Theory of Functions of a Real Variable 1

University of Houston, Fall 2023

MATH 6320 (Dr. Climenhaga)

1 Measures

1.1 **Definitions**

algebra

Let X be a set. An **algebra** is a collection $\mathcal{A} \subset \mathcal{P}(X)$ such that

- 1. $\emptyset \in \mathcal{A}$ and $X \in \mathcal{A}$
- 2. if $A \in \mathcal{A}$, then $A^c \in \mathcal{A}$

3. if
$$A_1, A_2, \dots, A_n \in \mathcal{A}$$
 then $\bigcup_{i=1}^n A_i \in \mathcal{A}$.

σ -algebra

Let X be a set. A σ -algebra is a collection $\mathcal{A} \subset \mathcal{P}(X)$ such that

- 1. $\emptyset \in \mathcal{A}$ and $X \in \mathcal{A}$

1.
$$\emptyset \in \mathcal{A}$$
 and $X \in \mathcal{A}$
2. if $A \in \mathcal{A}$, then $A^c \in \mathcal{A}$
3. if $A_1, A_2, \ldots \in \mathcal{A}$ then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$.

measurable space

Let X be a set and A be a σ -algebra on X. A measurable space is a pair (X, A).

measurable set

Let (X, A) be a measurable space. A set A is **measurable** (or A-measurable) if $A \in A$.

algebra generated by $\mathcal{C} \subset \mathcal{P}(X)$

Let $\mathcal{C} \subset \mathcal{P}(X)$ be a collection of subsets of X. The algebra generated by \mathcal{C} is the intersection of all algebras containing C.

σ -algebra generated by $C \subset P(X)$

Let $\mathcal{C} \subset \mathcal{P}(X)$ be a collection of subsets of X. The σ -algebra generated by \mathcal{C} , denoted $\sigma(C)$, is the intersection of all σ -algebras containing \mathcal{C} , that is,

$$\sigma(\mathcal{C}) := \bigcap \{ \mathcal{A}_{\alpha} \mid \mathcal{A}_{\alpha} \text{ is a } \sigma\text{-algebra}, \mathcal{C} \subset \mathcal{A}_{\alpha} \}$$

 $\sigma(\mathcal{C})$ is also the smallest σ -algebra containing \mathcal{C} .

- 1. if $C_1 \subset C_2$, then $\sigma(C_1) \subset \sigma(C_2)$
- 2. if \mathcal{A} is a σ -algebra, then $\sigma(\mathcal{A}) = \mathcal{A}$

Borel σ -algebra

Let X be a metric space and let \mathcal{G} be the collection of open subsets of X. Then the σ -algebra generated by \mathcal{G} , $\mathcal{B}_X = \sigma(\mathcal{G})$, is the **Borel** σ -algebra on X. If $B \in \mathcal{B}$, it is called a **Borel set** and is said to be **Borel measurable**.

G_{δ} and F_{σ} sets

Let X be a topological space.

- A G_{δ} set is a countable intersection of open sets of X. Etymology (German): G for Gebiet, open set, and δ for Durchschnitt, intersection.
- An F_{σ} set is a countable union of closed sets. Etymology (French): F for $ferm\acute{e}$, closed, and σ for somme, sum.

The complement of a G_{δ} set is an F_{σ} set.

measure

Let X be a set and \mathcal{A} be a σ -algebra on X. A **measure** on (X, \mathcal{A}) is a function $\mu : \mathcal{A} \to [0, \infty]$ such that

- 1. $\mu(\emptyset) = 0$
- 2. if $A_1, A_2, \ldots \in \mathcal{A}$ are pairwise disjoint, then

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i)$$

countable additivity

Let $\{E_k\}_{k=1}^n$ be a countable disjoint collection of sets. A set function μ possesses **countable additivity** if

$$\mu\left(\bigcup_{k=1}^{\infty} E_k\right) = \sum_{i=1}^{\infty} \mu(E_k)$$

Measures are countably additive.

measure space

Let X be a set, \mathcal{A} a σ -algebra, and μ a measure on (X, \mathcal{A}) . Then (X, \mathcal{A}, μ) is a **measure space**.

finite measure

Let (X, \mathcal{A}, μ) be a measure space. If $\mu(X) < \infty$, then μ is a **finite measure**.

σ -finite measure

Let (X, \mathcal{A}, μ) be a measure space. If there exist sets $\{E_i \in \mathcal{A}\}_{i=1}^{\infty}$ such that

1. $\mu(E_i) < \infty$ for each i

$$2. X = \bigcup_{i=1}^{\infty} E_i,$$

then μ is a σ -finite measure.

Let $F_n = \bigcup_{i=1}^n E_i$. Then $\mu(F_n) < \infty$ for each n and F_n increases to X. This is an alternate formulation of a σ -finite measure.

complete measure

Let (X, \mathcal{A}, μ) be a measure space and $A \subset X$. If there exists a set $B \in \mathcal{A}$ such that $A \subset B$ and $\mu(B) = 0$, then A is a **null set**. If \mathcal{A} contains all the null sets (all null sets are measurable), then (X, \mathcal{A}, μ) is a **complete measure space**.

outer measure

Let X be a set. An **outer measure** is a function $\mu^*: \mathcal{P}(X) \to [0, \infty]$ such that

- 1. $\mu^*(\emptyset) = 0$
- 2. if $A \subset B$, then $\mu^*(A) \leq \mu^*(B)$
- 3. if A_1, A_2, \ldots , are subsets of X, then

$$\mu^{\star} \left(\bigcup_{i=1}^{\infty} A_i \right) \leq \sum_{i=1}^{\infty} \mu^{\star}(A_i)$$

μ^{\star} -measurable set

Let μ^* be an outer measure on X. A set $A \subset X$ is μ^* -measurable if for all $E \subset X$,

$$\mu^{\star}(E) = \mu^{\star}(E \cap A) + \mu^{\star}(E \cap A^c).$$

Lebesgue measure on \mathbb{R}

Consider \mathbb{R} and let $\mathcal{C} = \{(a, b] \mid -\infty < a < b < \infty\}$. Let $\ell((a, b]) = b - a$ and define the outer measure m^* by

$$m^{\star}(E) = \inf \left\{ \sum_{i=1}^{\infty} \ell(A_i) \mid A_i \in \mathcal{C} \text{ and } E \subset \bigcup_{i=1}^{\infty} A_i \right\}.$$

Since m^* is an outer measure, $\mathcal{L} \coloneqq \{A \subset \mathbb{R} \mid A \text{ is } m^*\text{-measurable}\}$ is the **Lebesgue** $\sigma\text{-algebra}$ and $m \coloneqq m^*|_{\mathcal{L}}$) is a complete measure, the **Lebesgue measure**.

Lebesgue-Stieltjes measure

Consider \mathbb{R} and let $\mathcal{C} = \{(a,b] \mid -\infty < a < b < \infty\}$. Let $F : \mathbb{R} \to \mathbb{R}$ be a right non-decreasing continuous function. Define $\ell((a,b]) = F(b) - F(a)$ and

$$m^{\star}(E) = \inf \left\{ \sum_{i=1}^{\infty} \ell(A_i) \mid A_i \in \mathcal{C} \text{ and } E \subset \bigcup_{i=1}^{\infty} A_i \right\}.$$

Since m^* is an outer measure, $\mathcal{A} = \{A \subset \mathbb{R} \mid A \text{ is } m^*\text{-measurable}\}$ is a σ -algebra. Then the restriction of m^* to \mathcal{A} , $m \coloneqq m^*|_{\mathcal{A}}$ is the **Lebesgue-Stieltjes measure**.

pre-measure on an algebra

Let \mathcal{A}_0 be an algebra on a set X. A **pre-measure** on \mathcal{A}_0 is a function $\ell: \mathcal{A}_0 \to [0, \infty]$ such that

- 1. $\ell(\emptyset) = 0$
- 2. if $A_1, A_2, \ldots \in \mathcal{A}_0$ are pairwise disjoint such that $\bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$, then

$$\ell\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \ell(A_i)$$

2 Integration

2.1 Definitions

measurable function

Let (X, \mathcal{A}) be a measurable space. A function $f: X \to \mathbb{R}$ is **measurable** (or \mathcal{A} -measurable) if $\{x \in X \mid f(x) > a\} \in \mathcal{A}$ for all $a \in \mathbb{R}$. A function $f: X \to \mathbb{C}$ is measurable if Re(f) and Im(f) are measurable.

The following are equivalent: for all $a \in \mathbb{R}$,

- $\{x: f(x) > a\} \in \mathcal{A}$
- $\{x: f(x) \ge a\} \in \mathcal{A}$
- $\{x: f(x) < a\} \in \mathcal{A}$
- $\{x: f(x) \le a\} \in \mathcal{A}$

Borel measurable

Let (X, \mathcal{B}_X) be a metric space with the Borel σ -algebra. A function $f: X \to \mathbb{R}$ is **Borel measurable** if it is measurable with respect to \mathcal{B}_X .

Lebesgue measurable

A function $f: \mathbb{R} \to \mathbb{R}$ is **Lebesgue measurable** if it is measurable with respect to the Lebesgue measure.

non-negative Lebesgue measurable functions

Denote the set of all non-negative Lebesgue measurable functions by

$$L^+ := \{ f : X \to [0, \infty) \mid f \text{ is measurable} \}$$

characteristic function

A characteristic function of $E \in \mathcal{A}$ is

$$\mathbb{1}_E(x) = \begin{cases} 1 & x \in E \\ 0 & x \notin E \end{cases}$$

simple function

A function $s: X \to \mathbb{R}$ is **simple** if there exist $c_1, c_2, \ldots, c_n \in \mathbb{R}$ and $E_1, E_2, \ldots, E_n \in \mathcal{A}$ such that

$$s(x) = \sum_{i=1}^{n} c_i \mathbb{1}_{E_i}(x)$$

Lebesgue integral

Let (X, \mathcal{A}, μ) be a measure space.

1. if $f = \mathbb{1}_E$ is measurable, let

$$\int f \, \mathrm{d}\mu \coloneqq \mu(E)$$

2. if $s = \sum_{i=1}^{n} c_i \mathbb{1}_{E_i}$ is simple and $E_i \in \mathcal{A}$ for all i, let

$$\int s \, \mathrm{d}\mu \coloneqq \sum_{i=1}^{n} c_i \mu(E_i)$$

3. if $f \in L^+$, let

$$\int f \, \mathrm{d}\mu \coloneqq \sup \left\{ \int s \, \mathrm{d}\mu \mid 0 \le s \le f, s \text{ is simple} \right\}$$

4. if $f: X \to \mathbb{R}$, let $f^+(x) = \max(f(x), 0)$ and $f^-(x) = \max(-f(x), 0)$. Thus, $f^+, f^- \in L^+$ and $f = f^+ - f^-$. As long as $\int f^+ d\mu$ and $\int f^- d\mu$ are not both infinite, let

$$\int f \, \mathrm{d}\mu \coloneqq \int f^+ \, \mathrm{d}\mu - \int f^- \, \mathrm{d}\mu$$

5. if $f: X \to \mathbb{C}$ is measurable, let f = u + vi for $u, v: X \to \mathbb{R}$, let

$$\int f \, \mathrm{d}\mu := \int u \, \mathrm{d}\mu + \mathrm{i} \int v \, \mathrm{d}\mu$$

as long as u, v are not infinite.

almost everywhere equality

Given measurable functions $f, g: X \to \mathbb{R}$, say that f = g almost everywhere (a.e. or μ -a.e.) if $\mu(\{x: f(x) \neq g(x)\}) = 0$. Equivalently, f = g almost everywhere if there exists $A \subset X$ such that

$$\begin{array}{ll} 1. & f|_A = g|_A \\ 2. & \mu(A^c) = 0 \end{array}$$

compactly supported continuous functions on $\mathbb R$

The set of compactly supported continuous functions on \mathbb{R} is denoted $C_c(\mathbb{R})$.

convergence almost everywhere

A sequence of functions f_n converges to f almost everywhere if there exists $A \in \mathcal{A}$ such that $\mu(A) = 0$ and $f_n(x) \to f(x)$ for all $x \in A^c$.

convergence in measure

A sequence of functions f_n converges to f in measure if for all $\varepsilon > 0$,

$$\lim_{n \to \infty} \mu\left(\left\{x : |f_n(x) - f(x)| > \varepsilon\right\}\right) = 0$$

convergence in L^p

Let $1 \le p < \infty$. A sequence of functions f_n converges to f in L^p if

$$\lim_{n \to \infty} \int |f - f_n|^p = 0$$

uniform convergence

A sequence of functions f_n converges to f uniformly if

$$\lim_{n \to \infty} \sup_{x \in X} (|f_n(x) - f(x)|) = 0$$

convergence in L^{∞}

A sequence of functions f_n converges to f in L^{∞} if there exists $A \in \mathcal{A}$ such that $\mu(A) = 0$ and

$$\lim_{n \to \infty} \sup_{x \in A^c} (|f_n(x) - f(x)|) = 0$$

measurable rectangle

Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be measure spaces. A **measurable rectangle** is a set of the form $A \times B$, where $A \in \mathcal{A}$ and $B \in \mathcal{B}$.

product σ -algebra

Let C_0 be the collection of finite unions of disjoint measurable rectangles. The **product** σ -algebra is the σ -algebra generated by C_0 , $A \times B = \sigma(C_0)$.

product measure

Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be measure spaces. Define the **product measure** $\mu \times \nu$: $\mathcal{A} \times \mathcal{B} \to [0, \infty]$ by

$$(\mu \times \nu)(E) = \int_X \int_Y \mathbb{1}_E(x, y) \, d\nu(y) \, d\mu(x) = \int_Y \int_X \mathbb{1}_E(x, y) \, d\mu(x) \, d\nu(y)$$

Lebesgue measure on \mathbb{R}^n

Let m denote the Lebesgue measure on \mathbb{R} . The Lebesgue measure on \mathbb{R}^n is $m^n=m\times\cdots\times m$.

3 Differentiation

3.1 Definitions

signed measure

Let \mathcal{A} be a σ -algebra. A **signed measure** is a function $\mu: \mathcal{A} \to (-\infty, \infty]$ such that:

- 1. $\mu(\emptyset) = 0$
- 2. if $A_1, A_2, \ldots \in \mathcal{A}$ are pairwise disjoint, then

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i)$$

and $\sum_{i=1}^{\infty} \mu(A_i)$ converges absolutely if $\mu\left(\bigcup_{i=1}^{\infty} A_i\right)$ is finite.

positive and negative sets

Let μ be a signed measure.

- A set $A \in \mathcal{A}$ is a **positive set** if $\mu(B) \geq 0$ for all $B \in \mathcal{A}$ such that $B \subset A$.
- A set $A \in \mathcal{A}$ is a **negative set** if $\mu(B) \leq 0$ for all $B \in \mathcal{A}$ such that $B \subset A$.

mutually singular measures

Let μ and ν be two measures on (X, \mathcal{A}) . The measures μ and ν are **mutually singular** (or ν is singular with respect to μ) if there exist disjoint sets $E, F \in \mathcal{A}$ such that $X = E \cup F$ with $\mu(E) = 0$ and $\nu(F) = 0$. This is denoted as $\mu \perp \nu$.

absolute continuous measure

Let μ and ν be two measures on (X, \mathcal{A}) . The measure ν is **absolutely continuous** with respect to μ if $\nu(A) = 0$ for all $A \in \mathcal{A}$ for which $\mu(A) = 0$. This is denoted as $\nu \ll \mu$.

total variation measure

Let μ be a signed measure on (X, \mathcal{A}) with Jordan decomposition $\mu = \mu^+ - \mu^-$. The total variation measure of μ is the measure

$$|\mu| = \mu^+ + \mu^-$$

and $|\mu|(X)$ is the **total variation** of X.

Radon-Nikodym derivative

Let μ be a σ -finite measure on (X, \mathcal{A}) and ν be a finite positive measure on (X, \mathcal{A}) such that ν is absolutely continuous with respect to μ . The **Radon-Nikodym derivativee** is a μ -integrable non-negative function f such that for all $A \in \mathcal{A}$,

$$\nu(A) = \int_A f \, \mathrm{d}\mu$$

averaged function

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a measurable function. Then the **averaged function** over a ball of radius r is

$$f_r(x) = \frac{1}{m(B(x,r))} \int_{B(x,r)} f(y) \, \mathrm{d}y$$

locally integrable functions

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a measurable function. The function f is **locally integrable** if for all compact $K \subset \mathbb{R}^n$, $\int_K |f(x)| dx < \infty$. The set of all locally integrable functions is denoted by L^1_{loc} .

Hardy-Littlewood maximal function

Let f be a locally integrable function. The **Hardy-Littlewood maximal function** Mf is defined by

$$Mf(x) = \sup_{r>0} \frac{1}{m(B(x,r))} \int_{B(x,r)} |f(y)| dy$$

total variation

Let $f : \mathbb{R} \to \mathbb{R}$ be a function. The **total variation** of f on [a, b] is the supremum over all partitions $a = x_0 < x_1 < \cdots < x_n = b$,

$$V_f[a, b] = \sup \left\{ \sum_{i=1}^n |f(x_i) - f(x_{i-1})| \right\}$$

bounded variation

A function $f: \mathbb{R} \to \mathbb{R}$ is of **bounded variation** on [a,b] if $V_f[a,b] < \infty$, the total variation is finite.

Lipschitz continuous

A function $f: \mathbb{R} \to \mathbb{R}$ is **Lipschitz continuous** if there exists M > 0 such that for all $x, y \in \mathbb{R}$,

$$|f(y) - f(x)| \le M|y - x|$$

absolutely continuous function

A function $f: \mathbb{R} \to \mathbb{R}$ is **absolutely continuous** if for every $\varepsilon > 0$ there exists $\delta > 0$ such that for any finite collection of disjoint intervals (a_i, b_i) with $\sum_{i=1}^k |b_i - a_i| < \delta$,

$$\sum_{i=1}^{k} |f(b_i) - f(a_i)| < \varepsilon$$