1 Variables

2 root

	var	symbol	documentation	type	units	eqs
10	$F_{N,A}$	F	basic directed graph incidence matrix	network		
96	I_N	I_N	vector of ones of length nodes	projection		
97	I_A	I_A	vector of ones of length arcs	projection		
48	$I_{N,A}$	I_N_A	project node on arc	projection		
4	t	t	time	frame	s	
9	Δ	pulse	pulse of length time interval	frame		7
6	t^e	te	time end	frame	s	4
5	t^o	to	time zero	frame	s	3
7	Δt	t_interval	time interval	frame	s	5
2	1	one	numerical one	constant		1
8	0.5	onehalf	numerical one half	constant		6
3	0	zero	numerical value zero	constant		2
1	#	value	numerical value	constant		

3 physical

	var	symbol	documentation	type	units	eqs
98	I_S	I_S	vector of ones of length sepecies	projection		
14	r_{zN}	r_z	z-direction	frame	m	10
13	r_{yN}	r_y	y-direction	frame	m	9
12	r_{xN}	r_x	x-direction	frame	m	8
11	ℓ_N	1	length	frame	m	
24	G_N	G	Gibbs free energy	state	$kg m^2 s^{-2}$	18
23	A_N	A	Helmholts energy	state	$kg m^2 s^{-2}$	17
18	$n_{N,S}$	n	fundamental state - molar mass	state	mol	129
17	S_N	S	fundamental state - entropy	state	$kg m^2 K^{-1} s^{-2}$	
22	H_N	н	Enthalpy	state	$kg m^2 s^{-2}$	15 128
25	C_N	C	fundamental state - charge	state	A s	
15	V_N	V	fundamental state - volume	state	m^3	11
16	U_N	U	fundamental state - internal energy	state	$kg m^2 s^{-2}$	
32	A^v	Av	Avogadro number	constant	mol^{-1}	
34	R_N	R	Gas constant	constant	$kg m^2 mol^{-1} K^{-1} s^{-2}$	25
33	B_N	Boltz	Boltzmann constant	constant	$kg m^2 K^{-1} s^{-2}$	24
20	p_N	p	pressure	effort	$kg m^{-1} s^{-2}$	13
19	T_N	Т	temperature	effort	K	16
21	$\mu_{N,S}$	chemPot	chemical potential	effort	$kg m^2 mol^{-1} s^{-2}$	14 88
35	$U^e{}_N$	Ue	electrical potential – voltage	effort	$kg m^2 A^{-1}s^{-3}$	26
28	v_{yN}	v_y	velocity in y-direction	secondaryState	ms^{-1}	20
27	v_{xN}	v_x	velocity in x-direction	secondaryState	ms^{-1}	19

	var	symbol	documentation	type	units	eqs
29	v_{zN}	V_Z	velocity in z-direction	secondaryState	ms^{-1}	21

4 reactions

	var	symbol	documentation	type	units	eqs
113	$P_{N,K}$	P_N_K	what node has what reaction	projection		
114	$T_{N,K}$	T_K	temparature of the nodes with reactions	effort	K	99
128	$ar{n}_{N,S}$	cn	normed concentration	${\bf secondary State}$		112
129	$ar{n}_{N,S,K}$	cn_NK	normed concentration – context node and conversion	${\bf secondary State}$		113
118	$N_{S,K}$	N	stoichiometric matrix	properties		
135	$K_{N,K}$	K	reaction"constant	properties	$m^{-3} mol s^{-1}$	119
115	$E_{aN,K}$	Ea	Arrhenius activation energy	properties	$kg m^2 mol^{-1} s^{-2}$	100
134	$K^o{}_K$	Ко	Arrhenius frequency factor – a strange construction	properties	$m^{-3} mol s^{-1}$	118
131	$\phi_{N,K}$	interactionProbability	probability for the species to meet to undergo reaction	properties		115
126	$c^n{}_{N,S}$	c_norming	norming concentration used in the definition of the species interaction probability	properties	$m^{-3} mol$	110
136	$ ilde{n}_{N,S}$	nProd	production term for differential component mass balance	conversion	$mol s^{-1}$	120

5 material

	var	symbol	documentation	type	units	eqs
61	$k_x^{d,Fick}{}_{A,S}$	kd_x_Fick	Fick's diffusivity in arc and x-direction	property	ms^{-1}	51
39	k_{yN}^q	kq_y	thermal conductivity in y-direction	property	$kg K^{-1} s^{-3}$	30
44	k_{xN}^c	kc_x	convective mass conductivity in x-direction	property	$m^{-1} s$	35
38	k_{xN}^q	kq_x	thermal conductivity in x-direction	property	$kg K^{-1} s^{-3}$	29
42	$k_{yN,S}^d$	kd_y	diffusional mass conductivity in z-direction	property	$kg^{-1} m^{-4} mol^2 s$	33
54	$k_{zA,S}^{d}$	kd_z_A	diffusional mass conductivity in z-direction in arc	property	$kg^{-1} m^{-4} mol^2 s$	44
26	λ_S	Mm	species' molecular mass	property	$kg mol^{-1}$	
45	k_{yN}^c	kc_y	convective mass conductivity in y-direction	property	$m^{-1} s$	36
59	$ ho_N$	density	density	property	$kg m^{-3}$	49
50	k_{yA}^c	kc_y_A	convective mass conductivity in y-direction in arc	property	$m^{-1} s$	40
107	$h_{AA,S}$	h_A	partial molar enthalpies of transport system	property	$kg m^2 mol^{-1} s^{-2}$	93
40	k_{zN}^q	kq_z	thermal conductivity in z-direction	property	$kg K^{-1} s^{-3}$	31
51	k_{zA}^{c}	kc_z_A	convective mass conductivity in z-direction in arc	property	$m^{-1} s$	41
55	k_{xA}^q	kq_x_A	thermal conductivity in x-direction in arc	property	$kg K^{-1} s^{-3}$	45
56	k_{yA}^q	kq_y_A	thermal conductivity in y-direction in arc	property	$kg K^{-1} s^{-3}$	46
53	$k_{yA,S}^d$	kd_y_A	diffusional mass conductivity in y-direction in arc	property	$kg^{-1} m^{-4} mol^2 s$	43
89	$ ho_A$	density_A	density of arc material	property	kgm^{-3}	78
46	k_{zN}^c	kc_z	convective mass conductivity in z-direction	property	$m^{-1} s$	37
57	k_{zA}^{q}	kq_z_A	thermal conductivity in z-direction in arc	property	$kg K^{-1} s^{-3}$	47
62	$k_y^{d,Fick}{}_{A,S}$	kd_y_Fick	Fick's diffusivity in arc and y-direction	property	ms^{-1}	52
36	C_{pN}	Ср	total heat capacity at constant pressure	property	$kg m^2 K^{-1} s^{-2}$	27
47	$h_{N,S}$	h	partial molar enthalpies	property	$kg m^2 mol^{-1} s^{-2}$	38
41	$k_{xN,S}^d$	kd_x	diffusional mass conductivity in x-direction	property	$kg^{-1} m^{-4} mol^2 s$	32

	var	symbol	documentation	type	units	eqs
37	C_{vN}	Cv	total heat capacity at constant volume	property	$kg m^2 K^{-1} s^{-2}$	28
43	$k_{zN,S}^d$	kd_z	diffusional mass conductivity in z-direction	property	$kg^{-1} m^{-4} mol^2 s$	34
49	k_{xA}^c	kc_x_A	convective mass conductivity in x-direction in arc	property	$m^{-1} s$	39
60	v_S	v	molar volume of species	property	$m^3 mol^{-1}$	50
52	$k_{xA,S}^d$	kd_x_A	diffusional mass conductivity in x-direction in arc	property	$kg^{-1}m^{-4}mol^2s$	42
58	m_N	m	mass	property	kg	48
63	$k_z^{d,Fick}{}_{A,S}$	kd_z_Fick	Fick's diffusivity in arc and z-direction	property	ms^{-1}	53
102	$\mu^o{}_{N,S}$	chemPot_o	standard chemical potential	effort	$kg m^2 mol^{-1} s^{-2}$	86

6 macroscopic

	var	symbol	documentation	type	units	eqs
83	\hat{q}_{xA}	fq_x	heat flow in arc and x-direction	transport	kgm^2s^{-3}	72
86	d_A	d	fow direction of convective flow	transport		75
87	$c_{A,S}$	c_A	concentration in convective mass flow	transport	$m^{-3} mol$	76
104	$\dot{n}^{d}{}_{N,S}$	and	accumulation due to diffusional mass transfer	transport	$mol s^{-1}$	90
101	$\hat{n}^d{}_{A,S}$	fnd	diffusional mass flow in arc	transport	$mol s^{-1}$	85 89
112	$\dot{H}^d{}_N$	aHd	enthalpy accumulation due to diffusive mass flow	transport	$kg m^2 s^{-3}$	98
91	\dot{V}_A	fV	volumetric flow	transport	$m^3 s^{-1}$	80
92	$\hat{n}^c{}_{A,S}$	fnc	convective mass flow in an arc	transport	$mol s^{-1}$	81
93	$\dot{n}^c{}_{N,S}$	anc	accumulation due to convective mass flow	transport	$mol s^{-1}$	82
142	\dot{w}_N	aw	enthalpy accumulation due to work flows	transport	kgm^2s^{-3}	126
141	\hat{w}_A	fw	just an numerical work flow term – as a starter	transport	kgm^2s^{-3}	125
110	$\hat{H}^d{}_A$	fHd	enthalpy flow due to diffusive mass flow	transport	kgm^2s^{-3}	96
84	\dot{q}_N	aq	accumulation due to conductive heat flow	transport	$kg m^2 s^{-3}$	73
111	$\dot{H}^c{}_N$	аНс	enthalpy accumulation due to convective mass flow	transport	$kg m^2 s^{-3}$	97
109	$\hat{H}^c{}_A$	fHc	enthalpy flow due to convective mass flow	transport	kgm^2s^{-3}	95
70	A_{yzA}	A_yz_A	cross sectional area yz of arc	geometry	m^2	59
69	A_{xzA}	A_xz_A	cross sectional area xz of arc	geometry	m^2	58
66	A_{xzN}	A_xz	cross sectional area xz	geometry	m^2	55
68	A_{xyA}	A_xy_A	cross sectional area yz of arc	geometry	m^2	57
67	A_{yzN}	A_yz	cross sectional area yz	geometry	m^2	56
65	A_{xyN}	A_xy	cross sectional area xy	geometry	m^2	54
64	$D_{N,A}$	D	difference operator	${\it difference Operator}$		
145	$n^o{}_{N,S}$	no	initial species masses	state	mol	131

	var	symbol	documentation	type	units	eqs
144	$H^o{}_N$	Но	initial enthalpy	state	$kg m^2 s^{-2}$	130
149	$ar{T}^o{}_N$	T_normed	normed temperature	secondaryState		135
146	$T^o{}_N$	T_norming	norming temperature	secondaryState	K	132
85	$c_{N,S}$	С	molar concentration	secondaryState	$m^{-3} mol$	74
150	$\bar{p}^o{}_N$	p_normed	normed pressure	secondaryState		136
99	$n^t{}_N$	nt	total amount	secondaryState	mol	83
100	$x_{N,S}$	x	concentration mole fraction	secondaryState		84
147	$p^o{}_N$	p_norming	normed pressure	secondaryState	$kg m^{-1} s^{-2}$	133
148	$c^o{}_{N,S}$	c_norming	norming concentration	secondaryState	$m^{-3} mol$	134
151	$\bar{c}^o{}_{N,S}$	c_normed	normed concentration	secondaryState		137
138	$\dot{n}_{N,S}$	anProduction	production term	conversion	$mol s^{-1}$	122
139	$\dot{n}_{N,S}$	an	differentional species balance	diffState	$mol s^{-1}$	123
143	\dot{H}_N	аН	differential enthalpy balance	diffState	$kg m^2 s^{-3}$	127

7 reactions-macroscopic

	var	symbol	documentation	type	units	eqs
122	NS,K	_N	link variable N to interface reactions \gg macroscopic	get		106
119	$_E^a{}_{N,K}$	_Ea	link variable Ea to interface reactions »> macroscopic	get	$kg m^2 mol^{-1} s^{-2}$	103
123	$_T_{N,K}$	_T_K	link variable T K to interface reactions »> macroscopic	get	K	107
137	$_{ ilde{n}_{N,S}}$	_nProd	link variable nProd to interface reactions »> macroscopic	get	$mol s^{-1}$	121

8 macroscopic-material

	var	symbol	documentation	type	${ m units}$	eqs
103	$_x_{N,S}$	_x	link variable x to interface macroscopic \gg material	get		87

9 macroscopic-control

	var	symbol	documentation	type	units	eqs
152	$-ar{p}_N$	_p_normed	link variable p normed to interface macroscopic »> control	get		138
154	$ar{c}_{N,S}$	_c_normed	link variable c normed to interface macroscopic »> control	get		140
153	$-ar{T}_N$	_T_normed	link variable T normed to interface macroscopic »> control	get		139

$10 \quad \text{material-macroscopic}$

	var	symbol	documentation	type	units	eqs
90	$_{-} ho_{A}$	_density_A	link variable density A to interface material »> macroscopic	get	$kg m^{-3}$	79
74	$-k_{xA,S}^d$	_kd_x_A	link variable kd x A to interface material »> macroscopic	get	$kg^{-1} m^{-4} mol^2 s$	63
79	$_k_z^{d,Fick}{}_{A,S}$	_kd_z_Fick	link variable kd z Fick to interface material »> macroscopic	get	ms^{-1}	68
78	$_k_z^d{}_{A,S}$	_kd_z_A	link variable kd z A to interface material »> macroscopic	get	$kg^{-1} m^{-4} mol^2 s$	67
108	$_h_{A,S}$	_h_A	link variable h A to interface material »> macroscopic	get	$kg m^2 mol^{-1} s^{-2}$	94
88	$_{-} ho_{N}$	_density	link variable density to interface material »> macroscopic	get	$kg m^{-3}$	77
71	$_k_{xA}^c$	_kc_x_A	link variable kc x A to interface material »> macroscopic	get	$m^{-1} s$	60
106	$_h_{N,S}$	_h	link variable h to interface material »> macroscopic	get	$kg m^2 mol^{-1} s^{-2}$	92
72	$-k_{yA}^{c}$	_kc_y_A	link variable kc y A to interface material »> macroscopic	get	$m^{-1} s$	61
73	$-k_{zA}^{c}$	_kc_z_A	link variable kc z A to interface material »> macroscopic	get	$m^{-1} s$	62
75	$-k_x^{d,Fick}{}_{A,S}$	_kd_x_Fick	link variable kd x Fick to interface material »> macroscopic	get	ms^{-1}	64
76	$-k_y^{d,Fick}{}_{A,S}$	_kd_y_Fick	link variable kd y Fick to interface material »> macroscopic	get	ms^{-1}	65
80	$_k_{xA}^q$	_kq_x_A		get	$kg K^{-1} s^{-3}$	69
82	$-k_{zA}^q$	_kq_z_A	link variable kq z A to interface material »> macroscopic	get	$kg K^{-1} s^{-3}$	71

	var	symbol	documentation	type	units	eqs
30	$_{-}\lambda_{S}$	_Mm	link variable Mm to interface material »> macroscopic	get	$kg mol^{-1}$	22
81	$_k_{yA}^q$	_kq_y_A	$\begin{array}{c} \mbox{link variable kq y A to interface material } >> \mbox{macroscopic} \\ \mbox{scopic} \end{array}$	get	$kg K^{-1} s^{-3}$	70
77	$_k^d_{yA,S}$	_kd_y_A	link variable kd y A to interface material »> macroscopic	get	$kg^{-1} m^{-4} mol^2 s$	66

11 macroscopic-reactions

	var	symbol	documentation	type	units	eqs
125	$_c_{N,S}$	_c	link variable c to interface macroscopic $\gg >$ reactions	get	$m^{-3} mol$	109

12 Equations

13 Generic

no	equation	documentation	layer
1	1 := Instantiate(#, #)	numerical one	root
2	0 := Instantiate(#, #)	numerical value zero	root
3	$t^o := \text{Instantiate}(t, 0)$	time zero	root
4	$t^e := \text{Instantiate}(t, \#)$	time end	root
5	$\Delta t := \operatorname{Instantiate}(t, \#)$	time interval	root
6	0.5 := Instantiate(#, #)	numerical one half	root
7	$\Delta := sign(t - t^{o}) - sign(t - (t^{o} - \Delta t))$	pulse of length time interval	root
8	$r_{xN} := \text{Instantiate}(\ell_N, \#)$	x-direction	physical
9	$r_{yN} := \text{Instantiate}(\ell_N, \#)$	y-direction	physical
10	$r_{zN} := \text{Instantiate}(\ell_N, \#)$	z-direction	physical
11	$oxed{V_N := r_{xN} \cdot r_{yN} \cdot r_{zN}}$	volume	physical
13	$p_N := rac{\partial U_N}{\partial V_N}$	pressure	physical
14	$\mu_{N,S} := rac{\partial U_N}{\partial n_{N,S}}$	chemical potential	physical
15	$H_N := U_N - p_N \cdot V_N$	Enthalpy	physical
16	$T_N := rac{\partial U_N}{\partial S_N}$	temperature	physical
17	$A_N := U_N - T_N \cdot S_N$	Helmholts energy	physical

no	equation	documentation	layer
18	$G_N := U_N + p_N \cdot V_N - T_N \cdot S_N$	Gibbs free energy	physical
19	$v_{xN} := \left(t\right)^{-1} . r_{xN}$	velocity in x-direction	physical
20	$v_{yN} := (t)^{-1} \cdot r_{yN}$	velocity in y-direction	physical
21	$v_{zN} := (t)^{-1} \cdot r_{zN}$	velocity in z-direction	physical
24	$B_N := \operatorname{Instantiate}(S_N, \#)$	Boltzmann constant	physical
25	$R_N := A^v \cdot B_N$	Gas constant	physical
26	$U^e_N := \left(C_N\right)^{-1} . U_N$	electrical potential – voltage	physical
27	$C_{pN} := rac{\partial H_N}{\partial T_N}$	total heat capacity at constant pressure	material
28	$C_{vN} := rac{\partial U_N}{\partial T_N}$	total heat capacity at constant volume	material
29	$k_{xN}^q := (V_N)^{-1} \cdot C_{pN} \cdot v_{xN}$	thermal conductivity in x-direction	material
30	$k_{yN}^q := (V_N)^{-1} \cdot C_{pN} \cdot v_{yN}$	thermal conductivity in y-direction	material
31	$k_{zN}^q := (V_N)^{-1} \cdot C_{pN} \cdot v_{zN}$	thermal conductivity in z-direction	material
32	$k_{xN,S}^d := \left(\mu_{N,S}\right)^{-1} \cdot \left(v_{xN} \cdot \left(\left(V_N\right)^{-1} \cdot \frac{\partial U_N}{\partial \mu_{N,S}}\right)\right)$	diffusional mass conductivity in x-direction	material
33	$k_{yN,S}^d := (\mu_{N,S})^{-1} \cdot \left(v_{yN} \cdot \left((V_N)^{-1} \cdot \frac{\partial U_N}{\partial \mu_{N,S}} \right) \right)$	diffusional mass conductivity in y- direction	material
34	$k_{zN,S}^d := (\mu_{N,S})^{-1} \cdot \left(v_{zN} \cdot \left((V_N)^{-1} \cdot \frac{\partial U_N}{\partial \mu_{N,S}} \right) \right)$	diffusional mass conductivity in z-direction	material
35	$k_{xN}^c := \left(\lambda_S \star (\mu_{N,S})^{-1}\right) \cdot (V_N)^{-1} \cdot \frac{\partial U_N}{\partial p_N} \cdot v_{xN}$	convective mass conductivity in x-direction	mat erial

no	equation	documentation	layer
36	$k_{yN}^c := \left(\lambda_S \star (\mu_{N,S})^{-1}\right) \cdot (V_N)^{-1} \cdot \frac{\partial U_N}{\partial p_N} \cdot v_{yN}$	convective mass conductivity in y-direction	material
37	$k_{zN}^c := \left(\lambda_S \star (\mu_{N,S})^{-1}\right) \cdot (V_N)^{-1} \cdot \frac{\partial U_N}{\partial p_N} \cdot v_{zN}$	convective mass conductivity in z-direction	material
38	$h_{N,S} := H_N \cdot \left(n_{N,S} \right)^{-1}$	partial molar enthalpies	material
39	$k_{xA}^c := I_{N,A} \star k_{xN}^c$	convective mass conductivity in x-direction in arc	material
40	$k_{yA}^c := I_{N,A} \star k_{yN}^c$	convective mass conductivity in y-direction in arc	material
41	$k_{zA}^c := I_{N,A} \star k_{zN}^c$	convective mass conductivity in z-direction in arc	material
42	$k_{xA,S}^d := I_{N,A} \star k_{xN,S}^d$	diffusional mass conductivity in x-direction in arc	material
43	$k_{yA,S}^d := I_{N,A} \star k_{yN,S}^d$	diffusional mass conductivity in z- direction in arc	material
44	$k_{zA,S}^d := I_{N,A} \star k_{zN,S}^d$	diffusional mass conductivity in z- direction in arc	material
45	$k_{xA}^q := I_{N,A} \star k_{xN}^q$	thermal conductivity in x-direction in arc	material
46	$k_{yA}^q := I_{N,A} \star k_{yN}^q$	thermal conductivity in y-direction in arc	material
47	$k_{zA}^q := I_{N,A} \star k_{zN}^q$	thermal conductivity in z-direction in arc	material
48	$m_N := \lambda_S \star n_{N,S}$	mass	material

no	equation	documentation	layer
49	$\rho_N := (V_N)^{-1} \cdot m_N$	density	material
50	$v_S := V_N \star (n_{N,S})^{-1}$	molar volume of species	material
51	$k_x^{d,Fick}{}_{A,S} := I_{N,A} \star \left(v_{xN} \cdot \frac{\partial U_N}{\partial \mu_{N,S}} \cdot (n_{N,S})^{-1} \right)$	Fick's diffusivity in arc and x-direction	material
52	$k_y^{d,Fick}{}_{A,S} := I_{N,A} \star \left(v_{yN} \cdot \frac{\partial U_N}{\partial \mu_{N,S}} \cdot (n_{N,S})^{-1} \right)$	Fick's diffusivity in arc and y-direction	material
53	$k_z^{d,Fick}{}_{A,S} := I_{N,A} \star \left(v_{zN} \cdot \frac{\partial U_N}{\partial \mu_{N,S}} \cdot (n_{N,S})^{-1} \right)$	Fick's diffusivity in arc and z-direction	material
54	$A_{xyN} := r_{xN} \cdot r_{yN}$	cross sectional area xy	macroscopic
55	$A_{xzN} := r_{xN} \cdot r_{zN}$	cross sectional area xz	macroscopic
56	$A_{yzN} := r_{yN} . r_{zN}$	cross sectional area yz	macroscopic
57	$A_{xyA} := I_{N,A} \star A_{xyN}$	cross sectional area yz of arc	macroscopic
58	$A_{xzA} := I_{N,A} \star A_{xzN}$	cross sectional area xz of arc	macroscopic
59	$A_{yzA} := I_{N,A} \star A_{yzN}$	cross sectional area yz of arc	macroscopic
72	$\hat{q}_{xA} := A_{yzA} \cdot \underline{k_{xA}^q} \cdot (D_{N,A} \star T_N)$	heat flow in arc and x-direction	macroscopic
73	$\dot{q}_N := F_{N,A} \star \hat{q}_{xA}$	accumulation due to conductive heat flow	macroscopic
74	$c_{N,S} := \left(V_N\right)^{-1} . n_{N,S}$	molar concentration	macroscopic
75	$d_A := \operatorname{sign}\left(D_{N,A} \star p_N\right)$	fow direction of convective flow	macroscopic
76	$c_{A,S} := (0.5 \cdot (D_{N,A} - d_A \cdot D_{N,A})) \star c_{N,S}$	concentration in convective mass flow	macroscopic
78	$ ho_A := I_{N,A} \star ho_N$	density of arc material	material
80	$\dot{V}_A := (-\rho_A)^{-1} \cdot -k_{xA}^c \cdot A_{yzA} \cdot (D_{N,A} \star p_N)$	volumetric flow	macroscopic

no	equation	${f documentation}$	layer
81	$\hat{n}^c{}_{A,S} := \dot{V}_A \cdot c_{A,S}$	convective mass flow in an arc	macroscopic
82	$\dot{n}^c{}_{N,S} := F_{N,A} \star \hat{n}^c{}_{A,S}$	accumulation due to convective mass flow	macroscopic
83	$n^t{}_N := I_S \star n_{N,S}$	total amount	macroscopic
84	$x_{N,S} := (n^t{}_N)^{-1} \cdot n_{N,S}$	concentration mole fraction	macroscopic
85	$\hat{n}^d{}_{A,S} := A_{yzA} \cdot \left(- k_x^{d,Fick}{}_{A,S} \right) \cdot \left(D_{N,A} \star c_{N,S} \right)$	diffusional mass flow in arc	macroscopic
86	$\mu^{o}_{N,S} := \text{Instantiate}(\mu_{N,S}, \#)$	standard chemical potential	material
88	$\mu_{N,S} := \mu^{o}_{N,S} + R_{N} \cdot T_{N} \cdot ln(\underline{x}_{N,S})$	chemical potential standard model with mole fraction	material
89	$\hat{n}^{d}_{A,S} := A_{yzA} \cdot (-k_{xA,S}^{d}) \cdot (D_{N,A} \star \mu_{N,S})$	diffusional mass flow in arc	macroscopic
90	$\left \dot{n}^d{}_{N,S} := F_{N,A} \star \hat{n}^d{}_{A,S} \right $	accumulation due to diffusional mass transfer	macroscopic
93	$h_{AA,S} := I_{N,A} \star h_{N,S}$	partial molar enthalpies of transport system	material
95	$\hat{H}^c{}_A := I_S \star (_h_{A,S} . \hat{n}^c{}_{A,S})$	enthalpy flow due to convective mass flow	macroscopic
96	$\hat{H}^d{}_A := I_S \star \left(_h_{A,S} . \hat{n}^d{}_{A,S} \right)$	enthalpy flow due to diffusive mass flow	macroscopic
97	$\dot{H}^c{}_N := F_{N,A} \star \hat{H}^c{}_A$	enthalpy accumulation due to convective mass flow	macroscopic
98	$\dot{H}^d{}_N := F_{N,A} \star \hat{H}^d{}_A$	enthalpy accumulation due to diffusive mass flow	macroscopic
99	$T_{N,K} := T_N \cdot P_{N,K}$	temparature of the nodes with reactions	reactions

no	equation	documentation	layer
100	$E_{aN,K} := \operatorname{Instantiate}(R_N . T_{N,K}, \#)$	Arrhenius activation energy	reactions
110	$c^n_{N,S} := \text{Instantiate}(_c_{N,S}, \#)$	norming concentration used in the def- inition of the species interaction proba- bility	reactions
112	$\bar{n}_{N,S} := (c^n{}_{N,S})^{-1} \cdot _c_{N,S}$	normed concentration	reactions
113	$\bar{n}_{N,S,K} := P_{N,K} \cdot \bar{n}_{N,S}$	normed concentration – context node and conversion	reactions
115	$\phi_{N,K} := \prod_{S} \bar{n}_{N,S,K}(N_{S,K})$	probability for the species to meet to undergo reaction	reactions
118	$K^{o}_{K} := \operatorname{Instantiate}(I_{S} \star \left(P_{N,K} \star \left(\left(t\right)^{-1} \cdot \left(V_{N}\right)^{-1} \cdot n_{N,S}\right)\right), \#)$	Arrhenius frequency factor – a strange construction	reactions
119	$K_{N,K} := K^o_K \cdot exp((-E_{aN,K}) \cdot (R_N \cdot T_{N,K})^{-1})$	reaction"constant	reactions
120	$\tilde{n}_{N,S} := V_N \cdot (N_{S,K} \star (K_{N,K} \cdot \phi_{N,K}))$	production term for differential component mass balance	reactions
122	$\dot{n}_{N,S} := \~_{n_{N,S}}$	production term	macroscopic
123	$\dot{n}_{N,S} := \dot{n}^c{}_{N,S} + \dot{n}^d{}_{N,S} + \dot{n}_{N,S}$	differentional species balance	macroscopic
125	$\hat{w}_A := \operatorname{Instantiate}(\hat{H}^c{}_A, \#)$	just an numerical work flow term – as a starter	macroscopic
126	$\dot{w}_N := F_{N,A} \star \hat{w}_A$	enthalpy accumulation due to work flows	macroscopic
127	$\dot{H}_N := \dot{H}^c{}_N + \dot{H}^d{}_N + \dot{q}_N + \dot{w}_N$	differential enthalpy balance	macroscopic
128	$H_N := \int_{t^o}^{t^e} \dot{H}_N \ dt + H^o{}_N$	Enthalpy	macroscopic

no	equation	documentation	layer
129	$n_{N,S} := \int_{t^o}^{t^e} \dot{n}_{N,S} \ dt + n^o{}_{N,S}$	fundamental state - molar mass	macroscopic
130	$H^o{}_N := \operatorname{Instantiate}(H_N, \#)$	initial enthalpy	macroscopic
131	$n^o_{N,S} := \text{Instantiate}(n_{N,S}, \#)$	initial species masses	macroscopic
132	$T^o_N := \text{Instantiate}(T_N, \#)$	norming temperature	macroscopic
133	$p^o{}_N := \operatorname{Instantiate}(p_N, \#)$	normed pressure	macroscopic
134	$c^o{}_{N,S} := \operatorname{Instantiate}(c_{N,S}, \#)$	norming concentration	macroscopic
135	$\bar{T}^o{}_N := T_N \cdot (T^o{}_N)^{-1}$	normed temperature	macroscopic
136	$\bar{p}^o{}_N := (p_N)^{-1} \cdot p_N$	normed pressure	macroscopic
137	$\bar{c}^{o}{}_{N,S} := (c^{o}{}_{N,S})^{-1} \cdot c_{N,S}$	normed concentration	macroscopic

14 Interface Link Equation

no	equation	documentation	layer
22	$_\lambda_S := \lambda_S$	interface equation	material -> macro- scopic
60	$_k_{xA}^c := k_{xA}^c$	interface equation	material -> macro- scopic
61	$_k_{yA}^c := k_{yA}^c$	interface equation	material -> macro- scopic
62	$_k_{zA}^c := k_{zA}^c$	interface equation	material -> macro- scopic
63	$_k_{xA,S}^d := k_{xA,S}^d$	interface equation	material -> macro- scopic
64	$_k_x^{d,Fick}{}_{A,S} := k_x^{d,Fick}{}_{A,S}$	interface equation	material -> macro- scopic
65	$_{-}k_{y}^{d,Fick}{}_{A,S}:=k_{y}^{d,Fick}{}_{A,S}$	interface equation	material -> macro- scopic
66	$_k_{yA,S}^d := k_{yA,S}^d$	interface equation	material -> macro- scopic
67	$_k_{zA,S}^d := k_{zA,S}^d$	interface equation	material -> macro- scopic
68	$_k_z^{d,Fick}{}_{A,S} := k_z^{d,Fick}{}_{A,S}$	interface equation	material -> macro- scopic
69	$_k_{xA}^q := k_{xA}^q$	interface equation	material -> macro- scopic

no	equation	documentation	layer
70	$_k_{yA}^q := k_{yA}^q$	interface equation	material -> macro- scopic
71	$_k_{zA}^q := k_{zA}^q$	interface equation	material -> macro- scopic
77	$_ ho_N := ho_N$	interface equation	material -> macro- scopic
79	$_ ho_A := ho_A$	interface equation	material -> macro- scopic
87	$_{-}x_{N,S} := x_{N,S}$	interface equation	macroscopic -> material
92	$_h_{N,S} := h_{N,S}$	interface equation	material -> macro- scopic
94	$_h_{A,S} := h_{AA,S}$	interface equation	material -> macro- scopic
103	$_{E^{a}_{N,K}} := E_{aN,K}$	interface equation	reactions -> macroscopic
106	$N_{S,K} := N_{S,K}$	interface equation	reactions -> macroscopic
107	$_{-}T_{N,K}:=T_{N,K}$	interface equation	reactions -> macroscopic
109	$_c_{N,S} := c_{N,S}$	interface equation	macroscopic -> reactions
121	$_{\tilde{n}_{N,S}}:=\tilde{n}_{N,S}$	interface equation	reactions -> macroscopic

no	equation	documentation	layer
138	$ar{p}_N := ar{p}^o{}_N$	interface equation	macroscopic -> control
139	$oxedsymbol{igsqrt} ar{ar{T}}_N := ar{T}^o{}_N$	interface equation	macroscopic -> control
140	$ar{c}_{N,S} := ar{c}^o{}_{N,S}$	interface equation	macroscopic -> control