Laboratorio 2

Grupo 8

Integrantes: Martín Fuentes Flores Paulo Oses

Parte 1: Programar movimientos

Gráfico de trayectoria *dead* reckoning sin factor de corrección:

Gráfico de trayectoria *dead* reckoning con factor de corrección:

Parte 1: Programar movimientos

Gráfico de trayectoria control P:

ctrl. lineal: kp = 0.5

ctrl. angular: kp = 0.3

Gráfico de trayectoria control PI: ctrl.lineal: kp = 0.3, ki = 0.02 ctrl.angular: kp = 0.1, ki = 0.007

Tolerancia: error < 0.01 error_lineal < 1cm y error_angular < 0.5 °

Parte 1: Programar movimientos

Gráfico de señales control P:

ctrl. lineal: kp = 0.5

ctrl. angular: kp = 0.3

Parte 1

Demostración

ROS2 LAUNCH LAB2 AVANZAR_Y_ROTAR_CTRL.XML

Parte 2: Criterio de detección de las paredes:

Parte 2: Criterio de detección de las paredes:

Parte 2: Criterio de detección de las paredes:

ROS2 LAUNCH LAB_2_RM NAVEGACION_PASILLO.XML

Caso extremo: giros bruscos


```
if dis_centro < 0.5:
# Si el robot está demasiado cerca de un obstáculo, detenerse
msg_vel.linear.x = 0.0</pre>
```

Caso extremo: giros bruscos


```
if dis_centro < 0.5:
# Si el robot está demasiado cerca de un obstáculo, detenerse
msg_vel.linear.x = 0.0</pre>
```

ROS2 LAUNCH LAB_2_RM NAVEGACION_CUADRADO_PERFECTO.XML

Parte 3: "Follow the carrot"

Parte 3: "Follow the carrot"

line

sine

Parámetros:

Look ahead distance: 0.2

$$k_p = 1.5$$

 $k_i = 0.01$
 $k_d = 0$

Parte 3

Demostración

ROS2 LAUNCH LAB_2_RM FOLLOW_THE_CARROT_LINE.XML

ROS2 LAUNCH LAB_2_RM FOLLOW_THE_CARROT_SIN.XML

ROS2 LAUNCH LAB_2_RM FOLLOW_THE_CARROT_SQRT.XML