# Distribución espacial de los géneros y especies de la familia *Malvaceae* en una parcela de 50 ,ha. Caso: Isla Barro Colorado, Panamá.

Ana Hilda Valera Arias Estudiante, Universidad Autónoma de Santo Domingo (UASD)

Resumen del manuscrito

Keywords: Género, Planta

## 1 Introducción

La vegetación terrestre está constituida por un conjunto de plantas pertenecientes a una familia en específico y esta a su vez se subdividen en géneros y especies para identificarse dentro de su clase. Por consiguiente no sería la excepción de la *Malvaceae*, poseen 243 genéros y más de 4,300 especies, sus flores son hermafroditas, pocas veces unisexuales, solitarias o fasciculadas en las axilas de las hojas o agrupadas en inflorescencia tal como la describen los siguientes autores (Marín, Hilario, & Andino, n.d.) y (Bayer, 2003).

Dentro de los géneros a encontrar en la familia *Malvaceae* están el *Abutilon* constituido por arbustos, subarbustos y hierbas bienales con pelo estrellados y tallos velloso, son carente del epicáliz conjunto de apéndices que por lo regular tienen otros grupos de dicha familia, así como de tener alrededor de 150 especie nativa en los trópicos y subtrópicos de América, África, Asia y Australia, (Lorenzo-Cáceres, 2007). También, está el *Hibiscus* donde los segmentos del epicáliz estan libres o unidos en la base, con estigmas alargados, semillas reniformes y numerosas, (ORTIZ, 2010). Del mismo modo, se encuentra la *Althaea*, *Lavatera* y la *Malva* cada una contienen sus respectivas especies las cuales pueden encontrarse en mayor o menor proporción en un espacio determinado la cual dependerá de factores abioticos incidentes entre ellos, lo que implicaría la necesidad de utilizar tecnicas y análisis numerológicos para conocer su asocianción y distribción.

La implementación de análisis numéricos en las investigaciones ecológicas permiten dar a conocer en terminos cuantificables la forma en que se encuentran asociadas y el tipo de patrón que presenta algunas especies, es por ello la importancia de la estratificación y zonificación del objeto de estudio en cuestión. De acuerdo con (González, 2006) esto permite conjugar en un mismo grupo información de aquellos organismos que pueden ser cuantificable junto con otros que son reproductivos y de manera general con toda la vegetación.

En tal sentido, este estudio por medio de la ecología numérica busca conocer cómo estan asociados los diferentes géneros y especies de la familia *Malvaceae* y si las variables ambientales existente en la zona influyen en dicha asociación. También, analizar como estan organizados los grupos y qué patrón presentan en caso de que existiese, asimismo, establecer los indicadores ambientales que interfieren. De igual manera, examinar en qué volumen se encuentran representadas cada una y distiguir los sitios con especies alpha y beta, además, de construir modelos de distribución espacial para idenficarla. Por consiguiente, esta investigación contribuirá al conocimiento de la dinámica ecológica espacial que envuelven las plantas pertenecientes a la familia *Malvaceae* en la isla de Barro Colorado que en lo adelante será llamado BCI y con la misma gestionar estrategias para el cuidado y conservación de ésta.

. . .

# 2 Metodología

# 2.1 Área de estudio

La BCI se encuentra ubicada en el canal de Pánama en las proximidades del lago Gatún, de acuerdo con (Pérez et al., 2005) esta se formó cuando se construyó dicho canal embalsando las aguas del río Chagres, se localiza entre las coordenadas geográficas (latitud 9° 9'N, longitud 79° 50') y cubre una extensión de tierra de 1,500 hectáreas (ver figura 1). El clima es de bosque tropical, la temperatura promedio es de 27 grados centígrados, con temporadas lluviosas durante los meses mayo-diciembre y secas desde mediados de diciembre hasta abril, las tormentas convectivas son prevenidas por los vientos alisios dictando así las estaciones del año, (Sugasti, Eng, & Pinzón, 2018). Esta isla por sus caracteristicas fisicas sirve de hábitat para muchos animales e insectos y por consiguiente para una variedad de especie vegetal, convirtiendola en un espacio de investigación de mucha importancia.

Es por ello, la escogencia como lugar de estudio la parcela permanente de 50 hectárea de BCI donde se identificó como estan asociadas y distribuidas la familia *Malvaceae* a través del censo realizado por (Hubbell, Condit, & Foster, 2021) durante varios años (1981-1983 y 2010-2015, entre otros) donde se identificaron, marcaron y cartografiaron todos los tallos leñosos independientes de al menos 10 mm de diámetro a la altura.



Figure 1: Ubicación de la isla Barro Colorado

# 2.1.1 Materiales y Técnicas de investigación

Para la realización de este estudio se utilizó el software de (R Core Team, 2019) donde se cargaron varios paquetes de ecología numérica como el *tidyverse* que ayudó a formar matriz de comunidad que permitió identificar las diferentes especies que abundan, en qué cantidad y orden de acuerdo a su pH. También, el *Simple Features* (sf) para crear área de hábitat por cuadros y obtener la densidad de cada especie por metro cuadrado y así conocer la abundancia y riqueza global. De igual manera, el *Vegan* para caracterizar y analizar el orden y disimilaridades entre cada especie y *ez* para examinar las unidades o variables repetitivas. Asimismo, el *graphics*, *psych* y *mapvie* para la representación gráfica de cada datos y (Kindt & Coe, 2005) para señalar las especies alpha y beta, cada *script* utilizados fueron suministrado a partir del repositorio de (Batlle, 2020) como fuente y el programa de información geográfica Qgis (QGIS Development Team, 2009) para actualizar el mapa de localización de la BCI.

. . .

## 3 Resultados

Por medio de los datos obtenidos a través del análisis de agrupamiento al dividir el espacio en dos grupos uno con 42 y otro con 8 sitio, se observó que existen 16 especies de la familia Malvaceae con una distancia muy corta dentro de la parcela de 50,ha. Siendo la Quararibea asterolepis la que más se asocia en el primero con 2,171 y la Sterculia apetala en el segundo con 53 para un índice de 0.015 respectivamente. En cuanto, al nivel de representación y composición por cada 1,ha con la aplicación del método Hellinger los cuadros 33 hasta el 49 la dispariedad fue corta y la similaridad numerosa, en tanto que, en el 8, 23, 30 y 35 fueron poco similares y con intervalo largo. De igual manera, en la correlación de diversidad, las riquezas y abundancia de especie fueron alto existiendo una equidad en su distribución, como el del índice de Hill aunque las riquezas aumentan o disminuyen la ratio no son afectadas. También, al aplicarse la prueba Moran's se encontró que en la zona del espolon, vaguada y vertiente la adecuación es de forma positiva, asimismo, en los componentes químicos del calsio (Ca), cobre (Cu), hierro (Fe) y zinc (Zn) y en el piedemonte, el valle y la sima, al igual que en el manganeso (Mn) y aluminio (Al) fue negativa. Por otro lado, el espacio 30 obtuvo mayor riqueza en especie alpha con 13 y el más pobre el 45 con 5 con una abundancia de 110 y 123 cosecutivamente y los que más varían el 13 y 46, estando las especies Apeiba membranacea, Apeiba tibourbou, Hampea appendiculata, Herrania purpurea entre otras como beta con un valor de 0.07936325, 0.06962371, 0.13708297, 0.10517566 sucesivamente (ver figura 2 & 3).

. . .

### 4 Discusión

La forma en que se encuentran distribuidos los géneros y especies de la familia *Malvaceae* en la parcela de 50,h de la BCI se debe a factores ambientales que influyen de manera positivamente en su ordenación, auque el exceso de ciertos elementos químicos pueden afectar la distribución y crecimiento de ciertas plantas (Clark, 2002), como fue el caso de el *manganeso* (Mn), *cobre* (Cu) y el *aluminio* (Al) que en su presencia la correlación con el espacio fue menor a diferencia del *zinc* (Zn), el *boro* (B) y el *potasio* (K) donde fue mayor, asumiendo que la abundancia o no de dichas especies estuvieron influenciadas por el tipo de sustancia que más existió en cada sitio. De igual manera, su organización espacial se vió intervenida por la forma del relieve de algunas zonas, siendo la Vaguada, el espolón y la vertiente los puntos que obtuvieron la mayor riqueza en comparación con



Figure 2: Correlación de las diferentes especies



Figure 3: Correlación de las diferentes especies

el piedemonte, el valle y la sima con menor, posiblemente esto se deba al tipo de material presente en el terreno, ya que, según (Flores, Suvires, & Dalmasso, 2015) los suelos formados de diferente roca madre o regolita, tienden a tener diferentes propiedades tanto físicas como químicas, las cuales pueden ser beneficiosas para el tipo de colocación actual. En cambio, la ausencia o baja proporción en la que aparecen estas plantas en otras partes, sea por causa de su formación, por ejemplo los espacios antes mencionados de menor concentración por lo general son de origen detrítico-sedimentario, transportados por corrientes fluviales efímeras con alta carga sedimentaria y algunos aportes de arena eólica, (Flores et al., 2015), lo que dificultaría la propagación de estas con el patrón observado.

- 5 Agradecimientos
- 6 Información de soporte

. . .

# 7 Script reproducible

. . .



Figure 4: Número de individuo por especie

## Referencias

Batlle, J. R. M. (2020). Biogeografia-master/scripts-de-analisis-BCI; coding sessions (Version v0.0.9000). https://doi.org/10.5281/zenodo.4402362

Bayer, K., Clemens y Kubitzki. (2003). Malvaceae. In Springer (Ed.), *Plantas con flores textperiodcentered dicotiledóneas*.

Clark, D. B. (2002). Los factores edáficos y la distribución de las plantas. *Ecología Y Conservación de Bosques Neotropicales*. *LUR*, *Cartago*, *Costa Rica*, 193–221.

Flores, D. G., Suvires, G., & Dalmasso, A. (2015). Distribución de la vegetación nativa en ambientes geomorfológicos cuaternarios del monte Árido central de argentina. *Revista Mexicana de Biodiversidad*, 86(1), 72–79.

González, A. R. (2006). *Ecología: Métodos de muestreo y análisis de poblaciones y comunidades*. Pontificia Universidad Javeriana.

Hubbell, S., Condit, R., & Foster, R. (2021). Parcela del censo forestal en la isla de barro colorado.

Kindt, R., & Coe, R. (2005). *Tree diversity analysis. a manual and software for common statistical methods for ecological and biodiversity studies*. Retrieved from http://www.worldagroforestry.org/output/tree-diversity-analysis

Lorenzo-Cáceres, J. M. S. de. (2007). Las especies del género abutilon mill.(Malvaceae) cultivadas en españa. *PARJAP: Boletín de La Asociación Española de Parques Y Jardines*, (45), 45–49.

Marín, J. Z., Hilario, R. F., & Andino, O. O. (n.d.). Análisis filogenético de la familia malvaceae.

ORTIZ, D. G. (2010). Claves para los taxones y cultones del género hibiscus l.(Malvaceae) cultivados y comercializados en la comunidad valenciana (e españa).

Pérez, R., Aguilar, S., Condit, R., Foster, R., Hubbell, S., & Lao, S. (2005). Metodologia empleada en los censos de la parcela de 50 hectareas de la isla de barro colorado, panamá. *Centro de Ciencias Forestales Del Tropico (CTFS) Y Instituto Smithsonian de Investigaciones Tropicales (STRI)*, 1–24.

QGIS Development Team. (2009). *QGIS geographic information system*. Retrieved from http://qgis.osgeo.org

R Core Team. (2019). R: A language and environment for statistical computing. Retrieved from https://www.R-project.org/

Sugasti, L., Eng, B., & Pinzón, R. (2018). *Medición continúa de flujo de co2 ensuelo en una parcela de bosque tropical en isla barro colorado, canal de panamá.*