Fundamentos de los Sistemas Operativos (FSO)

Departamento de Informática de Sistemas y Computadoras (DISCA) *Universitat Politècnica de València*

Bloque Temático 4: Gestión de Memoria Unidad Temática 10

Asignación Dispersa de Memoria

Objetivos

- Describir la estrategia de asignación dispersa de memoria
- Estudiar las técnicas básicas de asignación dispersa:
 - Paginación
 - Segmentación
- Comprender la paginación multinivel y su aplicabilidad

Bibliografía

- "Fundamentos de sistemas operativos" A. Silberschatz 7ª
 Ed, capítulo 8
- "Sistemas operativos: una visión aplicada" Jesús Carretero
 2º Ed, capítulo 5

- Concepto de Asignación Dispersa
- Paginación
- Segmentación
- Paginación Multinivel

Concepto de Asignación Dispersa

Asignación dispersa

- Considera el espacio de direcciones lógicas de un proceso dividido en fragmentos
- Cada fragmento se ubica en memoria física de forma independiente

- El espacio de direcciones físicas de un proceso puede no ser contiguo:
 - Paginación: los fragmentos son de tamaño fijo
 - Segmentación: los fragmentos son de tamaño variable
 - La MMU necesita conocer la ubicación de cada fragmento y su tamaño para traducir direcciones lógicas a direcciones físicas,
 - Tabla de páginas
 - Tabla de segmentos

- Concepto de Asignación Dispersa
- Paginación
- Segmentación
- Paginación Multinivel

Esquema de gestión de memoria con paginación

- El espacio de direcciones físicas en memoria principal de un proceso puede ser no contiguo
- Los espacios de direcciones de un proceso los considera dividido en fragmentos de tamaño fijo
 - El espacio de direcciones lógicas → dividido en Páginas
 - El espacio de direcciones físicas -> divididos en Marcos o frames

Memoria Principal Marco 0 Marco 1 Marco 2 Marco 3 Marco 4 Marco 1020 Marco 1021 Marco 1022 Marco 1023

Paginación

- Cuando se va a ejecutar un proceso el sistema carga todas sus páginas en marcos de memoria principal
 - Cada página ocupa un marco
 - Se construye una tabla para almacenar el número de marco donde se ha ubicado cada página del proceso

Paginación

Tabla de Páginas

- Cada entrada de la tabla se denomina descriptor de página y contiene
 - El número de marco donde se ha ubicado la página
 - Un conjunto de bits: bit de validez, bits de protección, bit de modificado,

Paginación: Estructura de la dirección lógica

Espacio lógico de 2^m palabras

Sistema con **páginas de 2^K palabras** y espacio
lógico de 2^m palabras

La MMU ve el espacio lógico formado por 2^(m-k) páginas

Paginación: Traducción de direcciones

Ejemplo paginación micro 32 bits.

- Tamaño página 4K: k=12 bits (2¹²=4096)
- Páginas = 2^{20} = 1M= 1048576 (m-k = 32-12=20 bits)
- Dirección lógica = FF1234B1

Paginación: Análisis de eficiencia

- Ventajas
 - No aparece fragmentación externa
 - Facilita la reubicación
 - Proporciona protección
 - Compartición de páginas de código entre procesos
- Inconvenientes
 - Fragmentación interna
- Tamaños de página
 - El tamaño de página debe ser potencia de 2 para facilitar la obtención del número de página y desplazamiento
 - Tamaños actuales de páginas 4K,8K
 - Páginas de tamaño grande: mucha fragmentación interna
 - Páginas de tamaño pequeño: tablas de páginas muy grandes

Paginación

Implementación de Tabla de páginas en:

Registros de la MMU

Sólo para espacios lógicos muy pequeños (pocas páginas)

Memoria

- Se mantiene un registro (PTBR=registro base tabla de páginas) con la dirección física base en la que empieza la tabla de páginas en memoria
- Necesario un acceso extra a memoria principal para acceder a la tabla de páginas y traducir una dirección lógica

TLB (translation look-aside buffer)

- La TLB contiene sólo unas pocas entradas de la tabla de páginas (las de uso reciente) de la tabla de páginas
 - Acceso más rápido que una implantación en memoria
 - Tasa de éxito alta con pocas entradas

- Concepto de Asignación Dispersa
- Paginación
- Segmentación
- Paginación Multinivel

- Esquema de gestión de memoria con Segmentación
 - El espacio de direcciones físicas en memoria principal de un proceso puede ser no contiguo
 - Espacio de direcciones dividido en fragmentos de longitud variables → Segmento
 - El espacio lógico es un conjunto de segmentos
 - Cada segmento tiene un nombre y una longitud
 - El programa es compilado y automáticamente el compilador construye uno o varios segmentos reflejando el contenido del programa fuente
 - Segmento de Código
 - Segmento de Datos
 - Segmento de Pila

Un segmento siempre se ubica de forma contigua en memoria principal

- Cuando se va a ejecutar un proceso el sistema carga todos sus segmentos en memoria principal
 - Se construye una tabla para almacenar la dirección física base de cada segmento y su longitud

Tabla de Segmentos

- Cada entrada de la tabla se denomina descriptor de segmentos y contiene:
 - Dirección física base donde se ha ubicado el segmento
 - Tamaño del segmento
 - Un conjunto de bits: bits de protección, bit de validez

Segmentación: Estructura de la dirección lógica

Dirección lógica formada por **segmento, desplazamiento.**Hay 2^s segmentos y cada segmento puede tener 2^k palabras

La MMU ve el espacio lógico formado por 2^s segmentos de 2^k palabras

Los segmentos se identifican por un número y su tamaño

Dirección física

Segmentación: Traducción de direcciones

Segmentación

- Ejemplo segmentación micro 32 bits (Intel x86)
 - Desplazamiento k = 32 bits
 - Segmentación s = 16 bits
 - Dirección lógica (seg, desp) : (1F21, 0102F12C)

Segmentación: Análisis de eficiencia

Ventajas

- No aparece fragmentación interna
- Facilita la reubicación
- Proporciona protección

Inconvenientes

Fragmentación externa

Tamaños de segmento

- Muy Grandes → aproximación a particiones variables
- Muy Pequeños → eliminaría la fragmentación externa, pero aumentaría el tamaño destinado a registros
- Tamaño Fijo → Paginación

- Concepto de Asignación Dispersa
- Paginación
- Segmentación
- Paginación Multinivel

- Concepto de Asignación Dispersa
- Paginación
- Segmentación
- Paginación Multinivel

Motivación

Paginación Multinivel

- Procesos con espacios lógicos muy grandes
 - Las tablas de páginas puede ser excesivamente grande
 - El hecho de tener que ubicar la tabla de páginas de forma contigua resulta ineficiente
- Solución: Paginar la propia tabla de páginas
 - Se fragmenta o divide en trozos la tabla de páginas de forma que cada fragmento ocupe un marco en memoria física.

Paginación multinivel

Paginación Multinivel

Paginación multinivel: Traducción de direcciones

Paginación Multinivel

- Ejemplo paginación multinivel micro 32 bits
 - Tamaño página 4K: k=12 bits (2¹²=4096)
 - Páginas (primer nivel 8 bits/segundo nivel 12 bits) 8+12=20=m-k
 - Dirección lógica = FF1234B1

