Numerical Optimization Graduate Course

Constrained smooth optimization

Part I: Optimality conditions

Wen Huang

School of Mathematical Sciences Xiamen University

Compiled on March 15, 2022

Preliminaries and Basic Theories

!

Nonlinear Programming

Nonlinear programming

$$\min_{x} f(x)$$

$$c_{i}(x) = 0, \quad i \in \mathcal{E}$$

$$c_{i}(x) \geq 0, \quad i \in \mathcal{I}$$

- f and c_i are smooth
- Optimality conditions

Smoothness

Sometimes, nonsmooth objective function or nonsmooth constraints can be reformulated into smooth constrained optimization problem

Smoothness

Sometimes, nonsmooth objective function or nonsmooth constraints can be reformulated into smooth constrained optimization problem

- Nonsmooth constraints:
 - Problem: $\min_{x \in \mathbb{R}^2} f(x)$ s.t. $|x_1| + |x_2| \le 1$.
 - Constraints:

$$\begin{aligned} |x_1| + |x_2| &\leq 1 \Longrightarrow \\ x_1 + x_2 &\leq 1, x_1 - x_2 \leq 1, -x_1 + x_2 \leq 1, -x_1 - x_2 \leq 1 \end{aligned}$$

Smoothness

Sometimes, nonsmooth objective function or nonsmooth constraints can be reformulated into smooth constrained optimization problem

- Nonsmooth constraints:
 - Problem: $\min_{x \in \mathbb{R}^2} f(x)$ s.t. $|x_1| + |x_2| \le 1$.
 - Constraints:

$$\begin{aligned} |x_1| + |x_2| &\leq 1 \Longrightarrow \\ x_1 + x_2 &\leq 1, x_1 - x_2 \leq 1, -x_1 + x_2 \leq 1, -x_1 - x_2 \leq 1 \end{aligned}$$

- Objectives:
 - Problem: $\min_{x \in \mathbb{R}} f(x) = \max(x^2, x)$
 - Reformulate as:

$$\min_{(t,x)\in\mathbb{R}^2}t, \qquad \text{ s.t. } t\geq x, t\geq x^2.$$

Example with an equality constraint

$$\min_{x} f(x) = x_1 + x_2$$
 such that $h(x) = 2 - x_1^2 - x_2^2 = 0$

with global minimizer: $x^* = \begin{bmatrix} -1 & -1 \end{bmatrix}^T$

First order analysis:

- $\nabla f(x) = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$, and $\nabla h(x) = \begin{bmatrix} -2x_1 & -2x_2 \end{bmatrix}^T$
- Feasibility: $0 = h(x + s) \approx h(x) + \nabla h^T(x)s$
- Descend: $0 > f(x+s) f(x) \approx \nabla f^{T}(x)s$
- Find such an s?

Intuitions of First Order Optimality Conditions

Example 1

In case that $\nabla f(x)$ and $\nabla h(x)$ are not parallel

- Define $\tilde{s} = -\left(I \frac{\nabla h(x)\nabla^T h(x)}{\|\nabla h(x)\|^2}\right)\nabla f(x) \neq 0$
- $\nabla h^T(x)\tilde{s} = 0$ and $\nabla f^T(x)\tilde{s} < 0$

In case that $\nabla f(x)$ and $\nabla h(x)$ are parallel

- No direction to move to the first order
- Parallel \Longrightarrow

$$\exists \lambda \in \mathbb{R}, \quad \nabla f(x) - \lambda \nabla h(x) = 0$$

• For this example $(\lambda^* = 1/2)$:

$$\nabla f(x^*) - \lambda^* \nabla h(x^*) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

• The sign of λ^* can be changed (along with the constraint)

Intuitions of First Order Optimality Conditions

Example 1

- Lagrangian function: $\mathcal{L}(x,\lambda) = f(x) \lambda h(x)$
- At x*, optimality condition:

$$\exists \lambda^*, \nabla_x \mathcal{L}(x^*, \lambda^*) = \nabla f(x^*) - \lambda^* \nabla h(x^*) = 0$$

• Necessary, not sufficient:

$$ilde{x} = egin{bmatrix} 1 & 1 \end{bmatrix}^T, ilde{\lambda} = -rac{1}{2} \
abla_{x} \mathcal{L}(ilde{x}, ilde{\lambda}) = egin{bmatrix} 1 \\ 1 \end{bmatrix} + rac{1}{2} egin{bmatrix} -2 \\ -2 \end{bmatrix} = egin{bmatrix} 0 \\ 0 \end{bmatrix}$$

 \bullet \tilde{x} is a maximizer

Example with an equality constraint

$$\min_{x} f(x) = x_1 + x_2$$
 such that $g(x) = 2 - x_1^2 - x_2^2 \ge 0$

with global minimizer: $x^* = \begin{bmatrix} -1 & -1 \end{bmatrix}^T$

First order analysis:

- $\nabla f(x) = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$, and $\nabla g(x) = \begin{bmatrix} -2x_1 & -2x_2 \end{bmatrix}^T$
- Feasibility: $0 \le g(x+s) \approx g(x) + \nabla g^T(x)s$
- Descend: $0 > f(x+s) f(x) \approx \nabla f^{T}(x)s$
- Find such an s?

In case that x is an interior point, i.e., g(x) > 0

- No descent direction \Longrightarrow any small $p, p^T \nabla f(x) \ge 0 \Longrightarrow \nabla f(x) = 0$
- Otherwise, $s = -\alpha \nabla f(x)$ for small α preserves feasibility and descend

In case that x is on the boundary, i.e., g(x) = 0

- s exists if $\nabla f^T(x)s < 0$ and $\nabla g^T(x)s \ge 0$
- Two half spaces no interection only if $\nabla f(x)$ and $\nabla g(x)$ in the same direction
- ∃ λ > 0

$$\nabla f(x) - \lambda \nabla g(x) = 0$$

So if no first order feasible direction exists at x^* then for the two cases of this problem we have

- $\lambda^* g(x^*) = 0$ is called complementarity or complentary slackness
- $\lambda^* > 0 \rightarrow g(x^*) = 0$, i.e., $\lambda^* > 0$ only when $g(x^*)$ is active.
- Case 1: $g(x^*) > 0 \to \lambda^* = 0 \to \nabla f(x^*) = 0$
- Case 2: $g(x^*) = 0 \rightarrow \lambda^* \ge 0 \rightarrow \nabla f(x^*) \lambda^* \nabla g(x^*) = 0$

Intuitions of First Order Optimality Conditions

Conjecture

- Geometry: easy to understand, difficult to use
- Algebra: easy to use, difficulty to understand

[Summary and Prediction]

Define the Lagrangian $\mathcal{L}(x,\lambda) = f(x) - \sum_{i \in \mathcal{E}} c_i(x)\lambda_i - \sum_{i \in \mathcal{I}} c_i(x)\lambda_i$, where λ_i are the Lagrange multiplier.

Conjecture: If x^* is a local minimizer, then

$$\begin{split} \nabla_{x}\mathcal{L}(x^{*},\lambda^{*}) &= 0\\ c_{i}(x^{*}) &= 0 \quad i \in \mathcal{E}, \qquad c_{i}(x^{*}) \geq 0 \quad i \in \mathcal{I}\\ \lambda_{i}^{*} &\geq 0 \quad i \in \mathcal{I}, \qquad \lambda_{i}^{*}c_{i}(x^{*}) &= 0 \quad i \in \mathcal{I}. \end{split}$$

No descent direction: Geometry

Geometry

No descent direction: Geometry

x is a local minimizer if there does not exist a sequence $z_i \in \Omega$ such that $\lim_{i \to \infty} z_i = x$ and $f(z_i) < x$, where Ω denotes the feasible region.

Tangent cone

Definition 1

The vector d is a tangent vector to the set \mathcal{K} at x if there is a feasible sequence $\{z_k\}$ converging to x and sequence of positive scalars $\{\tau_k\}$, with $\tau_k \to 0$, such that

$$d = \lim_{k \to \infty} \frac{z_k - x}{\tau_k}$$

The collection of all tangent vectors at x denoted $T_{\mathcal{K}}(x)$.

Tangent cone

Definition 2

- A set $S \subseteq \mathbb{R}^n$ is a cone if $x \in S \to \forall \alpha > 0$, $\alpha x \in S$.
- $T_{\mathcal{K}}(x)$ is called the tangent cone of \mathcal{K} at x.

Lemma 3

Let $\{z_k\}$ be a feasible sequence converging to x and $\{\tau_k\}$ be the associated sequence of positive scalars, with $\tau_k \to 0$, used to define a tangent vector d to \mathcal{K} at x. For any z_k , τ_k the following holds

$$z_k = x + \tau_k d + o(\tau_k).$$

Proof: This follows directly from the definition of the tangent vectors.

A necessary condition

Lemma 4

If x^* is a local minimizer then

$$\forall d \in T_{\mathcal{K}}(x) \ \nabla f^{\mathsf{T}}(x^*)d \geq 0$$

Alternative necessary condition

Definition 5

The normal cone at feasible point x of f(x) is the set

$$N_{\mathcal{K}}(x) = \{ v \mid \forall w \in T_{\mathcal{K}}(x) \ v^T w \leq 0 \}.$$

That is, all vectors, v, such that its angle θ with any tangent vector satisfies $-\pi \le \theta \le -\pi/2$ or $\pi \ge \theta \ge \pi/2$.

Lemma 6

If x^* is a local minimizer then

$$-\nabla f(x^*) \in N_{\mathcal{K}}(x)$$

The optimality conditions from geometry are not easy to use

The optimality conditions from geometry are not easy to use

How to characterize the tangent cone/normal cone?

Active set

Definition 7

The active set A(x) at any feasible x consists of the equality constraint indices from \mathcal{E} together with the indices of the inequality constraints i for which $c_i(x) = 0$; that is,

$$\mathcal{A}(x) = \mathcal{E} \cup \{i \in \mathcal{I} : c_i(x) = 0\}.$$

At a feasible point x, the inequality constraint $i \in \mathcal{I}$ is said to be active if $c_i(x) = 0$ and inactive if the strict inequality $c_i(x) > 0$ is satisfied.

Linearized feasible directions

Definition 8

Give a feasible point x, the set of linearized feasible directions $\mathcal{F}(x)$ is

$$\mathcal{F}(x) = \left\{ d: \begin{array}{l} d^T \nabla c_i(x) = 0, & \text{for all } i \in \mathcal{E} \\ d^T \nabla c_i(x) \geq 0, & \text{for all } i \in \mathcal{A} \cap \mathcal{I} \end{array} \right\}.$$

It is easy to verify that $\mathcal{F}(x)$ is a cone.

Linearized feasible directions

Definition 8

Give a feasible point x, the set of linearized feasible directions $\mathcal{F}(x)$ is

$$\mathcal{F}(x) = \left\{ d: \begin{array}{ll} d^T \nabla c_i(x) = 0, & \text{for all } i \in \mathcal{E} \\ d^T \nabla c_i(x) \geq 0, & \text{for all } i \in \mathcal{A} \cap \mathcal{I} \end{array} \right\}.$$

It is easy to verify that $\mathcal{F}(x)$ is a cone.

Question: Is $\mathcal{F}(x)$ the same as $T_{\Omega}(x)$?

Linearized feasible directions

Example 1:

$$c(x) = x_1^2 + x_2^2 - 1 = 0$$

•
$$x^* = \begin{bmatrix} 1 & 0 \end{bmatrix}^T$$

•

$$\begin{array}{l} \mathrm{T}_\Omega(x) = \{d \in \mathbb{R}^2 : d_1 = 0, d_2 \in \mathbb{R}\} \\ \mathcal{F}(x) = \{d \in \mathbb{R}^2 : d_1 = 0, d_2 \in \mathbb{R}\} \end{array} \right\} \Longrightarrow \mathrm{T}_\Omega(x) = \mathcal{F}(x)$$

Example 2:

$$\tilde{c}(x) = (x_1^2 + x_2^2 - 1)^2 = 0$$

$$\begin{array}{c} \mathrm{T}_\Omega(x) = \{d \in \mathbb{R}^2 : d_1 = 0, d_2 \in \mathbb{R}\} \\ \mathcal{F}(x) = \mathbb{R}^2 \end{array} \right\} \Longrightarrow \mathrm{T}_\Omega(x) \neq \mathcal{F}(x)$$

Constraint qualification

Definition 9

Given a point x and active set A(x), x is said to be a regular point or equivalently the linear independence constraint qualification (LICQ) holds at x if the gradients of the active constraints are linearly independent.

Lemma 10

If x^* is a feasible point then

- ② and if x^* is a regular point (LICQ holds) $T_{\mathcal{K}}(x^*) = \mathcal{F}(x^*)$.

See Nocedal and Wright pp. 323 - 325.

Karush-Kuhn-Tucker Conditions

Lemma 11 (Farkas's Lemma)

Define the cone K to be

$$K = \{x \in \mathbb{R}^n \mid x = By + Cw, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{n \times p}, y \ge 0\}$$

For any $g \in \mathbb{R}^n$ either

- g ∈ K;
- or $\exists d \in \mathbb{R}^n$ such that

$$g^T d < 0$$
, $B^T d \ge 0$, $C^T d = 0$,

i.e., d defines a hyperplane that separates g and K, but not both.

Karush-Kuhn-Tucker Conditions

Theorem 12 (Karush-Kuhn-Tucker Conditions)

Suppose that x^* is a local minimizer, that the function f and c_i are continuously differentiable, and that the LICQ holds at x^* . Then there is a Lagrange multiplier vector λ^* , with components λ_i^* , $i \in \mathcal{E} \cup \mathcal{I}$, such that the following conditions are satisfied

$$\begin{split} \nabla_{x}\mathcal{L}(x^{*},\lambda^{*}) &= 0\\ c_{i}(x^{*}) &= 0 \quad i \in \mathcal{E}, \qquad c_{i}(x^{*}) \geq 0 \quad i \in \mathcal{I}\\ \lambda_{i}^{*} &\geq 0 \quad i \in \mathcal{I}, \qquad \lambda_{i}^{*}c_{i}(x^{*}) &= 0 \quad i \in \mathcal{I}. \end{split}$$

Karush-Kuhn-Tucker Conditions

Constraint qualifications

Lemma 13

Suppose at some $x^* \in \Omega$, all active constraints c_i , $i \in \mathcal{A}(x^*)$, are linear functions, then $\mathcal{F}(x^*) = \mathrm{T}_{\Omega}(x^*)$.

Other constraint qualifications (not discuss in details here)

- Mangasarian-Fromovitz constraint qualification (MFCQ)
- Abadie's constraint qualification (ACQ)
- Guinard constraint qualifications (GCQ)
- ullet LICQ \Longrightarrow MFCQ \Longrightarrow ACQ \Longrightarrow GCQ

Karush-Kuhn-Tucker Conditions

Strict complementarity condition

Definition 14

Strict complementarity holds at x^* if either $\lambda_i^* = 0$ or $c_i(x^*) = 0$ but not both for all inequality constraints. In other words $\lambda_i^* > 0$ for any active inequality constraint.

An active inequality with $\lambda_i^* > 0$ is called nondegenerate; and one with $\lambda_i^* = 0$ is called degenerate.

The strict complementarity property usually makes it easier for algorithms to determine the active set $\mathcal{A}(x^*)$.

Karush-Kuhn-Tucker Conditions

Strict complementarity condition

Lemma 15

If the KKT conditions and LICQ hold at a point x^* , then the vector λ^* of Lagrange multipliers is unique.

LICQ implies the linear independence of B and C. Therefore, the coefficients, Lagrange multipliers, are unique.

Second Order Optimality Conditions

Second order necessary conditions

Theorem 16

Suppose that x^* is a local minimizer, that the function f and c_i are twice continuously differentiable, and that the LICQ holds at x^* . Let λ^* be the Lagrange multiplier vector for which the KKT conditions are satisfied. Then

$$w^T \nabla^2_{xx} \mathcal{L}(x^*, \lambda^*) w \geq 0, \forall w \in \mathcal{C}(x^*, \lambda^*),$$

where $C(x^*, \lambda^*)$ is the critical cone $C(x^*, \lambda^*) = \{ w \in \mathcal{F}(x^*) : \nabla c_i^T(x^*) w = 0, \text{ all } i \in \mathcal{A}(x^*) \cap \mathcal{I} \text{ with } \lambda_i^* > 0 \}.$

See detailed proofs in [NW06, P.332].

 $w \in \mathcal{C}(x^*, \lambda^*) \Longrightarrow w^T \nabla f(x^*) = \sum_{i \in \mathcal{E} \cup \mathcal{I}} \lambda_i^* w^T \nabla c_i(x^*) = 0 \Longrightarrow$ directions in $\mathcal{C}(x^*, \lambda^*)$ are unknown to be descent or ascent for f from only first order information

Second Order Optimality Conditions

Second order sufficient conditions

Theorem 17

Suppose that for some feasible point $x^* \in \mathbb{R}^n$ there is a Langrange multiplier vector λ^* such that the KKT conditions are satisfied. Suppose also that

$$w^T \nabla^2_{xx} \mathcal{L}(x^*, \lambda^*) w > 0, \forall w \in \mathcal{C}(x^*, \lambda^*), w \neq 0.$$

Then x^* is a strict local solution.

See detailed proofs in [NW06, P.333].

Note that LICQ is not needed here.

References I

J. Nocedal and S. J. Wright.

Numerical Optimization. Springer, second edition, 2006.