الوحدة الثالثة الدوائر الكهربية

إعداد أ / محـمد حلمي 91723209

اسم الطالب/.....

المـدرســـة/.....

الدوائر الكهربية

<u>أ- القوانين الهامة</u>

$$oldsymbol{Q} = oldsymbol{N} oldsymbol{e}$$
 : $oldsymbol{Q}$ الشحنة الكهربية (1)

عدد الالكترونات الحرة $\leftarrow N$

الشحنة الأولية $\leftarrow e$

 $[1.6 \times 10^{-19}C]$

$$I =$$

$$I=rac{Q}{t}$$
 (أ) شدة التيار الكهربائي (2)

متوسط السرعة المتحهه الانجرافية $\leftarrow v$

مساحة المقطع العرض الموصل $\leftarrow A$

الكثافة العددية $\leftarrow n$

$$n=rac{ ext{acc} \, ext{ll Limit}}{ ext{case}}$$
 الكثافة العددية n

l الموصل \times A طول الموصل المحجم = مساحة مقطع

$$\triangle V = rac{W}{Q}$$
 فرق الجهد الكهربائي V

الطاقة المنقولة ω

$$R = \frac{V}{I}$$
 المقاومة R

$$ho=rac{R\;L}{A}$$
 المقاومة النوعية ho

R_T المقاومة المكافئة (7)

$$R_T = R_1 + R_2 + R_3$$
 أ) في التوالي

$$R_T = (\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3})^{-1}$$
 $\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$ پ) في التوازي (ب

(8) علاقات مقياس الجهد

$$\left(\frac{V_1}{V_2} = \frac{R_1}{R_2}\right)$$
 $\left(\frac{\mathcal{E}_x}{\mathcal{E}_y} = \frac{x}{y} - \frac{1}{y}$ طول سلك الاتزان ل

 $W=\Delta VQ$ W (الشغل الكهربائية) الطاقة الكهربائية (الشغل الكهربائية)

$$arepsilon = V - Ir$$
 القوة الدافعة الكهربائية لخلية $arepsilon$ (10)

حيث $V \rightarrow$ فرق الجهد بين طرفي الخلية

القوة الدافعة الكهربائية للخلية ϵ

المقاومة الداخلية للخلية $\leftarrow n$

$$ho=rac{M}{V}$$
 كثافة المادة (11)

(12) التكافؤ × عدد الذرات (الأيونات) = عدد الالكترونات الحرة N

أولا:- الأسئلة الموضوعية

 \pm

(د) أبونات

- (أ) الموجبة يمين والسالبة يسار (ب) الموجبة والسالبة يسار
- (ج) الموجبة يسار والسالبة يمين (د) الموجبة والسالبة يمين
- (2) شحنة كربائية مقدارها C 15 تمر من نقطة ما خلال زمن (t) فإذا كانت شدة التيار الكربهائي (45 mA) ما مقدار زمن مرورها بوحدة s
- - (3) أي من الكميات الأتية لا تعبر عن مقدار شحنة كهربائية
- 16×10^{-19} (د) 8×10^{-19} (ج) 5×10^{-19} (د) 4.8×10^{-16} (أ)

(ج) نيوترونات

(4) حاملات الشحنة في المحلول الالكتروليتي هي

(أ) بروتونات (ب) الالكترونات

- (5) بطارية تعطي تياراً شدته (A 20) لمده نصف ساعة ما الزمن الذي تستغرقة البطارية لانتاج تيار شدته A 80 بوحدة الثانية
 - (ا) 120 s (ع) 4 s (ج) 7.5 s (ب) 1600 s (أ
 - (6) من وحدات قياس متوسط السرعة المتجهه الانجرافية لحاملات الشحنة الكهربائية والت يتكافئ ms⁻¹ هي
 - Amc (ح) Amc^{-1} (ج) $Am^{-1}c^{-1}$ (د) $Am^{-1}c$
- (7) دائرة كهربائية يمر بها تيار شدته 7 A ما مقدار عدد حاملات الشحنة التي تمر بنقطة ما خلال نصف دقيقه
 - (م) 2.2×10^{16} (ج) 6.22×10^{18} (ب) 1.3×10^{21} (أ)
- ره) موصل كهربائي قطره 2.5 mm يمر به تيار شدته 9 A فإذا كان عدد الإلكترونات المارة خلال وحدة الحجوم من الموصل هي 7.8×10^{26} الالكترون فإن متوسط السرعة المتجهه الإنجرافية في الموصل بوحدة ms^{-1} هي
 - 14.7×10^{-9} (د) 3.7×10^{-9} (ج) 14.7×10^{-3} (اً)
- السرعة $n_2 = 3 \; n_1$ فإن متصلان ببعضهما فإذا كانت $v_2 = 3 \; n_1$ فإن متوسط السرعة المتجهه الانجرافية للإلكترونات في الموصل الثاني v_2 تساوي

انجرافیه ۷ ₁ فإذا انتقل التیار إلی موصل اخر به مساحه مقطعه A ₂ = 3 A ₁ والکثافة العددیة n ₂ = 0.5 n ₁ فإن متوسـط السـرعة الانجرافیة للإلکترونات ۷ ₂				
				تصبح
	2 V ₁ (د)	$\frac{2V_1}{3}$ (ح)	(ب) 3 V ₁	$\frac{3}{2}V_1(\dot{1})$
			ہربائي في مو <u>ص</u> ل	
کم یکون مقدار 	8.5×10 ²⁸ m ⁻³ فک		0.15 mm وكثافة لمار في الموصل	
	(د) 612×10 ⁶	6.12×10 ⁶ (ج)	(ب) 6.12	(أ) 612
Li	ائية تساوي	وة الدافعة الكهرب	المقابلة فإن القر	(13) من الدائرة
20	(د) 28 V	(ج) 21 V	(ب) 14 V	7 V (أ)
V=	-7 V			
صلي فإن	ث أمثال طوله الأ	فإذا تمدد إلى ثلار	بائي مقاومته R ف	(14) موصل کھ
	D		_	مقاومته تصب
	$\frac{8}{3}(2)$	(ج) RR	9R (ب)	6R (أ)
مقاومته	، قطرہ کم تصبح	إذا تضاعف نصف	ربائي مقاومته R	(15) موصل کھ
	$\frac{R}{2}(2)$	2R (ج)	$\frac{R}{4}$ (ب)	4R (أ)
ىية $ ho_x=4$ و	_		و γ من موصلین د	
		n	و طول x ضعف ط	
	$\frac{1}{9}$ (5)	(ج) 8	(ب) 16	$\frac{1}{16}$ (أ)
NI LÄ NI I	0			10
ט או פצשת או	۱۰ اربع امنان طور		ا و N من نفس ال $rac{R_M}{R_M}$ ا	
of 12		سوپ	ا فإن النسبة $rac{R_M}{R_N}$	طفق فطر ۱۰
	$\frac{1}{8}$ (2)	(ج) 2	(ب) 1	$\frac{1}{2}(\mathring{1})$
723209 gads 227		5		

(10) موصل كهربائي نصف قطره r وتمر خلاله الالكترونات بمتوسط سرعة متجهه

ر11) يمر تيار خلال موصل مساحة مقطعه A_1 والكثافة العددية n_1 بمتوسط سرعة \hat{L}_1

4 V (s) (د) $\frac{V}{4} (e)$ (د) V (v) 4 V (اً)

الانجرافية يصبح

انجرافية ۷ إذا تم نقص نصف قطره إلى $(\frac{1}{4})$ فإن متوسط السرعة المتجهه

ردي من الدائرة الموضحة تكون قراءة الأميتر بوحدة الأمبير _{5 v}

- (ب) 15 (ج) 0.4 (د) 4
- (أ) 8.0

(24) من الدائرة المقابلة تكون قراءة لاأميتر والفولتميتر على الترتيب هي

- 6 V , 2 A (ب)
- 2 V , 6 A (1)
- 4 V , 12 A (د)
- (ج) 12 V , 4 A

(25) من الدائرة الموضحة كانت قراءة الفولتميتر ٧ 15. فإذا تم غلق المفتاح كم تصبح قراءة الفولتيمتر إذا مر تيار شدته A 1.5 في الدائرة

- (أ) 15 V (ب) 3 V (ب) 15 V (أ)

من الشكل المقابل تكون المقاومة الداخلية بنبصاريه وانعوه اندافعة لها (26) من الشكل المقابل $^{
m R}_{
m A}$

ε	r	
2	12	u —
8	4	·Ć
12	2	رب
12	3	7

(27) ثلاث مقاومات متصلة على التوازي فإذا كانت قيمة كل مقاومة (Ω δ) فإن المقاومة المكافئة لهم

- $2 \Omega (s)$ $9 \Omega (s)$ $12 \Omega (v)$
- 18 Ω (ĺ)

(28) في السؤال السابق إذا تم توصيلهم على التوالي تصبح المقاومة المكافئة

لهم

- (د) 2 Ω
- (ب) Ω Ω (ج)
- $18 \Omega (\dot{|})$

(29) الوحدة المكافئة للكولوم C هي

- J V⁻¹ S⁻¹ (ج) (د) A S
 - J V⁻¹ (ب)
- V A⁻¹ (أ)
- (30) الوحدة المكافئة للأمبير A هي
- $J V^{-1} S^{-1}$ (ج) $J V^{-1}$
- V A⁻¹ (أ)

- (د) A S
 - (31) وحدة القياس المكافئة للفولت هي
- Kg m² s⁻¹ c⁻² (ع) Kg m⁻³ s² c (ج) Kg m² s⁻² c⁻¹ (ب)
- Kq $m^3 s^2 c^{-1} (\dot{l})$
- (32) موصل كثافته العددية "n" تم تغير شدة التيار المار فيه تكون العلاقة البيانية التي توضح التغير

- $2 imes 10^{19}$ سلك مقاومته النوعية $2 imes 10^{-7} \ \Omega \ m$ وطوله 200 m عمر به (33) الكترون خلال ثانية واحدة عند توصيله ببطارية V 64 كم يكون قطر السلك
- $6.28 \times 10^{-6} \, m$ (د) $3.14 \times 10^{-6} \, m$ (ج) $2 \times 10^{-3} \, m$ (ب)
- $1 \times 10^{-3} m$ (I)
- (34) يوضح الشكل المقابل دائرة مقياس الجهد الكهربائي تستخدم لقياس قوه دافعة كهربائية $arepsilon_x$ فإذا علمت أن $arepsilon_x=arepsilon_v$ فإن نقطة الاتزان تكون عند

- B (ب)
- A (İ)
- (ج) منتصف A,B (د) يصعب الحصول على نقطة اتزان

- **→ ├**(♠)^^
 - من السؤال السابق إذا تم عكس أقطاب $arepsilon_x$ فإن نقطة الاتزان تكون عند arepsilon
- (ب) B (ج) منتصف A,B (د) يصعب الحصول على نقطة اتزان

(د) 6.48 V

- (36) خلية كهربائية (24 V) موصل بين طرفيها سلك طوله (m l) لعمل مقياس جهد وصلت معها خلية غير معروفة "arepsilon" فحدث الاتزان عند طول $oldsymbol{27}$ فإن قيمة تکون arepsilon
 - 648 V (I)

- (ج) 1.13 V
- (ب) 0.9 ۷

- (37) في الشبكة الموضحة تكون قيمة I

- (ج) 3 للخارج (د) 5 للخارج

(38) في الشكل المقابل أوجد قيمة I

44 A (أ)

(ج) A 41

20

(39) من الشبكة المقابلة أوجد I

6.5 A (l)

(ج) A 2.51

(40) قي الشكل المقابل جميع التيارات متساوية فإن

8

$$I_6 = 2I_1 ()$$
 $I_6 = I_1 ()$

$$I_6 = I_1 (\dot{l})$$

$$I_6 = 4I_1$$
 (2) $I_6 = 3I_1$ (5)

$$I_6 = 3I_1$$
 (ϵ)

ثانياً: الأسئلة المقالية

(1) يبين الشكل التحليل الكهربائي لكلوريد الألومنيوم

- أ) ماذا يسمى كل من A و B
- ب) حدد إتجاه التيار الاصطلاحي في المحلول الالكتروليتي
 - ج) حدد اتجاه تدفق الالكترونات في الاسلاك
 - د) إذا كانت قراءة الجلفانومتر (μA) أوجد

خلال 3 دقائق	إلكتروليتي	لمحلول الإ	تمر عبر ا	الكلية التي	الشحنة	1- مقدار	L

الني تعادلت في المحلول خلال الفترة Cl^{-1} والألمونيوم AL^{+3} التي تعادلت في المحلول خلال الفترة السابقة

أن وحدة قياس المقاومة تكافئ J S C ⁻²	أثبت	ھ)
---	------	----

(4) سلك طوله 78 cm وقطره (3 mm) يمر به تيار شدته 20 mA فإذا كان فرق الجهد بين طرفيه V 0.015
أ) ما المقصود بقوة الجهد الكهربائية بين نقطتين
ب) أوجد قيمة المقاومة النوعية لمادة السلك
ج) ماذا يحدث للمقاومة النوعية لمادة السلك إذا تضاعف طول الموصل
د) إذا تم سحب هذا السلك إلى أن أصبح طوله ضعف ما كان عليه وموصل بنفس فرق الجهد ما مقدار شدة التيار الذي يمر فيه
هـ) تم صنع موصل من نفس مادة السلك ومقاومته Ω 15 ومساحة مقطعة ($10^{-7}~\mathrm{m^2}$) كم يكون طوله؟
A عدد الالكترونات و n كثافة العدد و $ ho=rac{n_RA^2}{N}$ المقاومة النوعية و P حيث $ ho=rac{n_RA^2}{N}$ المساحة

ϵ $r = 1 \Omega$	(5) من الدائرة الموضحة قراءة الأميتر 2A والمفتاح مفتوح
4Ω 4Ω 3Ω	أ) أوجد القوة الدافعة الكهربائية للخلية وهل قيمتها مساوية لفرق الجهد بين طرفيها وضح؟
	ب) إذا تم علق المفتاح
	1- أوجد المقاومة الكلية للدائرة الكهربائية
	2- أوجد قراءة كل من الأميتر والفولتميتر
أميتر منخفض المقاومة؟	ج) ما السبب في جعل الفولتميتر عالي المقاومة والأ

$ \begin{array}{c c} & C \downarrow \\ & 5 \Omega \\ & B \downarrow \\ & 2 \Omega \end{array} $	4 Ω 2 Ω	(6) من الدائرة الموضحة بالشكل أجب أ) ما قراءة الفولتميتر عندما يكون المنزلق عند 1- A B -2
		C -3
		D -4
		ب) ما قيمة فرق الجهد بين D و B
	من A إلى B	ج)احسب الشغل المبذول عند مرور إلكترون و

$\epsilon_0 = 25\mathrm{V}$ يوضح الشكل المقابل دائرة مقياس الجهد الكهربائي $\epsilon_0 = 25\mathrm{V}$ والمقارنة بين قوتين دافعتين لخليتين كهربائيتين
ϵ_y و ϵ_x المين تقع نقطة الاتزان على السلك لكل من ϵ_x و ϵ_y المين تقع نقطة الاتزان على السلك لكل من المين أن ϵ_z
A ε_x B $\varepsilon_y = \frac{\varepsilon_0}{2} - 1$ $\varepsilon_x = \varepsilon_0 - 2$
$\varepsilon_x = \varepsilon_0 - 2$
ب) إذا تم استبدال $arepsilon_x$ بخلية أخرى $arepsilon_z$ وحدث الاتزان على بعد 75 cm كم تكون القوة الكهربائية للخلية $arepsilon_z$
ج) تم وضع مقاومه (Ω Ω 0) عند النقطة M على أي بعد من A يحدث الاتزان لخلية كهربائية قوتها الدافعة Ω 3 V علما بأن مقاومة السلك Ω 15 علما بأن مقاومة السلك علما بأن مقاومة السلك علما بأن مقاومة السلك Ω 15 علما بأن السلك Ω 15 علما بأن مقاومة السلك Ω 16 علما بأن السلك Ω 18 علما بأن ال
د) يراد معرفة نقطة الاتزان لخلية كهربائية قوتها الدافعة ضعف القوه الدافعة ($arepsilon_0$) أين تتوقع مكانها؟
(8) من الدائرة المقابلة
أ) اذكر قانون كيرشوف الأول 5 V
I_3 I_2 I_3 I_3 I_3 I_4 I_5
A_3
Rest year 12 aline

91723209 gda 200

		=	
منذلية	أنشطة	ىثا: ا	ثال

إذا كانت الكثافة العددية لموصل تساوي m $0.8 imes 10^{27}$ وقطره يساوي $0.75 imes 2.75 imes 2.75 imes 2.75 mm$ خلاله $0.4 imes 10^{28}$ الكترون		
تكون شدةً التيار الكهربائي	ذرة بالكترونين حرّيينَ كم	(2) سلك موصل مساحة مقد 4.8 × 10 ^{24 خ} رة وتسهم كل التي تمر خلاله إذا علمت أن هي 0.23 mms ⁻¹
مقاومة ويأخذ القياسات	ل وحدة طول من سلك ال	(3) يقيس طالب المقاومة لك الآتية
عدم اليقين	القيمة	الكمية
±2%	80 mm	طول السلك
$\pm 0.1A$	2.4 A	التيار الكهربائي المار في السلك
±5%	8.9 V	فرق الجهد الكهربائي بين طرفي سلك
 ھربائي	ين في قياس شـدة التيار الك	أ. احسب النسبة المؤية لعدم اليق
	دة طول من السلك	ب. احسب قيمة المقاومة لكل وح
ج. احسب قيمة عدم اليقين المطلق للمقاومة لكل وحدة طول من السلك		
33 yab 12 al		

(4) سلك طوله ($3 m$) ومساحه مقطعه $10^{-6} m^2$ يمر به تيار شدته $24 m$ A وفرق الجهد بين طرفيه $0.9 V$ ما قيمة المقاومة النوعية لمادة السلك	
	(5) من الدائرة الموضحة قراءة الفولتميتر V 30 وعند غلق المفتاح أصبحت V 28
A r A	أ) أوجد قراءة الأميتر عند غلق المفتاح
4Ω 4Ω 4Ω	
	ب) أوجد قيمة المقاومة الداخلية
$\epsilon_{x} = 8 \text{ V}$ $A \longrightarrow B$	من دائرة مقياس الجهد الموضحة بالشكل على على أي بعد من النقطة ${f B}$ يحدث الأتزان علما بأن القوة الدافعة للخلية ${f arepsilon}_y$ تساوي ${f 3.75~V}$
ϵ_y	
.6 V	(7) مستخدماً قوانين كيرشوف أوجد
	أ) قراءة كل من الأميتر والفولتميتر
A	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ب) قيمة المقاومة R
12 a ly a l	