PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-203578

(43)Date of publication of application: 19.07.2002

(51)Int.CI.

HO1M

H01M 8/10

(21)Application number : 2000-399057

(71)Applicant: MATSUSHITA ELECTRIC IND CO

(22)Date of filing:

27.12.2000

(72)Inventor: YAMAZAKI TATSUTO

YAMAMOTO YOSHIAKI KUSAKABE HIROKI **OBARA HIDEO** HASE NOBUNORI

TAKEGUCHI SHINSUKE

(54) HIGH POLYMER ELECTROLYTE FUEL CELL

(57)Abstract:

PROBLEM TO BE SOLVED: To prevent

inconvenience that a gas invades from a gap and an oxidizer gas is mixed with a fuel, by preventing that minute gap occurs between a separator and the separator in the side of opposite which sandwiches a MEA, by that a gasket arranged in circumference of MEA falls into a gas flow-way slot of the separator with conclusion pressure of a cell, in a high polymer electrolyte type fuel cell which is laminated with the MEA and the conductive separator.

SOLUTION: The high polymer electrolyte type fuel cell is constituted of an entrance side manifold hole and an exit side manifold hole of the fuel gas at least, the slot for gas flow-way which is formed in one face and supplies the fuel gas to an anode, the through holes which penetrate the separator in the end parts of the entrance side and the exit side of the above slots for gas- flow ways, and the separator formed in the other side face, which has the slots for the gas-

flow ways which connect the above through hole and the entrance side manifold hole and the exit side manifold hole of the above fuel gas, respectively.

LEGAL STATUS

[Date of request for examination]

23.10.2001

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

(19)日本國特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出國公园番号 特開2002-203578 (P2002-203578A)

(43)公閉日 平成14年7月19日(2002.7.19)

(51) Int.Cl.7

即配号

FΙ

テーマコート*((2)43)

H01M 8/02

8/10

H 0 1 M 8/02

R 5H026

8/10

密查 印水 有

(21)出顯番号

(22)出頭日

特頭2000-399057(P2000-399057)

(71)出頭人 000005821

松下包器產業株式会社

大阪府門真市大字門真1006番地

平成12年12月27日(2000.12.27)

(72) 発明者 山路 遠人

大阪府門兵市大字門兵1008番地 松下亞器

産業株式会社内

(72)発明者 山本 滋明

大阪府門京市大字門京1006番地 松下劍架

産贷株式会社内

(74)代理人 100072431

弁理士 石井 和郎

帰済買に続く

(54) 【発明の名称】 高分子電焊質型燃料電池

(57)【要約】

【課題】 導電性セパレータとMEAを積層した高分子 電解質型燃料電池において、MEAの周囲に配置された ガスケットが電池の締結圧力によって、セパレータのガ ス流路溝に落ち込み、そのMEAを挟む反対側のセパレ ータとの間に微少隙間が発生する。この隙間からガスが 侵入し、燃料と酸化剤ガスが混合するという不都合が生 じる。

【解決手段】 少なくとも燃料ガスの入り口側マニホル ド穴および出口側マニホルド穴、一方の面に形成されて アノードに燃料ガスを供給するガス流路用溝、前記ガス 流路用溝の入り口側および出口側の端部においてセパレ 一夕を貫通した貫通穴、並びに他方の面に形成されて前 記貫通穴と前記燃料ガスの入り口側マニホルド穴および 出口側マニホルド穴とをそれぞれ連絡するガス流路用溝 を有するセパレータを備えた高分子電解質型燃料電池。

【特許請求の範囲】

【請求項1】 高分子電解質膜および前記高分子電解質膜を挟む一対の電極を含む複数の電解質膜一電極接合体を導電性セパレータを介して積層した燃料電池積層体、前記一方の電極に燃料ガスを供給する手段、並びに前記心方の電極に燃料ガスを供給する手段を具備し、前記導電性セパレータは、少なくとも燃料ガスの入り口側マニホルド穴および出口側マニホルド穴、一方の面に形成されて前記一方の電極に燃料ガスを供給するガス流路用溝、前記ガス流路用溝の入り口側および出口側の端部においてセパレータを貫通した貫通穴、並びに他方の面に形成されて前記貫通穴と前記燃料ガスの入り口側マニホルド穴および出口側マニホルド穴とをそれぞれ連絡するガス流路用溝を有することを特徴とする高分子電解質型燃料電池。

1

【請求項2】 前記導電性セパレータは、さらに、酸化 剤ガスの入り口側マニホルド穴および出口側マニホルド 穴、他方の面に形成されて前記他方の電極に酸化剤ガス を供給するガス流路用溝、前記ガス流路用溝の入り口側 および出口側の端部においてセパレータを貫通した貫通 穴、並びに一方の面に形成されて前記貫通穴と前記酸化 剤ガスの入り口側マニホルド穴および出口側マニホルド 穴とをそれぞれ連絡するガス流路用溝を有する請求項1 記載の高分子電解質型燃料電池。

【請求項3】 前記導電性セパレータは、少なくとも燃料ガスの入り口側マニホルド穴および出口側マニホルド穴、並びに冷却水の入り口側マニホルド穴および出口側マニホルド穴を有する2つのセパレータ部材の組み合わせを含み、前記一方の電極に燃料ガスを供給するガス流路用溝、前記ガス流路用溝の入り口側および出口側の端部においてセパレータを貫通した貫通穴、並びに他方の面に形成されて前記貫通穴と前記燃料ガスの入り口側マニホルド穴および出口側マニホルド穴とをそれぞれ連絡するガス流路用溝を有し、前記2つのセパレータ部材の少なくとも一方は、両者の間に、入り口側および出口側がそれぞれ前記冷却水の入り口側マニホルド穴および出口側マニホルド穴に連絡する冷却水流路を形成する溝を有する請求項1記載の高分子電解質型燃料電池。

【請求項4】 前記2つの導電性セパレータ部材は、さらに、酸化剤ガスの入り口側マニホルド穴および出口側マニホルド穴を有し、前記他方の導電性セパレータ部材は、さらに、前記冷却水流路を形成する面と反対側の面に形成されて前記他方の電極に酸化剤ガスを供給するガス流路用溝、前記ガス流路用溝の入り口側および出口側の端部においてセパレータを貫通した貫通穴、並びに前記冷却水流路を形成する面側に形成されて前記貫通穴と前記酸化剤ガスの入り口側マニホルド穴および出口側マニホルド穴とをそれぞれ連絡するガス流路用溝を有する請求項3記載の高分子電解質型燃料電池。

【請求項5】 前記導電性セパレータは、少なくとも燃 料ガスの入り口側マニホルド穴および出口側マニホルド 穴、並びに冷却水の入り口側マニホルド穴および出口側 マニホルド穴を有する2つのセパレータ部材の組み合わ せを含み、前記一方のセパレータ部材は、一方の面に形 成されて前記一方の電極に燃料ガスを供給するガス流路 用溝、前記ガス流路用溝の入り口側および出口側の端部 においてセパレータを貫通した貫通穴を有し、他方のセ パレータ部材は、前記貫通穴に連通する貫通穴、および 前記一方のセパレータ部材と反対側の面に形成されて前 記貫通穴と前記燃料ガスの入り口側マニホルド穴および 出口側マニホルド穴とをそれぞれ連絡するガス流路用溝 を有し、前記2つのセパレータ部材の少なくとも一方 は、両者の間に、入り口側および出口側がそれぞれ前記 冷却水の入り口側マニホルド穴および出口側マニホルド 穴に連絡する冷却水流路を形成する溝を有する請求項1 記載の高分子電解質型燃料電池。

【請求項6】 前記2つの導電性セパレータ部材は、さらに、酸化剤ガスの入り口側マニホルド穴および出口側マニホルド穴を有し、前記他方の導電性セパレータ部材は、さらに、前記冷却水流路を形成する面と反対側の面に形成されて前記他方の電極に酸化剤ガスを供給するガス流路用溝、および前記ガス流路用溝の入り口側および出口側の端部においてセパレータを貫通した酸化剤ガス流路用貫通穴を有し、前記一方のセパレータ部材は、さらに、前記酸化剤ガス流路用貫通穴と連通する前記一方の面側に形成されて前記酸化剤ガス流路用貫通穴と高記配した。 をに利ガス流路用貫通穴と連通する前記をに入り口側マニホルド穴および出口側マニホルド穴および出口側マニホルド穴および出口側マニホルド穴とをそれぞれ連絡するガス流路用溝を有する請求項5記載の高分子電解質型燃料電池。

【請求項7】 前記電解質膜-電極接合体が、前記電極の周縁部を囲むように配されたガスケットを含み、前記ガスケットが前記燃料ガスの入り口側マニホルド穴および出口側マニホルド穴、前記酸化剤ガスの入り口側マニホルド穴および出口側マニホルド穴、並びに前記冷却水の入り口側マニホルド穴および出口側マニホルド穴にそれぞれ連通するマニホルド穴を有する請求項4または6記載の高分子電解質型燃料電池。

50

通穴と前記燃料ガスの入り口側マニホルド穴および出口側マニホルド穴とをそれぞれ連絡する燃料ガス流路用溝を有することを特徴とする高分子電解質型燃料電池用導電性セパレータ。

【請求項9】 燃料ガスの入り口側マニホルド穴および 出口側マニホルド穴、酸化剤ガスの入り口側マニホルド 穴および出口側マニホルド穴、並びに冷却水の入り口側 マニホルド穴および出口側マニホルド穴を有する2つの セパレータ部材の組み合わせを含み、前記一方のセパレ 一夕部材は、一方の面に形成された燃料ガス流路用溝、 前記ガス流路用溝の入り口側および出口側の端部におい てセパレータを貫通した燃料ガス流路用貫通穴、他方の 面に形成されて前記燃料ガス流路用貫通穴と前記燃料ガ スの入り口側マニホルド穴および出口側マニホルド穴と をそれぞれ連絡する燃料ガス流路用溝、前記他方の導電 性セパレータ部材は、前記一方のセパレータ部材と反対 側の面に形成された酸化剤ガス流路用溝、前記酸化剤ガ ス流路用溝の入り口側および出口側の端部においてセパ レータを貫通した酸化剤ガス流路用貫通穴、並びに前記 一方のセパレータ側の面に形成されて前記酸化剤ガス流 路用貫通穴と前記酸化剤ガスの入り口側マニホルド穴お よび出口側マニホルド穴とをそれぞれ連絡するガス流路 用溝を有し、前記2つのセパレータ部材の少なくとも-方は、両者の間に、入り口側および出口側がそれぞれ前 記冷却水の入り口側マニホルド穴および出口側マニホル ド穴に連絡する冷却水流路を形成する溝を有する高分子 電解質型燃料電池用導電性セパレータ。

【請求項10】 燃料ガスの入り口側マニホルド穴およ び出口側マニホルド穴、酸化剤ガスの入り口側マニホル ド穴および出口側マニホルド穴、並びに冷却水の入り口 側マニホルド穴および出口側マニホルド穴を有する2つ のセパレータ部材の組み合わせを含み、前記一方のセパ レータ部材は、一方の面に形成された燃料ガス流路用 溝、並びに前記燃料ガス流路用溝の入り口側および出口 側の端部においてセパレータを貫通した燃料ガス流路用 貫通穴を有し、前記他方のセパレータ部材は、前記一方 のセパレータ部材と反対側の面に形成された酸化剤ガス 流路用溝、並びに前記酸化剤ガス流路用溝の入り口側お よび出口側の端部においてセパレータを貫通した酸化剤 ガス流路用貫通穴を有し、さらに前記一方のセパレータ 部材は、前記酸化剤ガス流路用貫通穴と連通する酸化剤 ガス用貫通穴並びに前記一方の面に形成されて前記酸化 剤ガス流路用貫通穴と前記酸化剤ガスの入り口側マニホ ルド穴および出口側マニホルド穴とをそれぞれ連絡する 酸化剤ガス流路用溝を有し、前記他方のセパレータ部材 は、前記燃料ガス流路用貫通穴と連通する燃料ガス流路 用貫通穴並びに前記一方のセパレータ部材と反対側の面 に形成されて前記燃料ガス流路用貫通穴と前記燃料ガス の入り口側マニホルド穴および出口側マニホルド穴とを それぞれ連絡する燃料ガス流路用溝を有し、前記2つの セパレータ部材の少なくとも一方は、両者の間に、入り口側および出口側がそれぞれ前記冷却水の入り口側マニホルド穴および出口側マニホルド穴に連絡する冷却水流路を形成する溝を有する高分子電解質型燃料電池用導電性セパレータ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ポータブル電源、電気自動車用電源、家庭内コージェネレーションシステム等に利用される固体高分子電解質を用いた燃料電池、特にその導電性セパレータに関する。

[0002]

【従来の技術】固体高分子電解質を用いた燃料電池は、 水素を含有する燃料ガスと、空気など酸素を含有する燃 料ガスとを、電気化学的に反応させることで、電力と熱 とを同時に発生させる。この燃料電池の基本的な構成要 素は、水素イオンを選択的に輸送する高分子電解質膜、 および高分子電解質の両面に接合された一対の電極であ る。電極は、白金族金属触媒を担持したカーボン粉末を 主成分とする触媒応層とその外面に形成された、通気性 と電子導電性を併せ持つ拡散層からなる。この他、供給 する燃料ガスおよび酸化剤ガスが外にリークしたり、二 種類のガスが互いに混合しないように、電極の周囲には 高分子電解質膜を挟んでガスをシールするためのガスケ ットが配置される。このガスケットは、電極及び高分子 電解質膜と一体化してあらかじめ組み立てられる。これ を電解質膜-電極接合体(MEA)と呼ぶ。MEAの外 側には、これを機械的に固定するとともに、隣接するM EAを互いに電気的に直列に接続するための導電性のセ パレータが配置される。セパレータのMEAと接触する 部分には、電極面に反応ガスを供給し、生成ガスや余剰 ガスを運び去るためのガス流路が形成される。ガス流路 はセパレータとは別に設けることもできるが、セパレー タの表面に溝を設けてガス流路とする方式が一般的であ る。

【0003】この溝にガスを供給するためには、ガスを供給する配管を、使用するセパレータの枚数に分岐し、その分岐先を直接セパレータの溝につなぎ込む配管治具が必要となる。この治具をマニホルドと呼び、上記のおうなガスの供給配管から直接つなぎ込むタイプを外部でニホルド型と呼ぶ。このマニホルドには、構造をより簡単にした内部マニホルド型と呼ぶ形式のものがある。内部マニホルド型とは、ガス流路を形成したセパレータに、貫通した孔、すなわちマニホルド穴を設け、ガス流路の出入り口をこの孔まで通し、この孔から直接ガスを供給するものである。燃料電池は、運転中に発熱するので、電池を良好な温度状態に維持するために、冷却水をで冷却する必要がある。通常、1~3セル毎に冷却水をで冷却部をセパレータとセパレータとの間に挿入される。セパレータの背面に冷却水流路を設けて冷却部とす

る場合が多い。これらのMEAとセパレータおよび冷却 部を交互に重ね、10~200セル積層した後、集電板 と絶縁板を介して、端板でこれを挟み、締結ボルトで両 端から固定するのが一般的な積層電池の構造である。

【0004】このような高分子電解質型燃料電池では、セパレータは導電性が高く、かつ気密性が高く、更に水素/酸素を酸化還元する際の反応に対して高い耐食性を持つ必要がある。このような理由で、セパレータは通常等方性黒鉛や膨張黒鉛などのカーボン材料で構成され、ガス流路もその表面での切削や、膨張黒鉛の場合は型による成型により作製される。組み上がった燃料電池に燃料ガス、酸化剤ガス及び冷却水を流し、その燃料電池全体での性能及び各単電池の性能を測定する。

[0005]

【発明が解決しようとする課題】従来の導電性セパレータとMEAとを積層した燃料電池において、MEAの周囲に配置されたガスケットが燃料電池の締結圧力によって、セパレータのガス流路に落ち込み、そのMEAを挟んで反対側に積層されたセパレータとの間に微少隙間が発生する。この隙間はガス流路端部、つまりマニホルド20穴と接する部分に発生しやすく、その隙間からガスが侵入し、二種類のガスが混合するという現象が起こり、性能が低下するという問題があった。また、ガスの混合される状況によっては、発火、発熱のおそれもあり、危険な状況になるという問題もあった。本発明は、セパレータを改良して二種類のガスの混合が生じない高分子電解質型燃料電池を提供することを目的とする。本発明は、そのようなセパレータを提供することをも目的とする。

[0006]

【課題を解決するための手段】本発明は、導電性セパレータ上に設けられたガス流路の端部をマニホルド穴に連絡する部分の位置を変更することで、ガスを流通させるマニホルド穴近傍における導電性セパレータとMEAのガスケット部との接合部において、ガスケットのセパレータのガス流路への落ち込みが発生しても、マニホルド穴に流れるガスが隙間の発生する面のガスと同一になり、2種類のガスの混合を防止する構造を持つことを特像とする。

【0007】本発明は、高分子電解質膜および前記高分子電解質膜を挟む一対の電極を含む複数の電解質膜一電 40極接合体を導電性セパレータを介して積層した燃料電池積層体、前記一方の電極に燃料ガスを供給する手段、並びに前記他方の電極に酸化剤ガスを供給する手段を具備し、前記導電性セパレータは、少なくとも燃料ガスの入り口側マニホルド穴および出口側マニホルド穴、一方の面に形成されて前記一方の電極に燃料ガスを供給するガス流路用溝、前記ガス流路用溝の入り口側および出口側の端部においてセパレータを貫通した貫通穴、並びに他方の面に形成されて前記貫通穴と前記燃料ガスの入り口側マニホルド穴および出口側マニホルド穴とをそれぞれ 50

連絡するガス流路用溝を有する高分子電解質型燃料電池 を提供する。

【0008】前記電解質膜-電極接合体は、前記電極の 周縁部を囲むように配されたガスケットを含み、前記ガ スケットが前記燃料ガスの入り口側マニホルド穴および 出口側マニホルド穴を有することが好ましい。

[0009]

【発明の実施の形態】本発明の高分子電解質型燃料電池は、電解質膜一電極接合体 (MEA) の間に挿入される導電性セパレータが、少なくとも燃料ガスの入り口側マニホルド穴および出口側マニホルド穴、一方の面に形成されてMEAの一方の電極に燃料ガスを供給するガス流路用溝、前記ガス流路用溝の入り口側および出口側の端部においてセパレータを貫通した貫通穴、並びに他方の面に形成されて前記貫通穴と前記燃料ガスの入り口側マニホルド穴および出口側マニホルド穴とをそれぞれ連絡するガス流路用溝を有する。

【0010】MEAとMEAとの間に挿入される導電性セパレータの好ましい態様において、は、セパレータはさらに、酸化剤ガスの入り口側マニホルド穴および出口側マニホルド穴、他方の面に形成されて前記他方の電極に酸化剤ガスを供給するガス流路用溝、前記ガス流路用溝の入り口側および出口側の端部においてセパレータを貫通した貫通穴、並びに一方の面に形成されて前記貫通穴と前記酸化剤ガスの入り口側マニホルド穴および出口側マニホルド穴とをそれぞれ連絡するガス流路用溝を有する。

【0011】導電性セパレータの別のタイプの好ましい 態様において、導電性セパレータは、少なくとも燃料ガ スの入り口側マニホルド穴および出口側マニホルド穴、 並びに冷却水の入り口側マニホルド穴および出口側マニ ホルド穴を有する2つのセパレータ部材の組み合わせを 含み、前記一方のセパレータ部材は、一方の面に形成さ れて前記一方の電極に燃料ガスを供給するガス流路用 溝、前記ガス流路用溝の入り口側および出口側の端部に おいてセパレータを貫通した貫通穴、並びに他方の面に 形成されて前記貫通穴と前記燃料ガスの入り口側マニホ ルド穴および出口側マニホルド穴とをそれぞれ連絡する ガス流路用溝を有し、前記2つのセパレータ部材の少な くとも一方は、両者の間に、入り口側および出口側がそ れぞれ前記冷却水の入り口側マニホルド穴および出口側 マニホルド穴に連絡する冷却水流路を形成する溝を有す る。前記2つの導電性セパレータ部材は、さらに、酸化 剤ガスの入り口側マニホルド穴および出口側マニホルド 穴を有し、前記他方の導電性セパレータ部材は、さら に、前記冷却水流路を形成する面と反対側の面に形成さ れて前記他方の電極に酸化剤ガスを供給するガス流路用 溝、前記ガス流路用溝の入り口側および出口側の端部に おいてセパレータを貫通した貫通穴、並びに前記冷却水 流路を形成する面側に形成されて前記貫通穴と前記酸化

8

剤ガスの入り口側マニホルド穴および出口側マニホルド 穴とをそれぞれ連絡するガス流路用溝を有することが好 ましい。

【0012】導電性セパレータのさらに別のタイプの好 ましい態様において、導電性セパレータは、少なくとも 燃料ガスの入り口側マニホルド穴および出口側マニホル ド穴、並びに冷却水の入り口側マニホルド穴および出口 側マニホルド穴を有する2つのセパレータ部材の組み合 わせを含み、前記一方のセパレータ部材は、一方の面に 形成されて前記一方の電極に燃料ガスを供給するガス流 路用溝、前記ガス流路用溝の入り口側および出口側の端 部においてセパレータを貫通した貫通穴を有し、他方の セパレータ部材は、前記貫通穴に連通する貫通穴、およ び前記一方のセパレータ部材と反対側の面に形成されて 前記貫通穴と前記燃料ガスの入り口側マニホルド穴およ び出口側マニホルド穴とをそれぞれ連絡するガス流路用 溝を有し、前記2つのセパレータ部材の少なくとも一方 は、両者の間に、入り口側および出口側がそれぞれ前記 冷却水の入り口側マニホルド穴および出口側マニホルド 穴に連絡する冷却水流路を形成する溝を有する。

【0013】前記2つの導電性セパレータ部材は、さら に、酸化剤ガスの入り口側マニホルド穴および出口側マ ニホルド穴を有し、前記他方の導電性セパレータ部材 は、さらに、前記冷却水流路を形成する面と反対側の面 に形成されて前記他方の電極に酸化剤ガスを供給するガ ス流路用溝、および前記ガス流路用溝の入り口側および 出口側の端部においてセパレータを貫通した酸化剤ガス 流路用貫通穴を有し、前記一方のセパレータ部材は、さ らに、前記酸化剤ガス流路用貫通穴と連通する前記一方 の面側に形成されて前記酸化剤ガス流路用貫通穴と前記 30 酸化剤ガスの入り口側マニホルド穴および出口側マニホ ルド穴とをそれぞれ連絡するガス流路用溝を有すること が好ましい。ここに用いられるMEAは、前記電極の周 縁部を囲むように配されたガスケットを含み、前記ガス ケットが前記燃料ガスの入り口側マニホルド穴および出 口側マニホルド穴、前記酸化剤ガスの入り口側マニホル ド穴および出口側マニホルド穴、並びに前記冷却水の入 り口側マニホルド穴および出口側マニホルド穴にそれぞ れ連通するマニホルド穴を有することが好ましい。

【0014】以下、本発明の実施の形態を図面を参照しながら説明する。図1は電解質膜-電極接合体(MEA)の正面図である。MEA6は、高分子電解質膜、この電解質膜を挟むカソードおよびアノード、並びに電極の周縁部において電解質膜の露出部分を覆うように接合されたガスケットからなる。図では、電極部分を4で表し、ガスケット部分を5で表している。図1において、電極部分4の表面はアノードであり、裏面にカソードがある。

【0015】図2および図3は、第1の実施の形態における導電性セパレータを示す。このセパレータ10は、

MEA6のガスケット部5と対応する周縁部に、酸化剤ガスの入口側マニホルド穴11aおよび出口側マニホルド穴11aおよび出口側マニホルド穴11b、燃料ガスの入口側マニホルド穴12aおよび出口側マニホルド穴13aおよび出口側マニホルド穴13bを利力を供給する。セパレータ10は、さらにその一方の面には、カソードに酸化剤ガスを供給するための流路を形成する複数の平行する直線状の溝14を有し、他方の面には、アノードに燃料ガスを供給するための流路を形成する複数の平行する溝24は、直線状の部分とターン部とを組み合わせた蛇行形状である。図2および3において、一点鎖線で囲まれた部分がそれぞれMEAの電極部分4に接し、それらの外側の部分がガスケット部分5に接する。

【0016】酸化剤ガスの流路用の溝14の末端部は、セパレータがガスケット部5と接する部分に位置しており、この末端部に貫通穴15aおよび15bを有している。そして、セパレータの裏面側には、貫通穴15aおよび15bとマニホルド穴11aおよび11bとをそれぞれ連絡するためのガス流路を形成する溝16aおよび16bが設けられている。同様に、燃料ガスの流路用溝24の末端部は、セパレータがガスケット部5と接する部分に位置し、この末端部に貫通穴25aおよび25bを有している。そして、セパレータの表面側には、貫通穴25aおよび25bとマニホルド穴12aおよび12bとをそれぞれ連絡するためのガス流路を形成する溝26aおよび26bが設けられている。

【0017】図8は、このようなセパレータを介してM EAを積層した電池の要部の断面を表している。入口側 マニホルド穴11aに供給される酸化剤ガスは、セパレ ータ10のアノード側に設けられた溝16a、およびセ パレータを貫通する貫通穴15aを経由してカソード側 に設けられた溝14に達し、ここからカソードに供給さ れる。そして、余剰ガスおよび電極反応により生成した ガスは、溝14から、セパレータを貫通する貫通穴15 b、およびアノード側に設けられた溝16bを経由して 出口側マニホルド穴11bへ排出される。入口側マニホ ルド穴12aに供給される燃料ガスは、セパレータ10 のカソード側に設けられた溝26a、およびセパレータ を貫通する貫通穴25aを経由してアノード側に設けら れた溝24に達し、ここからアノードに供給される。そ して、余剰ガスおよび電極反応により生成したガスは、 溝24から、セパレータを貫通する貫通穴25b、およ びカソード側に設けられた溝26bを経由して出口側マ ニホルド穴12bへ排出される。

【0018】図4および図5は、背面に冷却水の流路用溝を形成したカソード側導電性セパレータを示し、図6および図7は背面に冷却水の流路用溝を形成したアノード側導電性セパレータを示す。カソード側導電性セパレータ40は、酸化剤ガスの入口側マニホルド穴41aお

よび出口側マニホルド穴41b、燃料ガスの入口側マニホルド穴42aおよび出口側マニホルド穴42b、並びに冷却水の入口側マニホルド穴43aおよび出口側マニホルド穴43bを有する。セパレータ40は、カソード側に酸化剤ガスの流路用溝44を有し、溝44の末端部に貫通穴45aおよび45bとマニホルド穴41aおよび41bとをそれぞれ連絡するための溝46aおよび46bが設けられている。セパレータ40の以上の構成は、セパレータ10と同じである。異なるところは、燃料ガスの流路用溝の代わりに、冷却水の流路を形成するための溝47が設けられ、この溝47の末端部が直接マニホルド穴43aおよび43bに連絡していることである。

【0019】アノード側導電性セパレータ50は、アノード側に燃料ガスの流路用溝54を有し、溝54の末端部に貫通穴55aおよび55bを有する。セパレータ50の背面には、貫通穴55aおよび55bとマニホルド穴51aおよび51bとをそれぞれ連絡するための溝56aおよび56bが設けられている。セパレータ50は、さらに背面に、冷却水の流路を形成するための溝57が設けられ、この溝57の末端部が直接マニホルド穴53aおよび53bに連絡している。

【0020】カソード側セパレータ40とアノード側セ パレータ50とは、それらの背面側、すなわち冷却水流 路用溝47および57を有する面が接するように組み合 わせてMEA間に挿入される。図8は、カソード側セパ レータ40とアノード側セパレータ50の組み合わせ が、セパレータ10と交互にMEA間に挿入された例を 示している。酸化剤ガスの入口側マニホルド穴41a、 51aに供給される酸素ガスは、カソード側セパレータ 40の背面に設けられた溝46a、および貫通穴45a を経由して溝44に至り、カソードへ供給される。余剰 ガスおよび生成ガスは溝44から貫通穴45bおよび溝 46 bを経由してマニホルド穴41 bへ排出される。同 様に燃料ガスは、入口側マニホルド穴52aから、アノ ード側セパレータ50の背面に設けられた溝56a、お よび貫通穴55aを経由して溝54に至り、アノードへ 供給される。余剰ガスおよび生成ガスは溝54から貫通 穴55bおよび溝56bを経由してマニホルド穴52b へ排出される。

【0021】冷却水は、入口側マニホルド穴43aおよび53aから溝47および57により形成される蛇行形状の流路を通り、マニホルド穴43bおよび53bから排出される。この冷却水によって、セルはカソード側セパレータ40およびアノード側セパレータ50の背面から冷却される。電池を冷却するには、通常水を用いるのが簡便であるが、エチレングリコールなどの不凍液を用いることもできる。

【0022】図14は、従来のセパレータ100を用い 50

た積層電池の要部の断面を表している。セパレータ100は、MEAのカソード側の表面に、酸化剤ガスのマニホルド穴111と連絡する酸化剤ガスのマニホルド穴2111を連絡する燃料ガスの流路用溝114を有している。燃料電池の締結圧力によりセルの積層方向に締め付けられた際、マニホルド穴111の近傍においては、MEAのガスケット5が溝104内へ落ち込むことがある。そうすると、MEAの溝104に対応する部分が、図14の点線で示すように、溝104側に変形する。この変形した電極部5'およびガスケット部4'のアノード側と隣接するセパレータ100との間には7で示すような隙間が生じる。この隙間7が燃料ガスの流路用溝114と連通すると、燃料ガスがマニホルド穴111の酸化剤ガスと混合されることとなる。

【0023】これに対して、本発明においては、図8に 示すように、セパレータ10の酸化剤ガスの流路用溝1 4は、セパレータ10を貫通する穴15aからアノード 側に設けられた溝16aをとおしてマニホルド穴11a と連絡している。そして、MEAが溝14内へ落ち込む ことがあっても、貫通穴15aよりマニホルド穴11a 側においてはMEAのガスケット5は、セパレータ10 の溝のない部分で受け止められる。従って、ガスケット がセパレータのカソード側において酸化剤ガスの溝に落 ち込むことによって、そのガスケットのアノード側とア ノードとの間に、燃料ガスの流路用溝と酸化剤ガスのマ ニホルド穴とを連通させるような隙間は生じない。ま た、酸化剤ガスのマニホルド穴に連絡する溝16aに、 隣接するセルのガスケットが落ち込んで、そのガスケッ トの背面に隙間が生じても、その隙間は酸化剤ガスに連 絡するから、燃料ガスとの混合は起こらない。上ではガ スケットが酸化剤ガスの流路用溝に落ち込む場合につい て説明したが、ガスケットが燃料ガスの流路用溝に落ち 込む場合においても、上と同様に燃料ガスと酸化剤ガス の混合を生じることはない。

【0024】次に、冷却水の流路を形成するカソード側セパレータおよびアノード側セパレータの別の実施の形態を説明する。図9および図10は背面に冷却水の流路用溝を形成したカソード側導電性セパレータを示し、図11および図12は背面に冷却水の流路用溝を形成したアノード側導電性セパレータを示す。カソード側導電性セパレータを示す。カソード側導電性セパレータを示す。カソード側導電性セパレータを示す。カソード側導電性セパレータを示す。カソード側導電性セパレータを示す。カソード側でニホルド穴61b、燃料ガスの入口側マニホルド穴62 は出口側マニホルド穴62 および出口側マニホルド穴63 bを有する。セパレータ60は、カソード側に酸化剤ガスの流路用溝64有し、溝64の末端部に貫通穴65 a および65 b を有する。セパレータ60は、さらに、後述するアノード側セパレータ70の貫通穴75 a および75 b とそれぞれ連通する貫通穴

95 a および95 b を有し、カソード側には貫通穴95 a および95 b と燃料ガスの入口側マニホルド穴62 a および出口側マニホルド穴62 b とを連絡するための溝96 a および96 b を有する。セパレータ60は、背面に冷却水の流路を形成するための蛇行形状の溝67が、その入口側末端部および出口側端部がそれぞれマニホルド穴63 a および63 b と連絡するように形成されている。

【0025】アノード側導電性セパレータ70は、酸化 剤ガスの入口側マニホルド穴71aおよび出口側マニホ 10 ルド穴 7 1 b、燃料ガスの入口側マニホルド穴 7 2 a お よび出口側マニホルド穴72b、並びに冷却水の入口側 マニホルド穴73aおよび出口側マニホルド穴73bを 有する。セパレータ70は、アノード側に燃料ガスの流 路用溝74有し、溝74の末端部に貫通穴75aおよび 75bを有する。セパレータ70は、さらに、前記カソ ード側セパレータ60の貫通穴65aおよび65bとそ れぞれ連通する貫通穴85aおよび85bを有し、アノ ード側には貫通穴85aおよび85bと酸化剤ガスの入 口側マニホルド穴71aおよび出口側マニホルド穴71 bとを連絡するための溝86aおよび86bを有する。 セパレータ70は、背面に冷却水の流路を形成するため の蛇行形状の溝77が、その入口側末端部および出口側 端部がそれぞれマニホルド穴73aおよび73bと連絡 するように形成されている。

【0026】カソード側セパレータ60とアノード側セ パレータ70とは、それらの背面側、すなわち冷却水流 路用溝67および77を有する面が接するように組み合 わせてMEA間に挿入される。図13は、カソード側セ パレータ60とアノード側セパレータ70の組み合わせ 30 が、セパレータ10と交互にMEA間に挿入された例を 示している。酸化剤ガスの入口側マニホルド穴 6 1 a 、 71aに供給される酸素ガスは、アノード側セパレータ 70のアノード側の面に設けられた溝86a、貫通穴8 5 a および貫通穴65 a を経由して溝64に至り、カソ ードへ供給される。余剰ガスおよび生成ガスは溝64か ら貫通穴65b、貫通穴85b、および溝86bを経由 してマニホルド穴71bへ排出される。同様に燃料ガス は、カソード側セパレータ60の入口側マニホルド穴6 2 a から、溝96 a、貫通穴95 a、および貫通穴75 40 aからアノード側セパレータ70のアノード側に設けら

れた溝74に至り、アノードへ供給される。余剰ガスおよび生成ガスは溝74から貫通穴75b、貫通穴95bおよび溝96bを経由してマニホルド穴62bへ排出される。

【0027】冷却水は、入口側マニホルド穴63aおよ び73 aから溝67および77により形成される蛇行形 状の流路を通り、マニホルド穴63bおよび73bから 排出される。この冷却水によって、セルはカソード側セ パレータ60およびアノード側セパレータ70の背面か ら冷却される。これらのセパレータ60および70の組 み合わせにより冷却水の流路を形成した場合にも、先の 実施の形態と同様に、燃料ガスと酸化剤ガスのクロスリ ークが生じないことは明らかであろう。以上の実施の形 態において、冷却水の流路を形成するために、2つのセ パレータ部材の相対向する面にそれぞれ溝を設けたが、 一方のセパレータ部材のみに溝を設けて冷却水の流路を 形成してもよい。以上のように本発明によれば、導電性 セパレータとMEAを積層する際に、マニホルド穴と接 する導電性セパレータとMEAのガスケット部との接合 面端部における異種ガス間のクロスリークをなくすこと ができる。

[0028]

【実施例】以下に実施例を説明する。

《実施例1》平均粒径30nmの導電性カーボン粒子(オランダ Akzochimie社製ケッチェンブラックEC)に、平均粒径約30Åの白金粒子を重量比75:25の割合で担持したものを電極の触媒とした。この触媒粉末をイソプロパノールに分散させた分散液に、次式で示されるパーフルオロカーボンスルホン酸粉末のエチルアルコール分散液を混合してペースト状にした。このペーストを原料としスクリーン印刷法を用いて、厚み250 μ mのカーボン不織布の一方の面に電極触媒層を形成した。形成された電極触媒層中に含まれる白金量は0.5mg/cm²、パーフルオロカーボンスルホン酸の量は1.2mg/cm²となるよう調整した。こうして拡散層としてのカーボン不織布に触媒層を形成することにより、同じ構成のカソードおよびアノードを作製した。

[0029]

【化1】

$$F_{3}C \xrightarrow{\left(CF_{2}-CF_{2}\right)_{x}\left(CF_{2}-CF\right)\right]_{y}}CF_{3}C \xrightarrow{\left(CF_{2}-CF\right)\right]_{y}}CF_{3}C \xrightarrow{\left(CF_{2}-CF\right)}C \xrightarrow{\left(CF_{2}-CF\right)\right]_{y}}CF_{3}C \xrightarrow{\left(CF_{2}-CF\right)}C \xrightarrow{\left(CF_{2}-CF\right)\right]_{y}}CF_{3}C \xrightarrow{\left(CF_{2}-CF\right)}C \xrightarrow{\left(CF_{2}-CF\right)\right]_{y}}CF_{3}C \xrightarrow{\left(CF_{2}-CF\right)}C \xrightarrow{\left(CF_{2}-CF\right)}C$$

【0030】 (式中、m=1、n=2、x=5~13. 5、y = 1000である。)

これらの電極を、電極より一回り大きい面積を有する水素イオン伝導性高分子電解質膜の中心部の両面に、印刷した触媒層が電解質膜側に接するようにホットプレスによって接合して、電解質膜一電極接合体(MEA)を組み立てた。ここで用いたプロトン伝導性高分子電解質膜は、前記の式(ただし、m=2、n=2、 $x=5\sim1$ 3.5、y=1000である。)に示されるパーフルオロカーボンスルホン酸からなる 25μ mの厚みの薄膜である。図1はこのMEAの構成を示す。MEA6は、中央の電極部4、およびその外周部に配置されたガスケット部5からなる。

【0031】本実施例では、図2~6に示すセパレータ 30 10、40および50を用いて図8のような高分子電解質型燃料電池を組み立てた。これらのセパレータは、等方性黒鉛からなる厚さ2mm、高さ130mm×幅260mmの板を加工することにより作製した。主な仕様を以下に記載する。酸化剤ガスの流路用溝14および44は、カソード側となる面の中央部20cm×9cmの領域に、2.9mmピッチ、幅約2mmで形成した。また、燃料ガスの流路用溝24およ54はアノード側の面に、同ピッチ、同幅の溝を蛇行形状に形成した。冷却水の流路用溝47および57は、ピッチ2.9mm、幅約402mmとした。

【0032】セパレータ10のカソード側のガス流路用

溝14とアノード側のガス流路用溝24とは後者の溝の 直線部の中心線が前者の溝の中心線と一致するようにし た。これにより、電極に過剰なせん断力がかからないよ うにした。また、2セル毎にセパレータ40と50の組 み合わせを挿入して冷却水を流す冷却部を設けた。この 冷却部は、冷却水用の溝を持つ2種類のセパレータ40 と50の冷却水の流路用溝を有する面が対面するように シール剤(スリーボンド社製1211)で貼り合わせ た。セパレータとMEAの組合せにおけるガスシール性 は、MEAに貼り付けられたガスケットにて確保し、セ パレータ同士の組合せにおけるガスシール性はシール剤 (スリーボンド社製1211) で貼り合わせることで確 保した。以上に示したMEAをセパレータを介して50 セット積層した後、集電板と絶縁板を介してステンレス 鋼製の端板と締結ロッドで、10kgf/cm²の圧力 で締結した。このように作製した本実施例の高分子電解 質型燃料電池を、85℃に保持し、アノードに83℃の 露点となるよう加湿・加温した水素ガスを、カソードに 78℃の露点となるように加湿・加温した空気をそれぞ れ供給した。その結果を表1に示した。表1は、電池の 駆動電流を36A、90Aおよび126Aにした時の電 池電圧の変化を示している。電流を大きくとるほど電圧・ の低下は大きくなるが、十分実用性を有することが確認

[0033]

【表 1】

された。

遊転時間(時間) 電流(A)	1 0	1000	2000	3000
3 6	3 6 V	3 3 V	3 2 V	3 1 V
9 0	3 4 V	3 1 V	29 V	27 V
1 2 6	3 1 V	2 7 V	2 6 V	2 5 V

【003.4】《実施例2》本実施例では、冷却水の流路 を形成するために、セパレータ60と70の組み合わせ 50

を用いる他は実施例1と同様の高分子電解質型燃料電池 を組み立てた。この電池を75℃に保持し、アノードに 70℃の露点となるよう加湿・加温した水素ガスを、カソードに65℃の露点となるように加湿・加温した空気をそれぞれ供給した。その結果、実施例1の電池とほぼ同様の性能を示した。

[0035]

【発明の効果】以上のように本発明によれば、導電性セパレータとMEAを積層する際に、マニホルド穴と接する導電性セパレータとMEAのガスケット部との接合面端部における異種ガス間のクロスリークをなくすことができる。

【図面の簡単な説明】

【図1】本発明の一実施例の燃料電池に用いたMEAの 正面図である。

【図2】本発明の一実施例の燃料電池に用いた導電性セ パレータ正面図である。

【図3】同セパレータの背面図である。

【図4】同燃料電池に用いたカソード側導電性セパレータの正面図である。

【図5】同セパレータの背面図である。

【図6】同燃料電池に用いたアノード側導電性セパレー 20 タのカソード側から見た正面図である。

【図7】同セパレータの背面図である。

【図8】同燃料電池の要部の断面図である。

【図9】本発明の他の実施例の燃料電池に用いたカソー

ド側導電性セパレータの正面図である。

【図10】同セパレータの背面図である。

【図11】同燃料電池に用いたアノード側導電性セパレ ータのカソード側から見た正面図である。

【図12】同セパレータの背面図である。

【図13】同燃料電池の要部の断面図である。

【図14】従来の燃料電池の要部の断面図である。 【符号の説明】

1a、11a 酸化剤ガスの入り口側マニホルド穴

D 1 b 、 1 1 b 酸化剤ガスの出口側マニホルド穴

2a、12a 燃料ガスの入り口側マニホルド穴

2 b、12 b 燃料ガスの出口側マニホルド穴

3 a 、13 a 冷却水の入り口側マニホルド穴

3 b、13 b 冷却水の出口側マニホルド穴

4 電極部

5 ガスケット部

6 MEA

10 導電性セパレータ

14 酸化剤ガスの流路用溝

15a、15b 酸化剤ガスの流路用貫通穴

16a、16b 酸化剤ガスの流路用溝

24 燃料ガスの流路用溝

25 a 、25 b 燃料ガスの流路用貫通穴

26a、26b 燃料ガスの流路用溝

【図1】

[図2]

[図3]

【図4】

【図6】

【図7】

【図11】

[図12]

【図14】

フロントページの続き

(72)発明者 日下部 弘樹

大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 小原 英夫

大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 長谷 伸啓

大阪府門真市大字門真1006番地 松下電器 産業株式会社内

(72)発明者 竹口 伸介

大阪府門真市大字門真1006番地 松下電器 産業株式会社内

全来2000年1

Fターム(参考) 5H026 AA06 CC03 CC08