AArch64
Instructions

Index by Encoding External Registers

HAFGRTR_EL2, Hypervisor Activity Monitors Fine-Grained Read Trap Register

The HAFGRTR EL2 characteristics are:

Purpose

Provides controls for traps of MRS reads of Activity Monitors System registers.

Configuration

This register is present only when FEAT_AMUv1 is implemented and FEAT_FGT is implemented. Otherwise, direct accesses to HAFGRTR_EL2 are undefined.

Attributes

HAFGRTR EL2 is a 64-bit register.

Field descriptions

63 62 61 60 5

AMEVTYPER16_EL0|AMEVCNTR16_EL0|AMEVTYPER15_EL0|AMEVCNTR15_EL0|AMEVTYPER14_EL0|AMEV

Bits [63:50]

Reserved, res0.

AMEVTYPER1<x>_EL0, bit [19+2x], for x = 15 to 0 When AMEVTYPER1<x> is implemented:

Trap MRS reads of <u>AMEVTYPER1<x>_EL0</u> at EL1 and EL0 using AArch64 and MRC reads of <u>AMEVTYPER1<x></u> at EL0 using AArch32 when EL1 is using AArch64 to EL2.

AMEVTYPER1<x>_EL0 Meaning

MRS reads of 0b0 AMEVTYPER1<x> EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER1<x> at EL0 using AArch32 are not trapped by this mechanism. If EL2 is implemented and 0b1 enabled in the current Security state, HCR EL2. $\{E2H, TGE\} != \{1, 1\}, EL1 is$ using AArch64, and either EL3 is not implemented or SCR EL3.FGTEn == 1, then, unless the read generates a higher priority exception: • MRS reads of AMEVTYPER1<x> EL0

- MRS reads of
 <u>AMEVTYPER1<x>_EL0</u>
 at EL1 and EL0 using
 AArch64 are trapped to
 EL2 and reported with
 EC syndrome value 0x18.
- MRC reads of
 <u>AMEVTYPER1<x></u> at
 EL0 using AArch32 are
 trapped to EL2 and
 reported with EC
 syndrome value 0x03.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, res0.

AMEVCNTR1<x>_EL0, bit [18+2x], for x = 15 to 0 When AMEVCNTR1<x> is implemented:

Trap MRS reads of <u>AMEVCNTR1<x>_EL0</u> at EL1 and EL0 using AArch64 and MRC reads of <u>AMEVCNTR1<x></u> at EL0 using AArch32 when EL1 is using AArch64 to EL2.

|--|

0d0	MRS reads of
	$\underline{AMEVCNTR1} < x > \underline{EL0}$ at EL1
	and EL0 using AArch64 and
	MRC reads of
	AMEVCNTR1 <x> at EL0</x>
	using AArch32 are not
	trapped by this mechanism.
0b1	If EL2 is implemented and
	enabled in the current
	Security state, <u>HCR_EL2</u> .
	$\{E2H, TGE\} != \{1, 1\}, EL1 is$
	using AArch64, and either
	EL3 is not implemented or
	SCR_{EL3} .FGTEn == 1, then,
	unless the read generates a
	higher priority exception:
	• MRS reads of
	AMEVCNTR1 <x> EL0</x>
	at EL1 and EL0 using
	AArch64 are trapped to
	EL2 and reported with
	EC syndrome value
	0x18.
	• MRC reads of
	AMEVCNTR1 <x> at</x>
	ELO I AA 100

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

EL0 using AArch32 are trapped to EL2 and reported with EC

syndrome value 0x03.

Otherwise:

Reserved, res0.

AMCNTEN<x>, bit [17x], for x = 1 to 0

Trap MRS reads and MRC reads of multiple System registers.

Enables a trap to EL2 the following operations:

 At EL1 and EL0 using AArch64: MRS reads of AMCNTENCLR<x>_EL0 and AMCNTENSET<x>_EL0. • At EL0 using AArch32 when EL1 is using AArch64: MRC reads of AMCNTENCLR<x> and AMCNTENSET<x>.

AMCNTEN <x></x>	Meaning	
0b0	The operations listed above are not trapped by this mechanism. If EL2 is implemented and enabled in the current Security state, HCR_EL2. {E2H, TGE} != {1, 1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then,	
0b1		
	unless the read generates a higher priority exception:	
	 MRS reads at EL1 and EL0 using AArch64 of AMCNTENCLR<x>_EL0 and AMCNTENSET<x>_EL0 are trapped to EL2 and reported with EC syndrome value 0×18.</x></x> MRC reads at EL0 using AArch32 of AMCNTENCLR<x> and AMCNTENSET<x> are trapped to EL2 and reported with EC syndrome value 0×03.</x></x> 	

The reset behavior of this field is:

ullet On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Bits [16:5]

Reserved, res0.

AMEVCNTR0<x> EL0, bit [x+1], for x = 3 to 0

Trap MRS reads of <u>AMEVCNTR0<x>_EL0</u> at EL1 and EL0 using AArch64 and MRC reads of <u>AMEVCNTR0<x></u> at EL0 using AArch32 when EL1 is using AArch64 to EL2.

AMEVCNTR0 <x>_EL0</x>	Meaning
-----------------------	---------

0b0	MRS reads of
	$\underline{AMEVCNTR0} < x > \underline{EL0}$ at EL1
	and EL0 using AArch64 and
	MRC reads of
	$\underline{AMEVCNTR0} < x > at EL0$
	using AArch32 are not
	trapped by this mechanism.
0b1	If EL2 is implemented and
	enabled in the current
	Security state, <u>HCR_EL2</u> .
	$\{E2H, TGE\} != \{1, 1\}, EL1 is$
	using AArch64, and either
	EL3 is not implemented or
	$\underline{SCR_EL3}$.FGTEn == 1, then,
	unless the read generates a
	higher priority exception:

- MRS reads of
 <u>AMEVCNTR0<x>_EL0</u>
 at EL1 and EL0 using
 AArch64 are trapped to
 EL2 and reported with
 EC syndrome value
 0x18.
- MRC reads of
 <u>AMEVCNTR0<x></u> at
 EL0 using AArch32 are
 trapped to EL2 and
 reported with EC
 syndrome value 0x03.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Accessing HAFGRTR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, HAFGRTR_EL2

op0	op1	CRn	CRm	op2
0b11	0b100	0b0011	0b0001	0b110

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2, NV> == '11' then
        X[t, 64] = NVMem[0x1E8];
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
       AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.FGTEn == '0' then
        UNDEFINED;
    elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        X[t, 64] = HAFGRTR\_EL2;
elsif PSTATE.EL == EL3 then
    X[t, 64] = HAFGRTR\_EL2;
```

MSR HAFGRTR_EL2, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b100	0b0011	0b0001	0b110

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
        NVMem[0x1E8] = X[t, 64];
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION DEFINED "EL3 trap priority
when SDD == '1'" && SCR EL3.FGTEn == '0' then
        UNDEFINED;
    elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        HAFGRTR\_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
    HAFGRTR\_EL2 = X[t, 64];
```

AArch32 Registers AArch64 Registers AArch32 Instructions AArch64 Instructions Index by Encoding External Registers

28/03/2023 16:01; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.