FA to RE

Beulah A. AP/CSE

Conversion of DFA to RE

- The conversion of FA to RE is possible with three different methods. They are:
 - Regular Expression equation method R_{ij}^(k)
 - Arden's Theorem.
 - State elimination technique.

RE equation method R_{ij} (k)

Theorem

For every DFA $A = (Q, \Sigma, \delta, S, F)$, there is a regular expression R, such that L(R) = L(A).

Proof

Let L be the set accepted by the DFA

 $A = (\{q1, q2,, qn\}, \Sigma, \delta, q1, F)$ with q1 being the start state.

Let $R_{ij}^{(k)}$ be the regular expression describing the set of all strings x such that $\delta(q_i, x) = q_j$ going through intermediate states $\{q_1, q_2,q_K\}$ only

 $R_{ij}^{(k)}$ will be defined inductively. Note that

$$L\left(\bigcup_{j\in F}R_{1j}^{(n)}\right)=L(A)$$

RE equation method R_{ij}(k)

Basis

K = 0, i.e., no intermediate states.

 $R_{ij}^{(0)}$ denotes a set of strings which is either $\epsilon(or)$ single symbol.

Case 1: $i \neq j$

 $R_{ij}^{(0)} = \{a \mid \delta(q_i, a) = q_j\}$ denotes set of symbols a such that $\delta(q_i, a) = q_i$

Case 2 : i = j

 $R_{ij}^{(0)} = R_{ii}^{(0)} = (\{a \mid \delta(q_i, a) = q_j\} U(\epsilon))$ denotes set of all symbols a such that a (or) ϵ .

$$R_{ii}^{(0)} = a + \varepsilon$$

RE equation method R_{ij}(k)

Induction

It involves regular expression operations: union, concatenation and closure.

$$R_{ij}^{(k)} = R_{ik}^{(k-1)} + (R_{kk}^{(k-1)})^* R_{kj}^{(k-1)}$$

RE equation method R_{ij}(k)

The observation of this proof is that regular expression

$$L(A) = \bigcup_{q_i \text{ in } F} R_{1j}^{(n)}$$

where $R_{1j}^{(n)}$ denotes the labels of all paths from q_1 to q_j where $F = \{q_{i1}, q_{i2}, q_{ip}\}$, so

$$L(A) = R_{1j1}^{(n)} + R_{1j2}^{(n)} + \dots R_{1jp}^{(n)}$$

Arden's Theorem

- Let **P** and **Q** be two regular expressions. If **P** does not contain null string, then $\mathbf{R} = \mathbf{Q} + \mathbf{RP}$ has a unique solution that is $\mathbf{R} = \mathbf{QP}^*$
- Proof –

$$R = Q + (Q + RP)P$$
 [After putting the value $R = Q + RP$]
= $Q + QP + RPP$

When we put the value of **R** recursively again and again, we get the following equation –

$$R = Q + QP + QP^2 + QP^3....$$

$$R = Q (\epsilon + P + P^2 + P^3 +)$$

$$R = QP^* [As P^* represents (\epsilon + P + P^2 + P^3 +)]$$
 Hence, proved.

Arden's Theorem

$$q_{1} = q_{1}\alpha_{11} + q_{2}\alpha_{21} + ... + q_{n}\alpha_{n1} + \epsilon$$

$$q_{2} = q_{1}\alpha_{12} + q_{2}\alpha_{22} + ... + q_{n}\alpha_{n2}$$

$$...$$

$$q_{n} = q_{1}\alpha_{1n} + q_{2}\alpha_{2n} + ... + q_{n}\alpha_{nn}$$

Summary

- Definition of Pumping lemma Regular Language
- Application of pumping lemma

Beulah A. 2 July 2013

Reference

 Hopcroft J.E., Motwani R. and Ullman J.D, "Introduction to Automata Theory, Languages and Computations", Second Edition, Pearson Education, 2008

Beulah A. 2 July 2013