Bartosz Brzoza*

Całka Clenshawa-Curtisa

Clenshaw-Curtis quadrature

Wrocław, 25 stycznia 2020

1. Abstract

We consider the problem of numerical integration. A particular method called the Clenshaw-Curtis quadrature is presented, explained and then evaluated. An efficient implementation in Julia is also provided as well as benchmarking code which shows off its effectiveness and limitations. A brief discussion of numerical results follows.

2. Specyfikacja problemu

Mając funkcję f(x) określoną na przedziale [-1,1] chcemy tak dobrać węzły $x_1,...,x_n$ oraz wagi $w_1,...,w_n$, aby suma

$$\sum_{i=1}^{n} w_i f(x_i)$$

najlepiej przybliżała całkę

$$\int_{-1}^{1} f(x)dx \tag{1}$$

3. Węzły równoodległe

Przybliżanie całki (1) stosując metodę trapezów (lub metodę trapezów wyższych rzędów) w węzłach równoodległych nie przynosi dobrych efektów dla wielomianów wysokiego stopnia.

4. Algorytm Clenshawa-Curtisa

Podstawiając $x = cos\theta$ do rozważanej całki:

$$\int_{-1}^{1} f(x)dx = \int_{0}^{\pi} f(\cos\theta)\sin\theta d\theta$$

przekształcamy problem całkowania f(x) na całkowanie f(cosx)sinx. Możemy to zrobić rozwijając funkcję $f(cos\theta)$ w szereg Fouriera:

$$f(\cos\theta) = \sum_{k=0}^{\infty} ' a_k \cos(k\theta),$$

^{*} E-mail: 309426@ii.uni.wroc.pl

Nie pojawiają się współczynniki z $sin(k\theta)$, gdyż funkcja $f(cos\theta)$ jest parzysta. W powyższym wzorze współczynniki szeregu Fouriera wynoszą:

$$a_k = \frac{2}{\pi} \int_0^{\pi} f(\cos\theta) \cos\theta d\theta \tag{2}$$

Te całki nadal musimy obliczyć numerycznie. Zauważmy, że funkcja $f(\cos\theta)$ jest parzysta i okresowa. Można zatem przybliżyć całkę (2) dyskretną transformacją kosinusową w N+1 równoodległych punktach $\theta_n = \frac{n\pi}{N} \ (n = 0, ..., N)$:

$$a_k \approx \frac{2}{N} \left(\sum_{n=0}^{N} "f(\cos \frac{n\pi}{N}) \cos \frac{nk\pi}{N} \right)$$

którą można obliczyć w czasie O(NlogN) korzystając z algorytmu DCT typu I. Zakłada on, że wartości w punktach ewaluacji po ekstrapolacji byłyby parzyste względem n=0, oraz parzyste względem n=N. Ostatecznie całkę (1) można przedstawić:

$$\int_{-1}^{1} f(x)dx = \int_{0}^{\pi} f(\cos\theta)\sin\theta d\theta \approx \sum_{k=0}^{N/2} {"\frac{2a_{2k}}{1 - (2k)^{2}}}$$

5. Powiązanie z wielomianami Czebyszewa

Zauważmy, że $T_k(\cos\theta) = \cos(k\theta)$, zatem szereg z poprzedniego działu to tak naprawdę wyrażenie funkcji f(x) w bazie wielomianów Czebyszewa:

$$f(x) = \sum_{k=0}^{\infty} {'a_k T_k(x)}$$

Zatem w istocie całkujemy przybliżenie funkcji f(x) w bazie wielomianów Czebyszewa. Stosujemy węzły:

$$x_k = \cos\frac{k\pi}{N} \ (k = 0, ..., N)$$

które są ekstremami wielomianu Czebyszewa T_N .

6. Przeprowadzone doświadczenia

Wybrałem 4 klasy funkcji, na których testowane były powyższe metody:

- 1. Funkcje postaci f'(x), gdzie $f(x) = \sum_{i} \alpha_{i} exp(-(\frac{x-\mu_{i}}{\sigma_{i}})^{2})$ (RBF) 2. Funkcje postaci f'(x), gdzie $f(x) = \sum_{i} \alpha_{i} cos(a_{i}x^{3} + b_{i}x^{2} + c_{i}x + d_{i})$
- 3. Funkcje przedziałami stałe o zbiorze wartości {0,1} (funkcje prostokątne)
- 4. Funkcje bedace suma funkcji z pierwszego punktu i funkcji prostokatnej

6.1. Doświadczenia

Dla każdej z klas wylosowałem po 1000 przykładów funkcji.

Za pomocą każdej z trzech metod obliczyłem całkę (1) oraz błąd względny kwadratury względem wyniku analitycznego dla każdej z funkcji. Wykorzystywałem 1024 węzły dla każdej kwadratury. Przedstawiam ilość cyfr dokładnych dla średniej oraz maksymalnej wartości błędu względnego:

6.2. Wyniki

Ilość cyfr dokładnych dla średniego błędu

Ilość węzłów	RBF	Tryg-poly	Rect	RBF+Rect
4	-4.08	-3.17	-0.88	-2.76
16	0.75	14.56	-0.77	-1.26
64	28.01	48.72	-0.77	-1.14
256	48.99	49.0	-0.77	-1.12
1024	49.6	49.11	-0.77	-1.12

Ilość cyfr dokładnych dla najgorszego błędu

Ilość węzłów	RBF	Tryg-poly	Rect	RBF+Rect
4	-11.05	-9.57	-6.47	-10.75
16	-7.21	8.41	-6.2	-9.18
64	19.8	43.47	-6.1	-8.98
256	41.28	43.71	-6.11	-8.9
1024	42.44	43.85	-6.11	-8.9

7. Wnioski

- 1. Kwadratura Clenshawa-Curtisa dobrze przybliża całki funkcji, które są gładkie.
- 2. Ta kwadratura nie potrafi przybliżyć funkcji nieciągłych, nawet gdy owe funkcje są przedziałami ciągłe.
- 3. Dużą zaletą tej metody całkowania jest możliwość wykonania obliczeń w czasie O(nlogn)