Lab 9: Optimization using Logical Effort

ECEN 454-503

Alexia Perez, 127008512

<u>Purpose:</u> This lab serves to introduce the student to the "logical effort and gate sizing" techniques discussed in class. During this lab, I identified the critical path in my previously designed 4-bit adder and reduced its delay by determining the optimal number of devices and ideal sizes of the gates along this path.

Procedure:

- 1. Draw a gate-level schematic of a 4-bit adder and find the critical path.
- 2. Calculate the number of stages in the circuit, path effort, and transistor sizes.
- 3. Generate waveforms for the same input vectors as in Lab 5.
- 4. Make a table comparing delays and VDD Power Consumption of both non-optimized and optimized circuits for all input vectors from step 3.
- 5. Make a table comparing the Area (sum of all transistors' W*L).

Results:

1) The gate-level schematic of the 4-bit adder is included below. The critical path is indicated in red in Figure 2, and it can be seen that it contains 1 XOR gate and 8 NAND gates.

Figure 1: 4-bit Adder Transistor-level Schematic

Figure 2: 4-bit Gate-level Schematic & Critical Path

- 2) The required calculations for this lab were performed as follows:
 - a. Cnand = 1.9967 fF
 - b. Cxor = 6.3029 fF
 - c. Cload = 30 fF
 - d. H = Cload / Cxor = 4.7597
 - e. wp, non-optimized = 600 nm
 - f. wn, non-optimized = 300 nm
 - g. 1 non-optimized = 1 optimized = 200 nm
 - h. Gxor, non-optimized = Gxor, optimized = (2*wp+2*wn)/(wp/2+wn/2) = 4
 - i. Gnand, non-optimized = (wp+wn)/(wp+wn/2) = 1.2
 - j. Gnon-optimized = Gxor, non-optimized * (Gnand, non-optimized)^8 = (1024*(wp+wn) 8)/(2*wp+wn) 8 = 17.1993
 - k. b1 = (Cxor + Cnand)/Cxor = 1.3168
 - 1. b2 = b4 = b6 = b8 = (Cnand+Cxor)/Cnand = 4.1567
 - m. b3 = b5 = b7 = b9 = Cnand/Cnand = 1
 - n. B = b1*b2*b3*b4*b5*b6*b7*b8*b9 = 393.092
 - o. F = G*B*H = (1.9159*(wp+wn) 8/9)/(2*wp+wn) = 32,179.9
 - p. f = F1/9 = 3.1684
 - q. Area non-optimized = $4*(2*Axor + 3*Anand) = 72*(200*wp+200*wn) = 14,400*(wp+wn) = 12.96 \mu m^2$
 - r. Cin, 9 = 30 fF
 - s. Cin, $8 = (g8*Cout, 8)/\hat{f} = 11.3622, k = 11.3622/1.9967 = 5.69049600 => wp = 3414.29 nm, <math>\hat{f} = 2.7949$
 - t. Cin, $7 = (g7*Cout, 7)/\hat{f} = 4.8783$, $k = 4.8783/1.9967 = 2.4432 => wp = 1465.92nm, <math>\hat{f} = 2.7949$
 - u. Cin, $6 = (g6*Cout, 6)/\hat{f} = 2.0945, k = 2.0945/1.9967 = 1.04899 => wp = 629.393, <math>\hat{f} = 3.15071$
 - v. Cin, $5 = (g5*Cout, 5)/\hat{f} = 0.797725$, does not need to be resized
 - w. Cin, $4 = (g4*Cout, 4)/\hat{f} = 0.3004$, does not need to be resized
 - x. Cin, $3 = (g3*Cout, 3)/\hat{f} = 0.113$, does not need to be resized
 - y. Cin, 2 = (g2*Cout, 2) / f = 0.0426, does not need to be resized
 - z. Cin, $1 = (g1*Cout, 1)/\hat{f} = 0.05349$, does not need to be resized

3) The next 4 figures show the optimized pre-layout waveforms for the input vectors in Lab 5 after making all the necessary adjustments to the 4-bit adder.

Figure 3: A=0000 B=1111 Cin=1

Figure 4: A=1010 B=0101 Cin=0

Figure 5: A=1010 B=0101 Cin=1

Figure 6: A=1100 B=1000 Cin=0

4) The tables below include the delays and VDD Power Consumptions for the non-optimized and the optimized circuits (using the same inputs as in the previous part).

Table 1: Optimized vs. Non-Optimized Delays

Input	Output	Non-Optimized	Optimized Time
		Time (ns)	(ns)
A: 0000	Cout	1.763	1.5897
B: 1111	S<0>	1.101	1.1667
Cin: 1	S<1>	1.101	1.1667
	S<2>	1.103	1.1665
	S<3>	1.103	1.1663
A: 1010	Cout	1.7387	1.5877
B: 0101	S<0>	1.114	1.0899
Cin: 0	S<1>	1.101	1.0910
	S<2>	1.114	1.0899
	S<3>	1.104	1.0905

A: 1010	Cout	1.1762	1.621
B: 0101	S<0>	1.1017	1.0899
Cin: 1	S<1>	1.1147	1.0546
	S<2>	1.1017	1.0899
	S<3>	1.1147	1.0546
A: 1100	Cout	0.5264	0.4952
B: 1000	S<0>	0.7937	1.0546
Cin: 0	S<1>	1.155	1.0852
	S<2>	1.105	1.0758
	S<3>	1.4959	1.0985

Table 2: VDD Power Consumption (Optimized vs. Non-Optimized)

Case	Non-Optimized Power (µW)	Optimized Power (µW)
A: 0000 B: 1111 Cin: 1	-192.8	-158.5
A: 1010 B: 0101 Cin: 0	-192.7	-158.3
A: 1010 B: 0101 Cin: 1	-193.2	-159.1
A: 1100 B: 1000 Cin: 0	-128.1	-108.5

5) Lastly, the following table compares the area of the non-optimized vs. the optimized circuits.

Table 3: Optimized vs. Non-Optimized Area

	Non-Optimized	Optimized
Area (μ^2 m ²)	12.96	13.702

<u>Conclusion:</u> This lab helped me better understand how to apply logical effort and gate sizing techniques in order to optimize my 4-bit adder design.