COMPUTER SCIENCE & IT

Lecture No: o7

Sequential Circuit

Questions on Synchronous Courter

Ring Counter

Ring Counter

Johnson Counter

Q2(n+1)= Q3(n) **Self Starting Ring Counter Circuit** Q3(nti $Q_1(n+1) = Q_2(n)$ $Q_0(n+1) = Q_1(n)$ Circuit: = $Q_3(n)+Q_2(n)$ +Q1(n) $Q_{_1}$

CLK

Working:

Johnson Counter or Twisted Ring Counter

4-bit Johnson Counter:

$$Q_2(n+1) = D_2 = Q_3(n)$$

 $Q_1(n+1) = D_1 = Q_2(n)$
 $Q_0(n+1) = D_0 = Q_1(n)$

$$Q_3(n+1)=D_3=\overline{Q_0(n)}$$

Working:

Imp points of Johnson Counter: \rightarrow

- · MOD no of the Johnson counter designed with n-FF = 2.71
- . No of unund states = 2 2n
- · Frequency (clock frequency) is divided by MODNO at each of P.

We have 4-bit Johnson counter. Its starting state is $(1011)_2$. Then it will be in what state after 22 CLK pulses $(13)_{10}$.

$$(|0|1)_{2} \xrightarrow{2\times8} (|0|1)_{2} \xrightarrow{6\alpha\kappa} (|10|)_{2}$$

$$(8-5-2-9-4-|0-13-6).$$

We have 3-bit Johnson counter whose starting state is (010)₂. If input clock frequency 12 MHz then value of output frequency will be

(a) 6 MHz fout =
$$\frac{\text{fark}}{\text{Mol)no}} = \frac{12 \text{ MHz}}{2} = 6 \text{MHz}$$
 $\frac{\text{Olo} + \text{Mol) no}}{2} = \frac{12 \text{ MHz}}{2} = \frac{12 \text{$

In a 3-bit ring counter with starting state $Q_2Q_1Q_0 = (110)_2$, then duty cycle of the waveform generated at Q_1 output ______%.

Shift Register

For what purpose shift registers are used?

```
Registers - to store the information

Shift registers - 9 neut & output mechanism involves shifting obseration and that's why called shift registers:
```

Types of shift registers:

1. SISO: 4 bit 00 Circuit: IN

1st 2 rd 3 th

CLK

IMP Points:

· 9n SISO register, we require n-clk kulses [nTcek] for serially storing (IN) the data.

on SISO register, we require (n-1) Clk kulses [(n-1) Tcek] for serially accessing (open) the data

IMP Points:

n-but SIPO

IMP Points: n-but PIPO

```
# For storing n-bit data ponally we require 1-clock[1TUK].
# For accessing n-bit data ponally we require 0-Clock[0TUK]
```


IMP Points:

```
# For penally storing n-bit data, we require 1-clock[1-Tak].

# For secially accessing n-bit data, we require (n-1) clock [(n-1) Tak].
```


Register	IN	OUT
SISO	n-Tak	(n-1) Tak
SIPO	n-Tak	o-Tak
PISO	1-Tek	(n-1) Tek
PIPO	1-Tuk	0-Tak

After application of how many clock pulses content of SIPO will again will be $(1010)_2$ ______

 $Q_{2}(n+1) = D_{2} = Q_{3}(n)$ $Q_{1}(n+1) = D_{1} = Q_{2}(n)$ $Q_{0}(n+1) = D_{0} = Q_{1}(n)$ $Q_{3}(n+1) = D_{3}$ $= Q_{2}(n) \oplus Q_{1}(n)$ $\oplus Q_{0}(n)$

A 4-bit shift register circuit configured the right shift operation i.e.

 $D_{\rm in}$ – A, A – B, B – C, C – D is shown. If the present state of shift register is ABCD = $(1101)_2$, then the no. of clock cycle required to reach the state ABCD = $(1111)_2 \underline{10}_{-}$.

 $Q_3(n+1) = Q_3(n) \oplus Q_0(n)$

$$Q_1(h+1) = Q_2(h)$$

$$Q_0(n+1) = Q_1(n)$$

Design a counter that follows the sequence:

$$0-1-3-2-1-0 \rightarrow using D-FF$$

MoD-5 Counter

Topic: 2 Min Summary

Pw

* Johnson Counter

> Shift register

Thank you

Soldiers!

