

FIG. 1

CHROMOSOME - DNA-INTEGRATED PLASMID DNA MOLECULE ONE OF VARIOUS ONA FRAGMENTS
OBTAINED BY CLEAVING CHROMOSOME
DNA USING SAME RESTRICTION
ENZYME OBJECT DNA FRAGMENTS A ANNEALING A INEAR PLASMI CLEAVING BY

. . . .

FIG. 3

FIG. 4

RETRIEVAL KEY IS GENERATED TO RETRIEVE VECTOR UNIT DEPENDING ON VECTOR AND RESTRICTION ENZYMES USED ON VECTOR SIDE AND OBJECT DNA FRAGMENT SIDE

VECTOR UNIT IS SPECIFIED USING GENERATED RETRIEVAL KEY AND AUTOMATICALLY REMOVED

F | G. 5

FIG. 6

	S11
SELECTING CLONE	
-tr	- - S12
SELECTING FROM AUTOMATIC VECTOR UNIT REMOVAL MENU	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
- O	- - S13
SELECTING VECTOR FROM VECTOR LIST	Y ""
-th	- - S14
SELECTING RESTRICTION ENZYME USED IN GENERATING VECTOR ANTECEDENT END	
-t-	- - S15
SELECTING RESTRICTION ENZYME USED IN GENERATING VECTOR CONSEQUENT END	
-t-	- - S16
SELECTING RESTRICTION ENZYME USED IN GENERATING DNA FRAGMENT ANTECEDENT END	
Û	. S17
SELECTING RESTRICTION ENZYME USED IN GENERATING DNA FRAGMENT CONSEQUENT END	
û	. S18
EXECUTING VECTOR UNIT SPECIFICATION AND REMOVAL PROGRAM	

FIG. 7

```
M13MP18
M13MP19
PBR322
PSL1180
PSL1190
PT7T318U
PT7T319U
PTZ18R
PTZ19R
PUC18
PUC18
PUC19, ETC.
```

399..450

>ID PUC18 >SEQ ID: 8 TCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGGTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGAT GCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCGCC ATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGG GGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGCCAA GCTTGCATGCCTGCAGGTCGACTCTAGAGGATCCCCGGGTACCGAGCTCGAATTCGTAATCATGGTCATAGCTGTTTCCT GTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATG AGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAAT GAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCG GTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGG AAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCC GCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCG TTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTC GGGAAGCGTGGCGCTTTCTCAAAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTG TGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGAC TTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTG GTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAG AAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGAT TATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCA TCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGAT ACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAA GTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGC TTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTC AATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCT CAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTC ACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAAT ACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTA TTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATC ATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTC >MULTI

```
SEQ ID: 9 GIGCCAAGCIIGCAIGCCIGCAGGICGACICIAGAGGAICCCCGGGIACCGAGCICGAAIICGIAAI
                                                                                                                                                                                                                                                                                                                                                        SEQ ID: 18 GAGCTC -SAC
                              S€Q 20:16 CCCGGG →SMA I, XMA
                                                                                                                                                                                                                                                                                                                      S EQ 20:17 GGTACC SKPN ]
(* INDICATES MULTIPLE CLONING SITE)
                                                                                                                                                                                                                                                          SEQ ID: 15 GGATCC BAMH I
                                                                                                                                                                                      SEQ ID :13 GTCGAC SAL I, ACC I, HINC
                                                                                                                                                                                                                         sea =0:14 TCTAGA⇒XBA I
                                                                                                                                                            SEQ =0:12 CTGCAG PST
                                                                                                                             GCATGC⇔SPH |
                                                                                           SEQ IO: 10 AAGCTT-HIND III
                                                                                                                               569 ID: 11
```

.16. 10

SEQ 20:19 GAATTC -BCOR

VECTOR SIDE HIND III	OBJECT DNA FRAGMENT SIDE HINDIII
SPH I	SPH I
PST I	PST I
SAL I	SAL I
ACC I	ACC I
HINC II	HINC II
XBA I	XBA I
BAMH I	BAMH. I
SMA I	SMA I
XMA I	XMA I
KPN I	KPN I
SAC I	SAC I
ECOR I	ECOR I OTHER RESTRICTION ENZYME

FIG. 11

F I G. 12

	WHEN SINGLE-STRAN	IDED AREA	WHEN SINGLE-STRANDED AREA IS FOUND ON 3' SIDE	٠
STRAND A 5'	AREA A	AREA B3	AREA C	က်
STRAND B 3'	AREA C	AREA B3	AREA A	బ్
	RESTR	RESTRICTION ENZYME SITE	ZYMB	
	FIG. 13A		3 A	
	WHEN NO SINGLE-STRANDED AREA IS FOUND	RANDED AL	REA IS FOUND	
STRAND A 5'	AREA A		AREA C	دري .
STRAND B 3'	AREA C		AREA A	ວ໌.
	HESTE STIE	RESTRICTION ENZYME SITE	ZYME	
	FIG	•	13B	
	WHEN SINGLE-STRA	NDED AREA	SINGLE-STRANDED AREA IS FOUND ON 5' SIDE	
STRAND A 5'	AREA A	AREA B5	AREA C	က်
•	11111111111111			ì

FIG. 13C

SITE

AREA BS AREA A

AREA C

STRAND B 3'

		. m	, L			<u>+</u>		
۸2		•				IIT ARE		
ND CLEAVED BY RESTRICTION ENZYME V2	4	V2C	V2A		F2	VECTOR UNIT AREA	RTION	E¥
END CLEAVED.BY RESTRICTION E	7	V2B3	F283		BY Enzywe	<u> </u>	r Eaved Po	3′SIDE RETRIEVAL KÉY
END (F2A	F20	(=	END CLEAVED BY RESTRICTION ENZYME F2	1	3' SIDE CLEAVED PORTION	← 3′SIDE RETRIEVAL
٠.				<u> </u> 	RES	AREA	ັຕ	
<u>, </u>		:				FRAGMENT		
END CLEAVED BY Restriction enzyme fi		F10	F1A		5	— OBJECT DNA FRAGMENT AREA	RTION	EX
END CLEAVED BY RESTRICTION EN	5	F183	V1B3	(=	END CLEAVED BY RESTRICTION ENZYME VI	80	5' SIDE CLEAVED PORTION	5′SIDE RETRIEVAL KEY
RES		V1A	V1C	۱۷۰	END CLEAVED BY Restriction en	↑	SIDE CL	- 5' SIDE
		•			RES	NIT AR	,	•
		່,	ຕ	•		- VECTOR UNIT AREA		

F | G. 14

FIG. 15

F I G. 16

WHEN HIND I IS SPECIFIED ON VECTOR 5' SIDE XBA I IS SPECIFIED ON VECTOR 3' SIDE, HIND I IS SPECIFIED ON OBJECT DNA 5' SIDE, AND XBA I IS SPECIFIED ON OBJECT DNA 3' SIDE

(**** INDICATES RESIDUAL MULTIPLECLONING SITE (++++ INDICATES AN OBJECT DNA FRAGMENT

5' SIDE RETRIEVAL KEY
(IN THIS EXAMPLE, (IN THIS EXAMPLE, XBA I SITE)
HIND III SITE)

SEARCHING BASE SEQUENCE OF OBJECT CLONE USING 5'
SIDE RETRIEVAL KEY

STORING. AS LIST OF PRIMARY CANDIDATES FOR BOUNDARY PORTIONS. RETRIEVAL KEYS AND RETRIEVAL RESULTS
OBTAINED AS AREAS INDICATING HOMOLOGY EXCEEDING
PREDETERMINED VALUE. (LIST 5)

S 5 4

SEARCHING BASE SEQUENCE OF OBJECT CLONE USING 3'
SIDE RETRIEVAL KEY

STORING. AS LIST OF PRIMARY CANDIDATES FOR BOUNDARY PORTIONS, RETRIEVAL KEYS AND RETRIEVAL RESULTS
OBTAINED AS AREAS INDICATING HOMOLOGY EXCEEDING
PREDETERMINED VALUE. (LIST 3)

FIG. 19

```
DEFINING. IN MULTIPLE CLONING SITE OF VECTOR, RE-
    STRICTION ENZYME SITE USED IN SHEARING 5' SIDE IN
    MULTIPLE CLONING SITE OF VECTOR AND AREA OUTSIDE
    ON 5' SIDE AS 5' SIDE RESIDUAL MULTIPLE CLONING
    SITE (5MCS)
                            T
                                                           S 6 2
    WHEN VECTOR DB CONTAINS BASE SEQUENCE OTHER THAN
    MULTIPLE CLONING SITE, SUM OF SMCS AND 5 BASES ON
    5' SIDE FROM SMCS IS DEFINED AS 5' SIDE RESIDUAL
    VECTOR AREA (5VA). IF VECTOR DB CONTAINS ONLY BASE
    SEQUENCE OF MULTIPLE CLONING SITE IN VECTOR DB.
    THEN 5 MCS IS 5VA.
A HOMOLOGY CHECK IS MADE ACCORDING TO FOLLOWING FLOWCHART
ON ALL ELEMENTS IN PRIMARY CANDIDATES FOR BOUNDARY PORTIONS
(LIST 5) OBTAINED IN 5' SIDE HOMOLOGY RETRIEVAL
    DEFINING EACH CANDIDATE IN LIST 5 AND SEQUENCE
    AREA OUTSIDE ON 5' SIDE AS HOMOLOGY CHECK AREA
    (5HCA) FOR CORRESPONDING CANDIDATE
                           T.
                                                          S 6 4
    COMPARING NUMBER OF BASES IN 5' SIDE RESIDUAL
    VECTOR AREA (5VA), NUMBER OF BASES OF 5HCA, AND
    NUMBER OF BASES 20, AND DEFINING SMALLEST NUMBER
   OF BASES AS NUMBER OF BASES FOR USE IN HOMOLOGY
    CHECK (HCB)
                           T
                                                          S 6 5
   EXTRACTING HCB BASES FROM 3' SIDE OF 5VA TO-CHECK
   HOMOLOGY TO HCB BASES ON 3' SIDE OF 5HCA
                           Û
                                                          566
   WHEN CONSTANT HOMOLOGY IS OBTAINED, EXTRACTED
   BASES ARE DEFINED AS SECONDARY CANDIDATES FOR 5'
   SIDE BOUNDARY PORTIONS.
```

FIG. 20

5'SIDE 3'S	
\(\langle \cdot \c	
PRIMARY CANDIDATES FOR 5' SIDE BOUNDARY PORT	ONS
<>	
<	

DEFINING, IN MULTIPLE CLONING SITE OF VECTOR, RE- STRICTION ENZYME SITE USED IN SHEARING 3' SIDE IN MULTIPLE CLONING SITE OF VECTOR AND AREA OUTSIDE ON 3' SIDE AS 3' SIDE RESIDUAL MULTIPLE CLONING SITE (3MCS)	¥ 871
4	872
WHEN VECTOR DB CONTAINS BASE SEQUENCE OTHER THAN MULTIPLE CLONING SITE, SUM OF 3MCS AND 5 BASES ON 3' SIDE FROM 3MCS IS DEFINED AS 3' SIDE RESIDUAL VECTOR AREA (3VA). IF VECTOR DB CONTAINS ONLY BASE SEQUENCE OF MULTIPLE CLONING SITE IN VECTOR DB. THEN 3MCS IS 3VA.	
A HOMOLOGY CHECK IS MADE ACCORDING TO FOLLOWING FLOWCH, ON ALL ELEMENTS OF PRIMARY CANDIDATES FOR BOUNDARY POR- (LIST 3) OBTAINED IN 3' SIDE HOMOLOGY RETRIEVAL	
DEFINING EACH CANDIDATE IN LIST 3 AND SEQUENCE AREA OUTSIDE ON 3' SIDE AS HOMOLOGY CHECK AREA (3HCA) FOR CORRESPONDING CANDIDATE	\$73
· O	. S74
COMPARING NUMBER OF BASES IN 3' SIDE RESIDUAL VECTOR AREA (3VA), NUMBER OF BASES OF 3HCA, AND NUMBER OF BASES 20, AND DEFINING SMALLEST NUMBER OF BASES AS NUMBER OF BASES FOR USE IN HOMOLOGY CHECK (HCB)	
₽	. S75
EXTRACTING HCB BASES FROM 5' SIDE OF 3VA TO CHECK HOMOLOGY TO HCB BASES ON 5' SIDE OF 3HCA	
Û	. S76
WHEN CONSTANT HOMOLOGY IS OBTAINED, EXTRACTED BASES ARE DEFINED AS SECONDARY CANDIDATES FOR 3' SIDE BOUNDARY PORTIONS.	

F I G. 22

5'	SIDE 3' SIDE
	PRIMARY CANDIDATE FOR 3' SIDE BOUNDARY PORTION
	<>
	(

F | G. 2

FIG. 25