

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Wykorzystanie uczenia maszynowego do identyfikacji metody kompresji sygnału akustycznego

Autor: Szymon Mikulicz

Opiekun: dr hab. inż. Bartłomiej Borkowski *Recenzent*: prof. dr hab. inż. Jerzy Wiciak

Data: 5.09.2019 r.

Wprowadzenie

- » Kompresja audio stosowana jest w celu zmniejszenia rozmiaru pliku
- » Kompresja może być stratna lub bezstratna
- » W sprzedaży mogą występować pliki bezstratne uzyskane przez dekompresję stratnych

Коmpresja stratna audio (1)

- » Proces jest nieodwracalny
- » Skutkuje pogorszeniem jakości sygnału
- » Poziom kompresji może być regulowany przez użytkownika

Obecne rozwiązania

- » Narzędzia: Lossless Audio Checker, True Audio Checker
- » Algorytmicznie wykrywają artefakty powstałe w kompresji MPEG (MP3, AAC)
- » Prowadzone są badania nad uniwersalnymi algorytmami (2) oraz uczeniem maszynowym (3)

Konwolucyjne Sieci Neuronowe

- » Wykorzystywane do rozpoznawania obrazów
- » Składaja się z warstw splatających i warstw łączących (pooling)

$$\langle \begin{bmatrix} 3 & 3 & 2 & 1 \\ 0 & 0 & 1 & 3 \\ 3 & 1 & 2 & 2 \\ 2 & 0 & 0 & 2 \end{bmatrix}, J \rangle_F = \begin{bmatrix} 12 \\ 12 \\ \end{bmatrix} \quad \langle \begin{bmatrix} 3 & 3 & 2 & 1 \\ 0 & 1 & 3 \\ 3 & 1 & 2 & 2 \\ 2 & 0 & 0 & 2 \end{bmatrix}, J \rangle_F = \begin{bmatrix} 12 & 12 \\ 12 \\ \end{bmatrix}$$

$$\max \left\{ \begin{bmatrix} 3 & 3 & 2 & 1 \\ 0 & 0 & 1 & 3 \\ 3 & 1 & 2 & 2 \\ 2 & 0 & 0 & 2 \end{bmatrix} \right\} = \begin{bmatrix} 3 & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{bmatrix} \right\} = \begin{bmatrix} 3 & 3 & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{bmatrix}$$

Architektura sieci

- » Funkcja aktywacji: ReLU
- » Dropout: 30%, 20%, 20%

Przygotowane narzędzia

» Skrypt do konstrukcji bazy danych z plików audio

» Biblioteka do weryfikacji bezstratności fragmentów przed treningiem (2)

» Skrypt dobierający i przetwarzający dane, prowadzący trening, testujący i przetwarzający wyniki

Dane Treningowe

- » Baza 65536 10-ciosekundowych fragmentów
- » Stopień kompresji regulowany parametrem bitrate
- » 4096 niepoddanych kompresji, po 4096 dla każdej z par formatów MP3, AAC, AC-3, Vorbis, WMA z bitrate'ami 320 kbps, 192 kbps, 128 kbps

Trening

- » 10 epok
- » Wybierano sieć o największej dokładności
- » Optymizator: ADAM
- » Funkcja strat: NLL (Negative Log Likelihood)
- » 3 konfiguracje

Wyniki treningu I: 97,4%

			Format wykryty przez model								
			WAV	Inny							
0.00	WAV	_	97,6	2,4							
	MP3	320 192 128	11,6 7,0 3,5	88,4 93,0 96,5							
	AAC	320 192 128	4,7 0,0 0,0	95,3 100,0 100,0							
	Vorbis	320 192 128	1,2 0,0 0,0	98,8 100,0 100,0							
	WMA	320 192 128	12,9 0,0 0,0	87,1 100,0 100,0							
		320	0,0	100,0							

Rzeczywisty format

AC-3

192

128

0,0

1,2

100.0

Wyniki treningu II: 96,1%

Format wykryty przez model

			WAV	MP3	AAC	Vorbis	WMA	AC-3	
	WAV		94,4	4,9	0,0	0,0	0,5	0,2	
		320	4,9	90,2	0,0	0,0	4,9	0,0	
	MP3	192	3,5	95,1	0,0	0,0	0,7	0,7	
		128	4,9	91,5	2,8	0,0	0,7	0,0	
nat		320	1,4	2,1	95,1	0,7	0,7	0,0	
, O.	AAC	192	0,0	0,7	94,4	4,9	0,0	0,0	
sty 1		128	0,0	0,0	91,5	7,7	0,7	0,0	
Rzeczywisty format	Vorbis	320	0,0	0,0	2,8	96,5	0,7	0,0	
CZ		192	0,0	0,0	0,0	100,0	0,0	0,0	
Rze		128	0,0	0,0	2,1	97,9	0,0	0,0	
		320	2,1	0,0	0,0	0,7	97,2	0,0	
	WMA	192	0,0	0,0	0,0	0,0	100,0	0,0	
		128	0,0	0,0	0,0	0,0	100,0	0,0	
		320	0,7	0,0	0,0	0,0	0,7	98,6	
	AC-3	192	0,0	0,0	0,0	0,0	1,4	98,6	
		128	0,0	0,0	0,0	0,0	0,7	99,3	

Rzeczywisty format

Wyniki treningu III: 92,4%

Format wykryty przez model

		WAV	MP3			AAC		Vorbis		WMA			AC-3				
			320	192	128	320	192	128	320	192	128	320	192	128	320	192	128
WAV		96,1	0,4	1,6	0,0	0,0	0,0	0,0	0,0	0,0	0,0	2,0	0,0	0,0	0,0	0,0	0,0
	320	7,8	89,5	2,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,8	0,0	0,0	0,0	0,0	0,0
MP3	192	4,3	0,0	94,5	0,8	0,0	0,0	0,0	0,0	0,0	0,0	0,4	0,0	0,0	0,0	0,0	0,0
	128	4,3	0,0	0,4	94,9	0,4	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
	320	1,2	0,0	0,0	1,2	94,9	0,8	0,4	0,0	0,0	0,0	1,6	0,0	0,0	0,0	0,0	0,0
AAC	192	0,8	0,0	0,0	0,0	2,3	93,0	1,2	0,0	1,2	0,8	0,8	0,0	0,0	0,0	0,0	0,0
	128	0,0	0,0	0,0	0,0	0,8	1,2	85,5	9,4	2,0	1,2	0,0	0,0	0,0	0,0	0,0	0,0
	320	0,0	0,0	0,0	0,0	0,4	1,2	4,7	80,1	10,2	2,0	0,8	0,4	0,0	0,4	0,0	0,0
Vorbis	192	0,4	0,0	0,0	0,0	0,0	0,4	0,0	5,5	69,9	23,0	0,4	0,4	0,0	0,0	0,0	0,0
	128	0,4	0,0	0,0	0,0	0,4	0,0	0,0	0,0	14,1	84,8	0,0	0,4	0,0	0,0	0,0	0,0
	320	0,4	0,8	0,4	0,0	0,0	0,0	0,0	0,0	0,0	0,0	98,4	0,0	0,0	0,0	0,0	0,0
WMA	192	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,8	99,2	0,0	0,0	0,0	0,0
	128	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,4	0,0	99,6	0,0	0,0	0,0
	320	0,4	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,4	0,0	0,0	99,2	0,0	0,0
AC-3	192	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	100,0	0,0
	128	0,8	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,4	0,0	0,0	0,0	0,0	98,8

Podsumowanie

- » Sieć rozpoznaje z dużą dokładnością obecnie stosowane metody stratnej kompresji audio
- » Rozwiązanie jest możliwe do zastosowania przez serwisy prowadzące sprzedaż plików audio

Dalsze pracy

- » Większa złożoność sieci
- » Różne enkodery
- » Więcej metod kompresji
- » Inne typy sieci

Wykorzystanie uczenia maszynowego do identyfikacji metody kompresji sygnału akustycznego

https://github.com/Ashymad/IOLA

Dziękuję za uwagę

Bibliografia:

- (1) Marina Bosi i Richard E. Goldberg: *Introduction to Digital Audio Coding and Standards*, Norwell, MA, USA: Kluwer Academic Publishers, 2002, isbn: 1402073577
- (2) Bongjun Kim: "Lossy Audio Compression Identification", w: 2018 26th European Signal Processing Conference (EUSIPCO), 2018, s. 2459-2463
- (3) Romain Hennequin, Jimena Royo-Letelier i Manuel Moussallam: "Codec independent lossy audio compression detection", w: 2017 *IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, 2017, s. 726–730