A/Aichi/69/94-M2-H3N2 A/Gifu/2/95-M2-H3N2 A/Ibaraki/1/95-M2-H3N2 A/Kagoshima/10/95-M2-H3N2 •A/Niigata/124/95-M2-H3N2 A/Saga/447/94-M2-H3N2 A/Tochigi/44/95-M2-H3N2 A/Akita/1/95-M2-H3N2 A/Hebei/19/95-M2-H3N2 A/Sendai/c373/95-M2-H3N2 A/Osaka/c1/95-M2-H3N2 A/FORT-WARREN/1/50-M2-H1N1 A/USSR/90/77-M2-H1N1 A/Aichi/2/68-M2-H3N2 A/Port-Chalmers/1/73-M2-H3N2 A/Udorn/72-M2-H3N2 A/SINGAPORE/1/57-M2-H2N2 A/ANN-ARBOR/6/60-M2-H2N2 A/Korea/426/68-M2-H2N2 A/Leningrad/134/57-M2-H2N2 A/BANGKOK/1/79-M2-H3N2 A/Fukushima/114/96-M2-H3N2 A/Fukushima/140/96-M2-H3N2 A/Akita/1/94-M2-H3N2 A/Guangdong/39/89-M2-H3N2 A/Kitakyushu/159/93-M2-H3N2 A/Memphis/8/88-M2-H3N2 A/Miyaqi/29/95-M2-H3N2 A/Niigata/137/96-M2-H3N2 / -A/Shiga/20/95-M2-H3N2 A/Sendai/c384/94-M2-H3N2 A/H3N2/NY/83-M2-H3N2 A/Sendai/c182/94-M2-H3N2 A/Shiga/25/97-M2-H3N2 A/Hebe1/12/93-M2-H3N2 A/WSN/33-M2-H1N1 A/Puerto-Rico/8/34-M2-HiN1

MSLLTEVETPIRNEWECRCNGSSD mslltevetpirnew**E**crcn**G**ssd MSLLTEVETPIRNEWECRCNGSSD MSLLTEVETPIRNEW**E**CRCN**G**SSD MSLLTEVETPIRNEWECRCNGSSD MSLLTEVETPIRNEWECRCNGSSD t MSLLTEVETPIRNEW ECRCNGSSDMSLLTEVETPIRNEWECRCNGSSD MSLLTEVETPIRNEWECRCNGSSD MSLLTEVETPIRNEWECRCNGSSD MSLLTEVETPIRNEWECRCNGSSD MSLLTEVETPIRNEWGCRCNDSSD  $exttt{MSLLTEVETPIRNEW}$  GCRCN DSSD MSLLTEVETPIRNEWGCRCNDSSD MSILTEVETPIRNEWGCRCNDSSD MSLLTEVETPIRNEWGCRCNDSSD MSLLTEVETPIRNEWGCRCNDSSD MSLLTEVETPIRNEWGCRCNDSSD MSLLTEVETPIRNEWGCRCNDSSD MSLLTEVETPIRNEWGCRCNDSSD  $ext{MSLLTEVETPIRNEW} \textbf{G} ext{CRCN} \textbf{D} ext{SSD}$ MSLLTEVETPIRNEWGCRCNDSSD MSLLTEVETPIRNEWGCRCNDSSD MSLLTEVETPIRNEWGCRCNDSSD MSLLTEVETPIRNEWGCRCNDSSD MSLLTEVETPIRNEWGCRCNDSSD MSLLTEVETPIRNEWGCRCNDSSD  $exttt{MSLLTEVETPIRNEW} \textbf{G} exttt{CRCN} \textbf{D} exttt{SSD}$ MSLLTEVETPIRNEWGCRCNDSSD  $ext{MSLLTEVETPIRNEW} \textbf{G} ext{CRCN} \textbf{D} ext{SSD}$  $ext{MSLLTEVETPIRNEW} \textbf{G} ext{CRCn} \textbf{D} ext{SSD}$ MSLLTEVETPIRNEWGCRCNDSSD MSLLTEVETPIRNEWGCRCNDSSD MSLLTEVETPIRNEWGCRCNDSSD  $ext{MSLLTEVETPIRNEW} \textbf{G} ext{CRCN} \textbf{D} ext{SSD}$  ${\tt MSLLTEVETPIRNEW} \textbf{G} {\tt CRCN} \textbf{D} {\tt SSD}$ MSLLTEVETPIRNEWGCRCNGSSD

\*\*\*\*\*\*

Figure 1

MET SER LEU LEU THR GLU VAL GLU THR PRO ILE
ATGAGCCTTCTAACCGAGGTCGAAAC...ACCTAT
TACTCGGAAGGTCGATTG...TGGATA
10 20 720

ARG ASN GLU TRP GLU CYS ARG CYS ASN GLY

C A G A A A C G A A T G G G A G T G C

G T C T T T G C T T A C C C T C A C G T C T A C G T T G C

730

750

SER SER ASP PRO LEU VAL VAL ALA ALA SER
T T C A A G T G A C C C C C T T G T T G T T G C T G C G A G
A A G T T C A C T G G C G A A C A A C G A C G C T C
760 780

ILE PHE ASP ARG LEU PHE PHE LYS CYS ILE
GATTTTT GATCGTCTTTTTTCAAATGCAT
CTAAAAA CTAGCAGAAAAAAGTTTACGTA
820 830 840

TYR ARG LEU PHE LYS TYR GLY LEU LYS ARG
C T A T C G A C T C T T C A A A T A C G G T C T G A A A A G
G A T A G C T G A G A A G T T T A T G C C A G A C T T T T C

850
870

GLY PRO SER THR GLU GLY VAL PRO GLU SER

A G G G C C T T C T A C G G A A G G A G T A C C T G A G T C

T C C C G G A A G A T G C C T T C C T C A T G G A C T C A G

880 890 900

MET ARG GLU GLU TYR ARG LYS GLU GLN GLN
T A T G A G G G A A G A A T A T C G A A A G G A A C A G C A
A T A C T C C T T C T T A T A G C T T T C C T T G T C G T
910 920 930

ASN ALA VAL ASP ALA ASP ASP SER HIS PHE
G A A T G C T G T G G A T G C T G A C G A C A G T C A T T T
C T T A C G A C A C C T A C G A C T G C T G T C A G T A A A
940
960

VAL SER ILE GLU LEU GLU \*\*\*
T G T C A G C A T A G A G C T G G A G T A A
A C A G T C G T A T C T C G A C C T C A T T
. 970 980

Figure 2



Figure 3

| 1    | GGGGGGGGG (     | GCGCTGAGG T           | CTGCCTCGT G  | AAGAAGGTG T  | rgctgactc at         | PACCAGGCC TO | SAATCGCCC CA | VICATCCAG CC | AGAAAGIG                 |
|------|-----------------|-----------------------|--------------|--------------|----------------------|--------------|--------------|--------------|--------------------------|
| 91   | AGGGAGCCAC      | GGTTGATGAG A          | GCTTTGTTG T  | 'AGGTGGACC A | GTTGGTGAT T          | TTGAACTTT TO | GCTTTGCCA CO | GAACGGTC TG  | CGTTGTCG                 |
| 181  | GGAAGATGCG      | TGATCTGATC (          | CTTCAACTCA ( | GCAAAAGTTC G | ATTTATTCA A          | CAAAGCCGC C  | GTCCCGTCA A  | GTCAGCGTA AT | GCTCTGCC                 |
| 271  | AGTGTTACAA      | CCAATTAACC #          |              | AGAAAAACTC A |                      |              |              |              |                          |
| 361  | CATATTTTTG      | AAAAAGCCGT T          |              |              |                      |              |              |              |                          |
| 451  | TTCCGACTCG      | TCCAACATCA            |              |              |                      |              |              |              |                          |
| 41   | AATCCGGTGA C    | GAATGGCAAA A          |              |              |                      |              |              |              |                          |
| 531  | CAACCAAACC (    | GTTATTCATT C          |              |              |                      |              |              |              |                          |
| 721  | GCAACCGGCG<br>< | CAGGAACACT            |              |              |                      |              |              |              |                          |
| 811  | GGATCGCAGT<br>< | GGTGAGTAAC            |              |              |                      |              |              |              |                          |
| 901  | GTCTGACCAT      | CTCATCTGTA            |              | CAACGCTACC   |                      |              |              | ATCGGGCTTC   | CCATACAATC <             |
| 991  | GATAGATTGT<br>< | CGCACCTGAT            | TGCCCGACAT   | TATCGCGAGC   |                      | CCATATAAAT   | CAGCATCCAT   | GTTGGAATTT   | AATCGCGGCC<br><          |
| 1081 | TCGAGCAAGA<br>< | CGTTTCCCGT<br>Kan CDS |              | TCATAACACC   | CCTTGTATTA           | CTGTTTATGT   | AAGCAGACAG   | TTTTATTGTT   | CATGATGATA               |
| 1171 | TATTTTATO       | TTGTGCAATG            | TAACATCAGA   | GATTTTGAGA   | CACAACGTGG           | CTTTCCCCCC   | CCCCCGGCA    | TGCCTGCAGG   | TCGACATAAA<br>>>CMVpro > |
| 1261 | TCAATATTGG<br>> | CTATTGGCCA            | TTGCATACGT   | TGTATCTATA   | TCATAATATG<br>CMVpro | TACATTTATA   | TTGGCTCATG   | TCCAATATGA   | CCGCCATGTT >             |
| 1351 | GACATTGATT      | ATTGACTAGT            | TATTAATAGT   | AATCAATTAC   | GGGGTCATTA<br>CMVpro | GTTCATAGCC   | CATATATGGA   | GTTCCGCGTT   | ACATAACTTA<br>>          |
| 1441 | CGGTAAATGG      |                       |              | . CGACCCCCGC |                      |              |              |              | CAATAGGGAC               |
| 1531 | TTTCCATTGA      | CGTCAATGGG            |              | ACGGTAAACT   | GCCCACTTGG<br>CMVpro | CAGTACATCA   | AGTGTATCAT   | ATGCCAAGTC   | CGGCCCCCTA               |
| 1621 | TTGACGTCA#      | A TGACGGTAAA          | TGGCCCGCCT   | GGCATTATGC   | CCAGTACATG<br>CMVpro | ACCTTACGGG   | ACTTTCCTAC   | TTGGCAGTAC   | ATCTACGTAT               |
| 1711 | TAGTCATCGC      | TATTACCATG            | GTGATGCGGT   | TTTGGCAGTA   | CACCAATGGG<br>CMVpro | CGTGGATAGC   | GGTTTGACTC   | ACGGGGATTT   | CCAAGTCTCC               |
| 1801 | ACCCCATTGA      | CGTCAATGGG            | AGTTTGTTTT   | GGCACCAAAA   | TCAACGGGAC           | TTTCCAAAAT   | GTCGTAATAA   | . ccccccccc  | TTGACGCAAA               |

| 1891 | TGGGCGGTAG GCGTGTACGG TC            | GGAGGTCT A  | ATATAAGCAG A | GCTCGTTTA (            |              | GATCGCCTG G         |                | ACGCTGTT        |
|------|-------------------------------------|-------------|--------------|------------------------|--------------|---------------------|----------------|-----------------|
| 1981 | TTGACCTCCA TAGAAGACAC CO            | GGGACCGAT ( | CCAGCCTCCG ( | CGGCCGGGAA             | CGGTGCATTG G | AACGCGGAT T         | CCCCGTGCC A    | AGAGTGACG       |
|      | >                                   |             |              | .CMVpro                |              |                     |                | >>              |
| 2071 | TAAGTACCGC CTATAGACTC T             | 'ATAGGCACA  | CCCCTTTGGC   | TCTTATGCAT             | GCTATACTGT T | TTTTGGCTTG (        | GGCCTATAC A    | CCCCCGCTC       |
| 2161 | CTTATGCTAT AGGTGATGGT A             | TAGCTTAGC   | CTATAGGTGT   | GGGTTATTGA             | CCATTATTGA ( | CCACTCCCCT A        | ATTGGTGACG A   | TACTTTCCA       |
| 2251 | TTACTAATCC ATAACATGGC 1             |             | AACTATCTCT   |                        |              |                     | GAGACTGACA (   | CGGACTCTGT      |
| 2341 | ATTTTACAG GATGGGGTCC (              | CATTTATTAT  | TTACAAATTC   | ACATATACAA             | CAACGCCGTC   | CCCCGTGCCC          | GCAGTTTTTA '   | TTAAACATAG      |
| 2431 | CGTGGGATCT CCACGCGAAT (             |             |              |                        | CTCCGGTAGC   |                     | CCACATCCGA     | GCCCTGGTCC<br>> |
| 2521 | CATGCCTCCA GCGGCTCATG               | GTCGCTCGGC  | AGCTCCTTGC   | TCCTAACAGT             | GGAGGCCAGA   | CTTAGGCACA          | GCACAATGCC<br> | CACCACCACC      |
| 2611 | AGTGTGCCGC ACAAGGCCGT C             |             | TATGTGTCTG   |                        |              | GCTCGCACCG          | TGACGCAGAT     | GGAAGACTTA      |
| 2701 | AGGCAGCGGC AGAAGAAGAT               | GCAGGCAGCT  |              | ATTCTGATAA             |              |                     |                | TTAACGGTGG      |
| 2791 | AGGGCAGTGT AGTCTGAGCA               | GTACTCGTTG  | CTGCCGCGCG   | CGCCACCAGA             |              | GACAGACTAA          | CAGACTGTTC     | CTTTCCATGG >    |
| 2881 | GTCTTTTCTG CAGTCACCGT > intron A >> | CCAAGCTTCC  | ACCATGAGCC   | TTCTAACCG              |              | CCTATCAGAA<br>2 CDS | ACGAATGGGA     | GTGCAGATGC      |
| 2971 | AACGGTTCAA GTGACCCGCT               | TGTTGTTGCT  | GCGAGTATCA   | TTGGGATCT<br>M2 CDS    | T GCACTTGATA | TTGTGGATTT          | TTGATCGTCT     | TTTTTTCAAA      |
| 3061 | TGCATCTATC GACTCTTCAA               | ATACGGTCTC  | G AAAAGAGGGC | CTTCTACGG<br>M2 CDS    | a aggagtacct | GAGTCTATGA          | . GGGAAGAATA   | TCGAAAGGAA      |
| 3151 | CAGCAGAATG CTGTGGATGC               | TGACGACAG1  |              | GCATAGAGC              | T GGAGTAAGGA | . TCCTCGCAAT        | CCCTAGGAGG     | ATTAGGCAAG<br>> |
| 3241 | GGCTTGAGCT CACGCTCTTG               | TGAGGGACAC  | G AAATACAATO | AGGGGCAGT<br>'bGH pA   | a tatgaatact | CCATGGAGAA          | ACCCAGATCI     | ACGTATGATC      |
| 3331 | AGCCTCGACT GTGCCTTCTA               | GTTGCCAGCG  | C ATCTGTTGTT | TGCCCCTCC              | C CCGTGCCTTC | CTTGACCCTC          | GAAGGTGCCA     | CTCCCACTGT      |
| 3421 | CCTTTCCTAA TAAAATGAGG               | AAATTGCATC  | GCATTGTCTC   | TOTOGATOA E<br>'bGH pA | C ATTCTATTCT | GGGGGGTGGC          | GTGGGGCAGC     | ; ACAGCAAGGG    |
| 3511 | GGAGGATTOG GAAGACAATA               | GCAGGCATGC  | TGGGGATGCC   | GTGGGCTCT<br>'bGH pA   | A TGGCTTCTG# | GGCGGAAAGA          | A ACCAGCTGGC   | GCTCGACAGC      |
| 3601 | TCGACTCTAG AATTGCTTCC > 'bGH pA >>  | TEGETCACTO  | ACTCGCTGCC   | CTCGGTCGT              | T CGGCTGCGGC | GAGCGGTATC          | AGCTCACTC      | AAGGCGGTA       |

TACGGTTATC CACAGAATCA GGGGATAACG CAGGAAAGAA CATGTGAGCA AAAGGCCAGC AAAAGGCCAG GAACCGTAAA AAGGCCGGGT

TGCTGGCGTT TTTCCATAGG CTCCGCCCCC CTGACGAGCA TCACAAAAAT CGACGCTCAA GTCAGAGGTG GCGAAACCCG ACAGGACTAT

AAAGATACCA GGCGTTTCCC CCTGGAAGCT CCCTCGTGCG CTCTCCTGTT CCGACCCTGC CGCTTACCGG ATACCTGTCC GCCTTTCTCC

CTTCGGGAAG CGTGGCGCTT TCTCAATGCT CACGCTGTAG GTATCTCAGT TCGGTGTAGG TCGTTCGCTC CAAGCTGGGC TGTGTGCACG

AACCCCCCGT TCAGCCCGAC CGCTGCGCCT TATCCGGTAA CTATCGTCTT GAGTCCAACC CGGTAAGACA CGACTTATCG CCACTGGCAG

CAGCCACTGG TAACAGGATT AGCAGAGCGA GGTATGTAGG CGGTGCTACA GAGTTCTTGA AGTGGTGGCC TAACTACGGC TACACTAGAA

CAGCCACTGG TAACAGGATT AGCAGAGCGA AGCCAGTTAC CTTCCGAAAA AGAGTTCGTA GCTCTTGATC CGGCAAACAA ACCACCGCTG

GTAGCGGTGG TTTTTTTGTT TGCAAGCAGC AGATTACGCG CAGAAAAAAA GGATCTCAAG AAGATCCTTT GATCTTTTCT ACGGGGTCTG

ACGCTCAGTG GAACGAAAAC TCACGTTAAG GGATTTTCGT CATGAGATTA TCAAAAAAGGA TCTTCACCTA GATCCTTTTA AATTAAAAAT

ACGCTCAGTG GAACGAAAAC TCACGTTAAG GGATTTTCGT CATGAGATTA TCAAAAAAGGA TCTTCACCTA GATCCTTTTA AATTAAAAAT

GAAGTTTTAA ATCAATCTAA AGTATATATG AGTAAACTTG GTCTGACAGT TACCAATGCT TAATCAGTGA GGCACCTATC TCAGCGATCT

GTCTATTTCG TTCATCCATA GTTGCCTGAC TC

## Figure 4



Figure 5