数值分析 期末速通教程

4. 数值积分与数值微分

4.1 插值型求积公式

[**例4.1.1**] 求求积公式 $\int_{-h}^{h} f(x) \mathrm{d}x \approx A_{-1} \cdot f(-h) + A_0 \cdot f(0) + A_1 \cdot f(h)$ 中的待定系数, s.t. 代数精度尽量高, 并指出其代数精度.

[解] 分别带入
$$f(x)=1,x,x^2$$
 得:
$$\begin{cases} A_{-1}+A_0+A_1=2h\\ -h\cdot A_{-1}+h\cdot A_1=0\\ h^2\cdot A_{-1}+h^2\cdot A_1=\frac{2}{3}h^3 \end{cases}$$
,解得:
$$\begin{cases} A_{-1}=\frac{h}{3}\\ A_0=\frac{4}{3}h\text{ , b代数精度}\geq 2.\\ A_1=\frac{h}{3} \end{cases}$$

因
$$\int_{-h}^h x^3 \mathrm{d}x = 0 = \frac{h}{3} (-h)^3 + \frac{h}{3} h^3$$
 , $\int_{-h}^h x^4 \mathrm{d}x = \frac{2}{5} h^5 \neq \frac{h}{3} (-h)^3 4 + \frac{h}{3} h^4$, 故代数精度 $= 3$.

[定理4.1.1] 给定 (n+1) 个相异节点,可唯一确定一个至少有 n 次代数精度的求积公式

$$\int_a^b f(x) \mathrm{d}x pprox \sum_{i=0}^n A_i \cdot f(x_i) \,.$$

[**证**] 设该求积公式至少有 m 次代数精度. 分别带入 $f(x)=x^k$ $(k=0,1,\cdots,m)$ 得:

$$\begin{cases} A_0 + A_1 + \dots + A_n = C_0 \\ A_0 x_0 + A_1 x_1 + \dots + A_n x_n = C_1 \\ A_0 x_0^2 + A_1 x_1^2 + \dots + A_n x_n^2 = C_2 \\ \dots \\ A_0 x_0^m + A_1 x_1^m + \dots + A_n x_n^m = C_m \end{cases}$$
,其中 $C_k = \int_a^b \rho(x) \cdot x^k \mathrm{d}x \ (k = 0, 1, \dots, m)$.

m=n 且 x_i $(i=0,1,\cdots,n)$ 互异时, 上述方程有唯一解 A_0,A_1,\cdots,A_n .

[定理4.1.2] [插值型求积公式]
$$\int_a^b \rho(x) \cdot f(x) \mathrm{d}x \approx \sum_{i=0}^n A_i \cdot f(x_i)$$
 , 积分余项
$$E_n(f) = \int_a^b \rho(x) \cdot R_n(x) \mathrm{d}x = \int_a^b \rho(x) \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x) \mathrm{d}x$$
 , 其中
$$A_i = \int_a^b \rho(x) \cdot l_i(x) \mathrm{d}x \ \ (i=0,1,\cdots,n)$$
 , $l_i \ \ (i=0,1,\cdots,n)$ 为 Lagrange 插值基函数. [注] $\rho(x) = 1$ 时,有 $\int_a^b x^m \mathrm{d}x = \sum_{i=0}^n A_i x^m \ \ (0 \le m \le n)$. 取 $x = 1$ 得: $\sum_{i=0}^n A_i = b - a$.

[例4.1.2] 求区间 [0,1] 上以 3 个节点 $x_0=rac{1}{4}$, $x_1=rac{1}{2}$, $x_2=rac{3}{4}$ 为求积节点的插值型求积公式.

[解]
$$\int_0^1 f(x) \mathrm{d}x pprox \sum_{i=0}^2 A_i \cdot f(x_i)$$
 , 其中:

$$\textcircled{1} A_0 = \int_0^1 l_0(x) \mathrm{d}x = \int_0^1 \frac{\left(x - \frac{1}{2}\right) \left(x - \frac{3}{4}\right)}{\left(\frac{1}{4} - \frac{1}{2}\right) \left(\frac{1}{4} - \frac{3}{4}\right)} \mathrm{d}x = \frac{2}{3} \ .$$

$$\textcircled{2} A_1 = \int_0^1 l_1(x) \mathrm{d}x = -rac{1}{3} \ .$$

故
$$\int_0^1 f(x) \mathrm{d}x pprox rac{2}{3} f\left(rac{1}{4}
ight) - rac{1}{3} f\left(rac{1}{2}
ight) + rac{2}{3} f\left(rac{3}{4}
ight).$$

[**定理4.1.3**] 求积公式 $I_n(f)=\sum_{i=0}^n A_i f(x_i)$ 至少有 n 次代数精度 iff 它是插值型的.

[**定义4.1.2**] 若求积公式 $I_n(f)=\sum_{i=0}^n A_i f(x_i)$ s.t. $\displaystyle\max_{1\leq i\leq n}\{x_i-x_{i-1}\}\sum_{i=0}^n A_i\cdot f(x_i)=\int_a^b f(x)\mathrm{d}x$, 则称该求积公式**收敛**.

[定理4.1.4] [求积公式收敛的充分条件] 若求积公式 $I_n(f)=\sum_{i=0}^n A_i f(x_i)$ 中 $A_k>0$ $(k=0,1,\cdots,n)$, 则该求积公式收敛.

4.2 Newton-Cotes 公式

[定理4.2.1] [Newton-Cotes 公式] 将区间 [a,b] n 等分,取步长 $h=\frac{b-a}{n}$,等距节点 $x_i=a+i\cdot h$ $(i=0,1,\cdots,n)$,权函数 $\rho(x)=1$.令 $x=a+t\cdot h$,则插值型求积公式的求积系数 $A_i=\int_a^b l_i(x)\mathrm{d}x=\frac{(-1)^{n-i}h}{i!(n-i)!}\int_0^n\prod_{j=0\atop j\neq i}^n(t-j)\mathrm{d}t$ $(i=0,1,\cdots,n)$.称求积公式

$$\int_a^b f(x) \mathrm{d}x pprox (b-a) \sum_{i=0}^n C_i^{(n)} \cdot f(x_i)$$
 为 n 阶 Newton-Cotes 公式, 其中 $C_i^{(n)} = rac{A_i}{b-a}$ 称为 Cotes 系数.

[**注1**] Cotes 系数与 f(x) 和 [a,b] 无关, 只与 n 和 i 有关.

[**注2**] 代入
$$f(x) = 1$$
 得: $\sum_{i=0}^{n} C_{i}^{(n)} = 1$.

[**注3**] Newton-Cotes 公式 $I_n(f)$ 的代数精度:

- ① n 为偶数时, $I_n(f)$ 有 (n+1) 阶代数精度.
- ② n 为奇数时, $I_n(f)$ 有 n 阶代数精度.
- ③ n 为偶数时, 若 $I_n(f)$ 需达到 (n+1) 阶代数精度, 则需计算 (n+1) 个系数和 (n+1) 个函数值.
- ④ (n+1) 为奇数时,若 $I_{n+1}(f)$ 需达到 (n+1) 阶代数精度,则需计算 (n+2) 个系数和 (n+2) 个函数值. 故一般用 n 为偶数时的 Newton-Cotes 公式.

[定理4.2.2] [常用的 Newton-Cotes 公式]

(1) [**梯形公式**] n=1 , 即 2 个节点时, Cotes 系数 $C_0^{(1)}=C_1^{(1)}=rac{1}{2}$.

梯形公式
$$\int_a^b f(x) \mathrm{d}x pprox rac{b-a}{2} [f(a)+f(b)] \stackrel{\Delta}{=\!=\!=} T$$
 , 有 1 次代数精度.

积分余项
$$E_T(f) = -rac{(b-a)^3}{12}f''(\eta)$$
 , 其中 $f''(x) \in C[a,b]$, $\eta \in (a,b)$.

(2) [**Simpson 公式**]
$$n=2$$
 , 即 3 个节点时, $C_0^{(2)}=rac{1}{6}$, $C_1^{(2)}=rac{4}{6}$, $C_2^{(2)}=rac{1}{6}$.

Simpson 公式
$$\int_a^b f(x) \mathrm{d}x pprox \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2} \right) + f(b) \right] \stackrel{\Delta}{=\!\!=} S$$
 , 有 3 次代数精度.

积分余项
$$E_S(f)=-rac{b-a}{180}igg(rac{b-a}{2}igg)^4f^{(4)}(\eta)$$
 , 其中 $\eta\in(a,b)$.

[**例4.2.1**] 用梯形公式、Simpson 公式求积分 $I = \int_{0.5}^1 \sqrt{x} \mathrm{d}x$.

[解]

(1)
$$Ipprox rac{1-0.5}{2}\Big(\sqrt{0.5}+\sqrt{1}\Big)pprox 0.4268$$
 .

(2)
$$Ipprox rac{1-0.5}{6} \Biggl(\sqrt{0.5} + 4\sqrt{rac{0.5+1}{2}} + \sqrt{1}\Biggr) pprox 0.4309$$
 .

[**例4.2.2**] 用 Simpson 公式求积分 $\int_0^1 e^{-x} dx$, 并估计误差.

[解]
$$S = \frac{1-0}{6} \left(\mathrm{e}^{-0} + 4 \mathrm{e}^{-\frac{1}{2}} + \mathrm{e}^{-1} \right) pprox 0.63$$
 .

$$|R_S(f)| = \left| -rac{1-0}{180} igg(rac{1-0}{2}igg)^4 f^{(4)}(\eta)
ight| \leq rac{1}{180} \cdot rac{1}{2} \cdot \mathrm{e}^0 pprox 0.0003472 \,.$$

4.3 复化求积公式

[定理4.3.1] [复化求积公式]

(1) [复化梯形公式]
$$Ipprox T_n(f)=rac{h}{2}igg[f(a)+2\sum_{k=1}^{n-1}f(x_k)+f(b)igg]$$
 .

余项
$$E_{T_n}(f) = -rac{b-a}{12} h^2 f''(\xi)$$
 , 其中 $\xi \in (a,b)$.

(2) [**复化 Simpson 公式**]
$$Ipprox S_n(f)=rac{h}{6}iggl[f(a)+4\sum_{k=0}^{n-1}f\left(x_{k+rac{1}{2}}
ight)+2\sum_{k=1}^{n-1}f(x_k)+f(b)iggr]$$
 , 其中

$$x_{k+rac{1}{2}} = x_k + rac{h}{2}$$
 .

余项
$$E_{S_n}(f)=-rac{b-a}{2880}h^4f^{(4)}(\xi)$$
 , 其中 $\xi\in(a,b)$.

[**例4.3.1**] 分别用复化梯形公式、复化 Simpson 公式求积分 $\int_1^9 \sqrt{x} \mathrm{d}x$, 取 n=4 .

[解]
$$h=rac{9-1}{4}=2$$
 , $f(x)=\sqrt{x}$, $x_k=1+2k$ $\ (k=1,2,3)$, $x_{k+rac{1}{2}}=2+2k$ $\ (k=0,1,2,3)$,

(1)
$$T_4(f) = rac{h}{2} \left[f(1) + 2 \sum_{k=1}^{n-1} f(x_k) + f(9)
ight] pprox 17.23$$
 .

$$(2)\,S_4 = rac{h}{6} \left[f(1) + 4 \sum_{k=0}^3 f\left(x_{k+rac{1}{2}}
ight) + 2 \sum_{k=1}^3 f(x_k) + f(9)
ight] pprox 17.33 \,.$$

[**例4.3.2**] 用复化梯形公式求积分 $\int_0^1 \mathrm{e}^x \mathrm{d}x$, 应将区间 [0,1] 划分为多少等份才能 s.t. 截断误差不超过 $\frac{1}{2} \times 10^{-5}$.

[解]
$$f(x)=\mathrm{e}^x$$
 , $f''(x)=\mathrm{e}^x$. $h=rac{1}{n}$.

$$|R_T(f)|=\left|-rac{b-a}{12}h^2f''(\eta)
ight|\leqrac{1}{12}\left(rac{1}{n}
ight)^2\mathrm{e}\leqrac{1}{2} imes10^{-5}$$
 , 其中 $\eta\in(0,1)$.

解得: $n \geq 212.85$, 取 n = 213 即可.

4.4 数值微分

[**定理4.4.1**] [插值型求导公式] 用 n 阶 Lagrange 插值多项式 $L_n(x)$ 近似函数 f(x) 时, 有 $f'(x) pprox L_n'(x)$.

(1) 误差
$$f'(x) - L'_n(x) = rac{f^{(n+1)}(\xi)}{(n+1)!}\omega'(x) + rac{\omega(x)}{(n+1)!} \left[rac{\mathrm{d}}{\mathrm{d}x} f^{(n+1)}(\xi)
ight].$$

(2) 求某节点
$$x_i$$
 $(i=0,1,\cdots,n)$ 处的导数值时, 误差 $f'(x)-L'_n(x)=rac{f^{(n+1)}(\xi)}{(n+1)!}\omega'(x_i)$.

[定理4.4.2] [两点公式] 设节点等距,步长为 h . 函数 f(x) 在两节点 x_0 , $x_1=x_0+h$ 处的函数值分别为 $f(x_0)$, $f(x_1)$, 则线性插值函数 $L_1(x)=\frac{x-x_1}{h}f(x_0)+\frac{x-x_0}{h}f(x_1)$, 则 $L_1'(x)=\frac{f(x_1)-f(x_0)}{h}$, 进而 $L_1'(x_0)=L_1'(x_1)=\frac{f(x_1)-f(x_0)}{h} \ .$