

Developing computational models for predicting diagnoses of depression

Sandy H. Huang^{1*}, Paea LePendu¹, Srinivasan V. Iyer¹, Anna Bauer-Mehren¹, Cliff Olson², Nigam H. Shah¹ Stanford Center of Biomedical Informatics Research, Stanford, CA; ²Palo Alto Medical Foundation, Palo Alto, CA; *shhuang@stanford.edu

Introduction

- About 14% of individuals worldwide have major depression. Despite its prevalence, diagnosing depression is a challenge: primary care physicians identify ~50% of depression cases.¹
- Mining of electronic health records (EHR) data has proven useful in predicting diagnoses of other disorders.
- We present a model that predicts the risk of a patient becoming diagnosed with depression, using both structured and unstructured EHR data.

Preliminary Results

time of first diagnosis: our estimate of when the doctor first diagnoses the patient with depression; calculated as the first point in the patient's medical history at which both a depression ICD-9 code and drug term have occurred

Top features, based on information gain, when training the model:

Cutoff Point	AUC	
time of first diagnosis	0.754	
6-month cutoff	0.756	
12-month cutoff	0.762	

	•			
Feature	Description	IG	% Dep	% Control
ICD-9 V72.3	Gynecological examination	0.009	15.1%	4.7%
Drug ingredient	Acellular pertussis vaccine	0.008	8.9%	22.5%
Drug ingredient	Tetanus toxoid vaccine	0.008	9.6%	23.3%
ICD-9 V06.1	Vaccination of DTP-DTaP	0.006	6.9%	17.9%
ICD-9 V04.8	Need for prophylactic vaccination	0.005	10.0%	3.3%
ICD-9 780.79	Other malaise and fatigue	0.005	20.7%	10.7%
Drug ingredient	Vitamin d	0.005	9.3%	19.4%
ICD-9 300.00	Anxiety state, unspecified	0.004	11.5%	4.7%
ICD-9 780.52	Insomnia, unspecified	0.004	13.0%	5.9%

Creating "gold standard" All Patients Dx∩Rx∩T known Yes: 59.805 ≥ 1.5 years 59,812 year of birth and of visits before Depression gender? diagnosis? Term (T) 199,336 Yes: 35,102 Depression Drug Term 179,072 (Rx) Yes: 11,053 ≤ 100 days Depression > 18 years btwn first mention of ICD-9 Code depression ICD-9 & (Dx) 78,871 antidepressant?

Control patients with Yes: 10,991 ≥ 1.5 years of visits Randomly select 5,000 Matched control depression patients; natients match each to 6 control 30,000 5,000 matched pairs patients on age + length of visit history (to create a "matched pair") Training phase Gather features billing codes (ICD-9 codes) Naive Bayes model, with - visit history density (# visits/year) feature selection based on - disease and drug ingredient note terms information gain

Test phase

Methods and Workflow

Literature Cited

 Mitchell AJ, Vaze A, Rao S. Clinical diagnosis of depression in primary care: a meta-analysis. Lancet 2009;374:609-19.

Acknowledgements

The authors acknowledge support from the NIH grant U54 HG004028 for the National Center for Biomedical Ontology. We also acknowledge Ming Tai-Seale, Jeffrey Ullman, Rave Harpaz, Kenneth Jung, and Tyler Cole for useful discussions.

Conclusions

- Our results suggest the use of EHR can improve the timely diagnosis of depression. Even a year before being diagnosed, patients show patterns in their medical history that our model can detect.
- The accuracy of our predictive model rivals that of primary care physicians, who have a sensitivity of 50% and a specificity of 80% in diagnosing depression.¹
- Our model has the potential to:
- serve as a screening tool in identifying high-risk patients for closer examination, and
- enable better cohort building for clinical studies on depression.

Ongoing Work

- Evaluate the portability of the model by testing it on an external dataset of approximately 17,000 patients, treated for depression and scored using the Patient Health Questionnaire (PHQ-9).
- Develop models to predict severity of depression and treatment outcomes, using this new dataset.
 Early results are promising; we achieve an average AUC of 0.73 for predicting severity and 0.70 for predicting treatment effectiveness.