Text Representation in NLP

Who am I?

NLP Workflow

Bag of words

What's the main issue?

- The words such as 'is', 'the', etc are called stopwords in Natural language processing.
- These words get more importance in bag of words model.

So, what next?

Inverse Document Frequency (IDF)

- Review 1: This movie is very scary and long
- Review 2: This movie is not scary and is slow
- Review 3: This movie is spooky and good

Term	Review 1	Review 2	Review 3	TF (Review 1)	TF (Review 2)	TF (Review 3)
This	1	1	1	1/7	1/8	1/6
movie	1	1	1	1/7	1/8	1/6
is	1	2	1	1/7	1/4	1/6
very	1	0	0	1/7	0	0
scary	1	1	0	1/7	1/8	0
and	1	1	1	1/7	1/8	1/6
long	1	0	0	1/7	0	0
not	0	1	0	0	1/8	0
slow	0	1	0	0	1/8	0
spooky	0	0	1	0	0	1/6
good	0	0	1	0	0	1/6

idf —	number of documents
iaj_t –	$log \frac{1}{number\ of\ documents\ with\ term\ 't'}$

$$IDF('movie',) = log(3/3) = 0$$

IDF('is') =
$$log(3/3) = 0$$

$$IDF('not') = log(3/1) = log(3) = 0.48$$

$$IDF('scary') = log(3/2) = 0.18$$

$$IDF('and') = log(3/3) = 0$$

IDF('slow') =
$$log(3/1) = 0.48$$

So, What's the issue?

- The size of matrix increases as the size of vocabulary increases.
- It does not capture position in text, semantics, co-occurrence in sentences.
- Out of vocabulary words, what happens when a new word occur during test?

Word embeddings

- A word embedding is a learned representation for text where words that have the same meaning have a similar representation.
- It is this approach to representing words and documents that may be considered one of the key breakthroughs of deep learning on challenging natural language processing problems.
- Here each word is represented using a n dimensional vector.

Pre trained word embeddings

- Word2vec
- Glove
- Fastext

So, What's the issue again?

- Word embeddings are non contextual embeddings, meaning it does not take context in which word is used to create the representation.
- Out of vocabulary embeddings.

For example,

- I went to the bank for an enquiry.
- I was in the river bank.

Here the word "bank" is used in different context, but will have same representation using word embeddings.

BERT

- BERT stands for Bidirectional Encoder Representations from Transformers.
- It is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context.
- As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of NLP tasks.

So, what's the final result?

We have very different representation for these two sentences which is finally what we wanted to have.