

Universidade do Minho

DEPARTAMENTO DE INFORMÁTICA

Relatório de Redes de Computadores Grupo 3

16 de Dezembro de 2018

Conteúdo

1	Que	estões e Respostas	2
	1.1	Pergunta 4: Acesso Rádio	2
	1.2	Pergunta 5: Scanning Passivo e Scanning Ativo	4
	1.3	Pergunta 6: Processo de Associação	11
	1.4	Pergunta 7: Transferência de Dados	13
2	Con	nclusão	16

1 Questões e Respostas

1.1 Pergunta 4: Acesso Rádio

1. Identifique em que frequência do espectro está a operar a rede sem fios, e o canal que corresponde essa frequência.

Visto que estamos a operar na norma IEEE 802.11g, a sua frequência tem que estar entre 2400MHz e 2485000 MHz. O espectro está a operar a uma frequência de 2467MHz, estando este valor dentro do intervalo esperado e correspondendo ao canal 12.

```
MAC timestamp: 34340768
Flags: 0x10
   Data Rate: 1,0 Mb/s
   Channel frequency: 2467 [BG 12]
  Channel flags: 0x0480, 2 GHz spectrum, Dynamic CCK-OFDM
   Antenna signal: -64dBm
   Antenna noise: -87dBm
   Antenna: 0
802.11 radio information
   PHY type: 802.11g (6)
   Short preamble: False
   Proprietary mode: None (0)
   Data rate: 1,0 Mb/s
   Channel: 12
   Frequency: 2467MHz
   Signal strength (dBm): -64dBm
   Noise level (dBm): -87dBm
   TSF timestamp: 34340768
   [Duration: 2360µs]
IEEE 802.11 Beacon frame, Flags: ......C
IEEE 802.11 wireless LAN
```

2. Identifique a versão da norma IEEE 802.11 que está a ser usada.

Está a ser usada a versão 802.11g, como já foi referido na alínea anterior.

```
▼ 802.11 radio information
PHY type: 802.11g (6)
```

3. Qual o débito a que foi enviada a trama escolhida? Será que esse débito corresponde ao débito máximo a que a interface WiFi pode operar? Justifique.

A trama escolhida foi enviada com um débito de 1.0 Mbps. Este débito não corresponde ao débito máximo a que a interface WiFi pode operar, uma vez que o débito máximo desta é de 54Mbps, já que estamos a operar na norma IEEE 802.11g.

▼ Radiotap Header v0, Length 25

Header revision: 0

Header pad: 0 Header length: 25

Present flags

MAC timestamp: 34340768

▶ Flags: 0x10

Data Rate: 1,0 Mb/s

Channel frequency: 2467 [BG 12]

▶ Channel flags: 0x0480, 2 GHz spectrum, Dynamic CCK-OFDM

Antenna signal: -64dBm Antenna noise: -87dBm

Antenna: 0

▼ 802.11 radio information

PHY type: 802.11g (6) Short preamble: False Proprietary mode: None (0) Data rate: 1,0 Mb/s

Channel: 12

Frequency: 2467MHz

Signal strength (dBm): -64dBm

1.2 Pergunta 5: Scanning Passivo e Scanning Ativo

As tramas beacon permitem efetuar scanning passivo em redes IEEE 802.11 (WiFi). Para a captura de tramas disponibilizada, responda às seguintes questões:

4. Selecione uma trama beacon (e.g., a trama 353). Esta trama pertence a que tipo de tramas 802.11? Indique o valor dos seus identificadores de tipo e de subtipo. Em que parte concreta do cabeçalho da trama estão especificados (ver anexo)?

Como já foi referido em alíneas anteriores, esta trama pertence ao tipo 802.11g.

```
MAC timestamp: 34340768
  Flags: 0x10
     Data Rate: 1,0 Mb/s
     Channel frequency: 2467 [BG 12]
  Channel flags: 0x0480, 2 GHz spectrum, Dynamic CCK-OFDM
     Antenna signal: -64dBm
     Antenna noise: -87dBm
     Antenna: 0

    802.11 radio information

     PHY type: 802.11g (6)
     Short preamble: False
     Proprietary mode: None (0)
     Data rate: 1,0 Mb/s
     Channel: 12
     Frequency: 2467MHz
     Signal strength (dBm): -64dBm
     Noise level (dBm): -87dBm
     TSF timestamp: 34340768
  ▶ [Duration: 2360µs]
 IEEE 802.11 Beacon frame, Flags: ......C
     Type/Subtype: Beacon frame (0x0008)
```

O tipo e o subtipo dos seus identificadores estão apresentados na figura seguinte, onde podemos verificar que se trata de uma trama de gestão (Management frame), sendo este o tipo da trama. Já o subtipo tem como valor de identificação 8. Estas informações encontram-se específicadas no campo Frame Control, tendo este campo os 2 campos referidos: type e subtype.

```
Short preamble: False
     Proprietary mode: None (0)
     Data rate: 1,0 Mb/s
     Channel: 12
     Frequency: 2467MHz
     Signal strength (dBm): -64dBm
     Noise level (dBm): -87dBm
     TSF timestamp: 34340768
  ▶ [Duration: 2360µs]
▼ IEEE 802.11 Beacon frame, Flags: ......C
     Type/Subtype: Beacon frame (0x0008)
     Frame Control Field: 0x8000
        .... ..00 = Version: 0
        .... 00.. = Type: Management frame (0)
        1000 .... = Subtype: 8
     ▶ Flags: 0x00
     .000 0000 0000 0000 = Duration: 0 microseconds
     Receiver address: Broadcast (ff:ff:ff:ff:ff)
     Destination address: Broadcast (ff:ff:ff:ff:ff)
     Transmitter address: HitronTe_af:b1:98 (bc:14:01:af:b1:98)
     Source address: HitronTe_af:b1:98 (bc:14:01:af:b1:98)
```

5. Liste todos os SSIDs dos APs (Access Points) que estão a operar na vizinhança da STA de captura. Explicite o modo como obteve essa informação. Como sugestão pode construir um filtro de visualização apropriado (tomando como base a resposta da alínea anterior) que lhe permita obter a listagem pretendida.

Para listar todos os SSIDs dos APs (Access~Points) começamos por aplicar o seguinte filtro: wlan.fc.type_subtype==0x08

Este filtro faz com que sejam apresentadas somente tramas *Beacon*. A partir do resultado deste filtro podemos verificar 2 APs a operar na vizinhança da STA de captura:

- 1. FlyingNet
- 2. NOS_WIFI_Fon

, w	vlan.fc.type_subtype	== 0x08									
No.	Time	Source	Destination	Protocol L	ength Info						
	1 0.000000	HitronTe af:b1:98	Broadcast	802.11	296 Beacon	frame,	SN=2083,	FN=0,	Flags=C,	BI=100,	SSID=FlyingNet
	2 0.001662	HitronTe_af:b1:99	Broadcast	802.11	205 Beacon	frame,	SN=2084,	FN=0,	Flags=C,	BI=100,	SSID=NOS_WIFI_Fon
	3 0.102552	HitronTe_af:b1:98	Broadcast	802.11					Flags=C,		
	4 0.104164	HitronTe_af:b1:99	Broadcast	802.11	205 Beacon	frame,	SN=2086,	FN=0,	Flags=C,	BI=100,	SSID=NOS_WIFI_Fon
	5 0.204951	HitronTe_af:b1:98	Broadcast	802.11					Flags=C,		
	6 0.206582	HitronTe_af:b1:99	Broadcast	802.11							SSID=NOS_WIFI_For
	7 0.307368	HitronTe_af:b1:98	Broadcast	802.11	296 Beacon	frame,	SN=2089,	FN=0,	Flags=C,	BI=100,	SSID=FlyingNet
	8 0.308999	HitronTe_af:b1:99	Broadcast	802.11	205 Beacon	frame,	SN=2090,	FN=0,	Flags=C,	BI=100,	SSID=NOS_WIFI_For
	9 0.409749	HitronTe_af:b1:98	Broadcast	802.11	296 Beacon	frame,	SN=2091,	FN=0,	Flags=C,	BI=100,	SSID=FlyingNet
	10 0.411376	HitronTe_af:b1:99	Broadcast	802.11							SSID=NOS_WIFI_For
	11 0.512117	HitronTe_af:b1:98	Broadcast	802.11	296 Beacon	frame,	SN=2093,	FN=0,	Flags=C,	BI=100,	SSID=FlyingNet
	12 0.513707	HitronTe_af:b1:99	Broadcast	802.11							SSID=NOS_WIFI_For
	13 0.614562	HitronTe_af:b1:98	Broadcast	802.11	296 Beacon	frame,	SN=2095,	FN=0,	Flags=C,	BI=100,	SSID=FlyingNet
	14 0.616191	HitronTe_af:b1:99	Broadcast	802.11							SSID=NOS_WIFI_For
	28 0.716961	HitronTe_af:b1:98	Broadcast	802.11	296 Beacon	frame,	SN=2097,	FN=0,	Flags=C,	BI=100,	SSID=FlyingNet
	29 0.718611	HitronTe_af:b1:99	Broadcast	802.11							SSID=NOS_WIFI_For
	32 0.819368	HitronTe_af:b1:98	Broadcast	802.11					Flags=C,		
	33 0.821009	HitronTe_af:b1:99	Broadcast	802.11							SSID=NOS_WIFI_For
	34 0.921756	HitronTe_af:b1:98	Broadcast	802.11	296 Beacon	frame,	SN=2101,	FN=0,	Flags=C,	BI=100,	SSID=FlyingNet
	35 0.923387	HitronTe_af:b1:99	Broadcast	802.11	205 Beacon	frame,	SN=2102,	FN=0,	Flags=C,	BI=100,	SSID=NOS_WIFI_For
	36 1.024021	HitronTe_af:b1:98	Broadcast	802.11	296 Beacon	frame,	SN=2103,	FN=0,	Flags=C,	BI=100,	SSID=FlyingNet
	37 1.025663	HitronTe_af:b1:99	Broadcast	802.11							SSID=NOS_WIFI_For
	38 1.126564	HitronTe_af:b1:98	Broadcast	802.11					Flags=C,		
	39 1.128193	HitronTe_af:b1:99	Broadcast	802.11	205 Beacon	frame,	SN=2106,	FN=0,	Flags=C,	BI=100,	SSID=NOS_WIFI_For
	40 1.228961	HitronTe_af:b1:98	Broadcast	802.11					Flags=C,		
	41 1.230650	HitronTe_af:b1:99	Broadcast	802.11							SSID=NOS_WIFI_For
	42 1.331376	HitronTe_af:b1:98	Broadcast	802.11	296 Beacon	frame,	SN=2109,	FN=0,	Flags=C,	BI=100,	SSID=FlyingNet
	43 1.332996	HitronTe_af:b1:99	Broadcast	802.11	205 Beacon	frame,	SN=2110,	FN=0,	Flags=C,	BI=100,	SSID=NOS_WIFI_For
		on wire (2368 bits),	296 bytes capture	d (2368 bits)							
Ra	adiotap Header v0,										
	Header revision:	0									
	Header pad: 0										
	Header length: 25										
▶	Present flags										

6. Verifique se está a ser usado o método de detecção de erros (CRC), e se todas as tramas Beacon são recebidas corretamente. Justifique o porquê de usar detecção de erros neste tipo de redes locais.

A partir das imagens seguintes podemos concluir que está a ser usado o método de deteção de erros (CRC), uma vez que está presente o campo *Frame Check Sequence*. De notar que a utilização de métodos de deteção de erros é improtante neste tipo de redes, uma vez que é mais frequente a ocorrência de colisões nestas.

Na imagem apresentada abaixo vemos que ocorreram erros na trama, já que o valor do campo Frame Check Sequence apresenta um valor incorreto, apresentando ainda o valor que o campo deveria ter em substituição do valor incorreto.

Por outro lado, na seguinte imagem conseguimos perceber que o campo $\it Frame\ Check\ Sequence$ foi utilizado, mas não foi detetado nenhum erro.

```
Noise level (dBm): -87dBm
   TSF timestamp: 34340768
   [Duration: 2360µs]
IEEE 802.11 Beacon frame, Flags: ......C
   Type/Subtype: Beacon frame (0x0008)
 ▼ Frame Control Field: 0x8000
      .... ..00 = Version: 0
      .... 00.. = Type: Management frame (0)
      1000 .... = Subtype: 8
   Flags: 0x00
   .000 0000 0000 0000 = Duration: 0 microseconds
   Receiver address: Broadcast (ff:ff:ff:ff:ff)
   Destination address: Broadcast (ff:ff:ff:ff:ff)
   Transmitter address: HitronTe_af:b1:98 (bc:14:01:af:b1:98)
   Source address: HitronTe_af:b1:98 (bc:14:01:af:b1:98)
   BSS Id: HitronTe_af:b1:98 (bc:14:01:af:b1:98)
        .... 0000 = Fragment number: 0
   1001 0011 1111 .... = Sequence number: 2367
   Frame check sequence: 0x15e18226
   [FCS Status: Good]
IEEE 802.11 wireless LAN
```

Posto isto, concluimos facilmente que nem todas as tramas Beacon são recebidas corretamente.

7. Para dois dos APs identificados, indique qual é o intervalo de tempo previsto entre tramas beacon consecutivas?(Nota: este valor é anunciado na própria trama beacon). Na prática, a periodicidade de tramas beacon é verificada? Tente explicar porquê.

O intervalo previsto entre tramas consecutivas é de 0.102400 segundos, tal como se pode verificar a seguir:

```
▼ IEEE 802.11 wireless LAN
▼ Fixed parameters (12 bytes)
Timestamp: 0x00000010bae9321fb
Beacon Interval: 0,102400 [Seconds]
```

Na prática, a periodicidade de tramas beacon, apesar de apresentar um valor bastante próximo, não é verificada.

Através da figura seguinte podemos verificar que o intervalo entre 2 tramas beacon consecutivas (neste caso, 353 e 355), é dado por: 14.643405 - 14.540874 = 0.102531 segundos, sendo um valor mais pequeno do que o previsto.

o. Time	Source	Destination	Protocol	Length In	nfo						
340 13.825	838 HitronTe_af:b1:99	Broadcast	802.11	205 B	eacon	frame,	SN=2354,	FN=0,	Flags=C,	BI=100,	SSID=NOS_WIFI_Fon
341 13.926	596 HitronTe af:b1:98	Broadcast	802.11	296 B	eacon	frame,	SN=2355,	FN=0,	Flags=C,	BI=100,	SSID=FlyingNet
342 13.928	225 HitronTe_af:b1:99	Broadcast	802.11	205 B	eacon	frame,	SN=2356,	FN=0,	Flags=C,	BI=100,	SSID=NOS_WIFI_For
343 14.028	868 HitronTe af:b1:98	Broadcast	802.11	296 B	eacon	frame,	SN=2357,	FN=0,	Flags=C,	BI=100,	SSID=FlyingNet
344 14.030	499 HitronTe_af:b1:99	Broadcast	802.11	205 B	eacon	frame,	SN=2358,	FN=0,	Flags=C,	BI=100,	SSID=NOS_WIFI_For
345 14.131	.398 HitronTe_af:b1:98	Broadcast	802.11	296 B	eacon	frame,	SN=2359,	FN=0,	Flags=C,	BI=100,	SSID=FlyingNet
346 14.133	029 HitronTe af:b1:99	Broadcast	802.11	205 B	eacon	frame,	SN=2360,	FN=0,	Flags=C,	BI=100,	SSID=NOS WIFI For
347 14.233	824 HitronTe_af:b1:98	Broadcast	802.11	296 B	eacon	frame,	SN=2361,	FN=0,	Flags=C,	BI=100,	SSID=FlyingNet
348 14.235	456 HitronTe_af:b1:99	Broadcast	802.11	205 B	eacon	frame,	SN=2362,	FN=0,	Flags=C,	BI=100,	SSID=NOS_WIFI_For
349 14.336	138 HitronTe_af:b1:98	Broadcast	802.11	296 B	eacon	frame,	SN=2363,	FN=0,	Flags=C,	BI=100,	SSID=FlyingNet
350 14.337	754 HitronTe_af:b1:99	Broadcast	802.11	205 B	eacon	frame,	SN=2364,	FN=0,	Flags=C,	BI=100,	SSID=NOS_WIFI_Fo
351 14.438	603 HitronTe_af:b1:98	Broadcast	802.11	296 B	eacon	frame,	SN=2365,	FN=0,	Flags=C,	BI=100,	SSID=FlyingNet
352 14.440	234 HitronTe_af:b1:99	Broadcast	802.11								SSID=NOS_WIFI_For
353 14.540		Broadcast	802.11						Flags=C,		
354 14.542		Broadcast	802.11						Flags=C,		
355 14.643		Broadcast	802.11						Flags=C,		
356 14.645		Broadcast	802.11						Flags=C,		
357 14.745		Broadcast	802.11						Flags=C,		
358 14.848		Broadcast	802.11						Flags=C,		
359 14.849		Broadcast	802.11						Flags=C,		
360 14.950		Broadcast	802.11						Flags=C,		
361 14.952		Broadcast	802.11						Flags=C,		
362 15.052		Broadcast	802.11						Flags=C,		
363 15.054		Broadcast	802.11						Flags=C,		
364 15.155		Broadcast	802.11						Flags=C,		
365 15.156		Broadcast	802.11						Flags=C,		
366 15.257		Broadcast	802.11						Flags=C,		
367 15.259	284 HitronTe_af:b1:99	Broadcast	802.11	205 B	eacon	frame,	SN=2382,	FN=0,	Flags=C,	BI=100,	SSID=NOS_WIFI_F

8. Identifique e registe todos os endereços MAC usados nas tramas beacon enviadas pelos APs. Recorde que o endereçamento está definido no cabeçalho das tramas 802.11, podendo ser utilizados até quatro endereços com diferente semântica. Para uma descrição detalhada da estrutura da trama 802.11, consulte o anexo ao enunciado.

As tramas 353 e 354 têm nos campos Receiver Address e Destination Adress o endereço MAC ff:ff:ff:ff:ff:ff (Broadcast).

No entanto, no que toca aos campos *Transmitter Address* e *Source Address* os valores já não são iguais em ambas as tramas.

Na trama 353 estes campos possuem o valor bc:14:01:af:b1:98, correspondendo à STA HitronTe_af:b1:98, como podemos verificar na imagem abaixo.

```
Receiver address: Broadcast (ff:ff:ff:ff:ff)
Destination address: Broadcast (ff:ff:ff:ff:ff)
Transmitter address: HitronTe_af:b1:98 (bc:14:01:af:b1:98)
Source address: HitronTe_af:b1:98 (bc:14:01:af:b1:98)
```

Já quanto à trama 354 os campos referidos têm o valor bc:14:01:af:b1:99, correspondendo, analogamente, à STA HitronTe_af:b1:99.

V	vlan.fc.type_subtype	e == 0x08								
No.	Time	Source	Destination	Protocol	Length Info					
	340 13.825838	HitronTe_af:b1:99	Broadcast	802.11	205 Beacon frame	, SN=2354,	FN=0,	Flags=C,	BI=100,	SSID=NOS_WIFI_Fon
	341 13.926596	HitronTe_af:b1:98	Broadcast	802.11	296 Beacon frame	, SN=2355,	FN=0,	Flags=C,	BI=100,	SSID=FlyingNet
	342 13.928225	HitronTe_af:b1:99	Broadcast	802.11	205 Beacon frame	, SN=2356,	FN=0,	Flags=C,	BI=100,	SSID=NOS_WIFI_Fon
	343 14.028868	HitronTe_af:b1:98	Broadcast	802.11	296 Beacon frame	, SN=2357,	FN=0,	Flags=C,	BI=100,	SSID=FlyingNet
	344 14.030499	HitronTe_af:b1:99	Broadcast	802.11	205 Beacon frame	, SN=2358,	FN=0,	Flags=C,	BI=100,	SSID=NOS_WIFI_Fon
	345 14.131398	HitronTe_af:b1:98	Broadcast	802.11	296 Beacon frame	, SN=2359,	FN=0,	Flags=C,	BI=100,	SSID=FlyingNet
	346 14.133029	HitronTe_af:b1:99	Broadcast	802.11	205 Beacon frame	, SN=2360,	FN=0,	Flags=C,	BI=100,	SSID=NOS_WIFI_Fon
	347 14.233824	HitronTe_af:b1:98	Broadcast	802.11	296 Beacon frame	, SN=2361,	FN=0,	Flags=C,	BI=100,	SSID=FlyingNet
	348 14.235456	HitronTe_af:b1:99	Broadcast	802.11	205 Beacon frame	, SN=2362,	FN=0,	Flags=C,	BI=100,	SSID=NOS_WIFI_Fon
	349 14.336138	HitronTe_af:b1:98	Broadcast	802.11	296 Beacon frame	, SN=2363,	FN=0,	Flags=C,	BI=100,	SSID=FlyingNet
	350 14.337754	HitronTe_af:b1:99	Broadcast	802.11	205 Beacon frame	, SN=2364,	FN=0,	Flags=C,	BI=100,	SSID=NOS_WĬFI_Fon
	351 14.438603	HitronTe_af:b1:98	Broadcast	802.11	296 Beacon frame	, SN=2365,	FN=0,	Flags=C,	BI=100,	SSID=FlyingNet
	352 14.440234	HitronTe_af:b1:99	Broadcast	802.11	205 Beacon frame	, SN=2366,	FN=0,	Flags=C,	BI=100,	SSID=NOS_WIFI_Fon
	353 14.540874	HitronTe_af:b1:98	Broadcast	802.11				Flags=C,		
	354 14.542494	HitronTe_af:b1:99	Broadcast	802.11						SSID=NOS_WIFI_Fon
	355 14.643405	HitronTe_af:b1:98	Broadcast	802.11				Flags=C,		
	356 14.645055	HitronTe_af:b1:99	Broadcast	802.11	205 Beacon frame	, SN=2370,	FN=0,	Flags=C,	BI=100,	SSID=NOS_WIFI_Fon
	357 14.745813	HitronTe_af:b1:98	Broadcast	802.11				Flags=C,		
	358 14.848210	HitronTe_af:b1:98	Broadcast	802.11				Flags=C,		
	359 14.849841	HitronTe_af:b1:99	Broadcast	802.11						SSID=NOS_WIFI_Fon
	360 14.950611	HitronTe_af:b1:98	Broadcast	802.11				Flags=C,		
	361 14.952099	HitronTe_af:b1:99	Broadcast	802.11	205 Beacon frame	, SN=2376,	FN=0,	Flags=C,	BI=100,	SSID=NOS_WIFI_Fon
	362 15.052889	HitronTe_af:b1:98	Broadcast	802.11				Flags=C,		
	363 15.054500	HitronTe_af:b1:99	Broadcast	802.11						SSID=NOS_WIFI_Fon
	364 15.155412	HitronTe_af:b1:98	Broadcast	802.11				Flags=C,		
	365 15.156998	HitronTe_af:b1:99	Broadcast	802.11						SSID=NOS_WIFI_Fon
	366 15.257723	HitronTe_af:b1:98	Broadcast	802.11				Flags=C,		
	367 15.259284	HitronTe_af:b1:99	Broadcast	802.11	205 Beacon frame	, SN=2382,	FN=0,	Flags=C,	BI=100,	SSID=NOS_WIFI_Fon

9. As tramas beacon anunciam que o AP pode suportar vários débitos de base assim como vários "extended supported rates". Indique quais são esses débitos.

Os débitos de base suportados pelo AP são: 1, 2, 5.5, 11, 9, 18, 36 e 54 Mbps. Já quanto os extended supported rates são suportados: 6, 12, 24 e 48 Mbps, como podemos verificar nas figuras seguintes:

```
Tag: Supported Rates 1(B), 2(B), 5.5(B), 11(B), 9, 18, 36, 54, [Mbit/sec]
     Tag Number: Supported Rates (1)
     Tag length: 8
     Supported Rates: 1(B) (0x82)
     Supported Rates: 2(B) (0x84)
     Supported Rates: 5.5(B) (0x8b)
     Supported Rates: 11(B) (0x96)
     Supported Rates: 9 (0x12)
     Supported Rates: 18 (0x24)
     Supported Rates: 36 (0x48)
     Supported Rates: 54 (0x6c)
   Tag: Extended Supported Rates 6(B), 12(B), 24(B), 48, [Mbit/sec]
       Tag Number: Extended Supported Rates (50)
       Tag length: 4
       Extended Supported Rates: 6(B) (0x8c)
      Extended Supported Rates: 12(B) (0x98)
Extended Supported Rates: 24(B) (0xb0)
       Extended Supported Rates: 48 (0x60)
```

No trace disponibilizado também foi registado scanning ativo, i.e., envolvendo tramas probe request e probe response, comum nas redes WiFi como alternativa ao scanning passivo.

10. Estabeleça um filtro Wireshark apropriado que lhe permita visualizar todas as tramas probing request ou probing response, simultaneamente.

O filtro Wireshark que nos permitiu visualizar todas as tramas probing request ou probing response, simultaneamente foi o seguinte:

wlan.fc.type_subtype == 4 || wlan.fc.type_subtype == 5

11. Identifique um probing request para o qual tenha havido um probing response. Face ao endereçamento usado, indique a que sistemas são endereçadas estas tramas e explique qual o propósito das mesmas?

Temos um exemplo de um probing request para o qual houve um probing response nas tramas 2468 e 2469, correspondendo, respetivamente, ao probe request e ao probe response.

Um wireless host envia uma trama probe request a todos os APs que se encontrem ao alcance deste host. Os APs respondem a esta trama com uma trama probe response e o wireless host pode, então, escolher a que AP se associará, entre aqueles que enviaram uma trama probe response. Depois de escolher o AP com o qual o host se vai associar, este envia uma association request frame ao AP escolhido e este AP responde com uma association response frame.

De notar que esta segunda concordância entre pedido/resposta é importante, uma vez que um AP que responda a uma *probe response frame* inicial não sabe a que AP de resposta o *host* escolherá associar-se.

Uma vez associado a um AP, o host vai querer ingressar na sub-rede à qual o AP pertence.

W	lan.fc.type_subtype	e == 4 wlan.fc.type_sub	otype == 5	
No.	Time	Source	Destination	Protocol Lengtr Info
- :	1300 53.746911	Apple_10:6a:f5	Broadcast	802.11 155 Probe Request, SN=2516, FN=0, Flags=C, SSID=Wildcard (Broadcast)
	2467 70.147855	ea:a4:64:7b:b9:7a	Broadcast	802.11 167 Probe Request, SN=2540, FN=0, Flags=C, SSID=2WIRE-PT-431
	2468 70.149098	ea:a4:64:7b:b9:7a	Broadcast	802.11 155 Probe Request, SN=2541, FN=0, Flags=C, SSID=Wildcard (Broadcast)
	2469 70.149792	HitronTe_af:b1:98	ea:a4:64:7b:b9:7a	802.11 411 Probe Response, SN=2332, FN=0, Flags=C, BI=100, SSID=FlyingNet
	2471 70.150537	HitronTe_af:b1:98	ea:a4:64:7b:b9:7a	802.11 411 Probe Response, SN=2333, FN=0, Flags=C, BI=100, SSID=FlyingNet
	2473 70.151237	HitronTe_af:b1:98	ea:a4:64:7b:b9:7a	802.11 411 Probe Response, SN=2334, FN=0, Flags=C, BI=100, SSID=FlyingNet
	2475 70.151709	HitronTe_af:b1:99	ea:a4:64:7b:b9:7a	802.11 201 Probe Response, SN=2335, FN=0, Flags=C, BI=100, SSID=NOS_WIFI_Fo
	2477 70.152099	HitronTe_af:b1:99	ea:a4:64:7b:b9:7a	802.11 201 Probe Response, SN=2336, FN=0, Flags=C, BI=100, SSID=NOS_WIFI_Fo
	2479 70.152570	HitronTe_af:b1:99	ea:a4:64:7b:b9:7a	802.11 201 Probe Response, SN=2337, FN=0, Flags=C, BI=100, SSID=NOS_WIFI_Fo
	2603 72.179215	Apple_10:6a:f5	Broadcast	802.11 164 Probe Request, SN=2563, FN=0, Flags=C, SSID=FlyingNet
	2606 72.179924	HitronTe_af:b1:98	Apple_10:6a:f5	802.11 411 Probe Response, SN=2346, FN=0, Flags=C, BI=100, SSID=FlyingNet
	2608 72.180590	HitronTe_af:b1:98	Apple_10:6a:f5	802.11 411 Probe Response, SN=2347, FN=0, Flags=C, BI=100, SSID=FlyingNet
	2610 72.181275	HitronTe_af:b1:98	Apple_10:6a:f5	802.11 411 Probe Response, SN=2348, FN=0, Flags=C, BI=100, SSID=FlyingNet
	2616 72.201570	Apple_10:6a:f5	Broadcast	802.11 164 Probe Request, SN=2565, FN=0, Flags=C, SSID=FlyingNet
	2617 72.202150	HitronTe_af:b1:98	Apple_10:6a:f5	802.11 411 Probe Response, SN=2350, FN=0, Flags=C, BI=100, SSID=FlyingNet
	2619 72.202807	HitronTe_af:b1:98	Apple_10:6a:f5	802.11 411 Probe Response, SN=2351, FN=0, Flags=C, BI=100, SSID=FlyingNet
	2621 72.203485	HitronTe_af:b1:98	Apple_10:6a:f5	802.11 411 Probe Response, SN=2352, FN=0, Flags=C, BI=100, SSID=FlyingNet
	2650 72.488998	Apple_10:6a:f5	Broadcast	802.11 164 Probe Request, SN=2585, FN=0, Flags=C, SSID=FlyingNet
	2653 72.502553	Apple_10:6a:f5	Broadcast	802.11 164 Probe Request, SN=2586, FN=0, Flags=C, SSID=FlyingNet
	2677 72.568343	Apple_10:6a:f5	Broadcast	802.11 164 Probe Request, SN=2589, FN=0, Flags=C, SSID=FlyingNet
	2678 72.578258	Apple_10:6a:f5	Broadcast	802.11 164 Probe Request, SN=2590, FN=0, Flags=C, SSID=FlyingNet
	1455 82.621343	7c:ea:6d:ff:a2:cc	Broadcast	802.11 71 Probe Request, SN=62, FN=0, Flags=C, SSID=Wildcard (Broadcast)
	1493 82.726818	7c:ea:6d:ff:a2:cc	Broadcast	802.11 71 Probe Request, SN=64, FN=0, Flags=C, SSID=Wildcard (Broadcast)
	1494 82.728646	7c:ea:6d:ff:a2:cc	Broadcast	802.11 218 Probe Request, SN=65, FN=0, Flags=C, SSID=Wildcard (Broadcast)
	3193 94.190080	Apple_28:b8:0c	Broadcast	802.11 152 Probe Request, SN=0, FN=0, Flags=, SSID=FlyingNet
	3194 94.192095	HitronTe_af:b1:98	Apple_28:b8:0c	802.11 411 Probe Response, SN=2474, FN=0, Flags=C, BI=100, SSID=FlyingNet
	3195 94.192751	HitronTe_af:b1:98	Apple_28:b8:0c	802.11 411 Probe Response, SN=2475, FN=0, Flags=C, BI=100, SSID=FlyingNet
(3196 94.193504	HitronTe_af:b1:98	Apple_28:b8:0c	802.11 411 Probe Response, SN=2476, FN=0, Flags=C, BI=100, SSID=FlyingNet

1.3 Pergunta 6: Processo de Associação

Numa rede WiFI estruturada, um host deve associar-se a um ponto de acesso antes de enviar dados. O processo de associação nas redes IEEE 802.11 é executada enviando a trama association request do host para o AP e a trama association response enviada pelo AP para o host, em resposta ao pedido de associação recebido. Este processo é antecedido por uma fase de autenticação. Para a sequência de tramas capturada:

12. Identifique uma sequência de tramas que corresponda a um processo de associação completo entre a STA e o AP, incluindo a fase de autenticação.

De seguida, é possível observar a nossa seleção de uma sequência correspondentes a um processo de associação completo entre a STA e o AP:

```
4692 83.663250
4693 83.663574

HitronTe_af:b1:98
402.11
70:ea:6d:ff:a2:cc (...802.11
70:ea:6d:ff:a2:cc
```

Vejamos a sequência mais detalhadamente:

- 1.º: É feita a autenticação da STA
- 2.º: AP aceita a autenticação da STA
- 3.º: Autenticação do AP
- 4.°: Trama ACK enviada pela STA
- 5.°: STA faz association request ao AP
- 6.°: AP envia trama ACK
- 7.°: AP envia association response
- 8.º: Como a trama continha erros, a STA não recebeu a trama ACK num determinado intervalo de tempo. Assim, o AP envia novamente um association response. (A trama é reenviada)
- 9.°: STA envia trama ACK

13. Efetue um diagrama que ilustre a sequência de todas as tramas trocadas no processo.

1.4 Pergunta 7: Transferência de Dados

O trace disponibilizado, para além de tramas de gestão da ligação de dados, inclui tramas de dados e de controlo da transferência desses mesmos dados.

14. Considere a trama de dados nº455. Sabendo que o campo Frame Control contido no cabeçalho das tramas 802.11 permite especificar a direccionalidade das tramas, o que pode concluir face à direccionalidade dessa trama, será local à WLAN?

A flag $To\ DS$ tem valor 0 e a flag $From\ DS$ tem valor 1, indicando que a trama recebida veio do sistema de distribuição, logo não é local à WLAN.

```
Antenna signal: -65dBm
Antenna noise: -87dBm
Antenna noise: -87dBm
Antenna: 0

> 882.11 radio information

* IEEE 802.11 QoS Data, Flags: p....F.C

Type:Subtype: QoS Data (0x0028)

* Frame Control Field: 0x8842

......00 = Version: 0

.....10.. = Type: Data frame (2)

1000 .... = Subtype: 8

* Flags: 0x42

......10 = DS status: Frame from DS to a STA via AP(To DS: 0 From DS: 1) (0x2)
```

15. Para a trama de dados nº455, transcreva os endereços MAC em uso, identificando qual o endereço MAC correspondente ao host sem fios (STA), ao AP e ao router de acesso ao sistema de distribuição?

Como podemos observar na seguinte figura, o endereço MAC correspondente ao wireless host é Apple_71:41:a1, ao AP é HitronTe_af:b1:98 e ao router de acesso ao sistema de distribuição é HitronTe_af:b1:98.

```
Receiver address: Apple_71:41:a1 (d8:a2:5e:71:41:a1)
Transmitter address: HitronTe_af:b1:98 (bc:14:01:af:b1:98)
Destination address: Apple_71:41:a1 (d8:a2:5e:71:41:a1)
Source address: HitronTe_af:b1:98 (bc:14:01:af:b1:98)
BSS Id: HitronTe_af:b1:98 (bc:14:01:af:b1:98)
STA address: Apple_71:41:a1 (d8:a2:5e:71:41:a1)
```

16. Como interpreta a trama nº457 face à sua direccionalidade e endereçamento ${\rm MAC}?$

A trama 457 tem a flag To DS com valor 1 e a flags From DS com valor 0, significando que a trama está a ser transmitida para fora da rede local.

```
Wireshark • Packet 457 • trace-wlan-tp4-2018b.pcap

.... 10... = Type: Data frame (2)
1000 .... = Subtype: 8
▼ Flags: 0x41

.... .01 = DS status: Frame from STA to DS via an AP (To DS: 1 From DS: 0) (0x1)

.... .0... = More Fragments: This is the last fragment

.... 0... = Retry: Frame is not being retransmitted

.... 0... = PwR MGT: STA will stay up

.0.... = More Data: No data buffered

.1..... = Protected flag: Data is protected

0....... = Order flag: Not strictly ordered
.000 0001 0011 1010 = Duration: 314 microseconds
Receiver address: HitronTe_af:b1:98 (bc:14:01:af:b1:98)
Transmitter address: Apple_71:41:a1 (d8:a2:5e:71:41:a1)
Destination address: HitronTe_af:b1:98 (bc:14:01:af:b1:98)
Source address: Apple_71:41:a1 (d8:a2:5e:71:41:a1)
BSS Id: HitronTe_af:b1:98 (bc:14:01:af:b1:98)
STA address: Apple_71:41:a1 (d8:a2:5e:71:41:a1)
```

Quanto ao endereço MAC, podemos concluir que o AP corresponde ao receiver adress, a STA corresponde transmitter adress e o router corresponde ao destination adress.

17. Que subtipo de tramas de controlo são transmitidas ao longo da transferência de dados acima mencionada? Tente explicar porque razão têm de existir (contrariamente ao que acontece numa rede Ethernet.)

Ao longo da transferência de dados acima mencionada é transmitida uma trama Acknowledgement.

Tal como já foi referido neste relatório, uma rede wireless possui uma probabilidade muito maior de ocorrência de erros quando comparada a uma rede com fios. Posto isto, a utilização de tramas Acknowledgement é importante para detetar se há ou não erros na transferência de dados. Uma STA, após receber uma trama, quando não se verificam erros, envia a quem a transmitiu uma trama acknowledgement. Caso isto não aconteça durante um certo intervalo de tempo, ou seja, caso se verifique a ocorrência de erros na trama, esta é reenviada. Assim, quando ocorre um erro, é a partir da resposta da trama acknowledgement que é decidido se a trama é ou não reenviada.

18. O uso de tramas Request To Send e Clear To Send, apesar de opcional, é comum para efetuar "pré-reserva" do acesso ao meio quando se pretende enviar tramas de dados, com o intuito de reduzir o número de colisões resultante maioritariamente de STAs escondidas. Para o exemplo acima, verifique se está a ser usada a opção RTS/CTS na troca de dados entre a STA e o AP/Router da WLAN, identificando a direccionalidade das tramas e os sistemas envolvidos.

A opção RTS/CTS na troca de dados entre a STA e o AP/Router da WLAN está a ser usada. As tramas 546 e 547 correspondem, respetivamente, a um request-to-send(RTS) e a um clear-to-send(CTS).

Como tanto a flag $To\ DS$ como a flag $From\ DS$ têm valor 0, é seguro dizermos que as redes estã a operar localmente.

```
Wireshark · Packet 546 · trace-wlan-tp4-2018b.pcap

Noise level (dBm): -87dBm
TSF timestamp: 41390927

> [Duration: 28µs]

IEEE 802.11 Request-to-send, Flags: ......C
Type/Subtype: Request-to-send (0x001b)

* Frame Control Field: 0xb400
......00 = Version: 0
......01 = Type: Control frame (1)
1011 ... = Subtype: 11

* Flags: 0x00
.....00 = DS status: Not leaving DS or network is operating in AD-HOC mode (To DS: 0 From DS: 0) (0x0)
```

```
Wireshark • Packet 547 • trace-wlan-tp4-2018b.pcap

Signal strength (dBm): -70dBm
Noise level (dBm): -87dBm
15F timestamp: 41399973

▶ [Duration: 28µs]

IEEE 802.11 Clear-to-send, Flags: ......C
Type/Subtype: Clear-to-send (0x001c)

▼ Frame Control Field: 0xc490

......00 = Version: 0

.....01.. = Type: Control frame (1)
1100 .... = Subtype: 12

▼ Flags: 0x00

.....00 = DS status: Not leaving DS or network is operating in AD-HOC mode (To DS: 0 From DS: 0) (0x0)
```

Os sistemas envolvidos são HitronTe_af:b1:98 e Apple_10:6a:f5.

Neste exemplo, a STA (HitronTe_af:b1:98) envia um RTS para o AP (Apple_10:6a:f5) e este depois envia um CTS para a STA.

```
546 21.588982 HitronTe_af:b1:98 (... Apple_10:6a:f5 (64:... 802.11 45 Request-to-send, Flags=......C 547 21.588987 HitronTe_af:b1:98 (... 802.11 39 Clear-to-send, Flags=......C
```

2 Conclusão

Com este projeto foi-nos possível aprofundar os nosso conhecimento sobre redes *wireless*. Para além disso, vimos ainda com mais detalhe o protocolo IEEE 802.11.

Pudemos ainda aprender que existem diversos tipos de tramas, tendo as tramas de controlo um papel fundamental na deteção de erros destas redes, uma vez que estas são muito mais propícias à ocorrência de colisões e erros quando comparadas a redes com fios.