Kidd Blood Group System

Number of antigens 3

Polymorphic Jk^a, Jk^b High prevalence Jk3

Terminology

ISBT symbol (number) JK (009)

History Named in 1951 after the initials of the sixth child

(John Kidd) of the first proband to make anti-Jk^a. John had hemolytic disease of the newborn.

Expression

Other blood cells Not on lymphocytes, granulocytes, monocytes or

platelets

Tissues Kidney

Gene

Chromosome 18q12.3

Name *JK (SLC14A1, HUT11A)*

Organization 11 exons distributed over 30 kbp of gDNA; exons 4

to 11 encode the mature protein

Product Urea transporter UT-B, Kidd glycoprotein

Database accession numbers

GenBank NM_015865 (mRNA)

Entrez Gene ID 6563

Molecular basis of Kidd phenotype

The reference allele, JK*02 or JK*B (Accession number NM_015865) encodes Jk^b (JK2), JK3. The nucleotide difference from this reference allele, and the amino acid affected, are given.

Allele encodes	Allele name	Exon	Nucleotide	Restriction enzyme	Amino acid	Ethnicity (prevalence)
Jk(a+b-) or JK:1,-2	JK*01 or JK*A	9	838A>G	Mnll+	Asn280Asp	Blacks> Whites> Asians (Common)

Molecular bases of weak or partial Kidd antigens

Homozygosity or compound herterozygosity leads to weak or partial phenotypes. Nucleotide changes from the JK*01 or JK*02 backgrounds, and the amino acids affected, are given. The term partial is used to classify an antigenpositive person who has the corresponding alloantibody in her/his plasma.

Allele encodes	Allele name	Exon	Nucleotide	Amino acid	Ethnicity (prevalence)	Antibody production^
Jk(a+wb-)	JK*01W.01	4	130G>A	Glu44Lys	Many populations (Common)	−JK3 −Jk ^a
Jk(a+wb-)	JK*01W.02	7	511T>C	Trp171Arg	(Rare)	
Jk(a+wb-)	JK*01W.03	4	28G>A	Val10Met	Black (Several)	-Jk ^a
Jk(a+wb-)	JK*01W.04	5	226G>A	Val76Ile	Black (Several)	-Jk ^a
Jk(a+wb-)	JK*01W.05	8	742G>A	Ala248Thr	Rare	
Jk(a-b+w)	JK*02W.01	7	548C>T	Ala183Val	Black (Rare)	

Not all people with the allele have made the alloantibody.

Kidd

Molecular bases of silencing of JK*A or JK*B

Homozygosity or compound heterozygosity leads to $JK\hbox{:--}3~[Jk(a\hbox{--}b\hbox{--})]$ phenotype.

Nucleotide changes from the JK*01 or JK*02 backgrounds, and the amino acids affected, are given.

Allele name	Exon/ intron	Nucleotide	Amino acid	Ethnicity (prevalence)
JK*01N.01	4 & 5	Exons 4&5 deleted	Initiation Met absent	Tunisian, English, Bosnian (Rare)
JK*01N.02	5	202C>T	Gln68Stop	Caucasian, American (Rare)
JK*01N.03	7	582C>G	Tyr194Stop	Swiss, English (Few)
JK*01N.04	10	956C>T	Thr319Met	African American, (Rare)
JK*01N.05	7	561C>A	Tyr187Stop	African American (Rare) African Brazilian (Many)
JK*01N.06	Intron 5	IVS5–1 g>a	Exon 6 skipped; in frame	Asian Indian (Rare)
JK*02N.01	Intron 5	IVS5–1 g>a	Exon 6 skipped; in frame	Polynesian, Chinese (Several)
JK*02N.02	Intron 5	IVS5–1 g>c	Exon 6 skipped; in frame	Chinese (Rare)
JK*02N.03	5	222C>A, 499A>G	Asn74Lys, Met167Val	Taiwanese (Rare)
JK*02N.04	Intron 7	IVS7+1g>t	Exon 7 skipped; frameshift→ Leu223Stop	French (Rare)
JK*02N.05	8	723delA	Frameshift→ Ile262Stop	Hispanic American (Rare)
JK*02N.06	9	871T>C	Ser291Pro	Finns (Several)
JK*02N.07	9	896G>A	Gly299Glu	Taiwanese (Rare)
JK*02N.08	10	956C>T	Thr319Met	Indian, Pakistani (Rare)
JK*02N.09 [^]	5	191G>A	Arg64Gln	Black (Rare)

[^]Non-reactive with 1 monoclonal anti-Jk^b, positive with 1 polyclonal anti-Jk^b. Absorption and elution studies where not performed; may express some Jk protein.

Amino acid sequence^{1,2}

MEDSPTMVRV	DSPTMVRGEN	QVSPCQGRRC	FPKALGYVTG	DMKKLANQLK	50
DKPVVLQFID	WILRGISQVV	FVNNPVSGIL	ILVGLLVQNP	WWALTGWLGT	100
VVSTLMALLL	SQDRSLIASG	LYGYNATLVG	VLMAVFSDKG	DYFWWLLLPV	150
CAMSMTCPIF	SSALNSMLSK	WDLPVFTLPF	NMALSMYLSA	TGHYNPFFPA	200
KLVIPITTAP	NISWSDLSAL	ELLKSIPVGV	GQIYGCDNPW	TGGIFLGAIL	250
LSSPLMCLHA	AIGSLLGIAA	GLSLSAPFED	IYFGLWGFNS	SLACIAMGGM	300
FMALTWQTHL	LALGCALFTA	YLGVGMANFM	AEVGLPACTW	PFCLATLLFL	350
IMTTKNSNIY	KMPLSKVTYP	EENRIFYLQA	KKRMVESPL		389

Carrier molecule

Multi-pass glycoprotein.

 $M_{\rm r}$ (SDS-PAGE) Predicted 43,000

CHO: N-glycan 2 potential sites (1 likely)

Cysteine residues 10 Copies per RBC 14,000

Function

A urea transporter in RBCs, UT-B plays a role in urea concentration by speeding up urea transport across the membrane as the RBCs pass through the descending and ascending vasa recta. Urea crosses the membrane of Jk(a–b–) RBCs about 1,000 times slower than in normal RBCs³.

Disease association

Jk(a–b–) individuals have no clinical symptoms, but have their urine concentrating ability reduced by about one-third³. JK antigens may act as minor histocompatibility antigens in renal allograft rejection⁴.

Kidd

Phenotypes (% occurrence)

	Caucasians	Blacks	Asians
Jk(a+b-)	26.3	51.1	23.2
Jk(a-b+)	23.4	8.1	26.8
Jk(a+b+)	50.3	40.8	49.1
Jk(a-b-)	Rare	Rare	0.9 (Polynesians)

Null: Jk(a-b-)

Unusual: Jk(a-b-) [In(Jk)]; Several variants with altered (weakened or partial) expression of Jk^a or Jk^b (see table "Molecular bases of weak or partial Kidd phenotypes")

Comments

Jk(a-b-) RBCs resist lysis by 2M urea⁵.

Dominant type Jk(a-b-) [In(Jk)] RBCs have been found in Japanese.

Two transient Jk(a-b-) people have been described^{6,7}. One was a Russian woman with myleofibrosis who made anti-Jk3 at the time her RBCs typed Jk(a-b-).

References

- ¹ Lucien, N., et al., 2002. Antigenic and functional properties of the human red blood cell urea transporter hUT-B1. J Biol Chem 277, 34101–34108.
- Olivès, B., et al., 1994. Cloning and functional expression of a urea transporter from human bone marrow cells. J Biol Chem 269, 31649–31652.
- ³ Sands, J.M., et al., 1992. Urinary concentrating ability in patients with Jk(a-b-) blood type who lack carrier-mediated urea transport. J Am Soc Nephrol 2, 1689–1696.
- ⁴ Lerut, E., et al., 2007. Duffy and Kidd blood group antigens: minor histocompatibility antigens involved in renal allograft rejection? *Transfusion*; 47, 28–40.
- ⁵ Mougey, R., 1990. A review: the Kidd system. Immunohematology 6, 1–8.
- ⁶ Issitt, P.D., et al., 1990. Temporary suppression of Kidd system antigen expression accompanied by transient production of anti-Jk3. Transfusion 30, 46–50.
- Obarski, G., et al., 1987. The Jk(a-b-) phenotype, probably occurring as a transient phenomenon [abstract]. Transfusion 27, 548.

Jka Antigen

Terminology

ISBT symbol (number)

JK1 (009001 or 9.1)

History

Reported in 1951. Name derived from the initials of the sixth child (John Kidd) of the antibody maker, Mrs. Kidd.

Occurrence

Caucasians 77%
Blacks 92%
Asians 72%

Antithetical antigen

Jk^b (**JK2**)

Expression

Cord RBCs Expressed

Altered See table: "Molecular basis of weak and partial

Kidd phenotypes." When an altered allele is present, less Kidd glycoprotein is incorporated into the RBC membrane or epitope expression detected by

monoclonal antibodies is reduced

Molecular basis associated with Jka antigen

Amino acid Asp280

Nucleotide G at bp 838 in exon 9

Effect of enzymes and chemicals on Jka antigen on intact RBCs

Ficin/Papain Resistant (enhanced)
Trypsin Resistant (enhanced) α -Chymotrypsin Resistant (enhanced)

Sialidase Resistant
DTT 200 mM Resistant
Acid Resistant

In vitro characteristics of alloanti-Jka

Immunoglobulin class IgG; many IgG plus IgM; IgM Optimal technique IAT; enzymes; PEG; CAT (gel)

Complement binding Yes, provided that IgM is present; some hemolytic¹

Clinical significance of alloanti-Jka

Transfusion reaction No to severe; immediate or delayed/hemolytic

HDFN Mild to moderate (rare)

Autoanti-Jka

Autoanti-Jk^a have been reported. With the discovery of weak or partial Jk^a phenotypes² it is possible some autoantibodies were actually alloantibodies.

Kidd

Comments

Anti-J k^a deteriorate *in vitro* and *in vivo*. Often found in multispecific sera. Anti-J k^a may react more strongly with Jk(a+b-) than Jk(a+b+) RBCs (i.e., show dosage).

References

- Yates, J., et al., 1998. IgG anti-Jk^a/Jk^b antibodies are unlikely to fix complement. Transfus Med 8, 133–140.
- Wester, E.S., et al., 2011. Characterization of Jk(a+weak): a new blood group phenotype associated with an altered JK*01 allele. Transfusion 51, 380–392.

Jk^b Antigen

Terminology

ISBT symbol (number) JK2 (009002 or 9.2)

History Found in 1953, and named for its antithetical

relationship to Jk^a.

Occurrence

Caucasians 74% Blacks 49% Asians 76%

Antithetical antigen

Jk^a (**JK1**)

Expression

Cord RBCs Expressed

Altered See table: "Molecular basis of weak and partial Kidd

phenotypes"

Molecular basis associated with Jkb antigen

Amino acid Asn280

Nucleotide A at bp 838 in exon 9

Effect of enzymes and chemicals on Jkb antigen on intact RBCs

Sialidase Resistant
DTT 200 mM Resistant
Acid Resistant

In vitro characteristics of alloanti-Jkb

Immunoglobulin class IgG; many IgG plus IgM; IgM Optimal technique IAT; enzymes; PEG; CAT

Complement binding Yes; provided that IgM is present; some hemolytic¹

Clinical significance of alloanti-Jkb

Transfusion reaction No to severe; immediate or delayed/hemolytic

HDFN No to mild (rare)

Autoanti-Jkb

Autoanti-Jk^b have been reported. With the discovery of weak or partial Jk^b phenotypes it is possible that some autoantibodies were actually alloantibodies.

Comments

Anti-Jkb deteriorate in vitro and in vivo. Often found in multispecific sera.

Reference

Yates, J., et al., 1998. IgG anti-Jk^a/Jk^b antibodies are unlikely to fix complement. Transfus Med 8, 133–140.

Jk3 Antigen

Terminology

ISBT symbol (number) JK3 (009003 or 9.3)

Obsolete names Jk^{ab}; Jk^aJk^b

History Anti-Jk^aJk^b was identified in 1959 and renamed

anti-Jk3 by ISBT when numbers became popular.

Occurrence

Most populations 100% Polynesians, Finns >99%

Expression

Cord RBCs Expressed

Altered Very weak on Jk(a-b-) of the In(Jk) type (detected by absorption/elution); weak expression in the

by absorption/elution); weak expression in the presence of certain alleles (see table: "Molecular basis of weak and partial Kidd phenotypes")

Molecular bases associated with Jk3 antigen

See System pages for molecular basis of Jk(a-b-) phenotype.

Effect of enzymes and chemicals on Jk3 antigen on intact RBCs

Sialidase Resistant
DTT 200 mM Resistant
Acid Resistant

In vitro characteristics of alloanti-Jk3

Immunoglobulin class IgG more common than IgM

Optimal technique IAT; PEG; Enzymes Complement binding Yes; some hemolytic

Clinical significance of alloanti-Jk3

Transfusion reaction No to severe/immediate or delayed

HDFN No to mild

Autoanti-Jk3

Rare

Comments

Anti-Jk3 has been found in a non-transfused male.

People with In(Jk) do not make anti-Jk3, and the presence of Jk antigens can be detected by absorption and elution.

Siblings of patients with anti-Jk3 should be tested for compatibility, and the patient urged to donate blood for cryogenic storage when his/her clinical state permits.