

λ -Calculus

General Recursion and Polymorphism

陳亮廷 Chen, Liang-Ting

Formosan Summer School on Logic, Language, and Computation (FLOLAC) 2022

Institute of Information Science, Academia Sinica

PCF— System of Recursive

Functions

PCF: λ_{\rightarrow} with naturals and general recursion

Definition 1 (Terms)

Additional term formation rules are added to $\lambda_{
ightarrow}$ as follows.

2

PCF: Typing rules

Definition 2

Additional term typing rules are added to $\lambda_{
ightarrow}$ as follows.

$$\frac{\Gamma \vdash M : \mathbb{N}}{\Gamma \vdash \mathsf{suc} \, M : \mathbb{N}}$$

$$\frac{\Gamma \vdash L : \mathbb{N}}{\Gamma \vdash \mathsf{ifz}(M; x. \, N) \, L : \tau}$$

$$\frac{\Gamma, x : \tau \vdash M : \tau}{\Gamma \vdash \mathsf{fix} \, x. \, M : \tau}$$

- · Substitution for **PCF** is defined similarly.
- Substitution respects typing judgements, i.e. $\Gamma \vdash N : \tau$ and $\Gamma, X : \tau \vdash M : \sigma$, then $\Gamma \vdash M[N/X] : \sigma$.

3

PCF: Dynamics

 β -conversion for **PCF** is extended with three rules

$$\begin{array}{c} \operatorname{fix} x. M \longrightarrow_{\beta} M[\operatorname{fix} x. M/x] \\ \operatorname{ifz}(M; x. N) \operatorname{zero} \longrightarrow_{\beta} M \\ \operatorname{ifz}(M; x. N) \left(\operatorname{suc} L\right) \longrightarrow_{\beta} N[L/x] \end{array}$$

Similarly, a β -reduction $\longrightarrow_{\beta 1}$ extends \longrightarrow_{β} to all parts of a term and $\longrightarrow_{\beta *}$ indicates finitely many β -reductions.

Theorem 3

PCF enjoys type safety.

Example

A term which never terminates can be defined easily.

$$\begin{array}{ll} \operatorname{fix} x.x & \longrightarrow_{\beta 1} x[\operatorname{fix} x.x/x] \\ \equiv \operatorname{fix} x.x & \longrightarrow_{\beta 1} x[\operatorname{fix} x.x/x] \\ \equiv \operatorname{fix} x.x & \longrightarrow_{\beta 1} x[\operatorname{fix} x.x/x] \\ \equiv \dots & \end{array}$$

Example: Predecessor and negation

```
pred := \lambda n : \mathbb{N}. ifz(zero; x.x) n : \mathbb{N} \to \mathbb{N}
```

 $\mathsf{not} := \lambda n : \mathbb{N}.\,\mathsf{ifz}(\mathsf{suc}\,\mathsf{zero}; x.\,\mathsf{zero})\,n \qquad : \mathbb{N} \to \mathbb{N}$

Exercise

Evaluate the following terms to their normal forms.

- 1. pred zero
- 2. pred (suc (suc (suc zero)))
- 3. not (suc (suc zero))

F — Polymorphic Typed

 λ -Calculus

Polymorphic types

Given type variables \mathbb{V} , τ : Type is defined by defined by

$$\frac{t \in \mathbb{V}}{t : \mathsf{Type}} \, (\mathsf{tvar})$$

$$\frac{\sigma : \mathsf{Type} \qquad \tau : \mathsf{Type}}{\sigma \to \tau : \mathsf{Type}} \, (\mathsf{fun})$$

$$\frac{\sigma : \mathsf{Type} \qquad t \in \mathbb{V}}{\forall t. \, \sigma : \mathsf{Type}} \, (\mathsf{poly})$$

where t may or may not appear in σ .

The polymorphic type $\forall t. \, \sigma$ provides a generic type for every instance $\sigma[\tau/t]$ whenever t is instantiated by an actual type τ .

7

Examples

• $id : \forall t. t \rightarrow t$ • $proj_1 : \forall t. \forall u. t \rightarrow u \rightarrow t$ • $proj_2 : \forall t. \forall u. t \rightarrow u \rightarrow u$ • $length : \forall t. list t \rightarrow nat$ • $singleton : \forall t.t \rightarrow list(t)$

Free and bound variables, again

Definition 4

The free variable $FV(\tau)$ of τ is defined inductively by

$$FV(t) = t$$

$$FV(\sigma \to \tau) = FV(\sigma) \cup FV(\tau)$$

$$FV(\forall t. \sigma) = FV(\sigma) - \{t\}$$

For convenience, the function extends to contexts:

$$\mathsf{FV}(\Gamma) = \{ t \in \mathbb{V} \mid \exists (\mathsf{X} : \sigma) \in \Gamma \land t \in \mathsf{FV}(\sigma) \}.$$

- 1. $FV(t_1) = \{t_1\}.$
- 2. $FV(\forall t. (t \rightarrow t) \rightarrow t \rightarrow t) = \emptyset$.
- 3. **FV**($x: t_1, y: t_2, z: \forall t. t$) = { t_1, t_2 }.

Capture-avoiding substitution for type

Definition 5

The (capture-avoiding) substitution of a type ρ for the free occurrence of a type variable t is defined by

$$t[\rho/t] = \rho$$

$$u[\rho/t] = u \qquad \text{if } u \neq t$$

$$(\sigma \to \tau)[\rho/t] = \sigma[\rho/t] \to \tau[\rho/t]$$

$$(\forall t.\sigma)[\rho/t] = \forall t.\sigma$$

$$(\forall u.\sigma)[\rho/t] = \forall u.\sigma[\rho/t] \qquad \text{if } u \neq t, u \notin \mathsf{FV}(\rho)$$

Recall that $u \notin FV(\rho)$ means that u is fresh for ρ .

Typed terms

Definition 6

On top of λ_{\rightarrow} , **F** has additional term formation rules as follows.

$$\frac{M:\mathsf{Term}_F}{\Lambda t.\ M:\mathsf{Term}_F} \frac{t:\mathbb{V}}{} (\mathsf{gen})$$

$$\frac{\textit{M}: \mathsf{Term}_\textit{F}}{\textit{M} \; \tau : \mathsf{Term}_\textit{F}} \; (\mathsf{inst})$$

- 1. At. M for type abstraction, or generalisation.
- 2. $M \tau$ for type application, or instantiation.

11

Example

Suppose length: $\forall t. \text{list } t \rightarrow \text{nat}$.

Then,

- 1. length nat
- 2. length bool
- 3. length (nat \rightarrow nat)

are instances of length with types

- 1. list nat \rightarrow nat
- 2. list bool \rightarrow nat
- 3. list (nat \rightarrow nat) \rightarrow nat

System F: Typing judgement

A type context is a sequence of type variable

$$t_1, t_2, \ldots, t_n$$

F has two kinds of typing judgements.

- $\Delta \vdash \tau$ for τ for a valid type under the type context Δ
- Δ ; $\Gamma \vdash M : \tau$ for a well-typed term under the context Γ and the type context Δ .

For example,

$$t \vdash t \rightarrow t$$

is a judgement that $t \rightarrow$ is a valid type under the type context, t.

System F: Type formation

The justification of $\Delta \vdash \tau$ is constructed inductively by following rules.

$$\frac{t \text{ occurs in } \Delta}{\Delta \vdash t}$$

$$\frac{\Delta, t \vdash \tau}{\Delta \vdash \forall t. \tau}$$

$$\frac{\Delta \vdash \tau_1 \qquad \Delta \vdash \tau_2}{\Delta \vdash \tau_1 \to \tau_2}$$

Exercise

Derive the judgement

$$t \vdash t \rightarrow t$$

System F: Typing rules

The justification of Δ ; $\Gamma \vdash M : \sigma$ is defined inductively by following rules.

$$\frac{x:\sigma\in\Gamma}{\Delta;\Gamma\vdash x:\sigma} \qquad \frac{\Delta,t;\Gamma\vdash M:\sigma}{\Delta;\Gamma\vdash \lambda t.\ M:\forall t.\ \sigma} \ (\forall\text{-intro})$$

$$\frac{\Delta;\Gamma\vdash M:\sigma\to\tau}{\Delta;\Gamma\vdash MN:\tau} \qquad \frac{\Delta;\Gamma\vdash M:\forall t.\ \sigma}{\Delta;\Gamma\vdash \lambda x:\sigma.\ M:\sigma\to\tau} \qquad \frac{\Delta;\Gamma\vdash M:\forall t.\ \sigma}{\Delta;\Gamma\vdash M:\tau:\sigma[\tau/t]} \ (\forall\text{-elim})$$

For convenience, $\vdash M : \tau$ stands for \cdot ; $\cdot \vdash M : \tau$.

Typing derivation

The typing judgement $\vdash \Lambda t. \Lambda u. \lambda(x:t)(y:u). x: \forall t. \forall u. t \rightarrow u \rightarrow t$ is derivable from the following derivation:

$$\frac{t, u \vdash u}{t, u; x : t, y : u \vdash x : t}$$

$$\frac{t, u \vdash t}{t, u; x : t \vdash \lambda(y : u). x : u \to t}$$

$$\frac{t, u; \vdash \lambda(x : t)(y : u). x : t \to u \to t}{t; \vdash \Lambda u. \lambda(x : t)(y : u). x : \forall u. t \to u \to t}$$

$$\vdash \Lambda t. \Lambda u. \lambda(x : t)(y : u). x : \forall t. \forall u. t \to u \to t}$$

Self application

Self-application is not typable in simply typed λ -calculus.

$$\lambda(x:t).xx$$

However, self-application is possible in System F.

$$\lambda(x: \forall t.t \rightarrow t).x (\forall t.t \rightarrow t) x$$

Exercise

Instantiate the first t with the type $\forall t. t \rightarrow t$.

Exercise

Derive the following judgements:

- 1. $\vdash \Lambda t. \lambda(x:t).x: \forall t. t \rightarrow t$
- 2. σ ; $a : \sigma \vdash (\Lambda t. \lambda(x : t)(y : t).x) \sigma a : \sigma \rightarrow \sigma$
- 3. $\vdash \Lambda t. \lambda(f:t \to t)(x:t).f(fx): \forall t. (t \to t) \to t \to t$

Hint. **F** is syntax-directed, so the type inversion holds.

System F: β -reduction

The β -conversion has two rules

$$(\lambda(x:\tau).M)N \longrightarrow_{\beta} M[x/N]$$
 and $(\Lambda t.M)\tau \longrightarrow_{\beta} M[\tau/t]$

For example,

$$(\Lambda t.\lambda x:t.x) \tau a \longrightarrow_{\beta} (\lambda x:t.x)[\tau/t] a \equiv (\lambda x:\tau.x) a \longrightarrow_{\beta} x[a/x] \equiv a$$

Similarly, β -conversion extends to subterms of a given term, introducing symbols $\longrightarrow_{\beta_1}$ and $\longrightarrow_{\beta_*}$ in the same way.

Sum type

Definition 7

The sum type is defined by

$$\sigma + \tau := \forall t. (\sigma \to t) \to (\tau \to t) \to t$$

It has two injection functions: the first injection is defined by

$$\mathsf{left}_{\sigma+\tau} := \lambda(\mathsf{X}:\sigma). \ \, \mathsf{\Lambda t}. \ \, \lambda(f:\sigma\to t)(g:\tau\to t).f \, \mathsf{X}$$

$$\mathsf{right}_{\sigma+\tau} := \lambda(\mathsf{Y}:\tau). \ \, \mathsf{\Lambda t}. \ \, \lambda(f:\sigma\to t)(g:\tau\to t).g \, \mathsf{Y}$$

Exercise

Define

either:
$$\forall u. (\sigma \rightarrow u) \rightarrow (\tau \rightarrow u) \rightarrow \sigma + \tau \rightarrow u$$

Product type

Definition 8 (Product Type)

The product type is defined by

$$\sigma \times \tau := \forall t. (\sigma \to \tau \to t) \to t$$

The pairing function is defined by

$$\langle _, _ \rangle := \lambda(x : \sigma)(y : \tau). \Lambda t. \lambda(f : \sigma \to \tau \to t). f x y$$

Exercise

Define projections

$$proj_1: \sigma \times \tau \to \sigma$$
 and $proj_2: \sigma \times \tau \to \tau$

Natural numbers i

The type of Church numerals is defined by

$$\mathsf{nat} \mathrel{\mathop:}= \forall t.\, (t \to t) \to t \to t$$

Church numerals

$$\mathbf{c}_n : \mathsf{nat}$$

 $\mathbf{c}_n := \mathsf{\Lambda} t. \, \lambda(f:t \to t) \, (x:t). \, f^n \, x$

Successor

$$\verb+suc+: \verb+nat+ \to \verb+nat+ \\ \verb+suc+: = \lambda(n: \verb+nat+). \land t. \lambda(f: t \to t) (x: t). f(n t f x)$$

Natural numbers ii

Addition

$$\label{eq:add:nat} \begin{split} \operatorname{add}:&\operatorname{nat} \to \operatorname{nat} \to \operatorname{nat} \\ \operatorname{add}:&= \lambda(n:\operatorname{nat})\,(m:\operatorname{nat}) \quad \Lambda t.\,\lambda(f:t\to t)\,(x:t). \\ &\qquad \qquad (m\,t\,f)\,(n\,t\,f\,x) \end{split}$$

Multiplication

$$\label{eq:mul:nat} \begin{split} & \text{mul}: \text{nat} \rightarrow \text{nat} \rightarrow \text{nat} \\ & \text{mul}:=? \end{split}$$

Conditional

$$ifz: \forall t. \, nat \rightarrow t \rightarrow t \rightarrow t$$
 $ifz:=?$

Natural numbers iii

System F allows us to define iterator like fold in Haskell.

$$\begin{aligned} & \texttt{fold}_{\texttt{nat}} : \forall t. \, (t \to t) \to t \to \texttt{nat} \to t \\ & \texttt{fold}_{\texttt{nat}} := \Lambda t. \, \lambda(f : t \to t) (e_0 : t) (n : \texttt{nat}).n \ t \ f \ e_0 \end{aligned}$$

Exercise

Define add and mul using $fold_{nat}$ and justify your answer.

- 1. $add' := ? : nat \rightarrow nat \rightarrow nat$
- 2. $mul' := ? : nat \rightarrow nat \rightarrow nat$

Lists

Definition 9

For any type σ , the type of lists over σ is

$$\mathtt{list}\,\sigma := \forall t.\, t \to (\sigma \to t \to t) \to t$$

with "list constructors":

$$\mathsf{nil}_{\sigma} := \mathsf{\Lambda} t. \lambda(h:t)(f:\sigma \to t \to t). h$$

and

$$\mathsf{cons}_\sigma := \lambda(\mathsf{x} : \sigma)(\mathsf{xs} : \mathsf{list}\,\sigma).\, \Lambda t. \lambda(\mathsf{h} : \mathsf{t})(\mathsf{f} : \sigma \to \mathsf{t} \to \mathsf{t}). \mathsf{f} \mathsf{x} \, (\mathsf{xs} \, \mathsf{t} \, \mathsf{h} \, \mathsf{f})$$
 of type $\sigma \to \mathsf{list}\,\sigma \to \mathsf{list}\,\sigma$.

Type erasure

Definition 10

The erasing map is a function defined by

$$|x| = x$$

$$|\lambda(x : \tau). M| = \lambda x. |M|$$

$$|M N| = (|M| |N|)$$

$$|\Lambda t. M| = |M|$$

$$|M \tau| = |M|$$

Proposition 11

Within System F, if $\vdash M : \sigma$ and $|M| \longrightarrow_{\beta 1} N'$, then there exists a well-typed term N with $\vdash N : \sigma$ and |N| = N'.

Type safety and normalisation

Theorem 12 (Type safety)

Suppose \vdash M : σ. Then,

- 1. $M \longrightarrow_{\beta 1} N \text{ implies} \vdash N : \sigma$;
- 2. M is in normal form or there exists N such that M $\longrightarrow_{\beta 1}$ N

Type safety is proved by induction on the derivation of $\vdash M : \sigma$.

Theorem 13 (Normalisation properties)

F enjoys the weak and strong normalisation properties.

Proved by Girard's reducibility candidates.

Parametricity

What functions can you write for the following type?

$$\forall t. t \rightarrow t$$

Since *t* is arbitrary, we cannot inspect the content of *t*. What we can do with *t* is simply return it.

Theorem 14

Every term M of type $\forall t. t \rightarrow t$ is observationally equivalent¹ to $\Lambda t. \lambda x : t. x$.

¹The notion of observational equivalence is beyond the scope of this lecture.

Parametricity: Theorems for free²

Assume F extended with the list type list τ for τ and the type $\mathbb N$ of naturals, denoted $F_{list.\mathbb N}$.

Then $\mathbf{head} \circ \mathbf{map} \ f = f \circ \mathbf{head}$ for any $f : \tau \to \sigma$ where $\mathbf{head} : \forall t. \ \mathbf{list} \ t \to t$ can be proved by just reading the type of \mathbf{head} and \mathbf{tail} !

Theorem 15

For any type σ in **F** (with lists) and $\cdot \vdash M : \sigma$, then

 $M \sim M : \mathcal{R}_{\sigma,\sigma}$

²Philip Wadler. 1989. Theorems for free! In *Proceedings of the fourth international* conference on Functional programming languages and computer architecture (FPCA '89). ACM, New York, NY, USA, 347–359.

Undecidability of type inference

Theorem 16 (Wells, 1999)

It is undecidable whether, given a closed term M of the untyped lambda-calculus, there is a well-typed term M' in System F such that |M'| = M.

Two ways to retain decidable type inference:

- 1. Limit the expressiveness so that type inference remains decidable. For example, *Hindley-Milner type system* adapted by Haskell 98, Standard ML, etc. supports only a limited form of polymorphism but type inference is decidable.
- 2. Adopt *partial* type inference so that type annotations are needed for, e.g. top-level definitions and local definitions.

Check out bidirectional type inference.

Nameless Representation

Capture-avoiding but ill-defined substitution

The definition of capture-avoiding substitution is not well-defined. Recall that

$$x[L/x] = L$$

$$y[L/x] = y if x \neq y$$

$$(MN)[L/x] = M[L/x] N[L/x]$$

$$(\lambda x. M)[L/x] = \lambda x. M$$

$$(\lambda y. M)[L/x] = \lambda y. M[L/x] if x \neq y \text{ and } y \notin FV(L)$$

The function [L/x]: $Term_V \to Term_V$ is not total, so it is **not** an instance of *structural recursion* (i.e. **fold**). In what sense, is the above well-defined?

- 1. Use *nominal technique* and the notion of α -structure recursion/induction. It requires some elements of group theory.
- 2. Use nameless representation.

Well-Scoped de Bruijn index representation i

An index i starting from 0 is used as a variable to represent the i-th enclosing λ (binder) 'from the inside out'. For example, a term with named variables

$$\lambda a. \lambda b. (\lambda c. c) (\lambda c. a b)$$

becomes

$$\lambda \lambda (\lambda 0) (\lambda 2 1)$$

Hint. It may be easier to think of a term in its tree representation.

Well-Scoped de Bruijn index representation ii

Definition 17 (de Bruijn representation with a local scope)

The term formation t Term_n is defined inductively for $n \in \mathbb{N}$ by

$$\frac{0 \le i < n}{i \quad \mathsf{Term}_n}$$

$$\frac{t \quad \mathsf{Term}_{n+1}}{\lambda t \quad \mathsf{Term}_n}$$

$$\frac{t \quad \mathsf{Term}_n \quad u \quad \mathsf{Term}_n}{t \ u \quad \mathsf{Term}_n}$$

 $|t \quad \mathsf{Term}_n|$ means t has at most n many free variables.

Exercise

Translate the following terms to its de Bruijn index representation.

- 1. $\lambda x. x$
- 2. $\lambda s. \lambda z. s. z$
- 3. $\lambda a. \lambda b. a (\lambda c. a b)$
- 4. $(\lambda x. x) (\lambda y. y)$
- 5. $\lambda x. y$
- 6. *x y z*

Substitution, revisited

How to reformulate β -reduction for terms in de Bruijn representation? Consider

$$(\lambda \lambda (\lambda 0) (\lambda 2 1)) t \longrightarrow_{\beta} (\lambda (\lambda 0) (\lambda 2 1)) [t/0]$$

The de Bruijn index increments under a binder so [t/i] should be [t'/i+1] where t' is the result of incrementing every index in t, e.g.,

$$(\lambda(\lambda 0) (\lambda 2 1)) [t/0] = \lambda(\lambda 0)[t'/1] \quad (\lambda 2 1)[t'/1]$$

$$= \lambda(\lambda 0[t''/2]) \quad (\lambda (2 1) [t''/2])$$

$$= \lambda(\lambda 0) \quad (\lambda 2[t''/2] 1[t''/2])$$

$$= \lambda(\lambda 0) \quad (\lambda t'' 1)$$

Simultaneous variable renaming

Definition 18

A (variable) renaming is a function ρ between \mathbb{Z}_n and \mathbb{Z}_m .

Every renaming $\rho \colon \mathbb{Z}_n \to \mathbb{Z}_m$ extends to an action on terms:

$$\langle \rho \rangle i = \rho(i)$$
$$\langle \rho \rangle (t u) = \langle \rho \rangle t \langle \rho \rangle u$$
$$\langle \rho \rangle \lambda t = \lambda \langle \rho' \rangle t$$

where $\rho' \colon \mathbb{Z}_{n+1} \to \mathbb{Z}_{m+1}$ is defined as

$$\rho'(0) = 0$$

$$\rho'(i) = 1 + \rho(i) \qquad \text{if } i \neq 0$$

to avoid changing bound variables.

In particular, $wk: \mathbf{Term}_n \to \mathbf{Term}_{n+1}$ derived by $i \mapsto i+1 \in \mathbb{Z}_{n+1}$ increments every index of a free variable by 1.

Simultaneous substitution

Definition 19

A (simultaneous) substitution is a function σ from \mathbb{Z}_n to Term_m .

Every substitution extends to an action terms:

$$\langle \sigma \rangle i = \sigma(i)$$
$$\langle \sigma \rangle (t u) = \langle \sigma \rangle t \langle \sigma \rangle u$$
$$\langle \sigma \rangle \lambda t = \lambda \langle \sigma' \rangle t$$

where $\sigma' \colon \mathbb{Z}_{n+1} \to \mathsf{Term}_{m+1}$ is defined as

$$\sigma'(0) = 0$$

$$\sigma'(i) = wk(\sigma(i)) if i \neq 0$$

Single substitution

Definition 20

A single substitution for t is a simultaneous substitution given by

$$\sigma(i) = \begin{cases} t & i = 0 \\ i & \text{otherwise.} \end{cases}$$

Exercise

- 1. Adopt α -equivalence to the de Bruijn representation.
- 2. Adopt β -equivalence to the de Bruijn representation.
- 3. Apply the new definition of substitution to compute not True.
- 4. Adopt the definitions of renaming and substitution to the de Bruijn level representation. N.B. we may also count the *i*-th enclosing binder 'from the outside in' using the same definition, called *the de Bruijn level*.

Homework

- 1. (2.5%) Extend **PCF** with the type \mathbb{B} of boolean values with $ifz(M; N) true =_{\beta} M$ and $ifz(M; N) false =_{\beta} N$ including term formation rules, typing rules, and dynamics for \mathbb{B} .
- 2. (2.5%) Define $\operatorname{length}_{\sigma}: \operatorname{list} \sigma \to \operatorname{nat}$ calculating the length of a list in System F.