

Agiles Requirements Engineering

- Ermittlung und Dokumentation von Anforderungen -

Master Technische Informatik – Embedded Systems – Prof. Dr.-Ing. Hartmut Schirmacher

Version 3.0 vom 08.11.2017

Inhalt

Ermittlungstechniken

- Befragungstechniken
- Beobachtungstechniken
- Kreativitätstechniken
- Dokumentenbasierte Techniken

Anforderungsdokumentation

- Perspektiven, Sprache, Modelle
- Struktur, Generierung, Qualität

Ermittlung (Elicitation) von Anforderungen

Ermittlung* von Anforderungen (1)

Dokumente

- Verträge / Spezifikationen enthalten oft nur einen kleinen Teil der tatsächlichen Anforderungen
- Normen / Standards / Gesetze liefern nur wichtige Basisfaktoren, aber keine Begeisterungsfaktoren

Systeme im Betrieb

- Zu integrierende Systeme im Systemkontext
- z.B. Stakeholder mit dem derzeitigen System arbeiten lassen → gute Grundlage um detaillierte Anforderungen zu ermitteln

- Alt- und Vorgängersysteme
- Konkurrenzsysteme
- Haben oft umfangreiche Schnittstellen; es ist jedoch zu ermitteln, welche Untermenge der Funktionen überhaupt verwendet werden muss

Ermittlung* von Anforderungen (2)

Konkurrenzsysteme

- Setzen oftmals bereits einen Großteil der Anforderungen um
- Erschließen sich je nach Anwendungsdomäne nicht von selbst

Stakeholder

- Sind die wichtigste Ressource bei der Ermittlung
- Liefern die Perspektive / Filter, um alle anderen Anforderungsquellen zu interpretieren
- Adäquate Kommunikation mit den Stakeholdern ist wichtigste Aufgabe

Ermittlungstechniken

- Wissen der Stakeholder kann sein:
 - bewusst
 - unbewusst
 kann nicht durch Reflexion erschlossen werden*
 - unterbewusst
- Weitere Einflussfaktoren auf die Ermittlungstechnik:
 - Termin- und Budgetvorgaben
 - Chancen und Risikofaktoren des Projekts
 - Verfügbarkeit relevanter Stakeholder
 - Erfahrung des Requirements Engineers mit entsprechenden Techniken
 - Gewünschter Detaillierungsgrad
- Keine Ermittlungstechnik deckt gleichzeitig alle Wissensformen ab
- Kombination mehrerer Techniken minimiert Projektrisiken

Überblick Ermittlungstechniken

Überblick Ermittlungstechniken

Befragung

Voraussetzungen

- Stakeholder ist bereit, Zeit und Arbeit zu investieren
- Stakeholder kann Anforderungen explizit ausdrücken

Detaillierungsgrad

• Für abstraktere bis mittel detailliertere Anforderungen geeignet

Eigenschaften

- Möglichst genaue und unverfälschte Aussagen des Stakeholders
- Themen, die dem Stakeholder wichtig sind, können verdrängt werden

Befragung: Interview

- Vorbereitete Fragen, dynamische Anpassung an Gespräch
- Protokollierung der Antworten (möglichst originalgetreu)
 - Ggf. direkt eintippen
 - Ggf. mit Aufzeichnung (Audio/Video)
- Nachfragen, Klärung direkt bei der Befragung
- Hoher Zeitaufwand

Vorsicht! Aufzeichnungsmethode kann signifikanten Einfluss haben. Es passiert leicht, dass Stakeholder reservierter werden und weniger frei sprechen.

Befragung: Fragebogen

- Offene vs. geschlossene (multiple choice) Fragen
- Auch online möglich
- Anwendung auf viele Stakeholder möglich
- Geschlossene Fragen helfen bei Formulierungsproblemen der Stakeholder
- Es wird nur das berücksichtigt, was der RE vorsieht
- Entwurf guter Fragebögen zeitaufwändig und nicht trivial

Befragung mit Hilfe von Prototypen

- Demonstration eines Wireframes, Click-Dummies oder eines unfertigen Screens
- Sehr gute Methode, um den Stakeholdern neue und detailliertere Anforderungen zu entlocken
- Auch gut zur Prüfung von Anforderungen
- So früh wie möglich einsetzen

- Das Erstellen von Prototypen kann (sollte?) völlig separat von der eigentlichen Entwicklung erfolgen.
- Man muss bereit sein, einen Prototypen zu verwerfen und neu anzufangen!!!

Überblick Ermittlungstechniken

Kreativitätstechniken

Voraussetzungen

- Mehrere Stakeholder am gleichen Ort zur gleichen Zeit (Workshop)
- Wille/Fähigkeit des RE, solche Workshops zu moderieren

Detaillierungsgrad

gering – mittel (gut für Vision, Ziele, innovative Anforderungen)

Eigenschaften

- Oftmals sehr motivierend für die Teilnehmer
- Gut geeignet, um Einzelmeinungen zu integrieren bzw. Stakeholder für neue Perspektiven zu gewinnen

Kreativitätstechnik: Brainstorming

- 5-10 Personen
- Vorgaben: Fragestellung, Zeitlimit für 2 Phasen

Phase 1: Ideen sammeln

 Ideen werden <u>nicht</u> kommentiert / diskutiert, um sich nicht zu blockieren

Phase 2: Analyse

 z.B. gruppieren, redundante entfernen, unpassende eliminieren

Kreativitätstechnik: Brainstorming

Eigenschaften

- Unreflektierte Sammlung lässt ggf. neue Ideen entstehen
- Gruppierung vereinfacht Konvergenz verschiedener Ausdrucksund Denkweisen
- Besonders effektiv, wenn verschiedenartige Stakeholder zusammenkommen

Kontraindikationen

- bei schwieriger Gruppendynamik
- bei stark unterschiedliche dominanten Teilnehmern

Kreativitätstechnik: Brainstorming paradox

- Wie Brainstorming
- Aber: Ereignisse sammeln, die <u>nicht</u> erreicht werden sollen
- Anschließend: Maßnahmen sammeln, um diese Ereignisse zu verhindern
- Identifikation von Projekt- und Produktrisiken
- Entwicklung von Gegenmaßnahmen und Sicherheitsanforderungen

Kreativitätstechnik: Perspektivenwechsel

Grundidee / Eigenschaften

- Teilnehmer sollen unterschiedliche Extrempositionen einnehmen
- Hilft Stakeholdern, ihr Wissen anders zu formulieren
- Kann eingefahrene Sichtweisen der Stakeholder lockern

Six Thinking Hats von Edward De Bono 1999

- Bekanntestes Verfahren
- Teilnehmer setzen nacheinander gemeinsam einen von sechs Hüten auf
- Paralleles Denken: Konflikte vermeiden, aber alle Sichtweisen berücksichtigen

E. De Bono: Sechs-Hut-Denken

Risiken / objektiv negative Aspekte

objektiv positive Aspekte, Best Case Scenario

Kreativitätstechnik: Analogien

- Bionik: Suche Analogien in der Natur
- Bisoziation: Beliebige Analogien
- Ggf. verdeckte Anwendung: Stakeholder kennt nur das Analogon, der RE überträgt in den realen Problembereich

Voraussetzungen

- Tiefe Fachkenntnis
- Fähigkeit zum Denken in Analogien

Überblick Ermittlungstechniken

Beobachtungstechniken

Voraussetzungen

- Fachspezialisten haben keine Zeit oder sind nicht in der Lage, Wissen explizit weiterzugeben
- Bereitschaft, sich beobachten zu lassen

Detaillierungsgrad

auch für mittel- bis hochgradig detaillierte Anforderung

Eigenschaften

- Dokumentation der Abläufe und Arbeitsschritte; Identifikation von potentiellen Fehlern, Risiken, offenen Fragen, ...
- Wichtig/schwierig: Unterscheidung Ist-Situation vs. Sollprozess

Feldbeobachtung

- Beobachtung von Stakeholdern vor Ort
- Oft kombiniert mit Audio-/Videoaufzeichnungen

- Gut geeignet bei sprachlich schwer vermittelbaren Abläufen
- Abläufe / Arbeitsschritte müssen wirklich beobachtbar sein

Variation: Contextual Inquiry

- Feldbeobachtung kombiniert mit Befragung
- Aus der Beobachtung heraus Fragen vor Ort klären
- Hinterfragen zu den Gründen bestimmter Abläufe
- Übertragung auf zukünftigen Kontext

Apprenticing

- "in die Lehre gehen"
- Tätigkeiten des Stakeholders konkret erlernen und ausführen
- Erfahrung erster Hand sammeln

Verhältnis RE-Stakeholder kehrt sich um (Stakeholder = "Meister")

Überblick Ermittlungstechniken

Dokumentenzentrierte Techniken

Voraussetzungen

- Artefakte relevanter Systeme vorhanden
 - z.B. Altsystem, Konkurrenzsystem
 - z.B. Handbücher, Spezifikationen, Code
 - z.B. Veröffentlichungen zu Algorithmen, Metriken, ...

Detaillierungsgrad

Auch für sehr detaillierte Anforderungen geeignet

Eigenschaften

- Große Hilfe, um gesamte relevante Funktionalität erfassen
- Sollte durch andere Techniken ergänzt werden, um Informationen gemäß der neuen Ziele zu gewichten

Systemarchäologie

- Informationen zu neuen System aus existierendem System extrahieren
- z.B. wenn explizites Wissen über Fachlogik nicht vorhanden oder verloren
- z.B. auch Codeanalyse
- Aufwändig
- Führt zu vielen detaillierten Anforderungen

Perspektivenbasiertes Lesen

- Dokument aus eingeschränkter Perspektive lesen
 - z.B. Sicht des Realisierers / Testers
- Fokussierung auf die Anforderungen an das neue System
- Auslassung nicht relevanter Informationen und Aspekte

Wiederverwendung (Reuse)

- Wiederverwendung existierender Anforderungsdokumentation
 - Falls in angemessener Qualität vorhanden
- Am einfachsten toolbasiert
- Erhebliche Kostenreduktion für Anforderungserhebung

Fazit zu Ermittlung / Elicication

- Ermittlungstechniken helfen beim Entdecken von Anforderungen und Zielen
- Grundlegende Techniken:
 - Befragungen vor Ort oder per Fragebogen
 - Feldbeobachtungen bis hin zu Apprenticing
 - Workshops mit Stakeholdern für Kreativitätstechniken
- Verschiedene Techniken je nach Projektbudget, Zeitablauf und Zusammensetzung der Stakeholder
- Eigentlich unverzichtbar
- Erheblicher Zeitaufwand, Abwägung typischerweise gegen Liefertermin

Dokumentation: Perspektiven, Sprache, Modelle

Anforderungsspezifikation

Definition *: Anforderungsdokument / Anforderungsspezifikation

[...] eine systematisch dargestellte Sammlung von Anforderungen (typischerweise für ein System oder eine Komponente), die vorgegebenen Kriterien genügt.

Ziele der Dokumentation

- Basis für die Systementwicklung
- Rechtliche relevante Dokumentation von Vertragsinhalten
- Kommunikation zwischen Stakeholdern und Entwicklung
- Qualitätsnachweis gemäß vorgegebener rechtlicher Kriterien

Zu beachten

- Muss für alle Mitarbeiter zugänglich für alle Mitarbeiter
- Komplexität Toolunterstützung und Verlinkung notwendig

Drei Perspektiven

(Statische) Strukturperspektive

- Datenmodelle
- Nutzungs- und Abhängigkeitsbeziehungen von Komponenten

Funktionsperspektive

• Ein- und zugehörige Ausgaben, aus dem Systemkontext betrachtet

Verhaltensperspektive

Ereignis-/zustandsorientierte Betrachtung

Dokumentationsform: natürliche Sprache

Vorteile

- Häufigste Form, Ergebnisform von Befragungen und Kreativtechniken
- Für alle Perspektiven und Anforderungstypen geeignet
- Stakeholder müssen keine Notation erlernen

Nachteile / Gefahren

- Mehrdeutigkeiten
- Vermischung der Perspektiven
- Prüfung auf Vollständigkeit und Konsistenz schwierig

Ansätze zur Verbesserung

Schablonen, Use Cases (Modell + Sprache, nur für Verhalten)

Dokumentationsform: konzeptuelle Modelle

Vorteile

- Vereinfachung, Konzentration auf eine bestimmte Perspektive
- (teilweise) Darstellung in übersichtlichen Diagrammen möglich
- Häufig bessere Eindeutigkeit und Prüfbarkeit

Nachteile / Gefahren

- [kein universelles Modell für alle Anforderungstypen]
- Erfordert Einarbeitung / Übung
- Häufig nicht zur Kommunikation mit Stakeholder geeignet
- Bei komplexen / großen Zusammenhängen aufwändig / unübersichtlich

Funktionsmodell: Use Case Diagramm

• Überblick über Interaktionen mit dem System

dt.: Anwendungsfall-Diagramm

Verhaltensmodell: Aktivitätsdiagramm

• Ablauflogik komplexerer Prozesse, Detaillierter Ablauf von Use Cases

Verhaltensmodell: Sequenzdiagramm

• Darstellung eines möglichen Ablaufs mit mehreren Teilnehmern

Verhaltensmodell: Zustandsdiagramm

• Ereignisgesteuertes Verhalten, genaue Spezifikation von UI-Komponenten

Strukturmodell: Entity-Relationship-Diagramm

Datenmodellierung, Zerlegung in Objekte / Komponenten

Strukturmodell: Klassendiagramm

Statische Struktur und Schnittstellen von Lösungskomponenten

Dokumentation: Struktur, Generierung, Qualität

Grobstruktur eines Anforderungsdokuments

Diverse Vorschläge für Standard-Strukturen existieren

- Erleichtern Einarbeitung und Projektstart
- Automatische Überprüfung von Dokumenten (Vollständigkeit etc.)
- Vereinfachen Wiederverwendung
- Potentiell projektspezifische Anpassungen nötig

Rational Unified Process

- Starker Fokus auf objektorientierter Entwicklung, Strukturen ähnlich 29148:2011 ISO/IEC/IEEE 29148:2011 (Life Cycle Processes / RE)
- Beispielhafte Gliederung

V-Modell nach Bundesministerium des Inneren (BMI)

- Lastenheft: Perspektive des Auftraggebers (was und wofür)
- Pflichtenheft: Realisierungsvorgaben aus Sicht des Produkts

Mindestinhalte (1)

Einleitung

- Zweck, Zielgruppe, ...
- Systemumfang
- Stakeholder und Ziele
- Glossar
- Referenzen
- Übersicht des weiteren Dokuments

2. Allgemeine Übersicht

- Systemumfeld (Kontext)
- Architekturbeschreibung
- Systemfunktionalität (z.B. Use Case Diagramme)
- Nutzer und Zielgruppen
- Randbedingungen
- Annahmen / Entscheidungen bzgl. des Projekts/Produkts

Mindestinhalte (2)

3. Anforderungen

- Funktionale Anforderungen
- Qualitätsanforderungen

4. Anhang

- Weiterführende Informationen
- Benutzercharakteristika (Personas)
- Marktinformationen
- Standards und Konventionen

5. Index

• (Neuralgischer Punkt bei komplexen, dynamischen Anforderungen!)

Verwendung der Anforderungsspezifikation

Planung

Arbeitspakete, Produktbacklog, Sprints, Meilensteine ...

Architektur und Implementierung

• Detaillierte Anforderungen (Fkt. und Q.) bilden Grundlage

Verifikation und Validierung

• Entwicklung von Testfällen auf Basis der Anforderungen

Änderungsmanagement (Change Management)

 Analyse, welche Teile der Dokumentation bei Änderung einer Anforderung betroffen sind (andere Anforderungen, Architektur, Tests, ...)

Wartung und Support

Fehler in Bedienung, Anforderung oder Implementierung?

Vertragliche Festlegung / Kommunikation

• Primärer Vertragsbestandteil oder zumindest Kommunikationsmittel

Generierung von Anforderungsdokumenten

- Best Practice ist die toolbasierte Dokumentation von Anforderungen
- Dynamisches Arbeiten auf verlinkten Elementen
 - Stakeholder und Ziele
 - Funktionale Anforderungen / Use Cases
 - Qualitätsanforderungen nach Kategorien
 - Diagramme / Modelle
 - Testfälle
 - Glossar
 - ...
- Konfiguration automatischer Berichte
 - Generierung der Anforderungsspezifikation als druckbares Dokument (insbes. für vertragliche oder behördliche Zwecke)
 - Prüfung auf Vollständigkeit (wie viele Tests gibt es zu jeder Anforderung, ...)
 - Überblick über spezifische Artefakte (Features, Use Cases, ...)

Qualitätsmerkmale von Anforderungsdokumenten

Eindeutigkeit und Konsistenz

- Eindeutige IDs
- Jede Anforderung an sich eindeutig und konisistent
- Keine Widersprüche unter den Anforderungen

Klare Struktur

Gliederung nach Standardstruktur und nach Anforderungs- und Modelltyp

Modifizierbarkeit und Erweiterbarkeit

Anforderungen (bzw. ihre dokumentierte Form) ändern sich häufig

Vollständigkeit

- alle relevanten Anforderungen erfasst?
- alle Eingaben / Ereignisse / Reaktionen für jeden Zustand, Fehler und Ausnahmen
- Formale Gesichtspunkte: Beschriftung von Diagrammen, Verzeichnisse, ...

Verfolgbarkeit / Traceability

Beziehungen zwischen Artefakten / Dokumenten nachvollziehbar

Glossar

Enthält:

- Kontextspezifische Fachbegriffe
- Alltägliche Begriffe in kontextspezifischer Verwendung
- Abkürzungen und Akronyme
- Synonyme (verschiedene Begriffe, gleiche Bedeutung)
- Homonyme (ein Begriff, verschiedene Bedeutungen)

Eigenschaften / Forderungen:

- Zentral verwalten, Verantwortlichkeit schaffen
- Leicht zugreifbar halten, projektbegleitend pflegen
- Im Projekt verbindliche Verwendung der Begriffe
- Herkunft der Begriffe dokumentieren

Fragen?

