7 Занятие 13/10/2020: мера Лебега, свойства измеримых функций

Задачи

- (1) Описать все подмножества E отрезка [0,1] такие, что их характеристические функции $\chi_E(x)$ интегрируемы по Риману.
- (2) Для любого подмножества $M \subset \mathbb{R}^n$ определим разность как

$$M - M = \{x - y \colon x, y \in M\}.$$

Доказать, что если M измеримо и имеет положительную лебеговскую меру, то M-M содержит окрестность нуля в \mathbb{R}^n .

(3) Определим меру μ на [0,1] как

$$\mu([\alpha, \beta)) = \log \frac{\beta + 1}{\alpha + 1}.$$

Доказать, что эта мера сохраняется при преобразовании $f: x \to \{x^{-1}\}$, где $\{x\}$ — дробная часть числа x (то есть доказать, что $\mu(f^{-1}(A)) = \mu(A)$).

- (4) Пусть μ мера Лебега на отрезке [0,1], а f измеримая и почти всюду конечная на этом отрезке функция. Доказать, что для любого $\varepsilon > 0$ существует замкнутое множество $C \subset [0,1]$ такое, что ограничение функции f на множество C непрерывно и $\mu(C) > 1 \varepsilon$.
- (5) Пусть $f_n(x)$ последовательность измеримых функций. Доказать, что $\sup_n f_n(x)$, $\inf_n f_n(x)$ тоже измеримы.
- (6) Пусть $f_n(x)$ последовательность измеримых функций. Доказать, что множество тех точек x, где существует $\lim_{n\to\infty} f_n(x)$ измеримо.
- (7) Вещественные функции f и g, измеримые относительно мер μ и ν соответственно называются **равноизмеримыми**, если для любого c>0 выполнено $\mu(\{x\colon f(x)< c\})=\nu(\{y\colon g(y)< c\})$. Доказать, что если f измерима относительно меры μ , то существует непрерывная слева на отрезке $[0,\mu(X)]$ неубывающая функция g, равноизмеримая с f. Доказать также единственность g.
- (8) Доказать, что две непрерывные функции на отрезке эквивалентны относительно меры Лебега только когда они тождественно равны.
- (9) Построить измеримую по Лебегу функцию на отрезке, не эквивалентную никакой непрерывной функции.
- (10) Занумеруем все рациональные числа отрезка [0,1] и запишем k-ое число r_k в виде несократимой дроби $r_k = p_k/q_k$. Пусть $f_k(x) = \exp(-(p_k xq_k)^2)$. Доказать, что $f_k \to 0$ по мере Лебега на [0,1] и что $\lim_{k\to\infty} f_k(x)$ не существует ни в одной точке отрезка [0,1]. Указать явно подпоследовательность, сходящуюся к нулю почти всюду.