Accuracy of original MPM

Lisa Wobbes, Roel Tielen November 27, 2015

Outline

- Numerical accuracy
- Benchmarks
 - Vibrating linear-elastic bar
 - Vibrating hyper-elastic bar
 - Oedometer

Numerical accuracy

Numerical Approximation

$$u_{ex} = u_{num} + O(\Delta x^n) + O(\Delta t)$$

RMS Error

$$Error_{RMS} = \sqrt{\frac{1}{n_p} \left(\sum_{p=1}^{n_p} u_{num}(x_p, t) - u_{ex}(x_p, t) \right)^2}$$

Accuracy in displacement

For $\Delta t \to 0$, the order of accuracy is equal to n, i.e. the reduction of Δx by a factor of 2 decreases the RMS error by 2^n .

Vibrating linear-elastic bar

$$\frac{\partial^2 u}{\partial t^2} = \frac{E}{\rho} \frac{\partial^2 u}{\partial x^2}.$$

Boundary conditions:

$$u(0,t) = 0,$$

$$\frac{\partial u}{\partial x}(L,t) = 0.$$

Initial conditions:

$$u(x,0) = 0,$$

$$\frac{\partial u}{\partial t}(x,0) = v_0 \sin\left(\frac{\pi x}{2L}\right).$$

Vibrating hyper-elastic bar

Vibrating hyper-elastic bar: model

$$\frac{\partial^2 u}{\partial t^2} = \frac{E}{\rho} \frac{\partial^2 u}{\partial x^2}.$$

Boundary conditions:

$$u(0,t) = 0,$$

$$\frac{\partial u}{\partial x}(L,t) = \frac{\tau}{\rho} \sin\left(\frac{\pi t}{L}\right).$$

Initial conditions:

$$u(x,0) = 0,$$

$$\frac{\partial u}{\partial t}(x,0) = 0.$$

Oedometer

Oedometer: model

$$\frac{\partial^2 u}{\partial t^2} = \frac{E}{\rho} \frac{\partial^2 u}{\partial y^2} - g.$$

Boundary conditions:

$$u(0,t) = 0,$$

 $\frac{\partial u}{\partial y}(H,t) = -p_0/E.$

Initial conditions:

$$u(y,0) = 0,$$

$$\frac{\partial u}{\partial t}(y,0) = 0.$$

Grid-crossing

Grid-crossing: properties of shape functions

Grid crossing: internal force

$$F_{int}^{i} \approx \sum_{p=1}^{n_{i}} \sigma_{p} \Omega_{p} - \sum_{p=1}^{n_{i+1}} \sigma_{p} \Omega_{p}$$
$$F_{int}^{i} \approx \sigma \Omega(n_{i} - n_{i+1})$$