$$E_{1}(x) = 6x + 1.(1-x)$$

= $6x + 1-x$
= $5x + 1$

$$F_{2}(x) = 5x + 2(1-x)$$

= $5x + 2. - 2x$
= $3x + 2$

$$E_3(x) = 2x + 6(1-x)$$

= 2x + 6-6x
= 6-4x

$$E_{y}(x) = 3x + 3(1-x)$$

= $3x + 3 - 3x$
= 3

Two points on $E_1(x)$ are (0,1) and (1,6)Two points on $E_2(x)$ are (0,2) and (1,5)Two points on $E_3(x)$ are (0,6) and (1,2)Two points on $E_4(x)$ are (0,3) and (1,3)

For De have no such that, E3 (20) = Ey (20) => 6-4%=3 \Rightarrow - $4x_0 = -3$ => 360 = 3 4 Hence the optimal strategy player-A is 07 X = (3/4) $X = \left(\frac{2}{5}, \frac{3}{5}\right)$

The value of the game is. $v = 5 \times 6 + 1$ $v = 5 \times 6 + 1 = 3$

If we look at the graph
the x-value at P is $\frac{2}{5}$ and
the x-value at $\frac{2}{5}$ is $\frac{3}{4}$.

Plager - A has an infinite number
of optimal strategies (x, 1-x)where x varies from $\frac{2}{5}$ to $\frac{3}{4}$

optimal strategy for player - B.

To get the optimal strategy for player - B solve either

For B, By For B, By

A, 6 3 A, 2 3

A2 1 3 A2 6 3 W

Example: Solve the following game.

By B2B3 B4

A1 [-1 3 2 2]

A2 6 2 5 3

$$E_{1}(x) = -x + 6(1-x)$$

= - x + 6 - 6 x
= 6 - 7 x

$$E_3(x) = 5 - 3x$$

Ey (x) =
$$3 - x$$
.

Two points on $E_{1}(n)$ are (0,6) and (1,-1) $E_{2}(n)$ are (0,2) and (1,3) $E_{3}(n)$ are (0,5) and (1,2) $E_{4}(n)$ are (0,3) and (1,2)

we have to such that

E2(36)=E4(36)

$$= 5 \times 20 = 5 \times 20 =$$

The optimal strategy for player A is (\frac{1}{2}, \frac{1}{2})
and the value of the game is,
$v = 6 - 7 x_0$
$= 6 - 7 \cdot \frac{1}{2}$ $= \frac{12-7}{2} = \frac{5}{2} = 2.5$
Now we need to find an optimal
Mow we need to the and
Try all posseble sub matrices
H_{2} H_{2} H_{3} H_{4} H_{4}
A1 (3) (2) A1 (-1) 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Jalua of
the gan
is 31/
. /

Dominance

oThis is used to remove unnecessary columns and for rows that have no effect in the obtimal solution.

o ne get a somaller sise instance

General rule for dominance

Let (aij) mxn bethe bay-off mataix.

i) If all the elements of K-th row are less than or equal to the corresponding elements of r-th row, then K-th row is called dominated by the r-th row and hence K-th row can be eleminated from the matrix A.

ii) If all elements of the l-th column are greaters than or equal to the corresponding elements of 8-th column, then l-th column is dominated by 8-th column and hence l-th column can be eleminated from the meetrix A.

Example

	BI	B2	B3	By	
1 A	-3	3	t	20	
	5	5	Ч	6	\
A3	-4	-2	0	6	

As its dominated by Az since all elements of Az are less than or equal to the corresponding elements of Az. Therefore the reduced matrix is, $\frac{B_1}{A_1} = \frac{B_2}{3} = \frac{B_3}{3} = \frac{B_4}{20}$ $\frac{A_1}{5} = \frac{B_2}{5} = \frac{B_3}{3} = \frac{B_4}{20}$ By is dominated by B3 Hence, the reduced matrix is. B2 is dominated by B3 The reduced matrix is, A1 -3 1 A2 5 4 is dominated by \$12

The reduced matrix is. B, is dominated by B3 The reduced matrix is The obtimal strategy for player - B 14 B3 The value of the game is 4.

dominance to reduce matrix. Az is deminated by Az A1 1 7 2 1 A1 6 2 7 B3 is Lominated by er further reduction possible.