北京郵電大學

本科毕业设计(论文)

题目: __社猜猜看这个毕设题目是什么__

姓	名	猜 猜		
学	院	信息与通信工程学院		
专	业	通信工程		
班	级	2014211199		
学	号	2014210999		
, 班内序号		99		
指导教师				

2018年5月

目 录

第一章	基础模块示例 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
1.1 特	殊文本类型	1
1.1.1	脚注	1
1.1.2	定义、定理与引理等 · · · · · · · · · · · · · · · · · · ·	1
1.1.3	中英文文献、学位论文引用	2
1.2 图:	表及其引用	2
1.3 公:	式与算法表示	5
1.3.1	例子:基于主成分分析	5
1.3.	.1.1 主成分分析算法	5
1.3.	.1.2 主成分分析可信度评估方法	6
	码表示	6
1.4.1	直接书写代码在.tex 中 · · · · · · · · · · · · · · · · · ·	6
1.4.2		7
1.5 列	表样式 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
1.5.1	使用圆点作为项目符号	7
1.5.2	使用数字作为项目符号	7
1.5.3	句中数字编号列表样式	7
		8
		9
		10
附录 1	缩略语表	10
114.4	新 兴 本 本 本 本 本 本 本 本 本 本 本 本 本	11

第一章 基础模块示例

1.1 特殊文本类型

1.1.1 脚注

社交媒体是一种供用户创建在线社群来分享信息、观点、个人信息和其它内容(如视频)的电子化交流平台,社交网络服务(social network service, SNS)和微博客(microblogging)都属于社交媒体的范畴^[1],国外较为知名的有 Facebook¹、Instagram²、Twitter³、LinkedIn⁴等,国内较为知名的有新浪微博⁵。

在社交媒体的强覆盖下,新闻信息的传播渠道也悄然了发生变化。[2]

1.1.2 定义、定理与引理等

定义 1.1 这是一条我也不知道在说什么的定义,反正我就是写在这里做个样子罢了,也没人会仔细读。[3]

定理 1.1 这是一条我也不知道在说什么的定理,反正我就是写在这里做个样子罢了,也 没人会仔细读。

公理 1.1 这是一条我也不知道在说什么的公理,反正我就是写在这里做个样子罢了,也 没人会仔细读。

引理 1.1 这是一条我也不知道在说什么的引理,反正我就是写在这里做个样子罢了,也没人会仔细读。

命题 1.1 这是一条我也不知道在说什么的命题,反正我就是写在这里做个样子罢了,也没人会仔细读。

推论 1.1 这是一条我也不知道在说什么的推论,反正我就是写在这里做个样子罢了,也 没人会仔细读。

本项目来源于科研项目"基于 LATEX 的本科毕业设计",项目编号 1124

¹http://www.facebook.com/

²https://www.instagram.com/

³http://www.twitter.com/

⁴http://www.linkedin.com/

⁵http://www.weibo.com/

1.1.3 中英文文献、学位论文引用

根据美国皮尤研究中心的 2017 年 9 月发布的调查结果^[4], 67% 的美国民众会从社交媒体上获取新闻信息,其中高使用频率用户占 20%。在国内,中国互联网信息中心《2016 年中国互联网新闻市场研究报告》^[5] 也显示,社交媒体已逐渐成为新闻获取、评论、转发、跳转的重要渠道,在 2016 年下半年,曾经通过社交媒体获取过新闻资讯的用户比例高达 90.7%,在微信、微博等社交媒体参与新闻评论的比例分别为 62.8% 和50.2%。社交媒体正在成为网络上热门事件生成并发酵的源头,在形成传播影响力后带动传统媒体跟进报道,最终形成更大规模的舆论浪潮。^[6]

在国内,新浪微博由于其发布方便、传播迅速、受众广泛且总量大的特点,成为了虚假信息传播的重灾区:《中国新媒体发展报告(2013)》^[7]显示,2012年的100件微博热点舆情案例中,有超过1/3出现谣言;《中国新媒体发展报告(2015)》^[8]对2014年传播较广、比较典型的92条假新闻进行了多维度分析,发现有59%的虚假新闻首发于新浪微博。

此等信息的传播严重损害了有关公众人物的名誉权,降低了社交媒体服务商的商业美誉度,扰乱了网络空间秩序,冲击着网民的认知,极易对民众造成误导,带来诸多麻烦和经济损失,甚至会导致社会秩序的混乱。针对社交媒体谣言采取行动成为了有关部门、服务提供商和广大民众的共同选择。^[3]

1.2 图表及其引用

此处引用了简单的表 1-1。

请注意,LAT_EX 的图表排版规则决定了图表**不一定会乖乖呆在你插入的地方**,这是为了避免 Word 中由于图片尺寸不匹配在页面下部出现的的空白,所以请不要使用"下图""下表"作为指向文字,应使用"图 1-1 所示"这样的表述。

特征	描述	形式与理论范围		
点赞量	微博的点赞数量	数值, №		
评论量	微博的评论数量	数值, №		
转发量	微博的转发数量	数值, №		

表 1-1 基于浏览者行为的特征

此处引用了复杂的表 1-2。

此处展示了更专业的表 1-3,一个好的表格没有竖线。

此处引用了一张图。图 1-1 表示的是一个由含有 4 个神经元的输入层、含有 3 个神经元的隐藏层和含有 4 个神经元的输出层组成的自编码器,+1 代表偏置项。

7 27 77000 1777 7200 17				
类别	特征	不知道叫什么的表头		
大加		描述	形式与理论范围	
	点赞量	微博的点赞数量	数值, №	
正常互动	评论量	微博的评论数量	数值, №	
	转发量	微博的转发数量	数值, №	

微博的羨慕数量

数值, №

非正常互动

羨慕量

表 1-2 基于浏览者行为的复杂特征

表 1-3 红警 2 名词解释

术语类别	缩略语	解释		
	兵营	兵营(Barracks),《命令与征服 红色警戒 2: 尤里的复仇》游戏中的一种生产建筑,用以生产步兵单位		
	建造场	建造场(Construction Yard),《命令与征服 红色警戒 2: 尤里的复仇》游戏中的一种基础建筑,用以支持其他建筑的建造		
	矿厂	矿石精炼厂(Ore Refinery),《命令与征服红色警戒2:尤里的复仇》游戏中的一种资源建筑,用以将矿车采集的矿石转化为游戏资金		
游戏	空指	空指部(Airforce Command Headquarters),《命令与征服 红色警戒 2: 尤里的复仇》游戏中的一种资源建筑,用以提供雷达功能和 T2 科技及生产部分空军单位		
	相机	游戏术语,特指游戏内的观察区域和视角		
	重工	战车工厂(War Factory),《命令与征服 红色警戒 2: 尤里的复仇》游戏中的一种生产建筑,用以生产载具单位		
	战争迷雾	游戏术语,《命令与征服 红色警戒 2: 尤里的复仇》中指黑色的未探索区域		

图 1-1 自编码器结构

图 1-2 这是两个自编码器结构, 我就是排一下子图的效果: (a)左边的自编码器, (b)右边的自编码器

1.3 公式与算法表示

1.3.1 例子:基于主成分分析

1.3.1.1 主成分分析算法

下面对主成分分析进行介绍。

主成分分析是一种简单的机器学习算法,其功能可以从两方面解释:一方面可以认为它提供了一种压缩数据的方式,另一方面也可以认为它是一种学习数据表示的无监督学习算法。^[9] 通过 PCA,我们可以得到一个恰当的超平面及一个投影矩阵,通过投影矩阵,样本点将被投影在这一超平面上,且满足最大可分性(投影后样本点的方差最大化),直观上讲,也就是能尽可能分开。

对中心化后的样本点集 $X = \{x_1, x_2, \dots, x_i, \dots, x_m\}$ (有 $\sum_{i=1}^m x_i = 0$),考虑将其最大可分地投影到新坐标系 $W = \{w_1, w_2, \dots, w_i, \dots, w_d\}$,其中 w_i 是标准正交基向量,满足 $\|w_i\|_2 = 1$, $w_i^T w_j = 0$ ($i \neq j$)。假设我们需要 d' (d' < d) 个主成分,那么样本点 x_i 在低维坐标系中的投影是 $z_i = (z_{i1}; z_{i2}; \dots; z_{id'})$,其中 $z_{ij} = w_j^T x_i$,是 x_i 在低维坐标系下第 i 维的坐标。对整个样本集,投影后样本点的方差是

$$\frac{1}{m} \sum_{i=1}^{m} \boldsymbol{z}_{i}^{\mathsf{T}} \boldsymbol{z}_{i}$$

$$= \frac{1}{m} \sum_{i=1}^{m} (\boldsymbol{x}_{i}^{\mathsf{T}} \boldsymbol{W})^{\mathsf{T}} (\boldsymbol{x}_{i}^{\mathsf{T}} \boldsymbol{W})$$

$$= \frac{1}{m} \sum_{i=1}^{m} \boldsymbol{W}^{\mathsf{T}} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\mathsf{T}} \boldsymbol{W}$$

$$= \frac{1}{m} \boldsymbol{W}^{\mathsf{T}} \boldsymbol{X} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{W}$$

由于我们知道新坐标系 W 的列向量是标准正交基向量,且样本点集 X 已经过中心化,则 PCA 的优化目标可以写为

$$\begin{aligned} \max_{\boldsymbol{W}} & tr(\boldsymbol{W}^{\mathsf{T}}\boldsymbol{X}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{W}) \\ \text{s. t.} & \boldsymbol{W}^{\mathsf{T}}\boldsymbol{W} = \boldsymbol{I} \end{aligned} \tag{1-2}$$

由于 XX^{T} 是协方差矩阵,那么只需对它做特征值分解,即

$$\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X} = \boldsymbol{W}\boldsymbol{\Lambda}\boldsymbol{W}^{\mathsf{T}} \qquad \qquad \vec{\mathbf{x}} \quad (1-3)$$

其中 $\Lambda = diag(\lambda), \lambda = \{\lambda_1, \lambda_2, \dots, \lambda_m\}_{\circ}$

具体地,考虑到它是半正定矩阵的二次型,存在最大值,可对式(1-2)使用拉格

朗日乘数法

$$\boldsymbol{X}\boldsymbol{X}^{\mathrm{T}}\boldsymbol{w}_{i}=\lambda_{i}\boldsymbol{w}_{i}$$
 $\overrightarrow{\mathrm{rt}}$ (1-4)

之后将求得的特征值降序排列,取前 d' 个特征值对应的特征向量组成所需的投影矩阵 $\mathbf{W}' = (\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_{d'})$,即可得到 PCA 的解。PCA 算法的描述如算法1所示。

算法1 主成分分析 (PCA)

输入: 样本集 $x = \{x_1, x_2, ..., x_i, ..., x_m\}$, 低维空间维数 d'

输出: 投影矩阵 $W' = (w_1, w_2, ..., w_{d'})$

1: 对所有样本中心化 $x_i \leftarrow x_i - \frac{1}{m} \sum_{i=1}^m x_i$

2: 计算样本的协方差 **XX**^T

3: 对协方差矩阵 **XX**^T 做特征值分解

4: 取最大的 d' 个特征值所对应的特征向量 $\boldsymbol{w}_1, \boldsymbol{w}_2, \ldots, \boldsymbol{w}_{d'}$

1.3.1.2 主成分分析可信度评估方法

记待判定微博 \mathbf{w}_0 的经典特征向量为 \mathbf{f}_0^c ,它的发布者在 \mathbf{w}_0 前发布的 k 条微博为 $\mathbf{W} = \mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_k$,这 k 条微博对应的经典特征向量集为 $\mathbf{F}_W^c = \{\mathbf{f}_1^c, \mathbf{f}_2^c, \dots, \mathbf{f}_k^c\}$ 。令 label = 1 代表谣言,label = 0 代表非谣言。算法的具体流程如算法2所示。

算法 2 基于 PCA 的信息可信度评估

输入: f_0^c , F_W^c , 保留主成分数 n

输出: 标签 $label \in \{0,1\}$

1: 对所有特征向量应用 PCA,保留前 n 个主成分 $\mathbf{o}_i^c \leftarrow PCA(\mathbf{f}_i^c, n)$ (i = 0, 1, ..., k)

2: 计算 F_W^c 中各向量的平均距离 μ 和标准差 σ

3: 计算阈值 $thr = \mu/\sigma$

4: **if** $\min_{1 < j < k} \| \boldsymbol{o}_0^c - \boldsymbol{o}_j^c \|_2 > thr$ **then**

5: $label \leftarrow 1$

6: else

7: $label \leftarrow 0$

8: **end if**

1.4 代码表示

1.4.1 直接书写代码在.tex 中

下面的代码1-1是用 Python 编写的加法函数。

代码 1-1 加法

```
1 def plusFunc(a, b):
2 return a + b
```

1.4.2 引用代码文件

下面的代码1-2是用 Python 文件中引入的倒序打印 x 到 1 的函数,请查看 code 文件 夹。

代码 1-2 倒序打印数字

```
1 def numbers(x):
2    if x > 0:
3        print(x)
4        numbers(x-1)
```

1.5 列表样式

1.5.1 使用圆点作为项目符号

- **第一章为基础模块示例**,是的,本章的名字就是基础模块示例,正如你看到这个 样子。
- 第二章为不存在,是的,其实它不存在。

1.5.2 使用数字作为项目符号

- 1. **第一章为基础模块示例**,是的,本章的名字就是基础模块示例,正如你看到这个样子。
- 2. 第二章为不存在,是的,其实它不存在。

1.5.3 句中数字编号列表样式

1. **第一章为基础模块示例**,是的,本章的名字就是基础模块示例,正如你看到这个样子; 2. **第二章为不存在**,是的,其实它不存在。

参考文献

- [1] Merriam-Webster. Social Media [EB/OL]. 2018 [2018-04-15]. http://www.merriam-webster.com/dictionary/socialmedia.
- [2] Vosoughi Soroush, Roy Deb, Aral Sinan. The spread of true and false news online [J]. Science. 359 (6380). 2018, 3: 1146–1151.
- [3] 周兴. 基于深度学习的谣言检测及模式挖掘[学位论文]. 中国科学院大学, 2017.
- [4] Pew Research Center. News Use Across Social Media Platforms 2017 [EB/OL]. 2017 [2018-04-15]. http://www.journalism.org/2017/09/07/news-use-across-social-media-platforms-2017.
- [5] 中国互联网络信息中心. 2016 年中国互联网新闻市场研究报告 [EB/OL]. 2017 [2018-04-15]. http://www.cnnic.cn/hlwfzyj/hlwxzbg/mtbg/201701/P020170112309068736023.pdf.
- [6] Yang Fan, Liu Yang, Yu Xiaohui et al. Automatic detection of rumor on Sina Weibo [C]. In Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics. New York, NY, USA. 2012: 1–7.
- [7] 唐绪军, 吴信训, 黄楚新 等. 中国新媒体发展报告 No.4(2013) [M]. 社会科学文献出版社, 2013.
- [8] 唐绪军, 吴信训, 黄楚新等. 中国新媒体发展报告 No.6(2015) [M]. 社会科学文献出版社, 2015.
- [9] Goodfellow Ian, Bengio Yoshua, Courville Aaron. Deep Learning [M]. The MIT Press, 2016.

致 谢

此处请写致谢的内容。 它可以有多段。

附 录

附录1 缩略语表

砉	财_1	基于浏	监去行	为的	特征
11	//ij = 1	74\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	yr, 791 11	ノソ ロソ	1T111

特征	描述	形式与理论范围
点赞量	微博的点赞数量	数值, №
评论量	微博的评论数量	数值, №
转发量	微博的转发数量	数值, №

表 附-2 基于浏览者行为的复杂特征

类别	特征	不知道叫什么的表头		
天加		描述	形式与理论范围	
正常互动	点赞量	微博的点赞数量	数值, №	
	评论量	微博的评论数量	数值, №	
	转发量	微博的转发数量	数值, №	
非正常互动	羨慕量	微博的羨慕数量	数值, №	

图 附-1 自编码器结构

代码 附-1 减法

1 | def minusFunc(a, b):

2 return a - b

$$\max_{\boldsymbol{W}} tr(\boldsymbol{W}^{\mathrm{T}}\boldsymbol{X}\boldsymbol{X}^{\mathrm{T}}\boldsymbol{W})$$

附录 2 数学符号

数和数组

 a
 标量(整数或实数)

 a
 向量

 dim()
 向量的维数

 A
 矩阵

 A^T
 矩阵 A 的转置

 I
 单位矩阵(维度依据上下文而定)

 diag(a)
 对角方阵,其中对角元素由向量 a 确定