Project Two Report

Siyuan Wu

Submission name on Kaggle: Siyuan(Leon) Wu

Best accuracy: 70.9%

Part 1
Layer Structure Table

Layer No.	Layer Type	Kernel size	Input Output	Input Output
,	, ,,		Dimension	Channels
1	Conv2d	3	32 32	3 64
2	Relu	-	32 32	-
3	Batchnorm	-	32 32	-
4	Conv2d	3	32 32	64 64
5	Relu	-	32 32	-
6	Batchnorm	-	32 32	-
7	Maxpool2d	2	32 16	-
8	Conv2d	3	16 16	64 128
9	Relu	-	16 16	-
10	Batchnorm	-	16 16	-
11	Conv2d	3	16 16	128 128
12	Relu	-	16 16	-
13	Batchnorm	-	16 16	-
14	Maxpool2d	2	16 8	-
15	Conv2d	3	8 8	128 256
16	Relu	-	8 8	-
17	Batchnorm	-	8 8	-
18	Conv2d	3	8 8	256 512
19	Relu	-	8 8	-
20	Batchnorm	-	8 8	-
21	Linear	-	32768 2048	-
22	Batchnorm1D	-	2048 2048	-
23	Relu	-	2048 2048	-
24	Linear	-	2048 2048	-
25	Relu	-	2048 2048	-
26	Linear	-	2048 100	-

Structure Explain

Part of the structure is referenced from the VGG16 network model, but many modifications have been made to make the net tailored for picture size 32-by-32. First,

the number of weight layers is reduced to 9 from VGG16's 16 weight layers. This modification prevents the net from overfitting and reduces the training speed. Then, a 2d batch normalizing layer is added after the RELU layer of each convolution layer. Pooling layers are also reduced to 2 to avoid too much information loss. Moreover, the fully connected layer decrease from VGG's 4 to 3, and the 1d batch normalizing layer is also used after a fully connected layer.

Training and validation accuracy plot

Stage One: During this stage, I was trying to optimize the structure and parameters of the network, therefore, the number of epochs is limited to 30.

Stage Two: After the structure and parameters of the network are optimized, I try to use the data that augmented in different ways to fortify the net, and for each method, there will be 100 epochs. There were 400 epochs in total.

Ablation Study

Adding data normalization: accuracy increase from 23 % to 27%

Adding three more convolution layers and change all convolution layers' kernel size to 3: accuracy increase from 27% to 33%

Increase filter size for all convolution layer, and the maximum filter in convolution layers become 512: accuracy increase from 33% to 37%

Increase filter size for all convolution layer once again, and maximum filter increase to 1024. Batch normalizing layer added after each convolution layer: accuracy increase from 37% to 49%

One additional linear layer with 1d batch normalizing was added: accuracy increase from 49% to 57%

Adapting VGG16 structure, with two convolution layers followed by a pooling layer. 6 convolution layers, 3 pooling layers, and 3 linear layers in total is used: accuracy increase from 57% to 62%

Removing the last pooling layer: accuracy increase from 62% to 64%

Changing the last convolution layer's filter size to 512: accuracy increase from 64% to 66%

Training the net with different data augmentation methods. The net will be trained with all four kind of transformed data(random vertical flip, random horizon flip, random rotation, grayscale) one by one for 100 epochs each: accuracy increase from 66% to 71%

Part 2

Model and Hyperparameters

For the second part, I used resnet50 as my pretrained net and my data transformation include random resize crop of 256, random horizon flip and normalization. The net trains with learning rate of 0.0005 and a batch size of 8. First the net is train only with the last layer. The training accuracy and test accuracy with 50 epochs are below.

Training accuracy for RESNET_LAST_ONLY = True

```
TRAINING Epoch 50/50 Loss 0.2405 Accuracy 0.6440 Finished Training
```

Test accuracy for RESNET_LAST_ONLY = True

```
[29] test(model, criterion)

Test Loss: 0.2888 Test Accuracy 0.4207
```

The second net is a fully trained net. The training accuracy and test accuracy with 50 epochs are below.

Training accuracy for RESNET_LAST_ONLY = False

```
TRAINING Epoch 50/50 Loss 0.0573 Accuracy 0.9037
Finished Training
```

Test accuracy for RESNET_LAST_ONLY = False

```
test(model, criterion)

Test Loss: 0.1851 Test Accuracy 0.6423
```

Reference

[1] VGG16 - Convolutional Network for Classification and Detection. (2018, November 21). Retrieved October 11, 2020, from https://neurohive.io/en/popular-networks/vgg16/