Numerical Analysis

Homework 14. Solving an LR Ladder Circuit

Due: June 16, 2015

In this homework, a stiff dynamic system is solved using different solution methods. The LR ladder circuit is shown below.

Where we have $L_1 = 1 \times 10^{-12}$ Henry, $L_2 = 1 \times 10^{-9}$ Henry, and $R_1 = R_2 = 1$ Ω . At t = 0, $V(t) = v_1(t) = v_2(t) = 0$ Volts, and $i_1(t) = i_2(t) = 0$ Amperes; when t > 0, V(t) = 1 Volts.

1. Assuming the system variables are $i_1(t)$ and $i_2(t)$, formulate the system equation for t > 0 in the following form, where $f_1(t)$ and $f_2(t)$ are functions of $i_1(t)$, $i_2(t)$ and V(t).

$$L_1 \frac{\mathrm{d}i_1(t)}{\mathrm{d}t} = f_1(i_1, i_2, V),$$
 (14.1)

$$L_2 \frac{\mathrm{d}i_2(t)}{\mathrm{d}t} = f_2(i_1, i_2, V).$$
 (14.2)

- 2. Using trapezoidal rule method with time step of $h = 1 \times 10^{-13}$, solve for $i_1(t)$ and $i_2(t)$, $0 <= t <= 5 \times 10^{-8}$. Print out $i_1(t)$ and $i_2(t)$ for $t = 1 \times 10^{-9}$, 2×10^{-9} , \cdots , 4.9×10^{-8} , 5×10^{-8} . Use this solutions as the base line to compare the solutions of the following questions.
- 3. Using trapezoidal rule method with time step of $h = 1 \times 10^{-11}$, solve for $i_1(t)$ and $i_2(t)$, $0 <= t <= 5 \times 10^{-8}$. Print out $i_1(t)$ and $i_2(t)$ for $t = 1 \times 10^{-9}$, 2×10^{-9} , \cdots , 4.9×10^{-8} , 5×10^{-8} .
- 4. Using trapezoidal rule method with time step of $h = 1 \times 10^{-9}$, solve for $i_1(t)$ and $i_2(t)$, $0 <= t <= 5 \times 10^{-8}$. Print out $i_1(t)$ and $i_2(t)$ for $t = 1 \times 10^{-9}$, 2×10^{-9} , \cdots , 4.9×10^{-8} , 5×10^{-8} .
- 5. Using 2nd order forward integration method with time step of $h = 1 \times 10^{-11}$, solve for $i_1(t)$ and $i_2(t)$, $0 <= t <= 5 \times 10^{-8}$. Print out $i_1(t)$ and $i_2(t)$ for $t = 1 \times 10^{-9}$, 2×10^{-9} , \cdots , 4.9×10^{-8} , 5×10^{-8} .
- 6. Using 2nd order forward integration method with time step of $h = 1 \times 10^{-9}$, solve for $i_1(t)$ and $i_2(t)$, $0 <= t <= 5 \times 10^{-8}$. Print out $i_1(t)$ and $i_2(t)$ for $t = 1 \times 10^{-9}$, 2×10^{-9} , \cdots , 4.9×10^{-8} , 5×10^{-8} .
- 7. Using 2nd order Gear's integration method with time step of $h = 1 \times 10^{-11}$, solve for $i_1(t)$ and $i_2(t)$, $0 <= t <= 5 \times 10^{-8}$. Print out $i_1(t)$ and $i_2(t)$ for $t = 1 \times 10^{-9}$, 2×10^{-9} , \cdots , 4.9×10^{-8} , 5×10^{-8} .
- 8. Using 2nd order Gear's integration method with time step of $h = 1 \times 10^{-9}$, solve for $i_1(t)$ and $i_2(t)$, $0 <= t <= 5 \times 10^{-8}$. Print out $i_1(t)$ and $i_2(t)$ for $t = 1 \times 10^{-9}$, 2×10^{-9} , \cdots , 4.9×10^{-8} , 5×10^{-8} .

9. Please compare the solutions obtained in the previous questions and state your observations.

Notes.

- 1. For this homework you need to turn in a set of C++ source codes. That includes hw14.cpp, which solves question 8 above, MAT.h, MAT.cpp, VEC.h and VEC.cpp files.
- 2. A pdf report file is also needed. Please name this file hw14a.pdf.
- 3. Submit your files on EE workstations. Please use the following command to submit your homework 14.
 - \sim ee407002/bin/submit hw14 hw14a.pdf hw14.cpp MAT.h MAT.cpp VEC.h VEC.cpp where hw14 indicates homework 14.
- 4. Your report should be clearly written such that I can understand it. The writing, including English grammar, is part of the grading criteria.