Model Architecture/Parameters:

CNN:

- Each image input shape = (3,17,1); A 2D image with a 3rd dimension for specification of monochromatic or RGB color.
- 2 Convolutional layer both with 32 number of filter with filter shape being (1x3) and (2x2) respectively. "ReLU" activation function is used for both layers.
- 1 max pooling layer of (2x2) down sampling.
- 1 dropout layer with rate=0.2 to avoid overfitting.
- Flatten output to 1D array
- 1 fully connected *dense* layer with 256 nodes which is then followed with an "ReLU" activation layer
- 1 *dropout* layer with rate=0.2.
- Final dense layer with 1 node with "Sigmoid" activation function.
- Training:
 - Loss function = binary crossentropy
 - Optimizer = adam
 - \circ Epochs = 40
 - o Batch size = 200
 - Early Stopping Patience = 5

NearestNeighbour:

- n_neighbors=30
- n_jobs=-1

DecisionTree:

- criterion='entropy',
- random state=randomizer,
- max_depth=10,
- min_samples_leaf=1,
- min_samples_split=2,
- *splitter=*'best'

RandomForest:

- max depth=30,
- *n estimators*=30,
- n_jobs=-1,
- warm_start=False,
- random_state=randomizer

XGBoost:

- *n_estimators*=100,
- colsample_bytree=0.8317,
- learning_rate=0.1,
- max_depth=20,
- min_child_weight=3.0,
- *subsample*=0.9099,
- gamma=0.292,
- *reg_lambda*=0.447,
- objective='binary:logistic',
- *rate_drop*=0.2,
- *silent*=True,

NeuralNet:

- *max_iter*=1000,
- *shuffle*=True,
- warm_start=False,
- early_stopping=True,
- validation_fraction=0.1,
- random_state=randomizer,

AdaBoost:

- *n_estimators*=200,
- learning_rate=0.5,
- random_state=randomizer