

Business Template

PIZZA PLACE RESTAURANT

Logo / Image

CC

Legal Notice:

This document contains privileged and/or confidential information and may not be disclosed, distributed or reproduced without the prior written permission of EPAM®.

CONTENTS

1	BUSI	NESS DESCRIPTION	3
	1.1	Business background	
	1.2	Problems because of poor data management	
	1.3	Benefits from implementing a Data Warehouse	
	1.4	DATASETS DESCRIPTION	3
	1.5	GRAIN / DIM / FACT	5
2	BUSI	NESS LAYER 3NF	1
	BUSI	NESS LAYER DIMENSIONAL MODEL	. 13
		ICAL SCHEME	
		4 FLOW	
6	FAC1	T TABLE PARTITIONING STRATEGY	. 16

1 BUSINESS DESCRIPTION

1.1 BUSINESS BACKGROUND

Pizza nowadays is one of the most iconic resemblances of Italian cuisine. There are a lot of Pizza shops in the cities all over the world because Pizzas are extremely tasty and affordable.

So Oleg and Olga decided to create their own pizza restaurant in our city. From the start they implemented a little mobile app to register there to be able to make orders on the house. Just a simple registration with a name and achieving individual customer number and free pizza as a gift.

Olga and Oleg have a lot of friends in delivery business, so they managed to connect deliveries to their restaurant straight away and more than that, they figured out a way to track couriers and customers from delivery companies. So, they can aggregate additional data on the customers and couriers, to be able to analyze it in the future.

1.2 PROBLEMS BECAUSE OF POOR DATA MANAGEMENT

Poor data management doesn't let to do successful business because of insufficient information about what should you do next. If you don't use instruments which can give you information for analysis and which can help you to come up with a business strategy you won't be competitive in this or that field.

1.3 BENEFITS FROM IMPLEMENTING A DATA WAREHOUSE

Using of data warehouse can help you with the problems described above. Implementing a data warehouse can answer you the following questions:

- What is the common order size in restaurant and via delivery?
- Which customers order more from the delivery and which order more personally in the restaurant?
- Is there any correlation between customers and deliveries they use?

Further processing data would also let you:

- Correlate sales rates with type, name, size and price of pizza.
- Which delivery is the most common between our customers.
- And many other.

1.4 DATASETS DESCRIPTION

The first dataset contains the following information about sales in the restaurant (pizzaplace rest.csv).

Product Information:

Pizza_type: type of pizzas (veggie or classic).

Pizza_name: pizza's name, which customer choose (Pepperoni, Mexicana and etc.).

Size: size of pizza (S, L, XL and etc).

Sales Information:

Price: price of pizza unit.

Order ID: unique identifier of an order. Timestamp: date and time of an order.

Customer Information:

Customer ID: unique identifier of a customer.

Business Template < CDAM

Customer name: first and last name of a customer.

Employee Information:

Employee ID: unique identifier of an employee.

Employee name: first and last name of an employee.

Additional Attributes:

In or out: flag to indicate if the customer ate the order in the restaurant or took it away.

The second dataset contains the following information about online sales in our restaurant vie deliveries (pizzaplace_online.csv).

Product Information:

Pizza_type: type of pizzas (veggie or classic).

Pizza_name: pizza's name, which customer choose (Pepperoni, Mexicana and etc.).

Size: size of pizza (S, L, XL and etc).

Sales Information:

Price: price of pizza unit.

Order ID: unique identifier of an order. Timestamp: date and time of an order.

Customer Information:

Customer ID: unique identifier of a customer.

Customer name: first and last name of a customer.

Geographical information:

District: name of the district of the customer.

Address: street\avenue name and house number of the customer.

Delivery Information:

Delivery ID: unique identifier of a delivery company.

Delivery name: first and last name of a delivery company.

Courier Information:

Courier ID: unique identifier of a courier.

Courier name: first and last name of a courier.

The datasets provide a comprehensive overview of pizza restaurant sales, allowing for analysis and exploration of sales performance, customer preferences, and more within the restaurant industry.

1.5 GRAIN / DIM / FACT

Step 1: Selecting Business Process.

Our business process is pizza retail.

Step 2: Declare the Grain:

Based on our business process, our grain is a line in a receipt of an order made by customer, containing pizza, date, time and price data.

Step 3: Identify the Dimensions.

According to grain, we will have 5 dimensions: customers, order, product, date, time.

And one additional dimension to satisfy the task requirements: address.

DIM_CUSTOMERS_SCD

Dimension to store customer's data in our DWH with storing history data SCD type 2.

Column name	Description	Data Type
Customer_surr_id	Unique identifier of a customer who made the order on this layer	BIGINT
Customer_src_id	Unique identifier of a customer who made the order on previous 3NF layer	INT
Source_system	Schema, data was taken from on previous 3NF layer	TEXT
Source_entity	Table, data was taken from on previous 3NF layer	TEXT
Original_source	Source of data about the customer (online/offline)	TEXT
Customer_full_name	Full name of a customer (first and last name)	TEXT
Is_active	Flag to state if this record active or history (Y/N)	TEXT
Start_dt	Start timestamp of when the record is active	TIMESTAMP
End_dt	End timestamp of when the record is active	TIMESTAMP
Insert_dt	Timestamp of insertion of this record in the table	TIMESTAMP

Example with filled data

Business Template

DIM_ORDERS

Dimension to store order's data in our DWH.

Orders can be 2 types: in the restaurant and online via delivery apps. So there are default constraints to follow 'NOT NULL' rule.

INT's: default -1
TEXT: default 'NO'

Column name	Description	Data Type
Order_surr_id	Unique identifier of order on this layer	BIGINT
Order_src_id	Unique identifier of order on previous 3NF layer	INT
Source_system	Schema, data was taken from on previous 3NF layer	TEXT
Source_entity	Table, data was taken from on previous 3NF layer	TEXT
Order_name	Name of the order	TEXT
Employee_src_id	Unique identifier of employee on previous 3NF layer	INT
Employee_full_name	Name of employee	TEXT
Order_type	Type of order	TEXT
Offline_order_type	Subtype of offline order	TEXT
Delivery_src_id	Unique identifier of delivery on previous 3NF layer	INT
Delivery_name	Name of Delivery	TEXT
Courier_src_id	Unique identifier of courier on previous 3NF layer	INT
Courier_full_name	Name of Courier	TEXT
Insert_dt	Timestamp of insertion of record	TIMESTAMP
Update_dt	Timestamp of update of record	TIMESTAMP

Example with filled data

DIM_ADDRESSES

Dimension to store addresses data in our DWH.

Column name	Description	Data Type
Address_surr_id	Unique identifier of address on this layer	BIGINT
Address_src_id	Unique identifier of address on previous 3NF layer	INT
Source_system	Schema, data was taken from on previous 3NF layer	TEXT
Source_entity	Table, data was taken from on previous 3NF layer	TEXT
Address_name	Name of the address	TEXT
District_src_id	Unique identifier of district on previous 3NF layer	INT
District_name	Name of district	TEXT
Insert_dt	Timestamp of insertion of record	TIMESTAMP
Update_dt	Timestamp of update of record	TIMESTAMP

Example with filled data

DIM_PIZZAS

Dimension to store product's data in our DWH.

Digital resemblance of a menu.

Column name	Description	Data Type
Pizza_surr_id	Unique identifier of a product (pizza)	BIGINT
Pizza_src_id	Unique identifier of product (pizza) on previous 3NF layer	INT
Source_system	Schema, data was taken from on previous 3NF layer	TEXT
Source_entity	Table, data was taken from on previous 3NF layer	TEXT
Pizza_name	Name of product (pizza) as in Menu	TEXT
Pizza_type_src_id	Unique identifier of product (pizza) type on previous 3NF layer	INT
Pizza_type_mane	Type of product (pizza)	TEXT
Pizza_size_src_id	Unique identifier of product (pizza) size on previous 3NF layer	INT
Pizza_size_name	Size of product (pizza)	TEXT
Insert_dt	Timestamp of insertion of record	TIMESTAMP
Update_dt	Timestamp of update of record	TIMESTAMP

Example with filled data

DIM_DATE

Dimension to store date data in our DWH.

Column name	Description	Data Type
Date_id	Unique identifier of a date	DATE
Date_year	Year	INT
Date_month	Month	INT
Date_monthname	Name of month	TEXT
Date_monthday	Day of month	INT
Date_yearday	Day of year	INT
Date_weekdayname	Day of week	TEXT
Date_calendarweek	Calendar week	INT
Date_formatteddate	Formatted date	TEXT
Date_quarter	Quarter date	TEXT
Date_yearquarter	Year quarter	TEXT
Date_yearmonth	Month of year	TEXT
Date_yearcalendarweek	Calendar week of year	TEXT
Date_weekend	Weekend	TEXT
Date_georgianholiday	National holidays of Georgia	TEXT
Date_period	Period	TEXT
Date_cwstart	CW start	DATE
Date_cwend	CW end	DATE
Date_monthstart	Start of month	DATE
Date_monthend	End of month	TIMESTAMP

Example with filled data

DIM_TIME

Dimension to store date time in our DWH.

This dimension is made for comfortable reporting by period in time.

Because this business requires reports also based on time, not only on date.

Column name	Description	Data Type
Time_id	Unique identifier of a time	TEXT
Time_hourofday	Hour of day	INT
Time_quarterhour	Quarter hour	TEXT
Time_minuteofday	Minute of day	INT
Time_daytimename	Name of daytime	TEXT
Time_daynightname	Name of nighttime	TEXT

Example with filled data

Step 4: Identify Facts.

FCT_SALES

As far as our process is selling pizza lets see what data should be present in our fact table.

Column name	Description	Data Type
Customer_surr_id	FK to DIM_CUSTOMERS	BIGINT
Order_surr_id	FK to DIM_ORDERS	BIGINT
Pizza_surr_id	FK to DIM_PRODUCTS	BIGINT
Event_time	FK to DIM_TIMES	TEXT
Address_surr_id	FK to DIM_ADDRESSES	BIGINT
Event_dt	FK to DIM_DATES	DATE
Quantity	Quantity of same pizza in order	INT
Price	Price of the product in order	DECIMAL (6,2)
Fct_cost_order	Calculated price of same pizzas	DECIMAL (10,2)
Insert_dt	Timestamp of insertion of record	TIMESTAMP
Update_dt	Timestamp of update of record	TIMESTAMP

Example with filled data

2 BUSINESS LAYER 3NF

Here we have performed 3NF schema layer conversion of our sources.

SCD's to track history data here are: CE_CUSTOMERS_SCD.

3 BUSINESS LAYER DIMENSIONAL MODEL

Metrics, presented in this model:

- QUANTITY quantity of product sold,
- PRICE price of a product piece,
- FCT_COST_ORDER cost of a product sold (Price * Quantity).

4 LOGICAL SCHEME

5 DATA FLOW

6 FACT TABLE PARTITIONING STRATEGY

Partitions for fact table are created based on window_partitions_procedure.sql.

The logic is: partitions created on the fly while loading new data, that has dates, partitions for which are not yet created.

Partitions are created for interval of 2 months.