

Outline

Discrete time

Logistic map Deterministic chaos Chaos in manufacturing systems Chaos in time-continuous systems

Notes:

ETHZÜRICH Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer — — 1 / 29

Continuous vs. discrete time

- ► Continuous time: Mathematical abstraction
- ▶ Time step $\Delta t \rightarrow$ 0, convenient math treatment
- ► Irreversibility: The arrow of time (in one direction)
- ▶ **Discrete time:** In line with experience, measurements
 - ightharpoonup Different units of Δt (hour, day,)
 - ▶ Smallest unit: Planck time $\approx 5 \times 10^{-44} s$
- $ightharpoonup \Delta t$ required for numerical calculations
 - Introduce discrete time: $t_n = t_{n-1} + \Delta t = t_0 + n\Delta t$
 - ▶ Discretize dynamic equation: $\dot{x} = f(x)$, Euler Method

$$\mathbf{x}(t_0 + \Delta t) \approx \mathbf{x}_1 = \mathbf{x}_0 + \mathbf{f}(\mathbf{x}_0) \cdot \Delta t$$

 $\mathbf{x}_{n+1} = \mathbf{x}_n + \mathbf{f}(\mathbf{x}_n) \cdot \Delta t$

- ► Correct value at time t_n : $x(t_n)$, approximate value x_n
- From $E := ||\mathbf{x}(t_n) \mathbf{x}_n||$: $E \propto (\Delta t)$

ETHZÜRICH Chair of Systems Design — www.sg.ethz.ch

What is time?

"If no one asks me, I know what it is. If I wish to explain it to him who asks, I do not know." Saint Augustine

- ▶ Improved Euler: $E \propto (\Delta t)^2$
- ▶ 4th-order Runge-Kutta: $E \propto (\Delta t)^4$

$$\mathbf{x}_{n+1} = \mathbf{x}_n + 1/6(\mathbf{k}_1 + 2\mathbf{k}_2 + 2\mathbf{k}_3 + \mathbf{k}_4)$$

 $\mathbf{k}_1 = \mathbf{f}(\mathbf{x}_n) \Delta t$

 $\mathbf{k}_2 = \mathbf{f}(\mathbf{x}_n + 1/2\mathbf{k}_1)\Delta t$

 $\mathbf{k}_3 = \mathbf{f}(\mathbf{x}_n + 1/2\mathbf{k}_2)\Delta t$

 $\mathbf{k}_4 = \mathbf{f}(\mathbf{x}_n + \mathbf{k}_3)\Delta t$

Prof. Frank Schweitzer — 2 / 29

Discrete case: Long term solutions

- ightharpoonup Discrete time: $t = 0, t = 1, \dots t = n$
 - ▶ Time steps of size $\Delta t = 1$
 - ▶ Discrete orbit $\mathcal{X}(t) = \{X(t)\} = X_t$: Set of all values X takes on over time t
- **▶** Discretization → **New dynamical regimes**
- ► Impacts number/ stability of stationary solutions
- Fixed Points, $\mathcal{X} = \{\bar{X}\}$
 - $ightharpoonup X_t = X_{t+\Delta t} = \bar{X}$ for all t
- ▶ Periodic Orbits, e.g. $\mathcal{X} = \{X_0, X_1, X_2, X_3\}$
 - $X_t = X_{t+T}$ for all t, where T is the period
 - ► Solution encompasses a finite number of states

Fixed points:

t = T: $x_T \supset 1$ time step

Periodic orbits:

ETH ZÜrİCh Chair of Systems Design — www.sg.ethz.ch Prof. Frank Schweitzer — — 3 / 29

t = 0:

t = 1:

t = 2:

t = 3:

Notes:

Remark:

- Smaller time steps seem to be more accurate, but require more computation.
- **Each** computation involves a *round-off error*, that accumulates in a serious way, if Δt is too small!

- In the two cases above we are assuming that the starting point is in the particular orbit chosen, i.e. $X_0 \in \mathcal{X}$
- The problem: the periodic orbit can become very large. How can we still know that it is periodic, i.e. that the sequence of states will repeat some day?

Discrete case: Stability

- **Stability** of fixed point or periodic orbit: For small perturbations the new orbit stays 'close' to the original orbit
- ightharpoonup Example: Small perturbation ε of a periodic orbit
 - ► Stability: Orbit is regained
 - ► Instability: Orbit is lost

Stable periodic orbit:

Unstable periodic orbit:

ETH ZÜRİCh Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer — 4 / 29

Outline

Discrete time

Logistic map

Deterministic chaos Chaos in manufacturing systems Chaos in time-continuous systems

Notes:

ETH ZÜCCh Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer — 5 / 29

- 1	NΙ	n	٠	0	c
- 1	w			C	J

Remember: Saturated growth

- ► Logistic equation: (Verhulst, 1838)
 - ► Size dependent growth factor: $\alpha(x) = a bx$
 - b is assumed to be small
 - **Continuous** dynamics, x(t) > 0

$$\frac{dx(t)}{dt} = \alpha(x)x = ax - bx^2; \quad x(t \to \infty) = \frac{a}{b}$$

- ► Discretization, transformation: Logistic map
 - \blacktriangleright $t \rightarrow n: x(t) \rightarrow x_n, x_n \rightarrow z_n$

$$x_{n+1} = x_n + ax_n - bx_n^2$$

 $z_{n+1} = \frac{b}{1+a}x_{n+1} = \frac{b}{1+a}[(1+a)x_n - bx_n^2]$

- $z_{n+1} = r z_n (1 z_n); (r = 1 + a)$
- **▶** Discrete dynamics: $0 \le z_n \le 1$

ETH ZÜRİCh Chair of Systems Design — www.sg.ethz.ch

- ightharpoonup Control parameter r > 0
- ▶ Initial condition: $0 < z_0 < 1$

Prof. Frank Schweitzer — 6 / 29

Iterating the logistic map

- \triangleright z_n is now called: x_n
- ► Role of r
 - ▶ Scales the time step: $r \times \Delta t$
 - ▶ Determines the max of the parabula
- ▶ if $0 \le x_n \le 1$, then $0 \le r \le 4$

ETH ZÜriCh Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer — 7 / 29

Notes:

• The logistic equation was rediscovered by R. Pearl in 1920 and by A. Lotka in 1925.

- Understand that the role of the diagonal in the recurrence plot is to map back x_{n+1} on the x_n axis, to become the starting point for the next iteration.
- Can x₀ be zero? Explain!
- The video shows the iterated x values for 2 different r values (r = 3.52 and r = 3.92). For r = 3.52, x settles and oscillate between 2 values, where as for r = 3.92, the x value is chaotic, with no observable pattern.

Role of control parameter r

$$0 < r < 1$$
: $x^{stat} \to 0$ (recall: $r = a + 1$, i.e. $a < 0$)

$$1 < r < 3$$
: $x^{stat} = 1 - (1/r) \Rightarrow$ stationary regime

• Because
$$x_{n+1} = x_n \Rightarrow 1 = r(1-x)$$

• Remember:
$$x = a/b$$
 is the same as $x = 1 - (1/r)$

$$3 < r < 4$$
: Oscillations \rightarrow period doubling

•
$$r = 3.3$$
: 2 solutions (period-2 cycle, stable)

•
$$r = 3.5$$
: 4 solutions (period-4 cycle, stable)

Prof. Frank Schweitzer — 8 / 29

ETHZÜRICH Chair of Systems Design — www.sg.ethz.ch

Period doubling

 $ightharpoonup r_n$: value of r where a 2^n -cycle first appears

$$r_1 = 3$$
 period 2 is born $r_2 = 3.449$ 4 8 : $r_\infty = 3.569$ ∞

- ▶ Sequence of r_n converges to $r_\infty = 3.56994$
- ► Universal Feigenbaum constant

$$F = \lim_{n \to \infty} \frac{r_{n+1} - r_n}{r_{n+2} - r_{n+1}} = 4.6692$$

► Scaling of r_n : $r_n \approx r_\infty - cF^{-n}$; c = 2.632

Chaos at r_{∞} : Sequence of $\{x_n\}$ never settles down to a fixed point or a periodic orbit

ETHZÜRICH Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer - 9 / 29

Notes:

- Pictures: Strogatz (2000), p. 354
- Important note: for the continuous time dynamics, there is ONLY the solution x = a/b, i.e. x = 1 (1/r). But for the discrete dynamics, for larger r solutions are found that do not exist for the continuous time dynamics.
- This becomes clear if you think of r as the scaling parameter of the time step. For large enough r, the "integration" with large time steps becomes numerically unstable.
- Remember that r = 1 + a. For a "realistic" growth system we would expect r to be not much bigger than 1. Refering back to the model of saturated growth, you can see why a large r (and thus a large a) would lead to instability: With a large a, the growth rate $\alpha(x)$ becomes large for small x, and small for large x (remember: $\alpha = a - bx$). The system grows a lot in one timestep, and then decreases a lot in the next, possibly never becoming stable.

- Strogatz (2000), pp. 355, 356
- Chaos means here that the sequence of x to be followed becomes infinitely long. Does it also mean that all x between 0 and 1 are involved? Obviously not. You can get an infinite number of points also in a finite domain (recall the meaning of irrational numbers)

Orbit Diagrams: "Chaos" with "windows"

- ▶ $r_{\infty} = 3.569$: 1st appearance of chaos \rightarrow attractor changes from finite to infinite set of points
- ▶ $r_{\infty} \le r \le 4$: Mixture of order and chaos
 - ► Windows appear periodically
 - **Example:** large window near $r \sim 3.83$ with stable period-3 cycle
 - ► Self-similarity: pattern repeats at different
- ightharpoonup r = 4: fully developed chaos

ETHZÜRICH Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer - 10 / 29

Notes:

- R. Mahnke, Nichtlineare Physik in Aufgaben, Stuttgart: Teubner, 1994, pp. 169, 171
- Sometimes also called the "bifurcation diagram".
- The vertical axis of the diagram shows the possible values x_n can take after many iterations. The role of r is clearly visible in this diagram: For r < 1, x_n will always approach zero for large n. For 1 < r < 3 there is only one possible value for x_0 , at the stable point. For r > 3 the number of possible values grows, and for $r \to 4$, x_0 can take on any value, if n is large enough.
- The right figure shows the "windows", where there is a finite amount of possible values for x_n .

SS09: Logistic Map Exploration in Python

- Exploring the Logistic Map with Python.
- ► Learning Objectives:
 - ▶ Contrast the dynamics of the logistic equation in continuous time with the logistic map in discrete time.
 - Examine the effects of the control parameter on the behavior of the logistic map.
 - ▶ Use a Cobweb diagram to visualize and understand the behavior of the Logistic map.
 - ► Study the progression to chaos through period-doubling.
 - Construct and analyze the bifurcation diagram.

ETHZÜRICH Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer - 11 / 29

Outline

Discrete time Logistic map

Deterministic chaos

Chaos in manufacturing systems Chaos in time-continuous systems

ETHZÜRICH Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer - 12 / 29

Notes:

Chaos: A working definition

- ► On one hand: **Deterministic** dynamics
 - ▶ initial condition x₀ fixed, coupling constant r fixed
 - ightharpoonup each step determined: $x_n \to x_{n+1}$
- ▶ On the other hand: Long-term forecast impossible x_n ($n \to \infty$)
 - ► Reason: Exponential divergence of trajectories
 - ▶ Transition: **Order** \rightarrow **Chaos** (dependent on r)

- ► Chaos: Aperiodic long-term behaviour in a deterministic system that exhibits sensitive dependence on initial conditions.
 - 1 aperiodic long term behavior: Trajectories which do not settle down to fixed points, periodic orbits or quasiperiodic orbits as $t \to \infty$.
 - 2 **deterministic**: System has no random or noisy inputs or parameters
 - ⇒ irregular behavior arises from the system's nonlinearity
 - 3 sensitivity to initial conditions: Nearby trajectories separate exponentially fast \Rightarrow system has a positive Liapunov exponent λ

ETH ZÜRİCh Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer - 13 / 29

- Quasiperiodic Orbit: The type of motion executed by a dynamical system containing two incommensurate frequencies.
- The system $\dot{x} = x$ is deterministic and shows exponential divergence of nearby trajectories. Should we call this system
 - Answer: No. Trajectories are repelled to infinity and never return. So infinity acts like an attracting fixed
- Chaotic behavior should be aperiodic ⇒ excludes fixed points as well as periodic behavior. (Strogatz, 2000, p. 324)

Calculating the Liapunov Exponent

- ightharpoonup Consider initial condition x_0 and a nearby point $x_0 + \delta_0$
- ▶ Distance δ_n between trajectories after n iterations:

$$x_{n+1} = f(x_n) \rightarrow x_{n+1} + \delta_{n+1} = f(x_n + \delta_n)$$
$$\frac{\delta_{n+1}}{\delta_n} = \frac{f(x_n + \delta_n) - f(x_n)}{\delta_n} = f'(x_n)$$

► Calculate distance $|\delta_n| = |\delta_0|e^{n\lambda}$

$$\begin{split} \frac{\delta_n}{\delta_0} &= \frac{\delta_n}{\delta_{n-1}} \cdot \frac{\delta_{n-1}}{\delta_{n-2}} \cdot \ldots \cdot \frac{\delta_1}{\delta_0} \\ &\ln \left| \frac{\delta_n}{\delta_0} \right| = \ln \left| \frac{\delta_n}{\delta_{n-1}} \right| + \ln \left| \frac{\delta_{n-1}}{\delta_{n-2}} \right| + \ldots + \ln \left| \frac{\delta_1}{\delta_0} \right| = \sum_{i=0}^{n-1} \ln |f'(x_i)| \end{split}$$

▶ Liapunov exponent λ for $\delta_0 \to 0$:

$$\lambda = \frac{1}{n} \ln \left| \frac{\delta_n}{\delta_0} \right| = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \ln |f'(x_i)|$$

 $ightharpoonup \lambda > 0$: necessary but not sufficient for chaos

ETHZÜRICH Chair of Systems Design — www.sg.ethz.ch

Example: Logistic map

Prof. Frank Schweitzer -

Example: Tent map

Piecewise linear function:

$$f(x) = \begin{cases} rx & 0 \le x \le 0.5 \\ r - rx & 0.5 < x \le 1 \end{cases}$$

- ▶ **Tent map** $x_{n+1} = f(x_n)$:
 - ▶ Chaotic behavior for r > 1, i.e. ln(r) > 0
 - ▶ Calculation of Lyapunov exponent: Since for all x: $f'(x) = \pm r$

$$\lambda = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \ln \left| f'(x_i) \right|$$
$$= \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \ln r = \ln(r)$$

Control parameter r = 1 determines transition to chaos

Prof. Frank Schweitzer - 15 / 29

Notes:

- A positive maximal Liapunov exponent is usually taken as an indication that the system is chaotic. But note that this describes a necessary, but not a sufficent condition. Remember that other conditions have to be met, as well.
- Top Figure: Strogatz, p. 321, Bottom Figure: Mahnke (1994), p. 171

Exponential divergence of trajectories:

Question: If x is bound to values between 0 and 1, the maximum difference δ_n can be not larger than 1. But shouldn't exponential divergence imply that it becomes infinity?

Answer: We are considering the divergence of trajectories starting from two very close x_0 , e.g. 0.5 and 0.50000001. So, $\delta_0=10^{-8}$. Hence, for a typical λ of 0.1, it would take $n\geq 180$ iterations, before $\delta_n\to 1$, which is quite close to $n\to\infty$. If you want larger n, just choose δ_0 much smaller!

After all, what matters is according to what rule δ_n grows over time, and this is indeed exponentially (independent of whether it can reach infinity).

Example: Logistic map

Fixed points: $x_{n+1} = x_n \rightarrow x = rx(1-x)$

$$rx^2 + x(1-r) = 0 \rightarrow x_1^* = 0; \ x_2^* = 1 - \frac{1}{r}$$

▶ 1st derivative: $\lambda = \ln |f'(x)| = \ln |r(1-2x)|$

$$\lambda_1 = \ln r \; ; \quad \lambda_2 = \ln |2 - r|$$

▶ Stability analysis \rightarrow bifurcations: $r_1^{cr} = 1$, $r_2^{cr} = 3$

▶ **Periodic orbits!** 2-cycle $\rightarrow x = f(f(x)) \equiv f^2(x)$

$$x = r^2 x (1 - x) [1 - rx(1 - x)]$$

▶ 4 Solutions: $x_1^* = 0$, $x_2^* = 1 - (1/r)$

$$x_{3,4} = \frac{1}{2} \left(1 + \frac{1}{r} \right) \pm \frac{1}{2r} \sqrt{r^2 - 2r - 3}$$

► Stability for 3 < *r* < 3.449

$$-1 < f'(x_1^*)f'(x_2^*) < 1$$
$$-1 < 4 + 2r - r^2 < 1$$

ETHZÜRICH Chair of Systems Design — www.sg.ethz.ch

Dynamics: $x_{n+1} = rx_n(1 - x_n)$

Prof. Frank Schweitzer - 16 / 29

Deterministic chaos: Unpredictable dynamics, but exactly solvable

- ► Chaotic regime: $r = 4 \rightarrow x_{n+1} = 4 x_n (1 x_n)$
- ► Variable transformation: $x_n = \frac{1}{2} [1 \cos(2\pi y_n)]$
- ► Recursive equation:

$$\frac{1}{2}\left[1-\cos\left(2\pi y_{n+1}\right)\right] = \frac{1}{2}\left[1-\cos\left(4\pi y_n\right)\right]$$

- ▶ Result: $y_{n+1} = 2y_n \mod 1 = 2^n y_0 \mod 1$
- ► Closed-form solution dependent on initial condition

$$x_n = \sin^2\left(2^n \arcsin\sqrt{x_0}\right)$$

- **rational** $x_0 < 1 \rightarrow \text{fixed points, periodic cycles}$ e.g. $x_0 = 1/5 \to x = (5 \pm \sqrt{5})/8$ (period-2 cycle)
- **irrational** $x_0 \rightarrow$ chaos, Application: stability of planetary system

ETH ZÜrİCh Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer - 17 / 29

Notes:

- Source: Mahnke (1994)
- Remember that chaos does not mean that all x between 0 and 1 have to be involved. The Lyapunov exponent shows that chaos also exist in a finite subset of possible x.

Notes:

Mahnke (1994), p. 176

Outline

Discrete time **Logistic map Deterministic chaos**

Chaos in manufacturing systems

Chaos in time-continuous systems

ETH ZÜrich Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer — 18 / 29

Chaos in manufacturing sytems

- ► Example: car assembly line
 - ▶ focus on parallel buffers (tanks) with limited capacity
 - dynamic system: influx/outflux for each buffer
 - optimal strategy: prevent overfilling or vacancies
- ▶ what is the optimal schedule for filling/emptying buffers?

ETHZÜRİCİ Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer — — 19 / 29

Notes:

Notes:

• A system without irregularities can behave chaotically. Here we consider manufacturing systems without any irregularities, such as breakdown of parts or irregular influx/outflux.

Server and arrival systems

- \blacktriangleright Model with $i=1,\ldots,N$ parallel buffers, and one server
 - ▶ buffer content x_i , maximum capacities $b_i \equiv b$
 - **Scheduling task:** NO buffer should be empty $x_i < 0$ or full $x_i > b$
- (a) Switched Server System:
 - server has to empty all buffers with rate Υ
 - **b** buffers are filled continuously with rates λ_i
- (b) Switched Arrival System:
 - server has to fill all buffers with rate Λ
 - buffers are emptied continuously with rates μ_i

ETHZÜRICH Chair of Systems Design — www.sg.ethz.ch

Notes:

- What is a rate? It is some quantity per time unit, i.e. it is a flow variable (either inflow or outflow).
- It is also possible to model systems with different buffer sizes per tank, i.e. b_i instead of just b.
- K. Peters, J. Worbs, U. Parlitz, and H.P. Wiendahl. Manufacturing Systems with Restricted Buffer Sizes. Nonlinear Dynamics of Production Systems, 2004.
- Peters, K. and Parlitz, U.

Hybrid systems forming strange billiards International Journal of Bifurcation and Chaos, 2003 volume 19, number 9, pages 2575-2588

Modeling the server system

System dynamics implies conservation of mass

inflow rate
$$\sum_{m=1}^N \lambda_m = 1 = ext{outflow rate } \Upsilon$$

$$\sum_{m=1}^M \frac{dx_i}{dt} = inflow(t) - outflow(t) = 0$$

- **2 Dynamics of buffer** x_i for $t < s < t + \tau$:
- \triangleright Server switches at time t and again at time $t + \tau$
- ightharpoonup q(t) = i: position of server at time t

$$x_i(s) = \begin{cases} x_i(t) + \lambda_i \cdot (s - t) & \text{if } i \neq j \\ x_i(t) - (\Upsilon - \lambda_i) \cdot (s - t) & \text{if } i = j \end{cases}$$

- Switching rules:
 - \blacktriangleright Buffer x_i is full: Server instantaneously switches to i
 - ▶ If *i* is empty, server switches to the next buffer

ETHZÜRICH Chair of Systems Design — www.sg.ethz.ch

- ► Each buffer can only be filled up to b < C: $x_i(t) < b, \forall i$
- ► Total content is constant:

$$x_1(t) + x_2(t) + x_3(t) = C = 1$$

► Feasible region: Hexagon Simplex of (C, C, C)

Prof. Frank Schweitzer - 21 / 29

Notes:

- Note: the server is at position j
- all buffers $i \neq j$ just fill automatically at their individual rates λ_i for the time interval s-t
- the one buffer with the server also fills automatically at rate λ_i , but gets emptied at the same time at rate $\Upsilon=1$, hence $(\Upsilon - \lambda_i) \times [s - t]$, or $(1 - \lambda_i) \times [s - t]$
- the next buffer that becomes full $b = x_i$ is the one that will be served. This cannot be j because the server is already at position j.
- for a system with three buffers (buffers), the state space corresponds to a plane in 3 dimensional space
- the state space is constrained to this plane because the total content within all three buffers must remain constant (inflow = outflow)
- because buffers cannot have a negative content, this further restricts the state space to the strictly positive portion of
- the control parameter, b, also imposes a constraint on the state space, by defining the maximum possible values of the
- the hexagon forms because when a buffer x_1 is empty there can be multiple possible states of the other two buffers such that

$$x_2 + x_3 = C \& x_2 \le b \& x_3 \le b$$

See also: Chase et al (1993)

State progression for the switched server system

Dynamics with $\Upsilon = 1$:

$$\dot{x}_i = egin{cases} \lambda_i - 1, & ext{if } i = q ext{ (location of server)} \\ \lambda_i, & ext{if } i
eq q \end{cases}$$

- **Example** i = 1: $\lambda_1 = 0.1$, $\lambda_2 = 0.5$, $\lambda_3 = 0.4$
 - ▶ Dynamics $\dot{x} = [-0.9, 0.5, 0.4]^T \rightarrow x_1$: emptied, x_2 and x_3 filled
 - ightharpoonup Continues until x_1 becomes empty, or x_2 or x_3 become full
- **Example** j = 2: Dynamics now $\dot{x} = \begin{bmatrix} 0.1, -0.5, 0.4 \end{bmatrix}^T$
 - ightharpoonup q changes from i=1 to j=2 (depending on initial conditions, also change to j = 3 possible
 - ▶ Server now empties buffer j = 2 at the rate $\dot{x}_2 = \lambda_2 1$.

Notes:

ETHZÜRICH Chair of Systems Design — www.sg.ethz.ch

- The red line (v1) shows the direction in which the volumes of the buffers are being modified.
- Example: the server switches from buffer 1 to buffer 2. Therefore all the red lines move toward the boundary marked
- Precisely, the values of x_2 become smaller (thanks to the server), while all other values (x_3, x_1) can only increase (thanks to λ_3 , λ_1).
- If $x_2 = 0$, the server has to move again. Whether it moves to buffer 1 or 3 depends on the initial condition.

Occurrence of chaos dependent on b

- ▶ System dynamics reveals the structure of a strange (chaotic) billiard
 - Lurrent state moves uniformly and linearly inside the bounded region and gets reflected at the boundary.
 - ▶ Chaos becomes apparent as the buffer size, b, becomes too small

ETH ZÜRİCh Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer - 23 / 29

- The figures highlight the fact that with smaller b the server switches more often as one buffer is filled before the one that is served has been emptied
- This is reflected by the increasing number of switching points in the interior of the triangle (along the perimeter of the hexagon described)

Bifurcation Diagram

- Switched server system with 3 buffers where $\lambda_1 = 1/3$, $\lambda_2 = 1/3$, $\lambda_3 = 1/3$
- For $b < \frac{2}{3}$ chaotic behaviour occurs with period doubling scenario

- ▶ Chaotic regime: dynamics of buffer contents is not predictable in the long run
- ▶ Server switching times cannot be planned → inefficiency in the production process
- Chaos can be mitigated or avoided:
 - ► Increase buffer capacity b (may be costly)
 - ▶ Modify the filling rates λ_i .
 - ► Chaos control methods (e.g. OGY): Chaos → breaks down and becomes periodic motion

ETHZÜRICH Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer - 24 / 29

Notes:

- We do not aim to understand the complex bifurcation diagram completely
- Meaning of parameter X: Normalized 1-dimensional representation of 3-dimensional simplex
- Again, note how the system enters chaotic regime as the buffer capacity, b, becomes too small
- Since all λ_i have the same value, bifurcation diagram is symmetric
- Penetration of straight dashed lines corresponds to a reflection point at a boundary in the simplex.
- OGY-technique: see Fritz Colonius, Lars Grüne: Dynamics Bifurcations and Control, Springer 2002.
 - The disadvantage of having chaos in the system is the difficulty of prediction. However chaos is not
 - In the case of b = 0.5, the system is too close to breakdown, any disturbance that pushes b to be less than 0.5 will collapse the system
 - In the case of b = 0.62, as long as the hardware and software can handle frequent switching, it is acceptable.

Outline

Discrete time Logistic map **Deterministic chaos Chaos in manufacturing systems**

Chaos in time-continuous systems

ETHZÜRICH Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer - 25 / 29

Is there chaos in the system?

- 1 Discrete dynamical systems: Possible in any dimension
 - ▶ Discretize simple continuous dynamics (e.g. population growth)
 - ► Chaos obtained only in a subset of the parameter space
- **2** Continuous dynamical systems: 3 or more dimensions
 - Example: Lorenz equations (1963) ("butterfly effect")
 - ightharpoonup Developed for weather forecast ightharpoonup convection rolls in the atmosphere
 - also holds for laser, dynamos, waterwheel, ...

$$\dot{x} = \sigma(y - x)
\dot{y} = x(\rho - z) - y
\dot{z} = xy - \beta z$$

- ▶ 1. Nonlinearity: quadratic terms xy and xz
- ▶ 2. Symmetry: Same equations if $(x, y) \rightarrow (-x, -y)$
- ► Chaotic attractors also occur in real, continuous systems!

ETHZÜRICH Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer - 26 / 29

Notes:

- If you want to know if there is chaos in the system, keep in mind the 3 point working definition.
- From Wikipedia: The term butterfly effect is related to the work of Lorenz, who in a 1963 paper for the New York Academy of Sciences noted that "One meteorologist remarked that if the theory were correct, one flap of a seagull's wings could change the course of weather forever." Later speeches and papers by Lorenz used the more poetic butterfly. According to Lorenz, upon failing to provide a title for a talk he was to present at the 139th meeting of the AAAS in 1972, Philip Merilees concocted Does the flap of a butterfly?s wings in Brazil set off a tornado in Texas? as a title.
- · Chaotic waterwheel: Mechanical model of Lorenz equations invented at MIT in 1970s (for construction see: Strogatz, 2000, p 302)

Chaotic dynamics in continuous time

Source: Mahnke (1994), p. 134

ETH ZÜrİCh Chair of Systems Design — www.sg.ethz.ch

► "Strange attractor": Zero volume, but infinite surface area

Prof. Frank Schweitzer - 27 / 29

▶ Irregular oscillations persist as $t \to \infty$

► Aperiodic, no self-intersection, no repetition

Number of circuits on either side is unpredictable

▶ Dimension: 2.05 (numerical experiments → fractals)

- (right) Source: Mahnke (1994), p. 134
- Note: the term strange attractor was coined by Ruelle and Takens (1971).
- (left) Source: Boccara, pp. 174/175
- Trajectory appears to cross itself repeatedly → artefact of projecting 3-dim trajectory into 2-dim plane

Liapunov exponent for the Lorenz model

- ▶ Motion **on** the attractor **after** transients decayed
 - very sensitive dependence on initial conditions
 - two close trajectories rapidly diverge from each other

$$\mathbf{x}(t) + \delta(t) \quad
ightarrow \quad ||\delta(t)|| \sim ||\delta_0||e^{\lambda t}$$

- Numerical studies of the Lorenz attractor: $\lambda = 0.9$
- ► Lorenz Map: Trick to extract order from chaos
 - ▶ Lorenz' procedure: Numerical integration of $\dot{z} = xy bz$
 - ▶ Plot maxima of z(t): z_{n+1} vs $z_n \rightarrow$ chaotic time series
 - Lorenz map: $z_{n+1} = f(z_n)$ with |f'(z) > 1|

ETHZÜRICH Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer -

Notes:

- Strogatz (2000), p.321
- Note (1): the curve $\ln |\delta|$ vs. t is never a straight line, as the strength of the exponential divergence varies along the
- Note (2): Exponential divergence must stop when the separation is comparable to the "diameter" of the attractor ⇒ "saturation effect"

Questions

- What are periodic orbits? Why do they appear in discrete dynamics?
- 2 Derive the logistic map equation from the saturated growth dynamics.
- 3 Explain the logistic map and its control parameter. What is the meaning of a period-doubling scenario?
- What is meant by deterministic chaos and how does it arise?
- 6 What is the Liapunov exponent and how can it be calculated?
- 6 What is the difference between the switched server system and the switched arrival system?
- @ Explain the role of the maximum capacity, b, for the dynamics. What is the meaning of "chaos" in such a production system?
- Is chaos an artefact or ar real world phenomenon? Does it occur in continuous time dynamics?

ETH ZÜRİCh Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer - 29 / 29