

Modelli PLI

Alessandro Hill

Basato sul materiale di <u>Daniele Vigo (D.E.I.)</u> rev. 1.1(AH) – 2024

(0) Furniture Setup Costs

Furniturissimo has the capability to manufacture luxury desks, cabinets, and chairs. In order to manufacture these products, it must rent the appropriate equipment at a weekly cost of 120 for the desks, 130 for the cabinets, and 70 for the chairs. The labor and material requirements for each product are shown in the table, along with the selling price and variable cost.

	LABOR HOURS	LUMBER	SALES PRICE	VARIABLE COST
Desks	16	10	330	82
Cabinets	29	15	620	97
Chairs	10	3	150	28

There are 200 labor hours and 100 square feet of lumber available each week. The company identified that they want to <u>maximize their weekly profit</u> while <u>minimizing</u> the weekly labor hours used.

How can we support their planning using optimization?

(I) Indagine di Mercato

Mix di utenti da intervistare telefonicamente:

	Categoria						
	А	В	С	D			
	150	110	120	100			
mattina	30%	10%	10%	10%	40%		
sera	30%	20%	30%	15%	5%		

Telefonate in 2 fasce orarie:

Mattina: 1 € per telefonata (almeno il 50%)

• Sera: 1.5 € per telefonata

minimizzare il costo complessivo delle telefonate

Modello matematico (PLI)

- x₁: numero di telefonate alla mattina
- x₂: numero di telefonate alla sera

	min x_1	+	1.5 <i>x</i> ₂		
A1:	$0.3 x_1$	+	$0.3 x_2 \ge$	150	
A2:	$0.1 x_1$	+	$0.2 x_2 \ge$	110	
B1:	$0.1 x_1$	+	$0.3 x_2 \ge$	120	
B2:	$0.1 x_1$	+	$0.15 x_2 \ge$	100	
	<i>X</i> ₁	_	$x_2 \ge$	0	
	X ₄	_	$\chi_{2} >$	0	INTERE

STUD ORUM

(II) Noleggio di macchinari

Un ente pubblico deve noleggiare dei macchinari

Mese	Gennaio	Febbraio	Marzo	Aprile	Maggio	Giugno
Fabbisogno	9	5	7	9	10	5

Noleggi possibili per 3 periodi diversi:

• 1 mese: 400 €

• 2 mesi: 700 € (= 350 €/mese)

• 3 mesi: 900 € (= 300 €/mese)

minimizzare il costo complessivo di noleggio

- Non basta sapere quanti macchinari noleggiare
 - quando (gennaio, febbraio, ...)
 - per quanto tempo (1,2 o 3 mesi)

GE1, GE2, GE3 = n. macch. affittati a Gennaio per 1, 2 e 3 mesi.

GI1, GI2, GI3 = n. macch. affittati a Giugno per 1, 2 e 3 mesi.

Modello PLI

```
min 400 GE1 + 400 FE1 + ... + 400 GI1 + 700 GE2 + 700 FE2 + ... + 700 GI2 + 900 GE3 + 900 FE3 + ... + 900 GI3
```

```
GE1 + GE2 + GE3 \geq 9

FE1 + FE2 + FE3 + GE2 + GE3 \geq 5

MA1 + MA2 + MA3 + FE2 + FE3 + GE3 \geq 7

AP1 + AP2 + AP3 + MA2 + MA3 + FE3 \geq 9

MG1 + MG2 + MG3 + AP2 + AP3 + MA3 \geq 10

GI1 + GI2 + GI3 + MG2 + MG3 + AP3 \geq 5

GE1, GE2, ..., GI2, GI3 \geq 0 INTERE
```

(III) Mix di pubblicità

- Budget di 150 K € per pubblicizzare una nuova iniziativa.
- Due possibili canali pubblicitari:
 - Giornali: 1 K€ per annuncio
 - TV: 10 K€ per annuncio
- Al massimo 30 annunci su giornali e 15 annunci su TV
- Il numero di utenti raggiunti dipende in modo non lineare dal numero di annunci inviati.
- massimizzare il numero totale di utenti raggiunti

Mix di pubblicità (2)

Giornali						
n. annunci	Nuovi utenti					
	per annuncio					
1-10	900					
11-20	600					
21–30	300					

TV					
n. annunci	Nuovi utenti				
	per annuncio				
1-5	10000				
6-10	5000				
11-15	2000				

- si possono usare variabili binarie per indicare se le variabili decisionali sono nella 1^a, 2^a o 3^a fascia
- Vincoli di tipo logico

G1, G2, G3 T1, T2, T3

= n. annunci su giornali nelle 3 fasce

= n. annunci su TV nelle 3 fasce

max

10000 T1 +5000 T2 +2000 T3

G1 + G2 + G3 + 10 T1 + 10 T2 + 10 T3

≤ 150

G1, G2, G3

≤ 10

T1, T2, T3

 ≤ 5

G1, G2, G3, T1, T2, T3

≥ 0, INTERE

(IV) Turnazione del personale

personale richiesto per giorno della settimana:

Lu	Ma	Me	Gi	Ve	Sa	Do
22	18	13	14	15	18	25

- ogni persona
 - lavora 5 giorni consecutivi
 - i 2 giorni successivi sono di riposo
- minimizzare il numero di persone necessarie
- altri vincoli possibili in problemi reali:
 - turni diversi
 - preferenze

Modello matematico (PLI)

 x_1 : numero di persone che iniziano il turno Lun

 x_2 : numero di persone che iniziano il turno Mar ...

Turnazione personale: varianti

- Una volta stabiliti il numero di persone necessarie per turno, i turni vanno attribuiti alle persone
- Ogni persona esprime una preferenza per il turno (7=prima, 1=ultima scelta)
- Assegnare le persone ai turni massimizzando la preferenza espressa
- Idem tenendo conto dell'anzianità di servizio: punteggio di assegnazione=preferenza*anzianità

(V) Assegnazione di incarichi

• Una compagnia desidera assegnare n = 14 impiegati ai suoi m = 10 uffici, che hanno una richiesta r_j

Ufficio	1	2	3	4	5	6	7	8	9	10
Richiesta	1	1	1	1	2	1	2	2	2	1

- Ogni impiegato ha espresso la propria preferenza p_{ij} per uno specifico ufficio (1=prima ...10=ultima)
- Assegnare gli impiegati agli uffici massimizzando la soddisfazione per l'ufficio ottenuto (= minimizzazione preferenze assegnate)

Modello matematico

 Funzione obiettivo (min. preferenze assegnate)

$$\min \quad \sum_{i=1,n} \sum_{j=1,m} p_{ij} x_{ij}$$

Un solo ufficio per impiegato:

$$\sum_{j=1,m} x_{ij} = 1 \quad (i = 1, ..., n)$$

• Il numero richiesto di impiegati per ufficio :

$$\sum_{i=1,n} x_{ij} = r_j \qquad (j = 1, ..., m)$$

$$x_{ij} \in \{0, 1\} \qquad (i, = 1, ..., n;$$

$$j = 1, ..., m)$$

(VI) Riorganizzazione del personale

- Un'azienda prevede la necessità di migliorare nel breve periodo la preparazione del suo personale
- Tre categorie: inesperto, addestrato ed esperto

	Costo licenziamento	Costo assunzione	Assumibili per anno
Esperti	700 €	250 €	500
Addestrati	500 €	150 €	800
Inesperti	350 €	100€	1200

Riorganizzazione del personale (2)

Costo di riaddestramento:

• inesperti ⇒ addestrati : 400 €

addestrati ⇒ esperti : 500 €

Stima impiegati necessari

	Attuale	Anno 1	Anno 2	Anno 3
Esperti	800	1200	1500	2000
Addestrati	1500	1500	2000	2500
Inesperti	2000	1600	1000	0

Riorganizzazione del personale (3)

- Determinare il piano di assunzioni, licenziamenti ed addestramenti per i prossimi tre anni.
- Obiettivi:
 - minimizzazione dei costi
 - minimizzazione dei licenziamenti

(VII) Localizzazione infrastrutture

«Facility Location Problem»

- apertura centri CUP in una città divisa in 6 zone
- 1 sito per quartiere
- tempi di trasferimento tra i quartieri (in minuti):

	1	2	3	4	5	6
1	0	10	20	30	30	20
2	10	0	25	35	20	10
3	20	25	0	15	30	20
4	30	35	15	0	15	25
5	30	20	30	15	0	15
6	20	10	20	25	15	0

Localizzazione infrastrutture (2)

massimo tempo di trasferimento 15 minuti

	1	2	3	4	5	6
1	0	10	ı			
2	10	0		_	_	10
3	_		0	15		
4	_		15	0	15	
5				15	0	15
6	_	10	_	_	15	0

• minimizzare il numero di centri aperti

Modello matematico (PLI)

x_i: 1 se si attiva il sito nel quartiere i, 0 altrimenti

min
$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6$$

1: $x_1 + x_2 = 1$
2: $x_1 + x_2 = 1$
3: $x_1 + x_2 = 1$
4: $x_1 + x_2 = 1$
5: $x_1 + x_3 + x_4 + x_5 = 1$
6: $x_1 + x_2 = 1$
 $x_1 + x_2 = 1$
 $x_1 + x_2 = 1$

(VIII) Problema dello zaino (KP01)

«Knapsack Problem»

- Problema di selezione:
- n oggetti
- P_j profitto dell'oggetto j (j=1,...,n)
- W_j peso dell'oggetto j (j=1,...,n)
- 1 contenitore (zaino) di capacità K
- determinare un <u>sottoinsieme</u> di oggetti avente massimo profitto e peso complessivo non superiore alla capacità K dello zaino

$$x_j = \begin{cases} 1 & \text{se l'oggetto } j \text{ viene inserito nel contenitore} \\ 0 & \text{altrimenti} \end{cases}$$

$$\max \quad \sum_{j=1,n} P_j x_j$$

$$\sum_{j=1,n} W_j x_j \leq K$$

$$x_j \in \{0, 1\} \quad (j = 1, ..., n)$$

$$0 \le x_j \le 1$$
 INTERA ($j = 1, ..., n$)

The Knapsack Problem

The Knapsack Problem is one of the most useful models in applications. Assume that a hiker wants to carry a knapsack not heavier than 21 lbs. He has 8 articles he can choose from. Value and weight of each article are:

Article	1	2	3	4	5	6	7	8
Value	3	6	2	6	7	4	5	2
Weight	2	5	3	9	1	4	7	8

Determine a knapsack packing that maximizes the value of packed items!

Objective:

$$X_i = \begin{cases} 1 \text{ if article } i \text{ is packed } (i = 1, ..., 8) \\ 0 \text{ otherwise} \end{cases}$$
Binary decision variables!

Max $3X_1 + 6X_2 + 2X_3 + ... + 2X_8$

Constraints: The model has a single capacity constraint.

 $2X_1 + 5X_2 + 3X_3 + \dots + 8X_8 \le 21$

Possible applications?

(IX) Problema KP multiplo (MKP01)

Multi-Knapsack Problem

- n oggetti
- P_j profitto dell'oggetto j (j=1,...,n)
- W_j peso dell'oggetto j (j=1,...,n)
- m contenitori, ciascuno di capacità K_i (i=1,...,m)
- un oggetto può al più andare in un solo contenitore
- impaccare nei contenitori un <u>sottoinsieme</u> di oggetti avente massimo profitto in modo che la somma dei pesi degli oggetti inseriti in ogni contenitore non superi la corrispondente capacità K_i

Modello PLI

$$x_{ij} = \begin{cases} 1 & \text{se l'oggetto } j \text{ viene inserito nel contenitore } i \\ 0 & \text{altrimenti} \end{cases}$$

$$\max \sum_{j=1,n} P_j(\sum_{i=1,m} x_{ij})$$

$$\sum_{j=1,n} W_j x_{ij} \leq K_i$$
 (*i* = 1, ..., *m*)

$$\sum_{i=1,m} x_{ij} \le 1$$
 $(j = 1, ..., n)$
 $x_{ij} \in \{0,1\}$ $(i = 1, ..., m; j = 1, ..., n)$

(X) Bin Packing (1BP)

- n oggetti
- W_j peso dell'oggetto j (j=1,...,n)
- n contenitori (bin), ciascuno di capacità K

 impaccare <u>tutti</u> gli oggetti nel minor numero possibile di contenitori in modo che la somma dei pesi degli oggetti inseriti in ogni contenitore non superi la capacità K

$$x_{ij} = \begin{cases} 1 & \text{se l'oggetto } j \text{ viene inserito nel contenitore } i \\ 0 & \text{altrimenti} \end{cases}$$

$$y_i = \begin{cases} 1 & \text{se il contenitore } i \text{ viene utilizzato} \\ 0 & \text{altrimenti} \end{cases}$$

min

$$\sum_{i=1,n} y_i$$

$$\sum_{j=1,n} W_j x_{ij} \leq K y_i \qquad (i=1, ..., n)$$

$$\sum_{i=1,n} x_{ij} = 1 (j = 1, ..., n)$$

$$y_i \in \{0, 1\} (i = 1, ..., n)$$

$$x_{ij} \in \{0, 1\} (i, j = 1, ..., n)$$

(XI) Assegnazione di incarichi

- *n* persone ed *n* incarichi
- c_{ii} tempo/costo ass. incarico j alla pers. i
- determinare l'assegnamento delle persone agli incarichi di costo complessivo minimo
- Es. n=2

Assegnazione di incarichi (2)

•
$$n = 3$$
 lavoro

pers. 1 2 3

1 20 60 30

2 80 40 90

3 50 70 80

```
N. soluzioni = n (n-1) (n-2) ... = n!
se n = 20 → n! \cong 2.4 * 10^{18}
enumerazione su PC (1 Gflop/sec.): 4.6K anni!
```

Variabili decisionali

$$x_{ij} = \begin{cases} 1 \text{ se la persona } i \text{ esegue l'incarico } j \\ 0 \text{ altrimenti} \end{cases}$$

lavoro				•	variabili		
pers.	1	2	3		1	2	3
1	20	60	30	1	0	0	1
2	80	40	90	2	0	1	0
3	50	70	80	3	1	0	0

Matrice di permutazione: un solo 1 ∀ riga e colonna

Modello matematico (PLI)

 Funzione obiettivo (min. costo) variabili $\min \quad \sum_{i=1,n} \sum_{i=1,n} c_{ii} x_{ii}$

Un solo lavoro per persona:

$$\sum_{j=1,n} x_{ij} = 1 \quad (i = 1, ..., n)$$

Una sola persona per lavoro:

$$\sum_{i=1,n} x_{ij} = 1 \qquad (j = 1, ..., n)$$

$$x_{ij} \in \{0, 1\} \qquad (i,j = 1, ..., n)$$

(XII) Sequenziamento di lavorazioni

- n lavorazioni
- p_j tempo di processamento lavorazione j
- no preemption = una volta iniziata la lavorazione non può essere interrotta
- m macchine identiche
- una sola lavorazione alla volta per ogni macchina
- assegnare le lavorazioni alle macchine in modo tale che il tempo totale di processamento sia minimo

Sequenziamento di lavorazioni (2)

• n = 5, m = 2, $p_j = \{90, 50, 30, 40, 20\}$

Variabili decisionali

$$x_{ij} = \begin{cases} 1 & \text{se la macchina } i \text{ esegue lavorazione } j \\ 0 & \text{altrimenti} \end{cases}$$

z = massimo tempo di lavorazione (makespan)

Modello matematico (PL mista)

- Funzione obiettivo (min. makespan)
 min z
- definizione makespan:

$$\sum_{j=1,n} p_j x_{ij} \leq z \qquad (i=1, ..., m)$$

Ogni lavorazione su una sola macchina:

$$\sum_{i=1,m} x_{ij} = 1 (j = 1, ..., n)$$

$$x_{ij} \in \{0, 1\} (i, j = 1, ..., n)$$

$$z \geq 0$$