```
pip install pmdarima
```

```
Collecting pmdarima
 Downloading pmdarima-1.8.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.m
                             1.4 MB 11.7 MB/s
Requirement already satisfied: scipy>=1.3.2 in /usr/local/lib/python3.7/dist-package
Requirement already satisfied: urllib3 in /usr/local/lib/python3.7/dist-packages (fr
Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/dist-package
Requirement already satisfied: pandas>=0.19 in /usr/local/lib/python3.7/dist-package
Requirement already satisfied: numpy>=1.19.3 in /usr/local/lib/python3.7/dist-packag
Requirement already satisfied: scikit-learn>=0.22 in /usr/local/lib/python3.7/dist-p
Requirement already satisfied: Cython!=0.29.18,>=0.29 in /usr/local/lib/python3.7/di
Collecting statsmodels!=0.12.0,>=0.11
 Downloading statsmodels-0.13.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_
                             9.8 MB 49.1 MB/s
Requirement already satisfied: setuptools!=50.0.0,>=38.6.0 in /usr/local/lib/python3
Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.7/dist-package
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/di
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (f
Requirement already satisfied: patsy>=0.5.2 in /usr/local/lib/python3.7/dist-package
Installing collected packages: statsmodels, pmdarima
 Attempting uninstall: statsmodels
   Found existing installation: statsmodels 0.10.2
   Uninstalling statsmodels-0.10.2:
     Successfully uninstalled statsmodels-0.10.2
Successfully installed pmdarima-1.8.3 statsmodels-0.13.0
```

import pandas as pd
import numpy as np

→ Read Data

```
df=pd.read_csv('/content/DATA_SET.csv',index_col='DATE',parse_dates=True)
df=df.dropna()
print('Shape of data',df.shape)
df.head()
```

Shape of data (8760, 7)

	Hour	Solar Zenith Angle	Temperature	DHI	DNI	GHI	Relative Humidity
DATE							
2020-01-01	0	108.31	15.0	0	0	0	100.00
2020-01-01	1	95.08	15.2	0	0	0	100.00
2020-01-01	2	82.19	16.8	22	0	22	96.07
2020-01-01	3	70.16	19.0	153	346	270	86.25
2020-01-01	4	59.21	22.0	43	0	43	68.53

→ Plot Your Data

df['Relative Humidity'].plot(figsize=(12,5))

<matplotlib.axes._subplots.AxesSubplot at 0x7f9b0aaef2d0>

df['GHI'].plot(figsize=(12,5))

<matplotlib.axes._subplots.AxesSubplot at 0x7f9b0ac33a90>

df['DNI'].plot(figsize=(12,5))

<matplotlib.axes._subplots.AxesSubplot at 0x7f9b0ac31ed0>

df['Solar Zenith Angle'].plot(figsize=(12,5))

<matplotlib.axes._subplots.AxesSubplot at 0x7f9b0b2cc2d0>

df['DHI'].plot(figsize=(12,5))

<matplotlib.axes._subplots.AxesSubplot at 0x7f9b0b19c9d0>

nif lemberarnie l'htor(likotte-(TT'))

<matplotlib.axes._subplots.AxesSubplot at 0x7fcbbb66c790>

Check For Stationarity

```
from statsmodels.tsa.stattools import adfuller
def adf_test(dataset):
 dftest = adfuller(dataset, autolag = 'AIC')
  print("1. ADF : ",dftest[0])
 print("2. P-Value : ", dftest[1])
  print("3. Num Of Lags : ", dftest[2])
  print("4. Num Of Observations Used For ADF Regression and Critical Values Calculation:"
  print("5. Critical Values :")
 for key, val in dftest[4].items():
     print("\t",key, ": ", val)
adf_test(df['Temperature'])
     1. ADF : -2.4086338534042495
     2. P-Value: 0.1393143810655172
     3. Num Of Lags: 27
     4. Num Of Observations Used For ADF Regression and Critical Values Calculation: 873
     5. Critical Values :
              1%: -3.4310991094132306
              5%: -2.8618710565057626
              10%: -2.5669462164097956
```

→ Figure Out Order for ARIMA Model

```
from pmdarima import auto_arima

# Tonore harmless warnings

https://colab.research.google.com/drive/1bcKOm8DdUaFlpokzFzFsSO5I4V8Kxgtx#scrollTo=ZsjzMPfKqVag&printMode=true
```

SARIMAX Results

Dep. Variable: y No. Observations: 8760 Model: SARIMAX(5, 1, 3) Log Likelihood -7844.923 Date: Sat, 09 Oct 2021 **AIC** 15707.845 Time: 11:34:22 BIC 15771.546 Sample: 0 **HQIC** 15729.550

- 8760

Covariance Type: opg

```
coef std err
                              P>|z| [0.025 0.975]
 ar.L1 0.4492 0.010 46.239 0.000 0.430 0.468
 ar.L2 0.7265 0.009 79.345 0.000 0.709 0.744
 ar.L3 0.2906 0.011 27.300 0.000 0.270 0.311
 ar.L4 -0.8129 0.008 -105.488 0.000 -0.828 -0.798
 ar.L5 0.0861 0.012 7.335
                             0.000 0.063 0.109
ma.L1 0.5316 0.004 125.862 0.000 0.523 0.540
ma.L2 -0.5177 0.004 -126.128 0.000 -0.526 -0.510
ma.L3 -0.9531 0.004 -226.836 0.000 -0.961 -0.945
sigma2 0.3509 0.004 96.046 0.000 0.344 0.358
 Ljung-Box (L1) (Q): 0.48 Jarque-Bera (JB): 10097.59
      Prob(Q):
                     0.49
                              Prob(JB):
```

Heteroskedasticity (H): 0.70 Skew: 1.10 Prob(H) (two-sided): 0.00 Kurtosis: 7.78

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

from statsmodels.tsa.arima model import ARIMA

Split Data into Training and Testing

```
Solar Zenith Angle 168.14
Temperature
                     15.90
DHI
                       0.00
DNI
                       0.00
GHI
                       0.00
Relative Humidity
                    80.31
Name: 2020-12-30 00:00:00, dtype: float64 Hour
                                                               23.00
Solar Zenith Angle 121.89
Temperature
                     13.80
DHI
                       0.00
DNI
                       0.00
GHI
                       0.00
Relative Humidity
                      89.43
Name: 2020-12-31 00:00:00, dtype: float64
```

▼ Train the Model

```
from statsmodels.tsa.statespace.sarimax import SARIMAX
model=SARIMAX(train['Temperature'],order=(1,0,5))
model=model.fit()
model.summary()
```

SARIMAX Results

Dep. Variable:	Temperature	No. Observations: 8730				
Model:	SARIMAX(1, 0, 5)	Log Likelihood	-8757.992			
Date:	Sat, 09 Oct 2021	AIC	17529.983			
Time:	11:35:34	BIC	17579.505			
Sample:	0	HQIC	17546.860			

- 8730

Covariance Type: opg

	coef	std err	Z	P> z	[0.025	0.975]
ar.L1	0.9947	0.001	810.789	0.000	0.992	0.997
ma.L1	1.1472	0.006	177.406	0.000	1.134	1.160
ma.L2	0.9622	0.009	102.274	0.000	0.944	0.981
ma.L3	0.6495	0.013	51.096	0.000	0.625	0.674
ma.L4	0.3388	0.015	22.441	0.000	0.309	0.368
ma.L5	0.1105	0.010	10.881	0.000	0.091	0.130
sigma2	0.4350	0.004	120.373	0.000	0.428	0.442
Ljung-Box (L1) (Q):			0.14 Jarque-Bera (IB): 11909.48
Prob(Q):			0.71	Prob(JB):		0.00
Heteroskedasticity (H) Prob(H) (two-sided):			: 0.70	Skew:		0.94
			0.00	Kur	tosis:	8.40

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

→ Make Predictions on Test Set

```
start=len(train)
end=len(train)+len(test)-1
#if the predicted values dont have date values as index, you will have to uncomment the fc
index_future_dates=pd.date_range(start='2021-01-01',end='2021-01-30')
pred=model.predict(start=start,end=end,typ='levels').rename('SARIMAX predictions')
pred.index=index_future_dates
pred.plot(legend=True)
test['Temperature'].plot(legend=True)
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f9ae13ea410>

pred.plot(legend='ARIMA Predictions')
test['Temperature'].plot(legend=True)

<matplotlib.axes._subplots.AxesSubplot at 0x7f9ae104cb90>

test['Temperature'].mean()

18.43

```
from sklearn.metrics import mean_squared_error
from math import sqrt
rmse=sqrt(mean_squared_error(pred,test['Temperature']))
print(rmse)

6.634833760407843
```

model2=SARIMAX(df['Temperature'],order=(1,0,5))
model2=model2.fit()
df.tail()

	Hour	Solar Zenith Angle	Temperature	DHI	DNI	GHI	Relative Humidity
DATE							
2020-12-31	19	175.67	15.3	0	0	0	79.09
2020-12-31	20	163.12	14.8	0	0	0	82.65
2020-12-31	21	149.37	14.4	0	0	0	85.47
2020-12-31	22	135.58	14.1	0	0	0	87.37
2020-12-31	23	121.89	13.8	0	0	0	89.43

▼ For Future Dates

```
index_future_dates=pd.date_range(start='2021-01-01',end='2021-01-31')
#print(index future dates)
pred=model2.predict(start=len(df),end=len(df)+30,typ='levels').rename('ARIMA Predictions')
#print(comp_pred)
pred.index=index_future_dates
print(pred)
    2021-01-01
                 13.564415
    2021-01-02 13.393515
    2021-01-03 13.266512
    2021-01-04 13.166483
    2021-01-05
                 13.086262
    2021-01-06 13.016073
    2021-01-07
                  12.946261
    2021-01-08
                  12.876822
    2021-01-09
                 12.807756
    2021-01-10 12.739061
    2021-01-11
                12.670734
    2021-01-12
                 12.602774
    2021-01-13 12.535178
    2021-01-14 12.467944
    2021-01-15
                 12.401072
    2021-01-16
                 12.334558
    2021-01-17 12.268400
    2021-01-18
                  12.202598
    2021-01-19
                  12.137148
    2021-01-20
                  12.072050
```

```
12.007300
2021-01-21
2021-01-22
              11.942898
2021-01-23
              11.878842
2021-01-24
              11.815129
2021-01-25
              11.751757
2021-01-26
              11.688726
2021-01-27
              11.626033
2021-01-28
              11.563676
2021-01-29
              11.501653
2021-01-30
              11.439963
2021-01-31
              11.378604
Freq: D, Name: ARIMA Predictions, dtype: float64
```

pred.plot(figsize=(16,10),legend=True)

