

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{PG}{4\pi R^2}$$

where: S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to isotropic radiator

R = distance to the center of radiation of the antenna

Maximum peak output power at antenna input termir	nal: 9.	1 dBm
Maximum peak output power at antenna input termir	nal: 8.	1 mW
Antenna gain(maximur	m):	<mark>2</mark> dBi
Maximum antenna ga	ain: 1.0	6 numeric
Time Averagii	ng: 100	0 %
Prediction distant	ce: 20	0 cm
Prediction frequen	cy: 245	0 MHz
FCC MPE limit for uncontrolled exposure at prediction frequen	cy: 1.00	0 mW/cm ²
IC MPE limit for uncontrolled exposure at prediction frequen	cy: 5.42	2 W/m ²
Power density at prediction frequen	cy: 0.00	0 mW/cm ²
This equates	to: 0.03	3 W/m ²