Experiment 7 Lee's Method

Aumshree P. Shah 20231059^{a)}

(Dated: 24 March 2025)

Synopsis

In this experiment the thermal conductivity of a bad conductor is measured.

I. THEORY AND PROCEDURE

A. Apparatus

• Lee's Apparatus

• Bad conductor discs

• Two thermometers

• Boiler and Induction

• Stop watch

• Weighing balance

• Vernier Caliper

• Screw gauge

B. Theory

Fourier's law of heat conductance gives the rate of transfer of heat between two objects at temperatures T_1 and T_2 connected by a conductor with conductivity k, uniform cross-sectional area A, and length l as

$$\frac{\Delta Q}{\Delta t} = k A l \left(T_2 - T_1 \right).$$

This equation governs the rate of heat transfer from disc D_2 to disc D_1 (the bottom and top discs of Lee's apparatus, respectively).

The instantaneous rate at which a warm body loses heat to its surroundings is given by Newton's law of cooling,

$$\frac{dT}{dt} = -b\left(T - T_a\right),\,$$

where T_a is the ambient temperature. This law governs the rate at which disc D_1 cools in the second half of the experiment. If m is the mass of disc D_1 and s is the specific heat of its material, then the rate at which heat is lost by the disc is

$$\frac{\Delta Q_1}{\Delta t} = m \, s \, \frac{dT_1}{dt}.$$

In the steady state achieved in the first half of the experiment, the heat supplied by the steam is balanced by the cooling of disc D_1 . Combining the two heat transfer equations gives the heat balance

$$m s \frac{dT}{dt} = k A l (T_2 - T_1).$$
 (1)

The value of $\frac{dT}{dt}$ for disc D_1 can be determined from the cooling curve obtained in the second part of the experiment. As an approximation, a single value of $\frac{dT}{dt}$, calculated at T_1 during the cooling of disc D_1 from $T_1 + 10$ °C to $T_1 - 7$ °C, is used. From the known value $s = 0.380 \,\mathrm{J\,g^{-1}\,K^{-1}}$ for brass, the conductivity k can be determined. Note that if the two thermometers do not initially show the same reading, the temperature difference $T_2 - T_1$ must be corrected by the quantity T' determined at the beginning of the experiment.

 $^{^{\}rm a)} {\it aumshree.pinkalbenshah@students.iiserpune.ac.in}$

C. Procedure

- 1. Fill the boiler with water to nearly half and heat it to produce steam. In the meantime, weigh the disc D_1 on which the apparatus rests.
- 2. Measure the diameter of specimen disc d with a vernier calliper and its thickness using a screw gauge at several points, and determine the mean thickness.
- 3. Clamp the glass specimen between the base disk D_2 of the steam jacket and the auxiliary brass disc D_1 . Insert the thermometers (either mercury thermometer or thermocouples) in the two brass disks D_1 and D_2 .
- 4. Check if they show the same readings at room temperature. If not, note the difference T'.
- 5. Connect the boiler outlet with the inlet of the steam chamber by a rubber tube. Continue passing steam until the two brass disks reach a steady temperature. Note down the temperatures T_1 and T_2 of the two discs.
- 6. The second part of the experiment involves the determination of the cooling rate of disc D_1 alone. Remove the sample disc. Heat the disc D_1 directly by the steam chamber until its temperature is about $T_1 + 10$ °C.
- 7. Remove the steam chamber and place the insulating disk on it. Record the temperature of the brass disc at half-minute intervals. Continue until the temperature falls to about $T_1 7$ °C.

1. Precautions

- Use thermal gloves while working with the instrument.
- Make sure all the contacts are proper.

•

II. OBSERVATIONS

Least count of weighing scale: $\underline{1}\underline{g}$ Least count of thermometer: $\underline{0.5}\,^{\circ}\mathrm{C}$ Least count of vernier calliper: $\underline{10^{-4}}\underline{m}$ Least count of screw gauge: $10^{-5}\underline{m}$

$$T'=0 \\ M_{D_1}=905~\mathrm{g}$$

Material	Diameter (10^{-5}m)	Length (cm)
	410-376-376-376-376	
Ebonite	203-119-197-201-199	11.20-11.30
Rubber	331	9.88-10.00

TABLE I. Data taken on 19 Mar 2025, the different observations are seperated by '-'.

Material	$T_1(^{\circ}C)$	$T_1(^{\circ}C)$
Glass	86.0	95.0
Ebonite	76.0	94.5
Rubber	84.0	95.0

 $\textbf{TABLE II.} \ \ \text{Data taken on 19 Mar 2025}, \ \text{the different observations are seperated by '-'.}$

T °C	t (sec)
91.5	7
90.5	8
89.5	11
88.5	11
87.5	-
86.5	-
85.5	16
84.5	17
83.5	-
82.5	21
81.5	21
80.5	19
79.5	23
78.5	22
77.5	22

TABLE III. Data taken on 21 Mar 2025, the rate of cooling for D_2 where T is the mean of floor and celing of the one degree temperature range.

III. UNCERTAINTIES AND ERROR SOURCES

A. Measurement Uncertainties

- Weight Measurements:
- Length Measurements:
- Temperature Measurements: Uncertainty of ± 0.05 K due to instrument resolution.

B. Random Errors

• STUFF

C. Systematic Errors

• STUFF

IV. CALCULATION AND ERROR ANALYSIS

A. Error Propagation

Using Equation-1 we get: $k=ms\ l\ A\ T\ T^2$ -T1 From the length, temperature and mass uncertainty, the error to k will travel using the formula for error propagation as: ENTER A BOOK ERROR PROPER HERE

B. Calculation

We calculate the value of α of all data points and their uncertainty from hte above formul, we get (Refer to [3] for calculations):

Material	$\alpha (1/^{\circ}C)$
Aluminium	
Aluminium	$(2.32 \pm 0.02) \times 10^{-5}$
Brass	$(1.90 \pm 0.02) \times 10^{-5}$
Brass	$(1.88 \pm 0.02) \times 10^{-5}$
Brass	$(1.92 \pm 0.02 \times 10^{-5})$
Copper	$(1.67 \pm 0.02) \times 10^{-5}$
Copper	$(1.68 \pm 0.02) \times 10^{-5}$
Steel	$(1.61 \pm 0.02) \times 10^{-5}$
Steel	$(1.71 \pm 0.02) \times 10^{-5}$
Steel	$(1.68 \pm 0.02) \times 10^{-5}$

TABLE IV. Calculated expansion coefficients

V. RESULT

The final expansion values by weighted $average^{[1]}$ are:

Material	α (1/°C)	Uncertainty (1/°C)	χ^2_{ν}
Aluminium	2.328×10^{-5}	6.1×10^{-8}	0.15
Brass	1.90×10^{-5}	1.73×10^{-7}	2.70
Copper	1.674×10^{-5}	3.60×10^{-8}	0.10
Steel	1.67×10^{-5}	3.07×10^{-7}	11.14

Appendix A: Theoretical Values

The expected values of α in ${}^{\circ}C^{-1}$ are [4]:

$$\alpha_{\rm Steel} = (0.99 - 1.73) \times 10^{-5}$$

$$\alpha_{\rm Brass} = (1.8 - 1.9) \times 10^{-5}$$

$$\alpha_{\rm Aluminium} = (2.1 - 2.4) \times 10^{-5}$$

$$\alpha_{\rm Copper} = (1.6 - 1.67) \times 10^{-5}$$

Appendix B: Temperature of rod

The temperature of rod measured with the application of thermal paste is found to be ranging between 98 $^{\circ}\mathrm{C}-99$ $^{\circ}\mathrm{C}$ (measured on 19 Mar 2025)