

PROF. VALMIR MACARIO

O Histograma de uma imagem provê uma descrição global da aparência da imagem em termos de distribuição de tons de cores presentes numa imagem.

Fonte: Blog eMania

O histograma de uma imagem em tons de cinza é uma função
 H(k) que produz o número de ocorrências de cada nível de cinza
 na imagem.

•
$$0 \le k \le L - 1$$

 L é o número de níveis de cinza da imagem

- Histograma Normalizado:
- O histograma é normalizado em [0,1] quando se divide
 H(k) pelo número n = N x M de pixels da imagem
- Ele representa a distribuição de probabilidade dos valores dos pixels.
- Cada elemento do conjunto é calculado por $P_r(r_k) = \frac{n_k}{n}$

$$P_r(r_k) = \frac{n_k}{n}$$

- k= 0,1,....L-1, e L é o número de níveis de cinza da imagem.g
- n = número total de pixels na imagem
- n_k = número de pixels cujo nível de cinza corresponde a k.
- $P_r(r_k)$ = Probabilidade do K-ésimo nível de cinza.

Seja uma imagem de 128x128 pixels cujas quantidades de pixels em cada nível de cinza são dadas na tabela abaixo: (8 Níveis de cinza)

n = 128x128 = 16.384 pixels

Nível de Cinza (r _k)	n _k	$P_r(r_k)=n_k/n$
0	1120	0,068
1/7	3214	0,196
2/7	4850	0,296
3/7	3425	0,209
4/7	1995	0,122
5/7	784	0,048
6/7	541	0,033
1	455	0,028

$$Pr(1/7) = 3214/16.384$$

= 0,196

Contraste: nível de separação entre as cores

Imagem de Baixo Contraste

Imagem de Alto Contraste

HISTOGRAMA OPERAÇÕES

Equalização
Aproximação para um
histograma uniforme

HISTOGRAMA OPERAÇÕES

Equalização:

- Torna o pixel mais escuro mais próximo do preto e o mais claro mais próximo do branco
- Distribui o restante das cores mais uniformemente nesse intervalo

EQUALIZAÇÃO

- Dada uma Imagem de n x m Pixels e "g" níveis de cinza.
- No. Ideal de pixels em cada nível => I = (n x m)/g
- A equalização pode ser obtida fazendo:

$$q = \max \left\{ 0, ARRED.(\frac{\sum_{j=0}^{k} n_j}{I}) - 1 \right\} \quad 0 \le k \le g$$

Onde: g = níveis de cinza da Imagem Original q = níveis de cinza da Imagem Equalizada

EQUALIZAÇÃO

- $n \times m = 30 \text{ pixels} \rightarrow g = 10 \text{ níveis de cinza}$
- I = 30/10 = 3

$g n \Sigma n o$	q
------------------	---

0	1	1	0
1	9	10	2
2	8	18	5
3	6	24	7
4	1	25	7
5	1	26	8
6	1	27	8
7	1	28	8
8	2	30	9
9	0	30	9

HISTOGRAMA EQUALIZAÇÃO - EXEMPLOS

HISTOGRAMA EQUALIZAÇÃO - EXEMPLOS

a) Imagem Original

b) Histograma

a) Histograma acumulada da imagem originalb) Imagem equalizada

HISTOGRAMA EQUALIZAÇÃO - EXEMPLOS

TÉCNICAS DE MODIFICAÇÃO DE HISTOGRAMA

 São técnicas utilizadas para processar a imagem através da modificação do histograma

- Exemplos:
 - Negativo
 - Brilho
 - Expansão
 - Compressão
 - Limiarização (Binarização)

NEGATIVO

- T[f(x,y)] =g(x,y) = W - f(x,y)
- g(x,y) = imagem de saída
- f(x,y) = imagem de entrada
- W = limite de tons da imagem

NEGATIVO

NEGATIVO

Efeito da imagem negativa

BRILHO

•
$$T[f(x,y)] =$$

 $g(x,y) = f(x,y)+Brilho$

- g(x,y) = imagem de saída
- f(x,y) = imagem de entrada
- Brilho = modificação da luminância da imagem

BRILHO

brilho=-50

brilho =0

CONTRASTE

•
$$T[f(x,y)] =$$

 $g(x,y) = C*f(x,y)$

- g(x,y) = imagem de saída
- f (x,y) = imagem de entrada
- C = modificação do contraste da imagem

CONTRASTE

Expansão ou Compressão do histograma

Alteração da imagem destino a partir de uma função genérica

EXPANSÃO DO HISTOGRAMA

EXPANSÃO DO HISTOGRAMA

Efeito da Expansão de Histogramas

COMPRESSÃO DO HISTOGRAMA

COMPRESSÃO DO HISTOGRAMA

Efeito da Compressão de Histogramas

LIMIARIZAÇÃO

PROF. VALMIR MACARIO

LIMIARIZAÇÃO

- Quando a imagem é adquirida em níveis de cinza, muitas vezes e necessário utilizar a técnica da limiarização para reduzir a quantidade de dados a serem tratados, eliminar ruídos e facilitar e extração de componentes existentes no documento
- A limiarização é também conhecida como binarização porque, a partir de um valor limiar, transforma os dados em níveis de cinza da imagem para preto e branco. Basicamente os pixels com valor menor que o limiar são transformados em pretos e os pixels com valor maior ou igual ao limiar são transformados em brancos.

Conversão de uma imagem para dois tons a partir de um dado ponto de corte (limiar)

LIMIARIZAÇÃO (THRESHOLDING)

Exemplo de binarização: (a) Imagem em tons de cinza, (b) Imagem binária

- Importância da Limiarização:
 - Identificação dos objetos
 - Identificação dos espaços
 - Redução do tamanho da imagem
 - Aumento da velocidade de processamento
 - Desafio de encontrar o limiar adequado ao objetivo do processamento.

Processamento de cheques

Todo background é desnecessário

Processamento de cheques

LIMIARIZAÇÃO (THRESHOLDING)

Modos de se escolher o Threshold:

- 1. Manual
 - Inspeção visual do histograma (Algoritmo de recorte)
 - Tentativa e erro
- 2. Automática
 - Método Iterativo
 - Vários outros...

MANUAL

Algoritmo de Recorte

 Uso em imagens em que o objeto a ser segmentado apresenta uma tonalidade bem diferente do fundo da imagem

A limiarização converte uma imagem de entrada:

f(x, y) de N níveis de cinza

em uma imagem g(x,y), chamada de imagem limiarizada (ou binarizada), com número de níveis de cinza menor do que N.

No limite, g(x, y), terá só dois níveis de cinza, como na equação:

Influência do valor do limiar sobre a qualidade da limiarização.(As imagens (c) e (d) são posterizadas nesta representação).

Quando a imagem tem mais de dois objetos com cinzas diferentes em um fundo mais escuro, pode ser usada a técnica de limiarização multinível (*multilevel thresholding*).

Imagem de 8 bits/pixel monocromática (tons de cinza)

Há casos em que torna-se necessário o uso de interpolação

INSPENÇÃO VISUAL **DO HISTOGRAMA**

Algoritmo de Recorte

Limiarização multinível

Imagem de 8 bits/pixel monocromática (tons de cinza)

TENTATIVA E ERRO

- Aplicado em processos interativos.
- O usuário testa diferentes níveis de Threshold até produzir um resultado satisfatório de acordo com o observador

AUTOMÁTICA

AUTOMÁTICA

(Thresholding) baseada no histograma

O método mais simples (e mais caro computacionalmente) de calcular automaticamente o *threshold* é o método iterativo.

MÉTODO ITERATIVO

- 1. Selecionar um valor estimado para T_i . inicial (Ponto intermediário entre os valores mínimos e máximos de intensidade da imagem)
- 2. Segmente imagem usando T_i :
 - Isto é, divida-a em dois grupos:
 - (G1) formado com os pixeis cujos valores são > T e
 - (G2) com os pixeis com tons < T.

MÉTODO ITERATIVO

- 3. Calcule a intensidade média dos grupos: μ₁ e μ₂
- 4. Calcule o novo threshold: $T_{i+1} = \frac{1}{2} (\mu_1 + \mu_2)$

5. Repita os passos 2 até 4 até que T_{i+1} – T_i < (parâmetro pré-definido)

TIPOS DE ALGORITMOS DE LIMIARIZAÇÃO

TIPOS DE LIMIARIZAÇÃO

Global

- Um único valor de corte é definido para toda a imagem
 - Vantagem: velocidade
 - Desvantagem: qualidade

Local

- Diferentes pontos de corte são definidos para diferentes regiões da imagem
 - Vantagem: qualidade
 - Desvantagem: velocidade

TIPOS DE LIMIARIZAÇÃO

c)LOCAL

ALGORITMOS DE LIMIARIZAÇÃO

PROF. VALMIR MACÁRIO

CATEGORIAS

Baseados em Histograma

O formato do histograma é analisado

Baseados em Agrupamento

São formados dois grupos, um para objeto e outro para fundo da imagem.

Baseados em Entropia

A entropia do fundo e dos objetos da imagem são analisados.

Baseados em Atributos

Busca uma medida de similaridade entre o tom de cinza e a imagem binária

Métodos Espaciais

Utiliza distribuições de alta probabilidade e correlação entre os pixels

Métodos Locais

Adapta o valor do limiar de cada pixel de acordo com características locais da imagem.

ATRIBUTOS DA IMAGEM

- A entropia foi originalmente introduzida por Boltzmann como uma medida macroscópica da organização de sistemas termodinâmicos
- Considerando a imagem como resultado de um processo aleatório, mede-se a probabilidade de encontrar um pixel de uma determinada intensidade na imagem

- O menor valor para a entropia é zero, isso ocorre quando todos os pixels são de uma mesma intensidade
- A máxima entropia ocorre quando uma imagem contém a mesma quantidade de pixels para todas as intensidades (ruído branco), isto é, todas as intensidades têm a mesma probabilidade de ocorrerem

$$H = -\sum_{i=1}^{G} p_i \log p_i, \qquad \sum_{i=1}^{G} p_i = 1, \qquad p_i = \frac{g_i}{N}$$

- g_i é a quantidade de pixels com intensidade i.
- G é o número de níveis de cinza na imagem (ou no canal).
- p_i representa a probabilidade do nível de cinza i ser encontrado na imagem.
- N é a quantidade total de pixels da imagem (altura x largura).
- H é a entropia da imagem.

CONTRASTE

O contraste é uma medida que se refere a diferenças locais de intensidades na imagem

Essas diferenças são observadas na vizinhança de cada pixel

Se a média de intensidades da vizinhança for próxima da intensidade do pixel, conclui-se que o local possui baixo contraste, caso contrário, alto contraste

- A média, juntamente com a variância, caracteriza a iluminação durante a aquisição da imagem
- A variância de uma imagem indica a variação das intensidades de cinza em relação à sua média, caracterizando o contraste da imagem

$$\overline{x} = \frac{\sum_{i=1}^{L} \sum_{j=1}^{C} g_{ij}}{L \times C}$$

$$\sigma^2 = \frac{\sum_{i=1}^{L} \sum_{j=1}^{C} (g_{ij} - \overline{x})^2}{L \times C}$$

L representa o número de linhas da imagem.

C representa o número de colunas da imagem.

 g_{ij} representa a intensidade presente na coordenada (i, j) da imagem.

 \overline{x} como a intensidade média da imagem.

 σ^2 como a variância da imagem.

$$\sigma^2 = 0$$
 $\sigma \approx 0$

$$\sigma^2 = 16256$$
$$\sigma \approx 127,5$$

$$\sigma^2 = 16256$$
$$\sigma \approx 127,5$$

$$\sigma^2 = 5440$$
$$\sigma \approx 73,75$$

$$\overline{x} = \frac{\sum_{i=1}^{L} \sum_{j=1}^{C} g_{ij}}{L \times C}$$

$$\sigma^2 = \frac{\sum_{i=1}^{L} \sum_{j=1}^{C} (g_{ij} - \overline{x})^2}{L \times C}$$

L representa o número de linhas da imagem.

C representa o número de colunas da imagem.

 g_{ij} representa a intensidade presente na coordenada (i, j) da imagem.

 \overline{x} como a intensidade média da imagem.

 σ^2 como a variância da imagem.

ALGORITMOS DE LIMIRIZAÇÃO

- Idéia bastante simples: encontrar o limiar que minimiza a variância ponderada intra classe
 - Isso equivale a maximizar a variância entre classes
- Tudo se baseia em cálculos no vetor 1D do histograma da imagem.
- Bons resultados quando o número de pixels em cada classe são próximos.

Para cada limiar t (0 a 255):

- A. Calcular as variâncias intra classes:
 - probabilidade de ser do grupo 1; Probabilidade de ser do grupo 2
 - 2. média do grupo 1; média do grupo 2
 - Calcular variância do grupo 1; calcular variância do grupo 2
 - 4. Calcular a soma ponderada das variâncias dos grupos
- B. Lembrar que t resulta no valor mínimo.

Probabilidade

$$q_1(t) = \sum_{i=0}^t p(i)$$

$$q_2(t) = \sum_{i=t+1}^{\max} p(i)$$

Variância do grupo

$$\sigma_1^2(t) = \sum_{i=0}^t [i - \mu_1(t)]^2 p(i) / q_1(t)$$

$$\sigma_2^2(t) = \sum_{i=t+1}^{\max} [i - \mu_2(t)]^2 p(i) / q_2(t)$$

Média do grupo

$$\mu_1(t) = \sum_{i=0}^t i \ p(i) / q_1(t)$$

$$\mu_2(t) = \sum_{i=t+1}^{\max} i \ p(i) / q_2(t)$$

Soma Ponderada das Variâncias

$$\sigma_w^2(t) = q_1(t)\sigma_1^2(t) + q_2(t)\sigma_2^2(t)$$

KITTLER

- Considerado o melhor algoritmo de binarização para imagens com texto
- Minimiza um erro de densidade de gaussianas

Para cada t (0 a 255):

$$t_{\delta timo} = argmin\{1 + 2[p_1(t)log(\sigma_1(t)) + p_2(T)log(\sigma_2(t))] - 2[p_1(t)log(p_1(t)) + p_2(T)log(p_2(t))]\}$$

$$p_1(t) = \sum_{i=0}^{t} p(i)$$
 $p_2(t) = \sum_{i=t+1}^{max} p(i)$

NIBLACK

- Limiarização Local
- Imagem dividida em janelas quadradas (NxN) e cada janela é avaliada em separado
- Calcula-se média (u) e desvio padrão (σ) de cada janela
- O ponto de corte (t) é definido por:

```
t = u + bias^* \sigma
```

bias = peso atribuído

Não há definição de valor específico para esse bias

NIBLACK

Exemplo:

Janela = 31; Bias = -0.8

SAUVOLA

- Limiarização Local
- Melhoramento do algoritmo Niblack para imagens com pouca iluminação
- Imagem dividida em janelas quadradas (NxN) e cada janela é avaliada em separado
- Calcula-se média (u) e desvio padrão (σ) de cada janela
- O ponto de corte (t) é definido por:

$$th = m + \left\{1 + bias\left[\frac{u}{R} - 1\right]\right\}$$

bias = peso atribuído

R = intervalo dinâmico de u

Não há definição de valor específico para esse bias e R

KAPUR

- Baseado em Entropia
- Dado um ponto de corte t, calcula a entropia dos tons abaixo (Hb) e acima (Hw) de t.

$$Hb = -\sum_{i=0}^{t} p[i]\log(p[i]) \qquad Hw = -\sum_{i=1}^{255} p[i]\log(p[i])$$

O algoritmo deve procurar t que maximize H

$$H = Hw + Hb$$

OUTROS ALGORITMOS DE BINARIZAÇÃO

- Histograma
 - Rosenfeld
 - Tom de Cinza Médio
 - Dois Picos (Two Peaks)
- Clustering
 - Riddler
 - Jawahar
 - Kittler
- Entropia
 - Pun
 - Johannsen
 - Renyi

- Atributo
 - Huang
 - Tsai
 - Pal
- Espacial
 - Pal
 - Cheng
 - Abutaleb
- Local
 - White
 - Média Móvel

EXERCÍCIO

Considere a imagem de 256 tons de cinza abaixo com resolução 256 pixels. Responda:

- 1) Calcule o histograma da imagem abaixo.
- 2) Faça a equalização do histograma da imagem abaixo.

OBS: Para simplificar, calcule apenas o histograma e a equalização

para os 12 primeiros toi

45	60	98	127	132	133	137	133
46	65	98	123	126	128	131	133
47	65	96	115	119	123	135	137
47	63	91	107	113	122	138	134
50	59	80	97	110	123	133	134
49	53	68	83	97	113	128	133
50	50	58	70	84	102	116	126
50	50	52	58	69	86	101	120