Zusammenfassung Term Rewriting aAT

© Tim Baumann, http://timbaumann.info/uni-spicker

Dies ist eine übersetzte Zusammenfassung des Buches Term Rewriting and All That von Franz Baader und Tobias Nipkow.

Abstrakte Reduktionssysteme

Def. Ein abstraktes Reduktionssystem ist ein Tupel (A, \rightarrow) , wobei $\rightarrow \in A \times A$ eine Relation auf A ist.

$$\begin{aligned} \mathbf{Def.} & \overset{0}{\to} \coloneqq \{(a,a) \mid a \in A\} & \text{Identität} \\ & \overset{i+1}{\to} \coloneqq \overset{i}{\to} \circ \to & (i+1)\text{-fache Komposition, } i \geq 0 \\ & \leftarrow \coloneqq \{(t,s) \mid (s,t) \in \to\} & \text{Inverse Relation} \\ & \overset{\equiv}{\to} \coloneqq (\to) \cup \overset{0}{\to}) & \text{refl. Hülle} \\ & \overset{*}{\to} \coloneqq \cup_{i \geq 0} (\overset{i}{\to}) & \text{refl. trans. Hülle} \\ & \overset{+}{\to} \coloneqq \cup_{i \geq 1} (\overset{i}{\to}) & \text{refl. trans. Hülle} \\ & \leftrightarrow \coloneqq \to \to \cup \leftarrow & \text{symm. Hülle} \\ & \overset{*}{\to} \coloneqq (\leftrightarrow)^* & \text{refl. trans. symm. Hülle} \end{aligned}$$

Def. Sei $x \in A$ ein Term.

- Der Term x heißt **reduzibel**, falls ein $y \in A$ mit $x \to y$ existiert,
- irreduzibel (oder in Normalform) falls x nicht reduzibel ist.
- Ein Term $y \in A$ heißt **Normalform** von x, falls $x \xrightarrow{*} y$ und y irreduzibel ist.
- Eine Term y heißt direkter Nachfolger von x, falls $x \to y$.
- Eine Term y heißt Nachfolger von x, falls $x \xrightarrow{+} y$.
- x und y heißen joinable, notiert $x \downarrow y$, falls $\exists z : x \xrightarrow{*} z \xleftarrow{*} y$.

Def. Eine Reduktion \rightarrow heißt

$$\begin{array}{cccc} \textbf{Church-Rosser} & :\iff x \overset{*}{\leftrightarrow} y \implies x \downarrow y \\ & \textbf{konfluent} & :\iff y_1 \overset{*}{\leftarrow} y \overset{*}{\rightarrow} y_2 \implies y_1 \downarrow y_2 \\ \textbf{semi-konfluent} & :\iff y_1 \leftarrow y \overset{*}{\rightarrow} y_2 \implies y_1 \downarrow y_2 \\ \textbf{terminierend} & :\iff \text{es gibt keine unendlich absteigende Kette} \\ \textbf{normalisierend} & :\iff \text{jeder Term besitzt eine Normalform} \\ \textbf{konvergent} & :\iff \text{konfluent} \land \text{normalisierend} \end{array}$$

Lem. Für eine Reduktion \rightarrow sind äquivalent:

- $\bullet \rightarrow \text{ist Church-Rosser}$
- \bullet \rightarrow ist konfluent
- \bullet \rightarrow ist semi-konfluent

Lem. Ist die Reduktion \rightarrow konfluent/terminierend/konvergent, so besitzt jeder Term höchstens/mindestens/genau eine Normalform.

Notation. Falls x eine NF y besitzt, so schreibe $x = \downarrow y$.

Thm. Ist \rightarrow konvergent, so gilt $x \stackrel{*}{\leftrightarrow} y \iff x \downarrow = y \downarrow$.

Bem. Dies liefert einen einfachen Algorithmus, um $x \stackrel{*}{\longleftrightarrow} y$ zu entscheiden: Reduziere die Terme x und y zu Normalformen und vergleiche diese.

Terminierungsbeweise

Lem. \rightarrow ist terminierend \iff \rightarrow ist eine Wohlordnung

Def. Eine Relation \rightarrow heißt

- endlich verzweigend, falls jeder Term nur endlich viele direkte Nachfolger besitzt,
- global endlich, falls jeder Term nur endl. viele Nachfolger hat,
- azyklisch, falls kein Term a mit $a \xrightarrow{+} a$ existiert.

Lem. • Eine endlich verzweigende Relation ist global endlich, falls sie terminierend ist.

• Eine azykl. Relation ist terminierend, falls sie global endlich ist.

Lem. Sei (A, \rightarrow) ein Reduktionssystem und (B, >) eine wohlgeordnete Menge. Gibt es eine streng monotone Abbildung $\varphi: A \rightarrow B$, so ist A terminierend.

Lem. Ein endlich verzweigendes Reduktionssystem (A, \rightarrow) ist genau dann terminierend, falls es eine streng monotone Abbildung $\varphi: (A, \rightarrow) \rightarrow (\mathbb{N}, >)$ gibt.

Def. Seien $(A_i, >_i)_{i=1,...,n}$ geordnete Mengen. Die **lexikalische Ordnung** $>_{\text{lex}}$ auf $A_1 \times ... \times A_n$ ist definiert durch

$$(x_1,...,x_n)>_{\mathrm{lex}}(y_1,...,y_n):\iff \exists\, k\leq n: (\forall\, i< k: x_i=y_i)\land x_k<_k y_k.$$

Lem. Ist > eine strikte (Wohl-) Ordnung, so auch $>_{lex}$.

Def. Eine Multimenge M über einer Menge A ist eine Abbildung $M:A\to\mathbb{N}$. Sie ist endlich, falls $\sum_{a\in A}M(a)<\infty$.

Notation.
$$\mathcal{M}(A) := \{ \text{ Multimengen "uber } A \}$$

 $a \in M :\iff M(a) \ge 1$

Def. Die Differenz von Multimengen $M, N \in \mathcal{M}(A)$ ist $M - N \in \mathcal{M}(A)$ mit $(M - N)(a) := \max\{0, M(a) - N(a)\}.$

Def. Sei > eine strikte Ordung auf A. Die Multimengenordnung $>_{\text{mul}}$ auf $\mathcal{M}(A)$ ist dann definiert durch

$$M >_{\text{mul}} N : \iff M \neq N \land \forall n \in N - M : \exists m \in M - N : m > n.$$

Lem. Ist > eine strikte (Wohl-) Ordnung, so auch $>_{mul}$.

Konfluenzbeweise

Def. Eine Relation \rightarrow

- heißt lokal konfluent, falls $y_1 \leftarrow y \rightarrow y_2 \implies y_1 \downarrow y_2$.
- heißt stark konfluent, falls $y_1 \leftarrow y \rightarrow y_2 \implies \exists z : y_1 \stackrel{*}{\rightarrow} z \stackrel{=}{\leftarrow} y_2$.
- besitzt die Diamant-Eigenschaft, falls

$$y_1 \leftarrow y \rightarrow y_2 \implies \exists z : y_1 \rightarrow z \leftarrow y_2.$$

Lem. Falls $\rightarrow_1 \leq \rightarrow_2 \leq \stackrel{*}{\rightarrow}_1$, so gilt $\stackrel{*}{\rightarrow}_1 = \stackrel{*}{\rightarrow}_2$. Ist zusätzlich \rightarrow_2 (stark) konfluent, so auch \rightarrow_1 .

Lem. • Stark konfluente Relationen sind konfluent.

• Eine terminierende Rel. ist konfluent, falls sie lokal konfluent ist.

Def. Zwei Relationen \rightarrow_1 und \rightarrow_2 auf A

- kommutieren, falls $y_1 \stackrel{*}{\leftarrow}_1 x \stackrel{*}{\rightarrow}_2 y_2 \implies \exists z : y_1 \stackrel{*}{\rightarrow}_2 z \stackrel{*}{\leftarrow}_1 y_2$.
- kommutieren stark, falls

$$y_1 \leftarrow_1 x \rightarrow_2 y_2 \implies \exists z : y_1 \xrightarrow{=}_2 z \xleftarrow{*}_1 y_2.$$

• besitzen die Kommutierender-Diamant-Eigenschaft, falls

$$y_1 \leftarrow_1 x \rightarrow_2 y_2 \implies \exists z : y_1 \rightarrow_2 z \leftarrow_1 y_2.$$

Lem. Angenommen, \rightarrow_1 und \rightarrow_2 sind konfluent und kommutieren Dann ist auch $\rightarrow_1 \cup \rightarrow_2$ konfluent.