71

Compléter le tableau suivant :

x	-3		2		4
g'(x)		_	0	+	
g(x)					

72

Compléter le tableau suivant :

x	-5		-1		6		9
h'(x)		_	0	+	0	_	
h(x)							

73

On considère la fonction f définie sur [0; 4] et dont la représentation graphique C_f est donnée ci-dessous.

Donner le tableau de signes de f'(x) sur [0; 4].

74

On considère la fonction g définie sur [0;4] et dont la représentation graphique C_g est donnée ci-dessous.

Donner le tableau de signes de g'(x) sur [-1; 3].

75

Soit f une fonction définie sur [-3; 3] telle que f'(x) = x - 1. Dresser le tableau de variations de la fonction f après avoir étudié le signe de f'(x).

76

Soit g une fonction définie sur [-2; 4] telle que g'(x) = 6-2x. Dresser le tableau de variations de la fonction g après avoir étudié le signe de g'(x).

77

Soit h une fonction définie sur $[-1\ ;\ 5]$ telle que h'(x)=-4x. Dresser le tableau de variations de la fonction h.

78

Soit k une fonction définie sur [-5; 5] telle que k'(x) = (x+1)(x-3). Dresser le tableau de variations de la fonction k.

79

Soit m une fonction définie sur [-2; 3] telle que $m'(x) = -3x(x+2)^2$. Dresser le tableau de variations de la fonction m après avoir étudié le signe de m'(x).

80

Soit f une fonction définie sur \mathbb{R} par :

$$f(x) = 3x^2 - x + 7.$$

Donner son tableau de variation.

81

Soit q une fonction définie sur \mathbb{R} par :

$$g(x) = -2x^2 + 5x - 3.$$

Donner son tableau de variation.

82

Soit h une fonction définie sur \mathbb{R} par :

$$h(x) = 2 - x^2.$$

Donner son tableau de variation.

83

Soit k une fonction définie sur [-3; 3] par :

$$k(x) = 2x + 3x^2 - 1.$$

Donner son tableau de variation.

84

Étudier le sens de variation de la fonction $f(x) = x^2 - 4x + 3$ sur \mathbb{R} . En déduire les coordonnées du sommet de cette parabole.

85

Étudier le sens de variation de la fonction $f(x) = -5x + 14 \operatorname{sur} [-6; 5]$. En déduire les extrema de $f \operatorname{sur} [-6; 5]$.

86

1. Montrer que

$$3x^{2} + 2x - 8 = 3(x+2)\left(x - \frac{4}{3}\right)$$

- 2. Etudier le sens de variation de la fonction $f(x) = x^3 + x^2 8x 6 \operatorname{sur} [-10; 4].$
- 3. Donner les extrema de f sur [-10; 4].

87

Etudier le sens de variation de la fonction $f(x) = x^2 - 5x + 6 \text{ sur } [-3; 9]$. En déduire les extrema de f sur [-3; 9].

88

1. Montrer que

$$6x^2 + 6x - 72 = 6(x - 3)(x + 4)$$
.

- 2. Étudier le sens de variation de la fonction $f(x) = 2x^3 + 3x^2 72x + 8 \text{ sur } [-7; 7].$
- 3. Donner les extrema de f sur $[-7\ ;\ 7]$ s'ils existent.

89

Soit f la fonction définie sur [-2; 2] par :

$$f(x) = x^3 - 2x^2 + 3.$$

- 1. Calculer puis factoriser f'(x).
- 2. En déduire le tableau de variations de f sur [-2; 2].

90

Soit g la fonction définie sur [-1; 3] par :

$$q(x) = 2x^3 + x^2 - x.$$

- 1. Calculer puis factoriser g'(x).
- 2. En déduire le tableau de variations de g sur [-1; 3].

91

On considère la fonction f définie par $f(x) = \frac{2x^3 + 5x^2 - 2x}{x}$

- 1. Préciser l'ensemble de définition D_f de f.
- 2. Trouver une autre écriture de cette fonction f sur son ensemble de définition D_f .
- 3. Calculer la dérivée de cette fonction.
- 4. Déterminer les variations de cette fonction sur D_f .
- 5. Préciser l'équation de la tangente à la courbe au point d'abscisse 3.
- 6. Déterminer les solutions de l'équation f(x) = 0.

92

On considère la fonction f définie sur $[0\ ;\ 4]$ et dont la représentation graphique \mathcal{C}_f est donnée ci-dessous.

- 1. Donner le signe de f'(2). Justifier.
- 2. Résoudre graphiquement les équations et inéquations suivantes :