二次整数环

戚天成 ⋈

复旦大学 数学科学学院

2024年1月29日

这份笔记主要记录二次域的整数环的计算,主要参考文献是 [DF04]. 首先我们回忆一些基本概念. 如果域 $K \in \mathbb{Q}$ 的有限扩张,则称 $K \in \mathbb{C}$ 是代数数域. 将代数数域作为 \mathbb{Q} -线性空间的次数称为该代数数域的次数. 例如当 $[K:\mathbb{Q}]$ 时,称 $K \in \mathbb{Z}$ 大域. 代数数域 K 的整数环 \mathcal{O}_K 是指 \mathbb{Z} 在 K 中的整闭包. 例如当 $K = \mathbb{Q}$ 时, $\mathcal{O}_{\mathbb{Q}} = \mathbb{Z}$. 代数数域的整数环是代数数论中的中心研究对象,它是 Dedekind 整区,所以 \mathcal{O}_K 决定的仿射概形是非奇异的.

1 代数数域的复嵌入

本节我们说明有理数域的任何代数扩张可嵌入复数域. 特别地, 代数数域从同构于复数域的某个子域.

Theorem 1.1. 设 E, L 是域, 其中 L 是代数闭域, $\sigma : E \to L$ 是非零环同态, K 是 E 的代数扩张, 则存在环 同态 $\tilde{\sigma} : K \to L$ 使得 $\tilde{\sigma}|_E = \sigma$.

Proof. 命 $S=\{(F,f)|F$ 是 $K\supseteq E$ 的中间域, $f:F\to L$ 是环同态且 $f|_E=\sigma\}$,那么 S 是集合且(E,σ) $\in S$ 表明 S 是非空的. 在 S 上定义二元关系 $\leq:(F_1,f_1)\leq (F_2,f_2)\Leftrightarrow F_1\subseteq F_2,f_2|_{F_1}=f_1$. 容易验证(S,\leq)是非空偏序集,且任何全序子集 $\{(F_\alpha,f_\alpha)|\alpha\in\Lambda\}$ 有上界(F,f),这里 $F=\bigcup_{\alpha\in\Lambda}F_\alpha$, $f:F\to L,x\mapsto f_\alpha(x)$ (对每个 $x\in F$,存在 $\alpha\in\Lambda$ 使得 $x\in F_\alpha$,这里定义 $f(x)=f_\alpha(x)$,容易验证 f 是定义合理的环同态),故由 Zorn 引理知上述偏序集有极大元(M,τ),我们断言 M=K. 若不然,设 M 是 K 的真子域,那么存在 $a\in K-M$,设 $a\in M$ 上首一最小多项式是 m(x),那么 $\varphi:M(a)\to M[x]/(m(x))$, $g(a)\mapsto g(x)+(m(x))$ 是环同构。因为 τ 是非零环同态,所以由 M 是域可知 $\tau:M\to L$ 是单保幺环同态,进而有域同构 $\theta:M\to \tau(M)$, $x\mapsto \tau(x)$,这导出多项式环间的同构 $\theta^*:M[x]\to \tau(M)$ $\sum_{i=0}^l b_i x^i\mapsto \sum_{i=0}^l \tau(b_i) x^i$,易见 $\tau(M)$ 是 L 的子域。因为 m(x) 是 M[x] 中不可约多项式,所以由 θ^* 是同构可知 $\theta^*(m(x))$ 是 $\tau(M)$ ($\tau(M)$),中的不可约多项式。因为 $\tau(M)$ 是 $\tau(M)$ 0。并注意到 $\tau(M)$ 0。在 $\tau(M)$ 1。中有根 $\tau(M)$ 2,于是有环同构 $\tau(M)$ 3。中代 $\tau(M)$ 4。中的不可约多项式。因为 $\tau(M)$ 4。并注意到 $\tau(M)$ 5。出环同构 $\tau(M)$ 6。 $\tau(M)$ 7。从 $\tau(M)$ 8。从 $\tau(M)$ 9。并注意到 $\tau(M)$ 9。从 $\tau(M)$ 9。从 $\tau(M)$ 9。并注意到 $\tau(M)$ 9。从 $\tau(M)$ 9。

$$M(a) \xrightarrow{\varphi} M[x]/(m(x)) \xrightarrow{\Theta} \tau(M)[x]/(\theta^*(m(x))) \xrightarrow{\psi} \tau(M)(c) \longrightarrow L$$

注意到 $\psi\Theta\varphi$ 能够诱导一个 M(a) 到 L 的环同态且容易验证下图交换:

这与 (M,τ) 是极大元矛盾. 因此 M=K, 取 $\tilde{\sigma}=\tau$ 即得结果.

Example 1.2. 取 $E = \mathbb{Q}, K$ 是代数数域且 $L = \mathbb{C}$. 那么标准嵌入 $j : \mathbb{Q} \to \mathbb{C}$ 诱导域嵌入 $\tilde{j} : K \to \mathbb{C}$.

Corollary 1.3. 域 E 的任何代数扩张可嵌入 E 的代数闭包.

Proof. 在 [定理1.1] 中取 L 为 E 的代数闭包即可.

Remark 1.4. 由 [定理1.1], E 的所有代数扩张中, 代数闭包可视作某种意义下"最大"代数扩张.

2 二次整数环的计算

本节固定二次域 K, 即满足 $[K:\mathbb{Q}]=2$. 根据 $[\Xi 1.1]$, 可设 $K\subseteq\mathbb{C}$. 因为 $\mathrm{char}\mathbb{Q}=0$, 故由本原元定理知存在 $c\in K$ 使得 $K=\mathbb{Q}(c)$. 设 c 满足的 \mathbb{Q} 上最小多项式是 m(x), 那么 m(x) 是二次的,设为 $m(x)=x^2+a_1x+a_0,a_i\in\mathbb{Q}$. 于是 $\sqrt{a_1^2-4a_0}$ 不是有理数,易见 $K=\mathbb{Q}(c)=\mathbb{Q}(\sqrt{a_1^2-4a_0})$,那么存在既不是 0 也不是 1 的无平方因子整数 D 使得 $K=\mathbb{Q}(\sqrt{D})$. 易知 K 中任何元素形如 $a+b\sqrt{D}(a,b\in\mathbb{Q})$.

Lemma 2.1. 如果 D_1, D_2 均为既不是 0 也不是 1 的无平方因子整数, 则 $\mathbb{Q}(\sqrt{D_1}) = \mathbb{Q}(\sqrt{D_2}) \Leftrightarrow D_1 = D_2$.

Proof. 设 $\mathbb{Q}(\sqrt{D_1}) = \mathbb{Q}(\sqrt{D_2})$, 那么存在有理数 a,b 使得 $\sqrt{D_1} = a + b\sqrt{D_2}$. 假设 b = 0, 那么 $D_1 = a^2$ 可得 a 是整数, 这与 D_1 是既不是 0 也不是 1 的无平方因子整数矛盾. 因此 $b \neq 0$. 如果 $a \neq 0$, 那么由 $D_1 = a^2 + 2ab\sqrt{D_2} + b^2D_2$ 可知 $\sqrt{D_2} \in \mathbb{Q}$, 这与 D_2 是既不是 0 也不是 1 的无平方因子整数矛盾. 因此 a = 0. 现在我们得到 D_2/D_1 是某个有理数的平方,假设 $D_2 \neq D_1$,可设互素的正整数 s,t 满足 $s^2D_2 = t^2D_1$,并且 s,t 其中一个至少是 2. 这蕴含 D_1 与 D_2 中至少有一个不是无平方因子整数,矛盾.

Remark 2.2. 如果 D 是既不是 0 也不是 1 的无平方因子整数, 易验证 $\{1,\sqrt{D}\}$ 是 $\mathbb{Q}(\sqrt{D})$ 的 \mathbb{Q} -基.

由此可知集合 $\mathscr{S}=\{D\in\mathbb{Z}|D$ 无平方因子且 $D\neq0,1\}$ 与所有二次域 $\mathscr{Q}=\{K\subseteq\mathbb{C}|\mathbb{Q}\subseteq K,[K:\mathbb{Q}]=2\}$ 间有标准双射 $\mathscr{S}\to\mathscr{Q},D\mapsto\mathbb{Q}(\sqrt{D})$. 如果不限制二次域在 \mathbb{C} 中,那么有双射 $\varphi:\mathscr{S}\to\{$ 二次域的同构类 $\},D\mapsto[\mathbb{Q}(\sqrt{D})]$. 根据 [例1.2] 和前面的讨论, φ 是满射. 依 [引理2.1] 得到 φ 是单射. 所以二次域都被某个既不是 0 也不是 1 的无平方因子整数决定. 以下我们仍假设考虑的二次域 $K=\mathbb{Q}(\sqrt{D})$ 是 \mathbb{C} 的子域.

当 $D \equiv 1 \pmod{4}$ 时,记 $\omega = (1 + \sqrt{D})/2$,易验证 $\omega \in \mathcal{O}_K$.所以 $\mathbb{Z}[\omega] = \{a + b\omega | a, b \in \mathbb{Z}\} \subseteq \mathcal{O}_K$.反之,任取 $a + b\sqrt{D} \in \mathcal{O}_K$,这里 $a, b \in \mathbb{Q}$.那么 $a \pm b\sqrt{D}$ 是 $x^2 - 2ax + (a^2 - Db^2) \in \mathbb{Q}[x]$ 的根.如果 b = 0,

那么 $a \in \mathcal{O}_K \cap \mathbb{Q} = \mathbb{Z}$. 如果 $b \neq 0$,那么 $x^2 - 2ax + (a^2 - Db^2)$ 是 $a + b\sqrt{D}$ 在 \mathbb{Q} 上的最小多项式,于是由 $a + b\sqrt{D}$ 也满足某个首一整系数多项式 g(x) 可知 $x^2 - 2ax + (a^2 - Db^2)$ 整除 g(x). 所以 $a \pm b\sqrt{D}$ 都是 g(x) 的根. 那么由 Vieta 定理知 $2a, a^2 - Db^2 \in \mathbb{Z}$. 于是 $4(a^2 - Db^2) - 4a^2 \in \mathbb{Z}$,于是 $(2b)^2D \in \mathbb{Z}$,结合 $b \in \mathbb{Q}$ 易知 $2b \in \mathbb{Z}$. 记 2a = s, 2b = t,那么由 $a^2 - Db^2 \in \mathbb{Z}$ 可得 $s^2 - Dt^2 \equiv 0 \pmod{4}$. 于是 s, t 必定同奇或同偶,由此可知 $a + b\sqrt{D} \in \mathbb{Z}[\omega]$. 刚刚的讨论证明了

Proposition 2.3. 设 D 为既不是 0 也不是 1 的无平方因子整数并且 $D \equiv 1 \pmod{4}$, 那么

$$\mathcal{O}_K = \mathbb{Z}\left[rac{1+\sqrt{D}}{2}
ight].$$

下设 $D \equiv 2,3 \pmod{4}$,首先易见 $\mathbb{Z}[\sqrt{D}] \subseteq \mathcal{O}_K$. 反之,任取 $a+b\sqrt{D} \in \mathcal{O}_K$,这里 $a,b \in \mathbb{Q}$. 类似前面的讨论可知 $2a,2b \in \mathbb{Z}$. 同样设 2a=s,2b=t,那么由 $a^2-Db^2 \in \mathbb{Z}$ 可得 $s^2-Dt^2 \equiv 0 \pmod{4}$. 注意到 $s^2 \equiv 0,1 \pmod{4}$,所以 t 只可能是偶数,进而 s 也是偶数. 这说明 $a,b \in \mathbb{Z}$. 于是我们得到

Proposition 2.4. 设 D 为既不是 0 也不是 1 的无平方因子整数并且 $D \equiv 2, 3 \pmod{4}$, 那么 $\mathcal{O}_K = \mathbb{Z}[\sqrt{D}]$.

现在把 [命题2.3] 和 [命题2.4] 总结为下述定理.

Theorem 2.5. 设 D 为既不是 0 也不是 1 的无平方因子整数, 则 $\mathcal{O}_K = \mathbb{Z}[\omega]$, 其中

$$\omega = \begin{cases} (1 + \sqrt{D})/2, & D \equiv 1 \pmod{4} \\ \sqrt{D}, & D \equiv 2, 3 \pmod{4}. \end{cases}$$

Example 2.6. 如果 D = -1, 那么 $K = \mathbb{Q}(i)$. 这时 $\mathcal{O}_K = \mathbb{Z}[i]$ 是 Gauss 整数环.

Example 2.7. 如果 D=5, 那么 $K=\mathbb{Q}(\sqrt{5})$. 这时 $\mathcal{O}_K=\mathbb{Z}[(1+\sqrt{5})/2]\supseteq\mathbb{Z}[\sqrt{5}]$.

Definition 2.8. 设 $E \subseteq K$ 是域的有限扩张, $x \in K$, 并记 $\ell_x : K \to K$ 是 x 决定的左乘变换. 称 E-线性变换 ℓ_x 的迹 $\operatorname{tr}(\ell_x)$ 为 x 关于 E 的迹, 记作 $\operatorname{tr}_{K/E}(x)$. 称 ℓ_x 的行列式 $\operatorname{det}(\ell_x)$ 为 x 关于 K 的范数, 记作 $N_{K/E}(x)$. 将 $\operatorname{tr}_{K/E} : L \to K, x \mapsto \operatorname{tr}_{K/E}(x)$ 与 $N_{L/K} : L \to K, x \mapsto N_{K/E}(x)$ 分别称为**迹映射**与**范数映射**.

现在取 $E = \mathbb{Q}$, 我们来计算二次域 $K = \mathbb{Q}(\sqrt{D})$, 这里 $D \neq 0,1$ 且是无平方因子的整数, 的范数映射. 首先 K 作为 \mathbb{Q} -线性空间有基 $\{1,\sqrt{D}\}$, 因此每个 $x = a + b\sqrt{D} \in K(a,b \in \mathbb{Q})$ 对应的 K 上左乘变换 ℓ_x 满足

$$\ell_x(1,\sqrt{D}) = (1,\sqrt{D}) \begin{pmatrix} a & Db \\ b & a \end{pmatrix},$$

由此可知 $N_{K/\mathbb{Q}}(a+b\sqrt{D})=a^2-Db^2$. 如果 $D\equiv 2,3 \pmod 4$, 那么 $\mathcal{O}_K=\mathbb{Z}[\sqrt{D}]$, 于是每个 $a+b\sqrt{D}\in \mathcal{O}_K(a,\in\mathbb{Z})$ 的范数为 $a^2-Db^2\in \mathbb{Z}$. 于是由范数映射保持乘法, $N_{K/\mathbb{Q}}(1)=1$ 以及 $(a+b\sqrt{D})(a-b\sqrt{D})=a^2-Db^2$ 可知 \mathcal{O}_K 中元素 α 是乘法可逆元当且仅当 $N_{K/\mathbb{Q}}(\alpha)=\pm 1$. 如果 $D\equiv 1 \pmod 4$, 那么每个 $a+b(1+\sqrt{D})/2\in \mathcal{O}_K$ 诱导的左乘变换在 $\{1,\sqrt{D}\}$ 下表示矩阵的行列式为 $a^2+ab+(1-D)b^2/4$. 如果记 $\omega=(1+\sqrt{D})/2,\overline{\omega}=(1-\sqrt{D})/2$, 那么 $N_{K/\mathbb{Q}}(a+\omega)=(a+b\omega)(a+b\overline{\omega})$. 同样可得 \mathcal{O}_K 中元素 α 是乘法可逆元当且仅当 $N_{K/\mathbb{Q}}(\alpha)=\pm 1$. 因此代数数域上的范数映射可刻画其整数环中的可逆元. 将前面的讨论总结为

Theorem 2.9. 设 D 为既不是 0 也不是 1 的无平方因子整数, $K = \mathbb{Q}(\sqrt{D})$, 并记

$$\omega = \begin{cases} (1+\sqrt{D})/2, & D \equiv 1 \pmod{4} \\ \sqrt{D}, & D \equiv 2, 3 \pmod{4}, \end{cases} \overline{\omega} = \begin{cases} (1-\sqrt{D})/2, & D \equiv 1 \pmod{4} \\ -\sqrt{D}, & D \equiv 2, 3 \pmod{4}, \end{cases}$$

那么对任何 $a + b\omega \in \mathcal{O}_K(a, b \in \mathbb{Z})$, 有

$$N_{K/\mathbb{Q}}(a+b\omega) = (a+b\omega)(a+b\overline{\omega}) = \begin{cases} a^2 + ab + (1-D)b^2/4, & D \equiv 1 \pmod{4} \\ a^2 - Db^2. & D \equiv 2, 3 \pmod{4}, \end{cases}$$

特别地, $N_{K/\mathbb{Q}}(\mathcal{O}_K) \subseteq \mathbb{Z}$. 并且 $\alpha \in \mathcal{O}_K$ 是可逆元当且仅当 $N_{K/\mathbb{Q}}(\alpha) = 1$.

Example 2.10. 设 D 是无平方因子的正整数, 称方程 $x^2 - Dy^2 = 1$ 是 **Pell 方程**. 人们感兴趣该方程的整数解. 我们不妨设 $D \neq 1$, 否则由 (x-y)(x+y) = 1 不难得到该方程所有的整数解. 如果 (s,t) 是 $x^2 - Dy^2 = 1$ 的整数解, 那么 $(s+\sqrt{D}t)(s-\sqrt{D}t) = 1$, 由此得到 $s+\sqrt{D}t$ 是 $\mathbb{Z}[\sqrt{D}]$ 中的可逆元. 因此求解 Pell 方程的整数解可化归为求出二次域 $K = \mathbb{Q}(\sqrt{D})$ 的整数环 \mathcal{O}_K 中的所有可逆元.

Example 2.11. 设 D=-1, 则 $K=\mathbb{Q}(i)$, $\mathcal{O}_K=\mathbb{Z}[i]$. Fermat 二平方和定理说素数 p 可表示为两个整数的 平方和的充要条件是 p=2 或 $p\equiv 1 \pmod{4}$. 我们可以在 $\mathbb{Z}[i]$ 中研究素数是否可表为二整数平方和问题. 如果有整数 a,b 使得 $p=a^2+b^2$, 那么 $p=(a+bi)(a-bi)=N_{K/\mathbb{Q}}(a+bi)$. 因此素数 p 可表示为某两个整数的平方和等价于存在 $\alpha\in\mathcal{O}_K=\mathbb{Z}[i]$ 使得 $p=N_{K/\mathbb{Q}}(\alpha)$.

参考文献

[DF04] D.S. Dummit and R.M. Foote. Abstract Algebra, volume 3. Wiley Hoboken, 2004.