Artificial Intelligence Fundamentals

Constraints: Search, Domain Reduction

Constraints: Interpreting Line Drawings

- How many objects are in the drawing?
- Guzman ("Decomposition of a visual scene into three-dimensional bodies")- experimentalist

These 2 faces belongs to the same object

Types of junctions

Constraints: Interpreting Line Drawings

- 1 link theory -> too liberal
- 2 link theory —> too conservative
- 2 link * (repeated) link super regions that are connected more than 2 links

- In the final there are 2 objects
- It works because there are many 3 faced vertexes (junctions)

- Huffman mathematician
 - 1. General position

- 2. Trihedral all vertexes are formed by 3 planes (3 faces)
- 3. Four kinds of lines:
 - 1. Concave
 - 2. Convex
 - 3. Boundaries

When you walk on the direction of the line you have the object in the right

- 4. Without shadows and cracks
- 5. There are only 18 ways to arrange the labels around the junction

Vertexes Junctions Edges Lines

Can you build one of those object?

The object floating in space -> all boundaries are boundary lines

A line can't change his nature along his length -> so if it's a + line at an end must be a + line at the other end

What about that junction?

It's an L junction with pluses at both of the lines, but there isn't exist in the catalog -> this object can't exist in the real world

Helps to have a line like that?

Answer: No

Map Coloring

- Depth first search
- 4 colors

Map coloring - Romania

Domain reduction vocabulary

- Variable X something that can have an assignment
- Value V something that can be assigned
- Domain D bag of values
- Constraint C a limit on variable values
 - Countries variables
 - Colours values
 - Domains the remaining colours
 - Constraints map constraints

Domain reduction agorithm

```
for each Depth First Search assignment for each variable X_i considered for each v_i in D_i for each constraint C(v_i, v_j) where v_j \in D_j if not \exists v_j \ni C(v_i, v_j) satisfied remove v_i from D_i if D_i is empty then BACKTRACK
```

Domain reduction algorithm

- We can consider:
 - 1. Nothings
 - 2. Assignments only
 - 3. Check neighbors only 406
 - 4. Propagate checking through *Variables* with *D* reduced to 1 value
 - 5. Propagate checking through *Variables* with reduced *Domains 0*
 - 6. Everything

Example – airline scheduling

- Constraints
 - 2 planes cannot fly in the same moment in two different flights
- Minimum grount time constraint
 - Other types of constraints
- Question ?
 - How many planes are needed in order to satisfy a schedule?

Rules for good resource allocation

- Always use the most constraints first
- Propagate through domain reduce to a single value
- If you try to figure out what is the minimum number of resources needed, converge from overresource and from underresource and see what interval remains (squeeze to a small interval)

Related resources

• http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-034-artificial-intelligence-fall-2010/exams/MIT6_034F10_quiz2_2007.pdf

Readings

Artificial Intelligence (3rd Edition), Patrick Winston, Chapter 12