

Escola de Tecnologias e Arquitetura

Enunciado do 1º Trabalho de Tópicos de Matemática para as Telecomunicações 2022/2023

(v.1.1)

Informações gerais:

- Grupos: formados por 3 estudantes (não é necessária pré-indicação dos nomes, e podem ser de turmas diferentes).
- A submissão é feita no Moodle (um elemento do grupo submete o trabalho do grupo em nome de todos).
- Data limite de entrega: 23h59 de Sexta-Feira 14 de Abril de 2023.

Instruções:

- Os trabalhos devem conter no topo da 1ª página a identificação do grupo com o nome e número dos três estudantes.
- As 6 questões devem ser respondidas apresentando um *script* em MATLAB para cada uma das respostas, o qual deve aparecer no documento em modo texto por forma a ser copiável e testável (não pode ser uma figura *bitmap* ou de outro formato).
- O trabalho deve ser em formato PDF com um máximo de 7 páginas (1 página para a capa e 1 página para as respostas cada uma faz 6 pergunta, incluindo o *script* MATLAB, as figuras geradas e comentários em cada resposta.

Critérios de avaliação:

- Correção das respostas (10 valores);
- qualidade do código MATLAB (correcção / organização) (5 valores);
- qualidade da organização, apresentação e originalidade do relatório (5 valores).

Pergunta 1 – Representação de funções reais de variável complexa

Considere dois números complexos à sua escolha, z_1 e z_2 , assim como a sua soma $z_3 = z_1 + z_2$. Represente os três números

- a) usando as suas representações algébricas (função plot);
- b) usando as suas representações polares (função compass);

Exemplo:

Pergunta 2 – Verificação geométrica das fórmulas de Euler

Considere um número complexo $z = e^{+i\theta}$ e represente-o no plano \mathbb{C} .

Construa uma representação gráfica que mostre, geometricamente, que as seguintes fórmulas de Euler se verificam.

a)
$$cos(\theta) = \frac{e^{+i\theta} + e^{-i\theta}}{2};$$

b) $sen(\theta) = \frac{e^{+i\theta} - e^{-i\theta}}{2i}.$

b)
$$\operatorname{sen}(\theta) = \frac{e^{+i\theta} - e^{-i\theta}}{2i}$$
.

Deve representar cada um dos números complexos destacados a azul e a vermelho e depois mostrar como as fórmulas permitem obter os valores $cos(\theta)$ e $cos(\theta)$.

Exemplo para θ =30°:

Pergunta 3 – Representação do módulo de uma função complexa de variável complexa

Considere a função $f(z) = \cos(z) + 1$, sendo z = x + iy.

- a) Represente graficamente |f(z)| na região $x \in [-2\pi, +2\pi], y \in [-3, +3].$
- b) Represente graficamente |f(z)| numa "fatia" em torno da reta real (isto é com $y \in [-\delta, +\delta]$) e explique o que observa.

Exemplo de representação:

Pergunta 4 — Representação do módulo e argumento de uma função complexa de variável complexa

Represente o módulo e o argumento da função $f(x) = \frac{1}{1+i\left(\frac{x}{B}\right)}$, com B=50 usando as funções module e angle.

Pergunta 5 - Integral curvilíneo

Considere a função $f(z) = \frac{1}{2\pi z}$, com z = x + iy.

- a) Calcule o integral ao longo de um caminho fechado aleatório $\gamma(t)$ composto pela concatenação de 5 semiretas definidas por 5 pontos, sendo um deles um ponto fixo e os restantes quatro gerados aleatoriamente:
 - ponto fixo: $z_0 = 4 + 0i$;
 - pontos aleatórios: $z_1 \in 1$ °quadrante de \mathbb{C} , $z_2 \in 2$ °quadrante de \mathbb{C} $z_3 \in 3$ °quadrante de \mathbb{C} , $z_4 \in 4$ °quadrante de \mathbb{C} .

[Ajuda: use a função integral com a opção de definição do caminho via *waypoints* e considere z_0 o sendo ponto inicial e o ponto final do caminho fechado.]

b) Comente o resultado que obtém para o integral quando corre várias vezes o programa, sempre com posições diferentes dos pontos aleatórios nos 4 quadrantes.

Pergunta 6 - Teorema de Cauchy-Goursat

Considere a função $f(z) = \frac{1}{2\pi z}$, com z = x + iy e um caminho $\gamma(t)$ que é uma circunferência de raio $\rho = 2$ centrada num ponto aleatório $z_0 = x_0 + iy_0$, com coordenadas $x_0 \in [-2, +2]$, $y_0 \in [-2, +2]$ (considere que qualquer coordenada neste domínio é equiprovável).

- a) Calcule o integral de f(z) para diferentes caminhos $\gamma(t)$, isto é, circunferências centradas em pontos aleatórios.
- b) Comente os resultados do integral que se obtêm dependendo da posição da circunferência.

