Steve Awodey による随伴

岡田 大 (Okada Masaru)

October 19, 2025

Abstract

Steve Awodey 第2版第9章に沿って随伴をまとめる[1]。

Contents

1		準備的定義	1
	1.1	語を構成するクリーネ閉包	1
	1.2	自由モノイドの普遍性	2
	1.3	シンプルな自由・忘却随伴の例	3
	1.4	シンプルな随伴の定義	3
2		例:対角関手	3
	2.1	対角関手の右随伴は積関手である	3
	2.2	随伴の unit	5

1 準備的定義

1.1 語を構成するクリーネ閉包

「任意の集合から自由モノイドを構成する」という方法の一つの例を挙げる。

アルファベットの文字からなる集合 $A = \{a,b,c,...,y,z\}$ を考える。

有限な文字列(ここではその文字列が意味を持つかどうかにかかわらない)を A の上の語 (word) と呼ぶ。例えば、

 $word, this word, categories are fun, as d fas d a f, \dots$

空集合はハイフンで"-"対応させるものとする。

このときクリーネ閉包 (Kleene Closure) とは、

 $A^{\rm Kleene} = \{-, word, this word, categories are fun, as df as daf, \ldots\}$

で定義される作用素 $(\cdot)^{Kleene}$ である。

集合 A^{Kleene} 上の要素、語について文字列の結合演算 ++ を用意する。これにより

$$\begin{array}{rcl} word & ++- & = & word \\ this & ++word & = & thisword \\ categories & ++are & ++fun & = & categories are fun \end{array}$$

のように $++: A^{\text{Kleene}} \times A^{\text{Kleene}} \rightarrow A^{\text{Kleene}}$ 定義される。

空文字 - は単位元になる。

この演算によって $(A^{\text{Kleene}}, ++)$ はモノイドになる。

さらに、 A^{Kleene} は

- 1. no junk (全ての語は A^{Kleene} の要素の積として表せる。)
- 2. no noise (全ての語について、A の元の結合として書く方法が(モノイドの公理を除いて)一意である。例えば $a \neq b$ ならば $ab \neq ba$ である。)

という条件を満たすので、自由モノイドとなる。

1.2 自由モノイドの普遍性

モノイドが自由モノイドになる 2 つの条件 no junk, no noise について、圏論的に定義することで非常に すっきりした形で表すことができる。

まず、任意のモノイド M,N は台集合 U(M),U(N) を持つ。

そして任意の準同型写像 $f: N \to M$ は台写像 $U(f): U(N) \to U(M)$ を持つ。

このUは関手であり、忘却関手と呼ばれる。

集合 A から構成される自由モノイド M(A) には次のような普遍性がある。

- 自由モノイド M(A) の普遍性 ——

写像 $i:A\to U(M(A))$ があり、任意のモノイド N と任意の写像 $f:A\to U(N)$ が与えられたとき、「ただ一つの」モノイド準同型 $g:M(A)\to N$ が存在し、 $U(g)\circ i=f$ が成り立つ。

これは圏論的にすっきりとまとめられる。

- 自由モノイド M(A) の普遍性の図式 -

Mon においての図式:

$$M(A) \xrightarrow{\exists ! g} N$$

Set においての図式:

1.3 シンプルな自由・忘却随伴の例

任意のモノイド M は台集合 U(M) を持つ。

また、前のセクションで構成したように、すべての集合 X は自由モノイド F(X) を持つ。 さっきの g を $U(g) \circ i = f$ に写すような写像 ϕ を考える。

$$\phi: \operatorname{Hom}_{\mathbf{Mon}}(F(X), M) \to \operatorname{Hom}_{\mathbf{Set}}(X, U(M))$$

$$g \mapsto U(g) \circ i$$

この写像は自由モノイドの普遍性の図式より同型写像である。

$$\operatorname{Hom}_{\mathbf{Mon}}(F(X), M) \cong \operatorname{Hom}_{\mathbf{Set}}(X, U(M))$$

覚え方は標語的に「自由は忘却の左随伴」である。

1.4 シンプルな随伴の定義

以上の流れをそのまま圏 C, D について考えることで随伴を定義する。

- 圏 C と圏 D の随伴 -----

圏 \mathbf{C} と圏 \mathbf{D} の随伴とは、関手 F,G

$$F: \mathbf{C} \rightleftharpoons \mathbf{D}: G$$

と自然変換 $\eta: 1_{\mathbf{C}} \to G \circ F$ からなる。

それぞれは次の性質を持つ。

任意の $C \in \mathbf{C}$, $D \in \mathbf{D}$ と $f: C \to G(D)$ に対して、ただ一つの g が存在して、 $f = G(g) \circ \eta_C$ が以下のように成り立つ。

$$F(C) \xrightarrow{!g} D$$

このとき、F は G の左随伴、G は F の右随伴と呼ばれ、 $F \dashv G$ と書かれる。 η は随伴の unit と呼ばれる。

2 例:対角関手

2.1 対角関手の右随伴は積関手である

例として対角関手 $\Delta: \mathbf{C} \to \mathbf{C} \times \mathbf{C}$ を考える。

対象と射はそれぞれ

$$\begin{array}{cccc} \Delta(C) & = & (C,C) & \text{for } C \in \mathrm{Obj}(\mathbf{C}) \\ \Delta(f:C \to C') & = & (f,f):(C,C) \to (C',C') & \text{for } f \in \mathrm{Mor}(\mathbf{C}) \end{array}$$

対角関手の右随伴 R を考える。

 $\Delta: \mathbf{C} \to \mathbf{C} \times \mathbf{C}$ の反対向きなので、 $R: \mathbf{C} \times \mathbf{C} \to \mathbf{C}$ となる関手になる。この対象を

$$R: \mathbf{C} \times \mathbf{C} \ni (X, Y) \mapsto R(X, Y) \in \mathbf{C}$$

のように取ろう。

随伴の作り方を思い出そう。

これは自由忘却随伴

$$\operatorname{Hom}_{\mathbf{Mon}}(F(X), M) \cong \operatorname{Hom}_{\mathbf{Set}}(X, U(M))$$

この対応を思い出して、それぞれに代入すると、

$$\operatorname{Hom}_{\mathbf{C}\times\mathbf{C}}(\Delta(C),(X,Y)) \cong \operatorname{Hom}_{\mathbf{C}}(C,R(X,Y))$$

となる。

この左辺については

$$\begin{array}{ccc} \operatorname{Hom}_{\mathbf{C}\times\mathbf{C}}(\Delta(C),(X,Y)) & \cong & \operatorname{Hom}_{\mathbf{C}\times\mathbf{C}}((C,C),(X,Y)) \\ & \cong & \operatorname{Hom}_{\mathbf{C}}(C,X) \times \operatorname{Hom}_{\mathbf{C}}(C,Y) \\ & \cong & \operatorname{Hom}_{\mathbf{C}}(C,X \times Y) \end{array}$$

となる。

最初の \cong には $\Delta(C)$ の定義を用いた。

2つ目の \cong には積圏 $\mathbf{C} \times \mathbf{C}$ における射の定義を用いた。

3つ目の \cong には圏 $\mathbf C$ における積 $X \times Y$ の普遍性 $\mathrm{Hom}_{\mathbf C}(C, X \times Y) \cong \mathrm{Hom}_{\mathbf C}(C, X) \times \mathrm{Hom}_{\mathbf C}(C, Y)$ を用いている。

随伴の定義式に入れたときの左辺と右辺を比較すると、

$$\operatorname{Hom}_{\mathbf{C}}(C, R(X, Y)) \cong \operatorname{Hom}_{\mathbf{C}}(C, X \times Y)$$

ここに米田の補題の系

$$\operatorname{Hom}_{\mathbf{C}}(C, F) \cong \operatorname{Hom}_{\mathbf{C}}(C, G) \Rightarrow F \cong G$$

を用いたい。この米田の補題の系を用いるには C について自然な同型である必要がある。今回のケースでは随伴の定義より、

$$\operatorname{Hom}(-, R(X, Y)) \cong \operatorname{Hom}(-, X \times Y)$$

の間に自然な同型がある。

以上から、

$$R(X,Y) \cong X \times Y$$

が言える。

対角関手 Δ の右随伴は積関手 \times である、すなわち $\Delta \dashv \times$ であることが示された。

2.2 **随伴の** unit

随伴の unit を考える。unit η_C は随伴 Δ \dashv × (すなわち、 $L=\Delta,R=\times$)の定義より、自然変換 $\eta:1_{\bf C}\to R\circ L=\times\circ\Delta$ である。

その成分 η_C は、 $\mathbf C$ の各対象 C に対して、 $(\times \circ \Delta)(C) = \times (\Delta(C)) = \times (C,C) = C \times C$ への射、すなわち $\eta_C: C \to C \times C$ の形を持つ

この η_C は、随伴の同型

$$\operatorname{Hom}_{\mathbf{C}\times\mathbf{C}}(\Delta(C),(X,Y)) \cong \operatorname{Hom}_{\mathbf{C}}(C,\times(X,Y))$$

において、 $(X,Y)=\Delta(C)=(C,C)$ と特別に選び、左辺の恒等射 $1_{\Delta(C)}:\Delta(C)\to\Delta(C)$ に対応する右辺の射として定義される。

ここで、 $1_{\Delta(C)}$ は、積圏の定義から、射の対 $(1_C,1_C)$ である。

$$1_{\Delta(C)} = (1_C, 1_C) : (C, C) \to (C, C)$$

一方、積 $C \times C$ の普遍性

$$\operatorname{Hom}_{\mathbf{C}}(C, C \times C) \cong \operatorname{Hom}_{\mathbf{C}}(C, C) \times \operatorname{Hom}_{\mathbf{C}}(C, C)$$

により、射の対 $(1_C, 1_C)$ に対応する $\operatorname{Hom}_{\mathbf{C}}(C, C \times C)$ の射は、

$$p_1 \circ f = 1_C$$
 and $p_2 \circ f = 1_C$

を満たす唯一の射 $f: C \to C \times C$ である。

これはいわゆる対角射 δ_C の定義に他ならない。従って、随伴の unit は対角射 $\eta_C = \delta_C$ である。

unit η の普遍性について考える。

unit η の普遍性は、この文脈では以下のように表現される。

任意の射 $f:C\to X\times Y\ (\in {\bf C})$ が、 η_C と、随伴で f に対応する唯一の射 $g:\Delta(C)\to (X,Y)\ (\in {\bf C}\times {\bf C})$ に分解できる。

 $g_1:C\to X$, $g_2:C\to Y$ の射の対を $g=(g_1,g_2)$ と書くと、関手 $R=\times$ の射への作用は

$$R(g) = g_1 \times g_2 : C \times C \to X \times Y$$

となる。

このとき、随伴の定義

$$f = R(g) \circ \eta_C$$

より、

$$f = (g_1 \times g_2) \circ \delta_C$$

が成り立つ。

以上の関係を可換図式で表現すると以下のようになる。

$$(C,C) \xrightarrow{\exists ! (g_1,g_2)} (X,Y)$$

ここで、 $f:C \to X \times Y$ と $g=(g_1,g_2):(C,C) \to (X,Y)$ が、随伴によって 1 対 1 に対応している。

References

[1] Category Theory 2nd Edition - Steve Awodey