Name:	Nicht bestanden: □
Vorname:	
Matrikelnummer:	Endnote:

B.Sc. Landwirtschaft, B.Eng. Wirtschaftsingenieurwesen im Agri- und Hortibusiness, B.Sc. Angewandte Pflanzenbiologie - Gartenbau, Pflanzentechnologie

Klausur Angewandte Statistik und Versuchswesen

Hochschule Osnabrück

Prüfer: Prof. Dr. Jochen Kruppa Fakultät für Agrarwissenschaften und Landschaftsarchitektur j.kruppa@hs-osnabrueck.de

28. Juni 2023

Erlaubte Hilfsmittel für die Klausur

- Normaler Taschenrechner ohne Möglichkeit der Kommunikation mit anderen Geräten also ausdrücklich kein Handy!
- Eine DIN A4-Seite als beidseitig, selbstgeschriebene, handschriftliche Formelsammlung keine digitalen Ausdrucke.
- You can answer the questions in English without any consequences.

Ergebnis der Klausur

_____ von 20 Punkten sind aus dem Multiple Choice Teil erreicht.

von 65 Punkten sind aus dem Rechen- und Textteil erreicht.

_____ von 85 Punkten in Summe.

Es wird folgender Notenschlüssel angewendet.

Punkte	Note
81.5 - 85.0	1,0
77.0 - 81.0	1,3
73.0 - 76.5	1,7
68.5 - 72.5	2,0
64.5 - 68.0	2,3
60.5 - 64.0	2,7
56.0 - 60.0	3,0
52.0 - 55.5	3,3
47.5 - 51.5	3,7
42.5 - 47.0	4,0

Es ergibt sich eine Endnote von _____.

Multiple Choice Aufgaben

- Pro Multipe Choice Frage ist *genau* eine Antwort richtig.
- Übertragen Sie Ihre Kreuze in die Tabelle auf dieser Seite.
- Es werden nur Antworten berücksichtigt, die in dieser Tabelle angekreuzt sind!

	A	В	С	D	Е	✓
1 Aufgabe						
2 Aufgabe						
3 Aufgabe						
4 Aufgabe						
5 Aufgabe						
6 Aufgabe						
7 Aufgabe						
8 Aufgabe						
9 Aufgabe						
10 Aufgabe						

• Es sind ____ von 20 Punkten erreicht worden.

Rechen- und Textaufgaben

• Die Tabelle wird vom Dozenten ausgefüllt.

Aufgabe	11	12	13	14	15	16	17
Punkte	9	6	10	12	10	10	8

• Es sind ____ von 65 Punkten erreicht worden.

1 Aufgabe (2 Punkte) Das Falsifikationsprinzip besagt... A 🔲 ... dass in der Wissenschaft immer etwas falsch sein muss. Sonst gebe es keinen Fortschritt. **B** ... dass Fehlerterme in statistischen Modellen nicht verifiziert werden können. **C** □ ... dass Modelle meist falsch sind und selten richtig. **D** □ ... dass Annahmen an statistische Modelle meist falsch sind. **E** ... dass ein schlechtes Modell durch ein weniger schlechtes Modell ersetzt wird. Die Wissenschaft lehnt ab und verifiziert nicht. 2 Aufgabe (2 Punkte) Welche Aussage über den Welch t-Test ist richtig? A Der Welch t-Test ist ein Post-hoc Test der ANOVA und basiert daher auf dem Vergleich der Varianz. **B** Der Welch t-Test wird angewendet, wenn Varianzheterogenität zwischen den beiden zu vergleichenden Gruppen vorliegt. C ☐ Der Welch t-Test ist die veraltete Form des Student t-Test und wird somit nicht mehr verwendet. **D** Der Welch t-Test vergleicht die Mittelwerte von zwei Gruppen unter der strikten Annahme von Varianzhomogenität. **E** □ Der Welch t-Test vergleicht die Varianz von zwei Gruppen. 3 Aufgabe (2 Punkte) Sie haben folgende unadjustierten p-Werte gegeben: 0.21, 0.03, 0.42, 0.01, 0.02 und 0.001. Sie adjustieren die p-Werte nach Bonferroni. Welche Aussage ist richtig? A ☐ Nach der Bonferroni-Adjustierung ergeben sich die adjustierten p-Werte von 0.035, 0.005, 0.07, 0.0017, 0.0033 und 2e-04. Die adjustierten p-Werte werden zu einem α -Niveau von 0.83% verglichen. **B** □ Nach der Bonferroni-Adjustierung ergeben sich die adjustierten p-Werte von 0.035, 0.005, 0.07, 0.0017, 0.0033 und 2e-04. Die adjustierten p-Werte werden zu einem α -Niveau von 5% verglichen. C □ Nach der Bonferroni-Adjustierung ergeben sich die adjustierten p-Werte von 1, 0.18, 1, 0.06, 0.12 und 0.006. Die adjustierten p-Werte werden zu einem α -Niveau von 5% verglichen. **D** □ Nach der Bonferroni-Adjustierung ergeben sich die adjustierten p-Werte von 1.26, 0.18, 2.52, 0.06, 0.12 und 0.006. Die adjustierten p-Werte werden zu einem α -Niveau von 5% vergli-

E \square Nach der Bonferroni-Adjustierung ergeben sich die adjustierten p-Werte von 1, 0.18, 1, 0.06, 0.12 und 0.006. Die adjustierten p-Werte werden zu einem α -Niveau von 0.83% verglichen.

chen.

4 Aufgabe (2 Punkte) Welche Aussage über den Korrelationskoeffizienten nach Kendall ist richtig? A 🔲 Der Korrelationskoeffizienten nach Kendall wird genutzt, wenn das Outcome Y normalverteilt ist. Der Korrelationskoeffizienten liegt zwischen 0 und 1. **B** Der Korrelationskoeffizienten nach Kendall wird genutzt, wenn der Korrelationskoeffizienten zwischen -1 und 1 liegt. Dann sind die Residuen normalverteilt. C Der Korrelationskoeffizienten nach Kendall wird genutzt, wenn das Outcome Y nicht normalverteilt ist. Der Korrelationskoeffizienten liegt zwischen 0 und 1. **D** Der Korrelationskoeffizienten nach Kendall wird genutzt, wenn das Outcome Y nicht normalverteilt ist. Der Korrelationskoeffizienten liegt zwischen -1 und 1. **E** ☐ Der Korrelationskoeffizienten nach Kendall wird genutzt, wenn das Outcome Y normalverteilt ist. Der Korrelationskoeffizienten liegt zwischen -1 und 1. 5 Aufgabe (2 Punkte) Die Randomisierung von Beobachtungen bzw. Samples zu den Versuchseinheiten ist bedeutend in der Versuchsplanung. Welche der folgenden Aussagen ist richtig? A ☐ Randomisierung war bis 1952 bedeutend, wurde dann aber in Folge besserer Rechnerleistung nicht mehr verwendet. Aktuelle Statistik nutzt keine Randomisierung mehr. **B** \square Randomisierung bringt starke Unstrukturiertheit in das Experiment und erlaubt erst von der Stichprobe auf die Grundgesamtheit zurückzuschliessen. C ☐ Randomisierung sorgt für Strukturgleichheit und erlaubt erst von der Stichprobe auf die Grundgesamtheit zurückzuschliessen. **D** Randomisierung erlaubt erst die Varianzen zu schätzen. Ohne eine Randomisierung ist die Berechnung von Mittelwerten und Varianzen nicht möglich. **E** \(\text{Randomisierung erlaubt erst die Mittelwerte zu schätzen. Ohne Randomisierung keine Mittelwerte. 6 Aufgabe (2 Punkte)

Welche Aussage über den p-Wert und dem Signifikanzniveau α gleich 5% ist richtig?

- **A** \square Wir vergleichen mit dem p-Wert und dem Signifikanzniveau α Wahrscheinlichkeiten und damit die absoluten Werte auf einem Zahlenstrahl, wenn die H_0 gilt.
- **B** \square Wir vergleichen mit dem p-Wert und dem Signifikanzniveau α absolute Werte auf einem Zahlenstrahl und damit den Unterschied der Teststatistiken, wenn die H_0 gilt.
- **C** \square Wir vergleichen mit dem p-Wert und dem Signifikanzniveau α Wahrscheinlichkeiten und damit die Flächen unter der Kurve der Teststatistik, wenn die H_0 gilt.
- **D** Wir machen eine Aussage über die indivduelle Wahrscheinlichkeit des Eintretens der Nullhypothese H_0 .
- **E** ☐ Wir vergleichen die Effekte des p-Wertes mit den Effekten der Signifiaknzschwelle unter der Annahme der Nullhypothese.

7 Aufgabe (2 Punkte)

nun	er Bio Data Science wird häufig mit sehr großen Datensätzen gerechnet. Historisch ergibt sich ein Problem bei der Auswertung der Daten und deren Bewertung hinsichtlich der Signifikanz. he Aussage ist richtig?
A 🗆	Big Data ist ein Problem der parametrischen Statistik. Parameter lassen sich nur auf kleinen Datensätzen berechnen, da es sich sonst nicht mehr um eine Stichprobe im engen Sinne der Statistik handelt.
В□	Aktuell werden immer grössere Datensätze erhoben. Eine erhöhte Fallzahl führt automatisch auch zu mehr signifikanten Ergebnissen, selbst wenn die eigentlichen Effekte nicht relevant sind.
c 🗆	Aktuell werden immer grössere Datensätze erhoben. Dadurch wird auch die Varianz immer höher was automatisch zu mehr signifikanten Ergebnissen führt.
D 🗆	Aktuell werden zu grosse Datensätze für die gänigige Statistik gemessen. Daher wendet man maschinelle Lernverfahren für kausale Modelle an. Hier ist die Relevanz gleich Signifikanz.
E	Relevanz und Signifikanz haben nichts miteinander zu tun. Daher gibt es auch keinen Zusammenhang zwischen hoher Fahlzahl (n > 10000) und einem signifikanten Test. Ein Effekt ist immer relevant und somit signifikant.
8 4	Aufgabe (2 Punkte)
	einfaktorielle ANOVA berechnet eine Teststatistik um zu die Nullhypothese abzulehnen. Wel- Aussage über die Teststatistik der ANOVA ist richtig?
A 🗆	Die ANOVA berechnet die F-Statistik indem die MS des Fehlers durch die MS der Behandlung geteilt werden. Wenn die F-Statistik sich der 1 annähert kann die Nullhypothese nicht abgelehnt werden.
В□	Die ANOVA berechnet die T-Statistik aus der Multiplikation der MS Behandlung mit der MS der Fehler. Wenn die F-Statistik genau 0 ist, kann die Nullhypothese abgelehnt werden.
c □	Die ANOVA berechnt die F-Statistik aus den SS Behandlung geteilt durch die SS Fehler.
D 🗆	Die ANOVA berechnet die T-Statistik indem den Mittelwertsunterschied der Gruppen simultan durch die Standardabweichung der Gruppen teilt. Wenn die T-Statistik höher als 1.96 ist, kann die Nullhypothese abgelehnt werden.

9 Aufgabe (2 Punkte)

E □ Die ANOVA berechnet die F-Statistik indem die MS der Behandlung durch die MS des Fehlers geteilt werden. Wenn die F-Statistik sich der 0 annähert kann die Nullhypothese nicht

Die folgende Abbildung enthält die Daten aus einer Studie zur Bewertung der Wirkung von Vitamin C auf das Zahnwachstum bei Meerschweinchen. Der Versuch wurde an 60 Schweinen durchgeführt, wobei jedes Tier eine von drei Vitamin-C-Dosen (0.5, 1 und 1.5 mg/Tag) über eine von zwei Verabreichungsmethoden mit Orangensaft (OJ) oder Ascorbinsäure (VC) erhielt.

abgelehnt werden.

Welche Aussage ist richtig im Bezug auf eine zweifaktorielle ANOVA?

- **A** □ Eine starke Interaktion liegt vor. Die Geraden laufen parallel und schneiden sich nicht.
- **B** \square Keine Interaktion liegt vor. Die Geraden scheiden sich und laufen nicht parallel.
- **C** ☐ Eine leichte Interaktion ist zu erwarten. Die Geraen schneiden sich noch nicht, aber die Abstände unterscheiden sich stark.
- **D** ☐ Keine Interaktion ist zu erwatzen. Die Geraden der Verabreichungsmethode laufen parallel und mit ähnlichen Abständen.
- **E** □ Eine starke Interaktion ist zu erwarten. Die Geraden schneiden sich und die Abstände sind nicht gleichbleibend.

10 Aufgabe (2 Punkte)

Nach einer simplen linearen Regression zur Untersuchung vom Einfluss der CO_2 -Konzentration $[\mu g]$ im Wasser auf das Wachstum von Wasserlinsen [kg] erhalten Sie einen β_1 Koeffizienten von 0.00001 und einen hoch signifikanten p-Wert mit $2.3 \cdot 10^{-9}$. Warum sehen Sie so einen kleinen Effekt bei einer so deutlichen Signifikanz?

- **A** □ Die Fallzahl ist zu klein angesetzt. Je kleiner die Fallzahl ist, desto höher ist die Teststatsitik und damit auch der *p*-Wert kleiner.
- **B** \square Das Gewicht und die CO_2 -Konzentration korrelieren sehr stark, deshalb wird der β_1 Koeffizient sehr klein.
- **C** \square Die Einheit der CO_2 -Konzentration ist zu klein gewählt. Dadurch sehen wir den sehr kleinen p-Wert. Der p-Wert und die Einheit von der CO_2 -Konzentration hängen zusammen.
- **D** ☐ Die Fallzahl ist zu hoch angesetzt. Je höher die Fallzahl ist, desto kleiner ist die Teststatistik und damit ist dann auch der p-Wert sehr klein.
- **E** \square Die Einheit der CO_2 -Konzentration ist zu klein gewählt. Die Erhöhung der CO_2 -Konzentration um 1 führt nur zu einem sehr winzigen Anstieg im Gewicht der Wasserlinsen. Die Einheit muss besser gewählt werden.

11 Aufgabe (6 Punkte)

Nach einer Bonitur von Schnittlauch mit einer Kontrolle und drei Pestiziden (ctrl, pestKill, roundUp, zeroX) ergibt sich die folgende Datentabelle mit den Boniturnoten (*grade*).

pesticide	grade
zeroX	2
roundUp	8
ctrl	5
zeroX	2
pestKill	2
zeroX	4
zeroX	2
ctrl	6
pestKill	4
ctrl	6
pestKill	6
ctrl	7
pestKill	3
roundUp	9
roundUp	8

- 1. Zeichnen Sie in *einer* Abbildung die Dotplots für die vier Pestizidlevel! Beschriften Sie die Achsen entsprechend! **(4 Punkte)**
- 2. Ergänzen Sie die Dotplots mit der gängigen statistischen Maßzahl! (1 Punkt)
- 3. Wenn Sie *keinen Effekt* zwischen den Pestizidlevel erwarten würden, wie sehen dann die Dotplots aus? (1 Punkt)

12 Aufgabe (12 Punkte)

Der Datensatz tooth_tbl enthält Daten aus einer Studie zur Bewertung der Wirkung von Vitamin C auf das Zahnwachstum bei Meerschweinchen. Der Versuch wurde an verschiedenen Schweinen durchgeführt, wobei jedes Tier eine von 3 Vitamin-C-Dosen dose über eine von 2 Verabreichungsmethoden supp erhielt. Die Zahnlänge wurde als normalverteiltes Outcome gemessen.

- 1. Füllen Sie die unterstehende zweifaktorielle ANOVA Ergebnistabelle aus mit den gegebenen Informationen von Df und Sum Sq! (4 Punkte)
- 2. Schätzen Sie den p-Wert der Tabelle mit der Information von den $F_{\alpha=5\%}$ -Werten mit $F_{supp}=4.26$ und $F_{dose}=3.40$ sowie $F_{supp:dose}=5.23$ ab. Begründen Sie Ihre Antwort! **(4 Punkte)**

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
supp	1	0.05			
dose	2	74.5			
supp:dose	2	402.68			
Residuals	24	155.85			

- 3. Was bedeutet ein signifikantes Ergebnis in einer zweifaktoriellen ANOVA im Bezug auf die möglichen Unterschiede zwischen den Gruppen? Beziehen Sie sich dabei einmal auf den Faktor *supp* und einmal auf den Faktor *dose*! (2 Punkte)
- 4. Was sagt der Term *supp:dose* aus? Interpretieren Sie das Ergebnis des abgeschätzten p-Wertes! **(2 Punkte)**

13 Aufgabe (8 Punkte)

In einem Experiment für den Ertrag von Weizen in kg/ha mit fünf Dosisstufen (A, B, C, D und E) erhalten Sie folgendes *Compact letter display (CLD)* als \P Ausgabe aus den rohen, unadjustierten p-Werten.

- 1. Erstellen Sie eine Matrix mit den paarweisen *p*-Werten, die sich näherungsweise aus dem *Compact letter display (CLD)* ergeben würde! Begründen Sie Ihre Antwort! **(3 Punkte)**
- 2. Zeichnen Sie eine Abbildung, der sich ergebenden Barplots! (2 Punkte)
- 3. Ergänzen Sie das Compact letter display (CLD) zu der Abbildung! (1 Punkt)
- 4. Erklären Sie einen Vorteil und einen Nachteil des Compact letter display (CLD)! (2 Punkte)

14 Aufgabe (10 Punkte)

Sie rechnen einen t-Test für Gruppenvergleiche. Sie schätzen den Unterschied zwischen dem mittleren Trockengewicht nach Düngergabe zu einer unbehandelten Kontrolle.

- 1. Beschriften Sie die untenstehende Abbildung mit der Signifikanzschwelle! Begründen Sie Ihre Antwort! (2 Punkte)
- 2. Ergänzen Sie eine *in den Kontext passende* Relevanzschwelle! Begründen Sie Ihre Antwort! **(2 Punkte)**
- 3. Skizieren Sie in die untenstehende Abbildung sechs einzelne Konfidenzintervalle (a-f) mit den jeweiligen Eigenschaften! (6 Punkte)
 - (a) Ein signifikantes, relevantes 90%-Konfidenzintervall.
 - (b) Ein signifikantes, relevantes 95%-Konfidenzintervall
 - (c) Ein 95%-Konfidenzintervall mit höherer Varianz s_p in der Stichprobe als der Rest der 95%-Konfidenzintervalle
 - (d) Ein nicht signifikantes, nicht relevantes 95%-Konfidenzintervall
 - (e) Ein 95%-Konfidenzintervall mit niedriger Varianz s_p in der Stichprobe als der Rest 95%-der Konfidenzintervalle
 - (f) Ein signifikantes, nicht relevantes 95%-Konfidenzintervall

15 Aufgabe (10 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

In einem Stallexperiment mit n=60 Ferkeln wurde der Gewichtszuwachs in kg unter ansteigender Lichteinstrahlung in nm gemessen. Sie erhalten den \bigcirc Output der Funktion tidy() einer simplen Gaussian linearen Regression sieben Wochen nach der ersten Messung.

term	estimate	std.error	t statistic	p-value
(Intercept)	21.33	1.74		
light	1.84	0.17		

- 1. Berechnen Sie die t Statistik für (Intercept) und light! (2 Punkte)
- 2. Schätzen Sie den p-Wert für (*Intercept*) und *light* mit $T_{\alpha=5\%}=1.96$ ab. Was sagt Ihnen der p-Wert aus? Begründen Sie Ihre Antwort! (**3 Punkte**)
- 3. Zeichnen Sie die Gerade aus der obigen Tabelle in ein Koordinatenkreuz! (1 Punkt)
- 4. Beschriften Sie die Abbildung und die Gerade mit den statistischen Kenngrößen! (2 Punkte)
- 5. Formulieren Sie die Regressionsgleichung! (2 Punkte)

16 Aufgabe (9 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

- 1. Skizieren Sie 4 Normalverteilungen in einer Abbildung mit $\bar{y}_1 \neq \bar{y}_2 \neq \bar{y}_3 \neq \bar{y}_4$ und $s_1 \neq s_2 \neq s_3 \neq s_4$! (3 Punkte)
- 2. Beschriften Sie die Normalverteilungen mit den entsprechenden Parametern! (2 Punkte)
- 3. Ergänzen Sie die Bereiche in der 68% und 95% der Beobachtungen fallen! Beschriften Sie die Grenzen der Bereiche mit der statistischen Maßzahl! (2 Punkte)
- 4. Liegt Varianzhomogenität oder Varianzheterogenität vor? Begründen Sie Ihre Antwort! (2 Punkte)

17 Aufgabe (10 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Nach einem Experiment ergibt sich die folgende 2x2 Datentabelle mit einem Pestizid (ja/nein), dargestellt in den Zeilen. Im Weiteren mit dem infizierten Pflanzenstatus (ja/nein) in den Spalten. Insgesamt wurden n=118 Pflanzen untersucht.

	Erkrankt (ja)	Erkrankt (nein)	
Pestizid (ja)	38	19	
Pestizid (nein)	23	38	

- 1. Ergänzen Sie die Tabelle um die Randsummen! (1 Punkt)
- 2. Formulieren Sie die Fragestellung! (1 Punkt)
- 3. Formulieren Sie das Hypothesenpaar! (2 Punkte)
- 4. Berechnen Sie die Teststatistik eines Chi-Quadrat-Test auf der 2x2 Tafel. Geben Sie Formeln und Rechenweg mit an! (4 Punkte)
- 5. Treffen Sie eine Entscheidung im Bezug zu der Nullhypothese gegeben einem $\mathcal{X}^2_{\alpha=5\%}=3.841!$ (1 Punkt)
- 6. Skizzieren Sie eine 2x2 Tabelle mit n=34 Pflanzen in dem *vermutlich* die Nullhypothese nicht abgelehnt werden kann! (1 Punkt)