Geometry/Topology Qualifying Exam Spring 2005 [Auckly & Yetter]

Solve as many of the following problems as you can. Start each problem on a new sheet of paper. Good luck!

- **1.** A set $A \subseteq X$ is called a retract if there is a continuous map $r: X \to A$ so that $r|_{A} = id_{A}$.
 - a) Prove that [-1,1] is a retract of \mathbb{R} .
 - **b)** Prove that no proper subset of S^2 is a retract of S^2 . Hint: If $A \subset S^2 \setminus \{p\}$ is a retract of S^2 , it is a retract of $S^2 \setminus \{p\}$.
- **2.** Let X be the CW complex described by:

0-cells: p_1, p_2

1-cells:
$$A_1, A_2, A_3: \partial A_1 = p_1 p_1^{-1}, \partial A_2 = p_2 p_2^{-1}, \partial A_3 = p_2 p_1^{-1}$$

2-cells:
$$F_1, F_2, F_3$$
; $\partial F_1 = A_1^3$, $\partial F_2 = A_2$, $\partial F_3 = A_2$.

Compute $\pi_1(X)$, $H_*(X)$, and $H_*(X \times T^2)$.

3. Let $\psi: (0, \infty) \times (0, 2\pi) \times (0, \pi) \to \mathbb{R}^3$; $\psi(r, \theta, \varphi) = (r \sin \varphi \cos \theta, r \sin \varphi \sin \theta, r \cos \varphi)$ $\omega = z dx \wedge dy - \frac{1}{2} x dy \wedge dz$ $X = r \cos \theta \partial_{\varphi}, \quad Y = r^2 \partial_{\theta}$

Compute:

a)
$$d\omega$$

b)
$$\psi_* X|_{(r_0,\theta_0,\varphi_0)}$$

$$d) [X, Y]$$

c)
$$\psi^*\omega$$

e)
$$\int_{f^{-1}(1)}^{\cdot} \omega$$

where $f: \mathbb{R}^3 \to \mathbb{R}$; $f(x, y, z) = x^2 + \frac{y^2}{4} + \frac{z^2}{9}$ and $f^{-1}(1)$ is oriented by $i_{grad(f)}dx \wedge dy \wedge dz$. (Do this in two ways, directly and by Stokes' theorem.)

4. Prove that a closed subspace of a normal space is normal.

- **5.** Let $p: \widetilde{X} \to X$ be the universal covering. Prove that $\pi_2(p): \pi_2(\widetilde{X}) \to \pi_2(X)$ is an isomorphism.
- **6.** Let M be a compact smooth orientable n-manifold without boundary. Show that for any (n-1)-form ω on M there exists a point $p \in M$ such that $d\omega(p) = 0$.
- 7. Prove "The Stack of Records Theorem": If y is a regular value of a smooth map $f: X \to Y$ where X is compact and X and Y are smooth manifolds of the same dimension, then $f^{-1}(y)$ is a finite subset $\{x_1, \ldots, x_n\}$ of X, and there exists an open neighborhood U of y such that $f^{-1}(U)$ is a disjoint union of open sets V_i for $i = 1, \ldots, n$ in X and, for each $i, x_i \in V_i$ and $f|_{V_i}$ is a diffeomorphism with U.
- **8.** Show that if \mathbb{R}^n with its usual topology is also regarded as a group under vector addition, then the quotient group $\mathbb{R}^n/\mathbb{Z}^n$ is an n-manifold when given the quotient topology.