EE288 Data Conversions/Analog Mixed-Signal ICs Spring 2018

Lecture 23: Oversampled ADC

Prof. Sang-Soo Lee sang-soo.lee@sjsu.edu ENG-259

Nyquist vs. Oversampling Converters

Nyquist sampling:

- Nyquist rate f_N ~2B
- Oversampling rate M = f_s/f_N >> 1

Anti-aliasing Requirement

Quantization Noise Spectrum

- For a quantizer with quantization step size Δ and sampling rate f_s:
 - Quantization noise power distributed uniformly across Nyquist bandwidth ($f_s/2$)

Power spectral density:

$$N_e(f) = \frac{\overline{e^2}}{f_s} = \left(\frac{\Delta^2}{12}\right) \frac{1}{f_s}$$

- Noise is distributed over the Nyquist band $-f_s/2$ to $f_s/2$

Oversampled Converter Quantization Noise

$$S_{B} = \int_{-f_{B}}^{g} N_{e}(f)df = \int_{-f_{B}}^{g} \left(\frac{\Delta^{2}}{12}\right) \frac{1}{f_{s}} df$$

$$= \frac{\Delta^{2}}{12} \left(\frac{2f_{B}}{f_{s}}\right)$$

$$where for $f_{B} = f_{s}/2$

$$S_{B0} = \frac{\Delta^{2}}{12}$$

$$S_{B0} = S_{B0} \left(\frac{2f_{B}}{f_{s}}\right) = \frac{S_{B0}}{M}$$

$$where $M = \frac{f_{s}}{2f_{B}} = oversampling \ ratio$$$$$

Oversampled Converter Quantization Noise

$$S_{B} = S_{B0} \left(\frac{2f_{B}}{f_{s}} \right) = \frac{S_{B0}}{M}$$

$$where M = \frac{f_{s}}{2f_{B}} = oversampling \ ratio$$

2X increase in M

- → 3dB reduction in S_B
 - → ½ bit increase in resolution/octave oversampling

To further increase the improvement in resolution:

- Embed quantizer in a feedback loop (patented by Cutler in 1960s!)
 - →Noise shaping (sigma delta modulation)

Oversampled ADC – Big Picture

Oversample and Filter:

- Say You Have an ADC That Can Sample at a Rate of F_s.
- Quantization Noise PSD is Uniformly Spread Over -F₃/2 to F₃/2.
- If Signal Resides in Some Subband, Digitally Filter to that Band:
 - Signal Power Same, but Noise Power Reduced <u>Improves the SNR</u>
 - But... SNR is related to ENOB = <u>Increases the Effective # of Bits!</u>
 - Analogous to averaging a bunch of integers to get a fractional value
 - Increased ENOB at the Expense of Reduced Processing BW

D = OSR

Noise Shaping ADC

- Use <u>VERY</u> High Over-Sampling Rate
- Use Low-Bit ADC (sometimes even just 1 Bit)
- Use DSP Noise Shaping to Non-Uniformly Spread Noise
 - Push Most of the Quantization Noise Out of the Signal Band

Design Filter H(z) to:

- ▶ Pass Signal w/ Minimal Distortion
- Attenuate Quantization Noise in Signal Band

ADC Quantization

SQNR

Deterministic Sawtooth Waveform Error Model

$$e_{ms}^{2} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |e(t)|^{2} dt$$

$$= \frac{1}{t_{1}} \int_{0}^{t_{1}} \left| \frac{\Delta/2}{t_{1}} t \right|^{2} dt = \frac{1}{t_{1}^{3}} \frac{\Delta^{2}}{4} \frac{t^{3}}{3} \Big|_{0}^{t_{1}}$$

$$= \frac{\Delta^{2}}{12}$$

Input FS Sinewave =
$$v(t) = \frac{\Delta 2^{N}}{2} \sin(2\pi ft)$$
.

rms value of FS input =
$$\frac{\Delta 2^{N}}{2\sqrt{2}}$$
.

$$SNR = 20 \log_{10} \frac{rms \text{ value of FS input}}{rms \text{ value of quantization noise}}$$

$$SNR = 20 \log_{10} \left\lceil \frac{\Delta 2^{N} / 2\sqrt{2}}{\Delta / \sqrt{12}} \right\rceil = 20 \log_{10} 2^{N} + 20 \log_{10} \sqrt{\frac{3}{2}}$$

SNR = 6.02N + 1.76dB, over the dc to f_s/2 bandwidth.

Frequency Spectrum

Frequency Spectrum with Oversampling by K times

Digital Filtering

Oversampled ADC

Oversampled 1-Bit ADC

Shaped Noise at the output

Time Domain Quantization Noise

Digital Filter

After Digital Filtering

After Decimation

Time Domain Signal in Oversampled ADC

2nd-Order Modulator Example

Breadboard implementation

Measured Output Waveform

Averaging the output signal

Input Signal Spectrum

Output Signal Spectrum

Sinc Response

Nonlinear tones

Quantized Error Signal

Block Diagram of Oversampled ADC

Quantization Noise Model

Oversampling without Noise Shaping

Modulator and Linear Model

$$S_{\text{TF}}(z) \equiv \frac{Y(z)}{U(z)} = \frac{H(z)}{1 + H(z)}$$

$$Y(z) = S_{\text{TF}}(z)U(z) + N_{\text{TF}}(z)E(z)$$

$$N_{\text{TF}}(z) \equiv \frac{Y(z)}{E(z)} = \frac{1}{1 + H(z)}$$

First-Order Noise Shaping

$$H(z) = \frac{1}{z-1}$$

$$S_{TF}(z) = \frac{Y(z)}{U(z)} = \frac{1/(z-1)}{1+1/(z-1)} = z^{-1}$$

$$N_{TF}(z) = \frac{Y(z)}{E(z)} = \frac{1}{1 + 1/(z-1)} = (1 - z^{-1})$$

First-Order Noise Shaping

$$u(n) \longrightarrow \bigoplus z^{-1} \longrightarrow \bigoplus Quantizer$$

$$H(z) = \frac{1}{z - 1}$$

$$z = e^{j\omega T} = e^{j2\pi f/f_s}$$

$$S_{TF}(z) = \frac{Y(z)}{U(z)} = \frac{1/(z-1)}{1+1/(z-1)} = z^{-1}$$

$$N_{TF}(z) = \frac{Y(z)}{E(z)} = \frac{1}{1 + 1/(z - 1)} = (1 - z^{-1})$$

$$N_{\text{TF}}(f) \ = \ 1 - e^{-j2\pi f/f_s} \ = \ \frac{e^{j\pi f/f_s} - e^{-j\pi f/f_s}}{2j} \times 2j \times e^{-j\pi f/f_s} \ = \ \sin\left(\frac{\pi f}{f_s}\right) \times 2j \times e^{-j\pi f/f_s} \ \longrightarrow \left|N_{\text{TF}}(f)\right| \ = \ 2\sin\left(\frac{\pi f}{f_s}\right) \times 2j \times e^{-j\pi f/f_s}$$

$$\mathsf{P}_{\mathsf{e}} \; = \; \int_{-\mathsf{f}_{0}}^{\mathsf{f}_{0}} \; \mathsf{S}_{\mathsf{e}}^{2}(\mathsf{f}) |\mathsf{N}_{\mathsf{TF}}(\mathsf{f})|^{2} \, \mathsf{df} \; = \; \int_{-\mathsf{f}_{0}}^{\mathsf{f}_{0}} \left(\frac{\Delta^{2}}{12} \right) \frac{1}{\mathsf{f}_{\mathsf{s}}} \left[2 \; \sin \left(\frac{\pi \mathsf{f}}{\mathsf{f}_{\mathsf{s}}} \right) \right]^{2} \mathsf{df} \quad \cong \quad \left(\frac{\Delta^{2}}{12} \right) \left(\frac{\pi^{2}}{3} \right) \left(\frac{2 \mathsf{f}_{0}}{\mathsf{f}_{\mathsf{s}}} \right)^{3} \; = \; \frac{\Delta^{2} \pi^{2}}{36} \left(\frac{1}{\mathsf{OSR}} \right)^{3}$$

$$SQNR_{max} = 10 \log \left(\frac{P_s}{P_e}\right) = 10 \log \left(\frac{3}{2}2^{2N}\right) + 10 \log \left[\frac{3}{\pi^2}(OSR)^3\right]$$
$$= 6.02N + 1.76 - 5.17 + 30 \log(OSR)$$