ARCHI2 - Compte-rendu du TME1

Nicolas Phan

pour le 17 Janvier 2018

Table des matières

1	Automate du composant PibusSimpleRam	2	
2	Automate du composant PibusSimpleMaster	3	

1 Automate du composant PibusSimpleRam

 $\label{eq:figure 1} Figure \ 1-Graphe \ de \ la \ MAE \ du \ composant \ RAM$

TABLE 1 – Fonctions de transition de la MAE de Simple-Ram

Nom	Transition
A	SEL.ADR_OK.READ.DELAY
В	SEL.ADR_OK.READ.DELAY
C	SEL.ADR_OK.READ.DELAY
D	SEL.ADR_OK.READ.DELAY
E	SEL.ADR_OK
F	SEL
G	1
U	GO
υ,	GO
V	GO
ν,	GO
Х	SEL.ADR_OK.READ
Y	SEL.(ADR_OK + READ)
Z	SEL
R	SEL.(ADR_OK + READ)
S	SEL.ADR_OK.READ
Т	SEL

Table 2 – Valeurs de sortie de la MAE de SimpleRam

	ACK_EN	ACK_VALUE	DT_EN	MEM_CMD	
IDLE	0	WAIT	0	NOPE	
R_WAIT	1	WAIT	0	READ	
R_OK	1	READY	0	READ	
W_WAIT	1	WAIT	1	WRITE	
W_OK	1	READY	1	WRITE	
ERROR	1	ERROR	0	NOPE	

${\bf 2}\quad {\bf Automate~du~composant~PibusSimpleMaster}$

 $\label{eq:figure 2-Graphe de la MAE du composant Master} Figure 2 - Graphe de la MAE du composant Master$

Table 3 – Fonctions de transition de SimpleMaster

lewaster					
Nom	Transition				
Α	1				
в,	GNT				
В	GNT				
С	1				
D'	RDY				
D	RDY				
E	RDY				
E'	RDY				
F	RDY				
F'	RDY				
G	RDY				
G,	RDY				
н,	GNT				
H	GNT				
I	1				
J	RDY				
K	RDY.LAST				
L	RDY. LAST				
м,	GNT				
M	GNT				
N	1				
0	RDY				
P	RDY.NUL				
Q	RDY.NUL				
R'	GNT				
R	GNT				
S	1				
Т'	RDY				
T	RDY				

Table 4 – Valeurs de sortie de SimpleMaster

	REQ	CMD_EN	ADR_VALUE	READ_VALUE	LOCK_VAL	DT_EN
INIT	0	0	Х	Х	Х	0
RAM_REQ	1	0	X	X	Х	0
RAM_AO	0	1	ram_base	1	1	0
RAM_A1DO	0	1	ram_base + 4	1	1	0
RAM_A2D1	0	1	ram_base + 8	1	1	0
RAM_A3D2	0	1	ram_base + 12	1	1	0
RAM_D3	0	0	X	X	0	0
W_REQ	1	0	X	X	Х	0
W_AD	0	1	seg_tty_base	0	0	0
W_DT	0	0	seg_tty_base	0	0	1
STS_REQ	1	0	X	X	Х	0
STS_AD	0	1	seg_tty_base + 4	1	0	0
STS_DT	0	0	seg_tty_base + 4	1	0	0
BUF_REQ	1	0	X	X	Х	0
BUF_AD	0	1	seg_tty_base + 8	1	0	0
BUF_DT	0	0	X	X	Х	0

1. Modélisation : Cela consiste en la description d'un modèle du processeur,

La Figure ?? résume le flot de travail et les outils utilisés pour les étapes de Syntèse, Placement et Routage.

$$\sum_{\substack{k \in [[0,4]] \\ \text{shift value}(k) = 1}} 2^k = \text{shift_value}$$