		classmate
	OPTIMIZATION METHODS FOR ML-1 max _ min	
	EV opt	opt. wTAW - 2.
	graph) 11	wll=1 EV.
		w is the EV of A.
(§	max. $w^T A w$ set $w^T w = 1$ $w^T w$ Son the manifold $d^w = 1$ Son the manifold $d(x_1, x_2) = shortest$ path $d(x_1, x_2) = shortest$	
_		21,322
	Lollow the	6 · · ·
	spring	
_	. 0	
_	· ·	× ×
	K-nearest points	measure .
	VS	distance:
	within a distance	
	- arcle	,
34		20 30/40
	find y_i y_n in 2D st. $d(y_i + y_j) \approx d(x_i, x_j)$ on wap paper — popular in data visualization, min $[d(y_i, y_j) - d(x_i, x_j)]$ See higher dimension	
-		

need a transformation from rui to y; such that it has similar local geometry.

fn. - ML.

 $c = \{x_i \mid \omega_i > 0\}$

hyper parameter

EV OPTIMIZATION : MORE EXAMPLES

coner, $A \in \mathbb{R}^{d \times d}$ st. $\omega^T \omega = 1$ coe \mathbb{R}^{d}

2 max. $Tr(W^TAW)$ where, $A \in \mathbb{R}^{dxd}$ st. $W^TW = 1$ $W \in \mathbb{R}^{dxd}$

3 min. $\|X - \omega \omega^T X\|_F^2$ where $X \in \mathbb{R}^{d \times n}$ st. $\omega^T \omega = 1$ $\omega \in \mathbb{R}^{d}$

11.11= > frobenius norm,

5. max. wTAw wT w

GRAPHS INDUCED ON DATA

- appreciate and represent the data as a graph.
 - data points as ventices
 - Some relationship (say distance or similarity)
- · nearest neighbour graph
 - K-nearest neighbour graphs.
 - epsilon neighbourhoods.
- · data on a low-dimensional manifold
 consider low-dimensional nonlinear manifolds.
- · simple trick: Similar to ISOMAP
 - construct a neigh bourhood graph.
 - -d(ij) is the shortest path on the distance on the manifolds

RATIO CUTS AND CLUSTERING

cut (A, A) = \(\sum_{ce A} \) \(\sum_{ce A} \) \(\sum_{ce A} \) \(\sum_{ce A} \)

can lead to unwanted solution (such as one fing cluster corresponding to an outlier)

ratio cot:

objective

$$\frac{\cot(A_3A)}{|A|} + \frac{\cot(A_3A)}{|A|} \Leftrightarrow \frac{\sum(b_i-b_i)^2}{|A|}$$

this is equivalent to optimization of:

CLUSTERING / CUT OBJECTIVE

ratio cut

normalized cut

$$\frac{\cot(A,B)}{\cot(A,A)+\cot(A,B)} + \frac{\cot(B,A)}{\cot(B,A)} + \cot(B,B)$$

min-max cut

comments

- if clusters are

accurate results.

give better results.

cut(A)A) + cut(B,A)

- well separated, all three give very similar and

marginally separated, NormCut and Min Max Cut

- overlapping significantly, MinMaxCut tend to give more compact and balanced clusters.

extensions to multi-way cuts Cheyond this course).

min.
$$J = \sum_{j=1}^{K} \frac{N_j}{i=1} \frac{N_j}{N_j} \frac{N_j}{p=1} \frac{N_j}{N_j} \frac{N_j}{p=1}$$

NP hard to minimize in general.

- choose k centers at random

- assign points to closest center

- compute new centrers are cluster controids.

K-means++ is legista's with smarter initialization.