Temps estimat per realitzar el control: 1h:45 minuts

PROBLEMA 1 (5 punts)

Sigui el sistema de la figura

a) Demostri si es compleixen o no les propietats de linealitat, invariància, causalitat i estabilitat de tot el sistema complet.

Resposta:

$$y(t) = [x(t) \cdot \sum_{n=-\infty}^{\infty} p(t - nT)] * h_1(t)$$

Linealitat:

$$T[a_1x_1(t) + a_2x_2(t)] = [(a_1x_1(t) + a_2x_2(t)) \cdot \sum_{n=-\infty}^{\infty} p(t - nT)] * h_1(t) =$$

$$[a_1x_1(t)\sum_{n=-\infty}^{\infty}p(t-nT)+a_2x_2(t)\sum_{n=-\infty}^{\infty}p(t-nT)]*h_1(t)$$

Per la propietat distributiva de la convolució:

$$T[a_1x_1(t) + a_2x_2(t)] = [a_1x_1(t)\sum_{n=-\infty}^{\infty} p(t-nT)] * h_1(t) + [a_2x_2(t)\sum_{n=-\infty}^{\infty} p(t-nT)] * h_1(t) = (a_1x_1(t) + a_2x_2(t)) = (a_1x_1$$

$$y_1(t) + y_2(t)$$

Per tant el sistema és lineal

Invariància:

Per un costat tenim:

$$y(t-t_0) = [x(t-t_0) \cdot \sum_{n=-\infty}^{\infty} p((t-t_0) - nT)] * h_1(t)$$

Per l'altre

$$T[x(t-t_0)] = [x(t-t_0) \cdot \sum_{n=-\infty}^{\infty} p(t-nT)] * h_1(t)$$

Per tant

$$y(t-t_0) \neq T[x(t-t_0)]$$

i el sistema no és invariant

Causalitat:

Apliquem la regla de

Si x(t)=0 per $t < t_0$

Llavors el sistema és causal si y(t) = 0 per $t < t_0$

Veiem que el multiplicador sí és causal, ja que

Si $x(t) = per t < t_0 llavors x_1(t) = 0 per t < t_0$

A les hores la causalitat depèn de la causalitat del segon element connectat en sèrie, és a dir del sistema LI carateritzat per $h_1(t)$.

Llavors la conclusió és que el sistema serà causal si h₁(t) és causal

Estabilitat

Un sistema és estable si donada una entrada fitada : $|x(t)| \le Bx$

La sortida també és fitada |y(t)| < By

No podem determinar la estabilitat doncs no coneixem ni p(t) ni $h_1(t)$

Revisi aquestes propietats per
$$p(t) = \delta(t)$$
 i $h_1(t) = \prod \left(\frac{t - \tau/2}{\tau}\right)$ amb $\tau \ll T$

Resposta

La linealitat i la invariància no depenen de la forma de p(t) i h(t). Només cal que revisem la causalitat i l'estabilitat.

Causalitat:

Com h₁(t)<0 per t<0 el sistema global serà causal

Estabilitat

$$y(t) = [x(t) \cdot \sum_{n = -\infty}^{\infty} \delta(t - nT)] * \prod \left(\frac{t - \tau/2}{\tau}\right) = \left[\sum_{n = -\infty}^{\infty} x(nT) \prod \left(\frac{t - \tau/2 - nT}{\tau}\right)\right]$$

Busquem una fita per y(t):

$$|y(t)| = |\sum_{n=-\infty}^{\infty} x(nT) \prod \left(\frac{t - \tau/2 - nT}{\tau} \right)| \le \sum_{n=-\infty}^{\infty} |x(nT)| \prod \left(\frac{t - \tau/2 - nT}{\tau} \right)| < \sum_{n=-\infty}^{\infty} B_x \prod \left(\frac{t - \tau/2 - nT}{\tau} \right) < B_y$$

Veiem que és tracta d'un senyal fitat doncs el polsos rectangularars desplaçats estan fitats (veure figura)

b) Trobi
$$y(t)$$
 per $p(t) = \prod \left(\frac{t - T/4}{T/2}\right) - \prod \left(\frac{t - 3T/4}{T/2}\right)$, $h(t) = \prod \left(\frac{t - T/2}{T}\right)$ i $x(t) = \prod \left(\frac{t - T/2}{T}\right)$

Resposta:

Expressió de la sortida:

$$y(t) = \left[\prod \left(\frac{t - T/2}{T}\right) \cdot \sum_{n = -\infty}^{\infty} p(t - nT)\right] * \prod \left(\frac{t - T/2}{T}\right)$$

Com p(t) té duració de 0 a T, igual que x(t), tenim que el primer producte és :

$$\prod \left(\frac{t-T/2}{T}\right) \cdot \sum_{n=-\infty}^{\infty} p(t-nT) = p(t)$$

Llavors hem de fer la convolució :

$$y(t) = p(t) * \prod \left(\frac{t - T/2}{T}\right)$$

$$p_0(t) = \prod \left(\frac{t - T/4}{T/2} \right)$$

$$p(t) = p_0(t) - p_0(t - T/2)$$

$$y_0(t) = p_0(t) * \prod \left(\frac{t - T/2}{T}\right)$$

Llavors:

$$y(t) = y_0(t) - y_0(t - T/2)$$

$$y_0(t) = \prod \left(\frac{t - T/4}{T/2}\right) * \prod \left(\frac{t - T/2}{T}\right)$$

Fem la convolució gràfica:

Per t<0

Llavors la sortida és :

$$y(t) = \Lambda(\frac{t - \frac{7}{2}}{\frac{7}{2}}) - \Lambda(\frac{t - \frac{37}{2}}{\frac{7}{2}})$$

c) Suposi que $p(t) = \delta(t)$ i $h_1(t) = \delta(t)$. Demostri que és possible recuperar x(t) a partir de y(t) si es compleixen unes determinades condicions. Indiqui quines són aquestes condicions.

Resposta:

$$y(t) = [x(t) \cdot \sum_{n=-\infty}^{\infty} \delta(t-nT)] * \delta(t) = [\sum_{n=-\infty}^{\infty} x(nT)\delta(t-nT)] * \delta(t) = \sum_{n=-\infty}^{\infty} x(nT)\delta(t-nT) = x(t) \cdot \sum_{n=-\infty}^{\infty} \delta(t-nT)$$

En el domini frequencial:

$$Y(f) = X(f) * \frac{1}{T} \sum_{m=-\infty}^{\infty} \delta(f - \frac{m}{T}) = \frac{1}{T} \sum_{m=-\infty}^{\infty} X(f - \frac{m}{T})$$

En aquesta última equació veiem que és possible recuperar X(f) i per tant x(t) si X(f) és de banda limitada i $\frac{1}{T} > 2B$ (on B és l'ampla de banda del senyal

Suposi ara que $p(t) = \delta(t) i h_1(t) = \prod_{t=0}^{\infty} \left(\frac{t - \tau/2}{\tau} \right)$ amb $\tau << T$. Compari aquest cas amb l'anterior i justifiqui si es pot recuperar x(t) a partir de y(t).

Resposta:

$$y(t) = [x(t) \cdot \sum_{n=-\infty}^{\infty} \delta(t - nT)] * h_1(t)$$

En el domini frequencial

$$Y(f) = [X(f) * \frac{1}{T} \sum_{m=-\infty}^{\infty} \delta(f - \frac{m}{T})] \cdot H_1(f) = \frac{1}{T} \sum_{m=-\infty}^{\infty} X(f - \frac{m}{T})H_1(f)$$

$$Y(f) = \frac{1}{T} \sum_{m=-\infty}^{\infty} X(f - \frac{m}{T}) \tau \operatorname{sinc}(f\tau) e^{-j2\pi f\tau/2}$$

En aquest cas no és possible recuperar x(t) sense distorsió degut a la funció sinc. No obstant si es segueix complint que $\frac{1}{T} > 2B$, com $\tau << T$ hi haurà poca distorsió

Quina creu que és la utilitat del sistema

Resposta

El primer cas és el mostratge ideal i el segon és el model del mostratge pràctic. Per tant el sistema passa d'un senyal continu en el temps a un senyal discontinu.

PROBLEMA 2 (5 punts)

Sigui el sistema de la següent figura i el senyal p(t)

L'objectiu d'aquest problema es veure si aquest sistema és útil per generar senyals compatibles amb un sistema de radio estéreo i mono i per tant, que generi un senyal que contingui components $x_e(t) + x_d(t)$ i components $x_e(t) - x_d(t)$. Per això es demana.

a) Trobi la TF i el DSF de p(t). Trobi la TF de s(t)

Resposta:

Observant la figura trobem l'expressió de p(t):

$$p(t) = \sum_{n = -\infty}^{\infty} \Lambda(\frac{t - T_0 - n2T_0}{T_0})$$

$$x_b(t) = \Lambda(\frac{t - T_0}{T_0})$$

$$p(t) = \Lambda(\frac{t - T_0}{T_0}) * \sum_{n = -\infty}^{\infty} \delta(t - n2T_0)$$

$$P(f) = T_0 \operatorname{sinc}^2 T_0 f \cdot e^{-j2\pi f T_0} \cdot \frac{1}{2T_0} \sum_{m=-\infty}^{\infty} \delta(f - \frac{m}{2T_0})$$

$$P(f) = \frac{1}{2T_0} \sum_{m=-\infty}^{\infty} T_0 \operatorname{sinc}^2 T_0 \frac{m}{2T_0} \cdot e^{-j2\pi \frac{m}{2T_0} T_0} \delta(f - \frac{m}{2T_0})$$

$$P(f) = \sum_{m=-\infty}^{\infty} \frac{1}{2} \operatorname{sinc}^{2} \frac{m}{2} \cdot e^{-j\pi m} \delta(f - \frac{m}{2T_{0}})$$

Per tant la TF de p(t) és :

$$P(f) = \sum_{m=-\infty}^{\infty} \frac{1}{2} \operatorname{sinc}^{2} \frac{m}{2} \cdot (-1)^{m} \delta(f - \frac{m}{2T_{0}})$$

i el DSF :

$$p(t) = \sum_{m=-\infty}^{\infty} \frac{1}{2} \operatorname{sinc}^{2} \frac{m}{2} \cdot (-1)^{m} e^{-j2\pi \frac{m}{2T_{0}}t}$$

D'altre banda la TF de s(t) serà:

$$s(t) = p(t - T_0)$$

$$S(f) = P(f) \cdot e^{-j2\pi f T_0}$$

$$S(f) = \sum_{m=-\infty}^{\infty} \frac{1}{2} \operatorname{sinc}^{2} \frac{m}{2} \cdot (-1)^{m} e^{-j2\pi \frac{m}{2T_{0}} T_{0}} \delta(f - \frac{m}{2T_{0}})$$

$$S(f) = \sum_{m = -\infty}^{\infty} \frac{1}{2} \operatorname{sinc}^{2} \frac{m}{2} \cdot (-1)^{m} e^{-j\pi m} \delta(f - \frac{m}{2T_{0}})$$

$$S(f) = \sum_{m=-\infty}^{\infty} \frac{1}{2} \operatorname{sinc}^{2} \frac{m}{2} \cdot (-1)^{m} (-1)^{m} \delta(f - \frac{m}{2T_{0}})$$

$$S(f) = \sum_{m=-\infty}^{\infty} \frac{1}{2} \operatorname{sinc}^{2} \frac{m}{2} \delta(f - \frac{m}{2T_{0}})$$

b) Trobi la TF de x(t)

$$x(t) = p(t)x_d(t) + s(t)x_e(t)$$

$$X(f) = P(f) * X_d(f) + S(f) * X_e(f)$$

$$X(f) = \sum_{m=-\infty}^{\infty} \frac{1}{2} \operatorname{sinc}^{2} \frac{m}{2} \cdot (-1)^{m} \delta(f - \frac{m}{2T_{0}}) * X_{d}(f) + \sum_{m=-\infty}^{\infty} \frac{1}{2} \operatorname{sinc}^{2} \frac{m}{2} \delta(f - \frac{m}{2T_{0}}) * X_{e}(f)$$

$$X(f) = \sum_{m = -\infty}^{\infty} \frac{1}{2} \operatorname{sinc}^{2} \frac{m}{2} \cdot (-1)^{m} X_{d} (f - \frac{m}{2T_{0}}) + \sum_{m = -\infty}^{\infty} \frac{1}{2} \operatorname{sinc}^{2} \frac{m}{2} X_{e} (f - \frac{m}{2T_{0}})$$

Com ha de ser l'ampla de banda dels senyals $x_e(t), x_d(t)$ per que les components suma i diferència siguin clarament separables?

Veiem que, excepte per m=0, els termes que depenen de m parell són zero.

Veiem que per m=0 tenim una component suma

$$\frac{1}{2}X_{d}(f) + \frac{1}{2}X_{e}(f)$$

Per m=1 tenim una component diferència

$$\frac{1}{2}\operatorname{sinc}^{2}\frac{1}{2}\cdot(-1)\cdot X_{d}(f-\frac{1}{2T_{0}})+\frac{1}{2}\operatorname{sinc}^{2}\frac{1}{2}X_{e}(f-\frac{1}{2T_{0}})$$

Per m=3 també tenim una component diferència:

$$\frac{1}{2}\operatorname{sinc}^{2}\frac{3}{2}\cdot(-1)\cdot X_{d}(f-\frac{3}{2T_{0}})+\frac{1}{2}\operatorname{sinc}^{2}\frac{3}{2}X_{e}(f-\frac{3}{2T_{0}})$$

En general per tant, excepte per m=0 la resta de termes són components diferència.

Per poder separar els component no hi ha d'haver solapaments. Entre la component m=0 i m=1 hi ha una distància frequencial de $\frac{1}{2T_0}$ Pertant l'ampla de banda de la TF dels senyals $x_e(t), x_d(t)$ ha

de ser inferior a la meitat d'aquesta freqüència i per tant menor que : $\frac{1}{4T_0}$

Com ha de ser el filtre h(t) per tenir només una component suma i una component diferència a la sortida? Si ho desitja pot utilitzar gràfiques per justificar la seva resposta.

Ha de ser de com a mínim : $\frac{1}{2T_0} + \frac{1}{4T_0}$ i com a maxim $\frac{3}{2T_0} - \frac{1}{4T_0}$ (en el cas de que els senyals tinguin l'ampla de banda màxim)

PREGUNTA TEORIA

Descrigui les característiques del Fenòmen de Gibbs per senyals no periòdics amb discontinuitats

Resposta

(Apunts del llibre Tema 2)