SECTION 2: BLOCK DIAGRAMS & SIGNAL FLOW GRAPHS

MAE 4421 – Control of Aerospace & Mechanical Systems

Block Diagram Manipulation K. Webb MAE 4421

Block Diagrams

3

In the introductory section we saw examples of block diagrams to represent systems, e.g.:

- Block diagrams consist of
 - **Blocks** these represent subsystems typically modeled by, and labeled with, a transfer function
 - *Signals* inputs and outputs of blocks signal direction indicated by arrows could be voltage, velocity, force, etc.
 - **Summing junctions** points were signals are algebraically summed subtraction indicated by a negative sign near where the signal joins the summing junction

Standard Block Diagram Forms

4

The basic input/output relationship for a single block is:

$$Y(s) = U(s) \cdot G(s)$$

- □ Block diagram blocks can be connected in three basic forms:
 - Cascade
 - Parallel
 - □ Feedback
- We'll next look at each of these forms and derive a singleblock equivalent for each

Cascade Form

Ŀ

□ Blocks connected in *cascade*:

 The equivalent transfer function of cascaded blocks is the product of the individual transfer functions

Parallel Form

6

Blocks connected in parallel:

$$X_1(s) = U(s) \cdot G_1(s)$$

$$X_2(s) = U(s) \cdot G_2(s)$$

$$X_3(s) = U(s) \cdot G_3(s)$$

$$Y(s) = X_1(s) \pm X_2(s) \pm X_3(s)$$

$$Y(s) = U(s) \cdot G_1(s) \pm U(s) \cdot G_2(s) \pm U(s) \cdot G_3(s)$$

$$Y(s) = U(s)[G_1(s) \pm G_2(s) \pm G_3(s)] = U(s) \cdot G_{eq}(s)$$

$$G_{eq}(s) = G_1(s) \pm G_2(s) \pm G_3(s)$$

The equivalent transfer function is the sum of the individual transfer functions:

Feedback Form

ı

Of obvious interest to us, is the feedback form:

$$Y(s)[1 + G(s)H(s)] = R(s)G(s)$$

$$Y(s) = R(s) \cdot \frac{G(s)}{1 + G(s)H(s)}$$

 \square The *closed-loop transfer function*, T(s), is

$$T(s) = \frac{Y(s)}{R(s)} = \frac{G(s)}{1 + G(s)H(s)}$$

Feedback Form

8

$$T(s) = \frac{G(s)}{1 + G(s)H(s)}$$

Note that this is negative feedback, for positive feedback:

$$T(s) = \frac{G(s)}{1 - G(s)H(s)}$$

- The G(s)H(s) factor in the denominator is the **loop gain** or **open-loop transfer function**
- The gain from input to output with the feedback path broken is the **forward path gain** here, G(s)
- □ In general:

$$T(s) = \frac{\text{forward path gain}}{1 - \text{loop gain}}$$

K. Webb

MAE 4421

Closed-Loop Transfer Function - Example

9

Calculate the closed-loop transfer function

- \Box D(s) and G(s) are in cascade
- \sqcap $H_1(s)$ is in cascade with the feedback system consisting of D(s), G(s), and $H_2(s)$

$$T(s) = H_1(s) \cdot \frac{D(s)G(s)}{1 + D(s)G(s)H_2(s)}$$

$$T(s) = \frac{H_1(s)D(s)G(s)}{1 + D(s)G(s)H_2(s)}$$

K. Webb

MAE 4421

Unity-Feedback Systems

10

□ We're often interested in *unity-feedback systems*

- Feedback path gain is unity
 - Can always reconfigure a system to unity-feedback form
- Closed-loop transfer function is:

$$T(s) = \frac{D(s)G(s)}{1 + D(s)G(s)}$$

K. Webb

MAF 4421

Block Diagram Algebra

1:

- Often want to simplify block diagrams into simpler, recognizable forms
 - To determine the equivalent transfer function
- Simplify to instances of the three standard forms,
 then simplify those forms
- Move blocks around relative to summing junctions
 and pickoff points simplify to a standard form
 - Move blocks forward/backward past summing junctions
 - Move blocks forward/backward past pickoff points

□ The following two block diagrams are equivalent:

$$Y(s) = [U_1(s) + U_2(s)]G(s) = U_1(s)G(s) + U_2(s)G(s)$$

□ The following two block diagrams are equivalent:

$$Y(s) = U_1(s)G(s) + U_2(s) = \left[U_1(s) + U_2(s)\frac{1}{G(s)}\right]G(s)$$

Moving Blocks Relative to Pickoff Points

14

□ We can move blocks backward past pickoff points:

And, we can move them forward past pickoff points:

15

Rearrange the following into a unity-feedback system

- Move the feedback block, H(s), forward, past the summing junction
- Add an inverse block on R(s) to compensate for the move

Closed-loop transfer function:

$$T(s) = \frac{\frac{1}{H(s)}H(s)G(s)}{1 + G(s)H(s)} = \frac{G(s)}{1 + G(s)H(s)}$$

 Find the closed-loop transfer function of the following system through block-diagram simplification

17

 \Box $G_1(s)$ and $H_1(s)$ are in feedback form

$$G_{eq}(s) = \frac{G_1(s)}{1 - G_1(s)H_1(s)}$$

K. Webb

MAE 4421

 \square Move $G_2(s)$ backward past the pickoff point

□ Block from previous step, $G_2(s)$, and $H_2(s)$ become a feedback system that can be simplified

19

- Simplify the feedback subsystem
- □ Note that we've dropped the function of s notation, (s), for clarity

$$G_{eq}(s) = \frac{\frac{G_1 G_2}{1 - G_1 H_1}}{1 + \frac{G_1 G_2 H_2}{1 - G_1 H_1}} = \frac{G_1 G_2}{1 - G_1 H_1 + G_1 G_2 H_2}$$

20

Simplify the two parallel subsystems

$$G_{eq}(s) = G_3 + \frac{G_4}{G_2}$$

K. Webb

MAE 4421

21

- Now left with two cascaded subsystems
 - Transfer functions multiply

$$G_{eq}(s) = \frac{G_1 G_2 G_3 + G_1 G_4}{1 - G_1 H_1 + G_1 G_2 H_2}$$

22

The equivalent, close-loop transfer function is

$$T(s) = \frac{G_1 G_2 G_3 + G_1 G_4}{1 - G_1 H_1 + G_1 G_2 H_2}$$

K. Webb

MAE 4421

Multiple-Input Systems 23

Multiple Input Systems

24

- Systems often have more than one input
 - \blacksquare E.g., reference, R(s), and disturbance, W(s)

- □ Two transfer functions:
 - From reference to output

$$T(s) = Y(s)/R(s)$$

■ From disturbance to output

$$T_w(s) = Y(s)/W(s)$$

Transfer Function – Reference

25

- \square Find transfer function from R(s) to Y(s)
 - A linear system superposition applies
 - $lue{}$ Set W(s) = 0

$$T(s) = \frac{Y(s)}{R(s)} = \frac{D(s)G(s)}{1 + D(s)G(s)}$$

Transfer Function – Reference

26

- \square Next, find transfer function from W(s) to Y(s)
 - ightharpoonup Set R(s) = 0
 - System now becomes:

$$T_w(s) = \frac{Y(s)}{W(s)} = \frac{G_w(s)G(s)}{1 + D(s)G(s)}$$

Multiple Input Systems

2

Two inputs, two transfer functions

$$T(s) = \frac{D(s)G(s)}{1 + D(s)G(s)}$$
 and $T_w(s) = \frac{G_w(s)G(s)}{1 + D(s)G(s)}$

- \square D(s) is the controller transfer function
 - Ultimately, we'll determine this
 - We have control over both T(s) and $T_w(s)$
- □ What do we want these to be?
 - Design T(s) for desired performance
 - Design $T_w(s)$ for disturbance rejection

Signal Flow Graphs K. Webb MAE 4421

Signal Flow Graphs

29

An alternative to block diagrams for graphically describing systems

- Signal flow graphs consist of:
 - *Nodes* –represent signals
 - *Branches* –represent system blocks
- Branches labeled with system transfer functions
- Nodes (sometimes) labeled with signal names
- Arrows indicate signal flow direction
- Implicit summation at nodes
 - Always a positive sum
 - Negative signs associated with branch transfer functions

Block Diagram → Signal Flow Graph

30

- To convert from a block diagram to a signal flow graph:
 - 1. Identify and label all signals on the block diagram
 - Place a node for each signal
 - 3. Connect nodes with branches in place of the blocks
 - Maintain correct direction
 - Label branches with corresponding transfer functions
 - Negate transfer functions as necessary to provide negative feedback
 - 4. If desired, simplify where possible

3:

Convert to a signal flow graph

- Label any unlabeled signals
- Place a node for each signal

32

□ Connect nodes with branches, each representing a system block

□ Note the -1 to provide negative feedback of $X_1(s)$

33

- Nodes with a single input and single output can be eliminated, if desired
 - This makes sense for $X_1(s)$ and $X_2(s)$
 - Leave U(s) to indicate separation between controller and plant

Revisit the block diagram from earlier

Convert to a signal flow graph

34

Label all signals, then place a node for each

3

Connect nodes with branches

36

□ Simplify – eliminate $X_5(s)$, $X_6(s)$, and $X_7(s)$

Signal Flow Graphs vs. Block Diagrams

3

- Signal flow graphs and block diagrams are alternative, though equivalent, tools for graphical representation of interconnected systems
- A generalization (not a rule)
 - Signal flow graphs more often used when dealing with state-space system models
 - Block diagrams more often used when dealing with transfer function system models

K. Webb MAE 4421

Mason's Rule

39

- We've seen how to reduce a complicated block diagram to a single input-to-output transfer function
 - Many successive simplifications
- Mason's rule provides a formula to calculate the same overall transfer function
 - Single application of the formula
 - Can get complicated
- Before presenting the Mason's rule formula, we need to define some terminology

Loop Gain

40

- Loop gain total gain (product of individual gains) around any path in the signal flow graph
 - Beginning and ending at the same node
 - Not passing through any node more than once
- □ Here, there are three loops with the following gains:
 - 1. $-G_1H_3$
 - G_2H_1
 - 3. $-G_2G_3H_2$

Forward Path Gain

4

- □ *Forward path gain* gain along any path from the input to the output
 - Not passing through any node more than once
- Here, there are two forward paths with the following gains:
 - 1. $G_1G_2G_3G_4$
 - $2. \qquad G_1G_2G_5$

K. Webb

MAE 4421

Non-Touching Loops

42

- Non-touching loops loops that do not have any nodes in common
- □ Here,
 - 1. $-G_1H_3$ does not touch G_2H_1
 - 2. $-G_1H_3$ does not touch $-G_2G_3H_2$

K. Webb

MAE 4421

Non-Touching Loop Gains

43

- Non-touching loop gains the product of loop gains from non-touching loops, taken two, three, four, or more at a time
- ☐ Here, there are only two *pairs* of non-touching loops
 - 1. $[-G_1H_3] \cdot [G_2H_1]$
 - 2. $[-G_1H_3] \cdot [-G_2G_3H_2]$

Mason's Rule

44

$$T(s) = \frac{Y(s)}{R(s)} = \frac{1}{\Delta} \sum_{k=1}^{P} T_k \Delta_k$$

where

P =# of forward paths

 $T_k = \text{gain of the } k^{th} \text{ forward path}$

 $\Delta = 1 - \Sigma(\text{loop gains})$

 $+\Sigma$ (non-touching loop gains taken two-at-a-time)

 $-\Sigma$ (non-touching loop gains taken three-at-a-time)

 $+\Sigma$ (non-touching loop gains taken four-at-a-time)

 $-\Sigma$...

 $\Delta_k = \Delta - \Sigma$ (loop gain terms in Δ that touch the k^{th} forward path)

Mason's Rule - Example

4

□ # of forward paths:

$$P = 2$$

□ Forward path gains:

$$T_1 = G_1 G_2 G_3 G_4$$

 $T_2 = G_1 G_2 G_5$

 \square Σ (loop gains):

$$-G_1H_3 + G_2H_1 - G_2G_3H_2$$

 \square Σ (NTLGs taken two-at-a-time):

$$(-G_1H_3G_2H_1) + (G_1H_3G_2G_3H_2)$$

Δ:

$$\Delta = 1 - (-G_1H_3 + G_2H_1 - G_2G_3H_2) + (-G_1H_3G_2H_1 + G_1H_3G_2G_3H_2)$$

Mason's Rule – Example - Δ_k

46

□ Simplest way to find Δ_k terms is to calculate Δ with the k^{th} path removed – must remove *nodes* as well

□ With forward path 1 removed, there are no loops, so

$$\Delta_1 = 1 - 0$$

$$\Delta_1 = 1$$

Mason's Rule – Example - Δ_k

47

= k = 2:

□ Similarly, removing forward path 2 leaves no loops, so

$$\Delta_2 = 1 - 0 \\
 \Delta_2 = 1$$

Mason's Rule - Example

□ For our example:

$$P = 2$$
 $T_1 = G_1G_2G_3G_4$ $T_2 = G_1G_2G_5$ $\Delta = 1 + G_1H_3 - G_2H_1 + G_2G_3H_2 -$

$$T(s) = \frac{Y(s)}{R(s)} = \frac{1}{\Delta} \sum_{k=1}^{P} T_k \Delta_k$$

 $\Delta = 1 + G_1 H_3 - G_2 H_1 + G_2 G_3 H_2 - G_1 H_3 G_2 H_1 + G_1 H_3 G_2 G_3 H_2$

 $\Delta_1 = 1$

 $\Delta_2 = 1$

☐ The closed-loop transfer function:

$$T(s) = \frac{T_1 \Delta_1 + T_2 \Delta_2}{\Delta}$$

$$T(s) = \frac{G_1G_2G_3G_4 + G_1G_2G_5}{1 + G_1H_3 - G_2H_1 + G_2G_3H_2 - G_1H_3G_2H_1 + G_1H_3G_2G_3H_2}$$

Preview of Controller Design 49

K. Webb MAE 4421

Controller Design – Preview

50

- We now have the tools necessary to determine the transfer function of closed-loop feedback systems
- Let's take a closer look at how feedback can help us achieve a desired response
 - Just a preview this is the objective of the whole course
- Consider a simple first-order system

 \square A single real pole at $s = -2 \frac{rad}{sec}$

Open-Loop Step Response

5

- This systemexhibits theexpected first-order stepresponse
 - No overshoot or ringing

K. Webb

MAE 4421

Add Feedback

52

Now let's enclose the system in a feedback loop

- \square Add controller block with transfer function D(s)
- Closed-loop transfer function becomes:

$$T(s) = \frac{D(s)\frac{1}{s+2}}{1+D(s)\frac{1}{s+2}} = \frac{D(s)}{s+2+D(s)}$$

- Clearly the addition of feedback and the controller changes the transfer function – but how?
 - \blacksquare Let's consider a couple of example cases for D(s)

K. Webb

MAF 4421

Add Feedback

53

First, consider a simple gain block for the controller

- \Box Error signal, E(s), amplified by a constant gain, K_C
 - $lue{}$ A proportional controller, with gain K_C
- Now, the closed-loop transfer function is:

$$T(s) = \frac{\frac{K_C}{s+2}}{1 + \frac{K_C}{s+2}} = \frac{K_C}{s+2 + K_C}$$

- \square A single real pole at $s = -(2 + K_C)$
 - Pole moved to a higher frequency
 - A faster response

Open-Loop Step Response

54

- As feedback gain increases:
 - Pole moves to a higher frequency
 - Response gets faster

K. Webb

MAE 4421

First-Order Controller

55

Next, allow the controller to have some dynamics of its own

- Now the controller is a first-order block with gain K_C and a pole at s=-b
- This yields the following closed-loop transfer function:

$$T(s) = \frac{\frac{K_C}{(s+b)} \frac{1}{(s+2)}}{1 + \frac{K_C}{(s+b)} \frac{1}{(s+2)}} = \frac{K_C}{s^2 + (2+b)s + 2b + K_C}$$

- The closed-loop system is now second-order
 - One pole from the plant
 - One pole from the controller

First-Order Controller

56

$$T(s) = \frac{K_C}{s^2 + (2+b)s + 2b + K_C}$$

Two closed-loop poles:

$$s_{1,2} = -\frac{(b+2)}{2} \pm \frac{\sqrt{b^2 - 4b + 4 - 4K_C}}{2}$$

- $\ \square$ Pole locations determined by b and $K_{\mathcal{C}}$
 - Controller parameters we have control over these
 - Design the controller to place the poles where we want them
- So, where do we want them?
 - Design to performance specifications
 - Risetime, overshoot, settling time, etc.

Design to Specifications

5

The second-order closed-loop transfer function

$$T(s) = \frac{K_C}{s^2 + (2+b)s + 2b + K_C}$$

can be expressed as

$$T(s) = \frac{K_C}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{K_C}{s^2 + 2\sigma s + \omega_n^2}$$

- □ Let's say we want a closed-loop response that satisfies the following specifications:
 - **□** %*OS* \leq 5%
 - $t_s ≤ 600 \, msec$
- \square Use %OS and t_{S} specs to determine values of ζ and σ
 - Then use ζ and σ to determine K_C and b

Determine ζ from Specifications

58

 \square Overshoot and damping ratio, ζ , are related as follows:

$$\zeta = \frac{-\ln(OS)}{\sqrt{\pi^2 + \ln^2(OS)}}$$

□ The requirement is $\%0S \le 5\%$, so

$$\zeta \ge \frac{-\ln(0.05)}{\sqrt{\pi^2 + \ln^2(0.05)}} = 0.69$$

 \square Allowing some margin, set $\zeta = 0.75$

Determine σ from Specifications

59

 \Box Settling time ($\pm 1\%$) can be approximated from σ as

$$t_s \approx \frac{4.6}{\sigma}$$

- □ The requirement is $t_s \le 600 \, msec$
- □ Allowing for some margin, design for $t_s = 500 \, msec$

$$t_s \approx \frac{4.6}{\sigma} = 500 \, msec \quad \rightarrow \quad \sigma = \frac{4.6}{500 \, msec}$$

which gives

$$\sigma = 9.2 \frac{rad}{sec}$$

 $exttt{ o}$ We can then calculate the natural frequency from ζ and σ

$$\omega_n = \frac{\sigma}{\zeta} = \frac{9.2}{0.75} = 12.27 \frac{rad}{sec}$$

Determine Controller Parameters from σ and ω_n

60

The characteristic polynomial is

$$s^{2} + (2 + b)s + 2b + K_{C} = s^{2} + 2\sigma s + \omega_{n}^{2}$$

 \Box Equating coefficients to solve for b:

$$2 + b = 2\sigma = 18.4$$

 $b = 16.4$

and K_c :

$$2b + K_C = \omega_n^2 = (12.27)^2 = 150.5$$

 $K_C = 150.5 - 2 \cdot 16.4 = 117.7 \rightarrow 118$
 $K_c = 118$

□ The controller transfer function is

$$D(s) = \frac{118}{s + 16.4}$$

6

- Closed-loop system is now second order
- Controller designed to place the two closed-loop poles at desirable locations:

$$s_{1,2} = -9.2 \pm j8.13$$

$$\omega_n = 12.3$$

62

- Closed-loop step response satisfies the specifications
- Approximations were used
 - If requirements not met *iterate*

K. Webb MAE 4421