Homework 5 Solutions

Ch 16: 25, 27, 35, 37, 57, 58, 63, 64 - 66 (these are all related), 67, 68

25. If x - 2 is a factor of $p(x) = x^4 - 2x - 2$, then p(2) = 0, $p(2) = 10 \mod p = 0$ so p = 2 and p = 5.

27. (Used hint from the book here.) U(p) is abelian of order p-1, if U(p) were not cyclic, then by the fundamental theorem of abelian groups, for some q prime, $q \mid p-1$, there is $H \simeq \mathbb{Z}_q \times \mathbb{Z}_q < (U(p), \cdot, 1)$ (the multiplicative group). Let $\phi : \mathbb{Z}_q \times \mathbb{Z}_q \simeq H$ and let $x_{a,b} = \phi(a,b) \in U(p)$, then $x_{a,b}^q = 1$ and so $p(x) = x^q - 1$ has q^2 many solutions, which we know is impossible.

35. Show that $p(x) = x^3 - 2x^2 - 9$ has a root in every field. $p(3) = 3^3 - 2(3^2) - 9 = 3(3^2) - 2(3^2) - 3^2 = (3 - 2 - 1)(3^2) = 0$. So 3 is a root in any field. In \mathbb{Z}_2 , 3 = 1 and in \mathbb{Z}_3 , 3 = 0, but the argument still holds.

37. Let *F* be a field and $I = \{f(x) \in F[x] \mid f(1) = 0 \text{ and } f(2) = 0\}$. Find $g(x) \in F[x]$ so that I = (g(x)).

Let $g(x) = (x-1)(x-2) = x^2 - 3x + 2$, then $(g(x)) = \{f(x)(x-1)(x-2) \mid f(x) \in F[x]\}$. Clearly, $(g) \subseteq I$, conversely, the division algorithm shows that if $f(x) \in I$, then f(x) = f'(x)(x-1)(x-2) for some f'(x).

57. Show that in $\mathbb{Z}_p[x]$, $x^{p-1} - 1 = \prod_{a=1}^{p-1} (x - a)$.

This is because $a^{p-1}=1$ in \mathbb{Z}_p for all $a\in U(p)=\{1,\cdots,p-1\}$. Thus each element is a root of $x^{p-1}-1$, and so the factorization follows.

58. (Wilson's Theorem) For every integer n > 1, $(n-1)! \mod n = n-1$ iff n is prime.

If n is prime, then

$$x^{n-1} - 1 = (x-1)(x^{n-2} + x^{n-3} + \dots + 1) = (x-1)(x-2) \cdots (x-(n-1))$$

So

$$x^{n-2} + x^{n-3} + \dots + 1 = (x-2)(x-3) \cdots (x-(n-1)) \mod n$$

Evaluating both sides at x = 1 gives

$$n-1=(-1)(-2)\cdots(-(n-1))=(n-1)(n-2)\cdots(1)=(n-1)! \bmod n$$

Conversely, if $n = s \cdot t$ is not prime, then $n \mid (n-1)!$ so $(n-1)! = 0 \mod n$.

63. For a field that properly contains the field of complex numbers, the first thing that comes to mind is the quotient field of $\mathbb{C}[x]$. That is the field of rational functions over \mathbb{C} .

64. If I is an ideal of R show that I[x] is an ideal of R[x]. It is clear that I[x] is closed under addition. For the multiplicative closure a little effort is required, consider $p(x) \in I[x]$ with coefficients $a_i \in I$ and $q(x) \in R[x]$ with coefficients $b_i \in R$, then the coefficient of x^i in p(x)q(x) is

$$c_i = \sum_{j=0}^i a_j b_{i-j} \in I$$

So $p(x)q(x) \in I[x]$.

65. $2\mathbb{Z}$ is a maximal ideal in \mathbb{Z} , since $\mathbb{Z}/2\mathbb{Z} \simeq \mathbb{Z}_2$ is a field. But, $\mathbb{Z}[x]/2\mathbb{Z}[x] \simeq \mathbb{Z}_2[x]$ is an integral domain, but not a field.

66. Show that if I is a prime ideal of R (commutative and unitary), then I[x] is a prime ideal of R[x].

If I is prime, then R/I is an integral domain. Now $R[x]/I[x] \simeq (R/I)[x]$ and since R/I is an integral domain, so is R/I[x].

Note To prove $R[x]/I[x] \simeq (R/I)[x]$ define the map $\phi: R[x] \to (R/I)[x]$ by $\sum_{i=1}^n r_i x^i \mapsto \sum_{i=1}^n (r_i/I) x^i$. It is easy to see that this is a homomorphism and is surjective. Now show that $\ker(\phi) = I[x]$.

67. Show that x = 1 is the only solution to $x^{25} - 1$ in \mathbb{Z}_{37} .

For $x^{25} = 1$ in U(37) we know that $|x| \mid 25 = 5^2$, on the other hand, $|x| \mid |U(37)| = 36 = 6^2$. Only gcd(36, 25) = 1 so |x| = 1 and hence x = 1.

68. Show that $\mathbb{Q}[x]/(x^2-2) \simeq \mathbb{Q}[\sqrt{2}]$.

There are several ways to do this. Here is one. Define $\phi: \mathbb{Q}[x] \to \mathbb{Q}[\sqrt{2}]$ by $x \mapsto \sqrt{2}$ and everything else maps as must be. A little effort verifies this to be a homomorphism and onto. So suppose $\phi(p(x)) = 0$, then $\sqrt{2}$ is a root of p(x). We know $\overline{p(\sqrt{2})} = \overline{p}(\sqrt{2}) = p(-\sqrt{2}) = 0$ as well, so $x^2 - 2 \mid p(x)$ and thus $\ker(\phi) = (x^2 - 2)$.

Note Here as usual $\overline{a+b\sqrt{2}} = a - b\sqrt{2}$.

Ch 17: 7, 12, 14, 15, 19, 28, 38, 39, 40

7. Suppose r + 1/r is an odd integer, show that r is irrational.

Let n be an integer and consider 2n+1=x+1/x or $x^2-(2n+1)x+1=0$. If r is rational, then this must factor over $\mathbb Q$. But if this factors over $\mathbb Q$, then it factors over $\mathbb Z$ as (x-p)(x-q) with $p,q\in\mathbb Z$ so that either p=q=1 or p=q=-1 and $2n+1=p+q=\pm 2$.

12. Construct a field of order 27.

Consider $x^3 + 2x + 1$. This has no root in \mathbb{Z}_3 , so it is irreducible in $\mathbb{Z}_3[x]$ and hence $\mathbb{Z}_3[x]/(x^3 + x + 1)$ is a field, since $\mathbb{Z}_3[x]$ is a PID. The classes of $\mathbb{Z}_3[x]$ are given by $ax^2 + bx + c$ with $a, b, c \in \mathbb{Z}[3]$ so there are $3^3 = 27$ elements.

14. Which of the following are irreducible over \mathbb{Q} ?

a. $x^5 + 9x^4 + 12x^2 + 6$: This is irreducible over \mathbb{Q} since since $3 \nmid 1, 3 \mid 9, 12, 6$, and $3^2 \nmid 6$.

- b. $x^4 + x + 1$: $x^4 + x + 1$ has no linear factors since the only possible roots are ± 1 . If it factors into quadratics, then we must have $x^4 + x + 1 = (x^2 + ax + 1)(x^2 + bx + 1) = x^4 + (a+b)x^3 + (ab+2)x^2 + (a+b)x + 1$. But then a+b=1 and a+b=0, so this can't happen either.
- c. $x^4 + 3x^2 + 3$: This is like (a.). $3 \nmid 1, 3 \mid 0, 3, 3, \text{ and } 3^2 \nmid 3$.
- d. $x^5 + 5x^2 + 1$: Let's see if this is irreducible in $\mathbb{Z}_2[x]$. There are no linear factors, no roots in \mathbb{Z}_2 . If there is a quadratic factor, it must be one of $x^2, x^2 + 1, x^2 + x, x^2 + x + 1$. Each of $x^2, x^2 + 1, x^2 + x$ has roots in \mathbb{Z}_2 , so these can't be a factor. So $x^2 + x + 1$ is the only option. You can check that $x^2 + x + 1$ does not divide $x^5 + 5x^2 + 1$ in $\mathbb{Z}_2[x]$, so $x^5 + 5x^2 + 1$ is irreducible in $\mathbb{Z}_2[x]$ and by the mod2 test, $x^5 + 5x^2 + 1$ is irreducible in \mathbb{Q} .
- e. $(5/2)x^5 + (9/2)x^4 + 15x^2 + 6x + 3/14$: $(1/14)(35x^5 + 63x^4 + 210x^2 + 84x + 3)$. Again, as above $3 \nmid 35$, $3 \mid 63$, 210, 84, 3, and $3^2 \nmid 3$. So the polynomial is irreducible.
- **15.** Consider $\mathbb{Z}_2[x]/(x^3+x+1)$.

$$(x^2+x)^2 = x^2(x+1)^2 = x^2(x^2+2x+1) = x^2(x^2+1) = x(x^3+x) = x(-1) = -x \mod (x^3+x+1)$$

and noting that $1 = -1 = x^3 + x$ we can divide $x^3 + x$ by $x^2 + x$ and get x + 1.

$$(x^{2} + x)(x + 1) = x^{3} + 2x^{2} + x = x^{3} + x = -1 = 1$$

So $(x^2 + x)^{-1} = x + 1$.

19. Consider $F = \mathbb{Z}_7[x]/(x^2+2)$. x^2+2 has no roots in \mathbb{Z}_7 so x^2+2 is irreducible and $\mathbb{Z}_7[x]/(x^2+2)$ is a field.

$$x^{1} = x,$$
 $x^{2} = -2 = 5,$ $x^{3} = 5x,$ $x^{4} = 5^{2} = 25 = 4,$ $x^{5} = 4x,$ $x^{6} = 4x^{2} = 20 = 6,$ $x^{7} = 6x,$ $x^{8} = 6x^{2} = 30 = 2,$ $x^{9} = 2x,$ $x^{10} = 2x^{2} = 10 = 3,$ $x^{11} = 3x,$ $x^{12} = 15 = 1$

So |x| = 12

$$(x+1) = x+1, (x+1)^2 = 2x+6, (x+1)^3 = x+2, (x+1)^4 = 3x, (x+1)^5 = 3x+1, (x+1)^6 = 4x+2, (x+1)^7 = 6x+1, (x+1)^8 = 3 (x+1)^9 = 3x+3, (x+1)^{10} = 6x+4 (x+1)^{11} = 3x+6, (x+1)^{12} = 2x \vdots \vdots$$

I got tired of this one so I made python do it for me. We see here that U(F) is cyclic, and (x+1) is a primitive 48^{th} root of unity.

A better solution: $(x+1)^m = (x+1)^{8k}(x+1)^m$ for m = 0, 2, ..., 7. $(x+1)^{8k} = ((x+1)^8)^k = 3^k \pmod{7}$. Now in \mathbb{Z}_7 :

$$3^1 = 3, 3^2 = 2, 3^3 = 6, 3^4 = 2^2 = 4, 3^5 = 2 \cdot 6 = 5, 3^6 = 6^2 = 1$$

Now check that $(x+1)^{8k}(x+1)^m \neq 1$ for $k=1,\ldots,5$ and $m=0,\ldots,7$. For example

$$(x+1)^{8\cdot4}(x+1) = 4x+4, (x+1)^{8\cdot4}(x+1)^2 = 4(2x+6) = x+3,$$

$$(x+1)^{8\cdot4}(x+1)^3 = 4(x+2) = 4x+1, (x+1)^{8\cdot4}(x+1)^4 = 4(3x) = 5x,$$

$$(x+1)^{8\cdot4}(x+1)^5 = 4(3x+1) = 5x+4, (x+1)^{8\cdot4}(x+1)^6 = 4(4x+2) = 2x+1,$$

- **28.** (a) and (b) seem to be asking the same thing as the quadratic monic polynomials are just those polynomials of the form $x^2 + ax + b$. These are irreducible so long as they have no root in \mathbb{Z}_p . That is $x^2 + ax + b \neq (x m)(x n) = x^2 (m + n)x + mn$ for any $m, n \in \mathbb{Z}_p$. There are p(p-1)/2 of the form (x-m)(x-n) where $m \neq n$ and p where m = n for a total of p(p-1)/2 + p many reducible monomial quadratics and thus $p^2 (p(p-1)/2 + p) = p^2 (p^2 p)/2 + p = p^2/2 + p/2 = (p)(p+1)/2$ irreducible.
- **38.** If $x^{p-1} x^{p-2} + \cdots x + 1 = p(-x) = (-x)^{p-1} + (-x)^{p-2} + \cdots + (-x)^1 + 1 = f(x)g(x)$ with $\deg(g), \deg(f) > 0$. Then $p(x) = p(-x) = x^{p-1} + x^{p-2} + \cdots + x + 1 = f(-x)g(-x) = f_1(x)g_2(x)$. But this contradicts the irreducibility of the cyclotomic polynomial.
- **39.** The evaluation map is obviously a homomorphism. Let $f(x) \in \ker(\phi)$. If $p(x) \nmid f(x)$, then as p(x) is irreducible, we know $\gcd(f(x), p(x)) = 1$ (constant polynomial). We can use the Euclidean algorithm to find q(x) and r(x) so that q(x)p(x) + r(x)f(x) = 1. This is a contradiction since $q(a)p(a) + r(a)f(a) = q(a) \cdot 0 + r(a) \cdot 0 = 0 \neq 1$. So $p(x) \mid f(x)$.
- **40.** We have seen before that $\mathbb{Z}[x]/(x^2+1) \simeq \mathbb{Z}[i]$ is an integral domain, but not a field, so (x^2+1) is prime and not maximal.