Learning from human demonstrations: A new paradigm for scalable robot data acquisition

Robot Algorithm Engineer
Beijing Academy of Artificial Intelligence

3人人I GOSIM AI Paris 2025

- 1 Overview
- 2 Humanoid data collection pipeline
- 3 Demo

Learning from demonstration is an effective approach for robot manipulation, but how can we get large-scale robot data?

Leader-follower arms

RSS 2023: ALOHA

- Precise joint recording
- Mainly focus on parallel-jaw grippers
- Restricted to specific robot platforms

ALOHA data collection

Vision based VR

Teleoperation

CoRL 2024: Open-Television

- Wrist and fingertip tracking
- 3 dof wrist tracking
- Tiring for human teleoperators
- Inaccurate finger joints tracking under occlusion

Open-Television data collection

BAAL GOSIM

Vision Exoskeletons teleoperation system

- Accurate joint(wrist) tracking
- No head tracking
- Unstable fingertip motion tracking
- Additional hardware configuration for different robot platforms

ACE data collection

Humanoid teleoperation pipeline GOSIM

How can we setup an efficient, precise, comfortable and cross embodiment robot teleoperation pipeline

Head

Vive tracker(wrist pose motion tracking)

Manus Metagloves(fingertip motion tracking)

- No external tracking devices and skeleton needed, portable
- Precise hand and fingertip tracking under occlusion
- Comfortable for operators
- Efficient
- Cross platform

Humanoid teleoperation pipeline

Humanoid teleoperation pipeline STANI GOSIM

Fingertip retargeting

- Size difference between human hand and robot hand.
- It's hard to directly transfer human hand motions to robot hand motions.
- Ensure the same motion between human hand fingertips and robot hand fingertips.

RSS 2024:Dexcap

$$\min_{q_t} \sum_{i=0}^{N} ||\alpha v_t^i - f_i(q_t)||^2 + \beta ||q_t - q_{t-1}||^2$$
s.t. $q_l \le q_t \le q_u$,

q_t: Dex-hand joint positions at timestep t $f_i(q_t)$: Dex-hand forward kinematics

 v_t^i : the i-th keypoint vector from the detected finger keypoints

 q_1, q_n : lower and upper dex-hand joint limits

Humanoid teleoperation pipeline STANI GOSIM

Wrist pose retargeting

- Same wrist motion between human and robot
- After retargeting, use inverse kinematics(IK) to get arm joints
- In-hand tracker ensures smooth and precise wrist pose tracking

Human hand and head frame coordinate

G1 frame coordinate

Demo humanoid data collection (GOSIM)

Teleoperation

- Precise fingertip and wrist position tracking
- 60 hz of robot arm joints and wrist poses collection
- Rgb head camera image collection

Demo Policy rollout

Policy deployment

- Precise data ensures stable robot policy
- Policy rollout frequency of 30hz
- Integration to VLM to solve long-horizon tasks

Welcome to our Booth!

1st Floor, Open Platform Area Entering the main gate, the first booth on the right side (next to the GOSIM main display board) 60SIM ris 2025

Visit us at **BAAI Booth** (with a shining Star in the left picture)

follow our X account

visit our GitHub

Welcome to our Booth!

Have A Nice Talk~