An Introduction into Building Theory

(Using Abstract Simplicial Complexes and Coxeter Groups)

Malachi Alexander

UC Santa Cruz

May 20, 2021

Table of Contents

- Motivation
- 2 Basics
 - Finite Reflection Groups
 - Coxeter Complex
- Examples

Buildings were introduced by Jacques Tits in order to provide a unified geometric framework for understanding semisimple complex Lie groups and semisimple algebraic groups over an arbitrary field.

Buildings were introduced by Jacques Tits in order to provide a unified geometric framework for understanding semisimple complex Lie groups and semisimple algebraic groups over an arbitrary field. There are three perspectives on buildings:

Buildings were introduced by Jacques Tits in order to provide a unified geometric framework for understanding semisimple complex Lie groups and semisimple algebraic groups over an arbitrary field. There are three perspectives on buildings:

(1) Simplicial complex with a family of subcomplexes (called apartments) composed of top-dimensional simplices (called chambers).

Buildings were introduced by Jacques Tits in order to provide a unified geometric framework for understanding semisimple complex Lie groups and semisimple algebraic groups over an arbitrary field. There are three perspectives on buildings:

- (1) Simplicial complex with a family of subcomplexes (called apartments) composed of top-dimensional simplices (called chambers).
- (2) A collection of chambers together with a Weyl-group valued distance function.

Buildings were introduced by Jacques Tits in order to provide a unified geometric framework for understanding semisimple complex Lie groups and semisimple algebraic groups over an arbitrary field. There are three perspectives on buildings:

- (1) Simplicial complex with a family of subcomplexes (called apartments) composed of top-dimensional simplices (called chambers).
- (2) A collection of chambers together with a Weyl-group valued distance function.
- (3) The apartments in the first perspective are viewed as metric spaces rather than simplicial complexes with specific geometric properties.

Buildings were introduced by Jacques Tits in order to provide a unified geometric framework for understanding semisimple complex Lie groups and semisimple algebraic groups over an arbitrary field. There are three perspectives on buildings:

- (1) Simplicial complex with a family of subcomplexes (called apartments) composed of top-dimensional simplices (called chambers).
- (2) A collection of chambers together with a Weyl-group valued distance function.
- (3) The apartments in the first perspective are viewed as metric spaces rather than simplicial complexes with specific geometric properties.

The perspectives differ in how one views the chambers:

Buildings were introduced by Jacques Tits in order to provide a unified geometric framework for understanding semisimple complex Lie groups and semisimple algebraic groups over an arbitrary field. There are three perspectives on buildings:

- (1) Simplicial complex with a family of subcomplexes (called apartments) composed of top-dimensional simplices (called chambers).
- (2) A collection of chambers together with a Weyl-group valued distance function.
- (3) The apartments in the first perspective are viewed as metric spaces rather than simplicial complexes with specific geometric properties.

The perspectives differ in how one views the chambers:

(1) Chambers are maximal simplices.

Buildings were introduced by Jacques Tits in order to provide a unified geometric framework for understanding semisimple complex Lie groups and semisimple algebraic groups over an arbitrary field. There are three perspectives on buildings:

- (1) Simplicial complex with a family of subcomplexes (called apartments) composed of top-dimensional simplices (called chambers).
- (2) A collection of chambers together with a Weyl-group valued distance function.
- (3) The apartments in the first perspective are viewed as metric spaces rather than simplicial complexes with specific geometric properties.

The perspectives differ in how one views the chambers:

- (1) Chambers are maximal simplices.
- (2) Chambers are elements of an abstract set.

Buildings were introduced by Jacques Tits in order to provide a unified geometric framework for understanding semisimple complex Lie groups and semisimple algebraic groups over an arbitrary field. There are three perspectives on buildings:

- (1) Simplicial complex with a family of subcomplexes (called apartments) composed of top-dimensional simplices (called chambers).
- (2) A collection of chambers together with a Weyl-group valued distance function.
- (3) The apartments in the first perspective are viewed as metric spaces rather than simplicial complexes with specific geometric properties.

The perspectives differ in how one views the chambers:

- (1) Chambers are maximal simplices.
- (2) Chambers are elements of an abstract set.
- (3) Chambers are metric spaces.

In each perspective, the notion of Coxeter groups are required.

In each perspective, the notion of Coxeter groups are required.

- We will use finite reflection groups (which characterize finite Coxeter groups).

In each perspective, the notion of Coxeter groups are required.

- We will use finite reflection groups (which characterize finite Coxeter groups).
- We will present from the simplicial complex perspective.

In each perspective, the notion of Coxeter groups are required.

- We will use finite reflection groups (which characterize finite Coxeter groups).
- We will present from the simplicial complex perspective.

Definition of a Building

A (weak) building is a simplicial complex Δ that can be expressed as the union of subcomplexes Σ (called apartments) satisfying axioms:

- (B0) Each apartment Σ is a Coxeter complex.
- **(B1)** For any two simplices $A, B \in \Delta$, there is an apartment Σ containing both of them.
- **(B2)** If Σ and Σ' are two apartments containing A and B, then there is an isomorphism $\Sigma \to \Sigma'$ fixing A and B pointwise.

Let V be a Euclidean vector space, i.e. a finite-dimensional \mathbb{R} -vector space with an inner product and let V have dimension n.

Let V be a Euclidean vector space, i.e. a finite-dimensional \mathbb{R} -vector space with an inner product and let V have dimension n.

Example: Let $V = \mathbb{R}^3$ equipped with the dot product.

Inner Product

$$\langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_1 + u_2 v_2 + u_3 v_3$$

Definition: A hyperplane H in V is a subspace of codimension 1 (we are assuming $\dim_{\mathbb{R}}(V) = n$, thus $\dim_{\mathbb{R}}(H) = n - 1$).

Definition: A hyperplane H in V is a subspace of codimension 1 (we are assuming $\dim_{\mathbb{R}}(V) = n$, thus $\dim_{\mathbb{R}}(H) = n - 1$).

Example: Let $V = \mathbb{R}^3$ and $H_1 = \{ \mathbf{u} \in \mathbb{R}^3 : \mathbf{u} = (u_1, 0, u_3) \}$.

Definition: A reflection with respect to H is a linear transformation $s_H: V \to V$ such that s_H is the identity on H and multiplication by -1 along the orthogonal complement.

Definition: A reflection with respect to H is a linear transformation $s_H: V \to V$ such that s_H is the identity on H and multiplication by -1 along the orthogonal complement.

Example: Let $u_1 = (1, 0, 1)$ and $u_2 = (1, 1, 1)$.

We obtain $s_{H_1}(1,0,1) = (1,0,1)$ and $s_{H_1}(1,1,1) = (1,-1,1)$.

Definition: Let \mathcal{H} be a set of hyperplanes in V, we call this a hyperplane arrangement. A (finite) reflection group W is a (finite) group generated by reflections s_H for $H \in \mathcal{H}$.

Definition: Let \mathcal{H} be a set of hyperplanes in V, we call this a hyperplane arrangement. A (finite) reflection group W is a (finite) group generated by reflections s_H for $H \in \mathcal{H}$.

Example: Let $V = \mathbb{R}^3$, and

-
$$H_1 = \{ \mathbf{u} \in \mathbb{R}^3 : \mathbf{u} = (u_1, 0, u_2) \}$$

-
$$H_2 = \left\{ \mathbf{u} \in \mathbb{R}^3 : \mathbf{u} = (u_1, \sqrt{3}u_2, u_2) \right\}$$

-
$$H_3 = \left\{ \mathbf{u} \in \mathbb{R}^3 : \mathbf{u} = (u_1, \sqrt{3}u_2, -u_2) \right\}$$

9/63

We obtain the group: $W = \langle s_{H_1}, s_{H_2}, s_{H_3} \rangle$.

(1) For all
$$i$$
, $s_{H_i}^2 = id_V$

9/63

- (1) For all i, $s_{H_i}^2 = id_V$
- (2) For $i \neq j$, $(s_{H_i} \circ s_{H_j})^3 = 1$

- (1) For all i, $s_{H_i}^2 = id_V$
- (2) For $i \neq j$, $(s_{H_i} \circ s_{H_i})^3 = 1$
- (3) This group can be generated by two elements $(s_{H_3} = s_{H_1} \circ s_{H_2} \circ s_{H_1})$.

- (1) For all i, $s_{H_i}^2 = id_V$
- (2) For $i \neq j$, $(s_{H_i} \circ s_{H_i})^3 = 1$
- (3) This group can be generated by two elements $(s_{H_3} = s_{H_1} \circ s_{H_2} \circ s_{H_1})$.
- (4) This group is isomorphic to S_3 .

Remarks:

Remarks:

(1) In general, each s_H has order 2 in W.

Remarks:

- (1) In general, each s_H has order 2 in W.
- (2) Each hyperplane H is codimension 1, and thus H^{\perp} is spanned by some nonzero vector α .

Remarks:

- (1) In general, each s_H has order 2 in W.
- (2) Each hyperplane H is codimension 1, and thus H^{\perp} is spanned by some nonzero vector α .

Example: For the hyperplane H_1 , we can choose $\alpha_1 = (0, 1.25, 0)$.

Remarks:

Remarks:

(3) For each $H \in \mathcal{H}$, associate some $0 \neq \alpha \in H^{\perp}$, the collection of such vectors Φ is the (generalized) root system associated to the (Weyl) group $W =: W_{\Phi}$.

Remarks:

- (3) For each $H \in \mathcal{H}$, associate some $0 \neq \alpha \in H^{\perp}$, the collection of such vectors Φ is the (generalized) root system associated to the (Weyl) group $W =: W_{\Phi}$.
- (4) For each $H \in \mathcal{H}$, we can explicitly write down s_H in terms of α (and thus we denote s_H by s_{α}):

$$s_{\alpha}(x) = x - 2 \frac{\langle \alpha, x \rangle}{\langle \alpha, \alpha \rangle} \alpha$$

Remarks:

- (3) For each $H \in \mathcal{H}$, associate some $0 \neq \alpha \in H^{\perp}$, the collection of such vectors Φ is the (generalized) root system associated to the (Weyl) group $W =: W_{\Phi}$.
- (4) For each $H \in \mathcal{H}$, we can explicitly write down s_H in terms of α (and thus we denote s_H by s_{α}):

$$s_{\alpha}(x) = x - 2 \frac{\langle \alpha, x \rangle}{\langle \alpha, \alpha \rangle} \alpha$$

Example: Let $0 \neq \alpha \in H_1^{\perp}$, then

$$s_{\alpha_1}(\mathbf{u}) = (u_1, -u_2, u_3)$$

The function s_H is well-defined for any choice of $0 \neq \alpha \in H^{\perp}$.

Remarks:

(5) Let
$$\alpha^{\vee} := \frac{2\alpha}{\langle \alpha, \alpha \rangle}$$
, then $s_{\alpha}(x) = x - \langle \alpha^{\vee}, x \rangle \alpha$.

Remarks:

(5) Let $\alpha^{\vee} := \frac{2\alpha}{\langle \alpha, \alpha \rangle}$, then $s_{\alpha}(x) = x - \langle \alpha^{\vee}, x \rangle \alpha$. This has a few properties:

Remarks:

(5) Let $\alpha^{\vee} := \frac{2\alpha}{\langle \alpha, \alpha \rangle}$, then $s_{\alpha}(x) = x - \langle \alpha^{\vee}, x \rangle \alpha$. This has a few properties:

-
$$\langle \alpha^{\vee}, \alpha \rangle = \langle \frac{2\alpha}{\langle \alpha, \alpha \rangle}, \alpha \rangle = \frac{2}{\langle \alpha, \alpha \rangle} \langle \alpha, \alpha \rangle = 2$$

Remarks:

(5) Let $\alpha^{\vee} := \frac{2\alpha}{\langle \alpha, \alpha \rangle}$, then $s_{\alpha}(x) = x - \langle \alpha^{\vee}, x \rangle \alpha$. This has a few properties:

$$\begin{array}{l} \text{-} \ \langle \alpha^{\vee}, \alpha \rangle = \langle \frac{2\alpha}{\langle \alpha, \alpha \rangle}, \alpha \rangle = \frac{2}{\langle \alpha, \alpha \rangle} \langle \alpha, \alpha \rangle = 2 \\ \text{-} \ (\alpha^{\vee})^{\vee} = \frac{2(\frac{2\alpha}{\langle \alpha, \alpha \rangle})}{\langle \frac{2\alpha}{\langle \alpha, \alpha \rangle}, \frac{2\alpha}{\langle \alpha, \alpha \rangle} \rangle} = \frac{\frac{4}{\langle \alpha, \alpha \rangle} \alpha}{\frac{4}{\langle \alpha, \alpha \rangle^2} \langle \alpha, \alpha \rangle} = \alpha. \end{array}$$

Remarks:

(5) Let $\alpha^{\vee} := \frac{2\alpha}{\langle \alpha, \alpha \rangle}$, then $s_{\alpha}(x) = x - \langle \alpha^{\vee}, x \rangle \alpha$. This has a few properties:

$$-\langle \alpha^{\vee}, \alpha \rangle = \langle \frac{2\alpha}{\langle \alpha, \alpha \rangle}, \alpha \rangle = \frac{2}{\langle \alpha, \alpha \rangle} \langle \alpha, \alpha \rangle = 2$$

$$- (\alpha^{\vee})^{\vee} = \frac{2(\frac{2\alpha}{\langle \alpha, \alpha \rangle})}{\langle \frac{2\alpha}{\langle \alpha, \alpha \rangle}, \frac{2\alpha}{\langle \alpha, \alpha \rangle} \rangle} = \frac{\frac{4}{\langle \alpha, \alpha \rangle} \alpha}{\frac{4}{\langle \alpha, \alpha \rangle^2} \langle \alpha, \alpha \rangle} = \alpha.$$

A crystallographic root system is a (generalized) root system if Φ satisfies:

$$\langle \alpha^{\vee}, \beta \rangle \in \mathbb{Z}$$

for all $\alpha, \beta \in \Phi$. In Lie algebra theory, this condition arises naturally.

Remarks:

(5) Let $\alpha^{\vee} := \frac{2\alpha}{\langle \alpha, \alpha \rangle}$, then $s_{\alpha}(x) = x - \langle \alpha^{\vee}, x \rangle \alpha$. This has a few properties:

-
$$\langle \alpha^{\vee}, \alpha \rangle = \langle \frac{2\alpha}{\langle \alpha, \alpha \rangle}, \alpha \rangle = \frac{2}{\langle \alpha, \alpha \rangle} \langle \alpha, \alpha \rangle = 2$$

$$- (\alpha^{\vee})^{\vee} = \frac{2(\frac{2\alpha}{\langle \alpha, \alpha \rangle})}{\langle \frac{2\alpha}{\langle \alpha, \alpha \rangle}, \frac{2\alpha}{\langle \alpha, \alpha \rangle} \rangle} = \frac{\frac{4}{\langle \alpha, \alpha \rangle} \alpha}{\frac{4}{\langle \alpha, \alpha \rangle^2} \langle \alpha, \alpha \rangle} = \alpha.$$

A crystallographic root system is a (generalized) root system if Φ satisfies:

$$\langle \alpha^{\vee}, \beta \rangle \in \mathbb{Z}$$

for all $\alpha, \beta \in \Phi$. In Lie algebra theory, this condition arises naturally. We define $\Phi^{\vee} := \{\alpha^{\vee} : \alpha \in \Phi\}$ to be the coroot system of W, in particular, a Weyl group can have multiple root systems (the choice of Φ is important to the structure).

We have an orthogonal decomposition of V via the action (W, Φ) .

We have an orthogonal decomposition of V via the action (W, Φ) .

$$V_0 := \bigcap_{\alpha \in \Phi} \alpha^{\perp}$$

We have an orthogonal decomposition of V via the action (W, Φ) .

$$V_0 := \bigcap_{\alpha \in \Phi} \alpha^{\perp}$$

This is the fixed-point set $V^W = \{v \in V : wv = v \text{ for all } w \in W\}$. We call this the *inessential part* of V.

We have an orthogonal decomposition of V via the action (W, Φ) .

$$V_0 := \bigcap_{\alpha \in \Phi} \alpha^{\perp}$$

This is the fixed-point set $V^W = \{v \in V : wv = v \text{ for all } w \in W\}$. We call this the *inessential part* of V.

$$V_1 := \mathsf{span}_\mathbb{R}(\Phi)$$

We have an orthogonal decomposition of V via the action (W, Φ) .

$$V_0 := \bigcap_{\alpha \in \Phi} \alpha^{\perp}$$

This is the fixed-point set $V^W = \{v \in V : wv = v \text{ for all } w \in W\}$. We call this the *inessential part* of V.

$$V_1 := \mathsf{span}_{\mathbb{R}}(\Phi)$$

The action of W is completely determined by V_1 . We call this the essential part of V.

We have an orthogonal decomposition of V via the action (W, Φ) .

$$V_0 := \bigcap_{\alpha \in \Phi} \alpha^{\perp}$$

This is the fixed-point set $V^W = \{v \in V : wv = v \text{ for all } w \in W\}$. We call this the *inessential part* of V.

$$V_1 := \operatorname{\mathsf{span}}_{\mathbb{R}}(\Phi)$$

The action of W is completely determined by V_1 . We call this the essential part of V.

$$V = V_0 \oplus V_1$$

Example: Let $V = \mathbb{R}^3$, and H_1 , H_2 and H_3 as before and choose orthogonal vectors $\alpha_1 = (0, 1, 0)$, $\alpha_2 = (0, -1, \sqrt{3})$, and $\alpha_3 = (0, 1, \sqrt{3})$, respectively.

Example: Let $V = \mathbb{R}^3$, and H_1 , H_2 and H_3 as before and choose orthogonal vectors $\alpha_1 = (0, 1, 0)$, $\alpha_2 = (0, -1, \sqrt{3})$, and $\alpha_3 = (0, 1, \sqrt{3})$, respectively.

The x-axis is contained in each hyperplane and thus is orthogonal to each α_i chosen, or equivalently, is fixed by the reflections across each H_i :

$$V_0 := (0,1,0)^{\perp} \cap (0,-1,\sqrt{3})^{\perp} \cap (0,1,\sqrt{3})^{\perp}$$

By contracting V_0 to a point, we see the essential part of (W, Φ) :

Remarks:

(6) One can restrict themselves to studying essential reflection groups, i.e. for $V = V_0 \oplus V_1$ as above, we require $V_0 = 0$.

Remarks:

- (6) One can restrict themselves to studying essential reflection groups, i.e. for $V = V_0 \oplus V_1$ as above, we require $V_0 = 0$.
- (7) We can define a product $(W',V')\times (W'',V''):=(W'\times W'',V'\oplus V'')$. If (W,V) cannot be expressed as a product, then we say that (W,V) is irreducible. One can restrict themselves to studying irreducible reflection groups.

Remarks:

- (6) One can restrict themselves to studying essential reflection groups, i.e. for $V = V_0 \oplus V_1$ as above, we require $V_0 = 0$.
- (7) We can define a product $(W',V')\times (W'',V''):=(W'\times W'',V'\oplus V'')$. If (W,V) cannot be expressed as a product, then we say that (W,V) is irreducible. One can restrict themselves to studying irreducible reflection groups.
- (8) There is a classification of non-trivial, essential, irreducible, finite reflection groups.

Remarks:

- (6) One can restrict themselves to studying essential reflection groups, i.e. for $V = V_0 \oplus V_1$ as above, we require $V_0 = 0$.
- (7) We can define a product $(W',V')\times (W'',V''):=(W'\times W'',V'\oplus V'')$. If (W,V) cannot be expressed as a product, then we say that (W,V) is irreducible. One can restrict themselves to studying irreducible reflection groups.
- (8) There is a classification of non-trivial, essential, irreducible, finite reflection groups.

Among these are: group of permutations on n letters, group of signed permutations on n letters, dihedral groups, symmetries of regular solids (see Section 1.3 in Buildings - Theory and Applications, Abramenko and Brown, 2008).

We have introduced quite a bit of notation:

- V is a Euclidean vector space.
- n is the dimension of V.
- H is a hyperplane, there exists $0 \neq \alpha \in H^{\perp}$ called a root.
- ${\cal H}$ is a hyperplane arrangement, Φ is a generalized root system.
- s_H is the reflection across H, also denoted s_α , where α is a root (determined by H).
- W is the Weyl group.
- $V_1 = \operatorname{\mathsf{span}}_{\mathbb{R}}(\Phi)$ is the essential part of V.
- $V_0 = V^W$ is the unessential part of V.

Definition: A (finite) abstract simplicial complex is a (finite) set A together with a collection Δ of finite subsets of A such that if $X \in \Delta$ and $Y \subset X$, then $Y \in \Delta$.

Definition: A (finite) abstract simplicial complex is a (finite) set A together with a collection Δ of finite subsets of A such that if $X \in \Delta$ and $Y \subseteq X$, then $Y \in \Delta$. An abstract simplicial complex is denoted by the collection Δ .

(1) A vertex is a $v \in A$ such that $\{v\} \in \Delta$.

- (1) A vertex is a $v \in A$ such that $\{v\} \in \Delta$.
- (2) The set of vertices is denoted $V(\Delta)$.

- (1) A vertex is a $v \in A$ such that $\{v\} \in \Delta$.
- (2) The set of vertices is denoted $V(\Delta)$.
- (3) The elements of Δ are called simplices.

- (1) A vertex is a $v \in A$ such that $\{v\} \in \Delta$.
- (2) The set of vertices is denoted $V(\Delta)$.
- (3) The elements of Δ are called simplices.
- (4) The dimension of a simplex $\delta \in \Delta$ is $|\delta| 1$, i.e. vertices are zero dimensional, edges are one-dimensional, etc.

Definition: A (finite) abstract simplicial complex is a (finite) set A together with a collection Δ of finite subsets of A such that if $X \in \Delta$ and $Y \subseteq X$, then $Y \in \Delta$. An abstract simplicial complex is denoted by the collection Δ .

- (1) A vertex is a $v \in A$ such that $\{v\} \in \Delta$.
- (2) The set of vertices is denoted $V(\Delta)$.
- (3) The elements of Δ are called simplices.
- (4) The dimension of a simplex $\delta \in \Delta$ is $|\delta| 1$, i.e. vertices are zero dimensional, edges are one-dimensional, etc.

To simplify notation with subsets, I will denote subsets $X = \{a_1, a_2, \dots, a_k\}$ by $X = a_1 a_2 \dots a_k$.

Example: Let $A = \{1, 2, 3, 4\}$ and consider $\Delta_1 = \{\emptyset, 1, 2, 3, 12, 13, 23, 123\}$ and $\Delta_2 = \{\emptyset, 1, 2, 4, 12, 14\}$.

Example: Let $A = \{1, 2, 3, 4\}$ and consider

 $\Delta_1 = \{\varnothing, 1, 2, 3, 12, 13, 23, 123\} \text{ and } \Delta_2 = \{\varnothing, 1, 2, 4, 12, 14\}.$

Example: Let $A = \{1, 2, 3, 4\}$ and consider

$$\Delta_1 = \{\varnothing, 1, 2, 3, 12, 13, 23, 123\} \text{ and } \Delta_2 = \{\varnothing, 1, 2, 4, 12, 14\}.$$

However, $\Delta_3 = \{\varnothing, 1, 2, 23, 123\}$ is not an abstract simplicial complex.

$$\Delta_3$$
 4

Definition: Let Δ_1 and Δ_2 be two abstract simplicial complexes. A simplicial map is a function $f:V(\Delta_1)\to V(\Delta_2)$ such that for all $\delta\in\Delta_1$, $f(\delta)\in\Delta_2$.

Definition: Let Δ_1 and Δ_2 be two abstract simplicial complexes. A simplicial map is a function $f:V(\Delta_1)\to V(\Delta_2)$ such that for all $\delta\in\Delta_1$, $f(\delta)\in\Delta_2$.

Example: Let $f: V(\Delta_1) \to V(\Delta_2)$ be defined by f(1) = 1 and f(2) = 2 and f(3) = 1.

Definition: Let Δ_1 and Δ_2 be two abstract simplicial complexes. A simplicial map is a function $f:V(\Delta_1)\to V(\Delta_2)$ such that for all $\delta\in\Delta_1$, $f(\delta)\in\Delta_2$.

Example: Let $f: V(\Delta_1) \to V(\Delta_2)$ be defined by f(1) = 1 and f(2) = 2 and f(3) = 1.

Definition: Let Δ_1 and Δ_2 be two abstract simplicial complexes. A simplicial map is a function $f:V(\Delta_1)\to V(\Delta_2)$ such that for all $\delta\in\Delta_1$, $f(\delta)\in\Delta_2$.

Example: Let $f: V(\Delta_1) \to V(\Delta_2)$ be defined by f(1) = 1 and f(2) = 2 and f(3) = 1.

Definition: Let Δ_1 and Δ_2 be two abstract simplicial complexes. A simplicial map is a function $f:V(\Delta_1)\to V(\Delta_2)$ such that for all $\delta\in\Delta_1$, $f(\delta)\in\Delta_2$.

Definition: Let Δ_1 and Δ_2 be two abstract simplicial complexes. A simplicial map is a function $f:V(\Delta_1)\to V(\Delta_2)$ such that for all $\delta\in\Delta_1$, $f(\delta)\in\Delta_2$.

Definition: Let Δ_1 and Δ_2 be two abstract simplicial complexes. A simplicial map is a function $f:V(\Delta_1)\to V(\Delta_2)$ such that for all $\delta\in\Delta_1$, $f(\delta)\in\Delta_2$.

(1) The identity map $id_{\Delta} : \Delta \to \Delta$ is a simplicial map.

- (1) The identity map $id_{\Delta} : \Delta \to \Delta$ is a simplicial map.
- (2) The composition of simplicial maps is simplicial.

- (1) The identity map $\mathrm{id}_\Delta:\Delta\to\Delta$ is a simplicial map.
- (2) The composition of simplicial maps is simplicial.
- (3) An isomorphism of simplicial complexes Δ_1 and Δ_2 is a bijective function $f: V(\Delta_1) \to V(\Delta_2)$ such that f^{-1} is simplicial.

- (1) The identity map $\mathrm{id}_\Delta:\Delta\to\Delta$ is a simplicial map.
- (2) The composition of simplicial maps is simplicial.
- (3) An isomorphism of simplicial complexes Δ_1 and Δ_2 is a bijective function $f: V(\Delta_1) \to V(\Delta_2)$ such that f^{-1} is simplicial.

- (1) The identity map $\operatorname{id}_\Delta:\Delta o\Delta$ is a simplicial map.
- (2) The composition of simplicial maps is simplicial.
- (3) An isomorphism of simplicial complexes Δ_1 and Δ_2 is a bijective function $f: V(\Delta_1) \to V(\Delta_2)$ such that f^{-1} is simplicial.

- (1) The identity map $\operatorname{\sf id}_\Delta:\Delta o\Delta$ is a simplicial map.
- (2) The composition of simplicial maps is simplicial.
- (3) An isomorphism of simplicial complexes Δ_1 and Δ_2 is a bijective function $f: V(\Delta_1) \to V(\Delta_2)$ such that f^{-1} is simplicial.

- (1) The identity map $id_{\Delta} : \Delta \to \Delta$ is a simplicial map.
- (2) The composition of simplicial maps is simplicial.
- (3) An isomorphism of simplicial complexes Δ_1 and Δ_2 is a bijective function $f: V(\Delta_1) \to V(\Delta_2)$ such that f^{-1} is simplicial.

- (1) The identity map $id_{\Delta} : \Delta \to \Delta$ is a simplicial map.
- (2) The composition of simplicial maps is simplicial.
- (3) An isomorphism of simplicial complexes Δ_1 and Δ_2 is a bijective function $f: V(\Delta_1) \to V(\Delta_2)$ such that f^{-1} is simplicial.

Our next goal is to construct to a chamber complex associated to an essential finite reflection group (W, V), which we will denote by $\Sigma := \Sigma(W, S)$.

Our next goal is to construct to a chamber complex associated to an essential finite reflection group (W, V), which we will denote by $\Sigma := \Sigma(W, S)$. Let's return to our running example:

where $V = \mathbb{R}^3$ with the usual inner product. We can reformulate this example in terms of the essential part of the action.

Let $V = \mathbb{R}^2$, with the usual inner product. Let $\mathcal{H} = \{H_1, H_2, H_3\}$.

-
$$H_1 = \left\{ \mathbf{u} \in \mathbb{R}^2 : \mathbf{u} = (0, u_2) \right\}$$

-
$$H_2 = \{\mathbf{u} \in \mathbb{R}^2 : \mathbf{u} = (\sqrt{3}u_2, u_2)\}$$

-
$$H_3 = \{ \mathbf{u} \in \mathbb{R}^2 : \mathbf{u} = (\sqrt{3}u_2, -u_2) \}$$

31 / 63

Let $V = \mathbb{R}^2$, with the usual inner product. Let $\mathcal{H} = \{H_1, H_2, H_3\}$.

-
$$H_1 = \{ \mathbf{u} \in \mathbb{R}^2 : \mathbf{u} = (0, u_2) \}$$

-
$$H_2 = \{\mathbf{u} \in \mathbb{R}^2 : \mathbf{u} = (\sqrt{3}u_2, u_2)\}$$

-
$$H_3 = \{ \mathbf{u} \in \mathbb{R}^2 : \mathbf{u} = (\sqrt{3}u_2, -u_2) \}$$

Set $s := s_{H_1}$ and $t := s_{H_2}$, then $s_{H_3} = s \circ t \circ s$. We will denote the set of fundamental reflections by $S = \{s, t\}$.

Let $V = \mathbb{R}^2$, with the usual inner product. Let $\mathcal{H} = \{H_1, H_2, H_3\}$.

- $H_1 = \{ \mathbf{u} \in \mathbb{R}^2 : \mathbf{u} = (0, u_2) \}$
- $H_2 = \{\mathbf{u} \in \mathbb{R}^2 : \mathbf{u} = (\sqrt{3}u_2, u_2)\}$
- $H_3 = \{ \mathbf{u} \in \mathbb{R}^2 : \mathbf{u} = (\sqrt{3}u_2, -u_2) \}$

Set $s := s_{H_1}$ and $t := s_{H_2}$, then $s_{H_3} = s \circ t \circ s$. We will denote the set of fundamental reflections by $S = \{s, t\}$. To each hyperplane, we will associate a linear function $f_i : V \to \mathbb{R}$ such that $f_i|_{H_i} = 0$ and $f_i \neq 0$.

- $f_1(x, y) = x$
- $f_2(x,y) = -x + \sqrt{3}y$
- $f_3(x,y) = x + \sqrt{3}y$

I will refer to the pair (W, S) as a Coxeter group.

Definition: A *cell* in V with respect to $\mathcal{H} = \{H_i\}_{i \in I}$ is a nonempty set A obtained by choosing for each i a sign $\sigma_i \in \{+, -, 0\}$ and specifying $f_i = \sigma_i$.

Definition: A *cell* in V with respect to $\mathcal{H} = \{H_i\}_{i \in I}$ is a nonempty set A obtained by choosing for each i a sign $\sigma_i \in \{+, -, 0\}$ and specifying $f_i = \sigma_i$. In other words, A is defined by a set of linear equalities and strict inequalities, one for each hyperplane in \mathcal{H} .

$$A = \bigcap_{i \in I} U_i$$

for U_i is either H_i or an open half-space with H_i as a boundary. We denote the set of cells $\Sigma(\mathcal{H})$.

Definition: A *cell* in V with respect to $\mathcal{H} = \{H_i\}_{i \in I}$ is a nonempty set A obtained by choosing for each i a sign $\sigma_i \in \{+, -, 0\}$ and specifying $f_i = \sigma_i$. In other words, A is defined by a set of linear equalities and strict inequalities, one for each hyperplane in \mathcal{H} .

$$A = \bigcap_{i \in I} U_i$$

for U_i is either H_i or an open half-space with H_i as a boundary. We denote the set of cells $\Sigma(\mathcal{H})$.

Definition: If each $\sigma_i \neq 0$, then we call the cell a *chamber*. We denote the set of chamber by $\mathcal{C}(\mathcal{H})$.

Definition: A *cell* in V with respect to $\mathcal{H} = \{H_i\}_{i \in I}$ is a nonempty set A obtained by choosing for each i a sign $\sigma_i \in \{+, -, 0\}$ and specifying $f_i = \sigma_i$. In other words, A is defined by a set of linear equalities and strict inequalities, one for each hyperplane in \mathcal{H} .

$$A = \bigcap_{i \in I} U_i$$

for U_i is either H_i or an open half-space with H_i as a boundary. We denote the set of cells $\Sigma(\mathcal{H})$.

Definition: If each $\sigma_i \neq 0$, then we call the cell a *chamber*. We denote the set of chamber by $\mathcal{C}(\mathcal{H})$.

Definition: If $\sigma_i = 0$ for exactly one $i \in I$, then we call the cell a *panel*.

$$f_3 = +$$

$$f_3 = -$$

Definition: Given cells $A, B \in \Sigma(\mathcal{H})$, B is a face of A, denoted $B \leq A$, if for each $i \in I$, either $\sigma_i(B) = 0$ or $\sigma_i(B) = \sigma_i(A)$.

Definition: Given cells $A, B \in \Sigma(\mathcal{H})$, B is a face of A, denoted $B \leq A$, if for each $i \in I$, either $\sigma_i(B) = 0$ or $\sigma_i(B) = \sigma_i(A)$.

Example: In our previous examples of cells, $B \leq A$.

We say that B is a panel of A, and the hyperplane H_1 containing B is the wall of A.

In this example, there are 13 cells: 6 chambers, 6 open rays and the origin.

We distinguish an arbitrary chamber C in the cell decomposition.

We distinguish an arbitrary chamber C in the cell decomposition. Recall $s = s_{H_1}$ and $t = s_{H_2}$.

We distinguish an arbitrary chamber C in the cell decomposition. Recall $s = s_{H_1}$ and $t = s_{H_2}$.

We distinguish an arbitrary chamber C in the cell decomposition. Recall $s = s_{H_1}$ and $t = s_{H_2}$.

Note $w_0 = sts = tst$. By this definition, it is clear W acts transitively on the chambers and $|\mathcal{C}(\mathcal{H})| = |W|$.

Let $\Sigma_{\leq C}$ be the subcomplex of faces of C. For $A \leq C$, let W_A be the stabilizer of A.

Let $\Sigma_{\leq C}$ be the subcomplex of faces of C. For $A \leq C$, let W_A be the stabilizer of A.

Example: Let C be the fundamental chamber, C, R_1^+ , R_2^+ , and 0 are the faces of C.

$$W_C = \{e\}$$
 $W_{R_1^+} = \{e, s\}$
 $W_{R_2^+} = \{e, t\}$
 $W_0 = W$

Note that $W_{R_1^+}=\langle s
angle$, $W_{R_2^+}=\langle t
angle$ and $W_0=\langle s,t
angle$.

Note that $W_{R_1^+}=\langle s \rangle$, $W_{R_2^+}=\langle t \rangle$ and $W_0=\langle s,t \rangle$.

The stabilizers are generated by subsets of the set of fundamental reflections S, which are called *parabolic subgroups* of (W, S).

Note that $W_{R_1^+}=\langle s
angle$, $W_{R_2^+}=\langle t
angle$ and $W_0=\langle s,t
angle$.

The stabilizers are generated by subsets of the set of fundamental reflections S, which are called *parabolic subgroups* of (W,S). There is an order-reversing isomorphism of posets:

 $\phi: \Sigma_{\leq C} \xrightarrow{\sim} (\text{parabolic subgroups})^{\text{op}}$

Note that
$$W_{R_1^+}=\langle s
angle$$
, $W_{R_2^+}=\langle t
angle$ and $W_0=\langle s,t
angle$.

The stabilizers are generated by subsets of the set of fundamental reflections S, which are called *parabolic subgroups* of (W, S). There is an order-reversing isomorphism of posets:

 $\phi: \Sigma_{\leq C} \xrightarrow{\sim} (\text{parabolic subgroups})^{\text{op}}$

We can extend this isomorphism (of posets) to the whole poset Σ by including cosets of parabolic subgroups $\hat{\phi}: \Sigma \xrightarrow{\sim} (\text{parabolic cosets})^{\text{op}}$.

Therefore, using the isomorphism of posets $\hat{\phi}$, we can identify

$$\Sigma \cong (\mathsf{parabolic}\;\mathsf{cosets})^\mathsf{op}$$

This isomorphism defines a simplicial structure on $\Sigma(W, S)$. Via this isomorphism, W is the underlying set of Σ .

Therefore, using the isomorphism of posets $\hat{\phi}$, we can identify

$$\Sigma \cong (\mathsf{parabolic}\;\mathsf{cosets})^\mathsf{op}$$

This isomorphism defines a simplicial structure on $\Sigma(W, S)$. Via this isomorphism, W is the underlying set of Σ .

- The vertices of Σ are $\{w\}$, which are the chambers.

Therefore, using the isomorphism of posets $\hat{\phi}$, we can identify

$$\Sigma \cong (parabolic cosets)^{op}$$

This isomorphism defines a simplicial structure on $\Sigma(W, S)$. Via this isomorphism, W is the underlying set of Σ .

- The vertices of Σ are $\{w\}$, which are the chambers.
- The edges of Σ are $w\langle u\rangle=\{w,wu\}$ which is a panel of $\{w\}$ (the parabolic cosets of order 2). We say w and wu are u-adjacent.

Therefore, using the isomorphism of posets $\hat{\phi}$, we can identify

$$\Sigma \cong (parabolic cosets)^{op}$$

This isomorphism defines a simplicial structure on $\Sigma(W, S)$. Via this isomorphism, W is the underlying set of Σ .

- The vertices of Σ are $\{w\}$, which are the chambers.
- The edges of Σ are $w\langle u\rangle=\{w,wu\}$ which is a panel of $\{w\}$ (the parabolic cosets of order 2). We say w and wu are u-adjacent.

Therefore, using the isomorphism of posets $\hat{\phi}$, we can identify

$$\Sigma \cong (parabolic cosets)^{op}$$

This isomorphism defines a simplicial structure on $\Sigma(W, S)$. Via this isomorphism, W is the underlying set of Σ .

- The vertices of Σ are $\{w\}$, which are the chambers.
- The edges of Σ are $w\langle u\rangle=\{w,wu\}$ which is a panel of $\{w\}$ (the parabolic cosets of order 2). We say w and wu are u-adjacent.

Remarks:

(1) Σ is *thin*, meaning each panel is the face of exactly two chambers.

Therefore, using the isomorphism of posets $\hat{\phi}$, we can identify

$$\Sigma \cong (\mathsf{parabolic}\ \mathsf{cosets})^\mathsf{op}$$

This isomorphism defines a simplicial structure on $\Sigma(W, S)$. Via this isomorphism, W is the underlying set of Σ .

- The vertices of Σ are $\{w\}$, which are the chambers.
- The edges of Σ are $w\langle u\rangle=\{w,wu\}$ which is a panel of $\{w\}$ (the parabolic cosets of order 2). We say w and wu are u-adjacent.

- (1) Σ is *thin*, meaning each panel is the face of exactly two chambers.
- (2) Σ is *colorable*, meaning we can assign a labeling which distinguishes types of vertices.

Therefore, using the isomorphism of posets $\hat{\phi}$, we can identify

$$\Sigma \cong (\mathsf{parabolic}\ \mathsf{cosets})^\mathsf{op}$$

This isomorphism defines a simplicial structure on $\Sigma(W,S)$. Via this isomorphism, W is the underlying set of Σ .

- The vertices of Σ are $\{w\}$, which are the chambers.
- The edges of Σ are $w\langle u\rangle = \{w, wu\}$ which is a panel of $\{w\}$ (the parabolic cosets of order 2). We say w and wu are u-adjacent.

Remarks:

- (1) Σ is thin, meaning each panel is the face of exactly two chambers.
- (2) Σ is colorable, meaning we can assign a labeling which distinguishes types of vertices.
- (3) The action of W on Σ is type-preserving, meaning that the coloring is preserved under the action.

Buildings

44 / 63

Definition: Any simplicial complex Δ isomorphic to $\Sigma(W,S)$ for some (W,S) Coxeter group (i.e. a finite reflection group) is a Coxeter complex.

Definition: Any simplicial complex Δ isomorphic to $\Sigma(W,S)$ for some (W,S) Coxeter group (i.e. a finite reflection group) is a Coxeter complex.

Definition of a Building

A (weak) building is a simplicial complex Δ that can be expressed as the union of subcomplexes Σ (called apartments) satisfying axioms:

- (**B0**) Each apartment Σ is a Coxeter complex.
- **(B1)** For any two simplices $A, B \in \Delta$, there is an apartment Σ containing both of them.
- **(B2)** If Σ and Σ' are two apartments containing A and B, then there is an isomorphism $\Sigma \to \Sigma'$ fixing A and B pointwise.

Definition: Any simplicial complex Δ isomorphic to $\Sigma(W,S)$ for some (W,S) Coxeter group (i.e. a finite reflection group) is a Coxeter complex.

Definition of a Building

A (weak) building is a simplicial complex Δ that can be expressed as the union of subcomplexes Σ (called apartments) satisfying axioms:

- (**B0**) Each apartment Σ is a Coxeter complex.
- **(B1)** For any two simplices $A, B \in \Delta$, there is an apartment Σ containing both of them.
- **(B2)** If Σ and Σ' are two apartments containing A and B, then there is an isomorphism $\Sigma \to \Sigma'$ fixing A and B pointwise.

Remark: Coxeter complexes characterize thin buildings with a single apartment.

For a building Δ , let \mathcal{A} be the collection of apartments satisfying the axioms of a building (this is called a *system of apartments* for Δ).

For a building Δ , let \mathcal{A} be the collection of apartments satisfying the axioms of a building (this is called a *system of apartments* for Δ).

Remarks:

(1) We do not require a specific system of apartments; however, every building admits a canonical system of apartments.

For a building Δ , let \mathcal{A} be the collection of apartments satisfying the axioms of a building (this is called a *system of apartments* for Δ).

- (1) We do not require a specific system of apartments; however, every building admits a canonical system of apartments.
- (2) Furthermore, when the apartments are finite Coxeter complexes, there is a unique system of apartments.

For a building Δ , let \mathcal{A} be the collection of apartments satisfying the axioms of a building (this is called a *system of apartments* for Δ).

- (1) We do not require a specific system of apartments; however, every building admits a canonical system of apartments.
- (2) Furthermore, when the apartments are finite Coxeter complexes, there is a unique system of apartments.
- (3) A building is colorable, and isomorphisms between buildings can be taken to be type-preserving.

For a building Δ , let \mathcal{A} be the collection of apartments satisfying the axioms of a building (this is called a *system of apartments* for Δ).

- (1) We do not require a specific system of apartments; however, every building admits a canonical system of apartments.
- (2) Furthermore, when the apartments are finite Coxeter complexes, there is a unique system of apartments.
- (3) A building is colorable, and isomorphisms between buildings can be taken to be type-preserving.
- (4) All apartments are Coxeter complexes for the same Coxeter group.

Definition: Let P be a set with a binary relation \mathcal{I} called "incidence" such that \mathcal{I} is reflexive and symmetric. A *flag* in P is a set of pairwise incident elements of P.

Definition: Let P be a set with a binary relation \mathcal{I} called "incidence" such that \mathcal{I} is reflexive and symmetric. A *flag* in P is a set of pairwise incident elements of P.

Note: If P is a poset, then a flag is a linearly ordered subset of P.

We will assume that P is partitioned into nonempty subsets P_0 , P_1 , ..., P_{n-1} , where $p \in P_i$ is said to have type i.

Example: Let V be a finite dimension F-vector space (dimension $n \ge 2$).

Example: Let V be a finite dimension F-vector space (dimension $n \ge 2$). Let P be the collection of nonzero proper subspaces of V and let two subspaces be "incident" if one is contained in the other.

Example: Let V be a finite dimension F-vector space (dimension $n \ge 2$). Let P be the collection of nonzero proper subspaces of V and let two subspaces be "incident" if one is contained in the other. Let $\Delta(V)$ be the flag complex consisting of simplices as chains of subspaces

$$V_1 < V_2 < \cdots < V_k$$

where $\dim_F(V_i) = i$. Chambers are chains:

$$V_1 < V_2 < \cdots < V_{n-1}$$

Example: Let V be a finite dimension F-vector space (dimension $n \ge 2$). Let P be the collection of nonzero proper subspaces of V and let two subspaces be "incident" if one is contained in the other. Let $\Delta(V)$ be the flag complex consisting of simplices as chains of subspaces

$$V_1 < V_2 < \cdots < V_k$$

where $\dim_F(V_i) = i$. Chambers are chains:

$$V_1 < V_2 < \cdots < V_{n-1}$$

Let $\mathcal{F} = \{L_1, \dots, L_n\}$ be a collection of 1-dimensional subspaces which span V. The subcomplex $\Sigma(\mathcal{F})$ of flags is an *apartment*.

Example: Let V be a finite dimension F-vector space (dimension $n \ge 2$). Let P be the collection of nonzero proper subspaces of V and let two subspaces be "incident" if one is contained in the other. Let $\Delta(V)$ be the flag complex consisting of simplices as chains of subspaces

$$V_1 < V_2 < \cdots < V_k$$

where $\dim_F(V_i) = i$. Chambers are chains:

$$V_1 < V_2 < \cdots < V_{n-1}$$

Let $\mathcal{F} = \{L_1, \dots, L_n\}$ be a collection of 1-dimensional subspaces which span V. The subcomplex $\Sigma(\mathcal{F})$ of flags is an *apartment*.

Proof: S_n acts on each $\Sigma(\mathcal{F})$, each chain is contained in a composition series, and apply Jordan-Hölder theorem to obtain canonical isomorphisms and projections.

Buildings

Consider $V = \mathbb{F}_2^3$.

Consider $V = \mathbb{F}_2^3$. Set

$$L_0 := \mathbb{F}_2(0,0,0)$$
 $L_1 := \mathbb{F}_2(1,0,0)$ $L_2 := \mathbb{F}_2(0,1,0)$ $L_3 := \mathbb{F}_2(0,0,1)$

$$L_4 := \mathbb{F}_2(1,1,0)$$
 $L_5 := \mathbb{F}_2(1,0,1)$ $L_6 := \mathbb{F}_2(0,1,1)$ $L_7 := \mathbb{F}_2(1,1,1)$

Consider $V = \mathbb{F}_2^3$. Set

$$L_0 := \mathbb{F}_2(0,0,0)$$
 $L_1 := \mathbb{F}_2(1,0,0)$ $L_2 := \mathbb{F}_2(0,1,0)$ $L_3 := \mathbb{F}_2(0,0,1)$
 $L_4 := \mathbb{F}_2(1,1,0)$ $L_5 := \mathbb{F}_2(1,0,1)$ $L_6 := \mathbb{F}_2(0,1,1)$ $L_7 := \mathbb{F}_2(1,1,1)$

Note that L_0 is not a 1-dimensional subspace. Therefore, we have seven 1-dimensional subspaces, which we will call "type 1" vertices.

Consider $V = \mathbb{F}_2^3$. Set

$$L_0 := \mathbb{F}_2(0,0,0) \quad L_1 := \mathbb{F}_2(1,0,0) \quad L_2 := \mathbb{F}_2(0,1,0) \quad L_3 := \mathbb{F}_2(0,0,1)$$

$$L_4 := \! \mathbb{F}_2(1,1,0) \quad L_5 := \! \mathbb{F}_2(1,0,1) \quad L_6 := \! \mathbb{F}_2(0,1,1) \quad L_7 := \! \mathbb{F}_2(1,1,1)$$

Note that L_0 is not a 1-dimensional subspace. Therefore, we have seven 1-dimensional subspaces, which we will call "type 1" vertices. Set

$$V_1 := L_1 + L_2$$
 $V_2 := L_1 + L_3$ $V_3 := L_1 + L_4$ $V_4 := L_2 + L_3$ $V_5 := L_2 + L_5$ $V_6 := L_3 + L_4$ $V_7 := L_4 + L_5$

Therefore, we have seven 2-dimensional subspaces, which we will call "type 2" vertices.

Consider $V = \mathbb{F}_2^3$. Set

$$L_0 := \mathbb{F}_2(0,0,0)$$
 $L_1 := \mathbb{F}_2(1,0,0)$ $L_2 := \mathbb{F}_2(0,1,0)$ $L_3 := \mathbb{F}_2(0,0,1)$
 $L_4 := \mathbb{F}_2(1,1,0)$ $L_5 := \mathbb{F}_2(1,0,1)$ $L_6 := \mathbb{F}_2(0,1,1)$ $L_7 := \mathbb{F}_2(1,1,1)$

Note that L_0 is not a 1-dimensional subspace. Therefore, we have seven 1-dimensional subspaces, which we will call "type 1" vertices. Set

$$V_1 := L_1 + L_2$$
 $V_2 := L_1 + L_3$ $V_3 := L_1 + L_4$ $V_4 := L_2 + L_3$ $V_5 := L_2 + L_5$ $V_6 := L_3 + L_4$ $V_7 := L_4 + L_5$

Therefore, we have seven 2-dimensional subspaces, which we will call "type 2" vertices. Note that each V_i contains exactly three subspaces.

$$V_1 = L_1 + L_2 = L_1 + L_4 = L_2 + L_4$$

For each $\Sigma(\{L_i,L_j,L_k\})$ such that $V=L_i\oplus L_j\oplus L_k$, we obtain an apartment:

For each $\Sigma(\{L_i,L_j,L_k\})$ such that $V=L_i\oplus L_j\oplus L_k$, we obtain an apartment:

Chambers are edges with a type 1 and type 2 vertex, S_3 acts by permuting the labels $\{i, j, k\}$.

The axioms B1 and B2 of a building give us criteria of how to glue.

The axioms B1 and B2 of a building give us criteria of how to glue.

The axioms **B1** and **B2** of a building give us criteria of how to glue.

The apartment $\Sigma(\{L_1, L_2, L_3\})$ is shown above.

Important Question:

Important Question: What exactly was Jacques Tits trying to construct?

Important Question: What exactly was Jacques Tits trying to construct? Consider the group $SL(2, \mathbb{C})$, it has a maximal compact subgroup SU(2).

Important Question: What exactly was Jacques Tits trying to construct? Consider the group $SL(2,\mathbb{C})$, it has a maximal compact subgroup SU(2). Note that $SL(2,\mathbb{C})/SU(2)\cong \mathbb{H}=\{z\in\mathbb{C}: Im(z)>0\}$ via the map

$$SL(2, \mathbb{C})/SU(2) \to \mathbb{H}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \frac{ai+b}{ci+d}$$

Important Question: What exactly was Jacques Tits trying to construct? Consider the group $SL(2,\mathbb{C})$, it has a maximal compact subgroup SU(2). Note that $SL(2,\mathbb{C})/SU(2)\cong \mathbb{H}=\{z\in\mathbb{C}: Im(z)>0\}$ via the map

$$SL(2,\mathbb{C})/SU(2) \to \mathbb{H}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \frac{ai+b}{ci+d}$$

And in general, if we take a semisimple group G over \mathbb{R} and quotient by its maximal compact subgroup K, G/K is a nice geometric space.

Important Question: What exactly was Jacques Tits trying to construct? Consider the group $SL(2,\mathbb{C})$, it has a maximal compact subgroup SU(2). Note that $SL(2,\mathbb{C})/SU(2)\cong \mathbb{H}=\{z\in\mathbb{C}: Im(z)>0\}$ via the map

$$SL(2,\mathbb{C})/SU(2) \to \mathbb{H}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \frac{ai+b}{ci+d}$$

And in general, if we take a semisimple group G over \mathbb{R} and quotient by its maximal compact subgroup K, G/K is a nice geometric space.

However, if we consider a local field $F=\mathbb{Q}_p$ and the algebraic group SL(2,F), its maximal compact subgroup is $SL(2,\mathcal{O}_F)$ and $SL(2,F)/SL(2,\mathcal{O}_F)$, it is a totally disconnected topological space.

Important Question: What exactly was Jacques Tits trying to construct? Consider the group $SL(2,\mathbb{C})$, it has a maximal compact subgroup SU(2). Note that $SL(2,\mathbb{C})/SU(2)\cong \mathbb{H}=\{z\in\mathbb{C}: Im(z)>0\}$ via the map

$$SL(2,\mathbb{C})/SU(2) \to \mathbb{H}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \frac{ai+b}{ci+d}$$

And in general, if we take a semisimple group G over \mathbb{R} and quotient by its maximal compact subgroup K, G/K is a nice geometric space.

However, if we consider a local field $F = \mathbb{Q}_p$ and the algebraic group SL(2,F), its maximal compact subgroup is $SL(2,\mathcal{O}_F)$ and $SL(2,F)/SL(2,\mathcal{O}_F)$, it is a totally disconnected topological space. It is a pretty lame space.

This occurs as a property of non-archimedean fields, i.e. the natural numbers are bounded under the absolute value on the field.

This occurs as a property of non-archimedean fields, i.e. the natural numbers are bounded under the absolute value on the field.

In the case of $SL(2,\mathbb{C})$, we obtain a Riemannian symmetric space and we want an analogue to this when the field is non-archimedean.

This occurs as a property of non-archimedean fields, i.e. the natural numbers are bounded under the absolute value on the field.

In the case of $SL(2,\mathbb{C})$, we obtain a Riemannian symmetric space and we want an analogue to this when the field is non-archimedean. A Bruhat-Tits building is the correct analogue. Historically, the following building appeared as a way to prove that every torsion-free subgroup of $SL(2,\mathbb{Q}_p)$ is a free group (Ihara, 1966).

This occurs as a property of non-archimedean fields, i.e. the natural numbers are bounded under the absolute value on the field.

In the case of $SL(2,\mathbb{C})$, we obtain a Riemannian symmetric space and we want an analogue to this when the field is non-archimedean. A Bruhat-Tits building is the correct analogue. Historically, the following building appeared as a way to prove that every torsion-free subgroup of $SL(2,\mathbb{Q}_p)$ is a free group (Ihara, 1966). To make the construction concrete, we'll use $SL(2,\mathbb{Q}_p)$ as our algebraic group.

This occurs as a property of non-archimedean fields, i.e. the natural numbers are bounded under the absolute value on the field.

In the case of $SL(2,\mathbb{C})$, we obtain a Riemannian symmetric space and we want an analogue to this when the field is non-archimedean. A Bruhat-Tits building is the correct analogue. Historically, the following building appeared as a way to prove that every torsion-free subgroup of $SL(2,\mathbb{Q}_p)$ is a free group (Ihara, 1966). To make the construction concrete, we'll use $SL(2,\mathbb{Q}_p)$ as our algebraic group.

Note: Any element of \mathbb{Q}_p is of the form:

$$x = \sum_{i=k}^{\infty} a_i p^i$$

for $0 \le a_i < p$. The valuation of x, is $\nu(x) = k$, where k is the smallest index such that $a_k \ne 0$.

Definition: A non-archimedean absolute value on a field F is a map

$$|-|:F\to\mathbb{R}$$

such that

- (1) $|x| \ge 0$ for all $x \in F$, and |x| = 0 if and only if x = 0.
- (2) |xy| = |x||y| for all $x, y \in F$
- (3) $|x + y| \le \max\{|x|, |y|\}$ for all $x, y \in F$.

Definition: A non-archimedean absolute value on a field F is a map

$$|-|:F\to\mathbb{R}$$

such that

- (1) $|x| \ge 0$ for all $x \in F$, and |x| = 0 if and only if x = 0.
- (2) |xy| = |x||y| for all $x, y \in F$
- (3) $|x + y| \le \max\{|x|, |y|\}$ for all $x, y \in F$.

Example: For \mathbb{Q}_p , the absolute value is defined by $|x|_p = p^{-\nu(x)}$.

Definition: A non-archimedean absolute value on a field F is a map

$$|-|:F\to\mathbb{R}$$

such that

- (1) $|x| \ge 0$ for all $x \in F$, and |x| = 0 if and only if x = 0.
- (2) |xy| = |x||y| for all $x, y \in F$
- (3) $|x + y| \le \max\{|x|, |y|\}$ for all $x, y \in F$.

Example: For \mathbb{Q}_p , the absolute value is defined by $|x|_p = p^{-\nu(x)}$.

Important Note: The image of $\nu(x)$ is an integer and thus $\nu(\mathbb{Q}_p^\times) = \mathbb{Z}$ is discrete. Or, in particular importance for us, $\log(|\mathbb{Q}_p^\times|_p)$ is discrete. And, $\mathcal{O} = \{x \in \mathbb{Q}_p : |x|_p \leq 1\}.$

Instead of choosing the maximal compact subgroup, we look at tori. The torus will be

$$T = \left\{ egin{pmatrix} a & 0 \ 0 & a^{-1} \end{pmatrix} \ : \ a \in \mathbb{Q}_p^{\times}
ight\}$$

Instead of choosing the maximal compact subgroup, we look at tori. The torus will be

$$T = \left\{ \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \ : \ a \in \mathbb{Q}_p^{\times}
ight\}$$

Let A(T) be the apartment corresponding to T, it is an \mathbb{R} affine space with simplicial structure defined by the map

$$\begin{array}{c} \mathcal{T} \to \mathbb{R} \\ \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \mapsto \log(|a|_p) \\ & \\ \downarrow_{-3\log(p)} \quad _{-2\log(p)} \quad _{-\log(p)} \quad _{0} \quad _{\log(p)} \quad _{2\log(p)} \quad _{3\log(p)} \end{array}$$

Instead of choosing the maximal compact subgroup, we look at tori. The torus will be

$$T = \left\{ \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} : a \in \mathbb{Q}_p^{\times}
ight\}$$

Let A(T) be the apartment corresponding to T, it is an \mathbb{R} affine space with simplicial structure defined by the map

$$\begin{array}{c} \mathcal{T} \to \mathbb{R} \\ \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \mapsto \log(|a|_p) \\ & \longleftrightarrow \\ -3\log(p) & -2\log(p) & -\log(p) & 0 & \log(p) & 2\log(p) & 3\log(p) \\ \end{array}$$

Our collection of vertices are of the form: $n \log(p)$ for some $n \in \mathbb{Z}$.

We then take the collection of tori $\{gTg^{-1}:g\in SL_2(\mathbb{Q}_p)\}$ and glue together the corresponding system of apartments

$$\mathcal{A} = \left\{ \textit{A}(\textit{gTg}^{-1}) \; : \; \textit{g} \in \textit{SL}_2(\mathbb{Q}_p) \right\}$$

57 / 63

We then take the collection of tori $\{gTg^{-1}:g\in SL_2(\mathbb{Q}_p)\}$ and glue together the corresponding system of apartments

$$\mathcal{A} = \left\{ A(gTg^{-1}) \ : \ g \in \mathsf{SL}_2(\mathbb{Q}_p) \right\}$$

The stabilizers of each vertex is of the form

$$\mathsf{Stab}(\mathsf{log}(|a|_p)) = \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \cdot \mathsf{SL}_2(\mathcal{O}) \cdot \begin{pmatrix} a^{-1} & 0 \\ 0 & a \end{pmatrix}$$

and for any two apartments A(T) and $g \cdot A(T) = A(gTg^{-1})$, we glue at $n \log(p)$ if and only if $g \in \operatorname{Stab}(n \log(p))$.

Example: Let $g = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. For $a = up^{-n}$, note that $g \in \operatorname{Stab}(n \log(p))$ if and only if $|a|_p \ge 1$ if and only if $n \log(p) \ge 0$.

Example: Let $g = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. For $a = up^{-n}$, note that $g \in \operatorname{Stab}(n \log(p))$ if and only if $|a|_p \ge 1$ if and only if $n \log(p) \ge 0$.

Assume that p = 2, then the building is given by:

Assume that p = 2, then the building is given by:

An apartment $A(gTg^{-1})$ is given by an infinite path along the tree.

Similarly for p = 3, then the building is given by:

Similarly for p = 3, then the building is given by:

Again, an apartment $A(gTg^{-1})$ is given by an infinite path along the tree.

Bibliography

- Peter Abramenko, Kenneth S. Brown. *Buildings Theory and Applications*. Springer Science+Business Media, LLC, 2008.
- Jean-Pierre Serre. *Trees.* Springer-Verlag Berlin Heidelberg, 1980. (Translated by John Stillwell)
- Annette Werner. Buildings and tropical geometry [Video]. Mathematical Sciences Research Institute. 2009.
- Annette Werner. A tropical view on Bruhat-Tits buildings and their compactifications. Central European Journal of Mathematics, 2010.
- Bertrand Rémy, Amaury Thuillier, Annette Werner. Bruhat-Tits Buildings and Analytic Geometry Springer International Publishing Switzerland, 2015.
- Federico Ardila. *Coxeter groups [Online Lecture Series]*. San Francisco State University, 2008.
- Dmitry Kozlov. *Combinatorial Algebraic Topology*. Springer-Verlag Berlin Heidelberg, 2008.