Generated on 2025-04-15 00:20:49 by gEcon version 1.2.1 (2023-01-18)

Model name: NK_RS

1 CONSUMER

1.1 Optimisation problem

$$\max_{C_t, K_t^s, I_t, B_t, L_t^s} U_t = \beta E_t \left[U_{t+1} \right] + (1 - \eta)^{-1} \left(C_t^{\mu} (1 - L_t^s)^{1 - \mu} \right)^{1 - \eta}$$
(1.1)

s.t.:

$$C_t + I_t + B_t R_t^{-1} = D \dot{w}_t - T_t + B_{t-1} \pi_t^{-1} + K_{t-1}^{s} r_t + L_t^{s} W_t \quad (\lambda_t)$$

$$\tag{1.2}$$

$$K_t^{s} = I_t + K_{t-1}^{s} (1 - \delta) \quad (q_t)$$
 (1.3)

1.2 Identities

$$Q_t = \lambda_t^{-1} q_t \tag{1.4}$$

1.3 First order conditions

$$-\lambda_t + \mu C_t^{-1+\mu} (1 - L_t^s)^{1-\mu} \left(C_t^{\mu} (1 - L_t^s)^{1-\mu} \right)^{-\eta} = 0 \quad (C_t)$$
 (1.5)

$$-q_t + \beta \left((1 - \delta) \, \mathcal{E}_t \left[q_{t+1} \right] + \mathcal{E}_t \left[\lambda_{t+1} r_{t+1} \right] \right) = 0 \quad (K_t^{\mathrm{s}})$$
(1.6)

$$-\lambda_t + q_t = 0 \quad (I_t) \tag{1.7}$$

$$\beta E_t \left[\lambda_{t+1} \pi_{t+1}^{-1} \right] - \lambda_t R_t^{-1} = 0 \quad (B_t)$$
(1.8)

$$\lambda_t W_t + (-1 + \mu) C_t^{\mu} (1 - L_t^s)^{-\mu} \left(C_t^{\mu} (1 - L_t^s)^{1 - \mu} \right)^{-\eta} = 0 \quad (L_t^s)$$
(1.9)

2 FIRM

2.1 Optimisation problem

$$\max_{K_t^{\rm d}, L_t^{\rm d}} t t_t^{\rm j} = -r_t K_t^{\rm d} - L_t^{\rm d} W_t \tag{2.1}$$

s.t.:

$$Y_t^{\mathbf{j}} = Z_t K_t^{\mathbf{d}^{\alpha}} L_t^{\mathbf{d}^{1-\alpha}} \quad (mc_t) \tag{2.2}$$

2.2 First order conditions

$$-r_t + \alpha m c_t Z_t K_t^{\mathrm{d}^{-1+\alpha}} L_t^{\mathrm{d}^{1-\alpha}} = 0 \quad \left(K_t^{\mathrm{d}}\right) \tag{2.3}$$

$$-W_t + mc_t Z_t (1 - \alpha) K_t^{\mathrm{d}^{\alpha}} L_t^{\mathrm{d}^{-\alpha}} = 0 \quad (L_t^{\mathrm{d}})$$

$$(2.4)$$

3 PRICE SETTING PROBLEM

3.1 Identities

$$g_t^1 = \eta_t^{\rm p} + g_t^2 (1 + \lambda^{\rm p}) \tag{3.1}$$

$$g_t^1 = \lambda_t \pi_t^* Y_t + \beta \xi^{\mathbf{p}} \pi_t^* \mathbf{E}_t \left[g_{t+1}^1 \pi_{t+1}^{*-1} \left(\pi_{t+1}^{-1} \pi_t^{\gamma^{\mathbf{p}}} \right)^{-\lambda^{\mathbf{p}-1}} \right]$$
(3.2)

$$g_t^2 = \beta \xi^{\rm p} E_t \left[g_{t+1}^2 \left(\pi_{t+1}^{-1} \pi_t^{\gamma^{\rm p}} \right)^{-\lambda^{\rm p-1} (1+\lambda^{\rm p})} \right] + \lambda_t m c_t Y_t$$
(3.3)

4 PRICE EVOLUTION

4.1 Identities

2

$$1 = \xi^{p} \left(\pi_{t}^{-1} \pi_{t-1} \gamma^{p} \right)^{-\lambda^{p-1}} + (1 - \xi^{p}) \pi_{t}^{\star - \lambda^{p-1}}$$

$$\tag{4.1}$$

5 PRODUCT AGGREGATION

5.1 Identities

$$Y_t^{\rm s} = Y_t^{\rm j} \tag{5.1}$$

$$\nu_t^{\rm p} = (1 - \xi^{\rm p}) \, \pi_t^{\star - \lambda^{\rm p-1}(1 + \lambda^{\rm p})} + \xi^{\rm p} \nu_{t-1}^{\rm p} \left(\pi_t^{-1} \pi_{t-1} \gamma^{\rm p} \right)^{-\lambda^{\rm p-1}(1 + \lambda^{\rm p})}$$

$$(5.2)$$

$$\nu_t^{\mathrm{p}} Y_t = Y_t^{\mathrm{s}} \tag{5.3}$$

6 EQUILIBRIUM

6.1 Identities

$$K_t^{\mathbf{d}} = K_{t-1}^{\mathbf{s}} \tag{6.1}$$

$$L_t^{\rm d} = L_t^{\rm s} \tag{6.2}$$

$$B_t = 0 (6.3)$$

$$Dw_t = Y_t - L_t^{\mathrm{d}} W_t - r_t K_t^{\mathrm{d}} \tag{6.4}$$

7 MONETARY POLICY AUTHORITY

7.1 Identities

$$abbr^{\pi} + \log\left(R_{ss}^{-1}R_{t}\right) = \eta_{t}^{R} + \rho\log\left(R_{ss}^{-1}R_{t-1}\right) + (1-\rho)\left(\log\pi_{t}^{obj} + r^{\pi}\left(-\log\pi_{t}^{obj} + \log\left(\pi_{ss}^{-1}\pi_{t-1}\right)\right) + r^{Y}\log\left(Y_{ss}^{-1}Y_{t}\right)\right)$$
(7.1)

$$\log \pi_t^{\text{obj}} = \eta_t^{\pi} + \rho^{\pi^{\text{bar}}} \log \pi_{t-1}^{\text{obj}} + \log \operatorname{perice} d_t^{\pi^{\text{obj}}} \left(1 - \rho^{\pi^{\text{bar}}} \right)$$

$$(7.2)$$

8 ENDOGENOUS REGIME PROB

8.1 Identities

$$\log \inf_{t} \inf_{t} = -\log \operatorname{perice}_{t} d_{t}^{\pi^{\text{obj}}} + \log \pi_{t}$$
(8.1)

$$pL_t = \left(1 + e^{pLss - \kappa \log \inf dinflation_t^{\text{gap}}}\right)^{-1} \tag{8.2}$$

$$pH_t = 1 - pL_t \tag{8.3}$$

$$\log percent_t^{\pi^{\text{obj}}} = pH_t \log \pi^{\text{H}} + pL_t \log \pi_t$$
(8.4)

9 GOVERNMENT

9.1 Identities

$$G_t = G^{\text{bar}} \epsilon_t^{G} \tag{9.1}$$

$$G_t + B_{t-1}\pi_t^{-1} = T_t + B_t R_t^{-1} \tag{9.2}$$

10 GOVERNMENT SPENDING SHOCK

10.1 Identities

$$\log \epsilon_t^{G} = \eta_t^{G} + \rho^{G} \log \epsilon_{t-1}^{G} \tag{10.1}$$

11 TECHNOLOGY

11.1 Identities

$$Z_t = e^{\epsilon_t^Z + \rho^a \log Z_{t-1}} \tag{11.1}$$

12 Equilibrium relationships (after reduction)

$$-B_t = 0 ag{12.1}$$

$$-\lambda_t + q_t = 0 \tag{12.2}$$

$$-\lambda_t + \mu C_t^{-1+\mu} (1 - L_t^s)^{1-\mu} \left(C_t^{\mu} (1 - L_t^s)^{1-\mu} \right)^{-\eta} = 0$$
(12.3)

$$-pL_t + \left(1 + e^{pLss - \kappa \log \inf totion_t^{\text{gap}}}\right)^{-1} = 0 \tag{12.4}$$

$$-q_t + \beta \left((1 - \delta) \, \mathcal{E}_t \left[q_{t+1} \right] + \mathcal{E}_t \left[\lambda_{t+1} r_{t+1} \right] \right) = 0 \tag{12.5}$$

$$-r_t + \alpha m c_t Z_t K_{t-1}^{s}^{-1+\alpha} L_t^{s1-\alpha} = 0$$
 (12.6)

$$-G_t + G^{\text{bar}} \epsilon_t^{G} = 0 \tag{12.7}$$

$$-Q_t + \lambda_t^{-1} q_t = 0 (12.8)$$

$$-W_t + mc_t Z_t (1 - \alpha) K_{t-1}^s {}^{\alpha} L_t^{s-\alpha} = 0$$
(12.9)

$$-Y_t^{j} + Z_t K_{t-1}^{s} {}^{\alpha} L_t^{s1-\alpha} = 0 {(12.10)}$$

$$Y_t^{j} - Y_t^{s} = 0 (12.11)$$

$$Y_t^{\rm s} - \nu_t^{\rm p} Y_t = 0 (12.12)$$

$$-Z_t + e^{\epsilon_t^{\mathbf{Z}} + \rho^{\mathbf{a}} \log Z_{t-1}} = 0 \tag{12.13}$$

$$\beta E_t \left[\lambda_{t+1} \pi_{t+1}^{-1} \right] - \lambda_t R_t^{-1} = 0 \tag{12.14}$$

$$\lambda_t W_t + (-1 + \mu) C_t^{\mu} (1 - L_t^s)^{-\mu} \left(C_t^{\mu} (1 - L_t^s)^{1 - \mu} \right)^{-\eta} = 0$$
(12.15)

#

$$-1 + \xi^{p} \left(\pi_{t}^{-1} \pi_{t-1} \gamma^{p} \right)^{-\lambda^{p-1}} + (1 - \xi^{p}) \pi_{t}^{\star - \lambda^{p-1}} = 0$$
 (12.16)

$$1 - pH_t - pL_t = 0 (12.17)$$

$$\eta_t^{\rm p} - g_t^1 + g_t^2 (1 + \lambda^{\rm p}) = 0 \tag{12.18}$$

$$\eta_t^{\mathcal{G}} - \log \epsilon_t^{\mathcal{G}} + \rho^{\mathcal{G}} \log \epsilon_{t-1}^{\mathcal{G}} = 0 \tag{12.19}$$

$$-g_t^1 + \lambda_t \pi_t^* Y_t + \beta \xi^p \pi_t^* \mathcal{E}_t \left[g_{t+1}^1 \pi_{t+1}^{*-1} \left(\pi_{t+1}^{-1} \pi_t^{\gamma^p} \right)^{-\lambda^{p-1}} \right] = 0$$
 (12.20)

$$-g_t^2 + \beta \xi^{P} E_t \left[g_{t+1}^2 \left(\pi_{t+1}^{-1} \pi_t^{\gamma^{P}} \right)^{-\lambda^{P-1} (1+\lambda^{P})} \right] + \lambda_t m c_t Y_t = 0$$
 (12.21)

$$-\nu_t^{\mathbf{p}} + (1 - \xi^{\mathbf{p}}) \pi_t^{\star - \lambda^{\mathbf{p} - 1}(1 + \lambda^{\mathbf{p}})} + \xi^{\mathbf{p}} \nu_{t-1}^{\mathbf{p}} \left(\pi_t^{-1} \pi_{t-1} \gamma^{\mathbf{p}} \right)^{-\lambda^{\mathbf{p} - 1}(1 + \lambda^{\mathbf{p}})} = 0$$
(12.22)

$$I_t - K_t^{s} + K_{t-1}^{s} (1 - \delta) = 0 (12.23)$$

$$U_t - \beta E_t \left[U_{t+1} \right] - (1 - \eta)^{-1} \left(C_t^{\mu} (1 - L_t^s)^{1 - \mu} \right)^{1 - \eta} = 0$$
(12.24)

$$-\log \inf_t dton_t^{\text{gap}} - \log \operatorname{periend}_t^{\pi^{\text{obj}}} + \log \pi_t = 0$$
(12.25)

$$-\log penicul_{t}^{\pi^{\text{obj}}} + pH_{t}\log \pi^{\text{H}} + pL_{t}\log \pi_{t} = 0$$
(12.26)

$$\eta_t^{\pi} - \log \pi_t^{\text{obj}} + \rho^{\pi^{\text{bar}}} \log \pi_{t-1}^{\text{obj}} + \log \operatorname{perice} d_t^{\pi^{\text{obj}}} \left(1 - \rho^{\pi^{\text{bar}}} \right) = 0 \tag{12.27}$$

$$-D\dot{w}_t + Y_t - K_{t-1}^{\rm s} r_t - L_t^{\rm s} W_t = 0 ag{12.28}$$

$$-G_t + T_t - B_{t-1}\pi_t^{-1} + B_t R_t^{-1} = 0 (12.29)$$

$$-\alpha b r^{\pi} + \eta_{t}^{R} - \log(R_{ss}^{-1}R_{t}) + \rho \log(R_{ss}^{-1}R_{t-1}) + (1-\rho)\left(\log \pi_{t}^{obj} + r^{\pi}\left(-\log \pi_{t}^{obj} + \log(\pi_{ss}^{-1}\pi_{t-1})\right) + r^{Y}\log(Y_{ss}^{-1}Y_{t})\right) = 0$$
(12.30)

$$-C_t + D\dot{w}_t - I_t - T_t + B_{t-1}\pi_t^{-1} + K_{t-1}^s r_t - B_t R_t^{-1} + L_t^s W_t = 0$$
(12.31)

13 Steady state relationships (after reduction)

$$-B_{\rm ss} = 0 \tag{13.1}$$

$$-\lambda_{\rm ss} + q_{\rm ss} = 0 \tag{13.2}$$

$$-\lambda_{ss} + \mu C_{ss}^{-1+\mu} (1 - L_{ss}^{s})^{1-\mu} \left(C_{ss}^{\mu} (1 - L_{ss}^{s})^{1-\mu} \right)^{-\eta} = 0$$
(13.3)

$$-pL_{\rm ss} + \left(1 + e^{pLss - \kappa \log \inf lation_{\rm ss}^{\rm gap}}\right)^{-1} = 0 \tag{13.4}$$

$$-q_{\rm ss} + \beta \left(\lambda_{\rm ss} r_{\rm ss} + q_{\rm ss} \left(1 - \delta\right)\right) = 0 \tag{13.5}$$

$$-r_{\rm ss} + \alpha m c_{\rm ss} Z_{\rm ss} K_{\rm ss}^{\rm s}^{-1+\alpha} L_{\rm ss}^{\rm s}^{1-\alpha} = 0 \tag{13.6}$$

$$-G_{\rm ss} + G^{\rm bar} \epsilon_{\rm ss}^{\rm G} = 0 \tag{13.7}$$

$$-Q_{ss} + \lambda_{ss}^{-1} q_{ss} = 0 ag{13.8}$$

$$-W_{\rm ss} + mc_{\rm ss}Z_{\rm ss}(1-\alpha)K_{\rm ss}^{\rm s}{}^{\alpha}L_{\rm ss}^{\rm s}{}^{-\alpha} = 0$$
(13.9)

$$-Y_{ss}^{j} + Z_{ss}K_{ss}^{s} L_{ss}^{\alpha} = 0$$
 (13.10)

$$Y_{\rm ss}^{\rm j} - Y_{\rm ss}^{\rm s} = 0 \tag{13.11}$$

$$Y_{\rm ss}^{\rm s} - \nu_{\rm ss}^{\rm p} Y_{\rm ss} = 0 \tag{13.12}$$

$$-Z_{\rm ss} + e^{\rho^{\rm a} \log Z_{\rm ss}} = 0 {13.13}$$

$$-\lambda_{\rm ss}R_{\rm ss}^{-1} + \beta\lambda_{\rm ss}\pi_{\rm ss}^{-1} = 0 \tag{13.14}$$

$$\lambda_{\rm ss} W_{\rm ss} + (-1 + \mu) C_{\rm ss}^{\ \mu} (1 - L_{\rm ss}^{\rm s})^{-\mu} \left(C_{\rm ss}^{\ \mu} (1 - L_{\rm ss}^{\rm s})^{1 - \mu} \right)^{-\eta} = 0 \tag{13.15}$$

$$-1 + \xi^{p} \left(\pi_{ss}^{-1} \pi_{ss}^{\gamma^{p}} \right)^{-\lambda^{p-1}} + (1 - \xi^{p}) \pi_{ss}^{\star - \lambda^{p-1}} = 0$$
(13.16)

$$1 - pH_{ss} - pL_{ss} = 0 (13.17)$$

$$-g_{ss}^{1} + g_{ss}^{2} (1 + \lambda^{p}) = 0$$
 (13.18)

$$-\log \epsilon_{\rm ss}^{\rm G} + \rho^{\rm G} \log \epsilon_{\rm ss}^{\rm G} = 0 \tag{13.19}$$

$$-g_{ss}^{1} + \lambda_{ss} \pi_{ss}^{\star} Y_{ss} + \beta \xi^{p} g_{ss}^{1} \left(\pi_{ss}^{-1} \pi_{ss}^{\gamma^{p}} \right)^{-\lambda^{p-1}} = 0$$
(13.20)

$$-g_{\rm ss}^2 + \lambda_{\rm ss} m c_{\rm ss} Y_{\rm ss} + \beta \xi^{\rm p} g_{\rm ss}^2 \left(\pi_{\rm ss}^{-1} \pi_{\rm ss} \gamma^{\rm p} \right)^{-\lambda^{\rm p-1} (1+\lambda^{\rm p})} = 0$$
(13.21)

$$-\nu_{\rm ss}^{\rm p} + (1 - \xi^{\rm p}) \,\pi_{\rm ss}^{\star - \lambda^{\rm p-1}(1 + \lambda^{\rm p})} + \xi^{\rm p} \nu_{\rm ss}^{\rm p} \left(\pi_{\rm ss}^{-1} \pi_{\rm ss}^{\gamma^{\rm p}}\right)^{-\lambda^{\rm p-1}(1 + \lambda^{\rm p})} = 0 \tag{13.22}$$

6

$$I_{ss} - K_{ss}^{s} + K_{ss}^{s} (1 - \delta) = 0 \tag{13.23}$$

$$U_{\rm ss} - \beta U_{\rm ss} - (1 - \eta)^{-1} \left(C_{\rm ss}^{\ \mu} (1 - L_{\rm ss}^{\rm s})^{1 - \mu} \right)^{1 - \eta} = 0 \tag{13.24}$$

$$-\log \inf_{\rm ss} -\log \operatorname{percent}_{\rm ss}^{\pi^{\rm obj}} + \log \pi_{\rm ss} = 0 \tag{13.25}$$

$$-\log percent_{ss}^{\pi^{\text{obj}}} + pH_{ss}\log \pi^{\text{H}} + pL_{ss}\log \pi_{ss} = 0$$
(13.26)

$$-\log \pi_{\rm ss}^{\rm obj} + \rho^{\pi^{\rm bar}} \log \pi_{\rm ss}^{\rm obj} + \log \operatorname{periced}_{\rm ss}^{\pi^{\rm obj}} \left(1 - \rho^{\pi^{\rm bar}}\right) = 0 \tag{13.27}$$

$$-D\dot{w}_{ss} + Y_{ss} - r_{ss}K_{ss}^{s} - L_{ss}^{s}W_{ss} = 0$$
(13.28)

$$-G_{\rm ss} + T_{\rm ss} - \pi_{\rm ss}^{-1} B_{\rm ss} + B_{\rm ss} R_{\rm ss}^{-1} = 0$$
(13.29)

$$-abbr^{\pi} + (1 - \rho) \left(\log \pi_{ss}^{obj} - r^{\pi} \log \pi_{ss}^{obj} \right) = 0$$

$$(13.30)$$

$$-C_{\rm ss} + D\dot{w}_{\rm ss} - I_{\rm ss} - T_{\rm ss} + \pi_{\rm ss}^{-1}B_{\rm ss} + r_{\rm ss}K_{\rm ss}^{\rm s} - B_{\rm ss}R_{\rm ss}^{-1} + L_{\rm ss}^{\rm s}W_{\rm ss} = 0$$
(13.31)

14 Calibrating equations

$$-0.18 + G_{\rm ss}Y_{\rm ss}^{-1} = 0 (14.1)$$

$$-0.05 + pL_{\rm ss} = 0 ag{14.2}$$

$$\pi_{\rm ss} - \pi_{\rm ss}^{\rm obj} = 0 \tag{14.3}$$

15 Parameter settings

 \neg 1

$$\alpha = 0.3 \tag{15.1}$$

$$\beta = 0.99 \tag{15.2}$$

$$\delta = 0.025 \tag{15.3}$$

$$\eta = 2 \tag{15.4}$$

$$\gamma^{\rm P} = 0.469$$
 (15.5)

$$\kappa = 1$$
(15.6)

$$\lambda^{\mathbf{p}} = 0.5 \tag{15.7}$$

$$\mu = 0.3 \tag{15.8}$$

$$\pi^{\mathrm{H}} = 1 \tag{15.9}$$

$$r^{\pi} = 1.684 \tag{15.10}$$

$$r^{Y} = 0.099 (15.11)$$

$$\rho = 0.961 \tag{15.12}$$

$$\rho^{\pi^{\text{bar}}} = 0.924 \tag{15.13}$$

$$\rho^{\rm G} = 0.949 \tag{15.14}$$

$$\rho^{a} = 0.823 \tag{15.15}$$

$$\xi^{\rm p} = 0.908 \tag{15.16}$$

16 Steady-state values

	Steady-state value
$\epsilon^{ m G}$	1
g^1	7.3514
g^2	4.9009
$inflation^{ m gap}$	1
λ	1.5467
mc	0.6667
$ u^{ m p}$	1
$\mathit{percieved}^{\pi^{\mathrm{obj}}}$	1
π	1
π^{\star}	1
$\pi^{ m obj}$	1
$p\!H$	0.95
pL	0.05
q	1.5467
r	0.0351
B	0
C	0.3255
Div	0.1601
G	0.0865
I	0.0684
$K^{ m s}$	2.7374
$L^{ m s}$	0.2279
Q	1
R	1.0101
T	0.0865
U	-167.8256
W	0.9837
Y	0.4804
$Y^{ m j}$	0.4804
Y^{s}	0.4804
Z	1

17 The solution of the 1st order perturbation

Matrix P

Matrix Q

Matrix R

	$\epsilon_{t-1}^{\mathrm{G}}$	$ u_{t-1}^{\mathrm{p}}$	π_{t-1}	$\pi^{ ext{obj}}_{t-1}$	B_{t-1}	K_{t-1}^{s}	R_{t-1}	Z_{t-1}
$\begin{array}{c}g_t^1\\g_t^2\end{array}$	$\int 0.1469$	0.922	-1.9629	5.5044	0	-0.8847	-15.7041	-0.8699
g_t^2	0.1469	0.922	-1.9629	5.5044	0	-0.8847	-15.7041	-0.8699
$inflation_t^{ m gap}$	-0.0001	0.0525	0.3188	0.3285	0	-0.0381	-1.0608	-0.0616
λ_t	0.1181	0.1339	0.799	-2.2065	0	-0.2738	9.2154	-0.0359
mc_t	0.0842	4.9967	-10.1446	28.7863	0	-4.1911	-122.869	-4.7739
$perieved_t^{\pi^{\mathrm{obj}}}$	0	0.0028	0.0168	0.0173	0	-0.002	-0.0558	-0.0032
π_t^\star	-0.0014	0.5452	-1.3164	3.4131	0	-0.3954	-11.0204	-0.6402
$p\!H_t$	0	-0.0026	-0.0159	-0.0164	0	0.0019	0.053	0.0031
$p\!L_t$	-0.0001	0.0499	0.3029	0.3121	0	-0.0362	-1.0077	-0.0585
q_t	0.1181	0.1339	0.799	-2.2065	0	-0.2738	9.2154	-0.0359
r_t	0.2466	9.7305	-18.9907	53.9313	0	-8.6985	-230.34	-7.644
C_t	-0.054	0.9718	-2.6232	7.4067	0	-0.6539	-31.4912	-0.8109
$D\!w_t$	-0.0059	-7.9837	11.4432	-32.4278	0	4.8749	138.2671	6.6778
G_t	0.949	0	0	0	0	0	0	0
I_t	0.1978	22.235	-49.6236	141.292	0	-21.5119	-604.6777	-16.2911
$L_t^{ m s}$	0.232	6.7625	-12.6372	35.9213	0	-5.4391	-153.5299	-5.2758
Q_t	0	0	0	0	0	0	0	0
T_t	0.949	0	0	0	11.5637	0	0	0
U_t	-0.0107	-0.0272	-0.0232	0.0597	0	0.0226	-0.1956	0.0161
W_t	0.0145	2.968	-6.3535	18.0099	0	-2.2594	-76.8101	-2.3682
$Y_{t_{\cdot}}$	0.1624	3.8258	-8.846	25.1449	0	-3.5073	-107.4709	-2.87
$Y_t^{ m j}$	0.1624	4.7338	-8.846	25.1449	0	-3.5073	-107.4709	-2.87
Y_t^{s}	0.1624	4.7338	-8.846	25.1449	0	-3.5073	-107.4709	-2.87 /

$\mathbf{Matrix}\ S$

	$\epsilon^{ m Z}$	$\eta^{ m p}$	$\eta^{ m R}$	η^{π}	$\eta^{ m G}$
g^1	$\int -1.057$	0.1099	-16.3414	5.9571	0.1548
g^2	-1.057	-0.0261	-16.3414	5.9571	0.1548
$inflation^{ m gap}$	-0.0749	0.0115	-1.1038	0.3556	-0.0001
λ	-0.0437	0.005	9.5894	-2.3879	0.1244
mc	-5.8006	-0.0514	-127.8554	31.154	0.0887
$percieved^{\pi^{\mathrm{obj}}}$	-0.0039	0.0006	-0.0581	0.0187	0
π^{\star}	-0.7779	0.1195	-11.4676	3.6938	-0.0015
$p\!H$	0.0037	-0.0006	0.0552	-0.0178	0
pL	-0.0711	0.0109	-1.0486	0.3378	-0.0001
q	-0.0437	0.005	9.5894	-2.3879	0.1244
r	-9.2879	-0.0955	-239.6878	58.3672	0.2598
C	-0.9853	-0.0138	-32.7692	8.0159	-0.0569
Dw	8.114	0.0586	143.8784	-35.095	-0.0062
G	0	0	0	0	1
I	-19.7947	-0.2439	-629.2171	152.9134	0.2084
L^{s}	-6.4104	-0.063	-159.7605	38.8759	0.2445
Q	0	0	0	0	0
T	0	0	0	0	1
U	0.0196	-0.0003	-0.2036	0.0646	-0.0113
W	-2.8775	-0.0324	-79.9272	19.4913	0.0153
Y	-3.4873	-0.0441	-111.8324	27.2131	0.1712
$Y^{ m j}$	-3.4873	-0.0441	-111.8324	27.2131	0.1712
Y^{s}	-3.4873	-0.0441	-111.8324	27.2131	0.1712

18 Model statistics

18.1 Basic statistics

	Steady-state value	Std. dev.	Variance	Loglin
$\epsilon^{ m G}$	1	1.3033	1.6986	Y
g^1	7.3514	20.4601	418.6148	Y
g^2	4.9009	20.4598	418.6044	Y
$inflation^{ m gap}$	1	1.1697	1.3683	Y
λ	1.5467	12.2999	151.2878	Y
mc	0.6667	128.0883	16406.6081	Y
$ u^{ m p}$	1	0	0	Y
$\mathit{percieved}^{\pi^{\mathrm{obj}}}$	1	0.0616	0.0038	Y
π	1	1.2313	1.5161	Y
π^{\star}	1	11.907	141.7766	Y
$\pi^{ m obj}$	1	1.2983	1.6857	Y
$p\!H$	0.95	0.0585	0.0034	Y
$p\!L$	0.05	1.1112	1.2349	Y
q	1.5467	12.2999	151.2878	Y
r	0.0351	246.4902	60757.4311	Y
B	0	0	0	N
C	0.3255	30.8891	954.1352	Y
Div	0.1601	145.3618	21130.0666	Y
G	0.0865	1.3033	1.6986	Y
I	0.0684	636.4875	405116.3562	Y
$K^{ m s}$	2.7374	20.0335	401.3391	Y
$L^{ m s}$	0.2279	161.4762	26074.5763	Y
Q	1	0	0	Y
R	1.0101	0.6888	0.4745	Y
T	0.0865	1.3033	1.6986	Y
U	-167.8256	0.5483	0.3006	Y
W	0.9837	77.8144	6055.0817	Y
Y	0.4804	110.9125	12301.5895	Y
$Y^{ m j}$	0.4804	110.9125	12301.5895	Y
Y^{s}	0.4804	110.9125	12301.5895	Y
Z	1	1.227	1.5056	Y

18.2 Correlation matrix

	ϵ^{G}	g^1	g^2	$inflation^{ m gap}$	λ	mc	$percieved^{\pi^{\mathrm{obj}}}$	π	π^{\star}	π^{obj}	$p\!H$	$p\!L$	q
$\epsilon^{ m G}$	1	0.009	0.009	-0.001	0.013	0	-0.001	-0.001	-0.001	0	0.001	-0.001	0.0
$egin{array}{c} g^1 \ g^2 \end{array}$		1	1	0.771	-0.135	0.941	0.771	0.771	0.958	0.149	-0.771	0.771	-0.1
g^2			1	0.771	-0.135	0.941	0.771	0.771	0.958	0.149	-0.771	0.771	-0.1
$inflation^{ m gap}$				1	-0.626	0.899	1	1	0.888	0.287	-1	1	-0.6
λ					1	-0.445	-0.626	-0.626	-0.411	-0.25	0.626	-0.626	1
mc						1	0.899	0.899	0.994	0.111	-0.899	0.899	-0.4
$\mathit{percieved}^{\pi^{\mathrm{obj}}}$							1	1	0.888	0.287	-1	1	-0.6
π								1	0.888	0.287	-1	1	-0.6
π^{\star}									1	0.191	-0.888	0.888	-0.4
$\pi^{ m obj}$										1	-0.287	0.287	-0.
$p\!H$											1	-1	0.6
$p\!L$												1	-0.6
q													1
r													
C													
Div													
G													
I													
$K^{ m s}$													
$L^{ m s}$													
R													
T													
U													
W													
Y_{\cdot}													
$Y^{ m j}$													
$Y^{ m s}$													
Z													

18.3 Cross correlations with the reference variable (π)

	$\sigma[\cdot]$ rel. to $\sigma[\pi]$	$ \pi_{t-5} $	π_{t-4}	π_{t-3}	π_{t-2}	π_{t-1}	π_t	$ \pi_{t+1} $	π_{t+2}	π_{t+3}	π_{t+4}	$ \pi_{t+1}$
$\epsilon_{t}^{ ext{G}}$	1.058	0	-0.001	-0.001	-0.001	-0.002	-0.001	-0.001	0	0	0	0
$egin{array}{c} g_t^1 \ g_t^2 \end{array}$	16.617	0.015	0.037	0.075	0.152	0.329	0.771	-0.358	-0.245	-0.185	-0.146	-0.11
g_t^2	16.616	0.015	0.037	0.075	0.152	0.329	0.771	-0.358	-0.245	-0.185	-0.146	-0.11
$\mathit{inflation}_t^{\mathrm{gap}}$	0.95	-0.116	-0.112	-0.083	0.012	0.277	1	0.277	0.012	-0.083	-0.112	-0.11
λ_t	9.989	0.276	0.319	0.342	0.3	0.08	-0.626	-0.476	-0.367	-0.279	-0.204	-0.14
mc_t	104.027	-0.075	-0.072	-0.047	0.034	0.265	0.899	-0.161	-0.113	-0.091	-0.078	-0.06
$perieved_t^{\pi^{ ext{obj}}}$	0.05	-0.116	-0.112	-0.083	0.012	0.277	1	0.277	0.012	-0.083	-0.112	-0.11
π_{t}	1	-0.116	-0.112	-0.083	0.012	0.277	1	0.277	0.012	-0.083	-0.112	-0.11
π_t^\star	9.67	-0.066	-0.059	-0.031	0.051	0.277	0.888	-0.196	-0.121	-0.09	-0.075	-0.06
π_t^{\star} $\pi_t^{ ext{obj}}$	1.054	-0.053	-0.037	-0.011	0.033	0.115	0.287	0.214	0.151	0.098	0.054	0.01
$p\!H_t$	0.048	0.116	0.112	0.083	-0.012	-0.277	-1	-0.277	-0.012	0.083	0.112	0.11
$p\!L_t$	0.902	-0.116	-0.112	-0.083	0.012	0.277	1	0.277	0.012	-0.083	-0.112	-0.11
q_t	9.989	0.276	0.319	0.342	0.3	0.08	-0.626	-0.476	-0.367	-0.279	-0.204	-0.14
r_t	200.187	-0.058	-0.051	-0.024	0.056	0.278	0.88	-0.2	-0.143	-0.114	-0.094	-0.07
C_t	25.087	-0.142	-0.151	-0.137	-0.057	0.2	0.933	0	0.009	0.003	-0.007	-0.01
$D\!w_t$	118.055	0.07	0.065	0.039	-0.042	-0.27	-0.894	0.173	0.122	0.098	0.083	0.07
G_t	1.058	0	-0.001	-0.001	-0.001	-0.002	-0.001	-0.001	0	0	0	0
I_t	516.923	-0.068	-0.063	-0.038	0.043	0.27	0.891	-0.177	-0.126	-0.1	-0.085	-0.07
$K_t^{ m s}$	16.27	-0.275	-0.319	-0.341	-0.298	-0.076	0.634	0.477	0.365	0.276	0.202	0.1
$L_t^{ m s}$	131.143	-0.069	-0.064	-0.038	0.042	0.27	0.892	-0.175	-0.124	-0.099	-0.084	-0.07
R_t	0.559	0.255	0.305	0.336	0.307	0.109	-0.558	-0.394	-0.296	-0.226	-0.17	-0.12
T_t	1.058	0	-0.001	-0.001	-0.001	-0.002	-0.001	-0.001	0	0	0	0
U_t	0.445	-0.27	-0.32	-0.357	-0.35	-0.219	0.254	0.606	0.467	0.359	0.27	0.19
W_t	63.197	-0.099	-0.099	-0.078	0.003	0.245	0.917	-0.107	-0.072	-0.06	-0.054	-0.0
Y_t	90.078	-0.083	-0.08	-0.057	0.024	0.258	0.905	-0.145	-0.101	-0.082	-0.07	-0.06
$Y_t^{ m j}$	90.078	-0.083	-0.08	-0.057	0.024	0.258	0.905	-0.145	-0.101	-0.082	-0.07	-0.06
$Y_t^{ m s}$	90.078	-0.083	-0.08	-0.057	0.024	0.258	0.905	-0.145	-0.101	-0.082	-0.07	-0.06
Z_t	0.997	0.009	0.003	-0.006	-0.02	-0.04	-0.072	-0.047	-0.027	-0.013	-0.002	0.00

18.4 Autocorrelations

	Lag 1	Lag 2	Lag 3	Lag 4	Lag 5
$\epsilon^{ m G}$	0.713	0.471	0.271	0.109	-0.017
g^1	-0.072	-0.04	-0.035	-0.037	-0.04
g^2	-0.072	-0.04	-0.035	-0.037	-0.04
$inflation^{ m gap}$	0.277	0.012	-0.083	-0.112	-0.116
λ	0.682	0.438	0.246	0.095	-0.022
mc	-0.121	-0.08	-0.062	-0.052	-0.045
$\mathit{percieved}^{\pi^{\mathrm{obj}}}$	0.277	0.012	-0.083	-0.112	-0.116
π	0.277	0.012	-0.083	-0.112	-0.116
π^{\star}	-0.142	-0.08	-0.056	-0.045	-0.039
$\pi^{ m obj}$	0.704	0.456	0.254	0.093	-0.032
$p\!H$	0.277	0.012	-0.083	-0.112	-0.116
pL	0.277	0.012	-0.083	-0.112	-0.116
q	0.682	0.438	0.246	0.095	-0.022
r	-0.123	-0.082	-0.063	-0.053	-0.045
C	-0.034	-0.024	-0.028	-0.036	-0.042
Div	-0.122	-0.081	-0.062	-0.052	-0.045
G	0.713	0.471	0.271	0.109	-0.017
I	-0.122	-0.081	-0.063	-0.053	-0.045
K^{s}	0.677	0.433	0.243	0.093	-0.023
$L^{ m s}$	-0.122	-0.081	-0.063	-0.052	-0.045
R	0.651	0.406	0.221	0.078	-0.03
T	0.713	0.471	0.271	0.109	-0.017
U	0.832	0.539	0.308	0.125	-0.016
W	-0.105	-0.069	-0.056	-0.049	-0.045
Y	-0.117	-0.078	-0.061	-0.052	-0.045
$Y^{ m j}$	-0.117	-0.078	-0.061	-0.052	-0.045
Y^{s}	-0.117	-0.078	-0.061	-0.052	-0.045
Z	0.644	0.368	0.159	0.006	-0.102

19 Impulse response functions

Figure 1: Impulse responses (π, R, C, pH) to ϵ^{Z} shock Figure 2: Impulse responses (π, R, C, pH) to η^{P} shock

Figure 3: Impulse responses (π, R, C, pH) to η^R shock Figure 4: Impulse responses (π, R, C, pH) to η^{π} shock

Figure 5: Impulse responses $(\pi,R,C,p\!H)$ to $\eta^{\rm G}$ shock