Introduction to Machine Learning

Outline

- What is Machine Learning
- Why Machine Learning
- Formal Definition: T,E,P for Machine Learning
- Desired Characteristics of ML Algorithm
- Applications of Machine Learning
- Types of Machine Learning

Machine Learning

Subset of Al

Al is the simulation of human intelligence in machines

Primary Goal

Training a machine to learn from its past experience

Outcome

 ML creates models that can improve its performance with minimal human support

Machine Learning: A subset of Artificial Intelligence

Since an early flush of optimism in the 1950's, smaller subsets of artificial intelligence - first machine learning, then deep learning, a subset of machine learning - have created ever larger disruptions.

Source: https://towardsdatascience.com/introduction-to-machine-learning-for-beginners-eed6024fdb08

Conventional Algorithms / Programs

• Set of hard coded rules to solve a specific task.

• Works on programmer's logic and is task specific.

 Designing rules requires a deep understanding of the domain and is done by a human expert

Why Machine Learning: A motivational example

Look at the images and understand/remember the patterns.

Model and generalization

- Machine learning algorithms generate model.
- Model is a mathematical structure that learns and generalize the data
- Not coded...(If curly hair then sachin)

Why generate model?

Guess: Is this Sachin??

From binary world to Probability world Likelihood of an image to be of Sachin.

REDUCE GENERALIZATION ERROR !!!

Definition

Definition 1: Arthur Samuel(1959)

Field of study that gives computers the ability to learn without being explicitly programmed.

Definition 2: Tom Mitchell (1998)

A computer program is said to learn from Experience E with respect to some Task T and some Performance measure P if performance on T, as measured by P, improves with experience E.

Task, Experience, Performance

Ill posed problem : Recognize Sachin Tendulkar in the given Photographs

Well posed Problem:

Task : Check if the face in an image is of Sachin or not

Experience: Various Images of Sachin

Performance: Out of 100 photographs, how many times was

Sachin

identified with more than 90% confidence

Ill posed versus Well posed Learning problems

- Ill posed problems :
 - No clear goal/Has simultaneous goals
 - No clear solution paths No unique solution

"Today is Sunday. Shreyas would like to watch a movie".

- Ill posed problems should be converted into a Well Posed problem in terms of Task, Experience, and Performance
- Well posed problem
 - Solution exists
 - The solution is unique

The solution depends on the data/experience

"Task: Classify whether Krish movie will be liked by Shreyas"

Inductive versus Deductive Learning

$$t = a1 * a2$$

a1	a2	t
5	2	10
3	2	5.9
10	5	47
14	2	28

Conventional versus ML algorithms

Traditional Programming

Machine Learning

Enable computers to learn from data without being explicitly programmed.

Conventional versus ML algorithms

Machine Learning Tasks

- Regression: Generalize to predict continuous valued output
 - What will be share price of SBI bank after a month?

Machine Learning Tasks

Classification :

Generalize to predict discrete valued output

Classify mails into spam and ham

Clustering :

Generalize to form groups

Cluster the items in a basket

Experience for Machine Learning: Data

- Data: Qualitative or quantitative variables in organized/unorganized form
 - Images, Documents, Videos, Customers transactions
 - DATA-> Information-> Knowledge
- Information : Meaningful data
 - Customers buying grocery items
 - The documents are related to sports...
- Knowledge: Learned/Analyzed information
 - If milk is bought, then bread is also bought
 - Indian Cricketers are Sachin, Sehwag, Ganguly, Srinath,

Performance measure

- Accuracy: How many of the predictions made by the model are correct
- Precision: Fraction of relevant instances among the retrieved instances
- Recall: Fraction of the total amount of relevant instances that were retrieved actually

Source: quora.com

Confusion matrix

Index	1	2	3	4	5	6	7	8	9	10
Actual	Dog	Dog	Dog	Not Dog	Dog	Not Dog	Dog	Dog	Not Dog	Not Dog
Predicted	Dog	Not Dog	Dog	Not Dog	Dog	Dog	Dog	Dog	Not Dog	Not Dog
Result	TP	FN	TP	TN	TP	FP	TP	TP	TN	TN

		Actual		
		Dog	Not Dog	
Predicted	Dog	True Positive (TP =5)	False Positive (FP=1)	
	Not Dog	False Negative (FN =1)	True Negative (TN=3)	

Source: geeksforgeeks.org

Desired characteristics

- Learn and Generate models of high quality
- Generalize patterns with less error
- Learn from noisy and vague data
- Efficient and Scalable
- Deterministic

Why Machine Learning hype?

- Data is the new Oil!!!
 - Enough Data but Scarce Knowledge

- 1 trillion web pages Web mining
- One hour of video is uploaded to YouTube
 - every second amounting to 10 years of content every
- 1M transactions per hour in Walmart
- Science Bioinformatics, Astrophysics...
 Genomes 1000s of people, each of which has a length of 3.8 × 109 base pairs sequenced by various labs;

Why Machine Learning is inevitable?

- Intellectually rich due to Mathematics and Algorithms
- Human design has limitations
 - NLP, Computation, , handwriting recognition,
- Dynamic Environment
 - Autonomous helicopter, self driving car
- New knowledge evolved and redesign is difficult
 - Self customizing programs
 - Amazon product recommender system.
 - DATA DOES THE TRICK!!!

Machine Learning Applications

Applications

- Disease Diagnostics
- Recommendation
- Image Tagging
- Advertising
- Speech Processing
- Self-driving car
- Share Trading

Stakeholders

- Doctors
- Netflix, Amazon
- Social media like Facebook
- Web service providers
- Google assistant, Amazon Alexa
- Tesla
- Financiers

Disease Diagnostics (Computer Vision)

Diagnose Diabetic Retinopathy

Source: https://blog.google/technology/ai/detecting-diabetic-eye-disease-machine-learning/

T, E, P for Diabetic Retinopathy

- Task : Specific work
 - Diagnose if the patient has Diabetic Retinopathy or not (Classification)
- Experience: Data available
 - Eye images of various DR/non-DR patients
- Performance : Accurately perform work Correctly diagnosed
 DR patients

Recommendation Systems

Share Trading

T, E, P for Share Trading

- Task : Specific work
 - What will be the share price of HDFC after a week (Regression)
- Experience: Data available
 - For each date, the opening price, closing, high, low buying etc. since 5 years
- Performance : Accurately perform work
 - How closer was the predicted price to the actual price.

The Fields of Data Science

Experimental

Theoretical

Types of MachineLearning

Data Representation

- Y: Target/Label/outcome/response/dependent variable
- (f1,...,fd): Features/Attributes/Dimensions
 - Independent and Identically Distributed vectors

- Time series (Dependent vectors)
- Images (Matrices)
- Variable size Non-vector data(Trees, Graphs, Text)
- Objects (Relational Schema)

Supervised Learning from Data

Predicting continuous target variable

Task: Regression

• Example : Stock Price Prediction

- Only one target variable ?
- How to take a combination of the features (linear regression)?
- Anything more general than that?
- Is local minimum error the global minimum error?

Task: Classification

Example : Classify whether the patient is suffering from cancer or not.

training dataset

model

test dataset

8	В
	В
e h	В
	A
0	A

Supervised Learning

Unsupervised Learning

- Task : Clustering
- No Target variable

Task: Association mining

TID	Items			
1	Bread, Milk			
2	Bread, Diaper, Beer, Egg			
3	Milk, Diaper, Beer, Coke			
4	Bread, Milk, Diaper, Been			
5	Bread, Milk, Diaper, Cok			

```
{milk} → {bread}
{milk, cheese, eggs} → {bread}
{milk, diaper} → {beer}
```

Task: Dimensionality Reduction

Reinforcement Learning

Typical RL scenario

- Learn from interaction with the environment
- Transition from one state to another
- Rewards/punishments from sequence of actions

<u>Image Source: https://www.guru99.com/reinforcement-learning-tutorial.html</u>

Applications

- Manufacturing
 - Pick a device and put it in right container
- Self-driving cars
 - Detect obstacles, proper routing, traffic signal
- Power systems
- Network routing

Data Mining and Machine Learning Process

References

- https://towardsdatascience.com/introduction-to-machine-learning-for-beginners-eed6024fdb08
- https://www.statisticshowto.com/well-posedness/
- https://www.quora.com/What-is-the-best-way-to-understand-the-terms-precision-and-recall