

Digital Logic Circuit (SE273 – Fall 2020)

Lecture 8: Sequential Circuits Design

Jaesok Yu, Ph.D. (jaesok.yu@dgist.ac.kr)

Assistant Professor

Department of Robotics Engineering, DGIST

Goal

- Learn how to analyze sequential circuits
 - State equations, state table, state diagram
 - Finite state machines

- Learn how to design sequential circuits
 - Sequential circuit design procedure
 - Design sequential circuits in Verilog

General Digital Systems

- General Digital Systems
 - Most digital systems can be partitioned into a control section and data flow section containing registers and logic
 - Data flow section: Register transfer operations > Register-Transfer-Level (RTL) design
 - Digital sequencer > Finite State Machine (FSM)/Algorithmic State Machine (ASM) design

General Digital Systems

Model for a general synchronous sequential-logic circuit

```
Mealy machine

Outputs

= f(inputs, present states)
```

Moore machine Outputs = f(present states)

Clock cycle and Update of State / Output

Minimum Cycle Time

$$T \ge 1 + 2 + 3$$

- Clock to input stable delay
- ② Propagation delay of next state generation logic

Next state = f(inputs, present states)

3 Setup time of state memories

Analysis

State Equations

- A clocked sequential circuit can be described by state equations
 - Also called a transition equation
 - It specifies the next state as a function of the present state and inputs

How can we describe this circuit?

0 detector

• Makes the output 'high' when a 0 is detected in a stream of 1's

$$A(t+1) = A(t)x(t) + B(t)x(t)$$

$$B(t+1) = A'(t)x(t)$$

$$y(t) = [A(t) + B(t)]x'(t)$$

State Table

 The time sequences of inputs, outputs, and FF states can be enumerated in a state table (transition table)

			1	4(t +	1) = Ax +	Bx								
	sent ate	Input		ext ate	B(t+1) = Output	A'x $y = Ax'$	+ <i>Bx</i>							
A	В	x	A	В	y			Alt	ernati	ve 1	forr	n of	f a state	table
0	0	0	0	0	0				N	ext	Stat	e	Out	put
0	0	1	0	1	0			sent						
0	1	0	0	0	1		31	ate	<i>x</i> =	U	X :	= 1	x = 0	X = 1
0	1	1	1	1	0		Α	В	Α	В	A	В	y	y
1	0	0	0	0	1		0	0	0	0	0	1	0	0
1	0	1	1	0	0		0	1	0	0	1	1	1	0
1	1	0	0	0	1		1	0	0	0	1	0	1	0
1	1	1	1	0	0		1	1	0	0	1	0	1	0

State Diagram

• We can graphically present the sequential circuit as a state diagram

• State: circle

Directed line: transitions btw states

Present		N	lext	Stat	e	Outpu			
	ate	x = 0 $x = 1$		= 1	x = 0	<i>x</i> = 1			
Α	В	A	В	A	В	y	y		
0	0	0	0	0	1	0	0		
0	1	0	0	1	1	1	0		
1	0	0	0	1	0	1	0		
1	1	0	0	1	0	1	0		

Flip-Flop Input Equations

- A set of Boolean equations that generates the inputs to FFs
 - Type of flip-flops
 - A list of Boolean equations for combinational circuits

$$D_A = Ax + Bx$$
$$D_B = A'x$$

$$y = (A + B)x'$$

Analysis with D Flip-Flops

The circuit we want to analyze is as follows:

$$D_A = A \oplus x \oplus y$$

D_A symbol implies a D FF with output A

State equation is identical to input equation

Present state	Inputs	Next state
A	x y	A
0	0 0	0
0	0 1	1
0	1 0	1
0	1 1	0
1	0 0	1
1	0 1	0
1	1 0	O
1	1 1	1

- Analysis with JK Flip-Flops
 - The circuit we want to analyze is as follows:

Need to refer to the corresponding characteristic table

	sent ate	Input		ext	Flip-Flop Inputs				
A	В	X	A	В	J _A	K _A	J _B	K_B	
0	0	0	0	1	0	0	1	0	
0	0	1	0	0	0	0	0	1	
0	1	0	1	1	1	1	1	0	
0	1	1	1	0	1	0	0	1	
1	0	0	1	1	0	0	1	1	
1	0	1	1	0	0	0	0	0	
1	1	0	0	0	1	1	1	1	
1	1	1	1	1	1	0	0	0	

Analysis with JK Flip-Flops

The circuit we want to analyze is as follows:

$$\begin{split} J_A &= B \quad K_A = Bx' \\ J_B &= x' \quad K_B = A'x + Ax' = A \oplus x \end{split}$$

	sent ate	Input		ext ate		Flip-F Inpu		lop its	
A	В	x	A	В	J _A	K_A	J _B	K_B	
0	0	0	0	1	0	0	1	0	
0	0	1	0	0	0	0	0	1	
0	1	0	1	1	1	1	1	0	
0	1	1	1	0	1	0	0	1	
1	0	0	1	1	0	0	1	1	
1	0	1	1	0	0	0	0	0	
1	1	0	0	0	1	1	1	1	
1	1	1	1	1	1	0	0	0	

$$A(t + 1) = JA' + K'A$$

 $B(t + 1) = JB' + K'B$
 $A(t + 1) = A'B + AB' + Ax$
 $B(t + 1) = B'x' + ABx + A'Bx'$

Analysis with T Flip-Flops

The circuit we want to analyze is as follows:

$$Q(t+1) = T \oplus Q = T'Q + TQ'$$

Present State		Input	Ne Sta		Output		
Α	В	x	A	В	y		
0	0	0	0	0	0		
0	0	1	0	1	0		
0	1	0	0	1	0		
0	1	1	1	0	0		
1	0	0	1	0	0		
1	0	1	1	1	0		
1	1	0	1	1	1		
1	1	1	0	0	1		

Finite State Machine (FSM)

There are two types of FSMs (we've already covered)

Example w/ D FF

$$D_A = Ax + Bx$$
$$D_B = A'x$$

$$y = (A + B)x'$$

Example w/T FF

Design of Sequential Circuits

Overview of Sequential Circuit Design

- For massive ICs, we rely on automated synthesis tools
 - As a sequential building block, synthesis tools use D flip-flop
 - A sequential circuit requires a state table for specification (or state diagram)
 - It consists of flip-flops and combinational gates
 - # of FFs = determined by the # of states

Design Procedure

A list of recommended steps:

- From the word description and specifications of the desired operation, derive a state diagram for the circuit.
- **2.** Reduce the number of states if necessary.
- **3.** Assign binary values to the states.
- **4.** Obtain the binary-coded state table.
- **5.** Choose the type of flip-flops to be used.
- **6.** Derive the simplified flip-flop input equations and output equations.
- **7.** Draw the logic diagram.

State Reduction

- State reduction allows us to design a seq. circuit w/ fewer flip-flops
 - m flip-flops $\rightarrow 2^m$ states
 - But sometimes reduced # of FFs may require more combinational gates to realize its next state and/or output

state	a	a	b	c	d		
input	0	1	0	1	0		
output	0	0	0	0	0		
	e	f	f	g	f	g	a
	1	1	0	1	0	0	
	1	1	0	1	0	0	

State Reduction

- We need the state table for the reduction
 - It is more convenient to look at state table rather than a diagram
 - We look for two present states that go to the same next state and have the same output for both input combinations

	Next	State	Output			
Present State	x = 0	<i>x</i> = 1	x = 0	x = 1		
а	а	b	0	0		
b	c	d	0	0		
c	a	d	0	0		
d	e	f	0	1		
e	a	f	0	1		
f	g	f	0	1		
g	a	f	0	1		

State Reduction

• We may perform state reduction multiple times

	Next	State	Output			
Present State	x = 0	x = 1	x = 0	<i>x</i> = 1		
а	а	b	0	0		
b	c	d	0	0		
c	a	d	0	0		
d	e	f	0	1		
e	a	f	0	1		
f	e	f	0	1		

	Next	State	Output			
Present State	x = 0	x = 1	x = 0	x = 1		
a	a	b	0	0		
\boldsymbol{b}	C	d	0	0		
c	a	d	0	0		
d	e	d	0	1		
e	a	d	0	1		

	state	\boldsymbol{a}	a	b	\boldsymbol{c}	d	e	f	f	\boldsymbol{g}	f	\boldsymbol{g}	a
Original	input	0	1	0	1	0	1	1	0	1	0	0	
	output	0	0	0	0	0	1	1	0	1	0	0	
	state	a	a	b	c	d	e	d	d	e	d	e	a
Reduced	input	0	1	0	1	0	1	1	0	1	0	0	
	output	0	0	0	0	0	1	1	0	1	0	0	

Design Procedure

A list of recommended steps:

- From the word description and specifications of the desired operation, derive a state diagram for the circuit.
- 2. Reduce the number of states if necessary.
- **3.** Assign binary values to the states.
- **4.** Obtain the binary-coded state table.
- **5.** Choose the type of flip-flops to be used.
- **6.** Derive the simplified flip-flop input equations and output equations.
- **7.** Draw the logic diagram.

State Assignment

- To design a sequential circuit w/ physical components, it is necessary to assign unique binary codes to the states
 - With n bits, we can assign codes to 2ⁿ states

State	Assignment 1, Binary	Assignment 2, Gray Code	Assignment 3, One-Hot
а	000	000	00001
\boldsymbol{b}	001	001	00010
c	010	011	00100
d	011	010	01000
e	100	110	10000

	Next	State	Output		
Present State	x = 0	<i>x</i> = 1	x = 0	<i>x</i> = 1	
а	a	b	0	0	
b	C	d	0	0	
c	a	d	0	0	
d	e	d	0	1	
e	a	d	0	1	

	Next	State	Output		
Present State	x = 0	<i>x</i> = 1	x = 0	<i>x</i> = 1	
000	000	001	0	0	
001	010	011	0	0	
010	000	011	0	0	
011	100	011	0	1	
100	000	011	0	1	

Design Procedure

A list of recommended steps:

- From the word description and specifications of the desired operation, derive a state diagram for the circuit.
- 2. Reduce the number of states if necessary.
- **3.** Assign binary values to the states.
- **4.** Obtain the binary-coded state table.
- **5.** Choose the type of flip-flops to be used.
- 6. Derive the simplified flip-flop input equations and output equations.
- **7.** Draw the logic diagram.

Synthesis Using D Flip-Flops

- Suppose we wish to design a circuit that detects a sequence of three or more consecutive 1's
 - Input is a serial bit stream
 - We can derive a state table from a given state diagram

State Table for Sequence Detector

Present State		Input	Next State		Output	
A	В	X	A	В	у	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	0	0	
0	1	1	1	0	0	
1	0	0	0	0	0	
1	0	1	1	1	0	
1	1	0	0	0	1	
1	1	1	1	1	1	

We choose two D flip-flops (represent four states)

Label outputs as A and B

Flip-Flop Input Equations w/ D FF

- It can be obtained directly from the next-state columns of A and B
 - Express in sum-of-minterms form

$$A(t+1) = D_A(A,B,x) = \Sigma(3,5,7)$$
 $B(t+1) = D_B(A,B,x) = \Sigma(1,5,7)$ $y(A,B,x) = \Sigma(6,7)$

- Schematic of a Sequence Detector
 - The schematic of the designed sequential circuit is

What type of FSM??

Synthesis Using JK Flip-Flops

- Manual synthesis procedure for sequential circuits w/ JK flip-flops is the same as with D FFs
 - Except that input equations must be evaluated from the present-state to the next-state transition (excitation table)

FF	Excitation	า T	able
O(t)	O(t - 1)	,	V

Q(t)	Q(t=1)	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

Present State				ext ate	Fli	lip-Flop Inputs			
Α	В	<i>x</i>	A	В	J _A	K _A	J _B	K _B	
0	0	0	0	0	0	X	0	X	
0	0	1	0	1	0	X	1	X	
0	1	0	1	0	1	X	X	1	
0	1	1	0	1	0	X	X	0	
1	0	0	1	0	X	0	0	X	
1	0	1	1	1	X	0	1	X	
1	1	0	1	1	X	0	X	0	
1	1	1	0	0	X	1	X	1	

Flip-Flop Input Equations w/ JK FF

Now, we can derive input equations as a function of present state A,
 B, and input x

Present State				Flip-Flop Inputs				
A	В	<i>x</i>	A	В	J _A	K _A	J _B	K _B
0	0	0	0	0	0	X	0	X
0	0	1	0	1	0	X	1	X
0	1	0	1	0	1	X	X	1
0	1	1	0	1	0	X	X	0
1	0	0	1	0	X	0	0	X
1	0	1	1	1	X	0	1	X
1	1	0	1	1	X	0	X	0
1	1	1	0	0	X	1	X	1

- More example: 111 detector
 - Design a 111 detector

More example: 111 detector

- 1. Power on Reset
- 2. Other conditions: Not defined in any states.
 - Initial state
 - Prevent undefined state
- 3. Reset to initial or pre-defined state
 - Synchronous reset
 - Asynchronous reset

Generally

Not

Defined

In the

State diagram

More example: 111 detector

Bad design example

Bad design example

Design verification by checking timing diagram for a test vector

- glitches
- does not work when clock rate is very high
- consecutive 111 patterns are not detected

Design procedure

✓ Draw the state diagram — State table reduction

✓ Write the state table

✓ Determine the excitation equations

- √ Finish the design
 - Output logic
 - Excitation logic

- Mealy 111 detector
 - State diagram

Moore 111 detector

0011100

Output is stable for a whole clock period even when inputs and other signals change.

Output is delayed by 1 clock cycle

Moore vs Mealy Machine

- ✓ Outputs depend only on the present state.
- ✓ Easier to design and debug than Mealy machines.
- ✓ But often contain more states than equivalent Mealy machines.
- ✓ No outputs occur during the transition.
- ✓ Cannot respond to an input until the active edge of the clock occurs;
 this is in contrast to a Mealy circuit.

Summary

- We learned how to analyze sequential circuits
 - State equations, state table, state diagram
 - Finite state machines: Mealy and Moore machines
- Learned how to design sequential circuits
 - Sequential circuit design procedure
 - Design sequential circuits in Verilog