Tarefa #1 Modelo de um sistema de abastecimento de água

Matheus Brito Faria

I. Modelo

O modelo utilizado retirado de [1] simula a distribuição de água entre duas caixas d'água com alturas diferentes como mostra a imagem 1. As equações do modelo foram colocadas na forma para solucionar o problema usando o método de Range Kutta de $4^{\rm a}$ ordem como mostra as equações abaixo. Os parâmetros utilizados estão na tabela I. A entrada do sistema é a válvula W_2 e as saídas são as alturas H_1 , H_2 e a vazão de massa W_3 medidos por sensores.

O modelo foi simulado por 1000 segundos e o ponto de operação foi definido em 500 segundos, para permitir um melhor desenvolvimentos das curvas observadas em um tempo maior.

Os valores inciais de cada estado foram 3 metros em H_1 , 2 metros em H_2 e 1 Kg/s em W_3 como vai ser possível observar nas curvas geradas posteriormente.

$$\begin{array}{rcl} \dot{H_{1}} & = & \frac{-W_{3}}{\rho \cdot A_{1}} \\ \dot{H_{2}} & = & \frac{-W_{2} + W_{3}}{\rho \cdot A_{2}} \\ \dot{W_{3}} & = & [(Z_{1} - Z_{2}) + (H_{1} - H_{2}) - \\ & & \frac{-b \cdot (W_{3})^{\alpha}}{g \cdot (\rho \cdot A_{3})^{\alpha + 1}}] \cdot \frac{g \cdot \rho \cdot A_{3}}{L} \end{array}$$

Figura 1. Imagem do modelo.

Tabela I PARÂMETROS UTILIZADOS NO MODELO.

Parâmetro	Valor	Unidade
α	2	_
ρ	1000	kg/m^3
A_1	7.0686	m^2
A_2	0.7854	m^2
A_3	0.0007	m^2
Z_1	3	m
Z_2	2	m
L	100	m
β	0.2618	rad
g	9.83	m/s^2

II. QUESTÃO 1

A. Função degrau

Para a simulação da função degrau foi estabelecido que após os 500 segundos a vazão de massa W_2 valeria 5 kg/s como é mostrado na figura 2. Dessa forma é possível observar a mudança de comportamento da função em todas as saídas nas figuras 3, 4 e 5.

Verificando em especial a figura 4 é possível verificar o nível da água subindo até o ponto de operação e depois decaindo com a abertura da válvula.

Figura 2. Entrada w_2 da função degrau.

Figura 3. Saída h_1 da função degrau.

Figura 4. Saída h_2 da função degrau.

Figura 5. Saída w_3 da função degrau.

B. Função pulso

Para a simulação da função pulso foi estabelecido que o pulso estaria entre o ponto de operações, dessa forma a função vale 5 kg/s entre 400 e 600 segundos como é mostrado na figura 6. Dessa forma é possível observar a mudança de comportamento da função em todas as saídas nas figuras 7, 8 e 9.

Em especial a saída H_2 e W_3 demonstram um comportamento interessante, depois que o pulso termina nos 600 segundo o nível da água na figura 8 continua a crescer até ficar relativamente estável e isso é comprovado pois a vazão de massa na figura 9 vai a zero, chegando a quase possuir um valor negativo onde a água voltaria pelo cano.

Figura 6. Entrada w_2 da função pulso.

Figura 7. Saída h_1 da função pulso.

Figura 8. Saída h_2 da função pulso.

Figura 9. Saída w_3 da função pulso.

C. Função senoidal

Para a simulação da função senoidal foi estabelecido que após o ponto de operações a função se comportaria como uma senoide de tamanho 5, deslocada no eixo positivo também em 5 unidades. Isso foi feito para que a vazão de massa W_2 não possua valores negativos que não condizem com a realidade física do problema. A entrada pode ser observada na figura 10. Dessa forma é possível observar a mudança de comportamento da função em todas as saídas nas figuras 11, 12 e 13.

Nesse caso é possível observar que a saída H_1 praticamente não possuiu uma mudança característica como as outras saídas, isso ocorre por que o estado H_1 varia de acordo com mudanças bruscas e contínuas em W_3 fazendo com que ele tenha um comportamento mais estável como pode ser conferido na figura 11. Já H_2 e W_3 demonstram comportamento senoidal visível depois do ponto de operação como mostrado nas figuras 12 e 13.

Figura 10. Entrada w_2 da função senoidal.

Figura 11. Saída h_1 da função senoidal.

Figura 12. Saída h_2 da função senoidal.

Figura 13. Saída w_3 da função senoidal.

D. Função gaussiana

Para a simulação da função senoidal foi estabelecido que após o ponto de operações a função se comportaria de forma aleatória seguindo uma gaussiana com média nula após o ponto de operação somada de 5 unidades para manter os valores acima de zero. A entrada pode ser observada na figura 14. Dessa forma é possível observar a mudança de comportamento da função em todas as saídas nas figuras 15, 16 e 17.

Nesse caso é possível observar que todas as saídas obtiveram um comportamento estável, salvaguardo um leve ruído. Isso ocorre pois as mudanças no sinal são muito bruscas e nada contínuas, possuindo uma frequência muito alta. Isso torna as mudanças pouco perceptíveis nas saídas que vão se comportar como uma média desses valores.

Figura 14. Entrada w_2 da função gaussiana.

Figura 15. Saída h_1 da função gaussiana.

Figura 16. Saída h_2 da função gaussiana.

Figura 17. Saída w_3 da função gaussiana.

III. QUESTÃO 2

Para mostrar que o sistema em questão não é linear é possível verificar se ele segue, ou não, o princípio da super posição, este que diz que se a soma das entradas de um sinal gerar uma saída igual a soma das saídas independentes, logo o sistema é linear.

$$y_1(t) = f(x_1(t))$$

$$y_2(t) = f(x_2(t))$$

$$y(t) = f(\alpha x_1(t) + \beta x_2(t))$$

$$y(t) = \alpha y_1(t) + \beta y_2(t)$$

Nesse caso foi simulado o modelo para duas entradas diferentes, o primeiro para uma função degrau e o segundo para uma função senoidal como é mostrada na página a seguir, todas as saídas foram colocadas lado a lado para comparação.

Posteriormente ambos sinais de entrada foram somados e a resultante se tornou uma nova entrada para uma terceira simulação, enquanto os sinais de saída da função degrau e da função senoidal também foram somados.

Dessa maneira é possível observar que as saídas são completamente diferentes o que contradiz o princípio da superposição, logo o sistema não é linear.

IV. QUESTÃO 3

Para esse problema foram simuladas três entradas com diferentes pontos de operação. A entrada em questão é a função degrau, onde o sinal adiantado possui valor 5 de 100 até 300 segundos, o sinal normal possui valor 5 de 400 até 600 segundos e o sinal atrasado possui valor 5 de 700 até 900 segundos.

Visto isso é possível perceber que as saídas se comportam de maneira diferente em cada um dos casos, mostrando assim que o sistema em questão é não linear.

A. Sinal adiantado

Figura 18. Entrada w_2 da função pulso adiantada.

Figura 20. Saída h_2 da função pulso adiantada.

Figura 19. Saída h_1 da função pulso adiantada.

Figura 21. Saída w_3 da função pulso adiantada.

B. Sinal pulso no ponto de operação

Figura 22. Entrada w_2 da função pulso no ponto de operação.

Figura 23. Saída h_1 da função pulso no ponto de operação.

Figura 25. Saída w_3 da função pulso no ponto de operação.

C. Sinal pulso atrasada

Figura 26. Entrada w_2 da função pulso atrasada.

Figura 27. Saída h_1 da função pulso atrasada.

Figura 29. Saída w_3 da função pulso atrasada.

REFERÊNCIAS

[1] C. Garcia, Modelagem e Simulação de Processos Industriais e de Sistemas Eletromecânicos Vol. 1. Edusp, 2005.