Green's function methods in quantum chemistry

Pierre-François LOOS

Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France.

ISTPC 2024

Today's program

Charged excitations

- One-shot $GW(G_0W_0)$
- Partially self-consistent eigenvalue GW (evGW)
- Quasiparticle self-consistent GW (qsGW)
- Other self-energies (GF2, SOSEX, T-matrix, etc)

Neutral excitations

- Random-phase approximation (RPA)
- Configuration interaction with singles (CIS)
- Time-dependent Hartree-Fock (TDHF) or RPA with exchange (RPAx)
- Time-dependent density-functional theory (TDDFT)
- Bethe-Salpeter equation (BSE) formalism

Correlation energy

- Plasmon (or trace) formula
- Galitski-Migdal formulation
- Adiabatic connection fluctuation-dissipation theorem (ACFDT)

Fundamental and optical gaps

Optical gap

$$\underbrace{E_{\rm g}^{\rm KS}}_{\rm KS \, gap} = \epsilon_{\rm LUMO}^{\rm KS} - \epsilon_{\rm HOMO}^{\rm KS} \ll \underbrace{E_{\rm g}^{\rm GW}}_{\rm GW \, gap} = \epsilon_{\rm LUMO}^{\rm GW} - \epsilon_{\rm HOMO}^{\rm GW} \tag{1}$$

$$\underbrace{E_{g}^{\text{opt}}}_{g} = E_{1}^{N} - E_{0}^{N} = \underbrace{E_{g}^{\text{fund}}}_{g} + \underbrace{E_{B}}_{excitonic \text{ effect}}$$
optical gap
$$\underbrace{E_{g}^{\text{opt}}}_{g} = \underbrace{E_{g}^{\text{fundamental gap}}}_{g} + \underbrace{E_{B}}_{excitonic \text{ effect}}$$

- Motivations
- Context
- Charged excitations
- Meutral excitations
- Correlation energy

Löwdin partitioning technique

Folding or dressing process

$$\underbrace{\boldsymbol{H} \cdot \boldsymbol{c} = \boldsymbol{\omega} \, \boldsymbol{c}}_{\text{A large linear system with N solutions...}} \Rightarrow \begin{pmatrix} \widehat{\boldsymbol{H}}_0 & \boldsymbol{h}^\mathsf{T} \\ \boldsymbol{h} & \underbrace{\boldsymbol{H}}_1 \\ N_1 \times N_1 \end{pmatrix} \cdot \begin{pmatrix} \boldsymbol{c}_0 \\ \boldsymbol{c}_1 \end{pmatrix} = \boldsymbol{\omega} \begin{pmatrix} \boldsymbol{c}_0 \\ \boldsymbol{c}_1 \end{pmatrix} \qquad N = N_0 + N_1 \quad (3)$$

Row #2:
$$\mathbf{h} \cdot \mathbf{c}_0 + \mathbf{H}_1 \cdot \mathbf{c}_1 = \mathbf{\omega} \mathbf{c}_1$$
 $\Rightarrow \mathbf{c}_1 = (\mathbf{\omega} \mathbf{1} - \mathbf{H}_1)^{-1} \cdot \mathbf{h} \cdot \mathbf{c}_0$ (4)

Row #1:
$$H_0 \cdot c_0 + h^{\mathsf{T}} \cdot c_1 = \omega c_0$$
 \Rightarrow $\tilde{H}_0(\omega) \cdot c_0 = \omega c_0$ (5)

A smaller non-linear system with N solutions...

$$\underbrace{\tilde{\boldsymbol{H}}_{0}(\boldsymbol{\omega})}_{\text{Effective Hamitonian}} = \boldsymbol{H}_{0} + \underbrace{\boldsymbol{h}^{\mathsf{T}} \cdot (\boldsymbol{\omega} \, \mathbf{1} - \boldsymbol{H}_{1})^{-1} \cdot \boldsymbol{h}}_{\text{Self-Energy } \boldsymbol{\Sigma}(\boldsymbol{\omega})}$$

Static approx. (e.g.
$$\omega = 0$$
):
$$\underline{\tilde{H}_0(\omega = 0)} = H_0 - \underline{h^{\mathsf{T}} \cdot H_1^{-1} \cdot h}$$
 (7)

A smaller linear system with N_0 solutions... approximations possible...

(6)

Green's Function

Many-Body Green's Function

$$\left| \left(\omega \mathbf{1} - \mathbf{H} \right) \cdot \mathbf{G} = \mathbf{1} \right| \tag{8}$$

Dyson equation

$$\tilde{\boldsymbol{H}}_{0}(\boldsymbol{\omega}) \cdot \boldsymbol{c}_{0} = \boldsymbol{\omega} \boldsymbol{c}_{0} \quad \Rightarrow \quad \left[\boldsymbol{H}_{0} + \boldsymbol{\Sigma}(\boldsymbol{\omega})\right] \cdot \boldsymbol{c}_{0} = \boldsymbol{\omega} \boldsymbol{c}_{0} \quad \Rightarrow \quad \underbrace{\left[\boldsymbol{\omega} \boldsymbol{1} - \boldsymbol{H}_{0} - \boldsymbol{\Sigma}(\boldsymbol{\omega})\right]}_{\boldsymbol{G}^{-1}(\boldsymbol{\omega})} \cdot \boldsymbol{c}_{0} = \boldsymbol{0} \tag{9}$$

$$G^{-1}(\omega) = \underbrace{\omega \mathbf{1} - H_0}_{G_0^{-1}(\omega)} - \Sigma(\omega) \quad \Rightarrow \quad G^{-1}(\omega) = G_0^{-1}(\omega) - \Sigma(\omega)$$
(10)

$$\Rightarrow \left| \mathbf{G}(\boldsymbol{\omega}) = \mathbf{G}_0(\boldsymbol{\omega}) + \mathbf{G}_0(\boldsymbol{\omega}) \cdot \mathbf{\Sigma}(\boldsymbol{\omega}) \cdot \mathbf{G}(\boldsymbol{\omega}) \right| \tag{11}$$

$$\Rightarrow \quad \boldsymbol{G}(\boldsymbol{\omega}) = \left[\mathbf{1} - \boldsymbol{G}_0(\boldsymbol{\omega}) \cdot \boldsymbol{\Sigma}(\boldsymbol{\omega})\right]^{-1} \boldsymbol{G}_0(\boldsymbol{\omega}) \tag{12}$$

Non-Interacting Green's Function

Matrix representation

$$H_0 \cdot c = c \cdot E \quad \Rightarrow \quad H_0 \cdot \underbrace{c \cdot c^{\dagger}}_{1} = c_0 \cdot E \cdot c^{\dagger} \quad \Rightarrow \quad H_0 = c \cdot E \cdot c^{\dagger}$$
 (13)

$$\omega \mathbf{1} - H_0 = \mathbf{c} \cdot (\omega \mathbf{1} - \mathbf{E}) \cdot \mathbf{c}^{\dagger} \quad \Rightarrow \quad \underbrace{(\omega \mathbf{1} - H_0)^{-1}}_{\mathbf{G}_0} = \mathbf{c} \cdot (\omega \mathbf{1} - \mathbf{E})^{-1} \cdot \mathbf{c}^{\dagger}$$
(14)

$$G_0 = \mathbf{c} \cdot (\boldsymbol{\omega} \mathbf{1} - \mathbf{E})^{-1} \cdot \mathbf{c}^{\dagger} \quad \Rightarrow \quad (G_0)_{pq} = \sum_r \frac{c_{pr} c_{qr}^*}{\boldsymbol{\omega} - E_r}$$
 (15)

Hartree-Fock Green's function

$$(G_{HF})_{pq} = \sum_{r} \frac{c_{pr} c_{qr}^{*}}{\omega - \epsilon_{r}^{HF}} = \underbrace{\sum_{i} \frac{c_{pi} c_{qi}^{*}}{\omega - \epsilon_{i}^{HF}}}_{\text{removal}} + \underbrace{\sum_{a} \frac{c_{pa} c_{qa}^{*}}{\omega - \epsilon_{a}^{HF}}}_{\text{addition}}$$
(16)

Solving Dyson's Equation

We're looking for the poles of $G(\omega)$:

$$|\mathbf{G}^{-1}(\boldsymbol{\omega}) = \mathbf{G}_0^{-1}(\boldsymbol{\omega}) - \boldsymbol{\Sigma}(\boldsymbol{\omega})| \quad \Rightarrow \quad \mathbf{G}_0^{-1}(\boldsymbol{\omega}) - \boldsymbol{\Sigma}(\boldsymbol{\omega}) = \mathbf{0} \quad \Rightarrow \quad \det[\boldsymbol{\omega}\mathbf{1} - \boldsymbol{\epsilon} - \boldsymbol{\Sigma}(\boldsymbol{\omega})] = 0$$
 (17)

Diagonal approximation

$$\det[\boldsymbol{\omega}\mathbf{1} - \boldsymbol{\epsilon} - \boldsymbol{\Sigma}(\boldsymbol{\omega})] = 0 \quad \Rightarrow \quad \boldsymbol{\omega} - \boldsymbol{\epsilon}_p^{\mathsf{HF}} - \boldsymbol{\Sigma}_{pp}(\boldsymbol{\omega}) = 0 \tag{18}$$

Linearization

$$\Sigma_{pp}(\omega) \approx \Sigma_{pp}(\omega = \epsilon_p^{\mathsf{HF}}) + \left(\omega - \epsilon_p^{\mathsf{HF}}\right) \left. \frac{\partial \Sigma_{pp}(\omega)}{\partial \omega} \right|_{\omega = \epsilon^{\mathsf{HF}}} \quad \Rightarrow \quad \epsilon_p = \epsilon_p^{\mathsf{HF}} + Z_p \Sigma_{pp}(\omega) \tag{19}$$

Renormalization Factor:
$$Z_p = \frac{1}{1 - \frac{\partial \Sigma_{pp}(\omega)}{\partial \omega} \Big|_{\omega = \epsilon_p^{\text{HF}}}}$$
 (20)

Spectral Function

The following decomposition of the self-energy

$$\Sigma(\omega) = \operatorname{Re}\Sigma(\omega) + i \operatorname{Im}\Sigma(\omega) \tag{21}$$

leads to the following expression for the spectral function (related to photoemission spectra)

$$A(\omega) = -\frac{1}{\pi} \operatorname{Im} |G(\omega)|$$

$$= -\frac{1}{\pi} \frac{|\operatorname{Im} \Sigma(\omega)|}{[\omega \mathbf{1} - \epsilon - \operatorname{Re} \Sigma(\omega)]^2 + [\operatorname{Im} \Sigma(\omega)]^2}$$
(22)

- Motivations
- 2 Context
- Charged excitations
- Meutral excitations
- Correlation energy

Assumptions & Notations

Let's talk about notations

- We consider closed-shell systems (2 opposite-spin electrons per orbital)
- We only deal with singlet excited states but triplets can also be obtained
- Number of occupied orbitals O
- Number of vacant orbitals V
- Total number of orbitals N = O + V
- $\phi_p(\mathbf{r})$ is a (real) spatial orbital
- *i*, *j*, *k*, *l* are occupied orbitals
- a, b, c, d are vacant orbitals
- p, q, r, s are arbitrary (occupied or vacant) orbitals
- μ , ν , λ , σ are basis function indexes
- *m* indexes the *OV* single excitations ($i \rightarrow a$)

Useful papers/programs

- molGW: Bruneval et al. Comp. Phys. Comm. 208 (2016) 149
- Turbomole: van Setten et al. JCTC 9 (2013) 232; Kaplan et al. JCTC 12 (2016) 2528
- Fiesta: Blase et al. Chem. Soc. Rev. 47 (2018) 1022
- FHI-AIMS: Caruso et al. PRB 86 (2012) 081102
- Reviews & Books:
 - Reining, WIREs Comput Mol Sci 2017, e1344. doi: 10.1002/wcms.1344
 - Onida et al. Rev. Mod. Phys. 74 (2002) 601
 - Blase et al. Chem. Soc. Rev. , 47 (2018) 1022
 - Golze et al. Front. Chem. 7 (2019) 377
 - Blase et al. JPCL 11 (2020) 7371
 - Martin, Reining & Ceperley Interacting Electrons (Cambridge University Press)
- GW100: IPs for a set of 100 molecules. van Setten et al. JCTC 11 (2015) 5665 (http://gw100.wordpress.com)

Hedin's pentagon

Hedin, Phys Rev 139 (1965) A796

What can you calculate with *GW*?

- Ionization potentials (IPs) given by occupied MO energies
- Electron affinities (EAs) given by virtual MO energies
- Fundamental (HOMO-LUMO) gap (or band gap in solids)
- Correlation and total energies

What can you calculate with BSE?

- Singlet and triplet optical excitations (vertical absorption energies)
- Oscillator strengths (absorption intensities)
- Correlation and total energies

The MBPT chain of actions

Blase et al. JPCL 11 (2020) 7371

Photochemistry: Jablonski diagram

Ground state S_0

Photochemistry: absorption, emission, and 0-0

Vertical excitation energies cannot be computed experimentally!!!

- Motivations
- Context
- Charged excitations
- Meutral excitations
- Correlation energy

Green's function and dynamical screening

One-body Green's function

$$G(\mathbf{r}_{1}, \mathbf{r}_{2}; \boldsymbol{\omega}) = \underbrace{\sum_{i} \frac{\phi_{i}(\mathbf{r}_{1})\phi_{i}(\mathbf{r}_{2})}{\omega - \varepsilon_{i} - i\eta}}_{\text{removal part = IPs}} + \underbrace{\sum_{a} \frac{\phi_{a}(\mathbf{r}_{1})\phi_{a}(\mathbf{r}_{2})}{\omega - \varepsilon_{a} + i\eta}}_{\text{addition part = EAs}}$$
(23)

Polarizability

$$P(\mathbf{r}_1, \mathbf{r}_2; \boldsymbol{\omega}) = -\frac{i}{\pi} \int G(\mathbf{r}_1, \mathbf{r}_2; \boldsymbol{\omega} + \boldsymbol{\omega}') G(\mathbf{r}_1, \mathbf{r}_2; \boldsymbol{\omega}') d\boldsymbol{\omega}'$$
 (24)

Dielectric function and dynamically-screened Coulomb potential

$$\epsilon(\mathbf{r}_1, \mathbf{r}_2; \boldsymbol{\omega}) = \delta(\mathbf{r}_1 - \mathbf{r}_2) - \int \frac{P(\mathbf{r}_1, \mathbf{r}_3; \boldsymbol{\omega})}{|\mathbf{r}_2 - \mathbf{r}_3|} d\mathbf{r}_3$$
 (25)

$$W(\mathbf{r}_1, \mathbf{r}_2; \boldsymbol{\omega}) = \int \frac{\epsilon^{-1}(\mathbf{r}_1, \mathbf{r}_3; \boldsymbol{\omega})}{|\mathbf{r}_2 - \mathbf{r}_3|} d\mathbf{r}_3$$
 (26)

Dynamical screening in the orbital basis

Spectral representation of W

$$W_{pq,rs}(\omega) = \iint \phi_{p}(\mathbf{r}_{1})\phi_{q}(\mathbf{r}_{1})W(\mathbf{r}_{1},\mathbf{r}_{2};\omega)\phi_{r}(\mathbf{r}_{2})\phi_{s}(\mathbf{r}_{2})d\mathbf{r}_{1}d\mathbf{r}_{2}$$

$$= \underbrace{(pq|rs)}_{\text{(static) exchange part}} + 2\underbrace{\sum_{m}(pq|m)(rs|m)}_{\text{(dynamical) correlation part }W_{pq,rs}^{c}(\omega)}$$

$$(27)$$

Electron repulsion integrals (ERIs)

$$(pq|rs) = \iint \frac{\phi_p(\mathbf{r}_1)\phi_q(\mathbf{r}_1)\phi_r(\mathbf{r}_2)\phi_s(\mathbf{r}_2)}{|\mathbf{r}_1 - \mathbf{r}_2|} d\mathbf{r}_1 d\mathbf{r}_2$$
(28)

Screened ERIs (or spectral weights)

$$(pq|m) = \sum_{ia} (pq|ia) (\mathbf{X}_m^{\text{RPA}} + \mathbf{Y}_m^{\text{RPA}})_{ia}$$
 (29)

Computation of the dynamical screening

Direct (ph-)RPA calculation (pseudo-hermitian linear problem)

$$\begin{pmatrix} \mathbf{A}^{\text{RPA}} & \mathbf{B}^{\text{RPA}} \\ -\mathbf{B}^{\text{RPA}} & -\mathbf{A}^{\text{RPA}} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{X}_{m}^{\text{RPA}} \\ \mathbf{Y}_{m}^{\text{RPA}} \end{pmatrix} = \Omega_{m}^{\text{RPA}} \begin{pmatrix} \mathbf{X}_{m}^{\text{RPA}} \\ \mathbf{Y}_{m}^{\text{RPA}} \end{pmatrix}$$
(30)

For singlet states:
$$A_{ia,jb}^{\text{RPA}} = \delta_{ij}\delta_{ab}(\epsilon_a - \epsilon_i) + 2(ia|bj)$$
 $B_{ia,jb}^{\text{RPA}} = 2(ia|jb)$ (31)

Non-hermitian to hermitian

$$(\mathbf{A} - \mathbf{B})^{1/2} \cdot (\mathbf{A} + \mathbf{B}) \cdot (\mathbf{A} - \mathbf{B})^{1/2} \cdot \mathbf{Z}_m = \Omega_m^2 \mathbf{Z}_m$$
(32)

$$(\boldsymbol{X}_m + \boldsymbol{Y}_m) = \Omega_m^{-1/2} (\boldsymbol{A} - \boldsymbol{B})^{+1/2} \cdot \boldsymbol{Z}_m$$
(33)

$$(\boldsymbol{X}_m - \boldsymbol{Y}_m) = \Omega_m^{+1/2} (\boldsymbol{A} - \boldsymbol{B})^{-1/2} \cdot \boldsymbol{Z}_m$$
(34)

Tamm-Dancoff approximation (TDA)

$$\boldsymbol{B} = \boldsymbol{0} \quad \Rightarrow \quad \boldsymbol{A} \cdot \boldsymbol{X}_m = \Omega_m^{\text{TDA}} \boldsymbol{X}_m \tag{35}$$

The self-energy

GW Self-energy

$$\underbrace{\sum^{\mathsf{xc}}(\mathbf{r}_{1}, \mathbf{r}_{2}; \boldsymbol{\omega})}_{GW \text{ self-energy}} = \underbrace{\sum^{\mathsf{x}}(\mathbf{r}_{1}, \mathbf{r}_{2})}_{\text{exchange}} + \underbrace{\sum^{\mathsf{c}}(\mathbf{r}_{1}, \mathbf{r}_{2}; \boldsymbol{\omega})}_{\text{correlation}} = \frac{i}{2\pi} \int G(\mathbf{r}_{1}, \mathbf{r}_{2}; \boldsymbol{\omega} + \boldsymbol{\omega}') W(\mathbf{r}_{1}, \mathbf{r}_{2}; \boldsymbol{\omega}') e^{i\eta \omega'} d\omega'$$
(36)

Exchange part of the (static) self-energy

$$\sum_{pq}^{\mathbf{x}} = -\sum_{i} (pi|iq) \tag{37}$$

Correlation part of the (dynamical) self-energy

$$\sum_{pq}^{c}(\omega) = 2\sum_{im} \frac{(pi|m)(qi|m)}{\omega - \epsilon_{i} + \Omega_{m}^{RPA} - i\eta} + 2\sum_{am} \frac{(pa|m)(qa|m)}{\omega - \epsilon_{a} - \Omega_{m}^{RPA} + i\eta}$$
(38)

Quasiparticle equation

Dyson equation

$$[G(\mathbf{r}_{1}, \mathbf{r}_{2}; \boldsymbol{\omega})]^{-1} = \underbrace{[G_{\mathrm{KS}}(\mathbf{r}_{1}, \mathbf{r}_{2}; \boldsymbol{\omega})]^{-1}}_{\mathrm{KS \ Green's \ function}} + \underbrace{\Sigma^{\mathrm{xc}}(\mathbf{r}_{1}, \mathbf{r}_{2}; \boldsymbol{\omega})}_{\mathrm{KS \ potential}} - \underbrace{\upsilon^{\mathrm{xc}}(\mathbf{r}_{1})}_{\mathrm{KS \ potential}} \delta(\mathbf{r}_{1} - \mathbf{r}_{2})$$
(39)

Non-linear quasiparticle (QP) equation

$$\omega = \epsilon_p^{\text{KS}} + \sum_{pp}^{\text{xc}}(\omega) - V_p^{\text{xc}} \quad \text{with} \quad V_p^{\text{xc}} = \int \phi_p(\mathbf{r}) v^{\text{xc}}(\mathbf{r}) \phi_p(\mathbf{r}) d\mathbf{r}$$
 (40)

Linearized QP equation

$$\left. \frac{\mathbf{\Sigma}_{pp}^{\mathsf{xc}}(\omega)}{\mathbf{E}_{pp}^{\mathsf{xc}}(\varepsilon_{p}^{\mathsf{KS}}) + (\omega - \varepsilon_{p}^{\mathsf{KS}})}{\mathbf{E}_{pp}^{\mathsf{xc}}(\omega)} \right|_{\omega = \varepsilon_{p}^{\mathsf{KS}}} \Rightarrow \left. \mathbf{\varepsilon}_{p}^{\mathsf{GW}} = \varepsilon_{p}^{\mathsf{KS}} + Z_{p}[\mathbf{\Sigma}_{pp}^{\mathsf{xc}}(\varepsilon_{p}^{\mathsf{KS}}) - V_{p}^{\mathsf{xc}}] \right.$$
(41)

$$Z_{p} = \left[1 - \frac{\partial \Sigma_{pp}^{xc}(\omega)}{\partial \omega}\right]_{\omega = c^{KS}}$$
 with $0 \le Z_{p} \le 1$ (42)

renormalization factor

Solutions of the non-linear QP equation: evGW@HF/6-31G for H_2 at R=1 bohr

Loos et al, JCTC 14 (2018) 3071

Véril et al, JCTC 14 (2018) 5220

GW flavours

Acronyms

- perturbative GW, one-shot GW, or G_0W_0
- evGW or eigenvalue-only (partially) self-consistent GW
- qsGW or quasiparticle (partially) self-consistent GW
- scGW or (fully) self-consistent GW

Perturbative GW with linearized solution

```
procedure G_0W_0LIN@KS
     Perform KS calculation to get \epsilon^{KS}, c^{KS}, and V^{xc}
     AO to MO transformation for ERIs: (\mu\nu|\lambda\sigma) \xrightarrow{c^{KS}} (pa|rs)
     Construct RPA matrices A^{RPA} and B^{RPA} from \epsilon^{KS} and (pq|rs)
     Compute RPA eigenvalues \Omega^{RPA} and eigenvectors X^{RPA} + Y^{RPA}
                                                                                                                       \triangleright This is a \mathcal{O}(N^6) step!
     Form screened ERIs (pg m)
     for p = 1, \ldots, N do
          Compute diagonal of the self-energy \sum_{n=0}^{c} (\omega) at \omega = \epsilon_{n}^{KS}
          Compute renormalization factors Z_n
          Evaluate \epsilon_p^{G_0W_0} = \epsilon_p^{\text{KS}} + Z_p \Big\{ \text{Re}[\frac{\Sigma_{pp}^c}{\Sigma_{pp}^c}(\epsilon_p^{\text{KS}})] - V_p^{\text{xc}} \Big\}
     end for
end procedure
```

For contour deformation technique, see, for example, Duchemin & Blase, JCTC 16 (2020) 1742

Motivations Context Charged excitations Neutral excitations Correlation energy

Example from QuAcK (Ne/cc-pVDZ)

0	ne-shot	GOWO calculation		
\e	r#{Fram	e_HF (eV) l	Sig_c (eV)obedure G_0 VZ_1 IIN e_QP (eV)	
	1	-891.5915 0 4	18.364427 erform 0.8595041 Cula 1.875.807142	ĪÉ
	2 1	-52.218791 I	4.035435 0.956042 -48.360659	
	e3ih{fr	-22.647397 I	1.832273 AO to 0.965238 (storm-20.878718)	Į I
	4\begi	-22.647397 I	1.832273 0.965238 -20.878718	1
	5 I	-22.647397	1.832273 0.965238 -20.878718	
	6 I	46.107752	-0.820124 Compu0.982086 Figen 45.302383	
	7 I	46.107752 I	-0.820124 0.982086 45.302383	
	8 1	46.107752	-0.820124 O'TH S 0.982086 EKIS 45.302383	
	9 I	54.167043 I	-1.061182 or n = 0.985754 N d o 53.121001	
	10	141.402085 I	-2.617768 0.898641 139.049684	
	11 I	141.402085 I	-2.617768 Coro.8986410 agon 139.049684	β¢
	12 I	141.402085 I	-2.617768 0.898641 139.049684	١.
	13 I	141.402085	-2.617768 0.898641 139.049684	10
	14 I	141.402085 I	-2.617768 0.898641 To Wo 139.049684	1
	15 I	282.545807	-3.872629 0.944019 278.890026	
	GG	0W0 HOMO ener	rgy: -20.878718 eV	
	G	0W0 LUMO ener		
	\end G	0W0 HOMO-LUMO gap	: 66.181102 eV	
Х Ж	RPA@GØW	0 total energy	: E128.714946 du deformation technique	, s
		ocrrelation ener	ay: -0.226138 au	
	GM@GØWØ	total energy	: -128.887856 au	
	GM@GØWØ	correlation ener	av: -0.399048 au	

https://github.com/pfloos/QuAcK

Perturbative GW with graphical solution

```
procedure G_0W_0 GRAPH@KS

Perform KS calculation to get \epsilon^{KS}, \epsilon^{KS}, and \mathbf{V}^{xc}

AO to MO transformation for ERIs: (\mu\nu|\lambda\sigma)\stackrel{c^{KS}}{\rightarrow}(pq|rs)
Construct RPA matrices \mathbf{A}^{RPA} and \mathbf{B}^{RPA} from \epsilon^{KS} and (pq|rs)
Compute RPA eigenvalues \mathbf{\Omega}^{RPA} and eigenvectors \mathbf{X}^{RPA} + \mathbf{Y}^{RPA}

Form screened ERIs (pq|m)

for p = 1, \dots, N do

Compute diagonal of the self-energy \mathbf{\Sigma}^{\mathbf{c}}_{pp}(\omega)

Solve \mathbf{\omega} = \epsilon^{KS}_p + \text{Re}[\mathbf{\Sigma}^{\mathbf{c}}_{pp}(\omega)] - V^{xc}_p to get \epsilon^{G_0W_0}_p via Newton's method end for end procedure
```

Newton's method

 $https://en.wikipedia.org/wiki/Newton\%27s_method$

Partially self-consistent eigenvalue GW

```
procedure EVGW@KS
     Perform KS calculation to get \epsilon^{KS}, c^{KS}, and V^{xc}
     AO to MO transformation for ERIs: (\mu\nu|\lambda\sigma) \stackrel{c^{KS}}{\rightarrow} (pa|rs)
     Set \epsilon^{G_{-1}W_{-1}} = \epsilon^{KS} and n = 0
     while \max |\Delta| > \tau \, \mathbf{do}
           Construct RPA matrices A^{RPA} and B^{RPA} from \epsilon^{G_{n-1}W_{n-1}} and (pq|rs)
           Compute RPA eigenvalues \Omega^{RPA} and eigenvectors X^{RPA} + Y^{RPA}
                                                                                                                          \triangleright This is a \mathcal{O}(N^6) step!
          Form screened ERIs (pq|m)
          for p = 1, \ldots, N do
                Compute diagonal of the self-energy \sum_{nn}^{c}(\omega)
                Solve \omega = \epsilon_n^{\text{KS}} + \text{Re}[\Sigma_{nn}^{\text{c}}(\omega)] - V_n^{\text{xc}} to get \epsilon_n^{G_n W_n}
           end for
           \Lambda = \epsilon^{G_n W_n} - \epsilon^{G_{n-1} W_{n-1}}
          n \leftarrow n + 1
     end while
end procedure
```

Motivations Context Charged excitations Neutral excitations Correlation energy

Example from QuAcK (Ne/cc-pVDZ)

https://github.com/pfloos/QuAcK

Quasiparticle self-consistent GW (qsGW)

```
procedure qsGW
      Perform HF calculation to get \epsilon^{\text{HF}} and c^{\text{HF}} (optional)
      Set \epsilon^{G_{-1}W_{-1}} = \epsilon^{HF}, \epsilon^{G_{-1}W_{-1}} = \epsilon^{HF} and n = 0
      while \max |\Delta| > \tau \ \mathbf{do}
            AO to MO transformation for ERIs: (\mu\nu|\lambda\sigma) \stackrel{c^G_{n-1}W_{n-1}}{\rightarrow} (pa|rs)
                                                                                                                                            \triangleright This is a \mathcal{O}(N^5) step!
            Construct RPA matrices A^{RPA} and B^{RPA} from \epsilon^{G_{n-1}W_{n-1}} and (pq|rs)
            Compute RPA eigenvalues \Omega^{RPA} and eigenvectors X^{RPA} + Y^{RPA}
                                                                                                                                             \triangleright This is a \mathcal{O}(N^6) step!
            Form screened ERIs (pq|m)
            Evaluate \Sigma^{c}(\epsilon^{G_{n-1}W_{n-1}}) and form \tilde{\Sigma}^{c} \leftarrow \left[\Sigma^{c}(\epsilon^{G_{n-1}W_{n-1}})^{\dagger} + \Sigma^{c}(\epsilon^{G_{n-1}W_{n-1}})\right]/2
            Form \mathbf{F}^{HF} from \mathbf{c}^{G_{n-1}W_{n-1}} and then \tilde{\mathbf{F}} = \tilde{\mathbf{F}}^{HF} + \tilde{\Sigma}^{c}
            Diagonalize \tilde{F} to get \epsilon^{G_n W_n} and c^{G_n W_n}
            \Lambda = \epsilon^{G_n W_n} - \epsilon^{G_{n-1} W_{n-1}}
            n \leftarrow n + 1
      end while
end procedure
```

Example from QuAcK (Ne/cc-pVDZ)

		#	e_HF (eV)		Sig_c (eV)			e_QP	(eV)	1
3 -22, 647397 1,855512 0,963520 -21,066156 4 -22, 647397 1,855512 0,963520 -21,066156 5 -22,647397 1,855512 0,963520 -21,066156 6 46,167752 -0,848683 0,88977 45,06733 7 46,167752 -0,848683 0,88977 45,06733 7 46,167752 -0,848683 0,88977 45,06733 9 54,167043 -1,107700 0,94676 52,926600 141,402085 -3,043127 0,776916 138,06900 11 141,402085 -3,043127 0,776916 138,06900 12 141,402085 -3,043127 0,776916 138,06900 12 141,402085 -3,043127 0,776916 138,06900 13 141,402085 -3,043127 0,776916 138,06900 15 282,545800 -3,043127 0,776916 138,06900 15 282,545800 15 282		1	-891.591504	1	18.755754	I	0.853363	-873.6	52325	
4 -22.647397 1.855512 0.963520 -21.066155 5 -22.647397 1.855512 0.963520 -21.066155 6 46.107752 -0.848683 0.989977 45.06735 8 46.107752 -0.848683 0.989977 45.06735 8 46.107752 -0.848683 0.989977 45.06735 9 5-6.167043 -1.102700 0.98676 52.92661 10 141.402085 -3.043127 0.776916 138.06900 11 141.402085 -3.043127 0.776916 138.06900 12 141.402085 -3.043127 0.776916 138.06900 13 141.402085 -3.043127 0.776916 138.06900 14 141.402085 -3.043127 0.776916 138.06900 15 282.545807 -3.943127 0.776916 138.06900 16 10 10 10 10 10 10 10		2	-52.218791	31	4.058060		0.954380	-48.4	05559	
5 -22.647397 1.855512 0.963520 -21.066155 eV 450f total caregy: -121.066156 eV 450f total caregy: -121.066156 eV 450f total caregy: -122.066156 eV 450f total caregy: -1		3 I	-22.647397		1.855512		0.963520	-21.0	66156	
6 46.107752 -0.846683 0.389977 45.96733 8 46.107752 -0.846683 0.389977 45.96733 8 46.107752 -0.846683 0.389977 45.96733 8 46.107752 -0.846683 0.389977 45.96733 9 54.167043 -1.102700 0.398676 52.92666 10 141.402885 -3.043127 0.776916 138.06900. 11 141.402885 -3.043127 0.776916 138.06900. 12 141.402885 -3.043127 0.776916 138.06900. 13 141.402885 -3.043127 0.776916 138.06900. 14 141.402885 -3.043127 0.776916 138.06900. 15 282.545807 -3.998794 0.941677 278.156206 Cteration 16 convergence = 0.00001 qGGH HOMO energy: -21.066155 eV qGGH HOMO-LIMO gap : 66.133699 eV qGGH HOMO-LIMO gap : 66.133699 eV		4 1	-22.647397		1.855512		0.963520	-21.0	66156	
7 46.107752 -0.846683 0.388977 45.06733 8 46.107752 -0.846683 0.388977 45.06733 9 54.167043 -1.102700 0.384676 52.926600 10 141.402085 -3.043127 0.776916 138.06900 11 144.402085 -3.043127 0.776916 138.06900 12 141.402085 -3.043127 0.776916 138.06900 13 141.402085 -3.043127 0.776916 138.06900 14 141.402085 -3.043127 0.776916 138.06900 15 282.545087 -3.93127 0.776916 138.06900 15 282.545087 -3.943127 0.776916 138.06900 16 0.94010000000000000000000000000000000000		5 I	-22.647397	1	1.855512		0.963520	-21.0	66156	
8 46.107752 -0.846683 0.386977 45.06733 9 54.167043 -1.102700 0.386676 52.92666 10 141.462885 -3.043127 0.776916 138.06900.		6 I	46.107752	1	-0.848683		0.980977	45.0	67534	
9 \$4.167043 -1.102700 0.984676 \$2.926660 10 141.402885 -3.043127 0.776916 138.06900 11 141.402885 -3.043127 0.776916 138.06900 12 141.402885 -3.043127 0.776916 138.06900 13 141.402885 -3.043127 0.776916 138.06900 13 141.402885 -3.043127 0.776916 138.06900 15 282.545807 -3.948794 0.941677 278.15620 15 282.545807 -3.998794 0.941677 278.15620 15 282.545807 -2.298794 0.941677 278.15620 15 282.545807 -3.998794 0.941677 278.15620 15 282.545807 -3.998794 0.941677 278.15620 15 282.545807 -3.998794 0.941677 278.15620 15 282.545807 -3.998794 0.941677 278.15620 15 282.545807 -3.998794 0.941677 278.15620 15 282.545807 278.15620 278.		7 1	46.107752	31	-0.848683		0.980977	45.0	67534	
10 141, 402885 -3, 043127 0,776916 138, 06900; 11 141, 402885 -3, 043127 0,776916 138, 06900; 12 141, 402885 -3, 043127 0,776916 138, 06900; 13 141, 402885 -3, 043127 0,776916 138, 06900; 14 141, 402885 -3, 043127 0,776916 138, 06900; 15 282, 545807 -3, 043127 0,776916 138, 06900; 15 282, 545807 -3, 043127 0,41677 278, 156206 Convergence = 0,00001 0,000		8 1	46.107752	51	-0.848683		0.980977	45.0	67534	
11 141.4e2085 -3.043127 0.776916 138.06900. 12 141.4e2085 -3.043127 0.776916 138.06900. 13 141.4e2085 -3.043127 0.776916 138.06900. 14 141.4e2085 -3.043127 0.776916 138.06900. 15 282.545807 -3.998794 0.941677 278.156200 [teration 16		9	54.167043	1	-1.102700		0.984676	52.9	26661	
12 141,402085 -3,043127 0,776916 138,06900; 13 141,402085 -3,043127 0,776916 138,06900; 14 141,402085 -3,043127 0,776916 138,06900; 15 282,545807 -3,98794 0,941677 278,156206 Convergence = 0,00001		10	141.402085		-3.043127		0.776916	138.0	69002	
13 141.402885 -3.043127 0.776916 138.06900; 14 141.402885 -3.043127 0.776916 138.06900; 15 282.545807 -3.998794 0.941677 278.156206; (teration 16		11 I	141.402085	1	-3.043127		0.776916	138.0	69002	
14 141, 462885 -3, 643127 0, 776916 138, 66960; 15 282, 545887 -3, 998794 0, 941677 278, 156286 Starting 16		12	141.402085	1	-3.043127		0.776916	138.0	69002	
15 282.545807 -3.998794 0.941677 278.156206 (terection 16 convergence = 0.00001 qsGN HOMO energy: -21.066156 eV qsGN HLMM energy: 45.067534 eV qsGN HOMO-LIMM gap : 66.133699 eV qsGN total energy: -12.108695 au qsGN exchange energy: -12.108095 au		13 [fram	141.402085	1	-3.043127		0.776916	138.0	69002	
		14 I	141.402085	1	-3.043127		0.776916	138.0	69002	
Convergence = 9.80801 qsGN HOMO energy: -21.866156 eV qsGN LLMO energy: 45.867534 eV qsGN HOMO-LLMO gap : 66.133698 eV qsGN total energy: -128.488468 au qsGN exchange energy: -12.108195 au		15 I	282.545807		-3.998794		0.941677	278.1	56200	
qsGN HOMO energy: -21.066156 eV qsGN LUMO energy: 45.067534 eV qsGN HOMO-LUMO gap : 66.133690 eV qsGN total energy: -128.488468 au qsGN exchange energy: -12.101095 au				0.00001						
450F HDMU energy: -12.1066156 eV 450F HDMU-LIMO gap : 45.067534 eV 450F HDMU-LIMO gap : 66.133699 eV 450F total energy: -122.848868 au 450F exchange energy: -12.10895 au	ì	onvergen	ce =	0.00001						
qsGN LLMO energy: 45.067534 eV qsGN HOMO-LLMO gap : 66.133690 eV qsGN total energy: -128.488468 au qsGN exchange energy: -12.101095 au		q	sGW HOMO	energy:	-21.06	6156 eV				
qsGW total energy: -128.488468 au qsGW exchange energy: -12.101095 au		q	sGW LUMO	energy:	45.06	7534 eV				
qsGW total energy: -128.488468 au qsGW exchange energy: -12.101095 au		q	sGW HOMO-LUMO	gap :	66.13	3690 eV				
qsGW exchange energy: -12.101095 au		and frasG	Witotal	energy:	-128 48	- 8468 au				

Summary	
One-electron energy: Kinetic energy: Potential energy:	-182.4760110151 au 128.2215634186 au -310.6975744337 au
Two-electron energy: Hartree energy: Exchange energy: Correlation energy:	53.9875434022 au 66.0886388591 au -12.1010954570 au -0.4102491313 au
Electronic energy: Nuclear repulsion: qsGW energy:	-128.4884676130 au 0.0000000000 au -128.4884676130 au
Dipole moment (Debye)	Z Tot. 0.000000 0.000000

https://github.com/pfloos/QuAcK

Other self-energies

Second-order Green's function (GF2) [Hirata et al. JCP 147 (2017) 044108]

$$\Sigma_{pq}^{\text{GF2}}(\omega) = \frac{1}{2} \sum_{iab} \frac{\langle iq || ab \rangle \langle ab || ip \rangle}{\omega + \epsilon_i - \epsilon_a - \epsilon_b} + \frac{1}{2} \sum_{ija} \frac{\langle aq || ij \rangle \langle ij || ap \rangle}{\omega + \epsilon_a - \epsilon_j - \epsilon_j}$$
(43)

T-matrix

$$\Sigma_{pq}^{GT}(\omega) = \sum_{im} \frac{\langle pi|\chi_m^{N+2}\rangle \langle qi|\chi_m^{N+2}\rangle}{\omega + \epsilon_i - \Omega_m^{N+2}} + \sum_{am} \frac{\langle pa|\chi_m^{N-2}\rangle \langle qa|\chi_m^{N-2}\rangle}{\omega + \epsilon_i - \Omega_m^{N-2}}$$
(44)

$$\langle pi|\chi_m^{N+2}\rangle = \sum_{c \leq d} \langle pi||cd\rangle X_{cd}^{N+2,m} + \sum_{k \leq l} \langle pi||kl\rangle Y_{kl}^{N+2,m}$$
(45)

$$\langle pa|\chi_m^{N-2}\rangle = \sum_{c < d} \langle pa||cd\rangle X_{cd}^{N-2,m} + \sum_{k < l} \langle pa||kl\rangle Y_{kl}^{N-2,m}$$
 (46)

pp-RPA problem:
$$\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ -\mathbf{B}^{\mathsf{T}} & -\mathbf{C} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{X}_{m}^{N\pm 2} \\ \mathbf{Y}_{m}^{N\pm 2} \end{pmatrix} = \Omega_{m}^{N\pm 2} \begin{pmatrix} \mathbf{X}_{m}^{N\pm 2} \\ \mathbf{Y}_{m}^{N\pm 2} \end{pmatrix} \quad (47)$$

Martin, Reining & Ceperley, Interacting Electrons (Cambridge University Press)

- Motivations
- Context
- Charged excitations
- Meutral excitations
- Correlation energy

Dynamical vs static kernels

A non-linear BSE problem [Strinati, Riv. Nuovo Cimento 11 (1988) 1]

$$\begin{pmatrix} A(\omega) & B(\omega) \\ -B(-\omega) & -A(-\omega) \end{pmatrix} \cdot \begin{pmatrix} X \\ Y \end{pmatrix} = \omega \begin{pmatrix} X \\ Y \end{pmatrix} \quad \text{Hard to solve!}$$
 (48)

Static BSE vs dynamic BSE for HeH+/STO-3G

Dynamical kernels can give you more than static kernels... Sometimes, too much...

Authier & Loos, JCP 153 (2020) 184105 [see also Romaniello et al, JCP 130 (2009) 044108]

TD-DFT and BSE in practice: Casida-like equations

Linear response problem

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ -\mathbf{B} & -\mathbf{A} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{X}_m \\ \mathbf{Y}_m \end{pmatrix} = \mathbf{\Omega}_m \begin{pmatrix} \mathbf{X}_m \\ \mathbf{Y}_m \end{pmatrix}$$

Blue pill: TD-DFT within the adiabatic approximation

$$\mathbf{A}_{ia,jb} = \left(\epsilon_a^{\mathrm{KS}} - \epsilon_i^{\mathrm{KS}}\right) \delta_{ij} \delta_{ab} + 2(ia|bj) + \mathbf{f}_{ia,bj}^{\mathrm{xc}} \qquad \mathbf{B}_{ia,jb} = 2(ia|jb) + \mathbf{f}_{ia,jb}^{\mathrm{xc}} \tag{49}$$

$$f_{ia,bj}^{xc} = \iint \phi_i(\mathbf{r})\phi_a(\mathbf{r}) \frac{\delta^2 E^{xc}}{\delta \rho(\mathbf{r})\delta \rho(\mathbf{r}')} \phi_b(\mathbf{r})\phi_j(\mathbf{r}) d\mathbf{r} d\mathbf{r}'$$
(50)

Red pill: BSE within the static approximation

$$\mathbf{A}_{ia,jb} = \left(\epsilon_a^{GW} - \epsilon_i^{GW}\right) \delta_{ij} \delta_{ab} + 2(ia|bj) - \mathbf{W}_{ij,ba}^{\text{stat}} \qquad \mathbf{B}_{ia,jb} = 2(ia|jb) - \mathbf{W}_{ib,ja}^{\text{stat}}$$

$$\mathbf{W}_{ij,ab}^{\text{stat}} \equiv \mathbf{W}_{ij,ab}(\omega = 0) = (ij|ab) - \mathbf{W}_{ij,ab}^{c}(\omega = 0)$$
(52)

$$\mathbf{W}_{ii,ab}^{\text{stat}} \equiv \mathbf{W}_{ii,ab}(\omega = 0) = (ij|ab) - \mathbf{W}_{ii,ab}^{c}(\omega = 0)$$
 (52)

The bridge between TD-DFT and BSE

TD-DFT	Connection	BSE
One-point density		Two-point Green's function
ho(1)	$\rho(1) = -iG(11^+)$	G(12)
Two-point susceptibility		Four-point susceptibility
$\chi(12) = rac{\partial ho(1)}{\partial U(2)}$	$\chi(12) = -iL(12; 1^+2^+)$	$L(12;34) = \frac{\partial G(13)}{\partial U(42)}$
Two-point kernel		Four-point kerne
$K(12) = v(12) + \frac{\partial V^{xc}(1)}{\partial \rho(2)}$		$i\Xi(1234) = v(13)\delta(12)\delta(34) - \frac{\partial \Sigma^{xc}(12)}{\partial G(34)}$

For dynamical correction within BSE, see, for example, Loos & Blase, JCP 153 (2020) 114120

BSE in a computer

Vertical excitation energies from BSE

procedure BSE@GW

Compute GW quasiparticle energies ϵ_p^{GW} at the G_0W_0 , evGW, or qsGW level

Compute static screening W_{pq,rs}^{stat}

Construct BSE matrices A^{BSE} and B^{BSE} from ϵ_p^{GW} , (pq|rs), and $W_{pq,rs}^{stat}$

Compute lowest eigenvalues Ω_m^{BSE} and eigenvectors $X_m^{\text{BSE}} + Y_m^{\text{BSE}}$ (optional) \triangleright This is a $\mathcal{O}(N^4)$ step! end procedure

Removing the correlation part: TDHF and CIS

Linear response problem

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ -\mathbf{B} & -\mathbf{A} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{X}_m \\ \mathbf{Y}_m \end{pmatrix} = \Omega_m \begin{pmatrix} \mathbf{X}_m \\ \mathbf{Y}_m \end{pmatrix}$$

TDHF = RPA with exchange (RPAx)

$$\mathbf{A}_{ia,jb} = \left(\epsilon_a^{\mathsf{HF}} - \epsilon_i^{\mathsf{HF}}\right) \delta_{ij} \delta_{ab} + 2(ia|bj) - (ij|ba)$$

$$\mathbf{B}_{ia,jb} = 2(ia|jb) - (ib|ja)$$

Linear response problem within the Tamm-Dancoff approximation

$$A \cdot X_m = \Omega_m X_m$$

TDHF within TDA = CIS

$$\mathbf{A}_{ia,jb} = \left(\epsilon_a^{\mathsf{HF}} - \epsilon_i^{\mathsf{HF}}\right) \delta_{ij} \delta_{ab} + 2(ia|bj) - (ij|ba) \tag{55}$$

(53)

(54)

Relationship between CIS, TDHF, DFT and TDDFT

Linear response

procedure Linear response Compute A matrix at a given level of theory (RPA, RPAx, TD-DFT, BSE, etc) if TDA then Diagonalize A to get Ω_m^{TDA} and X_m^{TDA}

Compute B matrix at a given level of theory

Diagonalize A - B to form $(A - B)^{1/2}$

Form and diagonalize $(A - B)^{1/2} \cdot (A + B) \cdot (A - B)^{1/2}$ to get Ω_m^2 and Z_m

Compute $\sqrt{\Omega_m^2}$ and $(\mathbf{X}_m + \mathbf{Y}_m) = \Omega_m^{-1/2} (\mathbf{A} - \mathbf{B})^{1/2} \cdot \mathbf{Z}_m$

end if

else

end procedure

General linear response problem

Form linear response matrices

Linear-response matrices for BSE

```
procedure FORM A FOR SINGLET STATES
    Set A = 0
    ia \leftarrow 0
    for i = 1, \dots, O do
         for a = 1, \dots, V do
              ia \leftarrow ia + 1
             ib \leftarrow 0
              for j = 1, \ldots, O do
                  for b = 1, \dots, V do
                       ib \leftarrow ib + 1
                       A_{ia,ib} = \delta_{ii}\delta_{ab}(\epsilon_a^{GW} - \epsilon_i^{GW}) + 2(ia|bj) - (ij|ba) + W_{ii,ba}^{c}(\omega = 0)
                  end for
              end for
         end for
    end for
end procedure
```

Properties

Oscillator strength (length gauge)

$$f_m = \frac{2}{3} \Omega_m \left[(\mu_m^{\mathsf{x}})^2 + (\mu_m^{\mathsf{y}})^2 + (\mu_m^{\mathsf{z}})^2 \right]$$
 (56)

Transition dipole

$$\mu_m^{\mathsf{x}} = \sum_{ia} (i|\mathbf{x}|a)(\mathbf{X}_m + \mathbf{Y}_m)_{ia} \qquad (p|\mathbf{x}|q) = \int \phi_p(\mathbf{r}) \, \mathbf{x} \, \phi_q(\mathbf{r}) d\mathbf{r}$$
 (57)

Monitoring possible spin contamination [Monino & Loos, JCTC 17 (2021) 2852]

$$\left\langle \hat{S}^{2}\right\rangle _{m}=\left\langle \hat{S}^{2}\right\rangle _{0}+\underbrace{\Delta\left\langle \hat{S}^{2}\right\rangle _{m}}_{\text{JCP 134101 (2011) 134}}$$

$$\langle \hat{S}^2 \rangle_0 = \frac{n_\alpha - n_\beta}{2} \left(\frac{n_\alpha - n_\beta}{2} + 1 \right) + n_\beta + \sum_p (p_\alpha | p_\beta)$$
 (58)

Example from QuAcK (H₂O/cc-pVDZ)

```
Excitation n_1 = 12 + 8.411378 \text{ eV} of = 0.0255 < 8**2 = 0.0000
 5 \rightarrow 6 = 0.704168
Excitation n. 2: 10.496539 \text{ eV} f = 0.0000 < \text{S**2} = 0.0000
 5 \rightarrow 7 = 0.699391
 5 -> 8 = -0.095559 Compute Lowest BSE eigenvalues $\ar
Excitation n. 3: 11.080888 eV f = 0.0924 < **2 = 0.0000
 4 \rightarrow 6 = -0.703496
Excitation n. 4: 13.165908 \text{ eV} f = 0.0706 < S**2> = <math>0.0000
 4 \rightarrow 7 = 0.701946
Excitation n. 5: 14.913736 eV f = 0.2678 < 5**2 = 0.0000
 3 \rightarrow 6 = 0.704100
```

```
Excitation n 1: 7.632804 eV f = 0.0000 < 5**2 = 2.0000
5 \rightarrow 6 = 0.700599
5 \rightarrow 9 = -0.089914
Excitation n. 2: 9.897068 \text{ eV} f = 0.0000 < S**2 > = 2.0000
 4 -> 6 - -0 695522
4 -> 9 = 0.093664
Excitation n. 3: 10.002114 \text{ eV} f = 0.0000 \text{ <}\text{S**2>} = 2.0000
5 \rightarrow 7 = 0.695328
5 \rightarrow 8 = -0.117774
Excitation n. 4: 11.995497 eV f = 0.0000 < ***2 = 2.0000
3 \rightarrow 6 = 0.228354
4 -> 7 - 0 651412
4 -> 8 = -0.135998
Excitation n. 5: 13.698483 eV f = 0.0000 < 5**2 = 2.0000
 3 \rightarrow 9 = 0.101160
4 \rightarrow 7 = 0.234306
```

https://github.com/pfloos/QuAcK

Open-shell systems and double excitations

- Motivations
- Context
- Charged excitations
- Meutral excitations
- Correlation energy

Correlation energy at the GW or BSE level

RPA@GW correlation energy: plasmon (or trace) formula

$$E_{c}^{\text{RPA}} = \frac{1}{2} \left[\sum_{p} \Omega_{m}^{\text{RPA}} - \text{Tr} \left(\mathbf{A}^{\text{RPA}} \right) \right] = \frac{1}{2} \sum_{m} \left(\Omega_{m}^{\text{RPA}} - \Omega_{m}^{\text{TDA}} \right)$$

Galitskii-Migdal functional

$$E_{c}^{\text{GM}} = \frac{-i}{2} \sum_{pq}^{\infty} \int \frac{d\omega}{2\pi} \frac{\sum_{pq}^{c} (\omega) G_{pq}(\omega) e^{i\omega\eta}}{2\pi} = 4 \sum_{ia} \sum_{m} \frac{(ai|m)^{2}}{\epsilon_{a}^{GW} - \epsilon_{i}^{GW} + \Omega_{m}^{\text{RPA}}}$$

ACFDT@BSE@GW correlation energy from the adiabatic connection

$$E_c^{\text{ACFDT}} = \frac{1}{2} \int_0^1 \text{Tr}(\mathbf{K} \mathbf{P}^{\lambda}) d\lambda \tag{59}$$

Adiabatic connection fluctuation dissipation theorem (ACFDT)

Adiabatic connection

$$E_{c}^{ACFDT} = \frac{1}{2} \int_{0}^{1} \text{Tr}\left(\mathbf{K}\mathbf{P}^{\lambda}\right) d\lambda \overset{\text{quad}}{\approx} \frac{1}{2} \sum_{k=1}^{K} w_{k} \text{Tr}\left(\mathbf{K}\mathbf{P}^{\lambda_{k}}\right)$$
(60)

 λ is the **strength** of the electron-electron interaction:

- $\lambda = 0$ for the non-interacting system
- $\lambda = 1$ for the physical system

Interaction kernel

$$\mathbf{K} = \begin{pmatrix} \tilde{\mathbf{A}} & \tilde{\mathbf{B}} \\ \tilde{\mathbf{B}} & \tilde{\mathbf{A}} \end{pmatrix} \qquad \tilde{A}_{ia,jb} = 2(ia|bj) \qquad \tilde{B}_{ia,jb} = 2(ia|jb)$$
(61)

Correlation part of the two-particle density matrix

$$\mathbf{P}^{\lambda} = \begin{pmatrix} \mathbf{Y}^{\lambda} \cdot (\mathbf{Y}^{\lambda})^{\mathsf{T}} & \mathbf{Y}^{\lambda} \cdot (\mathbf{X}^{\lambda})^{\mathsf{T}} \\ \mathbf{X}^{\lambda} \cdot (\mathbf{Y}^{\lambda})^{\mathsf{T}} & \mathbf{X}^{\lambda} \cdot (\mathbf{X}^{\lambda})^{\mathsf{T}} \end{pmatrix} - \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix}$$
(62)

Gaussian quadrature

Numerical integration by quadrature

"A K-point Gaussian quadrature rule is a quadrature rule constructed to yield an exact result for polynomials up to degree 2K - 1 by a suitable choice of the roots x_k and weights w_k for k = 1, ..., K."

$$\int_{a}^{b} f(x) w(x) dx \approx \sum_{k}^{K} \underbrace{w_{k}}_{\text{weights}} f(\underbrace{x_{k}}_{\text{roots}})$$
(63)

Quadrature rules

Interval [a, b]	Weight function $w(x)$	Orthogonal polynomials	Name
[-1, 1]	1	Legendre $P_n(x)$	Gauss-Legendre
(-1, 1)	$(1-x)^{\alpha}(1+x)^{\beta}$, $\alpha, \beta > -1$	Jacobi $P_n^{lpha,eta}(x)$	Gauss-Jacobi
(-1, 1)	$1/\sqrt{1-x^2}$	Chebyshev (1st kind) $T_n(x)$	Gauss-Chebyshev
[-1, 1]	$\sqrt{1-x^2}$	Chebyshev (2nd kind) $U_n(x)$	Gauss-Chebyshev
$[0,\infty)$	$\exp(-x)$	Laguerre $L_n(x)$	Gauss-Laguerre
$[0,\infty)$	$x^{\alpha} \exp(-x)$, $\alpha > -1$	Generalized Laguerre $L_n^{\alpha}(x)$	Gauss-Laguerre
$(-\infty, \infty)$	$\exp(-x^2)$	Hermite $H_n(x)$	Gauss-Hermite

https://en.wikipedia.org/wiki/Gaussian_quadrature

Motivations Context Charged excitations Neutral excitations Correlation energy

ACFDT at the RPA/RPAx level

RPA matrix elements

$$A_{ia,jb}^{\lambda,\text{RPA}} = \delta_{ij}\delta_{ab}(\epsilon_a^{\text{HF}} - \epsilon_i^{\text{HF}}) + 2\lambda(ia|bj) \qquad B_{ia,jb}^{\lambda,\text{RPA}} = 2\lambda(ia|jb)$$
(64)

$$E_{c}^{RPA} = \frac{1}{2} \int_{0}^{1} \text{Tr}\left(KP^{\lambda}\right) d\lambda = \frac{1}{2} \left[\sum_{m} \Omega_{m}^{RPA} - \text{Tr}\left(A^{RPA}\right) \right]$$
 (65)

RPAx matrix elements

$$A_{ia,jb}^{\lambda,\text{RPAx}} = \delta_{ij}\delta_{ab}(\epsilon_a^{\text{HF}} - \epsilon_i^{\text{HF}}) + \lambda[2(ia|bj) - (ij|ab)] \qquad B_{ia,jb}^{\lambda,\text{RPAx}} = \lambda[2(ia|jb) - (ib|aj)]$$
(66)

$$E_{c}^{RPAx} = \frac{1}{2} \int_{0}^{1} Tr(KP^{\lambda}) d\lambda \neq \frac{1}{2} \left[\sum_{m} \Omega_{m}^{RPAx} - Tr(A^{RPAx}) \right]$$
 (67)

If exchange added to kernel, i.e., $K = K^{x}$, then [Angyan et al. JCTC 7 (2011) 3116]

$$E_{c}^{\text{RPAx}} = \frac{1}{4} \int_{0}^{1} \text{Tr}\left(\mathbf{K}^{\mathbf{x}} \mathbf{P}^{\lambda}\right) d\lambda = \frac{1}{4} \left[\sum_{m} \Omega_{m}^{\text{RPAx}} - \text{Tr}\left(\mathbf{A}^{\text{RPAx}}\right) \right]$$
(68)

ACFDT at the BSE level

BSE matrix elements

$$A_{ia,jb}^{\lambda, \text{BSE}} = \delta_{ij}\delta_{ab}(\epsilon_a^{GW} - \epsilon_i^{GW}) + \lambda \left[2(ia|bj) - W_{ij,ab}^{\lambda}(\omega = 0) \right] \qquad B_{ia,jb}^{\lambda, \text{BSE}} = \lambda \left[2(ia|jb) - W_{ib,ja}^{\lambda}(\omega = 0) \right]$$
(69)

$$E_{c}^{BSE} = \frac{1}{2} \int_{0}^{1} \text{Tr}\left(KP^{\lambda}\right) d\lambda \neq \frac{1}{2} \left[\sum_{m} \Omega_{m}^{BSE} - \text{Tr}\left(A^{BSE}\right) \right]$$
 (70)

λ -dependent screening

$$W_{pq,rs}^{\lambda}(\omega) = (pq|rs) + 2\sum_{m} (pq|m)^{\lambda} (rs|m)^{\lambda} \left[\frac{1}{\omega - \Omega_{m}^{\lambda,RPA} + i\eta} - \frac{1}{\omega + \Omega_{m}^{\lambda,RPA} - i\eta} \right]$$
(71)

$$(pq|m)^{\lambda} = \sum_{i=1}^{n} (pq|ia) (\mathbf{X}_{m}^{\lambda, \text{RPA}} + \mathbf{Y}_{m}^{\lambda, \text{RPA}})_{ia}$$
 (72)

ACFDT in a computer

ACFDT correlation energy from BSE procedure ACFDT FOR BSE Compute GW quasiparticle energies ϵ^{GW} and interaction kernel K Get Gauss-Legendre weights and roots $\{w_k, \lambda_k\}_{1 \le k \le K}$ $E_c \leftarrow 0$ for $k = 1, \ldots, K$ do Compute static screening elements $W_{pq,rs}^{\lambda_k}(\omega=0)$ Perform BSE calculation at $\lambda = \lambda_k$ to get \mathbf{X}^{λ_k} and $\mathbf{Y}^{\lambda_k} \triangleright \mathsf{This}$ is a $\mathcal{O}(N^6)$ step done many times! Form two-particle density matrix P^{λ_k}

end procedure

Ground-state potential energy surface of CO/cc-pVQZ

Useful papers/programs

- molGW: Bruneval et al. Comp. Phys. Comm. 208 (2016) 149
- Turbomole: van Setten et al. JCTC 9 (2013) 232; Kaplan et al. JCTC 12 (2016) 2528
- Fiesta: Blase et al. Chem. Soc. Rev. 47 (2018) 1022
- FHI-AIMS: Caruso et al. PRB 86 (2012) 081102
- Reviews & Books:
 - Reining, WIREs Comput Mol Sci 2017, e1344. doi: 10.1002/wcms.1344
 - Onida et al. Rev. Mod. Phys. 74 (2002) 601
 - Blase et al. Chem. Soc. Rev. , 47 (2018) 1022
 - Golze et al. Front. Chem. 7 (2019) 377
 - Blase et al. JPCL 11 (2020) 7371
 - Martin, Reining & Ceperley Interacting Electrons (Cambridge University Press)
- GW100: IPs for a set of 100 molecules. van Setten et al. JCTC 11 (2015) 5665 (http://gw100.wordpress.com)