

FCC TEST REPORT

For

Autel Intelligent Tech. Corp., Ltd. Wireless Diagnostic Interface

Model No.: MaxiAP AP200, HyperTough HT200

Prepared For : Autel Intelligent Tech. Corp., Ltd.

Address : 6th - 10th Floor, Bldg. B1, Zhiyuan, Xueyuan Rd., Xili, Nanshan,

Shenzhen, China, 518055

Prepared By : Shenzhen Anbotek Compliance Laboratory Limited

Address : 1/F, Building D, Sogood Science and Technology Park, Sanwei

community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong,

China.518102

Tel: (86) 755-26066440 Fax: (86) 755-26014772

Report Number : SZAWW180607002-01

Date of Test : Jun. 13~23, 2018

Date of Report : Jun. 23, 2018

Contents

1. General Information	0010	Vu.	,botek	Anbo	b. rek	,.5
1.1. Client Information	Kupotek	Anbo	Motek.	Mapore,	Anu Tok	5
1.2 Description of Device (EUT)						5
1.3. Auxiliary Equipment Used Dur 1.4. Description of Test Modes 1.5. List of channels	ring Test	10 dry 10	ek Anbo		k hupote	5
1.4. Description of Test Modes	Ambo		otek pub	Dr. Pills		.o.tek
1.5. List of channels	1.4 H	por An		nbotek Anl		7
1.6 Description Of Test Setup						8
1.7. Test Equipment List	······	, stek	- Anboro	An. Stek	hotek	9
1.8. Measurement Uncertainty	Anbore	VIII.	Copoten.	Anbe	r wotek	10
1.8. Measurement Uncertainty 1.9. Description of Test Facility	appoter.	Anda	y otek	Anbolo	A.	10
2 Summary of Test Results						11
3. Conducted Emission Test	# bo.		oter Anb		atek Anb	12
3.1. Test Standard and Limit	An	W	wołek A	hoor Am	Yay	12
3.2. Test Setup	otek	Aupor	br.	anboter !	YUD	12
3.3. Test Procedure	uotek.	*upote.	Anb	,otek	Anbote	12
3.4 Test Data						12
4. Radiation Spurious Emission and Ban 4.1. Test Standard and Limit	ıd Edge			Amb	6 John John	17
4.1. Test Standard and Limit	*dodna	VUP.	ادري المساحي	iek Aupor		17
4.2. Test Setup	6	ootek Anb	10. by	das Yalan	ofer And	17
4.3. Test Procedure		,otek	upote, Vi		,botek A	18
4.2. Test Setup	of to	Yur OK	hotek	Aupor	16k	19
5 Maximum Peak Output Power Test						26
5.1. Test Standard and Limit	- botek	Anbore	Am. Mak	,,botek	Anbo	26
5.2. Test Setup	NI.	k wpote	Anbe	wotel	Aupore	26
5.2. Test Setup	Anbo	V	otek Anbol	A.C.	000 Hay	26
5.4. Test Data	Anb	101. VIII.		poten Aup.	·····	26
6. 20DB Occupy Bandwidth Test	, tek	Mpore. P	(Ur	4910,00	upote Ar	
6.1. Test Standard	کلایی	wotek.	Anbor	Pri.	Vipofer.	
6.2. Test Setup	upor	by.	Mpoter	Anbe	- Jolek	30
b.3. Test Procedure		Anu	. "otek	Anbor	by. Wek	30
6.4 Test Data						30
7. Carrier Frequency Separation Test 7.1. Test Standard and Limit	bo.	otek popo	And And		tek Vupo,	34
7.1. Test Standard and Limit	Anv		wotek An	DO. DI.		34
7.2 Test Setup						3/
7.3. Test Procedure	wolek	Anbole,	Anv	, potek	Anbor	34
7.4. Test Data	, vok	botek	Anbo	Ar. Lek	anboter	34
8. Number of Hopping Channel Test 8.1. Test Standard and Limit	Anbo	h wetek	Anboter	Aun 10k	, Hotek	38
8.1. Test Standard and Limit	Anbore.	An	oto Yaz	Anbo.		38
8.2. Test Setup	, , bc	ster Anbo	be.	otek pobol	In. WUD.	38
8.3. Test Procedure						20
						50
8.2. Test Setup	k _i	14 Yası		, nbokali	p	38

FCC ID: WQ82018MAXIAP

9.1. Test Standard and Limit	anbotek An	/p. /k	potek	40 40
9.2. Test Setup	Potek	Anbole An	, , , , , , , , , , , , , , , , , , ,	4(
9.3. Test Procedure	All." utek	Pupotek	Anbo	40
9.4. Test Data	Anb	botek	Anbore	40
10. 100kHz Bandwidth of Frequency Band Edge Requirer	nent	y notek	AUDOte.	44
10.1. Test Standard and Limit	otek Anbot	Am	dy,,	44
10.2. Test Setup		ootek Anbo		44
10.3. Test Procedure	Aupr	note ^k An	oole p	44
10.4. Test Data	Anbore	Alia.	Anhotek	44
11. Antenna Requirement	, hooten	Anbo	L. aotek	49
11.1. Test Standard and Requirement		Anbore	Y.,.	49
11.2. Antenna Connected Construction		K Whoter	Anbe	49
APPENDIX I TEST SETUP PHOTOGRAPH	poter And		k Anb	50
APPENDIX II EXTERNAL PHOTOGRAPH		or bu	4970	,::
APPENDIX III INTERNAL PHOTOGRAPH	br.	aboter Ani		55

TEST REPORT

Applicant : Autel Intelligent Tech. Corp., Ltd.

Manufacturer : Autel Intelligent Tech. Corp., Ltd.

Product Name : Wireless Diagnostic Interface

Model No. : MaxiAP AP200, HyperTough HT200

Trade Mark : AUTEL

Rating(s) : Input: DC 12V, 0.1A

Test Standard(s) : FCC Part15 Subpart C 2017, Section 15.247

Test Method(s) : **ANSI C63.10: 2013**

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart C requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Prepared by

(Engineer / Oliay Yang)

Reviewer

(Supervisor / Calvin Liu)

Approved & Authorized Signer

(Manager / Tom Chen)

1. General Information

1.1. Client Information

Applicant	:	Autel Intelligent Tech. Corp., Ltd.
Address	:	6th - 10th Floor, Bldg. B1, Zhiyuan, Xueyuan Rd., Xili, Nanshan, Shenzhen, China, 518055
Manufacturer	:	Shenzhen Junlan Electronic Ltd
Address	:	6th - 10th Floor, Bldg. B1, Zhiyuan, Xueyuan Rd., Xili, Nanshan, Shenzhen, China, 518055

1.2. Description of Device (EUT)

Product Name	:	Wireless Diagnostic Interface	notek Anboten Anbo tek nbotek
Model No.	:	MaxiAP AP200, HyperTough H' (Note: All samples are the same for test only.)	T200 except the name, so we prepare "MaxiAP AP200"
Trade Mark	:	AUTEL	ek Anbotek Anbo
Test Power Supply	:	AC 240V, 60Hz for adapter/ AC	120V, 60Hz for adapter
		Operation Frequency:	2402MHz~2480MHz
		Transfer Rate:	1/2/3 Mbits/s
Product Description		Number of Channel:	79 Channels
	:	Modulation Type:	GFSK, π/4-DQPSK, 8-DPSK
		Antenna Type:	PCB Antenna
		Antenna Gain(Peak):	1.63 dBi

Remark: 1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2) This report is for BDR&EDR.

1.3. Auxiliary Equipment Used During Test

N/A		Anbor	br.	stek .	nboten	Anbe	hotek	Anbore

1.4. Description of Test Modes

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode			I	Descriptio	n		
Mode 1	botek p	anboten	Aupo	CH00	Anbotek	Anbore.	An
Mode 2	abotek	Anbotek	V Aup	СН39	Anbotek	Anboto	k B
Mode 3	hotek	Anbote	-K	CH78	Anbotek	Anbote	Yes
Mode 4	Anbotel	»K	Leeping T	TX+ Char	ging Mode	rek Vup.	_+e

	For Conducted Emission
Final Test Mode	Description
Mode 4	Keeping TX+ Charging Mode

	For Radiated Emission				
Final Test Mode	Description				
Mode 1	K hotek Anbote CH00 And tek obotek A				
Mode 2	CH39				
Mode 3	CH78				
Mode 4	Keeping TX+ Charging Mode				

Note:

- (1) The measurements are performed at the highest, middle, lowest available channels.
 - (2) The data rate was set in 1Mbps for radiated emission due to the highest RF output power.

1.5. List of channels

Channel	Freq.	Channel	Freq.	Channel	Freq.	Channel	Freq.	Channel	Freq.
	(MHz)		(MHz)		(MHz)		(MHz)		(MHz)
00	2402	Anb 17	2419	34	2436	51	2453	68	2470
01	2403	18otek	2420	35	2437	52	2454	69	2471
02	2404	19	2421	36	2438	53	2455	70	2472
03	2405	20	2422	37	2439	54	2456	71	2473
04 otek	2406	21	2423	38	2440	55	2457	72	2474
05	2407	22	2424	39	2441	56	2458	73	2475
05×100	2408	23	2425	40	2442	57	2459	74	2476
10 N	2409	24	2426	41 Anio	2443	58	2460	75	2477
08	2410	25	2427	42	2444	59	2461	76	2478
09	2411	26	2428	43	2445	60	2462	ote ^K 77	2479
10	2412	27	2429	44	2446	61	2463	78	2480
phPoto.	2413	28	2430	45	2447	62	2464	277	1001
12	2414	29	2431	46	2448	63	2465		
13	2415	30	2432	47	2449	64	2466		
14	2416	31	2433	48	2450	65	2467	Mark Market	otel
15	2417	32	2434	49	2451	66	2468		سننسب
16	2418	33	2435	50	2452	67	2469		1010

Note:

- 1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.
- 2. EUT built-in battery-powered, fully-charged battery use of the test battery.

1.6. Description Of Test Setup

RE

1.7. Test Equipment List

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
o ^{tek} L nbo ^{tek}	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	Nov. 17, 2017	1 Year
2.00	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	Nov. 17, 2017	1 Year
3. 🕸	RF Switching Unit	Compliance Direction	RSU-M2	38303	Nov. 17, 2017	1 Year
4.	Spectrum Analysis	Agilent	E4407B	US39390582	Nov. 17, 2017	1 Year
5.	Spectrum Analysis	Agilent	N9038A	MY53227295	Nov. 17, 2017	1 Year
6.	Preamplifier	SKET Electronic	BK1G18G30D	KD17503	Nov. 17, 2017	1 Year
17.	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	Nov. 17, 2017	1 Year
8.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Nov. 20, 2017	1 Year
9.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Nov. 20, 2017	1 Year
10.	Loop Antenna	Schwarzbeck	HFH2-Z2	100047	Nov. 17, 2017	1 Year
A1.	Horn Antenna	Schewarzbeck	BBHA9170	9170-375	Nov. 17, 2017	1 Year
12.	Pre-amplifier	SONOMA	310N	186860	Nov. 17, 2017	1 Year
13.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A
14.	RF Test Control System	YIHENG	YH3000	2017430	Nov. 18, 2017	1 Year
15.	Power Sensor	DAER	RPR3006W	15I00041SN045	Nov. 17, 2017	1 Year
16.	Power Sensor	DAER	RPR3006W	15I00041SN046	Nov. 17, 2017	1 Year
17.	MXA Spectrum Analysis	Agilent	N9020A	MY51170037	Nov. 18, 2017	1 Year
18.	MXG RF Vector Signal Generator	Agilent	N5182A	MY48180656	Nov. 18, 2017	1 Year
19.	Signal Generator	Agilent	E4421B	MY41000743	Nov. 18, 2017	1 Year
20.	DC Power Supply	Anbote LW Anbox	TPR-6410D	349315	Nov. 01, 2017	1 Year
21.	Constant Temperature Humidity Chamber	Sertep	ZJ-HWHS80B	ZJ-17042804	Nov. 01, 2017	1 Year

1.8. Measurement Uncertainty

Radiation Uncertainty	:	Ur = 3.8 dB (Horizontal)	Anbotek	Anbore An.
		Ur = 3.9 dB (Vertical)	Anbotek	Aupor Au
		Anbotek Anbote And botek	Anbotek	Anbo. tek
Conduction Uncertainty	:	Uc = 3.4 dB	itek Anbo	tek Anbo

1.9. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 184111

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 184111, July 31, 2017.

ISED-Registration No.: 8058A-1

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A-1, June 13, 2016.

Test Location

All Emissions tests were performed at Shenzhen Anbotek Compliance Laboratory Limited. at 1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.518102

2. Summary of Test Results

Standard Section	Test Item	Result
15.203/15.247(c)	Antenna Requirement	PASS
15.207	Conducted Emission	PASS
15.205/15.209	Spurious Emission	PASS
15.247(b)(1)	Conducted Peak Output Power	PASS
15.247(a)(1)	20dB Occupied Bandwidth	PASS
15.247(a)(1)	Carrier Frequencies Separation	PASS
15.247(a)(1)	Hopping Channel Number	PASS
15.247(a)(1)	Dwell Time	PASS
15.247(d)	Band Edge	PASS

3. Conducted Emission Test

3.1. Test Standard and Limit

Test Standard	FCC Part15 Section 15.20	07 Anbore America	Anbotek Anbo tek				
Test Limit	Γ	Maximum RF Line Voltage (dBuV)					
	Frequency	Quasi-peak Level	Average Level				
	150kHz~500kHz	66 ~ 56 *	56 ~ 46 *				
	500kHz~5MHz	56 box	46				
	5MHz~30MHz	60	botek 50 bote Ar				

Remark: (1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequency.

3.2. Test Setup

3.3. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC ANSI C63.10-2013 on Conducted Emission Measurement.

The bandwidth of test receiver (ESCI) set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

3.4. Test Data

Please to see the following pages

Test Site: 1# Shielded Room

Operating Condition: Keeping TX+ Charging Mode
Test Specification: AC 240V, 60Hz for adapter

Comment: Live Line

Tem.: 24.7℃ Hum.: 51%

1.9220

24.6460

11

12

-2.76

12.74

17.38

33.02

46.00

60.00

20.14

20.28

Test Site: 1# Shielded Room

Operating Condition: Keeping TX+ Charging Mode
Test Specification: AC 240V, 60Hz for adapter

Comment: Neutral Line

Tem.: 24.7℃ Hum.: 51%

-28.62

-26.98

AVG

QP

Test Site: 1# Shielded Room

Operating Condition: Keeping TX+ Charging Mode
Test Specification: AC 120V, 60Hz for adapter

Comment: Live Line

Tem.: 24.7℃ Hum.: 51%

Test Site: 1# Shielded Room

Operating Condition: Keeping TX+ Charging Mode
Test Specification: AC 120V, 60Hz for adapter

Comment: Neutral Line

Tem.: 24.7℃ Hum.: 51%

4. Radiation Spurious Emission and Band Edge

4.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.20	99 and 15.205			
	Frequency (MHz)	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
	0.009MHz~0.490MHz	2400/F(kHz)	tek Anbor	ek Ali	300
	0.490MHz-1.705MHz	24000/F(kHz)	nbotek Anbo	rek vo	30 MOON
	1.705MHz-30MHz	30	Aupotek A	lpo. Vek	obotek 30 Anbi
Test Limit	30MHz~88MHz	100	40.0	Quasi-peak	Moore 3
	88MHz~216MHz	150	43.5	Quasi-peak	Anb3 ^{tek}
	216MHz~960MHz	200	46.0	Quasi-peak	3 notes
	960MHz~1000MHz	500	54.0	Quasi-peak	tek 3 Anbote
	A1 1000MH	500	54.0	Average	botek 3 Anbo
	Above 1000MHz	Ann hotek	74.0	Peak	abote 3

Remark:

- (1)The lower limit shall apply at the transition frequency.
- (2) 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

4.2. Test Setup

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

4.3. Test Procedure

For below 1GHz: The EUT is placed on a turntable, which is 0.8m above the ground plane.

For above 1GHz: The EUT is placed on a turntable, which is 1.5m above the ground plane.

The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Rotated the EUT through three orthogonal axes to determine the maximum emissions, both horizontal and vertical polarization of the antenna are set on test. The EUT is tested in 9*6*6 Chamber. The device is evaluated in xyz orientation.

For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying

aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

For 9kHz to 150kHz, Set the spectrum analyzer as:

RBW = 200Hz, VBW = 1kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 150kHz to 30MHz, Set the spectrum analyzer as:

RBW = 9KHz, VBW = 30kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 30MHz to 1000MHz, Set the spectrum analyzer as:

RBW = 100kHz, VBW = 300kHz, Detector = Quasi-Peak, Trace mode = Max hold, Sweep- auto couple.

For above 1GHz, Set the spectrum analyzer as:

RBW =1MHz, VBW =1MHz, Detector= Peak, Trace mode= Max hold, Sweep- auto couple.

RBW =1MHz, VBW =10Hz, Detector= Average, Trace mode= Max hold, Sweep- auto couple.

4.4. Test Data

PASS

During the test, pre-scan the GFSK, $\pi/4$ QPSK, 8DPSK modulation, and found the GFSK modulation which is worse case.

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

FCC ID: WQ82018MAXIAP

Test Results (30~1000MHz)

Job No.: SZAWW180607002-01 Temp.(°C)/Hum.(%RH): 23.2°C/54%RH

Standard: FCC PART 15C Power Source: AC 120V, 60Hz for adapter

Test Mode: Keeping TX+ Charging Mode Polarization: Horizontal

Test Results (30~1000MHz)

Job No.: SZAWW180607002-01 Temp.(°C)/Hum.(%RH): 23.2°C/54%RH

Standard: FCC PART 15C Power Source: AC 120V, 60Hz for adapter

Test Mode: Keeping TX+ Charging Mode Polarization: Vertical

Test Results (1GHz-25GHz)

Test Mode: 0	CH00			Test	Test channel: Lowest				
				Peak Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.	
4804.00	38.44	34.04	6.58	34.09	44.97	74.00	-29.03	botV	
7206.00	32.58	37.11	7.73	34.50	42.92	74.00	-31.08	No Ve	
9608.00	32.14	39.31	9.23	34.79	45.89	74.00	-28.11	V	
12010.00	*	stek v	botek p	upor	An.	74.00	Aupo	V	
14412.00	* Anti	Nek	nbotek	Anboten	Yun Potek	74.00	Anbo	v V	
4804.00	42.95	34.04	6.58	34.09	49.48	74.00	-24.52	Н	
7206.00	34.44	37.11	7.73	34.50	44.78	74.00	-29.22	H	
9608.00	31.67	39.31	9.23	34.79	45.42	74.00	-28.58	Anbote H	
12010.00	* Anbote	Aupo	rek br	botek	Anbotek	74.00	Anbotek	PH	
14412.00	kek * Anb	Vey by	Por b	potek	Anboren	74.00	Nhotek	HN	
		**	A	verage Valu	e	202			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.	
4804.00	27.04	34.04	6.58	34.09	33.57	54.00	-20.43	V	
7206.00	21.14	37.11	7.73	34.50	31.48	54.00	-22.52	V	
9608.00	20.15	39.31	9.23	34.79	33.90	54.00	-20.10	V	
12010.00	potek * A	/por	Anbotek .	Anbotes	Anbo	54.00	Anbo	V	
14412.00	Anbotek	Anbore	An botek	Anboli	Amb	54.00	rek Au	V	
4804.00	31.39	34.04	6.58	34.09	37.92	54.00	-16.08	Aupole.	
7206.00	23.39	37.11	7.73	34.50	33.73	54.00	-20.27	ÞΉ	
9608.00	19.97	39.31	9.23	34.79	33.72	54.00	-20.28	H	
12010.00	dek *	potek	Aupore	Andrek	Anbotek	54.00	An.	Н	
14412.00	*	abotek	Anbote	Ann	k knbote	54.00	0/4 N	ote ^K H	

FCC ID: WQ82018MAXIAP

Test Results (1GHz-25GHz)

Test Mode: CH39 Test channel: Midd								
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4882.00	37.25	34.38	6.69	34.09	44.23	74.00	-29.77	Voor
7323.00	31.79	37.22	7.78	34.53	42.26	74.00	-31.74	Vel
9764.00	31.44	39.46	9.35	34.80	45.45	74.00	-28.55	V
12205.00	*	stek v	abotek p	upor	Viv.	74.00	Aupor Tek	V
14646.00	* And	Yel	nbotek	Anboten	An	74.00	Anbos	vek V
4882.00	41.53	34.38	6.69	34.09	48.51	74.00	-25.49	Н
7323.00	33.55	37.22	7.78	34.53	44.02	74.00	-29.98	H
9764.00	30.85	39.46	9.35	34.80	44.86	74.00	-29.14	Aupor
12205.00	*nbote	Anbo	18K	abotek	Anbotek	74.00	anbotek	H
14646.00	lek * Anbr	year by	loor b	potek	Anboren	74.00	Anbotek	H
		**	A	verage Valu	e			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4882.00	26.09	34.38	6.69	34.09	33.07	54.00	-20.93	V
7323.00	20.50	37.22	7.78	34.53	30.97	54.00	-23.03	V
9764.00	19.58	39.46	9.35	34.80	33.59	54.00	-20.41	V
12205.00	ootel * A	lpo.	ha abotek	Anboter	Anb	54.00	Anbox	V
14646.00	*	Anbot	abotek .	Anboli	Amb	54.00	rek An	V
4882.00	30.31	34.38	6.69	34.09	37.29	54.00	-16.71	Anbote.
7323.00	22.67	37.22	7.78	34.53	33.14	54.00	-20.86	PΉ
9764.00	19.30	39.46	9.35	34.80	33.31	54.00	-20.69	H
12205.00	otek *	potek	Aupore	Andabotek	Anbotek	54.00	nbote.	Н
14646.00	*	nbotek	Aupote	Aug Pote	k Anbote	54.00	lek -k	o ^{tek} H

Test Results (1GHz-25GHz)

Test Mode: 0	CH78			Test	Test channel: Highest				
				Peak Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.	
4960.00	36.18	34.72	6.79	34.09	43.60	74.00	-30.40	botV	
7440.00	31.09	37.34	7.82	34.57	41.68	74.00	-32.32	No Ve	
9920.00	30.81	39.62	9.46	34.81	45.08	74.00	-28.92	V	
12400.00	*	stek	obotek p	Wpore ok	Arr. potek	74.00	Aupo	V	
14880.00	*	ntek .	nbotek	Aupoten	Au, Potek	74.00	Anbos	v V	
4960.00	40.24	34.72	6.79	34.09	47.66	74.00	-26.34	Н	
7440.00	32.74	37.34	7.82	34.57	43.33	74.00	-30.67	H	
9920.00	30.12	39.62	9.46	34.81	44.39	74.00	-29.61	Anbor	
12400.00	* Hotel	Aupo	18K	obotek	Anboten	74.00	anbotek	H	
14880.00	ek * Anb	Very by	100- b	abotek	Aupoten	74.00	Anbotek	HP	
			A	verage Value	e				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.	
4960.00	25.26	34.72	6.79	34.09	32.68	54.00	-21.32	V	
7440.00	19.93	37.34	7.82	34.57	30.52	54.00	-23.48	V	
9920.00	19.08	39.62	9.46	34.81	33.35	54.00	-20.65	V	
12400.00	ooten * A	lpo.	A botek	Anbote	Aug of	54.00	Anbo	V	
14880.00	Anbote*	Aupor	A botek	Anbole	Amb	54.00	rek Au	V	
4960.00	29.37	34.72	6.79	34.09	36.79	54.00	-17.21	Aupole H	
7440.00	22.04	37.34	7.82	34.57	32.63	54.00	-21.37	PΉ	
9920.00	18.72	39.62	9.46	34.81	32.99	54.00	-21.01	H	
12400.00	*	potek	Aupor	An	Anbotek	54.00	, abote	Н	
4960.00	25.26	34.72	6.79	34.09	32.68	54.00	-21.32	ote ^K H	

Remark

- 1. During the test, pre-scan the GFSK, $\pi/4$ QPSK, 8DPSK modulation, and found the GFSK modulation is worse case, the report only record this mode.
- 2. Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 3. "*" means the test results were attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Radiated Band Edge:

Test Mode: 0	CH00		. o. ~ ~ o	Test	channel: Lowe	st	V UD	<u> </u>
1050 1710 40.				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2390.00	45.62	29.15	3.41	34.01	44.17	74.00	-29.83	Hick
2400.00	62.80	29.16	3.43	34.01	61.38	74.00	-12.62	H
2390.00	46.43	29.15	3.41	34.01	44.98	74.00	-29.02	V
2400.00	65.13	29.16	3.43	34.01	63.71	74.00	-10.29	V N
			A	verage Valı	ie	18.5		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2390.00	35.55	29.15	3.41	34.01	34.10	54.00	-19.90	Hoot
2400.00	46.95	29.16	3.43	34.01	45.53	54.00	-8.47	H
2390.00	35.69	29.15	3.41	34.01	34.24	54.00	-19.76	e ^V V
2400.00	48.86	29.16	3.43	34.01	47.44	54.00	-6.56	V

Test Mode: 0	CH78			Test	Test channel: Highest			
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2483.50	48.05	29.28	3.53	34.03	46.83	74.00	-27.17	"Hk
2500.00	46.70	29.30	3.56	34.03	45.53	74.00	-28.47	Hot
2483.50	49.35	29.28	3.53	34.03	48.13	74.00	-25.87	V
2500.00	47.96	29.30	3.56	34.03	46.79	74.00	-27.21	V
			A	verage Valu	e	1837		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2483.50	38.41	29.28	3.53	34.03	37.19	54.00	-16.81	A/Hote
2500.00	36.02	29.30	3.56	34.03	34.85	54.00	-19.15	Har
2483.50	39.85	29.28	3.53	34.03	38.63	54.00	-15.37	· V
2500.00	36.17	29.30	3.56	34.03	35.00	54.00	-19.00	tek V

Remark:

- 1. During the test, pre-scan the GFSK, $\pi/4$ QPSK, 8DPSK modulation, and found the GFSK modulation is worse case, the report only record this mode.
- 2. Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor

5. Maximum Peak Output Power Test

5.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.2	247 (b)(3)	Annotek	Anbotek	Anbor Am
Test Limit	1W or 125 mW	Anbote.	Anv	Anbotek	Anbot

5.2. Test Setup

5.3. Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above,
- 2. Spectrum Setting:

RBW > the 20 dB bandwidth of the emission being measured

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

 $VBW \ge RBW$

Sweep = auto

Detector function = peak

 $Trace = \max hold$

5.4. Test Data

Test Item	:	Max. peak output power	Test Mode	:	CH Low ~ CH High
Test Voltage	:	AC 120V, 60Hz for adapter	Temperature	:	24℃
Test Result	:	PASS	Humidity	:	55%RH

Channel Frequency (MHz)	Peak Power output (dBm)	Limit (dBm)	Results	Modulation
2402	-0.660	30	PASS	BDR BDR
2441	-0.373	30	PASS	BDR
2480	-0.585	30	PASS	BDR
2402	-0.662	20.96	PASS	EDR
2441	-0.350	20.96	PASS	EDR
2480	-0.563	20.96	PASS	EDR
Anv 2400	-0.303	20.70	TASS	potek EDK

Remark: The EDR was tested on $(\pi/4DQPSK, 8DPSK)$ modes, only the worst data of (8DPSK) is attached in the following pages.

Test Mode: BDR---Low

Test Mode: BDR---Middle

Test Mode: BDR---High

Test Mode: EDR---Low

Test Mode: EDR---Middle

Test Mode: EDR---High

6. 20DB Occupy Bandwidth Test

6.1. Test Standard

m . g. 1 1	TGG D . 15 G G 15 0 (5 () (1)	Alle	18K	Wpo.
Test Standard	FCC Part15 C Section 15.247 (a)(1)			
	0/2			

6.2. Test Setup

6.3. Test Procedure

Using the following spectrum analyzer settings:

- 1. Span= approximately 2 to 3 times the 20dB bandwidth, centered on a hopping channel.
- 2. Set the RBW = 30 kHz.
- 3. Set the VBW = 100 kHz.
- 4. Sweep time = auto couple.
- 5. Detector function = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.

6.4. Test Data

Test Item : 20dB BW Test Mode : CH Low ~ CH High

Test Voltage : AC 120V, 60Hz for adapter Temperature : 24°C

Test Result : PASS Humidity : 55%RH

o ^t	Channel	Frequency(MHz)	20dB Down BW(kHz)	Modulation Mode	
nhot	Low	2402	874.2	BDR	
NO	Middle	2441	867.2	BDR	
	High	2480	861.0	BDR	
4	Low	2402	1211.0	EDR	
NSY.	Middle	2441	1211.0	EDR	
pot	High	2480	1211.0	EDR	

Remark: The EDR was tested on $(\pi/4DQPSK, 8DPSK)$ modes, only the worst data of (8DPSK) is attached in the following pages.

Test Mode: BDR---Low

Test Mode: BDR---Middle

Test Mode: BDR---High

Test Mode: EDR---Low

Test Mode: EDR---Middle

Test Mode: EDR---High

7. Carrier Frequency Separation Test

7.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.247 (a)(1)	Anbotek	Anbo. Mek
Test Limit	>25KHz or >two-thirds of the 20 dB bandwidth	Anbotek	Anbo

7.2. Test Setup

7.3. Test Procedure

The EUT must have its hopping function enabled. Using the following spectrum analyzer settings:

- 1. Span= Wide enough to capture the peaks of two adjacent channels
- 2. Set the RBW = 30 kHz.
- 3. Set the VBW = 100 kHz.
- 4. Sweep time = auto couple.
- 5. Detector function = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.

7.4. Test Data

Test Item	:	Frequency Separation	Test Mode	:	CH Low ~ CH High
Test Voltage	:	AC 120V, 60Hz for adapter	Temperature	:	24℃
Test Result	:	PASS	Humidity	:	55%RH

Channel	Frequency	Separation Read	Limit	Modulation Mode	
Chamier	(MHz)	Value (kHz)	(kHz)	1710ddiddidii 1710dc	
Low	2402	1000	874.2	BDR	
Middle	2441	1000	867.2	BDR	
High	2480	1000	861.0	BDR Maria	
Low	2402	1000	807.3	EDR	
Middle	2441	1000	807.3	EDR	
High	2480	1000	807.3	EDR	

Remark:

- 1. The limit of mode (EDR) is 2/3 of 20dB BW;
- 2. The EDR was tested on (π /4DQPSK, 8DPSK) modes, only the worst data of (8DPSK) is attached in the following pages.

Test Mode: BDR---Low

Test Mode: BDR---Middle

Test Mode: BDR---High

Test Mode: EDR---Low

Test Mode: EDR---Middle

Test Mode: EDR---High

8. Number of Hopping Channel Test

8.1. Test Standard and Limit

Test Standard	FCC Part15 C	Section 15.2	247 (a)(1)	Annabotek	Anbotek	Anbo	p.
Test Limit	>15 channels	Anbotek	Anboto	Air.	Anbotek	Anbo	t-

8.2. Test Setup

8.3. Test Procedure

The EUT must have its hopping function enabled. Using the following spectrum analyzer setting:

- 1. Span= the frequency band of operation
- 2. Set the RBW = 100kHz.
- 3. Set the VBW = 300kHz.
- 4. Sweep time = auto couple.
- 5. Detector function = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.

8.4. Test Data

Test Item	: Number of Hopping Frequency	Test Mode :	CH Low ~ CH High
Test Voltage	: AC 120V, 60Hz for adapter	Temperature :	24°C
Test Result	: PASS	Humidity :	55%RH

Hopping Channel Frequency Range	Quantity of Hopping Channel	Quantity of Hopping Channel	
2402-2480MHz	Amb 79 botek Ambo	>15	

BDR Mode

EDR Mode

9. Dwell Time Test

9.1. Test Standard and Limit

Test Standard	FCC Part15 (C Section 15.2	47 (a)(1)	Andhotek	Anbotek	Anbo	p.
Test Limit	0.4 sec	Anbotek	Anboro	An	Anbotek	Anbo	F .

9.2. Test Setup

9.3. Test Procedure

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:

- 1. Span= zero span, centered on a hopping channel
- 2. Set the RBW = 1 MHz.
- 3. Set the VBW = 1 MHz.
- 4. Sweep time = as necessary to capture the entire dwell time per hopping channel.
- 5. Detector function = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.

9.4. Test Data

Test Item : Time of Occupancy : CH Low ~ CH High

Test Voltage : AC 120V, 60Hz for adapter Temperature : 24° C Test Result : PASS Humidity : 55° RH

Package Type	Pulse width (ms)	Time slot length(ms)	Dwell time (ms)	Limit (s)	Modulation
DH1	0.396	time slot length *1600/2 /79 * 31.6	126.72	0.4	BDR
DH3	1.650	time slot length *1600/4 /79 * 31.6	264.00	0.4	BDR
DH5	2.896	time slot length *1600/6 /79 * 31.6	308.91	0.4	BDR
3DH1	0.408	time slot length *1600/2 /79 * 31.6	130.56	0.4	EDR
3DH3	1.660	time slot length *1600/4 /79 * 31.6	265.60	0.4	EDR
3DH5	2.904	time slot length *1600/6 /79 * 31.6	309.76	0.4	EDR

Remark: The EDR was tested on ($\pi/4$ DQPSK, 8DPSK) modes, only the worst data of (8DPSK) is attached in the following pages.

Test Mode: BDR---DH1

Test Mode: BDR---DH3

Test Mode: BDR—DH5

Test Mode: EDR---3DH1

Test Mode: EDR---3DH3

Test Mode: EDR—3DH5

10. 100kHz Bandwidth of Frequency Band Edge Requirement

10.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.247 (d)
Test Limit	in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a).

10.2. Test Setup

10.3. Test Procedure

The EUT must have its hopping/Non-hopping function enabled. Using the following spectrum analyzer setting:

- 1. Set the RBW = 100kHz.
- 2. Set the VBW = 300kHz.
- 3. Sweep time = auto couple.
- 4. Detector function = peak.
- 5. Trace mode = \max hold.
- 6. Allow trace to fully stabilize.

10.4. Test Data

Test Item	:	Band edge	Test Mode :	:	CH Low ~ CH High
Test Voltage	:	AC 120V, 60Hz for adapter	Temperature :	:	24℃
Test Result	:	PASS	Humidity :	:	55%RH

Remark: The EDR was tested on $(\pi/4DQPSK, 8DPSK)$ modes, only the worst data of $(\pi/4DQPSK)$ is attached in the following pages.

For Hopping Mode

BDR mode

EDR mode

For Non-Hopping Mode

BDR mode -- Lowest

BDR mode -- Highest

For Non-Hopping Mode

EDR mode -- Lowest

EDR mode -- Highest

Conducted Emission Method

Test Mode: BDR---Low

Test Mode: BDR---Mid

Test Mode: BDR---High

Test Mode: EDR---Low

Test Mode: EDR---Mid

Test Mode: EDR---High

11. Antenna Requirement

11.1. Test Standard and Requirement

Test Standard	FCC Part15 Section 15.203 /247(c)
	1) 15.203 requirement:
	An intentional radiator shall be designed to ensure that no antenna other than that furnished
	by the responsible party shall be used with the device. The use of a permanently
	attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the
	manufacturer may design the unit so that a broken antenna can be replaced by the user, but
Requirement	the use of a standard antenna jack or electrical connector is prohibited.
	2) 15.247(c) (1)(i) requirement:
	Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed.
	Point-to-point operations may employ transmitting antennas with directional gain greater
	than 6dBi provided the maximum conducted output power of the intentional radiator is
	reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

11.2. Antenna Connected Construction

The bluetooth antenna is PCB Antenna which permanently attached, and the best case gain of the antenna is 1.63 dBi. It complies with the standard requirement.

APPENDIX I -- TEST SETUP PHOTOGRAPH

Photo of Radiation Emission Test

APPENDIX II -- EXTERNAL PHOTOGRAPH

APPENDIX III -- INTERNAL PHOTOGRAPH

----- End of Report -----