

全球5G频谱介绍

5G网络频谱

频率范围名称	对应的频率范围
FR1	450 MHz - 6000 MHz
FR2	24250 MHz - 52600 MHz

在3GPP协议中,5G的总体频谱资源可以分为以下两个FR(Frequency Range频率范围)

FR1: Sub6G频段,也就是我们说的低频频段,是5G的主用频段;其中3GHz以下的频率我们称之为sub3G,其余频段称为C-band

FR2: 毫米波mmWave ,也就是我们说的高频频段,为5G的扩展频段,频谱资源丰富(尽管理论上:毫米波波长在1~10毫米的电磁波,对应频段为30~300GHz)

5G网络主力频谱---C-band

C-band(3.4GHz — 4.9GHz)可以提供至少200M的全球带宽,将成为5G网络的主力频谱

世界无线电通信大会(WRC-19)

FR1频段介绍

5G NR的频段号以"n"开头,与LTE的频段号以"B"开头不同

NR 频段	上行	下行	双工
n1	1920-1980MHz	2110-2170MHz	FDD
n2	1850-1910MHz	1930-1990MHz	FDD
n3	1710-1785MHz	1805-1880MHz	FDD
n5	824-849MHz	869-894MHz	FDD
n7	2500-2570MHz	2620-2690MHz	FDD
n8	880-915MHz	925-960MHz	FDD
n20	832-862MHz	791-821MHz	FDD
n28	703-748MHz	758-803MHz	FDD
n38	2570-2620MHz	2570-2620MHz	TDD
n41	2496-2690MHz	2496-2690MHz	TDD
n50	1432-1517MHz	1432-1517MHz	TDD
n51	1427-1432MHz	1427-1432MHz	TDD
n66	1710-1780MHz	2110-2200MHz	FDD
n70	1695-1710MHz	1995-2020MHz	FDD
n71	663-698MHz	617-652MHz	FDD
n74	1427-1470MHz	1475-1518MHz	FDD

NR 频段	频率范围	双工
n75	1432-1517MHz	SDL
n76	1427-1432MHz	SDL
n77	3.3-4.2GHz	TDD
n78	3.3-3.8GHz	TDD
n79	4.4-5.0GHz	TDD
n80	1710-1785MHz	SUL
n81	880-915MHz	SUL
n82	832-862MHz	SUL
n83	703-748MHz	SUL
n84	1920-1980MHz	SUL

SUL和SDL为辅助频段 (Supplementary Bands)

辅助频段介绍

SUL和SDL为辅助频段(Supplementary Bands),分别代表上行和下行。

FR2频段介绍

当前版本毫米波定义的频段只有四个,全部为TDD模式

NR频段	频率范围	双工模式
n257	26500 MHz – 29500 MHz	TDD
n258	24250 MHz – 27500 MHz	TDD
n260	37000 MHz – 40000 MHz	TDD
n261	27500 MHz – 28350 MHz	TDD

4大运营商5G频段划分

中国移动D频段

5G小区带宽

LTE

1.4

3M

5M

10M

15M

20M

信道带宽和传输带宽

小区最大带宽和子载波带宽的关系

FR1

ccc	5	10	15	20	25	30	40	50	60	70	80	90	100
SCS	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz
(kHz)	N_{RB}	N_{RB}	N_{RB}	N_{RB}	N _{RB}	N_{RB}	N _{RB}	N_{RB}	N_{RB}	N _{RB}	N _{RB}	N _{RB}	N_{RB}
15	25	52	79	106	133	160	216	270	N/A	N/A	N/A	N/A	N/A
30	11	24	38	51	65	78	106	133	162	189	217	245	273
60	N/A	11	18	24	31	38	51	65	79	93	107	121	135

FR2

SCS (kHz)	50MHz	100MHz	200MHz	400 MHz
3 C3 (12)	N_{RB}	N _{RB}	N _{RB}	N _{RB}
60	66	132	264	N/A
120	32	66	132	264

5G频谱目标定位

5G的目标网将是多层次组网结构,包括Sub3G, C-band和毫米波

下行性能对比:C-Band Vs Sub 3G

小区下行容量

下行覆盖情况

C-Band上下行性能对比

上行覆盖导致吞吐率低

根据现场实测结果, 上下 行覆盖性能差距 有51倍,而容量的差 距最大有 88倍

毫米波存在的问题

NLOS 路损	3.5GHz	28GHz
100m	103	121
300m	121	139
500m	130	148

穿透损耗	3.5GHz	28GHz
标准窗格 玻璃	13	18
镀膜玻璃	27	38

毫米波的适用环境

混凝土墙面反射损耗<10dB

室内多径的反射增强RSRP

毫米波应用-WTTx,热点eMBB,自回传

- **毫米波用于热点eMBB**
 - 室内外热点,视距场景
 - C-Band和毫米波双连接
 - 毫米波用于WTTx
 - 郊区WTTx接入
 - · CPE可以室外或者室内安装

- (2)
- 毫米波用于无线回传
- 集成5G接入和回传功能,基于时间、频率、空间等维度进行动态调度
- 通过自回传,站点部署更方便

5G部署策略总结

FR1-sub6G

Sub3G C-band

郊区农村广覆盖,城区广覆盖,兼顾基础覆盖层 容量和覆盖

话务热点覆盖,系统容量层

5G频点NR-ARFCN计算

公式破解

Table 5.4.2.1	Table 5.4.2.1-1: NR-ARFCN parameters for the global frequency raster			
Frequency range (MHz)	ΔF _{Global} (kHz)	F _{REF-Offs} (MHz)	N _{REF-Offs}	Range of N _{REF}
0 - 3000	5	0	0	0 - 599999
3000 - 24250	15	3000	600000	600000 - 2016666
24250 - 100000	60	24250.08	2016667	2016667 - 3279165

5G频点NR-ARFCN计算

3GHZ以下的频点计算:

Table 5.4.2.1	L-1: NR-AF	RFCN param	eters for the	ne global frequency raster
Frequency range (MHz)	ΔF _{Global} (kHz)	F _{REF-Offs} (MHz)	N _{REF-Offs}	Range of N _{REF}
0 - 3000	5	0	0	0 - 599999

5G频点NR-ARFCN计算

3GHZ以上【3000-24250】的频点计算:

Table 5.4.2.1	1: NR-AF	RFCN param	eters for t	he global frequency raster
Frequency range (MHz)	ΔF _{Global} (kHz)	F _{REF-Offs} (MHz)	N _{REF-Offs}	Range of N _{REF}
0 - 3000	5	0	0	0 - 599999
3000 - 24250	15	3000	600000	600000 - 2016666

$$F_{REF} = F_{REF-Offs} + \Delta F_{Global} (N_{REF} - N_{REF-Offs})$$

 $F_{REF} = 3000 + 0.015(N_{REF} - 600000)$

3GHZ以上频点计算举例

频点=600000+(中心频率-3000)/0.015

NR-ARFCN =600000+ (3450-3000) /0.015

NR-ARFCN =603000

5G信道栅格与频点步长

ΔFRaster:信道栅格

.ast) 000
000
000
000
000
300
000
000
200
200
000
00
000
000
000
000
99
96
100
100
000
999

5G信道栅格与频点步长

	n71	100	132600 - <20> - 139600	123400 - <20> - 130400
	n74	100	285400 - <20> - 294000	295000 - <20> - 303600
	n75	100	N/A	286400 - <20> - 303400
	n76	100	N/A	285400 - <20> - 286400
		15	620000 - <1> - 680000	620000 - <1> - 680000
	n77	30	620000 - <2> - 680000	620000 - <2> - 680000
	-70	15	620000 - <1> - 653333	620000 - <1> - 653333
	n78	30	620000 - <2> - 653332	620000 - <2> - 653332
	-70	15	693334 - <1> - 733333	693334 - <1> - 733333
	n79	30	693334 - <2> - 733332	693334 - <2> - 733332
	n80	100	342000 - <20> - 357000	N/A
	n81	100	176000 - <20> - 183000	N/A
	n82	100	166400 - <20> - 172400	N/A
	n83	100	140600 - <20> -149600	N/A
	n84	100	384000 - <20> - 396000	N/A
	n86	100	342000 - <20> - 356000	N/A
	- 257	60	2054166 - <1> - 2104165	2054166 - <1> - 2104165
	n257	120	2054167 - <2> - 2104165	2054167 - <2> - 2104165
		60	2016667 - <1> - 2070832	2016667 - <1> - 2070832
FD2	n258	120	2016667 - <2> - 2070831	2016667 - <2> - 2070831
FR2		60	2229166 - <1> - 2279165	2229166 - <1> - 2279165
	n260	120	2229167 - <2> - 2279165	2229167 - <2> - 2279165
		60	2070833 - <1> - 2084999	2070833 - <1> - 2084999
	n261	120	2070833 - <2> - 2084999	2070833 - <2> - 2084999

5G信道栅格与全局频点栅格-第1层逻辑

ΔFGlobal用于定义绝对的NR-ARFCN

Table 5.4.2.1-1: NR-ARFCN parameters for the global frequency raster							
Frequency range (MHz) (kHz)		F _{REF-Offs} (MHz) N _{REF-Offs}		Range of N _{REF}			
0 - 3000	5	0	0	0 - 599999			

ΔFRaster用于减小计算量(加快扫描速度)

	ΔF _{Raster} (kHz)			Uplink	Downlink Range of N _{REF} (First - <step size=""> - Last)</step>	
NR Operating Band				Range of N _{REF}		
Dana				(First - <step size=""> - Last)</step>		
n1		100		384000 - <20> - 396000	422000 - <20> - 434000	
n2	100		100 370000 - <20> - 382000		386000 - <20> - 398000	

5G信道栅格与全局频点栅格-第1层逻辑

举个例子:

全局频点栅格ΔFGlobal: 0.005MHZ

信道栅格ΔFRaster: 0.1MHZ

ΔFGlobal:搜索次数=15/0.005=3000次

ΔFRaster:搜索次数=15/0.1=150次

5G信道栅格与全局频点栅格-第2层逻辑

实际组网的时候,单纯以全局频点栅格ΔFGlobal计算的NR-ARFCN有些频点号不能用, NR-ARFCN必须满足信道栅格ΔFRaster的条件约束

0 - 599999

Table 5.4.2	r-T: MK-A	Krciv param	leters for ti	ne global frequency raster
Frequency range (MHz)	ΔF _{Global} (kHz)	F _{REF-Offs} (MHz)	N _{REF-Offs}	Range of N _{REF}

0 - 3000

NR Operating Band	ΔF _{Raster} (kHz)	Uplink Range of N _{REF}	Downlink Range of N _{REF}
n1	100	(First - <step size=""> - Last) 384000 - <20> - 396000</step>	(First - <step size=""> - Last) 422000 - <20> - 434000</step>
n2	100	370000 - <20> - 382000	386000 - <20> - 398000

N1的下行频段为2110~2170M,在0~3000M范围内,全局频点栅格为5khz,2110Mhz对应频点422000,而下一个小区可以使用的中心频率只能是2110.1Mhz(对应频点422020),而2110.005、2110.01......2110.095(对应频点422001-422019)均不能作为小区的中心频率点

NR-ARFCN计算的约束条件

"公式计算出的NR-ARFCN必须被步长(step size)整除"

	Tab	le 5.4.2.3-1	: Applicable NR-ARFCN per	r operating band
		ΔF _{Raster}	Uplink	Downlink
Frequency range	NR Operating Band	(kHz)	Range of N _{REF}	Range of N _{REF}
	Dania		(First - <step size=""> - Last)</step>	(First - <step size=""> - Last)</step>
	n1	100	384000 - <20> - 396000	422000 - <20> - 434000
[n2	100	370000 - <20> - 382000	386000 - <20> - 398000
	n3	100	342000 - <20> - 357000	361000 - <20> - 376000
	n5	100	164800 - <20> - 169800	173800 - <20> - 178800
	n7	100	500000 - <20> - 514000	524000 - <20> - 538000
	n8	100	176000 - <20> - 183000	185000 - <20> - 192000
	n12	100	139800 - <20> - 143200	145800 - <20> - 149200
	n20	100	166400 - <20> - 172400	158200 - <20> - 164200
	n25	100	370000 - <20> - 383000	386000 - <20> - 399000
[n28	100	140600 - <20> - 149600	151600 - <20> - 160600
[n34	100	402000 - <20> - 405000	402000 - <20> - 405000
	n38	100	514000 - <20> - 524000	514000 - <20> - 524000

再一次看上面的例子

NR-ARFCN=2545/0.005=509000

509000不能被6整除,因此取值往大挪了一点509004

NR 频段	上行	下行	双工
n41	2496-2690MHz	2496-2690MHz	TDD

	ΔF _{Raster}	Uplink	Downlink
NR Operating Band	(kHz)	Range of N _{REF}	Range of N _{REF}
		(First - <step size=""> - Last)</step>	(First - <step size=""> - Last)</step>
241	15	499200 - <3> - 537999	499200 - <3> - 537999
n41	30	499200 - <6> - 537996	499200 - <6> - 537996

60M 带宽 SCS: 30khz

总结频点NR-ARFCN计算

3GHZ以下的频点计算

[0-3000]

频点=中心频率/0.005

3GHZ以上的频点计算

[3000-24250]

频点=600000+(中心频率-3000)/0.015

"公式计算出的NR-ARFCN必须被步长(step size)整除"

"NR-ARFCN:必须是整数"

"中心频率未必落在载波的中心处"

同步频率栅格 Synchronization Raster

Synchronization Raster指示手机开机时,搜索SSB的扫频步长。

在UE不知道频点的情况下,需要按照一定的步长盲检UE支持频段内的所有频点。

4G信道栅格100KHZ,而带宽只有20MHZ

5G FR1信道栅格:最多100KHZ,而带宽100MHZ,按照信道栅格搜索,速度就会慢5倍!

3GPP定义了3个同步栅格

Frequency range	SS block frequency raster			
0 – 3000 MHz	1.20 MHz			
3000 - 24250 MHz	1.44 MHz			
24250 - 100000 MHz	17.28 MHz			

同步频率栅格 Synchronization Raster

	ΔF _{Raster}	Uplink	Downlink
NR Operating Band	(kHz)	Range of N _{REF}	Range of N _{REF}
D-GITT-GI		(First - <step size=""> - Last)</step>	(First - <step size=""> - Last)</step>
- 43	15	499200 - <3> - 537999	499200 - <3> - 537999
n41	30	499200 - <6> - 537996	499200 - <6> - 537996

以n41频段为例,100MHz带宽的载波,SCS=30kHz,有273个RB。如果按照1.2MHz扫描,1200/30=40个SCS,需要扫描273×12/40=82次就能扫完整个载波;

如果按照30kHz的信道栅格,则需要扫描3276次才能完成。这显然非常有利于加快UE同步的速度

全局的同步栅格号GSCN

全局的同步栅格号GSCN(Global Synchronization Channel Number)

每一个GSCN对应一个SSB的中心频率位置。 GSCN 规范了SSB中心频率可部署的位置,SSB中心频率可部署位置与 同步频率栅格 Synchronization Raster 保持同步,仅在0-3000M有所不同

频率范围	SSB中心频率	GSCN	GSCN范围
0-3000MHz	N*1200kHz+M*50kHz,N=1-2499,M={1,3,5}	3N+(M-3)/2	2-7498
3000-24250MHz	3000MHz+N*1.44MHz N=0-14756	7499+N	7499-22255
24250-100000MHz	24250.08MHz+N*17.28MHz,N=0-4383	22256+N	[22256-26639]

比如在0-3GHz频段内, N=1, M={1 3 5}时, GSCN为3N+(M-3)/2 = {2 3 4}, 所以:编号为2的GSCN, 其SSB中心频率位置为1×1200kHz+50kHz=1250kHz编号为3的GSCN, 其SSB中心频率位置为1×1200kHz+150kHz=1350kHz编号为4的GSCN, 其SSB中心频率位置为1×1200kHz+250kHz=1450kHz

全局的同步栅格号GSCN

常见的n41、n77和n78的GSCN如下表:

Band	SS block SCS[kHz]		Range of GSCN			Range of N		Frequency SSref	
			First	Last	Step	First	Last	Min [MHz]	Max [MHz]
n41	15	A	6246	6717	3	2082	2239	2498.55	2686.95
	30	С	6252	6714	3	2084	2238	2500.95	2685.75
n77	30	С	7711	8329	1	212	830	3305.28	4195.2
n78	30	С	7711	8051	1	212	552	3305.28	3794.88

中移动GSCN+SSB频点

中心频点(MHz)	带宽 (MHz)	SCS (KHz)	中心频点号(计 算)	中心频点号(配 置)	中心频点(MHz) (实际)	RB数奇偶判别	GSCN	SSB绝对频点号	SSB频率位置
2565 (2515~2615)	100	30	513000	513000	2565.00	奇	6312	504990	2524.95

频率范围	SSB中心频率	GSCN	GSCN范围
0-3000MHz	N*1200kHz+M*50kHz,N=1-2499,M={1,3,5}	3N+(M-3)/2	2-7498

如中国移动使用D频段,100M部署5G NR小区,对应上表中的频率范围为0-3000Mhz,那么GSCN=6312=3N+(M-3)/2 得到N=2104, M=3 所以:

SSB中心频率=1200*N+50*M=1200*2104+50*3=2524950khz 0-3000Mhz对应的Global raster为5khz,进而算的SSB对应的中心频点=2524950/5=504990,与配置一致

华为SSB频点设置思路

Frequency range	偶数个CRB数	奇数个CRB数
0 - 3000 MHz	0	18@SCS=15k , 36@SCS=30k
3000 - 24250 MHz	0	6@SCS=15k , 12@SCS=30k

更偏向带宽中心位置

中心频点=2565/0.005=513000

SSB中心频点=513000-36=512964

SSB频点设置策略对比

5G的同频与4G不一样

4G EARFCN一样,就是同频

5G SSB频点一样,才是同频,切换以及邻区配置,都是看SSB频点!

目前5G终端不支持5G异频切换!

pointA—参考点A

Point A:定义为CRB0的第0个子载波中心对应的频率或ARFCN,是一个基准参考点

Point A绝对频点=2515.86MHz/0.005=503172

pointA的获取--NSA

NSA里,4G基站会通过RRC重配置消息通知UE关于PointA频点的信息

```
- downlinkConfigCommon

- frequencyInfoDL
- absoluteFrequencySSB = 504990
- frequencyBandList
- FreqBandIndicatorNR = 41
- absoluteFrequencyPointA = 503172
- scs-SpecificCarrierList
- SCS-SpecificCarrier
- offsetToCarrier = 0
- subcarrierSpacing = kHz30
- carrierBandwidth = 273
```

pointA的获取--SA

SA网络,通过公式计算获得pointA

absoluteFrequencyPointA + offsetToPointA \times 15 \times 12/5 + ssbSubcarrierOffset \times 15/5 = absoluteFrequencySSB - 10 \times 12 \times subCarrierSpacingCommon /5

```
servingCellConfigCommon
BCCH-BCH-Message
                                                   downlinkConfigCommon
  - message
                                                       frequencyInfoDL
      - mib
                                                          ☐ frequencyBandList
            systemFrameNumber = 001100
                                                              □ NR-MultiBandInfo
            subCarrierSpacingCommon = scs30or120
           ssb-SubcarrierOffset = 6
                                                                    fregBandIndicatorNR = 41
            dmrs-TypeA-Position = pos2
                                                             offsetToPointA = 30
         pdcch-ConfigSIB1
                                                           scs-SpecificCarrierList
               controlResourceSetZero = 10
                                                              searchSpaceZero = 4
                                                                    offsetToCarrier = 0
            cellBarred = notBarred
                                                                    subcarrierSpacing = kHz30
           intraFregReselection = allowed
                                                                    carrierBandwidth = 273
           spare = 0
```

offsetToPointA = 30, sb-SubcarrierOffset = 6, subCarrierSpacingCommon = 30

pointA的计算

假设N41使用的刚好是我们之前一直使用的例子, SSB频点504990

sb-SubcarrierOffset = 6, offsetToPointA = 30 subCarrierSpacingCommon=30

absoluteFrequencyPointA + offsetToPointA \times 15 \times 12/5 + ssbSubcarrierOffset \times 15/5 = absoluteFrequencySSB - 10 \times 12 \times subCarrierSpacingCommon /5

absoluteFrequencyPointA + $30 \times 15 \times 12/5$ + $6 \times 15/5$ = $504990 - 10 \times 12 \times 30/5$

absoluteFrequencyPointA + 1080 + 18 = 504990 - 720

absoluteFrequencyPointA + 1098= 504270

absoluteFrequencyPointA = 503172

pointA频点:503172

