Способы адресации процессора Pentium II нерегулярны и зависят от того, в каком формате находятся команды: 16- или 32-битном.

Режим адресации определяют один или два байта адресации, которые находятся после байта адресации. Первым является байт *mod r/m*, вторым байт *sib* (масштаб, индекс, база). Байт *sib* может присутствовать только в командах с 32-разрядной адресацией, когда байт *mod r/m* содержит *r/m* = 100 и значение в поле *mod*≠11.

Для адресации теперь можно использовать любой регистр общего назначения, а индекс разрешается масштабировать (умножать) на 1, 2, 4 или 8. Ниже приводятся все способы 32—разрядной адресации.

Таблица 4.3

Непосредственная	mov	eax,	12345678h
Регистровая	mov	eax,	есх
Прямая (абсолютная)	mov	eax,	[3456789h]
Регистровая косвенная	mov	eax,	[ecx]
Базовая (индексная) со смещением	mov	eax,	[ecx]+1200h
Базовая индексная со смещением	mov	eax,	[ecx][edx]+40h
Индексная с масштабированием и смещением	mov	eax,	[eci*4]+400h
Базовая индексация с масштабированием	mov	eax,	[edx][ecx*8]
Базовая индексация с масштабированием и смещением	mov	eax,	[ebx][edi*2]+20h

Проблема заключается в том, что не все способы адресации применимы ко всем командам и не все регистры могут использоваться при всех способах адресации. Это существенно усложняет работу компилятора.

Схема формирования адреса в 32-разрядной адресации приведена на рис 4.24

32-разрядные режимы адресации кодируются с помощью двух байт mod r/m и sib.

Байт *mod* управляет способами адресации. Один из операндов определяется по комбинации полей mod и r/m. Второй операнд всегда является регистром и определяется по значению поля reg. (таблицы 4.4. и 4.5).

Формирование адреса памяти в 32-битной адресации (r/m ≠100).

Таблица 4.4 M[x] – слово в памяти с адресом x. D -- смещение

	Адрес памяти второго операнда			
r/m	mod = 00	mod = 01	mod = 10	Mod = 11
000	M[EAX]	M[EAX+d8]	M[EAX+d32]	EAX или AL
001	M[ECX]	M[ECX+d8]	M[ECX+d32]	ECX или CL

010	M[EDX]	M[EDX+d8]	M[EDX+d32]	EDX или DL
011	M[EBX]	M[EBX+d8]	M[EBX+d32]	EBX или BL
100	имеется sib	имеется sib	имеется sib	ESP или AH
101	Прямая адр.	M[EBP+d8]	M[EBP+d32]	ЕВР или СН
110	M[ESI]	M[ESI+d8]	M[ESI+d32]	ESI или DH
111	M[EDI]	M[EDI+d8]	M[EDI+d32]	EDI или BH

Колонки 01 и 10 включают способы адресации, при которых значение регистра прибавляется к 8-битному или 32-битному смещению, которое следует за командой.

Иногда вслед за байтом mod следует дополнительный байт sib. Байт sib определяет масштабный коэффициент и два регистра.

Поле SS указывает масштабный коэффициент индекса, поле index определяет любой регистр, кроме ESP, который служит индексным регистром, а поле base — определяет базовый регистр. Формирование адреса памяти в 32-битной адресации (r/m =100, имеется sib) приведено в табл. 4.6.

Таблица 4.6

поле base	Адрес памяти второго операнда			
	mod = 00	mod = 01	mod = 10	
000	M[EAX+ss*ind]	M[EAX+ss*ind+d8]	M[EAX+ss*ind+d32]	
001	M[ECX+ss*ind]	M[ECX+ss*ind+d8]	M[ECX+ss*ind+d32]	
010	M[EDX+ss*ind]	M[EDX+ss*ind+d8]	M[EDX+ss*ind+d32]	
011	M[EBX+ss*ind]	M[EBX+ss*ind+d8]	M[EBX+ss*ind+d32]	
100	M[ESP+ss*ind]	M[ESP+ss*ind+d8]	M[ESP+ss*ind+d32]	
101	M[d32+ss*ind]	M[D32+ss*ind+d8]	M[d32+ss*ind+d32]	
110	M[ESI+ss*ind]	M[ESI+ss*ind+d8]	M[ESI+ss*ind+d32]	
111	M[EDI+ss*ind]	M[EDI+ss*ind+d8]	M[EDI+ss*ind+d32]	

Таблица кодирования полей index и ss.

index	индексный		
	регистр	ss	Множитель
000	EAX	00	*1
001	ECX	01	*2
010	EDX	10	*4
011	EBX	11	*8
100	нет		
101	EBP		
110	ESI		
111	EDI		