南京林业大学试卷(B卷)

课程____概率统计B___

2017~2018 学年第 2 学期

题号	_	11	Ξ	四	五	六	七	八	总分
得分									

袙

女

中

吊

- 一、选择题(每题3分,共15分)
- 1. 若 $A \subset B$ 且P(A) > 0,则以下结论正确的是().

$$(A) P(A-B) = P(A) - P(B)$$

$$(B) P(\overline{A} \cup B) = 1$$

$$(B) P(\overline{A} \cup B) = 1$$

$$(C) P(B|A) = 0$$

$$(D) P(A \mid B) = 1$$

- 2. 设在3 重伯努利试验中事件A 至少出现一次的概率为 $\frac{7}{8}$,则P(A) = ().
 - (A) 1/8
- (B) 1/4
- $(C) 3/8 \qquad (D) 1/2$

3. 设随机变量 X 的概率密度为 f(x)= $\begin{cases} \frac{1}{2}e^x, & x<0\\ x, & 0\leq x<1, \text{ 分布函数为 } F(x), \text{ 则}\\ 0, & x\geq 1 \end{cases}$

当 $0 \le x < 1$ 时F(x) = ().

(A)
$$1 + \frac{x^2}{2}$$

$$(B) \frac{1}{2} + \frac{x^2}{2}$$

(A)
$$1 + \frac{x^2}{2}$$
 (B) $\frac{1}{2} + \frac{x^2}{2}$ (C) $\frac{e^x}{2} + \frac{x^2}{2}$ (D) $\frac{x^2}{2}$

- 4. 设E(X) = 0, D(X) = 2,用切比雪夫不等式估计概率 $p = P(X^2 < 3)$,则().
 - (A) $p \ge 1/3$ (B) p < 1/3 (C) $p \ge 2/3$ (D) p < 2/3

- 5. 设总体 $X\sim N(2,1^2)$, X_1,X_2,X_3,X_4 为其样本,若统计量 $a[(X_1-X_2)^2+(X_3+X_4-4)]^2$ 服

从 χ^2 -分布,则a=(

$$(A)\frac{1}{2}$$

$$(B)\,\frac{\sqrt{2}}{2}$$

$$(C) 1 (D) \frac{\sqrt{3}}{2}$$

二、填空题(每空3分,共15分)

1. 设事件 A_1,A_2,A_3 两两互不相容且 $\sum_{i=1}^3 A_i = \Omega$, $P(A_1) = P(A_2) = 2P(A_3)$, 对于事件 B 有

$$P(B \mid A_1) = P(B \mid A_2) = P(B \mid A_3) = \frac{1}{3}, \quad \text{MP}(B) = \underline{\hspace{1cm}}, \quad P(A_1 \mid B) = \underline{\hspace{1cm}}.$$

- 2. 设 $X \sim N(3,1)$, $Y \sim N(2,1)$ 且X,Y相互独立, Z = X 2Y + 1, 则P(Z < 0) =_____.
- 4. 设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2 为其样本,若 $\hat{\mu} = aX_1 \frac{1}{2018} X_2$ 是 μ 的一个无偏点估计,则 $a = \underline{\hspace{1cm}}$. Ξ 、(12 分)设袋中有五个相同的小球,其中有三个标号为1,两个标号为2,现某人随机抽取三

一、(12 分) 及农工将五十和内部分本, 八, 一, 小, 八, 八,

四、(12 分) 设随机变量 X 的概率密度为 $f(x) = \begin{cases} 1+kx, & 0 \leq x \leq 2 \\ 0, & \text{其他} \end{cases}$,试求: (1) k 的值; (2) P(-2 < X < 1); (3) $E(X^2)$.

五、 $(12 \, \mathcal{G})$ 某网店店主每周周五进货以备周六、日2 天销售,根据多周统计,这2 天销售量 X,Y

相互独立且服从以下分布: $\frac{X}{P} \begin{vmatrix} 4 & 5 \\ 0.4 & 0.6 \end{vmatrix}$, $\frac{Y}{P} \begin{vmatrix} 4 & 5 & 6 \\ 0.2 & 0.5 & 0.3 \end{vmatrix}$. 求: (1) (X,Y)的分布律; (2) 2 天销售总量 Z = X + Y 的分布律; (3) 如果周五进货9件,不够卖的概率多大? 六、(14 分)设(X,Y)服从区域 $D = \left\{ (x,y) | x^2 + y^2 \le 1 \right\}$ 上的均匀分布. (1) 求(X,Y)的概率密度函数 f(x,y); (2) 求关于 X 和 Y 的边缘概率密度并判断 X 与 Y 是否独立; (3) 求 $P(0 < Y < X < \frac{1}{2})$.

七、(14 分)设某种元件使用寿命为总体 X (单位:年),已知其概率密度为 $f(x,\theta) = \begin{cases} \theta x^{-(\theta+1)}, & x>1 \\ 0, & \text{其他} \end{cases}$ 其中 $\theta>1$ 为未知参数. 现从该种元件中随机抽取8个,分别测得

其寿命如下: 1.4, 1.7, 1.5, 1.9, 1.8, 1.3, 1.6, 1.1, 试求: (1) 样本均值 \bar{x} 和样本方差 s^2 ; (2) θ 的矩估计值 $\hat{\theta}$ 和最大似然估计值 $\hat{\theta}_L$.

八、(6 分)某批矿砂的 9 个样品中的镍含量,经测定分别为(%) 3.31,3.27,3.24,3.28,3.23,3.24,3.26,3.26,3.24. 已知该种矿砂的镍含量服从标准差为 $\sigma=0.2$ 的正态分布,问在 $\alpha=0.05$ 下能否接受假设: 这批矿砂的镍含量的均值为 3.45?($z_{0.05}=1.645$, $z_{0.025}=1.96$)