Recherche Opérationnelle 1A Théorie des graphes TD : Connexité + Cycles + Marquage

Zoltán Szigeti

Ensimag, G-SCOP

Énoncé

S'il existe une (x, y)-chaîne élémentaire P_{xy} et une (y, z)-chaîne élémentaire P_{yz} , alors il existe une (x, z)-chaîne élémentaire.

Démonstration

- La concaténation de P_{xy} et P_{yz} est une (x, z)-chaîne
- qui contient une (x, z)-chaîne élémentaire, par EXO 2.1.

La concaténation xabyabz des chaînes $P_{xy}=xaby$ et $P_{yz}=yabz$ contient la (x,z)-chaîne élémentaire xabz.

Énoncé

Soit G un graphe simple à $\frac{2n}{n}$ sommets tel que $d_G(v) \ge \frac{n}{n} \ \forall v \in V(G)$. Montrer que G est connexe.

Démonstration

- ullet Supposons par l'absurde que G a plus qu'une composante connexe.
- Par |V(G)| = 2n, il y a une composante connexe G' de G telle que $|V(G')| \le n$.
- Pour un sommet v de G', on a une contradiction :
- $n \le d_G(v) = d_{G'}(v) \le |V(G')| 1 \le n 1$.

Énoncé

Montrer qu'au moins l'un des deux graphes G ou \overline{G} est connexe.

Démonstration

Soient G_1, \ldots, G_{ℓ} les composantes connexes de G.

- Si $\ell = 1$ alors G est connexe.
- ② Si $\ell \geq 2$ alors soient $u \in V(G_i)$ et $v \in V(G_j)$.
 - Si $i \neq j$ alors, dans \overline{G} , u et v sont reliés par la chaîne uv.
 - ② Si i = j, par $\ell \ge 2$, il existe $k \ne i$ et $w \in V(G_k)$. Alors, dans \overline{G} , les sommets u et v sont reliés par la chaîne uw + wv.
 - \overline{G} est donc connexe.

$$G = (V, E)$$
 et $\overline{G} = (V, \overline{E})$
E en gras et \overline{E} en pointillé :

 $\forall u, v \in V, uv \in \overline{E} \text{ ssi } uv \notin E$

Exo 2.6 (a)

Énoncé

Soit $P = v_1...v_\ell$ une plus longue chaîne élémentaire dans un graphe simple. Alors chaque voisin de v_1 se trouve dans $\{v_2, ..., v_\ell\}$.

Démonstration

- **1** Supposons que v_1 possède un voisin $u \notin \{v_2, ..., v_\ell\}$.
- $v_1 + P$ serait une chaîne élémentaire plus longue que P,
- contradiction.

Exo 2.6 (b)

Énoncé

Si tous les degrés des sommets d'un graphe simple G sont supérieurs ou égaux à deux, alors G possède un cycle élémentaire.

Démonstration

- Soit $P := v_1 v_2 \dots v_\ell$ une plus longue chaîne élémentaire de G.
- ② Par $d(v_1) \ge 2$ et G simple, il existe une arête v_1u telle que $u \ne v_2$.
- **3** Par EXO 2.6 (a), $u \in \{v_3, ..., v_\ell\}$.
- ① Donc $C = P[v_1, u] + uv_1$ est un cycle élémentaire.

Énoncé

Un graphe G sans sommet isolé contient une chaîne eulérienne \iff

- (a) G est connexe et
- (b) le nombre de sommets de degré impair est au plus 2.

Démonstration de la nécessité

- lacktriangle Si G contient une chaîne eulérienne P (avec extrémités u et v) alors
- 2 P + uv est un cycle eulérien de G + uv,
- 3 on a les conditions, par EXO 2.7(a).

Énoncé

Un graphe G sans sommet isolé contient une chaîne eulérienne \iff

- (a) G est connexe et
- (b) le nombre de sommets de degré impair est au plus 2.

Démonstration de la nécessité

- ① Si G contient une chaîne eulérienne P (avec extrémités u et v) alors
- 2 P + uv est un cycle eulérien de G + uv,
- 3 on a les conditions, par EXO 2.7(a).

Démonstration de la suffisance

Par (a), G est connexe.

Par (b),

- osit il n'y a pas de sommet de degré impair : et par EXO 2.7(a),
 - G a un cycle eulérien
 - qui est une chaîne eulérienne de G.
- ② soit il y a deux sommets u et v de degré impair : et par EXO 2.7(a),
 - G + uv a un cycle eulérien C, et alors
 - C uv est une chaîne eulérienne de G.

Démonstration de la suffisance

Par (a), G est connexe.

Par (b),

- osit il n'y a pas de sommet de degré impair : et par EXO 2.7(a),
 - G a un cycle eulérien,
 - qui est une chaîne eulérienne de G.
- ② soit il y a deux sommets u et v de degré impair : et par EXO 2.7(a),
 - G + uv a un cycle eulérien C, et alors
 - C uv est une chaîne eulérienne de G.

Énoncé

Montrer que si G - v n'est pas connexe alors G n'est pas hamiltonien.

Démonstration

Sinon, si C est un cycle hamiltonien de G, alors puisque C est un cycle élémentaire, C-v est connexe, et donc G-v est connexe, contradiction.

Application

Énoncé

- On a trois récipients dont les contenances sont respectivement de 8, 5 et 3 litres, le récipient de 8 litres est plein, les autres vides.
- 2 Les récipients ne sont pas gradués, c'est-à-dire qu'une opération de transvasement aura pour effet de vider complètement un des récipients et/ou d'en remplir un autre à ras bord.
- 3 Il s'agit, par une série de transvasements, d'isoler 4 litres dans chacun des deux premiers récipients.

Application

Solution

- **1** On introduit un graphe orienté G = (V, A).
 - $V = \{(a, b, c) \text{ d'entiers qui correspondent aux remplissages possibles :}$
 - a + b + c = 8.
 - \bullet 0 < a < 8, 0 < b < 5, 0 < c < 3.
 - l'un au moins parmi a, b et c est égal à une de ses bornes}.
 - $A = \{tt' : \text{on peut passer de } t \text{ à } t' \text{ en réalisant un seul transvasement}\}.$
- ② On trouve un chemin dans G du sommet (8,0,0) au sommet (4,4,0) en exécutant l'algorithme de Marquage.

Application

