Set theory without powerset

Victoria Gitman

vgitman@nylogic.org https://victoriagitman.github.io

Models and Sets Seminar November 10th, 2021

Set theory without powerset

Start with ZFC.

ZF^- :

- Remove powerset.
- Replace the Replacement scheme with the Collection Scheme.

ZFC^- :

• Replace AC with the Well-Ordering Principle: every set can be well-ordered.

Models

- H_{κ^+} : collection of all sets with transitive closure of size $\leq \kappa$ for a cardinal κ
- A forcing extension of a model of ZFC by pretame class forcing.
 - $\blacktriangleright \mathbb{P} = \prod_{\xi \in \mathrm{Ord}} \mathrm{Add}(\omega, 1).$
- Every model of Kelley-Morse Set Theory with the Choice Scheme gives rise to a model of ${\rm ZFC}^-$ with the largest cardinal κ whose V_κ is the sets of the model and whose subsets of V_κ are the classes.

The axioms explained

Theorem: (Szczepaniak) There is a model of ZF^- in which AC holds (every family of sets has a choice function), but the Well-Ordering Principle fails.

Question: Does Zorn's Lemma imply AC over ZF⁻?

Consider the following theory.

ZFC-:

- Remove powerset
- Replace AC with the Well-Ordering Principle.

Theorem: (G., Hamkins, Johnstone, Zarach) There are models of ZFC- in which:

- Collection fails,
- ω_1 is singular,
- ullet every set of reals is countable, but ω_1 exists,
- Łoś-Theorem fails for ultrapowers.

Second-order set theory

Second-order set theory has two sorts of objects: sets and classes.

Syntax: Two-sorted logic

- Separate variables and quantifiers for sets and classes
- Convention: upper-case letters for classes, lower-case letters for sets

Semantics: A model is a triple $\mathscr{V} = \langle V, \in, \mathcal{C} \rangle$.

- V consists of the sets.
- C consists of the classes.
- Every set is a class: $V \subseteq \mathcal{C}$.
- $C \subseteq V$ for every $C \in C$.

Second-order axioms

- Sets: ZFC
- Classes:
 - Extensionality
 - ▶ Replacement: If F is a function and a is a set, then $F \upharpoonright a$ is a set.
 - ▶ Global well-order: There is a class well-order of sets.

Gödel-Bernays set theory GBC:

Comprehension scheme for first-order formulas:

If $\varphi(x, A)$ is a first-order formula, then $\{x \mid \varphi(x, A)\}$ is a class.

Kelley-Morse set theory KM :

Full comprehension:

If $\varphi(x, A)$ is a second-order formula, then $\{x \mid \varphi(x, A)\}$ is a class.

Choice principles for classes

Choice Scheme CC:

Given a second-order formula $\varphi(x,X,A)$, if for every set x, there is a class X witnessing $\varphi(x,X,A)$, then there is a class Y collecting witnesses for every x on its slices $Y_x = \{y \mid \langle y,x \rangle \in Y\}$ so that $\varphi(x,Y_x,A)$ holds.

Dependent Choice Scheme DC_{δ} : (δ regular or $\delta = Ord$)

Given a second-order formula $\varphi(X,Y,A)$, if for every class X, there is a class Y such that $\varphi(X,Y,A)$ holds, then there is a class Z such that for every $\xi<\delta$, $\varphi(Z\upharpoonright \xi,Z_\xi,A)$ holds.

"We can make δ -many dependent choices over any definable relation on classes without terminal nodes."

Models of Kelley-Morse set theory (with choice principles)

Proposition: Suppose $V \models \mathrm{ZFC}$ and κ is an inaccessible cardinal. Then $\langle V_{\kappa}, \in, V_{\kappa+1} \rangle \models \mathrm{KM} + \mathrm{CC} + \mathrm{DC}_{\mathrm{Ord}}$.

Consider the following theory.

ZFC_{I}^{-} :

- ZFC⁻
- There is the largest cardinal κ .
- κ is inaccessible: κ is regular and for all $\alpha < \kappa$, 2^{α} exists and $2^{\alpha} < \kappa$.
 - V_κ exists.
 - $ightharpoonup V_{\kappa} \models \mathrm{ZFC}$

Proposition: Suppose $M \models \mathrm{ZFC}_{\mathrm{I}}^-$ with the largest cardinal κ , then $\langle V_{\kappa}, \in, P(V_{\kappa}) \rangle \models \mathrm{KM} + \mathrm{CC}$.

Theorem: (G., Hamkins) There are models of KM in which CC fails for a Π_1^0 -assertion and ω -many choices.

Leeds

Bi-interpretability of $\mathrm{KM} + \mathrm{CC}$ and $\mathrm{ZFC}_\mathrm{I}^-$

Theorem: (Marek) The theory KM+CC is bi-interpretable with the theory ZFC_{I}^{-} .

Suppose $\mathscr{V} = \langle V, \in, \mathcal{C} \rangle \models \text{KM+CC}$.

- View each extensional well-founded class relation $R \in \mathcal{C}$ as coding a transitive set.
 - $ightharpoonup \operatorname{Ord} + \operatorname{Ord}$, $\operatorname{Ord} \cdot \omega$
 - **▶** *V* ∪ {*V*}
- Define a membership relation E on the collection of all such relations R (modulo isomorphism).
- Let $\langle M_{\mathscr{V}}, \mathsf{E} \rangle$, the companion model of \mathscr{V} , be the resulting first-order structure.
 - ▶ $M_{\mathscr{V}}$ has the largest cardinal $\kappa \cong \operatorname{Ord}^{\mathscr{V}}$.
 - $V_{\kappa}^{M_{\gamma \ell}} \cong V.$
 - $\triangleright \mathcal{P}(V_{\kappa})^{M_{\mathscr{V}}} \cong \mathcal{C}.$
 - $\blacktriangleright \langle M_{\mathscr{V}}, \mathsf{E} \rangle \models \mathrm{ZFC}_{\mathrm{I}}^{-}.$

Suppose $M \models \mathrm{ZFC}_{\mathrm{I}}^-$ with the largest cardinal κ .

- $\bullet V = V_{\kappa}^{M}$
- $\mathcal{C} = \{X \in M \mid X \subseteq V_{\kappa}^M\}$
- $\mathscr{V} = \langle V, \in, \mathcal{C} \rangle \models \mathrm{KM} + \mathrm{CC}$
- $M_{\mathscr{V}} \cong M$ is the companion model of \mathscr{V} .

Leeds

First-order Dependent Choice Scheme

Dependent Choice Scheme: DC_{δ} -scheme (δ regular)

Given a formula $\varphi(x,y,a)$, if for every b, there is a c such that $\varphi(b,c,a)$ holds, then there is a function f with domain δ such that for all $\xi < \delta$, $\varphi(f \upharpoonright \xi, f(\xi), a)$ holds.

"We can make δ -many dependent choices over any definable relation without terminal nodes."

 $DC_{<\mathrm{Ord}}$ -scheme: the DC_{δ} -scheme for every regular δ .

Proposition: In ZFC, the DC_{<Ord}-scheme holds.

Proof: Fix a regular δ and a relation $\varphi(x, y, a)$ without terminal nodes.

Fix a V_{γ} , with $\operatorname{cof}(\gamma) \geq \delta$, such that V_{γ} reflects $\varphi(x, y, a)$ and $\forall x \exists y \varphi(x, y, a)$.

- $\bullet \ V_{\gamma}^{<\delta}\subseteq V_{\gamma}.$
- Use a well-ordering of V_{γ} together with closure to construct f. \square

Models

- H_{κ+}.
- \bullet Pretame forcing extensions of ZFC-models: pretame forcing preserves $\mathrm{DC}_{<\mathrm{Ord}}\text{-scheme}.$
- A model $\mathscr{V} = \langle V, \in, \mathcal{C} \rangle \models \mathrm{KM} + \mathrm{CC} + \mathrm{DC}_{\delta}$ if and only if its companion model $M_{\mathscr{V}} \models \mathrm{ZFC}_{\mathtt{L}}^- + \mathrm{DC}_{\delta}$ -scheme.

Applications of the Dependent Choice Scheme

Proposition: (G.) In ZFC⁻, TFAE for a regular δ such that $\gamma^{<\delta}$ exists for every γ .

- DC_{δ} -scheme
- Every formula $\psi(x, a)$ reflects to a transitive model m such that $m^{<\delta} \subseteq m$.

Corollary:

- ullet DC_{ω} -scheme is equivalent to the assertion that every formula reflects to a transitive set.
- In ZFC_1^- , the DC_δ -scheme holds if and only if every formula reflects to a transitive model closed under $<\!\delta$ -sequences.

Theorem: (Folklore) In ZFC⁻, TFAE.

- DC_{<Ord}-scheme
- The partial order Add(Ord, 1) is Ord-distributive (doesn't add sets).
- Global well-order can be forced without adding sets.

Proposition: In ZFC⁻ + DC $_{\delta}$ -scheme, every class surjects onto δ .

Proposition: In $\mathrm{ZFC}^- + \mathrm{DC}_{<\mathrm{Ord}}$ -scheme, every class is big: surjects onto every ordinal.

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

10 / 23

ZFC⁻ and Kunen's Inconsistency

Proposition: If there is an elementary embedding $j: V_{\lambda+1} \to V_{\lambda+1}$ with $\mathrm{crit}(j) < \lambda$ (I_1), then there is an elementary embedding $j^*: H_{\lambda^+} \to H_{\lambda^+}$.

- Kunen's Inconsistency does not hold for ZFC⁻.
- H_{λ^+} satisfies $\mathrm{DC}_{<\mathrm{Ord}}$.
- j^* is not cofinal.

Theorem: (Matthews) Kunen's Inconsistency holds for cofinal self-embeddings of models of $\rm ZFC^- + DC_{< Ord}$ -scheme.

Question: Does Kunen's Inconsistency hold for cofinal self-embeddings models of ZFC⁻?

Failures of the Dependent Choice Scheme

Theorem: (Friedman, G., Kanovei) There is a model $M \models \mathrm{ZFC}^-$ in which the DC_{ω} -scheme fails.

- Force with a tree iteration of Jensen's forcing along the tree $\omega_1^{<\omega}$.
- *N* is a symmetric submodel of the forcing extension.
- $\bullet \ M = H_{\omega_1}^N$
- $M \models$ " ω is the largest cardinal."

Work in progress: (G., Friedman) There is a model of ZFC_1^- in which the DC_{ω} -scheme fails. Therefore, there is a model of KM + CC in which DC_{ω} fails.

• Use a generalization of Jensen's forcing for an inaccessible cardinal.

More later...

ZFC⁻ and the Intermediate Model Theorem

Intermediate Model Theorem: (Solovay)

- If $V \models \mathrm{ZFC}$, V[G] is a set forcing extension, and $W \models \mathrm{ZFC}$ such that $V \subseteq W \subseteq V[G]$, then W = V[H] is a set forcing extension.
- If $V \models \operatorname{ZF}$, V[G] is a set forcing extension, and $V[a] \models \operatorname{ZF}$ such that $a \subseteq V$ and $V[a] \subseteq V[G]$, then V[a] is a set forcing extension.

Theorem: (Antos, G., Friedman) If $M \models \mathrm{ZFC}^-$, M[G] is a set forcing extension, and $M[a] \models \mathrm{ZFC}^-$ such that $a \subseteq M$ and $M[a] \subseteq M[G]$, then M[a] = M[H] is a set forcing extension.

Proof Sketch: Every poset $\mathbb{P} \in M$ densely embeds into a class complete Boolean algebra. \square .

Failure of the Intermediate Model Theorem

Theorem: (Antos, G., Friedman) If $M \models \mathrm{ZFC}_{\mathrm{I}}^-$ with the largest cardinal κ and $G \subseteq \mathrm{Add}(\kappa,1)$ is M-generic, then there is a model $N \models \mathrm{ZFC}^-$ such that:

- $M \subseteq N \subseteq M[G]$,
- N is not a set forcing extension,
- if $M \models \mathrm{DC}_{\kappa}$ -scheme, then $N \models \mathrm{DC}_{\kappa}$ -scheme.

Proof Sketch:

- $G \subseteq Add(\kappa, \kappa) \cong Add(\kappa, 1)$
- $G_{\xi} = G \upharpoonright \xi$ is the restriction of G to the first ξ -many coordinates of the product.
- $\bullet \ \ \mathsf{N} = \bigcup_{\xi < \kappa} \, \mathsf{M}[\mathsf{G}_{\xi}]$
- Use an automorphism argument to show that *N* satisfies Collection.

ZFC⁻ and ground model definability

Theorem: (Laver, Woodin) A model $V \models \mathrm{ZFC}$ is uniformly definable with parameters from V in all its set forcing forcing extensions.

Theorem: (G., Johnstone) If $M \models \mathrm{ZFC}_{\mathrm{I}}^-$ with the largest cardinal κ , then M is uniformly definable in its forcing extensions by any poset in V_{κ} .

Theorem: (G., Johnstone)

- Suppose κ is regular and uncountable and W=V[G] is a forcing extension by $\mathrm{Add}(\omega,\kappa^+)$. Then $M=H^W_{\kappa^+}$ is not definable in its forcing extensions by $\mathrm{Add}(\omega,1)$.
 - \triangleright $P(\omega)$ is a proper class in M.
- Suppose κ is inaccessible and W = V[G] is a forcing extension by $\mathrm{Add}(\kappa, \kappa^+)$. Then $M = H_{\kappa^+}^W$ is not definable in its forcing extensions by $\mathrm{Add}(\kappa, 1)$.
 - $ightharpoonup M \models \mathrm{ZFC}_{\mathrm{I}}^{-}.$

Theorem: (Woodin) If there is an elementary embedding $j: L(V_{\lambda+1}) \to L(V_{\lambda+1})$ with $\operatorname{crit}(j) < \lambda$ (I_0), then $M = H_{\lambda^+}$ is not definable in its forcing extension by $\operatorname{Add}(\omega, 1)$.

• $P(\omega) \in M$.

Question: What is the consistency strength of having a model $M \models \mathrm{ZFC}^-$ which is not definable in a forcing extension by $\mathbb{P} \in M$ with $P(\mathbb{P}) \in M$?

ZFC⁻ and HOD

Theorem: The inner model HOD (hereditarily ordinal definable sets) is definable in any model $V \models \text{ZFC}$.

Proof: A set *a* is in HOD if and only if there is α such that *a* is ordinal definable over V_{α} . \square

Question: Is HOD definable in models of ZFC⁻?

ZFC⁻ does not imply the existence of a hierarchy.

Question: Is HOD definable in models of $ZFC^- + DC_{<Ord}$ -scheme?

Strange models of ZFC⁻

Set-up

$$V \models \text{ZFC} + \text{CH}$$

$$\mathbb{P} = \mathrm{Add}(\omega, \omega) \cong \mathrm{Add}(\omega, 1).$$

$$G \subseteq Add(\omega, \omega)$$
 is V-generic.

 $G_n = G \upharpoonright n$ is the restriction of G to the first n-many coordinates of the product.

$$N = \bigcup_{n < \omega} V[G_n].$$

Theorem: (Zarach)

- $N \models ZFC^-$: automorphism argument
- V and N have the same cardinals and cofinalities
- $P(\omega)$ does not exist in N
- $P(\omega)$ is a small class in N: $P(\omega)$ does not surject onto ω_2
- $N \models \mathrm{DC}_{\omega}$ -scheme
- $N \models \neg DC_{\omega_2}$ -scheme

Question: Does the DC_{ω_1} -scheme hold in N?

Victoria Gitman

Generalizing Zarach's construction

Set-up

$$V \models \mathrm{ZFC} + 2^{\delta} = \delta^+$$
 (δ regular cardinal)

$$\mathbb{P} = \mathrm{Add}(\delta, \delta) \cong \mathrm{Add}(\delta, 1).$$

$$G \subseteq Add(\delta, \delta)$$
 is V-generic.

 $G_{\xi} = G \upharpoonright \xi$ is the restriction of G to the first ξ -many coordinates of the product.

$$N = \bigcup_{\xi < \delta} V[G_{\xi}].$$

Theorem: (G., Matthews)

- *N* |= ZFC[−]: automorphism argument
- V and N have (almost) the same cardinals and cofinalities
- $P(\delta)$ does not exist in N
- $P(\delta)$ is a small class in N: $P(\delta)$ does not surject onto δ^{++}
- $N \models \mathrm{DC}_{\delta}$ -scheme (uses $N^{<\delta} \subseteq N$ in V[G])
- $N \models \neg DC_{\delta^{++}}$ -scheme

Jensen's forcing

J: (Jensen)

- subposet of Sacks forcing: perfect trees ordered by ⊆
- constructed using
- CCC
- adds a unique generic real

Products and iterations of Jensen's forcing have "uniqueness of generics" properties.

 $\mathbb{J}^{<\omega}$: finite-support ω -length product of the \mathbb{J} .

Theorem: (Lyubetsky, Kanovei) If $G \subseteq \mathbb{J}^{<\omega}$ is V-generic, then in V[G], the V-generic reals for \mathbb{J} are precisely the "slices" G_n of G.

Jensen's forcing at an inaccessible

Suppose κ is inaccessible.

 J_{κ} (G., Friedman)

- subposet of κ -Sacks forcing: perfect κ -trees ordered by \subseteq
- constructed using $\diamondsuit_{\kappa^+}(\operatorname{cof}(\kappa))$
- κ^+ -cc
- ullet adds a unique generic subset of κ

 $\mathbb{J}_{\kappa}^{<\kappa}$: bounded-support κ -length product of \mathbb{J}_{κ} .

Theorem: (G. Friedman) If $G \subseteq \mathbb{J}_{\kappa}^{<\kappa}$ is V-generic, then in V[G], the V-generic reals for \mathbb{J}_{κ} are precisely the "slices" G_{ξ} of G.

Getting the DC_ω -scheme to hold and the DC_{ω_1} -scheme to fail

Set-up

$$L \models \mathrm{ZFC}$$

$$\mathbb{P} = \prod_{n < \omega} \mathbb{J}^{<\omega} \cong \mathbb{J}^{<\omega}.$$

$$G \subseteq \mathbb{P}$$
 is *L*-generic.

 $G_n = G \upharpoonright n$ is the restriction of G to the first n-many coordinates of the product.

$$N = \bigcup_{n < \omega} V[G_n].$$

Theorem: (G., Matthews)

- $N \models ZFC^-$
- L and N have the same cardinals and cofinalities
- $P(\omega)$ does not exist in N
- $P(\omega)$ is a small class in N: $P(\omega)$ does not surject onto ω_2
- $N \models \mathrm{DC}_{\omega}$ -scheme
- $N \models \neg DC_{\omega_1}$ -scheme
 - ▶ for every countable sequence of Jensen's reals, there is a Jensen's real distinct from it
 - there is no ω_1 -length sequence of distinct Jensen's reals

4 D > 4 B > 4 B > 4 B > B 9 Q C

Getting the $\mathrm{DC}_\kappa\text{-scheme}$ to holds and the $\mathrm{DC}_{\kappa^+}\text{-scheme}$ to fail

Theorem: (G., Matthews) If κ is inaccessible, then there is a model of ZFC⁻ in which the DC_{κ} -scheme holds, but DC_{κ^+} -scheme fails.

Same construction using \mathbb{J}_{κ} instead of \mathbb{J} .

A different model of $ZFC^- + \neg DC_{\omega}$ -scheme

Theorem: (G., Matthews) There is a model of $N \models ZFC^-$ such that:

- $P(\omega)$ does not exist.
- Every class is big.
- There are unboundedly many cardinals.
- DC_{ω} -scheme fails.

Proof Sketch: Force with the tree iteration \mathbb{P} of Jensen's forcing along the tree $\operatorname{Ord}^{<\omega}$. Let $G \subseteq \mathbb{P}$ be V-generic.

- \mathbb{P} has the ccc, and hence is pretame.
- $V[G] \models ZFC^- + DC_{<Ord}$ -scheme.
- $N = \bigcup L[G_T]$, where T is a certain set subtree of $\operatorname{Ord}^{<\omega}$, \mathbb{P}_T is the restriction of \mathbb{P} to T, and G_T is the restriction of G to \mathbb{P}_T .