${\bf Question\ (number)} \ {\bf \cdot \ q \ matrix\ inverse}$

Version 1

Matrix inverse

(1) **(4 points)** What is the inverse of $\begin{bmatrix} -6 & 3 \\ -5 & 2 \end{bmatrix}$?

MATH 1001 - Midterm 1 - Grading guide

${\bf Question} \ \ ({\bf number}) \ {\bf \cdot} \ {\bf q} \ {\bf polynomial} \ {\bf derivative}$

Version 1

Polynomial derivative

(2) (4 points) What is the derivative of $5x^3 - 8x^2 - 12x + 7$?

${\bf Question} \ \ ({\bf number}) \ {\bf \cdot} \ {\bf q} \ {\bf derivative} \ {\bf sketch}$

Version 1

Derivative graphing

(3) (4 points) Sketch the derivative of the function f(x).

Question (number) - q related rates

Version 1

Related rates

- (4) (4 points) A particle is moving along the curve xy = 2. As the particle passes through the point (2,1), it's x-coordinate increases at a rate of 3cm/sec.
 - (a) How fast is the y-value of the particle changing at this instant?
 - (b) What is the distance of the particle to the origin at this instant?
 - (c) How fast is the distance from the particle to the origin changing at this instant?

Version 2

Learning goal 4

- (5) (4 points) A particle is moving along the curve $x^2 + 4y^2 = 8$. As the particle passes through the point (2,1), it's x-coordinate increases at a rate of 3cm/sec.
 - (a) How fast is the y-value of the particle changing at this instant?
 - (b) What is the distance of the particle to the origin at this instant?
 - (c) How fast is the distance from the particle to the origin changing at this instant?

Version 3

Learning goal 4

- (6) (4 points) A particle is moving along the curve $x^2 4y^2 = 0$. As the particle passes through the point (2, 1), it's x-coordinate increases at a rate of 3cm/sec.
 - (a) How fast is the y-value of the particle changing at this instant?
 - (b) What is the distance of the particle to the origin at this instant?
 - (c) How fast is the distance from the particle to the origin changing at this instant?

MATH 1001 - Midterm 1 - Grading guide

Question (number) - q absolute limit

Version 1

Limits of piecewise functions

(7) (4 points) Complete the piecewise function, and use that to evaluate the given limit.

$$|5-t| = \begin{cases} & \text{when } t \ge 5 \\ & \text{when } t < 5 \end{cases}$$

$$\lim_{t \to 5^+} \frac{4|5-t|}{(5-t)}$$

Version 2

Learning goal 13

(8) (4 points) Complete the piecewise function, and use that to evaluate the given limit.

$$|5-t| = \begin{cases} & \text{when } t \ge 5 \\ & \text{when } t < 5 \end{cases}$$

$$\lim_{t \to 5^+} \frac{4|5-t|}{(t-5)}$$

Version 3

Learning goal 13

(9) (4 points) Complete the piecewise function, and use that to evaluate the given limit.

$$|t-5| = \begin{cases} & \text{when } t \ge 5 \\ & \text{when } t < 5 \end{cases}$$

$$\lim_{t \to 5^-} \frac{4|t-5|}{(5-t)}$$

Version 4

Learning goal 13

MATH 1001 - Midterm 1 - Grading guide

(10) (4 points) Complete the piecewise function, and use that to evaluate the given limit.

$$|t - 5| = \begin{cases} & \text{when } t \ge 5\\ & \text{when } t < 5 \end{cases}$$

$$\lim_{t \to 5^{-}} \frac{4|t-5|}{(t-5)}$$

MATH 1001 - Midterm 1 - Grading guide

${\bf Question} \ \, ({\bf number}) \ \, {\bf \cdot q} \ \, {\bf rational} \ \, {\bf limits}$

Version 1

Limits of unsimplified rational function

(11) **(4 points)** Evaluate the following limit. $\lim_{x\to 4} \frac{x^2-5x+4}{6x-24}$

$$\lim_{x \to 4} \frac{x^2 - 5x + 4}{6x - 24}$$

Version 2

Learning goal 12

(12) **(4 points)** Evaluate the following limit. $\lim_{x\to 4} \frac{6x-24}{x^2-5x+4}$

$$\lim_{x \to 4} \frac{6x - 24}{x^2 - 5x + 4}$$

MATH 1001 - Midterm 1 - Grading guide

${\bf Question} \ \, {\bf (number)} \ \, {\bf \cdot q} \ \, {\bf radical \ \, limits}$

Version 1

Limits with radicals

- (13) **(4 points)** Consider the limit $\lim_{x\to 1} \frac{\sqrt{x^2} \sqrt{4x-3}}{x-1}$. (a) What is the conjugate of the numerator?

(b) Evaluate the limit.

Question (number) - q exponential derivative

Version 1

Exponential derivatives

(14) (4 points) Compute $\frac{dy}{dx}$ for $y = x^{x^3 + 4\sin(x)}$.

Version 2

Learning goal 10

(15) (4 points) Compute $\frac{dy}{dx}$ for $y = x^{x^3 + 4\cos(x)}$.

Version 3

Learning goal 10

(16) (4 points) Compute $\frac{dy}{dx}$ for $y = x^{e^{3x} + 4\sin(x)}$.

Version 4

Learning goal 10

(17) (4 points) Compute $\frac{dy}{dx}$ for $y = x^{e^{3x} + 4\cos(x)}$.

Solutions:

(1)
$$\frac{1}{3}\begin{bmatrix} 2 & -3 \\ 5 & -6 \end{bmatrix} = \begin{bmatrix} \frac{2}{3} & -1 \\ \frac{5}{3} & -2 \end{bmatrix}$$

(2) $15x^2 - 16x - 12$

(2)
$$15x^2 - 16x - 12$$

(4) (a)
$$-\frac{x'y}{x} = -\frac{3.1}{2}$$

(b)
$$\sqrt{5}$$

(4) (a)
$$-\frac{x'y}{x} = -\frac{3\cdot 1}{2}$$

(b) $\sqrt{5}$
(c) $\frac{2xx'+2yy'}{2\sqrt{x^2+y^2}} = \frac{1}{2\sqrt{5}} \cdot 9$
(5) (a) $-\frac{xx'}{4y} = -\frac{2\cdot 3}{4\cdot 1}$

(5) (a)
$$-\frac{xx'}{4y} = -\frac{2\cdot 3}{4\cdot 1}$$

(b)
$$\sqrt{5}$$

(b)
$$\sqrt{5}$$

(c) $\frac{2xx'+2yy'}{2\sqrt{x^2+y^2}} = \frac{1}{2\sqrt{5}} \cdot 9$
(6) (a) $\frac{xx'}{4y} = \frac{2\cdot 3}{4\cdot 1}$

(6) (a)
$$\frac{xx'}{4y} = \frac{2\cdot 3}{4\cdot 1}$$

(b)
$$\sqrt{5}$$

(c)
$$\frac{2xx'+2yy'}{2\sqrt{x^2+y^2}} = \frac{1}{2\sqrt{5}} \cdot 15$$

(6) (a)
$$\frac{4x}{4y} = \frac{2\cdot 5}{4\cdot 1}$$

(b) $\sqrt{5}$
(c) $\frac{2xx'+2yy'}{2\sqrt{x^2+y^2}} = \frac{1}{2\sqrt{5}} \cdot 15$
(7) $\begin{cases} -(5-t) & \text{when } t \ge 5\\ 5-t & \text{when } t < 5 \end{cases}$, -4
(8) $\begin{cases} -(5-t) & \text{when } t \ge 5\\ 5-t & \text{when } t < 5 \end{cases}$, 4
(9) $\begin{cases} t-5 & \text{when } t \ge 5\\ -(t-5) & \text{when } t < 5 \end{cases}$, 4
(10) $\begin{cases} t-5 & \text{when } t \ge 5\\ -(t-5) & \text{when } t < 5 \end{cases}$, -4
(11) $\frac{3}{2} = \frac{1}{2}$

(8)
$$\begin{cases} -(5-t) & \text{when } t \ge 5\\ 5-t & \text{when } t < 5 \end{cases}$$

(9)
$$\begin{cases} t - 5 & \text{when } t \ge 5 \\ -(t - 5) & \text{when } t < 5 \end{cases}$$

(10)
$$\begin{cases} t - 5 & \text{when } t \ge 5 \\ -(t - 5) & \text{when } t < 5 \end{cases}$$

$$(11) \frac{3}{6} = \frac{1}{2}$$

$$(11) \ \frac{3}{6} = \frac{1}{2}$$

$$(12) \ \frac{6}{3} = 2$$

(13) (a)
$$\sqrt{x^2} + \sqrt{4x - 3}$$
 (b) $\frac{-2}{2\sqrt{1}}$

(14)
$$(x^{x^3+4\sin(x)})\left((3x^2+4\cos(x))\ln(x)+\frac{x^3+4\sin(x)}{x}\right)$$

(15)
$$(x^{x^3+4\cos(x)}) \left((3x^2 - 4\sin(x)) \ln(x) + \frac{x^3+4\cos(x)}{x} \right)$$

$$(14) \left(x^{x^3+4\sin(x)}\right) \left(\left(3x^2 + 4\cos(x)\right) \ln(x) + \frac{x^3+4\sin(x)}{x} \right)$$

$$(15) \left(x^{x^3+4\cos(x)}\right) \left(\left(3x^2 - 4\sin(x)\right) \ln(x) + \frac{x^3+4\cos(x)}{x} \right)$$

$$(16) \left(x^{e^{3x}+4\sin(x)}\right) \left(\left(3e^{3x} + 4\cos(x)\right) \ln(x) + \frac{e^{3x}+4\sin(x)}{x} \right)$$

MATH 1001 - Midterm 1 - Grading guide

(17)
$$(x^{e^{3x}+4\cos(x)})\left((3e^{3x}-4\sin(x))\ln(x)+\frac{e^{3x}+4\cos(x)}{x}\right)$$