Nombre: Carlos Sanson Martin Grupo: 22

Nombre: Agnés Massp Gómez

Hoja de respuesta al Estudio Previo

1. Dibujad, para cada una de las formas ijk, en qué orden se recorren las matrices A, B y C:

2. Calculad los fallos de cache, suponiendo que la MC es de tamaño infinito y completamente asociativa. Escribid los resultados en la siguiente tabla:

N	mm-ijk			mm-jki			mm-kij		
11	matriz A	matriz B	matriz C	matriz A	matriz B	matriz C	matriz A	matriz B	matriz C
256	32	256	1	256	1	256	1	32	32
512	64	512	1	512	1	512	1	64	64
1024	128	1024	1	10 24	1	10 24	1	128	128

3. Calculad cuántas páginas de memoria virtual se utilizan al ejecutar completamente el bucle más interno 1 vez. Escribid los resultados en la siguiente tabla:

N	mm-ijk			mm-jki			mm-kij		
	matriz A	matriz B	matriz C	matriz A	matriz B	matriz C	matriz A	matriz B	matriz C
256	Λ	32	Λ	32	1	32	Λ	1	1
512	1	128	1	128	1	128	1	1	1
1024	Λ	512	1	512	1	512	Л	1	1

Nombre:	Carlos	Sanson	Martin		Grupo:	22
Nombre:	Agnés	Masip Go	ómez			

Hoja de respuestas de la práctica

1. Compilad y ejecutad los tres programas para un tamaño N=6. Comprobad que los 3 programas dan el mismo resultado. \checkmark

2. Rellenad la siguiente tabla:

N	Tiempo	ejecución ((en seg.)	MFLOPS			
	mm-ijk	mm-jki	mm-kij	mm-ijk	mm-jki	mm-kij	
256	0'058	0'065	0'078	495'06	480'9	431'6	
512	0'714	0'874	0'452	375'96	307 13	593'88	
1024	7'58	16' 24	3' 378	403'5	132'234	635 '72	

3. Teniendo en cuenta lo que habéis hecho en los apartados anteriores y en el trabajo previo, explicad la razón de las diferencias de rendimiento en estos tres programas.

gual que al previ, el programa que més triga en executar-se és jKi, el
tuol té sentit perquè fa tots els accesos verticals [11]

- 4. Aplicad la optimización adicional a las otras dos aplicaciones. Compilad y ejecutad los tres programas para un tamaño N=6. Comprobad que los 3 programas dan el mismo resultado. ✓
- 5. Rellenad la siguiente tabla:

N	Tiempo	ejecución ((en seg.)	MFLOPS			
	mm-ijk	mm-jki	mm-kij	mm-ijk	mm-jki	mm-kij	
256	0'063	0,026	0'044	633'10	599'19	762'6	
512	0'562	0'720	0'404	477'6	372 '8	664'44	
1024	5'321	15'851	3'177	403 16	13S' S	675'95	

6. Comparad los resultados obtenidos con los obtenidos antes de optimizar los programas, y sacad conclusiones de dicha comparación.

El programo optimitzat te un temps d'execució menor, però més
MFLOPS. Això pot ser perquè, encora que fagi més operacions, fa menys
accessos a memòria i això aconsegueix reduir el temps d'execució.