Introducción a C++ 1.

Ejercicio 1. Crear un proyecto nuevo de C++ en CLion con el nombre labo01. En el archivo labo.cpp escribir el siguiente programa y guardarlo en el directorio del proyecto labo01. Editar el archivo CMAKELIST.TXT, reemplazando el archivo main.cpp por el archivo labo.cpp. Ejecutar el proyecto.

```
Archivo: labo00.cpp
#include <iostream>
int f(int x){
     return x+1;
}
int main() {
     std::cout << "El resultado es: " << f(10) << std::endl;</pre>
     return 0;
}
```

Ejercicio 2. Modificar el programa anterior para que f tome dos parámetros de tipo int y los sume.

Ejercicio 3. Modificar el programa anterior para que f tome dos parámetros $x \in y$ de tipo int y los sume sólo si x > y, en caso contrario el resultado será el producto.

Ejercicio 4. Escribir la función que dado $n \in \mathbb{N}$ devuelve una variable booleana con el valor **true** si es primo. Recuerden que un número es primo si los únicos divisores que tiene son 1 y él mismo.

2. Recursión e Iteración

Los siguientes ejercicios deben ser implementados en versión resursiva. Luego, generar una nueva función que utilice la versión iterativa con while y con for.

Ejercicio 5. Escribir la función de Fibonacci que dado un entero n devuelve el n-ésimo número de Fibonacci. Los números de Fibonacci empiezan con $F_0 = 0$ y $F_1 = 1$. $F_n = F_{n-1} + F_{n-2}$

Ejercicio 6. Escribir la función que dado $n \in \mathbb{N}$ devuelve la suma de todos los números impares menores que n.

Ejercicio 7. Escribir la función suma Divisores que dado $n \in \mathbb{N}$, devuelve la suma de todos sus divisores entre [1, n]. Para la versión recursiva, es conveniente utilizar una función divisoresHasta.

Ejercicio 8. Escribir una función que dados n, $k \in \mathbb{N}$ compute el combinatorio: $\binom{n}{k}$. Hacerlo usando la igualdad $\binom{n}{k} = \binom{n-1}{k}$ $+\binom{n-1}{k-1}$

¿Qué pasa si tuvieran que escribir la versión iterativa?