

Capstone Project - 2 Bike Sharing Demand Prediction

Team
Radhika R Menon
Rohit Raj
Ghanal Kaushik
Jayaprakash Kunduru

Summary

- 1. Introduction
- 2. Problem statement
- 3. Data Overview
- 4. EDA and Feature Engineering
- 5. Feature Selection
- 6. Model Application & Hyper-parameter tuning
- 7. Model Evaluation
- 8. Conclusions

Introduction

Bike sharing system is an shared transportation service that provides individuals with bikes for their common use on a short-term basis for a price or for free. Over the last few decades, there has been a significant increase in the popularity of bike-sharing systems all over the world.

Advantages

- Environmentally sustainable
- > Reduces traffic congestion
- > Physical health benefits to the users
- > Economical
- Fast and easy accessibility

Problem statement

Currently Rental bikes are introduced in many urban cities for the enhancement of mobility comfort. It is important to make the rental bike available and accessible to the public at the right time as it lessens the waiting time. Eventually, providing the city with a stable supply of rental bikes becomes a major concern. The crucial part is the prediction of bike count required at each hour for the stable supply of rental bikes.

Data Overview

©Rented Bike count - Count of bikes rented each hour

Hour - Hour of the day

Temperature - Temperature recorded in the city in *Celsius* (°C).

<u>Humidity</u> - Relative humidity in %

Wind-speed - Speed of the wind in m/s

<u>Visibility</u> - measure of distance at which object or light can be clearly discerned in units of 10*m*

<u>Dew point temperature</u> - Temperature recorded in the beginning of the day in *Celsius*(°C).

Data Overview

- Date The date of each observation in the format 'year-month-day'
- Solar radiation Intensity of sunlight in MJ/m^2
- Rainfall Amount of rainfall received in mm
- **Snowfall** Amount of snowfall received in cm
- Seasons Season of the year (Winter, Spring, Summer, Autumn)
- <u>Holiday</u> Whether the day is a Holiday or not (*Holiday/No holiday*)
- <u>Functional Day</u> -Whether the rental service is available (Yes-Functional hours) or not (No-Non functional hours)

Description of Functioning days & Holidays from data

Bike count distribution

Description of Humidity, Solar Radiation & Rainfall

Bike rentals according to Seasons & Holidays

Bike rental variations at different hours

Bike rental variations at different temperatures

		bikerentalcounts	
Functioning Day	Holiday		
No	Holiday	0	
Yes	No Holiday	0	
	Holiday	215895	
	No Holiday	5956419	

Bike rentals according to Seasons & Weekends

Dew Point Temperature and Temperature are highly positively correlated

EDA Conclusions

- Temperature and Hour have a strong correlation with the count of rented bikes.
- Dew point temperature is highly positively correlated to the Temperature.
- The demand for rental bikes is higher on Regular days(Non-Holidays).
- There is more demand for rental bikes on Weekdays than on Weekends.
- The peak demands for rental bikes occur on the opening (8-9 AM) and closing times (6-7pm) of offices and institutions.
- There is a significant drop in the number of rented bikes during Winters(Dec-Feb) because it's freezing cold!
- The demand for bikes increases during warmer temperatures, which is why there's maximum count of rented bikes during the Summer season.

Feature Engineering

Checking with Multicollinearity

•	feature	VIF		feature	VIF
0	Hour	4.458880	0	Hour	3.997641
1	Temperature(°C)	188.666573	1	Temperature(°C)	3.288024
2	Humidity(%)	187.533688		Humidity(%)	
3	Wind speed (m/s)	4.890096	2		6.802299
4	Visibility (10m)	10.788995	3	Wind speed (m/s)	4.667341
5	Dew point temperature(°C)	126.954261	4	Visibility (10m)	5.471035
6	Solar Radiation (MJ/m2)	2.904971	5	Solar Radiation (MJ/m2)	2.275006
7	Rainfall(mm)	1.103386		Rainfall(mm)	1.080689
8	Snowfall (cm)	1.155412	6		
9	Month	5.108772	7	Snowfall (cm)	1.139759
10	Year	407.025112	8	Month	5.027060
11	Day	4.379818	9	Day	3.776455

Dropping dew-point temperature and year due to multicollinearity problem

Dataset Splitting for Modelling

Train-data - (6132, 16)

Test-data: (2628,16)

Model Implementation

These were the models taken into account

- Linear Regression (with regularization)
- Polynomial Regression
- Decision Tree Regressor
- Random Forest Regressor
- XGBoost Regressor
- CatBoost

Metrics of various models used

	Regression Model	Mean Absolute Error	Mean Squared Error	Root Mean Squared Error	r2 score	adjusted r2 score
0	Multiple Linear Regression	327.665790	188770.692536	434.477494	0.539348	0.536525
1	Lasso Regression(Tuned)	327.578790	188737.802791	434.439642	0.539428	0.536606
2	Ridge Regression (default)	327.657172	188767.250135	434.473532	0.539356	0.536533
3	Ridge Regression(Tuned)	327.657214	188767.267238	434.473552	0.539356	0.536533
4	Elastic Net Regression(default)	332.689114	206068.926029	453.948153	0.497135	0.494054
5	Elastic Net Regression(Tuned)	327.559625	188730.345723	434.431060	0.539446	0.536624
6	Polynomial Regression(Tuned)	241.675585	134304.471436	366.475745	0.672260	0.670252
7	Decision Tree Regression (Tuned)	131.377984	52751.836188	229.677679	0.871271	0.870482
8	Random Forest Regression(Tuned)	103.313872	32096.340024	179.154514	0.921676	0.921196
9	XGBoost Regression(default)	168.226186	66671.412597	258.208080	0.837304	0.836307
10	XGBoost Regression(Tuned)	86.542427	22418.539 <mark>1</mark> 22	149.728218	0.945293	0.944957
11	Catboost Regression(default)	91.881711	24268.891334	155.784760	0.940777	0.940460
12	Catboost Regression(tuned)	86.315659	22706.282422	150.686039	0.944590	0.944294

Observation 1:

Linear & Multiple regression models are not performing well, but Tree based models are performing better

Observation 2:

RF Regressor, XGB regression & Cat Boost regression are giving better performance

Observation 3:

By performing Hyper-parameter tuning on XGBoost, CatBoost & RF Regressor, we got better performance.

Cat Boost

Training score: 0.9707147668892531

MAE : 94.19685513281946 MSE : 25826.142225471856 RMSE : 160.7051406317541 R2 : 0.9369771455465565

Adjusted R2: 0.9366394800424049

XGBoost

Training score:0.9951066432885016

MAE : 86.54242736425483 MSE : 22418.539122401522 RMSE : 149.72821752228776

R2: 0.9452926296217621

Adjusted R2: 0.9449573872142355

RF regressor

MAE : 102.72406963470318

MSE: 31675.611771451677

RMSE: 177.9764360005326

R2: 0.9227028391244947

Adjusted R2: 0.9222291682803706

Feature Importances Random Forest Regression

Feature Importances Cat Boost

Xg Boost

Conclusions

- Evaluating the performance metrics of the models has brought us to a conclusion that Decision tree based Ensemble models like XGBoost and CatBoost models are the most suitable for Predicting the number of bikes required on an hourly basis.
- The important features for prediction are: Hour & Temperature.
- Due to the lack of significant linear correlation between the independent variables and the count of Rented bikes, Linear regression and Polynomial regression are not good fit in this scenario.

Thank You