Introduction to environmental time-series analysis

Aurelio Tobías

Spanish Council for Scientific Research
Nagasaki University School of Tropical Medicine and Global Health

XIV Summer School UPC-FME Barcelona, 2021/06/29

Additional materials

- Risk ratio and Poisson regression
- Splines

Risk ratio

Counts

	Outcome (y)	
	Yes	Рор.
Exposed (x=1)	d_1	Ν
Non-exposed (x=0)	d ₀	N

RR =
$$(d_1/N) / (d_0/N) =$$

= d_1 / d_0

Rates

	Outcome (y)	
	Yes	Рор.
Exposed (x=1)	d_1	N_1
Non-exposed (x=0)	d ₀	N_0

$$RR = (d_1/N_1) / (d_0/N_0)$$

Poisson regression

Counts

$$\log(\mu_i) = \alpha + \beta x_i$$

$$i = (0, 1)$$

if $x=0$ then $\mu_0 = \exp(\alpha)$
it $x=1$ then $\mu_1 = \exp(\alpha + \beta)$
therefore $\exp(\beta) = \mu_1 / \mu_0$

Rates

$$log(\mu_i/N_i) = \alpha + \beta x_i$$

$$log(\mu_i) = \alpha + \beta x_i + log(N_i)$$

$$i = (0, 1)$$

if
$$x=0$$
 then $\mu_0/N_0 = \exp(\alpha)$

if
$$x=1$$
 then $\mu_1/N_1 = \exp(\alpha + \beta)$

therefores
$$\exp(\beta) = (\mu_1/N_1) / (\mu_0/N_0)$$

Splines

Polynomial splines

- Fit a set of piecewise regressions with the only restriction being that they intersect at the knots (lineal, quadratic, cubic)
- In general as higher is the degree as better is the fit, because more flexibility is allowed for

B-splines

 Reparameterization of polynomial splines to avoid computational problems from high order truncated polynomial splines

Natural cubic splines

 Reduce the uncertainty by imposing linearity in the tails beyond the boundary knots

Splines

