Automata Terms in a Lazy WSkS Decision Procedure

Vojtěch Havlena Lukáš Holík Ondřej Lengál Tomáš Vojnar

> Brno University of Technology Czech Republic

30 August 2019 (CADE'19)

■ Monadic Second-order ~> quantification over sets

- Monadic Second-order ~ quantification over sets
- Weak ~> finite models

- Monadic Second-order ~> quantification over sets
- Weak ~> finite models
- k successors \(\sigma \) assignments represent positions in an infinite k-ary tree

- Monadic Second-order ~> quantification over sets
- Weak ~> finite models
- k successors → assignments represent positions in an infinite k-ary tree

- Application: e.g., reasoning about heap structures (STRAND), dec. proc. for separation logic, . . .
- Tool Mona [Klarlund et al.'98]

- Monadic Second-order ~> quantification over sets
- Weak → finite models
- k successors \(\sigma \) assignments represent positions in an infinite k-ary tree

- Application: e.g., reasoning about heap structures (STRAND), dec. proc. for separation logic, . . .
- Tool Mona [Klarlund et al.'98]
- Closely related to finite tree automata [Doner'65]
- Decidable but NONELEMENTARY
 - ▶ Blow-up caused by quantifier alternations $((\exists \forall)^*)$

Syntax and Semantics of WS2S

Syntax (restricted to
$$k = 2$$
)

atom
$$\psi ::= X \subseteq Y \mid X = S_{\mathbb{L}}(Y) \mid X = S_{\mathbb{R}}(Y)$$
 formula $\varphi ::= \exists X. \ \varphi \mid \varphi \wedge \varphi \mid \neg \varphi \mid \psi$

$$X, Y \text{ are second-order variables}$$

Syntax and Semantics of WS2S

Syntax (restricted to k = 2)

atom
$$\psi ::= X \subseteq Y \mid X = S_{\mathbb{L}}(Y) \mid X = S_{\mathbb{R}}(Y)$$
 formula $\varphi ::= \exists X. \ \varphi \mid \varphi \wedge \varphi \mid \neg \varphi \mid \psi$

$$X, \ Y \ \text{are second-order variables}$$

Semantics

- Model of $\varphi(\mathbb{X})$ is an assignment $\eta: \mathbb{X} \to \mathcal{P}_{\omega}(\{\mathtt{L},\mathtt{R}\}^*)$ satisfying φ
 - $ightharpoonup \mathcal{P}_{\omega}(S) \leadsto \text{set of all finite subsets of } S$
 - **Example:** $\eta = \{X \mapsto \{LRL, RL, RRL\}\}$
- Assignment of a variable defines set of positions in a tree

Semantics of WS2S cont.

 \blacksquare Satisfaction of atoms under η

$$\begin{array}{ll} \eta \vDash X \subseteq Y & \text{iff} & \eta(X) \subseteq \eta(Y) \\ \eta \vDash X = \mathcal{S}_{\mathbb{L}}(Y) & \text{iff} & \eta(X) = \{p.\mathbb{L} \mid p \in \eta(Y)\} \\ \eta \vDash X = \mathcal{S}_{\mathbb{R}}(Y) & \text{iff} & \eta(X) = \{p.\mathbb{R} \mid p \in \eta(Y)\} \end{array}$$

Example

Semantics of WS2S cont.

■ Satisfaction of formulae under η

```
\begin{array}{ll} \eta \vDash \varphi_1 \wedge \varphi_2 & \text{iff} \quad \eta \vDash \varphi_1 \text{ and } \eta \vDash \varphi_2 \\ \eta \vDash \neg \varphi & \text{iff} \quad \eta \nvDash \varphi \\ \eta \vDash \exists X. \ \psi & \text{iff} \quad \text{exists } S \in \mathcal{P}_{\omega}(\{\mathtt{L},\mathtt{R}\}^*) \text{ s.t. } \eta \cup \{X \mapsto S\} \vDash \psi \end{array}
```

Validity, satisfiability

- Model of $\varphi(X, Y)$ encoded as a finite tree of symbols (X|Y)
- Formula language $\mathcal{L}(\varphi) = \{\tau \mid \tau \text{ is an encoding of } \eta \text{ s.t. } \eta \vDash \varphi\}$

- Model of $\varphi(X, Y)$ encoded as a finite tree of symbols (X|Y)
- Formula language $\mathcal{L}(\varphi) = \{\tau \mid \tau \text{ is an encoding of } \eta \text{ s.t. } \eta \vDash \varphi\}$
- Example: $\eta = \{X \mapsto \{LR, R, RLR, RR\}, Y \mapsto \{\epsilon, L, LL, R, RR\}\}$

- Model of $\varphi(X, Y)$ encoded as a finite tree of symbols XY
- Formula language $\mathcal{L}(\varphi) = \{\tau \mid \tau \text{ is an encoding of } \eta \text{ s.t. } \eta \vDash \varphi\}$
- **Example:** $\eta = \{X \mapsto \{LR, R, RLR, RR\}, Y \mapsto \{\epsilon, L, LL, R, RR\}\}$

(a) Positions assigned to X,Y

- Model of $\varphi(X, Y)$ encoded as a finite tree of symbols XY
- Formula language $\mathcal{L}(\varphi) = \{\tau \mid \tau \text{ is an encoding of } \eta \text{ s.t. } \eta \vDash \varphi\}$
- **Example:** $\eta = \{X \mapsto \{LR, R, RLR, RR\}, Y \mapsto \{\epsilon, L, LL, R, RR\}\}$

(a) Positions assigned to X,Y

Example: $\eta = \{X \mapsto \{LR, R, RLR, RR\}, Y \mapsto \{\epsilon, L, LL, R, RR\}\}$

(a) William a choodin

(b) Nonminimal encoding

- More encodings:
 - ▶ minimal encoding with no $\vec{0}$ -labelled subtrees ($\vec{0} = (0 | \dots | 0)$)
 - encodings obtained from minimal by appending 0-labelled subtrees

Tree Automaton

- Concise representation of a set of trees
- Finite Tree Automaton
 - Finite set of states Q
 - Set of leaf states I ⊂ Q
 - Set of root states R ⊂ Q
 - ▶ Transition function Δ_a : $Q \times Q \rightarrow Q$ for each symbol a.

Tree Automaton

- Concise representation of a set of trees
- Finite Tree Automaton
 - ► Finite set of states Q
 - ▶ Set of leaf states $I \subseteq Q$
 - ▶ Set of root states $R \subseteq Q$
 - ▶ Transition function $\Delta_a : Q \times Q \rightarrow Q$ for each symbol a.

- For a formula φ inductively construct TA \mathcal{A}_{φ} s.t. $\mathcal{L}(\varphi) = \mathcal{L}(\mathcal{A}_{\varphi})$
 - ▶ For φ being an atom \longrightarrow use predefined TA \mathcal{A}_{φ}
 - $\qquad \qquad \mathsf{For} \ \varphi = \psi_1 \wedge \psi_2 \quad \rightsquigarrow \quad \mathcal{A}_\varphi = \mathcal{A}_{\psi_1} \cap \mathcal{A}_{\psi_2}$
 - For $\varphi = \neg \psi \longrightarrow \mathcal{A}_{\varphi} = \mathcal{A}_{\psi}^{\complement}$ (requires determinization)
 - ► For $\varphi = \exists X$. $\psi \longrightarrow \mathcal{A}_{\varphi} = \pi_X(\mathcal{A}_{\psi}) \vec{0}^{*}$ (projection, saturation)

- For a formula φ inductively construct TA \mathcal{A}_{φ} s.t. $\mathcal{L}(\varphi) = \mathcal{L}(\mathcal{A}_{\varphi})$
 - $lackbox{ For } arphi$ being an atom $\ \ \leadsto$ use predefined TA \mathcal{A}_{arphi}
 - For $\varphi = \psi_1 \wedge \psi_2 \quad \leadsto \quad \mathcal{A}_{\varphi} = \mathcal{A}_{\psi_1} \cap \mathcal{A}_{\psi_2}$
 - For $\varphi = \neg \psi \longrightarrow \mathcal{A}_{\varphi} = \mathcal{A}_{\psi}^{\complement}$ (requires determinization)
 - ► For $\varphi = \exists X. \ \psi \quad \leadsto \quad \mathcal{A}_{\varphi} = \pi_X(\mathcal{A}_{\psi}) \vec{0}^{\, *}$ (projection, saturation)
- Satisfiability checking $\mathcal{L}(\mathcal{A}_{\varphi}) \stackrel{?}{=} \emptyset$

- For a formula φ inductively construct TA \mathcal{A}_{φ} s.t. $\mathcal{L}(\varphi) = \mathcal{L}(\mathcal{A}_{\varphi})$
 - $lackbox{ For } arphi$ being an atom $\ \ \leadsto$ use predefined TA \mathcal{A}_{arphi}
 - For $\varphi = \psi_1 \wedge \psi_2 \quad \rightsquigarrow \quad \mathcal{A}_{\varphi} = \mathcal{A}_{\psi_1} \cap \mathcal{A}_{\psi_2}$
 - For $\varphi = \neg \psi \quad \leadsto \quad \mathcal{A}_{\varphi} = \mathcal{A}_{\psi}^{\complement}$ (requires determinization)
 - ► For $\varphi = \exists X. \ \psi \quad \leadsto \quad \mathcal{A}_{\varphi} = \pi_X(\mathcal{A}_{\psi}) \vec{0}^{*}$ (projection, saturation)
- Satisfiability checking $\mathcal{L}(\mathcal{A}_{\varphi}) \stackrel{?}{=} \emptyset$

Projection π_X

■ Ignore X-track of each symbol

- For a formula φ inductively construct TA \mathcal{A}_{φ} s.t. $\mathcal{L}(\varphi) = \mathcal{L}(\mathcal{A}_{\varphi})$
 - $lackbox{ For } arphi$ being an atom $\ \ \leadsto$ use predefined TA \mathcal{A}_{arphi}
 - ► For $\varphi = \psi_1 \wedge \psi_2$ \longrightarrow $\mathcal{A}_{\varphi} = \mathcal{A}_{\psi_1} \cap \mathcal{A}_{\psi_2}$
 - For $\varphi = \neg \psi$ \longrightarrow $\mathcal{A}_{\varphi} = \mathcal{A}_{\psi}^{\complement}$ (requires determinization)
 - ► For $\varphi = \exists X. \ \psi \quad \leadsto \quad \mathcal{A}_{\varphi} = \pi_X(\mathcal{A}_{\psi}) \vec{0}^{*}$ (projection, saturation)
- Satisfiability checking $\mathcal{L}(\mathcal{A}_{\varphi}) \stackrel{?}{=} \emptyset$

Projection π_X

■ Ignore X-track of each symbol

- For a formula φ inductively construct TA \mathcal{A}_{φ} s.t. $\mathcal{L}(\varphi) = \mathcal{L}(\mathcal{A}_{\varphi})$
 - $lackbox{ For } arphi$ being an atom $\ \ \leadsto$ use predefined TA \mathcal{A}_{arphi}
 - ► For $\varphi = \psi_1 \wedge \psi_2$ \longrightarrow $\mathcal{A}_{\varphi} = \mathcal{A}_{\psi_1} \cap \mathcal{A}_{\psi_2}$
 - For $\varphi = \neg \psi$ \longrightarrow $\mathcal{A}_{\varphi} = \mathcal{A}_{\psi}^{\complement}$ (requires determinization)
 - ► For $\varphi = \exists X$. $\psi \longrightarrow \mathcal{A}_{\varphi} = \pi_X(\mathcal{A}_{\psi}) \vec{0}^{*}$ (projection, saturation)
- Satisfiability checking $\mathcal{L}(\mathcal{A}_{\varphi}) \stackrel{?}{=} \emptyset$

Projection π_X

■ Ignore X-track of each symbol

For TA on the level of transition function

Projection π_X

■ Ignore X-track of each symbol

For TA on the level of transition function

Projection π_X

■ Ignore X-track of each symbol

For TA on the level of transition function

Saturation $-\vec{0}^*$

Projection can prevent from accepting all encodings

Projection π_X

■ Ignore X-track of each symbol

For TA on the level of transition function

Saturation $-\vec{0}^*$

- Projection can prevent from accepting all encodings
- Remove zero-labelled subtrees

Projection π_X

■ Ignore X-track of each symbol

For TA on the level of transition function

Saturation $-\vec{0}^*$

- Projection can prevent from accepting all encodings
- Remove zero-labelled subtrees

Projection π_X

■ Ignore X-track of each symbol

For TA on the level of transition function

Saturation $-\vec{0}^*$

- Projection can prevent from accepting all encodings
- Remove zero-labelled subtrees
- For TA saturate the set of leaf states reachability from leaf states over 0

 $\begin{tabular}{ll} \blacksquare Satisfiability checking of φ \\ \leadsto construct the whole TA \mathcal{A}_{φ} \\ \leadsto check $\mathcal{L}\left(\mathcal{A}_{\varphi}\right) = \emptyset$ \\ \end{tabular}$

$$\varphi \equiv \neg \exists X. \ \textit{Sing}(X) \ \land X = \{\epsilon\}$$

$$\varphi \equiv \neg \exists X. \; \mathit{Sing}(X) \; \land X = \{\epsilon\}$$

$$\begin{tabular}{c} & & \downarrow \\ & & \downarrow \\ & & \mathcal{A}_{\mathit{Sing}(X)} & \mathcal{A}_{X=\{\epsilon\}} \end{tabular}$$

■ Satisfiability checking of φ \leadsto construct the whole TA \mathcal{A}_{φ} \leadsto check $\mathcal{L}\left(\mathcal{A}_{\varphi}\right)=\emptyset$

 Quantifier alternation can cause exponential blow-up

- Quantifier alternation can cause exponential blow-up
- What if for $\psi_1 \wedge \psi_2$ we have $\mathcal{L}(\mathcal{A}_{\psi_1}) = \emptyset$?

- Quantifier alternation can cause exponential blow-up
- What if for $\psi_1 \wedge \psi_2$ we have $\mathcal{L}(\mathcal{A}_{\psi_1}) = \emptyset$?
 - No need to construct \mathcal{A}_{ψ_2} and $\mathcal{A}_{\psi_1 \wedge \psi_2}$

Towards Automata Terms

■ Satisfiability checking of φ \leadsto construct the whole TA \mathcal{A}_{φ} \leadsto check $\mathcal{L}\left(\mathcal{A}_{\varphi}\right)=\emptyset$

- Quantifier alternation can cause exponential blow-up
- What if for $\psi_1 \wedge \psi_2$ we have $\mathcal{L}(\mathcal{A}_{\psi_1}) = \emptyset$?
 - No need to construct A_{ψ_2} and $A_{\psi_1 \wedge \psi_2}$

No need to construct the whole TA → construction directed by emptiness check

Automata Terms Overview

- Implicit representation of TAs constructed by automata operations
 - Tracking the information about used automata operations
 - Terms represent
 - states (e.g., t₁ & t₂)
 - a set of a TA leaf states (e.g., $\{t_1, t_2, t_3\}, \{t_1, t_2\} \vec{0}^*$)
 - Term leaves are states of a base TA
 - Term transition function and term root predicate defined inductively on the structure of terms

Automata Terms Overview

- Implicit representation of TAs constructed by automata operations
 - Tracking the information about used automata operations
 - Terms represent
 - states (e.g., t₁ & t₂)
 - a set of a TA leaf states (e.g., $\{t_1, t_2, t_3\}, \{t_1, t_2\} \vec{0}^*$)
 - Term leaves are states of a base TA
 - Term transition function and term root predicate defined inductively on the structure of terms
- Automata terms allow to construct parts of automata from incomplete parts on lower levels (in contrast to the classical proc.)
 - Even if the lower parts are not finished yet

Automata Terms Overview

- Implicit representation of TAs constructed by automata operations
 - Tracking the information about used automata operations
 - Terms represent
 - states (e.g., t₁ & t₂)
 - a set of a TA leaf states (e.g., $\{t_1, t_2, t_3\}, \{t_1, t_2\} \vec{0}^*$)
 - Term leaves are states of a base TA
 - Term transition function and term root predicate defined inductively on the structure of terms
- Automata terms allow to construct parts of automata from incomplete parts on lower levels (in contrast to the classical proc.)
 - Even if the lower parts are not finished yet
- Allows to prune the state space and to test emptiness on the fly Focus on ground formulae

$$\vDash \varphi \iff \bot \in \mathcal{L}(\varphi)$$

Decision Procedure

Overview

- lacktriangle Convert formula φ to automata term t_{φ}
 - φ is atom \leadsto t_{φ} is the set of leaf states of a base \mathcal{A}_{φ}
 - $ightharpoonup arphi = \psi_1 \wedge \psi_2 \quad \leadsto \quad t_{arphi} = t_{\psi_1} \& t_{\psi_2}$

 - $\varphi = \exists X. \ \psi \rightarrow t_{\varphi} = \{\pi_X(t_{\psi})\} \vec{0}^* \rightarrow \text{Symbolic representation of unfinished fixpoint computation (saturation)}$

- lacktriangle Convert formula φ to automata term t_{φ}
 - φ is atom \leadsto t_{φ} is the set of leaf states of a base \mathcal{A}_{φ}

 - ho $\varphi = \neg \psi$ \leadsto $t_{\varphi} = \overline{t_{\psi}}$
 - $\varphi = \exists X. \ \psi \quad \leadsto \quad t_{\varphi} = \{\pi_X(t_{\psi})\} \vec{0}^*$ \leadsto Symbolic representation of unfinished fixpoint computation (saturation)

Example

■ Formula $\varphi \equiv \neg \exists X. \ \textit{Sing}(X) \land X = \{\epsilon\}$

- lacktriangle Convert formula φ to automata term t_{φ}
 - ightharpoonup arphi is the set of leaf states of a base \mathcal{A}_{arphi}

 - $\varphi = \exists X. \ \psi \rightarrow t_{\varphi} = \{\pi_X(t_{\psi})\} \vec{0}^* \rightarrow \text{Symbolic representation of unfinished fixpoint computation (saturation)}$

- Formula $\varphi \equiv \neg \exists X$. $Sing(X) \land X = \{\epsilon\}$
- lacktriangle Corresponding automata term $t_{\varphi} = \left\{ \overline{\{\pi_{X}(\{q_{0}\} \& \{p_{0}\})\} \vec{0}^{*}} \right\}$

- lacksquare Convert formula arphi to automata term \emph{t}_{arphi}
 - ightharpoonup arphi is the set of leaf states of a base \mathcal{A}_{arphi}
 - $ightharpoonup arphi = \psi_1 \wedge \psi_2 \quad \leadsto \quad t_{arphi} = t_{\psi_1} \& t_{\psi_2}$
 - ho $\varphi = \neg \psi$ \leadsto $t_{\varphi} = \overline{t_{\psi}}$
 - $\varphi = \exists X. \ \psi \rightarrow t_{\varphi} = \{\pi_X(t_{\psi})\} \vec{0}^* \rightarrow \text{Symbolic representation of unfinished fixpoint computation (saturation)}$

- Formula $\varphi \equiv \neg \exists X$. $Sing(X) \land X = \{\epsilon\}$
- lacktriangle Corresponding automata term $t_{arphi} = \left\{ \overline{\{\pi_X(\{q_0\} \, \& \{p_0\})\} \vec{0}^{\, *}} \, \right\}$
- lacksquare t_{arphi} denotes the TA $\left(\pi_X(\mathcal{A}_{\mathit{Sing}(X)}\cap\mathcal{A}_{X=\{\epsilon\}})-\vec{\mathsf{0}}^{\,\star}
 ight)^{\complement}$

Overview

- The term $\underbrace{\{\pi_X(t_\psi)\}}_{S}$ $-\vec{0}^*$ of formula $\exists X.\ \psi$ symbolically represents unfinished fixpoint computation
- Corresponds to the TA saturation $\pi_X(A_{\psi}) \vec{0}^*$

- The term $\underbrace{\{\pi_X(t_\psi)\}}_{S}$ $-\vec{0}^*$ of formula $\exists X.\ \psi$ symbolically represents unfinished fixpoint computation
- Corresponds to the TA saturation $\pi_X(A_{\psi}) \vec{0}^*$
- The term $S \vec{0}^*$ represents all terms bottom-up reachable from S via transition function Δ over symbol $\vec{0}$
 - $ightharpoonup \Delta_a$ is a binary tree term transition function over a

$$S - \vec{0}^* = \mu Z. \ S \cup \bigcup_{q,r \in Z} \Delta_{\vec{0}}(q,r)$$

- The term $\underbrace{\{\pi_X(t_\psi)\}}_S$ $-\vec{0}^*$ of formula $\exists X.\ \psi$ symbolically represents unfinished fixpoint computation
- Corresponds to the TA saturation $\pi_X(A_{\psi}) \vec{0}^*$
- The term $S \vec{0}^*$ represents all terms bottom-up reachable from S via transition function Δ over symbol $\vec{0}$
 - $ightharpoonup \Delta_a$ is a binary tree term transition function over a

$$S - \vec{0}^{\dagger} = \mu Z. \ S \cup \bigcup_{q,r \in Z} \Delta_{\vec{0}}(q,r)$$

$$1 \{t\} - \vec{0}^* =$$

■ The term $\underbrace{\{\pi_X(t_\psi)\}}_S$ $-\vec{0}^*$ of formula $\exists X.\ \psi$ symbolically represents unfinished fixpoint computation

- Corresponds to the TA saturation $\pi_X(A_{\psi}) \vec{0}^*$
- The term $S \vec{0}^*$ represents all terms bottom-up reachable from S via transition function Δ over symbol $\vec{0}$
 - $ightharpoonup \Delta_a$ is a binary tree term transition function over a

$$S - \vec{0}^{\dagger} = \mu Z. \ S \cup \bigcup_{q,r \in Z} \Delta_{\vec{0}}(q,r)$$

$$\{t\} - \vec{0}^* =$$

- The term $\underbrace{\{\pi_X(t_\psi)\}}_S$ $-\vec{0}^*$ of formula $\exists X.\ \psi$ symbolically represents unfinished fixpoint computation
- Corresponds to the TA saturation $\pi_X(A_{\psi}) \vec{0}^*$
- The term $S \vec{0}^*$ represents all terms bottom-up reachable from S via transition function Δ over symbol $\vec{0}$
 - $ightharpoonup \Delta_a$ is a binary tree term transition function over a

$$|t| \{t\} - \vec{0}^* = \{t, s\} - \vec{0}^*$$

- The term $\underbrace{\{\pi_X(t_\psi)\}}_{S}$ $-\vec{0}^*$ of formula $\exists X.\ \psi$ symbolically represents unfinished fixpoint computation
- Corresponds to the TA saturation $\pi_X(A_{\psi}) \vec{0}^*$
- The term $S \vec{0}^*$ represents all terms bottom-up reachable from S via transition function Δ over symbol $\vec{0}$
 - $ightharpoonup \Delta_a$ is a binary tree term transition function over a

$$|t| \{t\} - \vec{0}^* = \{t, s\} - \vec{0}^*$$

$$[t,s] - \vec{0}^* =$$

- The term $\underbrace{\{\pi_X(t_\psi)\}}_S$ $-\vec{0}^*$ of formula $\exists X.\ \psi$ symbolically represents unfinished fixpoint computation
- Corresponds to the TA saturation $\pi_X(A_{\psi}) \vec{0}^*$
- The term $S \vec{0}^*$ represents all terms bottom-up reachable from S via transition function Δ over symbol $\vec{0}$
 - $ightharpoonup \Delta_a$ is a binary tree term transition function over a

1
$$\{t\} - \vec{0}^* = \{t, s\} - \vec{0}^*$$

$$\{t,s\} - \vec{0}^* =$$

- The term $\underbrace{\{\pi_X(t_\psi)\}}_S$ $-\vec{0}^{\pm}$ of formula $\exists X.\ \psi$ symbolically represents unfinished fixpoint computation
- Corresponds to the TA saturation $\pi_X(A_{\psi}) \vec{0}^*$
- The term $S \vec{0}^*$ represents all terms bottom-up reachable from S via transition function Δ over symbol $\vec{0}$
 - $ightharpoonup \Delta_a$ is a binary tree term transition function over a

$$[t] \{t\} - \vec{0}^* = \{t, s\} - \vec{0}^*$$

$$\{t,s\} - \vec{0}^* =$$

$$ightharpoonup \Delta_{\vec{0}}(s,t) = \{t\}$$

■ The term $\underbrace{\{\pi_X(t_\psi)\}}_S$ $-\vec{0}^{\pm}$ of formula $\exists X.\ \psi$ symbolically represents unfinished fixpoint computation

- Corresponds to the TA saturation $\pi_X(A_{\psi}) \vec{0}^*$
- The term $S \vec{0}^*$ represents all terms bottom-up reachable from S via transition function Δ over symbol $\vec{0}$
 - $ightharpoonup \Delta_a$ is a binary tree term transition function over a

1
$$\{t\} - \vec{0}^* = \{t, s\} - \vec{0}^*$$

$$\{t,s\} - \vec{0}^* =$$

$$ightharpoonup \Delta_{\vec{0}}(s,t) = \{t\}$$

$$\triangle_{\vec{0}}(s,s) = \{s\}$$

- The term $\underbrace{\{\pi_X(t_\psi)\}}_S$ $-\vec{0}^{\pm}$ of formula $\exists X.\ \psi$ symbolically represents unfinished fixpoint computation
- Corresponds to the TA saturation $\pi_X(A_{\psi}) \vec{0}^*$
- The term $S \vec{0}^*$ represents all terms bottom-up reachable from S via transition function Δ over symbol $\vec{0}$
 - $ightharpoonup \Delta_a$ is a binary tree term transition function over a

1
$$\{t\} - \vec{0}^* = \{t, s\} - \vec{0}^*$$

2
$$\{t,s\}$$
 - $\vec{0}^* = \{t,s\}$ - $\vec{0}^* = \{t,s\}$ \rightsquigarrow fixpoint reached

- $\triangle_{\vec{0}}(s,s) = \{s\}$

■ Formula $\varphi \equiv \neg \exists X$. $Sing(X) \land X = \{\epsilon\}$ and its automata term $t_{\varphi} = \left\{ \boxed{\{\pi_X(q_0 \& p_0)\} - \vec{0}^*\}} \right\}$

■ Formula $\varphi \equiv \neg \exists X$. $Sing(X) \land X = \{\epsilon\}$ and its automata term $t_{\varphi} = \left\{ \boxed{\{\pi_X(q_0 \& p_0)\} - \vec{0}^*\}} \right\}$

$$1 \{ \pi_X(q_0 \& p_0) \} - \vec{0}^* =$$

■ Formula $\varphi \equiv \neg \exists X$. $Sing(X) \land X = \{\epsilon\}$ and its automata term $t_{\varphi} = \left\{ \overline{\{\pi_X(q_0 \& p_0)\} - \vec{0}^*\}} \right\}$

$$[\pi_X(q_0 \& p_0)] - \vec{0}^* =$$

■ Formula $\varphi \equiv \neg \exists X$. $Sing(X) \land X = \{\epsilon\}$ and its automata term $t_{\varphi} = \left\{ \overline{\{\pi_X(q_0 \& p_0)\} - \vec{0}^*\}} \right\}$

$$1 \{ \pi_X(q_0 \& p_0) \} - \vec{0}^* =$$

$$\Delta_{\overline{0}}(\pi_{X}(q_{0} \& p_{0}), \pi_{X}(q_{0} \& p_{0})) = ?$$

$$\Delta_{\overline{0}}(\pi_{X}(q_{0} \& p_{0}), \pi_{X}(q_{0} \& p_{0})) =$$

$$\Delta_{\overline{0}}(\pi_{X}(t_{1}), \pi_{X}(t_{2})) - \{\pi_{X}(\Delta_{X=0}(t_{1}, t_{2})), \pi_{X}(\Delta_{X=1}(t_{1}, t_{2}))\}$$

$$\Delta_{\vec{0}}(\pi_{X}(t_{1}), \pi_{X}(t_{2})) \longrightarrow \{\pi_{X}(\Delta_{X=0}(t_{1}, t_{2})), \pi_{X}(\Delta_{X=1}(t_{1}, t_{2}))\}$$

$$\{\pi_{X}(\Delta_{X=1}(q_{0} \& p_{0}, q_{0} \& p_{0})), \pi_{X}(\Delta_{X=0}(...))\} =$$

■ Formula $\varphi \equiv \neg \exists X$. $Sing(X) \land X = \{\epsilon\}$ and its automata term $t_{\varphi} = \left\{ \overline{\{\pi_X(q_0 \& p_0)\} - \vec{0}^*\}} \right\}$

$$\{ \pi_X(q_0 \& p_0) \} - \vec{0}^* =$$

$$\Delta_{\vec{0}}(\pi_{X}(q_{0} \& p_{0}), \pi_{X}(q_{0} \& p_{0})) = ?$$

$$\Delta_{\vec{0}}(\pi_{X}(q_{0} \& p_{0}), \pi_{X}(q_{0} \& p_{0})) =$$

$$\Delta_{\vec{0}}(\pi_{X}(t_{1}), \pi_{X}(t_{2})) - (\pi_{X}(\Delta_{X=0}(t_{1}, t_{2})), \pi_{X}(\Delta_{X=1}(t_{1}, t_{2})))$$

$$\{\pi_{X}(\Delta_{X=1}(q_{0} \& p_{0}, q_{0} \& p_{0})), \pi_{X}(\Delta_{X=0}(...))\} =$$

$$\Delta_{\vec{a}}(t_{1} \& t_{2}, t_{3} \& t_{4}) - \Delta_{\vec{a}}(t_{1}, t_{2}) [\&] \Delta_{\vec{a}}(t_{3}, t_{4})$$

 $\{\pi_X(\Delta_{X=1}(q_0,q_0) \otimes \Delta_{X=1}(p_0,p_0)), \dots\} =$

Formula $\varphi \equiv \neg \exists X. \ \textit{Sing}(X) \land X = \{\epsilon\}$ and its automata term $t_{\varphi} = \left\{ \boxed{\{\pi_{X}(q_{0} \& p_{0})\} - \vec{0}^{*}\}} \right\}$

$$\{ \pi_X(q_0 \& p_0) \} - \vec{0}^* =$$

$$\Delta_{\vec{0}}(\pi_{X}(q_{0} \& p_{0}), \pi_{X}(q_{0} \& p_{0})) = ?$$

$$\Delta_{\vec{0}}(\pi_{X}(q_{0} \& p_{0}), \pi_{X}(q_{0} \& p_{0})) =$$

$$\Delta_{\vec{0}}(\pi_{X}(t_{1}), \pi_{X}(t_{2})) \rightarrow \{\pi_{X}(\Delta_{X=0}(t_{1}, t_{2})), \pi_{X}(\Delta_{X=1}(t_{1}, t_{2}))\}$$

$$\{\pi_{X}(\Delta_{X=1}(q_{0} \& p_{0}, q_{0} \& p_{0})), \pi_{X}(\Delta_{X=0}(...))\} =$$

$$\Delta_{a}(t_{1} \& t_{2}, t_{3} \& t_{4}) \rightarrow \Delta_{a}(t_{1}, t_{2})[\&]\Delta_{a}(t_{3}, t_{4})$$

$$\{\pi_{X}(\Delta_{X=1}(q_{0}, q_{0}) \& \Delta_{X=1}(p_{0}, p_{0})), ...\} =$$

$$\{\pi_{X}(q_{1} \& p_{1}), \pi_{X}(q_{0} \& p_{0})\}$$

 $A_{X=\{\epsilon\}}$

Formula $\varphi \equiv \neg \exists X. \ \textit{Sing}(X) \land X = \{\epsilon\}$ and its automata term $t_{\varphi} = \left\{ \boxed{\{\pi_{X}(q_{0} \& p_{0})\} - \vec{0}^{*}\}} \right\}$

$$\Delta_{\vec{0}}(\pi_{X}(q_{0} \& p_{0}), \pi_{X}(q_{0} \& p_{0})) = ?$$

$$\Delta_{\vec{0}}(\pi_{X}(q_{0} \& p_{0}), \pi_{X}(q_{0} \& p_{0})) =$$

$$\Delta_{\vec{0}}(\pi_{X}(t_{1}), \pi_{X}(t_{2})) - \{\pi_{X}(\Delta_{X=0}(t_{1}, t_{2})), \pi_{X}(\Delta_{X=1}(t_{1}, t_{2}))\}$$

$$\{\pi_{X}(\Delta_{X=1}(q_{0} \& p_{0}, q_{0} \& p_{0})), \pi_{X}(\Delta_{X=0}(...))\} =$$

$$\Delta_{a}(t_{1} \& t_{2}, t_{3} \& t_{4}) - \Delta_{a}(t_{1}, t_{2})[\&]\Delta_{a}(t_{3}, t_{4})$$

$$\{\pi_{X}(\Delta_{X=1}(q_{0}, q_{0}) \& \Delta_{X=1}(p_{0}, p_{0})), ...\} =$$

 $\{\pi_X(q_1 \& p_1), \pi_X(q_0 \& p_0)\}$

■ Formula $\varphi \equiv \neg \exists X$. $Sing(X) \land X = \{\epsilon\}$ and its automata term $t_{\varphi} = \left\{ \boxed{\{\pi_X(q_0 \& p_0)\} - \vec{0}^*\}} \right\}$

$$\Delta_{\vec{0}}(\pi_{X}(q_{0} \& p_{0}), \pi_{X}(q_{0} \& p_{0})) = ?$$

$$\Delta_{\vec{0}}(\pi_{X}(q_{0} \& p_{0}), \pi_{X}(q_{0} \& p_{0})) =$$

$$\Delta_{\vec{0}}(\pi_{X}(t_{1}), \pi_{X}(t_{2})) - \{\pi_{X}(\Delta_{X=0}(t_{1}, t_{2})), \pi_{X}(\Delta_{X=1}(t_{1}, t_{2}))\}$$

$$\{\pi_{X}(\Delta_{X=1}(q_{0} \& p_{0}, q_{0} \& p_{0})), \pi_{X}(\Delta_{X=0}(...))\} =$$

$$\Delta_{a}(t_{1} \& t_{2}, t_{3} \& t_{4}) - \Delta_{a}(t_{1}, t_{2})[\&]\Delta_{a}(t_{3}, t_{4})$$

$$\{\pi_{X}(\Delta_{X=1}(q_{0}, q_{0}) \& \Delta_{X=1}(p_{0}, p_{0})), \dots \} =$$

 $\{\pi_X(q_1 \& p_1), \pi_X(q_0 \& p_0)\}$

 $A_{X=\{\epsilon\}}$

Overview

Root Term Check

 \blacksquare For a ground formula φ

$$\vDash \varphi \iff \mathcal{L}\left(\mathcal{A}_{\varphi}\right) \neq \emptyset \iff \mathcal{R}(t_{\varphi}^{\mathsf{e}})$$

• $t_{\varphi}^{\mathrm{e}} \leadsto \mathrm{term} \ \mathrm{of} \ \varphi \ \mathrm{with} \ \mathrm{all} \ \mathrm{evaluated} \ \mathrm{fixpoints}$

Root Term Check

For a ground formula φ

$$\vDash \varphi \iff \mathcal{L}\left(\mathcal{A}_{\varphi}\right) \neq \emptyset \iff \mathcal{R}(\mathit{t}_{\varphi}^{\mathsf{e}})$$

- $t_{\varphi}^{\mathsf{e}} \leadsto \mathsf{term} \; \mathsf{of} \; \varphi \; \mathsf{with} \; \mathsf{all} \; \mathsf{evaluated} \; \mathsf{fixpoints}$
- lacksquare Root term check \leadsto check that the corresponding TA accepts ot
 - $ightharpoonup \mathcal{R}(t \& u) \rightsquigarrow \mathcal{R}(t) \text{ and } \mathcal{R}(u)$
 - $ightharpoonup \mathcal{R}(\pi_X(t)) \rightsquigarrow \mathcal{R}(t)$
 - $ightharpoonup \mathcal{R}(\overline{t}) \leadsto not \, \mathcal{R}(t)$
 - $ightharpoonup \mathcal{R}(S) \leadsto \textit{exists } t \in S \text{ s.t. } \mathcal{R}(t)$
 - $ightharpoonup \mathcal{R}(q) \leadsto q$ is a root state of a base TA

Efficient Decision Procedure

Lazy evaluation

- Driven by the root term check
- ▶ Short-circuiting \leadsto if $not \mathcal{R}(t_1)$, then $not \mathcal{R}(t_1 \& t_2) \leadsto$ no need to evaluate potentially complex term t_2 .
- ► Early termination ~ root term check after each step of fixpoint eval
 - Reduces number of fixpoint evaluation steps

Efficient Decision Procedure

Lazy evaluation

- Driven by the root term check
- ▶ Short-circuiting \rightsquigarrow if not $\mathcal{R}(t_1)$, then not $\mathcal{R}(t_1 \& t_2) \rightsquigarrow$ no need to evaluate potentially complex term t_2 .
- ► Early termination → root term check after each step of fixpoint eval
 - · Reduces number of fixpoint evaluation steps

Subsumption

- State space pruning
- Remove subsumed terms from a set
 - · Generalization of antichain algorithm

Efficient Decision Procedure

Lazy evaluation

- Driven by the root term check
- Short-circuiting \rightsquigarrow if not $\mathcal{R}(t_1)$, then not $\mathcal{R}(t_1 \& t_2) \rightsquigarrow$ no need to evaluate potentially complex term t_2 .
- Early termination → root term check after each step of fixpoint eval
 - Reduces number of fixpoint evaluation steps

Subsumption

- State space pruning
- Remove subsumed terms from a set
 - Generalization of antichain algorithm
- $\blacktriangleright \ \{\{q\},\{q,r\}\} \leadsto \{\{q,r\}\} \quad (\text{since } \mathcal{L}(\{q\}) \subseteq \mathcal{L}(\{q,r\}))$

Product flattening

- $\{t_1, t_2\} \& \{t_3, t_4\} \leadsto \{t_1 \& t_3, t_1 \& t_4, t_2 \& t_3, t_2 \& t_4\}$
- ▶ Reduces size of fixpoint eval. → exponential vs. polynomial size
 - E.g., $\mathcal{O}(2^{|Q_1|+|Q_2|})$ vs. $\mathcal{O}(|Q_1|\cdot |Q_2|)$

21/25

Lazy Evaluation

- Formula $\varphi \equiv \neg \exists X$. $Sing(X) \land X = \{\epsilon\}$ and its automata term $t_{\varphi} = \left\{ \overline{\{\pi_X(q_0 \& p_0)\} \vec{0}^*\}} \right\}$
- \blacksquare Is φ satisfiable?

- Formula $\varphi \equiv \neg \exists X$. $Sing(X) \land X = \{\epsilon\}$ and its automata term $t_{\varphi} = \left\{ \overline{\{\pi_X(q_0 \& p_0)\} \vec{0}^*\}} \right\}$
- Is φ satisfiable?

$$\blacksquare \mathcal{R}\left(\overline{\{\pi_X(q_0 \& p_0)\} - \vec{0}^{\,\pm}}\right)$$

- Formula $\varphi \equiv \neg \exists X$. $Sing(X) \land X = \{\epsilon\}$ and its automata term $t_{\varphi} = \left\{ \overline{\{\pi_X(q_0 \& p_0)\} \vec{0}^*\}} \right\}$
- Is φ satisfiable?

$$\mathbb{R}\left(\{\pi_X(q_0 \& p_0)\} - \vec{0}^{\,\pm}\right) \iff not \ \mathcal{R}(\{\pi_X(q_0 \& p_0)\} - \vec{0}^{\,\pm})$$

- Formula $\varphi \equiv \neg \exists X$. $Sing(X) \land X = \{\epsilon\}$ and its automata term $t_{\varphi} = \left\{ \overline{\{\pi_X(q_0 \& p_0)\} \vec{0}^*\}} \right\}$
- Is φ satisfiable?

- - $\triangleright \mathcal{R}(\pi_X(q_0 \& p_0))$

- Formula $\varphi \equiv \neg \exists X$. $Sing(X) \land X = \{\epsilon\}$ and its automata term $t_{\varphi} = \left\{ \overline{\{\pi_X(q_0 \& p_0)\} \vec{0}^{\, *}\}} \right\}$
- Is φ satisfiable?

- $\mathbb{R}\left(\{\pi_X(q_0 \& p_0)\} \vec{0}^*\right) \iff not \ \mathcal{R}(\{\pi_X(q_0 \& p_0)\} \vec{0}^*)$

- Formula $\varphi \equiv \neg \exists X$. $Sing(X) \land X = \{\epsilon\}$ and its automata term $t_{\varphi} = \left\{ \overline{\{\pi_X(q_0 \& p_0)\} \vec{0}^{\, *}\}} \right\}$
- Is φ satisfiable?

- $\mathcal{R}\left(\{\pi_X(q_0 \& p_0)\} \vec{0}^*\right) \iff not \ \mathcal{R}(\{\pi_X(q_0 \& p_0)\} \vec{0}^*)$
 - $ightharpoonup \mathcal{R}(\pi_X(q_0 \& p_0)) \iff \mathcal{R}(q_0 \& p_0) \iff \mathcal{R}(q_0) \text{ and } \mathcal{R}(p_0)$

- Formula $\varphi \equiv \neg \exists X$. $Sing(X) \land X = \{\epsilon\}$ and its automata term $t_{\varphi} = \left\{ \left. \overline{\left\{ \pi_{X}(q_{0} \& p_{0}) \right\} - \vec{0}^{\star}} \right. \right\}$
- \blacksquare Is φ satisfiable?

- - $ightharpoonup \mathcal{R}(\pi_X(q_0 \& p_0)) \iff \mathcal{R}(q_0 \& p_0) \iff \mathcal{R}(q_0) \text{ and } \mathcal{R}(p_0) \Leftrightarrow \textit{false} \ \ref{eq:false}$

- Formula $\varphi \equiv \neg \exists X$. $Sing(X) \land X = \{\epsilon\}$ and its automata term $t_{\varphi} = \left\{ \overline{\{\pi_X(q_0 \& p_0)\} \vec{0}^*\}} \right\}$
- \blacksquare Is φ satisfiable?

- $\mathbb{R}\left(\{ \pi_X(q_0 \& p_0) \} \vec{0}^{\, *} \right) \iff not \ \mathcal{R}(\{ \pi_X(q_0 \& p_0) \} \vec{0}^{\, *})$
 - $ightharpoonup \mathcal{R}(\pi_X(q_0 \& p_0)) \iff \mathcal{R}(q_0 \& p_0) \iff \mathcal{R}(q_0) \text{ and } \mathcal{R}(p_0) \Leftrightarrow \textit{false} \ \ref{eq:false}$
 - Fixpoint eval step ${}^{\sim} \{\pi_X(q_0 \& p_0)\} \vec{0}^{\,\pm} = \{\pi_X(q_0 \& p_0), \pi_X(q_1 \& p_1)\} \vec{0}^{\,\pm}\}$

- Formula $\varphi \equiv \neg \exists X$. $Sing(X) \land X = \{\epsilon\}$ and its automata term $t_{\varphi} = \left\{ \overline{\{\pi_X(q_0 \& p_0)\} \vec{0}^*\}} \right\}$
- Is φ satisfiable?

- $\mathcal{R}\left(\overline{\{\pi_X(q_0 \& p_0)\} \vec{0}^{\,*}}\right) \iff not \ \mathcal{R}(\{\pi_X(q_0 \& p_0)\} \vec{0}^{\,*})$
 - $ightharpoonup \mathcal{R}(\pi_X(q_0 \& p_0)) \iff \mathcal{R}(q_0 \& p_0) \iff \mathcal{R}(q_0) \text{ and } \mathcal{R}(p_0) \Leftrightarrow \textit{false} \ \ref{eq:false}$
 - Fixpoint eval step $\rightsquigarrow \{\pi_X(q_0 \& p_0)\} \vec{0}^* = \{\pi_X(q_0 \& p_0), \pi_X(q_1 \& p_1)\} \vec{0}^*$
- $\mathbb{R}\left(\{ \pi_X(q_0 \& p_0) \} \vec{0}^{\frac{1}{K}} \right) \iff not \ \mathcal{R}(\{ \pi_X(q_0 \& p_0), \pi_X(q_1 \& p_1) \} \vec{0}^{\frac{1}{K}})$

- Formula $\varphi \equiv \neg \exists X$. $Sing(X) \land X = \{\epsilon\}$ and its automata term $t_{\varphi} = \left\{ \overline{\{\pi_X(q_0 \& p_0)\} \vec{0}^*\}} \right\}$
- Is φ satisfiable?

- $\mathcal{R}\left(\overline{\{\pi_X(q_0 \& p_0)\} \vec{0}^{\,*}}\right) \iff not \ \mathcal{R}(\{\pi_X(q_0 \& p_0)\} \vec{0}^{\,*})$
 - $\blacktriangleright \ \mathcal{R}(\pi_X(q_0 \& p_0)) \iff \mathcal{R}(q_0 \& p_0) \iff \mathcal{R}(q_0) \text{ and } \mathcal{R}(p_0) \Leftrightarrow \textit{false} \ \bigstar$
 - Fixpoint eval step $\rightsquigarrow \{\pi_X(q_0 \& p_0)\} \vec{0}^* = \{\pi_X(q_0 \& p_0), \pi_X(q_1 \& p_1)\} \vec{0}^*$
- $\mathbb{R}\left(\{\pi_X(q_0 \& p_0)\} \vec{0}^{\,*}\right) \iff not \ \mathcal{R}(\{\pi_X(q_0 \& p_0), \pi_X(q_1 \& p_1)\} \vec{0}^{\,*})$
 - $\triangleright \mathcal{R}(\pi_X(q_1 \& p_1))$

- Formula $\varphi \equiv \neg \exists X$. $Sing(X) \land X = \{\epsilon\}$ and its automata term $t_{\varphi} = \left\{ \overline{\{\pi_X(q_0 \& p_0)\} \vec{0}^*\}} \right\}$
- Is φ satisfiable?

- $\mathcal{R}\left(\overline{\{\pi_X(q_0 \& p_0)\} \vec{0}^{\,*}}\right) \iff not \ \mathcal{R}(\{\pi_X(q_0 \& p_0)\} \vec{0}^{\,*})$
 - $ightharpoonup \mathcal{R}(\pi_X(q_0 \& p_0)) \iff \mathcal{R}(q_0 \& p_0) \iff \mathcal{R}(q_0) \text{ and } \mathcal{R}(p_0) \Leftrightarrow \textit{false} \ \ref{eq:false}$
 - Fixpoint eval step $\rightsquigarrow \{\pi_X(q_0 \& p_0)\} \vec{0}^* = \{\pi_X(q_0 \& p_0), \pi_X(q_1 \& p_1)\} \vec{0}^*$
- $\mathbb{R}\left(\{\pi_X(q_0 \& p_0)\} \vec{0}^{\,*}\right) \iff not \ \mathcal{R}(\{\pi_X(q_0 \& p_0), \pi_X(q_1 \& p_1)\} \vec{0}^{\,*})$
 - $ightharpoonup \mathcal{R}(\pi_X(q_1 \& p_1)) \iff \mathcal{R}(q_1 \& p_1)$

- Formula $\varphi \equiv \neg \exists X$. $Sing(X) \land X = \{\epsilon\}$ and its automata term $t_{\varphi} = \left\{ \overline{\{\pi_X(q_0 \& p_0)\} \vec{0}^*\}} \right\}$
- Is φ satisfiable?

- $\mathcal{R}\left(\{\pi_X(q_0 \& p_0)\} \vec{0}^*\right) \iff not \ \mathcal{R}(\{\pi_X(q_0 \& p_0)\} \vec{0}^*)$
 - $\blacktriangleright \ \mathcal{R}(\pi_X(q_0 \& p_0)) \iff \mathcal{R}(q_0 \& p_0) \iff \mathcal{R}(q_0) \text{ and } \mathcal{R}(p_0) \Leftrightarrow \textit{false} \ \bigstar$
 - Fixpoint eval step $\rightsquigarrow \{\pi_X(q_0 \& p_0)\} \vec{0}^* = \{\pi_X(q_0 \& p_0), \pi_X(q_1 \& p_1)\} \vec{0}^*$
- $\mathbb{R}\left(\{\pi_X(q_0 \& p_0)\} \vec{0}^{\,*}\right) \iff not \ \mathcal{R}(\{\pi_X(q_0 \& p_0), \pi_X(q_1 \& p_1)\} \vec{0}^{\,*})$
 - $ightharpoonup \mathcal{R}(\pi_X(q_1 \& p_1)) \iff \mathcal{R}(q_1 \& p_1) \iff \mathcal{R}(q_1) \text{ and } \mathcal{R}(p_1)$

- Formula $\varphi \equiv \neg \exists X$. $Sing(X) \land X = \{\epsilon\}$ and its automata term $t_{\varphi} = \left\{ \left. \left\{ \pi_{X}(q_{0} \& p_{0}) \right\} \overline{-\vec{0}^{\star}} \right. \right\}$
- \blacksquare Is φ satisfiable?

Root states

- $\mathbb{P}\left(\{ \pi_X(q_0 \& p_0) \} \vec{0}^{\, *} \right) \iff not \ \mathcal{R}(\{ \pi_X(q_0 \& p_0) \} \vec{0}^{\, *})$
 - $ightharpoonup \mathcal{R}(\pi_X(q_0 \& p_0)) \iff \mathcal{R}(q_0 \& p_0) \iff \mathcal{R}(q_0) \text{ and } \mathcal{R}(p_0) \Leftrightarrow \textit{false} \ \ref{eq:false}$
 - Fixpoint eval step $\rightarrow \{\pi_X(q_0 \& p_0)\} - \vec{0}^* = \{\pi_X(q_0 \& p_0), \pi_X(q_1 \& p_1)\} - \vec{0}^*$
- - $\blacktriangleright \ \mathcal{R}(\pi_X(q_1 \& p_1)) \iff \mathcal{R}(q_1 \& p_1) \iff \mathcal{R}(q_1) \text{ and } \mathcal{R}(p_1) \Leftrightarrow \textit{true} \checkmark$

- Formula $\varphi \equiv \neg \exists X$. $Sing(X) \land X = \{\epsilon\}$ and its automata term $t_{\varphi} = \left\{ \left. \left\{ \pi_{X}(q_{0} \& p_{0}) \right\} \overline{-\vec{0}^{\star}} \right. \right\}$
- \blacksquare Is φ satisfiable?

- $\mathbb{P}\left(\{ \pi_X(q_0 \& p_0) \} \vec{0}^{\, *} \right) \iff not \ \mathcal{R}(\{ \pi_X(q_0 \& p_0) \} \vec{0}^{\, *})$
 - $ightharpoonup \mathcal{R}(\pi_X(q_0 \& p_0)) \iff \mathcal{R}(q_0 \& p_0) \iff \mathcal{R}(q_0) \text{ and } \mathcal{R}(p_0) \Leftrightarrow \textit{false} \ \ref{eq:false}$
 - Fixpoint eval step $\rightarrow \{\pi_X(q_0 \& p_0)\} - \vec{0}^* = \{\pi_X(q_0 \& p_0), \pi_X(q_1 \& p_1)\} - \vec{0}^*$
- $\mathbb{P}\left(\left\{\pi_X(q_0 \& p_0)\right\} \vec{0}^{\,\pm}\right) \iff not \ \mathcal{R}(\left\{\pi_X(q_0 \& p_0), \pi_X(q_1 \& p_1)\right\} \vec{0}^{\,\pm})$
 - $\blacktriangleright \ \mathcal{R}(\pi_X(q_1 \& p_1)) \iff \mathcal{R}(q_1 \& p_1) \iff \mathcal{R}(q_1) \text{ and } \mathcal{R}(p_1) \Leftrightarrow \textit{true} \checkmark$
- $\mathcal{R}(t_{\omega})$ is *false* \rightsquigarrow formula is unsatisfiable

Experiments

- Prototype tool written in Haskell
- Comparison with Mona (highly optimised C++)
 - Mona usually quite faster
 - some formulae where MONA was much slower (see below)

- 1 $\varphi_n^{pt} \equiv \forall Z_1, Z_2. \exists X_1, \dots, X_n. edge(Z_1, X_1) \land \bigwedge_{i=1}^n edge(X_i, X_{i+1}) \land edge(X_n, Z_2)$ where
 - $edge(X, Y) \equiv edge_{I}(X, Y) \vee edge_{R}(X, Y)$
 - $edge_{L/R}(X, Y) \equiv \exists \overline{Z}. \ Z = S_{L/R}(X) \land Z \subseteq Y$

	running time (sec)		# of subterms/states	
n	Lazy	Mona	Lazy	Mona
1	0.02	0.16	149	216
2	0.50	_	937	_
3	0.83	_	2,487	_
4	34.95	_	8,391	_
5	60.94	_	23,827	_

Experiments

$$2 \varphi_n^{cnst} \equiv \exists X. \ X = \{(LR)^4\} \land X = \{(LR)^n\}.$$

	running time (sec)		# of subterms/states	
n	Lazy	Mona	Lazy	Mona
80	14.60	40.07	1,146	27,913
90	21.03	64.26	1,286	32,308
100	28.57	98.42	1,426	36,258
110	38.10	_	1,566	_
120	49.82	_	1,706	_

$$3 \varphi_n^{sub} = \forall X_1, \ldots, X_n \exists Y. \ \bigwedge_{i=1}^{n-1} X_i \subseteq Y \Rightarrow (X_{i+1} = S_L(Y) \lor X_{i+1} = S_R(Y)).$$

	running time (sec)		# of subterms/states	
n	Lazy	Mona	Lazy	Mona
3	0.01	0.00	140	92
4	0.04	34.39	386	170
5	0.24	_	981	_
6	2.01	_	2,376	_

Conclusion and Future Work

- Representation of constructed automata using automata terms
- Efficient decision procedure
 - Lazy evaluation of automata terms directed by root term check
 - Subsumption
 - Product flattening
- New line of attack on hard WS2S formulae!
- Future work
 - Formula preprocessing (antiprenexing, ...)

Conclusion and Future Work

- Representation of constructed automata using automata terms
- Efficient decision procedure
 - Lazy evaluation of automata terms directed by root term check
 - Subsumption
 - Product flattening
- New line of attack on hard WS2S formulae!
- Future work
 - Formula preprocessing (antiprenexing, ...)

THANK YOU