Линейные отображения векторных пространств

Пусть V и W — векторные пространства размерности n и m, $\{\vec{e}_1,\vec{e}_2,\ldots,\vec{e}_n\}$ — базис V, а f — некоторая линейная функция из V в W. Очевидно, что значения f на всём V однозначно определяются значениями на базисе V. Действительно, если $\vec{v} = \sum_{i=1}^n x_i \vec{e}_i$, то $f(\vec{v}) = \sum_{i=1}^n x_i f(\vec{e}_i)$. Кроме того, сами значения $f(\vec{e}_i)$, $i = \overline{1,n}$, могут быть выбраны произвольным образом и тогда предыдущее равенство задаст некоторую линейную функцию. Поставим в соответствие функции f матрицу A, составленную из столбцов-координат векторов $f(\vec{e}_i)$, $i = \overline{1,n}$, в некотором фиксированном базисе W. Это соответствие является биекцией между множеством всех линейных функций из V в W и множеством матриц размера $m \times n$. Столбец Y координат вектора $f(\vec{v})$ называется n произведением матрицы A на столбец X координат вектора \vec{v} и записывается как AX = Y.

- 1. На множестве всех линейных функций из V в W естественным образом определены сумма $(f+g)(\vec{v}) = f(\vec{v}) + g(\vec{v})$ и умножение на скаляр $(x \cdot f)(\vec{v}) = x \cdot f(x\vec{v})$. Проверьте, что это множество является векторным пространством, и найдите его размерность.
- 2. Запишите матрицу поворота вектора на угол α на плоскости \mathbb{R}^2 .

Образом линейного пространства V при линейном отображении f называется множество $Im\ f = \{f(v) : v \in V\}$, а его $s \partial pom$ — множество $Ker\ f = \{v \in V : f(v) = \vec{0}\}$.

- 3. Докажите, что Im f является векторным подпространством W.
- 4. Докажите, что dim Im $f = \operatorname{rank} A$, где $A \operatorname{матрица} f$.
- 5. Докажите, что $\ker f$ является векторным подпространством V.
- 6. Докажите, что dim ker $f = \dim V \dim \operatorname{Im} f$.

Связь с системами уравнений

- 7. Докажите, что условие $\det A \neq 0$ равносильно каждому из следующих трёх условий:
 - (a) система уравнений AX = Y разрешима для любого столбца правых частей Y;
 - (b) система $AX = \mathbf{0}$ имеет только тривиальное решение $X = \mathbf{0}$;
 - (c) система AX = Y имеет единственное решение при некотором столбце правых частей Y.

Как показывает предыдущая задача, если $\det A \neq 0$, то можно говорить о матрице обратного отображения (которое, очевидно, тоже линейно), эта матрица называется *обратной* к матрице A и обозначается A^{-1} .

Собственные векторы и значения

Пусть задано линейное отображение $f: V \to V$. Вектор $v \in V$, для которого $f(v) = \lambda v$, где λ — скаляр, называется собственным вектором отображения f, а скаляр λ — собственным значением, соответствующим этому собственному вектору.

- 8. Докажите, что f имеет не больше $\dim V$ различных собственных значений.
- 9. Пусть λ собственное значение f. Докажите, что множество $\{v \in V : f(v) = \lambda v\}$ является подпространством V.
- 10. В летнем лагере отдыхают n детей. За завтраком они расселись за круглым столом и перед каждым стояла тарелка с манной кашей (количество каши может не совпадать). По команде вожатого каждый ребёнок запускает руки в тарелки своих соседей, зачерпывает половину содержащейся там каши и перекладывает всё, что зачерпнул, в свою тарелку (все действуют одновременно). Определите все n, при которых через достаточно большое количество команд количество каши у всех детей будет сколь угодно близко к среднему.

¹Задача о манной каше (фольклор).