TITLE: AI POWERED NUTRITION ANALYZER

TEAM ID: PNT20EC22TMID28902

BATCH: B2-2M4E

TYPE: Web-Application

1. INTRODUCTION

Food is essential for human life and has been the concern of many healthcare

conventions. Nowadays new dietary assessment and nutrition analysis tools enable

more opportunities to help people understand their daily eating habits, exploring

nutrition patterns and maintain a healthy diet. Nutritional analysis is the process of

determining the nutritional content of food. It is a vital part of analytical chemistry

that provides information about the chemical composition, processing, quality

control and contamination of food.

1.1 Project Overview

The main aim of the project is to building a model which is used for classifying the

fruit depends on the different characteristics like colour, shape, texture etc. Here

the user can capture the images of different fruits and then the image will be sent

the trained model. The model analyses the image and detect the nutrition based on

the fruits like (Sugar, Fibre, Protein, Calories, etc.).

Image classification is done by using Support Vector Machine(SVM) and

Convolution Neural Network(CNN). The scalability of the solution is determined

by the image of the food classified accurately, Social impact and customer

satisfaction is maintained by friendly UI design and easy to operate. Mainly this

business model increases the life span of the users. It provide healthy life.

1.2 Project Purpose:

Food is essential for human life and has been the concern of many healthcare conventions. Nowadays new dietary assessment and nutrition analysis tools enable more opportunities to help people understand their daily eating habits, exploring nutrition patterns and maintain a healthy diet. Nutritional analysis is the process of determining the nutritional content of food. It is a vital part of analytical chemistry that provides information about the chemical composition, processing, quality control and contamination of food.

BY THE END OF THIS PROJECT WE KNOW ABOUT:

- Know fundamental concepts and techniques of Convolutional Neural Network.
- Gain a broad understanding of image data.
- Know how to pre-process/clean the data using different data preprocessing techniques.
- Know how to build a web application using the Flask framework.

2. LITERATURE SURVEY

2.1 Existing Problem

Artificial intelligence (AI) is a rapidly evolving area that offers unparalleled opportunities of progress and applications in many healthcare fields. In this review, we provide an overview of the main and latest applications of AI in nutrition research and identify gaps to address to potentialize this emerging field. AI algorithms may help better understand and predict the complex and non-linear interactions between nutrition-related data and health outcomes, particularly when large amounts of data need to be structured and integrated, such as in metabolomics. AI-based approaches, including image recognition, may also improve dietary assessment by maximizing efficiency and addressing systematic and random errors associated with self-reported measurements of dietary intakes.

Finally, AI applications can extract, structure and analyze large amounts of data from social media platforms to better understand dietary behaviours and perceptions among the population.

2.2 References

Paper 1

<u>Title:</u> Health Analysis of Transformer Winding Insulation through Thermal Monitoring and Fast Fourier Transform (FFT) Power Spectrum

<u>Author: Muhammad Aslam, Inzamam Ul Haq, Muhammad Saad</u>

<u>Rehan, Faheem Ali, Abdul Basit, Muhammad Iftikhar Khan, Muhammad Naeem Arbab.</u>

Year: 2021

<u>Methodology:</u> Thermal monitoring, novel winding insulation model, thermal monitoring algorithm and installation of monitoring unit at 500 kv grid station.

Paper 2

<u>Title:</u> Leftovers Nutrition Prediction for Augmenting Smart Nutrition Box Prototype Feature Using Image Processing Approach and AFLE Algorithm <u>Authors:</u> <u>Yuita Arum Sari</u>, <u>Luthfi Maulana</u>, <u>Yusuf Gladiesnyah Bihanda</u>, <u>Jaya Mahar Maligan</u>, <u>Nabila Nur'aini</u>, <u>Dhea Rahma Widyadhana</u> *Year:* 2020

<u>Methodology:</u> The dataset was taken using an SNB prototype combined with full of lighting inside the box. Each item of food was placed in the compartment of the white tray box.

Paper 3

Title: A Low-Cost Smart Glove System for Real-time Fitness Coaching

Authors: Yongpan Zou ,Dan Wang,Schiong Hong,Rukhsana Ruby, Dian

Zhang, Kaishun Wu

Year: 2020

Methodology: Besides nutrition, strength training appeals a mushrooming

number of people across all age groups, especially the youngsters. More

specifically, iCoach, is a Smart fitness glove with commercial inertial

measurement IMU including accelerometer, gyroscope and magnetometer

embedded in its wrist band. Compared with professional coach, iCoach

achieves satisfactory assessment quality.

Paper 4

<u>Title:</u> Physical Activity Recommendation for Exergame Player Modeling using

Machine Learning Approach.

<u>Authors:</u> Zhao Zhao, Ali Arya, Rita Orji, Gerry Chan

Year: 2020

<u>Methodology:</u> Exergames are effective tools to motivate and promote daily

activities. A validated design of a personalized physical activity recommender

systems for exergames based on a study of participant's preferred activities. The

methodology was to use the questionnaire data to train a binary predictive model

to predict whether the user would like a new type of exercise or not.

Paper 5

Title: Optimizing Nutrition using Machine Learning Algorithms-a Comparative

Analysis

Authors: Asmabee Khan, Sachin Deshpande, Amiya K. Tripathy

Year: 2019

Methodology: The background studies towards designing recommendation

system using machine learning algorithms that lead to the design of

nutrition based recommendation system.

Paper 6

<u>Title:</u> Emo Wei: Emotion-Oriented Personalized Weight Management System

Based on Sentiment Analysis.

Authors: Jihyeon Kim, Uran Oh

Year: 2019

<u>Methodology:</u> To confirm the feasibility of monitoring emotion from personal logs such as online posts, using Recurrent Neural Network (RNN) based sentiment analysis on weight loss related tweets and posts from an online weight management community called FatSecret in comparison to general tweets.

S.	Authors	Title	Methodology	Pros	Cons
No .				(Advantag e)	(Disad vantag e)
1	<u>Mu</u>	Health	Thermal	The system	It
	<u>ha</u>	Analysis of	monitoring,	assesses	require
	<u>mm</u>	Transforme	novel winding	the power	s oil
	<u>ad</u>	r Winding	insulation	transforme	and
	<u>Asl</u>	Insulation	model, thermal	r's health	cellulos
	<u>am</u> ,	Through	monitoring	status by	e i.e.,
	<u>Inzama</u>	Thermal	algorithm and	tracking	kraft
	m Ul	Monitoring	installation of	the hot-	paper
	Haq,	and Fast	monitoring unit	spot	to
	<u>Muham</u>	Fourier	at 500 kv grid	temperatur	make
	<u>mad</u>	Transform	station.	e and the	the
	Saad	(FFT)		transient	transfor
	Rehan,	Power		incipient	mer so
	Fahe	Spectrum		activities	that the
	em			like partial	quality
	Ali,			discharges	of the

	Abdu 1 Basit, Muh amm ad Iftikh ar Khan Muh amm ad Naee m Arba b (202 1) (IEEE paper 1)			(PD) inside the winding insulation.	kraft paper must be as per the require ment.
2	Arum Sari, Luthfi Maulan a, Yusuf Gladiesny	Leftovers Nutrition Prediction for Augmentin g Smart Nutrition Box	The dataset was taken using an SNB prototype combined with	The method was also embedded in SNB prototype to enhance the	The seg ment ation algor ithm has drawbac ks when
	Bihanda, Jaya Mahar Maligan, Nabila Nur'aini, Dhea Rahma Widyadh ana (2020) (IEEE paper 2)	Prototype Feature Using Image Processin g Approach and AFLE Algorithm	full of lighting inside the box. Each item of food was placed in the compartme nt of the white tray box.	estimation function.	applying in multi ple condi tions.

3	Yongpan	A Low-Cost	More	The	The
	Zou	Smart	specifically,	detection of	overall
•	,Dan	Glove	iCoach, is	non-	speed of
	Wang,Sc	System	a Smart	standard	repetition
	hiong	for Real-	fitness	behaviors	is too fast
	Hong,Ru	time	glove with	and quality	or too
	khsana	Fitness	commercia	assessment	slow.
	Ruby,	Coaching	l inertial	results are	The
	Dian	Coucining	measureme	displayed	speed of
	Zhang,K		nt IMU	on the user	outward
	aishun		including	interface.	and
	Wu		accelerome	The results	backward
	(2020)		ter,	can also be	processes
	(IEEE paper		gyroscope,	reported to	is not
	3)		magnetom	users in the	balanced.
	- /		eter	form of	The
			embedded	voice	repetition
			in its wrist	reminder.	s are not
			band.		stable
					with
					noticeabl
					e
					shakes.
4	Zhao Zhao,	Physical	The	The	Sometimes
	Ali	Activity	methodolog	feasibility	it
	Arya,	Recomme	У	of	might
	Rita	ndation	was to use	using the	not be
	Orji,	for	the	player	realistic
	Gerry	Exergame	questionnai	model for	for some
	Chan	Player	re data to	personalizi	users to
	(2020)	Modeling	train a	ng PA,	try those
	(IEEE paper	using	binary	potential	new Pas
	4)	Machine	predictive	of using	that our
		Learning	model to	machine	system
		Approach.	predict	learning in	recomm
			whether	building	ended.
			the user	the	The
			would like	recommen	system did not
			a new type	der system	look at
			of exercise	for PA and	the
			or not.	the considerab	distance
				le effect in	between
					PA with
				optimizing the	different
					perspecti
1				system.	perspecti

					ves.
5 .	Asmabee Khan, Sachi n Desh pande Amiy a K. Tripa thy (2019) (IEEE paper 5)	Optimizing Nutrition using Machine Learning Algorithms -a Comparati ve Analysis	The background studies towards designing recommen dation system using machine learning algorithms that lead to the design of nutrition based recommen dation system.	An expert recommen dation system is designed, which wills the user to assess their nutritional status and get a Web/App-based counseling from Nutritionis ts/D ietitian.	There must not be a lack of knowled ge about proper nutrient-content diet to predict and form statistics.
6 .	Jihyeon Kim, Uran Oh (2019) (IEEE paper 6)	Emo Wei: Emotion- Oriented Personaliz ed Weight Management	To confirm the feasibility of monitorin g emotion from personal logs	The paper provided design implicati ons for future weight managemen t	This field has not yet develope d enough to grasp the situation, the

2.3 Problem definition

Food is important for human life and has been the concern of many healthcare conventions. Nowadays new dietary assessment and nutrition analysis tools enable more opportunities to help people understand their daily eating habits, exploring nutrition patterns and maintain a healthy diet. Nutritional analysis is the process of determining the nutritional content of food. It is a vital part of analytical chemistry that provides information about the chemical composition, processing, quality control and contamination of food.

The main aim of the project is to building a model which is used for classifying the fruit depends on the different characteristics like colour, shape, texture etc. Here the user can capture the images of different fruits and then the image will be sent the trained model. The model analyses the image and detect the nutrition based on the fruits like (Sugar, Fibre, Protein, Calories, etc.).

3. IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

3.2 Ideation & Brainstorming

Team gathering

Define who should participate in the session and send an invite share relevant information or pre-work ahead.

Set the goal

Think about the problem you will be focusing on solving in the brainstorming session.

Learn how to use the facilitation tools

Use the facilitation superpowers to run a happy and productive session

Key rules of brainstorming

To run an smooth and productive session

Stay in topic. - Encourage wild ideas.

Defer judgment. C Listen to others.

3.3 PROPOSED SOLUTION

S. No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	 The absence of balanced food and nutrition security leads to health problems such as diabetes, obesity, and malnutrition. So we have to take adequate amounts of energy, proteins, vitamins, minerals, essential fats, micro and macronutrients. This will done by using nutrition analyser app. This app helps us to find the nutrition, vitamin and mineral content in the food.
2.	Idea / Solution description	 Image classification is done by using Support Vector Machine (SVM) and Convolutional Neural Network (CNN).
3.	Novelty / Uniqueness	 Convolutional Neural Network (CNN) and Support Vector Machine (SVM) is used in this system.
4.	Social Impact / Customer Satisfaction	Friendly UI design and Easy to operate.
5.	Business Model (Revenue Model)	It will increases the life span of the Users. It will provides the healthy life.
6.	Scalability of the Solution	 The scalability of the solution is how the image of the food is classified accurately.

3.4 Problem solution fit

1. CUSTOMER SEGMENT(S)

Nutrition analyzes designed to help health professionals, dietitians, coaches, trainers and gymnasiums manage client, create personalized meal plans.

6. CUSTOMER CONSTRAINTS

Food allergies or sensitivities, religious, practices, and ideologies beliefs are some of the main reasons people rely on specific diets or follow dietary restrictions.

5. AVAILABLE SOLUTIONS

Many informations available on internet. To prevent malnutritionis to eat a healthy, balanced diet.

2. JOBS-TO-BE-DONE / PROBLEMS

People are eating more food than the necessary amount of food for their health

9. PROBLEM ROOT CAUSE

Nowadays many people are not eating sufficient amount of food to provide calories, vitamins and minerals they need for their optimal health. but some peoples are eating far more food than is necessary for their health.

7. BEHAVIOUR

To give the regular notification about diet.
To give proper diet to consumers.

Create a healthy habitat by eating healthy food items to maintain their diet.

3. TRIGGERS

Nutritional Analysis detects the exact nutritional value of any given food item. It determines the percentage of macro and micronutrients present in that food item as well as the presence of inhibitors, toxic chemicals, or any other new component.

4. EMOTIONS: BEFORE / AFTER

Before : Improper Health maintenance. After : Proper Health Maintenance.

10. YOUR SOLUTION

To satisfy the wellness and mental health of the users by using the with help of application.

8. CHANNELS of BEHAVIOUR

ONLINE:

This system provides a user friendly environment that enables user to interact through chatbot to clarify their queries and dashboard to display to know the activities

OFFLINE:

Connecting all the user through offline meeting and give some complementary gifts. Conducting offline session by nutrition expert.

4. REQUIREMENT ANALYSIS

4.1 Functional Requirement

FR NO.	FUNCTIONAL	SUB			
TRNO.	REQUIREMENT	REQUIREMENT(STORY/S			
	S(EPIC)	UBTASK)			
FR-1	2(2110)	Registration via Gmail			
	USER REGISTRATION	Registration via Mobile			
		Number			
		Registration via Face-book			
FR-2		Confirmation through Email			
	USER CONFIRMATION				
		Confirmation through OTP			
FR-3		PERSONAL DETAILS FOOD			
		DETAILS			
		Age Food			
	USER DETAILS	Height Recipe			
		Weight Adde			
		d			
		ingred			
		ients			
		Disea Age			
		ses if			
		any			
		Condi			
		tions			
		is any			
		Aller			
		gies			
		is any			
FR-4	USER REQUIREMENTS	The user simply inputs your recipe ingredients and			
		amounts.			
		With already given details			
		the system can alert the			
		consumer if any content			
		of their allergies, it can			
		alert the consumer.			
		The software will instantly			
		produce an accurate			

	readout of your dish in terms of nutritional analysis in a readable format that consumers are familiar.

4.2 Non-Functional Requirements

FR.NO	NON- FUNCTIONAL REQUIREMENTS USABILITY	DESCRIPTION No training is required to access
INI'IX-I	USABILITI	the Nutrition Analyzer. The results should be loaded within 30 seconds. It should be user friendly and comfortable.
NFR-2	SECURITY	Help of the username and password it provides more security in which it can access more securable and the data are private. It should be social-economic which should access to sufficient and safe to use.
NFR-3	RELIABILITY	It is Important that the AI powered nutrition analyzer for fitness provides should Must reliable. How a person can find it is reliable? It is easy to find that is he/she can compare the nutrition based food with other nutrition related application so, it can easily rectify whether it is reliable or not.

NFR-4	PERFORMANCE	It should provide more number of users to consume at any time and at any place. It should provide Reliability, Scalability, Security and Usability. It should contain minimum data while over paging the websites or application and it is necessary.
NFR-5	AVAILABILITY	Easy to access Data. Avoids Data redundancy and inconsistency. Fast and Efficient. User Friendly.
NFR-6	SCALABILITY	The architecture for AI powered Nutrition Analyzer for fitness provides the clear procedure daily consumption of food and helps the user to maintain a healthy diet.

5. PROJECT DESIGN

5.1 Data Flow Diagrams

5.2 SOLUTION & TECHNICAL ARCHITECTURE

Solution architecture is the process of developing solutions based on predefined processes, guidelines and best practices with the objective that the developed solution fits within the enterprise architecture in terms of information architecture, system portfolios, integration requirements and many more.

Solution architecture includes five main processes:

- 1.Identification of business goals and objectives;
- 2.Identification of system requirements;
- 3. Definition of information models and processes;
- 4. Selection and integration of technologies, tools, and platforms;
- 5. Development of project plans.

Figure 1. TECHNICAL ARCHITECTURE

5.3 User Stories

User Type	Functio nal Requir ement (Epic)	User Story Numb er	User Story / Task	Acceptance criteria	Release
Cust omer (Mo bile user)	Registration	USN-1	As a user, I can register for the applicatio n by entering my email, password, and confirmin g my password.	I can access my account / dashboard.	Sprint-1
		USN-2	As a user, I	I can receive confirmation	Sprint-1

	will receive confirm ation email once I have register ed for the applicat ion.	email & click confirm.	
USN-3	As a user, I can register for the applicat ion through Facebo ok.	I can register & access the dashboard with Facebook Login.	Sprint-2
USN-4	As a user, I can register for the applicat ion through Gmail.	I can register & access the dashboard through Gmail Login.	Sprint-1

Login	USN-5	As a user, I can log into the application by entering email & password	I can login to the applicati on by entering respec tive email & passw	Sprint-1
			ord.	

	Dashboard	USN-6	As a user, I can access all the services provided in the dashboar d.	I can predict the orders for next 10 weeks and I estimate of raw materials for the same.	Sprint-1
Cust omer (Web user)	Log in & Das hbo ard	USN-8	As a user, I can login through web application and access the resources in the dashboard.	I can login with the credentials required and I can access the services	Sprint-1
User Type	Funct ional Requ ireme nt (Epic)	User Story Num ber	User Story / Task	Acceptance criteria	Release
				Provide d through web applicati on.	
Cust omer Care Exec utive	Support	USN-9	As a user I can get support from the help desk and can get my queries cleared.	I can get guidance and any support to use the applicati on.	Sprint-2
Admi nistrat or	Manageme nt	USN- 10	As an admin I can maintain the application.	I can perform maintenance of the app even after the release.	Sprint-1
		USN- 11	As an admin I can update the new datasets to the model and train them.	I can periodicall y update the datasets.	Sprint-1
		USN-	As an admin I can update the	I can perform	Sprint-1

12	features of the app and upgrade it to better versions.	upgrading of features and versions.	
USN- 13	As an admin I can maintain all the user details stored and the user's history.	I can maintain the application user's records.	Sprint-1

6. PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

The delivery plan of project deliverables is a strategic element for every Project Manager. The goal of every project is, in fact, to produce a result that serves a specific purpose. With the word "purpose", we can mean the most disparate goals: a software program, a chair, a building, a translation, etc.... In Project Spirit Delivery Planning is one of the processes of completing the project and Show Casing the Time Line of the Project Planning. This Delivery plan help to understanding the process and Work Flow of the Project working by the Team Mates. Every Single Modules are assigned to the team mates to show case their work and contribution of developing the Project.

Delivery Plan

6.2 Sprint Delivery Schedule

Sprint	Functiona l Requirem ent (Epic)	User Story Numbe r	User Story / Task	Team Members
Sprint-1	Data Collection	USN-1	Download Food Nutrition Dataset	PRAVEEN K
Sprint-1	Data Preprocessing	USN-2	Importing The Dataset into Workspace	SAIRAM B N
Sprint-1		USN-3	Handling Missing Data	SARBESH V
Sprint-1		USN-4	Feature Scaling	PAVITHRAN S

Sprint-1		USN-5	Data Visualization	SAIRAM B N
Sprint-1		USN-6	Splitting Data into Train and Test	PAVITHRAN S
Sprint-1		USN-7	Creating A Dataset with Sliding Windows	PRAVEEN K
Sprint-2	Model Building	USN-8	Importing The Model Building Libraries	SARBESH V
Sprint-2		USN-9	Initializing The Model	PRAVEEN K
Sprint-2		USN- 10	Adding LSTM Layers	SAIRAM B N
Sprint-2		USN- 11	Adding Output Layers	SARBESH V
Sprint-2		USN- 12	Configure The Learning Process	PAVITHRA N S
Sprint	Functional Requireme nt (Epic)	User Story Num ber	User Story / Task	Team Memb ers
Sprint-2		USN- 13	Train The Model	PAVITHRA N S
Sprint-2		USN- 14	Model Evaluation	SARBESH V
Sprint-2		USN- 15	Save The Model	PRAVEEN K
Sprint-2		USN- 16	Test The Model	SAIRAM B N
Sprint-3	Application Building	USN- 17	Create An HTML File	SAIRAM B N
Sprint-3		USN- 18	Build Python Code	SARBESH V
Sprint-3		USN- 19	Run The App in Local Browser	PRAVEEN K
Sprint-3		USN- 20	Showcasing Prediction On UI	PAVITHRA N S
Sprint-4	Train The Model On IBM	USN- 21	Register For IBM Cloud	SAIRAM B N
Sprint-4		USN- 22	Train The Model On IBM	SARBESH V

7. TESTING

7.1 Test Cases

7.1.1 Defect Analysis

The report shows the number of resolved or closed bugs at each severity level and how they were solved

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	10	4	2	3	20
Duplicate	1	0	3	0	4
External	2	3	0	1	6
Fixed	11	2	4	20	37
Not Reproduced	0	0	1	0	1
Skipped	0	0	1	1	2
Won't Fix	0	5	2	1	8
Totals	24	14	13	26	77

7.1.2 Test cases Analysis

This report shows the number of resloved or closed bugs at each delivery and how they were resolved.

Section	Total Cases	Not Tested	Fail	Pass
Print Engine	7	0	0	7
Client Application	51	0	0	51
Security	2	0	0	2
Outsource Shipping	3	0	0	3
Exception Reporting	9	0	0	9
Final Report Output	4	0	0	4
Version Control	2	0	0	2

9.ADVANTAGES & DISADVANTAGES

Advantages

We can easily classify the different types of fruits and display the calories content, nutrients, vitamins of the fruits which can be used by professionals to classify fruits based on their nutrients.

Disadvantages

Only the fruit can be identified by the file upload method, this can confuse the users and can provide little complex .we need more datasets and time to train the data for providing the required result.

10. CONCLUSION

We developed a project which can identify the fruit images uploaded to the web

application. The web application is built using deep learning, machine learning and using other technologies such as numpy, flask packages in python.

11. APPENDIX

11.1 SOURCE CODE

Code for nutrition analyzer which is published into GitHub.

FINAL.py

```
from keras.preprocessing.image import
ImageDataGenerator
train_datagen=
ImageDataGenerator(rescale=1./255,shear_range=0.2,z
oom_range=0.2,horizontal_flip=True)
test_datagen=ImageDataGenerator(rescale=1./255)
x_train=train_datagen.flow_from_directory
r'C:\Users\user\Downloads\dataset\TRAIN_SET\TRAI
N_SET',
target_size=(64,64),batch_size=5,color_mode='rgb',clas
s_mode='sparse')
x_test=test_datagen.flow_from_directory(
r'C:\Users\user\Downloads\dataset\TEST_SET\TEST_S
ET',
target_size=(64,64),batch_size=5,color_mode='rgb',class
_mode='sparse')
import numpy as np # used for numerical analysts
import tensorflow # open source used for both ML ond
```

```
DL for computot ion
#MaxPooling20-for downsampling the image
from keras.preprocessing.image import
ImageDataGenerator
from tensorflow.keras import \
  layers #4 Layer consists of a tensor-in tensor-out
computation function
#Faltten-used fot flottening the input or change the
dimension
#Dense Loyer is the regular deepLy connected neural ne
twork Layer
from tensorflow.keras.layers import (Conv2D, Dense, #
Convolutionat Loyer Dropout, Flatten, MaxPooling2D)
from tensorflow.keras.models import Sequential # it is
a plain stack of Layers
model=Sequential()
#Initializing the CNN
classifier=Sequential ()
# First convolution Layer and pool ing
classifier.add(Conv2D(32, (3, 3), input_shape=(64, 64,
3), activation= 'relu' ))
classifier.add(MaxPooling2D(pool_size= (2, 2)))
#Second convolution Layer and pool ing
classifier.add(Conv2D(32, (3, 3), activation='relu'))
```

#input shape is going to be the pooled feature maps

```
from the previous convolution Layer
classifier.add(MaxPooling2D(pool_size=(2, 2)))
# Flattening the layers
classifier.add(Flatten())
classifier.add(Dense (units=128, activation='relu'))
classifier.add(Dense (units=5, activation='softmax'))
classifier.summary()
classifier.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',metrics=['accura
cy'])
classifier.fit_generator(
    generator=x_train,steps_per_epoch = len(x_train),
    epochs=1, validation_data=x_test,
validation_steps=len(x_test)) # No of tmaes tn test set
classifier.save('nutrition.h5')
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
model= load_model("nutrition.h5") #Loading the modet
for testing
img=image.load_img(r"C:\Users\user\Downloads\datas
et\TRAIN_SET\TRAIN_SET\ORANGE\0_100.jpg",
grayscale=False,target_size=(64, 64)) #loading ef the
mage
x=image.img_to_array(img) # image to array
x=np.expand\_dims(x,axis = 0)#chang ing the shape
```

```
pred=model.predict(x) #predicting the cLasses
pred
img=image.load_img(r"C:\Users\user\Downloads\datas
et\TRAIN_SET\TRAIN_SET\ORANGE\0_100.jpg",
grayscale=False,target_size=(64, 64)) #loading ef the
mage
x=image.img_to_array(img) # image to array
x=np.expand\_dims(x,axis = 0)#chang ing the shape
pred=model.predict(x) #predicting the cLasses
# Flask-It is our framework which we are going to use
to run/serve our app
#request-for accessing file which was uploaded by the
user on our applicat
import os
import numpy as np # used for numerical analysis
import requests
from flask import Flask, render_template, request
from tensorflow.keras.models import load_model # to
load our trained model
from tensorflow.keras.preprocessing import image
app= Flask (__name__,template_folder= "templates") #
initializing a flask apPp
#Loading the model
model=load_model('nutrition.h5')
print("Loaded model from disk")
```

```
@app.route("/")# route to display the home page
def home():
  return render_template("home.html")#rendering the
home page
@app.route('/image 1 ',methods=['GET','POST'])#
routes to the index html
def image1():
  return render_template("image.htmL")
@app.route('/predict',methods=['GET','POST'])# route
to show the predictions in a
def launch():
  if request.method=='POST':
    print("Hi")
    f=request.files['image'] #requesting the file
    print("hi")
basepath=os.path.dirname ('__file__')#storing the file
directory
filepath=os.path.join(basepath,"uploads",f.filename)#sto
ring the file in uploads folder
    print(filepath)
    f.save(filepath) #saving the file
    img=image.load_img(filepath, target_size=(64, 64))
#load and reshaping the image
    x=image.img_to_array(img)#converting image to
an array
```

```
x=np.expand_dims(x,axis=0) #changing the
dimensions of the image
    pred=np.argmax(model.predict(x), axis=1)
    print("prediction",pred)#printing the prediction
    index=['APPLES', 'BANANA', 'ORANGE',
'PINEAPPLE', 'WATERMELON']
    result=str(index[pred[0]])
    X=result
    print(x)
    result=nutrition(result)
    print(result)
    return render_template("imageprediction.html",
showcase=(result))
def nutrition (index):
url="https://calorieninjas.p.rapidapi.com/v1/nutrition"
  querystring={"query": index}
  headers = {
  'x-rapidapi-key':
"5d797ab107mshe668f26bd044e64p1ffd34jsnf47bfa9a8
ee4",
  'x-rapidapi-host': "calorieninjas.p.rapidapi.com"
  }
  response=requests.request("GET",url,
headers=headers, params=querystring)
  print(response.text)
```

return response.json()["items"]

if __name__ == "__main__":

#running the app

app.run(debug=False)

GitHub & Project Demo Link

The link given below for our project GitHub repository:

https://github.com/IBM-EPBL/IBM-Project-5345-1658759382

OUTPUT

Some of the screenshots of project given below:

