Lending Club Loan Prediction

Capstone Project #2

Introduction

The project goal is to train a classification model to predict bad loans on a major lending platform, Lending Club.

The typical lending process:

- 1. Applicants submit their loan applications to Lending Club
- 2. Individual lenders can directly browse and select loan applications that they want to fund.

Eventually, borrowers pay interests and principals back to lenders.

With this business model, Lending Club is considered P2P lending. There's still the risk of investors to run the risk of investing in a bad loan. This issue is to be addressed in this project by developing a predictive model to identify bad loans by using information available on loan applications. Then, investors can make more objective and data-driven assessment of loan applications to minimize risk.

We can download the dataset from the Lending Club website: https://www.lendingclub.com/info/statistics.action.

However, it requires signing up as a member to download the dataset. Thus, in this project, we will use a dataset available from Kaggle. The dataset was downloaded from : https://www.kaggle.com/wordsforthewise/lending-club?select=rejected_2007_to_2018Q4.csv.gz

Unfortunately, this was updated a year ago, so, it's not the most recent data.

Exploratory Data Analysis

Loan Application Frequency

Lending Club was launched back in 2012. Since then, the platform has gotten more exposure and popularity. Thus, we expected a significant increase in its loan portfolios over the years.

Interest Rate by Grade

We can see that interest rates for grade D, E, F, G increase quickly from 2014.

Interest Rate over time and grade

We have very few data points from 2007 to 2014. Let's take a closer look to see if this increase in average rate is not due to the small number of observations.

	int_rate						
grade	Α	В	С	D	E	F	G
issue_yr							
2007.0	78	98	141	99	100	52	35
2008.0	318	594	580	419	285	111	86
2009.0	1203	1445	1348	817	308	105	55
2010.0	2567	2805	2070	1253	336	91	34
2011.0	5579	4722	2203	1261	272	54	10
2012.0	10753	16805	9902	5088	795	103	24
2013.0	17057	40313	24693	14505	3231	608	15
2014.0	35333	53460	44042	20510	7066	1980	179
2015.0	70132	91783	77457	32740	9450	1363	248
2016.0	66862	114783	92317	36707	9932	2364	530
2017.0	76300	108943	88425	34572	9837	1574	768
2018.0	122999	99155	76680	36228	9179	312	118

Borrowing Purpose

Debt consolidation, credit card, and home improvement seems to be the top 3 borrowing purposes through Lending Club.

Distribution of Income Across Grade

There seems to be a slight difference in income level across grade, with one grade has a high density of income above \$100,000. Perhaps it may not be beneficial to dive too deep into it, except having a brief look at the median income across each grade. We do see that while other grades seem to have similar median incomes, grade A does stand out.

Income by Professions

Because of the large number of observations that we have, we can construct a reliable distribution of annual incomes.

But first, further transformation:

- 1. Filtering for loans where the reported income is less than 1 million USD
- 2. Filtering for loans where Debt-to-Income ratio is less than 100 percent. If it is greater than or equal to 100, I wonder why we would have made such loans in the first place. I could have been more careful by capping dti value at 100.

Changing employment years into numeric.

- 1. Filling unknown values for home-ownership as Rent
- 2. Standardizing the values of employment title (emp_title)

Because people will most likely lie on their incomes when their income is low, we can filter out for data if:

- 1. Income is lower than \$70,000 but has been verified by Lending Club2
- 2. Income is higher than \$70,000 but lower than \$120,000
- 3. Income is higher than \$120,000 but has been verified by Lending Club

The choice of limit of \$70,000 and \$120,000 is arbitrary to filter out loans where income levels seem unrealistic.

	min	mean	median	max	count
emp_title					
other	0	55,211	50,000	3,330,432	98333
nurse	10,000	84,118	81,000	320,000	29515
teacher	0	74,662	75,000	367,500	22437
manager	2,500	84,846	82,000	4,800,000	22218
owner	0	93,432	85,000	1,000,000	13998
driver	0	74,401	75,000	1,000,000	10264
supervisor	500	76,947	75,340	780,000	9738
sales	0	87,748	80,000	2,000,000	8722
project manager	0	92,144	90,000	460,000	8616
general manager	20,000	93,502	84,500	700,000	6739
engineer	2,439	113,053	91,000	110,000,000	5973
truck driver	14,000	73,688	75,000	790,000	5680
office manager	0	66,101	70,000	300,000	5288
director	0	123,013	102,000	1,000,000	5090
president	7,956	129,495	100,000	3,000,000	4730
operations manager	15,300	86,669	84,000	450,000	4595
police officer	20,000	89,610	89,550	307,000	4502

Interesting Facts:

- 1. Teacher and Nurse Their minimum salary is only around \$12,000, which is lower than US' Poverty Level for individuals.
- 2. Relatively higher income people (>\$400,000 and even \$1,000,000) still use Lending Club to borrow money.
- 3. Some jobs traditionally associated with high income have very min income, such as attorney, director, engineer. And these salaries have been verified by Lending Club. Might be just a typo and missing a '0.

Fico Range and Grade

No surprise here, Grade A has the highest Fico Score Range.

Charge off rate vs Verification status

I define that a loan is considered charge-off when the value of loan_status is Charged Off or Default.

Charge Off Rate vs Verification Status

Visualization

Categorical Features

Numerical Features

Correlation Heatmap

We can see from the heatmap that there are several highly correlated features. Highly correlated features can affect the accuracy of the regression model. We will find and drop highly correlated features.

Once we've done that, we're ready for modeling.

Classification Model

In this projects, several widely used algorithms are compared using Pycaret module, including:

- 1. CatBoost Classifier
- 2. Light Gradient Boosting Machine
- 3. Random Forest Classifier
- 4. K Neighbors Classifier

	Model	Accuracy	AUC	Recall	Prec.	F1	Карра	мсс	TT (Sec)
0	CatBoost Classifier	0.7568	0.8360	0.7805	0.7612	0.7707	0.5120	0.5121	63.8516
1	Light Gradient Boosting Machine	0.7328	0.8031	0.7754	0.7308	0.7524	0.4627	0.4637	3.6287
2	Gradient Boosting Classifier	0.6678	0.7274	0.7102	0.6734	0.6913	0.3324	0.3329	1032.0488
3	Random Forest Classifier	0.6219	0.6707	0.5766	0.6589	0.6150	0.2469	0.2490	11.3751
4	K Neighbors Classifier	0.5327	0.5439	0.5638	0.5528	0.5583	0.0623	0.0623	744.4443

CatBoost Classifier was found to be the best performing model for our purpose.

Then, we set up CatBoost Classifier and train it on our data.

	Accuracy	AUC	Recall	Prec.	F1	Карра	мсс
0	0.7580	0.8372	0.7820	0.7621	0.7719	0.5143	0.5145
1	0.7582	0.8373	0.7818	0.7625	0.7720	0.5147	0.5148
2	0.7557	0.8351	0.7786	0.7606	0.7695	0.5098	0.5099
3	0.7566	0.8360	0.7801	0.7611	0.7705	0.5115	0.5117
4	0.7565	0.8367	0.7794	0.7613	0.7702	0.5113	0.5114
5	0.7582	0.8364	0.7800	0.7635	0.7717	0.5149	0.5150
6	0.7580	0.8370	0.7798	0.7633	0.7715	0.5145	0.5146
7	0.7586	0.8380	0.7812	0.7634	0.7722	0.5156	0.5157
8	0.7576	0.8363	0.7810	0.7620	0.7714	0.5135	0.5137
9	0.7561	0.8351	0.7784	0.7613	0.7698	0.5106	0.5107
Mean	0.7574	0.8365	0.7802	0.7621	0.7711	0.5131	0.5132
SD	0.0010	0.0009	0.0012	0.0010	0.0009	0.0020	0.0020

Based on 10-fold CV CatBoost:

- Accuracy = 75%
- AUC = .84

ROC Curves

The performance of the model can also be seen in the ROC Curves. Using scikitplot package - ROC curves were plotted.

Feature Importance

SHAP value can be generated with the Pycaret model. In this project, we used it to determine the feature importance.

Interest rate was found to have the highest feature value.

Prediction

Making predictions with our model on the test data resulting in similar performance of the training data.

- Accuracy = 75%
- AUC = .84

	Model	Accuracy	AUC	Recall	Prec.	F1	Карра	мсс
0	CatBoost Classifier	0.7571	0.8364	0.7809	0.7614	0.771	0.5125	0.5127

To Improve

There are things I would like to do in the future to improve accuracy:

- 1. Ensemble machine learning model
- 2. PCA