Table S3: Simulation study results summary with exchangeable working correlation matrix

				Mean rela	ative bi	as (%)			Cove	erage (%	(a)			M	ean SE			MCSD					
k	$ ho_O$	$ ho_M$	CRA- GEE	A-CRA- GEE	W- GEE	CW- GEE	MMI- GEE	CRA- GEE	A-CRA- GEE	W- GEE	CW- GEE	MMI- GEE	CRA- GEE	A-CRA- GEE	W- GEE	CW- GEE	MMI- GEE	CRA- GEE	A-CRA- GEE	W- GEE	CW- GEE	MMI- GEE	
10	0.05	0 0.1	-2.4 -2.3	3.1 2.9	0.0 -0.1	0.0 0.7	0.7 0.3	89.9 92.1	83.4 83.3	91.4 92.8	91.6 89.9	97.0 96.7	0.268 0.266	0.217 0.214	0.276 0.274	0.276 0.280	0.294 0.294	0.290 0.283	0.297 0.293	0.298 0.290	0.297 0.310	0.294 0.287	
		$0.3 \\ 0.5$	-1.4 -1.1	$\frac{3.2}{3.0}$	$0.4 \\ 0.1$	1.8 2.8	$0.5 \\ 0.3$	$90.7 \\ 91.8$	82.7 81.9	91.5 91.8	$83.9 \\ 76.5$	$96.2 \\ 97.0$	$0.268 \\ 0.269$	$0.216 \\ 0.216$	$0.274 \\ 0.274$	$0.297 \\ 0.315$	$0.301 \\ 0.309$	$0.292 \\ 0.290$	$0.303 \\ 0.300$	$0.297 \\ 0.295$	$0.378 \\ 0.446$	$0.297 \\ 0.296$	
	0.1	$0 \\ 0.1$	-2.6 -2.5	2.7 2.5	-0.2 -0.5	-0.2 0.2	$0.5 \\ 0.3$	$91.5 \\ 91.1$	$75.6 \\ 76.2$	91.4 91.2	91.6 89.3	95.8 96.1	0.313 0.313	$0.212 \\ 0.211$	$0.320 \\ 0.320$	$0.320 \\ 0.327$	0.333 0.334	$0.342 \\ 0.336$	$0.352 \\ 0.349$	$0.346 \\ 0.344$	$0.346 \\ 0.365$	$0.348 \\ 0.337$	
		$0.3 \\ 0.5$	-1.5 -1.1	2.9 2.9	0.0	1.6 3.1	$0.6 \\ 0.3$	91.1 91.8	74.8 73.8	91.1 92.1	85.4 78.2	95.8 96.9	0.316 0.318	0.212 0.212	0.321 0.322	$0.350 \\ 0.371$	0.341 0.348	$0.342 \\ 0.345$	$0.355 \\ 0.357$	$0.348 \\ 0.350$	0.443 0.528	$0.347 \\ 0.348$	
	0.2	0 0.1	-2.7 -2.6	1.8 2.0	-0.4 -0.6	-0.4 0.3	$0.5 \\ 0.3$	91.0 90.8	63.1 63.5	91.5 91.9	91.4 89.8	94.2 94.5	$0.390 \\ 0.395$	$0.203 \\ 0.205$	0.394 0.399	0.394 0.408	$0.402 \\ 0.408$	$0.428 \\ 0.432$	$0.442 \\ 0.448$	0.429 0.436	$0.430 \\ 0.461$	$0.435 \\ 0.435$	
		$0.3 \\ 0.5$	-1.7 -1.5	2.3 2.4	-0.3 -0.6	2.5 4.6	0.4 0.1	91.6 90.8	63.3 62.4	91.6 90.7	85.1 79.9	94.5 94.9	0.399 0.402	$0.205 \\ 0.205$	$0.402 \\ 0.404$	0.438 0.464	0.414 0.421	0.437 0.439	$0.454 \\ 0.457$	0.440 0.443	$0.558 \\ 0.667$	0.439 0.442	
25	0.05	0 0.1	-2.7 -2.7	2.9 2.5	-0.3 -0.7	-0.3 -0.8	$0.6 \\ 0.2$	93.2 94.0	85.4 86.0	93.3 94.3	93.2 93.8	96.6 96.5	$0.174 \\ 0.174$	$0.141 \\ 0.140$	$0.180 \\ 0.179$	0.180 0.189	$0.185 \\ 0.187$	$0.178 \\ 0.176$	$0.183 \\ 0.181$	0.186 0.181	$0.186 \\ 0.194$	$0.180 \\ 0.180$	
		$0.3 \\ 0.5$	-2.0 -1.5	2.6 2.6	-0.6 -0.6	-0.1 0.6	0.0	$93.5 \\ 92.7$	85.1 84.1	93.8 93.8	91.1 87.5	$95.4 \\ 95.9$	$0.177 \\ 0.178$	$0.141 \\ 0.141$	$0.180 \\ 0.180$	$0.217 \\ 0.245$	$0.190 \\ 0.193$	$0.182 \\ 0.185$	$0.187 \\ 0.189$	$0.186 \\ 0.187$	$0.242 \\ 0.295$	$0.185 \\ 0.189$	
	0.1	$0 \\ 0.1$	-2.8 -2.6	$\frac{2.4}{2.3}$	-0.6 -0.7	-0.6 -0.8	$0.4 \\ 0.2$	93.3 94.1	75.6 78.8	93.6 94.0	93.7 94.4	$95.4 \\ 96.1$	$0.205 \\ 0.206$	$0.137 \\ 0.138$	$0.210 \\ 0.210$	$0.210 \\ 0.220$	0.213 0.214	$0.212 \\ 0.210$	$0.219 \\ 0.216$	0.219 0.214	$0.219 \\ 0.227$	$0.214 \\ 0.213$	
		$0.3 \\ 0.5$	-2.1 -1.5	$\frac{2.4}{2.4}$	-0.6 -0.6	-0.1 1.0	$0.1 \\ 0.1$	$93.2 \\ 92.8$	77.5 75.8	93.6 93.6	90.9 88.3	$95.5 \\ 95.2$	$0.208 \\ 0.211$	$0.139 \\ 0.139$	$0.211 \\ 0.213$	$0.254 \\ 0.288$	$0.218 \\ 0.222$	$0.216 \\ 0.219$	$0.221 \\ 0.224$	$0.218 \\ 0.220$	$0.281 \\ 0.347$	$0.218 \\ 0.221$	
	0.2	0 0.1	-3.0 -2.8	$1.5 \\ 1.5$	-0.9 -1.1	-0.9 -1.3	0.1 0.0	$94.0 \\ 93.4$	$65.1 \\ 62.2$	94.3 93.8	94.0 93.6	95.5 94.8	$0.259 \\ 0.259$	$0.131 \\ 0.131$	$0.261 \\ 0.260$	$0.261 \\ 0.273$	$0.265 \\ 0.265$	$0.264 \\ 0.271$	$0.275 \\ 0.278$	$0.267 \\ 0.272$	$0.267 \\ 0.287$	$0.265 \\ 0.276$	
		$0.3 \\ 0.5$	-2.4 -1.8	$\frac{1.5}{1.6}$	-1.2 -0.9	-0.6 1.1	-0.2 -0.1	$92.5 \\ 92.4$	65.1 63.6	93.0 93.1	91.5 89.2	94.4 94.8	0.262 0.264	0.133 0.133	$0.263 \\ 0.265$	0.315 0.361	0.268 0.271	0.275 0.280	$0.281 \\ 0.284$	0.275 0.279	$0.350 \\ 0.433$	$0.278 \\ 0.285$	
50	0.05	$0 \\ 0.1$	-2.5 -2.4	2.7 2.6	-0.4 -0.5	-0.4 -0.3	$0.6 \\ 0.3$	93.7 93.5	87.4 85.2	95.1 94.6	$95.1 \\ 93.7$	$95.0 \\ 95.5$	$0.125 \\ 0.126$	$0.100 \\ 0.100$	$0.129 \\ 0.129$	$0.129 \\ 0.137$	$0.131 \\ 0.131$	$0.124 \\ 0.130$	$0.126 \\ 0.132$	$0.127 \\ 0.133$	$0.127 \\ 0.144$	$0.126 \\ 0.131$	
		$0.3 \\ 0.5$	-1.8 -1.1	$\frac{2.7}{2.8}$	-0.3 -0.1	$0.2 \\ 0.7$	$0.4 \\ 0.5$	93.0 93.3	83.0 83.2	94.3 93.6	91.9 90.8	95.9 95.1	0.127 0.128	$0.100 \\ 0.101$	0.129 0.129	0.164 0.192	0.133 0.135	0.133 0.134	$0.136 \\ 0.137$	0.136 0.136	$0.180 \\ 0.219$	$0.135 \\ 0.135$	
	0.1	$0 \\ 0.1$	-2.6 -2.5	$\frac{2.4}{2.3}$	-0.7 -0.7	-0.7 -0.5	$0.6 \\ 0.3$	93.9 93.9	80.1 79.0	95.1 94.1	$95.0 \\ 94.4$	$95.6 \\ 95.4$	$0.147 \\ 0.148$	$0.098 \\ 0.098$	$0.150 \\ 0.150$	$0.150 \\ 0.158$	$0.151 \\ 0.152$	$0.145 \\ 0.150$	$0.148 \\ 0.154$	$0.147 \\ 0.153$	$0.147 \\ 0.164$	$0.148 \\ 0.152$	
		$0.3 \\ 0.5$	-1.9 -1.3	2.4 2.5	-0.6 -0.4	0.1 0.8	$0.4 \\ 0.4$	93.9 94.2	77.2 75.8	94.4 95.2	92.7 90.9	96.4 94.9	$0.149 \\ 0.151$	0.098 0.098	$0.151 \\ 0.152$	$0.190 \\ 0.225$	$0.153 \\ 0.156$	$0.154 \\ 0.155$	$0.158 \\ 0.159$	$0.156 \\ 0.156$	$0.204 \\ 0.251$	$0.156 \\ 0.156$	
	0.2	$0 \\ 0.1$	-2.7 -2.5	$\frac{1.6}{1.7}$	-0.9 -0.8	-0.9 -0.8	$0.5 \\ 0.3$	$94.6 \\ 94.2$	$66.8 \\ 65.5$	94.8 94.9	$94.7 \\ 94.0$	$95.8 \\ 95.1$	$0.185 \\ 0.186$	$0.094 \\ 0.093$	0.187	$0.186 \\ 0.197$	$0.188 \\ 0.189$	$0.181 \\ 0.187$	$0.186 \\ 0.193$	$0.180 \\ 0.189$	$0.180 \\ 0.202$	$0.185 \\ 0.191$	
		0.3 0.5	-2.1 -1.4	1.8 1.9	-0.9 -0.6	0.1 1.0	0.3 0.4	94.6 94.1	63.8 63.0	94.6 94.2	93.0 91.7	94.8 95.7	0.188 0.190	0.094 0.094		0.235 0.281	0.191 0.194	0.191 0.194	0.197 0.200	0.192 0.194	0.255 0.318	0.194 0.196	

Notes: k = # clusters per arm; ρ_O is the ICC of the (conditional) outcome model (see Eqn. 6 in the manuscript text); ρ_M is the ICC of the probability of missing (POM) model (see Eqn. 7B in the manuscript text); MCSD = Monte Carlo standard deviation; Results based on 1000 simulated data sets per scenario using standard Wald Z-based confidence intervals for each modeling approach, except for MMI-GEE for which t-based confidence intervals are used based on 15 imputations (see Section 4.2 of main manuscript for details, including the t-distribution degrees of freedom). Acceptable coverage ranges from 93.6% to 96.4%; Note that all GEE models converged except for 5 W-GEE and approximately 100 for CW-GEE across all simulations, with almost all issues in the small sample case (i.e. k=10).

Table S4: Coverage (%) with exchangeable working correlation matrix and robust standard errors, uncorrected and with three finite-sample corrections

				No finite-sa	mple co	orrection	1		KC o	correction	n			MD	correction	on		FG correction					
1.		0	CRA-	A-CRA-	W-	CW-	MMI-	CRA-	A-CRA-	W-	CW-	MMI-	CRA-	A-CRA-	W-	CW-	MMI-	CRA-	A-CRA-	W-	CW-	MMI-	
k	ρ_O	ρ_M	GEE	GEE	GEE	GEE	GEE	GEE	GEE	GEE	GEE	GEE	GEE	GEE	GEE	GEE	GEE	GEE	GEE	GEE	GEE	GEE	
10	0.05	0	89.9	83.4	91.4	91.6	97.0	92.0	84.6	92.8	92.9	97.7	93.8	86.1	95.0	94.9	98.2	92.4	84.6	98.6	98.6	97.9	
		0.1	92.1	83.3	92.8	89.9	96.7	93.4	84.7	93.8	92.5	97.6	94.7	86.2	95.0	94.0	98.1	93.5	84.7	99.0	99.0	97.6	
		0.3	90.7	82.7	91.5	83.9	96.2	92.8	84.2	92.9	87.7	96.9	93.8	85.4	93.9	91.5	97.4	93.1	84.2	97.8	96.4	97.0	
		0.5	91.8	81.9	91.8	76.5	97.0	93.1	84.1	93.1	83.8	97.7	94.6	85.0	94.4	88.3	98.3	93.5	84.1	98.2	92.6	97.9	
	0.1	0	91.5	75.6	91.4	91.6	95.8	93.0	77.5	93.3	93.2	96.3	94.3	79.3	94.6	94.7	96.9	93.8	77.4	98.5	98.5	96.6	
		0.1	91.1	76.2	91.2	89.3	96.1	92.6	77.7	93.3	92.2	97.0	94.0	79.0	94.6	94.7	97.5	93.2	77.6	98.6	99.2	97.1	
		0.3	91.1	74.8	91.1	85.4	95.8	92.3	76.2	92.7	89.1	96.4	94.2	78.1	94.0	92.7	97.1	92.7	76.2	98.1	98.3	96.5	
		0.5	91.8	73.8	92.1	78.2	96.9	93.2	75.4	93.2	84.6	97.6	94.6	77.5	94.7	90.7	97.8	93.3	75.4	98.3	95.9	97.6	
	0.2	0	91.0	63.1	91.5	91.4	94.2	92.5	64.4	93.5	93.6	95.2	93.8	65.9	94.4	94.4	96.2	93.0	64.4	98.4	98.4	95.5	
		0.1	90.8	63.5	91.9	89.8	94.5	93.4	64.8	93.2	91.9	95.7	94.3	65.9	94.7	93.9	96.8	94.0	64.7	98.0	98.7	95.8	
		0.3	91.6	63.3	91.6	85.1	94.5	92.8	65.1	93.1	89.7	95.5	94.0	66.5	94.3	91.9	96.4	93.2	65.1	97.9	98.0	96.2	
		0.5	90.8	62.4	90.7	79.9	94.9	92.1	64.0	92.8	86.1	96.2	93.6	65.6	94.2	91.1	97.0	92.6	64.0	97.8	97.8	96.4	
25	0.05	0	93.2	85.4	93.3	93.2	96.6	93.7	86.0	93.7	93.5	97.1	94.2	86.5	94.4	94.2	97.2	93.8	86.0	95.9	96.0	97.1	
		0.1	94.0	86.0	94.3	93.8	96.5	94.4	86.7	95.0	93.9	96.7	95.0	87.5	95.8	94.5	97.2	94.5	86.7	96.9	98.5	96.8	
		0.3	93.5	85.1	93.8	91.1	95.4	94.0	85.5	94.1	92.9	95.8	94.5	85.8	94.5	93.6	96.2	94.3	85.4	95.8	99.4	95.8	
		0.5	92.7	84.1	93.8	87.5	95.9	93.3	84.5	94.4	89.5	96.0	94.0	85.2	94.6	92.0	96.4	93.3	84.5	95.7	99.1	96.1	
	0.1	0	93.3	75.6	93.6	93.7	95.4	94.1	76.4	94.1	94.2	95.8	94.3	77.2	94.6	94.6	96.1	94.2	76.4	96.4	96.5	95.9	
		0.1	94.1	78.8	94.0	94.4	96.1	94.5	79.6	94.7	94.8	96.5	94.9	79.9	95.3	95.6	97.0	94.7	79.6	96.9	99.0	96.6	
		0.3	93.2	77.5	93.6	90.9	95.5	94.3	78.2	94.4	92.5	95.6	94.5	78.5	95.0	94.1	96.1	94.3	78.2	96.5	99.6	95.9	
		0.5	92.8	75.8	93.6	88.3	95.2	93.8	76.5	93.8	90.8	95.9	94.4	77.2	94.4	93.4	96.1	94.2	76.5	96.0	99.4	96.0	
	0.2	0	94.0	65.1	94.3	94.0	95.5	94.9	65.8	94.9	94.7	95.5	95.2	66.5	95.2	95.2	96.0	95.0	65.8	96.7	96.9	95.6	
		0.1	93.4	62.2	93.8	93.6	94.8	94.0	63.3	94.6	94.4	95.1	94.3	63.7	95.2	94.9	95.5	94.2	63.3	96.3	98.6	95.3	
		$0.3 \\ 0.5$	$92.5 \\ 92.4$	$65.1 \\ 63.6$	93.0	91.5	94.4 94.8	93.2 93.1	65.6	93.4	$92.7 \\ 91.4$	94.7	93.8 93.4	66.3	93.9	94.2	95.3	93.3 93.2	$65.6 \\ 63.8$	$96.2 \\ 95.2$	99.2	$95.1 \\ 95.2$	
					93.1	89.2			63.8	93.5		95.0		64.4	93.9	93.2	95.5				99.4		
50	0.05	0	93.7	87.4	95.1	95.1	95.0	94.0	87.7	95.3	95.3	95.3	94.1	87.8	95.6	95.5	95.6	94.0	87.7	96.4	96.4	95.3	
		0.1	93.5	85.2	94.6	93.7	95.5	93.7	85.3	94.6	93.8	95.9	94.2	85.4	94.8	94.1	95.9	93.7	85.3	95.6	97.2	95.9	
		$0.3 \\ 0.5$	$93.0 \\ 93.3$	$83.0 \\ 83.2$	94.3 93.6	91.9 90.8	95.9 95.1	$93.5 \\ 93.6$	83.8 83.9	$94.6 \\ 93.8$	93.1 91.8	$96.3 \\ 95.5$	$93.5 \\ 93.9$	84.1 84.4	94.7 94.1	$93.8 \\ 92.7$	$96.4 \\ 95.5$	$93.5 \\ 93.6$	83.8 83.9	$95.2 \\ 94.7$	99.6 100.0	$96.3 \\ 95.5$	
	0.1	0	93.9	80.1	95.1	95.0	95.6	94.1	80.1	95.2	95.3	95.9	94.3	80.3	95.5	95.4	96.1	94.2	80.1	95.9	95.9	96.0	
		0.1	93.9	79.0	94.1	94.4	95.4	94.3	79.1	94.4	94.5	95.4	94.5	79.5	94.4	95.0	95.4	94.3	79.1	95.5	97.3	95.4	
		$0.3 \\ 0.5$	93.9	$77.2 \\ 75.8$	$94.4 \\ 95.2$	$92.7 \\ 90.9$	$96.4 \\ 94.9$	$94.6 \\ 94.5$	77.3	$94.7 \\ 95.5$	$93.4 \\ 92.3$	$96.4 \\ 95.2$	94.8	$77.8 \\ 76.2$	$94.9 \\ 95.7$	$94.1 \\ 93.4$	$96.7 \\ 95.5$	94.7	$77.3 \\ 75.9$	95.9 96.0	99.6	96.4	
			94.2						75.9				95.0					94.7		96.0	100.0	95.3	
	0.2	0	94.6	66.8	94.8	94.7	95.8	94.6	67.1	95.3	95.4	96.1	94.8	67.7	95.5	95.6	96.2	94.6	67.1	96.0	96.0	96.1	
		0.1	94.2	65.5	94.9	94.0	95.1	94.8	65.7	95.1	94.0	95.0	94.8	66.1	95.4	94.3	95.1	94.8	65.7	95.6	96.9	95.1	
		0.3	94.6	63.8	94.6	93.0	94.8	94.9	64.0	94.8	93.6	95.0	95.1	64.4	95.0	94.0	95.2	95.0	64.0	95.5	99.5	95.0	
		0.5	94.1	63.0	94.2	91.7	95.7	94.3	63.3	94.4	92.8	95.8	94.5	63.5	94.9	94.1	96.0	94.3	63.3	95.2	99.7	95.9	

Notes: k = # clusters per arm; ρ_O is the ICC of the (conditional) outcome model (see Eqn. 6 in the manuscript text); ρ_M is the ICC of the probability of missing (POM) model (see Eqn. 7B in the manuscript text; Results based on 1000 simulated data sets per scenario using standard Wald Z-based confidence intervals for each modeling approach, except for MMI-GEE for which t-based confidence intervals are used based on 15 imputations (see Section 4.2 of main manuscript for details, including the t-distribution degrees of freedom). Acceptable coverage ranges from 93.6% to 96.4%; Note that the finite-sample corrections are due to: Kauermann G & Carroll R (2001, JASA 96(456):1387-1396); Mancl LA & Derouen TA (2001, Biometrics 57(1):126-134); and Fay & Graubard (2001, Biometrics 57(4):1198-1206), with all details described in Section 2 above.

Table S5: Mean (robust) SE using exchangeable working correlation matrix, uncorrected and with three finite-sample corrections

				No finite-sa	ample co	rrection	l		KC	correctio	n			MD	correction	on		FG correction				
k	$ ho_O$	$ ho_M$	CRA- GEE	A-CRA- GEE	W- GEE	CW- GEE	MMI- GEE	CRA- GEE	A-CRA- GEE	W- GEE	CW- GEE	MMI- GEE	CRA- GEE	A-CRA- GEE	W- GEE	CW- GEE	MMI- GEE	CRA- GEE	A-CRA- GEE	W- GEE	CW- GEE	MMI- GEE
10	0.05	0 0.1 0.3 0.5	0.268 0.266 0.268 0.269	0.217 0.214 0.216 0.216	0.276 0.274 0.274 0.274	0.276 0.280 0.297 0.315	0.294 0.294 0.301 0.309	0.282 0.281 0.283 0.286	0.224 0.222 0.224 0.224	0.292 0.289 0.290 0.290	0.292 0.301 0.339 0.382	0.307 0.307 0.314 0.321	0.298 0.297 0.300 0.303	0.232 0.230 0.232 0.233	0.308 0.306 0.306 0.308	0.308 0.324 0.393 0.478	0.321 0.321 0.327 0.335	0.286 0.285 0.287 0.290	0.224 0.221 0.223 0.224	0.401 0.394 0.393 0.403	0.403 0.482 0.589 0.664	0.311 0.311 0.317 0.325
	0.1	0 0.1 0.3 0.5	0.313 0.313 0.316 0.318	0.212 0.211 0.212 0.212	0.320 0.320 0.321 0.322	0.320 0.327 0.350 0.371	0.333 0.334 0.341 0.348	0.330 0.331 0.334 0.337	0.219 0.218 0.220 0.220	0.338 0.337 0.339 0.341	0.338 0.350 0.396 0.446	0.348 0.349 0.356 0.363	0.348 0.349 0.353 0.357	0.227 0.226 0.228 0.229	0.356 0.356 0.358 0.361	0.357 0.376 0.454 0.553	0.364 0.366 0.372 0.379	0.335 0.335 0.338 0.342	0.219 0.218 0.220 0.220	0.471 0.463 0.461 0.472	0.473 0.561 0.690 0.781	0.352 0.353 0.360 0.367
	0.2	$0 \\ 0.1 \\ 0.3 \\ 0.5$	0.390 0.395 0.399 0.402	0.203 0.205 0.205 0.205	0.394 0.399 0.402 0.404	0.394 0.408 0.438 0.464	0.402 0.408 0.414 0.421	0.411 0.417 0.421 0.424	0.210 0.212 0.213 0.212	0.415 0.420 0.424 0.427	0.415 0.436 0.492 0.554	0.421 0.427 0.433 0.440	0.434 0.440 0.444 0.448	0.218 0.219 0.221 0.221	0.438 0.443 0.447 0.451	0.438 0.466 0.559 0.678	0.442 0.449 0.454 0.461	0.417 0.423 0.427 0.431	0.210 0.212 0.213 0.212	0.586 0.583 0.580 0.592	0.588 0.699 0.863 0.977	0.427 0.433 0.439 0.446
25	0.05	$0 \\ 0.1 \\ 0.3 \\ 0.5$	0.174 0.174 0.177 0.178	0.141 0.140 0.141 0.141	0.180 0.179 0.180 0.180	0.180 0.189 0.217 0.245	0.185 0.187 0.190 0.193	0.178 0.178 0.180 0.182	0.143 0.142 0.143 0.144	0.184 0.183 0.184 0.184	0.184 0.194 0.230 0.268	0.188 0.190 0.193 0.196	0.182 0.182 0.184 0.186	0.145 0.144 0.145 0.146	0.188 0.187 0.188 0.188	0.188 0.200 0.244 0.295	0.191 0.193 0.196 0.199	0.179 0.179 0.181 0.183	0.143 0.142 0.143 0.144	0.202 0.200 0.200 0.201	0.202 0.265 0.412 0.512	0.189 0.190 0.194 0.197
	0.1	0 0.1 0.3 0.5	0.205 0.206 0.208 0.211	0.137 0.138 0.139 0.139	0.210 0.210 0.211 0.213	0.210 0.220 0.254 0.288	0.213 0.214 0.218 0.222	0.210 0.211 0.213 0.215	0.139 0.140 0.141 0.141	0.214 0.214 0.216 0.217	0.214 0.226 0.268 0.314	0.216 0.217 0.221 0.225	0.214 0.215 0.217 0.220	0.141 0.141 0.143 0.143	0.218 0.219 0.220 0.222	0.218 0.233 0.284 0.344	0.220 0.221 0.225 0.228	0.211 0.212 0.214 0.217	0.139 0.139 0.141 0.141	0.235 0.235 0.235 0.237	0.236 0.308 0.479 0.601	0.217 0.218 0.222 0.226
	0.2	$0 \\ 0.1 \\ 0.3 \\ 0.5$	0.259 0.259 0.262 0.264	0.131 0.131 0.133 0.133	0.261 0.260 0.263 0.265	0.261 0.273 0.315 0.361	0.265 0.265 0.268 0.271	0.264 0.264 0.267 0.270	0.133 0.133 0.134 0.135	0.266 0.266 0.268 0.270	0.266 0.280 0.332 0.392	0.268 0.268 0.272 0.275	0.270 0.270 0.273 0.275	0.135 0.135 0.136 0.137	0.272 0.271 0.274 0.276	0.272 0.288 0.351 0.428	0.274 0.273 0.277 0.280	0.266 0.266 0.269 0.271	0.133 0.133 0.134 0.135	0.294 0.292 0.293 0.295	0.294 0.382 0.596 0.754	0.270 0.270 0.273 0.276
50	0.05	$0 \\ 0.1 \\ 0.3 \\ 0.5$	0.125 0.126 0.127 0.128	0.100 0.100 0.100 0.101	0.129 0.129 0.129 0.129	0.129 0.137 0.164 0.192	0.131 0.131 0.133 0.135	0.126 0.127 0.128 0.129	0.101 0.101 0.101 0.101	0.130 0.130 0.130 0.131	0.130 0.139 0.169 0.202	0.132 0.132 0.134 0.136	0.128 0.128 0.129 0.131	0.102 0.101 0.102 0.102	0.132 0.132 0.132 0.132	0.132 0.141 0.174 0.211	0.133 0.133 0.135 0.137	0.127 0.127 0.128 0.130	0.101 0.101 0.101 0.101	0.136 0.136 0.135 0.136	0.136 0.164 0.295 0.396	0.132 0.132 0.134 0.136
	0.1	0 0.1 0.3 0.5	0.147 0.148 0.149 0.151	0.098 0.098 0.098 0.098	0.150 0.150 0.151 0.152	0.150 0.158 0.190 0.225	0.151 0.152 0.153 0.156	0.149 0.149 0.151 0.152	0.099 0.098 0.099 0.099	0.152 0.152 0.152 0.154	0.152 0.161 0.195 0.236	0.152 0.153 0.154 0.157	0.150 0.151 0.152 0.154	0.099 0.099 0.099 0.100	0.153 0.153 0.154 0.155		0.154 0.154 0.156 0.158	0.149 0.150 0.151 0.153	0.099 0.098 0.099 0.099	0.158 0.158 0.158 0.159	0.158 0.189 0.340 0.463	0.153 0.153 0.155 0.157
	0.2	0 0.1 0.3 0.5	0.185 0.186 0.188 0.190	0.094 0.093 0.094 0.094	0.186 0.187 0.188	0.186 0.197 0.235 0.281	0.188 0.189 0.191 0.194	0.187 0.188 0.190 0.192	0.095 0.094 0.094 0.095	0.187 0.189 0.190	0.187 0.199 0.242 0.293	0.189 0.190 0.192 0.194	0.188 0.190 0.192 0.194	0.095 0.095 0.095 0.095	0.189 0.191 0.192 0.194	0.249	0.191 0.192 0.194 0.196	0.187 0.188 0.190 0.193	0.095 0.094 0.094 0.095	0.196 0.197 0.198	0.196 0.233 0.420 0.579	0.189 0.191 0.192 0.195

Notes: k = # clusters per arm; ρ_O is the ICC of the (conditional) outcome model (see Eqn. 6 in the manuscript text); ρ_M is the ICC of the probability of missing (POM) model (see Eqn. 7B in the manuscript text); Results based on 1000 simulated data sets per scenario; Note that the finite-sample corrections are due to: Kauermann G & Carroll R (2001, JASA 96(456):1387-1396); Mancl LA & Derouen TA (2001, Biometrics 57(1):126-134); and Fay & Graubard (2001, Biometrics 57(4):1198-1206), with all details described in Section 2 above.

Table S6: Simulation study results summary with independent working correlation matrix

				Mean rel	ative bi	as (%)			Cove	erage (%	(a)			M	ean SE			MCSD					
k	$ ho_O$	$ ho_M$	CRA- GEE	A-CRA- GEE	W- GEE	CW- GEE	MMI- GEE	CRA- GEE	A-CRA- GEE	W- GEE	CW- GEE	MMI- GEE	CRA- GEE	A-CRA- GEE	W- GEE	CW- GEE	MMI- GEE	CRA- GEE	A-CRA- GEE	W- GEE	CW- GEE	MMI- GEE	
10	0.05	0	-2.4	3.2	0.0	0.0	0.6	89.8	82.6	91.5	91.5	96.9	0.268	0.218	0.276	0.276	0.294	0.291	0.298	0.299	0.299	0.294	
10	0.00	0.1	-2.2	3.0	0.0	0.7	0.3	91.8	84.4	92.8	89.8	96.8	0.267	0.215	0.274	0.283	0.295	0.283	0.291	0.289	0.316	0.287	
		0.3	-1.3	3.2	0.4	1.8	0.5	91.0	83.1	91.6	85.7	96.3	0.268	0.217	0.274	0.301	0.301	0.292	0.301	0.296	0.388	0.297	
		0.5	-1.1	3.0	0.1	2.8	0.3	91.7	82.8	91.5	79.2	96.8	0.270	0.217	0.274	0.314	0.309	0.291	0.299	0.295	0.456	0.296	
	0.1	0	-2.6	2.9	-0.3	-0.3	0.5	91.0	76.1	91.3	91.1	95.7	0.314	0.215	0.320	0.321	0.333	0.344	0.353	0.348	0.348	0.348	
		0.1	-2.3	2.8	-0.2	0.5	0.3	90.6	75.5	91.5	88.7	96.4	0.315	0.214	0.320	0.333	0.335	0.337	0.345	0.343	0.376	0.337	
		0.3	-1.2	3.2	0.4	2.1	0.6	91.4	74.8	91.3	83.9	95.8	0.318	0.216	0.322	0.357	0.342	0.345	0.354	0.348	0.465	0.347	
		0.5	-0.9	3.0	0.2	3.5	0.3	91.4	73.8	91.5	78.4	96.9	0.321	0.216	0.324	0.373	0.349	0.349	0.358	0.352	0.548	0.349	
	0.2	0	-2.7	2.5	-0.4	-0.5	0.5	91.3	64.8	91.6	91.7	94.2	0.392	0.211	0.395	0.395	0.402	0.431	0.441	0.432	0.433	0.435	
		0.1	-2.1	2.8	-0.2	0.8	0.3	90.4	64.7	90.9	88.5	94.6	0.398	0.213	0.401	0.417	0.408	0.436	0.447	0.438	0.482	0.435	
		$0.3 \\ 0.5$	-1.1 -0.7	$\frac{3.1}{3.1}$	$0.4 \\ 0.2$	$\frac{3.4}{5.8}$	$0.4 \\ 0.1$	$90.3 \\ 90.2$	$64.2 \\ 62.5$	91.1 90.6	$84.1 \\ 77.5$	$94.7 \\ 94.8$	$0.403 \\ 0.408$	$0.214 \\ 0.214$	$0.405 \\ 0.409$	$0.451 \\ 0.473$	0.414 0.421	$0.448 \\ 0.455$	$0.459 \\ 0.466$	$0.446 \\ 0.454$	$0.599 \\ 0.705$	$0.440 \\ 0.442$	
25	0.05																						
25	0.05	0	-2.7	$\frac{2.9}{2.5}$	-0.3	-0.3	0.6	93.4	85.5	93.7	$93.8 \\ 93.2$	96.8	0.175	0.142	0.180	0.180	0.185	0.178	0.182	0.186	$0.186 \\ 0.200$	$0.179 \\ 0.180$	
		$0.1 \\ 0.3$	-2.6 -1.9	$\frac{2.5}{2.6}$	-0.7 -0.4	-0.8 -0.0	$0.2 \\ 0.1$	$93.9 \\ 93.9$	$85.9 \\ 85.3$	$94.4 \\ 94.0$	93.2 90.5	$96.3 \\ 95.2$	$0.175 \\ 0.177$	$0.141 \\ 0.142$	$0.180 \\ 0.181$	0.193 0.224	0.187 0.190	$0.177 \\ 0.183$	$0.182 \\ 0.187$	0.181 0.186	0.250	0.180 0.185	
		0.5	-1.3	2.7	-0.4	0.8	0.0	92.9	85.3	92.9	87.2	95.8	0.179	0.142	0.181	0.250	0.193	0.186	0.189	0.180	0.305	0.189	
	0.1	0	-2.8	2.7	-0.6	-0.6	0.5	93.2	76.3	93.6	93.7	95.3	0.206	0.140	0.210	0.210	0.213	0.212	0.216	0.218	0.218	0.214	
	0.1	0.1	-2.6	$\frac{2.1}{2.5}$	-0.7	-0.8	0.3	94.1	78.9	94.8	93.8	96.0	0.208	0.140	0.210 0.211	0.210 0.227	0.213 0.214	0.212 0.212	0.210 0.217	0.215	0.218	0.214 0.214	
		0.3	-1.9	2.6	-0.4	0.2	0.1	93.5	78.5	93.7	89.8	95.5	0.211	0.141	0.213	0.265	0.218	0.218	0.223	0.220	0.302	0.218	
		0.5	-1.3	2.6	-0.3	1.3	0.2	93.5	76.7	94.1	87.1	95.3	0.214	0.142	0.215	0.297	0.222	0.222	0.226	0.222	0.367	0.221	
	0.2	0	-3.0	2.2	-1.0	-1.0	0.3	94.5	66.6	94.3	94.2	95.5	0.260	0.138	0.262	0.262	0.265	0.264	0.269	0.267	0.268	0.265	
		0.1	-2.8	2.1	-1.1	-1.2	0.2	93.4	64.6	93.6	93.1	94.6	0.263	0.137	0.263	0.285	0.265	0.275	0.282	0.275	0.304	0.276	
		0.3	-2.1	2.1	-0.8	-0.2	-0.0	92.6	65.4	92.6	91.0	94.4	0.267	0.139	0.267	0.335	0.268	0.281	0.288	0.280	0.383	0.278	
		0.5	-1.4	2.3	-0.5	1.6	0.0	93.1	63.7	92.7	87.7	94.5	0.271	0.139	0.271	0.376	0.271	0.287	0.293	0.285	0.466	0.285	
50	0.05	0	-2.6	2.8	-0.4	-0.4	0.6	93.4	87.2	94.9	94.9	95.1	0.125	0.101	0.129	0.129	0.131	0.125	0.127	0.128	0.128	0.126	
		0.1	-2.3	2.7	-0.3	-0.2	0.4	93.5	84.4	94.4	93.0	95.3	0.126	0.101	0.129	0.141	0.131	0.131	0.134	0.135	0.150	0.131	
		0.3	-1.6	2.8	-0.1	0.3	0.5	93.0	83.2	94.4	91.5	95.8	0.127	0.101	0.129	0.171	0.133	0.135	0.137	0.137	0.190	0.135	
		0.5	-0.9	3.0	0.1	0.9	0.5	93.5	83.7	94.1	90.1	95.5	0.129	0.101	0.130	0.198	0.135	0.136	0.138	0.138	0.227	0.135	
	0.1	0	-2.7	2.6	-0.7	-0.7	0.5	93.8	80.7	94.4	94.5	95.8	0.148	0.100	0.151	0.151	0.151	0.147	0.150	0.149	0.149	0.148	
		0.1	-2.4 1.6	2.6	-0.5 -0.2	-0.4 0.4	0.3	$93.5 \\ 93.2$	78.6	93.7	$94.2 \\ 91.7$	$95.3 \\ 96.4$	0.149	0.099	0.151	$0.165 \\ 0.202$	$0.152 \\ 0.154$	0.153	0.156	0.156	0.173 0.221	$0.152 \\ 0.156$	
		$0.3 \\ 0.5$	-1.6 -1.0	$\frac{2.7}{2.8}$	-0.2 -0.1	1.1	$0.4 \\ 0.4$	93.4	$77.2 \\ 76.6$	$95.0 \\ 94.5$	90.6	94.9	$0.151 \\ 0.153$	$0.100 \\ 0.100$	$0.152 \\ 0.154$	0.202 0.235	0.154 0.156	$0.157 \\ 0.159$	$0.161 \\ 0.162$	0.159 0.160	0.221 0.266	0.156	
	0.2	0		2.2	-0.9			94.3					0.186		0.187	0.187						0.185	
	0.2	0.1	-2.8 -2.4	2.2	-0.9 -0.7	-0.9 -0.6	$0.4 \\ 0.4$	94.5 93.4	$69.8 \\ 66.3$	$94.7 \\ 94.4$	94.7 93.6	$96.0 \\ 95.0$	0.188	$0.098 \\ 0.098$	0.187	0.187 0.207	0.188 0.189	0.184 0.193	$0.187 \\ 0.197$	0.183 0.193	0.183 0.216	0.185 0.191	
		0.3	-1.7	2.4	-0.4	0.6	0.3	94.2	63.5	94.8	92.2	94.9	0.192	0.098		0.254	0.191	0.198	0.203		0.281	0.194	
		0.5	-1.1	2.5	-0.2	1.4	0.4	94.2	63.1	94.1	90.5	95.7	0.196	0.099		0.297	0.194	0.203	0.207		0.342	0.196	
					J.2		V. I	U 1.1		U 1.1	00.0	J J.1	0.100	0.000	0.100	V.201	U.1U1	V. - 00	···	0.202	V.V.2	0.100	

Notes: k = # clusters per arm; ρ_O is the ICC of the (conditional) outcome model (see Eqn. 6 in the manuscript text); ρ_M is the ICC of the probability of missing (POM) model (see Eqn. 7B in the manuscript text); MCSD = Monte Carlo standard deviation; Results based on 1000 simulated data sets per scenario using standard Wald Z-based confidence intervals for each modeling approach, except for MMI-GEE for which t-based confidence intervals are used based on 15 imputations (see Section 4.2 of main manuscript for details, including the t-distribution degrees of freedom). Acceptable coverage ranges from 93.6% to 96.4%; Note that all GEE models converged except for 5 W-GEE and approximately 100 for CW-GEE across all simulations, with almost all issues in the small sample case (i.e. k=10).

Table S7: Coverage (%) with independent working correlation matrix and robust standard errors, uncorrected and with three finite-sample corrections

				No finite-sa	mple co	orrection	1		KC o	correction	n			MD	correction	on		FG correction					
1,	0 -	0	CRA-	A-CRA-	W-	CW-	MMI-	CRA-	A-CRA-	W-	CW-	MMI-	CRA-	A-CRA-	W-	CW-	MMI-	CRA-	A-CRA-	W-	CW-	MMI-	
k	ρ_O	ρ_M	GEE	GEE	GEE	GEE	GEE	GEE	GEE	GEE	GEE	GEE	GEE	GEE	GEE	GEE	GEE	GEE	GEE	GEE	GEE	GEE	
10	0.05	0	89.8	82.6	91.5	91.5	96.9	91.8	84.2	92.6	92.7	97.8	93.6	86.0	94.6	94.7	98.4	92.0	84.2	98.6	98.6	98.1	
		0.1	91.8	84.4	92.8	89.8	96.8	93.1	85.4	93.9	92.5	97.5	94.5	87.2	95.1	94.5	98.0	93.4	85.5	99.2	99.6	97.6	
		0.3	91.0	83.1	91.6	85.7	96.3	92.2	84.0	92.8	89.9	96.8	93.7	86.0	94.3	93.3	97.6	92.8	83.9	97.8	98.6	97.0	
		0.5	91.7	82.8	91.5	79.2	96.8	93.3	84.3	93.0	86.9	97.7	94.3	85.7	94.5	91.7	98.2	93.6	84.2	98.4	97.2	97.9	
	0.1	0	91.0	76.1	91.3	91.1	95.7	93.3	78.1	93.4	93.5	96.0	94.4	79.8	94.5	94.5	96.9	93.7	78.0	98.5	98.5	96.4	
		0.1	90.6	75.5	91.5	88.7	96.4	92.4	76.7	92.6	91.7	97.1	94.4	78.7	94.9	95.0	97.6	93.0	76.5	98.8	99.3	97.3	
		0.3	91.4	74.8	91.3	83.9	95.8	92.7	76.6	93.1	89.1	96.4	93.9	78.8	94.4	92.7	97.2	93.0	76.4	98.4	98.5	96.6	
		0.5	91.4	73.8	91.5	78.4	96.9	92.9	76.1	92.9	84.9	97.4	94.2	78.0	94.9	91.7	97.8	93.4	75.9	98.5	96.9	97.5	
	0.2	0	91.3	64.8	91.6	91.7	94.2	92.9	67.3	93.2	93.3	95.1	94.0	69.1	94.0	94.0	96.2	93.0	67.1	98.7	98.8	95.6	
		0.1	90.4	64.7	90.9	88.5	94.6	92.8	66.5	92.7	91.3	95.8	94.1	68.0	95.0	93.9	96.6	93.2	66.5	98.5	98.8	96.1	
		0.3	90.3	64.2	91.1	84.1	94.7	92.4	65.6	92.7	89.1	95.4	94.1	67.0	94.3	91.8	96.6	92.8	65.5	98.1	98.3	95.7	
		0.5	90.2	62.5	90.6	77.5	94.8	92.0	64.3	92.3	85.1	96.2	94.0	65.7	94.3	91.0	97.1	92.8	64.1	98.5	97.6	96.5	
25	0.05	0	93.4	85.5	93.7	93.8	96.8	94.0	86.3	94.4	94.4	96.9	94.5	87.1	95.1	95.0	97.4	94.2	86.3	96.4	96.5	97.0	
		0.1	93.9	85.9	94.4	93.2	96.3	94.0	86.6	94.8	94.0	96.6	95.0	86.9	95.7	94.3	96.9	94.1	86.6	96.9	98.5	96.9	
		0.3	93.9	85.3	94.0	90.5	95.2	94.3	86.0	94.3	92.1	95.5	94.5	86.6	94.8	93.8	96.1	94.4	85.9	95.9	99.4	95.7	
		0.5	92.9	85.3	92.9	87.2	95.8	93.5	85.7	93.6	89.7	96.0	93.9	86.6	94.1	92.6	96.5	93.5	85.7	95.9	99.4	96.2	
	0.1	0	93.2	76.3	93.6	93.7	95.3	93.6	77.1	94.3	94.4	96.1	94.3	77.9	95.1	95.2	96.3	93.6	77.1	96.4	96.4	96.2	
		0.1	94.1	78.9	94.8	93.8	96.0	94.6	79.5	95.2	94.7	96.2	94.8	80.1	95.3	95.0	96.6	94.7	79.5	97.1	99.1	96.5	
		0.3	93.5	78.5	93.7	89.8	95.5	94.0	79.2	94.4	92.2	95.7	94.6	79.9	94.9	93.6	96.2	94.0	79.2	96.4	99.6	95.7	
		0.5	93.5	76.7	94.1	87.1	95.3	93.9	77.4	94.7	91.0	95.8	94.3	77.9	95.3	92.9	96.2	94.0	77.4	96.3	99.3	96.1	
	0.2	0	94.5	66.6	94.3	94.2	95.5	95.0	67.3	94.8	94.9	95.8	95.5	67.9	95.0	95.0	96.1	95.0	67.2	97.1	97.1	95.9	
		0.1	93.4	64.6	93.6	93.1	94.6	94.2	65.4	94.3	93.8	95.1	94.8	66.1	95.1	94.7	95.4	94.4	65.4	96.4	98.4	95.2	
		0.3	92.6	65.4	92.6	91.0	94.4	93.2	66.5	93.8	92.9	94.9	93.9	67.1	94.2	94.2	95.3	93.3	66.3	95.7	99.4	95.0	
		0.5	93.1	63.7	92.7	87.7	94.5	93.5	64.1	93.1	90.7	95.1	93.9	64.7	94.0	93.0	95.5	93.5	63.9	96.1	99.3	95.2	
50	0.05	0	93.4	87.2	94.9	94.9	95.1	93.6	87.7	95.3	95.2	95.2	93.9	87.8	95.5	95.5	95.2	93.7	87.6	96.3	96.3	95.2	
		0.1	93.5	84.4	94.4	93.0	95.3	94.0	84.7	94.8	93.8	95.4	94.4	85.1	95.2	94.1	95.6	94.0	84.7	95.9	97.5	95.5	
		0.3	93.0	83.2	94.4	91.5	95.8	93.1	83.6	94.8	92.6	96.0	93.4	83.8	95.0	93.3	96.4	93.1	83.5	95.7	99.6	96.0	
		0.5	93.5	83.7	94.1	90.1	95.5	94.1	83.9	94.3	91.6	95.6	94.3	84.0	94.4	93.0	95.9	94.3	83.9	94.7	99.9	95.7	
	0.1	0	93.8	80.7	94.4	94.5	95.8	94.0	81.3	94.8	94.8	96.1	94.3	81.6	95.2	95.2	96.3	94.0	81.3	95.8	95.8	96.1	
		0.1	93.5	78.6	93.7	94.2	95.3	93.8	78.7	93.8	94.4	95.3	93.9	79.0	94.6	94.6	95.4	93.8	78.7	95.8	97.5	95.3	
		0.3	93.2	77.2	95.0	91.7	96.4	93.4	77.4	95.2	92.5	96.6	93.9	77.6	95.5	93.6	96.7	93.6	77.4	96.0	99.7	96.7	
		0.5	93.4	76.6	94.5	90.6	94.9	93.7	76.8	94.9	91.9	95.2	94.1	77.2	95.0	93.3	95.4	93.8	76.8	95.3	99.9	95.3	
	0.2	0	94.3	69.8	94.7	94.7	96.0	94.7	70.0	94.9	95.0	96.3	94.7	70.5	95.2	95.2	96.3	94.7	69.8	96.3	96.2	96.3	
		0.1	93.4	66.3	94.4	93.6	95.0	93.8	66.6	94.5	94.1	95.1	94.0	66.8	94.6	94.6	95.4	93.9	66.5	95.3	97.7	95.2	
		0.3	94.2	63.5	94.8	92.2	94.9	94.4	63.8	95.0	93.1	95.2	94.7	64.0	95.2	94.4	95.4	94.5	63.8	95.8	99.7	95.3	
		0.5	94.2	63.1	94.1	90.5	95.7	94.6	63.5	94.3	92.2	95.8	95.0	64.3	94.5	94.0	96.1	94.6	63.5	95.1	99.7	95.9	

Notes: k = # clusters per arm; ρ_O is the ICC of the (conditional) outcome model (see Eqn. 6 in the manuscript text); ρ_M is the ICC of the probability of missing (POM) model (see Eqn. 7B in the manuscript text; Results based on 1000 simulated data sets per scenario using standard Wald Z-based confidence intervals for each modeling approach, except for MMI-GEE for which t-based confidence intervals are used based on 15 imputations (see Section 4.2 of main manuscript for details, including the t-distribution degrees of freedom). Acceptable coverage ranges from 93.6% to 96.4%;. Note that the finite-sample corrections are due to: Kauermann G & Carroll R (2001, JASA 96(456):1387-1396); Mancl LA & Derouen TA (2001, Biometrics 57(1):126-134); and Fay & Graubard (2001, Biometrics 57(4):1198-1206), with all details described in Section 2 above.

Table S8: Mean (robust) SE using independent working correlation matrix, uncorrected and with three finite-sample corrections

				No finite-sa	ample co	rrection			KC	correction	on			MD	correction	on		FG correction					
k	$ ho_O$	$ ho_M$	CRA- GEE	A-CRA- GEE	W- GEE	CW- GEE	MMI- GEE	CRA- GEE	A-CRA- GEE	W- GEE	CW- GEE	MMI- GEE	CRA- GEE	A-CRA- GEE	W- GEE	CW- GEE	MMI- GEE	CRA- GEE	A-CRA- GEE	W- GEE	CW- GEE	MMI- GEE	
10	0.05	0 0.1 0.3 0.5	0.268 0.267 0.268 0.270	0.218 0.215 0.217 0.217	0.276 0.274 0.274 0.274	0.276 0.283 0.301 0.314	0.294 0.295 0.301 0.309	0.283 0.282 0.285 0.288	0.226 0.223 0.225 0.226	0.292 0.290 0.290 0.292	0.292 0.305 0.346 0.383	0.308 0.308 0.314 0.322	0.299 0.298 0.303 0.308	0.235 0.232 0.234 0.235	0.308 0.307 0.309 0.312	0.309 0.331 0.404 0.485	0.322 0.322 0.329 0.336	0.286 0.286 0.289 0.293	0.226 0.223 0.225 0.225	0.403 0.399 0.401 0.415	0.406 0.494 0.598 0.662	0.311 0.312 0.318 0.326	
	0.1	$0 \\ 0.1 \\ 0.3 \\ 0.5$	0.314 0.315 0.318 0.321	0.215 0.214 0.216 0.216	0.320 0.320 0.322 0.324	0.321 0.333 0.357 0.373	0.333 0.335 0.342 0.349	0.331 0.333 0.338 0.343	0.223 0.222 0.224 0.225	0.339 0.339 0.342 0.346	0.339 0.359 0.410 0.456	0.349 0.350 0.357 0.364	0.350 0.353 0.359 0.366	0.232 0.231 0.233 0.234	0.358 0.359 0.363 0.369	0.358 0.389 0.480 0.578	0.366 0.367 0.374 0.381	0.335 0.337 0.342 0.348	0.223 0.222 0.223 0.224	0.475 0.473 0.478 0.496	0.478 0.586 0.712 0.789	0.353 0.355 0.362 0.369	
	0.2	$0 \\ 0.1 \\ 0.3 \\ 0.5$	0.392 0.398 0.403 0.408	0.211 0.213 0.214 0.214	0.395 0.401 0.405 0.409	0.395 0.417 0.451 0.473	0.402 0.408 0.414 0.421	0.414 0.421 0.429 0.436	0.220 0.222 0.224 0.223	0.417 0.424 0.430 0.436	0.418 0.451 0.518 0.577	0.423 0.429 0.435 0.442	0.437 0.446 0.456 0.466	0.229 0.231 0.234 0.234	0.441 0.449 0.458 0.466	0.442 0.488 0.607 0.730	0.445 0.451 0.457 0.463	0.419 0.427 0.435 0.443	0.218 0.220 0.222 0.222	0.594 0.599 0.608 0.633	0.597 0.739 0.904 1.003	0.429 0.435 0.441 0.448	
25	0.05	$0 \\ 0.1 \\ 0.3 \\ 0.5$	0.175 0.175 0.177 0.179	0.142 0.141 0.142 0.142	0.180 0.180 0.181 0.181	0.180 0.193 0.224 0.250	0.185 0.187 0.190 0.193	0.178 0.179 0.182 0.183	0.144 0.143 0.144 0.145	0.184 0.184 0.185 0.185	0.184 0.199 0.239 0.275	0.189 0.190 0.193 0.196	0.182 0.183 0.186 0.188	0.146 0.145 0.146 0.147	0.188 0.188 0.189 0.190	0.188 0.206 0.256 0.305	0.192 0.193 0.197 0.200	0.179 0.180 0.183 0.184	0.143 0.143 0.144 0.144	0.203 0.202 0.203 0.204	0.203 0.282 0.431 0.523	0.190 0.191 0.194 0.197	
	0.1	$0 \\ 0.1 \\ 0.3 \\ 0.5$	0.206 0.208 0.211 0.214	0.140 0.140 0.141 0.142	0.210 0.211 0.213 0.215	0.210 0.227 0.265 0.297	0.213 0.214 0.218 0.222	0.210 0.213 0.216 0.219	0.142 0.142 0.143 0.144	0.215 0.216 0.218 0.220	0.215 0.235 0.283 0.327	0.217 0.218 0.222 0.226	0.215 0.217 0.221 0.225	0.144 0.144 0.146 0.146	0.219 0.221 0.223 0.226	0.220 0.243 0.304 0.362	0.221 0.222 0.226 0.230	0.211 0.214 0.217 0.221	0.142 0.142 0.143 0.144	0.237 0.238 0.240 0.243	0.238 0.336 0.512 0.623	0.218 0.219 0.223 0.227	
	0.2	$0 \\ 0.1 \\ 0.3 \\ 0.5$	0.260 0.263 0.267 0.271	0.138 0.137 0.139 0.139	0.262 0.263 0.267 0.271	0.262 0.285 0.335 0.376	0.265 0.265 0.268 0.271	0.266 0.269 0.274 0.278	0.140 0.140 0.141 0.142	0.268 0.269 0.273 0.278	0.268 0.294 0.357 0.414	0.270 0.270 0.273 0.276	0.272 0.275 0.280 0.286	0.142 0.142 0.144 0.144	0.274 0.275 0.280 0.285	0.274 0.304 0.383 0.458	0.275 0.275 0.279 0.282	0.267 0.270 0.275 0.280	0.139 0.139 0.141 0.141	0.297 0.298 0.302 0.308	0.297 0.424 0.649 0.791	0.271 0.272 0.275 0.278	
50	0.05	$0 \\ 0.1 \\ 0.3 \\ 0.5$	0.125 0.126 0.127 0.129	0.101 0.101 0.101 0.101	0.129 0.129 0.129 0.130	0.129 0.141 0.171 0.198	0.131 0.131 0.133 0.135	0.127 0.127 0.129 0.130	0.102 0.101 0.102 0.102	0.131 0.131 0.131 0.132	0.131 0.143 0.177 0.209	0.132 0.132 0.134 0.137	0.128 0.129 0.130 0.132	0.103 0.102 0.102 0.103	0.132 0.132 0.132 0.133	0.132 0.145 0.184 0.220	0.133 0.133 0.135 0.138	0.127 0.128 0.129 0.131	0.102 0.101 0.102 0.102	0.136 0.136 0.136 0.137	0.136 0.175 0.315 0.410	0.132 0.133 0.134 0.137	
	0.1	$0 \\ 0.1 \\ 0.3 \\ 0.5$	0.148 0.149 0.151 0.153	0.100 0.099 0.100 0.100	0.151 0.151 0.152 0.154	0.151 0.165 0.202 0.235	0.151 0.152 0.154 0.156	0.149 0.150 0.153 0.155	0.101 0.100 0.101 0.101	0.152 0.153 0.154 0.156	0.152 0.168 0.209 0.248	0.153 0.153 0.155 0.158	0.151 0.152 0.154 0.157	0.101 0.101 0.101 0.102	0.154 0.154 0.156 0.158	0.154 0.170 0.217 0.261	0.154 0.155 0.156 0.159	0.150 0.151 0.153 0.156	0.101 0.100 0.101 0.101	0.159 0.159 0.160 0.162	0.159 0.207 0.373 0.487	0.153 0.154 0.155 0.158	
	0.2	$0 \\ 0.1 \\ 0.3 \\ 0.5$	0.186 0.188 0.192 0.196	0.098 0.098 0.098 0.099		0.187 0.207 0.254 0.297	0.188 0.189 0.191 0.194	0.188 0.191 0.194 0.198	0.099 0.099 0.099 0.100	0.189 0.191 0.194 0.198	0.189 0.210 0.263 0.312	0.190 0.191 0.193 0.196	0.190 0.193 0.197 0.201	0.100 0.100 0.100 0.101	0.196	0.191 0.214 0.273 0.329	0.192 0.193 0.195 0.197	0.189 0.191 0.195 0.199	0.099 0.099 0.099 0.100	0.198 0.200 0.203 0.207	0.198 0.261 0.470 0.615	0.191 0.192 0.193 0.196	

Notes: k = # clusters per arm; ρ_O is the ICC of the (conditional) outcome model (see Eqn. 6 in the manuscript text); ρ_M is the ICC of the probability of missing (POM) model (see Eqn. 7B in the manuscript text; Results based on 1000 simulated data sets per scenario; Note that the finite-sample corrections are due to: Kauermann G & Carroll R (2001, JASA 96(456):1387-1396); Mancl LA & Derouen TA (2001, Biometrics 57(1):126-134); and Fay & Graubard (2001, Biometrics 57(4):1198-1206), with all details described in Section 2 above.