자료구조(Data Structures)

10장. 그래프(Graph)

담당 교수 : 조 미경

이번 장에서 학습할 내용

- * 그래프란?
- * 그래프 추상 데이터형
- * 그래프 표현(인접행렬, 인접리스트)
- * 그래프 탐색(BFS, DFS)
- * 최소비용신장트리
- * 최단경로

그래프(graph)

- 연결되어 있는 객체 간의 관계를 표현하는 자료구조
- 가장 일반적인 자료구조 형태
 - ▶ 우리가 배운 트리(tree)도 그래프의 특수한 경우임
 - ▶ 전기회로의 소자 간 연결 상태
 - ▶ 운영체제의 프로세스와 자원 관계
 - ▶ 큰 프로젝트에서 작은 프로젝트 간의 우선 순위
 - ▶ 지도에서 도시들의 연결 상태

교과목: 자료구조 3/45

그래프 역사

- 1800년대 오일러에 의하여 창 안
- 오일러 문제
 - ▶ 모든 다리를 한번만 건너서 처음 출발했던 장소로 돌아오는 문제
- A,B,C,D 지역의 연결 관계 표현
 - ▶ 위치: 정점(node)
 - ▶ 다리: 간선(edge)
- 오일러 정리
 - 모든 정점에 연결된 간선의 수가 짝수이면 오일러 경로 존재함
 - ▶ 따라서 그래프 (b)에는 오일러 경 로가 존재하지 않음

(a) 모든 다리를 한번만 건너 돌아오는 경로 문제

(b) 문제 (a)의 그래프 표현

그래프 정의

- 그래프 G는 (V, E)로 표시
- 정점(vertices)
 - ▶ 여러 가지 특성을 가질 수 있는 객체 의미
 - ▶ V(G) : 그래프 G의 정점들의 집합
 - ▶ 노드(node)라고도 불림
- 간선(edge)
 - ▶ 정점들 간의 관계 의미
 - ▶ E(G) : 그래프 G의 간선들의 집합
 - ▶ 링크(link)라고도 불림

그래프로 표현하는 것들

• 도로망

• 선수과목 관계

교과목 : 자료구조 6/45

그래프로 표현하는 것들

• 영역 간 인접 관계

교과목: 자료구조 7/45

그래프의 종류

- 무방향 그래프(undirected graph)
 - ▶ 무방향 간선(undirected edge)만 사용
 - ▶ 간선을 통해서 양방향으로 갈수 있음
 - ▶ 도로의 왕복통행 길
 - ▶ (A, B)와 같이 정점의 쌍으로 표현
 - \triangleright (A, B) = (B, A)
- 방향 그래프(directed graph)
 - ▶ 방향 간선(undirected edge)만 사용
 - ▶ 간선을 통해서 한쪽 방향으로만 갈 수 있음
 - ▶ 도로의 일방통행 길
 - ▶ <A, B> 와 같이 정점의 쌍으로 표현
 - \triangleright <A, B> \neq <B, A>

가중치 그래프

- 가중치 그래프(weighted graph)는 네트워크(network)라고도 함
- 간선에 비용(cost)이나 가중치(weight)가 할당된 그래프

- 가중치 그래프 예
 - ▶ 정점 : 각 도시를 의미
 - ▶ 간선 : 도시를 연결하는 도로 의미
 - ▶ 가중치 : 도로의 길이

그래프 표현의 예

$$V(G1) = \{0, 1, 2, 3\},\$$

$$E(G1) = \{(0, 1), (0, 2), (0, 3), (1, 2), (2, 3)\}$$

$$V(G2) = \{0, 1, 2, 3\}$$

$$V(G2) = \{0, 1, 2, 3\}, E(G3) = \{(0, 1), (0, 2)\}$$

$$V(G2) = \{0, 1, 2\}$$

$$V(G2) = \{0, 1, 2\},$$
 $E(G2) = \{<0, 1>, <1, 0>, <1, 2>\}$

부분 그래프(subgraph)

- 정점 집합 V(G)와 간선 집합 E(G)의 부분 집합으로 이루어진 그래프
- 그래프 G1의 부분 그래프들

교과목 : 자료구조 11/45

그래프

- 인접 정점(adjacent vertex)
 - ▶ 하나의 정점에서 간선에 의해 직접 연결된 정점
 - ▶ G1에서 정점 0의 인접 정점: 정점 1, 정점 2, 정점 3
- 무방향 그래프의 차수(degree)
 - ▶ 하나의 정점에 연결된 다른 정점의 수
 - ▶ G1에서 정점 0의 차수: 3
 - ▶ 무방향 그래프의 모든 차수의 합은 간선 수의 2배
 - ▶ G1의 차수의 합: 10
 - ▶ G1의 간선의 합: 5

G1

교과목 : 자료구조 12/45

그래프

● 방향 그래프의 차수(degree)

- ▶ 진입 차수(in-degree) : 외부에서 오는 간선의 수
- ▶ 진출 차수(out-degree) : 외부로 향하는 간선의 수
- ▶ G3에서 정점 1의 차수: 내차수 1, 외차수 2
- ▶ 방향 그래프의 모든 진입(진출) 차수의 합은 간선의 수
 - ▶ G3의 진입 차수의 합: 3
 - ▶ G3의 진입 차수의 합: 3
 - ▶ G3의 간선 합: 3

그래프의 경로(path)

- 무방향 그래프의 정점 s로부터 정점 e까지의 경로
 - ▶ 정점의 나열 s, v1, v2, ..., vk, e
 - ▶ 나열된 정점들 간에 반드시 간선 (s, v1), (v1, v2), ... , (vk, e) 존재
- 방향 그래프의 정점 s로부터 정점 e까지의 경로
 - ▶ 정점의 나열 s, v1, v2, ..., vk, e
 - ▶ 나열된 정점들 간에 반드시 간선 <s, v1>, <v1, v2>, ... ,<vk, e> 존재
- 경로의 길이(length)
 - ▶ 경로를 구성하는데 사용된 간선의 수
- 단순 경로(simple path)
 - ▶ 경로 중에서 반복되는 간선이 없는 경로
- 사이클(cycle)
 - ▶ 단순 경로의 시작 정점과 종료 정점이 동일한 경로

교과목: 자료구조 14/45

그래프의 경로(path)

- G1의 0, 1, 2,3은 경로지만 0, 1, 3, 2는 경로 아님
- G1의1, 0, 2, 3은 단순경로이지만 1, 0, 2, 0은 단순경로 아님
- G1의 0, 1, 2, 0과 G3의 0, 1, 0은 사이클

교과목: 자료구조 15/45

그래프의 연결정도

- 연결 그래프(connected graph)
 - ▶ 무방향 그래프 G에 있는 모든 정점쌍에 대하여 항상 경로 존재
 - ▶ G2는 비연결 그래프임

G2

- 트리(tree)
 - ▶ 그래프의 특수한 형태로서 사이클을 가지지 않는 연결 그래프
 - ▶ 트리의 예

교과목 : 자료구조 16/45

그래프의 연결정도

- 완전 그래프(complete graph)
 - ▶ 모든 정점이 연결되어 있는 그래프
 - ▶ n개의 정점을 가진 무방향 완전그래프의 간선의 수: n×(n-1)/2
 - ▶ n=4, 간선의 수 = (4×3)/2 = 6

교과목 : 자료구조 17/45

그래프 ADT

- ·객체: 정점의 집합과 간선의 집합
- •연산:
- create_graph() ::= 그래프를 생성한다.
- init(g) ::= 그래프 g를 초기화한다.
 # init(g) ::= 그래프 g를 초기화한다.
 # init(g) ::= 그래프 g를 초기화한다.
 # init(g) ::= 그래프 g를 초기화한다.
 # init(g) ::= 그래프 g를 초기화한다.
 # init(g) ::= 그래프 g를 초기화한다.
 # init(g) ::= 그래프 g를 초기화한다.
 # init(g) ::= 그래프 g를 초기화한다.
 # init(g) ::= 그래프 g를 초기화한다.
 # init(g) ::= □ 대표 g를 హ init(g) ::= □ 대표 g를
- insert_vertex(g,v) ::= 그래프 g에 정점 v를 삽입한다.
- insert_edge(g,u,v) ::= 그래프 g에 간선 (u,v)를 삽입한다.
- delete_vertex(g,v) ::= 그래프 g의 정점 v를 삭제한다.
- delete_edge(g,u,v) ::= 그래프 g의 간선 (u,v)를 삭제한다.
- is_empty(g) ::= 그래프 g가 공백 상태인지 확인한다.
- adjacent(v) ::= 정점 v에 인접한 정점들의 리스트를 반환한다.
- destroy_graph(g) ::= 그래프 g를 제거한다.
- 그래프에 정점을 추가하려면 insert_vertex() 연산 사용
- 그래프에 간선을 추가하려면 insert_edge() 연산 사용

교과목 : 자료구조 18/45

그래프 표현 방법

- 인접행렬 (adjacent matrix) 방법
 if(간선 (i, j)가 그래프에 존재) M[i][j] = 1,
 그렇지않으면 M[i][j] = 0.
- 인접 행렬의 대각선 성분은 모두 O(자체 간선 불허)
- 무방향 그래프의 인접 행렬은 대칭

그래프 표현 방법(계속)

- 인접리스트 (adjacency list) 방법
 - ▶ 각 정점에 인접한 정점들을 연결리스트로 표현

교과목 : 자료구조 20/45

그래프 탐색

- 그래프의 가장 기본적인 연산
- 하나의 정점으로부터 시작하여 차례대로 모든 정점들을 한번 씩 방문
- 많은 문제들이 단순히 그래프의 노드를 탐색하는 것으로 해결
 (예) 도로망에서 특정 도시에서 다른 도시로 갈 수 있는지 여부
 (예) 전자회로에서 특정 단자와 다른 단자가 서로 연결되어 있는지 여부

교과목 : 자료구조 21/45

깊이 우선 탐색(DFS)

- 깊이 우선 탐색 (DFS: depth-first search)
 - ▶ 한 방향으로 갈 수 있을 때까지 가다가 더 이상 갈 수 없게 되면 가 장 가까운 갈림길로 돌아와서 이 곳으로부터 다른 방향으로 다시 탐색 진행
 - ▶ 되돌아가기 위해서는 스택 필요(순환함수 호출로 묵시적인 스택 이용 가능)

교과목: 자료구조 22/45

DFS 알고리즘

depth_first_search(v)

v를 방문되었다고 표시; for all u ∈ (v에 인접한 정점) do if (u가 아직 방문되지 않았으면)then depth_first_search(u)

DFS 프로그램

너비 우선 탐색(BFS)

- 너비 우선 탐색(BFS: breadth-first search)
 - 시작 정점으로부터 가까운 정점을 먼저 방문하고 멀리 떨어져 있는 정점을 나중에 방문하는 순회 방법
 - ▶ 큐를 사용하여 구현됨
- 너비우선탐색 알고리즘

교과목: 자료구조 25/45

너비우선 탐색(BFS)

BFS 프로그램(인접행렬)

```
void bfs mat(GraphType *q, int v)
        int w;
        QueueType q;
                                  // 큐 초기화
        init(&q);
        visited[v] = TRUE; // 정점 v 방문 표시
        printf("%d ", v); // 정점 출력
                                  // 시작 정점을 큐에 저장
        enqueue(&q, v);
        while(!is_empty(&q)){
        v = dequeue(&q);
                        // 큐에 정점 추출
        for(w=0; w<g->n; w++) // 인접 정점 탐색
                 if(g->adj_mat[v][w] && !visited[w]){
                         visited[w] = TRUE; // 방문 표시
                          printf("%d ", w); // 정점 출력
                         enqueue(&q, w); // 방문한 정점을 큐에 저장
```

BFS 프로그램(인접리스트)

```
void bfs list(GraphType *q, int v)
        GraphNode *w;
         QueueType q;
                 // 큐 초기화
         init(&q);
        visited[v] = TRUE; // 정점 v 방문 표시
         printf("%d ", v); // 정점 v 출력
                                  // 시작정점을 큐에 저장
         enqueue(&q, v);
         while(!is_empty(&q)){
                 v = dequeue(&q);
                                                        // 큐에서 정점 추출
                  for(w=g->adj_list[v]; w; w = w->link) //인접 정점 탐색
                           if(!visited[w->vertex]){ // 미방문 정점 탐색
                           visited[w->vertex] = TRUE; // 방문 표시
                           printf("%d ", w->vertex); // 정점 출력
                           enqueue(&q, w->vertex); // 방문한 정점을 큐에 삽입
```

연결 성분

- 최대로 연결된 부분 그래프들
- DFS 또는 BFS 반복 이용
 - ▶ DFS 또는 BFS 탐색 프로그램의 visited[v]=TRUE; 를 visited[v]=count; 로 교체

(a) 무방향 그래프 (b) 배열 visited의 최종결과

```
void find_connected_component(GraphType *g)
         int i;
         count = 0;
         for(i=0; i<q->n; i++)
                  if(!visited[i]){ // 방문되지 않았으면
                            count++;
                            dfs_mat(q, i);
```

신장 트리(spanning tree)

- 그래프내의 모든 정점을 포함하는 트리
- 모든 정점들이 연결되어 있어야 하고 사이클을 포함해서는 안됨
- n개의 정점을 가지는 그래프의 신장트리는 n-1개의 간선을 가짐
- 최소의 링크를 사용하는 네트워크 구축 시 사용
 - ▶ 통신망, 도로망, 유통망 등
- 신장트리 알고리즘

교과목: 자료구조 30/45

신장 트리

교과목 : 자료구조 31/45

최소비용 신장트리 (MST: minimum spanning tree)

- 네트워크에 있는 모든 정점들을 가장 적은 수의 간선과 비용으로 연결
- MST의 응용
 - 도로 건설 도시들을 모두 연결하면서 도로의 길이를 최소가 되도록 하는 문제
 - ▶ 전기 회로 단자들을 모두 연결하면서 전선의 길이를 가장 최소로 하는 문제
 - ▶ 통신 전화선의 길이가 최소가 되도록 전화 케이블 망을 구성하는 문제
 - ▶ 배관 파이프를 모두 연결하면서 파이프의 총 길이를 최소로 하는 문제

교과목 : 자료구조 32/45

Kruskal의 MST 알고리즘

- 탐욕적인 방법(greedy method)
 - ▶ 주요 알고리즘 설계 기법
 - ▶ 각 단계에서 최선의 답을 선택하는 과정을 반복함으로써 최종적 인 해답에 도달
 - ▶ 탐욕적인 방법은 항상 최적의 해답을 주는지 검증 필요
 - ▶ Kruskal MST 알고리즘은 최적의 해답임이 증명됨

교과목: 자료구조 33/45

Kruskal의 MST 알고리즘

- MST는 최소 비용의 간선으로 구성됨과 동시에 사이클을 포함하지 않아야 함
- 각 단계에서 사이클을 이루지 않는 최소 비용 간선 선택
 - ▶ 그래프의 간선들을 가중치의 오름차순으로 정렬
 - ▶ 정렬된 간선 중에서 사이클을 형성하지 않는 간선을 현재의 MST 집합에 추가
 - ▶ 만약 사이클을 형성하면 그 간선은 제외

교과목: 자료구조 34/45

Kruskal의 MST 알고리즘

- union-find 알고리즘
 - ▶ 두 집합들의 합집합 만듬
 - ▶ 원소가 어떤 집합에 속하는지 알아냄
 - ▶ Kruskal의 MST 알고리즘에서 사이클 검사에 사용

Prim의 MST 알고리즘

- 시작 정점에서부터 출발하여 신장 트리 집합을 단계적으로 확장해나감
 - ▶ 시작 단계에서는 시작 정점만이 신장 트리 집합에 포함됨
- 신장 트리 집합에 인접한 정점 중에서 최저 간선으로 연결된 정점 선택 하여 신장 트리 집합에 추가함
- 이 과정은 신장 트리 집합이 n-1개의 간선을 가질 때까지 반복

교과목 : 자료구조 37/45

최단 경로(shortest path)

- 네트워크에서 정점 u와 정점 v를 연결하는 경로 중에서 간선들의 가중치 합이 최소가 되는 경로
- 간선의 가중치는 비용, 거리, 시간 등
- 정점 0에서 정점 3으로 가는 최단 경로 문제
 - ▶ 인접행렬에서 간선이 없는 노드쌍의 가중치는 ∞ 임
 - ▶ 0,4,1,2,3이 최단 경로
 - ▶ 최단경로 길이는 3+2+4+2=11

	0	1	2	3	4	5	6
0	0	7	∞	∞	3	10	∞
1	7	0	4	10	2	6	8
2	∞	4	0	2	∞	∞	8
3	∞	10	2	0	11	9	4
4	3	2	∞	11	0	∞	5
5	10	6	∞	9	∞	0	∞
6	∞	∞	∞	4	5	∞	0

- 하나의 시작 정점으로부터 모든 다른 정점까지의 최단 경로 찾음
- 집합 S
 - ▶ 시작 정점 v로부터의 최단경로가 이미 발견된 정점들의 집합
- distance 배열
 - ▶ 최단경로가 알려진 정점들만을 이용한 다른 정점들까지의 최단경로 길이
 - ▶ distance 배열의 초기값(시작 정점 v)
 - distance[v] = 0
 - ▶ 다른 정점에 대한 distance 값은 시작정점과 해당 정점간의 가중치 값
- 매 단계에서 가장 distance 값이 작은 정점을 S에 추가

교과목 : 자료구조 40/45

- distance 값이 가장 작은 정점을 υ라고 하자. 그러면 시작 정점 v에서 정점 υ까지의 최단거리는 경로 ①이된다.
- 정점 w를 거쳐서 정점 u로 가는 가 상적인 더 짧은 경로가 있다고 가 정해보자. 그러면 정점 v에서 정점 u까지의 거리는 정점 v에서 정점 w 까지의 거리 ②와 정점 w에서 정점 u로 가는 거리③을 합한 값이 된다.
- 그러나 경로 ②는 경로 ①보다 항 상 길 수 밖에 없다. 왜냐하면 현재 distance 값이 가장 작은 정점은 ↓이 기 때문이다.
- 따라서 매 단계에서 distance 값이 가장 작은 정점들을 추가해나가면 시작 정점에서 모든 정점까지의 초 단거리를 구할 수 있다.

• 새로운 정점이 S에 추가되면 distance값 갱신

distance[w] = min(distance[w], distance[u] + weight[u][w])

교과목 : 자료구조 42/45

S={0,4} 0 1 2 3 4 5 6 distance[]= 0 5 ∞ 14 3 10 8

교과목: 자료구조 43/45

교과목 : 자료구조 44/45

위상정렬(topological sort)

- 방향 그래프에서 간선 <u, v>가 있다면 정점 u는 정점 v를 선행함
- 위상 정렬이란 방향 그래프 정점들의 선행 순서를 위배하지 않으면서 모든 정점을 나열하는 것

교과목: 자료구조 46/49

위상정렬(topological sort)

• 선수 과목은 과목들의 선행 관계 표현함

과목번호	과목명	선수과목	
0	컴퓨터개론	없음	
1	이산수학	없음	
2	C언어	0	
3	자료구조	0, 1, 2	
4	왁률	1	
5	알고리즘	2, 3, 4	

- 위상 순서(topological order)
 - ► (0,1,2,3,4,5), (1,0,2,3,4,5)
- (2,0,1,3,4,5)는 위상 순서가 아님
 - ▶ 왜냐하면 2번 정점이 0번 정점 앞에 오기 때문

교과목: 자료구조 47/49

위상정렬 알고리즘

```
Input: 그래프 G=(V,E)
Output: 위상 정렬 순서
topo_sort(G)
for i←0 to n-1 do
     if( 모든 정점이 선행 정점을 가지면 )
          then 사이클이 존재하고 위상 정렬 불가;
     선행 정점을 가지지 않는 정점 V 선택;
     ∨를 출력;
     V와 V에서 나온 모든 간선들을 그래프에서 삭제;
```

교과목: 자료구조 48/49

위상정렬의 예

(a) 초기상태

(a) 4 제거

(b) 1 MH

(b) 0 제거

(b) 3 제거 (a) 2 제거

교과목 : 자료구조 49/49

- 다음의 방향 그래프에 대하여 다음 질문에 답하시오.
 - ▶ 각 정점의 진입차수와 진출차수
 - ▶ 인접 행렬 표현
 - ▶ 인접 리스트 표현
 - ▶ 모든 사이클과 그 길이

- 다음 그래프에 대하여 답하시오. 그래프는 인접 행렬로 표현되어 있다고 가정한다.
 - ▶ 정점 3에서 출발하여 깊이 우선 탐색했을 경우의 방문순서
 - ▶ 정점 6에서 출발하여 깊이 우선 탐색했을 경우의 방문순서
 - ▶ 정점 3에서 출발하여 너비 우선 탐색했을 경우의 방문순서
 - ▶ 정점 6에서 출발하여 너비 우선 탐색했을 경우의 방문순서

 아래의 네트워크에 대하여 Kruskal의 MST 알고리즘을 이용해서 최소 비용 신장 트리가 구성되는 과정을 보여라.

• 다음의 그래프에 대하여 위상 정렬을 적용하고 그 결과를 구하시오.

