Chapter 1: Complex Numbers

1:: Understand and manipulate (\times, \div) complex numbers.

"Determine $\frac{4+i}{3-i}$ giving your answer in the form a+bi."

2:: Find complex solutions to quadratic equations.

"Solve
$$x^2 + 3x + 5 = 0$$
."

3:: Find complex solutions to cubic and quartic equations.

"Given that -2 + i is one of the roots of the equation $x^3 + 3x^2 + x - 5$, determine the other two roots."

What is a number?

What is an imaginary number?

In a way, you've been using 'imaginary' numbers for a while... just not these ones...

$$i = \sqrt{-1}$$

Cardano Italian mathematician 1501-1576

- $i = \sqrt{-1}$
- An **imaginary** number is of the form bi where $b \in \mathbb{R}$, e.g. i, 3i, -2i, $i\pi$
- A **complex** number is of the form a + bi, where $a, b \in \mathbb{R}$, e.g. 1 + i, 3 2i
- We say that a is the "real part" and b the "imaginary part" of the number.

Types of numbers

Complex Number Basics

Write the following in terms of i:

$$\sqrt{-36}$$

$$\sqrt{-4}$$

$$\sqrt{-7}$$

$$\sqrt{-45}$$

Simplify:

$$(2+3i)+(4+i)=$$

$$i - 3(2 - i) =$$

$$\frac{10+6i}{3} =$$

Ex 1A

Solving Quadratic Equations

Solve
$$z^2 + 25 = 0$$

Notation Note: Just as we tend to use x as the default real-numbered variable and n for integers, we tend to use z (or w) as the default letter for complex numbers.

Solve
$$z^2 + 3z + 5 = 0$$

Method 1 - complete the square

Method 2 - the quadratic formula

Multiplying Complex Numbers

Given that $i = \sqrt{-1}$, it follows that $i^2 =$

Express each of the following in the form a + bi, where a, b are integers.

- 1) (2+3i)(3-2i)
- 2) $(5-3i)^2$

$$f(z) = z^2 + 6z + 13$$

Show by substitution that z = -3 + 2i is a solution of f(z) = 0

Determine the value of i^3 , i^4 , i^{101} and $(3i)^5$

Ex 1C

Complex Conjugation

Suppose that $x = 3 + \sqrt{2}$ and $x^* = 3 - \sqrt{2}$ Determine:

$$\begin{array}{ccc} x + x^* & = \\ xx^* & = \end{array}$$

What do you notice about both results?

Does a similar thing happen with two complex numbers that are similarly related in this way?

$$z = 3 + 2i$$
, $z^* = 3 - 2i$

$$z + z^* = zz^* =$$

Complex Conjugation

 \mathscr{I} If z=a+bi then $z^*=a-bi$ is the complex conjugate of z. Together, z and z^* are a **complex conjugate pair**.

Given that z = x + iy, where $x \in \mathbb{R}$, $y \in \mathbb{R}$, find the value of x and the value of y such that

$$(3-i)z^* + 2iz = 9-i$$

where z^* is the complex conjugate of z.

(8)

'Realising' the Denominator

Write $\frac{5+4i}{2-3i}$ in the form a+bi.

As with rationalising denominators of surds, we multiply numerator and denominator by the conjugate of the denominator.

Speed Tip:

Difference of two squares

$$(a+b)(a-b)=a^2-b^2$$

$$(a+bi)(a-bi)=a^2+b^2$$

You can use your calculators do perform calculations with complex numbers, too! But you must know this method in case there are algebraic terms in the expression.

Problem Solving using complex numbers

The complex number $z=\frac{3+qi}{q-5i}$, where $q\in\mathbb{R}$

Given that the real part of z is $\frac{1}{13}$,

- a) Find the possible values of q
- b) Write the possible values of z in the form a + bi where a and b are real constants

The square roots of complex numbers (not covered in textbook... could be assessed?)

You might be thinking -

'if finding the square root of a negative created a whole new type of numbers, will we need *another* type of number for the square root a complex number?'

Solve
$$z^2 = i$$

Solve
$$z^2(1+i) = 7 - 17i$$

Your Turn

Find the complex numbers w in each of these cases a) $w^2 = 30i - 16$ b) $w^2 = -3 - 4i$

a)
$$w^2 = 30i - 16$$

b)
$$w^2 = -3 - 4i$$

c)
$$w^2 - 1 = 20(1 - i)$$

Simultaneous Equations

(not covered in textbook... could be assessed?)

Solve the following simultaneous equations

$$w^2 + z^2 = 0$$

$$z - 3w = 10$$

Roots of Quadratics

Lets solve $x^2+4x-5=0$, calling its roots α and β

How do the roots relate to the original equation?

If α and β are the roots of a quadratic $ax^2 + bx + c$ then $ax^2 + bx + c \equiv a(x - \alpha)(x - \beta)$

 \mathscr{N} If α and β are roots of the equation $ax^2 + bx + c = 0$, then:

- Sum of roots: $\alpha + \beta = -\frac{b}{a}$
- **Product** of roots: $\alpha\beta = \frac{c}{a}$

Roots of Quadratics - Complex Conjugate Pairs

 \mathscr{I} If α is the root of a quadratic equation with real coefficients and α is a complex number, then the other root must be its complex conjugate, α^* .

Why?
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Given that $\alpha = 7 + 2i$ is one of the roots of a quadratic equation with real coefficients,

- (a) state the value of the other root, β .
- (b) find the quadratic equation.

Chapter 4 'Roots of Polynomials' method

Longer method

General idea: if α and β are roots, then $(x-\alpha)(x-\beta)=0$ (and similarly for cubics and quartics)

Your Turn

Given that 2 - 4i is a root of the equation

$$z^2 + pz + q = 0,$$

where p and q are real constants,

(a) write down the other root of the equation,

(1)

(b) find the value of p and the value of q.

(3)

Roots of Cubic and Quartic Equations

The same principle applies to polynomials of higher degree, e.g. cubics and quartics.

All complex roots come in conjugate pairs.

A cubic equation **always has three roots** (by the Fundamental Law of Algebra). These roots may be repeated, and not all may be real roots...

And the same with quartics...

Given that -1 is a root of the cubic equation $z^3 - z^2 + 3z + k = 0$ Find the value of k and the other two roots of the equation.

Note that the next 3 examples can all be done using Chapter 4 techniques. I think this method is superior, so you might like to try this after doing Chapter 4!

General idea: if α and β are roots, then $(x - \alpha)(x - \beta) = 0$ (and similarly for cubics and quartics)

Given that 3+i is a root of the quartic equation $2z^4-3z^3-39z^2+120z-50=0$, solve the equation completely.

Show that $z^2 + 4$ is a factor of $z^4 - 2z^3 + 21z^2 - 8z + 68$ Hence solve the equation $z^4 - 2z^3 + 21z^2 - 8z + 68 = 0$

Your Turn

Given that 2 and 5 + 2i are roots of the equation

$$x^3 - 12x^2 + cx + d = 0$$
, $c, d \in \mathbb{R}$,

(a) write down the other complex root of the equation.

(1)

(b) Find the value of c and the value of d.

(5)