# Introduction to Algorithms Lecture 2: Asymptotic Notation

Prof. Charles E. Leiserson and Prof. Erik Demaine Massachusetts Institute of Technology

July 30, 2025

### Introduction to Algorithms



Content has been extracted from *Introduction to Algorithms*, Fourth Edition, by Cormen, Leiserson, Rivest, and Stein. MIT Press, 2022.

Visit https://mitpress.mit.edu/9780262046305/introduction-to-algorithms/.

Original slides from Introduction to Algorithms 6.0461/18.4011, Fall 2005 Class by Prof. Charles Leiserson and Prof. Erik Demaine. MIT OpenCourseWare Initiative available at https://ocw.mit.edu/courses/6-046j-introduction-to-algorithms-sma-5503-fall-2005/.

### Plan

### Asymptotic Notation

Solving recurrences
Substitution method
Recursion tree
The master method

# Asymptotic Notation

We write f(n) = O(g(n)) if there exist such constants  $c > 0, n_0 > 0$  such that  $0 \le f(n) \le cg(n)$  for all  $n \ge n_0$ .

$$O(g(n))=\{f(n):$$
 there exist constants 
$$c>0, n_0>0 \text{ such that}$$
 
$$0\leq f(n)\leq cg(n)$$
 for all  $n\geq n_0\}$ 



$$O(g(n))=\{f(n): \text{there exist constants}$$
  $c>0, n_0>0 \text{ such that}$   $0\leq f(n)\leq cg(n)$  for all  $n\geq n_0\}$ 

$$2n^2 = O(n^3)$$
  $(c = 1, n_0 = 2).$ 

$$O(g(n))=\{f(n):$$
 there exist constants 
$$c>0, n_0>0 \text{ such that}$$
 
$$0\leq f(n)\leq cg(n)$$
 for all  $n\geq n_0\}$ 

### Example

$$2n^2 = O(n^3) \qquad (c = 1, n_0 = 2).$$
Exercises

Functions, not values!

$$O(g(n))=\{f(n): \text{there exist constants}$$
  $c>0, n_0>0 \text{ such that}$   $0\leq f(n)\leq cg(n)$  for all  $n\geq n_0\}$ 

### Example

$$2n^2 = O(n^3)$$
  $(c = 1, n_0 = 2).$ 

Functions,

`not values!

Funny, "one-way" equality...

### Set Definition of O-notation

$$O(g(n)) = \{f(n) : \text{there exist constants}$$
  
 $c > 0, n_0 > 0 \text{ such that}$   
 $0 \le f(n) \le cg(n)$   
for all  $n \ge n_0\}$ 

### Set Definition of O-notation

$$O(g(n))=\{f(n):$$
 there exist constants 
$$c>0, n_0>0 \text{ such that}$$
 
$$0\leq f(n)\leq cg(n)$$
 for all  $n\geq n_0\}$ 

### Example:

$$2n^2\in O(n^3)$$

(Logicians:  $\lambda n.2n^2 \in O(\lambda n.n^3)$ , but it's convenient to be sloppy, as long as we understand what's really going on.)

#### Macro substitution

#### Convention:

A set in a formula represents an anonymous function in the set.

$$f(n) = n^3 + O(n^2)$$
 means 
$$f(n) = n^3 + h(n)$$
 for some  $h(n) \in O(n^2)$ .

#### Macro substitution

#### Convention:

A set in a formula represents an anonymous function in the set.

```
n^2 + O(n) = O(n^2)
means
for any f(n) \in O(n):
n^2 + f(n) = h(n)
for some h(n) \in O(n^2).
```

### $\Omega$ -notation (lower bounds)

O-notation is an upper-bound notation. It makes no sense to say f(n) is at least  $O(n^2)$ 

## $\Omega$ -notation (lower bounds)

$$\Omega(g(n))=\{f(n): \text{there exist constants}$$
 
$$c>0, n_0>0 \text{ such that}$$
 
$$0\leq cg(n)\leq f(n)$$
 for all  $n\geq n_0\}$ 



### $\Omega$ -notation (lower bounds)

O-notation is an upper-bound notation. It makes no sense to say f(n) is at least  $O(n^2)$ 

$$\Omega(g(n))=\{f(n): \text{there exist constants}$$
 
$$c>0, n_0>0 \text{ such that}$$
 
$$0\leq cg(n)\leq f(n)$$
 for all  $n\geq n_0\}$ 

$$\sqrt{n} = \Omega(\lg n) \qquad (c = 1, n_0 = 16)$$

# $\Theta$ -notation (tight bounds)

$$\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$$



# $\Theta$ -notation (tight bounds)

$$\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$$

$$\frac{1}{2}n^2 - 2n = \Theta(n^2)$$

#### o-notation and $\omega$ -notation

O-notation and  $\Omega$ -notation are like  $\leq$  and  $\geq$ . o-notation and  $\omega$ -notation are like < and >.

$$o(g(n)) = \{f(n) : \text{for any constant } c > 0,$$
  
there is a constant  $n_0 > 0$   
such that  $0 \le f(n) \le cg(n)$   
for all  $n \ge n_0\}$ 

$$2n^2 = o(n^3)$$
  $(n_0 = \frac{2}{c})$ 

#### o-notation and $\omega$ -notation

O-notation and  $\Omega$ -notation are like  $\leq$  and  $\geq$ . o-notation and  $\omega$ -notation are like < and >.

$$\omega(g(n))=\{f(n): \text{for any constant }c>0,$$
 there is a constant  $n_0>0$  such that  $0\leq cg(n)\leq f(n)$  for all  $n\geq n_0\}$ 

$$\sqrt{n} = \omega(\lg n)$$
  $(n_0 = 1 + \frac{1}{c})$ 

### Plan

#### Asymptotic Notation

### Solving recurrences

Substitution method Recursion tree

The master method

### Solving recurrences

- ► The analysis of merge-sort from *Lecture 1* required us to solve a recurrence.
- Recurrences are like solving integrals, differential equations, etc.
  - Learn a few tricks.
- ▶ Lecture 3: Applications of recurrences to divide-and-conquer algorithms.

#### Substitution method

The method is based on guessing a possible solution and then verifying it using mathematical induction. It is divided into the following steps:

- 1. **Guess a solution:** Propose a general form of the solution T(n), based on the structure of the problem.
- 2. Substitute into the recurrence: Replace the conjectured solution in the recurrence equation to check if it holds.
- 3. Adjust if necessary: If the conjecture is not valid, modify it by adding constants or additional terms.
- 4. **Prove by induction:** Use mathematical induction to demonstrate that the conjecture is correct.

#### Substitution method

The most general method:

- 1. **Guess** the form of the solution.
- 2. **Verify** by induction.
- 3. Solve for constants.

### Substitution method

#### The most general method:

- 1. **Guess** the form of the solution.
- 2. **Verify** by induction.
- 3. Solve for constants.

$$T(n) = 4T(\frac{n}{2}) + n$$

- ▶ Assume that  $T(1) = \Theta(1)$ .
- Guess  $O(n^3)$ . (Prove O and  $\Omega$  separately.)
- ▶ Assume that  $T(k) \le ck^3$  for k < n.
- ▶ Prove  $T(n) \le cn^3$  by induction.

## Example of substitution

$$T(n) = 4T\left(\frac{n}{2}\right) + n$$

$$\leq 4c\left(\frac{n}{2}\right)^3 + n$$

$$= \left(\frac{c}{2}\right)n^3 + n$$

$$= cn^3 - \left(\left(\frac{c}{2}\right)n^3 - n\right) \longleftarrow \text{ desired } - \text{ residual}$$

$$\leq cn^3 \longleftarrow \text{ desired}$$
whenever  $\left(\frac{c}{2}\right)n^3 - n \geq 0$ , for example, if  $c \geq 2$  and  $n \geq 1$ .

residual

# Example (continued)

- ▶ We must also handle the initial conditions, that is, ground the induction with base cases.
- ▶ Base:  $T(n) = \Theta(1)$  for all  $n \le n_0$ , where  $n_0$  is a suitable constant.
- For  $1 \le n < n_0$ , we have " $\Theta(1)$ "  $\le cn^3$ , if we pick c big enough.

# Example (continued)

- ▶ We must also handle the initial conditions, that is, ground the induction with base cases.
- ▶ Base:  $T(n) = \Theta(1)$  for all  $n \le n_0$ , where  $n_0$  is a suitable constant.
- ► For  $1 \le n < n_0$ , we have " $\Theta(1)$ "  $\le cn^3$ , if we pick c big enough.

#### This bound is not tight!

We shall prove that  $T(n) = O(n^2)$ .

We shall prove that  $T(n) = O(n^2)$ .

Assume that  $T(k) \le ck^2$  for k < n:

$$T(n) = 4T\left(\frac{n}{2}\right) + n$$

$$\leq 4c\left(\frac{n}{2}\right)^2 + n$$

$$= cn^2 + n$$

$$= O(n^2)$$

We shall prove that  $T(n) = O(n^2)$ .

Assume that  $T(k) \le ck^2$  for k < n:  $T(n) = 4T\left(\frac{n}{2}\right) + n$   $\le 4c\left(\frac{n}{2}\right)^2 + n$   $= cn^2 + n$  = O(2) Wrong! We must prove the I.H.

We shall prove that  $T(n) = O(n^2)$ .

Assume that 
$$T(k) \le ck^2$$
 for  $k < n$ :
$$T(n) = 4T\left(\frac{n}{2}\right) + n$$

$$\le 4c\left(\frac{n}{2}\right)^2 + n$$

$$= cn^2 + n$$

$$= O(2)$$
 Wrong! We must prove the I.H.
$$= cn^2 - (-n) \text{ [ desired - residual ]}$$

$$\le cn^2 \text{ for no choice of } c > 0. \text{ Lose!}$$

#### IDEA:

- ▶ Strengthen the inductive hypothesis.
- ▶ Subtract a low-order term.
- Inductive hypothesis:  $T(k) \le c_1 k^2 c_2 k$  for k < n.

#### IDEA:

- ► Strengthen the inductive hypothesis.
- ▶ Subtract a low-order term.
- Inductive hypothesis:  $T(k) \le c_1 k^2 c_2 k$  for k < n.

$$T(n) = 4T\left(\frac{n}{2}\right) + n$$

$$= 4\left(c_1\left(\frac{n}{2}\right)^2 - c_2\left(\frac{n}{2}\right)\right) + n$$

$$= c_1n^2 - 2c_2n + n$$

$$= c_1n^2 - c_2n - c_2n + n$$

$$= c_1n^2 - c_2n - (c_2n - n)$$

$$< c_1n^2 - c_2n \text{ if } c_2 > 1.$$

#### IDEA:

- ► Strengthen the inductive hypothesis.
- ▶ Subtract a low-order term.
- Inductive hypothesis:  $T(k) \le c_1 k^2 c_2 k$  for k < n.

$$T(n) = 4T\left(\frac{n}{2}\right) + n$$

$$= 4\left(c_1\left(\frac{n}{2}\right)^2 - c_1\left(\frac{n}{2}\right)\right) + n$$

$$= c_1n^2 - 2c_2n + n$$

$$= c_1n^2 - c_2n - c_2n + n$$

$$= c_1n^2 - c_2n - (c_2n - n)$$

$$< c_1n^2 - c_2n \text{ if } c_2 > 1.$$

Pick  $c_1$  big enough to handle the initial conditions.

#### Recursion-tree method

- ▶ A recursion tree models the costs (time) of a recursive execution of an algorithm.
- ► The recursion-tree method can be unreliable, just like any method that uses ellipses (...).
- ▶ The recursion-tree method promotes intuition, however.
- ► The recursion-tree method is good for generating guesses for the substitution method.

## Steps of the recurrence-tree method

- 1. **Expand the recurrence** over multiple levels until a general pattern emerges.
- 2. **Determine the cost at each level**, which usually depends on the number of subproblems and their size.
- 3. Calculate the depth of the tree, which is the total number of levels until reaching base cases.
- 4. Sum the costs of all levels to obtain the overall cost.

Solve 
$$T(n) = T\left(\frac{n}{4}\right) + T\left(\frac{n}{2}\right) + n^2$$

Solve 
$$T(n) = T\left(\frac{n}{4}\right) + T\left(\frac{n}{2}\right) + n^2$$

$$T(n)$$

Solve 
$$T(n) = T\left(\frac{n}{4}\right) + T\left(\frac{n}{2}\right) + n^2$$

$$T(n/4)$$

$$T(n/2)$$

Solve 
$$T(n) = T\left(\frac{n}{4}\right) + T\left(\frac{n}{2}\right) + n^2$$

$$(n/4)^2 \qquad (n/2)^2$$

$$T(n/16) \qquad T(n/8) \qquad T(n/8) \qquad T(n/4)$$

Solve 
$$T(n) = T(\frac{n}{4}) + T(\frac{n}{2}) + n^2$$

$$(n/4)^2 \qquad (n/2)^2$$

$$(n/16)^2 \qquad (n/8)^2 \qquad (n/8)^2 \qquad (n/4)^2$$

$$\vdots$$

$$\Theta(1)$$

The master method applies to recurrences of the form:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n),$$

You have a subproblems.

The master method applies to recurrences of the form:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n),$$
 You have a subproblems. Each of them is of size  $\frac{n}{b}$ .

The master method applies to recurrences of the form:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n),$$
 You have a subproblems. Each of them is of size  $\frac{n}{b}$ .

Then you're doing f(n) nonrecursive work.

The master method applies to recurrences of the form:



Then you're doing f(n) nonrecursive work.

The master method applies to recurrences of the form:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n),$$

where  $a \ge 1$ , b > 1, and f(n) is asymptotically positive.

The master method applies to recurrences of the form:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n),$$

where  $a \ge 1$ , b > 1, and f(n) is asymptotically positive.

#### Note

asymptotically positive means f(n) > 0 for  $n \ge n_0$ .

Compare f(n) with  $n^{\log_b a}$ :

#### Note:

 $n^{\log_b a}$  = The number of leaves in the recursion tree.

Compare f(n) with  $n^{\log_b a}$ :

#### Note:

 $n^{\log_b a}$  = The number of leaves in the recursion tree.

Case 1 
$$f(n) < n^{\log_b a}$$

Case 2 
$$f(n) = n^{\log_b a}$$

Case 3 
$$f(n) > n^{\log_b a}$$

- 1  $f(n) = O(n^{\log_b a \varepsilon})$  for some constant  $\varepsilon > 0$ .
  - ▶ f(n) grows polynomially slower than  $n^{\log_b a}$  (by an  $n^{\varepsilon}$  factor, polynomially smaller).
  - ► Solution:

$$T(n) = \Theta(n^{\log_b a}).$$

- 1  $f(n) = O(n^{\log_b a \varepsilon})$  for some constant  $\varepsilon > 0$ .
  - ▶ f(n) grows polynomially slower than  $n^{\log_b a}$  (by an  $n^{\varepsilon}$  factor, polynomially smaller).
  - ► Solution:

$$T(n) = \Theta(n^{\log_b a}).$$

- 2  $f(n) = \Theta(n^{\log_b a} \lg^k n)$  for some constant  $k \ge 0$ .
  - ▶ f(n) and  $n^{\log_b a}$  grow at similar rates, up to poly log factor.
  - **▶** Solution:

$$T(n) = \Theta(n^{\log_b a} \lg^{k+1} n).$$

Compare f(n) with  $n^{\log_b a}$ :

- 1  $f(n) = O(n^{\log_b a \varepsilon})$  for some constant  $\varepsilon > 0$ .
  - ▶ f(n) grows polynomially slower than  $n^{\log_b a}$  (by an  $n^{\varepsilon}$  factor, polynomially smaller).
  - Solution:

$$T(n) = \Theta(n^{\log_b a}).$$

- 2  $f(n) = \Theta(n^{\log_b a} \lg^k n)$  for some constant  $k \ge 0$ .
  - ightharpoonup f(n) and  $n^{\log_b a}$  grow at similar rates, up to poly log factor.
  - **▶** Solution:

$$T(n) = \Theta(n^{\log_b a} \lg^{k+1} n).$$

- 3  $f(n) = \Omega(n^{\log_b a + \varepsilon})$  for some constant  $\varepsilon > 0$ .
  - ▶ f(n) grows polynomially faster than  $n^{\log_b a}$  (by an  $n^{\varepsilon}$  factor, polynomially faster),

and f(n) satisfies the *regularity condition* that  $af\left(\frac{n}{b}\right) \leq cf(n)$  for some constant c < 1.

Solution:

$$T(n) = \Theta(f(n)).$$

$$T(n) = 4T\left(\frac{n}{2}\right) + n$$

$$a = 4, b = 2 \implies n^{\log_b a} = n^2 ; f(n) = n.$$

$$T(n) = 4T\left(\frac{n}{2}\right) + n$$
 
$$a = 4, b = 2 \implies n^{\log_b a} = n^2 \; ; \; f(n) = n.$$
 Case 1:

$$\begin{split} T(n) &= 4T\left(\frac{n}{2}\right) + n \\ a &= 4, b = 2 \implies n^{\log_b a} = n^2 \ ; \ f(n) = n. \\ \text{CASE } 1 \text{:} f(n) &= O(n^{2-\varepsilon}) \text{ for } \varepsilon = 1. \end{split}$$

 $\mathbf{E}\mathbf{x}$ .

$$T(n) = 4T\left(\frac{n}{2}\right) + n$$

$$a = 4, b = 2 \implies n^{\log_b a} = n^2 \; ; \; f(n) = n.$$
Case  $1: f(n) = O(n^{2-\varepsilon}) \text{ for } \varepsilon = 1.$ 

$$\therefore T(n) = \Theta(n^2).$$

$$T(n) = 4T\left(\frac{n}{2}\right) + n^2$$

$$T(n) = 4T\left(\frac{n}{2}\right) + n^2$$
  
 $a = 4, b = 2 \implies n^{\log_b a} = n^2 \; ; \; f(n) = n^2.$ 

$$T(n) = 4T\left(\frac{n}{2}\right) + n^2$$

$$a = 4, b = 2 \implies n^{\log_b a} = n^2 \; ; \; f(n) = n^2.$$
Case 2:

$$T(n) = 4T\left(\frac{n}{2}\right) + n^2$$

$$a = 4, b = 2 \implies n^{\log_b a} = n^2 \; ; \; f(n) = n^2.$$
Case  $2: f(n) = \Theta(n^2 \lg^0 n)$ , that is,  $k = 0$ .

$$T(n) = 4T\left(\frac{n}{2}\right) + n^2$$

$$a = 4, b = 2 \implies n^{\log_b a} = n^2 \; ; \; f(n) = n^2.$$
Case  $2: f(n) = \Theta(n^2 \lg^0 n)$ , that is,  $k = 0$ .
$$\therefore T(n) = \Theta(n^2 \lg n).$$

$$T(n) = 4T\left(\frac{n}{2}\right) + n^3$$

$$T(n) = 4T\left(\frac{n}{2}\right) + n^3$$
  
 $a = 4, b = 2 \implies n^{\log_b a} = n^2 \; ; \; f(n) = n^3.$ 

$$T(n) = 4T\left(\frac{n}{2}\right) + n^3$$

$$a = 4, b = 2 \implies n^{\log_b a} = n^2 \; ; \; f(n) = n^3.$$
Case 3:

$$T(n) = 4T\left(\frac{n}{2}\right) + n^3$$
  
 $a = 4, b = 2 \implies n^{\log_b a} = n^2 \; ; \; f(n) = n^3.$   
Case  $3: f(n) = \Omega(n^{2+\varepsilon}) \text{ for } \varepsilon = 1.$ 

$$\begin{split} T(n) &= 4T\left(\frac{n}{2}\right) + n^3 \\ a &= 4, b = 2 \implies n^{\log_b a} = n^2 \ ; \ f(n) = n^3. \\ \text{CASE } 3 : & f(n) = \Omega(n^{2+\varepsilon}) \text{ for } \varepsilon = 1. \\ \text{and } 4\left(\frac{n}{2}\right)^3 \leq cn^3 \text{ (reg. cond.) for } c = \frac{1}{2}. \end{split}$$

 $\mathbf{E}\mathbf{x}$ .

$$T(n) = 4T\left(\frac{n}{2}\right) + n^3$$

$$a = 4, b = 2 \implies n^{\log_b a} = n^2 \; ; \; f(n) = n^3.$$
CASE  $3: f(n) = \Omega(n^{2+\varepsilon}) \text{ for } \varepsilon = 1.$ 
and  $4\left(\frac{n}{2}\right)^3 \leq cn^3 \text{ (reg. cond.) for } c = \frac{1}{2}.$ 

$$\therefore T(n) = \Theta(n^3).$$

Ex.

$$T(n) = 4T\left(\frac{n}{2}\right) + \frac{n^2}{\lg n}$$

Ex.

$$T(n) = 4T\left(\frac{n}{2}\right) + \frac{n^2}{\lg n}$$
  
 $a = 4, b = 2 \implies n^{\log_b a} = n^2 \; ; \; f(n) = \frac{n^2}{\lg n}.$ 

Ex.

$$T(n) = 4T\left(\frac{n}{2}\right) + \frac{n^2}{\lg n}$$

$$a = 4, b = 2 \implies n^{\log_b a} = n^2 \; ; \; f(n) = \frac{n^2}{\lg n}.$$

- ▶  $f(n) = \frac{n^2}{\lg n}$ . Have f(n) = o(n), so that f(n) grows more slowly than n, it doesn't grow polynomially slower.
- ▶ In terms of the master theorem, have  $f(n) = n^2 \lg^{-1} n$ , so that k = -1.
- ▶ Master theorem holds only for  $k \ge 0$ , so case 2 does not apply.
- ► Master method does not apply.















# Appendix: geometric series

$$1 + x + x^{2} + \dots + x^{n} = \frac{1 - x^{n+a}}{1 - x} \text{ for } x \neq 1$$
$$1 + x + x^{2} + \dots = \frac{1}{1 - x} \text{ for } |x| < 1$$

# End of Lecture 2.

## TDT5FTOTC



5 Solving Recurrences: Common methods to solve recurrences include substitution, recursion trees, and the master theorem, each providing different approaches to analyze recursive complexity.

- 5 Solving Recurrences: Common methods to solve recurrences include substitution, recursion trees, and the master theorem, each providing different approaches to analyze recursive complexity.
- 4 **Tightening Bounds Using Substitution:** Strengthening inductive hypotheses by subtracting lower-order terms helps refine bounds when standard methods provide loose approximations.

- 5 Solving Recurrences: Common methods to solve recurrences include substitution, recursion trees, and the master theorem, each providing different approaches to analyze recursive complexity.
- 4 **Tightening Bounds Using Substitution:** Strengthening inductive hypotheses by subtracting lower-order terms helps refine bounds when standard methods provide loose approximations.
- 3 **Recursion Tree Intuition:** A recursion tree models the breakdown of recursive calls, where the total complexity is derived by summing work across all levels.

- 5 Solving Recurrences: Common methods to solve recurrences include substitution, recursion trees, and the master theorem, each providing different approaches to analyze recursive complexity.
- 4 **Tightening Bounds Using Substitution:** Strengthening inductive hypotheses by subtracting lower-order terms helps refine bounds when standard methods provide loose approximations.
- 3 Recursion Tree Intuition: A recursion tree models the breakdown of recursive calls, where the total complexity is derived by summing work across all levels.
- 2 Master Theorem Cases: The master theorem classifies recurrences into three cases based on how f(n) compares to  $n^{\log_b(a)}$ , determining whether recursion, work per level, or additional growth dominates.

- 5 Solving Recurrences: Common methods to solve recurrences include substitution, recursion trees, and the master theorem, each providing different approaches to analyze recursive complexity.
- 4 **Tightening Bounds Using Substitution:** Strengthening inductive hypotheses by subtracting lower-order terms helps refine bounds when standard methods provide loose approximations.
- 3 Recursion Tree Intuition: A recursion tree models the breakdown of recursive calls, where the total complexity is derived by summing work across all levels.
- 2 Master Theorem Cases: The master theorem classifies recurrences into three cases based on how f(n) compares to  $n^{\log_b(a)}$ , determining whether recursion, work per level, or additional growth dominates.
- 1 O,  $\Omega$ , and  $\Theta$  notations describe upper, lower, and tight bounds on algorithm growth (o and  $\omega$  represent strict bounds).

# Introduction to Algorithms



Content has been extracted from *Introduction to Algorithms*, Fourth Edition, by Cormen, Leiserson, Rivest, and Stein. MIT Press, 2022.

Visit https://mitpress.mit.edu/9780262046305/introduction-to-algorithms/.
Original slides from *Introduction to Algorithms 6.046J/18.401J*, Fall 2005 Class by Prof. Charles

Leiserson and Prof. Erik Demaine. MIT OpenCourseWare Initiative available at https://ocw.mit.edu/courses/6-046j-introduction-to-algorithms-sma-5503-fall-2005/.