Квантовая физика ФМХФ МФТИ

4.1

Определение энергии α -частиц по величине их пробега в воздухе

Егор Берсенев

1 Теоретическое введение

Энергию альфа-частиц удобно определять по величине их пробега в веществе. Рассмотрим подробно взаимодействие заряженных частиц с веществом. Альфа-частицы при прохождении вещества чаще всего теряют энергию в результате неупругих столкновений с атомами. Этот процесс можно рассматривать как процесс непрерывного столкновения. Рассеиваемая энергия не превышает 4mE/M. Атомные электроны можно считать свободными в силу того, что энергия налетающей частицы значительно превышает энергию связи электронов в атомах:

$$E_e = \frac{p^2}{2m} = \frac{1}{2m} \left(\frac{Ze^2}{y^2} \cdot \frac{2y}{v} \right) = \frac{2e^4 Z^2}{mv^2 y^2}$$
 (1)

Если плотность электронов в среде n=nZ, то потеря энергии заряженной частицей на единице пути в результате взаимодействия с электронами в слое $2\pi y \mathrm{d} y$ будет выражаться как:

$$dE(y) = \frac{4\pi n Z z^2 e^4}{mv^2} \frac{dy}{y}$$
 (2)

Преобразуя выражение и вводя обозначение \bar{I} :

$$\ln \frac{E_{max}}{E_{min}} = \ln \frac{2mv^2}{\bar{I}} \tag{3}$$

$$\left(\frac{\mathrm{d}E}{\mathrm{d}x}\right) \simeq 2\pi \frac{e^4 z^2}{mv^2} n Z \ln \frac{2mv^2}{\bar{I}} \tag{4}$$

Величину $\frac{\mathrm{d}E}{\mathrm{d}x}$ называют тормозную способностью вещества. Зависимость тормозной способности от пути называется кривой Брэгга. Две такие кривые для движения ^{210}Po и ^{214}Po показаны на рисунке. Характерный подъем называется пиком Брэгга.

Рис. 1: Кривая Брэгга

Квантовая физика ФМХФ МФТИ

2 Экспериментальная часть

В этой работе мы исследуем длину пробега альфа-частиц тремя способами:

- 1. С помощью счетчика Гейгера
- 2. С помощью сцинтилляционного счетчика
- 3. С помощью ионизационной камеры

3 Экспериментальные данные

С помощью счётчика Гейгера исследуем скорость счёта альфа-частиц в зависимости от расстояния до счётчика. Построим график и определим среднюю и экстраполированную длину пробега.

Рис. 2: Зависимость количества счётов от расстояния

Отсюда получим экстраполированную длину α -частиц: $R=19.0\pm1.2$ мм. Приведенная длина пробега равна $R=20.4\pm1.3$ мм. Рассчитаем энергию: $E=3.43\pm0.55\,\mathrm{MEv}$

Повторим исследование с помощью ионизационной камеры. Построим график зависимости тока от давления в камере:

ФМХФ МФТИ Квантовая физика

Рис. 3: Зависимость тока от давления

Эктраполированная длина пробега $R=\frac{298}{288}\cdot\frac{77160}{101325}\cdot50=39.4\pm1.2,$ мм. Отсюда энергия частиц равна $E = 5.33 \pm 0.55 \,\mathrm{MeV}.$

Исследуем длину пробега с помощью сцинтилляционного детектора: Эктраполированная длина пробега $R=\frac{298}{288}\cdot\frac{31525}{101325}\cdot 90=29.0\pm0.7,$ мм. Энергия частиц равна $E = 4.33 \pm 0.47 \, \mathrm{MeV}$.

Совсместим результаты измерений в таблицу:

	R, mm	$\sigma R, mm$	$R, g/cm^2$	$\sigma R', g/cm^2$	E, MeV	$\$\sigma E, MeV$
Ион. камера	39.4	1.2	47.3	1.4	5.33	0.55
Счётчик Гейгера	19	1.2	22.8	1.4	3.43	0.55
Сцинт. детектор	29	0.7	34.8	0.8	4.33	0.47

Таблица 1: Сводная таблица результатов

Квантовая физика ФМХФ МФТИ

Рис. 4: Зависимость скорости счёта от расстояния

4 Вывод и обсуждение результатов

Энергия α -частиц при распаде ^{239}Pu можно считать приблизительно равной 5.15 МэВ. Наиболее точным методом оказалась ионизационная камера, наименее точным — счётчик Гейгера. Причины произошедшего состоят в том, что в счетчике Гейгера установлен коллиматор, на выходе из которого установлено слюдяное окошко, снижающее энергию частиц.