AGH	Akademia Górniczo-Hutnicza Wydział Fizyki i Informatyki Stosowanej Fizyka Techniczna Metody Obliczeniowe Fizyki i Techniki 1		Zrealizował: Ryś Przemysław
Rok akademicki: 2022/2023		Semestr VI	Grupa projektowa nr 1
Temat projektu: Lab 5: Schemat Metropolisa i całkowanie Monte Carlo			
Data wykonania ćwiczenia 01.06.2023		Data oddania sprawozdania 01.06.2023	Ocena

Wstęp

Tematem projektu było wygenerowanie ścieżki wędrowca schematem Metropolisa z całkowaniem Monte Carlo. Projekt realizowałem z wykorzystaniem środowiska Jupyter opartego na kernelu Python 3. Korzystałem z wbudowanych bibliotek numerycznych pythona, wymagane funkcje deklarowałem zaś sam.

Wyniki symulacji

1. Ścieżka wędrowca 1D.

Rys. 1: Wykresy czterech pierwszych momentów rozkładu prawdopodobieństwa w zależności od ilości kroków w przedziale od 1 do 10^7 .

Średnie wartości oszacowanych momentów zwykłych:

- $\overline{I_1} = -0.0009$
- $\overline{I_2} = 0.49862$
- $\overline{I_3} = -0.00184$
- $\overline{I_4} = 0.7399$

, gdzie dokładne wartości tych momentów wynoszą odpowiednio:

- $I_1 = 0$
- $I_2 = 0.5$
- $I_3 = 0$
- $I_4 = 0.75$

2. Dwuwymiarowy kwantowy oscylator harmoniczny (Ścieżka wędrowca 2D).

Rys. 2: Próbka ścieżki wędrowca dla liczby kroków N=300 z zaznaczonym punktem startowym oraz punktem końcowym.

Położenie wędrowca z dokładnością do piątego miejsca po przecinku wynosi: (x,y) = (-0.0701, -0.96188).

Rys. 3: Wykres funkcji średniej energii potencjalnej w zależności od ilości kroków.

Dla $N=5\cdot 10^6$ średnia wartość energii potencjalnej z dokładnością do piątego miejsca po przecinku wynosi: 0.50009 Dokładna wartość średniej energii potencjalnej wynosi: 0.5 W konsekwencji wartość ta zbiega do oczekiwanej dla odpowiednio dużych N.