

UNIK

Lecture 4.1 Feature descriptors

Trym Vegard Haavardsholm

Feature descriptors

- Histogram of Gradients (HoG) descriptors
- Binary descriptors

Histogram of Gradients (HOG) descriptors

- Scale Invariant Feature Transform (SIFT)
 - David G. Lowe.
 "Distinctive image features from scale-invariant keypoints."
 IJCV 60 (2), pp. 91-110, 2004
- Speeded Up Robust Features (SURF)
 - Bay, Herbert, Tinne Tuytelaars, and Luc Van Gool.
 "Surf: Speeded up robust features."
 Computer Vision–ECCV 2006.
 Springer Berlin Heidelberg, 2006. 404-417

SIFT detector

SIFT detections

Patch at detected position, scale, orientation

- Extract patch around detected keypoint
- Normalize the patch to canonical scale and orientation

- Extract patch around detected keypoint
- Normalize the patch to canonical scale and orientation
- Resize patch to 16x16 pixels

Compute the gradients

- Compute the gradients
 - Unaffected by additive intensity change

- Compute the gradients
 - Unaffected by additive intensity change
- Apply a Gaussian weighting function

- Compute the gradients
 - Unaffected by additive intensity change
- Apply a Gaussian weighting function
 - Weighs down gradients far from the centre
 - Avoids sudden changes in the descriptor with small changes in the window position

- Compute the gradients
 - Unaffected by additive intensity change
- Apply a Gaussian weighting function
 - Weighs down gradients far from the centre
 - Avoids sudden changes in the descriptor with small changes in the window position
- Divide the patch into 16 4x4 pixels squares

 Compute gradient direction histograms over 8 directions in each square

- Compute gradient direction histograms over 8 directions in each square
 - Trilinear interpolation
 - Robust to small shifts, while preserving some spatial information

- Compute gradient direction histograms over 8 directions in each square
 - Trilinear interpolation
 - Robust to small shifts, while preserving some spatial information

 Concatenate the histograms to obtain a 128 dimensional feature vector

- Concatenate the histograms to obtain a 128 dimensional feature vector
- Normalize to unit length
 - Invariant to multiplicative contrast change
- Threshold gradient magnitudes to avoid excessive influence of high gradients
 - Clamp gradients > 0.2
 - Renormalize

Example: Feature comparison

Example: Feature comparison

Example: Feature comparison

SIFT summary

- Extract a 16x16 patch around detected keypoint
- Compute the gradients and apply a Gaussian weighting function
- Divide the window into a 4x4 grid of cells
- Compute gradient direction histograms over 8 directions in each cell
- Concatenate the histograms to obtain a 128 dimensional feature vector
- Normalize to unit length

SIFT summary

- Extremely efficient construction and comparison
- Based on pairwise intensity comparisons
 - Sampling pattern around keypoint
 - Set of sampling pairs
 - Feature descriptor vector is a binary string:

$$F = \sum_{0 \le a \le N} 2^{a} T(P_{a})$$

$$T(P_{a}) = \begin{cases} 1 & \text{if } I(P_{a}^{r1}) > I(P_{a}^{r2}) \\ 0 & \text{otherwise} \end{cases}$$

Matching using Hamming distance:

$$L = \sum_{0 \le a \le N} XOR(F_a^1, F_a^2)$$

BRISK sampling pattern

BRISK sampling pairs

Method	Sampling pattern	Orientation calculation	Sampling pairs
BRIEF	None	None	Random
ORB	None	Moments	Learned pairs
BRISK	Concentric circles, More points on outer rings	Comparing gradients of long pairs	Short pairs
FREAK	Overlapping concentric circles, more points on inner rings	Comparing gradients of preselected 45 pairs	Learned pairs

BRIEF sampling pairs

Method	Sampling pattern	Orientation calculation	Sampling pairs
BRIEF	None	None	Random
ORB	None	Moments	Learned pairs
BRISK	Concentric circles, More points on outer rings	Comparing gradients of long pairs	Short pairs
FREAK	Overlapping concentric circles, more points on inner rings	Comparing gradients of preselected 45 pairs	Learned pairs

ORB sampling pairs

Method	Sampling pattern	Orientation calculation	Sampling pairs
BRIEF	None	None	Random
ORB	None	Moments	Learned pairs
BRISK	Concentric circles, More points on outer rings	Comparing gradients of long pairs	Short pairs
FREAK	Overlapping concentric circles, more points on inner rings	Comparing gradients of preselected 45 pairs	Learned pairs

BRISK sampling pattern

BRISK sampling pairs

Method	Sampling pattern	Orientation calculation	Sampling pairs
BRIEF	None	None	Random
ORB	None	Moments	Learned pairs
BRISK	Concentric circles, More points on outer rings	Comparing gradients of long pairs	Short pairs
FREAK	Overlapping concentric circles, more points on inner rings	Comparing gradients of preselected 45 pairs	Learned pairs

FREAK sampling pattern

FREAK sampling pairs

- Often achieves very good performance compared to SIFT/SURF
- Much faster than SIFT/SURF

Time per keypoint	SIFT	SURF	BRISK	FREAK
Description in [ms]	2.5	1.4	0.031	0.018
Matching time in [ns]	1014	566	36	25

Table 1: Computation time on 800x600 images where approximately 1500 keypoints are detected per image. The computation times correspond to the description and matching of all keypoints.

A. Alahi, R. Ortiz, and P. Vandergheynst. <u>FREAK: Fast Retina Keypoint. In IEEE</u>

<u>Conference on Computer Vision and Pattern Recognition</u>,

- Gil Levi's CV blog:
 - https://gilscvblog.wordpress.com/

