Initiation à la programmation

Examen de janvier 2007

durée 2h - documents non autorisés

Exercice 1: Les cartes

Dans cet exercice, on considère une situation initiale des tas de cartes dans laquelle le tas n°1 contient un nombre quelconque de T et de K, mais en tout cas au moins un T qui peut être situé n'importe où.

Q1.

Parmi les initialisations du tas n°1 qui suivent une seule correspond à celle souhaitée. Laquelle? Vous donnerez des réalisations effectives qui montrent que les autres initialisations sont incorrectes.

```
    initTas(1,'T[T]+[K]');
    initTas(1,'[T+K]T[T+K]');
    initTas(1,'(T+K)[T+K]');
```

- ${\bf Q}$ 2 . On souhaite que le robot place le dernier ${\bf T}$ (c'est-à-dire celui situé le plus bas) dans le tas n°1 sur le tas n°2, toutes les autres cartes se trouvant sur le tas n°3.
- **Q 2.1.** Commencez par faire en sorte que le premier T se retrouve sur le tas $n^{\circ}2$, les K initialement situés au dessus se retrouvant sur le tas $n^{\circ}3$.
 - Q 2.2. Poursuivez le programme afin d'atteindre la situation souhaitée.
- \mathbf{Q} 3. Si on suppose que le tas n°3 est initialement vide comment programmer le robot pour qu'il remette toutes les cartes du tas n°3 sur le tas n°1?
- Q 4. On suppose maintenant que le tas n°3 n'est pas nécessairement vide.
- **Q 4.1.** Que faut-il ajouter au robot afin qu'il puisse remettre sur le tas n°1 toutes les cartes du tas n°3 initialement sur le tas n°1?
 - Q 4.2. Reprogrammez le robot en conséquence, et déclarez les variables que vous utilisez.
- \mathbf{Q} 5. Réalisez une procédure nommée deplacerDernierTrefle à trois paramètres \mathbf{i} , \mathbf{j} , \mathbf{k} qui déplace le dernier \mathbf{T} du tas \mathbf{i} vers le tas \mathbf{j} en se servant du tas \mathbf{k} comme tas intermédiaire, les trois tas étant supposés distincts. Précisez les autres contraintes d'utilisation de cette procédure.
- ${\bf Q}$ 6. Dans cette dernière question, on suppose que tous les tas sont initialisés comme il a été décrit au départ pour le tas n°1. Utilisez la procédure réalisée précédemment pour arriver à une situation finale où toutes les cartes sont situées dans leur tas initial, sauf les quatre ${\bf T}$ les plus bas de chaque tas qui se trouvent au sommet du tas n°1.

Exercice 2: Une transformation

Voici une fonction écrite en Pascal qui transforme un nombre entier en un autre.

```
function transforme(n : CARDINAL ) : CARDINAL;
var
    r,m : CARDINAL;
begin
    r := 0;
    m := n;
    while m<>0 do begin
        r := r*10 + (m mod 10);
        m := m div 10;
    end {while};
    transforme := r;
end {transforme};
```

On rappelle que les opérateurs mod et div calculent respectivement le reste et le quotient de la division euclidienne des entiers.

Q1.

Calculez transforme(5103) en présentant sous forme d'un tableau la valeur des variables r et m à la fin de chaque étape de la boucle.

 ${f Q}$ 2. Écrivez le corps d'un programme qui demande à l'utilisateur deux entiers positifs a et b, puis affiche à l'écran les valeurs de la fonction transforme pour tous les entiers de a à b, à raison d'une valeur par ligne. L'affichage d'une ligne se fera sous la forme

5103 : 3015

Vous n'oublierez pas de déclarer les variables nécessaires.

Exercice 3: Sur les chaînes

Dans cet exercice on réalise une fonction **crochete** paramétrée par une chaîne de caractères **s** et dont le résultat est une chaîne de caractères, obtenue en entourant chacun des caractères de la chaîne **s** par des crochets. Par exemple **crochete('timoleon')** vaut '[t][i][m][o][1][e][o][n]'

- **Q 1**. En supposant déjà écrite la fonction **crochete**, expliquez comment utiliser cette fonction pour initialiser le tas 1 avec un nombre quelconque de trèfles surmontés d'un nombre quelconque de carreaux surmontés d'un nombre quelconque de piques?
- \mathbf{Q} 2 . Réaliser une fonction nommée encadre paramétrée par un caractère \mathbf{c} dont le résultat est une chaîne de trois caractères, composée d'un crochet ouvrant, du caractère \mathbf{c} et d'un crochet fermant.
- Q 3. En utilisant la fonction encadre écrire la fonction crochete
- Q 4. Au vu des instructions qui suivent, déclarez les variables s c, res et i.

```
s:='[t][i][m][o]';
res:='';
for i:=1 to length(s) do
begin
   if (i mod 3)=2 then
   begin
     c:=s[i];
   res:=res+c;
end {if};
end {for};
```

- Q 5. Précisez le contenu de chaque variable après l'exécution des instructions précédentes.
- \mathbf{Q} 6. Implantez une fonction decrochete telle que pour toute chaîne \mathbf{s} on ait decrochete(crochete(\mathbf{s}))= \mathbf{s}