Unsupervised Clustering Evaluation Methods

Reference:

Javier B'ejar, AMLT - 2016/2017 Cluster Validation, Kent state university

Why do we need evaluation methods?

We can use such evaluation methods to:

- Avoid finding patterns in noise
- Compare different clustering algorithms
- Compare different sets of parameters used in the same algorithm
- Compare sets of clusters

Supervised Classification vs. Unsupervised Clustering

- When dealing with supervised classification problems we have a variety of measures to evaluate our models:
 - Accuracy
 - Precision
 - Recall

How can we evaluate the "goodness" of a clustering algorithm result?

Are there any real patterns in the data?

- Test the hypothesis of the existence of clusters in the data against a uniformly homogeneously distributed dataset
 - Hopkins Statistics:
 - Sample n points (p_i) from the dataset (D) uniformly and compute the distance from each point to its nearest neighbor in D $(d(p_i))$
 - Generate n points (q_i) uniformly distributed in the space of the dataset D, and compute the distance from each generated point to its nearest neighbor in the dataset $(d(q_i))$
 - Compute the Hopkins quotient:

$$H = \frac{\sum_{i=1}^{n} d(p_i)}{\sum_{i=1}^{n} d(p_i) + \sum_{i=1}^{n} d(q_i)}$$

• If points are uniformly distributed then the value of H should be around 0.5 (because the densities in the generated point's areas should be similar to those of the sampled point's areas)

How "good" are the clusters we found?

- There are 3 types of numerical measures used to judge the validity of the resulting clusters (called "criteria" or "indices"):
 - External Index: Used to measure the extent to which cluster match externally supplied labels (REQUIRES LABELS! wont be discussed)
 - Internal Index: Used to measure the quality of the resulting partitioning without any external data, can also be used to estimate the "real" number of clusters
 - Relative Index: Compare two different clustering structures (using the same distance measure) by comparing an internal index value computed from the 2 structures

Internal Indices

- Aims to measure 2 things:
 - "compactness" of the clusters
 - "separation" of the clusters
- Based on the model used
- Based on statistical properties of the attributes of the model:
 - Values distribution
 - Distances distribution

SSE Internal Index

We can use the Sum of Squared Errors to estimate the number of clusters

For example by using distances from each point to its cluster centroid

Correlation Internal Index

- Define 2 matrices:
 - Proximity matrix (n by n matrix, with the distance from point i to point j listed in cell I, j)
 - Incidence matrix (n by n matrix with cell i, j marked "1" if points i and j belong to the same cluster or "0" otherwise)
- Compute the correlation between the 2 matrices, with a high correlation indicating that points belonging to the same cluster are close to each other

Silhouette Internal Index

- For an individual point, I
 - Calculate a_i = average distance of i to the points in its cluster
 - Calculate b_i = min (average distance of i to points in another cluster)

$$S = \frac{1}{N} \sum_{i=0}^{N} \frac{b_i - a_i}{max(a_i, b_i)}$$

 Results are between -1 and 1, with results closer to 1 indicating a better clustering pattern