Title

D. Zack Garza

Contents

1	Wed	lnesday, November 04	2
	1.1	Representations for G_rT and G_rB	2
	1.2	Summary: Classification of Simple G_rT -Modules	5

Wednesday, November 04

Today: G_r -T modules.

Note that $G_r \leq G_r T$, with $G_r T/G_r \cong T^{(r)}$. We consider $G_r T$ -modules, which are G_r -modules with a T action given by

$$G_r \times M \to M$$

 $(g,m) \mapsto g \cdot m$

which are T-equivariant, i.e. $t(g \cdot m) = (t \cdot g)(t \cdot m)$ for $t \in T, g \in G_r$, and $m \in M$ is a G_rT -module. This essentially induces a grading on G_r .

1.1 Representations for G_rT and G_rB

Recall that we have a Frobenius map, for which we take the scheme-theoretic kernel:

$$F: G \to G$$

$$F^r := F \circ F \circ \cdots \circ F$$

$$G_r := \ker F^r,$$

and we then define

$$G_r T := (F^r)^{-1}(T)$$

 $G_r B := (F^r)^{-1}(B)$

taken as scheme-theoretic objects.

Noting that $B \subset G_r B$, for $\lambda \in X(T)$ we define

$$\begin{split} \widehat{Z}'_r(\lambda) &\coloneqq \operatorname{Ind}_B^{G_rB} \lambda \\ \widehat{Z}_r(\lambda) &\coloneqq \operatorname{Coind}_B^{G_rB} \lambda. \end{split}$$

These are enhancements of the baby Verma modules, in the sense that if we take restrictions we get

$$\widehat{Z}'_r(\lambda) \downarrow_{G_r} = \operatorname{Ind}_{B_r}^{G_r} \lambda.$$

Contents 2

We similarly have

$$Z'_r(\lambda) \downarrow_{G_rT} = \operatorname{Ind}_{B_rT}^{G_rT} \lambda$$
$$\widehat{Z}'_r(\lambda) \downarrow_{G_rT} = \operatorname{Coind}_{B_rT}^{G_rT} \lambda.$$

Proposition 1.1.1(?).

1.
$$\widehat{Z}_r(\lambda + p^r \mu) \cong \widehat{Z}_r(\lambda) \otimes p^r \mu$$

1.
$$\widehat{Z}_r(\lambda + p^r \mu) \cong \widehat{Z}_r(\lambda) \otimes p^r \mu$$

2. $\widehat{Z}'_r(\lambda + p^r \mu) \cong \widehat{Z}'_r(\lambda) \otimes p^r \mu$

3.
$$\operatorname{ch} \widehat{Z}_r(\lambda) = \operatorname{ch} \widehat{Z}'_r(\lambda) = e^{\lambda} \prod_{\alpha \in \Phi^+} \frac{1 - e^{-p^r \mu}}{1 - e^{-\alpha}}.$$

Proof (of 1 and 2).

From the definition, we have

$$\widehat{Z}'_r(\lambda + p^r \mu) = \operatorname{Ind}_B^{G_r B}(\lambda + p^r \mu)$$
$$= \operatorname{Ind}_B^{G_r B}(\lambda \otimes p^r \mu)$$
$$\cong \left(\operatorname{Ind}_B^{G_r B} \lambda\right) \otimes p^r \mu.$$

Where in the last equality we've applied the tensor identity, noting that $p^r\mu$ is a 1-dimensional G_rB -module, since

$$G_r B \to G_r B/G_r = B^{(r)} = B/B_r$$

making it a representation by pullback.

Proof (of 3).

We can write

$$\widehat{Z}_r(\lambda) = \operatorname{dist}(U_r) \otimes \lambda,$$

and thus

$$\operatorname{ch} \widehat{Z}_r(\lambda) = e^{\lambda} \operatorname{ch} \operatorname{dist}(U_r)$$

$$= e^{\lambda} \prod_{\alpha \in \Phi^+} \left(1 + e^{-\alpha} + \dots + e^{-(p^r - 1)\alpha} \right)$$

$$= e^{\lambda} \frac{1 - e^{-p^r \alpha}}{1 - e^{-\alpha}}$$

as a geometric series.

The next theorem is related to the fact that when comparing these categories of modules, one is essentially a graded version of the other.

1.1 Representations for G_rT and G_rB

3

Theorem 1.1.1(?).

Let $M \in G_rT$ - mod, then TFAE:

- 1. M is an injective G_rT -module.
- 2. M is an injective G_r -module.

Note that $G_r \subseteq G_rT$, where the quotient is $T^{(r)}$ which is twisted by Frobenius r times.

Proof (?).

We'll apply the Lydon-Hoschild-Serre spectral sequence: for N a G_rT -module,

$$E_2^{i,j} = \operatorname{Ext}_{T^{(r)}}^i \left(K, \operatorname{Ext}_{G_r}^j \left(N, M \right) \right) \Rightarrow \operatorname{Ext}_{G_r T}^{i+j} (N, M).$$

 $2 \implies 1$:

We first note that 2 implies $\operatorname{Ext}_{G_r}^{>0}(N,M)=0$, so the spectral sequence collapses and we have

$$\operatorname{Ext}_{T(r)}^{i}(k, \hom_{G_r}(M, N)) \cong \operatorname{Ext}_{G_rT}^{i}(N, M).$$

Since modules over $T^{(r)}$ are completely reducible, we have

$$\operatorname{Ext}_{T(r)}^{>0}(k, \hom_{G_r}(N, M)) = 0,$$

and thus $\operatorname{Ext}_{G_rT}^{>0}(N,M)=0$, making M an injective G_rT -module.

 $1 \implies 2$:

The simple G_rT -modules are of the form $N := L_r(\lambda) \otimes p^r \sigma$ where $\lambda \in X_r(T)$ and $\sigma \in X(T)$. Note that $L_r(\lambda)$ is simple G_r -module. Applying the spectral sequence, there is a 5 term exact sequence. Letting $E_t := \operatorname{Ext}_{G_rT}^t(N, M)$.

$$0 \longrightarrow E_2^{1,0} \longrightarrow E_1 \longrightarrow E_2^{0,1} \longrightarrow E_2^{2,0} \longrightarrow E_2$$

Everything is zero here except for the middle term: $E_1, E_2 = 0$ by assumption? $E_2^{1,0}, E_2^{2,0} = 0$ by ?.

We can thus conclude that

$$0 = E_2^{0,1} = \hom_{T^{(r)}}(k, \operatorname{Ext}_{G_r}^1(L_r(\lambda) \otimes p^r \sigma, M))$$
$$= \hom_{T^{(r)}}(p^r \sigma, \operatorname{Ext}_{G_r}^1(L_r(\lambda), M)),$$

which holds for all $p^r \sigma$, and thus $\operatorname{Ext}^1_{G_r}(L_r(\lambda), M) = 0$ for all $\lambda \in X_1(T)$. So M is injective as a G_r -module.

Proposition 1.1.2(?).

Let $\lambda \in X(T)$, then

- 1. $\widehat{Z}_r(\lambda) \downarrow_{B_rT}$ is the projective cover of λ and the injective hull of $\lambda 2(p^r 1)\rho$.
- 2. $\hat{Z}'_r(\lambda) \downarrow_{B_r^+}$ is the projective cover of $\lambda 2(p^r 1)\rho$ and the injective hull of λ .

1.2 Summary: Classification of Simple G_rT -Modules

- $\operatorname{Soc}_{B_r^+} \widehat{Z}'_r(\lambda) = \lambda$

- Â_r'(λ)^{U+} = λ, where the RHS denotes the U⁺ invariants.
 Let Â_r(λ) := Soc_{GrT} Â_r'(λ).
 Each simple G_rT-module is isomorphic to Â_r(λ) for some λ ∈ X(T).
- $\widehat{L}_r(\lambda) \downarrow_{G_r} \cong L_r(\lambda)$ for all $\lambda \in X_1(T)$. Translation invariance: $\widehat{L}_r(\lambda + p^r \sigma) = \widehat{L}_r(\lambda) \otimes p^r \sigma$
- $\widehat{L}_r(\lambda + p^r \sigma) \downarrow_{G_r} = L_r(\lambda)$ for all $\lambda \in X_r(T)$.

Figure 1: Example in $\Phi = B_2$

This essentially allows you to replace working mod p in characteristic p with working with integers instead, allowing the usual weight theory to be used.

Proposition 1.2.1(?).

Let $\lambda \in X(T)$, then there exists an isomorphism of G-modules

$$H^i(\lambda) = R^i \operatorname{Ind}_{G_r B}^G \widehat{Z}'_r(\lambda),$$

where
$$\widehat{Z}'_r(\lambda) = \operatorname{Ind}_B^{G_rB}(\lambda)$$
.