Regresja - zadania i przykłady.

V5 e0

Zadanie 1. Poniżej zamieszczono fragmenty wydruków dotyczących dopasowania modelu regresji do zmiennej **ozone** w oparciu o promieniowanie (**radiation**), oraz w oparciu o promieniowanie i temperaturę (**temperature**). Zbiór zawiera 111 obserwacji.

- (a) Podaj przybliżoną liczbę wartości resztowych w pierwszym modelu większych od −0,5895.
- (b) Podaj procent zmienności dodatkowo wyjaśniony przez wprowadzenie zmiennej **temperature** do modelu ozone ~ radiation.
- (c) Na podstawie wyniku przeprowadzonego testu stwierdź, czy wprowadzenie zmiennej **temperature** jest wskazane. Uzasadnij.
- (d) Oblicz brakującą wartość na wydruku (miejsce zaznaczone kropkami "......") i wytłumacz, jak otrzymano odpowiadającą p-wartość 0,0007.

W5 e1

```
------ Model 1. Call: lm(formula = ozone \sim radiation, data = ozonedata)
Residuals: lq = ozone \sim radiation, data = ozonedata
```

-1.5811 -0.5895 -0.1162 0.5986 2.0508

Coefficients:

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	2.4859713	0.1746316	14.24	< 2e-16
radiation	0.0041223	0.0008482	4.86	3.96e-06

Residual standard error: 0.8109 on 109 degrees of freedom

Multiple R-Squared: 0.1781,

F-statistic: 23.62 on 1 and 109 DF, p-value: 3.964e-06

----- Model 2. Call: lm(formula = ozone ~ temperature + radiation)

Residuals:

Min 1Q Median 3Q Max -1.183 -0.4025 -0.03355 0.2965 1.95

Coefficients:

	Value	Std. Error	t value	Pr(> t)
(Intercept)	-2.1530	0.4398	-4.8951	0.0000
temperature	0.0643	0.0059	10.9681	0.0000
radiation	0.0021		3,4968	0.0007

Residual standard error: 0.5603 on 108 degrees of freedom

Multiple R-Squared: 0.6112

F-statistic: 84.88 on 2 and 108 degrees of freedom, the p-value is 0

- a) -0,5895 to wartość dla 1 kwartyla. Stąd ¾ wartości resztowych będzie większych (ze 111 obserwacji) -> 3/4 * 111 ~= 83 Odp. Przybliżona liczba wartości resztowych w pierwszym modelu większych od -0,5895 to 83.
- b) W pierwszym modelu $R^2 = 0.1781$ (współczynnik determinacji na tyle model wyjaśnia zależność).
- W drugim przypadku R²=0,6112, tj. model wyjaśnia zależność w ok. 61%. Tak więc dodatnie zmiennej temperature zwiększyło wyjasnianie do 61%. Stąd zmiana procentu wyjaśniania to 0,6112 0,1781 = 0,4331 (czyli 43,31%)
- Odp. Procent zmienności dodatkowo wyjaśniony przez wprowadzenie zmiennej temperature do modelu ozone~radiation to 43,31%.
- c) Własności zmiennej temperature:
- zmienna jest istotna (p-wartość <0,01)
- po jej wprowadzeniu wzrasta współczynnik determinacji R²
- zmalał błąd standardowy wartości resztowych
- Odp. Wprowadzenie zmiennej temperature jest wskazane na podstawie wyżej przytoczonych wniosków.
- d) Brakująca wartość na wydruku: Std. Error (błąd standardowy wartości resztowych) = value(wartość parametru)/ t value(wartość statystyki testowej), czyli 0,0021/3,4968 ~= 6,0055e-4 = 0,0006055
- Otrzymanie odpowiadającej p-wartości:
- 0,0007 jest to empiryczny poziom istotności dla testu i jest najniższym poziomem istotności dla którego należy odrzucić H0 (ponieważ H0 jest takie, że zmienna temperature jest nieistotna). Szukam w tablicy rozkładu t-Studenta wartości statystyki testowej (3.4968) dla danej liczby stopni swobody (111-2=109) i odczytuję obszar krytyczny (poziom istotności) α, który odpowiada tej wartości statystyki, czyli naszą p-wartość 0,0007.
- Odp. Brakująca wartość na wydruku to 0,0006055. P-wartość otrzymano na podstawie tablicy rozkładu t-Studenta w opisany sposób.

Zadanie 2. Zbiór **cheese** zawiera dane dotyczące smaku sera (zmienna **Taste**, miara subiektywna) oraz zmiennych

Acetic – logarytm zawartości kwasu octowego;

H2S – logarytm zawartości siarkowodoru;

Lactic – zawartość kwasu mlekowego.

Rozpatrzono dwa modele regresji dla zmiennej objaśnianej Taste. W pierwszym zmienną objaśniającą jest jedynie zmienna Acetic, w drugim dodatkowo zmienne H2S i Lactic. Na podstawie załączonego wydruku odpowiedzna następujące pytania:

- (a) Wnioski dla zmiennej Acetic są inne w pierwszym i drugim modelu. Sprecyzuj na czym polega różnica i wytłumacz czym jest spowodowana.
- (b) Oblicz brakującą wartość dla zmiennej H2S w drugim modelu.
- (c) O ile wzrósł procent wyjaśnionej zmienności zmiennej Taste po dodaniu do pierwszego modelu zmiennych Lactic i H2S?

W5 e3

lm(formula = Taste ~ Acetic, data = cheese) -----Model 1: Residuals: Min 10 Median 3Q Max -29.642 -7.443 2.082 6.597 26.581 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -61.499 24.846 -2.475 0.01964 15.648 4.496 3.481 0.00166 Acetic Residual standard error: 13.82 on 28 degrees of freedom Multiple R-Squared: 0.302, Adjusted R-squared: 0.2771 F-statistic: 12.11 on 1 and 28 DF, p-value: 0.001658 Model 2: lm(formula = Taste ~ Acetic + H2S + Lactic, data = cheese) Residuals: Min 10 Median 3Q Max -17.391 -6.612 -1.009 4.908 25.449 Coefficients: Estimate Std. Error t value Pr(>|t|)(Intercept) -28.8768 19.7354 -1.463 0.15540 Acetic 0.3277 4.4598 0.073 0.94198 H2S 1.2484 3.133 0.00425 19,6705 8.6291 Lactic 2.280 0.03108 Residual standard error: 10.13 on 26 degrees of freedom Multiple R-Squared: 0.6518, Adjusted R-squared: 0.6116

a) Odp. Pomimo ze kierunek oddziaływania (+ albo -) jest ten sam, wartość zmniejszyła się, ponieważ lepiej zmienność Taste wyjaśnia Lactic i H2S, przez co zmienna Acetic okazała się nieistotna (wprowadzenie jej do tego modelu nie poprawia istotnie modelu w przypadku obecności zmiennych Lactic i H2S).

W5e4

b) Brakującą wartość obliczamy w sposób analogiczny do poprzedniego zadania, tj. Estimate (wartość parametru) = t value(wartość statystyki testowej t) * Std. Error(błąd standardowy wartości resztowych) czyli 3,133*1,2484 ~= 3,9112 Odp. Brakująca wartość Estimate (tj. wartość parametru) wynosi 3,9112.

3.81e-06

c) Porównuję wskaźniki determinacji R^2 i Adjusted R^2 . Wskaźnik Adjusted R^2 bierze dodatkowo pod uwagę liczbę zmiennych uwzględnionych w modelu. Obliczam różnice odpowiednio R^2 i Adjusted R^2 .

Dla R^2 : 0,6518-0,302 = 0,3498 (34,98% różnicy)

F-statistic: 16.22 on 3 and 26 DF, p-value:

Dla Adjusted R^2 : 0,6116-0,2771 = 0,3345 (33,45% różnicy)

Odp. Procent wyjaśnionej zmienności zmiennej Taste po dodaniu do pierwszego modelu zmiennych Lactic i H2S wzrósł odpowiednio o 34,98% i 33,45% dla wskaźnika uwzględniającego ilość zmiennych w modelu.

Zadanie 3. Poniżej zamieszczona jest część wydruku dotycząca dopasowania modelu regresji do danych doty- czących liczby gatunków żółwi (zmienna zależna **Species**) na 30 wyspach archipelagu Galapagos. Rozpatrzono następujące zmienne niezależne:

Area - powierzchnia wyspy (km²),

Elevation- wysokość najwyższego punktu (m),

Nearest - odległość do najbliższej wyspy (km),

Scruz - odległość do wyspy Santa Cruz,

Adjacent - powierzchnia najbliższej sąsiedniej wyspy.

W5 e5

Spe	ecies	Endemics	Area	Elevation	Nearest	Scruz	Adjacent
Baltra	58	23	25.09	346	0.6	0.6	1.84
Bartolome	31	21	1.24	109	0.6	26.3	572.33
Caldwell	3	3	0.21	114	2.8	58.7	0.78
Champion	25	9	0.10	46	1.9	47.4	0.18
Coamano	2	1	0.05	77	1.9	1.9	903.82
Daphne.Major	18	11	0.34	119	8.0	8.0	1.84
Daphne.Minor	24	0	0.08	93	6.0	12.0	0.34
Darwin	10	7	2.33	168	34.1	290.2	2.85
Eden	8	4	0.03	71	0.4	0.4	17.95
Enderby	2	2	0.18	112	2.6	50.2	0.10
Espanola	97	26	58.27	198	1.1	88.3	0.57
Fernandina	93	35	634.49	1494	4.3	95.3	4669.32
Gardner1	58	17	0.57	49	1.1	93.1	58.27
Gardner2	5	4	0.78	227	4.6	62.2	0.21
Genovesa	40	19	17.35	76	47.4	92.2	129.49
Isabela	347	89	4669.32	1707	0.7	28.1	634.49
Marchena	51	23	129.49	343	29.1	85.9	59.56
Onslow	2	2	0.01	25	3.3	45.9	0.10
Pinta	104	37	59.56	777	29.1	119.6	129.49
Pinzon	108	33	17.95	458	10.7	10.7	0.03
Las.Plazas	12	9	0.23	94	0.5	0.6	25.09
Rabida	70	30	4.89	367	4.4	24.4	572.33
SanCristobal	280	65	551.62	716	45.2	66.6	0.57
SanSalvador	237	81	572.33	906	0.2	19.8	4.89
SantaCruz	444	95	903.82	864	0.6	0.0	0.52
SantaFe	62	28	24.08	259	16.5	16.5	0.52
SantaMaria	285	73	170.92	640	2.6	49.2	0.10
Seymour	44	16	1.84	147	0.6	9.6	25.09
Tortuga	16	8	1.24	186	6.8	50.9	17.95
Wolf	21	12	2.85	253	34.1	254.7	2.33

W5 e6

 $> summary(lm(Species{\sim}Area{+}Elevation{+}Nearest{+}Scruz{+}Adjacent))$

Call:

lm(formula = Species ~ Area + Elevation + Nearest + Scruz + Adjacent)

Residuals:

Min 1Q Median 3Q Max -111.679 -34.898 -7.862 33.460 182.584

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	7.068221	19.154198	0.369	0.715351
Area	-0.023938	0.022422	-1.068	0.296318
Elevation	0.319465	0.053663	5.953	3.82e-06
Nearest	0.009144	1.054136	0.009	0.993151
Scruz	-0.240524	0.215402	-1.117	0.275208
Adjacent	-0.074805	0.017700	-4.226	0.000297

Residual standard error: 60.98 on 24 degrees of freedom Multiple R-Squared: 0.7658, Adjusted R-squared: 0.7171 F-statistic: 15.7 on 5 and 24 DF, p-value: 6.838e-007

- (a) (1p.) Podaj procent zmienności liczby gatunków niewyjaśnionej przez zaproponowany model.
- (b) (2p.) Sformułuj hipotezę zerową i alternatywną, której odpowiada liczba 0.296318. Jaką decyzję podejmiesz w tym przypadku ?

W5 e7

(c) (3p.) Sformułuj hipotezę zerową i alternatywną, której odpowiada liczba 0.000275 w prostszym modelu poniżej. Jaką decyzję podejmiesz w tym przypadku? Porównaj z (b) i skomentuj ewentualne różnice.

```
lm(formula = Species ~ Area)
Residuals:
                            3Q
   Min
            1Q Median
                                   Max
-99.495 -53.431 -29.045
                         3.423 306.137
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 63.78286 17.52442 3.640 0.001094 **
            0.08196
                       0.01971 4.158 0.000275 ***
Area
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
Residual standard error: 91.73 on 28 degrees of freedom
Multiple R-Squared: 0.3817,
                               Adjusted R-squared: 0.3596
F-statistic: 17.29 on 1 and 28 DF, p-value: 0.0002748
```

- a) Procent zmienności niewyjaśnionej przez model: 1- R² (czyli 1-0,7658 = 23,42 tj. 23,42%) lub 1-Adj.R² (czyli 1-0,7171 = 0,2829 tj. 28,29%).
- Odp. Procent zmienności niewyjaśnionej przez model wynosi 23,42%.
- b) H0: $\beta A = 0$, H1: $\beta A /= 0$. $\beta_A wskaźnik$ regresji dla zmiennej Area
- 0,296318 = p-wartość dla testu istotności zmiennej Area, czyli prawdopodobieństwo zawierania się wartości statystyki testowej w zbiorze krytycznym tj. |t value| > |- 1,068| jeśli spełnione jest H0, gdzie t value to wartość statystyki testowej t
- Decyzja: brak podstaw do odrzucenia H0 na każdym standardowo przyjmowanym poziomie istotności (p-value tj. p-wartość>0,1>0,05>0,01). Wniosek: zmienna jest nieistotna w modelu
- o 1 11' (170,0570,01). Willosek. Zimelina jest meistotila w modera
- Odp. Hipotezy: H0: $\beta \underline{A} = 0$, H1: $\beta \underline{A} /= 0$. Decyzja: pozostawienie H0.
- c) H0: $\beta A = 0$, H1: $\beta A /= 0$
- Zmienna jest istotna, ponieważ posiada niski wskaźnik p-value (p-wartość) = 0,000275. P-wartość = P(|t value|>=4,158 jeśli spełnione jest H0). t value oznacza tutaj wartość statystyki testowej t.
- Decyzja: Hipoteza H0 odrzucona.

> summary(lm(Species~Area))

- Zmienna Area samodzielnie wnosi informacje do wyjaśniania zmienności "Species", ale umieszona w modelu razem z innymi traci na znaczeniu (inne zmienne wyjaśniają tę samą zmienność)
- Odp. Hipotezy: H0: $\beta A = 0$, H1: $\beta A = 0$. Decyzja: odrzucenie H0 i przyjęcie H1. Zmienna Area straciła na znaczeniu w modelu c) ponieważ dodatkowe zmienne dodane w tym modelu a nieobecne w b) lepiej tłumaczą zmienność liczby gatunków żółwi Species.

- **Zadanie 4.** Na podstawie danych **fish** dotyczących 159 ryb złowionych w jeziorze Laengelmavesi koło Tampere starano się znaleźć zależność między ich wagą (**Weight**) a wysokością (**Height**), szerokością (**Width**) i długościami **L1**, **L2**, **L3** (patrz rys. 2). W pierwszym modelu uwzględniono wszystkie zmienne niezależne, w drugim usunięto zmienną Height. Przyjęto $\alpha = 0.05$.
- (a) (1 p.) Które ze zmiennych w pierwszym modelu są istotne? Uzasadnij, sformułuj odpowiednie hipotezy zerowe dla zmiennych istotnych.
- (b) (2 p.) Czy zmienna L3 jest istotna w obu modelach? Dlaczego tak się dzieje?
- (c) (1 p.) Co oznacza liczba 0,9907 dla trzeciego modelu i jakiej zmiennej dotyczy?
- (d) (2 p.) Na podstawie załączonych rysunków oceń dopasowanie modelu pierwszego i trzeciego.

W5 e9

```
lm(formula = Weight \sim L1 + L2 + L3 + Height + Width, data = fish)
```

Coefficients:

	Estimate	Std. Erro	t value	Pr(> t)
(Intercept)	-504.084	30.370	-16.598	< 2e-16
L1	52.829	40.694	1.298	0.19632
L2	3.997	42.030	0.095	0.92438
L3	-29.292	17.648	-1.660	0.09915
Height	30.043	8.883	3.382	0.00093
Width	10.638	21.029	0.506	0.61374

Residual standard error: 120.4 on 142 degrees of freedom Multiple R-Squared: 0.8909, Adjusted R-squared: 0.8871 F-statistic: 232 on 5 and 142 DF, p-value: < 2.2e-16

 $lm(formula = Weight \sim L1 + L2 + L3 + Width, data = fish)$

Coefficients:

Cocificient					
	Estimate Std. Error t value $Pr(> t)$				
(Intercept)	-523.502	30.892 -	-16.946	< 2e-16	
L1	11.544	40.212	0.287	0.7745	
L2	-13.082	43.222	-0.303	0.7626	
L3	22.430	9.123	2.459	0.0151	
Width	65.719	13.781	4.769	4.52e-06	

Residual standard error: 124.7 on 143 degrees of freedom Multiple R-Squared: 0.8821, Adjusted R-squared: 0.8788 F-statistic: 267.6 on 4 and 143 DF, p-value: < 2.2e-16

-statistic: 267.6 on 4 and 143 DF, p-value: < 2.2e-16

W5 e10

- > fish3.lm <- lm(Weight^0.3 \sim L1 + L2 + L3 + Height + Width, data=fish)
- > print(summary(fish3.lm))

lm(formula = Weight^0.3 ~ L1 + L2 + L3 + Height + Width, data = fish)

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.54870	0.04462	12.298	< 2e-16
L1	0.01622	0.05978	0.271	0.787
L2	0.08231	0.06174	1.333	0.185
L3	-0.01549	0.02593	-0.597	0.551
Height	0.11443	0.01305	8.768	5.06e-15
Width	0.35494	0.03089	11.489	< 2e-16

Residual standard error: 0.1769 on 142 degrees of freedom Multiple R-Squared: 0.9907, Adjusted R-squared: 0.9904 F-statistic: 3022 on 5 and 142 DF, p-value: < 2.2e-16

- a) <u>Odp. W pierwszym modelu istotna jest jedynie zmienna Height. Warunkiem istotności zmiennej jest p-value(p-wartość) dla niej <0,05. Hipoteza zerowa jak w poprzednim zadaniu: H0: βH =0, H1: βH /=0 gdzie βH wskaźnik regresji zmiennej Height.</u>
- b) <u>Odp. W pierwszym modelu zmienna L3 nie jest istotna, w drugim tak. Dzieje się tak, ponieważ wyjaśnia ona część zmienności, którą wcześniej wyjaśniała usunięta w modelu drugim zmienna Height (zmienna ta była istotna).</u>
- c) <u>Odp. Jest to współczynnik determinacji –nie dotyczy on żadnej zmiennej, a mówi jaka część zmienności zmiennej Weight^0,3 jest wyjaśniana przez predykatory (L1, L2, L3, Height i Width).</u>
- d) Odp. Model pierwszy posiada wyższe współczynniki determinacji R² i Adjusted R², co wskazuje na wyjaśnianie więcej zmienności Weight^0,3 niż Weight poprzez zadane zmienne. Szacowanie wagi ryby na podstawie sumy jej wymiarów kłóci się z jakimkolwiek fizycznym sposobem wyznaczania wagi ciał na podstawie ich rozmiarów, w związku z tym uważam oba modele za nieoddające istoty problemu. Nie potrafię wyjaśnić pochodzenia współczynnika 0,3 w trzecim modelu ani powodu, dla którego zmienia on poziom wyjaśniania o blisko 10%.

wykonał Sławomir Jabłoński, s14736