Differentiation

Concepts

Topics covered are:

- 1. Differentiation
- 2. Chain Rule
- 3. Differentiability
- 4. Increasing and Decreasing Functions
- 5. Increment Theorem

Differentiation

The rate of change of a function is said to be the derivative of a function.

$$f'(x) = rac{dy}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

Here are different ways to write a derivative, considering y=f(x):

$$rac{dy}{dx} = f'(x) = y'$$

For differentiating it n times:

$$rac{d^ny}{dx^n}=f^{(n)}(x)=y^{(n)}$$

Chain rule

If
$$y=f(u)$$
, $u=g(x)$, or $y=f(g(x))$, then

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

Differentiability

A function f(x) is differentiable at a point if RHD = LHD, where

$$ext{RHD} = \lim_{h o 0^+} rac{f(x+h) - f(x)}{h} \quad ext{and} \quad ext{LHD} = \lim_{h o 0^-} rac{f(x+h) - f(x)}{h}$$

Graphically, a function which is continuous and has no sharp points throughout its domain is said to be differentiable.

Here is a list of some functions and their continuity and differentiability throughout their domain:

Function	Continuous?	Differentiable?
Polynomial $\left(\sum_{i=0}^n a_i x^{n-i}, \ n \in \mathbb{N} ight)$	Yes	Yes
Modulus $ x $	Yes	No (at 0)
Constant (a)	Yes	Yes
Signum $\left(rac{ x }{x}, \; x eq 0; \; 0, \; x = 0 ight)$	No (at 0)	No (at 0)
Greatest Integer / Floor $ig(\lfloor x floor ig)$	No (at integers)	No (at integers)
Smallest Integer / Ceil $(\lceil x \rceil)$	No (at integers)	No (at integers)
Fractional $\{x\} = x - \lfloor x \rfloor$	No (at integers)	No (at integers)
Reciprocal $\left(rac{1}{f(x)}, \; f(x) eq 0 ight)$	No (depends on $f(x)$)	No (depends on $f(x)$)

Increasing and Decreasing Functions

A function f(x) is said to be increasing throughout (a,b) if $f'(x) \geq 0$, $x \in (a,b)$.

A function f(x) is said to be decreasing throughout (a,b) if $f'(x) \leq 0$, $x \in (a,b)$.

A function f(x) is said to be strictly increasing throughout (a,b) if f'(x)>0, $x\in (a,b)$.

A function f(x) is said to be strictly decreasing throughout (a,b) if f'(x)<0, $x\in(a,b)$.

A function f(x) is said to be constant throughout (a,b) if f'(x)=0, $x\in(a,b)$

Increment Theorem

If a function f(x) is differentiable at a point x, then for a small increment Δx , the corresponding increment in the function, $\Delta y = f(x + \Delta x) - f(x)$, can

Differentiation 2

be expressed as:

$$\Delta y = f'(x) \, \Delta x + arepsilon \, \Delta x$$

where arepsilon o 0 as $\Delta x o 0$.

Here, ε is a small number that cancels out the error achieved by approximating the change in the function. It becomes negligible as the change in x is reduced, because the value of Δy gets more accurate.

Uses

Differentiation: To find the rate of change in something at a given instant, and to obtain the tangent of a curve at any given input value.

Chain Rule: Finding derivatives of nested functions.

Differentiability: Determine whether a function can be differentiated at a given input value without having to look at the curve.

Increasing and Decreasing Functions: Determine whether a function is rising or declining over a range without looking at the curve.

Increment Theorem: Highly useful for error approximation and rigorous ways to prove derivatives.

Differentiation 3