EAIiIB	Marcin Nalepa Przemysław Trybała		Rok II	Grupa 5	Zespół 3	
Temat:			Numer ćwiczenia:			
${f Elektroliza}$			35			
Data wykonania 13.01.2016	Data oddania 21.01.2016	Zwrot do poprawki	Data oddania	Data zaliczenia	Ocena	

1 Cel ćwiczenia

Celem ćwiczenia jest wyznaczenie stałej Faradaya, równoważnika elektrochemicznego miedzi oraz ładunku elementarnego metodą elektrolizy.

2 Wstęp teoretyczny

Elektrolity to charakterystyczna grupa przewodników. Elektrolit powstaje gdy struktura krystaliczna rozpuszczanej substancji, rozpada się (dysocjuje) na jony, które następnie poruszają się bezładnie po roztworze. Gdy w elektrolicie zanurzymy elektrody i podłączymy je do źródła stałego prądu, ruch jonów stanie się uporządkowany i zacznie płynąć przez niego prąd - kationy podążają do ujemnej katody, a aniony do anody. Gdy jody dotrą do elektrody, zostają zobojętnione i odkładają się na niej jako grupy atomów. Proces ten jest zwany elektrolizą.

Aby jon mógł zostać zobojętniony na elektrodzie, musi przepłynąć ładunek równy w*e, gdzie e- ładunek elementarny elektronu, a w- wartościowość jonu. Liczbę atomów które wydzieliły się na elektrodzie możemy wyznaczyć jako stosunek całkowitego ładunku (I*t) do ładunku pojedynczego jonu (we)

$$N = \frac{It}{we} \tag{1}$$

Masę osadzonych atomów można obliczyć mnożąc ich ilość przez masę jednego atomu. Masę pojedynczego atomu można wyznaczyć jako stosunek masy molowej do liczby Avogadra, stąd

$$m = N \frac{\mu}{N_A} = \frac{\mu}{weN_A} It \tag{2}$$

Można zauważyć, że masa wydzielonej substancji jest proporcjonalna do natężenia prądu I, czasu przepływu prądu t oraz współczynnika

$$k = \frac{\mu}{weN_A} \tag{3}$$

oznaczanego k i zwanego elektrochemicznym równoważnikiem substancji.

Iloczyn eN_A wyraża ładunek potrzebny do wydzielenie jednego gramorównoważnika chemicznego substancji. Oznacza się go zwykle jako F i nazywa stałą Faradaya. Ze wzoru (3) wynika jego zależność od k:

$$F = \frac{\mu}{wk} \tag{4}$$

3 Opis doświadczenia

W doświadczeniu użyto roztworu siarczanu miedzi (II) CuSO₄ jako elektrolitu oraz miedzianych elektrod, stąd warościowość w=2 ponieważ siarczan miedzi (II) dysocjuje na CuSO₄ $\xrightarrow{\text{H}_2\text{O}}$ Cu²⁺ + SO₄²⁻. Układ pomiarowy został przedstawiony na rysunku. Użyte elektrody zostały oczyszczone za pomocą

Rysunek 1: Schemat wykorzystanego obwodu elektrycznego

papieru ściernego i wody destylowanej, osuszone, a następnie zważone. Po umocowaniu elektrod na statywie, zostały one zanurzone w elektrolicie. Prąd płynący przez roztwór został ustalony na 0.6A.

4 Wyniki pomiarów

Tablica 1: Wyniki pomiarów

	anoda 1	anoda 2	katoda
masa przed $[g]$	100,544	85,796	134,391
u(m) [g]	0,001	0,001	0,001
masa po $[g]$	100,346	85,634	134,764
u(m) [g]	0,001	0,001	0,001
$\Delta m [g]$	0,198	0,160	0,373
$u(\Delta m) [g]$	0,01	0,01	0,01

- Czas trwania elektrolizy: 30 [min] = 1800 [s]
- $\bullet\,$ Natężenie prądu I=0,6~A

Niepewność $u(\Delta m)$ została przyjęta jako 0,01g ponieważ część miedzi mogła zostać spłukana z powierzchni elektrod podczas przygotowywania ich do ważenia.

5 Opracowanie wyników

Obliczenie ubytku masy:

- Przyrost masy na katodzie: 134,764 134,391 = 0,373 [g]
- Ubytek masy na anodach: 100,544-100,346+85,796-85,636=0,360 [g]
- Wartość średnia $m=\frac{0,373+0,360}{2}\approx 0,367~[g]$

Obliczenia dla prądu:

- Natężenie prądu I = 0, 6A
- Niepewność: $u(I) = \frac{klasa*zakres}{100} = \frac{0.5*0.75}{100} = 3,75~[mA]$

stad $I = 600 \pm 3,75 \ [mA]$

Równoważnik liczymy ze wzoru

$$k = \frac{m}{It} = \frac{0.367}{0.6 * 1800} = 0.3398 \ [mg]$$

$$\frac{u(k)}{k} = \sqrt{\left(\frac{u(m)}{m}\right)^2 + \left(\frac{u(I)}{I}\right)^2}$$
$$= \sqrt{\left(\frac{0,01}{0,367}\right)^2 + \left(\frac{0,00375}{0,6}\right)^2} = 0,027$$

$$u(k) = 0,027 * 0,3398 \ mg = 0,0092 \ mg$$

Stałą Faradaya można obliczyć, przekształcając wzór (3):

$$k = \frac{\mu}{w * e * N_A}$$

$$e * N_A = \frac{\mu}{w * k}, \quad F = e * N_A$$

$$F = \frac{\mu}{w * k}$$

Dla jonów miedzi Cu $^{2+}$ wwynosi 2, μ (masa molowa) wynosi 63,5 $\frac{g}{mol}.$ Stąd mamy:

$$F = \frac{63,5}{2*0,3398*10^{-3}} = 93600 \ [C]$$

W niepewności zmienną jest tylko k, więc wzór na niepewność dla stałej Faradaya liczonej ze wzoru $F = \frac{\mu}{n*k}$ wygląda następująco:

$$u(F) = F * \frac{u(k)}{k} = 93600 * 0,027 = 2527 [C]$$

Ładunek elementarny możemy obliczyć przekształcając wzór $F = e * N_A$ do:

$$e = \frac{F}{N_A}$$

tak więc:

$$e = \frac{93600}{6.022 * 10^{-23}} = 1,55 * 10^{-19}[C]$$

w niepewności liczonego ładunku elementarnego liczy się tylko obliczona stała Faradaya, tak więc liczymy ją ze wzoru:

$$u(e) = \sqrt{\left(\frac{\delta e}{\delta F} * u(F)\right)^2} = \frac{u(F)}{N_A} = \frac{2527}{6,022 * 10^{23}} = 4,2 * 10^{-21}[C]$$

6 Podsumowanie

	Wartości	Wartości	Różnica	Niepewność	Niepewność	Zgodność z wartością
	obliczone	${ m tablicowe}$	Itozinca	$\operatorname{standardowa}$	rozszerzona dla $k=2$	tablicową $ x - x_0 < U(x)$
$k\left[\frac{mg}{C}\right]$	0,3398	0,329	0,0108	0,009	0,018	tak
F[C]	93600	96500	2900	2527	5054	tak
e [C]	$1,55*10^{-19}$	$1,6021*10^{-19}$	$5,2*10^{-21}$	$4,2*10^{-21}$	$8,4*10^{-21}$	tak

Obliczona wartość stałej Faradaya to $93600 \pm 2527~[C]$, a równoważnika elektrochemicznego miedzi $0,3398 \pm 0,009~[\frac{mg}{C}]$. Wartości te mieszczą się w niepewności rozszerzonej i są zgodne z wartościami tablicowymi. Obliczona wartość ładunku elementarnego to $1,550*10^{-19} \pm 0,042*10^{-19}~[C]$, wartość ta również pokrywa się z wartościami tabelarycznymi. Dzięki wysokiej dokładności pomiarów wszystkie obliczone wartości zgadzają się z oczekiwanymi.