

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

STIC-ILL

NO 133,985

From: Ceperley, Mary
Sent: Saturday, March 01, 2003 1:25 PM
To: STIC-ILL
Subject: REFERENCE ORDER

PLEASE PROVIDE ME WITH A COPY OF EACH OF THE FOLLOWING REFERENCES THANKS.

V. POCHINOK ET AL
UKR. KHIM. ZH. (RUSS. ED.)
(1984), 50(3), 296-301.
ISSN: 0041-6045.

1. TOLSKAYA ET AL
KHIM GETEROTSIKL. SOEDIN
(1974), (5), 640-642.
CODEN: KGSSAQ.

*Mary E. (Molly) Ceperley
Primary Examiner Art Unit 1641
(703) 308-4239
Office: CM1-8D15
Mailbox: CM1-7E12*

09/898,885

4
• 364 AGL
3-3-R.C

АКАДЕМИЯ НАУК ЛАТВИЙСКОЙ ССР

Химия
ГЕТЕРОЦИКЛИЧЕСКИХ
Соединений

1974 · 5

577—720

Май

Журнал основан в 1965 г. Выходит 12 раз в год

JUL 9 '74

U.S. DEPT. OF AGRICULTURE
NATIONAL READING ROOM
PROCUREMENT SECTION
CURRENT SERIAL RECORDS

ИЗДАТЕЛЬСТВО «ЗИНАТНЕ» • РИГА

УДК 547.789.6.07:668.8

И. А. Ольшевская, В. Я. Починок

СИНТЕЗ И РЕАКЦИИ АЗИДОВ ГЕТЕРОЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ

III*. ЦИАНИНОВЫЕ КРАСИТЕЛИ НА ОСНОВЕ АЗИДОВ БЕНЗТИАЗОЛА И БЕНЗИМИДАЗОЛА

Из четвертичных солей азидов бензтиазола и бензимидазола получены цианиновые красители, содержащие в положениях 5 или 6 бензазольного цикла азидные группы. Введение азидогруппы в молекулу красителя приводит к значительному батохромному эффекту. Табл. 2, библиогр. 9.

Йодметилаты 5-азидо- (I) и 6-азидо-2-метилбензтиазолов (II), йодэтилаты 5-азидо-1-фенил-2-метил- (III) и 6-азидо-1,2-диметилбензимидазолов (IV), описанные в работе², использованы для синтеза цианиновых красителей, содержащих в положениях 5 или 6 бензазольного цикла азидные группы.

V R=5-N₃; VI R=6-N₃; VII R=5-N₃, R'=H, R''=C₂H₅, n=0; VIII R=6-N₃, R'=H, R''=C₂H₅, n=0; IX R=R'=5-N₃, R''=CH₃, n=1; X R=R'=6-N₃, R''=CH₃, n=1; XI R=5-N₃, R'=H, R''=CH₃, n=1; XII R=6-N₃, R'=H, R''=CH₃, n=1; XIII R=5-N₃, R'=CH₃, X=S; XIV R=6-N₃, R'=CH₃, X=S; XV R=5-N₃, X=N-C₆H₅, Y=S; XVI R=6-N₃, X=N-CH₃, Y=S; XVII R=5-N₃, X=N-C₆H₅, Y=CH=CH; XVIII R=6-N₃, X=N-CH₃, Y=CH=CH; XIX R=5-N₃, R'=C₂H₅, X=N-C₆H₅; XX R=6-N₃, R'=C₂H₅, X=N-CH₃.

В отличие от четвертичных солей азидов бензтиазола, четвертичные соли азидов бензимидазола не образуют симметричных карбоцианинов ни в уксусном ангидриде, ни в пиридине. При проведении реакции в нитробензоле в нашем случае происходит разрушение четвертичных солей азидов.

На основании данных ИК спектров цианиновых красителей (V—XX) можно заключить, что при переходе от четвертичных солей к цианиновым красителям азидогруппа в последних сохраняется и участвует в системе сопряжения. В ИК спектрах цианиновых красителей имеются полосы асимметричных валентных колебаний азидогруппы в области 2105—2123 cm⁻¹ (табл. 1 и 2).

Для выяснения вопроса о влиянии азидогруппы на окраску цианиновых красителей были использованы красители ряда бензтиазола, для которых получены стирилы (V, VI), монометинцианины (VII, VIII). Сим-

Соединение	λ_{\max} , нм
V*	540
VI*	535
VII	430
VIII	434
IX*	576
X*	580
XI*	566
XII*	570
XIII*	530
XIV*	536

* Синтез красителей см

Соединение	T. пл., °C	Брутто-формула
XV	214—215	C ₂₇ H ₂₅ IN ₆ S
XVI	210—212	C ₂₂ H ₂₃ IN ₆ S
XVII	—	C ₂₉ H ₂₃ IN ₆
XVIII	—	C ₂₄ H ₂₅ IN ₆
XIX	169—170	C ₂₂ H ₂₀ N ₆ O
XX	198—200	C ₁₇ H ₁₈ N ₆ O

метрические (IX, X) и цианины (XIII, XIV). удалось. Из сравнения телей и соответствующие выводы. Введено красителя приводящего в длинноволненно несколько больше, чем виях 5,5' или 6,6' тиакий эффект по сравнению соответственно (табл. лей, содержащих азиды незначительно отличаются.

В работе³ отмечается 6,6'-замещенных тиакий пряжения заместителем атом азота, так и черезется проводником эл заместителей и не учитывается положения стоян сопряжения через атомы. объясняется большая в положениях 5,5' и 6,6' разница в максимуме положениях 5,5' и 6,6' азидогруппа в данном

* Сообщение II см.¹

ЛИЧЕСКИХ

БЕНЗИАЗОЛА

азола получены
5 бензазольного
красителя при-
лиогр. 9.

иазолов (II), йод-
иметилбензимиди-
нтара цианиновых
зазольного цикла

-XVIII

VIII R=6-N₃, R'=H,
, R''=CH₃, n=1; XI
I; XIII R=5-N₃, R'
S, Y=S; XVI R=6-N₃,
R=6-N₃, X=N-CH₃,
C₂H₅, X=N-CH₃

ла, четвертичные
их карбоцианинов
едении реакции в
ие четвертичных

исителей (V—XX)
солям к цианино-
ся и участвует в
исителей имеются
руппы в области

окраску цианино-
бензтиазола, для
(VII, VIII). сим-

Таблица 1

Цианиновые красители азидов бензтиазола

Соединение	λ_{\max} , нм	$\lg \epsilon$	λ_{\max} красителя без азидогруппы, нм ($\lg \epsilon$)	Батохром- ный сдвиг, нм	$\nu_{as} N_3$, см ⁻¹
V*	540	4,70	528 (5,04) ⁶	12	2123
VI*	535	4,74	528 (5,04) ⁶	7	2116
VII	430	4,97	422 (4,91) ⁷	8	2115
VIII	434	4,91	422 (4,91) ⁷	12	2105
IX*	576	5,15	558 (5,15) ⁸	18	2114
X*	580	5,15	558 (5,15) ⁸	22	2110
XI*	566	5,07	558 (5,15) ⁸	8	2120
XII*	570	5,09	558 (5,15) ⁸	12	2114
XIII*	530	4,78	521 (4,96) ⁶	9	2114
XIV*	536	4,79	521 (4,96) ⁶	15	2120

* Синтез красителей см.²

Таблица 2

Цианиновые красители азидов бензимидазола

Соединение	Т. пл., °C	Брутто-формула	Найдено, %		Вычис-лено, %		λ_{\max} , нм	$\lg \epsilon$	λ_{\max} красителя без азидо- группы, нм	Бато- хромный сдвиг, нм	$\nu_{as} N_3$, см ⁻¹	Выход, %
			N	S	N	S						
XV	214—215	C ₂₇ H ₂₅ IN ₆ S	14,6	5,6	14,2	5,4	522	5,03	517 ⁹	5	2110	60
XVI	210—212	C ₂₂ H ₂₃ IN ₆ S	16,0	6,2	15,8	6,0	522	—	500 ⁹	22	2115	40
XVII	—	C ₂₉ H ₂₃ IN ₆	14,0	—	14,3	—	574	4,97	559 ⁹	15	2110	50
XVIII	—	C ₂₄ H ₂₅ IN ₆	16,2	—	16,0	—	534	4,92	521 ⁹	13	2112	57
XIX	169—170	C ₂₂ H ₂₀ N ₆ OS ₂	18,8	13,9	18,9	13,9	524	5,13	511 ⁹	5	2110	34
XX	198—200	C ₁₇ H ₁₈ N ₆ OS ₂	21,6	16,4	21,9	16,1	526	—	511 ⁹	15	2110	45

метрические (IX, X) и несимметрические (XI, XII) карбоцианины и мероцианины (XIII, XIV). Для имидацианинов такой серии получить не удалось. Из сравнения максимумов поглощения полученных нами красителей и соответствующих незамещенных красителей можно сделать следующие выводы. Введение азидогруппы в бензазольное кольцо цианинового красителя приводит к значительному смещению максимума поглощения в длинноволновую часть спектра, причем для тиацианинов оно несколько больше, чем для имидацианинов. Две азидогруппы в положениях 5,5' или 6,6' тиакарбоцианина вызывают вдвое больший батохромный эффект по сравнению с одной азидогруппой в положениях 5 или 6 соответственно (табл. 1). Максимумы поглощения цианиновых красителей, содержащих азидогруппы в положении 6 бензтиазольного кольца, незначительно отличаются от максимумов поглощения 5-замещенных.

В работе³ отмечается, что незначительная разница в окраске 5,5'- и 6,6'-замещенных тиакарбоцианинов связана с равной возможностью сопряжения заместителей с полиметиновой целью красителя как через атом азота, так и через атом серы. Атом серы тиазольного кольца является проводником электронов только со стороны электронодонорных заместителей и не участвует или слабо участвует в сопряжении, если в этих положениях стоит электроноакцепторный заместитель⁴. Отсутствием сопряжения через атом серы для электроноакцепторных заместителей объясняется большая разница в окраске тиакарбоцианинов, содержащих в положениях 5,5' и 6,6' электроноакцепторные заместители. Небольшая разница в максимумах поглощения тиакарбоцианинов, содержащих в положениях 5,5' и 6,6' азидогруппы, дает основание предположить, что азидогруппа в данном случае играет роль электронодонорного замести-

теля. По числовому значению ее батохромный эффект приближается к эффекту ацетиламиногруппы⁴. Ацетиламиногруппа при введении в одно ядро тиакарбоцианина не вызывает девиации⁵. То же самое мы наблюдаем при введении в одно бензтиазольное ядро красителя азидогруппы.

Известно, что окраска мероцианинов углубляется при увеличении основности гетероциклического остатка, связанного с ядром роданина полиметиновой цепью. Тиамероцианины, содержащие в качестве заместителей азидогруппу, окрашены глубже (на 9—15 нм), чем незамещенные, что является косвенным подтверждением того, что азидогруппа выступает в роли электронодонорного заместителя. Сходство в оптическом отношении тиакарбоцианинов, содержащих в положениях 5,5' и 6,6' азидогруппу, можно объяснить равной возможностью сопряжения азидогруппы в этих красителях как через атом азота, так и через атом серы.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры сняты на спектрофотометре UR-10 в таблетках с КBr, УФ спектры — на приборе СФ-4 в этаноле.

(3-Метил-5-азидобензтиазолил-2)-(3'-этилбензтиазолил-2')монометинцианин йодид (VII). Смесь 0,33 г (1 ммол) йодметилата б-азидо-2-метилбензтиазола, 0,38 г (1 ммол) этилтозилата 2-метилмеркаптобензтиазола и 1 ммол триэтиламина в абсолютном этаноле кипятят 30 мин. Уже при нагревании выпадает осадок красителя. После охлаждения осадок отфильтровывают, промывают спиртом. Выход 0,28 г (45%). Т. пл 262—264° (с разл., из этанола). Найдено: N 14,3; S 13,0%. C₁₈H₁₆IN₅S₂. Вычислено: N 14,2; S 13,0%.

(3-Метил-6-азидобензтиазолил-2)-(3'-этилбензтиазолил-2')монометинцианин йодид (VIII). Получают аналогично VII из 0,33 г (1 ммол) йодметилата б-азидо-2-метилбензтиазола и 0,38 г (1 ммол) этилтозилата 2-метилмеркаптобензтиазола. Выход 0,32 г (56%). Т. пл. 225—228° (с разл., из этанола). Найдено: N 14,1; S 13,2%. C₁₈H₁₆IN₅S₂. Вычислено: N 14,2; S 13,0%.

Несимметричные карбоцианины XV, XVI получают при нагревании эквимолекулярных количеств соответствующей четвертичной соли (III или IV) и 3-этил-2-формилметилен-бензтиазолина в уксусном ангидриде. Образовавшийся краситель фильтруют, промывают спиртом, эфиrom, а затем кристаллизуют из спирта (табл. 2).

Несимметричные карбоцианины XVII, XVIII получают при нагревании эквимолекулярных количеств соответствующей четвертичной соли (III или IV) и йодэтилата 2-ф-ацетанилидовинилхинолина в уксусном ангидриде в присутствии триэтиламина. Очищают хроматографированием раствора красителя в хлороформе на окиси алюминия 2-й степени активности (табл. 2).

Мероцианины XIX, XX получают нагреванием эквимолекулярных количеств соответствующих йодэтилатов III или IV и ацетанилидометилен-N-этилроданина в этаноле в присутствии триэтиламина. Очищают путем хроматографирования их хлороформных растворов на окиси алюминия 2-й степени активности (табл. 2).

ЛИТЕРАТУРА

1. И. А. Ольшевская, В. Я. Починок, Н. А. Пасмурцева, Н. Ф. Пархоменко, Вісник Київськ. унів., 1973, сер. хім., № 14, 61.
2. И. А. Ольшевская, В. Я. Починок, Л. Ф. Авраменко, ХГС, 1968, 898.
3. Е. Д. Сыч, Л. П. Уманская, ЖОХ, 1963, 33, 80.
4. Е. Д. Сыч, Укр. хим. журн., 1952, 18, 159.
5. А. И. Киприанов, Докт. дис., Харьков, 1940.
6. А. И. Киприанов, Ф. А. Михайленко, ЖОХ, 1961, 31, 781.
7. А. И. Киприанов, И. К. Ущенко, ЖОХ, 1950, 20, 135.
8. А. И. Киприанов, Ф. А. Михайленко, ЖОХ, 1961, 31, 786.
9. А. В. Стеценко, Л. И. Филилеева, Укр. хим. журн., 1966, 32, 853.

УДК 547.869.2'789.6.07

В. В. Шавыр

СИНТЕЗЫ В Г

XXXVII*. НЕКОТОРЫЕ СВ 2-МЕТИЛМЕРКАПТО

Изучены некоторые реакции 2-метилмеркапто-3-метилтиазола с его спиртовой щелочью приводят сульфиду; расщепление с последующими мещенными фенотиазины. Библиог

Продолжая исследование химии [4,5-*b*]фенотиазина^{2,3}, мы изучил 2-метилмеркаптотиазоло[4,5-*b*]фенотиазин.

Известно, что четвертичные соли дают повышенной реакционной способности с 2-метилмеркаптотиазолом. Благодаря значительной концентрации углерода, связанного с алкильной группой, они легко вступают в реакции нуклеофильного присоединения.

Поскольку четвертичные соли дают повышенной реакционной способности с 2-метилмеркаптотиазолом. Благодаря значительной концентрации углерода, связанного с алкильной группой, они легко вступают в реакции нуклеофильного присоединения.

Нагреванием I с диметилсульфатом 2-метилмеркапто-3-метилтиазола в спирте в отличие от йодметилата в горячем спирте. Поэтому из проводили преимущественно на

При кипячении с водой II₆ или II₆ крепкого раствора щелочи 3-метил-2,3-дигидротиазол-4-тион-2 (IV) был синтезирован раствором сернистого натрия. F

VII

II₂ x = I, 6 x = CH₃SO₄⁻; III x = O; IV

* Сообщение XXXVI см.!