Guide zu Übungsblatt 3

Für **Aufgaben 2 und 4** benötigt man *Links*-Kan-Erweiterungen. Die genaue Definition ist folgende. Eine Links-Kan-Erweiterung von $T:M\to A$ längs $K:M\to C$ ist ein Tupel (L,η) bestehend aus

- einem Morphismus $L: C \to A$ und
- einem 2-Morphismus $\eta: T \Rightarrow L \circ K$

sodass gilt: Für jedes Tupel $(L':C\to A,\eta':T\Rightarrow L'\circ K)$ existiert genau ein 2-Morphismus $\sigma:L\Rightarrow L'$ mit $\sigma K\circ \eta=\eta'.$

Für **Aufgabe 2** ist folgende Charakterisierung nützlich: Ein Funktor $L:C\to A$ ist genau dann Links-Kan-Erweiterung von T längs K, wenn es in $S\in[C,A]$ natürliche Isomorphismen

$$\operatorname{Hom}_{[C,A]}(L,S) \cong \operatorname{Hom}_{[M,A]}(T,S \circ K)$$

gibt. Mit dieser Aussage und dem (klassischen) Yoneda-Lemma kann man die Aufgabe mit viel Freude lösen. Ihr werdet nicht mehr als eine Zeile benötigen.

Für **Aufgabe 4** benötigt man die Kolimesformel für Links-Kan-Erweiterungen; dank der Volltreuheit von K vereinfacht sich in der Aufgabe diese ganz enorm. Die Formel lautet:

$$(\mathrm{Lan}_K(T))(c) = \operatorname*{colim}_{f:K(m) \to c} T(m).$$

Die genaue Aussage dazu ist folgende (dual zu Aufgabe 3): Wenn für jedes Objekt $c \in \mathcal{C}$ der genannte Kolimes existiert, kann man diese Zuordnung zu einem Funktor $\operatorname{Lan}_K(T)$: $\mathcal{C} \to \mathcal{A}$ ausdehnen, und dieser Funktor wird dann zusammen mit der Transformation η : $T \Rightarrow \operatorname{Lan}_K(T) \circ K$ (welche als Komponenten $\eta_m : T(m) \to \operatorname{Lan}_K(T)(K(m))$ kanonische Morphismen in den Kokegel hat) zu einer Links-Kan-Erweiterung von T längs K.

In **Aufgabe 5** ist mit succ die Abbildung $\mathbb{N} \to \mathbb{N}$, $x \mapsto x+1$ gemeint. Teil c) muss natürlich nur bearbeiten, wer Garben kennt (und Fan von ihnen ist).

In der **Bonusaufgabe** meint D^1 den vollen Einheitskreis, also $\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$. Die Einbettung $S^1 \hookrightarrow D^1$ soll die Einheitskreislinie auf die Randlinie von D^1 abbilden.