EXAMEN PARCIAL

Curso: Analisis Numerico II

Profesor(a): Irla Mantilla

Alumno: Moreno Vera, Felipe Adrian

Codigo de Alumno: 20120354I

Codigo de curso: CM432

Ciclo: 2015-II

Problema 3:

Dado el problema de valor inicial, resuélvala numéricamente con el método de Runge-Kutta de orden 2 y con el método de Euler, luego compare los resultados obtenidos con su solución exacta.

Problema de valor inicial asociado a la EDO.

$$\frac{dp}{dt} = \frac{(ap - bp^2)}{r} \quad \text{Donde} \quad dp \, ver \, dt = \frac{(ap - bp^2)}{r}$$
donde r>1.

$$\frac{\text{Sol:}}{\frac{dp}{dt} = \frac{\left(3p - p^2\right)}{r}}$$

Solución Numérica:

	<u>r</u> = 1.5				ŗ = 2				Ĭ = 3			
valores <u>ţ</u>	Metodo Euler	Metodo RungeKutta		Metodo Euler		<u>Metodo RungeKutta</u> <mark>Metodo Euler</mark>			Metodo RungeKutta			
(1	. 1	k1	k2	1	1	k1	k2	1	1	k1	k2
1	2.3333	2.1852	1.33333	0.18701	2	2	1	1	1.6667	1.7037	0.66667	0.73617
2	3.3704	2.3603	0.18701	1.00657	3	2.5	1	0.625	2.4074	2.2996	0.73617	0.5369
3	2.5382	2.4518	1.00657	0.89599	3	2.7148	0.625	0.38708	2.8829	2.6453	0.5369	0.31274
4	3.3196	2.5117	0.89599	0.81768	3	2.8293	0.38708	0.24142	2.9954	2.8224	0.31274	0.16711
5	2.6123	2.555	0.81768	0.75798	3	2.8957	0.24142	0.15097	3	2.9112	0.16711	0.0862

Con el programa del metodo de euler con datos por parametro:

% -----

fx es la funcion, a es el inicio, b es el final, y0, valor inicial, n el numero de pasos.

El programa de runge Kutta:

%_-----

donde fx es la funcion, a es el inicio, b es el final, y0, valor inicial , n el numero de pasos.

Ejemplo de la funcion:

endfunction

$$f=@(t,y)(1/1.5)*(3*y-y^2);$$

Solución Analítica:

$$\frac{dp}{dt} = \frac{(ap - bp^2)}{r}$$
, pasamos a resolver esta EDO por el método de variable separables:
$$\frac{dp}{(ap - bp^2)} = \frac{dt}{r}$$
 se transforma en:
$$(ap - bp^2) = \frac{a^2}{4b} - \left(\sqrt{b} \cdot p - \frac{a}{2\sqrt{b}}\right)^2$$

ahora haciendo: $\left(\sqrt{b} \cdot p - \frac{a}{2\sqrt{b}}\right) = w$, tenemos $\sqrt{b} dp = dw$, entonces tenemos la

integral:

$$\frac{dp}{\left(\frac{a^2}{4b} - \left(\sqrt{b} \cdot p - \frac{a}{2\sqrt{b}}\right)^2\right)} = \frac{dt}{r} \quad \text{es igual} \quad \frac{dw}{\sqrt{b}\left(\frac{a^2}{4b} - w^2\right)} = \frac{dt}{r} \quad \text{, integramos:}$$

$$\int \frac{dw}{\sqrt{b}\left(\frac{a^2}{4b} - w^2\right)} = \int \frac{dt}{r} \quad \text{esto es igual a:} \quad \frac{2\sqrt{b}\tanh^{-1}\left(\frac{2\sqrt{b}w}{a}\right)}{a} = \frac{t}{r}$$

reemplazando w en la ecuación se obtiene:

$$\frac{\log(p) - \log(a - bp)}{a} = \frac{t}{r} + M \text{, reemplazando a y b tenemos: } \frac{\log(p) - \log(3 - p)}{a} = \frac{t}{r} + M$$

$$\log\left(\frac{p}{3-p}\right) = \frac{at}{r} + K \text{ , usando euler: } \frac{p}{3-p} = e^{\frac{at}{r} + K} = e^{\frac{at}{r}} e^{K} \text{ tenemos: }$$

$$p = (3-p)e^{\frac{at}{r}} e^{K} \text{ , } p = \left(3e^{\frac{at}{r}} e^{K} - pe^{\frac{at}{r}} e^{K}\right) \text{ , } p + pe^{\frac{at}{r}} e^{K} = \left(3e^{\frac{at}{r}} e^{K}\right)$$

$$p\left(1+e^{\frac{at}{r}} e^{K}\right) = \left(3e^{\frac{at}{r}} e^{K}\right) \text{ , por lo tanto tenemos que p es : }$$

$$p(t) = \frac{\left(3e^{\frac{at}{r}} e^{K}\right)}{\left(1+e^{\frac{at}{r}} e^{K}\right)} \text{ , evaluando en p(0) = 1, con a = 3 y b = 1 con r arbitrario tenemos: }$$

$$p(0) = \frac{\left(3e^{K}\right)}{\left(1+e^{K}\right)} = 1 \text{ entonces tenemos que: } \left(3e^{K}\right) = \left(1+e^{K}\right) \text{ y finalmente: } K = \log\left(\frac{1}{2}\right) \text{ , }$$

$$por lo tanto la solución analítica es reemplazando a y b:$$

$$p(t) = \frac{\left(3e^{\frac{3t}{r}}\right)}{\left(2+e^{\frac{3t}{r}}\right)} \text{ , ahora evaluando p(t) para } 0 \le t \le 5 \text{ y } r = 1.5, 2, 3$$

	p(t)						
valores ţ	<u>r=1.5</u>	<u>r=2</u>	2 <u>r</u> =3	}			
0		1	1	1			
1		2.361	2.0743	1.7284			
2		2.894	2.7283	2.361			
3		2.9852	2.9348	2.7283			
4		2.998	2.9852	2.894			
5		2.9997	2.9967	2.9601			

Analizando el error se tiene:

	r=1.5		r=2	<u>r</u> =3			
valores de ţ	ores de <u>t</u> error <u>euler</u>		error <u>euler</u>	error RK	error <u>euler</u>	error RK	
0	0	0	0	0	0	0	
1	0.0117323168	0.074459975	0.0358193125	0.035819313	0.0356977551	0.01429067	
2	0.1646164478	0.184416033	0.0995858227	0.083678481	0.0196526895	0.02600593	
3	0.149738711	0.178681495	0.0222161646	0.074962519	0.0566653227	0.03042187	
4	0.1072715143	0.162208139	0.0049577918	0.052224307	0.0350380097	0.02474084	
5	0.129146248	0.148248158	0.0011012113	0.033703741	0.0134792743	0.01651971	

se observa que la aproximación con el método de euler con pasos de tamaño de 1 el error es menor que usando el método de Runge-Kutta de orden 2 (o también llamado Heun).