# House Prices: Advanced Regression Techniques

Paweł Lonca

#### Zadanie

Predykcja ceny nieruchomości w miejscowości Ames w stanie Iowa



Regresja

Root mean squared logarithmic error:

$$\sqrt{rac{1}{N}\sum_{i=1}^{N}(\log(x_i)-\log(y_i))^2}$$



Nie penalizujemy dużych różnic dla dużych wartości



#### Zestaw danych

train.csv

test.csv





1460 obserwacji, 79 zmiennych

data\_description.txt



- objaśnienia dotyczące wartości
  - domyślne wartości
  - oznaczenia braków

### Obróbka danych – braki(1)

#### **Total Percentage**

| PoolQC       | 1453 | 0.995205 |
|--------------|------|----------|
| MiscFeature  | 1406 | 0.963014 |
| Alley        | 1369 | 0.937671 |
| Fence        | 1179 | 0.807534 |
| FireplaceQu  | 690  | 0.472603 |
| LotFrontage  | 259  | 0.177397 |
| GarageType   | 81   | 0.055479 |
| GarageCond   | 81   | 0.055479 |
| GarageFinish | 81   | 0.055479 |
| GarageQual   | 81   | 0.055479 |
| GarageYrBlt  | 81   | 0.055479 |
|              |      |          |

| BsmtFinType2              | 38 | 0.026027 |
|---------------------------|----|----------|
| <b>B</b> smtExposure      | 38 | 0.026027 |
| <b>B</b> smt <b>Q</b> ual | 37 | 0.025342 |
| BsmtCond                  | 37 | 0.025342 |
| BsmtFinType1              | 37 | 0.025342 |
| MasVnrArea                | 8  | 0.005479 |
| MasVnrType                | 8  | 0.005479 |
| Electrical                | 1  | 0.000685 |
|                           |    |          |

Większość braków uzupełniona Za pomocą 0 lub "None".

## Obróbka danych – braki(2)

Zmienna *LotFrontage* informująca o długości odcinka ulicy przylegającego do posesji może być imputowana przy pomocy średniej dla poszczególnych poziomów zmiennej *Neighborhood*.

Zmienna *MSZoning*, czyli plan zagospodarowania przestrzennego wokół posesji może być określony na podstawie zmiennej *MSSubclass*, czyli typu nieruchomości przeznaczonej na sprzedaż (np. dom jednorodzinny, mieszkanie w bloku).

Braki dla zmiennych, dla których w legendzie nie przewidziano braków wartości wypełniam dominantą.

### Obróbka danych – pozostałe kroki

 Niektóre zmienne mimo, że zapisane jako numeryczne tak naprawdę nimi nie są, np. miesiące

 Tworzę dodatkowe zmienne, np. hasPool, hasGarage, hasBasement, hasFirePlace, totalSF, TotalBathrooms

#### Obserwacje odstające





### Zmienna objaśniana





Brak rozkładu normalnego zmiennej objaśnianej



Transformacja logarytmem

#### Podejście nr 1



- Regresja liniowa kilku zmiennych
- Konieczny wybór zmiennych, które silnie korelują ze zmienną objaśnianą, ale nie ze sobą nawzajem

#### Poniższe zmienne wyjaśniające przekazują podobną informację:

- 1. GarageCars oraz GarageArea im większa powierzchnia garażu tym więcej samochodów możemy trzymać w garażu.
- 2. GrLivArea oraz TotRmsAbvGrd im więcej pokojów jakimś standardzie tym większa ich łączna powierzchnia.
- 3. TotalBsmtSF oraz 1stF1rSF im większa powierzchnia pierwszego piętra tym większa powierzchnia całości nieruchomości.
- 4. YearBuilt oraz GarageYrBlt dom i garaż zapewne wybudowane w tym samym roku.
- 5. GrLivArea oraz 2ndF1rSF im większa powierzchnia drugiego piętra tym większa powierzchnia przestrzeni mieszkalnej.
- 6. TotRmsAbvGrd oraz BedroomAbvGr im więcej sypialni tym więcej pokoi.
- 7. 2ndF1rSF oraz HalfBath im większe drugie piętro pod względem powierzchnie tym więcej (pół)łazienek można tam wcisnąć.
  - 1. OverallQual
  - 2. GrLivArea
  - 3. GarageCars
  - 4. GarageArea
  - TotalBsmtSF
  - 6. 1stFlrSF
  - 7. FullBath
  - 8. YearBuilt
  - 9. YearRemodAdd
  - TotRmsAbvGrd



Zmienne, które najsilniej korelują ze zmienną zależną



test.csv 0.15925

5 days ago by Pawel Lonca

First submission based on linear regression.

#### Podejście nr 2



lgb\_sub.csv

5 hours ago by Pawel Lonca

add submission details

0.12063

Dziękuję za uwagę