Průběh veličiny v čase.

- Na ose x je nezávisle proměnná, například čas
- Na ose y jsou hodnoty sledované veličiny, například velikost populace, nebo prodej zboží, ...

Různé typy trendů

Trend umožní nahradit datovou řadu několika parametry křivky. Přímka y = ax + b má například pouze 2 neznámé parametry, a, b.

Čas <0, 14>

Čas <15, 30>

Nahrazení první části datové řady křivkou, tj. jejími parametry.

Druhou část závislosti lze nahradit křivkou (jejími parametry), avšak nemá to smysl. Trend není patrný.

FUNKCE.

Závislost délky vegetační sezóny na nadmořské výšce

Přímka naznačuje, že závislost je lineární a čím větší je nadmořská výška, tím kratší je vegetační sezóna.

Definice funkce f.

Nechť **A**, **B** $\neq \emptyset$. Kartézským součinem **A** x **B** rozumíme **A** x **B** = { [x, y], kde $x \in \mathbf{A}$ a $y \in \mathbf{B}$ }. Záleží na pořadí prvků ve dvojici!!

Nechť **A**, **B** $\neq \emptyset$. Každá podmnožina A x B se nazývá relace.

- 1. Nechť **A**, **B** $\neq \emptyset$. Předpis, kterým se každému $x \in \mathbf{A}$ přiřadí nejvýše jedno $y \in \mathbf{B}$, y = f(x) se nazývá zobrazení.
- Nechť A, B ⊂ R. Předpis, kterým se každému x ∈ A přiřadí nejvýše jedno y ∈ B, y = f (x) se nazývá reálná funkce f jedné reálné proměnné z množiny A do množiny B.
- 3. $D(f) = \{x \in \mathbb{R}; \text{ existuje } y \in \mathbb{R} \text{ tak, } \text{že } y = f(x) \} \text{ je definiční obor funkce } f$.
- 4. $R(f) = H(f) = \{y \in \mathbb{R}; \text{ existuje } x \in D(f) \text{ tak, že } y = f(x) \} \text{ je obor hodnot funkce } f$.
- 5. Grafem funkce f rozumíme $G(f) = \{ [x, y] \in A \times B, kde y = f(x) \}.$
- 6. Nechť $[x, y], [m, n] \in A \times B$. [x, y] = [m, n] právě, když x = m a současně y = n.

Nejedná se o graf funkce. Existuje x takové, že k němu existují y_1 a y_2 tak, že $y_1 \neq y_2$.

Jedná se o graf funkce. Definiční obor funkce je $D(f) = \mathbf{R} - (x_1, x_2)$.

Speciální typy funkcí.

Nechť $A \subset R$, $B \subset R$. Nechť je dána funkce $f : A \to B$.

□ Funkce f je definována na množině A, jestliže $A \subset D(f)$. Pro každé $x \in A$ existuje právě jedno $y \in B$ tak, že f(x) = y.

$$D(f) = <-3, 1> \cup <2,3>$$

- Nechť A = <-2, 0>.
 f je definována na množině A.
- Nechť B = <-1, 2>.
 f není definována na množině B.

□ Funkce f je na množinu B, jestliže $B \subset R(f)$. Pro každé $y \in B$ existuje $x \in A$ tak, že f(x) = y.

$$R(f) = <0, 1> \cup <4, 9>$$

- Nechť A = <0, 1>.
 f je na množinu A.
- Nechť B = <0, 10>.
 f není na množinu B.

□ Funkce f je prostá na množině A, $A \subset D(f)$, jestliže pro každé $x_1, x_2 \in A$, $x_1, \neq x_2$ je $f(x_1) \neq f(x_2)$.

$$D(f) = <0, 1> \cup <2, 3>$$

- Nechť A = <0, 1>.
 f je prostá na množině A.
- Nechť B = <0, 3>.
 f není prostá na množině B.
 (B⊄D(f)).
- Nechť C = <-1, 1>. f není prostá na množině C. $(\exists x_1, x_2 \in C, x_1, \neq x_2 \text{ tak, že})$ $f(x_1) = f(x_2)$.)

Nechť funkce f je definována na množině A, funkce g je definována na množině B. Nechť $f(A) \cap B \neq \emptyset$. Pak lze definovat složenou funkci h(x) = f(g(x)) na množině A.

Příklad.

Není pravda, že f(g(x)) = g(f(x))!!

- □ $f(x) = x^{\frac{1}{2}}$, D(f) = <0, +∞), R (f) = <0, +∞), $g(x) = x^2 + 1$, D(g) = R, R (g) = <1, +∞). $f(g(x)) = (x^2 + 1)^{\frac{1}{2}}$, pokud R (g) \cap D(f) $\neq \emptyset$. To je ale pravda.

$$f(x) = x^{\frac{1}{2}}$$
, $D(f) = <0$, $+\infty$), $R(f) = <0$, $+\infty$), $g(x) = -x^2 - 1$, $D(g) = R$, $R(g) = (-\infty, -1)$.

$$f(g(x)) = (-x^2 - 1)^{1/2}$$
. R $(g) \cap D(f) = (-\infty, -1 > \cap <0, +\infty) = \emptyset$. Proto $f(g(x))$ nelze provést!!

$$g(f(x)) = -(x^{1/2})^2 - 1 = -x - 1$$
. R $(f) \cap D(g) = <0, +\infty) \cap R \neq \emptyset$. Proto $g(f(x))$ | Ize provést!!

- \square Funkce f^{-1} se nazývá inverzní k funkci f na množině $A \subset D(f)$, jestliže
 - \Leftrightarrow f je prostá na $A \subset D(f)$,
 - ❖ $D(f^{-1}) = f(A) \subset R(f), R(f^{-1}) = A \subset D(f),$
 - **❖** $[x, f(x)] = [f^{-1}(f(x)), f(x)], x ∈ A.$

Poznámka.

- ❖ Speciálně funkce identita $I(x) = x, x \in A \subset R$.
- Nechť f je funkce prostá na množině $\mathbf{A} \subset \mathsf{D}$ (f). Označíme $g = f^{-1}$. $\mathsf{D}(f^{-1}) = f(\mathbf{A})$, $\mathsf{R}(f^{-1}) = \mathbf{A}$. Odtud $f(\mathbf{A}) \cap \mathsf{D}$ (g) $\neq \emptyset$, $g(\mathbf{A}) \cap \mathsf{D}$ (f) $\neq \emptyset$ a lze provést f^{-1} (f) = $f(f^{-1}) = I$.

$$f(x) = x^2, D(f) = R, R(f) = <0, +\infty$$
).

f není prostá na D(f) (například f(-1) = f(1)).

f je prostá například na $<0, +\infty$). Označme tuto funkci jako g. $g(x) = x^2 \equiv y, \ x = g^{-1}(y) = \sqrt{y},$ $D(g^{-1}) = R(g) = <0, +\infty),$ $R(g^{-1}) = D(g) = <0, +\infty),$

$$f(x) = \sin(x), D(f) = R, R(f) = <-1, 1>.$$

f není prostá na D(f)(například $f(2\pi) = f(0)$).

f je prostá například na < $-\pi/2$, $\pi/2>$. Označme tuto funkci jako g. g je rostoucí. $g(x) = \sin(x) \equiv y, \ x = g^{-1}(y) = \arcsin(y),$ $D(g^{-1}) = R(g) = < -1, 1>,$ $R(g^{-1}) = D(g) = < -\pi/2, \pi/2>.$

Nechť $f(x) = (x + 1)^3$. D(f) = R, R(f) = R.

Pokud $x_1 \neq x_2$, pak $x_1 + 1 \neq x_2 + 1$ a $(x_1 + 1)^3 \neq (x_2 + 1)^3 \Rightarrow f$ je prostá na D(f). Lze tedy definovat f^{-1} .

Postup:

- $y = (x+1)^3$.
- Formálně zaměníme x a $y \Rightarrow x = (y+1)^3$.
- Vyjádříme $y \Rightarrow \sqrt[3]{x} = y + 1 \Rightarrow y = \sqrt[3]{x} 1$.

Grafy funkcí *f* a *f* -1 jsou souměrně Sdruženy podle osy 1. kvadrantu.

Algebraické operace s funkcemi.

(f + g)(x) = f(x) + g(x), totéž pro odčítání, násobení a dělení.

Při tom ale $x \in D(f) \cap D(g)$!!!!!

f(x) = g(x) právě, když předpisy f a g se rovnají a současně D(f) = D(g).

Monotonie funkcí.

Nechť f je funkce definovaná na množině A.

- 1. f je rostoucí na $A \Leftrightarrow pro každé x, y \in A, x < y$ je f(x) < f(y).
- 2. f je klesající na $A \Leftrightarrow pro každé x, y \in A, x < y$ je f(x) > f(y).
- 3. f je neklesající na $A \Leftrightarrow pro každé x, y \in A, x < y$ je $f(x) \le f(y)$.
- 4. f je nerostoucí na $A \Leftrightarrow pro každé x, y \in A, x < y$ je $f(x) \ge f(y)$.

f je rostoucí na A f je klesající na B f není monotónní na $A \cup B$

Základní typy funkcí.

Lineární funkce. y = ax + b

a je směrnice přímky, určuje sklon přímky, *b* je posun po ose *y*.

Definiční obor i obor hodnot lineární funkce pro a $\neq 0$ je **R**. Definiční obor lineární funkce pro a = 0 (konstantní funkce) je **R**. Obor hodnot je {b}.

Grafem lineární funkce je přímka.

Dokažte, že lineární funkce je

- rostoucí $\Leftrightarrow a > 0$
- klesající ⇔ a < 0
- nerostoucí $\Leftrightarrow a \leq 0$
- neklesající $\Leftrightarrow a \ge 0$.

K sestrojení grafu lineární funkce stačí určit 2 body:

Pokud $b \neq 0$, $a \neq 0$ pak stačí určit

- x takové, že ax + b = 0,
- [0, b].

Pokud b = 0, $a \neq 0$, pak

- [0, 0]
- [x, ax], kde x je libovolné různé od 0.

Pokud a = 0, grafem je přímka rovnoběžná s osou x a procházející bodem [0, b].

Funkce absolutní hodnota. y = |ax + b|

Pro
$$ax + b > 0$$
, $a \ne 0$, je $y = |ax + b| = ax + b$,
Pro $ax + b < 0$, $a \ne 0$, je $y = |ax + b| = -ax - b$.

Polynomy.

$$y = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$$

Pokud $a_n \neq 0$, jedná se o polynom n – tého řádu (stupně). Definiční obor polynomu je \mathbf{R} .

Polynom 0. řádu – konstantní funkce.

$$y = a_0$$

Polynom 1. řádu – lineární funkce.

$$y = a_0 + a_1 x$$

Polynom 2. řádu – kvadratická funkce.

$$y = a_0 + a_1 x + a_2 x^2, a_2 \neq 0$$

Grafem kvadratické funkce je parabola s vrcholem v bodě $x = -a_1 / 2a_2$.

Parabola je určena 3 body: [x, 0], [0, y], [$-\frac{a_1}{2a_2}$, $a_0 - \frac{a_1^2}{4a_2}$], (pokud tyto body existují).

Určit bod [x, 0] znamená vyřešit kvadratickou rovnici $0 = c + bx + ax^2$.

Diskriminant D = $b^2 - 4ac$. Reálné kořeny existují pouze pro D \geq 0.

$$X_{1,2} = (-b \pm \sqrt{D})/(2a)$$

Příklad.

- Dokažte, že funkce $f(x) = (x-2)^2 + 1$ není prostá na D(f).
- Dokažte, že funkce $g(x) = f(x), D(g) = (-\infty, 2)$ je prostá.
- Napište formuli p $ro g^{-1}$.

Nakreslete graf funkce $f(x) = 3x^2 + 6x + 9$.

$$f(x) = 3(x^2 + 2x + 3) = 3[(x+1)^2 - 1 + 3] = 3[(x+1)^2 + 2]$$

Grafem je parabola s vrcholem v bodě [-1, 6], osu y protíná v bodě [0, 9], osu x neprotíná (diskriminant D < 0).

Příklad.

Nakreslete graf funkce $f(x) = 3x^2 + 6x - 9$.

$$f(x) = 3(x^2 + 2x - 3) = 3[(x + 1)^2 - 1 - 3] = 3[(x + 1)^2 - 4]$$

Grafem je parabola s vrcholem v bodě [-1, -12], osu y protíná v bodě [0, -9], osu x Protíná v bodech [1, 0], [-3, 0] (diskriminant D = 16).

Nakreslete graf funkce $f(x) = -3x^2 + 6x - 9$.

$$f(x) = -3(x^2 - 2x + 3) = -3[(x - 1)^2 - 1 + 3] = -3[(x - 1)^2 + 2]$$

Grafem je parabola s vrcholem v bodě [1, -6], osu y protíná v bodě [0, -9], osu x neprotíná (diskriminant D < 0).

Polynom 3. řádu. $y = a_0 + a_1 x + a_2 x^2 + a_3 x^3, a_3 \neq 0$

Příklady.

Polynom stupně n může mít nejvýše n kořenů a (n-1) vrcholů.

S rostoucím *n* pro pevné *x*:

- \triangleright klesají hodnoty polynomu $y = x^n$ k hodnotě 0 na intervalu (0, 1).
- rostou hodnoty polynomu $y = x^n$ do $+\infty$ na intervalu $(1, +\infty)$.

Lineární lomená funkce.

$$y = (ax + b) / (cx + d), x \neq -d / c$$

- Grafem racionální funkce je hyperbola.
- \triangleright Asymptoty hyperboly jsou x = -d/c, y = a/c

Mocninná funkce. $y = x^n$

- ightharpoonup Pro $n \in \mathbf{N}$ se jedná o polynom.
- ightharpoonup Pro $n \in \mathbb{N}$ se jedná o racionální lomenou funkci.
- $\rightarrow n = p / q$, například $y = x^{1/2}$.

S rostoucím $n \in \mathbb{N}$ pro pevné x:

- \triangleright klesají hodnoty polynomu $y = x^{-n}$ k hodnotě 0 na intervalu (1, + ∞),
- rostou hodnoty polynomu $y = x^{-n}$ do $+\infty$ na intervalu (0, 1).