , sent  $g(n_d') > g(n_d)$ .
  - n'' serà una subpart de la ruta òptima desde la frontera
- Es possible que agafem  $n_g'$  abans de  $n_d$ ?.
  - No, perquè  $f(n_g') > f(n_d)$
  - També,  $f(n'_g) > f(n'')$ , perquè la nostra heurística és admissible
  - Així,  $f(n'_g) > f(n'') > f(n_d)$
- Les subrutes en la ruta òptima sempre seran més barates la ruta subòptima



# Propietat Óptima de les heurístiques admissibles (II)

- A\* explora els nodes en ordre creixent de f(n)
- Va agregant, de forma gradual, corves de nivell de grau f
- Cada corba de nivell representa un conjunt de nodes amb un valor  $\mathsf{d}^{\mathsf{L}}f(n)$  inferior a un valor concret



# Propietat Óptima de les heurístiques admissibles (III)

- Si tenim dues heurístiques admissibles  $h_1$  i  $h_2$ , amb  $h_1(n) \leq h_2(n)$  per a tots els estats n
- Llavors,  $h_2$  és més informativa que  $h_1$
- ullet Per tant,  $h_2$  serà més eficient que  $h_1$
- Es per això que, preferirem
   l'heurística Manhattan a l'heurística de peces fora de lloc



**Estat inicial** 



**Estat final** 

# Limitacions de l'algorisme A\*

- L'algorisme A\* és òptim i una millora respecte a la búsqueda de cost uniforme
- Però, l'algorisme **A**\* té dues limitacions:
  - Espai de memòria: L'espai de memòria necessari pot ser molt gran
  - Temps d'execució: El temps d'execució pot ser molt gran
- Per això, s'han desenvolupat variants de l'algorisme A\* que intenten millorar aquestes limitacions
- En aquesta unitat veurem dues:
  - A\* de profunditat iterativa
  - A\* ponderat

# A\* de profunditat iterativa

- L'algorisme A\* de profunditat iterativa és una variant de l'algorisme A\*
- Molt semblant a l'algorisme de profunditat iterativa
  - ullet Utilitza la funció f(n) per tallar, en compte de la profunditat
- Ens permet reduir l'espai de memòria necessari
  - A costa de tindre que visitar alguns nodes més d'una vegada

# A\* de profunditat iterativa

#### Implementació (I)

```
def cerca_a_limitada(estat_inicial, 1):
    """Cerca A* limitada en un problema."""
    frontera = priority_queue([(0, estat_inicial)])
   visitats = set()
   while frontera:
        cost_actual, estat = frontera.pop()
       visitats.add(estat)
        if es_solucio(estat):
            return estat
        for cost, succesor in succesors(estat):
            if succesor not in visitats and cost actual + cost < 1:
                frontera.append(cost_actual + cost, succesor)
```

# A\* de profunditat iterativa

#### Implementació (II)

```
def cerca_a_iterativa(estat_inicial):
    """Cerca A* iterativa en un problema."""
    1 = \emptyset
    while True:
        solucio = cerca_a_limitada(estat_inicial, l)
        if solucio is not None:
            return solucio
        1 += 1
```

## **A\* Ponderat**

#### Definició

- L'algorisme A\* ponderat és una variant de l'algorisme A\*
- Es defineix un factor de ponderació  $\epsilon$  que determina el pes de la heurística
- L'algorisme  ${f A}^*$  ponderat ordena per  $f(n)=g(n)+\epsilon h(n)$
- Si  $\epsilon=1$ , l'algorisme  ${f A}^*$  ponderat és equivalent a l'algorisme  ${f A}^*$
- Si  $\epsilon > 1$ , l'algorisme  ${\bf A}^*$  ponderat és s'apropa a la búsqueda voraç

#### **A\* Ponderat**

#### **Utilitat**

- L'algorisme A\* ponderat és útil per:
  - Reduir el cost de l'espai de memòria
  - Reduir el cost de l'espai de temps
  - A costa d'una solució no tan òptima
- En l'exemple de la dreta en una W=2 (la b)
  - S'estudien 7 vegades menys estats
  - Per una solució un 5% menys eficient



(a)



## **A\* Ponderat**

#### **Implementació**

```
def cerca_a_ponderat(estat_inicial, epsilon):
    """Cerca A* ponderat en un problema."""
    frontera = priority_queue([(0, estat_inicial)])
   visitats = set()
   while frontera:
        cost_actual, estat = frontera.pop()
       visitats.add(estat)
        if es_solucio(estat):
            return estat
        for cost, succesor in succesors(estat):
            if succesor not in visitats:
                frontera.append(cost_actual + epsilon * cost, succesor)
```

### **Anytime A\***

- Podem aprofitar l'algorisme A\*
   ponderat per construir un algorisme
   Anytime A\*
  - Busquem el camí òptim amb un  $\epsilon$  gran
  - Anem reduint  $\epsilon$  fins a que  $\epsilon=1$
  - Així, obtenim una bona solució en un temps raonable
    - Si tenim temps, podem seguir buscant una solució millor, fins arribar a la solució òptima



 $\varepsilon$  = 2 13 node expansions Solution length: 12



 $\epsilon$  = 1.5 15 node expansions Solution length: 12



 $\varepsilon$  = 1 20 node expansions Solution length: 10

# **Anytime A\***

#### **Implementació**

```
def cerca_anytime_a(estat_inicial):
    """Cerca Anytime A* en un problema."""
    epsilon = 100
    while epsilon > 1:
        solucio = cerca_a_ponderat(estat_inicial, epsilon)
        yield solucio
        epsilon /= 2
```

## Demostració de búsquedes

#### Pac-Man

https://www.youtube.com/watch?v=2XjzjAfGWzY





Voraç



**Cost Uniforme** 



**Cost Uniforme**