Distributed Stochastic Gradient Descent

Kevin Yang and Michael Farrell

May 9, 2016

Motivation - Deep Learning

- Deep-Learning
 - Objective: Learn a complicated, non-linear function that minimizes some loss function
- Why do we need deep models?
 - The class of linear functions is inadequate for many problems.

Deep neural network

http://www.rsipvision.com/exploring-deep-learning/

Motivation - Deep Learning

- How do we learn these deep models?
 - Choose a random example
 - Run the neural network on the example
 - Adjust the parameters of the network such that our loss function is minimized more than it was before
 - Repeat
- Difficulties?
 - Local Minima
 - Non-convexity
 - Neural Networks can have millions or even billions of parameters

Motivation - Deep Learning

- How do we learn these deep models?
 - Choose a random example
 - Run the neural network on the example
 - Adjust the parameters of the network such that our loss function is minimized more than it was before
 - Repeat
- Difficulties?
 - Local Minima
 - Non-convexity
 - Neural Networks can have millions or even billions of parameters

Motivation - SGD

- ▶ How do we maximize our reward function?
 - One common technique is Stochastic Gradient Descent
 - **w** is the vector of parameters for the model
 - $\blacktriangleright \eta$ is the learning rate
 - $ightharpoonup f(\mathbf{w})$ is the loss function evaluated with the current parameters \mathbf{w}
 - $\mathbf{w} \leftarrow \mathbf{0}$ while $\mathbf{f}(\mathbf{w})$ is not minimized do for i = 1, n do $\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla f(\mathbf{w})$
 - ► As the number of training examples, *n*, and the number of parameters, |**w**|, increases, this algorithm quickly becomes very slow...

Motivation - Distributed SGD

- Since some of these models take days/weeks/months to run, we would hope that we could use a distributed computing cluster in order to parallelize this process.
- ► Learn from Google!
 - DistBelief- 2012
 - Downpour SGD
 - Sandblaster L-BFGS
 - TensorFlow- 2015
 - ▶ gRPC

Motivation - Distributed SGD

- Since some of these models take days/weeks/months to run, we would hope that we could use a distributed computing cluster in order to parallelize this process.
- ► Learn from Google!
 - ▶ DistBelief- 2012
 - Downpour SGD
 - Sandblaster L-BFGS
 - ► TensorFlow- 2015
 - ▶ gRPC

DistBelief - Downpour SGD

"An asynchronous stochastic gradient descent procedure supporting a large number of model replicas." 1

¹Diagram taken from Dean et al. Large Scale Distributed Deep Networks

DistBelief - Sandblaster L-BFGS

"A framework that supports a variety of distributed batch optimization procedures, including a distributed implementation of L-BFGS"
²

²Diagram taken from Dean et al. Large Scale Distributed Deep Networks

TensorFlow-GRPC

- Second Generation ML Model focused on distributing models to CPUs and GPUs
- ▶ Uses the high performance RPC framework (GRPC ³) in order to communicate between separate processes
 - Uses Protocol Buffers -v3
 - C-based
 - ► Client-server stubs in 10+ languages and counting

³Diagram taken from http://www.grpc.io/

DistBelief/TensorFlow Summary

- TensorFlow is basically the second version of DistBelief that is approximately twice as fast and much more user-friendly.
- ► Results from DistBelief" ⁴:

Figure 4: Left: Training accuracy (on a portion of the training set) for different optimization methods. Right: Classification accuracy on the hold out test set as a function of training time. Downpour and Sandblaster experiments initialized using the same ~10 hour warmstart of simple SQI.

Figure 5: Time to reach a fixed accuracy (16%) for different optimization strategies as a function of number of the machines (left) and cores (right).

⁴Diagram taken from Dean et al. Large Scale Distributed Deep Networks

Our Project

- We frequently run into scenarios where we have a model that trains incredibly slowly on our local machines. As a consequence, we hope to benefit from additional cloud computing resources and build our own Distributed SGD system based on DistBelief and TensorFlow systems.
 - ► The Distributed SGD system will have the user give a function that returns the outputs of a model, a function that returns the gradients of a model, and the number of machines to train the model on.
 - Use GRPC with Protocol Buffers to communicated between processes, similar to TensorFlow.
 - Implement Downpour-SGD which seems to be the most effective model with limited resources.

Our Example

- ➤ To test our system, we're working with the Caltech 101 Computational Vision dataset ⁵. In this dataset, there are about 20,000 pictures of objects in 101 categories. All of these images are around 300 × 200 pixels in size.
- We've implemented a convolutional neural net that tries to classify what object is represented in the image.

⁵L. Fei-Fei, R. Fergus and P. Perona. *Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories*.

Computational Resources

- ▶ We are using Google Cloud Compute Engine to set up VMs and run the code. To run classification on our image dataset, we're using small instances with 6GB of RAM with 2 cores. This has a rate of 7.8 cents per hour.
- On a machine of this size, running 10 epochs of gradient descent takes 56 minutes.
- To streamline things, we've preconfigured images of a parameter server and model training server that are already set up with relevant code, tools, and libraries.
- ► As a result, setting up and launching the compute instances necessary for model training takes only a couple lines.

Implementing Downpour-SGD

- ► The Downpour-SGD requires the passing of parameters and parameter updates between processes. In our example, we have 74,770,901 parameters and the size of our parameters is 0.5GB.
- ▶ Bottleneck here is the network. Parameters can be >>0.5Gb.
- We can leverage the fact that some of these models are extremely sparse
 - only send parameters updated
 - only update parameters every n_x times
- Explore protocol buffer streams

Large Data Sets

Protocol Buffers are not designed to handle large messages. As a general rule of thumb, if you are dealing in messages larger than a megabyte each, it may be time to consider an alternate strategy.

That said, Protocol Buffers are great for handling individual messages within a large data set. Usually, large data sets are really just a collection of small pieces, where each small piece may be a structured piece of data. Even though Protocol Buffers cannot handle the entire set at once, using Protocol Buffers to encode each piece greatly simplifies your problem: now all you need is to handle a set of byte strings rather than a set of structures.

Main Distributed System Challenges

Network Issues

- We have to deal with network latency and try to reduce transportation cost as much as possible in order for our models to train properly.
- We would like to experiment with a couple different RPCs to optimize the speed of our system.

Fault tolerance

- We need to make our system as resilient as possible against failures. Because all of these machines are doing a lot of computation while running gradient descent and manipulating parameters, these systems are bound to fail with relatively high frequently.
- Having methods in place to detect and remedy the failure of parameter servers and model replicas will be critical.