User Manual

G204 – 3U CompactPCI® Serial M-ModuleTM Carrier Board

G204 – 3U CompactPCI® Serial M-Module™ Carrier Board

The G204 is a 3U M-ModuleTM carrier board for universal I/O on the CompactPCI® Serial bus. It allows high flexibility in applications such as data acquisition or process control.

One M-ModuleTM may be installed on the G204, which needs only one slot on the CompactPCI® Serial bus. M-ModulesTM are screwed tightly on the board and require no separately mounted transition panel.

The G204 offers developers instant access to more than 70 different M-Modules[™] for I/O in fields such as process I/O, measurement, instrumentation, motion control, communication, and development.

Diagram

Technical Data

M-Module™ Slots

- One M-ModuleTM slot
- Compliant with M-ModuleTM standard
- Characteristics: A08, A24, D08, D16, D32, INTA, TRIGI, TRIGO

Peripheral Connections

· Via front panel

CompactPCI® Serial

- Compliance with CompactPCI® Serial PICMG CPCI-S.0 Specification
- · Peripheral slot
- 32-bit/33-MHz PCIe®-to-M-ModuleTM bridge
 - FPGA-based
 - Target on PCIe® bus

Electrical Specifications

- Supply voltage/power consumption:
 - +12 V (-5%/+5%), 100 mA typ. (without M-ModuleTM)

Mechanical Specifications

- Dimensions: conforming to CompactPCI® Serial specification for 3U boards
- Front panel: 4HP with ejector, cut-out for front connector of M-ModuleTM
- Weight: approx. 130 g (without M-ModulesTM)

Environmental Specifications

- Temperature range (operation):
 - -40..+85°C (qualified components)
 - Airflow: min. 1.0 m/s
- Temperature range (storage): -40..+85°C
- Relative humidity (operation): max. 95% non-condensing
- Relative humidity (storage): max. 95% non-condensing
- Altitude: -300 m to +3000 m
- Shock: 50 m/s², 30 ms (EN 61373)
- Vibration (function): 1 m/s², 5 Hz 150 Hz (EN 61373)
- Vibration (lifetime): 7.9 m/s², 5 Hz 150 Hz (EN 61373)
- Conformal coating on request

MTBF

• 2 177 300 h @ 40°C according to IEC/TR 62380 (RDF 2000)

Safety

- Flammability
 - PCB manufactured with a flammability rating of 94V-0 by UL recognized manufacturers

EMC Conformity

- EN 55022 (radio disturbance)
- IEC 61000-4-2 (ESD)
- IEC 61000-4-3 (electromagnetic field immunity)
- IEC 61000-4-6 (conducted disturbances)

Software Support

- M-Module TM drivers for Windows $\mathbb B$, VxWorks $\mathbb B$, Linux, QNX $\mathbb B$, OS-9 $\mathbb B$ as supported
- Basic board driver included in MDISTM system package for the respective operating system

• For more information on supported operating system versions and drivers see online data sheet.

Configuration Options

Cooling Concept

• Also available with conduction cooling in MEN CCA frame

Please note that some of these options may only be available for large volumes. Please ask our sales staff for more information.

For available standard configurations see online data sheet.

Product Safety

Electrostatic Discharge (ESD)

Computer boards and components contain electrostatic sensitive devices. Electrostatic discharge (ESD) can damage components. To protect the board and other components against damage from static electricity, you should follow some precautions whenever you work on your computer.

- Power down and unplug your computer system when working on the inside.
- Hold components by the edges and try not to touch the IC chips, leads, or circuitry.
- Use a grounded wrist strap before handling computer components.
- Place components on a grounded antistatic pad or on the bag that came with the component whenever the components are separated from the system.
- Store the board only in its original ESD-protected packaging. Retain the original packaging in case you need to return the board to MEN for repair.

About this Document

This user manual is intended only for system developers and integrators, it is not intended for end users.

It describes the hardware functions of the board, connection of peripheral devices and integration into a system. It also provides additional information for special applications and configurations of the board.

The manual does not include detailed information on individual components (data sheets etc.). A list of literature is given in the appendix.

History

Issue	Comments	Date
E1	First issue	2013-11-28

Conventions

This sign marks important notes or warnings concerning the use of voltages which can lead to serious damage to your health and also cause damage or destruction of the component.

This sign marks important notes or warnings concerning proper functionality of the product described in this document. You should read them in any case.

italics

Folder, file and function names are printed in italics.

bold

Bold type is used for emphasis.

monospace

A monospaced font type is used for hexadecimal numbers, listings, C function descriptions or wherever appropriate. Hexadecimal numbers are preceded by "0x".

comment

Comments embedded into coding examples are shown in green color.

hyperlink

Hyperlinks are printed in blue color.

The globe will show you where hyperlinks lead directly to the Internet, so you can look for the latest information online.

IRQ# /IRQ Signal names followed by "#" or preceded by a slash ("/") indicate that this signal is either active low or that it becomes active at a falling edge.

in/out

Signal directions in signal mnemonics tables generally refer to the corresponding board or component, "in" meaning "to the board or component", "out" meaning "coming from it".

Vertical lines on the outer margin signal technical changes to the previous issue of the document.

Legal Information

Changes

MEN Mikro Elektronik GmbH ("MEN") reserves the right to make changes without further notice to any products herein.

Warranty, Guarantee, Liability

MEN makes no warranty, representation or guarantee of any kind regarding the suitability of its products for any particular purpose, nor does MEN assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including, without limitation, consequential or incidental damages. TO THE EXTENT APPLICABLE, SPECIFICALLY EXCLUDED ARE ANY IMPLIED WARRANTIES ARISING BY OPERATION OF LAW, CUSTOM OR USAGE, INCLUDING WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE OR USE. In no event shall MEN be liable for more than the contract price for the products in question. If buyer does not notify MEN in writing within the foregoing warranty period, MEN shall have no liability or obligation to buyer hereunder.

The publication is provided on the terms and understanding that:

- 1. MEN is not responsible for the results of any actions taken on the basis of information in the publication, nor for any error in or omission from the publication; and
- 2. MEN is not engaged in rendering technical or other advice or services.

MEN expressly disclaims all and any liability and responsibility to any person, whether a reader of the publication or not, in respect of anything, and of the consequences of anything, done or omitted to be done by any such person in reliance, whether wholly or partially, on the whole or any part of the contents of the publication.

Conditions for Use, Field of Application

The correct function of MEN products in mission-critical and life-critical applications is limited to the environmental specification given for each product in the technical user manual. The correct function of MEN products under extended environmental conditions is limited to the individual requirement specification and subsequent validation documents for each product for the applicable use case and has to be agreed upon in writing by MEN and the customer. Should the customer purchase or use MEN products for any unintended or unauthorized application, the customer shall indemnify and hold MEN and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim or personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that MEN was negligent regarding the design or manufacture of the part. In no case is MEN liable for the correct function of the technical installation where MEN products are a part of.

Trademarks

All products or services mentioned in this publication are identified by the trademarks, service marks, or product names as designated by the companies which market those products. The trademarks and registered trademarks are held by the companies producing them. Inquiries concerning such trademarks should be made directly to those companies.

Conformity

MEN products are no ready-made products for end users. They are tested according to the standards given in the Technical Data and thus enable you to achieve certification of the product according to the standards applicable in your field of application.

RoHS

Since July 1, 2006 all MEN standard products comply with RoHS legislation.

Since January 2005 the SMD and manual soldering processes at MEN have already been completely lead-free. Between June 2004 and June 30, 2006 MEN's selected component suppliers have changed delivery to RoHS-compliant parts. During this period any change and status was traceable through the MEN ERP system and the boards gradually became RoHS-compliant.

WEEE Application

The WEEE directive does not apply to fixed industrial plants and tools. The compliance is the responsibility of the company which puts the product on the market, as defined in the directive; components and sub-assemblies are not subject to product compliance.

In other words: Since MEN does not deliver ready-made products to end users, the WEEE directive is not applicable for MEN. Users are nevertheless recommended to properly recycle all electronic boards which have passed their life cycle.

Nevertheless, MEN is registered as a manufacturer in Germany. The registration number can be provided on request.

Copyright © 2013 MEN Mikro Elektronik GmbH. All rights reserved.

Germany
MEN Mikro Elektronik GmbH
Neuwieder Straße 3-7
90411 Nuremberg
Phone +49-911-99 33 5-0
Fax +49-911-99 33 5-901
E-mail info@men.de
www.men.de

France
MEN Mikro Elektronik SA
18, rue René Cassin
ZA de la Châtelaine
74240 Gaillard
Phone +33 (0) 450-955-312
Fax +33 (0) 450-955-211
E-mail info@men-france.fr
www.men-france.fr

USA
MEN Micro Inc.
860 Penllyn Blue Bell Pike
Blue Bell, PA 19422
Phone (215) 542-9575
Fax (215) 542-9577
E-mail sales@menmicro.com
www.menmicro.com

Contents

1	Getting	g Started	12
	1.1	Map of the Board	12
	1.2	Integrating the Board into a System	13
	1.3	Installing Driver Software	14
2	Functi	onal Description	15
	2.1	Power Supply	15
	2.2	M-Module Interface	15
		2.2.1 M-Module Connector	15
		2.2.2 Installing an M-Module	17
		2.2.3 Configuring the M-Module Interface	19
	2.3	Using Triggers	20
	2.4	CompactPCI Serial Interface	
3	Organi	ization of the Board	24
	3.1	PCIe Configuration Registers	24
		3.1.1 Address Map	24
	3.2	M-Module Slot Address Spaces	27
4	Appen	dix	28
	4.1	PCI Configuration	28
	4.2	Literature and Web Resources	28
	4.3	Finding out the Product's Article Number, Revision and	
		Serial Number	28

Figures

Figure 1.	Map of the board – top view	12
Figure 2.	Map of the board – front panel	13
Figure 3.	Trigger routing	20
Figure 4.	Trigger routing – examples	21
Figure 5.	Labels giving the product's article number, revision and	
	serial number	28
Tables		
Table 1.	Pin assignment of the 60-pin plug connectors	16
Table 2.	Signal mnemonics of the M-Module connector	16
Table 3.	Pin assignment of CompactPCI Serial P1 connector	23
TD-1-1- 4		
Table 4.	PCI configuration registers	24

1 Getting Started

This chapter gives an overview of the board and some hints for first installation in a system.

1.1 Map of the Board

Figure 1. Map of the board - top view

Figure 2. Map of the board - front panel

1.2 Integrating the Board into a System

You can use the following check list when installing the board in a system for the first time and with minimum configuration.

- ☑ Power down the system.
- ☑ Install an M-Module on the G204 as described in Chapter 2.2.2 Installing an M-Module on page 17.
- ☑ Insert the G204 into a peripheral slot of your CompactPCI system, making sure that the CompactPCI connectors are properly aligned.

Note: The peripheral slots of every CompactPCI Serial system are marked by a circle with a plus sign behind it \diamondsuit on the backplane and/or at the front panel.

- ☑ Power up the system.
- ☑ You can now install driver software for the G204 and M-Modules.

1.3 Installing Driver Software

For a detailed description on how to install driver software please refer to the respective documentation.

You can find any driver software available for download on the G204 pages on MEN's website.

2 Functional Description

2.1 Power Supply

The G204 is supplied with +12V (-5%/+5%) via CompactPCI Serial connector P1.

2.2 M-Module Interface

The M-Module interfaces of the G204 comply with the M-Module specification. They support the following M-Module characteristics: A08, A24, D08, D16, D32, INTA, TRIGI, TRIGO.

Note: The G204 supports burst mode for PCIe; the M-Module interface, however, does not support burst mode.

2.2.1 M-Module Connector

Connector types:

• 60-pin plug, 2.54 mm pitch, square pins \varnothing 0.635 mm gold

Mating connector:

• 60-pin receptacle, high-precision, 2.54 mm pitch, for square pins \varnothing 0.635 mm gold, 6.9 mm height

Table 1. Pin assignment of the 60-pin plug connectors

		Α	В	С
	1	/CSx	GND	/AS
	2	A01	+5V	D16
A D C	3	A02	+12V	D17
A B C	4	A03	-12V	D18
0 0 0	5	A04	GND	D19
0 0 0	6	A05	/DREQ	D20
0 0 0	7	A06	/DACK	D21
0 0 0	8	A07	GND	D22
0 0 0	9	D08	D00	TRIGA
0 0 0	10	D09	D01	TRIGB
0 0 0	11	D10	D02	D23
0 0 0	12	D11	D03	D24
0 0 0	13	D12	D04	D25
0 0 0	14	D13	D05	D26
0 0 0	15	D14	D06	D27
0 0 0	16	D15	D07	D28
0 0 0	17	/DS1	/DS0	D29
20 🗆 🗆	18	/DTACK	/WRITE	D30
	19	/IACK	/IRQ	D31
	20	/RESET	SYSCLK	/DS2

Table 2. Signal mnemonics of the M-Module connector

Name	Direction	Function
D00D31	in/out	Data bus
A01A07	out	Address bus
/WRITE	out	Write enable
/CS	out	M-Module chip select
/DTACK	in	Data transfer acknowledge
/AS	out	Address strobe
/DS02	out	Data strobe
/RESET	out	M-Module reset
/IRQ	in	Interrupt request
/IACK	out	Interrupt acknowledge
/DREQ	in	DMA request
/DACK	out	DMA acknowledge
SYSCLK	out	16-MHz clock
GND	-	Logical reference signal
+5V, +12V, -12V	out	Power supplies
TRIGA, TRIGB	in/out	Trigger inputs/outputs

2.2.2 Installing an M-Module

Perform the following steps to install an M-Module:

☑ Loosen the two mounting screws of the D-Sub front panel (see picture below) and remove the whole D-Sub front panel.

☑ If the M-Module has a plastic cover, remove the cover from the M-Module before installing the M-Module on the G204. For removing the cover, unscrew the four screws as marked in the picture below.

- ☑ After removing the cover, the M-Module mounting standoffs have to be mounted to the M-Module again using the four screws marked in the picture above.
- ☑ Hold the M-Module over the target slot of the G204 with the component sides facing each other.

- ☑ Insert the front connector of the M-Module into the cut-out of the G204 front panel.
- ☑ Align the 60-pin connectors of the M-Module and the G204.
- ☑ Press the M-Module carefully but firmly on the G204, making sure that the connectors are properly linked (see picture below).

- ☑ Turn the G204 upside down and use four M-Module mounting screws (M3x6 cross-recess pan-head screws) to fasten the M-Module on the solder side of the G204.
- ☑ Re-install the D-Sub front panel of the G204.

Note: You can order suitable mounting screws from MEN, see MEN's website. In any case, use only the screw types specified above!

2.2.3 Configuring the M-Module Interface

M-Module Control/Status Register (read/write)

3118					
-			GIEN	GIRQ	
154	3	2	1	0	
-	TOUT	-	IEN	IRQ	

GIEN Global interrupt enable bit (common to all M-Modules)

0 = Disable interrupt1 = Enable interrupt

GIRQ Global interrupt pending (common to all M-Modules) (read-only)

1 = Interrupt pending

TOUT Timeout

1 = Timeout occurred. Write 1 to clear.

IEN Interrupt enable bit

0 = Disable interrupt

1 = Enable interrupt

IRQ Interrupt pending (read-only)

1 = Interrupt pending

2.3 **Using Triggers**

Figure 3. Trigger routing

There are 8 internal trigger lines, the "internal trigger bus".

Every M-Module trigger line (TRIGA/TRIGB) can be driven by and can drive every internal trigger line. If there is more than one source for an internal trigger, all connected sources are ORed.

There is one Trigger Source Register (read/write) and one Trigger Destination Register (read/write). Bits 31..16 of the Trigger Source and Trigger Destination Registers are global.

The maximum propagation delay between a trigger source and trigger destination amounts to 25 ns.

Internal Trigger Bus

Figure 4. Trigger routing - examples

Trigger Source Register (read/write)

3124	2316
-	Reserved
158	70
M-Module Source TRIGB 70	M-Module Source TRIGA 70

M-Module Source TRIGB

1 = Trigger input *TRIGB* is connected to the corresponding internal trigger line 7..0.

M-Module Source TRIGA

1 = Trigger input *TRIGA* is connected to the corresponding internal trigger line 7..0.

Trigger Destination Register (read/write)

3124	2316
-	Reserved
158	70
M-Module Destination TRIGB 70	M-Module Destination TRIGA 70

M-Module Destination TRIGB 1 = The corresponding internal trigger line is connected to TRIGB. This TRIGB line becomes an output and no longer an input line.

M-Module Destination TRIGA 1 = The corresponding internal trigger line is connected to TRIGA. This TRIGA line becomes an output and no longer an input line.

Note: It is not forbidden but may make no sense to activate a trigger line as an output and use this line as an input as well. Take care not to cause loops! Using TRIGA as an input connected to internal line 0 and activating TRIGA as an output as well might cause heavy oscillation or any other non-deterministic behavior.

2.4 CompactPCI Serial Interface

The G204 uses one PCI Express x4 link at the backplane according to the CompactPCI Serial specification (PICMG CPCI-S.0).

For a detailed description of the signals please refer to the CompactPCI Serial specification.

Connector type of P1:

• 72-pin Airmax VS 4 pair, right angle header, 6 IMLA with end walls

Table 3. Pin assignment of CompactPCI Serial P1 connector

PE_ Rx03-	PE_ Rx03+	GND	PE_ Tx03-	PE_ Tx03+	GND	PE_ Rx02-	PE_ Rx02+	GND	PE_ Tx02-	PE_ Tx02+	GND	6
GND	PE_ Rx01-	PE_ Rx01+	GND	PE_ Tx01-	PE_ Tx01+	GND	PE_ Rx00-	PE_ Rx00+	GND	PE_ Tx00-	PE_ Tx00+	5
1_SATA_ Rx-	1_SATA_ Rx+	GND	1_SATA_ Tx-	1_SATA _Tx+	GND	PE_ REFCLK-	PE_ REFCLK+	GND	1_USB2-	1_USB2 +	GND	4
GA3	SATA_ SL	SATA_ SCL	GA2	SATA_ SDO	SATA_ SDI	GA1	1_USB3_ Rx-	1_USB3_ Rx+	GA0	1_USB3 _Tx-	1_USB3 _Tx+	3
SYSEN#	PCIE_ EN#	GND	PE_ WAKE#	RST_ IN#	GND	Reserved	Reserved	GND	IPMB_ SDA	IPMB_ SCL	GND	2
GND	+12V	+12V	GND	+12V	+12V	GND	+12V	+12V	GND	STNDBY	+12V	1
L	K	J	I	Н	G	F	E	D	С	В	Α	

Note: The signals in gray font are specified in the CompactPCI Serial specification but not supported on this board.

3 Organization of the Board

The G204 complies with PCIe specification 3.0, except for the FPGA booting time, which is 400 ms on the G204.

All resources requested by the G204 are mapped through the PCIe configuration space. For a detailed description of the PCIe configuration space, please refer to the PCIe specification.

3.1 PCle Configuration Registers

3.1.1 Address Map

The following register map is shown for reference only.

Table 4. PCIe configuration registers

Address	D31D24	D23D16	D15D8	D7D0		
0x00	Device ID (0x203D)	Device ID (0x203D) Vendor ID (0x				
0x04	Status (0x0400) Command (0x0007)					
0x08	Class Code (0x0680	00)		Revision ID (0x4)		
0x0C	BIST (0x00)	Header Type (0x00)	Latency Timer (0x00)	Cache Line Size		
0x10	PCI Base Address 0 (BAR0) for Memory Ma	pped FPGA Registers			
0x14	PCI Base Address 1 ((BAR1) for Memory Ma	apped FPGA Registers			
0x18	PCI Base Address 2 -	— Not used				
0x1C	PCI Base Address 3 -	— Not used				
0x20	PCI Base Address 4 -	— Not used				
0x24	PCI Base Address 5 -	— Not used				
0x28	Reserved					
0x2C	Subsystem ID (0x5A9	91)	Subsystem Vendor ID	(0x00B9)		
0x30	Expansion ROM Reg	ister — Not used				
0x34	Reserved			Capabilities Pointer		
0x38	Reserved					
0x3C	Max_Lat (0x00)	Min_Gnt (0x00)	Interrupt Pin (0x01)	Interrupt Line		
0x40 - 0x4C	Reserved					
0x50	Message Control (MSI) Next Capabilities Pointer Capability ID					
0x54	Message Address					
0x58	Message Upper Address — Not used					
0x5C	Reserved Message Data					
0x68 - 0x70	Not used					

Address	D31D24	D23D16	D15D8	D7D0		
0x70 - 0x74	Reserved					
0x78	Power Management (Capabilities Register	Next Capabilities Pointer	Capability ID		
0x7C	Data	Power Management Control/Status Bridge Extensions	Power Management	Status and Control		
0x80	PCIe Capabilities Reg	gister	Next Capabilities Pointer	PCIe Capability ID		
0x84	Device Capabilities			•		
0x88	Device Status		Device Control			
0x8C	Link Capabilities					
0x90	Link Status		Link Control			
0x94	Slot Capabilities					
0x98	Slot Status		Slot Control			
0x9C - 0xB8	Not used					
0xBC - 0xFC	Reserved					
0x094 - 0x0FF	Not used					
0x100 - 0x16C	Virtual Channel Capa	bility Structure				
0x170 - 0x17C	Reserved					
0x180 - 0x1FC	Virtual Channel Arbiti	ration Table				
0x200 - 0x23C	Port VC0 Arbitration 7	able — Reserved				
0x240 - 0x27C	Port VC1 Arbitration 7	able — Reserved				
0x280 - 0x2BC	Port VC2 Arbitration 7	able — Reserved				
0x2C0 - 0x2FC	Port VC3 Arbitration Table — Reserved					
0x300 - 0x33C	Port VC4 Arbitration 7	able — Reserved				
0x340 - 0x37C	Port VC5 Arbitration 7	able — Reserved				
0x380 - 0x3BC	Port VC6 Arbitration	Table — Reserved				

Address	D31D24	D23D16	D15D8	D7D0				
0x3C0 - 0x3FC	Port VC7 Arbitration T	able — Reserved						
0x400 - 0x7FC	Reserved	Reserved						
0x800 - 0x834	PCIe Enhanced Capa	bility Header						
0x804	Uncorrectable Error S	tatus Register						
0x808	Uncorrectable Error M	lask Register						
0x80C	Uncorrectable Error S	everity Register						
0x810	Correctable Error Stat	tus Register						
0x814	Correctable Error Mas	sk Register						
0x818	Advanced Error Capa	bilities and Control Re	gister					
0x81C	Header Log Register							
0x82C - 0x830	Not used							
0x834	Error Source Identifica	ation Register	Correctable Error Sou	rce ID Register				
0x838 - 0xFFF	Reserved							

3.2 M-Module Slot Address Spaces

The G204 uses a 32-MB address space. It provides the whole address space of the M-Module for A24 access as well as for A8 access (see also Chapter 2.2 M-Module Interface on page 15). The base address within the PCIe address space is set by the corresponding base address registers in the PCIe configuration space. The G204 address spaces is divided into five distinct areas:

- One area for A24/D32 access cycles
- One area for A24/D16 access cycles
- One area for A08/D32 access cycles
- One area for A08/D16 access cycles
- One area for accesses to additional control registers

Table 5. M-Module address map

Offset Address Range	Function
0x0000 0000 - 0x00FF FFFF	M-Module access 24-bit address width and 32-bit data width
0x0100 0000 - 0x01FF FCFF	M-Module access 24-bit address width and 16-bit data width
0x01FF FD00 - 0x01FF FDFF	M-Module access 8-bit address width and 32-bit data width
0x01FF FE00 - 0x01FF FEFF	M-Module access 8-bit address width and 16-bit data width
0x01FF FF00 - 0x01FF FF03	IACK Register
0x01FF FF04 - 0x01FF FF07	Control/Status Register
0x01FF FF08 - 0x01FF FF0B	Trigger Source Register
0x01FF FF0C - 0x01FF FF0F	Trigger Destination Register

4 Appendix

4.1 PCI Configuration

The G204 has the following IDs on the PCI bus:

• PCI Device ID: 0x203D

• PCI Vendor ID: 0x1172

• Subsystem Device ID: 0x5A91

• Subsystem Vendor ID: 0x00B9

4.2 Literature and Web Resources

- G204 data sheet with up-to-date information and documentation: www.men.de/products/02G204-.html
- M-Module Standard: ANSI/VITA 12-1996, M-Module Specification; VMEbus International Trade Association www.vita.com
- PCI Special Interest Group www.pcisig.com
- CompactPCI Serial Specification PICMG CPCI-S.0 Revision 1.0: 2011; PCI Industrial Computers Manufacturers Group (PICMG) www.picmg.org
- Introduction to CompactPCI Serial on Wikipedia: en.wikipedia.org/wiki/CompactPCI_Serial

4.3 Finding out the Product's Article Number, Revision and Serial Number

MEN user documentation may describe several different models and/or design revisions of the G204. You can find information on the article number, the design revision and the serial number on a label attached to the board.

- **Article number:** Gives the product's family and model. This is also MEN's ordering number. To be complete it must have 9 characters.
- **Revision number:** Gives the design revision of the product.
- **Serial number:** Unique identification assigned during production.

If you need support, you should communicate these numbers to MEN.

Figure 5. Labels giving the product's article number, revision and serial number

