ICON Namelist Overview

4. Dezember 2019

Inhaltsverzeichnis

1.1 Scripts, Namelist files and Programs 1.2 Namelist parameters 2 Namelist parameters defining the atmospheric model 2.1 assimilation_nml 2.2 ccycle_nml 2.3 coupling_mode_nml 2.4 diffusion_nml	2
2 Namelist parameters defining the atmospheric model 2.1 assimilation_nml	
2.1 assimilation_nml 2.2 ccycle_nml 2.3 coupling_mode_nml 2.4 diffusion_nml	3
2.2 ccycle_nml ccycle_nml 2.3 coupling_mode_nml coupling_mode_nml 2.4 diffusion_nml coupling_nml	3
2.3 coupling_mode_nml	3
2.4 diffusion_nml	5
	6
	6
2.5 dynamics nml	
$\overline{2.6}$ echam cld nml	8
2.7 echam cnv nml	
2.8 echam cop nml	10
2.9 echam cov nml	
$2.10 \hspace{0.1cm} \text{echam} \hspace{0.1cm} \boxed{\text{gwd}} \hspace{0.1cm} \text{nml} \hspace{0.1cm} \ldots \ldots$	12
2.11 echam phy nml	
$2.12~{ m echam}~{ m rad}~{ m nml}$	
2.13 echam sso nml	
$2.14 \hspace{0.1cm} \text{echam} \hspace{0.1cm} \text{vdf} \hspace{0.1cm} \text{nml} \hspace{0.1cm} \ldots \ldots$	
2.15 echam wmo nml	
2.16 ensemble pert nml	
2.17 gribout_nml	
2.18 grid nml	
2.19 gridref nml	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
2.21 initicon nml	
2.22 interpol nml	
2.23 io nml	
2.23.1 Restart read/write mode:	
2.24 les nml (parameters for LES turbulence scheme; valid for inwp turb=5)	
2.25 limarea nml (Scope: 1 limited area=.TRUE in grid nml)	

	2.26 lnd nml	. 38
	2.27 ls_forcing_nml (parameters for large-scale forcing; valid for torus geometry)	. 40
	2.28 master_nml	. 41
	2.29 master_model_nml (repeated for each model)	
	2.30 master_time_control_nml	
	2.31 meteogram_output_nml	
	2.32 nonhydrostatic_nml (relevant if run_nml:iequations=3)	
	2.33 nudging_nml	
	2.34 nwp_phy_nml	
	2.35 nwp_tuning_nml	
	2.36 output_nml (relevant if run_nml/output='nml')	
	2.37 parallel_nml	
	2.38 psrad_nml	
	2.39 radiation_nml	
	2.40 run_nml	
	2.41 sieve_nim (reievant ii nonnydrostatic_mm:rvctype=2)	
	2.42 Synsat_mm	
	2.44 transport nml (used if run nml/ltransport=.TRUE.)	
	2.45 turbdiff nml	
	2.46 upatmo nml	
2		
3	Ocean-specific namelist parameters 3.1 ocean physics nml	83 83
	3.2 sea ice nml (relevant if run nml/iforcing=2 (ECHAM))	
4	Namelist parameters for testcases (NAMELIST_ICON)	84
	4.1 ha_testcase_nml (Scope: ltestcase=.TRUE. and iequations=[0,1,2] in run_nml)	
	4.2 nh_testcase_nml (Scope: ltestcase=.TRUE. and iequations=3 in run_nml)	. 86
5	External data	94
3	5.1 extpar nml (Scope: itopo=1 in run nml)	_
6	External packages	95
7	Information on vertical level distribution	95
8	Compile flag for mixed precision	95
٨	Autaboreatic commentum continuation	ΛE
A	Arithmetic expression evaluation	95 05
	A.1 Examples for arithmetic expressions	. 95 . 96
	A.2 Expression syntax	. 96 . 96
	A.2.1 List of runctions	. 96
	A.2.2 List of operators	. 96
	A.3 Usage with Fortran	. 96
	A.3.1 Fortran examples	
	A.O.I FOIDIGH CAGHIPTES	. 31

В	Changes incompatible with former versions of the model code	97
	A.4 Remarks	97
	A.3.2 Error handling	97

1 ICON Namelists

1.1 Scripts, Namelist files and Programs

Run scripts starting the programs for the models are stored in run/. These scripts write namelist files containing the specified Fortran namelists. Programs are stored in < icon home>/build/<architecture>/bin/.

Tabelle 1: Namelist files

Namelist file	Purpose	Made by script	Used by program
NAMELIST_GRAPH	Generate graphs	${ m create_global_grids.run}$	$\operatorname{grid} \operatorname{_command}$
$NAMELIST_GRID$	Generate grids	$create_global_grids.run$	$\operatorname{grid} _\operatorname{command}$
NAMELIST GRIDREF	Gen. nested domains	create global grids.run	grid command
NAMELIST_ICON	Run ICON models	exp. <name>.run</name>	$\frac{1}{1}$ control_model

1.2 Namelist parameters

The following subsections tabulate all available Fortran namelist parameters by name, type, default value, unit, description, and scope:

- Type refers to the type of the Fortran variable, in which the value is stored: I=INTEGER, L=LOGICAL, R=REAL, C=character string
- Default is the preset value, if defined, that is assigned to this parameter within the programs.
- *Unit* shows the unit of the control parameter, where applicable.
- Description explains in a few words the purpose of the parameter.
- Scope explains under which conditions the namelist parameter has any effect, if its scope is restricted to specific settings of other namelist parameters.

Information on the file, where the namelist is defined and used, is given at the end of each table.

2 Namelist parameters defining the atmospheric model

Namelist parameters for the ICON models are organized in several thematic Fortran namelists controling the experiment, and the properties of dynamics, transport, physics etc.

2.1 assimilation nml

The main switch for the Latent heat nudging scheme is called ldass lhn and has to be set in run nml.

Parameter	Type	Default	Unit	Description	Scope
nlhn_start	I	-9999	S	time in seconds when LHN is applied for the	$run_nml:ldass_lhn = .true.$
				first time	
nlhn_end	I	-9999	S	time in seconds when LHN is applied for the last	$run_nml:ldass_lhn = .true.$
				time	
lhn_coef	R	1.0		Nudging coefficient of adding the increments	
fac_lhn_up	R	2.0		Upper limit of the scaling factor of the	
				temperature profile.	
fac_lhn_down	R	0.5		Lower limit of the scaling factor of the	
				temperature profile.	
lhn_logscale	L	.TRUE.		Apply all scaling factors as logarithmic values	fac_lhn_down, fac_lhn_up,
					fac_lhn_artif
thres_lhn	R	0.1/3600.	$\mathrm{mm/s}$	Minimal value of precipitation rate, either of	
				model or radar. LHN will be applied first for	
				precipitation above it.	
start_fadeout	R	1.0		Value to determine, at which model time step a	
				fading out of the increments might start.	
lhn_qrs	L	.TRUE.		Use a vertical average of precipitation fluxes as	
				reference to compare with radar observed	
				precipitation, to avoid severe overestimation due	
				to displacement of model surface precipitation.	
				If set .FALSE. the model surface precipitation	
				rate is used as reference.	

Parameter	Type	Default	Unit	Description	Scope
rqrsgmax	R	1.0		This value determines the height of the vertical	$lhn_qrs = .TRUE.$
				averaging, to obtain the reference precipitation	
				rate	
				It is the model layer where the quotion of the	
				maximal precipitation flux occurred for the first	
				time.	
lhn_hum_adj	$\mid L \mid$.TRUE.		Apply an increment of specific humidity with	
				respect to the estimated temperature increment	
				to maintain the relative humidty	
lhn_no_ttend	$\mid L \mid$.FALSE.		Only apply moisture increments. Temperature	$lhn_hum_adj=.TRUE.$
				increments will only be used for calculation of	
				moisture increments	
lhn_incloud	$\mid L$.TRUE.		Apply increments only in model layers where the	$lhn_artif_only=.FALSE.$
				underlying latent heat release of the model is	
				positive.	
lhn_limit	$\mid L$.TRUE.		Limitation of temperature increments	abs_lhn_lim
abs_lhn_lim	R	50./3600.	m K/s	Lower and upper limit for temperature	$lhn_limit = .TRUE.$
				increments to be added.	
lhn_filt	$\mid L$.TRUE.		Vertical smoothing of the profile of temperature	
				increments	
lhn_relax	$\mid L \mid$.FALSE.		Horizontal smoothing of radar data but also of	nlhn_relax
				incorporated model fields	
$nlhn_relax$	I	2	grid	Number of horizontal grid point, where	$ln_{relax} = .TRUE.$
			points	smoothing is applied.	
lhn_artif	$\mid L \mid$.TRUE.		Apply an artificial temperature profile to	fac_lhn_artif, tt_artif_max,
				estimate increments at model grid points	zlev_artif_max, std_artif_ma
				without significant precipitation (determined by	
				fac_lhn_artif).	
fac_lhn_artif	R	5.0		Value of the ratio of radar to model precipitation	lhn_artif=.TRUE.
				rate, from which an artificial temperature profile	
				is applied	
lhn_artif_only		.FALSE.		Scaling the artificial temperature profile instead	tt_artif_max,
				of local model profile of latent heat release for	zlev_artif_max,
				calculation the increments at any model grid	std_artif_max
				point.	
				The scaling factor is still be determined by the	
	_			ratio of observed to modelled precipitation rate.	
tt_artif_max	R	0.0015	K	Maximal temperature of Gaussian shaped	lhn_artif, lhn_artif_only
1		1000		function used a artificial temperature profile.	11
$zlev_artif_max$	R	1000.0	m	Height of maximum of Gaussian shaped function	lhn_artif, lhn_artif_only
1				used a artificial temperature profile.	11
std_artif_max	R	4.0	m	Parameter defining width of Gaussian shaped	lhn_artif, lhn_artif_only
11	_	0000		function used a artificial temperature profile.	,,,
$nlhnverif_start$	I	-9999	S	time in seconds when online verification within	$run_nml:ldass_lhn = .true.$
				LHN is active for the first time	

Parameter	Type	Default	Unit	Description	Scope
nlhnverif_end	I	-9999	s	time in seconds when online verification within	$run_nml:ldass_lhn = .true.$
				LHN is active for the last time	
lhn_diag	L	.FALSE.		Enable a extensive diagnostic output, writing	
				into file lhn.log.	
				lhn_diag is set .TRUE. automatically, when	
				online verification is active.	
${ m lhn_dt_obs}$	R	300.0	s	Frequency of the radar observations	
radar_in	C	'./'		Path where the radar data file is expected.	
${ m radardata_file(:)}$	C			Name of the radar data file. This might be either	
	(n_dom)			in GRIB2 or in NetCDF (recommended).	
lhn_black	L	.FALSE.		Apply a blacklist information in the radar data	
				obtained by comparison against satelite clound	
				information	
$blacklist_file(:)$	C			Name of blacklist file, containing a mask	$lhn_black=.TRUE.$
	(n_dom)			concerning the quality of the radar data.	
				Value 1: good quality	
				Value 0: bad quality	
				This might be either in GRIB2 or in NetCDF	
				(recommended).	
lhn_bright	$\mid L$.FALSE.		Apply a model intern bright band detection to	
				avoid strong overestimation due to uncertain	
				radar observations.	
height_file(:)	C			Name of file containing the height of the lowest	$lhn_bright = .TRUE.$
	(n_dom)			scan for each possible radar station within the	
				given radar composite.	
				This file is required, when applying bright band	
				detection.	
				This might be either in GRIB2 or in NetCDF	
				(recommended).	
nradar	I	200		Maximal number of radar station contained	$lhn_bright = .TRUE.$
	(n dom)			within height file	

Defined and used in: src/namelists/mo_assimilation_nml.f90

2.2 ccycle_nml

The coupling of the carbon cycle between the atmosphere and land and ocean is configured by the data structure $ccycle_config(jg=1:ndom)\% < param>$, which is a 1-dimensional array extending over all domains.

Parameter	Type	Default	Unit	Description	Scope
ccycle_config(jg)% iccycle	I	0		controls the carbon cycle mode:	echam_phy_config(jg)%
				0: no C-cycle	$\mathrm{dt_vdf} > 0.000\mathrm{s} \; \mathrm{and}$
				1: C-cycle with interactive atmospheric CO_2	echam_phy_config(jg)% ljsb
				concentration	= .TRUE. (and atmosphere is
				2: C-cycle with prescribed atmospheric CO_2	coupled to ocean with
				concentration	biogeochemistry)
ccycle_config(jg)% ico2conc	I	2		controls the CO_2 concentration provided to	$ccycle_config(jg)\%$ $iccycle = 2$
				land/JSBACH and - if coupled to the ocean - to	
				${\rm the\ ocean/HAMOCC}$	
				2: constant concentration as defined by	
				ccycle_config(jg)% vmr_co2	
				4: transient concentration scenario from file	
				bc_greenhouse_gases.nc	
ccycle_config(jg)% vmr_co2	R	284.32	ppmv	constant CO_2 volume mixing ratio of 1850	$ccycle_config(jg)\% ico2conc =$
				(CMIP6)	2

2.3 coupling_mode_nml

Parameter	Type	Default	Unit	Description	Scope
coupled_mode	L	.FALSE.		.TRUE.: if yac coupling routines have to be	
				called	

Defined and used in: src/namelists/mo_coupling_nml.f90

2.4 diffusion_nml

Parameter	Type	Default	Unit	Description	Scope
lhdiff temp	L	.TRUE.		Diffusion on the temperature field	
lhdiff vn	L	.TRUE.		Diffusion on the horizontal wind field	
lhdiff w	L	.TRUE.		Diffusion on the vertical wind field	
hdiff_order	I	4 (hydro)		Order of ∇ operator for diffusion:	Options 2, 24 and 42 are
		5 (NH)		-1: no diffusion	allowed only in the hydrostatic
				$2: \nabla^2 \text{ diffusion}$	atm model (iequations = 1 or 2)
				3: Smagorinsky ∇^2 diffusion	in dynamics_nml).
				4: ∇^4 diffusion	
				5: Smagorinsky ∇^2 diffusion combined with ∇^4	
				background diffusion as specified via	
				hdiff efdt ratio	
				$24 \text{ or } 42$: $\nabla 2$ diffusion from model top to a	
				certain level (cf. k2 pres max and	
				$k2$ _klev_max below); $\nabla^{\overline{4}}$ for the lower levels.	

Parameter	Type	Default	Unit	Description	Scope
lsmag_3d	L	.FALSE.		.TRUE.: Use 3D Smagorinsky formulation for	hdiff_order=3 or 5;
				computing the horizontal diffusion coefficient	itype_vn_diffu=1
				(recommended at mesh sizes finer than 1 km if	
				the LES turbulence scheme is not used)	
itype_vn_diffu	I	1		Reconstruction method used for Smagorinsky	iequations=3, hdiff_order=3
				diffusion:	or 5
				1: u/v reconstruction at vertices only	
				2: u/v reconstruction at cells and vertices	
itype_t_diffu	I	2		Discretization of temperature diffusion:	iequations=3, hdiff_order=3
				1: $K_h \nabla^2 T$	or 5
				$2: \nabla \cdot (K_h \nabla T)$	
k2_pres_max	R	-99.	Pa	Pressure level above which ∇^2 diffusion is	$hdiff_{order} = 24 \text{ or } 42, \text{ and}$
				applied.	$dynamics_nml:iequations = 1$
10.11					or 2.
k2_klev_max	I	0		Index of the vertical level till which (from the	$hdiff_order = 24 \text{ or } 42, \text{ and}$
				model top) ∇^2 diffusion is applied. If a positive	$dynamics_nml:iequations = 1$
				value is specified for k2_pres_max,	or 2.
				k2_klev_max is reset accordingly during the initialization of a model run.	
hdiff efdt ratio	R	1.0 (hydro)		ratio of e-folding time to time step (or 2* time	
num_erut_ratio	10	36.0 (NH)		step when using a 3 time level time stepping	
		30.0 (1111)		scheme) (for triangular NH model, values above	
				30 are recommended when using hdiff order=5)	
hdiff w efdt ratio	\mid R	15.0		ratio of e-folding time to time step for diffusion	iequations=3
mam_w_srate_ratio		10.0		on vertical wind speed	requestions o
hdiff min efdt ratio	\mid R	1.0		minimum value of hdiff efdt ratio near model	iequations=3 .AND.
				top – –	hdiff order=4
hdiff_tv_ratio	R	1.0		Ratio of diffusion coefficients for temperature	_
				and normal wind: $T: v_n$	
hdiff_multfac	R	1.0		Multiplication factor of normalized diffusion	n_dom>1
_				coefficient for nested domains	
hdiff smag fac	R	0.15 (hydro)		Scaling factor for Smagorinsky diffusion	iequations=3
_		0.015 (NH)			

Defined and used in: src/namelists/mo_diffusion_nml.f90

2.5 dynamics_nml

This namelist is relevant if run_nml:ldynamics=.TRUE.

Parameter	Type	Default	Unit	Description	Scope
iequations	I	3		Equations and prognostic variables. Use positive	
				indices for the atmosphere and negative indices	
				for the ocean.	
				0: shallow water model	

Parameter	Type	Default	Unit	Description	Scope
				1: hydrostatic atmosphere, T	
				2: hydrostatic atm., θ ·dp	
				3: non-hydrostatic atmosphere	
				-1: hydrostatic ocean	
idiv_method	I	1		Method for divergence computation:	
				1: Standard Gaussian integral.	
				Hydrostatic atm. model: for unaveraged normal	
				components	
				Non-hydrostatic atm. model: for averaged	
				normal components	
				2: bilinear averaging of divergence	
divavg_cntrwgt	R	0.5		Weight of central cell for divergence averaging	$idiv_method = 2$
lcoriolis	L	.TRUE.		Coriolis force	
sw_ref_height	R	$0.9*\ 2.94e4/g$	m	Reference height of shallow water model used for	
				linearization in the semi-implicit time stepping	
				scheme	
ldeepatmo	L	.FALSE.		Switch for deep-atmosphere modification of	iequations = 3
				non-hydrostatic atmosphere. Specific settings	$ ext{ iforcing} = 0, 2, 3 $
				can be found in upatmo_nml.	$is_plane_torus = .FALSE.$

Defined and used in: src/namelists/mo_dynamics_nml.f90

2.6 echam_cld_nml

The parameterization of cloud microphysics for the ECHAM physics is configured by a data structure $echam_cld_config(jg=1:ndom)\% < param>$, which is a 1-dimensional array extending over all domains. The structure contains parameters providing control over the parametrized effects:

Parameter	Type	Default	Unit	Description	Scope
echam_cld_config(jg)% zmaxcld	R	echam_phy_config	g(:)%	maximum height for cloud physics computations	$echam_phy_config(jg)\%$
		zmaxcloudy			$ m dt_cld > 0.000s$
$- \operatorname{cham_cld_config(jg)} \% \ \operatorname{ccwmin}$	R	1.0e-7	kg/kg	cloud water and ice minimum mass mixing ratio	$echam_phy_config(jg)\%$
				for cover>0	$ m dt_cld > 0.000s$
$\operatorname{echam_cld_config(jg)}\% \operatorname{cqtmin}$	R	1.0e-12	kg/kg	cloud water/ice minimum for microphysical	$\operatorname{echam_phy_config(jg)}\%$
				processes	$ m dt_cld > 0.000s$
$-\operatorname{echam_cld_config(jg)}\%$ cthomi	R	Tmelt-35 =	K	maximum temperature for homogeneous freezing	$echam_phy_config(jg)\%$
		238.15			$ m dt_cld > 0.000s$
$\operatorname{echam_cld_config(jg)}\%$ csecfrl	R	5.0e-6	kg/kg	minimum in-cloud water mass mixing ratio in	$echam_phy_config(jg)\%$
				mixed phase clouds	$ m dt_cld > 0.000s$
$-$ echam_cld_config(jg)% ccraut	R	15.		coefficient of autoconversion of cloud droplets to	$echam_phy_config(jg)\%$
				rain	$ m dt_cld > 0.000s$
$-$ echam_cld_config(jg)% ccracl	R	6.		coefficient of accretion of cloud droplets by	$echam_phy_config(jg)\%$
				falling rain	$ m dt_cld > 0.000s$
$\operatorname{echam_cld_config(jg)}\%$ cauloc	R	10.		coefficient of local rainwater production by	$\operatorname{echam_phy_config(jg)}\%$
				autoconversion	$ m dt_cld > 0.000s$

Parameter	Type	Default	Unit	Description	Scope
echam_cld_config(jg)% clmin	R	0.0		minimum for cauloc* $dz/5000$	echam_phy_config(jg)%
					$ m dt_cld > 0.000s$
echam_cld_config(jg)% clmax	R	0.5		maximum for cauloc*dz/5000	echam_phy_config(jg)%
h	D	0.5			$dt_{cld} > 0.000s$
echam_cld_config(jg)% cvtfall	R	2.5		coefficient of sedimentation velocity of cloud ice	echam_phy_config(jg)% dt cld > 0.000s
echam_cld_config(jg)% ceffmin	R	10.	1.e-6 m	min effective radius for ice cloud	$\operatorname{echam}_{\operatorname{phy}_{\operatorname{config}}(jg)}\%$
					$ m dt_cld > 0.000s$
echam_cld_config(jg)% ceffmax	R	150.	1.e-6 m	max effective radius for ice cloud	$echam_phy_config(jg)\%$
					$dt_{-}cld > 0.000s$
$-$ echam_cld_config(jg)% crhoi	R	500.	kg/m3	density of cloud ice	echam_phy_config(jg)%
	D	100	1 / 2	b	$dt_{cld} > 0.000s$
echam_cld_config(jg)% crhosno	R	100.	kg/m3	bulk density of snow	echam_phy_config(jg)% dt cld > 0.000s
echam cld config(jg)% ccsaut	$ _{\mathrm{R}}$	95.0		coefficient of autoconversion of cloud ice to snow	echam phy $config(jg)\%$
centain_era_comig(gg)/// cessage	10	30.0		econicions of adocestivision of cloud fee to show	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
echam_cld_config(jg)% ccsacl	R	0.1		coefficient of accretion of cloud droplets by	$\operatorname{echam}_{\operatorname{phy}_{\operatorname{config}}(jg)}\%$
				falling snow	$ m dt_cld > 0.000s$
echam_cld_config(jg)% clwprat	R	4.0		critical ratio of cloud liq.+ice paths below and	echam_phy_config(jg)%
				above the top of shallow convection; for ratio >	$ m dt_cld > 0.000s$
	_			clwprat -> change ktype from 2 to 4	
$-$ echam_cld_config(jg)% ncctop	1	13		index of highest level for tropopause calculation	echam_phy_config(jg)%
asham ald sanfar(ia) 07 mashat	_T	25		index of lowest level for the page calculation	$dt_{cld} > 0.000s$
echam_cld_config(jg)% nccbot	I	35		index of lowest level for tropopause calculation	$ \begin{array}{c} echam_phy_config(jg)\% \\ dt_cld > 0.000s \end{array} $

2.7 echam_cnv_nml

The parameterization of convection for the ECHAM physics is configured by a data structure $echam_cnv_config(jg=1:ndom)\% < param>$, which is a 1-dimensional array extending over all domains. The structure contains parameters providing control over the parametrized effects:

Parameter	Type	Default	Unit	Description	Scope
echam_cnv_config(jg)% lmfpen	L	.TRUE.		Switch on penetrative convection.	$echam_phy_config(jg)\%$
					$ m dt_cnv > 0.000s$
echam_cnv_config(jg)% lmfmid	L	.TRUE.		Switch on midlevel convection.	$echam_phy_config(jg)\%$
					$ m dt_cnv > 0.000s$
echam_cnv_config(jg)% lmfdd	L	.TRUE.		Switch on cumulus downdraft.	$echam_phy_config(jg)\%$
					$ m dt_cnv > 0.000s$
echam_cnv_config(jg)% lmfdudv	L	.TRUE.		Switch on cumulus friction.	$echam_phy_config(jg)\%$
					$ m dt_cnv > 0.000s$
echam_cnv_config(jg)% entrmid	R	2.0e-4		Entrainment rate for midlevel convection.	$echam_phy_config(jg)\%$
					$ m dt_cnv > 0.000s$
$\operatorname{echam_cnv_config(jg)}\%$ entrscv	R	3.0e-3		Entrainment rate for shallow convection.	$echam_phy_config(jg)\%$
					$ m dt_cnv > 0.000s$

Parameter	Type	Default	Unit	Description	Scope
echam_cnv_config(jg)% entrpen	R	2.0e-4		Entrainment rate for penetrative convection.	$echam_phy_config(jg)\%$
					$ m dt_cnv > 0.000s$
$-$ echam_cnv_config(jg)% entrdd	R	4.0e-4		Entrainment rate for cumulus downdrafts.	$echam_phy_config(jg)\%$
					$ m dt_cnv > 0.000s$
echam_cnv_config(jg)% cprcon	R	2.5e-4		Coefficient for determining conversion from	echam_phy_config(jg)%
				cloud water to rain.	dt _cnv > 0.000s
echam_cnv_config(jg)% cmfctop	R	0.2		Fractional convective mass flux across the top of	echam_phy_config(jg)%
				cloud.	dt _cnv > 0.000s
echam_cnv_config(jg)% cmfdeps	R	0.3		Fractional convective mass flux for downdrafts	echam_phy_config(jg)%
	D	0.00		at lfs.	$dt_{cor} = 0.000s$
echam_cnv_config(jg)% cminbuoy	R	0.02		Minimum excess buoyancy.	echam_phy_config(jg)%
ochom any config(ig) of amountary	$ _{\mathrm{R}}$	1.0		Maximum excess buoyancy.	$\begin{array}{l} dt_cnv > 0.000s \\ echam \ phy \ config(jg)\% \end{array}$
echam_cnv_config(jg)% cmaxbuoy	l n	1.0		Maximum excess buoyancy.	$\begin{array}{c c} ecnam_pny_conng(jg) \% \\ dt cnv > 0.000s \end{array}$
echam_cnv_config(jg)% cbfac	R	1.0		Factor for std dev of virtual pot temp.	echam_phy_config(jg)%
comm_cmv_com/s(J8)/// come		1.0		Tactor for state act of virtual post temp.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
echam_cnv_config(jg)% centrmax	\mid R	3.0e-4		Maximum entrainment/detrainment rate.	echam phy config(jg)%
		0.01			$\begin{array}{ccc} \text{dt} & \text{cnv} > 0.000\text{s} \end{array}$
echam_cnv_config(jg)% dlev_land	R	0	Pa	Minimum pressure thickness of clouds for	echam phy config(jg)%
				precipitation over land.	dt cnv > 0.000s
echam_cnv_config(jg)% dlev_ocean	R	0	Pa	Minimum pressure thickness of clouds for	echam phy config(jg)%
				precipitation over ocean.	$ m dt_cnv > 0.000s$
echam_cnv_config(jg)% cmftau	R	3600.		Characteristic convective adjustment time scale.	$echam_phy_config(jg)\%$
					$ m dt_cnv > 0.000s$
echam_cnv_config(jg)% cmfcmin	R	1.0e-10		Minimum massflux value (for safety).	$echam_phy_config(jg)\%$
					$ m dt_cnv > 0.000s$
echam_cnv_config(jg)% cmfcmax	R	1.0		Maximum massflux value for updrafts.	echam_phy_config(jg) $\%$
					$dt_cnv > 0.000s$

2.8 echam_cop_nml

The parameterization of cloud optical properties for the ECHAM physics is configured by a data structure $echam_cop_config(jg=1:ndom)\% < param>$, which is a 1-dimensional array extending over all domains. The structure contains parameters providing control over the parametrized effects:

Parameter	Type	Default	Unit	Description	Scope
echam_cop_config(jg)% cn1lnd	R	20.	$1 \mathrm{e} 6/\mathrm{m} 3$	cloud droplet number concentration over land,	
				p <= 100 hPa	
$echam_cop_config(jg)\% cn2lnd$	R	180.	$1\mathrm{e}6/\mathrm{m}3$	cloud droplet number concentration over land,	
				p >= 800 hPa	
echam_cop_config(jg)% cn1sea	R	20.	$1\mathrm{e}6/\mathrm{m}3$	cloud droplet number concentration over sea,	
				p <= 100 hPa	
echam_cop_config(jg)% cn2sea	R	80.	$1\mathrm{e}6/\mathrm{m}3$	cloud droplet number concentration over sea,	
				p >= 800 hPa	
echam_cop_config(jg)% cinhomi	R	0.8		ice cloud inhomogeneity factor	

Parameter	Type	Default	Unit	Description	Scope
echam_cop_config(jg)% cinhoml1	R	0.8		liquid cloud inhomogeneity factor,	
				ktype = 0 = stratiform clouds	
$echam_cop_config(jg)\% cinhoml2$	R	0.4		liquid cloud inhomogeneity factor,	
				ktype = 4 = shallow conv. (cf. clwprat)	
$echam_cop_config(jg)\% cinhoml3$	R	0.8		liquid cloud inhomogeneity factor,	
				ktype = 1 = deep convection and	
				ktype = 2 = shallow conv. (cf. clwprat) and	
				$\mathrm{ktype} = 3 = \mathrm{mid} ext{-level conv}.$	

2.9 echam_cov_nml

The parameterization of cloud cover for the ECHAM physics is configured by a data structure $echam_cov_config(jg=1:ndom)\% < param>$, which is a 1-dimensional array extending over all domains. The structure contains the following control parameters:

Parameter	Type	Default	Unit	Description	Scope
echam_cov_config(jg)% zmaxcov	R	echam_phy_com	fig(:)%	maximum height for cloud cover computation	
		zmaxcloudy			
echam_cov_config(jg)% icov	I	1		selects cloud cover scheme	
				0: constant cloud cover = clcon	
				1: fractional cloud cover based on rel. humidity	
				2: 0/1 cloud cover based on rel. humidity $>=$	
				csat	
				3: 0/1 cloud cover based on cloud condensate	
				>= cqx	
echam_cov_config(jg)% clcon	R	0.0		constant cloud cover in m2/m2	icov = 0
echam_cov_config(jg)% csat	R	1.0		relative humidity at which cloud cover is 1	icov = 1, 2
echam_cov_config(jg)% crs	R	0.968		critical relative humidity at surface	icov = 1
echam_cov_config(jg)% crt	R	0.8		critical relative humidity aloft	icov = 1
echam_cov_config(jg)% nex	I	2		transition parameter for critical relative	icov = 1
				humidity profile	
echam_cov_config(jg)% zinvmin	R	200.	m	minimum height above sea level for search of	icov = 1
				inversion layer	
echam_cov_config(jg)% zinvmax	R	2000.	m	maximum height above sea level for search of	icov = 1
				inversion layer	
echam_cov_config(jg)% cinv	R	0.25		fraction of dry adiabatic lapse rate for search of	icov = 1
				top level of inversion layer over sea	
$-$ echam_cov_config(jg)% csatsc	R	0.7		minimum effective saturation for cloud cover	icov = 1
				below an inversion layer over sea	
echam_cov_config(jg)% cqx	R	1.0e-8	kg/kg	minimum cloud condensate mass mixing ratio	icov = 3
				for cloud cover 1	

2.10 echam gwd nml

The parameterization of atmospheric gravity waves for the ECHAM physics is configured by a data structure $echam_gwd_config(jg=1:ndom)\% < param>$, which is a 1-dimensional array extending over all domains. The structure contains parameters providing control over the parametrized effects:

Parameter	Type	Default	Unit	Description	Scope
echam_gwd_config(jg)% lheatcal	L	.FALSE.		.TRUE.: compute drag, heating rate and	echam_phy_config(jg) $\%$
				diffusion coefficient from the dissipation of	$ m dt_gwd > 0.000s$
				gravity waves	
				.FALSE.: compute drag only	
echam_gwd_config(jg)% emiss_lev	I	10		Index of model level, counted from the surface,	$echam_phy_config(jg)\%$
				from which the gravity wave spectra are emitted	$ m dt_gwd > 0.000s$
$- echam_gwd_config(jg)\% rmscon$	R	0.87	m/s	Root mean square gravity wave wind at the	$echam_phy_config(jg)\%$
				emission level	$ m dt_gwd > 0.000s$
echam_gwd_config(jg)% kstar	R	5.0e-5	$1/\mathrm{m}$	Typical gravity wave horizontal wavenumber	$echam_phy_config(jg)\%$
					$ m dt_gwd > 0.000s$
$-\operatorname{echam}_{\operatorname{gwd}}_{\operatorname{config}}(jg)\%$ m_min	R	0.0	$1/\mathrm{m}$	Minimum bound in vertical wavenumber	$echam_phy_config(jg)\%$
					$ m dt_gwd > 0.000s$

2.11 echam phy nml

The ECHAM physics is configured by a data structure $echam_phy_config(jg=1:ndom)\%param, which is a 1-dimensional array extending over all domains. The structure contains several parameters providing time control for the atmospheric forcing by the different parameterizations and additional logical switches for controlling the coupling between the parameterizations of the physics and between the dynamics and the physics. Further logical switches control how the atmospheric boundary conditions for the ECHAM physics are determined. Time control parameters are available for the following atmospheric processes:$

prc	parameterized process
rad	LW and SW radiation
vdf	vertical diffusion
cnv	cumulus convection
cld	cloud microphysics
gwd	atmospheric gravity wave drag
SSO	sub grid scale orographic effects
mox	methane oxidation and water vapor photolysis
car	Cariolle's linearized ozone chemistry
art	ART chemistry

The time control for an atmospheric forcing by a process prc consists of three components, the time interval dt_prc for re-computing the forcing, and the start and end dates and times defining the interval $[sd_prc,ed_prc]$, in which the forcing is either computed, if the date/time coincides with the interval dt_prc , or recycled. Recycling means that the forcing stored from the last computation is used again. Outside of the interval the forcing is set to zero.

If dt_prc is not specified, or an empty string or a string of blanks or an interval of length 0s, e.g. "PT0S" is given, then the forcing is switched off for the entire experiment and the start and end dates and times are irrelevant.

If sd_prc or ed_prc are not specified, or an empty string or a string of blanks are given, then the experiment start date and the experiment stop date are used, respectively. Further the forcing control switch fc_prc can be used to decide if an active process (dt_prc > 0) is used for the integration (fc_prc = 1) or only computed for diagnostic purposes (fc_prc = 0).

Parameter	Type	Default	Unit	Description	Scope
echam_phy_config(jg)% dt_prc	С			This is the time interval in ISO 8601-2004 format at which the forcing by the process prc is computed.	$rac{ ext{run_nml/iforcing} = 2}{ ext{run_nml/iforcing}}$
echam_phy_config(jg)% sd_prc	C			Defines the start date/time in ISO 8601-2004 format of the interval $[sd_prc, ed_prc]$, in which the forcing by the process prc is computed in intervals dt_prc .	$egin{aligned} & ext{run_nml/iforcing} = 2 ext{ and } \ & dt_prc > 0.000 ext{s} \end{aligned}$
echam_phy_config(jg)% ed_prc	C			Defines the end date/time in ISO 8601-2004 format of the interval [sd_prc,ed_prc], in which the forcing by the process prc is computed in intervals dt prc.	$egin{aligned} { m run_nml/iforcing} &= 2 { m \ and} \ dt_prc &> 0.000 { m s} \end{aligned}$
echam_phy_config(jg)% fc_prc	I	1		Forcing control for process prc. fc_prc = 0: the forcing of the process is not used in the integration. fc_prc = 1: the forcing of the process is used in the integration.	$egin{aligned} & ext{run_nml/iforcing} = 2 ext{ and } \ & dt_prc > 0.000 ext{s} \end{aligned}$
echam phy config(jg)% lice	L	.FALSE.		.TRUE. for sea-ice temperature calculation	$ ext{run nml/iforcing} = 2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L	.FALSE.		.TRUE. for mixed layer ocean	$\operatorname{run} \operatorname{nml/iforcing} = 2$
echam_phy_config(jg)% ljsb	L	.FALSE.		.TRUE. for using the JSBACH land surface model	$\operatorname{run_nml/iforcing} = 2$
echam phy config(jg)% lamip	L	.FALSE.		.TRUE. for AMIP boundary conditions	$ ext{run nml/iforcing} = 2$
echam_phy_config(jg)% iqneg_d2p	I	0		If negative tracer mass fractions are found in the dynamics to physics interface, then: 1,3: they are reported; 2,3: they are replaced with zero	$run_nml/iforcing = 2$
echam_phy_config(jg)% iqneg_p2d	I	0		If negative tracer mass fractions are found in the dynamics to physics interface, then: 1,3: they are reported; 2,3: they are replaced with zero	$rac{ ext{run_nml/iforcing} = 2}{ ext{run_nml/iforcing}}$
$echam_phy_config(jg)\%$ $zmaxcloudy$	R	33000.	m	maximum height for clouds	

2.12 echam_rad_nml

The input from ECHAM physics to the PSrad scheme is configured by a data structure $echam_rad_config(jg=1:ndom)\% < param>$, which is a 1-dimensional array extending over all domains. The structure contains parameters providing control over the Earth orbit, the computation of the SW incoming flux at the top of the atmosphere and the atmospheric composition:

Parameter	Type	Default	Unit	Description	Scope
echam_rad_config(jg)% isolrad	I	0		Selects the spectral solar irradiation (SSI) at 1 AU distance from the sun 0: SSI of the SRTM scheme, TSI = 1368.222 Wm2. 1: SSI from an external file containing monthly mean time series 2: Average 1844–1856 of the SSI time series provided for CMIP5, TSI = 1360.875 W/m2 3: Average 1979–1988 of the SSI time series provided for CMIP5, TSI = 1361.371 W/m2 4: SSI for RCE-type simulation with diurnal cycle, TSI = 1069.315 W/m2 5: SSI for RCE-type simulation without diurnal cycle, TSI = 433.3371 W/m2 6: Average 1850-1873 of the SSI time series provided for CMIP6, TSI = 1360.744 W/m2	echam_phy_config(jg)% dt_rad > 0.000s
echam_rad_config(jg)% fsol rad	R	1		Scaling factor for the SSI	echam_phy_config(jg)% dt rad > 0.000s
echam_rad_config(jg)% l_orbvsop87	L	.TRUE.		.TRUE. for the realistic VSOP87 Earth orbit .FALSE. for the Kepler orbit	echam_phy_config(jg)% dt rad > 0.000s
echam_rad_config(jg)% cecc	R	0.016715		eccentricity of the Kepler orbit	echam_phy_config(jg)% dt_rad > 0.000s and l orbvsop87 = .FALSE.
${\rm echam_rad_config(jg)\%\ cobld}$	R	23.44100	deg	obliquity of the Earth rotation axis on the Kepler orbit	echam_phy_config(jg)% dt_rad > 0.000s and l orbvsop87 = .FALSE.
${\it echam_rad_config(jg)\%\ clonp}$	R	282.7000	deg	longitude of perihelion with respect to vernal equinox on the Kepler orbit	echam_phy_config(jg)% dt_rad > 0.000s and l orbvsop87 = .FALSE.
$echam_rad_config(jg)\% \ lyr_perp$	L	.FALSE.		.FALSE. for transient VSOP87 Earth orbit .TRUE.: VSOP87 Earth orbit of year yr_perp is perpertuated	echam_phy_config(jg)% dt_rad > 0.000s and l orbvsop87 = .TRUE.
echam_rad_config(jg)% yr_perp	L	-99999		year to be used for lyr_perp = .TRUE.	echam_phy_config(jg)% dt_rad > 0.000s and l orbvsop87 = .TRUE.
$echam_rad_config(jg)\%\ nmonth$	I	0		0: Earth circles on orbit 1-12: Earth orbit position fixed for specified month	echam_phy_config(jg)% dt_rad > 0.000s
$echam_rad_config(jg)\%\ ldiur$	L	.TRUE.		.TRUE. for diurnal cycle in solar irradiation .FALSE. for zonally averaged solar irradiation	echam_phy_config(jg)% dt rad > 0.000s
$ \begin{array}{l} echam_rad_config(jg)\% \\ l_sph_symm_irr \end{array} $	L	.FALSE.		.TRUE. for a horizontally independent solar irradiation; .FALSE. for a horizontally resolved solar irradiation	

Type	Default	Unit	Description	Scope
I	1		Selects source for concentration of water vapor,	$echam_phy_config(jg)\%$
			cloud water and cloud ice	$ m dt_rad > 0.000s$
			0: set to zero (or epsilon)	
			1: from tracer	
I	2		Selects source for concentration of CO2	echam phy config(jg)%
			0: set to zero (or epsilon)	$ m dt rad > 0.000s \ and \ CO2$
				tracer is defined
T	3			$echam_phy_config(jg)\%$
1				$\begin{array}{cccccccccccccccccccccccccccccccccccc$
				ut_1ad > 0.0003
				asham phy as-6-(:-\07
1	3			echam_phy_config(jg)%
				$ m dt_rad > 0.000s$
I	0			$-$ echam_phy_config(jg)%
				$ m dt_rad > 0.000s$
			2: 3-dim concentration, climatological annual	
			cycle, monthly means from an annual file	
			bc_ozone.nc or - with nesting -	
			bc ozone DOM <jg>.nc</jg>	
			4: 3-dim concentration, constant in time, 1st	
			8: 3-dim concentration, time dependent, monthly	
			9	
T	2			$\operatorname{echam}_{\operatorname{phy}}_{\operatorname{config}}(\operatorname{jg})\%$
•	-			$\begin{array}{cccccccccccccccccccccccccccccccccccc$
			2: constant vol. mixing ration set by 'vmr o2'	100000
	I I I	I 2 I 3	I 2 I 3 I 0	Selects source for concentration of water vapor, cloud water and cloud ice 0: set to zero (or epsilon) 1: from tracer Selects source for concentration of CO2 0: set to zero (or epsilon) 1: from tracer 2: constant vol. mixing ration set by 'vmr _co2' 4: spatially constant, time dependent vol. mixing ratio from file bc _greenhouse _gases.nc Selects source for concentration of CH4 0: set to zero (or epsilon) 2: constant vol. mixing ration set by 'vmr _ch4' 3: horizontally constant, vertically decaying, with surface vol. mixing ratio set by 'vmr _ch4' 4: horizontally constant, vertically decaying, time dependent with surface vol. mixing ratio from file bc _greenhouse _gases.nc Selects source for concentration of N2O 0: set to zero (or epsilon) 2: constant vol. mixing ratio set by 'vmr _n2o' 3: horizontally constant, vertically decaying, with surface vol. mixing ratio from file bc _greenhouse_gases.nc Selects source for concentration of O3 0: set to zero (or epsilon) 1: from tracer 2: 3-dim concentration, climatological annual cycle, monthly means from an annual file bc _ozone.nc or - with nesting - bc _ozone_DOM=[g>nc] 4: 3-dim concentration, constant in time, 1st time slice in file bc _ozone.nc or - with nesting - bc _ozone_DOM=[g>nc] 8: 3-dim concentration, time dependent, monthly means from yearly files bc _ozone_expar>.nc or - with nesting - bc _ozone_DOM=[g>nc] 8: 3-dim concentration, time dependent, monthly means from yearly files bc _ozone_expar>.nc or - with nesting - bc _ozone_DOM=[g>nc] 9: Selects source for concentration of O2 0: set to zero (or epsilon)

Parameter	Type	Default	Unit	Description	Scope
echam_rad_config(jg)% irad_cfc11	I	2		Selects source for concentration of CFC11 0: set to zero (or epsilon) 2: constant vol. mixing ration set by 'vmr _cfc11'	$ \begin{array}{l} {\rm echam_phy_config(jg)\%} \\ {\rm dt_rad} > 0.000 {\rm s} \end{array} $
${ m echam_rad_config(jg)\%~irad_cfc12}$	I	2		4: spatially constant, time dependent vol. mixing ratio from file bc_greenhouse_gases.nc Selects source for concentration of CFC12 0: set to zero (or epsilon) 2: constant vol. mixing ration set by 'vmr	$\begin{array}{l} echam_phy_config(jg)\% \\ dt_rad > 0.000s \end{array}$
echam_rad_config(jg)% irad_aero	I	2		_cfc12' 4: spatially constant, time dependent vol. mixing ratio from file bc_greenhouse_gases.nc Selects source for concentration of XYZ 13: tropospheric 'Kinne' aerosols, time	$\begin{array}{l} {\rm echam_phy_config(jg)\%} \\ {\rm dt} \ \ {\rm rad} > 0.000{\rm s} \end{array}$
				dependent from file 14: stratospheric 'Stenchikov' aerosols, time dependent from file 15: tropospheric 'Kinne' aerosols + stratospheric 'Stenchikov' aerosols, time dependent, both from file 18: tropospheric natural 'Kinne' aerosols for 1850 + time dep. stratospheric 'Stenchikov' aerosols, both from file + param. time dep. antropogenic 'simple plumes' any other: set to zero	ut_1au > 0.0008
${ m echam_rad_config(jg)\%\ vmr_co2}$	R	348.0e-06	m3/m3	Volume mixing ratio of CO2	echam_phy_config(jg)% dt_rad > 0.000s
${ m echam_rad_config(jg)\%\ vmr_ch4}$	R	1650.0e-09	m3/m3	Volume mixing ratio of CH4	echam_phy_config(jg)% dt_rad > 0.000s
${ m echam_rad_config(jg)\%\ vmr_n2o}$	R	306.0e-09	m3/m3	Volume mixing ratio of N2O	echam_phy_config(jg)% dt_rad > 0.000s
echam_rad_config(jg)% vmr_o2	R	0.20946	m3/m3	Volume mixing ratio of O2	dt_rad > 0.000s echam_phy_config(jg)% dt_rad > 0.000s
echam_rad_config(jg)% vmr_cfc11	R	214.5e-12	m3/m3	Volume mixing ratio of CFC11	at_rad > 0.000s echam_phy_config(jg)% dt_rad > 0.000s
echam_rad_config(jg)% vmr_cfc12	R	371.1e-12	m3/m3	Volume mixing ratio of CFC11	at_rad > 0.000s echam_phy_config(jg)% dt_rad > 0.000s
echam_rad_config(jg)% frad_h2o	R	1.0		Scaling factor for concentration of water vapor, cloud water and cloud ice	$\operatorname{echam}_{\operatorname{phy}_{\operatorname{config}(jg)}}\%$
echam_rad_config(jg)% frad_co2	R	1.0		Scaling factor for concentration of CO2	dt_rad > 0.000s echam_phy_config(jg)%
echam_rad_config(jg)% frad_ch4	R	1.0		Scaling factor for concentration of CH4	dt_rad > 0.000s echam_phy_config(jg)%
echam_rad_config(jg)% frad_n2o	R	1.0		Scaling factor for concentration of N2O	$ \begin{array}{l} dt_rad > 0.000s \\ echam_phy_config(jg)\% \\ dt_rad > 0.000s \end{array} $

Parameter	Type	Default	Unit	Description	Scope
$echam_rad_config(jg)\% frad_o3$	R	1.0		Scaling factor for concentration of O3	$echam_phy_config(jg)\%$
					$ m dt_rad > 0.000s$
$-$ echam_rad_config(jg)% frad_o2	R	1.0		Scaling factor for concentration of O2	$echam_phy_config(jg)\%$
					$ m dt_rad > 0.000s$
$-$ echam_rad_config(jg)% frad_cfc	R	1.0		Scaling factor for concentration of CFC11 and	$echam_phy_config(jg)\%$
				CFC12	$ m dt_rad > 0.000s$

2.13 echam_sso_nml

The parameterization of subgrid scale orographic (SSO) effects for the ECHAM physics is configured by a data structure $echam_sso_config(jg=1:ndom)\% < param>$, which is a 1-dimensional array extending over all domains. The structure contains parameters providing control over the parametrized effects:

Parameter	Type	Default	Unit	Description	Scope
echam_sso_config(jg)% gpicmea	R	40.	m	Minimum height difference of peak height and	$echam_phy_config(jg)\%$
				mean height to activate the SSO	$ m dt_sso > 0.000s$
				parameterization.	
echam_sso_config(jg)% gstd	R	10.	m	Minimum standard deviation of the SSO height	$echam_phy_config(jg)\%$
				to activate the SSO parameterization.	$ m dt_sso > 0.000s$
echam_sso_config(jg)% gkdrag	R	0.05		Coefficient for orographic gravity wave drag.	$echam_phy_config(jg)\%$
					$ m dt_sso > 0.000s$
$echam_sso_config(jg)\%$ gkwake	R	0.		Coefficient for low level blocking.	$echam_phy_config(jg)\%$
					$ m dt_sso > 0.000s$
$echam_sso_config(jg)\%$ gklift	R	0.		Coefficient for low level lift.	$echam_phy_config(jg)\%$
					$ m dt_sso > 0.000s$
echam_sso_config(jg)% lsftlf	L	.TRUE.		.FALSE.: SSO effects are directly applied, for	$echam_phy_config(jg)\%$
				the case that SSO parameters are valid for the	$ m dt_vdf > 0.000s$
				full cell area.	
				.TRUE.: SSO effects are scaled with the cell area	
				fraction of land including lakes (field sftlf), for	
				the case that SSO parameters are valid only for	
				this part of the cell area.	

2.14 echam vdf nml

The parameterization of vertical diffusion (VDF) for the ECHAM physics is configured by a data structure $echam_vdf_config(jg=1:ndom)\% < parameters$, which is a 1-dimensional array extending over all domains. The structure contains parameters providing control over some of the parametrized effects:

Parameter	Type	Default	Unit	Description	Scope
$echam_vdf_config(jg)\%$	L	.TRUE.		switch on/off surface momentum flux	$echam_phy_config(jg)\%$
lsfc_mom_flux					$ m dt_vdf > 0.000s$
echam_vdf_config(jg)% lsfc_heat_flux	L	.TRUE.		switch on/off surface heat flux	$echam_phy_config(jg)\%$
					$ m dt \ \ vdf > 0.000s$
echam_vdf_config(jg)% pr0	R	1.0		neutral limit Prandtl number, can be varied	$\operatorname{echam}_{\operatorname{phy}_{\operatorname{config}}(jg)}\%$
				from about 0.6 to 1.0	$ m dt_vdf > 0.000s$

Parameter	Type	Default	Unit	Description	Scope
echam_vdf_config(jg)% f_tau0	R	0.17		neutral non-dimensional stress factor	echam_phy_config(jg)%
					$ m dt_vdf > 0.000s$
$\operatorname{echam}_{\operatorname{vdf}_{\operatorname{config}}(jg)\%} \operatorname{c}_{\operatorname{f}}$	R	0.185		mixing length: coriolis term tuning parameter	echam_phy_config(jg)%
					$ m dt_vdf > 0.000s$
$\operatorname{echam_vdf_config(jg)}\% \ \operatorname{c_n}$	R	2.0		mixing length: stability term tuning parameter	$echam_phy_config(jg)\%$
					$dt_vdf > 0.000s$
echam_vdf_config(jg)% wmc	R	0.5		ratio of typical horizontal velocity to wstar at	echam_phy_config(jg)%
				free convection	$ m dt_vdf > 0.000s$
echam_vdf_config(jg)% fsl	R	0.4		fraction of first-level height at which surface	$echam_phy_config(jg)\%$
				fluxes are nominally evaluated, tuning param for	$dt_vdf > 0.000s$
				sfc stress	
$\operatorname{echam_vdf_config(jg)}\%$ fbl	R	3.0		1/fbl: fraction of BL height at which lmix hat its	
				max	$dt_vdf > 0.000s$

$2.15\ echam_wmo_nml$

The diagnostics of the tropopause pressure, following the WMO definition is configured by a data structure $echam_wmo_config(jg=1:ndom)\% < param>$, which is a 1-dimensional array extending over all domains:

Parameter	Type	Default	Unit	Description	Scope
echam_wmo_config(jg)% zmaxwmo	R	38000.	m	maximum height for tropopause search	
$-echam_wmo_config(jg)\%$ zminwmo	R	5000.	\mathbf{m}	minimum height for tropopause search	

$2.16\ ensemble_pert_nml$

Parameter	Type	Default	Unit	Description	Scope
use_ensemble_pert	L	.FALSE.		Main switch to activate physics parameter	$run_nml:iforcing = inwp$
				perturbations for ensemble forecasts / ensemble	
				data assimilation; the perturbations are applied	
				via random numbers depending on the	
				perturbationNumber (ensemble member ID)	
				specified in gribout_nml. Perturbations are	
				always turned off if perturbation Number ≤ 0	
itype_pert_gen	I	1		Mode of ensemble perturbation generation	
				1: Equal distribution within perturbation range	
				2: Discrete distribution with 50% probability for	
				default value and 25% probability for upper and	
				lower extrema	

Parameter	Type	Default	Unit	Description	Scope
timedep_pert	I	0		Time-dependence of ensemble perturbations (except tkred_sfc, which oscillates with a time scale of 20 days) 0: None	
				1: Random seed for perturbation generation depends on initial date	
range_gkwake	R	0.5		Variability range for low level wake drag constant	
range_gkdrag	R	0.04		Variability range for orographic gravity wave drag constant	
range_gfrcrit	R	0.1		Variability range for critical Froude number in SSO scheme	
range_gfluxlaun	R	0.75e-3		Variability range for non-orographic gravity wave launch momentum flux	
range_zvz0i	R	0.25	m/s	Variability range for terminal fall velocity of cloud ice	$inwp_gscp = 1 \text{ or } 2$
range_rain_n0fac	R	4.		Multiplicative change of intercept parameter of raindrop size distribution	$inwp_gscp = 1 \text{ or } 2$
range_entrorg	R	0.2e-3	1/m	Variability range for entrainment parameter in convection scheme	$inwp_convection = 1$
range_rdepths	R	5.e3	Pa	Variability range for maximum allowed shallow convection depth	$inwp_convection = 1$
range_rprcon	R	0.25e-3		Variability range for tuning parameter controlling conversion of cloud water into precipitation	inwp_convection = 1
range_capdcfac_et	R	0.75		Maximum fraction of CAPE diurnal cycle correction applied in the extratropics	m icapdcycl = 3
range_rhebc	R	0.05		Variability range for RH threshold for the onset of evaporation below cloud base	$inwp_convection = 1$
range_texc	R	0.05	K	Variability range for temperature excess value in test parcel ascent	$inwp_convection = 1$
range_qexc	R	0.005		Variability range for mixing ratio excess value in test parcel ascent	$inwp_convection = 1$
range_box_liq	R	0.01		Variability range for box width scale of liquid clouds in cloud cover scheme	inwp_cldcover = 1
range_box_liq_asy	R	0.25		Variability range for asymmetry factor for sub-grid scale liquid cloud distribution	inwp_cldcover = 1
range_tkhmin	R	0.2	$\mathrm{m}^2\mathrm{s}^{-1}$	Variability range for minimum vertical diffusion for heat/moisture	$inwp_turb = 1$
range_tkmmin	R	0.2	$\mathrm{m}^2\mathrm{s}^{-1}$	Variability range for minimum vertical diffusion for momentum	$inwp_turb = 1$
range_turlen	R	150	m	Variability range for turbulent mixing length	$inwp_turb = 1$
$range_a_hshr$	R	1		Variability range for scaling factor for extended horizontal shear term	$inwp_turb = 1$

Parameter	Type	Default	Unit	Description	Scope
range_a_stab	R	0		Variability range for stability correction	$inwp_turb = 1$
range_c_diff	R	1.0		Range for multiplicative change of length scale factor for vertical diffusion	$inwp_turb = 1$
range_q_crit	R	0		Variability range for critical value for normalized supersaturation in turbulent cloud scheme	$inwp_turb = 1$
range_tkred_sfc	R	4.0		Range for multiplicative change of reduction of minimum diffusion coefficients near the surface	$inwp_turb = 1$
range_rlam_heat	R	3.0		Variability range (multiplicative!) of laminar transport resistance parameter	$inwp_turb = 1$
range_charnock	R	1.5		Variability range (multiplicative!) of upper and lower bound of wind-speed dependent Charnock parameter	$inwp_turb = 1$
range_minsnowfrac	R	0.1		Variability range for minimum value to which snow cover fraction is artificially reduced in case of melting snow	$idiag_snowfrac = 20/30/40$
range_c_soil	R	0.25		Variability range for evaporating fraction of soil	
range_cwimax_ml	R	2.0		Variability range for capacity of interception storage (multiplicative)	
${\rm range_z0_lcc}$	R	0.25		Variability range (relative change) of roughness length attributed to each landuse class	
range_rootdp	R	0.2		Variability range (relative change) of root depth attributed to each landuse class	
range_rsmin	R	0.2		Variability range (relative change) of minimum stomata resistance attributed to each landuse class	
range_laimax	R	0.15		Variability range (relative change) of leaf area index (maximum of annual cycle) attributed to each landuse class	
stdev_sst_pert	R	0.	K	Inserting the standard deviation of SST perturbations (present in the model input data) activates a correction factor for the saturation vapor pressure over oceans, which compensates the systematic increase of evaporation due to the SST perturbations.	

Defined and used in: src/namelists/mo_ensemble_pert_nml.f90

2.17 gribout_nml

Parameter	Type	Default	Unit	Description	Scope
preset	C	"determ"		Setting this different to "none" enables a couple of defaults for the other gribout_nml namelist parameters. If, additionally, the user tries to set any of these other parameters to a conflicting value, an error message is thrown. Possible values are "none", "deterministic", "ensemble".	filetype=2
${ m tables Version}$	I	15		Main switch for Table version	filetype=2
${\it backgroundProcess}$	I	0		Background process - GRIB2 code table backgroundProcess.table	filetype=2
${\rm generating Center}$	I	-1		Output generating center. If this key is not set, center information is taken from the grid file DWD: 78 MPIMET: 98 ECMWF: 98	filetype=2
${\rm generating Subcenter}$	I	-1		Output generating Subcenter. If this key is not set, subcenter information is taken from the grid file DWD: 255 MPIMET: 232 ECMWF: 0	filetype=2
${ m generating Process}$ ${ m Identifier}$	I(n_dom)	1		generating Process Identifier - GRIB2 code table generatingProcessIdentifier.table	filetype=2
${\bf number Of Forecasts In - \ Ensemble}$	I	-1		Local definition for ensemble products, (only set if value changed from default)	filetype=2
perturbation Number	I	-1		Local definition for ensemble products, (only set if value changed from default)	filetype=2
productionStatusOfPro- cessedData	I	1		Production status of data - GRIB2 code table 1.3	filetype=2
significance Of Reference Time	I	1		Significance of reference time - GRIB2 code table 1.2	filetype=2
type Of Ensemble Forecast	I	-1		Local definiton for ensemble products (only set if value changed from default)	filetype=2
type Of Generating Process	I	-1		Type of generating process - GRIB2 code table 4.3	filetype=2
type Of Processed Data	I	-1		Type of data - GRIB2 code table 1.4	filetype=2
local Definition Number	I	-1		local Definition Number - GRIB2 code table grib2LocalSectionNumber.78.table	filetype=2
local Number Of Experiment	I	1		local Number of Experiment	filetype=2
localTypeOfEnsemble- Forecast		-1		Local definiton for ensemble products (only set if value changed from default)	filetype=2

Parameter	Type	Default	Unit	Description	Scope
typeOfGrib2TileTemplate	C	"DWD"		type of GRIB2 templates which are used for	filetype = 2
				decoding tiled surface fields	
				WMO: official WMO templates (55, 59)	
				DWD: local DWD templates (40455, 40456)	
lspecialdate_invar	L	.FALSE.		Special reference date for invariant and	filetype = 2
				climatological fields	
				.TRUE.: set special reference date 0001-01-01,	
				00:00	
				.FASLE.: no special reference date	
ldate_grib_act	L	.TRUE.		GRIB creation date	filetype=2
				.TRUE.: add creation date	
				.FALSE.: add dummy date	
lgribout_24bit	L	.FALSE.		If TRUE, write thermodynamic fields ρ , θ_v , T , p	filetype=2
				with 24bit precision instead of 16bit	

Defined and used in: src/namelists/mo_gribout_nml.f90

2.18 grid_nml

Parameter	Type	Default	Unit	Description	Scope
lplane	L	.FALSE.		planar option	
is_plane_torus	L	FALSE.		f-plane approximation on triangular grid	
corio_lat	R	0.0	deg	Center of the f-plane is located at this geographical latitude	lplane=.TRUE. and is plane torus=.TRUE.
grid angular velocity	R	Earth's	m rad/s	The angular velocity in rad per sec.	
l limited area	L	.FALSE.	, i		
grid_rescale_factor	R	1.0		Defined as the inverse of the reduced-size earth reduction factor X . Choose $grid_rescale_factor < 1$ for a reduced-size earth.	
				earth.	
lrescale_timestep	L	.FALSE.		if .TRUE. then the timestep will be multiplied by grid_rescale_factor.	
lrescale_ang_vel	L	.FALSE.		if .TRUE. then the angular velocity will be divided by grid_rescale_factor.	
lfeedback	L(n_dom)	.TRUE.		Specifies if feedback to parent grid is performed. Setting lfeedback(1)=.false. turns off feedback for all nested domains; to turn off feedback for selected nested domains, set lfeedback(1)=.true. and set ".false." for the desired model domains	n_dom>1

Parameter	Type	Default	Unit	Description	Scope
$ifeedback_type$	I	2		1: incremental feedback	n_dom>1
				2: relaxation-based feedback	
				Note: vertical nesting requires option 2 to run	
				numerically stable over longer time periods	
start time	R(n dom)	0.	s	Time when a nested domain starts to be active.	n dom>1
_				Relative time w.r.t. experiment start date	_
				(ini_datetime_string /	
				experimentStratDate).	
				(namelist entry is ignored for the global domain)	
end_time	R(n dom)	1.E30	s	Time when a nested domain terminates. Relative	n dom>1
_	` = '			time w.r.t. experiment start date	_
				(ini_datetime_string /	
				experimentStratDate).	
				(namelist entry is ignored for the global domain)	
patch weight	R(n dom)	0.		If patch weight is set to a value > 0 for any of	n dom>1
0	\ - /			the first level child patches, processor splitting	_
				will be performed, i.e. every of the first level	
				child patches gets a subset of the total number	
				or processors corresponding to its patch weight.	
				A value of 0. corresponds to exactly 1 processor	
				for this patch, regardless of the total number of	
				processors. For the root patch and higher level	
				childs, patch_weight is not used. However,	
				patch weight must be set to 0 for these patches	
				to avoid confusion.	
lredgrid phys	L(n dom)	.FALSE.		If set to .true. radiation is calculated on a	
ned8nd_pnys	L(n_dom)	111111111111111111111111111111111111111		reduced grid (= one grid level higher)	
				Needs to be set for each model domain	
				separately; for the global domain, the file	
				containing the reduced grid must be specified in	
				the variable "radiation grid filename"	
dynamics grid filename	\mid C			Array of the grid filenames to be used by the	
dynamics_grid_ mename				dycore. May contain the keyword <path> which</path>	
				will be substituted by model_base_dir.	
dynamics parent grid id	I(n dom)	i-1		Array of the indexes of the parent grid filenames,	
ay namics _ parent _ grid_id	1(11_00111)	0 I		as described by the dynamics grid filename	
				array. Indexes start at 1, an index of 0 indicates	
				no parent. Specification of this namelist	
				parameter is only required if more than one	
				domain is in use and the grid files are rather old	
				s.t. they do not contain a UUID attribute.	
				5.t. they do not contain a UUID attribute.	

Parameter	Type	Default	Unit	Description	Scope
radiation_grid_ filename	С			Grid filename to be used for the radiation model	$lredgrid_phys=.TRUE.$
				on the coarsest grid. Filled only if the radiation	
				grid is different from the dycore grid. May	
				contain the keyword <path> which will be</path>	
				substituted by model_base_dir.	
create_vgrid	L	.FALSE.		.TRUE.: Write vertical grid files containing	
				(vct_a, vct_b, z_ifc, and z_ifv.	
vertical_grid_filename	C(n_dom)			Array of filenames. These files contain the	
				vertical grid definition (vct_a, vct_b, z_ifc). If	
				empty, the vertical grid is created within ICON	
				during the setup phase.	
use_duplicated_	L	.TRUE.		if .TRUE., the zero connectivity is replaced by	
connectivity				the last non-zero value	
use_dummy_cell_closure	L	.FALSE.		if .TRUE. then create a dummy cell and connect	
				it to cells and edges with no neighbor	

Defined and used in: src/namelists/mo_grid_nml.f90

2.19 gridref_nml

Parameter	Type	Default	Unit	Description	Scope
$grf_intmethod_c$	I	2		Interpolation method for grid refinement (cell-based dynamical variables): 1: parent-to-child copying 2: gradient-based interpolation	n_dom>1
$\operatorname{grf}_{-\operatorname{int}\operatorname{met}\operatorname{hod}_{-\operatorname{ct}}}$	I	2		Interpolation method for grid refinement (cell-based tracer variables): 1: parent-to-child copying 2: gradient-based interpolation	n_dom>1
$\operatorname{grf} _\operatorname{int} \operatorname{met} \operatorname{hod} _\operatorname{e}$	I	6		Interpolation method for grid refinement (edge-based variables): 1: inverse-distance weighting (IDW) 2: RBF interpolation 3: combination gradient-based / IDW 4: combination gradient-based / RBF 5/6: same as 3/4, respectively, but direct interpolation of mass fluxes along nest interface edges	n_dom>1
grf_velfbk	I			Method of velocity feedback: 1: average of child edges 1 and 2 2: 2nd-order method using RBF interpolation	n_dom>1
grf_scalfbk	I			Feedback method for dynamical scalar variables (T, p_{sfc}) : 1: area-weighted averaging	n_dom>1

Parameter	Type	Default	Unit	Description	Scope
				2: bilinear interpolation	
grf_tracfbk	I	2		Feedback method for tracer variables:	n_dom>1
				1: area-weighted averaging	
				2: bilinear interpolation	
grf_idw_exp_e12	R	1.2		exponent of generalized IDW function for child	n_dom>1
				edges $1/2$	
$grf_idw_exp_e34$	R	1.7		exponent of generalized IDW function for child	n_dom>1
	_			edges $3/4$	
rbf_vec_kern_grf_e	1	1		RBF kernel for grid refinement (edges):	n_dom>1
				1: Gaussian	
				2: $1/(1+r^2)$	
rbf scale grf e	R(n dom)	0.5		3: inverse multiquadric RBF scale factor for grid refinement (lateral	n dom>1
Tot_scare_git_e	It(II_doili)	0.0		boundary interpolation to edges). Refers to the	
				respective parent domain and thus does not need	
				to be specified for the innermost nest. Lower	
				values than the default of 0.5 are needed for	
				child mesh sizes less than about 500 m.	
denom_diffu_t	R	135		Deniminator for lateral boundary diffusion of	n_dom>1
				temperature	_
denom_diffu_v	R	200		Deniminator for lateral boundary diffusion of	n_dom>1
				velocity	
l_mass_consvcorr	$\mid L \mid$.FALSE.		.TRUE.: Apply mass conservation correction in	n_dom>1
				feedback routine	
l_density_nudging	L	.FALSE.		.TRUE.: Apply density nudging near lateral nest	$n_{dom} > 1$.AND. lfeedback =
		1000		boundary if grf_intmethod_e \leq 4	.TRUE.
fbk_relax_timescale	R	10800		Relaxation time scale for feedback	n_dom>1 .AND. lfeedback =
					.TRUEAND. ifeedback_type
					= 2

Defined and used in: src/namelists/mo_gridref_nml.f90

2.20 ha_dyn_nml

 $This \ namelist \ is \ relevant \ if \ run_nml: ldynamics=. TRUE. \ and \ dynamics_nml: iequations=IHS_ATM_TEMP \ or \ IHS_ATM_THETA.$

Parameter	Type	Default	Unit	Description	Scope
itime scheme	I	14		Time integration scheme:	
_				11: pure advection (no dynamics)	
				12: 2 time level semi implicit (not yet	
				implemented)	
				13: 3 time level explicit	
				14: 3 time level with semi implicit correction	
				15: standard 4th-order Runge-Kutta method	
				(4-stage)	

Parameter	Type	Default	Unit	Description	Scope
				16: SSPRK(5,4) scheme (5-stage)	
ileapfrog_startup	I	1		How to integrate the first time step when the	$itime_scheme = 13 \text{ or } 14$
				leapfrog scheme is chosen. $1 = \text{Euler forward}$; 2	
				= a series of sub-steps.	
asselin_coeff	R	0.1		Asselin filter coefficient	$itime_scheme = 13 \text{ or } 14$
si_2tls	R	0.6		weight of time step $n+1$. Valid range: $[0,1]$	$itime_scheme = 12$
si_expl_scheme	I	2		scheme for the explicit part used in the 2 time	$itime_scheme=12$
				level semi-implicit time stepping scheme. 1 =	
				Euler forward; $2 = Adams$ -Bashforth 2nd order	
si_cmin	R	30.0	m/s	semi implicit correction is done for eigenmodes	itime_scheme=14 and
				with speeds larger than si_cmin	$lsi_3d=.FALSE.$
si_coeff	R	1.0		weight of the semi implicit correction	$itime_scheme=14$
si_offctr	R	0.7			$itime_scheme=14$
si_rtol lsi_3d	R	1.0e-3		relative tolerance for GMRES solver	$itime_scheme=14$
lsi_3d	L	.FALSE.		3D GMRES solver or decomposistion into 2D	lshallow_water=.FALSE. and
				problems	$itime_scheme=14$
ldry_dycore	L	.TRUE.		Assume dry atmosphere	iequations $\in \{1,2\}$
lref_temp	L	.FALSE.		Set a background temperature profile as base	iequations $\in \{1,2\}$
				state when computing the pressure gradient force	

2.21 initicon_nml

Parameter	Type	Default	Unit	Description	Scope
init_mode	I	2		1: MODE_DWDANA	
				start from DWD analysis or FG	
				2: MODE_IFSANA	
				start from IFS analysis	
				3: MODE_COMBINED	
				${ m IFS~atm+ICON/GME~soil}$	
				4: MODE_COSMO	
				start from prognostic set of variables as used	
				by COSMO	
				5: MODE_IAU	
				start from DWD analysis with incremental	
				analysis update. Extension of	
				MODE_IAU_OLD including snow increments	
				6: MODE_IAU_OLD	
				start from DWD analysis with incremental	
				analysis update. NOTE: Extension of mode	
				MODE_DWDANA_INC including W_SO	
				increments.	
				7: MODE_ICONVREMAP	
				start from DWD first guess with subsequent	
				vertical remapping (work in progress; so far,	
				changing the number of model levels does not	
				yet work)	
dt_iau	R	10800	S	Duration of incremental analysis update (IAU)	$ m init_mode=5,6$
				procedure. Start time for IAU is the actual	
, , , , ,				model start time (see below).	
dt_shift	R	0	S	Time by which the actual model start time is	$ m init_mode=5,6$
				shifted ahead of the nominal date. The latter is	
				given by either ini_datetime_string or	
				experimentStartDate.dt_shift must be	
	_	DAT CD		NEGATIVE, usually -0.5 dt iau.	
iterate_iau	$\mid L$.FALSE.		If TRUE, the IAU phase is calculated twice	$\begin{array}{c} \text{init}_\text{mode}{=}5,6 \text{ and dt}_\text{shift} < \end{array}$
				with halved dt_shift in first cycle (allows	0
				writing a fully initialized analysis at the nominal	
				initialization date while using a centered IAU	
	D			window for the forecast).	
start_time_avg_fg	R	0	S	Start time for calculating temporally averaged	
and time are for	D			first guess output for data assimilation.	
$ ho$ end_time_avg_fg	R	0	S	End time for calculating temporally averaged first guess output for data assimilation.	
				Setting end_time_avg_fg >	
				start time avg fg activates the averaging	
interval ave fe	\mid R	0	g.	Corresponding averaging interval. Note that	
interval_avg_fg		0	S	end_time_avg_fg — start_time_avg_fg must	
				not be smaller than the averaging interval	
				not be smaner than the averaging interval	

Parameter	Туре	Default	Unit	Description	Scope
ho_incr_filter_wgt	R	0		Vertical filtering weight on density increments	$_{ m init_mode=5,6}$
niter_diffu	I	10		Number of diffusion iterations applied on wind increments	$ m init_mode=5,6$
${\rm niter_divdamp}$	I	25		Number of divergence damping iterations	$ m init_mode=5,6$
type_iau_wgt	I	1		applied on wind increments Weighting function for performing IAU 1: Top-Hat	$ m init_mode=5,6$
nlevsoil in	I	4		2: SIN2 number of soil levels of input data	$\begin{array}{c c} & & & \\ & \text{init} & \text{mode}{=}2 \end{array}$
zpbl1	R	500.0	m	bottom height (AGL) of layer used for gradient computation	_
zpbl2	R	1000.0	m	top height (AGL) of layer used for gradient	
lread_ana	L	.TRUE.		computation If .FALSE., ICON is started from first guess only. Analysis field is not required, and skipped if provided.	$ m init_mode=1,3$
${ m use_lake}$ iceana	L	.FALSE.		If .TRUE., analysis data for sea ice fraction are also used for freshwater lakes (for the time being restricted to the Great Lakes; extension to other	$ m init_mode=5,6$
${ m qcana_mode}$	I	0		lakes needs to be tested) If > 0, analysis increments for cloud water are read and processed. 1: QC increments are added to QV increments 2: QC increments are added to QC if clouds are	${\rm init_mode}{=}5$
qiana_mode	I	0		present, otherwise to QV increments 1: analysis increments for cloud ice are read and processed.	$ m init_mode=5$
lconsistency_checks	L	.TRUE.		If .FALSE., consistency checks for Analysis and First Guess fields are skipped. On default, checks are performed for <i>uuidOfHGrid</i> and	init_mode=1,3,4,5,6
$l_coarse2fine_mode$	$L(n_dom)$.FALSE.		validity time. If true, apply corrections for coarse-to-fine mesh	
lp2cintp_incr	L(n_dom)	.FALSE.		interpolation to wind and temperature If true, interpolate atmospheric data assimilation increments from parent domain. Can be specified separately for each nested	$ m init_mode=5,6$
		PLICE		domain; setting the first (global) entry to true activates the interpolation for all nested domains.	
lp2cintp_sfcana	$L(n_dom)$.FALSE.		If true, interpolate atmospheric surface analysis data from parent domain. Can be specified separately for each nested domain; setting the first (global) entry to true activates the interpolation for all nested domains.	$ m init_mode=5,6$

Parameter	Type	Default	Unit	Description	Scope
ltile_init	L	.FALSE.		True: initialize tiled surface fields from a first guess coming from a run without tiles. Along coastlines and lake shores, a neighbor search is executed to fill the variables on previously non-existing land or water points with reasonable values. Should be combined with	$ m init_mode{=}1,5,6$
ltile_coldstart	L	.FALSE.		 ltile_coldstart = .TRUE. If true, tiled surface fields are initialized with tile-averaged fields from a previous run with tiles. A neighbor search is applied to subgrid-scale ocean points for SST and sea-ice fraction. 	$ m init_mode=1,5,6$
lvert_remap_fg	L	.FALSE.		If true, vertical remapping is applied to the atmospheric first-guess fields, whereas the analysis increments remain unchanged. The number of model levels must be the same for input and output fields, and the z_ifc (alias HHL) field pertaining to the input fields must be appended to the first-guess file.	$init_mode=5,6$
ifs2icon_filename	C			Filename of IFS2ICON input file, default " <path>ifs2icon_R<nroot>B<jlev>_DOM <idom>.nc". May contain the keywords <path> which will be substituted by model_base_dir, as well as nroot, nroot0, jlev, and idom defining the current patch.</path></idom></jlev></nroot></path>	${ m init_mode}{=}2$
dwdfg_filename	C			Filename of DWD first-guess input file, default " <path>dwdFG_R<nroot>B<jlev>_DOM <idom>.nc". May contain the keywords <path> which will be substituted by model_base_dir, as well as nroot, nroot0, jlev, and idom defining the current patch.</path></idom></jlev></nroot></path>	$init_mode=1,3,5,6$
dwdana_filename	C			Filename of DWD analysis input file, default " <path>dwdana_R<nroot>B<jlev>_DOM <idom>.nc". May contain the keywords <path> which will be substituted by model_base_dir, as well as nroot, nroot0, jlev, and idom defining the current patch.</path></idom></jlev></nroot></path>	$init_mode{=}1,3,5,6$
filetype	I	-1 (undef.)		One of CDI's FILETYPE_XXX constants. Possible values: 2 (=FILETYPE_GRB2), 4 (=FILETYPE_NC2). If this parameter has not been set, we try to determine the file type by its extension "*.grb*ör ".nc".	

Parameter	Type	Default	Unit	Description	Scope
$check_fg(jg)\%$ list	C(:)			In ICON a small subset of first guess input fields	$ m init_mode=1,5,6$
				is declared 'optional', meaning that they are	
				read in if present, but they are not mandatory to	
				start the model. By adding optional fields to this	
				list, they become mandatory for domain jg, such	
				that the model aborts if any of them is missing.	
				This list may include a subset of the optional	
				first guess fields, or even the entire set of first	
				guess fields. On default this list is empty, such	
				that optional fields experience a cold-start	
				initialization if they are missing and the model	
				does not abort.	
$- check_ana(jg)\%list$	C(:)			List of mandatory analysis fields for domain jg	$\operatorname{init}_\operatorname{mode}=1,5,6$
				that must be present in the analysis file. If these	
				fields are not found, the model aborts. For all	
				other analysis fields, the FG-fields will serve as	
				fallback position.	
ana_varnames_map_ file	C			Dictionary file which maps internal variable	
				names onto GRIB2 shortnames or NetCDF var	
				names. This is a text file with two columns	
				separated by whitespace, where left column:	
				ICON variable name, right column: GRIB2 short	
				name or NetCDF var name.	
itype_vert_expol	I	1		Type of vertical extrapolation of initial data:	
				1: Linear extrapolation (standard)	
				2: Blend of linear extrapolation and simple	
				climatology. Intended for upper-atmosphere	
				simulations and specific settings can be found in	
				upatmo_nml. Requires: ivctype = 2, 12;	
				$l_limited_area = .FALSE.$	

Defined and used in: src/namelists/mo_initicon_nml.f90

2.22 interpol_nml

Parameter	Type	Default	Unit	Description	Scope
l_intp_c2l	L	.TRUE.		DEPRECATED	
l_{mono_c2l}	L	.TRUE.		Monotonicity can be enforced by demanding	
				that the interpolated value is not higher or lower	
				than the stencil point values.	
llsq high consv	L	.TRUE.		conservative (T) or non-conservative (F)	
				least-squares reconstruction for high order	
				transport	
lsq_high_ord	I	3		polynomial order for high order reconstruction	

Parameter	Type	Default	Unit	Description	Scope
				1: linear	$ihadv_tracer{=}4$
				2: quadratic	
				30: cubic (no 3^{rd} order cross deriv.)	
				3: cubic	
llsq lin consv	L	.FALSE.		conservative (T) or non-conservative (F)	
				least-squares reconstruction for 2nd order	
				(linear) transport	
nudge_efold_width	R	2.0		e-folding width (in units of cell rows) for lateral	
0				boundary nudging coefficient. This switch and	
				the following two pertain to one-way nesting and	
				limited-area mode	
nudge max coeff	R	0.02		Maximum relaxation coefficient for lateral	
0				boundary nudging. Recommended range of	
				values for limited-area mode is $0.06 - 0.075$.	
$nudge_zone_width$	I	8		Total width (in units of cell rows) for lateral	
	*			boundary nudging zone. For the limited-area	
				mode, a minimum of 10 is recommended. If < 0	
				the patch boundary depth index is used.	
rbf dim c2l	I	10		stencil size for direct lon-lat interpolation: 4 =	
101_4111_021	1	10		nearest neighbor, 13 = vertex stencil, 10 = edge	
				stencil.	
rbf_scale_mode_ll	I	2		Specifies, how the RBF shape parameter is	
I bl _ seale _ mode _ n	1			determined for lon-lat interpolation.	
				1 : lookup table based on grid level	
				2: determine automatically.	
				So far, this routine only estimates the smallest	
				value for the shape parameter for which the	
				Cholesky is likely to succeed in floating point	
				arithmetic. 3: explicitly set shape parameter in	
				each output namelist (namelist parameter	
				output_nml::rbf_scale, p. 60).	
rhf was karn a	I	1		Kernel type for reconstruction at cell centres:	
rbf_vec_kern_c	1	1		1: Gaussian	
				3: inverse multiquadric	
nhf was learn a	I	3		Kernel type for reconstruction at edges:	
rbf_vec_kern_e	1) 		1: Gaussian	
				3: inverse multiquadric	
not was brown !!	I	1		Kernel type for reconstruction at lon-lat-points:	
$rbf_vec_kern_ll$		1		1: Gaussian	
				3: inverse multiquadric	
-lef l	_T	1		1	
rbf_vec_kern_v	I	1		Kernel type for reconstruction at vertices:	
				1. Gaussian	
1.6	D (1)	1		3: inverse multiquadric	
rbf_vec_scale_c	$R(n_{dom})$	resolution-		Scale factor for RBF reconstruction at cell	
		dependent		centres	

Parameter	Type	Default	Unit	Description	Scope
rbf_vec_scale_e	R(n_dom)	resolution-		Scale factor for RBF reconstruction at edges	
		dependent			
rbf_vec_scale_v	$R(n_dom)$	resolution-		Scale factor for RBF reconstruction at vertices	
		dependent			
support_baryctr_intp	L	.FALSE.		Flag. If .FALSE. barycentric interpolation is	
				replaced by a fallback interpolation.	
lreduced_nestbdry_stencil	L	.FALSE.		Flag. If .TRUE. then the nest boundary points	
				are taken out from the lat-lon interpolation	
				stencil.	

Defined and used in: src/namelists/mo_interpol_nml.f90

2.23 io_nml

Parameter	Type	Default	Unit	Description	Scope
lkeep_in_sync	L	.FALSE.		Sync output stream with file on disk after each	
				timestep	
dt_diag	R	86400.	S	diagnostic integral output interval	run_nml:output = "totint"
dt checkpoint	R	0	S	Time interval for writing restart files. Note that	output /= "none" (run_nml)
_				if the value of dt_checkpoint resulting from	
				model default or user's specification is longer	
				than time_nml:dt_restart, it will be reset (by	
				the model) to dt_restart so that at least one	
				restart file is generated during the restart cycle.	
inextra_2d	I	0		Number of extra 2D Fields for	$dynamics_nml:iequations = 3$
				${ m diagnostic/debugging\ output.}$	(to be done for $1, 2$)
inextra_3d	I	0		Number of extra 3D Fields for	$dynamics_nml:iequations = 3$
				${ m diagnostic/debugging\ output.}$	(to be done for $1, 2$)
lflux_avg	L	.TRUE.		if .FALSE. the output fluxes are accumulated	iequations=3
				from the beginning of the run	iforcing=3
				if .TRUE. the output fluxes are average values	
				from the beginning of the run, except of	
				TOT_PREC that would be accumulated	
itype_pres_msl	I	1		Specifies method for computation of mean sea	
				level pressure (and geopotential at pressure	
				levels below the surface).	
				1: GME-type extrapolation,	
				2: stepwise analytical integration,	
				3: current IFS method,	
				4: IFS method with consistency correction	
				5: New DWD method constituting a mixture	
				between IFS and old GME method (departure	
				level for downward extrapolation between 10 m	
				and 150 m AGL depending on elevation)	

Parameter	Type	Default	Unit	Description	Scope
$itype_rh$	I	1		Specifies method for computation of relative humidity 1: WMO-type: water only (e_s=e_s_water), 2: IFS-type: mixed phase (water and ice), 3: IFS-type with clipping (rh ≤ 100)	
gust_interval output_nml_dict	RC	3600.	S	Interval over which wind gusts are maximized File containing the mapping of variable names to the internal ICON names. May contain the keyword <path> which will be substituted by model_base_dir. The format of this file: One mapping per line, first the name as given in the ml_varlist, hl_varlist, pl_varlist or il_varlist of the output_nml namelists, then the internal ICON name, separated by an arbitrary number of blanks. The line may also start and end with an arbitrary number of blanks. Empty lines or lines starting with # are treated as comments. Names not covered by the mapping are used as they are.</path>	iforcing=3 output_nml namelists
$linvert_dict$	L	.FALSE.		If .TRUE., columns in dictionary file output_nml_dict are evaluated in inverse order. This allows using the same dictionary file as for input (ana_varnames_map_file in	
netcdf _ dict	C			initicon_nml). File containing the mapping from internal names to names written to NetCDF. May contain the keyword <path> which will be substituted by model_base_dir. The format of this file: One mapping per line, first the name written to NetCDF, then the internal name, separated by an arbitrary number of blanks (inverse to the definition of output_nml_dict). The line may also start and end with an arbitrary number of blanks. Empty lines or lines starting with # are treated as comments. Names not covered by the mapping are output as they are. Note that the specification of output variables, e.g. in ml_varlist, is independent from this renaming, see the namelist parameter output_nml_dict for this.</path>	output_nml namelists, NetCDF output

Parameter	Type	Default	Unit	Description	Scope
lnetcdf_flt64_output	L	.FALSE.		If .TRUE. floating point variable output in	
				NetCDF files is written in 64-bit instead of	
				32-bit accuracy.	
restart_file_type	I	4		Type of restart file. One of CDI's	
				FILETYPE_XXX. So far, only 4	
				(=FILETYPE_NC2) is allowed	
restart_write_mode	C	""		Restart read/write mode.	
				Allowed settings (character strings!) are listed	
				below.	
nrestart_streams	I	1		When using the restart write mode "dedicated	restart_write_mode =
				procs multifile", it is possible to split the restart	"dedicated procs multifile"
				output into several files, as if	
				nrestart_streams * num_io_procs restart	
				processes were involved. This speeds up the	
				read-in process, since all the files may then be	
				read in parallel.	
lmask_boundary	L	F		Set to .TRUE., if interpolation zone should be	
				masked in triangular output.	

2.23.1 Restart read/write mode:

Allowed settings for restart_write_mode are:

"sync"

'Old' synchronous mode. PE # 0 reads and writes restart files. All other PEs have to wait.

"async"

Asynchronous restart writing: Dedicated PEs (num_restart_proc > 0) write restart files while the simulation continues. Restart PEs can only parallelize over different patches. — Read-in: PE # 0 reads while other PEs have to wait.

"joint procs multifile"

All worker PEs write restart files to a dedicated directory. Therefore, the directory itself is called the restart file. The information is stored in a way that it can be read back into the model independent from the processor count and the domain decomposition. — Read-in: All worker PEs read the data in parallel.

"dedicated procs multifile"

In this case, all the restart data is first transferred to memory buffers in dedicated restart writer PEs. After that, the work processes carry on with their work immediately, while the restart writers perform the actual restart writing asynchronously. Restart PEs can parallelize over patches and horizontal indices. — Read-in: All worker PEs read the data in parallel.

Fallback mode.

If num_restart_proc == 0 (parallel_nml), then this behaves like "sync", otherwise like "async".

Defined and used in: src/namelists/mo io nml.f90

2.24 les_nml (parameters for LES turbulence scheme; valid for inwp_turb=5)

Parameter	Type	Default	Unit	Description	Scope
sst	R	300	K	sea surface temperature for idealized LES simulations	$isrfc_type=5,4$
shflx	R	0.1	m Km/s	Kinematic sensible heat flux at surface	isrfc type = 2
lhflx	R	0	m/s	Kinematic latent heat flux at surface	$ \operatorname{isrfc}^{-} \operatorname{type} = 2 $
isrfc_type	I	1	,	surface type	_ 01
_ 01				0 = No fluxes and zero shear stress	
				1 = TERRA land physics	
				2 = fixed surface fluxes	
				3 = fixed buoyancy fluxes	
				$4 = RICO ext{ test case}$	
				$5 = ext{fixed SST}$	
				$6 = \text{time varying SST and qv_s case with}$	
				prescribed roughness length for semi-idealized	
				setups	
ufric	R	-999	m/s	friction velocity for idealized LES simulations; if	
				< 0 then it is automatically diagnosed	
psfc	R	-999	Pa	surface pressure for idealized LES simulations; if	
				< 0 then it uses the surface pressure from	
			,	dynamics	
min_sfc_wind	R	1.0	m/s	Minimum surface wind for surface layer useful in	
	_	DATOR		the limit of free convection	
is_dry_cbl	L	.FALSE.		switch for dry convective boundary layer simulations	
amor constant	R	0.23		Smagorinsky constant	
smag_constant km_min	R	$\begin{bmatrix} 0.23 \\ 0.0 \end{bmatrix}$		Minimum turbulent viscosity	
smag_coeff_type	I	1		choose type of coefficient setting:	
smag_coen_type	1	1		1 = Smagorinsky model (default)	
				2 = set coeff. externally by Km ext, Kh ext	
				(for testing purposes, e.g. Straka et al. (1993))	
Km ext	R	75.0	$ m m^2/s$	externally set constant kinematic viscosity	smag coeff type=2
Kh_ext	\mathbb{R}	75.0	m^2/s	externally set constant diffusion coeff.	smag coeff type=2
max turb scale	R	300.0	,	Asymtotic maximum turblence length scale	
				(useful for coarse grid LES and when grid is	
				vertically stretched)	
turb_prandtl	R	0.333333		turbulent Prandtl number	
bflux	R	0.0007	$ m m^2/s^3$	buoyancy flux for idealized LES simulations	$isrfc_type=3$
				(Stevens 2007)	
tran_coeff	R	0.02	m/s	transfer coefficient near surface for idealized LES	$ isrfc_type=3 $
				simulation (Stevens 2007)	

Parameter	Type	Default	Unit	Description	Scope
vert_scheme_type	I	2		type of time integration scheme in vertical	
				diffusion	
				1 = explicit	
				$2 = ext{fully implicit}$	
sampl_freq_sec	R	60	S	sampling frequency in seconds for statistical (1D and 0D) output	
avg_interval_sec	R	900	S	(time) averaging interval in seconds for 1D statistical output	
expname	C	ICOLES		expname to name the statistical output file	
ldiag_les_out	L	.FALSE.		Control for the statistical output in LES mode	
les_metric	L	.FALSE.		Switch to turn on Smagorinsky diffusion with 3D	
				metric terms to account for topography	

Defined and used in: src/namelists/mo_les_nml.f90

2.25 limarea_nml (Scope: I_limited_area=.TRUE. in grid_nml)

Parameter	Type	Default	Unit	Description	Scope	
itype_latbc	I	0		Type of lateral boundary nudging.		
				0: constant lateral boundary conditions derived		
				from the initial conditions,		
				1: time-dependent lateral boundary conditions		
				provided by an external source (IFS, COSMO or		
				a coarser-resolution ICON run),		
				2: Test mode using time-dependent lateral		
				boundary conditions from a nested ICON run in		
				which the present limited-area domain was		
				operated as a nested grid with identical(!) model		
				level configuration.		
				Available for synchronous read mode		
				$\operatorname{[num_prefetch_proc=0)}$ only!		
$ig ext{dtime_latbc}$	R	10800.0	S	Time difference between two consecutive	$itype_latbc \ge 1$	
				boundary data. (Upper bound for asynchronous		
				ho read-in: 1 day = 86400 s.)		
init_latbc_from_fg	L	.FALSE.		If .TRUE., take lateral boundary conditions for	$itype_latbc \ge 1$	
				initial time from first guess (or analysis) field		
nudge_hydro_pres	L	.TRUE.		If .TRUE., hydrostatic pressure is used to	itype_latbc ≥ 1	
				compute lateral boundary nudging		
				(recommended if boundary conditions contain		
				hydrostatic pressure, which is usually the case)		

Parameter	Type	Default	Unit	Description	Scope
latbc_filename	С			Filename of boundary data input file, these files must be located in the latbc_path directory.	$itype_latbc \ge 1$
				Default:	
				"prepiconR <nroot>B<jlev>_<y><m><d><h>.nc".</h></d></m></y></jlev></nroot>	
				The filename may contain keyword tokens (day,	
				hour, etc.) which will be automatically replaced	
				during the run-time. See the table below for a	
				list of allowed keywords.	
latbc_path	C			Absolute path to boundary data.	$itype_latbc \ge 1$
latbc_boundary_grid	\mid C	""		Grid file defining the lateral boundary. Empty	$ itype_latbc \ge 1$
				string means: whole domain is read for the	
				lateral boundary. This NetCDF grid file must	
				contain two integer index arrays: int	
				<pre>global_cell_index(cell), int</pre>	
				global_edge_index(edge), both with	
				attributes nglobal which contains the global	
1-41				size size of the non-sparse cells and edges.	
$oxed{latbc_varnames_map_}$ file	C			Dictionary file which maps internal variable names onto GRIB2 shortnames or NetCDF var	ho = 1
				names. This is a text file with two columns	
				separated by whitespace, where left column:	
				ICON variable name, right column: GRIB2 short	
				name. This list contains variables that are to be	
				read asynchronously for boundary data nudging	
				in a HDCP2 simulation. All new boundary	
				variables that in the future, would be read	
				asynchronously. Need to be added to text file	
				dict.latbc in run folder.	
nretries	I	0		If LatBC data is unavailable: number of retries	
retry_wait_sec	I	10		If LatBC data is unavailable: idle wait seconds	
				between retries	

Defined and used in: src/namelists/mo_limarea_nml.f90

Keyword substitution in boundary data filename (latbc_filename):

<y></y>	substituted by year (four digits)
<m></m>	substituted by month (two digits)
<d></d>	substituted by day (two digits)
<h>></h>	substituted by hour (two digits)
<min></min>	substituted by minute (two digits)
<sec></sec>	substituted by seconds (two digits)
<ddhhmmss></ddhhmmss>	substituted by a <i>relative</i> day-hour-minute-second string.
<dddhh></dddhh>	substituted by a relative (three-digit) day-hour string.

2.26 lnd_nml

Parameter	Type	Default	Unit	Description	Scope
nlev_snow	I	2		number of snow layers	lmulti_snow=.true.
ntiles	I	1		number of tiles	
lsnowtile	L	.FALSE.		.TRUE.: consider snow-covered and snow-free tiles separately	ntiles>1
frlnd thrhld	R	0.05		fraction threshold for creating a land grid point	ntiles>1
frlake thrhld	R	0.05		fraction threshold for creating a lake grid point	ntiles>1
frsea_thrhld	R	0.05		fraction threshold for creating a sea grid point	ntiles>1
frlndtile thrhld	R	0.05		fraction threshold for retaining the respective	ntiles>1
_				tile for a grid point	
lmelt	L	.TRUE.		.TRUE. soil model with melting process	
lmelt_var	L	.TRUE.		.TRUE. freezing temperature dependent on	
				water content	
lana_rho_snow	L	.TRUE.		.TRUE. take rho_snow-values from analysis file	init_mode=1
lmulti snow	L	.FALSE.		.TRUE. for use of multi-layer snow model	
_				(default is single-sayer scheme)	
l2lay_rho_snow	L	.FALSE.		.TRUE. predict additional snow density for	$lmulti_snow = .FALSE.$
				upper part of the snowpack, having a maximum	
				depth of max_toplaydepth	
$\max_{t} toplay depth$	R	0.25	m	maximum depth of uppermost snow layer	lmulti_snow=.TRUE. or
					l2lay_rho_snow=.TRUE.
idiag_snowfrac	I	1		Type of snow-fraction diagnosis:	
				1 = based on SWE only	
				2-4 = more advanced experimental methods	
				20, 30, 40 = same as 2, 3, 4, respectively, but	
				with artificial reduction of snow fraction in case	
				of melting snow (shold be used only in	
				combination with lsnowtile=.TRUE.	
itype_snowevap	I	2		Tuning of snow evaporation in vegetated areas:	lsnowtile=.TRUE.
				1: Tuning turned off	
				2: First level of tuning without additional	
				control variables	
				3: Second level of tuning with additional I/O	
				variables for snow age and maximum snow depth	
				(should be used only if these additional variables	
				are avaliable from the DWD assimilation cycle)	

Parameter	Type	Default	Unit	Description	Scope
$itype_lndtbl$	I	3		Table values used for associating surface	
				parameters to land-cover classes:	
				1 = defaults from extpar (GLC2000 and	
				GLOBCOVER2009)	
				2 = Tuned version based on IFS values for	
				globcover classes (GLOBCOVER2009 only)	
				3 = even more tuned operational version	
				(GLOBCOVER2009 only)	
				4 = tuned version for new bare soil evaporation	
				scheme (itype_evsl=4)	
$itype_root$	I	2		root density distribution:	
				1 = constant	
				$2 = ext{exponential}$	
$itype_evsl$	I	2		type of bare soil evaporation parameterization	
				$2 = \text{Dickinson} \ (1984)$	
				3 = Noilhan and Planton (1989)	
				4 = Resistance-based scheme by Jan-Peter	
				Schulz	
$itype_trvg$	I	2		type of plant transpiration parameterization	
				$2 = { m BATS}$ scheme, Dickinson (1984)	
				3 = Extended BATS scheme with additional	
				prognostic variable for integrated plant	
				transpiration since sunrise; should be used only	
				with an appropriate first guess for this variable	
				coming from the DWD assimilation cycle	
$itype_heatcond$	I	2		type of soil heat conductivity	
				1 = constant soil heat conductivity	
				2 = moisture dependent soil heat conductivity	
				3 = variant of option 2 with reduced near-surface	
	_			heat conductivity in the presence of plant cover	
$itype_interception$	I	1		type of plant interception	
				1 = standard scheme, effectively switched off by	
				tiny value cwimax_ml	
. ,	-	1 2		2 = Rain and snow interception (to be removed)	
$\operatorname{cwimax}_{-}\operatorname{ml}$	R	1.e-6	m	scaling parameter for maximum interception	$ ext{itype_interception} = 1$
				storage (almost switched off);	
.,	-			use 5.e-4 to activate interception storage	
c_{soil}	R	1.		surface area density of the (evaporative) soil	
				surface	
.,	_			allowed range: $0-2$	
c_soil_urb	R	1.		surface area density of the (evaporative) soil	
				surface, urban areas	
				allowed range: $0-2$	

Parameter	Type	Default	Unit	Description	Scope
itype_hydbound	I	1		type of hydraulic lower boundary condition	
				1 = none	
				3 = ground water as lower boundary of soil	
				column	
lstomata	L	.TRUE.		If .TRUE., use map of minimum stomatal	
				resistance	
				If .FALSE., use constant value of 150 s/m.	
l2tls	L	.TRUE.		If TRUE, forecast with 2-Time-Level	
1		T T T T T T T T T T T T T T T T T T T		integration scheme (mandatory in ICON)	
lseaice	L	.TRUE.		TRUE. for use of sea-ice model	l : mpup
lprog_albsi	L	.FALSE.		If .TRUE., sea-ice albedo is computed	lseaice = .TRUE.
llake	L	.TRUE.		prognostically .TRUE. for use of lake model	
	<u> </u>	1 RUE.		1: SST and sea ice fraction are read from the	iequations=3
sstice_mode	1	1		analysis. The SST is kept constant whereas the	iforcing=3
				sea ice fraction can be modified by the seaice	norcing—3
				model.	
				2: SST and sea ice fraction are read from the	
				analysis. The SST is updated by climatological	
				increments on a daily basis. The sea ice fraction	
				can be modified by the seaice model.	
				3: SST and sea ice fraction are updated daily,	
				based on climatological monthly means	
				4: SST and sea ice fraction are updated daily,	
				based on actual monthly means	
				5: SST and sea ice fraction are updated daily,	
				based on actual daily means (not yet	
				implemented)	
$sst_td_filename$	C			Filename of SST input files for time dependent	$sstice_mode=3,4,5$
				SST. Default is	
				" <path>SST_<year>_<month>_<gridfile>".</gridfile></month></year></path>	
				May contain the keyword <path> which will be</path>	
				substituted by model_base_dir	
ci_td_filename	C			Filename of sea ice fraction input files for time	$sstice_mode=3,4,5$
				dependent sea ice fraction. Default is	
				" <path>CI_<year>_<month>_<gridfile>".</gridfile></month></year></path>	
				May contain the keyword <path> which will be</path>	
				substituted by model_base_dir	

Defined and used in: src/namelists/mo_lnd_nwp_nml.f90

2.27 ls_forcing_nml (parameters for large-scale forcing; valid for torus geometry)

Parameter	Type	Default Unit	Description	Scope
is_subsidence_moment	L	.FALSE.	switch for enabling LS vertical advection due to	is_plane_torus=.TRUE.
			subsidence for momentum equations	
is_subsidence_heat	L	.FALSE.	switch for enabling LS vertical advection due to	is_plane_torus=.TRUE.
			subsidence for thermal equations	
is_advection	L	.FALSE.	switch for enabling LS horizontal advection	is_plane_torus=.TRUE.
			(currently only for thermal equations)	
is_nudging	L	.FALSE.	switch for enabling LS Newtonian relaxation	is_plane_torus=.TRUE.
			(nudging) for horizontal winds, temperature and	
			specific humidity	
is_geowind	L	.FALSE.	switch for enabling geostrophic wind	is_plane_torus=.TRUE.
is_rad_forcing	L	.FALSE.	switch for enabling radiative forcing	is_plane_torus=.TRUE.
				inwp_rad=.FALSE.
is_theta	L	.FALSE.	switch to indicate that the prescribed radiative	is_plane_torus=.TRUE.
			forcing is for potential temperature	is_rad_forcing=.TRUE.

Defined and used in: src/namelists/mo_ls_forcing_nml.f90

2.28 master_nml

Parameter	Type	Default	Unit	Description	Scope
institute	C	, ,		Acronym of the institute for which the full	
				institute name is printed in the log file. Options	
				are DWD, MPIM, KIT, or CSCS. Otherwise the	
				full names of MPIM and DWD are printed.	
lrestart	L	.FALSE.		If .TRUE.: Current experiment is started from a	
				restart.	
${f read_restart_namelists}$	L	.TRUE.		If .TRUE.: Namelists are read from the restart	
				file to override the default namelist settings,	
				before reading new namelists from the run	
				script. Otherwise the namelists stored in the	
				restart file are ignored.	
lrestart_write_last	L	.FALSE.		If .TRUE.: model run should create restart at	
				experiment end. This is independent from the	
				settings of the restart interval.	
$egin{array}{c} \mathbf{model_base_dir} \end{array}$	C	, ,		General path which may be used in file names of	
				other name lists: If a file name contains the	
				keyword " <path>", then this model_base_dir</path>	
				will be substituted.	

2.29 master_model_nml (repeated for each model)

Parameter	Type	Default	Unit	Description	Scope
model_name	C			Character string for naming this component.	

Parameter	Type	Default	Unit	Description	Scope
model namelist filename	С			File name containing the model namelists.	
$[model_type]$	I	-1		Identifies which component to run.	
				1=at mosphere	
				2=ocean	
				3=radiation	
				99=dummy_model	
model_min_rank	I	0		Start MPI rank for this model.	
$model_{max}_{rank}$	I	-1		End MPI rank for this model.	
model_inc_rank	I	1		Stride of MPI ranks.	

2.30 master_time_control_nml

Parameter	Type	Default	Unit	Description	Scope
calendar	I	1		Selects the calendar type to use:	
				0 = calendar is not defined yet	
				1 = proleptic Gregorian calendar	
				2 = 365 day year without leap years	
				3 = 360 day year with 30 day months	
${f experiment Reference Date}$	C	""	ISO8601	This specifies the reference date for the calendar	
			formatted	in use. It is an anchor date for cycling of events	
			string	on the time line. If this namelist parameter is	
				unspecified, then the reference date is set to the	
				experiment start date.	
${\bf experiment Start Date}$	C	""	ISO8601	This is the start date of an experiment, which	·
			formatted	remains valid for the whole experiment. The	
			string	start date is also the reference date of the	
				experiment, which is the anchor point for cycling	
				events. In special cases the reference date might	
				be reset. Reasons might be debugging purposes	
				or spinning off experiments from an existing	
				restart of an other experiment.	
${f experiment Stop Date}$	C	""	ISO8601	This is the date an experiment is finished.	
			formatted		
			string		
${\bf forecast Lead Time}$	C	""	ISO8601	Specifies the time span for a numerical weather	
			formatted	forecast. It is used to set the experiment stop	
			string	time with respect to the experiment start date.	
${\bf checkpoint Time Int Val}$	C	""	ISO8601	Time interval for writing checkpoints.	
			formatted		
			string		
${f restart Time Int Val}$	C	""	ISO8601	Time interval for writing a restart file and	
			formatted	interrupt the current running job.	
			string		

$2.31\ meteogram_output_nml$

This namelist is relevant if run_nml:output="nml". Nearest neighbour 'interpolation' is used for all variables.

Parameter	Type	Default	Unit	Description	Scope
lmeteogram_enabled	L(n_dom)	.FALSE.		Flag. True, if meteogram of output variables is	
				desired.	
zprefix	C(n_dom)	"METEO		string with file name prefix for output file	
		GRAM_"			
ldistributed	L(n_dom)	.TRUE.		Flag. Separate files for each PE.	
loutput_tiles	L	.FALSE.		Write tile-specific output for some selected	
				surface/soil fields	
$n0_{mt}$ grm	I(n_dom)	0		initial time step for meteogram output.	
$\operatorname{ninc_mtgrm}$	I(n_dom)	1		output interval (in time steps)	
stationlist_tot		53.633, 9.983,		list of meteogram stations (triples with lat, lon,	
		'Hamburg'		name string)	
silent_flush	$L(n_dom)$	1		do not warn about flushing to disk if .TRUE.	
$\max_{\text{time_stamps}}$	$I(n_dom)$	1		number of output time steps to record in	
				memory before flushing to disk	
var_list	C(:)			Positive-list of variables (optional). Only	
				variables contained in this list are included in	
				the meteogram. If the default list is not changed	
				by user input, then all available variables are	
				added to the meteogram	

Defined and used in: src/namelists/mo_mtgrm_nml.f90

2.32 nonhydrostatic_nml (relevant if run_nml:iequations=3)

Parameter	Type	Default	Unit	Description	Scope
itime_scheme	I	4		Options for predictor-corrector time-stepping	
				scheme:	
				4: Contravariant vertical velocity is computed in	iequations=3
				the predictor step only, velocity tendencies are	
				computed in the corrector step only (most	
				efficient option)	
				5: Contravariant vertical velocity is computed in	
				both substeps (beneficial for numerical stability	
				in very-high resolution setups with extremely	
				steep slops, otherwise no significant impact)	
				6: As 5, but velocity tendencies are also	
				computed in both substeps (no apparent benefit,	
				but more expensive)	

Parameter	Type	Default	Unit	Description	Scope
rayleigh_type	I	2		Type of Rayleigh damping	
				1: CLASSICAL (requires velocity reference	
				state!)	
				2: Klemp (2008) type	
$rayleigh_coeff$	$R(n_dom)$	0.05		Rayleigh damping coefficient $1/\tau_0$ (Klemp,	
_				Dudhia, Hassiotis: MWR136, pp.3987-4004);	
				higher values are recommended for R2B6 or finer	
				resolution	
$\operatorname{damp_height}$	$R(n_dom)$	45000	m	Height at which Rayleigh damping of vertical	
				wind starts (needs to be adjusted to model top	
				height; the damping layer should have a depth of	
				at least 20 km when the model top is above the	
				stratopause)	
$htop_moist_proc$	R	22500.0	m	Height above which moist physics and advection	
				of cloud and precipitation variables are turned	
				off	
$hbot_qvsubstep$	R	22500.0	m	Height above which QV is advected with	ihadv_tracer=22, 32, 42 or 52
				substepping scheme (must be at least as large as	
				htop_moist_proc)	
$htop_tracer_proc$	R	1000000.0	m	Height above which physical processes and	tracers with an index \geq iqt
				advection of additional tracer variables are	
				turned off; the default value is set to an very	
				high value, i.e. by default this possible	
				restriction is not active. This value is taken for	
				all additional tracers in the tracer container with	
				an index equal or greater than iqt; it may be	
				overwritten for specific ART tracers by the tag	
				'htop_proc' in the XML file when defining the	
				individual ART tracers.	
$vwind_offctr$	R	0.15		Off-centering in vertical wind solver. Higher	
				values may be needed for R2B5 or coarser grids	
				when the model top is above 50 km. Negative	
1 1 2 2				values are not allowed	
$rhotheta_offctr$	R	-0.1		Off-centering of density and potential	
				temperature at interface level (may be set to 0.0	
				for R2B6 or finer grids; positive values are not	
~				recommended)	
$veladv_offctr$	R	0.25		Off-centering of velocity advection in corrector	
		1		step. Negative values are not recommended	

Parameter	Type	Default	Unit	Description	Scope
ivctype	Ī	2		Type of vertical coordinate:	
				1: Gal-Chen hybrid	
				2: SLEVE (uses sleve_nml)	
				12: as 2, but nominal interface heights (vct_a (&	
				vct_b)) from file, as in case of 1. Requires:	
				$ ldeepatmo = .TRUE. (and layer_thickness < 0,$	
				to trigger read-in of vertical coordinates from	
				file). Please, see	
				$<$ icon_home $>/$ vertical_coord_tables $/$ README	
				section "atm_hyb_sz_ <nlev>" for the format</nlev>	
				of the coordinate file, and	
				$<$ icon_home $>/$ src $/$ atm_dyn_iconam	
				/mo init vgrid: init sleve coord for the	
				entrie to the column "vct b" of the file. (Please,	
				use with care. It has not been thoroughly	
				checked for all possible negative interferences	
				with other parts of the code.)	
ndyn substeps	I	5		number of dynamics substeps per fast-physics /	
				transport step	
lhdiff rcf	L	.TRUE.		.TRUE.: Compute diffusion only at advection	
_				time steps (in this case, divergence damping is	
				applied in the dynamical core)	
lextra diffu	\mid L	.TRUE.		.TRUE.: Apply additional momentum diffusion	
_				at grid points close to the stability limit for	
				vertical advection (becomes effective extremely	
				rarely in practice; this is mostly an emergency	
				fix for pathological cases with very large	
				orographic gravity waves)	
divdamp fac	R	0.0025		Scaling factor for divergence damping	lhdiff rcf = .TRUE.
divdamp_order	I	4		Order of divergence damping:	lhdiff $rcf = .TRUE.$
				2 = second-order divergence damping	_
				4 = fourth-order divergence damping	
				24 = combined second-order and fourth-order	
				divergence damping and enhanced vertical wind	
				off-centering during the initial spinup phase	
				(does not allow checkpointing/restarting earlier	
				than 2.5 hours of integration)	
divdamp_type	I	3		Type of divergence damping:	$lhdiff_rcf = .TRUE.$
_				2 = divergence damping acting on 2D divergence	_
				3 = divergence damping acting on 3D divergence	
				32 = combination of 3D div. damping in the	
				troposphere with transition to 2D div. damping	
				in the stratosphere	
divdamp_trans_start	R	12500.		Lower bound of transition zone between 2D and	divdamp type = 32
				3D divergence damping	_

Parameter	Type	Default	Unit	Description	Scope
divdamp_trans_end	R	17500.		Upper bound of transition zone between 2D and	$\operatorname{divdamp_type} = 32$
				3D divergence damping	
nest_substeps	I	2		Number of dynamics substeps for the child	
				patches. DO NOT CHANGE!!! The code will not work	
				correctly with other values	
l masscorr nest	L	.FALSE.		.TRUE.: Apply mass conservation correction	ifeedback type=1
		.TALSE.		also in nested domain	needback_type=1
iadv rhotheta	I	2		Advection method for rho and rhotheta:	
110011300				1: simple second-order upwind-biased scheme	
				2: 2nd order Miura horizontal	
				3: 3rd order Miura horizontal (not	
				recommended)	
igradp_method	I	3		Discretization of horizontal pressure gradient:	
				1: conventional discretization with metric	
				correction term	
				2: Taylor-expansion-based reconstruction of	
				pressure (advantageous at very high resolution)	
				3: Similar discretization as option 2, but uses	
				hydrostatic approximation for downward	
				extrapolation over steep slopes 4: Cubic/quadratic polynomial interpolation for	
				pressure reconstruction	
				5: Same as 4, but hydrostatic approximation for	
				downward extrapolation over steep slopes	
l zdiffu t	L	.TRUE.		.TRUE.: Compute Smagorinsky temperature	hdiff order= $3/5$.AND.
				diffusion truly horizontally over steep slopes	lhdiff temp = .true.
${ m thslp_zdiffu}$	R	0.025		Slope threshold above which truly horizontal	hdiff order = 3/5 .AND.
				temperature diffusion is activated	lhdiff_temp=.trueAND.
					$l_zdiffu_t=.true.$
${ m thhgtd_zdiffu}$	R	200	m	Threshold of height difference between	$hdiff_order=3/5$.AND.
				neighboring grid points above which truly	lhdiff_temp=.trueAND.
				horizontal temperature diffusion is activated	$l_zdiffu_t=.true.$
1	TD.	1 /0		(alternative criterion to thslp_zdiffu)	
$exner_expol$	R	1./3.		Temporal extrapolation (fraction of dt) of Exner	
				function for computation of horizontal pressure gradient. This damps horizontally propagating	
				sound waves. For R2B5 or coarser grids, values	
				between 1/2 and 2/3 are recommended. Model	
				will be numerically unstable for negative values.	
l_open_ubc	L	.FALSE.		.TRUE.: Use open upper boundary condition	
- • -				(rather than w=0) to allow vertical motions	
				related to diabatic heating to extend beyond the	
				model top	

$2.33\ nudging_nml$

Parameters for the upper boundary nudging in the limited-area mode (grid_nml: l_limited_area = .TRUE.) or global nudging. For the lateral boundary nudging, please see interpol_nml and limarea_nml. The characteristics of the driving data for the nudging can be specified in limarea_nml.

Nudging type: * 0: none * 1: upper boundary nudging * 2: global nudging Please note: • nudge_type = 1 requires l_limited_area = .TRUE. • nudging is applied in primary domain only • for global nudging the following settings in limarea_nml are mandatory: - itype_latbc = 1 (time-dependent driving data) - dtime_latbc = latbc_path = ""
- latbc_boundary_grid = " " (no boundary grid: driving data have to be available on entire grid) - latbc_varnames_map_file = "" (e.g., run/dict.latbc), if num_prefetch_proc = 1 (asynchronous read-in of driving data) • defaults and (additional) scopes for global nudging are marked by (·)glbndg, if a parameter

Parameter	Type	Default	$\mathbf{U}\mathbf{n}\mathbf{i}\mathbf{t}$	Description	Scope
max_nudge_coeff_vn	R	0.04 (0.016) _{glbndg}	1	Max. nudging coefficient for the horizontal wind (i.e. the edge-normal wind component v_n). Given the wind update due to the nudging term on the rhs: $v_n(t) = v_n^*(t) + \text{nudge_coeff_vn}(z) * \\ \text{ndyn_substeps} * [\overline{v_n}(t) - v_n^*(t)], \\ \text{where } t \text{ and } z \text{ denote time and height,} \\ \text{respectively, } \overline{v_n}(t) \text{ is the target wind to nudge to,} \\ \text{and } v_n^* \text{ is the value before the nudging, the } \\ \text{vertical profile of the coefficient for upper boundary nudging reads:} \\ \text{nudge_coeff_vn}(z) = \max_{\text{nudge_coeff_vn}} \text{nudge_coeff_vn} * \\ [(z - \text{nudge_start_height})/(\text{top_height} - \text{nudge_start_height})]^2, \\ \text{for nudge_start_height} \leq z \leq \text{top_height (see nudge_start_height below), and is zero } \\ \text{elsewhere. The range of validity is} \\ \text{max_nudge_coeff_vn} \in [0, \sim \\ 1/\text{ndyn_substeps}], \text{ where the lower boundary is} \\ \text{mandatory.}$	$\mathrm{nudge_type} > 0$
$max_nudge_coeff_thermdyn$	R	$0.075 (0.03)_{ m glbndg}$	1	Max. nudging coefficient for the thermodynamic variables selected by limarea_nml: nudge_hydro_pres in case of upper boundary nudging and by thermdyn_type in case of global nudging. The range of validity is $\max_{nudge_coeff_thermdyn} \in [0, \sim 1/ndyn_substeps], where the lower boundary is mandatory.$	<pre>nudge_type > 0 (nudge_var = "all" or ",thermdyn,")glbndg</pre>

Parameter	Type	Default	Unit	Description	Scope
nudge_start_height	R	12000 (2000) _{glbndg}	m	Nudging is applied for: $nudge_start_height \le z \le top_height$ in case of upper boundary nudging and for: $nudge_start_height \le z \le nudge_end_height$ in case of global nudging, where z denotes the nominal height of the grid layer center, and top_height is the height of the model top (see sleve_nml). For upper boundary nudging the range of validity is $nudge_start_height \in [0, top_height]$, where both boundaries are mandatory. For global nudging a nudge_start_height in the range $[0, top_height]$ has to satisfy $[0, top_height]$ has to satisfy $[0, top_height]$ will be interpreted as $[0, top_height]$ will be interpreted as $[0, top_height]$ will be interpreted as $[0, top_height]$ will be interpreted	nudge_type > 0
$max_nudge_coeff_qv$	R	0.008	1	Max. nudging coefficient for water vapor. The range of validity is max_nudge_coeff_qv \in [0, \sim 1/ndyn_substeps], where the lower boundary is mandatory. (For global nudging only.)	$egin{aligned} { m nudge_type} &= 2 \ { m nudge_var} &= "{ m all}" \ { m or} \ ", { m qv}, " \end{aligned}$
nudge_end_height	R	40000	m	Nudging is applied for:	$ m nudge_type = 2$

Parameter	Type	Default	Unit	Description	Scope
nudge_profile	I	4		Vertical profile of the nudging coefficient (nudging strength) between nudge_start_height and nudge_end_height: * 1: squared scaled vertical distance from nudge_start_height (this is the profile used for upper boundary nudging) * 2: constant profile * 3: hyperbolic tangent profile * 4: trapezoidal profile The profile values range from 0 to 1. A multiplication with max_nudge_coeff_vn/thermdyn/qv and ndyn_substeps yields the final value of the nudging coefficient. (For global nudging only.)	$\operatorname{nudge_type} = 2$
$nudge_scale_height$	R	3000	m	Scale height of nudging profile. (For global nudging only.)	$egin{array}{ll} { m nudge_type} = 2 \ { m nudge_profile} = 3 \ { m or} \ 4 \end{array}$
${\bf nudge_var}$	C	"all"		Select the variables that shall be nudged: * "vn": horizontal wind * "thermdyn": thermodynamic variables * "qv": water vapor * comma-separated list: e.g., "vn,thermdyn" * "all": all available variables (i.e. equivalent to "vn,thermdyn,qv") Please note that the nudging of water vapor requires ltransport = .TRUE. (For global nudging only.)	$\mathrm{nudge_type} = 2$
$thermdyn_type$	I	1		Set of variables used to compute the thermodynamic nudging increments: * 1: hydrostatic set (pressure and temperature) * 2: non-hydrostatic set (density and virtual potential temperature) (For global nudging only.)	<pre>nudge_type = 2 nudge_var = "all" or ",thermdyn,"</pre>

Parameter	Type	Default	Unit	Description	Scope
idiagnose	I	-1		Switch for nudging diagnostics:	$\mathrm{nudge_type} = 2$
				$* \leq 0$: switched off	$ $ msg_level $>= 11$
				*>0: each (idiagnose * dtime) time diagnostics	
				are computed and written to the ASCII file	
				"nudging diagnostics.txt".	
				The nudging diagnostics are:	
				• correlation between the mean sea-level	
				pressure from ICON on the one hand and from	
				the driving model on the other hand (a measure	
				for the nudging success)	
				• global mean of the absolute horizontal wind	
				divergence (a measure for the nudging impact on	
				the atmospheric "noise" or the gravity wave	
				activity, depending on the perspective)	
				• global mean of the absolute surface pressure	
				time tendency (a further measure for the	
				nudging impact)	
				(For global nudging only.)	

Defined and used in: src/namelists/mo_nudging_nml.f90

2.34 nwp phy nml

The switches for the physics schemes and the time steps can be set for each model domain individually. If only one value is specified, it is copied to all child domains, implying that the same set of parameterizations and time steps is used in all domains. If the number of values given in the namelist is larger than 1 but less than the number of model domains, then the settings from the highest domain ID are used for the remaining model domains.

If the time steps are not an integer multiple of the advective time step (dtime), then the time step of the respective physics parameterization is automatically rounded to the next higher integer multiple of the advective time step. If the radiation time step is not an integer multiple of the cloud-cover time step it is automatically rounded to the next higher integer multiple of the cloud cover time step.

Parameter	Type	Default	Unit	Description	Scope
$inwp_gscp$	I (max_	1		cloud microphysics and precipitation	$run_nml:iforcing = inwp$
	dom)			0: none	
				1: hydci (COSMO-EU microphysics, 2-cat ice:	
				cloud ice, snow)	
				2: hydci_gr (COSMO-DE microphysics, 3-cat	
				ice: cloud ice, snow, graupel)	
				3: as 1, but with improved ice nucleation scheme	
				by C. Koehler	
				4: Two-moment microphysics by A. Seifert	
				9: Kessler scheme	
qi0	R	0.0	kg/kg	cloud ice threshold for autoconversion	$inwp_gscp=1$
qc0	R	0.0	kg/kg	cloud water threshold for autoconversion	$inwp_gscp=1$
mu_rain	R	0.0		shape parameter in gamma distribution for rain	inwp_gscp>0

Parameter	Type	Default	Unit	Description	Scope
rain_n0_factor	R	1.0		tuning factor for intercept parameter of raindrop size distribution	inwp_gscp>0
mu_snow	R	0.0		shape parameter in gamma distribution for snow	inwp_gscp>0
icpl_aero_gscp	I	0		0: off	currently only for inwp gscp
				1: simple coupling between autoconversion and	= 1
				Tegen aerosol climatology; requires irad_aero=6	
				More advanced options are in preparation	
$inwp_convection$	I (max_	1		convection	$run_nml:iforcing = inwp$
	dom)			0: none	
				1: Tiedtke/Bechtold convection	
$lshallowconv_only$	$\mid L \pmod{}$.FALSE.		.TRUE.: use shallow convection only	$\operatorname{inwp_convection} = 1$
	dom)				
$ldetrain_conv_prec$	L (max_	.FALSE.		.TRUE.: Activate detrainment of convective rain	
	dom)			and snow	
icapdcycl	I	0		Type of CAPE correction to improve diurnal	$inwp_convection = 1$
				cycle for convection:	
				0 = none (IFS default prior to autumn 2013)	
				1 = intermediate testing option	
				2 = correctoins over land and water now	
				operational at ECMWF	
				3 = correction over land as in 2 restricted to the	
				tropics, no correction over water (this choice	
				optimizes the NWP skill scores)	
icpl_aero_conv	I	0		0: off	
				1: simple coupling between autoconversion and	
				Tegen aerosol climatology; requires irad_aero=6	
iprog_aero	I	0		0: off	irad_aero=6
				1: simple prognostic aerosol scheme for mineral	
				dust, based on 2D aerosol optical depth fields of	
				Tegen climatology	
				2: as option 1, but for all 5 aerosol types	
$icpl_o3_tp$	I	1		0: off	$irad_o3 = 7 \text{ or } 9$
				1: simple coupling between the ozone mixing	
				ratio and the thermal tropopause, restricted to	
				the extratropics	
$in wp_cldcover$	I (max_	1		cloud cover scheme for radiation	$run_nml:iforcing = inwp$
	dom			0: no clouds (only QV)	
				1: diagnostic cloud cover (by Martin Koehler)	
				2: prognostic total water variance (not yet	
				started)	
				3: clouds from COSMO SGS cloud scheme	
				4: clouds as in turbulence (turbdiff)	
				5: grid scale clouds	

Parameter	Type	Default	Unit	Description	Scope
inwp_radiation	I (max_	1		radiation	run_nml :iforcing = inwp
	dom			0: none	
				1: RRTM radiation	
				2: Ritter-Geleyn radiation	
				3: PSRAD radiation	
				4: ecRad radiation	
inwp satad	I	1		saturation adjustment	run nml:iforcing = inwp
				0: none	
				1: saturation adjustment at constant density	
$inwp_turb$	I (max	1		vertical diffusion and transfer	run nml:iforcing = inwp
• _	dom $)$ $-$			0: none	
	/			1: COSMO diffusion and transfer	
				2: GME turbulence scheme	
				3: EDMF-DUALM (work in progress)	
				5: Classical Smagorinsky diffusion	
inwp sso	I (max	1		subgrid scale orographic drag	run nml:iforcing = inwp
P	$\begin{vmatrix} 1 & (\max_{-1} \\ dom) \end{vmatrix}$	*		0: none	inwp_turb > 0
	40111)			1: Lott and Miller scheme (COSMO)	
inwp gwd	I (max	1		non-orographic gravity wave drag	run nml:iforcing = inwp
mwp_gwd	$\begin{vmatrix} 1 & (\max_{-1} \\ dom) \end{vmatrix}$	1		0: none	inwp_turb > 0
	doin)			1: Orr-Ern-Bechtold-scheme (IFS)	mwp_tarb > 0
inwp surface	I (max			surface scheme	run nml:iforcing = inwp
IIIwp_surface	$\begin{vmatrix} 1 & (\max \\ dom \end{vmatrix}$	1		0: none	run_mm.noremg = mwp
	dolli)			1: TERRA	
ustart_raylfric	\mid R	160.0	m/s	wind speed at which extra Rayleigh friction	$ \text{inwp_gwd} > 0$
ustart_rayirre		100.0	111/5	starts	
efdt_min_raylfric	\mid R	10800.	s	minimum e-folding time of Rayleigh friction	$ \text{inwp_gwd} > 0$
		10000.		(effective for $u > ustart raylfric + 90 m/s$)	
latm above top	L (max	.FALSE.		.TRUE.: take into account atmosphere above	inwp radiation > 0
	$ \frac{\mathrm{dom}}{\mathrm{dom}} $	THESE.		model top for radiation computation	in vp_radiation > 0
itype z0	1	2		Type of roughness length data used for	inwp turb > 0
101 P 0 _ 20	1	_		turbulence scheme:	
				1 = land-cover-related roughness including	
				contribution from sub-scale orography (does not	
				account for tiles)	
				2 = land-cover-related roughness based on	
				tile-specific landuse class	
				3 = land-cover-related roughness based on	
				tile-specific landuse class including contribution	
				from sub-scale orography	
dt conv	D (max	600.		time interval of convection and cloud-cover call.	run nmliforging — inwn
$\mathrm{dt_conv}$	R (max_	000.	S		run_nml:iforcing = inwp
	dom)			If convection is switched off, dt_conv controlls the time intervall of cloud-cover, only.	
				,	
				currently each subdomain has the same value	

Parameter	Type	Default	Unit	Description	Scope
dt rad	R (max_	1800.	s	time interval of radiation call	run_nml:iforcing = inwp
	dom)			currently each subdomain has the same value	
$ m dt_sso$	R (max_	1200.	s	time interval of sso call	$run_nml:iforcing = inwp$
	dom)			currently each subdomain has the same value	
$ m dt_gwd$	R (max_	1200.	S	time interval of gwd call	run_nml:iforcing = inwp
_	dom)			currently each subdomain has the same value	
lrtm_filename	C(:)	"rrtmg_ lw.nc"		NetCDF file containing longwave absorption	
				coefficients and other data for RRTMG_LW	
				k-distribution model.	
${ m cldopt_filename}$	C(:)	"ECHAM		NetCDF file with RRTM Cloud Optical	
		6_CldOpt		Properties for ECHAM6.	
		Props.nc"			

Defined and used in: src/namelists/mo_nwp_phy_nml.f90

2.35 nwp_tuning_nml

Please note: These tuning parameters are NOT domain specific.

Parameter	Type	Default	Unit	Description	Scope
SSO (Lott and Miller)					
tune_gkwake	R (max_	1.5		low level wake drag constant	$run_nml:iforcing = inwp$
	dom)				
tune_gkdrag	R (max_	0.075		gravity wave drag constant	$run_nml:iforcing = inwp$
	dom)				
tune_gfrcrit	R (max_	0.4		critical Froude number (controls depth of	$run_nml:iforcing = inwp$
	dom)			blocking layer)	
tune_grcrit	R (max_	0.25		critical Richardson number (controls onset of	$run_nml:iforcing = inwp$
	dom)			wave breaking)	
GWD (Warner McIntyre)					
tune_gfluxlaun	R	2.50e-3		total launch momentum flux in each azimuth	$run_nml:iforcing = inwp$
				(rho_o x F_o)	
Grid scale microphysics (one momen	nt)				
tune_zceff_min	R	0.01		Minimum value for sticking efficiency	$run_nml:iforcing = inwp$
tune_v0snow	R	25.0		factor in the terminal velocity for snow	$run_nml:iforcing = inwp$
$tune_zvz0i$	R	1.25	m/s	Terminal fall velocity of ice	$run_nml:iforcing = inwp$
tune_icesedi_exp	R	0.33		Exponent for density correction of cloud ice	$run_nml:iforcing = inwp$
				sedimentation	
Convection scheme					
tune_entrorg	R	1.85e-3	1/m	Entrainment parameter valid for dx=20 km	$run_nml:iforcing = inwp$
				(depends on model resolution)	
tune_rprcon	R	1.4e-3		Coefficient for conversion of cloud water into	$run_nml:iforcing = inwp$
				precipitation	

Parameter	Type	Default	Unit	Description	Scope
$tune_rdepths$	R	2.e4	Pa	Maximum allowed depth of shallow convection	$run_nml:iforcing = inwp$
tune_capdcfac_et	R	0.5		Fraction of CAPE diurnal cycle correction applied in the extratropics	m icapdcycl = 3
tune_rhebc_land	R	0.75		RH threshold for onset of evaporation below cloud base over land	$run_nml:iforcing = inwp$
$tune_rhebc_land_trop$	R	0.75		RH threshold for onset of evaporation below cloud base over land in the tropics	$run_nml:iforcing = inwp$
tune_rhebc_ocean	R	0.85		RH threshold for onset of evaporation below cloud base over sea	$run_nml:iforcing = inwp$
tune_rhebc_ocean_trop	R	0.80		RH threshold for onset of evaporation below cloud base over sea in the tropics	$run_nml:iforcing = inwp$
tune_rcucov	R	0.05		Convective area fraction used for computing evaporation below cloud base	$run_nml:iforcing = inwp$
tune_rcucov_trop	R	0.05		Convective area fraction used for computing evaporation below cloud base in the tropics	$run_nml:iforcing = inwp$
tune_texc	R	0.125	K	Excess value for temperature used in test parcel ascent	$run_nml:iforcing = inwp$
tune_qexc	R	0.0125		Excess fraction of grid-scale QV used in test parcel ascent	$run_nml:iforcing = inwp$
tune_box_liq	R	0.05		Box width for liquid cloud diagnostic in cloud cover scheme	run_nml:iforcing = inwp; inwp cldcover = 1
tune_thicklayfac	R	0.005	1/m	Factor for enhancing the box width for model layer thicknesses exceeding 150 m	run_nml:iforcing = inwp; inwp cldcover = 1
tune_box_liq_asy	R	2.5		Asymmetry factor for liquid cloud cover diagnostic	run_nml:iforcing = inwp; inwp cldcover = 1
tune_sgsclifac	R	0.0		Scaling factor for parameterization of subgrid-scale (turbulence-induced) cloud ice (values > 0 not recommended for global configurations with RRTM radiation)	run_nml:iforcing = inwp; inwp_cldcover = 1
lcalib_clcov	L	.TRUE.		Apply calibration of layer-wise cloud cover diagnostics	$run_nml:iforcing = inwp$
Misc			<u> </u>		,
tune_gust_factor	R	8.0		Multiplicative factor for friction velocity in gust parameterization	run_nml:iforcing = inwp
itune_albedo	I	0		MODIS albedo tuning 0: None 1: dimmed sahara	$run_nml:iforcing = inwp \\ albedo_type=2$
tune_minsnowfrac	R	0.2		Minimum value to which the snow cover fraction is artificially reduced in case of melting show	$\frac{\text{lnd_nml:idiag_snowfrac}}{20/30/40}$
IAU	· · · · · · · · · · · · · · · · · · ·		I	- '	<u> </u>
max_freshsnow_inc	R	0.025		Maximum allowed freshsnow increment per analysis cycle (positive or negative)	init_mode=5 (MODE_IAU)

2.36 output_nml (relevant if run_nml/output='nml')

Please note: There may be several instances of output_nml in the namelist file, every one defining a list of variables with separate attributes for output.

Parameter	Type	Default	Unit	Description	Scope
${f dom}$ ${f file_interval}$	I(:)	-1		Array of domains for which this name-list is used. If not specified (or specified as -1 as the first array member), this name-list will be used for all domains. Attention: Depending on the setting of the parameter l_output_phys_patch these are either logical or physical domain numbers! Defines the length of a file in terms of an ISO-8601 duration string. An example for this	
Glanama fammat	C	see description.		time stamp format is given below. This namelist parameter can be set instead of steps_per_file. Output filename format. Includes keywords	
filename_format		see description.		path, output_filename, physdom, etc. (see below). Default is <output_filename>_DOM<physdom>_<levtype>_ <jfile></jfile></levtype></physdom></output_filename>	
$filename_extn$	C	"default"		User-specified filename extension (empty string also possible). If this namelist parameter is chosen as "default", then we have ".nc"for NetCDF output files, and ".grb"for GRIB1/2.	
filetype	I	4		One of CDI's FILETYPE_XXX constants. Possible values: 2=FILETYPE_GRB2, 4=FILETYPE_NC2, 5=FILETYPE_NC4	
$\label{eq:m_levels} \mathbf{m}_{-} levels$	C	None		Model level indices (optional). Allowed is a comma- (or semicolon-) separated list of integers, and of integer ranges like "1020". One may also use the keyword "nlev"to denote the maximum integer (or, equivalently, "nör "N"). Furthermore, arithmetic expressions like "(nlev - 2)äre possible. Basic example: m_levels = "1,3,510,20(nlev-2)"	
h_{levels}	R(:)	None	m	height levels	
p_levels	R(:)	None	Pa	pressure levels	

Parameter	Type	Default	Unit	Description	Scope
i_levels	R(:)	None	K	isentropic levels	
ml varlist	C(:)	None		Name of model level fields to be output.	
hl varlist	C(:)	None		Name of height level fields to be output.	
pl_varlist	C(:)	None		Name of pressure level fields to be output.	
il varlist	C(:)	None		Name of isentropic level fields to be output.	
include last		.TRUE.		Flag whether to include the last time step	
mode		2 .TRUE.			
mode	I	²		1 = forecast mode, 2 = climate mode	
				In climate mode the time axis of the output file	
				is set to TAXIS_ABSOLUTE. In forecast mode	
				it is set to TAXIS_RELATIVE. Till now the	
				forecast mode only works if the output is at	
				multiples of 1 hour	
taxis_tunit	I	2		Time unit of the TAXIS_RELATIVE time axis.	mode=1
				$1 = TUNIT_SECOND$	
				$2 = { m TUNIT_MINUTE}$	
				$5 = { m TUNIT_HOUR}$	
				$9 = TUNIT_DAY$	
				For a complete list of possible values see cdilib.c	
${f output_bounds}$	R(k*3)	None		Post-processing times: start, end, increment. We	
				choose the advection time step matching or	
				following the requested output time, therefore we	
				require output_bounds(3) > dtime. Multiple	
				triples are possible in order to define multiple	
				starts/ends/intervals. See namelist parameters	
				output_start, output_end, output_interval	
				for an alternative specification of output events.	
output time unit		1		Units of output bounds specification.	
· – –				1 = second	
				2 = minute	
				3 = hour	
				4 = day	
				5 = month	
				6 = year	
output filename	\mid C	None		Output filename prefix (which may include	
_ more		1,0110		path). Domain number, level type, file number	
				and extension will be added, according to the	
				format given in namelist parameter	
				"filename format".	
output grid	 T	.FALSE.		Flag whether grid information is added to	
$\operatorname{output_grid}$	$\mid L \mid$.FALSE.			
				output.	

Parameter	Type	Default	Unit	Description	Scope
output_start	C(:)	22 22		ISO8601 time stamp for begin of output. An	
				example for this time stamp format is given	
				below. More than one value is possible in order	
				to define multiple start/end/interval triples. See	
				namelist parameter output_bounds for an	
		,, ,,		alternative specification of output events.	
${f output_end}$	C(:)	" "		ISO8601 time stamp for end of output. An	
				example for this time stamp format is given	
				below. More than one value is possible in order	
				to define multiple start/end/interval triples. See	
				namelist parameter output_bounds for an	
1		,, ,,		alternative specification of output events.	
output_interval	C(:)			ISO8601 time stamp for repeating output	
				intervals. We choose the advection time step	
				matching or following the requested output time, therefore we require output_bounds(3) >	
				dtime. An example for this time stamp format is	
				given below. More than one value is possible in	
				order to define multiple start/end/interval	
				triples. See namelist parameter output_bounds	
				for an alternative specification of output events.	
operation	C	None		Use this variable for internal diagnostics applied	
operation		None		on all given output variables or groups except	
				time-constant ones: mean for generating time	
				averaged, square for time averaged square	
				values, max or min for maximum and minimum	
				values within the corresponding interval, i.e.	
				output_interval.	
				Supported are 2D, 3D and single values like	
				global means on model levels of all components.	
				All operations can be used on global and nested	
				grids.	
pe placement il	I(:)	-1		Advanced output option: Explicit assignment of	
				output MPI ranks to the isentropic level output	
				file. At most stream_partitions_il different	
				ranks can be specified. See namelist parameter	
				pe_placement_ml for further details.	
pe_placement_hl	I(:)	-1		Advanced output option: Explicit assignment of	
_				output MPI ranks to the height level output file.	
				At most stream_partitions_hl different ranks	
				can be specified. See namelist parameter	
				pe_placement_ml for further details.	
	1	1	II.	ı - -	

Parameter	Type	Default	Unit	Description	Scope
pe_placement_ml	I(:)	-1		Advanced output option: Explicit assignment of	
				output MPI ranks to the model level output file.	
				At most stream_partitions_ml different ranks	
				can be specified, out of the following list: 0	
				(num_io_procs - 1). If this namelist parameters	
				is not provided, then the output ranks are	
				chosen in a Round-Robin fashion among those	
				ranks that are not occupied by explicitly placed	
				output files.	
pe_placement_pl	I(:)	-1		Advanced output option: Explicit assignment of	
				output MPI ranks to the pressure level output	
				file. At most stream_partitions_pl different	
				ranks can be specified. See namelist parameter	
				pe_placement_ml for further details.	
ready_file	\mid C	"default"		A ready file is a technique for handling	
				dependencies between the NWP processes. The	
				completion of the write process is signalled by	
				creating a small file with name ready_file.	
				Different output_nml's may be joined together	
				to form a single ready file event. The setting of	
				ready_file = "default" does not create a	
				ready file. The ready file name may contain	
				string tokens <path>, <datetime>, <ddhhmmss>,</ddhhmmss></datetime></path>	
				<dddhhmmss> which are substituted as described</dddhhmmss>	
				for the namelist parameter filename_format.	
reg_def_mode	I	0		Specify if the "delta" value prescribes an interval	remap=1
				size or the total *number* of intervals: 0: switch	
				automatically between increment and no. of grid	
				points, 1: reg_lon/lat_def(2) specifies	
				increment, 2: reg_lon/lat_def(2) specifies no.	
				of grid points.	
remap	I	0		interpolate horizontally	
				0: none	
				1: to regular lat-lon grid	
north_pole	R(2)	0,90		definition of north pole for rotated lon-lat grids	
				([longitude, latitude].	
reg_lat_def	R(3)	None		start, increment, end latitude in degrees.	remap=1
				Alternatively, the user may set the number of	
				grid points instead of an increment. Details for	
				the setting of regular grids is given below	
				together with an example.	

Parameter	Type	Default	Unit	Description	Scope
$ m reg_lon_def$	R(3)	None		The regular grid points are specified by three	remap=1
				values: start, increment, end given in degrees.	
				Alternatively, the user may set the number of	
				grid points instead of an increment. Details for	
				the setting of regular grids is given below	
				together with an example.	
${f steps_per_file}$	I	-1		Max number of output steps in one output file.	
				If this number is reached, a new output file will	
				be opened. Setting steps_per_file to 1 enforces	
				a flush when writing is completed, so that the	
				file is immediately accessible for reading.	
$steps_per_file_inclfirst$	L	see descr.		Defines if first step is counted wrt.	
				steps_per_file files count. The default is	
				.FALSE. for GRIB2 output, and .TRUE.	
				otherwise.	
$stream_partitions_hl$	I	1		Splits height level output of this namelist into	
				several concurrent alternating files. See namelist	
				parameter stream_partitions_ml for details.	
$stream_partitions_il$	I	1		Splits isentropic level output of this namelist into	
				several concurrent alternating files. See namelist	
				parameter stream_partitions_ml for details.	
$stream_partitions_ml$	I	1		Splits model level output of this namelist into	
				several concurrent alternating files. The output	
				is split into N files, where the start date of part	
				i gets an offset of $(i-1)*$ output_interval.	
				The output interval is then replaced by	
				$N*$ output_interval, the include_last flag is	
				set to .FALSE., the steps_per_file_inclfirst	
				flag is set to .FALSE., and the steps_per_file	
				counter is set to 1.	
stream partitions pl	I	1		Splits pressure level output of this namelist into	
				several concurrent alternating files. See namelist	
				parameter stream_partitions_ml for details.	
rbf_scale	\mathbb{R}	-1.		Explicit setting of RBF shape parameter for	interpol_nml:rbf_scale_mode_l=
				interpolated lon-lat output. This namelist	
				parameter is only active in combination with	
				interpol nml:rbf scale mode ll=3.	

Defined and used in: src/io/shared/mo_name_list_output_init.f90

Interpolation onto regular grids: Horizontal interpolation onto regular grids is possible through the namelist setting remap=1, where the mesh is defined by the parameters

- reg_lon_def: mesh latitudes in degrees,
- reg_lat_def: mesh longitudes in degrees,

• north_pole: definition of north pole for rotated lon-lat grids.

The regular grid points in reg_lon_def, reg_lat_def are each specified by three values, given in degrees: start, increment, end. The mesh then contains all grid points start + k * increment <= end, where k is an integer. Instead of defining an increment it is also possible to prescribe the number of grid points.

- Setting the namelist parameter reg_def_mode=0: Switch automatically from increment specification to no. of grid points, when the reg_lon/lat_def(2) value is larger than 5.0.
- 1: reg_lon/lat_def(2) specifies increment
- 2: reg_lon/lat_def(2) specifies no. of grid points

For longitude values the last grid point is omitted if the end point matches the start point, e.g. for 0 and 360 degrees.

Examples

local grid with 0.5 degree increment:

reg_lon_def = -30.,0.5,30.
reg_lat_def = 90.,-0.5, -90.

global grid with 720x361 grid points:

reg_lon_def = 0.,720,360.
reg_lat_def = -90.,360,90.

Time stamp format: The namelist parameters output_start, output_end, output_interval allow the specification of time stamps according to ISO 8601. The general format for time stamps is YYYY-MM-DDThh:mm:ss where Y: year, M: month, D: day for dates, and hh: hour, mm: minute, ss: second for time strings. The general format for durations is PnYnMnDTnHnMnS. See, for example, http://en.wikipedia.org/wiki/ISO_8601 for details and further specifications.

NOTE: as the mtime library underlaying the output driver currently has some restrictions concerning the specification of durations:

- 1. Any number n in PnYnMnDTnHnMnS must have two digits. For instance use "PT06H" instead of "PT6H"
- 2. In a duration string PnyearYnmonMndayDTnhrHnminMnsecS the numbers nxyz must not pass the carry over number to the next larger time unit: 0<=nmon<=12, 0<=nhr<=23, 0<=nmin<=59, 0<=nsec<=59.999. For instance use "PO1D" instead of "PT24H", or "PT01M" instead of "PT60S".

Soon the formatting problem will be resolved and the valid number ranges will be enlarged. (2013-12-16).

Examples

```
date and time representation (output_start, output_end)

duration (output_interval)

2013-10-27T13:41:00Z

POODTO6H00M00S
```

Variable Groups

Keyword "group:": Using the "group:" keyword for the namelist parameters ml_varlist, hl_varlist, pl_varlist, sets of common variables can be added to the output:

```
group:alloutput of all variables (caution: do not combine with mixed vertical interpolation)group:atmo_ml_varsbasic atmospheric variables on model levelsgroup:atmo_pl_varssame set as atmo_ml_vars, but except presgroup:nh_prog_varssame set as atmo_ml_vars, but expect heightgroup:atmo_derived_varsadditional prognostic variables of the nonhydrostatic modelgroup:rad_varsderived atmospheric variablesgroup:precip_vars
```

group:cloud_diag group:pbl_vars group:phys_tendencies group:land_vars group:snow_vars group:multisnow_vars group:additional_precip_vars group:dwd_fg_atm_vars group:dwd_fg_sfc_vars group:ART_AERO_VOLC group: ART_AERO_RADIO group:ART_AERO_DUST group:ART_AERO_SEAS group:prog_timemean group:tracer_timemean group:echam_timemean

group:atmo_timemean

snow variables

multi-layer snow variables

DWD first guess fields (atmosphere) DWD first guess fields (surface/soil)

ART volcanic ash fields
ART radioactive tracer fields
ART mineral dust aerosol fields
ART sea salt aerosol fields

time mean output: temp, u, v, rho time mean output: qv, qc, qi

time mean output: most echam surface variables

time mean variables from prog_timemean,tracer_timemean, echam_timemean

Keyword "tiles:": The "tiles:" keyword allows to add all tiles of a specific variable to the output, without the need to specify all tile fields separately. E.g. "tiles:t_g" (read: "tiles of t_g") automatically adds all t_g_t_X fields to the output. Here, X is a placeholder for the tile number. Make sure to specify the name of the aggregated variable rather than the name of the corresponding tile container (i.e. in the given example it must be t_g, and not t_g_t!).

Note:

There exists a special syntax which allows to remove variables from the output list, e.g. if these undesired variables were contained in a previously selected group. Typing <varname>" (for example temp") removes the variable from the union set of group variables and other selected variables. Note that typos are not detected but that the corresponding variable is simply not removed!

Keyword substitution in output filename (filename_format):

substituted by model base dir path output_filename substituted by output_filename substituted by physical patch ID physdom substituted by level type "ML", "PL", "HL", "IL" levtype levtype_1 like levtype, but in lower case substituted by output file counter ifile substituted by ISO-8601 date-time stamp in format YYYY-MM-DDThh:mm:ss.sssZ datetime substituted by ISO-8601 date-time stamp in format YYYYMMDDThhmmssZ datetime2 substituted by ISO-8601 date-time stamp in format YYYYMMDDThhmmss.sssZ datetime3 ddhhmmss substituted by relative day-hour-minute-second string substituted by relative three-digit day-hour-minute-second string dddhhmmss substituted by relative hour-minute-second string hhhmmss npartitions If namelist is split into concurrent files: number of stream partitions. ifile_partition If namelist is split into concurrent files: stream partition index of this file. total index If namelist is split into concurrent files: substituted by the file counter

(like in jfile), which an ünsplit"namelist would have produced

2.37 parallel_nml

Parameter	Type	Default	Unit	Description	Scope
nproma	I	1		chunk length	
n_ghost_rows	I	1		number of halo cell rows	
division_method	I	1		method of domain decomposition	
				0: read in from file	
				1: use built-in geometric subdivision	
division file name	\mid C			Name of division file	division method = 0
ldiv_phys_dom	L	.TRUE.		.TRUE.: split into physical domains before	$\operatorname{division} \operatorname{method} = 1$
				computing domain decomposition (in case of	
				merged domains)	
				(This reduces load imbalance; turning off this	
				option is not recommended except for very small	
				processor numbers)	
p_test_run	L	.FALSE.		.TRUE. means verification run for MPI	
· — —				parallelization (PE 0 processes full domain)	
num test pe	I	-1		If set to more than 1, use this many ranks for	p test run = .TRUE.
				testing and switch to different consistency test.	
				This enables tests for identity in setups which	
				are too big to run on a single rank but is limited	
				to comparing one MPI parallelization setup vs.	
				another, obviously.	
l test openmp	L	.FALSE.		if .TRUE. is combined with	$p_{test}_{run} = .TRUE.$
				p test run=.TRUE. and OpenMP	
				parallelization, the test PE gets only 1 thread in	
				order to verify the OpenMP parallelization	
l log checks	L	.FALSE.		if .TRUE. messages are generated during each	
				synchonization step (use for debugging only)	
l fast sum	L	.FALSE.		if .TRUE., use fast (not	
				processor-configuration-invariant) global	
				summation	
use dycore barrier	L	.FALSE.		if .TRUE., set an MPI barrier at the beginning	
				of the nonhydrostatic solver (do not use for	
				production runs!)	
itype exch barrier	I	0		1: set an MPI barrier at the beginning of each	
				MPI exchange call	
				2: set an MPI barrier after each MPI WAIT call	
				3: 1+2 (do not use for production runs!)	
iorder sendrecv	I	1		Sequence of send/receive calls:	
_				1 = irecv/send	
				2 = isend/recv	
				2 — ischa / rec v	l l

Parameter	Type	Default	Unit	Description	Scope
default_comm-	I	1		Default implementation of mo_communication	
_pattern_type				to be used:	
				1 = original	
				2 = YAXT	
itype_comm	I	1		1: use local memory for exchange buffers	
				3: asynchronous halo communication for	
				dynamical core (currently deactivated)	
num io procs	I	0		Number of I/O processors (running exclusively	
				for doing I/O)	
num restart procs	I	0		Number of restart processors (running	
				exclusively for doing restart)	
num prefetch proc	I	1		Number of processors for prefetching of	itype latbc ≥ 1
				boundary data asynchronously for a limited area	_
				run (running exclusively for reading Input	
				boundary data. Maximum no of processors used	
				for it is limited to 1).	
pio_type	I	1		Type of parallel I/O.	
_				1: Classical async I/O processors	
				2: CDI-PIO (Experimental!) Experimental!	
use icon comm	L	.FALSE.		Enable the use of MPI bulk communication	
				through the icon_comm_lib	
icon comm debug	L	.FALSE.		Enable debug mode for the icon comm lib	
max send recv-	I	131072		Size of the send/receive buffers for the	
_buffer_size				icon comm lib.	
use_dp_mpi2io	L	.FALSE.		Enable this flag if output fields shall be gathered	
				by the output processes in DOUBLE	
				PRECISION.	
restart chunk size	I	1		(Advanced namelist parameter:) Number of	
				levels to be buffered by the asynchronous restart	
				process. The (asynchronous) restart is capable of	
				writing and communicating more than one 2D	
				slice at once.	
num dist array replicas	I	1		(Advanced namelist parameter:) Number of	
				replicas of the distributed array used for the	
				pre patch.	
io process stride	I	-1		(Advanced namelist parameter:) Stride of	
				processes taking part in reading of data. (Few	
				reading processes, i.e. a large stride, often gives	
				best performance.)	
io_process_rotate	I	0		(Advanced namelist parameter:) Rotate of	
				processes taking part in reading of data. (Process	
				taking part if p_pe_work % stride == rotate)	

2.38 psrad_nml

Parameter	Type	Default	Unit	Description	Scope
lradforcing	L(2)	.FALSE.		switch for diagnostics of aerosol forcing in the	
				solar spectral range $(lradforcing(1))$ and the	
				thermal spectral range $(lradforcing(2))$.	
lw_gpts_ts	I	1		number of g-points in Monte-Carlo spectral	
				integration for thermal radiation, see	
				lw_spec_samp	
lw_spec_samp	I	1		sampling of spectral bands in radiation	
				calculation for thermal radiation	
				$lw_spec_samp = 1: standard broad band$	
				sampling	
				$lw_spec_samp = 2$: Monte-Carlo spec- tral	
				integration (MSCI); lw_gpts_ts randomly	
				chosen g-points per column and radiation call	
				$lw_spec_samp = 3$: choose g-points not	
				completely randomly in order to reduce errors in	
				the surface radiative fluxes	
rad_perm	I	0		integer number that influences the perturba-	
				tion of the random seed from column to column	
sw_gpts_ts	I	1		number of g-points in Monte-Carlo spectral	
				integration for solar radiation, see	
				sw_spec_samp	
sw_spec_samp	I	1		sampling of spectral bands in radiation	
				calculation for solar radiation	
				$sw_spec_samp = 1$: standard broad band	
				sampling	
				sw_spec_samp = 2: Monte-Carlo spectral	
				integration (MSCI); lw_gpts_ts randomly	
				chosen g-points per column and radiation call	
				sw_spec_samp = 3: choose g-points not	
				completely randomly in order to reduce errors in	
				the surface radiative fluxes	

Defined and used in: src/echam_phy_psrad/mo_psrad_radiation.f90

2.39 radiation_nml

Parameter	Type	Default	Unit	Description	Scope
ldiur	L	.TRUE.		switch for solar irradiation:	
				.TRUE.:diurnal cycle,	
				.FALSE.:zonally averaged irradiation	

Parameter	Type	Default	Unit	Description	Scope
nmont h	I	0		0: Earth circles on orbit	
				1-12: Earth orbit position fixed for specified	
				month	
lyr_perp		.FALSE.		.FALSE.: transient Earth orbit following	
				VSOP87	
				.TRUE.: Earth orbit of year yr perp of the	
				VSOP87 orbit is perpertuated	
yr_perp	\mid L	-99999		year used for lyr $perp = .TRUE$.	
isolrad	I	0		Insolation scheme	
				0: Use original SRTM insolation.	
				1: Use insolation from external file containing the	
				spectrally resolved insolation (monthly means)	
				2: Use preindustrial insolation as in CMIP5	
				(average from 1844–1856)	
				3: Use insolation for AMIP-type CMIP5	
				simulation (average from 1979–1988)	
				4: Use insolation for RCE-type simulation with	
				$\cos(\text{zenith angle}) = \text{pi}/4 \text{ (with PSRAD: use "4")}$	
				if the diurnal cycle is switched on)	
				5: Use insolation for RCE-type simulation with	
				PSRAD if the diurnal cycle is switched off.	
izenith	I	4		Choice of zenith angle formula for the radiative	
				transfer computation.	
				0: Sun in zenith everywhere	
				1: Zenith angle depends only on latitude	
				2: Zenith angle depends only on latitude. Local	
				time of day fixed at 07:14:15 for radiative	
				transfer computation ($sin(time of day) = 1/pi$	
				3: Zenith angle changing with latitude and time	
				of day	
				4: Zenith angle and irradiance changing with	
				season, latitude, and time of day (iforcing=inwp	
				only)	
islope_rad	I	0		Slope correction for surface radiation:	
• _				0: None	
				1: Slope correction for direct solar radiation	
				without shading effects	
albedo type		1		Type of surface albedo	iforcing=inwp
_ • •				1: based on soil type specific tabulated values	
				(dry soil)	
				2: MODIS albedo	

Parameter	Type	Default	Unit	Description	Scope
direct albedo	I	4		Direct beam surface albedo. Options mainly	iforcing=inwp
_				differ in terms of their solar zenith angle (SZA)	albedo_type=2
				dependency)	
				1: SZA dependency following Ritter-Geleyn;	
				applied to unconditionally all grid points	
				2: SZA dependency following Zaengl (pers.	
				comm.). Same as 1 for water, but for 'rough	
				surfaces' over land the direct albedo is not	
				allowed to exceed the corresponding broadband	
				diffuse albedo.	
				3: SZA dependency following Yang (2008) for	
				snow-free land points. Same as 1 for water/ice	
				and 2 for snow.	
				4: SZA dependency following Briegleb (1992) for	
				snow-free land points. Same as 1 for water/ice	
				and 2 for snow.	
$icld_overlap$	I	2		Method for cloud overlap calculation in	iforcing=inwp
				shortwave part of RRTM	$inwp_radiation=1 (1-4)$
				1: maximum-random overlap	$inwp_radiation=4 (1,2,5)$
				2: generalized overlap (Hogan, Illingworth, 2000)	
				3: maximum overlap	
				4: random overlap	
				5: exponential overlap	

Parameter	Type	Default	Unit	Description	Scope
irad_h2o	I	1		Switches for the concentration of radiative agents	
$irad_co2$		2		$irad_xyz = 0$: set to zero	
$irad_ch4$		3		$irad_h2o = 1$: vapor, cloud water and cloud ice	
$irad_n2o$		3		from tracer variables	
irad o3		0		irad $co2 = 1$: CO_2 from tracer variable	
irad o2		2		${ m irad}^{-}{ m co}2/{ m ch}4/{ m n}2{ m o}/{ m o}2/{ m cfc}11/{ m cfc}12=2$:	
irad cfc11		2		concentration given by	
irad cfc12		2		m vmr co2/ch4/n2o/o2/cfc11/cfc12	
_				$\frac{1}{1}$ irad $\frac{1}{1}$ ch4/n2o = 3: tanh-profile with surface	
				concentration given by vmr ch4/n2o	
				irad $co2/cfc11/cfc12 = 4$: time dependent	
				concentration from greenhouse gas file	
				$irad_{ch4}/n2o = 4$: time dependent tanh-profile	
				with surface concentration from greenhouse gas	
				file irad o3 = 2: ozone climatology from MPI	
				irad o $3 = 4$: ozone clim for Aqua Planet Exp	
				a irad a o3 = 6: ozone climatology with T5	
				geographical distribution and Fourier series for	
				seasonal cycle for run $nml/iforcing = 3$ (NWP)	
				irad o $3 = 7$: GEMS ozone climatology (from	
				IFS) for run nml/iforcing = 3 (NWP)	
				irad o3 = 8: ozone climatology for AMIP	
				irad o3 = 9: MACC ozone climatology (from	
				IFS) for run nml/iforcing = 3 (NWP)	
				irad_o3 = 79: Blending between GEMS and	
				MACC ozone climatologies (from IFS) for	
				run nml/iforcing = 3 (NWP); MACC is used	
				over Antarctica	
				irad o3 = 97: As 79, but MACC is also used	
				above 1 hPa with transition zone between 5 hPa	
				and 1 hPa	
				irad o $3 = 10$: Linearized ozone chemistry (ART	
				extension necessary) for run nml/iforcing = 3	
				(NWP)	
umr 609	\mid R	348.0e-6		Volume mixing ratio of the radiative agents	
vmr_co2		1650.0e-9		volume mixing radio of the radiative agents	
vmr_ch4		306.0e-9			
vmr_n2o		0.20946			
vmr_o2					
vmr_cfc11		214.5e-12			
${ m vmr_cfc12}$		371.1e-12			
		1			

Parameter	Type	Default	Unit	Description	Scope
fh2o	R	1.		Scaling factors for concentrations used in	$run_nml/iforcing=2$
fco2		1.		radiation	(ECHAM)
fch4		1.			
fn2o		1.			
fo3		1.			
fo2		1.			
fcfc		1.			
irad_aero	I	2		Aerosols	
				1: prognostic variable	
				2: global constant	
				3: externally specified	
				5: Tanre aerosol climatology for	
				$rac{ ext{run_nml/iforcing}}{ ext{order}} = 3 \; ext{(NWP)}$	
				6: Tegen aerosol climatology for	
				$run_nml/iforcing = 3 \text{ (NWP) .AND. itopo } = 1$	
				9: ART online aerosol radiation interaction, uses	
				Tegen for aerosols not chosen to be represented	
				in ART for run_nml/iforcing = 3 (NWP) .AND.	
1.	 -	DATOR		itopo =1 .AND. lart=TRUE .AND. iart_ari=1	
lrad_aero_diag		.FALSE.		writes actual aerosol optical properties to output	
ecrad_data_path	ightharpoons	"."		Path to the folder containing ecRad optical properties files.	inwp_radiation=4 (ecRad)
llw_cloud_scat	L	.FALSE.		Long-wave cloud scattering.	inwp_radiation=4 (ecRad)
iliquid_scat	I	0		Optical properties for liquid cloud scattering.	inwp_radiation=4 (ecRad)
				0: SOCRATES	
				1: Slingo (1989)	
iice_scat	I	0		Optical properties for ice cloud scattering.	inwp_radiation=4 (ecRad)
				0: Fu et al. (1996)	
				1: Baran et al. (2016)	

Defined and used in: src/namelists/mo_radiation_nml.f90

2.40 run_nml

Parameter	Type	Default	Unit	Description	Scope
nsteps	I	-999		Number of time steps of this run. Allowed range	
				is ≥ 0 ; setting a value of 0 allows writing initial	
				output (including internal remapping) without	
				calculating time steps.	

Parameter	Type	Default	Unit	Description	Scope
dtime	R	600.0	s	time step.	
				For real case runs the maximum allowable time	
				step can be estimated as	
				$1.8 \cdot \text{ndyn} \text{ substeps} \cdot \overline{\Delta x} \text{s km}^{-1}$,	
				where $\frac{\overline{\Delta x}}{\Delta x}$ is the average resolution in km and	
				ndyn_substeps is the number of dynamics	
				substeps set in nonhydrostatic nml.	
				ndyn substeps should not be increased beyond	
				the default value 5.	
144	т	.TRUE.		Idealized testcase runs	
ltestcase	L				
ldynamics	L	.TRUE.		Compute adiabatic dynamic tendencies	
iforcing	1	0		Forcing of dynamics and transport by	
				parameterized processes. Use positive indices for	
				the atmosphere and negative indices for the	
				ocean.	
				0: no forcing	
				1: Held-Suarez forcing	
				2: ECHAM forcing	
				3: NWP forcing	
				4: local diabatic forcing without physics	
				5: local diabatic forcing with physics	
				-1: MPIOM forcing (to be done)	
ltransport	L	.FALSE.		Compute large-scale tracer transport	
ntracer	I	0		Number of advected tracers handled by the	
nu acei	1	0		large-scale transport scheme	
1	т	DATCE			
${f lvert_nest}$	$\mid L \mid$.FALSE.		If set to .true. vertical nesting is switched on (i.e.	
•	T/			variable number of vertical levels)	TDIID
$\operatorname{num}_{oldsymbol{-}}\operatorname{lev}$	I(max_	31		Number of full levels (atm.) for each domain	lvert_nest=.TRUE.
	dom)				
nshift	I(max_	0		vertical half level of parent domain which	$lvert_nest=.TRUE.$
	dom)			coincides with upper boundary of the current	
				domain required for vertical refinement, which is	
				not yet implemented	
ltimer	L	.TRUE.		TRUE: Timer for monitoring the runtime of	
				specific routines is on $(FALSE = off)$	
timers level	I	1		,	
activate sync timers	L	F		TRUE: Timer for monitoring runtime of	
<u> </u>				communication routines $(FALSE = off)$	
msg level	I	10		controls how much printout is written during	
0	_			runtime.	
				For values less than 5, only the time step is	
				written.	
mag timogtama	Т.	.FALSE.			
$msg_timestamp$.FALSE.		If .TRUE., precede output messages by time	
				stamp.	

Parameter	Type	Default	Unit	Description	Scope
debug_check_level	I	0		Setting a value larger than 0 activates debug	
				checks.	
output	C(:)	"nml", "totint"		Main switch for enabling/disabling components	
				of the model output. One or more choices can be	
				set (as an array of string constants). Possible	
				choices are:	
				• "none": switch off all output;	
				• "nml": new output mode (cf. output_nml);	
				• "totint": computation of total integrals.	
				• "maxwinds": write max. winds to separate	
				ASCII file "maxwinds.log".	
				If the output namelist parameter is not set	
				explicitly, the default setting "nml","totint" is	
				assumed.	
restart_filename	С			File name for restart/checkpoint files (containing	
				keyword substitution patterns <gridfile>,</gridfile>	
				<pre><idom>, <rsttime>, <mtype>). default:</mtype></rsttime></idom></pre>	
				" <gridfile>_restart_<mtype>_<rsttime>.nc".</rsttime></mtype></gridfile>	
profiling_output	I	1		controls how profiling printout is written:	
				$TIMER_MODE_AGGREGATED=1,$	
				$TIMER_MODE_DETAILED=2,$	
				TIMER_MODE_WRITE_FILES=3.	
lart	L	.FALSE.		Main switch which enables the treatment of	
				atmospheric aerosol and trace gases (The ART	
				package of KIT is needed for this purpose)	
ldass_lhn	L	.FALSE.		Main switch which enables the assimilation of	
				radar derived precipitation rate via Latent Heat	
				Nudging	
check_uuid_gracefully	L	.FALSE.		If this flag is set to .TRUE. we give only	
				warnings for non-matching UUIDs.	

Defined and used in: src/namelists/mo_run_nml.f90

2.41 sleve_nml (relevant if nonhydrostatic_nml:ivctype=2)

Parameter	Type	Default	Unit	Description	Scope
min_lay_thckn	R	50	m	Layer thickness of lowermost layer; specifying	
				zero or a negative value leads to constant layer	
				thicknesses determined by top_height and nlev	

Parameter	Type	Default	Unit	Description	Scope
max_lay_thckn	R	25000	m	Maximum layer thickness below the height given	
				by htop_thcknlimit (NWP recommendation: 400	
				m)	
				Use with caution! Too ambitious settings may	
				result in numerically unstable layer	
				configurations.	
htop_thcknlimit	R	15000	m	Height below which the layer thickness does not	
				exceed max_lay_thckn	
itype_laydistr	I	1		Type of analytical function used to specify the	
				distribution of the vertical coordinate surfaces	
				1: transformed cosine, 2: third-order polynomial;	
				in this case, stretch_fac should be less than 1,	
				particularly for large numbers of model levels;	
				the algorithm always works for stretch_fac=0.5	
top_height	R	23500.0	m	Height of model top	
stretch_fac	R	1.0		Stretching factor to vary distribution of model	
				levels; values <1 increase the layer thickness	
				near the model top	
decay_scale_1	R	4000	m	Decay scale of large-scale topography component	
decay_scale_2	R	2500	m	Decay scale of small-scale topography component	
decay_exp	R	1.2		Exponent of decay function	
flat_height	R	16000	m	Height above which the coordinate surfaces are	
				flat	
lread_smt	L	.FALSE.		read smoothed topography from file (TRUE) or	
				compute internally (FALSE)	

Defined and used in: src/namelists/mo_sleve_nml.f90

2.42 synsat nml¹

This namelist enables the RTTOV library incorporated into ICON for simulating satellite radiance and brightness temperatures. RTTOV is a radiative transfer model for nadir-viewing passive visible, infrared and microwave satellite radiometers, spectrometers and interferometers, see

https://nwpsaf.eu/deliverables/rtm

for detailed information.

Parameter	Type	Default	Unit	Description	Scope
lsynsat	L	.FALSE.		Main switch: Enables/disables computati	ion of
	(max_dor	n)		synthetic satellite imagery for each mode	.1
				domain.	
nlev_rttov	I	51		Number of RTTOV levels.	

Enabling the synsat module makes the following 32 two-dimensional output fields available:

¹Important note: This feature is currently active for configuration dwd+cray only.

SYNMSG_RAD_CL_IR3.9	SYNMSG_BT_CL_IR3.9	SYNMSG_RAD_CL_WV6.2	SYNMSG_BT_CL_WV6.2
SYNMSG_RAD_CL_WV7.3	SYNMSG_BT_CL_WV7.3	SYNMSG_RAD_CL_IR8.7	SYNMSG_BT_CL_IR8.7
SYNMSG_RAD_CL_IR9.7	SYNMSG_BT_CL_IR9.7	SYNMSG_RAD_CL_IR10.8	SYNMSG_BT_CL_IR10.8
SYNMSG_RAD_CL_IR12.1	SYNMSG_BT_CL_IR12.1	SYNMSG_RAD_CL_IR13.4	SYNMSG_BT_CL_IR13.4
SYNMSG_RAD_CS_IR3.9	SYNMSG_BT_CS_IR3.9	SYNMSG_RAD_CS_WV6.2	SYNMSG_BT_CS_WV6.2
SYNMSG_RAD_CS_WV7.3	SYNMSG_BT_CS_WV7.3	SYNMSG_RAD_CS_IR8.7	SYNMSG_BT_CS_IR8.7
SYNMSG_RAD_CS_IR9.7	SYNMSG_BT_CS_IR9.7	SYNMSG_RAD_CS_IR10.8	SYNMSG_BT_CS_IR10.8
SYNMSG_RAD_CS_IR12.1	SYNMSG_BT_CS_IR12.1	SYNMSG_RAD_CS_IR13.4	SYNMSG_BT_CS_IR13.4

Here, RAD denotes radiance, BT brightness temperature, CL cloudy, and CS clear sky, supplemented by the channel name. Defined and used in: src/namelists/mo_synsat_nml.f90

2.43 time_nml

Parameter	Type	Default	Unit	Description	Scope
calendar	I	1		Calendar type:	
				0=Julian/Gregorian	
				1=proleptic Gregorian	
				$2=30 \mathrm{day/month},360 \mathrm{day/year}$	
$dt_restart$	R	0.	s	Length of restart cycle in seconds. This namelist	
				parameter specifies how long the model runs	
				until it saves its state to a file and stops. Later,	
				the model run can be resumed, s. t. a simulation	
				over a long period of time can be split into a	
				chain of restarted model runs.	
				Note that the frequency of writing restart files is	
				controlled by io_nml:dt_checkpoint. Only if	
				the value of dt_checkpoint resulting from	
				model default or user's specification is longer	
				than dt_restart, it will be reset (by the model)	
				to dt_restart so that at least one restart file is	
				generated during the restart cycle. If	
				dt_restart is larger than but not a multiple of	
				dt_checkpoint, restart file will not be	
1		10000 00 04 55		generated at the end of the restart cycle.	
ini_datetime_string	C	'2008- 09-01T		Initial date and time of the simulation	
		00:00:00Z'			
end_datetime_string	C	'2008- 09-01T		End date and time of the simulation	
		01:40:00Z'			
is_relative_time	L	.FALSE.		TRUE., if time loop shall start with step 0	
				regardless whether we are in a standard run or in	
				a restarted run (which means re-initialized run).	

Length of the run If "nsteps" run_nml is positive, then nsteps*dtime is used to compute the end date and time of the run. Else the initial date and time, the end date and time, dt_restart, as well as the time step are used to compute "nsteps".

$2.44 \ transport_nml \ (used \ if \ run_nml/ltransport=.TRUE.)$

Parameter	Type	Default	Unit	Description	Scope
lvadv_tracer ihadv_tracer	L I(ntracer)	.TRUE.		TRUE: compute vertical tracer advection FALSE: do not compute vertical tracer advection Tracer specific method to compute horizontal advection: 0: no horiz. transport (note that the specific tracer quantity q is kept constant and not tracer	•
				 mass ρq) 1: upwind (1st order) 2: Miura (2nd order, linear reconstr.) 3: Miura3 (quadr. or cubic reconstr.) 4: FFSL (quadr. or cubic reconstr.) 5: hybrid Miura3/FFSL (quadr. or cubic reconstr.) 20: miura (2nd order, lin. reconstr.) with subcycling 22: combination of miura and miura with 	$\begin{aligned} & \operatorname{lsq_high_ord} \in [2,3] \\ & \operatorname{lsq_high_ord} \in [2,3] \\ & \operatorname{lsq_high_ord} \in [2,3] \end{aligned}$
ivadv tracer	I(ntracer)	3		22: combination of miura and miura with subcycling 32: combination of miura3 and miura with subcycling 42: combination of FFSL and miura with subcycling 52: combination of hybrid FFSL/Miura3 with subcycling Subcycling means that the integration from time step n to n+1 is splitted into substeps to meet the stability requirements. For NWP runs, substepping is generally applied above z = 22 km (see nonhydrostatic_nml/hbot_qvsubstep). Tracer specific method to compute vertical	$lvadv_tracer = TRUE$
				 advection: 0: no vert. transport (note that tracer mass ρq instead of the specific tracer quantity q is kept constant. This differs from the behaviour in horizontal direction!) 1: upwind (1st order) 3: Piecewise parabolic method (PPM): handles CFL > 1 4: Parabolic Spline Method (PSM): (handles CFL > 1) 5: Piecewise parabolic method (PPM): GPU-enabled version, handles CFL > 1 	
$ig ext{itype_hlimit}$	\mid I(ntracer)	4		Type of limiter for horizontal transport:	

Parameter	Type	Default	Unit	Description	Scope
				0: no limiter	
				3: monotonic flux limiter (FCT)	
				4: positive definite flux limiter	
$itype_vlimit$	I(ntracer)	1		Type of limiter for vertical transport:	
				0: no limiter	
				1: semi-monotonic reconstruction filter	
				2: monotonic reconstruction filter	
				3: positive definite flux limiter	
ivlimit selective	I(ntracer)	0		Reduce detrimental effect of vertical limiter by	
_				applying a method for identifying and avoiding	
				spurious limiting of smooth extrema.	
				1: on	itype vlimit=1, 2
				0: off	
beta fct	$ ight _{\mathrm{R}}$	1.005		global boost factor for range of permissible	itype hlimit $= 3, 4$
_				values $[q_{max}, q_{min}]$ in (semi-) monotonic flux	
				limiter. A value larger than 1 allows for (small)	
				over and undershoots, while a value of 1 gives	
				strict monotonicity (at the price of increased	
				diffusivity).	
iadv_tke		0		Type of TKE advection	inwp_turb=1
_				0: no TKE advection	' —
				1: vertical advection only	
				2: vertical and horizontal advection	
lstrang	$\mid \mathbf{L} \mid$.FALSE.		Time splitting method	
				FALSE: first order Godunov splitting	
				TRUE: second order Strang splitting	
tracer names	C(:)	'Int2Str(i)'		Tracer-specific name suffixes. When running	iforcing≠ inwp, iecham'
		11102551(1)		idealized cases or the hydrostatic ICON, this	noreing/ inp, reeliam
				variable is used to specify tracer names. If	
				nothing is specified, the tracer name is given as	
				PREFIX+Int2String(i), where i is the tracer	
				index. Note that this namelist variable has no	
				effect for nonhydrostatic real-case runs, if the	
				NWP- or ECHAM physics packages are switched	
				on.	
npassive tracer	T	0		number of additional passive tracers which have	
iipassive_tracer	1			no sources and are transparent to any physical	
				process (no effect).	
				Passive tracers are named Qpassive ID, where	
				ID is a number between ntracer and	
			ntracer+npassive_tracer.		
			NOTE: By default, limiters are switched off for		
				passive tracers and the scheme 52 is selected for	
				horizontal advection.	
		I		norizontal advection.	

Parameter	Type	Default Unit	Description	Scope
init_formula	С	, ,	Comma-separated list of initialization formulas	$npassive_tracer > 0$
			for additional passive tracers.	
iord_backtraj	I	1	order of backward trajectory calculation:	
			1: first order	
			2: second order (iterative; currently 1 iteration	ihadv_tracer='miura'
			hardcoded; experimental!)	
igrad_c_miura	I	1	Method for gradient reconstruction at cell center	
			for 2nd order miura scheme	
			1: Least-squares (linear, non-consv)	ihadv_tracer=2
			2: Green-Gauss	
ivcfl_max	I	5	determines stability range of vertical	ivadv_tracer=3,4
			PPM/PSM-scheme in terms of the maximum	
			allowable CFL-number	
llsq_svd	L	.TRUE.	use QR decomposition (FALSE) or SV	
			decomposition (TRUE) for least squares design	
			matrix A	
lclip_tracer	L	.FALSE.	Clipping of negative values	

Defined and used in: src/namelists/mo_advection_nml.f90

2.45 turbdiff_nml

Parameter	Type	Default	Unit	Description	Scope
imode_turb	I	1		Mode of solving the TKE equation for atmosph.	
				layers:	
				0: diagnostic equation	
				1: prognostic equation (current version)	
				2: prognostic equation (intrinsically positive	
				definite)	
imode_tran	I	0		Same as $imode_turb$ but only for the transfer	
				layer	
icldm_turb	I	2		Mode of water cloud representation in	
				turbulence for atmosph. layers:	
				-1: ignoring cloud water completely (pure dry	
				scheme)	
				0: no clouds considered (all cloud water is	
				evaporated)	
				1: only grid scale condensation possible	
				2: also sub grid (turbulent) condensation	
				considered	
icldm_tran	I	2		Same as $icldm_turb$ but only for the transfer	
				layer	
q_crit	R	1.6		critical value for normalized super-saturation	

Parameter	Type	Default	Unit	Description	Scope
itype_wcld	I	2		type of water cloud diagnosis within the	$icldm_turb=2 or$
				turbulence scheme:	$icldm_tran=2$
				1: employing a scheme based on relative	
				humitidy	
				2: employing a statistical saturation adjustment	
$itype_sher$	I	0		Type of shear forcing used in turbulence:	
				0: only vertical shear of horizontal wind	
				1: previous plus horizontal shear correction	
				2: previous plus shear from vertical velocity	
				3: same as option 1, but (when combined with	
				ltkeshs=.TRUE.) scaling of coarse-grid	
				horizontal shear production term with $\frac{1}{\sqrt{Ri}}$	
ltkeshs	L	.FALSE.		Include correction term for coarse grids in	itype sher ≥ 1
Tellesins		111111111111111111111111111111111111111		horizontal shear production term (needed at	lifypo_sher ⊆ 1
				non-convection-resolving model resolutions in	
				order to get a non-negligible impact)	
ltkesso	\mid L	.TRUE.		Consider TKE-production by sub grid SSO	inwp sso = 1
Turesso		.1102.		wakes	11111 P_550 1
$imode_tkesso$	I	1		mode of calculat. the SSO source term for TKE	
mode_tkesso	1			production:	
				1: original implementation	
				2: Ri-dependent reduction factor for Ri>1	
ltkecon	\mid L	.FALSE.		Consider TKE-production by sub grid convective	inwp conv = 1
Itkecon		.FALSE.		plumes (inactive)	$\lim_{n \to \infty} p = 0$
ltkeshs	\mid L	.FALSE.		Consider TKE-production by separated	
TURESTIS	L	.FALSE.		horizontal shear eddies (inactive)	
Itmpace	Т Т	.FALSE.		Consider thermal TKE sources in enthalpy	
ltmpcor	L	.FALSE.			
1-9 J	т	TDITE		equation	
lsflend	$\mid L \mid$.TRUE.		Use lower flux condition for vertical diffusion	
				calculation (TRUE) instead of a lower	
1		DATCE		concentration condition (FALSE)	
lexpcor	$\mid L \mid$.FALSE.		Explicit corrections of implicitly calculated	
				vertical diffusion of non-conservative scalars that	
1		200.0		are involved in sub grid condensation processes	
tur_len	R	500.0	m	Asymptotic maximal turbulent distance	
				$(\kappa * tur_len \text{ is the integral turbulent master})$	
		1000		length scale)	
pat_len	R	100.0	m	Effective length scale of thermal surface patterns	
				controlling TKE-production by sub grid	
				kata/ana-batic circulations. In case of	
1.0				$pat_len = 0$, this production is switched off.	
c_{diff}	R	0.2	1	Length scale factor for vertical diffusion of TKE.	
				In case of $c_diff = 0$, TKE is not diffused	
				vertically.	

Parameter	Type	Default	Unit	Description	Scope
a_stab	R	0.0	1	Factor for stability correction of turbulent length scale. In case of $a_stab = 0$, the turbulent length	
				scale is not reduced for stable stratification.	
a_hshr	R	0.20	1	Length scale factor for the separated horizontal	ltkeshs=.TRUE.
				shear mode. In case of $a_hshr = 0$, this shear	
1.1.0		0.0100	4	mode has no effect.	
alpha0	R	0.0123	1	Lower bound of velocity-dependent Charnock	
alpha0 max	R	0.0335	1	parameter Upper bound of velocity-dependent Charnock	
aipiiao_iiiax		0.0555	1	parameter. Setting this parameter to 0.0335 or	
				higher values implies unconstrained velocity	
				dependence	
alpha1	R	0.75	1	Scaling parameter for molecular roughness of	
				ocean waves	
tkhmin	R	0.75	m^2/s	Scaling factor for minimum vertical diffusion	
				coefficient (proportional to $Ri^{-2/3}$) for heat and	
.1		0.75	2 /	moisture	
tkmmin	R	0.75	m^2/s	Scaling factor for minimum vertical diffusion coefficient (proportional to $Ri^{-2/3}$) for	
				momentum	
tkmmin strat	R	4	m^2/s	Scaling factor for stratospheric minimum vertical	
			m /5	diffusion coefficient (proportional to $Ri^{-1/3}$) for	
				momentum, valid above 17.5 km (tropics above	
				22.5 km)	
${\it tkhmin_strat}$	R	0.75	m^2/s	Scaling factor for stratospheric minimum vertical	
				diffusion coefficient (proportional to $Ri^{-1/3}$) for	
				heat and moisture, valid above 17.5 km (tropics	
	т			above 22.5 km)	
$itype_synd$		2		Type of diagnostics of synoptic near surface variables:	
				1: Considering the mean surface roughness of a	
				grid box	
				2: Considering a fictive surface roughness of a	
				SYNOP lawn	
$rlam_heat$	R	1.0	1	Scaling factor of the laminar boundary layer for	
				heat (scalars). The larger rlam_heat, the larger	
				is the laminar resistance.	
rat_sea	R	10.0	1	Ratio of laminar scaling factors for scalars over	
				sea and land. The larger rat_sea, the larger is	
				the laminar resistance for a sea surface compared to a land surface.	
tkesmot	R	0.15	1	Time smoothing factor within [0, 1] for TKE. In	
O INCIDITIO 0	16	0.10	1	case of $tkesmot = 0$, no smoothing is active.	

Parameter	Type	Default	Unit	Description	Scope
fresmot	R	0.0	1	Vertical smoothing factor within [0, 1] for TKE	
				forcing terms. In case of $frcmot = 0$, no	
				smoothing is active.	
imode_frcsmot	I	1		1 = apply vertical smoothing (if frcsmot > 0)	
				uniformly over the globe	
				2 = restrict vertical smoothing to the tropics	
				(reduces the moist bias in the tropics while	
				avoiding adverse effects on NWP skill scores in	
				the extratropics)	
impl_s	R	1.20	1	Implicit weight near the surface (maximal value)	
impl_t	R	0.75	1	Implicit weight near top of the atmosphere	
				(minimal value)	
lconst_z0	L	.FALSE.		TRUE: horizontally homogeneous roughness	
				length z0	
$const_z0$	R	0.001	m	value for horizontally homogeneous roughness	$lconst_z0=.TRUE.$
				length z0	
ldiff_qi	L	.FALSE.		Turbulent diffusion of cloud ice, if .TRUE.	
itype_tran	I	2		type of surface-atmosphere transfer	
lprfcor	L	.FALSE.		using the profile values of the lowest main level	
				instead of the mean value of the lowest layer for	
				surface flux calculations	
lnonloc	L	.FALSE.		nonlocal calculation of vertical gradients used for	
				turbul. diff.	
lfreeslip	L	.FALSE.		.TRUE.: use a free-slip lower boundary	
				condition, i.e. neither momentum nor	
				heat/moisture fluxes (use for idealized runs	
				[only!)	
lcpfluc	L	.FALSE.		consideration of fluctuations of the heat capacity	
				of air	

Defined and used in: src/namelists/mo_turbdiff_nml.f90

2.46 upatmo_nml

Parameter	Type	Default	Unit	Description	Scope
Inontrad	L	.TRUE.		.TRUE.: Non-traditional terms in horizontal and vertical components of momentum budget (underlined) are switched on (standard for deep atmosphere): $ \frac{\partial v_n}{\partial t} + w[v_n/(a+z) - f_t] + \cdots = \cdots \\ \frac{\partial w}{\partial t} + v_n[-v_n/(a+z) + f_t] + \\ \frac{v_t[-v_t/(a+z) - f_n] + \cdots = \cdots}{\text{where } a \text{ is radius of model Earth,}} $ $ f_{n,t} = 2\Omega \cos(\varphi) e_{\varphi} \cdot e_{n,t} \text{ are non-traditional } $ Coriolis parameters, with edge-normal and edge-tangential components denoted by n and t, the angular velocity of the model Earth Ω , the latitude φ , and unit vectors $e_{}$.	${ m Ideepatmo}=.{ m TRUE}.$
lconstgrav	L	.FALSE.		.FALSE.: gravitational acceleration varies with height (standard for deep atmosphere) .TRUE.: gravitational acceleration is constant (as in case of shallow atmosphere). I.e. underlined factor in gravitational acceleration is set to 1: grav = const. $*[a/(a+z)]^2$.	${\it ldeepatmo} = .{\it TRUE}.$
lcentrifugal	L	.FALSE.		.TRUE.: Explicit centrifugal acceleration is switched on. I.e. underlined terms in horizontal and vertical components of momentum budget are taken into account: $\frac{\partial v_n}{\partial t} + \frac{\Omega^2(a+z)\sin(\varphi)\cos(\varphi)\boldsymbol{e_\varphi}\cdot\boldsymbol{e_n}}{\partial t} + \cdots = \cdots$ $\frac{\partial w}{\partial t} - \frac{\Omega^2(a+z)\cos^2(\varphi)}{\partial t} + \cdots = \cdots$ (If the factor const. in the gravitational	ldeepatmo = .TRUE.
ldeepatmo2phys	L	.FALSE.		acceleration of the model Earth, grav = const. * $[a/(a+z)]^2$, is assumed to be implicitly composed of a purely gravitational part and a centrifugal part, the latter is not subtracted out for lcentrifugal = .TRUE.!) .FALSE.: input fields to the physics parameterizations are computed in accordance with the shallow-atmosphere approximation in any case .TRUE.: input fields to the physics parameterizations are modified for the deep atmosphere. (Please note: the physics parameterizations themselves are not explicitly modified for the deep atmosphere!)	$egin{aligned} & ext{ldeepatmo} = . ext{TRUEAND.} \ & ext{iforcing} = 2 \; (ext{ECHAM}) \end{aligned}$
expol_start_height	R	70000	m	Height above which extrapolation of initial data starts.	$ itype_vert_expol = 2 $

Parameter	Type	Default	Unit	Description	Scope
expol_blending_scale	R	10000	m	Vertical distance above expol_start_height	$itype_vert_expol = 2$
expol_vn_decay_scale	R	10000	m	within which blending of linearly extrapolated state and climatological state takes place. Scale height of vertically exponentially decaying factor multiplied to the extrapolated horizontal wind (to alleviate stability-endangering wind magnitudes).	$itype_vert_expol = 2$
expol_temp_infty	R	400	K	Exospheric mean reference temperature of the climatology for the extrapolation blending.	$itype_vert_expol = 2$
$lexpol_sanitycheck$	L	.FALSE.		.TRUE.: Apply some rudimentary sanity check to the extrapolated atmospheric state in the region above expol_start_height (e.g., temperature values everywhere > 0). (Please, apply with care, since it is computationally relatively expensive.)	$itype_vert_expol = 2$

Defined and used in: src/namelists/mo_upatmo_nml.f90

3 Ocean-specific namelist parameters

3.1 ocean_physics_nml

Parameter	Type	Default	Unit	Description	Scope
i_sea_ice	I	1		0: No sea ice, 1: Include sea ice	
				.FALSE.: compute drag only	
richardson_factor_tracer	I	0.5e-5	m/s		
richardson_factor_veloc	I	0.5e-5	m/s		
l_constant_mixing	L	.FALSE.			

3.2 sea_ice_nml (relevant if run_nml/iforcing=2 (ECHAM))

Parameter	Type	Default	Unit	Description	Scope
i_ice_therm	I	2		Switch for thermodynamic model:	In an ocean run i_sea_ice
				1: Zero-layer model	must be $>=1$. In an
				2: Two layer Winton (2000) model	atmospheric run the ice surface
				3: Zero-layer model with analytical forcing (for	type must be defined.
				diagnostics)	
				4: Zero-layer model for atmosphere-only runs	
				(for diagnostics)	
i_ice_dyn	I	0		Switch for sea-ice dynamics:	
				0: No dynamics	
				1: FEM dynamics (from AWI)	

Parameter	Type	Default	Unit	Description	Scope
i_ice_albedo	I	1		Switch for albedo model. Only one is	
				implemented so far.	
i_Qio_type	I	2		Switch for ice-ocean heat-flux calculation	Defaults to 1 when
				method:	i_ice_dyn=0 and 2 otherwise.
				1: Proportional to ocean cell thickness (like	
				MPI-OM)	
				2: Proportional to speed difference between ice	
				and ocean	
kice	I	1		Number of ice classes (must be one for now)	
hnull	R	0.5	m	Hibler's h_0 parameter for new-ice growth.	
hmin	R	0.05	m	Minimum sea-ice thickness allowed.	
ramp_wind	R	10	days	Number of days it takes the wind to reach	
				correct strength. Only used at the start of an	
				OMIP/NCEP simulation (not after restart).	

4 Namelist parameters for testcases (NAMELIST_ICON)

The ICON model code includes several experiments, so-called test cases, for the shallow water model as well as the 3-dimensional atmosphere. Depending on the specified experiment, initial conditions and boundary conditions are computed internally.

4.1 ha_testcase_nml (Scope: ltestcase=.TRUE. and iequations=[0,1,2] in run_nml)

Parameter	Type	Default	Unit	Description	Scope
ctest_name	C	'JWw'		Name of test case:	
				'SW_GW': gravity wave	$lshallow_water=.TRUE.$
				'USBR': unsteady solid body rotation	$lshallow_water=.TRUE.$
				'Will_2': Williamson test 2	$lshallow_water=.TRUE.$
				'Will_3': Williamson test 3	$lshallow_water=.TRUE.$
				'Will 5': Williamson test 5	lshallow water=.TRUE.
				'Will 6': Williamson test 6	lshallow water=.TRUE.
				'GW': gravity wave (nlev=20 only!)	lshallow water=.FALSE.
				'LDF': local diabatic forcing test without physics	lshallow water=.FALSE.
					and iforcing=4
				'LDF-Moist': local diabatic forcing test with	lshallow_water=.FALSE.,
				physics initalised with zonal wind field	and iforcing=5
				'HS': Held-Suarez test	$lshallow_water=.FALSE.$
				'JWs': Jablonowski-Will. steady state	$lshallow_water=.FALSE.$
				'JWw': Jablonowski-Will. wave test	$lshallow_water=.FALSE.$
				'JWw-Moist': Jablonowski-Will. wave test	$lshallow_water=.FALSE.$
				including moisture	
				'APE': aqua planet experiment	$lshallow_water=.FALSE.$
				'MRW': mountain induced Rossby wave	$lshallow_water=.FALSE.$
				'MRW2': modified mountain induced Rossby	$lshallow_water=.FALSE.$
				wave	_

Parameter	Type	Default	Unit	Description	Scope
				'PA': pure advection 'SV': stationary vortex	lshallow_water=.FALSE. lshallow_water=.FALSE., ntracer = 2
				'DF1': deformational flow test 1 'DF2': deformational flow test 2 'DF3': deformational flow test 3 'DF4': deformational flow test 4	
tracer_inidist_list	I(:)	1		'RH': Rossby-Haurwitz wave test For a subset of testcases pre-defined initial tracer distributions are available. This namelist parameter specifies the initial distribution for each tracer. In the following the testcases and	lshallow_water=.FALSE. ha_testcase_nml='PA', 'JABW','DF'
				the pre-defined numbers are given: 'PA': 4,5,6,7,8 'JABW':1,2,3,4 'DF': 5,6,7,8,9 For more details on the initial distributions, please have a look into the code.	
rotate_axis_deg	R	0.0	deg	Earth's rotation axis pitch angle	ctest_name= 'Will_2', 'Will_3', 'JWs', 'JWw', 'PA', 'DF1234'
gw brunt vais	R	0.01	1/s	Brunt Vaisala frequency	ctest name= 'GW'
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R	0.0	m/s	zonal wind parameter	ctest name= 'GW'
gw_lon_deg	R	180.0	deg	longitude of initial perturbation	ctest_name= 'GW'
${ m gw_lat_deg}$	R	0.0	deg	latitude of initial perturbation	ctest_name= 'GW'
${ m jw_uptb}$	R	1.0	m/s (?)	amplitude of the wave pertubation	ctest_name= 'JWw'
${ m mountctr_lon_deg}$	R	90.0	deg	longitude of mountain peak	$ctest_name = 'MRW(2)'$
${ m mountctr_lat_deg}$	R	30.0	deg	latitude of mountain peak	$ctest_name = 'MRW(2)'$
${ m mountctr_height}$	R	2000.0	m	mountain height	$ctest_name = 'MRW(2)'$
mountctr half width	R	1500000.0	m	mountain half width	ctest name= 'MRW(2)'
$ \underline{\text{mount } u0} $	R	20.0	m/s	wind speed for MRW cases	ctest name= 'MRW(2)'
${ m rh_wavenum}$	I	4		wave number	ctest_name= 'RH'
rh_init_shift_deg	R	0.0	deg	pattern shift	ctest_name= 'RH'
ihs_init_type	I	1		Choice of initial condition for the Held-Suarez test. 1: the zonal state defined in the JWs test case; other integers: isothermal state (T=300 K, ps=1000 hPa, u=v=0.)	ctest_name= 'HS'
lhs_vn_ptb	L	.TRUE.		Add random noise to the initial wind field in the Held-Suarez test.	ctest_name= 'HS'
hs_vn_ptb_scale	R	1.	m m/s	Magnitude of the random noise added to the initial wind field in the Held-Suarez test.	ctest_name= 'HS'
lrh_linear_pres	L	.FALSE.		Initialize the relative humidity using a linear function of pressure.	ctest_name= 'JWw-Moist','APE', 'LDF-Moist'

Parameter	Type	Default	Unit	Description	Scope
rh_at_1000hpa	R	0.75		relative humidity	ctest_name=
				0,1	'JWw-Moist','APE',
				at 1000 hPa	'LDF-Moist'
linit_tracer_fv	L	.TRUE.		Finite volume initialization for tracer fields	ctest name='PA'
ape_sst_case	C	'sst1'		SST distribution selection	ctest_name='APE'
				'sst1': Control experiment	
				'sst2': Peaked experiment	
				'sst3': Flat experiment	
				'sst4': Control-5N experiment	
				'sst_qobs': Qobs SST distribution exp	
				'sst_ice': Control SST distribution with -1.8 C	
1116	_			above 64 N/S .	N. D.E.
ildf_init_type	1	0		Choice of initial condition for the Local diabatic	ctest_name= 'LDF'
				forcing test. 1: the zonal state defined in the JWs	
				test case; other: isothermal state (T=300 K, ps=1000 hPa, u=v=0.)	
ldf symm	\mid L	.TRUE.		Shape of local diabatic forcing:	ctest name=
Idi_symm		.11001.		.TRUE.: local diabatic forcing symmetric about	'LDF','LDF-Moist'
				the equator (at 0 N)	EDI, EDI MOISO
				.FALSE.: local diabatic forcing asym. about the	
				equator (at 30 N)	

Defined and used in: src/testcases/mo_ha_testcases.f90

4.2 nh_testcase_nml (Scope: ltestcase=.TRUE. and iequations=3 in run_nml)

Parameter	Type	Default	Unit	Description	Scope
nh_test_name	C	'jabw'		testcase selection	
				'zero': no orography	
				'bell': bell shaped mountain at 0E,0N	
				'schaer': hilly mountain at 0E,0N	$is_plane_torus=.TRUE.$
				'jabw': Initializes the full Jablonowski	
				Williamson test case.	
				'jabw s': Initializes the Jablonowski	
				Williamson steady state test case.	
				' jabw m': Initializes the Jablonowski	
				Williamson test case with a mountain instead of	
				the wind perturbation (specify mount_height).	
				'mrw nh': Initializes the full	
				Mountain-induced Rossby wave test case.	
				'mrw2 nh': Initializes the modified	
				mountain-induced Rossby wave test case.	

Parameter	Type	Default	Unit	Description	Scope
				'mwbr_const': Initializes the mountain wave	
				with two layers test case. The lower layer is	
				isothermal and the upper layer has constant	
				brunt vaisala frequency. The interface has	
				constant pressure.	
				'PA': Initializes the pure advection test case.	
				'HS nh': Initializes the Held-Suarez test case.	
				At the moment with an isothermal atmosphere	
				at rest (T=300K, ps=1000hPa, u=v=0,	
				topography=0.0).	
				'HS jw': Initializes the Held-Suarez test case	
				with Jablonowski Williamson initial conditions	
				and zero topography.	
				'APE nwp, APE echam, APE nh,	
				APEc nh, ': Initializes the APE experiments.	
				With the jabw test case, including moisture.	
				'wk82': Initializes the Weisman Klemp test case	l limited area =.TRUE.
				'g lim area': Initializes a series of general	
				limited area test cases: itype atmos ana	
				determines the atmospheric profile,	
				itype anaprof uv determines the wind profile	
				and itype topo and determines the topography	
				'dcmip bw 11': Initializes (moist) baroclinic	
				instability/wave (DCMIP2016)	
				= /	
				'dcmip_pa_12': Initializes Hadley-like	
				meridional circulation pure advection test case.	l:-I:- DATCE
				'dcmip_rest_200': atmosphere at rest test	lcoriolis = .FALSE.
				(Schaer-type mountain)	I I DATED
				'dcmip_mw_2x': nonhydrostatic mountain	lcoriolis = .FALSE.
				waves triggered by Schaer-type mountain	
				'dcmip_gw_31': nonhydrostatic gravity waves	
				triggered by a localized perturbation (nonlinear)	
				'dcmip_gw_32': nonhydrostatic gravity waves	$l_limited_area = .TRUE.$
				triggered by a localized perturbation (linear)	and lcoriolis = .FALSE.
				'dcmip_tc_51': tropical cyclone test case with	lcoriolis = .TRUE.
				'simple physics' parameterizations (not yet	
				implemented)	1
				'dcmip_tc_52': tropical cyclone test case with	lcoriolis = .TRUE.
				with full physics in Aqua-planet mode	
				'CBL': convective boundary layer simulations	is_plane_torus= .TRUE.
				for LES package on torus (doubly periodic) grid	
				'bb13': linear gravity- and sound-wave	is_plane_torus= .TRUE.
				expansion in a channel (Baldauf, Brdar (2013)	
				QJRMS)	

Parameter	Type	Default	Unit	Description	Scope
				'lahade': deep-atmosphere sound wave testcase	ldeepatmo = .TRUEAND.
				providing comparison of numerical with	lcoriolis = .TRUEAND.
				analytical solution according to method of	lcentrifugal = .TRUE.
				Laeuter, Handorf and Dethloff, J. Comp.	
				Phys.(2005) (requires to set	
				src/shared/mo_physical_constants: grav to a	
				very small value, e.g. $grav = 1.0E-30$)	
is_toy_chem	L	.FALSE.		Terminator toy chemistry activated when	
				.TRUE.	
tracer_inidist_list	I(:)	1		For a subset of testcases pre-defined initial tracer	nh_test_name='PA',
				distributions are available. This namelist	'JABW','DF'
				parameter specifies the initial distribution for	
				each tracer. In the following the testcases and	
				the pre-defined numbers are given:	
				'PA': 4,5,6,7,8	
				'JABW':1,2,3,4	
				'DF': 5,6,7,8,9	
				For more details on the initial distributions,	
				please have a look into the code.	
$ m dcmip_bw\%$				DCMIP2016 baroclinic wave test	'dcmip_bw_11'
deep	I	0		deep atmosphere	
				(1 = yes or 0 = no)	
moist	I	0		include moisture, i.e. $qv \neq 0$	
				(1 = yes or 0 = no)	
pertt	I	0		type of initial perturbation	
				(0 = exponential, 1 = stream function)	
toy_chem%				terminator toy chemistry	is_toy_chem=.TRUE.
dt_chem	R	300	S	chemistry tendency update interval	
dt_cpl	R	300	S	chemistry-transport coupling interval	
id_cl				Tracer container slice index for species CL	
id_cl2	1	2	,	Tracer container slice index for species CL2	
jw_up	R	1.0	m/s	amplitude of the u-perturbation in jabw test case	nh_test_name='jabw'
jw_u0	R	35.0	m/s	maximum zonal wind in jabw test case	nh_test_name='jabw'
jw_temp0	R	288.0	K	horizontal-mean temperature at surface in jabw	$nh_test_name='jabw'$
	 D	20.0	,	test case	, (2)
u_0 mrw	R	20.0	m/s	wind speed for mrw(2) and mwbr_const cases	nh_test_name='mrw(2)_nh' and 'mwbr_const'
mount height mrw	R	2000.0	m	$\begin{array}{c} \\ \\ \\ \end{array}$ maximum mount height in $mrw(2)$ and	nh test name='mrw(2) nh'
	10	2000.0	m	mwbr const	and 'mwbr const'
mount half width	R	1500000.0	m	half width of mountain in mrw(2), mwbr_const	nh test name='mrw(2) nh',
mount_nan_width	10	100000.0	111	and bell	'mwbr const' and 'bell'
mount width	B	1000.0	m	width of mountain	mwoi_const and ben
mount_width 2	R R	100.0	m	a 2nd width scale of mountain	nh_test_name='schaer'
mount_widtin_2	11	100.0	m	a 2nd width scale of modificant	m_test_name= schaer

Parameter	Type	Default	Unit	Description	Scope
mount_lonctr_mrw_deg	R	90.	deg	lon of mountain center in $mrw(2)$ and	$nh_test_name = 'mrw(2)_nh'$
				$mwbr_const$	and 'mwbr_const'
${ m mount_latctr_mrw_deg}$	\mathbb{R}	30.	\deg	lat of mountain center in $mrw(2)$ and	nh_test_name= 'mrw(2)_nh'
				$mwbr_const$	and 'mwbr_const'
temp_i_mwbr_const	R	288.0	K	temp at isothermal lower layer for mwbr_const case	nh_test_name= 'mwbr_const'
p_int_mwbr_const	R	70000.	Pa	pres at the interface of the two layers for mwbr const case	nh_test_name= 'mwbr_const'
bruntvais_u_mwbr_const	R	0.025	1/s	constant brunt vaissala frequency at upper layer for mwbr const case	nh_test_name= 'mwbr_const'
mount height	\mathbb{R}	100.0	m	peak height of mountain	nh test name='bell'
layer thickness	$ ight _{\mathrm{R}}$	-999.0	m	thickness of vertical layers	If layer thickness < 0 , the
				·	vertical level distribution is
					read in from externally given HYB PARAMS XX.
n_flat_level	I	2		level number for which the layer is still flat and not terrain-following	$\begin{array}{c}$
nh u0	R	0.0	m/s	initial constant zonal wind speed	nh test name = 'bell'
nh t0	R	300.0	\mathbf{K}	initial temperature at lowest level	nh test name = 'bell'
nh brunt vais	R	0.01	1/s	initial Brunt-Vaisala frequency	nh test name = 'bell'
torus domain length	R	100000.0	m	length of slice domain	nh test name = 'bell',
torus_domain_rongen		10000000		iongon of sheet domain	lplane=.TRUE.
rotate axis deg	\mathbb{R}	0.0	deg	Earth's rotation axis pitch angle	nh test name= 'PA'
lhs_nh_vn_ptb	L	.TRUE.		Add random noise to the initial wind field in the Held-Suarez test.	nh_test_name= 'HS_nh'
lhs_fric_heat	L	.FALSE.		add frictional heating from Rayleigh friction in the Held-Suarez test.	nh_test_name= 'HS_nh'
hs_nh_vn_ptb_scale	R	1.	m m/s	Magnitude of the random noise added to the initial wind field in the Held-Suarez test.	nh_test_name= 'HS_nh'
rh_at_1000hpa	R	0.7	1	relative humidity at 1000 hPa	nh_test_name= 'jabw',
					nh_test_name= 'mrw'
qv_max	$\mid R \mid$	20.e-3	kg/kg	specific humidity in the tropics	nh_test_name= 'jabw',
					nh_test_name= 'mrw'
ape_sst_case	C	'sst1'		SST distribution selection	nh_test_name='APE_nwp',
				'sst1': Control experiment	'APE_echam'
				'sst2': Peaked experiment	
				'sst3': Flat experiment	
				'sst4': Control-5N experiment	
				'sst_qobs': Qobs SST distribution exp.	
				'sst_const': constant SST	
ape_sst_val	R	29.0	m degC	aqua planet SST for ape_sst_case='sst_const'	nh_test_name= 'APE_nwp', 'APE_echam'
linit_tracer_fv	L	.TRUE.		Finite volume initialization for tracer fields	pure advection tests, only
lcoupled rho	L	.FALSE.		Integrate density equation 'offline'	pure advection tests, only

-	Scope		Description	Unit	Default	Type	Parameter
$nh_test_name='wk82'$	nh_{test}	· ·	maximum specific hum	Kg/kg	0.014	R	qv_max_wk
			the surface, range 0.012				
			used to vary the buoya				
$h_{test_name = 'wk82', 'bb13'}$	nh_test	inity height	zonal wind at infinity h	m/s	20.	R	u_infty_wk
			range 0 45.	<u> </u>			· -
		wind shear	used to vary the wind s				
nh test name='wk82'	ion nh test	and of the thermal perturbation		K	2.	R	bub amp
$\frac{1}{1}$ hh test name='wk82'		enter of the thermal perturbation		deg	0.	R	bubctr lat
- $ -$			longitude of the center	deg	90.	R	bubctr lon
			perturbation	4.0	001	1	_ ion
$_{ m s}$ plane grid=.TRUE.	is plane	center of the thermal	x-position of the center	m	0.0	R	bubetr x
prancgrid1160D.	l ₁₂ _brane	comor or one onerman	perturbation	111	0.0	10	oubcoi_A
s plane grid TDHF	ic plens	center of the thermal	y-position of the center	m	0.0	D	huhetr v
$s_{plane_grid} = .TRUE.$	is_prane	center of the thermal		m	0.0	R	bubctr_y
nh toot name !1-99!		ton of the thempolis sets here	perturbation		1.400	_D	hubata a
$\frac{1}{1}$ test_name='wk82'		ter of the thermal perturbation		m	1400.	R	bubctr_z
nh_test_name='wk82'		of the thermal perturbation		m	10000.	R	bub_hor_width
$\frac{1}{1}$ _test_name='wk82'		the thermal perturbation		m	1400.	R	bub_ver_width
${ m nh_test_name} =$			kind of atmospheric pr		1	I	itype_atmo_ana
g_{lim} area'	'g_lim_	· ·	1 piecewise N constant				
			2 piecewise polytropic				
${ m nh_test_name} =$	${ m nh_test}$	ile:	kind of wind profile:		1	I	$itype_anaprof_uv$
g_lim_area'	'g lim	g wind layers	1 piecewise linear wind				
	~ -		2 constant zonal wind				
			3 constant meridional				
$_{ m nh}$ test $_{ m name}=$	nh test		kind of orography:		1	I	itype topo ana
g lim area'			1 schaer test case mour				v I _ I _
<u> </u>	0		2 gaussian_2d mounta				
			3 gaussian 3d mounta				
			any other no orography				
nh tost namo-	nh test	graphy esired layers with a constant			1	I	nlawara neonat
nh_test_name=					1	1	nlayers_nconst
g_lim_area' and		quency	Brunt-Vaisala-frequenc				
$type_atmo_ana=1$		Cal Cat N		_D	100000	_D	1
$ \frac{1}{1} = \frac{1}{1} $		ase of the first N constant layer	pressure at the base of	Pa	100000.	R	p_base_nconst
g_lim_area' and							
type_atmo_ana=1				1			
${ m nh_test_name} =$		ature at the base of the first N	*	K	288.	R	$theta0_base_nconst$
g_lim_area' and			constant layer				
$type_atmo_ana = 1$							
${ m nh_test_name} =$	${ m nh_test}$	e of each of the N constant	height of the base of ea	m	0., 1500., 12000.	R(nlayers	h_nconst
$\frac{-}{g}$ lim area' and	'g lim		layers			nconst)	
$\frac{1}{1}$ type atmo ana=1			-			- ′	
$ \frac{1}{1} \frac{1}{1} = \frac{1}{1} $ $ \frac{1}{1} \frac{1}{1} = \frac{1}{1} $		equency at each of the N	Brunt-Vaisala-frequenc	1/s	0.01	R(nlavers	N nconst
g lim area' and		1 0	-	<i>'</i>		1 '	_
type atmo ana=1			120,012				
 glima typeati ihtest_ glima	'g_lim_a itype_at nh_test_ 'g_lim_a	equency at each of the N	layers	$1/\mathrm{s}$	0.01	_nconst) R(nlayers _nconst)	N_nconst

Parameter	Type	Default	Unit	Description	Scope
rh_nconst	R(nlayers	0.5	%	relative humidity at the base of each N constant	nh_test_name=
	-nconst)			layers	'g_lim_area' and
					$itype_atmo_ana=1$
rhgr_nconst	R(nlayers	0.	%	relative humidity gradient at each of the N	$nh_test_name =$
	-nconst)			constant layers	'g_lim_area' and
					itype_atmo_ana=1
nlayers_poly	I	2		Number of the desired layers with constant	$nh_test_name =$
				gradient temperature	'g_lim_area' and
					itype_atmo_ana=2
p_base_poly	R	100000.	Pa	pressure at the base of the first polytropic layer	$nh_test_name =$
					'g_lim_area' and
					itype_atmo_ana=2
h_poly	R(nlayers	0., 12000.	m	height of the base of each of the polytropic layers	$nh_test_name =$
	poly				'g_lim_area' and
					itype_atmo_ana=2
t_poly	R(nlayers)	288., 213.	K	temperature at the base of each of the polytropic	$nh_test_name =$
	$ $ _poly)			layers	'g_lim_area' and
					itype_atmo_ana=2
rh_poly	R(nlayers)	0.8, 0.2	%	relative humidity at the base of each of the	$nh_test_name =$
	-poly			polytropic layers	'g_lim_area' and
					itype_atmo_ana=2
rhgr_poly	R(nlayers)	5.e-5, 0.	%	relative humidity gradient at each of the	$nh_test_name =$
	_poly)			polytropic layers	'g_lim_area' and
					itype_atmo_ana=2
nlayers_linwind	I	2		Number of the desired layers with constant U	$nh_test_name =$
				gradient	'g_lim_area' and
					itype_anaprof_uv=1
h_linwind	R(nlayers	0., 2500.	m	height of the base of each of the linear wind	$nh_test_name =$
	$\begin{bmatrix} -\text{linwind} \end{bmatrix}$			layers	'g_lim_area' and
					itype_anaprof_uv=1
u_linwind	R(nlayers	5, 10.	m/s	zonal wind at the base of each of the linear wind	nh_test_name=
	$ $ $_{-}$ linwind)			layers	'g_lim_area' and
					itype_anaprof_uv=1
ugr_linwind	R(nlayers	0., 0.	1/s	zonal wind gradient at each of the linear wind	nh_test_name=
	$ $ $_{-}$ linwind)			layers	'g_lim_area' and
					itype_anaprof_uv=1
vel_const	R	20.	m/s	constant zonal/meridional wind	nh_test_name=
				$(itype_anaprof_uv=2,3)$	'g_lim_area' and
	_		,		itype_anaprof_uv=2,3
mount_lonc_deg	R	90.	deg	longitud of the center of the mountain	$nh_test_name =$
			,		'g_lim_area'
mount_latc_deg	R	0.	deg	latitud of the center of the mountain	$nh_{test_name} =$
					'g_lim_area'

Parameter	Type	Default	Unit	Description	Scope
schaer_h0	R	250.	m	h0 parameter for the schaer mountain	nh_test_name= 'g_lim_area' and
achoon o	D	5000.	****	a name mater for the school recent in	itype_topo_ana=1
schaer_a	R	5000.	m	-a- parameter for the schaer mountain, also half width in the north and south side of the	nh_test_name= 'g lim area' and
				finite ridge to round the sharp edges	g_nm_area and itype topo ana=1,2
schaer lambda	R	4000.	m	lambda parameter for the schaer mountain	nh test name=
schael_lambda	16	4000.	m	lambda parameter for the schaer modificant	'g_lim_area' and
					itype topo ana=1
lshear dcmip	L	FALSE		run dcmip mw 2x with/without vertical wind	nh test name=
isiicai_deiiiip		THESE		shear	'dcmip mw 2x'
				FALSE: dcmip_mw_21: non-sheared	demip_mw_zx
				TRUE: dcmip mw 22: sheared	
halfwidth_2d	\mid R	10000.	m	half lenght of the finite ridge in the north-south	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	10	10000.		direction	'g_lim_area' and
					itype topo ana=1,2
m height	\mid R	1000.	m	height of the mountain	nh test name=
		2000.			'g_lim_area' and
					$\begin{array}{cccccccccccccccccccccccccccccccccccc$
m_{width_x}	$ ight _{\mathrm{R}}$	5000.	m	half width of the gaussian mountain in the	$\begin{array}{cccc} & & & & & & & & & & & & \\ & & & & & & $
				east-west direction	'g_lim_area' and
				half width in the north-south direction in the	itype topo ana=2,3
				rounding of the finite ridge (gaussian 2d)	· · · - · · - · · - · ·
m_{width_y}	$ ight _{\mathrm{R}}$	5000.	m	half width of the gaussian mountain in the	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
				north-south direction	'g_lim_area' and
					$\begin{array}{cccccccccccccccccccccccccccccccccccc$
gw_u0	ight R	0.	m/s	maximum amplitude of the zonal wind	nh test name=
0 =			, ,		'dcmip_gw_3X'
gw_clat	R	90.	deg	Lat of perturbation center	nh test name=
- -					'dcmip_gw_3X'
gw_delta_temp	ight R	0.01	K	maximum temperature perturbation	$nh_test_name =$
					'dcmip_gw_32'
$u_cbl(2)$	R	0:0	m/s and	to prescribe initial zonal velocity profile for	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
			1/s	convective boundary layer simulations where	
				u_cbl(1) sets the constant and u_cbl(2) sets the	
				vertical gradient	
$v_cbl(2)$	R	0:0	m/s and	to prescribe initial meridional velocity profile for	$nh_test_name=CBL$
			1/s	convective boundary layer simulations where	
				$v_{cbl}(1)$ sets the constant and $v_{cbl}(2)$ sets the	
				vertical gradient	
$\mathrm{th_cbl}(2)$	R	290:0.006	K and	to prescribe initial potential temperature profile	$nh_test_name=CBL$
			K/m	for convective boundary layer simulations where	
				th_cbl(1) sets the constant and th_cbl(2) sets	
				the gradient	

Parameter	Type	Default	Unit	Description	Scope
lahade%icase	I	1		lahade sub-cases:	nh_test_name='lahade'
				1: spherical sound wave (currently the only	
				sub-case)	
lahade%omega	R	0	m/s	Model Earth's angular velocity in units of the	
			·	velocity the center of the sound wave is advected	
				according to the rotation	
lahade%bkg_temp	R	250	K	Temperature of background atmosphere	
lahade%bkg_pres	R	100000	Pa	Pressure of background atmosphere	
lahade%ptb_ctr_lat	R	0	\deg	Center latitude of spherical sound wave	
				perturbation	
$lahade\%ptb_ctr_lon$	R	0	\deg	Center longitude of spherical sound wave	
				perturbation	
lahade%ptb_ctr_hgt	R	0.5	->	Center height of spherical sound wave	
				perturbation, in units of the model top height	
				[top_height]	
lahade%ptb_rad_min	R	0.04	->	Min. radius of spherical shell within which initial	
				perturbation is non-zero, in units of distance	
				from center to model bottom or model top,	
				whichever is shorter	
				$[\min\{ptb_ctr_hgt,(1-ptb_ctr_hgt)\} *$	
				top_height]	
lahade%ptb_rad_max	R	0.6	->	Max. radius of spherical shell	
				$[\min\{ptb_ctr_hgt,(1-ptb_ctr_hgt)\} *$	
				$top_height]$	
lahade%ptb_amp_temp	R	0.05	K	Temperature amplitude of initial sound wave	
				perturbation	
lahade%ptb_n_rad	R	1	1	Number of radial wave crests of initial	
				$perturbation = (ptb_rad_max - ptb_rad_min)$	
				/ radial wave length	
lahade%output_ptb_var	C			Select, if the numerical and analytical solutions	
				of a sound-wave-perturbation-variable shall be	
				output. Currently available variables are:	
				• "temp": temperature perturbation	
				• "rho": density perturbation	
				• "pres": pressure perturbation	
				Requirements: the fields "extra 3d1" and	
				"extra 3d2" will contain the numerical and the	
				analytical solutions, respectively. Both have to	
				be added to the ml_varlist of the output_nml of	
				your choice in combination with inextra $3d = 2$.	

5 External data

5.1 extpar_nml (Scope: itopo=1 in run_nml)

Parameter	Type	Default	Unit	Description	Scope
itopo	I	0		0: analytical topography/ext. data	
				1: topography/ext. data read from file	
$itype_vegetation_cycle$	I	1		1: annual cycle of LAI solely based on NDVI	
				climatology	
				2: additional use of monthly T2M climatology to	
				get more realistic values in extratropics (requires	
				external parameter data contining this field)	
				3: as 2 with additional coupling of vegetation	
				parameters to T2M bias in transitional seasons	
				(requires DWD assimilation cycle including soil	
				moisture analysis)	
$n_iter_smooth_topo$	I(n_dom)	0		iterations of topography smoother	itopo = 1
${\it fac_smooth_topo}$	R	0.015625		pre-factor of topography smoother	$n_{\text{iter_smooth_topo}} > 0$
${\it hgtdiff}_{\it max}_{\it smooth}_{\it topo}$	R	0.	m	RMS height difference to neighbor grid points at	$n_{\text{iter_smooth_topo}} > 0$
				which the smoothing pre-factor	
				fac_smooth_topo reaches its maximum value	
				(linear proportionality for weaker slopes)	
$ m height diff_threshold$	R(n_dom)	3000.	m	height difference between neighboring grid points	
				above which additional local nabla2 diffusion is	
				applied	
$lrevert_sea_height$	L	.FALSE.		If .TRUE., sea point heights will be reverted to	$n_{iter_smooth_topo} > 0$
				original (raw data) heights after topography	
				smoothing was applied.	
l_emiss		.TRUE.		read and use external surface emissivity map	itopo = 1
${ m extpar_filename}$	C			Filename of external parameter input file,	
				default: " <path>extpar_<gridfile>". May</gridfile></path>	
				contain the keyword <path> which will be</path>	
	_			substituted by model_base_dir.	
read_nc_via_cdi	L	.FALSE.		.TRUE.: read NetCDF input data via cdi library	
				.FALSE.: read NetCDF input data using parallel	
				NetCDF library	
				Note: GRIB2 input data is always read via cdi	
				library / GRIB API. For NetCDF input, this	
				switch allows optimizing the input performance,	
				but there is no general rule which option is	
				faster.	

Parameter	Type	Default	Unit	Description	Scope
extpar_varnames_map_ file	С	, ,		Filename of external parameter dictionary, This	
				is a text file with two columns separated by	
				whitespace, where left column: NetCDF name,	
				right column: GRIB2 short name. It is required,	
				if external parameter are read from a file in	
				GRIB2 format.	

Defined and used in: src/namelists/mo_extpar_nml.f90

6 External packages

7 Information on vertical level distribution

If no vertical sleve coordinate is chosen (ivctype / =2), the hydrostatic and nonhydrostatic models need hybrid vertical level information to generate the terrain following coordinates. The hybrid level specification is stored in <icon home>/hyb_params/HYB_PARAMS_<nlev>. The hydrostatic model assumes to get pressure based coordinates, the nonhydrostatic model expects height based coordinates. For further information see <icon home>/hyb_params/README.

8 Compile flag for mixed precision

To speed up code parts strongly limited by memory bandwidth (primarily the dynamical core and the tracer advection), an option exists to use single precision for variables that are presumed to be insensitive to computational accuracy. This affects most local arrays in the dynamical core routines (solve_nonhydro and velocity_advection), some local arrays in the tracer transport routines, the metrics coefficients, arrays used for storing tendencies or differenced fields (gradients, divergence etc.), reference atmosphere fields, and interpolation coefficients. Prognostic variables and intermediate variables affecting the accuracy of mass conservation are still treated in double precision. To activate the mixed-precision option, the cpp flags '-D__MIXED_PRECISION' and '-D__MIXED_PRECISION_2' need to be specified in the configuration settings used for generating the Makefile. The latter flag is used for physics tendencies. Note that interpolation to a latitude-longitude grid is not supported for single-precision variables; if you desire to output physics tendency fields on a regular grid for diagnostic purposes, do not set '-D__MIXED_PRECISION_2'.

A Arithmetic expression evaluation

The mo_expression module evaluates basic arithmetic expressions specified by character-strings. It is possible to include mathematical functions, operators, and constants. An application of this module is the evaluation of arithmetic expressions povided as namelist parameters.

Besides, Fortran variables can be linked to the expression and used in the evaluation. The implementation supports scalar input variables as well as 2D and 3D fields. From a users' point of view, the basic usage of this module is described in Section A.1 below. Technically, infix expressions are processed based on a Finite State Machine (FSM) and Dijkstra's shunting yard algorithm. A more detailed described of the Fortran interface is given in Section A.3.

A.1 Examples for arithmetic expressions

Basic examples:

- fgrt(2.0)"
- ßin(45*pi/180.) * 10 + 5"
- if(1. > 2, 99, -1.*pi)"

• "min(1,2)"

Variables are used with a bracket notation:

• "sqrt([u]^2 + [v]^2)"

Note that the use of variables requires that these are enabled ("linked") by the Fortran routine that calls the mo_expression module.

A.2 Expression syntax

A.2.1 List of functions

name	$\# { m args}$	description
log(), exp()	1	natural logarithm and its inverse function.
sin(), cos()	1	trigonometric functions
sqrt()	1	square root
min(), max()	2	minimum and maximum of two values
if(value, then, else)	3	conditional expression $(value > 0.)$

A.2.2 List of operators

name	evaluates to			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$(a+b), (a-b), (a*b), (a/b)$ a^b			
a > b	$\begin{cases} 1, & \text{if } a > b, \\ 0, & \text{otherwise.} \end{cases}$			
a < b	$\begin{cases} 1, & \text{if } a < b, \\ 0, & \text{otherwise.} \end{cases}$			

A.2.3 List of available constants

name of constant	assigned value	description
pi	4 atan(1)	mathematical constant equal to a circle's cir-
		cumference divided by its diameter
r	$6.371229 \cdot 10^6$	Earth's radius ¹

A.3 Usage with Fortran

The minimal Fortran interface is as follows:

- 1. The TYPE expression which is initialized with the character-string that specifies the arithmetic expression.
- 2. The type-bound procedure evaluate(), which returns the result (scalar or array-shaped) as a POINTER.
- 3. The type-bound procedure link() connecting a variable to a name in the character-string expression.

A.3.1 Fortran examples

The following examples illustrate the arithmetic expression parser. The calls to DEALLOCATE the data structures have been ommitted for the sake of brevity:

1. Scalar arithmetic expression:

```
formula = expression("sin(45*pi/180.) * 10 + 5")
CALL formula%evaluate(val)
... use "val" for some purpose ...
```

2. Masking of a 2D array as an example for the link procedure:

```
formula = expression("if([z_sfc] > 2., [z_sfc], 0. )")
CALL formula%link("z_sfc", z_sfc)
CALL formula%evaluate(val_2D)
... use "val_2D(:,:)" for some purpose ...
```

A.3.2 Error handling

Invalid arithmetic expressions yield ëmptyëxpression objects. When these are evaluated, a NULL() pointer is returned. A successful expression evaluation can be tested with the err no variable:

```
IF (formula%err_no == ERR_NONE) THEN
    ...
END IF
```

In case of error, the err_no variable also provides the reason for the aborted evaluation process.

A.4 Remarks

- Variable names are treated case-sensitive!
- For 3D array input it is implicitly assumed that 2D fields are embedded in 3D fields as "3D(:,level,:) = 2D(:,:)".

B Changes incompatible with former versions of the model code

```
Change:var_names_map_file, out_varnames_map_fileDate of Change:2013-04-25Revision:12016
```

- $\bullet \ {\rm Renamed} \ {\bf var} \ \ {\bf names} \ \ {\bf map} \ \ {\bf file} \to {\bf output} \ \ {\bf nml} \ \ {\bf dict}.$
- $\bullet \ \ {\rm Renamed} \ \ {\bf out_varnames_map_file} \ \to {\bf netcdf_dict}.$

¹This number seems to be based on Hayford's 1910 estimate of the Earth. It is used in ICON as well as MPAS and was almost certainly taken from the Jablonowski and Williamson test case (QJRMS, 2006).

• The dictionary in netcdf_dict is now reversed, s.t. the same map file as in output_nml_dict can be used to translate variable names to the ICON internal names and back.

Change: output nml: namespace

Date of Change: $2013-0\overline{4}-26$ Revision:12051

• Removed obsolete namelist variable namespace from output nml.

Change: gribout nml: generatingCenter, generatingSubcenter

 Date of Change:
 2013-04-26

 Revision:
 12051

- Introduced new namelist variables generatingCenter and generatingSubcenter.
- If not set explicitly, center and subcenter information is copied from the input grid file

Change: radiation nml: albedo type

 Date of Change:
 2013-05-03

 Revision:
 12118

- Introduced new namelist variable albedo type
- If set to 2, the surface albedo will be based on the MODIS data set.

Change: initicon_nml: dwdinc_filename

 Date of Change:
 2013-05-24

 Revision:
 12266

• Renamed dwdinc filename to dwdana filename

Change: initicon_nml: l_ana_sfc

 Date of Change:
 2013-06-25

 Revision:
 12582

- \bullet Introduced new namelist flag **l** ana sfc
- If true, soil/surface analysis fields are read from the analysis fiel dwdfg_filename. If false, surface analysis fields are not read. Soil and surface are initialized with the first guess instead.

Change: new nwp phy tend list: output names consistent with variable names

 Date of Change:
 2013-06-25

 Revision:
 12590

- $temp_tend_radlw \rightarrow ddt_temp_radlw$
- temp tend turb \rightarrow ddt temp turb
- temp tend $drag \rightarrow ddt$ temp drag

Change: prepicon nml, remap nml, input field nml

 Date of Change:
 2013-06-25

 Revision:
 12597

- Removed the sources for the "prepicon" binary!
- The "prepicon"functionality (and most of its code) has become part of the ICON tools.

Change: initicon_nml
Date of Change: 2013-08-19
Revision: 13311

• The number of vertical input levels is now read from file. The namelist parameter **nlev** in has become obsolete in r12700 and has been removed.

 $egin{array}{lll} {\it Change:} & {\it parallel_nml} \\ {\it Date of Change:} & {\it 2013-10-14} \\ {\it Revision:} & {\it 14160} \\ \hline \end{array}$

• The namelist parameter exch msgsize has been removed together with the option iorder sendrecv=4.

 Change:
 parallel_nml

 Date of Change:
 2013-08-14

 Revision:
 14164

• The namelist parameter **use_sp_output** has been replaced by an equivalent switch **use_dp_mpi2io** (with an inverse meaning, i.e. we have **use_dp_mpi2io** = .NOT. **use_sp_output**).

 $\begin{array}{ll} {\it Change:} & {\it parallel_nml} \\ {\it Date of Change:} & {\it 2013-08-15} \\ {\it Revision:} & {\it 14175} \end{array}$

• The above-mentioned namelist parameter use dp mpi2io got the default .FALSE. By this, the output data are sent now in single precision to the output processes.

Change: initicon nml: l ana sfc

 Date of Change:
 2013-10-21

 Revision:
 14280

• The above-mentioned namelist parameter l_ana_sfc has been replaced by lread_ana. The default is set to .TRUE., meaning that analysis fields are required and read on default. With lread_ana=.FALSE. ICON is able to start from first guess fields only.

Change: output nml: lwrite ready, ready directory

 Date of Change:
 2013-10-25

 Revision:
 14391

- The namelist parameters lwrite_ready and ready_directory have been replaced by a single namelist parameter ready_file, where ready_file /= 'default' enables writing ready files.
- Different output_nml's may be joined together to form a single ready file event they share the same ready_file.

Change: output nml: output bounds

 Date of Change:
 2013-10-25

 Revision:
 14391

• The namelist parameter **output bounds** specifies a start, end, and increment of output invervals. It does no longer allow multiple triples.

Change: output nml: steps per file

 Date of Change:
 2013-10-30

 Revision:
 14422

• The default value of the namelist parameter steps per file has been changed to -1.

 Change:
 run_nml

 Date of Change:
 2013-11-13

 Revision:
 14759

- The dump/restore functionality for domain decompositions and interpolation coefficients has been removed from the model code. This means, that the parameters
 - ldump_states,
 - lrestore_states,
 - ldump_dd,

- lread_dd,

nproc_dd,

- dd_filename,

- dump_filename,

- l_one_file_per_patch

have been removed together with the corresponding functionality from the ICON model code.

Change: output nml: filename format

 $\begin{array}{ll} \textit{Date of Change:} & \textbf{2013-12-02} \\ \textit{Revision:} & \textbf{15068} \end{array}$

• The string token <ddhhmmss> is now substituted by the relative day-hour-minute-second string, whereas the absolute date-time stamp can be inserted using <datetime>.

Change: output_nml: ready_file

 Date of Change:
 2013-12-03

 Revision:
 15081

• The ready file name has been changed and may now contain string tokens <path>, <datetime>, <ddhhmmss> which are substituted as described for the namelist parameter filename_format.

Change: interpl_nml: rbf_vec_scale_ll

 Date of Change:
 2013-12-06

 Revision:
 15156

- The real-valued namelist parameter rbf_vec_scale_11 has been removed.
- Now, there exists a new integer-valued namelist parameter, rbf_scale_mode_11 which specifies the mode, how the RBF shape parameter is determined for lon-lat interpolation.

 Change:
 io_nml

 Date of Change:
 2013-12-06

 Revision:
 15161

- Removed remaining vlist-related namelist parameter. This means that the parameters
 - out_filetype
 - out expname
 - dt data
 - dt file
 - lwrite_dblprec, lwrite_decomposition, lwrite_vorticity, lwrite_divergence, lwrite_pres, lwrite_tracer, lwrite_tend_phy, lwrite_radiation, lwrite_precip, lwrite_cloud, lwrite_tke, lwrite_surface, lwrite_initial, lwrite_oce_timestepping

are no longer available.

 $\begin{array}{ll} \textit{Change:} & \textit{gridref_nml} \\ \textit{Date of Change:} & 2014\text{-}01\text{-}07 \\ \textit{Revision:} & 15436 \end{array}$

• Changed namelist defaults for nesting: grf_intmethod_e, 1_mass_consvcorr, 1_density_nudging.

 $\begin{array}{ll} {\it Change:} & {\it interpol_nml} \\ {\it Date of Change:} & {\it 2014-02-10} \\ {\it Revision:} & {\it 16047} \end{array}$

• Changed namelist default for rbf_scale_mode_11: The RBF scale factor for lat-lon interpolation is now determined automatically by default.

Change: echam_phy_nml

 Date of Change:
 2014-02-27

 Revision:
 16313

• Replace the logical switch lcover by the integer switch icover that is used in ECHAM-6.2. Values are transferred as follows: .FALSE. = 1 (=default), .TRUE. = 2.

 $\begin{array}{ll} \textit{Change:} & \textit{turbdiff_nml} \\ \textit{Date of Change:} & \textit{2014-03-12} \\ \textit{Revision:} & \textit{16527} \end{array}$

• Change constant minimum vertical diffusion coefficients to variable ones proportional to $1/\sqrt{Ri}$ for inwp_turb = 10; at the same time the defaults for tkhmin and tkmmin are increased from $0.2 \,\mathrm{m}^2/\mathrm{s}$ to $0.75 \,\mathrm{m}^2/\mathrm{s}$.

 Change:
 nwp_phy_nml

 Date of Change:
 2014-03-13

 Revision:
 16560

• Removed namelist parameter dt_ccov, since practically it had no effect. For the quasi-operational NWP-setup, the calling frequency of the cloud cover scheme is the same as that of the convection scheme. I.e. both are synchronized.

 Change:
 nwp_phy_nml

 Date of Change:
 2014-03-24

 Revision:
 16668

• Changed namelist default for **itype z0**: use land cover related roughness only (itype_z0=2).

Change: nonhydrostatic nml

 Date of Change:
 2014-05-16

 Revision:
 17293

• Removed switch for vertical TKE advection in the dynamical core (lvadv_tke). TKE advection has been moved into the transport scheme and can be activated with iadv_tke=1 in the transport_nml.

Change: nonhydrostatic_nml

 Date of Change:
 2014-05-27

 Revision:
 17492

• Removed namelist parameter model_restart_info_filename in namelist master_model_nml.

 Change:
 transport_nml

 Date of Change:
 2014-06-05

 Revision:
 17654

• Changed namelist default for itype_hlimit from monotonous limiter (3) to positive definite limiter (4).

 Change:
 nh_pzlev_nml

 Date of Change:
 2014-08-28

 Revision:
 18795

• Removed namelist nh_pzlev_nml. Instead, each output namelist specifies its separate list of p_levels, h_levels, and i_levels.

Change: nonhydrostatic_nml

 Date of Change:
 2014-10-27

 Revision:
 19670

• Removed namelist parameter l_nest_rcf in namelist nonhydrostatic_nml.

Change: nonhydrostatic nml

 Date of Change:
 2014-11-24

 Revision:
 20073

• Removed namelist parameter iadv_rcf in namelist nonhydrostatic_nml. The number of dynamics substeps per advective step are now specified via ndyn_substeps.

The meaning of run_nml:dtime has changed and denotes the advective time step.

 Change:
 io_nml

 Date of Change:
 2015-03-25

 Revision:
 21501

• Namelist parameter lzaxis_reference is deprecated and has no effect anymore. However, users are not forced to modify their scripts instantaneously: lzaxis_reference=.FALSE. is still a valid namelist setting, but it has no effect and a warning will be issued. lzaxis_reference finally removed in r24606.

 $egin{array}{lll} {\it Change:} & & {\it limarea_nml} \\ {\it Date of Change:} & & {\it 2016-02-08} \\ {\it Revision:} & & {\it 26390} \\ \end{array}$

Namelist parameter dt_latbc has been removed. Its value is now identical to the namelist parameter dtime_latbc.

 $\begin{array}{ll} \textit{Change:} & \text{interpol_nml} \\ \textit{Date of Change:} & \textbf{2016-02-11} \\ \textit{Revision:} & \textbf{26423} \end{array}$

• Namelist parameter 1_intp_c21 is deprecated and has no effect anymore.

 $\begin{array}{ll} \textit{Change:} & \text{lnd_nml} \\ \textit{Date of Change:} & \textbf{2016-07-21} \\ \textit{Revision:} & \textbf{28536} \end{array}$

• The numbering of the various options for sstice_mode has changed. Former option 2 became 3, former option 3 became 4, and former option 4 became 5. This was necessary, because a new option was introduced (option 2).

Change: initicon_nml
Date of Change: 2016-07-22
Revision: 28556

• Namelist parameter latbc_varnames_map_file has been moved to the namelist limarea_nml.

 Change:
 transport_nml

 Date of Change:
 2016-09-22

 Revision:
 29339

• Namelist parameter niter_fct has been removed, since the functionality of iterative flux correction is no longer available.

Change: initicon_nml
Date of Change: 2016-10-07
Revision: 29484

• Namelist parameter l_sst_in has been removed. In case of init_mode=2 (IFSINIT), sea points are now initialized with SST, if provided in the input file. Otherwise sea points are initialized with the skin temperature. The possibility to use the skin temperature despite having the SST available has been dropped.

Change: initicon_nml
Date of Change: 2016-12-14

Revision: 62288ed77b2975182204a2ec6fa210a3fb1ad8a7

• Namelist parameters ana_varlist, ana_varlist_n2 have been renamed to check_ana(jg)%list, with jg indicating the patch ID.

Change: initicon_nml
Date of Change: 2017-01-27
Revision: ae1be66f

• The default value of the namelist parameter num_prefetch_proc has been changed to 1, i.e. asynchronous read-in of lateral boundary data is now enabled.

 $\begin{array}{ll} \textit{Change:} & \text{interpol_nml} \\ \textit{Date of Change:} & \textbf{2017-01-31} \\ \textit{Revision:} & \text{e1c56104} \\ \end{array}$

• With the introduction of the namelist parameter lreduced_nestbdry_stencil in the namelist interpol_nml the nest boundary points are no longer removed from lat-lon interpolation stencil by default.

 $egin{array}{lll} {\it Change:} & & {\it limarea_nml} \\ {\it Date of Change:} & & {\it 2017-03-14} \\ {\it Revision:} & & {\it 631b731627} \\ \end{array}$

• The namelist parameter nlev_latbc is now deprecated. Information about the vertical level number is taken directly from the input file.

Change: echam phy nml / mpi phy nml

Date of Change: 2017-04-19

Revision: icon-aes:icon-aes-mag 9ecee54f69108716308029d8d7aa0296c343a3c2

• The namelist echam_phy_nml is replaced by the namelist mpi_phy_nml, which extends the control to multiple domains and introduces time control in terms of start and end date/time [sd_prc,ed_prc] and time interval dt_prc for individual atmospheric processes prc.

Change: mpi phy nml / echam phy nml and mpi sso nml / echam sso nml

Date of Change: 2017-11-22

Revision: icon-aes-cfgnml f84219511329281d441d81923fe97ce1d7ecf007

• The namelists, configuration variables and related modules are renamed from ...mpi_phy... to ...echam_phy... because programmers felt that the acronym "mpi"for "Max Planck Institute" relation to physics cannot be distinguished from "mpi"for "Message Passing Interface used in the parallelization.

Change: gw hines nml / echam gwd nml

Date of Change: 2017-11-24

Revision: icon-aes:icon-aes-cfgnml 699346b5d318d53be215e0b8e8b5ba8631d44c48

• The namelists gw hines nml is replaced by the namelist echam gwd nml, which extends the control to multiple domains.

Change: vdiff nml / echam vdf nml

Date of Change: 2017-11-27

Revision: icon-aes-cfgnml f1dec0a0d3b8ec506861975cd59a729fe43fdf8e

• The namelists vdiff_nml is replaced by the namelist echam_vdf_nml, which additionally includes tuning parameters for the total turbulent energy scheme, and extends the control to multiple domains.

Change: echam_conv_nml / echam_cnv_nml

Date of Change: 2017-11-29

Revision: icon-aes:icon-aes-cfgnml 099c40f88dbaae6c7cc79ea878e5862847ef7e27

• The namelists echam conv nml is replaced by the namelist echam cnv nml, which extends the control to multiple domains.

Change: echam cloud nml / echam cld nml

Date of Change: 2017-12-04

Revision: icon-aes:icon-aes-cfgnml afacc102a87b03f78ff47ad0b7af8f348bacef6f

• The namelists echam_cloud_nml is replaced by the namelist echam_cld_nml, which extends the control to multiple domains.

Change: psrad orbit nml / radiation nml / echam rad nml

Date of Change: 2017-12-12

 ${\it Revision:} \qquad \qquad {\rm icon-aes:icon-aes-cfgnml~8da087238b81183c337a3b1ae81d2b2e3dafdba8}$

• For controlling the input of ECHAM physics to the PSrad scheme, the namelists psrad_orbit_nml and radiation_nml are replaced by the namelist echam_rad_nml, which extends the control to multiple domains. For controlling the input of NWP physics to the RRTMG radiation, the radiation_nml namelist remains valid. The psrad_orbit_nml namelist, which is not used for RRTMG radiation, is deleted.

Change: echam cld nml / echam cov nml

Date of Change: 2019-06-07

Revision: icon-aes:icon-aes-cover 09233f275f207d59d2cb6ad75bd13adf81c0d0c2

• The control parameters for the cloud cover parameterization (crs, crt, nex, jbmin, jbmax, cinv, csatsc) are shifted to the new namelist echam_cov_nml.

Change: echam cov nml / echam cov nml

Date of Change: $2019-0\overline{6}-12$

Revision: icon-aes:icon-aes-cover 419e7ed54faa6db86a7151ece33b8e0b24737129 and e66e8e0f9cd439b81d7db63e0a4e03004d7f8144

• The control parameters jks, jbmin and jbmax, specifying heights by the index of the vertical grid, are replaced by parameters zcovmax, zinvmax, and zinvmin, respectively, which directly specify the heights of interest. The change is as follows:

- jks=15 -> zmaxcov=echam phy config%zmaxcloudy
- jbmin=43 -> zmaxinv=2000m
- $jbmax=45 \rightarrow zmininv=300m$

Change: echam cld nml / echam cld nml

Date of Change: $2019-0\overline{6}-12$

 $\frac{Revision:}{\text{icon-aes:icon-aes-cover ab95fc16a944dde96a76aeb1f63a7c847d78da06}} \quad \text{icon-aes:icon-aes-cover ab95fc16a944dde96a76aeb1f63a7c847d78da06} \quad \text{and e66e8e0f9cd439b81d7db63e0a4e03004d7f8144}$

• The control parameters jks, specifying height by the index of the vertical grid, is replaced by the parameters zcldmax, which directly specify the height of interest. The change is as follows:

 $-~jks{=}15~-\!\!>~zmaxcld{=}echam_phy_config\%zmaxcloudy$