"Публичные решения и щепотка соли"

Обзор 3-го решения задачи прогнозирования следующей покупки

Михаил Трофимов

Обо мне

Почему я сегодня здесь?

Постановка задачи

Какие товары клиент купит в следующий раз?

Сделай сервис, который сможет выдержать нагрузку и будет угадывать следующую покупательскую корзину.

Участвовать в соревновании

Постановка задачи

Задача

Строим полноценную рекомендательную систему! Участникам необходимо разработать сервис, который сможет отвечать на запросы с предсказаниями будущих покупок клиента и при этом держать высокую нагрузку. По информации о клиенте и его истории покупок необходимо построить ранжированный список товаров, которые клиент наиболее вероятно купит в следующей покупке.

Критерий качества

Решение должно представлять собой архив с кодом сервиса. Метрика качества -MNAP@30 (Mean Average Precision), средний по всем запросам нормализованный Average Precision. Решение должно обязательно уложиться в ограничения по ресурсам. Если решение не выдерживает нагрузки или отвечает на запросы слишком долго — оно не будет считаться успешно прошедшим тестирование. Запросы поступают в строго хронологическом порядке.

Постановка задачи

Задача

Строим полноценную рекомендательную систему! Участникам необходимо разработать сервис, который сможет отвечать на запросы с предсказаниями **rps** будущих покупок клиента и при этом

держать высокую нагрузку. По информации о клиенте и его истории покупок

Не самая стандартная задача, выпадает

Критерий качества

Решение должно представлять собой архив

с кодом сервиса. Метрика качества -

Сдаем код, не увидим тестовые данные

средний по всем запросам

нормализованный Average Precision.

Решение должно обязательно уложиться в

ограничения по ресурсам. 1 GB на данные,

выдержие **5 секунд на инициализацию** запросы слишком долго — оно не оудет

считаться успешно прошедшим

тестирование. Вапросы поступают в строго

хронологическом порядке.

Лика во время тестирования не будет :(

Решение как инфраструктура

- препроцессинг
- разбиение данных
- валидационный цикл
- подготовка сабмита в правильном формате
- конвертация данных в спарс-формат
- переиспользуемые утилиты

Все эти компоненты присутствуют в любом решении, но не являются решением. Делиться* ими полезно и безопасно.

^{*}призываю вас так и делать

Препроцессинг

purchases.csv

client_1	transaction_1
client_1	transaction_2
client_1	transaction_3
client_2	transaction_4
client_M	transaction_N

client_1 transaction_{1, 2, 3}

client_17 transaction_{X, Y, X}

01.jsons

...

Валидация

t

Валидация

Валидация

2019-03-02

t

Какой из двух представленных вариантов валидации лучше?

тестирование. Запросы поступают в строго хронологическом порядке.

+ экспериментальная проверка

Модели: implicit.ALS

- Реализация в implicit позволяет на лету пересчитывать профиль пользователя по истории
- Я так и не смог успешно завести эту модель

Mодель: nn_v1

- (а.k.а. кастомная матричная факторизация с триплет лоссом)
- (а.k.а. кастомная BPR матричная факторизация)
- (а.к.а. кастомные эмбеддинги)

```
class UserModel(nn.Module):
    def __init__(self, num_products, embedding_dim):
        super(UserModel, self).__init__()
        self._model = nn.Linear(num_products, embedding_dim)

class ItemModel(nn.Module):
    def __init__(self, num_products, embedding_dim):
        super(ItemModel, self).__init__()
        self._embeds = nn.Embedding(num_products, embedding_dim)
```

Быстрый поиск соседей: FAISS

```
# export knn index (compression and speed-up by FAISS, with Inner Product as distance)
import faiss

quantizer = faiss.IndexFlatIP(dim)
index = faiss.IndexIVFPQ(quantizer, dim, 128, 16, 8)
index.train(item_vectors)
index.add(item_vectors)
faiss.write_index(index, output_dir + "/knn.idx")
```

nn_v1 + faiss не дали ожидаемого прироста, но задел был классный :)

Модель: item2item

artyerokhin / x5-retailhero-implicit-baseline

```
# Initialize model
model = implicit.nearest_neighbours.TFIDFRecommender(K=50)
```

Модель: item2item

artyerokhin / x5-retailhero-implicit-baseline

```
# Initialize model
model = implicit.nearest_neighbours.TFIDFRecommender(K=50)
```


Моде.

artyer

```
# Initial
model = :
```

Contents:

- Quickstart
 - Installation
 - Basic Usage
 - Articles about Implicit
 - Requirements
- RecommenderBase
- Alternating Least Squares
- Bayesian Personalized Ranking
- Logistic Matrix Factorization
- Approximate Alternating Least Squares
 - NMSLibAlternatingLeastSquares
 - AnnoyAlternatingLeastSquares
 - FaissAlternatingLeastSquares

<=50)

Итого (LB: 0.1137)

Что было опубликовано:

- инфраструктурные запчасти
- ALS
- item2item
- кастомные эмбеддинги на нейросети
- user2user (добавилось позже)

Что не было:

- переранжирование бустингом
- Replay-baseline*

Дальнейшие шаги (LB: 0.1272)

- Увеличение покрытия за счет разных i2i-моделей: cos1, tfidf1, tfidf10
- і2і-модель по категориям L4
- Был ли продукт в истории клиента
- Стандартные фичи:
 - частоты по категориям
 - о средняя цена покупаемых товаров
 - о текущий день недели
 - о средняя масса покупаемых продуктов
 - о длина истории
 - 0 ...
- Отбор 150 кандидатов по i2i-tfidf30 модели (recall: ~0.44)
- CatBoost (loss=QuerySoftMax) в качестве переранжирующей модели

Вдохновение для фичей: Qolegitor / X5.Uplift.public

Moдель: nn_v2

- (a.k.a. MLP + BCELoss)
- (а.k.а. упрощать дальше некуда)

```
class AwesomeModel2(nn.Module):
    def __init__(self, num_products):
        super(AwesomeModel2, self).__init__()
        self._fc1 = nn.Linear(num_products, 512)
        self._fc2 = nn.Linear(512, num_products)
```

Добавил как фактор в миксер: LB 0.1272 -> 0.1292

Актуальность айтемов

artyerokhin / x5-retailhero-implicit-baseline

Актуальность айтемов

- Переобучил і2і-модели на "актуальных" айтемах
- Аналогично для nn_v2
- Добавил product_first_seen_date, product_last_seen_date как фичи

LB: 0.1292 -> 0.1306

2-этапное реранжирование

- Собираем кандидатов (~400 в среднем получалось):
 - о история покупок
 - топ-50
 - о і2і модели
- Учим на i2i и nn_v2 фичах ранжирующую формулу
 - CatBoost(loss=PairLogit)
- Отбираем 250 кандидатов
 - o Recall@250: 0.47 -> 0.54

LB: 0.1306 -> 0.1311

Финальный блендинг

- Переранжируем 250 кандидатов с помощью 2 моделей
 - CatBoost(loss=QuerySoftMax)
 - LightGBM(target=lambdarank)
- Усредняем скоры 1:1

LB: 0.1311 -> 0.1330

Лучшим на привате оказалось "консервативное" решение

LGB feature importance (top20)

Что не взлетело

- user-2-user
- ALS
- FM
- LSTM/GRU
- BPR-like лоссы
- Дневные топы из будущего
- Использование магазинов в любом виде
- CatBoost(langevin)
- LightGBM(target=rank_xendcg)
- SVD от пользовательской истории
- TF-IDF/Hashing над пользовательской историей

Спасибо за внимание!

PS: код я когда-нибудь выложу

ods: @mtrofimov

mail: mikhail.trofimov@phystech.edu