Predicate Calculus COMP SCI 2LC3

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton, Ontario, Canada

- Predicate logic is an extension of propositional logic
- ullet It allows the use of variables of types other than ${
 m I\!B}$
- This extension leads to a logic with enhanced expressive
- Propositional calculus permits reasoning about formulas constructed from boolean variables and boolean operators
- Predicate calculus permits reasoning about a more expressive class of formulas

- A predicate-calculus formula is a boolean expression in which some boolean variables may have been replaced by:
 - \bullet Predicates : applications of boolean functions whose arguments may be of types other than ${\rm I}\!{\rm B}$
 - Universal and existential quantification

Example

The pure predicate calculus includes

- The axioms of propositional calculus
- ② The axioms for quantifications $\forall (x \mid R : P)$ and $\exists (x \mid R : P)$
- The inference rules of the predicate calculus
 - **1** Substitution: $\frac{E}{E[v:=F]}$
 - 2 Transitivity: $\frac{X=Y, Y=Z}{X=Z}$
 - 3 Leibniz: $\frac{X=Y}{E[z:=X]=E[z:=Y]}$
 - 4 Leibniz for quantification:
 - $\frac{P=Q}{*(x \mid E[z:=P]:S)} = *(x \mid E[z:=Q]:S)$
 - $\frac{R \Longrightarrow P = Q}{*(x \mid R : E[z := P]) = *(x \mid R : E[z := Q])}$

- In the pure predicate calculus, the function symbols $(<,>,+,\cdot,$ etc.) are uninterpreted
 - except for equality =
 - the logic provides no specific rules for manipulating function symbols
 - general rules for manipulation that are sound independently of the meanings of the function symbols
 - so, the pure predicate calculus is sound in all domains that may be of interest

- We get a theory by adding axioms that give meanings to some of the (uninterpreted) function symbols
- The theory of integers consists of the pure predicate calculus together with axioms for manipulating the operators +,-,..<, etc.
- For example, the axioms say that · is
 - symmetric,
 - associative, and
 - has the zero 0

- The theory of sets provides axioms for manipulating expressions containing operators like \in , \subseteq , \cup , \cap , etc.
- We can also form a joint theory of sets and integers, allowing us to reason about expressions that contain both
- The core of all these theories is the pure predicate calculus (provides the basic machinery)

- Conjunction \land (i.e., \forall) is symmetric and associative and has the identity true
- Therefore, it is an instance of * (previous set of slides)
- The quantification $\land (x \mid R : P)$ is conventionally written as $\forall (x \mid R : P)$
- The symbol ∀, which is read as "for all", is called the universal quantifier
- All the axioms of quantifition hold
- We now introduce additional axioms and theorems for universal quantification

• Axiom, Trading:

$$\forall (x \mid R : P) \iff \forall (x \mid : R \implies P)$$

Trading theorems for ∀:

- Trading theorems for ∀ (continued):

 - $\forall (x \mid Q \land R : P) \\ \iff \forall (x \mid Q : R \land P \iff R)$

• Axiom, Distributivity of \lor over \forall : Provided \neg occurs('x', 'P'),

$$P \lor \forall (x \mid R : Q) \iff \forall (x \mid R : P \lor Q)$$

- Additional theorems for ∀:
- Provided $\neg occurs('x', 'P')$,

$$\forall (x \mid R : P) \iff P \lor \forall (x \mid : \neg R)$$

- Additional theorems for ∀ (Continued):
 - Provided $\neg occurs('x', 'P')$, $\neg \forall (x \mid : \neg R)$ \Rightarrow $(\forall (x \mid R : P \land Q) \iff P \land \forall (x \mid R : Q))$

Theorems: Weakening/strengthening and monotonicity for \forall

• Range weakening/strengthening :

$$\forall (x \mid Q \lor R : P) \implies \forall (x \mid Q : P)$$

Body weakening/strengthening:

$$\forall (x \mid R : P \land Q) \implies \forall (x \mid R : P)$$

3 Monotonicity of \forall :

$$\forall (x \mid R : Q \Longrightarrow P)$$

$$\Longrightarrow$$

$$(\forall (x \mid R : Q) \Longrightarrow \forall (x \mid R : P))$$

- Disjunction ∨ is symmetric and associative and has the identity false
- Therefore, it is an instance of *
- The quantification

$$\vee (x \mid R : P)$$

is typically written as

$$\exists (x \mid R : P)$$

 The symbol ∃, which is read as "there exists", is called the existential quantifier

- The expression is called an existential quantification
- $\exists (x \mid R : P)$ is read as "there exists an x in the range R such that P holds"
- A value \hat{x} for which $(R \land P)[x := \hat{x}]$ is valid is called a witness for x in $\exists (x \mid R : P)$
- General axioms, from previous set of slides, that hold for $\exists (x \mid R : P)$ not repeated here
- Note that ∨ is idempotent, so that existential quantification satisfies Range split for idempotent *

• Idea behind this generalization with an example

$$\vee \; \left(i \; \mid \; 1 \leq i \leq 2 \; : \; p_i \, \right) \; \Longleftrightarrow \; \neg \; \wedge \left(i \; \mid \; 1 \leq i \leq 2 \; : \; \neg p_i \, \right)$$

$$\vee (i \mid 1 \leq i \leq 4 : p_i) \iff \neg \land (i \mid 1 \leq i \leq 4 : \neg p_i)$$

- \bullet The generalisation of De Morgan can be viewed as a definition of \exists
- It can be used along with the strategy of definition elimination, to prove all theorems concerning existential quantification

• Axiom, Generalised De Morgan:

$$\exists (x \mid R : P) \iff \neg \forall (x \mid R : \neg P)$$

• Generalised De Morgan theorems:

- ullet Theorems: Trading theorems for \exists
- More theorems for ∃
 - **1** Distributivity of \land over \exists : Provided \neg occurs('x', 'P')

$$P \wedge \exists (x \mid R : Q) \iff \exists (x \mid R : P \wedge Q)$$

2 Provided $\neg occurs('x', 'P')$

$$\exists (x \mid R : P) \iff P \land \exists (x \mid : R)$$

- Theorems: More theorems for ∃ (Continued)
 - **1** Distributivity of \vee over \exists : Provided \neg occurs('x', 'P')

$$\exists (x \mid : R)$$

$$\Rightarrow$$

$$(\exists (x \mid R : P \lor Q) \iff P \lor \exists (x \mid R : Q))$$

 $\exists (x \mid R : \mathsf{false}) \iff \mathsf{false}$

Theorems: Weakening/strengthening and monotonicity for \exists

• Range weakening/strengthening :

$$\exists (x \mid R : P) \implies \exists (x \mid Q \lor R : P)$$

Body weakening/strengthening:

$$\exists (x \mid R : P) \implies \exists (x \mid R : P \lor Q)$$

1 Monotonicity of \exists :

$$\exists (x \mid R : Q \Longrightarrow P)$$

$$\Longrightarrow$$

$$(\exists (x \mid R : Q) \Longrightarrow \exists (x \mid R : P))$$

■ ∃-Introduction:

$$P[x := e] \implies \exists (x \mid : P)$$

② Interchange of quantifications: Provided $\neg occurs('x', 'Q')$,

$$\exists (x \mid R : \forall (y \mid Q : P))$$

$$\Longrightarrow$$

$$\forall (y \mid Q : \exists (x \mid R : P))$$