

合肥工业大学-Latex 模板

(合肥工业大学 XX 学位论文答辩报告)

任何建议和疑问?

请联系: 陈斌

邮箱: bin.chen@hfut.edu.cn

某某组/实验室, 计算机与信息学院, 合肥工业大学,中国

www.hfut.edu.cn

厚德、笃学、崇实、尚新

背景 凸包围体 碰撞检测算法

总结与展望

主要参考文献

背景

凸包围体技术

在计算机图形学领域里的各种算法中发挥着重要作用,如优化渲染和建模过程,加速求交、碰撞检测等算法。

碰撞检测问题

计算机图形学、虚拟现实等领域中的研究热点,是计算机模拟真实环境中不可或缺的技术,在物理仿真及游戏领域里应用十分广泛。

背景 凸包围体

全型型型型型

结与展望

主要参考文献

凸包围体的种类

Figure: 不同种类的包围体

其他: Tribox、Swept-sphere、Sphere-shell、Zonotopes、圆柱形、圆锥、椭球形等等。

3/16

本文目标

k-DOP¹的局限性:方向固定且为有限的偶数,不同模型其截面方向一致,不够紧致; 而凸包很 (最) 紧致, 但面片数量太多, 构造复杂度 $O(n \log n)$ 。

本文凸包围体的目标

能够自适应模型,根据模型形状特点有不同的方向: 紧致:

快速: 生成凸包围体的速度要快,利用 GPU 加速;

灵活: 通过参数 k 调节凸包围体的简单性和紧致程度。

背景 凸包围体 碰撞检测算法

总结与展望

主要参考文献

碰撞检测算法

碰撞检测算法

许多应用的基础,例如在 3D 游戏,物理仿真,机器人,虚拟现实等领域中^a。

^aericson2005real.

分类

加速结构: SPT(如四叉树、KD 树等) v.s BVH(OBB 树、k-DOP 树等)

表现形式: 刚体 v.s 可变形, 凸体 v.s 凹体, CSG v.s 参数曲面 v.s 多边形网格

碰撞环境: 成对 v.s 多体, 静止 v.s 运动, 离散 v.s 连续

基于 BVH 的碰撞检测算法

Figure: 八层 BVH 示例

```
算法 1 自顶向下层次遍历 BVH
输入: 两个 BVH 树的根节点 node1, node2
输出:模型是否相交

    function TraverseBVHTree(node<sub>1</sub>, node<sub>2</sub>)

      if node_1.bv \cap node_2.bv = \emptyset then
          return False // 包围体重合测试, 包围体不相交直接返回
      else
          if node_1.children = \emptyset then
             if node_2.children = \emptyset then
                 // 最底层叶子节点原生几何相交测试
                 return CheckIntersection(node1, primitives, node2, primitives)
             else
                 for all child \in node_2.children do
10:
                    TraverseBVHTree(node1, child) // 递归调用
11:
                end for
             end if
          else
             for all child \in node_1.children do
                 TraverseBVHTree(child, node2) // 递归调用
17.
             end for
          end if
      end if
20: end function
```

代价函数: $T_{cost} = n_v * C_v + n_p * C_p + (n_u * C_u)$ (运动)

景 凸包围体 碰撞检测算法

总结与展望

主要参考文献

总结与展望

总结

- 1 提出了一种构造紧致凸包围多面体-k-CBP 的算法:
- 2 构造 k-CBP 速度上比现有算法快 $3\sim8$ 倍:
- 3 构造的 k-CBP 紧致程度比现有的 k-DOP 紧致 $10\% \sim 40\%$;
- 4 提出了一种基于 k-CBP 的碰撞检测算法,该算法较 k-DOP 树算法初始化时间快 8 倍以 上,静止场景快 $0.8 \sim 3.2$ 倍,运动场景快 $0.8 \sim 5.6$ 倍。

展望

- 1 碰撞检测算法如何摆脱对 AABB 树的依赖;应用于近似碰撞检测算法;应用于可变形的 模型连续碰撞检测. 如何快速更新 k-CBP:
- 2 如何将 k-CBP 应用于如机器人抓取、路径规划等其他应用领域中。

主要参考文献Ⅰ

感谢

致谢

- 1 导师 XX 老师的精心指导;
- 2 XX 老师帮助;
- 3 研究所各个项目的历练;
- 4 XX 老师、XX 老师的评审及意见,答辩委员会老师聆听和指导。

December 17, 2019

Q & A

Questions?

Thank you!

Outline 大纲

- 1 Introduction 介绍
 - 2 Background 背景
 - B
 - C

4 Conclusions

3 Results

Blocks

block

This is a regular block

alertblock

This is an alert block

exampleblock

This is an example block

Directly plot data from file (1)

With tikz:

\begin{tikzpicture}[scale=.5] \draw plot[mark=*] file {figs/bb2.txt}; \end{tikzpicture}

With filename a text file with at least two columns (used as x and y coordinates). Lines starting with % or # are ignored.

M

Directly plot data from file (2)

Or with pgfplots: -u(t)usepackage{pgfplots} 2 Waveform 0 begin{tikzpicture} $begin{axis}$ addplot [color=black,no marks,thick] file {filename}; 2 end{axis} t [s] end{tikzpicture}

14/16

陈斌, bin.chen@hfut.edu.cn

Directly generate table from file

Person	Grade
Doe John	6
Doe Jane	7

MATLAB script to generate table

The matlab script can generates the LaTeX description for the following table:

\overline{t}	m	n	k	$R_{\rm BCH}$	R_{SCC}	b
2	5	32	21	0.66	0.31	256
2	6	64	51	0.80	0.59	1024
2	7	128	113	0.88	0.77	4096
2	8	256	239	0.93	0.87	16384
2	9	512	493	0.96	0.93	65536

Table: Parameters for t=2