INTRODUCCIÓN A LA TEORÍA DE CONJUNTOS / I-2022 Andrés Villaveces

Laboratorio / Cardinales, Teorema de Cantor, Teorema de Cantor-Bernstein

Discusión - Temas sueltos para ir pensando

Problema: ¿son siempre comparables los cardinales?

A priori, podríamos tener conjuntos A y B tales que $A \not \equiv B$ y $B \not \equiv A$. En ese caso, los "cardinales" de A y de B no serían comparables. Más adelante veremos cómo el Axioma de Elección **elimina** esa posibilidad.

Una de las consecuencias que estudiaremos (muy pronto) del Axioma de Elección es que todo conjunto se puede bienordenar, y por lo tanto poner en biyección con un ordinal. Un **cardinal** será entonces oficialmente un *ordinal minimal*: κ es cardinal ssi es ordinal y no existe $\alpha < \kappa$ tal que α y κ son equipotentes.

Para lo que sigue, podrás usar sin restricción los teoremas de Cantor (dado A, $A < \mathcal{P}(A)$ pero $A \not \approx \mathcal{P}(A)$) y de Cantor-Bernstein (si $A \leq B$ y $B \leq A$, entonces $A \approx B$).

LABORATORIO

Entre los conjuntos siguientes, debes examinar todas las parejas (A,B) y decidir cuáles satisfacen $A \leq B$, cuáles A < B, cuáles $A \approx B$. Como ya puedes usar Cantor-Bernstein, el problema es mucho más fácil en caso de equipotencia $(A \approx B)$, pues basta exhibir las dos *inyecciones* $f: A \to B$ y $g: B \to A$.

$$\begin{array}{c} \mathbb{R} \\ 2^{\mathbb{N}} \\ \\ \\ Seq(\mathbb{N}) = \bigcup_{n < \omega} \mathbb{N}^n \\ \\ \{f: \mathbb{R} \to \mathbb{R} \mid f \text{ es continua}\} \\ \mathbb{R}^{\mathbb{R}} \\ \\ \mathbb{R}^{\mathbb{R}} \\ \\ \mathbb{C}^{\mathbb{C}} \\ \\ \\ \\ \{F \subseteq \mathbb{R} \mid F \text{ es cerrado}\} \\ \\ \{\alpha \text{ ordinal} \mid \exists f: \alpha \to \mathbb{R} \text{ estrictamente creciente}\} \\ \\ \{f: \mathbb{N} \to \mathbb{N} \mid f \text{ es calculable}\} \\ \\ [2,5[\\ \mathbb{L} = (]0,1] \times \omega_1, <_{\operatorname{lex}}) \\ \end{array}$$

La idea de estas preguntas es que

- Ampliamos nuestro cálculo de cardinales a muchos otros dominios,
- Nos vemos obligados a usar de maneras creativas lo que sabemos de otros cursos, para armar las inyecciones o biyecciones (pero Cantor-Bernstein nos simplifica el trabajo),
- Nos obligan a mirar estructura de reales, racionales, etc.

En clase trabajaremos por grupos. Lleven lo máximo que puedan preparado de una vez; en laboratorio mañana intentaremos clasificar todo esto, y aclarar dudas.