

Data Warehousing & Mining Techniques

Wolf-Tilo Balke Muhammad Usman

Institut für Informationssysteme Technische Universität Braunschweig http://www.ifis.cs.tu-bs.de

(Summary

- Last week:
 - What is a Data Warehouse
 - Applications and users
 - Lifecycle and phases

- Architecture and Data model
 - This lecture

(A) 2. Architecture

2. Architecture

- 2.1 Basic Architecture
- 2.2 Architectures in Practice
- 2.3 DW Storage Structures
- 2.4 DW Data Modeling

2.1 Basic Architecture

• Full DW architecture:

(2) 2.1 Operational Data Store

 Databases that serve daily operations of the enterprise e.g. production, sales (cash register), accounting

- Usually rely on relational database technology (see

RDBI)

 Optimized for small queries like: simple product lookups, inserts, updates and deletes

- Contains a separate copy of the data which will be loaded from ODS to the DW
 - In the staging area the copied data is prepared (integrated, cleaned, etc.)
- Customers aren't invited to visit the kitchen...
 - Similar to a restaurant's kitchen, the data staging area should be accessible only to skilled DW professionals, neither ODS admins.
 nor analysts

2.1 Data Warehouse

- The DW persistently stores
 - Cleaned raw data
 - Derived (aggregated) data
 - Usual aggregates of the raw data e.g. quarter sales per regions
 - Performance reasons: avoid computing (the same)
 aggregates times and again at query time
 - Metadata
 - Describe the meaning, properties and origins of the data in the DW (e.g. provenance & lineage)

2.1 Presentation Area

- The presentation area comprises
 - Data Marts where data is organized according to the focus of one department
 - Similar to DB views, but usually stored (materialized view)
 - Reporting as well as analytical processing tools
- This area **is** the Warehouse as far as the business community is concerned

(2) 2.1 Building a complete DW

- Hardware and data flow architecture
 - Complete data flow from ODS up to the presentation
 - Most important step is the Extract - Transform - Load (ETL) process
- Storage structure
 - The used model for storing data in the DW
- Data modeling
 - Conceptual, logical and physical models for the DW storage structure

(2) 2.2 Architectures in Practice

- Popular DW architectures in practice
 - Vertical tiers
 - Generic Two-Tier Architecture
 - Three-Tier Architecture

2.2 Two-Tier Architecture

- Generic client-server architecture
 - Fat or thin client depending on where the data analysis is performed
 Server

(2) 2.2 Thin Client

- Operations are executed on the server
- The client is just used to display the results
- This architecture fits well for Internet DW access

2.2 Fat Client

- The server just delivers the data e.g. the corresponding data mart
- Operations are executed on the client
- Communication between client and server must

be able to sustain large

data transfers

ODBC, JDBC, NFS

2.2 Three-Tier Architecture

- Tier I: raw and detailed data intended to be the single source for all decision support
- Tier 2: derived data that had been aggregated for DSS support

Tier 3: reporting and analysis

2.2 Other Architectures

- N-Tier Architecture
 - Higher tier architecture is also possible but the complexity grows with the number of tier-interfaces
- Web-based Architectures
 - Advantage: Usage of existing software, reduction of costs, platform independence
 - Disadvantage: Security overhead e.g. data encryption, user access and identification

(2) 2.2 Architectures in Practice

- Popular DW architectures in Practice
 - Horizontal tiers
 - Independent Data Mart
 - Dependent Data Mart
 - Logical Data Mart

2.2 Independent Data Marts

- Mini warehouses limited in scope
 - Faster and cheaper to build than DWs
- Separate ETL for each independent Data Mart
 - Redundantprocessing foreach mart

2.2 Dependent Data Mart

- Single ETL for the DW
 - No redundancy in the ETL process
- Data Marts are loaded from the DW

(2) 2.2 Logical Data Mart

- Data Marts are not separate databases, but logical views of the DW
 - Integrated view of the enterprise

2.2 DW vs. Data Marts

Scope		
DW	Data Marts	
Application independent	Specific DSS application	
Centralized,	Decentralized by user area	
Planned	Organic, possibly not planned	

Data	
DW	Data Marts
Historical, detailed, summarized	Some history, detailed, summarized
Lightly denormalized	Highly denormalized

Subjects		
DW	Data Marts	
Multiple subjects	One central subject	
Sources		
DW	Data Marts	
Many internal and external sources	Few internal and external sources	

Other characteristics		
DW	Data Marts	
Flexible	Restrictive	
Data-oriented	Project oriented	
Long life	Short life	
Large	Start small, becomes large	
Single complex structure	Multiple, semi-complex structure, together complex	

2.2 Centralized vs. Distributed

- DW may be centralized or distributed
- Centralized DW (e.g. Volkswagen)
 - Analytical queries are run only at the main enterprise location - no need to transport data via network
 - High costs for large dedicated hardware
- Distributed DW (e.g. WalMart)
 - More natural form due to corporations being active all over the world and having different types of hardware and software
 - Higher overhead but lower cost

- Types of distributed DW
 - Geographically distributed
 - Local DW/global DW
 - Technologically distributed DW
 - Logically one DW, physically more DW
 - Independently evolving distributed DW
 - Uncontrolled growth

- Geographically distributed
 - In the case of corporations spread around the world
 - Information is needed both locally and globally
 - A distributed DW makes sense
 - When much processing occurs at the local level
 - Even though local branches report to the same balance sheet, the local organizations are somewhat autonomous

Typical example is franchising e.g. McDonald's

Aggregated Data

- Technologically distributed DW
 - Placing the DW on the distributed technology of some vendor
 - Advantages
 - Entry costs are cheap large centralized hardware is expensive
 - No theoretical limit on how much data can be placed in the DW -new servers can be added to the network on demand

2.2 Distributed DW

- As the DW starts to expand network
 communication starts playing an important role
 - Example: Let's simplify and consider we have 4 nodes each holding data regarding a specific year
 - Now let's consider a query which needs to access

data from the last 4 years

 Large amount of data has to be shipped to processing units

2.2 Distributed DW

- Independently evolving distributed DW
 - In practice there are many cases in which independent
 DW are developed concurrently in the same organization
 - The first step in many corporations is to build a DW for financial or marketing
 - Once this is successfully set up, other parts of the organization follow independently

2.3 DW Data Storage

- Goal of data storage :
 - Store data in a form that assists data mining, analytics, reporting and ultimately the users
- The last architecture layer dictates the way storage is performed!

2.3 DW Data Storage

- DW users look at the data from different **perspectives** e.g., time, location, product, etc.
 - Perspectives are called **dimensions** and the resulting data structure is **multidimensional**
 - Example: The sales department of a car manufacturer takes a closer look at the sales volumes
 - View historical sales volume figures from multiple perspectives:

 Sales volume by model,
 - by color, by dealer, over time.

2.2 Multidim. Structure **Jetour**

2.3 DW Data Storage

- The complexity grows quickly with the number of dimensions and the number of positions
 - E.g. 3 dimensions with 10 values each

2.3 DW Data Storage

- Visualization is multidimensional
- At the same time operational data is stored in relational model

 Data in the DW can be stored either according to the relational or multidimensional model

2.3 Relational vs. Multidim. Model Ulfini

- Any database manipulation is possible with both technologies
- The multidimensional model however offers some advantages in the context of DW:
 - Ease of data presentation
 - Ease of maintenance
 - Performance

2.3 Ease of Presentation

- Multidimensional model
 - The presentation is the natural output of the multidim. model
- Relational model
 - Obtaining the same presentation in the relational model requires a complex query - think about the WalMart example:

select sum(sales.quantity_sold) from sales, products, product_categories, manufacturers, stores, cities where manufacturer_name = 'Colgate' and product_category_name = 'toothpaste' and cities.population < 40 000 and trunc(sales.date_time_of_sale) = trunc(sysdate-I) and sales.product_id = products.product_id and sales.store_id = stores.store_id and products.product_category_id = product_categories.product_category_id and products.manufacturer_id = manufacturers.manufacturer_id and stores.city_id = cities.city_id

2.3 Ease of Maintenance

- Multidimensional model
 - When new data is added to the DW, aggregates need to be maintained in the case of the multidimensional model
- Relational model
 - The relational model use indexes and sophisticated joins which require significant maintenance and storage to provide same intuitiveness

2.3 Performance

- Consider storing the data in DW according to the relational model
 - For each query, the data has to be transformed from relational to multidim. representation
 - Storing the data in DW in a multidim. model, the transformation is performed only on each load

2.3 Performance

- For DW, relational model can reach similar performance as the multidim. model through database tuning
 - Not possible to tune the DW for all possible ad-hoc queries
- Conclusion: both models can be used, but the multidimensional model is the practical choice!
- How do we model the multidimensional representation?

2.4 Data Modeling

Data modeling - basics

- Is the process of creating a data model by analyzing the requirements needed to support the business processes of an organization
 - It is sometimes called database modeling/design because a data model is eventually implemented

Remember RDB 1 ?

2.4 Data Modeling

Data models

- Provide the **definition** and **format** of data
- Graphical representations of the data within a specific area of interest
 - Enterprise Data Model: represents the integrated data requirements of a complete business organization
 - Subject Area Data Model: Represents the data requirements of a single business area or application

(2.4 Phases

2.4 Phases

Conceptual Design

- Transforms data requirements to conceptual model
- Conceptual model describes data entities, relationships, constraints, etc. on high-level
 - Does not contain any implementation details
 - Independent of used software and hardware

Logical Design (next lecture)

- Maps the conceptual data model to the logical data model used by the DBMS
 - E.g. relational model, Multidimensional model, ...
 - Technology independent conceptual model is adapted to the used DBMS software

Physical Design (next lecture)

- Creates internal structures needed to efficiently store/manage data
 - Table spaces, indexes, access paths, ...
 - Depends on used hardware and DBMS software

(A) 2.4 Phases

- Going from one phase to the next:
 - The phase must be complete
 - The result serves as input for the next phase
 - Often automatic transition is possible with additional designer feedback

(2) 2.4 Conceptual Model

- Highest conceptual grouping of ideas
 - Data tends to naturally cluster with data from the same or similar categories relevant to the organization
- The major relationships between subjects have been defined
 - Least amount of detail

2.4 Conceptual Model 1000

Conceptual design

- Entities "things" in the real world
 - E.g. Car, Account, Product

Car

Account

Product

- Attributes property of an entity, entity type, or relationship type
 - E.g. color of a car, balance of an account, price of a product
- Relationships between entities there can be relationships, which also can have attributes
 - E.g. Person owns Car

2.4 Conceptual Model

- Conceptual design in usually done using the Unified Modeling Language (UML)
 - Conceptual Design
 - Class Diagram, Component Diagram, Object
 Diagram, Package Diagram...
- ER-diagram, UML, ...
- For Data Modeling only Class Diagrams are used
 - Entity type becomes class
 - Relationships become associations

CLASS NAME

attribute 1 : domain

...

attribute n : domain

operation 1

operation m

(2.4 Logical Model

• Logical design arranges data into a logical structure

- Which can be mapped into the storage objects supported by DBMS
 - In the case of RDB, the storage objects are tables which store data in rows and columns Attribute

2.4 Physical Model

 Physical design specifies the physical configuration of the database on the storage media

Detailed specification of:
 data elements, data types,
 indexing options, and
 other parameters
 residing in the DBMS
 data dictionary

2.4 Data Modeling for DW

- For DW the models have to offer support for multidimensional data
- In the relational model the classical goal is to
 - Remove redundancy
 - Allow efficient retrieval of individual records
- In the case of DW
 - Redundancy is necessary to speed up queries
 - OLAP queries usually involve multiple records (range queries) and aggregates

2.4 Multidim. Conceptual Model

- Modeling business queries
 - Define the purpose of the DW and decide on the subject(s)
 - Identify questions of interest
 - Who bought the products? Customers and their structure)
 - Who sold the product? (sales organization)
 - What was sold? (product structure)
 - When was it sold? (time structure)

Employees

Business

Mode

Products

2.4 Multidim. Conceptual Model

- Components of conceptual design for DW
 - Facts: a fact is a focus of interest for decision-making,
 e.g., sales, shipments..
 - Measures: attributes that describe facts from different points of view, e.g., each sale is measured by its revenue
 - Dimensions: discrete attributes which determine the granularity adopted to represent facts, e.g. product, store, date
 - Hierarchies: are made up of dimension attributes
 - Determine how facts may be aggregated and selected, e.g.,
 day month quarter year

2.4 Conceptual Design Models

Multidimensional Entity Relationship (ME/R)
 Model

Multidimensional UML (mUML)

• Other methods e.g., Dimension Fact Model, Totok, etc.

(2.4 Multidim. E/R Model

ME/R Model

- Its purpose is to create an intuitive representation of the multidimensional data
- It represents a specialization and evolution of the E/R to allow specification of multidimensional semantics

2.4 Multidim. E/R Model

- ME/R notation was influenced by the following considerations
 - Specialization of the E/R model
 - All new elements of the ME/R have to be specializations of the E/R elements
 - In this way the flexibility and power of expression of the E/R models are not reduced
 - Minimal expansion of the E/R model
 - Easy to understand/learn/use: the number of additional elements should be small
 - Representation of the multidimensional semantics
 - Although being minimal, it should be powerful enough to be able to represent multidimensional semantics

(2.4 Multidim. E/R Model

- There are 3 main ME/R constructs
 - The fact node
 - The level node
 - A special binary classification edge

2.4 Multidim. E/R Model

- Store scenario designed in E/R
 - Entities bear little semantics
 - E/R is not suitable for representing classifications e.g.
 Store City Country, etc.

(2.4 Multidim. E/R Model

• ME/R notation:

2.4 Multidim. E/R Model

• ME/R notation:

- Sales was selected as fact node
- The dimensions are product, geographical area and time
- The dimensions are represented through the so called **Basic** Classification Level

Alternative paths in the classification level are also possible

2.4 Unified Modeling Language

- UML is a general purpose modeling language
- It can be **tailored to specific domains by** using the following mechanisms
 - Stereotypes: building new elements
 - Tagged values: new properties
 - Constraints: new semantics

Stereotype

- Grants a special semantics to UML construct without modifying it
- There are 4 possible representations of the stereotype in UML

Tagged value

- Define properties by using a pair of tag and data
 value
 - Tag = Value
 - E.g. formula="UnitsSold*UnitPrice"

<<Fact-Class>> Sales

UnitsSold: Sales
UnitPrice: Price
/VolumeSold: Price
{formula="UnitsSold*UnitPrice"
, parameter="UnitsSold,
UnitPrice"}

2.4 mUML

- Architectures:
 - Basic architecture, vertical three-tier architecture, horizontal dependent/independent data mart architecture
 - DW may be centralized or geographically and technologically distributed
- Data Modeling: Data in the DW is represented in a multidimensional manner
 - Multidimensional conceptual model
 - Multidimensional Entity Relationship (ME/R) Model
 - Multidimensional UML (mUML)

- Data Modeling (continued)
 - Logical model
 - Physical model

