LIMIT & KEKONTINUAN

IRA PRASETYANINGRUM

Bilangan Tidak Tertentu

- Nol = Bilangan yang menyatakan banyaknya elemen himpunan kosong
 - Misal: A={Orang yang Istrinya 1000}
- Terdapat bilangan x mendekati 0 dari kiri/bawah/negatif
- Terdapat Bilangan x mendekati 0 dari kanan/atas/positif
- Terdapat Bilangan x menuju tidak berhingga atau x naik tidak berhingga
- Terdapat bilangan x menuju minus tidak berhingga atau turun minus tidak berhingga

Bilangan tidak tertentu = bilangan yang diberi hasil apa saja akan bernilai benar

Bilangan tidak tertentu dimunculkan sebab sering dikacaukan antara bilangan tertentu dan tidak tertentu pada operasi hitung untuk bilangan 0, 1, dan ∞

$$\underline{0}, \underline{\infty}, \infty - \infty, 0.\infty, 0^0, \infty^0, 1^\infty$$
 $\underline{0}, \underline{\infty}, \infty - \infty, 0.\infty, 0^0, \infty^0, 1^\infty$

Definisi

- f(x) dikatakan mempunyai limit L untuk
 x → x₀, bila setiap bilangan positif h yang diberikan, dapat ditunjukkan bilangan positif δ sedemikian hingga untuk semua harga x yang memenuhi 0 < |x x₀| < δ berlaku |f(x) L| < h.
- Pernyataan $0 < |x x_0| < \delta$ berarti untuk semua x yang memenuhi $x_0 \delta < x < x_0 + \delta$.

Ilustrasi

f(x) mempunyai limit L untuk $x \rightarrow x0$ disajikan dengan :

$$\lim_{x\to x_0} f(x) = L$$

- Bilangan I₁ dikatakan limit kanan dari f(x) untuk x → x₀⁺,
 bila untuk setiap h > 0 dapat ditunjuk bilangan positif δ sedemikian hingga untuk 0 < x − x₀ < δ berlaku |f(x) − I₁| < h.
- Bilangan I_2 dikatakan limit kiri dari f(x) untuk $x \to x_0^-$, bila untuk setiap h > 0 dapat ditunjuk bilangan positif δ sedemikian hingga untuk $-\delta < x x_0 < 0$ berlaku $|f(x) I_2| < h$.
- F(x) dikatakan mempunyai limit L untuk $x \to x_0$, bila limit kanan dan limit kiri dari f(x) adalah sama yaitu sama dengan L, atau :

$$\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = L$$

Pengertian limit secara intuisi

Perhatikan fungsi

$$f(x) = \frac{x^2 - 1}{x - 1}$$

Fungsi diatas tidak terdefinisi di x=1, karena di titik tersebut f(x) berber 0/0. Tapi masih bisa ditanyakan berapa nilai f(x) jika x mendekati 1

Dengan bantuan kalkulator dapat diperoleh nilai f(x) bila x mendekati 1 seperti pada tabel berikut

X	0.9	0.99	0.999	0.9999	→	1 ←	1.0001	1.001	1.01	1.1
f(x)	1.9	1.99	1.999	1.9999	→	? ←	2.0001	2.001	2.01	2.1

Secara grafik

Dari tabel dan grafik disamping terlihat bahwa f(x) mendekati 2 jika x mendekati 1

Secara matematis dapat dituliskan Sebagai berikut

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2$$

Dibaca " limit dar $\frac{x^2-1}{x-1}$ untuk x mendekati 1 adalah 2

Definisi(limit secara intuisi). Untuk mengatakan bahwaf (x) = L bera bahwa bilamana x dekat, tetapi berlainan dengan c, maka f(x) dekat ke L

Contoh

$$1. \lim_{x \to 1} 3x + 5 = 8$$

$$2. \lim_{x \to 2} \frac{2x^2 - 3x - 2}{x - 2} = \lim_{x \to 2} \frac{(2x + 1)(x - 2)}{x - 2} = \lim_{x \to 2} 2x + 1 = 5$$

3.
$$\lim_{x \to 9} \frac{x-9}{\sqrt{x}-3} = \lim_{x \to 9} \frac{x-9}{\sqrt{x}-3} \frac{\sqrt{x}+3}{\sqrt{x}+3} = \lim_{x \to 9} \frac{(x-9)(\sqrt{x}+3)}{x-9} = \lim_{x \to 9} \sqrt{x}+3 = 6$$

4. $\lim_{x \to 0} \sin(1/x)$

Ambil nilai x yang mendekati 0, seperti pada tabel berikut

X	2 / π	2/2π	$2/3\pi$	2/4π	$2/5\pi$	2/6π	2/7π	$2/8\pi$	→ 0
$\sin(1/x)$	1	0	-1	0	1	0	-1	0	→ ?

Dari tabel terlihat bahwa bila x menuju 0, sin(1/x) tidak menuju ke satu nilai tertentu sehingga limitnya tidak ada

Limit Kiri dan Limit Kanan

Jika x menuju c dari arah kiri (dari arah bilangan yang lebih kecil dari c, limit disebut limit kiri,

notasi
$$\lim_{x \to c^{-}} f(x)$$

Jika x menuju c dari arah kanan (dari arah bilangan yang lebih besar dari c, limit disebut limit kanan,

$$\lim_{x \to c^{+}} f(x)$$

Hubungan antara limit dengan limit sepihak(kiri/kanan)

$$\lim_{x \to c} f(x) = L \iff \lim_{x \to c^{-}} f(x) = L \text{ dan } \lim_{x \to c^{+}} f(x) = L$$

Jika
$$\lim_{x \to c^{-}} f(x) \neq \lim_{x \to c^{+}} f(x)$$
 maka $\lim_{x \to c} f(x)$ tidak ada

Contoh Diketahui

1.
$$f(x) = \begin{cases} x^2 &, x \le 0 \\ x &, 0 < x < 1 \\ 2 + x^2 &, x \ge 1 \end{cases}$$

a. Hitung
$$\lim_{x\to 0} f(x)$$

- b. Hitung) $\lim_{x\to 1} f(x)$ Jika ada
- c. Hitung $\lim_{x\to 2} f(x)$
- d. Gambarkan grafik f(x)

Jawab

a. Karena aturan fungsi berubah di x=0, maka perlu dicari limit kiri dan limit kanan di x=0

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0} x^{2} = 0$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0} x = 0$$

b. Karena aturan fungsi berubah di x=1, maka perlu dicari limit kiri dan limit kanan di x=1

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1} x = 1$$

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1} 2 + x^{2} = 3$$
Karena $\lim_{x \to 1^{-}} f(x) \neq \lim_{x \to 1^{+}} \rightarrow \lim_{x \to 1^{+}} f(x)$ Tidak ada

c. Karena aturan fungsi **tidak berubah** di x=2, maka **tidak perlu** dicari kiri dan limit kanan di x=2

$$\lim_{x \to 2} f(x) = \lim_{x \to 2} 2 + x^2 = 6$$

d.

Untuk $x \le 0$

Untuk 0<x<1

 $Untuk \geq 0$

$$f(x) = x^2$$

$$f(x)=x$$

Grafik: parabola

Grafik:garis lurus

Grafik: parabola

2. Tentukan konstanta c agar fungsi

$$f(x) = \begin{cases} 3 - cx, x < -1 \\ x^2 - c, x \ge -1 \end{cases}$$

mempunyai limit di x=-1

Jawab

Agar f(x) mempunyai limit di x=-1, maka limit kiri harus sama dengan limit kanan

$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1} 3 - cx = 3 + c$$

$$\lim_{x \to -1^{+}} f(x) = \lim_{x \to -1} x^{2} - c = 1 - c$$
Agar limit ada
$$\int_{-\infty} 3 + c = 1 - c$$

Soal Latihan

A. Diberikan grafik suatu fungsi f seperti gambar berikut .

Cari limit /nilai fungsi berikut, atau nyatakan bahwa limit /nilai fungsi tidak ada.

$$\lim_{x \to -3} f(x)$$

$$5. \quad \lim_{x \to 1^+} f(x)$$

$$2. \lim_{x \to -1} f(x)$$

$$3. \lim_{x\to 1} f(x)$$

$$4. \lim_{x \to 1^{-}} f(x)$$

Soal Latihan

В.

1. Diketahui:
$$f(x) = \begin{cases} x^2 + 1, & x \le 1 \\ x^2 - x + 2, & x > 1 \end{cases}$$

- a. Hitung $\lim_{x \to \infty} f(x)$ dan $\lim_{x \to \infty} f(x)$ $x \to 1^ x \to 1^+$
- b. Selidiki apakah $\lim_{x \to \infty} f(x)$ ada, jika ada hitung limitnya $x \rightarrow 1$
- 2. Diketahui g(x) = |x-2| 3x, hitung (bila ada):

- a. $\lim_{x \to 2^{-}} g(x)$ b. $\lim_{x \to 2^{+}} g(x)$ c. $\lim_{x \to 2} g(x)$ 3. Diketahui $f(x) = \frac{|x-2|}{x-2}$, hitung (bila ada)
 - **a.** $\lim_{x \to 2^{-}} f(x)$ **b.** $\lim_{x \to 2^{+}} f(x)$ **c.** $\lim_{x \to 2} f(x)$

Sifat limit fungsi

Misal

 $\lim_{x \to a} f(x) = L \, \text{dan} \, \lim_{x \to a} g(x) = G \quad \text{(limit dari f, g ada dan berhingga)}$

maka

1.
$$\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x) = L \pm G$$

2.
$$\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \lim_{x \to a} g(x) = LG$$

3.
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{L}{G}, bila \quad G \neq 0$$

4. $\lim_{x \to a} (f(x))^n = (\lim_{x \to a} f(x))^n$, n bilangan bulat positif

5.
$$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)} = \sqrt[n]{L}$$
 bila n genap L harus positif

Prinsip Apit

Misal $f(x) \le g(x) \le h(x)$ untuk x disekitar c dan

$$\lim_{x \to c} f(x) = L \quad \text{serta} \quad \lim_{x \to c} h(x) = L$$

maka

$$\lim_{x \to c} g(x) = L$$

Contoh Hitung
$$\lim_{-(x-1)^2 \le (x-1)^2 \sin \frac{x-1}{x-1} \le (x-1)^2} \sin \frac{1}{x-1}$$

$$-1 \le \sin(\frac{1}{x-1}) \le 1$$

Karena
$$-1 \le \sin(\frac{1}{x-1}) \le 1$$

dan
$$\lim_{x \to 1} -(x-1)^2 = 0 \quad , \lim_{x \to 1} (x-1)^2 = 0$$

maka

$$\lim_{x \to 1} (x - 1)^2 \sin \frac{1}{x - 1} = 0$$

Limit Fungsi Trigonometri

$$1. \lim_{x \to 0} \frac{\sin x}{x} = 1$$

2.
$$\lim_{x \to 0} \cos x = 1$$

$$3. \lim_{x \to 0} \frac{\tan x}{x} = 1$$

Contoh

$$\lim_{x \to 0} \frac{3x + \sin 4x}{5x - \tan 2x} = \lim_{x \to 0} \frac{3 + \frac{\sin 4x}{4x}}{5 - \frac{\tan 2x}{2x}}.2 = \frac{3 + \lim_{x \to 0} \frac{\sin 4x}{4x}}{5 - \lim_{x \to 0} \frac{\tan 2x}{2x}}.2$$

$$= \frac{3 + \lim_{x \to 0} \frac{\sin 4x}{4x}}{5 - \lim_{x \to 0} \frac{\tan 2x}{2x}}.2$$

$$= \frac{3 + \lim_{x \to 0} \frac{\sin 4x}{4x}}{5 - \lim_{x \to 0} \frac{\tan 2x}{2x}}.2$$

$$= \frac{3 + \lim_{x \to 0} \frac{\sin 4x}{4x}}{5 - \lim_{x \to 0} \frac{\tan 2x}{2x}}.2$$

Soal Latihan

Hitung

$$1. \quad \lim_{t \to 0} \frac{\tan^{-2} 3t}{2t}$$

$$2. \quad \lim_{t \to 0} \frac{\cot \pi t \sin t}{2 \sec t}$$

$$3. \quad \lim_{t \to 0} \frac{\cos^2 t}{1 + \sin t}$$

$$4. \quad \lim_{t \to 0} \frac{\sin 3t + 4t}{t \sec t}$$

$$5. \quad \lim_{x \to 0} \frac{\tan x}{\sin 2x}$$

Limit Tak Hingga dan Limit di Tak Hingga

Limit Tak Hingga

Misal
$$\lim_{x \to a} f(x) = L \neq 0$$
 dan $\lim_{x \to a} g(x) = 0$, maka $\lim_{x \to a} \frac{f(x)}{g(x)} = 0$

$$(i) + \infty$$
, jika $L > 0$ dan $g(x) \rightarrow 0$ dari arah atas

$$(ii)$$
 $-\infty$, jika $L>0$ dan $g(x) \rightarrow 0$ dari arah bawah

$$(iii) + \infty$$
, jika $L < 0$ dan $g(x) \rightarrow 0$ dari arah bawah

$$(iv) - \infty$$
, jika $L < 0$ dan $g(x) \rightarrow 0$ dari arah atas

Ctt : $g(x) \rightarrow 0$ dari arah atas maksudnya g(x) menuju 0 dari nilai g(x) positif.

 $g(x) \rightarrow 0$ dari arah bawah maksudnya g(x) menuju 0 dari nilai g(x) negatif.

Contoh Hitung

a.
$$\lim_{x \to 1^{-}} \frac{x^2 + 1}{x - 1}$$
 b. $\lim_{x \to -1^{-}} \frac{x^2 + 1}{x^2 - 1}$ **c.** $\lim_{x \to \pi^{+}} \frac{x}{\sin x}$

$$b \lim_{x \to -1^{-}} \frac{x^{2} + 1}{x^{2} - 1}$$

$$\mathsf{C.} \lim_{x \to \pi^{+}} \frac{x}{\sin x}$$

Jawab

a.
$$\lim_{x \to 1^{-}} x^2 + 1 = 2 > 0$$

a. $\lim_{x \to 1^{-}} x^2 + 1 = 2 > 0$,g(x)=x-1 akan menuju 0 dari arah bawah, karena $x \rightarrow 1$ dari kiri berarti x lebih kecil dari 1, akibatnya x-1 akan bernilai negatif

Sehingga

$$\lim_{x \to 1^{-}} \frac{x^2 + 1}{x - 1} = -\infty$$

b. $\lim_{x \to -1^{-}} x^2 + 1 = 2 > 0$ $g(x) = x^2 - 1$ akan menuju 0 dari arah atas, karena x → -1 dari kiri berarti x lebih kecil dari -1, tapi bilangan negatif yang lebih kecil dari -1 jika dikuadr kan lebih besar dari 1 sehingga – 1 bernilai positi

Sehingga

$$\lim_{x \to -1^{-}} \frac{x^{2} + 1}{x^{2} - 1} = +\infty$$

c. Karena

$$\lim_{x \to \pi^+} x = \pi > 0 \qquad \text{dan}$$

Jika x menuju dari arah kanan maka nilai sinx menuju 0 dari arah bawah(arah nilai sinx negatif)

sehingga

$$\lim_{x \to \pi^+} \frac{x}{\sin x} = -\infty$$

Limit di Tak Hingga

a.
$$\lim_{x \to \infty} f(x) = L$$
 jika $\forall \varepsilon > 0 \exists M > 0 \Rightarrow x > M \Rightarrow |f(x) - L| < \varepsilon$

atau f(x) mendekati L jika x menuju tak hingga

Contoh Hitung

$$\lim_{x \to \infty} \frac{x^2 + 2x + 5}{2x^2 + 4}$$

Jawab

$$\lim_{x \to \infty} \frac{x^2 + 2x + 5}{2x^2 + 4} = \lim_{x \to \infty} \frac{x^2 \left(1 + \frac{2}{x} + \frac{5}{x^2}\right)}{x^2 \left(2 + \frac{4}{x^2}\right)} = \lim_{x \to \infty} \frac{1 + \frac{2}{x} + \frac{5}{x^2}}{2 + \frac{4}{x^2}} = 1/2$$

b.
$$\lim_{x \to -\infty} f(x) = L$$
 jika $\forall \varepsilon > 0 \exists M < 0 \ni x < M \Rightarrow |f(x) - L| < \varepsilon$

atau f(x) mendekati L jika x menuju minus tak hingga

Contoh Hitung

$$\lim_{x \to -\infty} \frac{2x + 5}{2x^2 + 4}$$

Jawab

$$\lim_{x \to -\infty} \frac{2x+5}{2x^2+4} = \lim_{x \to -\infty} \frac{x^2 \left(\frac{2}{x} + \frac{5}{x^2}\right)}{x^2 \left(2 + \frac{4}{x^2}\right)} = \lim_{x \to -\infty} \frac{\left(\frac{2}{x} + \frac{5}{x^2}\right)}{\left(2 + \frac{4}{x^2}\right)} = 0$$

Contoh Hitung

$$\lim_{x \to -\infty} \sqrt{x^2 + x + 3} + x$$

Jawab:

Jika x $\rightarrow \infty$, limit diatas adalah bentuk ($_{\infty}$

$$\lim_{x \to -\infty} \sqrt{x^2 + x + 3} + x = \lim_{x \to -\infty} \sqrt{x^2 + x + 3} + x \left(\frac{\sqrt{x^2 + x + 3} - x}{\sqrt{x^2 + x + 3} - x} \right)$$

$$\sqrt{x^2} = |x|$$

$$= \lim_{x \to -\infty} \frac{x^2 + x + 3 - x^2}{\sqrt{x^2 + x + 3} - x} = \lim_{x \to -\infty} \frac{x + 3}{\sqrt{x^2 + x + 3} - x}$$

$$= \lim_{x \to -\infty} \frac{x(1 + \frac{3}{x})}{\sqrt{x^2 (1 + \frac{1}{x} + \frac{3}{x^2})} - x} = \lim_{x \to -\infty} \frac{x(1 + \frac{3}{x})}{-x\sqrt{1 + \frac{1}{x} + \frac{3}{x^2}} - x}$$

$$= \lim_{x \to -\infty} \frac{1 + \frac{3}{x}}{-(\sqrt{1 + \frac{1}{x} + \frac{3}{x^2}} + 1)} = -\frac{1}{2}$$

Soal Latihan

Hitung

1.
$$\lim_{x \to 3^{+}} \frac{3+x}{3-x}$$

2.
$$\lim_{x \to 2^{+}} \frac{3}{x^2 - 4}$$

3.
$$\lim_{x \to \infty} (\sqrt{x-1} - \sqrt{x})$$

$$4. \lim_{x \to \infty} \frac{x}{1+x^2}$$

$$5. \lim_{x \to \infty} \frac{x^2 + x}{x + 1}$$

$$6. \quad \lim_{x \to -\infty} \frac{\sqrt{x^2 + 1}}{x - 1}$$

Contoh

- $f(x) = x^2$, x = 3 maka $\lim_{x \to 3} x^2 = 9$
- f(x) ditentukan sebagai fungsi berikut:
 f(x) = [x] = (bilangan asli terbesar dalam x)
 Misal x₀ = 3, jika didekati dari kanan nilai limitnya
 3, jika didekati dari kiri nilai limitnya
 1. Karena limit kiri dan kanan tidak sama, maka limit di titik
 x = 3 tidak ada.
 - Dengan kata lain terjadi diskontinyu di titik x = 3.

Kontinuitas

Kontinuitas

- Fungsi f(x) adalah kontinu di titik x = x₀ jika limit kiri dan limit kanan dari f(x) adalah sama.
- Fungsi f(x) adalah kontinu di titik $x = x_0$, bila untuk setiap h > 0 dapat dicari bilangan positif δ sedemikian hingga $|f(x) f(x_0)| < h$ untuk $|x x_0| < \delta$ atau $x_0 \delta < x < x_0 + \delta$.