7-4.1 Addition of Center Points

Figure 7-19 A 2² design with center points.

7-4.1 Addition of Center Points

A t-test statistic for curvature is given by

$$t_{\text{Curvature}} = \frac{\overline{y}_F - \overline{y}_C}{\sqrt{\hat{\sigma}^2 \left(\frac{1}{n_F} + \frac{1}{n_C}\right)}}$$
(7-15)

where n_F is the number of factorial design points and n_C is the number of center points.

$$Y = \beta_0 + \sum_{j=1}^{k} \beta_j x_j + \sum_{i < j} \beta_{ij} x_i x_j + \sum_{j=1}^{k} \beta_{jj} x_j^2 + \epsilon$$

7-4.1 Addition of Center Points

$$H_0: \sum_{j=1}^k \beta_{jj} = 0$$
 $H_1: \sum_{j=1}^k \beta_{jj} \neq 0$

EXAMPLE 7-4

Process Yield

A chemical engineer is studying the percent conversion or yield of a process. There are two variables of interest, reaction time and reaction temperature. Because she is uncertain about the assumption of linearity over the region of exploration, the engineer decides to conduct a 2² design (with a single replicate of each factorial run) augmented with five center points. The design and the yield data are shown in Fig. 7-20.

Figure 7-20 The 2² design with five center points for Example 7-4.

EXAMPLE 7-4

Solution. Table 7-14 summarizes the analysis for this experiment. The estimate of pure error is calculated from the center points as follows:

$$\hat{\sigma}^2 = \frac{\sum_{\text{center points}} (y_i - \overline{y}_C)^2}{n_C - 1} = \frac{\sum_{i=1}^5 (y_i - 40.46)^2}{4} = \frac{0.1720}{4} = 0.0430$$

The average of the points in the factorial portion of the design is $\overline{y}_F = 40.425$, and the average of the points at the center is $\overline{y}_C = 40.46$. The difference $\overline{y}_F - \overline{y}_C = 40.425 - 40.46 = -0.035$ appears to be small. The curvature *t*-ratio is computed from equation 7-15 as follows:

$$t_{\text{Curvature}} = \frac{\overline{y}_F - \overline{y}_C}{\sqrt{\hat{\sigma}^2 \left(\frac{1}{n_F} + \frac{1}{n_C}\right)}} = \frac{-0.035}{\sqrt{0.0430 \left(\frac{1}{4} + \frac{1}{5}\right)}} = -0.252$$

The analysis indicates that there is no evidence of curvature in the response over the region of exploration; that is, the null hypothesis H_0 : $\sum_{J=1}^{2} \beta_{jj} = 0$ cannot be rejected.

Table 7-14 Analysis for Example 7-4 Process Yield from Minitab

Factorial D	esign						
Full Factoria	al Design						
Factors:	2	Base De	sign:	2, 4			
Runs:	9	Replicates:		1			
Blocks:	none	Center pts (total):		5			
All terms ar	re free from ali	asing					
Fractional 1	Factorial Fit						
Estimated E	Effects and Coe	efficients fo	r y				
Term	Effe	ect	Coef	StDev Coef	T	P	
Constant			40.4444	0.06231	649.07	0.000	
A	1.55	00	0.7750	0.09347	8.29	0.000	
В	0.65	00	0.3250	0.09347	3.48	0.018	
A*B	-0.05	00	-0.0250	0.09347	-0.27	0.800	
Analysis of	Variance for y						
Source		DF	Seq SS	Adj SS	Adj MS	F	P
Main Effect	ts	2	2.82500	2.82500	1.41250	40.42	0.001
2-Way Interactions 1		1	0.00250	0.00250	0.00250	0.07	0.800
Residual Error 5		5	0.17472	0.17472	0.03494		
Curvature	e	1	0.00272	0.00272	0.00272	0.06	0.814
Pure Error 4		0.17200	0.17200	0.04300			
Total		8	3.00222				

EXAMPLE 7-4

Table 7-14 displays output from Minitab for this example. The effect of A is (41.5 + 40.9 - 40.0 - 39.3)/2 = 1.55, and the other effects are obtained similarly. The pure-error estimate (0.043) agrees with our previous result. Recall from regression modeling that the square of a t-ratio is an F-ratio. Consequently, Minitab uses $0.252^2 = 0.06$ as an F-ratio to obtain an identical test for curvature. The sum of squares for curvature is an intermediate step in the calculation of the F-ratio that equals the square of the t-ratio when the estimate of σ^2 is omitted. That is,

$$SS_{\text{Curvature}} = \frac{(\overline{y}_F - \overline{y}_C)^2}{\frac{1}{n_F} + \frac{1}{n_C}}$$
(7-18)

Furthermore, Minitab adds the sum of squares for curvature and for pure error to obtain the residual sum of squares (0.17472) with 5 degrees of freedom. The residual mean square (0.03494) is a pooled estimate of σ^2 , and it is used in the calculation of the *t*-ratio for the *A*, *B* and *AB* effects. The pooled estimate is close to the pure-error estimate in this example because curvature is negligible. If curvature were significant, the pooling would not be appropriate. The estimate of the intercept β_0 (40.444) is the mean of all nine measurements.

Response surface methodology, or RSM, is a collection of mathematical and statistical techniques that are useful for modeling and analysis in applications where a response of interest is influenced by several variables and the objective is to **optimize** this response. For example, suppose that a chemical engineer wishes to find the levels of temperature (x_1) and feed concentration (x_2) that maximize the yield (y) of a process. The process yield is a function of the levels of temperature and feed concentration—say,

$$Y = f(x_1, x_2) + \epsilon \tag{7-19}$$

where ϵ represents the noise or error observed in the response Y. If we denote the expected response by $E(Y) = f(x_1, x_2)$, the surface represented by $f(x_1, x_2)$ is called a **response surface**.

Figure 7-34 A three-dimensional response surface showing the expected yield as a function of temperature and feed concentration.

Figure 7-35 A contour plot of the yield response surface in Figure 7-34.

First-order model:

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k + \epsilon$$

Second-order model:

$$Y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i=1}^k \beta_{ii} x_i^2 + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$$

7-6.1 Method of Steepest Ascent

The **method of steepest ascent** is a procedure for moving sequentially along the path of steepest ascent—that is, in the direction of the maximum increase in the response. Of course, if **minimization** is desired, we are talking about the **method of steepest descent**. The fitted first-order model is

$$\hat{y} = \hat{\beta}_0 + \sum_{i=1}^k \hat{\beta}_i x_i \tag{7-21}$$

7-6.1 Method of Steepest Ascent

Figure 7-36 First-order response surface and path of steepest ascent.

7-6.1 Method of Steepest Ascent

Figure 7-37 Response surface plots for the first-order model of reaction time and temperature. (a) Contour plot. (b) Three-dimensional surface plot.

7-6.1 Method of Steepest Ascent

Point A: 40 minutes, 157° F, y = 40.5Point B: 45 minutes, 159° F, y = 51.3Point C: 50 minutes, 161° F, y = 59.6Point D: 55 minutes, 163° F, y = 67.1Point E: 60 minutes, 165° F, y = 63.6Point F: 65 minutes, 167° F, y = 60.7

Figure 7-38 Steepest ascent experiment for the first-order model of reaction time and temperature.

IMPORTANT TERMS AND CONCEPTS

2^k factorial design
2^{k-p} fractional factorial
design
Aliases

Blocking and confounding

Center points in a 2k

factorial design

Central composite design

Contour plot Factorial design

First-order model

Interaction

Interaction plot

Main effect of a factor

Method of steepest

ascent

Normal probability plot

of effects

Optimization

experiments Regression model

Residual analysis

Residuals

Response surface

Screening experiment

Second-order model

Sequential

experimentation