Systemizing and accelerating whole-cell modeling

WC modeling principles

Single-cell

GATCCA Species-specific

Mechanistic/dynamic

Genetically complete

Stochastic

Molecularly precise

WC modeling = genomics + integrative modeling

WC modeling process

- 1. Characterize organism
- 2. Aggregate data
- 3. Organize data
- 4. Design submodels
- 5. Merge submodels
- 6. Simulate model

- 7. Estimate parameters
- 8. Verify model
- 9. Validate model
- 10. Visualize/analyze predictions
- 11. Applications: Engineering, medicine

Limitations of existing methods

Limited scope and accuracy

- Don't represent several cell functions
- Don't predict several phenotypes

Methods are not rigorous

- Multi-algorithm simulation
- Parameter estimation
- Verification
- Model reduction

Time-consuming to construct

- Curate data
- Design model
- Verify model

Hard to understand, reuse, reproduce

Systemizing and accelerating WC modeling

- 1. Characterize organism
- 2. Aggregate data
- 3. Organize data
- 4. Design submodels
- 5. Merge submodels
- 6. Simulate model

- 7. Estimate parameters
- 8. Verify model
- 9. Validate model
- 10. Visualize/analyze predictions
- 11. Applications: Engineering, medicine

1. Characterize organism

1. Characterize organism

Fraser et al., 1995; Kühner et al., 2009; Lluch-Senar et al., 2013; Maier et al., 2013; Yus et al. 2012

1. Characterize organism

- Chaperones
- Complex composition
- DNA binding sites
- DNA footprints
- DNA methylation
- DNA sequence
- Gene-drug interactions
- Genome annotation
- Growth rates
- Metabolite concentrations
- Protein cofactors
- Protein expression
- Protein half-lives

- Protein localization
- Protein modification
- RNA editing
- RNA expression
- RNA half-lives
- RNA modification
- RNA maturation
- Reaction fluxes
- Reaction kinetics
- Reaction stoichiometries
- Signaling pathways
- DNA mutations

2. Aggregate data

2. Aggregate data

	Data type	Source
	Chaperones	Literature
Baseline	Complex composition	Human Soluble Protein Complexes DB
	DNA binding sites	TRANSFAC, AnimalTFDB
	DNA footprints	Literature
	DNA methylation	MethBase
	DNA sequence	Genome Reference Consortium
	Gene-drug interactions	DrugBank, PharmaGKB
	Genome annotation	Ensembl
	Growth rates	Hapmap, NCI-60
	Metabolite concentrations	Human Metabolome Database
	Protein cofactors	UniProt
	Protein expression	Human Protein Atlas
	Protein half-lives	Literature
	Protein localization	Human Protein Atlas
	Protein modification	Human Protein Reference DB
	RNA editing	RADAR, DARNED
	RNA expression	GEO, Human Protein Atlas
	RNA half-lives	Literature
	RNA modification	RNA Modification DB, MODOMICS
	RNA maturation	RNApathwaysDB
	Reaction fluxes	Literature
	Reaction kinetics	SABIO-RK, BRENDA
	Reaction stoichiometries	Recon X, UniProt, HumanCyc
	Signaling pathways	Literature
	DNA mutations	CCLE, COSMIC
4)	DNA methylation	TCGA
ase	Gene-drug interactions	CCLE
Jisease	Growth rates	NCI-60
Ω	Metabolite concentrations	Literature
	Protein expression	TCGA
	RNA expression	CCLE

2. Aggregate data

3. Organize data

3. Organize data

Aggregate data: Scripts, Excel

PGDB: Pathway Tools, WC-KB

3. Organize data

WC-ML, SBML, CellML

5. Map submodels onto common state

Automatically handled by designing submodels from common PGDB

6. Simulate

6. Simulate: Concurrently integrate submodels

 $t \leftarrow t + \Delta t$, Repeat until cell division

6. Simulate: Parallel discrete event simulation

6. Simulate: High-performance simulator

6. Simulate: High-performance simulator

7. Estimate parameters

7. Estimate parameters

1. Reduce model

2. Identify reduced model parameters using traditional methods

3. Manually tune parameters using full model

7. Estimate parameters

- Automatic model reduction
- Distributed numerical optimization
- Enabled by
 - Declarative model description
 - High-performance simulation

8. Verify model reproduces known biology

8. Verify model reproduces known biology

☑ Matches training data

- ☑ Cell mass, volume
- **☑** Biomass composition
- ☑RNA, protein expression, half-lives
- **☑** Superhelicity

Matches published data

- ✓ Metabolite concentrations
- ☑ DNA-bound protein density
- ☑ Gene essentiality

☑ Matches theory

- **☑** Mass conservation
- ☑ Central dogma
- ☑ Cell theory
- **☑** Evolution

☑No obvious errors

- ☑ Plot model predictions
- ☑ Manually inspect data
- ☑ Compare to known biology

8. Verify model reproduces known biology

B. Example static test (Subaim 4a-c)

- Mass balance
- Charge balance
- Consistent localization
 - Small molecules
 - Enzymes
- Reactants and products can be produced/recycled by metabolism submodel
- Sufficient small molecule and enzymatic resources to support growth

C. Example simulation-based test (Subaim 4d)

- Protein mass duplicates over cell cycle
- Protein complex duplicates over cell cycle
- No excess accumulation AA
- All gene products that are essential to the modeled pathways are translated

D. Example screenshot of a continuous integration system

E. Example test coverage report

9. Validate model reproduces true biology

9. Validate model reproduces true biology

☑ Matches new data

- ☑ Wild-type growth rate
- ☑ Disruption strain growth rates
- ☑ Single-cell division times
- ✓ Single-cell cell cycle phase lengths
- ☑ Single-cell sizes

9. Validate model reproduces true biology

Model predictions

11. Applications: Engineering

11. Applications: Engineering

11. Applications: Engineering

11. Applications: Medicine

Open challenges

	Challenges				
Modeling step	Computational	Experimental	Community		
1. Characterize		 Comprehensive metabolomic, proteomic, kinetic data 	Diversify experimental effort		
2. Aggregate data	Data aggregation softwareNatural language processingCrowdsourced curation		Annotate dataDeposit raw data		
3. Organize data	 Design data model which mirrors models 				
4-5. Design models	 Tools to design models from PGDBs 		 Standard sequence-based, multi-algorithmic language 		
6. Simulate model	 Determine how to integrate multi-algorithm models Develop high-performance simulator 				
7. Estimate parameters	Automate model reductionUse distributed optimization				
8. Verify model	Develop test generatorAdopt formal verificationUse continuous integration				
9. Validate model		 Comprehensive single-cell phenomics 	Model validation standard		
10. Visualize & analyze	Improved simulation databaseData exploration tools				
11. Engineer	Algorithms to optimize predicted phenotypesStructural integration to design sequences	 Methods for large-scale genome engineering Design-build-test automation 			

Getting involved

Suggested reading

See school website

Many ongoing projects across the field

Contact the lecturers

Community benchmark model project

Contact Jonathan

SysMod ISCB special interest group

- SysMod.info
- First meeting @ ISMB, July 2016, Orlando FL

Summary

Broadly **predicts** cell physiology

Integrates heterogeneous data and models

Guides bioengineering and medicine

Opportunities to develop improved methods

Acknowledgements

Anne Marie Barrette

Yin Hoon Chew

Arthur Goldberg

Graeme Gossel

Pablo Meyer IBM/Sinai

Roger Rodriguez *UNAM*

Center for Regulatory Genomics
Luis Serrano
Maria Lluch-Senar
Veronica Llorens

