# EUROPEAN PATENT OFFICE

# Patent Abstracts of Japan

**PUBLICATION NUMBER** 

05221660

**PUBLICATION DATE** 

31-08-93

**APPLICATION DATE** 

14-02-92

**APPLICATION NUMBER** 

04059730

APPLICANT:

FURUKAWA ELECTRIC CO LTD:THE:

INVENTOR :

KUWABARA MASAHIDE:

INT.CL.

C03B 8/04 C03B 20/00 G02B 6/00

TITLE

METHOD FOR DEPOSITING FINE

**GLASS PARTICLE** 

F102320 RR



ABSTRACT :

PURPOSE: To provide a method for depositing fine glass particles [an outside vapor deposition (OVD) method]in which the effective length of a porous glass layer can be increased without deteriorating the deposition efficiency of the fine glass particles.

CONSTITUTION: In an OVD method, when respective burners 41 and 42 are located within an intermediate region (SM) of a stroke  $(S_0)$ , the respective burners 41 and 42 are held at a prescribed interval in a prescribed direction. When the respective burners 41 and 42 are located within respective end regions (SL) and (SR) of the stroke ( $S_0$ ), at least the second burner i: tilted toward the side of the stoke end without moving the first burner from the side of the stoke end. Thereby, the respective burners 41 and 42 are held at the prescribed interval in the prescribed direction in the intermediate region (SM) of the stroke (S<sub>0</sub>), the deposition efficiency of fine glass particles on the outer periphery of a rod 31 is enhanced The second burner from the side of the stroke end is tilted toward the side of the prescribed stoke end within the respective end regions (SL) and (SR) of the stroke (S<sub>0</sub>). As a result, both tapered parts 33 and 34 of a porous glass layer 32 are finished to a small length.

COPYRIGHT: (C) JPO

(19)日本国特許庁(JP)

# (12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-221660

(43)公開日 平成5年(1993)8月31日

(51) Int.Cl.<sup>5</sup>

識別記号 庁内整理番号

FΙ

技術表示箇所

C 0 3 B 8/04

9260-4G

20/00

9260-4G

G 0 2 B 6/00

356 A 7036-2K

審査請求 未請求 請求項の数1(全 5 頁)

(21)出願番号

特顏平4-59730

(71)出願人 000005290

古河電気工業株式会社

(22) 出願日 平成 4 年 (1992) 2 月14日

東京都千代田区丸の内2丁目6番1号

(72) 発明者 梅田 淳

東京都千代田区丸の内2丁目6番1号 古

河電気工業株式会社内

(72)発明者 小倉 邦男

東京都千代田区丸の内2丁目6番1号 古

河電気工業株式会社内

(72)発明者 桑原 正英

東京都千代田区丸の内2丁目6番1号 古

河電気工業株式会社内

(74)代理人 弁理士 齋藤 義雄

#### (54) 【発明の名称】 ガラス微粒子堆積方法

# (57)【要約】

【目的】 ガラス微粒子の堆積効率を低下させることなく多孔質ガラス層の有効長を大きくすることのできるガラス微粒子堆積方法(OVD法)を提供する。

【構成】 OVD法において、各パーナ41、42がストロークS。の中間領域Su にあるときは、該各パーナ41、42を一定間隔かつ一定の向きに保持し、各パーナ41、42がストロークS。の各端部領域Su 、Su にあるときは、それぞれ、ストローク端側から第1番目のパーナを動かすことなく、少なくとも同第2番目のパーナをストローク端側に向けて傾斜させる。

【効果】 ストロークS。の中間領域S』では、各パーナ41、42が一定間隔かつ一定の向きに保持されるので、ロッド31の外周面に対するガラス微粒子の堆積効率が高まり、ストロークS。の各端部領域S」、S』では、それぞれ、ストローク端側から第2番目のパーナが所定のストローク端側に向けて傾斜されるので、多孔質ガラス層32の両テーバ部33、34が短く仕上がる。



1

## 【特許請求の範囲】

【請求項1】 自己の軸心線を中心に回転しているガラス微粒子堆積用ロッドと、ロッドの軸線方向に隣接する間隔を保持して先端をロッドの外周面に向けている複数のガラス微粒子合成用パーナとを、ロッドの軸線方向に沿う一定のストロークで相対移動させつつ、各パーナから噴射されたガラス微粒子をロッドの外周面上に堆積させて、その外周面上に多孔質ガラス層を形成するガラス微粒子の堆積方法において、前記各パーナが前記ストロークの端部領域を除く中間領域にあるときには、これら 10パーナを一定間隔かつ一定の向きに保持すること、および、前記各パーナが前記ストロークの端部領域にあるときには、ストローク端側から第1番目のパーナを動かすことなく、同第2番目のパーナを含む少なくとも一つ以上のパーナをストローク端側に向けて傾斜させることを特徴とするガラス微粒子堆積方法。

## 【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、OVD法(外付けCV D法)を介してロッドの外周面に多孔質ガラス層を形成 20 するためのガラス微粒子堆積方法に関する。

[0002]

【従来の技術】光ファイバ用、イメージファイバ用、ライトガイド用、ロッドレンズ用などの各種母材を作製するとき、図2に例示するOVD法(外付けCVD法)が広く採用されている。

【0003】図2に例示するOVD法の場合、ガラス微粒子堆積用のロッド11がその軸心線を中心に回転し、所定のガス(H2、O2、SIC1、Arなど)が供給されて燃焼状態に保持されるガラス微粒子合成用の各 30パーナ21、22が、図示しない往復動機構を介してロッド11の軸線方向沿いに往復動する。

【0004】このとき、燃焼状態の各パーナ21、22では気相反応(火炎加水分解反応)が起こり、当該反応により生成されたスート状のガラス微粒子が各パーナ21、22の先端よりロッド11の外周面上に噴射かつ堆積されるので、ロッド11の外周面上に、堆積したガラス微粒子による多孔質ガラス層12が形成される。

【0005】OVD法を介して多孔質ガラス層12を形成するとき、多孔質ガラス層12の両端部にテーパ部1 403、14が不可避的に生じる。これは、各パーナ21、22が図2の左側領域に到来したとき、一方のパーナ21によるパーナ火炎が外側へ拡散し、かつ、他方のパーナ22によるパーナ火炎が多孔質ガラス層12の左端部にまで十分達しないからである。このような現象は、各パーナ21、22が図2の右側領域に到来したときにも生じる。

[0006]

【発明が解決しようとする課題】この種の多孔質ガラス 層12としては、自明のとおり、両端のテーパ部13、 14が短いものほどよく、これが材料の歩留りひいては 多孔質ガラス層12の有効長を左右する。

【0007】かかる観点から既存のOVD法を検討した場合、これには、つぎのような技術的課題が残されている。たとえば、図2に例示したOVD法の場合、各パーナ21、22が大きな間隔で一定に保持されているので、既述のテーパ現象を抑制することができず、多孔質ガラス層12の両テーパ部13、14が長くなる。その対策として、各パーナ21、22相互を接近させてこれらの間隔を小さくすることが考えられるが、こうした場合には、各パーナ21、22の火炎が干渉し合うので、ガラス微粒子の堆積効率が低下する。ゆえに、既存のOVD法によるときは、多孔質ガラス層の有効長とガラス微粒子の堆積効率、これらのいずれか一方を犠牲にせざるを得ない。

【0008】本発明はこのような技術的課題に鑑み、ガラス微粒子の堆積効率を低下させることなく多孔質ガラス層の有効長を大きくすることのできるガラス微粒子堆積方法を提供しようとするものである。

[0009]

【課題を解決するための手段】本発明は所期の目的を達 成するために下記の手段を特徴とする。すなわち、自己 の軸心線を中心に回転しているガラス微粒子堆積用ロッ ドと、ロッドの軸線方向に隣接する間隔を保持して先端 をロッドの外周面に向けている複数のガラス微粒子合成 用パーナとを、ロッドの軸線方向に沿う一定のストロー クで相対移動させつつ、各パーナから噴射されたガラス 微粒子をロッドの外周面上に堆積させて、その外周面上 に多孔質ガラス層を形成するガラス微粒子の堆積方法に おいて、前記各パーナが前記ストロークの端部領域を除 く中間領域にあるときには、これらパーナを一定間隔か つ一定の向きに保持すること、および、前記各パーナが 前記ストロークの端部領域にあるときには、ストローク 端側から第1番目のパーナを動かすことなく、 同第2番 目のパーナを含む少なくとも一つ以上のパーナをストロ 一ク端側に向けて傾斜させることを特徴とする。

[0010]

【作用】本発明に係るガラス微粒子堆積方法(OVD法)の場合、ガラス微粒子堆積用のロッドとガラス微粒子合成用の各パーナとを一定のストロークで所定方向へ相対移動させつつ、各パーナから噴射されたガラス微粒子をロッドの外周面に堆積させて、その外周面上に多孔質ガラス層を形成するとき、ストロークの中間領域と端部領域とでパーナ姿勢を異ならせる。

【0011】すなわち、各パーナがストロークの中間領域にあるときには、各パーナ火炎が干渉し合うことのないように、これらパーナを一定間隔かつ一定の向きに保持することにより、ロッドの外周面に対するガラス微粒子の堆積効率を高め、各パーナがストロークの端部領域にあるときには、たとえば、ストローク端側から第2番

3

目のパーナをそのストローク端側に向けて傾斜させるこ とにより、多孔質ガラス層の端部側へ集中的にガラス微 粒子を噴射かつ堆積させ、多孔質ガラス層の両端に生じ るテーパ部を短くする。

[0012]

【実施例】本発明に係るガラス微粒子堆積方法の一実施 例について、図面を参照して説明する。

【0013】図1において、31は外周面にガラス微粒 子が堆積される石英系のロッドを示し、41、42はガ ラス微粒子合成用のパーナをそれぞれ示す。

【0014】石英系のロッド31は、コア用ガラスの み、あるいは、コア用ガラスとクラッド用ガラスとから なる。場合により、ロッド31の外周面上にすでに多孔 質ガラス層が形成されていることもある。ロッド31 は、これの軸心線を中心に回転させるために、たとえ ば、ガラス旋盤 (図示せず) にセットされて回転自在に 両端支持される。

【0015】ガラス微粒子合成用の各パーナ41、42 は、中心部から外周部に向けて同心状に重り合った多数 のガス流路を有する多重管構造からなり、これらのガス 流路には、燃料ガス(例:H2、炭化水素など)、助燃 ガス(O2)、気相のガラス原料ガス(例:SiC1 ↓ )、緩衝ガス(例:Ar)を供給するためのガス供給 系(図示せず)が接続される。

【0016】これらのパーナ41、42は、基体43の 上に起倒自在に取りつけられて、通常は互いに平行した 状態で直立するように保持されている。各パーナ41、 42を起倒自在にするための手段としては、公知ないし 周知の機構が採用される。その一例として、正逆回転自 在なモータと、当該モータに連結された回転軸とを含む 回転復帰機構をあげることができ、この例の場合は、各 パーナ41、42が、モータにより回転する回転軸に取 りつけられて傾斜したり起立したりする。他の一例とし て、回転軸とパネとカム、または、回転軸と歯車などを 含む回転復帰機構をあげることができ、この例の場合 も、必要に応じて、モータが組み合わされる。各パーナ 41、42を、直立状態から傾斜状態へと姿勢変更さ せ、あるいは、傾斜状態から直立状態に姿勢復帰させる ために、ロッド31の軸線方向に沿う所定位置には、位 置センサ、リミットスイッチのごとき位置検出手段(図 40 示せず) が配置され、これが前記起倒手段の動力部に接 続される。したがって、当該起倒手段の動力部は、かか る位置検出手段からの指令信号を受けてタイムリーにオ ンーオフ制御される。図示例でのパーナ数は2本である が、3本以上のパーナが基体43上に取りつけられるこ ともある。

【0017】各パーナ41、42を支持している基体4 3は、ロッド31の軸線方向沿いに配置された周知のト ラバース機構(図示せず)を介して往復動自在に設けら

3と共にロッド31の軸線方向沿いに往復動することが できる。このように、ロッド31に接近して配置された 各パーナ41、42は、これらの先端がロッド31の外 周面に面している。

【0018】その他、各バーナ41、42を定位置に保 持してロッド31を所定方向へ移動させることがある。 まれに、ロッド31と各パーナ41、42との双方を離 合式に往復動させることもある。

【0019】図1において、S。はパーナのストロー 10 ク、SL とSR はストロークSO の端部領域、SR はス トロークS。の中間領域をそれぞれ示す。

【0020】本発明に係るガラス微粒子堆積方法(OV D法) は、図1を参照して明らかなように、ロッド31 を所定の方向へ回転させ、かつ、H2、O2、SIC1 、Arなどの各ガスが供給されて燃焼状態にある各バ ーナ41、42をストロークS。の範囲内で往復動させ る。すなわち、ストロークS。の範囲内において、各バ ーナ41、42を端部領域S』→中間領域S』→端部領 域Sェ、および、端部領域Sェ→中間領域Sェ→端部領 域SLのように往復動させ、これらパーナ41、42か ら噴射されたガラス微粒子を、回転しているロッド31 の外周面上に堆積させて、その外周面上に多孔質ガラス 層32を形成する。かくて、ロッド31の外周面上に形 成される多孔質ガラス層32には、その両端部に既述の テーパ部33、34が生じる。

【0021】上記において、各パーナ41、42がスト ロークS。の中間領域S』にあるとき、これらパーナ4 1、42を互いに平行する直立状態(一定間隔かつ一定 の向き) に保持して、各パーナ軸線をロッド31の軸線 と直交させる。こうした場合、各パーナ41、42は、 これらのパーナ火炎が干渉し合うことのない適切な平行 間隔に保持されるので、ロッド31の外周面に対するガ ラス微粒子の堆積効率が高まる。

【0022】上記において、各パーナ41、42がスト ロークS。の端部領域Sにあるとき、図1の左側から 第1番目にあるパーナ41を動かすことなく、同第2番 目のパーナ42を左側のストローク端に向けて傾斜させ る。こうした場合、両パーナ41、42相互の先端が接 近し、かつ、傾斜したパーナ42の火炎が多孔質ガラス 層32のテーパ部33に沿うようになるので、テーパ部 33にガラス微粒子が集中的に噴射され、テーパ部33 が短くなる。ちなみに、多孔質ガラス層32のテーパ部 33は、ガラス微粒子堆積面におけるパーナ火炎の間 隔、ガラス微粒子の広がりに依存してその大きさ(長 さ)が決まるので、上記におけるバーナ42の傾斜角度 は、これらを考慮して設定する。その他、ストロークS 。 の端部領域SL におけるパーナ41の火炎は、多孔質 ガラス層32のテーパ部33に沿って上昇し、そのテー パ部33の外側へ流れる傾向が強いので、両パーナ4 れている。したがって、各バーナ41、42は、基体4 50 1、42の先端を上記のように接近させても、ストロー

5

ク中間領域S』でのパーナ接近のようなパーナ火炎の干 渉が起こらない。

【0023】上記において、各パーナ41、42がストロークS。の端部領域Siにあるときも、図1の右側から第1番目にあるパーナ42を動かすことなく、同第2番目のパーナ41を右側のストローク端に向けて傾斜させる。こうした場合も、上記と同様の理由で、多孔質ガラス層32のテーパ部34が短く仕上がる。

【0024】なお、ロッド31の外周面上に形成された 多孔質ガラス層32は、その後、周知の手段で脱水処理 10 ならびに透明ガラス化されて透明なガラスとなる。

【0025】つぎに、本発明に係るガラス微粒子堆積方法(OVD法)の具体例とその比較例について説明する。

#### 【0026】具体例

ロッド31として、石英系(SIO2-GeO2)から なる外径15mmφ、長さ1000mmのコア用ガラス 棒を用い、これをガラス旋盤にセットして回転自在に両 端支持した。各パーナ41、42としては、多重管構造 を有する酸水素炎パーナを用いた。これらパーナ41、 42は、平行状態におけるパーナ軸線の間隔が120m mとなる態様で、基体43の上に起倒自在に取りつけら れている。上記において、ロッド31の外周面上に多孔 質ガラス層32を形成するとき、ロッド31を200r pmで定位置回転させるとともに、各パーナ41、42 にはH2=501/min、O2=351/min、SiC 14=60g/min、その他のガスを供給してこれらを 燃焼状態に保持し、かつ、該各パーナ41、42をロッ ド31の軸線方向沿いに1000mm/minで往復動 させた。そして、ストロークS。の中間領域S』におい 30 ては、各パーナ41、42を互いに平行する直立状態に 保持し、ストロークS。の端部領域S』においては、一 方のパーナ42のみを左側へ傾斜させ、さらに、ストロ ークSo の端部領域Saにおいては、他方のパーナ41 のみを右側へ傾斜させた。かかるOVD法において、運 転開始から8時間を経ることにより、外径120mmφ の多孔質ガラス層32が得られた。このOVD法で得ら れた多孔質ガラス層32の場合、有効長/全長が80% と良好であり、全長に占める両テーパ部33、34の割 合が20%にとどまった。

#### 【0027】比較例

ストロークS。の範囲内にわたり、パーナ41、42相

互を平行かつ直立状態に保持したほか、すなわち、各パーナ41、42の姿勢を終始一定に保持した以外は、前記具体例と同一の条件でOVD法を実施した。このOVD法で得られた多孔質ガラス層32の場合、有効長/全長が65%と低く、全長に占める両テーパ部33、34の割合が35%にもなった。

R

【0028】なお、ストロークS。の端部領域SL、SRにおいて、パーナ41、42相互の間隔を狭くするとき、一方のパーナ41に対して他方のパーナ42を平行移動させたり、他方のパーナ42に対して一方のパーナ41を平行移動させることが考えられるが、この手段は、パーナ41、42相互の間隔に制約があり、各パーナ41、42に付帯する部分をも移動させなければならないので、既述のパーナ傾斜(回転)ほど簡便でない。【0029】

【発明の効果】本発明に係るガラス微粒子堆積方法は、 所定のOVD法において、各パーナがストロークの中間 領域にあるとき、これらパーナを一定間隔かつ一定の向 きに保持し、各パーナがストロークの端部領域にあると き、ストローク端側から第1番目のパーナを動かすこと なく、少なくとも同第2番目のパーナをストローク端側 に向けて傾斜させるから、ガラス微粒子の堆積効率を低 下させることなく多孔質ガラス層の有効長を大きくする ことができる。

#### 【図面の簡単な説明】

【図1】本発明に係るガラス微粒子堆積方法の一実施例を略示した正面図である。

【図2】従来のガラス微粒子堆積方法を略示した正面図である。

# 30 【符号の説明】

- 31 ガラス微粒子堆積用のロッド
- 32 多孔質ガラス層
- 33 多孔質ガラス層のテーパ部
- 34 多孔質ガラス層のテーパ部
- 41 ガラス微粒子合成用のパーナ
- 42 ガラス微粒子合成用のパーナ
- 43 パーナ用の基体
- S<sub>o</sub> ストローク
- SL ストロークの端部領域
- 40 Su ストロークの中間端部
  - S<sub>R</sub> ストロークの端部領域

【図1】



[図2]

