4.9. Prove that we may assume that g and its first two derivatives are bounded in the proof of the Itô formula (Theorem 4.1.2) by proceeding as follows: For fixed $t \geq 0$ and $n = 1, 2, \ldots$ choose g_n as in the statement such that $g_n(s,x) = g(s,x)$ for all $s \leq t$ and all $|x| \leq n$. Suppose we have proved that (4.1.9) holds for each g_n . Define the stochastic time

$$\tau_n = \tau_n(\omega) = \inf\{s > 0; |X_s(\omega)| \ge n\}$$

 $(\tau_n$ is called a stopping time (See Chapter 7)) and prove that

$$\left(\int\limits_{0}^{t}v\frac{\partial g_{n}}{\partial x}(s,X_{s})\mathcal{X}_{s\leq\tau_{n}}dB_{s}:=\right)$$

$$\int\limits_{0}^{t\wedge\tau_{n}}v\frac{\partial g_{n}}{\partial x}(s,X_{s})dB_{s}=\int\limits_{0}^{t\wedge\tau_{n}}v\frac{\partial g}{\partial x}(s,X_{s})dB_{s}$$

for each n. This gives that

$$\begin{split} &g(t \wedge \tau_n, X_{t \wedge \tau_n}) = g(0, X_0) \\ &+ \int\limits_0^{t \wedge \tau_n} \left(\frac{\partial g}{\partial s} + u \frac{\partial g}{\partial x} + \frac{1}{2} v^2 \frac{\partial^2 g}{\partial x^2} \right) \! ds + \int\limits_0^{t \wedge \tau_n} \! v \frac{\partial g}{\partial x} dB_s \end{split}$$

and since

$$P[\tau_n > t] \to 1$$
 as $n \to \infty$

we can conclude that (4.1.9) holds (a.s.) for g.

$$g(t, X_t) = g(0, X_0) + \int_0^t \left(\frac{\partial g}{\partial s}(s, X_s) + u_s \frac{\partial g}{\partial x}(s, X_s) + \frac{1}{2}v_s^2 \cdot \frac{\partial^2 g}{\partial x^2}(s, X_s) \right) ds$$
$$+ \int_0^t v_s \cdot \frac{\partial g}{\partial x}(s, X_s) dB_s \quad \text{where } u_s = u(s, \omega), \, v_s = v(s, \omega) \,. \tag{4.1.9}$$

Let ± 70 be fixed and $g_n(s,x) = g(s,x) \in C^2([0,\infty)\times\mathbb{R})$ for all $s \le t$ and all $|x| \le n$.

Suppose that (4.1.9) holds for each on. Define

Proof. Since (4.1.9) holds for each gr,

$$a_{y}(4, X_{t}) = a_{y}(0, X_{0}) + \int_{0}^{t} \left(\frac{\partial a_{y}(s, X_{0}) + u_{s} \partial a_{y}(s, X_{0})}{\partial s} + \int_{0}^{t} a_{s} \partial a_{y}(s, X_{0}) ds \right) ds$$

$$+ \int_{0}^{t} a_{s} \partial a_{y}(s, X_{0}) ds$$

Replacing J by $+ 1 \, \text{Tn}$, we have that $5 \leqslant + 1 \, \text{tn}$ and $|X_t| \leqslant n$. Hence, $g_n : g_n$ and the doin holds.

Claim:
$$P[T_n > +] \longrightarrow 1$$
 as $n \rightarrow \infty$

Proof. As
$$n \rightarrow \infty$$
, lnf >> 0: $|X_S| > \infty$ = ∞ = t_n . Then
$$P[\infty > +] = 1$$

Since texo.

Conducion. Hence,

And (4.1.9.) holds a.s. for g.