541.9 M82.e

LOGARITHMIC REDUCTION LABLES MOORE

F. n. Stild.

LOGARITHMIC REDUCTION TABLES

FOR STUDENTS OF ANALYTICAL CHEMISTRY

BY

CHARLES J. MOORE, Ph.D. (VIRGINIA)

AUSTIN TEACHING FELLOW IN ADVANCED ANALYTICAL CHEMISTRY IN HARVARD UNIVERSITY

GINN AND COMPANY

BOSTON · NEW YORK · CHICAGO · LONDON

COPYRIGHT, 1913, BY
CHARLES J. MOORE
ALL RIGHTS RESERVED

913.7

The Athenaum Press GINN AND COMPANY · PRO-PRIETORS · BOSTON · U.S.A. TO
THE MEMORY OF
MY DEVOTED MOTHER
THIS LITTLE VOLUME
IS DEDICATED

PREFACE

These tables are intended primarily for students of analytical chemistry. My aim has been to produce a book adapted to the needs of the beginner, and, at the same time, to arrange the material in such a way that it may be conveniently used by advanced students and chemists.

In discussing logarithms I realize I have encroached on foreign territory, but, in my experience as a teacher, I have known many students who were unfamiliar with the use of logarithms, and who were unwilling to acquaint themselves with the subject unless it be presented as a part of their present work. The subject is important for any one to know who has many arithmetical computations to make, and I hope that a sufficient number will profit by the explanations to justify me in including them.

The tables contain the most recent trustworthy values to be found in the literature. These values and their logarithms have been checked three times in order to eliminate possible errors.

I have used freely Landolt-Börnstein's Physikalisch-chemische Tabellen, Ostwald-Luther's Physiko-chemische Messungen, and many original articles.

C. J. MOORE

CAMBRIDGE, MASSACHUSETTS

Digitized by the Internet Archive in 2023 with funding from Kahle/Austin Foundation

· CONTENTS

ZEDLE		LUL
I.	Atomic Weights of the Elements and their Logarithms .	3
II.	Multiples of the Atomic Weights of Common Elements and	
	THEIR LOGARITHMS	5
III.	Molecular Weights of Common Compounds and their Loga-	
	RITHMS	7
IV.	Multiples of the Molecular Weights of Some Common Com-	
	POUNDS AND OF THE WEIGHTS OF A FEW RADICALS TOGETHER	
	WITH THEIR LOGARITHMS	10
V.	REDUCTION OF COMPOUNDS FOUND TO CONSTITUENTS SOUGHT BY	
	MULTIPLICATION	11
VI.	REDUCTION OF BAROMETRIC READINGS TO 0°	16
VII.	GEOGRAPHICAL LATITUDE, ELEVATION, AND GRAVITY OF SOME	
	IMPORTANT CITIES	17
	REDUCTION OF BAROMETRIC READINGS TO NORMAL GRAVITY	18
IX.	Capillary Depression of Mercury	19
X.	TENSION OF AQUEOUS VAPOR	20
XI.	REDUCTION OF WATER PRESSURE TO MERCURY PRESSURE	21
XII.	REDUCTION OF THE VOLUME OF GASES TO NORMAL PRESSURE .	22
XIII.	REDUCTION OF THE VOLUME OF GASES TO 0°C	25
XIV.	REDUCTION OF THE VOLUME OF GASES SATURATED WITH AQUEOUS	
	Vapor to 0°, Normal Pressure, and Dry	28
XV.	OBSERVED DENSITY AND THE WEIGHT OF A LITER OF SOME COM-	
	MON GASES	30
XVI.	DENSITY OF DRY ATMOSPHERIC AIR AT 760 MM. PRESSURE AND	
	Temperatures ranging from 0° to 35°	31
XVII.	APPARENT WEIGHT OF A CUBIC CENTIMETER OF WATER AND THE	
	Volume of an Apparent Gram of Water at Temperatures from 10° to 25°	34
VIII.	Specific Volume of Water at Temperatures from 0° to 35°.	35
XIX.	Density of Water at Temperatures from 0° to 35°	36
XX.	THE PROPORTION BY WEIGHT OF ABSOLUTE ALCOHOL IN 100 PARTS	
	OF SPIRITS OF DIFFERENT SPECIFIC GRAVITIES, AND THE PROPOR-	
	TION BY VOLUME OF ABSOLUTE ALCOHOL IN 100 VOLUMES OF	
	SPIRITS OF DIFFERENT SPECIFIC GRAVITIES	37

CONTENTS

viii

TABLE		PAGE
XXI. Specific Gravity of Solutións of	Ammonium Hydroxide .	38
XXII. Specific Gravity of Solutions of	HYDROCHLORIC ACID	. 38
XXIII. CONSTANT BOILING SOLUTION OF HY	DROCHLORIC ACID	39
XXIV. SPECIFIC GRAVITY OF NITRIC ACID		40
XXV. SPECIFIC GRAVITY OF SULPHURIC A	CID	41
XXVIA) CORRECTIONS FOR THE EXPOSED TH	HREAD OF MERCURY THER-	
XXVI B MOMETERS	4	3, 44
XXVII. FIXED POINTS OF THE THERMOMETR	RIC SCALE	. 44
XXVIII. Corrections for Loss of Weight	IN AIR	45
XXIX. TABLE OF LOGARITHMS TO SIX PLA	CES OF DECIMALS	. 46
EXPLANATIONS OF THE PRECEDING TABLES .		65
DISCUSSION OF LOGARITHMS AND DIRECTION	S FOR USING THE TABLE	
OT LOCADIMITMO		79

THE ATOMIC WEIGHTS OF THE ELEMENTS AND THEIR LOGARITHMS

Aluminum Al 27.1 Antimony Sb 119.86 Argon A 39.9 Arsenic As 74.95 Barium Ba 137.36 Bismuth Bi 208.0 Boron B 11.0 Bromine Br 79.90 Cadmium Cd 112.41 Cæsium Cs 132.80 Calcium Ca 40.07 Carbon C 12.00 Cerium Ce 140.24 Chlorine Cl 35.454 Chromium Cr 52.00 Cobalt Co 58.96 Columbium Cb 93.5 Copper Cu 63.57	.432 969 .078 674 .600 973 .874 772 .137 860 .318 063 .041 393
Antimony Sb 119.86 Argon A 39.9 Arsenie As 74.95 Barium Ba 137.36 Bismuth Bi 208.0 Boron B 11.0 Bromine Br 79.90 Cadmium Cd 112.41 Cæsium Cs 132.80 Calcium Ca 40.07 Carbon C 12.00 Cerium Ce 140.24 Chlorine Cl 35.454 Chromium Cr 52.00 Cobalt Co 58.96 Columbium Cb 93.5 Copper Cu 63.57	.078 674 .600 973 .874 772 .137 860 .318 063 .041 393 .902 596 .050 805 .123 198 .602 819
Argon A 39.9 Arsenie As 74.95 Barium Ba 137.36 Bismuth Bi 208.0 Boron B 11.0 Bromine Br 79.90 Cadmium Cd 112.41 Cæsium Cs 132.80 Calcium Ca 40.07 Carbon C 12.00 Cerium Ce 140.24 Chlorine Cl 35.454 Chromium Cr 52.00 Cobalt Co 58.96 Columbium Cb 93.5 Copper Cu 63.57	.600 973 .874 772 .137 860 .318 063 .041 393 .902 596 .050 805 .123 198 .602 819
Arsenic As 74.95 Barium Ba 137.36 Bismuth Bi 208.0 Boron B 11.0 Bromine Br 79.909 Cadmium Cd 112.41 Cæsium Cs 132.80 Calcium Ca 40.07 Carbon C 12.00 Cerium Ce 140.24 Chlorine Cl 35.454 Chromium Cr 52.00 Cobalt Co 58.96 Columbium Cb 93.5 Copper Cu 63.57	.874 772 .137 860 .318 063 .041 393 .902 596 .050 805 .123 198 .602 819
Barium Ba 137.36 Bismuth Bi 208.0 Boron B 11.0 Bromine Br 79.90 Cadmium Cd 112.41 Cæsium Cs 132.80 Calcium Ca 40.07 Carbon C 12.00 Cerium Ce 140.24 Chlorine Cl 35.454 Chromium Cr 52.00 Cobalt Co 58.96 Columbium Cb 93.5 Copper Cu 63.57	.137 860 .318 063 .041 393 .902 596 .050 805 .123 198 .602 819
Bismuth Bi 208.0 Boron B 11.0 Bromine Br 79.90 Cadmium Cd 112.41 Cæsium Cs 132.80 Calcium Ca 40.07 Carbon C 12.00 Cerium Ce 140.24 Chlorine Cl 35.454 Chromium Cr 52.00 Cobalt Co 58.96 Columbium Cb 93.5 Copper Cu 63.57	.318 063 .041 393 .902 596 .050 805 .123 198 .602 819
Boron B 11.0 Bromine Br 79.905 Cadmium Cd 112.41 Cæsium Cs 132.80 Calcium Ca 40.07 Carbon C 12.00 Cerium Ce 140.24 Chlorine Cl 35.454 Chromium Cr 52.00 Cobalt Co 58.96 Columbium Cb 93.5 Copper Cu 63.57	.041 393 .902 596 .050 805 .123 198 .602 819
Bromine Br 79.905 Cadmium Cd 112.41 Cæsium Cs 132.80 Calcium Ca 40.07 Carbon C 12.00 Cerium Ce 140.24 Chlorine Cl 35.454 Chromium Cr 52.00 Cobalt Co 58.96 Columbium Cb 93.5 Copper Cu 63.57	.902 596 .050 805 .123 198 .602 819
Cadmium Cd 112.41 Cæsium Cs 132.80 Calcium Ca 40.07 Carbon C 12.00 Cerium Ce 140.24 Chlorine Cl 35.454 Chromium Cr 52.00 Cobalt Co 58.96 Columbium Cb 93.5 Copper Cu 63.57	.050 805 .123 198 .602 819
Cæsium Cs 132.80 Calcium Ca 40.07 Carbon C 12.00 Cerium Ce 140.24 Chlorine Cl 35.454 Chromium Cr 52.00 Cobalt Co 58.96 Columbium Cb 93.5 Copper Cu 63.57	.123 198 .602 819
Calcium Ca 40.07 Carbon C 12.00 Cerium Ce 140.24 Chlorine Cl 35.454 Chromium Cr 52.00 Cobalt Co 58.96 Columbium Cb 93.5 Copper Cu 63.57	.602 819
Carbon C 12.00 Cerium Ce 140.24 Chlorine Cl 35.454 Chromium Cr 52.00 Cobalt Co 58.96 Columbium Cb 93.5 Copper Cu 63.57	
Cerium Ce 140.24 Chlorine Cl 35.454 Chromium Cr 52.00 Cobalt Co 58.96 Columbium Cb 93.5 Copper Cu 63.57	.079 181
Chlorine Cl 35.454 Chromium Cr 52.00 Cobalt Co 58.96 Columbium Cb 93.5 Copper Cu 63.57	
Chromium Cr 52.00 Cobalt Co 58.96 Columbium Cb 93.5 Copper Cu 63.57	.146 872
CobaltCo58.96ColumbiumCb93.5CopperCu63.57	.549 665
Columbium Cb 93.5 Copper Cu 63.57	.716 003
Copper Cu 63.57	.770 557
	.970 812
	.803 252
Dysprosium Dy 162.5	.210 853
Erbium Er 167.4	.223 755
Europium Eu 152.0	.181 844
Fluorine F 19.0	.278 754
Gadolium Gd 157.3	.196 729
Gallium Ga 69.9	.844 477
Germanium Ge 72.5	.860 338
Glucinum Gl 9.1	.959 041
Gold Au 197.2	.294 907
Helium He 4.0	.602 060
Hydrogen H 1.00%	78 .003 375
Indium In 114.8	.059 942
Iodine I 126.91	.103 496
Iridium Ir 193.1	.285 782
Iron Fe 55.83	.746 868
Krypton Kr 81.8	.912 753
Lanthanum La 139.0	.143 015
Lead Pb 207.07	.316 117
Lithium Li 6.939	.841 297
Lutecium Lu 174.0	.240 549
Magnesium Mg 24.32	.385 964
Manganese Mn 54.92	.739 731

	Symbol	Atomic weight	Logarithm
Mercury	Hg	200.61	.302 353
Molybdenum	Mo	. 96.0	.982 271
Neodymium	Nd	144.26	.159 146
Neon	Ne	20.0	.301 030
Nickel	Ni	58.67	.768 416
Nitrogen	N	14.01	.146 438
Osmium	Os	190.9	.280 806
Oxygen	0	16.000	.204 120
Palladium	Pd	106.7	.028 164
Phosphorus	P	31.03	.491 782
Platinum	Pt	195.0	.290 035
Potassium	K	39.091	.592 077
Praseodymium	-Pr	140.6	.147 985
Radium	Ra	225.95	.354 012
Rhodium	Rh	102.9	.002 415
Rubidium	Rb	85.44	.931 661
Ruthenium	Ru	101.7	.007 321
Samarium	Sa	150.4	.177 248
Scandium	Sc	44.1	.644 439
Selenium	Se	79.2	.898 725
Silicon	Si	28.3	.451 786
Silver	Ag	107.87	.032 901
Sodium	Na	22.993	.361 595
Strontium	Sr	87.613	.942 569
Sulphur	S	32.07	.506 099
Tantalum	Ta	181.5	.258 877
Tellurium	${ m Te}$	127.5	.105 510
Terbium	Tb	159.2	.201 943
Thallium	Tl	204.0	.309 630
Thorium	Th	232.40	366 236
Thulium	Tu	168.5	.226 600
Tin	Sn	119.0	.075 547
Titanium	Ti	48.1	.682 145
Tungsten	W	184.0	.264 818
Uranium	.U	238.40	.377 306
Vanadium	V	51.2	.709 270
Xenon	Xe	128.0	.107 210
Ytterbium	Yb	172.0	.235 528
Yttrium	Y	89.0	.949 390
Zine	Zn	65.36	.815 312
Zirconium	Zr	90.6	.957 128

SECOND TO SEVENTH MULTIPLES OF THE ATOMIC WEIGHTS OF COMMON ELEMENTS AND THEIR LOGARITHMS

	. 2	log	3	log	4	log
Aluminum	54.2	733 999	81.3	910 090	108.4	035 029
Antimony	239.72	379 704	359.58	555 796	479.44	680 734
Arsenic	149.90	175 802	224.85	351 892	299.80	476 832
Barium	274.72	438 890	412.08	614 982	549.44	739 920
Bismuth	416.0	619 093	624.0	795 185	832.0	920 123
Boron	22.0	342 423	33.0	518 514	44.0	643 453
Bromine	159.818	203 626	239.727	379 717	319.636	504 656
Cadmium	224.82	351 835	337.23	527 927	449.64	652 865
Calcium	80.14	903 849	120.21	079 941	160.28	204 879
Carbon	24.00	380 211	36.00	556 303	48.00	681 241
Chlorine	70.908	850.695	106.362	026 787	141.816	151 725
Chromium	104.00	017 033	156.00	193 125	208.00	318 063
Cobalt	117.92	071 588	176.88	247 679	235.84	372 618
Copper	127.14	104 282	190.71	280 374	254.28	405 312
Fluorine	38.0	579 784	57.0	755 875	76.0	880 814
Gold	394.4	595 937	591.6	772 028	788.8	896 967
Hydrogen	2.0156	304 405	3.0234	480 496	4.0312	605 434
Iodine	253.82	404 526	380.73	580 617	507.64	705 556
Iron	111.66	047 898	167.49	223 989	223.32	348 928
Lead	414.14	617 147	621.21	793 238	828.28	918 177
Lithium	13.878	142 327	20.817	318 418	27.756	443 357
Magnesium	48.64	686 994	72.96	863 085	97.28	988 024
Manganese	109.84	040 760	164.76	216 852	219.68	341 790
Mercury	401.22	603 383	601.83	779 474	802.44	904 413
Molybdenum	192.0	283 301	288.0	459 392	384.0	584 331
Nickel	117.34	069 446	176.01	245 537	234.68	370 476
Nitrogen	28.02	447 468	42.03	623 559	56.04	748 498
Oxygen	32.000	505 150	48.000	681 241	64.000	806 181
Phosphorus	62.06	792 812	93.09	968 903	124.12	093 842
Platinum	390.0	591 065	585.0	767 156	780.0	892 095
Potassium	78.182	893 107	117.273	069 198	156.364	194 137
Silicon	56.6	752 816	84.9	928 908	113.2	053 846
Silver	215.74	333 930	323.61	510 022	431.48	634 961
Sodium	45.986	662 626	68.979	838 717	91.972	963 655
Strontium	175.226	243 598	262.839	419 690	350.452	544 628
Sulphur	64.14	807 129	96.21	983 220	128.28	108 159
Tin	238.0	376 577	357.0	552 668	476.0	677 607
Titanium	96.2	983 175	144.3	159 266	192.4	284 205
Tungsten	368.0	565 848	552.0	741 939	736.0	866 878
Uranium	476.8	678 336	715.2	854 428	953.6	979 366
Zinc	130.72	116 343	196 08	292 433	261.44	417 372

	5	log	6	log	7	log
Aluminum	135.5	131 939	162.6	211 121	189.7	278 067
Antimony	599.30	777 644	719.16	856 826	839.02	923 772
Arsenic	374.75	573 742	449.70	652 923	524.65	719 869
Barium	686.80	836 830	824.16	916 012	961.52	982 958
Bismuth	1040.0	017 033	1248.0	096 215	1456.0	163 161
Boron	55.0	740 363	66.0	819 544	77.0	886 491
Bromine	399.545	601 566	479.454	680 747	559.363	747 694
Cadmium	562.05	749 775	674.46	828 956	786.87	895 903
Calcium	200.35	301 789	240.42	380 971	280.49	447 917
Carbon	60.00	778 151	72.00	857 333	84.00	924 279
Chlorine	177.270	248 635	212.724	327 816	248.178	394 763
Chromium	260.00	414 973	312.00	494 155	364.00	561 101
Cobalt	294.80	469 528	353.76	548 709	412.72	615 656
Copper	317.85	502 222	381.42	581 404	444.99	648 350
Fluorine	95.0	977 724	114.0	056 905	133.0	123 852
Gold	986.0	993 877	1183.2	073 058	1380.4	140 005
Hydrogen	5.0390	702 344	6.0468	781 526	7.0546	848 472
Iodine	634.55	802 466	761.46	881 647	888.37	948 594
Iron	279.15	445 838	334.98	525 019	390.81	591 966
Lead	1035.35	015 087	1242.42	094 269	1449.49	161 215
Lithium	34.695	540 267	41.634	619 448	48.573	686 395
Magnesium	121.60	084 934	145.92	164 115	170.24	231 062
Manganese	274.60	438 701	329.52	517 881	384.44	584 828
Mercury	1003.05	001 323	1203.66	080 504	1404.27	147 451
Molybdenum	480.0	681 241	576.0	760 422	672.0	827 369
Nickel	293.35	467 386	352.02	546 567	410.69	613 514
Nitrogen	70.05	845 408	84.06	924 589	98.07	991 536
Oxygen	80.000	903 090	96.000	982 271	112.000	049 218
Phosphorus	155.15	190 752	186.18	269 933	217.21	336 880
Platinum	975.0	989 005	1170.0	068 186	1365.0	135 133
Potassium	195.455	291 047	234.546	370 228	273.637	437 175
Silicon	141.5	150 756	169.8	229 938	198.1	296 884
Silver	539.35	731 870	647.22 "	811 052	755.09	877 998
Sodium	114.965	060 566	137.958	139 747	160.951	206 694
Strontium	438.065	641 538	525.678	720 720	613.291	787 667
Sulphur	160.35	205 069	192.42	284 250	224.49	351 197
Tin	595.0	774 517	714.0	853 698	833.0	920 645
Titanium	240.5	381 115	288.6	460 296	336.7	527 243
Tungsten	920.0	963 788	1104.0	042 969	1288.0	109 916
Uranium	1192.0	076 276	1430.4	155 457	1668.8	222 404
Zine	326.80	514 282	392.16	593 463	457.52	660 410

MOLECULAR WEIGHTS OF COMMON COMPOUNDS AND THEIR LOGARITHMS

	Mol.wt.	log		Mol. wt.	log
AgBr	187.779	273 647	CrO ₃	100.00	000 000
AgCN	133.88	126 716	$\operatorname{CrO}_{\star}^{3}$.	116.00	064 458
AgCl	143.324	156 319	Cu _o Ô	143.14	155 761
AgI	234.78	370 661	CuO	79.57	900 749
AgNO ₃	169.88	230 142	Cu _o S	159.21	201 970
Al ₂ O ₂	102.2	009 451	CuS	95.64	980 640
$Al_{2}^{2}(\mathring{SO}_{4})_{8} \cdot 18 H_{2}O$	666.69	823 924	$CuSO_4$	159.64	203 142
$As_{o}O_{g}$	197.90	296 446	$1 \text{ CuSO} \cdot 5 \text{ H.O}$	249.72	397 453
As O	229.90	361 539	FeCO _a	115.83	063 821
AsO_a	122.95	089 729	$FeCl_{s} \cdot 4H_{s}O$	198.80	298 416
AsO_4	138.95	142 859	$\operatorname{FeCl}_{s}^{"}$	162.19	210 024
As,S,	246.11	391 130	FeO	71.83	856 306
As ₂ S ₂	310.25	491 712	Fe ₂ O ₃	159.66	203 196
BaCO ₃	70.0	845 098	FePO₄	150.86	178 574
BaCO ₃	197.36	295 259	FeS	87.90	943 939
BaCl ₂	208.27	318 627	FeSO_{4}	151.90	181 558
$BaCl_2 \cdot 2H_2O$	244.30	387 923	$FeSO_4 \cdot 7 H_0O$	278.01	444 060
BaCrO ₄	253.36	403 738	$H_{3}BO_{3}$	62.0	792 392
$Ba(NO_3^*)_2$	261.38	417 273	HBr	80.917	908 040
BaO	153.36	185 712	HCHO ₂	46.02	662 947
$Ba(OH)_2 \cdot 8 H_2O$	315.50	498 999	$HC_2H_3\hat{O}_2$	60.03	778 368
BaŠO ₄ 2 2 BaSiF ₆	233.43	368 157	$\mathrm{H_2C_2O_4}$	90.02	954 339
BaSiF ₆	279.66	446 630	$\mathrm{H_2^2C_2^2O_4 \cdot 2\ H_2O}$	126.05	100 543
Bi _o O _o	464.0	666 518	$egin{array}{c} H_2C_2O_4^3 & ^2 \\ H_2C_2O_4 \cdot 2 \ H_2O \\ H_2C_4H_4O_6 & ^2 \end{array}$	150.05	176 236
Bi ₂ S ₃	512.2	709 440	$H_3C_6H_5O_7 \cdot H_2O$	210.08	322 323
$\begin{array}{c} C\mathring{O_2}^{\circ} \\ C_2O_4 \\ C_3O_4 \end{array}$	44.00	643 453	HCl	36.462	561 840
C_2O_4	88.00	944 483	HClO ₄	100.462	002 002
$\begin{array}{c} CO_3^4 \\ CaCO_3 \end{array}$	60.00	778 151	$H_2Cr_2O_7$	218.02	338 496
CaCO ₃	100.07	000 304	$H_2^2 Cr O_4^4$	118.02	071 956
CaCl	110.98	045 245	HF	20.0	301 030
$\operatorname{CaCl}_{2}^{2} \cdot 6 \operatorname{H}_{2} O$	219.07	340 583	HI	127.918	106 932
CaO	56.07	748 731	HNO_3	63.02	799 478
CaSO ₄	136.14	133 986	H_2O	18.0156	255 649
$CaSO_4 \cdot 2H_2O$	172.17	235 958	$H_{2}O_{2}$	34.0156	531 678
CdO	128.41	108 599	$H_3^2 PO_4$	98.05	991 448
CdS	144.48	159 808	$H_2^{3}PtCl_6$	409.7	612 466
CdSO ₄	208.48	319 064	H_2^2S	34.09	532 627
CoO	74.96	874 830	$H_2^2SO_3$	82.09	914 290
CoSO ₄	155.03	190 416	$\mathrm{H_{2}^{2}SO_{4}^{3}}$	98.09	991 625
$\cos O_4 \cdot 7 H_2 O$	281.14	448 923	$\mathrm{Hg_2Cl_2}$	472.13	674 062
$\operatorname{Cr_2O_3}$	152.00	181 844	HgCl ₂	271.52	433 802

	Mol. wt.	log		Mol. wt.	log
$KAl(SO_4)_2 \cdot 12 H_2O$	474.5	676 236	NH,Cl	53.50	728 354
$KAlSi_3O_8$	279.1	445 760	$(NH_4)_2 \text{Fe}(SO_4)_2 \cdot 6H_2O$	392.14	593 441
KBr	119.000	075 547	$NH_4Fe(SO_4)_2 \stackrel{472}{12} H_2O$	482.19	683 218
KCN	65.10	813 581	NH OH	35.05	544 688
K,CO,	138.13	140 288	$(NH_4)_3 PO_4 (MoO_3)_{12}$	1877.2	273 511
KCl 3	74.545	872 419	$(NH_4^{4/3}PtCl_6^{2})$	443.8	647 187
KClO ₃	122.545	088 296	(NH ₄) ² SO ₄	132.15	121 067
KClO,	138.545	141 591	$(NH_4)_2^2SO_4$ NaAlSi $_8O_8$	263.0	419 956
$K_3 \text{Co(NO}_2)_6$	452.29	655 417	$Na_2B_4O_7^{\circ}$	202.0	305 351
K ₂ CrÒ ₄	194.18	288 205	$Na_{2}^{2}B_{4}^{2}O_{7} \cdot 10 H_{2}O$	382.1	582 177
K ₂ Cr ₂ O ₇	294.18	468 613	NaBr "	102.902	012 424
$\mathrm{KCr(SO_4)_2} \cdot 12\mathrm{H_2O}$	499.42	698 466	$NaC_2H_3O_2 \cdot 3H_2O$	136.06	133 730
$K_3 \text{Fe}(CN)_6$	329.15	517 394	Na ₂ CO ₃ 2	105.99	025 265
K ₄ Fe(CN) ₆	368.24	566 131	$Na_{2}^{2}CO_{3}^{2} \cdot 10 H_{2}O$	286.14	456 579
Kİ	166.001	220 111	NaCl "	* 58.447	766 762
KIO ₃	214.001	330 416	$Na_{9}Cr_{9}O_{7} \cdot 2H_{9}O$	298.02	474 245
KMnO ₄	158.01	198 685	NaHCO ₃	84.00	924 279
KNO,	85.10	929 930	$Na_2HPO_4 \cdot 12H_2O$	358.24	554 174
KNaC ₄ H ₄ O ₆ ·4H ₂ O	101.10	004 751	NaHSO	120.07	079 435
KNaC ₄ H ₄ O ₆ ·4H ₂ O	282.18	450 526	NaNO ₂	69.00	838 849
K,0	94.1,82	973 968	NaNO ₃	85.00	929 419
KOH ·	56.099	748 955	Na ₂ O	, 61.986	792 294
K ₂ PtCl ₆	485.9	686 547	$Na_2^2O_2$	77.986	892 017
$K_2^2SO_4$	174.25	241 173	NaÕĤ	40.00	602 060
$M_{\rm gCO_3}^2$	84.32	925 931	$Na_2S_2O_3 \cdot 5H_2O$	248.20	394 802
MgCl ₂ ·6H ₂ O	203.32	308 180	L Na SO + 7 H O	252.17	401 693
MgO .	40.32	605 521	Na_2SO_4	142.06	152 472
$Mg_2P_2O_7$	222.70	347 720	$ Na_o SO_A \cdot 10 H_o O $	322.21	508 139
$MgSO_4^7$	120.39	080 590	NiÔ *	74.67	873 146
$MgSO_4 \cdot 7 H_2O$	246.50	391 817	NiSO ₄	154.74	189 603
$MnCO_3$	114.92	060 396	$NiSO_4 \cdot 7 H_2O$	280.85	448 474
MnO	70.92	850 769	NO ₃	62.01	792 462
$\mathrm{Mn_2O_3}$	157.84	198 217	PCl ₃	137.39	137 955
Mn_3O_4	228.76	359 380	PBr_3	270.76	432 585
${f Mn_3^2O_4^3} \ {f MnO_2} \ {f Mn_2P_2O_7}$	86.92	939 120	P_2O_3	110.06	041 630
$Mn_2P_2O_7$	283.90	453 165	$P_2^2O_5^{\circ}$	142.06	152 472
MnS	86.99	939 469	PO	95.03	977 861
MnSO ₄	150.99	178 948	PbCO ₃	267.07	426 625
$MnSO_4 \cdot 4H_2O$	223.05	348 402	PbCl ₂	277.98	444 014
NH ₃ [*] [*]	17.03	231 215	PbCrO ₄	323.07	509 297
NH ₄	18.04	256 237	$Pb(NO_{8})_{2}$	331.09	519 946
$(\mathbf{N}\mathbf{H}_{4})_{2}\mathbf{C}_{2}\mathbf{O}_{4}\cdot\mathbf{H}_{2}\mathbf{O}$	142.10	152 594	PbO	223.07	348 441

	Mol.wt.	log		Mol. wt.	log
PbS	239.14	378 652	SnO	135.0	130 334
PbSO ₄	303.14	481 643	SnO_{a}	151.0	178 977
PtCl ₄	336.8	527 372	SrCÖ.	147.61	169 116
SO.	64.07	806 655	$\operatorname{Sr}(\operatorname{N}\overset{3}{\operatorname{O}}_{3})_{2}$	211.63	325 577
SO ₂ SO ₃ SO ₄ SiO ₂	80.07	903 470	SrO	103.613	015 414
SO^3	96.07	982 588	Sr(OH), · 8 H, O	265.754	424 480
SiO	60.3	780 317	SrŠO,	183.68	264 062
SiO_3^2	76.3	882 525	ZnCO,	125.36	098`159
SiO ₄	92.3	965 202	ZnO 3	81.36	910 411
SnCl ₂	189.9	278 525	ZnS	97.43	988 693
$\operatorname{SnCl}_{2}^{2} \cdot 2 \operatorname{H}_{2}O$	225.9	353 916	ZnSO ₄ ·7 H ₃ O	287.54	458 698
SnCl_4^2	260.8	416 308	4		
4					

SECOND TO FIFTH MULTIPLES OF THE MOLECULAR WEIGHTS OF SOME COMMON COMPOUNDS AND OF THE WEIGHTS OF A FEW RADICALS TOGETHER WITH THEIR LOGARITHMS

~~~~		_	3	log	4	log	5	log
	375.558	574 677	563.337	750 768	751.116	875 707	938.895	972 617
AgCl	286.648	457 349	429.972	633 440	573.296	758 379	716.620	855 289
AgI	469.56	671 691	704.34	847 782	939.12	922 721	1173.90	069 631
	204.4	310481	306.6	486 572	408.8	611 511	511.0	708 421
Ba(OH)	342.75	534 977	514.13	711 073	685.50	836 007	856.88	932 920
I Ba(OH). 8 H.O∣	631.00	800 029	946.50	976 121	1262.00	101 059	1577.5	197 969
CO	88.00	944 483	132.00	120 574	176.00	245 513	220.00	342 423
CO.	120.00	079 181	180.00	255 273	240.00	380 211	300.00	477 121
CaO	112.14	049 761	168.21	225 852	224.28	350 791	280.35	447 701
	304.00	482 874	456.00	658 965	608.00	783 904	760.00	SS0 814
CuO	159.14	201 779	238.71	377 871	318.28	502 809	397.85	599 719
FeO	143.64	157 275	215.46	333 367	287.28	458 305	359.10	555 215
Fe ₂ O ₃ HCHO ₂	319.28	504 172	478.92	680 263	638.56	805 202	798.20	902 112
HČHO,	92.03	963 929	138.05	140 036	184.06	264 959	230.10	361 917
HC,H,O,	120.06	079 398	180.09	255 490	240.13	380 446	300.15	477 338
$\left[ \begin{array}{ccc} H_{2}C_{2}O_{4}^{3} & ^{2} \\ H_{2}C_{2}O_{4} \cdot 2 H_{2}O \end{array} \right]$	180.03	255 345	270.05	431 444	360.06	556 375	450.10	653 309
$H_{a}C_{a}O_{A} \cdot 2 H_{a}O$	252.09	401 556	378.14	577 653	504.19	702 594	630.25	799 513
$ \begin{array}{c}  H_{2}^{2}C_{4}^{2}H_{4}^{\dagger}O_{6} \\  H_{3}C_{6}H_{5}O_{7}\cdot H_{2}O \\  HCl \end{array} $	300.09	477 251	450.14	653 348	600.19	778 289	750.25	875 206
H ₃ C ₆ H ₅ O ₇ · H ₂ O	420.16	623 415	630.23	799 499	840.31	924 440	1050.2	021 293
HČl	72.924	862 870	109.385	038 958	145.847	163 898	182.31	260 810
	126.04	100 508	189.05	276 577	252.07	401 521	315.10	498 448
H _o O	36.0312	556 700	54.0468	732 828	72.0614	857 724	90.0780	954 619
$H_{o}SO_{d}$	196.17	292 633	294.26	468 731	392.34	593 663	490.45	690 595
	188.364	274 998	282.546	451 089	376.728	576 028	470.910	672 938
	112.198	049 985	168.296	226 074	224.395	351 013	280.49	447 925
MgO	80.64	906 551	120.96	082 642	161.28	207 581	201.60	304 491
$NH_3$	34.07	532 372	51.10	708 421	68.13	833 338	85.15	930 185
NH	36.08	557 267	54.12	733 358	72.16	858 297	92.30	965 207
NH ₄ OH	70.1	845 718	105.15	021 809	140.20	146 748	175.25	243 658
	124.02	093 492	186.03	269 583	248.04	394 522	310.05	491 432
Na ₂ CO ₃	211.97	326 274	317.96	502 372	423.94	627 304	529.95	724 235
NaOH	80.002	903 100	120.002	079 188	160.003	204 128	200.00	301 030
OH	34.0156	531 678	51.0234	707 769	68.0312	832 708	85.039	929 618
$\overrightarrow{PO}_{4}$	190.06	278 891	285.09	454 982	380.12	579 921	475.15	676 831
IP.O.	284.12	453 502	426.18	629 593	568.24	754 532	710.30	851 442
ISO.	128.14	107 685		283 776	256.28	408 715	320.35	505 625
ISO	160.14	204 500	240.21	380 591	320.28	505 530	400.35	602 440
ISO, 1	192.14	283 618	288.21	459 709	384.28	584 648	480.35	681 558
S1O.	120.6	081 347		257 439	241.2	382 377	301.5	479 287
ISiO.	152.6	183 555	228.9	359 646	305.2	484 585	381.5	581 495
	184.6	266 232	276.9	442 323	369.2	567 262	461.5	664 172

TABLE V

REDUCTION OF COMPOUNDS FOUND TO CONSTITUENTS SOUGHT BY MULTIPLICATION

Sought	Found	Factor	log
Ag	AgBr	.57 445	759 254
	AgCl	.75 263	876 582
Al	$Al_2O_3$	.53 033	724 548
As	$As_2^2O_3^3$	.75 745	879 356
	$As_2^2O_5^3$	.65 202	814 263
	$As_2^2S_3^5$	.60 908	784 672
	$As_{9}^{2}S_{5}^{\circ}$	.48 316	684 090
	$MgNH_4AsO_4 \cdot H_2O$	.37 601	575 200
	Mg ₂ As ₂ O ₇	.48 270	683 684
$As_2O_3$	$As_2O_5$	.86 081	934 907
	$As_2S_3$	.80 411	905 316
	$As_2S_5$	.63 787	804 734
	$MgNH_4AsO_4 \cdot H_2O$	.49 641	695 844
	$Mg_2As_2O_7$	.63 728	804 328
$As_2O_5$	$As_2S_3$	.93 413	970 409
AsÕ,	$As_2S_3$	.99 914	999 629
$AsO_4^3$	$As_2S_3$	1.12 917	052 759
Ba	BaO	.89 568	952 148
	BaCO	.69 599	842 601
	BaCrO ₄	.54 213	734 103
	BaSO ₄	.58 844	769 703
D- 0	BaSiF ₆	.49 117	691 230
BaO	BaCO ₃ BaSO ₄	.65 698	890 453 817 555
Bi	Disou ₄	.89 655	952 575
DI	$egin{array}{c} { m Bi}_2{ m O}_3 \ { m Bi}_2{ m S}_3 \end{array}$	.81 217	909 645
В	$B_{9}O_{3}$	.31 428	497 325
D	KBF ₄	.08 723	940 666
$_{\mathrm{Br}}$	AgBr	.42 555	628 949
C	$\begin{array}{c} CO_{\circ} \end{array}$	.27 273	435 728
ČO ₂	CaĈO ₃	.43 969	643 149
	CaO	.78 473	894 722
	MgO	1.09 127	037 932
CO ₃	CŐ.	1.36 363	134 698
Ca ³	CaĈO ₃	.40 042	602 515
	CaO ³	.71 464	854 088
	CaSO ₄	.29 433	468 833
CaCO ₈	CaO	1.78 473	251 573
8	CaSO	.73 505	866 318
CaO	$CO_2$	1.27 432	105 278

Sought	Found	Factor	log
CaO	CaCO ₃	.56 031	748 427
	$CaSO_4^3$	.41 186	614 745
Cd	CdO 4	.87 540	942 206
	CdS	.77 803	890 997
	CdSO ₄	.53 919	731 741
CdO	CdS 4	.88 877	948 791
	CdSO ₄	.61 593	789 535
C1	Ag *	.32 867	516 764
Cl	AgCl	.24 737	393 346
Co .	CoO	.78 655	895 727
	CoSO	.38 031	580 141
	$2 \operatorname{CoSO}_4 \cdot 3 \operatorname{K}_2 \operatorname{SO}_4$	.14 159	151 041
	$2 \operatorname{CoK_3(NO_2)_6} \cdot 3 \operatorname{H_2O}$	.12 300	089 922
CoO	Со	1.27 137	104 273
	$CoSO_4$	.48 352	684 414
l	$2 \operatorname{CoSO_4} \cdot 3 \operatorname{K_2SO_4}$	.18 002	255 314
	$2 \operatorname{CoSO_4^3K_3(NO_2)_6} \cdot 3 \operatorname{H_2O}$	.15 638	194 195
$\operatorname{Cr}$	$BaCrO_4$	.20 524	312 265
	$\operatorname{Cr}_2\operatorname{O}_3$	.68 421	835 189
	PbCrO ₄	.16 096	206 706
$\mathrm{Cr_2O_3}$	BaCrO ₄	.29 997	477 076
~ ~	PbCrO ₄	.23 524	371 517
$CrO_3$	BaCrO ₄	.39 470	596 262
	$Cr_2O_3$	1.31 579	119 186
(1.0	PbCrO ₄	.30 953	490 703
$\mathrm{CrO}_4$	BaCrO ₄	.45 784	660 710
	Cr ₂ O ₃	1.52 631	183 644
Cu	PbCrO ₄	.35 905	555 161
Cu	CuO CuS	.79 892	902 503
CuO	Cu	.79 857	902 312
Cuo	Cu _o S	1.25 169	097 497
F	$\operatorname{CaF}_{2}$	.99 956	999 809
r	SiF.	.48 662	687 189
Fe	$\operatorname{Fe}_{2}^{1} \stackrel{4}{\operatorname{O}}_{3}$	.72 866	862 530
	$\operatorname{FeS}^{2}$	.69 932	844 678
FeO	Fe	.63 511 1.28 663	802 851
	$\operatorname{Fe}_2\mathrm{O}_3$	.89 977	109 455
$\mathrm{Fe_2O_3}$	Fe ²	1.42 995	954 133 155 322
$H^{2 \circ 3}$	H _o O	.11 188	048 756
HBr	$ hootnote{AgBr}$	.43 092	634 393
HCl	AgCl	.25 440	405 521
		120 110	103 321

Sought	Found	Factor	log
HI	AgI	.54 484	736 271
HNO ₈	NH,Cl	1.17 794	071 124
8	$(NH_4)_2$ PtCl ₆	.28 400	453 321
	Pt	.64 635	810 473
H ₂ SO ₄	BaSO ₄	.42 021	623 468
Hg Hg	Hg,Cl,	.84 981	929 321
	HgS	.86 217	935 594
Hg ₂ O	Hg	1.03 988	016 982
HgÖ	Hg	1.07 976	033 326
I	AgI	.54 055	732 835
	$PdI_{a}$	.70 408	847 621 -
K	$\mathrm{KCl}^{2}$	.52 439	719 658
	K ₂ PtCl ₆	.16 090	206 560
K	Pť	.40 093	603 072
	$K_{g}SO_{4}$	.44 868	651 934
KCl	$K_2^2 Pt \tilde{C}l_6$	.30 683	486 902
	Pť	.76 457	883 414
K ₂ O	KCl	.63 171	800 519
	$KNO_8$	.46 579	668 187
	$K_2Pt\tilde{C}l_6$	.19 383	287 421
	Pt	.48 298	683 933
	$K_2SO_4$	.54 050	732 795
K ₂ SO ₄ Li	BaSO.	.74 648	873 016
Li	Li ₂ O	.46 449	666 975
	$\mathrm{Li}_{2}^{2}\mathrm{CO}_{3}$	.18 784	273 800
	Li ₃ PO ₄	.17 967	254 483
	Li ₂ SO ₄	.12 622	101 131
Li ₂ O	$\operatorname{Li}_{2}^{2}\operatorname{CO}_{3}^{3}$	.40 441	606 825
	$\mathrm{Li_{8}PO_{4}^{2}}$	.38 682	587 506
	Li ₂ SO ₄	.27 174	434 156
Mg	MgO	.60 317	780 443
0.0	$\mathrm{Mg_2P_2O_7}$	.21 839	339 235
MgCO ₃	MgO	2.09 127	320 410
1	$\mathrm{Mg_2P_2O_7}$	.75 718	879 199
MgO	$\mathrm{Mg}_{2}^{2}\mathrm{P}_{2}^{0}\mathrm{O}_{7}^{2}$	.36 207	558 792
Mn	MnO	.77 439	888 962
	$\operatorname{Mn_2O_3}$	.69 590	842 544
	Mn ₈ O ₄	.72 023	857 472
	$\operatorname{Mn}_{2}^{3}\operatorname{P}_{2}^{4}\operatorname{O}_{7}$	.38 690	587 596
	MnS	.63 134	800 262
7.5	MnSO ₄	.36 373	560 783
MnO	MnS	.81 527	911 300

Sought	Found	Factor	lög
MnO	MnSO ₄	.46 970	671 821
N	NH ₃	.82 266	915 223
	$(NH_4)_2 PtCl_6$	.06 314	800 281
	Pt (1,114/2,10016)	.14 369	157 433
$NH_3$	N	1.21 556	084 777
8	NH,Cl	.31 832	502 861
	$(NH_4)_2 PtCl_6$	.07 675	885 058
	Pt **	.17 466	242 210
$NH_4$	NH ₄ Cl	.33 720	527 883
,	$(NH_4)_2 PtCl_6$	.08 130	910 080
$NO_{3}$	NHACI	1.15 907	064 108
	$(NH_4)_2PtCl_6$	.27 945	446 305
	Pt	.63 600	803 457
Na	Na ₂ O	.74 187	870 331
	NaCl	.39 340	594 833
	NaNO ₃	.27 051	432 176
37 01	Na ₂ SO ₄	.32 371	510 153
NaCl	Na ₂ SO ₄	.82 285	915 320
Na ₂ O	NaCl	.53 028	724 502
	NaNO ₃	.36 462	561 845
No SO	Na ₂ SO ₄	.43 634	639 822
Na ₂ SO ₄ Ni	BaŠO ₄ * NiO	.60 858	784 315
NiO	Ni Ni	.78 572	895 270
P	$P_{\mathfrak{g}}O_{\mathfrak{g}}$	1.27 271	104 730
1	$Mg_2^2P_2O_7$	.43 000	640 340 445 092
	$(NH_4)_3PO_4 \cdot 12 MoO_3$	.01 653	218 271
$P_2O_5$	$\begin{array}{c c} Ag_3PO_4 & IIIIIOO_3 \\ \end{array}$	.16 967	229 601
2 5	$\mathrm{Mg_2^3P_2O_7}$	.63 790	804 752
	$(NH_4)_3 PO_4 \cdot 12 MoO_8$	.03 784	577 931
	$\left( (UO_2^{4/3}P_2O_7^4) \right)^{\frac{3}{2}}$	.19 872	298 251
$PO_4$	$Mg_0P_0O_2$	.85 344	931 171
	$Mg_2\tilde{P}_2\tilde{O}_7$ $(NH_4)_2PO_4 \cdot 12 MoO_8$	.05 062	704 350
Pb	PbCrO ₄	.64 094	806 820
1	PbO	.92 827	967 676
	$PbO_2$	.86 615	937 592
	PbS	.86 589	937 465
701.0	PbSO	.68 309	834 474
PbO	PbCrO ₄	.69 047	839 144
	PbS	.93 280	969 789
DLG	PbSO ₄	.73 586	866 798
PbS	PbSO ₄	.78 888	897 009

Sought	Found	Factor	log
Pt	NaCl	1.66 818	222 243
Š	BaSO ₄	.13 738	137 942
	As ₂ S ₃	.39 092	592 090
SO ₃	$BaSO_4$	.34 302	535 313
$SO_4^8$	BaSO ₄	.41 156	614 431
Sb *	$\operatorname{Sb}_2\operatorname{O}_3^4$	.83 317	920 734
	$\left[-\mathrm{Sb}_{2}^{2}\mathrm{O}_{4}^{3}\right]$	.78 928	897 230
	$\mathrm{Sb}_{2}^{2}\mathrm{S}_{8}^{4}$	.71 360	853 455
	$Sb_2^2S_5^8$	.59 919	777 568
$\mathrm{Sb_2O_3}$	$\left[\operatorname{Sb}_{2}^{2}\operatorname{O}_{4}^{5}\right]$	.94 732	976 496
2 3	$\mathrm{Sb}_{2}^{2}\mathrm{S}_{3}^{*}$	.85 649	932 721
	$\mathrm{Sb}_{2}^{2}\mathrm{S}_{5}^{3}$	.71 917	856 834
Si	SiO ₂	.46 932	671 469
SiO ₈	SiO	1.26 534	102 208
$SiO_4^{\circ}$	$ \operatorname{SiO}_{a} $	1.53 068	184 885
Si ₂ O ₇	SiO _a	1.39 800	145 510
Sn	$\operatorname{SnO}_{2}$	.78 808	896 570
SnO	$\operatorname{SnO}_{\mathfrak{s}}$	.89 404	951 357
Sr	$\operatorname{SrC\acute{O}}_3$	.59 354	773 453
	SrO	.84 558	927 155
	$SrSO_4$	.47 699	678 507
SrO	SrCO _a	.70 194	846 298
	SrSO ₄	.56 409	751 352
Ti	$\operatorname{TiO}_{2}^{-1}$	.60 050	778 512
U	$UO_2$	.88 166	945 299
	$U_3O_8$	.84 820	928 497
W	$\begin{array}{c} \mathrm{U_3} \overset{\circ}{\mathrm{C}_8} \\ \mathrm{W}\mathrm{O_3} \end{array}$	.79 310	899 330
Zn	ZnO	.80 334	904 901
	ZnS	.67 084	826 619
ZnO	ZnS	.83 506	921 718
ZnS	ZnO	1.19 752	078 282

#### REDUCTION OF BAROMETRIC READINGS TO 0°

(For temperatures above zero the corrections are negative and for temperatures below zero positive.)

(T)		G	lass Sca	ıle			Br	ass Sca	le	
Temper-	740	750	760	770	780	740	750	760	770	780
ature	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.
0°	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1°	13	13	13	13	14	12	12	12	13	13
2°	26	26	26	27	27	24	25	25	25	25
3°	38	39	39	40	41	36	37	37	38	38
4°	51	52	53	53	54	48	49	50	50	51
5°	0.64	0.65	0.66	0.67	0.68	0.60 · 72 · 85 · 0.97 · 1.09	0.61	0.62	0.63	0.64
6°	77	78	79	80	81		73	74	75	76
7°	0.90	0.91	0.92	0.93	0.95		86	0.87	0.88	0.89
8°	1.02	1.04	1.05	1.07	1.08		0.98	1.99	1.01	1.02
9°	15	17	18	20	21		1.10	12	13	15
10°	1.28	1.30	1.31	1.33	1.35	1.21	1.22	1.24	1.26	1.27
11°	41	43	45	46	48	33	35	36	38	40
12°	53	56	58	60	62	45	47	49	51	53
13°	66	69	71	73	75	57	59	61	63	65
14°	79	81	84	1.86	1.89	69	71	73	76	78
15°	1.92	1.94	1.97	2.00	2.02	1.81	1.83	1.86	1.88	1.91
16°	2.05	2.07	2.10	13	16	1.93	1.96	1.98	2.01	2.03
17°	17	20	23	26	29	2.05	2.08	2.10	13	16
18°	30	33	36	39	43	17	20	23	26	29
19°	43	46	49	53	56	29	32	35	38	41
20°	2.56	2.59	2.62	2.66	2.69	2.41	2.44	2.47	2.51	2.54
21°	68	72	76	79	83	53	56	60	63	67
22°	81	85	2.89	2.92	2.96	65	69	72	76	79
23°	2.94	2.98	3.02	3.06	3.10	77	81	84	2.88	2.92
24°	3.06	3.11	15	19	23	2.89	2.93	2.97	3.01	3.05
25°	3.19	3.23	3.28	3.32	3.36	3.01	3.05	3.09	3.13	3.17
26°	32	36	41	45	50	13	17	21	26	30
27°	45	49	54	59	63	25	29	34	38	42
28°	57	62	67	72	77	37	41	46	51	55
29°	70	75	80	85	3.90	49	54	58	63	68
30°	3.83	3.88	3.93	3.98	4.03	3.61	3.66	3.71	3.75	3.80
31°	3.95	4.01	4.06	4.11	17	73	78	83	3.88	3.93
32°	4.08	14	19	25	30	85	3.90	3.95	4.00	4.05
33°	21	26	32	38	43	3.97	4.02	4.07	13	18
34°	33	39	45	51	57	4.09	14	20	25	31
35°	4.46	4.52	4.58	4.65	4.71	4.21	4.26	4.32	4.38	4.43

GEOGRAPHICAL LATITUDE, ELEVATION, AND GRAVITY (REFERRED TO 45° AND SEA LEVEL) OF SOME IMPORTANT CITIES

	Latitude	Height above sea level m.	Gravity	log
Baltimore, Met.	39° 18′	23.	0.9 994 705	999 770
Berlin, New Obs.	52° 30′ 16.7″	37.00	1.0 006 736	000 292
Bonn, Obs.	50° 43′ 45.0′′	61.92	1.0 005 054	000 219
Boston, Met.	42° 21′	38.	0.9 997 438	999 889
Brüssels, Old Obs.	50° 51′ 10.7′′	56.	1.0 005 179	000 225
Cambridge, Eng., Obs.	52° 12′ 51.6′′	28.	1.0 006 504	000 282
Cambridge, Mass., Harvard Obs.	42° 22′ 47.6″	24.	0.9 997 509	999 892
Cincinnati, Obs.	39° 8′ 19.5′′	263.	0.9 993 803	999 731
Dublin, Dunsink Obs.	53° 23′ 13.1′′	86.	1.0 007 365	000 320
Freiberg	47° 59′ 40′′	270.6	1.0 001 907	000 083
Göttingen, Obs.	51° 31′ 48.2″	159.2	1.0 005 478	000 238
Greenwich, Obs.	51° 28′ 38.1′′	47.	1.0 005 783	000 251
Heidelberg, Obs.	49° 23′ 54.9″	113.6	1.0 003 688	000 160
Kopenhagen, Obs.	55° 41′ 12.9′′	14.	1.0 009 602	000 317
London, Camden Sq., Met.	51° 32′ 30′′	34.	1.0 005 881	000 255
Madrid, Obs.	45° 27′ 59.2″	120.	1.0 000 053	000 002
Montreal, McGill Col. Obs.	45° 30′ 17.0′′	57.	1.0 000 287	000 012
New Haven, Yale Obs.	41° 19′ 22.3′′	32.	0.9 996 521	999 848
New Orleans, Met.	29° 58′	16.	0.9 986 721	999 423
New York, Rutherford Obs.	40° 43′ 48.5′′	96.	0.9 995 774	999 817
Paris, Nat. Obs.	48° 50′ 11.2′′	59.	1.0 003 345	000 145
Philadelphia, Obs.	39° 57′ 7.5″	36.	0.9 995 254	999 794
Prag, Obs.	50° 5′ 15.8″	197.	1.0 004 053	000 176
Quebec, Obs.	46° 48′ 20.8′′	70.	1.0 001 446	000 063
St. Louis, Obs.	38° 38′ 3.6′′	171.	0.9 993 611	999 722
San Francisco, Davidson Obs.	37° 47′ 28.0′′	47.2	0.9 993 272	999 708
Strassburg, New Obs.	48° 35′ 0.3′′	144.66	1.0 002 845	000 124
Washington, Georgetown Hts. Obs.	38° 55′ 14.7′′	285.	0.9 993 537	999 719
Zürich, Obs. d. Polyt.	47° 22′ 40′′	468.24	1.0 000 718	000 031

# REDUCTION OF BAROMETRIC READINGS TO NORMAL GRAVITY (From Landolt-Börnstein)

#### A. REDUCTION TO 45° LATITUDE

(From 0° to 45° the correction is always negative, and from 45° to 90° positive.)

		Ва	irom	etric	Read	lings	in m	ım.,	corre	cted	for 1	emp	eratı	ıre		
Latitude	640	650	660	670	680	690	700	710	720	730	740	750	760	770	780	Latitude
	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	
0°	1.66	1.68	1.71	1.74	1.76	1.79	1.81	1.84	1.86	1.89	1.92	1.94	1.97	1.99	2.02	90°
5°	63	66	68	71	73	76	79	81	84	86	89	91	94	96	1.99	85°
10°	56	58	61	63	65	68	70	73	75	78	80	83	85	87	90	80°
15°	44	46	48	50	53	55	57	59	61	64	66	68	70	73	75	75°
20°	27	29	31	33	35	37	39	41	43	45	47	49	51	53	55	70°
25°	1.07	1.08	1.10	1.12	1.13	1.15	1.17	1.18	1.20	1.22	1.23	1.25	1.27	28	30	65°
	0.83	0.84	0.85	0.87	0.88	0.89	0.91	0.92	0.93	0.95	0.96	0.97	0.98	1.00	1.01	60°
35°	57	58	58	59	60	61	62	63	64	65	66	66	67	0.68	0.69	55°
40°	29	29	30	30	31	31	31	32	32	33	33	34	34	35	35	50°
45°	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	45°

## B. REDUCTION TO SEA LEVEL (These corrections are all negative.)

Height above	Baron	netric	Readir	ngs in	mm., c	orrecte	d for '	Cempe	rature	Height above
sea level  m.	620 mm.	640 mm.	660 mm.	680 mm.	700 mm.	720 mm.	740 mm.	760 mm.	780 mm.	sea level  m.
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300	0.12 13 15 16	0.09 10 0.11 0.13 14 15 16	0.05 06 08 09 10 0.12 0.13 14 16 17	0.03 04 05 07 08 09 11 0.12 0.13 15 16	0.01 03 04 05 07 08 10 11 0.12 0.14 15 16 18	0.01 03 04 06 07 08 10 11 0.13	0.01 03 04 06 07 09 10 0.12	0.01 03 04 06 0.07	0.02 0.03	100 200 300 400 500 600 700 800 900 1000 1100 1200 1300
1400 1500 1600 1700 1800 1900 2000	17 18 19 21 22 0.23 0.24	18 19 20 21 23 0.24 0.25	18 19 21 22 23 0.25	19 20 21 0.23	0.19					1400 1500 1600 1700 1800 1900

#### CAPILLARY DEPRESSION OF MERCURY

(Interpolated by F. Kohlrausch from Mendelejeff and Gutkowsky.)

	Height of Meniscus in mm.												
Diameter of tube mm.	0.4 mm.	0.6 mm.	0.8 mm.	1.0 mm.	1.2 mm.	1.4 mm.	1.6 mm.	1.8 mm.					
4 5 6 7 8 9 10 11 12 13	0.83 47 27 18	1.22 0.65 41 28 20 15	1.54 0.86 56 40 29 21 15 10 07 04	1.98 1.19 0.78 53 38 28 20 14 10 07	2.37 1.45 0.98 67 46 33 25 18 13 10	1.80 1.21 0.82 56 40 29 21 15 12	1.43 0.97 65 46 33 24 18 13	1.13 0.77 52 37 27 19 14					

### TENSION OF AQUEOUS VAPOR OVER WATER—EXPRESSED IN TERMS OF NORMAL MERCURY UNITS

(Taken from Landolt-Börnstein. Observations by Regnault.)

			F	Hydroge:	n Scale.	Tenth	Degree	S		
Degrees	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.
0	4.579	4.612	4.646	4.679	4.713	4.747	4.782	4.816	4.851	4.886
1	4.921	4.957	4.992	5.028	5.064	5.101	5.137	5.174	5.211	5.248
2	5.286	5.324	5.362	5.400	5.438	5.477	5.516	5.555	5.595	5.635
3	5.675	5.715	5.755	5.796	5.837	5.878	5.920	5.961	6.003	6.046
4	6.088	6.131	6.174	6.217	6.261	6.305	6.349	6.393	6.438	6.483
5	6.528	6.574	6.620	6.666	6.712	6.759	6.806	6.853	6.901	6.949
6	6.997	7.045	7.094	7.143	7.192	7.242	7.292	7.342	7.392	7.443
7	7.494	7.546	7.598	7.650	7.702	7.755	7.808	7.861	7.914	7.968
8	8.023	8.077	8.132	8.187	8.243	8.299	8.355	8.412	8.469	8.526
9	8.584	8.642	8.700	8.759	8.818	8.877	8.937	8.997	9.057	9.118
10	9.179	9.240	9.302	9.364	9.427	9.490	9.553	9.616	9.680	9.745
11	9.810	9.875	9.940	10.006	10.072	10.139	10.206	10.274	10.342	10.410
12	10.479	10.548	10.617	10.687	10.757	10.828	10.899	10.970	11.042	11.114
13	11.187	11.260	11.333	11.407	11.481	11.556	11.631	11.706	11.782	11.859
14	11.936	12.013	12.091	12.169	12.247	12.326	12.406	12.486	12.566	12.647
15	12.728	12.810	12.892	12.974	13.057	13.141	13.225	13.309	13.394	14.359
16	13.565	13.651	13.738	13.825	13.913	14.001	14.090	14.179	14.269	
17	14.450	14.541	14.632	14.724	14.817	14.910	15.003	15.097	15.192	
18	15.383	15.479	15.575	15.672	15.770	15.868	15.967	16.066	16.166	
19	16.367	16.469	16.571	16.673	16.776	16.880	16.984	17.088	17.193	
20	17.406	17.513	17.620	17.728	17.837	17.947	18.057	18.167	18.278	18.390
21	18.503	18.616	18.729	18.844	18.959	19.074	19.190	19.307	19.424	19.542
22	19.661	19.780	19.900	20.021	20.142	20.264	20.386	20.510	20.634	20.758
23	20.883	21.010	21.137	21.264	21.393	21.522	21.652	21.782	21.913	22.045
24	22.178	22.311	22.446	22.581	22.716	22.853	22.990	23.128	23.266	23.406
25	23.546	23.686	23.828	23.970	24.113	24.257	24.401	24.547	24.693	24.839
26	24.987	25.135	25.284	25.434	25.584	25.736	25.888	26.041	26.195	26.349
27	26.505	26.661	26.818	26.976	27.134	27.294	27.454	27.615	27.777	27.939
28	28.103	28.267	28.432	28.599	28.766	28.933	29.102	29.271	29.442	29.613
29	29.785	29.958	30.132	30.307	30.482	30.659	30.836	31.015	31.194	31.374
30	31.555	31.737	31.919	32.103	32.288	32.473	32.660	32.847	33.036	33.225
31	33.416	33.607	33.799	33.992	34.187	34.382	34.578	34.775	34.973	35.172
32	35.372	35.573	35.775	35.978	36.182	36.387	36.593	36.800	37.008	37.217
33	37.427	37.638	37.851	38.064	38.278	38.493	38.710	38.927	39.146	39.365
34	39.586	39.807	40.030	40.254	40.479	40.705	40.933	41.161	41.390	41.621
35	41.853	42.085	42.319	42.554	42.791	43.028	43.266	43.506	43.747	43.989

#### REDUCTION OF WATER PRESSURE TO MERCURY PRESSURE

(Calculated from the following: temperature of the water 4°, of the mercury 0°; density of the water 1, of the mercury 13.59545)

(Thiesen and Schul. Z. S. f. Instrk. 18, 138)

Water	Mercury	Water	Mercury	Water	Mercury	Water	Mercury	Water	Mercury
10 11 12 13 14 15 16 17 18 19	0.74 81 88 0.96 1.03 10 18 25 32 40	50 51 52 53 54 55 56 57 58 59	3.68 75 82 90 3.97 4.05 12 19 27 34	90 91 92 93 94 95 96 97 98	6.62 69 77 84 91 6.99 7.06 13 21 28	130 131 132 133 134 135 136 137 138 139	9.56 64 71 78 86 9.93 10.00 08 15 22	170 171 172 173 174 175 176 177 178 179	12.50 58 65 72 80 87 12.95 13.02 09 17
20 21 22 23 24 25 26 27 28 29	1.47 54 62 69 77 84 91 1.99 2.06	60 61 62 63 64 65 66 67 68 69	4.41 49 56 63 71 78 85 4.93 5.00 08	100 101 102 103 104 105 106 107 108 109	7.36 43 50 58 65 72 80 87 7.94 8.02	140 141 142 143 144 145 146 147 148 149	10.30 37 44 52 59 67 74 81 89 10.96	180 181 182 183 184 185 186 187 188	13.24 31 38 46 53 61 68 75 83 90
30 31 32 33 34 35 36 37 38 39	2.21 28 35 43 50 57 65 72 79 87	70 71 72 73 74 75 76 77 78 79	5.15 22 30 37 44 52 59 66 74 81	110 111 112 113 114 115 116 117 118 119	8.09 16 24 31 39 46 53 61 68 75	150 151 152 153 154 155 156 157 158 159	11.03 11 18 25 33 40 47 55 62 69	190 191 192 193 194 195 196 197 198 199	13.98 14.05 12 20 27 34 42 49 56 64
40 41 42 43 44 45 46 47 48 49	2.94 3.02 09 16 24 31 38 46 53 60	80 81 82 83 84 85 86 87 88	5.88 5.96 6.03 10 18 25 33 40 47 55	120 121 122 123 124 125 126 127 128 129	8.83 90 8.97 9.05 12 19 27 34 41 49	160 161 162 163 164 165 166 167 168 169	11.77 84 92 11.99 12.06 14 21 28 36 43	200 300 400 500 600 700 800 900 1000	14.71 22.07 29.42 36.78 44.13 51.49 58.84 66.20 73.55

#### REDUCTION OF THE VOLUME OF GASES TO NORMAL PRESSURE

(This table contains the values of  $\frac{h}{760}$  where h=500 to 839 mm.)

(Landolt-Börnstein)

h mm.	<u>h</u> 760	$\log \frac{h}{760}$	h mm.	h 760	$\log \frac{h}{760}$	h mm.	h 760	log h/760
500	0.65 789	818 153	540	0.71 053	851 582	580	0.76 316	882 616
501	0.65 921	9 024	541	184	2 382	581	447	3 360
502	0.66 053	819 893	542	316	3 187	582	579	4 110
503	184	820 753	543	447	3 984	583	711	4 858
504	316	1 618	544	579	4 786	584	842	5 599
505	447	2 475	545	711	5 586	585	0.76 974	6 344
506	579	3 337	546	842	6 378	586	0.77 105	7 083
507	711	4 198	547	0.71 974	7 176	587	237	7 825
508	842	5 049	548	0.72 105	7 965	588	368	8 561
509	0.66 974	5 906	549	237	8 760	589	500	889 302
510	0.67 105	826 755	550	0.72 368	859 547	590	0.77 632	890 041
511	237	7 608	551	500	860 338	591	763	0 773
512	368	8 454	552	632	1 128	592	0.77 895	1 510
513	500	829 304	553	763	1 911	593	0.78 026	1 682
514	632	830 152	554	0.72 895	2 698	594	158	2 973
515	763	0 993	555	0.73 026	3 478	595	289	3 701
516	0.67 895	1 838	556	158	4 262	596	421	4 432
517	0.68 026	2 675	557	289	5 039	597	553	5 163
518	158	3 517	558	421	5 820	598	684	5 886
519	289	4 351	559	553	6 600	599	816	6 614
520	0.68 421	835 189	560	0.73 684	867 373	600	0.78 947	897 336
521	553	6 027	561	816	8 151	601	0.79 079	8 061
522	684	6 856	562	0.73 947	8 921	602	211	8 786
523	816	7 689	563	0.74 079	869 695	603	342	899 503
524	0.68 947	8 515	564	211	870 468	604	474	900 225
525	0.69 079	839 346	565	342	1 234	605	605	0 940
526	211	840 175	566	474	2 005	606	737	1 660
527	342	0 996	567	605	2 768	607	0.79 868	2 373
528	474	1 822	568	737	3 536	608	0.80 000	3 090
529	605	2 640	569	0.74 868	4 296	609	132	3 806
530	0.69 737	843 463	570	0.75 000	875 061	610	0.80 263	904 515
531	0.69 868	4 278	571	132	5 825	611	395	5 229
532	0.70 000	5 098	572	263	6 582	612	526	5 936
533	132	5 916	573	395	7 343	613	658	6 647
534	263	6 727	574	526	8 097	614	789	7 352
535	395	7 542	575	658	8 855	615	0.80 921	8 061
536	526	8 349	576	789	879 606	616	0.81 053	8 769
537	658	9 161	577	0.75 921	880 362	617	184	909 470
538	789	849 966	578	0.76 053	1 116	618	316	910 176
539	921	850 775	579	184	1 864	619	447	0 875

h mm.	h 760	$\log \frac{h}{760}$	h mm.	h 760	$log \frac{h}{760}$	h mm.	h 760	$\log \frac{h}{760}$
620	0.81 579	911 578	660	0.86 842	938 730	700	0.92 105	964 283
621	711	2 281	661	0.86 974	939 389	701	237	4 905
622	842	2 976	662	0.87 105	940 043	702	368	5 522
623	0.81 974	3 676	663	237	0 701	703	500	6 142
624	0.82 105	4 370	664	368	1 352	704	632	6 761
625	237	5 067	665	500	2 008	705	763	7 375
626	368	5 759	666	632	2 663	706	0.92 895	7 992
627	500	6 454	667	763	3 312	707	0.93 026	8 604
628	632	7 148	668	0.87 895	3 964	708	158	9 220
629	763	7 836	669	0.88 026	4 611	709	289	969 830
630 631 632 633 634 635 636 637 638 639	0.82 895 0.83 026 158 289 421 553 684 816 0.83 947 0.84 079	918 528 9 214 919 904 920 588 1 275 1 962 2 642 3 327 4 005 4 688	670 671 672 673 674 675 676 677 678	0.88 158 289 421 553 684 816 0.88 947 0.89 079 211 342	945 262 5 907 6 555 7 203 7 845 8 491 9 131 949 775 950 418 1 056	710 711 712 713 714 715 716 717 718 719	0.93 421 553 684 816 0.93 947 0.94 079 211 342 474 605	970 445 1 058 1 665 2 277 2 883 3 493 4 102 4 705 5 312 5 914
640	0.84 211	925 369	680	0.89 474	951 697	720	0.94 737	976 520
641	342	6 044	681	605	2 332	721	0.94 868	7 120
642	474	6 723	682	737	2 972	722	0.95 000	7 724
643	605	7 396	683	0.89 868	3 605	723	132	8 327
644	737	8 073	684	0.90 000	4 243	724	263	8 924
645	0.84 868	8 744	685	132	4 879	725	394	979 521
646	0.85 000	929 419	686	263	5 510	726	526	980 122
647	132	930 093	687	395	6 144	727	658	0 721
648	263	0 761	688	526	6 773	728	789	1 316
649	395	1 432	689	658	7 406	729	0.95 921	1 914
650	0.85 526	932 098	690	0.90 789	958 033	730	0.96 053	982 511
651	658	2 768	691	0.90 921	8 664	731	184	3 103
652	790	3 437	692	0.91 053	9 294	732	316	3 698
653	0.85 921	4 099	693	184	959 919	733	447	4 289
654	0.86 053	4 766	694	316	960 547	734	579	4 883
655	184	5 427	695	447	1 170	735	710	5 471
656	316	6 091	696	579	1 796	736	842	6 064
657	447	6 750	697	711	2 421	737	0.96 974	6 655
658	579	7 413	698	842	3 041	738	0.97 105	7 242
659	711	8 074	699	974	3 665	739	237	7 832

h mm.	h 760	$\log \frac{h}{760}$	h mm.	<u>h</u> 760	$\log \frac{h}{760}$	h mm.	h 760	$\log \frac{h}{760}$
740 741 742 743 744 745 746 747 748 749	0.97 368 500 632 763 0.97 895 0.98 026 1.58 289 421 553	988 416 9 005 989 592 990 175 0 761 1 341 1 926 2 505 3 088 3 670	780 781 782 783 784 785 786 787 788 789	1.02 632 763 1.02 895 1.03 026 158 289 421 553 684 816	011 283 1 837 2 394 2 947 3 504 4 054 4 609 5 163 5 712 6 264	820 821 822 823 824 825 826 827 828 829	1.07 895 1.08 026 158 289 421 553 684 816 1.08 947 1.09 079	033 001 3 529 4 059 4 584 5 113 5 642 6 166 6 693 7 215 7 741
750 751 752 753 754 755 756 757 758 759	0.98 684 816 0.98 947 0.99 079 211 342 474 605 737 0.99 868	994 247 4 827 5 403 5 982 6 560 7 133 7 710 8 281 8 856 999 426	790 791 792 793 794 795 796 797 798 799	1.03 947 1.04 079 211 342 474 605 737 1.04 868 1.05 000 132	016 812 7 363 7 914 8 459 9 008 019 552 020 100 0 643 1 189 1 735	830 831 832 833 834 835 836 837 838 839	1.09 211 342 471 605 737 1.09 868 1.10 000 132 263 395	038 267 8 787 9 299 039 831 040 353 0 871 1 393 1 913 2 430 2 949
760 761 762 763 764 765 766 767 768 769	1.00 000 1.00 132 263 392 526 658 789 1.00 921 1.01 053 184	000 000 0 573 1 141 1 699 2 278 2 848 3 413 3 982 4 549 5 112	800 801 802 803 804 805 806 807 808 809	1.05 263 395 526 658 789 1.05 921 1.06 053 184 316 447	022 276 2 820 3 359 3 902 4 441 4 982 5 523 6 059 6 598 7 134			
770 771 772 773 774 775 776 777 778 779	1.01 316 447 579 710 842 1.01 974 1.02 105 237 368 500	005 678 6 239 6 804 7 364 7 927 8 489 9 047 009 608 010 164 0 724	810 811 812 813 814 815 816 817 818 819	1.06 579 711 842 1.06 974 1.07 105 237 368 500 632 763	027 672 8 209 8 742 9 278 029 809 030 345 0 875 1 408 1 941 2 470			

### TABLE XIII

# REDUCTION OF THE VOLUME OF GASES TO 0°C.

This table contains the logarithms of the values of  $\frac{1}{1 + 0.003670 t}$  where t = 0 to 149°.

t	log	t	log	t	log	t	log
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8	000 000 999 839 9 683 9 523 9 362 9 202 9 045 8 885 8 725 8 569	4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	993 671 3 513 3 359 3 200 3 042 2 884 2 730 2 572 2 414 2 260	8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8	987 433 7 277 7 125 6 969 6 813 6 657 6 505 6 350 6 194 6 043	12.0 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9	981 284 1 130 0 980 0 826 0 672 0 518 0 368 0 215 980 062 979 912
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9	998 409 8 249 8 093 7 934 7 774 7 618 7 458 7 304 7 137 6 984	5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	992 103 1 945 1 792 1 634 1 477 1 323 1 166 1 008 0 850 0 697	9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8	985 888 5 732 5 581 5 425 5 270 5 119 4 963 4 808 4 653 4 502	13.0 13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9	979 759 9 606 9 457 9 304 9 150 9 002 8 848 8 695 8 542 8 393
2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	996 824 6 664 6 509 6 350 6 191 6 032 5 877 5 718 5 559 5 404	6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	990 540 0 383 0 231 990 073 989 916 9 759 9 607 9 450 9 293 9 141	10.0 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9	984 347 4 192 4 041 3 887 3 732 3 577 3 426 3 271 3 117 2 967	14.0 14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9	978 240 8 087 7 938 7 786 7 634 7 481 7 333 7 180 7 028 6 880
3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	995 244 5 086 4 931 4 772 4 614 4 459 4 301 4 142 3 984 3 829	7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	988 983 8 828 8 675 8 519 8 362 8 210 8 054 7 897 7 741 7 588	11.0 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9	982 813 2 658 2 507 2 353 2 199 2 049 1 895 1 741 1 587 1 437	15.0 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9	976 727 6 575 6 427 6 274 6 122 5 974 5 822 5 665 5 517 5 370

t	log .	t	log	t	log	t	log
16.0	975 229	20.0	969 238	24.0	963 339	28.0	957 519
16.1	5 067	20.1	9 089	24.1	3 192 3 048	28.1 28.2	7 373 7 236
16.2 16.3	4 919 4 768	20.2 20.3	8 943 8 794	24.2 - 24.3	2 900	28.3	7 095
16.4	4 616	20.4	8 644	24.4	2 753	28.4	6 941
16.5	4 465	20.5	8 495	24.5	2 606	28.5	6 795
16.6	4 318	20.6	8 350	24.6	2 462	28.6	6 654
16.7	4 166	20.7	8 200	24.7	2 315	28.7	6 508
16.8	4 015	20.8	8 051	24.8	2 167	28.8	6 363
16.9	3 867	20.9	7 905	24.9	2 024	28.9	6 221
17.0	973 717	21.0	967 756	25.0	961 876	29.0	956 076
17.1	3 565	21.1	7 606	25.1	1 729	29.1	5 931
17.2	3 418	21.2	7 461	25.2	1 586	29.2	5 789
17.3	3 267	21.3	7 313	25.3	1 440	29.3 29.4	5 644 5 499
17.4 17.5	3 116 2 968	21.4 21.5	7 164 7 019	25.4 25.5	1 293 1 150	29.4	5 358
17.6	2 817	21.6	6870	25.6	1 003	29.6	5 213
17.7	2 666	21.7	6 721	25.7	0 856	29.7	5 068
17.8	2 516	21.8	6 572	25.8	0 709	29.8	4 923
17.9	2 369	21.9	6 427	25.9	0 566	29.9	4 783
18.0	972 219	22.0	966 279	26.0	960 419	30.0	954 638
18.1	2 068	22.1	6 130	26.1	0 272	30.1	4 493
18.2	1 922	22.2	5 986	26.2	960 130	30.2	4 353
18.3	1 771	22.3	5 837	26.3	959 983	30.3	4 208
18.4	1 620	22.4	5 689	26.4	9 837	30.4	4 063
18.5	1 470	22.5	5 541	26.5	9 690	30.5	3 918
18.6	1 323	22.6	5 396	26.6	9 548	30.6	3 778
18.7	1 173	22.7	5 248 5 099	26.7	9 402	30.7 30.8	3 634
18.8 18.9	1 022 0 876	22.8 22.9	5 099 4 955	26.8 26.9	9 255 9 113	30.8	3 489 3 349
19.0	970 726	23.0	964 807	27.0	958 966	31.0	953 205
19.1	0 575	23.1	4 658	27.1	8 820	31.1	3 060
19.2	0 430	23.2	4 514	27.2	8 678	31.2	2 920
19.3 19.4	0 280	23.3 23.4	4 366 4 218	27.3 27.4	8 532	31.3 31.4	2 776
19.4	969 981	23.4	4 218	27.4	8 387 8 245	31.4	2 632 2 492
19.6	9829	23.6	3 926	27.6	8 099	31.6	2 348
19 7	9 682	23.7	3 778	27.7	7 953	31.7	2 204
19.8	9 534	23.8	3 630	27.8	7 806	31.8	2 060
19.9	9 388	23.9	3 487	27.9	7 664	31.9	1 920

t	log	t	log	t	log	t	log
32.0 32.1 32.2 32.3 32.4 32.5 32.6 32.7 32.8 32.9	951 776 1 632 1 492 1 349 1 205 1 061 0 922 0 778 0 635 0 495	35 36 37 38 39	947 518 6 114 4 702 3 303 1 905	70 71 72 73 74 75 76 77 78 79	900 700 899 433 8 170 6 912 5 656 4 405 3 156 1 912 0 671 889 434	110 111 112 113 114 115 116 117 118 119	852 726 1 592 850 461 849 333 8 208 7 085 5 965 4 849 3 736 2 625
33.0 33.1 33.2 33.3 33.4 33.5 33.6 33.7 33.8 33.9	950 351 0 208 950 069 949 926 9 783 9 643 9 500 9 358 9 215 9 075	40 41 42 43 44 45 46 47 48 49	940 513 939 125 7 741 6 363 4 988 3 618 2 252 930 891 9 534 8 181	80 81 82 83 84 85 86 87 88	888 200 6 970 5 743 4 519 3 299 2 083 880 869 879 660 8 453 7 250	120 121 122 123 124 125 126 127 128 129	841 517 840 412 839 309 8 210 7 113 6 019 4 928 3 839 2 754 1 671
34.0	948 932	50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69	926 832 5 487 4 147 2 810 1 478 920 150 918 826 7 506 6 189 4 877 913 569 2 265 910 964 909 668 8 375 7 087 5 801 4 520 3 243 1 969	90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109	876 050 4 854 3 661 2 471 1 284 870 101 868 920 7 743 6 570 5 399 864 231 3 067 1 906 860 748 859 593 8 441 7 292 6 146 5 003 3 863	130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149	830 591 829 513 8 438 7 365 6 295 5 228 4 164 3 102 2 043 820 986 819 932 8 880 7 831 6 784 5 741 4 699 3 660 2 623 1 589 0 558

# REDUCTION OF THE VOLUME OF GASES SATURATED WITH AQUEOUS VAPOR TO 0°, NORMAL PRESSURE, AND DRY

$$V_0 = V \frac{p_0 - h}{(1 + 0.003670 \, t) \, 760}$$

(V is the volume of the gas, p the uncorrected barometric pressure read on a glass or wooden scale,  $p_0$  barometric pressure corrected for temperature, h the maximum tension of aqueous vapor, t the temperature. This table contains the logarithms of

$$\frac{p_0 - h}{(1 + 0.003670 \, t) \, 760},$$

where p varies from 730 to 780 and t from 12° to 24°.)

(Landolt-Börnstein)

t	p = 730 log	Differ- ence for 10 mm.	p=740 log	Difference for 10 mm.	p = 750 log	Difference for 10 mm.	p = 760 log	Differ- ence for 10 mm.	p = 770 log	Differ- ence for 10 mm.	p=780 log
12.0	95 663	599	96 262	591	96 853	584	97 437	575	98 012	568	98 580
12.2	622	600	222	591	813	583	396	576	97 972	568	540
12.4	582	599	181	592	773	583	356	576	932	568	500
12.6	541	600	141	592	733	583	316	576	892	568	460
12.8	501	599	100	592	692	584	276	576	852	568	420
13.0	95 460	600	96 060	592	96 652	584	97 236	576	97 812	568	98 380
13.2	419	600	96 019	592	611	584	195	576	771	569	340
13.4	378	601	95 979	592	571	584	155	576	731	569	300
13.6	337	601	938	592	530	584	114	577	691	568	259
13.8	296	601	897	592	489	584	073	577	650	569	219
14.0	95 256	600	95 856	592	96 448	585	97 033	576	97 609	570	98 179
14.2	214	601	815	592	407	585	96 992	577	569	569	138
14.4	173	601	774	592	366	585	951	577	528	569	097
14.6	131	601	732	593	325	585	910	577	487	570	057
14.8	090	601	691	593	284	585	869	577	446	570	016
15.0 15.2 15.4 15.6 15.8	95 048 95 007 94 965 923 881	602 601 601 602 602	95 650 608 566 525 483	593 593 594 593 594	96 243 201 160 118 077	585 585 585 586 585	96 828 786 745 704 662	577 578 578 577 577	97 405 364 323 281 240	570 570 570 570 570 570	97 975 934 893 851 810
16.0 16.2 16.4 16.6 16.8	94 839 797 755 712 670	602 602 602 603 602	95 441 399 357 315 272	594 594 594 594 595	96 035 95 993 951 909 867	585 586 586 586 586	96 620 579 537 495 453	578 578 578 578 578 579	97 198 157 115 073 032	571 570 571 571 571 570	97 769 727 686 644 602

t	p = 730 log	Differ- ence for 10 mm.	p = 740 log	Differ- ence for 10 mm.	p = 750 log	Difference for 10 mm.	p = 760 log	Differ- ence for 10 mm.	p = 770 log	Difference for 10 mm.	p = 780 log
17.0 17.2 17.4 17.6 17.8	94 627 585 542 499 456	603 602 603 603 603	95 230 187 145 102 059	594 595 595 595 595	95 824 782 740 697 654	587 587 586 587 587	96 411 369 326 284 241	579 578 579 579 579 580	96 990 947 905 863 821	571 572 572 571 571	97 561 519 477 434 392
18.0 18.2 18.4 18.6 18.8	94 413 370 326 283 239	603 603 604 604 604	95 016 94 973 930 887 843	596 596 596 596 596	95 612 569 526 483 439	587 587 587 587 588	96 199 156 113 070 027	579 580 580 580 580	96 778 736 693 650 607	572 571 572 572 572 573	97 350 307 265 222 180
19.0 19.2 19.4 19.6 19.8	94 196 152 108 064 020	604 604 605 605 605	94 800 756 713 669 625	596 597 596 596 596	95 396 353 309 265 221	588 588 588 589 589	95 984 941 897 854 810	580 580 581 580 581	96 564 521 478 434 391	573 573 573 573 573 573	97 137 094 051 97 007 96 964
20.0 20.2 20.4 20.6 20.8	93 975 931 886 842 797	606 605 606 606 606	94 581 536 492 448 403	597 597 597 597 598	95 178 133 089 045 001	588 589 589 589 589	95 766 722 678 634 590	581 582 582 582 582 582	96 347 304 260 216 172	574 573 573 574 574	96 921 877 833 790 746
21.0 21.2 21.4 21.6 21.8	93 752 707 662 616 571	606 606 606 607 607	94 358 313 268 223 178	598 598 598 598 598	94 956 911 866 821 776	590 590 591 591 591	95 546 501 457 412 367	581 582 582 582 582 582	96 127 083 96 039 95 994 949	575 574 574 575 575	96 702 657 613 569 524
22.0 22.2 22.4 22.6 22.8	93 525 479 433 *387 341	607 608 608 608 608	94 132 087 94 041 93 995 949	599 599 599 600 600	94 731 686 640 595 549	591 591 591 591 591	95 322 277 231 186 140	583 583 583 583 584	95 905 860 814 769 724	575 575 576 576 576 575	96 480 435 390 345 299
23.0 23.2 23.4 23.6 23.8	93 295 248 202 155 108	608 609 608 609 609	93 903 857 810 764 717	600 600 601 600 601	94 503 457 411 364 318	591 592 592 592 592 592	95 094 049 95 003 94 956 910	584 583 584 585 585	95 678 632 587 541 495	576 577 576 576 576	96 254 209 163 117 071
24.0	93 061	609	93 670	601	94 271	593	94 864	584	95 448	577	96 025

OBSERVED DENSITY AND THE WEIGHT OF A LITER OF SOME COMMON GASES UNDER THE FOLLOWING CONDITIONS: 0° AND 760  $_{\rm MM}$ . PRESSURE AT SEA LEVEL AND 45° LATITUDE. AIR = 1

Substance	Density	Wt. 1 liter in grams at sea level and 45° lat.	log	Observer
Acetylene	0.92	1.1620	065 206	Berthelot
Air	1.00	1.2928	111 532	Leduc Mean Lord Rayleigh value
Ammonia	0.5971	0.7621	882 012	Leduc
Argon	1.379	1.782	250 908	Ramsay and Travers
Bromine		7.1426	853 856	Jahn
Carbon dioxide Carbon monoxide Chlorine Ethane Ethylene	1.52909 0.96716 2.491 1.075 0.9852	1.9652 1.2506 3.1666 1.3421 1.2520	293 407 097 118 500 593 127 785 097 604	Lord Rayleigh Lord Rayleigh Leduc Kolbe Saussure
Hydrogen Hydrogen sulphide Hydrobromic acid Hydrochloric acid Hydriodic acid	0.06926 1.1895 2.71 1.2692 4.3757	0.09004 1.5230 3.6163 1.6283 5.7106	954 435 182 700 558 265 211 734 756 682	Regnault Leduc Löwig Leduc Thomson
Methane Methyl ether Nitrogen Nitrogen dioxide Nitrogen monoxide	0.5576 1.617 0.96737 1.0372 1.5301	0.7160 2.0567 1.2542 1.3417 1.9688	854 913 313 171 098 367 127 655 294 202	Thomson Dumas and Peligot Lord Rayleigh Leduc Leduc
Oxygen Sulphur dioxide	1.10535 2.2639	1.4292 2.8611	155 093 456 533	Lord Rayleigh Leduc

# DENSITY OF DRY ATMOSPHERIC AIR AT 760 mm. PRESSURE AND TEMPERATURES RANGING FROM 0° TO 35°

$$\left(\text{Values of } d_t, \, _{760} = \frac{.0012928}{1 + .003670 \, t}\right)$$

t	d _t , 760	lóg	t	d _t , 760	log	t	d _t , 760.	log
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	0.0 012 928 12 923 12 919 12 914 12 909 12 904 12 900 12 895 12 890 12 885	111 531 1 363 1 229 1 061 0 893 0 724 0 590 0 421 0 253 110 084	4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	0.0 012 741 12 736 12 732 12 728 12 723 12 718 12 713 12 709 12 704 12 700	105 204 5 033 4 897 4 760 4 590 4 419 4 248 4 111 3 941 3 804	8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9	0.0 012 559 12 555 12 550 12 546 12 541 12 537 12 532 12 528 12 524 12 519	098 955 8 817 8 644 8 505 8 332 8 194 8 020 7 882 7 743 7 570
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9	0.0 012 881 12 876 12 871 12 867 12 862 12 857 12 853 12 848 12 843 12 838	109 950 9 781 9 612 9 477 9 309 9 140 9 005 8 836 8 667 8 497	5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	0.0 012 695 12 690 12 686 12 681 12 677 12 672 12 668 12 663 12 659 12 654	103 633 3 462 3 325 3 154 3 017 2 845 2 708 2 537 2 399 2 228	9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9	0.0 012 515 12 511 12 506 12 501 12 497 12 492 12 488 12 484 12 479 12 475	097 431 7 292 7 118 6 945 6 806 6 632 6 493 6 354 6 180 6 041
2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	0.0 012 834 12 829 12 824 12 820 12 815 12 810 12 806 12 801 12 797 12 792	108 362 8 193 8 024 7 888 7 719 7 549 7 414 7 244 7 108 6 939	6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8	0.0 012 649 12 645 12 640 12 636 12 631 12 627 12 622 12 618 12 613 12 609	102 056 1 919 1 747 1 610 1 438 1 300 1 128 0 991 0 818 0 681	10.0 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9	0.0 012 470 12 466 12 462 12 457 12 453 12 448 12 444 12 440 12 435 12 431	095 867 5 727 5 588 5 414 5 274 5 100 4 960 4 820 4 646 4 506
3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	0.0 012 787 12 783 12 778 12 773 12 769 12 759 12 755 12 750 12 746	106 769 6 633 6 463 6 293 6 157 5 987 5 817 5 681 5 510 5 374	7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	0.0 012 604 12 600 12 595 12 591 12 586 12 582 12 577 12 573 12 568 12 564	100 508 0 371 0 198 100 060 099 888 9 750 9 577 9 439 9 266 9 128	11.0 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9	0.0 012 426 12 422 12 418 12 413 12 409 12 404 12 400 12 396 12 391 12 387	094 331 4 192 4 052 3 877 3 737 3 562 3 422 3 282 3 106 2 966

t	d _t , 760	log	t	d _t , 760	log	t	dt, 760	log
12.0	0.0 012 383	092 826	16.0	0.0 012 211	086 751	20.0	0.0 012 044	080 770
12.1	12 378	2 651	16.1	12 207	6 609	20.1	12 040	0 627
12.2	12 374	2 510	16.2	12 203	6 467	20.2	12 036	0 482
12.3	12 370	2 370	16.3	12 198	6 289	20.3	12 032	0 338
12.4	12 365	2 194	16.4	12 194	6 146	20.4	12 028	0 193
12.5	12 361	2 054	16.5	12 190	6 004	20.5	12 023	080 013
12.6	12 357	1 913	16.6	12 186	5 861	20.6	12 019	079 868
12.7	12 352	1 737	16.7	12 181	5 683	20.7	12 015	9 724
12.8	12 348	1 597	16.8	12 177	5 540	20.8	12 011	9 579
12.9	12 344	1 456	16.9	12 173	5 398	20.9	12 007	9 435
13.0	0.0 012 339	091 280	17.0	0.0 012 169	085 255	21.0	0.0 012 003	079 290
13.1	12 335	1 139	17.1	12 165	5 112	21.1	11 999	9 145
13.2	12 331	0 998	17.2	12 160	4 934	21.2	11 995	9 000
13.3	12 326	0 822	17.3	12 156	4 791	21.3	11 991	8 855
13.4	12 322	0 681	17.4	12 152	4 648	21.4	11 987	8 711
13.5	12 318	0 540	17.5	12 148	4 505	21.5	11 982	8 529
13.6	12 313	0 364	17.6	12 144	4 362	21.6	11 978	8 384
13.7	12 309	0 223	17.7	12 139	4 183	21.7	11 974	8 239
13.8	12 305	090 082	17.8	12 135	4 040	21.8	11 970	8 094
13.9	12 301	089 940	17.9	12 131	3 897	21.9	11 966	7 949
14.0	0.0 012 296	089 764	18.0	0.0 012 127	083 753	22.0	0.0 011 962	077 804
14.1	12 292	9 623	18.1	12 123	3 610	22.1	11 958	7 659
14.2	12 288	9 481	18.2	12 119	3 467	22.2	11 954	7 513
14.3	12 283	9 305	18.3	12 114	3 288	22.3	11 950	7 368
14.4	12 279	9 163	18.4	12 110	3 144	22.4	11 946	7 223
14.5	12 275	9 022	18.5	12 106	3 001	22.5	11 942	7 077
14.6	12 270	8 845	18.6	12 102	2 857	22.6	11 938	6 932
14.7	12 266	8 703	18.7	12 098	2 714	22.7	11 934	6 786
14.8	12 262	8 561	18.8	12 094	2 570	22.8	11 930	6 640
14.9	12 258	8 420	18.9	12 089	2 390	22.9	11 926	6 495
15.0	0.0 012 253	088 242	19.0	0.0 012 085	082 247	23.0	0.0 011 922	076 349
15.1	12 249	8 101	19.1	12 081	2 103	23.1	11 918	6 203
15.2	12 245	7 959	19.2	12 077	1 959	23.2	11 914	6 058
15.3	12 241	7 817	19.3	12 073	1 815	23.3	11 910	5 912
15.4	12 236	7 640	19.4	12 069	1 671	23.4	11 906	5 766
15.5	12 232	7 498	19.5	12 065	1 527	23.5	11 902	5 620
15.6	12 228	7 355	19.6	12 060	1 347	23.6	11 898	5 474
15.7	12 224	7 213	19.7	12 056	1 203	23.7	11 894	5 328
15.8	12 219	7 036	19.8	12 052	1 059	23.8	11 889	5 145
15.9	12 215	6 894	19.9	12 048	0 915	23.9	11 885	4 999

t	d _t , 760	log	t	d _t , 760	log	t	d _t , 760	log
24.0	0.0 011 881	074 853	28.0	0.0 011 723	069 039	32.0	0.0 011 569	063 296
24.1	11 877	4 707	28.1	11 719	8 891	32.1	11 566	3 183
24.2	11 873	4 561	28.2	11 716	8 779	32.2	11 562	3 033
24.3	11 869	4 414	28.3	11 712	8 631	32.3	11 558	2 883
24.4	11 865	4 268	28.4	11 708	8 483	32.4	11 554	2 732
24.5	11 861	4 121	28.5	11 704	8 334	32.5	11 550	2 582
24.6	11 857	3 975	28.6	11 700	8 186	32.6	11 547	2 469
24.7	11 853	3 828	28.7	11 696	8 037	32.7	11 543	2 319
24.8	11 849	3 682	28.8	11 692	7 889	32.8	11 539	2 168
24.9	11 846	3 572	28.9	11 688	7 740	32.9	11 535	2 018
25.0	0.0 011 842	073 425	29.0	0.0 011 684	067 592	33.0	0.0 011 531	061 867
25.1	11 838	3 278	29.1	11 681	7 480	33.1	11 528	1 754
25.2	11 834	3 132	29.2	11 677	7 331	33.2	11 524	1 603
25.3	11 830	2 985	29.3	11 673	7 183	33.3	11 520	1 453
25.4	11 826	2 838	29.4	11 669	7 034	33.4	11 516	1 302
25.5	11 822	2 691	29.5	11 665	6 885	33.5	11 513	1 189
25.6	11 818	2 544	29.6	11 661	6 736	33.6	11 509	1 038
25.7	11 814	2 397	29.7	11 657	6 587	33.7	11 505	0 887
25.8	11 810	2 250	29.8	11 654	6 475	33.8	11 501	0 736
25.9	11 806	2 103	29.9	11 650	6 326	33.9	11 497	0 585
26.0	0.0 011 802	071 956	30.0	0.0 011 646	066 177	34.0	0.0 011 494	060 471
26.1	11 798	1 808	30.1	11 642	6 028	34.1	11 490	0 320
26.2	11 794	1 661	30.2	11 638	5 878	34.2	11 486	0 169
26.3	11 790	1 514	30.3	11 634	5 729	34.3	11 483	060 055
26.4	11 786	1 366	30.4	11 630	5 580	34.4	11 479	059 904
26.5	11 782	1 219	30.5	11 627	5 468	34.5	11 475	9 753
26.6	11 778	1 072	30.6	11 623	5 318	34.6	11 471	9 601
26.7	11 774	0 924	30.7	11 619	5 169	34.7	11 468	9 488
26.8	11 770	0 777	30.8	11 615	5 019	34.8	11 464	9 336
26.9	11 768	0 703	30.9	11 611	4 870	34.9	11 460	9 185
27.0 27.1 27.2 27.3 27.4 27.5 27.6 27.7 27.8 27.9	0.0 011 762 11 759 11 755 11 751 11 747 11 743 11 739 11 735 11 731 11 727	070 481 0 370 0 223 070 075 069 927 9 779 9 631 9 483 9 335 9 187	31.0 31.1 31.2 31.3 31.4 31.5 31.6 31.7 31.8 31.9	0.0 011 607 11 603 11 600 11 596 11 592 11 588 11 585 11 581 11 577 11 573	064 720 4 570 4 458 4 308 4 158 4 009 3 896 3 746 3 596 3 446	35.0	0.0 011 456	059 033

# TABLE XVII

(Ostwald-Luther. Physiko-chemische Messungen)

Degrees C.	Apparent weight of a cc. of water	log	Volume of an apparent gram of water	log
10	.9 986	999 392	1.0014	.000 608
11	85	9 348	15	0 651
12	84	9 305	16	0 694
13	83	9 261	17	0 738
14	82	9 218	18	0 781
15	81	9 174	19	0 824
16	79	9 087	21	0 911
17	77	9 000	23	0 998
18	76	8 956	24	1 041
19	74	8 869	. 26	1 128
20	72	8 782	28	1 214
21	70	8 695	30	1 301
22	67	8 565	33	1 431
23	65	8 477	35	1 517
24	63	8 390	37	1 604
25	60	8 259	40	1 734

#### SPECIFIC VOLUME OF WATER

(Thiesen, Scheel, and Diesselhorst, Wiss. Abh. d. Phys. Techn. Reichsanst. 3, 69)

Hydrogen Scale

				Te	nth De	grees				
Degrees	0	1	2	3	4	5	6	7	8	9
0	1.000 132	126	119	113	107	101	095	089	084	079
1	073	069	064	059	055	051	047	043	039	035
2	032	029	026	023	020	018	016	013	011	009
3	008	006	005	004	003	002	001	001	000	000
4	000	000	000	001	001	002	003	004	005	007
5	008	010	012	014	016	018	021	023	026	029
6	032	035	039	042	046	050	054	058	062	066
7	071	075	080	085	090	096	101	107	112	118
8	124	130	137	143	149	156	163	170	177	184
9	192	199	207	215	223	231	239	247	256	264
10	273	282	291	300	309	319	328	338	348	358
11	368	378	388	399	409	420	431	442	453	464
12	476	487	499	511	522	534	547	559	571	584
13	596	609	622	635	648	661	675	688	702	715
14	729	743	757	772	786	800	815	830	844	859
15 16 17 18 19	1.001 031 200 380 571	890 048 218 399 591	905 064 235 417 610	920 081 253 436 630	936 098 271 455 650	951 114 289 474 671	967 131 307 493 691	983 148 325 513 711	999 165 343 532 732	*015 183 361 551 752
20	773	794	815	836	857	878	899	921	942	964
21	985	*007	*029	*051	*073	*096	*118	*140	*163	*186
22	1.002 208	231	254	277	300	324	347	370	394	418
23	441	465	489	513	538	562	586	611	635	660
24	685	710	735	760	785	810	835	861	886	912
25	938	964	990	*016	*042	*068	*094	*121	*147	*174
26	1.003 201	227	254	281	308	336	363	390	418	445
27	473	501	529	556	585	613	641	669	698	726
28	755	783	812	841	870	899	928	957	987	*016
29	1.004 046	075	105	135	165	194	225	255	285	315
30	346	376	407	437	468	499	530	561	592	623
31	655	686	717	749	781	812	844	876	908	940
32	972	*005	*037	*070	*102	*135	*167	*200	*233	*266
33	1.005 299	332	365	399	432	465	499	533	566	600
34	634	668	702	736	771	805	839	874	908	943
35	978	*013	*047	*082	*118	*153	*188	*223	*259	*294

# TABLE XIX

#### DENSITY OF WATER

(Thiesen, Scheel, and Diesselhorst, Wiss. Abh. d. Phys. Techn. Reichsanst. 3, 68)

Hydrogen Scale

				Te	nth De	grees				
Degrees	0	1	2	3	4	5	6	7	8	9
0	0.999 868	874	881	887	893	899	905	911	916	922
1	927	932	936	941	945	950	954	957	961	965
2	968	971	974	977	980	982	985	987	989	991
3	992	994	995	996	997	998	999	999	*000	*000
4	1.000 000	000	000	*999	*999	*998	*997	*996	*995	*993
5	0.999 992	990	988	986	984	982	979	977	974	971
6	968	965	962	958	954	951	947	943	938	934
7	929	925	920	915	910	904	899	893	888	882
8	876	870	864	857	851	844	837	830	823	816
9	808	801	793	785	778	769	761	753	744	736
10	727	718	709	700	691	681	672	662	652	642
11	632	622	-612	601	591	580	569	558	547	536
12	525	513	502	490	478	466	454	442	429	417
13	404	391	379	366	353	339	326	312	299	285
14	271	257	243	229	215	200	186	171	156	141
15	126	111	096	081	065	050	034	018	002	*986
16	0.998 970	953	937	920	904	887	870	853	836	819
17	801	784	766	749	731	713	695	677	659	640
18	622	603	585	566	547	528	509	490	471	451
19	432	412	392	372	352	332	312	292	271	251
20	230	210	189	168	147	126	105	083	062	040
21	019	*997	*975	*953	*931	*909	*S87	*864	*842	*819
22	0.997 797	774	751	728	705	682	659	635	612	588
23	565	541	517	493	469	445	421	396	372	347
24	323	298	273	248	223	198	173	147	122	096
25	071	045	019	*994	*968	*941	*915	*889	*863	*836
26	0.996 810	783	756	730	703	676	648	621	594	567
27	539	512	484	456	428	400	372	344	316	288
28	259	231	202	174	145	116	087	058	029	000
29	0.995 971	941	912	882	853	823	793	763	733	703
30	673	643	613	582	552	521	491	460	429	398
31	367	336	305	273	242	211	179	148	116	084
32	052	020	*988	*956	*924	*892	*859	*827	*794	*762
33	0.994 729	696	663	630	597	564	531	498	464	431
34	398	364	330	296	263	229	195	161	126	092
35	058	023	*989	*954	*920	*885	*850	*815	*780	*745

THE PROPORTION BY WEIGHT OF ABSOLUTE ALCOHOL IN 100 PARTS OF SPIRITS OF DIFFERENT SPE-CIFIC GRAVITIES (Fownes) THE PROPORTION BY VOLUME OF ABSOLUTE ALCOHOL IN 100 VOL-UMES OF SPIRITS OF DIFFERENT SPECIFIC GRAVITIES (Gay-Lussac)

Sp. G. at 15.5° real alcohol	Sp. G. or real alc	Sp. G. al at 15.5°	Per cent of real alco- hol	Sp. G. at 15°	100 vol. spirits con- tain vol. of real alco- hol	Sp. G. at 15°	100 vol. spirits con- tain vol. of real alco- hol	Sp. G. at 15°	100 vol. spirits con- tain vol. of real alco- hol
.9991         0.5           .9981         1           .9965         2           .9947         3           .9930         4           .9914         5           .9898         6           .9884         7           .9869         8           .9855         9           .9841         10           .9828         11           .9815         12           .9802         13           .9789         14           .9778         15           .9766         16           .9753         17           .9741         18           .9728         19           .9716         20           .9704         21           .9671         20           .9704         21           .9665         24           .9652         25           .9638         26           .9623         27           .9609         28           .9593         29           .9578         30           .9560         31           .9528         33 <td>.9511 34 .9490 35 .9470 36 .9452 37 .9434 38 .9416 39 .9396 40 .9376 41 .9356 42 .9335 43 .9314 44 .9292 45 .9270 46 .9249 47 .9228 48 .9206 49 .9184 50 .9185 52 .9113 53 .9090 54 .9069 55 .9047 56 .9025 57 .9001 58 .8979 59 .8956 60 .8932 61 .8908 62 .8886 63 .8816 66 .8793 67</td> <td>8745 8721 8696 8672 8649 8625 8603 88581 8581 8581 8581 8583 8484 8488 8488 8488 8382 8459 8431 8305 8254 8367 837 8489 8489 8172 8185 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186</td> <td>68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100</td> <td>9985 9970 9956 9942 9929 9916 9903 9891 9878 9867 9855 9844 9833 9822 9792 9782 9773 9763 9753 9753 9753 9753 9753 9753 9753 975</td> <td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 33 4</td> <td>9594 9581 9587 9583 9523 9523 9523 9527 9491 9440 9422 9404 9386 9329 9329 9329 9229 9248 9227 9269 9248 9227 9269 92185 9163 9119 9004 8980 8956</td> <td>35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 66 67 68</td> <td>.8932 .8907 .8882 .8857 .8831 .8805 .8779 .8753 .8726 .8645 .8617 .8589 .8560 .8531 .8502 .8412 .8411 .8379 .8346 .8312 .8278 .8242 .8278 .8242 .8206 .8168 .8128 .8128 .8086 .8042 .8006 .7947</td> <td>69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99</td>	.9511 34 .9490 35 .9470 36 .9452 37 .9434 38 .9416 39 .9396 40 .9376 41 .9356 42 .9335 43 .9314 44 .9292 45 .9270 46 .9249 47 .9228 48 .9206 49 .9184 50 .9185 52 .9113 53 .9090 54 .9069 55 .9047 56 .9025 57 .9001 58 .8979 59 .8956 60 .8932 61 .8908 62 .8886 63 .8816 66 .8793 67	8745 8721 8696 8672 8649 8625 8603 88581 8581 8581 8581 8583 8484 8488 8488 8488 8382 8459 8431 8305 8254 8367 837 8489 8489 8172 8185 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186 8186	68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100	9985 9970 9956 9942 9929 9916 9903 9891 9878 9867 9855 9844 9833 9822 9792 9782 9773 9763 9753 9753 9753 9753 9753 9753 9753 975	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 33 4	9594 9581 9587 9583 9523 9523 9523 9527 9491 9440 9422 9404 9386 9329 9329 9329 9229 9248 9227 9269 9248 9227 9269 92185 9163 9119 9004 8980 8956	35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 66 67 68	.8932 .8907 .8882 .8857 .8831 .8805 .8779 .8753 .8726 .8645 .8617 .8589 .8560 .8531 .8502 .8412 .8411 .8379 .8346 .8312 .8278 .8242 .8278 .8242 .8206 .8168 .8128 .8128 .8086 .8042 .8006 .7947	69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

SPECIFIC GRAVITY OF SOLUTIONS OF AMMONIUM HYDROXIDE AT 15°C.

(Lunge and Wiernik, Zeit. f. angew. Chem., 1889, 181)

Sp. G. at $\frac{15}{4}^{\circ}$ in vacuo	Per cent NH ₃ grams	1 liter contains NH ₃ grams	Sp. G. at $\frac{15}{4}^{\circ}$ in vacuo	Per cent NH ₃ grams	1 liter contains NH ₃ grams	Sp. G. at $\frac{15^{\circ}}{4}$ in vacuo	Per cent NH ₃ grams	1 liter contains NH ₃ grams
1.000	.00	0.0	0,960	9.91	95.1	0.920	21.75	200.1
0.998	.45	4.5	958	10.47	100.3	918	22.39	205.6
996	.91	9.1	956	11.03	105.4	916	23.03	210.9
994	1.37	13.6	954	11.60	110.7	914	23.68	216.3
992	1.84	18.2	952	12.17	115.9	912	24.33	221.9
990	2.31	22.9	950	12.74	121.0	910	24.99	227.4
988	2.80	27.7	948	13.31	126.2	908	25.65	232.9
986	3.30	32.5	946	13.88	131.3	906	26.31	238.3
984	3.80	37.4	944	14.46	136.5	904	26.98	243.9
982	4.30	42.2	942	15.04	141.7	902	27.65	249.4
980	4.80	47.0	940	15.63	146.9	900	28.33	255.0
978	5.30	51.8	938	16.22	152.1	898	29.01	260.5
976	5.80	56.6	936	16.82	157.4	896	29.69	266.0
974	6.30	61.4	934	17.42	162.7	894	30.37	271.5
972	6.80	66.1	932	18.03	168.1	892	31.05	277.0
970	7.31	70.9	930	18.64	173.4	890	31.75	282.6
968	7.82	75.7	928	19.25	178.6	888	32.50	288.6
966	8.33	80.5	926	19.87	184.2	886	33.25	294.6
964	8.54	85.2	924	20.49	189.3	884	34.10	301.4
962	9.35	89.9	922	21.12	194.7	882	34.95	308.3

#### TABLE XXII

# SPECIFIC GRAVITY OF SOLUTIONS OF HYDROCHLORIC ACID AT 15°C.

(Lunge and Marchlewski, Zeit. angew. Chem., 1891, 135)

	•							
Sp. G. at $\frac{15}{4}^{\circ}$ in vacuo	by wt. contain grams HCl	1 liter contains grams HCl	Sp. g. at ¹⁵ ° in vacuo	by wt. contain grams HCl	1 liter contains grams HCl	Sp. G. at $\frac{15^{\circ}}{4}$ in vacuo	100 pts. by wt. contain grams HCl	1 liter contains grams HCl
1.000	0.16	1.6	1.070	14.17	152	1.140	27.66	315
1.005	1.15	12.0	1.075	15.16	163	1.145	28.61	328
1.010	2.14	22.0	1.080	16.15	174	1.150	29.57	340
1.015	3.12	32.0	1.085	17.13	186	1.155	30.55	353
1.020	4.13	42.0	1.090	18.11	197	1.160	31.52	366
1.025	5.15	53	1.095	19.06	209	1.165	32.49	379
1.030	6.15	64	1.100	20.01	220	1.170	33.46	392
1.035	7.15	74	1.105	20.97	232	1.175	34.42	404
1.040	8.16	85	1.110	21.92	243	1.180	35.39	418
1.045	9.16	96	1.115	22.86	255	1.185	36.31	430
1.050	10.17	107	1.120	23.82	267	1.190	37.23	443
1.055	11.18	118	1.125	24.78	278	1.195	38.16	456
1.060	12.19	129	1.130	25.75	. 291	1.200	39.11	469
1.065	13.19	141	1.135	26.70	303			

#### CONSTANT BOILING SOLUTION OF HYDROCHLORIC ACID

(Hulett and Bonner, Jour. Am. Chem. Soc., 31, 390)

Barometric pressure	Per cent HCl	Grams constant boiling distillate containing 1 mol HCl
770	20.218	180.390
760	20.242	180.170
750	20.266	179.960
740	20.290	179.745
730	20.314	179.530

The easiest and most accurate method of preparing standard solutions of hydrochloric acid is to weigh out a definite amount of the constant boiling solution of hydrochloric acid and dilute this to a certain volume. The constant boiling solution is obtained by diluting the concentrated hydrochloric acid of the laboratory with an equal volume of water. Distill from a retort or distilling flask connected with a condenser. When three fourths has been distilled off, change the receiver and collect as much of the remainder as is desirable. The last fraction is the constant boiling solution, and if the barometric pressure is noted, the exact weight of this solution which when diluted to a liter yields a normal solution can be ascertained by reference to the table.

# SPECIFIC GRAVITY OF NITRIC ACID AT 15°C.

(Lunge and Rey, Zeit. angew. Chem., 1891, 165)

Specific gravity at 15° in vacuo	100 pts. by wt. contain grams HNO ₃	1 liter contains grams HNO ₃	Specific gravity at 15° in vacuo	100 pts. by wt. contain grams HNO ₃	1 liter contains grams HNO ₃	Specific gravity at $\frac{15}{4}^{\circ}$ in vacuo	100 pts. by wt. contain grams HNO ₃	1 liter contains grams HNO ₃
1.000 1.005 1.010 1.015 1.020 1.025 1.030 1.035 1.040 1.045 1.050 1.055 1.060 1.075 1.080 1.095 1.100 1.105 1.110 1.115 1.120 1.125 1.130 1.135 1.140 1.145 1.150 1.155 1.160 1.165 1.170 1.175 1.180 1.185 1.190 1.185 1.190 1.195	0.10 1.00 1.90 2.80 3.70 4.60 5.50 6.38 7.26 8.13 8.99 9.84 10.68 11.51 12.33 13.15 13.95 14.74 15.53 16.32 17.11 17.89 18.67 19.45 20.23 21.00 21.77 22.54 23.31 24.08 24.84 24.84 25.60 26.36 27.12 27.88 28.63 29.38 30.13 30.88 31.62 32.36	1 10 19 28 38 47 57 66 75 85 94 104 113 123 132 141 151 160 169 179 188 207 217 227 227 236 246 256 266 276 286 296 306 316 326 337 337 338 338	1.205 1.210 1.215 1.220 1.225 1.230 1.235 1.240 1.245 1.250 1.265 1.270 1.275 1.280 1.285 1.290 1.305 1.310 1.315 1.320 1.325 1.330 1.335 1.340 1.345 1.350 1.355 1.360 1.365 1.370 1.375 1.380 1.375 1.380 1.375 1.380 1.385 1.390 1.395 1.395 1.400 1.405	33.09 33.82 34.55 35.28 36.03 36.78 37.53 38.29 39.05 39.82 40.58 41.34 42.10 42.87 43.64 44.41 45.18 45.95 46.72 47.49 48.26 49.07 49.89 50.71 51.53 52.37 53.22 54.07 54.93 55.79 56.66 57.57 58.48 59.39 60.30 61.27 62.24 63.23 64.25 65.30 66.40	399 409 420 430 4411 452 463 475 486 498 509 521 533 544 556 568 581 593 603 617 630 643 656 669 683 697 710 725 739 753 768 783 798 814 829 846 862 879 896 914 933	1.410 1.415 1.420 1.425 1.430 1.435 1.440 1.445 1.450 1.455 1.460 1.465 1.470 1.475 1.480 1.495 1.500 1.501 1.502 1.503 1.504 1.505 1.506 1.507 1.508 1.507 1.510 1.511 1.512 1.513 1.514 1.515 1.516 1.517 1.518 1.519	67.50 68.63 69.80 70.98 72.17 73.39 74.68 75.98 77.28 78.60 79.98 81.42 82.90 84.45 86.05 87.70 89.60 91.60 94.60 95.08 95.55 96.00 96.39 96.76 97.13 97.50 97.84 98.10 98.32 98.53 98.73 98.90 99.01 99.21 99.34 99.57 99.67	952 971 991 1011 1032 1053 1075 1098 1121 1144 1168 1193 1219 1246 1274 1302 1335 1369 1411 1420 1428 1436 1444 1457 1464 1470 1476 1481 1486 1494 1497 1501 1504 1510 1512 1515

# SPECIFIC GRAVITY OF SULPHURIC ACID AT 15°C.

(Lunge, Isler and Naef, Zeit. angew. Chem., 1890, 131)

Sp. G. at ^{15°} in vacuo	100 pts. by wt. contain grams H ₂ SO ₄	1 liter contains grams H ₂ SO ₄	Sp. G. at ½° in vacuo	100 pts. by wt. contain grams H ₂ SO ₄	1 liter contains grams H ₂ SO ₄	Sp. G. at ½° in vacuo	by wt. contain grams H ₂ SO ₄	1 liter contains grams H ₂ SO ₄
1.000 1.005 1.010 1.015 1.020 1.025 1.030 1.035 1.040 1.045 1.050 1.065 1.070 1.075 1.080 1.085 1.090 1.100 1.115 1.120 1.125 1.130 1.135 1.140 1.145 1.150 1.155 1.160 1.165 1.170 1.175 1.180		H ₂ SO ₄ 1 8 16 23 31 39 46 5+4 62 71 77 85 93 102 109 117 125 133 142 150 158 166 175 183 191 199 207 215 223 231 239 248 257 266 275 283 292	1.225 1.230 1.235 1.240 1.245 1.250 1.255 1.260 1.265 1.270 1.275 1.280 1.285 1.300 1.305 1.310 1.315 1.320 1.325 1.330 1.345 1.350 1.355 1.360 1.365 1.370 1.375 1.380 1.385 1.390 1.395 1.400 1.405		373 382 391 400 409 418 426 435 444 454 462 472 481 490 500 510 519 529 538 548 557 567 577 586 696 605 614 624 633 643 643 662 672 682 692 702 711	1.450 1.455 1.460 1.465 1.470 1.475 1.480 1.495 1.500 1.505 1.510 1.515 1.520 1.525 1.530 1.535 1.540 1.545 1.550 1.555 1.560 1.565 1.570 1.565 1.570 1.585 1.590 1.595 1.600 1.605 1.610 1.615 1.620 1.625 1.630		## 1504    798     808     817     827     837     846     856     856     865     876     936     916     926     936     946     957     967     977     987     967     1025     1035     1044     1075     1085     1096     1107     1118     1128     1139     1150     1160
1.185 1.190 1.195 1.200 1.205 1.210 1.215 1.220	25.40 26.04 26.68 27.32 27.95 28.58 29.21 29.84	301 310 319 328 337 346 355 364	1.410 1.415 1.420 1.425 1.430 1.435 1.440 1.445	51.15 51.66 52.15 52.63 53.11 53.59 54.07 54.55	721 730 740 750 759 769 779 789	1.635 1.640 1.645 1.650 1.655 1.660 1.665 1.670	71.57 71.99 72.40 72.82 73.23 73.64 74.07 74.51	1170 1181 1192 1202 1212 1222 1233 1244

# SPECIFIC GRAVITY OF SULFURIC ACID AT 15°C.

(Lunge, Isler and Naef, Zeit. angew. Chem., 1890, 131)

Sp. G. at $\frac{15}{4}^{\circ}$ in vacuo	by wt. contain grams H ₂ SO ₄	1 liter contains grams H ₂ SO ₄	Sp. G at $\frac{15^{\circ}}{4}$ in vacuo	100 pts. by wt. contain grams H ₂ SO ₄	1 liter contains grams H ₂ SO ₄	Sp. G. at $\frac{15^{\circ}}{4}$ in vacuo	100 pts. by wt. contain grams H ₂ SO ₄	1 liter contains grams H ₂ SO ₄
1.675	74.97	1256	1.775	83.90	1489	1.831	92,30	1690
1.680	75.42	1267	1.780	84.50	1504	1.832	92.52	1695
1.685	75.86	1278	1.785	85.10	1519	1.833	92.75	1700
1.690	76.30	1289	1.790	85.70	1534	1.834	93.05	1706
1.695	76.73	1301	1.795	86.30	1549	1.835	93.43	1713
1.700	77.17	1312	1.800	86.90	1564	1.836	93.80	1722
1.705	77.60	1323	1.805	87.60	1581	1.837	94.20	1730
1.710	78.04	1334	1.810	88.30	1598	1.838	94.60	1739
1.715	78.48	1346	1.815	89.05	1621	1.839	95.00	1748
1.720	78.92	1357	1.820	90.05	1639	1.840	95.60	1759
1.725	79.36	1369	1.821	90.20	1643	1.8405	95.95	1765
1.730	79.80	1381	1.822	90.40	1647	1.8410	97.00	1786
1.735	80.24	1392	1.823	90.60	1651	1.8415	97.70	1799
1.740	80.68	1404	1.824	90.80	1656	1.8410	98.20	1808
1.745	81.12	1416	1.825	91.00	1661	1.8405	98.70	1816
1.750	81.56	1427	1.826	91.25	1666	1.8400	99.20	1825
1.755	82.00	1439	1.827	91.50	1671	1.8395	99.45	1830
1.760	82.44	1451	1.828	91.70	1676	1.8390	99.70	1834
1.765	82.88	1463	1.829	91.90	1681	1.8385	99.95	1838
1.770	83.32	1475	1.830	92.10	1685			

#### CORRECTIONS FOR THE EXPOSED THREAD OF MERCURY THERMOMETERS

(Landolt-Börnstein)

$$n\beta (T-t)$$

n is the length of exposed thread expressed in terms of the thermometer graduations,  $\beta$  the apparent coefficient of expansion of mercury in glass, T the temperature read off, t, the mean temperature of the exposed thread. For temperatures lower than  $100^{\circ}$   $\beta$  varies from  $63^{\circ}$ 00 to  $61^{\circ}$ 00, depending on the glass, and for higher temperatures the fraction is somewhat smaller.

#### TO THERMOMETERS, GRADUATED FROM 0° TO 100°

(Length of degrees about 4 mm.)

T-t=	30°	35°	40°	45°	50°	55°	60°	65°	70°	75°	80°	85°
n = 10° 20° 30°	.05 .1 .2	.05 .1 .2	.05 .15 .25	.05 .15 .25	.05 .15 .25	.05 .15 .25	.05 .15 .25	.05 .20 .3	.1 .2 .3	.1 .2 .35	.1 .2 .35	.1 .25 .35
40° 50° 60° 70°	.3 .35 .45	.3 .4 .5	.3 .4 .5	.35 .4 .55	.35 .45 .55	.35 .45 .55 .65	.4 .5 .6 .7	.4 .5 .65 .7	.45 .55 .65 .75	.45 .55 .7 .8	.5 .6 .75 .85	.5 .65 .8 .9
80° 90° 100°							.75	.8 .9	.85 1.0 1.1	.95 1.1 1.2	1.0 1.1 1.3	1.1 1.2 1.3

# THERMOMETERS GRADUATED FROM 0° TO 360°

(Length of degrees 1 to 1.6 mm.)

T-t=	70°	80°	90°	100°	110°	120°	130°	140°	150°	160°	170°	180°	190°	200°	210°	220°
n=10° 20° 30° 40° 50°	0. .15 .25 .35 .45	.05 .15 .3 .4 .55	.05 .2 .35 .5	.05 .2 .4 .55 .7	.1 .25 .45 .6 .8	.1 .3 .5 .7	.1 .3 .55 .75 .95	.15 .4 .6 .8 1.0	.2 .45 .65 .90	.2 .45 .7 .95 1.2	.2 .5 .75 1.0 1.2	.25 .55 .8 1.0 1.3	.3 .55 .85 1.1 1.4	.35 .60 .9 1.2 1.4	.35 .65 .95 1.2 1.5	.40 .65 .95 1.3 1.6
60° 70° 80° 90° 100°	.55 .7 .8 .9 1.0	.65 .8 .9 1.0 1.2	.75 .9 1.0 1.2 1.3	.9 1.1 1.2 1.4 1.6	1.0 1.2 1.4 1.6 1.8	1.1 1.3 1.5 1.7 2.0	1.2 1.4 1.6 1.9 2.1	1.2 1.5 1.7 2.0 2.2	1.3 1.6 1.8 2.1 2.3	1.4 1.7 1.9 2.2 2.4	1.5 1.8 2.0 2.3 2.6	1.6 1.9 2.1 2.4 2.7	1.7 1.9 2.2 2.5 2.8	1.7 2.0 2.3 2.6 2.9	1.8 2.1 2.4 2.8 3.1	1.9 2.2 2.5 2.9 3.2
110° 120° 130° 140° 150°				1.8 2.0	2.0 2.2 2.4 2.7	2.2 2.4 2.7 2.9	2.3 2.6 2.8 3.1	2.4 2.7 2.9 3.2	2.5 2.8 3.0 3.3 3.5	2.7 2.9 3.2 3.5 3.7	2.8 3.1 3.4 3.7 4.0	3.0 3.3 3.6 3.9 4.1	3.1 3.4 3.7 4.0 4.3	3.3 3.6 3.9 4.2 4.6	3.4 3.7 4.1 4.4 4.8	3.6 3.9 4.3 4.6 5.0
160° 170° 180° 190°									3.7 4.0 4.3	4.0 4.3 4.5	4.2 4.5 4.8	4.5 4.8 5.1 5.4	4.7 5.0 5.3 5.6	4.9 5.2 5.6 5.9	5.1 5.5 5.9 6.2	5.4 5.8 6.1 6.5
200° 210° 220°												5.7	6.0 6.3 6.7	6.3 6.7 7.0	6.6 7.0 7.4	6.9 7.3 7.7

#### TABLE XXVII

# FIXED POINTS OF THE THERMOMETRIC SCALE

(Transition temperatures)

	H. Scale	
$ \begin{array}{c} {\rm Na_2CrO_4 \cdot 10\ H_2O - Na_2CrO_4 \cdot 6\ H_2O} \\ {\rm Na_2CrO_4 \cdot 10\ H_2O - Na_2CrO_4 \cdot 4\ H_2O} \\ {\rm Na_3CrO_4 \cdot \ 6\ H_2O - Na_2CrO_4 \cdot 4\ H_2O} \end{array} $	19.525 19.987 25.90	Richards and Kelley
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	32.00 32.96 35.37	Wells and McAdam
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	32.383 \ 50.674 \ 58.089	Richards and Wells Richards and Wrede

#### CORRECTIONS FOR LOSS OF WEIGHT IN AIR

The following table, calculated by Kohlrausch, contains corrections, C, expressed in milligrams, to be added algebraically to each gram of apparent weight of a substance, the specific gravity of which is S.

S C	S	С	S	C
0.7 + 1.57 0.8 + 1.36 0.9 + 1.19 1.0 + 1.06 1.1 + 0.95 1.2 + 0.86 1.3 + 0.78 1.4 + 0.71 1.5 + 0.66 1.6 + 0.61 1.7 + 0.56 1.8 + 0.52 1.9 + 0.49	2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0	+ 0.458 + 0.337 + 0.257 + 0.200 + 0.157 + 0.142 + 0.097 + 0.075 + 0.057 + 0.042 + 0.029 + 0.017 + 0.007	9 10 11 12 13 14 15 16 17 18 19 20	- 0.009 - 0.023 - 0.031 - 0.043 - 0.050 - 0.057 - 0.063 - 0.068 - 0.072 - 0.076 - 0.080 - 0.083

The following values are of constant use in revising the atomic weights of the elements by means of their halides.

# Vacuum correction per apparent gram A c __ 0.000031 gram

 $\begin{array}{lll} {\rm Ag} & -0.000031 \ {\rm gram} \\ {\rm AgBr} & +0.000041 \ {\rm gram} \\ {\rm AgCl} & +0.000075 \ {\rm gram} \\ {\rm AgI} & +0.000071 \ {\rm gram} \end{array}.$ 

	Specific gravity	Vacuum correction per apparent gram
Brass weights	8.3	- 0.000145
Glass	2.5	+ 0.000335

#### TABLE XXIX

#### LOGARITHMS OF NUMBERS

(From 1 to 10,000)

N.	log	N.	log	N.	log	N.	log
1	0.000000	26	1.414973	51	1.707570	76	1.880814
	0.301030	27	1.431364	52	1.716003	77	1.886491
2 3	0.477121	28	1.447158	53	1.724276	78	1.892095
4	0.602060	29	1.462398	54	1.732394	79	1.897627
5	0.698970	30	1.477121	55	1.740363	80	1.903090
6	0.778151	31	1.491362	56	1.748188	81	1.908485
7	0.845098	32	1.505150	57	1.755875	82	1.913814
8	0.903090	33	1.518514	58	1.763428	83	1.919078
9	0.954243	34	1.531479	59	1.770852	84	1.924279
10	1.000000	35	1.544068	60	1.778151	85	1.929419
11	1.041393	36	1.556303	61	1.785330	86	1.934498
12	1.079181	37	1.568202	62	1.792392	87	1.939519
13	1.113943	38	1.579784	63	1.799341	88	1.944483
14	1.146128	39	1.591065	64	1.806181	89	1.949390
15	1.176091	40	1.602060	65	1.812913	90	1.954243
16	1.204120	41	1.612784	66	1.819544	91	1.959041
17	1.230449	42	1.623249	67	1.826075	92	1.963788
18	1.255273	43	1.633468	68	1.832509	93	1.968483
19	1.278754	44	1.643453	69	1.838849	94	1.973128
20	1.301030	45	1.653213	70	1.845098	95	1.977724
21	1.322219	46	1.662758	71	1.851258	96	1.982271
22	1.342423	47	1.672098	72	1.857333	97	1.986772
23	1.361728	48	1.681241	73	1.863323	98	1.991226
2+	1.380211	49	1.690196	74	1.869232	99	1,995635
25	1.397940	50	1.698970	75	1.875061	100	2.000000

REMARK. In the following table, in the nine right-hand columns of each page, where the first or leading figures change from 9's to 0's, asterisks are introduced instead of the 0's, to catch the eye, and to indicate that from thence the two figures of the logarithm to be taken from the second column stand in the next line below.

N.	. 0	1	2	3	4	5	6	7	8	9	D.
100	000000	0434	0868	1301	1734	2166	2598	3029	3461	3891	432
101	4321	4751	5181	5609	6038	6466	6894	7321	7748	8174	428
102	8600	9026	9451	9876	*300	*724	1147	1570	1993	2415	424
103	012837	3259	3680	4100	4521	4940	5360	5779	6197	6616	419
104	7033	7451	7868	8284	8700	9116	9532	9947	*361	*775	416
105	021189	1603	2016	2428	28+1	3252	3664	4075	4486	4896	412
106	5306	5715	6125	6533	6942	7350	7757	8164	8571	8978	408
107	9384	9789	*195	**600	1004	1408	1812	2216	2619	3021	404
108	033424	3826	4227	4628	5029	5430	5830	6230	6629	7028	400
109	7426	7825	8223	8620	9017	9414	9811	*207	*602	*998	396
110	041393	1787	2182	2576	2969	3362	3755	4148	4540	4932	393
111	5323	5714	6105	6495	6885	7275	7664	8053	8442	8830	389
112	9218	9606	9993	*380	*766	1153	1538	1924	2309	2694	386
113	053078	3463	3846	4230	4613	4996	5378	5760	6142	6524	382
114	6905	7286	7666	8046	8426	8805	9185	9563	9942	*320	379
115	060698	1075	1452	1829	2206	2582	2958	3333	3709	4083	376
116	4458	4832	5206	5580	5953	6326	6699	7071	7443	7815	372
117	8186	8557	8928	9298	9668	**38	*407	*776	1145	1514	369
118	071882	2250	2617	2985	3352	3718	4085	4451	4816	5182	366
119	5547	5912	6276	6640	7004	7368	7731	8094	8457	8819	363
120	079181	9543	9904	*266	*626	*987	1347	1707	2067	2426	360
121	082785	3144	3503	3861	4219	4576	4934	5291	5647	6004	357
122	6360	6716	7071	7426	7781	8136	8490	8845	9198	9552	355
123	9905	*258	*611	*963	1315	1667	2018	2370	2721	3071	351
124	093422	3772	4122	4471	4820	5169	5518	5866	6215	6562	349
125	6910	7257	7604	7951	8298	8644	8990	9335	9681	**26	346
126	100371	0715	1059	1403	1747	2091	2434	2777	3119	3462	343
127	3804	4146	4487	4828	5169	5510	5851	6191	6531	6871	340
128	7210	7549	7888	8227	8565	8903	9241	9579	9916	*253	338
129	110590	0926	1263	1599	1934	2270	2605	2940	3275	3609	335
130	113943	4277	4611	4944	5278	5611	5943	6276	6608	6940	333
131	7271	7603	7934	8265	8595	8926	9256	9586	9915	*245	330
132	120574	0903	1231	1560	1888	2216	2544	2871	3198	3525	328
133	3852	4178	4504	4830	5156	5481	5806	6131	6456	6781	325
134	7105	7429	7753	8076	8399	8722	9045	9368	9690	**12	323
135	130334	0655	0977	1298	1619	1939	2260	2580	2900	3219	321
136	3539	3858	4177	4496	4814	5133	5451	5769	6086	6403	318
137	6721	7037	7354	7671	7987	8303	8618	8934	9249	9564	315
138	9879	*194	*508	*822	1136	1450	1763	2076	2389	2702	314
139	143015	3327	3639	3951	4263	4574	4885	5196	5507	5818	311
140	146128	6438	6748	7058	7367	7676	7985	8294	8603	8911	309
141	9219	9527	9835	*142	*449	*756	1063	1370	1676	1982	307
142	152288	2594	2900	3205	3510	3815	4120	4424	4728	5032	305
143	5336	5640	5943	6246	6549	6852	7154	7457	7759	8061	303
144	8362	8664	8965	9266	9567	9868	*168	*469	*769	1068	301
145	161368	1667	1967	2266	2564	2863	3161	3460	3758	4055	299
146	4353	4650	4947	5244	5541	5838	6134	6430	6726	7022	297
147	7317	7613	7908	8203	8497	8792	9086	9380	9674	9968	295
148	170262	0555	0848	1141	1434	1726	2019	2311	2603	2895	293
149	3186	3478	3769	4060	4351	4641	4932	5222	5512	5802	291
N.	0	1	2	3	4	5	6	7	8	9	D.

N.	0	1	2	3	4	5	6	7	8	9	D.
150	176091	6381	6670	6959	7248	7536	7825	8113	8401 1272 4123 6956 9771 2567 5346 8107 *850 3577	8689	289
151	8977	9264	9552	9839	*126	*413	*699	*985		1558	287
152	181844	2129	2415	2700	2985	3270	3555	3839		4407	285
153	4691	4975	5259	5542	5825	6108	6391	6674		7239	283
154	7521	7803	8084	8366	8647	8928	9209	9490		**51	281
155	190332	0612	0892	1171	1451	1730	2010	2289		2846	279
156	3125	3403	3681	3959	4237	4514	4792	5069		5623	278
157	5899	6176	6453	6729	7005	7281	7556	7832		8382	276
158	8657	8932	9206	9481	9755	**29	*303	*577		1124	274
159	201397	1670	1943	2216	2488	2761	3033	3305		3848	272
160	204120	4391	4663	4934	5204	5475	5746	6016	6286	6556   9247   1921   4579   7221   9846   2456   5051   7630   *193	271
161	6826	7096	7365	7634	7904	8173	8441	8710	8979		269
162	9515	9783	**51	*319	*586	*853	1121	1388	1654		267
163	212188	2454	2720	2986	3252	3518	3783	4049	4314		266
164	4844	5109	5373	5638	5902	6166	6430	6694	6957		264
165	7484	7747	8010	8273	8536	8798	9060	9323	9585		262
166	220108	0370	0631	0892	1153	1414	1675	1936	2196		261
167	2716	2976	3236	3496	3755	4015	4274	4533	4792		259
168	5309	5568	5826	6084	6342	6600	6858	7115	7372		258
169	7887	8144	8400	8657	8913	9170	9426	9682	9938		256
170	230449	0704	0960	1215	1470	1724	1979	2234	2488	2742	254
171	2996	3250	3504	3757	4011	4264	4517	4770	5023	5276	253
172	5528	5781	6033	6285	6537	6789	7041	7292	75+1	7795	252
173	8046	8297	8548	8799	9049	9299	9550	9800	**50	*300	250
174	240549	0799	1048	1297	1546	1795	2044	2293	25+1	2790	249
175	3038	3286	3534	3782	4030	4277	4525	4772	5019	5266	248
176	5513	5759	6006	6252	6499	6745	6991	7237	7482	7728	246
177	7973	8219	8464	8709	8954	9198	9443	9687	9932	*176	245
178	250420	0664	0908	1151	1395	1638	1881	2125	2368	2610	243
179	2853	3096	3338	3580	3822	4064	4306	4548	4790	5031	242
180	255273	5514	5755	5996	6237	6477	6718	6958	7198	7+39	241
181	7679	7918	8158	8398	8637	8877	9116	9355	9594	9833	239
182	260071	0310	0548	0787	1025	1263	1501	1739	1976	2214	238
183	2451	2688	2925	3162	3399	3636	3873	4109	43+6	4582	237
184	4818	5054	5290	5525	5761	5996	6232	6467	6702	6937	235
185	7172	7406	7641	7875	8110	8344	8578	8812	90+6	9279	234
186	9513	9746	9980	*213	*446	*679	*912	1144	1377	1609	233
187	271842	3074	2306	2538	2770	3001	3233	3464	3696	3927	232
188	4158	4389	4620	4850	5081	5311	5542	5772	6002	6232	230
189	6462	6692	6921	7151	7380	7609	7838	8067	8296	8525	229
190	278754	8982	9211	9439	9667	9895	*123	*351	*578	*806	228
191	281033	1261	1488	1715	1942	2169	2396	2622	2849	3075	227
192	3301	3527	3753	3979	4205	4431	4656	4882	5107	5332	226
193	5557	5782	6007	6232	6456	6681	6905	7130	7354	7578	225
194	7802	8026	8249	8473	8696	8920	9143	9366	9589	9812	223
195	290035	0257	0480	0702	0925	1147	1369	1591	1813	2034	222
196	2256	2478	2699	2920	3141	3363	3584	3804	4025	4246	221
197	4466	4687	4907	5127	5347	5567	5787	6007	6226	6446	220
198	6665	6884	7104	7323	7542	7761	7979	8198	8416	8635	219
199	8853	9071	9289	9507	9725	9943	*161	*378	*595	*813	218
N.	0	.1	2	3	4	5	6	7	8	9	D.

N.	0	1	2	3	4	5	6	7	8	9	D.
200 201 202 203 204 205 206 207 208 209	301030 3196 5351 7496 9630 311754 3867 5970 8063 320146	1247 3+12 5566 7710 9843 1966 4078 6180 8272 0354	1464 3628 5781 7924 **56 2177 4289 6390 8481 0562	1681 3844 5996 8137 *268 2389 4499 6599 8689 0769	1898 4059 6211 8351 *481 2600 4710 6809 8898 0977	2114 4275 6425 8564 *693 2812 4920 7018 9106 1184	2331 4491 6639 8778 *906 3023 5130 7227 9314 1391	2547 4706 6854 8991 1118 3234 5340 7436 9522 1598	2764 4921 7068 9204 1330 3445 5551 7646 9730 1805	2980 5136 7282 9417 1542 3656 5760 7854 9938 2012	217 216 215 213 212 211 210 209 208 207
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226	322219 4282 6336 8380 330414 2438 4454 6460 8456 340444 342423 4392 6353 8305 350248 2183 4108	2426 4488 6541 8583 0617 2640 4655 6660 8656 0642 2620 4589 6549 8500 0442 2375 4301	2633 4694 6745 8787 0819 2842 4856 6860 8855 0841 2817 4785 6744 0636 2568 4493	2839 4899 6950 8991 1022 3044 5057 7060 9054 1039 3014 4981 6939 8889 0829 2761 4685	3046 5105 7155 9194 1225 3246 5257 7260 9253 1237 3212 5178 7135 9083 1023 2954 4876	3252 5310 7359 9398 1427 3447 5458 7459 9451 1435 3409 5374 7330 9278 1216 3147 5068	3458 5516 7563 9601 1630 3649 5658 .7659 9650 1632 3606 5570 7525 9472 1410 3339 5260	3665 5721 7767 9805 1832 3850 5859 7858 9849 1830 3802 5766 7720 9666 1603 3532 5452	3871 5926 7972 ***8 2034 4051 6059 8058 **47 2028 3999 5962 7915 9860 1796 3724 5643	4077 6131 8176 *211 2236 4253 6260 8257 *246 2225 4196 6157 8110 ***54 1989 3916 5834	206 205 204 203 202 202 201 200 199 198 197 196 195 194 193 193 193
227 228 229 230 231 232 233 234 235 236 237 238 239	6026 7935 9835 361728 3612 5488 7356 9216 371068 2912 4748 6577 8398	6217 8125 **25 1917 3800 5675 75+2 9401 1253 3096 4932 6759 8580	6408 8316 *215 2105 3988 5862 7729 9587 1437 3280 5115 6942 8761	6599 8506 *404 2294 4176 6049 7915 9772 1622 3464 5298 7124 8943	6790 8696 *593 2482 4363 6236 8101 9958 1806 3647 5481 7306 9124	6981 8886 *783 2671 4551 6423 8287 *143 1991 3831 5664 7488 9306	7172 9076 *972 2859 4739 6610 8473 *328 2175 4015 5846 7670 9487	7363 9266 1161 3048 4926 6796 8659 *513 2360 4198 6029 7852 9668	7554 9456 1350 3236 5113 6983 8845 *698 2544 4382 6212 8034 9849	7744 9646 1539 3424 5301 7169 9030 *883 2728 4565 6394 8216 **30	191 190 189 188 188 187 186 185 184 184 183 182 181
240 241 242 243 244 245 246 247 248 249 <b>N</b> .	380211 2017 3815 5606 7390 9166 390935 2697 4452 6199 0	0392 2197 3995 5785 7568 9343 1112 2873 4627 6374	0573 2377 4174 5964 7746 9520 1288 3048 4802 6548	0754 2557 4353 61+2 7923 9698 1+64 3224 4977 6722	0934 2737 4533 6321 8101 9875 1641 3400 5152 6896	1115 2917 4712 6499 8279 **51 1817 3575 5326 7071	1296 3097 4891 6677 8456 *228 1993 3751 5501 7245	1476 3277 5070 6856 8634 *405 2169 3926 5676 7419	1656 3456 5249 7034 8811 *582 2345 4101 5850 7592	1837 3636 5428 7212 8989 *759 2521 4277 6025 7766	181 180 179 178 178 177 176 176 175 174

N.	0	1	2	3	4	5	6	7	8	9	D.
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267	397940 9674 401401 3121 4834 6540 9933 411620 3300 414973 6641 8301 9956 421604 3246 4882 6511 8135	8114 98+7 1573 3292 5005 6710 8110 *102 1788 3467 5140 6807 *121 1788 3410 5045 6674 8297	8287 **20 1745 3464 5176 6881 1956 3635 5307 6973 8633 *286 1933 3574 5208 6836 8459	8461 *192 1917 3635 5346 7051 8749 *440 2124 3803 5474 7139 8798 *451 2097 3737 5371 6999 8621	8634 *365 2089 3807 5517 7221 8918 *609 2293 3970 5641 7306 8964 *616 2261 3901 5534 7161 8783	8808 *538 2261 3978 5688 7391 *777 2461 4137 5808 7472 9129 *781 2426 4065 5697 7324 8944	8981 *711 2433 4149 5858 7561 9257 *946 2629 4305 5974 7638 9295 *945 2590 4228 5860 7486 9106	9154 *883 2605 4320 6029 7731 9426 1114 2796 4472 6141 7804 9460 1110 2754 4392 6023 7648 9268	9328 1056 2777 4492 6199 7901 9595 1283 2964 4639 6308 7970 9625 1275 2918 4555 6186 7811	9501 1228 2949 4663 6370 8070 9764 1451 3132 4806 6474 8135 9791 1439 3082 4718 6349 7973 9591	173 173 172 171 171 170 169 168 167 166 165 165 164 164 163 162 162
269 270 271 272 273 274 275 276 277 278 279	9752 431364 2969 4569 6163 7751 9333 440909 2480 4045 5604	9914 1525 3130 4729 6322 7909 9491 1066 2637 4201 5760	**75 1685 3290 4888 6481 8067 9648 1224 2793 4357 5915	*236 1846 3450 5048 6640 8226 9806 1381 2950 4513 6071	*398 2007 3610 5207 6798 8384 9964 1538 3106 4669 6226	*559 2167 3770 5367 6957 8542 *122 1695 3263 4825 6382	*720 2328 3930 5526 7116 8701 *279 1852 3419 4981 6537	*881 2488 4090 5685 7275 8859 *437 2009 3576 5137 6692	1042 2649 4249 5844 7433 9017 *594 2166 3732 5293 6848	1203 2809 4409 6004 7592 9175 *752 2323 3889 5449 7003	161 160 159 159 158 158 157 157 156
280 281 282 283 284 285 286 287 288 289	447158 8706 450249 1786 3318 4845 6366 7882 9392 460898	7313 8861 0403 1940 3471 4997 6518 8033 9543 1048	7468 9015 0557 2093 3624 5150 6670 8184 9694 1198	7623 9170 0711 2247 3777 5302 6821 8336 9845 1348	7778 9324 0865 2400 3930 5454 6973 8487 9995 1499	7933 9478 1018 2553 4082 5606 7125 8638 *146 1649	\$088 9633 1172 2706 4235 5758 7276 8789 *296 1799	8242 9787 1326 2859 4387 5910 7428 8940 *447 1948	8397 9941 1479 3012 4540 6062 7579 9091 *597 2098	\$552 **95 1633 3165 4692 6214 7731 9242 *748 2248	155 154 154 153 153 152 152 151 151
290 291 292 293 294 295 296 297 298 299	462398 3893 5383 6868 8347 9822 471292 2756 4216 5671	2548 4042 5532 7016 8495 9969 1438 2903 4362 5816	2697 4191 5680 7164 8643 *116 1585 3049 4508 5962	2847 4340 5829 7312 8790 *263 1732 3195 4653 6107	2997 4490 5977 7460 8938 *410 1878 3341 4799 6252	3146 4639 6126 7608 9085 *557 2025 3487 4944 6397	3296 4788 6274 7756 9233 *704 2171 3633 5090 6542	3445 4936 6423 7904 9380 *851 2318 3779 5235 6687	3594 5085 6571 8052 9527 *998 2464 3925 5381 6832	3744 5234 6719 8200 9675 1145 2610 4071 5526 6976	150 149 149 148 148 147 146 146 146
N.	. 0	1	2	3	4	5	6	7	8	9	D.

N.	0	1	2	3	4	5	6	7	8	9	D.
300 301 302 303 304 305 306 307 308 309	477121 8566 480007 1443 2874 4300 5721 7138 8551 9958	7266 8711 0151 1586 3016 4442 5863 7280 8692 **99	7411 8855 0294 1729 3159 4585 6005 7421 8833 *239	7555 8999 0438 1872 3302 4727 6147 7563 8974 *380	7700 9143 0582 2016 3445 4869 6289 7704 9114 *520	7844 9287 0725 2159 3587 5011 6430 7845 9255 *661	7989 9431 0869 2302 3730 5153 6572 7986 9396 *801	8133 9575 1012 2445 3872 5295 6714 8127 9537 *941	8278 9719 1156 2588 4015 5437 6855 8269 9677 1081	8422 9863 1299 2731 4157 5579 6997 8410 9818 1222	145 144 144 143 143 142 142 141 141 140
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324	491362 2760 4155 5544 6930 8311 9687 501059 3791 505150 6505 7856 9203 510545	1502 2900 4294 5683 7068 8448 9824 1196 2564 3927 5286 6640 7991 9337 0679	1642 3040 4433 5822 7206 8586 9962 1333 2700 4063 5421 6776 8126 9471 0813	1782 3179 4572 5960 7344 8724 **99 1470 2837 4199 5557 6911 8260 9606 0947	1922 3319 4711 6099 7483 8862 *236 1607 2973 4335 5693 7046 8395 9740 1081	2062 3458 4850 6238 7621 8999 *374 1744 3109 4471 5828 7181 8530 9874 1215	2201 3597 4989 6376 7759 9137 *511 1880 3246 4607 5964 7316 8664 ****9 1349	2341 3737 5128 6515 7897 9275 *648 2017 3382 4743 6099 7451 8799 *143 1482	2481 3876 5267 6653 8035 9412 *785 2154 3518 4878 6234 7586 8934 *277 1616	2621 4015 5406 6791 8173 9550 *922 2291 3655 5014 6370 7721 9068 *411 1750	140 139 139 138 138 137 137 136 136 136 135 135 135
324 325 326 327 328 329 <b>330</b> 331	1883 3218 4548 5874 7196 518514 9828	2017 3351 4681 6006 7328 8646 9959	0813 2151 3484 4813 6139 7460 8777 **90	2284 3617 4946 6271 7592 8909 *221	2418 3750 5079 6403 7724 9040 *353	2551 3883 5211 6535 7855 9171 *484	2684 4016 5344 6668 7987 9303 *615	2818 4149 5476 6800 8119 9434 *745	2951 4282 5609 6932 8251 9566 *876	3084 4414 5741 7064 8382 9697 1007	134 133 133 133 132 132 131 131
332 333 334 335 336 337 338 339	521138 2444 3746 5045 6339 7630 8917 530200	1269 2575 3876 5174 6469 7759 9045 0328	1400 2705 4006 5304 6598 7888 9174 0456	1530 2835 4136 5434 6727 8016 9302 0584	1661 2966 4266 5563 6856 8145 9430 0712	1792 3096 4396 5693 6985 8274 9559 0840	1922 3226 4526 5822 7114 8402 9687 0968	2053 3356 4656 5951 7243 8531 9815 1096	2183 3486 4785 6081 7372 8660 9943 1223	2314 3616 4915 6210 7501 8788 **72 1351	131 130 130 129 129 129 128 128
340 341 342 343 344 345 346 347 348 349	531479 2754 4026 5294 6558 7819 9076 540329 1579 2825	1607 2882 4153 5421 6685 7945 9202 0455 1704 2950	1734 3009 4280 5547 6811 8071 9327 0580 1829 3074	1862 3136 4407 5674 6937 8197 9452 0705 1953 3199	1990 3264 4534 5800 7063 8322 9578 0830 2078 3323	2117 3391 4661 5927 7189 8448 9703 0955 2203 3447	2245 3518 4787 6053 7315 8574 9829 1080 2327 3571	2372 3645 4914 6180 7441 8699 9954 1205 2452 3696	2500 3772 5041 6306 7567 8825 **79 1330 2576 3820	2627 3899 5167 6432 7693 8951 *204 1454 2701 3944	128 127 127 126 126 126 125 125 125 125
N.	0	1	2	3	4	5	6	7	8	9	D.

N.	0	1	2	3	4	5	6	7	8	9	D.
350 351 352 353 354 355 356 357 358 359	544068 5307 6543 7775 9003 550228 1450 2668 3883 5094	4192 5431 6666 7898 9126 0351 1572 2790 4004 5215	4316 5555 6789 8021 9249 0473 1694 2911 4126 5336	4440 5678 6913 8144 9371 0595 1816 3033 4247 5457	4564 5802 7036 8267 9494 0717 1938 3155 4368 5578	4688 5925 7159 8389 9616 0840 2060 3276 4489 5699	4812 6049 7282 8512 9739 0962 2181 3398 4610 5820	4936 6172 7405 8635 9861 1084 2303 3519 4731 5940	5060 6296 7529 8758 9984 1206 2425 3640 4852 6061	5183 6419 7652 8881 *106 1328 2547 3762 4973 6182	124 124 123 123 123 122 122 121 121 121
360 361 362 363 364 365 366 367 368 369	556303 7507 8709 9907 561101 2293 3481 4666 5848 7026	6423 7627 8829 **26 1221 2412 3600 4784 5966 7144	6544 7748 8948 *146 1340 2531 3718 4903 6084 7262	6664 7868 9068 *265 1459 2650 3837 5021 6202 7379	6785 7988 9188 *385 1578 2769 3955 5139 6320 7497	6905 8108 9308 *504 1698 2887 4074 5257 6437 7614	7026 8228 9428 *624 1817 3006 4192 5376 6555 7732	7146 8349 9548 *743 1936 3125 4311 5494 6673 7849	7267 8469 9667 *863 2055 3244 4429 5612 6791 7967	7387 8589 9787 *982 2174 3362 4548 5730 6909 8084	120 120 120 119 119 119 119 118 118
370 371 372 373 374 375 376 377 378 379	568202 9374 570543 1709 2872 4031 5188 6341 7492 8639	\$319 9491 0660 1825 2988 4147 5303 6457 7607 8754	8436 9608 0776 1942 3104 4263 5419 6572 7722 8868	8554 9725 0893 2058 3220 4379 5534 6687 7836 8983	8671 98+2 1010 217+ 3336 4+9+ 5650 6802 7951 9097	8788 9959 1126 2291 3452 4610 5765 6917 8066 9212	8905 **76 1243 2407 3568 4726 5880 7032 8181 9326	9023 *193 1359 2523 3684 4841 5996 7147 8295 9441	9140 *309 1476 2639 3800 4957 6111 7262 8410 9555	9257 *+26 1592 2755 3915 5072 6226 7377 8525 9669	117 117 116 116 116 115 115 115
380 381 382 383 384 385 386 387 388 389	579784 580925 2063 3199 4331 5461 6587 7711 8832 9950	9898 1039 2177 3312 4444 5574 6700 7823 8944 **61	**12 1153 2291 3426 4557 5686 6812 7935 9056 *173	*126 1267 2404 3539 4670 5799 6925 8047 9167 *284	*241 1381 2518 3652 4783 5912 7037 8160 9279 *396	*355 1495 2631 3765 4896 6024 7149 8272 9391 *507	*469 1608 27+5 3879 5009 6137 7262 838+ 9503 *619	*583 1722 2858 3992 5122 6250 7374 8496 9615 *730	*697 1836 2972 4105 5235 6362 7486 8608 9726 *842	*811 1950 3085 4218 5348 6475 7599 8720 9838 *953	114 114 113 113 113 112 112 112
390 391 392 393 394 395 396 397 398 399	591065 2177 3286 4393 5496 6597 7695 8791 9883 600973	1176 2288 3397 4503 5606 6707 7805 8900 9992 1082	1287 2399 3508 4614 5717 6817 7914 9009 *101 1191	1399 2510 3618 4724 5827 6927 8024 9119 *210 1299	1510 2621 3729 4834 5937 7037 8134 9228 *319 1408	1621 2732 3840 4945 6047 7146 8243 9337 *428 1517	1732 28+3 3950 5055 6157 7256 8353 9+46 *537 1625	1843 2954 4061 5165 6267 7366 8462 9556 *646 1734	1955 3064 4171 5276 6377 7476 8572 9665 *755 1843	2066 3175 4282 5386 6487 7586 8681 9774 *864 1951	111 111 110 110 110 110 110 109 109
N.	0	1	2	3	4	5	6	7	8	9	D.

N.	0	1	2	3	4	5	6	7	8	9	D.
400 401 402 403 404 405 406 407 408 409	602060 3144 4226 5305 6381 7455 8526 9594 610660 1723	2169 3253 4334 5413 6489 7562 8633 9701 0767 1829	2277 3361 4442 5521 6596 7669 8740 9808 0873 1936	2386 3469 4550 5628 6704 7777 8847 9914 0979 2042	2494 3577 4658 5736 6811 7884 8954 **21 1086 2148	2603 3686 4766 5844 6919 7991 9061 *128 1192 2254	2711 3794 4874 5951 7026 8098 9167 *234 1298 2360	2819 3902 4982 6059 7133 8205 9274 *341 1405 2466	2928 4010 5089 6166 7241 8312 9381 *447 1511 2572	3036 4118 5197 6274 7348 8419 9488 *554 1617 2678	108 108 108 108 107 107 107 107 106 106
410 411 412 413 414 415 416 417 418 419	612784 3842 4897 5950 7000 8048 9093 620136 1176 2214	2890 3947 5003 6055 7105 8153 9198 0240 1280 2318	2996 4053 5108 6160 7210 8257 9302 0344 1384 2421	3102 4159 5213 6265 7315 8362 9406 0448 1488 2525	3207 4264 5319 6370 7420 8466 9511 0552 1592 2628	3313 4370 5424 6476 7525 8571 9615 0656 1695 2732	3419 4475 5529 6581 7629 8676 9719 0760 1799 2835	3525 4581 5634 6686 7734 8780 9824 0864 1903 2939	3630 4686 5740 6790 7839 8884 9928 0968 2007 3042	3736 4792 5845 6895 7943 8989 **32 1072 2110 3146	106 106 105 105 105 105 104 104 104
420 421 422 423 424 425 426 427 428 429	623249 4282 5312 6340 7366 8389 9410 630428 1444 2457	3353 4385 5415 6443 7468 8491 9512 0530 1545 2559	3+56 4+88 5518 65+6 7571 8593 9613 0631 1647 2660	3559 4591 5621 6648 7673 8695 9715 0733 1748 2761	3663 4695 5724 6751 7775 8797 9817 0835 1849 2862	3766 4798 5827 6853 7878 8900 9919 0936 1951 2963	3869 4901 5929 6956 7980 9002 **21 1038 2052 3064	3973 5004 6032 7058 8082 9104 *123 1139 2153 3165	4076 5107 6135 7161 8185 9206 *224 1241 2255 3266	4179 5210 6238 7263 8287 9308 *326 1342 2356 3367	103 103 103 103 102 102 102 102 101 101
430 431 432 433 434 435 436 437 438 439	633468 4477 5484 6488 7490 8489 9486 640481 1474 2465	3569 4578 5584 6588 7590 8589 9586 0581 1573 2563	3670 4679 5685 6688 7690 8689 9686 0680 1672 2662	3771 4779 5785 6789 7790 8789 9785 0779 1771 2761	3872 4880 5886 6889 7890 8888 9885 0879 1871 2860	3973 4981 5986 6989 7990 8988 9984 0978 1970 2959	4074 5081 6087 7089 8090 9088 **84 1077 2069 3058	4175 5182 6187 7189 8190 9188 *183 1177 2168 3156	4276 5283 6287 7290 8290 9287 *283 1276 2267 3255	4376 5383 6388 7390 8389 9387 *382 1375 2366 3354	100 100 100 100 99 99 99 99
440 441 442 443 444 445 446 447 448 449	643453 4439 5422 6404 7383 8360 9335 650308 1278 2246	3551 4537 5521 6502 7481 8458 9432 0405 1375 2343	3650 4636 5619 6600 7579 8555 9530 0502 1472 2440	3749 4734 5717 6698 7676 8653 9627 0599 1569 2536	3847 4832 5815 6796 7774 8750 9724 0696 1666 2633	3946 4931 5913 6894 7872 8848 9821 0793 1762 2730	4044 5029 6011 6992 7969 8945 9919 0890 1859 2826	4143 5127 6110 7089 8067 9043 **16 0987 1956 2923	4242 5226 6208 7187 8165 9140 *113 1084 2053 3019	4340 5324 6306 7285 8262 9237 *210 1181 2150 3116	98 98 98 98 97 97 97 97
N.	0	1	2	3	4	5	6	7	8	9	D.

N.	0	1	2	3	4	5	6	7	8	9	D.
450 451 452 453 454 455 456 457 458 459	653213 4177 5138 6098 7056 8011 8965 9916 660865 1813	3309 4273 5235 6194 7152 8107 9060 **11 0960 1907	3405 4369 5331 6290 7247 8202 9155 *106 1055 2002	3502 4465 5427 6386 7343 8298 9250 *201 1150 2096	3598 4562 5523 6482 7438 8393 9346 *296 1245 2191	3695 4658 5619 6577 7534 8488 9441 *391 1339 2286	3791 4754 5715 6673 7629 8584 9536 *486 1434 2380	3888 4850 5810 6769 7725 8679 9631 *581 1529 2475	3984 4946 5906 6864 7820 8774 9726 *676 1623 2569	4080 5042 6002 6960 7916 8870 9821 *771 1718 2663	96 96 96 96 95 95 95 95
460 461 462 463 464 465 466 467 468 469 470	662758 3701 4642 5581 6518 7453 8386 9317 670246 1173 672098	2852 3795 4736 5675 6612 7546 8479 9410 0339 1265 2190	2947 3889 4830 5769 6705 7640 8572 9503 0431 1358 2283 2305	3041 3983 4924 5862 6799 7733 8665 9596 0524 1451 2375	3135 4078 5018 5956 6892 7826 8759 9689 0617 1543 2467	3230 4172 5112 6050 6986 7920 8852 9782 0710 1636 2560	3324 4266 5206 6143 7079 8013 8945 9875 0802 1728 2652	3418 4360 5299 6237 7173 8106 9038 9967 0895 1821 2744	3512 4454 5393 6331 7266 8199 9131 **60 0988 1913 2836	3607 4548 5487 6424 7360 8293 9224 *153 1080 2005	94 94 94 94 93 93 93 93 93
471 472 473 474 475 476 477 478 479 <b>480</b>	3021 3942 4861 5778 6694 7607 8518 9428 680336 681241	3113 4034 4953 5870 6785 7698 8609 9519 0426 1332	3205 4126 5045 5962 6876 7789 8700 9610 0517 1422	3297 4218 5137 6053 6068 7881 8791 9700 0607 1513	3390 4310 5228 6145 7059 7972 8882 9791 0698 1603	3482 4402 5320 6236 7151 8063 8973 9882 0789 1693	3574 4494 5412 6328 7242 8154 9064 9973 0879 1784	3666 4586 5503 6419 7333 8245 9155 **63 0970 1874	3758 4677 5595 6511 7+24 8336 9246 *154 1060	3850 4769 5687 6602 7516 8427 9337 *245 1151 2055	92 92 92 91 91 91 91 91 91
481 482 483 484 485 486 487 488 489 <b>490</b>	2145 3047 3947 4845 5742 6636 7529 8420 9309 690196	2235 3137 4037 4935 5831 6726 7618 8509 9398 0285	2326 3227 4127 5025 5921 6815 7707 8598 9486 0373	2416 3317 4217 5114 6010 6904 7796 8687 9575 0462	2506 3407 4307 5204 6100 6994 7886 8776 9664 0550	2596 3497 4396 5294 6189 7083 7975 8865 9753	26\$6 35\$7 44\$6 53\$3 6279 7172 \$064 \$953 9841 0728	2777 3677 4576 5473 6368 7261 8153 9042 9930 0816	2867 3767 4666 5563 6458 7351 8242 9131 **19	2957 3857 4756 5652 6547 7440 8331 9220 *107	90 90 90 90 89 89 89 89
491 492 493 494 495 496 497 498 499	1081 1965 2847 3727 4605 5482 6356 7229 8101	1170 2053 2935 3815 4693 5569 6444 7317 8188	1258 2142 3023 3903 4781 5657 6531 7404 8275	1347 2230 3111 3991 4868 5744 6618 7491 8362	1435 2318 3199 4078 4956 5832 6706 7578 8449	1524 2406 3287 4166 5044 5919 6793 7665 8535	1612 2494 3375 4254 5131 6007 6880 7752 8622	1700 2583 3463 4342 5219 6094 6968 7839 8709	1789 2671 3551 4430 5307 6182 7055 7926 8796	1877 2759 3639 4517 5394 6269 7142 8014 8883	88 88 88 88 87 87 87 87
N.	0	1	2	3	4	5	6	7	8	9	D.

				1				1 .			
N.	0	1	2	3	4	5	6	7	8	9	D.
500 501 502 503 504 505 506 507 508 509	698970 9838 700704 1568 2431 3291 4151 5008 5864 6718	9057 9924 0790 1654 2517 3377 4236 5094 5949 6803	9144 **11 0877 1741 2603 3463 4322 5179 6035 6888	9231 **98 0963 1827 2689 3549 4408 5265 6120 6974	9317 *184 1050 1913 2775 3635 4494 5350 6206 7059	9404 *271 1136 1999 2861 3721 4579 5436 6291 7144	9491 *358 1222 2086 2947 3807 4665 5522 6376 7229	9578 *444 1309 2172 3033 3893 4751 5607 6462 7315	9664 *531 1395 2258 3119 3979 4837 5693 6547 7400	9751 *617 1482 2344 3205 4065 4922 5778 6632 7485	87 86 86 86 86 86 86 86 85
510 511 512 513 514 515 516 517 518	707570 8421 9270 710117 0963 1807 2650 3491 4330	7655 8506 9355 0202 1048 1892 2734 3575 4414	7740 8591 9440 0287 1132 1976 2818 3659 4497	7826 8676 9524 0371 1217 2060 2902 3742 4581	7911 8761 9609 0456 1301 2144 2986 3826 4665	7996 8846 9694 0540 1385 2229 3070 3910 4749	8081 8931 9779 0625 1470 2313 3154 3994 4833	8166 9015 9863 0710 1554 2397 3238 4078 4916	8251 9100 9948 0794 1639 2481 3323 4162 5000	8336 9185 **33 0879 1723 2566 3407 4246 5084	85 85 85 85 84 84 84 84
519 520 521 522 523 524 525 526 527 528 529	5167 716003 6838 7671 8502 9331 720159 0986 1811 2634 3456	5251 6087 6921 7754 8585 9414 0242 1068 1893 2716 3538	5335 6170 7004 7837 8668 9497 0325 1151 1975 2798 3620	5418 6254 7088 7920 8751 9580 0407 1233 2058 2881 3702	5502 6337 7171 8003 8834 9663 0490 1316 2140 2963 3784	5586 6421 7254 8086 8917 9745 0573 1398 2222 3045 3866	5669 6504 7338 8169 9000 9828 0655 1481 2305 3127 3948	5753 6588 7421 8253 9083 9911 0738 1563 2387 3209 4030	5836 6671 7504 8336 9165 9994 0821 1646 2469 3291 4112	5920 6754 7587 8419 9248 **77 0903 1728 2552 3374 4194	\$4 \$3 \$3 \$3 \$3 \$3 \$3 \$3 \$2 \$2 \$2 \$2
530 531 532 533 534 535 536 537 538 539	724276 5095 5912 6727 7541 8354 9165 9974 730782 1589	4358 5176 5993 6809 7623 8435 9246 **55 0863 1669	4440 5258 6075 6890 7704 8516 9327 *136 0944 1750	4522 5340 6156 6972 7785 8597 9408 *217 1024 1830	4604 5422 6238 7053 7866 8678 9489 *298 1105 1911	4685 5503 6320 7134 7948 8759 9570 *378 1186 1991	4767 5585 6401 7216 8029 8841 9651 *459 1266 2072	4849 5667 6483 7297 8110 8922 9732 *540 1347 2152	4931 5748 6564 7379 8191 9003 9813 *621 1428 2233	5013 5830 6646 7460 8273 9084 9893 *702 1508 2313	82 82 82 81 81 81 81 81 81
540 541 542 543 544 545 546 547 548 549	732394 3197 3999 4800 5599 6397 7193 7987 8781 9572	2474 3278 4079 4880 5679 6476 7272 8067 8860 9651	2555 3358 4160 4960 5759 6556 7352 8146 8939 9731	2635 3438 4240 5040 5838 6635 7431 8225 9018 9810	2715 3518 4320 5120 5918 6715 7511 8305 9097 9889	2796 3598 4400 5200 5998 6795 7590 8384 9177 9968	2876 3679 4480 5279 6078 6874 7670 8463 9256 **47	2956 3759 4560 5359 6157 6954 7749 8543 9335 *126	3037 3839 4640 5439 6237 7034 7829 8622 9414 *205	3117 3919 4720 5519 6317 7113 7908 8701 9493 *284	80 80 80 80 80 80 79 79 79
N.	0	1	2	3	4	5	6	7	8	9	D.

N.	0	1	2	3	4	5	6	7	8	9	D.
550 551 552 553 554 555 556 557 558 559	740363 1152 1939 2725 3510 4293 5075 5855 6634 7412	0+42 1230 2018 2804 3588 +371 5153 5933 6712 7+89	0521 1309 2096 2882 3667 4449 5231 6011 6790 7567	0600 1388 2175 2961 3745 4528 5309 6089 6868 7645	0678 1467 2254 3039 3823 4606 5387 6167 6945 7722	0757 1546 2332 3118 3902 4684 5465 6245 7023 7800	0836 1624 2411 3196 3980 4762 5543 6323 7101 7878	0915 1703 2489 3275 +058 48+0 5621 6+01 7179 7955	0994 1782 2568 3353 4136 4919 5699 6479 7256 8033	1073 1860 2647 3431 4215 4997 5777 6556 7334 8110	79 79 79 78 78 78 78 78 78
560 561 562 563 564 565 566 567 568 569	748188 8963 9736 750508 1279 2048 2816 3583 4348 5112	\$266 9040 9814 0586 1356 2125 2893 3660 4425 5189	8343 9118 9891 0663 1433 2202 2970 3736 4501 5265	\$421 9195 9968 0740 1510 2279 3047 3813 4578 5341	\$498 9272 **45 0817 1587 2356 3123 3889 4654 5417	\$576 9350 *123 0894 1664 2433 3200 3966 4730 5494	\$653 9427 *200 0971 1741 2509 3277 4042 4807 5570	\$731 9504 *277 1048 1818 2586 3353 4119 4883 5646	\$808 9582 *354 1125 1895 2663 3430 4195 4960 5722	\$885 9659 *431 1202 1972 2740 3506 4272 5036 5799	77 77 77 77 77 77 77 76 76
570 571 572 573 574 575 576 577 578 579	755875 6636 7396 8155 8912 9668 760422 1176 1928 2679	5951 6712 7472 8230 8988 9743 0498 1251 2003 2754	6027 6788 7548 8306 9063 9819 0573 1326 2078 2829	6103 6864 7624 8382 9139 9894 0649 1402 2153 2904	6180 6940 7700 8458 9214 9970 0724 1477 2228 2978	6256 7016 7775 8533 9290 **45 0799 1552 2303 3053	6332 7092 7851 8609 9366 *121 0875 1627 2378 3128	6408 7168 7927 8685 9441 *196 0950 1702 2453 3203	6484 7244 8003 8761 9517 *272 1025 1778 2529 3278	6560 7320 8079 8836 9592 *347 1101 1853 2604 3353	76 76 76 76 75 75 75 75
580 581 582 583 584 585 586 587 588 589	763428 4176 4923 5669 6413 7156 7898 8638 9377 770115	3503 4251 4998 5743 6487 7230 7972 8712 9451 0189	3578 4326 5072 5818 6562 7304 8046 8786 9525 0263	3653 4400 5147 5892 6636 7379 8120 8860 9599 0336	3727 4475 5221 5966 6710 7453 8194 8934 9673 0410	3802 4550 5296 6041 6785 7527 8268 9008 9746 0484	3877 4624 5370 6115 6859 7601 8342 9082 9820 0557	3952 4699 5445 6190 6933 7675 8416 9156 9894 0631	4027 4774 5520 6264 7007 7749 8490 9230 9968 0705	4101 4848 5594 6338 7082 7823 8564 9303 **42 0778	75 75 75 74 74 74 74 74 74 74
590 591 592 593 594 595 596 597 598 599	770852 1587 2322 3055 3786 4517 5246 5974 6701 7427	0926 1661 2395 3128 3860 4590 5319 6047 6774 7499	0999 1734 2468 3201 3933 4663 5392 6120 6846 7572	1073 1808 2542 3274 4006 4736 5465 6193 6919 7644	1146 1881 2615 3348 4079 4809 5538 6265 6992 7717	1220 1955 2688 3421 4152 4882 5610 6338 7064 7789	1293 2028 2762 3494 4225 4955 5683 6411 7137 7862	1367 2102 2835 3567 4298 5028 5756 6483 7209 7934	1440 2175 2908 3640 4371 5100 5829 6556 7282 8006	1514 2248 2981 3713 4444 5173 5902 6629 7354 8079	74 73 73 73 73 73 73 73 73 73 73 72
N.	0	1	2	3	4	5	6	7	8	9	D.

N.	0	1	2	3	4	5	6	7	8	9	D.
600 601 602 603 604 605 606 607 608 609	778151 8874 9596 780317 1037 1755 2473 3189 3904 4617	8224 8947 9669 0389 1109 1827 2544 3260 3975 4689	8296 9019 9741 0461 1181 1899 2616 3332 4046 4760	8368 9091 9813 0533 1253 1971 2688 3403 4118 4831	8441 9163 9885 0605 1324 2042 2759 3475 4189 4902	8513 9236 9957 0677 1396 2114 2831 3546 4261 4974	8585 9308 **29 0749 1468 2186 2902 3618 4332 5045	8658 9380 *101 0821 1540 2258 2974 3689 4403 5116	8730 9452 *173 0893 1612 2329 3046 3761 4475 5187	8802 9524 *245 0965 1684 2401 3117 3832 4546 5259	72 72 72 72 72 72 72 72 71 71
610 611 612 613 614 615 616 617 618 619	785330 6041 6751 7460 8168 8875 9581 790285 0988 1691	5401 6112 6822 7531 8239 8946 9651 0356 1059 1761	5472 6183 6893 7602 8310 9016 9722 0426 1129 1831	5543 6254 6964 7673 8381 9087 9792 0496 1199 1901	5615 6325 7035 7744 8451 9157 9863 0567 1269 1971	5686 6396 7106 7815 8522 9228 9933 0637 1340 2041	5757 6467 7177 7885 8593 9299 ***4 0707 1410 2111	5828 6538 7248 7956 8663 9369 **74 0778 1480 2181	5899 6609 7319 8027 8734 9440 *144 0848 1550 2252	5970 6680 7390 8098 8804 9510 *215 0918 1620 2322	71 71 71 71 71 71 70 70 70
620 621 622 623 624 625 626 627 628 629	792392 3092 3790 4488 5185 5880 6574 7268 7960 8651	2462 3162 3860 4558 5254 5949 6644 7337 8029 8720	2532 3231 3930 4627 5324 6019 6713 7406 8098 8789	2602 3301 4000 4697 5393 6088 6782 7475 8167 8858	2672 3371 4070 4767 5463 6158 6852 7545 8236 8927	2742 3441 4139 4836 5532 6227 6921 7614 8305 8996	2812 3511 4209 4906 5602 6297 6990 7683 8374 9065	2882 3581 4279 4976 5672 6366 7060 7752 8443 9134	2952 3651 4349 5045 5741 6436 7129 7821 8513 9203	3022 3721 4418 5115 5811 6505 7198 7890 8582 9272	70 70 70 70 70 70 69 69 69 69
630 631 632 633 634 635 636 637 638 639	799341 800029 0717 1404 2089 2774 3457 4139 4821 5501	9409 0098 0786 1472 2158 2842 3525 4208 4889 5569	9478 0167 0854 1541 2226 2910 3594 4276 4957 5637	9547 0236 0923 1609 2295 2979 3662 4344 5025 5705	9616 0305 0992 1678 2363 3047 3730 4412 5093 5773	9685 0373 1061 1747 2432 3116 3798 4480 5161 5841	9754 0442 1129 1815 2500 3184 3867 4548 5229 5908	9823 0511 1198 1884 2568 3252 3935 4616 5297 5976	9892 0580 1266 1952 2637 3321 4003 4685 5365 6044	9961 0648 1335 2021 2705 3389 4071 4753 5433 6112	69 69 69 69 69 68 68 68 68
640 641 642 643 644 645 646 647 648 649	806180 6858 7535 8211 8886 9560 810233 0904 1575 2245	6248 6926 7603 8279 8953 9627 0300 0971 1642 2312	6316 6994 7670 8346 9021 9694 0367 1039 1709 2379	6384 7061 7738 8414 9088 9762 0134 1106 1776 2445	6451 7129 7806 8481 9156 9829 0501 1173 1843 2512	6519 7197 7873 8549 9223 9896 0569 1240 1910 2579	6587 7264 7941 8616 9290 9964 0636 1307 1977 2646	6655 7332 8008 8684 9358 **31 0703 1374 2044 2713	6723 7400 8076 8751 9425 **98 0770 1441 2111 2780	6790 7467 8143 8818 9492 *165 0837 1508 2178 2847	68 68 68 67 67 67 67 67 67
N.	0	1	2	3	4	5	6	7	8	9	D.

N.	0	1	2	3	4	5	6	7	8	9	D.
650 651 652 653 654 655 656 657 658 659	812913 3581 4248 4913 5578 6241 6904 7565 8226 8885	2980 3648 4314 4980 5644 6308 6970 7631 8292 8951	3047 3714 4381 5046 5711 6374 7036 7698 8358 9017	3114 3781 4447 5113 5777 6440 7102 7764 8424 9083	3181 3848 4514 5179 5843 6506 7169 7830 8490 9149	3247 3914 4581 5246 5910 6573 7235 7896 8556 9215	3314 3981 4647 5312 5976 6639 7301 7962 8622 9281	3381 4048 4714 5378 6042 6705 7367 8028 8688 9346	3448 4114 4780 5445 6109 6771 7433 8094 8754 9412	3514 4181 4847 5511 6175 6838 7499 8160 8820 9478	67 67 67 66 66 66 66 66 66
660 661 662 663 664 665 666 667 668 669	819544 820201 0858 1514 2168 2822 3474 4126 4776 5426	9610 0267 0924 1579 2233 2887 3539 4191 4841 5491	9676 0333 0989 1645 2299 2952 3605 4256 4906 5556	9741 0399 1055 1710 2364 3018 3670 4321 4971 5621	9807 0464 1120 1775 2430 3083 3735 4386 5036 5686	9873 0530 1186 1841 2495 3148 3800 4451 5101 5751	9939 0595 1251 1906 2560 3213 3865 4516 5166 5815	****4 0661 1317 1972 2626 3279 3930 4581 5231 5880	**70 0727 1382 2037 2691 3344 3996 4646 5296 5945	*136 0792 1448 2103 2756 3409 4061 4711 5361 6010	66 66 65 65 65 65 65 65
670 671 672 673 674 675 676 677 678 679	826075 6723 7369 8015 8660 9304 9947 830589 1230 1870	6140 6787 7434 8080 872+ 9368 **11 0653 1294 1934	6204 6852 7499 8144 8789 9432 **75 0717 1358 1998	6269 6917 7563 8209 8853 9497 *139 0781 1422 2062	6334 6981 7628 8273 8918 9561 *204 0845 1486 2126	6399 7046 7692 8338 8982 9625 *268 0909 1550 2189	6464 7111 7757 8402 9046 9690 *332 0973 1614 2253	6528 7175 7821 8467 9111 9754 *396 1037 1678 2317	6593 7240 7886 8531 9175 9818 *460 1102 1742 2381	6658 7305 7951 8595 9239 9882 *525 1166 1806 2445	65 65 64 64 64 64 64 64 64
689 681 682 683 684 685 686 687 688 689	832509 3147 3784 4421 5056 5691 6324 6957 7588 8219	2573 3211 3848 4484 5120 5754 6387 7020 7652 8282	2637 3275 3912 4548 5183 5817 6451 7083 7715 8345	2700 3338 3975 4611 5247 5881 6514 7146 7778 8408	2764 3402 4039 4675 5310 5944 6577 7210 7841 8471	2828 3466 4103 4739 5373 6007 6641 7273 7904 8534	2892 3530 4166 4802 5437 6071 6704 7336 7967 8597	2956 3593 4230 4866 5500 6134 6767 7399 8030 8660	3020 3657 4294 4929 5564 6197 6830 7462 8093 8723	3083 3721 4357 4993 5627 6261 6894 7525 8156 8786	64 64 64 64 63 63 63 63 63 63
690 691 692 693 694 695 696 697 698 699	838849 9478 840106 0733 1359 1985 2609 3233 3855 4477	8912 9541 0169 0796 1422 2047 2672 3295 3918 4539	8975 9604 0232 0859 1485 2110 2734 3357 3980 4601	9038 9667 0294 0921 1547 2172 2796 3420 4042 4664	9101 9729 0357 0984 1610 2235 2859 3482 4104 4726	9164 9792 0420 1046 1672 2297 2921 3544 4166 4788	9227 9855 0482 1109 1735 2360 2983 3606 4229 4850	9289 9918 0545 1172 1797 2422 3046 3669 4291 4912	9352 9981 0608 1234 1860 2484 3108 3731 4353 4974	9415 **+3 0671 1297 1922 2547 3170 3793 4415 5036	63 63 63 63 63 62 62 62 62 62 62
N.	0	1	2	3	4	5	6	7	8	9	D.

N.	0	1	2	3	4	5	6	7	8	9	D.
700 701 702 703 704 705 706 707 708	\$45098 5718 6337 6955 7573 8189 8805 9419 850033	5160 5780 6399 7017 7634 8251 8866 9481 0095	5222 5842 6461 7079 7696 8312 8928 9542 0156	528+ 5904 6523 7141 7758 8374 8989 960+ 0217	5346 5966 6585 7202 7819 8435 9051 9665 0279	5408 6028 6646 7264 7881 8497 9112 9726 0340	5470 6090 6708 7326 7943 8559 9174 9788 0401	5532 6151 6770 7388 8004 8620 9235 98+9 0462	5594 6213 6832 7449 8066 8682 9297 9911 0524	5656 6275 6894 7511 8128 8743 9358 9972 0585	62 62 62 62 62 62 61 61 61
709 710 711 712 713 714 715 716, 717	0646 851258 1870 2480 3090 3698 4306 4913 5519	0707 1320 1931 2541 3150 3759 4367 4974 5580	0769 1381 1992 2602 3211 3820 4428 5034 5640	0S30 1442 2053 2663 3272 3881 4488 5095 5701	0891 1503 2114 2724 3333 3941 4549 5156 5761	0952 1564 2175 2785 3394 4002 4610 5216 5822	1014 1625 2236 2846 3455 4063 4670 5277 5882	1075 1686 2297 2907 3516 4124 4731 5337 5943	1136 1747 2358 2968 3577 4185 4792 5398 6003	1197 1809 2419 3029 3637 4245 4852 5459 6064	61 61 61 61 61 61 61 61
718 719 <b>720</b> 721 722 723 724 725 726	6124 6729 857332 7935 8537 9138 9739 860338 0937	6185 6789 7393 7995 8597 9198 9799 0398 0996	6245 6850 7453 8056 8657 9258 9859 0458 1056	6306 6910 7513 8116 8718 9318 9918 0518 1116	6366 6970 7574 8176 8778 9379 9978 0578 1176	6+27 7031 763+ 8236 8838 9439 **38 0637 1236	6487 7091 7694 8297 8898 9499 **98 0697 1295	6548 7152 7755 8357 8958 9559 *158 0757 1355	6608 7212 7815 8417 9018 9619 *218 0817 1415	6668 7272 7875 8477 9078 9679 *278 0877 1475	60 60 60 60 60 60 60 60
727 728 729 <b>730</b> 731 732 733 734	1534 2131 2728 863323 3917 4511 5104 5696	1594 2191 2787 3382 3977 4570 5163 5755 6346	1654 2251 2847 3442 4036 4630 5222 5814 6405	1714 2310 2906 3501 4096 4689 5282 5874 6465	1773 2370 2966 3561 4155 4748 5341 5933 6524	1833 2430 3025 3620 4214 4808 5400 5992 6583	1893 2489 3085 3680 4274 4867 5459 6051 6642	1952 2549 3144 3739 4333 4926 5519 6110 6701	2012 2608 3204 3799 4392 4985 5578 6169 6760	2072 2668 3263 3858 4452 5045 5637 6228 6819	60 60 60 59 59 59 59
735 736 737 738 739 <b>740</b> 741 742	6287 6878 7467 8056 8644 869232 9818 870404	6937 7526 8115 8703 9290 9877 0462	6996 7585 8174 8762 9349 9935 0521	7055 7644 8233 8821 9408 9994 0579	7114 7703 8292 8879 9466 **53 0638	7173 7762 8350 8938 9525 *111 0696	7232 7821 8409 8997 9584 *170 0755	7291 7880 8468 9056 9642 *228 0813	7350 7939 8527 9114 9701 *287 0872	7409 7998 8586 9173 9760 *345 0930	59 59 59 59 59 59 59
7+3 7+4 7+5 7+6 7+7 748 749	0989 1573 2156 2739 3321 3902 4482	1047 1631 2215 2797 3379 3960 4540	1106 1690 2273 2855 3437 4018 4598	1164 1748 2331 2913 3495 4076 4656	1223 1806 2389 2972 3553 4134 4714	1281 1865 2448 3030 3611 4192 4772	1339 1923 2506 3088 3669 4250 4830	1398 1981 2564 3146 3727 4308 4888	1456 2040 2622 3204 3785 4366 4945	1515 2098 2681 3262 3844 4424 5003	58 58 58 58 58 58 58
N.	0	1	2	3	4	5	6	7	8	9	D.

N.	0	1	2	3	4	5	6	7	8	9	D.
750 751 752 753 754 755 756 757 758 759	875061 5640 6218 6795 7371 7947 8522 9096 9669 880242	5119 5698 6276 6853 7429 8004 8579 9153 9726 0299	5177 5756 6333 6910 7487 8062 8637 9211 9784 0356	5235 5813 6391 6968 7544 8119 8694 9268 9841 0413	5293 5871 6449 7026 7602 8177 8752 9325 9898 0471	5351 5929 6507 7083 7659 8234 8809 9383 9956 0528	5409 5987 6564 7141 7717 8292 8866 9440 **13 0585	5466 6045 6622 7199 7774 8349 8924 9497 **70 0642	5524 6102 6680 7256 7832 8407 8981 9555 *127 0699	5582 6160 6737 7314 7889 8464 9039 9612 *185 0756	58 58 58 58 58 57 57 57 57
760 761 762 763 764 765 766 767 768 769	880814 1385 1955 2525 3093 3661 4229 4795 5361 5926	0871 1442 2012 2581 3150 3718 4285 4852 5418 5983	0928 1499 2069 2638 3207 3775 4342 4909 5474 6039	0985 1556 2126 2695 3264 3832 4399 4965 5531 6096	1042 1613 2183 2752 3321 3888 4455 5022 5587 6152	1099 1670 2240 2809 3377 3945 4512 5078 5644 6209	1156 1727 2297 2866 3434 4002 4569 5135 5700 6265	1213 1784 2354 2923 3491 4059 4625 5192 5757 6321	1271 1841 2411 2980 3548 4115 4682 5248 5813 6378	1328 1898 2468 3037 3605 4172 4739 5305 5870 6434	57 57 57 57 57 57 57 57 57 57 57
770 771 772 773 774 775 776 777 778 779	886491 7054 7617 8179 8741 9302 9862 890421 0980 1537	6547 7111 7674 8236 8797 9358 9918 0477 1035 1593	6604 7167 7730 8292 8853 9414 9974 0533 1091 1649	6660 7223 7786 83#8 8909 9470 **30 0589 1147 1705	6716 7280 7842 8404 8965 9526 **86 0645 1203 1760	6773 7336 7898 8460 9021 9582 *141 0700 1259 1816	6829 7392 7955 8516 9077 9638 *197 0756 1314 1872	6885 7449 8011 8573 9134 9694 *253 0812 1370 1928	6942 7505 8067 8629 9190 9750 *309 0868 1426 1983	6998 7561 8123 8685 9246 9806 *365 0924 1482 2039	56 56 56 56 56 56 56 56 56
780 781 782 783 784 785 786 787 788 789	892095 2651 3207 3762 4316 4870 5423 5975 6526 7077	2150 2707 3262 3817 4371 4925 5478 6030 6581 7132	2206 2762 3318 3873 4427 4980 5533 6085 6636 7187	2262 2818 3373 3928 4482 5036 5588 6140 6692 7242	2317 2873 3429 3984 4538 5091 5644 6195 6747 7297	2373 2929 3484 4039 4593 5146 5699 6251 6802 7352	2429 2985 3540 4094 4648 5201 5754 6306 6857 7407	2484 3040 3595 4150 4704 5257 5809 6361 6912 7462	2540 3096 3651 4205 4759 5312 5864 6416 6967 7517	2595 3151 3706 4261 4814 5367 5920 6471 7022 7572	56 56 56 55 55 55 55 55 55
790 791 792 793 794 795 796 797 798 799	897627 8176 8725 9273 9821 900367 0913 1458 2003 2547	7682 8231 8780 9328 9875 0422 0968 1513 2057 2601	7737 8286 8835 9383 9930 0476 1022 1567 2112 2655	7792 8341 8890 9437 9985 0531 1077 1622 2166 2710	7847 8396 8944 9492 **39 0586 1131 1676 2221 2764	7902 8451 8999 9547 **94 0640 1186 1731 2275 2818	7957 8506 9054 9602 *149 0695 1240 1785 2329 2873	8012 8561 9109 9656 *203 0749 1295 1840 2384 2927	8067 8615 9164 9711 *258 0804 1349 1894 2438 2981	8122 8670 9218 9766 *312 0859 1404 1948 2492 3036	55 55 55 55 55 55 55 55 54 54 54
N.	0	1	2	3	4	5	6	7	8	9	D.

N.	0	1	2	3	4	5	6	7	8	9	D.
800 801 802 803 804 805 806 807 808 809	903090 3633 4174 4716 5256 5796 6335 6874 7411 7949	3144 3687 4229 4770 5310 5850 6389 6927 7465 8002	3199 3741 4283 4824 5364 5904 6443 6981 7519 8056	3253 3795 4337 4878 5418 5958 6497 7035 7573 8110	3307 3849 4391 4932 5472 6012 6551 7089 7626 8163	3361 3904 4445 4986 5526 6066 6604 7143 7680 8217	3416 3958 4499 5040 5580 6119 6658 7196 7734 8270	3470 4012 4553 5094 5634 6173 6712 7250 7787 8324	3524 4066 4607 5148 5688 6227 6766 7304 7841 8378	3578 4120 4661 5202 5742 6281 6820 7358 7895 8431	54 54 54 54 54 54 54 54 54 54
810 811 812 813 814 815 816 817 818 819	908485 9021 9556 910091 0624 1158 1690 2222 2753 3284	8539 9074 9610 0144 0678 1211 1743 2275 2806 3337	8592 9128 9663 0197 0731 1264 1797 2328 2859 3390	8646 9181 9716 0251 0784 1317 1850 2381 2913 3443	8699 9235 9770 0304 0838 1371 1903 2435 2966 3496	8753 9289 9823 0358 0891 1424 1956 2488 3019 3549	8807 93+2 9877 0411 09+4 1477 2009 25+1 3072 3602	8860 9396 9930 0464 0998 1530 2063 2594 3125 3655	8914 9449 9984 0518 1051 1584 2116 2647 3178 3708	8967 9503 **37 0571 1104 1637 2169 2700 3231 3761	54 54 53 53 53 53 53 53 53 53 53
820 821 822 823 824 825 826 827 828 829	913814 4343 4872 5400 5927 6454 6980 7506 8030 8555	3867 +396 4925 5453 5980 6507 7033 7558 8083 8607	3920 4449 4977 5505 6033 6559 7085 7611 8135 8659	3973 4502 5030 5558 6085 6612 7138 7663 8188 8712	4026 4555 5083 5611 6138 6664 7190 7716 8240 8764	4079 4608 5136 5664 6191 6717 7243 7768 8293 8816	4132 4660 5189 5716 6243 6770 7295 7820 8345 8869	4184 4713 5241 5769 6296 6822 7348 7873 8397 8921	4237 4766 5294 5822 6349 6875 7400 7925 8450 8973	4290 4819 5347 5875 6401 6927 7453 7978 8502 9026	53 53 53 53 53 53 53 53 53 52 52 52
830 831 832 833 834 835 836 837 838 839	919078 9601 920123 0645 1166 1686 2206 2725 3244 3762	9130 9653 0176 0697 1218 1738 2258 2777 3296 381‡	9183 9706 0228 0749 1270 1790 2310 2829 3348 3865	9235 9758 0280 0801 1322 1842 2362 2881 3399 3917	9287 9810 0332 0853 1374 1894 2414 2933 3451 3969	9340 9862 0384 0906 1426 1946 2466 2985 3503 4021	9392 9914 0436 0958 1478 1998 2518 3037 3555 4072	9444 9967 0489 1010 1530 2050 2570 3089 3607 4124	9496 **19 0541 1062 1582 2102 2622 3140 3658 +176	9549 **71 0593 1114 1634 2154 2674 3192 3710 4228	52 52 52 52 52 52 52 52 52 52 52 52
840 841 842 843 844 845 846 847 848 849	924279 4796 5312 5828 6342 6857 7370 7883 8396 8908	4331 4848 5364 5879 6394 6908 7422 7935 8447 8959	4383 4899 5415 5931 6445 6959 7473 7986 8498 9010	4434 4951 5467 5982 6497 7011 7524 8037 8549 9061	4486 5003 5518 6034 6548 7062 7576 8088 8601 9112	4538 5054 5570 6085 6600 7114 7627 8140 8652 9163	4589 5106 5621 6137 6651 7165 7678 9191 8703 9215	4641 5157 5673 6188 6702 7216 7730 8242 8754 9266	4693 5209 5725 6240 6754 7268 7781 8293 8805 9317	4744 5261 5776 6291 6805 7319 7832 8345 8857 9368	52 52 52 51 51 51 51 51 51
N.	0	1	2	3	4	5	6	7	8	9	D.

N.	. 0	1	2	3	4	5	6	7	8	9	D.
850 851 852 853 854 855 856 857 858 859	929419 9930 930440 0949 1458 1966 2474 2981 3487 3993	9470 9981 0491 1000 1509 2317 2524 3031 3538 4044	9521 **32 0542 1051 1560 2068 2575 3082 3589 4094	9572 **83 0592 1102 1610 2118 2626 3133 3639 +145 •	9623 *134 0643 1153 1661 2169 2677 3183 3690 4195	9674 *185 0694 1204 1712 2220 2727 3234 3740 4246	9725 *236 0745 1254 1763 2271 2778 3285 3791 4296	9776 *287 0796 1305 1814 2322 2829 3335 3841 4347	9827 *338 0847 1356 1865 2372 2879 3386 3892 4397	9879 *389 0898 1407 1915 2423 2930 3437 3943 4448	51 51 51 51 51 51 51 51 51
860 861 862 863 864 865 866 867 868 869	934498 5003 5507 6011 6514 7016 7518 8019 8520 9020	4549 5054 5558 6061 6564 7066 7568 8069 8570 9070	4599 5104 5608 6111 6614 7117 7618 8119 8620 9120	4650 5154 5658 6162 6665 7167 7668 8169 8670 9170	4700 5205 5709 6212 6715 7217 7718 8219 8720 9220	4751 5255 5759 6262 6765 7267 7769 8269 8770 9270	4801 5306 5809 6313 6815 7317 7819 8320 8820 9320	4852 5356 5860 6363 6865 7367 7869 8370 8870 9369	4902 5406 5910 6413 6916 7418 7919 8420 8920 9419	4953 5457 5960 6463 6966 7468 7969 8470 8970 9469	50 50 50 50 50 50 50 50 50 50
870 871 872 873 874 875 876 877 878 879	939519 940018 0516 1014 1511 2008 2504 3000 3495 3989	9569 0068 0566 1064 1561 2058 2554 3049 3544 4038	9619 0118 0616 1114 1611 2107 2603 3099 3593 4088	9669 0168 0666 1163 1660 2157 2653 3148 3643 4137	9719 0218 0716 1213 1710 2207 2702 3198 3692 4186	9769 0267 0765 1263 1760 2256 2752 3247 3742 4236	9819 0317 0815 1313 1809 2306 2801 3297 3791 4285	9869 0367 0865 1362 1859 2355 2851 3346 3841 4335	9918 0417 0915 1412 1909 2405 2901 3396 3890 4384	9968 0467 0964 1462 1958 2455 2950 3445 3939 4433	50 50 50 50 50 50 50 49 49
880 \$81 \$82 \$83 \$84 \$85 \$86 \$87 \$88 \$89	944483 4976 5469 5961 6452 6943 7434 7924 8413 8902	4532 5025 5518 6010 6501 6992 7483 7973 8462 8951	4581 5074 5567 6059 6551 7041 7532 8022 8511 8999	4631 5124 5616 6108 6600 7090 7581 8070 8560 9048	4680 5173 5665 6157 6649 7140 7630 8119 8609 9097	4729 5222 5715 6207 6698 7189 7679 8168 8657 9146	4779 5272 5764 6256 6747 7238 7728 8217 8706 9195	4828 5321 5813 6305 6796 7287 7777 8266 8755 9244	4877 5370 5862 6354 6845 7336 7826 8315 8804 9292	4927 5419 5912 6403 6894 7385 7875 8364 8853 9341	49 49 49 49 49 49 49 49
890 891 892 893 894 895 896 897 898 899	949390 9878 950365 0851 1338 1823 2308 2792 3276 3760	9439 9926 0414 0900 1386 1872 2356 2841 3325 3808	9488 9975 0462 0949 1435 1920 2405 2889 3373 3856	9536 **24 0511 0997 1483 1969 2453 2938 3421 3905	9585 **73 0560 1046 1532 2017 2502 2986 3470 3953	9634 *121 0608 1095 1580 2066 2550 3034 3518 4001	9683 *170 0657 1143 1629 2114 2599 3083 3566 4049	9731 *219 0706 1192 1677 2163 2647 3131 3615 4098	9780 *267 0754 1240 1726 2211 2696 3180 3663 4146	9829 *316 0803 1289 1775 2260 2744 3228 3711 4194	49 49 49 49 48 48 48 48
N.	ō	1	2	3	4	5	6	7	8	9	D.

N.	0	1	2	3	4	5	6	7	8	9	D.
900 901 902 903 904 905 906 907 908 909	954243 4725 5207 5688 6168 6649 7128 7607 8086 8564	4291 4773 5255 5736 6216 6697 7176 7655 8134 8612	4339 4821 5303 5784 6265 6745 7224 7703 8181 8659	4387 4869 5351 5832 6313 6793 7272 7751 8229 8707	4435 4918 5399 5880 6361 6840 7320 7799 8277 8755	4484 4966 5147 5928 6409 6888 7368 7847 8325 8803	4532 5014 5495 5976 6457 6936 7416 7894 8373 8850	4580 5062 5543 6024 6505 6984 7464 7942 8421 8898	4628 5110 5592 6072 6553 7032 7512 7990 8468 8946	4677 5158 5640 6120 6601 7080 7559 8038 8516 8994	48 48 48 48 48 48 48 48 48
910 911 912 913 914 915 916 917 918 919	959041 9518 9995 960471 0946 1421 1895 2369 2843 3316	9089 9566 **42 0518 0994 1469 1943 2417 2890 3363	9137 9614 **90 0566 1041 1516 1990 2464 2937 3410	9185 9661 *138 0613 1089 1563 2038 2511 2985 3+57	9232 9709 *185 0661 1136 1611 2085 2559 -3032 3504	9280 9757 *233 0709 1184 1658 2132 2606 3079 3552	9328 9804 *280 0756 1231 1706 2180 2653 3126 3599	9375 9852 *328 0804 1279 1753 2227 2701 3174 3646	9423 9900 *376 0851 1326 1801 2275 2748 3221 3693	9471 9947 *423 0899 1374 1848 2322 2795 3268 3741	48 48 48 48 47 47 47 47
920 921 922 923 924 925 926 927 928 929	963788 4260 4731 5202 5672 6142 6611 7080 7548 8016	3835 4307 4778 5249 5719 6189 6658 7127 7595 8062	3882 4354 4825 5296 5766 6236 6705 7173 7642 8109	3929 4401 4872 5343 5813 6283 6752 7220 7688 8156	3977 4448 4919 5390 5860 6329 6799 7267 7735 8203	4024 4495 4966 5437 5907 6376 6845 7314 7782 8249	4071 4542 5013 5484 5954 6423 6892 7361 7829 8296	4118 4590 5061 5531 6001 6470 6939 7408 7875 8343	4165 4637 5108 5578 6048 6517 6986 7454 7922 8390	4212 4684 5155 5625 6095 6564 7033 7501 7969 8436	47 47 47 47 47 47 47 47
930 931 932 933 934 935 936 937 938 939	968483 8950 9416 9882 970347 0812 1276 1740 2203 2666	\$530 \$996 9463 9928 0393 0858 1322 1786 2249 2712	8576 9043 9509 9975 0440 0904 1369 1832 2295 2758	8623 9090 9556 **21 0486 0951 1415 1879 2342 2804	8670 9136 9602 **68 0533 0997 1461 1925 2388 2851	8716 9183 9649 *114 0579 1044 1508 1971 2434 2897	8763 9229 9695 *161 0626 1090 1554 2018 2481 2943	8S10 9276 9742 *207 0672 1137 1601 2064 2527 2989	8856 9323 9789 *254 0719 1183 1647 2110 2573 3035	8903 9369 9835 *300 0765 1229 1693 2157 2619 3082	47 47 47 46 46 46 46 46 46
940 941 942 943 944 945 946 947 948 949	973128 3590 4051 4512 4972 5432 5891 6350 6808 7266	3174 3636 4097 4558 5018 5478 5937 6396 6854 7312	3220 3682 4143 4604 5064 5524 5983 6442 6900 7358	3266 3728 4189 4650 5110 5570 6029 6488 6946 7403	3313 3774 4235 4696 5156 5616 6075 6533 6992 7449	3359 3820 4281 4742 5202 5662 6121 6579 7037 7495	3405 3866 4327 4788 5248 5707 6167 6625 7083 7541	3451 3913 4374 4834 5294 5753 6212 6671 7129 7586	3497 3959 4420 4880 5340 5799 6258 6717 7175 7632	3543 4005 4466 4926 5386 5845 6304 6763 7220 7678	46 46 46 46 46 46 46 46 46 46
N.	0	1	2	3	4	5	6	7	8	9	D.

N.	ō	1	2	3	4	5	6	7	8	9	D.
950 951 952 953 954 955 956 957 958 959	977724 8181 8637 9093 9548 980003 0458 0912 1366 1819	7769 8226 8683 9138 9594 0049 0503 0957 1411 1864	7815 8272 8728 9184 9639 0094 0549 1003 1456 1909	7861 8317 8774 9230 9685 0140 0594 1048 1501 1954	7906 8363 8819 9275 9730 0185 0640 1093 1547 - 2000	7952 8409 8865 9321 9776 0231 0685 1139 1592 2045	7998 8454 8911 9366 9821 0276 0730 1184 1637 2090	8043 8500 8956 9412 9867 0322 0776 1229 1683 2135	8089 8546 9002 9457 9912 0367 0821 1275 1728 2181	8135 8591 9047 9503 9958 0412 0867 1320 1773 2226	46 46 46 46 46 45 45 45 45 45
960 961 962 963 964 965 966 967 968 969	982271 2723 3175 3626 4077 4527 4977 5426 5875 6324	2316 2769 3220 3671 4122 4572 5022 5471 5920 6369	2362 2814 3265 3716 4167 4617 5067 5516 5965 6413	2407 2859 3310 3762 4212 4662 5112 5561 6010 6458	2452 2904 3356 3807 4257 4707 5157 5606 6055 6503	2497 2949 3401 3852 4302 4752 5202 5651 6100 6548	2543 2994 3446 3897 4347 4797 5247 5696 6144 6593	2588 3040 3491 3942 4392 4842 5292 5741 6189 6637	2633 3085 3536 3987 4437 4887 5337 5786 6234 6682	2678 3130 3581 4032 4482 4932 5382 5382 5830 6279 6727	45 45 45 45 45 45 45 45 45 45
970 971 972 973 974 975 976 977 978 979	986772 7219 7666 8113 8559 9005 9450 9895 990339 0783	6817 7264 7711 8157 8604 9049 9494 9939 0383 0827	6861 7309 7756 8202 8648 9094 9539 9983 0+28 0871	6906 7353 7800 8247 8693 9138 9583 **28 0472 0916	6951 7398 7845 8291 8737 9183 9628 **72 0516 0960	6996 7443 7890 8336 8782 9227 9672 *117 0561 1004	7040 7488 7934 8381 8826 9272 9717 *161 0605 1049	7085 7532 7979 8425 8871 9316 9761 *206 0650 1093	7130 7577 8024 8470 8916 9361 9806 *250 0694 1137	7175 7622 8068 8514 8960 9405 9850 *294 0738 1182	45 45 45 45 45 45 45 44 44 44
980 981 982 983 984 985 986 987 988 989	991226 1669 2111 2554 2995 3436 3877 4317 4757 5196	1270 1713 2156 2598 3039 3480 3921 4361 4801 5240	1315 1758 2200 2642 3083 3524 3965 4405 +845 5284	1359 1802 2244 2686 3127 3568 4009 4449 4889 5328	1403 1846 2288 2730 3172 3613 4053 4493 4933 5372	1448 1890 2333 2774 3216 3657 4097 4537 4977 5+16	1492 1935 2377 2819 3260 3701 4141 4581 5021 5460	1536 1979 2421 2863 3304 3745 4185 4625 5065 5504	1580 2023 2465 2907 3348 3789 4229 4669 5108 5547	1625 2067 2509 2951 3392 3833 4273 4713 5152 5591	44 44 44 44 44 44 44 44 44
990 991 992 993 994 995 996 997 998 999	995635 6074 6512 6949 7386 7823 8259 8695 9131 9565	5679 6117 6555 6993 7430 7867 8303 8739 9174 9609	5723 6161 6599 7037 7474 7910 8347 8782 9218 9652	5767 6205 6643 7080 7517 7954 8390 8826 9261 9696	5811 6249 6687 7124 7561 7998 8434 8869 9305 9739	5854 6293 6731 7168 7605 8041 8477 8913 9348 9783	5898 6337 6774 7212 7648 8085 8521 8956 9392 9826	5942 6380 6818 7255 7692 8129 8564 9000 9435 9870	5986 6424 6862 7299 7736 8172 8608 9043 9479 9913	6030 6468 6906 7343 7779 8216 8652 9087 9522 9957	44 44 44 44 44 44 44 44 43
N.	0	1	2	3	4	5	6	7	8	9	D.

# EXPLANATIONS OF THE PRECEDING TABLES

### TABLE I

#### THE ATOMIC WEIGHTS OF THE ELEMENTS

This table contains the most recent values of the atomic weights of the elements, based upon the following standards: oxygen = 16.000, silver = 107.87.

There seems to be little doubt now that the atomic weight of silver is at least as low as 107.87, and for that reason all of those values which have been determined by means of silver are recalculated to this basis.

The writer has ventured to give the atomic weights of a few elements to three places of decimals, but it must be remembered that the third place is obtained by averaging a large number of analyses, and, with two exceptions, it is not definitely known. However, in view of the fact that such excellent work has been done in revising the weights in these special cases, it seems probable that the values as recorded approach more closely the true values than would be the case if the third place were dropped.

## TABLES II-IV

These tables contain the molecular weights * of common compounds, multiples of the atomic weights of common elements, and of some common compounds.

They are useful in calculating the amounts of substances which are chemically equivalent to given amounts of other substances. A few examples will illustrate some of their uses:

(1) Calculate the weight of hydrochloric acid which is exactly equivalent to 1.5 grams of sodium carbonate.

$$\begin{aligned} & \text{Na}_2\text{CO}_3 + 2 \text{ HCl} = 2 \text{ NaCl} + \text{CO}_2 + \text{H}_2\text{O}. \\ & \text{mol. wt. Na}_2\text{CO}_3 : \text{mol. wt. HCl} \times 2 : : 1.5 \text{ grams Na}_2\text{CO}_3 : x \text{ grams HCl.} \\ & \frac{\text{mol. wt. HCl} \times 2 \times 1.5}{\text{mol. wt. Na}_2\text{CO}_3} = \text{wt. HCl required.} \end{aligned}$$

^{*}The accuracy of a molecular weight is largely determined by the least accurate of the atomic weights which make it up. For example, it is useless to give the molecular weight of sulphuric acid to more than two places of decimals, although the atomic weight of hydrogen is known within a few units in the fourth place of decimals, and oxygen is the standard.

```
\begin{array}{ll} {\rm log \ second \ multiple \ of \ the \ mol, wt. \ HCl \ (Table \ IV)} = 1.862870 \\ {\rm log \ 1.5 \ (table \ of \ logarithms)} & = 0.176091 \\ {\rm sum} & = 2.038961 \\ {\rm log \ mol, \ wt. \ Na_2CO_3 \ (Table \ III)} & = 2.025265 \\ {\rm difference} & = 0.013696 \end{array}
```

The number of which 0.013696 is the logarithm is 1.03203, which is the weight of HCl required.

(2) What weight of silver must be dissolved in nitric acid and added to a solution containing two grams of barium chloride in order to precipitate exactly all of the chlorine?

$$\begin{aligned} \operatorname{BaCl}_2 + 2\operatorname{AgNO}_3 &= 2\operatorname{AgCl} + \operatorname{Ba}\left(\operatorname{NO}_3\right)_2,\\ \operatorname{mol.\ wt.\ BaCl}_2 &: \operatorname{at.\ wt.\ Ag} \times 2 :: 2\operatorname{\ grams\ BaCl}_2 : x\operatorname{\ grams\ Ag},\\ &\frac{\operatorname{at.\ wt.\ Ag} \times 2 \times 2}{\operatorname{mol.\ wt.\ BaCl}_2} &= \operatorname{wt.\ Ag\ required},\\ &\operatorname{log\ second\ multiple\ at.\ wt.\ Ag\ (Table\ II)} &= 2.333930 \end{aligned}$$

 $\begin{array}{lll} \log \ {\rm second \ multiple \ at. \ wt. \ Ag \ (1able \ II)} &= 2.333930 \\ \log \ 2 \ ({\rm table \ of \ logarithms}) &= \underline{0.301030} \\ {\rm sum} &= \underline{2.634960} \\ \log \ {\rm mol. \ wt. \ BaCl}_2 \ ({\rm Table \ III}) &= \underline{2.318627} \\ {\rm difference} &= \underline{0.316333} \end{array}$ 

The number of which 0.316333 is the logarithm is 2.07172, which is the weight of silver required.

(3) The atomic weights of many of the elements are most readily and accurately determined by preparing certain of their halides in a state of great purity, and then in a weighed sample of such material determining the exact weight of pure silver which is equivalent to the halogen. From such data the atomic weight of the element in question may be easily calculated by means of the tables. For example, let us take a special case which will illustrate the method: A weighed sample of phosphorus tribromide was treated in such a manner that the exact weight of silver equivalent to the bromine it contained was determined, and the weight of silver bromide formed was also determined. The atomic weights of bromine and silver being accurately known, we have only to calculate from the data the molecular weight of phosphorus tribromide and subtract from it three times the atomic weight of bromine in order to obtain the atomic weight of phosphorus. Therefore we make the following proportion:

In this calculation we need, in addition to the logarithms of the first two terms of the proportion, the logarithm of the third multiple of the atomic weight of silver, and the third multiple of the atomic weight of bromine, both of which are given in Table II.

To calculate the same value from the weight of silver bromide formed, which incidentally serves as a check on the first value and also gives one a clear idea of the purity of the precipitate, we make the following proportion:

The third multiple of the molecular weight of silver bromide is given in Table IV.

The tables are also useful in making standard solutions, especially those of certain normalities, as in many cases it is only necessary to shift the decimal point in the proper value in order to ascertain the weight of substance which a liter of the standard solution should contain.

A normal solution contains in a liter of *solution* a gram molecular weight of substance reduced to a univalent basis.

Two examples will serve to indicate the method of using the tables for this purpose.

Note. It is scarcely necessary to call attention to the rule of decimal fractions, i.e. that to divide by 10 is equivalent to moving the decimal point one place to the left in the dividend; that to divide by 100 is equivalent to moving the point two places to the left, etc.

# SOLUTIONS OF HYDROCHLORIC ACID OF CERTAIN NORMALITIES

$$\begin{split} N &= \text{mol. wt. (Table III).} \\ \frac{N}{2} &= \frac{\text{mol. wt.}}{2} \approx \frac{\text{mol. wt.} \times 5}{10} \text{ (Table IV).} \\ \frac{N}{5} &= \frac{\text{mol. wt.}}{5} \approx \frac{\text{mol. wt.} \times 2}{10} \text{ (Table IV).} \\ \frac{N}{10} &= \frac{\text{mol. wt.}}{10} \text{ (Table III).} \\ \frac{N}{25} &= \frac{\text{mol. wt.}}{25} \approx \frac{\text{mol. wt.} \times 4}{100} \text{ (Table IV).} \\ \frac{N}{50} &= \frac{\text{mol. wt.}}{50} \approx \frac{\text{mol. wt.} \times 2}{100} \text{ (Table IV).} \\ \frac{N}{50} &= \frac{\text{mol. wt.}}{50} \approx \frac{\text{mol. wt.} \times 2}{100} \text{ (Table IV).} \\ \frac{N}{100} &= \frac{\text{mol. wt.}}{100} \text{ (Table III).} \end{split}$$

# SOLUTIONS OF SODIUM CARBONATE OF CERTAIN NORMALITIES

$$\begin{split} N &= \frac{\text{mol. wt.}}{2} \approx \frac{\text{mol. wt.} \times 5}{10} \text{ (Table IV).} \\ \frac{N}{5} &= \frac{\text{mol. wt.}}{2 \times 5} \approx \frac{\text{mol. wt.}}{10} \text{ (Table III).} \\ \frac{N}{10} &= \frac{\text{mol. wt.}}{2 \times 10} \approx \frac{\text{mol. wt.} \times 5}{100} \text{ (Table IV).} \\ \frac{N}{25} &= \frac{\text{mol. wt.}}{2 \times 25} \approx \frac{\text{mol. wt.} \times 2}{100} \text{ (Table IV).} \\ \frac{N}{50} &= \frac{\text{mol. wt.}}{2 \times 50} \approx \frac{\text{inol. wt.}}{100} \text{ (Table III).} \\ \frac{N}{100} &= \frac{\text{mol. wt.}}{2 \times 100} \approx \frac{\text{mol. wt.} \times 5}{1000} \text{ (Table IV).} \end{split}$$

#### TABLE V

# REDUCTION OF COMPOUNDS FOUND TO CONSTITUENTS SOUGHT BY MULTIPLICATION

This table is intended to aid in calculations connected with the analysis of mineral substances, where it is so frequently necessary to determine a given substance in a state of combination different from that the proportionate amount of which we wish to know. If, for example, we wish to determine the amount of barium a given substance contains, we should probably precipitate it and weigh it as barium sulphate and from this weight calculate the barium as follows:

$$\begin{split} & \text{mol, wt. BaSO}_4: \text{at. wt. Ba}:: \text{wt. BaSO}_4: \text{wt. Ba}. \\ & \frac{\text{at. wt. Ba}}{\text{mol. wt. BaSO}_4} \times \text{wt. BaSO}_4 = \text{wt. Ba}. \end{split}$$

The constituent sought, in this case barium, is given in the first column of the table, and the state of combination in which it is convenient to determine the substance, barium sulphate, is given in the second column. On the same horizontal line with BaSO₄ a factor is given which is the quotient resulting from the division of the atomic weight of barium by the molecular weight of barium sulphate, so that it is only necessary to add to the logarithm of this factor the logarithm of the actual weight of barium sulphate in order to obtain the logarithm of the required weight of barium.

From the above it is plain that the factors express the actual weight of substance sought, contained in, or equivalent to one gram of substance found; that is, the first term of the proportion is reduced to unity, the second term

is expressed by the factor, the third term is the weight of substance found. By multiplying the second and third terms together the product expresses the weight of substance sought.

(2) In analyzing orthoclase feldspar the potassium and sodium are separated from the rest of the constituents and weighed together as chlorides. The potassium is then separated from the sodium in the usual manner and weighed as  $K_2PtCl_6$ . It is customary to express the results of such analyses in percentages  $K_2O$  and  $Na_2O$ . From the weight of combined chlorides and the weight of  $K_2PtCl_6$  the weights of  $K_2O$  and  $Na_2O$  are calculated as follows:

```
\begin{split} & \text{mol. wt. } \mathbf{K}_2\mathbf{PtCl}_6: \text{chem. equiv. wt. } \mathbf{K}_2\mathbf{O}:: \text{wt. } \mathbf{K}_2\mathbf{PtCl}_6: \text{wt. } \mathbf{K}_2\mathbf{O}. \\ & \text{wt. } \mathbf{K}_2\mathbf{PtCl}_6 \times \mathbf{0.19383} \text{ (factor)} = \text{wt. } \mathbf{K}_2\mathbf{O}. \\ & \text{mol. wt. } \mathbf{K}_2\mathbf{PtCl}_6: \text{chem. equiv. wt. } \mathbf{KCl} \text{ (2 KCl)}:: \text{wt. } \mathbf{K}_2\mathbf{PtCl}_6: \text{wt. } \mathbf{KCl.} \\ & \text{wt. } \mathbf{K}_2\mathbf{PtCl}_6 \times \mathbf{0.30683} \text{ (factor)} = \text{wt. } \mathbf{KCl.} \\ & \text{wt. of combined chlorides} - \text{wt. } \mathbf{KCl} = \text{wt. NaCl.} \\ & \text{chem. equiv. wt. NaCl (2 NaCl)}: \text{mol. wt. Na}_2\mathbf{O}:: \text{wt. NaCl}: \text{wt. Na}_2\mathbf{O}. \\ & \text{wt. NaCl} \times \mathbf{0.53028} \text{ (factor)} = \text{wt. Na}_2\mathbf{O}. \end{split}
```

### CALCULATION OF INDIRECT ANALYSIS

Let us suppose that we have a mixture of a chloride and a bromide, and that we wish to determine the chlorine and the bromine. The weight of silver which is equivalent to the combined halogens is determined by the Volhard method. Then the precipitated AgCl and AgBr are collected and weighed together.

Let 
$$x = \text{wt. AgCl,}$$
 and  $y = \text{wt. AgBr.}$  Then  $x + y = a \text{ (wt. of AgCl + AgBr),}$  and  $\frac{\text{Ag}}{\text{AgCl}} x + \frac{\text{Ag}}{\text{AgBr}} y = b \text{ (wt. Ag equiv. to Cl and Br).}$ 

As  $\frac{Ag}{AgCl}$  and  $\frac{Ag}{AgBr}$  are constant quantities, we may represent them by k and

k' respectively. The equations then become

$$x + y = a,$$
  
$$kx + k'y = b.$$

Multiplying the first equation by k and subtracting the second from it in order to eliminate x, we have

$$kx + ky = ka,$$

$$kx + k'y = b,$$

$$(k - k') y = ka - b,$$

$$y = \frac{ka - b}{k - k'}.$$

As k-k' is a single constant we have  $y=\frac{ka-b}{K}$ . By substituting the value thus obtained for y in the first equation we have x=a – value of y.

wt. AgCl 
$$\times$$
 0.24737 = wt. Cl. wt. AgBr  $\times$  0.42555 = wt. Br.

The values of  $\frac{Ag}{AgBr}$  and  $\frac{Ag}{AgCl}$  are given in Table V under Ag and opposite AgBr and AgCl respectively.

# TABLES VI-IX

Normal atmospheric pressure is equal to the pressure exerted at sea level and 45° latitude by a vertical column of pure mercury 760 mm. long, the temperature of which is zero degrees C.

Barometric readings made under ordinary conditions must be reduced to standard conditions; that is, corrections must be applied for temperature, latitude, and elevation.

Temperature corrections. In view of the fact that the cubical expansion of mercury is much greater than that of glass, and the length of the barometer scale also changes with the temperature, it is necessary to consider all of these factors in making the temperature corrections. However, these have been combined and the values are given in Table VI.

Latitude corrections. Gravity at 45° latitude and sea level is considered normal. The values of this force in other latitudes as compared with the normal, taken as unity, are given in Table VII for a few important places. The length a barometric column of any latitude would have if it were acted upon by normal gravity may be calculated by multiplying the observed reading by that fraction which the force of gravity at the latitude in question is of normal gravity, or the proper correction may be taken from Table VIII, A.

Elevation corrections. These are necessary, because gravity diminishes as we proceed from the center of gravity of the earth (Table VIII, B).

Capillary depression corrections. Manufacturers of straight barometers make due allowance, in the adjustment of the scale, for capillary depression of the mercury; and in U-shaped barometers and manometers the forces on the two surfaces compensate, provided the mercury is of uniform purity and the arms are of the same diameter. However, there are other purposes for which the values of the capillary depression of mercury may be needed, and they are given in Table IX.

# TABLES XII AND XIII

# REDUCTION OF GAS VOLUMES TO NORMAL CONDITIONS OF PRESSURE AND TEMPERATURE

Boyle's Law. The volume of a given mass of any gas varies inversely as the pressure upon it, provided the temperature remains constant.

If v represents the volume of a given mass of gas at 760 mm. pressure, and  $v_1$  any other volume of the same mass at the pressure h, then  $760 v = hv_1$ , and  $v = \frac{h}{760} v_1$ .

In order to calculate the volume any given amount of gas would have if it existed under normal pressure, we have only to add to the logarithm of the observed volume the logarithm of the value of  $\frac{h}{760}$ , taken from Table XII. The sum will be the logarithm of the required volume.

Moist gases are assisted in sustaining the pressure of the atmosphere by the partial pressure of water vapor. Therefore, in order to find the pressure which the gas itself is actually exerting (which is equal to the pressure under which it exists in equilibrium), we must subtract from the pressure of the atmosphere the aqueous tension.

If the volume of a gas cannot be measured under exactly atmospheric pressure, it is frequently convenient to determine its pressure by measuring the difference between it and that of the atmosphere by means of an open arm manometer. The pressure of the atmosphere is then altered by the amount of this difference in order to ascertain the pressure under which the gas exists. The pressure which the gas alone exerts is represented by h of Table XII.

Charles's Law. The volume of any gas increases by  $\frac{1}{273}$  part of its volume at 0° C. for every degree its temperature increases.

If  $V_t$  is the volume of a gas at the temperature t, we have

$$V_t = V_0 + V_0 \times 0.00367 \, t = V_0 (1 + 0.00367 \, t); \text{ then } V_0 = \frac{1}{1 + 0.00367 \, t} \times V_t.$$

The values of  $\frac{1}{1+0.00367 t}$  are given in Table XIII for temperatures ranging from 0° to 149°.

To calculate the volume a given amount of gas would have if its temperature were reduced to zero, we have to add to the logarithm of the observed

volume the logarithm of the value of  $\frac{1}{1 + 0.00367 t}$  (Table XIII). The sum will be the logarithm of the required volume.

We may combine the expressions given above if we wish, as is usually the case, to reduce the volume to standard conditions of both pressure and temperature, thus

 $V_{0^{\circ}}$ , 760 mm. =  $\frac{h}{760} \times \frac{1}{1 + 0.00367 t} \times V_{t^{\circ}}$ , h mm.

These reductions may be summed up as follows: Correct the barometric reading for temperature, latitude, and elevation. Subtract from the corrected reading the tension of aqueous vapor, and apply the manometer correction, if there be one. The result is the value represented by h. Add to the logarithm of the observed volume, the logarithm of  $\frac{h}{760}$  (Table XII) and of  $\frac{1}{1+0.00367}t$  (Table XIII). The sum will be the logarithm of the required volume.

## TABLE XIV

This table is intended to minimize the labor of reducing the volume of moist gases to normal conditions and dry. It is assumed that the temperature of the barometer and of the gas and water over which the gas is measured is the same. Under this condition the barometric reading is corrected for temperature, the tension of aqueous vapor subtracted, and the resulting value of  $\frac{h}{760}$  combined with  $\frac{1}{1+0.00367\,t}$  for certain combinations of temperature and pressure.

Take from the table the logarithm corresponding to the temperature and approximate pressure. Interpolate to find the logarithm corresponding to the exact pressure, and add to it the logarithm of the observed volume of the gas. The sum will be the logarithm of the volume under normal conditions and dry.

# TABLE XV

If one wishes to know the weight of an observed volume of gas, as in the analysis of nitrogenous organic substances by the Dumas method, the volume should be reduced to standard conditions, and then to the logarithm of this volume add the logarithm of the weight of one liter of the gas, taking care to express the volume read off as a fraction of a liter.

# TABLE XXVIII

#### BUOYANCY OF AIR

In view of the fact that the buoyant effect of the atmosphere changes considerably and often rapidly, it is necessary in work where great accuracy is required to reduce the apparent weight of a substance to a vacuum standard.

If d is the weight of 1 cc. of air and v the volume of the object weighed, the true weight is w + vd, where w is the apparent weight.

If the specific gravity of the substance is known, its volume is calculated by dividing its weight by the specific gravity. The error introduced by using the apparent weight instead of the true weight in the expression  $v = \frac{w}{s}$  is negligible. Therefore the true weight of a substance is  $w + \frac{w}{s}d$ .

If we wish to obtain absolute weighings, the same kind of correction must be applied to the weights. For brass weights (s = 8.3) the correction is 0.000145 per gram. This correction is negative and is to be subtracted from the calculated true weight of the substance.

The true, absolute weight, then, of a substance weighed in air with brass weights is  $w_0 = w \left( 1 + \frac{d}{s} - 0.000145 \right)$ .

The values of d (Table XVI) are calculated for 760 mm. pressure. In work where the greatest accuracy possible is required, the value of d must be reduced to the existing condition of pressure; namely,  $d \times \frac{h}{760}$ .

In many instances, however, it is sufficiently accurate to consider d constant and equal to 0.0012 g. at room temperature. Under this condition the above expression becomes

$$w_0 = w \left( 1 + \frac{0.0012}{s} - 0.000145 \right) = w \left( 1 + c \right). \quad \text{(See Table XXVIII.)}$$

# THE COMMON SYSTEM OF LOGARITHMS

This system of logarithms is in general use because it greatly abridges numerical computation, and with due care arithmetical errors are largely eliminated.

The logarithm of a number is the exponent of the power to which it is necessary to raise a fixed number, in order to produce the first number.*

^{*} The definition is based upon the assumption that there always exists a real number x which satisfies the equation  $b^x = a$ , where a and b are positive numbers and b is greater than 1.

The base of the common system is 10, and since

$10^{\circ} = 1$	$10^{-1} = 0.1$
$10^1 = 10$	$10^{-2} = 0.01$
$10^2 = 100$	$10^{-3} = 0.001$
$10^3 = 1000$	$10^{-4} = 0.0001$

it follows from the definition of a logarithm that

$\log 1 = 0$		$\log 0.1 = -1$
$\log 10 = 1$	*	$\log 0.01 = -2$
$\log 100 = 2$		$\log 0.001 = -3$
$\log 1000 = 3$		$\log 0.0001 = -4$

It is quite evident from the above table that the logarithms of all numbers between 0 and 1 are negative and that the logarithms of all numbers greater than 1 are positive.

Note. A negative number is considered as having no logarithm.

We see also that the logarithm of any number between 1 and 10 is greater than 0 and less than 1; thus

$$\log 2.71 = 0.432969.$$

The logarithm of any number greater than 10 and less than 100 is greater than 1 and less than 2; thus

$$\log 26. = 1.414973.$$

It is plain that if a number is not an exact power of 10, its logarithm must consist at least in part of a decimal fraction.

It is true that such logarithms can be expressed only approximately, but if the fractions are given to six places, they are sufficiently accurate for even the best atomic weight work.

The integral part of a logarithm is called the characteristic, and the decimal part the mantissa. In the case just given 1 is the characteristic and .414973 the mantissa of the log 26.

To find the characteristic of the logarithm of a number:

- (a) When the number is greater than unity, the characteristic of its logarithm is one less than the number of digits to the left of the decimal point. Thus the characteristic of the logarithm of 46783.85 is 4.
- (b) When the number is less than unity, subtract from 9 the number of ciphers between the decimal point and the first significant figure, writing -10 after the mantissa. Thus the characteristic of the logarithm of 0.00089 is 6 with -10 written after the mantissa:  $\log 0.00089 = 6.949390 10$ .

Some prefer to combine the two parts of such characteristics, writing the result as a negative characteristic, in which case it is one greater than the number of zeros preceding the first significant figure. The minus sign is written above the characteristic to show it applies only to it, for in constructing logarithmic tables it is convenient to make all mantissas positive even if the logarithm is a negative number. For example,  $\log \frac{1}{2} = -0.602060$ ; but since -.602060 = -1. + .397940, this may be written  $\log \frac{1}{2} = \overline{1}.397940$  or 9.397940 - 10 with a positive mantissa. In order to avoid complications it is best to adhere to the first form of expression mentioned under (b): that is. when a logarithm has a negative characteristic to add 10 to and subtract 10 from it. For example, instead of writing the logarithm  $-1. \pm .397940$ , or  $\overline{1.397940}$ , we should write +10-1.+.397940-10=9.397940-10. This is convenient when we wish to divide a logarithm by a number. Since mantissas are always positive, it would not be correct to divide 1.397940 by 2, as we should confuse the positive and negative parts. If the form 9.397940 - 10is used, the confusion is avoided, and the result of the division by 2 is  $4.698970 - 5 = \overline{1}.698970$ , the actual logarithm resulting from the division.

#### TABLE OF LOGARITHMS

The great value of the common system of logarithms for the purposes of the analytical chemist is due to the fact that short tables can be constructed which contain the mantissas of the logarithms of all numbers from 1 or 100 to some given number, generally 1000 or 10,000, this being sufficient to cover all cases, and the characteristics can be determined by inspection.

In order to use a table of logarithms one must know how to find the logarithm of any number, and how to take from the table the number which has a given logarithm, and also how to point the numbers off.

To find from the table the logarithm of any number:

(a) When the number consists of two significant figures.

All of these numbers are given on the first page of the table in columns marked N. The logarithm of each number is placed opposite the number.

(b) When the number consists of three or four significant figures.

Find in the column of numbers the first three significant figures of the given number, then glance across the page along a horizontal line to the column under the fourth figure of the given number; four figures of the required mantissa are given at this point, to which two figures taken from the zero column must be prefixed. If the four figures of the required mantissa are

opposite a row of six figures in the zero column, the first two of the six are to be prefixed; but if they are opposite only four figures in the zero column, the two figures to be prefixed will be found above, unless in passing back to the zero column asterisks be met with, in which case the two figures will be found immediately below the horizontal line in the zero column. Zeros should be written wherever asterisks occur. Characteristics are then prefixed in accordance with the rules already given.

Examples:  $\log 106 = 2.025306$   $\log 1264 = 3.101747$   $\log 2041 = 3.309843$   $\log 2042 = 3.310056$  $\log 2048 = 3.311330$ 

(c) When the number consists of more than four significant figures.

The mantissas of the logarithms of these numbers are not to be found in the table, but they can be easily calculated from values given in the table by a process of interpolation. The principle of proportional parts assumes that for a small change in a number there corresponds a proportional change in the logarithm. This is not strictly true, but the approximation is sufficiently close for most purposes.

For example, required the log 521257. We find from the table log 5212 = 3.717004 and log 5213 = 3.717088. That is, an increase of one unit in the fourth figure produces an increase of .000084 in the logarithm. Therefore an increase of .57 of this unit will produce an increase in the logarithm equal to  $.57 \times .000084$ , or .000048. Hence log 521257 = 5.717052.

Note. In order to facilitate the process of interpolation it is customary to give the differences between the logarithms of consecutive numbers of four figures in a separate column. Such numbers are called tabular differences. In the table one number is given at the end of each horizontal line, and in each case it is nearly a mean of the differences of any two logarithms on the same line. It is intended that these numbers should serve only as a guide, and the last figure should be checked in every instance by glancing at the logarithms involved.

The following rule is derived from the above: Place a decimal point after the fourth significant figure from the left, converting the given number into a whole number and a fraction, and this irrespective of any decimal point that may occur in the given number.* Find from the table the mantissa

^{*} Numbers with the same sequence of figures and which differ only in the position of the decimal point have the same mantissa, for one is the product of the other and an integral power of 10; hence their logarithms differ only by integers. Therefore the mantissa of the common logarithm of a number is independent of the decimal point.

of the entire part and multiply the decimal part by the tabular difference; add the product thus obtained to the mantissa of the entire part and prefix the proper characteristic, determined with respect to the position of decimal point in the original number.

To find from the table the number which corresponds to a given logarithm:

- (a) Required the number the logarithm of which is 1.874772. We find this exact mantissa given in the table, and opposite in the column of numbers we find 749, the first three figures of the required number, and at the head of the column 5 the fourth figure.
- (b) Required the number the logarithm of which is 2.137860. The mantissa of this logarithm is not given in the table, but it lies between the two mantissas .137671 and .137987, and the numbers corresponding to these are 1373 and 1374 respectively. The difference between the two mantissas taken from the table is 316, and the difference between the given mantissa and the smaller of the two taken from the table is 189; that is, an increase of 316 in the mantissa produces an increase of one unit in the corresponding number. Therefore an increase of 189 in the smaller of the two mantissas taken from the table will produce an increase of  $\frac{1}{3}\frac{8.9}{10}$  of a unit in the corresponding number. Hence the required number is 137.359 nearly.

The following rule is derived from the above:

Search in the table for the mantissa of the given logarithm, and if it cannot be found, set aside the number corresponding to the next less mantissa. Subtract this mantissa from that of the given logarithm and divide the remainder by the tabular difference, carrying the division as far as desirable. Annex the quotient to the number set aside, and point off from the left one more integer figure than there are units in the characteristic of the given logarithm. If the characteristic is negative, the number is less than 1, and the number of zeros to be placed before the first figure is one less than the number of units in the characteristic.

#### MULTIPLICATION BY LOGARITHMS

Find from the table the logarithms of all the numbers to be multiplied together. Add these algebraically, remembering that negative signs apply only to the characteristic. The sum is the logarithm of the product.

Thus multiply 27.1 by 119.86.

 $\begin{array}{c} \log 27.1 &= 1.432969 \\ \log 119.86 &= \underbrace{2.078674}_{3.511643} = \log \text{ of product} \end{array}$ 

The number of which this is the logarithm is 3248.201.

### DIVISION BY LOGARITHMS

Find the logarithm of the dividend and subtract from it the logarithm of the divisor. The difference is the logarithm of the quotient. The word "difference" is used here in its algebraic sense. That is, if the characteristic of the logarithm of the divisor is negative, its sign must be changed; but if that of the dividend is negative, it must be treated as a negative quantity. Let it be said once more that mantissas without exception are positive.

1. To divide 100.07 by 56.07.

 $\begin{array}{c} \log 100.07 = 2.000304 \\ \log 56.07 = \underline{1.748731} \\ \hline 0.251573 = \log \text{ of quotient} \end{array}$ 

The number of which this is the logarithm is 1.78473.

2. To divide 107.87 by 0.0187779.

 $\begin{array}{c} \log 107.87 = 2.032901 \\ \log 0.0187779 = \overline{2.273647} \\ \overline{3.759254} = \log \ \text{of quotient} \end{array}$ 

The number of which this is the logarithm is 5744.5.

3. To divide 0.13736 by 153.36.

 $\begin{array}{l} \log \ 0.13736 = \overline{1}.137860 \\ \log \ 153.36 = \underline{2.185712} \\ \overline{4.952148} = \log \ \text{of quotient} \end{array}$ 

The number of which this is the logarithm is .00089568.

In regard to involution and evolution it is only necessary to say that the logarithm of any power of a number is obtained by multiplying the logarithm of the number by the exponent of the power, and that the logarithm of any root of a number is obtained by dividing the logarithm of the number by the index of the root.









30 PERONT SLOT MASTIER CARD INSERT BOOK OGARITHMIC REDUCTION TABLE

MASTER CARD

UNIVERSITY OF ARIZO

