FOURIER-MUKAI TRANSFORM ON ABELIAN SURFACES

KŌTA YOSHIOKA

0. Introduction

Let (X, H) be a pair of an abelian surface X and an ample line bundle H on X. Let \langle , \rangle be a bilinear form on $H^{ev}(X, \mathbb{Z}) := \bigoplus_i H^{2i}(X, \mathbb{Z})$ defined by

$$\langle x, y \rangle := \int_X (x_1 \cup y_1 - x_0 \cup y_2 - x_2 \cup y_0)$$

where $x = (x_0, x_1, x_2), y = (y_0, y_1, y_2)$ with $x_i, y_i \in H^{2i}(X, \mathbb{Z})$. For an object $E \in \mathbf{D}(X)$, we define the Mukai vector $v(E) \in H^{ev}(X, \mathbb{Z})$ of E as the Chern character of E. We also call an element $v \in H^*(X, \mathbb{Z})$ Mukai vector, if v = v(E) for an object $E \in \mathbf{D}(X)$.

We denote the coarse moduli space of S-equivalence classes of semi-stable sheaves E with v(E) = v by $\overline{M}_H(v)$ and the open subscheme consisting of stable sheaves by $M_H(v)$. We also denote the moduli stack of semi-stable sheaves by $\mathcal{M}_H(v)^{ss}$. Let $Y := M_H(v_0)$ be the moduli space of stable semi-homogeneous sheaves on X. Assume that Y is a fine moduli space, that is, there is a universal family \mathbf{E} on $Y \times X$. We define the integral functor $\Phi_{Y \to X}^{\mathbf{E}}$ as

(0.2)
$$\mathbf{D}(Y) \to \mathbf{D}(X) \\ y \mapsto \mathbf{R}p_{X*}(\mathbf{E} \otimes p_Y^*(y)),$$

where $p_X: X \times Y \to X$ (resp. $p_Y: X \times Y \to Y$) be the projection. Let $\mathbf{D}(X)_{op}$ be the opposite category of $\mathbf{D}(X)$ and define the equivalence

(0.3)
$$D: \mathbf{D}(X) \to \mathbf{D}(X)_{op} \\ x \mapsto x^{\vee} = \mathbf{R}\mathcal{H}om(x, \mathcal{O}_X).$$

Definition 0.1. We call equivalences $\mathbf{D}(Y) \to \mathbf{D}(X)$ and $\mathbf{D}(Y) \to \mathbf{D}(X)_{op}$ the Fourier-Mukai transform.

$$\Psi^{\mathbf{E}}_{Y \to X} : H^*(Y, \mathbb{Z}) \to H^*(X, \mathbb{Z})$$
 denotes the cohomological transform induced by \mathbf{E} .

Theorem 0.1. Let $w \in H^*(Y, \mathbb{Z})$ be a primitive Mukai vector with $\langle w^2 \rangle > 0$. Let H' be an ample divisor on Y witch is general with respect to w. We set $v = \Psi^{\mathbf{E}}_{Y \to X}(w)$. We assume that H is general with respect to v. Then there is an autoequivalence $\Phi^{\mathbf{F}}_{X \to X} : \mathbf{D}(X) \to \mathbf{D}(X)$ such that for a general $E \in M_{H'}(v)$, $F := \Phi^{\mathbf{F}}_{X \to X} \circ \Phi^{\mathbf{E}}_{Y \to X}(E)$ is a stable sheaf with v(F) = v or F^{\vee} is a stable sheaf with $v(F^{\vee}) = v$. In particular, $M_{H'}(w)$ is birationally equivalent to $M_H(v)$.

Since the moduli space of semi-stable sheaves is irreducible, the same assertion in Theorem 0.1 also holds for a general stable sheaf E with a non-primitive vector. This is a partial generalization of a result in [Y4], which is conjectured in [Y2, Conj. 4.16]. If X is a K3 surface, then a similar result is conjectured by Tom Bridgeland. In particular, the idea of replacing $\Phi_{Y\to X}^{\mathbf{E}}(E)$ by another Fourier-Mukai transform $\Phi_{X\to X}^{\mathbf{F}} \circ \Phi_{Y\to X}^{\mathbf{E}}(E)$ is due to him.

1. Preliminaries

1.1. **A family of 2-extensions.** In this section, we recall or prepare some necessary results to prove Theorem 0.1. We start with a possibly well-known result on a family of 2-extensions.

Definition 1.1. Let

$$(1.1) \mathcal{V}_{\bullet}: \cdots \to \mathcal{V}_{-1} \to \mathcal{V}_{0} \to \mathcal{V}_{1} \to \cdots$$

be a complex on $X \times T$. \mathcal{V}_{\bullet} is flat, if \mathcal{V}_{i} are flat over T.

We shall construct a family of 2-extensions:

$$(1.2) 0 \to A_0 \to V_0 \to V_1 \to A_1 \to 0.$$

Let v_0, v_1 be Mukai vectors of coherent sheaves on X. Let Q_i , i = 0, 1 be the open subscheme of the quot-scheme $\operatorname{Quot}_{W_i \otimes \mathcal{O}_X(-n_i)/X}^{v_i}$ parametrizing all quotients $W_i \otimes \mathcal{O}_X(-n_i) \to A_i$ with $v(A_i) = v_i$ such that $W_i \cong H^0(X, A_i(n_i))$ and $H^j(X, A_i(n_i)) = 0, j > 0$. Let \mathcal{A}_i be the universal quotient and \mathcal{I}_i the universal

subsheaf. We take an integer m such that (i) $R^j p_{Q_1*}(\mathcal{I}_1(m)) = 0, j > 0$, (ii) $\mathcal{U} := p_{Q_1*}(\mathcal{K}_1(m))$ is locally free and (iii) $\psi_0 : p_{Q_1}^*(\mathcal{U}) \to \mathcal{I}_1(m)$ is surjective. We set $\mathcal{J} := \ker(\psi_0)(-m)$. Let $\widetilde{Q}_1 \to Q_1$ be the principal GL-bundle associated to \mathcal{U} . Then we have a trivialization $\mathcal{U} \cong \mathcal{U} \otimes \mathcal{O}_{\widetilde{Q}_1}$, where \mathcal{U} is a vector space. Let $\widetilde{\mathcal{I}}_i$ (resp. $\widetilde{\mathcal{J}}, \widetilde{\mathcal{A}}_i$) be the pull-back of \mathcal{I}_i (resp. $\mathcal{J}, \mathcal{A}_i$) to $Q_0 \times \widetilde{Q}_1 \times X$. Then we have exact sequences

$$(1.3) 0 \to \widetilde{\mathcal{J}} \to U \otimes \mathcal{O}_{Q_0 \times \widetilde{Q}_1 \times X}(-m) \to \widetilde{\mathcal{I}}_1 \to 0,$$

$$(1.4) 0 \to \widetilde{\mathcal{I}}_i \to W_i \otimes \mathcal{O}_{Q_0 \times \widetilde{Q}_1 \times X}(-n_i) \to \widetilde{\mathcal{A}}_i \to 0.$$

If m is sufficiently large, then $\operatorname{Ext}_{p_{Q_0 \times Q_1}}^j(\widetilde{\mathcal{J}}, \widetilde{\mathcal{A}}_0) = 0$ and $\mathbb{E} := \operatorname{Hom}_{p_{Q_0 \times Q_1}}(\widetilde{\mathcal{J}}, \widetilde{\mathcal{A}}_0)$ is locally free. We have an exact sequence:

$$(1.5) \quad 0 \to \operatorname{Hom}_{p_{Q_0 \times \tilde{Q}_1}}(\widetilde{\mathcal{I}}_1, \widetilde{\mathcal{A}}_0) \to \operatorname{Hom}_{p_{Q_0 \times \tilde{Q}_1}}(U \otimes \mathcal{O}_{Q_0 \times \tilde{Q}_1 \times X}(-m), \widetilde{\mathcal{A}}_0) \to \mathbb{E} \to \operatorname{Ext}^1_{p_{Q_0 \times \tilde{Q}_1}}(\widetilde{\mathcal{I}}_1, \widetilde{\mathcal{A}}_0) \to 0.$$

Let $\pi: P \to Q_0 \times \widetilde{Q}_1$ be the associated vector bundle of \mathbb{E} . Then we have a family of extensions

$$(1.6) 0 \to (\pi \times 1_X)^*(\widetilde{\mathcal{A}}_0) \to \widehat{\mathcal{V}}_0 \to (\pi \times 1_X)^*(\widetilde{\mathcal{I}}_1) \to 0.$$

We set $\widehat{\mathcal{V}}_1 := W_1 \otimes \mathcal{O}_{P \times X}(-n_1)$. Then we have a family of complexes

$$\widehat{\mathcal{V}}_{\bullet}:\widehat{\mathcal{V}}_{0}\to\widehat{\mathcal{V}}_{1}$$

such that $\widehat{\mathcal{V}}_i$ are flat over P, $H^j(\widehat{\mathcal{V}}_{\bullet})$ are flat over P and $H^j(\widehat{\mathcal{V}}_{\bullet})_x = (\mathcal{A}_j)_{\pi(x)}$. Let S_i be a bounded set of coherent sheaves E_i on X with the Mukai vector v_i .

Proposition 1.1. Let \mathcal{V}_{\bullet} be a T-flat family of complexes on X parametrized by T such that $H^{i}(\mathcal{V}_{\bullet})$ are flat families of coherent sheaves belonging to S_{i} . Then for any point $t \in T$, there is a neighborhood T_{0} of t with the following property: there is a quasi-isomorphism $\mathcal{V}'_{\bullet} \to \mathcal{V}_{\bullet}$ and a morphism $f: T \to P$ such that $f^{*}(\widehat{\mathcal{V}_{\bullet}})$ is quasi-isomorphic to \mathcal{V}'_{\bullet} .

Proof. Construction of $\mathcal{V}'_{\bullet} \to \mathcal{V}_{\bullet}$: Let $\mathcal{V}_{\bullet} := (\mathcal{V}_0 \xrightarrow{\phi} \mathcal{V}_1)$ be a flat family of complexes on $X \times T$ such that $H^i(\mathcal{V}_{\bullet})$ are flat over T. Let \mathcal{B} be the kernel of $\mathcal{V}_1 \to H^1(\mathcal{V}_{\bullet})$. For a sufficiently large n, $R^j p_{T*}(\mathcal{B}(n)) = R^j p_{T*}(\mathcal{V}_1(n)) = R^j p_{T*}(H^1(\mathcal{V}_{\bullet})(n)) = 0$ for j > 0 and we have an exact and commutative diagram:

$$(1.8) \qquad 0 \longrightarrow p_T^*(p_{T*}(\mathcal{B}(n))) \longrightarrow p_T^*(p_{T*}(\mathcal{V}_1(n))) \longrightarrow p_T^*(p_{T*}(H^1(\mathcal{V}_{\bullet})(n))) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \psi$$

$$\downarrow \qquad \qquad \downarrow \psi$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow H^1(\mathcal{V}_{\bullet})(n) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \qquad \qquad 0 \qquad \qquad 0$$

By shrinking T if necessary,, we may assume that there is a lifting $\widetilde{\psi}: p_T^*(p_{T*}(H^1(\mathcal{V}_{\bullet})(n))) \to \mathcal{V}_1(n)$ of ψ . We set $\mathcal{V}_1' := p_T^*(p_{T*}(H^1(\mathcal{V}_{\bullet})(n)))(-n)$ and set $\mathcal{K}_1 := \ker(\psi)(-n)$. Then we have a homomorphism $\mathcal{K}_1 \to \mathcal{B}$. Let \mathcal{V}_0' be a coherent sheaf fitting in the diagram

$$(1.9) \qquad 0 \longrightarrow H^{0}(\mathcal{V}_{\bullet}) \longrightarrow \mathcal{V}'_{0} \longrightarrow \mathcal{K}_{1} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow H^{0}(\mathcal{V}_{\bullet}) \longrightarrow \mathcal{V}_{0} \longrightarrow \mathcal{B} \longrightarrow 0.$$

Then $\mathcal{V}'_{\bullet}: \mathcal{V}'_0 \to \mathcal{V}'_1$ is quasi-isomorphic to \mathcal{V}_{\bullet} . We shall show that there is a local morphism $f: T \to P$ with a quasi-isomorphism $\mathcal{V}'_{\bullet} \to (f \times 1_X)^*(\widehat{\mathcal{V}}_{\bullet})$ for a sufficiently large n.

Construction of $f: T \to P$: We take a trivialization $p_{T*}(H^i(\mathcal{V}_{\bullet})(n_i)) \cong W_i \otimes \mathcal{O}_T$. Then we have a morphism $h: T \to Q_0 \times Q_1$ such that $(h \times 1_X)^*(\mathcal{A}_i) = H^i(\mathcal{V}_{\bullet})$ as quotients of $W_i \otimes \mathcal{O}_{T \times X}(-n_i)$. If n is sufficiently large, then $\text{Hom}(\mathcal{V}'_1, W_1 \otimes \mathcal{O}_{T \times X}(-n_1)) \to \text{Hom}(\mathcal{V}'_1, H^1(\mathcal{V}_{\bullet}))$ is surjective. Hence there is a homomorphism $\mathcal{V}'_1 \to W_1 \otimes \mathcal{O}_{T \times X}(-n_1)$ and a commutative diagram

$$(1.10) \qquad 0 \longrightarrow \mathcal{K}_1 \longrightarrow \mathcal{V}'_1 \longrightarrow H^1(\mathcal{V}_{\bullet}) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \parallel$$

$$0 \longrightarrow (h \times 1_X)^*(\mathcal{I}_1) \longrightarrow W_1 \otimes \mathcal{O}_{T \times X}(-n_1) \longrightarrow H^1(\mathcal{V}_{\bullet}) \longrightarrow 0,$$

where \mathcal{I}_1 means the pull-back of \mathcal{I}_1 to $Q_0 \times Q_1 \times X$. By our choice of n_i and n, we have

Shrinking T if necessary, there is a coherent sheaf \mathcal{V}_0 on $T \times X$ fitting in the following diagram:

$$(1.12) \qquad 0 \longrightarrow H^{0}(\mathcal{V}_{\bullet}) \longrightarrow \mathcal{V}'_{0} \longrightarrow \mathcal{K}_{1} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow H^{0}(\mathcal{V}_{\bullet}) \longrightarrow \widetilde{\mathcal{V}}_{0} \longrightarrow (h \times 1_{X})^{*}(\mathcal{I}_{1}) \longrightarrow 0.$$

Then by shrinking T, we have a morphism $f: T \to P^s$ with a commutative diagram:

$$(1.13) \qquad 0 \longrightarrow H^{0}(\mathcal{V}_{\bullet}) \longrightarrow (f \times 1_{X})^{*}(\widehat{\mathcal{V}}_{0}) \longrightarrow (f \times 1_{X})^{*}(\widetilde{\mathcal{I}}_{1}) \longrightarrow 0$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Therefore $(f \times 1_X)^*(\widehat{\mathcal{V}}_{\bullet}) \cong (\widetilde{\mathcal{V}}_0 \to W_1 \otimes \mathcal{O}_{T \times X}(-n_1))$ is quasi-isomorphic to \mathcal{V}'_{\bullet} .

1.2. **Albanese map.** Let \widehat{X} be the dual abelian variety of X and \mathbf{P} the Poincaré line bundle on $\widehat{X} \times X$. Let $\mathfrak{a} : \mathbf{D}(X) \to \operatorname{Pic}(\widehat{X}) \times \operatorname{Pic}(X)$ be the morphism sending E to $(\det \Phi_{X \to \widehat{X}}^{\mathbf{P}}(E), \det(E))$. For a family of coherent sheaves \mathcal{E} parametrized by a connected scheme T, we also have a morphism $\mathfrak{a} : T \to X \times \widehat{X}$ (up to translation).

We quote the following assertions from [Y2, Thm. 0.1, Lemma 4.3, Prop. 4.4].

Proposition 1.2. Let v be a Mukai vector.

- (i) Let \mathcal{E} be a family of coherent sheaves on X with $v(\mathcal{E}_q) = v$ parametrized by a scheme Q. Assume that for any point $(x,y) \in X \times \widehat{X}$, $T_x^*(\mathcal{E}_q) \otimes \mathbf{P}_y \cong \mathcal{E}_{q'}$ for a point $q' \in Q$. Then $\dim \mathfrak{a}(Q) \geq 2$ and $\dim \mathfrak{a}(Q) = 4$ if $\langle v^2 \rangle > 0$.
- (ii) If v is a primitive Mukai vector with $\langle v^2 \rangle > 0$. Then $\mathfrak{a}: M_H(v) \to \widehat{X} \times X$ is the Albanese map.

In the case where $\langle v(E)^2 \rangle = 0$, we use Lemma 4.3 in [Y2] and the fact that $\phi_L = 0$ if and only if $c_1(L) = 0$.

2. Proof of Theorem 0.1

2.1. Fourier-Mukai transform of a general stable sheaf. Let Y be a moduli space of stable semi-homogeneous sheaves on X. Assume that there is a universal family \mathbf{E} on $Y \times X$. Then we have a Fourier-Mukai transform $\Phi^{\mathbf{E}}_{Y \to X} : \mathbf{D}(Y) \to \mathbf{D}(X)$. If $\dim \mathbf{E}_y = 0$, $y \in Y$, then $\Phi^{\mathbf{E}}_{Y \to X}$ comes from an equivalence $\operatorname{Coh}(Y) \to \operatorname{Coh}(X)$. This case is easier to treat than other cases. In particular, the proof of Theorem 0.1 is reduced to the case treated in 2.3. Hence we assume that $\dim \mathbf{E}_y \geq 1$, $y \in Y$.

Theorem 2.1. Let w be a primitive Mukai vector such that $\langle w^2 \rangle > 0$. If $\Phi_{Y \to X}^{\mathbf{E}}(E)$ is not a sheaf up to shift for all $E \in M_{H'}(w)$, then there is an integer k such that for a general $E \in M_{H'}(w)$, $\Phi_{Y \to X}^{\mathbf{E}}(E)[k]$ fits in an exact triangle

(2.1)
$$A_0 \to \Phi_{Y \to X}^{\mathbf{E}}(E)[k] \to A_1[-1] \to A_0[1],$$

where $A_i, i = 0, 1$ are semi-homogeneous sheaves of $v(A_i) = n_i'v_i'$, $(n_0' - 1)(n_1' - 1) = 0$ and $\langle v_0', v_1' \rangle = -1$. In particular $\Phi_{\mathbf{E}}$ induces a birational map $M_{H'}(w) \cdots \to M_H(v)$, if $\mathrm{NS}(X) \cong \mathbb{Z}$ and $v \neq \pm (v_0' - nv_1')$ for all isotropic vectors v_0', v_1' with $\langle v_0', v_1' \rangle = -1$, where $v := \Psi_{Y \to X}^{\mathbf{E}}(w)$.

Proof. Let Q(w) be the open subscheme of $\operatorname{Quot}_{\mathcal{O}_Y(-n)^{\oplus N}/Y}^w$ such that $M_{H'}(w)$ is the geometric quotient of Q(w) by the action of PGL(N). Let \mathcal{E} be the universal family on $Q(w) \times Y$. Then for a point $q \in Q(w)$, we have

(2.2)
$$\begin{cases} H^0(\Phi_{Y \to X}^{\mathbf{E}}(\mathcal{E}_q)) = 0, & \mu(\mathcal{E}_q \otimes \mathbf{E}_x) \leq 0 \\ H^2(\Phi_{Y \to X}^{\mathbf{E}}(\mathcal{E}_q)) = 0, & \mu(\mathcal{E}_q \otimes \mathbf{E}_x) > 0, \end{cases}$$

where $x \in X$. Hence $\Phi^{\mathbf{E}}_{Y \to X}(\mathcal{E})[k]$ is a family of complexes represented by

$$(2.3) \mathcal{V}_{\bullet}: \mathcal{V}_{0} \to \mathcal{V}_{1},$$

where k=1 or k=0. Assume that WIT does not hold for all \mathcal{E}_q . Let $Q(w)_0$ be the open subscheme such that $H^i(\mathcal{V}_{\bullet})$ are flat over $Q(w)_0$. Let S_i be the bounded set of coherent sheaves $H^i(\mathcal{V}_{\bullet})_q$, $q \in Q(w)_0$. We set $v_i := v(H^i(\mathcal{V}_{\bullet})_q)$ and consider the family of complexes $\widehat{\mathcal{V}}_{\bullet}$ parametrized by P. Then for any point $q \in Q(w)_0$,

there is a neighborhood Q_q of q and a morphism $f_q:Q_q\to P$. We note that $Q(w)_0$ is GL(N)-invariant. We set $M_H(w)_0:=Q(w)_0/GL(N)$. By shrinking $Q(w)_0$ to an open subscheme, we may assume that the Harder-Narasimhan filtrations $0\subset F_i^1\subset F_i^2\subset\cdots\subset F_i^{s_i}=H^i(\mathcal{V}_\bullet)_q, q\in Q(w)_0$ form a flat family of filtrations over $Q(w)_0$, that is, F_i^j/F_i^{j-1} form flat families of sheaves. We set $v_i^j:=v(F_i^j/F_i^{j-1})$ and consider the locally closed subset Q_i' of Q_i such that

(2.4)
$$Q_i' = \left\{ W_i \otimes \mathcal{O}_X(-n_i) \to A_i \middle| \begin{array}{l} \text{the Harder-Narasimhan filtration of } A_i \text{ is} \\ 0 \subset F_i^1 \subset F_i^2 \subset \cdots \subset F_i^{s_i} = A_i, \ v(F_i^j/F_i^{j-1}) = v_i^j \end{array} \right\}$$

(cf. Remark 2.1). Then we have a morphism

(2.5)
$$\begin{array}{cccc}
\mathfrak{a}_i': & Q_i' & \to & \prod_j \overline{M}_H(v_i^j) & \to & (X \times \widehat{X})^{s_i} \\
& A_i & \mapsto & \prod_j F_i^j / F_i^{j-1} & \mapsto & \prod_j \mathfrak{a}(F_i^j / F_i^{j-1}).
\end{array}$$

By the proof of [Y2, Thm. 4.14], we get dim $\mathfrak{a}'_i(Q'_i) \geq 2s_i$. Indeed if n_i is sufficiently large, then we can show that the quotient stack $[Q'_i/GL(W_i)]$ is an affine bundle over $\prod_j \mathcal{M}_H(v_i^j)^{ss}$ (see [Y3, sect.2.2, in particular Prop. 2.5]). Combining this with Proposition 1.2, we get dim $\mathfrak{a}'_i(Q'_i) \geq 2s_i$. We set $P' := P \times_{(Q_0 \times Q_1)} (Q'_0 \times Q'_1)$. Then the image of $f_q : Q_q \to P$ is contained in P'. Let $\mathfrak{b} : P' \to Q'_0 \times Q'_1 \to (X \times \widehat{X})^{s_0 + s_1}$ be the morphism defined by composing π with $\mathfrak{a}'_0 \times \mathfrak{a}'_1$. Then dim in $\mathfrak{b} \geq 4$ and if the equality holds, then $s_0 = s_1 = 1$ and $\langle v_0^2 \rangle = \langle v_1^2 \rangle = 0$. Thus Q'_i are open subset of Q_i and A_i are families of semi-homogeneous sheaves.

Let P^s be the open subset of P' such that $\Phi_{X \to Y}^{\mathbf{E}^{\vee}}(\widehat{\mathcal{V}}_{\bullet})[2-k]$ is a family of stable sheaves. Then we have a morphism $g: P^s \to M_H(w)$. Obviously $g \circ f_q: Q_q \to M_H(w)$ is the restriction of the quotient map ϖ . Combining with \mathfrak{b} , we have a morphism $Q_q \to P^s \to (X \times \widehat{X})^{s_0+s_1}$. This is the morphism determined by \mathcal{E}_q :

$$(2.6) Q(w)_0 \ni q \mapsto (\mathfrak{a}'_0(H^0(\Phi^{\mathbf{E}}_{Y \to X}(\mathcal{E}_q)[k])), \mathfrak{a}'_1(H^1(\Phi^{\mathbf{E}}_{Y \to X}(\mathcal{E}_q)[k]))) \in (X \times \widehat{X})^{s_0} \times (X \times \widehat{X})^{s_1}.$$

Hence we have a morphism $\mathfrak{c}: M_H(v)_0 \to (X \times \widehat{X})^{s_0+s_1}$ such that $\mathfrak{c} \circ g = \mathfrak{b}$. Since $(X \times \widehat{X})^{s_0+s_1}$ is an abelian variety and $M_H(w)$ is smooth, \mathfrak{c} extends to a morphism $M_H(v) \to (X \times \widehat{X})^{s_0+s_1}$. We also denote it by \mathfrak{c} .

On the other hand, $\mathfrak{a}: M_H(v) \to Y \times \widehat{Y}$ is the Albanese map of $M_H(v)$. Hence there is a morphism $a: Y \times \widehat{Y} \to (X \times \widehat{X})^{s_0+s_1}$ with $a \circ \mathfrak{a} = \mathfrak{c}$ and we have the following commutative diagram:

$$M_H(v) \xleftarrow{g} P^s$$

$$\downarrow \mathfrak{b}$$

$$Y \times \widehat{Y} \xrightarrow{a} (X \times \widehat{X})^{s_0 + s_1}$$

Hence dim im $\mathfrak{b} \leq 4$, which implies that $H^j(\Phi_{Y \to X}^{\mathbf{E}}(\mathcal{E})[k])$, j=0,1 are families of semi-homogeneous sheaves. We set $v_i := n_i'v_i'$, where v_i' are primitive. Then $\langle v^2 \rangle = \langle (v_0 - v_1)^2 \rangle = -2n_0'n_1'\langle v_0', v_1' \rangle$. Hence $\langle v_0', v_1' \rangle < 0$. For a point $q \in Q(w)_0$, $V_\bullet : V_0 \to V_1$ denotes $(V_\bullet)_q$. We set $A_i := H^i(V_\bullet)$. Then A_i are semi-homogeneous sheaves with $v(A_i) = v_i$. Since $\operatorname{Hom}_{\mathbf{D}(X)}(V_\bullet, V_\bullet) \cong \mathbb{C}$, V_\bullet is not quasi-isomorphic to $A_0 \oplus A_1[1]$. Hence $\operatorname{Hom}_{\mathbf{D}(X)}(A_1[-1], A_0[1]) \neq 0$. Then $\operatorname{Ext}^2(A_1, A_0) = \operatorname{Hom}_{\mathbf{D}(X)}(A_1[-1], A_0[1]) \neq 0$ and $\operatorname{Ext}^1(A_1, A_0) = \operatorname{Hom}(A_1, A_0) = 0$ (see (3.8) and Remark 3.1 in Appendix). By Proposition 3.1, $\operatorname{Ext}^i((A_1)_{q_1}, (A_0)_{q_0}) = 0$, $i \neq 0$ for all $(q_0, q_1) \in Q_0' \times Q_1'$ and $\operatorname{Ext}^2_{p_{Q_0' \times Q_1'}}(A_1, A_0)$ is a locally free sheaf on $Q_0' \times Q_1'$ and all 2-extensions are parametrized by the associated vector bundle $\overline{P} \to Q_0' \times Q_1'$, where we also denote the pull-backs of A_i to $Q_0' \times Q_1' \times X$ by the same A_i . \overline{P} is a quotient bundle of P. We denote the image of P^s to \overline{P} by \overline{P}^s . Then we have a morphism $\overline{g}: \overline{P}^s \to M_H(v)$ such that g is the composite $P^s \to \overline{P}^s \xrightarrow{\overline{g}} M_H(v)$. Since A_i are $GL(W_i)$ -equivariant, $G:=(GL(W_0) \times GL(W_1))/\mathbb{C}^\times$ acts on \overline{P} . By Lemma 3.2 in Appendix, G acts freely on \overline{P}^s and the fiber of \overline{g} is the G-orbit. By Corollary 3.6, $\dim Q_i' - \dim GL(W_i) = \dim \mathcal{M}_H(n_i'v_i')^{ss} = n_i'$, and hence

(2.7)
$$\dim \overline{g}(\overline{P}^s) = \dim \operatorname{Ext}^2(A_1, A_0) + n_0' + n_1' + 1 = -n_0' n_1' \langle v_0', v_1' \rangle + n_0' + n_1' + 1.$$

Then we get

(2.8)
$$\dim M_H(v) - \dim \overline{g}(\overline{P}^s) = -2n_0'n_1'\langle v_0', v_1' \rangle + 2 - (-n_0'n_1'\langle v_0', v_1' \rangle + n_0' + n_1' + 1)$$

$$= n_0'n_1'(-\langle v_0', v_1' \rangle - 1) + (n_0' - 1)(n_1' - 1),$$

which implies that $\langle v_0', v_1' \rangle = -1$ and $(n_0' - 1)(n_1' - 1) = 0$. The last claim follows from [Y2, Cor. 4.15]. \square

Remark 2.1. We note that g extends to a morphism from an open subset of P. Hence even if we do not know dim $Alb(M_{H'}(w))$, the closure of Q'_i should be a union of irreducible components of Q_i .

Remark 2.2. In the proof of Lemma 2.2 below, we shall see that $M_H(v)$ is birationally equivalent to $\widehat{Z} \times \text{Hilb}_Z^{\langle v^2 \rangle/2}$ for an abelian surface Z.

2.2. Reduction to the case where V_{\bullet} is a sheaf up to shift. If $\operatorname{rk} A_0 = \operatorname{rk} A_1 = 0$, then $c_1(A_0)$ and $c_1(A_1)$ are effective, and hence $\langle v(A_0), v(A_1) \rangle = (c_1(A_0), c_1(A_1)) \geq 0$. This is a contradiction. Since $\operatorname{Hom}(A_0, A_1) = \operatorname{Ext}^2(A_1, A_0)^{\vee} \neq 0$, we see that A_0 is locally free. We first show the following:

Lemma 2.2. Keep notations as above. There is a Fourier-Mukai functor $\mathcal{F}: \mathbf{D}(X) \to \mathbf{D}(X)_{op}$ such that $\mathcal{F}(v) = v$ and one of the following three conditions holds

- (1) $\operatorname{rk}(H^0(\mathcal{F}(V_{\bullet}))) + \operatorname{rk} H^1(\mathcal{F}(V_{\bullet}))) < \operatorname{rk} H^0(V_{\bullet}) + \operatorname{rk} H^1(V_{\bullet}), \text{ or }$
- (2) $\deg H^1(\mathcal{F}(V_{\bullet})) < \deg H^1(V_{\bullet})$ if $\operatorname{rk} H^1(V_{\bullet}) = 0$, or
- (3) $H^1(\mathcal{F}(V_{\bullet})) = 0$ if $H^1(V_{\bullet})$ is of 0-dimensional.

Proof. (i) We first assume that $n'_1 = 1$. Since $\langle v'_0, v'_1 \rangle = -1$, $X_0 := M_H(v'_0)$ is a fine moduli space. Let **F** be the universal family of stable semi-homogeneous sheaves on $X_0 \times X$. Applying $\Phi_{X \to X_0}^{\mathbf{F}^{\vee}}$ to the exact triangle

$$(2.9) A_0 \to V_{\bullet} \to A_1[-1] \to A_0[1],$$

we get an exact triangle

$$\Phi_{X \to X_0}^{\mathbf{F}^{\vee}}(A_0) \to \Phi_{X \to X_0}^{\mathbf{F}^{\vee}}(V_{\bullet}) \to \Phi_{X \to X_0}^{\mathbf{F}^{\vee}}(A_1)[-1] \to \Phi_{X \to X_0}^{\mathbf{F}^{\vee}}(A_0)[1].$$

By Proposition 3.1, $L := \Phi_{X \to X_0}^{\mathbf{F}^{\vee}}(A_1)$ is a line bundle on X_0 . We note that $G := \Phi_{X \to X_0}^{\mathbf{F}^{\vee}}(A_0)[2]$ is a 0-dimensional sheaf of length n'_0 on X_0 . Hence (2.10) is

$$(2.11) G[-1] \to \Phi_{X \to X_0}^{\mathbf{F}^{\vee}}(V_{\bullet})[1] \to L \xrightarrow{f} G.$$

We can choose a general point $q \in Q(w)_0$ such that f is surjective. Then $G \cong \mathcal{O}_Z \otimes L$ for a 0-dimensional subscheme Z of n'_0 -points and we get an exact sequence

$$(2.12) 0 \to H^1(\Phi_{X \to X_0}^{\mathbf{F}^{\vee}}(V_{\bullet})) \to L \xrightarrow{f} \mathcal{O}_Z \otimes L \to 0.$$

Thus $\Phi_{X \to X_0}^{\mathbf{F}^{\vee}}(V_{\bullet}) = I_Z \otimes L[-1]$. By taking the dual, we have an exact triangle

$$(2.13) \mathcal{O}_Z^{\vee} \to L^{\vee} \to (I_Z \otimes L)^{\vee} \to \mathcal{O}_Z^{\vee}[1].$$

We note that $\mathcal{O}_Z^{\vee} = \mathcal{E}xt_{\mathcal{O}_{X_0}}^2(\mathcal{O}_Z, \mathcal{O}_{X_0})[-2] \cong \mathcal{O}_Z[-2]$, if Z consists of disjoint n_1' -points. We fix a line bundle L_0 on X_0 with $c_1(L_0) = c_1(L)$. For (2.13), by taking a tensor product $\otimes L_0^{\otimes 2}$ and applying $\Phi_{X_0 \to X}^{\mathbf{F}}$, we get an exact triangle

$$(2.14) \Phi_{X_0 \to X}^{\mathbf{F}}(I_Z^{\vee} \otimes (L^{\vee} \otimes L_0^{\otimes 2}))[1] \to A_0 \stackrel{e'}{\to} B_1 \to \Phi_{X_0 \to X}^{\mathbf{F}}(I_Z^{\vee} \otimes (L^{\vee} \otimes L_0^{\otimes 2}))[2],$$

where $A_0 \cong H^2(\Phi_{X_0 \to X}^{\mathbf{F}}(\mathcal{O}_Z^{\vee} \otimes (L^{\vee} \otimes L_0^{\otimes 2})))$ and $B_1 := H^2(\Phi_{X_0 \to X}^{\mathbf{F}}(L^{\vee} \otimes L_0^{\otimes 2}))$ is a stable semi-homogeneous sheaf with $v(B_1) = v(A_1)$. We set $A_0' := \ker e'$ and $A_1' := \operatorname{coker} e'$. By shrinking $Q(w)_0$, we may assume that A_i' form flat families over $Q(w)_0$. Since $A_0 \to B_1$ is not trivial, we get the assertions.

(ii) We next assume that $n'_0 = 1$. In this case, we consider the Fourier-Mukai transform $\Phi_{X \to X_1}^{\mathbf{F}^{\vee}} : \mathbf{D}(X) \to \mathbf{D}(X_1)$, where $X_1 := M_H(v'_1)$ and \mathbf{F} is the universal family on $X_1 \times X$. Then we have an exact triangle

$$(2.15) L \to \Phi_{X \to X_1}^{\mathbf{F}^{\vee}}(V_{\bullet})[2] \to \Phi_{X \to X_1}^{\mathbf{F}^{\vee}}(A_1[1]) \to L[1]$$

where $L := \Phi_{X \to X_1}^{\mathbf{F}^{\vee}}(A_0)[2]$ is a line bundle on X_0 . For a general $q \in Q(w)_0$, we may assume that $\Phi_{X \to X_1}^{\mathbf{F}^{\vee}}(A_1) = \mathcal{O}_Z[2]$ for a subscheme of distinct n'_1 -points Z on X_1 . Then $(\mathcal{O}_Z[2])^{\vee} \cong \mathcal{O}_Z$. Hence by taking the dual of (2.15), we get an exact triangle

$$(2.16) L^{\vee} \to \mathcal{O}_Z \to \Phi_{X \to X_1}^{\mathbf{F}^{\vee}}(V_{\bullet})^{\vee}[-1] \to L^{\vee}[1].$$

We fix a line bundle L_1 on X_1 with $c_1(L_1) = c_1(L)$. Since $B_0 := \Phi_{X \to X_1}^{\mathbf{F}}(L^{\vee} \otimes L_1^{\otimes 2})$ is a stable semi-homogeneous vector bundle with the Mukai vector v_1 and $\Phi_{X \to X_1}^{\mathbf{F}}(\mathcal{O}_Z) = A_1$, we have an exact triangle

$$(2.17) B_0 \to A_1 \to \Phi_{X \to X_1}^{\mathbf{F}}(\Phi_{X \to X_1}^{\mathbf{F}^{\vee}}(V_{\bullet})^{\vee} \otimes L_1^{\otimes 2})[-1] \to B_0[1],$$

which implies that the assertions holds.

Applying Lemma 2.2 successively, we get a Fourier-Mukai functor $\mathcal{F}: \mathbf{D}(X) \to \mathbf{D}(X)$ or $\mathcal{F}: \mathbf{$

2.3. Proof of Theorem 0.1 (the case where $\Phi_{Y\to X}^{\mathbf{E}}(E)$ is a sheaf). Replacing V_{\bullet} by $\mathcal{F}(V_{\bullet})$, we may assume that WIT_k holds for a general \mathcal{E}_q . Assume that $V:=H^k(\Phi_{Y\to X}^{\mathbf{E}}(\mathcal{E}_q))$ is not stable. By [Y2, Thm. 4.14], V fits in an exact sequence

$$(2.18) 0 \rightarrow A_0 \rightarrow V \rightarrow A_1 \rightarrow 0,$$

where A_i are semi-homogeneous sheaves with the Mukai vector $n'_i v'_i$, $\langle v'_0, v'_1 \rangle = 1$ and $(n'_0 - 1)(n'_1 - 1) = 0$. We may assume that A_i are direct sum of distinct stable sheaves $A_{ij} \in M_H(v'_i)$, $j = 1, 2, ..., n'_i$. By using the following lemma, we shall replace the extension (2.18) by an extension in another direction.

Lemma 2.3. Let V fits in an exact sequence

$$(2.19) 0 \rightarrow A_0 \rightarrow V \rightarrow A_1 \rightarrow 0,$$

with $A_i = \bigoplus_j A_{ij}$, $A_{ij} \in M_H(v_i')$, $j = 1, 2, ..., n_i'$ and $\langle v_0', v_1' \rangle = 1$. Then there is a Fourier-Mukai transform $\mathcal{F} : \mathbf{D}(X) \to \mathbf{D}(X)_{op}$ such that $\mathcal{F}(V)$ fits in an exact sequence

$$(2.20) 0 \to B_1 \to \mathcal{F}(V) \to B_0 \to 0,$$

where
$$B_i = \bigoplus_j B_{ij}, B_{ij} \in M_H(v'_i), j = 1, 2, ..., n'_i$$
.

Proof. By the symmetry of the condition, we may assume that $n_1' = 1$. We set $X_0 := M_H(v_0')$ and \mathbf{F} the universal family on $X_0 \times X$. Since $\chi(A_1, A_0) < 0$, IT_1 holds for A_1 and $L := H^1(\Phi_{X \to X_0}^{\mathbf{F}^\vee}(A_1))$ is a line bundle on X_0 . We fix a line bundle L_0 with $c_1(L_0) = c_1(L)$. Then we see that $V' := \Phi_{X_0 \to X}^{\mathbf{F}}(\Phi_{X \to X_0}^{\mathbf{F}^\vee}(V)^\vee \otimes L_1^{\otimes 2})$ is a sheaf and fits in an exact sequence

$$(2.21) 0 \rightarrow B_1 \rightarrow V' \rightarrow A_0 \rightarrow 0,$$

where
$$B_1 := \Phi_{X_0 \to X}^{\mathbf{F}}(L^{\vee} \otimes L_0^{\otimes 2})[1] \in M_H(v_1)$$
. We set $B_0 := A_0$. Then the claim holds.

We shall show that the instability is improved, under the operation \mathcal{F} in Lemma 2.3. We only treat the case where $\operatorname{rk} V > 0$. The other cases are similar. For the exact sequence (2.18), by using Lemma 2.3, we replace V by $\mathcal{F}(V)$. Since (2.18) is the Harder-Narasimhan filtration, A_1 and hence B_1 is locally free. Assume that $V' := \mathcal{F}(V)$ is not stable for all point $q \in Q(w)$. Then a general V' fits in an exact sequence

$$(2.22) 0 \rightarrow A'_0 \rightarrow V' \rightarrow A'_1 \rightarrow 0,$$

where (1) $A'_i = \bigoplus_j A'_{ij}$, i = 0, 1 are direct sum of distinct stable semi-homogeneous sheaves A'_{ij} with $v(A'_{ij}) = v(A'_{ik})$ for all j, k, and (2) A'_0 is a torsion sheaf, or V' is torsion free and $0 \subset A'_0 \subset V'$ is the Harder-Narasimhan filtration of V'.

We shall divide the proof into three cases

- (a) V is not torsion free.
- (b) V is torsion free but not μ -semi-stable.
- (c) V is μ -semi-stable, but not stable.
- (a) Assume that V has a torsion. Then A_0 is the torsion submodule of V. Since V is simple, we see that $\deg A_0 > 0$. We show that the degree of the torsion submodule of V' is strictly smaller than that of V, that is, $\deg A'_0 < \deg A_0$, if V' has a torsion. Assume that V' has a torsion. Then A'_0 is the torsion submodule of V'. Since B_1 is locally free, $\varphi: A'_0 \to B_0$ is injective. If $\deg A'_0 = \deg B_0$, then φ is surjective in codimension 1. By using the locally freeness of B_1 , we see that $V' \cong B_1 \oplus B_0$, which is a contradiction. Thus $\deg(A'_0) < \deg B_0$.
- (b) Assume that V is torsion free, but not μ -semi-stable. Then B_0 is also locally free. If $\mu(A'_0) > \mu(V')$, then $A'_0 \to B_0$ is not zero, which implies that $\mu(A'_0) \le \mu(B_0)$. If $\mu(A'_0) = \mu(B_0)$, then we also see that $A'_0 \to B_0$ is injective, $n'_0 = 1$ and A'_0 is a direct summand of V'. Therefore $\mu(A'_0) < \mu(B_0) = \mu(A_0)$. We can also see that $\mu(A'_1) > \mu(A_1)$. Indeed since $\mu(A'_0) \ge \mu(V') > \mu(B_1)$, $A'_1 \to B_1$ is not zero. Then we have a non-trivial homomorphism $A'_{1j} \to B_1$ for a j and we see that $\mu(A'_1) = \mu(A'_{1j}) > \mu(A_1)$.
- (c) If V is μ -semi-stable, i.e., $\mu(A_0) = \mu(A_1)$, then by the same argument, we see that $\chi(A_0')/\operatorname{rk} A_0' < \chi(A_0)/\operatorname{rk} A_0$ and $\chi(A_1')/\operatorname{rk} A_1' > \chi(A_1)/\operatorname{rk} A_1$. Therefore by applying Lemma 2.3 successively, we get a stable sheaf. Thus we complete the proof of Theorem 0.1.
- 2.4. In the case where Y is not fine. In the notation in section 2.1, even if Y is not fine, there is a universal family as a $p_Y^*(\alpha^{-1})$ -twisted sheaf for a suitable Cech 2-cocycle α of \mathcal{O}_X^{\times} . Then we have an equivalence

$$\Phi_{Y \to X}^{\mathbf{E}} : \mathbf{D}^{\alpha}(Y) \to \mathbf{D}(X),$$

where $\mathbf{D}^{\alpha}(Y) := \mathbf{D}(\mathrm{Coh}^{\alpha}(X))$ is the bounded derived category of coherent α -twisted sheaves. Let $M_{H'}^{\alpha}(w)$ be the moduli space of stable α -twisted stable sheaves E with v(E) = w. If dim Alb $M_H(w) = 4$, then Theorem 0.1 also holds for this case. By a similar method as in [Y5], we can show that dim Alb $(M_{H'}^{\alpha}(w)) = 4$, if

 $\langle w^2 \rangle > 0$ (cf. 3.4 in Appendix). Here we treat one example by another argument based on [Y4]. In the same way as in [Y4, Prop. 3.14], we see that for a stable α -twisted sheaf E of rank 0, $\Phi_{Y \to X}^{\mathbf{E}}(E(nH'))$ is stable for $n \gg 0$. In particular, we have an isomorphism $M_{H'}^{\alpha}(we^{nH'}) \cong M_H(v')$, where v(E) = w and $v(\Phi_{Y\to X}^{\alpha}(E(nH')))=v'$. In particular $\mathrm{Alb}(M_{H'}^{\alpha}(w))\cong X\times\widehat{X}$. Then by the same proof as in Theorem 0.1, we see that $M_{H'}^{\alpha}(w)$ is birationally equivalent to $M_H(v)$. Since the support map $M_{H'}^{\alpha}(w) \to \operatorname{Hilb}_{V}^{c_1(w)}$ $(E \mapsto \operatorname{Div}(E))$ is a Lagrangian fibration, we get the following:

Proposition 2.4. Assume that there is an primitive isotropic vector v_0 such that v_0 is algebraic and $\langle v, v_0 \rangle =$ 0. Then $M_H(v)$ is birationally equivalent to a holomorphic symplectic manifold with a Lagrangian fibration.

Corollary 2.5. The Albanese fiber $K_H(v)$ is birationally equivalent to an irreducible symplectic manifold with a Lagrangian fibration if and only if $Pic(K_H(v))$ has an isotropic element with respect to the Beauville

For related results on Lagrangian fibrations on irreducible symplectic manifolds, see [G], [M], [S] and references therein.

3. Appendix

3.1. Semi-homogeneous sheaves. The following assertions are well-known (cf. [Mu1], [O]).

Proposition 3.1. Let E and F be semi-homogeneous sheaves.

- (i) Assume that E and F are locally free sheaves.
 - (a) If $\langle v(E), v(F) \rangle > 0$, then $\operatorname{Hom}(E, F) = \operatorname{Ext}^2(E, F) = 0$.
 - (b) If $\langle v(E), v(F) \rangle < 0$, then $\mu(E) \neq \mu(F)$, $\operatorname{Ext}^1(E, F) = 0$ and

(3.1)
$$\begin{cases} \operatorname{Hom}(E, F) = 0, & \mu(E) > \mu(F) \\ \operatorname{Ext}^{2}(E, F) = 0, & \mu(F) > \mu(E). \end{cases}$$

- (ii) Assume that E is locally free and F is a torsion sheaf.
 - (a) If $\langle v(E), v(F) \rangle > 0$, then $\operatorname{Hom}(E, F) = \operatorname{Ext}^2(E, F) = 0$.
 - (b) If $\langle v(E), v(F) \rangle < 0$, then $\operatorname{Ext}^1(E, F) = \operatorname{Ext}^2(E, F) = 0$.
- (iii) Assume that E and F are torsion sheaves. Then $\langle v(E), v(F) \rangle \geq 0$. If $\langle v(E), v(F) \rangle > 0$, then $\operatorname{Hom}(E, F) = \operatorname{Ext}^{2}(E, F) = 0.$

This is equivalent to the fact that the Fourier-Mukai transform of a semi-homogeneous sheaf is a sheaf up to shift.

Proof. We only prove (i). Indeed the proof of (ii) and (iii) are reduced to (i) via a suitable Fourier-Mukai transform. We note that $E^{\vee} \otimes F$ is semi-homogeneous. There is a filtration $\subset F_1 \subset F_2 \subset \cdots \subset F_s = E^{\vee} \otimes F$ such that $E_i = F_i/F_{i=1}$, $1 \le i \le s$ are simple semi-homogeneous vector bundles with $c_1(E_i)/\operatorname{rk} E_i = c_1(E^{\vee} \otimes I_i)$ $F / (\operatorname{rk} E \operatorname{rk} F) = c_1(F) / \operatorname{rk} F - c_1(E) / \operatorname{rk} E$. Since $\chi(E_i) / \operatorname{rk} E_i = (c_1(E_i) / \operatorname{rk} E_i)^2 / 2 = \chi(E, F) / \operatorname{rk} E \operatorname{rk} F$, it is sufficient to prove the claim for $E = \mathcal{O}_X$ and F is a simple semi-homogeneous vector bundle. Then there is an isogeny $\pi: Y \to X$ and a line bundle L on Y such that $\pi_*(L) = F$. Hence $\operatorname{Ext}^i(E, F) = H^i(X, F) = I$ $H^i(Y,L)$. In particular, $\chi(E,F)=\chi(L)=(c_1(L)^2)/2$. If $\chi(L)<0$, then $H^i(Y,L)=0$ for $i\neq 1$. Thus (a) holds. Assume that $\chi(L) > 0$. Since $\pi_*(c_1(L)) = c_1(F)$, $(c_1(L), \pi^*(H)) = (c_1(F), H)$. If $\mu(F) = 0$, then the Hodge index theorem implies that $(c_1(L)^2) \le 0$, which is a contradiction. Therefore $\mu(F) \ne 0 = \mu(E)$. The other claims also follow from $(c_1(L), \pi^*(H)) = (c_1(F), H)$.

3.2. **2-extensions.** We collect some elementary facts on 2-extensions. We have a natural map

$$(3.2) \Xi : \operatorname{Ext}^{2}(A_{1}, A_{0}) \to Ob(\mathbf{D}(X)) / (\operatorname{quasi-isom.})$$

by sending a 2-extension class

$$(3.3) 0 \rightarrow A_0 \rightarrow V_0 \rightarrow V_1 \rightarrow A_1 \rightarrow 0$$

to the complex $V_{\bullet}: V_0 \to V_1$. We want to study the fiber of Ξ . We take a resolution

$$(3.4) 0 \to E_{-2} \to E_{-1} \to E_0 \to A_1 \to 0$$

such that $H^j(X, E_i^{\vee} \otimes A_0) = 0$ for i = 0, -1, j > 0. Then we also have $H^j(X, E_{-2}^{\vee} \otimes A_0) = 0$ for j > 0. Hence $\operatorname{Ext}^2(A_1, A_0) \cong \operatorname{Hom}(E_{-2}, A_0) / \operatorname{im}(\operatorname{Hom}(E_{-1}, A_0))$ and for a representative $\varphi \in \operatorname{Hom}(E_{-2}, A_0), \Xi([\varphi])$ is the cone V_{\bullet} defined by

$$(3.5) \varphi: E_{\bullet}[-2] \to A_0.$$

For two exact triangles,

(3.6)
$$A_0 \to V^i_{\bullet} \to A_1[-1] \to A_0[1], \ i = 1, 2,$$

we have an exact and commutative diagram:

$$0 \longrightarrow \operatorname{Hom}_{\mathbf{D}(X)}(A_{1}[-1], A_{0}) \longrightarrow \operatorname{Hom}_{\mathbf{D}(X)}(V_{\bullet}^{1}, A_{0}) \longrightarrow \operatorname{Hom}(A_{0}, A_{0})$$

$$0 \longrightarrow \operatorname{Hom}_{\mathbf{D}(X)}(A_{1}[-1], V_{\bullet}^{2}) \longrightarrow \operatorname{Hom}_{\mathbf{D}(X)}(V_{\bullet}^{1}, V_{\bullet}^{2}) \longrightarrow \operatorname{Hom}_{\mathbf{D}(X)}(A_{0}, V_{\bullet}^{2})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow \operatorname{Hom}(A_{1}[-1], A_{1}[-1]) \longrightarrow \operatorname{Hom}_{\mathbf{D}(X)}(V_{\bullet}^{1}, A_{1}[-1]) \longrightarrow \operatorname{Hom}_{\mathbf{D}(X)}(A_{0}, A_{1}[-1]) = 0.$$

Hence we have an exact sequence

$$(3.8) 0 \to \operatorname{Hom}_{\mathbf{D}(X)}(A_1[-1], A_0) \xrightarrow{i} \operatorname{Hom}_{\mathbf{D}(X)}(V_{\bullet}^1, V_{\bullet}^2) \xrightarrow{r} \operatorname{Hom}(A_0, A_0) \oplus \operatorname{Hom}(A_1[-1], A_1[-1]).$$

We take a quasi-isomorphism $(V^1_{\bullet})' \to V^1_{\bullet}$ such that $\operatorname{Ext}^j((V^1_1)', V^2_i) = \operatorname{Ext}^j((V^1_1)', A_0) = 0$ for j > 0, i = 0, 1 and $(V^1_i)' = 0$ for $i \neq 0, 1$. Then $\operatorname{Hom}_{\mathbf{D}(X)}(V^1_{\bullet}, V^2_{\bullet})$ is the cohomology group of the complex

$$(3.9) \qquad \operatorname{Hom}((V_1^1)', V_0^2) \to \operatorname{Hom}((V_0^1)', V_0^2) \oplus \operatorname{Hom}((V_1^1)', V_1^2) \to \operatorname{Hom}((V_0^1)', V_1^2).$$

Then $\varphi \in \operatorname{Hom}_{\mathbf{D}(X)}(V_{\bullet}^1, V_{\bullet}^2)$ induces an exact and commutative diagram:

$$(3.10) 0 \longrightarrow A_0 \longrightarrow (V_0^1)' \stackrel{\phi'}{\longrightarrow} (V_1^1)' \longrightarrow A_1 \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \varphi_0 \downarrow \qquad \qquad \downarrow \varphi_1 \qquad \qquad \downarrow$$

$$0 \longrightarrow A_0 \longrightarrow V_0^2 \stackrel{\phi}{\longrightarrow} V_1^2 \longrightarrow A_1 \longrightarrow 0$$

Conversely this diagram gives an element $\phi \in \operatorname{Hom}_{\mathbf{D}(X)}(V^1_{\bullet}, V^2_{\bullet})$. For

(3.11)
$$\varphi \in \operatorname{Hom}_{\mathbf{D}(X)}(A_1[-1], A_0) = \operatorname{Hom}(\operatorname{im} \phi', A_0) / \operatorname{Hom}((V_1^1)', A_0),$$

 $i(\varphi)$ is represented by $(\varphi \circ \phi', 0) \in \operatorname{Hom}((V_0^1)', V_0^2) \oplus \operatorname{Hom}((V_1^1)', V_1^2)$. We have an action of $\operatorname{Aut}(A_0) \times \operatorname{Aut}(A_1)$ on $\operatorname{Ext}^2(A_1, A_0)$:

(3.12)
$$(g_0, g_1) : \operatorname{Ext}^2(A_1, A_0) \to \operatorname{Ext}^2(A_1, A_0) e \mapsto g_0 \cup e \cup g_1^{-1}.$$

It is easy to see that the following lemma holds.

Lemma 3.2.

(3.13)
$$\Xi^{-1}(\Xi(e)) = (\operatorname{Aut}(A_0) \times \operatorname{Aut}(A_1))e, r(\operatorname{Aut}_{\mathbf{D}(X)}(V_{\bullet})) = \{(g_0, g_1)|g_0 \cup e \cup g_1^{-1} = e\}$$

for $e \in \operatorname{Ext}^2(A_1, A_0)$ with $V_{\bullet} = \Xi(e)$. In particular, $GL(W_0) \times GL(W_1)/\mathbb{C}^{\times}$ acts freely on the open subscheme of \overline{P} parametrizing simple complexes V_{\bullet} , where \overline{P} is the scheme in the proof of Theorem 2.1.

Remark 3.1. $\operatorname{Hom}(A_1, A_0) \cong \operatorname{Hom}_{\mathbf{D}(X)}(V_{\bullet}, V_{\bullet}[-1])$. If V_{\bullet} is the Fourier-Mukai transform of a sheaf E, then it is 0.

3.2.1. Some remarks on the endomorphisms of complexes. We shall show that for a complex \widehat{V}_{\bullet} as in section 1, $\operatorname{Hom}_{\mathbf{D}(X)}(\widehat{V}_{\bullet},\widehat{V}_{\bullet})$ is represented by a morphism $\widehat{V}_{\bullet} \to \widehat{V}_{\bullet}$ up to homotopy.

Lemma 3.3. Let $V_{\bullet}: V_0 \to V_1$ be a complex. Let $V'_{\bullet}: \cdots \to V'_{-1} \to V'_0 \to V'_1 \to 0$ be a complex and $f: V'_{\bullet} \to V_{\bullet}$ a quasi-isomorphism. Then $\operatorname{Hom}_{\mathbf{K}(X)}(V_{\bullet}, V_{\bullet}) \to \operatorname{Hom}_{\mathbf{K}(X)}(V'_{\bullet}, V_{\bullet})$ is injective, where $\mathbf{K}(X)$ is the homotopy category of complexes. In particular, $\operatorname{Hom}_{\mathbf{K}(X)}(V_{\bullet}, V_{\bullet}) \to \operatorname{Hom}_{\mathbf{D}(X)}(V_{\bullet}, V_{\bullet})$ is injective.

Proof. Let W_{\bullet} be the cone of $f: V'_{\bullet} \to V_{\bullet}$. We have an exact sequence $\cdots \to V'_0 \to V_0 \oplus V'_1 \to V_1 \to 0$. Then it is easy to see $\operatorname{Hom}_{\mathbf{K}(X)}(W_{\bullet}, V_{\bullet}) = 0$. So the claim follows.

Lemma 3.4. Let $V_{\bullet}: V_0 \xrightarrow{d} V_1$ be a complex. We set $A_i := H^i(V_{\bullet})$. Assume that $\operatorname{Hom}(V_1, V_1) \cong \operatorname{Hom}(V_1, A_1)$ and $\operatorname{Ext}^1(V_1, A_0) = 0$. Then $\operatorname{Hom}_{\mathbf{D}(X)}(V_{\bullet}, V_{\bullet}) \cong \operatorname{Hom}_{\mathbf{K}(X)}(V_{\bullet}, V_{\bullet})$.

Proof. We take a quasi-isomorphism $f: V'_{\bullet} \to V_{\bullet}$ such that $H^i(V'_{\bullet}) = 0, i \neq 0, 1, \operatorname{Ext}^j(V'_1, V_i) = \operatorname{Ext}^j(V'_1, A_0) = 0$ for j > 0 and $V'_1 \to V_1$ is surjective. Then $\operatorname{Hom}_{\mathbf{K}(X)}(V'_{\bullet}, V_{\bullet}) \cong \operatorname{Hom}_{\mathbf{D}(X)}(V_{\bullet}, V_{\bullet})$. We note that there is an exact and commutative diagram:

It is sufficient to show the surjectivity of $\operatorname{Hom}_{\mathbf{K}(X)}(V_{\bullet},V_{\bullet}) \to \operatorname{Hom}_{\mathbf{K}(X)}(V'_{\bullet},V_{\bullet})$. Let $\phi: V'_{\bullet} \to V_{\bullet}$ be a morphism. Since f is a quasi-isomorphsm, we have a morphism $a: A_1 \to A_1$ such that $a \circ H^1(f) = H^1(\phi)$. By our assumption, there is a morphism $g: V_1 \to V_1$ with a commutative diagram

$$(3.15) V_1 \longrightarrow A_1$$

$$\downarrow a$$

$$V_1 \longrightarrow A_1$$

Since $\operatorname{Ext}^1(V_1',A_0)=0$ and the image of $\phi_1-g\circ f_1$ is contained in $d(V_0)$, we have a morphism $\lambda:V_1'\to V_0$ such that $d\circ\lambda=\phi_1-g\circ f_1$. Replacing ϕ_1 by $\phi_1-d\circ\lambda$ and ϕ_0 by $\phi_0-\lambda\circ d'$, we may assume that $\phi_1=g\circ f_1$. By the above diagram, we have $d\circ\phi_0(\ker f_0)=0$, which implies that $\phi_0|_{\ker f_0}\in\operatorname{Hom}(\ker f_0,A_0)$. Since $\operatorname{Ext}^1(V_1,A_0)=0$, there is a $\lambda':V_1'\to A_0$ such that $(\phi_0-\lambda')_{|\ker f_0}=0$. So replacing ϕ_0 by $\phi_0-\lambda'$, we have a morphism $\phi_0':V_0\to V_0$ with $\phi_0=\phi_0'\circ f_0$. Thus (ϕ_0',g) gives a desired morphism $V_\bullet\to V_\bullet$.

Remark 3.2. For a complex V_{\bullet} , we can find a quasi-isomorphism $\widehat{V}_{\bullet} \to V_{\bullet}$ as in section 1 such that \widehat{V}_{\bullet} satisfies the assumptions of this lemma.

Remark 3.3. By our assumption, we see that $\text{Hom}(V_1, d(V_0)) = 0$. Then the kernel of r in (3.8) consists of (ϕ'_0, g) such that g = 0 and ϕ'_0 comes from a morphism $d(V_0) \to A_1$. Thus

(3.16)
$$\ker r = \operatorname{Hom}(d(V_0), A_0) / \operatorname{Hom}(V_1, A_0) = \operatorname{Hom}_{\mathbf{D}(X)}(A_1[-1], A_0).$$

This is compatible with (3.8).

3.3. Twisted sheaves. Let $X = \bigcup_i U_i$ be an analytic open covering of X and $\alpha = \{\alpha_{ijk}\}$ a Cech 2-cocycle of \mathcal{O}_X^{\times} representing a torsion element $[\alpha] \in H^2(X, \mathcal{O}_X^{\times})$. Let $\mathcal{M}_H^{\alpha}(v)^{ss}$ be the moduli stack of semi-stable α -twisted sheaves of Mukai vector v.

Lemma 3.5. We set v := (0,0,n). Then dim $\mathcal{M}_H^{\alpha}(v)^{ss} = n$.

Proof. We fix an α -twisted vector bundle G of rank r on X. Let E be a 0-dimensional α -twisted sheaf of length n. Then $\operatorname{Hom}(G,E)\otimes G\to E$ is surjective. We set $Q:=\operatorname{Quot}_{G^{\oplus rn}/X}^v$. Then $\mathcal{M}_H^{\alpha}(v)^{ss}$ is the quotient stack of Q by the natural action of $GL(rn)\colon \mathcal{M}_H^{\alpha}(v)^{ss}=[Q/GL(rn)]$. We claim that $\dim Q=(r^2n+1)n$. Then $\dim \mathcal{M}_H^{\alpha}(v)^{ss}=\dim Q-\dim GL(rn)=(r^2n+1)n-(rn)^2=n$ and we get our lemma. So we shall prove the claim. We have a natural morphism $\phi:Q\to\overline{M}_H^{\alpha}(v)$. Since $M_H^{\alpha}(0,0,1)\cong X$, there is a bijective morphism $\psi:S^nX\to\overline{M}_H^{\alpha}(v)$. In order to prove the claim, it is sufficient to show $\dim \phi^{-1}(\psi(\sum_{i=1}^s n_iP_i))=\sum_i(r^2nn_i-1)$, where $P_1,...,P_s$ are distinct points of X. We set $Z:=\operatorname{Spec}\mathbb{C}[[x,y]]$. Since the punctual quot-scheme $\operatorname{Quot}_{\mathcal{O}_Z^{\oplus l}/Z}^m$ is of dimension lm-1 (cf. [Y1] or [N-Y, Cor. 3.7]), we get our claim.

Corollary 3.6. Let v_0 be a primitive Mukai vector with $\langle v_0^2 \rangle = 0$ and $\operatorname{rk} v_0 > 0$. Then $\dim \mathcal{M}_H(nv_0)^{ss} = n$. Proof. For a sufficiently large m, every semi-stable sheaf F with $v(F) = nv_0$ is a quotient of $\operatorname{Hom}(\mathcal{O}_X(-m), F) \otimes \mathcal{O}_X(-m)$:

(3.17)
$$0 \to \ker \psi \to \operatorname{Hom}(\mathcal{O}_X(-m), F) \otimes \mathcal{O}_X(-m) \xrightarrow{\psi} F \to 0.$$

We set $Y := M_H(v_0)$. Let **E** be the universal family on $X \times Y$ as a $p_Y^*(\alpha)$ -twisted sheaf, where α is a suitable \mathcal{O}_Y^{\times} coefficient 2-cocycle and p_Y is the projection. Since $m \gg 0$, we have an exact sequence

$$(3.18) 0 \to \Phi_{X \to Y}^{\mathbf{E}^{\vee}}(\ker \psi)[2] \to \operatorname{Hom}(G, E) \otimes G \to E \to 0,$$

where $G := \Phi_{X \to Y}^{\mathbf{E}^{\vee}}(\mathcal{O}_X(-m))[2]$ and $E := \Phi_{X \to Y}^{\mathbf{E}^{\vee}}(F)[2]$. Hence we have an isomorphism $\mathcal{M}_H(nv_0)^{ss} \cong [Q/GL(rn)]$, where $r = \operatorname{rk} G$ and Q is the scheme in Lemma 3.5. Therefore we get our claim.

3.4. Weight 1 Hodge structure. Let α be a Cech 2-cocycle of \mathcal{O}_X^{\times} representing a r-torsion element of $H^2(X, \mathcal{O}_X^{\times})$. We have a homomorphism

$$(3.19) H^2(X, \mathbb{Z}/r\mathbb{Z}) \to H^2(X, \mathcal{O}_X^{\times})$$

whose image is the set of r-torsion elements. We take a representative $\xi \in H^2(X,\mathbb{Z})$ such that $[\xi \mod r] \in H^2(X,\mathbb{Z}/r\mathbb{Z})$ maps to $[\alpha]$.

Definition 3.1. We define a weight 1 Hodge structure on $H^{odd}(X,\mathbb{Z})$ as

(3.20)
$$H^{1,0}(H^*(X,\mathbb{Z})\otimes\mathbb{C}) := e^{\xi/r}(H^{1,0}(X)\oplus H^{2,1}(X)) H^{0,1}(H^*(X,\mathbb{Z})\otimes\mathbb{C}) := e^{\xi/r}(H^{0,1}(X)\oplus H^{1,2}(X)).$$

We denote this Hodge structure by $(H^{odd}(X,\mathbb{Z}), -\frac{\xi}{r})$.

Let v be a primitive Mukai vector with $\langle v^2 \rangle > 0$. Then by a similar argument as in [Y5], we have an isomorphism $H^{odd}(X,\mathbb{Z}) \cong H^1(M_H^{\alpha}(v),\mathbb{Z})$ preserving the Hodge structure. Indeed, we use the surjectivity of the period map (the period map is a double covering). In particular, we get dim $Alb(M_H^{\alpha}(v)) = 4$.

Acknowledgement. This note is motivated by a discussion with Tom Bridgeland on his conjecture. I would like to thank him very much.

References

- [G] Gulbrandsen, Martin, G., Lagrangian fibrations on generalized Kummer varieties, math.AG/0510145
- [M] Markushevich, D., Rational Lagrangian fibrations on punctual Hilbert schemes of K3 surfaces, math.AG/0509346
- [Mu1] Mukai, S., Semi-homogeneous vector bundles on an Abelian variety, J. Math. Kyoto Univ. 18 (1978), 239–272
- [Mu2] Mukai, S., Duality between D(X) and $D(\hat{X})$ with its application to Picard sheaves, Nagoya Math. J., 81 (1981), 153–175
- [N-Y] Nakajima, H., Yoshioka, K., Lectures on instanton counting, Algebraic structures and moduli spaces, 31–101, CRM Proc. Lecture Notes, 38, Amer. Math. Soc., Providence, RI, 2004.
- [O] Orlov, D., Derived categories of coherent sheaves on abelian varieties and equivalences between them, alg-geom/9712017, Izvestia RAN, Ser.Mat., 66, (2002) 131-158
- [S] Sawon, J., Lagrangian fibrations on Hilbert schemes of points on K3 surfaces, math.AG/0509224
- [Y1] Yoshioka, K., The Betti numbers of the moduli space of stable sheaves of rank 2 on P², J. reine angew. Math. 453 (1994), 193–220
- [Y2] Yoshioka, K., Moduli spaces of stable sheaves on abelian surfaces, Math. Ann. 321 (2001), 817–884, math.AG/0009001
- [Y3] Yoshioka, K., Twisted stability and Fourier-Mukai transform II, Manuscripta Math. 110 (2003), 433–465
- [Y4] Yoshioka, K., Stability and the Fourier-Mukai transform II, preprint (see sections 3, 4 of math.AG/0112267)
- [Y5] Yoshioka, K., Moduli of twisted sheaves on a projective variety, math.AG/0411538, Adv. Stud. Pure Math. to appear

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, KOBE UNIVERSITY, KOBE, 657, JAPAN E-mail address: yoshioka@math.kobe-u.ac.jp