Fingerprint-Based Structure Retrieval Using Electron Density

Shuangye Yin and Nikolay V. Dokholyan*

Department of Biochemistry and Biophysics University of North Carolina at Chapel Hill Chapel Hill, NC 27599-7260 USA

SUPPLEMENTARY MATERIALS

Table S1. Definition of different distance measures between two vectors X (x_i , i=1..n) and Y (y_i , i=1..n). \overline{X} and \overline{Y} are the average of X and Y, respectively.

Distance measure name	Definition
Cosine	$1 - \frac{X \cdot Y}{ X Y }$
Correlation	$1 - \frac{(X - \overline{X}) \cdot (Y - \overline{Y})}{\left X - \overline{X}\right Y - \overline{Y}\right }$
Euclidean	$\sqrt{\sum (x_i - y_i)^2}$
Manhattan	$\sum x_i - y_i $
Canberra	$\sum \frac{ x_i - y_i }{ x_i + y_i }$

Table S2. Top 91 hits and their fingerprint similarity scores from screening GroEL electron density. The protein names are extracted from meta-data of the PDB files. Note that for several structures the name "60 KDA CHAPERONIN" is used for GroEL protein.

PDBID	Fingerprint Difference	Protein Name
1oel-G	0.0136641	GROEL (HSP60 CLASS)
loel-B	0.0137425	GROEL (HSP60 CLASS)
1oel-E	0.0138116	GROEL (HSP60 CLASS)
1oel-A	0.0139113	GROEL (HSP60 CLASS)
1oel-F	0.014112	GROEL (HSP60 CLASS)
1oel-C	0.0143676	GROEL (HSP60 CLASS)
1kp8-G	0.0144045	GROEL PROTEIN
1oel-D	0.0144593	GROEL (HSP60 CLASS)

^{*} Corresponding author, Email: dokh@med.unc.edu, Phone: 919-843-2513, Fax: 919-966-2852.

1ss8-G	0.0145948	GROEL PROTEIN
1ss8-E	0.0147399	GROEL PROTEIN
1sx3-G	0.0147529	GROEL PROTEIN
1ss8-B	0.014758	GROEL PROTEIN
1xck-E	0.014776	60 KDA CHAPERONIN
1xck-M	0.0148479	60 KDA CHAPERONIN
1xck-B	0.0150037	60 KDA CHAPERONIN
1ss8-A	0.0150081	GROEL PROTEIN
1kp8-D	0.0150574	GROEL PROTEIN
1ss8-F	0.015077	GROEL PROTEIN
1xck-A	0.01507	60 KDA CHAPERONIN
1xck-G	0.0151059	60 KDA CHAPERONIN
1xck-G	0.0151039	60 KDA CHAPERONIN
1kp8-C	0.0151385	GROEL PROTEIN
1xck-D	0.0151575	60 KDA CHAPERONIN
1pf9-L	0.0152614	GROEL PROTEIN
1xck-I	0.0152616	60 KDA CHAPERONIN
1xck-J	0.0152663	60 KDA CHAPERONIN
1kp8-H	0.0152879	GROEL PROTEIN
1xck-L	0.0153507	60 KDA CHAPERONIN
1ss8-C	0.0153551	GROEL PROTEIN
1we3-N	0.0154318	CPN60(GROEL)
1kp8-N	0.0154651	GROEL PROTEIN
1sx3-D	0.0154789	GROEL PROTEIN
1kp8-L	0.0154792	GROEL PROTEIN
1sx3-C	0.0155081	GROEL PROTEIN
1pcq-L	0.0155118	GROEL PROTEIN
1kp8-I	0.0155339	GROEL PROTEIN
1ss8-D	0.015566	GROEL PROTEIN
1xck-F	0.0156018	60 KDA CHAPERONIN
1sx3-H	0.0157191	GROEL PROTEIN
1xck-H	0.0157566	60 KDA CHAPERONIN
1we3-H	0.0157588	CPN60(GROEL)
1xck-C	0.0158204	60 KDA CHAPERONIN
1pf9-K	0.0158485	GROEL PROTEIN
1sx3-L	0.0158799	GROEL PROTEIN
1kp8-E	0.015897	GROEL PROTEIN
1pcq-H	0.015899	GROEL PROTEIN
1we3-I	0.0159098	CPN60(GROEL)
1sx3-N	0.0159351	GROEL PROTEIN
1svt-L	0.0159482	GROEL PROTEIN
1kp8-J	0.0159659	GROEL PROTEIN
1pcq-K	0.0159681	GROEL PROTEIN
1рf9-H	0.0159875	GROEL PROTEIN
1sx3-I	0.0159942	GROEL PROTEIN
1pf9-M	0.016006	GROEL PROTEIN
1pf9-I	0.0161077	GROEL PROTEIN
1kp8-B	0.0161718	GROEL PROTEIN
1kp8-M	0.0161826	GROEL PROTEIN
1kp8-A	0.0162605	GROEL PROTEIN
1we3-J	0.0162749	CPN60(GROEL)
1pcq-M	0.0162994	GROEL PROTEIN
1kp8-K	0.016304	GROEL PROTEIN
1750-I	0.010304	OWORD INOIRIN

1sx3-E	0.0163272	GROEL PROTEIN
1xck-N	0.0163366	60 KDA CHAPERONIN
1kp8-F	0.0163975	GROEL PROTEIN
1svt-K	0.0164025	GROEL PROTEIN
1we3-K	0.0164082	CPN60(GROEL)
1pcq-I	0.016422	GROEL PROTEIN
1svt-H	0.0164316	GROEL PROTEIN
1we3-L	0.0164931	CPN60(GROEL)
1sx3-J	0.0165149	GROEL PROTEIN
1sx3-B	0.0167023	GROEL PROTEIN
1pf9-J	0.0167209	GROEL PROTEIN
1svt-M	0.0167482	GROEL PROTEIN
1sx3-K	0.0167914	GROEL PROTEIN
1sx3-A	0.0168139	GROEL PROTEIN
1pf9-N	0.0168248	GROEL PROTEIN
1sx3-M	0.0168328	GROEL PROTEIN
1svt-I	0.0168422	GROEL PROTEIN
1sx3-F	0.0168654	GROEL PROTEIN
1pcq-N	0.0170332	GROEL PROTEIN
1pcq-J	0.0170947	GROEL PROTEIN
1svt-N	0.0173197	GROEL PROTEIN
1svt-J	0.0174233	GROEL PROTEIN
1we3-M	0.0178757	CPN60(GROEL)
1grl-B	0.0234945	GROEL (HSP60 CLASS)
1grl-F	0.0234954	GROEL (HSP60 CLASS)
1grl-G	0.0234956	GROEL (HSP60 CLASS)
1grl-A	0.0234957	GROEL (HSP60 CLASS)
1grl-E	0.0234957	GROEL (HSP60 CLASS)
1grl-C	0.0234958	GROEL (HSP60 CLASS)
1grl-D	0.0234958	GROEL (HSP60 CLASS)

Table S3. Top 10 hits and their fingerprint similarity scores from screening rhodopsin electron density. The protein names are extracted from meta-data from the PDB files.

PDBID	Fingerprint Difference	Protein Name
1hzx-B	0.023656	RHODOPSIN
119h-B	0.0239033	RHODOPSIN
1f88-B	0.0244048	RHODOPSIN
1jfp-A	0.0289866	RHODOPSIN
3cap-B	0.0296454	RHODOPSIN
3cap-A	0.0298134	RHODOPSIN
2nun-A	0.0302557	AVIRULENCE B PROTEIN
1gzm-A	0.0309606	RHODOPSIN
3c91-A	0.0310502	RHODOPSIN
1gzm-B	0.0311402	RHODOPSIN

Figure S1. The ROC curves of the structural retrieval experiments for the six SCOP families in the benchmark dataset. Five different fingerprint comparison methods are used, including cosine angle distance, correlation distance, Euclidean distance, Manhattan distance, and Canberra distance.

Figure S2. The statistics of fingerprint difference against decoys structures for the six SCOP families. The 5% statistical significance level corresponds to a fingerprint difference of approximately 0.015.

Figure S3. The AUC of structure retrieval for the six SCOP families with various Zernike order cutoffs.

Figure S4. The ROC curve of structure retrieval for the six SCOP families (left panel), and the fingerprint differences as a function of RMSD from the query structures (right panel).

Figure S5. The fingerprints of six representative structures, and the standard deviations of the fingerprints on random rotations. All fingerprints have been normalized so that the first component (corresponding to total density) has magnitude 1.

Figure S6. (a) The fingerprint differences of six representative structures as a function of center shift. (b) The histograms of the observed center shifts for the six SCOP families in the benchmark set. Using a fingerprint difference cutoff of 0.015 will allow deviation of density center of approximately 2-3.5Å, which is beyond the observed density center shift for the six SCOP families in the benchmark set.

Figure S7. The top 4 distinct false positive structures and their rankings (shown in brackets following the PDB code) compared with the true positive hits (PDB code 1hzx-B, ranked No. 1).

Figure S8. The histogram of the r_{max} to r_g ratio of all high-resolution structures in the PDB snapshot. The ratio is between 1.5 and 3.5 for the majority of structures.

Figure S9. (a) The number of residues and conformational variation of all protein structures in the PDB that are classified into the rhodopsin family by SCOP or CATH. The structural difference is measured using RMSD from the top hit (PDB code 1hzx-B). Three structures are identified as incorrectly classified by SCOP. (b) Structural alignment of the representative structures of the two clusters.

Figure S10. (a) The number of residues and conformational variations of all protein structures in the PDB that are classified into the GroEL family by SCOP or CATH. The structural difference is measured using RMSD from the top hit (PDB code 1oel-G). (b) Structural alignment of the representative structures of the two clusters.

