УДК 59.087:639.219(282.256.341)

ОЦЕНКА ЧИСЛЕННОСТИ И БИОМАССЫ БАЙКАЛЬСКОГО ОМУЛЯ ТРАЛОВО-АКУСТИЧЕСКИМ МЕТОДОМ

М. М. Макаров*, А. И. Дегтев**, К. М. Кучер*,

А.М. Мамонтов*, И. А. Небесных*, И. В. Ханаев*, Е.В. Дзюба*

Представлено академиком М.А. Грачевым

Поступила в редакцию

В 2011 г. гидроакустическим методом (ГАМ) получена оценка численности (360474.2 тыс. экз.) и биомассы (31589 т) байкальского омуля *Coregonus migratorius*. По сравнению с выполненными ранее траловоакустическими съемками [1] проведено более детальное обследование по всей акватории озера Байкал с использованием экспериментально полученного в 2010 г. уравнения соотношения длина — отражательная способность (силы цели) байкальского омуля. В работе учтены основные требования адаптации ГАМ к условиям озера и экологии рыб - характеристики звукорассеивающих слоев, особенности распределения и начала нагульных миграций байкальского омуля [1].

Тралово-акустическая съемка проводилась в период с 25 мая по 15 июня 2011 г. с борта НИС «Г.Ю. Верещагин» с использованием двухчастотного (200/28,8 кГц) гидроакустического комплекса на базе рыбопоискового эхолота "Furuno FCV1100" и гидроакустического программно-технического комплекса "AsCor" (ООО ПромГидроакустика), предназначенного для камеральной обработки акустических записей и количественной оценки рыбных запасов [2]. Расчеты численности и биомассы проводились по данным, полученным на рабочей частоте 28,8 кГц. Данные, полученные на частоте 200 кГц, использовались для повышения точности расчетов. Гидроакустические антенны на штанге с обтекателем вдоль борта были погружены на глубину 1-1,5 м. Калибровку

гидроакустических комплексов проводили по стандартной схеме с использованием медной сферы, сила цели которой равна -36,2 дБ. НИС двигалось по заданной сетке галсов типа «меандр» и «зигзаг» (рис. 1) со скоростью 2,1–2,6 м/с. Акустические данные записывались вместе с географическими координатами, затем экспортировались в программу обработки системы "AsCor". Выделение районов акватории озера производилось по различиям в характере плотности гидроакустической регистрации рыб и результатов контрольных обловов, выполненных разноглубинным тралом 22/108.

Всего выполнено 20 тралений на разных горизонтах в различных районах Байкала. Результаты контрольных обловов (общая выборка 4650 экз. рыб) использовались для анализа распределения популяций байкальского омуля по районам, а также для расчетов размерно-весового соотношения у рыб и получения степенной аппроксимации в виде зависимости:

$$W=0.0063*L^{3.1712}.$$
 (1),

где L – промысловая длина рыбы, см, W – масса, г.

Для байкальского омуля существует ряд оценок зависимости силы цели от длины. В 2010 году проведены работы по уточнению силы цели байкальского омуля для рабочей частоты эхолота 200 кГц, в результате получено выражение:

$$TS=20.0Lg(L)-64.5$$
 (2),

где L – промысловая длина рыбы, см, TS – сила цели, dB.

В настоящей съемке была использована частота 28,8 кГц, для которой вводилась поправка:

$$\Delta = 0.9 Lg(f_1/f_2)$$
 (3),

где f_1 и f_2 - рабочие частоты эхолота.

Средние показатели длины и массы байкальского омуля по траловым уловам и гидроакустическим данным представлены в таблице 1.

Применение многочастотных систем (28, 38, 50, 70, 120, 200, 420 кГц) дает возможность отфильтровать помехи, имеющие физическую природу,

разграничить рыб (пузырных от беспузырных) и планктон [4-8; и др.]. Пример такого подхода продемонстрирован на эхограмме двухчастотной (28,8 и 200 кГц) регистрации байкальского омуля, находящегося внутри плотного скопления макрозоопланктона (Macrohectopus branickii) с диапазоном длины тела 2-3 см (рис. 2). Для рабочей частоты 28,8 кГц мелкие организмы остаются практически прозрачными, что имеет известное физическое объяснение в виде дифракции, а для высокой частоты (200 кГц) наблюдается достаточно сильное обратное рассеяние [1].Наличие ультразвука зоопланктоном экспериментально подтвержденного уравнения силы цели для байкальского омуля позволило получить более точную оценку его биомассы, а возможность проводить измерения на двух частотах, сделали их обоснованными.

Результаты, полученные с помощью ГАМ, приведены в таблице 2. Распределение численности и биомассы байкальского омуля по акватории озера Байкал имеет неравномерный характер. Скопления, с плотностью выше среднего, занимают не более четверти обследованной площади, но содержат почти две трети запасов байкальского омуля. Общая картина его пространственного распределения по акватории озера совпала с ранее проведенными тралово-акустическими съемками. Подтверждена необходимость их проведения непосредственно за сходом льда, до начала нагульных миграций байкальского омуля. Рыба в этот период образует плотные скопления и локализуется по глубинам, легкодоступным для гидроакустической регистрации, что повышает точность проводимых учетных работ. Полученная оценка численности и биомассы байкальского омуля, особенно для Селенгинского мелководья и Северного Байкала, хорошо согласуется с прогнозом их многолетней динамики на основе особенностей размерного и возрастного состава рыб. Подтвердились выводы о нахождении значительной части популяций байкальского омуля над глубоководными зонами озера [1].

По официальным данным на 2010 г. общая биомасса байкальского омуля оценивалась в 19,7 тыс. т, при этом, общий объем допустимого

улова составлял 1700 т. [9]. По данным тралово-акустической съемки 2011 г., биомасса байкальского омуля равна 31,6 т, что на 38% больше официальных данных. Если объем допустимого улова будет увеличен приблизительно до 3 тыс. т., то при рыночной цене 1 кг байкальского омуля около 150 руб, доход составит 450 млн. руб. Ежегодный тралово-акустический учет байкальского омуля потребовал бы расходов не более 5 млн. руб. Таким образом, проведение регулярного (раз в два года) учета байкальского омуля может дать значительный народно-хозяйственный эффект.

Работы выполнены под руководством к.б.н. Н.Г. Мельник в рамках интеграционного проекта СО РАН №6.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Мельник Н.Г. Смирнова-Залуми Н.С., Смирнов В.В. и др.* Гидроакустический учет ресурсов байкальского омуля. Новосибирск: Наука, 2009. 244 с.
- 2. Патент РФ на полезную модель № 60755. Гидроакустический двухчастотный программно-технический комплекс по количественной оценке водных биомасс «ASCOR» / Дегтев А.И. Заявка № 2006120070, зарег. 27.12.2007.
- 3. *Урик Р.Дж.* Основы гидроакустики. Л.: Судостроение, 1978. 331 с.
- 4. *Николаев А.В.* // Вопросы промысловой гидроакустики. М.: Изд-во ВНИРО, 1999. С. 6-25.
 - 5. *Токарев Ю.Н.* // Экология моря. 2001. Вып. 57. С. 51–59.
- 6. Mitson R.B., Knudsen H.P. // Aquat. Living Res. 2003. V. 16. P. 255-263.
 - 7. Gauthier S., Horne J.K. // ICES J. Mar. Sci. 2004. V. 61. P. 836-845.
- 8. *Simmonds J., MacLennan D.* // Fisheries Acoustics: Theory and Practice. Second Edition. Blackwell, Oxford, UK, 2005. 259 p.
- 9. «О состоянии озера Байкал и мерах по его охране в 2009 году» // Государственный доклад. М. 2011. 411 с.
- *Федеральное государственное учреждение науки Лимнологический институт Сибирского отделения РАН, Иркутск
 - **ООО «ПромГидроакустика», Петрозаводск

Таблица 1. Средние показатели длины и массы байкальского омуля по траловым уловам и гидроакустическим данным, май-июнь 2011 г.

Район		Средний размер по данным		
	Средняя сила цели (TS), дБ	Средний размер по выражениям 2 и 3, см	Средний вес по выражению 1, г	контрольных обловов, см
Селенгинское мелководье	-37.1	21.1	99,8	20.1
Баргузинский залив	-37.9	19.2	74.0	21.0
Северный Байкал	-38.3	18.5	65.3	19.4
Пролив Малое Море	-37.4	20.5	91.0	23.1
Открытое озеро (Энхолук – м. Горевый)	-38.0	19.0	71.5	17.9

Примечание: выделены районы, традиционно значимые в промысле.

Таблица 2. Результаты оценки численности и биомассы байкальского омуля тралово-акустическим методом

Район	Площадь, га	Численность, тыс. экз.	Средняя плотность, экз./га	Биомасса, тонн	Средняя плотность, кг/га
Вся обследованная акватория озера Байкал	2869610	360474.2	126	31588.6	11.0
Селенгинское мелководье	204630	138108.2	675	13639.5	66.7
Баргузинский залив	58390	7203.5	123	502.0	8.6
Северный Байкал	87410	54490.7	623	4419.4	50.6
Пролив Малое Море	54750	10476.3	191	889.9	16.2

Примечание: доверительный интервал для средних значений не более $\pm 7.6\%$ при уровне значимости 5%.

Рис. 1. Схема галсов тралово-акустической съемки 2011 г.

Рис. 2. Эхограмма одновременной двухчастотной (28.8 и 200 кГц) регистрации разреженного скопления байкальского омуля в плотном скоплении зоопланктона

ESTIMATION OF ABUNDANCE AND BIOMASS OF BAIKALIAN OMUL BY TRAWL-ACOUSTIC SURVEY

M. M. Makarov*, A. I. Degtev**, K. M. Kucher*, A. M. Mamontov*, I. A. Nebesnukh*, I. V. Khanaev*, E. V. Dzyuba*

Сведения об авторах

Автор для переписки: 1. Макаров Михаил Михайлович — н.с., лаб. гидрологии и гидрофизики ЛИН СО РАН, 664033, г. Иркутск, ул. Улан-Баторская, 3, а/я 278; Тел. раб: 8 (3952) 42-32-99; Факс: 8 (3952) 42-54-05; Тел. дом.: 8 (9149) 56-86-78; E-mail: mmmsoft@hlserver.lin.irk.ru.

- 2. Дегтев Андрей Игоревич к.т.н., директор ООО «ПромГидроакустика», 185034, г. Петрозаводск, пер. Родниковый 4-й, 17; сот. тел. 8-921-4-565-745. E-mail: rickoshet@onego.ru.
- 3. Кучер Константин Мирославович аспирант, лаб. гидрологии и гидрофизики ЛИН СО РАН, 664033, г. Иркутск, ул. Улан-Баторская, 3, а/я 278; Тел. раб: 8 (3952) 42-32-99; Факс: 8 (3952) 42-54-05; Тел. дом.: 8 (9086) 63-37-78; E-mail: kost@hlserver.lin.irk.ru.
- 4. Ханаев Игорь Вениаминович с.н.с., лаборатория ихтиологии ЛИН СО РАН, , 664043, г. Иркутск, ул. Улан-Баторская, 3, а/я 278; тел. раб: 8 (3952) 42-26-95; факс: 8 (3952) 42-54-05; сот. тел.. 8-902-5-698-321; E-mail: igkhan@lin.irk.ru.
- 5. Мамонтов Анатолий Михайлович к.б.н, главный специалист лаб. ихтиологии ЛИН СО РАН, 664043, г. Иркутск, ул. Улан-Баторская, 3, а/я 278; тел. раб: 8 (3952) 42-26-95; факс: 8 (3952) 42-54-05; E-mail: mamontov@lin.irk.ru.
- 6. Небесных Иван Александрович аспирант, ведущий инженер лаб. ихтиологии ЛИН СО РАН, 664043, г. Иркутск, ул. Улан-Баторская, 3, а/я 278; тел. раб: 8 (3952) 42-26-95; факс: 8 (3952) 42-54-05; тел. дом. 8 (3952) 46-84-65; E-mail: canis-87@mail.ru.
- 7. Дзюба Елена Владимировна к.б.н., и.о. зав. лаб. ихтиологии ЛИН СО РАН, 664033, г. Иркутск, ул. Улан-Баторская, 3, а/я 278; Тел. раб: 8 (3952) 42-26-95; Факс: 8 (3952) 42-54-05; Тел. дом.: 8 (3952) 59-03-95; Е-mail: e_dzuba@lin.irk.ru.