

UCM108E 模块硬件设计手册

版本历史

版本	日期	变更描述
V1.0	2022-04-07	初始版本

目录

1 绪论	4
2 模块综述	4
2.1 模块主要特性	4
2.2 工作模式	4
2.3 模块功能框图	5
3 模块封装	
3.1 引脚分布图	
3.2 模块引脚描述	
3.3 机械尺寸	
3.3.1 三维尺寸	
3.3.2 推荐 PCB 封装尺寸	9
4 接口应用	
4.1 供电	10
4.2 开机关机	10
4.2.1 模块开机	10
4.2.2 模块关机	
4.3 省电模式	10
4.3.1 休眠模式	
4.4 串口	11
4.5 模数转换(ADC)接口	12
4.5.1 ADC 转换通道	12
4.5.2 数模转换(DAC)接口	12
4.6 天线接口	12
4.7 充电控制接口	13
5 PCB 布局	
5.1 电源	13
5.2 射频走线	14
6 电气,可靠性和射频特性	14
6.1 DC 特性	14

	6.2 GNSS 特性	15
	6.3 ADC 特性	15
	6.4 辅助 DAC 特性	16
	6.5 charger 特性	16
7	' 生产	17
8	· 附录	18
	A 参考文档	18
	B 术语和解释	18

1 绪论

本文档描述了 UCM108E 模块的硬件应用接口,包括相关应用场合的电路连接以及射频接口等。借此可以帮助用户快速的了解模块的各项规格参数,诸如接口定义、电气性能和结构尺寸的详细信息。结合本文档及其他的应用文档,用户可以快速的使用该模块来设计出相应的应用解决方案。

2 模块综述

2.1 模块主要特性

₩	44.44		性能			
参数 	描述	最小	典型	最大	单位	
电源		3.3	3.7	4.2	V	
水平定位精度		-	3.5	-	m	
速度精度	无辅助	-	0.05	-	m/s	
	热启动	_	< 2	-	s	
GPS 首次定位时间	冷启动	-	< 30	-	s	
CDG DDG2 * WAR PHA	热启动	-	< 2	-	s	
GPS+BDS3 首次定位时间	冷启动	-	< 30	-	s	
	捕获 (冷启动)	-	-148	-	dBm	
GPS 灵敏度	重捕	-	-157	-	dBm	
	跟踪	-	-165	-	dBm	
	捕获 (冷启动)		-142	-	dBm	
BDS3 灵敏度	重捕	-	-157	-	dBm	
	跟踪	-	-165	-	dBm	
	通道数	-	10	-		
接收机	更新率	5	-	10	Hz	
	NMEA0183 协议	-	4.11	-		

2.2 工作模式

模式	功能	
GNSS 正常工作	定位模式	GNSS 通过 NMEA0183 协议输出定位结果。
睡眠模式(关机模	通过 AT 指	令可以使模块进入睡眠模式,软件停止工作,模块内部
式)	的各部分电	l源会被关闭,仅保留 RTC 供电。在这种情况下,可以
	通过 RTC	闹钟或 UART 数据接收来唤醒。
最小功能模式		

2.3 模块功能框图

模块功能框图

3 模块封装

3.1 引脚分布图

模块引脚图 (顶视图)

3.2 模块引脚描述

名称	序号	I/O	描述	备注			
电源部分							
VBAT	15	I	电源供电	电压范围: 3.3V~4.2V			
GND	12,14,37,38,		接地				
	39	-					
VCC_GPS	35		有源天线供电接	电压范围: 1.6V~3.5V			
		О	П				
AVDD_CAP	11	О	ADC 参考电压	1.6V			
串口							
UART_TX	24	О	数据发送				
UART_RX	23	I	数据接收				
模数转换(ADC)							
ADC_CH_A	16	I	模拟信号	ADC 片外 A 通道输入			
ADC_CH_B	17	I	模拟信号	ADC 片外 B 通道输入			
ADC_CH_C	18	I	模拟信号	ADC 片外 C 通道输入			
数模转换(DAC)							
AUXDAC_OUT	10	О	模拟信号输出	辅助 DAC 输出			
时钟							
X32K_Q2	20	I	32.768K 时钟晶振	不用可悬空			
		1	输入2				
X32K_Q1	21	, T	32.768K 时钟晶振	不用可悬空			
		I	输入1				
GPIO 接口							
GPIO_0	32	I/O	通用输入输出口	复用 SPI_MISO			
GPIO_1	33	I/O	通用输入输出口	复用 SPI_MOSI			
GPIO_2	34	I/O	通用输入输出口	复用 SPI_CLK			
GPIO_3	36	I/O	通用输入输出口	复用 I ² C_SCL			
GPIO_4	1	I/O	通用输入输出口	复用 I ² C_SDA			
GPIO_6	12	I/O	通用输入输出口				
GPIO_8	30	I/O	通用输入输出口	复用 SPIM_CLK			
GPIO_9	29	I/O	通用输入输出口	复用 SPIM_MOSI			
GPIO_10	28	I/O	通用输入输出口	复用 SPIM_MISO			
GPIO_13	27	I/O	通用输入输出口	复用 SPIM_CS			
GPIO_24	26	I/O	通用输入输出口	复用 UART1_TX			
GPIO_25	25	I/O	通用输入输出口	复用 UART1_RX			

GPIO_26	22	I/O	通用输入输出口	复用 PWM_OUT0
GPIO_27	21	I/O	通用输入输出口	复用 PWM_OUT1
GPIO_28	20	I/O	通用输入输出口	复用 PWM_OUT2
GPIO_29	19	I/O	通用输入输出口	复用 PWM_OUT3
GPS 天线接口				
GPS_IN	22	I	连接 GPS 天线	
调试接口				
SPI_CS	5	I	用于调试及下载	
复位开机				
REST	3	I	用于复位开机	
电池充电模块				
CHAR_ISENSE	5	I	充电模块外接功	
			率管	
CHAR_GDRV_OUT	4	О	充电模块外接功	
			率管	
CHAR_BAT	7	_	充电模块外部供	
			电输入 5V	
CHAR_LED	6	O	充电模块 LED 指	
			示灯驱动	

3.3 机械尺寸

3.3.1 三维尺寸

三维尺寸

3.3.2 推荐 PCB 封装尺寸

PCB 封装尺寸

4 接口应用

4.1 供电

5V 供电降压参考设计电路

4.2V 锂电池供电参考设计电路

4.2 开机关机

4.2.1 模块开机

模块进入关机状态后,外部除了通过串口发 AT 唤醒外,还可以通过拉低 REST 引脚电平 10ms 以上,再拉高并保持高电平来唤醒。

4.2.2 模块关机

模块仅支持软件方式关机,即通过外部物理串口发相应的 AT 指令或通过 EAT 调用关机函数或命令来关机。

4.3 省电模式

省电模式总体上分两种类型,第一种类型为关闭部分功能,从而达到省电的目的;第二种类型为进入休眠模式,几乎关闭全部功能,最大限度地省电。

4.3.1 休眠模式

通过 AT 指令可以使模块进入睡眠模式,软件停止工作,模块内部的各部分电源会被关闭,仅保留 RTC 供电。在这种情况下,可以通过 RTC 闹钟或 UART 数据接收来唤醒。在该模式下,实测耗电流略为 0.1mA。

4.4 串口

为了简化设计,UART 串口仅支持最基本的三线模式(即 TXD,RXD 和 GND),波特率则支持 9600~115200bps 的各种典型设置。实际应用中客户端的电压可能为 3.3V 或 5V,根据电压的差异,分别推荐以下两种参考设计电路。

3.3V 参考设计电路

5V 参考设计电路

4.5 模数转换(ADC)接口

4.5.1 ADC 转换通道

ADC 的 ADC_CH_A 和 ADC_CH_B 通道为通用目的设计,采样率可以到 360KSPS (360K、180K,90K,45K 四个档位可选,可以通过寄存器来修改 ADC 的时钟频率),精度为 12 位。输入电压范围为 0.1V~AVDD CAP-0.1V,参考电压即为 AVDD CAP。

4.5.2 数模转换(DAC)接口

AUXDAC_OUT 为辅助 DAC 输出,刷新频率为 1Hz,通常用于输出相对固定的电压电平,其精度为 10 位,输出电压范围为 0.1V~AVDD_CAP-0.1V,电流驱动能力不超过 1mA。

4.6 天线接口

GPS 天线可分为有源和无源两种类型,对于有源天线,可以直接接模组的 GPS_ANT 引脚, VCC_GPS 的电压值,根据有源天线的需求,通过程序控制 UCM108E 输出电压。对于无源天线则去掉 0R 电阻即可。为得到更好的定位效果,建议采用有源天线方案设计。其参考设计如下图所示:

GPS 天线参考电路设计

4.7 充电控制接口

锂电池充电控制参考电路设计

充电电路使用注意事项:

- 1.推荐使用充电与供电电路分离方案,增加 VBAT 到电池方向的防倒灌电路。
- 2.电池电压低于 2.2V 或放电至保护状态时(电压测量为 0) 不能充电。

5 PCB 布局

5.1 电源

保证电源线够短,并在靠近模组的电源正负端加滤波电容。

5.2 射频走线

GPS 射频走线需要做 50ohm 的阻抗匹配,不能直角走线,使用平滑弯线,弯曲部分至 多一处,走线尽可能短。射频线附近做好包地处理,附近禁止走线,保证射频线相邻层包地的完整。参考走线如下:

6 电气,可靠性和射频特性

6.1 DC 特性

	DC 特性(Ta=25℃,VBAT=3.7V)									
参数	符号 状态		最小值	典型值	最大值	单位				
工作温度	Ta		-40	-	85	°C				
工作电压范围	Vcc		1.8	-	4.2	V				
SLEEP	Icc_sleep	RCOSC32.768kHz 振荡 器打开	-	6	-	uA				
MCU standby	Icc_mcustb	26MHz 频率打开、 MCU 数据保持	-	1.2	-	mA				
GPS/BD3/QZS S	Icc_gnss	GNSS 打开	-	40	-	mA				

6.2 GNSS 特性

	GNSS 特性									
⇔ ₩.	<i>h</i> h 口	夕 仏			34 (34					
参数 	符号	条件	最小值	典型值	最大值	単位				
		GPS	-	1575.42	-					
输入频率	F_gps	BDS	-	1575.42	-	MHz				
		QZSS	-	1575.42	-					
输入反射系数	S11		-		-10	dB				
镜像抑制比	IRR		-	32	-	dB				
增益控制范围	G_range		60	-	112	dB				
增益控制步进	G_step		-	1	<i>)</i> -	dB				
输入 1dB 压缩点	ICP1		-	-60	-	dBm				
冷启动时间	T_CS		-	-	30	s				
热启动时间	T_HS		-	-	2	s				
重捕获时间	T_AS		-	-	1	s				
冷启动捕获灵敏度	SEN_CS		-	-148	_	dBm				
跟踪灵敏度	SEN_TR		-	-162	_	dBm				
单 GPS 功能	GPS_O		-	32	-	mA				
单 BDS3 功耗	BDS3_O		-	40	-	mA				
GPS+BDS3 功耗	GB		-	40	-	mA				

6.3 ADC 特性

	ADC 特性								
42 MKP	Arts 🖂	A LIL		参数指标					
参数	符号	条件	最小值	典型值	最大值	单位			
工作电压	AVDD_CAP		1.58	1.6	2	V			
分辨率	Res		12	-	-	Bits			
输入电压 范围	Vin		0	-	AVDD_CAP	V			
时钟频率	fADC			26M	-	Hz			
采样率	FS		45K	-	360K	SPS			
参考正端电压	VREF+		-	AVDD_CAP	-	V			
参考负端	VREF-		-	GND	-	V			

电压						
采样时间	Ts	fADC=26M	-	153.846	-	nS
输入阻抗	RAIN		-	1	-	GΩ

6.4 辅助 DAC 特性

	辅助/音频 DAC 特性								
会 ₩	<i>h</i> h 口.	Æ Æ		参数指标		36 N.			
参数	符号	条件	最小值	典型值	最大值	単位			
工作电压	AVDD_CAP		1.58	1.6	2	V			
分辨率	Resolution		-	10	-	Bits			
工作时钟	f _{DAC} (音频)		-	2M	-	Hz			
采样率	Fs(音频)		-	2M	-	SPS			
参考电压正 端	VREF+		-	AVDD_CAP	-	V			
参考电压负端	VREF-		-	GND	-	V			

6.5 charger 特性

charger 特性						
参数	符号	条件	参数指标			٠. ٨.
			最小值	典型值	最大值	単位
充电电压	Vchr		4.3	-	6.7	V
激活阶段电流	I_act	R=0.2Ω(电流采用电阻)	-	60	80	mA
预充电1阶段电流	I_pre_cc1		-	60	80	mA
预充电2阶段电流	I_pre_cc2		-	60	80	mA
恒流充电电流	I_CC		-	750	800	mA
恒压充电电压	I_CV		-	4.2	4.3	V
led 驱动电流	I_LED		0.1	1	36	mA

7 生产

8 附录

A 参考文档

B术语和解释

术语	解释		
ADC	Analog-to-Digital Converter		
DAC	Digital-to-Analog Converter		
MS	Mobile Station (GSM engine), also referred to as TE		
MT	Mobile Terminated		
RX	Receive Direction		
TE	Terminal Equipment, also referred to as DTE		
TX	Transmit Direction		
UART	Universal Asynchronous Receiver & Transmitter		
NC	Not connect		