## REPORT DOCUMENTATION PAGE

AFRL-SR-BL-TR-00-

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for re the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jeffers National Conference on Programmer Reducing Project Reducing Project Pr

0355

aintaining ions for Office of

| reducing this burden to Washington Headquarters S<br>Management and Budget, Paperwork Reduction Pr | Services, Directorate for Information Operations an oject (0704-0188), Washington, DC 20503 | d Reports, 1215 Jeffers                     |                        | Office of                    |
|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------|------------------------|------------------------------|
| 1. AGENCY USE ONLY (Leave blank                                                                    | 2. REPORT DATE 10/15/99                                                                     | 3. REPORT TYPE AND D<br>FINAL 01 JAN 1997 - |                        |                              |
| 4. TITLE AND SUBTITLE                                                                              |                                                                                             |                                             | 5. FUNDING N           | UMBERS                       |
| POPCORN - Computational Stud                                                                       | lies of Novel Nonlinear Optical                                                             | ]                                           | F49620-97-1 <b>-</b> ( | )424                         |
| Chromophores                                                                                       | -                                                                                           |                                             |                        |                              |
| •                                                                                                  |                                                                                             |                                             |                        |                              |
| 6. AUTHOR(S)                                                                                       |                                                                                             |                                             |                        |                              |
| Dr. David Kanis                                                                                    |                                                                                             |                                             |                        |                              |
|                                                                                                    |                                                                                             |                                             |                        |                              |
|                                                                                                    | ,                                                                                           | r i                                         |                        |                              |
| T DEDECRAMING OPERATION N                                                                          | ANTICL AND ADDDECCIEC                                                                       |                                             | O DEDECIDANNI          | G ORGANIZATION               |
| 7. PERFORMING ORGANIZATION N                                                                       | AIVIE(5) AND ADDRESS(ES)                                                                    |                                             | REPORT NU              |                              |
| Chicago State University                                                                           |                                                                                             |                                             | 5-53748                | •                            |
| Office of Sponsored Programs                                                                       |                                                                                             |                                             |                        |                              |
| 9501 S. King Drive                                                                                 |                                                                                             |                                             |                        |                              |
|                                                                                                    |                                                                                             | 1                                           |                        |                              |
| Chicago, IL 60628                                                                                  |                                                                                             | · ·                                         |                        |                              |
| 9. SPONSORING / MONITORING A                                                                       | GENCY NAME(S) AND ADDRESS(ES                                                                | 3)                                          | 10. SPONSORI           | NG / MONITORING              |
|                                                                                                    |                                                                                             |                                             | AGENCY R               | EPORT NUMBER                 |
| Dr. Charles YC. Lee                                                                                |                                                                                             |                                             |                        |                              |
| AFOSR/NL                                                                                           |                                                                                             |                                             |                        |                              |
| 110 Duncan Avenue Room B115                                                                        |                                                                                             |                                             |                        |                              |
| Bolling AFB DC 20332-8050                                                                          |                                                                                             |                                             |                        |                              |
|                                                                                                    |                                                                                             |                                             |                        |                              |
| 11. SUPPLEMENTARY NOTES                                                                            |                                                                                             |                                             |                        |                              |
|                                                                                                    |                                                                                             |                                             |                        |                              |
|                                                                                                    |                                                                                             | /                                           |                        |                              |
| 12a. DISTRIBUTION / AVAILABILIT                                                                    | Y STATEMENT                                                                                 |                                             |                        | 12b. DISTRIBUTION CODE       |
|                                                                                                    |                                                                                             |                                             |                        |                              |
| APPROVED FOR PUBLIC F                                                                              | RELEASE: DISTRIBUTION U                                                                     | NLIMITED                                    |                        |                              |
|                                                                                                    |                                                                                             |                                             |                        |                              |
| · ·                                                                                                |                                                                                             |                                             |                        |                              |
| 13. ABSTRACT (Maximum 200 Wo                                                                       | rds)                                                                                        |                                             |                        |                              |
|                                                                                                    |                                                                                             |                                             |                        |                              |
| The goal of this year-long i                                                                       | research effort was to determ                                                               | ine if we could stre                        | amline our             | Nonlinear Optical response   |
| computations by using comm                                                                         | nercially available software ra                                                             | ther than the softwar                       | re developed           | in our laboratory. If our    |
| research efforts in this direct                                                                    | tion are to continue, the user-                                                             | interfaces of our soft                      | ware must b            | e within the capabilities of |
| undergraduate recentates S                                                                         | specifically we compared com                                                                | nuted \ values with                         | h evneriment           | al values for over 400 dves  |
| formal in The Group Aldrich I                                                                      | Les Hands of Stations Dans and                                                              | Indicators We found                         | that the year          | friendly CAChe nackage is    |
| found in The Sigma-Aldrich F.                                                                      | landbook of Stains, Dyes, and                                                               | inaicators. we found                        | that the user          | -irientity CACITE package is |
| not a viable option in the eva                                                                     | aluation of NLO responses, ho                                                               | owever, the more rigo                       | rous Cerius            | package does provide more    |
| reasonable responses relative                                                                      | to experiment. We believe                                                                   | that the most import                        | ant factor in          | computing either an NLO      |
|                                                                                                    | dye molecules is the ability                                                                |                                             |                        |                              |
| molecular geometry of these h                                                                      |                                                                                             | or a given companian                        | ona moaci              |                              |
| molecular geometry of these i                                                                      | lightly conjugated molecules.                                                               |                                             |                        |                              |
|                                                                                                    | •                                                                                           |                                             |                        |                              |
|                                                                                                    |                                                                                             |                                             |                        |                              |
|                                                                                                    |                                                                                             |                                             |                        |                              |
|                                                                                                    |                                                                                             |                                             |                        |                              |
| 14. SUBJECT TERMS                                                                                  |                                                                                             |                                             |                        | 15. NUMBER OF PAGES<br>20    |
| Nonlinear optical                                                                                  |                                                                                             |                                             | }                      | 16. PRICE CODE               |
| 17. SECURITY CLASSIFICATION                                                                        | 18. SECURITY CLASSIFICATION                                                                 | 19. SECURITY CLASSIF                        | ICATION                | 20. LIMITATION OF ABSTRACT   |
| OF REPORT                                                                                          | OF THIS PAGE                                                                                | OF ABSTRACT                                 |                        |                              |
| Unclas                                                                                             | Unclas                                                                                      | Unclas                                      | 4                      |                              |

# Air Force Office of Scientific Research

Final Report - for Grant F49620-97-1-0424

# Computational Studies of Novel Nonlinear Optical Chromophores

**Principal Investigator** 

David R. Kanis

Department of Chemistry and Physics Chicago State University 9501 South King Drive Chicago, IL 60628

20000817 094

## I. Objectives:

The primary goals of this research effort was to establish an advanced computational chemistry facility at an urban institution and to involve undergraduate researchers in a meaningful research experience in computing the nonlinear optical responses for novel chromophores.

## II. Summary of Accomplishments:

Research Facility.

This research grant in conjunction with two other research grants provided funding for us to purchase four servers, eight PC/MAC computers, two laser printers, and networking equipment for our laboratory. These grants also enabled us to purchase a number of contemporary computational chemistry software packages such as Gaussian, Cerius, Spartan, and CAChe for use by our undergraduates.

Participation of Undergraduates in Research Efforts.

Fifteen research students (all African-Americans) participated in our research effort, with four of them working on this particular research project at some point during their research experience. In addition three high school students participated in our research efforts for two summers. All students were trained on various software applications in our research efforts. The students that participated in this research project are listed below along with their current status:

**Tiffany Burgess-Brown.** Graduated from Chicago State University, presently working for Abbott Laboratories in North Chicago. Tiffany made two presentations on her work.

**Howard Gholston.** Graduated from Chicago State University, presently a graduate student in Materials Science at Northwestern University in Evanston.

**Brian Clay.** Graduated from Chicago State University, presently working for a chemical consulting company in Chicago.

Luckner Jean. Graduated from the Illinois Institute of Technology with an engineering degree. Will be attending graduate school next year.

Felicia Duran (High School Student). Currently in college. Leo Crockett (High School Student). Currently in college. Theresa Zuniga (High School Student). Currently in college.

Summary of Research Findings.

One of our goals in this year-long research effort was to determine if we could streamline our Nonlinear Optical response computations by using commercially available software rather than the software developed in our laboratory. If our research efforts in this direction are to continue, the user-interfaces of our software must be within the capabilities of undergraduate researchers. As detailed below, we found that the user-friendly Spartan and CAChe packages are not viable options in the evaluation of NLO responses, however, the more rigorous Cerius package does provide reasonable responses relative to experiment. We should note that the Cerius package is actually a commercially-available replica of our in-house algorithms. However, this package is much more demanding to use and beyond the typical undergraduate's abilities.

#### III. Details/Results of Research Efforts:

Motivation of Research Studies.

For the past decade many researchers in the field of nonlinear optical materials have come to realize that computational chemistry plays a crucial role in the selection of molecular chromophores to insert into high-efficiency frequency doubling materials. Mark Ratner, Tobin Marks and I published a study in 1993 in which the hyperpolarizability generated via a semiempirical sum-over-states approach computed for over 200 molecular units was compared with experimental EFISH values as shown in Figure I. Most of these chromophores possessed the signature donor-acceptor  $\pi$ -architectures, and the structures chosen for this study were the sum total of all the molecules for which EFISH experiments had been performed. The molecular geometries for each chromophore were carefully chosen, but not optimized via a semiempirical methodology. The results of this experiment were surprisingly satisfying as seen in Figure I.

Unfortunately, this method was tedious and time consuming. In one portion of this research we looked at the possibility of using molecular geometries optimized with MOPAC in our ZINDO-SOS studies. To test this possibility, we compared the computed  $\lambda_{max}$  with experimental  $\lambda_{max}$  for over 400 dye molecules. These conventional dye molecules were taken from *The Sigma-Aldrich Handbook of Stains, Dyes, and Indicators*. Researchers have long recognized the link between the absorption energy and the NLO response through the two-level model. We propose that if our computational prescription correctly reproduces the electronic transitions it will also provide hyperpolarizability values that will compare favorably with experiment.

### Details of Calculations.

All CAChe studies followed a standard prescription available in CAChe software. Specifically the optimized molecular geometries were determined through an AM1 optimization. The absorption spectra were then computed with a ZINDO calculation involving configuration interaction of 100 transitions between filled and unfilled molecular orbitals. Simplistic computations including solvents in the calculations were carried out using the solvent option in the CAChe software, with the diameter of the cavity taken as the size of the molecule. Additional solvent computations were carried out by systematically altering the size of the solvent cavity, however, the qualitative results of these studies were not different from the studies taking the molecular size as the cavity diameter. Exploratory Spartan calculations and Cerius calculations were carried out in a similar manner.

#### Results of the Research Studies

The numerical results of the  $\lambda_{max}$  computations are reported in Appendix I. Note that in this chart we are comparing gas-phase calculations with solvent-phase experimental data. We are obviously not looking for absolute accuracy, rather a relative correlation between computed and experimental data. Note that this is a similar assumption made in most nonlinear optical computations that have appeared in the literature.

A graphical summation of the data (over 400 data points) listed in Appendix I is displayed in Figure II. Clearly there is little correlation between the computed  $\lambda_{max}$  and the experimental  $\lambda_{max}$ . Moreover, if we separate out results for chromophores in a given solvent, we also see little correlation between the computed and experimental results. In Figure III the computed  $\lambda_{max}$ 

values for molecules measured in ethanol (14 data points) is presented, and there is a slight correlation between theory and experiment, however, the data shown in Figure IV contains the graphical results for chromophores in water (over 100 data points) and a correlation is not readily apparent. From this study we conclude that a systematic prescription for computing electronic state information necessary for NLO computations using the CAChe package is not an appropriate prescription despite its ease of use for undergraduate researchers.

We attempted to improve these results by including solvent corrections into the computation. These results did not yield significantly different results. We also used performed a serious of Spartan calculations, however the results were similar. We are currently looking at Cerius computations where we use a more sophisticated molecular geometry optimization routine (more costly) and the results for both  $\lambda_{max}$  and for  $\beta$  appear to be much improved. These computations are more sophisticated, and and we are presently trying to simplify these computations further so a large number of potential chromophores can be systematically evaluated for NLO activity.

## IV. Personnel Associated with the Project

| Project Participant   | Status                |     |
|-----------------------|-----------------------|-----|
| David R. Kanis        | Faculty               | CSU |
| Luckner Jean          | Undergraduate Student | CSU |
| Brian Clay            | Undergraduate Student | CSU |
| Howard Gholston       | Undergraduate Student | CSU |
| Tiffany Burgess-Brown | Undergraduate Student | CSU |
| Felicia Duran         | High School Student   |     |
| Leo Crockett          | High School Student   |     |
| Theresa Zuniga        | High School Student   |     |
|                       |                       |     |

## V. Published/Submitted Papers from this Grant

None. However we do anticipate the submission of a manuscript describing this research effort following the completion of our Cerius studies.

## VI. Interactions/Transitions involving this research grant

#### Presentations at Meetings/ Invited Seminars:

\*Board of Governors Science Conference, Chicago, IL

\*Alliance for Minority Participation Research Conference, Chicago, IL

Illinois Institute of Technology, Chicago, IL

\*Students presented research results from this grant at these meetings.

#### Transitions:

None

Kanis

#### VII. Patents

None

# IX. Honors/Awards

| Kanis | Chicago State University Faculty Excellence Award                  | 1997 |
|-------|--------------------------------------------------------------------|------|
| Kanis | Chicago State University Faculty Excellence Award                  | 1998 |
| Kanis | Selection into Project Kaleidoscope's Faculty for the 21st Century | 1997 |
| Kanis | Received a CAREER grant from the National Science Foundation       | 1996 |



Figure 2

Computed Absorption Maxima vs.



Figure 3

Computed Absorption Maxima vs. Experimental Maxima for Molecules in Ethanol



Figure 4

Computed Absorption Maxima vs.



# Appendix 1

List of Dyes Examined from The Sigma-Aldrich Handbook of Dyes, Stains, and Indicators

Appendix contains data for the CAChe generated Absorption Maxima for 363 Dyes. The Experimental data came from the Handbook, the Computed data came from performing a MOPAC geometry optimization on the molecule followed by a ZINDO computation of  $\lambda$ max.

| Dve                                       | #   | EXP Abs. (nm) | Solvent     | Computed Abs. (nm) |
|-------------------------------------------|-----|---------------|-------------|--------------------|
| Acid Alizarin Violet N                    | _   | 501           | Water       | 381.93             |
| Acid Black 24                             | 2   | 572           | Water       | 444.94             |
| Acid Blue 25                              | 4   | 009           | Water       | 435.96             |
| Acid Blue 29                              | 9   | 602           | Water       | 443.69             |
| Acid Blue 40                              | 9   | 610           | Water       | 468.74             |
| Acid Blue 41                              | 7   | 266           | Water       | 472.99             |
| Acid Blue 80                              | 10  | 625           | Water       | 459.17             |
| Acid Blue 92                              | 11  | 571           | Water       | 401.35             |
| Acid Blue 113                             | 13  | 999           | Water       | 436.98             |
| Acid Blue 120                             | 15  | 524           | Water       | 444.99             |
| Acid Blue 129                             | 17  | 629           | Water       | 201.53             |
| Acid Green 41                             | 24  | 089           | Water       | 200.33             |
| Acid Orange 8                             | 25  | 490           | Water       | 365.61             |
| Acid Orange 63                            | 27  | 424           | Water       | 366.20             |
| Acid Orange 74                            | 28  | 455           | Water       | 346.13             |
| Acid Red 1                                | 29  | 532           | Water       | 288.24             |
| Acid Red 4                                | 31  | 508           | Water       | 281.31             |
| Acid Red 8                                | 32  | 508           | Water       | 232.59             |
| Acid Red 88                               | 35  | 505           | Water       | 383.32             |
| Acid Red 97                               | 36  | 498           | Water       | 436.85             |
| Acid Red 106                              | 37  | 532           | Water       | 283.05             |
| Acid Red 114                              | 38  | 514           | 50% Ethanol | 387.10             |
| Acid Red 151                              | 39  | 512           | Water       | 382.52             |
| Acid Yellow 34                            | 20  | 408           | Water       | 345.41             |
| Acid Yellow 40                            | 25  | 412           | Methanol    | 352.12             |
| Acid Yellow 42                            | 53  | 410           | Water       | 366.41             |
| Acid Yellow 65                            | 54  | 414           | Water       | 479.49             |
| Acid Yellow 76                            | 52  | 393           | 50% Ethanol | 352.51             |
| Alcian Yellow                             | 73  | 388           | Methanol    | 365.35             |
| Alizarin                                  | 75  | 267           | 0.1 N NaOH  | 200.49             |
| Alizarin Complexone dihydrate             | 78  | 427           | Methanol    | 234.18             |
| Alizarin Red S monohydrate                | 80  | 556           | 0.1 N NaOH  | 268.32             |
| Alizarin Violet 3R                        | 82  | 540           | Methanol    | 281.67             |
| Alizarin Yellow GG                        | 84  | 362           | Methanol    | 430.48             |
| Alphazurine A                             | 87  | 637           | Water       | 200.49             |
| Aluminon                                  | 06  | 542           | 0.1N NaOH   | 347.47             |
| Amaranth                                  | 95  | 521           | Water       | 399.59             |
| 9-Aminoacridine hydrochloride monohydrate | 94  | 400           | Water       | 258.28             |
| Astrazon Orange G                         | 102 | 490           | Methanol    | 207.00             |

-12-

| Dye                                                   |     | EXP Abs. (nm) | Solvent                  | Computed Abs. (nm) |
|-------------------------------------------------------|-----|---------------|--------------------------|--------------------|
| Auramine O                                            | 103 | 432           | Water                    | 271.79             |
| Aurintricarboxylic Acid                               | 105 | 545           | 0.1 N NaOH               | 330.51             |
| Aurintricarboxylic Acid, Trisodium Salt               | 106 | 545           | 0.1 N NaOH               | 351.92             |
| Azure A                                               | 109 | 633           | Water                    | 414.38             |
| Azure B                                               | 112 | 648           | Ethanol                  | 451.28             |
| Basic Blue 3                                          | 123 | 654           | Water                    | 546.00             |
| Basic Blue 47                                         | 124 | 610           | Methanol                 | 235.00             |
| Basic Blue 66                                         | 125 | 615           | Water                    | 485.00             |
| Basic Fuchsin                                         | 126 | 544           | Ethanol                  | 438.00             |
| Basic Fuchsin                                         | 129 | 549           | Ethanol                  | 438.00             |
| Basic Red 29                                          | 131 | 511           | Water                    | 514.00             |
| Basic Yellow 11                                       | 132 | 395           | Methanol                 | 421.00             |
| Bathophenathrolinedisulfonic Acid                     | 133 | 276           | Water                    | 245.00             |
| Benzopurpurin 4B                                      | 135 | 200           | Water                    | 219.00             |
| Biebrich Scarlet, water soluble                       | 137 | 505           | Methanol                 | 313.00             |
| 3,3-(4,4-Biphenylene)Bis(2,5-Diphenyl-2H-Tetrazolium) | 139 | 250           | Methanol                 | 358.00             |
| Bis-N-Methylacridinium Nitrate                        | 141 | 430           | Methanol                 | 272.00             |
| Bismarck Brown R                                      | 142 | 468           | Ethanol                  | 352.00             |
| Bismarck Brown Y                                      | 144 | 457           | 50% ethanol & 5ml 1N Hcl | 347.00             |
| Blue Tetrazolium                                      | 146 | 253           | Methanol                 | 271.00             |
| Bordeaux R                                            | 148 | 518           | Water                    | 219.00             |
| Brilliant Black BN                                    | 150 | 220           | Water                    | 399.00             |
| Brilliant Blue G                                      | 151 | 610           | Ethanol                  | 477.00             |
| Brilliant Blue R                                      | 153 | 585           | Ethanol                  | 194.00             |
| Brilliant Cresyl Blue ALD                             | 155 | 622           | 50% Ethanol              | 526.00             |
| Brilliant Crocein MOO                                 | 158 | 510           | Water                    | 403.00             |
| Brilliant Green                                       | 160 | 625           | 50% Ethanol              | 366.00             |
| Brilliant Sulphaflavine                               | 162 | 422           | Water                    | 197.00             |
| Brilliant Yellow                                      | 164 | 497           | 0.1N NaOH                | 396.00             |
| Bromochlorophenol Blue, water soluble                 | 166 | 290           | Water                    | 340.00             |
| Bromocresol Green                                     | 168 | 423           | Methanol                 | 215.00             |
| Bromocresol Green, water soluble                      | 170 | 617           | Water                    | 326.00             |
| Bromocresol Purple                                    | 171 | 419           | Methanol                 | 210.00             |
| Bromocresol Purple, water soluble                     | 173 | 585           | 0.1N NaOH                | 348.00             |
| Bromophenol Blue                                      | 174 | 298           | 0.005N NaOH in Methanol  | 194.00             |
| Bromophenol Blue, water soluble                       | 176 | 589           | Water                    | 341.00             |
| 2-(5-Bromo-2-Pyridylazo)-5-(Diethylamino)Phenol       | 177 | 443           | Methanol                 | 338.00             |
| Bromopyrogallol Red                                   | 178 | 552           | Water                    | 359.00             |
| Bromothymol Blue                                      | 007 |               |                          |                    |

-13-

| Dye                                         | #<br>E | EXP Abs. (nm) | Solvent                   | Computed Abs. (nm) |
|---------------------------------------------|--------|---------------|---------------------------|--------------------|
| Bromoxylenol Blue                           | 183    | 417           | Methanol                  | 216.00             |
| 6-Butoxy-2,6-Diamino-3,3-Azodipyridine      | 185    | 435           | Methanol                  | 351.00             |
| Carminic Acid                               | 193    | 495           | Methanol                  | 267.00             |
| Chicago Sky Blue 6B                         | 198    | 618           | Water                     | 476.96             |
| Chlorophenol Red                            | 200    | 572           | 0.1N NaOH                 | 197.65             |
| Chlorophenol Red,water soluble              | 202    | 575           | Water                     | 235.30             |
| Chrome Azurol S                             | 203    | 429           | Water                     | 325.71             |
| Chromotrope 2R                              | 207    | 510           | Methanol                  | 243.45             |
| Chromoxane Cyanine R                        | 209    | 512           | Methanol                  | 366.62             |
| Chrysophenine                               | 213    | 389           | Water                     | 411.90             |
| Cibacron Brilliant Yellow 3G-P              | 217    | 404           | Water                     | 308.64             |
| Congo Red                                   | 220    | 497           | Water + 1ml 1% Na2CO3     | 401.32             |
| o-Cresolphthalein                           | 226    | 999           | 0.1N NaOH                 | 202.66             |
| o-Cresolphthalein Complexone                | 228    | 575           | 0.1N NaOH                 | 200.13             |
| m-Cresol Purple, sodium salt                | 231    | 436           | Water                     | 202.43             |
| Cresol Red, water soluble                   | 234    | 425           | Ethanol                   | 334.97             |
| Cresyl Violet perchlorate                   | 237    | 602           | Ethanol                   | 539.46             |
| Crocein Orange G                            | 238    | 482           | Water                     | 393.69             |
| Darrow Red                                  | 242    | 502           | 50% Ethanol               | 521.00             |
| •                                           | 244    | 349           | Water                     | 334.00             |
| 3,6-Diaminoacridine hemisulfate             | 245    | 456           | Methanol                  | 275.00             |
|                                             | 247    | 456           | Methanol                  | 275.00             |
| Diazo Red RC                                | 248    | 372           | Water                     | 198.00             |
| 4,5-Dibromofluorescein                      | 249    | 450           | Methanol + 1 drop 1 N HCL | 393.00             |
| 2,7-Dichlorofluorecein                      | 251    | 509           | Ethanol + 1 drop 1 N NaOH | 224.00             |
| 5,7-Dichloro-8-Hyroxyquinoline              | 253    | 253           | Chloroform                | 239.00             |
| 2,6-Dichloroindophenol, sodium salt hydrate | 255    | 605           | Water + 2ml 1N NaOH       | 485.00             |
| 1,1Diethyk-4,4-Carbocyanine lodide          | 256    | 703           | Methanol                  | 576.00             |
| Diiodofluorescein                           | 257    | 522           | Methanol                  | 387.00             |
| 4-(Dimethylamino)Benzaldehyde               | 259    | 250           | 10% HCI                   | 276.00             |
| 5-(4-Dimethylaminobenzylidene) Rhodanine    | 261    | 451           | Methanol                  | 342.00             |
| 4-Dimethylamino-2-Methylazobenzene          | 263    | 555           | 227777                    | 325.00             |
| 4,7-Diphenyl-1,10-Phenanthroline            | 265    | 288           | Chloroform                | 245.00             |
| Direct Black 22                             | 267    | 481           | Water                     | 380.00             |
| Direct Blue 71                              | 268    | 594           | Water                     | 409.00             |
| Direct Orange 31                            | 269    | 428           | Water                     | 365.00             |
| Direct Red 23                               | 270    | 202           | Water                     | 209.00             |
| Direct Red 75                               | 272    | 522           | Water                     | 522.00             |
| Direct Red 81                               | 274    | 208           | Water                     | 369.00             |

| a                            | Dve | # EXP | EXP Abs. (nm) | Solvent                       | Computed Abs. (nm) |
|------------------------------|-----|-------|---------------|-------------------------------|--------------------|
| Direct Violet 51             |     | 276   | 549           | Water                         | 350.00             |
| Direct Yellow 8              |     | 277   | 390           | Water                         | 387.00             |
| Direct Vellow 27             |     | 278   | 303           | Water                         | 00 098             |
| Direct Tellow 27             |     | 07.0  | 200           | Water                         | 00.000             |
| Direct Yellow 29             |     | 617   | 402           | Water                         | 391.00             |
| Direct Yellow 50             |     | 280   | 390           | Water                         | 219.00             |
| Direct Yellow 62             |     | 281   | 341           | Water                         | 232.00             |
| Disperse Blue 1              |     | 282   | 620           | 50% Ethanol + 1 drop 1N NaOH  | 231.00             |
| Disperse Blue 3              |     | 284   | 640           | 50% Ethanol                   | 236.00             |
| Disperse Blue 14             |     | 285   | 640           | 50% Ethanol                   | 237.00             |
| Disperse Orange 1            |     | 286   | 483           | 50% Ethanol                   | 534.00             |
| Disperse Orange 3            |     | 287   | 443           | 50% Ethanol                   | 533.00             |
| Disperse Orange 13           |     | 288   | 426           | 50% Ethanol                   | 377.00             |
| Disperse Orange 25           |     | 289   | 455           | Methanol                      | 536.00             |
| Disperse Red 1               |     | 290   | 503           | 50% Ethanol                   | 533.00             |
| Disperse Red 13              |     | . 291 | 517           | 50% Ethanol                   | 550.00             |
| Disperse Red 19              |     | 292   | 495           | 50% Ethanol                   | 446.00             |
| Disperse Yellow 3            |     | 293   | 357           | 50% Ethanol                   | 326.00             |
| Disperse Yellow 5            |     | 294   | 405           | 50% Ethanol                   | 608.00             |
| Disperse Yellow 7            |     | 295   | 388           | 50% Ethanol                   | 339.00             |
| Disperse Yellow 9            |     | 296   | 328           | Chloroform                    | 658.00             |
| Emodin                       |     | 298   | 521           | 0.1N NaOH                     | 257.00             |
| 6 Eosin B                    |     | 300   | 514           | Water + 2ml 1% sodium cardon  | 354.00             |
| V Eosin B, spirit soluble    |     | 302   | 522           | Methanol                      | 427.00             |
| Eosin Y                      |     | 304   | 514           | Water + 1 ml 1% sodium carbor | 473.00             |
| Eosin Y, free acid           |     | 306   | 521           | Water + 1 ml 1% sodium carbor | 396.00             |
| Eosin Y lactone              |     | 307   | 524           | Methanol                      | 226.00             |
| Eriochrome Blue Black 2B     |     | 310   | 528           | Water + 1ml 1N HCl            | 397.00             |
| Eriochrome Red B             |     | 311   | 483           | Methanol                      | 404.00             |
| Erioglaucine                 |     | 312   | 625           | Water                         | 447.29             |
| Erythrosin B                 |     | 314   | 525           | Water + 1 ml 1% sodium carbor | 483.00             |
| Erythrosin B, spirit soluble |     | 316   | 533           | Methanol                      | 401.00             |
| Ethidium Bromide             |     | 318   | 525           | Methanol                      | 225.00             |
| Ethyl Eosin                  |     | 320   | 532           | Ethanol                       | 458.00             |
| Ethyl Orange, sodium salt    |     | 322   | 472           | Water                         | 321.00             |
| Ethyl Red                    |     | 324   | 447           | 0.1N NaOH                     | 321.00             |
| Ethyl Violet                 |     | 325   | 596           | Water                         | 272.00             |
| Evans Blue                   |     | 327   | 611           | Water                         | 471.00             |
| Fast Black K salt            |     | 329   | 457           | Water                         | 241.66             |
| Fast Blue B salt             |     | 332   | 371           | Water                         | 202.12             |
|                              |     |       |               |                               |                    |

| Dye                                                | #   | EXP Abs. (nm) | Solvent                     | Computed Abs. (nm) |
|----------------------------------------------------|-----|---------------|-----------------------------|--------------------|
| Fast Blue BB base                                  | 334 | 318           | Ethanol                     | 213.72             |
| Fast Blue BB salt                                  | 336 | 395           | Water                       | 400.31             |
| Fast Blue RR                                       | 337 | 319           | Methanol                    | 213.66             |
| Fast Garnet GBC base                               | 342 | 328           | 50 % Ethanol + 1ml 1N HCl   | 198.08             |
| Fast Garnet GBC salt                               | 344 | 360           | Water                       | 437.87             |
| Fast Green FCF                                     | 345 | 624           | 50% Ethanol                 | 452.33             |
| Fast Red ITR base                                  | 351 | 256           | Dioxane                     | 215.04             |
| Fast Red ITR salt                                  | 352 | 357           | Water                       | 190.09             |
| Fast Red PDC salt                                  | 353 | 352           | Methanol                    | 233.79             |
| Fast Red TR salt                                   | 354 | 285           | Water                       | 204.17             |
| Fast Red Violet LB base                            | 355 | 293           | Methanol                    | 204.11             |
| Fast Red Violet LB salt                            | 356 | 342           | Water                       | 380.64             |
| Fast Violet B                                      | 358 | 297           | Ethanol                     | 211.56             |
| Fast Yellow                                        | 360 | 480           | 0.1N HCI                    | 325.57             |
| Fast Yellow GC salt                                | 362 | 324           | Water                       | 201.13             |
| Fat Brown RR                                       | 366 | 451           | Ethanol                     | 354.52             |
| Flavazin L                                         | 369 | 407           | Water                       | 356.68             |
| Flavianic Acid hydrate                             | 370 | 428           | Water                       | 204.29             |
| Fluorescein                                        | 373 | 496           | 0.1N NaOH                   | 432.39             |
| Fluorescein, water soluble                         | 375 | 491           | Water                       | 474.85             |
|                                                    | 376 | 490           | Ethanol                     | 194.41             |
| Fluorescein Isothiocyanate, isomer I               | 377 | 490           | 0.1 NaOH                    | 457.81             |
| _                                                  | 379 | 496           | Ethanol + 1ml 0.1N NaOH     | 386.90             |
| Fluoresceinamine, isomer II                        | 381 | 495           | 0.1N NaOH                   | 386.78             |
| Fluorescent Brightener 28                          | 382 | 350           | Methanol                    | 338.13             |
| Gallocyanine                                       | 386 | 620           | Ethanol                     | 485.67             |
| Guinea Green B                                     | 390 | 618           | Water                       | 300.44             |
| Haba                                               | 392 | 348           | 1% phosphate buffer, pH 6.2 | 192.96             |
| Hematoxylin                                        | 394 | 292           | Methanol                    | 219.35             |
| Hoechst 33258                                      | 396 | 343           | Methanol                    | 337.55             |
| 3-Hydroxy-4-(2-Hydroxy-4-sulfo-1-Naphthylazo)-2NCA | 398 | 240           | Methanol                    | 443.51             |
| 7-Hydroxy-4-Methylcoumarin                         | 388 | 322           | Methanol                    | 231.87             |
| Hydroxy Naphthol Blue, disodium salt               | 401 | 650           | Methanol + 10ml Water       | 418.46             |
| 8-Hydroxyquinoline-5-sulfonic acid monhydrate      | 402 | 315           | Methanoi                    | 241.24             |
| Indigo                                             | 403 | 602           | Chloroform                  | 233.00             |
| Indigo Carmine                                     | 405 | 809           | Water                       | 198.00             |
| Indocyanine Green                                  | 407 | 775           | Water                       | 472.00             |
| Indoine Blue                                       | 409 | 298           | Methanol                    | 538.00             |

| Dye                                        | # EXP Abs. (nm) | m) Solvent                  | Computed Abs (nm) |
|--------------------------------------------|-----------------|-----------------------------|-------------------|
| Janus Green B                              | 411 660         |                             | 514.00            |
| Lacmoid                                    | 415 611.        | Metahnol                    | 415.00            |
| Leuco Crystal Violet                       | 418 261         | 0.1N HCl in Methanol        | 250.00            |
| Leucomalachite Green                       | 419 262         | Chloroform                  | 193.00            |
| Light Green SF Yellowish                   | 421 630         | Water                       | 194.00            |
| Lissamine Green B                          |                 | Water                       | 247.00            |
| Lucifer Yellow VS                          | 429 42.7        | Water                       | 257.00            |
| Lumichrome                                 | 430 392         | Methanol                    | 229.00            |
| Luxol Brilliant Green BL                   | 432 624         | Methanol                    | 479.00            |
| Malachite Green Carbinol hydrochloride     | 437 615         | Water                       | 196.10            |
| Martius Yellow monohydrate                 | 440 432         | Methanol                    | 454.39            |
| Metanil Yellow                             | 446 414         | Methanol                    | 312.45            |
| Methylene Blue                             | 448 661         | Water                       | 486.80            |
| Methylene Violet Bernthsen                 | 453 580         | 50% ethanol + 10ml 0.1N HCI | 412.12            |
| Methylene Violet 3RAX                      |                 | Water                       | 291.87            |
| Methyl Eosin                               | 456 520         | Water                       | 492.50            |
| Methyl Green, zinc chloride salt           |                 | Water                       | 517.86            |
| Methyl Orange                              |                 | Water + .5ml 1N HCI         | 324.78            |
| Methyl Red                                 | 464 410         | Methanol                    | 324.16            |
| Methyl Red hydrochloride                   |                 | Methanol + 1ml 1N HCl       | 313.10            |
| Methyl Red, sodium salt                    |                 | Methanol                    | 494.11            |
| Methyl Yellow                              |                 | Methanol                    | 323.71            |
|                                            |                 | Water + 1ml 1N HCl          | 197.69            |
| Mordant Brown 1                            |                 | Water                       | 378.43            |
| Mordant Brown 4                            |                 | Ethanol                     | 380.93            |
| Mordant Brown 6                            |                 | Water                       | 193.02            |
| Mordant Brown 24                           |                 | Water                       | 336.04            |
| Mordant Brown 33                           |                 | Water                       | 384.91            |
| Mordant Brown 48                           |                 | Water                       | 360.12            |
| Mordant Orange 1                           |                 | Methanol                    | 326.44            |
| Mordant Orange 6                           |                 | Water                       | 352.80            |
| Mordant Orange 10                          |                 | Water                       | 353.83            |
| Mordant Red 19                             |                 | Water                       | 364.38            |
| Mordant Yellow 7                           |                 | Methanol                    | 326.51            |
| Mordant Yellow 10                          |                 | Methanol                    | 324.17            |
| Mordant Yellow 12                          |                 | Water                       | 346.21            |
| M I I -Methylthiazolyldiphenyl Tetrazolium |                 | Methanol                    | 271.14            |
| Naphthochrome Green                        |                 | Water                       | 226.32            |
| Naphthol AS                                | 491 394         | 1N NaOH                     | 234.49            |
|                                            |                 |                             |                   |

| Dye                                                | #    | EXP Abs. (nm) | Solvent                         | Computed Abs. (nm) |
|----------------------------------------------------|------|---------------|---------------------------------|--------------------|
| Naphthol Blue Black                                | 496  | 618           | Water                           | 462.72             |
| Naphthol Yellow S                                  | 200  | 428           | Water                           | 442.15             |
| a-Naphthyl Red                                     | 503  | 439           | Methanol                        | 360.96             |
| Neutral Red                                        | 504  | 540           | 50% ethanol + .5 acetic acid    | 491.41             |
| New Coccine                                        | 206  | 206           | Water                           | 236.32             |
| New Fuchsin                                        | 909  | 533           | 50% ethanol                     | 428.74             |
| Nile Blue chloride                                 | 518  | 638           | 50% Ethanol                     | 572.09             |
| Nile Red                                           | 519  | 553           | Methanol                        | 360.57             |
| Nitrazine Yellow                                   | 521  | 586           | 0.1N NaOH                       | 457.42             |
| Nitro Red                                          | 527  | 572           | Water                           | 451.89             |
| 2-Nitroso-1-Naphthol                               | 528  | 262           | Chloroform                      | 226.21             |
| 1-Nitroso-2-Naphthol-3,6-Disulfonic Acid, disodium | 530  | 424           | 0.1N NaOH                       | 225.50             |
| Nuclear Fast Red                                   | 532  | 535           | Water                           | 248.21             |
| Oil Blue N                                         | 534  | 637           | Ethanol                         | 236.68             |
| Oil Red EGN                                        | 536  | 521           | Chloroform                      | 382.17             |
| Oil Red O                                          | 537  | 518           | Toluene                         | 386.32             |
| Orange G                                           | 539  | 475           | Water                           | 371.84             |
| Orange II                                          | 541  | 483           | Water                           | 363.80             |
| Palatine Chrome Black 6BN                          | 545  | 569           | Water                           | 426.45             |
| Palatine Fast Yellow BLN                           | 548  | 440           | Water                           | 190.60             |
| Para Red                                           | 549  | 488           | Toluene                         | 366.07             |
| ( Pararosaniline acetate                           | 551  | 545           | 50% ethanol                     | 276.23             |
| Pararosaniline base                                | 552  | 544           | Ethanol                         | 190.82             |
| Phenanthrenequinone                                | 555  | 270           | Chloroform                      | 251.76             |
| 1,10-Phenanthroline                                | 292  | 264           | Methanol                        | 236.67             |
| 1,10-Phenanthroline monohydrate                    | 229  | 264           | Ethanol                         | 236.59             |
| 1,10-Phenanthroline monohydrochloride monohydrate  | 260  | 264           | Methanol                        | 236.64             |
| Phenazine Methosulfate                             | 561  | 386           | Water                           | 262.59             |
| Phenolphthalein                                    | 563  | 552           | Water + 2ml 1N NaOH             | 192.47             |
| Phenol Red                                         | 265  | 222           | Water + 20ml boric buffer, pH 9 | 195.48             |
| Phenol Red, water soluble                          | 292  | 423           | Methanol                        | 328.40             |
| 4-Phenylazoaniline                                 | 268  | 386           | Methanol                        | 193.97             |
| 4-Phenylazoaniline hydrochloride                   | 220  | 385           | Methanol                        | 193.89             |
| 4-Diphenylamine                                    | 571  | 411           | Ethanol                         | 322.56             |
| 4-phenylazomaleinanil                              | 572  | 329           | Chloroform                      | 262.59             |
| 4-Phenylazophenol                                  | 574  | 347           | Methanol                        | 193.21             |
| 9-Phenyl-2,3,7-Trihydroxy-6-Flouorone              | 929  | 552           | 0.1N NaOH                       | 396.37             |
| Philoxine B                                        | 22.5 | 548           | 50% ethanol                     | 424.05             |
| Pinacyanol chloride                                | 629  | 604           | Ethanol                         | 567.93             |
|                                                    |      |               |                                 |                    |

| Dye                                                 | #   | EXP Abs. (nm) | Solvent                      | Computed Abs. (nm) |
|-----------------------------------------------------|-----|---------------|------------------------------|--------------------|
| Plasmocorinth B                                     | 581 | 527           | Water                        | 252.30             |
| Ponceau S                                           | 583 | 520           | Water                        | 388.95             |
| Ponceau SS                                          | 585 | 514           | Water                        | 452.55             |
| Potassium Indigotrisulfonate                        | 586 | 009           | Water                        | 199.49             |
| Primulin                                            | 588 | 356           | Water                        | 371.21             |
| Purpurin                                            | 592 | 485           | Methanol                     | 236.76             |
| 4-(2-Pyridylazo)Resorcinol, monosodium salt hydrate | 594 | 411           | Methanol                     | 444.01             |
| Pyrocatechol Violet                                 | 969 | 441           | Methanol                     | 345.17             |
| Pyrogallol Red                                      | 262 | 480           | Ethanol                      | 417.40             |
| Pyronin Y                                           | 601 | 548           | 50% Ethanol                  | 485.06             |
| Quinalizarin                                        | 604 | 512           | Methanol                     | 434.71             |
| Quinizarin                                          | 909 | 250           | Chloroform                   | 212.04             |
| Quinoline Yellow A, spirit soluble                  | 809 | 413           | Methanol                     | 221.02             |
| Reactive Black 5                                    | 611 | 265           | Water                        | 416.83             |
| Reactive Blue 2                                     | 612 | 209           | Water                        | 298.41             |
| Reactive Blue 4                                     | 614 | 595           | Water                        | 239.57             |
| Reactive Red 8                                      | 617 | 200           | Water                        | 301.33             |
| Remazol Brilliant Blue R                            | 620 | 592           | Water                        | 430.87             |
| Resorufin                                           | 625 | 573           | Methanol                     | 552.31             |
| Rhodamine 123 dihyrate                              | 626 | 501           | Water                        | 424.00             |
| Rhodamine B                                         | 628 | 543           | Methanol                     | 461.53             |
| Rhodamine B base                                    | 630 | 544           | Methanol                     | 238.39             |
| Rhodamine 6G                                        | 631 | 524           | Water                        | 448.69             |
| Rhodamine 6G perchlorate                            | 633 | 528           | Methanol                     | 207.44             |
| Rhodamine 6G tetrafluoroborate                      | 634 | 528           | Methanol                     | 451.26             |
| Rose Bengal                                         | 637 | 548           | Water + 1ml 1% sodium carbon | 495.32             |
| Rosolic Acid                                        | 640 | 482           | Ethanol + 2ml 1N HCl         | 345.46             |
| Safranin O (Y,T)                                    | 645 | 530           | 50% ethanol                  | 240.00             |
| Solvent Blue 35                                     | 647 | 652           | Chloroform                   | 237.00             |
| Solvent Blue 59                                     | 648 | 642           | Ethanol                      | 237.00             |
| Solvent Green 3                                     | 649 | 644           | Acetone                      | 235.00             |
| Stains-All                                          | 651 | 575           | Ethanol                      | 238.00             |
| Sudan I                                             | 653 | 476           | Ethanol                      | 369.00             |
| Sudan II                                            | 654 | 493           | Methanol                     | 372.00             |
| Sudan III                                           | 929 | 202           | Toluene                      | 383.00             |
| Sudan IV                                            | 658 | 520           | Toluene                      | 369.00             |
| Sudan Black B                                       | 099 | 298           | Ethanol                      | 404.00             |
| Sudan Orange G                                      | 662 | 400           | Methanol                     | 322.00             |
| Sudan Red 7B                                        | 664 | 533           | Toluene                      | 307.00             |

| Dye                                                               | #   | EXP Abs. (nm) | Solvent                         | Computed Abs. (nm) |
|-------------------------------------------------------------------|-----|---------------|---------------------------------|--------------------|
| Sulfobromophthalein sodium hydrate                                | 999 | 577           | 0.1N NaOH                       | 199.00             |
| Sulfonazo III, tetrasodium salt                                   | 299 | 267           | Water                           | 295.00             |
| 2-(4-Sulfophenylazo)-1,8-Dihydroxy-3,6-Naphthalenedisulfonic acid | 699 | 202           | Water                           | 238.00             |
| Sulforhodamine 101 hydrate                                        | 671 | 929           | Ethanol                         | 439.00             |
| Sulforhodamine 101 acid chloride                                  | 672 | 578           | Ethanol                         | 438.00             |
| sulforhodamine B                                                  | 674 | 554           | 0.1N NaOH in methanol           | 231.00             |
| Sulforhodamine G                                                  | 9/9 | 529           | Methanol                        | 235.00             |
| Tartrazine                                                        | 678 | 425           | Water                           | 346.14             |
| Tetrabromophenol Blue                                             | 680 | 610           | 50% ethanol + 5 ml pH 5.0 buffe | 195.61             |
| Tetrabromophenol Blue, water soluble                              | 682 | 610           | Water                           | 338.54             |
| 3,3,5,5-Tetrabromophenolphthalein                                 | 683 | 310           | 0.01N NaOH                      | 195.36             |
| Tetrabromophenolphthalein Ethyl Ester, potassium salt             | 684 | 593           | Methanol                        | 456.94             |
| 3,4,5,6-Tetrabromophenolsulfonephthalein                          | 685 | 426           | Methanol                        | 323.53             |
| 4,5,6,7-Tetrachlorofluorescein                                    | 989 | 518           | Methanol                        | 390.34             |
| 3,3,5,5-Tetraiodophenolphthalein                                  | 689 | 315           | 0.1N NaOH                       | 205.50             |
| 3,3,5,5-Tetraiodophenolsulfonephthalein                           | 692 | 433           | Methanol                        | 352.32             |
| 3,3,5,5-Tetramethylbenzidine dihydrochlorid hydate                | 695 | 288           | Methanol                        | 216.28             |
| Thiazol Yellow G                                                  | 869 | 402           | Water                           | 351.94             |
|                                                                   | 701 | 412           | Water                           | 439.69             |
| , Thionin                                                         | 703 | 298           | Water                           | 534.14             |
| Thymol Blue                                                       | 902 | 594           | 0.1N NaOH                       | 341.66             |
| Thymolphthalein                                                   | 200 | 592           | 0.1N NaOH                       | 204.20             |
| Thymolphthalein Monophosphoric Acid                               | 711 | 445           | 0.1N NaOH                       | 207.84             |
| Tiron                                                             | 712 | 291           | Water                           | 209.53             |
| Toluidine Blue O                                                  | 714 | 929           | Water                           | 548.99             |
| Toluidine Red                                                     | 716 | 202           | Toluene                         | 193.95             |
| Tropaeolin O                                                      | 719 | 490           | 0.1N NaOH                       | 329.52             |
| Trypan Blue                                                       | 721 | 209           | Methanol                        | 220.29             |
| Uniblue A, sodium salt                                            | 724 | 969           | Water                           | 413.62             |
| Variamine Blue Rt salt                                            | 725 | 377           | Water                           | 437.24             |
| Victoria Blue B                                                   | 727 | 599           | Ethanol                         | 443.59             |
| Victoria Blue R                                                   | 729 | 615           | Methanol                        | 441.23             |
| Victoria Pure Blue BO                                             | 730 | 619           | Water                           | 457.32             |
| Violamine R                                                       | 732 | 529           | Water                           | 266.84             |
| Xylenol Blue                                                      | 737 | 424           | Methanol                        | 202.00             |
| Xylenol Blue,water soluble                                        | 739 | 425           | Methanol                        | 334.00             |
| Xylenol Orange,water soluble                                      | 740 | 580           | 0.1N NaOH                       | 333.00             |
| Xylidine Ponceau 3RS                                              | 742 | 503           | Water                           | 234.00             |
| Xylidyl Blue I, water soluble                                     | 744 | 612           | Ethanol + 2ml 0.08M borax buffe | 384.00             |

Zincon Zincon, monosodium salt

# EXP Abs. (nm) \$ 745 490 C

Solvent 0.1N NaOH Methanol

Computed Abs. (nm) 375.00 375.00

- 21-