Heurísticas de busca

GRAFOS

O que vimos em grafo?

- Vimos uma pequena parcela da área de grafos, deixamos passar muita coisa:
 - o Problemas,
 - o Algoritmos,
 - Tipos de grafos

Multigrafos

Hipergrafos

Uso em outras áreas

Problema de detecção de comunidades

Problema de desenho em grafos

Grafos aleatórios e infinitos

Heurísticas de busca

Já vimos alguns algoritmos e heurísticas de busca:

- Busca em largura
- Busca em profundidade
- Best-First Search
- A*

Mas dependendo da complexidade do problema, outros tipos de busca são importantes, principalmente em problemas de alta complexidade combinatória.

Espaço de soluções

* O conjunto de todas as soluções (viáveis) possíveis (satisfazendo as restrições do problema)

Vizinhança

* Dada uma solução x, os elementos da vizinhança N (x) de x são aquelas soluções y que pode ser obtida aplicando uma perturbação elementar sobre x. *

Exemplo:

Movimento

* É a transição de uma solução para outra solução vizinha.

Espaço de busca

* O conjunto das soluções obtidas por meio de uma vizinhança.

Ótimo local

* é uma solução tão boa ou melhor do qualquer das soluções vizinhas •

Ótimo global (solução ótima).

* É a melhor solução dentre todos os ótimos locais.

Buscas - Busca Local - Minimização

Buscas - Busca Local

- Algoritmos de busca local são construídos como uma forma de exploração do espaço de busca.
 - •Partida: solução inicial obtida através de um método construtivo
- •lteração: melhoria sucessiva da solução corrente através de uma busca na sua vizinhança
- •Parada: primeiro ótimo local encontrado, ou seja, não existe solução vizinha melhor.

Buscas - Busca Local

- O espaço de busca pode ser visto como um grafo onde os vértices são as soluções e existem arestas entre pares de vértices associados a soluções vizinhas.
- Este espaço pode ser visto como uma superfície com vales e cumes definidos pelo valor e pela proximidade (vizinhança) das soluções.
- Um caminho no espaço de busca consiste numa sequência de soluções, onde duas soluções consecutivas quaisquer são vizinhas.

Buscas - Busca Local

Questões fundamentais:

- Definição da vizinhança
- Estratégia de busca na vizinhança
- Complexidade de cada iteração:
 - o Proporcional ao tamanho da vizinhança
 - Eficiência depende da forma como é calculada a variação da função objetivo para cada solução vizinha: algoritmos eficientes são capazes de recalcular as variações de modo a atualizá-las quando a solução corrente se modifica, evitando cálculos repetitivos e desnecessários da função objetivo.

Buscas - Busca Local - Minimização

```
Inicie com uma solução S
faça

melhorou ← false
S' ← selecionaMelhorVizinho
Δcusto ← custo(S') - custo(S)
se Δcusto < 0 então
S ← S'
melhorou ← true
enquanto (melhorou)
```

Buscas - Busca Local - Minimização

Dificuldades:

- * Término prematuro no primeiro ótimo local encontrado
- * Sensível à solução de partida
- * Sensível à vizinhança escolhida
- * Sensível à estratégia de busca
- * Pode exigir um número exponencial de iterações

Buscas - Meta-heurísticas

Meta-heurísticas são modelos gerais que servem como guia para construção de algoritmos heurísticos.

- Muitos dos modelos s\u00e3o baseados na natureza (f\u00edsicos, biol\u00e1gicos, evolutivos)
 - Uma meta-heurística representa uma classe de heurísticas.
- As estratégias meta-heurísticas têm como objetivo superar as falhas da busca local, como por exemplo, o término prematuro em um ótimo local.

Buscas - Meta-heurísticas - Exemplos

- Busca Tabu
- Algoritmos Genéticos
- Ant Colony
- Variable Neighborhood Search (VNS)
- Bee Swarm