

Chapter 1

Digital Design and Computer Architecture, 2nd Edition

David Money Harris and Sarah L. Harris

Chapter 1 :: Topics

- Background
- The Game Plan
- The Art of Managing Complexity
- The Digital Abstraction
- Number Systems
- Logic Gates
- Logic Levels
- CMOS Transistors
- Power Consumption

Background

- Microprocessors have revolutionized our world
 - Cell phones, Internet, rapid advances in medicine, etc.
- The semiconductor industry has grown from \$21 billion in 1985 to \$306 billion in 2016

The Game Plan

Purpose of course:

- Understand what's under the hood of a computer
- Learn the principles of digital design
- Learn to systematically debug increasingly complex designs
- Design and build a microprocessor

The Art of Managing Complexity

- Abstraction
- Discipline
- The Three –y's
 - Hierarchy
 - Modularity
 - Regularity

Abstraction

- What is abstraction?
 - Hiding details when they are not important

 Electronic computer abstraction

Application >"hello programs Software world!" Operating device drivers **Systems** instructions Architecture registers datapaths Microcontrollers architecture adders memories Digital **AND** gates **NOT** gates Circuits Analog amplifiers Circuits filters transistors **Devices** diodes electrons **Physics**

Increasing Abstraction

focus of this course

Discipline

- Intentionally restrict design choices
- Example: Digital discipline
 - Discrete voltages instead of continuous
 - Simpler to design than analog circuits can build more sophisticated systems
 - Digital systems replacing analog predecessors:
 - i.e., digital cameras, digital television, cell phones, CDs

The Three -y's

Hierarchy

Modularity

Regularity

The Three -y's

Hierarchy

A system divided into modules and submodules

Modularity

Having well-defined functions and interfaces

Regularity

Encouraging uniformity, so modules can be easily reused

Example: The Flintlock Rifle

Hierarchy

- Three main modules: lock, stock, and barrel
- Submodules of lock: hammer, flint, frizzen, etc.

Example: The Flintlock Rifle

Modularity

- Function of stock:
 mount barrel and
 lock
- Interface of stock:
 length and location
 of mounting pins

Regularity

Interchangeable parts

The Digital Abstraction

- Most physical variables are continuous
 - Voltage on a wire
 - Frequency of an oscillation
 - Position of a mass
- Digital abstraction considers discrete subset of values

The Analytical Engine

- Designed by Charles
 Babbage from 1834 –

 1871
- Considered to be the first digital computer
- Built from mechanical gears, where each gear represented a discrete value (0-9)
- Babbage died before it was finished

Chapter 1 < 13 >

Digital Discipline: Binary Values

- Digital abstraction considers discrete subset of values
- Two discrete values:
 - 1's and 0's
 - -1 = TRUE = HIGH
 - -0 = FALSE = LOW
- How to represent 1 and 0:
 - voltage levels, rotating gears, fluid levels, etc.
- Digital circuits use voltage levels to represent 1 and 0
- Bit: Binary digit

Why Digital Systems?

- Easier to design
- Fast
- Can overcome noise
- Error detection/correction

George Boole, 1815-1864

- Born to working class parents
- Taught himself mathematics and joined the faculty of Queen's College in Ireland
- Wrote An Investigation of the Laws of Thought (1854)
- Introduced binary variables
- Introduced the three
 fundamental logic operations:
 AND, OR, and NOT

George Boole, 1815-1864

- Born to working class parents
- Taught himself mathematics and joined the faculty of Queen's College in Ireland
- Wrote An Investigation of the Laws of Thought (1854)
- Introduced binary variables
- Introduced the three fundamental logic operations: AND, OR, and NOT

ZE

Number Systems

- Decimal
 - Base 10
- Binary
 - Base 2
- Hexadecimal
 - Base 16

Review: Decimal Numbers

Base 10 (our everyday number system)

Review: Decimal Numbers

Base 10 (our everyday number system)

Decimal and Binary Numbers

Base 10 (our everyday number system)

$$5374_{10} = 5 \times 10^3 + 3 \times 10^2 + 7 \times 10^1 + 4 \times 10^0$$
five three seven four thousands hundreds tens ones

Base 2: Binary numbers

Decimal and Binary Numbers

Base 10 (our everyday number system)

$$5374_{10} = 5 \times 10^3 + 3 \times 10^2 + 7 \times 10^1 + 4 \times 10^0$$
five three seven four thousands hundreds tens ones

Base 2: Binary numbers

Base 2

Powers of Two

•
$$2^0 =$$

•
$$2^1 =$$

•
$$2^2 =$$

•
$$2^3 =$$

•
$$2^4 =$$

•
$$2^5 =$$

•
$$2^6 =$$

•
$$2^7 =$$

•
$$2^9 =$$

•
$$2^{10} =$$

•
$$2^{11} =$$

•
$$2^{12} =$$

•
$$2^{13} =$$

•
$$2^{14} =$$

•
$$2^{15} =$$

S

Powers of Two

•
$$2^0 = 1$$

•
$$2^1 = 2$$

•
$$2^2 = 4$$

•
$$2^3 = 8$$

•
$$2^4 = 16$$

•
$$2^5 = 32$$

•
$$2^6 = 64$$

•
$$2^7 = 128$$

•
$$2^8 = 256$$

•
$$2^9 = 512$$

•
$$2^{10} = 1024$$

•
$$2^{11} = 2048$$

•
$$2^{12} = 4096$$

•
$$2^{13} = 8192$$

•
$$2^{14} = 16384$$

•
$$2^{15} = 32768$$

Handy to memorize up to 2⁹

S

Powers of Two

•
$$2^0 = 1$$

•
$$2^1 = 2$$

•
$$2^2 = 4$$

•
$$2^3 = 8$$

•
$$2^4 = 16$$

•
$$2^5 = 32$$

•
$$2^6 = 64$$

•
$$2^7 = 128$$

•
$$2^8 = 256$$

•
$$2^9 = 512$$

•
$$2^{10} = 1024$$

•
$$2^{11} = 2048$$

•
$$2^{12} = 4096$$

•
$$2^{13} = 8192$$

•
$$2^{14} = 16384$$

•
$$2^{15} = 32768$$

Handy to memorize up to 2⁹

Binary to Decimal Conversion

- Binary to decimal conversion:
 - Convert 10011₂ to decimal

Binary to Decimal Conversion

- Binary to decimal conversion:
 - Convert 10011₂ to decimal
 - $-16\times1+8\times0+4\times0+2\times1+1\times1=19_{10}$

Decimal to Binary Conversion

Two methods:

- Method 1: Find the largest power of 2 that fits,
 subtract and repeat. (*Recommended* method)
- Method 2: Repeatedly divide by 2, remainder goes in next most significant bit

Decimal to Binary Conversion

Method 1: Find the largest power of 2 that fits, subtract and repeat.

53₁₀

Method 2: Repeatedly divide by 2, remainder goes in next most significant bit.

Decimal to Binary Conversion

Method 1: Find the largest power of 2 that fits, subtract and repeat.

$$5-4 = 1$$
 1×1

Method 2: Repeatedly divide by 2, remainder goes in next most significant bit.

$$53_{10} = 53/2 = 26 R1$$

$$26/2 = 13 R0$$

$$13/2 = 6$$
 R1

$$6/2 = 3 R0$$

$$3/2 = 1 R1$$

$$1/2 = 0 R1$$

Number Conversion

- Binary to decimal conversion:
 - Convert 11101₂ to decimal

- Decimal to binary conversion:
 - Convert 47₁₀ to binary

Number Conversion

Binary to decimal conversion:

- Convert 11101₂ to decimal
- $-16\times1+8\times1+4\times1+2\times0+1\times1=29_{10}$

Decimal to binary conversion:

- Convert 47₁₀ to binary
- $-32\times1+16\times0+8\times1+4\times1+2\times1+1\times1=101111_{2}$

Binary Values and Range

- N-digit decimal number
 - How many values?
 - Range?
 - Example: 3-digit decimal number:

- N-bit binary number
 - How many values?
 - Range:
 - Example: 3-digit binary number:

Binary Values and Range

N-digit decimal number

- How many values? 10ⁿ
- Range? $[0, 10^{N} 1]$
- Example: 3-digit decimal number:
 - $10^3 = 1000$ possible values
 - Range: [0, 999]

N-bit binary number

- How many values? 2^N
- Range: $[0, 2^N 1]$
- Example: 3-digit binary number:
 - 2³ = 8 possible values
 - Range: $[0, 7] = [000_2 \text{ to } 111_2]$

Binary Numbers

$$A: \{a_{N-1}, a_{N-2}, \dots a_1, a_0\}$$

$$A = \sum_{i=0}^{N-1} a_i 2^i$$

Example:

1101₂ =
$$1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

= $8 + 4 + 0 + 1$
= 13

ONE

Hexadecimal Numbers

Hex Digit	Decimal Equivalent	Binary Equivalent
0	0	
1	1	
2	2	
3	3	
4	4	
5	5	
6	6	
7	7	
8	8	
9	9	
A	10	
В	11	
С	12	
D	13	
Е	14	
F	15	

Hexadecimal Numbers

Hex Digit	Decimal Equivalent	Binary Equivalent
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
Е	14	1110
F	15	1111

Hexadecimal Numbers

- Base 16
- Shorthand for binary

Hexadecimal to Binary Conversion

- Hexadecimal to binary conversion:
 - Convert 4AF₁₆ (also written 0x4AF) to binary

- Hexadecimal to decimal conversion:
 - Convert 4AF₁₆ to decimal

Hexadecimal to Binary Conversion

- Hexadecimal to binary conversion:
 - Convert 4AF₁₆ (also written 0x4AF) to binary
 - **0100 1010 1111**₂

- Hexadecimal to decimal conversion:
 - Convert 4AF₁₆ to decimal

$$-4 \times 16^2 + A \times 16^1 + F \times 16^0$$

$$-4 \times 16^{2} + 10 \times 16^{1} + 15 \times 16^{0} = 1199_{10}$$

Bits, Bytes, Nibbles...

Bits

- msb: most significant bit
- **Isb:** least significant bit

10010110

most significant bit

least significant bit

Bytes & Nibbles

Bytes

- MSB: most significant byte
- LSB: least significant byte

10010110 nibble

1010001011100101

most significant byte

least significant byte

Bits, Bytes, Nibbles...

Bits

- msb: most significant bit
- **Isb:** least significant bit

10010110

most significant bit

least significant bit

Bytes & Nibbles

Bytes

- MSB: most significant byte
- LSB: least significant byte
- Each hex digit represents
 a nibble (4 bits)

10010110 nibble

CEBF9AD7

most significant byte

least significant byte

Large Powers of Two

•
$$2^{10} = 1$$
 kilo \approx thousand (1024)

•
$$2^{20} = 1 \text{ mega} \approx \text{million } (1,048,576)$$

•
$$2^{30} = 1$$
 giga \approx billion (1,073,741,824)

•
$$2^{40} = 1 \text{ tera} \approx \text{trillion} (1,099,511,627,776)$$

•
$$2^{50} = 1 \text{ peta} \approx 10^{15}$$

•
$$2^{60} = 1 \text{ exa} \approx 10^{18}$$

2

Large Powers of Two

- $2^{10} = 1 \text{ kilo (kibi)} \approx 10^3 (1024)$
- $2^{20} = 1 \text{ mega } (\text{mebi}) \approx 10^6 (1,048,576)$
- $2^{30} = 1 \text{ giga } (\mathbf{gibi}) \approx 10^9 (1,073,741,824)$
- $2^{40} = 1 \text{ tera (tebi)} \approx 10^{12}$
- $2^{50} = 1 \text{ peta (pebi)} \approx 10^{15}$
- $2^{60} = 1 \text{ exa } (exbi) \approx 10^{18}$

ONE

Large Powers of Two: Abbreviations

```
• 2^{10} = 1 kilo
                   ≈ 1000 (1024)
   kibibyte = 1 Ki
   for example: 1 KiB = 1024 Bytes
                   1 Kib = 1024 bits
• 2^{20} = 1 \text{ mega}
                   ≈ 1 million (1,048,576)
   mebibyte= 1 Mi
   for example:
                   1 MiB, 1 Mib (1 megabit)
• 2^{30} = 1 giga
                   ≈ 1 billion (1,073,741,824)
   gibibyte = 1 Gi
   for example:
                   1 GiB, 1 Gib
```


Estimating Powers of Two

What is the approximate value of 2²⁴?

 Approximately how many values can a 32-bit variable represent?

Estimating Powers of Two

What is the approximate value of 2²⁴?

$$2^4 \times 2^{20} \approx 16$$
 million

 Approximately how many values can a 32-bit variable represent?

$$2^2 \times 2^{30} \approx 4$$
 billion

First factor out the largest 2^{10x}. Then estimate.

ONE

Addition

Decimal

Binary

ONE

Addition

Decimal

Binary

Binary Addition Examples

 Add the following 4-bit binary numbers

Add the following
 4-bit binary
 numbers

Z 2

Binary Addition Examples

 Add the following 4-bit binary numbers

 Add the following 4-bit binary numbers

Binary Addition: Number of Bits

- The addition of two 4-bit values (inputs) gives a 4-bit result (output).
 - Any additional bits on the left are ignored (overflow!)
- Generally, addition of two nbit numbers gives an n-bit result.

Overflow

- Digital systems operate on a fixed number of bits
- Overflow: when result is too big to fit in the available number of bits
- See previous example of 11 + 6

Signed Binary Numbers

- Sign/Magnitude Numbers
- Two's Complement Numbers

- 1 sign bit, N-1 magnitude bits
- Sign bit is the most significant (left-most) bit
 - Positive number: sign bit = 0
 - Negative number: sign bit = 1

• Example, 4-bit sign/mag representations of ± 6:

Range of an N-bit sign/magnitude number:

- 1 sign bit, N-1 magnitude bits
- Sign bit is the most significant (left-most) bit
 - Positive number: sign bit = 0
 - Negative number: sign bit = 1

Example, 4-bit sign/mag representations of ± 6:

```
+6 = 0110
```

Range of an N-bit sign/magnitude number:

$$[-(2^{N-1}-1), 2^{N-1}-1]$$

- 1 sign bit, N-1 magnitude bits
- Sign bit is the most significant (left-most) bit
 - Positive number: sign bit = 0
 - Negative number: sign bit = 1

$$A:\{a_{N-1},a_{N-2},...a_1,a_0\}$$

$$A = (-1)^{a_{N-1}} \sum_{i=0}^{N-2} a_i 2^i$$

Example, 4-bit sign/mag representations of ± 6:

Range of an N-bit sign/magnitude number:

$$[-(2^{N-1}-1), 2^{N-1}-1]$$

Unsigned Binary Numbers

$$A: \{a_{N-1}, a_{N-2}, \dots a_1, a_0\}$$

$$A = \sum_{i=0}^{N-1} a_i 2^i$$

Example:

1101₂ =
$$1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

= $8 + 4 + 0 + 1$
= 13

$$A: \{a_{N-1}, a_{N-2}, \dots a_1, a_0\}$$

$$A = (-1)^{a_{N-1}} \sum_{i=0}^{N-2} a_i 2^i$$

Example:

1101₂ =
$$(-1)^1 \times (1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0)$$

= $-1 \times (4 + 0 + 1)$
= -5

• Problems:

– Addition doesn't work, for example -6 + 6:

1110

+ 0110

10100 (wrong!)

- Two representations of 0 (\pm 0):

1000

0000

- Don't have same problems as sign/magnitude numbers:
 - Addition works
 - Single representation for 0

- Most significant bit (msb) has value of -2^{N-1}
- For example, a 4-bit 2's complement number:

$$-2^3$$
 2^2 2^1 2^0

- Most significant bit (msb) has value of -2^{N-1}
- For example, a 4-bit 2's complement number:

$$\frac{1}{-2^3} \quad \frac{0}{2^2} \quad \frac{1}{2^1} \quad \frac{1}{2^0}$$

$$\frac{1}{-8} \quad \frac{0}{4} \quad \frac{1}{2} \quad \frac{1}{1}$$

Value =
$$-8 + 2 + 1 = -5$$

(We'll show another way to find this value in a moment.)

- msb has value of -2^{N-1}
- Most positive 4-bit number:
- Most negative 4-bit number:
- The most significant bit still indicates the sign (1 = negative, 0 = positive)
- Range of an N-bit two's complement number:

- msb has value of -2^{N-1}
- Most positive 4-bit number: 0111
- Most negative 4-bit number: 1000
- The most significant bit still indicates the sign (1 = negative, 0 = positive)
- Range of an N-bit two's complement number:

$$[-(2^{N-1}), 2^{N-1}-1]$$

Unsigned Binary Numbers

$$A: \{a_{N-1}, a_{N-2}, \dots a_1, a_0\}$$

$$A = \sum_{i=0}^{N-1} a_i 2^i$$

Example:

1101₂ =
$$1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

= $8 + 4 + 0 + 1$
= 13

$$A: \{a_{N-1}, a_{N-2}, \dots a_1, a_0\}$$

$$A = a_{N-1}(-2^{N-1}) + \sum_{i=0}^{N-2} a_i 2^i$$

Example:

1101₂ =
$$\mathbf{1} \times (-2^3) + \mathbf{1} \times 2^2 + \mathbf{0} \times 2^1 + \mathbf{1} \times 2^0$$

= $-\mathbf{8}$ + $\mathbf{4}$ + $\mathbf{0}$ + $\mathbf{1}$
= -3

"Taking the Two's Complement"

- Flips the sign of a two's complement number.
 - It makes a positive number negative.
 - It makes a negative number positive.

Method:

- Invert the bits
- 2. Add 1

"Taking the Two's Complement"

- Flips the sign of a two's complement number.
- Method:
 - 1. Invert the bits
 - 2. Add 1
- Example: Flip the sign of $3_{10} = 0011_2$
 - 1. 1100

$$2. + 1 \over 1101 = -3_{10}$$

Two's Complement Examples

Take the two's complement of $6_{10} = 0110_2$

Two's Complement Examples

Take the two's complement of $6_{10} = 0110_2$

- 1. 1001
- $2. \quad \frac{+ \quad 1}{1010_2} = -6_{10}$

Two's Complement Examples

What is the decimal value of the two's complement number 1001₂?

Two's Complement Examples

What is the decimal value of the two's complement number 1001₂?

- We know it's negative (msb = 1)
- Figure out magnitude by flipping the sign (i.e., "taking the two's complement")
 - 1. 0110
 - 2. + 1 0111₂ = 7₁₀
- So, we know it's a negative number with magnitude 7.
- Thus, $1001_2 = -7_{10}$

Taking the two's complement is the second (and **recommended**) way of figuring out the value of a negative two's complement number.

Two's Complement Addition

 Add 6 + (-6) using two's complement numbers

Add -2 + 3 using two's complement numbers

Two's Complement Addition

Add -2 + 3 using two's complement numbers

Increasing Bit Width

- Extend number from N to M bits (M > N):
 - Sign-extension
 - Zero-extension

Sign-Extension

- Sign bit copied to msb's
- Number value is same

Example 1:

- 4-bit representation of 3 = 0011
- 8-bit sign-extended value: 00000011

Example 2:

- 4-bit representation of -5 = 1011
- 8-bit sign-extended value: 11111011

Zero-Extension

- Zeros copied to msb's
- Value changes for negative numbers

Example 1:

4-bit value =

$$0011_2 = 3_{10}$$

- 8-bit zero-extended value: $00000011 = 3_{10}$

Example 2:

4-bit value =

$$1011 = -5_{10}$$

- 8-bit zero-extended value: $00001011 = 11_{10}$

Number System Comparison

Number System	Range
Unsigned	$[0, 2^N-1]$
Sign/Magnitude	$[-(2^{N-1}-1), 2^{N-1}-1]$
Two's Complement	$[-2^{N-1}, 2^{N-1}-1]$

For example, 4-bit representation:

George Boole, 1815-1864

- Born to working class parents
- Taught himself mathematics and joined the faculty of Queen's College in Ireland
- Wrote An Investigation of the Laws of Thought (1854)
- Introduced binary variables
- Introduced the three fundamental logic operations: AND, OR, and NOT

Logic Gates

- Perform logic functions:
 - inversion (NOT), AND, OR, NAND, NOR, etc.
- Single-input:
 - NOT gate, buffer
- Two-input:
 - AND, OR, XOR, NAND, NOR, XNOR
- Multiple-input

Single-Input Logic Gates

NOT

$$Y = \overline{A}$$

BUF

$$Y = A$$

Single-Input Logic Gates

NOT

$$Y = \overline{A}$$

BUF

$$Y = A$$

Α	Y
0	0
1	1

Two-Input Logic Gates

AND

$$Y = AB$$

Α	В	Y
0	0	
0	1	
1	0	
1	1	

OR

$$Y = A + B$$

A	В	Y
0	0	
0	1	
1	0	
1	1	

Two-Input Logic Gates

AND

$$Y = AB$$

A	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

OR

$$Y = A + B$$

A	В	Y
0	0	0
Ο	1	1
1	0	1
1	1	1

More Two-Input Logic Gates

XOR

$$Y = A \oplus B$$

Α	В	Y
0	0	
0	1	
1	0	
1	1	

NAND

$$Y = \overline{AB}$$

Α	В	Y
0	0	
0	1	
1	0	
1	1	

NOR

$$Y = \overline{A + B}$$

_A	В	Y
0	0	
0	1	
1	0	
1	1	

XNOR

$$Y = \overline{A \oplus B}$$

A	В	Y
0	0	
0	1	
1	0	
1	1	

More Two-Input Logic Gates

XOR

$$Y = A \oplus B$$

_ <i>A</i>	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

NAND

$$Y = \overline{AB}$$

Α	В	Y
0	0	1
0	1	1
1	0	1
1	1	0

NOR

$$Y = \overline{A + B}$$

_A	В	Y
0	0	1
0	1	0
1	0	0
1	1	0

XNOR

$$Y = \overline{A \oplus B}$$

_	Α	В	Y
	0	0	1
	0	1	0
	1	0	0
	1	1	1

Multiple-Input Logic Gates

NOR3

$$Y = \overline{A + B + C}$$

Α	В	С	Y
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

AND3

$$Y = ABC$$

Α	В	С	Y
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Multiple-Input XOR

XOR3

$$Y = A \oplus B \oplus C$$

<u> </u>	В	С	Y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

• Multi-input XOR: Odd parity – the output is 1 when an **odd** number of inputs is 1.

Logic Levels

- Discrete voltages represent 1 and 0
- For example:
 - -0 = ground (GND) or 0 volts
 - $-1 = V_{DD}$ or 5 volts
- What about 4.99 volts? Is that a 0 or a 1?
- What about 3.2 volts?

Logic Levels

- Range of voltages for 1 and 0
- Different ranges for inputs and outputs to allow for noise

ONE

What is Noise?

What is Noise?

- Anything that degrades the signal
 - E.g., resistance, power supply noise, coupling to neighboring wires, etc.
- Example: a gate (driver) outputs 5 V but, because of resistance in a long wire, receiver gets 4.5 V

The Static Discipline

 With logically valid inputs, every circuit element must produce logically valid outputs

 Use limited ranges of voltages to represent discrete values

Logic Levels

Noise Margins

SE

DC Transfer Characteristics

Ideal Buffer:

Real Buffer:

 $NM_H = NM_L = V_{DD}/2$

 NM_H , $NM_L < V_{DD}/2$

DC Transfer Characteristics

2

V_{DD} Scaling

- In 1970's and 1980's, $V_{DD} = 5 \text{ V}$
- V_{DD} has dropped
 - Avoid frying tiny transistors
 - Save power
- 3.3 V, 2.5 V, 1.8 V, 1.5 V, 1.2 V, 1.0 V, ...
- Be careful connecting chips with different supply voltages

Chips operate because they contain magic smoke.

Proof: if the magic smoke is let out, the chip stops working

Logic Family Examples

Logic Family	V_{DD}	$V_{I\!L}$	$V_{I\!H}$	V _{OL}	V_{OH}
TTL	5 (4.75 - 5.25)	0.8	2.0	0.4	2.4
CMOS	5 (4.5 - 6)	1.35	3.15	0.33	3.84
LVTTL	3.3 (3 - 3.6)	0.8	2.0	0.4	2.4
LVCMOS	3.3 (3 - 3.6)	0.9	1.8	0.36	2.7

Transistors

- Logic gates built from transistors
- 3-ported voltage-controlled switch
 - 2 ports connected depending on voltage of 3rd
 - d and s are connected (ON) when g is 1

Robert Noyce, 1927-1990

- Nicknamed "Mayor of Silicon Valley"
- Cofounded Fairchild
 Semiconductor in 1957
- Cofounded Intel in 1968
- Co-invented the integrated circuit

Silicon

- Transistors built from silicon, a semiconductor
- Pure silicon is a poor conductor (no free charges)
- Doped silicon is a good conductor (free charges)
 - n-type (free negative charges, electrons)
 - p-type (free positive charges, holes)

MOS Transistors

Metal oxide silicon (MOS) transistors:

- Polysilicon (used to be metal) gate
- Oxide (silicon dioxide) insulator
- Doped silicon

nMOS

Transistors: nMOS

Gate = 0

OFF (no connection between source and drain)

Gate = 1

ON (channel between source and drain)

Transistors: pMOS

- pMOS transistor is opposite
 - ON when Gate = 0
 - OFF when Gate = 1

Transistor Function

nMOS

pMOS

Transistor Function

 nMOS: pass good 0's, so connect source to GND

pMOS: pass good 1's, so connect source to

 V_{DD}

CMOS Gates: NOT Gate

NOT

$$Y = \overline{A}$$

\boldsymbol{A}	P1	N1	Y
0			
1			

CMOS Gates: NOT Gate

NOT

$$Y = \overline{A}$$

\boldsymbol{A}	P1	N1	Y
0	ON	OFF	1
1	OFF	ON	0

CMOS Gates: NAND Gate

NAND

$$Y = \overline{AB}$$

Α	В	Y
0	0	1
0	1	1
1	0	1
1	1	0

\boldsymbol{A}	B	P1	P2	N1	N2	Y
0	0					
0	1					
1	0					
1	1					

CMOS Gates: NAND Gate

NAND

$$Y = \overline{AB}$$

Α	В	Υ
0	0	1
0	1	1
1	0	1
1	1	0

\boldsymbol{A}	B	P1	P2	N1	N2	Y
0	0	ON	ON	OFF	OFF	1
0	1	ON	OFF	OFF	ON	1
1	0	OFF	ON	ON	OFF	1
1	1	OFF	OFF	ON	ON	0

CMOS Gate Structure

NOR Gate

How do you build a three-input NOR gate?

NOR3 Gate

Other CMOS Gates

How do you build a two-input AND gate?

AND2 Gate

- CMOS is better at building inverting gates (i.e., NAND, NOR, etc.)
- They require fewer transistors

S

Transmission Gates

- nMOS pass 1's poorly
- pMOS pass 0's poorly
- Transmission gate is a better switch
 - passes both 0 and 1 well
- When EN = 1, the switch is ON:
 - -EN = 0 and A is connected to B
- When EN = 0, the switch is OFF:
 - A is not connected to B

Pseudo-nMOS Gates

- Replace pull-up network with weak pMOS transistor that is always on
- pMOS transistor: pulls output HIGH only when nMOS network not pulling it LOW

Pseudo-nMOS Example

Pseudo-nMOS NOR4

Gordon Moore, 1929-

- Cofounded Intel in 1968 with Robert Noyce.
- Moore's Law: number of transistors on a computer chip doubles every year (observed in 1965)
- Since 1975, transistor counts have doubled every two years.

Moore's Law

• "If the automobile had followed the same development cycle as the computer, a Rolls-Royce would today cost \$100, get one million miles to the gallon, and explode once a year . . ."

Robert Cringley

Power Consumption

- Power = Energy consumed per unit time
 - Dynamic power consumption
 - Static power consumption

Dynamic Power Consumption

- Power to charge transistor gate capacitances
 - Energy required to charge a capacitance, C, to V_{DD} is CV_{DD}^2
 - Circuit running at frequency f: transistors switch (from 1 to 0 or vice versa) at that frequency
 - Capacitor is charged f/2 times per second (discharging from 1 to 0 is free)
- Dynamic power consumption:

$$P_{dynamic} = \frac{1}{2}CV_{DD}^2 f$$

Static Power Consumption

- Power consumed when no gates are switching
- Caused by the quiescent supply current, I_{DD}
 (also called the leakage current)
- Static power consumption:

$$P_{static} = I_{DD}V_{DD}$$

Total Power Consumption

Dynamic power + static power

$$P_{total} = P_{static} + P_{dynamic}$$

Power Consumption Example

Estimate the power consumption of a wireless handheld computer

$$-V_{DD} = 1.2 \text{ V}$$

$$- C = 20 \text{ nF}$$

$$-f = 1 \text{ GHz}$$

$$-I_{DD} = 20 \text{ mA}$$

N

Power Consumption Example

Estimate the power consumption of a wireless handheld computer

$$-V_{DD} = 1.2 \text{ V}$$

$$- C = 20 \text{ nF}$$

$$-f = 1 \text{ GHz}$$

$$-I_{DD} = 20 \text{ mA}$$

$$P = \frac{1}{2}CV_{DD}^{2}f + I_{DD}V_{DD}$$

$$= \frac{1}{2}(20 \text{ nF})(1.2 \text{ V})^{2}(1 \text{ GHz}) + (20 \text{ mA})(1.2 \text{ V})$$

 $= (14.4 + 0.024) W \approx 14.4 W$

