# Universidade Federal Do Rio Grande do Sul Instituto de Informática

Lucas Dinesh Weber Miranda

Trabalho 4 (Emparelhamentos)

### 1. Introdução

Este relatório apresenta uma análise experimental do algoritmo de emparelhamento perfeito de peso mínimo em grafos bipartidos, utilizando o algoritmo Húngaro com busca de caminhos M-aumentantes mais curtos, implementado via transformação de Johnson e busca com Dijkstra.

O objetivo foi verificar na prática o comportamento do algoritmo, especialmente sua complexidade teórica O(n(m + n log n)), por meio da análise do tempo de execução em função do tamanho do grafo, assim como das métricas associadas a cada etapa do algoritmo.

### 2. Implementação

Toda a implementação do código foi realizada em C++, utilizando vector para a representação da matriz de custos e das variáveis auxiliares do algoritmo.

Adicionalmente, foi desenvolvido um conjunto de scripts em Python, utilizando as bibliotecas pandas e matplotlib para:

- Automatizar a execução de testes em lote.
- Coletar métricas de desempenho e resultados.
- Gerar gráficos para análise experimental.

#### 3. Ambiente de Teste

Os testes foram realizados em uma máquina Dell G15, com:

- 8GB de memória RAM.
- 1TB de armazenamento.
- Sistema operacional Linux Ubuntu 22.04 LTS (dual boot).
- IDE utilizada: Visual Studio Code (VSCode).

Compilação realizada com g++ e a flag -02 para otimização.

## 4. Metodologia

Para avaliar o desempenho do algoritmo, realizei diversos testes variando o tamanho do grafo bipartido, seguindo os arquivos disponibilizados pelo professor no repositório oficial:

https://github.com/mrpritt/epm\_bipartido/tree/main/data

Os tamanhos de grafos testados foram: \$n = [10, 20, 50, 100, 200, 500]\$.

As métricas avaliadas foram:

- Tempo total de execução.
- Tempo médio por iteração do laço principal.
- Tempo médio por busca de caminho M-aumentante.
- Resultado do emparelhamento perfeito de peso mínimo.

## 5. Análise Experimental e Desempenho Geral

Os resultados coletados encontram-se na tabela abaixo:

| n  | Tempo total (ms) | Tempo médio iteração<br>(ms) | Tempo médio busca<br>(ms) | Resultado |
|----|------------------|------------------------------|---------------------------|-----------|
| 10 | 0.004            | 0.0004                       | 0.0001                    | 104       |
| 20 | 0.010            | 0.0005                       | 0.00015                   | 589       |

| 50  | 0.088 | 0.00176 | 0.0013   | 3402   |
|-----|-------|---------|----------|--------|
| 100 | 0.361 | 0.00361 | 0.00306  | 16517  |
| 200 | 1.696 | 0.00848 | 0.007845 | 62884  |
| 500 | 9.040 | 0.01808 | 0.017706 | 410036 |

Gráfico 1 - Tempo total de execução vs n



O gráfico mostra que o tempo total de execução cresce rapidamente conforme o tamanho do grafo aumenta, sugerindo um comportamento compatível com a complexidade cúbica prevista pela teoria  $(O(n^3))$ , uma vez que em grafos bipartidos completos temos  $m = n^2$ .

Gráfico 2 – Tempo médio da busca M-aumentante vs n



O tempo médio por busca de caminho M-aumentante também cresce de forma aproximadamente linear com n, o que é esperado, dado que cada busca envolve analisar O(n) vértices e arcos, considerando o uso da transformação de Johnson com Dijkstra.

#### Discussão

- A relação entre o tempo total e o tamanho do grafo evidencia a necessidade do uso de métodos eficientes para busca de caminhos aumentantes, como a abordagem com transformação de Johnson implementada.
- O tempo médio da busca M-aumentante se manteve próximo do tempo médio por iteração, demonstrando que a maior parte do custo está, de fato, na realização dessas buscas.

#### 6. Conclusão

Com base nos resultados obtidos, conclui-se que o algoritmo Húngaro implementado com busca de caminhos M-aumentantes via transformação de Johnson e Dijkstra apresentou desempenho compatível com a complexidade teórica O(n(m + n log n)), que, no caso de grafos bipartidos completos, resulta em O(n^3).

O uso de scripts para automação e análise gráfica foi fundamental para garantir a precisão e a clareza dos resultados experimentais.

O comportamento do tempo de execução reforça a importância de abordagens eficientes para problemas de emparelhamento em grafos grandes, especialmente na prática, onde instâncias de centenas ou milhares de vértices podem ser comuns.