INTRODUCTION

Club Membership Trend using Time Series
Analysis and Regression Model

Objective & Motivation

- Explore student participation in clubs and events over time.
- Use time series analysis and regression techniques for trend analysis.
- Predict future membership trends.
- Provide insights for better resource allocation, event planning, and club management.
- Understand how student engagement in extracurricular activities impacts their overall experience.
- Optimize club activities to improve student involvement.

Attributes of Datasets & Its types

The dataset provided includes information about club membership trends over multiple semesters. Key attributes are:

- **Semester** Represents the time period (Semester 1, 2, 3, and 4).
- Club Name/ID Identifies the specific club (e.g., Club 1, Club 2, etc.).
- Past Members Number of continuing members from the previous semester.
- New Members Number of new participants who joined during that semester.
- **Total Members** Sum of past and new members in the current semester.
- **Event Attendance** Number of participants attending events hosted by the club.

Handing Categorical data

Why Handle It?

Machine learning models need **numerical inputs**, so **categorical data** (e.g., clubs, semesters) must be encoded.

Methods:

One-Hot Encoding: Converts categories to binary columns.

```
import pandas as pd
df = pd.DataFrame({'Club': ['Club1', 'Club2', 'Club3'], 'Semester': [1, 2, 3]})
df_encoded = pd.get_dummies(df, columns=['Club'])
print(df_encoded)
```

Ordinal Encoding: Maps ordered categories to integers.

```
from sklearn.preprocessing import OrdinalEncoder
encoder = OrdinalEncoder()
df['Semester'] = encoder.fit_transform(df[['Semester']])
print(df)
```

Relationship Between Attributes

1. Past Members and New Members

 High past membership often correlates with increased new memberships due to positive club reputation and recurring participation.

2. Total Members and Event Attendance

• Clubs with larger memberships often see increased participation, suggesting a stronger sense of community and interest in events.

3. New Members and Event Attendance

A steady increase in new members can predict higher event engagement over subsequent semesters.

4. Semester Progression and Membership Growth

 Membership growth trends over semesters can be analyzed using time series models to identify seasonality and patterns.

Dataset

Semester	Club	Past Members	New Members	Total Membe	Event Attendance	Semester	Club	Past Members	New Members	Total Members	Event Attendance
Semester 1	Club 1	0	37	37	17	Semester 2	Club 1	37	32	69	39
Semester 1	Club 2	0	38	38	18	Semester 2	Club 2	38	37	75	38
Semester 1	Club 3	0	30	30	10	Semester 2	Club 3	30	49	79	12
Semester 1	Club 4	0	49	49	19	Semester 2	Club 4	49	49	98	97
Semester 1	Club 5	0	42	42	32	Semester 2	Club 5	42	38	80	26
Semester 1	Club 6	0	31	31	. 21	Semester 2	Club 6	31	33	64	51
Semester 1	Club 7	0	30	30	13	Semester 2	Club 7	30	42	72	59
Semester 1	Club 8	0	40	40	32	Semester 2	Club 8	40	49	89	77
Semester 1	Club 9	0	39	39	34	Semester 2	Club 9	39	38	77	30
Semester 1	Club 10	0	47	47	35	Semester 2	Club 10	47	33	80	17

Semester	Club	Past Members	New Members	Total Member	Event Attendance	Semester	Club	Past Members	New Members	Total Members	Event Attendance
Semester 3	Club 1	69	41	110	101	Semester 4	Club 1	110	32	142	58
Semester 3	Club 2	75	38	113	85	Semester 4	Club 2	113	45	158	122
Semester 3	Club 3	79	33	112	19	Semester 4	Club 3	112	37	149	55
Semester 3	Club 4	98	37	135	74	Semester 4	Club 4	135	42	177	49
Semester 3	Club 5	80	38	118	65	Semester 4	Club 5	118	48	166	134
Semester 3	Club 6	64	44	108	67	Semester 4	Club 6	108	48	156	155
Semester 3	Club 7	72	48	120	81	Semester 4	Club 7	120	39	159	98
Semester 3	Club 8	89	43	132	27	Semester 4	Club 8	132	44	176	123
Semester 3	Club 9	77	40	117	99	Semester 4	Club 9	117	31	148	123
Semester 3	Club 10	80	48	128	89	Semester 4	Club 10	128	47	175	127

Model Required

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from sklearn.linear model import LinearRegression
# Load dataset
data path = "club membership.csv"
df = pd.read csv(data path)
#The dataset has columns: 'Semester', 'Club', 'Total Members', 'Event Attendance'
# Pivot data for visualization
membership trends = df.pivot(index='Semester', columns='Club', values='Total Members')
event trends = df.pivot(index='Semester', columns='Club', values='Event Attendance')
#Club Membership Trends Over Semesters
plt.figure(figsize=(10, 5))
for club in membership trends.columns:
    plt.plot(membership trends.index, membership trends[club], marker='o', label=club)
plt.title("Club Membership Trends Over Semesters")
plt.xlabel("Semester")
plt.ylabel("Total Members")
plt.legend()
plt.grid()
plt.show()
```

```
#Event Attendance Trends Over Semesters
plt.figure(figsize=(10, 5))
for club in event trends.columns:
    plt.plot(event trends.index, event trends[club], linestyle='dashed', marker='s', label=club)
plt.title("Event Attendance Trends Over Semesters")
plt.xlabel("Semester")
plt.ylabel("Event Attendance")
plt.legend()
plt.grid()
plt.show()
#Membership Trends with Future Predictions
future semesters = np.array([5, 6]).reshape(-1, 1)
predictions = {}
plt.figure(figsize=(12, 6))
for club in membership trends.columns:
    X = np.array(membership trends.index).reshape(-1, 1)
    y = membership trends[club].values
   model = LinearRegression()
    model.fit(X, y)
```

```
predictions[club] = pred
    plt.plot(X, y, marker='o', label=club)
    plt.plot(future semesters, pred, linestyle='dashed')
plt.title("Club Membership Trends and Predictions")
plt.xlabel("Semester")
plt.ylabel("Membership Count")
plt.legend()
plt.grid()
plt.show()
#Actual vs Predicted Attendance Scatter Plot
X attendance = event trends.index.values.reshape(-1, 1)
y attendance = event trends.mean(axis=1).values # Averaging attendance across clubs
model attendance = LinearRegression()
model attendance.fit(X attendance, y attendance)
predicted attendance = model attendance.predict(X attendance)
plt.figure(figsize=(8, 6))
plt.scatter(y attendance, predicted attendance, alpha=0.7)
plt.xlabel("Actual Attendance")
plt.ylabel("Predicted Attendance")
plt.title("Regression Model: Actual vs Predicted Attendance")
plt.grid()
plt.show()
```

pred = model.predict(future semesters)

<u>Interpretation of Model</u>

The line graph represents the **club membership trends over different semesters**. Each line corresponds to a different club, showing the **total number of members** across four semesters. The general upward trend in all clubs indicates **a consistent increase in membership over time**, suggesting growing student participation. Some clubs, such as **Club 1 and Club 6**, exhibit a **steeper growth rate**, implying higher recruitment or retention rates. The trend also suggests that no clubs experienced a decline in membership, which could indicate **effective engagement strategies** or a growing interest in club activities among students.

Interpretation of Model

The line graph illustrates **event attendance trends over different semesters** for various clubs. Unlike the previous membership graph, this one exhibits more **fluctuations** in attendance patterns. While most clubs show a general increase, some clubs, such as **Club 4 and Club 5**, demonstrate significant **spikes and drops** in attendance across semesters, indicating varying levels of engagement. **Club 6 and Club 9** show a **sharp rise** in attendance by Semester 4, suggesting increased popularity or successful event planning. However, certain clubs, like **Club 3**, maintain relatively lower attendance, which may indicate **less effective outreach** or fewer events being conducted.

<u>Interpretation of Model</u>

The graph illustrates **club membership trends along with predictions** for future semesters. The **solid lines** represent actual data, while the **dashed lines** indicate projected membership counts. The trend shows a **steady increase** in club memberships over time, suggesting growing student engagement. The predicted values for upcoming semesters indicate that this trend is expected to continue, with some clubs experiencing **faster growth** than others. The **upper set of dashed lines** suggests that clubs with historically higher memberships are likely to maintain their dominance, while clubs with lower initial memberships may experience **gradual but consistent growth**.

Interpretation of Model

The scatter plot compares **actual event attendance** with the **predicted attendance** based on a regression model. Ideally, if the model had perfect accuracy, the points would align along a **45-degree diagonal line** (y = x). However, the spread of points indicates some **deviation** between actual and predicted values. While some predictions are relatively close, others show noticeable discrepancies, suggesting that the model might require **further tuning** to improve accuracy. Possible refinements could include incorporating additional variables or adjusting the regression parameters to minimize prediction errors.

Applicability

- » This model can predict future membership trends which will help deciding club budget and expenditure.
- » If certain events show consistently lower attendance than predicted, clubs can adjust marketing strategies or event formats to increase engagement.
- » University administration and club leaders can use insights from the model to allocate funding, promote high-impact events, and improve overall student engagement.
- » The model can help forecast club event attendance for future semesters, allowing organizers to plan resources, venues, and logistics more effectively.

Thank You

- → Abhinav Anand (BTECH/10164/23)
- » Aman Agrawal (BTECH/10166/23)
- » Randhir Raj (BTECH/10216/23)
- » Shivam Sharma (BTECH/10230/23)
- → Mayank Raj (BTECH/10640/23)