2^{ère} Année Bac Sc Exp Professeur: IDRISSI Abdessamad

<u>♥Dérivabilité d'une fonction en un p</u>oi

On dit que la fonction f est dérivable en x_0 si : $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = l = f'(x_0)$, avec $l \in \mathbb{R}$.

Le nombre réel $f'(x_0)$ s'appelle nombre dérivé de la fonction f au point x_0 .

🖎 Interprétation géométrique :

Soit f une fonction dérivable en x_0 donc la courbe (\mathscr{C}_t) admet une tangente (Δ) au point $A(x_0, f(x_0))$ d'équation : (Δ) : $y = f'(x_0)(x - x_0) + f(x_0)$.

Dérivabilité à droite - dérivabilité à gauche :

 \boxtimes On dit que la fonction f est dérivable à droite en x_0 si :

$$\lim_{x\mapsto x_0^+}\frac{f\left(x\right)-f\left(x_0\right)}{x-x_0}=l'=f_d^{'}\left(x_0\right)\quad\text{, avec }l'\in\mathbb{R}\;.$$

 \boxtimes On dit que la fonction f est dérivable à gauche en x_0 si :

$$\lim_{x\mapsto x_0^-}\frac{f\left(x\right)-f\left(x_0\right)}{x-x_0}=l^{\prime\prime}=f_g^{\prime}\left(x_0\right)\quad\text{, avec }l^{\prime\prime}\in\mathbb{R}\;.$$

 $*Si: f_d(x_0) = f_g(x_0)$ donc la fonction f est dérivable en x_0 .

 $\underline{\times}$ Interprétation géométrique: La courbe (\mathscr{C}_t) admet une tangente (Δ) au point

$$A\left(x_{\scriptscriptstyle 0}; f\left(x_{\scriptscriptstyle 0}\right)\right) \text{d'équation} \,:\, \left(\Delta\right) \colon \,\, y = f'\left(x_{\scriptscriptstyle 0}\right)\left(x-x_{\scriptscriptstyle 0}\right) + f\left(x_{\scriptscriptstyle 0}\right).$$

* Si: $f_d(x_0) \neq f_s(x_0)$ donc la fonction f n'est pas dérivable en x_0 .

 $\underline{\text{M}}$ Interprétation géométrique: La courbe (\mathscr{C}_f) admet au point $A(x_0; f(x_0))$ deux demitangente (T_1) à droite et (T_2) à gauche d'équations :

$$(T_1): \ y = f_d(x_0)(x - x_0) + f(x_0) \ \text{et} \ (T_2): \ y = f_g(x_0)(x - x_0) + f(x_0) \ .$$

* Si: $\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = +\infty$ ou $\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = -\infty$ donc la fonction f n'est pas dérivable en x_0 .

 $\underline{\text{3}}$ Interprétation géométrique: La courbe $\left(\mathscr{C}_{f}\right)$ admet au point $A\left(x_{0};f\left(x_{0}\right)\right)$ une demitangente verticale dirigée vers les ordonnées positives.

* Si: $\lim_{x \to x^{\frac{1}{2}}} \frac{f(x) - f(x_0)}{x - x_0} = -\infty$ ou $\lim_{x \to x^{\frac{1}{2}}} \frac{f(x) - f(x_0)}{x - x_0} = +\infty$ donc la fonction f n'est pas dérivable en x_0 .

 $\underline{\otimes}$ Interprétation géométrique: La courbe (\mathscr{C}_f) admet au point $A(x_0; f(x_0))$ une demitangente verticale dirigée vers les ordonnées négatives.

Opérations sur les fonctions dérivables :

 \bigstar Soient f et g deux fonctions dérivables sur un intervalle I et α un nombre réel.

Alors:
$$(f \pm g)' = f' \pm g'$$
; $(f \times g)' = f' \times g + f \times g'$; $(\alpha f)' = \alpha f'$
et $(\forall n \in \mathbb{N}^*) : (f^n)' = n \times f' \times f^{n-1}$.

 \bigstar Soient f et g deux fonctions dérivables sur un intervalle I et $(\forall x \in I): g(x) \neq 0$.

Alors:
$$\left(\frac{a}{g}\right)' = -\frac{a \times g'}{g^2}$$
; $\left(\frac{f}{g}\right)' = \frac{f' \times g - f \times g'}{g^2}$.

*****Soit f une fonction dérivable sur un intervalle I et $(\forall x \in I)$: $f(x) \succ 0$.

Alors:
$$\left(\sqrt{f}\right)' = \frac{f'}{2\sqrt{f}}$$
 : $\left(\sqrt[n]{f}\right)' = \frac{f'}{n\left(\sqrt[n]{f}\right)^{n-1}}$.

 \divideontimes Soient f et g deux fonctions dérivables respectivement sur deux intervalles I et J , tel que $f(I){\subset}J$. Alors la fonction composée gof est dérivable sur I , et on a :

$$(\forall x \in I): (gof)'(x) = f'(x) \times (g'of)(x).$$

* Soit f une fonction dérivable sur un intervalle I, tel que $(\forall x \in I)$: $f'(x) \neq 0$, alors la

fonction f^{-1} est dérivable sur $f\left(I\right)=J$. De plus, on a pour tout $x\in J:\left(f^{-1}\right)^{\shortmid}\left(x\right)=\frac{1}{f^{\cdotp\left[\int_{-1}^{-1}\left(x\right)\right]}}$.

♥ Dérivabilité et variations d'une fonction :

Soit f une fonction dérivable sur un intervalle I de $\mathbb R$.

- ***** Si $(\forall x \in I)$: f'(x) = 0, alors f est constante sur I.
- ***** Si $(\forall x \in I)$: $f'(x) \ge 0$, alors f est croissante sur I.
- ***** Si $(\forall x \in I)$: $f'(x) \le 0$, alors f est décroissante sur I.

Dérivabilité et extremums d'une fonction :

- * On dit que $f(x_0)$ est un extremum local de f sur un intervalle I, si $f(x_0)$ est un minimum ou maximum local de f en x_0 un intervalle I.
- $igspace{*}{} f$ est un fonction dérivable sur un intervalle ouvert I et $x_{\scriptscriptstyle 0}$ est un réel de I .

si $f(x_0)$ est un extremum local de f en x_0 alors $f'(x_0) = 0$.

Donc la courbe (\mathscr{C}_f) admet au point $A(x_0; f(x_0))$ une tangente parallèle à l'axe des abscisses.

Solution School Schoo

Soit f une fonction numérique, à variable réel deux fois dérivable sur un intervalle ouvert I . et $x_{\scriptscriptstyle 0}$ un élément de I .

- ***** Si $(\forall x \in I)$: $f''(x) \ge 0$, alors la courbe (\mathscr{C}_f) tourne sa concavité vers les ordonnées positives.
- \bigstar Si $(\forall x \in I): f''(x) \leq 0$, alors la courbe (\mathscr{C}_f) tourne sa concavité vers les ordonnées négatives.
- \bigstar Si $(\exists x_0 \in I)$: $f''(x_0) = 0$ en changeant de signe ,alors le point $A(x_0; f(x_0))$ est un point d'inflexion de la courbe (\mathscr{C}_f) .

<u> Eléments de symétrie d'une courbe :</u>

- igspace Le point $\Omega(a;b)$ est un centre de symétrie de la courbe $\left(\mathscr{C}_{\!{}_{\!f}}\right)$ si et seulement si :

 - f(2a-x)+f(x)=2b.
- ***** La droite d'équation x = a est un axe de symétrie de la courbe (\mathscr{C}_t) si et seulement si :

 - f(2a-x) = f(x).