II. Potentiel électrique et champ électrique

II.1. Définitions

Une charge électrique q placée dans une position O quelconque de l'espace crée dans son environnement une perturbation électrique. Cette perturbation est proportionnelle à la valeur de la charge q et elle diminue en s'éloignant de cette dernière.

Mathématiquement, cette perturbation se traduit, en un point M, par une grandeur scalaire appelée potentiel électrique donné par l'expression :

$$V_M = \frac{Kq}{r}$$
, où $r = OM$

De plus, on peut exprimer cette perturbation par une grandeur vectorielle appelée champ électrique donné par l'expression :

$$\vec{E}_M = \frac{Kq}{r^2} \vec{u}_r$$

Conséquences:

Si on met une charge q' au point M, alors cette dernière acquiert une énergie potentielle électrique donnée par :

$$E_p(q') = q'V_M .$$

De plus, la charge q' est soumise à une force électrique donnée par :

$$\vec{F}(q') = q'\vec{E}_M$$
.

Remarque importante:

D'après le théorème de l'énergie cinétique : $(\Delta E_c)_A^B = W_A^B (\vec{F}(q'))$

De plus,
$$W_A^B(\vec{F}(q')) = -(\Delta E_p)_A^B$$

On en déduit :

$$\left(\Delta E_{c}\right)_{A}^{B} = W_{A}^{B} \left(\vec{F}\left(q'\right)\right) = -\left(\Delta E_{p}\right)_{A}^{B} = -q'\left(\Delta V_{M}\right)_{A}^{B}.$$

1

II.2. Relation entre champ électrique et potentiel électrique

A partir de la relation qu'on a déjà vu :

$$dE_p = -\vec{F}.d\vec{r} \iff \vec{F} = -\vec{\nabla}E_p ,$$

On peut facilement obtenir une relation entre le potentiel électrique et le champ électrique,

$$dV_{_{M}}=-\vec{E}_{_{M}}.d\vec{r}\ \Leftrightarrow\ \vec{E}_{_{M}}=-\vec{\nabla}V_{_{M}}$$

Exemples:

ullet Dans le cas où le mouvement de la charge q se fait suivant la direction radiale, alors :

$$dV_M = -E_M dr \iff E_M = -\frac{dV_M}{dr}$$

• Dans le cas où le mouvement de la charge q se fait suivant l'axe x'Ox, alors :

$$dV_M = -E_M dx \iff E_M = -\frac{dV_M}{dx}$$

II.3. Principe de superposition

Pour un système de n-charges ponctuelles $q_{i=1,n}$ placées aux points $O_{i=1,n}$, le potentiel électrique V_M et le champ électrique \vec{E}_M créés au point M sont donnés par les expressions suivantes :

$$\begin{split} V_{\scriptscriptstyle M} &= V_{\scriptscriptstyle M}\left(q_{\scriptscriptstyle 1}\right) + V_{\scriptscriptstyle M}\left(q_{\scriptscriptstyle 2}\right) + V_{\scriptscriptstyle M}\left(q_{\scriptscriptstyle 3}\right) + \ \dots + V_{\scriptscriptstyle M}\left(q_{\scriptscriptstyle n}\right) \\ &= \frac{Kq_{\scriptscriptstyle 1}}{O_{\scriptscriptstyle 1}M} + \frac{Kq_{\scriptscriptstyle 2}}{O_{\scriptscriptstyle 2}M} + \frac{Kq_{\scriptscriptstyle 3}}{O_{\scriptscriptstyle 3}M} + \dots + \frac{Kq_{\scriptscriptstyle n}}{O_{\scriptscriptstyle n}M} + \end{split}$$

$$V_M = \sum_{i=1}^n \frac{Kq_i}{r_i}$$
, où $r_i = O_i M$, (Somme algébrique)

$$\begin{split} \vec{E}_{M} &= \vec{E}_{M} \left(q_{1} \right) + \vec{E}_{M} \left(q_{2} \right) + \vec{E}_{M} \left(q_{3} \right) + \ldots + \vec{E}_{M} \left(q_{n} \right) \\ &= \frac{Kq_{1}}{\left(Q_{1}M \right)^{2}} \vec{u}_{1} + \frac{Kq_{2}}{\left(Q_{2}M \right)^{2}} \vec{u}_{2} + \frac{Kq_{3}}{\left(Q_{2}M \right)^{2}} \vec{u}_{3} + \ldots + \frac{Kq_{n}}{\left(Q_{n}M \right)^{2}} \vec{u}_{n} \end{split}$$

$$\vec{E}_{M} = \sum_{i=1}^{n} \frac{Kq_{i}}{r_{i}^{2}} \vec{u}_{i} \text{ , où } \vec{u}_{i} = \frac{\overrightarrow{O_{i}M}}{\left\|\overrightarrow{O_{i}M}\right\|} \text{ . (Somme vectorielle)}$$

II.4. Energie interne d'un système de n-charges ponctuelles

L'énergie interne U d'un système de n-charges ponctuelles $q_{i=1,n}$, placées aux points $M_{i=1,n}$, est égale au travail nécessaire pour maintenir les n-charges ponctuelles ensemble.

$$\begin{split} n &= 2 \colon U = \frac{Kq_1q_2}{M_1M_2} \; . \\ \\ n &= 3 \colon U = \frac{Kq_1q_2}{M_1M_2} + \frac{Kq_1q_3}{M_1M_3} + \frac{Kq_2q_3}{M_2M_3} \; . \\ \\ n &= 4 \colon U = \frac{Kq_1q_2}{M_1M_2} + \frac{Kq_1q_3}{M_1M_3} + \frac{Kq_1q_4}{M_1M_4} + \frac{Kq_2q_3}{M_2M_3} + \frac{Kq_2q_4}{M_2M_4} + \frac{Kq_3q_4}{M_3M_4} \; . \end{split}$$

Dans le cas général de n-charges ponctuelles :

$$\frac{1}{2} \sum_{\substack{i=1\\j=1\\i\neq j}}^{n} \frac{Kq_i q_j}{M_i M_j},$$

où $M_i M_j$ est la distance entre les charges M_i et M_j .

Remarque:

- Si U < 0, alors le système formé par les n-charges ponctuelles est stable.
- Si U > 0, alors le système formé par les n-charges ponctuelles est instable.

II.5. Topographie de l'espace électrique

a. Ligne de champ:

Une ligne de champ est une courbe qui en chacun de ces points admet pour vecteur tangent, le vecteur champ électrique. Elle toujours orientée suivant le sens du champ électrique.

b. Surface équipotentielle :

Une surface équipotentielle est formée par l'ensemble des points de l'espace où le potentiel électrique prend la même valeur.

c) Propriétés :

- 1. Le potentiel électrique est une grandeur physique qui est tout le continue.
- 2. Une ligne de champ est toujours orientée du potentiel plus haut au potentiel plus bas.
- 3. Soient M_1 et M_2 deux points de la même surface équipotentielle, i.e., $V_{M1} = V_{M2}$.

D'après la relation $dV = -\vec{E}.d\overrightarrow{OM} \implies V_{M2} - V_{M1} = -\vec{E}.\overrightarrow{M_1M_2} = 0 \implies \vec{E} \perp \overrightarrow{M_1M_2}$.

Par conséquent, les lignes de champ, qui admettent pour vecteur tangent le vecteur champ électrique, sont toujours perpendiculaires aux surfaces équipotentielles.

