Thomas Fowley 15315353

ST003: Statistical Methods For Computer Science Assignment 5

Question 1. A box contains 5 red and 5 blue marbles. Two marbles are withdrawn randomly. If they are the same colour, then you win \$1.10; if they are different colours, then you lose \$1.00. Calculate:

(a) The expected value of the amount you win

$$E[X] = Xn i=1 xiP(X = xi) // from notes$$

 $P(winning) * win + P(losing) * loss = expected value$
 $E[X] = 1.1 * 4/9 + (-1) * 5/9 = -0.06667$

(b) The variance of the amount you win.

Var(X) = E[x^2] - (E[x])^2 // from notes
E[X^2] =
$$(1.1)^2 * 4/9 + (-1)^2 * 5/9 = 1.0933$$

(E[X])^2 = $(-0.06667)^2 = 0.003086419$
= 1.08889

Question 2. Suppose you carry out a poll following an election. You do this by selecting n people uniformly at random and asking whether they voted or not, letting Xi = 1 if person i voted and Xi = 0 otherwise. Suppose the probability that a person voted is 0.6.

(a) Calculate E[Xi] and Var(Xi).

Thomas Fowley 15315353

(b) What is E[Y]? Is it the same as E[X] or different, and why?

E[X] = E[Xi] // since the people are sampled independently

Thus, E[X] = 0.6

E[Y] = the expected number of people who did vote (i=1) from the sample (n) // from formula

Thus, E[Y] = 0.6n // likelihood of vote multiplied by sample size

0.6 != 0.6n therefore, **E[Y]** is not the same as **E[X]**

(c) What is E[1/ n Y]?

Since E[Y] = 0.6n // found in previous question

$$E[(1/n)Y] = (1/n) * 0.6n$$

0.6n / n is simply 0.6

Thus, E[(1/n)Y] = 0.6

(d) What is the variance of 1/n Y (express in terms of V ar(X))? Hints: use linearity of the expectation and the fact that people are sampled independently.

 $Var((1/n)*Y) = (1/n)^2Var(Y)$ // taken from notes

 $Var(Y) = Var(\Sigma(n, i=1) Xi)$ // E[Y] = E[Xn], calculated in previous answer thus n will be multiplied

=
$$\sum$$
(n, i=1)Var(Xi) // linearity notes

=
$$nVar(X)$$
 // sum =n and $var(Xi) = Var(X)$ since people are sampled independently

Thus, $Var((1/n)*Y) = (1/n)^2 * n (Var(X))$

= (1/n)Var(X)

Question 3. Suppose that 2 balls are chosen without replacement from an urn consisting of 5 white and 8 red balls. Let Xi equal 1 if the i'th ball selected is white, and let it equal 0 otherwise.

(a) Give the joint probability mass function of X1 and X2

	x = 0	x = 1	P(X2 = y)
y = 0	14/39	10/39	24/39
y = 1	10/39	5/39	15/39
P(X1 = x)	8/13	5/13	1

Probability of X1 is out of 13 potential balls, X2 is 12. Since X2 must come after X1.

Probabilities were calculated using this assumption.

Thomas Fowley 15315353

(b) Are X1 and X2 independent? (Use the formal definition of independence to determine this)

The formal definition of independence states that two events E and F are independent if:

$$P(E \cap F) = P(E) * P(F)$$

P(X1 \cap X2) = 5/13 * 15/39 = 25/169 // values calculated for previous question

P(X1) * P(X2) = 5/39 // value calculated in previous question

5/39! = 25/169 therefore **X1** and **X2** are not independent.

(c) Calculate E[X2]

$$E[X2] = P(X2=white) * 1 + (1-p(X2=white)) * 0 // values of X2 multiplied by their probability $E[Xi] = 15/39 * 1 + 24/39 * 0 = 15/39$$$

(d) Calculate E[X2|X1 = 1]

$$E[X|Y = y] = \sum x \ xP(X = x|Y = y) \ // \ taken from notes$$

 $P(X = x|Y = y) = P((X=x \text{ and } Y = y) \ / \ P(Y = y) \ // \ notes$
 $P((X=x \text{ and } Y = y) \ / \ P(Y = y) = (5/39) \ / \ (5/13) = 1/3 \ // \ values \ taken from \ q3a$

$$E[X2|X1 = 1] = (p(true) * 1) + (1-p(true) * 0)$$