Sobre la función maximal de Hardy-Littlewood en espacios de Sobolev

Andrés David Cadena Simons

Semillero de Análisis Armónico y Ecuaciones Diferenciales Parciales, Departamento de Matemáticas, Universidad Nacional de Colombia sede Bogotá.

Conceptos y definiciones

Función de distribución

Sea (X, μ) un espacio de medida y sea $f: X \to \mathbb{C}$ una función medible. Se llama función de distribución de f asociada a μ a la función:

$$a_f: (0, \infty) \to [0, \infty],$$

 $\lambda \to \mu(\{x \in X : |f(x)| > \lambda\}).$

Desigualdades débiles y fuertes

Sean (X, μ) y (Y, ν) dos espacios de medida y sea T un operador de $\mathcal{L}^p(X, \mu)$, en el espacio de funciones medibles de Y en \mathbb{C} .

$$T: \mathcal{L}^p(X,\mu) \to \mathcal{M}(Y,\mathbb{C}).$$

i. Se dice que T es (p,q)-débil (con $q<\infty$) si para todo $\lambda>0$ existe C>0 tal que:

$$\nu(\{y \in Y : |(Tf)(y)| > \lambda\}) \le \left(\frac{C||f||_p}{\lambda}\right)^q.$$

- ii. Se dice que T es (p, ∞) -débil si está acotado de $\mathcal{L}^p(X, \mu)$ en $\mathcal{L}^\infty(Y, \nu)$.
- iii. Se dice que T es (p,q)-fuerte si está acotado de $\mathcal{L}^p(X,\mu)$ en $\mathcal{L}^q(Y,\nu)$.

Función Maximal de Hardy-Littlewood

Sea B_r la bola euclídea centrada en el origen y de radio r. Definiremos la función maximal de Hardy-Littlewood de una función localmente integrable f en \mathbb{R}^n como:

$$\mathcal{M}f(x) = \sup_{r>0} \frac{1}{|B_r|} \int_{B_r} |f(x-y)| dy.$$

Espacios de Sobolev

Dado $1 \leq p \leq \infty$. Recordamos que el *espacio de Sobolev* $W^{1,p}(\mathbb{R}^n)$ comprende todas las funciones $f \in \mathcal{L}^p$ tales que f tiene gradiente débil y $\nabla f \in \mathcal{L}^p$. A este espacio se le asigna la norma

$$||f||_{W^{1,p}} = ||f||_{L^p} + ||\nabla f||_{L^p}.$$

Resultados

Teorema (Teorema de interpolación de Marcinkiewicz). Sean (X, μ) y (Y, ν) espacios medibles, $1 \le p_0 < p_1 \le \infty$, y tome T como un operador sublineal de $L^{p_0}(X, \mu) + L^{p_1}(X, \mu)$ a las funciones de medida de Y que es débil (p_0, p_0) y es débil (p_1, p_1) . Entonces T es fuerte (p, p) para $p_0 .$

Algunas consecuencias:

La función maximal establece un operador fuerte (∞, ∞) . Para ver esto, sea $f \in \mathcal{L}^{\infty}$, entonces para $x \in \mathbb{R}^n \ \forall \ r > 0$ arbitrarios se tiene

$$\frac{1}{|B_r|} \int_{B_r} |f(x - y)| \, dy \le ||f||_{\infty}.$$

Luego tomando el supremo en r > 0, tenemos $\mathcal{M}f(x) \leq \|f\|_{\infty}$. Ahora, como $x \in \mathbb{R}^n$ es arbitrario, se deduce que

$$\|\mathcal{M}f\|_{\infty} \le \|f\|_{\infty}.$$

Luego $\mathcal M$ define un operador (∞,∞) .

Teorema. El operador \mathcal{M} es débil (1,1). Es decir, sea $f \in L^1(\mathbb{R}^n)$, entonces

$$a_{\mathcal{M}f}(\lambda) \le \frac{C \|f\|_1}{\lambda}.$$

Como consecuencia del teorema de interpolación de Marcinkiewicz y lo anterior, tenemos que \mathcal{M} es un operador fuerte (p,p) para todo 1 .

Notemos que dada $f \in \mathcal{L}^1$, $\mathcal{M}f \in \mathcal{L}^1$ si y solo si f = 0. Por lo que no se espera la acotación fuerte en \mathcal{L}^1 .

Teorema (Teorema de diferenciación de Lebesgue). Sea $f \in L^1_{loc}(\mathbb{R}^n)$, entonces

$$\lim_{r \to 0^+} \frac{1}{|B_r(x)|} \int_{B_r(x)} |f(y)| \, dy = f(x) \quad c.t.p.$$

Teorema. Si ϕ es una función positiva, radial, decreciente (como función de $(0,\infty)$), entonces tomando $\phi_t(x) = t^{-n}\phi(t^{-1}x)$ se cumple que $\sup_t |\phi_t * f(x)| \le \|\phi\|_1 \mathcal{M}f(x)$. Supongamos ϕ función simple, entonces

$$|\phi * f(x)| = \left| \left(\sum_{j=1}^{\infty} c_j \chi_{B_{r_j}(x_j)} * f \right) (x) \right|,$$

$$= \left| \sum_{j=1}^{\infty} c_j |B_{r_j}(x_j)| \left(\frac{1}{|B_{r_j}(x_j)|} \chi_{B_{r_j}(x_j)} * f \right) (x) \right|,$$

$$\leq \|\phi\|_1 \mathcal{M} f(x).$$

Luego como ϕ_t es una dilatación de ϕ se puede hacer el mismo procedimiento y concluir el mismo resultado.

Como consecuencia tenemos que la función maximal $\sup_t |\phi_t * f(x)|$ es débil (1,1) y fuerte (p,p), $1 \le p \le \infty$. Este resultado permite generalizar (sin usar secuencias $\{t_n\}$) el resultado de convergencia mencionado anteriormente para aproximaciones de la identidad.

Teorema [5]. Se verifica que

$$\mathcal{M}: W^{1,p}(\mathbb{R}^n) \to W^{1,p}(\mathbb{R}^n).$$

establece un operador acotado cuando 1 .

(Demostración (idea)) Es suficiente con mostrar que si $u \in W^{1,p}(\mathbb{R}^n)$ con $1 , entonces <math>\mathcal{M}f(x)$ tiene derivada débil y se satisface que

$$|\partial_{x_i}(\mathcal{M}u)| \leq \mathcal{M}\partial_{x_i}u.$$

Por otro lado, cuando $p=\infty$ vamos a mostrar que $\mathcal{M}f$ es Lipschitz.

Para ver la primera desigualdad, es suficiente con ver que si $u \in W^{1,p}(\mathbb{R}^n)$, entonces $|u| \in W^{1,p}(\mathbb{R}^n)$ y que se satisface

$$\partial_{x_i}(|u| * \chi_r) = \partial_{x_i}|u| * \chi_r.$$

con $\chi_r(x) = \frac{\chi_{B_r(0)}}{|B_r(0)|}(x)$, para todo $i = 1, \dots, n$.

Tome una sucesión de $r_j > 0$ con $j = 1, 2, \cdots$ como una enumeración de racionales positivos y definamos las funciones $v_k : \mathbb{R}^n \to \mathbb{R}$, con $k = 1, 2 \cdots$ por

$$v_k(x) = \max_{1 \le i \le k} \left(|u| * \chi_{r_i} \right) (x).$$

Note que la sucesión de funciones $\{v_k\} \subset W^{1,p}(\mathbb{R}^n)$ es creciente y acotada, luego por construcción se tiene la convergencia puntual a $\mathcal{M}\partial_{x_i}u$ ya que

$$\sup_{k} |\partial_{x_i} v_k| \le \sup_{k} \max_{1 \le j \le k} |\partial_{x_i} u| * \chi_{r_j}| \le \mathcal{M} \partial_{x_i} u.$$

Así, tomando norma en $L^p(\mathbb{R}^n)$ se cumple que

$$\|\partial v_k\|_p \le \sum_{i=1}^n \|\partial_{x_i} v_k\|_p \le \sum_{i=1}^n \|\mathcal{M}\partial_{x_i} u\|_p.$$

Luego, usando el teorema de Hardy-Littlewood se satisface que

$$\|v_k\|_{1,p} \le \|\mathcal{M}u\|_p + \sum_{i=1}^n \|\mathcal{M}\partial_{x_i}u\|_p \le c_p \|u\|_p + c_p \sum_{i=1}^n \|\partial_{x_i}u\|_p < \infty,$$

de esta manera, para todo $k=1,2,\cdots$, se cumple que la sucesión $\{v_k\}\subset W^{1,p}(\mathbb{R}^n)$ es una sucesión creciente y acotada en $W^{1,p}(\mathbb{R}^n)$. Por tanto, como el espacio $W^{1,p}(\mathbb{R}^n)$ es reflexivo, entonces existe una subsucesión $\{v_{k_i}\}$ débilmente convergente, pero como la sucesión $\{v_k\}$ es creciente, entonces la sucesión completa converge débilmente a $\mathcal{M}|u|$, por la misma razón $\{\partial_{x_i}v_k\}$ converge débilmente a $\mathcal{M}\partial_{x_i}|u|$. Lo que nos permite concluir que

$$|\partial_{x_i} \mathcal{M} u| \leq \mathcal{M} \partial_{x_i} u.$$

Sea $f \in W^{1,\infty}(\mathbb{R}^n)$. Veamos que $\mathcal{M}(f)$ es Lipschitz continua. Para esto, sean $x,y \in \mathbb{R}^n$ y r>0. Haciendo un cambio de variables para centrar las bolas en 0 y algunas propiedades del valor absoluto, tenemos que

$$\frac{1}{|B_r(x)|} \int_{B_r(x)} |f(z)| \, dz - \mathcal{M}f(y) \le \frac{1}{|B_r(0)|} \int_{B_r(0)} \left| |f(x+w) - f(y+w)| \right| \, dw.$$

Como $f \in W^{1,\infty}(\mathbb{R}^n)$, por el teorema del valor intermedio se sigue que

$$|f(x+w) - f(y+w)| \le ||\nabla f||_{L^{\infty}}|x-y|.$$

Concluimos que

$$\frac{1}{|B(x,r)|} \int_{B(x,r)} |f(z)| dz - \mathcal{M}f(y) \le \|\nabla f\|_{L^{\infty}} |x-y|.$$

Tomando el supremo sobre r>0, se sigue de la desigualdad anterior

$$\mathcal{M}f(x) - \mathcal{M}f(y) \le ||\nabla f||_{L^{\infty}}|x - y|.$$

Y cambiando los papeles de x y y, se llega a

$$|\mathcal{M}f(y) - \mathcal{M}f(x)| \le ||\nabla f||_{L^{\infty}}|x - y|.$$

De lo anterior, se sigue que $\mathcal{M}f$ es Lipschitz continua. Por tanto, la caracterización de $W^{1,\infty}(\mathbb{R}^n)$ muestra que $\mathcal{M}f \in W^{1,\infty}(\mathbb{R}^n)$ y

$$\|\nabla \mathcal{M}f\|_{L^{\infty}} \leq \|\nabla f\|_{L^{\infty}}.$$

Trabajo Futuro

- Estudiar propiedades adicionales de la función maximal de Hardy-Littlewood en espacios de Sobolev. Por ejemplo, consultar los resultados presentados en [7], páginas 25-67.
- Analizar otros tipos de funciones maximales. Por ejemplo, considerar el núcleo del calor

$$K_t(x) = \frac{1}{(4\pi t)^{\frac{d}{2}}} e^{-\frac{|x|^2}{4t}}.$$

Estudiar el operador maximal asociado,

$$\mathcal{K}f(x) := \sup_{t > 0} \left(f * K_t \right)(x),$$

en espacios de Sobolev $W^{1,p}(\mathbb{R}^n)$. Para ello, se pueden consultar los artículos [2, 1].

Agradecimientos

Agradezco al Semillero de Análisis Armónico y Ecuaciones Diferenciales Parciales de la Universidad Nacional de Colombia - Sede Bogotá, especialmente a los docentes Ricardo Ariel Pastrán Ramírez y Oscar Guillermo Riaño Castañeda, quienes orientaron el proceso de desarrollo de este póster, tanto en la parte teórica como en la presentación del mismo.

Referencias

- [1] Emanuel Carneiro and Benar F. Svaiter. On the variation of maximal operators of convolution type. J. Funct. Anal., 265(5):837–865, 2013. ISSN 0022-1236. doi: 10.1016/j.jfa.2013.05.012.
- [2] Emanuel Carneiro, Renan Finder, and Mateus Sousa. On the variation of maximal operators of convolution type II. *Rev. Mat. Iberoam.*, 34(2): 739–766, 2018. ISSN 0213-2230. doi: 10.4171/RMI/1002.
- [3] Javier Duoandikoetxea. Fourier analysis, volume 29 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2001. ISBN 0-8218-2172-5. doi: 10.1090/gsm/029. URL https://doi.org/10.1090/gsm/029. Translated and revised from the 1995 Spanish
- [4] Lawrence C. Evans. Partial differential equations, volume 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2010. ISBN 978-0-8218-4974-3. doi: 10.1090/gsm/019. URL https://doi.org/10.1090/gsm/019.
- [5] Juha Kinnunen. The Hardy-Littlewood maximal function of a Sobolev function. *Israel J. Math.*, 100:117–124, 1997. ISSN 0021-2172,1565-
- 8511. doi: 10.1007/BF02773636. URL https://doi.org/10.1007/BF02773636.

 [6] Felipe Linares and Gustavo Ponce. Introduction to nonlinear dispersive equations. Universitext. Springer, New York, second edition, 2015. ISBN
- 978-1-4939-2180-5. doi: 10.1007/978-1-4939-2181-2. URL https://doi.org/10.1007/978-1-4939-2181-2.

 [7] Vladimir Maz'ya, editor. Sobolev spaces in mathematics. I: Sobolev type inequalities, volume 8 of Int. Math. Ser., N.Y. New York, NY: Springer; Novosibirsk: Tamara Rozhkovskaya Publisher, 2009. ISBN 978-0-387-85647-6; 978-5-901873-24-3; 978-0-387-85648-3; 978-0-387-85648-3.