Schiefe Ebene

Kraft (allgemein)

F = m * a

Auf horizontaler Ebene

 $F_N = F_G = g * m$

Hangantriebskraft

 $F_{G,P} = F_G * sin(\alpha)$

Normalkraft

$$F_{G,S} = F_N = \cos \alpha = F_G$$

Reibungskraft

 $F_R = F_N * \mu$

Steigung % - Grad

 $\alpha = \arctan(m)$

Ab wann rutscht der Körper von selbst?

 $\alpha = \arctan(\mu)$

(Bsp:
$$\mu = 0.51, \alpha = \arctan(\mu) = 27^{\circ}$$
)

Kreisbewegung

Gleichförmige Kreisbewegung

 Δt

$$v = \frac{\Delta s}{\Delta t}$$

Drehfrequenz

 $f = \frac{n}{4}$ (n = Umdrehungen)

$$[f] = \frac{1Hz}{1s}$$

$$v = 2\pi * r * f$$

Kreisfrequenz Winkelgeschw.

 $w = \frac{2\pi}{T}$ auch $w = 2\pi f$

Zentripetalbeschleunigung

/ Radialbeschleunigung $\vec{a_z}$

 $\vec{\Delta v} = \vec{v_2} - \vec{v_1}$

$$a_z = \frac{\Delta v}{\Delta t}$$
 u. $a_z = \frac{v^2}{r}$ u. $a_z = \frac{v^2}{r}$ v. $a_z = \frac{v^2}{r}$

Klötze auf Drehscheibe

Klotz bleibt auf Scheibe solange F_Z < F_R also $\frac{m*v^2}{r} \le \mu_H *, *g$

$$v \le \sqrt{\mu_H * r * g}$$

$$m * w^2 * r \le \mu_H * m * g \Rightarrow w \sqrt{\frac{\mu_H * r * g}{r}}$$

Überhöhte Kurven ohne Reibung

 $\vec{F_Z} = \vec{F_G} + \vec{F_N}$

$$\tan \alpha = \frac{F_Z}{F_G} = \frac{m*\frac{v^2}{r}}{m*g}$$
 also $\alpha = arctan(\frac{v^2}{r}*g)$

Bsp. Schaukel

 $F_{Res} = F_Z = F_N - F_G$

also
$$F_N - F_G + F_Z = m * g + m \frac{v^2}{2}$$

Looping

0.

Funktioniert wenn $F_Z > g$ also $v \geq \sqrt{r * g}$

$$F_{res} = F_Z \text{ und } F_{res} = F_N + F_C$$

also
$$F_N = F_Z - F_G = m(\frac{v^2}{r} * g)$$

Gravitation

Konstanten

G Gravitationskonstante:

$$G = 0.67408$$

$$10^{-11} \frac{m^3}{kg * s^2}$$

Daraus ableitend:

$$a_1 = \frac{F_1}{m_1} = G \frac{m_2}{r^2}$$

$$a_1 + a_2 = G_{\frac{m_1 + m_2}{r^2}}$$

Luftwiderstand

Konstanten & andere Werte

ρ: Dichte

Luftwiderstandskoef c_w : fizient

Basisformel

$$F_w = \frac{1}{2}c_w A\rho v^2$$

Maximalgeschwindigkeit

$$v_{max} = \sqrt{\frac{2mg}{Ac_w \rho}}$$

In diesem Fall ist F_w F_G

Masseinheiten

jeweils nach SI

Name	Bez.	SI
Leistung	P	W
Energie	E	J
Kraft	F	N

Andere Einheiten 1PS = 735,49875W

Leistung

Grundformel

$$P = \frac{\Delta E}{\Delta t} = \frac{\Delta W}{\Delta t}$$
 und $P = \vec{F} * \vec{v}$

Wirkungsgrad

Grundformel

$$\eta = \frac{\Delta E_{ab}}{\Delta E_{zu}} = \frac{P_{ab} \cdot \Delta t}{P_{zu} \cdot \Delta t} \Rightarrow \eta = \frac{P_{ab}}{P_{zu}}$$
Regel: $\eta \leq 1$

Energie

Bewegungsenergie

$$E_{kin} = \frac{1}{2}mv^2$$

Potenzielle Energie

 $E_{pot} = m * g * h$ Beispiel: Im freien Fall ist $E_{pot} = E_{kin}$

Energieerhaltungssatz

Grundformel

 $E = E_1 + E_2 + E_3 + \ldots + E_n$ und immer $\Delta E = 0$

Hydrostatik

Grundformel

- g: Erdbeschleunigung
- Dichte • $\rho_{Fluessigkeit}$: der Flüssigkeit in kg
- Höhe der Flüssigkeitssäule in

 $\rho = \rho_{Fluessigkeit} * g * h$ Abstrakt:

Der hydrostatische Druck am Boden ist trotz unterschiedlicher Füllmengen in allen drei Gefäßen gleich groß.

Wärmelehre

 $0K = -273.15C^{\circ}$ (allgemein $0K = 273^{\circ}C$

Wärme-ausdehnung

Linear

 $\Delta l = \alpha * l_0 * \Delta \vartheta$ also $l = l_0 * (1 + \alpha * \Delta \vartheta)$

$$\alpha = \frac{\Delta l}{l_0 * \Delta \vartheta}$$

Volumen

Initialzustand:

 $V_0 = l_0 * b_0 * h_0$

In erwärmten Zustand

$$\begin{split} V &= l*b*h = l_0(1+\alpha*\Delta\vartheta)*\\ b_0(1+\alpha*\Delta\vartheta)*h_0(1+\alpha*\Delta\vartheta) \end{split}$$

Vereinfacht:

 $V \approx V_0(1 + 3 * \alpha * \Delta \vartheta)$

$$\gamma = 3 * \alpha$$

Volumenzunahme ΔV : $\Delta V = V_0 * \gamma * \Delta \vartheta$

Wärmeenergie

Wärmeenergie:

Joule(J)Newtonmeter(Nm)

Wärmekapazität: $[c] = \frac{kJ}{kaK}$

Beispiele für c

Wasser 4.19 Alkohol 2.43 Wasserstoff 14.3

Berechnung:

 $\Delta Q = c * m * \Delta \vartheta$

Wärmeinhalt

 $Q = m*c*\vartheta$

Wärmekapazität [C]

$$[C] = \frac{J}{K}$$

 $\begin{array}{l} \textbf{Berechnung} \\ C = \frac{\Delta Q}{\Delta \vartheta} \end{array}$

Oder

C = m * c

Wärmemischung

$$\begin{split} |\Delta Q_{ab}| &= |\Delta Q_{auf}| \\ \text{oder} \\ &c_1*m_1*(\vartheta_1 - \vartheta_m) = c_2*m_2* \\ &(\vartheta_m - \vartheta_2) \end{split}$$

(Wenn abs wert, ist rei- $Q_v = \frac{Q_v}{m}$

henfolge v.
$$\vartheta_{1,2}$$
 und ϑ_m egal)

Verbrennungs-energie

Heizwert: $H = \frac{Q}{m}$; [H] =

Aggregats-zustände

Schmelzwärme

$$L_F = \frac{Q_s}{m}$$

Verdampfungs-wärme

$$Q_v = \frac{Q_v}{m}$$