Topic: Measuring Uncertainty with Probability

Venn Diagrams

Venn Diagrams

School of Mathematics and Applied Statistics

A Venn diagram represents events as subregions of a larger region representing the entire sample space.

It is a convenient way to represent the relationship between sets.

Examples:

Introduction to Venn Diagrams

A Venn diagram represents events as subregions of a larger region representing the entire sample space.

It is a convenient way to represent the relationship between sets.

Examples:

intersection

Introduction to Venn Diagrams

A Venn diagram represents events as subregions of a larger region representing the entire sample space.

It is a convenient way to represent the relationship between sets.

Examples:

no intersection

Introduction to Venn Diagrams

Probabilities are represented as areas (not necessarily drawn to scale). Numerical values (counts) can also be shown.

Venn Diagrams

Total area = 1

Venn Diagrams & Two-way Tables

A Venn diagram and a two-way table are two different ways to represent the same information:

Venn Diagrams

Total area = 1

The Complement (Not)

The complement of an event is the event not occurring.

Different notations for the complement of A include: $A^c = A' = \bar{A}$

$$P(A \ \mathsf{occurs}) + P(A \ \mathsf{does} \ \mathsf{not} \ \mathsf{occur}) = P(A) + P(A^c) = 1$$

$$P(\text{ not } A) = P(A^c) = 1 - P(A)$$

The Complement (Not)

The complement of an event is the event not occurring.

Different notations for the complement of A include: $A^c = A' = \bar{A}$

Venn Diagrams

$$P(A \text{ occurs}) + P(A \text{ does not occur}) = P(A) + P(A^c) = 1$$

$$P(\text{ not } A) = P(A^c) = 1 - P(A)$$

Venn diagram with two events

()+(3)

Intersection (And)

The **intersection** $A \cap B$ is the event that both A and B occur. Another example:

$$P(A \cap B) = \bigcirc \cdot$$

Union (Or)

The **union** $A \cup B$ consists of outcomes that are in $A(\mathbf{or})B$ (or both).

Union (Or)

The **union** $A \cup B$ consists of outcomes that are in A **or** B (or both).

Additive Law of Probability:

The probability of the union of two events A and B is

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$= 0.6 + 0.3 - 0.1$$

$$= 0.8$$

Disjoint Events

If $A \cap B = \emptyset$ (i.e. no intersection), then the two events are said to be **mutually** exclusive or disjoint.

For disjoint (mutually exclusive) events, the previous result can be simplified since $P(A \cap B) = 0$:

$$P(A \cup B) = P(A) + P(B)$$

$$= 0.6 + 0.3$$

$$= 0.9$$

If we have a 2×2 contingency table we can present the probabilities for outcomes as such:

	B	$not\ B$	Total
A	$A \cap B$	$A \cap B^c$	P(A)
$not\ A$	$A^c \cap B$	$A^c\cap B^c$	$P(A^c)$
Total	P(B)	$P(B^c)$	1.0

Summary

In this lecture segment we have looked at Venn Diagrams as a convenient way to represent relationships between sets and applied set notation:

- Complement: $P(A^c) = 1 P(A)$
- Intersection: $P(A \cap B)$
- Union: $P(A \cup B)$
- Disjoint events: $P(A \cap B) = 0$

Venn Diagrams can be extended to represent relationships between 3 or more events.

Reference: Wackerley D.D., Mendenhall W. & Scheaffer R.L. [WMS] (2008) "Mathematical Statistics with Applications", 7th ed. Duxbury, Belmont . (Library: 519.5/40).