Dataset 1

In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
```

In [2]:

```
df=pd.read_csv(r"C:\Users\chila\Downloads\loan1.csv")
df
```

Out[2]:

	Home Owner	Marital Status	Annual Income	Defaulted Borrower
0	Yes	Single	125	No
1	No	Married	100	No
2	No	Single	70	No
3	Yes	Married	120	No
4	No	Divorced	95	Yes
5	No	Married	60	No
6	Yes	Divorced	220	No
7	No	Single	85	Yes
8	No	Married	75	No
9	No	Single	90	Yes

In [3]:

df.head()

Out[3]:

	Home Owner	Marital Status	Annual Income	Defaulted Borrower
0	Yes	Single	125	No
1	No	Married	100	No
2	No	Single	70	No
3	Yes	Married	120	No
4	No	Divorced	95	Yes

In [4]:

df.tail()

Out[4]:

	Home Owner	Marital Status	Annual Income	Defaulted Borrower
5	No	Married	60	No
6	Yes	Divorced	220	No
7	No	Single	85	Yes
8	No	Married	75	No
9	No	Single	90	Yes

In [5]:

df.describe()

Out[5]:

Annual Income

count	10.000000
mean	104.000000
std	45.631373
min	60.000000
25%	77.500000
50%	92.500000
75%	115.000000
max	220.000000

In [6]:

```
df['Marital Status'].value_counts()
```

Out[6]:

Marital Status Single 4 Married 4 Divorced 2

Name: count, dtype: int64

```
In [7]:
```

```
df['Annual Income'].value_counts()
```

Out[7]:

In [8]:

```
convert={"Home Owner":{"Yes":1,"No":0}}
df=df.replace(convert)
df
```

Out[8]:

	Home Owner	Marital Status	Annual Income	Defaulted Borrower
0	1	Single	125	No
1	0	Married	100	No
2	0	Single	70	No
3	1	Married	120	No
4	0	Divorced	95	Yes
5	0	Married	60	No
6	1	Divorced	220	No
7	0	Single	85	Yes
8	0	Married	75	No
9	0	Single	90	Yes

In [9]:

```
convert={"Marital Status":{"Single":1,"Married":2,"Divorced":3}}
df=df.replace(convert)
df
```

Out[9]:

	Home Owner	Marital Status	Annual Income	Defaulted Borrower
0	1	1	125	No
1	0	2	100	No
2	0	1	70	No
3	1	2	120	No
4	0	3	95	Yes
5	0	2	60	No
6	1	3	220	No
7	0	1	85	Yes
8	0	2	75	No
9	0	1	90	Yes

In [10]:

```
x=["Home Owner","Marital Status","Annual Income"]
y=["Yes","No"]
all_inputs=df[x]
all_classes=df["Defaulted Borrower"]
```

In [17]:

```
(x_train,x_test,y_train,y_test)=train_test_split(all_inputs,all_classes,test_size=0.5)
```

In [18]:

```
clf=DecisionTreeClassifier(random_state=0)
```

In [19]:

```
clf.fit(x_train,y_train)
```

Out[19]:

```
DecisionTreeClassifier
DecisionTreeClassifier(random_state=0)
```

In [20]:

```
score=clf.score(x_test,y_test)
print(score)
```

In [21]:

```
clf.score(x_train,y_train)
```

0.6

Dataset 2

In [22]:

```
import numpy as np
import pandas as pd
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
```

In [24]:

```
data=pd.read_csv(r"C:\Users\chila\Downloads\drug200.csv")
data
```

Out[24]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY
195	56	F	LOW	HIGH	11.567	drugC
196	16	М	LOW	HIGH	12.006	drugC
197	52	М	NORMAL	HIGH	9.894	drugX
198	23	М	NORMAL	NORMAL	14.020	drugX
199	40	F	LOW	NORMAL	11.349	drugX

200 rows × 6 columns

In [25]:

data.head()

Out[25]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY

In [26]:

data.tail()

Out[26]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
195	56	F	LOW	HIGH	11.567	drugC
196	16	М	LOW	HIGH	12.006	drugC
197	52	М	NORMAL	HIGH	9.894	drugX
198	23	М	NORMAL	NORMAL	14.020	drugX
199	40	F	LOW	NORMAL	11.349	drugX

In [27]:

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype			
0	Age	200 non-null	int64			
1	Sex	200 non-null	object			
2	BP	200 non-null	object			
3	Cholesterol	200 non-null	object			
4	Na_to_K	200 non-null	float64			
5	Drug	200 non-null	object			
<pre>dtypes: float64(1), int64(1), object(4)</pre>						

memory usage: 9.5+ KB

```
In [30]:
```

```
data['Cholesterol'].value_counts()
```

Out[30]:

Cholesterol HIGH 103 NORMAL 97

Name: count, dtype: int64

In [31]:

```
data['Drug'].value_counts()
```

Out[31]:

Drug

drugY 91
 drugX 54
 drugA 23
 drugC 16
 drugB 16

Name: count, dtype: int64

In [32]:

```
convert={'Sex':{"F":1,"M":0}}
data=data.replace(convert)
data
```

Out[32]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	1	HIGH	HIGH	25.355	drugY
1	47	0	LOW	HIGH	13.093	drugC
2	47	0	LOW	HIGH	10.114	drugC
3	28	1	NORMAL	HIGH	7.798	drugX
4	61	1	LOW	HIGH	18.043	drugY
195	56	1	LOW	HIGH	11.567	drugC
196	16	0	LOW	HIGH	12.006	drugC
197	52	0	NORMAL	HIGH	9.894	drugX
198	23	0	NORMAL	NORMAL	14.020	drugX
199	40	1	LOW	NORMAL	11.349	drugX

200 rows × 6 columns

In [33]:

```
convert={"BP":{"LOW":1,"NORMAL":2,"HIGH":3}}
data=data.replace(convert)
data
```

Out[33]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	1	3	HIGH	25.355	drugY
1	47	0	1	HIGH	13.093	drugC
2	47	0	1	HIGH	10.114	drugC
3	28	1	2	HIGH	7.798	drugX
4	61	1	1	HIGH	18.043	drugY
195	56	1	1	HIGH	11.567	drugC
196	16	0	1	HIGH	12.006	drugC
197	52	0	2	HIGH	9.894	drugX
198	23	0	2	NORMAL	14.020	drugX
199	40	1	1	NORMAL	11.349	drugX

200 rows × 6 columns

In [34]:

```
convert={"Cholesterol":{"NORMAL":0,"HIGH":1}}
data=data.replace(convert)
data
```

Out[34]:

	Age	Sex	BP	Cholesterol	Na_to_K	Drug
0	23	1	3	1	25.355	drugY
1	47	0	1	1	13.093	drugC
2	47	0	1	1	10.114	drugC
3	28	1	2	1	7.798	drugX
4	61	1	1	1	18.043	drugY
195	56	1	1	1	11.567	drugC
196	16	0	1	1	12.006	drugC
197	52	0	2	1	9.894	drugX
198	23	0	2	0	14.020	drugX
199	40	1	1	0	11.349	drugX

200 rows × 6 columns

```
In [36]:
x=["Age","Sex","BP","Cholesterol","Na_to_K"]
y=["drugY","drugX","drugA","drugC","drugB"]
all_inputs=data[x]
all_classes=data["Drug"]
In [37]:
(x_train,x_test,y_train,y_test)=train_test_split(all_inputs,all_classes,test_size=0.5)
In [38]:
clf=DecisionTreeClassifier(random_state=0)
In [39]:
clf.fit(x_train,y_train)
Out[39]:
          DecisionTreeClassifier
DecisionTreeClassifier(random_state=0)
In [40]:
clf.score(x_train,y_train)
Out[40]:
1.0
```