o1. Hydrocarbons containing only single bonds between the carbon atoms are called	11. All cycloalkanes have general formula A. C _n H _{2n} B. C _n H _{2n+2} C. CnH _{2n-2} D. C _n H _n E. C _{2n} H _{2n}			
Alkanes E. Ketones 2. Empirical formula expresses the actual number of	12. All alkanes have general formula A. $C_{2n}H_{2n}$ B. C_nH_n C. C_nH_{2n+2} D. C_nH_{2n-2} E. C_nH_{2n}			
mole of each element in a molecule A. True B. False	13. An organic compound contains 79 % of carbon and 21% of hydrogen by mass. if 1dm³ of the compound			
3. Empirical formula expresses the ratio of the number of mole of atoms of elements in a molecule of a compound.	weighs 1.30g, find its empirical formula. A. CH_5 B. CH_4 C. CH_2 D. CH E. $\textbf{CH_3}$			
A. True B. False	14. An organic compound contains 60 % of carbon, 13.3 % hydrogen and 26.7 % oxygen by mass. Find its empirical formula.			
4. A hydrocarbon with vapour density 28 contain 85.7 % carbon and 14.3 % hydrogen. Deduce the empirical formula of the compound A. CH_2 B. C_2H_4 C. C_3H_6 D. C_4H_8 E. C_5H_{10}	A. C_3H_8O B. C_4H_7O C. CHO D. C_2H_4O E. $C_3H_8O_3$			
5. Isomerism is a phenomenon whereby two or more compounds have different molecular formula.	15. An organic compound contains 50% of carbon 20% hydrogen and 30% oxygen by mass. find its empirical formula.			
A. True B . False	A. $C_2H_{10}O$ B. C_2H_3O C. $C_6H_{10}O$ D. C_2H_9O E. $C_2H_{10}O_3$			
6. The following are types of isomerism exceptA. Structural isomerism B. Geometric isomerismC. Optical isomerism D. Homologous isomerism	16. An organic compound contains 69% of carbon and 31% of hydrogen by mass. find its empirical formula. A. CH ₅ B. C ₄ H ₅ C. CH ₄ CH ₅ D. CH ₇			
7. A homologous series is a family of organic compounds in which successive members differ in their molecular formulae by one CH ₄ group A. True B. False	E. C₅H₅ 17. An organic compound contains 40% of carbon, 21% of hydrogen and 39% by mass. find its empirical			
8. The following are characteristics of a homologous series except	formula. A. CH_9O_4 B. CH_9O C. CH_4O D. CH_9O_2 E. C_3H_9O			
A. The member conforms to general molecular formula B. There is a gradual change in the physical properties of the member as relative molecular mass increases C. The members are prepared by using different	18. An organic compound contains 30% of carbon, 25% hydrogen and 45% oxygen by mass. Find its empirical formula			
general methods D. The members show similar chemical properties	A. CH_5O B. $C_3H_{10}O$ C. $CH_{10}O_2$ D. $CH_{10}O$ E. $CH_{10}O_4$			
9. Saturated hydrocarbons contain only carbon-carbon single bondsA. True B. False	19. Hydrocarbons containing only single bondsbetween the carbon atoms are calledA. Alkenes B. Aromatics C. Ketones			
10. Unsaturated hydrocarbons contain only carbon-carbon single bondsA. FalseB. True	D. Alkynes E. Alkanes20. What general class of compounds is also known as olefins?			

A. Alkenes D. Alkynes	B. Aromatics E. Ketones	C. Alkanes	31. How many structural isomers of methane exist? A. 0 B. 1 C. 2 D. 3 E. 4			
21 Hydrocarbo	ins containing ca	arbon-carbon triple	32. How many structural isomers of propane exist? A. 0 B. 1 C. 2 D. 3 E. 4			
bonds are called		arbon carbon triple				
A. Alkanes	B. Aromatic hyd	drocarbons	33. Aromatic rings contain a total of (4n + 2) non			
C. Alkynes	D. Alkenes	E. Olefins	delocalized pi electrons. A. True B. False			
			A. II de B. I alse			
22. Alkynes alw	ays contain a		24 The consulting to the first three to			
A. carbon-carbo			34. The general formula of an alkene is			
	on double bonds	5	A. C_nH_{2n} B. $C_{2n}H_{2n}$ C. C_nH_n D. C_nH_{2n+2} E. C_nH_{2n-2}			
C. carbon-carbo	-		2. Sn. 12n+ 2			
	on triple and do	uble bonds	OF The general ferments of avalenthous is			
E. All of the abo	ove		35. The general formula of cycloalkane is			
			D. C_nH_{2n+2} E. C_nH_{2n-2}			
	ays contain a					
A. carbon-carbo	-		36. The name of CH ₃ -CH ₂ CH ₂ =CH ₂ is			
	on double bond	s	A. But-1-yne B. But-1-ane C. But-1-ene D. But-1-enol E. Butane-1-ene			
C. carbon-carbo	on triple bonds		D. But-1-enoi C. Butane-1-ene			
24. Hybridizatio		-carbon double bonds	37. How many structural isomers of hexane exist? A. 1 B. 2 C. 3 D. 4 E. 5			
A. sp B. sp ²	$C. sp^3 D. sp^4$	E. sp ⁵	38. The name of CH ₃ -CH ₂ =CH ₂ -CH ₃ is			
			A. But-1-ene B . But-2-ene C. But-3-ene			
25. Hybridizatio	on of the carbon	-carbon triple bonds	D. But-4-ene E. But-5-ene			
is			39. The name of CH ₃ -CH ₂ =CH ₂ -CH ₂ -CH ₂ -CH ₃ is			
A. sp B. sp^2	$C. sp^3 D. sp^4$	E. sp ⁵	A. Hex-1-ene B. Hex-2-ene C. Hex-3-ene			
26. The molecu	lar geometry of	each carbon atom in an	D. Hex-4-ene E. Hex-5-ene			
alkane is	-		40. Cycloalkanos are alkanos that contain a ring of			
A. Octahedral B. Trigonal pyramidal			40. Cycloalkanes are alkanes that contain a ring of three or more carbon A. True B. False			
C. Square planar D. Tetrahedral						
E. Trigonal plan						
Tetrahed			41. The IUPAC name of CH ₂ =C=CH ₂ is			
retraneu			A. Propan-1, 1- diene B. Propan-1, 2- diene			
			C. Propan-1, 3- diene D. Propan-1, 4- diene			
			E. Propan-1, 5- diene			
27. The minimu	ım number of ca	arbons necessary for a				
•		ed structure is	42. The IUPAC name of CH ₂ =CH-CH=CH-CH ₃			
A. 1 B. 2	C. 3 D. 4	E. 5	A. penta-1, 1-diene B. penta-1, 2-diene			
			C. penta-1, 3-diene D. penta-1, 4-diene			
28. Cyclohexan	e has	fewer hydrogens than	E. penta-1, 5-diene			
n-hexane						
A. 1 B . 2	C. 3 D. 4	E. 5	43. The IUPAC name of CH ₃ -CH=C=CH-CH ₃ is			
29. How many	structural isome	rs of butane exist?	A. penta-1, 1-diene B. penta-1, 3-diene			
A. 1 B . 2	C. 3 D. 4	E. 5	C. penta-2, 1-diene D. penta-2, 3-diene			
30. How many	structural isome	rs of pentane exist?	E. penta-2, 4-diene			
A. 1 B. 2	C. 3 D. 4	E. 5				
	- 	-	44. The IUPAC name of CH ₃ -CH ₂ -CH=CH			

A. But-1-ene B. But-2-ene C. But-3-ene D. But-4-ene

E. But-5-ene

45. The IUPAC name of CH₂=CH-CH=CH₂

A. Penta-1, 3, 4-triene B. Penta-1, 2, 4-triene

C. Penta-2, 4, 5-triene D. Penta-1, 3, 5-triene

E. Penta-1, 4, 6-triene

46. The IUPAC name of CH₂=C=C=CH₂

A. **But-1, 2, 3-triene**C. But-1, 5, 3-triene
D. But-1, 2, 4-triene

E. But-4, 2, 3-triene

47. In naming an organic compound the longest continuous chain containing the functional group (double or triple bonds) is numbered in a direction that gives the functional group the lowest possible number.

A. True

B. False

48. In naming of organic compounds a chain that has more than one substituents are not cited in alphabetical order.

A. True

B. False

49. If counting in either direction results in the same number for the alkane functional group, the correct name is the one containing the lowest substituent number.

A. True

B. False

50. When ethyne is bubbled into bromine water in a test tube a colorless liquid result. The reaction which occurred is

A. Addition reaction B. Substitution reaction
C. Decomposition reaction D. Hydrogenation reaction E. Polymerization reaction

51. Alkynes have the general formula CH_{2n-2} when hydrogenated with 2 moles of hydrogen, they produce compounds with general formula

A. C_nH_{2n} B. C_nH_{2n-2} C. C_nH_{2n+2}

D. $C_n H_{2n+1}$ E. $C_n H_{2n-1}$

52. Three different hydrocarbons A, B, C were passed into three separate test tube containing acidified KMnO₄. A and B decolorized the acidified KMnO₄ which C showed no visible reaction. A and B

must be

A. **Unsaturated Hydrocarbon**Hydrocarbon C. Alkanes
E. Butane

B. Saturated
D. Cycloalkanes

53. Alkenes and Alkynes react the same with the following except......

A. Acidified KMnO₄ solution B. Bromine water

C. Ammoniacal AgNO₃ solution

54. C₂H₆ cannot undergo

A. substitution reaction

B. Addition reaction

55. Internal alkynes are alkynes with triple bonds located elsewhere along the chain

A. True B. False

56. Terminal alkynes are alkynes with triple bonds located elsewhere along the chain

A. True B. False

57. Terminal alkynes are alkynes with triple bonds located at the end of the chain

A. **True** B. False

58. What is the Bond angle of methane

A. **109.5** B. 106.5 C. 209.5

D. 129.5 E. 119.5

59. A primary carbon atom is one which is bonded to only one other carbon atom

A. **True** B. False

60. A secondary carbon atom is one which is bonded directly to two other carbon atoms

A. **True** B. False

61. A tertiary carbon atom is one which is bonded directly to three other carbon atoms

A. **True** B. False

62. Complete the combustion reaction $CH_4 + 2O_2 = X + 2H_2O$ A. CO B. **CO₂** C. CO₃ D. 2CO₂ E. 3CO₂

63. The reaction of alkanes with halogens is an

addition	reaction
addition	reaction

- A. True
- B. False
- 64. Complete the reaction $CH_3CI + Cl_2 \rightarrow ? + HCI$ in presence of ultraviolent light
- A. CH₂Cl₃
- B. CH₃Cl₃
- C. CH₂Cl₄

- D. CHCl₂
- E. CH₂Cl₂
- 65. Complete the reaction $CH_4 + Cl_2 \rightarrow CH_3Cl + ?$ in presence of ultraviolent light
- A. HCI B. 2HCI C. 3HCI D. 4HCI E. 5HCI
- 66. Complete the reaction ROH + ? → RCl + HCl + POCl₃ A. PCI B. PCI2 C. PCI₃ D. PCI₄ E. PCI₅
- 67. Complete the reaction $CH_2Cl_2 + Cl_2 \rightarrow CH_2Cl_3 + ?$ in presence of ultraviolent light
- A. CH₂Cl₃
- B. 2CH₂Cl₂
- C. CH₂Cl₂
- D. HCl F 2HCl
- 68. Complete the reaction ? + $Cl_2 \rightarrow CH_2Cl_2 + HCl$ in presence of ultraviolent light
- A. CH₃Cl
- B. CH₂Cl₂
- C. $CH_2CI_2 + HCI$
- D. CH₁Cl₃ E. CH₂Cl₃
- 69. Complete the reaction ? + $Cl_2 \rightarrow CCl_4$ + HCl in presence of ultraviolent light
- A. CH₂Cl₃
- B. CH₃Cl
- C. CH₃Cl₂

- D. CHCI₃
- E. CH₂Cl₂
- 70. Complete the reaction $CHCl_3 + Cl_2 \rightarrow ? + HCl$ in presence of ultraviolent light
- A. CH₂Cl₂
- B. CHCl₃
- C. CCI₄

- D. CH₂Cl₄
- E. CH₃Cl₂
- 71. A sigma bond is stronger than a pie bond
- A. True
- B. False
- 72. There is restriction of rotation about the multiple bonds as against free rotation about single bonds.
- A. True
- B. False
- 73. Carbon carbon bond have bond angle at 130° to each other leading to a planar structure
- A. True
- B. False
- 74. Carbon carbon bond have bond angle at 109.5° to each other leading to a linear structure
- A. True
- B. False

- 75. Geometric isomers are different compounds which have the same structure but different arrangement of their atoms in space.
- A. True
- B. False
- 76. For an alkene to show geometric isomerism, each carbon of the double bond have two different atoms or groups attached to it.
- A. True
- B. False
- 77. could be the formula of an alkene.
- A. C_3H_8
- B. C₃H₆
- $C. C_6H_6$
- 78. In general, are the most reactive hydrocarbons.
- A. Alkenes
- B. Alkynes
- C. Alkanes
- D. Cycloalkanes E. Olefins
- 79. The addition of HBr to 2-butene produces
- B. 2-bromobutane
- C. 1,2-dibromobutane D. 2,3-dibromobutane

A. 1-bromobutane

C. HCl₂

- E. No reaction
- 80. is the reagents necessary to yield the product of the reaction $CH_2=CH_2 \rightarrow Ethane$
- A. H₂/Pt
- B. 2H₂/Pt
- C. H₄/Pt

- D. H₂/Pt/Ag
- E. 3H₂/Pt
- 81. is the reagents necessary to yield the product of the reaction $CH_2=CH_2 \rightarrow Chloroethane$
- A. 3HCl D. 2HCl
- B. H₂Cl
- E. HCI
- 82. Like alkanes, alkenes and alkynes undergo combustion reactions
- A. True
- B. False
- 83. Alkenes and alkynes also undergo addition reactions
- A. True
- B. False
- 84. An addition reaction is a reaction in which the atoms from one molecule are added to another molecule to form a single molecule
- A. True
- B. False

85. Hydrogenation of an alkene requires high temperatures and a catalyst such as B. Na C. Ng D. Mg E. Ca A. Ni 86. The addition of HBr to 2-Butene produces..... A. 1-bromobutane B. 2-bromobutane C. 1, 2-bromobutane D. 2, 3-bromobutane E. No reaction 87. The addition of Br₂ to ethene produces A. 1, 1-dibromoethane B. 1, 2 - dibromoethane C. 2, 2-dibromoethane D. 2, 3 - dibromoethane E. No reaction 88. The addition of Br₂ to ethyne produces A. 1,2 - dibromoetheneB. 1,2 - dibromoethane C. 1,2 - dibromoethyne D. 2,2 - dibromoethene E. 1,1 - dibromoethane 89. What is the product of $H_2C=CH_2 + O_3 \rightarrow$ B. $H_2C=O + H_2C=CH_2$ A. H₂C=O C. $3H_2C=0$ D. $H_2C=O + H_2C=O$ E. No reaction 90. An alkynes react with one mole of hydrogen to give B. Alkanones C. Saturated A. Alkanes D. Unsaturated hydrocarbon hydrocarbon E. No reaction 91. Which one of the following could be a cyclic alkane A. C_5H_5 B. C_3H_6 C. C_4H_6 D. C_2H_6 E. C_9H_{20} 92. The reaction of Ag₂NO₃ with a sample yield a white precipitate. This reaction is only possible with A. Alkanes B. Alkenes C. Alkynes **E. Terminal Alkynes** D. Internal Alkynes 93. What is the product of addition of Ag₂NO₃ to alkene is..... A. Saturated hydrocarbons B. Unsaturated hydrocarbon C. No reaction 94. What is the product of addition of Ag₂NO₃ to alkane is.....

C. Alkanal A. Alkenes B. Alkanes D. Alkanone E. No reaction 95. What is the product of addition of Ag₂NO₃ to ethene is..... A. Ethane B. Ethene C. Ethyne D. Butane E. No reaction 96. What is the product of addition of Ag₂NO₃ to Propane is..... A. 1,2 – Propan B. 1- propane C. 3,2-propaene D. 1, 3- propane E. No reaction 97. What is the product of addition of Ag₂NO₃ to 1,2, dimethyl Propane is A. 2, propane B. 1, 3 – propane C. propene D. 1, 3, 4 – butane E. No reaction 98. What is the product of addition of Ag₂NO₃ to Propene is..... A. Propane B. 1,2 – propanol C. Butanol E. No reaction D. Propanal 99. The reaction between unsaturated hydrocarbons and water in presence of acid is called? A. Acid - catalyzed reaction B. Water - catalyzed reaction C. Based - catalyzed reaction D. Acid, based - catalyzed reaction E. Hydrogenation - catalyzed reaction 100. What is the product of CH₃-CH₂-CH=CH₂ + HCl A. Chlorobutane B. 1 - Chlorobutane C. **2 – Chlorobutane** D. 3 - Chlorobutane E. 4 – Chlorobutane 101, What is the product of CH_3 - CH_2 - $CH= + H_2 -> in the$ presence of a catalyst A. 1, 2 – butane B. 1- butane C. 2- butane D. propane E. Butane 102. What is the product of CH₃-CH2-CH=CH2 + HBr A. Bromobutane B. 1- bromobutane C. 2-bromobutane D. butane E. No reaction

103. Addition of hydrogen to an alkene is called?

A. Base-Catalytic hydrogenation

B. Base- Catalytic reaction	chemical properties
C. Acid-Catalytic hydrogenation D. Catalytic hydrogenation	A. True B. False
E No reaction	115. The boiling and melting points of straight chain hydrocarbon increases with increasing molar mass
104. What is the product of CH ₃ -CH ₂ -CH=CH ₂ + H ₂ O A. Butane B. 2-Butane C. Butanol	A. True B. False
D. Butene E. No reaction	116. The branch chain isomers boil at lower temperatures than the isomeric straight chain
105. Fluorine is not always used in the addition reaction of unsaturated hydrocarbons because the	A. True B. False
reaction with fluorine is?	117. The greater the degree of branching in isomer,
A. slow B. Fast C. Explosive D. No reaction	the lower its boing point A. True B. False
106. Complete the reaction $CH_4 + ? \rightarrow CO_2 + 2H_2O$ A. O B. 20 C. O_2 D. 20 ₂ E. $3O_2$	118. For the following chemical reaction $C_xH_y+5O_2 \rightarrow 3CO_2+4H_2O$. What is C_xH_y ? A. Ethene B. Ethane C. Propene
107. Complete the reaction $2CH_4 + ? \rightarrow 2CO_2 + 4H_2O$ A. O B. 20 C. $2O_2$ D. $4O_2$ E. $CHCO_2 + 2H_2O$	D. Propane E. Butane
108. Complete the reaction $CH_4 + 2O_2 \rightarrow CO_2 + ?$ A. H_2O B. H_2 C. $2H_3O$ D. $2H_2O$ E. No reaction	119. The formula for chlorobenzene is
109. The addition of bromine solution can be used as qualitative test for the presence of unsaturation A. True B. False	120. Addition of HI to cyclohexene will give A. Cyclohexene B. Iodohexene C. Iodocyclohexene D. Iodocyclohexane E. Iodocyclohexyne
110. Markonikovs rule state that the more electropositive part of the reagent should go to carbon	121. Addition of HCl to cyclobutene will give A. Butene B. Clorobutane
bond that has the lesser number of hydrogen atoms A. True B. False	C. Clorocyclobutene D. Clorocyclobutane E. No reaction
111. The members of homologous series conform to a different general molecular formula	122. Addition of HBr to cyclohexene will give A. cyclohexene B. Bromocyclohexene
A. True B. False	C. Bromocyclohexane E Bromocyclohexyne D. 2-Bromocyclohexene
112. The members of homologous series change	
gradually in their physical properties as the	123. Addition of H ₂ to cyclohexene in presence of Ni as
relative molecular mass increases A. True B. False	a catalyst will give
ה. וועב ט. ו מוזכ	A. Hexene B. Cyclohexene C. Cyclohexane D. Cyclohexyne
113. The members of homologous series are prepared using the same general methods	E. No reaction
A. True B. False	124. Addition of H ₂ to propyne in presence of Ni as a

C. Propyne

A. Propane

B **Propene**

D. 2-Propane E. No reaction

114. The members of homologous series show similar

125. What is the product of addition of CH ₃ CH ₂ =CH ₂ + HBr→		135. There is free rotation around carbon-carbon single bond			
C. 2- bromopropane	B. 1- bromopropane D. 1,2 - dibromopropane	A. True	B. False	!	
E. 1,2- bromopropane		136. There is free rotation around carbon-carbon triple bonds			
126. What is the major poetween 2-methyl-2-but		A. True	B . False	2	
A. 2-iodo-3-methylbutane B. 3-iodo-2-methylbutane C. 2- iodo-2-methylbutane		137. The rotation around a carbon-carbon double bond is considerably restricted			
D. 2-methylbutene E. No reaction			B False		
127. 1-bromo-5-methylhex-3-yne is as example of		138. What is the product of the chemical reaction $CH_3CI + CI_2 \rightarrow ?$ in the presence of sun light A. $CH_4 + HCI$ B. $CH_3CI + HCI$			
terminal alkyne A. True B. False		C. CH ₂ Cl ₂ + HCl I E. CH ₃ + HCl	D. CH ₄ +	+ HCl + H₂O	
128. 1-bromo-5-methylhex-3-yne is as example of internal alkyne		139. The general formula for the combustion of alkane is			
A. True B. False		A. $C_xH_x + (x + y/4)$ B. $C_xH_y + (x + y/2)$			•
129. 3-iodo-2-chlorooct-4-yne is an example of internal alkyne		C. $C_xH_y + (x + y/4)O_2 \rightarrow yCO_2 + (y/2)H_2O$ D. $C_xH_y + (x + y/4)O_2 \rightarrow xCO_2 + (y/4)H_2O$			
A. True B. False		E. $C_x H_y + (x + y/4)$	I)O ₂ → :	xCO ₂ + (y/2) H ₂ 0)
130. 3-iodo-2-chlorooct-4-yne is an example of terminal alkyne		140. Determine t			of an open
A. True B. False		A. C ₂ H ₆ B. CH ₄ (C. C ₃ H ₄	D. C ₄ H ₁₀	E. C ₅ H ₁₂
131. 3-iodo-2-chlorooct-1-yne is an example of terminal alkyne		141. Which of the following is not a metal catalyst for the hydrogenation of an alkene?			
A. True B. False		A. Pd B. Pt (C. Ni	D. Na	
132. But-1-yne is an exa A. True B. False	· ·	142. An alkene a presence of a car What is the nam	talyst to	o give 3, 4-dime	_
133. Terminal alkynes are less reactive than internal alkynes toward the addition of water A. True B. False		A. 2, 3-dimethylhex-3-eneB. 3, 3-dimethylhex-3-eneC. 3, 3-dimethylhexaneD. 3, 4-dimethylhexane			
	product of reaction between	E. 3, 4-dimethyl l	пех-3-е	ne	
	Br B. 3-dibromohexene D. 3, 3 -dibromohexane	143. The following and alkyne unde	rgo exc	ept	
E. No reaction		A. HydrogenationC. Hydrohalogen		B. Halogenation D. Hypohaloge	

144. The expected Markovnikovs addition reaction of	153. How many moles of hydrogen are required to			
HI to 2-metyl-2-butene is	completely reduce of 1 mole of cis-2,3,3-			
A. 2- iodopentane	trimetylhepta-1,5-diene			
B. 1-iodo-2-methylbutane	A. 0 B. 1 C . 2 D. 3 E. 4			
C. 2-iodo-2-methylbutane				
D. 2-iodo-1-methylbutane E. 3-iodo-2-methylbutane	154. How many moles of hydrogen are consumed in			
E. 3-1000-2-ITTELTTYIDULATTE	the catalytic reduction of 1 mole of 1,3-			
	dibromocyclohexa-4-diene			
145. What is the IUPAC name of the expected major	A. 0 B . 1 C. 2 D. 3 E. 4			
product formed upon reaction of HCl with 1-butene	155. How many moles of hydrogen are required to			
A. 1-chlorobutane C. 1-chlorobutene D. 2-chlorobutene	completely reduce of 1 mole of cis-2,3,3-			
E. 1,2-chloroutane	trimetylhepta-1-diene			
L. 1,2-cilioroutaile	A. 0 B. 1 C. 2 D . 3 E. 4			
446 141 11 11 11 11 11 11 11	156. In conducting a catalytic hydrogenation of an			
146. What is the expected major product formed upon	alkene, which catalyst listed is most likely			
reaction of one mole of hydrogen with alkene A. Alkane B. Alkene C. Alkyne	soluble in the reaction medium			
D. Halogenation E. No reaction	A. Ni B. Pt C. Pd			
2. No reaction	D. Wikinson E. No reaction			
147. What is the expected major product formed upon				
reaction of one mole of hydrogen with alkyne	157. Which of the following will yield 2-methylpentane			
A. Alkane B . Alkene C. Alkyne	upon catalytic hydrogenation?			
D. Haloalkene E. No reaction	A.2-methyl-1-pentene B. 2-methyl-2-pentene			
	C. 4-methyl-2-pentene D. 4-methyl-1-pentene E. All of the above			
148. Ozonolysis is the reaction of an alkane with Ozone	E. All of the above			
A. True B. False	450 141 11 11 11 11 11 11			
	158. What is the expected major product upon			
149. Ozonolysis is the reaction of an alkene with	reaction of 1-pentene with Cl2? A. 2,2-dichloropentane B. 1,1-dichloropentane			
trioxygen (Ozone)	C. 2-chloropentane D. 1-chloropentane			
A. True B. False	E. 1,2-dichloropentane			
150. What is the product formed when 5- chloro-1-	159. Treating 2-methyl-2-pentene with Br2 is expected			
meyhylcyclohexene is reduced with a Pt	to produce which of the following as			
catalyst and H2	the major product?			
A. 1-chloro-5-methylcyclohexane	A. 2,3-dibromo-2-methylpentane			
B. 1-chloro-3-methylcyclohexane	B. 3,3-dibromo-2-methylpentane			
C. 5-chloro-1-methylcyclohexane	C. 2,2-dibromo-2-methylpentane			
D. 5-methylcyclohexane E. No reaction	D. 2-bromo-2-methylpentane E. 3-dibromo-2-methylpentane			
454 Which of the falls to see the	2. 5 dibromo 2 methylpentane			
151. Which of the following reagents can accomplish	1CO. The Mankey milesy mandy at accepting from an			
the transformation of alkene to alkane A. Pt/Ni/H2 B. Pt/H C. Ni/H	160. The Markovnikov product, resulting from an addition reaction to an unsymmetrical alkenes, is			
D. Ni/Pt E. Ni/H2	formed because			
Elitajia	A. The product is statistically favored.			
153 Hamman, males of hudge	B. The reaction proceeds via the more/most stable			
152. How many moles of hydrogen are consumed in the catalytic reduction of 1 mole of 1,3-	carbonation.			
dibromocyclohexa-1,4-diene	C. Steric hindrance favors its formation.			

A. 1

B**. 2**

C. 3 D. 4

E. 5

D. The reaction forms the more/most stable product.

E. All of the above are valid reasons

161. What is the correct name for the compound, CH₃CH2CH=CH-CH2CH=CH-CH3

A. 1, 5-octadiene
C. 3, 5-octadiene
D.3, 6-octadiene

E. 2, 6-octadiene

162. Predict the product of the catalytic hydrogenation of 6-ethyl-3-decene.

A. 3-ethyldecane
C. 5-ethyldecane
D. 6-ethyldecane

E. 7-ethyldecane

163. Hydrogenation of what alkyne produces propane?

A. Propane B. Propene C. **Propyne**

D. Propynal E. Propynol

164. The term resonance may be defined as a phenomenon whereby a molecule can be represented by two or more structures which have different arrangement of their atoms but same arrangements of their electrons

A. True B. False

165. Pentane has lower boiling point than all its isomers?

A. True B. False

166. The boiling point of haloalkanes increases with increase with chain length when keeping the halogen constant.

A. **True** B. False

167. The boiling point of haloalkanes increases with increasing halogen substituent.

A. **True** B. False

168. The boiling point of haloalkanes increases with a decrease in chain branching for any given set of isomers.

A. **True** B. False

169. What is the correct name for CH₃-CH2CH=CHCH2-CH=CHCH₃

A. Octadiene B. 2, 5-Octadiene C. 5,2-Octadiene D. 1, 5-Octadiene

E. 2, 5-Octadiene

170. Hydrogenation of which alkyne will produce

propane in excess hydrogen molecule?

A. propan B. propane C. propene D. **propyne**

171. Hydrogenation of which alkene will produce propane

A. propan B. propane C. propene

D. **propyne** E. All of the above

172. What is the product of the reaction between HI and cyclohexene

A. Cyclohene
C. **Cyclohexyliodide**B. Cyclohenecycloiodine
D. Cyclohexeneliodide

E. Cyclohexane

173. What is the major product of the reaction between 2-methyl-2-butene and HI

A. iodo-2-methylbutane

B. 1-iodo-2-methylbutane

C. 2-iodo-3-methylbutane

D. 2-iodo-2-methylbutane

E. 2-iod-methylbutane

174. What is the product of the reaction between alkyne and 2 moles of hydrogen?

A. Halogen B. Alkalogen C. Alkene

D. **Alkane** E. alkyne

175. Complete this reaction C2H₆ + ? \rightarrow 2CO2 + 3H2O

A. O2 B. 2O2 C. 3/2O2

D**. 5/202** E. 7/202

176. Complete this reaction C2H₆ + $7/2O2 \rightarrow 2CO2 + ?$

A. 3H2O2 B. 3H₂O C. H2O

D. 2H2O E. **3H2**

177. Complete this reaction ? + $7/202 \rightarrow 2CO2 + 3H2O$

A. CH B. **2C2H**₆ C. C2H₆

D. 3C2H₆ E. 4 C2H₆

178. Complete the reaction $C_3H_8 + ? \rightarrow 3CO2 + 4H2O$ A. O2 B. 202 C. 302 D. 402 E. **502**

179. Complete the reaction ? + $502 \rightarrow 3C02 + 4H20$

A. CH B. C2H₈ C. C₃H4

D. **C₃H₈** E. C₃H₃

180. Complete the reaction $C_3H_8 + 502 \rightarrow ? + 4H20$

```
A. CO2
                                                                               223. The boiling points of alcohols are substantially
                    B. 2CO2
                                        C. 3CO2
                              E. 5CO2
                                                                               higher than those of hydrocarbons of comparable
D. 4CO2
                                                                               molar masses
                                                                               A. True
                                                                                                   B. False
202. Complete the reaction C_3H_8 + 502 \rightarrow 3CO2 +?
                    B. 2H2O
A. H2O
                                                  C. 3H2O
D. 4H2O
                              E. 4H4O
                                                                               224. What is the product of the reaction C2H<sub>5</sub>OH +
                                                                               302→
                                                                               A. 7HO2 + CO2
                                                                                                             B. 3HO2 + 3CO2
203. Complete the reaction C4H<sub>10</sub> + 9O2 \rightarrow 4CO2 + ?
                                                                               C. HO2 + CO2
                                                                                                             D. 2HO2 + 2CO2
A. H2O
                    B. 2H2O
                                                  C. 3H2O
                                                                               E. 3HO2 + 2CO2
D. 4H2O
                              F. 5H2O
                                                                               225. What is the product of the reaction ROH + PCI5→
204. Complete the reaction C4H<sub>10</sub> + 902 \rightarrow ? + 5H2O
                                                                               A. HCl + POCl<sub>3</sub>
                                                                                                             B. RCI + HCI
                                        C. 3CO2
                    B. 2CO2
A. CO2
                                                                               C. RCl + HCl +POCl<sub>3</sub>
                                                                                                             D. 5RCl + HCl + 2POCl<sub>3</sub>
D. 4CO2
                              E. 5CO2
                                                                               E. RCI + POCI<sub>3</sub>
205. Complete the reaction C4H<sub>10</sub> + ? \rightarrow 4CO2 + 5H2O
                                                                               226. What is the reactant of the reaction ? \rightarrow RCl + HCl
A. 502
                    B. 602
                                        C. 702
                                                                               + POCl<sub>3</sub>
                    F. 902
D. 802
                                                                               A. ROH + PCI5
                                                                                                             B. 2ROH + PCI5
                                                                                                             D. 2ROH + 2PCI5
                                                                               C. ROH + 2PCI5
206. Complete the reaction ? + 902 \rightarrow 4CO2 + 5H2O
                                                                               E. 3 ROH + PCI5
                    B. C2H<sub>10</sub>
A. C4H
                                                  C. C2H<sub>8</sub>
D. C4H<sub>10</sub>
                              E. C<sub>7</sub>H<sub>10</sub>
                                                                               227. Complete the reaction 3ROH + PCl_3 \rightarrow 3RCI + ?
                                                                               A. HPO
                                                                                                                       C. H<sub>3</sub>PO<sub>3</sub>
                                                                                                   B. H2PO2
207. Complete the reaction ? + 1102 \rightarrow 5C02 + 6H20
                                                                               D. H4PO4
                                                                                                   E H5PO5
A. C<sub>5</sub>H<sub>16</sub>
                    B. C<sub>3</sub>H<sub>12</sub>
                                        C. C<sub>5</sub>H<sub>11</sub>
D. C<sub>3</sub>H<sub>8</sub>
                    E. C<sub>5</sub>H<sub>12</sub>
                                                                               228. Complete the reaction 3ROH +? → 3RCl + HPO<sub>3</sub>
                                                                               A. PCI
                                                                                                   B. PCl<sub>2</sub>
                                                                                                                       C. PCl<sub>3</sub>
208. Complete the reaction C_5H_{12} + ? \rightarrow 5CO_2 + 6H_2O
                                                                               D. PCl₄
                                                                                                   E. PCI<sub>5</sub>
A. 110<sub>2</sub>
                    B. 120<sub>2</sub>
                                        C. 130<sub>2</sub>
D. 140<sub>2</sub>
                    E. 150<sub>2</sub>
                                                                               229. Complete the reaction ROH + ? \rightarrow RCl + SO2 + HCl
                                                                                                   B. SOCl<sub>2</sub>
                                                                               A. SOCI
                                                                                                                       C. SOCI<sub>3</sub>
209. Complete the reaction C_5H_{12} + 11O_2 \rightarrow ? + 6H_2O
                                                                               D. SOCI₄
                                                                                                   E. SOCI5
                    B. 2CO2
A. CO2
                                        C. 3CO2
D. 4CO2
                              E. 5CO2
                                                                               230. Complete the reaction ROH + SOCl2→ RCl + ? +?
                                                                               A. SO2
                                                                                                   B. SO2 + HCI C. SO_3 + HCI
210. Complete the reaction C_5H_{12} + 1102 \rightarrow 5CO_2 + ?
                                                                               D. SO4 + HCl
                                                                                                   E. HCl
A. 2H2O
                              B. 3H2O
                                                            C.
4H2O
                                                                               231. Complete the reaction ? + HCl → CH<sub>3</sub>Cl + H2O
D. 5H2O
                              E. 6H2O
                                                                               A. CH₃OH
                                                                                                                                 C. CH<sub>3</sub>CH<sub>3</sub>OH
                                                                                                   B. CH<sub>3</sub>CH2OH
                                                                               D. CH<sub>3</sub>CH2
                                                                                                   E. CH2CH2OH
211. A monohydric alcohols contain..... number of
OH group
                                                                               232. Complete the reaction CH_3OH + HCl \rightarrow ? + ?
A. 1
          B. 2
                    C. 3
                              D. 4
                                        E. 5
                                                                               A. CH<sub>3</sub>Cl
                                                                                                   B. CH<sub>3</sub>CH<sub>2</sub>Cl
                                                                                                                       C. CH_3CI + H_2O
                                                                               D. CH_3CH_2CI + H_2O
                                                                                                                       E. No reaction
222. A dihydric alcohols contain..... number of OH
group
A. 1
```

B**. 2**

C. 3

D. 4

E. 5

Answers

- 1 DBADB DBCAA
- 11 ACEAA ABDEA
- 21 CCBBA DDBBC
- 31 BBAAA CEBBA
- 41 BCDAB AABAA
- 51 AACBA BAAAA
- 61 ABBEA EDADC
- 71 ABBBA ABBBA
- 81 EAAAA BBADD
- 91 BECEE EEEAC Check Q92
- 101 ECDCC DDDAB
- 111 BAAAA AADBD
- 121 DCCBC CBAAA
- 131 ABADA BACED
- 141 DEDCB ABBAB
- 151 EBCBB DEEAB
- 161 BBCBB AAAED
- 171 DCCDD EBCED
- 181 CDEDE DAAEE
- 191 ABAEC ACCBB AC