

Predictive Process Monitoring for Airport Operational Support

Björn Rafn Gunnarsson, Jochen De Weerdt, Seppe vanden Broucke

Introduction

- Airports have become competitive consumer brands competing for travellers
- Customer experience has become a strategy focus in the management of airports, e.g. through data-driven personalized passenger information services
- We investigate the applicability of predictive process monitoring for supporting luggage handling operations at an airport
- Several iterations of a development cycle for predictive process monitoring were executed to develop an application of a predictive process monitoring technique which performs acceptably when utilized for this purpose
- More specifically, a number of novel LSTM based sequence to sequence models were constructed using different features

Development Cycle for Predictive Process Monitoring Applications

Model Development

- Devise a novel LSTM based sequence to sequence model
- Allows for training models that can directly predict the complete remaining trace as well as its runtime
- Robust in terms of utilizing all available attributes relating to previously observed event for prediction
- Natively data aware

Online Predictive Process Monitoring

Data Transformation

Prefix/Suffix Extraction

Prefixes and suffixes are extracted for each process step from recorded traces contained in the extracted event log

Feature Engineering

- Control flow information, information engineered from time features and flight information considered as features
- Novel inter-case dynamics featurization approach was additionally considered to encode the relevant mutli-location load state of the luggage handling system

Sequence Encoding

 All features and targets encoded using a sliding window of a fixed size

Model Evaluation

- Execute several iterations of the development cycle to identify a model that performs acceptably for remaining trace and runtime prediction
- Performance of developed model further evaluated for different groups of luggage
- Model comfortably outperforms considered baseline models for both prediction tasks

	Remaining	Remaining
	trace	time
Act. + Time	0.7166	526
Act. + Time + Inter	0.7276 (+1.1%)	520 (+1.1%)
Act. + Time + Flight	<u>0.9070</u> (+19.0%)	<u>233</u> (+55.7%)
Act. + Time + Flight + Inter	0.8980 (+18.1%)	306 (+41.8%)

CRTP-LSTM

	Baseline models	
	Remaining trace	Remaining time
Departing luggage	0.7278	264
Transferring luggage	0.5856	750
Early luggage	0.5021	2940
Late luggage	0.3922	3063

Conclusion

- Developed LSTM based sequence to sequence model comfortably outperforms baseline models for both prediction tasks
- Model can be used to identify deviations based on predicted remaining traces and remaining runtimes

Future work

- Incorporate external factors into predictive setup (e.g. weather)
- Develop object-centric predictive process monitoring techniques which take into account the interdependence between different processes at an airport