LTE物理层空中接口

学习内容

通过本节的学习,我们将了解到

- ▶ LTE时频资源是如何组织,与码分系统相比,具有什么特点
- ▶ LTE-FDD与LTE-TDD的帧结构是怎样的
- 下行控制信道如何设计
- 下行共享信道如何设计
- ▶ 上行控制信道如何设计
- ▶ 上行共享信道如何设计

LTE时频资源

- ▶ RE(Reosurce Element), LTE最小的资源
- REG(RE Group), 将4个RE组合在一起,作为更大的粒度
- RB(Resource Block), 12subcarrier*1slot, 是LTE基本调度单元
- ▶ RB Pair,在一个TTI中两个时间上连续的,频率相同的RB

物理层资源示意图

物理层帧结构 - Type 1(FDD)

- ❖ 1 frame = 10 ms
- ❖ 1 frame = 10 subframe
- 1 subframe = 2 slot(0.5ms)
- Maximum FFT size (20 MHz Bandwidth) = 2048(110x12=1320 subcarrier used)
- ❖ Subcarrier spacing = 15 kHz
- ❖ Subcarrier Bandwidth 2048x15kHz = 30.72 MHz

物理层帧结构 - Type 2(TDD)

- One radio frame = 10 ms = 2 half-frames
 - Subframes 0 and 5 always for DL
- Special subframe with various partitioning of the following 3 fields
 - DwPTS DL
 - GP Guard period
 - UpPTS UL, always followed by an UL subframe
- Diagram illustrates 5 ms DL to UL switching point periodicity
 - One special subframe per half-frame
- 10 ms switching point periodicity also supported
 - One special subframe per radio frame
- Supports 7 different UL/DL configurations
 - ❖ Different numbers of UL / DL subframes partitioning

TYPE2 UL/DL 配置

Uplink-downlink			Subframe number								
configuration	Switch-point periodicity		1	2	3	4	5	6	7	8	9
0	5 ms		S	U	U	U	D	S	U	\supset	٥
1	5 ms		S	U	U	D	D	S	U		
2	5 ms		S	U	D	D	D	S	U	О	
3	10 ms		S	U	U	U	D	D	D	О	
4	10 ms		S	U	U	D	D	D	D	О	О
5	10 ms		S	U	D	D	D	D	D	D	D
6	5 ms	D	S	U	U	U	D	S	U	\supset	D

这个时间间隔表示两个相邻特殊子帧的时间间隔

TDD与FDD相比优点:

- 实现上下行非对称
- ▶ 由于上下行同频段,可使用一套硬件Filter
- 由于上下行同频段,可共享信道测量结果

TDD与FDD相比缺点:

▶ 上下行共享一个频段,总体性能低于FDD

LTE物理层下行传输

- DL Reference Signal
- PCFICH
- PHICH
- PDCCH
- PDSCH

下行参考信号

- Cell-specific reference signal (RS)
- UE-specific RS
- MBSFN reference signal

Cell-specific reference signal (RS)

- ▶ Cell-Specific RS用于下行相干解调的信道估计
- ▶ 使用PN(gold码)序列作为RS序列
- 不同的参考信号用于不同的neighbor cell (cell ID有关)
- ▶ 对所有的UE来说,参考信号所用的序列是一致的

Cell-specific reference signal (RS)

▶ Mapping示意图

UE-Specific Reference Signal

- ▶ 给Beamforming传输方式做信道估计
- > 只有使用Beamforming传输的UE才使用该参考信号
- ▶ 使用天线端口5发送
- ▶ 与cell-specific RS不放在同一个OFDM符号
- ▶ cell-specific RS只放在数据RB

UE-Specific Reference Signal

Physical Control Format Indicator Channel (PCFICH)

- ▶ PCFICH用于指示该subframe有多少个OFDM symbol用于PDCCH
- ▶ 指定可用于PDCCH的符号数为1,2,3
- ▶ PCFICH总是放在subframe的第一个symbol

Physical Control Format Indicator Channel (PCFICH)

Physical Hybrid-ARQ Indicator Channel (PHICH)

- ▶ PHICH用于传输上行HARQ消息的应答(ACK/NACK)
- ▶ 使用码分的方式,将多个HARQ ACK/NACK映射到同一组REG上,这样的一组PHICH称为PHICH Group,对于normal CP,一个PHICH Group包含8个PHICH,分别乘以一个SF=4的正交码

▶ 每个PHICH GROUP对应3个REG

Sequence index	Orthogonal sequence		
$n_{ m PHICH}^{ m seq}$	Normal cyclic prefix $N_{\rm SF}^{\rm PHICH} = 4$	Extended cyclic prefix $N_{\rm SF}^{\rm PHICH} = 2$	
0	[+1 +1 +1 +1]	[+1 +1]	
1	$\begin{bmatrix} +1 & -1 & +1 & -1 \end{bmatrix}$	[+1 -1]	
2	[+1 +1 -1 -1]	$\begin{bmatrix} +j & +j \end{bmatrix}$	
3	$\begin{bmatrix} +1 & -1 & -1 & +1 \end{bmatrix}$	$\begin{bmatrix} +j & -j \end{bmatrix}$	
4	$\begin{bmatrix} +j & +j & +j & +j \end{bmatrix}$	-	
5	$\begin{bmatrix} +j & -j & +j & -j \end{bmatrix}$	-	
6	$\begin{bmatrix} +j & +j & -j & -j \end{bmatrix}$	-	
7	$\begin{bmatrix} +j & -j & -j & +j \end{bmatrix}$	-	

PHICH与PUSCH传输

PDCCH的主要功能

- ▶ 下行调度控制
- ▶ 上行调度控制
- 功率控制

DCI

- ▶ PDCCH用于承载DCI信息
- ▶ DCI信息中携带多种物理层信息包括:

DL Grant:

RB分配,MCS,HARQ进程号,RV,NDI,RNTI

UL Grant:

Hopping Flag,RB分配,MCS,NDI,TPC,CS for DMRS, CQI req,RNTI 上行功率控制

DCI的类型

- ▶ 0 PUSCH 调度
- ▶ 1/1a/1c PDSCH 调度,SIMO方式
- ▶ 2 PDSCH, MIMO方式
- ▶ 3/3a 上行功控
 - 1. Single-antenna port; port 0
 - 2. Transmit diversity
 - 3. Open-loop spatial multiplexing
 - 4. Closed-loop spatial multiplexing
 - 5. Multi-user MIMO
 - 6. Closed-loop Rank=1 precoding
 - 7. Single-antenna port; port 5

Transmission Mode	Reference DCI Format
1	1,1A
2	1,1A
3	2A
4	2
5	1D
9	18
7	1,1A

RB分配方式

- ▶ 有三种分配方式: Type0, Type1, Tyep2
- ▶ RB的分配是指Virtual RB的分配,最终还要经过映射才分配到真正的物理RB 上
- ▶ TypeO,根据带宽的不同,将若干个(具体多少个由带宽大小决定)连续的 RB用一位bitmap(相当于掩码的功效)表示,这样可以减少bitmap的长度, 将整个bitmap告诉UE,UE就知道数据分布在哪些RB上
- ▶ Type1,将RB划分成若干个subset(100个RB可划分4个subset),然后,用bitmap来表示subset内分配的RB编号,这样做的目的是为了节省bitmap的长度,使得bitmap代表的RB分辨率提高。这种方式的分配RB是不连续的,因为subset中的RB是交错分布的。另外Type1也有左对齐和右对齐两种方式,具体处理可参考协议规范
- ▶ Type2,指出分配RB的start和length,分配一段连续RB。Type2方式的分布也是相当复杂的

MCS指定

- ▶ 用5位标识MCS类型,总共可表达32种情况,共用了29个码,有3个码保留 用作表示重传的调制方式(QPSK,16QAM,64QAM)
- ▶ 一个MCS代表一种调制与编码方式的组合,由MCS确定每个RB的编码率,这样通过MCS与RB数,就可以计算能承载多大的TB size
- ▶ MCS的选择由调度器根据信道质量(对应到具体的RB上)决定

CCE (Control Channel Element)

- ▶ 所谓CCE,是PDCCH时频资源的一种组织方式,CCE在PDCCH时频资源上的物理分布是离散的,CCE编号将这些物理上离散的资源(REGs)标识起来
- ▶ CCE用于承载DCI
- ▶ 1CCE=9 REGs = 36 REs
- LTE定义一个DCI使用1、2、4、8个CCE来传输,称作Aggregation Level, 这样定义是为了便于UE做盲检

PDCCH format	Number of CCEs	Number of Resource- Element Groups	Number of PDCCH bits	
0	1	9	/ 72 \	QPSK调制
1	2	18	/ 144	
2	4	36	288	
3	8	72	576	

CCE映射

- ▶ CCE以REG为单位进行映射
- ▶ 用Frequency first的方式进行映射,避开所有RS,PCFICH,PHICH

The aggregation level of CCE is selected by the eNodeB according to the RF conditions

UE搜索空间(Search Space)

- ▶ UE搜索下行控制信道的信息要进行盲检 (Blind Decoding)
- ▶ UE只能在有限的位置去搜索CCE(否则开销太大),找出是否存在发给自己 的控制信道信息,这个搜索的位置的集合称为搜索空间
- 有两种Search Space: Common Search Space, Terminal-specific Search Space

Common Search Space是所有UE都会去解调的(如paging,SI,群组功控消息),但Terminal-specific Search Space只有特定UE才去解调, UE与UE之间的Terminal-specific Search Space是允许重叠的,但每个位置只会被一个UE的控制信道占据。 Terminal-specific Search Space由C-RNTI计算得出

UE搜索空间(Search Space)

LTE物理层下行共享信道

下行共享信道的功能

- ▶ 传送下行数据
 - 。 对于单天线系统,每个TTI传送一个TB size的数据
 - 。 对于多天线系统,每个TTI传送最多2个TB size的数据

LTE物理 ー T/二 + 古 / Line Transport block(s) of dynamic

Transport block(s) of dynamic size delivered from MAC layer

PDSCH处理

CRC insertion per transport block

Code-block segmentation and per-code-block CRC insertion

Turbo coding

Rate matching and physical-layer hybrid ARQ functionality

Bit-level scrambling

Data modulation

Antenna mapping

Resource-block mapping

To OFDM modulation for each antenna

LTE物理层上行传输特点

- ▶ 上行传输使用DFTS-OFDM方式
- 一个TTI内每个用户占用一段频率连续的带宽,多个用户在频率上是频分的
- ▶ PUCCH分布在频域上下边缘的RB,这种设计是由于DFTS-OFDM为了保持单载波特性必须保持频域是连续的
- ▶ 对于一个用户,在一个TTI内不能同时传输PUSCH和PUCCH
- ▶ 上行传输的UE带宽, RB数目必须是2,3,5的整数倍

LTE物理层上行传输

- UL Reference Signal
- PUCCH
- PUSCH

上行参考信号

- Demodulation Reference Signal (DMRS)
- Sounding Reference Signal (SRS)

DMRS

- ▶ DMRS用于eNB对上行传输作信道估计
- ▶ DMRS放在OFDM的第四个符号位
- ▶ 对于某一UE来说,DMRS占满UE带宽的整个第四OFDM符号位
- ▶ 每个UE有各自的DMRS符号

SRS

- ▶ SRS用于探测上行信道质量
- ▶ SRS可覆盖一个较大的频带宽度范围
- ▶ UE可以配置成周期性发送SRS信号,周期2ms-160ms
- ▶ SRS放在subframe的最后一个OFDM symbol
- ▶ SRS占据的带宽是4个RB带宽的倍数
- eNB会通告全网,在哪个subframe有UE要发SRS,这样所有的UE就不会用 最后一个symbol传PUSCH

SRS

▶ UE使用SRS探测信道质量,可以探测一个大的频带,也可以选择关心的频带 探测

PUCCH (Physical Uplink Control Channel)主要功能

- ▶ 对PDSCH的HARQ应答
- ▶ 反馈下行信道估计的结果(CQI)
- ▶ 发送上行调度请求(schedule request, SR)
- ▶ 下行闭环空间复用的反馈(PMI,RI)

PUCCH 分布

- ▶ PUCCH分布在一个subframe的上下两端的RB,与PDCCH形成鲜明对比
- ▶ PUCCH的这种分布是由于上行DFTS-OFDM要求UE占据的RB在频域上是 连续的,这种分布方式不会破坏UE数据通道分配RB的连续性
- 对于一个UE来说,不能在一个subframe内同时传输PUCCH和PUSCH,如果在某个subframe既要传输上行控制信息,又要传输上行数据,则将上行控制信息放到PUSCH中传输 $n_{\text{PRR}} = N_{\text{RB}}^{\text{UL}} 1$ m=0

PUCCH 格式

PUCCH format	Bits per subframe	Modulatio n	Contents
1	On/Off	N/A	Scheduling Request (SR)
1a	1	BPSK	ACK/NACK, ACK/NACK+SR
1b	2	QPSK	ACK/NACK, ACK/NACK+SR
2	20	QPSK	CQI/PMI or RI (any CP), (CQI/PMI or RI)+ACK/NACK (long CP only)
2a	21	QPSK+BP SK	(CQI/PMI or RI)+ACK/NACK (normal CP only)
2b	22	QPSK+BP SK	(CQI/PMI or RI)+ACK/NACK (normal CP only)

CQI/PMI/RI的功能

- ▶ CQI反馈下行信道估计的报告给eNB
- ▶ eNB通过上层信令配置UE是周期性报告CQI,还是非周期性报告CQI
- 对于周期性报告方式,eNB通过上层信令配置UE周期性的发送CQI报告, 发送周期可以是[2...160]个子帧
- 对于非周期性报告方式,eNB通过发送PDCCH携带format0的DCI,指示CQI Request,UE在4个TTI之后发送CQI报告

LTE物理层上行共享信道

物理层上行共享信道 PUSCH

- ▶ PUSCH的处理过程与PDSCH 大体相似,中间多了一个 DFTS-OFDM的过程
- ▶ PUSCH也引入了空间复用 (闭环天线)

CRC insertion per transport block

Code-block segmentation and per-code-block CRC insertion

Turbo coding

Rate matching and physical-layer hybrid-ARQ functionality

Bit-level scrambling

Data modulation

Transport block of dynamic size delivered from MAC layer

