Recall that Y_1 and Y_2 are assumed to be independent random variables. With this in mind, we get: $m_Y(t) = \text{Figure 1}$

Finally, using the definition of a m.g.f., we have

$$m_Y(t) = m_{\chi_1}(t) \cdot m_{\chi_2}(t)$$

H378K: October 2nd, 2024.

 $\frac{m_{Z}(t)}{m_{Z}(t)} = \frac{1}{2\pi} e^{-\frac{1}{2}(2-t)^{2}} e^{-\frac{1}{$

Example 7.14. Let the random variable Y have the $mgfm_Y$. Define X = aY + b for some constants a and b. Express the $mgfm_X$ of X in terms of m_Y , a and b.

$$\rightarrow: m_{X}(t) = \mathbb{E}[e^{t \cdot X}] = \mathbb{E}[e^{t(\alpha \cdot Y + b)}] =$$

$$= \mathbb{E}[e^{t\alpha Y} \cdot e^{tb}] = e^{tb} \cdot \mathbb{E}[e^{t\alpha \cdot Y + b}] = e^{tb} \cdot m_{Y}(ta)$$

Example 7.15. Let $X \sim N(\mu, \sigma^2)$. What is the moment generating function m_X of X?

$$\longrightarrow : \quad X = \mu + \sigma \cdot Z \quad \text{with } Z \sim \text{NOA}$$

$$m_X(t) = e^{\mu \cdot t} \cdot m_Z(\sigma \cdot t) = e^{\mu t} \cdot e^{\frac{\sigma^2 t^2}{2}} = e^{\mu t + \frac{\sigma^2 t^2}{2}}$$

Problem 7.2. A random variable Y is said to be lognormal if there exists a normally distributed random variable $X \sim N(\mu, \sigma^2)$ such that $Y \stackrel{(d)}{=} e^X$ Express the mean and the variance of the lognormal r.v. Y in terms of the parameters μ and σ .

$$E[Y] = E[e^{X}] = E[e^{4X}] = m_{X}(4) = e^{\mu + \frac{Q^{2}}{2}}$$

$$E[Y^{2}] = E[(e^{X})^{2}] = E[e^{2\cdot X}] = m_{X}(2) = e^{2\mu + \frac{4Q^{2}}{2}} = e^{2\mu + \sigma^{2}}$$

$$Var[Y] = E[Y^{2}] - (E[Y])^{2} = e^{2(\mu + \sigma^{2})} - e^{2\mu + \sigma^{2}}$$

$$= e^{2\mu + \sigma^{2}} (e^{\sigma^{2}} - 4)$$

Proposition 7.16. 1. If m_Y exists for a certain probability distribution, then it is unique.

2. If m_{Y_1} and m_{Y_2} are equal on an interval, then $Y_1 \stackrel{(d)}{=} Y_2$.

Corollary 7.17. Let X_1 and X_2 be independent and normally distributed. Define $X = X_1 + X_2$. Then, the distribution of X is ...

Proof.
$$X_i \sim N(\mu = \check{\mu}_i, \sigma_i^2)$$
 for $i = 1, 2$

$$= \mathbb{E} \left[e^{tX} \right] = \mathbb{E} \left[e^{t(X_i + X_2)} \right]$$

$$= \mathbb{E} \left[e^{tX} \right] = \mathbb{E} \left[e^{t(X_i + X_2)} \right]$$

$$= \mathbb{E} \left[e^{tX} \right] = \mathbb{E} \left[e^{t(X_i + X_2)} \right]$$

$$= \mathbb{E} \left[e^{tX} \right] = \mathbb{E} \left[e^{t(X_i + X_2)} \right]$$

$$= \mathbb{E} \left[e^{tX} \right] = \mathbb{E} \left[e^{t(X_i + X_2)} \right]$$

$$= \mathbb{E} \left[e^{tX} \right] = \mathbb{E} \left[e^{t(X_i + X_2)} \right]$$

$$= \mathbb{E} \left[e^{tX} \right] = \mathbb{E} \left[e^{t(X_i + X_2)} \right]$$

$$= \mathbb{E} \left[e^{tX} \right] = \mathbb{E} \left[e^{t(X_i + X_2)} \right]$$

$$= \mathbb{E} \left[e^{tX} \right] = \mathbb{E} \left[e^{t(X_i + X_2)} \right]$$

$$= \mathbb{E} \left[e^{tX} \right] = \mathbb{E} \left[e^{t(X_i + X_2)} \right]$$

$$= \mathbb{E} \left[e^{tX} \right] = \mathbb{E} \left[e^{t(X_i + X_2)} \right]$$

$$= \mathbb{E} \left[e^{tX} \right] = \mathbb{E} \left[e^{t(X_i + X_2)} \right]$$

$$= \mathbb{E} \left[e^{tX} \right] = \mathbb{E} \left[e^{tX_i + X_2} \right]$$

$$= \mathbb{E} \left[e^{tX_i + X_2} \right] = \mathbb{E} \left[e^{tX_i + X_2} \right]$$

$$= \mathbb{E} \left[e^{tX_i + X_2} \right] = \mathbb{E} \left[e^{tX_i + X_2} \right]$$

$$= \mathbb{E} \left[e^{tX_i + X_2} \right] = \mathbb{E} \left[e^{tX_i + X_2} \right]$$

$$= \mathbb{E} \left[e^{tX_i + X_2} \right] = \mathbb{E} \left[e^{tX_i + X_2} \right]$$

$$= \mathbb{E} \left[e^{tX_i + X_2} \right] = \mathbb{E} \left[e^{tX_i + X_2} \right]$$

$$= \mathbb{E} \left[e^{tX_i + X_2} \right] = \mathbb{E} \left[e^{tX_i + X_2} \right]$$

$$= \mathbb{E} \left[e^{tX_i + X_2} \right] = \mathbb{E} \left[e^{tX_i + X_2} \right]$$

$$= \mathbb{E} \left[e^{tX_i + X_2} \right] = \mathbb{E} \left[e^{tX_i + X_2} \right]$$

$$= \mathbb{E} \left[e^{tX_i + X_2} \right] = \mathbb{E} \left[e^{tX_i + X_2} \right]$$

$$= \mathbb{E} \left[e^{tX_i + X_2} \right] = \mathbb{E} \left[e^{tX_i + X_2} \right]$$

$$= \mathbb{E} \left[e^{tX_i + X_2} \right] = \mathbb{E} \left[e^{tX_i + X_2} \right]$$

$$= \mathbb{E} \left[e^{tX_i + X_2} \right] = \mathbb{E} \left[e^{tX_i + X_2} \right]$$

$$= \mathbb{E} \left[e^{tX_i + X_2} \right] = \mathbb{E} \left[e^{tX_i + X_2} \right]$$

$$= \mathbb{E} \left[e^{tX_i + X_2} \right] = \mathbb{E} \left[e^{tX_i + X_2} \right]$$

$$= \mathbb{E} \left[e^{tX_i + X_2} \right] = \mathbb{E} \left[e^{tX_i + X_2} \right]$$

$$= \mathbb{E} \left[e^{tX_i + X_2} \right] = \mathbb{E} \left[e^{tX_i + X_2} \right]$$

$$= \mathbb{E} \left[e^{tX_i + X_2} \right] = \mathbb{E} \left[e^{tX_i + X_2} \right]$$

$$= \mathbb{E} \left[e^{tX_i + X_2} \right] = \mathbb{E} \left[e^{tX_i + X_2} \right]$$

$$= \mathbb{E} \left[e^{tX_i + X_2} \right] = \mathbb{E} \left[e^{tX_i + X_2} \right]$$

$$= \mathbb{E} \left[e^{tX_i + X_2} \right] = \mathbb{E} \left[e^{tX_i + X_2} \right]$$

$$= \mathbb{E} \left[e^{tX_i + X_2} \right] = \mathbb{E} \left[e^{tX_i + X_2} \right]$$

$$= \mathbb{E} \left[e^{tX_i + X_2} \right] = \mathbb{E} \left[e^{tX_i + X_2} \right]$$

$$= \mathbb{E} \left[e^{tX_i + X_2} \right] = \mathbb{E} \left[e^{t$$

Corollary 7.18. Let N_1 and N_2 be independent and Poisson distributed. Define $N=N_1+N_2$. Then, the distribution of N is ...

Proof. $N_i \sim Poisson(\lambda_i)$ for i = 1, 2

$$\rightarrow: m_{N}(t) = m_{N_{1}}(t) \cdot m_{N_{2}}(t) = e^{\lambda_{1}(e^{t}-1)} \cdot e^{\lambda_{2}(e^{t}-1)}$$

$$= e^{(\lambda_{1}+\lambda_{2})}(e^{t}-1)$$

$$= e^{(\lambda_{1}+\lambda_{2})}$$

$$= e^{(\lambda_{1}+\lambda_{2})}$$

6