Adaptive Shrinkage and False Discovery Rates by Laplace Approximation

Matthew Stephens

2013/5/13

Outline

Prelude

Outline

- Prelude
- Allegro (ma non troppo)

Outline

- Prelude
- Allegro (ma non troppo)
- Coda

• Consider testing the null hypothesis $H_0: \beta = 0$, vs the alternative $H_1: \beta \neq 0$ in the logistic regression model:

$$\log \frac{p(Y_i = 1 | X_i = x)}{p(Y_i = 0 | X_i = x)} = \mu + x\beta$$

• Consider testing the null hypothesis $H_0: \beta = 0$, vs the alternative $H_1: \beta \neq 0$ in the logistic regression model:

$$\log \frac{p(Y_i = 1 | X_i = x)}{p(Y_i = 0 | X_i = x)} = \mu + x\beta$$

Specifically, consider computing the Bayes Factor

$$BF:=\frac{p(Y|X,H_1)}{p(Y|X,H_0)}.$$

• Consider testing the null hypothesis $H_0: \beta = 0$, vs the alternative $H_1: \beta \neq 0$ in the logistic regression model:

$$\log \frac{p(Y_i = 1 | X_i = x)}{p(Y_i = 0 | X_i = x)} = \mu + x\beta$$

Specifically, consider computing the Bayes Factor

$$BF:=\frac{p(Y|X,H_1)}{p(Y|X,H_0)}.$$

 In genome-wide association studies, we may wish to do this for millions of different genetic variants (X).

$$BF = \frac{\int p(Y|\mu, \beta, X)p_1(\mu, \beta|X) d\mu d\beta}{\int p(Y|\mu, \beta = 0, X)p_0(\mu|X) d\mu},$$

where p_0 and p_1 denote priors under H_0 and H_1 .

 These integrals generally don't have closed forms, but being low-dimensional they are simple to approximate.

$$BF = \frac{\int p(Y|\mu, \beta, X)p_1(\mu, \beta|X) d\mu d\beta}{\int p(Y|\mu, \beta = 0, X)p_0(\mu|X) d\mu},$$

where p_0 and p_1 denote priors under H_0 and H_1 .

- These integrals generally don't have closed forms, but being low-dimensional they are simple to approximate.
- For $p_1: \beta \sim N(0,\phi^2)$, Wakefield, 2009 (see also Johnson, 2008) suggested a particularly simple *Approximate Bayes Factor* (ABF) based on the maximum likelihood estimate, $\hat{\beta}$, and its (estimated) standard error s.

$$ABF = \sqrt{1 - k} \exp(0.5kT^2)$$

where $k := \phi^2/(s^2 + \phi^2)$ and $T := \hat{\beta}/s$.

• ABF arises if we assume $\hat{\beta}|s, \beta \sim N(\beta, s^2)$ and treat $\hat{\beta}$ as the observed "data".

$$ABF = \sqrt{1 - k} \exp(0.5kT^2)$$

where $k := \phi^2/(s^2 + \phi^2)$ and $T := \hat{\beta}/s$.

- ABF arises if we assume $\hat{\beta}|s,\beta\sim N(\beta,s^2)$ and treat $\hat{\beta}$ as the observed "data".
- Equivalently ABF can be derived as a "Laplace approximation", approximating the likelihood $L(\beta)$ as Normal, centered on $\hat{\beta}$, with variance s^2 :

$$L(\beta) \propto \exp[-0.5(\beta - \hat{\beta})^2/s^2].$$

 This is not the moxt accurate Laplace approximation one might consider.

- This is not the moxt accurate Laplace approximation one might consider.
- However, it has some nice features.

- This is not the moxt accurate Laplace approximation one might consider.
- However, it has some nice features.
 - The approximation is independent of prior.

- This is not the moxt accurate Laplace approximation one might consider.
- However, it has some nice features.
 - The approximation is independent of prior.
 - ullet Applicable to any regression where \hat{eta} and s are available.

- This is not the moxt accurate Laplace approximation one might consider.
- However, it has some nice features.
 - The approximation is independent of prior.
 - ullet Applicable to any regression where \hat{eta} and s are available.
 - Easily computed using results of standard software or published analyses (e.g. CI).

- This is not the moxt accurate Laplace approximation one might consider.
- However, it has some nice features.
 - The approximation is independent of prior.
 - ullet Applicable to any regression where \hat{eta} and s are available.
 - Easily computed using results of standard software or published analyses (e.g. CI).
- A simple transformation of T can improve accuracy for small samples (analogous to t test vs Z test); Wen and Stephens, Arxiv.

Extensions of ABF

 Similar ideas can be used to compute ABFs in slightly more complex settings.

Extensions of ABF

- Similar ideas can be used to compute ABFs in slightly more complex settings.
- Eg In Wen and Stephens, we consider S subgroups, and approximate the BF for $H_0: \beta_s = 0$ for all s, vs a general alternative $H_0: \beta_s \neq 0$.

Allegro (ma non troppo)

• The problem: you have imperfect measurements of many "similar" things, and wish to estimate their values.

Allegro (ma non troppo)

- The problem: you have imperfect measurements of many "similar" things, and wish to estimate their values.
- Particularly common in genomics. For example, a very common goal is to compare the mean expression (activity) level of many genes in two conditions.

8 / 34

Example: Mouse Heart Data

 Data on 150 mouse hearts, dissected into left and right ventricle (courtesy Scott Schmemo, Marcelo Nobrega)

```
##
        gene
              lv1 lv2 rv1
                                 rv2 genelength
       Itm2a 2236 2174 9484 10883
                                            1626
## 1
##
   2
      Sergef
                97
                     90
                          341
                                 408
                                            1449
    Fam109a 383
                         1864
                    314
                                2384
                                            2331
##
        Dhx9 2688 2631
                        18501
                               20879
                                            4585
               762
                    674
## 5
       Ssu72
                         2806
                                3435
                                            1446
              736
                    762
## 8
      Eif2b2
                         3081
                                3601
                                            1565
```

• Standard practice: analyses use False Discovery Rates

- Standard practice: analyses use False Discovery Rates
 - e.g. Benjamini and Hochberg, 1995; Storey and Tibshirani, 2003, which have roughly 18k and 4k citations respectively!

- Standard practice: analyses use False Discovery Rates
 - e.g. Benjamini and Hochberg, 1995; Storey and Tibshirani, 2003, which have roughly 18k and 4k citations respectively!
- Typical analysis proceeds roughly as follows:

- Standard practice: analyses use False Discovery Rates
 - e.g. Benjamini and Hochberg, 1995; Storey and Tibshirani, 2003, which have roughly 18k and 4k citations respectively!
- Typical analysis proceeds roughly as follows:
 - Estimate an effect size β_j and standard error s_j for each gene.

- Standard practice: analyses use False Discovery Rates
 - e.g. Benjamini and Hochberg, 1995; Storey and Tibshirani, 2003, which have roughly 18k and 4k citations respectively!
- Typical analysis proceeds roughly as follows:
 - Estimate an effect size β_j and standard error s_j for each gene.
 - Convert this to a p value for each gene, e.g. by a t test on β_j/s_j .

- Standard practice: analyses use False Discovery Rates
 - e.g. Benjamini and Hochberg, 1995; Storey and Tibshirani, 2003, which have roughly 18k and 4k citations respectively!
- Typical analysis proceeds roughly as follows:
 - Estimate an effect size β_j and standard error s_j for each gene.
 - Convert this to a p value for each gene, e.g. by a t test on β_j/s_j .
 - Use the distribution of p values to estimate the false discovery rate (FDR) at a given threshold.

False Discovery Rates

p value distribution, all genes

False Discovery Rates

p value distribution, all genes

FDR problem: different genes have different precision/power

p value distribution, all genes

FDR problem: lower count genes, less power, add noise

Counts vary considerably across genes

FDR problem: higher count genes, more power

p values, low count genes

Adaptive Shrinkage

• Fundamental idea: use hierarchical modelling so measurements of β_j for each gene improve inference for β at other genes.

Adaptive Shrinkage

- Fundamental idea: use hierarchical modelling so measurements of β_j for each gene improve inference for β at other genes.
- Despite a long-standing literature on these types of methods e.g. Greenland and Robins 1991, Efron and Tibshirani 2002, Gelman
 et al 2012 they are much less widely used (in genomics at least).

Adaptive Shrinkage

- Fundamental idea: use hierarchical modelling so measurements of β_j for each gene improve inference for β at other genes.
- Despite a long-standing literature on these types of methods e.g. Greenland and Robins 1991, Efron and Tibshirani 2002, Gelman
 et al 2012 they are much less widely used (in genomics at least).
- Possibly this is due, in part, to the lack of a simple, flexible, and generic implementation?

• Summarize data on each gene by two numbers, $\hat{\beta}_j$ and its standard error s_j . (a la Wakefield; Greenland and Robins 1991)

- Summarize data on each gene by two numbers, $\hat{\beta}_j$ and its standard error s_i . (a la Wakefield; Greenland and Robins 1991)
- Approximate likelihood for β_j by

$$L(\beta_j) \propto \exp(-0.5(\beta_j - \hat{\beta}_j)^2/s_j^2).$$

("Laplace Approximation")

- Summarize data on each gene by two numbers, $\hat{\beta}_j$ and its standard error s_i . (a la Wakefield; Greenland and Robins 1991)
- Approximate likelihood for β_j by

$$L(\beta_j) \propto \exp(-0.5(\beta_j - \hat{\beta}_j)^2/s_j^2).$$

("Laplace Approximation")

• Borrow information by assuming β_j are iid $\sim g(\cdot; \pi)$, where π are hyperparameters to be estimated.

- Summarize data on each gene by two numbers, $\hat{\beta}_j$ and its standard error s_i . (a la Wakefield; Greenland and Robins 1991)
- Approximate likelihood for β_j by

$$L(\beta_j) \propto \exp(-0.5(\beta_j - \hat{\beta}_j)^2/s_j^2).$$

("Laplace Approximation")

- Borrow information by assuming β_j are iid $\sim g(\cdot; \pi)$, where π are hyperparameters to be estimated.
- Letting $g(\cdot; \pi)$ be a mixture of normal distributions provides both flexibility, and analytic calculations.

- Summarize data on each gene by two numbers, $\hat{\beta}_j$ and its standard error s_i . (a la Wakefield; Greenland and Robins 1991)
- Approximate likelihood for β_j by

$$L(\beta_j) \propto \exp(-0.5(\beta_j - \hat{\beta}_j)^2/s_j^2).$$

("Laplace Approximation")

- Borrow information by assuming β_j are iid $\sim g(\cdot; \pi)$, where π are hyperparameters to be estimated.
- Letting $g(\cdot; \pi)$ be a mixture of normal distributions provides both flexibility, and analytic calculations.
 - very small variances can capture effects that are "effectively" zero.

• Focus on the special case where $g(\cdot; \pi)$ can be assumed unimodal and symmetric about zero.

- Focus on the special case where $g(\cdot; \pi)$ can be assumed unimodal and symmetric about zero.
- Then the posterior mean, $E(\beta_j|\hat{\beta}, s, \hat{\pi})$ is a "shrinkage" estimate of β_j .

- Focus on the special case where $g(\cdot; \pi)$ can be assumed unimodal and symmetric about zero.
- Then the posterior mean, $E(\beta_j|\hat{\beta}, s, \hat{\pi})$ is a "shrinkage" estimate of β_j .
- And $p(\beta_j > 0 | \hat{\beta}, s, \hat{\pi})$ can be used to identify j for which the sign of β_j can be confidently determined (analogous to test of $\beta_j = 0$; Gelman et al, 2012).

- Focus on the special case where $g(\cdot; \pi)$ can be assumed unimodal and symmetric about zero.
- Then the posterior mean, $E(\beta_j|\hat{\beta}, s, \hat{\pi})$ is a "shrinkage" estimate of β_j .
- And $p(\beta_j > 0 | \hat{\beta}, s, \hat{\pi})$ can be used to identify j for which the sign of β_j can be confidently determined (analogous to test of $\beta_j = 0$; Gelman et al, 2012).
- Because π is estimated from the data, the amount of shrinkage is adaptive to the data. And because of the role of s_j , the amount of shrinkage adapts to the information on each gene.

Example: ASH applied to mouse data

p values, high count genes

Example: ASH applied to mouse data

Raw effect size estimates

Example: ASH applied to mouse data

Raw effect size estimates

Shrinkage is adaptive to information

Shrinkage is adaptive to information

Shrinkage is adaptive to information

```
## gene lv1 lv2 rv1 rv2 pval zdat.ash$localfdr
## 19422 Mgat5b 7 10 320 452 0.03795 0.37448
## 20432 Sec63 1042 1034 5496 6649 0.04908 0.03251
```

• Both provide a rational approach to identifying "significant" findings.

- Both provide a rational approach to identifying "significant" findings.
- Both are generic and modular: once you have the summary data, you can forget where they came from.

- Both provide a rational approach to identifying "significant" findings.
- Both are generic and modular: once you have the summary data, you can forget where they came from.
- But by using two numbers $(\hat{\beta}, s)$ instead of one (p values) precision of different measurements can be better accounted for.

- Both provide a rational approach to identifying "significant" findings.
- Both are generic and modular: once you have the summary data, you can forget where they came from.
- But by using two numbers $(\hat{\beta}, s)$ instead of one (p values) precision of different measurements can be better accounted for.
- ASH borrows information for estimation, as well as testing.

Other Applications

 Widely applicable: perhaps anywhere (?) where shrinkage is appropriate, requiring only an estimated effect size and standard error for each object.

Other Applications

- Widely applicable: perhaps anywhere (?) where shrinkage is appropriate, requiring only an estimated effect size and standard error for each object.
- Could also use effect size estimate and p value for each variable, by converting to effect size estimate and (pseudo-) standard error.

Other Applications

- Widely applicable: perhaps anywhere (?) where shrinkage is appropriate, requiring only an estimated effect size and standard error for each object.
- Could also use effect size estimate and p value for each variable, by converting to effect size estimate and (pseudo-) standard error.
- Currently applying it to wavelet shrinkage applications.

Guarantees?

• "I think you have some nice ideas. How will you convince people to use them?" (C Morris)

Next steps?

• Extend to allow $g(\cdot; \pi)$ to depend on covariates X.

Next steps?

- Extend to allow $g(\cdot; \pi)$ to depend on covariates X.
- Extend to allow for correlations in the measured $\hat{\beta}_j$.

• Bayesian variable selection for large-scale linear regression.

- Bayesian variable selection for large-scale linear regression.
- BSLMM:

$$Y = X\beta + \epsilon$$
,

with
$$\beta_j \sim \pi N(0, \sigma_b^2) + (1 - \pi)N(0, \sigma_a^2 + \sigma_b^2)$$
.

- Bayesian variable selection for large-scale linear regression.
- BSLMM:

$$Y = X\beta + \epsilon$$
,

with
$$\beta_j \sim \pi N(0, \sigma_b^2) + (1 - \pi) N(0, \sigma_a^2 + \sigma_b^2)$$
.

• Particular focus on prior specification (reparameterize in terms of regression R^2).

- Bayesian variable selection for large-scale linear regression.
- BSLMM:

$$Y = X\beta + \epsilon,$$

with
$$\beta_j \sim \pi N(0, \sigma_b^2) + (1 - \pi)N(0, \sigma_a^2 + \sigma_b^2)$$
.

- Particular focus on prior specification (reparameterize in terms of regression R^2).
- BSLMM software, runs with thousands of individuals, hundreds of thousands of variables. (Zhou et al, PloS Genetics 2013)

- Bayesian variable selection for large-scale linear regression.
- BSLMM:

$$Y = X\beta + \epsilon,$$

with
$$\beta_j \sim \pi N(0, \sigma_b^2) + (1 - \pi)N(0, \sigma_a^2 + \sigma_b^2)$$
.

- Particular focus on prior specification (reparameterize in terms of regression R^2).
- BSLMM software, runs with thousands of individuals, hundreds of thousands of variables. (Zhou et al, PloS Genetics 2013)
- Also variational approximations (Carbonetto and Stephens, Bayesian Analysis, 2012)

Thanks

• to the several postdoctoral researchers and students who have worked with me on related topics.

Thanks

- to the several postdoctoral researchers and students who have worked with me on related topics.
- Especially: William Wen, Timothee Flutre, Scott Powers, Heejung Shim, Zhengrong Xing, and Ester Pantaleo.

Thanks

- to the several postdoctoral researchers and students who have worked with me on related topics.
- Especially: William Wen, Timothee Flutre, Scott Powers, Heejung Shim, Zhengrong Xing, and Ester Pantaleo.
- And to the NIH for funding, and i-like for inviting me.

Reproducible research

• This document is produced with **knitr**, **Rstudio** and **Pandoc**.

Reproducible research

- This document is produced with **knitr**, **Rstudio** and **Pandoc**.
- For more details see my stephens999/ash repository at http://www.github.com/stephens999/ash

Reproducible research

- This document is produced with **knitr**, **Rstudio** and **Pandoc**.
- For more details see my stephens999/ash repository at http://www.github.com/stephens999/ash
- Website: http://stephenslab.uchicago.edu

Pandoc Command used

Matthew Stephens

```
pandoc -s -S -i -template=my.beamer -t beamer -V theme:CambridgeUS

    V colortheme:beaver ilike-slides.md -o ilike-slides.pdf

Here is my session info:
print(sessionInfo(), locale = FALSE)
## R version 2.15.1 (2012-06-22)
## Platform: x86_64-apple-darwin9.8.0/x86_64 (64-bit)
##
## attached base packages:
## [1] stats
                 graphics grDevices utils
                                                  datasets
                                                            meth
##
## other attached packages:
## [1] qvalue_1.30.0 knitr_1.1
##
## loaded via a namespace (and not attached):
      codetable A 2-8 direct A 6
```

Adaptive Shrinkage and False Discovery Rates

2013/5/13

FDRs for higher count genes affected by lower count genes

Some odd things in the data

