110 Aula

Algoritmos gulosos.

- Normalmente aplicado a problemas de otimização, em que queremos computar a melhor solução
- DEM cada passo, o algoritmo sempre esco The a methor opção local viavel, sem se piec cupar com as consequências futuras (di zemos que ele é miope")
- Nem semple produz à solução ótima
 - Não existe backtracking envolvido
 - No maioria das vezes, projetar ou descrever um algoritmo guloso é fácil, mas provar sua corretude é difícil
 - NTem similaridade com Programação Dinê

3	Estratégia gulosa Vs Programação dinâmica
	Algoritmo goloso (ganancioso): - abacanha" a alternativa mais promissora, sem explorar as outras
	-> 2 execução costuma ser muito rápida
	- o nunca se attepende de uma decisão tomado
	- prova de corretude dificil
4)	Algoritmo com programação dinâmica:
	- Dexplora todas es elternativas, e faz isso de maneira eficiente De a execução e um tanto "lenta"
	De cada iteração pode se attepender de de de cisães tomadas anteriormente (pode revero otimo corrente)
	- plova de corretude fécil

5) Exemplo: Mizimo vs Marimal

Sé uma coleção de subconjuntos de 11,...,n).

XCS é máximo se não existe YCS tol que

[YI>IXI.

XCS é máximal se não existe YCS tal que

YDX, ousejo, se nenhum elemento de Sé

superconjunto próprio de X.

6 Exemplificando

Note que todo méximo é meximal, mas a Leciptora mão é verdade. computacionalmente pesado (examinar todos os elementos)

Mas encontrar um elemento maximal de Sé muito facil, aplicando a estrate gia gulosa.

Algoritmo guloso para o maximal.

Tescolha algum X em S

enquanto X CY para algum Y em S

faça X = Y

devolva X

Verifique que o algoritmo funciona paro o exemplo de scrito anteriormente!

9 Phoblema de seleção de atividades

ezemplo uma sala de aula.

e un tempo de término ti, com sisti

- O intervalo requerido pela atividade i é [si, ti)

10

Duas atividades i e j são compatíveis se os intervalos [si, ti) e [sj, tj) não se interceptam (si > tj ou sj > ti).

- Problema: encontrar o conjunto de stividades motramente compatibeis de tamanho máximo.

M Exemplificando:

Consideremos 11 atividades em 14 unidades de tempo. La tentativa: Escolher Vas atividades que começam primeiro

1	0	1	2	3	4	5	6	7	8	19	10	11	12	13	14
1		144	1997	SHIP.	NAT.										
2				44/6	MAN.	11/10									
3	WW	MILLE	MIM	WILLY	WILL	WILL	MAN								
4						IN IN	ARTH.	14/41							
5				100	ANA.	188	116	11/1/4	M						
6						184	13	The same		200					
7									di	11/1	23				
8							No.		ST.	S	WETH.	Weller			
q									17	180	WHITE .	WIN	Dill.		
In			188	ten.	Sign.	Mile.	W		1191	18	100	NIP)	N.	THE REAL PROPERTY.	
10			district.	Lintro.	Million,	10.6	Mak	1400	Maria	Miller	1000	40.00	MIN.	Min.	Whi.
11													Manh.	Mille.	MA

Cscolhemos 3, 8 e 11, mas padens ser melhar: 1, 4, 8 e 11.

2ª tentativa: Escolher Vas atividades que demotam menos tempo.

Desta forma escolhemos 2, 8 e 11, mas poderia ser melhor: 1,4,8 e 11.

Tentemos mais uma vez!

3º Lentativa: Escolher Vas atividades que terminan

Agotz sim! Escolhemos 1,4,8 e 11.

Note que està é à solução ótima!

(4) Descrição do Elgoritmo

seleciona atividades guloso (s,t,n)?

A = ? 1? // tix tax ... xtm

j = 1

para i = 2 até n faça

se si > tj // i.e. j são compativeis

então A = AU?i.?

j = i

Complexidade du algatitmo: O(n)

(5) Problema do Pen Drive

Tenho um grande número de esquivos digiLais no meu computador. Cada arquivo ocu
pa um certo número de MB (megabytes). Quero
gravar o maior número possível de arquivos
em um Pen Drive que possoi capacidade c
MD. O problema pode ser modelado assimi
dados números naturais propara e c, encon
trar o maior subconjunto X de {1,2,...,n}
que satisfaça a restrição o piéc.

(16)

Mostre que um sigoritmo guloso apropriz do resolve o problems. Depois implemente tal sigoritmo (em linguagem C)