# Theoretical Guide Lenhadoras de Segtree

Nathália Pereira, Duda Holanda & Duda Carvalho

| Contents                                                                                                                                                                                                                                                                                                                       | 4 Constants                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 Number Theory  1.1 Approximation of Number of Divisors 1.2 Fermat's Theorems 1.3 K leading digits of n! 1.4 Sum of divisors 1.5 Prime counting function - $\pi(x)$ 1.6 Number of digits of n in base b 1.7 Product of divisors 1.8 Number of divisors 1.9 Sum of digits of n in base b 1.10 Number of digits of n! in base b | 1       5 Progressions       4         1       5.1 Geometric Progression       4         1       5.1.1 General Term       4         2       5.1.2 Sum       4         2       5.1.3 Infinite Sum       4         2       5.2 Arithmetic Progression       4         2       5.2.1 General Term       4         2       5.2.2 Sum       4         2       5.2.3 Sum of Second Order Arithmetic Progression       4 |
| 2 C++ 2.1 Priority Queue                                                                                                                                                                                                                                                                                                       | 2       6 Basic Math       5         2       6.1 Logarithm       5         2       6.2 Recurring Decimal       5         6.3 Divisibility Criteria       5                                                                                                                                                                                                                                                        |
| 3 Bitwise 3.1 NOT. 3.2 AND. 3.3 OR. 3.4 NAND. 3.5 NOR. 3.6 XOR. 3.7 XNOR. 3.8 XOR from 1 to n.                                                                                                                                                                                                                                 | 3       6.3.1       2       5         3       6.3.2       3       5         3       6.3.3       4       5         3       6.3.4       5       5         3       6.3.5       6       5         3       6.3.6       7       5         3       6.3.7       8       5         3       6.3.8       9       5                                                                                                           |
| 3.9 Number of bits on 3.10 Count leading zeros 3.11 MSB 3.12 Count trailing zeros 3.13 LSB 3.14 Turn bit on or off 3.15 Check if bit is on or off                                                                                                                                                                              | 3       7       Combinatorics       5         4       7.1       Burnside's Lemma       5         4       8       Misc       6         4       8.1       Check for overflow       6         4       8.2       Input by file       6                                                                                                                                                                                |

|      | ometry                                                       |
|------|--------------------------------------------------------------|
| 9.1  | Triangle Existence Condition                                 |
| 9.2  | Distances                                                    |
|      | 9.2.1 Euclidean                                              |
|      | 9.2.2 Manhattan                                              |
| 9.3  | Maximum possible manhattan distance between two points given |
|      | n points                                                     |
| 9.4  | Sines Rule                                                   |
| 9.5  | Cossines Rule                                                |
| 9.6  | Pick's Theorem                                               |
| 9.7  | Boundary points                                              |
| 9.8  | Perimeter                                                    |
|      | 9.8.1 Circle                                                 |
| 9.9  | Areas                                                        |
|      | 9.9.1 Circle                                                 |
|      | 9.9.2 Triangle                                               |
|      | 9.9.3 Square                                                 |
|      | 9.9.4 Rectangle                                              |
|      | 9.9.5 Rhombus                                                |
| 9.10 | Volumes                                                      |
|      | 9.10.1 Sphere                                                |
|      | 9.10.2 Prism                                                 |
|      | 9.10.3 Pyramid                                               |
|      | 9.10.4 Cone                                                  |
| 0.11 | Shoelace Formula                                             |

# 1 Number Theory

$$(a+b) \bmod m = (a \bmod m + b \bmod m) \bmod m$$

$$(a-b) \bmod m = (a \bmod m - b \bmod m) \bmod m$$

$$(a \times b) \bmod m = ((a \bmod m) \times (b \bmod m)) \bmod m$$

$$a^b \bmod m = (a \bmod m)^b \bmod m$$

$$a \equiv b \pmod m \iff (b-a)|m$$

$$\gcd(a_1, a_2, a_3, a_4) = \gcd(a_1, \gcd(a_2, \gcd(a_3, a_4)))$$

$$lcm(a,b) \times gcd(a,b) = a \times b$$
$$lcm(a,b) = \frac{a \times b}{gcd(a,b)} = \frac{a}{gcd(a,b)} \times b$$
$$gcd(a,b) = b?gcd(b,a\%b) : a$$

### 1.1 Approximation of Number of Divisors

The number of divisors of n is about  $\sqrt[3]{n}$ .

| n    | 6 | 60 | 360 | 5040 | 55440 | 720720 | 4324320 | 21621600 |
|------|---|----|-----|------|-------|--------|---------|----------|
| d(n) | 4 | 12 | 24  | 60   | 120   | 240    | 384     | 576      |

### 1.2 Fermat's Theorems

Let P be a prime number and a an integer, then:

$$a^p \equiv a \pmod{p}$$

$$a^{p-1} \equiv 1 \pmod{p}$$

**Lemma:** Let p be a prime number and a and b integers, then:

$$(a+b)^p \equiv a^p + b^p \pmod{p}$$

**Lemma:** Let p be a prime number and a an integer. The inverse of a modulo p is  $a^{p-2}$ :

$$a^{-1} \equiv a^{p-2} \pmod{p}$$

### 1.3 K leading digits of n!

A similar idea can be used to calculate the first digits of exponentiation.

$$\log_{10} n! = \log_{10} (1 \times 2 \times 3 \times ... \times n) = \log_b 1 + \log_{10} 2 + \log_{10} 3 + ... + \log_{10} n$$

Decimal part:

$$q = \log_{10} n! - (int) \log_{10} n!$$

Leading digits:

$$b = pow(10, q)$$

1.4 Sum of divisors 2 C++

```
// Shift decimal point k-1 times
for ( int i = 0; i < k - 1; i++ ) {
    b *= 10;
}</pre>
```

$$leading digits = |b|$$

### 1.4 Sum of divisors

Given the prime factorization

$$n = p_1^{e_1}.p_2^{e_2}.p_3^{e_3}$$

The sum of divisors of n is

$$\phi(n) = \frac{p_1^{e_1+1} - 1}{p_1 - 1} \cdot \frac{p_2^{e_2+1} - 1}{p_2 - 1} \cdot \frac{p_3^{e_3+1} - 1}{p_3 - 1}$$

### 1.5 Prime counting function - $\pi(x)$

Expected to have  $\frac{x}{\log x}$  primes within [1, x]. The prime counting function is asymptotic to  $\frac{x}{\log x}$ , by the prime number theorem.

| X        | 10 | $10^{2}$ | $10^{3}$ | $10^{4}$ | $10^{5}$ | $10^{6}$ | $10^{7}$ | $10^{8}$  |
|----------|----|----------|----------|----------|----------|----------|----------|-----------|
| $\pi(x)$ | 4  | 25       | 168      | 1229     | 9592     | 78498    | 664579   | 5 761 455 |

## 1.6 Number of digits of n in base b

If

$$\sqrt[k]{n} < b$$

then n has k or less digits when written in base b.

### 1.7 Product of divisors

Given the prime factorization

$$n = p_1^{e_1}.p_2^{e_2}.p_3^{e_3}$$

The product of divisors of n is

$$p(n) = n^{d(n)/2}$$

$$p(n) = (p_1^{e_1}.p_2^{e_2}.p_3^{e_3})^{(e_1+1).(e_2+1).(e_3+1)/2}$$

$$p(n) = p_1^{e_1.(e_1+1)(e_2+1).(e_3+1)/2}.p_2^{e_2.(e_1+1)(e_2+1).(e_3+1)/2}.p_3^{e_3.(e_1+1)(e_2+1).(e_3+1)/2}$$

For any  $e_i$ , it is guaranteed that either  $e_i$  or  $e_i + 1$  will be divisible by 2. When calculating the exponent  $e_1 \cdot (e_1 + 1)(e_2 + 1) \cdot (e_3 + 1)/2$ , get it % MOD - 1, from Fermat's Theorem.

### 1.8 Number of divisors

Given the prime factorization

$$n = p_1^{e_1}.p_2^{e_2}.p_3^{e_3}$$

The number of divisors of n is

$$d(n) = (e1+1) * (e2+1) * (e3+1)$$

## 1.9 Sum of digits of n in base b

$$f(n,b) = \begin{cases} n & n < b \\ f\left(n, \left\lfloor \frac{n}{b} \right\rfloor + (n \mod b) \right) & n \ge b \end{cases}$$

### 1.10 Number of digits of n! in base b

 $|\log_b n!| + 1 = |\log_b (1 \times 2 \times 3 \times ... \times n)| + 1 = |\log_b 1 + \log_b 2 + \log_b 3 + ... + \log_b n| + 1$ 

### 2 C++

# 2.1 Priority Queue

template<class T> using min\_priority\_queue =
priority\_queue<T, vector<T>, greater<T>>;

### 2.2 Ordered set and multiset

typedef tree<pair<ll , ll >, null\_type , less<pair<ll , ll >>,
rb\_tree\_tag , tree\_order\_statistics\_node\_update> ordered\_set;

To change to multiset switch equal to less\_equal.

- 3 Bitwise
- 3.1 NOT

| A | X |
|---|---|
| 0 | 1 |
| 1 | 0 |

3.2 AND

| A | B | X |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

3.3 OR

| A | B | X |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |

3.4 NAND

| A | B | X |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

3.5 NOR

| A | B | X |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 0 |

3.6 XOR

| A | B | X |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

3.7 XNOR

| A | В | X |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

3.8 XOR from 1 to n

$$f(n) = \begin{cases} n & n \equiv 0 \pmod{4} \\ 1 & n \equiv 1 \pmod{4} \\ n+1 & n \equiv 2 \pmod{4} \\ 0 & n \equiv 3 \pmod{4} \end{cases}$$

3.9 Number of bits on

\_\_builtin\_popcount(x)

3.10 Count leading zeros 5 PROGRESSIONS

### 3.10 Count leading zeros

\_\_builtin\_clz(z)
\_\_builtin\_clzll(z)

### 3.11 MSB

32 - \_builtin\_clz(x) 64 - \_\_bultin\_clzl1(x)

### 3.12 Count trailing zeros

\_\_builtin\_ctz(x)
\_\_builtin\_ctzll(x)

### 3.13 LSB

\_\_builtin\_ffs(X)

### 3.14 Turn bit on or off

Turn on bit i x  $\mid= (1 << i)$ Turn off bit i x &= (1 << i)

### 3.15 Check if bit is on or off

Check if bit is on x & (1 << i)Check if bit is off !(x & (1 << i))

## 4 Constants

 $LLINF \, = \, 0\,x\,3\,f\,3\,f\,3\,f\,3\,f\,3\,f\,3\,f\,3\,f\,3\,f\,1\,L\,L$ 

PI = acos(-1)

# 5 Progressions

# 5.1 Geometric Progression

#### 5.1.1 General Term

$$a_1 q^{n-1}$$

5.1.2 Sum

$$\frac{a_1(q^n-1)}{q-1}$$

5.1.3 Infinite Sum

$$-1 < q < 1$$

$$\frac{a_1}{a_1}$$

## 5.2 Arithmetic Progression

#### 5.2.1 General Term

$$a_1 + (n-1)r$$

5.2.2 Sum

$$\frac{(a_1+a_n)n}{2}$$

### 5.2.3 Sum of Second Order Arithmetic Progression

 $a_1$  is the first element of the original progression,  $b_1$  is the first element of the derived progression, n is the number of elements of the original progression and r is the ratio of the derived progression

$$a_1n + \frac{(b_1n(n-1)}{2} + \frac{rn(n-1)(n-2)}{6}$$

# 6 Basic Math

### 6.1 Logarithm

$$\log_b mn = \log_b m + \log_b n \qquad \log_b \frac{m}{n} = \log_b m - \log_n n \qquad \log_b n^p = p \log_b n$$

$$\log_b \sqrt[q]{n} = \frac{1}{q} \log_b n \qquad \log_b n = \log_a n \log_b a \qquad b^{\log_b k} = k$$

$$\log_b a = \frac{\log_c a}{\log_c b} \qquad \log_b a = \frac{1}{\log_a b} \qquad \log_b a \ \log_a c = \log_b c$$

$$\log_b 1 = 0 \qquad \log_b b = 1$$

# 6.2 Recurring Decimal

To find whether a fraction in its most simple form is a recurring decimal, find the prime factors of the denominator. If there are any prime factors other than 2 and 5 then the fraction is a recurring decimal.

# 6.3 Divisibility Criteria

#### 6.3.1 2

The last digit is either 0, 2, 4, 6 or 8

### 6.3.2 3

The sum of the digits is also divisible by 3

#### 6.3.3 4

The last two digits form a number that is divisble by 4

### 6.3.4 5

The last digit is either 0 or 5

#### 6.3.5 6

It has to be divisible by both 2 and 3

#### 6.3.6 7

The subtraction of the number formed without the last digit and the last digit times 2 is also divisible by 7

#### 6.3.7 8

The last three digits form a number that is divisble by 8

#### 6.3.8 9

The sum of the digits is also divisible by 9

## 7 Combinatorics

### 7.1 Burnside's Lemma

Burnside's lemma can be used to count the number of combinations so that only one representative is counted for each group of symmetric combinations. For example, if we have a necklace with different colored pearls and we want to know how many different combinations we can make.

For example, if we have a necklace colored like this:



This variations are the same if we consider that we can rotate the necklace:



When the number of steps is k, the number of necklaces that remain the same are:

$$m^{\gcd(k,n)}$$

The number of different combinations for m colors and a necklace of size n is

$$\sum_{i=0}^{n-1} \frac{m^{\gcd(i,n)}}{n}$$

So a necklace of length 4 with 3 colors has

$$\frac{3^4 + 3 + 3^2 + 3}{4} = 24$$

### 8 Misc

### 8.1 Check for overflow

Returns false if there is no overflow and true if there is overflow. The variable v stores the result of the operation.

```
long long v;
__builtin_add_overflow(a, b, v);
cout << v;
__builtin_sub_overflow(a, b, v);
__builtin_mul_overflow(a, b, v);</pre>
```

# 8.2 Input by file

freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);

# 9 Geometry

## 9.1 Triangle Existence Condition

$$a+b \ge c$$
$$a+c \ge b$$

$$b+c \ge a$$

### 9.2 Distances

### 9.2.1 Euclidean

$$d(p,q) = \sqrt{(q.x - p.x)^2 + (q.y - p.y)^2}$$

### 9.2.2 Manhattan

$$|p.x - q.x| + |p.y - q.y|$$

# 9.3 Maximum possible manhattan distance between two points given n points

Given n points, for instance:



Rotate all coordinates  $45^o$  do that (x,y) becomes (x+y,y-x), so, p becomes p' and q becomes q'.



The maximum manhattan distance is obtaining by choosing the two points that maxime:

$$max(|p'.x - q'.x|, |p'.y - q'.y|)$$

### 9.4 Sines Rule

$$\frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)}$$

### 9.5 Cossines Rule

$$a^2 = b^2 + c^2 - 2bccos(\alpha)$$

# 9.6 Pick's Theorem

$$A = a + \frac{b}{2} + 1$$

where A is the area of the polygon, a is the number of integer points inside the polygon and b is the number of integer points in the boundary of the polygon

# 9.7 Boundary points

The number of integer points in the boundary of a polygon is:

$$B = v + b$$

where v is the number of vertices (integer points as well) and b is the number of integer points situated between two vertices, like in the following figure:



b can be calculated for every line connecting two points (including the line between the last and the first point) as follows:

$$boundary\_points(p,q) = \begin{cases} |p.y - q.y| - 1 & \text{p.x} = \text{q.x} \\ |p.x - q.x| - 1 & \text{p.y} = \text{q.y} \\ gcd(|p.x - q.x|, |p.y - q.y|) - 1 \end{cases}$$

### 9.8 Perimeter

9.8.1 Circle

 $2\pi r$ 

9.9 Areas

9.9.1 Circle

 $\pi r^2$ 

9.9.2 Triangle

 $\frac{b*h}{2}$ 

**9.9.3** Square

 $l^2$ 

### 9.9.4 Rectangle

hr

9.9.5 Rhombus



D is the biggest diagonal and d is the smallest diagonal

$$A = \frac{1}{2} * D * d$$

9.10 Volumes

9.10.1 Sphere

 $\frac{4}{3}\pi r^3$ 

9.10.2 Prism

V = bh

9.10.3 Pyramid

 $\frac{bh}{3}$ 

9.10.4 Cone

 $\frac{\pi r^2 h}{3}$ 

9.11 Shoelace Formula

 $A = \frac{1}{2} \left| \sum_{i=1}^{n-1} (p_i \times p_{i+1}) = \frac{1}{2} \left| \sum_{i=1}^{n-1} (x_i y_{i+1} - x_{i+1} y_i) \right| \right|$ 

Where the points  $p_1, p_1, \ldots$  are in adjecent order and the first and last vertex is the same, that is,  $p_1 = p_1$ 

# 10 Identities

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \qquad \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \qquad \sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$$
$$\sum_{i=1}^{n} \frac{1}{i} \approx \log n \qquad \sum_{i=0}^{\infty} \frac{1}{2^i} = 2$$