Complex Analysis - MSO202A

Preena Samuel

IIT-Kanpur

Contents

- Lecture 1
 - What is a complex number?
 - Geometric interpretation
 - Polar Form
 - De Moivre's formula

A *complex number* is an ordered pair of real numbers (x, y).

- x is called the *real* part.
- y is called the *imaginary* part.

(x,y)=x(1,0)+y(0,1). (Recall that \mathbb{R}^2 is a vector space over \mathbb{R}) Denoting (0,1) as i we have the representation (x,y)=x+iy. This is the representation we use!!

The real and imaginary parts don't interact over +.

$$x + iy = x' + iy'$$
 if and only if $x = x'$, $y = y'$.

Definition of a complex number

By a complex number we mean a number z of the form x + iy where $x, y \in \mathbb{R}$.

x:= real part y:=imaginary part.

Definition of a complex number

By a complex number we mean a number z of the form x+iy where $x,y\in\mathbb{R}.$

x:= real part y:=imaginary part.

The set of all complex numbers is denoted by \mathbb{C} .

- ullet C is a \mathbb{R} -vector space.
- Consider the maps

 $Re: \mathbb{C} \to \mathbb{R}$ given by $x + iy \mapsto x$.

 $Im: \mathbb{C} \to \mathbb{R}$ given by $x + iy \mapsto y$.

They are \mathbb{R} -linear.

• \mathbb{C} is a field: $(x_1 + iy_1) + (x_2 + iy_2) := x_1 + x_2 + i(y_1 + y_2)$ $(x_1 + iy_1).(x_2 + iy_2) := x_1x_2 - (y_1y_2) + i(x_1y_2 + x_2y_1)$

- z = x + iy is the vector (\mathbf{x}, \mathbf{y}) on the \mathbb{R}^2 -plane (or complex plane).
- length of the z is the length of the line segment from (0,0) to (x,y). Denoted as |z|.

Length of z

For z = x + iy, we have $|z| = \sqrt{x^2 + y^2}$. It is referred also as *modulus of z*.

• Reflection of z about the x-axis is called the conjugate of z, denoted as \bar{z} .

Conjugate of z

For z = x + iy, we have $\bar{z} = x - iy$

• Note that $|z|^2 = z.\overline{z} = \overline{z}.z$. And, $\frac{1}{z} = \frac{\overline{z}}{|z|^2}$.

Properties of \bar{z} and |z|

- $Re(z) = \frac{z+\bar{z}}{2}$, $Im(z) = \frac{z-\bar{z}}{2i}$; $|Re(z)| \le |z|$ and $|Im(z)| \le |z|$.
- $\bullet |z| = |\bar{z}|.$
- |z| = 0 if and only if z = 0.
- $|z_1z_2| = |z_1||z_2|$, $|\frac{z_1}{z_2}| = \frac{|z_1|}{|z_2|}$
- Triangle inequality: $|z_1 + z_2| \le |z_1| + |z_2|$.
- Parallelogram identity: $|z_1 + z_2|^2 + |z_1 z_2|^2 = 2(|z_1|^2 + |z_2|^2)$

Recall that every point on the real plane (except (0,0)) can be written in the form $(r\cos\theta, r\sin\theta)$ for a suitable $r \in \mathbb{R}^{>0}$ and $\theta \in \mathbb{R}$. This gives rise to the polar form of a complex number.

The polar form of a complex number $z \neq 0$ is the representation of z in its polar co-ordinates.

Polar form of z = x + iy

If $(x, y) = (r \cos \theta, r \sin \theta)$ in polar co-ordinates then $r(\cos \theta + i \sin \theta)$ is the polar form of z.

Notation

$$e^{i\theta} := \cos \theta + i \sin \theta$$
.

So, polar form of $z = re^{i\theta}$.

Properties of polar form

- $re^{i\theta} = re^{i(\theta+2\pi n)}$ for any integer n.
- $(r_1e^{i\theta_1})(r_2e^{i\theta_2}) = r_1r_2e^{i(\theta_1+\theta_2)}$.
- $\bullet \frac{r_1 e^{i\theta_1}}{r_2 e^{i\theta_2}} = \frac{r_1}{r_2} e^{i(\theta_1 \theta_2)}.$

Polar form of z

Let $z = re^{i\theta}$.

$$|z| = \sqrt{r^2 \cos^2 \theta + r^2 \sin^2 \theta} = r$$

 θ is called the *argument of z*. Denoted as arg(z).

It is a multi-valued function from $\mathbb{C}^* \to \mathbb{R}$.

The *principal value* of arg(z) is the unique value of arg(z) satisfying $-\pi < arg(z) \le \pi$. It is denoted as Arg(z).

Properties of arg(z)

- $re^{i\theta} = r'e^{i\theta'} \iff r = r' \text{ and } \theta = \theta' + 2n\pi$.
- $arg(z_1z_2) = arg(z_1) + arg(z_2) \pmod{2\pi}$.
- $arg(\frac{z_1}{z_2}) = arg(z_1) arg(z_2) \pmod{2\pi}$

If $x+iy=re^{i\theta}$ and $-\pi/2<\theta<\pi/2$ then $\tan\theta=\left(y/x\right)$.

If
$$x + iy = re^{i\theta}$$
 and $-\pi/2 < \theta < \pi/2$ then $\tan \theta = (y/x)$.

PERIOD: 77

Domain: ALL $x \neq \frac{\pi}{2} + n\pi$

RANGE: $(-\infty, \infty)$

VERTICAL ASYMPTOTES: $x = \frac{\pi}{2} + n\pi$

SYMMETRY: ORIGIN

If $x+iy=r\mathrm{e}^{i\theta}$ and $-\pi/2<\theta<\pi/2$ then $\tan\theta=\left(y/x\right)$.

If $x+iy=re^{i\theta}$ and $-\pi/2<\theta<\pi/2$ then $\theta=\tan^{-1}(y/x)$. Since $\frac{y}{x}=\frac{-y}{-x}$, so,

Convention

$$\operatorname{Arg}(z) = \begin{cases} \tan^{-1}(y/x), & \text{if } x > 0\\ \pi + \tan^{-1}(y/x), & \text{if } x < 0, y \ge 0\\ -\pi + \tan^{-1}(y/x), & \text{if } x < 0, y < 0\\ -\frac{\pi}{2}, & \text{if } x = 0, y < 0\\ \frac{\pi}{2}, & \text{if } x = 0, y > 0 \end{cases}$$
(1)

de Moivre's Theorem

If m is any integer then

$$(e^{i\theta})^m = e^{im\theta},$$

i.e., $(\cos \theta + i \sin \theta)^m = \cos m\theta + i \sin m\theta$.

The roots of $\omega^n=z=re^{i\theta}$ are given by $\sqrt[n]{r}e^{i(\theta+2k\pi)/n}$ where $k=0,1,\ldots,n-1$.