

Daniele Bagni DSP Specialist

Rationale

- ➤ Vivado HLS has a set of powerful directives to generate optimal RTL from C/C++ models
- ➤ Assume: all the right directives have been already applied
- > Still space for improvements?
 - Reduce the resource occupation
 - Improve the throughput
 - Close timing

YES!
Improve C code.

Let us start

Design Under Test

- ▶ Design goals: small and fast (and possibly accurate)
 - I/O signals are integer numbers
 - The real design contains 4 cores like this

HLS Functional Test Bench

```
File Edit Project Solution Window Help
                                                                                                         🏂 Debug 🕟 Synthesis 🚱 Analysis
                                                                                 c test main.cpp 🔀
 🛅 Explorer 🖾
    🔺 📂 hls_isqrt_prj
                                                                                                       // PREPARE INPUT STIMULA
                                                                                       48
           ▶ 👔 Includes
                                                                                                       printf("\npreparing input stimula\n");
                                                                                       49
           Source
                                                                                       50
                                                                                       51
                                                                                                       for (i=0; i<NC; i++)</pre>
                       cordic_isqrt.cpp
                                                                                       52
                       cordic_sqrt.cpp
                                                                                                                 x = floor( (((float)rand())/RAND_MAX) * AMP); // real part
                                                                                       53
                       float_sqrt.cpp
                                                                                       54
                                                                                                                 y = floor( (((float)rand())/RAND MAX) * AMP); // imaginary part
                       top_magnitude.cpp
                                                                                       55
                                                                                                                  if (x > AMP) x = AMP; // clipping

■ Image: Test Bench

■ Im
                                                                                       56
                                                                                                                  if (y > AMP) y = AMP; // clipping
                                                                                       57
                                                                                                                 real[i] = x;
                       test_main.cpp
                                                                                       58
                                                                                                                 imag[i] = y;
           b a cordic_solution1
                                                                                                                 ref[i] = process magnitude ref(real[i],imag[i]); // reference magnitude result
                                                                                       59
           b a cordic solution2
                                                                                       60
           b (a) cordic solution3
                                                                                       61
          ▶ 2 cordic_solution4
                                                                                       62
                                                                                                       // CALL DESIGN UNDER TEST
                                                                                       63
           Cordic_solution4_32bits
                                                                                       64
                                                                                                       printf("running Design Under Test\n");
           ▶ a float solution1
                                                                                                                                                                                                                                           Top-level Design
                                                                                       65
                                                                                                       top process magnitude(real, imag, magn);
           b in float_solution2
                                                                                        66
           b int_solution1
                                                                                                       // CHECK RESULTS
                                                                                       67
          b 'ef_solution1
                                                                                                       printf("check results\n");
                                                                                       68
                                                                                       69
                                                                                                       tot err = 0;
                                                                                       70
                                                                                                       max_err = 0;
                                                                                       71
                                                                                                       for (j=0; j<NC; j++)</pre>
                                                                                       72
                                                                                       73
                                                                                                                  d = (magn[i] - ref[i]);
                                                                                       74
                                                                                                                  d = ABS(d);
                                                                                       75
                                                                                                                 tot err += d;
                                                                                       76
                                                                                                                  if (d >= max err)
                                                                                       77
                                                                                       78
                                                                                                                           max err = d;
                                                                                       79
                                                                                                                            i = j; // store the address of max error
                                                                                       80
                                                                                       81
                                                                                       82
                                                                                                       }
                                                                                       83
                                                                                       84
                                                                                                       // SIMULATION RESULT
                                                                                                                                                                                                                                                                                                                             RAMMABIF
                                                                                       85
                                                                                                       if (max err > THRESHOLD)
```

Top level design to be synthesized 1/2

> Assumptions:

- Top-level design contains 4 functions,
- Each one contains a sqrt() operation called 256 times within a loop.

Top level design to be synthesized 2/2

> Assumptions:

- Top-level design contains 4 functions,
- Each one contains a sqrt() operation called 256 times within a loop.

Functional verification

C simulation

- Validate the accuracy of numerical results with bittrue C/C++ modelling
- ➤ Fixed and Floating point results can be different:
 - Depends on the algorithm

Solution 0: everything in 64-bit Floating Point

C code of Solution 0:

Using 64-bit floating point types

```
#include <math.h>
double process magnitude double (double real data,
                                 double imag data)
  #pragma HLS INLINE OFF
  #pragma HLS PIPELINE
  double mag data, accu plus, temp datar, temp datai;
  temp datar = real data * real data;
  temp datai = imag data * imag data;
  accu plus = temp datar + temp datai;
 mag data = sqrt(accu plus);
  return mag data;
```

Solution 0: Synthesis Estimation, top level

Synthesis(solution0) 🖂

■ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	5.00	6.56	0.63

□ Latency (clock cycles)

■ Summary

Latency		Interval		
min	max	min	max	Type
647	647	648	648	none

Detail

Utilization Estimates

□ Summary

_ Janimary				
Name	BRAM_18K	DSP48E	FF	LUT
Expression	-	-	-	-
FIFO	-	-	-	-
Instance	-	100	28088	26009
Memory	-	-	-	-
Multiplexer	-	-	-	56
Register	-	-	12	-
Total	0	100	28100	26065
Available	280	220	106400	53200
Utilization (%)	0	45	26	48

□ Detail

■ Instance

Instance	Module	BRAM_18K	DSP48E	FF	LUT
grp_top_process_magnitude_func1_process_magnitude_fu_50	top_process_magnitude_func1_process_magnitude	0	25	7020	6497
grp_top_process_magnitude_func2_process_magnitude_fu_30	top_process_magnitude_func2_process_magnitude	0	25	7022	6502
grp_top_process_magnitude_func3_process_magnitude_fu_40	top_process_magnitude_func3_process_magnitude	0	25	7022	6502
grp_top_process_magnitude_func4_process_magnitude_fu_20	top_process_magnitude_func4_process_magnitude	0	25	7024	6508
Total	4	0	100	28088	26009

Solution 0: Synthesis Estimation, inner function

Synthesis Report for 'top_process_magnitude_process_magnitude_double'

Performance Estimates

☐ Timing (ns)

■ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	5.00	5.18	0.63

□ Latency (clock cycles)

□ Summary

Late	Latency		rval	
min	max	min	max	Туре
82	82	1	1	function

■ Detail

■ Instance

Instance	Module	BRAM_18K	DSP48E	FF	LUT
top_process_magnitude_dadd_64ns_64ns_64_14_full_dsp_U0	top_process_magnitude_dadd_64ns_64ns_64_14_full_dsp	0	3	1047	1102
top_process_magnitude_dmul_64ns_64ns_64_10_max_dsp_U1	top_process_magnitude_dmul_64ns_64ns_64_10_max_dsp	0	11	456	603
top_process_magnitude_dmul_64ns_64ns_64_10_max_dsp_U2	top_process_magnitude_dmul_64ns_64ns_64_10_max_dsp	0	11	456	603
top_process_magnitude_dsqrt_64ns_64ns_64_59_U3	top_process_magnitude_dsqrt_64ns_64ns_64_59	0	0	3417	2202
Total	4	0	25	5376	4510

Utilization Estimates

Summary				
Name	BRAM_18K	DSP48E	FF	LUT
Expression	-	-	-	-
FIFO	-	-	-	-
Instance	-	25	5376	4510
Memory	-	-	-	_
Multiplexer	-	-	-	-
Register	-	-	192	-
Total	0	25	5568	4510
Available	280	220	106400	53200
Utilization (%)	0	11	5	8

First method: everything in 32-bit Floating Point

C code of Solution 1:

Using 32-bit floating point types

```
#include <math.h>
float process magnitude ref(float real data, float imag data) {
  #pragma HLS INLINE OFF
  #pragma HLS PIPELINE
  float mag data, accu plus, temp datar, temp datai;
  temp datar = real data * real data;
  temp datai = imag data * imag data;
  accu plus = temp datar + temp datai;
 mag data = sqrtf(accu plus);
  return mag data;
```

Solution 1: Synthesis Estimation, top level

Performance Estimates

Synthesis(solution1)
 S

☐ Timing (ns)

■ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	5.00	6.34	0.63

☐ Latency (clock cycles)

□ Summary

Late	Latency		Interval	
min	max	min	max	Type
483	483	484	484	none

□ Detail

∃ Instance

■ Instance

Utilization Estimates

■ Summary

Name	BRAM_18K	DSP48E	FF	LUT
Expression	-	-	-	-
FIFO	-	-	-	-
Instance	-	32	10624	13217
Memory	-	-	-	-
Multiplexer	-	-	-	56
Register	-	-	12	-
Total	0	32	10636	13273
Available	280	220	106400	53200
Utilization (%)	0	14	9	24

C code of Solution 1: Using 32-bit...

Instance	Module	BRAM_18K	DSP48E	FF	LUT
grp_top_process_magnitude_func1_process_magnitude_fu_50	top_process_magnitude_func1_process_magnitude	0	8	2654	3300
grp_top_process_magnitude_func2_process_magnitude_fu_30	top_process_magnitude_func2_process_magnitude	0	8	2656	3304
grp_top_process_magnitude_func3_process_magnitude_fu_40	top_process_magnitude_func3_process_magnitude	0	8	2656	3304
grp_top_process_magnitude_func4_process_magnitude_fu_20	top_process_magnitude_func4_process_magnitude	0	8	2658	3309
Total	4	0	32	10624	13217

Solution 1: Synthesis Estimation, inner function

Performance Estimates

∃ Timing (ns)

■ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	5.00	4.35	0.63

□ Latency (clock cycles)

□ Summary

Latency		Inte	rval	
min	max	min	max	Туре
41	41	1	1	function

□ Detail

■ Instance

Instance	Module	BRAM_18K	DSP48E	FF	LUT
top_process_magnitude_fadd_32ns_32ns_32_9_full_dsp_U0	top_process_magnitude_fadd_32ns_32ns_32_9_full_dsp	0	2	324	424
top_process_magnitude_fmul_32ns_32ns_32_5_max_dsp_U1	top_process_magnitude_fmul_32ns_32ns_32_5_max_dsp	0	3	151	325
top_process_magnitude_fmul_32ns_32ns_32_5_max_dsp_U2	top_process_magnitude_fmul_32ns_32ns_32_5_max_dsp	0	3	151	325
top_process_magnitude_fsqrt_32ns_32ns_32_28_U3	top_process_magnitude_fsqrt_32ns_32ns_32_28	0	0	832	657
Total	4	0	8	1458	1731

Utilization Estimates

Summary

∃ Summary						
Name	BRAM_18K	DSP48E	FF	LUT		
Expression	-	-	-	_		
FIFO	-	-	-	_		
Instance	-	8	1458	1731		
Memory	-	-	-	_		
Multiplexer	-	-	-	_		
Register	-	-	96	_		
Total	0	8	1554	1731		
Available	280	220	106400	53200		
Utilization (%)	0	3	1	3		

Second method: mixing 32-bit Fixed and Floating Point

C code of Solution 2:

Using 32-bit integer & floating point types

```
#include <math.h>
typedef long long int acc t; // 64-bit data type
int process magnitude float(int real data, int imag data) {
#pragma HLS INLINE OFF
#pragma HLS PIPELINE
  int mag data; // 32-bit data type
  acc t accu plus, temp datar, temp datai;
  // 32x32 to 64-bit integer multiplications
  temp datar = (acc t)real data * (acc_t)real_data;
  temp datai = (acc t) imag data * (acc t) imag data;
  accu plus = temp datar + temp datai;
 mag data = (int) floor(sqrtf( (float)accu plus ));
  return mag data;
```

Solution 2: Synthesis Estimation, top level

Performance Estimates

□ Timing (ns)

□ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	5.00	4.11	0.63

☐ Latency (clock cycles)

■ Summary

Latency		Interval		
min	max	min	max	Type
499	499	500	500	none

□ Detail

□ Instance

 -	izat		E-43	
_	ІТАТ	ınn	FETI	гес

□ Summary

Jummury						
Name	BRAM_18K	DSP48E	FF	LUT		
Expression	-	-	-	-		
FIFO	-	-	-	-		
Instance	8	32	10188	11277		
Memory	-	-	-	-		
Multiplexer	-	-	-	64		
Register	-	-	12	-		
Total	8	32	10200	11341		
Available	280	220	106400	53200		
Utilization (%)	2	14	9	21		

Instance	Module	BRAM_18K	DSP48E	FF	LUT
grp_top_process_magnitude_func1_process_magnitude_fu_58	$top_process_magnitude_func1_process_magnitude$	2	8	2545	2815
grp_top_process_magnitude_func2_process_magnitude_fu_34	$top_process_magnitude_func2_process_magnitude$	2	8	2547	2819
grp_top_process_magnitude_func3_process_magnitude_fu_46	$top_process_magnitude_func3_process_magnitude$	2	8	2547	2819
grp_top_process_magnitude_func4_process_magnitude_fu_22	$top_process_magnitude_func4_process_magnitude$	2	8	2549	2824
Total	4	8	32	10188	11277

Solution 2: Synthesis Estimation, inner function

Synthesis Report for 'top_process_magnitude_process_magnitude_float'

Performance Estimates

□ Timing (ns)

□ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	5.00	4.11	0.63

□ Latency (clock cycles)

■ Summary

Latency		Interval		
min	max	min	max	Type
56	56	1	1	function

Utilization Estimates

□ Summary

Name	BRAM_18K	DSP48E	FF	LUT
Expression	-	-	0	1280
FIFO	-	-	-	-
Instance	-	8	1434	1371
Memory	2	-	0	0
Multiplexer	-	-	-	-
Register	-	-	1001	129
Total	2	8	2435	2780
Available	280	220	106400	53200
Utilization (%)	~0	3	2	5

□ Detail

□ Instance

Instance	Module	BRAM_18K	DSP48E	FF	LUT
top_process_magnitude_fpext_32ns_64_3_U1	top_process_magnitude_fpext_32ns_64_3	0	0	100	138
top_process_magnitude_fsqrt_32ns_32ns_32_28_U2	top_process_magnitude_fsqrt_32ns_32ns_32_28	0	0	832	657
top_process_magnitude_mul_32s_32s_64_7_U3	top_process_magnitude_mul_32s_32s_64_7	0	4	0	0
top_process_magnitude_mul_32s_32s_64_7_U4	top_process_magnitude_mul_32s_32s_64_7	0	4	0	0
top_process_magnitude_sitofp_64s_32_9_U0	top_process_magnitude_sitofp_64s_32_9	0	0	502	576
Total	5	0	8	1434	1371

Third method: CORDIC SQRT 32-bit approximation

C Code of Solution 3:

Cordic-based fully 32-bit integer sqrt function

```
int process magnitude cordic(int real_data, int imag_data)
  int mag data; // 32-bit data type
 mag data = (int) cordic sqrt<40,32>(real data, imag data);
  return mag data;
```

Solution 3: CORDIC in C++ code

```
#define ROT 11 // number of iterations (rotations)
template <int TOT, int INT>
ap fixed<TOT, INT> cordic sqrt(int x0, int y0) {
  static const signed short int atan lut[ROT] = {
  804, 475, 251, 127, 64, 32, 16, 8, 4, 2, 1 };
 signed short int z, zp;
 unsigned char i;
 ap fixed<TOT, INT> x, y, xp, yp, x2; // HLS fractional data type
 const ap fixed<16,1, AP RND MIN INF, AP SAT> inv G =
       0.607253031529134; // to compensate cordic gain;
 xp=x0; yp=y0; zp=0; // initialization
```

Solution 3: CORDIC in C++ code

```
for (i=0;i<ROT;i++) {</pre>
#pragma HLS PIPELINE II=1
    if (yp<0) { // rotations by tan(2^-i)
      x = xp - (yp>>i); y = yp + (xp>>i); z = zp - atan lut[i];
    } else {
      x = xp + (yp>>i); y = yp - (xp>>i); z = zp + atan lut[i];
    xp=x; yp=y; zp=z; // update
  // compensating the cordic gain
#pragma HLS RESOURCE variable=x2 core=MUL6S
         = xp * inv G; // x2 = (xp*453)/746;
  x2
  return x2;
```

Solution 3: CORDIC sqrt

- **>** CORDIC generates $\frac{746}{453}\sqrt{a^2+b^2}$ output.
 - The gain has to be compensated by a multiplication per 453/746
- ➤ CORDIC is a very elegant and well documented algorithm (see Xilinx Product Guide 105 for the HW IP core in the references).
- ➤ For a very good accuracy we selected 32 bits integer and 8 further bits fractional (32+8=40)
 - this will cost 2 DSP48 slices per one 40x15 bits multiplication
- ➤ No limits on the range of I/O

Solution 3: Synthesis Estimation, top level

Performance Estimates

□ Timing (ns)

□ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	5.00	4.15	0.63

□ Latency (clock cycles)

□ Summary

Latency		Interval		
min	max	min	max	Type
347	347	348	348	none

■ Detail

□ Instance

Util	izati	ion	Esti	imat	tes

Summary

Name	BRAM_18K	DSP48E	FF	LUT		
Expression	-	-	-	-		
FIFO	-	-	-	-		
Instance	-	8	6408	10437		
Memory	-	-	-	-		
Multiplexer	-	-	-	64		
Register	-	-	12	-		
Total	0	8	6420	10501		
Available	280	220	106400	53200		
Utilization (%)	0	3	6	19		

Instance	Module	BRAM_18K	DSP48E	FF	LUT
grp_top_process_magnitude_func1_process_magnitude_fu_50	$top_process_magnitude_func1_process_magnitude$	0	2	1600	2606
grp_top_process_magnitude_func2_process_magnitude_fu_30	$top_process_magnitude_func2_process_magnitude$	0	2	1602	2609
grp_top_process_magnitude_func3_process_magnitude_fu_40	$top_process_magnitude_func3_process_magnitude$	0	2	1602	2609
grp_top_process_magnitude_func4_process_magnitude_fu_20	$top_process_magnitude_func4_process_magnitude$	0	2	1604	2613
Total	4	0	8	6408	10437

Solution 3: Synthesis Estimation, inner function

Synthesis Report for 'top_process_magnitude_process_magnitude_cordic'

Performance Estimates

□ Timing (ns)

□ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	5.00	4.15	0.63

□ Latency (clock cycles)

□ Summary

Latency		Interval		
min	max	min	max	Туре
18	18	1	1	function

□ Detail

□ Instance

Instance	Module	BRAM_18K	DSP48E	FF	LUT
top_process_magnitude_mul_40s_16ns_55_6_U0	top_process_magnitude_mul_40s_16ns_55_6	0	2	0	0
Total	1	0	2	0	0

Utilization Estimates

□ Summary

Julilliary						
Name	BRAM_18K	DSP48E	FF	LUT		
Expression	-	-	0	2579		
FIFO	-	-	-	_		
Instance	-	2	0	0		
Memory	-	-	-	-		
Multiplexer	-	-	-	-		
Register	-	-	1497	-		
Total	0	2	1497	2579		
Available	280	220	106400	53200		
Utilization (%)	0	~0	1	4		

Solution 4: 18-bit CORDIC

C Code of Solution 4:

Cordic-based 18-bit integer sqrt function

```
typedef ap int<10> teta t;
typedef ap int<18> dinp t;
typedef ap int<24> dout t;
dout t process magnitude cordic(dinp_t real_data, dinp_timag_data)
 dout t mag data; // 24-bit data type
 mag data = (int) cordic sqrt<24,18>(real data, imag data);
 return mag data;
```

Solution 4: Synthesis Estimation, top level

🗊 Synthesis(solution4) 🖾

Synthesis Report for 'top_process_magnitude'

Performance Estimates

∃ Timing (ns)

■ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	5.00	4.23	0.63

□ Latency (clock cycles)

■ Summary

Latency		Interval		
min	max	min	max	Туре
347	347	348	348	none

□ Detail

□ Instance

Instance	Module	BRAM_18K	DSP48E	FF	LUT
grp_top_process_magnitude_func1_process_magnitude_fu_50	top_process_magnitude_func1_process_magnitude	0	1	933	1572
grp_top_process_magnitude_func2_process_magnitude_fu_30	top_process_magnitude_func2_process_magnitude	0	1	935	1575
grp_top_process_magnitude_func3_process_magnitude_fu_40	top_process_magnitude_func3_process_magnitude	0	1	935	1575
grp_top_process_magnitude_func4_process_magnitude_fu_20	top_process_magnitude_func4_process_magnitude	0	1	937	1579
Total	4	0	4	3740	6301

Utilization Estimates

Summary

Janimary				
Name	BRAM_18K	DSP48E	FF	LUT
Expression	-	-	-	_
FIFO	-	-	-	-
Instance	-	4	3740	6301
Memory	-	-	-	_
Multiplexer	-	-	-	56
Register	-	-	12	-
Total	0	4	3752	6357
Available	280	220	106400	53200
Utilization (%)	0	1	3	11

Solution 4: Synthesis Estimation, inner function

Synthesis(solution4)

Synthesis(solution4)

🗐 Synthesis(solution4) 🖾

Synthesis Report for 'top_process_magnitude_process_magnitude_cordic'

Performance Estimates

□ Timing (ns)

■ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	5.00	4.23	0.63

□ Latency (clock cycles)

■ Summary

Late	Latency		erval	
min	max	min	max	Туре
17	17	1	1	function

Utilization Estimates

Summary

Name	BRAM_18K	DSP48E	FF	LUT
Expression	-	-	0	1545
FIFO	-	-	-	-
Instance	-	1	0	0
Memory	-	-	-	-
Multiplexer	-	-	-	-
Register	-	-	840	-
Total	0	1	840	1545
Available	280	220	106400	53200
Utilization (%)	0	~0	~0	2

□ Detail

□ Instance

Instance	Module	BRAM_18K	DSP48E	FF	LUT
top_process_magnitude_mul_24s_16ns_40_6_U0	top_process_magnitude_mul_24s_16ns_40_6	0	1	0	0
Total	1	0	1	0	0

Summary

Synthesis Performance Estimates Comparison

Vivado HLS Report Comparison

Performance Estimates

☐ Timing (ns)

Clock		solution0	solution1	solution2	solution3	solution4
ap_clk	Target	5.00	5.00	5.00	5.00	5.00
	Estimated	6.56	6.34	4.11	4.15	4.23

□ Latency (clock cycles)

		solution0	solution1	solution2	solution3	solution4
Latency	min	647	483	499	347	347
	max	647	483	499	347	347
Interval	min	648	484	500	348	348
	max	648	484	500	348	348

Utilization Estimates

	solution0	solution1	solution2	solution3	solution4
BRAM_18K	0	0	8	0	0
DSP48E	100	32	32	8	4
FF	28308	10812	10200	6420	3752
LUT	26169	13377	11341	10501	6357