CSC 355 Database Systems Lecture 12

Eric J. Schwabe
School of Computing, DePaul University
Spring 2020

Today:

- Relational Database Design
 - BCNF decomposition algorithm
 - Dependency preservation
 - Lossless join

Relational Database Design

- Starting with $R(A_1, A_2, ..., A_n)$, the decomposition $D = \{R_1, R_2, ..., R_m\}$ should satisfy the following conditions:
 - 1. The union of the R_i's is R
 - 2. Redundancy has been removed from relations in D
 - 3. The functional dependencies in R are preserved
 - 4. The original relation R can be recovered from D
- We are formalizing conditions 2.-4. ...

Functional Dependencies

- A set of attributes $Y = \{Y_1, Y_2, ..., Y_n\}$ is functionally dependent on a set of attributes $X = \{X_1, X_2, ..., X_m\}$ if and only if every pair of tuples that have the same values for X must also have the same values for Y
 - Also "X functionally determines Y" or " $X \rightarrow Y$ "
 - X is called the *determinant*
- (Less formally, "the values of X uniquely determine the values of Y"...)

Keys

- A set of attributes X is a superkey of R if X determines all attributes of R
- A set of attributes X is a *candidate key* of R if X is a superkey, but no proper subset Y of X is a superkey
- An attribute is *prime* if it is contained in some candidate key (and is *non-prime* otherwise)

BCNF

- A relation R is in Boyce-Codd Normal Form (BCNF) if for every non-trivial functional dependency X→Y in R, X is a superkey
 - "Every determinant must contain a candidate key"
 - A relation in BCNF will not have any redundancy, since every functional dependency in the relation will have a superkey as its determinant

BCNF Decomposition Algorithm

Set D = {R}

While there is some Q in D that is not in BCNF:

Choose a Q that is not in BCNF

Find an X→Y in Q that violates BCNF

Replace Q with two relations:

Q - Y and (X union Y)

(When algorithm is done, all relations will be in BCNF)

Projections

- Suppose we have a set of functional dependencies F in the relation R
- For a relation R_i, consider all X→Y that can be derived from F where both X and Y are subsets of R_i
- This set is called the *projection of F on R* $_i$
 - It represents the set of all constraints that F puts on the attributes of R_i

Dependency Preservation Property

- 3. The union over all i in $\{1,...,m\}$ of the projections of F on R_i is equivalent to F
- ◆ We want the set of all projections to be equivalent to F that is, the decomposition neither destroys any functional dependencies in F nor introduces any new ones...
 - Not all decompositions have this property!

Restrictions

- ◆ The *restriction* of a relation state r to a set S is the set of distinct tuples obtained from r by including only the values of the attributes in S from each tuple
- Restrictions that overlap can be combined using a natural join on the attributes they share
 - Ideally, this will yield a result that is still a restriction of the original relation state r...

Lossless Join Property

- 4. For every relation state r of R, the natural join of the restrictions of r to the relations R_1 , R_2 , ..., R_m in the decomposition the same as r
 - That is, if we take the restrictions of any relation state and join them back together, we will get the original relation state no *spurious tuples* are added
 - Not all decompositions have this property!

Relational Database Design

- Starting with $R(A_1, A_2, ..., A_n)$, the decomposition $D = \{R_1, R_2, ..., R_m\}$ should satisfy the following conditions:
 - 1. The union of the R_i's is R
 - 2. Each of the R_i's is in BCNF
 - 3. D has the dependency preservation property
 - 4. D has the lossless join property

Binary Lossless Join Test

- $D = \{R_1, R_2\}$ has the lossless join property if and only if one or both of the following hold:
 - 1. $(R_1 \cap R_2) \rightarrow (R_1 R_2)$ can be derived from F
 - 2. $(R_1 \cap R_2) \rightarrow (R_2 R_1)$ can be derived from F
 - That is, if and only if the intersection between the two sets of attributes is a superkey in one of the relations...

General Test for Lossless Join

- 1. Create a matrix S with a row i for each R_i and a column for j for each A_i
- 2. Set each $S(i,j) = "b_{ij}"$
- 3. For each entry (i,j)

If relation R_i includes A_j , then set $S(i,j) = "a_j"$

4. Repeat the following loop until there are no changes to S:

For each $X \rightarrow Y$ in F

For all rows in S that have the same symbols in all columns in X, set all of the columns in Y in those rows to agree as follows: If any row has a_j for the columns, set all rows to that same a_j If not, choose one of the b_{ij} s and set all rows to that same b_{ij}

5. If any row has all a_j's, return true (D has the lossless join property); if not, return false (D does not have lossless join property).

Next:

- Finish lossless join
- Third Normal Form (3NF)
- Minimal basis
- Algorithm for 3NF decomposition