Planche 1.

Exercice. Soient E un espace normé, $\epsilon > 0$, (K_n) une suite de compact de E, U un ouvert non connexe par arcs tel qu'il existe $u \in U$ tel que $\forall v \in U, \exists n \in \mathbb{N} : ||u - \epsilon v|| \geq 2^{2^{-\epsilon||u||}}, f : U \to \bigcup_{\mathbb{N}} K_n$ uniformément continue telle que $f^{-1}(V)$ est dense dans U pour toute partie V de diamètre $\geq \epsilon$. Montrer qu'un canard convexe peut nager dans E sans passer (de manière continue) dans U. [Théorème du canard convexe]

Dissertation. La météorologie chez les épicuriens et l'usage des nombres complexes.

Planche 2.

Dessin. Tracer une étoile à 5 branches avec la règle et le compas. Puis dessiner un canard jaune et convexe dedans.

Exercice. Décrire la prométaphase de la deuxième division méiotique d'une partie compacte d'un evn. (De dimension quelconque bien entendu)

Planche 3.

Question. Qu'est ce qui est jaune, normé et complet ? [Attention piège]

Exercice. Soit n+1 entiers distincts dans $\{1,\ldots,2n\}$. Montrer qu'il y en a au moins deux entiers parmi ceux-là tels que l'un divise l'autre.