

Ecuaciones No Lineales

Consideremos una ecuación que no se puede resolver de forma directa, ej: $x^2 - 5 = 0$.

Queremos encontrar el valor de x que satisface esta ecuación.

Aproximación de Raíces de Ecuaciones No Lineales

Consideremos una ecuación que no se puede resolver de forma directa, ej: $x^2 - 5 = 0$.

Queremos encontrar el valor de x que satisface esta ecuación.

La aproximación de raíces de ecuaciones no lineales es un método que nos ayuda a encontrar una buena estimación de ese valor

Aproximación de Raíces de Ecuaciones No Lineales

Aproximación de Raíces | Métodos

Método | Gráfico

- Es el método más común que se puede utilizar.
- Es muy útil para estimar valores iniciales.
- ✓ Se dan valores a x para encontrar donde "corta" la función en el eje x.

Ejemplo Método Gráfico

Suponiendo que la función es: $f(x) = e^x - x$

X	У
0	1
0,2	0,6184
0,4	0,2703

- Es una técnica utilizada para encontrar una solución aproximada de una ecuación no lineal al establecer un rango o intervalo dentro del cual se encuentra la solución.
- ✓ Es útil cuando no hay una suposición inicial precisa de la solución y solo se sabe que se encuentra dentro de un rango.

- ✓ A medida que se divide el intervalo en partes más pequeñas, nos acercamos más a la solución.
- ✓ Es importante destacar que este método no garantiza siempre la convergencia a una solución precisa, pero puede proporcionar una buena estimación.

✓ Para aplicarlos vamos a necesitar dos valores iniciales (intervalo) donde se encuentre o estime que esta la raíz.

✓ Vamos a ir reduciendo sistemáticamente el intervalo y hacia la convergencia de la respuesta.

Método | Bisección

✓ Es un método simple y efectivo utilizado para encontrar una aproximación de la raíz de una ecuación no lineal en un intervalo dado.

✓ Funciona dividiendo repetidamente el intervalo en dos partes y determinando en cuál de estas mitades se encuentra la raíz.

Método | Bisección

✓ Es un método incremental.

- ✓ El intervalo se divide en dos partes.
- ✓ Si la función cambia de signo, en algún punto del intervalo, se evalúa la función en el punto medio.

Bisección | Paso a paso

Supongamos que tenemos la ecuación f(x) = 0 y queremos encontrar una raíz en un intervalo [a,b] donde f(a) y f(b) tienen signos opuestos, lo que garantiza que al menos una raíz está dentro de ese intervalo.

Bisección | Paso a paso

Paso 1: Inicializa el proceso con los valores iniciales a y b, que son los extremos del intervalo que contiene la raíz.

Paso 2: Calcula el punto medio x_r del intervalo $x_r = \frac{a+b}{2}$

Paso 3: Calcula $f(x_r)$ para el valor x_r que se ha encontrado.

Paso 4: Comprueba el signo de $f(x_r)$:

Si $f(x_r) = 0$ encontramos la raíz exacta. Termina el proceso.

Si $f(x_a).f(x_b) < 0$ significa que la raíz está en el intervalo $[x_a,x_r].$ Entonces, actualiza $b=x_r.$

Si $f(x_b).f(x_r) < 0$ significa que la raíz está en el intervalo $[x_r, x_b]$. Entonces, actualiza $a = x_r$.

Paso 5: Repite los pasos 2-4 hasta que el intervalo [a, b] sea lo suficientemente pequeño o hasta obtener una aproximación suficientemente precisa de la raíz.

Bisección | Formalmente

Para el Intervalo [a, b]

$$X_{R_n} = \frac{X_{n+1} + X_{n-1}}{2}$$

Formalmente

Bisección | Ejemplo

$$f(x) = e^x - 2$$
 [0, 2]

$$X_{R_n} = \frac{X_{n+1} + X_{n-1}}{2}$$

Iteracion	Xa	Xr	Xb	f(Xa)	f(Xr)	f(Xb)	Error(%)
1	0	1	2	-1	0,7183	5,3891	
2	0	0,5	1	-1	-0,3512	0,7183	
3	0,5	0,75	1	-0,3512	0,117	0,7183	
4	0,5	0,625	0,75	-0,3512	-0,1317	0,117	
5	0,625	0,6875	0,75	-0,1317	-0,0112	0,117	
6	0,6875	0,7187	0,75	-0,0112	0,0518	0,117	
7	0,6875	0,7031	0,7187	-0,0112	0,02	0,0518	
8	0,6875	0,6953	0,7031	-0,0112	0,0043	0,02	1,12
9	0,6875	0,6914	0,6953	-0,0112	-0,0034	0,0043	0,5
10	0,6914	0,6933	0,6953	-0,0034	0,0003	0,0043	0,27

ERROR: $(X_{R-1} - X_R/X_{R-1}) * 100$

Regula Falsi

- ✓ Es similar al método de bisección, pero utiliza una aproximación lineal de la función entre los puntos a y b en lugar de una aproximación constante.
- ✓ La ventaja es que converge más rápido en muchos casos, pero es importante tener en cuenta que, en algunas situaciones, puede llegar a una solución que no es la raíz real.

Regula Falsi

- ✓ Este método une dos puntos en una línea recta.
- ✓ La línea recta es una secante de una función.
- ✓ La intersección de la línea recta con el eje x representa la mejor estimación de la raíz.

Regula Falsi

- ✓ Aquí el error **decrece** mucho más rápidamente que en el método de Bisección.
- ✓ Este método es el más eficiente de los dos.
- ✓ Aquí uno de los valores iniciales es permanente en el cálculo.

Regula Falsi | Paso a paso

Paso 1: Inicializa el proceso con los valores iniciales a y b, que son los extremos del intervalo que contiene la raíz. Calcula f(a) y f(b) para determinar los signos opuestos.

Paso 2: Calcula la pendiente de la línea que conecta los puntos (a, f(a)) y (b, f(b)). La ecuación de esta línea se puede escribir como:

$$y = f(a) + \frac{f(b) - f(a)}{b - a}.(x - a)$$

Esta línea cortará el eje x en un punto x_r que se utiliza como aproximación de la raíz.

Paso 3: Calcula $f(x_r)$ para el valor x_r que se ha encontrado.

Regula Falsi | Paso a paso

Paso 4: Comprueba el signo de $f(x_r)$:

Si $f(x_r) = 0$ encontramos la raíz exacta. Termina el proceso.

Si $f(x_a).f(x_b) < 0$ significa que la raíz está en el intervalo $[x_a,x_r].$ Entonces, actualiza $b=x_r.$

Si $f(x_b)$. $f(x_r) < 0$ significa que la raíz está en el intervalo $[x_r, x_b]$. Entonces, actualiza $a = x_r$.

Paso 5: Repite los pasos 2-4 hasta que el intervalo [a, b] sea lo suficientemente pequeño o hasta obtener una aproximación suficientemente precisa de la raíz.

Ejemplo Regula Falsi

$$f(x) = x^3 - 3x - 1$$
 Para [-1; 1]

En la primera iteración uso la fórmula para calcular x_R y evalúo entre que intervalo seguir:

[a; x_R] o [x_R ; b] dejando un punto fijo.

Ejemplo Regula Falsi

$$f(x) = x^3 - 3x - 1$$
 Para [-1; 1]

Verifico que este en el intervalo:

$$f(-1) = 1$$
$$f(1) = -3$$

+.-= - Se encuentra en el intervalo.

Ejemplo Regula Falsi

$$f(x) = x^3 - 3x - 1$$
 Para [-1; 1]

Iteracion	Xa	Xr	Xb	f(Xa)	f(Xr)	f(Xb)	Error	
1	-1	-0,5	1	1	0,375	-3	_	
2	-0,5	-0,3333	1	0,375	-0,0371	-3	50 % /	
3	-0,3333	-0,35	1	-0,0371	0,007125	-3	5 56%	
4	-0,35	-0,3468	1	0,007125	-0,0013	-3	0.000/	
5	-0,3468	-0,3473	1	-0,0013	0,00023	-3	0.14%	
6	-0,3473	-0,3474	1	0,00023	0,000291	-3		

ERROR: $(X_{R-1} - X_R/X_{R-1}) * 100$

Métodos Abiertos

Abiertos

Newton-Raphson

- Los métodos abiertos inician con una suposición inicial y convergen hacia la raíz a través de una secuencia de aproximaciones.
- ✓ Los métodos abiertos más comunes son: el método de Newton-Raphson.

Métodos Abiertos

- ✓ Es uno de los métodos abiertos más utilizados para encontrar raíces.
- Este método converge rápidamente hacia una raíz si se cumplen ciertas condiciones:
 - ✓ como una suposición inicial cercana y
 - ✓ derivadas bien definidas.
- ✓ Sin embargo, si no se cumplen estas condiciones, el método puede divergir o converger hacia una raíz incorrecta.

Problemas del método:

Si las derivadas son complejas no se usa.

Tiene tendencia a oscilar alrededor de un máximo o mínimo local y puede llegar a alejarse del punto de interés.

Método de Newton-Raphson

Paso 1: Elije una suposición inicial x_0 que esté cerca de la raíz que deseas encontrar

Paso 2: Calcula el valor de la función $f(x_0)$ y su derivada $f'(x_0)$ en x_0 .

Paso 3: Usa la siguiente fórmula para calcular la siguiente aproximación x_1 :

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

Paso 4: Repite los pasos 2 y 3 hasta que se obtenga una aproximación suficientemente precisa de la raíz. La fórmula se aplica iterativamente, y cada nueva aproximación se calcula en función de la anterior.

Ejemplo Numérico:

$$f(x) = x^3 - 7x + 7$$
 [1.5,2]

Calc. Auxiliares:

$$f'(x) = 3x^2 - 7$$
$$f''(x) = 6x$$

Analizo que punto del intervalo será x_0 :

$$f(1.5) = -$$

 $f''(1.5) = +$

$$+.-=-\rightarrow Empiezo\ con\ 2$$

Ing. Paula A. Toselli

$$X_{R1} = 2 - \frac{f(2)}{f'(2)} = 1.8$$
 $X_{R2} = 1.8 - \frac{f(1.8)}{f'(1.8)} = 1.714$
 $X_{R3} = 1.714 - \frac{f(1.714)}{f'(1.714)} = 1.693$
 $X_{R4} = 1.693 - \frac{f(1.693)}{f'(1.693)} = 1.692$

- \checkmark Es un método donde se utiliza X_{r1} para calcular X_{r2} , y sucesivamente.
- ✓ Puedo ir calculando el error para saber cuándo frenar el cálculo de X_r