

PIC18F2450/4450

PIC18F2450/4450 Data Sheet Errata

Clarifications/Corrections to the Data Sheet:

In the Device Data Sheet (DS39760**A**), the following clarifications and corrections should be noted. Any silicon issues related to the PIC18F2450/4450 will be reported in a separate silicon errata. Please check the Microchip web site for any existing issues.

1. Module: USB

The USB module for this device incorporates configurable, internal pull-up resistors on the D+ and D- lines. The description and explanation of the pull-ups, however, have been largely omitted from the data sheet.

The following additions are made to Section 14.0 "Universal Serial Bus (USB)":

 Figure 14-1 is amended to show the internal pull-ups and their control (added detail in dark line, added text in **bold**), as shown below.

Note: Only the upper half of the figure is reproduced for clarity in showing the changes. There are no modifications to the RAM, USB SIE or figure footnotes from the original.

 In Section 14.2.2.1 "Internal Transceiver", the following paragraph is added immediately following the first paragraph:

The on-chip USB pull-up resistors are controlled by the UPUEN bit (UCFG<4>). They can only be selected when the on-chip transceiver is enabled.

 A new section is added, following the existing Section 14.2.2.2 "External Transceiver". It reads in its entirety as follows:

14.2.2.3 Internal Pull-up Resistors

The PIC18F2450/4450 devices have built-in pull-up resistors designed to meet the requirements for low-speed and full-speed USB. The UPUEN bit (UCFG<4>) enables the internal pull-ups. Figure 14-1 shows the pull-ups and their control.

The existing subsections 14.2.2.3 and following are renumbered appropriately, starting with Section 14.2.2.3 "Pull-up Resistors" (now Section 14.2.2.4).

FIGURE 14-1: USB PERIPHERAL AND OPTIONS (PARTIAL REPRESENTATION)

2. Module: USB

In **Section 14.4.3 "BD Address Validation"**, the USB RAM address range described in the first paragraph is 400h to 7FFh. The correct range is 400h to **4**FFh.

3. Module: USB

In Register 14-5 (BDnSTAT, CPU Mode), the operation of the DSTEN bit is clarified with additional text, shown below in **bold**.

REGISTER 14-5: BDnSTAT: BUFFER DESCRIPTOR n STATUS REGISTER (BD0STAT THROUGH BD63STAT), CPU MODE (PARTIAL REPRESENTATION)

bit 3 DTSEN: Data Toggle Synchronization Enable bit

- 1 = Data toggle synchronization is enabled; data packets with incorrect Sync value will be ignored except for a SETUP transaction, which is accepted even if the data toggle bits do not match
- 0 = No data toggle synchronization is performed

4. Module: USB

In Section 14.5 "USB Interrupts", the following subsection is inserted immediately after Section 14.5.1 "USB Interrupt Status Register (UIR)":

14.5.1.1 Bus Activity Detect Interrupt Bit (ACTVIF)

The ACTVIF bit cannot be cleared immediately after the USB module wakes up from Suspend or while the USB module is suspended. A few clock cycles are required to synchronize the internal hardware state machine before the ACTVIF bit can be cleared by firmware. Clearing the ACTVIF bit before the internal hardware is synchronized may not have an effect on the value of ACTVIF. Additionally, if the USB module uses the clock from the 96 MHz PLL source, then after clearing the SUSPND bit, the USB module may not be immediately operational while waiting for the 96 MHz PLL to lock. The application code should clear the ACTVIF bit as shown in Example 14-1.

EXAMPLE 14-1: CLEARING ACTVIF BIT (UIR<2>)

```
Assembly:
       BCF
               UCON, SUSPND
LOOP:
       BTFSS
               UIR, ACTVIF
       BRA
               DONE
       BCF
               UIR, ACTVIF
       BRA
               LOOP
DONE
C:
UCONbits.SUSPND = 0;
while (UIRbits.ACTVIF) {UIRbits.ACTVIF = 0};
```

5. Module: Electrical Characteristics

In Section 21.3 "DC Characteristics", the parameters D031 (VIL) and D041 (VIH) are not valid and are deleted from the table.

6. Module: Electrical Characteristics

In Section 21.4 "AC (Timing) Characteristics", the title of Table 21-7 specifies a VDD range of 4.2V to 5.5V for values presented in the table. The correct range is 3.0V to 5.5V.

7. Module: Electrical Characteristics

In Section 21.4 "AC (Timing) Characteristics", Table 21-6 has been updated to reflect the correct range of XT and HSPLL mode operation. The changes are shown below in **bold** text.

TABLE 21-6: EXTERNAL CLOCK TIMING REQUIREMENTS

Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions
1A	Fosc	External CLKI Frequency ⁽¹⁾ Oscillator Frequency ⁽¹⁾	DC	48	MHz	EC, ECIO Oscillator mode
			0.2	1	MHz	XT, XTPLL Oscillator mode
			4	25	MHz	HS Oscillator mode
			4	25	MHz	HSPLL Oscillator mode
1	Tosc	External CLKI Period ⁽¹⁾	20.8	_	ns	EC, ECIO Oscillator mode
		Oscillator Period ⁽¹⁾	1,000	5,000	ns	XT Oscillator mode
			40	250	ns	HS Oscillator mode
			40	250	ns	HSPLL Oscillator mode

PIC18F2450/4450

8. Module: ADC

In Section 16.2 "Selecting and Configuring Acquisition Time", Table 16-1 has been updated to reflect the correct device operating frequencies. The changes are shown in **bold** text.

TABLE 21-7: TAD vs. DEVICE OPERATING FREQUENCIES

AD Clock S	ource (TAD)	Maximum Device Frequency		
Operation	ADCS2:ADCS0	PIC18FXXXX	PIC18LFXXXX ⁽⁴⁾	
2 Tosc	000	2.86 MHz	1.43 MHz	
4 Tosc	100	5.71 MHz	2.86 MHz	
8 Tosc	001	11.43 MHz	5.72 MHz	
16 Tosc	101	22.86 MHz	11.43 MHz	
32 Tosc	010	45.71 MHz	22.86 MHz	
64 Tosc	110	48.0 MHz	45.71 MHz	
RC ⁽³⁾	x11	1.00 MHz ⁽¹⁾	1.00 MHz ⁽²⁾	

- **Note 1:** The RC source has a typical TAD time of $1.2 \mu s$.
 - 2: The RC source has a typical TAD time of $2.5 \mu s$.
 - **3:** For device frequencies above 1 MHz, the device must be in Sleep for the entire conversion or the A/D accuracy may be out of specification.
 - 4: Low-power devices only.

9. Module: USB

In **Section 14.2.2.7 "Internal Regulator"**, the first paragraph after the first note box has been updated. The changes are shown in **bold** text below:

"The regulator is **disabled** by default and can be **enabled** through the VREGEN Configuration bit."

10. Module: USB

In Section 14.2.2.7 "Internal Regulator", in the 2nd note box, Note 2 changes as shown in **bold** text below:

"VDD must be greater than **or equal to** VUSB, even with the regulator disabled."

REVISION HISTORY

Rev A Document (05/2006)
Original version of this document. Includes clarification issues 1-4 (USB), 5-7 (Electrical Specifications), 8 (ADC) and 9-10 (USB).

PIC18F2450/4450

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
 intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
 mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active Thermistor, Mindi, MiWi, MPASM, MPLIB, MPLINK, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

@ 2006, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona, Gresham, Oregon and Mountain View, California. The Company's quality system processes and procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Fax: 480-792-7277 Technical Support:

http://support.microchip.com

Web Address: www.microchip.com

Atlanta

Alpharetta, GA Tel: 770-640-0034 Fax: 770-640-0307

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago

Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

San Jose

Mountain View, CA Tel: 650-215-1444 Fax: 650-961-0286

Toronto

Mississauga, Ontario,

Canada

Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8676-6200 Fax: 86-28-8676-6599

China - Fuzhou

Tel: 86-591-8750-3506 Fax: 86-591-8750-3521

China - Hong Kong SAR

Tel: 852-2401-1200 Fax: 852-2401-3431

China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai

Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang

Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Shunde

Tel: 86-757-2839-5507 Fax: 86-757-2839-5571

China - Wuhan

Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian

Tel: 86-29-8833-7250 Fax: 86-29-8833-7256

ASIA/PACIFIC

India - Bangalore

Tel: 91-80-4182-8400 Fax: 91-80-4182-8422

India - New Delhi

Tel: 91-11-5160-8631 Fax: 91-11-5160-8632

India - Pune

Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama

Tel: 81-45-471-6166 Fax: 81-45-471-6122

Korea - Gumi

Tel: 82-54-473-4301 Fax: 82-54-473-4302

Korea - Seoul

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Penang

Tel: 60-4-646-8870 Fax: 60-4-646-5086

Philippines - Manila

Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870

Fax: 65-6334-8850

Taiwan - Hsin Chu

Tel: 886-3-572-9526

Fax: 886-3-572-6459

Taiwan - Kaohsiung

Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610

Fax: 886-2-2508-0102

Thailand - Bangkok

Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-399 Fax: 43-7242-2244-393 Denmark - Copenhagen

Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich

Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399

Fax: 31-416-690349

Spain - Madrid

Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 UK - Wokingham

Tel: 44-118-921-5869 Fax: 44-118-921-5820

02/16/06