Multiple Objectives – The MO in MOGA and MOGP

Greg Rohling, Jason Zutty

General

- Notebooks
 - Don't get behind
 - If it isn't documented, it didn't happen
- Labs
 - Genetic Programming Part II Due next week?

Objectives

- After this lecture students:
 - Recognize the power of multiple objective optimization in supplying a population of solutions not just a single objectives
 - Understand how Pareto dominance can be used to affect probability of mating
 - Understand classification terms true positive, false positive, true negative, false negative, sensitivity, specificity, accuracy
 - Use Multiple Objective concepts for selection of teams for project efforts

Rate Yourself

- Email Greg.Rohling@gtri.gatech.edu
 - Write your name
 - Rate your python skills 0 to 5
 - 0 = none I still think it is a snake
 - 2 = some experience
 - 3 = multiple years, and multiple applications
 - 5 = experienced and know pandas and scikit learn
 - Rate your machine learning skills
 - 0 = none
 - 2 = read some articles, but have never used it
 - 3 = used multiple types of machine learnings on multiple applications
 - 5 = used multiple types of machine learnings on multiple applications and understand theory
- This will serve as attendance for today, and an exercise next week

What are you looking for in a date/mate?

Chat Survey

What is an algorithm looking for in a mate?

Lecture Scope

 Today's lecture focuses the translation of the vector of scores from evaluation into a fitness value

 But to understand the context we will look at the slightly larger picture

- Gene pool is the set of genome to be evaluated during the current generation
 - Genome
 - Genotypic description of an individuals
 - DNA
 - GA = set of values
 - GP = tree structure, string
 - Search Space
 - Set of all possible genome
 - For Automated Algorithm Design
 - Set of all possible algorithms
 - How big is the search space?
 - Why is this important for algorithm design?

Objective Space

- The Evaluation of a Genome associates a genome/individual (set of parameters for GA or string for GP) with a set of scores
- What are these scores
 - True Positive TP
 - How often are we identifying the desired object
 - False Positive FP
 - How often are we identifying something else as the desired object
 - More? On board, next page
- Objectives
 - Set of measurements each genome (or individual) is scored against
 - Phenotype
- Objective Space Set of objectives
- Evaluation Maps an genome/individual
 - From a location in search space
 - Genotypic description
 - To a location in objective space
 - Phenotype description

Classification Measures

Confusion Matrix

Algorithm = Red Objects

Maximization Measures

Minimization Measures

	Predicted: Positive	Predicted: Negative
Actual Positive (P)	True Positive (TP)	False Negative (FN)
Actual Negative (N)	False Positive (FP)	True Negative (TN)

- False Negative Rate (FNR)
 - FNR = FN/P = FN/(TP+FN)
 - FNR = 1 TPR
- Fallout or False Positive Rate(FPR)
 - FPR = FP/N = TN/(FP+TN)
 - FPR = 1 TNR = 1 SPC

	Predicted: Positive	Predicted: Negative
Actual	True	False
Positive	Positive	Negative
(P=11)	(TP=8)	(FN=3)
Actual	False	True
Negative	Positive	Negative
(N=12)	(FP=5)	(TN=7)

FNR = ?

FPR = ?

	Predicted: Positive	Predicted: Negative
Actual	True	False
Positive	Positive	Negative
(P=11)	(TP=8)	(FN=3)
Actual	False	True
Negative	Positive	Negative
(N=12)	(FP=5)	(TN=7)

	Predicted: Positive	Predicted: Negative
Actual	True	False
Positive	Positive	Negative
(P=11)	(TP=?)	(FN=?)
Actual	False	True
Negative	Positive	Negative
(N=12)	(FP=?)	(TN=?)

	Predicted: Positive	Predicted: Negative
Actual	True	False
Positive	Positive	Negative
(P=11)	(TP=11)	(FN=0)
Actual	False	True
Negative	Positive	Negative
(N=12)	(FP=8)	(TN=4)

Other Measures

•	Precision or Posit	ive	
	Predictive Value	(PPV)	

- PPV = TP / (TP + FP)
- Bigger is better
- False Discovery Rate
 - FDR = FP/(TP + FP)
 - FDR = 1 PPV
 - Smaller is better

- Negative Predictive Value (NPV)
 - NPV = TN / (TN + FN)
 - Bigger is better

- Accuracy (ACC)
 - ACC = (TP+TN) / (P+N)
 - ACC = (TP+TN) / (TP + FP + FN + TN)
 - Bigger is better

Lecture Scope

Objective Space

- Each individual is evaluated using objective functions
 - Mean squared error
 - Cost
 - Complexity
 - True positive rate
 - False positive rate
 - Etc...
- Objective scores give each individual a point in objective space
- This may be referred to as the phenotype of the individual
- Examples are shown with two objectives, but all techniques we will discuss are extensible to N objectives

Pareto Optimality

- An individual is Pareto optimal if there is no other individual in the population that outperforms the individual on all objectives
- The set of all Pareto individuals is known as the Pareto frontier
- These individuals represent unique contributions
- We want to drive selection by favoring Pareto individuals
 - But maintain diversity by giving all individuals some probability of mating

Nondominated Sorting Genetic Algorithm II

(NSGA II)

 Population is separated into nondomination ranks

- Individuals are selected using a binary tournament
- Lower Pareto ranks beat higher Pareto ranks
 - For example, an individual on the blue front will beat out an individual on the green front
- Ties on the same front are broken by crowding distance
 - Summation of normalized Euclidian distances to all points within the front
 - Higher crowding distance wins

Strength Pareto Evolutionary Algorithm 2

(SPEA2)

- Each individual is given a strength S
 - *S* is how many others in the population it dominates

Strength Pareto Evolutionary Algorithm 2

(SPEA2)

- Each individual is given a strength S
 - S is how many others in the population it dominates
- Each individual receives a rank R
 - *R* is the sum of *S's* of the individuals that dominate it
 - Pareto individuals are nondominated and receive an R of 0
- A distance to the k^{th} nearest neighbor (σ^k) is calculated and a fitness of R + $1/(\sigma^k + 2)$ is obtained

