For stepping forward in time, we must use differential equation solvers, Euler is the simplest one which we may choose to start with.

Euler:
$$v_{new} = (v_{old}) + (a*dt, pos_{new}) = (pos_{old}) + (v_{old}*dt) + (.5*a*dt)$$

It should be noted, however, that acceleration (a) is not constant, so a small *dt* must be chosen to keep accuracy.

Some equations for the simulator:

$$F_{gravity} = m_{satellite} \frac{Gm_{planet}}{r_{planet}^2}$$
 $a_{gravity} = g = \frac{Gm_{planet}}{r_{planet}^2}$
 $a_j = \sum_i \frac{Gm_i}{r^2}$, i != j

Vec3d a

assuming that a is constant over dt

Vec3d
$$x = x + v*dt + 1/2a*dt^2$$

Vec3d $v = v + a * dt$

Vec3d x = x +
$$v^*\Delta t$$
 + $1/2a^*(\Delta t)^2$
Vec3d v = v + $a^*\Delta t$