- 1. Solve the simultaneous equations 10y 6x = 3, $(x 2)^2 + (2y 3)^2 = 61$.
- 2. Given that $\lg 2 = a$ and $\lg 3 = b$, express $\lg \sqrt[3]{972}$ in terms of a and b. Find x if $\lg x = 3a 4b + 1$.
- 3. (a) Find the exact value of x if $8^x = \sqrt{2\sqrt{8\sqrt{2}}}$.
 - (b) Solve the following equations.
 - (i) $2 \log_2 x = 4 + \log_2 (x + 5)$
 - (ii) $4e^{2y} 21 = 0$
 - (iii) $\lg (4^z + 2) z \lg 2 = \lg 3$
- **4.** (a) When the expression $2x^2 (8 p)x + (p + 1)(p 3)$ is divided by x + p, the remainder is p. Calculate the possible values of p.
 - (b) The expressions $x^3 + ax^2 x + b$ and $x^3 + bx^2 5x + 3a$ have a common factor x + 2. Find the value of a and of b.
- 5. (a) Given that $f(x) = 8x^3 + 4x 3$, find the remainder, if it exists, when
 - (i) f(x) is divided by 2x + 1,
 - (ii) f(x) is divided by 2-x,
 - (iii) $\frac{1}{f(x)}$ is divided by x + 1,

William.

- (iv) f(x + 1) is divided by x + 2.
- (b) Solve the equation $4x^3 + 3x^2 16x = 12$. Hence, find to three significant figures, the value of x such that $4e^{3x} + 3e^{2x} 16e^x = 12$.
- 6. (a) Find the range of values of x for which $x^2 3x + 8$ has values between 6 and 12.
 - (b) Factorise $2x^2 3x 5$ and hence sketch the curve $y = 2x^2 3x 5$.
 - (c) Express $-2x^2 + 8x + 9$ in the form $a(x h)^2 + k$. Hence state the maximum value of $-2x^2 + 8x + 9$ and sketch the curve $y = -2x^2 + 8x + 9$.
- 7. If the equation $x^2 2kx + k^2 2k 6 = 0$ has real roots, show that the roots of the equation $x^2 + 6x = 3 + k$ has two distinct real roots.

REVISION EXERCISE 2

- 1. (a) Given that $f(x) = \frac{1}{2} \left[(x+6)^2 + (x-4)^2 \right]$, express f(x) in the form $(x+h)^2 + k$. Hence, sketch the graph of y = f(x) for $-2 \le x \le 1$.
 - (b) Solve the simultaneous inequalities x(x-1) < 6, $13x 6 \le 2x^2$.
- 2. (a) Find the range of values of k for which the equation $2kx^2 + (8 4k)x + k + 1 = 0$ has real roots. State the largest integer value of k for which this equation has no real roots.
 - (b) If each of the equations $px^2 + qx + 2r = 0$, $rx^2 + px q + 1 = 0$ have equal real roots, find a relation between p and q.
- 3. Solve the simultaneous equations x + 2y = 7, $x^2 + 4y^2 = 37$. Hence, find the possible values of a and b, correct to three significant figures where necessary, which satisfy both the equations $3^a + 2^{b+1} = 7$, $9^a + 4^{b+1} = 37$.
- **4.** (a) Given that $y = 3(4)^{x+2}$, find, without using tables or calculators,
 - (i) the value of y when $x = -\frac{1}{2}$,
 - (ii) the value of x when y = 96.
 - **(b)** Solve the following equations, giving your answers correct to three significant figures.
 - (i) $\ln x^3 + 2 \ln x^2 5 \ln x + \ln \sqrt{x} = 5$
 - (ii) $3^x = 5 \times 2^{x+1}$
- 5. (a) Without using tables or calculators, evaluate $\frac{\log_5 9 + 2 \log_5 6 4 \log_5 3}{\log_5 40 \log_5 4 1}$
 - (b) The curve $y = ab^x$ passes through the points (0, 5) and $(\frac{2}{3}, \frac{5}{4})$. Find the value of a and of b.
- **6.** (a) Given that $4x^2 6x + 9 = A(x 1)(2x + 1) + B(x 1) + C$ for all values of x, find the values of A, B and C.
 - (b) Solve the cubic equation $2x^3 + 36 = 11x^2 3x$.
- 7. (a) The expression $px^3 5x^2 + qx + 10$ has factor 2x 1 but leaves a remainder of -20 when divided by x + 2. Find the values of p and q and factorise the expression completely.
 - (b) The quadratic equation $x^2 + ax + b = 2$ has roots -1 and 4. Find
 - (i) the value of a and of b,
 - (ii) the range of values of c for which the equation $x^2 + ax + b = c$ has real roots.

Answers

Revision Exercise 1

1. (a)
$$(x+1)^2 + 25$$

1. (a)
$$(x+1)^2 + 25$$
 (b) $-2 < x \le \frac{1}{2}$

2. (a)
$$k \le 1$$
 or $k \ge 8$, $k \ne 0$; 7 (b) $2p^3 = q^2 - q^3$

(b)
$$2p^3 = q^2 - q^2$$

3.
$$x = 6$$
, $y = \frac{1}{2}$ or $x = 1$, $y = 3$; $a = 1.63$, $b = -1$ or $a = 0$, $b = 1.58$

4. (a) (i) 24 (ii)
$$\frac{1}{2}$$

(ii)
$$\frac{1}{2}$$

(b)
$$a = 5, b = \frac{1}{8}$$

6. (a)
$$A = 2$$
, $B = -4$, $C = 7$

(b)
$$-\frac{3}{2}$$
, 3, 4

7. (a)
$$p = 6$$
, $q = -19$; $(2x - 1)(x - 2)(3x + 5)$

(b) (i)
$$a = -3$$
, $b = -2$ **(ii)** $c \ge -\frac{17}{4}$

Revision Exercise 2

1.
$$x = -3$$
, $y = -\frac{3}{2}$ or $x = 7$, $y = \frac{9}{2}$
2. $\frac{2a + 5b}{3}$, $\frac{80}{81}$
3. (a) $\frac{11}{24}$ (b) (i) 20 (ii) 0.829

2.
$$\frac{2a+5b}{3}$$
, $\frac{80}{81}$

3. (a)
$$\frac{11}{24}$$

4. (a)
$$\frac{1}{2}$$
, -3

(b)
$$a = 2, b = -2$$

5. (a) (i)
$$-6$$

$$(iv) -15$$

(b)
$$-2$$
, $-\frac{3}{4}$, 2; 0.693

4. (a)
$$\frac{1}{2}$$
, -3 (b) $a = 2$, $b = -2$

5. (a) (i) -6 (ii) 69 (iii) Does not exist (b) -2, $-\frac{3}{4}$, 2; 0.693 6. (a) -1 < x < 1 or 2 < x < 4 (b) $(2x - 5)(x + 1)$ (c) $-2(x - 2)^2 + 17$; 17

(b)
$$(2x-5)(x+1)$$

(c)
$$-2(x-2)^2+17$$
; 17