CompSci 161
Spring 2021 Lecture 09:
Divide and Conquer IV:
The Minima Set Problem

Minima Set Problem Statement

- We have a database of hotels.
- Each hotel has:
 - ▶ a proximity to the beach (x-coordinate)
 - a nightly room cost (y-coordinate)
- ▶ Want cheapest hotel closest to the beach
 - Might not be a unique hotel.
 - ▶ One might be closest, another cheapest.
 - Return the set that aren't wrong.
 - Any where no other hotel is both cheaper and closer.

Minima Set Brute Force

Sort hotels along any dimension

for
$$i = 1 \rightarrow n-1$$
 do

for
$$j = i + 1 \rightarrow n$$
 do

if A_i is cheaper and closer than A_j then Remove A_j

return All hotels that we did not remove

▶ This is $O(n^2)$.

Beginning Divide and Conquer

MinimaSet(S)

if $n \le 1$ then

return S $p \leftarrow \text{median point in } S \text{ by } x\text{-coordinate}$ $L \leftarrow \text{points less than } p$ $G \leftarrow \text{points greater than or equal to } p$ $M_1 \leftarrow \text{MinimaSet}(L)$ $M_2 \leftarrow \text{MinimaSet}(G)$ return $M_1 \cup M_2$?

Improved Recombine

$$P_{\text{revious}} (\text{old}) \} 0 (\text{n})$$

$$M_1 \leftarrow \text{MinimaSet}(L) \} 2 \top (\text{n}|2)$$

$$M_2 \leftarrow \text{MinimaSet}(G)$$

$$\underline{\text{for each } a \in M_1 \text{ do}} \quad \text{old} \quad \text{cheapest in M.} // \theta (\text{n})$$

$$\leftarrow \text{ for each } b \in M_2 \text{ do}$$

$$\leftarrow \text{ if } a \text{ better than } b \text{ then}$$

$$\leftarrow \text{ remove } b \text{ from } M_2$$

$$\text{value } \{ \text{ a used} \}$$

► How can we improve the "recombine" step?