Ch 13 part 2 Analysis and Stability

Thursday, March 19, 2020 4:10 PM (following Shalev-Shwartz and Ben-David) Analysis of term Recall (1) = E (2(A(S)) L=argmin [s(w)+>||w||² The larger & is, the larger (I) becomes: this represents more bias or underfitting So unlike D term, now want & small To analyze, note that since \lambda | \lambda (Yw) Lo(A(S)) + Lo(A(S)) + XII A(S) 1/2 $\angle [(\omega) + \lambda \|\omega\|^2$ nence D= EL, (A(S)) < EL, (w) + \lull2 (\twell) = Ln(w) + \11 w112

If w fixed, then draw Sid Dm, E Îs(w) = Ln(w) but E ? / N(C) I / 1 / D/C)

Es LS (P())) = LD (T())

So we can choose the best (or at least good) we to minimize this bound (such a w is an "oracle") (and can also choose) as we wish ...

though in practice choose & via cross-validation or similar

Fur example, and using abound on I from last lecture, Corollary 13.9 Let (dl, Z, L) be a convex, p-Lipschitz, B-bounded (ic. twell, II wll < B), and Sill Dm, then set $\lambda = \sqrt{\frac{2\rho^2}{R^2m}}$ then if A is RLM w, R(u) = $\lambda \| \mathbf{w} \|^2$,

Es Lo(A(S)) & min Lo(w) + DB/B/m

proof sketch:

$$EL_D(A(S)) = E(L_D(A(S)) - \hat{L}_S(A(S))) + E\hat{L}_S(A(S))$$

$$EL_D(A(S)) = E(L_D(A(S)) - \hat{L}_S(A(S))) + E\hat{L}_S(A(S))$$

L 202 + Lo(w) + Allwll² + well

L XM2

= $L_0(\omega) + \rho B \sqrt{8}_m$ (Since $\frac{2\rho^2 + \lambda^2 m B - 4\rho^2}{\lambda m} = \frac{4\rho^2}{\lambda m}$

and twed so take min.

$$=\sqrt{\frac{16B^2\rho^4m}{2\rho^2m}}$$

A similar bond, wi different assurptions (if X bounded, these are stronger assurptions, up to constants) Corollary 13.11 Let (dl, Z, 1) be a convex, B-smooth, B-bounded, and (42eZ) 1(0,2) < C < 1 then (42ro) (4 distro), if m7, $150\beta\beta^2$ and $\lambda = \frac{\epsilon}{3R^2}$, then ELD(A(S)) & (min LD(W)) + (1/3).E proof: ELD(A(S)) = E LS(A(S)) + (I) bdd from prev. kedur (ond ELs(A(S)) = LD(W) + XIIWII2 YWEH) $\leq \left(L_{b}(\omega) + \lambda \|\omega\|^{2}\right) + \frac{48\beta}{5\pi} \left(L_{b}(\overline{\omega}) + \lambda \|\overline{\omega}\|^{2}\right)$ Chose w=0 \[
\(\text{min} \(\text{L}_D \(\text{W} \) + \(\text{B}^2 + \frac{48B}{18B} \(\text{C} + 0 \)
\[
\text{
\text{MEH}} \(\text{L}_D \(\text{W} \) + \(\text{MB}^2 + \frac{48B}{18B} \(\text{C} + 0 \)
\[
\text{MEH} \(\text{L}_D \(\text{W} \) + \(\text{MB}^2 + \frac{48B}{18B} \(\text{C} + 0 \)
\[
\text{MEH} \(\text{L}_D \(\text{W} \) + \(\text{MB}^2 + \frac{48B}{18B} \(\text{C} + 0 \)
\[
\text{MEH} \(\text{L}_D \(\text{W} \) + \(\text{MB}^2 + \frac{48B}{18B} \(\text{C} + 0 \)
\[
\text{MEH} \(\text{L}_D \(\text{W} \) + \(\text{MB}^2 + \frac{48B}{18B} \(\text{C} + 0 \)
\[
\text{MEH} \(\text{L}_D \(\text{W} \) + \(\text{MB}^2 + \frac{48B}{18B} \(\text{C} + 0 \)
\[
\text{MEH} \(\text{MEH} \) + \(\text{MEH} \) + \(\text{MEH} \(\text{MEH} \) + \(\text{MEH} \) + \(\text{MEH} \) + \(\text{MEH} \)
\[
\text{MEH} \(\text{MEH} \) + \(∠ min L_D(w) + € + 48 €
Well 3 50 € 11/3 € K > 20 8

History of regularization + stability

Andrey Tixhonov 1906-1993 (sp. Tychonoff in ubiquitious in math topology)

Stability for learning: Ruger, Wager 178 for K-NN
Bagging (bootstrap aggregating) by Breiman 96
is used to increase stability of unstable also
Boosting creak strong learner from weak one
Bagging create stable learner from unstable ones

M

Modern ex. "Train fester, generalize better: Stability of stuchastic gradient descent" (Hardt, Read, Singer ICML 16) Mohri et al. !s perspective ch 14 " Algorithmic Stability" Emphosize benefit of this analysis (vs uniform conv.) is tailored to algorithm defines 'uniform stability' (can bound) and uses McDiarmid's ineq to get results (Thru 14.2) Thm 14.2 loss & M, algo A is B-uniformly stable then wg.7,1-8, Lo(A(5)) = Lo(A(5)) + B+(2mB+M) + Tog(VE) and Prop. 14.4 Shows if 11x112 r2 VxeX, Lis convex and p-admissable (similar to Lipschitz) then RLM is R(w) => | Nwh 2 is p-stable, B = D2 -

Tricking to see λ tradeoff $\lambda \rightarrow \emptyset \Rightarrow \beta \rightarrow 0 \quad (good)$ but $L_s(A(s))$ not as close to

min $L_s(\omega) \quad (=ERM)$ well