Mini-Projet

Pour la reproductibilité des questions numériques, il est conseillé de fixer la « graine » du générateur de nombres pseudo-aléatoires, en haut de votre script, en utilisant la fonction $\mathtt{set.seed}$ de R, par exemple :

set.seed(42,kind="Marsaglia-Multicarry")

On rappelle les résultats suivants

1. loi des grands nombres

Soit $Z: \Omega \to \mathbb{R}$ une variable aléatoire sur un espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$ telle que $\mathbb{E}(|Z|) < +\infty$, et soit $(Z_i)_{i\geq 0}$ est un échantillon i.i.d. de même loi que Z, défini sur le même espace. Il existe $N \subset \Omega$ tel que $\mathbb{P}(N) = 0$ et

$$\forall \omega \in \Omega \setminus N, \qquad \frac{1}{n} \sum_{i=1}^{n} Z_i(\omega) \xrightarrow[n \to \infty]{} \mathbb{E}(Z).$$

Autrement dit, la moyenne empirique des Z_i converge \mathbb{P} -presque sûrement vers $\mathbb{E}(Z)$.

2. Loi du χ^2 ('Chi 2')

Si Y_1, \ldots, Y_n sont des variables aléatoires i.i.d. de loi normale centrée réduite, de moyenne empirique \bar{Y} , alors la variable aléatoire $V = (Y_1 - \bar{Y})^2 + \ldots + (Y_n - \bar{Y})^2$ suit une loi du χ^2 à n-1 degrés de libertés.

3. Loi Gamma Une variable aléatoire Y suit une loi Gamma de paramètres a et b (a > 0 et b > 0), notée $\mathcal{G}amma(a,b)$, si elle admet une densité par rapport à la mesure de Lebesgue donnée par

$$f_{(a,b)}^{\mathcal{G}}(y) = \mathbb{1}_{y>0} \frac{b^a}{\Gamma(a)} y^{a-1} e^{-by}.$$

On rappelle que pour a > 0, $\Gamma(a+1) = a\Gamma(a)$. Si $Y \sim \mathcal{G}amma(a,b)$, on a

$$\mathbb{E}_{a,b}(Y) = \frac{a}{b}$$
 ; $\mathbb{V}\operatorname{ar}_{a,b}(Y) = \frac{a}{b^2}$.

On s'intéresse à la distribution de la taille des fichiers stockés dans un répertoire. Le jeu de données se trouve ici : http://perso.telecom-paristech.fr/~bonald/filesize.txt

Ce jeu de données comporte la taille en octets de n=400 fichiers, soit $x=(x_1,\ldots,x_n)$.

N.B Les quantiles de la loi log-normale sont disponibles numériquement dans R, tout comme ceux de la loi normale, grâce aux fonctions quorm et qlnorm

Exercice 1 (Analyse exploratoire (2pts)):

- 1. Tracer un histogramme de la loi empirique de la taille des fichiers en échelle logarithmique (soit $\log(x_1), \ldots, \log(x_n)$).
- 2. superposer l'histogramme (avec l'option probability = TRUE) et la densité d'une loi normale de moyenne et variance respectivement égales à la moyenne et la variance

empiriques des $\log(x_i)$.

Au vu de l'exercice 1, On modélise ces données comme des échantillons i.i.d. d'une loi lognormale de paramètres μ , σ^2 (la taille de chaque fichier est donc représentée par une variable aléatoire X telle que $\log(X)$ suit une loi normale d'espérance μ et de variance σ^2). On note $\theta = (\mu, \sigma^2)$. Certaines questions font appel à la loi du χ^2 .

Exercice 2 (Estimation ponctuelle (7 pts)):

- 1. Calculer la densité par rapport à la mesure de Lebesgue de la loi log-normale de paramètre $\theta = (\mu, \sigma^2)$, en utilisant un changement de variables approprié.
- 2. Calculer l'estimateur du maximum de vraisemblance $\hat{\theta} = (\hat{\mu}, \widehat{\sigma^2})$ de θ . Cet estimateur est-il biaisé? Si oui, ce biais est-il significatif pour ce jeu de données?
- 3. Représenter la loi associée pour le jeu de données considéré sur le même graphique que la loi empirique (toujours en échelle logarithmique).
- 4. Calculer le risque quadratique associé à l'estimateur $\widehat{\mu}$ de μ . Cet estimateur est-il efficace?
- 5. On s'intéresse maintenant à la taille moyenne des fichiers, $g(\theta) = E_{\theta}(X)$. L'estimateur $g(\widehat{\theta})$ est-il efficace? Comparer la valeur obtenue pour ce jeu de données avec la moyenne empirique.
- 6. Enfin, on s'intéresse au quantile de niveau 0.95, soit la valeur $q(\theta)$ tel que $P_{\theta}(X \leq q(\theta)) = 0.95$. On cherche à estimer $\log q(\theta)$. L'estimateur $\log q(\widehat{\theta})$ est-il efficace? Comparer la valeur obtenue pour ce jeu de données avec le quantile équivalent de la loi empirique.

Exercice 3 (Taille de fichiers et modélisation Bayésienne (7 pts)):

On considère le même jeu de données qu'à l'exercice précédent et on s'intéresse au paramètre σ^2 de la loi log-normale de la taille des fichiers. On considérera dans toute la suite que le paramètre μ est connu, on prendra $\mu=9.1$ dans les questions numériques.

1. Justifier l'hypothèse ' μ connu, $\mu=9.1$ ' : pour cela, estimer l'écart type de l'estimateur du maximum de vraisemblance pour μ et comparer à une grandeur de référence qui vous parait pertinente.

On se place désormais dans un cadre bayésien pour l'estimation de σ^2 . Pour des raisons pratiques qui apparaîtront ci-dessous, on préfère travailler avec l'inverse de σ^2 , $\lambda = 1/\sigma^2$. On choisit comme prior sur λ une loi Gamma $\pi = \mathcal{G}amma(a,b)$ avec a>0,b>0 des hyper-paramètres fixés par le statisticien.

- 2. En l'absence d'information pertinente a priori sur la taille des fichiers, on choisit un prior 'large'. Déterminer a, b pour que $\mathbb{E}_{\pi}[\boldsymbol{\lambda}] = 1$ et $\mathbb{V}\mathrm{ar}_{\pi}(\boldsymbol{\lambda}) = 10$.
- 3. Déterminer l'expression de la loi a posteriori de λ pour n données (x_1, \ldots, x_n) . Calculer numériquement les paramètres de cette loi a posteriori pour le jeu de données fourni.
- 4. En déduire l'expression de l'estimateur de l'espérance a posteriori pour le paramètre λ . Comparer avec le résultat obtenu par maximum de vraisemblance.

5. Tracer sur un même graphique la densité de la loi a priori entre 0 et 1, celle de la loi a posteriori. Indiquer par des lignes verticales l'estimateur de l'espérance a posteriori et $1/\widehat{\sigma^2}$.

On veut construire l'espérance a posteriori $\hat{h} = \mathbb{E}_{\pi}[h(\lambda) \mid x_1, \dots, x_n]$ de la quantité d'intérêt $h(\lambda) = \log q_{\lambda}(0.95)$ avec q_{λ} le quantile de la loi log-normale de paramètres $(\mu = 9.1, \sigma^2 = 1/\lambda)$. On ne dispose pas d'expression explicite pour $h(\lambda)$ ni pour \hat{h} . Cependant, comme précisé en introduction du projet, les quantiles de la loi log-normale et de la loi normale sont disponibles numériquement dans R.

- 6. Simuler un échantillon $(\lambda_i)_{i=1,\dots,M}$ indépendant et identiquement distribué selon la loi a posteriori, avec M suffisamment grand, de manière à approcher \hat{h} par une moyenne empirique $\tilde{h} = \frac{1}{M} \sum_{i=1}^{M} Z_i$ avec Z_i convenablement construit à partir de λ_i et d'une fonction quantile :
 - (a) Expliciter Z_i et fournir l'estimation \tilde{h} demandée.
 - (b) Donner une estimation de l'écart-type de \tilde{h} , conditionnellement à x_1, \ldots, x_n .
 - (c) Tracer sur le même graphique, en fonction de M, l'évolution de \tilde{h} et d'un encadrement de \tilde{h} de largeur 2 écarts-types, pour l'écart-type calculé ci-dessus.

Exercice 4 (Test d'hypothèses (4 pts)):

L'administrateur du réseau cherche à tester l'hypothèse $H_0: \sigma^2 \leq 8$ contre $H_1: \sigma^2 > 8$.

1. Construire un test de niveau $\alpha=0.05$ de H_0 contre H_1 basé sur la statistique

$$\varphi(X_1, \dots, X_n) = \sum_{i=1}^n (\log(X_i) - \overline{\log(X)})^2$$

avec $\overline{\log(X)} = \frac{1}{n} \sum_{i=1}^{n} \log(X_i)$. Préciser la région d'acceptation en fonction des quantiles d'une loi que l'on précisera.

- 2. Quel est le résultat du test sur le jeu de données considéré?
- 3. Quel est le seuil minimal σ_0 tel que l'hypothèse $\tilde{H}_0: \sigma \leq \sigma_0$ soit rejetée par un test de niveau 0.05?