Convex Function vs. Nonconvex Function: A Little Bit Theory

Shusen Wang

Global Extremum vs. Local Extremum

Local Minimum of a function $f(\mathbf{w})$

If $f(\mathbf{w}^*) \leq f(\mathbf{w})$ for all \mathbf{w} in a neighborhood of \mathbf{w}^* , then \mathbf{w}^* is a **local minimum** of f.

Global Minimum of a function $f(\mathbf{w})$

If $f(\mathbf{w}^*) \le f(\mathbf{w})$ for all \mathbf{w} in the domain of f, then \mathbf{w}^* is a **global minimum** of f.

- A global minimum is a local minimum.
- Global minimum may not be unique.

Properties of Local Minimum

Assume f is defined on \mathbb{R}^d .

Properties of local minimum w*:

- 1. The gradient at \mathbf{w}^* , $\nabla f(\mathbf{w}^*) \in \mathbb{R}^d$, is all-zeros.
- 2. The Hessian matrix at \mathbf{w}^* , $\nabla^2 f(\mathbf{w}^*) \in \mathbb{R}^{d \times d}$, is positive semidefinite (i.e., all of its d eigenvalues are nonnegative.)

Convex Function

Graph of a convex function

• Convex function: The line segment between any two points on the graph of the function lies above or on the graph

Properties of a convex function f:

- 1. Local minimum = global minimum.
- 2. The Hessian matrix $\nabla^2 f(\mathbf{w})$ is positive semi-definite everywhere.
- 3. $\nabla f(\mathbf{w}^*) = \mathbf{0} \longleftrightarrow \mathbf{w}^*$ is a global minimum.

Nonconvex Function

Graph of a nonconvex function

Properties:

- 1. Local minimum global minimum.
- 2. The Hessian matrix $\nabla^2 f(\mathbf{w})$ is positive semi-definite everywhere.
- 3. $\nabla f(\mathbf{w}^*) = \mathbf{0} \leftrightarrow \mathbf{w}^*$ is a global minimum.

Global Minimum is Unlikely to Reach

- #local minima ≫ #global minima.
- The final solution depends on the initialization.
- Reaching one of the global minima is very unlikely.

Graph of a nonconvex function

Saddle Point

Definition of saddle point:

- 1. The gradient of f at a saddle point is allzeros: $\nabla f(\mathbf{w}_{sad}) = \mathbf{0}$.
- 2. The Hessian matrix $\nabla^2 f(\mathbf{w}_{sad})$ has **both** positive and negative eigenvalues..

Graph of a nonconvex function

saddle point w_{sad}

- Gradient: $\nabla f(\mathbf{w}_{sad}) = \mathbf{0}$.
- Hessian: $\nabla^2 f(\mathbf{w}_{sad})$ has both positive and negative eigenvalues.

- Gradient: $\nabla f(\mathbf{w}^*) = \mathbf{0}$.
- Hessian: $\nabla^2 f(\mathbf{w}^*)$ does **not** have **negative eigenvalues**.

saddle point w_{sad}

- Gradient: $\nabla f(\mathbf{w}_{sad}) = \mathbf{0}$.
- Hessian: $\nabla^2 f(\mathbf{w}_{sad})$ has both positive and negative eigenvalues.

local minimum w*

- Gradient: $\nabla f(\mathbf{w}^*) = \mathbf{0}$.
- Hessian: $\nabla^2 f(\mathbf{w}^*)$ does **not** have **negative eigenvalues**.

Full gradient descent stops at either a saddle point or a local minimum.

saddle point w_{sad}

- Gradient: $\nabla f(\mathbf{w}_{sad}) = \mathbf{0}$.
- Hessian: $\nabla^2 f(\mathbf{w}_{sad})$ has both positive and negative eigenvalues.

- Gradient: $\nabla f(\mathbf{w}^*) = \mathbf{0}$.
- Hessian: $\nabla^2 f(\mathbf{w}^*)$ does **not** have **negative eigenvalues**.
- Full gradient descent stops at either a saddle point or a local minimum.

- In 2D, #saddle points and #local minimum are comparable.
- It is not true in high-dim.

saddle point w_{sad}

- Gradient: $\nabla f(\mathbf{w}_{sad}) = \mathbf{0}$.
- Hessian: $\nabla^2 f(\mathbf{w}_{sad})$ has both positive and negative eigenvalues.

- Gradient: $\nabla f(\mathbf{w}^*) = \mathbf{0}$.
- Hessian: $\nabla^2 f(\mathbf{w}^*)$ does **not** have **negative eigenvalues**.
- Full gradient descent stops at either a saddle point or a local minimum.
- In high dim, #saddle points is much greater than #local minima.
 - The Hessian has d eigenvalues, each of which can be positive or negative.
 - \longrightarrow 2^d combinations of positive and negative eigenvalues.
 - One out of the 2^d combinations corresponds to local minima.
 - $2^d 2$ combinations corresponds to saddle points.

saddle point w_{sad}

- Gradient: $\nabla f(\mathbf{w}_{sad}) = \mathbf{0}$.
- Hessian: $\nabla^2 f(\mathbf{w}_{sad})$ has both positive and negative eigenvalues.

- Gradient: $\nabla f(\mathbf{w}^*) = \mathbf{0}$.
- Hessian: $\nabla^2 f(\mathbf{w}^*)$ does **not** have **negative eigenvalues**.
- Full gradient descent stops at either a saddle point or a local minimum.
- In high dim, the number of saddle points is much larger than local minima.
- If a neural net is optimized by the full gradient descent, it will converge to a saddle point.

Be careful about the initialization!

- Bad initialization results in convergence to bad regions.
 - Because of the nonconvexity, global minimum cannot be attained.

Be careful about the initialization!

- Bad initialization results in convergence to bad regions.
 - Because of the nonconvexity, global minimum cannot be attained.
- Rule of thumb:
 - The trainable parameters (e.g., the filters of ConvNet) are randomly initialized with proper scaling.
 - Bad scaling leads to terrible results.
 - All-zero and all-one initializations are bad ideas.
 - Pretrained parameters can be very good initialization.

Be careful about the initialization!

Be careful about the optimization algorithm!

- Full gradient descent will be stuck in a saddle point.
 - Because the gradient is near zero when approaching the saddle point.
- Stochastic gradient descent (SGD) can escape the saddle points.
 - Because it is random and noisy.

Be careful about the initialization!

Be careful about the optimization algorithm!

Be careful about the batch size!

- For parallel computing with multiple GPUs, larger batch size → lower per-epoch runtime.
- Large batch size, e.g., 10K, may result in bad generalization.

... More about the Batch Size

- Batch size larger than 8K results in poor generalization.
- Large batch size is good for time-efficiency.
- Lots of tricks are required in large batch training.

The figure is from the paper "Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour"

... More about the Batch Size

- Researchers' conjecture:
 - Small batch size → flat local minima; Big batch size → shape local minima.
 - Flat local minima generalizes better (on the test set).

The figure is from paper https://arxiv.org/abs/1712.09913

... More about the Batch Size

 There are papers supportive of small batch training, e.g., https://arxiv.org/pdf/1804.07612.pdf

The presented results confirm that using small batch sizes achieves the best training stability and generalization performance, for a given computational cost, across a wide range of experiments. In all cases the best results have been obtained with batch sizes m=32 or smaller, often as small as m=2 or m=4.

Do Not Believe Deep Learning Theories Blindly

Explanations

Empirical study

Summary

- #global minima ≪ #local minima ≪ #saddle points.
- Full gradient descent converges to a saddle point.
- SGD converges to a local minimum.

Summary

- #global minima << #local minima << #saddle points.
- Full gradient descent converges to a saddle point.
- SGD converges to a local minimum.

- Initialization is crucial.
 - Proper scaling.
 - Pretrain.

Summary

- #global minima << #local minima << #saddle points.
- Full gradient descent converges to a saddle point.
- SGD converges to a local minimum.

- Initialization is crucial.
 - Proper scaling.
 - Pretrain.
- Batch size affects time efficiency and generalization.