

TD2 (indication de correction)

Objectif pédagogique: Comprendre l'affectation des adresses IP dans une infrastructure réseau et le fonctionnement des algorithmes de routage.

Exercice 1 : Routage statique

1- Trouver les tables de routage de chaque routeur.

Table du routeur R1:

Réseau/sous réseau	Masque Réseau	Interface de sortie
distant		(physique)
172.16.1.0	255.255.255.0	E1 (Fa0/0)
172.16.2.0	255.255.255.0	E2 (Serial2/0)
172.16.3.0	255.255.255.0	E2 (Serial2/0)
172.16.4.0	255.255.255.0	E2 (Serial2/0)
172.16.5.0	255.255.255.0	E2 (Serial2/0)
0.0.0.0	0.0.0.0	E2 (serial2/0)

Exemple: Ajout d'une route statique par un administrateur sur le routeur R1 pour le réseau 172.16.3.0 via l'interface de sortie physique E2. R1(config)# ip route 172.16.3.0 255.255.255.0 E2

Table du routeur R2:

172.16.2.0	255.255.255.0	E1 (Serial2/0)
172.16.3.0	255.255.255.0	E2 (Fa0/0)
172.16.4.0	255.255.255.0	E3 (Serial2/1)
172.16.1.0	255.255.255.0	E1 (Serial2/0)
172.16.5.0	255.255.255.0	E2 (Serial2/0)
0.0.0.0	0.0.0.0	E3 (serial2/1)

Table du routeur R3:

172.16.4.0	255.255.255.0	E1 (serial2/0)
172.16.5.0	255.255.255.0	E2 (Fa0/0)
212.217.10.0	255.255.255.240	E3 (Serial2/1)
172.16.1.0	255.255.255.0	E1 (serial)
172.16.2.0	255.255.255.0	E1 (serial)
172.16.3.0	255.255.255.0	E1 (serial)
0.0.0.0	0.0.0.0	E3 (serial2/1)

2- Comment peut-on garantir l'accès à l'internet de tout le monde. Créer une route par défaut sur les routeurs.

Licence Fondamentale: SMI-S6

A. U: 2019-2020 Réseaux II

```
R1(config)# ip route 0.0.0.0 0.0.0.0 E2
R2(config)# ip route 0.0.0.0 0.0.0.0 E3
R3(config)# ip route 0.0.0.0 0.0.0.0 E3
```

3- Donner le contenu des tables de routage (voir la question 1).

Exercice 2 : Routage distribué par le vecteur de distance

On considère le réseau de topologie suivante (l'algorithme Bellman-Ford):

1. Donner les tables de routages initiales de chaque routeur.

```
Routage(\mathbf{A}) = (\mathbf{A}, -, 0); Routage(\mathbf{B}) = (\mathbf{B}, -, 0); Routage(\mathbf{C}) = (\mathbf{C}, -, 0);
Routage(\mathbf{D}) = (\mathbf{D}, -, 0); Routage(\mathbf{E}) = (\mathbf{E}, -, 0);
```

2. Donner les tables de routages de chaque routeur après la convergence. Supposons que l'ordre d'échange des vecteurs de distance entre les voisins est comme suit :

A l'instant t, A échange avec ses voisins (B, D) sa table de routage Mise à jour des tables de B et D.

Routage(
$$\mathbf{B}$$
) = (B, -, 0; A, A, 1)
Routage(\mathbf{D}) = (D, -, 0; A, A, 1)

A t+1, B échange avec ses voisins (A, C, E),

Routage(A) =
$$(A, -, 0; B, B, 1)$$

Routage(C) = $(C, -, 0; B, B, 1; A, B, 2)$
Routage(E) = $(E, -, 0; B, B, 1; A, B, 2);$

A t+2, D échange avec ses voisins (A, E),

A. U : 2019-2020 Réseaux II

```
Routage(A) = (A, -, 0; B, B, 1; D, D, 1)

Routage(E) = (E, -, 0; B, B, 1; A, B, 2; D, D, 1);

A t+3, E échange avec ses voisins (B, C, D),

Routage(B) = (B, -, 0; A, A, 1; E,E,1; D, E, 2)

Routage(C) = (C, -, 0; B, B, 1; A, B, 2; E, E, 1; D, E, 2)

Routage(D) = (D, -, 0; A, A, 1; E, E, 1; B, E, 2)

A t+4, C échange avec ses voisins (B, E),

Routage(B) = (B, -, 0; A, A, 1; E,E,1; D, E, 2; C, C, 1)

Routage(E) = (E, -, 0; B, B, 1; A, B, 2; D, D, 1; C,C,1)

A t+5, B échange avec ses voisins (A, C, E) et

Routage(A) = (A, -, 0; B, B, 1; A, B, 2; E, E, 1; D, E, 2)

Routage(C) = (C, -, 0; B, B, 1; A, B, 2; E, E, 1; D, E, 2)

Routage(E) = (E, -, 0; B, B, 1; A, B, 2; D, D, 1; C, C, 1)
```

A t +6, E échange avec ses voisins (B, C, D).

Routage(\mathbf{B}) = (B, -, 0; A, A, 1; E,E,1; D, E, 2; C, C, 1)

Routage(C) = (C, -, 0; B, B, 1; A, B, 2; E, E, 1; D, E, 2)

Routage(\mathbf{D}) = (D, -, 0; A, A, 1; E, E, 1; B, E, 2; C, E, 2)

Routage(A) = (A, -, 0; B, B, 1; D, D, 1; E, B, 2; C, B, 2)

Routage(\mathbf{E}) = (\mathbf{E} , -, 0; \mathbf{B} , \mathbf{B} , 1; \mathbf{A} , \mathbf{B} , 2; \mathbf{D} , \mathbf{D} , 1; \mathbf{C} , \mathbf{C} , 1)

3. Donner les tables de routages si la liaison EC tombe en panne.

C et E détectent la rupture de cette liaison et marque cette route comme inaccessible avec une distance infinie.

Routage(C) =
$$(C, -, 0; B, B, 1; A, B, 2; E, E, infinie; D, E, infinie)$$

Routage(E) = $(E, -, 0; B, B, 1; A, B, 2; D, D, 1; C, C, infinie)$

Voisin de C est B.

Routage(\mathbf{B}) = (B, -, 0; A, A, 1; E,E,1; D, E, 2; C, C, 1)

Voisin de E est B et D.

Routage(\mathbf{D}) = (D, -, 0; A, A, 1; E, E, 1; B, E, 2; C, E, infinie)

E recevra les messages de B:

Routage(E) = $(E, -, 0; B, B, 1; A, B, 2; D, D, 1; C, B \in C, 2 infinie)$

C recevra les messages de B.

D recevra les messages de E.

Routage(\mathbf{D}) = (D, -, 0; A, A, 1; E, E, 1; B, E, 2; C, E,3 infinie)

Faculté des Sciences, Département Informatique **Licence Fondamentale: SMI-S6**

A. U: 2019-2020

Réseaux II

Exercice 3 : Routage par état de liens

On considère le réseau de topologie suivante :

1. Trouver le plus court chemin entre A et F en suivant les étapes de fonctionnement de l'algorithme Dijkstra sous forme un tableau.

Plusieurs chemins (routes) entre la source A et la destination F sont disponibles avec des coûts différents. Le nœud A enregistre pour chaque destination le meilleur chemin (la meilleure route) dont le coût est faible.

Etape 0 : On affecte un poids de 0 au nœud source A et infini aux autres nœuds.

	A	В	С	D	E	F	Nœud sélectionné
-	0	infini	infini	infini	infini	infini	

Etape 1 : Le nœud sélectionné est le nœud A. Une fois un nœud est traité, on grise la colonne (le nœud A est traité et on ne revient plus à ce noeud). On écrit les poids avec l'indice le nœud d'origine uniquement pour les voisines (B, C, D) et les autres on garde infini.

A	В	C	D	E	F	Nœud
						sélectionné
0	infini	infini	Infini (temps)	infini	infini	A(0)
	2_{A}	$5_{\rm A}$	$1_{\mathbf{A}}$	infini	infini	D(1)

Etape 2 : Le nœud sélectionné est le nœud D dont le poids est faible. On va remplir une nouvelle ligne dans le tableau. Les voisins de D sont (A, B, C et E). La colonne de A est déjà grisée. B est adjacent à D, on a 1, on ajoute 1, donc 2. Le nœud dont le coût est minimal est le nœud B avec un poids de 2 et aussi le nœud E avec un même poids. On va sélectionner le nœud B.

A	В	С	D	E	F	Nœud sélectionné
0	infini	infini	infini	infini	infini	A(0)
	$2_{\rm A}$	5 _A	$1_{\mathbf{A}}$	infini	infini	D(1)
	$1+1=2_{\rm D}$	4_{D}		$1+1=2_{D}$	infini	B(2)

Faculté des Sciences, Département Informatique

Licence Fondamentale: SMI-S6

A. U : 2019-2020 Réseaux II

Etape 3 : Les voisins du nœud B sont A, D et C. Les nœuds A et D sont déjà visités (grisés). On choisit un nœud dont le poids est minimal (c'est B) et on remplit une nouvelle ligne.

A	В	C	D	E	F	Nœud sélectionné
0	infini	infini	infini	infini	infini	A(0)
	2 _A	5 _A	1_{A}	infini	infini	D(1)
	2_{D}	4 _D		2_{D}	infini	B(2)
		$3+2=5_{\rm B}$		2_{D}	infini	E(2)

Il reste un seul voisin C. Le nœud C a un poids de 5 et avant on a un nœud E dont le poids est 2.

Etape 4 : le nœud sélectionné est le nœud E. Les voisins de E sont A, C, F. On va griser la colonne de E pour ne le visiter à nouveau.

A	В	C	D	E	F	Nœud
						sélectionné
0	infini	infini	infini	infini	infini	A(0)
	2 _A	5 _A	1 _A	infini	infini	D(1)
	$2_{\rm D}$	$4_{\rm D}$		$\frac{2}{2}$	infini	B(2)
		$3 + 2_D = 5_B$		2_{D}	infini	E(2)
		$2_{\rm D} + 1 = 3_{\rm E}$			4 _E	C(3)

Etape 5 : Le nœud dont le poids est faible est le nœud C. Les voisins de C sont A, B, D, E, et F. On va griser la colonne de C pour ne pas retourner à C.

A	В	C	D	E	F	Nœud sélectionné
0	infini	infini	inifini	infini	infini	A(0)
	2 _A	5 _A	$1_{\mathbf{A}}$	infini	infini	D(1)
	$2_{\rm D}$	4 _D		$\frac{2}{2}$	infini	B(2)
		$3 + 2_{\rm D} = 5_{\rm B}$		$2_{\rm D}$	infini	E(2)
		$2_{\rm D} + 1 = 3_{\rm E}$			$2+2_{\rm D}=4_{\rm E}$	C(3)
					$5+3_{E}=8_{C}$	F(4)

La valeur minimale est 4 à partir de E < 8 à partir de C. Le nœud F est le nœud final. Le chemin dont le coût est minimal de A à F est : Coût = 4_{E} , Chemin = A(source), D, E, F. (destination)

2. Déduire la table de routage du nœud A.

Pour avoir la table de routage de A, il faut trouver les chemins les plus courts vers tous les autres nœuds (A, B, C, D, E) de la même manière que celui de F.

Nœud distant	Meilleur chemin	Coût
A	-	0
В	A, B	2
С	A, D, E, C	3
D	A, D	1
Е	A, D, E	2
F	A, D, E, F	4