Reflex: Conducted through the spinal cord and brainstem

Two types of reflex: protective and regulatory

Protective examples: eye blink, gag reflex, limb withdrawl reflex.

Regulatory examples: oculomotor reflex (maintaining gaze), muscle stretch reflex (maintaining position).

Arrangement of a-motor neurons in the spinal cord:

- Neurons proximal to the body are located at the medial part of the ventral horn
- Neurons distal to the body are located at the lateral part of the ventral horn
- Extensors (e.g. triceps) neurons located closer to the central canal
- · Flexors (e.g. biceps) neurons are located further away from the central canal, closer to the periphery grey matter.

Motor Unit and the size principle:

- Small motor unit contains arouns 20 muscle fibres, while large motor unit can contain up to 1000 muscle fibres.
- · Smaller motor units have a smaller diameter, ions more likely to collide with cell membranes, greater resistance.
- Ohm's law: V=IR, higher resistance, produce greater voltage change at any current. Smaller motor units easier to reach action potential, small motor units are recruited first.
- Once recruited, increase in signalling strength leads to higher frequency of motor unit firing, increasing tension until reaching a maximum.

Muscle unit structures:

- Extrafusal spindles: Involved in contraction, innervated by α-motor neurons
- · Intrafusa spindles: Sensing changes in length of the muscle fibre, innervated by
 - Type 1a-affarent (larger diameter, faster conucting, sensing dynamic changes)
 - Type II affarent (smaller diameter, slower conduction, sensing static changes). Also innervated by gamma-motor neurons.
- Golgi Tendon Organs (GTOs), located within the tendon, innervated by type 1b-affarent, axon of 1b affarent located within the collagen network, compression allow sensing muscle tension.

Reflex

- When the tendon is stretched, the stretch is detected by the intrafusal fibre, 1a affarent neuron transmit signal up to the spinal cord and down the α-motor neuron triggering contraction in agonist
- Reciprocal inhibition of antagonist via 1a inhibitory interneurons.
- Sometimes the agonist and antagonist co-contract to allow stiffening of the joints, bracing for sudden loads or changes in direction (e.g. catching load / going down the stairs)

Cross-extension reflex

- Aδ nociception neuron transmit signal to the spinal cord, causes contraction of flexor and relaxation of extensor via monosynaptic reflex.
- Inhibitory commissural neurons inhibit contralateral flexor and contract contralateral extensor, via trisynaptic pathway.
- Monosynaptic neuron withdrawl the limb while contralateral reflex strengthen the opposite length.

 α/γ co-contraction: stimulation signal from the brain stimulate both alpha and gamma motor neurons, contraction of intrafusal and extrafusal fibres occur simultaneously, allow maintainence of tension during contraction.

Hoffmann's reflex and M-wave

Artificial stimulation leads to both orthodromic and antidromic electric stimulation waves.
Stimulation first excites larger diameter 1a affarent fibre, trigger monosynaptic reflex (H-reflex).
• Stronger stimulation excites α-motor neuron, produce contraction with shorter latency
• Stronger stimulation further excites α-motor neuron, antidromic wave cancels out orthrodromic wave from monosynaptic
reflex.
Inverse myostatic reflex
• When under high tension, the 1b affarent fibre stimulate the 1b inhibitory interneuron to strongly inhibiti α-motor neuron
contraction. Relaxes agonist muscle induce "clasp knife" reflex.
 Aδ nociception integrate signal to the 1b inhibitory interneuron, pain from cutaneous surface and joints inhibit contraction
of agonist muscle. Protective reflex when injured
or agonist massie. I rotective reliex when injured
Approximate position of α-motor neurons in the spinal cord
Motor unit recruitment principle, number of motor fibres.
Motor unit structures: innervation, sensors.
Stretch reflex
Cross extension reflex
Inverse myostatic reflex
H-reflex and M wave
onox and mare

.

.. .