Жадные алгоритмы для пострения многопроцессорных списочных расписаний

Савицкий Илья

Научный руководитель: к.т.н. доцент Костенко Валерий Алексеевич

11 октября 2022 г.

Постановка задачи

Дано:

- Ориентированный граф работ G без циклов, в котором дуги зависимости по данным, а вершины задания. Вершин n, дуг m
- Вычислительная система, состоящая из *р* различных процессоров
- Матрица С_{іі} длительности выполнения работ на процессорах, i = 1 . . . n, j = 1 . . . p. Каждая строка этой матрицы - длины выполнения n-й задачи на p процессорах.
- Матрица D_{kl} передач данных между процессорами, $k=1\dots p, l=1\dots p, D_{kk}=0$. D_{ij} -й элемент этой матрицы время передачи данных между процессорами i и j.

Граф потока данных

Расписание

Расписание программы определено, если определены

- Множества процессоров и работ;
- привязка;
- порядок;

Привязка - всюду определенная на множестве работ функция, которая задает распределение работ по процессорам

Порядок задает ограничения на последовательность выполнения работ и является отношением частичного порядка, удовлетворяющим условиям ацикличности и транзитивности. Отношение порядка на множестве работ, распределенных на один процессор, является отношением полного порядка.

Графическая форма представления расписания

Графическая форма представления расписания

Графическая форма представления расписания 👄 Временная диаграмма

Постановка задачи

Требуется:

- Построить расписание HP, то есть для i-й работы определить время начала ее выполнения s_i и процессор p_i на которм она будет выполняться
- Минимизируемый критерий: время завершения выполнения расписания

Представление расписания в виде временной диаграммы

Модель расписания

Множество корректных расписаний НР задается набором ограничений:

- В расписании не допустимы прерывания
- Интервалы выполнения работ на процессоре не пересекаются
- Каждая работа назначена на процессор
- Любую работу обслуживает один процессор
- Частичный порядок, заданный графом зависимостей G, сохранен в $HP:G\subset G_{HP}^T$, где G_{HP}^T транзитивное замыкание отношения G_{HP}

Постановки задачи

- Задача с однородными процессорами (длительность выполнения работы не зависит от того, на каком процессоре она выполняется) и дополнительными ограничениями на количество передач:
 - ullet $CR=rac{m_{ip}}{m}\leqslant 0.4$, где m_{ip} количество межпроцессорных передач
 - $CR2 = \frac{m_{2edg}}{m} \leqslant 0.05$, где m_{2edg} количество межпроцессорных передач через третий процессор. Гарантированно, что передача хотя бы через третий процессор всегда есть
- Задача с однородными процессорами и дополнительным ограничением сбалансированности распределения работ:
 - $BF = \left\lceil 100 \left(\frac{a_{max}p}{n} 1 \right) \right\rceil \leqslant 10$, где a_{max} наибольшее, по всем процессорам, количество работ на процессоре
- Задача с неоднородными процессорами, но без дополнительных ограничений на расписание

Общая схема алгоритма

Жадный критерий выбора очередной работы

Из множества D выбирается работу по критерию GC1 максимальности количества потомков у вершины.

Выбранная вершина

Так же были проведены эксперименты с выбором максимальности количества предков.

Различные критерии выбора очередной работы

Изменение CR в различных критериях. Синий график - с выбором по количеству потомков, зеленый - по количеству предков, оранжевый - переключение критерия при достижения порогового значения

Пробное размещение работы

Пробное размещение работы производится с учетом жадного и дополнительных критериев.

Жадный критерий GC2 - скорейшее завершение работы в расписании. Способы выбора места:

• Подсчет усредненного взвешенного показателя среди критериев

$$crit_{CR} = C_1 \cdot GC2 + C_2 \cdot CR + C_3 \cdot CR2$$

 $crit_{BF} = C_1 \cdot GC2 + C_2 \cdot BF$

где C_1 , C_2 и C_3 - параметры алгоритма. Работа размещается на место с наибольшим значением параметра crit.

Допускные системы выбора

Допускная система выбора

- **①** Список мест размещения работ ранжируется по GC2, после чего отсекаются верхние n% работ, где n параметр алгоритма
- Такие же действия повторяются для каждого дополнительного критерия
- В конечном списке выбрать место, лучшее по времени или по дополнительному критерию

С выбором по

дополнительному критерию:

BF: 3

Время выполнения расписания: 40584

С выбором по времени:

BF: 3

Время выполнения расписания: 5588

Алгоритм постановки задачи в расписание

Проблема: даже в при максимально плотном установлении задач в конец расписания, образуются "пробелы"в расписании, в которые возможно установить работы без нарушения его целостности.

Алгоритм постановки задачи в расписание

Отношение времени выполнения полученного расписания к оптимальному

Без оптимизированной постановки

Отношение времени выполнения полученного расписания к оптимальному

С оптимизированной постановкой

METIS и алгоритмы разбиения графов

(CR, unweighted partition) Ratio of algorithm schedule duration to optimal schedule duration

(CR, weighted partition) Ratio of algorithm schedule duration to optimal schedule duration

Экспериментальные исследования

Экспериментальные исследования

Number of tasks

Экспериментальные исследования

(CR, weighted partition) Ratio of algorithm schedule duration to optimal schedule duration

Дальнейшие исследования

- Оптимизация алгоритма для работы с большими объемами данных. (DAG_C сотни тысяч вершин, DAG_D - миллионы вершин)
- Подбор параметров и оптимизация алгоритма разбиения графа

