PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE ESCUELA DE INGENIERÍA DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

Ayudante: Nicholas Mc-Donnell

Email: namcdonnell@uc.cl

Ayudantía 09

Euler-Fermat y Teorema Fundamental de la Aritmética

IIC3253 – Criptografía

Fecha: 2021-05-26

1. Euler-Fermat

1.1. Recordatorio

Teorema 1.1 (Inverso Modular). Dado $a \in \mathbb{Z}$, existe $a^{-1} \in \mathbb{Z}$ tal que $a \cdot a^{-1} \equiv 1 \mod n$ si $y \ solo \ si \ \gcd(a,n) = 1$.

Definición 1.1 (\mathbb{Z}_n^*) . Se define \mathbb{Z}_n^* como el conjunto $\{a \in \mathbb{Z} \mid 1 \le a < n \land \gcd(a, n) = 1\}$.

Definición 1.2 (Función φ). La función $\varphi: \mathbb{N} \to \mathbb{N}$ se define como

$$\varphi(n) = |\mathbb{Z}_n^*|.$$

1.2. Teorema Euler-Fermat

Teorema 1.2 (Euler-Fermat). Dado $a \in \mathbb{Z}$ tal que gcd(a, n) = 1, se tiene que

$$a^{\varphi(n)} \equiv 1 \mod n$$

Demostración. Se toma la función

$$f_a: \mathbb{Z}_n^* \to \mathbb{Z}_n^*$$

 $x \mapsto (ax) \mod n$

y se nota que es una biyección, por lo que se tiene la siguiente congruencia:

$$x_1 \cdot \ldots \cdot x_{\varphi(n)} \equiv (ax_1) \cdot \ldots \cdot (ax_{\varphi(n)}) \mod n$$

$$\equiv a^{\varphi(n)} x_1 \cdot \ldots \cdot x_{\varphi(n)} \mod n$$

Multiplicando por los inversos de cada x_i a cada lado se llega a lo pedido.

Problema 1:

Demuestre que f_a es una biyección. (Hint: demuestre que $f_{a^{-1}}$ es su inversa.)

Teorema 1.3. Dado p, q primos distintos se tiene que $\varphi(p) = p - 1$ y $\varphi(pq) = (p - 1)(q - 1)$.

Demostraci'on. El primer resultado es inmediato ya que para todo $1 \le a < p$ se tiene que $\gcd(a,p)=1$ por definici\'on de primo. Para el segundo resultado, se nota que se pueden contar los a tal que $\gcd(a,pq)>1$, estos son los números que son divisibles por p o por q que son menores a pq, como el menor entero positivo divisible por p y por q es pq se tiene que solo hay que contar enteros divisibles por p y después enteros divisibles por q. Se nota que los enteros divisible por p son p, 2p, ..., (q-1)p, que son q-1, y similarmente hay p-1 divisibles por q. Por lo que $\varphi(pq)=(pq-1)-(q-1)-(p-1)=pq-p-q+1=(p-1)(q-1)$. \square

Problema 2:

Demuestre que $\varphi(p^n) = p^{n-1}(p-1)$ para p primo.(Hint: cuente los que no son coprimos.)

2. Teorema Fundamental de la Aritmética

Teorema 2.1. Dado $a, b, c \in \mathbb{Z}$ tales que gcd(a, b) = 1 y $a \mid bc$, entonces $a \mid c$.

Demostración. Como $a \mid bc$ se tiene que ak = bc para algún $k \in \mathbb{Z}$. Usando Bezout se tiene que ax + by = 1 para algunos $x, y \in \mathbb{Z}$, multiplicando todo por c se tiene que acx + bcy = c y reemplazando se tiene a(cx + ky) = c, con lo que se concluye que $a \mid c$.

Lema 2.2. Dado p primo y $a, b \in \mathbb{Z}$, se tiene que si $p \mid ab$ entonces $p \mid a$ o $p \mid b$.

Demostración. Si $p \mid a$, se tiene el resultado. En otro caso, se tiene que gcd(a, p) = 1, por lo que por el teorema anterior se tiene que $p \mid b$.

Teorema 2.3 (Teorema Fundamental de la Aritmética). Todo entero descomposición en producto de primos, y es única salvo reordenamientos.

Demostración. Para la existencia se usará inducción fuerte. El paso base es n=2, se sabe que 2 es primo, por lo que se tiene el caso base. Dado n si es primo, se tiene lo pedido, si no, existen 1 < a, b < n tales que n=ab, y por hipótesis inductiva se tiene que $a=p_1 \cdot \ldots \cdot p_k$ y $b=q_1 \cdot \ldots \cdot q_l$, por lo que $ab=p_1 \cdot \ldots \cdot p_k \cdot q_1 \cdot \ldots \cdot q_l$, con lo que se tiene lo pedido.

Para la unicidad dado n se toman dos descomposiciones primas, $n = p_1 \cdot \dots \cdot p_k = q_1 \cdot \dots \cdot q_l$. Dado p_1 , como $p_1 \mid n$ por el lema anterior se tiene que $p_1 \mid q_i$ para algún i, y por definición de primo se tiene que $p_1 = q_i$, dividiendo ambos lados por p_1 se tiene el mismo caso, pero con menos primos, por lo tanto se tiene lo pedido.

Nota. Dado que los primos tienen un orden natural, hay una descomposición canónica de cada entero n, donde $n = p_1^{\alpha_1} \cdot \ldots \cdot p_k^{\alpha_k}$, $\alpha_i \geq 0$ y p_i es el i-ésimo primo..

2.1. Aplicaciones y Problemas

Problema 1:

Demuestre que dado $a,b \in \mathbb{Z}$, donde $a=p_1^{\alpha_1} \cdot \ldots \cdot p_k^{\alpha_k}$ y $b=p_1^{\beta} \cdot \ldots \cdot p_k^{\beta}$, se tiene que $\gcd(a,b)=p_1^{\min(\alpha_1,\beta_1)} \cdot \ldots \cdot p_k^{\min(\alpha_k,\beta_k)}$.

Ejemplo: 2.1. Se tienen a = 24 y b = 60, se nota que $gcd(a, b) = 12 = 2^2 \cdot 3$, y que $a = 2^3 \cdot 3$ y $b = 2^2 \cdot 3 \cdot 5$.

Problema 2:

Dados $a, b \in \mathbb{Z}$ tales que $\gcd(a, b) = 1$ y ax = by demuestre que $a \mid y$ y $b \mid x$ usando TFA.

Demostración. Demostración sin TFA: Se nota que $a \mid by$ por lo que por teorema demostrado anteriormente se tiene que $a \mid y$, similarmente se tiene que $b \mid x$.

Problema 3:

Demuestre usando TFA que si $a^2 \mid b^2$ entonces $a \mid b$.

Problema 4:

Demuestre lo anterior sin TFA.

Problema Bonus:

Demuestre que existe una función f de \mathbb{N} a las secuencias de naturales con finitos términos no ceros¹ tal que $f(a \cdot b) = f(a) + f(b)$, si y solo si se tiene TFA y existen infinitos primos.

¹De forma más precisa, al conjunto $\{\{a_n\}_{n\in\mathbb{N}}\mid \forall n\in\mathbb{N}\; a_n\in\mathbb{N}\; \text{y para finitos }n\text{ se tiene que }a_n\neq 0\}.$