Projektiranje programabilnih SoC platformi

Administracija predmeta, uvod i motivacija

Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva

Pregled tema

- Administracija
 - organizacija nastave
 - sadržaj kolegija
 - literatura
 - ocjenjivanje

ADMINISTRACIJA

Projektiranje programabilnih SoC platformi

engl. System Level Integration

Predmeti specijalizacije profila Računalno inženjerstvo

■ ECTS : 4

- Nositelji:
 - Vlado.Sruk@fer.hr (D-332)
 - Hrvoje.Mlinaric@fer.hr (C11-09)

Asistenti, informacije

- Asistenti:
 - Danko.lvosevic@fer.hr (D-344, D-335)

- Informacije:
 - sve obavijesti u svezi predmeta biti će objavljene na web stranici:

http://www.fer.unizg.hr/predmet/inrss

predavanja: Moodle

https://moodle.fer.hr/course/view.php?id=21

Predavanja i konzultacije

- Predavanja
 - četvrtak, 14-16, D-306

Konzultacije profesora i asistenata: FER web stranice:

Http://www.fer.unizg.hr/predmet/inrss/konzultacije

- najava e-pošta:
 - Naslov/Subject: [SOC] Konzultacije

Organizacija predmeta

Predavanja su organizirana u dva ciklusa (7+6 tjedana)
 s 2 sata predavanja.

- Samostalni rad: Lab. vježbe
- Anketa: središnji i završni upitnik
- Kontinuirana provjera znanja:
 - kratke provjere znanja, međuispit, završni ispit

Preporučena literatura

- Bilješke s predavanja
- Nastavni sadržaji prezentacija s predavanja
 - 2-3 dana prije predavanja (FER web)
- Dodatni sadržaji
 - članci, tehnička dokumentacija (FER web, Moodle, web)
- Knjige:
- D. D. Gajski, S. Bdi, A. Gerstlauer, G. Schirner, Embedded System Design:
 Modeling, Synthesis, Verification
- M. Keating, P.Bricaud: Reuse Methodology Manual for System-on-A-Chip Design
- W. Wolf: Computers as Components: Principles of Embedded Computing System Design,
 Morgan Kaufmann, 2nd Edition, 2005

Formiranje ocjena

- Polaganje predmeta
 - na završnom ispitu postignuto ≥ 12 bodova
 - prag za prolaz: 50 bodova
- Formiranje ocjena
 - prema utvrđenim pragovima

Ocjena	Bodovi
Izvrstan (5)	≥86
Vrlo dobar (4)	≥72
Dobar (3)	≥60
Dovoljan (2)	≥50

Ocjenjivanje na ispitnim rokovima

- Uvjeti za izlazak na ispitni rok:
 - ≥ 15/30 bodova iz projekta.

Na ispitnom roku prenose se bodovi iz kontinuirane nastave:

Maks. broj bodova:

Aktivnost:

Projekt (8+8+14):

Pismeni ispit na roku:
61

- Na pismenom ispitu potrebno je ostvariti barem 30 bodova.
- Polaganje predmeta
 - na pismenom ispitu postignuto ≥ 30 bodova
 - prag za prolaz: 50 bodova
- Formiranje ocjena
 - prema utvrđenim pragovima jednakim kao i za kontinuiranu provjeru

Tema

- Razumijevanje koncepata i procesa oblikovanja sustava na čipu
- Metodologija sklopovsko programskog suoblikovanja
 - engl. hardware/software co-design
- Sklopovsko i programsko oblikovanje i verifikacija u kontrolnim, komunikacijskim i multimedijskim sustavima.
- Definicija arhitekture te odabir gradbenih blokova poluvodičkog intelektualnog vlasništva.
- Metodologija integracije pred-definiranih funkcionalnih blokova u hijerarhijskom procesu podložnom vremenskim ograničenjima.
- Postupci u projektiranju poluvodičkog intelektualnog vlasništva.
- Intelektualno vlasništvo
- Oblikovanje s integracijskom platformom.

Sustav

- Korisnički pogled:
 - specificirana funkcionalnost i zahtjevi (cijena, brzina ...)
- Projektantski pogled:Sustav = sklopovske komponente + programi

Ostvarenje sustava

Potpuno programsko

- Sklopovlje: matična ploča (engl. Motherboard)
- Programi:
 - definiraju i obavljaju sve funkcionalnosti sustava

Potpuno sklopovsko

- Sklopovlje: matična ploča + upravljačka jedinica
 - upravljanje osjetnicima i izlaznim napravama
- Programi:
 - komunikacija, složeni algoritmi (npr. obrada slike, ...)

Hibridno programsko/sklopovsko

- Sklopovlje : matična ploča + upravljačka jedinica
 - osjetnici
 - mikrokontroler
- Programi :
 - program na matičnoj ploči : komunikacija, složeni algoritmi (npr. obrada slike, ...)
 - program na upravljačkoj jedinici: npr. upravljanje motorima, komunikacija prema matičnoj ploči

Razlika sklopovlja i programa

- Projektanti sklopovlja i programa potpuno različite specijalizacije
- Projekti sadrže oboje
- Brzi rast složenosti i sklopovlja i programa

Problemi projektiranja sklopovlja 🏩

Sporo

Malo iskusnih

Velika cijena razvojnih alata

Razvoj programa čeka izradu sklopovlja

Statistika neuspjeha

- 18% projekata prekinuto unutar 18 mj.
- 58% zakasnilo na tržište
- 20% ne zadovoljava 50% specifikacija
- Produkti koji izađu na tržište
 - na vrijeme i 50% veći troškovi zarade samo 4% manje
 - 6 mj. zakašnjenja izgube 33% zarade
 - 1 mjesec kašnjenja gubi 14% udjela tržišta

Složenost

- Svi prethodni problemi izravno povezani sa složenošću sustava
- Jedini praktičan način obrade složenosti je podizanje razine apstrakcije sustava

Tehnologija ne ČEKA & VRIJEME NE ČEKA

Sustav na čipu

- engl. System-on-Chip (SoC)
- Objedinjuje različite komponente računala u jednom čipu
 - mikroprocesor; Memorija; Sabirnica; Periferija; Specifične funkcije
- Razvoj programske podrške
 - zasnovan na simulacijskim modelima ili FPGA
- Sklopovsko programsko suoblikovanje
 - engl. Hardware/Software Co-Design
 - potrebno je što ranije odrediti odnose programske i sklopovske implementacije

Sustav na čipu

- Složeni integrirani sklop koji objedinjuje glavne funkcijske elemente proizvoda na jednom čipu
- Sustav koji sadrži:
 - ugrađeni CPU (najmanje jedan)
 - ugrađenu memoriju
 - sučelja (povezivanje s vanjskim svijetom: USB, PCI, Ethernet)
 - program (na čipu i izvan)
 - koprocesore za obavljanje najzahtjevnijih funkcija
 - intelektualno vlasništvo IP
 - analogne sklopove
 - programibilno sklopovlje
 - tehnologija: ASIC, FPGA

Poticaj razvoju

- SOC specifikacije definira inženjer sustava
- SOC uklanja razdor HW/SW i implementacije na energetiko učinkovit način
- Sustav se gradi na nivou blokova IP vlasništva (ponovna uporaba, engl. design reuse) i IP sučelja

- Zahtjevne aplikacije
- Skraćivanje razvoja
- Tehnologija izrade
- Povećanje procesne moći
- Produktivnost
- Nove tehnike i alati

🔪 Utjecaj SOC na integraciju proizvod🌊

Utjecaj na razvoj

Trend razvoja

ojstva poluvodičkih integriranih sklopova

Utjecaj SoC ponovne uporabe na cijenu

Rast SOC-a

Soft IP

- engl. soft intellectual property, Soft IP
- Viši novo HDL model
 - komercijalni HDL zaštićen
 - Licenses of Right LOR
- Izvori: Cadence, Synopsys Designware, Opencores, MIPS, ...
- Moguće ostvarenje na raznim tehnologijama
- HDL 8051, 6800, Leon, ...
- Svojstva:
 - velike mogućnosti prilagodbe potrebama
 - Instanciranje parametrima
 - vremenska svojstva, površina i potrošnja ovise o ciljanom odabranom procesu, alatima i iskustvu korisnika
- Primjer:
 - http://www.logicbricks.com/Archive/3D-GPU-For-Xilinx-EPP-FPGA.aspx
 - http://www.plda.com/products/asic-ip/pcie-30/xpressrich3-axi
 - http://www.triadsemi.com/2007/01/25/soft-ip-for-the-analog-asic-impossible-yet-true/

"Hard" IP

- engl. hard intellectual property, Hard IP
- Niži novo npr. GDSII
- Finalizirana implementacija intelektualnog vlasništva u obliku fizičke izvedbe
 - potpuna implementacija
 - vezano za proizvodni proces ispitne maske
 - dostupno samo za ograničen broj tehnološkoih procesa
- Prednost
 - zagarantirana vremenska svojstva,
 - definirana površina i potrošnja
- Nema mogućnost jednostavne prilagodbe
- Uobičajeno za analogne, hibridne i složene sklopove
 - PLL, SerDes, ADC, DAC, PHY, procesore (npr. MIPS, ARM)
- Primjer:
 - http://www.logicbricks.com/Products/logiMEM_arb.aspx

Metodologije implementacije

Principi ASIC

- engl. Application-specific integrated circuit
- "Value-added ASIC for huge volume opportunities; standard parts for quick time to market applications"
- Projektiranje
 - korisničko oblikovanje, radno intezivno
 - velik broj primjeraka
- CAD alati
 - oblikovanje na nivou sustava (koncept VHDL/C)
 - engl. System-level design
 - implementacija VHDL/C -> si
 - vremenska ograničenja
- Strategije oblikovanja:
 - hijerarhija, regularnost, modularnost, lokalnost
 - engl. Hierarchy; Regularity; Modularity; Locality

Strategija oblikovanja ASICa

- Ustupci za postizanje zadanih performansi uz poštovanje svih ostalih parametara
- Specifikacija performansi
 - funkcija, vrijeme, brzina, potrošnja
- Površina -> cijena
- Vrijeme oblikovanja -> cijena, TTM
- Ispitivanje -> lakoća generiranja ispitnih slučajeva, cijena,
 TTM

Strukturirano oblikovanje ASIC-a

- Hijerarhija (engl. Hierarchy)
 - podjela u više nivoa i podmodula
- Regularnost (engl. Regularity)
 - podjela u maskimalan broj sličnih modula na pojedinom nivou
- Modularnost (engl. Modularity)
 - definiranje jednoznačnih podmodula s dobro definiranim sučeljima (engl. interfaces)
- Lokalnost (engl. Locality)
 - zadržavanje kritičnih putova unutar podmodula

Tipovi ASIC

- korisnički (engl. Custom, Full-Custom)
- čelijski (engl. Cell, Standard-Cell Based)
 - polja (engl. Gate-Array Based)
 - prediffused, mask programable MGA
 - Structured Gate Array
 - Sea of gates
 - prewired, field programable FPGA
 - Field-Programmable Gate Arrays

antifuse

Industrijski standard projektiranja 🎎

- Svaki korak vremenski zahtjevan
- HDL opisi ne sadrže fizičke značajke
- Razdvojeno oblikovanje
 - ulazna specifkacija (engl. front-end)
 - pozadinsko generiranje (engl. back-end)

Tipično vrijeme ASIC procesa

Architecture

10 months

Architecture: Partition the chip into functional units and generate bit-true test vectors to specify the behavior of each unit

TOOLS: Matlab, C, SPW, (VCC)

FREEZE the test vectors

Front-End
10 months

Front-end: Enter HDL code which matches the test

vectors

TOOLS: HDL Simulators, Design Compiler

FREEZE the HDL code

Back-End 2 months

Fabrication 2 months

Back-end: Create a floor-plan and tweak the tools until a successful mask layout is created TOOLS: Design Compiler, Floor-planners, Placers, Routers, Clock-tree generators, Physical Verification

Source: IBM Semiconductor

SOC metodologija

SOC tipičan razvoj

Struktura troška

6 ,	
F	

Product Development Phase	Typical NRE	%
System Development	\$1M	13%
Hardware Development	\$2M	25%
Silicon Development (ASIC)	\$3M	38%
Software Development	\$2M	25%

Silicon Technology	Microproc.	croproc. Relative Price		Source Available?	Vendor
		Silicon Vendor	Vendor IP	1	
FPGA	•			•	
	Proprietary uP:				
	NIOS	\$		No	Altera
	Microblaze	\$		No	Xilinx
	Soft Cores:				
	ARM7	\$	\$\$	No	ARM, ACTEL
	APS		\$\$	Yes	Cortus
Structured ASI				•	
	ARM7/9	\$\$	\$\$\$	Yes	ARM Ltd.,
	ARC 605	\$\$	\$\$\$	Yes	ARC, ChipX
	MIPS 4K	\$\$	\$\$\$	Yes	MIPS
	Xtensa		\$\$\$	Yes	Tensilica
	APS		\$\$	Yes	Cortus
ASIC	•	'		•	·
	ARM7/9/11	\$\$	\$\$\$	Yes	ARM Ltd., Various Foundries
	ARC 605		\$\$\$	Yes	ARC
	MIPS 4K	\$\$	\$\$\$	Yes	MIPS, Various Foundries
	Xtensa		\$\$\$	Yes	Tensilica
	APS		\$\$	Yes	Cortus

Izvor: Jim Bruister, SoC Solutions, Inc.

Integracija SOC-a

Metodologija oblikovanja

- Iterativni proces između tri apstrakcije: ponašajne, strukturne i fizičke
 - engl. behavior, structure, geometry
- Trend automatizacije

Izazovi oblikovanja SOC

- Današnjim sustavima svojstvena je složenost i heterogenost komponenti
- U polovici primjena može se koristiti procesor niske potrošnje (RISC, ASIP) povezan programibilnom sabirnicom i DRAM memorijom, FLASH memorija
 - ostatak ASIC
- Računalna snaga ne postiže se velikom frekvencijom već iskorištavanjem mogućnosti paralelizacije
 - Na taj način pojednostavljuje se oblikovanje zahtjeva vremena, integriteta i ispitivanja
- programibilne komponente 50GIPS, sklopovska implementacija - 500 GIPS
- mikropocesor 100MOPs/W, sklopovska implementacija 100GOPs/W GIPS
- mogućnost implementacije rekonfigurabilnih komponenti

system-on-chip model

Odabir SOC ili procesor?

- promjena paradigme
 - potpuni system on a chip
 - multi-core procesri

	System on chip	Processors on chip
processor	multiple, simple, heterogeneous	few, complex, homogeneous
cache	one level, small	2-3 levels, extensive
Cache	one level, small	2-3 levels, exterisive
memory	embedded, on chip	very large, off chip
functionality	special purpose	general purpose
interconnect	wide, high bandwidth	often through cache
power, cost	both low	both high
operation	largely stand-alone	need other chips

AMD's Barcelona Multicore

- 4 out-of-order cores
- □ 1.9 GHz clock rate
- 65nm technology
- 3 levels of caches
- integrated Northbridge

http://www.techwarelabs.com/reviews/processors/barcelo

SOC oblikovanje

- neophodno razumjevanje:
 - komponenti: procesors, memorija, povezivanje
 - aplikacija
- cijena SOC-a?
- kako smanjiti složenost
 - Intellectual Property (IP)
 - rekonfiguracija

Arhitektura SOC procesori

- obično mješavina posebne i opće namjene (GP)
 - mogu biti vlasnički dizajn ili kupljeni IP
- uobično procesor je kupljeni IP
 - uključuje podršku za OS i prevodilac
- procesor opće namjene optimiziran za aplikaciju
 - dodatne upute
 - vektorske jedinice

Architecture

Data Paths

Control

Registers

ALU

Memory

Instruction Set

Implementation

Hidden Registers

Branch Prediction Micro Instructions

Primjer SOC procesora

SOC	Basic ISA	Processor description
Freescale c600: signal processing	PowerPC	Superscalar with vector extension
ClearSpeed CSX600: general	Proprietary	Array processor with 96 processing elements
PlayStation 2: gaming	MIPS	Pipelined with 2 vector coprocessors
ARM VFP11: general	ARM	Configurable vector coprocessor

Klasifikacija procesora

Processor type	Architecture / Implementation approach
SIMD	Single instruction applied to multiple functional units
Vector	Single instruction applied to multiple pipelined registers
VLIW	Multiple instructions issued each cycle under <i>compiler</i> control
Superscalar	Multiple instructions issued each cycle under <i>hardware</i> control

dodatne naredbe

- dodatne upute za podršku specijaliziranim resursima
 - iznimka: superscalar, sa sklop. kontrolom
- naredbe mogu biti dodane u bazni procesor za koprocesorsku kontrolu
 - VLIW: Vrlo velika riječ za učenje
 - polje
 - Vektor

Pipeline

• IF: Instruction Fetch

ID: Instruction Decode

AG: Address Generation

DF: Data Fetch

EX: Execution

WB: Write Back

Superscalar / VLIW

Device	Number of	Issue Width	Base
g ₈ 9	functional units		Instruction Set
MIPS 74K Core [21]	4	2	MIPS32
Infineon TriCore2 [4]	4	3	RISC
Freescale e600 [7]	6	3	PowerPC

VLIW

Device	Number of	Issue Width	
	Functional Units		
Fujitsu MB93555A [15]	8	8	
TI TMS320C6713B [5]	8	8	
CEVA-X1620 [14]	30	8	
Philips Nexperia PNX1700 [24]	30	5	

SOC multiprocesor

SOC	Machanick [162]	IBM Cell [141]	Philips PNX8500 [79]	Lehtoranta [155]
Number of CPUs	4	1	2	4
Threads	1	many	1	1
Vector units	0	8	0	0
Application	Various	Various	HDTV	MPEG decode
Comment	Proposal only		Also called Viper 2	Soft Processors

Adresiranje u SOC-u

SOC povezivanje /interconnect

- povezivanje više agenata zahtjveva
 - protočnot (bps)
 - protokol
- sabirnica bus
 - AMBA (adv. Microcontroller bus architecture) ARM,
 - performanse sustava
- network on chip
 - polje preklopnika
 - statički
 - dinamički

Sabirnički SOC

Network on a Chip

Diskusija

