AG 3.3 - 1 Vektoren im Dreieck - MC - BIFIE

1. Ein Dreieck ABC ist rechtwinklig mit der Hypotenuse AB.

____/1 AG 3.3

Welche der folgenden Aussagen sind jedenfalls richtig? Kreuze die beiden entsprechenden Aussagen an!

$$\left| \overrightarrow{AB} \right| = \left| \overrightarrow{AC} \right|$$

$$\overrightarrow{AB} = \overrightarrow{AC} + \overrightarrow{BC}$$

$$\overrightarrow{AC} = \overrightarrow{BC}$$

$$\overrightarrow{AB} = \overrightarrow{BC} - \overrightarrow{AC}$$

$$\overrightarrow{AC} \cdot \overrightarrow{BC} = 0 \qquad \boxtimes$$

AG 3.3 - 2 Vektoren in einem Quader - MC - BIFIE

2. Die Grundfläche ABCD des dargestellten Quaders liegt in der xyEbene. Festgelegt werden die Vektoren $\overrightarrow{a} = \overrightarrow{AB}$, $\overrightarrow{b} = \overrightarrow{AD}$, und $\overrightarrow{c} = \overrightarrow{AE}$. AG 3.3

Welche der folgenden Darstellungen ist/sind möglich, wenn $s,t\in\mathbb{R}$ gilt? Kreuze die zutreffende(n) Aussage(n) an!

$\overrightarrow{TC} = t \cdot \overrightarrow{c}$	
$\overrightarrow{AR} = t \cdot \overrightarrow{a}$	
$\overrightarrow{EG} = s \cdot \overrightarrow{a} + t \cdot \overrightarrow{b}$	\boxtimes
$\overrightarrow{BT} = s \cdot \overrightarrow{a} + t \cdot \overrightarrow{b}$	
$\overrightarrow{TR} = s \cdot \overrightarrow{b} + t \cdot \overrightarrow{c}$	\boxtimes

AG 3.3 - 3 Rechnen mit Vektoren - MC - BIFIE

3. Gegeben sind die Vektoren \overrightarrow{r} , \overrightarrow{s} , und \overrightarrow{t} .

____/1

AG 3.3

Kreuze die beiden für diese Vektoren zutreffenden Aussagen an!

$\overrightarrow{t} + \overrightarrow{s} + \overrightarrow{r} = \overrightarrow{0}$	×
$\overrightarrow{t} + \overrightarrow{s} = -\overrightarrow{r}$	\boxtimes
$\overrightarrow{t} - \overrightarrow{s} = \overrightarrow{r}$	
$\overrightarrow{t} - \overrightarrow{r'} = \overrightarrow{s'}$	
$\overrightarrow{t} = \overrightarrow{s} + \overrightarrow{r}$	

AG 3.3 - 4 Quadrat - MC - BIFIE

4. A, B, C und D sind Eckpunkte des unten abgebildeten Quadrates, M ist der Schnittpunkt der Diagonalen.

AG 3.3

Kreuze die beiden zutreffenden Aussagen an!

$$C = A + 2 \cdot \overrightarrow{AM}$$

$$B = C + \overrightarrow{AD}$$

$$M = D - \frac{1}{2} \cdot \overrightarrow{DB}$$

$$\overrightarrow{AM} \cdot \overrightarrow{MB} = 0$$

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = 0$$

AG 3.3 - 5 Vektoren (als Pfeile) - OA - BIFIE

5. A,B,C und D sind Eckpunkte des unten abgebildeten Quadrates, M ist der Schnittpunkt der Diagonalen. AG 3.3

Gegeben sind die Vektoren \overrightarrow{a} und \overrightarrow{b} , die in der untenstehenden Abbildung als Pfeile dargestellt sind.

Stelle $\frac{1}{2} \cdot \overrightarrow{b} - \overrightarrow{d}$ ausgehend vom Punkt C durch einen Pfeil dar!

AG 3.3 - 6 Rechenoperationen bei Vektoren - MC - BIFIE

6. Gegeben sind die Vektoren \overrightarrow{d} und \overrightarrow{b} sowie ein Skalar $r \in \mathbb{R}$.

____/1 AG 3.3

Welche der folgenden Rechenoperationen liefert/liefern als Ergebnis wieder einen Vektor? Kreuze die zutreffende(n) Antwort(en) an!

$\overrightarrow{a} + r \cdot \overrightarrow{b}$	\boxtimes
$\overrightarrow{a} + r$	
$\overrightarrow{a} \cdot \overrightarrow{b}$	
$r \cdot \overrightarrow{b}$	\boxtimes
$\overrightarrow{b} - \overrightarrow{a}$	\boxtimes

AG 3.3 - 7 Rechteck - MC - BIFIE

7. Abgebildet ist das Rechteck RSTU.

____/1

AG 3.3

Kreuze die beiden zutreffenden Aussagen an!

9	
$\overrightarrow{ST} = -\overrightarrow{RU}$	
$\overrightarrow{SR} \parallel \overrightarrow{UT}$	
$\overrightarrow{RS} + \overrightarrow{ST} = \overrightarrow{TR}$	
$U = T + \overrightarrow{SR}$	\boxtimes
$\overrightarrow{RT} \cdot \overrightarrow{SU} = 0$	

AG 3.3 - 8 Geometrische Deutung - MC - BIFIE

8.	Gegeben	sind	zwei	Vektoren:	\overrightarrow{a} .	\overrightarrow{b}	$\in \mathbb{R}^2$.
Ο.	CCSCOCII	billa	2 11 01	V CILUOI CII.	ω,	0	C 11/2 .

____/1 AG 3.3

Welche der nachstehenden Aussagen über Vektoren sind korrekt? Kreuze die beiden zutreffenden Aussagen an!

Der Vektor $3 \cdot \overrightarrow{a}$ ist dreimal so lang wie der Vektor \overrightarrow{a} .	
Das Produkt $\overrightarrow{a} \cdot \overrightarrow{b}$ ergibt einen Vektor.	
Die Vektoren \overrightarrow{a} und $-0.5 \cdot \overrightarrow{a}$ besitzen die gleiche Richtung und sind gleich orientiert.	
Die Vektoren \overrightarrow{a} und $-2 \cdot \overrightarrow{a}$ sind parallel.	\boxtimes
Wenn \overrightarrow{d} und \overrightarrow{b} einen rechten Winkel einschließen, so ist deren Skalarprodukt größer als null.	

AG 3.3 - 9 Vegetarische Menüs - OA - BIFIE

9. In einem Restaurant wird täglich ein vegetarisches Menü angeboten. Der Vektor

AG 3.3

$$\overrightarrow{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \\ a_6 \\ a_7 \end{pmatrix}$$

gibt die Anzahl der verkauften vegetarischen Menüs an den Wochentagen Montag bis Sonntag einer bestimmten Woche an, der Vektor

$$\overrightarrow{p} = \begin{pmatrix} p_1 \\ p_2 \\ \vdots \\ p_7 \end{pmatrix}$$

die jeweiligen Menüpreise in Euro.

Interpretiere das Skalarprodukt $\overrightarrow{a} \cdot \overrightarrow{p}$ in diesem Zusammenhang!

Das Skalarprodukt gibt den Erlös aus dem Verkauf des vegetarischen Menüs für die Tage Montag bis Sonntag in dieser Woche an.

AG 3.3 - 10 Vektoraddition - OA - Matura 2015/16 - Haupttermin

10. Die unten stehende Abbildung zeigt zwei Vektoren $\overrightarrow{v_1}$ und \overrightarrow{v} .

AG 3.3

Ergänze in der Abbildung einen Vektor $\overrightarrow{v_2}$ so, dass $\overrightarrow{v_1} + \overrightarrow{v_2} = \overrightarrow{v}$ ist.

Lösungsschlüssel: Ein Punkt für eine korrekte Darstellung von $\overrightarrow{v_2}$, wobei der gesuchte Vektor auch von anderen Ausgangspunkten aus gezeichnet werden kann.

${ m AG~3.3}$ - 11 Gehälter - OA - Matura 2014/15 - Haupttermin

11. Die Gehälter der 8 Mitarbeiter/innen eines Kleinunternehmens sind im Vektor ____/1

$$G = \begin{pmatrix} G_1 \\ G_2 \\ \vdots \\ G_3 \end{pmatrix} \text{ dargestellt.}$$

Gib an,

was der Ausdruck (das Skalarprodukt) $G \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$ in diesem Kontext bedeutet.

Der Ausdruck gibt die Summe der Gehälter der 8 Mitarbeiter/innen des Kleinunternehmens an.

AG 3.3 - 12 Vektoren - OA - Matura 2014/15 - Nebentermin 1

12. In der unten stehenden Abbildung sind die Vektoren \overrightarrow{a} , \overrightarrow{b} und \overrightarrow{c} als Pfeile ____/1 dargestellt. AG 3.3

Stelle den Vektor $\overrightarrow{d} = \overrightarrow{a} + \overrightarrow{b} - 2 \cdot \overrightarrow{c}$ als Pfeil dar.

AG 3.3 - 13 Normalen Vektor bestimmen - OA - Matura 2014/15 - Nebentermin 2

13. Gegeben ist der Vektor
$$\overrightarrow{a} = \begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix}$$
.

AG 3.3

Bestimme die Koordinate z_B des Vektors $\overrightarrow{b} = \begin{pmatrix} 4 \\ 2 \\ z_b \end{pmatrix}$ so, dass \overrightarrow{a} und \overrightarrow{b} aufeinander normal stehen.

$$z_b = -9$$

AG 3.3 - 14 Geometrisches Rechnen mit Vektoren - OA - Matura 2014/15 - Kompensationsprüfung

14. Gegeben sind die Pfeildarstellungen der vier Vektoren \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} , \overrightarrow{d} $\in \mathbb{R}^2$ und ein Punkt P.

Ermittle in der gegebenen Abbildung ausgehend vom Punkt P grafisch die Pfeildarstellung des Vektors $2 \cdot \overrightarrow{b} - \frac{1}{2} \cdot \overrightarrow{d}$.

AG 3.3 - 15 Trapez - OA - Matura NT 2 15/16

15. Von einem Trapez ABCD sind die Koordinaten der Eckpunkte gegeben: ____/1 A = (2/-6), B = (10/-2), C = (9/2), D = (3/y). AG 3.3

Die Seiten a = AB und c = CD sind zueinander parallel.

Gib den Wert der Koordinate y des Punkts D an!

$$y = -1$$

${ m AG~3.3$ - 16 Vektorkonstruktion - OA - Matura 2013/14 Haupttermin

16. Die Abbildung zeigt zwei als Pfeile dargestellte Vektoren \overrightarrow{a} und \overrightarrow{b} und einen _____/1 Punkt P.

Ergänze die unten stehende Abbildung um einen Pfeil, der vom Punkt P ausgeht und den Vektor $\overrightarrow{a}-\overrightarrow{b}$ darstellt!

AG~3.3 - 17 Vektoraddition - OA- Matura 2013/14 1. Nebentermin

17. Gegeben sind die beiden Vektoren \vec{a} und \vec{b} .

____/1

Stelle im untenstehenden Koordinatensystem den Vektor \vec{s} mit $\vec{s} = 2 \cdot \vec{a} + \vec{b}$ AG 3.3 als Pfeil dar!

Ein Punkt für die richtige Lösung. Die Lösung ist dann als richtig zu werten, wenn der Vektor $\vec{s} = \binom{5}{2}$ richtig dargestellt ist. Die Spitze des Vektors \vec{s} muss korrekt und klar erkennbar eingezeichnet sein. Als Ausgangspunkt kann ein beliebiger Punkt gewählt werden. Die Summanden müssen nicht dargestellt werden.

AG 3.3 - 18 Würstelstand - OA - Matura NT 1 16/17

18. Ein Würstelstandbesitzer führt Aufzeichnungen über die Anzahl der täglich verkauften Würstel. Die Aufzeichnung eines bestimmten Tages ist nachstehend angegeben:

AG 3.3

gegeben:

	Anzahl der verkauften Portionen	Verkaufspreis pro Portion (in Euro)	Einkaufspreis pro Portion (in Euro)
Frankfurter	24	2,70	0,90
Debreziner	14	3,00	1,20
Burenwurst	11	2,80	1,00
Käsekrainer	19	3,20	1,40
Bratwurst	18	3,20	1,20

Die mit Zahlenwerten ausgefüllten Spalten der Tabelle können als Vektoren abgeschrieben werden. Dabei gibt der Vektor A die Anzahl der verkauften Portionen, der Vektor B die Verkaufspreise pro Portion (in Euro) und der Vektor C die Einkaufspreise pro Portion (in Euro) an.

Gib einen Ausdruck mithilfe der Vektoren A, B und C an, der den an diesem Tag erzielten Gesamtgewinn des Würstelstandbesitzers bezogen auf den Verkauf der Würstel beschreibt!

Gesamtgewinn = $A \cdot (B - C)$

AG 3.3 - 19 Vektoren in der Ebene - OA - Matura NT 116/17

19. Die unten stehende Abbildung zeigt zwei Vektoren \vec{a} und \vec{b} . _____/1 Zeichne in die Abbildung einen Vektor \vec{c} so ein, dass die Summe der drei Vektoren den Nullvektor ergibt, also $\vec{a} + \vec{b} + \vec{c} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ gilt!

