PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-007182

(43) Date of publication of application: 10.01.1995

(51)Int.CI.

H01L 33/00

(21)Application number: 05-146383

(71)Applicant: NICHIA CHEM IND LTD

(22)Date of filing:

17.06.1993 (72)I

(72)Inventor: NAKAMURA SHUJI

MUKAI TAKASHI

(54) GALLIUM NITRIDE BASED COMPOUND SEMICONDUCTOR LIGHT EMITTING ELEMENT (57) Abstract:

PURPOSE: To enhance the luminance and the emission output of a light emitting element by interposing an n-type layer doped with n-type dopant and p-type dopant, as an emission layer, between an n-type layer and a p-type layer.

CONSTITUTION: After growth of a buffer layer 2 and an n-type GaN layer 3 on a saphire substrate 1, an n-type Ga1-XAIXN (0≤X<1, X<Y, X<Z) doped with n-type and p-type dopants is grown, as an emission layer, between an n-type clad layer Ga1-YAIYN (0<Y<1) layer 4 and a p-clad layer Ga1-ZAIZN (0<Z<1) layer. Furthermore, the n-type clad layer 4 is laminated on the n-type GaN layer to obtain an emission layer excellent in the crystallinity thus realizing a light emitting element excellent in emission intensity and emission efficiency. When the value of X is increased in the Al mixed crystal ratio of n-type and p-type clad layers, emission output from a preferable double heterostructure can be enhanced.

LEGAL STATUS

[Date of request for examination]

19.04.1996

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

2918139

[Date of registration]

23.04.1999

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本國特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出顧公開番号

特開平7-7182

(43)公開日 平成7年(1995)1月10日

(51) Int.Cl.⁶

識別記号

庁内整理番号

FΙ

技術表示箇所

H01L 33/00

C 7376-4M

審査請求 未請求 請求項の数5 OL (全 5 頁)

(21)出願番号

特爾平5-146383

(71)出願人 000226057

日亜化学工業株式会社

(22)出顧日

平成5年(1993)6月17日

徳島県阿南市上中町岡491番地100

(72)発明者 中村 修二

徳島県阿南市上中町岡491番地100 日亜化

学工業株式会社内

(72)発明者 向井 孝志

徳島県阿南市上中町岡491番地100 日亜化

学工業株式会社内

(54) 【発明の名称】 室化ガリウム系化合物半導体発光素子

(57) 【要約】

(修正有)

【目的】 p-n接合の窒化ガリウム系化合物半導体を 用いて発光索子の輝度、および発光出力を向上させる。

【構成】 n型Ga1-yAlyN (0<Y<1) 層とp型 Ga1-1A1:N(0<Z<1)層との間に、n型ドーパ ントとp型ドーパントとがドープされたn型Ga1-1A 1rN (0≦X<1、X<Y, X<Z) 層を発光層5として具 備するダブルヘテロ構造の発光素子。

【特許請求の範囲】

n型Ga1-7A17N (0<Y<1) 層と 【請求項1】 p型Ga1-1A11N (0<2<1) 層との間に、n型ド ーパントとp型ドーパントとがドープされたn型Ga 1-rAlrN (0≤X<1、X<Y、X<Z) 層を発光層とし て具備することを特徴とする窒化ガリウム系化合物半導 体発光素子。

【請求項2】 前記n型Ga1-1Al1N層の電子キャリ ア濃度は1×10¹⁷/cm⁸~1×10²²/cm⁸の範囲にあ ることを特徴とする請求項1に記載の窒化ガリウム系化 10 合物半導体発光素子。

【請求項3】 前記p型Ga1-1Al1Nの上に、さらに コンタクト層としてp型GaN層が積層されていること を特徴とする請求項1に配載の窒化ガリウム系化合物半 導体発光索子。

【請求項4】 前記p型Gai-iAliNおよび/または 前配p型GaN層は400℃以上でアニーリングされて 抵抗率1000·cm以下に調整されていることを特徴と する請求項1または請求項3に記載の窒化ガリウム系化 合物半導体発光素子。

【請求項5】 前記n型Gai-yAlyN層はn型GaN 層の上に積層されていることを特徴とする請求項1に記 戦の窒化ガリウム系化合物半導体発光素子。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は窒化ガリウム系化合物半 導体を用いた発光素子に係り、特にローn接合を有する ダブルヘテロ構造の窒化ガリウム系化合物半導体発光素 子に関する。

[0002]

【従来の技術】GaN、GaAlN、InGaN、In A1GaN等の窒化ガリウム系化合物半導体は直接遷移 を有し、パンドギャップが1.95eV~6eVまで変 化するため、発光ダイオード、レーザダイオード等、発 光素子の材料として有望視されている。現在、この材料 を用いた発光素子には、n型室化ガリウム系化合物半導 体の上に、p型ドーパントをドープした高抵抗なi型の 窒化ガリウム系化合物半導体を積層したいわゆるMIS 構造の青色発光ダイオードが知られている。

【0003】MIS構造の発光素子として、例えば特開 平4-10665号公報、特開平4-10666号公 報、特開平4-10667号公報において、n型GaA 1N層の上に、SiおよびZnをドープしたi型のGa A1N層を積層して、その1型層を発光層とする技術が 開示されている。これらの技術によると、Znに対する Siのドーピング割合を変化させることで、発光色を育 色、白色、赤色と変化させることができる。

[0004]

【発明が解決しようとする課題】しかしながら、上記技 術のように、p型ドーパントである $2\,n$ をドープし、さ $50\,$ する必要がある。それらの値をX値よりも大きくするこ

らにn型ドーパントであるSiをドープして高抵抗なi 型GaA1N層を発光層とするMIS構造の発光素子は 輝度、発光出力共低く、発光素子として実用化するには 未だ不十分であった。

【0005】従って本発明はこのような事情を鑑みて成 されたものであり、その目的とするところは、p-n接 合の窒化ガリウム系化合物半導体を用いて発光素子の輝 度、および発光出力を向上させることにある。

[0006]

【課題を解決するための手段】我々は、GaA1Nを従 来のように高抵抗な1型の発光層とせず、低抵抗なn型 とし、新たにこのn型GaAlN層を発光層としたpn接合ダブルヘテロ構造の発光素子を実現することによ り上配課題を解決するに至った。即ち、本発明の窒化ガ リウム系化合物半導体発光素子はn型Ga1-1Al1N (0 < Y < 1) 層とp型Ga1-1Al1N(0 < Z < 1) 層 との間に、n型ドーパントとp型ドーパントとがドープ されたn型Ga1-xAlxN(0≤X<1、X<Y、X<Z) 層を発光層として具備することを特徴とする。

【0007】本発明の窒化ガリウム系化合物半導体発光 20 秦子において、クラッド層であるn型Gai-1AlrN層 (以下、nクラッド層という。)とは、GaA1Nに例 えばSi、Ge、Se、Te等のn型ドーパントをドー プレてn型特性を示すように成長させた層をいう。ま た、GaAlNの場合ノンドープでもn型になる性質が

【0008】さらに、前配nクラッド層はn型GaN層 の上に積層されていることがさらに好ましい。なぜな ら、結晶性に優れた発光層を具備する発光素子ほど発光 強度、発光効率に優れており、結晶性に優れた発光層を 得るためには、結晶性に優れたπクラッド層の上に発光 層を積層する必要があるからである。我々の実験による と、窒化ガリウム系化合物半導体は三元混晶、四元混晶 となるに従い、その結晶性が悪くなる傾向にある。従っ て、結晶性に優れた三元混晶、または四元混晶のnクラ ッド層を得るためには、そのnクラッド層をn型GaN 層の上に積層することにより、最も結晶性に優れたnク ラッド層を得ることができる。

【0009】また、同じくクラッド層であるp型Ga 1-1 A 11 N層(以下、pクラッド層という。)とは、G aAlNにZn、Mg、Cd、Be、Ca等のp型ドー パントをドープして、p型特性を示すように成長した層 をいう。さらに、p型ドーパントをドープして成長した GaA1N層を、我々が先に出願した特願平3-357 046号に開示するように、400℃以上でアニーリン グ処理を行うことにより、抵抗率100Q·cm以下のp 型が実現でき、さらに好ましい。

【0010】さらにまた、nクラッド層とpクラッド層 のAI混晶比、即ちY値およびZ値ははX値よりも大きく

とにより、好ましいダブルヘテロ構造として発光出力を 向上させることができる。

【0011】一方、発光層であるn型Gai-rAlrN層 (以下、n発光層という) 中の電子キャリア濃度は1× 10¹⁷/cm³~1×10²²/cm³の範囲に調整することが 好ましい。電子キャリア濃度が1×1017/cm3より少 ないか、または1×10²²/cm³よりも多いと、実用的 に十分な発光出力が得られない傾向にある。また、電子 キャリア濃度と抵抗率とは反比例し、その濃度がおよそ 1×10¹⁵/cm³以下であると、n発光層は高抵抗なi 型となる傾向にあり、電子キャリア濃度測定不能とな る。電子キャリア濃度は、n発光層にドープするn型ド ーパントとp型ドーパントのドープ量を適宜調整する か、あるいは成長条件を適宜調整することにより調整す ることができる。n発光層の電子キャリア濃度の効果に ついては後に詳しく述べる。また、n型ドーパントをp 型ドーパントよりも多くドープすることによりn発光層 にドープするn型ドーパント、p型ドーパントの種類も 上記したドーパントと同じであることはいうまでもな

【0012】また、pクラッド層の上にコンタクト層としてp型GaN層(以下、pコンタクト層という。)を形成することにより、正電極とpコンタクト層とのオーミック接触が得られやすくなり、発光素子に係る順方向電圧を下げ、発光効率を向上させることができる。なぜなら、我々の実験によるとGaAIN層よりもA1を含まないGaN層の方が電極とオーミックコンタクトが得られやすい傾向にあるため、GaN層をpクラッド層の上に積層することにより、電極とのオーミック性がよくなる。このp型GaN層のp型ドーパントも上配p型ドーパントと変わるものではなく、さらにpクラッド層と同様に、p型ドーパントをドープして成長したGaN層を400℃以上でアニーリング処理を行うことにより、抵抗率1000cm以下のp型が実現でき、さらに好ましい。

[0013]

【作用】図1に、基板上に、n型GaN層と、nクラッド層としてSiドープn型Ga0.9A10.2N層と、n発光層としてZn、Siドープn型Ga0.99A10.01N層と、pクラッド層としてMgドープp型Ga0.9A10.1 N層と、pコンタクト層としてMgドープp型GaN層とを順に積層したp-n接合のダブルヘテロ構造の発光素子を作製し、その発光素子を発光させた場合に、前記n型Ga0.99A10.01N層の電子キャリア濃度と、その発光素子の相対発光出力との関係を示す。

が変化する。発光出力はη発光層の電子キャリア濃度が 1018/cm3付近より急激に増加し、およそ1×1019 ~10²⁰/cm⁵付近で最大となり、それを超えると再び 急激に減少する傾向にある。現在実用化されているn型 GaNとi型GaNよりなるMIS構造の発光素子の発 光出力は、本発明の発光素子の最大値の発光出力のおよ そ1/100以下でしかなく、また実用範囲を考慮した 結果、電子キャリア濃度は1×10¹⁷/cm³~5×10 22/cm3の範囲が好ましい。また、この図はZn、Si ドープGaO.99A10.01Nについて示したものである が、他のp型ドーパント、n型ドーパントを同時にドー プレたn型Ga0.99A10.01N発光層についても同様の 相対発光出力が得られた。さらに、A1の混晶比を大き くしたGaAINについても、発光波長が短くなるだけ で相対発光出力に関しては同様の結果が得られた。この ように、本発明の発光索子において、n発光層の電子キ ャリア濃度の変化により、発光出力が変化するのは以下 の理由であると推察される。

【0015】 GaNはノンドープ (無添加) で成長する と、窒素空孔ができることによりn型を示すことは知ら れている。このノンドープn型GaNの残留電子キャリ ア濃度は、成長条件によりおよそ1×1017/cm3~1 ×10²²/cm⁸ぐらいの値を示す。さらに、このn型G a N層に発光中心となるp型ドーパント(図1の場合は Zn)をドープすることにより、n型GaN層中の電子 キャリア濃度が減少する。このため、p型ドーパントを 電子キャリア濃度が極端に減少するようにドープする と、n型GaNは高抵抗なi型となってしまう。この電 子キャリア濃度を調整することにより発光出力が変化す るのは、p型ドーパントであるZnの発光中心がドナー 不純物とペアを作って発光するD-Aペア発光の可能性 を示唆しているが、詳細なメカニズムはよくわからな い。重要なことは、ある程度の電子キャリアを作るドナ 一不純物(例えばn型ドーパント、ノンドープGaA1 N)と、アクセプター不純物であるp型ドーパントとが 両方存在するn型GaA1Nでは、ダブルヘテロ構造の 発光素子において、発光中心の強度が明らかに増大する ということである。

[0016]

「実施例」図2は本発明の一実施例の窒化ガリウム系化 合物半導体発光素子の構造を示す断面図であり、以下こ の図に基づき、本発明の発光素子を有機金属気相成長法 により製造する方法を述べる。

【0017】 [実施例1] サファイア基板1を反応容器内に設置し、サファイア基板1のクリーニングを行った後、成長温度を510℃にセットし、キャリアガスとして水素、原料ガスとしてアンモニアとTMG(トリメチルガリウム)とを用い、サファイア基板上にGaNバッファ層2を約200オングストロームの膜厚で成長させる

【0018】パッファ層2成長後、TMGのみ止めて、 温度を1030℃まで上昇させる。1030℃になった ら、同じく原料ガスにTMGとアンモニアガス、ドーパ ントガスにシランガスを用い、Siをドープしたn型G a N層 3 を 4 μ m成長させる。

【0019】n型GaN層3成長後、原料ガスとしてT MGとTMA(トリメチルアルミニウム)とアンモニ ア、ドーパントガスとしてシランガスを用い、nクラッ ド層4としてS1ドープGa0.8A10.2N層を0.15 μm成長させる。

【0020】 nクラッド層4成長後、TMAガスの流量 を絞り、ドーパントガスとしてシランガス、およびDE 2(シエチルジンク)を用い、n発光層5としてSi、 ZnドープGa0.99A10.01N層を500オングストロ ーム成長させる。なお、このn発光層5層の電子キャリ ア濃度は1×10¹⁹/cm³であった。

【0021】次に、ドーパントガスを止め、原料ガスと してTMGと、TMAと、アンモニア、ドーパントガス としてCp2Mg (シクロペンタジエニルマグネシウ たp型Ga0.8A10.2N層を0.2μm成長させる。

【0022】さらにpクラッド層6成長後、TMAガス を止め、pコンタクト層7として、Mgをドープしたp 型GaN層を 0.5μ m成長させる。

【0023】成長後、ウエハーを反応容器から取り出 し、アニーリング装置にて窒素雰囲気中、700℃で2 0分間アニーリングを行い、最上層のpコンダクト層 7 と、pクラッド層6とをさらに低抵抗化し、それぞれ抵 抗率10Q·cm以下にする。

ンタクト層7、pクラッド層6、n発光層5、およびn クラッド層4の一部をエッチングにより取り除き、n型 GaN層3を露出させ、pコンタクト層7と、n型Ga N層3とにそれぞれオーミック電極8、9を設け、50 0 μm角のチップにカットした後、常法に従い発光ダイ オードとしたところ、発光出力は20mAにおいて40 0μW、順方向電圧5V、発光波長490nmであっ

【0025】 [実施例2] 実施例1のn発光層5である n型Ga0.99A10.01N層を成長する際、SiおよびZ nのドープ量を調整して、電子キャリア濃度を2×10 17/cm とする他は、実施例1と同様にして青色発光ダ イオードを得たところ、20mAにおいて発光出力40 μW、順方向電圧、発光波長とも実施例1と同一であっ

【0026】 [実施例3] 実施例1のn発光層5である n型Ga0.99A10.01N層を成長する際、SiおよびZ ロのドープ量を調整して、電子キャリア濃度を2×10 21/cm²とする他は、実施例1と同様にして青色発光ダ イオードを得たところ、20mAにおいて発光出力40 50 μW、順方向電圧、発光波長とも実施例1と同一であっ た。

【0027】 [実施例4] 実施例1のn発光層5である n型Ga0.99A10.01N層を成長する際、S1およびZ nのドープ量を調整して、電子キャリア濃度を1×10 17/cm3とする他は、実施例1と同様にして青色発光ダ イオードを得たところ、20mAにおいて発光出力10 μW、順方向電圧、発光波長とも実施例1と同一であっ た。

【0028】 [実施例5] 実施例1のn発光層5である ·10 n型Ga0.99A10.01N層を成長する際、SiおよびZ nのドープ量を調整して、電子キャリア濃度を1×10 22/cm3とする他は、実施例1と同様にして青色発光ダ イオードを得たところ、20mAにおいて発光出力10 μW、順方向電圧、発光波長とも実施例1と同一であっ た。

【0029】 [実施例6] 実施例1のn型GaN層3を 成長させず、GaNバッファ層2の上に直接nクラッド 層4を成長させる他は、実施例1と同様にして発光ダイ ム) とを用い、pクラッド層6として、Mgをドープレ 20 オードとしたところ、20mAにおいて発光出力100 μW、順方向電圧、発光波長とも実施例1と同一であっ た。なお、電極9はnクラッド層4に形成したことはい うまでもない。

> 【0030】 [実施例7] 実施例1のpコンタクト層7 を成長させず、pクラッド層6の上に電極8を形成する 他は実施例1と同様にして発光ダイオードとしたとこ ろ、20mAにおいて発光出力400μW、発光波長4 90 nmであったが、順方向電圧が10 Vであった。

【0031】 [実施例8] 実施例1において、n型発光 【0024】以上のようにして得られたウエハーのpコ 30 層5のp型ドーパントとしてCp2Mg (シクロペンタ ジエニルマグネシウム) ガス、n型ドーパントとしてゲ ルマンガスを用い、電子キャリア濃度1×10¹⁸/cm³ のMg、GeドープGa0.99A10.01N層を成長させる 他は同様にして発光ダイオードとしたところ、発光出力 400μW、順方向電圧5V、発光波長480nmであ

> 【0032】 [比較例1] 実施例1のn型GaN層3の 上に、2nドープi型GaN層を成長させる。i型Ga N層成長後、i型GaN層の一部をエッチングし、n型 GaN層を露出させ、n型GaN層とi型GaN層とに 電極を設けて、MIS構造の発光ダイオードとしたとこ ろ、発光出力は20mAにおいて1μW、順方向電圧2 0V、輝度2mcdしかなかった。

> 【0033】 [比較例2] 実施例1のn型GaN層3の 上に、Si、Znドープi型GaN層を成長させる。i 型GaN層成長後、比較例1と同様にして電極を設け、 MIS構造の発光ダイオードところ、発光出力は20m Aにおいて1μW、順方向電圧20V、輝度0、1mc **d**しかなかった。

[0034]

[発明の効果] 以上説明したように、本発明の窒化ガリ ウム系化合物半導体発光素子は、p型ドーパントおよび n型ドーパントをドープしたn型G a1-1 A 1 IN層を発 光層とするダブルヘテロ構造としているため、従来のM IS構造の発光素子に比して、格段に発光出力が増大す る。また、pコンタクト層をpクラッド層の上に積層す ることにより発光素子の順方向電圧が下がり、発光効率 が向上する。これにより、SiC、MIS構造GaNし か利用されていなかった従来の青色発光素子にとってか ·わり、本発明の発光素子が十分に実用可能となり、平面 10 4···nクラッド層 ディスプレイ、フルカラー発光ダイオード等が実現でき

【図面の簡単な説明】

【図1】 本発明の一実施例に係る発光素子のn型Ga A 1 N層の電子キャリア濃度と、相対発光出力との関係 を示す図。

【図2】 本発明の一実施例に係る発光素子構造を示す 模式断面図。

【符号の説明】

1・・・サファイア基板

2・・・GaNパッファ層

3・・・n型GaN層

5・・・n発光層

6·・・pクラッド層

7・・・pコンタクト層

[图1]

[図2]

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.