Modal Logic

wugouzi

August 30, 2020

Contents

1	Basi	ic Concepts	2
	1.1	Modal Languages	2
		Models and Frames	
	1.3	General Frames	3
2	Mod	dels	3
	2.1	Invariance Results	3
		2.1.1 Disjoint Unions	4
		2.1.2 Generated submodels	4
		2.1.3 Morphism for modalities	4
	2.2	Bisimulations	

1 Basic Concepts

1.1 Modal Languages

Definition 1.1. The **basic modal language** is defined using a set of **proposition letters** Φ whose elements are usually denoted p,q,r and so on, and a unary modal operator \Diamond . The well-formed **formulas** ϕ of the basic modal language are given by the rule

$$\phi ::= p \mid \bot \mid \neg \phi \mid \psi \lor \phi \mid \Diamond \phi$$

Definition 1.2. A **modal similarity type** is a pair $\tau = (O, \rho)$ where O is a non-empty set, and ρ is a function $O \to \mathbb{N}$. The elements of O are called **modal operators**; we use \triangle , \triangle_0 , \triangle_1 , ... to denote elements of O. The function ρ assigns to each operator $\delta \in O$ a finite **arity**

Definition 1.3. A **modal language** $ML(\tau, \Phi)$ is built up using a modal similarity type $\tau = (O, \rho)$ and a set of proposition letters Φ . The set $Form(\tau, \Phi)$ of **modal formulas** over τ and Φ is given by the rule

$$\phi := p \mid \bot \mid \neg \phi \mid \phi_1 \lor \phi_2 \mid \triangle(\phi_1, \dots, \phi_{\rho(\triangle)})$$

where p ranges over elements of Φ

Definition 1.4. For each $\triangle \in O$ the **dual** ∇ of \triangle is defined as $\nabla(\phi_1, ..., \phi_n) := \neg \triangle(\neg \phi_1, ..., \neg \phi_n)$

Example 1.1 (The Basic Temporal Language). The basic temporal language is built using a set of unary operators $O = \{\langle F \rangle, \langle P \rangle\}$. The intended interpretation of a formula $\langle F \rangle \phi$ is ' ϕ will be true at some Future time' and the intended interpretation of $\langle P \rangle \phi$ is ' ϕ was true at some Past time.' This language is called the **basic temporal language**. Their duals are written as G and H ('it is Going to be the case' and 'it always Has been the case')

1.2 Models and Frames

Definition 1.5. A **frame** for the basic modal language is a pair $\mathfrak{F} = (W, R)$ s.t.

- 1. *W* is a non-empty set
- 2. *R* is a binary relation on *W*

A **model** for the basic modal language is a pair $\mathfrak{M} = (\mathfrak{F}, V)$, where \mathfrak{F} is a frame for the basic modal language and V is a function assigning to each proposition letter p in Φ a subset V(p) of W. The function V is called a **valuation**. \mathfrak{M} is **based on** the frame \mathfrak{F}

Definition 1.6. Suppose w is a state in a model $\mathfrak{M} = (W, R, V)$. Then ϕ is **satisfied** in \mathfrak{M} at state w if

$$\mathfrak{M}, w \Vdash p$$
 iff $w \in V(p)$, where $p \in \Phi$ $\mathfrak{M}, w \Vdash \bot$ iff never $\mathfrak{M}, w \Vdash \neg \phi$ iff not $\mathfrak{M}, w \Vdash \phi$ $\mathfrak{M}, w \Vdash \phi \lor \psi$ iff $\mathfrak{M}, w \Vdash \phi$ or $\mathfrak{M}, w \Vdash \psi$ $\mathfrak{M}, w \Vdash \Diamond \phi$ iff for some $v \in W$ with Rwv we have $\mathfrak{M}, v \Vdash \phi$

It follows that $\mathfrak{M}, w \Vdash \Box \phi$ iff for all $v \in W$ s.t. Rwv, we have $\mathfrak{M}, v \Vdash \phi$

Definition 1.7. Let τ be a modal similarity type. A τ -frame is a tuple \mathfrak{F} consisting of the following ingredients

- 1. a non-empty set *W*
- 2. for each $n \ge 0$, and each n-ary modal operator \triangle in the similarity type τ , an (n+1)-ary relation R_{\triangle}

 ϕ is **satisfied at a state** w in a model $\mathfrak{M}=(W,\{R_{\scriptscriptstyle \triangle}\mid \vartriangle\in \tau\},V)$ when $\rho(\vartriangle)>0$ if

$$\mathfrak{M}, w \Vdash \triangle(\phi_1, \dots, \phi_n)$$
 iff for some $v_1, \dots, v_n \in W$ with $R_{\triangle} w v_1 \dots v_n$ we have, for each $i, \mathfrak{M}, v_i \Vdash \phi_i$

When $\rho(\triangle) = 0$ we define

$$\mathfrak{M}, w \Vdash \triangle$$
 iff $w \in R_{\wedge}$

Definition 1.8. The set of all formulas that are valid in a class of frames Fis called the **logic** of F (notation: Λ_F)

1.3 General Frames

Definition 1.9. Given an (n + 1)-ary relation R on a set W, we define the following n-ary operation m_R on the power set $\mathcal{P}(W)$ of W:

$$m_R(X_1,...,X_n) = \{w \in W \mid Rww_1...w_n \text{ for some } w_1 \in X_1,...,w_n \in X_n\}$$

2 Models

2.1 Invariance Results

Definition 2.1. Let \mathfrak{M} and \mathfrak{M}' be models of the same modal similarity type τ , and let w and w' be states in \mathfrak{M} and \mathfrak{M}' respectively. The τ -theory (or

 τ -type) of w is the set of all τ -formulas satisfied at w: that is, { ϕ | \mathfrak{M} , w \Vdash ϕ }. We say that w and w' are (modally) equivalent ($w \leftrightarrow w'$) if they have the same τ -theories

The τ -theory of the model $\mathfrak M$ is the set of all τ -formulas satisfied by all states in fM; that is, $\{\phi \mid \mathfrak M \Vdash \phi\}$ Models $\mathfrak M$ and $\mathfrak M'$ are called (modally) equivalent ($\mathfrak M \leftrightsquigarrow \mathfrak M'$) if their theories are identical

2.1.1 Disjoint Unions

2.1.2 Generated submodels

Definition 2.2. Let $\mathfrak{M} = (W, R, V)$ and $\mathfrak{M}' = (W', R', V')$ be two models; we say that \mathfrak{M}' is a **submodel** of \mathfrak{M} if W'W, R' is the restriction of R to W', and V' is the restriction of V to \mathfrak{M}' . We say that \mathfrak{M}' is a **generated submodel** of \mathfrak{M} ($\mathfrak{M}' \to \mathfrak{M}$) if \mathfrak{M}' is a submodel of \mathfrak{M} and for all points W the following closure condition holds

if w is in \mathfrak{M}' and Rwv, then v is in \mathfrak{M}'

Let fM be a model, and X a subset of the domain of \mathfrak{M} ; the **submodel generated by** X is the smallest generated submodel of \mathfrak{M} whose domain contains X. A **rooted** or **point generated** model is a model that is generated by a singleton set, the element of which is called the **root** of the frame

2.1.3 Morphism for modalities

Definition 2.3 (Homomorphisms). Let τ be a modal similarity type and let \mathfrak{M} and \mathfrak{M}' be τ -models. By a **homomorphism** $f: \mathfrak{M} \to \mathfrak{M}'$, we mean a function $f: W \to W'$ satisfying

- 1. For each proposition letter p and each element w from \mathfrak{M} , if $w \in V(p)$, then $f(w) \in V'(p)$
- 2. For each $n \ge 0$ and each n-ary $\triangle \in \tau$ and (n + 1)-tuple \overline{w} from \mathfrak{M} , if $(w_0, ..., w_n) \in R_{\triangle}$, then $(f(w_0), ..., f(w_n)) \in R'_{\triangle}$ (the **homomorphic condition**)

Definition 2.4 (Strong Homomorphisms, Embeddings and Isomorphisms). Let τ be a modal similarity type and let $\mathfrak M$ and $\mathfrak M'$ be τ -models. By a **strong homomorphism** $f: \mathfrak M \to \mathfrak M'$, we mean a function $f: W \to W'$ satisfying

1. For each proposition letter p and each element w from \mathfrak{M} iff $w \in V(p)$, then $f(w) \in V'(p)$

2. For each $n \ge 0$ and each n-ary $\triangle \in \tau$ and (n + 1)-tuple \overline{w} from \mathfrak{M} iff $(w_0, ..., w_n) \in R_{\triangle}$, then $(f(w_0), ..., f(w_n)) \in R'_{\triangle}$ (the **strong homomorphic condition**)

An **embedding** of \mathfrak{M} into \mathfrak{M}' is a strong homomorphism $f: \mathfrak{M} \to \mathfrak{M}'$ which is injective. An **isomorphism** is a bijective strong homomorphism

Proposition 2.5. *Let* τ *be a modal similarity type and let* \mathfrak{M} *and* \mathfrak{M}' *be* τ *-models. Then the following holds*

- 1. for all elements w and w' of \mathfrak{M} and \mathfrak{M}' , respectively, if there exists a surjective strong homomorphism $f: \mathfrak{M} \to \mathfrak{M}'$ with f(w) = w', then w and w are modally equivalent
- 2. If $\mathfrak{M} \cong \mathfrak{M}'$, then $\mathfrak{M} \iff \mathfrak{M}'$

Definition 2.6 (Bounded Morphisms - the Basic Case). Let \mathfrak{M} and \mathfrak{M}' be models for the basic modal language. A mapping $f: \mathfrak{M} = (W, R, V) \to \mathfrak{M}' = (W', R', V')$ is a **bounded morphsim** if it satisfies

- 1. w and f(w) satisfy the same proposition letters
- 2. f is a homomorphism w.r.t. the relation R (if Rwv then R' f(w) f(v))
- 3. If R' f(w)v' then there exists v s.t. Rwv and f(v) = v' (the **back condition**)

If there is a **surjective** bounded morphism from \mathfrak{M} to \mathfrak{M}' , then we say that \mathfrak{M}' is a **bounded morphic image** of \mathfrak{M} , and write $\mathfrak{M} \twoheadrightarrow \mathfrak{M}'$

Proposition 2.7. Let τ be a modal similarity type and let \mathfrak{M} and \mathfrak{M}' be τ -models s.t. $f: \mathfrak{M} \to \mathfrak{M}'$ is a bounded morphism. Then for each modal formula ϕ , and each element w of \mathfrak{M} we have $\mathfrak{M}, w \Vdash \phi$ iff $\mathfrak{M}', f(w) \Vdash \phi$.

Proposition 2.8. Assume that τ is a modal similarity type containing only diamonds. Then for any rooted τ -models $\mathfrak M$ there exists a tree-like τ -models $\mathfrak M'$ s.t. $\mathfrak M' \twoheadrightarrow \mathfrak M$. Hence any satisfiable τ -formula is satisfiable in a tree-like model

2.2 Bisimulations

Definition 2.9 (Bisimulation - the Basic Case). Let $\mathfrak{M} = (W, R, V)$ and $\mathfrak{M} = (W', R', V')$ be two models

A non-empty binary relation $Z \subseteq W \times W'$ is called a **bisimulation between** \mathfrak{M} and \mathfrak{M}' (notation: $Z: \mathfrak{M} \hookrightarrow \mathfrak{M}'$) if

- 1. If wZw' then w and w' satisfy the same proposition letters
- 2. If wZw' and Rwv, then there exists v' (in \mathfrak{M}') s.t. vZv' and R'w'v' (the **forth condition**)
- 3. The converse of (2): if wZw' and R'w'v', then there exists v (in \mathfrak{M}) s.t. vZv' and Rwv (the **back condition**)

When Z is a bisimulation linking two states w in \mathfrak{M} and w' in \mathfrak{M}' we say that w and w' are **bisimilar**, and we write $Z: \mathfrak{M}, w \cong \mathfrak{M}', w'$. If there is a bisimulation, we sometimes write $\mathfrak{M}, w \cong \mathfrak{M}', w'$ or $w \cong w'$

Definition 2.10 (Bisimulation - the General Case). Let τ be a modal similarity type, and let $\mathfrak{M}=(W,R_{\vartriangle},V)_{\vartriangle\in\tau}$ and $\mathfrak{M}'=(W',R'_{\vartriangle},V')_{\vartriangle\in\tau}$ be τ -models. A non-empty binary relation $Z\subseteq W\times W'$ is called a **bisimulation** between \mathfrak{M} and \mathfrak{M}' ($Z:\mathfrak{M} \hookrightarrow \mathfrak{M}'$) if the above condition 1 is satisfied and

- 2. If wZw' and $R_{\triangle}wv_1 \dots v_n$ then there are $v_1', \dots, v_n' \in W'$ s.t. $R_{\triangle}'w'v_1' \dots v_n'$ and for all i ($1 \le i \le n$) v_iZv_i' (the **forth** condition)
- 3. If wZw' and $R'_{\triangle}w'v'_1...v'_n$ then there are $v_1,...,v_n \in W$ s.t. $R_{\triangle}wv_1...v_n$ and for all i ($1 \le i \le n$) $v_iZv'_i$ (the **back** condition)

Proposition 2.11. Let τ be a modal similarity type, and let $\mathfrak{M}, \mathfrak{M}'$ and \mathfrak{M}_i $(i \in I)$ be τ -models

- 1. If $\mathfrak{M} \cong \mathfrak{M}'$, then $\mathfrak{M} \Leftrightarrow \mathfrak{M}'$
- 2. For every $i \in I$, and every w in \mathfrak{M}_i , \mathfrak{M}_i , $w \Leftrightarrow \biguplus_i \mathfrak{M}_i$, w
- 3. If $\mathfrak{M}' \rightarrow \mathfrak{M}$, then $\mathfrak{M}', w \rightleftharpoons \mathfrak{M}, w$ for all w in \mathfrak{M}'
- 4. If $f: \mathfrak{M} \to \mathfrak{M}'$, then $\mathfrak{M}, w = \mathfrak{M}'$, f(w) for all w in \mathfrak{M}

Proof. Suppose $\mathfrak{M} = (W, R_{\triangle}, V)_{\triangle \in \mathcal{T}}$ and $\mathfrak{M}' = (W', R'_{\triangle}, V')_{\triangle \in \mathcal{T}}$

- 1. Suppose $f:\mathfrak{M}\cong\mathfrak{M}'$, then we define wZw' iff w'=f(w) where $w\in W,w'\in W'$. Bisimulation comes from the definition of the isomorphism
- 2. Define the relation $Z = \{(w, w) \mid w \in \mathfrak{M}_i\} \subseteq \mathfrak{M}_i \times \biguplus \mathfrak{M}_i$. The first condition comes from the invariance. The forth condition is obvious. For the back condition, if $R'_{\triangle}w'v'_1...v'_n$ and $w' \in W$, then $v'_1,...,v'_n \in W$ since each $R_{\triangle i}$ is disjoint and we have $R_{\triangle i}w'v'_1...v'_n$
- 3. Define the relation $Z = \{(w, w) \mid w \in \mathfrak{M}'\} \subseteq \mathfrak{M}' \times \mathfrak{M}$. The first condition comes from the invariance. Forth condition is obvious. For the back condition, suppose wZw and $R'_{\triangle}wv'_1 \dots v'_n$, by the definition, $v'_1, \dots, v'_n \in W$ and $R_{\triangle}wv'_1 \dots v'_n$
- 4. Define $Z = \{(w, f(w) \mid w \in W)\}$. The first condition comes from the definition. If wZw' and $R_{\triangle}wv_1 \dots v_n$, then $R'_{\triangle}f(w)f(v_1) \dots f(v_n)$. If wZw' and $R'_{\triangle}w'v'_1 \dots v_n$, then there is v_1, \dots, v_n s.t. $R_{\triangle}wv_1, \dots, v_n$ and $f(v_i) = v'_i$ for $1 \le i \le n$

Theorem 2.12. Let τ be a modal similarity type, and let $\mathfrak{M}, \mathfrak{M}'$ be τ -models. Then, for every $w \in W$ and $w' \in W'$, $w \Leftrightarrow w'$ implies that $w \leftrightarrow w'$. In other words, modal formulas are invariant under bisimulation

Proof. Induction on the complexity of ϕ .

Suppose ϕ is $\diamond \psi$, we have $\mathfrak{M}, w \Vdash \diamond \psi$ iff there exists a v in \mathfrak{M} s.t. Rwv and $\mathfrak{M}, v \Vdash \psi$. As $w \leftrightharpoons w'$, there exists a v' in \mathfrak{M}' s.t. R'w'v' and $v \leftrightharpoons v'$. By the I.H., $\mathfrak{M}', v' \Vdash \psi$, hence $\mathfrak{M}', w' \Vdash \diamond \psi$

Example 2.1 (Bisimulation and First-Order Logic).

Fig. 2.4. Bisimilar models.

Example 2.2.

Fig. 2.5. Equivalent but not bisimilar.

 \mathfrak{M} is **image-finite** if for each state u in \mathfrak{M} and each relation R in \mathfrak{M} , the set $\{(v_1, ..., v_n) \mid Ruv_1 ... v_n\}$ is finite

Theorem 2.13 (Hennessy-Milner Theorem). Let τ be a modal similarity type and let \mathfrak{M} and \mathfrak{M}' be two image-finite τ -models. Then for every $w \in W$ and $w' \in W'$, $w \Leftrightarrow w'$ iff $w \leftrightsquigarrow w'$

Proof. Assume that our similarity type τ only contains a single diamond. The direction from left to right follows from Theorem 2.12

Suppose $w \leftrightarrow w'$. The first condition is immediate. If Rwv, assume there is no v' in \mathfrak{M}' with R'w'v' and $v \leftrightarrow v'$. Let $S' = \{u' \mid R'w'u'\}$. Note that S' must be non-empty, for otherwise $\mathfrak{M}', w' \models \Box \bot$, which would contradict $w \leftrightarrow w'$ since $\mathfrak{M}, w \models \Diamond \top$. Furthermore, as \mathfrak{M}' is image-finite, S' must be finite, say $S' = \{w'_1, \dots, w'_n\}$. By assumption, for every $w'_i \in S'$ there exists a formula ψ_i s.t. $\mathfrak{M}, v \models \psi_i$, but $\mathfrak{M}', w'_i \not\models \psi_i$. It follows that

$$\mathfrak{M}, w \Vdash \diamond (\psi_1 \land \dots \land \psi_n)$$
 and $\mathfrak{M}', w' \nvDash \diamond (\psi_1 \land \dots \land \psi_n)$

Exercise 2.2.1. Suppose that $\{Z_i \mid i \in I\}$ is a non-empty collection of bisimulations between \mathfrak{M} and \mathfrak{M}' . Prove that the relation $\bigcup_{i \in I} Z_i$ is also a bisimulation between \mathfrak{M} and \mathfrak{M}' . Conclude that if \mathfrak{M} and \mathfrak{M}' are bisimilar, then there is a maximal bisimulation between \mathfrak{M} and \mathfrak{M}' .

Proof. 1. If $(w, w') \in \bigcup_{i \in I} Z_i$, then $(w, w') \in Z_j$ for some $j \in I$ and hence they satisfy the same propositional letters

- 2. If $(w, w') \in \bigcup_{i \in I} Z_i$ and $R_{\triangle}wv_1 \dots v_n$, since $(w, w') \in Z_j$ for some $j \in I$, we have $R'_{\triangle}w'v'_1 \dots v'_n$ and $v_iZ_jv'_i$ for all $1 \le i \le n$, which means $(v_i, v'_i) \in \bigcup_{i \in I} Z_i$ for all $1 \le i \le n$
- 3. similarly