Automated Computer Vision Inspection System for Conveyance amazon

Team #5

Team #5

Team Members: Brady Wyniemko, Cameron Lewis, Jared Pritchard, Noah Rommel, Grant Hollyer, and Devon Harmon Mentors: Milton Aguirre, Alex Bergman, Jean-Jacques Futey, and Joe Good

Background

Amazon houses on average 11-22 miles of conveyance belts per fulfillment center, the belt failure increases downtime and costs millions of dollars.

Belt Tracking

Material Defects

- A belt rip occurs when the belt separates or tears apart, causing a complete belt failure
- Package damage or other abrasions can cause rips and tears in the belt
- Splices are staples joining a belt together, which are susceptible to damage and can become weak points that may result in a rip
- Belt tracking is when the belt veers offcenter and rubs against the conveyor frame or other components, causing premature wear and damage to the belt Misaligned belts account for 15% of all mechanical failures in Amazon's
- Material defects such as cuts, gouges, and tears can cause belt failure

Initial Experiment XBOX Kinect Testing Hardware Raspberry Pi Logitech Camera Final Design **NVIDIA Jetson USB 1080P** Nano Wide Angle

Scope of Work

conveyance systems

- Detects rips, material defects, alignment
- Affordable (BOM <= \$400)
- Recommend maintenance from KPIs

Existing Solutions

Existing solutions for conveyor belt failure mode detection at Amazon sort centers mainly rely on regular walkthrough inspections by maintenance personnel. Other systems at Amazon, such as sensors that detect changes in temperature, vibration, or motor current, do not monitor belt health or generate a predictive maintenance report utilizing visionbased software

Testing

Camera Vision	Pros	Cons
ELP 2.0 MP USB Camera	120fps Inexpensive: \$60> Wide Angle Lens Ease to Use Compact	Only 720P at 120fps
NVIDIA Jetson Nano	 High Processing Power Many different ports Small Footprint 	Can be difficult to use Expensive
Raspberry Pi 3B+	Small FootprintInexpensive	Very Slow
Logitech Desktop External Camera	Inexpensive Easy to use	Requires a PC Low frame rate and low resolution
Kinect 360 Camera	• Free	Bulky Low resolution
High Speed Camera Attachment	Best framerate Best Resolution Compact	Extremely Expensive

Final Design

hosted

website

Surface Condition

Material (amnesty), belt surface condition

Belt Rips

Maintenance

Inspections

to a database

auto and mai

run. Able to 5+ year of da

Predictive Maintenance Report

	ID	Average Straightness	Blue Values	Average Number of Vertices	Average Solidity	Date	Time
	1	35.20361111111111	[0]	36.5	0.16658477221442078	2023- 03-05	17:19:0
1	2	0.0	[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0.0	0.0	2023- 04-06	16:52:5
	3	0.0	[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0.0	0.0	2023- 04-08	13:04:2
	4	0.0	[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0.0	0.0	2023- 04-08	13:12:3
aved e after	5	0.0	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0.0	0.0	2023- 04-08	13:13:0
nual	6	0.0	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0.0	0.0	2023- 04-08	13:13:1
store	7	0.0	[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0.0	0.0	2023- 04-08	13:19:1
ata	۰	0.0	p, a, o, a,	0.0	0.0	2023- 04-08	13:33:2

