

Left Hand Rule - Principle of Electric Motors

Left Hand Rule

A force is created in the vertical direction shown, in a conductor carrying a current I in a magnetic field as shown in the figure on the RHS

$$F = (IL) \times B$$

This principle is best explained by Left Hand Rule

- Thumb finger of the left hand points the direction of the force generated,
- Index finger points the direction of magnetic field,
- Middle finger points the direction of current applied,

Left Hand Rule - Principle of Electric Motors

Left Hand Rule

A force is created in the vertical direction shown, in a conductor carrying a current 1 in a magnetic field as shown in the figure on the RHS

Right Hand Rule - Principle of Electric Generators

Right Hand Rule

A current is induced (generated) in the direction shown, on a conductor moving vertically in a magnetic field as shown in the following figure

$$F = -(IL) \times B$$

This principle is best explained by Right Hand Rule

- Thumb finger points the right hand points the direction of the force applied,
- Index finger points the direction of magnetic field,
- Middle finger points the direction of current generated,

Right Hand Rule - Principle of Electric Generators

Right Hand Rule

A current is induced (generated) in the direction shown, on a conductor moving vertically in a magnetic field as shown in the following figure

Please do not Confuse

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 6

Generation of AC Voltage

Generation of AC Voltage

Generation of AC Voltage - Synchronous Generator

Generation of AC Voltage - Synchronous Generator

Atatürk Hydroelectric Dam (2400 MW)

Francis Turbine Generator Set

Generation of AC Voltage - Synchronous Generator

Francis Turbine - Generator

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 12

Itaipu Generating Unit - Stator

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 13

Generation of DC Voltage

Generation of DC Voltage

Generation of DC Voltage

Squirrel Cage AC (Induction) Motors

Squirrel Cage AC (Induction) Motors

Fixed Poles, Rotating Coils Line Voltages Applied Rotor Coils (Fixed Bars) Fixed Stator Poles V_{AB} V_{BC} V_{CA} Electric Motors and Generators Physics UNSW

DC Motors

Arrangement of Windings

Stator Shell

Conductors in Stator Coil

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 20

Generation of AC Voltage Synchronous Generator

Stator Coils

Configuration **Conductors**

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 21

Generation of AC Voltage

Basic Principles of Synchronous Generator

Generation of AC Voltage

Basic Relation

$\phi_{coil} = \phi_{max} \times \cos \theta$ $\theta = wt$ $\phi_{coil}(t) = \phi_{max} \times \cos wt$

Lenz Law

 $V(t) = -N \frac{d}{dt} \phi_{coil}(t)$ $= -N \frac{d}{dt} \phi_{max} \times cos wt$ $= N w \phi_{max} \sin wt$ $= V_{max} \sin wt$

Sinusoidal voltage is generated

Synchronous Generator

-25

Basic Principles of Electromechanics

Generation of AC Voltage

Basic Principles of Synchronous Generator

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 24

-25

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 25