This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Reactive Ion Etching of Aluminum/Silicon in BBr3/Cl2 and BCI3/CI2 Mixtures

H. B. Bell

Sandia National Laboratories, Albuquerque, New Mexico 87185

H. M. Anderson*

Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, New Mexico 87131

R. W. Light*

Sandia National Laboratories, Albuquerque, New Mexico 87185

ABSTRACT

Boron tribromide mixed with chlorine, BBr₃/Cl₂, a novel gas mixture for dry etching of Al and Al alloys, has been studied in a hexagonal cathode reactive ion etching system. Etch rates, selectivities, profiles, and linewidth loss were determined as a function of feed gas composition, dc self-bias, and reactor load in a Box-Behnken experimental design. Response surface analysis indicates a window exists in the experimental parameter space where significant improvements in selectivity can be achieved without sacrificing anisotropic profiles. For example, anisotropic etching can be achieved with BBr₃/Cl₂ mixtures while maintaining Al/SiO₂ and Al/photoresist etch rate ratios of 33:1 and 15:1, respectively. The achievable selectivities in a conventional mixture of BCl₃/Cl₂ were 13:1 and 2.5:1 for comparable anisotropic etching. Optical emission and mass spectrometry measurements were used to aid in an investigation of the kinetics of BBr₃/Cl₂ etching of Al and Al₂O₃ films. Scanning Auger microprobe analysis was performed on the postetched substrates. A kinetic model is proposed to account for variations between BBr₂/Cl₂ and BCl₂/Cl₂ RIE etching of Al and Al alloys.

Etching of Al and Al alloy thin films in plasmas containing halides is now well-known (1), yet the difficulties inherent in this task continue to represent a formidable problem in the fabrication of fine line integrated circuits. A production worthy Al/Si etch process must be able to remove the native oxide that initially resides on the Al surface, etch Al/Si at a high rate, and etch the masking and underlying materials at an acceptably low rate, i.e., the selectivities must be high. Most processes for high resolution, reproducible plasma, or reactive ion etching (RIE) of Al and Al alloys rely on chlorine (Cl2) in combination with a Cl-bearing gas such as boron trichloride (BCl3), carbon tetrachloride (CCl4), silicon tetrachloride (SiCl4), or chloroform (CHCl₃) (1-3). Of these, BCl₃/Cl₂ mixtures have become popular due to their ability to etch aluminum while providing freedom from polymeric deposits (3). Despite the fact that BCl₂/Cl₂ plasmas have the rather severe drawback of poor selectivity, they, along with the other above chlorinated etchants, remain the standard industrial process gases. This is in a large way due to the dearth of information regarding the behavior of other halogenated gases in the plasma environment. In this paper we report findings on the use of an alternative boron halide, BBr3, in combination with Cl2, which shows great promise for overcoming some of the difficulties inherent in conventional RIE of Al/Si films.

Recently, three reports (4-6) have examined the feasibility of employing BBr3 or Br2 in place of the more established BCl3 or Cl2 gases used for RIE of Al and Al alloy films. The physical/chemical properties of etchant gases containing Br indicate it is a reasonable alternative for Al plasma etching. The most recent of these reports includes speculation on mechanisms which could account for the observed etching trends (6). Although valuable trends in the etch characteristics of gases containing Br are now known, practical details on the relationship of process variables to profile control, photoresist erosion, and selectivity over Si and SiO2 are still unclear. This study reports on a series of Al/Si etch process experiments involving variations in feed gas composition, dc self-bias voltage, and reactor loading during reactive ion etching of aluminum alloys (Al/1% Si) in BBr₃/Cl₂ mixtures. Most etch processes for Al films etch Si at a high rate so that the small amount ing differences or problems (for this reason, and simplicity, Al/Si and Al will be used interchangeably in further references). A Box-Behnken (7) experimental design was used to specify the experimental matrix, and response surface analysis was used to determine etch rate, linewidth loss, and selectivity responses to changes in the independent process variables. Concurrent with these experiments, BCl₃/Cl₂ gas mixtures were studied in order to compare the results for BBr3/Cl2 etching to an established process. These RIE studies were all performed in a hexagonal cathode reactor.

Comparisons between the results of BBr₃/Cl₂ and BCl3/Cl2 RIE of Al films are then used, along with additional diagnostic information gained by mass and optical emission spectrometry, to investigate the reaction mechanisms important to the aluminum etch process. Those kinetic steps or features which account for the particular contrast in the ability of the two etchant gases to selectively etch Al are examined in detail.

Experimental

One hundred millimeter diameter Si wafers were coated with 1 µm of Al/1% Si by sputter deposition for use in Al₂O₃ and Al etch rate determination. These wafers were coated with 1.5 μm of KTI 1450 positive photoresist and patterned with 2, 3, 4, and 5 μm lines and spaces. Following development, samples were baked at 140°C for 60 min. A second type of test wafer for Si and SiO2 etch rate determination was also prepared, in a manner described by Light (3). Additionally, separate photoresist and Al loading experiments were conducted by placing four to sixteen photoresist or Al-coated wafers in place of SiO2-coated dummy wafers in the reactor.

The BBr₃ used in these experiments came from a liquid source provided by J. C. Schumacher Company. The source was kept at a temperature of 35°C by a constant temperature unit and the feed lines were wrapped with heat tape to prevent condensation. A 0.020 in. mass flow controller orifice was chosen to allow sufficient flow at the vapor pressure of the BBr3 (about 100 torr at 35°C). Smaller standard orifices had proven inadequate. The etching reactor was a Plasma Therm Hexetch 640 RIE system with a 3000W, 13.56 MHz RF power supply. A dc self-bias voltage

comparison to the BCl₃/Cl₂ production process now in place, the total flow and total pressure were set at 50 sccm and 10 mtorr, respectively. The electrode temperature was set at 25°C and the chamber temperature was set at 45°C.

Due to limitations on the number of patterned samples available for this study, the maximum patterned wafer load was set at 12 wafers. Previous experience has shown that response trends valid at a 12-wafer load are also valid at loads up to a full 24 wafers. A description of more extensive loading experiments may be found with additional details on the use of BBr₃ in the RIE process in the work by Bell (8) and Bell et al. (9). Additional description of the RIE process and the BCl₃/Cl₂ etching technique in this reactor have been reported by Light (3). No precautions were taken to prevent post-RIE corrosion and no serious corrosion was observed. The current method for dealing with post-RIE corrosion concerns in the BCl₃/Cl₂ process is an in situ O₂ strip.

The three factor Box-Behnken experimental design employed in these studies involved varying dc self-bias voltage from -100 to -200V, percent chlorine from 12 to 48%, and reactor load from 2 to 12 wafers in the manner depicted in Fig. 1. The design was symmetric with each factor given equal weight. The design also included replicate points for experimental error estimates and sufficient degrees of freedom to permit evaluation of the lack-of-fit error for the model. The Box-Behnken experimental design, as implemented here, allowed exploration of quadratic response surfaces, while minimizing the number of experiments involving each etchant mixture. The additional photoresist and Al loading experiments mentioned above were performed at the center point of the Box-Behnken experimental design.

Mass spectrometry and optical emission spectrometry (OES) were used to monitor species relative concentration and optical emission during the course of these experiments. A special flange and orifice were designed to couple a differentially pumped UTI Model 100C quadrupole mass spectrometer to a standard window port on the Hexetch 640 bell jar. The mass spectrometer was approximately 30 cm removed from the bell jar window port. The mass spectrum range recorded during the study was limited to low molecular weight species (less than 200 amu) based on previous reports (2) indicating they would be the likely observable dissociation products downstream of the discharge and based on the known cracking patterns of the parent molecules (10). Emission spectra from 200 to 800 nm were taken with a PT-Analytical Model PSS-100 spectrophotometer. Etched substrates were examined by scanning Auger microprobe (SAM) in an attempt to compare level, type, and location of contamination or residue left on surfaces after etching.

Results and Discussion

RIE response behavior of BBr₃/Cl₂ and BCl₃/Cl₂.—Data from the Box-Behnken experiments were analyzed employing conventional response surface methodology and an experimental design software package (11). The most successful fit was found with a quadratic model, although a note of caution is in order here. The small number of experiments in the Box-Behnken design has yielded a quadratic model that represents the data well in the area of in-

Fig. 1. Box-Behnken randomized experimental run sequence

Table 1, R² values for the quadratic model

	Yi	Y ₂	Y_3	Y ₄	Y ₅	Y 6
BBr ₃ /Cl ₂	0.99	0.93	0.81	0.90	0.82	0.55
BCl ₃ /Cl ₂	0.96	0.97	0.94	0.97	0.97	0.92

 Y_1 , native oxide etch rate.

2. Al etch rate.

 $Y_{3.5}$, selectivities to photoresist, Si, and SiO₂, respectively.

Ya, linewidth loss.

terest, but which has moderately high residuals in some areas. The quadratic model assumed the form

$$Y_{ij} = b_{0ij} + \sum_{i=1}^{k} (b_{ij} x_i) + \sum_{i=1}^{k} \sum_{j=1}^{i} (b_{ij} x_i x_j)$$
 [1]

少好你并必 经情情情以明本 透明以為此一人是我打印了这样一次即都是我心理的人是这人在我里看不会 中下

where: $Y_n =$ the nth response variable (n = 1-6), x = ith variable factor, bi, = ith model coefficient for the nth response variable, and k = number of independent variables. Table I, shown above, contains the R2 values for variance about the mean derived from an analysis of the Box-Behnken matrix of data on BCl3/Cl2 and BBr3/Cl2. Linewidth loss and selectivity responses in BBr₃/Cl₂ do not correlate as well as the other responses with a simple quadratic model. However, the poor fit for selectivity may be due in large part to resolution limitations of the Alpha Step 100 profilometer used as the etch depth measurement tool, and the relatively large experimental measurement errors which can result if the photoresist and SiO2 etch rates are small. The model lack of fit for linewidth loss cannot be readily explained except to say that the mechanism by which linewidth loss occurs in BBr₃/Cl₂ is more complex compared to BCl₃/Cl₂ and that a higher order interaction model may be needed to accurately represent that data. Curves and response surface plots were obtained from the model and are represented in Fig. 2-12.

Al₂O₃ etching.—Figures 2 and 3 illustrate that the native oxide etch rate in BBr₃/Cl₂ is approximately 1/2 that of BCl₃/Cl₂ mixtures under comparable conditions. It can be seen that native oxide etching in both mixtures increases with increases in dc self-bias and decreases with increases in Cl₂ fraction in the feed gas. A significant interaction between reactor load and percent Cl₂ was observed in native oxide etching with BBr₃/Cl₂, but was absent with BCl₃/Cl₂. At low Cl₂ fraction in BBr₃/Cl₂ mixtures, no loading effect on the native oxide etch rate was observed. However, as the Cl₂ fraction was increased, increases in reactor load slowed the native oxide etch rates, indicating a depletion of the active agent for native oxide etching.

Work by Keaton and Hess (6) indicates that the ability of pure BBr₃ plasmas to remove native aluminum oxide layers is significantly less than that of pure BCl₃ plasmas. Thus, it is not surprising to find that native oxide etch rates during RIE of Al in BBr₃/Cl₂ are reduced as well, compared

Fig. 2. Native Al oxide etch rate as a function of dc self-bias voltage in BX₃/Cl₂.

Fig. 3. Native Al oxide etch rate as a function of percent Cl_2 in BX_3/Cl_2 .

to BCl3/Cl2. Keaton and Hess suggest the differences between the two gases can be explained in terms of different rate controlling steps during the reaction sequence with native oxide. Removal of native oxide with BCl3 can be explained either through an ion bombardment mechanism or chemical reaction of BCl, species, whereas, native oxide etching with BBr3 appears to be much more chemical in nature involving reduction of the surface aluminum oxide through a surface temperature dependent, chemical reaction with BBr, species. The similar dependence of BBr₃/Cl₂ and BCl₃/Cl₂ RIE on dc self-bias in this study indicates that aluminum oxide removal in either plasma requires ion assistance as well as a chemical reducing agent. The results of the reactor loading experiments suggest BBr₂/Cl₂ mixtures have difficulty etching native oxide due to the lack of suitable species capable of reducing the oxide during RIE, in addition to any unfulfilled surface activation energy requirement.

Al etching.—A comparison of BBr₃/Cl₂ and BCl₃/Cl₂ reactive ion etching of the Al film is shown in Fig. 4-6. The etch rate of Al increases with percent Cl₂ in both mixtures and with dc self-bias voltage, but decreases as a function of reactor loading. The similar Al etching behavior of both gas mixtures suggests etching proceeds via the same mecha-

Fig. 4. Al-Si etch rate as a function of dc self-bias voltage in BX₃/Cl₂

Fig. 5. Al-Si etch rate as a function of percent Cl₂ in BX₃/Cl₂

Fig. 6. Al-Si etch rate as a function of reactor load in BX₃/Cl₂

nism and that Cl2 is a major source of etching species. However, the etch rate for BBr, mixtures is higher than that of BCl₃ mixtures under most conditions, indicating Br liberated by the dissociation or reaction of BBr3 may be an important etchant species as well. Although it can be inferred from the response to increases in dc self-bias that ion bombardment plays a role in enhancing Al etching in both gas mixtures, the differences in the ability of the two gas mixtures to etch Al appears to be more rate limited by the concentration of active etchant species, which are depleted with reactor loading. The role of ion bombardment in Al etching is likely one of energetically cleaning the surface of etch inhibitors. A significant interaction between dc self-bias and reactor load exists for BBr₃/Cl₂, indicating that the rate-limiting step in Al etching is influenced by the energetics of ion bombardment. At low bias levels, removal of surface residues through ion bombardment appears to be inefficient and rate limiting. At high bias levels, energetic ion bombardment is effective in cleaning the surface and reactant depletion becomes rate limiting. Although electrode temperature variations were not studied, it may be speculated that adding energy to the process through higher electrode temperature may have a similar effect to that caused by adding energy through higher dc self-bias.

Selectivity and anisotropy.—The selectivity of etching Al over Si, SiO2, and photoresist in both BBr3/Cl2 and BCl₂/Cl₂ decreases with increasing dc self-bias and increases with increasing Cl2 fraction in the mixture. However, the selectivity of BBr₃/Cl₂ etching is significantly greater (as much as one order of magnitude) than BCl3/Cl2 under most conditions, as shown in Fig. 7 and 8. Not surprisingly, the ability of the two gas mixtures to etch features anisotropically, or with zero linewidth loss, are reversed with respect to the above noted variations in dc self-bias and percent chlorine in the mixture. This suggests that energetic ion bombardment is important to both gas mixtures for removing etch inhibitors and promoting directional etching. Figures 9 and 10 illustrate that BCl₃/Cl₂ has a larger window for anisotropic etching compared to BBr₃/Cl₂, but in both mixtures directionality in the etch is achieved only at low percent Cl2 and high bias.

Fig. 7. Selectivity to photoresist as a function of dc self-bias in 3X₃/Cl₂.

Fig. 8. Selectivity to photoresist as a function of percent Cl_2 in BX_3/Cl_2 .

Figures 11 and 12 show the achievable trade-offs between selectivity and anisotropy for the two gas mixtures. Use of BBr₃/Cl₂ has the penalty of a smaller window for anisotropic etching, but the achievable selectivity while maintaining anisotropic profiles is as much as an order of magnitude better than BCl₃/Cl₂. It is possible to achieve anisotropic profiles in Al films with BBr₃/Cl₂ mixtures while maintaining high Al/SiO2 and Al/photoresist etch rate ratios. For example, anisotropic profiles are obtained at 10 mtorr total pressure, -200V dc self-bias, 30% chlorine in BBr3, and a 12-wafer load, with an Al/SiO2 etch rate ratio of 33:1 and an Al/photoresist etch rate ratio of 15:1, as shown in Fig. 13. Al/SiO₂ and Al/photoresist ratios of 13.5 and 2.5, respectively, are measured under similar conditions in BCl₃/Cl₂ mixtures. One final, interesting observation concerning anisotropy in BBr₂/Cl₂ plasmas was that anisotropy could be achieved easier with higher photoresist loading, implicating the importance of a sidewall polymer mechanism in promoting anisotropy. It should be noted that all samples in this work were etched to end point. Results from both etchant mixture types exhibit

Fig. 9. Mean linewidth loss in microns as a function of dc self-bias and percent Cl₂ in BBr₃/Cl₂.

Fig. 10. Mean linewidth loss in microns as a function of dc self-bias and percent Cl₂ in BCl₃/Cl₂.

Fig. 11. Al/photoresist selectivity as a function of dc self-bias and percent Cl_2 in BBr_3/Cl_2 .

Fig. 12. Al/photoresist selectivity as a function of dc self-bias and percent Cl_2 in BCl_3/Cl_2 .

"一个一个

residue in the etched areas, and additional work on overetching requirements is warranted.

Discharge products and OES.—Interpreting the chemical identity of species present in a plasma from mass spectroscopic measurements made downstream of the discharge is fraught with difficulty due to the reactivity and marginal vapor pressures of the products and the transit times involved. Only a detailed simulation of the transit downstream could relate peak heights quantitatively to species abundance in the discharge [e.g., Ref. (12, 13)], a task beyond the scope of this paper. Nevertheless, by comparing the mass spectra of products from BBr₃/Cl₂ discharges with those of BCl3/Cl2 under the same conditions, some qualitative indication may be gained about important distinctions in the plasma chemistry of the two mixtures which bring about differences in etch rates, selectivity, and anisotropy. The mass spectra traces of discharge products presented in Fig. 14-17 are uncorrected for analyzer sensitivity, variations in travel times of heavier species, etc. In analyzing this data, approximate correction factors have been considered in evaluating the traces.

The gain in the mass spectra peaks of Br and Cl shown in Fig. 14 and 15 indicates that greater dissociation of either parent BX_3 (X = Cl or Br) molecule occurs when the plasma is switched on, presumably as the result of electron collision reactions such as

$$BX_3(g) + e \rightarrow BX_2(g) + X(g) + e$$
 [2]

$$BX_3(g) + e \rightarrow BX(g) + 2X(g) + e$$
 [3]

Emission lines for Br at 448, 452, and 751 nm, and for Br' at 478 were also resolvable in the OES of BBr₂/Cl₂ discharges. Bromine emission appeared to increase with increasing dc self-bias, possibly indicating greater dissociation of BBr₃ at higher RF power. This is consistent with the consideration of free halide as an etchant species and higher etch rates observed at the higher dc self-bias.

古いのは 日本は 日本

Fig. 13. Scanning electron micrographs of Al films etched in BBr₃/Cl₂: (a,top) etched at -200V dc self-bias, 30% Cl₂, 12 wafers; (b, center) etched at -100V dc self-bias, 30% Cl₂, 12 wafers; (c, bottom) etched at -200V dc self-bias, 30% Cl₂, 2 wafers.

Peaks due to HX⁺ are also notable in the spectra as a result of traces of residual moisture contamination in the system and the pronounced affinity of boron trihalides for the oxygen in water (14). Oxygen scavenging occurs in the presence of either BBr₃ or BCl₃ through reactions such as

$$2BX_3 + 3H_2O \rightarrow B_2O_3 + 6HX$$
 [4]

$$2BX_3 + O_2 \rightarrow B_2O_3 + 3X_2$$
 [5]

These scavenging reactions have been reported (15) to be about as favorable for BCl_3 as for BBr_3 . Conversion of $B_2O_3(s)$ back to a volatile product can also occur through reaction with BX_3 to form trihaloboroxines, (BOX)₃

$$BX_3 + B_2O_3 \rightarrow (BOX)_3$$
 [6]

Porter and Gupta (16) have noted the volatility of B_2O_3 is enhanced in the presence of boron halides. Figures 15 and

16 indicate that reaction [6] may be more favorable for BCls since the relative concentration of BOBr is substantially less than the corresponding BOCl monomer.

Although oxygen scavenging reactions obviously consume some fraction of the BX3 feed gas, quantitative consumption of BX3 could not occur without slowing or stopping native oxide etching altogether. Since both BBr3/Cl2 and BCl₂/Cl₂ etch Al-oxide at a high rate, reactions [4]-[6] represent a minor loss mechanism for the boron trihalide and it is reasonable to expect a significant fraction of unreacted boron trihalide in the effluent. Shown in Fig. 15 and 17 is the fingerprint pattern of BCl₂+, BCl₂+, and BCl₃+ detected in the products of BCl₂/Cl₂ discharges. This pattern is consistent with the reported cracking patterns of BCl, (10) and it indicates that substantial amounts of BCl3 are present in the discharge products. However, for BBr₃/Cl₂ plasmas illustrated in Fig. 14 and 16, the analogous BBr^{*} and BBr2+ fingerprint reported by Koski et al. (10) is conspicuously absent (or at least three orders of magnitude less than the cracking fragments of BCl₃). This suggests that either the parent molecule, BBr₃, is more completely dissociated in the discharge or that the BBr₃ is tied up in higher molecular weight species which never reach the mass spectrometer. This observation cannot be explained by simple consumption in etching due to the large magnitude of species involved.

There are indications in the distribution of discharge products that the latter interpretation is more consistent. For BBr₃/Cl₂ plasmas in a feed gas molar ratio of seven to three, the relative concentrations of atomic Br and molecular HBr shown in Fig. 14 are small compared to the concentrations of Cl and HCl, even after correcting the mass spectrometer signal for transit time, background, and analyzer sensitivity error. If electron impact dissociation of the boron trihalide feed gas was more quantitative in BBr3, as has been suggested (6) based on the relatively weak B-Br bond strength, the relative strength of the bromine signal should be substantially stronger, more in line with the molar ratio of BBr3 in the feed gas. Furthermore, the B signal in the mass spectra might be expected to increase due to ionizer cracking of radical BBr, species in the discharge products. However, Fig. 14 and 15 show that a relatively large B+ peak is detectable in BCl₂/Cl₂ discharge products, whereas it is completely absent in the BBr₂/Cl₂ spectra.

Although the distribution of discharge products do not quantitatively establish the extent of electron impact induced dissociation of BBr₃, the distribution suggests that the products of dissociation are removed more efficiently through rapid gas-phase recombination reactions, compared to BCl₃. The exact nature of the product of such recombination reactions is not known at this time. However, it is important to note that BBr₃/Cl₂ discharges had a greater tendency to leave powdery residues behind on the reactor chamber walls, compared to BCl₃/Cl₂ discharges. The powdery residue had a yellow-green or brownish color to it, suggestive of uncharacterized, mixed, boron subhalides (17). By comparison, BCl₃/Cl₂ discharges tended to leave a white, powdery residue (further elemental analysis of these residues are in progress).

Auger spectroscopy.—Keaton and Hess (6) have suggested that differences in the ability of BBr3 and BCl3 to etch native aluminum oxide may be related to the formation of B2O3 residues which could inhibit aluminum oxide etching. If B₂O₃ formation were a more significant problem in BBr₃/Cl₂ discharges, compared to BCl₃/Cl₂, it stands to reason that a greater level of substrate contamination should be detectable in postetched wafers, since B₂O₃ is a stable solid product. A B₂O₃ residue hypothesis is inconsistent with Auger surface analysis performed in this study which shows BBr₃/Cl₂ is no worse and is perhaps better than BCl₂/Cl₂ with regard to substrate contamination. Test die from samples etched with each gas mixture were examined for detectable levels of boron, oxygen, bromine, and chlorine by SAM point-mode survey spectra. Pad areas of the aluminum still covered by photoresist and exposed areas of SiO2 were surveyed in an as received condition and after 2 kV Ar ion sputter clean. The as received.

Fig. 14. Mass spectra of BBr₃/Cl₂ discharge products in the 1-100 amu range: (A) plasma off; (B) plasma on

Fig. 15. Mass spectra of BCl₃/Cl₂ discharge products in the 1-100 amu range: (A) plasma off; (B) plasma on

samples etched in BBr₃/Cl₂ revealed only small amounts of Al and O contaminants on these surfaces, as opposed to the BCl₃/Cl₂ samples which showed 0.7 and 4 atomic percent (a/o) Cl, and 1.5 and 0.2 a/o Al found on the photoresist pad and SiO₂, respectively. Examination of the Al/photoresist interface after sputter beam clean did not reveal any contaminants other than a trace amount of oxygen from the native oxide for either sample. No boron or bromine could be detected on the BBr₃/Cl₂ etched sample.

Kinetic model of BBr3/Cl2 etching.—The key to understanding the kinetics of BBr3/Cl2 plasma etching of Al and the significant improvements in selectivity achieved with these mixtures appears to lie in the chemical mechanism responsible for (i) the lack of BBr3 or BBr2 products downstream from the discharge, (ii) a significant yellow-brown residue formation in the reactor chamber, and (iii) the previously noted (6) surface temperature dependence of Aloxide plasma etching in BBr3. Each of these observations implies that recombination reactions involving BX_r radicals, either in the gas phase or at the wall, are considerably more important in BBr₂/Cl₂ plasmas, as opposed to BCl/Cl2 plasmas. Yet, despite the apparent importance of recombination, BBr₃ exhibits distinct differences from etchant gases such as CCl4, well-known for excessive recombinant behavior leading to thick polymeric deposits. The recombinant behavior of BBr, appears to be intermediate between CCl₄ and BCl₃, sharing aspects of both.

To illustrate this fact, it is necessary to compare previously reported findings regarding BBr₃, BCl₃, and CCl₄ discharges, and contrast those findings to the BBr₃/Cl₂ results.

The surface temperature dependence of Al-oxide etching in BBr3 plasmas has been shown by Keaton and Hess (6) to be almost identical to that measured by Tokunaga and Hess (18) for CCl, plasmas. In both cases, this surface temperature dependence has been used to strongly suggest residue inhibition of etching, presumably formed through recombination either in the gas phase or at the wall. Conversely, aluminum etching in either BBr3 or BCl3 has been shown to have no surface temperature dependence, whereas CCl, does, apparently due to the continued influence of residue inhibition. This surface temperature dependence of BBr3 etch rates indicates that the chemical behavior is similar in ways to both BCl3 and CCl4. However, the chemical mechanism responsible for this similarity is not clear. In the case of CCl, plasmas, the formation of dimers, C2Cl4, in abundance, has been strongly implicated as the precursor leading to film deposits that inhibit etching. Since boron halides do not form polymers in the same fashion as chlorocarbons, attention has been focused away from analogous precursors in boron halide chemistry having a similar role in the formation of etch inhibitors. For example, Keaton and Hess (6) suggest instead that B2O3 residues are responsible in boron halide chemistry for etch inhibition. However, this hypothesis is inconsistent with the surface analysis performed on samples etched in BBr3/Cl2 and the preliminary indications about the chemical nature of residues left in the reactor chamber.

The above data suggest that alternative mechanisms for the formation of etch inhibiting compounds may be important in controlling the etch characteristics of BBr₃/Cl₂ etching. For example, it is largely unrecognized that dis-

Fig. 16. Mass spectra of BBr_3/Cl_2 discharge products in the 100-200 amu range.

charges have been used as a preparation technique for the synthesis of diboron tetrahalides. B_2Br_4 , and that the technique is strikingly similar to the conditions actually employed for plasma etching metal films. It is known that when BBr_3 is passed at low pressure through a RF glow discharge, B_2Br_4 is formed, and that on further exposure to the discharge. B_2Br_4 very rapidly disproportionates to B_nBr_n (n=7-10) (19-21). Controversy exists as to whether it is the BBr or BBr_2 radical (both of which easily form in the discharge) which attacks the parent BBr_3 molecule and leads to the dimerization reaction (21). However, the reaction sequence in the discharge is thought to be

$$BBr_3 + e \rightarrow BBr + 2Br + e$$
 [7

$$BBr + BBr_a \rightarrow B_Br_a$$
 [8]

Although $\Delta G_1(B_2Br_4)$ is unknown, Briggs et al. (21) note the value is likely to be highly negative. Presumably, further insertion of BBr fragments leads to the formation of intermediate open cages of boron atoms which, dependent on reactor conditions, change to stable closed cage derivatives (19)

$$nBBr + B_{1}Br_{1} \rightarrow B_{1}Br_{1} + 2Br$$
 [9]

Mixed subhalides, B_nBr_n "Cl" (n is most often equal to 9. m is equal to 1-4), are also known to readily form in the presence of Cl_2 through substitution reactions, and have been reported to leave yellow-orange and brown thin film deposits (17, 19, 21).

Dimer and subhalide formation reactions are not unique to BBr₃ plasmas: BCl₃ is known to form B₂Cl₄ in an analogous fashion (19-24). However, there is evidence that the bromide dimers are more stable than the corresponding chloride and this could readily explain variations in the etch behavior between the two gas mixtures. The dimer, B₂Cl₄, is known to be liable to attack from more electronegative species, i.e., Cl₂ (25)

$$B_2Cl_4 + Cl_2 \rightarrow 2BCl_3$$
 [10]

and it is known to undergo replacement reactions with $BBr_{3}\left(23,\,24\right)$

$$3B_2Cl_4 + 4BBr_3 \rightarrow 3B_2Br_4 + 4BCl_3$$
 [11]

The B—B bond length of the dimers has been observed to be shorter (and hence stronger) in B_2Br_4 compared to the corresponding chlorine dimer (26, 27). Finally, it has been observed that boron halide dimer deposits are unstable to oxygen at room temperature (24) and the reaction is quite violent. The explosiveness of this reaction suggests that few residual dimeric deposits would remain on the wafer after removal from the hexode reactor, and that little detectable residue would be left on samples used in Auger analysis.

Fig. 17. Mass spectra of BCl_3/Cl_2 discharge products in the 100-200 amu range.

Preparation procedures for B2Br4 usually call for the presence of a metal surface (notably Cu or Hg) in addition to the discharge, and it is thought that the metal acts as a trap, minimizing free halide cleavage of boron-boron bonds. Therefore, the presence of metal reactor walls (the chamber walls, i.e., grounded electrode, of the hexode reactor used in BBr₃/Cl₂ RIE are made of stainless steel) and/or substrates in plasma etch reactors may exert a significant influence on the extent of these reactions. Surface effects in the plasma environment have been shown previously (18) to have a significant impact on dimerization rates in CCL plasmas, with the conversion of CCL to C2Cl4 reaching 8.3 weight percent (w/o) with stainless steel electrodes. Kutz and Morrison (20) have reported an approximately 2.0 w/o conversion of BBr₃ to B₂Br₄ in a discharge in the presence of mercury. Under these circumstances, it is apparent that dimerization reaction rates for BBr3 can approach those of CCl4, an indication of their potential importance.

The chemical mechanism responsible for the improvements in selectivity achievable with BBr₂/Cl₂ plasmas is not clear in its entirety at this time. However, there is significant circumstantial evidence to indicate that diboron tetrabromides and boron subbromides formed from reactions [7]-[9] play a crucial role. If boron dimers and boron subbromide species (perhaps even with the assistance of photoresist products) formed films which adsorbed to the surface, they would have to undergo dissociation to provide BBr, species capable of reacting with the native oxide. Dissociation on the surface could be accomplished either through raising the surface temperature or by increasing ion bombardment by increasing dc self-bias, illustrating the synergism of both physical and chemical mechanisms in Al native oxide etching. Alternatively, the greater reactivity of the Al surface may be effective in bringing about a spontaneous, dissociative chemisorption of linked, BBr, species, thus shutting off the chain or cage building process. These types of distinctions could lead to an explanation for the variation in surface temperature reactivity dependence from either CCl4 or BCl3. Under any circumstances, the proposed greater role for recombination reactions in BBr₃/Cl₂ plasmas which may lead to a higher molecular weight compounds is consistent with the observed smaller window in the parameter space for anisotropic etching (less ions available to assist in etching), etchant depletion effects with reactor loading, mass spectra data, and the increased selectivity of the etching with BBr₃ (greater chemistry influence).

Physically, the improvements in selectivity observed with BBr₃/Cl₂ over BCl₃/Cl₂ can be understood best in the context of an ion flux model, somewhat akin to Zarowin's (28) ion energy transport model. Selectivity and anisotropy control in BCl₃/Cl₂ discharges conform well to Zarowin's concept that the ratio of neutral to ionic etch chemistry de-

termines these features. RIE in BCl₃/Cl₂ discharges appears to have a large physical, sputter-erosion process component. Hence, low selectivity toward etching aluminum over photoresist, Si, or SiO2 is observed. RIE in BBr3/ Cl2 is a more complex combination of physical and chemical processes. The improvement obtained in BBr₃/Cl₂ is probably related to a reduction in ion etch component of the plasma chemistry. Dimers and higher order subbromides formed in the discharge may play a large role in regulating the neutral and ionic etch component through removing the parent BBr₃ (from which ions form in electron collision reactions) or through adsorbing to surfaces. Although the evidence presented in this study is indirect, dimerization and subhalide formation does occur in discharges and may represent an important aspect of plasma etching of Al films. Further study of this chemistry is

Conclusions

Selective and anisotropic reactive ion etching of Al in a hexagonal cathode reactor can be achieved with either $\ensuremath{\mathsf{BBr}}_3\!/\ensuremath{\mathsf{Cl}}_2$ or $\ensuremath{\mathsf{BCl}}_3\!/\ensuremath{\mathsf{Cl}}_2$ mixtures. Parallel trends in Al etch rates and selectivities are observed for the two gas mixtures though performance is quantitatively different. The major differences as gleaned from the mass spectra apparently stem from the absence of BX, fragments in the BBr₃/ Cl2 mixtures. This may underscore the need to consider the importance of dimerization and boron subhalide formation reactions which are known to occur in boron halide discharges. Including such reaction pathways in a kinetic model for Al etching provides a means of consistently resolving variations in the etch behavior of two seemingly similar etchant gas mixtures. Under proper conditions, the BBr3/Cl2 process is capable of as much as an order of magnitude improvement in selectivity over SiO₂ and photoresist compared to the BCl₃/Cl₂ process, while maintaining anisotropic profiles.

Acknowledgments

The authors wish to thank Barbara Saavedra for the sample preparation, Glennie Vokoun for the SEM photographs, and Paul Mott for the SAM analysis. This work was performed at Sandia National Laboratories supported by the U.S. Department of Energy under Contract no. DE-AC04-DP00789 and at the University of New Mexico supported by Sandia National Laboratories under Contract no. 01-6089.

Manuscript submitted June 8, 1987; revised manuscript received Oct. 13, 1987. This was in part Paper 292 presented at the San Diego, CA, Meeting of the Society, Oct. 19-24, 1986.

Sandia National Laboratories assisted in meeting the publication costs of this article.

REFERENCES

- 1. D. W. Hess and R. Bruce, in "Dry Etching for Micro-electronics," R. A. Powell, Editor, p. 1, Elsevier Science Publishers, Amsterdam (1984).
- 2. D. A. Danner, M. Dalvie, and D. W. Hess, This Journal, 134, 669 (1987).
- R. W. Light, ibid., 130, 2225 (1983).
- 4. P. M. Schaible, W. C. Metzger, and J. P. Anderson, J. Vac. Sci. Technol., 15, 334 (1978).
- 5. M. Nakamura, M. Itoga, and Y. Ban, in "Plasma Processing," R. G. Frieser and C. J. Mogab, Editors, p. 225, The Electrochemical Society Softbound Proceedings Series, Pennington, NJ (1981).
- 6. A. Landauer Keaton and D. W. Hess, J. Va.c. Sci. Technol. A. 3(3), 962 (1985).
- 7. G. E. P. Box and D. W. Behnken, Technometrics, 2(4) (1960).
- 8. H. B. Bell, M.S. Thesis. University of New Mexico, Albuquerque, NM (1987).
- 9. H. B. Bell, R. W. Light, and H. M. Anderson, in "Plasma Processing," G. S. Mathad, G. C. Schwartz, and R. A. Gottscho, Editors, p. 35, The Electrochemical Society Softbound Proceedings Series, Pennington, NJ (1987).
- 10, W. S. Koski, J. J. Kaufman, and C. F. Pachucki, J. Am.
- Chem. Soc., 81, 1326 (1959). 11. J. S. Murray, Jr., "XSTAT," John Wiley & Sons, Inc., New York (1984).
- 12. M. J. Kushner, J. Appl. Phys., 53, 2923 (1982).
- 13. K. R. Ryan and I. C. Plumb, Plasma Chem. Plasma
- Proc., 6(3), 231 (1986).

 14. M. R. Litzow and T. R. Spalding, "Mass Spectrometry of Inorganic and Organometallic Compounds, p. 161, Elsevier Press, Amsterdam (1973).
- 15. JANAF Thermochemical Tables. 2nd ed., D. R. Stull and H. Prophet, Editors, U.S. NBS, Washington, DC
- 16. R. F. Porter and S. K. Gupta. J. Phys. Chem., 68, 280
- 17. G. Urry, in "The Chemistry of Boron and Its Compounds," E. L. Muetterties, Editor, pp. 14-196, John Wiley & Sons, Inc., New York (1967).
- 18. K. Tokunaga and D. W. Hess, This Journal, 127, 928 (1980).
- 19. M. S. Reason and A. G. Massey, J. Inorg. Nucl. Chem., 37, 1593 (1975).
- N. A. Kutz and J. A. Morrison, Inorg. Chem., 19, 3295 (1980).
- 21. A. G. Briggs, A. G. Massey, M. S. Reason, and P. J. Portal, Polyhedron. 3, 369 (1984).
- 22. G. F. Lanthier and A. G. Massey, J. Inorg. Nucl. Chem.. 32, 1807 (1970).
- 23. T. Wartik, R. Moore, and H. I. Schlesinger, J. Am. Chem. Soc., 71, 3265 (1949).
- 24. G. Urry, T. Wartik, R. E. Moore, and H. I. Schlesinger, ibid., 76, 5293 (1954).
- 25. E. F. Apple and T. Wartik, ibid., 80, 6153 (1958).
- D. D. Danielson and K. Hedberg, ibid., 101, 3199 (1979).
 J. R. Bews and C. Glidewell, J. Mol. Struct., 89, 333
- 28. C. B. Zarowin, J. Vac. Sci. Technol., A2(4), 1537 (1984).