

FACULDADE DE ENGENHARIA ELÉTRICA

ENGENHARIA DE CONTROLE E AUTOMAÇÃO

INSTRUMENTAÇÃO INDUSTRIAL

2º Roteiro de Laboratório Caracterização estática II – Ponte de Wheatstone.

Ponte de Wheatstone (dois divisores de tensão): se R_1 for um sensor (dummy) idêntico a R_x , compensam-se variações com a temperatura:

Teoria:

Existe duas formas de trabalhar com estes equipamentos: o modo balanceado (*null*), onde ajusta-se R₁ (manual ou automaticamente) de modo a ter:

$$V_{AB} = 0 \to R_{\mathcal{X}} = R_1 \frac{R_3}{R_2}$$

E assim sabendo os valores de R_1 , R_2 e R_3 encontra-se o valor de R_{χ} , sendo o ganho: $\frac{R_3}{R_2}$, e nesta configuração (ponte em modo balanceado), a medida não depende de $V_{ref.}$

O outro modo denomina-se modo não balanceado (deflection), detecta-se a tensão V_{AB} :

$$V_a = \left(\frac{R_X}{R_X + R_3}\right) V_{ref}$$

$$V_b = \left(\frac{R_1}{R_1 + R_2}\right) V_{ref}$$

$$V_{AB} = \left(\frac{R_X}{R_X + R_3} - \frac{R_1}{R_1 + R_2}\right) V_{ref}$$

A tensão V_{AB} para $R_X = R_0(1+x)$ é:

$$V_{AB} = \left(\frac{R_X}{R_X + R_3} - \frac{R_1}{R_1 + R_2}\right) V_{ref}$$

Para
$$k = \frac{R_3}{R_0} = \frac{R_2}{R_1}$$
:

$$V_{AB} = \left(\frac{R_0(1+x)}{R_0(1+x) + kR_0} - \frac{R_1}{R_1 + kR_1}\right) V_{ref}$$

$$V_{AB} = \frac{kx}{(k+1)(k+1+x)} V_{ref}$$

A sensibilidade para $R_X = R_0(1+x) \rightarrow dR_X = R_0 dx$

$$S = \frac{dV_{AB}}{dR_X} = \frac{1}{R_0} \frac{dV_{AB}}{dx} = \frac{V_{ref}}{R_0} \frac{k}{(1+k+x)^2}$$

Fazendo a comparação visualizamos num primeiro momento que a equação é igual ao do divisor de tensão, mas na ponte em modo não balanceado, pode aumentar-se a sensibilidade com um andar de ganho k o que não podemos fazer no divisor resistivo.

$$S = \frac{V_{ref}}{R_0} \frac{k}{(1+k+x)^2}$$

O modo não balanceado é tipicamente usado fazendo $|x| \ll 1$ e $R_1 = R_2 = R_3 = R_0$ (k=1).

$$V_{AB} = \frac{V_{ref}}{2} \frac{x}{2+x}$$

Como $|x| \ll 1$ a função fica aproximadamente linear:

FACULDADE DE ENGENHARIA ELÉTRICA ENGENHARIA DE CONTROLE E AUTOMAÇÃO

INSTRUMENTAÇÃO INDUSTRIAL

$$V_{AB} = \frac{V_{ref}}{4}x$$

E como nesta mesma situação temos k = 1 $(R_1 = R_2 = R_3 = R_0)$ conseguimos também a máxima sensibilidade.

Utilizando a equação do roteiro anterior do LDR:

$$L = (\frac{561}{R_{KO}})^{1.12} [lux] (3)$$

Podemos ter uma equação Lux x V_{AB} que dever ser feita pelo grupo para implementação na aula prática:

Montagem do circuito

Labview

Passo 1: Inicie o Labview. Você verá esta tela:

Passo 2: Selecione blank VI (VI é a sigla de VIRTUAL INSTRUMENT). Fazendo isso você terá acesso a área de trabalho, a qual é dividida em duas janelas: a janela de

visualização do VI – Front Panel e a janela do diagrama de blocos. Na janela do Front Panel é desenvolvida a interface, a parte do programa à qual o usuário tem acesso e com a qual interage enquando o programa roda; na janela do diagrama de blocos é desenvolvido o programa. Cada elemento colocado no Front Panel tem um equivalente no diagrama de blocos, o contrário não é verdade.

Passo 3: Inicie a programação criando um bloco while no diagrama de blocos, para isso clique na tela com o botão esquerdo, selecione programming → structures → while loop, com o loop while selecionado clique com o botão direito na tela de modo a formar um retângulo. Agora no Front Panel clique com o botão esquerdo e crie um botão STOP clicando com o botão esquerdo e então selecionando modern → boolean → stop button, com o botão stop selecionado clique com o botão direito na tela. É possível observar que assim que o botão stop aparece no Front Panel, seu equivalente também aparece no diagrama de blocos. Para finalizar ligue a saída do botão stop à condição do loop (quadrado no canto direito

FACULDADE DE ENGENHARIA ELÉTRICA ENGENHARIA DE CONTROLE E AUTOMAÇÃO

INSTRUMENTAÇÃO INDUSTRIAL

da tela), conforme a figura:

Passo 4 : Faça aquisição do sinal de entrada; para isso, no diagrama de blocos clique com o botão esquerdo e selecione express → input → DAQ Assistant e clique dentro do loop while, logo a interface do daq assistant será aberta:

STOP

Selecione Acquire Signals → Analog Input → Voltage, então selecione a entrada à qual foi conectada a tensão do ldr (preferencialmente Al0 – pino 2). Após clicar em finish, uma nova interface será aberta, é necessário trocar a configuração terminal para RSE (medida com relação ao ground); clique também em run para testar a aquisição do sinal, e, por fim clique em OK.

Agora no front panel clique com o botão esquerdo e selecione modern → graph → waveform chart, assim que o gráfico aparecer, vá ao diagrama de blocos e ligue a saída "data" do DAQ Assistant ao gráfico. Feito isso, é possível testar a aquisição do sinal clicando em run (seta no canto superior), que executará o programa. Para interrompê-lo podemos usar o botão stop.

FACULDADE DE ENGENHARIA ELÉTRICA
ENGENHARIA DE CONTROLE E AUTOMAÇÃO
INICIPALIMENTA ÇÃO INDUSTRIA I

INSTRUMENTAÇÃO INDUSTRIAL

Passo 5: Use as equações desenvolvidas na primeira parte para calcular e mostrar a iluminância. Inicialmente calcule a resistência do Idr através da entrada de tensão com a equação (4), para isso, no diagrama de blocos clique com o botão esquerdo e selecione Mathematics → Script & Formula → Formula e clique no diagrama de blocos. Com a janela "Configure Formula" aberta digite a equação (4) considerando que o sinal de entrada (Vin) é X1:

Agora no Front Panel, clique com o botão esquerdo e selecione modern → numeric → numeric indicator. É possível alterar os nomes dos objetos do front panel clicando duas vezes nos mesmos, ou, clicando com o botão direito, e, em propriedades alterando o campo "label"; altere os nomes dos seus componentes para tornar a identificação mais fácil. Por fim, no diagrama de blocos, ligue a saída do DAQ Assistante à fórmula (X1), e, a saída da fórmula (Result) ao indicador.

FACULDADE DE ENGENHARIA ELÉTRICA ENGENHARIA DE CONTROLE E AUTOMAÇÃO

INSTRUMENTAÇÃO INDUSTRIAL

Por fim, repita o processo, criando um novo indicador para a iluminância e uma nova fórmula, que relacione Rk e a iluminância (fórmula 3).

Obs: Em Configure fórmula o botão "**" é usado para elevar um número a outro.

Passo 6: Teste o programa, e, uma vez bemsucedido, implemente novas funções como: filtros, estruturas de controle, novos indicadores, etc.

RELATÓRIO

- Nome dos integrantes com número de matrícula
- Objetivo(s)
- Materiais e equipamentos
- Resultados
 - o Tabelas preenchidas
 - o Demonstração Matemática.
 - Calcule e prove a relação de saída de lux, com a variação da tensão lida pelo labview. Faça um gráfico de Lux X Vout
 - o Gráfico 1
 - Avalie o ganho em relação à variação de "X" para diferentes valores de $k=\frac{R_{ref}}{R_0}$. Calcule e compare com os valores nominais dos componentes e analise se vo esta no melhor ponto de operação. Se não estiver informe o melhor?
 - o Gráfico 2
 - Avalie a sensibilidade em relação à variação de "X" para diferentes valores de $k=\frac{R_{ref}}{R_0}$. Calcule e compare com os valores nominais dos componentes e analise se vc está no melhor ponto de operação. Se não estiver informe o melhor?
- Conclusão
- Cite (geral)
 - o Um ponto positivo e um negativo