

UNIT III

Relational Database Design

Decomposition to Higher Normal Forms

Decomposition to Higher Normal Form Example

Consider a relation with schema R(A,B,C,D) and FDs {AB \rightarrow C, C \rightarrow D, D \rightarrow A}.

- a. Indicate all BCNF violations for R.
- b. Decompose the relations into collections of relations that are in BCNF.

Solution: Attribute closure:

$A \rightarrow A$	$B \rightarrow B$	C → ACD	$D \rightarrow AD$
AB → ABCD	AC → ACD	$AD \rightarrow AD BC \rightarrow AE$	BCD
BD → ABCD	CD → ACD	ABC → ABCD	
ABD → ABCD	ACD → ACD	BCD → ABCD	

Thus, the candidate keys are: AB, BC, and BD

Decomposition to Higher Normal Form Example

- a) $C \rightarrow D$ and $D \rightarrow A$ are violating BCNF
- b) Decompose the relations into collections of relations that are in BCNF.

Decomposition to Higher Normal Form Drill

Decompose to highest normal form while satisfying lossless join and dependency preservation properties:

Relation R (ABCDE)

$$F = \{AB \rightarrow C, C \rightarrow D, B \rightarrow E\}$$

2. Relation R (ABCDEFGHIJ)

$$F = \{AB \rightarrow C, C \rightarrow D, A \rightarrow E, E \rightarrow FG, B \rightarrow H, H \rightarrow IJ\}$$

3. Relation R (ABC)

$$F = \{AB \rightarrow C, C \rightarrow A\}$$

Relation R (ABCDE)

$$F = \{AB \rightarrow C, C \rightarrow D, B \rightarrow E\}$$

$$AB+=A, B, C, D, E$$

$$A + = A$$

$$B+=B, E$$

FD	AB → C	$C \rightarrow D$	B → E
BCNF	✓	X	X
3NF	✓	X	X
2NF	✓	✓	X
1NF	✓	✓	✓

The table is currently in 1NF but not in 2NF because of partial dependency B

• 2NF Decomposition

• 3NF Decomposition

3NF, BCNF, Lossless Join and Dependency Preservation satisfie

2. Relation R (ABCDEFGHIJ)

$$F = \{AB \rightarrow C, C \rightarrow D, A \rightarrow E, E \rightarrow FG, B \rightarrow H, H \rightarrow IJ\}$$

$$AB+ = A, B, C, D, E, F, G, H, I, J$$

FD	AB → C	$C \rightarrow D$	A → E	E → FG	B → H	H→II
BCNF	✓	Х	X	X	Х	X
3NF	✓	Х	Х	Х	Х	Х
2NF	✓	✓	Х		Х	

• 2NF Decomposition

2NF, Lossless Join and Dependency Preservation satisfied

• 3NF Decomposition

3. Relation R (ABC)

$$F = \{AB \rightarrow C, C \rightarrow A\}$$

$$AB+=A, B, C$$

$$CB+=B, C, A$$

The relation is in 3NF but not BCNF

Lossless Join Decomposition and BCNF are satisfied but dependency preservation is violated.

Case 2: If we decompose such that dependency preservation and lossless join is satisfied, then BCNF is not satisfied.

Normalization Summary

DB Design Goal	1NF	2NF	3NF	BCNF
Achieve 0%	X	X	X	✓ (over FDs)
Redundancy LLJ Satisfied	√	√	√	✓
DP Satisfied	√	√	√	X✓

Best accurate form is 3NF because dependency preservation and lossless join properties are more important

Multi-valued Dependency (MVD)

A multi-valued dependency (MVD) $X \rightarrow Y$ specified on relation schema R, where X and Y are both subsets of R, specifies the following constraint:

If two tuples t_1 and t_2 exist in R such that $t_1[X] = t_2[X]$, then two tuples t_3 and t_4 should also exist in R with the following properties, where we use Z to denote (R - ($X \cup Y$):

$$t_4[X] = t_3[X] = t_1[X] = t_2[X]$$
 $t_3[Y] = t_1[Y] \text{ and } t_4[Y] = t_2[Y]$
 $t_3[Z] = t_2[Z] \text{ and } t_4[Z] = t_1[Z]$

MVD Example

Student

StudentName	CourseDiscipline	Activities	
Amit	Mathematics	Singing	
Akash	Mathematics	Dancing	
Yuvraj	Computers	Cricket	
Akash	Mathematics	Singing	
Akash	Literature	Dancing	
Akash	Literature	Singing	

Therefore, multivalued dependency:

StudentName → → CourseDiscipline
StudentName → → Activities

MVD Rules

• Complementation: If $X \to Y$, and Z is all the other attributes i.e. $Z = (R - (X \cup Y), \text{ then } X \to Z)$.

Eg. R(ABCD) if A
$$\rightarrow \rightarrow$$
 B then, A $\rightarrow \rightarrow$ CD

• Trivial MVD: An MVD $X \rightarrow Y$ in R is called a trivial MVD if

(a) Y is a subset of X, or (b) $X \cup Y = R$

Eg. R (ABCD) { AB
$$\rightarrow \rightarrow$$
 A, AB $\rightarrow \rightarrow$ CD } Trivial MVD
{ AB $\rightarrow \rightarrow$ C } Non-trivial MVD

• **Split/ Merge:** Non-trivial MVDs are not allowed to split or merge unlike FDs

Eg.
$$[X \rightarrow YZ] \neq [X \rightarrow Y, X \rightarrow Z]$$

 $[X \rightarrow YZ] = [X \rightarrow Y, X \rightarrow Z]$

Fourth Normal Form

A relational schema R is in 4NF iff

a) X is superkey in every non-trivial FD X \rightarrow Y in R (i.e. BCNF) and

b) X is superkey in every non-trivial MVDs $X \rightarrow Y$

Non-trivial FD X → Y X: superkey

and

Non-trivial MVD X → → Y X: superkey

Fourth Normal Form Example

- Relation Drinkers(<u>name</u>, addr, <u>phones</u>, <u>beersLiked</u>)
- FD: name → addr
- MVD's: name → → phones
 name → → beersLiked

Fifth (Project - join) Normal Form (PJNF)

A relational schema R is in 5NF iff

a) It is in 4NF

and

b) Does not have any join dependency and joining should satisfy lossless decomposition i.e. the decomposed sub-relations can be joined in any order and all joins should be lossless.

Normalization Summarization

PROS

Removes data redundancy

Solves INSERT, UPDATE, and DELETE anomalies

This makes it easier to maintain the information in the database in a consistent state

CONS

It leads to more tables in the database

More join operations needed to retrieve information from tables which is expensive to do

Database speed is bit slow because SELECT and JOINS are processed

Thanks!!

