

Hermon Laboratories Ltd. Harakevet Industrial Zone, Binyamina 30500, Israel

Tel. +972-4-6288001 Fax. +972-4-6288277

E-mail: mail@hermonlabs.com

TEST REPORT

ACCORDING TO: FCC 47CFR part 15 subpart E § 15. 407, RSS-247 issue 1

FOR:

Siemens Canada Limited pBST base station operating in 5.8 GHz band

Model: WiN7258

FCC ID:VG5WIN7258

This report is in conformity with ISO/ IEC 17025. The "A2LA Accredited" symbol endorsement applies only to the tests and calibrations that are listed in the scope of Hermon Laboratories accreditation. The test results relate only to the items tested. This test report shall not be reproduced in any form except in full with the written approval of Hermon Laboratories Ltd.

Report ID: SIERAD_28314_BS.docx

Date of Issue: 30-Jun-16

Table of contents

1	Applicant information	3
2	Equipment under test attributes	3
3	Manufacturer information	
4	Test details	
5	Tests summary	4
6	EUT description	
6.1	General information	
6.2	Ports and lines	5
6.3	Auxiliary equipment	
6.4	Test configuration	6
6.5	Transmitter characteristics	
7	Transmitter tests according to 47CFR part 15 subpart E and RSS-247 requirements	8
7.1	Peak output power	
7.2	Peak spectral power density	
7.3	Conducted out of band emissions	
8	APPENDIX A Test equipment and ancillaries used for tests	49
9	APPENDIX B Measurement uncertainties	
10	APPENDIX C Test laboratory description	
11	APPENDIX D Specification references	51
12	APPENDIX E Test equipment correction factors	
13	APPENDIX F Abbreviations and acronyms	

1 Applicant information

Client name: Siemens Canada Limited

Address: 300 Applewood Crescent, Unit 1, Concord, Ontario, Canada

Telephone: (905) 482 4558 **Fax:** (905) 856 1995

E-mail: Yair.Amran@siemens.com

Contact name: Mr. Yair Amran

2 Equipment under test attributes

Product name: Base station operating in 5.8 GHz band

Model(s):WiN7258Serial number:45849916915Hardware version:RFID=11Software release:BS4.5.4621.23Receipt date17-Apr-16

3 Manufacturer information

Manufacturer name: Siemens Canada Limited

Address: 300 Applewood Crescent, Unit 1, Concord, Ontario, Canada

Telephone: (905) 482 4558 **Fax:** (905) 856 1995

E-Mail: Yair.Amran@siemens.com

Contact name: Mr. Yair Amran

4 Test details

Project ID: 28314

Location: Hermon Laboratories Ltd. Harakevet Industrial Zone, Binyamina 30500, Israel

Test started: 17-Apr-16
Test completed: 18-Apr-16

Test specification(s): FCC 47CFR part 15 subpart E §15.407 and RSS-247 issue 1

5 Tests summary

Test	Status
Transmitter characteristics	
FCC section 15.407(a)(1-3), RSS-210 section A9.2, Peak output power	Pass
FCC section 15.407(a)(1-3), RSS-210 section A9.2, Peak spectral power density	Pass
FCC section 15.407(b), RSS-210 section A9.3, Conducted out of band emissions	Pass

This test report is an amendment to the test report RUGRAD_FCC.23642_rev2 issued by Hermon Laboratories. The current test report issued for compliance with RSS-247 Issue 1:2015 and the latest FCC part 15 subpart E standard version (for devices using digital modulation techniques in the 5725–5850 MHz bands).

The test results relate only to the items tested. Pass/ fail decision was based on nominal values.

	Name and Title	Date	Signature
Tested by:	Mr. S. Samokha, test engineer	April 20, 2016	Com
Reviewed by:	Mrs. M. Cherniavsky, certification engineer	May 22, 2016	Chu
Approved by:	Mr. M. Nikishin, EMC and radio group manager	June 30, 2016	ff

6 EUT description

6.1 General information

The EUT, base station of WiMAX system operating in 5.8 GHz band, comprises an Outdoor Unit (ODU) that includes modem, radio, data processing and management components, serving as an efficient platform for a wide range of services. It provides a wireless connection to the subscriber unit. The both EUT antennas are driven incoherently and there is no beanforming gain.

6.2 Ports and lines

Port type Port description		Connected from	Connected to	Qty.	Cable type	Cable length, m
Power	AC power	PoE adapter	AC mains	1	Unshielded	3
Power and telecom	48 VDC + Ethernet	EUT	PoE adapter	1	Shielded	3
RF	Antenna	EUT	Not teminated	2	NA	NA

6.3 Auxiliary equipment

D	escription	Manufacturer	Model number	Serial number
	Laptop	Lenovo	T410	2522WZN
PoE a	adapter (CPE)	RuggedWireless Ltd.	WiN1010 (0334B4848)	0507047

6.4 Test configuration

6.5 Transmitter characteristics

	ittor onarao								
Type of equipment									
V Stand-alone (Equipment with or without its own control provisions) Combined equipment (Equipment where the radio part is fully integrated within another type of equipment)									
						n anothei	type of equipm	ent)	
	Equipment intende			nost system	is)				
Intended use Condition of use									
V fixed					om all people				
mobile					from all people				
portable	May oper	ate at a	distance	closer than	20 cm to human	body			
Assigned frequency r		5725.0) – 5850.0) MHz					
Operating frequency		5730.0) – 5845 N	ИHz					
RF channel bandwidt	h	5 MHz	, 10 MHz						
Maximum rated outpu	ut power	At tran	smitter 50	0 Ω RF out	out connector (to	tal for 2 c	hains)		Bm for 5 MHz CBW Bm for 10 MHz CBW
			No						
					continuo	us variat	le		
Is transmitter output	power variable?	v		V	stepped	variable	with stepsize	0.5 d	В
•		V	Yes	minimum	RF power		•	-21 dl	Bm
				maximum	n RF power			23.12	dBm
Antenna connection					•			•	
. ,				Integral V with terr		mporary RF connector			
unique couplir	ng V stai	ndard co	nnector			without	ut temporary RF connector		
Antenna/s technical o	characteristics								
Туре	Manufad	cturer			Model number			Ga	in
Sector dual slant anten	nna MTI Wir	eless Ed	lge Ltd.	MT – 464018/ND (ANTN0074)			16 dBi		
Omnidirectional	MTI Wir			MT–462008/N/A (ANTN0076, N-Female) 9.5 dBi			dBi		
Transmitter 99% pow	er bandwidth			5 MHz, 10 MHz					
Type of modulation				QPSK 1/2, 16QAM 3/4, 64QAM 5/6					
Transmitter aggregate	e data rate/s. Mbp	s							
Bandwidth, MHz		irection		Q	PSK 1/2		16QAM 3/4		64QAM 5/6
		DL			4.608		13.824		23.04
5		UL			1.4688		4.4064		7.344
10		DL			9.216		27.648		46.08
10		UL			3.024		9.072		15.12
Type of multiplexing				OFDMA					
Modulating test signa	al (baseband)			PRBS					
Maximum transmitter	duty cycle in no	rmal us	е	75%	Tx ON time		Period		
Transmitter duty cycle supplied for test				60%	Tx ON time		Period		
Transmitter power so	ource								
	Nominal rated					ry type			
V DC	Nominal rated			V (via DC p	ower supply fror		ns)		
AC mains	Nominal rated	l voltage	е		Frequ	iency			
Common power sour	ce for transmitter	r and re	ceiver		٧	٧	es	n	10
-									

Test specification:	FCC section 15.407(a)(1-3), RSS-210 section A9.2, Peak output power					
Test procedure:	FCC section 15.407(a)(4); Public notice DA02-2138					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	17-Apr-16	verdict:	PASS			
Temperature: 23.2 °C	Air Pressure: 1016 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC			
Remarks:						

7 Transmitter tests according to 47CFR part 15 subpart E and RSS-247 requirements

7.1 Peak output power

7.1.1 General

This test was performed to measure the maximum peak output power at the transmitter RF antenna connector. Specification test limits are given in Table 7.1.1.

Table 7.1.1 Peak output power limits

Assigned frequency range, MHz	Maximum peak transmit power	Used limit*, dBm
5725 - 5850	The lesser of 1 W (30 dBm) or 17 dBm +10 log B	30.0 dBm

^{*}The maximum 26-dB emission bandwidth is B MHz, the limit is equal to:

11 dBm + 10 log B = $\bf A$ dBm (less than 250 mW = 24 dBm);

Note: If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power limit shall be reduced below the stated value by the amount in dB that the directional gain of antenna exceeds 6 dBi.

7.1.2 Test procedure

- **7.1.2.1** The EUT was set up as shown in Figure 7.1.1, energized and its proper operation was checked.
- **7.1.2.2** The EUT was adjusted to produce maximum available for end user RF output power.
- **7.1.2.3** The measurements were performed in continuous transmission mode of operation for carrier (channel) frequency at low, mid and high edges with a peak detector. The power was computed by integrating the spectrum across the 26 dB bandwidth of the signal as provided in the associated tables and plots.

Figure 7.1.1 Peak output power test setup

Test specification: FCC section 15.407(a)(1-3), RSS-210 section A9.2, Peak output power Test procedure: FCC section 15.407(a)(4); Public notice DA02-2138 Test mode: Compliance **PASS** Verdict: 17-Apr-16 Date(s): Temperature: 23.2 °C Air Pressure: 1016 hPa Relative Humidity: 48 % Power Supply: 48 VDC Remarks:

Table 7.1.2 Output power test results

ASSIGNED FREQUENCY RANGE: 5725-5850 MHz Power Meter

Average within RF burst **DETECTOR USED:**

MODULATING SIGNAL: PRBS TRANSMITTER OUTPUT POWER SETTINGS: Maximum 9.5 dBi ANTENNA GAIN:

EBW: 5 MHz

Modulation	Carrier frequency, MHz	Power at antenna 1, dBm	Power at antenna 2, dBm	Total power*, dBm	Limit, ** dBm	Margin***, dB	Verdict
	5732.5	23.48	22.52	26.04	26.50	-0.46	Pass
QPSK	5787.5	23.44	22.49	26.02	26.50	-0.48	Pass
	5842.5	23.54	22.70	26.15	26.50	-0.35	Pass
	5732.5	23.45	22.80	26.16	26.50	-0.34	Pass
64 QAM	5787.5	23.49	22.66	26.11	26.50	-0.39	Pass
	5842.5	23.58	22.70	26.19	26.50	-0.31	Pass

EBW:			10 MHz				
	5735.0	22.16	21.78	24.98	26.50	-1.52	Pass
QPSK	5787.5	22.44	22.28	25.39	26.50	-1.11	Pass
	5845.0	22.68	22.34	25.52	26.50	-0.98	Pass
	5735.0	22.18	21.75	25.00	26.50	-1.50	Pass

⁶⁴ QAM 5787.5 22.56 25.24 Pass 21.88 26.50 -1.26 22.67 21.92 26.50 Pass 5845.0 25.34 -1.16

^{* -} Total power, dBm = 10 log {(10^ ([P (dBm, Ant1)/10] + 10^ [(P (dBm, Ant2))/10]}

^{**} Limit, dBm = 30 -(Antenna gain-6) =26.5 dBm

^{***-} Margin, dB = Total power, dBm – specified limit, dBm.

Test specification:	FCC section 15.407(a)(1-3), RSS-210 section A9.2, Peak output power					
Test procedure:	FCC section 15.407(a)(4); P	FCC section 15.407(a)(4); Public notice DA02-2138				
Test mode:	Compliance	Verdict:	PASS			
Date(s):	17-Apr-16	verdict:	PASS			
Temperature: 23.2 °C	Air Pressure: 1016 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC			
Remarks:		•	•			

Table 7.1.3 EIRP test results

ASSIGNED FREQUENCY RANGE: 5725-5850 MHz
Power Meter

DETECTOR USED: Average within RF burst

MODULATING SIGNAL:
TRANSMITTER OUTPUT POWER SETTINGS:
ANTENNA GAIN:
PRBS
Maximum
9.5 dBi

EBW: 5 MHz

Modulation	Carrier frequency, MHz	Total power*, dBm	Antenna Gain, dBi	EIRP result*, dBm	Limit, dBm	Margin**, dB	Verdict
	5732.5	26.04	9.5	35.54	36.00	-0.46	Pass
QPSK	5787.5	26.02	9.5	35.50	36.00	-0.50	Pass
	5842.5	26.15	9.5	35.65	36.00	-0.35	Pass
64 QAM	5732.5	26.16	9.5	35.65	36.00	-0.35	Pass
	5787.5	26.11	9.5	35.61	36.00	-0.39	Pass
	5842.5	26.19	9.5	35.67	36.00	-0.33	Pass

EBW:			10 MHz				
	5735.0	24.98	9.5	34.48	36.00	-1.52	Pass
QPSK	5787.5	25.39	9.5	34.87	36.00	-1.13	Pass
	5845.0	25.52	9.5	35.02	36.00	-0.98	Pass
	5735.0	25.00	9.5	34.48	36.00	-1.52	Pass
64 QAM	5787.5	25.24	9.5	34.74	36.00	-1.26	Pass
	5845.0	25.34	9.5	34.82	36.00	-1.18	Pass

^{* -} EIRP Result, dBm = Total Power + Antenna Gain (dBi)

^{** -} Margin, dB = EIRP Result, dBm - specified limit, dBm

Test specification: FCC section 15.407(a)(1-3), RSS-210 section A9.2, Peak output power

Test procedure: FCC section 15.407(a)(4); Public notice DA02-2138

Test mode: Compliance Verdict: PASS

Temperature: 23.2 °C Air Pressure: 1016 hPa Relative Humidity: 48 % Power Supply: 48 VDC

Remarks:

Table 7.1.4 Output power test results

ASSIGNED FREQUENCY RANGE: 5725-5850 MHz
Power Meter

DETECTOR USED: Average within RF burst

MODULATING SIGNAL:
TRANSMITTER OUTPUT POWER SETTINGS:
ANTENNA GAIN:
PRBS
Maximum
16 dBi

CONFIGURATION: Antenna 1
EBW: 5 MHz

			<u> </u>				
Modulation	Carrier frequency, MHz	SA Reading, dBm	Antenna Gain, dBi	Output Power, dBm	Limit, ** dBm	Margin***, dB	Verdict
	5732.5	19.87	16.0	19.87	20.00	-0.13	Pass
QPSK	5787.5	19.81	16.0	19.81	20.00	-0.19	Pass
	5842.5	19.74	16.0	19.74	20.00	-0.26	Pass
	5732.5	19.86	16.0	19.86	20.00	-0.14	Pass
64 QAM	5787.5	19.90	16.0	19.90	20.00	-0.10	Pass
	5842.5	19.79	16.0	19.79	20.00	-0.21	Pass

EBW:		10 MHz					
	5735.0	19.67	16.0	19.67	20.00	-0.33	Pass
QPSK	5787.5	19.75	16.0	19.75	20.00	-0.25	Pass
	5845.0	19.78	16.0	19.78	20.00	-0.22	Pass
	5735.0	19.65	16.0	19.65	20.00	-0.35	Pass
64 QAM	5787.5	19.69	16.0	19.69	20.00	-0.31	Pass
	5845.0	19.76	16.0	19.76	20.00	-0.24	Pass

CONFIGURATION: Antenna 2 EBW: 5 MHz

Modulation	Carrier frequency, MHz	SA Reading, dBm	Antenna Gain, dBi	Output Power, dBm	Limit, ** dBm	Margin***, dB	Verdict
	5732.5	19.80	16.0	19.80	20.0	-0.20	Pass
QPSK	5787.5	19.85	16.0	19.85	20.0	-0.15	Pass
	5842.5	19.88	16.0	19.88	20.0	-0.12	Pass
	5732.5	19.66	16.0	19.66	20.0	-0.34	Pass
64 QAM	5787.5	19.99	16.0	19.99	20.0	-0.01	Pass
	5842.5	19.97	16.0	19.97	20.0	-0.03	Pass

EBW:	EBW: 10 MHz						
	5735.0	19.80	16.0	19.80	20.0	-0.20	Pass
QPSK	5787.5	19.78	16.0	19.78	20.0	-0.22	Pass
	5845.0	19.60	16.0	19.60	20.0	-0.40	Pass
	5735.0	19.80	16.0	19.80	20.0	-0.20	Pass
64 QAM	5787.5	19.68	16.0	19.68	20.0	-0.32	Pass
	5845.0	19.40	16.0	19.40	20.0	-0.60	Pass

^{* -} Output power, dBm = SA Reading

^{**} Limit, dBm = 30 -(Antenna gain - 6) = 20.0 dBm

^{***-} Margin, dB = Output power, dBm – specified limit, dBm.

Test specification: FCC section 15.407(a)(1-3), RSS-210 section A9.2, Peak output power

Test procedure: FCC section 15.407(a)(4); Public notice DA02-2138

Test mode: Compliance Verdict: PASS

Temperature: 23.2 °C Air Pressure: 1016 hPa Relative Humidity: 48 % Power Supply: 48 VDC

Remarks:

Table 7.1.5 EIRP test results

ASSIGNED FREQUENCY RANGE: 5725-5850 MHz
Power Meter

DETECTOR USED: Average within RF burst

MODULATING SIGNAL:
TRANSMITTER OUTPUT POWER SETTINGS:
ANTENNA GAIN:
PRBS
Maximum
16.0 dBi

CONFIGURATION: Antenna 1 EBW: 5 MHz

Modulation	Carrier frequency, MHz	Total power*, dBm	Antenna Gain, dBi	EIRP result*, dBm	Limit*, dBm	Margin**, dB	Verdict
	5732.5	19.87	16.0	35.87	36.00	-0.13	Pass
QPSK	5787.5	19.81	16.0	35.81	36.00	-0.19	Pass
	5842.5	19.74	16.0	35.74	36.00	-0.26	Pass
	5732.5	19.86	16.0	35.86	36.00	-0.14	Pass
64 QAM	5787.5	19.90	16.0	35.90	36.00	-0.10	Pass
	5842.5	19.79	16.0	35.79	36.00	-0.21	Pass

EBW: 10 MHz 5735.0 19.67 16.0 35.67 36.00 -0.33 Pass **QPSK** Pass 5787.5 19.75 16.0 35.75 36.00 -0.25 5845.0 19.78 16.0 35.78 36.00 -0.22 Pass 36.00 5735.0 19.65 16.0 35.65 -0.35Pass 64 QAM 5787.5 36.00 -0.31 19.69 16.0 35.69 Pass

16.0

35.76

36.00

-0.24

Pass

CONFIGURATION: Antenna 2 EBW: 5 MHz

19.76

			· · · · · · · · · · · · · · · · · · ·					
Modulation	Carrier frequency, MHz	SA Reading, dBm	Antenna Gain, dBi	EIRP result*, dBm	Limit*, dBm	Margin**, dB	Verdict	
	5732.5	19.80	16.0	35.80	36.00	-0.20	Pass	
QPSK	5787.5	19.85	16.0	35.85	36.00	-0.15	Pass	
	5842.5	19.88	16.0	35.88	36.00	-0.12	Pass	
	5732.5	19.66	16.0	35.66	36.00	-0.34	Pass	
64 QAM	5787.5	19.99	16.0	35.99	36.00	-0.01	Pass	
	5842.5	19.97	16.0	35.97	36.00	-0.03	Pass	

EBW: 10 MHz

	5735.0	19.80	16.0	35.80	36.00	-0.20	Pass
QPSK	5787.5	19.78	16.0	35.78	36.00	-0.22	Pass
	5845.0	19.60	16.0	35.60	36.00	-0.40	Pass
	5735.0	19.80	16.0	35.80	36.00	-0.20	Pass
64 QAM	5787.5	19.68	16.0	35.68	36.00	-0.32	Pass
	5845.0	19.40	16.0	35.40	36.00	-0.60	Pass

^{* -} EIRP Result, dBm = SA Reading + Antenna Gain (dBi)

Reference numbers of test equipment used

5845.0

HL 2214	HL 3301	HL 3302	HL 3768	HL 3903	HL 4275		
---------	---------	---------	---------	---------	---------	--	--

Full description is given in Appendix A.

^{** -} Margin, dB = EIRP Result, dBm - specified limit, dBm

Test specification:	FCC section 15.407(a)(1-3), RSS-210 section A9.2, Peak spectral power density				
Test procedure:	FCC section 15.407(a)(5); Public notice DA02-2138				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	17-Apr-16	verdict.	FASS		
Temperature: 23.2 °C	Air Pressure: 1016 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC		
Remarks:					

7.2 Peak spectral power density

7.2.1 General

This test was performed to measure the peak spectral power density at the transmitter RF antenna connector. Specification test limits are given in Table 7.2.1.

Table 7.2.1 Peak spectral power density limits

Assigned frequency range,	Measurement bandwidth,	Peak spectral power density,
MHz	kHz	dBm
5725.0 – 2850.0	500.0	

7.2.2 Test procedure

- **7.2.2.1** The EUT was set up as shown in Figure 7.2.1, energized and its proper operation was checked.
- **7.2.2.2** The EUT was adjusted to produce maximum available to end user RF output power.
- **7.2.2.3** The peak power spectral density was measured using a average detector and power averaging mode to find the highest level across the emission in any 500-kHz band after 100 sweeps of averaging. The test results are provided in the associated tables and plots.

Figure 7.2.1 Peak spectral power density test setup

Test specification:	FCC section 15.407(a)(1-3), RSS-210 section A9.2, Peak spectral power density				
Test procedure:	FCC section 15.407(a)(5); Public notice DA02-2138				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	17-Apr-16	verdict.	FASS		
Temperature: 23.2 °C	Air Pressure: 1016 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC		
Remarks:					

Table 7.2.2 Peak spectral power density test results

ASSIGNED FREQUENCY RANGE: 5725-5850 MHz

MODULATING SIGNAL:

TRANSMITTER OUTPUT POWER SETTINGS:

Maximum

DETECTOR USED: Average gated to the RF burst

RESOLUTION BANDWIDTH: 510 kHz VIDEO BANDWIDTH: 1500 kHz

RF CHAIN: Antenna connector 1 (the highest output power)

CHANNEL BANDWIDTH 5 MHz

ANTENNA GAIN: 9.5 dBi

11 T L 1 T 1 T C 7 T 1 T T 1		0.0 ab.			
Carrier frequency, SA Reading, MHz dBm/500 kHz		Peak power density*, dBm/500 kHz	Limit, dBm/500 kHz	Margin*, dB	Verdict
Modulation QPSK					
5732.5	17.73	20.73	26.5	-5.77	Pass
5787.5	17.08	20.08	26.5	-6.42	Pass
5842.5	16.82	19.82	26.5	-6.68	Pass
Modulation 64 QAM					
5732.5	17.50	20.50	26.5	-6.00	Pass
5787.5	16.46	19.46	26.5	-7.04	Pass
5842.5	16.65	19.65	26.5	-6.85	Pass

CHANNEL BANDWIDTH 10 MHz

Carrier frequency, MHz	SA Reading, dBm/500 kHz	Peak power density*, dBm/500 kHz	Limit, dBm/500 kHz	Margin*, dB	Verdict
Modulation QPSK					
5735.0	14.07	17.07	26.5	-9.43	Pass
5787.5	13.79	16.79	26.5	-9.71	Pass
5845.0	13.96	16.96	26.5	-9.54	Pass
Modulation 64 QAN	Λ				
5735.0	14.38	17.38	26.5	-9.12	Pass
5787.5	13.91	16.91	26.5	-9.59	Pass
5845.0	13.97	16.97	26.5	-9.53	Pass

^{*-} Peak power density = Spectrum Analyzer Reading + 10*Log(N)

^{** -} Margin, dB = Peak power density – specification limit

Test specification:

FCC section 15.407(a)(1-3), RSS-210 section A9.2, Peak spectral power density

Test procedure:

FCC section 15.407(a)(5); Public notice DA02-2138

Compliance

Compliance

Date(s):

17-Apr-16

Temperature: 23.2 °C

Air Pressure: 1016 hPa

Relative Humidity: 48 %

Power Supply: 48 VDC

Remarks:

Table 7.2.2 Peak spectral power density test results (continued)

ASSIGNED FREQUENCY RANGE: 5725-5850 MHz

MODULATING SIGNAL: PRBS
TRANSMITTER OUTPUT POWER SETTINGS: Maximum

DETECTOR USED: Average gated to the RF burst

RESOLUTION BANDWIDTH: 510 kHz
VIDEO BANDWIDTH: 1500 kHz

RF CHAIN: Antenna connector 1 (the highest output power)

ANTENNA GAIN: 16 dBi

CHANNEL BANDWIDTH

5	MHz	
J	1711 12	

OT IN COUNTY					
Carrier frequency, MHz	SA Reading, dBm/500 kHz	Peak power density*, dBm/500 kHz	Limit, dBm/500 kHz	Margin*, dB	Verdict
Modulation QPS	K				
5732.5	14.66	17.66	20.0	-2.34	Pass
5787.5	14.47	17.47	20.0	-2.53	Pass
5842.5	14.51	17.51	20.0	-2.49	Pass
Modulation 64 Q	AM				
5732.5	14.41	17.41	20.0	-2.59	Pass
5787.5	13.81	16.81	20.0	-3.19	Pass
5842.5	14.20	17.20	20.0	-2.80	Pass

CHANNEL BANDWIDTH 10 MHz

OTH WITHEL BY WIE	10 IVII 12				
Carrier frequency, MHz	SA Reading, dBm/500 kHz	Peak power density*, dBm/500 kHz	Limit, dBm/500 kHz	Margin*, dB	Verdict
Modulation QPSI	K				
5735.0	11.57	14.57	20.0	-5.43	Pass
5787.5	11.27	14.27	20.0	-5.73	Pass
5845.0	11.18	14.18	20.0	-5.82	Pass
Modulation 64 Q	AM				
5735.0	11.77	14.77	20.0	-5.23	Pass
5787.5	11.40	14.40	20.0	-5.60	Pass
5845.0	11.34	14.34	20.0	-5.66	Pass

^{*-} Peak power density = Spectrum Analyzer Reading + 10*Log(N)

Reference numbers of test equipment used

1.5-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-								
HL 2214	HL 3301	HL 3302	HL 3768	HL 3818	HL 3903	HL 4275		

Full description is given in Appendix A.

^{** -} Margin, dB = Peak power density - specification limit

Test specification:	FCC section 15.407(a)(1-3), RSS-210 section A9.2, Peak spectral power density				
Test procedure:	FCC section 15.407(a)(5); Public notice DA02-2138				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	17-Apr-16	verdict.	FASS		
Temperature: 23.2 °C	Air Pressure: 1016 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC		
Remarks:					

Plot 7.2.1 Peak spectral power density at low frequency within 6 dB band, antenna 1

Plot 7.2.2 Peak spectral power density at low frequency within 6 dB band, antenna 1

Test specification:	FCC section 15.407(a)(1-3), RSS-210 section A9.2, Peak spectral power density				
Test procedure:	FCC section 15.407(a)(5); Public notice DA02-2138				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	17-Apr-16	verdict.	PASS		
Temperature: 23.2 °C	Air Pressure: 1016 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC		
Remarks:					

Plot 7.2.3 Peak spectral power density at low frequency within 6 dB band, antenna 1

Plot 7.2.4 Peak spectral power density at low frequency within 6 dB band, antenna 1

10MHz

Emission Bandwidth

Modulation				6	64 QAM	1			
* Agilent							R T	5.734 832	0 GHz
Ref 27 dBm		#∆	tten 6 dB					14.	38 dBm
#Avg									
Log				1					
10	della	national	nau uu	ur u u S		non hu	поппп	ni tate	
dB/ Offst	A least at the state of	rin in la laterium - ile.	propried to the state of the st	estabili bib		en appropriate por appropriate participation and the first interest in the first interest in the first interest	Tanappear.	All the state of	
37	Marie III	иши	thill.	րդու	րությու	ишши	ШШШ	unin.'	
dB			1''				1.	1	
PAvg									la l
W1 S2									Hann
S3 FS A AA									
¤(f):									
FTun									
Swp									
									1
Center 5.735 000 #Res BW 510 kH			,	VBW 1.5 I	ИНz	1	#Sweep 2	Spai 00 ms (80)	n 12 MHz)1 pts)

Test specification:	FCC section 15.407(a)(1-3), RSS-210 section A9.2, Peak spectral power density				
Test procedure:	FCC section 15.407(a)(5); Public notice DA02-2138				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	17-Apr-16	verdict.	FASS		
Temperature: 23.2 °C	Air Pressure: 1016 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC		
Remarks:					

Plot 7.2.5 Peak spectral power density at mid frequency within 6 dB band, antenna 1

Plot 7.2.6 Peak spectral power density at mid frequency within 6 dB band, antenna 1

Test specification:	FCC section 15.407(a)(1-3), RSS-210 section A9.2, Peak spectral power density				
Test procedure:	FCC section 15.407(a)(5); Pul	FCC section 15.407(a)(5); Public notice DA02-2138			
Test mode:	Compliance	Verdict:	PASS		
Date(s):	17-Apr-16	verdict.	FASS		
Temperature: 23.2 °C	Air Pressure: 1016 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC		
Remarks:					

Plot 7.2.7 Peak spectral power density at mid frequency within 6 dB band, antenna 1

Plot 7.2.8 Peak spectral power density at mid frequency within 6 dB band, antenna 1

Test specification:	FCC section 15.407(a)(1-3), RSS-210 section A9.2, Peak spectral power density				
Test procedure:	FCC section 15.407(a)(5); Public notice DA02-2138				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	17-Apr-16	verdict.	FASS		
Temperature: 23.2 °C	Air Pressure: 1016 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC		
Remarks:					

Plot 7.2.9 Peak spectral power density at high frequency within 6 dB band, antenna 1

Plot 7.2.10 Peak spectral power density at high frequency within 6 dB band, antenna 1

Span 12 MHz

#Sweep 200 ms (8001 pts)

PAvg W1 S2 S3 FS A AA n(f):

Center 5.840 000 0 GHz

#Res BW 510 kHz

Test specification:	FCC section 15.407(a)(1-3), RSS-210 section A9.2, Peak spectral power density		
Test procedure:	FCC section 15.407(a)(5); Public notice DA02-2138		
Test mode:	Compliance	Verdict:	PASS
Date(s):	17-Apr-16	verdict.	FASS
Temperature: 23.2 °C	Air Pressure: 1016 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC
Remarks:			

Plot 7.2.11 Peak spectral power density at high frequency within 6 dB band, antenna 1

Plot 7.2.12 Peak spectral power density at high frequency within 6 dB band, antenna 1

VBW 1.5 MHz

Test specification:	FCC section 15.407(a)(1-3), RSS-210 section A9.2, Peak spectral power density		
Test procedure:	FCC section 15.407(a)(5); Public notice DA02-2138		
Test mode:	Compliance	Verdict:	PASS
Date(s):	17-Apr-16	verdict.	FASS
Temperature: 23.2 °C	Air Pressure: 1016 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC
Remarks:			

Plot 7.2.13 Peak spectral power density at low frequency within 6 dB band, antenna 2

Plot 7.2.14 Peak spectral power density at low frequency within 6 dB band, antenna 2

Test specification:	FCC section 15.407(a)(1-3), RSS-210 section A9.2, Peak spectral power density		
Test procedure:	FCC section 15.407(a)(5); Public notice DA02-2138		
Test mode:	Compliance	Verdict:	PASS
Date(s):	17-Apr-16	verdict.	FASS
Temperature: 23.2 °C	Air Pressure: 1016 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC
Remarks:			

Plot 7.2.15 Peak spectral power density at low frequency within 6 dB band, antenna 2

Plot 7.2.16 Peak spectral power density at low frequency within 6 dB band, antenna 2

Test specification:	FCC section 15.407(a)(1-3), RSS-210 section A9.2, Peak spectral power density		
Test procedure:	FCC section 15.407(a)(5); Public notice DA02-2138		
Test mode:	Compliance	Verdict:	PASS
Date(s):	17-Apr-16	verdict.	FASS
Temperature: 23.2 °C	Air Pressure: 1016 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC
Remarks:			

Plot 7.2.17 Peak spectral power density at mid frequency within 6 dB band, antenna 2

Plot 7.2.18 Peak spectral power density at mid frequency within 6 dB band, antenna 2

Span 12 MHz

#Sweep 200 ms (8001 pts)

FTun Swp

Center 5.787 500 0 GHz

#Res BW 510 kHz

Test specification:	FCC section 15.407(a)(1-3), RSS-210 section A9.2, Peak spectral power density		
Test procedure:	FCC section 15.407(a)(5); Public notice DA02-2138		
Test mode:	Compliance	Verdict:	PASS
Date(s):	17-Apr-16	verdict.	FASS
Temperature: 23.2 °C	Air Pressure: 1016 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC
Remarks:			

Plot 7.2.19 Peak spectral power density at mid frequency within 6 dB band, antenna 2

Plot 7.2.20 Peak spectral power density at mid frequency within 6 dB band, antenna 2

VBW 1.5 MHz

Test specification:	FCC section 15.407(a)(1-3), RSS-210 section A9.2, Peak spectral power density		
Test procedure:	FCC section 15.407(a)(5); Public notice DA02-2138		
Test mode:	Compliance	Verdict:	PASS
Date(s):	17-Apr-16	verdict.	FASS
Temperature: 23.2 °C	Air Pressure: 1016 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC
Remarks:			

Plot 7.2.21 Peak spectral power density at high frequency within 6 dB band, antenna 2

Plot 7.2.22 Peak spectral power density at high frequency within 6 dB band, antenna 2

Test specification:	FCC section 15.407(a)(1-3), RSS-210 section A9.2, Peak spectral power density		
Test procedure:	FCC section 15.407(a)(5); Public notice DA02-2138		
Test mode:	Compliance	Verdict:	PASS
Date(s):	17-Apr-16	verdict.	FASS
Temperature: 23.2 °C	Air Pressure: 1016 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC
Remarks:			

Plot 7.2.23 Peak spectral power density at high frequency within 6 dB band, antenna 2

Plot 7.2.24 Peak spectral power density at high frequency within 6 dB band, antenna 2

Test specification:	FCC section 15.407(b), RSS-210 section A9.3, Conducted out of band emissions		
Test procedure:	Public notice DA00-705; ANSI C63.4, section 13.1.4		
Test mode:	Compliance	Verdict:	PASS
Date(s):	17-Apr-16	verdict.	PASS
Temperature: 23.2 °C	Air Pressure: 1016 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC
Remarks:			

7.3 Conducted out of band emissions

7.3.1 General

This test was performed to measure spurious emissions from the EUT near the band edges and within the pass band of the antenna. Specification test limits are given in Table 7.3.1.

Table 7.3.1 EIRP of undesirable emission limits outside restricted bands (above 1 GHz)

Operating frequency range, MHz	EIRP of spurious, dBm/MHz	Resolution bandwidth, kHz
5725 - 5825	-27 (below 5.715 GHz and above 5.835 GHz) -17 (in 5.715 - 5.725 GHz and 5.825 - 5.835 GHz)	1000

7.3.2 Test procedure

- **7.3.2.1** The EUT was set up as shown in Figure 7.3.1, energized and the performance check was conducted.
- **7.3.2.2** The EUT was adjusted to produce maximum available to end user RF output power at the lowest carrier frequency.
- **7.3.2.3** The spectrum analyzer span was set to capture the carrier frequency and associated modulation products. The resolution bandwidth was set to 1 MHz.
- **7.3.2.4** The spectrum analyzer was set in max hold mode and allowed trace to stabilize. The highest emission level within the authorized band was measured.
- **7.3.2.5** The maximum band edge emission and modulation product outside of the band were measured as provided in the associated tables and plots.
- **7.3.2.6** The above procedure was repeated with the EUT adjusted to produce maximum RF output power at the mid and highest carrier frequencies.
- **7.3.2.7** Test results are shown in the Table 7.3.2, Table 7.3.3 and the associated plots.

Test specification:	FCC section 15.407(b), RSS-210 section A9.3, Conducted out of band emissions		
Test procedure:	Public notice DA00-705; ANSI C63.4, section 13.1.4		
Test mode:	Compliance	Verdict:	PASS
Date(s):	17-Apr-16	verdict.	FASS
Temperature: 23.2 °C	Air Pressure: 1016 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC
Remarks:			

Figure 7.3.1 Setup for conducted spurious emissions

Test specification: FCC section 15.407(b), RSS-210 section A9.3, Conducted out of band emissions Public notice DA00-705; ANSI C63.4, section 13.1.4 Test procedure: Compliance Test mode: **PASS** Verdict: 17-Apr-16 Date(s): Temperature: 23.2 °C Air Pressure: 1016 hPa Relative Humidity: 48 % Power Supply: 48 VDC Remarks:

Table 7.3.2 Band edge emission test results

ASSIGNED FREQUENCY RANGE: 5725-5850 MHz

Average gated to the RF burst **DETECTOR USED:**

PRBS MODULATING SIGNAL: TRANSMITTER OUTPUT POWER SETTINGS: Maximum RESOLUTION BANDWIDTH: 100 kHz VIDEO BANDWIDTH: ≥ RBW

ANTENNA 1

CANNEL BANDWIDTH 5 MHz ANTENNA GAIN: 9.5 dBi NUMBER OF CHAINS: N = 2

NOWIDER OF C	I IAINO.	IN - Z			
Frequency, MHz	SA Reading, dBm	Band edge emission, dBm*	Limit, dBm	Margin, dB**	Verdict
Modulation Q	PSK				
5724.5	-30.85	-27.85	-26.5	-1.35	
5714.5	-46.57	-43.57	-36.5	-7.07	Door
5850.5	-30.12	-27.12	-26.5	-0.62	Pass
5860.5	-46.17	-43.17	-36.5	-6.67	
Modulation 6	4 QAM				
5724.5	-30.97	-27.97	-26.5	-1.47	
5714.5	-47.00	-44.00	-36.5	-7.50	Page
5850.5	-31.97	-28.97	-26.5	-2.47	Pass
5860.5	-46.80	-43.80	-36.5	-7.30	

ANNEL BAND	NIDTH	10 MHz

5860.5	-46.80	-43.80	-36.5	-7.30	
CANNEL BAND	WIDTH	10 MHz			
Frequency, MHz	SA Reading, dBm	Band edge emission, dBm*	Limit, dBm	Margin, dB**	Verdict
Modulation QI	PSK				
5723.5	-30.26	-27.26	-26.5	-0.76	
5713.5	-43.11	-40.11	-36.5	-3.61	Pass
5851.5	-29.89	-26.89	-26.5	-0.39	F455
5860.5	-44.60	-41.60	-36.5	-5.10	
Modulation 64	QAM				
5723.5	-30.13	-27.13	-26.5	-0.63	
5713.5	-43.32	-40.32	-36.5	-3.82	Doos
5850.5	-29.88	-26.88	-26.5	-0.38	Pass
5860.5	-42.13	-39.13	-36.5	-2.63	

^{* -} Band Edge Emission, dB = SA Reading + 10*log (N)

^{** -} Margin, dB = Attenuation below carrier – specification limit

Test specification:	FCC section 15.407(b), RSS-210 section A9.3, Conducted out of band emissions				
Test procedure:	Public notice DA00-705; ANSI C63.4, section 13.1.4				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	17-Apr-16	verdict.	FASS		
Temperature: 23.2 °C	Air Pressure: 1016 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC		
Remarks:					

Table 7.3.3 Band edge emission test results

ASSIGNED FREQUENCY RANGE: 5725-5850 MHz

DETECTOR USED: Average gated to the RF burst

MODULATING SIGNAL: PRBS TRANSMITTER OUTPUT POWER SETTINGS: Maximum

RESOLUTION BANDWIDTH: 100 kHz (measured energy was integrated over 1 MHz)

VIDEO BANDWIDTH: ≥ RBW

ANTENNA 1

CANNEL BANDWIDTH 5 MHz ANTENNA GAIN: 16 dBi

Frequency, MHz	SA Reading, dBm	Band edge emission, dBm*	Limit, dBm	Margin, dB*	Verdict
Modulation Q	PSK				
5724.5	-39.25	-36.25	-33.0	-3.25	
5714.5	-47.74	-44.74	-43.0	-1.74	Pass
5850.5	-39.83	-36.83	-33.0	-3.83	Fa55
5860.5	-46.88	-43.88	-43.0	-0.88	
5724.5	-39.45	-36.45	-33.0	-3.45	
5712.5	-47.16	-44.16	-43.0	-1.16	Doos
5850.5	-41.86	-38.86	-33.0	-5.86	Pass
5861.5	-47.34	-44.34	-43.0	-1.34	

CANNEL BANDWIDTH 10 MHz

Frequency, MHz	SA Reading, dBm	Bar	nd edge emission, dBm*	Limit, dBm	Margin, dB*	Verdict	
Modulation Q	Modulation QPSK						
5724.5	-36.42		-33.42	-33.0	-0.42		
5712.5	-46.11		-43.11	-43.0	-0.11	Door	
5850.5	-36.25		-33.25	-33.0	-0.25	Pass	
5860.5	-46.72		-43.72	-43.0	-0.72		
5723.5	-36.38		-33.38	-33.0	-0.38		
5713.5	-46.78		-43.78	-43.0	-0.78	Pass	
5850.5	-36.25		-33.25	-33.0	-0.25	F d 5 5	
5860.5	-47.25		-44.25	-43.0	-1.25		

Test specification:	FCC section 15.407(b), RSS-210 section A9.3, Conducted out of band emissions				
Test procedure:	Public notice DA00-705; ANSI C63.4, section 13.1.4				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	17-Apr-16	verdict.	PASS		
Temperature: 23.2 °C	Air Pressure: 1016 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC		
Remarks:					

Table 7.3.3 Band edge emission test results (continued)

ASSIGNED FREQUENCY RANGE: 5725-5850 MHz

DETECTOR USED: Average gated to the RF burst

MODULATING SIGNAL: PRBS
TRANSMITTER OUTPUT POWER SETTINGS: Maximum

RESOLUTION BANDWIDTH: 100 kHz (measured energy was integrated over 1 MHz)

VIDEO BANDWIDTH: ≥ RBW

ANTENNA 2

CANNEL BANDWIDTH 5 MHz

O/ II TITLE D/ II TE	///IDIII	O IVII IZ			
Frequency, MHz	SA Reading, dBm	Band edge emission, dBm*	Limit, dBm	Margin, dB*	Verdict
Modulation Q	PSK				
5724.5	-41.60	-38.60	-33.0	-5.60	
5714.5	-46.95	-43.95	-43.0	-0.95	Pass
5850.5	-41.74	-38.74	-33.0	-5.74	F455
5861.5	-46.47	-43.47	-43.0	-0.47	
Modulation 6	4 QAM				
5724.5	-40.91	-37.91	-33.0	-4.91	
5714.5	-46.76	-43.76	-43.0	-0.76	Doos
5850.5	-41.58	-38.58	-33.0	-5.58	Pass
5860.5	-47.02	-44.02	-43.0	-1.02	

CANNEL BANDWIDTH 10 MHz

Frequency, MHz	SA Reading, dBm	Band edge emission, dBm*	Limit, dBm	Margin, dB*	Verdict		
Modulation Q	Modulation QPSK						
5723.5	-36.34	-33.34	-33.0	-0.34			
5714.5	-46.72	-43.72	-43.0	-0.72	Pass		
5851.5	-38.18	-35.18	-33.0	-2.18	Fa55		
5860.5	-46.56	-43.56	-43.0	-0.56			
Modulation 64	Modulation 64 QAM						
5723.5	-36.51	-33.51	-33.0	-0.51			
5713.5	-47.55	-44.55	-43.0	-1.55	Pass		
5850.5	-38.96	-35.96	-33.0	-2.96	Fa55		
5862.5	-47.10	-44.10	-43.0	-1.10			

^{* -} Band Edge Emission, dB = SA Reading + 10*log (N)

Reference numbers of test equipment used

HL 3301	HL 3302	HL 3768	HL 3818	HL 3903	HL 4275	
112 0001	112 0002	112 01 00	112 00 10	112 0000	112 1270	

Full description is given in Appendix A.

^{** -} Margin, dB = Attenuation below carrier – specification limit

Test specification:	FCC section 15.407(b), RSS-210 section A9.3, Conducted out of band emissions				
Test procedure:	Public notice DA00-705; ANSI C63.4, section 13.1.4				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	17-Apr-16	verdict.	FASS		
Temperature: 23.2 °C	Air Pressure: 1016 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC		
Remarks:					

Plot 7.3.1 The highest band edge emission at low carrier frequency, 5 MHz BW, QPSK modulation, Antenna 1, 9.5 dBi gain

Plot 7.3.2 The highest band edge emission at low carrier frequency, 5 MHz BW, 64QAM modulation, Antenna 1, 9.5 dBi gain

Test specification:	FCC section 15.407(b), RSS-210 section A9.3, Conducted out of band emissions				
Test procedure:	Public notice DA00-705; ANSI C63.4, section 13.1.4				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	17-Apr-16	verdict.	FASS		
Temperature: 23.2 °C	Air Pressure: 1016 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC		
Remarks:					

Plot 7.3.3 The highest band edge emission at high carrier frequency, 5 MHz BW, QPSK modulation, Antenna 1, 9.5 dBi gain

Plot 7.3.4 The highest band edge emission at high carrier frequency, 5 MHz BW, 64QAM modulation, Antenna 1, 9.5 dBi gain

Test specification:	FCC section 15.407(b), RSS-210 section A9.3, Conducted out of band emissions				
Test procedure:	Public notice DA00-705; ANSI C63.4, section 13.1.4				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	17-Apr-16	verdict.	FASS		
Temperature: 23.2 °C	Air Pressure: 1016 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC		
Remarks:					

Plot 7.3.5 The lowest band edge emission at low carrier frequency, 10 MHz BW, QPSK modulation, Antenna 1, 9.5 dBi gain

Plot 7.3.6 The lowest band edge emission at low carrier frequency, 10 MHz BW, 64QAM modulation, Antenna 1, 9.5 dBi gain

Test specification:	FCC section 15.407(b), RSS-210 section A9.3, Conducted out of band emissions				
Test procedure:	Public notice DA00-705; ANSI C63.4, section 13.1.4				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	17-Apr-16	verdict.	FASS		
Temperature: 23.2 °C	Air Pressure: 1016 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC		
Remarks:					

Plot 7.3.7 The highest band edge emission at high carrier frequency, 10 MHz BW, QPSK modulation, Antenna 1, 9.5 dBi gain

Plot 7.3.8 The highest band edge emission at high carrier frequency, 10 MHz BW, 64QAM modulation, Antenna 1, 9.5 dBi gain

Test specification:	FCC section 15.407(b), RSS-210 section A9.3, Conducted out of band emissions		
Test procedure:	Public notice DA00-705; ANSI C63.4, section 13.1.4		
Test mode:	Compliance	Verdict:	PASS
Date(s):	17-Apr-16		FASS
Temperature: 23.2 °C	Air Pressure: 1016 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC
Remarks:			

Plot 7.3.9 The lowest band edge emission at low carrier frequency, 5 MHz BW, QPSK modulation, Antenna 2, 9.5 dBi gain

Plot 7.3.10 The lowest band edge emission at low carrier frequency, 5 MHz BW, 64QAM modulation, Antenna 2, 9.5 dBi gain

Test specification:	FCC section 15.407(b), RSS-210 section A9.3, Conducted out of band emissions		
Test procedure:	Public notice DA00-705; ANSI C63.4, section 13.1.4		
Test mode:	Compliance	Verdict:	PASS
Date(s):	17-Apr-16		FASS
Temperature: 23.2 °C	Air Pressure: 1016 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC
Remarks:			

Plot 7.3.11 The highest band edge emission at high carrier frequency, 5 MHz BW, QPSK modulation, Antenna 2, 9.5 dBi gain

Plot 7.3.12 The highest band edge emission at high carrier frequency, 5 MHz BW, 64QAM modulation, Antenna 2, 9.5 dBi gain

Test specification:	FCC section 15.407(b), RSS-210 section A9.3, Conducted out of band emissions		
Test procedure:	Public notice DA00-705; ANSI C63.4, section 13.1.4		
Test mode:	Compliance	Verdict:	PASS
Date(s):	17-Apr-16		
Temperature: 23.2 °C	Air Pressure: 1016 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC
Remarks:			

Plot 7.3.13 The lowest band edge emission at low carrier frequency, 10 MHz BW, QPSK modulation, Antenna 2, 9.5 dBi gain

Plot 7.3.14 The lowest band edge emission at low carrier frequency, 10 MHz BW, 64QAM modulation, Antenna 2, 9.5 dBi gain

Test specification:	FCC section 15.407(b), RSS-210 section A9.3, Conducted out of band emissions		
Test procedure:	Public notice DA00-705; ANSI C63.4, section 13.1.4		
Test mode:	Compliance	Verdict:	PASS
Date(s):	17-Apr-16		FASS
Temperature: 23.2 °C	Air Pressure: 1016 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC
Remarks:			

Plot 7.3.15 The highest band edge emission at high carrier frequency, 10 MHz BW, QPSK modulation, Antenna 2, 9.5 dBi gain

Plot 7.3.16 The highest band edge emission at high carrier frequency, 10 MHz BW, 64QAM modulation, Antenna 2, 9.5 dBi gain

Test specification:	FCC section 15.407(b), RSS-210 section A9.3, Conducted out of band emissions		
Test procedure:	Public notice DA00-705; ANSI C63.4, section 13.1.4		
Test mode:	Compliance	Verdict:	PASS
Date(s):	17-Apr-16		FASS
Temperature: 23.2 °C	Air Pressure: 1016 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC
Remarks:			

Plot 7.3.17 The lowest band edge emission at low carrier frequency, 5 MHz BW, QPSK modulation, Antenna 1, 16 dBi gain

Plot 7.3.18 The lowest band edge emission at low carrier frequency, 5 MHz BW, 64QAM modulation, Antenna 1, 16 dBi gain

Test specification:	FCC section 15.407(b), RSS-210 section A9.3, Conducted out of band emissions		
Test procedure:	Public notice DA00-705; ANSI C63.4, section 13.1.4		
Test mode:	Compliance	Verdict:	PASS
Date(s):	17-Apr-16		
Temperature: 23.2 °C	Air Pressure: 1016 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC
Remarks:			

Plot 7.3.19 The highest band edge emission at high carrier frequency, 5 MHz BW, QPSK modulation, Antenna 1, 16 dBi gain

Plot 7.3.20 The highest band edge emission at high carrier frequency, 5 MHz BW, 64QAM modulation, Antenna 1, 16 dBi gain

Test specification:	FCC section 15.407(b), RSS-210 section A9.3, Conducted out of band emissions		
Test procedure:	Public notice DA00-705; ANSI C63.4, section 13.1.4		
Test mode:	Compliance	Verdict:	PASS
Date(s):	17-Apr-16		FASS
Temperature: 23.2 °C	Air Pressure: 1016 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC
Remarks:			

Plot 7.3.21 The lowest band edge emission at low carrier frequency, 10 MHz BW, QPSK modulation, Antenna 1, 16 dBi gain

lot 7.3.22 The lowest band edge emission at low carrier frequency, 10 MHz BW, 64QAM modulation, Antenna 1, 16 dBi gain

Test specification:	FCC section 15.407(b), RSS-210 section A9.3, Conducted out of band emissions		
Test procedure:	Public notice DA00-705; ANSI C63.4, section 13.1.4		
Test mode:	Compliance	Verdict:	PASS
Date(s):	17-Apr-16		FASS
Temperature: 23.2 °C	Air Pressure: 1016 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC
Remarks:			

Plot 7.3.23 The highest band edge emission at high carrier frequency, 10 MHz BW, QPSK modulation, Antenna 1, 16 dBi gain

Plot 7.3.24 The highest band edge emission at high carrier frequency, 10 MHz BW, 64QAM modulation, Antenna 1, 16 dBi gain

Test specification:	FCC section 15.407(b), RSS-210 section A9.3, Conducted out of band emissions		
Test procedure:	Public notice DA00-705; ANSI C63.4, section 13.1.4		
Test mode:	Compliance	Verdict:	PASS
Date(s):	17-Apr-16		FASS
Temperature: 23.2 °C	Air Pressure: 1016 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC
Remarks:			

Plot 7.3.25 The lowest band edge emission at low carrier frequency, 5 MHz BW, QPSK modulation, Antenna 2, 16 dBi gain

Plot 7.3.26 The lowest band edge emission at low carrier frequency, 5 MHz BW, 64QAM modulation, Antenna 2, 16 dBi gain

Test specification:	FCC section 15.407(b), RSS-210 section A9.3, Conducted out of band emissions		
Test procedure:	Public notice DA00-705; ANSI C63.4, section 13.1.4		
Test mode:	Compliance	Verdict:	PASS
Date(s):	17-Apr-16		FASS
Temperature: 23.2 °C	Air Pressure: 1016 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC
Remarks:			

Plot 7.3.27 The highest band edge emission at high carrier frequency, 5 MHz BW, QPSK modulation, Antenna 2, 16 dBi gain

Plot 7.3.28 The highest band edge emission at high carrier frequency, 5 MHz BW, 64QAM modulation, Antenna 2, 16 dBi gain

Test specification:	FCC section 15.407(b), RSS-210 section A9.3, Conducted out of band emissions		
Test procedure:	Public notice DA00-705; ANSI C63.4, section 13.1.4		
Test mode:	Compliance	Verdict:	PASS
Date(s):	17-Apr-16		FASS
Temperature: 23.2 °C	Air Pressure: 1016 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC
Remarks:			

Plot 7.3.29 The lowest band edge emission at low carrier frequency, 10 MHz BW, QPSK modulation, Antenna 2, 16 dBi gain

Plot 7.3.30 The lowest band edge emission at low carrier frequency, 10 MHz BW, 64QAM modulation, Antenna 2, 16 dBi gain

Test specification:	FCC section 15.407(b), RSS-210 section A9.3, Conducted out of band emissions		
Test procedure:	Public notice DA00-705; ANSI C63.4, section 13.1.4		
Test mode:	Compliance	Verdict:	PASS
Date(s):	17-Apr-16		
Temperature: 23.2 °C	Air Pressure: 1016 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC
Remarks:			

Plot 7.3.31 The highest band edge emission at high carrier frequency, 10 MHz BW, QPSK modulation, Antenna 2, 16 dBi gain

Plot 7.3.32 The highest band edge emission at high carrier frequency, 10 MHz BW, 64QAM modulation, Antenna 2, 16 dBi gain

8 APPENDIX A Test equipment and ancillaries used for tests

HL	Description	Manufacturer	Model	Ser. No.	Last Cal./	Due Cal./
No					Check	Check
2214	Directional Coupler 1.7-26.5 GHz	Krytar	2616	31354	16-Sep-15	16-Sep-17
3301	Power Meter, P-series, 50 MHz to 40 GHz	Agilent Technologies	N1911A	MY451010 57	30-Jan-15	30-Apr-16
3302	Power sensor, P-Series, 50 MHz to 40 GHz, -35/30 to 20 dBm	Agilent Technologies	N1922A	MY452405 86	30-Jan-15	30-Apr-16
3768	Attenuator, N-type, 20 dB, DC to 18 GHz, 5 W	Mini-Circuits	BW- N20W5+	NA	18-Aug-15	18-Aug-16
3818	PSA Series Spectrum Analyzer, 3 Hz- 44 GHz	Agilent Technologies	E4446A	MY482502 88	29-Apr-15	29-Apr-16
3903	Microwave Cable Assembly, 40.0 GHz, 1.5 m, SMA/SMA	Huber-Suhner	SUCOFLE X 102A	1226/2A	15-Feb-16	15-Feb-17
4275	Test Cable , DC-18 GHz, 1.8 m, SMA/M - N/M	Mini-Circuits	CBL-6FT- SMNM+	70050	22-Nov-15	22-Nov-16

9 APPENDIX B Measurement uncertainties

Expanded uncertainty at 95% confidence in Hermon Labs EMC measurements

, , , , , , , , , , , , , , , , , , , ,					
Test description	Expanded uncertainty				
Conducted carrier power at RF antenna	Below 12.4 GHz: ± 1.7 dB				
connector	12.4 GHz to 40 GHz: ± 2.3 dB				
Conducted emissions at RF antenna connector	9 kHz to 2.9 GHz: ± 2.6 dB				
	2.9 GHz to 6.46 GHz: ± 3.5 dB				
	6.46 GHz to 13.2 GHz: ± 4.3 dB				
	13.2 GHz to 22.0 GHz: ± 5.0 dB				
	22.0 GHz to 26.8 GHz: ± 5.5 dB				
	26.8 GHz to 40.0 GHz: ± 4.8 dB				
Duty cycle, timing (Tx ON / OFF) and average					
factor measurements	± 1.0 %				
Occupied bandwidth	± 8.0 %				

Hermon Laboratories is accredited by A2LA for calibration according to present requirements of ISO/IEC 17025 and NCSL Z540-1. The accreditation is granted to perform calibration of parameters that are listed in the Scope of Hermon Laboratories Accreditation.

Hermon Laboratories calibrates its reference and transfer standards by calibration laboratories accredited to ISO/IEC 17025 by a mutually recognized Accreditation Body or by a recognized national metrology institute. All reference and transfer standards used in the calibration system are traceable to national or international standards.

In-house calibration of all test and measurement equipment is performed on a regular basis according to Hermon Laboratories calibration procedures, manufacturer calibration/verification procedures or procedures defined in the relevant standards. The Hermon Laboratories test and measurement equipment is calibrated within the tolerances specified by the manufacturers and/or by the relevant standards.

10 APPENDIX C Test laboratory description

Tests were performed at Hermon Laboratories Ltd., which is a fully independent, private, EMC, safety, environmental and telecommunication testing facility.

Hermon Laboratories is listed by the Federal Communications Commission (USA) for all parts of Code of Federal Regulations 47 (CFR 47), Registration Numbers 90624 for OATS and 90623 for the anechoic chamber; by Industry Canada for electromagnetic emissions (file number IC 2186A-1 for OATS), certified by VCCI, Japan (the registration numbers are R-808 for OATS, R-1082 for anechoic chamber, C-845 for conducted emissions site, T-1606 for conducted emissions at telecommunication ports), has a status of a Telefication - Listed Testing Laboratory, Certificate No. L138/00. The laboratory is accredited by American Association for Laboratory Accreditation (USA) according to ISO/IEC 17025 for electromagnetic compatibility, product safety, telecommunications testing and environmental simulation (for exact scope please refer to Certificate No. 839.01). The FCC Designation Number is IL1001.

Address: P.O. Box 23, Binyamina 30500, Israel.

Telephone: +972 4628 8001 Fax: +972 4628 8277 e-mail: mail@hermonlabs.com website: www.hermonlabs.com

Person for contact: Mr. Alex Usoskin, CEO.

11 APPENDIX D Specification references

FCC 47CFR part 15: 2015 Radio Frequency Devices

ANSI C63.10: 2013 American National Standard of Procedures for Compliance Testing of Unlicensed

Wireless Devices

RSS-247 Issue 1: 2015 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and

Licence- Exempt Local Area Network (LE-LAN) Devices

RSS-Gen Issue 4: 2014 General Requirements for Compliance of Radio Apparatus

12 APPENDIX E Test equipment correction factors

Cable loss Microwave Cable Assembly, Huber-Suhner, 40 GHz, 1.5 m, SMA-SMA, S/N 1226/2A HL 3903

Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB
10	-0.02	9500	1.84	21000	2.98
100	0.15	10000	1.86	22000	3.07
500	0.38	10500	1.93	23000	3.13
1000	0.56	11000	1.99	24000	3.21
1500	0.69	11500	2.04	25000	3.26
2000	0.82	12000	2.10	26000	3.48
2500	0.90	12500	2.15	27000	3.44
3000	0.98	13000	2.21	28000	3.53
3500	1.06	13500	2.25	29000	3.59
4000	1.11	14000	2.29	30000	3.66
4500	1.17	14500	2.34	31000	3.70
5000	1.24	15000	2.36	32000	3.79
5500	1.32	15500	2.40	33000	3.88
6000	1.40	16000	2.45	34000	3.94
6500	1.50	16500	2.48	35000	3.91
7000	1.56	17000	2.56	36000	4.05
7500	1.62	17500	2.58	37000	4.22
8000	1.68	18000	2.60	38000	4.25
8500	1.74	19000	2.84	39000	4.27
9000	1.78	20000	2.88	40000	4.33

Cable loss Test cable, Mini-Circuits, S/N 70050, 18 GHz, 1.8 m, SMA/M - N/M CBL-6FT-SMNM+, HL 4275

CBL-6FT-SMNM+, HL 4275							
Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB
10	0.08	5000	1.71	10200	2.64	15400	3.46
30	0.11	5100	1.73	10300	2.65	15500	3.47
50	0.14	5200	1.75	10400	2.66	15600	3.52
100	0.21	5300	1.76	10500	2.67	15700	3.55
200	0.30	5400	1.77	10600	2.70	15800	3.55
300	0.37	5500	1.82	10700	2.71	15900	3.55
400	0.43	5600	1.84	10800	2.72	16000	3.61
500	0.49	5700	1.86	10900	2.73	16100	3.62
600	0.54	5800	1.86	11000	2.75	16200	3.63
700	0.58	5900	1.89	11100	2.77	16300	3.62
800	0.62	6000	1.94	11200	2.78	16400	3.66
900	0.66	6100	1.95	11300	2.80	16500	3.71
1000	0.70	6200	1.96	11400	2.82	16600	3.71
1100	0.74	6300	1.97	11500	2.83	16700	3.67
1200	0.78	6400	2.01	11600	2.84	16800	3.69
1300	0.81	6500	2.03	11700	2.86	16900	3.74
1400	0.84	6600	2.02	11800	2.88	17000	3.73
1500	0.88	6700	2.02	11900	2.89	17100	3.71
1600	0.91	6800	2.05	12000	2.90	17200	3.73
1700	0.94	6900	2.06	12100	2.92	17300	3.77
1800	0.97	7000	2.07	12200	2.93	17400	3.77
1900	1.00	7100	2.07	12300	2.94	17500	3.76
2000	1.02	7200	2.08	12400	2.96	17600	3.76
2100	1.05	7300	2.11	12500	2.98	17700	3.78
2200	1.07	7400	2.13	12600	2.99	17800	3.80
2300	1.10	7500	2.15	12700	3.01	17900	3.79
2400	1.13	7600	2.16	12800	3.03	18000	3.78
2500	1.15	7700	2.18	12900	3.05	10000	0.70
2600	1.18	7800	2.21	13000	3.07		
2700	1.20	7900	2.24	13100	3.09		
2800	1.24	8000	2.25	13200	3.12		
2900	1.26	8100	2.26	13300	3.13		
3000	1.28	8200	2.29	13400	3.14		
3100	1.30	8300	2.31	13500	3.16		
3200	1.33	8400	2.33	13600	3.18		
3300	1.36	8500	2.33	13700	3.19		
3400	1.37	8600	2.34	13800	3.19		
3500	1.37	8700	2.34	13900	3.23		
3600	1.39	8800	2.38	14000	3.25		
3700 3800	1.45 1.46	8900 9000	2.39 2.40	14100	3.26 3.27		
				14200			
3900 4000	1.48 1.50	9100 9200	2.42 2.45	14300	3.30		
				14400	3.32		
4100	1.53	9300	2.46	14500	3.33		-
4200	1.55	9400	2.48	14600	3.34		
4300	1.57	9500	2.50	14700	3.36		
4400	1.59	9600	2.52	14800	3.39		
4500	1.61	9700	2.54	14900	3.40		
4600	1.64	9800	2.56	15000	3.41		
4700	1.66	9900	2.58	15100	3.41		-
4800	1.67	10000	2.60	15200	3.44		
4900	1.69	10100	2.61	15300	3.46	1	1

13 APPENDIX F Abbreviations and acronyms

A ampere

AC alternating current
AM amplitude modulation
AVRG average (detector)
cm centimeter

cm centimeter dB decibel

 $\begin{array}{ll} \text{dBm} & \text{decibel referred to one milliwatt} \\ \text{dB}(\mu V) & \text{decibel referred to one microvolt} \end{array}$

 $dB(\mu V/m)$ decibel referred to one microvolt per meter

DC direct current

EIRP equivalent isotropically radiated power

ERP effective radiated power EUT equipment under test

F frequency GHz gigahertz GND ground H height

HL Hermon laboratories
Hz hertz

k kilo kHz kilohertz LO local oscillator meter MHz megahertz minute min mm millimeter millisecond ms microsecond μ S

 Ω Ohm

ΝA

PM pulse modulation PS power supply

ppm part per million (10⁻⁶)

not applicable

QP quasi-peak
RE radiated emission
RF radio frequency
rms root mean square

Rx receive
s second
T temperature
Tx transmit
V volt
WB wideband

END OF DOCUMENT