Multiplicity of Roots (or Zeros)

The real roots (zeros) of a polynomial correspond with the x-intercepts of the polynomial graph.

The number of times a factor appears in a polynomial is referred to as its multiplicity.

When the multiplicity is an **even number**, the graph will just **touch** ("bounce") the x-axis.

When the multiplicity is an **odd number**, the graph will **cross** the *x*-axis.

Exercise #2: Find each zero and state its multiplicity: $P(x) = x^2(x-3)^2(x+1)(x+4)^3$

When the function is not in standard form we add the exponents

What is the degree of the polynomial? 8

positive even degree 11

$$x \to \infty$$
, $f(x) \to$

Determine and state the end behavior.

Sketch the graph of y=P(x) without the use of your calculator.

Exercise #3: Sketch the graph of the function $f(x) = (x+1)(x-2)(x+4)(x-3)^2$.

$$X = -1$$
 $X = 2$ $X = -4$ $X = 3$
 $M = 1$ $M = 1$ $M = 2$
 C C C B

Degree: 5 (odd)
positive

Identify how many intervals over which the function is increasing and how many intervals over which the function is decreasing.

Increasing 3

Decreasing _____

A polynomial to the nth degree can have at most n-1 turning points!

Graph Behavior Near Roots

<u>Surrounding EVEN multiplicities</u>: As even multiplicities increase, the graph will become increasingly "flatter" near the root value.

<u>Surrounding ODD multiplicities</u>: As odd multiplicities increase, the graph will become increasingly "flatter" near the root value.

Graphing Polynomial Functions Extension....

- 1. Answer the following questions based on the polynomial function $P(x) = x(x+2)^2(x-3)^3$
 - a. State the roots of the polynomial. Indicate whether the graph crosses the x-axis at each root or just touches the x-axis.

$$X = 0$$
 $X = -a$ $X = 3$
 $M = 1$ $M = a$ $M = 3$
 C B C
Degree: 6 (even) positive TT

b. Draw a sketch of the graph.

2. Which of the following characteristics does not pertain to the graph shown at the right?

(2) as
$$x \to \infty$$
, $f(x) \to \infty$

- (3) the function has three real zeros
- (4) the function is increasing across the positive x-axis

3. Which of the following characteristics does not pertain to the graph shown at the right? [Assume all roots are real.]

(1) Repeated (double) root at
$$x = 0$$

(2) multiplicity of $x = 0$ is $3 \rightarrow Cant$ be 3

(3) as
$$x \to -\infty$$
, $f(x) \to \infty$ because the

- 4. Answer the following based on the polynomial function sketched below:
 - a) Is the degree of the polynomial function even or odd?

b) Describe the end behavior for this function.

$$x \to \infty$$
, $f(x) \to$
 $x \to -\infty$, $f(x) \to$

c) Is the leading coefficient of this function positive or negative? Explain your answer.

Negative because both ends are 1/2 pointing down!

