

حص في التعلم الالب

Linear Regression - Logistic Regression Regularization - Neural Networks Clustering - Dimensionality Reduction

رضـــوان

سكيـنة

احـــمد

فهرس الحصة 3

- 1. مقدمة
- a. مشكل التصنيف
- 2. الانحدار اللوجستى Logistic Regression
 - a. النموذج الرياضياتي Model
 - h. حالة الخطأ Error Function
- c. خوارزمية أصل التدرج Gradient Descent
- 3. الانحدار اللوجستي المتعدد Multiple Logistic Regression
 - 4. أمثلة باستعمال Python و Colab

أشنو كانقصدو بمشكل التصنيف؟

مقدمة

ناخدو مثال:

الخصائص اللي غانعتامدو عليهم في التصنيف:

sepal.length	sepal.width	petal.length	petal.width	variety
5.1	3.5	1.4	0.2	Setosa
4.9	3	1.4	0.2	Setosa
4.6	3.1	1.5	0.2	Setosa
6.3	2.5	5	1.9	Virginica
6.5	3	5.2	2	Virginica
5.9	3	5.1	1.8	Virginica

مقدمة

الا خدينا غير جوج ديال الخصائص مثلا، فالتصنيف كايكون بواسطة واحد

فهرس الحصة 3

- 1. مقدمة
- a. مشكل التصنيف
- 2. الانحدار اللوجستى Logistic Regression
 - a. النموذج الرياضياتي Model
 - h. حالة الخطأ Error Function
- c. خوارزمية أصل التدرج Gradient Descent
- 3. الانحدار اللوجستي المتعدد Multiple Logistic Regression
 - 4. أمثلة باستعمال Python و Colab

المعادلة اللي كاتمثل الحدود بين الأصناف :

x1*w1+**x2***w2+....+**xn***wn+b=0

x1*w1+**x2***w2+....+**xn***wn+b=y

بصفة عامة:

القيمة ديال النتيجة:

التنبؤ/التصنيف:

y>0: المجموعة أ

y<0: المجموعة ب

المعادلة:

0.5*x1+2*x2-2=0

في المثال اللي عندنا:

النتيحة>0: Virginica

النتيحة<0: setosa

النتيحة=0.5***p.width**+2***s.width**-2

التنبؤ/التصنيف:

كيفاش نقدرو نحولو هاذ النتائج إلى احتمالات:

الوردة 3:

petal.width=2 setal.width=0.2

result= -0.6

g(**result**)= 0 .35

الوردة 2:

petal.width=3 setal.width=1,8

result= 3,1

g(**result**)= 0 .95

الوردة 1:

petal.width=3 setal.width=2

result= 3,5

g(**result**)= 0 .97

P(virginica) = 0.35

P(virginica) = 0.95

P(virginica) = 0.97

P(Sesota) = 1 - P(virginica)

الدالة السينية:

- هادیك الدالة و اللي كاتحول لینا النتائج لإحتمال واش الوردة من صنف Virginica أولا لا كاتسمى الدالة السينية
 - Sigmoid/logistic function •

النموذج الرياضياتى:

(X1,X2,, Xn)=X هوما المعلومات اللى غانستعملو باش نصنفو البيّانات (data) اللى عندنا، فهاد الحالة هما: sepal.length sepal.width petal.length petal.width

المعادلة ديال المستقيم:

0.5***x1**+2***x2**-2=0

في المثال اللي عندنا:

النتيجة=0.5***p.width**+2***s.width**-2

بصفة عامة, المعادلة اللي كاتمثل الحدود بين الأصناف: **W***X+h=7

النموذج الرياضياتى:

المعادلة ديال المستقيم:

0.5***x1**+2***x2**-2=0

في المثال اللي عندنا:

النتيجة=2-0.5***p.width**

بصفة عامة, المعادلة اللي كاتمثل الحدود بين الأصناف: W*X+b=Z

هوما [w1,w2,, wn]=W المعاملات اللي كانضربو فكل متغیر **xi** و اللی کایتحکمو فالشكل ديال المستقيم اللي كايفرق البيانات (data) لمجموعتين، و باش نلقاو القيمة المناسبة ديالهم خاصنا دالة الخطأ و خوارزمية أصل

النموذج الرياضياتى:

المعادلة ديال المستقيم:

0.5*x1+2*x2-2=0

في المثال اللي عندنا:

p.width+2***s.width**-2*****0.5

و(النتيجة)=إحتمال(الوردة من صنف virginica)

g هی Logistic function

g(0)=0.5

 $g(z) >= 0.5 \Rightarrow y=1$

 $g(z)<0.5 \Rightarrow y=0$

بصفة عامة, المعادلة اللي كاتمثل الحدود بين الأصناف:

 $W^*X+b=Z$ g(z)=P(y=1|X,W)=1-P(y=0|X,W)

دالة الخطأ، Error function

هاد الدالة كاتخلينا نعرفو أشمن مستقيم كايفرق لينا البيانات (data) مزيان

ERROR = • + • + • + • + • + •

دالة الخطأ، Error function

Error =
$$-\frac{1}{m}\sum_{i=1}^{m} \frac{(1-y_i)(\ln(1-\hat{y_i})) + y_i \ln(\hat{y_i})}{i=1}$$

أولا لا virginica في الحالة ديالنا واش الوردة من صنف 0 أو0 أو0 أو0 أو0 أو0 أولا لا

Virginica هو إحتمال وقوع الحدث، في الحالة ديالنا الحدث هو إنتماء الوردة للصنف \hat{y}_i

خوارزمية أصل التدرج، gradient descent

هاذ الخوارزمية هي guide حيال داك المتسلق اللي كيمثل لينا داك الخط اللى كيفرق الداتا (أنواع الورود)

دالة الخطأ، Error function

Error Function


```
-\log(0.6) - \log(0.2) - \log(0.1) - \log(0.7) = 4.8
0.51 1.61 2.3 0.36
```

```
If y = 1
P(blue) = \hat{y}
Error = -\ln(y)
If y = 0
P(red) = 1 - P(blue) = 1 - \hat{y}
Error = -\ln(1 - \sqrt{1 - 1})
Error = - (1-y)(\ln(1-\hat{y})) - y\ln(\hat{y})
Error = -\frac{1}{m}\sum_{i} (1-y_i)(\ln(1-\hat{y_i})) + yi\ln(\hat{y_i})
```

مثال ديال الحساب ديال دالة الخطأ:

خوارزمية أصل التدرج، gradient descent

Gradient Descent


```
\hat{y} = \sigma(Wx+b) -Bad
\hat{y} = \sigma(w_1x_1 + ... + w_nx_n + b)
\nabla E = (\frac{\partial E}{\partial w_1}, \frac{\partial E}{\partial w_n}, \frac{\partial E}{\partial w_n}, \frac{\partial E}{\partial w_n})
 \alpha = 0.1 (learning rate)
w_i' \leftarrow w_i - \alpha \ \mathcal{E}_{\partial W_i}
b' ← b - a æ/ðb
\hat{y} = \sigma(W'x+b') - Better
```

خوارزمية أصل التدرج، gradient descent

$$E = -\frac{1}{m} \sum_{i=1}^{m} (y_i \ln(\hat{y}_i) + (1 - y_i) \ln(1 - \hat{y}_i))$$

$$\nabla E = \left(\frac{\partial}{\partial w_1} E, \cdots, \frac{\partial}{\partial w_n} E, \frac{\partial}{\partial b} E\right)$$

$$w_i' \leftarrow w_i + \alpha(y - \hat{y})x_i.$$
 $b' \leftarrow b + \alpha(y - \hat{y}).$

دبا يمكن لينا نجمعو هادشي كامل في مجموعة من المراحل اللي غايتبعها الحاسوب و يطبقها على البيانات (data) اللي غانعطيوه

الخطوة 1: كنعطيو لدوك Wi قيم بشكل عشوائى باش نبداو

• الخطوة 2: كنبدلو قيم ديال Wi, b حسب خوارزمية Gradient descent بزاف دلمرات حتى كتولى دالة الخطأ صغيرة

فهرس الحصة 3

- 1. مقدمة
- a. مشكل التصنيف
- 2. الانحدار اللوجستى Logistic Regression
 - a. النموذج الرياضياتي Model
 - b. دالة الخطأ Error Function
- c. خوارزمية أصل التدرج Gradient Descent
- 3. الانحدار اللوجستي المتعدد Multiple Logistic Regression .3
 - 4. أمثلة باستعمال Pythonّ و Colab

الانحدار اللوجستى المتعدد

مثلا في الحالة حیال 3 حیال الأصناف، كنقسمو المشكل ل 3 ديال التصنيفات الثنائية بحال کیف درنا فالمثال اللى

أمثلة باستعمال Python أمثلة باستعمال

ندوزو لشوية دلكود

