GEOMETRY Chapter 7

VERANO SAN MARCOS ÁREA DE REGIONES PLANAS

ÁREAS EN REGIONES TRIANGULARES

Fórmula fundamental

Fórmula trigonométrica

Fórmula de Herón

Donde p es el semiperímetro.

OBSERVACIÓN

a. Para una región triangular obtusángula

$$S_{ABC} = \frac{b \cdot h_b}{2}$$

b. Para una región triangular rectangular

c. Para una región triangular equilátera

$$S_{ABC} = \frac{L^2 \sqrt{3}}{4}$$

Relación entre las áreas de dos regiones triangulares

a. Si en el triángulo ABC se traza la ceviana BD, entonces la relación entre las áreas de las regiones triangulares ABD y DBC será igual a la relación entre AD y DC.

$$\frac{S_{ABD}}{S_{DBC}} = \frac{AD}{DC}$$

b. Si en el triángulo ABC se traza la mediana BM, entonces las regiones triangulares ABM y BMC serán equivalentes, es decir, tendrán áreas iguales.

Región cuadrangular

Es una región plana, que está limitada por un cuadrilátero, esta región puede ser convexa o no convexa.

m y n: longitudes de las diagonales

 $S_{ABCD} = \frac{1}{2} sen\omega$

Área de una región trapecial

m: longitud de la medianah: longitud de la altura

Área de una región paralelográmica

Región romboidal

h: longitud de la altura

Región cuadrada

Región rectangular

Región rombal

$$S = \frac{D \cdot d}{2}$$

$$S = L \cdot h$$

ÁREAS EN REGIONES CIRCULARES

1. Círculo

El círculo es una porción de plano limitado por una circunferencia.

$$S_{\odot} = \pi r^2$$

L: longitud de la circunferencia

$$L_{\odot} = 2\pi r$$

2. Corona circular

Es aquella parte del circulo mayor, limitada por dos circunferencias concéntricas.

$$S_{corona} = \pi (R^2 - r^2)$$

$$S_{corona} = \frac{\pi (AB)^2}{4}$$

T: punto de tangencia

3. Sector circular

Es aquella porción de círculo limitada por un ángulo central y su arco correspondiente.

$$S_{AOB} = \frac{\pi R^2 \theta}{360^\circ}$$

$$S_{AOB} = \frac{LR}{2}$$

- R: radio del sector circular AOB
- θ: medida del ángulo central (θ < 360°)

1) Calcule el área de la región triangular ABC ,mostrada

$$.SiAC = 12$$

RESOLUCIÓN

PIDEN: S ABC

Como : AC =
$$12 \to BH = \frac{12}{4} \to BH = 3$$

LUEGO: S ABC =
$$\frac{12X3}{2}$$

SABC =
$$18 U^2$$

HELICO | WORKSHOP

2) Calcule el área de una región triangular equilátera inscrita en una circunfenrencia de radio 6

RESOLUCIÓN

PIDEN: S ABC

$$m \not < ABC = 60^{\circ} \rightarrow m\widehat{AC} =$$

120° (ÁNGULO INSCRITO)

Observación:

LUEGO: AC =
$$6\sqrt{3}$$

S ABC=
$$\frac{1}{4}$$
 $(6\sqrt{3})^2 \sqrt{3}$

SABC = $27\sqrt{3} U^2$

3) En la figura : Calcule el área de la región sombreada

RESOLUCIÓN

Piden el área de la región sombreada :S somb

Por teorema de las cuerdas:

$$(a+b)6 = b(a+6)$$

 $6a+6b = ab+6b$
 $6=b$

Luego:Ssomb=
$$\frac{bxb}{2} = \frac{6x6}{2}$$

Ssomb=
$$18 U^2$$

4) En la figura : A es punto de tangencia ,AC= 3 ,BD=8 Y BC=AD , Calcule el área de la región triangular ABC

RESOLUCIÓN

Piden: S ABC

 \triangle ABC $\sim \triangle ABD$

$$\frac{b}{8} = \frac{3}{a} \rightarrow axb = 24$$

AHORA:

SABC =
$$\frac{ab}{2}$$
 sen 30°

S ABC =
$$\frac{24}{2}$$
 . $\frac{1}{2}$ = $\frac{24}{4}$

 \Rightarrow SABC =6 U^2

5) Calcule el área de la región cuadrada ABCD , Si : m \widehat{AB}

 $=74^{\circ} y BE = 10 u$

RESOLUCIÓN

Piden : SABCD

Se traza la diagonal \overline{BD}

BOE: Notable de $37^{\circ} - 53^{\circ}$

Como : BE= $10 \rightarrow B0 = 6$

Además: BO=OD=6

BD=12

AHORA:

S ABCD =
$$\frac{12^2}{2} = \frac{144}{2}$$

SABCD = $72 U^2$

6) Calcule el área de una región rectángular de perímetro 34u inscrita en una circunferencia de radio 6,5

В la a

RESOLUCIÓN

Piden: S ABCD

DATO:
$$2a + 2b = 34$$

$$a+b = 17$$

Teorema de Pitágoras en CDA:

$$(13)^2 = a^2 + b^2$$

$$169 = a^2 + b^2$$

Ahora:

$$(a+b)^2 = a^2 + b^2 + 2ab$$

$$(17)^2 = 169 + 2ab \rightarrow 289 - 169 = 2ab$$

S ABCD = ab
$$\rightarrow SABCD = 60U^2$$

7) Las bases de una región trapecial miden 4 cm y 9cm . Calcule su área si sus diagonales son perpendiculares

8) Calcule el área del círculo inscrito mostrado

9) Calcule el área del sector circular COD mostrado ,si:

AB=5 y AD= 4

RESOLUCIÓN

Piden el área del sector circular COD

ABC es un triángulo rectángulo notable de 30° Y 60°

COMO : AB= $5 \rightarrow AC= 10$

TAMBIÉN: DO = 6

AHORA:
$$S = \frac{30^{\circ}}{360} \pi (6)^2$$

$$S = 3\pi$$

10) Si : T y D son puntos de tangencia , BC=2 , CD = 4 .Calcule el área de la corona circular

RESOLUCIÓN

Por teorema de la tangente y secante

$$4^2 = (a+2)2 \rightarrow 6= a$$

AHORA : SO =
$$\frac{1}{4}\pi(6)^2$$

$$S \odot = 9\pi$$

