Composition d'analyse.

6203. Les résultats utilisés devront être énoncés avec précision. La rigueur des démonstrations et le soin apporté à leur rédaction seront des éléments importants d'appréciation.

Les définitions et les notations introduites dans la partie I servent tout au long du problème.

Les parties II et III sont indépendantes.

On note R (Resp. C) le corps des réels (Resp. complexes). Il est supposé muni de la distance associée à la valeur absolue (Resp. le module).

Pour tout nombre complexe z, on note respectivement Re z et Im z ses parties réelle et imaginaire, et \overline{z} son conjugué.

On note

R₊ l'ensemble $\{x | (x \in R) \text{ et } (x \ge 0)\}$, R₋ l'ensemble $\{x | (x \in R) \text{ et } (x \le 0)\}$, R* l'ensemble $\{x | (x \in R) \text{ et } (x \ne 0)\}$, R*, l'ensemble R₊ \cap R*, R*, l'ensemble R₋ \cap R*.

Tout espace vectoriel sur C est désigné par la même lettre que l'ensemble de ses éléments. On note

E le C-espace vectoriel des applications continues de R dans C.

E₀ le sous-espace de E formé par les applications constantes.

E₁ le sous-espace de E formé par les applications nulles en chaque point de R_.

E₂ le sous-espace de E formé par les applications nulles en chaque point de R₊.

Pour tout espace vectoriel V, 1_V désigne l'application identique de V.

PREMIÈRE PARTIE.

1° Démontrer que E est somme directe de E₀, E₁ et E₂.

Pour α , β et γ , deux à deux distincts, éléments de $\{0, 1, 2\}$, on note $p_{\alpha} : E \rightarrow E$ l'endomorphisme de projection sur E_{α} parallèlement à $E_{\beta} \oplus E_{\gamma}$.

2° A tout élément f de E, on associe l'application $g: \mathbb{R} \to \mathbb{C}$ définie par

$$\forall x \in \mathbb{R}^*, \qquad g(x) = \frac{1}{x} \int_0^x f(t) \, \mathrm{d}t \qquad \text{et} \qquad g(0) = f(0).$$

Démontrer que g appartient à E.

3° On note Φ le C-endomorphisme de E, qui a f associe g.

 Φ est-il injectif ? Φ est-il surjectif ?

Un sous-espace F de E est dit stable par Φ si, et seulement si, $\Phi(F) \subset F$; dans ce cas, l'application de F dans F, induite par Φ , est un endomorphisme de F.

4° Démontrer que, pout tout élément α de $\{0, 1, 2\}$, E_{α} est stable par Φ et que $p_{\alpha} \circ \Phi = \Phi \circ p_{\alpha}$; on note alors Φ_{α} l'endomorphisme de E_{α} induit par Φ .

DEUXIÈME PARTIE.

 1° Soit λ un nombre complexe non nul.

Déterminer toutes les applications dérivables f de \mathbb{R}_+^* dans \mathbb{C} vérifiant

$$\forall x \in \mathbb{R}_+^*, \qquad \lambda x f'(x) + (\lambda - 1) f(x) = 0.$$

- 2° Déterminer avec soin l'ensemble S des valeurs propres de Φ_1 (cf. I, 4°), puis l'ensemble T des valeurs propres de Φ . Représenter graphiquement, dans le plan complexe, les ensembles S et T; on en précisera les points non intérieurs.
- 3° Pour tout λ dans S (Resp. T), on note E_1^{λ} (Resp. E^{λ}) le sous-espace propre de Φ_1 (Resp. Φ) associé à la valeur propre λ .

Pour tout λ dans S déterminer une base de E_1^{λ} .

Pour tout λ dans T déterminer une base de E^λ.

4° Pour tout λ dans S (Resp. T), pour tout entier $n \ge 1$, on note $F_1^{\lambda}(n)$ [Resp. $F^{\lambda}(n)$] le sous-espace de E_1 (Resp. E) défini par

$$F_1^{\lambda}(n) = \text{Ker}(\Phi_1 - \lambda 1_E)^n$$
 (Resp. $F^{\lambda}(n) = \text{Ker}(\Phi - \lambda 1_E)^n$).

On pose
$$F_1^{\lambda} = \bigcup_{n \geq 1} F_1^{\lambda}(n)$$
 et $F^{\lambda} = \bigcup_{n \geq 1} F^{\lambda}(n)$.

Pour tout λ dans S, déterminer une base de F_{λ}^{λ} . Pour tout λ dans T, déterminer une base de F^{λ} .

5° a) Soit λ un élément de S; déterminer tous les sous-espaces de F_1^{λ} stables par Φ_1 .

En déduire une caractérisation de tous les sous-espaces de E_1 de dimension finie, stables par Φ_1 .

b) Tout sous-espace H de E, de dimension finie, stable par Φ , est-il somme directe d'un sous-espace H₁ de E₁ et d'un sous-espace H₂ de E₂ stables par Φ ?

Troisième partie.

On note A, B et C les sous-espaces vectoriels de E suivants :

A =
$$\{f | (f \in E)$$
 et $(\lim_{x \to +\infty} f = 0)$ et $(\lim_{x \to -\infty} f = 0)\}$
B = $\{f | (f \in E)$ et $(f \text{ est uniformément continue sur } R)\},$
C = $\{f | (f \in E)$ et $\int_{-\infty}^{+\infty} |f(x)| dx < +\infty\}.$

- 1° Déterminer toutes les inclusions concernant les ensembles A, B et C. (On demande donc six démonstrations; chaque inclusion ou non-inclusion devant être justifiée.)
 - 2° Comparer, toujours du point de vue de l'inclusion, A à $B \rightarrow C$.
 - 3° Démontrer que, pout tout élément f de B, il existe un couple (a, b) de réels tel que

$$\forall x \in \mathbb{R}, \quad |f(x)| \leq a|x| + b.$$

4° Les ensembles A, B, C, A ∩ C sont-ils stables par Φ? Justifier chaque réponse par une démonstration.

QUATRIÈME PARTIE.

On note D l'ensemble
$$\left\{ f | (f \in E) \text{ et } \left(\int_{-\infty}^{+\infty} |f(x)|^2 dx < + \infty \right) \right\}$$
.

- 1° a) Prouver que D est un sous-espace vectoriel de E.
- b) Comparer, du point de vue de l'inclusion, D à chacun des ensembles A, B et C (justifier chacune des six réponses).
- 2° Pour tout couple (f, g) d'éléments de D, on pose

$$\langle f|g\rangle = \int_{-\infty}^{+\infty} f(x) \, \overline{g(x)} \, \mathrm{d}x.$$

Vérisier que la forme hermitienne $(f, g) \mapsto \langle f|g \rangle$ est définie positive.

Pour tout élément f de D, on pose $||f|| = \langle f|f\rangle^{\frac{1}{2}}$.

3° Soit a et b deux réels tels que 0 < a < b. Soit f un élément de D, on pose $g = \Phi(f)$. Démontrer que

$$\int_a^b |g(x)|^2 dx \le a|g(a)|^2 + 2 \left[\int_0^\infty |f(x)|^2 dx \cdot \int_a^b |g(x)|^2 dx \right]^{\frac{1}{2}}.$$

- 4° Démontrer que D est stable par Φ.
- 5° Démontrer que $\forall f \in D$, $||\Phi(f)||^2 = 2\text{Re}\langle \Phi(f)|f\rangle$.
- 6° On munit D de la norme $\| \ \|$. On note Φ_D l'endomorphisme de D induit par Φ .
- a) Prouver que Φ_D est continu et que, pour tout f dans D, on a $||\Phi_D(f)|| \le 2 ||f||$.
- b) Démontrer que Sup $\{||\Phi_{D}(f)|| \mid (f \in D) \text{ et } (||f|| = 1)\} = 2.$
- 7° Démontrer le résultat plus précis suivant : $(\forall f \in D)$ $(f \neq 0 \Rightarrow ||\Phi_D(f)|| < 2||f||)$.