La logique combinatoire

Logique combinatoire

- À quoi ça sert ?
 - Permet d'établir la logique de commande d'un système.

Ne s'applique qu'à des variables binaires

Ex : Éclairage automatique d'une entrée de garage

Objectifs

- Établir une équation logique
 - $-L = (\overline{J} \cdot P) + I$
- Définir une table de vérité
- Concevoir un schéma logique

J	Р	I	L
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

4 / 14

Récapitulatif

- 3 entrées
 - Capteur de luminosité : Variable « J »
 - J = 1 le jour ; J = 0 la nuit
 - Capteur de présence : Variable « P »
 - P = 1 si la voiture est détectée
 - $P = 0 \sin n$
 - Interrupteur : Variable « I »
 - I = 1 si l'interrupteur est ouvert
 - I = 0 s'il est fermé.
- 1 sortie
 - Lampe : Variable « L »
 - Si L = 1 alors la lampe s'allume
 - Si L = 0 alors la lampe s'éteint

Conditions de fonctionnement

- Quelles sont les conditions d'allumage de la lampe ?
 - Il fait nuit (J=0) ET la voiture passe devant le capteur (P=1),
 - II fait nuit (J=0) ET on appuie sur l'interrupteur (I=1),
 - II fait jour (J=1) ET on appuie sur l'interrupteur (I=1).
- Autrement dit :

-
$$L = 1 \text{ si } J = 0 \text{ ET } P = 1$$

$$-L=J.P$$

$$- L = 1 si$$

$$- L = 1 si$$

- On rassemble:
 - L=1 si (J=0 ET P=1) OU (J=0 ET I=1) OU (J=1 ET I=1)
 - -L = J.P + J.I + J.I

Simplifications

• Équation :

$$-L = J.P + J.I + J.I$$

- L =
- Simplification:

$$-L = (J . P) + (J . I) + (J . I)$$

- -L=
- L =
- L =

Portes logiques

- Opérateur NON (NOT)
 - $S = a \rightarrow S = 1 \text{ si } a = 0$

a S0 11 0

- Opérateur ET (AND)
 - $S = a \cdot b \rightarrow S = 1 \text{ si } a = 1 \text{ ET } b = 1$

a b S0 0 01 01 1

Opérateur OU (OR)

-
$$S = a + b \rightarrow S = 1 \text{ si } a = 1 \text{ OU } b = 1$$

Schéma logique

Équation de fonctionnement : L = (J . P) + I

Autres portes logiques

NON-ET (NAND)
NON-OU (NOR)
OU EXCLUSIF (XOR)

a	b	S	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

a	b	S
0	0	1
0	1	0
1	0	0
1	1	0

a	b	S
0	0	0
0	1	1
1	0	1
1	1	0

Schéma électrique

Contact Normalement-Ouvert (NO)

Contact Normalement-Fermé (NF)

11 / 14

Schéma électrique

• Fonction **ET** : contacts en série

Fonction OU : contacts en parallèle

Schéma électrique

Équation de fonctionnement : L = (J . P) + I

Synthèse

4 représentations pour le même objet

$$- L = (J . P) + I$$

J	Р	I	L
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1