Semi-Automated Bacterial Protein Dynamics Analysis

High throughput PlzC oscillation tracking in V. Cholerae

Biofilms are colonies of aggregating bacteria that adhere to a surface

Biofilms have a widespread impact in medicine and industry

- Allow pathogens to survive in chronic diseases
- Allow formation of resistant enclaves of bacteria on and around implants
- Affects water transport and food industries

100 µm

The economic significance of biofilms

- In 2017 the global expenditure on wounds in healthcare was \$7.8T, of which it is estimated that \$281B corresponds to biofilms (*Nature*)
 - Annual cost of revision surgery due to biofilm-mediated infections: \$7.8B globally
 - Annual market estimate of surfaces resistant to microbial contamination: \$7.1B
 - Foodborne pathogens and biofilms are responsible for \$78.6B lost every year
- The market of biofilms in wastewater treatment is an est. \$313B globally
- Increased hospitalization and cleaning needs as a result of the COVID-19 pandemic have increased the market by an additional \$5T

We developed a machine learning model to classify time-position plots of intracellular protein dynamics

Introducing a unique solution to a data bottleneck

- Understanding why biofilms form is crucial to preventing formation
- Observing the movement of protein within bacteria allowed us to create a machine learning model
- This model can be generalized to other bacterial species and other single-protein tracking applications

VEED.IO

PlzC-protein has an unknown role in biofilm formation

- Known: c-di-GMP concentration level is related with biofilm formation
- Hypothesis: PlzC is a carrier protein for c-di-GMP, which is correlated with biofilm formation
- Tracking PlzC movement using fluorescence microscopy is essential to understanding its relationship with c-di-GMP and biofilm formation

Tracking PlzC-protein with fluorescence microscopy

Visualizing PlzC movement in V. Cholerae

Kymographs visualize PlzC movement along splines

- Each cell crop has a kymograph of PlzC movement
- Classify distinctions in intracellular PlzC movement across varying strains
- Scale of data too large and complex datasets to find patterns manually

An automated and general workflow for large scale protein movement analysis

- Tracking intracellular movement of PlzC protein
- Machine learning allows for analysis of large datasets
- Observation of patterns to draw hypotheses about role in biofilm formation

Our Variational Autoencoder (VAE) allows us to classify kymographs

Visualizing the raw latent space is too busy

UMAP dimensionality reduction reveals grouping

UMAP dimensionality reduction reveals grouping

Bacterial Sensing Group

UMAP dimensionality reduction reveals grouping

VAEs preserve latent relationships

- Probabilistic representation in lower dimensional space
- Extract essential spatial characteristics and map to latent space

Reconstructing the latent space

Summary

- Created a tool for high-resolution protein dynamics visualization and interpretation
 - Developed to investigate molecular machinery of biofilm formation in V. cholerae
 - Quantified and classified differences in fluorescence kymographs of super-diffusive PlzC movement
- **Generalizable** to any form of single-molecule fluorescence tracking on the microscopic scale

Acknowledgements

Thank you to Dr. Gerard Wong, Dr. Calvin Lee, Jonathan Chen, William Schmidt, and everyone at Wong lab for the use of their lab and materials

And thank you to Dr. Gao, Salil, and Xiaoxi for their time and guidance

References

- Cámara, M., Green, W., MacPhee, C. E., Rakowska, P. D., Raval, R., Richardson, M. C., Slater-Jefferies, J., Steventon, K., & Webb, J. S. (2022). Economic significance of biofilms: A multidisciplinary and cross-sectoral challenge. Npj Biofilms and Microbiomes, 8(1), 1–8. https://doi.org/10.1038/s41522-022-00306-y
- Mark B. Abelson, M. D. (2012, September 6). *Of biomes, biofilm and the ocular surface*. Review of Ophthalmology. Retrieved July 4, 2022, from https://www.reviewofophthalmology.com/article/of-biomes-biofilm-and-the-ocular-surface
- Lopez, L. (2021, April 19). *Pseudomonas aeruginosa biofilms and their partners in Crime*. Institute for Bioengineering of Catalonia. Retrieved July 6, 2022, from https://ibecbarcelona.eu/pseudomonas-aeruginosa-biofilms-and-their-partners-in-crime/
- Pratt, Jason T., Rita Tamayo, Anna D. Tischler, and Andrew Camilli. "PilZ Domain Proteins Bind Cyclic Diguanylate and Regulate Diverse Processes in Vibrio Cholerae." The Journal of Biological Chemistry 282, no. 17 (April 27, 2007): 12860–70. https://doi.org/10.1074/jbc.M611593200.
- Berk, Veysel, Jiunn C. N. Fong, Graham T. Dempsey, Omer N. Develioglu, Xiaowei Zhuang, Jan Liphardt, Fitnat H. Yildiz, and Steven Chu. "Molecular Architecture and Assembly Principles of Vibrio Cholerae Biofilms." Science 337, no. 6091 (July 13, 2012): 236–39. https://doi.org/10.1126/science.1222981.
- Quan Xue and M. C. Leake, "A novel multiple particle tracking algorithm for noisy in vivo data by minimal path optimization within the spatio-temporal volume," 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2009, pp. 1158-1161, doi: 10.1109/ISBI.2009.5193263.

Going back to the biology

Raw VAE latent space still has too many dimensions

UMAP dimensionality reduction to reveal data groups

Sample points from each group using kymograph IDs

Label groups accordingly

Encode experimental data and look for similarities

Experimental data occupies a similar region of latent space as the **Polar Kymographs**

Wild Type PlzC is likely Polar

