Ingeniørhøjskolen Århus

DISCRETE MATHMATICS

Hand in 4

Written by:

Nicolai GLUD Studienummer: 11102 Johnny Kristensen Studienummer: 10734

Problems

1 Which of the following sets are well-ordered? (Why/why not?)

- a. $S = x \in \mathbb{Q} : x \ge -10$
- b. S = -2, -1, 0, 1, 2
- c. $S = x \in \mathbb{Q} : -1 \le x \le 1$
- d. S = p: pisprime = 2, 3, 5, 7, 9, 11, 13, ...

First we look at the definition:

A set is well-ordered if every nonempty subset has a least element.

Then we look at the sets:

- a. S is not well-ordered set because we can make a subset that doesn't contain a least element. e.g. x > -10.
- b. S is a well-ordered set because we can always produce a least element from the subsets of S.
- c. S is not a well-ordered set because we can make a subset that doesn't contain a least element. e.g. $0 < x \le 1$.
- d. S is a well-ordered set because we can always produce a least element from the subsets of S.

2 Use mathematical induction to prove that $1 + 5 + 9 + ... + (4n - 3) = 2n^2 - n$ for every positive integer n.

We have $n \in \mathbb{Z}^+$.

We start by establishing the base case:

$$(4n-3) = 2n^2 - n \Rightarrow (4*1-3) = 2*1^2 - 1 \Rightarrow 1 = 1$$
 (1)

 $p(k) \Rightarrow p(k+1)$ Assume p(k)

$$p(k+1) \equiv p(k) + (4n-3) \equiv 2k^2 - k + (4(k+1)-3)$$

$$2k^2 - k + 4k + 1 \tag{2}$$

$$2k^2 - k + 4k + 1 + 1 - 1 \tag{3}$$

$$2k^2 + 4k + 2 - k - 1 \tag{4}$$

$$2(k^2 + 2k + 1) - (k+1) \tag{5}$$

$$2(k^2 + 2k + 1) - (k+1) \tag{6}$$

$$2(k+1)^2 - (k+1) \tag{7}$$

We see that his is our assumption for k + 1

3 Prove that $2^n > n^3$ for every integer $n \ge 10$

Note: you will need to really work with inequalities. Assume m such that $2^n \le n^3$ Initial: $2^{10} = 1024 > 1000 = 10^3$ m must be bigger than 10. m = k + 1 where $10 \le k < m$ $2^k > k^3$ $2^m = 2^{k+1}$ $= 2 * 2^k$ $> 2 * k^3$ because $2^k > k^3$ $= k^3 + k^3$ $\ge k^3 + 10k^2$ because $10 \le k$ $= k^3 + 3k^2 + 7k^2$ $> k^3 + 3k^2 + 3k + 4k^2$ because $3k^2 > 3k$ $> k^3 + 3k^2 + 3k + 1$ because $4k^2 > 1$ $= (k+1)^3$ $= m^3$

Which is a contradiction!

This proves that $2^n > n^3$ for every integer $n \ge 10$

4 Use the method for minimum counterexample to prove that $3|(2^{2n}-1)$ for every positive integer n.

Base case: $p(1) = 2^{2*1} - 1 = 3$ so True. Assume: $p(k) = 2^{2k} - 1 = 3m$ where m is an integer.

$$\begin{aligned} p(k+1) &= 2^{2(k+1)} - 1 \\ &= 2^{2k+2} - 1 \\ &= 2 * 2 * 2^{2k} - 1 \\ &= 4 * 2^{2k} - 1 \\ &= 4 * 2^{2k} - 1 + 4 - 4 \\ &= 4 * 2^{2k} - 1 + 4 - 4 \\ &= 4 * 2^{2k} + 3 - 4 \\ &= 4 * (2^{2k} - 1) + 3 \\ &= 4 * (3M) + 3 \\ &= 3 * (4M+1) \end{aligned}$$
 Which is divisable by 3.

so p(n) is always divisable by 3 for all $n \in \mathbb{Z}^+$

5 Use the Strong Principle of Mathmatical Induction to prove the following:

Let $S = i \in \mathbb{Z}$: $i \ge 2$ and let P be a subset of S with the properties that $2, 3 \in P$ and if $n \in S$, then either $n \in P$ or n = ab, where $a, b \in S$. Then every element of S either belongs to P or it can be expressed as a product of elements of P.

Note: read Theorem 11.17, though the proof of 11.17 is not the proof of this question.

6 Use the Strong Principle of Mathematical Induction to prove that for each integer $n \ge 12$, there are non-negative integers a and b such that n = 3a + 7b.

Note: this uses generalized strong induction and minimum counterexamples.