

Evolutionary game theory

Niko Beerenwinkel

Outline

- Evolutionary games
- Evolutionary stability
- The replicator equation
- The Prisoner's Dilemma

Constant selection

- So far, we have assumed that fitness is a constant parameter (constant selection).
- Example: Type A can move faster than type B.

Frequency-dependent selection

 But the selective advantage might actually decrease with increasing density of type A (e.g., because faster movements are impossible due to blocked space).

Frequency-dependent selection between two types

- Consider two types A and B, with frequencies x_A and x_B, respectively.
- The vector $x(t) = (x_A(t), x_B(t))^T$ describes the population.
- Denote by $f_A(x(t))$ the fitness of A and by $f_B(x(t))$ the fitness of B. The average fitness is $\phi(x) = x_A f_A(x) + x_B f_B(x)$.
- The deterministic selection dynamics are given by

$$\dot{x}_A = x_A [f_A(x) - \phi(x)]$$

$$\dot{x}_B = x_B [f_B(x) - \phi(x)]$$

Equilibria

• With $x := x_A$ and $1 - x = x_B$, the system is equivalent to

$$\dot{x} = x(1-x) [f_A(x) - f_B(x)]$$

- Equilibria: x = 0, x = 1, and $\{x \in (0, 1) \mid f_A(x) = f_B(x)\}$
- $x^* = 0$ is stable if $f_A(0) < f_B(0)$
- $x^* = 1$ is stable if $f_A(1) > f_B(1)$
- An interior equilibrium x* is stable if

$$\frac{\partial f_A}{\partial x}(x^*) < \frac{\partial f_B}{\partial x}(x^*)$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Stability of equilibria

x ... abundance of A 1-x ... abundance of B

fitness difference between A and B

selection dynamics

- ... stable equilibrium
- O ... unstable equilibrium

The general idea of evolutionary game theory

- Evolutionary game theory is the study of frequencydependent selection.
- We consider a population of players.
- Each player has a fixed strategy.
- Players interact (play the game) randomly.
- Success in the game is translated into reproductive success: Good strategies reproduce faster.

Evolutionary games with two players

A two-player game is defined by the payoff matrix

Fitness = expected payoff

We define fitness as the expected payoff,

$$f_A(x_A, x_B) = ax_A + bx_B$$

$$f_B(x_A, x_B) = cx_A + dx_B$$

• Setting $x := x_A$ we have $1 - x = x_B$ and we obtain the selection dynamics

$$\dot{x} = x(1-x)[(a-b-c+d)x+b-d]$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

(ii) B dominates A, if a < c and b < d:

(iii) A and B are bistable, if a>c and b<d:

(iv) A and B coexist, if a < c and b > d:

(v) A and B are neutral, if a=c and b=d:

$$egin{array}{ccc} A & B \ A & b \end{array}$$

A is always the best strategy. A is always fitter than B.

B is always the best strategy. B is always fitter than B.

Playing the same strategy than your opponent is the best strategy. $x^* = (d - b)/(a - b - c + d)$

Playing the opposite strategy than your opponent is the best strategy. $x^* = (d - b)/(a - b - c + d)$

No matter what you do, the two payoffs are always the same.

Nash equilibrium

- Definition: If two players play the same strategy and neither player can increase its payoff by changing strategy, then the strategy is at Nash equilibrium. Mathematically,
 - A is a strict Nash equilibrium, if a > c.
 - A is a Nash equilibrium, if $a \ge c$.
 - B is a strict Nash equilibrium, if d > b.
 - B is a Nash equilibrium, if d ≥ b.

$$egin{array}{ccc} A & B \ A & a & b \ c & d \ \end{array}$$

A Nash equilibrium is the best reply to itself.

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Examples

$$egin{array}{ccc} A & B \ A & \left(egin{array}{ccc} 3 & 0 \ 5 & 1 \end{array}
ight) \end{array}$$

$$\begin{pmatrix} A & 3 & 0 \\ B & 5 & 1 \end{pmatrix}$$

Note: Both playing B has lower total payoff than both playing A.

$$egin{array}{ccc} A & B \ A & \left(egin{array}{ccc} 3 & 1 \ 5 & 0 \end{array}
ight) \end{array}$$

$$egin{array}{ccc} A & B \ A & \left(egin{array}{ccc} 5 & 0 \ 3 & 1 \end{array}
ight) \end{array}$$

Evolutionary stable strategy (ESS)

• Suppose an infinitesimally small quantity ϵ of B invades an all-A population. Then selection will oppose invasion, if

$$f_A(1-\epsilon) > f_B(\epsilon)$$

 $a(1-\epsilon) + b\epsilon > c(1-\epsilon) + d\epsilon$

i.e., if in the limit as $\epsilon \to 0$

$$(a > c)$$
 or $(a = c \text{ and } b > d)$

• **Definition**: A is ESS if either (i) a>c, or (ii) a=c and b>d

More than two strategies

The payoff for strategy S_i versus S_j is E(S_i, S_j) = a_{ij}.

Generalized definitions

- S_k is a strict Nash equilibrium, if a_{kk} > a_{ik} for all i ≠ k.
- S_k is a *Nash* equilibrium, if $a_{kk} \ge a_{ik}$ for all $i \ne k$.
- S_k is ESS if for all i ≠ k, either
 - a_{kk} > a_{ik}, or
 - $a_{kk} = a_{ik}$ and $a_{ki} > a_{ii}$
- S_k is weak ESS if for all i ≠ k, either
 - $a_{kk} > a_{ik}$, or
 - $a_{kk} = a_{ik}$ and $a_{ki} \ge a_{ii}$
- S_k is *unbeatable* if for all i ≠ k, both
 - a_{kk} > a_{ik}, and
 - a_{ki} > a_{ii}

Hierarchy of concepts

Swiss Federal Institute of Technology Zurich

Frequency-dependent fitness among n players

Fitness = expected payoff:

$$f_i(x) = f_{S_i}(x) = \sum_{j=1}^n x_j a_{ij}$$

Average population fitness:

$$\phi(x) = \sum_{i=1}^{n} x_i f_i(x)$$

The replicator equation

$$\dot{x}_i = x_i [f_i(x) - \phi(x)]$$
 $i = 1, ..., n$
 $x_1 + \dots + x_n = 1$

- Fitness is frequency-dependent, usually in a linear fashion
- Generalizes constant selection dynamics
- The interior of the simplex S_n is invariant.
- Each face is invariant.
- Depending on the payoff matrix there can be fixed points in the interior and in every face of the simplex.

Three mating strategies among side-blotched lizards

- Orange-throated males
 - strongest
 - do not form strong pair bonds
 - fight blue-throated males for their females

- Blue-throated males
 - middle-sized
 - form strong pair bonds
 - can defend against yellow-throated males

- Yellow-throated males
 - smallest
 - color mimics females
 - can approach orange-throated males in disguise and mate with their females while engaged in fighting

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Cyclic dominance

Rock-paper-scissors (RPC)

Payoff matrix for the RPC game

- We can re-scale any column of the payoff matrix.
- For the symmetric RPC game, we have

• RPC is a zero-sum game with average fitness $\phi = 0$

Replicator dynamics of the RPC game

The general RPC game is defined by the payoff matrix

$$A = \begin{pmatrix} 0 & -a_2 & b_3 \\ b_1 & 0 & -a_3 \\ -a_1 & b_2 & 0 \end{pmatrix}$$

- Case 1: det(A) > 0
 - Unique interior equilibrium which is globally stable
 - Trajectories converge to this point as damped oscillations
- Case 2: det(A) < 0
 - Unique interior equilibrium which is unstable
 - Trajectories converge to the boundary of the simplex in oscillations with increasing amplitude

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

neutral oscillations

det(A) > 0

damped oscillations to a stable equilibrium

increasing oscillations to a heteroclinic cycle

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

What happened to the lizards?

More than three strategies

- For n ≥ 4, the replicator equation allows for limit cycles and chaotic attractors.
- An interior equilibrium is given by the solution of the linear system $f_1 = ... = f_n$ and $x_1 + ... + x_n = 1$, which has one or zero non-degenerate solutions. There can be at most one isolated equilibrium in the interior.
- If there is no interior equilibrium, then all trajectories converge to the boundary of the simplex.

Conventional fights

- Many conflicts between animals do not escalate.
- In a conventional fight, threatening signals are exchanged that allow the contestants to assess each other's strength or determination, before one of them simply walks away.

Hawks and doves

- Let us analyze conventional fighting from the perspective of individual selection (rather than group selection).
- There are two basic strategies: Hawks (H) escalate fights, whereas doves (D) retreat.
- The benefit of winning a fight is b.
- The cost of injury is c.

$$H \qquad D \ H \left((b-c)/2 \quad b \ D \right)$$

Hawk and dove replicator dynamics

- Often, the cost of injury will be larger than the benefit of escalation (b < c).
- If b < c, then neither strategy is a Nash equilibrium.</p>
- Hawks and doves can coexist. The equilibrium hawk frequency is

$$x_H^* = \frac{b}{c}$$

• If $b \ll c$, then there will be few hawks.

Mixed strategies

- Consider a strategy that plays "hawk" with probability p and "dove" with probability 1 – p.
- The space of strategies is the interval [0, 1], rather than the discrete space {H, D} as before.
- The payoff for strategy p₁ versus strategy p₂ is

$$E(p_1, p_2) = p_1 p_2 E(H, H)$$

$$+ p_1 (1 - p_2) E(H, D)$$

$$+ (1 - p_1) p_2 E(D, H)$$

$$+ (1 - p_1) (1 - p_2) E(DD)$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Mixed hawk and dove strategy

We find

$$E(p_1, p_2) = \frac{b}{2} \left(1 + p_1 - p_2 - \frac{c}{b} p_1 p_2 \right)$$

• The strategy $p^* = b/c$ is evolutionary stable:

$$E(p^*, p^*) = (b/2)[1 - (b/c)] = E(p, p^*)$$

 $E(p^*, p) = (b/2)[1 + (b/c) - 2p]$
 $E(p, p) = (b/2)[1 - (c/b)p^2]$

Thus p* is Nash, not strict Nash, and ESS, because $E(p^*, p) > E(p, p)$ for all $p \neq p^*$.

There is always a Nash equilibrium

 For a given n × n payoff matrix A, the payoff for strategy q ∈ S_n versus strategy p ∈ S_n is

$$E(q,p) = qAp = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}q_{i}p_{j}$$

There exists at least one strategy q* such that

$$q^*Aq^* \ge pAq$$
 for all p

i.e., q* is a Nash equilibrium.

The prisoner's dilemma

- Two people are suspected of having committed a joint crime. The state attorney offers separately the same deal to both: confess, become a witness, and avoid prison.
- Payoff = years in prison

remain silent confess remain silent
$$\begin{pmatrix} -1 & -10 \\ \text{confess} \end{pmatrix}$$

 Rational analysis of the game leads to "confess" no matter what the partner does. They will not cooperate.

The Prisoner's Dilemma captures the essential problem of cooperation

$$egin{array}{ccc} C & D \ C & 3 & 0 \ D & 5 & 1 \ \end{array}$$

- Rational players defect in order to maximize their payoff.
- Yet, cooperation is abundant in nature. For example,
 - among organelles in a cell
 - among cells maintaining a tissue
 - among tissues forming an organ
 - among organs in a body
 - among bacteria and animals

•

Can cooperation evolve?

- Let us consider the replicator equation.
- $f_C(x) = 3x < f_D(x) = 5x + 1 x = 4x + 1$
- Thus natural selection favors defection.

$$D \left(\begin{array}{cc} 5 & 5 \\ 5 & 1 \end{array} \right)$$

 $C \longrightarrow D$

D dominates C

The general Prisoner's Dilemma game

$$egin{array}{ccc} C & D \ C & R & S \ D & T & P \ \end{array}$$

$$T>R>P>S$$
 and $R>rac{T+P}{2}$

- DC: <u>Temptation to defect</u>
- CC: Reward for mutual cooperation
- DD: Punishment for mutual defection
- CD: Sucker's payoff

Direct reciprocity

- The Prisoner's Dilemma game is repeated m times.
- Consider two strategies:
 - GRIM: Cooperate initially, then as long as opponent does not defect
 - ALLD: Always defect

- If m > (T P)/(R P), then GRIM is strict Nash, ALLD cannot invade. However, ALLD is also strict Nash.
- Hence, direct reciprocity can only stabilize cooperation.

Defecting in the last round

 If you know that you play m rounds, it is rational to defect in the last round. Use ()* to denote this variant strategy.

GRIM GRIM*

GRIM
$$(m-1)R + S$$

GRIM*

 $(m-1)R + F$

- GRIM* dominates GRIM, GRIM → GRIM*.
- But then:

$$GRIM \rightarrow GRIM^* \rightarrow GRIM^{**} \rightarrow ... \rightarrow GRIM^{*(m)} = ALLD$$

Variable number of rounds

- Suppose that after each round there is a probability w that another round will be played.
- The probability of playing k rounds is

$$w^{k-1}(1-w)$$

Thus, the expected number of rounds is

$$\bar{m} = (1-w) + 2w(1-w) + 3w^2(1-w) + \dots$$

$$= 1 - w + 2w - 2w^2 + 3w^2 - 3w^3 + \dots$$

$$= 1 + w + w^2 + w^3 + \dots = \frac{1}{1-w}$$

Prisoner's Dilemma with a variable number of rounds

The payoff for GRIM versus ALLD is

GRIM ALLD
$$ar{m}R$$
 $S+(ar{m}-1)P$ $ar{m}P$

- GRIM is evolutionary stable if $\bar{m} > (T-P)/(R-P)$.
- Defecting in the last round is no longer possible.

Tit-for-tat

- TFT strategy: start with cooperation, then do whatever your opponent has done in the previous round, i.e., answer C for C and D for D.
- TFT has won Axelrod's tournaments, an all-against-all competition between game strategies.
- Properties of TFT:
 - TFT is "nice": it is never first to defect.
 - TFT is not greedy: it will never have higher payoff than a single opponent.
 - TFT is cooperative.

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

TFT versus ALLD

• I play TFT : C C C C C ...

You play TFT : C C C C C ...

I play TFT : C D D D D ...

You play ALLD : D D D D D ...

- TFT can resist invasion by ALLD if $\bar{m} > (T-P)/(R-P)$.
- TFT can resume cooperation, if the opponent cooperates.

TFT in the presence of noise

Suppose errors occur in playing TFT.

 In the long run, the payoff is as low as choosing randomly between C and D,

$$E(TFT, TFT) = (T + R + P + S)/4 < R$$

because R > (T + P)/2 and R > P.

TFT versus ALLC

$$\begin{array}{ccc} \mathsf{TFT} & \mathsf{ALLC} \\ \mathsf{TFT} & \bar{m}R & \bar{m}R \\ \mathsf{ALLC} & \bar{m}R & \bar{m}R \end{array} \right)$$

- TFT is not evolutionary stable.
- In a finite population, random drift can lead from TFT to ALLC.

Reactive strategies

 A reactive strategy is a probabilistic strategy that takes into account the opponent's action in the previous round.

The strategy S(p, q) cooperates with

 probability p if the opponent has cooperated in the previous move,

- probability q if the opponent has defected in the previous move.
- Thus, p and q are conditional probabilities and each reactive strategy S(p, q) corresponds to a point (p, q) in the unit square.

ALLC

Reactive strategies for the repeated PD

- The repeated Prisoner's Dilemma between two reactive strategies S₁(p₁, q₁) and S₂(p₂, q₂) is a Markov chain with state space {CC, CD, DC, DD}, where, e.g., "CD" means "I play C and you play D".
- The transition probability matrix M is

$$CC \quad CD \quad DC \quad DD$$

$$CC \left(p_1 p_2 \quad p_1 (1 - p_2) \quad (1 - p_1) p_2 \quad (1 - p_1) (1 - p_2) \right)$$

$$CD \left(q_1 p_2 \quad q_1 (1 - p_2) \quad (1 - q_1) p_2 \quad (1 - q_1) (1 - p_2) \right)$$

$$DC \left(p_1 q_2 \quad p_1 (1 - q_2) \quad (1 - p_1) q_2 \quad (1 - p_1) (1 - q_2) \right)$$

$$DD \left(q_1 q_2 \quad q_1 (1 - q_2) \quad (1 - q_1) q_2 \quad (1 - q_1) (1 - q_2) \right)$$

Swiss Federal Institute of Technology Zurich

Stationary distribution of the Markov chain

- Let $x(t) = (x_{CC}(t), x_{CD}(t), x_{DC}(t), x_{DD}(t))$ be the probability distribution of the game after t rounds.
- We have $x(t + 1) = x(t) \cdot M$.
- The payoff at the stationary distribution is

$$E(S_1, S_2) = Rs_1s_2 + Ss_1(1 - s_2) +$$

$$+ T(1 - s_1)s_2 + P(1 - s_1)(1 - s_2)$$

where $s_1(p_1, p_2, q_1, q_2)$ and $s_2(p_1, p_2, q_1, q_2)$ are the probabilities that players 1 and 2, respectively, cooperate in the stationary distribution.

Generous Tit-for-tat (GTFT)

For the Prisoner's Dilemma with R=3, T=5, S=0, P=1, GTFT is defined by p=1 and q=1/3, i.e., GTFT = S(1, 1/3).

Generous Tit-for-tat is more forgiving

- GTFT is more forgiving than TFT: it will cooperate one out of three times if the opponent has defected.
- E(GTFT, GTFT) is close to R, because GTFT can correct mistakes:

 E(GTFT, ALLD) < E(TFT, ALLD), but in simulations of evolving strategies we often observe

$$ALLD \rightarrow TFT \rightarrow GTFT$$

GTFT for the general Prisoner's Dilemma

• GTFT = S(p, q) with

$$p=1$$
 and $q=\min\left\{1-rac{T-R}{R-S},rac{R-P}{T-P}
ight\}$

- This is the highest level of forgiveness, q, that is still resistant against invasion by ALLD.
- Among all reactive strategies that can resist ALLD, GTFT leads to the highest payoff for the population adopting it.

Memory-one strategies

- We now consider strategies that decide between C or D based on both the opponent's and one's own last move.
- The conditional probabilities to cooperate given that the last round was CC, CD, DC, DD are p₁, p₂, p₃, p₄.
- The Markov chain for a game between S(p₁, p₂, p₃, p₄) and S'(p'₁, p'₂, p'₃, p'₄) is defined by

$$CC \quad CD \quad DC \quad DD$$

$$CC \left(p_1 p_1' \quad p_1 (1 - p_1') \quad (1 - p_1) p_1' \quad (1 - p_1) (1 - p_1') \right)$$

$$CD \left(p_2 p_3' \quad p_2 (1 - p_3') \quad (1 - p_2) p_3' \quad (1 - p_2) (1 - p_3') \right)$$

$$DC \left(p_3 p_2' \quad p_3 (1 - p_2') \quad (1 - p_3) p_2' \quad (1 - p_3) (1 - p_2') \right)$$

$$DD \left(p_4 p_4' \quad p_4 (1 - p_4') \quad (1 - p_4) p_4' \quad (1 - p_4) (1 - p_4') \right)$$

Old friends

Each memory-one strategy is a point in [0, 1]⁴.

For example:

- ALLD = S(0, 0, 0, 0)
- ALLC = S(1, 1, 1, 1)
- TFT = S(1, 0, 1, 0)
- GTFT = (1, 1/3, 1, 1/3)
- Reactive strategies = $\{S(p_1, p_2, p_3, p_4) \mid p_1 = p_3, p_2 = p_4\}$

Win-stay, lose-shift (WSLS)

- WSLS = S(1, 0, 0, 1), i.e., cooperate after CC or DD, defect after CD or DC.
- WSLS stays with high payoffs T or R, and shifts with low payoffs P or S.
- WSLS is stable against invasion by ALLD if R > (T + P)/2, but:

WSLS: CDCDCDC...

ALLD: D D D D D D ...

WSLS can correct mistakes

 WSLS is a deterministic corrector, whereas GTFT is a stochastic corrector.

WSLS dominates ALLC

```
WSLS: C C C D D D D D ...
ALLC: C C C C C C C ...
```

- "Unconditional cooperators are exploited."
- Note that GTFT does not dominate ALLC.

War and peace

Further reading

- Nowak MA. Evolutionary Dynamics, Chapters 4, 5.
- Maynard Smith J. Evolution and the Theory of Games.
- Sinervo B, Lively CM (1996). The Rock-Paper-Scissors Game and the evolution of alternative male strategies. Nature 380:240-243.