

Seminar 5

- 1. Find the accumulation points for each of the following sets: $[0,1) \cup \{2\}, \mathbb{Z}, \{0.1,0.11,\ldots\}$.
- 2. Find a function $f: \mathbb{R} \to \mathbb{R}$ that is discontinuous everywhere, with |f| continuous everywhere.
- 3. If $f:[a,b]\to [a,b]$ is continuous, then it has at least one fixed point x^* s.t. $x^*=f(x^*)$.
- 4. Study the continuity and the differentiability for f and f', where $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0. \end{cases}$$

- 5. Prove (from scratch) that $\lim_{x\to 0} \frac{\sin x}{x} = 1$ and then that $(\sin x)' = \cos x$, $(\cos x)' = -\sin x$.
- 6. Compute the following limits:

(a)
$$\lim_{x \to \infty} \frac{\lfloor x \rfloor}{x}$$
.
(b) $\lim_{x \to \infty} x \left(\ln(x+2) - \ln(x+1) \right)$.

(d)
$$\lim_{\substack{x \to 0 \\ x > 0}} x^x \cdot - e^{\frac{x \ln x}{2}} - e^{\frac{\ln x}{4}}$$

(e) $\lim_{\substack{x \to 0 \\ x > 0}} (\sin x)^x \cdot = e^{\frac{x \ln x}{4}} - e^{\frac{\ln x \ln x}{4}}$

Find the
$$n^{\text{th}}$$
 derivative of the following functions:

$$(f) \lim_{x \to \infty} x \left((1 + \frac{1}{x})^x - e \right).$$

$$f:(-1,\infty)\to\mathbb{R},\ f(x)=\ln(1+x).$$

(c)
$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^2 \sin x$$
. Ix since x^2 cosk

(b)
$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = \sin x.$$

(b) $f: \mathbb{R} \to \mathbb{R}, \ f(x) = \sin x.$ (d) $f: \mathbb{R} \to \mathbb{R}, \ f(x) = e^{2x}x^3.$ Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable. To minimize f, consider the gradient descent methods.

$$x_{n+1} = x_n - \eta f'(x_n),$$

where $x_1 \in \mathbb{R}$ and $\eta > 0$ (learning rate). Use Python (numerics or graphics) for the following:

- (a) Take a convex f and show that for small η the method converges to the minimum of f.
- (b) Show that by increasing η the method can converge faster (in fewer steps).
- (c) Show that taking η too large might lead to the divergence of the method.
- (d) Take a nonconvex f and show that the method can get stuck in a local minimum.

$$(f) \lim_{x \to \infty} x \left((1 + \frac{1}{x})^x - e \right).$$

$$\lim_{x \to \infty} \frac{x \left((1 + \frac{1}{x})^x - e \right)}{\frac{1}{x}} - \lim_{x \to \infty} \frac{e^{x \ln \left((1 + \frac{1}{x})} \right)}{\frac{1}{x}} - \lim_{x \to \infty} \frac{e^{x \ln \left((1 + \frac{1}{x})} \right)}{\frac{1}{x}} - \lim_{x \to \infty} \frac{e^{x \ln \left((1 + \frac{1}{x})} \right)}{\frac{1}{x}} - \lim_{x \to \infty} \frac{e^{x \ln \left((1 + \frac{1}{x})} \right)}{\frac{1}{x}} - \lim_{x \to \infty} \frac{e^{x \ln \left((1 + \frac{1}{x})} \right)}{\frac{1}{x}} - \lim_{x \to \infty} \frac{e^{x \ln \left((1 + \frac{1}{x})} \right)}{\frac{1}{x}} - \lim_{x \to \infty} \frac{e^{x \ln \left((1 + \frac{1}{x})} \right)}{\frac{1}{x}} - \lim_{x \to \infty} \frac{e^{x \ln \left((1 + \frac{1}{x})} \right)}{\frac{1}{x}} - \lim_{x \to \infty} \frac{e^{x \ln \left((1 + \frac{1}{x})} \right)}{\frac{1}{x}} - \lim_{x \to \infty} \frac{e^{x \ln \left((1 + \frac{1}{x})} \right)}{\frac{1}{x}} - \lim_{x \to \infty} \frac{e^{x \ln \left((1 + \frac{1}{x})} \right)}{\frac{1}{x}} - \lim_{x \to \infty} \frac{e^{x \ln \left((1 + \frac{1}{x})} \right)}{\frac{1}{x}} - \lim_{x \to \infty} \frac{e^{x \ln \left((1 + \frac{1}{x})} \right)}{\frac{1}{x}} - \lim_{x \to \infty} \frac{e^{x \ln \left((1 + \frac{1}{x})} \right)}{\frac{1}{x}} - \lim_{x \to \infty} \frac{e^{x \ln \left((1 + \frac{1}{x})} \right)}{\frac{1}{x}} - \lim_{x \to \infty} \frac{e^{x \ln \left((1 + \frac{1}{x})} \right)}{\frac{1}{x}} - \lim_{x \to \infty} \frac{e^{x \ln \left((1 + \frac{1}{x})} \right)}{\frac{1}{x}} - \lim_{x \to \infty} \frac{e^{x \ln \left((1 + \frac{1}{x})} \right)}{\frac{1}{x}} - \lim_{x \to \infty} \frac{e^{x \ln \left((1 + \frac{1}{x})} \right)}{\frac{1}{x}} - \lim_{x \to \infty} \frac{e^{x \ln \left((1 + \frac{1}{x})} \right)}{\frac{1}{x}} - \lim_{x \to \infty} \frac{e^{x \ln \left((1 + \frac{1}{x})} \right)}{\frac{1}{x}} - \lim_{x \to \infty} \frac{e^{x \ln \left((1 + \frac{1}{x})} \right)}{\frac{1}{x}} - \lim_{x \to \infty} \frac{e^{x \ln \left((1 + \frac{1}{x})} \right)}{\frac{1}{x}} - \lim_{x \to \infty} \frac{e^{x \ln \left((1 + \frac{1}{x})} \right)}{\frac{1}{x}} - \lim_{x \to \infty} \frac{e^{x \ln \left((1 + \frac{1}{x})} \right)}{\frac{1}{x}} - \lim_{x \to \infty} \frac{e^{x \ln \left((1 + \frac{1}{x})} \right)}{\frac{1}{x}} - \lim_{x \to \infty} \frac{e^{x \ln \left((1 + \frac{1}{x})} \right)}{\frac{1}{x}} - \lim_{x \to \infty} \frac{e^{x \ln \left((1 + \frac{1}{x})} \right)}{\frac{1}{x}} - \lim_{x \to \infty} \frac{e^{x \ln \left((1 + \frac{1}{x})} \right)}{\frac{1}{x}} - \lim_{x \to \infty} \frac{e^{x \ln \left((1 + \frac{1}{x})} \right)}{\frac{1}{x}} - \lim_{x \to \infty} \frac{e^{x \ln \left((1 + \frac{1}{x})} \right)}{\frac{1}{x}} - \lim_{x \to \infty} \frac{e^{x \ln \left((1 + \frac{1}{x})} \right)}{\frac{1}{x}} - \lim_{x \to \infty} \frac{e^{x \ln \left((1 + \frac{1}{x})} \right)}{\frac{1}{x}} - \lim_{x \to \infty} \frac{e^{x \ln \left((1 + \frac{1}{x})} \right)}{\frac{1}{x}} - \lim_{x \to \infty} \frac{e^{x \ln \left((1 + \frac{1}{x})} \right)}{\frac{1}{x}} - \lim_{x \to \infty} \frac{e^{x \ln \left((1 + \frac{1}{x})} \right)}{\frac{1}{x}} - \lim_{x \to \infty} \frac{e^{x \ln \left((1 + \frac{1}{x})} \right)}{\frac{1}{x}} - \lim_{x \to \infty} \frac{e^{x \ln \left(($$

$$\begin{cases} ||(x)| = e^{2x} \cdot \lambda \left(2x^3 + 3x^2 \right) + e^{2x} \left(6x^3 + 6x \right) = e^{2x} \left(hx^3 + 12x^2 + 6x \right) + e^{2x} \left(12x^2 + 3hx + 6 \right) = e^{2x} \left(8x^3 + 36x^2 + 36x + 6 \right) = e^{2x} \left(2^3 x^3 + 3^2 \cdot 2^2 \cdot x + 6^2 x + 6 \right)$$

$$\begin{cases} ||(x)| = e^{2x} \left(2^3 x^3 + 36x^2 + 36x + 6 \right) = e^{2x} \left(2^3 x^3 + 3^2 \cdot 2^2 \cdot x + 6^2 x + 6 \right) \end{cases}$$

$$\begin{cases} ||(x)| = e^{2x} \left(2^3 x^3 + 36x^2 + 36x + 6 \right) = e^{2x} \left(2^3 x^3 + 3^2 \cdot 2^2 \cdot x + 6^2 x + 6 \right) \end{cases}$$

$$= e^{2x} \left(2^4 x^3 + 36x^2 + 36x + 6 \right) + e^{2x} \left(2^4 x^3 + 3^2 \cdot 2^2 \cdot x + 6^2 x + 6 \right)$$

$$= e^{2x} \left(2^4 x^3 + 36x^2 + 36x + 6 \right) + e^{2x} \left(2^4 x^3 + 3^2 \cdot 2^2 \cdot x + 6^2 x + 6 \right)$$

$$= e^{2x} \left(2^4 x^3 + 36x^2 + 36x + 6 \right) + e^{2x} \left(2^4 x^3 + 3^2 \cdot 2^2 \cdot x + 6^2 x + 6 \right)$$

$$= e^{2x} \left(2^4 x^3 + 36x^2 + 36x + 6 \right) + e^{2x} \left(2^3 x^3 + 3^2 \cdot 2^2 \cdot x + 6^2 x + 6 \right)$$

$$= e^{2x} \left(2^4 x^3 + 36x^2 + 36x + 6 \right) + e^{2x} \left(2^3 x^3 + 3^2 \cdot 2^2 \cdot x + 6^2 x + 6 \right)$$

$$= e^{2x} \left(2^4 x^3 + 36x^2 + 36x + 6 \right) + e^{2x} \left(2^3 x^3 + 3^2 \cdot 2^2 \cdot x + 6^2 x + 6 \right)$$

$$= e^{2x} \left(2^3 x^3 + 36x^2 + 36x + 6 \right) + e^{2x} \left(2^3 x^3 + 3^2 \cdot 2^2 \cdot x + 6^2 x + 6 \right)$$

$$= e^{2x} \left(2^3 x^3 + 36x^2 + 36x + 6 \right) + e^{2x} \left(2^3 x^3 + 3^2 \cdot 2^2 \cdot x + 6^2 x + 6 \right)$$

$$= e^{2x} \left(2^3 x^3 + 36x^2 + 36x + 6 \right) + e^{2x} \left(2^3 x^3 + 3^2 \cdot 2^2 \cdot x + 6^2 x + 6 \right)$$

$$= e^{2x} \left(2^3 x^3 + 36x^2 + 36x + 6 \right) + e^{2x} \left(2^3 x^3 + 3^2 \cdot 2^2 \cdot x + 6 \right)$$

$$= e^{2x} \left(2^3 x^3 + 36x^2 + 36x + 6 \right) + e^{2x} \left(2^3 x^3 + 3^2 \cdot 2^2 \cdot x + 6 \right)$$

$$= e^{2x} \left(2^3 x^3 + 36x^2 + 36x + 6 \right) + e^{2x} \left(2^3 x^3 + 3^2 \cdot 2^2 \cdot x + 6 \right)$$

$$= e^{2x} \left(2^3 x^3 + 36x^2 + 36x + 6 \right) + e^{2x} \left(2^3 x^3 + 3^2 \cdot 2^2 \cdot x + 6 \right)$$

$$= e^{2x} \left(2^3 x^3 + 36x^2 + 36x + 6 \right) + e^{2x} \left(2^3 x^3 + 3^2 \cdot 2^2 \cdot x + 6 \right)$$

$$= e^{2x} \left(2^3 x^3 + 36x^2 + 26x + 6 \right)$$

$$= e^{2x} \left(2^3 x^3 + 36x^2 + 26x + 6 \right)$$

$$= e^{2x} \left(2^3 x^3 + 36x^2 + 26x + 6 \right)$$

$$= e^{2x} \left(2^3 x^3 + 36x^2 + 26x + 6 \right)$$

$$= e^{2x} \left(2^3 x^3 + 36x + 26x + 6 \right)$$

$$= e^{2x} \left(2^3 x^3 + 36x + 26x +$$