Mathematik I Homomorphismen, Ringe & Körper

Prof. Dr. Doris Bohnet Sommersemester 2020

Zeitplan Vorlesung

		Datum	Bemerkung	Inhalt
Grund- lagen			Selbststudium	Grundlagen: Mengen
			Selbststudium	Grundlagen: Relationen
			Selbststudium	Grundlagen: Abbildungen
Zahlen- theorie	1	22.04.	Einmalig Mi.	Wiederholung & Zusammenfassung Selbststudium
	2	27.04.		Zahlentheorie I
	3	28.04.		Zahlentheorie II
Algebra	4	04.05.		Gruppen
	5	11.05.		Homomorphismen, Ringe & Körper
	6	12.05.		Kryptographie
	7	18.05.		Vektorräume
Lineare Algebra	8	25.05.		Lineare Gleichungssysteme
	9	26.05.		Lineare Gleichungssysteme
	10	01.06.	Pfingstmontag	
	11	08.06.		Matrizen
	12	09.06.		Lineare Abbildungen

Lernziele

- Begriffe bzw. Aussagen kennen:
 - ✓ Zyklische Gruppe, Erzeuger
 - √ Gruppenhomomorphismus bzw. -isomorphismus
 - ✓ Chinesischer Restsatz
 - ✓ Ring, Körper
- Überprüfen können, ob eine Abbildung ein Homomorphismus ist;
- den Erzeuger einer Gruppe bestimmen bzw. überprüfen, ob eine Gruppe zyklisch ist;
- Überprüfen, ob zwei Gruppen isomorph sind;
- ein System aus Kongruenzgleichungen mit Hilfe des chinesischen Restsatzes zu lösen;
- Beispiele für zyklische Gruppen und endliche Körper kennen

Wiederholung

$$\mathbb{Z}_{12}^* = \{ a \in \mathbb{Z}_{12} \} \{0\} | ggT(a,12) = 1 \}$$

$$= \{ 1, 5, 7, 11 \}$$

$$|\mathbb{Z}_{12}^*| = 4 = \varphi(12)$$

$$(\varphi(12) = \varphi(2^2 \cdot 3) = \varphi(2^2) \varphi(3) = 2 \cdot 2 = 4$$

$$\text{for } a \in \mathbb{Z}_{12}^* : a = 1 \mod 12$$

$$\text{od}(a) = \mathbf{n} : \text{kleinste } \mathbb{Z}_{0}^{(12)} : \text{od}(1) = 1$$

$$\text{od}(a) | \text{Guppenadnung} : \text{od}(1) = 1$$

$$\text{I neutrale Clement}$$

oleu4 $5^{2} \mod 12 = 1$ $5^{2} \mod 5 = 1$ $\mod (5) = 2$ $\gcd (7) = 2$

ond (11) = 2

Mathematik I - Prof. Dr. Doris Bohnet - Vorlesung 8

Beispiel – zyklische Gruppe

$$Z_{12}^{*} = \{1, 5, 7, M\}$$
 hat run Elemente der Ordnung 1 oder 2.

 $Z_{5}^{*} = \{1, 2, 3, 4\}$ ord $\{1, 2, 3, 4\}$ ord $\{2, 3, 4\}$ $\{3, 4\}$ $\{4, 2, 3, 4\}$ ord $\{2, 4\}$ $\{4, 2, 4\}$ $\{4, 2, 4\}$ $\{4, 2, 4\}$ $\{4, 4$

Definition - Zyklische Gruppe

Eine Gruppe (G) heißt **zyklisch**, falls es ein Element $g \in G$ gibt, so dass

 $G=\{g^i\big|i\in\mathbb{Z}\}\qquad \qquad g^{\prime\prime}=g\circ g\circ \dots\circ g$ Ein solches Element $g\in G$ heißt **Erzeuger** (oder erzeugendes Element) der Gruppe.

Beispiel (75 +) $75 = \{0, 1, 2, 3, 4\}$, |72| = 5

Die Gruppen $(\mathbb{Z}, +)$ und $(\mathbb{Z}_n, +)$ sind zyklisch. Das erzeugende Element ist jeweils die Eins.

Ordnung von 1: 1+1 $1+1+1+1=5 \mod 5=0 \mod 5$ 1=1 1=1 1=1 1=1 1=1

also ist 1 ein Erzeuger von 725: 725 = <1>

Allgemein ist jede Gruppe (Zn,+) zyhlist mit Eitenger 1.

Beispiel – Produkt von Gruppen

Beispiel tyhlische Guppe:
$$(Z,+)$$
 $|Z|=\infty$ $Z=<1>$

Beispil:
$$\mathbb{Z}_{2} \times \mathbb{Z}_{3} = \{(\alpha, b) \mid \alpha \in \mathbb{Z}_{2}, b \in \mathbb{Z}_{3}\}$$

 $\{0, 1, 2\} = \{(\underline{0}, \underline{0}), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)\}$
 $\{0, 1, 2\} = \{(\underline{0}, \underline{0}), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)\}$

Verknipfung:

$$(a,b)+(c,d)=(a+c,b+d)$$

$$(1,0) + (0,1) = (1+0,0+1)$$

neutrales Element: (0,0)

Definition - Homomorphismus

Eine Abbildung $f: G \to H$ zwischen zwei Gruppen (G, \circ) und (H, *), für die für alle $g, h \in G$

$$f(g \circ h) = \text{definition} - f(g) + f(h)$$

gilt, heißt (Gruppen)Homomorphismus.

Ist der Homomorphismus bijektiv, nennt man ihn einen Isomorphismus.
$$G$$
 und H heißen d on Y

Beispiel: $(\mathbb{Z}_2 \times \mathbb{Z}_3) + 1$ Gruppe, $|\mathbb{Z}_2 \times \mathbb{Z}_3| = 6$
 $(\mathbb{Z}_6) + 1$ Gruppe, $|\mathbb{Z}_6| = 6$
 $f: \mathbb{Z}_6$
 $\{0,0\}, (0,1), (0,2), (1,0), (1,1), (1,2)\}$
 $\{(0,0), (0,1), (0,2), (1,0), (1,1), (1,2)\}$
 $\{(0,0), (0,1), (0,2), (1,0), (1,1), (1,2)\}$

Beispiele für Homomorphismen

Beispiele: 1)
$$f: \mathbb{Z}_6 \longrightarrow \mathbb{Z}_2 \times \mathbb{Z}_3$$

a \longmapsto (a mod 2, a mod 3)

 $f(A) = (A,A), f(2) = (2 \mod 2, 2 \mod 3) = (0, 2)$
 $f(O) = (0,0), f(3) = (1,0), f(4) = (0,A), f(5) = (1,2)$
 $f: 84 \implies \text{ bightiv}? \qquad \text{ sunjelliv}: V$
 $f \text{ homomorphismus}? \qquad f(a+b) = f(a) + f(b)$

algernin: $f(a+b) = (a+b \mod 2, a+b \mod 3) f(2) \oplus f(3) = (0,2) + (1,0) = (1,2)$
 $f(a+b) = (a+b \mod 2, a+b \mod 3) f(2) \oplus f(3) = (0,2) + (1,0) = (1,2)$
 $f(a+b) = (a+b \mod 2, a+b \mod 3) f(a+b \mod 3$

Zyklische Gruppen

Jede unendliche zyklische Gruppe G ist isomorph zu $(\mathbb{Z},+)$. Jede endliche zyklische Gruppe G der Ordnung n ist isomorph zu (\mathbb{Z}_n, \pm) .

Der jeweilige Isomorphismus bildet das erzeugende Element g von G auf die Eins ab:

$$f: G \to \mathbb{Z}, g \mapsto 1$$

$$f(g^{\wedge}) = 1 + 1 + 1 + \dots + 1 = n$$

$$n-mal$$

7 große Surre Z = Z2 × Z3

2 kleine Guppen 800H Fahlen in großen Guppen au benechnen, tonnen sie in kleineren Guppen benechnet werden.

Schnelle Addition & Multiplikation

dee: Gaze Zahlen in Weinnen Resthlassen berechnen

Beispiel:
$$1878 + 1384 \in \mathbb{Z}_{4000}$$
 $f: \mathbb{Z}_{4000} \xrightarrow{-p} \mathbb{Z}_{32} \times \mathbb{Z}_{125}$
 $f(a) = (a \mod 32, a \mod 125)$
 $f(1878) = (22, 3)$
 $f(1384) = (8, 3)$
 \mathbb{Z}_{4000}

genel+ ist \times , so doss

 1878
 $\times \mod 32 = 30 \mod 32$
 $\times \mod 32 = 12 \mod 125$
 3262

Schnelle Addition & Multiplikation

Chinerischer Redsetz

```
Seien n_i^*, i=1,...,k teiler freund und x_i^* \in \mathbb{Z}_n

Dann existiert genan eine Lösung x \in \mathbb{Z}_n mit n=n_1 \cdot ... \cdot n_k, so doß x \in \mathbb{Z}_n mod n_i^* \in \mathbb{Z}_n x \in \mathbb{Z}_n
```

Bei uns: $n_1 = 32$, $n_2 = 125$, ggT(32, 125) = 1 $\times \mod 32 = 30 \mod 32$, $\times \mod 125 = 12 \mod 125$ mid dem Sett: $\exists ! \times \in \mathbb{Z}_{4000}$

Lösung mit enw. enW. Alg.: $\exists r, s \in \mathbb{Z}$: $1 = r \cdot 125 + s \cdot 32$ $r \cdot 125 \mod 125 = 0$ $s \cdot 32 \mod 125 = 1 \Rightarrow 12 \cdot s \cdot 32 \mod 125$

Mathematik I - Prof. Dr. Doris Bohnet - Vorlesung 8

 $= 12 \mod 125$

Chinesischer Restsatz

Seien $n_1, n_2, \dots, n_k \in \mathbb{N}$ zueinander teilerfremde Zahlen und $x_1, \dots, x_k \in \mathbb{Z}$. Sei $n = n_1 \cdot \dots \cdot n_k$. Dann existiert genau eine Lösung $x \in \mathbb{Z}_n$ so dass

$$x \bmod n_i = \underbrace{x_i \bmod n_i, i = 1, ..., k}.$$

x mod 32 = 30 mod 32, x mod 125 = 12 mod 125

Wir berechnen die Lösung, indem wir jeweils für jedes i=1,...,k mit Hilfe des erweiterten euklidischen

$$1 = r_i \cdot n_i + s_i \cdot \frac{n}{n_i}$$

$$A = 4 \cdot 125 + 5 \cdot 32$$
 $Q_1 = 5 \cdot 32$

$$x = 12 \cdot s \cdot 32 + 30 \cdot q \cdot 125$$

Anwendung

Seien $n_1, n_2, ..., n_k \in \mathbb{N}$ zueinander teilerfremde Zahlen. Dann gilt:

$$\mathbb{Z}_{n_1 \cdot \dots \cdot n_k} \cong \mathbb{Z}_{n_1} \times \dots \mathbb{Z}_{n_k}$$

$$\mathbb{Z}_{2 \cdot 3} \subseteq \mathbb{Z}_2 \times \mathbb{Z}_3$$

erweiterten outl. Algo. 99t (125,32)=1

$$7.125 + 5.32 = 1$$
 $125 | 32 | 1 | 0 | -1$
 $32 | 29 | 0 | 1 | 3$
 $29 | 3 | 1 | -3 | 1$
 $29 | 3 | 1 | -3 | 1$
 $20 | -11 | 43 | 2$
 $20 | -11 | 43 | 2$
 $20 | -11 | 43 | 2$
 $20 | -11 | 43 | 2$
 $20 | -11 | 43 | 2$
 $20 | -11 | 43 | 2$
 $20 | -11 | 43 | 2$
 $20 | -11 | 43 | 2$
 $20 | -11 | 43 | 2$
 $20 | -11 | 43 | 2$
 $20 | -11 | 43 | 2$

$$(-11.125) + 43.32 = 1$$
Rest med
$$x = 30.(-11.125) + 12.43.35$$

$$x = 30 \cdot (-11 \cdot 125) + 12 \cdot 43 \cdot 32$$
Reat mod 32

$$= -29738$$
 $\times \in \mathbb{Z}_{9000}$
 $= 3262$