

UTAustinX: UT.6.01x Embedded Systems - Shape the World

1

KarenWest (/dashboard)

Course Info (/courses/UTAustinX/UT.6.01x/1T2014/info)

Courseware (/courses/UTAustinX/UT.6.01x/1T2014/courseware)

Discussion (/courses/UTAustinX/UT.6.01x/1T2014/discussion/forum)

Progress (/courses/UTAustinX/UT.6.01x/1T2014/progress)

Questions (/courses/UTAustinX/UT.6.01x/1T2014/a3da417940af4ec49a9c02b3eae3460b/)

Syllabus (/courses/UTAustinX/UT.6.01x/1T2014/a827a8b3cc204927b6efaa49580170d1/)

Embedded Systems Community (/courses/UTAustinX/UT.6.01x/1T2014/e3df91316c544d3e8e21944fde3ed46c/)

Vector address	Number	IRQ	ISR name in Startup.s	NVIC	Priority bits
0x00000038	14	-2	PendSV_Handler	NVIC_SYS_PRI3_R	23 – 21
0x0000003C	15	-1	SysTick_Handler	NVIC_SYS_PRI3_R	31 – 29
0x00000040	16	0	GPIOPortA_Handler	NVIC_PRIO_R	7 – 5
0x00000044	17	1	GPIOPortB_Handler	NVIC_PRIO_R	15 – 13
0x00000048	18	2	GPIOPortC_Handler	NVIC_PRIO_R	23 – 21
0x0000004C	19	3	GPIOPortD_Handler	NVIC_PRIO_R	31 – 29
0x00000050	20	4	GPIOPortE_Handler	NVIC_PRI1_R	7 – 5
0x00000054	21	5	UART0_Handler	NVIC_PRI1_R	15 – 13
0x00000058	22	6	UART1_Handler	NVIC_PRI1_R	23 – 21
0x0000005C	23	7	SSI0_Handler	NVIC_PRI1_R	31 – 29
0x00000060	24	8	I2C0_Handler	NVIC_PRI2_R	7 – 5
0x00000064	25	9	PWM0Fault_Handler	NVIC_PRI2_R	15 – 13
0x00000068 of 6	26	10	PWM0_Handler	NVIC_PRI2_R 04/2	2/2014 06:13 PI

Table 12.1	Table 12.1 12.3 NVIC on the ARM Cortex-M				https://courses.edx.org/courses/UTAustinX/UT			
0x0000006C		27	11	PWM1_Handler	NVIC_PRI2_R	31 – 29		
0x00000070		28	12	PWM2_Handler	NVIC_PRI3_R	7-5		
0x00000074		29	13	Quadrature0_Handler	NVIC_PRI3_R	15 – 13		
0x00000078		30	14	ADC0_Handler	NVIC_PRI3_R	23 – 21		
0x0000007C		31	15	ADC1_Handler	NVIC_PRI3_R	31 – 29		
0x00000080		32	16	ADC2_Handler	NVIC_PRI4_R	7-5		
0x00000084		33	17	ADC3_Handler	NVIC_PRI4_R	15 – 13		
0x00000088		34	18	WDT_Handler	NVIC_PRI4_R	23 – 21		
0x0000008C		35	19	Timer0A_Handler	NVIC_PRI4_R	31 – 29		
0x00000090		36	20	Timer0B_Handler	NVIC_PRI5_R	7-5		
0x00000094		37	21	Timer1A_Handler	NVIC_PRI5_R	15 – 13		
0x00000098		38	22	Timer1B_Handler	NVIC_PRI5_R	23 – 21		
0x0000009C		39	23	Timer2A_Handler	NVIC_PRI5_R	31 – 29		
0x000000A0		40	24	Timer2B_Handler	NVIC_PRI6_R	7-5		
0x000000A4		41	25	Comp0_Handler	NVIC_PRI6_R	15 – 13		
0x000000A8		42	26	Comp1_Handler	NVIC_PRI6_R	23 – 21		
0x000000AC		43	27	Comp2_Handler	NVIC_PRI6_R	31 – 29		
0х000000В0		44	28	SysCtl_Handler	NVIC_PRI7_R	7 – 5		
0x000000B4 2 of 6		45	29	FlashCt1_Handler	NVIC_PRI7_R	04/22/2014 06:13 PM		

able 12.1 12.3 N	NVIC on the AR	M Cortex	-M https://	courses.edx.org/cou	rses/UTAustinX/UT.
0x000000B8	46	30	GPIOPortF_Handler	NVIC_PRI7_R	23 – 21
0x000000BC	47	31	GPIOPortG_Handler	NVIC_PRI7_R	31 – 29
0x000000C0	48	32	GPIOPortH_Handler	NVIC_PRI8_R	7-5
0x000000C4	49	33	UART2_Handler	NVIC_PRI8_R	15 – 13
0x000000C8	50	34	SSI1_Handler	NVIC_PRI8_R	23 – 21
0x000000CC	51	35	Timer3A_Handler	NVIC_PRI8_R	31 – 29
0x000000D0	52	36	Timer3B_Handler	NVIC_PRI9_R	7-5
0x000000D4	53	37	I2C1_Handler	NVIC_PRI9_R	15 – 13
0x000000D8	54	38	Quadrature1_Handler	NVIC_PRI9_R	23 – 21
0x000000DC	55	39	CANO_Handler	NVIC_PRI9_R	31 – 29
0x000000E0	56	40	CAN1_Handler	NVIC_PRI10_R	7 – 5
0x000000E4	57	41	CAN2_Handler	NVIC_PRI10_R	15 – 13
0x000000E8	58	42	Ethernet_Handler	NVIC_PRI10_R	23 – 21
0x000000EC	59	43	Hibernate_Handler	NVIC_PRI10_R	31 – 29
0x00000F0	60	44	USB0_Handler	NVIC_PRI11_R	7 – 5
0x000000F4	61	45	PWM3_Handler	NVIC_PRI11_R	15 – 13
0x000000F8	62	46	uDMA_Handler	NVIC_PRI11_R	23 – 21
0x000000FC	63	47	uDMA_Error	NVIC_PRI11_R	31 – 29

 $_3$ Table 12.1. Some of the interrupt vectors for the TM4C. The TM4C123 has over 100 possible interrupt sources 22/2014 $_2$ 06:13 PM

Table 12.1 | 12.3 NVIC on the ARM Cortex-M...

https://courses.edx.org/courses/UTAustinX/UT...

To activate an interrupt source we need to set its priority and enable that source in the NVIC. This activation is in addition to the arm and enable steps. Table 12.1 lists some of the interrupt sources available on the TM4C family of microcontrollers. Interrupt numbers 0 to 15 contain the faults, software interrupt and SysTick; these interrupts will be handled differently from interrupts 16 and up.

Table 12.2 shows some of the priority registers on the NVIC. Each register contains an 8-bit priority field for four devices. On the TM4C microcontrollers, only the top three bits of the 8-bit field are used. This allows us to specify the interrupt priority level for each device from 0 to 7, with 0 being the highest priority. The interrupt number (number column in Table 12.1) is loaded into the **IPSR** register. The servicing of interrupts does not set the I bit in the **PRIMASK**, so a higher priority interrupt can suspend the execution of a lower priority ISR. If a request of equal or lower priority is generated while an ISR is being executed, that request is postponed until the ISR is completed. In particular, those devices that need prompt service should be given high priority.

Address	31 – 29	23 – 21	15 – 13	7 – 5	Name	
0xE000E400	GPIO Port D	GPIO Port C	GPIO Port B	GPIO Port A	NVIC_PRI0_R	
0xE000E404	SSI0, Rx Tx	UART1, Rx Tx	UARTO, Rx Tx	GPIO Port E	NVIC_PRI1_R	
0xE000E408	PWM Gen 1	PWM Gen 0	PWM Fault	I2C0	NVIC_PRI2_R	
0xE000E40C	ADC Seq 1	ADC Seq 0	Quad Encoder	PWM Gen 2	NVIC_PRI3_R	
0xE000E410	Timer 0A	Watchdog	ADC Seq 3	ADC Seq 2	NVIC_PRI4_R	
0xE000E414	Timer 2A	Timer 1B	Timer 1A	Timer 0B	NVIC_PRI5_R	
0xE000E418	Comp 2	Comp 1	Comp 0	Timer 2B	NVIC_PRI6_R	
0xE000E41C	GPIO Port G	GPIO Port F	Flash Control	System Control	NVIC_PRI7_R	
0xE000E420	Timer 3A	SSI1, Rx Tx	UART2, Rx Tx	GPIO Port H	NVIC_PRI8_R	
0xE000E424	CAN0	Quad Encoder 1	I2C1	Timer 3B	NVIC_PRI9_R	
0xE000E428	Hibernate	Ethernet	CAN2	CAN1	NVIC_PRI10_R	
0xE000E42C	uDMA Error	uDMA Soft Tfr	PWM Gen 3	USB0	NVIC_PRI11_R	
0xE000ED20	SysTick	PendSV		Debug	NVIC_SYS_PRI3_R	

Table 12.2. The LM3S/TM4C NVIC registers. Each register is 32 bits wide. Bits not shown are zero.

79). In Table 12.1 we see UART2 is IRQ=33. To enable UART interrupts we set bit 1 (33-32=1) in NVIC_EN1_R, see Table 12.3. Not every interrupt source is available on every TM4C microcontroller, so you will need to refer to the data sheet for your microcontroller when designing I/O interfaces. Writing zeros to the NVIC_EN0_R through NVIC_EN4_R registers has no effect. To disable interrupts we write ones to the corresponding bit in the NVIC_DIS0_R through NVIC_DIS4_R register.

The SysTick interrupts do not have an enable register, so when configuring interrupts on SysTick we will skip the step of setting bits in one of the **NVIC_ENX_R**registers.

Address	31	30	29-7	6	5	4	3	2	1	0	Name
0xE000E100	G	F		UART1	UART0	E	D	С	В	A	NVIC_EN0_R
0xE000E104									UART2	Н	NVIC_EN1_R

Table 12.3. Some of the TM4C NVIC interrupt enable registers. There are five such registers defining 139 interrupt enable bits.

Each interrupt has an interrupt number and an IRQ number. Let x be the interrupt number and let n be the IRQ number. The interrupt number is

$$x = n + 16$$

The interrupt number defines the position in the vector table. The vector address is

4*x.

For example SysTick is interrupt number 15 and IRQ number -1. Therefore the SysTick vector is at memory location 60, which is ROM location 0x0000003C.

For those interrupts with IRQ numbers greater and or equal to 0, we can find its priority register by dividing n by 4. Let m = n/4 (integer divide). The priority register number will be m. We can find the bit field for that IRQ by looking the remainder, p = n/4, where p = 0, 1, 2, or 3. The three bits will be 8*p+7, 8*p+6, and 8*p+5.

p	Bit Field	Interrupt
3	Bits 31:29	Interrupt [4 <i>m</i> +3]
2	Bits 23:21	Interrupt [4 <i>m</i> +2]
1	Bits 15:13	Interrupt [4 <i>m</i> +1]
0	Bits 7:5	Interrupt [4 <i>m</i>]

For example, Timer3A is interrupt number 51 and IRQ number 35. n=35, so m=35/4=8. p=35%4=3. So the Timer3A priority register is 8 (NVIC_PRI8_R), and the three priority bits are be 8*3+7, 8*3+6, and 8*3+5, which are 31, 30, and 29. 5 of 6 $04/22/2014\ 06:13\ PM$

Table 12.1 | 12.3 NVIC on the ARM Cortex-M...

https://courses.edx.org/courses/UTAustinX/UT...

For those interrupts with IRQ numbers greater and or equal to 0, we can find its enable register by dividing n by 32. Let a = n/32 (integer divide). The enable register number will be a. We can find the bit field for that IRQ by looking the remainder, b = n%32, where b = 0, 1, ... or 31. The one bit will be used to enable the interrupt.

Again, Timer3A is interrupt number 51 and IRQ number 35. n=35, so a=35/32=1. b=35%32=3. So the Timer3A enable register is 1 (NVIC_EN1_R), and the enable bit is bit 3.

Press (https://www.edx.org/press) FAQ (https://www.edx.org/student-faq) Contact (https://www.edx.org/contact)

EdX is a non-profit created by founding partners Harvard and MIT whose mission is to bring the best of higher education to students of all ages anywhere in the world, wherever there is Internet access. EdX's free online MOOCs are interactive and subjects include computer science, public health, and artificial intelligence.

(http://www.meetup.com/edX-Global-Community/)

(http://www.facebook.com/EdxOnline)

(https://twitter.com/edXOnline)

(https://plus.google.com /108235383044095082735/posts)

(http://youtube.com/user/edxonline) © 2014 edX, some rights reserved.

Terms of Service and Honor Code -Privacy Policy (https://www.edx.org/edx-privacy-policy)

6 of 6 04/22/2014 06:13 PM