

Machine Learning CS60050

Computational Learning Theory (Regularization)

Learning From Data

Yaser S. Abu-Mostafa California Institute of Technology

Lecture 12: Regularization

Outline

- Regularization informal
- Regularization formal
- Weight decay
- Choosing a regularizer

2/21

Two approaches to regularization

Mathematical:

Ill-posed problems in function approximation

Heuristic:

Handicapping the minimization of $E_{
m in}$

A familiar example

with regularization

© MC Creator: Yaser Abu-Mostafa - LFD Lecture 12 4/21

and the winner is ...

 $\mathsf{bias} = \mathbf{0.21} \qquad \mathsf{var} = \mathbf{1.69}$

 $\mathsf{bias} = \mathbf{0.23} \qquad \mathsf{var} = \mathbf{0.33}$

The polynomial model

 $\mathcal{H}_{\mathbb{Q}}$: polynomials of order Q

linear regression in ${\mathcal Z}$ space

$$\mathbf{z} = \begin{bmatrix} 1 \\ L_1(x) \\ \vdots \\ L_Q(x) \end{bmatrix} \qquad \mathcal{H}_{Q} = \left\{ \sum_{q=0}^{Q} w_q L_q(x) \right\}$$

Legendre polynomials:

Unconstrained solution

Given
$$(x_1, y_1), \cdots, (x_N, y_n) \longrightarrow (\mathbf{z}_1, y_1), \cdots, (\mathbf{z}_N, y_n)$$

Minimize
$$E_{\mathrm{in}}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{w}^{\mathsf{T}} \mathbf{z}_n - y_n)^2$$

Minimize
$$\frac{1}{N} (\mathbf{Z} \mathbf{w} - \mathbf{y})^{\mathsf{T}} (\mathbf{Z} \mathbf{w} - \mathbf{y})$$

$$\mathbf{w}_{\text{lin}} = (\mathbf{Z}^{\mathsf{T}}\mathbf{Z})^{-1}\mathbf{Z}^{\mathsf{T}}\mathbf{y}$$

Constraining the weights

Hard constraint: \mathcal{H}_2 is constrained version of \mathcal{H}_{10} with $w_q=0$ for q>2

Softer version:
$$\sum_{q=0}^{Q} \ w_q^2 \ \leq \ C \quad \text{``soft-order''} \ \text{constraint}$$

Minimize $\frac{1}{N} (\mathbf{Z} \mathbf{w} - \mathbf{y})^{\mathsf{T}} (\mathbf{Z} \mathbf{w} - \mathbf{y})$

subject to: $\mathbf{w}^\mathsf{T}\mathbf{w} \leq C$

Solution: \mathbf{w}_{reg} instead of \mathbf{w}_{lin}

Solving for \mathbf{w}_{reg}

Minimize
$$E_{\rm in}(\mathbf{w}) = \frac{1}{N} (\mathbf{Z}\mathbf{w} - \mathbf{y})^{\rm T} (\mathbf{Z}\mathbf{w} - \mathbf{y})$$
 subject to: $\mathbf{w}^{\rm T}\mathbf{w} \leq C$

$$abla E_{
m in}(\mathbf{w}_{
m reg}) \propto -\mathbf{w}_{
m reg}$$

$$= -2rac{\lambda}{N}\mathbf{w}_{
m reg}$$

$$\nabla E_{\rm in}(\mathbf{w}_{\rm reg}) + 2\frac{\lambda}{N}\mathbf{w}_{\rm reg} = \mathbf{0}$$

Minimize
$$E_{\mathrm{in}}(\mathbf{w}) + \frac{\lambda}{N}\mathbf{w}^{\mathsf{T}}\mathbf{w}$$

$$C \uparrow \lambda \downarrow$$

Augmented error

Minimizing
$$E_{\mathrm{aug}}(\mathbf{w}) = E_{\mathrm{in}}(\mathbf{w}) + \frac{\lambda}{N} \mathbf{w}^{\mathsf{T}} \mathbf{w}$$

$$= \frac{1}{N} (\mathbf{Z} \mathbf{w} - \mathbf{y})^{\mathsf{T}} (\mathbf{Z} \mathbf{w} - \mathbf{y}) + \frac{\lambda}{N} \mathbf{w}^{\mathsf{T}} \mathbf{w} \quad \text{unconditionally}$$

$$- \text{solves} -$$

Minimizing
$$E_{\text{in}}(\mathbf{w}) = \frac{1}{N} (\mathbf{Z}\mathbf{w} - \mathbf{y})^{\mathsf{T}} (\mathbf{Z}\mathbf{w} - \mathbf{y})$$
 subject to: $\mathbf{w}^{\mathsf{T}}\mathbf{w} \leq C$ \longleftarrow VC formulation

The solution

Minimize
$$E_{\text{aug}}(\mathbf{w}) = E_{\text{in}}(\mathbf{w}) + \frac{\lambda}{N} \mathbf{w}^{\mathsf{T}} \mathbf{w}$$

$$= \frac{1}{N} \left((\mathbf{Z} \mathbf{w} - \mathbf{y})^{\mathsf{T}} (\mathbf{Z} \mathbf{w} - \mathbf{y}) + \lambda \mathbf{w}^{\mathsf{T}} \mathbf{w} \right)$$

$$\nabla E_{\text{aug}}(\mathbf{w}) = \mathbf{0} \implies \mathbf{Z}^{\mathsf{T}}(\mathbf{Z}\mathbf{w} - \mathbf{y}) + \lambda \mathbf{w} = \mathbf{0}$$

$$\mathbf{w}_{\text{reg}} = (\mathbf{Z}^{\mathsf{T}}\mathbf{Z} + \lambda \mathbf{I})^{-1} \mathbf{Z}^{\mathsf{T}}\mathbf{y}$$
 (with regularization)

as opposed to
$$\mathbf{w}_{lin} = (Z^T Z)^{-1} Z^T \mathbf{y}$$
 (without regularization)

The result

Minimizing $E_{\rm in}(\mathbf{w}) + \frac{\lambda}{N} \, \mathbf{w}^{\scriptscriptstyle\mathsf{T}} \mathbf{w}$ for different λ 's:

Weight 'decay'

Minimizing $E_{\rm in}(\mathbf{w}) + \frac{\lambda}{N} \mathbf{w}^{\mathsf{T}} \mathbf{w}$ is called weight *decay*. Why?

Gradient descent:

$$\mathbf{w}(t+1) = \mathbf{w}(t) - \eta \nabla E_{\text{in}} \left(\mathbf{w}(t) \right) - 2 \eta \frac{\lambda}{N} \mathbf{w}(t)$$
$$= \mathbf{w}(t) \left(1 - 2\eta \frac{\lambda}{N} \right) - \eta \nabla E_{\text{in}} \left(\mathbf{w}(t) \right)$$

Applies in neural networks:

$$\mathbf{w}^{\mathsf{T}}\mathbf{w} = \sum_{l=1}^{L} \sum_{i=0}^{d^{(l-1)}} \sum_{j=1}^{d^{(l)}} \left(w_{ij}^{(l)}\right)^2$$

Variations of weight decay

Emphasis of certain weights:

$$\sum_{q=0}^{Q} \frac{\mathbf{y_q}}{\mathbf{y_q}} \ w_q^2$$

Examples:

$$\gamma_q = 2^q \implies$$
 low-order fit

$$\gamma_q = 2^{-q} \implies \text{high-order fit}$$

Neural networks: different layers get different γ 's

Tikhonov regularizer: $\mathbf{w}^{\mathsf{T}}\Gamma\mathbf{w}$

Even weight growth!

We 'constrain' the weights to be large - bad!

Practical rule:

stochastic noise is 'high-frequency'

deterministic noise is also non-smooth

⇒ constrain learning towards smoother hypotheses

General form of augmented error

Calling the regularizer $\Omega = \Omega(h)$, we minimize

$$E_{
m aug}(h) \; = E_{
m in}(h) \; + \; rac{\lambda}{N} \Omega(h)$$

Rings a bell?

$$\downarrow \downarrow$$

$$\underline{E}_{\text{out}}(h) \leq \underline{E}_{\text{in}}(h) + \Omega(\mathcal{H})$$

 $E_{
m aug}$ is better than $E_{
m in}$ as a proxy for $E_{
m out}$

Outline

- Regularization informal
- Regularization formal
- Weight decay
- Choosing a regularizer

17/21

The perfect regularizer Ω

Constraint in the 'direction' of the target function (going in circles \odot)

Guiding principle:

Direction of **smoother** or "simpler"

Chose a bad Ω ?

We still have $\lambda!$

© PM Creator: Yaser Abu-Mostafa - LFD Lecture 12

Neural-network regularizers

Weight decay: From linear to logical

Weight elimination:

Fewer weights \Longrightarrow smaller VC dimension

Soft weight elimination:

$$\Omega(\mathbf{w}) = \sum_{i,j,l} \frac{\left(w_{ij}^{(l)}\right)^2}{\beta^2 + \left(w_{ij}^{(l)}\right)^2}$$

Early stopping as a regularizer

Regularization through the optimizer!

When to stop? validation

© M2 Creator: Yaser Abu-Mostafa - LFD Lecture 12

The optimal λ

 $Q_f=100$ $Q_f=30$ $Q_f=15$ Regularization Parameter, λ

Stochastic noise

Deterministic noise

© M2 Creator: Yaser Abu-Mostafa - LFD Lecture 12

Thank You!

