USEFUL FORMULAE

TRIGONOMETRY

	2		2	cin	Δ	cos	A	
in	2A	=	L	2111	U	COS	v	,

Angle	0°	30°	45°	60°	90°	180°,
sin	0	1/2	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	O _{A (ii)}
cos	1 1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1
tan	0 21	$\frac{1}{\sqrt{3}}$	1	√ 3	∞	0

$$\cos 2\theta = 2\cos^2 \theta - 1$$
, $\cos 2\theta = 1 - 2\sin^2 \theta$

$$\sin(-\theta) = -\sin\theta$$
, $\cos(-\theta) = \cos\theta$

$$\sin(-\theta) = -\sin\theta$$
, $\cos(-\theta) = \cos\theta$
 $\sin(90 + \theta) = \cos\theta$ (change)

$$\sin (\pi - \theta) = \sin \theta$$
 (No change)

Hyperbolic Functions

$$\sinh x = \frac{e^x - e^{-x}}{2}, \cosh x = \frac{e^x + e^{-x}}{2}, \cosh^2 x - \sinh^2 x = 1$$

$$\frac{d}{dx}(\sinh x) = \cosh x, \frac{d}{dx}(\cosh x) = \sinh x,$$

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i}, \cos x = \frac{e^{ix} + e^{-ix}}{2}$$

$$\sinh ix = i \sin x, i \sinh x = \sin ix, \cosh ix = \cos x, \cosh x = \cos ix$$

Binomial Theorem
$$(1+x)^n = 1 + nx + \frac{n(n-1)}{x^2 + n(n-1)(n-2)}x^2 + \frac{n(n-1)(n-2)}{x^3 + \dots}x^3 + \dots$$

Polar coordinates
$$x = r\cos\theta$$
, $y = r\sin\theta$, $r^2 = x^2 + y^2$, $\theta = \tan^{-1}\frac{y}{x}$

 $z = r \cos i x$ $y = r \sin \theta \sin \phi$, $x = r \sin \theta \cos \phi$,

Median is the line joining the vertex to the mid point of the opposite side of a triangle.

Centroid or C.G. is the point of intersection of the medians of a triangle.

Incentre is the point of intersection of the bisectors of the angles of a triangle.

Circumcentre is the point of intersection of the perpendicular bisectors of the sides of a triangle: Orthocentre is the point of intersection of the perpendiculars drawn from vertex to the opposite sides of $\sin a = \frac{\partial a}{\partial x} + \frac{\partial a}{\partial y} + \sin a$

a triangle. Asymptote is the tangent to a curve at infinity.

DIFFERENTIAL CALCULUS

ERENTIAL CALCULUS
$$\frac{d}{dx}(x^{n}) = nx^{n-1}$$

$$\frac{d}{dx}(\log_{e} x) = \frac{1}{x}$$

$$\frac{d}{dx}(\sin x) = \cos x,$$

$$\frac{d}{dx}(\cos x) = -\sin x$$

$$\frac{d}{dx}(\cos x) = \sec x \tan x$$

$$\frac{d}{dx}(\sin^{-1} x) = \frac{1}{\sqrt{1-x^{2}}}$$

$$\frac{d}{dx}(\cos^{-1} x) = \frac{1}{\sqrt{1-x^{2}}}$$

$$\frac{d}{dx}(\cos^{-1} x) = \frac{1}{\sqrt{1-x^{2}}}$$

$$\frac{d}{dx}(\cos^{-1} x) = \frac{1}{\sqrt{1-x^{2}}}$$

$$\frac{d}{dx}(\sin^{-1} x) = \frac{1}{\sqrt{1-x^{2}}}$$

$$\frac{d}{dx}(\cos^{-1} x) = \frac{1}{\sqrt{1-x^{2}}}$$

$$\frac{d}{dx}(\sin^{-1} x) = a^{x} \log_{e} a$$

$$\frac{d}{dx}(\cos^{-1} x) = \frac{-1}{\sqrt{1-x^{2}}}$$

$$\frac{d}{dx}(\sin^{-1} x) = a^{x} \log_{e} a$$

$$\frac{d}{dx}(\cos^{-1} x) = \frac{-1}{\sqrt{1-x^{2}}}$$

$$\frac{d}{dx}(\sin^{-1} x) = a^{x} \log_{e} a$$

$$\frac{d}{dx}(\cos^{-1} x) = \frac{-1}{\sqrt{1-x^{2}}}$$

$$\frac{d}{dx}(\sin^{-1} x) = a^{x} \log_{e} a$$

$$\frac{d}{dx}(\cos^{-1} x) = \frac{-1}{\sqrt{1-x^{2}}}$$

$$\frac{d}{dx}(\sin^{-1} x) = a^{x} \log_{e} a$$

$$\frac{d}{dx}(\cos^{-1} x) = \frac{-1}{\sqrt{1-x^{2}}}$$

$$\frac{d}{dx}(\sin^{-1} x) = -\sin^{-1} x$$

$$\frac{d}{dx}(\cos^{-1} x) = -\sin^{-1} x$$

$$\frac{d}{dx}(\cosh x) = \sinh x$$

$$\frac{d}{dx}(\tanh x) = \sec^{-1} x$$

$$\frac{d}{dx}(\coth x) = -\operatorname{cosech}^{2} x$$

$$\frac{d}{dx}(\coth x) = -\operatorname{cosech}^{2} x$$

$$\frac{d}{dx}(\cosh x) = \sinh x$$

$$\frac{d}{dx}(\coth x) = -\operatorname{cosech}^{2} x$$

$$\frac{d}{dx}(\operatorname{sech} x) = -\operatorname{sech} x \tanh x$$

$$\frac{d}{dx}(\operatorname{sech} x) = -\operatorname{sech} x \tanh x \qquad \frac{d}{dx}(\operatorname{cosech} x) = -\operatorname{cosech} x \coth x$$
GRAL CALCULUS

$$\int x^n dx = \frac{x^{n+1}}{n+1}$$

$$\int \frac{1}{x} dx = \log_e x$$

$$\int a^x dx = a^x \log_a e$$

$$\int \cot x dx = \log \sin x$$

$$\int \cot x dx = \log \sin x$$

$$\int \cot x dx = \log \sin x$$

$$\int \cot x dx = \cos x$$

$$\int \cot x dx = -\cot x$$

$$\int \csc x dx = \cos x$$

$$\int \cot x dx = -\cot x$$

$$\int \sec x \tan x dx = \sec x$$

$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1} \frac{x}{a} \qquad \int \frac{dx}{\sqrt{a^2 + x^2}} = \sinh^{-1} \frac{x}{a} \qquad \int \frac{dx}{\sqrt{x^2 - a^2}} = \cosh^{-1} \frac{x}{a}$$

$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \frac{x}{a}$$

$$\int \frac{-dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a} \csc^{-1} \frac{x}{a} \qquad \int \cosh x \, dx = \sinh x \, dx$$

$$\int \csc x \cot x dx = -\csc x$$

$$\int \frac{dx}{\sqrt{a^2 + x^2}} = \sinh^{-1} \frac{x}{a}$$

$$\int \frac{-dx}{x^2 + a^2} = \frac{1}{a} \cot^{-1} \frac{x}{a}$$

$$\int \cosh x \, dx = \sinh x$$

$$\int \frac{dx}{\sqrt{x^2 - a^2}} - \cos \frac{1}{a}$$

$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \frac{1}{2} \sec^{-1} \frac{x}{a}$$

$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \frac{x}{a}$$

$$\int \frac{-dx}{x^2 + a^2} = \frac{1}{a} \cot^{-1} \frac{x}{a}$$

$$\int \frac{-dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a} \sec^{-1} \frac{x}{a}$$

$$\int \operatorname{sec} h^2 x \, dx = \tanh x$$

$$\int \operatorname{sec} h x \tanh x \, dx = -\operatorname{sec} h x$$

$$\int \cosh x \coth x dx = -\operatorname{cosech} x$$

$$\int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a}$$

$$\int \sqrt{a^2 + x^2} dx = \frac{x}{2} \sqrt{a^2 + x^2} + \frac{a^2}{2} \sinh^{-1} \frac{x}{a}$$

$$\int \sqrt{a^2 + x^2} \, dx = \frac{x}{2} \sqrt{a^2 + x^2} + \frac{a^2}{2} \sinh^{-1}$$

1.
$$L(1) = \frac{1}{s}$$

$$2. L(t^n) = \frac{\lfloor n \rfloor}{s^{n+1}}$$

2.
$$L(t) = \frac{a}{3}$$

$$\int uv dx = uv_1 - u'v_2 + u''v_3 - u'''v_4 ... \text{ (General Polynomial Representation of the properties of the propertie$$

6.
$$L (\sin at) = \frac{a}{s^2 + a^2}$$

4. L (cosh at) =
$$\frac{s}{s^2 - a^2}$$
5. L (sinh at) = $\frac{s}{s^2 - a^2}$
9. L⁻¹f'(t) = sLf(t) - f(0)

7. L (cos at) = $\frac{s}{s^2 + a^2}$
8. Le^{at} f(t) = F(s - a)
$$\int_{-1}^{1} f(t) dt = \int_{-1}^{1} f(t$$

9.
$$L^{-1}f'(t) = sLf(t) - f(0)$$

Dagini Lowning

7.
$$L(\cos at) = \frac{s}{s^2 + a^2}$$

8. Let
$$\int_{0}^{1} f(t)dt = \frac{1}{s}F(t)$$

7.
$$L(\cos at) = \frac{s}{s^2 + a^2}$$
 8. $Le^{at} f(t) = F(s - a)$ 8. $L[t^n f(t)] = (-1)^n \frac{d^n}{ds^n} [F(s)]$ 10. $L[f''(t)] = s^2 L[f(t) - sf(0) - f'(0)]$ 11. $L[\int_0^1 f(t)dt] = \frac{1}{s} F(s)$ 12. $L[t^n f(t)] = (-1)^n \frac{d^n}{ds^n} [F(s)]$ 10. $L[f''(t)] = s^2 L[f(t) - sf(0) - f'(0)]$ 11. $L[\int_0^1 f(t)dt] = \frac{1}{s} F(s)$ 12. $L[u(t - a)] = \frac{e^{-ax}}{s^2 + a^2}$

13.
$$L\left[\frac{1}{t}f(t)\right] = \int_{t}^{\infty} F(s)ds$$

10.
$$Lf''(t) = s^2 Lf(t) - sf(0) - f'(0)$$
 11. $[J_0]$

13. $L\left[\frac{1}{t}f(t)\right] = \int_s^\infty F(s)ds$ 14. $u(t-a) = \begin{cases} 0 \text{ when } t < a \\ 1 \text{ when } t > a \end{cases}$ 18. $L\delta(t-a) = e^{-ax}$

15.
$$L[u(t-a)] = \frac{e^{-ax}}{s}$$

13.
$$L\left[\frac{1}{t}f(t)\right] = \int_{s}^{\infty} F(s)ds$$
 14. $u(t-a) = 1$ [1 when $t > a$]

16. $L[f(t-a).u(t-a) = e^{-as}F(s)]$ 17. $L\delta(t-1) = \frac{1}{\epsilon}$ 18. $L\delta(t-a) = e^{-as}$

16. $L[f(t-a).u(t-a) = e^{-as}F(s)]$ 17. $L\delta(t-1) = \frac{1}{\epsilon}$ 21. $Lt\cos at = \frac{s^2}{2}$

$$18. L\delta(t-a) = e^{-at}$$

19.
$$Lf(t) = \frac{\int_0^T e^{-st} f(t)dt}{1 - e^{-sT}}$$
 20. $L\frac{t}{2a} \sin at = \frac{s}{(s^2 + a^2)^2}$ 21. $Lt \cos at = \frac{s^2 - a^2}{(s^2 + a^2)^2}$

20.
$$L\frac{t}{2a}\sin at = \frac{s}{(s^2 + a^2)^2}$$

21.
$$Lt\cos at = \frac{s^2 - a^2}{(s_1^2 + a_2^2)^2}$$

22.
$$L\frac{1}{2a^3}(\sin at - at\cos at) = \frac{1}{(s^2 + a^2)^2}$$

$$\frac{1 - e^{-3t}}{22. L \frac{1}{2a^3} (\sin at - at \cos at)} = \frac{1}{(s^2 + a^2)^2}$$

$$23. L \frac{1}{2a} (\sin at - at \cos at) = \frac{s^2}{(s^2 + a^2)^2}$$

CONVOLUTION THEOREM $L\left[\int_0^t f_1(x)f_2(t-x)dx\right] = F_1(s) * F_2(s)$ INVERSE LAPLACE TRANSFÖRM

1.
$$L^{-1}\left(\frac{1}{s}\right) = 1$$

2.
$$L^{-1}\frac{1}{s^n} = \frac{t^{n-1}}{n-1}$$

$$\frac{2}{s^n} \frac{L^{-1}}{s^n} \frac{1}{s^n} = \frac{1}{n-1} \frac{1}{s^{n-1}} = e^{at}$$

4.
$$L^{-1} \frac{s}{s^2 - a^2} = \cosh at$$

5.
$$L^{-1} \frac{1}{s^2 - a^2} = \frac{1}{a} \sinh at$$

4.
$$L^{-1} \frac{s}{s^2 - a^2} = \cosh at$$
 5. $L^{-1} \frac{1}{s^2 - a^2} = \frac{1}{a} \sinh at$ 6. $L^{-1} \frac{1}{s^2 + a^2} = \frac{1}{a} \sinh at$

7.
$$L^{-1} \frac{s}{s^2 + a^2} = \cos at$$
 8. $L^{-1}F(s - a) = e^{at}f(t)$ = (v) a modificated maximal

8.
$$L^{-1}F(s-a) = e^{at}f(t)$$

9.
$$L^{-1} \frac{1}{(s^2 + a^2)^2} = \frac{1}{2a^3} (\sin at - at \cos at)$$

10.
$$L^{-1} \frac{s}{(s^2 + a^2)^2} = \frac{1}{2a} t \sin at$$

$$\frac{1}{\pi \sqrt{2}} = 0.0 \text{ inclindified beauty}$$

$$11. \ L^{-1} \frac{s^2 - a^2}{(s^2 + a^2)^2} = t \cos at$$

12.
$$L^{-1} \frac{s^2}{(s^2 + a^2)^2} = \frac{1}{2a} (\sin at + at \cos at)$$

13.
$$L^{-1}[sF(s)] = \frac{d}{dt}f(t) + f(0)$$

13.
$$L^{-1}[sF(s)] = \frac{d}{dt}f(t) + f(0)$$

15.
$$L^{-1}F(s+a) = e^{-at}f(t)$$

15.
$$L^{-1}F(s+a) = e^{-at}f(t)$$
 16. $L^{-1}\left[e^{-as}F(s)\right] = f(t-a)u(t-a)$

17.
$$L^{-1} \left[\frac{d}{ds} F(s) \right] = -t f(t)$$
 18. $L^{-1} \left[\int_{s}^{\infty} F(s) ds \right] = \frac{f(t)}{t}$

19.
$$L^{-1} \int_0^s f_1(x) f_2(t-x) dx = F_1(s) \cdot F_2(s)$$
 20

19.
$$L^{-1} \int_{0}^{s} f_{1}(x) f_{2}(t-x) dx = F_{1}(s) \cdot F_{2}(s)$$
 20. $f(t) = \text{sum of the residues of } e^{\text{st}} F(s) \text{ at the poles of } f^{(s)}$

21. $L^{-1} \left[\frac{F(s)}{G(s)} \right] = \sum_{i=1}^{n} \frac{F(\alpha_{i})}{G'(\alpha_{i})} e^{\alpha_{i}t}$