不定积分

4.2 不定积分方法

♡ 换元法

定理: 设 f(u)具有原函数, $u=\varphi(x)$ 可导,则有换元公式 $\int f[\varphi(x)]\varphi'(x)dx=[\int f(u)du]_{u=\varphi(x)}$

求 ∫2Cos 2x dx

 $\int 2\cos 2x \, dx = \int \cos 2x \cdot 2dx = \int \cos 2x \, (2x) \cdot dx = \int \cos u \, du = \sin u + C = \sin 2x + C$

设 $x=\psi(t)$ 是单调的可导函数,并且 $\psi'(x)\neq 0$,又设 $f[\psi(t)]\psi'(t)$ 具有原函数,则有换元公式 $\int f(x)dx = \int f(x)dx$ $f[\psi(t)\psi'(t)\,dt]]_{t=\psi^{-1}(x)}$, 其中 $\psi^{-1}(x)$ 是 $x=\psi(t)$ 的反函数.

设
$$x = \frac{1}{t}$$
, 则 $dx = -\frac{dt}{t^2}$,于是

$$\int \frac{\sqrt{a^2 - x^2}}{x^4} dx = \int \frac{\sqrt{a^2 - \frac{1}{t^2}} \cdot \left(-\frac{dt}{t^2}\right)}{\frac{1}{t^4}} = -\int \left(a^2 t^2 - 1\right)^{\frac{1}{2}} |t| dt$$

当 x > 0 时 , 有
$$\int \frac{\sqrt{a^2-x^2}}{x^4} dx = -\frac{1}{2 a^2} \int (a^2 t^2 - 1)^{\frac{1}{2}} d(a^2 t^2 - 1) = -\frac{\left(a^2 t^2 - 1\right)^{\frac{3}{2}}}{3 a^2} + C = -\frac{\left(a^2 - x^2\right)^{\frac{3}{2}}}{3 a^2 x^3} + C.$$
当 x < 0 时有相同的结果.

♡ 分部积分法

设函数u=u(x)及v=v(x)具有连续导数,则有(uv)'=u'v+uv',→uv'=(uv)'-u'v,两边同时求不定积分可得 定理: Ju dv =uv - Jvdu.

求 ∫ x Cos x dx

 $\int x \cos x \, dx = \int x \, d \sin x = x \sin x - \int \sin x \, dx = x \sin x + \cos x + C$

小结

■了解不定积分的概念与性质

■了解基本函数定积分的求法

积分与微分是两个互为逆向的过程, 在学习的过程中注意配合学习

- □ 练习:
 - ▲ 已知 $\frac{\sin x}{x}$ 是 f(x) 的一个原函数, 求 $\int x^3 f'(x) dx$.
 - ▲ 求积分: $\int \frac{dx}{x(x^6+4)}$ 、 $\int \frac{\sin x \cos x}{\sin x + \cos x} dx$