Iterated Greedy para la resolución del problema de la máxima intersección de k-conjuntos

XIV Congreso Español de Metaheurísticas, Algoritmos Evolutivos y Bioinspirados

Alejandra Casado-Ceballos Sergio Pérez-Peló Jesús Sánchez-Oro Abraham Duarte

Contenido

Contenido

- Introducción
 - Definición formal del problema
 - Ejemplo
 - Estado del arte
- Desarrollo
 - Representación de la solución
 - Greedy Randomized Adaptive Search Procedure (GRASP)
 - Iterated Greedy (IG)
- Resultados
 - Experimentos preliminares
 - Experimento final
- Conclusiones

Contenido

- El **problema** abordado pertenece a la familia de problemas de la **selección de individuos**.
- Maximizar el número de características en común de un subconjunto de elementos de un tamaño dado.
- Aplicaciones:
 - Asegurar la privacidad.
 - Seleccionar músicos para un festival.

Introducción

Maximización de la intersección entre k elementos (kMIS)

Los datos de **entrada** son:

•
$$E = \{e_1, e_2, \dots, e_n\}$$

•
$$F = \{F_{e_1}, F_{e_2}, \dots, F_{e_n}\}$$

•
$$k \in \mathbb{N}$$
, con $k < n$

Una **solución** *S* se modela como:

- S ⊂ E
- |S| = k

Definición formal del problema

Una solución para el *k*MIS se **evalúa** como el **número de características** que tienen en **común** los elementos seleccionados:

$$k\mathsf{MIS}(S) = \left| \bigcap_{e_i \in S} F_{e_i} \right|$$

El kMIS tiene como propósito encontrar la solución S^* que **maximiza** el valor de la **función objetivo**:

$$S^* \leftarrow \arg\max_{S \in \mathbb{S}} \mathsf{kMIS}(S)$$

 Contenido
 Introducción
 Desarrollo
 Resultados
 Conclusiones

 ○
 ○○○●○○
 ○○○○○
 ○○○○
 ○○

Introducción

Ejemplo

Figura 1: Ejemplo de instancia con 4 elementos y 5 características, donde se deben elegir 3 elementos.

Introducción

Ejemplo

Contenido

Figura 2: Solución $S_1 = \{e_1, e_3, e_4\}$

$$kMIS(S_1) = |F_{e_1} \cap F_{e_3} \cap F_{e_4}| = 1$$

Introducción

Ejemplo

Figura 3: Solución $S_2 = \{e_1, e_2, e_3\}$

$$kMIS(S_2) = |F_{e_1} \cap F_{e_2} \cap F_{e_3}| = 3$$

MAEB 2021

Contenido Introducc<u>ión</u> Desarrollo Resultados Conclusiones 000000

Introducción

Estado del arte

MAEB 2021

 Contenido
 Introducción
 Desarrollo
 Resultados
 Conclusiones

 ○
 ○○○○○○
 ○○○○○
 ○○

Desarrollo

Representación de la solución

	S_1			S_2						
	f_1	f_2			f_5					
e_1					0					
e_2	1	1	1	0	1	1	1	1	0	0
<i>e</i> ₃	1				0					
<i>e</i> ₄	0	0	1	0	1	0	0	1	0	1
AND	0	0	1	0	0	1	1	1	0	0

Introducción Desarrollo Resultados Conclusiones 00000

Desarrollo

Contenido

Greedy Randomized Adaptive Search Procedure (GRASP)

- Propuesto por Thomas A. Feo y Mauricio G.C. Resende en 1989.
- Consta de dos fases:
 - Construcción
 - Mejora

MAEB 2021

Desarrollo

Contenido

GRASP-Construcción

Algoritmo 1 Constructivo($I = (E, F, k), \alpha$)

- 1: $e \leftarrow Random(E)$
- 2: $S \leftarrow \{e\}$
- 3: $CL \leftarrow E \setminus \{e\}$
- 4: while |S| < k do
- 5: $g_{\min} \leftarrow \min_{c \in CL} g(c)$
- 6: $g_{\text{máx}} \leftarrow \text{máx}_{c \in CL} g(c)$
- 7: $\mu \leftarrow g_{\text{máx}} \alpha \cdot (g_{\text{máx}} g_{\text{mín}})$
- 8: $RCL \leftarrow \{c \in CL : g(c) \geq \mu\}$
- 9: $e \leftarrow Random(RCL)$
- 10: $S \leftarrow S \cup \{e\}$
- 11: $CL \leftarrow CL \setminus \{e\}$
- 12: end while
- 13: **return** *S*

Desarrollo GRASP-Mejora

Contenido

• Movimiento: intercambio.

Intercambio
$$(S, e_i, e_i) = (S \setminus e_i) \cup e_i$$

 Vecindad: soluciones a las que se puede llegar con un único intercambio.

$$N(S) = \{S' \leftarrow Intercambio(S, e_i, e_j), \forall e_i \in S \land \forall e_j \in (E \setminus S)\}$$

- Recorrido: first improvement.
- Búsqueda local eficiente: no se realiza el movimiento si no mejora.

 Contenido
 Introducción
 Desarrollo
 Resultados
 Conclusiones

 ○
 ○○○○○○
 ○○○○○
 ○○○○
 ○○○

Desarrollo

Iterated Greedy

- Propuesto por Rubén Ruiz y Thomas Stützle en 2007.
- Consta de dos fases que se ejecutan de forma iterativa:
 - Destrucción
 - Reconstrucción

Desarrollo

00000

Contenido

Iterated Greedy

Algoritmo 2 IteratedGreedy(θ, β, S)

- 1: $S_{mejor} \leftarrow S$
- 2: i = 0
- 3: while $i < \theta$ do
- 4: $S' \leftarrow Destrucción(S_{meior}, \beta)$
- 5: $S'' \leftarrow Reconstrucción(S')$
- 6: $S''' \leftarrow BúsquedaLocal(S'')$
- 7: if $kMIS(S''') > kMIS(S_{meior})$ then
- $S_{meior} \leftarrow S'''$ 8:
- i = 09.
- 10: else
- 11: i = i + 1
- end if 12:
- 13: end while
- 14: return S_{meior}

MAEB 2021

Resultados

- Lenguaje de programación: Java 11.
- Características máquina de experimentación: AMD EPYC 7282 (2.8 GHz), 8 GB RAM.
- Total de instancias: 238.
- Conjunto preliminar de instancias: 27.
- Métricas utilizadas:
 - Promedio: valor promedio de la función objetivo.
 - Tiempo (s): tiempo de ejecución medido en segundos.
 - Desv. (%): desviación porcentual media respecto a al mejor solución del experimento.
 - # Mejores: número de mejores soluciones encontradas en el experimento.

 Contenido
 Introducción
 Desarrollo
 Resultados
 Conclusiones

 ○
 ○○○○○○
 ○○○○○
 ○○○○
 ○○○○

Resultados

Experimentos preliminares

Algoritmo	Promedio	Tiempo (s)	Desv. %	# Mejores
GRASP(0.25)	24.2 <mark>6</mark>	14.66	5.31	18
GRASP(0.50)	22.37	17.26	25.97	11
GRASP(0.75)	21.63	17.80	28.94	10
GRASP(RND)	25.07	15.99	0.66	25

Tabla 1: Comparativa de los diferentes valores de α considerados construyendo y mejorando 1000 soluciones independientes.

Resultados

Experimentos preliminares - Constructivo y búsqueda local

Algoritmo	Promedio	Tiempo (s)	Desv. (%)	#Mejores
GRASP(RND)	25.07	15.99	0.44	24
$GRASP(RND) + +^1$	25.11	1.20	0.51	25

Tabla 2: Comparativa de la búsqueda local frente a la eficiente.

¹++ se usa para diferenciar GRASP cuya búsqueda local se trata de la aproximación y GRASP que tiene como búsqueda local la eficiente.

 Contenido
 Introducción
 Desarrollo
 Resultados
 Conclusiones

 ○
 ○○○○○○
 ○○○○○
 ○○○

Resultados

Experimentos preliminares - Parámetros Iterated Greedy

- $\beta = 0.2$ (Porcentaje de la solución que es destruida).
- Destrucción: aleatoria.
- Reconstrucción: voraz.

θ	Promedio	Tiempo (s)	Desv. (%)	#Mejores
5	25.15	1.24	0.13	26
10	25.19	1.20	0.00	27
15	25.19	1.21	0.00	27
20	25.19	1.22	0.00	27

Tabla 3: Comparativa del efecto de los distintos valores de θ^2 en IG_{RG} cuando $\beta=0.2$.

 $^{^{2}\}theta$: número de iteraciones sin mejora que se permiten en Iterated Greedy.

 Contenido
 Introducción
 Desarrollo
 Resultados
 Conclusiones

 ○
 ○○○○○○
 ○○○○○
 ○○○
 ○○

Resultados

Experimento final

Algoritmo	Promedio	Tiempo (s)	Desv. (%)	# Mejores
Reactive VNS	32.59	21.01	2.04	186
GRASP+IG	33.00	0.85	0.57	225

Tabla 4: Comparativa entre el algoritmo propuesto (*GRASP+IG*) y el estado del arte (*Reactive VNS*) sobre el total de 238 instancias.

Contenido Desarrollo Resultados Conclusiones Introducción

Conclusiones

El algoritmo propuesto obtiene resultad<mark>os compe</mark>titivos con el estado del arte.

Se ha enviado un artículo a la revista Journal of Heuristics (actualmente en primera revisión).

Trabajo futuro: probar la representación de la solución propuesta para otros problemas de selección de características.

Iterated Greedy para la resolución del problema de la máxima intersección de k-conjuntos

XIV Congreso Español de Metaheurísticas, Algoritmos Evolutivos y Bioinspirados

Alejandra Casado-Ceballos Sergio Pérez-Peló Jesús Sánchez-Oro Abraham Duarte

