Lògica en la Informàtica Deducció en Lògica de Primer Ordre (LPO)

José Miguel Rivero

Dept. Ciències de la Computació Universitat Politècnica de Catalunya (UPC)

Primavera 2025

Crèdits

El material utilitzat en aquesta presentació ha estat extret del elaborat pel professor Robert Nieuwenhuis (Dept. CS, UPC) per l'assignatura *Lògica en la Informàtica* de la FIB.

En particular, del llibre *Lógica para informáticos* - Farré, R. [et al.], Marcombo, 2011. ISBN: 9788426716941.

Lògica en la Informàtica

Temari

- 1. Introducció i motivació
- 2. Definició de Lògica Proposicional (LProp)
- 3. Deducció en Lògica Proposicional
- 4. Definició de Lògica de Primer Ordre (LPO)
- 5. Deducció en Lògica de Primer Ordre
- 6. Programació Lògica (Prolog)

Lògica en la Informàtica

Temari

- 1. Introducció i motivació
- 2. Definició de Lògica Proposicional (LProp)
- 3. Deducció en Lògica Proposicional
- 4. Definició de Lògica de Primer Ordre (LPO)
- 5. Deducció en Lògica de Primer Ordre
- 6. 🖙 Programació Lògica (Prolog)

Sumari

- ① Exercici 7 ["Tot drac està feliç..." (Schöning, Exercise 85)]
- 2 Examen final de 2017 tardor. Exercici 6
- 3 Examen final de 2020 tardor. Exercici 4
- 4 Examen final de 2020 tardor. Exercici 5
- 5 Examen final de 2020 tardor. Exercici 6

- 7. (Dificultat 3) (Schöning, Exercise 85) Formalitza els següents fets:
 - (a) "Tot drac està feliç si tots els seus fills poden volar"
 - (b) "Els dracs verds poden volar"
 - (c) "Un drac és verd si és fill d'almenys un drac verd"

Demostra per resolució que la conjunció de (a), (b) i (c) implica que:

(d) "Tots els dracs verds són feliços"

- 7. (Dificultat 3) (Schöning, Exercise 85) Formalitza els següents fets:
 - (a) "Tot drac està feliç si tots els seus fills poden volar"
 - (b) "Els dracs verds poden volar"
 - (c) "Un drac és verd si és fill d'almenys un drac verd"

Demostra per resolució que la conjunció de (a), (b) i (c) implica que:

(d) "Tots els dracs verds són feliços"

```
esfelic(x) \equiv "x \text{ \'es felic"}

fillde(x,y) \equiv "un fill de x \text{ \'es } y"

esverd(x) \equiv "x \text{ \'es verd"}

vola(x) \equiv "x \text{ pot volar"}
```

➤ Necessitem un predicat unari esdrac(x) ??? Funcionaria, però NO cal, podem assumir que tots l'elements del domini són dracs.

- 7. (Dificultat 3) (Schöning, Exercise 85) Formalitza els següents fets:
 - (a) "Tot drac està feliç si tots els seus fills poden volar"

```
esfelic(x) \equiv "x \text{ \'es felic"}

fillde(x,y) \equiv "un fill de x \text{ \'es } y"

esverd(x) \equiv "x \text{ \'es verd"}

vola(x) \equiv "x \text{ pot volar"}
```

- (a) "Tot drac està feliç si tots els seus fills poden volar"
- (a) $\forall x \ (\dots \to esfelic(x))$ on ... ha de dir que tots els fills de x poden volar: $\forall y \ (fillde(x,y) \to vola(y))$ I ens queda:
- (a) $\forall x \ (\forall y \ (fillde(x,y) \rightarrow vola(y)) \rightarrow esfelic(x))$

- 7. (Dificultat 3) (Schöning, Exercise 85) Formalitza els següents fets:
 - (b) "Els dracs verds poden volar"

```
esfelic(x) \equiv "x \text{ \'es felic"}

fillde(x,y) \equiv "un fill de x \text{ \'es } y"

esverd(x) \equiv "x \text{ \'es verd"}

vola(x) \equiv "x \text{ pot volar"}
```

- (b) "Els dracs verds poden volar"
- (b) $\forall x (esverd(x) \rightarrow vola(x))$

- 7. (Dificultat 3) (Schöning, Exercise 85) Formalitza els següents fets:
 - (c) "Un drac és verd si és fill d'almenys un drac verd"

```
esfelic(x) \equiv "x \text{ \'es felic"}

fillde(x,y) \equiv "un fill de x \text{ \'es } y"

esverd(x) \equiv "x \text{ \'es verd"}

vola(x) \equiv "x \text{ pot volar"}
```

- (c) "Un drac és verd si és fill d'almenys un drac verd"
- (c) $\forall x \ (\dots \rightarrow esverd(x) \)$ on ... ha de dir que x és fill de almenys un drac verd: $\exists y \ (fillde(y,x) \land esverd(y) \)$ I ens queda:
- (c) $\forall x \ (\exists y \ (fillde(y,x) \land esverd(y)) \rightarrow esverd(x))$

7. (Dificultat 3) (Schöning, Exercise 85) Formalitza els següents fets:

La conjunció de
$$(a)$$
, (b) i (c) implica (d) SSI $(a) \land (b) \land (c) \models (d)$ SSI $(a) \land (b) \land (c) \land \neg (d)$ INSAT SSI $S = \texttt{formaclausal}((a) \land (b) \land (c) \land \neg (d))$ INSAT SSI $\Box \in \textit{ResFact}(S)$

7. (Dificultat 3) (Schöning, Exercise 85) Formalitza els següents fets:

Passem tot a forma clausal:

- (d) "Tots els dracs verds són feliços"
- $(\neg d)$ "No tots els dracs verds són feliços"

$$(\neg d) \neg \forall x (verd(x) \rightarrow esfelic(x))$$
$$\neg \forall x (\neg verd(x) \lor esfelic(x))$$
$$\exists x (verd(x) \land \neg esfelic(x))$$

7. (Dificultat 3) (Schöning, Exercise 85) Formalitza els següents fets:

Passem tot a forma clausal:

(a) "Tot drac està feliç si tots els seus fills poden volar"

```
(a) \forall x \ ( \ \forall y \ ( \ fillde(x,y) \rightarrow vola(y) \ ) \rightarrow esfelic(x) \ )
\forall x \ ( \ \forall y \ ( \ fillde(x,y) \rightarrow vola(y) \ ) \rightarrow esfelic(x) \ )
\blacktriangleright eliminem les \rightarrow
\forall x \ ( \ \neg \forall y \ ( \ fillde(x,y) \rightarrow vola(y) \ ) \lor esfelic(x) \ )
\forall x \ ( \ \neg \forall y \ ( \ \neg fillde(x,y) \lor vola(y) \ ) \lor esfelic(x) \ )
\blacktriangleright moure les \neg
\forall x \ ( \ \exists y \ \neg ( \ \neg fillde(x,y) \lor vola(y) \ ) \lor esfelic(x) \ )
\blacktriangleright moure les \neg (de Morgan)
\forall x \ ( \ \exists y \ ( \ fillde(x,y) \land \neg vola(y) \ ) \lor esfelic(x) \ )
```


7. (Dificultat 3) (Schöning, Exercise 85) Formalitza els següents fets:

Passem tot a forma clausal:

(a) "Tot drac està feliç si tots els seus fills poden volar"

```
(a) [cont.] \forall x \ (\exists y \ (fillde(x,y) \land \neg vola(y)) \lor esfelic(x))

\forall x \ (\exists y \ (fillde(x,y) \land \neg vola(y)) \lor esfelic(x))

Skolemizar (eliminar el \exists)

\forall x \ ( \ (fillde(x,f_y(x)) \land \neg vola(f_y(x))) \lor esfelic(x))

A distributivitat (F \land G) \lor H) \Rightarrow (F \lor H) \land (G \lor H)

\forall x \ ( \ (fillde(x,f_y(x))) \land \neg vola(f_y(x)) \lor esfelic(x)) \land \neg vola(f_y(x)) \lor esfelic(x))
```

Això ens done dues clàusules:

(a1)
$$fillde(x, f_y(x)) \lor esfelic(x)$$

(a2)
$$\neg vola(f_y(x)) \lor esfelic(x)$$

7. (Dificultat 3) (Schöning, Exercise 85) Formalitza els següents fets:

Passem tot a forma clausal:

(b) "Els dracs verds poden volar"

```
(b) \forall x \ (esverd(x) \rightarrow vola(x))

\forall x \ (esverd(x) \rightarrow vola(x))

\blacktriangleright \ eliminem \ qles \rightarrow

\forall x \ (\neg \ esverd(x) \lor vola(x))
```

Això ens done una clàusula:

(b)
$$\neg esverd(x) \lor vola(x)$$

7. (Dificultat 3) (Schöning, Exercise 85) Formalitza els següents fets:

Passem tot a forma clausal:

(c) "Un drac és verd si és fill d'almenys un drac verd"

```
(c) \forall x \ (\exists y \ (\textit{fillde}(y, x) \land \textit{esverd}(y)) \rightarrow \textit{esverd}(x))

\forall x \ (\exists y \ (\textit{fillde}(y, x) \land \textit{esverd}(y)) \rightarrow \textit{esverd}(x))

\blacktriangleright \text{ eliminem les } \rightarrow

\forall x \ (\neg \exists y \ (\textit{fillde}(y, x) \land \textit{esverd}(y)) \lor \textit{esverd}(x))

\blacktriangleright \text{ moure les } \neg

\forall x \ (\forall y \ \neg \ (\textit{fillde}(y, x) \land \textit{esverd}(y)) \lor \textit{esverd}(x))

\blacktriangleright \text{ moure les } \neg \text{ amb de Morgan}

\forall x \ (\forall y \ (\neg \textit{fillde}(y, x) \lor \neg \textit{esverd}(y)) \lor \textit{esverd}(x))
```


7. (Dificultat 3) (Schöning, Exercise 85) Formalitza els següents fets:

Passem tot a forma clausal:

(c) "Un drac és verd si és fill d'almenys un drac verd"

(c) [cont.]
$$\forall x \ (\forall y \ (\neg fillde(y, x) \lor \neg esverd(y)) \lor esverd(x))$$

 $\forall x \ (\forall y \ (\neg fillde(y, x) \lor \neg esverd(y)) \lor esverd(x))$
 $\forall x \ \forall y \ (\neg fillde(y, x) \lor \neg esverd(y) \lor esverd(x))$

Això ens done una clàusula:

(c)
$$\neg$$
 fillde(y,x) $\lor \neg$ esverd(y) \lor esverd(x)

és com:

```
esverd(x) :- fillde(y,x), esverd(y).
esverd(x) \leftarrow fillde(y,x) \land esverd(y)
```


7. (Dificultat 3) (Schöning, Exercise 85) Formalitza els següents fets:

Passem tot a forma clausal:

 $(\neg d)$ "No tots els dracs verds són feliços"

$$(\neg d) \exists x \ (esverd(x) \land \neg esfelic(x))$$

$$\exists x \ (esverd(x) \land \neg esfelic(x))$$
> Skolem
$$esverd(c_x) \land \neg esfelic(c_x)$$

Això ens done dues clàusules:

$$(\neg d1)$$
 esverd (c_x)
 $(\neg d2)$ \neg esfeliç (c_x)

7. (Dificultat 3) (Schöning, Exercise 85) Formalitza els següents fets:

Juntem totes les clàusules:

- (a1) $fillde(x, f_y(x)) \lor esfelic(x)$
- (a2) $\neg vola(f_v(x)) \lor esfelic(x)$
 - (b) $\neg esverd(x) \lor vola(x)$
 - (c) $\neg fillde(y, x) \lor \neg esverd(y) \lor esverd(x)$
- $(\neg d1)$ esverd (c_x)
- $(\neg d2) \neg esfelic(c_x)$

Hem de fer resolució (i factorització, degut a que no és de Horn), i intentar obtenir \square :

7. (Dificultat 3) (Schöning, Exercise 85) Formalitza els següents fets:

```
fillde(x, f_{v}(x)) \vee esfelic(x)
 a2. \neg vola(f_v(x)) \lor esfelic(x)
   b. \neg esverd(x) \lor vola(x)
   c. \neg fillde(y, x) \lor \neg esverd(y) \lor esverd(x)
\neg d1. esverd(c_x)
\neg d2. \neg esfelic(c_x)
                                            amb:
                                                                  mgu:
                                           res d1. amb b. \{x = c_x\} \leftarrow (*)
   1. vola(c_x)
                                     res d2. amb a1. \{x=c_x\}
   2. fillde(c_x, f_v(c_x))
   3. \neg esverd(c_x) \lor esverd(f_v(c_x)) res 2. amb c. \{y = c_x, x = f_v(c_x)\}
   4. esverd(f_v(c_x))
                                           res 3. amb \neg d1. {}
   5. \neg vola(f_v(c_x))
                                       res a2. amb \neg d2. \{x = c_x\}
   6. \neg esverd(f_v(c_x))
                                           res 5. amb b. \{x = f_v(c_x)\}
   7.
                                            res 4. amb 6.
```

(*): Al final aquesta clàusula 1. no la fem servir per res!

7. (Dificultat 3) (Schöning, Exercise 85) Formalitza els següents fets:

```
a1. fillde(x, f_y(x)) \lor esfelic(x)
```

a2.
$$\neg vola(f_y(x)) \lor esfelic(x)$$

b.
$$\neg esverd(x) \lor vola(x)$$

c.
$$\neg fillde(y, x) \lor \neg esverd(y) \lor esverd(x)$$

- $\neg d1$. esverd(c_x)
- $\neg d2$. $\neg esfelic(c_x)$

Nota:

Hi ha altres formes d'obtenir \square .

6) Consider the following Prolog program and its well-known behaviour:

In Prolog, a list like [dog,lion,elephant] is in fact represented as a term f(dog,f(lion,f(elephant,emptylist))).

Therefore, we assume that the program also contains the standard clauses for member like this:

```
\label{eq:member} \begin{array}{ll} \texttt{member(} \ E, \ f(E,\_) \ ). \\ \texttt{member(} \ E, \ f(\_,L) \ ):- \ \texttt{member(} E,L) \, . \end{array}
```


6) Consider the following Prolog program and its well-known behaviour:

```
animals([dog,lion,elephant]).
bigger(lion,cat).
faster(lion,cat).
better(X,Y):- animals(L), member(X,L), bigger(X,Y), faster(X,Y).
member( E, f(E,_) ).
member( E, f(_,L) ):- member(E,L).
```

Express the program as a set of first-order clauses P and prove that $\exists u \exists v \ better(u, v)$ is a logical consequence of P. Which values did the variables u and v get (by unification) in your proof? **Only write the steps and values. No explanations.**

better(X,Y):= animals(L), member(X,L), bigger(X,Y), faster(X,Y). $better(X,Y) \leftarrow animals(L) \land member(X,L) \land bigger(X,Y) \land faster(X,Y)$

$$a \rightarrow b \equiv \neg a \lor b$$

 $better(X, Y) \lor \neg (animals(L) \land member(X, L) \land bigger(X, Y) \land faster(X, Y))$ $better(X, Y) \lor \neg animals(L) \lor \neg member(X, L) \lor \neg bigger(X, Y) \lor \neg faster(X, Y)$

Les clàusulas de P són les següents:

- animals(f(dog, f(lion, f(elephant, emptylist))))
- 2. bigger(lion, cat)
- 3. faster(lion, cat)
- 4. $better(X, Y) \lor \neg animals(L) \lor \neg member(X, L) \lor \neg bigger(X, Y) \lor \neg faster(X, Y)$
- 5. $member(E, f(E, _))$
- 6. $member(E, f(\underline{\ }, L)) \vee \neg member(E, L)$

La negació de $\exists u \, \exists v \, better(u, v)$ és:

```
\neg \exists u \, \exists v \, better(u, v)
```

$$\forall u \neg \exists v \ better(u, v)$$

$$\forall u \, \forall v \, \neg better(u, v)$$

que en forma clausal (ometent els $\forall u \forall v$) és:

7. $\neg better(u, v)$

Resolució en LPO:

$$\frac{A \lor C \qquad \neg B \lor D}{(C \lor D)\sigma}$$

A,B són àtoms si $\sigma = mgu(A,B)$ (most general unifier)

He d'obtenir la clàusula buida \Box mitjançant resolució a partir d'aquestes 7 clàusules.

- animals(f(dog, f(lion, f(elephant, emptylist))))
- bigger(lion, cat)
- 3. faster(lion, cat)
- 4. $better(X, Y) \lor \neg animals(L) \lor \neg member(X, L) \lor \neg bigger(X, Y) \lor \neg faster(X, Y)$
- 5. $member(E, f(E, _))$
- 6. $member(E, f(_, L)) \lor \neg member(E, L)$
- 7. $\neg better(u, v)$


```
    animals(f(dog, f(lion, f(elephant, emptylist))))

bigger(lion, cat)
faster(lion, cat)
4. better(X,Y) \lor \neg animals(L) \lor \neg member(X,L) \lor \neg bigger(X,Y) \lor \neg faster(X,Y)
5. member(E, f(E, \_))
6. member(E, f(\_, L)) \lor \neg member(E, L)
7. \neg better(u, v)
      res entre
                    mgu
         4+7 	 \{u = X, v = Y\}
                                                                        obtenim:
8. \neg animals(L) \lor \neg member(X, L) \lor \neg bigger(X, Y) \lor \neg faster(X, Y)
         1+8 {L = f(dog, f(lion, f(elephant, emptylist)))}
                                                                        obtenim:
9. \neg member(X, f(dog, f(lion, ...) \lor \neg bigger(X, Y) \lor \neg faster(X, Y))
         \{E = X, L = f(lion, f(elephant, emptylist))\}
                                                                        obtenim:
10. \neg member(X, f(lion, ...)) \lor \neg bigger(X, Y) \lor \neg faster(X, Y)
         5+10 {X = lion, E = lion, \_ = f(elephant, emptylist)}
                                                                        obtenim:
11. \neg bigger(lion, Y) \lor \neg faster(lion, Y)
        2+11 	 {Y = cat}
                                                                        obtenim:
12. \neg faster(lion, cat)
        3+12 {}
                                                                        obtenim:
13. □
```

. . .

```
7. \neg better(u, v)
      res entre
                    mgu
         4+7 	 \{u = X, v = Y\}
                                                                        obtenim:
8. \neg animals(L) \lor \neg member(X, L) \lor \neg bigger(X, Y) \lor \neg faster(X, Y)
         1+8 {L = f(dog, f(lion, f(elephant, emptylist)))}
                                                                        obtenim:
9. \neg member(X, f(dog, f(lion, ...) \lor \neg bigger(X, Y) \lor \neg faster(X, Y))
         \{E = X, L = f(lion, f(elephant, emptylist))\}
                                                                        obtenim:
10. \neg member(X, f(lion, ...)) \lor \neg bigger(X, Y) \lor \neg faster(X, Y)
         \{X = lion, E = lion, \_ = f(elephant, emptylist)\}
                                                                        obtenim:
11. \neg bigger(lion, Y) \lor \neg faster(lion, Y)
        2+11 	 \{Y = cat\}
                                                                        obtenim:
12. \neg faster(lion, cat)
        3+12 {}
                                                                        obtenim:
13. □
    u = X = lion
    v = Y = cat
```

Hem vist que no sols hem demostrat que $P \models \exists u \, \exists v \, better(u, v)$, sinó que fins i tot hem calculat dos valors concrets d'u i v.

- **4)** (3 points) For 4a and 4b, just write the simplest and cleanest possible formula F. Use no more predicate or function symbols than just p. Give no explanations.
- **4a)** Write a satisfiable first-order formula F, using only a *binary* predicate p, such that all models I of F have an infinite domain D_I .
- **4b)** Write a satisfiable formula F of first-order logic with equality, using only a *unary* predicate p, such that F expresses that there is a single element satisfying p, that is, all models I of F have a single (unique) element e in its domain D_I such that $p_I(e) = 1$.

4a) Write a satisfiable first-order formula F, using only a *binary* predicate p, such that all models I of F have an infinite domain D_I .

Resposta:

```
\forall x \neg p(x,x) \qquad \text{(irreflexivitat)}
\land \qquad \forall x \forall y \forall z \ (p(x,y) \land p(y,z) \rightarrow p(x,z)) \qquad \text{(transitivitat)}
\land \qquad \qquad \forall x \exists y \ p(x,y) \qquad \qquad \text{("existència de successors")}
```

4b) Write a satisfiable formula F of first-order logic with equality, using only a *unary* predicate p, such that F expresses that there is a single element satisfying p, that is, all models I of F have a single (unique) element e in its domain D_I such that $p_I(e) = 1$.

Resposta:

$$\exists x (p(x) \land \forall y (\neg eq(x,y) \rightarrow \neg p(y)))$$

- **5)** (3 points) Let F be the first-order formula $\exists x \forall y \exists z \ (p(z,y) \land \neg p(x,y)).$
- **5a)** Give a model I of F with $D_I = \{a, b, c\}$.
- **5b)** Is it true that $F \models \forall x \ p(x, x)$?
- **5c)** Is there any model of F with a single-element domain?

- **5)** (3 points) Let F be the first-order formula $\exists x \forall y \exists z \ (p(z,y) \land \neg p(x,y)).$
- **5a)** Give a model I of F with $D_I = \{a, b, c\}$.

Solució:

$$D_{I} = \{a, b, c\}$$

$$p_{I}(a, a) = 0$$

$$p_{I}(a, b) = 0$$

$$p_{I}(a, c) = 0$$

$$p_{I}(b, a) = 1$$

$$p_{I}(b, b) = 1$$

$$p_{I}(b, c) = 1$$

$$p_{I}(c, a) = \text{no importa}$$

$$p_{I}(c, b) = \text{no importa}$$

$$p_{I}(c, c) = \text{no importa}$$

- **5)** (3 points) Let F be the first-order formula $\exists x \forall y \exists z \ (p(z,y) \land \neg p(x,y)).$
- **5b)** Is it true that $F \models \forall x \ p(x,x)$?

Solució:

No. perquè existeix una I tal que I és model de F, és a dir $I \models F$, però I no és model de $\forall x \ p(x,x)$. I aquesta I és la de l'apartat **5a**).

- **5)** (3 points) Let F be the first-order formula $\exists x \forall y \exists z \ (p(z,y) \land \neg p(x,y))$.
- **5c)** Is there any model of F with a single-element domain? Solució:

No. Si tinguéssim
$$D_I=\{e\}$$
 , hauríem de definir $p_I(e,e)=1$ o bé $p_I(e,e)=0$

En tots dos casos, si x=e, y=e, i z=e, no es compleix $p_I(e,e) \land \neg p_I(e,e)$

6) (4 points) Formalize and prove by resolution that sentence F is a logical consequence of the first five:

A: All people that have electric cars are ecologists.

B: If someone has a grandmother, then that someone has a mother whose mother is that grandmother.

C: A person is an ecologist if his/her mother is an ecologist.

D: Mary is John's grandmother.

E: Mary has an electric car.

F: John is an ecologist.

6) (4 points) Formalize and prove by resolution that sentence F is a logical consequence of the first five:

A: All people that have electric cars are ecologists.

B: If someone has a grandmother, then that someone has a mother whose mother is that grandmother.

C: A person is an ecologist if his/her mother is an ecologist.

D: Mary is John's grandmother.

E: Mary has an electric car.

F: John is an ecologist.

Resposta (predicats):

```
hasEcar(x) \equiv "x has an electric car" isEcologist(x) \equiv "x is an ecologist" mother(x,y) \equiv "y is the mother of x" grandma(x,y) \equiv "y is the grandmother of x"
```


Deducció en Lògica de Primer Ordre

Per al proper dia de classe:

- Per a estudiar teoria de LI:
 - repassa els materials del que hem estudiat, i
 - FÉS ELS EXÀMENS PENJATS, començant pels últims, cap als anteriors, treballant sempre primer l'enunciat SENSE resoldre, i després l'examen resolt.
- Continueu fent els exercicis del tema 5. Pròxima classe els farem, i també els d'examen que em proposeu!!!

