Report No: CCIS15070062204

FCC REPORT

Applicant: HUNG WAI PRODUCTS LIMITED

Address of Applicant: Unit 11, 12/F., New Commerce Centre, 19 On Sum Street,

Shatin, Hong Kong

Equipment Under Test (EUT)

Product Name: 17.3" Android touch LCD Media Player

Model No.: DT173-AC4-900, 502-1739ATATM

FCC ID: 2AB6Z-DT173-AC4

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: 30 Jul., 2015

Date of Test: 30 Jul., to 02 Sep., 2015

Date of report issued: 08 Sep., 2015

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No. Date		Description
00	08 Sep., 2015	Android player Main board with wireless module (FCC ID: 2AB6Z-1859ATMB) and same antenna were used by the device, only conducted emission and Radiated emission were re-tested.

Reviewed by: One Date: 08 Sep., 2015

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4		T SUMMARY	
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	LABORATORY FACILITY	
	5.5	LABORATORY LOCATION	
	5.6	TEST INSTRUMENTS LIST	
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	14
	6.5	Power Spectral Density	15
	6.6	BAND EDGE	16
	6.7	Spurious Emission	21
	6.7.	Restricted Band	21
	6.7.2		
	6.8	FREQUENCY STABILITY	37
7	TES	T SETUP PHOTO	38
R		CONSTRUCTIONAL DETAILS	30

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.407 (g)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.407 (a)	Pass*
26dB Occupied Bandwidth	15.407 (a)	Pass*
6dB Emission Bandwidth	15.407(e)	Pass*
Power Spectral Density	15.407 (a)	Pass*
Band Edge	15.407(b)	Pass*
Spurious Emission	15.205/15.209	Pass
Frequency Stability	15.407(g)	Pass*

Pass: The EUT complies with the essential requirements in the standard.

Pass*: The test data refer to FCC ID: 2AB6Z-1859ATMB.

Remark: Test according to ANSI C63.4:2009

5 General Information

5.1 Client Information

Applicant:	HUNG WAI PRODUCTS LIMITED		
Address of Applicant:	Unit 11, 12/F., New Commerce Centre, 19 On Sum Street, Shatin, Hong Kong		
Manufacturer:	HUNG WAI ELECTRONICS (HUIZHOU) LTD.		
Address of Manufacturer:	3 rd floor, NO. 3, Minfeng Road, Huinan High and New Technology Industry Park, Huiao Avenue, Huizhou City, Guangdong, China		

5.2 General Description of E.U.T.

DE Concrai Decemplion	
Product Name:	17.3" Android touch LCD Media Player
Model No.:	DT173-AC4-900, 502-1739ATATM
Operation Frequency:	Band 1: 5180MHz-5240MHz Band 4: 5745MHz-5825MHz
Operation mode:	Indoor used
Channel numbers:	Band 1: 802.11a/802.11n20: 4, 802.11n40: 2 Band 4: 802.11a/802.11n20: 5, 802.11n40: 2
Channel separation:	802.11a/802.11n20: 20MHz, 802.11n40: 40MHz
Modulation technology: (IEEE 802.11a)	BPSK, QPSK,16-QAM, 64-QAM
Modulation technology: (IEEE 802.11n)	BPSK, QPSK, 16-QAM, 64-QAM
Data speed(IEEE 802.11a)	6Mbps, 9Mbps,12Mbps,18Mbps, 24Mbps,36Mbps,48Mbps, 54Mbps
Data speed (IEEE 802.11n20):	MCS0: 6.5Mbps, MCS1:13Mbps, MCS2:19.5Mbps, MCS3:26Mbps, MCS4:39Mbps, MCS5:52Mbps, MCS6:58.5Mbps, MCS7:65Mbps
Data speed (IEEE 802.11n40):	MCS0:15Mbps, MCS1:30Mbps, MCS2:45Mbps, MCS3:60Mbps, MCS4:90Mbps, MCS5:120Mbps, MCS6:135Mbps, MCS7:150Mbps
Antenna Type:	Omni-directional
Antenna gain:	2.5 dBi
AC Adapter:	MODEL: PS24A120K2000UD Input: AC 100-240V 50/60Hz 1.0A Output: DC 12V, 2000mA

Operation Frequency each of channel

Band 1						
802.11a/	802.11n20	802.11n40				
Channel	Frequency	Channel	Frequency			
36	5180MHz	39	5190MHz			
40	5200MHz	45	5230MHz			
44	44 5220MHz					
48	48 5240MHz					
	Bai	nd 4				
802.11a/	802.11n20	802.11n40				
Channel	Frequency	Channel	Frequency			
149	5745MHz	151	5755MHz			
153	153 5765MHz 159		5795MHz			
157	157 5785MHz					
161	161 5805MHz					
165	5825MHz		_			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Band 1						
802.11a/802	2.11n20	802.11n	40			
Channel	Frequency	Channel	Frequency			
The lowest channel	5180MHz	The lowest channel	5190MHz			
The middle channel	The middle channel 5200MHz		5230MHz			
The highest channel	The highest channel 5240MHz					
	Bar	d 4				
802.11a/802	2.11n20	802.11n40				
Channel	Frequency	Channel	Frequency			
The lowest channel	The lowest channel 5745MHz		5755MHz			
The middle channel	The middle channel 5785MHz		5795MHz			
The highest channel	5825MHz					

Report No: CCIS15070062204

5.3 Test environment and mode

Operating Environment:					
Temperature:	24.0 °C				
Humidity:	54 % RH				
Atmospheric Pressure:	1010 mbar				
Test mode:					
Continuously transmitting mode	Keep the EUT in 100% duty cycle transmitting with modulation.				

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case. Mode Data rate 802.11a 6 Mbps 802.11n20 6.5 Mbps 802.11n40 13 Mbps

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 6 Mbps for 802.11a, 6.5 Mbps for 802.11n20 and 13 Mbps for 802.11n40. All test items for 802.11a and 802.11n were performed with duty cycle above 98%, meet the requirements of KDB789033.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

● IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.6 Test Instruments list

Radiated Emission:							
Item	Test Equipment Manufacturer		Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	3m Semi - Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017	
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	03-28-2015	03-28-2016	
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016	
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016	
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016	
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016	
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016	
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A	
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A	
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	03-28-2015	03-28-2016	
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	03-28-2015	03-28-2016	
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016	
14	4 Universal radio communication tester Rhode & Schwarz		CMU200	CCIS0069	03-28-2015	03-28-2016	
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-08-2015	04-08-2016	

Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015			
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016			
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016			
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016			
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part15 E Section 15.203 /407(a)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

E.U.T Antenna:

The antenna of EUT is a reverse-SMA connector, which cannot be replaced by end-user. And the antenna gain is 2.5 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.4: 2009					
Test Frequency Range:	150 kHz to 30 MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9 kHz, VBW=30 kHz		1			
Limit:	Frequency range (MHz)	Limit (d Quasi-peak	BuV) Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the logarithm	of the frequency.				
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). It provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. 					
Test setup:	Referen	nce Plane				
	AUX Equipment E.U Test table/Insulation plan Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m	EMI Receiver	r —— AC power			
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details.					
Test results:	Passed					

Measurement Data

Site : CCIS Shielding Room
Condition : FCC PART15 B QP LISN LINE
EUT : 17.3" Android touch LCD Media Player
Model : DT173- AC4-900
Test Mode : 5G-WIFI mode
Power Rating : AC120V/60Hz
Environment : Temp: 23 'C Huni:56% Atmos:101KPa
Test Engineer: Viki
Remark :

Kemark	:							
		Read	LISN	Cable		Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBu∀	<u>dB</u>	dB	dBu₹	dBu∜	<u>dB</u>	
1	0.190	49.49	0.28	10.76	60.53	64.02	-3.49	QP
2	0.190	38.43	0.28	10.76	49.47	54.02	-4.55	Average
3	0.255	39.57	0.27	10.75	50.59	61.60	-11.01	QP
4	0.255	25.94	0.27	10.75	36.96	51.60	-14.64	Average
5	0.320	35.91	0.26	10.74	46.91	59.71	-12.80	QP
6	0.325	26.19	0.27	10.73	37.19	49.57	-12.38	Average
2 3 4 5 6 7 8 9	0.449	30.81	0.29	10.74	41.84		-15.05	
8	0.449	24.33	0.29	10.74	35.36	46.89	-11.53	Average
9	0.535	28.82	0.28	10.76	39.86	56.00	-16.14	QP
10	2.261	20.05	0.26	10.95	31.26	46.00	-14.74	Average
11	6.557	32.89	0.32	10.81	44.02	60.00	-15.98	QP
12	7.687	24.32	0.32	10.83	35.47	50.00	-14.53	Average

Neutral:

Trace: 13

Site : CCIS Shielding Room

Condition

: FCC PART15 B QP LISN NEUTRAL : 17.3" Android touch LCD Media Player EUT

: DT173- AC4-900 Model Test Mode : 5G-WIFI mode

Power Rating : AC120V/60Hz Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Viki

Remark

COMMIK	Freq	Read Level	LISN Factor	Cable Loss		Limit Line	Over Limit	Remark
	MHz	dBu∀	<u>dB</u>	₫B	dBu₹	dBu∜	<u>dB</u>	
1	0.180	30.18	0.25	10.77	41.20	64.50	-23.30	QP
2	0.200	22.01	0.25	10.76	33.02	53.62	-20.60	Average
3	0.336	19.34	0.26	10.73	30.33	49.31	-18.98	Average
1 2 3 4 5 6 7 8 9	0.661	28.11	0.20	10.77	39.08	56.00	-16.92	QP
5	1.216	16.21	0.24	10.90	27.35	46.00	-18.65	Average
6	1.472	28.02	0.26	10.92	39.20	56.00	-16.80	QP
7	3.090	14.62	0.29	10.92	25.83	46.00	-20.17	Average
8	3.364	26.64	0.29	10.91	37.84	56.00	-18.16	QP
9	8.192	30.17	0.26	10.86	41.29	60.00	-18.71	QP
10	11.498	17.47	0.25	10.92	28.64	50.00	-21.36	Average
11	18.328	21.10	0.26	10.91	32.27	50.00	-17.73	Average
12	18.622	33.29	0.26	10.91	44.46	60.00	-15.54	QP

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (ii) & (a) (3)						
Test Method:	ANSI C63.10: 2009, KDB 789033						
Limit:	Band 1: 1 W (For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi.); Band 4: 1W.						
Test setup:							
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.6 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB						

6.4 Occupy Bandwidth

FCC Part15 E Section 15.407 (a) (5) and Section 15.407 (e)						
ANSI C63.10:2009 and KDB 789033						
Band 1: N/A(26dB Emission Bandwidth and 99% Occupy Bandwidth) Band 4: N/A(26dB Emission Bandwidth and 99% Occupy Bandwidth) Band 4: >500kHz(6dB Bandwidth)						
Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Refer to section 5.6 for details						
Refer to section 5.3 for details						
Refer to FCC ID: 2AB6Z-1859ATMB						

6.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (ii) & (a) (3)						
Test Method:	ANSI C63.10:2009, KDB 789033						
Limit:	Band 1: 17 dBm/MHz (The maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.); Band 4: 30dBm/500kHz						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.6 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB						

6.6 Band Edge

Test Requirement:	FCC Part15 E Section 15.407 (b)						
Test Method:	ANSI C63.4:200	9 , KDB 78	9033				
Receiver setup:		T	ı				
	Detector	RBW	VBW	Remark			
	Quasi-peak	120kHz	300kHz	Quasi-peak Va			
	RMS	1MHz	3MHz	Average Valu	ue		
Limit:			1				
			· · · · · · · · · · · · · · · · · · ·	BuV/m @3m)	Remark		
	Band	1		68.20	Peak Value		
			_	54.00	Average Value		
	Band	4		78.20	Peak Value		
	Remark:			54.00	Average Value		
1. Band 1 limit: E[dBμV/m] = EIRP[dBm] + 95.2=68.2 dBuV/m, for EIPR[dBm]= -2 2. Band 4 limit:							
Test Procedure:	 E[dBµV/m] = EIRP[dBm] + 95.2=78.2 dBuV/m, for EIPR[dBm]= -17dBm. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 						
Test setup:	Sheet. Antenna Tower Horn Antenna Spectrum Analyzer Amplifier						
Test Instruments:	Refer to section	5.6 for deta	ails				
Test mode:	Refer to section	5.3 for deta	ails				
Test results:	Passed						

Band 1:

	802.11a									
Test c	hannel		Lowest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	37.15	32.07	9.13	40.06	38.29	68.20	-29.91	Horizontal		
5150.00	36.97	32.07	9.13	40.06	38.11	68.20	-30.09	Vertical		
	802.11a									
Test c	hannel		Lowest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	26.96	32.07	9.13	40.06	28.10	54.00	-25.90	Horizontal		
5150.00	26.97	32.07	9.13	40.06	28.11	54.00	-25.89	Vertical		
	802.11a									
Test c	hannel	Highest			Le	vel	Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	38.95	31.78	9.15	40.18	39.70	68.20	-28.50	Horizontal		
5350.00	38.56	31.78	9.15	40.18	39.31	68.20	-28.89	Vertical		
				802.11a						
Test c	hannel		Highest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	26.95	31.78	9.15	40.18	27.70	54.00	-26.30	Horizontal		
5350.00	28.74	31.78	9.15	40.18	29.49	54.00	-24.51	Vertical		

	802.11n-HT20									
Test c	hannel	Lowest			Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	39.63	32.07	9.13	40.06	40.77	68.20	-27.43	Horizontal		
5150.00	40.03	32.07	9.13	40.06	41.17	68.20	-27.03	Vertical		
			8	02.11n-HT20						
Test c	hannel		Lowest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	26.39	32.07	9.13	40.06	27.53	54.00	-26.47	Horizontal		
5150.00	25.99	32.07	9.13	40.06	27.13	54.00	-26.87	Vertical		
			8	02.11n-HT20						
Test c	hannel	Highest			Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	35.26	31.78	9.15	40.18	36.01	68.20	-32.19	Horizontal		
5350.00	34.96	31.78	9.15	40.18	35.71	68.20	-32.49	Vertical		
			8	02.11n-HT20						
Test c	hannel		Highest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	26.59	31.78	9.15	40.18	27.34	54.00	-26.66	Horizontal		
5350.00	26.23	31.78	9.15	40.18	26.98	54.00	-27.02	Vertical		

	802.11n-HT40								
Test c	hannel		Lowest			vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	35.96	32.07	9.13	40.06	37.10	68.20	-31.10	Horizontal	
5150.00	35.97	32.07	9.13	40.06	37.11	68.20	-31.09	Vertical	
	802.11n-HT40								
Test c	hannel		Lowest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	25.06	32.07	9.13	40.06	26.20	54.00	-27.80	Horizontal	
5150.00	24.98	32.07	9.13	40.06	26.12	54.00	-27.88	Vertical	
			8	302.11n-HT40					
Test c	hannel	Highest			Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	37.46	31.78	9.15	40.18	38.21	68.20	-29.99	Horizontal	
5350.00	37.85	31.78	9.15	40.18	38.60	68.20	-29.60	Vertical	
			8	02.11n-HT40					
Test c	hannel		Highest		Le	vel	Av	rerage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	26.56	31.78	9.15	40.18	27.31	54.00	-26.69	Horizontal	
5350.00	25.97	31.78	9.15	40.18	26.72	54.00	-27.28	Vertical	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

	802.11a								
Test c	hannel		Lowest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	36.26	32.27	9.30	40.54	37.29	78.20	-40.91	Horizontal	
5725.00	33.45	32.27	9.30	40.54	34.48	78.20	-43.72	Vertical	
802.11a									
Test c	hannel		Lowest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	29.63	32.27	9.30	40.54	30.66	54.00	-23.34	Horizontal	
5725.00	28.96	32.27	9.30	40.54	29.99	54.00	-24.01	Vertical	
	802.11a								
Test c	hannel	Highest			Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	41.23	32.71	9.37	40.69	42.62	78.20	-35.58	Horizontal	
5850.00	40.16	32.71	9.37	40.69	41.55	78.20	-36.65	Vertical	
				802.11a					
Test c	hannel		Highest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	28.63	32.71	9.37	40.69	30.02	54.00	-23.98	Horizontal	
5850.00	29.66	32.71	9.37	40.69	31.05	54.00	-22.95	Vertical	

	802.11n-HT20									
				302.11n-H120			_			
Test c	hannel	Lowest			Le	vel	Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	41.56	32.27	9.30	40.54	42.59	78.20	-35.61	Horizontal		
5725.00	41.08	32.27	9.30	40.54	42.11	78.20	-36.09	Vertical		
			8	302.11n-HT20						
Test c	hannel		Lowest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	29.63	32.27	9.30	40.54	30.66	54.00	-23.34	Horizontal		
5725.00	29.85	32.27	9.30	40.54	30.88	54.00	-23.12	Vertical		
			8	302.11n-HT20						
Test c	hannel	Highest			Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	39.63	32.71	9.37	40.69	41.02	78.20	-37.18	Horizontal		
5850.00	39.52	32.71	9.37	40.69	40.91	78.20	-37.29	Vertical		
			8	302.11n-HT20						
Test c	hannel		Highest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	29.63	32.71	9.37	40.69	31.02	54.00	-22.98	Horizontal		
5850.00	28.74	32.71	9.37	40.69	30.13	54.00	-23.87	Vertical		

	802.11n-HT40								
Test c	hannel		Lowest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	40.15	32.27	9.30	40.54	41.18	78.20	-37.02	Horizontal	
5725.00	41.26	32.27	9.30	40.54	42.29	78.20	-35.91	Vertical	
802.11n-HT40									
Test c	hannel		Lowest		Le	vel	Av	rerage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	28.63	32.27	9.30	40.54	29.66	54.00	-24.34	Horizontal	
5725.00	29.35	32.27	9.30	40.54	30.38	54.00	-23.62	Vertical	
			8	302.11n-HT40					
Test c	hannel	Highest			Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	39.66	32.71	9.37	40.69	41.05	78.20	-37.15	Horizontal	
5850.00	39.87	32.71	9.37	40.69	41.26	78.20	-36.94	Vertical	
			8	02.11n-HT40					
Test c	hannel		Highest		Le	vel	Av	rerage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	29.05	32.71	9.37	40.69	30.44	54.00	-23.56	Horizontal	
5850.00	29.24	32.71	9.37	40.69	30.63	54.00	-23.37	Vertical	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Restricted Band

<u>6.7.1</u>	Restricted Band					
	Test Requirement:	FCC Part15 E	Section 15.40	7(b)		
	Test Method:	ANSI C63.4: 20	009			
	Test Frequency Range:	Band 1: 4.5 GH Band 4: 5.35 G			Iz to 5.46GH	Hz
	Test site:	Measurement [Distance: 3m			
	Receiver setup:					
		Frequency	Remark			
		Above 1GHz	Peak RMS	1MHz 1MHz	3MHz 3MHz	Peak Value Average Value
	Limit:		TOMO	11111112	OWNIZ	7.verage value
		Freque	ency	Limit (dBuV	/m @3m)	Remark
		Above 1	GHz	74.0		Peak Value
				54.0	00	Average Value
	Test Procedure:	the ground to determine to determine antenna, we tower. 9. The antennathe ground Both horize make the result of find the the total find the the total find the limit spof the EUT have 10dE	at a 3 meter ne the position was set 3 meter which was more and height is various to determine ontal and vert measurement suspected emishen the antend the rota table maximum reasceiver system and width with sion level of the position of the would be reparameters.	camber. The n of the highers away from unted on the faried from one the maximur ical polarizations ssion, the EU ina was turned iding. In was set to Fin Maximum Fine EUT in peaceting could ported. Otherwood be re-tested.	table was rest radiation. In the interfectop of a variue of the ons of the all T was arraid to heights from 0 degral Peak Detect Hold Mode, as mode was be stopped wise the emit one by one	rence-receiving lable-height antenna our meters above the field strength. Intenna are set to anged to its worst from 1 meter to 4 rees to 360 degrees
	rest setup:	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table A A A A A A A A A A A A A A A A A A				
	Test Instruments:	Refer to section	n 5.6 for detail	S		
	Test mode:	Refer to section	5.3 for detail	S		
	Test results:	Passed				

Band 1:

802.11a

Test c	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	33.26	30.72	8.54	40.67	31.85	74.00	-42.15	Horizontal
4500.00	31.28	30.72	8.54	40.67	29.87	74.00	-44.13	Vertical
Test c	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	24.56	30.72	8.54	40.67	23.15	54.00	-30.85	Horizontal
4500.00	24.08	30.72	8.54	40.67	22.67	54.00	-31.33	Vertical
Test c	hannel		Highest		Level		F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	34.78	31.99	9.16	40.23	35.70	74.00	-38.30	Horizontal
5460.00	33.26	31.99	9.16	40.23	34.18	74.00	-39.82	Vertical
Test c	hannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	25.09	31.99	9.16	40.23	26.01	54.00	-27.99	Horizontal
5460.00	23.02	31.99	9.16	40.23	23.94	54.00	-30.06	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT20

	-							
Test c	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	35.29	30.72	8.54	40.67	33.88	74.00	-40.12	Horizontal
4500.00	35.18	30.72	8.54	40.67	33.77	74.00	-40.23	Vertical
Test c	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	24.15	30.72	8.54	40.67	22.74	54.00	-31.26	Horizontal
4500.00	24.55	30.72	8.54	40.67	23.14	54.00	-30.86	Vertical
Test c	hannel		Highest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	34.58	31.99	9.16	40.23	35.50	74.00	-38.50	Horizontal
5460.00	32.89	31.99	9.16	40.23	33.81	74.00	-40.19	Vertical
Test c	hannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	25.47	31.99	9.16	40.23	26.39	54.00	-27.61	Horizontal
5460.00	24.28	31.99	9.16	40.23	25.20	54.00	-28.80	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT40

Test c	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	35.26	30.72	8.54	40.67	33.85	74.00	-40.15	Horizontal
4500.00	34.07	30.72	8.54	40.67	32.66	74.00	-41.34	Vertical
Test c	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	25.36	30.72	8.54	40.67	23.95	54.00	-30.05	Horizontal
4500.00	26.30	30.72	8.54	40.67	24.89	54.00	-29.11	Vertical
Test c	hannel		Highest		Level		F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	32.74	31.99	9.16	40.23	33.66	74.00	-40.34	Horizontal
5460.00	33.53	31.99	9.16	40.23	34.45	74.00	-39.55	Vertical
Test c	hannel		Highest		Le	vel	Average	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	23.57	31.99	9.16	40.23	24.49	54.00	-29.51	Horizontal
5460.00	22.58	31.99	9.16	40.23	23.50	54.00	-30.50	Vertical

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

802.11a

Test c	hannel		Lowest		Le	vel	F	eak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	44.56	31.78	9.15	40.18	45.31	74.00	-28.69	Horizontal
5460.00	44.63	31.99	9.16	40.23	45.55	74.00	-28.45	Horizontal
5350.00	43.78	31.78	9.15	40.18	44.53	74.00	-29.47	Vertical
5460.00	43.95	31.99	9.16	40.23	44.87	74.00	-29.13	Vertical
Test c	hannel		Lowest		Level		Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	32.16	31.78	9.15	40.18	32.91	54.00	-21.09	Horizontal
5460.00	31.25	31.99	9.16	40.23	32.17	54.00	-21.83	Horizontal
5350.00	31.08	31.78	9.15	40.18	31.83	54.00	-22.17	Vertical
5460.00	31.04	31.99	9.16	40.23	31.96	54.00	-22.04	Vertical

802.11n-HT20

002.1111-11120										
Test c	hannel		Lowest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	44.15	31.78	9.15	40.18	44.90	74.00	-29.10	Horizontal		
5460.00	45.26	31.99	9.16	40.23	46.18	74.00	-27.82	Horizontal		
5350.00	43.85	31.78	9.15	40.18	44.60	74.00	-29.40	Vertical		
5460.00	42.79	31.99	9.16	40.23	43.71	74.00	-30.29	Vertical		
Test c	hannel		Lowest		Level		Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	32.11	31.78	9.15	40.18	32.86	54.00	-21.14	Horizontal		
5460.00	32.08	31.99	9.16	40.23	33.00	54.00	-21.00	Horizontal		
5350.00	32.02	31.78	9.15	40.18	32.77	54.00	-21.23	Vertical		
5460.00	33.08	31.99	9.16	40.23	34.00	54.00	-20.00	Vertical		

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT40

Test c	hannel		Lowest		Le	vel	F	eak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	41.08	31.78	9.15	40.18	41.83	74.00	-32.17	Horizontal
5460.00	42.96	31.99	9.16	40.23	43.88	74.00	-30.12	Horizontal
5350.00	42.57	31.78	9.15	40.18	43.32	74.00	-30.68	Vertical
5460.00	43.25	31.99	9.16	40.23	44.17	74.00	-29.83	Vertical
Test c	hannel		Lowest		Level		Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	32.14	31.78	9.15	40.18	32.89	54.00	-21.11	Horizontal
5460.00	33.06	31.99	9.16	40.23	33.98	54.00	-20.02	Horizontal
5350.00	33.21	31.78	9.15	40.18	33.96	54.00	-20.04	Vertical
5460.00	33.18	31.99	9.16	40.23	34.10	54.00	-19.90	Vertical

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7.2 Unwanted Emissions in the Restricted Bands

Test Requirement:	FCC Part15 C S	Section 15.209 a	and 15.205							
Test Method:	ANSI C63.10:2009									
Test Frequency Range:	30MHz to 40GH	lz								
Test site:	Measurement D	istance: 3m								
Receiver setup:										
	Frequency	Detector	RBW	VBW	Remark					
	30MHz-1GHz	Quasi-peak	100kHz	300kHz	Quasi-peak Value					
	Above 1GHz	Peak	1MHz	3MHz	Peak Value					
Limit:										
	Freque	ncy	Limit (dBuV	m @3m)	Remark					
	30MHz-8	8MHz)	Quasi-peak Value						
	88MHz-21		43.5		Quasi-peak Value					
	216MHz-9		46.0		Quasi-peak Value					
	960MHz-	1GHz	54.0)	Quasi-peak Value					
	Freque	ncv	Limit (dBn		Remark					
	Treque	Ticy	68.2	•	Peak Value					
	Above 1	GHz	54.0		Average Value					
	Remark: 1. Above 1GH									
		RP[dBm] + 95.2=								
Test Procedure:	the ground determine to determi	at a 3 meter cathe position of the position and height is variable termine the mand vertical polar ent. Suspected emission at table was turneding, ceiver system with a position level of the position development of the position of the pos	amber. The second the highest research and the tended from one second to he he he defended from 0 ce was set to Particular to he	table was readiation. the interference of a variation of a variation of the first the antennation of the antennation of the east Detect old Mode. It was arrarights from the degrees to degrees to degree of the east Detect old Mode. It was arrarights from the east Detect old Mode.	is 10dB lower than the the peak values of ions that did not have g peak, quasi-peak or					

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL : 17.3 Android touch LCD Media Player : DT17.3-AC4-720 : 5G-WIFI mode Condition

EUT

Model Test mode Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55% 101KPa Test Engineer: Viki

REMARK

Freq								
MHz	dBu∀	<u>dB</u> /π		B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
150.011	42.33	8.26	1.32	29.22	22.69	43.50	-20.81	QP
199.986	44.88	10.57	1.38	28.83	28.00	43.50	-15.50	QP
250.301	43.87	12.07	1.62	28.54	29.02	46.00	-16.98	QP
350.477	48.01	14.27	1.94	28.56	35.66	46.00	-10.34	QP
463.970	40.97	15.71	2.30	28.89	30.09	46.00	-15.91	QP
672.845	39.01	18.72	2.85	28.73	31.85	46.00	-14.15	QP
	MHz 150. 011 199. 986 250. 301 350. 477 463. 970	Freq Level MHz dBuV 150.011 42.33 199.986 44.88 250.301 43.87 350.477 48.01 463.970 40.97	MHz dBuV dB/m 150.011 42.33 8.26 199.986 44.88 10.57 250.301 43.87 12.07 350.477 48.01 14.27 463.970 40.97 15.71	MHz dBuV dB/m dB 150.011 42.33 8.26 1.32 199.986 44.88 10.57 1.38 250.301 43.87 12.07 1.62 350.477 48.01 14.27 1.94 463.970 40.97 15.71 2.30	MHz dBuV dB/m dB dB 150.011 42.33 8.26 1.32 29.22 199.986 44.88 10.57 1.38 28.83 250.301 43.87 12.07 1.62 28.54 350.477 48.01 14.27 1.94 28.56 463.970 40.97 15.71 2.30 28.89	MHz dBuV dB/m dB dB dBuV/m 150.011 42.33 8.26 1.32 29.22 22.69 199.986 44.88 10.57 1.38 28.83 28.00 250.301 43.87 12.07 1.62 28.54 29.02 350.477 48.01 14.27 1.94 28.56 35.66 463.970 40.97 15.71 2.30 28.89 30.09	MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m 150.011 42.33 8.26 1.32 29.22 22.69 43.50 199.986 44.88 10.57 1.38 28.83 28.00 43.50 250.301 43.87 12.07 1.62 28.54 29.02 46.00 350.477 48.01 14.27 1.94 28.56 35.66 46.00 463.970 40.97 15.71 2.30 28.89 30.09 46.00	Freq Level Factor Loss Factor Level Line Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 150.011 42.33 8.26 1.32 29.22 22.69 43.50 -20.81 199.986 44.88 10.57 1.38 28.83 28.00 43.50 -15.50 250.301 43.87 12.07 1.62 28.54 29.02 46.00 -16.98 350.477 48.01 14.27 1.94 28.56 35.66 46.00 -10.34 463.970 40.97 15.71 2.30 28.89 30.09 46.00 -15.91

Vertical:

Site : 3m chamber

: FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL : 17.3" Android touch LCD Media Player : DT17.3-AC4-720 Condition

EUT

Model Test mode : 5G-WIFI mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55% 101KPa

Test Engineer: Viki REMARK :

LMAKK										
	(23)		Antenna							
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
-	MHz	dBu₹	$\overline{dB}/\overline{m}$		dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B		
1	80.081	43.94	8.54	0.85	29.64	23.69	40.00	-16.31	QP	
2	80.081	43.94	8.54	0.85	29.64	23.69	40.00	-16.31	QP	
3	199.986	45.09	10.57	1.38	28.83	28.21	43.50	-15.29	QP	
4	250.301	42.33	12.07	1.62	28.54	27.48	46.00	-18.52	QP	
5	350.477	46.58	14.27	1.94	28.56	34.23	46.00	-11.77	QP	
6	451, 135	44.92	15.58	2.26	28.87	33, 89	46,00	-12.11	OP	

Above 1GHz:

Band 1:

	802.11a mode Lowest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	44.28	39.23	13.84	41.34	56.01	68.20	-12.19	Vertical			
10360.00	44.15	39.23	13.84	41.34	55.88	68.20	-12.32	Horizontal			
		802.11a	a mode Lowe	est channe	I (Average V	alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	31.29	39.23	13.84	41.34	43.02	54.00	-10.98	Vertical			
10360.00	32.78	39.23	13.84	41.34	44.51	54.00	-9.49	Horizontal			

	802.11a mode Middle channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	43.26	39.36	13.85	41.27	55.20	68.20	-13.00	Vertical			
10400.00	43.05	39.36	13.85	41.27	54.99	68.20	-13.21	Horizontal			
		802.11	a mode Mido	lle channe	(Average V	alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	32.18	39.36	13.85	41.27	44.12	54.00	-9.88	Vertical			
10400.00	32.46	39.36	13.85	41.27	44.40	54.00	-9.60	Horizontal			

	802.11a mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	44.59	39.56	13.90	41.06	56.99	68.20	-11.21	Vertical			
10480.00	43.67	39.56	13.90	41.06	56.07	68.20	-12.13	Horizontal			
		802.11a	mode High	est channe	I (Average \	/alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	31.45	39.56	13.90	41.06	43.85	54.00	-10.15	Vertical			
10480.00	31.08	39.56	13.90	41.06	43.48	54.00	-10.52	Horizontal			

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

	802.11n20 mode Lowest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	44.78	39.23	13.84	41.34	56.51	68.20	-11.69	Vertical			
10360.00	43.62	39.23	13.84	41.34	55.35	68.20	-12.85	Horizontal			
		802.11n2	20 mode Lov	vest chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	33.58	39.23	13.84	41.34	45.31	54.00	-8.69	Vertical			
10360.00	33.18	39.23	13.84	41.34	44.91	54.00	-9.09	Horizontal			

	802.11n20 mode Middle channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	44.26	39.36	13.85	41.27	56.20	68.20	-12.00	Vertical			
10400.00	43.58	39.36	13.85	41.27	55.52	68.20	-12.68	Horizontal			
		802.11n	20 mode Mic	ldle chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	33.29	39.36	13.85	41.27	45.23	54.00	-8.77	Vertical			
10400.00	33.47	39.36	13.85	41.27	45.41	54.00	-8.59	Horizontal			

	802.11n20 mode Highest channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10480.00	44.56	39.56	13.90	41.06	56.96	68.20	-11.24	Vertical		
10480.00	43.78	39.56	13.90	41.06	56.18	68.20	-12.02	Horizontal		
		802.11n2	20 mode Higl	hest chann	el (Average	Value)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10480.00	31.08	39.56	13.90	41.06	43.48	54.00	-10.52	Vertical		
10480.00	30.85	39.56	13.90	41.06	43.25	54.00	-10.75	Horizontal		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

	802.11n40 mode Lowest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10380.00	42.75	39.29	13.84	41.31	54.57	68.20	-13.63	Vertical			
10380.00	43.56	39.29	13.84	41.31	55.38	68.20	-12.82	Horizontal			
		802.11n ²	40 mode Lov	vest chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10380.00	30.46	39.29	13.84	41.31	42.28	54.00	-11.72	Vertical			
10380.00	31.28	39.29	13.84	41.31	43.10	54.00	-10.90	Horizontal			

	802.11n40 mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10460.00	42.75	39.54	13.88	41.17	55.00	68.20	-13.20	Vertical			
10460.00	41.08	39.54	13.88	41.17	53.33	68.20	-14.87	Horizontal			
		802.11n ²	10 mode Higl	hest chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10460.00	32.08	39.54	13.88	41.17	44.33	54.00	-9.67	Vertical			
10460.00	33.06	39.54	13.88	41.17	45.31	54.00	-8.69	Horizontal			

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

Build 4.		802.1	1a mode Lov	west chann	el (Peak Val	lue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	45.26	40.25	13.82	40.75	58.58	68.20	-9.62	Vertical
11490.00	43.58	40.25	13.82	40.75	56.90	68.20	-11.30	Horizontal
		802.11a	a mode Lowe	est channe	I (Average V	alue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	29.88	40.25	13.82	40.75	43.20	54.00	-10.80	Vertical
11490.00	29.64	40.25	13.82	40.75	42.96	54.00	-11.04	Horizontal

	802.11a mode Middle channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11570.00	42.56	40.17	13.78	40.91	55.60	68.20	-12.60	Vertical		
11570.00	41.57	40.17	13.78	40.91	54.61	68.20	-13.59	Horizontal		
		802.11	a mode Mido	dle channe	l (Average V	alue)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11570.00	30.05	40.17	13.78	40.91	43.09	54.00	-10.91	Vertical		
11570.00	29.94	40.17	13.78	40.91	42.98	54.00	-11.02	Horizontal		

	802.11a mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11650.00	44.21	39.89	13.74	41.06	56.78	68.20	-11.42	Vertical			
11650.00	43.68	39.89	13.74	41.06	56.25	68.20	-11.95	Horizontal			
		802.11a	a mode High	est channe	I (Average \	/alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11650.00	32.18	39.89	13.74	41.06	44.75	54.00	-9.25	Vertical			
11650.00	30.24	39.89	13.74	41.06	42.81	54.00	-11.19	Horizontal			

Remark:

Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
 The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n20 mode Lowest channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11490.00	44.16	40.25	13.82	40.75	57.48	68.20	-10.72	Vertical		
11490.00	42.58	40.25	13.82	40.75	55.90	68.20	-12.30	Horizontal		
		802.11n2	20 mode Lov	vest chann	el (Average	Value)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11490.00	39.56	40.25	13.82	40.75	52.88	54.00	-1.12	Vertical		
11490.00	28.75	40.25	13.82	40.75	42.07	54.00	-11.93	Horizontal		

	802.11n20 mode Middle channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11570.00	42.56	40.17	13.78	40.91	55.60	68.20	-12.60	Vertical			
11570.00	43.47	40.17	13.78	40.91	56.51	68.20	-11.69	Horizontal			
		802.11n	20 mode Mid	ddle chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11570.00	29.58	40.17	13.78	40.91	42.62	54.00	-11.38	Vertical			
11570.00	29.25	40.17	13.78	40.91	42.29	54.00	-11.71	Horizontal			

	802.11n20 mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11650.00	41.75	39.89	13.74	41.06	54.32	68.20	-13.88	Vertical			
11650.00	41.06	39.89	13.74	41.06	53.63	68.20	-14.57	Horizontal			
		802.11n2	20 mode Hig	hest chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11650.00	31.60	39.89	13.74	41.06	44.17	54.00	-9.83	Vertical			
11650.00	29.85	39.89	13.74	41.06	42.42	54.00	-11.58	Horizontal			

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
 The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

	802.11n40 mode Lowest channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11510.00	42.55	40.26	13.83	40.77	55.87	68.20	-12.33	Vertical		
11510.00	42.74	40.26	13.83	40.77	56.06	68.20	-12.14	Horizontal		
		802.11n4	40 mode Lov	vest chann	el (Average	Value)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11510.00	26.36	40.26	13.83	40.77	39.68	54.00	-14.32	Vertical		
11510.00	27.08	40.26	13.83	40.77	40.40	54.00	-13.60	Horizontal		

802.11n40 mode Highest channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
11590.00	40.29	40.08	13.77	40.95	53.19	68.20	-15.01	Vertical	
11590.00	41.75	40.08	13.77	40.95	54.65	68.20	-13.55	Horizontal	
802.11n40 mode Highest channel (Average Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
11590.00	26.58	40.08	13.77	40.95	39.48	54.00	-14.52	Vertical	
11590.00	25.33	40.08	13.77	40.95	38.23	54.00	-15.77	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.8 Frequency stability

Test Requirement:	FCC Part15 E Section 15.407 (g)					
Limit:	Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.					
Test setup:	Temperature Chamber					
	Spectrum analyzer EUT Att. Variable Power Supply					
	Note: Measurement setup for testing on Antenna connector					
Test procedure:	 The EUT is installed in an environment test chamber with external power source. Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT. A sufficient stabilization period at each temperature is used prior to each frequency measurement. When temperature is stabled, measure the frequency stability. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions. 					
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details, and all channels have been tested, only shows the worst channel data in this report.					
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB					