Contrastive Learning of Visual Representations Author: Nikita Bashaev, 171

September 21, 2020

Plan

- What is Contrastive Representation Learning?
- Output
 Output
 Output
 Description
 Output
 Description
 Output
 Description
 Description
 Output
 Description
 De
- NT-Xent (the normalized temperature-scaled cross entropy loss)
- The choice of data augmentation
- A nonlinear projection head
- SimCLR's main learning algorithm
- Comparison with State Of The Art

What is Contrastive Representation Learning?

How can we measure the quality of learned representations?

- Linear evaluation protocol:
 a linear classifier is trained on top of the frozen base network, test accuracy is used as a proxy for representation quality
- Semi-supervised learning:
 the whole base network is fine-tuned on 1% or 10% of the labeled data, test accuracy is used as a proxy for representation quality
- Transfer learning performance in both linear evaluation and fine-tuning settings

NT-Xent

$\ell_{i,j} = -\log \frac{1}{\sum_{k=1}^{2N}}$	$\frac{\exp(\sin(\boldsymbol{z}_i, \boldsymbol{z}_j)/\tau)}{\mathbbm{1}_{[k\neq i]} \exp(\sin(\boldsymbol{z}_i, \boldsymbol{z}_k)/\tau)}$
$\mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[\ell \right]$	$2k-1,2k) + \ell(2k,2k-1)$]

Margin	NT-Logi.	Margin (sh)	NT-Logi.(sh)	NT-Xent
50.9	51.6	57.5	57.9	63.9

Table 4. Linear evaluation (top-1) for models trained with different loss functions. "sh" means using semi-hard negative mining.

ℓ_2 norm?	τ	Entropy	Contrastive acc.	Top 1
	0.05	1.0	90.5	59.7
Yes	0.1	4.5 8.2	87.8 68.2	64.4 60.7
	1	8.3	59.1	58.0
No	10	0.5	91.7	57.2
	100	0.5	92.1	57.0

Table 5. Linear evaluation for models trained with different choices of ℓ_2 norm and temperature τ for NT-Xent loss. The contrastive distribution is over 4096 examples.

The choice of data augmentation

No single transformation suffices to learn good representations. When composing augmentations, the contrastive prediction task becomes harder, but the quality of representation improves dramatically

The choice of data augmentation

Although many augmentations were studied in the paper, to train the models were used only the following:

- Random crop (with flip and resize)
- 2 Color distortion
- Gaussian blur

A nonlinear projection head

Authors use a MLP with one hidden layer to obtain

$$z_i = g(h_i) = W^{(2)} \sigma(W^{(1)} h_i)$$

Figure 8. Linear evaluation of representations with different projection heads $g(\cdot)$ and various dimensions of z = g(h). The representation h (before projection) is 2048-dimensional here.

SimCLR's main learning algorithm

Algorithm 1 SimCLR's main learning algorithm.

```
input: batch size N, constant \tau, structure of f, g, \mathcal{T}.
for sampled minibatch \{x_k\}_{k=1}^N do
   for all k \in \{1, ..., N\} do
       draw two augmentation functions t \sim T, t' \sim T
       # the first augmentation
       \tilde{\boldsymbol{x}}_{2k-1} = t(\boldsymbol{x}_k)
      h_{2k-1} = f(\tilde{x}_{2k-1})
                                                             # representation
       z_{2k-1} = q(h_{2k-1})
                                                                  # projection
       # the second augmentation
       \tilde{\boldsymbol{x}}_{2k} = t'(\boldsymbol{x}_k)
       h_{2k} = f(\tilde{x}_{2k})
                                                             # representation
       z_{2k} = q(h_{2k})
                                                                   # projection
   end for
   for all i \in \{1, \dots, 2N\} and j \in \{1, \dots, 2N\} do
       s_{i,j} = \mathbf{z}_i^{\top} \mathbf{z}_i / (\|\mathbf{z}_i\| \|\mathbf{z}_i\|) # pairwise similarity
   end for
   \text{define } \ell(i,j) \text{ as } \ell(i,j) \!=\! -\log \tfrac{\exp(s_{i,j}/\tau)}{\sum_{k=1}^{2N} \mathbbm{1}_{[k \neq i]} \exp(s_{i \cdot k}/\tau)}
   \mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[ \ell(2k-1, 2k) + \ell(2k, 2k-1) \right]
   update networks f and g to minimize \mathcal{L}
end for
return encoder network f(\cdot), and throw away g(\cdot)
```

Comparison with State Of The Art

Method	Architecture	Param (M)	Top 1	Top 5	
Methods using R	esNet-50:				
Local Agg.	ResNet-50	24	60.2	-	
MoCo	ResNet-50	24	60.6	-	
PIRL	ResNet-50	24	63.6	-	
CPC v2	ResNet-50	24	63.8	85.3	
SimCLR (ours)	ResNet-50	24	69.3	89.0	
Methods using or	ther architectures.	:			
Rotation	RevNet-50 $(4\times)$) 86	55.4	-	
BigBiGAN	RevNet-50 $(4\times)$) 86	61.3	81.9	
AMDIM	Custom-ResNet	626	68.1	-	
CMC	ResNet-50 (2 \times)	188	68.4	88.2	
MoCo	ResNet-50 $(4\times)$	375	68.6	-	
CPC v2	ResNet-161 (*)	305	71.5	90.1	
SimCLR (ours)	ResNet-50 (2×)	94	74.2	92.0	
SimCLR (ours)	ResNet-50 (4×)	375	76.5	93.2	

Table 6. ImageNet accuracies of linear classifiers trained on representations learned with different self-supervised methods.

Comparison with State Of The Art

		Label fraction			
Method	Architecture	1%	10%		
		Top 5			
Supervised baseline	ResNet-50	48.4 80.			
Methods using other labe	l-propagation:				
Pseudo-label	ResNet-50	51.6	82.4		
VAT+Entropy Min.	ResNet-50	47.0	83.4		
UDA (w. RandAug)	ResNet-50	-	88.5		
FixMatch (w. RandAug)	ResNet-50	-	89.1		
S4L (Rot+VAT+En. M.)	ResNet-50 (4 \times)	-	91.2		
Methods using representa	tion learning only:				
InstDisc	ResNet-50	39.2	77.4		
BigBiGAN	RevNet-50 $(4\times)$	55.2	78.8		
PIRL	ResNet-50	57.2	83.8		
CPC v2	ResNet-161(*)	77.9	91.2		
SimCLR (ours)	ResNet-50	75.5	87.8		
SimCLR (ours)	ResNet-50 $(2\times)$	83.0	91.2		
SimCLR (ours)	ResNet-50 $(4\times)$	85.8	92.6		

Table 7. ImageNet accuracy of models trained with few labels.

Comparison with State Of The Art

	Food	CIFAR10	CIFAR100	Birdsnap	SUN397	Cars	Aircraft	VOC2007	DTD	Pets	Caltech-101	Flowers
Linear evaluatio	n:											
SimCLR (ours)	76.9	95.3	80.2	48.4	65.9	60.0	61.2	84.2	78.9	89.2	93.9	95.0
Supervised	75.2	95.7	81.2	56.4	64.9	68.8	63.8	83.8	78.7	92.3	94.1	94.2
Fine-tuned:												
SimCLR (ours)	89.4	98.6	89.0	78.2	68.1	92.1	87.0	86.6	77.8	92.1	94.1	97.6
Supervised	88.7	98.3	88.7	77.8	67.0	91.4	88.0	86.5	78.8	93.2	94.2	98.0
Random init	88.3	96.0	81.9	77.0	53.7	91.3	84.8	69.4	64.1	82.7	72.5	92.5

Table 8. Comparison of transfer learning performance of our self-supervised approach with supervised baselines across 12 natural image classification datasets, for ResNet-50 $(4\times)$ models pretrained on ImageNet. Results not significantly worse than the best (p>0.05), permutation test) are shown in bold. See Appendix B.8 for experimental details and results with standard ResNet-50.

Questions

- What is Contrastive Representation Learning?
- ② How can we measure the quality of learned representations?
- 3 Which loss and data augmentations were used in the paper?

Bibliography

 A Simple Framework for Contrastive Learning of Visual Representations. arXiv:2002.05709v3