Fizyka 3.1

Pomiar zależności oporu metali i półprzewodników od temperatury

Nr. ćwiczenia: 44a

Data wykonania ćwiczenia: 04.04.2024 r. Data oddania sprawozdania: 10.04.2024 r.

1 Wstęp

Wykorzystane przyrządy pomiarowe:

- Multimetr Metex m3859
- Regulator temperatury (błąd pomiarowy ±0.1 °C)

Zastosowana teoria

Temperaturowy współczynnik rezystancji - względna zmiana rezystancji danego materiału przy zmianie temperatury. Dla większości metali zależność rezystancji od temperatury jest w przybliżeniu liniowa i wyraża się wzorem:

$$R_T = R_0(1 + \alpha \cdot \Delta T)$$

gdzie:

 R_T - rezystancja w temperaturze T w $[\Omega]$,

 R_0 - rezystancja w temperaturze odniesienia T_0 w $[\Omega]$,

 α - temperaturowy współczynnik rezystancji w $\left[\frac{1}{K}\right]$ lub $\left[\frac{1}{\circ C}\right],$

 ΔT - zmiana temperatury równa $T-T_0$ w [K]

Przerwa energetyczna, pasmo zabronione - zakres energii elektronów w ciele stałym cechujący się silnym rozpraszaniem elektronów na atomach, co sprawia, że w układzie nie ma elektronów o energii z tego przedziału.

Istnienie i szerokość przerwy energetycznej oraz położenie względem niej poziomu Fermiego ma podstawowe znaczenie dla właściwości półprzewodników. Jeżeli mieści się on w przerwie energetycznej, to układ w odpowiednio niskiej temperaturze jest izolatorem. Własności układu w wyższych temperaturach zależą od szerokości przerwy i położenia poziomu Fermiego.

2 Dane

$\boxed{\text{Temperatura}[^{\circ}\text{C}]}$	$R_1[\Omega]$	$R_2[\Omega]$	$R_3[\Omega]$	$R_4[\Omega]$
100	1532	68.3	12.6	139.1
95	1658	76.3	13.4	137.7
90	1856	82.9	14.3	135.8
85	2100	92.5	14.9	133.7
80	2417	103.1	17.2	131.9
75	2802	115.5	17.3	129.4
70	3226	129.5	18.7	127.7
65	3762	147.0	20.5	125.8
60	4440	167.7	22.7	124.1
55	5220	192.6	25.1	121.8
50	6210	222.1	28.1	120.2
45	7480	259.5	32.0	118.3
40	9000	306.2	37.1	116.3
35	11000	360.2	42.1	114.4
30	13480	424	48.4	112.4

3 Obliczenia

Niepewnosć typu B obliczamy ze wzoru:

$$u_b(\Delta) = \sqrt{\sum_{i=1}^n \frac{(\Delta_i)^2}{3}}$$

 Δ_i - kolejne błędy pomiarowe np: przyrządu, obserwatora, odczytu wartości tablicowych itd, Przykładowo niepewność wskazania regulatora temperatury:

$$u_b(\Delta) = \sqrt{\frac{(0.1[^{\circ}C])^2}{3}} = 0.05773503[^{\circ C}] \approx 0.058[^{\circ C}]$$

Niepewność bezwzględną omomierza wyliczamy ze wzoru:

$$\Delta = a\% \cdot rdg + c \cdot dgt$$

a,c - współczynniki podawane przez producenta,

rdg - wartość odczytana z miernika,

dgt - najmniejsza możliwa do odczytania wartość na wykorzystanym zakresie,

Przykładowo dla pomiaru rezystancji na zakresie $4[k\Omega]$:

$$\Delta = 0.5\% \cdot 1532[\Omega] + 1 \cdot 1[\Omega] = 8.6600[\Omega] \approx 8.7[\Omega]$$

Na podstawie równania funkcji liniowej oraz równania na opór metalu w funkcji temperatury wyznaczono temperaturowy współczynnik oporu:

$$y = a \cdot x + b$$
$$R_m(t) = R_0 \cdot \alpha \cdot t + R_0$$

 R_0 - rezystancja w temperaturze odniesienia,

 α - temperaturowy współczynnik rezystancji,

t - zmienna/zadana temperatura,

$$\alpha = \frac{a}{R_0} = \frac{a}{b}$$

Przykładowo dla próbki nr 4:

$$\alpha = \frac{a}{b} = \frac{0.3855 \left[\frac{\Omega}{\circ C}\right]}{100.8492 \left[\Omega\right]} = 0.003822539 \left[\frac{1}{\circ C}\right]$$

Niepewność złożoną temperaturowego współczynnika oporu wyliczamy ze wzoru:

$$u_c(\alpha) = \sqrt{\left(\frac{\partial \frac{a}{b}}{\partial a} \cdot u(a)\right)^2 + \left(\frac{\partial \frac{a}{b}}{\partial b} \cdot u(b)\right)^2} =$$

$$= \sqrt{\left(\frac{1}{b} \cdot u(a)\right)^2 + \left(\frac{-a}{b^2} \cdot u(b)\right)^2}$$

Przykładowo:

$$u_c(\alpha) = \sqrt{\left(\frac{1}{100.8492[\Omega]} \cdot 0.002384896\left[\frac{\Omega}{\circ C}\right]\right)^2 + \left(\frac{-0.3855\left[\frac{\Omega}{\circ C}\right]}{(100.8492[\Omega])^2} \cdot 0.163355221[\Omega]\right)^2} = 0.00002444529\left[\frac{1}{\circ C}\right] \approx 0.000025\left[\frac{1}{\circ C}\right]$$

Niepewność złożoną obliczenia $ln(R_s)$ wyznaczamy ze wzoru:

$$u_c(ln(R_s)) = \sqrt{\left(\frac{\partial ln(R_s)}{\partial R_s} \cdot u(R_s)\right)^2} = \sqrt{\left(\frac{1}{R_s} \cdot u(R_s)\right)^2}$$

Przykładowo dla próbki nr 2 pomiaru nr 7:

$$u_c(ln(R_s)) = \sqrt{\frac{1}{129.5} \cdot 0.7475)^2} = 0.005772201 \approx 0.0058$$

Niepewność złożoną obliczenia $\frac{1000}{T}$ wyznaczamy ze wzoru:

$$u_c(\frac{1000}{T}) = \sqrt{(\frac{\partial \frac{1000}{T}}{\partial R_c} \cdot u(T))^2} = \sqrt{\frac{-1000}{T^2} \cdot u(T))^2}$$

Przykładowo dla próbki nr 2 pomiaru nr 11:

$$u_c(\frac{1000}{T}) = \sqrt{\frac{-1000}{(323.15[K])^2} \cdot 0.05773503[K])^2} = 0.00055288[\frac{1}{K}] \approx 0.00056[\frac{1}{K}]$$

Szerokość pasma wzbronionego wyliczamy ze wzoru:

$$E_q = 2000 \cdot k \cdot A$$

k - stała Boltzmanna,

A - współczynnik kierunkowy prostej wyliczony przy pomocy regresji,

Przykładowo dla próbki 2:

$$E_g = 2000 \cdot 1.380649 \cdot 10^{-23} \left[\frac{J}{K} \right] \cdot 2.951733 [K] = 8.150614429434 \cdot 10^{-20} [J] = 0.5087213611 [eV]$$

Niepewność złożoną szerokości pasma wzbronionego wyliczamy ze wzoru:

$$u_c(E_g) = \sqrt{\left(\frac{\partial(2000 \cdot k \cdot A)}{\partial A} \cdot u(A)\right)^2} = \sqrt{(2000 \cdot k \cdot u(A))^2}$$

Przykładowo dla próbki 2:

$$u_c(E_g) = \sqrt{\left(2000 \cdot 1.380649 \cdot 10^{-23} \left[\frac{J}{K}\right] \cdot 0.02875892[K]\right)^2} =$$

$$= 7.9 \cdot 10^{-22} [J] = 0.0050[eV]$$

4 Wyniki

Wykresy zależności rezystancji od temperatury dla poszczególnych próbek

Na podstawie poniższych wykresów jesteśmy w stanie stwierdzić, że próbki od 1 do 3 posiadają charakterystykę specyficzną dla półprzewodników podczas gdy próbka nr 4 ma charakterystykę metalu.

Do szczegółowych obliczeń wybrano próbkę nr 2 jako reprezentanta półprzewodników oraz próbkę nr 4 jako reprezentanta metali.

Niepewności pomiarów zostały na wykresie zaznaczone czerwonymi paskami błędów. Niepewność regresji została zaznaczona szarym polem wokół linii regresji.

Wykresy zależności rezystancji od temperatury i regresja liniowa próbki nr $4({\rm Metal})$

Na podstawie regresji liniowej wyznaczono współczynniki a i b zależności oraz ich niepewności:

$$\begin{split} a &= 0.3855 [\frac{\Omega}{\circ C}] \quad u(a) = 0.0024 [\frac{\Omega}{\circ C}] \\ b &= 100.85 [\Omega] \qquad u(b) = 0.16 [\Omega] \end{split}$$

Na podstawie powyższych danych wyliczono temperaturowy współczynnik oporu próbki nr 4 oraz niepewność tej wartości:

$$\alpha = 0.003823[\frac{1}{\circ C}] \quad u_c(\alpha) = 0.000025[\frac{1}{\circ C}]$$

Wykresy zależności $ln(R_s)$ od $\frac{1000}{T}$ i regresja liniowa próbki nr 2(Półprzewodnik)

Na podstawie regresji liniowej wyznaczono współczynniki A i B zależności oraz ich niepewności:

$$A = 2.952 \left[\frac{\Omega}{\circ C}\right] \quad u(A) = 0.029 \left[\frac{\Omega}{\circ C}\right]$$

$$B = -3.715 \left[\Omega\right] \qquad u(B) = 0.086 \left[\Omega\right]$$

Na podstawie powyższych danych wyznaczono szerokość przerwy wzbronionej oraz jej niepewność:

$$E_g = 8.151 \cdot 10^{-20} [J] = 0.5087 [eV]$$

$$u_c(E_g) = 0.079 \cdot 10^{-20} [J] = 0.0050 [eV]$$

5 Wnioski

Na podstawie doświadczenia udało się uzyskać wartości temperaturowego współczynnika oporu próbki nr 4 oraz szerokość przerwy wzbronionej dla próbki nr 2. Temperaturowy współczynnik oporu wyznaczony w ćwiczeniu wniósł:

$$\alpha = 0.003823 \pm 0.000025 \left[\frac{1}{\circ C} \right]$$

Wartość ta w granicy błędu pomiarowego odpowiada dwóm pierwiastkom - srebru o współczynniku $0.003819[\frac{1}{\circ C}]$ oraz cynkowi o współczynniku $0.003847[\frac{1}{\circ C}]$. W rzeczywistości materiał ten może być stopem metali który posiada tą specyficzną wartość temperaturowego współczynnika oporu.

Przerwa energetyczna wyznaczona w doświadczeniu wyniosła:

$$E_g = 8.151 \cdot 10^{-20} \pm 0.079 \cdot 10^{-20} [J]$$

 $E_g = 0.5087 \pm 0.0050 [eV]$

Wartość ta odpowiada w granicy błędu Arsenkowi kadmu (Cd_{3As_2}) którego przerwa energetyczna zawiera się w przedziale od $0.5[\mathrm{eV}]$ do $0.6[\mathrm{eV}]$.