班级

分布函数.

单元测验2

1. 设 X 为一随机变量,对任意 $x \in \mathbb{R}$,函数 $F(x) = P\{X \le x\}$ 称为随机变量 X 的

姓名

一、判断题(正确的请在括号里打"√",错误的请打"×")

2. 对连续型随机变量 X,有 $P\{a \leq X \leq b\} = P\{a < X < b\}$.

3. 常用的离散型分布有:0—1 分布、二项分布、指数分布.	()
二、填空题		
1. 设 $F(x)$ 是离散型随机变量的分布函数,若 $P\{X=b\}=$,则 $P\{a 成立.$		
2. 设离散型随机变量 X 的分布函数为 $F(x) = \begin{cases} 0 & x < -1 \\ a & -1 \le x < 1 \end{cases}$ $\frac{2}{3} - a 1 \le x < 2$, $\underline{\mathbb{E}}P\{x\}$		
2. 设离散型随机变量 X 的分布函数为 $F(x) = \begin{bmatrix} \frac{2}{3} - a & 1 \le x < 2 \end{bmatrix}$,且 $P\{x \in \mathbb{R}\}$	X = 2	=
$(a+b x \ge 2$		
3. 设连续型随机变量 X 的概率密度为 $f(x) = \begin{cases} ke^{-\frac{x}{2}} & x > 0 \\ 0 & x \le 0 \end{cases}$,则 $k = $		_,
$P\{1 < X \le 2\} =, P\{X = 2\} =, P\{X < 2\} =$	*	
4. 设随机变量 X 的概率密度为:		
$f(x) = \begin{cases} kx^b, & 0 < x < 1(b > 0, k > 0) \\ 0, & \text{ ##.} \end{cases}$		
且 $P\left\{X > \frac{1}{2}\right\} = 0.75$,则 $k =$, $b =$		
50		

5. 设(X,Y)的分布律为:

X Y	0	1
0	0.56	0. 24
1	0. 14	0, 06

三、单项选择题

1. $P\{X = x_k\} = \frac{2}{p_k} (k = 1, 2, \dots)$ 为某一离散型随机变量 X 的分布律的必要条件

是().

A. x, 非负

B. x, 为整数

C. $0 \le p_k \le 2$

D. $p_{\nu} \ge 2$

2. 若函数 y = f(x) 是某一连续型随机变量 X 的概率密度,则()一定成立,

A. f(x)的定义域为[0,1] B. f(x)的值域为[0,1]

C. f(x) 非负

D. f(x)在 $(-\infty,\infty)$ 内连续 3. 如果 F(x)是(),则 F(x)一定不可以是连续型随机变量的分布函数.

A. 非负函数

B. 连续函数

C. 有界函数

D. 单调减少函数

4. 在下列函数中,()可以作为连续型随机变量的分布函数.

A.
$$F(x) = \begin{cases} e^x & x < 0 \\ 1 & x \ge 0 \end{cases}$$

B.
$$G(x) = \begin{cases} e^{-x} & x < 0 \\ 1 & x \ge 0 \end{cases}$$

C.
$$\Phi(x) = \begin{cases} 0 & x < 0 \\ 1 - e^x & x \ge 0 \end{cases}$$

A.
$$F(x) = \begin{cases} e^x & x < 0 \\ 1 & x \ge 0 \end{cases}$$
 B. $G(x) = \begin{cases} e^{-x} & x < 0 \\ 1 & x \ge 0 \end{cases}$ C. $\Phi(x) = \begin{cases} 0 & x < 0 \\ 1 - e^x & x \ge 0 \end{cases}$ D. $H(x) = \begin{cases} 0 & x < 0 \\ 1 + e^{-x} & x \ge 0 \end{cases}$

5. 设随机变量 X 服从正态分布 $N(\mu, \sigma^2)$,则随着 σ 的增大,概率 $P \mid X - \mu \mid <$ σ ().

A. 单调增大 B. 单调减小

C. 保持不变 D. 增减不定

6. 设(*X,Y*) 的联合概率密度为 $f(x,y) = \begin{cases} \frac{1}{\pi}, & x^2 + y^2 \le 1 \\ 0, & \text{其他} \end{cases}$,则 $X \ni Y$ 为()

概率论与数理统计习题集

的随机变量.

A. 独立同分布

B. 独立不同分布

C. 不独立同分布

D. 不独立也不同分布

7. 一电话交换台每分钟接到的呼唤次数 X 服从参数 $\lambda = 4$ 的泊松分布,那么每 分钟接到的呼唤次数大于20的概率是(

A.
$$\frac{4^{20}}{20!}e^{-4}$$

B. $\sum_{k=2}^{\infty} \frac{4^k}{k!} e^{-4}$ C. $\sum_{k=2}^{\infty} \frac{4^k}{20!} e^{-4}$ D. $\sum_{k=2}^{\infty} \frac{4^k}{k!} e^{-4}$

A.
$$N(1,2^2)$$

B. N(1.2)

C. N(0,2) D. N(0,1)

四、解答题

- 1. 有一大批产品,其验收方案如下: 先做第一次检验,从中任取 10 件,经验收无 次品则接收这批产品,次品数大于2 拒收;否则做第二次检验,其做法是从中 再任取5件,仅当5件中无次品时则接收这批产品, 若该批产品的次品率为 10%,求:
 - ①这批产品经第一次检验就能接收的概率.
 - ②需做第二次检验的概率.
 - ③该批产品按第2次检验的标准被接收的概率.
 - ④该批产品在第1次检验未能作决定目第二次检验时被通过的概率.
 - ⑤该批产品被接收的概率.

- 2. 有甲、乙两种味道和颜色极为相似的名酒各4杯. 如果从中挑选4杯,能将甲种酒全部挑选出来,算是试验成功一次.
 - ①某人随机地去猜,问他试验成功一次的概率是多少?
 - ②某人声称他通过品尝能区分两种酒. 他连续试验 10 次, 成功 3 次. 试问他是猜对的, 还是他确有区分的能力(设各次试验是相互独立的)?

- 3. 某公安局在长度为 t 的时间间隔内收到的紧急呼救次数 X 服从参数为 $\frac{1}{2}t$ 的 1
 - ①求某一天中午12时至下午3时没有收到紧急呼救的概率.
 - ②求某一天中午12时至下午5时至少收到1次紧急呼救的概率.

- 4. 某地区 18 岁女青年的血压(收缩区,以 mm-Hg 计)服从 $N(110,12^2)$,在该地区任选 1 名 18 岁女青年,测量她的血压 X,求:
 - $\bigcirc P \mid X \leq 105 \mid P \mid 100 < X \leq 120 \mid$.
 - ②确定最小的 x,使 $P\{X>x\} \leq 0.05$.

5. 设随机变量 X 服从参数为 1 的指数分布, 求 $Y = X^2$ 的概率密度.

6. 设二维随机变量(X,Y)的联合概率分布为:

Y X	0	ĭ	2
1	0.3	0. 2	0. 1
3	0. 1	0. 1	K

①求常数 K.

②求 X+Y的概率分布.

7. 设二维随机变量(X,Y)的联合概率密度函数为

$$f(x,y) = \begin{cases} x^2 + \frac{1}{3}xy, & 0 \le x \le 1, 0 \le y \le 2\\ 0, & \text{#th} \end{cases}$$

①求关于X和关于Y的边缘概率密度函数,并判断X和Y是否相互独立?

②求 $P\{X+Y\geq 1\}$.