

CS 224
Lab no. 4
Section no. 2

Ghulam Ahmed (22101001)

Part 1. Setup and Test – Original10

a)

Location	Machine Instruction (hex)	Assembly language
00	0x2014fff6	ADDI \$s4, \$zero, -10
04	0x20090007	ADDI \$t1, \$zero, 7
08	0x22820003	ADDI \$v0, \$s4, 3
0c	0x01342025	OR \$a0, \$t1, \$s4
10	0x00822824	AND \$a1, \$a0, \$v0
14	0x00a42820	ADD \$a1, \$a1, \$a0
18	0x1045003d	BEQ \$v0, \$a1, 61
1c	0x0054202a	SLT \$a0, \$v0, \$s4
20	0x10040001	BEQ \$zero, \$a0, 1
24	0x00002820	ADD \$a1, \$zero, \$zero
28	0x0289202a	SLT \$a0, \$s4, \$t1
2c	0x00853820	ADD \$a3, \$a0, \$a1
30	0x00e23822	SUB \$a3, \$a3, \$v0
34	0xac470057	SW \$a3, 87(\$v0)
38	0x8c020050	LW \$v0, 80(\$zero)
3c	0x08000011	J 17
40	0x20020001	ADDI \$v0, \$zero, 1
44	0x2282005a	ADDI \$v0, \$s4, 90
48	0x08000012	J 18

d) Waveform

e) Observations

i) In an R-type instruction what does writedata correspond to?

Writedata is the value in rf[instr[20:16]].

ii) Why is writedata undefined for some of the early instructions in the program?

This is because the regfile is still waiting to be reset.

iii) In which instructions memwrite becomes 1?

The memwrite turns 1 for the instruction at pc 34 as we need to write to memory for that instruction.

iv) Why is dataaddr 0xffffffe8 when PC is 0x14?

For the instruction at pc 14 we need to add the contents of \$a1 and \$a0 and then store it in \$a1. \$a0 currently holds -9 and \$a1 holds -15. Therefore dataaddr would be -9 + -15 = -24, equivalent to 0xfffffe8 in hex.

v) In the example program, when is the output of readdata defined and why?

For the instruction at pc 34, we need to store data memory at location [20] in the dmem module, therefore it has to be defined. Similarly for instruction at pc 38 we load from that location into readdata, therefore it is defined again.

f) Modified ALU module

module alu(input logic [31:0] a, b, input logic [2:0] alucont, output logic [31:0] result, output logic zero);

always comb

```
case(alucont)
    3'b010: result = a + b;
    3'b110: result = a - b;
    3'b000: result = a & b;
    3'b001: result = a | b;
    3'b111: result = (a < b) ? 1 : 0;
    3'b011: result = a ^ b;
    default: result = {32{1'bx}};
    endcase

assign zero = (result == 0) ? 1'b1 : 1'b0;
endmodule
```

Part 2. Extend Original10

Section 3 Instructions: spc & rol

a) RTL expression for spc

```
IM[PC]
M[R[rs] + SignExtImm] = PC
PC = PC + 4
```

a) RTL expression for rol

```
IM[PC]
R[rd] = (R[rs] << shamt) | (R[rs] >> (32 - shamt))
PC = PC + 4
```

b) Hardware diagram

c) Tables

Instruction	Opcode	RegWrite	RegDst	ALUSrc	Branch	MemWrite	MemToReg	ALUOp	Jump	WriteSrc
R-type	000000	1	1	0	0	0	0	10	0	0
lw	100011	1	0	1	0	0	1	00	0	0
sw	101011	0	Х	1	0	1	Х	00	0	0
beq	000100	0	Х	0	1	0	X	01	0	0
addi	001000	1	0	1	0	0	0	00	0	0
j	000010	0	Х	Х	X	0	Х	XX	1	0
rol	000000	1	1	X	D	0	X	XX	0	Ø
SPC	010000	0	X	١	0	١	X	00	0	1

ALUOp	Funct	ALUControl	Rol
00	X	010 (add)	0
01	X	110 (subtract)	0
1X	100000 (add)	010 (add)	0
1X	100010 (sub)	110 (subtract)	Ò
1X	100100 (and)	000 (and)	0
1X	100101 (or)	001 (or)	0
1X	101010 (slt)	111 (set less than)	Ô
ΙX	(101) 110101	XXX	L