МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Организация ЭВМ и систем»

Тема: Представление и обработка целых чисел. Организация ветвящихся процессов.

Студент гр. 1381	 Таргонский М. А	
Преподаватель	 Ефремов М. А.	

Санкт-Петербург 2022

Цель работы.

Изучить реализацию ветвления на языке Ассемблера и реализовать программу, содержащую ветвление.

Задание.

Разработать на языке Ассемблера программу, которая по заданным целочисленным значениям параметров a, b, i, k вычисляет: a) значения функций i1 = f1(a,b,i) и i2 = f2(a,b,i); b) значения результирующей функции res = f3(i1,i2,k), где вид функций f1 и f2 определяется из табл. 2, а функции f3 - из табл.3 по цифрам шифра индивидуального задания (n1,n2,n3), приведенным в табл.4. Значения a, b, i, k являются исходными данными, которые должны выбираться студентом самостоятельно и задаваться в процессе исполнения программы в режиме отладки. При этом следует рассмотреть всевозможные комбинации параметров a, b и k, позволяющие проверить различные маршруты выполнения программы, а также различные знаки параметров a и b.

Выполнение работы.

Вариант 23.

$$f5 = < /20 - 4*i , при a>b \ -(6*I - 6), при a<=b$$
 $f6 = < /2*(i+1) - 4 , при a>b \ \ 5 - 3*(i+1), при a<=b$ $f4 = < /min (|i1 - i2|, 2), при k<0 \ \ max(-6, -i2), при k>=0$

В ходе выполнения лабораторной работы была написана программа на языке Ассемблера. Вначале мы создаем три сегмента: AStack – сегмент стека, DATA – сегмент данных и CODE – сегмент кода. В сегменте данных были объявлены переменные: a, b, i, k – заполненные целыми числами на выбор, а также res – переменная для хранения результатов вычислений.

Сравнение переменных a и b с помощью команды cmp. Если a > b переход к метке calc_1, иначе выполняются команды метки calc_2.

Далее происходит вычисление значений i1и i2 заданных функций. Умножение реализовано с помощью логического сдвига влево и сложения. Значение i1 сохраняется в регистре ax. Значение i2 сохраняется в регистре cx.

При $k \ge 0$ сравниваются значения i2 и -6. Из этих чисел выбирается большее и сохраняется в регистре сх. Иначе вычисляются модуль разности i1 и i2 и после он сравнивается с 2. Из этих чисел выбирается меньшее и сохраняется в регистре сх. В переменную res сохраняется конечное значение.

Таблица 1. Тестирование работы программы

Значение констант	Ожидаемый результат	Полученный результат
a = 1	i1 = -12	i1 = -12
b = 2	i2 = -7	i2 = -7
i = 3	f3 = 7	f3 = 7
k = 4		
a = 4	i1 = 0	i1 = 0
b = 2	i2 = 8	i2 = 8
i = 5	f3 = 2	f3 = 2
k = -3		
a = 2	i1 = -24	i1 = -24
b = 4	i2 = -13	i2 = -13
i = 5	f3 = 2	f3 = 2
k = -3		

Выводы.

В ходе выполнения лабораторной работы была написана программа на языке Ассемблера, содержащая ветвления. Реализованная программа была отлажена с разными входными значениями, полученный результат был сравнен с ожидаемым и представлен в таблице 1. Ожидаемый и полученный результат во всех случаях совпадают.

ПРИЛОЖЕНИЕ А ИСХОДНЫЙ КОД ПРОГРАММЫ ФАЙЛ LAB3.ASM

AStack SEGMENT STACK DW 12 DUP(?)

AStack ENDS

DATA SEGMENT

a DW 1

b DW 2

i DW 3

k DW 4

; i1 DW?

; i2 DW?

res DW?

DATA ENDS

CODE SEGMENT

ASSUME CS:CODE, DS:DATA, SS:AStack

Main PROC FAR

push DS

sub AX, AX

```
push AX
mov AX, DATA
mov DS, AX
calc:
```

start calc:

mov AX, i; AX = ishl AX, 1; AX = 2imov CX, b; CX = b

cmp a, CX

jg calc_1; jump if a > b

calc_2: ; a <= b
add AX, i ; AX = 3i
mov CX, AX ; CX = 3i
shl AX, 1 ; AX = 6i
neg AX ; AX = -6i
add AX, 6 ; AX = -6i+6
; mov i1, AX ; i1 = -6i+6</pre>

neg CX; CX = -3iadd CX, 2; CX = 2 - 3i; mov i2, CX; i2 = 2 - 3i

jmp res_calc

calc_1:; a > bmov CX, AX; CX = 2i

```
sub CX, 2; CX = 2i - 2
      ; mov i2, CX ; i2 = 2i - 2
  shl AX, 1; AX = 4i
  neg AX ; AX = -4i
  add AX, 20; AX = -4i + 20
      ; mov i1, AX; i1 = -4i + 20
res calc:
min:
      neg CX
      cmp k, 0
     jge max
                        ;if(k>=0)
      add CX, AX;-i2+i1
      abs:
     neg CX
     js abs
              ;|-i2+i1|
      cmp CX, 2
     jge result_min; if(|i2 - i1| \ge 2)
     jmp result
max:
      cmp CX, -6
     jle result_max ;if(-i2<=-6)
     jmp result
result min:
      mov CX, 2
     jmp result
```

result_max: mov CX, -6

result:

mov res, CX

MAIN ENDP

CODE ENDS

END Main

приложение б

ЛИСТИНГ ПРОГРАММЫ

ФАЙЛ LAB3.LST

#Microsoft (R) Macro Assembler Version 5.10

11/7/22 14:46:27

Page 1-1

0000 AStack SEGMENT STACK

0000 000C[DW 12 DUP(?)

????

]

0018 AStack ENDS

0000 DATA SEGMENT

0000 0001 a DW 1

0002 0002 b DW 2

0004 0003 i DW 3

0006 0004 k DW 4

; i1 DW?

; i2 DW?

0008 0000 res DW?

000A DATA ENDS

0000 CODE SEGMENT

ASSUME CS:CODE, DS:DATA, SS:AStack

0000	Main PROC FAR

0000 1E push DS

0001 2B C0 sub AX, AX

0003 50 push AX

0004 B8 ---- R mov AX, DATA

0007 8E D8 mov DS, AX

0009 start calc:

0009 A1 0004 R mov AX, i; AX = i

000C D1 E0 shl AX, 1; AX = 2i

000E 8B 0E 0002 R mov CX, b; CX = b

0012 39 0E 0000 R cmp a, CX

0016 7F 15 jg calc_1; jump if a > b

0018 calc 2:; $a \le b$

0018 03 06 0004 R add AX, i ; AX = 3i

001C 8B C8 mov CX, AX ; CX = 3i

001E D1 E0 shl AX, 1; AX = 6i

0020 F7 D8 neg AX ; AX = -6i

 $0022 \ 05 \ 0006$ add AX, 6; AX = -6i+6

; mov i1, AX ; i1 = -6i+6

0025 F7 D9 neg CX ; CX = -3i

0027 83 C1 02 add CX, 2; CX = 2 - 3i

; mov
$$i2$$
, CX ; $i2 = 2 - 3i$

002A EB 0D 90 jmp res calc

002D calc 1:; a > b

002D 8B C8 mov CX, AX ; CX = 2i

002F 83 E9 02 sub CX, 2; CX = 2i - 2

; mov i2, CX ; i2 = 2i - 2

#Microsoft (R) Macro Assembler Version 5.10

11/7/22 14:46:27

Page 1-2

0032 D1 E0 shl AX, 1; AX = 4i

0034 F7 D8 neg AX ; AX = -4i

0036 05 0014 add AX, 20; AX = -4i + 20

; mov i1, AX ; i1 = -4i + 20

on one of the original of the

0039 min:

0039 F7 D9 neg CX

003B 83 3E 0006 R 00 cmp k, 0

0040 7D 0E jge max ;if($k \ge 0$)

0042 03 C8 add CX, AX;-i2+i1

0044 abs:

0044 F7 D9 neg CX

0046 78 FC js abs ;|-i2+i1|

0048 83 F9 02 cmp CX, 2

004B 7D 0B jge result min; $if(|i2 - i1| \ge 2)$

004D EB 12 90 jmp result

0050 max:

0050 83 F9 FA cmp CX, -6

0053 7E 09 jle result max ;if(-i2<=-6)

0055 EB 0A 90 jmp result

0058 result min:

0058 B9 0002 mov CX, 2

005B EB 04 90 jmp result

005E B9 FFFA result max: mov CX, -6

one of the original of the ori

0061 89 0E 0008 R mov res, CX

0065 MAIN ENDP

0065 CODE ENDS

END Main

#Microsoft (R) Macro Assembler Version 5.10 11/7/22 14:46:27

Symbols-1

Segments and Groups:

N a m e Length AlignCombine Class

ASTACK 0018 PARA STACK

CODE 0065 PARA NONE

DATA	000A PARA		NONE	
Symbols:				
N a m e	Type Value	e Attr		
A				
В	L WORD	0002	DATA	
CALC_1				
I	L WORD	0004	DATA	
K	L WORD	0006	DATA	
MAIN	L NEAR	0050	CODE	Length = 0065
RESULT	. L NE	AR	0061 CODE	

KLS L W	JKD 0000	Dilli
RESULT	L NEAR	0061 CODE
RESULT_MAX	L NEAR	005E CODE
RESULT_MIN	L NEAR	0058 CODE
RES_CALC	L NEAR	0039 CODE
START_CALC	L NEAR	0009 CODE

@CPU TEXT 0101h

@FILENAME TEXT LAB3

@VERSION TEXT 510

87 Source Lines

87 Total Lines

24 Symbols

47978 + 461329 Bytes symbol space free

0 Warning Errors

0 Severe Errors