Introduction to Probability Theory

김용환

Abstract

이 발표의 목적은 수리확률론의 기초적인 개념들을 소개하는 것이다. 독자들은 실변수함 수론의 기초적인 개념들에 어느 정도 익숙하다고 가정한다.

Keywords. Conditional Expectation, Martingale

1. Conditional Expectation

 $P(\Omega) = 1$ 인 measure가 주어진 공간 (Ω, \mathcal{F}, P) 를 우리는 probability space라고 부르고, 이 때 주어진 측도 P를 probability measure라 부른다. 이러한 확률측도가 주어진 공간은 앞으로 우리가 논의를 전개할 가장 기본적인 공간이다. 이제 기초확률론에서 정의한 몇 가지 개념을 르벡적분의 언어로 옮겨서 다시 정의하자.

Definition (Random Variable). 앞서 정의한 Ω 에 대해 $X: \Omega \to \mathbb{R}$ 가 measurable 이라면 이 때 이 X를 real-valued random variable 이라 부른다.

Definition (Expectation). 위와 같은 random variable X가 주어졌을 때, 기댓값을 $E[X] = \int X dP$ 와 같이 정의한다.

우리가 다음에 정의할 개념은 stochastic process를 다룰 때 필수적인 것이다. 다음 정리는 사실 Radon-Nikodym을 이용해서 증명할 수도 있지만, 우리는 Hilbert Space 에서의 Orthogonal Projection을 이용할 것이다.

Theorem (Conditional Expectation). Integrable random variable X, 그리고 $sub-\sigma$ -algebra $\mathcal{G} \subset \mathcal{F}$ 가 주어졌을 때, 어떤 L^1 function $E(X \mid G): (\Omega, \mathcal{G}) \to \mathbb{R}$ 이 존재 해, $\forall A \in \mathcal{G}$, $\int_A X \, dP = \int_A E(X \mid \mathcal{G}) \, dP$ 가 성립한다. 또, 이러한 함수 $E(X \mid G)$ 는 $almost\ everywhere$ 에서 같은 함수값을 가진다.

 $Proof.~~X\in L^2(\Omega,\mathcal{F},P)$ 인 경우부터 생각하자. 이 때, $L^2(\mathcal{G})$ 은 힐베르트 공간 $L^2(\mathcal{F})$ 의 닫힌 부분공간이다. 따라서, 우리는 다음의 사영 $\pi\colon L^2(\mathcal{F})\to L^2(\mathcal{G})$ 을 생각할 수

있다. 이제, $E(X\mid G)$ 를 X를 사영시킨 $\pi(X)$ 으로 정의하자. 이 때, $E(X\mid G)$ 가 \mathcal{G} -measurable 함수임은 쉽게 얻어진다. 또, 임의의 $A\in\mathcal{G}$ 를 잡아도, $\mathbf{1}_A\in L^2(\mathcal{G})$ 가 성립한다. 따라서, 이 함수는 $X-E(X\mid G)$ 과 수직이고, 이로부터 우리는 다음의 등식을 얻는다.

$$\forall A \in \mathcal{G}, \qquad \int_A X \, dP = \langle X, \mathbf{1}_A \rangle = \langle E(X \mid G), \mathbf{1}_A \rangle = \int_A E(X \mid \mathcal{G}) \, dP.$$

이제, X의 양수부분만을 생각하자. $X_n=\min(X,n)$ 으로 정의하자. 그러면, 전체 measure가 1이므로, $X_n\in L^2(\mathcal{G})$ 이고, 따라서 앞의 논의에 의해 $Y_n=E(X_n\mid G)$ 을 정의할 수 있고, 이 때 극한값을 $Y=\lim_{n\to\infty}Y_n$ 라 정의할 수 있다. 만약 $Y_n\geq Y_{n-1}$ almost everywhere라면, by the monotone convergence theorem

$$\int_A Y dP = \lim_{n \to \infty} \int_A Y_n dP = \lim_{n \to \infty} \int_A X_n dP = \int_A X dP < \infty$$

이제, 우리는 다음과 같이 $E(X \mid G)$ 를 정의하자:

$$E(X \mid G) = \begin{cases} Y & (Y < \infty) \\ 0 & (Y = \infty) \end{cases}.$$

 $\int Y\,dP<\infty$ 이기 때문에 Y는 almost everywhere에서 절댓값이 유한이므로, $Y=E(X\mid G)$ almost everywhere이다. 따라서

$$\forall A \in \mathcal{G}, \qquad \int_A X \, dP = \int_A Y \, dP = \int_A E(X \mid \mathcal{G}) \, dP.$$

마지막으로, 양수부분과 음수부분으로 나누어서 다음과 같이 정의하면 증명이 끝난다.

$$X = X^{+} - X^{-}, \quad E(X \mid \mathcal{G}) = E(X^{+} \mid \mathcal{G}) - E(X^{-} \mid \mathcal{G}).$$

이제, 앞에서 증명하지 않고 넘어간 다음 명제를 증명하자. $X_1 \geq X_2 \Rightarrow E(X_1 \mid \mathcal{G}) \geq E(X_2 \mid \mathcal{G})$. 다음의 집합을 잡자.

$$A = \{ E(X_1 \mid \mathcal{G}) < E(X_2 \mid \mathcal{G}) \}$$

그러면 $A \in \mathcal{G}$ 이므로,

$$\int_{A} (E(X_1 \mid \mathcal{G}) - E(X_2 \mid \mathcal{G})) dP = \int_{A} (X_1 - X_2) dP \ge 0$$

가 성립하고, 따라서 P(A) = 0, and $E(X_1 \mid \mathcal{G}) \geq E(X_2 \mid \mathcal{G})$ a.e.

Proposition. (Properties of conditional expectations)

- (i). $E(X \mid \mathcal{F}) = X$, for \mathcal{F} -measurable X.
- (ii). $E(X \mid \mathcal{F}) = E(X)$, for $\mathcal{F} \perp X$.
- (iii). $E(\alpha X_1 + \beta X_2 \mid \mathcal{F}) = \alpha E(X_1 \mid \mathcal{F}) + \beta E(X_2 \mid \mathcal{F}).$
- (iv). $E(ZX \mid \mathcal{F}) = ZE(X \mid \mathcal{F})$, for bounded, \mathcal{F} -measurable Z.
- (v). $E(E(X \mid \mathcal{F}) \mid \mathcal{G}) = E(X \mid \mathcal{G})$, for $\mathcal{G} \subset \mathcal{F}$.
- (vi). $||E(X \mid \mathcal{F})||_p \leq ||X||_p$, for $p \geq 1$.

2. Stopping Times

Definition (Filtration). 증가하는 σ -algebra의 수열 $(\mathcal{F}_n)_{n\geq 0}$ 이 다음의 성질 $\mathcal{F}_n\subset \mathcal{F}$ 를 만족하면 이를 Filtration이라 정의하자.

Definition (Stopping Time). 치역이 $\mathbb{N} \cup \infty$ 인 random variable N이 모든 $n < \infty$ 에 대해 $\{N = n\} \in \mathcal{F}_n$ 를 만족한다면 이를 Stopping Time이라 하자.

Definition. Stopping time N이 주어졌을 때, stopped process X_N 를 다음과 같이 정의하자:

$$X_N(\omega) = \begin{cases} X_{N(\omega)}(\omega) & (N < \infty) \\ 0 & (N = \infty) \end{cases}$$

Definition. Stopping time N이 주어졌을 때, \mathcal{F}_N 를 다음과 같이 정의하자.

$$\mathcal{F}_N = \{A \colon A \cap \{N \le n\} \in \mathcal{F}_n\}$$

Proposition. (Properties of Stopping Times)

(i). Stopping time M, N에 대해

$$M+N$$
, $\min(M,N)$, $\max(M,N)$

도 stopping time이다.

(ii). X_n 이 \mathcal{F}_n -measurable for all n이라면, X_N 도 \mathcal{F}_N -measurable function이다.

4 김용환

- (iii). Stopping time $M \leq N$ 에 대해, $\mathcal{F}_M \subset \mathcal{F}_N$.
- (iv). The **hitting time of A**: $\inf\{n: S_n \in A\}$ is a stopping time.

3. Martingales

3.1. Basic properties

Definition (Martingale). 다음의 조건을 만족하는 random variable들의 수열 X_n 을 martingale이라 부르자;

- (i). $E(X_n) < \infty$,
- (ii). X_n is \mathcal{F}_n -measurable,
- (iii). 모든 n에 대해, $E(X_{n+1} \mid \mathcal{F}_n) = X_n$.

등호 = 대신 \leq , \geq 가 세번째 조건에서 성립한다면, X_n 을 각각의 경우에서 supermartingale, submartingale이라고 부른다.

Proposition. (Properties of Martingales)

- (i). $X_n \circ |$ submartingale $\circ | \exists E(X_n \mid \mathcal{F}_m) \geq X_m \text{ for all } n > m.$
- (ii). X_n 이 submartingale이고, ϕ 가 증가하는 볼록함수라면 $\phi(X_n)$ 도 submartingale이다.
- (iii). X_n 이 supermartingale이라면, 모든 실수 a에 대해 $\min(X_n, a)$ 역시 supermartingale이다.

Definition (Predictable). $(H_n)_{n\geq 1}$ 가 predictable sequence라는 것은 H_n 이 모든 n에 대해 \mathcal{F}_{n-1} -measurable이라는 뜻이다. 이 때, 우리는 다음도 정의한다:

$$(H \cdot X)_n = \sum_{1 \le m \le n} H_m(X_m - X_{m-1})$$

Theorem (Unfavorable Games). Supermartingale X_n 과 bounded predictable H_n 에 대해, $(H \cdot X)_n$ 또한 supermartingale이다.

Proof. $E(X_{n+1} \mid \mathcal{F}_n) \leq X_n = E(X_n \mid \mathcal{F}_n)$ 이므로, 우리는

$$E(X_{n+1} - X_n \mid \mathcal{F}_n) \le 0$$

임을 얻는다. 따라서,

$$E((H \cdot X)_{n+1} \mid \mathcal{F}_n) = (H \cdot X)_n + E(H_{n+1}(X_{n+1} - X_n) \mid \mathcal{F}_n)$$
$$= (H \cdot X)_n + H_{n+1}E(X_{n+1} - X_n \mid \mathcal{F}_n)$$
$$\leq (H \cdot X)_n$$

Theorem (Doob's inequality). (i). $(X_n)_{n\geq 1}$ 가 submartingale이고 N이 $P(N\leq k)\leq 1$ 인 stopping time일 때, 다음의 부등식이 성립한다:

$$EX_0 \le EX_N \le EX_k$$

(ii). $Submartingale\ (X_n)_{n\geq 1}$ 과 $\lambda>0$ 인 실수에 대해

$$\bar{X}_n = \max_{0 \le m \le n} X_m^+, \quad A = \{\bar{X}_n \ge \lambda\}$$

과 같이 정의하자. 그러면 다음의 부등식이 성립한다:

$$\lambda P(A) \leq EX_n \mathbf{1}_A \leq EX_n^+$$

Proof. 먼저, stopping time N에 대해서 $X_{N\wedge n}$ 가 submartingale이 됨을 보이자. $H_n=\mathbf{1}_{\{N\geq n\}}$.과 같이 정의하면, H_n 은 predictable이므로,

$$(H \cdot X)_n = \sum_{1 \le m \le n} H_m(X_m - X_{m-1}) = X_{N \land n} - X_0$$

역시 submartingale이다. 따라서, 우리는 다음의 식

$$0 = E(X_{N \wedge 0} - X_0) \le E(X_{N \wedge k} - X_0) = EX_N - EX_0$$

을 얻고, 왼쪽 부등식을 증명한다. 마찬가지의 논의를

$$K_n = \mathbf{1}_{\{N < n\}}$$

에 적용하면, $(K\cdot X)_n=X_n-X_{N\wedge n}$ 도 submartingale이다. 그 때,

$$0 = E(K \cdot X)_0 \le E(K \cdot X)_k = EX_k - EX_N$$

6 김용환

이므로 오른쪽 부등호를 증명할 수 있다. 이제 두번째 부분을 증명하자. Stopping time

$$N = \inf\{t \colon X_t > \lambda \text{ or } t = n\}$$

을 정의하면, 첫번째 부등식에 의해서

$$\lambda P(A) \leq EX_N \mathbf{1}_A \leq EX_n \mathbf{1}_A$$

가 성립하므로, 증명이 끝났다.

3.2. Martingale Convergence Theorems

Theorem (Doob's upcrossing lemma). Submartingale X_m 과 임의의 두 실수 a < b가 주어졌을 때, 우리는 crossing time $N_0 = -1$,

$$N_{2k-1} = \{m > N_{2k-2} \colon X_m \le a\}$$

$$N_{2k} = \{m > N_{2k-1} : X_m \ge b\}$$

을 정의하고, total upcrossings until time n을

$$U_n = \sup\{k \colon N_{2k} \le n\}$$

과 같이 정의하자. 이 때, 다음의 부등식이 성립한다:

$$(b-a)EU_n \le E(X_n-a)^+ - E(X_0-a)^+$$

Proof. 임의의 양의 실수 a>0에 대해, $\phi(x)=(x-a)^+$ 는 볼록함수이다. 따라서 $Y_m=a+(X_m-a)^+$ 는 submartingale이고, 그것의 upcrossing number는 U_m 과 같다. 이제, predictable function H_m 을 다음과 같이 정의하자:

$$H_m = \begin{cases} 1 & (N_{2k-1} < m \le N_{2k}) \\ 0 & (else) \end{cases}$$

이것은 upcrossing이 한 번 일어날 때 마다 b-a만큼 증가하므로, $(b-a)U_n \leq (H\cdot Y)_n$ 이다. 이제, $K_n=1-H_n$ 과 같이 정의하면, $(K\cdot Y)_n$ 는 supermartingale이므로, $0=E(K\cdot Y)_0\leq E(K\cdot Y)_n$ 이다. 따라서, $Y_n-Y_0=(H\cdot Y)_n+(K\cdot Y)_n$ 를 이용하면 다음을 얻어, 증명이 끝난다.

$$Y_n - Y_0 = E(H \cdot Y)_0 \ge E(H \cdot Y)_n \ge (b - a)EU_n$$

Theorem (Martingale Convergence a.e.). $M = \sup EX_m^+ \le \infty$ 인 submartingale X_m 은 어떤 L^1 function X로 almost everywhere 수렴한다.

Proof. $\liminf X_m < a < b < \limsup X_n$ 인 임의의 두 유리수 a,b를 잡자. 그러면 이 두 유리수에 대한 upcrossing number U_n 를 정의할 수 있고, 앞의 정리에 의해

$$EU_n \le (|a| + EX_n^+)/(b-a) \le (M+|a|)/(b-a)$$

를 얻는다. 이제, U_n 는 증가하므로, 어떤 U로 수렴한다. 그러면 앞의 부등식에 의해 $EU < \infty$ 이고, 따라서 $U < \infty$ almost everywhere이다. 따라서 $\lim\inf X_m = \limsup X_n$ a.e.이다. 이제 $X = \lim X_n$ 는 almost everywhere 존재한다. 우리는 증명을 마무리짓기 위해 $X > -\infty$ 를 보인다. 그런데,

$$EX_n^- = EX_n^+ - EX_n \le M - EX_0$$

이므로, Fatou's Lemma에 의해

$$EX^- \le M - EX_0 < \infty$$

이다. 따라서, $X > -\infty$ a.e이고

$$EX \le EX^+ + EX^- < \infty.$$

가 되어 증명이 끝난다.

Theorem (Martingale Convergence in L^p). Given a submartingale X_m and p > 1 such that $M = \sup ||X_n||_p < \infty$, X_m converges a.e. and in L^p .

Proof. 우리는 이미 앞에서 X_n 가 어떤 X로 almost everywhere 수렴함은 보였다. 이 제 $\sup_{0 \leq m \leq n} \|X_m\|_p \leq \frac{p}{p-1} \|X_n\|_p$ 가 성립한다면, $\sup |X_n| \in L^p$ 이므로 dominated convergence에서 $X_n \to X$ in L^p 이다. 즉, 우리는 다음의 식이 성립함을 보이면 충분하다.

$$\sup_{0 \le m \le n} \|X_m\|_p \le \frac{p}{p-1} \|X_n\|_p$$

이제,

$$\bar{X}_n = \sup_{0 \le m \le n} X_m$$

8 김용환

로 정의하자. 그러면 ∀a, Holder와 Fubini를 이용하여

$$E|\bar{X}_n \wedge a|^p = E \int_0^{\bar{X}_n \wedge a} px^{p-1}$$

$$= E \int_0^a px^{p-1} \mathbf{1}_{\bar{X}_n \geq x}$$

$$= \int_0^a px^{p-1} P(\bar{X}_n \geq x)$$

$$\leq EX_n \int_0^a px^{p-2} \mathbf{1}_{\bar{X}_n \geq x}$$

$$= \frac{p}{p-1} EX_n \cdot (\bar{X}_n \wedge a)^{p-1}$$

$$\leq \frac{p}{p-1} ||X_n||_p ||\bar{X}_n \wedge a||_p^{p-1}$$

를 보이고, $a \to \infty$ 로 보내면 원하는 결론을 얻는다.

p>1일 때와 p=1일 때 martingale의 수렴성은 서로 다른 성질을 가진다. p=1일 때를 알아보기 위해, 우리는 다음의 새로운 개념을 도입한다.

Definition (Uniformly Integrable). $\{X_i\}_{i\in I}$ 가 다음 조건을 만족할 때, 이를 uniformly integrable이라 부르자:

$$\lim_{M \to \infty} \left\{ \sup_{i \in I} \left(\int_{\{|X_i| > M\}} |X_i| \, dP \right) \right\} = 0$$

Theorem (Martingale Convergence in L^1). Submartingale X_m 에 대해서, 다음 두 성질은 동치이다:

- (i). (X_n) is uniformly integrable
- (ii). (X_n) converges in L^1

Proof. (X_n) 가 uniformly integrable이라면, 우리는 충분히 큰 M을 찾아, $sup_{i\in I}E|X_i|\leq M+1<\infty$ 에게 할 수 있다. 즉, 이 때 X_n 은 M+1의 상계를 가지게 된다. 이제, X_n 이 L^1 function에 의해 위로 almost everywhere bounded이고, X_n 가 측도수렴한 다면, L^1 수렴도 한다. 즉, 우리는 $(i)\to(ii)$ 방향이 성립함을 보였다. 반대의 방향은 실변수함수론에서 convergence in measure와 관련된 기본적인 성질로, 참고문헌 [2] 에서 찾을 수 있다.

References

- 1. R. Durrett, *Probability: Theory and Examples*, 4th ed., Cambridge University Press, New York, NY, 2010.
- 2. G. Folland, Real Analysis: Modern Techniques and their Applications, 2nd ed., John Wiley and Sons, 2013.

서울대학교

 $E ext{-}mail\ address: kimyh4306@snu.ac.kr}$