Chapter 3

Arithmetic for Computers

32-bit ALU

Ripple Carry ALU

Subtraction?

Expand our 1-bit ALU to include an inverter

 2's complement: take inverse of every bit and add 1 a ▶ Result

CarryOut

Overflow

- For N-bit ALU
 - Overflow = CarryIn[N-1] XOR CarryOut[N-1]
 Operation

Most significant (N-1) bit ALU

Zero Detection

- Conditional Branches
- One big NOR gate
- Zero = (Result_{N-1}+Result_{N-2}+.... Result₁+Result₀)
- Any non-zero result will cause zero detection output to be zero

NOR

Set-On-Less-Than (SLT)

- SLT produces a 1 if rs < rt, and 0 otherwise
 - all but least significant bit will be 0
 - how do we set the least significant bit?
 - can we use subtraction?
 - rs rt < 0
 - set the least significant bit to the sign-bit of (rs rt)
- New input: LESS
- New output: SET

SLT Implementation

All but MSB

Most Significant Bit

SLT Implementation

Set of MSB is connected to Less of LSB!

Final ALU

- You should feel comfortable identifying what signals accomplish:
 - add
 - sub
 - and
 - or
 - nor
 - slt

