Exercice 1:

Dans une usine, on utilise conjointement deux machines M_1 et M_2 pour fabriquer des pièces cylindriques en série. Pour une période donnée, leurs probabilités de tomber en panne sont respectivement 0,01 et 0,008. De plus la probabilité de l'événement "la machine M_2 est en panne sachant que M_1 est en panne" est égale à 0,4.

- 1. Quelle est la probabilité d'avoir les deux machines en panne au même moment?
- 2. Quelle est la probabilité d'avoir au moins une machine qui fonctionne ?

Exercice 2:

Au CSMH, 40% de garçons et 15% des filles mesurent plus de 1,80m. De plus, 60% des élèves sont des filles.

Sachant qu'un élève, choisi au hasard, mesure plus de 1,80m, quelle est la probabilité que ce soit une fille ?

Exercice 3:

Dans une population Ω , deux maladies M_1 et M_2 sont présentes respectivement chez 10% et 20%. On suppose que le nombre de ceux qui souffrent des deux maladies est négligeable. On entreprend un dépistage systématique des maladies M_1 et M_2 .

Pour cela, on applique un test qui réagit sur 90% des malades de M_1 , sur 70% des malades M_2 , et sur 10% des individus qui n'ont aucune de ces deux affections.

- 1. Quand on choisit au hasard un individu ω dans Ω , quelle est la probabilité pour que le test réagisse ?
- 2. Sachant que pour un individu ω , le test a réagi, donner les probabitités :
 - pour que le test ait réagi à cause de la maladie M_1 ;
 - pour que le test ait réagi à cause de la maladie M_2 ;
 - pour que le test ait réagi alors que l'individu n'est infecté par qu'aucune des deux maladies M_1 et M_2 .