Elektronika pro informační technologie (IEL), ak. r. 2024/2025

Zadání laboratoře č. 3

"VA CHARAKTERISTIKA A PRACOVNÍ BOD SOUČÁSTKY"

Cíle: Odměřit Volt-Ampérovou (VA) charakteristiku součástky a určit pracovní bod součástky v obvodu.

1 Motivace aneb "Proč tomu věnovat čas a jaké kompetence lze získat ?"

Na základně experimentů budete schopni stanovit VA charakteristiku součástek, porozumět jejímu významu a prakticky využít VA charakteristiku k určení pracovního bodu součástky v obvodu.

Zapamatujte si:

- VA CHARAKTERISTIKA součástky vyjadřuje závislost (vztah) mezi napětím na součástce a proudem procházejícím součástkou; tato závislost může být lineární, ale také nelineární.
- PRACOVNÍ BOD součástky je bodem VA charakteristiky, který odpovídá pracovním podmínkám součástky (proud, napětí) v konkrétním obvodu¹.
- (2) Výstup a způsob jeho hodnocení aneb "Co se ode mne očekává a co za to ?"

Za i) provedení měření nezbytných pro stanovení VA charakteristiky součástek, záznam výsledků měření formou tabulky, ii) vynesení závislostí naměřených hodnot do grafu a iii) grafické stanovení pracovního bodu zadané součástky v obvodu lze získat až **3 body**.

(3) Prostředky aneb "Co je k dispozici ?"

Zdroj ss. napětí s omezením proudu, nepájivé pole, krabička s prvky pro konstrukci obvodů (propojovací vodiče, součástky – potenciometr pro regulaci hodnoty napětí, rezistor pro omezení proudu obvodem, nelineární součástka), měřicí přístroje (2x multimetr).

4 Základní schéma(ta) aneb "Z čeho se bude vycházet ?"

Obrázek 1: a) obvod pro regulaci velikosti napětí U pomocí potenciometru R_{pot} ; obvod s lineární součástkou (rezistor, R_S) a nelineární součástkou (dioda, R_N): b) základní schéma a veličiny, c) rozšíření o měřicí přístroje.

 $^{^1}$ potřebné pracovní podmínky lze zajistit např. omezením proudu procházejícího součástkou pomocí rezistoru zapojeného v sérii s ní

- (5) Postup samostatných činností aneb "Co dělat a na co si dát pozor ?"
- **Experiment 1:** V nepájivém poli zapojte obvod dle Obr. $1a^2$, poté k obvodu připojte voltmetr³ tak, aby jím bylo možné měřit napětí U_0 ; otáčejte knoflíkem potenciometru a sledujte vliv polohy knoflíku na U_0 . Obvod nerozpojujte využijete jej při dalším experimentu.
- **Experiment 2:** i) Zapojte obvod dle Obr. 1b a rozšiřte jej dle Obr. 1c. Spojením obvodů z Obr. 1a,c vytvořte obvod pro odměření VA charakteristiky nelineární součástky R_N^4 .
 - ii) Pomocí potenciometru krokujte hodnotu U_0 (viz např. tab. níže). Pro každou hodnotu U_0 do tabulky zapište a poté do grafu vyneste závislost mezi U_N a I_N .

U_0	0	0,1	0,2	0,4	0,6	0,8	1	3	5	[1/]
U_N										[[V]
I_N										$[\mu A]$

- **Experiment 3:** i) Pro vyučujícím zadanou hodnotu U_0 určete pracovní bod P_N nelineární součástky R_N v obvodu z Obr. 1b,c; při určení postupujte dle ii) a/nebo iii) níže.
 - ii) Odměřte závislost napětí $U_S + U_N$ na I_N (tj., VA charakteristiku série $R_S + R_N$). Z U_0 na ose U vztyčte kolmici; jejím průnikem s VA charakteristikou pro $R_S + R_N$ je bod P_{SN} . Z P_{SN} veďte rovnoběžku s osou U a vyznačte její průnik s osou I (bod I_P) a s VA charakteristikou pro R_N (bod P_N), odečtěte U_P .
 - iii) Vypočítejte či odměřte hodnotu proudu nakrátko (I_K) zdroje U_0 s vnitřním odporem R_S^5 . Bod P_N je průnik úsečky I_KU_0 a VA charakteristiky pro R_N .

- Obrázek 2: Ilustrace k pracovnímu bodu nelineární součástky z Obr. 1b,c: U_0 napětí naprázdno napájecího zdroje, I_K proud nakrátko zdroje U_0 s vnitřním odporem R_S , P_N pracovní bod nelineární součástky R_N , P_S p.b. lineární součástky R_S , P_{SN} p.b. série R_S , R_N (napájecího zdroje); I_P proud procházející součástkami R_S a R_N , $U_P = U_N$ napětí na nelineární součástce R_N v pracovním bodě P_N ; $(U_0 U_N)$ napětí na lineární součástce R_S v prac. bodě P_S .
- 6 Shrnutí, vyhodnocení a interpretace výsledků aneb "Jaká jsou zjištění ?"

Experimentálně jste mohli ověřit, že i) ne každá součástka má lineární VA charakteristiku a ii) stav každé součástky je, v daném čase, dán jejím pracovním bodem. Špatně nastavený pracovní bod může způsobit nevratné poškození součástky (např. průraz svítivé diody) a následné selhání služeb (např. signalizace stavu) poskytovaných nadřazeným systémem.

(7) K zamyšlení/zapamatování aneb "Něco do dalšího studia a života."

V praxi lze znalost tvaru VA charakteristiky, hodnoty U_0 a požadovaného pracovního bodu (P_N) nelineární součástky (R_N) využít např. ke stanovení hodnoty odporu rezistoru R_S zapojeného v sérii s R_N . Průnikem přímky U_0P_N s osou I vznikne bod I_K (viz Obr. 2b); $R_S = U_0/I_K$. Alternativně (viz Obr. 2a): $R_S = U_S/I_S = (U_0 - U_N)/I_P$.

 $^{^2}$ pozn.: potenciometr R_{pot} má tři vývody: dva vývody z krajů odporové dráhy, třetí vývod z kontaktu pohyblivého po odporové dráze (tzv. jezdec) např. s pomocí otočného knoflíku či táhla

³multimetr v režimu voltmetru

⁴přemístěním voltmetru lze odměřit také VA charakteristiku lineární součástky R_S , popř. sériového zapojení R_S , R_N proud při nahrazení R_N z Obr. 1b,c vodičem; $I_K = U_0/R_S$