	Covariance estimation $(\mathbb{E}\ \hat{\Sigma} - \Sigma\ _2^2 \text{ or canonical angle})$	Eigenvalues	Eigenvectors	$ \text{PCR} (\hat{Y}) $	$ PCR (\hat{\beta}) $
Nystrom CS			CS_3		
Martinsson					

Table 1: Note that the CS results apply to AIMER.

DW

Possible proof technique

July 1, 2017

1 Table for matrix sketching results

2 Preliminary notation and definitions

- $p = \{1, ..., p\}$ (it probably won't be confusing to use p as either the number of covariates or the index set, depending on context)
- $\mathcal{A} = \{ \text{ of active covariates } \}$
- $S = \{ \text{ nonzero marginal covariance } \}$ (using S as it is the 'selected' model)
- $\mathcal{D} = \mathcal{A} \setminus \mathcal{S}$ (to be the difference between active and selected covariates)
- $\mathcal{T} = \{ \text{ nonzero } \theta \} \text{ (using } \mathcal{T} \text{ due to whatever)}$

The underlying machinery of these supervised PCA papers is a suite of estimators of the form $\hat{\Sigma}_{A,B}$, where $A, B \subseteq \{1, \ldots, p\}$. In the SPCA paper, they choose $\hat{\Sigma}_{S,S}$. Using F is tantamount of using $\hat{\Sigma}_{p,S}$. This protects somewhat against $S \subset A$. If we had a good estimator of T, we would could use $\hat{\Sigma}_{T,S}$, instead. Perhaps this estimator should in investigated as well...

3 Showing CS_3

Using the result that

$$\|\hat{v} - v\|_2^2 \le 2\sin(\angle(\hat{v}, v))$$

we can do the following. Supposing that $\Sigma = [\tilde{\Sigma}_{\mathcal{S}} | \tilde{\Sigma}_{\mathcal{S}^c}], F = V(F)D(F)U(F)^{\top}, \tilde{\Sigma} = VDU^{\top}, \text{ and } \Sigma = \Theta\Lambda\Theta^{\top}, \text{ then for } k \in \mathcal{S},$

$$||v_q(F) - \theta_q||_2 \le ||v_q(F) - v_q||_2 + ||v_q - \theta_q||_2 \le \sqrt{2} \left(\sin(\angle(v_q(F), v_q)) + \sin(\angle(v_q, \theta_q)) \right).$$

So, by Yu et al. $(2015)^1$, Theorem 3

$$\sin(\angle(v_q(F), v_q)) \le 2 \frac{(2d_{\max} + \|F - \tilde{\Sigma}\|_{op}) \min\{\|F - \tilde{\Sigma}\|_{op}, \|F - \tilde{\Sigma}\|_F\}}{\tilde{\delta}_q},$$

where $\tilde{\delta}_q = \min\{d_{q-1} - d_q, d_q - d_{q+1}\}$. This quantity will be controlled by assumption on Σ (for instance, $d_{\max} \leq \lambda_{\max}$).

http://www.statslab.cam.ac.uk/~yy366/index_files/Biometrika-2015-Yu-biomet_asv008.pdf

Now, looking at $||F - \tilde{\Sigma}||_F^2$ component wise for $j \in p$ and $k \in \mathcal{S}$

$$(F(j,k) - \tilde{\Sigma}(j,k))^2 = (\mathbf{x}_j^{\top} \mathbf{x}_k - \mathbb{E} x_j x_k)^2.$$

Here \mathbf{x}_j is the j^{th} column of \mathbb{X} and $x_j \sim N(0, \Sigma(j, j))$. This will be controllable via asymptotics or concentration.

There will be nonzero approximation bias if $\mathcal{D} \neq \emptyset$. Using the same result as above

$$\sin(\angle(v_q, \theta_q)) \le 2 \frac{(2\lambda_{\max} + \|\tilde{\Sigma} - \Sigma\|_{op}) \min\{\|\tilde{\Sigma} - \Sigma\|_{op}, \|\tilde{\Sigma} - \Sigma\|_F\}}{\delta_a},$$

where $\delta_q = \min\{\lambda_{q-1} - \lambda_q, \lambda_q - \lambda_{q+1}\}$. This quantity will again be controlled by assumption on Σ . Now, looking at $\|\tilde{\Sigma} - \Sigma\|_F^2$ component wise for $j, k \in p$

$$(\tilde{\Sigma}(j,k)) - \Sigma(j,k))^{2} = \begin{cases} 0 & \text{if } k \in \mathcal{S} \\ (\sum_{m=1}^{M} \lambda_{m} \theta_{j} \theta_{k})^{2} & \text{if } j \in \mathcal{A}, k \in \mathcal{D} \\ (\sum_{m=1}^{M} \lambda_{m} \theta_{j} \theta_{k} + \sigma^{2})^{2} & \text{if } j = k \in \mathcal{D} \\ (\sigma^{2})^{2} & \text{if } j = k \notin \mathcal{A} \end{cases}$$

Now, we might make some assumptions about the side of this "residual" components, due to a norm constraint on these components implying a norm constraint on the β 's. So, the result might look like if

- $(\sum_{m=1}^{M} \lambda_m \theta_j \theta_k)^2 \le \gamma_n$
- We can estimate σ^2 well so we consider it known (really, just to simplify things so we can just subtract off the diagonal component before hand)
- $\lambda_{\max} \leq C_{\Lambda}$ independent of n

Then

$$\|\tilde{\Sigma} - \Sigma\|_F^2 \le |\mathcal{A}||\mathcal{D}|\gamma_n,$$

which implies that

$$\sin(\angle(v_q, \theta_q)) \le 2 \frac{(2\lambda_{\max} + |\mathcal{A}||\mathcal{D}|\gamma_n)|\mathcal{A}||\mathcal{D}|\gamma_n}{\delta_q},$$