1. In class 3

(1) Provide a counterexample to the following statement: Suppose

$$f(z) = u(x, y) + iv(x, y)$$

is defined in a neighborhood of $z_0 = a + ib$. If the partial derivatives of u and v exist at (a,b) and satisfy the Cauchy-Riemann equations $u_x(a,b) = v_y(a,b)$ and $u_y(a,b) = -v_x(a,b)$, then f is complex differentiable at z_0 .

- (2) Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Suppose that f is differentiable on (a,b) and that f'(x)=0 for all $x \in (a,b)$. Prove that f is a constant function.
- (3) Let $B = B_R(x_0)$ be the open ball in \mathbb{R}^n centered at x_0 with radius R > 0. Prove that if $f: B \to \mathbb{R}$ is a differentiable function such that $\nabla f = 0$ on B, then f is a constant function. **Hint**: Given $x \in B$, define $g_x(t) = f((1-t)x_0 + tx)$. Prove that g_x is continuous on [0,1] and differentiable on (0,1) and find $g'_x(t)$ for 0 < t < 1.
- (4) Let U be an open subset of \mathbb{R}^n . A function $f:U\to\mathbb{R}$ is called **locally** constant if, for each $x\in U$, there exists an open neighborhood W of x such that $W\subset U$ and $f:W\to\mathbb{R}$ is constant on W. Prove that f is a locally constant function and only if $\nabla f=0$ on U.
- (5) Let D be an open, connected subset of \mathbb{R}^n . Prove that if $f: D \to \mathbb{R}$ is a locally constant function, then f is a constant function.