컴퓨터구조

6. 메모리와 캐시 메모리

RAM의 특징과 종류

KEY WORD 휘발성 저장 장치, 비휘발성 저장 장치, DRAM, SRAM, SDRAM, DDR SDRAM

시작하기 전에..

RAM Random Access Memory 종류: DRAM, SRAM, SDRAM, DDR SDRAM

ROM Read Only Memory

RAM의 특징

- RAM에 저장되는 것: 명령어, 데이터
- 특징: 전원을 끄면 저장된 명령어와 데이터가 모두 날아가는 **휘발성 메모리** volatile memory
- 반면 HDD, SSD, CD-ROM, USB와 같은 보조기억장치는 비휘발성 메모리 non-volatile memory

RAM의 용량과 성능

- 용량이 크다면 많은 프로그램을 미리 가져와 RAM에 저장
- RAM이 클수록 프로그램을 동시에 빠르게 실행하는 데 유리
- 단, RAM 크기에 항상 비례하진 않다.
 - 예) 큰 책상이든, 작은 책상이든 데이터를 가지러 책장을 오가는 시간은 똑같다

RAM의 종류

- DRAM Dynamic RAM: 시간이 지나면 저장된 데이터가 **동적으로 사라지는** RAM
- **SRAM** Static RAM: 시간이 지나도 데이터가 정적으로 남아있는 RAM

우리가 사용하는 메모리

	DRAM	SRAM
재충전	필요함	필요 없음
속도	느림	빠름
가격	저렴함	비쌈
집적도	높음	낮음
소비 전력	적음	높음
사용 용도	주기억장치(RAM)	캐시 메모리

RAM의 종류

- **SDRAM** Synchronous DRAM: 클럭 신호와 동기화된 DRAM (클럭 신호에 맞춰 CPU와 정보 주고받음)
- SDR SDRAM Single Data Rate SDRAM: 대역폭이 1개. 한 클럭당 한번씩 CPU와 데이터 주고받음

흔히 사용

- ▶ DDR SDRAM Double Data Rate SDRAM: 대역폭을 2배 넓혀 속도를 빠르게 함. 한 클럭당 2번씩
- DDR2 SDRAM, DDR3, DDR4 ···: 대역폭이 2배씩 커짐

에모리의 주소 공간

KEY WORD 물리 주소, 논리 주소, MMU, 베이스 레지스터, 한계 레지스터

시작하기 전에

- 메모리는 물리 주소, 논리 주소를 둘 다 사용함
- 물리 주소 physical address : 메모리 하드웨어가 사용하는 주소
- 논리 주소 logical address : CPU, 실행 중인 프로그램이 사용하는 주소
- 이번 장에서 배울 것
 - 각 주소의 개념
 - 두 개로 나뉜 이유
 - 논리주소 → 물리주소로 변환하는 법

물리 주소, 논리 주소

- **물리 주소** : 데이터가 실제로 저장된 하드웨어상의 주소. (메모리가 사용하는 방식)
- 논리 주소 : 실행중인 프로그램마다 부여된 '0번지~n번지'의 주소. (CPU가 사용하는 방식)

→ 그러나 CPU와 메모리가 상호작용 하려면…?

물리 주소, 논리 주소

● MMU Memory Management Unit; 메모리 관리 장치: 논리 주소 ←→ 물리 주소 변환

메모리 보호 기법

메모리 보호 기법

- 한계 레지스터 limit register
 - 다른 프로그램의 영역을 침범하지 않도록 하는 역할
 - 즉, 논리 주소 범위를 벗어나지 않고, 실행중 프로그램이 다른 프로그램에 영향 받지 않도록 보호함

① 3 캐시메모리

KEY WORD 저장 장치 계층 구조, 캐시 메모리, 캐시 적중률, 참조 지역성의 원리

저장장치 계층 구조

● 지금까지 학습한 저장 장치들의 큰 그림을 그려보자.

캐시 메모리

cache memory

- CPU와 메모리 사이에 위치
- CPU가 메모리에 접근하는 시간은 연산 속도보다 느림. 이를 극복하기 위한 저장 장치가 **캐시 메모리**
- SRAM 기반의 저장 장치, 일부 필요한 데이터를 미리 가져와 활용하는 용도

캐시 메모리

cache memory

● L1, L2, L3 → CPU의 검색 순서, 가격, 순서는 어떻게 될까?

● 멀티 코어 프로세서(CPU)의 경우

● 번외) 분리형 캐시: L1을 L1D(data), L1I(instruction)으로 분리

참조지역성 원리

- 캐시 메모리는 CPU가 자주 사용할 법한 대상을 예측하여 저장
 - ✓ 캐시 히트 hit: 예측이 실제로 들어맞는 경우.
 - ✔ 캐시 미스 miss: 예측이 틀린 경우. 이 경우, CPU가 직접 메모리에서 필요한 데이터를 가져온다.
 - ✔ 캐시 적중률 hit ratio : 우리가 사용하는 컴퓨터의 캐시 적중률은 대부분 85~95%
- 참조 지역성의 원리 locality of reference, principle of locality
 - ① 시간 지역성 temporal locality: CPU는 최근에 접근했던 메모리 공간에 **다시 접근**하려는 경향이 있다. 예) 변수
 - ② **공간 지역성** spatial locality: CPU는 접근한 메모리 공간 **근처에 접근**하려는 경향이 있다. 예) p. 204

오늘 배운 것

- **01.** RAM의 특징, 종류에 대해 학습하였다.
- 02. 논리 주소와 물리 주소의 차이를 이해하였다.
- 03. 논리 주소를 물리 주소로 변환하는 방법을 이해하였다.
- 04. 캐시 메모리와 저장 장치 계층 구조의 개념을 이해하였다.

사랑합니다 고객님

다음 발표 일정: 6장 나머지, 7장