INF721

2024/2

Deep Learning

L15: Word Embeddings

INF721

2024/2

Deep Learning

L15: Word Embeddings

Logistics

Announcements

▶ PA4 is out and due on Wednesday (13/11), 11:59pm

Last Lecture

- Language Models
- ▶ Implementing RNNs
- Vanishing/Exploding Gradients
- ▶ LSTM and GRUs

Lecture Outline

- Problems with one-hot encoding
- Word Embeddings
 - ▶ Featurized Representation
 - Visualization
 - Properties
 - Applications
- Word2Vec and Negative Sampling
- GloVe

Problem with one-hot encoding

A problem of one-hot encoding is that it represents each word as an independent category

Man (5391)	Woman (9853)	King (4914)	Queen (7157)	Apple (456)	Orange (6257)
	[0]	[0]	[0]	[0]	<pre>Fo]</pre>
0	0	0	0		0
0	0	0	0	1	0
0	0	•••	0	•••	0
•••	0	1 1	0	0	0
1 1			•••	0	
•••	1	0	1 1	0	1 1
0	0_	0		0	
0			0	0	0
0 ₅₃₉₁	o ₅₃₉₁				

It doesn't let a model easily generalize across words!

► For example, consider a language model that gives high probability to the sentence:

"I want a glass of **orange** juice"

Now, consider sampling from this model with context:

"I want a glass of **apple** _____ "

To the model, the relationship between **apple** and **orange** is the same as **apple** and **man**, or queen.

This is because the distance between any two words is the same!

Word Embedding: Featurized Representation

Ideally, we would like to have featurized representation for words, where words with similar meaning to have a similar representation:

apple and orange are close in the embedding space								
	Man (5391)	Woman (9853)	King (4914)	Queen (7157)	Apple (456)	Orange (6257)		
Gender	-1	1	-0.95	0.97	0.00	0.01		
Royal	0.01	0.02	0.93	0.95	-0.01	0.00		
Age	0.03	0.02	0.7	0.69	0.03	-0.02		
Food	0.04	0.01	0.02	0.01	0.95	0.97		
• • •								
	e ₅₃₉₁	e_{9853}	e ₄₉₁₄	e ₇₁₅₇	e ₄₅₆	e ₆₂₅₇		

Word embeddings are learned featurized representations:

- ▶ We can define the number of features *d* to be learned (e.g., 300), but **not** what they represent (e.g., gender)
- ► Words with similar meaning to have a similar representation:
- They allow a model to generalize across words more easily:

"I want a glass of **orange** juice"

"I want a glass of **apple** juice "

Visualizing Word Embeddings (with t-SNE)

We can visualize high dimentinoal word embeddings (e.g., 300 features) in 2D using the t-SNE algorithm:

- ▶ t-SNE learns a non-linear mapping between the original representation and a 2D space
- Word embeddings tend to group words with similar meaning together in the embedding space.

Properties of word embeddings

One interesting property of word embeddings is that they allow **word analogies** to be solved with vector arithmetic.

	Man (5391)	Woman (9853)	King (4914)	Queen (7157)	Apple (456)	Orange (6257)
Gender	-1	1	-0.95	0.97	0.00	0.01
Royal	0.01	0.02	0.93	0.95	-0.01	0.00
Age	0.03	0.02	0.7	0.69	0.03	-0.02
Food	0.04	0.01	0.02	0.01	0.95	0.97

 \mathbf{e}_{man} \mathbf{e}_{woman} \mathbf{e}_{king} \mathbf{e}_{queen} \mathbf{e}_{apple} \mathbf{e}_{orange}

Man is to Woman as King is to ____?

$$\mathbf{e}_{king} - \mathbf{e}_{queen} \approx \begin{bmatrix} -2\\0\\0\\0\\0 \end{bmatrix} \qquad \mathbf{e}_{man} - \mathbf{e}_{woman} \approx \begin{bmatrix} -2\\0\\0\\0 \end{bmatrix}$$

$$\mathbf{e}_{king} \qquad \mathbf{e}_{queen}$$

$$\mathbf{e}_{man} - \mathbf{e}_{woman} \approx \mathbf{e}_{king} - \mathbf{e}_{w}$$

$$\mathbf{e}_{w} = argmax_{w} \ sim(\mathbf{e}_{w}, \mathbf{e}_{king} - \mathbf{e}_{man} + \mathbf{e}_{woman})$$

Similarity

 \bullet \bullet

Similarity Between Vectors

Measuring similarity between vectors is very important in deep learning and one of the most populars functions to do that is the **cosine similarity**:

The cosine similarity between two vectors u and v is defined as:

$$sim(\mathbf{u}, \mathbf{v}) = \frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}||_2 ||\mathbf{v}||_2}$$

This formula is equal to the cossine of the anble between u and v:

Embedding Matrix

Word embeddings with dimentionality d (e.g. 300) are learned by adding an extra weight matrix, called **embeddings matrix** E, to the model:

Vocabulary v = [a, aaron, ..., zebra, zulu], |V| = 10,000

Learning Word Embeddings

There are many ways to learn word embeddings, but a simple and popular one is to train a **language model** with an **embedding layer** before the model:

Learning Word Embeddings

If your goal is not to learn a language model, but just the embeddings, we don't need to be limited to the previous words as **context**. We can use all the surrounding words:

Word2Vec

Word2Vec is a model to learn word embeddings using the surronding words as context

- Examples are produced by:
 - 1. Randomly sampling a target word and;
 - 2. Extracting the m (e.g., 3) words to left and to the right as **context**
 - l want a glass of orange juice to drink with my cereal

[Mikolov et. al., 2013] evaluated two different types of models:

- ▶ Continuous Bag of Words (CBOW): The goal is to predict the target word from the context
- Skip-gram: The goal is to predict the context words from the target word!

Word2Vec: CB0W

In CBOW model, the goal is to predict the target word from the context.

I want a glass of orange juice to drink with my cereal

Context	Target
•••	•••
glass of orange to drink with	juice
• • •	•••

Word2Vec: Skip-Gram

In the **Skip-gram** model, the goal is to predict the **context words** from the **target word!**

I	want	a	glass	of	orange	juice	to	drink	with	my	cereal

Target	Context
juice	glass
juice	of
juice	orange
juice	to
juice	drink
juice	with

$$P(o_t | c) = \frac{e^{\mathbf{w}_t \cdot \mathbf{e}_c + b_t}}{\sum_{j=1}^{10,000} \mathbf{e}^{\mathbf{w}_t \cdot e_c + b_t}}$$

Negative Sampling

Since the vocabulary size is typically large (e.g., 10,000), computing a probability with the softmax layer is expensive!

$$P(t \mid c) = \frac{e^{\mathbf{w}_t \cdot \mathbf{e}_c + b_t}}{\sum_{j=1}^{10,000} \mathbf{e}^{\mathbf{w}_t \cdot e_c + b_t}}$$

(we have to sum 10,000 terms)

Negative sampling changes the classification text to a binary classification problem by generating a dataset with positive and negative examples:

orange juice 1 Sample with skip-gram $\frac{o_c}{}$	
orange king 0	$\hat{y} \rightarrow P(y = 1 \mid c, t)$
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\rightarrow E_t \rightarrow e_t$ sigmoid
orange the 0 from the	
orange of 0 dictionary	$P(y = 1 \mid c, t) = \sigma(\mathbf{e}_t \cdot \mathbf{e}_c)$

GloVe (Global Vectors for Word Representation)

In Word2Vec, the global information is not preserved. To address that, GloVe predicts the number of times a target word t appears in the context of the context word c

- 2. Assign a weight vector per context \mathbf{w}_i and target word $\tilde{\mathbf{w}}_i$
- 3. Predict log co-occurance from \mathbf{w}_i and $\tilde{\mathbf{w}}_j$ using weighted MSE

		$\tilde{\mathbf{w}}_1$	$\tilde{\mathbf{w}}_{2}$	$\tilde{\mathbf{w}}_3$	$\mathbf{ ilde{W}}_{2}$	$\tilde{\mathbf{W}}$	5 $\widetilde{\mathbf{W}}$	6	$ ilde{\mathbf{W}}_{7}$
		\	Man	2	d/g_{ϵ}	s of	olg,	nge jui	Ce
\mathbf{w}_1		0	1.0	0.5	0	0.	- 0	- 0 -	\rightarrow \sim 1
\mathbf{W}_2	want	1.0	0	1.0	0.5	0	0	0	$X_{ij} = \sum_{j}^{C} \frac{1}{dist(i, j)}$
\mathbf{w}_3	а	0.5	1.0	0	1.0	0.5	0	0	where $oldsymbol{C}$ is contex
$\mathbf{W_4}$	glass	0	0.5	1.0	0	1.0	0.5	0	window size (e.g,
\mathbf{W}_{5}	of	0	0	0.5	1.0	0	1.0	0.5	
\mathbf{w}_{6}	orange	0	0	0	0.5	1.0	0	1.0	
\mathbf{W}_7	juice	0	0	0	0	0.5	1.0	0	

$$L = \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) \left(\mathbf{w}_i \tilde{\mathbf{w}}_j + b_i + b_j - log(X_{ij}) \right)^2$$
 Using log helps compress the range of values

weighting function that helps balance the importance of different co-occurrences

4. Embedding:

$$e_i = \frac{w_i + \tilde{w}_i}{2}$$

Using Word Embeddings

Sentiment Analysis

"It's a terrible product."

When working with Natural Language Processing problems, you can learn word embeddings by just adding an embedding layer to your network:

Using Word Embeddings

Sentiment **Analysis**

"It's a terrible product."

In PyTorch, you can use the Embedding layer to add an Embedding Matrix E to your model:

```
class RNNSentiment(nn.Module):
    def ___init___(self, vocab_size, embedding_dim, hidden_dim, output_dim, padding_idx=None):
        super().__init__()
        # Embedding layer
        self.embedding = nn.Embedding(
            num_embeddings=vocab_size, embedding_dim=embedding_dim, padding_idx=padding_idx
        # RNN layer
        self.rnn = nn.RNN(input_size=embedding_dim, hidden_size=hidden_dim, num_layers=1,
            batch_first=True
        # Output layer
        self.fc = nn.Linear(hidden_dim, output_dim)
```


Next Lecture

L15: Attention Mechanisms

Machine Translation, Decoding Strategies, Attention Mechanisms in RNNs

