# 생명함수론

보험계리실무

# 목차

- 1. 대수의 법칙
- 2. 생명표
- 3. 평균여명

### 1. 대수의 법칙

#### 구 분

#### 대수의 법칙

大數의 法則, the law of large numbers

#### 내 용

- ☞ 다수의 집단에 대하여 관찰 시 사람들의 생존 또는 사망비율에 일정한 법칙 존재
  - 생명보험의 보험료는 계약 당시에 정해지기 때문에 보험회사가 합리적인 경영을 위해서는 사람들이 어느 정도의 비율로 생존 또는 사망하는 가를 아는 것이 필요
  - 사람의 수명은 특정한 개인에 대해서는 예측하기가 곤란하지만 <mark>다수의 집단은 일정한 비율로 사망한</mark>다는 것을 알 수 있음 **1성 (1997) 1시**
- ☞ 총 시행횟수를 n, 어느 사상이 발생할 횟수를 m이라 할 때 m/n을 그 사상(event)의 확률추정치로 사용 가능함
  - m/n의 극한이 존재하는 것을 가정할 때 어느 사상이 일어날 확률은 다음과 같이 정의

$$p = \lim_{n \to \infty} \frac{m}{n}$$

- 즉, n이 커질수록 확률의 추정치(m/n)의 신뢰성은 높아지므로 관찰의 횟수(n)가 클수록 더욱 정확한 확률의 추정치를 얻을 수 있음
- ☞ 보험료 산출 시 사용되는 생명표(사망률)의 과학적 근거

구 분

종류

내 용

- ☞ 생명보험의 보험료를 계산하기 위해서는 사람들이 어느 정도의 비율로 사망 또는 생존해 가는 가를 알 필요가 있음
- 생명표(또는 사망표) : 생존. 사망의 상황을 매 연령별로 표로 나타낸 것으로, 매 연령마다 생존자수 , 사망자수, 생존률, 사망률 및 평균여명 등이 표시
  - 국민생명표 : 국민 전체의 생존. 사망을 일정기간 동안 관찰하여 작성
    - -. 5년 마다 인구센서스를 기준으로 통계청에서 작성
    - -. 국민전체를 대상으로 하여 작성하기 때문에 생명보험회사가 사용하기에는 적당하지 않음
  - 경험생명표 : 생명보험 가입자(피보험자)를 관찰하여 작성
    - -. 생명보험회사에서 사용
    - -. 생명보험회사는 보험가입자에 대하여 건강진단을 실시하는 등 언더라이팅을 통해 역선택을 방지하고 있으며, 그러한 기능이 없는 국민생명표를 사용하기에는 적절치 않음

구 분

내 용

우리나라의 생명표 ☞ 우리나라의 경험생명표 역사

| 연 도             | 적용한 생명표                              |              |              |  |  |
|-----------------|--------------------------------------|--------------|--------------|--|--|
| -<br>1959년 이전   | 특정생명표                                |              |              |  |  |
| 1960~1968년      | 일본 제9회 국민생명표(남자)를 수정한 일본 제9회 수정생명표   |              |              |  |  |
| 1969 ~1975년     | 일본 제10회 국민생명표(남자)를 수정한 일본 제10회 수정생명표 |              |              |  |  |
| 1976 ~ 1981.2   | 제1회 조정국민생명표(국민생명표 보정)                |              |              |  |  |
| 1981.3 ~ 1986.1 | 제2회 조정국민생명표                          |              |              |  |  |
| 1986.2          | '85 간 <mark>이</mark> 경험생명표           |              |              |  |  |
| 1988년           | 제1회 경험생명표                            | 65.75(남)     | 75.65(여)     |  |  |
| 1991년           | 제2회 경험생명표                            | 67.16        | 76.78        |  |  |
| 1997년           | 제3회 경험생명표                            | 68.39        | 77.94        |  |  |
| 2003년           | 제4회 경험생명표                            | 72.32        | 80.90        |  |  |
| 2005년(4m)       | 제5회 경험생명표                            | 76.4         | 84.4         |  |  |
| 2009년(10m)      | 제6회 경험생명표                            | 78.5         | 85.3         |  |  |
| 2012년(7m)       | 제7회 경험생명표                            | 80.0         | 85.9         |  |  |
| 2015년(4m)       | 제8회 경험생명표                            | 81.4         | 86.7         |  |  |
| 2019년(4m)       | 제9회 경험생명표                            | 83.5( 17.75) | 88.5( 12.85) |  |  |

72116

구 분

생명표의 작성

내 용

☞ 생명표에 사용되는 기호

- · x (연령)
- · (생존자수) : 초기의 기초생존자수(100,000명) 중 x세까지 생존하는 인원수를 표시한다.
- $\cdot$   $rac{dx}{dx}$  (사망자수) : (x) 가 x4세까지 1년 이내에 사망하는 인원수를 표시한다.
  - ※ (x) : 피보험자가 x세인 사람
- · px (생존률) : (x) 가 x세세까지 1년간 생존하는 확률이다.
- · qx (사망률): (x)가 x4세 전까지 1년 이내에 사망할 확률이다.
- · 🧸 (평균여명) : (x) 가 평균적으로 생존하는 연수이다.

구 분

생명표의 작성

내 용

☞ 제5회 경험생명표(남자, 배당사망률 일부)

| x (연령) | lx (생존자수) | dx (사망자수) | px (생존률) | <b>q</b> x (사망률) | <b>ළ</b> (평균여명) |
|--------|-----------|-----------|----------|------------------|-----------------|
| 0      | 100,000   | 344       | 0.99656  | 0.00344          | 75.93           |
| 1      | 99,656    | 55        | 0.99945  | 0.00055          | 75.19           |
| 2      | 99,601    | 48        | 0.99952  | 0.00048          | 74.23           |
| :      | :         |           | •        | :.               | :               |
| 35     | 97,801    | 93        | 0.99905  | 0.00095          | 42.23           |
| 36     | 97,708    | 103       | 0.99895  | 0.00101          | 41.27           |
| :      | :         | :         | :        | :                | :               |
| 40     | 97,231    | 154       | 0.99842  | 0.00158          | 37.46           |
| 41     | 97,077    | 171       | 0.99824  | 0.00176          | 36.52           |
| :      | :         |           | •        | :.               | :               |
| 50     | 94,641    | 416       | 0.9956   | 0.0044           | 28.33           |
| 51     | 94,225    | 448       | 0.99525  | 0.00475          | 27.45           |
| :      | :         | :         | :        | :                | :               |
| 102    | 4         | 3         | 0.25925  | 0.74075          | 0.82            |
| 103    | 1         | 1         | 0.2166   | 0.7834           | 0.72            |
| 104    | 0         | 0         | 0        | 1                | 0.5             |

※ w(한계연령, limiting age) : 생존자수가 0이 되는 처음 연령

e Lorint

⇒ 제5회 경험생명표(남자)의 경우 w =104세

제9회 기준(남자 111, 여자 113세)

#### 구 분

생명표의 작성

#### 내 용

-. 0세의 경우 생존자 100,000명(I<sub>0</sub>) 중 1년 동안 344명이 사망하여 1년 후에 1세 가 된 사람이 99,656명이라는 것을 표시 즉,

$$100,000(l_0) - 344(d_0) = 99,656(l_1)$$

-. 그 다음은 1세부터 2세까지 55명이 사망하여 2세의 생존자수  $l_2$ 는  $99,656(l_1)-55(d_1)=99,601(l_2)$ 

- -. 이와 같은 가정을 각 연령별로 계속하여 생존자수가 0이 되는 연령까지 계속
- -. 0세의 사람이 1세까지 생존할 확률

$$\frac{99,656}{100,000} = 0.99656$$

-. 1세의 사람이 2세까지 생존할 확률

$$\frac{99,601}{99,656} = 0.99945$$

-. 2세의 사람이 3세까지 생존할 획률

$$\frac{99,663}{99,601} = 0.99962$$

일반적인 (x)가 x:1세까지 1년간 생 존할 확률을 생존자 수, 사망자수 기호를 사용하여 표시하면,

$$\mathbf{x}p_{\alpha} = \frac{l_{\alpha+1}}{l_{\alpha}}$$

구 분

생명표의 작성

내 용

-. 0세 사망률의 경우

$$\frac{344}{100,000} = 0.00344$$

-. 1세 사망률의 경우

$$\frac{66}{99,666} = 0.00066$$



-. 위의 내용에 의해 이래와 같은 식이 성립

$$p_{\alpha} + q_{\alpha} = \frac{l_{\alpha+1} + d_{\alpha}}{l_{\alpha}} = \frac{l_{\alpha}}{l_{\alpha}} = 1$$

$$p_{\alpha} = 1 - q_{\alpha}$$

$$q_{\alpha} = 1 - p_{\alpha}$$

ストッともととと nxgn=1-nxPx

구 분

생명표의 작성

내 용

-. 피보험자 (x) 가 일정기간(n년) 동안 생존할 확률

$$_{n}p_{x}=\frac{l_{x}+n}{l_{x}}$$

-. 예를 들어, 30세의 피보험자가 40세까지 10년간 생존할 확률을 제5회 경험생명 표(남자)를 사용하여 계산하면

$$_{10}p_{30} = \frac{l_{40}}{l_{30}} = \frac{97,231}{98,192} = 0.99021$$

-. 피보험자 (x) 가 n년 이내에 사망할 확률

$${}_{n}q_{x} = \frac{d_{x} + d_{x+1} + d_{x+2} + \dots + d_{x+n-1}}{l_{x}}$$

$$= \frac{l_{x} - l_{x+n}}{l_{x}}$$

$$= 1 - \frac{l_{x+n}}{l_{x}}$$

$$= 1 - \frac{l_{x+n}}{l_{x}}$$

$$= 1 - \frac{l_{x} + n}{l_{x}}$$

$$= 1 - \frac{l_{x} + n}{l_{x}}$$

$$= 1 - \frac{l_{x} + n}{l_{x}}$$

### 3. 평균여명

구 분

평균여명

expection of life

내 용

☞ 어느 연령에 도달한 사람이 미래에 생존할 수 있는 기간의 평균

#### 개신평균여명

- · 생명표상의 x 세의 생존자수(lx)에 대해 앞으로의 생존년수를 구할 때 단수부분(端數部分, fraction of the year)을 고려하지 않고 정수부분만으로 평균여명을 구하는 것
- · **ę**로 표시

완전평균여명

- · 개산평균여명이 생존하는 연수의 정수 부분 만을 고려하여 계산하는데 비해 단 수부분 까지 고려하여 계산한 평균여명
- · **e** 로표시

#### □ 개신평균역명 (概算平均餘命, curtate expectation of life)

of the following  $I_x \rightarrow I_{x+1}$   $I_{x+2}$   $I_{x+2}$   $I_{x+3}$   $I_{x+4}$   $I_{x+4}$  I

-. Ix 인들의 1인당 평균여명은 정수부분만 계신한 Ix인들의 총 생존년수를 Ix로 나눈 값

### 3. 평균여명

구 분

평균여명

expection of life

내 용

#### □ 완전평균여명(完全平均餘命, complete expectation of life)

- UDD 가정(Uniform Distribution of Deaths throughout the year)

  완전평균여명을 계산하기 위해서는 각 연령별로 사망자가 일년을 기준으로 고르게 분포되어 있다고 가정
  - -. UDD 가정하에 lx 의 완전평균여명은 정수부분 및 단수부분의 총 생존연수를 lx로 나눈 값
  - -. 단수부분은 각 연령별로 사망하는 평균시점을 중간시점으로 가정하여 총 생존연수를 계산 하므로 UDD 가정하에서 평균 1/2년이 총 생존연수에 더 포함

$$\mathbf{\hat{Q}}_{\mathbf{x}}$$
 = [(정수부분 총 생존연수) +(단수부분 총 생존연수)] /  $\mathbf{l}\mathbf{x}$ 

$$= \frac{(l_{x} + l_{x+1} + l_{x+2} + \cdots + l_{w-1}) + \frac{1}{2}(d_{x} + d_{x+1} + d_{x+2} + \cdots + d_{w-1})}{l_{x}}$$

$$= e_{x} + \frac{1}{2}$$