

Lakshay Kumar

(lakshaykumar.tech/)

lakshaykumar.tech/linkedin

Initial Thought?

Exploring Generative AI with

GAN Models

"When it comes to **Generative AI**, the robots are no longer just good at math, they're also fantastic artists!

Let's Explore

Generative Adversarial Networks

GANs and LLMs are the subfield of Deep Learning.

Set of two algorithms competing with each other.

Based on self-supervisedly trained models.

Requires a enormous amount of labeled data

GAN Algorithm

Data

"Enormous!"

Noise

"Support the generator"

Sample

Generated and Real one

Discriminator

"Data is fake"

Generator

"No, this data is real"

Linear and Logistic Regression

Linear Regression

$$y = wx + b$$

y = output (prediction)

w = weights

x = input data (unseen)

b = Bias (constant)

Logistic Regression

Sigmoid function

$$S(y) = \frac{1}{1 + e^{-y}}$$

x = variable (prediction)

Range of S(y) is (0,+1)

How do generator and discriminator works?

GANs are Mathematically Represented by :

4

This makes sure that generator produces such a output that is difficult for discriminator to catch

"This data is from real sample" - Discriminator

$$min \sim G, max \sim D V(D, G) = Ex_{\sim Pdata(x)}[logD(x)] + E_{z\sim p(z)}[log(1 - D(G(z))]$$

4

Dominant Discriminator's Loss function makes the generator's learning difficult!

"No, I generated this data" - Generator

 $\overline{\min} \sim G, \overline{\max} \sim D V(D, G) = E_{x \sim Pdata(x)}[\log D(x)] + E_{z \sim p(z)}[\log (1 - D(G(z))]$

Equilibrium balance where generator fools the discriminator

Implementation

Generator, G Discriminator, D

Loss: Binary cross Entropy

Optimisation: Adam

Save the Model

Epoch

D' updates

Real Samples

D_loss_fake **D_loss_real**

Back propagation: Compute Gradient Update Discriminator weights

Generated Sample

D_loss

G' updates

Real Samples

Noise

Generated Sample

D_output

G_sample

= **G_loss**

Back propagation: Compute Gradient **Update Genrator weights**

Types of GANs

Vanilla GANs

Deep Convolutional GANs

Conditional GANs

Super Resolution GANs

Simplest form of GANS

where **generator** and **discriminator** are **simple multi-layer neural network** unit that does certain computations to detect features or business intelligence in the input data.

Text Generation

Data Augmentation

Vanilla GANs

Deep Convolutional GANs

Conditional GANs

Super Resolution GANs

Combination of GANs and CNNs

DCGANs use convolutional layers to generate realistic images by **learning patterns and features from a training dataset.** The generator network up samples **random noise into images**, while the discriminator network tries to distinguish between real and generated images.

Realistic Faces generation

Deep Fake Images generation

Generating variations of images

Vanilla GANs

Deep Convolutional GANs

Conditional GANs

Super Resolution GANs

Extension of GANs

CGANs take **input noise along with conditional labels** to generate realistic samples. CGANs take input noise along with conditional labels to **generate realistic samples from same class**. This generates more targeted and controlled outputs.

Image to Image Translation

Text to image synthesis

Vanilla GANs

Deep Convolutional GANs

Conditional GANs

Super Resolution GANs

Increases the image resolution

The generator takes a low-resolution image as input and generates a high-resolution image. The discriminator then tries to distinguish between the generated high-resolution images and real high-resolution images. This adversarial training process improves the generator's ability to produce high-quality, visually appealing, and realistic super-resolved images

Image Resolution Enhancer

#1 HealthCare

42 Gaming

3 Fashion

#4 Marketing

5 Manufacturing

#1 HealthCare

Medical image synthesis for **enhanced diagnosis** and **treatment planning**.

Drug discovery and development through generative models.

Generating synthetic patient data for privacy-preserving research.

Augmenting medical education with interactive virtual simulations.

#2 Gaming

#3 Fashion

Marketing

#1 HealthCare

#2 Gaming

Procedural generation of game environments and levels.

Al-generated **music and sound effects** for immersive experiences.

Al-generated nonplayer characters (NPCs) with realistic behaviors

Al-assisted game design and development tools for faster iteration.

Fashion

Marketing

#3 Fashion

Virtual fashion try-on for personalized shopping experiences.

Al-generated designs for trend forecasting and inspiration.

recommendations for individual customers.

Automated

fashion styling

Customized pattern generation for unique garment production.

Marketing

#4 Marketing

Personalized content creation for targeted marketing campaigns.

Automated ad generation for increased efficiency and scalability.

Al-powered recommendation systems for personalized product suggestions.

Chatbot and virtual assistant integration for enhanced customer support.

#3 Fashion

#4 Marketing

#5 Manufacturing

Product design: Algenerated prototypes and designs.

Automated inspection: Al-powered visual inspection for defects. Predictive
maintenance:
Identifying
equipment failures
before they occur.

Process optimization: Al-based optimization of manufacturing processes.

