t-test

- Given by W.S. Gosset in 1908 under the pen name of student's test
- t-test can be applied when:
- When a researcher draws a small random sample (n<30) to estimate the population (μ);
- When the population standard deviation (σ) is unknown;
- The population is normally distributed

Q: Royal tyre has launched a new brand of tyres for tractors & claims that under normal circumstances the average life of tyres is 40000 km. a retailer wants to test this claim & has taken a random sample of 8 tyres. He tests the life of tyres under normal circumstances. The results obtained are:

Tyres	1	2	3	4	5	6	7	8
Km	35000	38 000	42 000	41 000	39 000	41 500	43 000	38 500

Use a = 0.05 for testing the hypothesis
Step1: Set null & alternative hypothesis

Null hypothesis: Ho: $\mu = 40$ 000

Alternative hypothesis: Ho: µ≠40 000

Steps: Determine the appropriate statistical test

The sample size is less than 30, so t test will be an appropriate test

Step3: Set the level of significance

The level of significance, i.e. $\alpha = 0.05$

Step4: Set the decision rule

The t distribution value for a two-tailed test is $t_{0.025} = 2.365$ for degrees of freedom 7. so if computed it value is outside the ± 2.365 range, the null hypothesis will be rejected otherwise accepted.

Step 5: Collect the sample data:

res	1	2	3	4	5	6	7	8
m	350000	38000	42000	42000	39000	41500	43000	38500

Step 6: Analyze the data

X=39750;
$$\mu$$
=40000; s=2618.61 n=8; df=n-1=7;
Table value of $t_{0.025,7}$ =2.365
• $t = x - \mu$ =39750-40000 = -0.27

The observed t value is -0.27 which falls within the acceptance region & hence null hypothesis is accepted i.e. Ho: μ = 40 000

Z-test

- Hypothesis testing for large samples i.e. n>= 30;
- Based on the assumption that the population, from which the sample is drawn, has a normal distribution;
- As a result, the sampling distribution of mean is also normally distributed;

Application:

- For testing hypothesis about a single population mean;
- Hypothesis testing for the difference between two population means;
- Hypothesis testing for attributes.

Formula for single population mean (finite population)

Q A marketing research firm conducted a survey 10 yrs ago & found that an average household income of a particular geographic is Rs 10000. Mr. gupta who recently joined the firm a VP expresses doubts. For verifying the data, firm decides to take a random sample of 200 households that yield a sample mean of Rs 11000. assume that the population S.D is Rs 1200. verify Mr. Gupta's doubts using α =0.05?

Step 1: set null & alternative hypothesis

Ho: μ=10000

H1: µ≠10000

Step2: Determine the appropriate statistical test

Since sample size >=30, so z-test can be used for hypothesis testing

Step3: set the level of significance

The level of significance is known (α=0.05)

Step4: Set the decision rule

Acceptance region covers 95% of the area & rejection region 5% Critical area can be calculated from the table (\pm 1.96)

Step5: collect the sample data

A sample of 200 respondents yield a sample mean of Rs 11000

Step7: Arrive at a statistical conclusion & business implication

V 200

Z value is 11.79 which is greater than +1.96, hence null hypothesis is rejected and alternative hypothesis is accepted. Hence Mr. Gupta's doubt about household income was right.