Advanced Statistical Modeling

Part 2. Nonparametric Modeling

Session 1:

Nonparametric regression model I

Pedro Delicado

Departament d'Estadística i Investigació Operativa Universitat Politècnica de Catalunya

Nonparametric modeling: Some examples Uses of smoothing methods

Nonparametric regression

Local polynomial regression

Nonparametric modeling: Some example Uses of smoothing methods

Nonparametric regression

Local polynomial regression

- Nonparametric statistical methods are techniques that do not require assuming parametric hypothesis about the data probability distribution
- ► Classic nonparametric methods: From the middle of the XX century, nonparametric techniques, mainly hypothesis tests, that are based on the empirical distribution function and ranks.
- ► A few decades later there appeared a second generation of nonparametric methods, nonparametric function estimation or smoothing methods, with the aim of estimating a whole function related with the data probability distribution.
- ► This second kind of techniques is the object of the second part of the course ASM.

Contents of the course

with splines.

- Session 1: Nonparametric regression model I. 0. Introduction to nonparametric modeling. 1. Local polynomial regression.
- **Session 2: Nonparametric regression model II.** 2. Kernel functions. 3. Theoretical properties. The bias-variance trade off. 4. Linear smoothers.
- **Session 3: Nonparametric regression model III.** 5. Choosing the degree of the local polynomial. 6. Choosing the smoothing parameter: Cross validation, plug-in methods, varying windows.
- Session 4: Generalized nonparametric regression model. 1. Nonparametric regression with binary response. 2. Generalized nonparametric regression model. 3. Estimation by maximum local likelihood.
- **Session 5: Inference with nonparametric regression.** 1. Variability bands. 2. Testing for no effects. 3. Checking a parametric model. 4. Comparing curves.
- **Session 6: Spline smoothing.** 1. Penalized least squares nonparametric regression. 2. Splines, cubic splines and interpolation. 3. Smoothing splines. 4. B-splines and P-splines. 5. Spline regression. 6. Fitting generalized nonparametric regression models
- Session 7: Generalized additive models and Semiparametric models. 1. Multiple nonparametric regression. The curse of dimensionality. 2. Additive models. 3.

Nonparametric modeling: Some examples

Uses of smoothing methods

Nonparametric regression

Local polynomial regression

Example 1. Density estimation. *CD rate data*.

- ► This data set represents the three-month certificate of deposit (CD) rates for 69 Long Island banks and thrifts (saving and loan associations) in August 1989.
- ▶ Two types of institutions: banks and thrifts.

Stem-and-Leaf Plot:

```
The decimal point is 1 digit(s) to the left of the |
       167
  74
  76 I
       15
       2200
  78
       0000000000556157
       0550003334556
       0000000599900000000001257
  86
       550158
```

This graphic allows us to visualize the data distribution (is a kind of rotated histogram) without losing numerical information

- ► A better graphical representation: the data histogram.
- ► The histogram was the first nonparametric density estimator
- ▶ It shows what sections of the real line gather more probability than others.
- ▶ We can see bimodality and left asymmetry.
- ▶ Drawbacks of the histogram: is a non-continuous step function.

Histogram of CDrate

- An alternative way of density estimation: To assume a parametric model.
- We assume, for instance, normality. Then we only need to estimate the two parameters, mean and standard deviation, that characterize a particular normal distribution. We use the sample version of them.
- Drawbacks: The parametric model is too rigid. For instance, normality implies symmetry and unimodality. That is against the data histogram.

- ► The kernel density estimator is a nonparametric estimator that outperforms the histogram.
- ▶ It is smooth and it respects the data asymmetry and bimodality.

Ajuste no paramétrico

Example 2. Regression with continuous response.

- ▶ Boston House-price Data, 506 neighborhoods of Boston, 1978.
- http://lib.stat.cmu.edu/datasets/boston_corrected.txt
- ► The list of variables includes: RM average number of rooms per dwelling,
 LSTAT % of the population with the lower status in a social-class classification,
 CRIM per capita crime rate by town, AGE proportion of owner-occupied units built
 prior to 1940, MEDV Median value of owner-occupied homes in \$1000's
- ▶ We study RM as a function of LSTAT. Parametric regression.

Nonparametric fit of room versus 1stat

Ajuste no paramétrico

- ▶ The relation between variables is different when lstat is lower than 10%, when it is between 10% and el 20%, or when it is greater than 20%.
- ▶ In the middle range of lstat the values of room are almost constant.

 In the other two sections room is a decreasing function of lstat.
- ► The fall is steeper at the first section than at the third one. 📳 🗦 🔊 🤉 🔻

Example 3. Regression with binary response

- Burn injuries data (Fan and Gijbels (1996)).
- ▶ Data from 435 adults (between ages 17 and 85) suffering from burn injuries.
- ► The binary response variable is taken to be 1 for those victims who survived their burn injuries and zero otherwise: surv.
- ▶ lgae, log(area of third degree burn + 1) is taken as a covariate.
- The conditional expectation of surv given a level of lgae is the conditional probability of survival given this particular value of lgae.

Parametric and nonparametric fits

We show the data and the estimated survival probability using the logistic and a nonparametric estimator.

Regresión 0-1 param. y no param.

Example 4. Principal curves.

- Principal curves are one of the nonlinear generalizations of principal components.
- ► They were first defined by Trevor Hastie and Werner Stuetzle as "self-consistent" smooth curves which pass through the "middle" of a d-dimensional probability distribution or data cloud.

Nonparametric modeling: Some examples

Uses of smoothing methods

Nonparametric regression

Local polynomial regression

Uses of smoothing methods

- Exploratory Data Analysis. Smoothing methods provide nice graphical representations of *density functions* or *regression functions* and their derivatives, among other.
- Modeling. Many times the inspection of an accurate graphical description of the observed data suggests to the researcher a tentative statistical model for them. For instance, a bimodal estimated density suggests the possibility of having data coming from a mixture of two subpopulation. Then a mixture of two parametric distributions is considered as a potential model for the data.
- ▶ Inference problems. Confidence bands for an unknown function, hypothesis testing involving functions (independence between two variables, equal distribution on two or more subpopulations, ...).

▶ Goodness-of-fit for a parametric model. Consider the random variable $X \sim f$. We want to test

$$H_0: f \in \mathcal{F}_{\Theta} = \{f_{\theta}: \theta \in \Theta \subseteq \mathbb{R}^k\}, \text{ against } H_1: f \not\in \mathcal{F}_{\Theta}$$

A useful statistic for testing this hypothesis is $T=d(f_{\hat{\theta}},\hat{f})$, where $\hat{\theta}$ is an estimator of θ (then $f_{\hat{\theta}}$ is a parametric estimator of f), \hat{f} is a nonparametric estimator of f and $d(\cdot,\cdot)$ is a distance between density functions. Then $d(f_{\hat{\theta}},\hat{f})$ is a kind of distance between the data and the null hypothesis.

▶ Parametric estimation. Assume that $X \sim f_{\theta_0}$, for some $\theta_0 \in \Theta$. The minimum distance estimator of θ is given by

$$\hat{ heta} = \arg\min_{ heta \in \Theta} d(f_{ heta}, \hat{f}).$$

▶ Defining new statistical methods. Many standard statistical procedures can be modified just changing $f_{\hat{\theta}}$ by \hat{f} . This modification usually allows the method to be applied to a wider range of situations because the parametric hypothesis is no longer required.

■

18/37

Nonparametric modeling: Some example: Uses of smoothing methods

Nonparametric regression

Local polynomial regression

The regression function

- Let (X, Y) be random variables with continuous joint distribution.
- ▶ The best prediction (in the sense of minimum mean squared prediction error) of the *dependent variable Y* given that the predicting variable *X* takes the known value *x*, is the conditional expectation

$$m(x) = E(Y|X=x),$$

also known as regression function.

- ▶ The parametric regression models assume that the function $m(\cdot)$ is known except for a fixed finite number of unknown parameters.
- ▶ For instance, the simple linear regression model postulates that

$$y = \beta_0 + \beta_1 x + \varepsilon.$$

So $m(x) = \beta_0 + \beta_1 x$ is known except for two parameters: β_0, β_1 .

20/37

Example of parametric regression

Parametric fits of variable room as a function of variable Istat.

The nonparametric regression model

▶ We observe n pairs of data (x_i, y_i) coming from the nonparametric regression model

$$y_i = m(x_i) + \varepsilon_i, i = 1, \ldots, n,$$

where $\varepsilon_1, \ldots, \varepsilon_n$ are independent r.v. with

$$E(\varepsilon_i) = 0, V(\varepsilon_i) = \sigma^2$$
 for all i,

and the input variable values x_1, \ldots, x_n are known.

- ▶ The functional form of the regression function m(x) is not specified.
- ▶ Certain regularity conditions on m(x) are assumed. For instance, it is usually assumed that m(x) has continuous second derivative.

What does it mean

"fitting a nonparametric regression model"?

- ▶ To provide an estimator $\hat{m}(x)$ of m(x) for all $x \in \mathbb{R}$.
 - ▶ This usually implies to draw the graphic of the pairs $(t_j, \hat{m}(t_j)), j = 1, ..., J$, where $t_j, j = 1, ..., J$ is a regular fine grid covering the range of observed values $x_i, i = 1, ..., n$.
 - An algorithm that computes $\hat{m}(t)$ for any input value t can be provided alternatively.
- ▶ To give an estimator $\hat{\sigma}^2$ of the residual variance σ^2 .

Local polynomial regression

Introduction to nonparametric modeling

Nonparametric modeling: Some example: Uses of smoothing methods

Nonparametric regression

Local polynomial regression

Example: Boston housing data

- ► The scatter plot of variables LSTAT and ROOM suggests that a unique linear model is not valid for the whole range of LSTAT.
- ▶ A first idea: To divide the range of LSTAT in several intervals, each of them showing an approximately linear relation between both variables.

LSTAT

Ajuste paramétrico por tramos

Good results, but not entirely satisfactory. Two improvements:

- ▶ In order to estimate the regression function at a given value t, using data (x_i, y_i) such that x_i is in an interval centered at t.
- Assigning to each datum (x_i, y_i) a weight $w(x_i, t)$ being a decreasing function of distance $|t x_i|$.

Local linear fitting.

- ▶ Weights are assigned by a kernel function *K*.
- ▶ The weight of (x_i, y_i) when estimating m(t) is

$$w_i = w(t, x_i) = K\left(\frac{x_i - t}{h}\right) / \sum_{j=1}^n K\left(\frac{x_j - t}{h}\right),$$

- ▶ The scale parameter *h* controls how the total weight is concentrated around *t*.
- For small values of h only the closest observations to t have a relevant weight. On the other hand, a large h allows data distant from t to be taken into account when estimating m(t).
- ▶ *h* is called smoothing parameter or bandwidth.
- ► The final estimate is significantly affected by changes in the choice of smoothing parameter, so this task is crucial in nonparametric estimation.

▶ Once the weights $w_i = w(t, x_i)$ have been calculated, the following weighted least squares problem is solved:

$$\min_{a,b} \sum_{i=1}^{n} w_i (y_i - (a + b(x_i - t)))^2.$$

- ▶ The optimal parameters a and b depend on t, because the weights $w(t, x_i)$ depend on t: a = a(t), b = b(t).
- ▶ The regression line fitted around *t* is

$$I_t(x) = a(t) + b(t)(x - t).$$

▶ Finally, the regression function estimation at point t is the value that $I_t(x)$ takes when x = t:

$$\hat{m}(t) = I_t(t) = a(t).$$

Practice:

Write your own local linear regression function

Local polynomial fitting

Consider the weighted polynomial regression problem

$$\min_{\beta_0,...,\beta_q} \sum_{i=1}^n w_i (y_i - (\beta_0 + \beta_1(x_i - t) + \cdots + \beta_q(x_i - t)^q))^2.$$

- ▶ Observe that the estimated coefficients depend on t, the point for which the regression function is being estimated: $\hat{\beta}_i = \hat{\beta}_i(t)$.
- Finally, the proposed estimate for m(t) is the value of the locally fitted polynomial $P_{q,t}(x) = \sum_{i=0}^{p} \hat{\beta}_i(x-t)^j$ evaluated at x=t:

$$\hat{m}_q(t) = P_{q,t}(t) = \hat{\beta}_0(t).$$

Moreover the estimated polynomial $P_{q,t}(x)$ allows us to estimate the first q derivatives of m at t:

$$\left. \hat{m}_q^{(s)}(t) = \left. \frac{d^s}{dx^s} \left(P_{q,t}(x) \right) \right|_{x=t} = s! \hat{\beta}_s(t).$$

Particular case: Nadaraya-Watson estimator

▶ When the degree of the polynomial locally fitted is q = 0 (that is, a constant) the resulting nonparametric estimator of m(t) is known as Nadaraya-Watson estimator or, simply, kernel estimator:

$$\hat{m}_{K}(t) = \frac{\sum_{i=1}^{n} K\left(\frac{x_{i}-t}{h}\right) y_{i}}{\sum_{i=1}^{n} K\left(\frac{x_{i}-t}{h}\right)} = \sum_{i=1}^{n} w(t, x_{i}) y_{i}.$$

- Nadaraya-Watson was proposed before local polynomial estimators.
- ▶ Observe that $\hat{m}_K(t)$ is a moving weighted mean.
- It can be proved that every local polynomial estimator is itself a weighted mead,

$$\hat{m}_q(t) = \sum_{i=1}^n w_q^*(t,x_i)y_i.$$

but weights $w_q^*(t, x_i)$ are not necessarily non-negative.

Example: Boston housing data

Matrix formulation of the local polynomial estimator

Let

$$X_t = \left(egin{array}{cccc} 1 & (x_1-t) & \dots & (x_1-t)^q \ dots & dots & \ddots & dots \ 1 & (x_n-t) & \dots & (x_n-t)^q \end{array}
ight)$$

be the regressors matrix.

Define
$$Y = (y_1, \dots, y_n)^T$$
, $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n)^T$, $\beta = (\beta_0, \dots, \beta_q)^T$.

Let $W_t = \text{Diag}(w(x_1, t), \dots, w(x_n, t))$ be the weight matrix.

We fit the multiple linear regression model $Y = X_t \beta + \varepsilon$ using generalized least squares (GLS):

$$\hat{\beta} = \arg\min_{\beta \in \mathbb{R}^{q+1}} (Y - X_t \beta)^\mathsf{T} W_t (Y - X_t \beta).$$

The solution is

$$\hat{\beta} = \left(X_t^\mathsf{T} W_t X_t\right)^{-1} X_t^\mathsf{T} W_t Y.$$

- ► Solution: $\hat{\beta} = (X_t^\mathsf{T} W_t X_t)^{-1} X_t^\mathsf{T} W_t Y$.
- For j = 0, ..., q, let e_j be the (q + 1)-dimensional vector having all its coordinates 0 except the (j + 1)-th one, that is equal to 1.
- ► Then

$$\hat{m}_{q}(t) = \hat{\beta}_{0} = e_{0}^{\mathsf{T}} \hat{\beta} = e_{0}^{\mathsf{T}} \left(X_{t}^{\mathsf{T}} W_{t} X_{t} \right)^{-1} X_{t}^{\mathsf{T}} W_{t} Y = S_{t} Y = \sum_{i=1}^{n} w_{q}^{*}(t, x_{i}) y_{i},$$

where $S_t = e_0^T (X_t^T W_t X_t)^{-1} X_t^T W_t$ is a *n*-dimensional row vector.

- ▶ We say that the local polynomial regression estimator is a linear estimator because, for a fix t, $\hat{m}_q(t)$ is a linear function of y_1, \ldots, y_n .
- ► The local polynomial estimator of the *s*-th derivative of *m* at point *t* is

$$\hat{m}_q^{(s)}(t) = s! \hat{\beta}_s(t) = s! e_s^{\mathsf{T}} \hat{\beta},$$

that is also linear in y_1, \ldots, y_n .

Practice:

- ► Local polynomial regression in R with functions lpr_visual and locpolreg.
- Local polynomial estimation in R: standard libraries and functions.

Bowman, A. W. and A. Azzalini (1997).

Applied Smoothing Techniques for Data Analysis.

Oxford: Oxford University Press.

Fan, J. and I. Gijbels (1996).

Local polynomial modelling and its applications.

London: Chapman & Hall.

Hastie, T., R. Tibshirani, and J. Friedman (2001).

The Elements of Statistical Learning. Data Mining, Inference, and Prediction.
Springer.

Loader, C. (1999).

Local regression and likelihood.

New York: Springer.

Simonoff, J. S. (1996).

Smoothing methods in statistics.

New York: Springer.

Wand, M. P. and M. C. Jones (1995).

Kernel smoothing.

London: Chapman and Hall.

Wasserman, L. (2006).

All of Nonparametric Statistics.

New York: Springer.

Wood, S. (2006).

Generalized Additive Models: An Introduction with R.

Chapman and Hall/CRC.