

AdaBoost Classifier

A Journey through Pseudocode

Ensembling

Ensembling is a process where multiple diverse models are created, either by using many different modeling algorithms or using different training data sets.

The ensemble model then aggregates the prediction of base models and results in once final prediction for the unseen data.

- considers
 homogeneous
 weak learners.
- learns independently in parallel.
- Combines them for overall prediction.

- considers
 homogeneous
 weak learners.
- learns
 sequentially
 and adaptive
 manner..
- Combines them for overall prediction.

- considers
 heterogeneous
 weak learners.
- Learns independently in parallel.
- Combines them for overall prediction.

AdaBoost Pseudocode walkthrough

Given: $(x_1, y_1), \dots, (x_m, y_m)$ where $x_i \in \mathcal{X}, y_i \in \{-1, +1\}$.

Initialize: $D_1(i) = 1/m$ for i = 1, ..., m.

For t = 1, ..., T:

- Train weak learner using distribution D_t.
- Get weak hypothesis $h_t: \mathcal{X} \to \{-1, +1\}$.
- Aim: select h_t with low weighted error:

$$\varepsilon_t = \Pr_{i \sim D_t} \left[h_t(x_i) \neq y_i \right].$$

- Choose $\alpha_t = \frac{1}{2} \ln \left(\frac{1 \varepsilon_t}{\varepsilon_t} \right)$.
- Update, for i = 1, ..., m:

$$D_{t+1}(i) = \frac{D_t(i)\exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

where Z_t is a normalization factor (chosen so that D_{t+1} will be a distribution).

Output the final hypothesis:

$$H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right).$$

Given:
$$(x_1, y_1), ..., (x_m, y_m)$$
 where $x_i \in \mathcal{X}, y_i \in \{-1, +1\}$
Initialize: $D_1(i) = 1/m$ for $i = 1, ..., m$.

Here;

m = number of observations

 (x_1, y_1) .. (x_m, y_m) refers to dataset consisting features (x) and label(y)

y ε {-1,1} Label can take value -1 or 1

 $D_1(i) = 1/m - initialize$ weight of each observation with 1/m

For
$$t = 1, ..., T$$
:

- Train weak learner using distribution D_t .
- Get weak hypothesis $h_t: \mathcal{X} \to \{-1, +1\}$.
- Aim: select h_t with low weighted error:

Here a loop is initiated.

m = number of observations

 (x_1, y_1) .. (x_m, y_m) refers to dataset consisting features (x) and label(y)

y ε {-1,1} Label can take value -1 or 1

 $D_1(i) = 1/m - initialize$ weight of each observation with 1/m

h_t – build weak model (usually decision tree classifier)

Aim: select h_t with low weighted error:

$$\varepsilon_t = \Pr_{i \sim D_t} \left[h_t(x_i) \neq y_i \right].$$

- Choose $\alpha_t = \frac{1}{2} \ln \left(\frac{1 \varepsilon_t}{\varepsilon_t} \right)$.
- Update, for i = 1, ..., m:

$$D_{t+1}(i) = \frac{D_t(i)\exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

where Z_t is a normalization factor (chosen so that D_{t+1} will be a distribution).

h_t – weak predictive model

 ϵ_t – Estimate total error (sum of weights for rows with prediction error).

 α_t – Amount of say

 $D_{t+1}(i)$ – updated weight

 Z_t – sum of weights

Output the final hypothesis:

$$H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

H(x) – overall prediction of T weak models

sign – if array value is greater than 0 it returns 1, if array value is less than 0 it returns -1, and if array value 0 it returns 0.

 α_t – Amount of say of model 't'

 $h_t(x)$ – predition of model 't'

Thank You