

算法的由来

算法的定义

算法的性质

算法的表示

算法的分析

问题: 如何比较不同算法性能?

分析算法的运行时间

分析算法的运行时间

• 机器的运算速度影响算法的运行时间

机器	运算速度	运行算法	运行时间
天河三号	百亿亿次/秒	插入排序	无法公平比较
个人电脑	十亿次/秒	选择排序	九広公十儿秋

• 机器的运算速度影响算法的运行时间

机器	运算速度	运行算法	运行时间
天河三号	百亿亿次/秒	插入排序	无法公平比较
个人电脑	十亿次/秒	选择排序	九広公十儿秋

分析算法的运行时间应独立于机器

• 归纳基本操作

• 如:运算、赋值、比较

+		×	<u>:</u>
: ::	^	V	II

• 归纳基本操作

• 如:运算、赋值、比较

+		×	÷
:=	\	V	II

• 统一机器性能

• 假设基本操作代价均为1

• 归纳基本操作

• 如:运算、赋值、比较

+	_	×	÷
: =	>	V	Ш

统一	-朷	器	件	能
<i>-</i> /6	17 U	,00		пL

• 假设基本操作代价均为1

统一机器性能后,算法运行时间依赖于问题输入规模与实例

• 相同输入规模,实例影响运行

```
输入: 数组A[a_1, a_2, ..., a_n]
输出: 升序数组A'[a'_1, a'_2, ..., a'_n],满足 a'_1 \leq a'_2 \leq ... \leq a'_n
for j \leftarrow 2 to n do
    key \leftarrow A[j]
   i \leftarrow j-1
  while i > \overline{0} and A[i] > \overline{key} do
                                                      循环次数未知
     A[i+1] \leftarrow A[i]
   end
    A[i+1] \leftarrow key
end
```

插入排序算法伪代码

- 相同输入规模,实例影响运行
 - 插入排序最好情况: 数组升序

- 相同输入规模,实例影响运行
 - 插入排序最好情况: 数组升序

● 插入排序最坏情况: 数组降序

o 比较次数: $1+2+3+\cdots+(n-1)=\frac{n(n-1)}{2}$

48	47	40	40	37	32	28	24	22	21	18	17	14	13	8	4	
----	----	----	----	----	----	----	----	----	----	----	----	----	----	---	---	--

输入情况	情况说明			
最好情况	不常出现,不具普遍性			

输入情况	情况说明
最好情况	不常出现,不具普遍性
最坏情况	确定上界,更具一般性

输入情况	情况说明
最好情况	不常出现,不具普遍性
最坏情况	确定上界,更具一般性
一般情况	情况复杂,分析难度大

运行时间

输入情况	情况说明	
最好情况	不常出现,不具普遍性	ر
最坏情况	确定上界,更具一般性	
一般情况	情况复杂,分析难度大	

运行时间

常用最坏情况分析算法运行时间

()统一机器性能

仅依赖于输入规模。其T(n)未为折算沒财间效率

②分析最坏情况

算法运行时间仅依赖于问题输入规模n,表示为T(n)

• 插入排序最坏情况

```
\begin{array}{l} \textbf{for } j \leftarrow 2 \ to \ n \ \textbf{do} \\ | key \leftarrow A[j] \\ | i \leftarrow j - 1 \\ | \textbf{while } i > 0 \ and \ A[i] > key \ \textbf{do} \\ | A[i+1] \leftarrow A[i] \\ | i \leftarrow i - 1 \\ | \textbf{end} \\ | A[i+1] \leftarrow key \\ \textbf{end} \end{array}
```

• 选择排序最坏情况

• 插入排序最坏情况

```
\begin{array}{l} \textbf{for } j \leftarrow 2 \ to \ n \ \textbf{do} \\ | key \leftarrow A[j] \\ | i \leftarrow j - 1 \\ | \textbf{while } i > 0 \ and \ A[i] > key \ \textbf{do} \\ | A[i+1] \leftarrow A[i] \\ | i \leftarrow i - 1 \\ | \textbf{end} \\ | A[i+1] \leftarrow key \\ \textbf{end} \end{array}
```

• 选择排序最坏情况

```
\mathbf{for}\ i \leftarrow 1\ to\ n-1\ \mathbf{do} \mid \mathbf{for}\ j \leftarrow i+1\ to\ n\ \mathbf{do} \mid \mathbf{if}\ A[i] > A[j]\ \mathbf{then} \mid \mathbf{交换}\ A[i]\ \mathbf{1}\ A[j] \mid \mathbf{end} \mid \mathbf{end}
```


• 插入排序最坏情况

```
for j \leftarrow 2 to n do n次 key \leftarrow A[j] n-1次 i \leftarrow j-1 n-1次 while i > 0 and A[i] > key do A[i+1] \leftarrow A[i] i \leftarrow i-1 end A[i+1] \leftarrow key end
```

• 选择排序最坏情况

• 插入排序最坏情况

```
for j \leftarrow 2 to n do n次 key \leftarrow A[j] n-1次 i \leftarrow j-1 n-1次 while i > 0 and A[i] > key do \sum_{k=2}^{n} k次 A[i+1] \leftarrow A[i] \sum_{k=2}^{n} k-1次 end A[i+1] \leftarrow key end
```

• 选择排序最坏情况

• 插入排序最坏情况

```
for j \leftarrow 2 to n do n次 key \leftarrow A[j] n-1次 i \leftarrow j-1 n-1次 while i > 0 and A[i] > key do \sum_{k=2}^{n} k次 A[i+1] \leftarrow A[i] \sum_{k=2}^{n} k-1次 end A[i+1] \leftarrow key n-1次 end
```

• 选择排序最坏情况

• 插入排序最坏情况

```
for j \leftarrow 2 to n do n次 key \leftarrow A[j] n-1次 i \leftarrow j-1 n-1次 while i > 0 and A[i] > key do \sum_{k=2}^{n} k次 A[i+1] \leftarrow A[i] \sum_{k=2}^{n} k-1次 end A[i+1] \leftarrow key n-1次 end
```

选择排序最坏情况

插入排序最坏情况

$$T(n) = \frac{3}{2}n^2 + \frac{7}{2}n - 4$$

选择排序最坏情况

$$T(n) = \frac{3}{2}n^2 + \frac{1}{2}n - 1$$

• 插入排序最坏情况

$$T(n) = \frac{3}{2}n^2 + \frac{7}{2}n - 4$$

$$T(n) = \frac{3}{2}n^2 + \frac{1}{2}n - 1$$

问题: 能否简洁地衡量算法运行时间?

求和

• 在n充分大时,两者相差不大

- 在n充分大时,两者相差不大
- 原因?

- 在n充分大时,两者相差不大
- 原因: 两函数的最高阶项相同

插入排序最坏情况

for $j \leftarrow 2$ to n do $key \leftarrow A[j]$ $i \leftarrow j-1$ while i > 0 and A[i] > key do $A[i+1] \leftarrow A[i]$ $i \leftarrow i-1$ end $A[i+1] \leftarrow key$ end

选择排序最坏情况

$$T(n) = \frac{3}{2}n^2 + \frac{1}{2}n - 1$$

渐近分析: 忽略T(n)的系数与低阶项,仅关注高阶项)用记号 Θ 表示

• 插入排序最坏情况

$\begin{array}{l} \textbf{for } j \leftarrow 2 \ to \ n \ \textbf{do} \\ | key \leftarrow A[j] \\ | i \leftarrow j-1 \\ | \textbf{while } i > 0 \ and \ A[i] > key \ \textbf{do} \\ | A[i+1] \leftarrow A[i] \\ | i \leftarrow i-1 \\ | \textbf{end} \\ | A[i+1] \leftarrow key \\ \textbf{end} \end{array}$

• 选择排序最坏情况

$$T(n) = \Theta(n^2)$$

$$T(n) = \Theta(n^2)$$

• 分析n充分大时函数的大小关系,并用渐近记号表示

渐近记号	名称
$T(n) = \Theta(g(n))$	渐近紧确界 3
$T(n) = {\color{red}0}(g(n))$	渐近上界
$T(n) = \Omega(g(n))$	渐近下界

渐近分析: 渐近紧确界

Θ记号

定义:

• 对于给定的函数g(n), $\Theta(g(n))$ 表示以下函数的集合:

$$\Theta(g(n)) = \{T(n): \exists c_1, c_2, n_0 > 0, \notin \exists v \in \mathcal{V} | v \geq n_0, c_1g(n) \leq T(n) \leq c_2g(n) \}$$

渐近分析: 渐近紧确界

Θ记号

定义:

• 对于给定的函数g(n), $\Theta(g(n))$ 表示以下函数的集合: $\Theta(g(n)) = \{T(n): \exists \ c_1, c_2, n_0 > 0, 使得 \forall \ n \geq n_0, c_1g(n) \leq T(n) \leq c_2g(n)\}$

Θ记号示例

•
$$T(n) = \frac{3}{2}n^2 + \frac{7}{2}n - 4 = ?$$

渐近分析: 渐近紧确界

0记号

定义:

• 对于给定的函数g(n), $\Theta(g(n))$ 表示以下函数的集合: $\Theta(g(n)) = \{T(n): \exists \ c_1, c_2, n_0 > 0, 使得 \forall \ n \geq n_0, c_1 g(n) \leq T(n) \leq c_2 g(n) \}$

- $T(n) = \frac{3}{2}n^2 + \frac{7}{2}n 4 = ?$
- $\frac{3}{2}n^2 + \frac{7}{2}n 4 \ge \frac{3}{2}n^2 \ge n^2$ $C_1 \cdot C_2 \cdot 10 \text{ M}$

Θ记号

定义:

• 对于给定的函数g(n), $\Theta(g(n))$ 表示以下函数的集合: $\Theta(g(n)) = \{T(n): \exists \ c_1, c_2, n_0 > 0, 使得 \forall \ n \geq n_0, c_1g(n) \leq T(n) \leq c_2g(n)\}$

● 0记号示例

- $T(n) = \frac{3}{2}n^2 + \frac{7}{2}n 4 = ?$
- $\frac{3}{2}n^2 + \frac{7}{2}n 4 \ge \frac{3}{2}n^2 \ge n^2$
- $\frac{3}{2}n^2 + \frac{7}{2}n 4 \le \frac{3}{2}n^2 + \frac{7}{2}n^2 + n^2 = 6n^2$

Θ记号

定义:

・ 对于给定的函数g(n), $\Theta(g(n))$ 表示以下函数的集合: $\Theta(g(n)) = \{T(n): \exists \ c_1, c_2, n_0 > 0, 使得 \forall \ n \geq n_0, c_1g(n) \leq T(n) \leq c_2g(n)\}$

● 印记号示例

- $T(n) = \frac{3}{2}n^2 + \frac{7}{2}n 4 = \Theta(n^2)$
- $\frac{3}{2}n^2 + \frac{7}{2}n 4 \ge \frac{3}{2}n^2 \ge n^2$
- $\frac{3}{2}n^2 + \frac{7}{2}n 4 \le \frac{3}{2}n^2 + \frac{7}{2}n^2 + n^2 = 6n^2$
- 故存在 $c_1=1, c_2=6, n_0=2$,使得 $\forall \ n\geq n_0, c_1n^2\leq T(n)\leq c_2n^2$

•
$$\frac{3}{2}n^5 + \frac{7}{2}n - 10 =$$

•
$$\frac{3}{2}n^5 + \frac{7}{2}n - 10 = \Theta(n^5)$$

•
$$\frac{3}{2}n^5 + \frac{7}{2}n - 10 = \Theta(n^5)$$

•
$$n^3 - n^2 + n =$$

•
$$\frac{3}{2}n^5 + \frac{7}{2}n - 10 = \Theta(n^5)$$

$$n^3 - n^2 + n = \Theta(n^3)$$

0记号

定义:

• 对于给定的函数g(n), O(g(n))表示以下函数的集合:

$$O(g(n)) = \{T(n): \exists c, n_0 > 0, 使得 \forall n \geq n_0, 0 \leq T(n) \leq cg(n)\}$$

- *0*记号示例
 - $\cos n$

- 0记号示例
 - $\cos n \leq 1$

- 0记号示例
 - $\cos n = O(1)$

$$\cos n = O(1)$$

•
$$\frac{n^2}{2} - 12n =$$

$$\cos n = O(1)$$

$$\frac{n^2}{2} - 12n = O(n^2)$$

- 0记号示例
 - $\cos n = O(1)$

$$\frac{n^2}{2} - 12n = O(n^2)$$

• $\log_7 n =$

- $\cos n = O(1)$
- $\log_7 n = \frac{\log_2 n}{\log_2 7} =$

对数换底公式
$$\log_x N = \frac{\log_y N}{\log_y x}$$

- $\cos n = O(1)$
- $\frac{n^2}{2} 12n = O(n^2)$
- $\log_7 n = \frac{\log_2 n}{\log_2 7} = O(\log_2 n) = O(\log n)$

对数换底公式
$$\log_x N = \frac{\log_y N}{\log_y x}$$

- $\cos n = O(1)$
- $\frac{n^2}{2} 12n = O(n^2)$
- $\log_7 n = \frac{\log_2 n}{\log_2 7} = O(\log_2 n) = O(\log n)$
- $\sum_{i=1}^{n} \frac{1}{i}$ (假设n是2的整数幂)

- $\cos n = O(1)$
- $\log_7 n = \frac{\log_2 n}{\log_2 7} = O(\log_2 n) = O(\log n)$
- $\sum_{i=1}^{n} \frac{1}{i}$ (假设n是2的整数幂)

$$= \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \dots + \frac{1}{n}$$

- $\cos n = O(1)$
- $\log_7 n = \frac{\log_2 n}{\log_2 7} = O(\log_2 n) = O(\log n)$
- $\sum_{i=1}^{n} \frac{1}{i}$ (假设n是2的整数幂)

$$= \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \dots + \frac{1}{n}$$

$$< \frac{1}{1} + \frac{1}{2} + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \dots + \frac{1}{\frac{n}{2}} + \frac{1}{n}$$

- $\cos n = O(1)$
- $\frac{n^2}{2} 12n = O(n^2)$
- $\log_7 n = \frac{\log_2 n}{\log_2 7} = O(\log_2 n) = O(\log n)$
- $\sum_{i=1}^{n} \frac{1}{i}$ (假设n是2的整数幂)

$$= \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \dots + \frac{1}{n}$$

$$< \frac{1}{1} + \frac{1}{2} + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \dots + \frac{1}{\frac{n}{2}} + \frac{1}{n}$$

- $\cos n = O(1)$
- $\log_7 n = \frac{\log_2 n}{\log_2 7} = O(\log_2 n) = O(\log n)$
- $\sum_{i=1}^{n} \frac{1}{i}$ (假设n是2的整数幂)

$$= \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \dots + \frac{1}{n}$$

$$< \frac{1}{1} + \frac{1}{2} + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \dots + \frac{1}{\frac{n}{2}} + \frac{1}{n}$$

$$=\frac{1}{1}+2\cdot\left(\frac{1}{2}\right)+4\cdot\left(\frac{1}{4}\right)+8\cdot\left(\frac{1}{8}\right)+\cdots+\frac{n}{2}\left(\frac{1}{\frac{n}{2}}\right)+\frac{1}{n}$$

- $\cos n = O(1)$
- $\log_7 n = \frac{\log_2 n}{\log_2 7} = O(\log_2 n) = O(\log n)$
- $\sum_{i=1}^{n} \frac{1}{i}$ (假设n是2的整数幂)

$$= \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \dots + \frac{1}{n}$$

$$< \frac{1}{1} + \frac{1}{2} + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \dots + \frac{1}{\frac{n}{2}} + \frac{1}{n}$$

$$= \frac{1}{1} + 2 \cdot \left(\frac{1}{2}\right) + 4 \cdot \left(\frac{1}{4}\right) + 8 \cdot \left(\frac{1}{8}\right) + \dots + \frac{n}{2} \left(\frac{1}{\frac{n}{2}}\right) + \frac{1}{n}$$

- $\cos n = O(1)$
- $\log_7 n = \frac{\log_2 n}{\log_2 7} = O(\log_2 n) = O(\log n)$
- $\sum_{i=1}^{n} \frac{1}{i}$ (假设n是2的整数幂)

$$= \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \dots + \frac{1}{n}$$

$$< \frac{1}{1} + \frac{1}{2} + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \dots + \frac{1}{\frac{n}{2}} + \frac{1}{n}$$

$$= \frac{1}{1} + 2 \cdot \left(\frac{1}{2}\right) + 4 \cdot \left(\frac{1}{4}\right) + 8 \cdot \left(\frac{1}{8}\right) + \dots + \frac{n}{2} \left(\frac{1}{\frac{n}{2}}\right) + \frac{1}{n} = \frac{1}{n} + \sum_{j=0}^{\log n - 1} \mathbf{1}$$

- $\cos n = O(1)$
- $\log_7 n = \frac{\log_2 n}{\log_2 7} = O(\log_2 n) = O(\log n)$
- $\sum_{i=1}^{n} \frac{1}{i}$ (假设n是2的整数幂)

$$= \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \dots + \frac{1}{n}$$

$$< \frac{1}{1} + \frac{1}{2} + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \dots + \frac{1}{\frac{n}{2}} + \frac{1}{n}$$

$$= \frac{1}{1} + 2 \cdot \left(\frac{1}{2}\right) + 4 \cdot \left(\frac{1}{4}\right) + 8 \cdot \left(\frac{1}{8}\right) + \dots + \frac{n}{2} \left(\frac{1}{\frac{n}{2}}\right) + \frac{1}{n} = \frac{1}{n} + \sum_{j=0}^{\log n - 1} 1$$

$$= \log n + \frac{1}{n} = O(\log n)$$

Ω记号

定义:

• 对于给定的函数g(n), $\Omega(g(n))$ 表示以下函数的集合:

$$\Omega(g(n)) = \{T(n): \exists c, n_0 > 0, 使得 \forall n \geq n_0, 0 \leq cg(n) \leq T(n)\}$$

•
$$n^3 - 2n =$$

$$n^3-2n=\Omega(n^3)$$

- $\quad \boldsymbol{n}^3 2\boldsymbol{n} = \boldsymbol{\Omega}(\boldsymbol{n}^3)$
- $\quad n^2+n=\Omega(n^2)$

- $n^3-2n=\Omega(n^3)$
- $\quad n^2 + n = \Omega(n^2)$
- $\sum_{i=1}^{n} \frac{1}{i}$ (假设n是2的整数幂)

$$n^3-2n=\Omega(n^3)$$

$$\bullet n^2 + n = \Omega(n^2)$$

•
$$\sum_{i=1}^{n} \frac{1}{i}$$
 (假设 n 是2的整数幂)
1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1

$$= \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \dots + \frac{1}{n}$$

$$n^3-2n=\Omega(n^3)$$

$$\quad \boldsymbol{n^2+n}=\boldsymbol{\Omega(n^2)}$$

• Ω记号示例

$$n^3-2n=\Omega(n^3)$$

$$\quad \boldsymbol{n}^2 + \boldsymbol{n} = \boldsymbol{\Omega}(\boldsymbol{n}^2)$$

•
$$\sum_{i=1}^{n} \frac{1}{i}$$
 (假设 n 是2的整数幂)

$$= \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \dots + \frac{1}{n}$$

$$> \frac{1}{1} + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{16} + \frac{1}{16} + \dots + \frac{1}{n}$$

$$= \frac{1}{1} + \frac{1}{2} + 2 \cdot \left(\frac{1}{4}\right) + 4 \cdot \left(\frac{1}{8}\right) + 8 \cdot \left(\frac{1}{16}\right) + \dots + \frac{n}{2}\left(\frac{1}{n}\right)$$

 $\log n$ 项

• Ω记号示例

$$n^3 - 2n = \Omega(n^3)$$

$$\quad n^2+n=\Omega(n^2)$$

• $\sum_{i=1}^{n} \frac{1}{i}$ (假设n是2的整数幂)

$$= \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \dots + \frac{1}{n}$$

$$> \frac{1}{1} + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{16} + \frac{1}{16} + \dots + \frac{1}{n}$$

$$= \frac{1}{1} + \frac{1}{2} + 2 \cdot \left(\frac{1}{4}\right) + 4 \cdot \left(\frac{1}{8}\right) + 8 \cdot \left(\frac{1}{16}\right) + \dots + \frac{n}{2}\left(\frac{1}{n}\right)$$

$$= 1 + \sum_{i=1}^{\log n} \frac{1}{2}$$

• Ω记号示例

$$n^3-2n=\Omega(n^3)$$

$$\quad n^2+n=\Omega(n^2)$$

 $=\Omega(\log n)$

•
$$\sum_{i=1}^{n} \frac{1}{i}$$
 (假设 n 是2的整数幂)

$$= \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \dots + \frac{1}{n}$$

$$> \frac{1}{1} + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{16} + \frac{1}{16} + \dots + \frac{1}{n}$$

$$= \frac{1}{1} + \frac{1}{2} + 2 \cdot \left(\frac{1}{4}\right) + 4 \cdot \left(\frac{1}{8}\right) + 8 \cdot \left(\frac{1}{16}\right) + \dots + \frac{n}{2}\left(\frac{1}{n}\right)$$

$$= 1 + \sum_{j=1}^{\log n} \frac{1}{2}$$

$$= 1 + \frac{1}{2} \log n$$

渐近分析

• $T(n) = \Theta(g(n))$ 等价于: $T(n) = \Omega(g(n))$ 且T(n) = O(g(n))

渐近记号	名称
Θ	渐近紧确界
0	渐近上界
Ω	渐近下界

输入情况	情况说明
最好情况	不常出现,不具普遍性
最坏情况	确定上界,更具一般性

算法运行时间称为算法的时间复杂度,通常使用渐近记号0表示

• 插入排序最坏情况

• 选择排序最坏情况

```
 \begin{array}{c|c} \textbf{for } j \leftarrow 2 \ to \ n \ \textbf{do} \\ key \leftarrow A[j] \\ i \leftarrow j - 1 \\ \textbf{while } i > 0 \ and \ A[i] > key \ \textbf{do} \\ A[i+1] \leftarrow A[i] \\ i \leftarrow i - 1 \\ \textbf{end} \\ A[i+1] \leftarrow key \\ \textbf{end} \end{array} \right] \textbf{\textit{O}(n)} \textbf{\textit{O}(n^2)}
```

```
egin{aligned} \mathbf{for} \ i \leftarrow 1 \ to \ n-1 \ \mathbf{do} \ & \mathbf{for} \ j \leftarrow i+1 \ to \ n \ \mathbf{do} \ & \mathbf{if} \ A[i] > A[j] \ \mathbf{then} \ & \mathbf{交换} \ A[i] \ \mathbf{n} \ A[j] \ \mathbf{o(n)} \ & \mathbf{end} \ & \mathbf{end} \end{aligned}
```

算法的分析小结

• 算法分析的原则

统一机器性能

算法的分析小结

• 算法分析的原则

统一机器性能

分析最坏情况

算法的分析小结

• 算法分析的原则

统一机器性能

分析最坏情况

• 算法分析的工具

深用渐近分析

算法的由来

算法的定义

算法的性质

算法的表示

算法的分析

分而治之篇

最大子数组问题 递归式求解 归并排序

逆序对计数问题 次序选择问题 快速排序

动态规划篇

最长公共子串问题

最大子数组问题Ⅱ

0-1背包问题

最长公共子序列问题

矩阵链乘法问题 编辑距离问题 钢条切割问题

贪心策略篇

部分背包问题 霍夫曼编码

活动选择问题

