东南大学考试卷(A卷)

课程名称 线性代数 A 考试学期 14-15-3 得 分

适用专业 非电类专业 考试形式 闭 卷 考试时间长度 120分钟

题号	_	=	三	四	五.	六	七
得分							

- 一. (30%) 填空题
 - 1. 设3维行向量 $x = (x_1, x_2, x_3)$ 满足 $xA = (x_1 + x_3, 2x_1 x_2)$,则A =______;
- 3. 若3阶行列式 $|\alpha_1, \alpha_2, \alpha_3|=2$, $|\alpha_1, \alpha_2, \beta_3|=3$,则 $|2\alpha_2, \alpha_1, \alpha_3+\beta_3|=$ ______;
- 4. 若向量组 $\begin{pmatrix} a \\ 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix}$, $\begin{pmatrix} b \\ 0 \\ 1 \end{pmatrix}$ 线性相关,则 a,b 满足_____;
- 5. 向量空间 $V = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid \begin{cases} 2x y + 3z = 0 \\ x + y 2z = 0 \end{cases} \right\}$ 的维数等于______;

- 8. 设 $A = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}$,以下矩阵中与 A 相似但不合同的是_____:

$$B = \begin{pmatrix} 2 & 1 \\ 0 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \quad E = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix};$$

- **10.** 若 $P^{-1}AP = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$, 其中 $P = (\alpha, \beta)$ 。取 $Q = (\alpha + \beta, \alpha)$,则 $Q^{-1}AQ = \underline{\hspace{1cm}}$ 。

二. (10%) 求行列式
$$D = \begin{vmatrix} 3 & 1 & 9 & 27 \\ -1 & 1 & 1 & -1 \\ 2 & 1 & 4 & 8 \\ -2 & 1 & 4 & -8 \end{vmatrix}$$
的值。

三. (14%) 设线性方程组
$$\begin{cases} 2x_1+x_2+2x_3=b+4\\ -x_1-2x_2+ax_3=2\\ 4x_1+5x_2-2x_3=c \end{cases}$$

- 1. 问: $\exists a,b,c$ 满足什么条件时,方程组有唯一解; 无解; 有无穷多解?
- 2. 当方程组有无穷多解时,求其通解。

四. (12%) 设矩阵
$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 1 & 2 \\ 3 & 2 & 4 \end{pmatrix}$$
。 求矩阵 X 使得 $A + X = XA$ 。

- 五. (12%)已知向量组 α_1 = $(0,-1,1)^{\mathrm{T}}$, α_2 = $(1,1,1)^{\mathrm{T}}$, α_3 = $(1,-2,1)^{\mathrm{T}}$ 。
 - 1. 利用 Schmidt 正交化方法求与 α_1 , α_2 , α_3 等价的标准正交向量组;
 - 2. 记 $A=(\alpha_{_1}, \ \alpha_{_2}, \ \alpha_{_3})$,求一正交阵Q和上三角阵R,使得 A=QR。

六. (14%) 已知
$$3 \times 3$$
 矩阵 $A = \begin{pmatrix} 1 & -a-2 & 0 \\ 0 & a-3 & 0 \\ 4-a & b & -2 \end{pmatrix}$ 有一个二重特征值,且 A 可相似

对角化。

- 1. 求参数 a,b 的值;
- 2. 求一可逆阵 P 及对角阵 Λ ,使得 $P^{-1}AP = \Lambda$ 。

七. (8%) 证明题:

1. 设A是3阶方阵, ξ 是3维列向量,已知 $A^3\xi = \theta$, $A^2\xi \neq \theta$,记 $P = (\xi, A\xi, A^2\xi)$, 证明:方阵P可逆。

2. 设A是 $n \times n$ 实对称矩阵,证明:若 $E - A^2$ 是正定的,则 $\begin{pmatrix} E & A \\ A & E \end{pmatrix}$ 也是正定的。