Imperial College London

Relativity – Lecture 7

Dr Caroline Clewley

Key concepts of lecture 5 & 6

- Events show up as points in a spacetime diagram. Moving objects have a worldline in this diagram.
- 2. The 4-position contains the four coordinates of an event in time and space.
- 3. The invariant interval $s^2 = c^2 \Delta t^2 \Delta r^2$ denotes the separation between events.
- 4. $s^2 < 0$, spacelike separation, $s^2 > 0$, timelike separation, $s^2 = 0$, timelike separation.

Review of the classical Doppler effect

Speaker emits pulses with time separation τ_0 .

In time T pulse travels wT (w: Evave speed)

Detector

Number of pulses that arrive at detector: WT

Per unit time:
$$V = \frac{\omega}{L}$$
 (V_D frequency of pulses at detector)

Review of the classical Doppler effect

What is *L*?

Pulse 1 emitted at
$$t = 0$$
. Pulse 2 emitted at $t = \tau_0$.

Pulse 1 emitted at
$$t = 0$$
. $\begin{cases} \text{Separation is } \omega \tau_0 - v \tau_0 \\ = 1 - (\omega - v) \tau_0 = \omega - v \end{cases}$

$$\frac{1}{\sqrt{1-v}} = \frac{\omega v_0}{\sqrt{1-v}} = \frac{1}{\sqrt{1-v}}$$
(for moving source)

Source approaching: $V_{\mathcal{D}} > V_{\mathcal{C}}$

Source receding:

Page 4

The Relativistic Doppler effect

Light flashes with period τ_0 in its rest frame.

Pulses leave bulb and arrive at detector with speed C

Observer sees a longer emission period T= YT Frequency of pulse: $V_0 = C$ with L = (C-V)TSo $V_0 = C = \frac{1}{(1-V)}YT_0 = V_0 + \frac{1}{1-R} = V_0 + \frac{1}{1-R}$ Page 5 Same result if observer's moving towards light.

Redshift

Redshift

For lights
$$C = \lambda v$$
 So $\zeta = \frac{C}{\lambda_0} = \frac{1}{\lambda_0} \frac{1}{\gamma(1-\beta)}$

or $\lambda_0 = \gamma \lambda_0 (1-\beta) = \lambda_0 \sqrt{\frac{1-\beta}{1+\beta}}$

For livedrogen $\lambda_0 = 656$ nm but its a distant

For Hydrogen $\lambda_0 = 656$ nm, but in a distant galaxy this is observed at $\lambda_D = 953$ nm.

$$\frac{1}{50} > \frac{1}{50}$$
; So $V < 0$ (galaxy is receding).
Solve: $\frac{953}{656} = \sqrt{\frac{1-13}{1+18}}$; $\frac{1}{5} = -0.36$

[In Astrophysics:
$$Z+1=\frac{\lambda_D}{\lambda_O}=>Z=0.46$$
]

Page 6 (Classical approximation ox if $\frac{\lambda_C}{c}<0.1$)

Other relativistic effects: what about angles?

Only length parallel to direction of motion is length contracted.

=>
$$tanf' = L'_{y} = L_{y} = y tanf$$

$$\frac{L'_{x}}{L'_{x}} = \frac{L_{y}}{L_{x}} = y tanf$$

$$CcsA = \frac{U_x}{C}$$

$$CcsA' = \frac{u_x}{C} = \frac{u_x - V}{1 - vu_x} \cdot \frac{1}{c}$$

$$\frac{u_x - V}{C} = CcsA - \frac{V}{C}$$

$$\frac{\overline{C}}{1 - \frac{\vee u_x}{C}} = \frac{C \cos A - \frac{\vee}{C}}{1 - \frac{\vee}{C} \cos A}$$

Combined effect of finite speed of light (light travel time) and relativistic velocity addition.

Relativistic aberration: result

Relativistic aberration: example

Emitted light is concentrated in forwards cone. Luminosity is boosted.

Relativistic beaming.

Summary

The relativistic Doppler effect is caused by:

- 1. The source 'catching up' to the emitted waves (classical Doppler effect).
- 2. Time dilation.