An Introduction to Description Logics

1. Syntax and Semantics

G. Falquet

Contents

- Individuals, classes and properties
- Class constructors
- Ontologies
- Reasoning

The world according to DL

- There are individuals
- Individuals may be interconnected through roles
- Individuals belong to concepts

Similar to RDF/S (resources, properties, classes)

But different

- individuals, classes, and roles are disjoint
 - a class may not be an instance of another class
 - an individual may not have instances

DL languages

a family of logical languages with different

- class constructors
- role constructors

aims

- formalize the knowledge representation languages of the 80-90's (CLASSIC, KL-ONE, semantic networks, ...)
- decidable
 - there is an algorithm to check the consistency of any set of formulas
 - ⇒ not as expressive as First order logic

\mathcal{ALC} – concept constructors

Start with a vocabulary of concept names (N_C), role names (N_R) and individual names (N_O)

Concept expressions may be

the top concept (everything):

• the bottom (impossible) concept:

a concept name:
A

a conjunction of concepts: C □ D

a disjunction:C □ D

■ a complement: ¬ C

an existential restriction:∃ R.C

a universal restriction: ∀ R.C

Manchester notation

class name

Building

conjunction

Student and Employee

disjunction

Man or Woman

complement

not Student

existential restriction

child some Student

universal restriction

child **only** Student

Semantics of ALC

An interpretations I consists of

- ullet a domain $\Delta^{
 m I}$
- an interpretation function I such that maps:
 - every *individual name* a to an element $I(a) \in \Delta^{\mathsf{I}}$
 - every *concept* to a subset of Δ^{I}
 - every *role* to a binary relation on $\Delta^{ ext{I}}$ (a subset of $\Delta^{ ext{I}} imes \Delta^{ ext{I}}$)

The semantics of non atomic concepts and roles is (recursively) defined in terms of atomic concept and role interpretations.

Semantics of concept expressions

```
\begin{split} \mathrm{I}(\bot) &= \emptyset \\ \mathrm{I}(\top) &= \Delta^{\mathrm{I}} \\ \mathrm{I}(C\sqcap D) = \mathrm{I}(C) \cap \mathrm{I}(D) \\ \mathrm{I}(C\sqcup D) = \mathrm{I}(C) \cup \mathrm{I}(D) \\ \mathrm{I}(\neg C) &= \Delta^{\mathrm{I}} - \mathrm{I}(C) \\ \mathrm{I}(\exists R.C) &= \{x \in \Delta^{\mathrm{I}} : \exists y : (x,y) \in \mathrm{I}(R) \text{ and } y \in \mathrm{I}(C)\} \\ \mathrm{I}(\forall R.C) &= \{x \in \Delta^{\mathrm{I}} : \forall y : (x,y) \in \mathrm{I}(R) \Rightarrow y \in \mathrm{I}(C)\} \end{split}
```

Exercise

Consider the vocabulary

concepts: Human, Cat; roles: hasParent and the interpretation

- $\Delta^{l} = \{a, b, c, d, e, f, k, l, m\}$
- $I(Human) = \{a, b, c, d, e\}$
- $I(Cat) = \{k, l, m\}$
- $I(\text{hasParent}) = \{(a,b), (a,c), (c,d), (b,e), (b,f), (k,m)\}$

What are the formal interpretations (and informal meaning) of

- Human □ Cat
- ¬ Human
- ∃ hasParent.T
- ∃ hasParent.Cat

Exercise (cont.)

If

- $\Delta^{I} = \{a, b, c, d, e, f\}$
- $I(Human) = \{a, b, c, d, e\}$
- $I(Cat) = \{k, l, m\}$
- $I(\texttt{hasParent}) = \{(a, b), (a, c), (c, d), (b, e), (b, f), (k, m)\}$

what are the interpretations of

- ▼.hasParent.Cat
- ∃ hasParent.T □ ∀.hasParent.Cat
- ∃ hasParent.(∃ hasParent.Human)
- ∃ hasParent.(∀ hasParent.⊥)

More class constructors (\mathcal{ALCOQ})

Number restrictions on properties

$$\geq \mathbf{n} \ \mathsf{R.C}$$

$$\{x \in \Delta^I : \#\{y | (x,y) \in I(R) \ and \ y \in I(C)\} \geq n\}$$

$$\leq \mathbf{n} \ \mathsf{R.C}$$

$$\{x \in \Delta^I : \#\{y | (x,y) \in I(R) \ and \ y \in I(C)\} \leq n\}$$

$$= \mathbf{n} \ \mathsf{R.C} \ \leftrightarrow \geq \mathbf{n} \ \mathsf{R.C} \ \text{and} \ \leq \mathbf{n} \ \mathsf{R.C}$$

Enumeration of individuals

$$\{i_1, i_2, ..., i_n\}$$

 $\{x \in \Delta: x = I(i_1) \text{ or } x = I(i_2) \text{ or } ..., \text{ or } x = I(in)\}$

DL Knowledge Base

```
Vocabulary:
         class names, property names, individual names
Terminological axioms (TBox):
         provide class definitions and relationships between classes
Role axioms (RBox):
         about roles
Assertional axioms (ABox):
         about individuals
```

Terminological Axioms (TBox)

Axioms of the form

$$C \sqsubseteq D$$

$$C \equiv D$$

$$C \text{ disjoint } D$$

Axiom satisfaction by an interpretation I (notation: I = Axiom)

```
I \vDash C \sqsubseteq D if and only if I(C) \subseteq I(D)

I \vDash C \equiv D if and only if I(C) = I(D)

I \vDash C \text{ disjoint } D if and only if I(C) \cap I(D) \neq \emptyset
```

Exercises

Find an interpretation I of the vocabulary

- Cat, Mammal, Human (concept names),
- hasParent (role names),
- felix, bob, alice (individual names)

that has Δ^{I} ={a, b, c, d, e, f} and satisfies the axioms

- Human

 ∀ hasParent.Human
- {bob, alice} ⊑ Human
- {felix} ⊑ Cat
- Cat

 ∃ hasParent.T

Axioms on roles (RBox) (ALCHOQ)

$$P \sqsubseteq R$$

if a is linked to b through P then a is linked to b through R

$$I \vDash P \sqsubseteq R$$
 if and only if $I(P) \subseteq I(R)$

Examples

- mother

 parent
- primaryFunction

 ☐ function

Axioms on roles: property chains

$$R_1 \circ R_2 \circ \dots \circ R_n \sqsubseteq P$$

if a is linked to b through a property chain $R_1 \circ R_2 \circ ... \circ R_n$ then a is linked to b through P

$$I \vDash R_{1} \circ R_{2} \circ ... \circ R_{n} \sqsubseteq P$$
 if and only if
$$\forall y_{0}, y_{1}, ..., y_{n} : (y_{0}, y_{1}) \in I(R_{1}), ..., (y_{n-1}, y_{n}) \in I(R_{n}) \rightarrow (y_{0}, y_{n}) \in I(P)$$

Examples

- parent o parent ⊑ grandParent
- parent o parent o child o child \sqsubseteq cousinOrSiblingOrSelf

More axioms on roles

functional(R)
$$(x,y) \in I(R) \text{ and } (x,z) \in I(R) \rightarrow y = z$$
inverse(R, S)
$$(x,y) \in I(R) \rightarrow (y,x) \in I(S)$$
symmetric(R)
$$(x,y) \in I(R) \rightarrow (y,x) \in I(R)$$
transitive(R)
$$(x,y) \in I(R) \text{ and } (y,z) \in I(R) \rightarrow (x,z) \in I(R)$$
reflexive(R)
$$\forall x \in \Delta^I : (x,x) \in I(R)$$

Examples

```
functional(biologicalMother)
inverse(mother, child)
symmetric(friend)
transitive(before)
reflexive(knows)
```

Assertions on individuals (ABox)

Axioms asserting that

- a named individual belongs to a class $m{\mathcal{C}}(m{i})$

$$I \models C(i)$$
 if and only if $I(i) \in I(C)$

- a named individual is linked to another one through a role R(i,j)

$$I \models R(i,j)$$
 if and only if $(I(i),I(j)) \in I(R)$

Assertions on individuals (ABox)

Axioms asserting that

two named individuals are different.

i differentFrom j

 $I \models i \text{ differentFrom } j \text{ if and only if } I(i) \neq I(j)$

two named individuals are equal

i sameAs j

 $I \models i \text{ sameAs } j \text{ if and only if } I(i) = I(j)$

Exercise

Find a minimal interpretation that satisfies

- Man(bob)
- Woman(lisa)
- Human(sam)
- Man ⊔ Woman ⊑ Human
- Man disjointFrom Woman
- hasSibling(bob, lisa)
- symmetric(hasSibling)
- father(lisa, max)
- father(lisa, mix)
- mix differentFrom sam
- functional(father)