DDL Data Definition Language

- Definition von Daten und Datenfeldern
- Erzeugung der Strukturen und Beziehungen zueinander

Wichtige SQL-Datentypen

Datentyp	Verwendung → Numerische Datentypen hier signed
INT	Ganze Zahlen von -2147483648 bis 2147483647
BIGINT	Ganze Zahlen von -9223372036854775808 bis 9223372036854775807
FLOAT	Fließkommazahlen von -3.402823466E+38 bis 3.402823466E+38
VARCHAR(n)	Zeichenkette mit variabler Größe, max n Zeichen, 1 – 255 Zeichen möglich
CHAR(n)	Zeichenkette mit genau n Zeichen
TEXT	Zeichenkette, max 65535 Zeichen
MEDIUMTEXT	Zeichenkette, max 16777215 Zeichen
DATE	YYYY-MM-DD
TIME	HH:MM:SS.sssss
DATETIME	YYYY-MM-DD HH:MM:SS
TIMESTAMP	YYYY-MM-DD HH:MM:SS; UTC → unabhängig von Zeitzone

Im folgenden Beispiel wird exemplarisch eine Datenbank zur Mitgliederverwaltung eines Vereins gezeigt

Datenbank anlegen und verwenden

CREATE DATABASE Verein; USE Verein

Tabelle anlegen

Beim Erstellen einer Tabelle muss ihre Struktur vorgegeben werden. Diese wird bestimmt durch:

Spaltennamen + Datentyp
 Primärschlüssel, weitere Bedingungen und Attribute

Beispiel:

);

CREATE TABLE Mitglieder(PK_ID_Verein INT PRIMARY KEY AUTO_INCREMENT, Name VARCHAR(20) NOT NULL,

Nutzername VARCHAR(20) UNIQUE, Telefonnummer INT

Field	+ Туре +	+ Null	Key	Default	Extra
Name Nutzername	varchar(20) varchar(20)		PRI UNI	NULL NULL NULL	auto_increment

ID_Verein INT PRIMARY KEY AUTO_INCREMENT

Festlegung der Spalte ID_Verein als Primärschlüssel. Das DBMS verhindert doppelte Werte und leere Einträge.

Durch die <mark>optionale</mark> Verwendung von <mark>AUTO_INCREMENT</mark> erfolgt eine automatische Zuweisung der Werte.

Name VARCHAR(20) NOT NULL

Verhindert, dass die Spalte leer bleibt.

Nutzername VARCHAR(20) UNIQUE

Durch die Vorgabe mit UNIQUE wird die Einzigartigkeit von Einträgen sichergestellt, jedoch darf das Feld leer bleiben.

Beziehungsintegrität PRIMARY KEY → FOREIGN KEY

Mögliche Bedingungen beim Löschen (ON DELETE) bzw. Ändern (ON UPDATE) eines Datensatzes in der "Elterntabelle":

Bedingung	Bedeutung
RESTRICT	Inhalte des Primärschlüssels in der Elterntabelle können nicht gelöscht / geändert werden
CASCADE	Werden Datensätze in der Elterntabelle gelöscht / geändert, dann auch in allen Kindertabellen

Beispiel Beziehung PRIMARY KEY → FOREIGN KEY:

```
CREATE TABLE Fussball (
    ID_Fussball INT PRIMARY KEY AUTO_INCREMENT,
    Mannschaft VARCHAR(20) NOT NULL,
    FK_ID_Verein INT,
    CONSTRAINT FK_Mitglieder_Fussball
        FOREIGN KEY (FK_ID_Verein) REFERENCES Mitglieder (PK_ID_Verein)
        ON DELETE CASCADE
        ON UPDATE RESTRICT
);
```

Elterntabelle:

Kindertabelle:

Zusammengesetzte Primärschlüssel CREATE TABLE Bankverbindung(Bankleitzahl CHAR(8) NOT NULL, Kontonummer CHAR(10) NOT NULL, PRIMARY KEY (Bankleitzahl, Kontonummer)

Änderungen an einer Tabelle vornehmen

Hinzufügen einer Spalte für den Fremdschlüssel:

```
ALTER TABLE Bankverbindung ADD FK_ID_Verein INT;
```

);

Definition von FK_ID_Verein als Fremdschlüssel

```
ALTER TABLE Bankverbindung

ADD Constraint FK_Mitglieder_Bankverbindung

FOREIGN KEY (FK_ID_Verein) REFERENCES Mitglieder (PK_ID_Verein)

ON DELETE CASCADE

ON UPDATE RESTRICT

.
```


Änderung des Datentyps einer Spalte:

```
ALTER TABLE Tabellenname
MODIFY Spaltenname Neuer Datentyp;
```

Primärschlüssel nachträglich definieren:

```
ALTER TABLE Tabellenname
ADD PRIMARY KEY (Spaltenname);
```

Tabelle umbenennen löschen

Tabelle umbenennen:

```
RENAME TABLE Mitglieder TO Mitglieder Alt;
```

Tabelle löschen:

```
DROP TABLE Mitglieder Alt;
```