第18回FA設備技術勉強会(2024/4/7)

産業向け計測・制御システムを MATLAB/Simulinkで『直接』操る

モチベーション

発端: MATLAB/Simulinkで装置の制御をしたい!

・実世界(装置類)とソフトウェア環境をつなぐものが必要

モチベーション

発端: MATLAB/Simulinkで実験装置の制御をしたい!

- ・長期間安定して動くものを
 - →しばらく休止していても動かせる頑健性
- ・高すぎない金額で
- ・環境構築を簡潔に(できればMATLAB以外はなしに)

なんでMATLAB/Simulink?

- ・制御系の研究開発や, モデルベース開発でスタンダードなソフト
- ・データ解析などもMATLABで実行できる
- ・環境がパッケージとして提供されている→バージョン管理や依存関係などに悩まされない!
- ・個人でも買える!

MATLAB/Simulinkと連携できる装置(主観)

性能

Speedgoat

- ・超高性能なんでも出来る
- ・MATLABとシームレス連携
- ・お値段 数百万円~……

IPC,PLCなど

- ・FA装置の制御で多数使用実績,信頼性◎
- ・PLC用の環境構築が必要
- ライセンス形態がわかりにくい 有料?無料?台数制限?ランタイムライセンス?? twincat3は気になるが…

- ・値段もそれなり 数十万後半~
- ・企業以外だと購入ルートがない…

価格

MATLAB/Simulinkと連携できる装置(主観)

性能

F&eIT® 省配線リモートI/Oシステム (CONTEC)

Speedgoat

- ・超高性能なんでも出来る
- MATLABとシームレス連携
- ・お値段 数百万円~……

プLCなど

電の制御で多数使用実績,信頼性◎ 用の環境構築が必要 センス形態がわかりにくい

料?無料?台数制限?ランタイムライセンス?? twincat3は気になるが…

- ・値段もそれなり 数十万後半~
- ・企業以外だと購入ルートがない…

Arduino, Raspberrypi

- ・お手軽!とっかかりには十分!
- ・サポートパッケージで使用できる
- ・信頼性や安定性 △

価格

F&elT省配線リモートI/Oシステムの概略

- ・リモートで機器の監視と制御
- ・ソフト開発用APIが 無料で提供されている.
- ・F&elTプロトコル通信(後述)
- ・マニュアルが日本語

F&eIT® 省配線リモートI/Oシステム

コンテックの省配線リモートI/Oシステムは、スムーズ&リーズナブルに、離れた場所にある機器の"監視"と"制御"を実現します。システムの構築はコンポーネントの組み合わ せが自由なスタックタイプとコンパクトタイプをご用意。お客様のニーズに合った信頼のソリューションをご提案します。

F&elT省配線リモートI/Oシステムの概略

- ・リモートで機器の監視と制御
- ・ソフト開発用APIが 無料で提供されている。
- ・F&elTプロトコル通信(後述)
- ・マニュアルが日本語

モノタロウで買える!!!

値段も比較的手頃 (個人で出すには高いが…)

システムの具体例

構成

MATLABとCONTEC間の通信をどうやって実現する?

方法 1 : 提供されている APIの 使用 (C++ など)

方法2:F&elT通信プロトコルの使用

今回はこちらで実現

F&elTプロトコルの建付け

CONTEC独自の通信プロトコル

- ・UDP/IPベース
- ・仕様書が公開されている
- ・汎用ソケット関数で通信可能

MATLAB/Simulinkから UDP通信で操作できる・・・のでは?

できた!!

※Simulink Desktop-RealTime 使用

■F&eIT プロトコルの位置付け

F&eITプロトコルは以下のプロトコル層を定義します。

アプリケーション層	ACV DII ata				
デバイス依存コントロール層	ACX, DLL, etc				
F&eIT プロトコル層	F&eIT プロトコル仕様				
トランスポート層	UDP, ICMP				
ネットワーク層	IP, ARP				
データリンク層	Ethernet(IEEE802.3)、etc				
物理層					

(CPU-CA20(FIT)GYのカタログより引用)

F&elTプロトコル

値のアクセスは仮想アドレスを使用

設定やデータ読み書きは 該当のアドレスを指定し,値を設定する

例:

- ・機器情報の取得
- ・アナログ出力レンジの変更
- ・出力値の書き込み

etc...

	アドレス(h)		領域	ì		項目		サイズ	アクセスタイプ	初期値(h)
	先頭アドレス+00				モジュールタイ	プ(カテゴリ	J)	1	R	02
	先頭アドレス+01		1		モジュールタイプ(シリアルナンバー)			1	R	03
	先頭アドレス+02		1		システム予約(リビジョンナンバー)			1	R	_
*	先頭アドレス+03		1		サポート機能			1	R	02
	先頭アドレス+04		1		基本入力チャネ	ル数		1	R	00
	先頭アドレス+05]		基本入力データサイズ			1	R	00
	先頭アドレス+06	頭アドレス+06		報	基本出力チャネル数			1	R	04
	先頭アドレス+07				基本出力データサイズ			1	R	02
	先頭アドレス+08	頭アドレス+08			入力チャネル設定アドレス			1	R	20
	先頭アドレス+09				入力チャネル設定データサイズ			1	R	06
	先頭アドレス+0A				出力チャネル設定アドレス			1	R	50
	先頭アドレス+0B				出力チャネル設定データサイズ			1	R	06
	先頭アドレス+0C		1		予約			4	R	_
	- 先頭アドレス+0F		ļ		- >>					
	先頭アドレス+10		1		モジュール起動レジスタ			1	R/W	00
	先頭アドレス+11				エラーステータス			1	R	00
	先頭アドレス+12				予約			8	R	_
	- 先頭アドレス+19 先頭アドレス+1A		モジュ 共通		アナログ出力分解能			1	_	4.03
	先頭アドレス+1A 先頭アドレス+1B		7.1	2	アナログ出カレンジ			1	R	10h
	た頭アトレス+IB		L		アテログ曲カレンジ			1	R/W	00
	アドレス(h)	領域	項目		サイズ	アクセスタイプ		R	_	
頭フ	アドレス+00		CHO アナ		· ログ出力値 2 R/W			R	_	
頭フ	アドレス+02		CH1 アナ		トログ出力値	2 R/W				
頭フ	アドレス+04		CH2 アナ		トログ出力値	2 R/W				
頭フ	アドレス+06		CH3 アナ		トログ出力値	2	R/W			
頭フ	[アドレス+08		予約			120	R			
も 頭	頭アドレス+ 7F									

参考資料:

Factory ITシリーズプロトコル仕様書Revision 1.1

表はDAI16-4(FIT)GY 解説書より引用

https://contec.e-srvc.com/ci/fattach/get/422/1499734201/redirect/1/filename/fit_protocol1.1.pdf

MATLAB/Simulinkでの書き込み例

MATLABの場合 Simulinkの場合 83 86 ▶ signal1 %IP設定 IPv4 = "":機器のIPアドレス ►signal2 %ポート設定 ► signal3 %デフォルトポート5007(16進数)を10進数に変換 cmd1 2 0 ► signal4 port = 20487;seqno1 仮想アドレス % UDP通信の設定 ▶ signal5 u=udpport("IPV4", ... segno2 [16,0,56,0] ▶ signal6 LocalPort=4000, ... Packet vadr1 パケットのid等の設定 Output LocalHost="10.1.1.1"); ▶lsignal7 % 送信データの作成 UDP Protocol [5001] **▶** signal8 senddata=cat(2,id,v,cmd,seqno,retid, ... status1 送信ブロック vadr,h_size,stat,ac_id,d_mac,dmy,data); [0,0,0,0,0,0,0,0]▶signal9 % デクの送信 ac id1 [0,0,0,0,0,0] ▶signal10 write(u, senddata, "uint8", IPv4, port) d mac1 [0,0,0,0,0,0] ►signal11 仮想アドレス 書き込むデータ ► signal12 読み込みは簡単 Packet read data = read(u,size,"uint8"); Input

システムの具体例

構成

環境構築はPC側のIPアドレスの設定のみ!

Packet通信およびリアルタイム性はSimulink Desktop Real-Time toolboxに任せる

参考サイト:

<u>Simulink Desktop Real-Timeの実力</u>: https://blogs.mathworks.com/japan-community/ 2020/04/16/simulink-desktop-real-time/?from=jp

実際に動かしてみる(FB制御, FF制御の実演)

デモのシステム構成

Orientalmotor社製 BX II シリーズ **エンコーダ値取得**可能

オリムベクタで購入可能

まとめ

- ・contec F&eITシステムを使えばMATLAB/Simulinkで直接IOを操作できる
- ・APIが提供されているので、ROS等でも使用可能
- ・試作、小規模での開発では有用な選択肢になりうる
- 機器自体が古めなので、ユーザが広まって改良版が出てほしい!

参考資料:

MATLAB Home でのSimulink Desktop Real-Time例:

https://qiita.com/HppyCtrlEngnrng/items/ec798c62caf3aebf937c

contecの参考実装:

https://contec.e-srvc.com/app/answers/detail/a_id/674

連絡先など:

 $X(|\exists Twitter)$: @spargel125

LinkedIn : https://www.linkedin.com/in/yuji-yoshida/

Github : https://github.com/Spargel125

Zenn : https://zenn.dev/spargel

はてなブログ : https://tagebuchvonspargel.hatenablog.com/