NSR Search Results Page 1 of 12

Visit the **Isotope Explorer** home page!

72 reference(s) found:

Keynumber: 1998MA49

Reference: Nucl.Instrum.Methods Phys.Res. B139, 293 (1998)

Authors: T.K.Magagula, J.I.W.Watterson

Title: The Excitation of Isomeric States by Accelerator Neutrons from the ⁷Li(p,n) ⁷Be Reaction and

Their Application in Selective Activation Analysis

Keyword abstract: NUCLEAR REACTIONS ¹⁹⁷Au(n,n') ^{197m}Au, ²⁷Al, ²⁸Si(n,p), ²⁷Al(n,γ),E not given; measured relative yields vs neutron production reaction energy, target thickness. ⁷Li(p,n),E=4-10 MeV; deduced neutron spectrum features.

Kevnumber: 1997RO26

Reference: IEEE Trans.Instrum.Meas. 46, 560 (1997)

Authors: S.Rottger, A.Paul, U.Keyser

Title: Prompt (n, γ) -Spectrometry for the Isotopic Analysis of Silicon Crystals for the Avogadro Project **Keyword abstract:** NUCLEAR REACTIONS ¹H, ¹⁴N, ²⁸, ²⁹Si, ⁵⁶Fe, ²⁷Al, ⁶³Cu(n,γ),E=thermal;

measured Ey,Iy.

Keyword abstract: ATOMIC MASSES ¹, ²H, ¹⁴, ¹⁵N, ²⁸, ²⁹, ³⁰, ³¹, ³²Si, ⁵⁶, ⁵⁷Fe; measured neutron-

induced v spectra; deduced mass differences.

Kevnumber: 1997GOZP

Reference: Proc.Seminar on Precise Measurement in Nuclear Spectroscopy, Saroy, September 1996,

p.101 (1997)

Authors: V.M.Gorbachev, V.I.Nagorny, Yu.Ya.Nefedov, A.M.Shvetsov, M.S.Shvetsov,

A.L.Shmarova, G.G.Farafontov

Title: Measurement of Gamma-Ray Production Cross Sections in $(n,x\gamma)$ Reaction on Al and Fe for

Testing Files of Estimated Data for $E_n = 14 \text{ MeV}$

Keyword abstract: NUCLEAR REACTIONS 27 Al,Fe(n, γ),E=14 MeV; measured E γ ,I γ , σ .

Keynumber: 1996KA26

Reference: Nucl.Instrum.Methods Phys.Res. A369, 648 (1996)

Authors: L.P.Kabina, I.A.Kondurov, P.A.Sushkov

Title: Energy Calibration Procedure for γ -Radiation and Conversion Electron Spectra using Level

Scheme a priori Information

Keyword abstract: NUCLEAR REACTIONS 207 Pb, 27 Al(n, γ),E=reactor; measured E γ .

Keyword abstract: RADIOACTIVITY 28 Al(β ⁻) [from 27 Al(n, γ).E=reactor]; measured E γ .

Keynumber: 1995NA31

Reference: J.Radioanal.Nucl.Chem. 200, 435 (1995)

Authors: S.S.Narkhede, Z.R.Turel

Title: Instrumental Neutron Activation Analysis of Al,V and Ti Employing ²⁵²Cf as a Thermal Neutron

Keyword abstract: NUCLEAR REACTIONS ²⁷Al, ⁵¹V, ⁵⁰Ti(n, γ),E=thermal; measured E γ ,I γ ; deduced rapid element determination possibility in ores, alloys. Neutron from ²⁵²Cf isotopic source.

Keynumber: <u>1991YU01</u>

NSR Search Results Page 2 of 12

Reference: Phys.Rev. C43, 2765 (1991)

Authors: Z.-S. Yuan, Y.-K. Ho

Title: Unified Formalism to Study Nonstatistical Effects in Radiative Capture Reactions

Keyword abstract: NUCLEAR REACTIONS ⁵⁵Mn, ⁸⁹Y, ²⁰⁸Pb, ²⁷Al(n,γ),E <20 MeV; calculated

capture $\sigma(E)$. Unified formalism, nonstatistical effects.

Keynumber: 1990WA11

Reference: Nucl.Instrum.Methods Phys.Res. B45, 75 (1990)

Authors: J.I.W.Watterson, A.E.Pillay, P.Nailand

Title: Selective Activation Analysis with Ion-Beam-Tailored Neutron Spectra - A Comparison between

the Reactions $^{7}\text{Li}(p,n)^{7}\text{Be}$ and $^{9}\text{Be}(p,n)^{9}\text{B}$

Keyword abstract: NUCLEAR REACTIONS ²⁷Al(n,γ), ²⁷Al, ²⁸Si(n,p), ¹⁹⁷Au(n,n'),E

Keynumber: 1990KUZU

Reference: Program and Thesis, Proc.40th Ann.Conf.Nucl.Spectrosc.Struct.At.Nuclei, Leningrad, p.49

(1990)

Authors: V.T.Kupryashkin, V.S.Oleinik, N.V.Strilchuk, A.I.Feoktistov, I.P.Shapovalova

Title: Measurement of Limetimes of Highly-Excited States of ²⁸Al

Keyword abstract: NUCLEAR REACTIONS 27 Al(n, γ),E=thermal; measured DSA. 28 Al levels

deduced $T_{1/2}$.

Keynumber: 1990KUZC

Reference: Proc.8th Seminar on Precise Measurements in Nucl.Spectrosc., Uzhgorod, p.85 (1990)

Authors: V.T.Kupryashkin, N.V.Strilchuk, A.I.Feoktistov, I.P.Shapovalova

Title: Measurements of Lifetime of High-Energy States Excited in (n,γ) Reaction on Thermal Neutrons **Keyword abstract:** NUCLEAR REACTIONS ²⁴Mg, ²⁷Al, ³¹P, ⁵⁴, ⁵⁷Fe (n,γ) ,E=thermal; measured

DSA. ²⁵Mg, ²⁸Al, ³²P, ⁵⁵, ⁵⁸Fe levels deduced T_{1/2}. Enriched targets,NaI(Tl),hyperpure Ge detectors.

Keynumber: 1990KU22

Reference: Izv.Akad.Nauk SSSR, Ser.Fiz. 54, 846 (1990); Bull.Acad.Sci.Ussr, Phys.Ser. 54, No.5, 29

(1990)

Authors: V.T.Kupryashkin, V.S.Oleinik, N.V.Strilchuk, A.I.Feoktistov, I.P.Shapovalova

Title: Determination of the Lifetime of the Highly Excited States of ²⁸Al

Keyword abstract: NUCLEAR REACTIONS 27 Al(n, γ),E=thermal; measured E γ ,I γ ,DSA. 28 Al levels

deduced $T_{1/2}$.

Keynumber: 1989MIZL

Reference: Japan Atomic Energy Res.Inst.Tandem Linac VDG, Ann.Rept., 1988, p.180 (1989)

Authors: M.Mizumoto, K.Hasegawa, S.Chiba, M.Sugimoto, Y.Yamanouti, M.Igashira, T.Uchiyama,

H.Kitazawa

Title: Gamma-Ray Production Cross Sections of Al,Si,Fe,Pb, and Bi at 10 and 11.5 MeV

Keyword abstract: NUCLEAR REACTIONS ²⁷Al,Si,Fe,Pb,Bi(n,n' γ), (n, γ), (n, γ), (n, $\alpha\gamma$),E=10,11.5

MeV; measured $E\gamma$, σ ($E\gamma$).

Keynumber: <u>1989HO09</u>

Reference: Phys.Rev. C39, 1691 (1989) **Authors:** Y.-K.Ho, Z.-S.Yuan, Y.Mi

Title: Strong Nonstatistical Effects in Neutron Capture at the 2p Size Resonance Region

NSR Search Results Page 3 of 12

Keyword abstract: NUCLEAR REACTIONS ²⁷Al, ²⁸Si(n, γ),E=thermal-2 MeV; calculated σ (E); deduced nonstatistical fractions,reaction mechanisms.

Keynumber: 1989DU03

Reference: Nucl.Instrum.Methods Phys.Res. A278, 484 (1989)

Authors: P.Durner, T.von Egidy, F.J.Hartmann **Title:** Neutron-Capture Gamma Rays below 40 keV

Keyword abstract: NUCLEAR REACTIONS ²⁷Al, ³⁹K, ⁵¹V, ¹²⁷I, ¹³³Cs, ¹⁵⁹Tb, ¹⁶⁵Ho, ¹⁶⁹Tm, ¹⁷⁵Lu, ¹⁸¹Ta, ¹⁹¹Ir, ¹⁹⁷Au, ²³²Th(n,γ),E=low; meaured Eγ,absolute Iγ. ²⁸Al, ⁴⁰K, ⁵²V, ¹²⁸I, ¹³⁴Cs, ¹⁶⁰Tb, ¹⁶⁶Ho, ¹⁷⁰Tm, ¹⁷⁶Lu, ¹⁸²Ta, ¹⁹²Ir, ¹⁹⁸Au, ²³³Th deduced transitions. Si-Li detector.

Keynumber: 1989CV01

Reference: Z.Phys. A332, 163 (1989)

Authors: F.Cvelbar, E.Betak

Title: Exciton Model Comparison of the Activation and the Integrated 14 MeV Neutron Radiative

Capture Cross Sections

Keyword abstract: NUCLEAR REACTIONS ²⁷Al, ⁵¹V, ⁴⁵Sc, ⁵⁵Mn, ¹²⁷I, ¹⁴¹Pr, ²⁰⁸Pb, ²⁰⁹Bi

 (n,γ) , E=14.1 MeV; calculated $\sigma(E(\gamma))$. Exciton model.

Keynumber: 1988HO06

Reference: J.Phys.(London) G14, Supplement S207 (1988)

Authors: Y.K.Ho, C.Coceva

Title: Nucleon Effective Charge in E1 and E2 Radiative Transitions

Keyword abstract: NUCLEAR REACTIONS 25 Mg, 27 Al, 29 Si(n,γ),E not given; calculated E1 transition inhibition factors. 89 Y, 90 , 91 Zr, 93 Nb, 92 , 94 , 96 , 98 Mo, 136 Ba, 139 La, 141 Pr, 142 , 143 , 145 , 146 , 148 Nd, 154 Sm, 181 Ta, 184 W(n,γ),E not given; analyzed nonstatistical $\Gamma\gamma$ data; deduced neutron effective charge enhancement factor.

Keynumber: 1986MU05

Reference: Radiat.Eff. 94, 297 (1986)

Authors: S.F.Mughabghab

Title: Spin Dependence of the Coherent Scattering Lengths of ²⁷Al and Admixture of S- and D- Partial

Waves

Keyword abstract: NUCLEAR REACTIONS ²⁷Al(polarized n, γ),E=thermal; analyzed σ (E); deduced spin-dependent interactions role. ²⁸Al deduced s-wave resonances.

Keynumber: 1986KR16

Reference: Phys.Rev. C34, 2103 (1986)

Authors: B.Krusche, K.P.Lieb

Title: Dipole Transition Strengths and Level Densities $A \le 80$ Odd-Odd Nuclei Obtained from Thermal

Neutron Capture

Keyword abstract: NUCLEAR REACTIONS ¹⁹F, ²³Na, ²⁷Al, ³¹P, ³⁵Cl, ³⁹, ⁴¹K, ⁴⁵Sc, ⁵⁵Mn, ⁵⁹Co, ⁶³, ⁶⁵Cu, ⁷¹Ga, ⁷⁵As, ⁷⁹Br(n, γ),E=thermal; analyzed data. ²⁰F, ²⁴Na, ²⁸Al, ³²P, ³⁶Cl, ⁴⁰, ⁴²K, ⁴⁶Sc, ⁵⁶Mn, ⁶⁰Co, ⁶⁴, ⁶⁶Cu, ⁷²Ga, ⁷⁶As, ⁸⁰Br deduced primary E1,M1 transition strengths,level density parameters. Bethe, constant temperature Fermi gas models.

Keynumber: 1986HI05

Reference: J.Radioanal.Nucl.Chem. 105, 351 (1986)

NSR Search Results Page 4 of 12

Authors: P.Z.Hien, T.K.Mai, T.X.Quang, T.N.Thuy

Title: Determination of k₀-Factors by Thermal Neutron Activation Technique

Keyword abstract: NUCLEAR REACTIONS ²⁷Al, ²⁶Mg, ⁵¹V, ⁵⁵Mn, ⁵⁶Fe, ⁶⁴Ni, ⁵⁹Co, ⁶³Cu, ¹⁰⁹Ag, ¹⁹⁶, ²⁰²Hg(n,γ),E=thermal; measured composite nuclear constant. Activation technique.

Keynumber: 1985VOZV

Reference: Proc.AIP Conf.Capture Gamma-Ray Spectroscopy and Related Topics, Knoxville, Tenn., (1984), S.Raman, Ed., AIP, New York, p.305 (1985)

Authors: T.von Egidy, P.Hungerford, H.H.Schmidt, H.J.Scheerer, A.N.Behkami, G.Hlawatsch, B.Krusche, K.P.Lieb, H.G.Borner, S.A.Kerr, K.Schreckenbach

Title: Structural and Statistical Aspects of Extensive Level Schemes from (n,γ) and Transfer Reactions **Keyword abstract:** NUCLEAR REACTIONS ¹⁹F, ²³Na, ²⁷Al, ³⁵Cl, ³⁹, ⁴⁰, ⁴¹K, ¹¹³Cd, ¹³³Cs, ¹⁵⁴Sm, ¹⁵³Eu, ¹⁵⁴Gd, ¹⁶⁰, ¹⁶²Dy(n,γ), (n,e),E not given; measured not given. ²⁰F, ²⁴Na, ²⁸Al, ³⁶Cl, ⁴⁰, ⁴¹, ⁴²K, ¹¹⁴Cd, ¹³⁴Cs, ¹⁵⁵Sm, ¹⁵⁴Eu, ¹⁵⁵Gd, ¹⁶¹, ¹⁶³Dy deduced levels,γ-transition multipolarity,strength distribution.

Keynumber: 1985EL10

Reference: J.Phys.(London) D18, 1967 (1985)

Authors: T.Elnimr, F.A.El-Hussiny

Title: Further Work on the Use of K(e,0) Factors as a Tool for a Critical Evaluation of Reactor Thermal

and Epithermal (n, γ) Cross Sections and of Absolute Gamma Intensities

Keyword abstract: NUCLEAR REACTIONS Mg, 27 Al,Ca, 45 Sc,Fe,Ga, 75 As,S,Se,Br,Ru,Rh (n,γ),E=thermal,epithermal; analyzed (K(e),0) factors data; deduced reaction σ ,absolute Iγ.

Keynumber: 1984WI15

Reference: Nucl.Sci.Eng. 88, 594 (1984) **Authors:** K.Wisshak, F.Kappeler, G.Reffo

Title: The Capture Width of the 34.8-keV s-Wave Neutron Resonance in ²⁷Al

Keyword abstract: NUCLEAR REACTIONS ²⁷Al(n,n), (n, γ),E=34.8 keV; measured σ (En),E γ ,I γ . ²⁸Al

deduced s-wave resonance capture $\Gamma\gamma$.

Keynumber: 1984KAZH

Reference: Proc.5th Seminar on Precise Measurements in Nucl.Spectrosc., Vilnius, p.3 (1984)

Authors: L.P.Kabina, I.A.Kondurov, P.A.Sushkov

Title: Precise Determination of Gamma-Quantum and Level Energies of 28 Al Nucleus from 27 Al(n, γ)

Reaction using Data of Several Measurements

Keyword abstract: NUCLEAR REACTIONS 27 Al(n, γ),E=thermal; measured E γ . 28 Al deduced levels. Ge(Li) detectors.

Keynumber: 1983SA30

Reference: Aust.J.Phys. 36, 583 (1983)

Authors: D.G.Sargood

Title: Effect of Excited States on Thermonuclear Reaction Rates

Keyword abstract: NUCLEAR REACTIONS,ICPND ²⁰, ²¹, ²²Ne, ²³Na, ²⁴, ²⁵, ²⁶Mg, ²⁷Al, ²⁸, ²⁹, ³⁰Si, ³¹P, ³², ³³, ³⁴, ³⁶S, ³⁵, ³⁷Cl, ³⁶, ³⁸, ⁴⁰Ar, ³⁹, ⁴⁰, ⁴¹K, ⁴⁰, ⁴², ⁴³, ⁴⁴, ⁴⁶, ⁴⁸Ca, ⁴⁵Sc, ⁴⁶, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Ti, ⁵⁰, ⁵¹V, ⁵⁰, ⁵², ⁵³, ⁵⁴Cr, ⁵⁵Mn, ⁵⁴, ⁵⁶, ⁵⁷, ⁵⁸Fe, ⁵⁹Co, ⁵⁸, ⁶⁰, ⁶¹, ⁶², ⁶⁴Ni, ⁶³, ⁶⁵Cu, ⁶⁴, ⁶⁶, ⁶⁷Zn(n,γ), (n,p), (n,α), (p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p), ⁷⁰Zn(p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p), E=low;

NSR Search Results Page 5 of 12

compiled target thermal distribution energy state to ground state thermonuclear reaction rate of reaction σ vs temperature. Statistical model.

Keynumber: 1982SH27

Reference: Chin.J.Nucl.Phys. 4, 88 (1982)

Authors: Shi Zongren, Zeng Xiantang, Guo Taichang

Title: Direct Capture Mechanism of 27 Al(n, γ) Reaction at Thermal Energy

Keyword abstract: NUCLEAR REACTIONS 27 Al(n, γ),E=thermal; measured E γ ,I γ ; deduced reaction

mechanism. ²⁸Al levels deduced possible J,π .

Kevnumber: 1982SC14

Reference: Phys.Rev. C25, 2888 (1982)

Authors: H.H.Schmidt, P.Hungerford, H.Daniel, T.von Egidy, S.A.Kerr, R.Brissot, G.Barreau,

H.G.Borner, C.Hofmeyr, K.P.Lieb

Title: Levels and Gamma Energies of ²⁸Al Studied by Thermal Neutron Capture

Keyword abstract: NUCLEAR REACTIONS 27 Al(n, γ),E=thermal; measured E γ ,I γ . 28 Al deduced

levels, J, π , neutron binding energy. Cyrstal spectrometer, Ge(Li) detector.

Keyword abstract: RADIOACTIVITY ²⁸Al [from ²⁷Al(n, γ),E=thermal]; measured Ε γ ,I γ following β-

decay. ²⁸Si deduced transition energy. Crystal spectrometer, Ge(Li) detector.

Keynumber: 1980PIZN

Coden: CONF Kiev(Neutron Physics) Proc, Part3, P270, Pisanko

Keyword abstract: NUCLEAR REACTIONS ²², ²³Na,Mg, ²⁴, ²⁵, ²⁶Mg, ²⁷Al,Si, ²⁸, ²⁹, ³⁰Si, ³¹P,S, ³², ³³, ³⁴S,Cl, ³⁵, ³⁶, ³⁷Cl,Ar, ³⁶, ³⁸, ⁴⁰Ar,K, ³⁹, ⁴⁰, ⁴¹K,Ca, ⁴⁰, ⁴², ⁴³, ⁴⁴, ⁴⁶, ⁴⁸Ca, ⁴⁵, ⁴⁶Sc,Ti, ⁴⁶, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Ti,V, ⁵⁰, ⁵¹V,Cr, ⁵⁰, ⁵², ⁵³, ⁵⁴Cr,Fe, ⁵⁴, ⁵⁶, ⁵⁷, ⁵⁸Fe, ⁵⁹Co,Ni, ⁵⁸, ⁵⁹, ⁶⁰, ⁶¹, ⁶², ⁶⁴Ni,Cu, ⁶³, ⁶⁵Cu,Zn, ⁶⁴, ⁶⁶, ⁶⁷, ⁶⁸, ⁷⁰Zn,Ga, ⁶⁹, ⁷¹Ga(n,γ), (n,n), (n,α),E=thermal; evaluated σ,radiative capture

resonance integrals.

Keynumber: 1980IS02

Reference: Can.J.Phys. 58, 168 (1980)

Authors: M.A.Islam, T.J.Kennett, S.A.Kerr, W.V.Prestwich **Title:** A Self-Consistent Set of Neutron Separation Energies

Keyword abstract: NUCLEAR REACTIONS ¹H, ⁹Be, ¹⁴N, ²⁴, ²⁵Mg, ²⁷Al, ²⁸, ²⁹Si, ³²S, ³⁵Cl, ⁴⁰, ⁴⁴Ca, ⁴⁷, ⁴⁸, ⁴⁹Ti, ⁵⁰, ⁵², ⁵³Cr, ⁵⁵Mn, ⁵⁴, ⁵⁶, ⁵⁷Fe(n,γ),E=thermal; measured Eγ,Iγ. ²H, ¹⁰Be, ²⁵, ²⁶Mg, ²⁸Al, ²⁹, ³⁰Si, ³³S, ³⁶Cl, ⁴¹, ⁴⁵Ca, ⁴⁸, ⁴⁹, ⁵⁰Ti, ⁵¹, ⁵³, ⁵⁴Cr, ⁵⁶Mn, ⁵⁵, ⁵⁷, ⁵⁸Fe deduced Q,neutron

binding energy.

Keynumber: 1980DE19

Reference: Nucl. Phys. A341, 21 (1980)

Authors: P.P.J.Delheij, A.Girgin, K.Abrahams, H.Postma, W.J.Huiskamp

Title: The ²⁷ Al(n, γ)²⁸ Al Reaction Studied with Polarized Neutrons and Polarized Aluminium Nuclei **Keyword abstract:** NUCLEAR REACTIONS ²⁷ Al(polarized n, γ),E=0.017 eV; measured Iγ(θ), γ -CP.

 28 Al levels deduced J, δ . Natural polarized,unpolarized targets.

Keynumber: 1980AL19

Reference: J.Phys.(London) G6, 1173 (1980) **Authors:** B.J.Allen, D.D.Cohen, F.Z.Company

NSR Search Results Page 6 of 12

Title: Radiative Widths of Neutron Scattering Resonances

Keyword abstract: NUCLEAR REACTIONS ¹⁹F, ²⁴Mg, ²⁷Al, ²⁸Si, ⁵⁶Fe, ²⁰⁷Pb(n,γ),E=20-80 keV; measured $\sigma(E\gamma,E)$. ²⁰F, ²⁵Mg, ²⁸Al, ²⁹Si, ⁵⁷Fe, ²⁰⁸Pb deduced resonances,Γn,L,J, π ,Γγ. Moxon-Rae detectors, Monte-Carlo analysis.

Keynumber: 1979SUZQ

Coden: CONF Riga,P48,Sushkov

Keyword abstract: NUCLEAR REACTIONS 27 Al(n, γ),E=thermal; analyzed E γ . 28 Al deduced levels.

Keynumber: 1979KAYU

Coden: CONF Riga,P511,Kabina

Keyword abstract: NUCLEAR REACTIONS ²⁷Al, ¹²³Sb(n,γ),E=thermal; measured Eγ. ²⁸Al deduced

transitions.

Keynumber: 1979BUZS

Coden: REPT INDC(YUG)-6/L,Budnar

Keyword abstract: NUCLEAR REACTIONS Mg, ²⁷Al,Si, ³¹P,S,Ca, ⁴⁵Sc, ⁵¹V,Cr, ⁵⁵Mn,Fe,

 59 Co,Cu,Se,Br,Sr, 89 Y,In,Sb, 127 I,Ba, 141 Pr, 165 Ho, 181 Ta,W,Tl,Pb, 209 Bi(n, γ),E=14.6 MeV; measured

σ(Εγ).

Keynumber: 1979BR25

Reference: Nucl.Instrum.Methods 166, 243 (1979)

Authors: F.Braumandl, K.Schreckenbach, T.von Egidy

Title: Precision Measurements of Neutron Binding Energies of ²⁸Al, ⁹²Zr, ¹¹⁴Cd, ¹⁶⁵Dy, ¹⁶⁸Er, ²⁰⁰Hg

and ²³⁹U

Keyword abstract: NUCLEAR REACTIONS 27 Al, 91 Zr, 113 Cd, 164 Dy, 167 Er, 199 Hg, 238 U

 (n,γ) , E=reactor; measured E γ , I(ce). ²⁸Al, ⁹²Zr, ¹¹⁴Cd, ¹⁶⁵Dy, ¹⁶⁸Er, ²⁰⁰Hg, ²³⁹U deduced B(n). Bent

crystal Gams, pair, β-spectrometers.

Keynumber: 1978KEZW

Coden: CONF Brookhaven(Neutron Capt γ-Ray Spectr),Proc,P649,Kenny

Keyword abstract: NUCLEAR REACTIONS 27 Al(n, γ),E=5.9 keV; measured $\Gamma\gamma$. 28 Al resonance

deduced π ,p-wave character, γ -branching.

Keynumber: 1978KEZS

Coden: CONF BNL(Neutron Capt γ-Ray Spectr), Contrib, No40, Kenny

Keyword abstract: NUCLEAR REACTIONS 27 Al(n,γ),E=5.904 keV; measured Eγ,Iγ. 28 Al deduced

 $J,\pi,\Gamma\gamma,\gamma$ -branching.

Keynumber: 1978DEYX

Coden: CONF Brookhaven(Neutron Capt γ-Ray Spectr), Proc, P597, Delheij

Keyword abstract: NUCLEAR REACTIONS ²⁷Al(polarized n, γ),E=thermal; measured γ -ray CP,I γ

 (θ) , Eγ. ²⁸ Al deduced levels, J, π , δ. Polarized, unpolarized target.

Keynumber: 1978DEYW

Coden: CONF BNL(Neutron Capt γ-Ray Spectr), Contrib, No22, Delheij

Keyword abstract: NUCLEAR REACTIONS ²⁷Al(polarized n, γ), E=th; measured Eγ, CPγ, $\sigma(\theta)$. ²⁸Al

NSR Search Results Page 7 of 12

levels deduced J. Evidence for M2,E1 mixing. Unpolarized,polarized targets.

Keynumber: 1977CL03

Reference: Phys.Lett. 71B, 10 (1977)

Authors: C.F.Clement, A.M.Lane, J.Kopecky

Title: Correlations in M1 Neutron Capture as Evidence for a Semi-Direct Mechanism

Keyword abstract: NUCLEAR REACTIONS ¹⁹F, ²³Na, ²⁵Mg, ²⁷Al, ²⁹Si, ³¹P, ³⁵, ³⁷Cl, ³⁹K, ⁴³Ca

 (n,γ) , (d,p); analyzed correlations between reaction types.

Keynumber: 1976MO29

Reference: Nucl.Sci.Eng. 61, 337 (1976)

Authors: G.L.Morgan, F.G.Perey

Title: Cross Sections for the Al(n,xn) and Al $(n,x\gamma)$ Reactions between 1 and 20 MeV

Keyword abstract: NUCLEAR REACTIONS 27 Al(n,xn), (n, γ),E=1-20 MeV; measured σ (E).

Keynumber: 1975YOZW

Coden: REPT LA-UR-75-317,mf

Keyword abstract: NUCLEAR REACTIONS ¹⁴N, ²⁷Al, ⁵⁶Fe,Mo, ⁹³Nb, ¹⁸¹Ta,W, ²³⁸U

 (n,γ) , E=thermal, 14 MeV; calculated σ .

Keynumber: 1975SI05

Reference: Phys.Rev. C11, 1117 (1975)

Authors: U.N.Singh, J.Rainwater, H.I.Liou, G.Hacken, J.B.Garg

Title: Neutron Resonance Spectroscopy: Aluminum

Keyword abstract: NUCLEAR REACTIONS ²⁷Al(n,n), (n,γ) ,E=4-420 keV; measured total $\sigma(E)$, σ

(E,Eγ). ²⁸Al deduced resonances,J,L,n-width,S.

Keynumber: 1975ALZW

Coden: JOUR BAPSA 20 150 EB16

Keyword abstract: NUCLEAR REACTIONS 27 Al, 28 Si, 40 Ca, 48 Ti, 52 Cr, 90 Zr, 138 Ba(n, γ),E >2.5

keV; measured $\sigma(E\gamma)$.

Keynumber: 1974RIZD

Coden: CONF Petten(Neutron Capture Gamma Ray Spectroscopy),P151

Keyword abstract: NUCLEAR REACTIONS ²⁷Al, ⁵⁰Ti, ⁵¹V, ¹⁰³Rh, ¹²⁷I, ¹³⁹La(n,γ),E=14.6 MeV;

measured $\sigma(E\gamma)$.

Keynumber: 1974RI14

Reference: Nucl.Sci.Eng. 55, 17 (1974)

Authors: F.Rigaud, M.G.Desthuilliers, G.Y.Petit, J.L.Irigaray, G.Longo, F.Saporetti **Title:** Improved Activation Measurements of (n, γ) Cross Section for 14.6-MeV Neutrons

Keyword abstract: NUCLEAR REACTIONS ²⁷Al, ⁵⁰Ti, ⁵¹V, ¹⁰³Rh, ¹²⁷I, ¹³⁹La(n,γ),E=14.6 MeV;

measured σ .

Keynumber: 1974ISZX

Coden: THESIS DABBB 34B 5613

Keyword abstract: NUCLEAR REACTIONS ¹⁹F, ²³Na, ²⁷Al, ³¹P, ³⁵Cl, ³⁹K(n,γ),E=thermal; measured Eγ,Iγ. ²⁰F, ²⁴Na, ²⁸Al, ³²P, ³⁶Cl, ⁴⁰K deduced levels,Q,γ-multiplicity,level-width.

NSR Search Results Page 8 of 12

Keynumber: 1974CO23

Reference: Nucl.Instrum.Methods 116, 251 (1974)

Authors: A.H.Colenbrander, T.J.Kennett

Title: The Application of a Statistical Description for Complex Spectra to the (n,γ) Reaction **Keyword abstract:** NUCLEAR REACTIONS ²⁷Al, ⁴⁵Sc, ⁵⁵Mn, ⁵⁹Co, ⁶³Cu, ⁷⁵As, ¹⁰³Rh, ¹⁰⁹Ag, ¹¹⁵In, ¹³³Cs, ¹⁸⁵Re, ¹⁹⁷Au, ²⁰³Tl(n,γ); measured Εγ,Ιγ. ²⁸Al, ⁴⁶Sc, ⁵⁶Mn, ⁶⁰Co, ⁶⁴Cu, ⁷⁶As, ¹⁰⁴Rh, ¹¹⁰Ag, ¹¹⁶In, ¹³⁴Cs, ¹⁸⁶Re, ¹⁹⁸Au, ²⁰⁴Tl deduced nuclear temperature, level densities.

Keynumber: 1972VOZM Coden: REPT KFK-1676 P6

Keyword abstract: NUCLEAR REACTIONS ²⁷Al, ⁵⁷Fe(n, γ); measured σ (E), γ -production.

Keynumber: 1972ST04

Reference: Nucl. Phys. A181, 225 (1972)

Authors: F.Stecher-Rasmussen, K.Abrahams, J.Kopecky

Title: Circular Polarization of Neutron Capture γ-Rays from Al, Ar and Ca

Keyword abstract: NUCLEAR REACTIONS ²⁷Al, ⁴⁰Ar, ⁴⁰, ⁴⁴Ca(polarized n,γ);E=thermal; measured

γ-CP. 28 Al, 41 Ar, 41 , 45 Ca levels deduced J,π. 28 Al transition deduced γ-mixing. Natural targets.

Keynumber: 1972HOYX

Coden: CONF Budapest, Contributions, P258, E Holub, 10/13/72

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁷Al, ³⁷Cl, ⁵¹V(n,γ),E=14 MeV; measured σ.

Keynumber: 1972CAYH

Coden: JOUR FZKAA 4 Suppl,59

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁷Al, ³⁷Cl, ⁵⁵Mn, ⁴¹K, ¹²⁷I(n, γ),E=14 MeV;

measured activation σ .

Keynumber: 1971SIZK

Coden: REPT BNL-50298,P47,10/21/71

Keyword abstract: NUCLEAR REACTIONS ¹⁹F, ²⁷Al(n, γ),E <300 keV; measured σ . ²⁰F, ²⁸Al

deduced resonances, J, πl , level-width.

Keynumber: 1971RYZZ

Reference: Proc.Int.Conf.Chemical Nuclear Data, Measurements and Applications, Canterbury,

England, M.L.Hurrell, Ed., Institution of Civil Engineers, London, p.139 (1971)

Authors: T.B.Ryves

Title: Thermal Neutron Capture Cross Section Measurements at the NPL

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁶Mg, ²⁷Al, ³⁰Si, ³⁷Cl, ⁴¹K, ⁵⁰Ti, ⁵¹V, ⁵⁸Fe, ⁶⁴Ni, ⁶³Cu, ⁶⁹, ⁷¹Ga, ⁷⁵As, ⁷⁹, ⁸¹Br, ⁸⁹Y, ¹⁰⁷, ¹⁰⁹Ag, ¹¹⁵In, ¹²¹, ¹²³Sb, ¹²⁷I, ¹³⁹La, ¹⁵¹Eu, ¹⁹⁶, ¹⁹⁸Pt

 (n,γ) , E=thermal; measured σ .

Keynumber: 1971RYZX

Coden: CONF Canterbury(Chem Nucl Data),P139,12/10/72

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁶Mg, ²⁷Al, ³⁰Si, ³⁷Cl, ⁴¹K, ⁵⁰Ti, ⁵¹V, ⁵⁸Fe, ⁶⁴Ni, ⁶³, ⁶⁵Cu, ⁶⁹, ⁷¹Ga, ⁷⁵As, ⁷⁹Br, ⁸¹Br, ⁸⁹Y, ¹⁰⁷, ¹⁰⁹Ag, ¹¹⁵In, ¹²¹, ¹²³Sb, ¹²⁷I, ¹³⁹La, ¹⁵¹Eu, ¹⁹⁶, ¹⁹⁸Pt

 (n,γ) , E=thermal; measured σ ; deduced resonance integrals.

NSR Search Results Page 9 of 12

Keynumber: 1971RAZF **Reference:** INR-1262 (1971)

Authors: W.Ratynski

Title: Circular Polarization of Gamma Rays

Keyword abstract: NUCLEAR REACTIONS ²⁷Al, ⁶⁹, ⁷¹Ga, ¹⁸², ¹⁸³W, ¹⁸⁶W(n,γ),E=thermal;

measured γ-polarization. ²⁸Al, ⁷⁰, ⁷²Ga, ¹⁸³, ¹⁸⁴, ¹⁸⁷W levels deduced J, π .

Keynumber: 1971LEZH

Coden: REPT INDC(SEC)-18/L,P18,12/30/71

Keyword abstract: NUCLEAR REACTIONS 27 Al(n, γ), measured E γ ,I γ . 28 Al deduced levels, γ -

branching.

Keynumber: 1970SP02

Reference: Nucl. Phys. A145, 449 (1970)

Authors: A.M.J.Spits, A.M.F. Op den Kamp, H.Gruppelaar

Title: Gamma Rays from Thermal-Neutron Capture in Natural and ²⁸Si Enriched Silicon

Keyword abstract: NUCLEAR REACTIONS ²⁸, ²⁹, ³⁰Si, ⁶Li, ¹⁴N, ¹⁹F, ²⁷Al, ⁵⁴, ⁵⁶Fe, ²⁰⁷Pb(n,γ), E=thermal; ²⁸Si(n,n'γ), E=fast; measured Eγ, Iγ; deduced Q. ²⁹, ³⁰, ³¹Si deduced levels, γ-branching.

Natural, ²⁸Si enriched targets, Ge(Li) detector.

Keynumber: 1970RY05

Reference: J.Nucl.Energy 24, 419 (1970)

Authors: T.B.Ryves, D.R.Perkins

Title: Thermal Neutron Capture Cross-Section Measurements for ²³Na, ²⁷Al, ³⁷Cl and ⁵¹V

Keyword abstract: RADIOACTIVITY ²⁸Al, ⁵²V; measured T_{1/2}.

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁷Al, ³⁷Cl, ⁵¹V(n, γ),E=thermal; measured σ .

Keynumber: 1970JAZN **Coden:** REPT PH-7,J Jafar

Keyword abstract: NUCLEAR REACTIONS ²⁰Ne, ²⁴Mg, ³⁰Si, ³²S, ³⁴S, ³⁶Ar, ⁴⁰Ca, ²⁷Al

 (n,γ) , E=thermal; surveyed, analyzed E γ , I γ data. ²¹Ne, ²⁵Mg, ³¹Si, ³³, ³⁵S, ³⁷Ar, ⁴¹Ca, ²⁸Al deduced

levels, γ -branching.

Keynumber: 1970CV01

Reference: Nucl.Phys. A158, 251 (1970) **Authors:** F.Cvelbar, A.Hudoklin, M.Potokar

Title: Comparison between the Activation Cross Sections and Integrated Cross Sections for the

Radiative Capture of 14 MeV Neutrons

Keyword abstract: NUCLEAR REACTIONS Mg, ²⁷Al,Si, ³¹P, ³²S, ⁴⁰Ca, ⁵¹V, ⁵²Cr, ⁵⁵Mn,Fe,Cu,

Br,Se, 115 In, 127 I,Ba(n, γ),E=14 MeV; measured σ (E γ); deduced integrated σ .

Keynumber: 1970BO12

Reference: Nucl.Instrum.Methods 83, 29 (1970) **Authors:** J.F.Boulter, W.V.Prestwich, B.Arad

Title: A Two Parameter Centroid Shift Method for Measuring Nuclear Lifetimes

Keyword abstract: RADIOACTIVITY 203 Hg; measured βγ-delay. 203 Tl level deduced $T_{1/2}$.

NSR Search Results Page 10 of 12

Keyword abstract: NUCLEAR REACTIONS ²⁷Al(n, γ), E=thermal; measured $\gamma\gamma$ -delay. ²⁸Al level deduced $T_{1/2}$.

Keynumber: 1969NI04

Reference: Can.J.Phys. 47, 953 (1969)

Authors: L.W.Nichol, A.H.Colenbrander, T.J.Kennett

Title: A Study of the 23 Na(n, γ) 24 Na and 27 Al(n, γ) 28 Al Reactions

Keyword abstract: NUCLEAR REACTIONS 23 Na, 27 Al(n, γ), E=thermal; measured E γ ,I γ ; deduced Q.

²⁴Na, ²⁸Al deduced levels.

Kevnumber: 1969KE15

Reference: Yadern.Fiz. 10, 907 (1969); Soviet J.Nucl.Phys. 10, 524 (1970)

Authors: J.Kecskemeti, D.Kiss

Title: Measurement of Average Multiplicity in (n, γ) Reactions Induced by Thermal Neutrons

Keyword abstract: NUCLEAR REACTIONS 23 Na, 27 Al, 31 P, 32 S, 35 Cl, 48 Ti, 51 V, 53 Cr, 52 Cr, 55 Mn, 56 Fe, 59 Co, 60 Ni,Ni,Cu, 63 Cu, Ge, 73 Ge, 75 As,Se,Br, Sr, Zr, 93 Nb,Mo, 103 Rh,Ag(n,γ) E=thermal;

measured average γ multiplicity.

Keynumber: 1969HOZY

Reference: Thesis, Technische Hogeschool, Delft (1969)

Authors: W.Hoekstra

Title: Gamma Rays from ²⁸Al, ¹⁸⁶, ¹⁸⁸Re, ²³³Th and ²³³Pa, Following Neutron Capture

Keyword abstract: RADIOACTIVITY ²³⁷Np; measured Eα, Eγ, Iγ, I(ce),αγ-,αce-coin. ²³³Pa deduced

levels.

Keyword abstract: NUCLEAR REACTIONS 35 Cl, 27 Al, 185 , 187 Re, 232 Th(n,γ), E = thermal; measured Eγ, Iγ; 185 , 187 Re(n,γ) deduced Q. 36 Cl, 28 Al, 186 , 188 Re, 233 Th, deduced levels. 233 Th [from 232 Th(n,γ)]; measured T_{1/2}, Eγ,Iγ, γγ-coin. 233 Pa deduced levels. Ge(Li) detector.

Keynumber: 1969HO12

Reference: Phys.Rev. 178, 1746 (1969)

Authors: R.W.Hockenbury, Z.M.Bartolome, J.R.Tatarczuk, W.R.Moyer, R.C.Block

Title: Neutron Radiative Capture in Na, Al, Fe, and Ni from 1 to 200 keV

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁷Al, ⁵⁴, ⁵⁶, ⁵⁷, ⁵⁸Fe, ⁵⁸, ⁶⁰, ⁶¹, ⁶², ⁶⁴Ni(n,γ), E=0.1-200 keV; measured σ(E). ²⁴Na, ²⁸Al, ⁵⁵, ⁵⁷, ⁵⁸, ⁵⁹Fe, ⁵⁹, ⁶¹, ⁶², ⁶³, ⁶⁵Ni deduced resonance parameters.

parameters.

Keynumber: 1969HA09

Reference: Nucl.Phys. A126, 392(1969) **Authors:** R.Hardell, S.O.Idetjarn, H.Ahlgren

Title: Thermal-Neutron Capture Gamma Rays from the 27 Al $(n,\gamma)^{28}$ Al Reaction

Keyword abstract: NUCLEAR REACTIONS 27 Al(n, γ), E=thermal; measured E γ , I γ ; deduced Q. 28 Al

deduced levels, \gamma-branching. Natural target.

Kevnumber: 1969EI01

Reference: Z.Physik 219, 114 (1969)

Authors: J.Eichler

Title: Messung der Zirkularen Polarisation von γ-Strahlung nach Einfang Polarisierter Thermischer

NSR Search Results Page 11 of 12

Neutronen in Kernen

Keyword abstract: NUCLEAR REACTIONS ²⁷Al, ⁵⁹Co,Mo,Sm(n,γ), E=thermal; measured circular polarization; 28 Al levels deduced γ -mixing. 60 Co, 96 Mo, 150 Sm levels, deduced J, π .

Keynumber: 1968KA33

Reference: Osterr.Akad.Wiss., Math.-Naturw.Kl., Anz. No.10, 1 (1968)

Authors: B.Karlik

Title: Messungeiniger Einfangsquerschnitte fur schnelle Nautronen

Keyword abstract: NUCLEAR REACTIONS ²⁶Mg, ²⁷Al, ³⁷Cl, ⁵¹V, ⁵⁵Mn, ⁶⁵Cu, ⁶⁸Zn, ⁷⁵As, ¹¹⁵In,

 127 I. 138 Ba(n. γ).E=2.9 MeV: measured σ .

Keynumber: 1968DI03

Reference: Nucl. Phys. A111, 360(1968)

Authors: H.Dinter

Title: Gammaspektren und Wirkungsquerschnitte beim Einfang von 14 MeV Neutronen in ²⁷Al und $127_{\mathbf{I}}$

Keyword abstract: NUCLEAR REACTIONS ²⁷Al, ¹²⁷I(n, γ),E=14 MeV; measured σ (E γ); deduced reaction mechanism. Natural targets.

Keynumber: 1968COZW

Coden: REPT UCRL-tr-10603,J Colditz,1/3/73

Keyword abstract: NUCLEAR REACTIONS ²⁶Mg, ²⁷Al, ³⁷Cl, ⁵¹V, ⁵⁵Mn, ⁶⁵Cu, ⁶⁶Zn, ⁷⁵As, ¹¹⁵In,

 127 I. 138 Ba(n. γ).E=2.9 MeV: measured σ .

Keynumber: 1967RA24

Reference: Proc.Intern.Conf.Atomic Masses, 3rd, Winnipeg, Canada, R.C.Barber, Ed., Univ.Manitoba

Press, p.278(1967)

Authors: N.C.Rasmussen, V.J.Orphan, Y.Hukai

Title: Determination of (n,γ) Reaction Q Values from Capture γ -Ray Spectra

Keyword abstract: NUCLEAR REACTIONS ⁶Li, ⁷Li, ⁹Be, ¹⁰B, ¹²C, ¹⁴N, ¹⁹F, ²³Na, ²⁴Mg, ²⁵Mg, ²⁶Mg, ²⁷Al, ²⁸Si, ³¹P, ³²S, ³⁵Cl, ⁴⁰Ca, ⁴⁵Sc, ⁴⁸Ti, ⁵¹V, ⁵⁵Mn, ⁵⁴Fe, ⁵⁶Fe, ⁵⁹Co, ⁵⁸Ni, ⁶⁰Ni, ⁶³Cu, ⁶⁵Cu, ⁶⁶Zn, ⁶⁷Zn, ⁷³Ge, ⁷⁶Se, ⁸⁵Rb, ⁸⁷Rb, ⁸⁹Y, ⁹³Nb, ¹⁰³Rh, ¹¹³Cd, ¹²³Te, ¹³³Cs, ¹³⁹La, ¹⁴¹Pr, ¹⁴⁹Sm, ¹⁵³Eu, 157 Gd, 159 Tb, 165 Ho, 167 Er, 169 Tm, 181 Ta, 182 W, 195 Pt, 197 Au, 199 Hg, 203 Tl, 207 Pb(n, γ), E = thermal:

measured Eγ; deduced Q. Natural targets.

Keynumber: 1967CS01

Reference: Nucl. Phys. A95, 229(1967)

Authors: J.Csikai, G.Peto, M.Buczko, Z.Miligy, N.A.Eissa **Title:** Radiative Capture Cross Sections for 14.7 MeV Neutrons

Keyword abstract: NUCLEAR REACTIONS ²⁷Al, ³⁰Si, ³¹P, ⁴⁵Sc, ⁴⁸Ca, ⁵⁰Ti, ⁵¹V, ⁸⁹Y, ¹²³Sb, ¹³⁹La,

 209 Bi(n, γ), E = 14.7 MeV; measured σ . 23 Na, 55 Mn, 103 Rh, 141 Pr, 165 Ho, 208 Pb(n, γ), E = 13.4-15.0

MeV; measured $\sigma(E)$. 103 Rh(n, γ), E = 13.4-15.0 MeV; measured $\sigma(g)/\sigma(M)$; deduced spin cutoff

parameter. Enriched ³⁰Si, ⁴⁸Ca targets.

Keynumber: 1967BE36

Reference: Phys.Rev. 158, 1049(1967)

Authors: I.Bergqvist, J.A.Biggerstaff, J.H.Gibbons, W.M.Good

NSR Search Results Page 12 of 12

Title: Gamma Rays from keV Resonance Neutron Capture in Some (2s-1d)-Shell Nuclei **Keyword abstract:** NUCLEAR REACTIONS 19 F, 23 Na, 24 Mg, 27 Al, 32 S, 35 Cl(n, γ),E=20-120 keV; measured E γ ,I γ . 20 F, 24 Na, 25 Mg, 28 Al, 33 S, 36 Cl deduced resonances,level-width,J, π .