<u>Chapitre 5 – Application de la réduction des endomorphismes et des</u> matrices

Systèmes récurrents linéaires

Exponentielle d'endomorphisme et de matrices

1) Suites et séries de matrices

<u>Définition</u>: Pour une matrice $M \in M_n(\mathbb{K})$, notons $\forall (i,j) \in [\![1,n]\!]^2$, $[\![M]\!]_{ij}$ le coefficient d'indice (i,j) de la matrice M. Soit $(A_k)_{k \in \mathbb{N}}$ une suite d'éléments de $M_n(\mathbb{K})$. On dit que la suite $(A_k)_k$ converge vers la matrice $A \in M_n(\mathbb{K})$ si $\forall (i,j) \in [\![1,n]\!]^2$, la suite scalaire $([\![A_k]\!]_{ij})_{k \in \mathbb{N}}$ converge vers $[\![A]\!]_{ij}$

Pour $M \in M_n(\mathbb{K})$, on note $||M||_{\infty} = \max_{1 \le i, j \le n} |[M]_{ij}|$

Alors on a $\forall (i,j) \in [1,n]^2$,

$$\left| \left[M_{ij} \right] \right| \le \|M\|_{\infty} = \max_{1 \le i, j \le n} \left| [M]_{ij} \right|$$

Alors on a $\forall (i,j) \in [1,n]^2$,

$$|[M]_{ij}| = ||M||_{\infty} \le \sum_{k=1}^{n} \sum_{l=1}^{n} |[M]_{kl}|$$

A partir de cet encadrement :

<u>Propriété</u>: Soient $(A_k)_k$ une suite d'éléments de $M_n(\mathbb{K})$ et $A \in M_n(\mathbb{K})$.

On a équivalence entre :

- (i) La suite matricielle $(A_k)_k$ converge vers A
- (ii) $||A_k A||_{\infty} \xrightarrow[k \to +\infty]{} 0$

<u>Définition</u>: Soit $(A_k)_k$ une suite d'éléments de $M_n(\mathbb{K})$. On définit la série de terme général A_k la suite matricielle $(S_k)_k$ où

$$\forall k \in \mathbb{N}, S_k = \sum_{j=0}^n A_j$$

On la note $\sum_{k\in\mathbb{N}} A_k$ ou $\sum A_k$.

On dit que la série $\sum\limits_{k\in\mathbb{N}}A_k$ converge si la suite $(S_k)_k$ converge vers une matrice $S\in M_n(\mathbb{K})$. La matrice S estalors appelé somme de la série et notée :

$$S = \sum_{k=0}^{+\infty} A_k$$

<u>Propriété</u>: Soient $(A_k)_k$ une suite d'éléments de $M_n(\mathbb{K})$. Si la série numérique $\sum \|A_k\|_{\infty}$ converge, alors la série matricielle $\sum A_k$ converge également. On dit que la série est absolument convergente.

<u>Lemme</u>: Soient $A,B \in M_n(\mathbb{K})$, alors $\|AB\|_{\infty} \leq n\|A\|_{\infty}\|B\|_{\infty}$. Par récurrence, on en déduit : $\forall k \in \mathbb{N}^*, \|A^k\|_{\infty} \leq n^{k-1}\|A\|_{\infty}^k$

<u>Théorème</u>: Soit $A \in M_n(\mathbb{K})$. La série matricielle $\sum \frac{A^k}{k!}$ Converge absolument.

2) Exponentielle de matrices

<u>Définition</u>: Soit $A \in M_n(\mathbb{K})$. On définit l'exponentielle de A, notée e^A ou $\exp A$ par :

$$e^{A} = \sum_{k=0}^{+\infty} \frac{A^{k}}{k!} \in M_{n}(\mathbb{K})$$

<u>Propriété</u>: Soient $A, B \in M_n(\mathbb{K})$ telles que $\underline{AB = BA}$ alors $e^{A+B} = e^A e^B = e^B e^A$

<u>Démonstration</u>: On utilise le binôme de Newton pour séparer, puis le produit de Cauchy pour rassembler.

<u>Propriété</u>: Soit $A \in M_n(\mathbb{K})$. La matrice e^A est inversible, d'inverse e^{-A}

Démonstration : A et -A commutent, donc $e^A e^{-A} = 1$

<u>Propriété</u>: Soient $A \in M_n(\mathbb{K})$ et $P \in GL_n(\mathbb{K})$. Alors $\exp(P^{-1}AP) = P^{-1}\exp(A)P$

 $\underline{\text{D\'efinition}:} \text{ Soient } p,q \in \mathbb{N}^* \text{ et } f \colon \mathbb{R} \to M_{p,q}(\mathbb{K}), A \mapsto \Big(f_{i,j}(t)\Big)_{\substack{1 \le i \le p \\ 1 \le i \le q}}$

Soit $t_0 \in \mathbb{R}$. On dit que f est dérivable en t_0 si $\forall 1 \leq i \leq p, \forall 1 \leq j \leq q$, la fonction $f_{i,j}$ est dérivable en t_0 .

$$\left(\Leftrightarrow \lim_{\substack{t \to t_0 \\ t \neq t_0}} \frac{1}{t - t_0} \Big(f_{i,j}(t) - f_{i,j}(t_0) \Big) \text{ existe} \right)$$

On note alors $f'(t_0) = \left(f'_{i,j}(t_0)\right)_{\substack{1 \le i \le p \\ 1 \le j \le q}}$

On dit que f est dérivable sur \mathbb{R} si f est dérivable en tout point de \mathbb{R} .

<u>Propriété</u>: Soient $p, q \in \mathbb{N}^*$, et $A, B : \mathbb{R} \to M_{p,q}(\mathbb{K})$. Si A et B sont dérivables, alors A + B l'est aussi sur \mathbb{R} , et $\forall t \in \mathbb{R}$, (A + B)'(t) = A'(t) + B'(t)

<u>Propriété</u>: Soient $p,q,n\in\mathbb{N}^*$ et $A\colon\mathbb{R}\to M_{p,q}(\mathbb{K}),B\colon\mathbb{R}\to M_{q,r}(\mathbb{K})$. Si A et B sont dérivables sur \mathbb{R} , alors $A\times B\colon\mathbb{R}\to M_{p,r}(\mathbb{K})$ aussi et

$$\forall t \in \mathbb{R}, (A \times B)'(t) = A'(t) \times B(t) + A(t) \times B'(t)$$

<u>Théorème</u>: Soit $A \in M_n(\mathbb{K})$. La fonction $\varphi : \mathbb{R} \to M_n(\mathbb{K})$, $t \mapsto \exp(tA)$ est dérivable sur \mathbb{R} et $\forall t \in \mathbb{R}, \varphi'(t) = A \times \exp(tA)$

3) Exponentielle d'endomorphisme

<u>Propriété</u>: Soient $A, B \in M_n(\mathbb{K})$ deux matrices semblables, alors e^A et e^B sont aussi semblables.

<u>Définition</u>: Soit E un \mathbb{K} -ev de dimension finie $n \in \mathbb{N}^*$ et $\mathfrak{L}(E)$. Soit B une base de E et $A = Mat_B(u)$. On définit l'exponentielle de u, notée e^u , comme l'unique endomorphisme de E dont la matrice dans B est e^A

<u>Propriété</u>: Soient $u, v \in \mathcal{L}(E)$ tels que $u \circ v = v \circ u$, alors $\exp(u + v) = \exp(u) \circ \exp(v)$ = $\exp(v) \circ \exp(u)$

III) Systèmes différentiels linéaires à coefficients constants

a) Systèmes différentiels linéaires homogènes

On s'intéresse à des systèmes d'équations différentielles linéaires de la forme suivante :

$$(S): \forall t \in \mathbb{R}, \begin{cases} x_1'(t) = a_{11}x_1(t) + a_{12}x_2(t) + \dots + a_{1n}x_n(t) \\ \vdots \\ x_n'(t) = a_{n1}x_1(t) + a_{n2}x_2(t) + \dots + a_{nn}x_n(t) \end{cases}$$

Avec $\forall (i,j) \in [1,n]^2$, $a_{i,j} \in \mathbb{K} = \mathbb{R}$ ou \mathbb{C}

Et d'inconnues $x_1, ..., x_n : \mathbb{R} \to \mathbb{K}$ dérivables

Soient $x_1, ..., x_n : \mathbb{R} \to \mathbb{K}$ dérivables. Posons $X: \mathbb{R} \to M_{n,1}(\mathbb{K})$ définie par

$$\forall t \in \mathbb{R}, X(t) = \begin{pmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{pmatrix}$$

Alors la fonction X est dérivable sur \mathbb{R} et on a l'équivalence :

 x_1, \dots, x_n sont solutions de (S)

$$\forall t \in \mathbb{R}, X'(t) = AX(t), \text{ où } A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \in M_n(\mathbb{K})$$

<u>Théorème</u>: Soit $X \in \mathbb{R} \to M_{n,1}(\mathbb{K})$ dérivable sur \mathbb{R} et $A \in M_n(\mathbb{K})$. Les assertions suivantes sont équivalentes :

- (i) $\forall t \in \mathbb{R}, X'(t) = A \times X(t)$
- (ii) $\exists X_0 \in M_{n,1}(\mathbb{K}) \text{ tel que } \forall t \in \mathbb{R}, X(t) = e^{tA} \times X_0$
- (iii) $\forall t \in \mathbb{R}, X(t) = e^{tA} \times X(0)$

<u>Corollaire</u>: Soient $A \in M_n(\mathbb{K})$, $Y_0 \in M_n(\mathbb{K})$ et $t_0 \in \mathbb{R}$. Il existe une unique solution au problème de Cauchy suivant :

$$\begin{cases} \forall t \in \mathbb{R}, X'(t) = A \times X(t) \\ X(t_0) = Y_0 \end{cases}$$

Démonstration:

$$\begin{cases} \forall t \in \mathbb{R}, X'(t) = A \times X(t) \\ X(t_0) = Y_0 \end{cases}$$

$$\iff \begin{cases} \forall t \in \mathbb{R}, X(t) = e^{(t-t_0)A} \cdot Y_0 \\ X(0) = e^{-t_0A} \cdot Y_0 \end{cases}$$

b) Systèmes différentiels linéaires non homogènes

Dans cette partie, on s'intéresse aux systèmes du type :

$$(S): \forall t \in \mathbb{R}, X'(t) = A \cdot X(t) + V(t)$$

Où $A \in M_n(\mathbb{K}), V: \mathbb{R} \to M_{n,1}(\mathbb{K})$ et d'inconnue $X: \mathbb{R} \to M_{n,1}(\mathbb{K})$ dérivable.

Notons (S_H) le système homogène associé.

$$(S_H): \forall t \in \mathbb{R}, X'(t) = A \cdot X(t)$$

<u>Théorème</u>: Soit Y une solution particulière de (S): $\forall t \in \mathbb{R}, X'(t) = A \cdot X(t) + V(t)$ et $X : \mathbb{R} \to M_{n,1}(\mathbb{K})$ dérivable. On a l'équivalence :

$$X$$
 est solution de $(S) \Leftrightarrow \exists X_0 \in M_{n,1}(\mathbb{K}) \text{ tq } \forall t \in \mathbb{R}, X(t) = e^{tA} \cdot X_0 + Y(t)$