

COURSE OUTLINE

1	Why Statistics?	Discuss the role of statistics in the context of business intelligence and decision-making, and introduce the statistics workflow
2	Descriptive Statistics	Understand data using descriptive statistics, including frequency distributions and measures of central tendency & variability
3	Probability Distributions	Model data with probability distributions, and use the normal distribution to calculate probabilities and make value estimates
4	Central Limit Theorem	Introduce the Central Limit Theorem, which leverages the normal distribution to make inferences on populations with any distribution
5	Confidence Intervals	Make estimates with confidence intervals, which use sample statistics to define a range where an unknown population parameter likely lies
6	Hypothesis Tests	Draw conclusions with hypothesis tests, which let you evaluate assumptions about population parameters using sample statistics
7	Regression Analysis	Make predictions with regression analysis, and estimate the values of a dependent variable via its relationship with independent variables

COURSE STRUCTURE

This is a **hands-on**, **project-based** course designed to help you apply statistical methods & techniques to real-world data analysis cases

Course resources include:

Downloadable PDF ebook to serve as a helpful reference when you're offline or on the go (*or just need a refresher!*)

Quizzes and **Projects** to test and reinforce key concepts covered throughout the course, with detailed step-by-step solutions

Interactive demos to keep you engaged, with **downloadable Excel files** that you can use to follow along from home

SETTING EXPECTATIONS

This course is about introducing & demystifying essential statistics concepts

• Our goal is to break down seemingly complex techniques using simple and intuitive explanations that will help you develop an intuition into when, why, and how to use them in the real world

It's also about applying those concepts to real-world use cases

• As we introduce each topic, we'll use Microsoft Excel as a tool to apply them through hands-on demos & assignments, and include additional projects to test your knowledge in different scenarios

We'll be using Excel for Office 365 on a PC for the course demos

• What you see on your screen may not always match what you see on mine, especially if you are running a different operating system or following along with an older version of Excel

You do **NOT** need a math or stats background to take this course

• Although we will cover many statistical equations (and their equivalent Excel functions), the focus will be placed on the meaning behind them and not in the technical details or proof

THE COURSE PROJECT

SITUATION

You've just been hired as a Recruitment Analyst by **Maven Business School**, an online startup that's looking to disrupt the postgraduate programs offered by traditional universities

THE **BRIEF**

You have data from the first graduating class of their MBA program, including details & scores from their application, the program itself, and their employment status 2 months later

Your goal is to **leverage statistics** to evaluate the results of this class, predict the performance of future classes, and propose changes in recruitment to improve graduate outcomes

- Understand the data with descriptive statistics
- Model the data with probability distributions
- Make estimates with confidence intervals
- Draw conclusions with hypothesis tests
- Make predictions with regression analysis

THE MAVEN BUSINESS SCHOOL DATASET

1 /	A B	С	D	E F	G	Н	1	
Stude	ent ID Undergrad Degree U	Indergrad Grade	MBA Grade Work	experience Employability (Before)	Employability (Afte	er) Status	Annual Salary	
	1 Business	68.4	90.2 No	252	2	76 Placed	\$111,000	
	2 Business	62.1	92.8 No	423	4	10 Not Placed	t	
	3 Computer Science	70.2	68.7 Yes	101	1	19 Placed	\$107,000	
	4 Engineering	75.1	80.7 No	288	3	34 Not Placed	d l	
	5 Finance	60.9	74.9 No	248	2	52 Not Placed	t	
	6 Computer Science	74.5	80.7 No	145	2	09 Not Placed	t	
	7 Finance	76.4	83.3 No	401	4	62 Placed	\$109,000	
	8 Business	82.6	88.7 No	287	3	42 Placed	\$148,000	
	9 Finance	76.9	75.4 No	275	3	47 Placed	\$255,500	
	10 Computer Science	83.3	82.1 No	254				_ · · ·
	11 Business	75.8	87.5 No	182			Field	Description
	12 Engineering	76	66.9 No	117				
	13 Business	62.8	71.3 No	130		Name of the second	ID.	A size side difference and Adams of Devices Colored at the size
	14 Engineering	82.8	76.8 No	219	3	Student	טו	A unique identifier for each Maven Business School student
	15 Business	76	72.3 No	152				
	16 Finance	76.9	72.4 No	228				
	17 Computer Science	75.8	72 Yes	62		Jndergr	ad Degree	The student's undergraduate degree
	18 Art	78	81 No	393				
	19 Business	82.4	96.1 No	277				
	20 Computer Science	76.2	76.7 No	206	·	Jndergr:	ad Grade	The student's final grade average from their undergraduate degree (0-1
	21 Business	62.5	80.3 No	229				
	22 Art	78	77.8 No	182		MBA Grade		
	23 Engineering	66.5	62.6 No	98	ı			The student's final grade average from our master's degree program (0-100,
	24 Computer Science	63.5	80.2 No	125				
	25 Business	82.6	79.1 No	164				
	26 Computer Science	79.2	77.8 No	186		Nork Ex	perience	Indicator of the student's work experience prior to the program (Yes/No)
	27 Computer Science	75	75.1 No	235				
	28 Art	74.4	82.2 No	184				The student's seem a third north test that measures their support
	29 Finance	67.9	70.5 No	76	F	mplova	bility (Before)	The student's score from a third-party test that measures their appeal to
	30 Art	76.8	70.8 No	126		pyu	, (50.0.0)	employers in selected industries, taken during their admissions process (0-50
	31 Business	83	87.5 No	183				
	32 Computer Science	88.9	79.5 No	242			Later (Africa)	The state of the s
	33 Business	76.5	80.8 No	207	t t	mpioya	bility (After)	The student's score from the same test, taken after obtaining their Master's
	34 Finance	79.9	79.6 Yes	181				
	35 Business	70.4	88.9 No	239				
1=95	5					Status		Indicator of the student's employment status (Placed/Not Placed)
						Annual S	Salary	The student's annual salary (USD)

HELPFUL RESOURCES

Learn

Maven Analytics

mavenanalytics.io

Books

- Naked Statistics Charles Wheelan
- The Art of Statistics David Spiegelhalter

Websites

scribbr.com/category/statistics/

YouTube

- youtube.com/c/Kozyrkov Statistical Thinking
- youtube.com/user/ExcellsFun Statistical Analysis

Practice

Data Playground

mavenanalytics.io/data-playground

Online Datasets

- kaggle.com/datasets
- data.world/datasets/open-data
- vincentarelbundock.github.io/Rdatasets/articles/data

WHY STATISTICS FOR BUSINESS INTELLIGENCE?

In this section we'll discuss the **role of statistics** in the context of business intelligence and the decision-making process, review key terms, and introduce the statistics workflow

TOPICS WE'LL COVER:

Why Statistics?

Populations

Statistics Workflow

GOALS FOR THIS SECTION:

- Identify scenarios when statistics helps use data to make smart decisions, and when it's not needed
- Understand the concepts of populations & samples
- Review the statistics workflow and the concepts that will be covered throughout the course

WHY STATISTICS?

Why Statistics?

Populations

Statistics Workflow

Business intelligence is about using data to make smart decisions **Statistics** is about *evaluating* those decisions under *uncertain* circumstances

When do you need statistics?

- 1) You don't have all the data you're interested in
 - You can only analyze some of the data you need to make your decision
 - There's uncertainty involved
- 2) The decision you're making is important
 - You don't want to make the wrong one based on your limited data
 - There's something specific to **evaluate**

POPULATION & SAMPLES

Why Statistics?

Populations

Statistics Workflow

A **population** contains all the data you're interested in to make your decision

- It's the data you wish you had, but are unlikely to get
- Any figure that summarizes a population is called a parameter

A **sample** contains some of the data from the population

- It's the data you have (which should ideally represent the population)
- Any figure that summarizes a sample is called a **statistic**

Statistics lets you make reasonable estimates about parameters using statistics

HEY THIS IS IMPORTANT!

Statistics can't create certainty out of uncertainty, it just helps you make controlled decisions under it!

THE STATISTICS WORKFLOW

Why Statistics?

Populations

Statistics Workflow

Descriptive Statistics

Probability Distributions

Confidence Intervals

Hypothesis Tests Regression Analysis

Understand what your sample data looks like

If the sample data fits a probability distribution, use it as a **model** for the entire population

If the sample doesn't fit a distribution, use the central limit theorem to make **estimates** about population parameters Continue to leverage the central limit theorem to draw **conclusions** about what a population looks like based on a sample

Use additional variables to increase the accuracy of your estimates and make **predictions** based on their relationships

HEY THIS IS IMPORTANT!

If you have all the population data, or simply need a bit of inspiration to make an "unimportant" decision, then descriptive statistics may be all you need!

DESCRIPTIVE STATISTICS

In this section we'll cover understanding data with **descriptive statistics**, including frequency distributions, measures of central tendency, and measures of variability

TOPICS WE'LL COVER:

Statistics Basics

Distributions

Central Tendency

Variability

GOALS FOR THIS SECTION:

- Identify the different types of variables in a dataset, along with their use cases
- Create frequency tables and plot the distributions of numerical variables using histograms
- Calculate the mean, median, mode, and standard deviation of a numerical variable
- Visualize the key descriptive statistics of a numerical variable using a box plot

DESCRIPTIVE STATISTICS

The purpose of descriptive statistics is to summarize the characteristics of a variable

They reduce a large array of numbers into a handful of figures that describe it accurately

Statistics Basics

Distributions

Central Tendency

Variability

TYPES OF VARIABLES

There are two main types of variables in a dataset: Numerical & Categorical

- Numerical variables represent numbers that are meant to be aggregated
- Categorical variables represent groups that can be used to filter numerical values

Statistics Basics

Distributions

Central Tendency

Variability

NUMERICAL:

Undergrad Grade	MBA Grade	Employability (Before)	Employability (After)	Annual Salary
68.4	90.2	252	276	\$111,000
62.1	92.8	423	410	
70.2	68.7	101	119	\$107,000
75.1	80.7	288	334	
60.9	74.9	248	252	
74.5	80.7	145	209	
76.4	83.3	401	462	\$109,000
82.6	88.7	287	342	\$148,000
76.9	75.4	275	347	\$255,500
83.3	82.1	254	313	\$103,500

Possible question:

"What's the mean **annual salary** by **work experience**?"

aggregation

filter

CATEGORICAL:

Student ID	Undergrad Degree	Work Experience	Status
1	Business	No	Placed
2	Business	No	Not Placed
3	Computer Science	Yes	Placed
4	Engineering	No	Not Placed
5	Finance	No	Not Placed
6	Computer Science	No	Not Placed
7	Finance	No	Placed
8	Business	No	Placed
9	Finance	No	Placed
10	Computer Science	No	Placed

1

Even though these are numbers, this is a categorical variable (they won't be aggregated)

TYPES OF DESCRIPTIVE STATISTICS

There are 3 main types of descriptive statistics that can be applied to a variable:

Statistics Basics

Distributions

Central Tendency

Variability

Distribution

Represents the **frequency** of each value

Examples:

- Frequency Tables
- Histograms

Grade Distribution

Central Tendency

Represents the **middle** of the values

Examples:

- Mean, Median, and Mode
- Skew

Class Average

80.17

Variability

Represents the **dispersion** of the values

Examples:

- Min, Max, and Range
- Quartiles & Interquartile Range
- Box & Whisker Plots
- Variance & Standard Deviation

Highest Grade

Lowest Grade

96.1

62.6

HEY THIS IS IMPORTANT!

Most measures of central tendency and variability can only be applied to numerical variables

FREQUENCY DISTRIBUTIONS

A **frequency distribution** counts the observations of each possible value in a variable

They are commonly depicted using frequency tables

78.9

74.6

79.3

70.1

88.8

82.9

93.6

75.6 67.5

68.7

67.7

75.3

68.1 63.3

76

74

Statistics Basics

Distributions

Central Tendency

Variability

FREQUENCY TABLE:

The relative frequency shows the count of each value as a % of the total

PRO TIP: Use a PivotTable or the COUNTIFS() function to calculate frequencies for categorical variables in Excel

Finance

Business

Business

Business

Business

Business

Business Business

Finance

Business

Engineering

Engineering

Computer Science

Computer Science

Art

Engineering

Engineering

Undergrad Degree Undergrad Grade

FREQUENCY DISTRIBUTIONS

For numerical variables, a frequency distribution typically counts the number of observations that fall into defined ranges or "bins" (1-5, 6-10, etc.)

They are commonly depicted using grouped frequency tables or histograms

Statistics Basics

Distributions

Central Tendency

Variability

Undergrad Degree	Undergrad Grade
Business	78.9
Business	74
Business	74.6
Engineering	79.3
Engineering	70.1
Business	88.8
Business	66
Art	82.9
Business	93.6
Business	75.6
Finance	67.5
Computer Science	68.7
Business	76
Computer Science	67.7
Engineering	75.3
Engineering	68.1
Finance	63.3

This isn't a meaningful representation of the distribution of the data

FREQUENCY DISTRIBUTIONS

For numerical variables, a frequency distribution typically counts the number of observations that fall into defined ranges or "bins" (1-5, 6-10, etc.)

They are commonly depicted using grouped frequency tables or histograms

Statistics Basics

Distributions

Central Tendency

Variability

Undergrad Degree	Undergrad Grade
Business	78.9
Business	74
Business	74.6
Engineering	79.3
Engineering	70.1
Business	88.8
Business	66
Art	82.9
Business	93.6
Business	75.6
Finance	67.5
Computer Science	68.7
Business	76
Computer Science	67.7
Engineering	75.3
Engineering	68.1
Finance	63.3

PRO TIP: Group the numerical values in a PivotTable or use the FREQUENCY() function with the upper limits to calculate frequencies for each bin in Excel

The cumulative

frequencies

relative frequency

shows the running

total of the relative

HISTOGRAMS

Histograms are used to visualize the distribution of a numerical variable

They also provide a glimpse of the variable's central tendency and variability

Statistics Basics

Distributions

Central Tendency

Variability

Undergrad Degree	Undergrad Grade
Business	78.9
Business	74
Business	74.6
Engineering	79.3
Engineering	70.1
Business	88.8
Business	66
Art	82.9
Business	93.6
Business	75.6
Finance	67.5
Computer Science	68.7
Business	76
Computer Science	67.7
Engineering	75.3
Engineering	68.1
Finance	63.3

Histogram of Undergrad Grades for MBA Graduates

PRO TIP: Create a histogram by using a column chart to plot the variable's frequency table, instead of using Excel's native histogram chart type (not as customizable)

HISTOGRAMS

Histograms are used to visualize the distribution of a numerical variable

They also provide a glimpse of the variable's central tendency and variability

Statistics Basics

Distributions

Central Tendency

Variability

Undergrad Degree	Undergrad Grade
Business	78.9
Business	74
Business	74.6
Engineering	79.3
Engineering	70.1
Business	88.8
Business	66
Art	82.9
Business	93.6
Business	75.6
Finance	67.5
Computer Science	68.7
Business	76
Computer Science	67.7
Engineering	75.3
Engineering	68.1
Finance	F2.3

Histogram of Undergrad Grades for MBA Graduates

Histograms are best suited for variables with many observations, to reflect the true population distribution

PRO TIP: Bin size can significantly change the shape and "smoothness" of a histogram, so select a bin width that accurately shows the data distribution

n=95

ASSIGNMENT: FREQUENCY DISTRIBUTIONS

Welcome to Maven Business School!

As you know, we just had our first ever batch of MBA graduates.

I've looked at their grades individually already, but I'm not getting much insight from them – too many numbers!

I really need to get a clear picture of their grade averages to see if I need to make any tweaks to the program's curriculum.

Do you think you could give me a hand?

Thanks!

Key Objectives

- 1. Create a **frequency table** for the "MBA Grade" variable
- 2. Visualize the results using a **histogram**

MEAN

The **mean** is the calculated "average" value in a set on numbers

- It is calculated by dividing the sum of all values by the count of all observations
- It can only be applied to numerical variables (not categorical)

Statistics Basics

Distributions

Central Tendency

Variability

Undergrad Degree	Undergrad Grade
Business	78.9
Business	74
Business	74.6
Engineering	79.3
Engineering	70.1
Business	88.8
Business	66
Art	82.9
Business	93.6
Business	75.6
Finance	67.5
Computer Science	68.7
Business	76
Computer Science	67.7
Engineering	75.3
Engineering	68.1
Finance	63.3

$$mean = \frac{sum \ of \ all \ values}{count \ of \ observations}$$

$$=\frac{1,270.4}{17}=\mathbf{74.73}$$

PRO TIP: Use the AVERAGEIFS() function if you want to calculate the mean for values that meet a specified criteria (i.e., Mean by Undergrad Degree)

LIMITATIONS OF THE MEAN

The main limitation of the mean is that it is sensitive to outliers (extreme values)

"The average income in America is not the income of the average American"

Statistics Basics

Distributions

Central Tendency

Variability

HEY THIS IS IMPORTANT!

While the mean is typically great for making a "best-guess" estimate of a value, it's important to complement this value with other descriptive statistics like the distribution, median, and mode to see if the mean value is being distorted by outliers

MEDIAN

The **median** is the "middle value" in a sorted set of numbers

- Unlike the mean, the median is NOT sensitive to outliers
- When there are two middle-ranked values, the median is the average of the two

Sta	いろい	Das	

Central **Tendency**

Undergrad Degree	Undergrad Grade
Business	78.9
Business	74
Business	74.6
Engineering	79.3
Engineering	70.1
Business	88.8
Business	66
Art	82.9
Business	93.6
Business	75.6
Finance	67.5
Computer Science	68.7
Business	76
Computer Science	67.7
Engineering	75.3
Engineering	68.1
Finance	63.3

Median = **74.6**

MEDIAN

The **median** is the "middle value" in a sorted set of numbers

- Unlike the mean, the median is NOT sensitive to outliers
- When there are two middle-ranked values, the median is the average of the two

Statistics Dasics

Distributions

Central Tendency

Variability

Undergrad Degree	Undergrad Grade
Business	78.9
Business	74
Business	74.6
Engineering	79.3
Engineering	70.1
Business	88.8
Business	66
Art	82.9
Business	75.6
Finance	67.5
Computer Science	68.7
Business	76
Computer Science	67.7
Engineering	75.3
Engineering	68.1
Finance	63.3

MODE

The **mode** is the "most frequent" value in a variable

• It can be applied to both numerical and categorical variables

Statistics Basics

Distributions

Central Tendency

Variability

Undergrad Degree Undergrad Grade

Mode = **N/A**

MODE

The **modal class** is the group with the highest frequency

Statistics Basics

Distributions

Central Tendency

Variability

Undergrad Degree	Undergrad Grade
Business	78.9
Business	74
Business	74.6
Engineering	79.3
Engineering	70.1
Business	88.8
Business	66
Art	82.9
Business	93.6
Business	75.6
Finance	67.5
Computer Science	68.7
Business	76
Computer Science	67.7
Engineering	75.3
Engineering	68.1
Finance	63.3

GROUPED FREQUENCY TABLE:

This is a **multi-modal** distribution, which indicates that there may be another variable impacting the undergrad grades

SKEW

The **skew** represents the asymmetry of a distribution around its mean

- In a **zero-skewed** distribution, the mean and median are equal
- In a **right-skewed** (or positive) distribution, the mean is typically greater than the median
- In a **left-skewed** (or negative) distribution, the mean is typically smaller than the median

Left skew

Zero skew

Right skew

This is one of the properties of a normal distribution (more on that later!)

Statistics Basics

Distributions

Central Tendency

Variability

ASSIGNMENT: MEASURES OF CENTRAL TENDENCY

Thanks for visualizing those grades for me!

It's interesting to see that not many students scored above 90.

I wonder if, since this is a Masters in *Business* Administration, Business Undergrads tend to do better than others.

Could you give me a quick summary that shows the average MBA grades for Business Undergrads vs Other Undergrads?

I'd appreciate if you could interpret the results for me as well.

Thanks!

Key Objectives

 Calculate the mean, median, mode, and skew for the "MBA Grade" variable by "Undergrad Degree"

RANGE

The **range** is the spread from the lowest (min) to the highest (max) value in a variable

Statistics Basics

Distributions

Central Tendency

Variability

Undergrad Degree	Undergrad Grade
Business	78.9
Business	74
Business	74.6
Engineering	79.3
Engineering	70.1
Business	88.8
Business	66
Art	82.9
Business	96.3
Business	75.6
Finance	67.5
Computer Science	68.7
Business	76
Engineering	75.3
Engineering	68.1
Finance	63.3

n=16

HEY THIS IS IMPORTANT!

While the range is generally a good indicator of the variability in a numerical variable, a single outlier can cause it to change significantly

INTERQUARTILE RANGE

The **interquartile range** is the spread of the *middle half* of the values in a variable

In other words, it's the spread from the first quartile to the third quartile

Statistics Basics

Distributions

Central Tendency

Variability

HEY THIS IS IMPORTANT!

76 78.9

79.3

82.9

88.8 96.3

n=16

Q3 = 79

The quartiles in this example are calculated by *including* the median, but Excel also lets you use the *exclusive* method

There is no right or wrong method to use, but many prefer the inclusive method, as it leads to a narrower range

BOX & WHISKER PLOTS

Box & whisker plots are used to visualize key descriptive statistics

Statistics Basics

Distributions

Central Tendency

Variability

Undergrad Degree	Undergrad Grade			100 ¬													
Business	78.9				Outliers (> Q3 + 1.5 * IQR)												
Business	74			95 -													
Business	74.6																
Engineering	79.3			90 -	Max (excluding outliers)												
Engineering	70.1			90	TWAX (Excluding oddiers)												
Business	88.8		d)														
Business	66		Jndergrad Grade	85 -	Adams												
Art	82.9		9		Mean Q3												
Business	96.3		gra	80 -													
Business	75.6		derg														
Finance	67.5		Unc	O	n 7			Š 7	<u>u</u> 7	Un	U	75 -	75 -	75 -	75 -	75 -	Median
Computer Science	68.7				IQR }												
Business	76			70 -													
Engineering	75.3			, 0													
Engineering	68.1			65 -	Q1												
Finance	63.3			65													
n=16				60	Min (excluding outliers)												

BOX & WHISKER PLOTS

Box & whisker plots are used to visualize key descriptive statistics

They can be used to quickly compare statistical characteristics between categories

Statistics Basics

Distributions

Central Tendency

Variability

STANDARD DEVIATION

The standard deviation measures, on average, how far each value lies from the mean

The *higher* the standard deviation, the *wider* a distribution is *(and vice versa)*

Statistics Basics

Distributions

Central Tendency

Variability

n=95

VARIANCE

The variance is the square of the standard deviation

• Since its units are on a larger scale than the variable it's based on, it's not intuitive to interpret

Statistics Basics

Distributions

Central Tendency

Variability

Undergrad Degree	Undergrad Grade
Business	78.9
Business	74
Business	74.6
Engineering	79.3
Engineering	70.1
Business	88.8
Business	66
Art	82.9
Business	96.3
Business	75.6
Finance	67.5
Computer Science	68.7
Business	76
Engineering	75.3
Engineering	68.1
Finance	F3.3

HEY THIS IS IMPORTANT!

The variance does have its place in some statistical tests, so it shouldn't be discarded, but as a single numerical measure of a variable's dispersion the standard deviation is more effective

n=95

PRO TIP: COEFFICIENT OF VARIATION

The **coefficient of variation** measures the standard deviation relative to the mean

It is used to compare the standard deviations of variables with significantly different means

Statistics Basics

Distributions

Central Tendency

Variability

Undergrad Grade Employability (Before)	
74	133
74.6	122
79.3	236
70.1	143
88.8	354
66	214
82.9	225
96.3	261
75.6	277
67.5	282
68.7	322
76	326
67.7	421
75.3	368
68.1	279
6,2 3	768

$$CV = \frac{standard\ deviation}{mean}$$

Standard Deviation: 7.42 85.94
Mean: 74.9 239.9
Coefficient of Variation: 0.099 0.358

1

On average, undergrad grades differ from the mean by **~10%** of its value, while employability scores differ by **~35%**

ASSIGNMENT: MEASURES OF VARIABILITY

Interesting observation on the "skew" there – I hadn't even heard that word before!

So... if it looks like it's the Business Undergrads in our program that are getting the uncommonly high scores, could it be that their grades are just more dispersed altogether?

I would hate to make a wrong assumption here.

It would help if you could provide some sort of visual as well, especially if I'm going to end up taking this to the board.

Thanks again!

Key Objectives

- Calculate the range, interquartile range, and standard deviation for the "MBA Grade" variable by "Undergrad Degree"
- Compare the "MBA Grade" by "Undergrad Degree" using a box plot

KEY TAKEAWAYS: DESCRIPTIVE STATISTICS

There are two main types of variables: numerical & categorical

• Numerical variables are meant to be aggregated, and categorical variables are used to create groups

The distribution represents the "shape" of a variable

• Histograms are a great way to visualize this "shape" by plotting the frequency of each value (or class)

The mean & median locate the "center" of a distribution

Don't focus on using one instead of the other, rather on using both to complement each other

The standard deviation measures the dispersion around the mean

Use a box plot alongside the standard deviation to provide additional context on the variability and center

MAVEN PIZZA PARLOR | PROJECT BRIEF

You are a BI Consultant that has just been approached by **Maven Pizza Parlor**, a new pizza place in New Jersey that needs help with their demand planning

Key Objectives

1. Summarize the daily pizza sales by using descriptive statistics

PROBABILITY DISTRIBUTIONS

PROBABILITY DISTRIBUTIONS

In this section we'll cover modeling data with **probability distributions**, and use the normal distribution to calculate probabilities and make estimates about normal populations

TOPICS WE'LL COVER:

Distribution Basics

Distribution Types

Normal Distribution

Z-Scores

Probabilities

Value Estimates

GOALS FOR THIS SECTION:

- Understand the concept of a probability distribution, and its relationship with frequency distributions
- Learn about the different types of probability distributions, and their main differences
- Identify the properties of the normal distribution
- Calculate probabilities, values, and z-scores from normal distributions using Excel functions

PROBABILITY DISTRIBUTIONS

Distribution Basics

Distribution Types

Normal istribution

Z-Scores

Probabilities

Value Estimates

A **probability distribution** represents a variable's idealized frequency distribution It shows all the possible values a variable can take, and their chances of occurring

Frequencies in a sample are based on the underlying probabilities of those values occurring

EXAMPLE

Results of rolling two dice

PROBABILITY DISTRIBUTION (Population):

FREQUENCY DISTRIBUTION (Sample):

This is known as a **binomial distribution**, and it can be used to calculate probabilities on the outcome of rolling two dice (without rolling them fifty thousand times!)

TYPES OF PROBABILITY DISTRIBUTIONS

Distribution Basics

Distribution Types

Normal Distribution

Z-Scores

Probabilities

Value Estimates

There are two types of probability distributions: Discrete & Continuous

1) Discrete probability distributions

2) Continuous probability distributions

THE NORMAL DISTRIBUTION

Distribution Basics

Distribution Types

Normal Distribution

Z-Scores

Probabilities

Value Estimate

Many numerical variables naturally follow a normal distribution, or "bell curve"

• Normal distributions are symmetrical around the mean and have no skew (mean = median), with most data concentrated around its center and flaring out in "tails" on both ends

HEY THIS IS IMPORTANT!

Since they are so common, many statistical tests are designed for normally distributed populations, which is why we'll mostly focus on the normal distribution in the course

THE NORMAL DISTRIBUTION

Distribution Basics

Distribution Types

Normal Distribution

Z-Scores

Probabilities

Value Estimates

The normal distribution is described by two values: the mean & standard deviation

THE NORMAL DISTRIBUTION

Distribution Basics

Distribution Types

Normal Distribution

7-Scores

Probabilities

Value Estimates

The normal distribution is described by two values: the **mean** & **standard deviation**

• The mean determines the *center* of the distribution, and the standard deviation its *width*

Changing the mean **shifts** the curve along the x axis

Changing the standard deviation **squeezes** or **stretches** the curve

Z-SCORES

Distribution Basics

Distribution Types

Normal Distribution

Z-Scores

Probabilities

Value Estimates

A **z-score** indicates how many standard deviations away from the mean a value lies

$$z = \frac{x - \mu}{\sigma}$$

To calculate a z-score for a value, simply subtract the mean and divide by the standard deviation (or use the STANDARDIZE function)

$$z = \frac{198 - 195.2}{10.26} = 0.27$$

This is known as the **standard normal distribution**, or z-distribution, and has a mean of 0 and a standard deviation of 1

THE EMPIRICAL RULE

Distribution Basics

Distribution Types

Normal Distribution

Z-Scores

Probabilities

Value Estimates

The empirical rule outlines where most values fall in a normal distribution

PRO TIP: Beyond using a histogram to determine whether your data is distributed normally, check if it follows the empirical rule

ASSIGNMENT: NORMAL DISTRIBUTIONS

Hey, nice to meet you!

I just spoke to Molly, and she mentioned that you were going to be able to make some predictions on student grades since they were "normal", or something like that.

Could you do the same for graduate salaries?

It sounds like something that could be really beneficial for me.

Looking forward to hearing back from you,

Thanks!

Key Objectives

- 1. Plot the distribution of "Annual Salary" to see if it **resembles a bell curve**
- 2. Check if the mean & median are equal
- 3. Calculate the percentage of salaries that lie 1, 2, and 3 standard deviations from the mean to see if the variable **follows the empirical rule**

EXCEL NORMAL DISTRIBUTION FUNCTIONS

Distribution Basics

Distribution Types

Normal Distribution

Z-Scores

Probabilities

Value Estimate

These **Excel functions** help make calculations related to the normal distribution:

NORM.DIST()

Returns the cumulative probability or the probability density at an x value from a given normal distribution

=**NORM.DIST**(x, μ , σ , cumulative)

NORM.INV()

Returns the x value in a given normal distribution at a specified cumulative probability

=**NORM.INV**(probability, μ , σ)

STANDARDIZE()

Returns the z-score for a specified x value in a given normal distribution

=**STANDARDIZE**(x, μ , σ)

NORM.S.DIST()

Returns the cumulative probability or the probability density at a z-score from the standard normal distribution

=NORM.S.DIST(z, cumulative)

NORM.S.INV()

Returns the z-score in the standard normal distribution at a specified cumulative probability

=NORM.S.INV(probability)

CALCULATING PROBABILITIES

Distribution Basics

Distribution Types

Normal Distribution

Z-Scores

Probabilities

Value Estimates

If a variable follows a normal distribution, you can **calculate the probability** of randomly obtaining a value within a specified range

This is determined by the area under the curve in that range

The area from negative infinity to " x_1 " is the **cumulative probability**

Between "x₁" and "x₂"

This is the cumulative probability of " x_2 " minus the cumulative probability of " x_1 "

Greater than or equal to "x2"

This is 1 (the entire area under the curve) minus the cumulative probability of " x_2 "

HEY THIS IS IMPORTANT!

You CANNOT calculate the probability of obtaining an x value exactly – there's no area under a single point!

THE NORM.DIST FUNCTION

Distribution Basics

Distribution Types

Normal Distribution

Z-Scores

Probabilities

Value Estimates

Returns the cumulative probability or the probability density at "x" from a normal distribution

=NORM.DIST(x, mean, standard_dev, cumulative)

The **mean** & **standard deviation** for the normal distribution of the population

TRUE: The area under the curve **FALSE**: The height of the curve

Possible question:

"What's the probability of an Olympic Basketball Player being 2 meters tall or shorter?"

=NORM.DIST(200, 195.2, 10.26, TRUE) **= 0.68**

=NORM.DIST(200, 195.2, 10.26, FALSE) **= 0.035**

This is just the height of the curve

This is the probability!

THE NORM.DIST FUNCTION

Distribution Basics

Distribution Types

Normal Distribution

Z-Scores

Probabilities

Value Estimates

the probability for

Returns the cumulative probability or the probability density at "x" from a normal distribution

=NORM.DIST(x, mean, standard_dev, cumulative)

The **mean** & **standard deviation** for the normal distribution of the population

TRUE: The area under the curve **FALSE**: The height of the curve

Possible question:

"What's the probability of an Olympic Basketball Player being between 1.9 and 2 meters tall?"

=NORM.DIST(200, 195.2, 10.26, TRUE) **= 0.68**

=NORM.DIST(190, 195.2, 10.26, TRUE) **= 0.3061**

=0.68-0.306 **= 0.3739**

This is the probability!

THE NORM.DIST FUNCTION

Distribution Basics

Distribution Types

Normal Distribution

Z-Scores

Probabilities

Value Estimates

Returns the cumulative probability or the probability density at "x" from a normal distribution

=NORM.DIST(x, mean, standard_dev, cumulative)

The **mean** & **standard deviation** for the normal distribution of the population

TRUE: The area under the curve **FALSE**: The height of the curve

Possible question:

"What's the probability of an Olympic Basketball Player being at least 2 meters tall?"

=NORM.DIST(200, 195.2, 10.26, TRUE) **= 0.68**

=1-**NORM.DIST**(190, 195.2, 10.26, TRUE) = **0.32**

This is the probability!

The cumulative probability under the entire curve is equal to 1

(it's every value possible!)

THE NORM.S.DIST FUNCTION

Distribution Basics

Distribution Types

Normal Distribution

Z-Scores

Probabilities

Value Estimates

Returns the cumulative probability or the probability density at "z" from the z-distribution

The **z-score** to calculate the probability for

TRUE: The area under the curve **FALSE**: The height of the curve

Possible question:

"What's the probability of an Olympic Basketball Player being **at least 1.5 standard deviations shorter than the mean**?"

=NORM.S.DIST(-1.5, TRUE) **= 0.066**

This is the probability!

=NORM.S.DIST(-1.5, FALSE) **= 0.130**

This is just the height of the curve

ASSIGNMENT: CALCULATING PROBABILITIES

Hi again!

I keep thinking about the possibilities now that we know the grade averages for our graduates follow a normal distribution.

For example, I'd love to consider anyone that graduates with an average of 90 or higher an "honor student".

What would be the probability of someone getting that grade?

I'd hate for it to be more than 10% of students.

Thanks!

Key Objectives

 Use the NORM.DIST function to calculate the probability of getting an "MBA Grade" greater than or equal to 90

ESTIMATING VALUES

Distribution Basics

Distribution Types

Normal Distribution

Z-Scores

Probabilities

Value Estimates

If a variable follows a normal distribution, you can **estimate the value of "x" or "z"** at a specified cumulative probability

THE NORM.INV FUNCTION

Distribution Basics

Distribution Types

Normal Distribution

Z-Scores

Probabilities

Value Estimates

Returns the x value in a normal distribution at a specified cumulative probability

=NORM.INV(probability, mean, standard_dev)

The **cumulative probability** for the value you want

The **mean** & **standard deviation** for the normal distribution of the population

Possible question:

"How tall do you need to be to be taller than 80% of Olympic Basketball Players?"

X ~ N (195.2, 10.26)

=NORM.INV(0.8, 195.2, 10.26) **= 203.8** cm

THE NORM.S.INV FUNCTION

Distribution Basics

Distribution Types

Normal Distribution

Z-Scores

Probabilities

Value Estimates

NORM.S.INV()

Returns the z-score in the standard normal distribution at a specified cumulative probability

=NORM.S.INV(probability)

The **cumulative probability** for the z-score you want

Possible question:

"The **top 5%** of Olympic Basketball Players are how many standard deviations taller than the mean?"

=NORM.S.INV(1-0.05) = 1.64 σ

Remember that the cumulative probability starts from negative infinity, so for the "top 5%" the probability is 95% (1-5%)

ASSIGNMENT: ESTIMATING VALUES

Hi there, thanks again!

I'll stick with 90 as the threshold for honor students.

Just out of curiosity though... what grade would put students in the top 10% of the class?

And how many standard deviations away from the average student would that be?

Looking forward to hearing back from you.

P.S. You're crushing it!

Key Objectives

- 1. Use the **NORM.INV** function to calculate the "MBA Grade" for the top 10%
- 2. Use the **NORM.S.INV** function to calculate the z-score for the top 10%

KEY TAKEAWAYS: PROBABILITY DISTRIBUTIONS

A probability distribution is an idealized frequency distribution

It shows all the possible values the variable can take, and the probability of each value occurring

Many variables naturally follow a normal distribution

The data is symmetrical around its mean, and flares out in "tails" (the width depends on the standard deviation)

The probability in a normal distribution is the area under its curve

It can only be calculated in intervals, not for exact values!

There are **Excel functions** to solve normal probability problems

- NORM.DIST and NORM.S.DIST let you calculate the probability of randomly obtaining values in specified ranges
- NORM.INV and NORM.S.INV let you estimate values or z-scores based on their cumulative probabilities

MAVEN MEDICAL CENTER | PROJECT BRIEF

You are a Data Analyst at the **Maven Medical Center** in Springfield, MA and just received a project request from the chief gynecologist

From: **Betty Birth** (Chief Gynecologist)

Subject: Need some probability figures

Good morning!

We've had over 30% of the babies born this year weigh under 2.5kg, which is considered low. The percentage itself seems a little high to me though. Is there any way you could check what the probability of a baby weighing under 2.5kg is with the data we have?

I could also use the number of births we've had so far in the top & bottom 1% if possible.

Thank you!

Birth_Weights.xlsx

Key Objectives

- 1. Check if the weights can be assumed to follow a normal distribution
- 2. If so, calculate the probability of a baby weighing 2.5kg or less
- 3. Estimate the values at the 1% and 99% cumulative probabilities
- 4. Count the number of births under and over those thresholds

THE CENTRAL LIMIT THEOREM

THE CENTRAL LIMIT THEOREM

In this section we'll cover the central limit theorem (CLT), which will allow us to apply the concepts we learned on the normal distribution to populations that follow any distribution

TOPICS WE'LL COVER:

CLT Basics

Standard Error

Implications

Applications

GOALS FOR THIS SECTION:

- Understand the concept of a sampling distribution, and its relationship with the central limit theorem
- Identify the impact of the sample size on the normality
 & variability of the sampling distribution
- Calculate the standard error of a sampling distribution
- Review the implications & applications of the CLT

SAMPLING DISTRIBUTION OF THE MEAN

рор

Standard Error

Central Limit Theorem Basics

Implications

Applications

The **sampling distribution of the mean** is obtained by taking many samples from a population, calculating the mean for each, and plotting their frequencies

EXAMPLE Daily Airbnb Rates in New York City

THE CENTRAL LIMIT THEOREM

The **central limit theorem** states that the means of large enough samples of *any* population will be normally distributed around the population mean

Central Limit Theorem Basics

Standard Error

Implications

Applications

EXAMPLE

Daily Airbnb Rates in New York City

POPULATION DISTRIBUTION:

These are **individual values** (x)

SAMPLING DISTRIBUTION (100 samples, n=50):

These are **sample means** (\bar{x})

THE CENTRAL LIMIT THEOREM

The **central limit theorem** states that the means of large enough samples of *any* population will be normally distributed around the population mean

• A sample size of **30** or more is typically required (n > 30)

Central Limit
Theorem Basics

Standard Error

Implications

Applications

SAMPLING DISTRIBUTION (100 samples):

HEY THIS IS IMPORTANT!

As sample size increases, the sampling distribution approximates a normal distribution

STANDARD ERROR

Central Limit
Theorem Basics

Standard Error

Implications

Applications

As you know, normal distributions are described by their mean & standard deviation For the normal distribution of the sample means, the mean is the same as its population's mean, but the standard deviation is known as the **standard error**

• The standard error is the standard deviation of the sample means around the population mean

$$SE = rac{\sigma}{\sqrt{n}}$$
 To calculate the standard error, simply divide the standard deviation of the population by the square root of the sample size

HEY THIS IS IMPORTANT!

As sample size increases, the standard error decreases

Population of Airbnb Prices in NYC μ =172, σ =144

 $SE = \frac{144}{\sqrt{30}} = 26.3$

Sampling Distribution of the Mean (n=30)

IMPLICATIONS OF THE CENTRAL LIMIT THEOREM

Central Limit

Standard Error

Implications

Applications

The central limit theorem has these important implications:

- 1) If you have data on a population (mean & standard deviation), you can make inferences about any sufficiently large sample from that population
- 2) If you have data on a population and a sufficiently large sample, you can infer whether the sample belongs to that population
- 3) If you have data on a sufficiently large sample, you can make inferences about the population from which the sample was drawn
- 4) If you have data on two sufficiently large samples, you can infer whether they belong to the same population

HEY THIS IS IMPORTANT!

This is the basis for **inferential statistics**, which let you come to conclusions about a population from a sample!

APPLICATIONS OF THE CENTRAL LIMIT THEOREM

The central limit theorem has two key **applications** we'll cover:

Central Limit
Theorem Basics

Standard Error

Implications

Applications

- Making estimates with confidence intervals
 - For example, you can use the mean & standard deviation from a sample to estimate a range where the population mean likely lies
- **Drawing conclusions** with hypothesis tests
 - For example, you can use the mean & standard deviation from a sample to conclude whether it was likely drawn from a population with a certain mean

HEY THIS IS IMPORTANT!

This can all be done using the same theory we've learned on the normal distribution!

KEY TAKEAWAYS: THE CENTRAL LIMIT THEOREM

Sample means are normally distributed around their population mean, no matter the distribution of the population

• As the sample size increases, the normality increases (a sample size of at least 30 is required)

The standard error is the standard deviation of the sample means

• As the sample size increases, the standard error decreases

The Central Limit Theorem enables inferential statistics

You can make inferences about unknown populations based on large enough samples!

MAKING ESTIMATES WITH CONFIDENCE INTERVALS

In this section we'll cover making estimates with **confidence intervals**, which use sample statistics to define a range where an unknown population parameter likely lies

TOPICS WE'LL COVER:

Estimation Basics

Types of Intervals

T Distribution

Proportions

Two Populations

GOALS FOR THIS SECTION:

- Understand the main components of a confidence interval, the point estimate & margin of error
- Identify the impact of the setting the confidence level on the margin of error
- Use the t distribution for confidence intervals when the population standard deviation is unknown
- Calculate confidence intervals for the difference in mean and proportions between two populations

CONFIDENCE INTERVALS

Estimation Basics

Types of Intervals

T Distribution

Proportions

Two Populations

A confidence interval is an estimate of an unknown population value using a sample

- It is a range defined by a point estimate, like the sample mean, plus/minus a margin of error
- It includes a confidence level, or probability of including the population value (can't be certain!)

Employability (Before)	
	252
	423
	101
	288
	248
	145
	401
	287
	275
	254
	182
	117
	130
	219
	152
	229

Estimating the population mean:

Remember, the sample means are normally distributed around the population mean

CONFIDENCE LEVEL

Estimation Basics

Types of Intervals

T Distribution

Proportions

Two
Populations

The **confidence level** represents the probability that your confidence interval includes the population parameter

- This is established by **alpha** (α), which is 1 minus the confidence level
- Typical alpha values are **0.1**, **0.05**, and **0.01**, but you can use any value you'd like!

HEY THIS IS IMPORTANT!

As you increase the confidence level, the confidence interval also increases, so take time to establish an accepted probability of error (α) in favor of a narrower interval

MARGIN OF ERROR

Estimation Basics

Types of Intervals

T Distribution

Proportions

Two
Populations

The **margin of error** represents the value to add to each side of your sample statistic, or point estimate, to generate the confidence interval

This is determined by the confidence level and the standard error

Employability (Before)	$\bar{x} = 239.9$
252	
423	n = 95
101	
288	$\sigma = 90$
248	0 00
145	$\alpha = 0.05$
401	a - 0.05
287	
275	

254

182

117

130

219

152

We want to calculate the margin of error from this sample with a 95% confidence level

NOTE: We're assuming that we know the standard deviation of the population, which won't always be the case; more on that later

$$CI=239.9\pm Z_{\alpha/2}*rac{\sigma}{\sqrt{n}}$$
 This is the margin of error!

This is the z-score that the confidence level represents, known as **critical value**

This is the cumulative probability up to $1-\alpha/2$

How many standard deviations away from the population mean does my confidence level allow my sample mean to be?

MARGIN OF ERROR

Estimation Basics

Types of Intervals

T Distribution

Proportions

Two
Populations

The **margin of error** represents the value to add to each side of your sample statistic, or point estimate, to generate the confidence interval

This is determined by the confidence level and the standard error

 	•	
	252	
	423	
	101	
	288	
	248	
	145	
	401	
	287	
	275	
	254	
	182	
	117	
	130	

219

152

Employability (Before)

$$ar{x} = 239.9$$
 $n = 95$
 $\sigma = 90$
 $\alpha = 0.05$

We want to calculate the margin of error from this sample with a 95% confidence level

NOTE: We're assuming that we know the standard deviation of the population, which won't always be the case; more on that later

$$CI = 239.9 \pm 1.96 * \frac{\sigma}{\sqrt{n}}$$

This is the **standard error**, or standard deviation of the sample means

$$SE = \frac{\sigma}{\sqrt{n}} = \frac{90}{\sqrt{95}} = 9.23$$

$$CI = 239.9 \pm 1.96 * 9.23$$

$$CI = 239.9 \pm 18.09$$
 This is the margin of error!

THE CONFIDENCE.NORM FUNCTION

Estimation Basics

Types of Intervals

T Distribution

Proportions

Two Population

CONFIDENCE.NORM()

Returns the margin of error for a specified confidence level and standard error

=CONFIDENCE.NORM(alpha, standard_dev, size)

The **alpha** (α) for the confidence level

The **standard deviation** of the population (σ) and **sample size** (n) for the standard error

Employability (Before)	
	252
	423
	101
	288
	248
	145
	401
	287
	275
	254

$$\bar{x} = 239.9$$

$$n = 95$$

$$\sigma = 90$$

$$\alpha = 0.05$$

=**CONFIDENCE.NORM**(0.05, 90, 95) =**18.09**

$$CI = 239.9 \pm 18.09$$

n=95

ASSIGNMENT: CONFIDENCE INTERVALS

Hi again,

I know you said our salary data doesn't follow a normal distribution, but just wanted to try to see if you can produce some sort of expected annual salary from our graduates.

I just read a survey online where they found that the average salary for recent MBA graduates in the US is \$101,000.

The standard deviation is \$76k, if that means anything to you.

Hope you can come up with something,

Thanks!

Key Objectives

- 1. Calculate the **mean** and **sample size** from the sample of graduates
- 2. Set a confidence level
- 3. Calculate the margin of error
- 4. Set the limits for the **confidence interval**

TYPES OF CONFIDENCE INTERVALS

Estimation Basics

Types of Intervals

T Distribution

Proportions

Two Populations There are two **types of confidence intervals** for estimating the mean:

- **Z-intervals**: the population standard deviation (σ) is KNOWN
 - These are uncommon in real life if you don't know μ , why would you know σ ?
 - The population standard deviation is used to calculate the standard error
 - The standard normal distribution (z distribution) is used to calculate the critical value
- **T-intervals**: the population standard deviation (σ) is UNKNOWN
 - These are more realistic you only have data from the sample
 - The sample standard deviation is used to calculate the standard error
 - The student's t distribution is used to calculate the critical value

HEY THIS IS IMPORTANT!

Both require the original populations to be assumed normal, or the sample size to be greater than or equal to 30 (so that the central limit theorem applies)

STUDENT'S T DISTRIBUTION

Estimation

Types of Intervals

T Distribution

Proportions

Two Populations

T distributions are like the standard normal distribution, but with "fatter tails"

They are described by their **degrees of freedom** (sample size -1)

A.

HEY THIS IS IMPORTANT!

As the degrees of freedom increase, the t distribution approximates the z distribution

They are practically identical for samples of 100 or more observations

More data at the tails! In the Z Distribution, 99.7% of the data lies within 3σ of the mean In the T Distribution with 1 degree of freedom, only 79.5% does

EXCEL T DISTRIBUTION FUNCTIONS

Estimation Basics

Types of Intervals

T Distribution

Proportions

Two Populations These **Excel functions** help make calculations related to the t distribution:

T.DIST()

Returns the cumulative probability or the probability density at a t-score from a given t distribution

=T.DIST(t, df, cumulative)

T.INV()

Returns the t-score from a given t distribution at a specified cumulative probability

=T.INV(probability, df)

CONFIDENCE.T()

Returns the margin of error for a specified confidence level and standard error

=CONFIDENCE.T(α , std_dev, n)

CONFIDENCE INTERVALS WITH THE T DISTRIBUTION

T Distribution

n = 95

Estimating a confidence interval with the t distribution is like the z distribution

- You use the sample standard deviation (s) instead of the population standard deviation (σ)
- You use the t distribution to calculate the critical value instead of the z distribution

$$CI = \bar{x} \pm Z_{\alpha/2} * \frac{\sigma}{\sqrt{n}}$$
 $CI = \bar{x} \pm t_{\alpha/2} * \frac{s}{\sqrt{n}}$

$$CI = \bar{x} \pm t_{\alpha/2} * \frac{s}{\sqrt{n}}$$

Employability (Before)
$$\bar{x}=239.9$$
 5252
 423
 101
 288
 248
 248
 145
 401
 287
 275
 $\alpha=0.05$

$$CI = 239.9 \pm t_{\alpha/2} * 8.81$$
T.INV(1-0.025) = 1.98 σ

$$CI = 239.9 \pm 1.98 * 8.81$$

 $CI = 239.9 \pm 17.5$

CONFIDENCE INTERVALS WITH THE T DISTRIBUTION

T Distribution

Estimating a confidence interval with the t distribution is like the z distribution

- You use the sample standard deviation (s) instead of the population standard deviation (σ)
- You use the t distribution to calculate the critical value instead of the z distribution

$$CI = \bar{x} \pm Z_{\alpha/2} * \frac{\sigma}{\sqrt{n}}$$

$$CI = \bar{x} \pm t_{\alpha/2} * \frac{s}{\sqrt{n}}$$

$$CI = \bar{x} \pm t_{\alpha/2} * \frac{s}{\sqrt{n}}$$

Employability (Before)
$$\bar{x}=239.9$$
 5252
 423
 101
 288
 248
 248
 145
 401
 287
 $\alpha=0.05$

275

n = 95

$$CI = 239.9 \pm t_{\alpha/2} * \frac{s}{\sqrt{n}}$$

=**CONFIDENCE.T**(0.05, 85.9, 95) = 17.5

$$CI = 239.9 \pm 17.5$$

ASSIGNMENT: CONFIDENCE INTERVALS (T DISTRIBUTION)

Hey,

Thanks for getting me that estimate!

I'm curious though... do we need the data from the study?

I would think that with the amount of our graduates that have been placed already we could an estimate ourselves.

Think you're up for it?

Thanks again!

Key Objectives

- 1. Calculate the **standard deviation** from the sample of graduates
- 2. Set a confidence level
- 3. Calculate the margin of error
- 4. Set the limits for the confidence interval

CONFIDENCE INTERVALS FOR PROPORTIONS

Estimation Basics

Types of Intervals

T Distribution

Proportions

Two
Populations

A **proportion** is a percentage of a population that meets a certain criteria

You can use the z distribution to calculate **confidence intervals for proportions**

• This is for categorical variables with two possible values (it meets the criteria, or it doesn't)

HEY THIS IS IMPORTANT!

Both \hat{p}^*n and $(1-\hat{p})^*n$ must be greater than 5 for the central limit theorem to apply

CONFIDENCE INTERVALS FOR PROPORTIONS

Estimation Basics

Types of Intervals

T Distribution

Proportions

Two
Populations

A **proportion** is a percentage of a population that has a certain property

You can use the z distribution to calculate confidence intervals for proportions

This is for categorical variables with two possible values (it has the property, or it doesn't)

EXAMPLE

Percentage of Graduates with Previous Work Experience

Work Experience
No
No
Yes
No
No
No
Yes
Yes
No
No
No
n=95 (23 Yes, 72 No)

$$\hat{p} = \frac{23}{95} = \mathbf{0.242}$$
 $1 - \hat{p} = \mathbf{0.758}$
 $\alpha = \mathbf{0.1}$

We want to calculate the confidence interval from this sample with a **90%** confidence level

$$CI = 0.242 \pm Z_{\alpha/2} * \sqrt{\frac{0.242 * (0.758)}{95}}$$

NORM.S.INV(1-0.05) = **1.64** σ

$$CI = 0.242 \pm 1.64 * 0.04$$

$$CI = 0.242 \pm 0.07 = (17\%, 31\%)$$

ASSIGNMENT: CONFIDENCE INTERVALS FOR PROPORTIONS

Hey again,

Loved the work on the salary data, thank you!

The problem now is getting these students to land jobs.

We've had 53 placed so far, which is 55%. That's not terrible, but I'd hate to be getting numbers under 50% in future classes.

Are you able to get me an estimate with the data we have?

I'd like to be 95% certain this time around.

Thanks

Key Objectives

- 1. Calculate the sample proportion
- 2. Check if the **central limit theorem** applies
- 3. Calculate the margin of error
- 4. Set the limits for the **confidence interval**

CONFIDENCE INTERVALS FOR TWO POPULATIONS

Estimation Basics

Types of Intervals

T Distribution

Proportions

Two Populations

You can create confidence intervals for the **difference between two population means**There are two possible scenarios for this:

Dependent Samples

The sample subjects are **directly related** to each other

Examples:

- People's weight before & after a diet
- Patients' blood pressure before & after taking a certain pill
- Same operators' performance with process A vs. B

The measurements come in **pairs** (both samples are the same size)

Independent Samples

The sample subjects have **no relationship** to each other

Examples:

- Students' test scores for two different schools
- Employee satisfaction for in-person vs. remote companies
- Salaries for men and women at the same company

The measurements come from **separate groups** (the samples can be different sizes)

HEY THIS IS IMPORTANT!

You'll see these split up further into population standard deviation (σ) known & unknown, but we'll focus on σ unknown, since it's the most common in real life

DEPENDENT SAMPLES

Estimation Basics

Types of Intervals

T Distribution

Proportions

Two Populations

You can create confidence intervals for **dependent samples** by calculating the difference from each pair in the samples, and then treating the difference as one population

Student ID	Undergrad Grade	MBA Grade	Difference
1	68.4	90.2	21.8
2	62.1	92.8	30.7
3	70.2	68.7	-1.5
4	75.1	80.7	5.6
5	60.9	74.9	14
6	74.5	80.7	6.2
7	76.4	83.3	6.9
8	82.6	88.7	6.1
9	76.9	75.4	-1.5
10	83.3	82.1	-1.2
11	75.8	87.5	11.7
12	76	66.9	-9.1
13	62.8	71.3	8.5
14	82.8	76.8	-6
15	76	72.3	-3.7
16	75.9	72.4	-4.5

This is the difference in MBA Grade and Undergrad Grade for the same student!

Confidence interval (σ unknown):

$$CI = \bar{d} \pm t_{\alpha/2} * \frac{s}{\sqrt{n}}$$
 $95\% \text{ confidence level}$
 $CI = 5.19 \pm 1.98 * \frac{9.22}{\sqrt{95}}$
 $CI = 5.19 \pm 1.87$
 $CI = (3.3, 7.1)$

This means that MBA grades are higher on average!

ASSIGNMENT: DEPENDENT SAMPLES

Hi,

It's a shame that we can't be sure that at least 50% of students will be placed 2 months from graduation, so I'm trying to see what factors to dig into deeper.

Looking at the employability scores, it looks like on average our graduates are improving by 50 points on their results.

Can you get me a confidence interval with 90% confidence?

Thanks again!

Key Objectives

- 1. Calculate the **difference** between the dependent samples
- Calculate the sample mean and standard deviation from the difference
- 3. Calculate the margin of error
- 4. Set the limits for the **confidence interval**

INDEPENDENT SAMPLES

Estimation Basics

Types of Intervals

T Distribution

Proportions

Two Populations

Confidence intervals for **independent samples** have two key calculation differences:

- 1. The **standard error** uses the variance (and sample size) from *both* samples
- 2. The **degrees of freedom** for the t-score (critical value) also consider the sample variances

INDEPENDENT SAMPLES

Estimation Basics

Types of Intervals

T Distribution

Proportions

Two Populations

Confidence intervals for **independent samples** have two key calculation differences:

- 1. The **standard error** uses the variance (and sample size) from *both* samples
- 2. The **degrees of freedom** for the t-score (critical value) also consider the sample variances

$$t_{lpha/2}$$
 =T.INV($lpha/2$, degrees of freedom) For one population, or dependent samples, this is $n-1$

$$df = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\left(\frac{S_1^2}{n_1}\right)^2 + \left(\frac{S_2^2}{n_2}\right)^2}$$
$$\frac{1}{n_1 - 1} + \frac{\left(\frac{S_2^2}{n_2}\right)^2}{n_2 - 1}$$

This looks scary, but it's using values we know how to calculate!

- The sample variances
- The sample sizes

HEY THIS IS IMPORTANT!

You might see independent samples divided into separate calculations if the population standard deviations can or can't be assumed to be equal, but this formula works for both!

ASSIGNMENT: INDEPENDENT SAMPLES

Hey!

Thanks for the data on the employability improvement, I'm going to send that over to Tommy in Admissions so he can factor that into his process.

Final though though... can we find a positive difference in the employability scores for graduates that have been placed so far vs. those that haven't? That could be a good indicator for me.

I think sticking with the same 90% confidence should work.

Thanks in advance!

Key Objectives

- 1. Calculate the **mean** and **variance** from both samples
- 2. Calculate the **point estimate**, or difference in sample means
- 3. Calculate the margin of error
- 4. Set the limits for the **confidence interval**

PRO TIP: DIFFERENCE BETWEEN PROPORTIONS

You can also calculate confidence intervals for difference in population proportions

Estimation Basics

Types of Intervals

T Distribution

Proportions

Two Populations

KEY TAKEAWAYS: CONFIDENCE INTERVALS

Confidence intervals use samples to estimate population values

• The estimate is tied to a confidence level, which is the probability that the interval includes the population value

The interval size is based on a critical value and a standard error

- The critical value defines the number of standard deviations the sample mean can be from the population mean
- The standard error is the standard deviation of the sample means

Use the t distribution when $\boldsymbol{\sigma}$ is unknown

• In most real-life scenarios, you won't know the standard deviation of the population

The same concepts apply when comparing two populations

- Dependent samples can be converted into a single population
- Independent samples simply have different calculations for the critical value and standard error

MAVEN PHARMA | PROJECT BRIEF

You are the Lead Statistician at the **Maven Pharma**, a pharmaceutical company that is in the final testing stage for a new drug to treat arthritis

From: **Patty Pill** (Head of R&D)

Subject: Treatment results

Hello!

We have the data from the trial on the new arthritis treatment we're developing. We had 84 subjects for the trial, 41 which did take the medication and 43 "placebos" which didn't.

Can you use a 99% confidence interval to see if the percentage of patients with "Marked" improvements is significantly higher for those that took the treatment (vs. the placebos)?

Thank you!

Treatment_Results.xlsx

Key Objectives

- 1. Check if the central limit theorem applies
- 2. Estimate the difference in population proportions with a 99% confidence level
- 3. Reach a conclusion from the results

DRAWING CONCLUSIONS WITH HYPOTHESIS TESTS

In this section we'll cover drawing conclusions with **hypothesis tests**, which let you evaluate assumptions about population parameters based on sample statistics

TOPICS WE'LL COVER:

Hypothesis Testing

Types of Errors

Types of Tests

Proportions

Two Populations

GOALS FOR THIS SECTION:

- Understand the concepts of a null and alternative hypothesis, and how to frame them correctly
- Perform hypothesis tests for the mean & proportions for one and two populations
- Review the two types of errors in a hypothesis test,
 and how you can influence them in their design
- Draw the correct conclusions from hypothesis tests

HYPOTHESIS TESTS

Hypothesis Testing

Types of Errors

Types of Tests

Proportions

Two
Populations

A hypothesis test lets you evaluate how well a sample supports an assumption

• More specifically, it is a process of evaluating whether a sample provides clear enough evidence that an initial assumption about a population was wrong

Steps for a hypothesis test:

- 1) State your assumption
- 2) Define an accepted probability of error
- 3) Check how well the data supports your assumption
- 4) Translate that into a probability that it supports it
- 5) Is it worse than your accepted probability of error?
 - a) Yes your assumption was wrong!
 - b) No your assumption was right!*

HEY THIS IS IMPORTANT!

Remember when we said statistics let you evaluate decisions under uncertain circumstances?

The hypothesis test is the tool that accomplishes that!

HYPOTHESIS TESTS

Hypothesis Testing

Types of Errors

Types of Tests

Proportions

Two Populations

A hypothesis test lets you evaluate how well a sample supports an assumption

More specifically, it is a process of evaluating whether a sample provides clear enough evidence that an initial assumption about a population was wrong

Steps for a hypothesis test:

- 1) State the **null** and **alternative hypotheses**
- 2) Set a significance level
- 3) Calculate the **test statistic** for the sample
- 4) Calculate the **p-value**
- 5) Draw a **conclusion** from the test
 - a) Reject the null hypothesis
 - b) Fail to reject the null hypothesis

HEY THIS IS IMPORTANT!

Remember when we said statistics let you evaluate decisions under uncertain circumstances?

The hypothesis test is the tool that accomplishes that!

NULL & ALTERNATIVE HYPOTHESIS

Hypothesis Testing

Types of Errors

Types of Tests

Proportions

Two
Populations

The **null hypothesis** (H_o) is the assumption about a population you'd like to evaluate The **alternative hypothesis** (H_a) is any scenario in which that assumption is wrong

- The null hypothesis should be tied to a decision you'd be most comfortable making (the "status quo")
- That way, if the test "proves" the null hypothesis wrong, you'll be more comfortable NOT making it

EXAMPLE

Evaluating the need for a new soda filling machine

 H_o $\mu = 355$ (our machine fills each can with 355ml on average – we don't need a new one)

 H_a $\mu \neq 355$ (our machine doesn't fill each can with 355ml on average – we need a new one)

HEY THIS IS IMPORTANT!

You're not proving either of the hypotheses right, you're only testing to see if the sample data makes the null hypothesis look wrong enough to make you feel comfortable taking the alternative action

SIGNIFICANCE LEVEL

Hypothesis Testing

Types of Errors

Types of Tests

Proportions

Two
Populations

The **significance level** is the threshold you set to determine when the evidence against your null hypothesis is considered "strong enough" to prove it wrong

• This is set by **alpha** (α), which is the accepted probability of error

TEST STATISTIC

Hypothesis Testing

Types of Errors

Types of Tests

Proportions

Two
Populations

The **test statistic** is your sample's t-score from the hypothesized sampling distribution

• It's the standard deviations between what your sample is and what you're saying it should be

This is the **test statistic** for your sample
$$\overline{x} - \mu_0$$
 This is the difference between your sample mean and your hypothesized population mean \overline{x} . This is the **standard error**, or standard deviation of the sample means

HEY THIS IS IMPORTANT!

This is assuming that the population standard deviation (σ) is unknown, since it's more common, but you can use the z-score if it is known and swap out "s" for " σ "

TEST STATISTIC

Hypothesis Testing

Types of Errors

Types of Tests

Proportions

Two Populations

The **test statistic** is your sample's t-score from the hypothesized sampling distribution

• It's the standard deviations between what your sample is and what you're saying it should be

P-VALUE

Hypothesis Testing

Types of Errors

Types of Tests

Proportions

Two Populations The **p-value** is the probability that your sample supports the null hypothesis

More specifically, it's the probability of obtaining a test statistic at least as large as the one from your sample (negative or positive) if your null hypothesis is true

CONCLUSIONS

Hypothesis Testing

Types of Errors

Types of Tests

Proportions

Two
Populations

There are two possible **conclusions** in a hypothesis test:

- If $p>\alpha$, then you fail to reject the null hypothesis (not enough evidence!)
- If $p \le \alpha$, then you **reject** the null hypothesis (strong enough evidence!)

CONCLUSIONS

Hypothesis Testing

Types of Errors

Types of Tests

Proportions

Two Populations

There are two possible **conclusions** in a hypothesis test:

- If $p>\alpha$, then you **fail to reject** the null hypothesis (not enough evidence!)
- If **p≤α**, then you **reject** the null hypothesis (strong enough evidence!)

ASSIGNMENT: HYPOTHESIS TESTS

Hi again!

We planned the "difficulty" of our curriculum so that our students would graduate with an average grade of 80.

It looks like that was the case this time around, we had an average of 80.2, but I don't want to leave it to random chance.

I'd say that if there's less than a 20% chance of 80 being the real average with the current curriculum, we need to make some modifications to it.

Thank you!

Key Objectives

- 1. State the **null** & **alternative hypotheses**
- 2. Set a significance level
- 3. Calculate the **test statistic** for the sample
- 4. Calculate the **p-value**
- 5. Draw a **conclusion** from the test

RELATIONSHIP WITH CONFIDENCE INTERVALS

Hypothesis Testing

Types of Errors

Types of Tests

Proportions

Two Populations

Hypothesis tests have a direct relationship with confidence intervals

• If you use the same alpha (α) , a confidence interval WILL include the hypothesized population mean when failing to reject the null hypothesis, and WON'T include it when rejecting it

TYPE I & TYPE II ERRORS

Hypothesis Testing

Types of Errors

Types of Tests

Proportions

Two
Populations

There are two errors you can make in hypothesis tests: **Type I & Type II** errors

1) Type I: rejecting a true null hypothesis

2) Type II: failing to reject a false null hypothesis

Null hypothesis is	True	False
Rejected	Type I Error	Correct Conclusion
Not Rejected	Correct Conclusion	Type II Error

HEY THIS IS IMPORTANT!

The significance level (α) is the probability of making a **type I error**, so the lower it is the less likely you are to make it – but the more likely you are to make a type II error!

TYPE I & TYPE II ERRORS

Hypothesis Testing

Types of Errors

Types of Tests

Proportions

Two
Populations

There are two errors you can make in hypothesis tests: **Type I & Type II** errors

- 1) **Type I**: rejecting a true null hypothesis
- **2) Type II**: failing to reject a false null hypothesis

EXAMPLE

Evaluating the need for a new soda filling machine

- H_o The machine works as expected
- H_a The machine doesn't work as expected

What type of error is worse?

- I. Buying a new machine when you didn't need one
- II. Not buying a new machine when you needed it

TYPE I & TYPE II ERRORS

Hypothesis Testing

Types of Errors

Types of Tests

Proportions

Two
Population

There are two errors you can make in hypothesis tests: **Type I & Type II** errors

- **1) Type I**: rejecting a true null hypothesis
- **2) Type II**: failing to reject a false null hypothesis

EXAMPLE

Evaluating if an email you received is spam

- H_o The email isn't spam
- H_a The email is spam

What type of error is worse?

- I. Screening an email that isn't spam
- II. Getting a spam email in your inbox

HEY THIS IS IMPORTANT!

You'll never know what the right choice is with 100% certainty (that's statistics!), so it's critical to think about how comfortable you are in making a type I or II error when setting the significance level

TYPES OF HYPOTHESIS TESTS

There are 3 **types of hypothesis tests** that you can make:

Hypothesis Testing

Types of Errors

Types of Tests

Proportions

Two
Populations

Two Tail

$$H_o$$
: $\mu = \mu_o$
 H_a : $\mu \neq \mu_o$

Excel p-value formulas:

=**T.DIST.2T**(t_{upper}, df)

One Tail to the Left

$$H_o$$
: $\mu \ge \mu_o$
 H_a : $\mu < \mu_o$

Excel p-value formulas:

=T.DIST(t, df, TRUE)

One Tail to the Right

$$H_o$$
: $\mu \le \mu_o$
 H_a : $\mu > \mu_o$

Excel p-value formulas:

=1-**T.DIST**(t, df, TRUE)

=T.DIST.RT(t, df)

HYPOTHESIS TESTS FOR PROPORTIONS

Hypothesis Testing

Types of Errors

Types of Tests

Proportions

Two Populations

You can use the z distribution to calculate hypothesis tests for proportions

• The only thing that changes is the standard error calculation in the test statistic

HEY THIS IS IMPORTANT!

Both \hat{p}^*n and $(1-\hat{p})^*n$ must be greater than 5 for the central limit theorem to apply

ASSIGNMENT: PROPORTIONS

Hi again,

I keep thinking about the confidence interval for our graduate salaries you sent me estimating the mean to be between \$111,000 and \$127,000.

Are you able to check if more than half of our placed graduates earn at least \$100,000?

That could be a huge promotional piece to publish!

I think a 5% risk of publishing if it turns out to be false is fine.

Looking forward to hearing from you!

Key Objectives

- 1. Calculate the **proportion** of placed graduates that earn at least \$100,000
- 2. Check if the **central limit theorem** applies
- 3. Select the right type of hypothesis test
- 4. State the null & alternative hypotheses
- 5. Set the significance level
- 6. Calculate the **test statistic** for the sample
- 7. Calculate the **p-value**
- 8. Draw a **conclusion** from the test

DEPENDENT SAMPLES

Hypothesis Testing

Types of Errors

Types of Tests

Proportions

Two Populations

You can make hypothesis tests for **dependent samples** by calculating the difference from each pair in the samples, and then treating the difference as one population

Student ID	Undergrad Grade	MBA Grade	Difference
1	68.4	90.2	21.8
2	62.1	92.8	30.7
3	70.2	68.7	-1.5
4	75.1	80.7	5.6
5	60.9	74.9	14
6	74.5	80.7	6.2
7	76.4	83.3	6.9
8	82.6	88.7	6.1
9	76.9	75.4	-1.5
10	83.3	82.1	-1.2
11	75.8	87.5	11.7
12	76	66.9	-9.1
13	62.8	71.3	8.5
14	82.8	76.8	-6
15	76	72.3	-3.7
16	75.9	72.4	-4.5

This is the difference in MBA Grade and Undergrad Grade for the same student!

Do a normal hypothesis test for the mean!

PRO TIP: Do a two tail test with **Ho:** μ =**0** if you want to check if there is any significant difference in the means of the samples, or a one tail test if you want to check if one is greater than the other

ASSIGNMENT: DEPENDENT SAMPLES

Hi,

I spoke with Nick, and he mentioned that he's confident we can build in a "50-point improvement" on employability scores into our recruitment process, and I just want to double check that it's not an incorrect assumption to make.

Do you think you could run a quick test?

Honestly, it's not a HUGE deal so unless you're really confident that's not the case, I'll just stick to his number.

Thanks – and nice to finally speak to you!

Key Objectives

- 1. Calculate the **difference** between the dependent samples
- 2. Calculate the sample **mean** and **standard deviation** from the difference
- 3. State the **null** & **alternative hypotheses**
- 4. Set the **significance level**
- 5. Calculate the **test statistic** for the sample
- 6. Calculate the **p-value**
- 7. Draw a **conclusion** from the test

INDEPENDENT SAMPLES

Hypothesis Testing

Types of Errors

Types of Tests

Proportions

Two Populations

Hypothesis tests for **independent samples** have two key calculation differences:

- 1. The **standard error** in the test statistic uses the variance (and sample size) from *both* samples
- 2. The **degrees of freedom** for the p-value also consider the sample variances

INDEPENDENT SAMPLES

Hypothesis Testing

Types of Errors

Types of Tests

Proportions

Two Populations

Hypothesis tests for **independent samples** have two key calculation differences:

- 1. The **standard error** in the test statistic uses the variance (and sample size) from *both* samples
- 2. The **degrees of freedom** for the p-value also consider the sample variances

p-value =**T.DIST**(t, degrees of freedom, 1) For one population, or dependent samples, the degrees of freedom are **n-1**

$$df = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\left(\frac{S_1^2}{n_1}\right)^2 + \left(\frac{S_2^2}{n_2}\right)^2}$$

$$\frac{1}{n_1 - 1} + \frac{1}{n_2 - 1}$$

Remember that we already used this for the confidence intervals of independent samples!

ASSIGNMENT: INDEPENDENT SAMPLES

Hi again,

I took a quick look at the salary data for our first batch of graduates, and it looks like those with previous work experience are earning a bit more on average.

Can we assume that this will always be the case? If so, we may have to start screening some applicants based on this.

I don't want to potentially impact our student numbers on a hunch though, so lets only take a 1% risk.

Thanks!

Key Objectives

- 1. Calculate the **mean** and **variance** from both samples
- 2. Calculate the **difference in sample means**
- 3. State the **null** & **alternative hypotheses**
- 4. Set the significance level
- 5. Calculate the **test statistic** for the sample
- 6. Calculate the degrees of freedom
- 7. Calculate the **p-value**
- 8. Draw a **conclusion** from the test

KEY TAKEAWAYS: HYPOTHESIS TESTS

Hypothesis tests let you evaluate assumptions about a population

- The null hypothesis is the assumption to evaluate, and the alternative hypothesis is any other possibility
- You're not looking to confirm this assumption (it's already the status quo), just testing to see if it's wrong

The significance level sets the threshold for "sufficient" evidence

- It draws a "probability line" that says, if a sample is at least this improbable, then the assumption is wrong
- The lower the significance level, the lower the chance of a Type I error, but the higher the chance of a Type II

The **p-value** is the probability of the sample fitting the assumption

- If it's greater than the significance level, the you don't have sufficient evidence to reject the assumption
- If it's less than the significance level, then you reject the assumption (null hypothesis)

MAVEN SAFETY COUNCIL | PROJECT BRIEF

You are a freelance Data Scientist working on a project for the **Maven Safety Council**, an initiative looking to educate the public on safe driving practices

From: **Stuart Stop** (Council President)

Subject: Warning Sign Results

Hi!

We put up a sign asking drivers to slow down and warning of the dangers of speeding and took three sets of measurements. We recorded the speed of 100 cars before putting up the sign, 100 more shortly after putting up the sign, and a final 100 after the sign had been in place for a longer period.

Could you check if the sign significantly reduced the average speed?

Thank you!

Key Objectives

- 1. Identify the type of test needed
- 2. Perform the hypothesis test
- 3. Draw a conclusion from the results

MAKING PREDICTIONS WITH REGRESSION ANALYSIS

In this section we'll cover making predictions with **regression analysis**, which helps estimate the values of a dependent variable by leveraging its relationship with independent variables

TOPICS WE'LL COVER:

Linear Relationships

Regression Basics

Model Evaluation

Multiple Regression

GOALS FOR THIS SECTION:

- Identify linear relationships between variables
- Understand the difference between correlation and causation, and its implications on regression analysis
- Create linear regression models in Excel and use them to make predictions for dependent variables
- Evaluate the accuracy of linear regression models

LINEAR RELATIONSHIPS

It's common for numerical variables to have linear relationships between them

- When one variable changes, so does the other (they co-variate!)
- This relationship is commonly visualized with a scatterplot

Reg	ression
R	

Linear Relationships

> Model Evaluation

Multiple Linear Regression

Week	Ad Spend	Site Traffic
1	\$46,125	4,751
2	\$60,007	5,661
3	\$50,314	5,491
4	\$44,432	5,293
5	\$72,954	7,592
6	\$47,288	4,835
7	\$40,830	4,962
8	\$43,760	3,850
9	\$62,487	5,517
10	\$33,480	3,456
11	\$59,110	5,851
12	\$72,150	7,225
13	\$56,740	5,565
14	\$42,106	4,033
15	¢42 957	5.129

LINEAR RELATIONSHIPS

There are two possible linear relationships: **positive** & **negative**

Variables can also have no relationship

Linear Relationships

Regression Basics

Model Evaluation

Multiple Linear Regression

Positive Relationship Digital Ad Spend

As one changes, the other changes in the **opposite direction**

No association can be found between the changes in one variable and the other

CORRELATION

The **correlation (r)** measures the strength & direction of a linear relationship (-1 to 1)

• -1 is a perfect negative correlation, 0 is no correlation, and 1 is a perfect positive correlation

Regression Basics

Model Evaluation

Multiple Linear Regression

PRO TIP: Use CORREL() or PEARSON() to calculate the correlation between variables in Excel

CORRELATION & CAUSATION

Correlation between variables means that there is a relationship between them **Causation** means that changes in one variable *cause* the other one to change

Linear Relationships

Regression Basics

Model Evaluation

Multiple Linear Regression

These two variables are clearly correlated, but...

Do ice cream cones CAUSE people to drown?

Do drowning deaths CAUSE a surge in ice cream sales?

Of course not!

HEY THIS IS IMPORTANT!

Correlation does NOT imply causation!

Keep in mind that variables can be related without causing a change in one another

ASSIGNMENT: LINEAR RELATIONSHIPS

Hey!

The article on student salaries is crushing, thanks again!

I was wondering if there's something we can do to estimate the potential salaries for the students that haven't gotten jobs yet.

Could you check if the annual salaries for our placed graduates have any relationship with the other data we have on them?

If so, any way you could visualize it for me?

Thanks

Key Objectives

- Calculate the correlation between "Annual Salary" and each of the other numerical variables
- 2. Create a **scatterplot** to visualize the relationship for the variables with the highest correlation

REGRESSION

The goal of **regression** is to predict a dependent variable using independent variables

This is achieved by fitting a line through the sample data points that models the population

Regression **Basics**

This line is a **model** that can be used to predict site traffic in a given month based on the advertising budget!

HEY THIS IS IMPORTANT!

It is not recommended to predict values outside the range of the sample, as the relationship is not guaranteed to continue

This is the **independent variable (x)**, which helps you predict the dependent variable

LINEAR REGRESSION MODEL

The linear regression model is an equation that best describes a linear relationship

Linear Relationships

Regression Basics

Model Evaluation

Multiple Linear Regression

This is the **real** value for the dependent variable $y=\beta_0+\beta_1x+\epsilon$ This is an **error**, or residual, caused by the

difference between the real & predicted values

Linear

Regression Basics

Model Evaluation

Multiple Linear Regression

The **least squared error** method finds the line that best fits through the sample points It works by squaring the residuals, adding them up, and minimizing that sum

NOTE: Squaring the residuals removes the negatives, but also gives more weight to outliers!

х	у
10	10
20	25
30	20
35	30
40	40
50	15
60	40
65	30
70	50
80	40

Linear Relationships

Regression Basics

Model Evaluation

Multiple Linear Regression

The **least squared error** method finds the line that best fits through the sample points It works by squaring the residuals, adding them up, and minimizing that sum

• **NOTE:** Squaring the residuals removes the negatives, but also gives more weight to outliers!

х	У	ŷ
10	10	30
20	25	30
30	20	30
35	30	30
40	40	30
50	15	30
60	40	30
65	30	30
70	50	30
80	40	30

Linear Relationships

Regression Basics

Model Evaluation

Multiple Linear Regression

The **least squared error** method finds the line that best fits through the sample points It works by squaring the residuals, adding them up, and minimizing that sum

• **NOTE:** Squaring the residuals removes the negatives, but also gives more weight to outliers!

x	у	ŷ
10	10	15
20	25	20
30	20	25
35	30	27.5
40	40	30
50	15	35
60	40	40
65	30	42.5
70	50	45
80	40	50

Linear Relationships

Regression Basics

Model Evaluation

Multiple Linear Regression

The **least squared error** method finds the line that best fits through the sample points It works by squaring the residuals, adding them up, and minimizing that sum

NOTE: Squaring the residuals removes the negatives, but also gives more weight to outliers!

x	у	ŷ	ε	ε²
10	10	15	5	25
20	25	20	-5	25
30	20	25	5	25
35	30	27.5	-2.5	6.25
40	40	30	-10	100
50	15	35	20	400
60	40	40	0	0
65	30	42.5	12.5	156.25
70	50	45	-5	25
80	40	50	10	100

Ш

SUM OF SQUARED ERROR: 862.5

Linear Relationships

Regression Basics

Model Evaluation

Multiple Linear Regression

The **least squared error** method finds the line that best fits through the sample points It works by squaring the residuals, adding them up, and minimizing that sum

• **NOTE:** Squaring the residuals removes the negatives, but also gives more weight to outliers!

x	У	ŷ	ε	ε²
10	10	16	6	36
20	25	20	-5	25
30	20	24	4	16
35	30	26	-4	16
40	40	28	-12	144
50	15	32	17	289
60	40	36	-4	16
65	30	38	8	64
70	50	40	-10	100
80	40	44	4	16

Ш

SUM OF SQUARED ERROR:

722

EXCEL'S LINEAR REGRESSION FUNCTIONS

Returns the standard error of the linear regression

model given a dependent & independent variable

STEYX()

These **Excel functions** help make calculations related to linear regression:

Linear Relationships

Regression Basics

Model Evaluation

Multiple Linear Regression

CORREL()	Returns the coefficient of correlation (r) between two numeric variables	=CORREL(array1, array2)
INTERCEPT()	Returns the y-intercept (θ_0) from a linear regression given a dependent & independent variable	=INTERCEPT(known_ys, known_xs)
SLOPE()	Returns the slope (θ_1) from a linear regression given a dependent & independent variable	= SLOPE (known_ys, known_xs)
FORECAST()	Returns the predicted value (ŷ) at "x" from a linear regression given a dependent & independent variable	= FORECAST (x, known_ys, known_xs)
RSQ()	Returns the coefficient of determination (r²) between a dependent & independent variable	= RSQ (known_ys, known_xs)

=STEYX(known_ys, known_xs)

ASSIGNMENT: SIMPLE LINEAR REGRESSION

Hi,

By now we know that our program improves student's employability scores by 50 on average.

But could there be another variable that explains by how much we can expect each individual student to improve by?

That would be huge!

Looking forward to hearing back about this,

Thanks

Key Objectives

- Calculate the correlation between "Employability Improvement" and any relevant numerical variables
- 2. Create a **scatterplot** to visualize the relationship for the variables with the highest correlation
- 3. If applicable, build a **regression model** to predict "Employability Improvement"

R-SQUARED

Linear Relationships

Regression Basics

Model Evaluation

Multiple Linear Regression

R-Squared, or coefficient of determination, measures how much better the regression model is at estimating "y" values than the previous best estimate (the mean)

• The higher R-Squared is (0-1), the more confident you can be in the accuracy of your predictions

R-SQUARED

Linear Relationships

Regression Basics

Model Evaluation

Multiple Linear Regression

R-Squared, or coefficient of determination, measures how much better the regression model is at estimating "y" values than the previous best estimate (the mean)

• The higher R-Squared is (0-1), the more confident you can be in the accuracy of your predictions

STANDARD ERROR

Linear Relationshins

Regression Basics

Model Evaluation

Multiple Linear Regression

In regression, the standard error is the average distance between the line and the data

- It is the standard deviation of the sample values around the regression line
- This is a good, intuitive measure of how well your model predicts

HOMOSKEDASTICITY

Homoskedasticity simply means that the "scatter" is the same along the entire line

This is necessary in order to make accurate predictions across the full range of "x" values

Linear elationships

Regression Basics

Model Evaluation

Multiple Linear Regression

The "scatter" spreads out as "x" increases

HOMOSKEDASTICITY

Homoskedasticity simply means that the "scatter" is the same along the entire line

• This is necessary in order to make accurate predictions across the full range of "x" values

Linear elationships

Regression Basics

Model Evaluation

Multiple Linear Regression

HYPOTHESIS TEST

Linear Relationships

> Regression Basics

Model Evaluation

Multiple Linear Regression

Regressions include an implied **hypothesis test** in which the null hypothesis states that no relationship exists between the dependent and independent variables

• In other words, you are trying to find significant evidence that your regression model isn't useless

Steps for a hypothesis test:

- 1) State the null and alternative hypotheses
- 2) Set a significance level
 - 3) Calculate the **test statistic** for the sample
 - 4) Calculate the **p-value**
- ✓ 5) Draw a conclusion from the test
 - a) If $p \le \alpha$, reject the null hypothesis (you're confident the model isn't useless use it!)
 - b) If p>α, don't reject it (you can't confirm the model isn't useless don't use it)

TEST STATISTIC

Linear Relationships

Regression Basics

Model Evaluation

Multiple Linear Regression

The **test statistic** is the f-score for your sample in your regression model

- It's the standard deviations between your model and the hypothesized "useless" model
- More specifically, it's the ratio of the variability that your model explains vs the variability it doesn't

P-VALUE

Linear Relationships

Regression Basics

Model Evaluation

Multiple Linear Regression

In regression, the **p-value** is the probability that your model is useless

- In other words, the likelihood that you got a relationship this "strong" when no relationship exists
- The lower the p-value, the stronger the evidence that there is a relationship between the variables

HEY THIS IS IMPORTANT!

Remember to set the significance level (α) before calculating the p-value!

ASSIGNMENT: MODEL EVALUATION

Hi!

I can't believe what I'm seeing here – Tommy will be thrilled!

Can we trust really trust this?

We did all sorts of confidence intervals and hypothesis tests on the mean, and I just want to be confident here as well.

Is there any way you can check that with 95% confidence?

Great work once again,

Thanks!

Key Objectives

- 1. Calculate the **r-squared** value
- 2. Calculate the **standard error**
- 3. Confirm the homoskedasticity
- 4. Run a hypothesis test
- 5. Draw a **conclusion** on the accuracy of the regression model's predictions

PRO TIP: MULTIPLE LINEAR REGRESSION

Linear Relationships

Regression Basics

Model Evaluation

Multiple Linear Regression

Multiple linear regression is used for predicting a single dependent variable based on *multiple* independent variables

• In other words, it's the same linear regression model, but with additional "x" variables

SIMPLE LINEAR REGRESSION MODEL:

$$y = \beta_0 + \beta_1 x + \epsilon$$

MULTIPLE LINEAR REGRESSION MODEL:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \dots + \beta_n x_n + \epsilon$$

Instead of just one "x", we have a **whole set of independent variables** (and associated coefficients) to help predict the dependent variable (y)

PRO TIP: MULTIPLE LINEAR REGRESSION

To visualize how multiple linear regression works with 2 independent variables, imagine fitting a plane (instead of a line) through a 3D scatterplot:

Linear Relationships

Regression Basics

Model Evaluation

Multiple Linear Regression

HEY THIS IS IMPORTANT!

Multiple linear regression can scale well beyond two variables, so the visual analysis is no longer feasible

That's why it's so important to understand the different model evaluation metrics!

PRO TIP: MULTIPLE LINEAR REGRESSION

Linear Relationships

Regression Basics

Model Evaluation

Multiple Linear Regression

The multiple linear regression model has two additional metrics to evaluate:

- The **Adjusted R-Squared** "penalizes" the R-Squared value based on the number of variables
- The **Coefficient P-Values** show the probability that each independent variable is meaningless

EXAMPLE

Predicting Employability (After) based on Undergrad Grade & Employability (Before)

D	utput	from	Excel	's Anal	vsis	ToolPak
---	-------	------	-------	---------	------	---------

Regression Statistics	
Multiple R	0.9927911
R Square	0.985634168
Adjusted R Square	0.985321868
Standard Error	11.33038767
Observations	95

This is the **"goodness of fit"** and **"standard error"** for the model

ANOVA

	df		SS	MS	F	Significance F
Regression		2	810330.7898	405165.3949	3156.042231	1.7267E-85
Residual	9	92	11810.74701	128.3776848		
Total	9	94	822141.5368			

This is the p-value for the whole model

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-222.4261978	11.8174638	-18.8218218	2.63607E-33	-245.8967009	-198.9556946	-245.8967009	-198.9556946
Undergrad Grade	3.650040497	0.156180213	23.37069732	1.81322E-40	3.339853112	3.960227882	3.339853112	3.960227882
Employability (Before)	0.992544221	0.013705637	72.41868594	6.35519E-83	0.965323643	1.0197648	0.965323643	1.0197648

This is the **regression model**

These are the **p-values** for each coefficient (this helps remove useless coefficients)

KEY TAKEAWAYS: REGRESSION ANALYSIS

Numerical variables commonly have linear relationships

The correlation (r) measures the strength and direction of the relationship, but does NOT imply causation!

Regression lets you predict "y" values for any given "x" values

Correlation should exist between the variables, and causality should be logically possible

The regression model is the line that best fits through the data

It's described by an equation with a y-intercept, slope coefficients for each "x" value, and a residual (error)

You can evaluate the accuracy of the model with several metrics

The R² value measures how well the line fits the data, the standard error measures the average distance between the line and the data, and the p-value helps you confirm that the model can be used for prediction

MAVEN AIRLINES | PROJECT BRIEF

You are a BI Analyst at **Maven Airlines** and were just put in charge of a major project that could potentially get you promoted to Senior BI Analyst

Key Objectives

- 1. Check if a linear relationship exists between the variables
- 2. Build a simple linear regression model for the variable with the best correlation
- 3. Build a multiple linear regression model using all the variables
- 4. Compare the models' performance
- 5. Select the best model for the forecast