MISURE DI CALORE SPECIFICO DI ALCUNI MATERIALI E DEL CALORE LATENTE DI FUSIONE DELL'ACQUA

A. Cipriano¹, M. Cingolo² e P. Corrado³

Dipartimento di Fisica, Corso di laurea in Fisica, Università di Roma La Sapienza matricole: 12149050, 2000000, 300000

Abstract

Il calore specifico dei materiali e il calore latente di fusione sono parametri fondamentali per la comprensione dei processi termodinamici. In questa esercitazione di laboratorio, è stato misurato il calore specifico di diversi materiali e il calore latente del ghiaccio attraverso esperimenti basati sull'equilibrio termico. I materiali sono stati immersi in un thermos con acqua calda fino al raggiungimento dell'equilibrio termico, e successivamente trasferiti in un thermos a temperatura ambiente, misurando la temperatura inziale e finale del corpo si è ricavato, tramite il primo principio della termodinamica il calore specifico del materiale. Il calore latente è stato determinato sciogliendo il ghiaccio in acqua a temperatura controllata. I risultati mostrano che i materiali risultano essere compatibili con alluminio, ottone, marmo e okite.

1. INTRODUZIONE

Se prendiamo in considerazione un sistema ipoteticamente isolato dall'ambiente esterno in cui il volume rimane costante, per il primo principio della termodinamica

$$Q_1 = -Q_2 \tag{1}$$

il corpo di massa a temperatura maggiore cede calore al corpo a temperatura minore, fino al raggiungimento della temperatura finale T_f e dunque l'equilibrio termico. Se come sistema prendiamo un corpo di massa m_1 a temperatura iniziale T_1 che viene immerso in acqua a temperatura $T_{i,acq}$ e possibile calcolare il calore specifico come:

$$c_1 = \frac{c_{acq}(m_{acq} + M_e)(T_{i,acq} - T_f)}{m_1(T_f - T_1)}$$
 (2)

dove c_{acq} è il calore specifico dell'acqua e M_e la massa equivalente del thermos, necessaria per tener conto del calore assorbito o ceduto dal thermos. Sempre dal primo principio della dinamica è possibile ricavare il calore latente del ghiaccio:

$$\lambda_g = \frac{c_{acq}[(m_{acq} + M_e)(T_{i,acq} - T_g) - m_g(T_f - T_g)]}{m_g}$$

 T_g è la temperatura del ghiaccio quando viene immerso nell'acqua, pari a $0^{\circ}C$.

2. APPARATO SPERIMENTALE

- Thermos: Al fine di ridurre al minimo lo scambio di calore con l'ambiente esterno, e garantire che il calore venga scambiato solo tra i materiali coinvolti, sono stati impiegati due thermos.
- Bilancia digitale: Per misurare le masse dei corpi è stata impiegata una bilancia digitale con sensibilità di 0.1 g.
- \bullet Termometri: per la misura di temperature sono stati impiegati due termometri a mercurio con sensibilità di 0.2 °C
- Bollitore elettrico: Imiegato per portare l'acqua a temperature superiori a quella ambiente.

3. PROCEDURA SPERIMENTALE

La procedura sperimentale è stata suddivisa in due parti, la prima volta a misurare il calore specifico di alcuni materiali e la seconda il calore latente dell'acqua. In entrambe gli esperimenti i valori della massa equivalnte M_e e del calore specifico dell'acqua sono stati c_{acq} considerati noti e pari rispettivamente a 1cal/gK e 25 ± 5 g.

3.1. Calore specifico

Per ogni campione di materiale analizzato é stata inizialamente misurata la massa, in seguito il campione è stato immerso in un primo thermos contenente acqua ad una temperatura nel range di 58 - $67^{\circ}C$ e al raggiungimento dell'equilibrio termico è stata misurata la temperatura dell'acqua e quindi per equazione 1 quella del corpo. Il corpo è stato in seguito trasferito in un secondo thermos, contenente acqua a temperatura iniziale $T_{i,acq}$ precedentemente misurata. Raggiunto l'equilibrio è stata acquisita la temperatura finale T_f del sistema e tramite equazione 2 è stato calcolato il calore specifico. Poichè questo procedimento viene ripetuto, la massa dell'acqua potrebbe diminuire quando il corpo viene spostato e poi nuovamente riposto nel secondo thermos, al fine di tenere in considerazione le possibili variazione di massa dovute a questa procedura, per ogni ripetizione dell'esperimento é stata misurata la massa complessiva $m_{tot} = m_{th} + m_{acq}$, del sistema costituito dal thermos e dall'acqua, e dalla misura della massa del thermos m_{th} abbiamo ottenuto, per differenza, la massa di acqua m_{acq} .

3.2. Calore latente di fusione del ghiaccio

Inizialmente il ghiaccio si presenteva ad una temperatura di $\approx -3^{\circ}C$, è stato dunque immerso in un thermos con poca acqua e tramite un termometro si è monitorata la temperatura. Quando il termometro si è stabilizzato a $0^{\circ}C$, il ghiaccio é stato traferito nel secondo thermos, contenete acqua riscaldata tramite bollitore elettrico, di cui è stata misurata la massa m_{acq} . Misurando la temperatura iniziale T_i del ghiacchio la temperatura iniziale dell'acqua $T_{i,acq}$ nel secondo termos e la temperatura T_f all'equilibrio, si è ricavato tramite 3 il calore latente del ghiaccio. L'esperimento è stato eseguito due volte, al fine di ottenere una (motivare).

4. RISULTATI

Per la misura del calore specifico dell'alluminio, sono state effettuate 5 misure, mentre per gli altri materiali due. In tabella 1 è stata riportata la media pesata con le incertezze, la deviazione standard del campione e la deviazione standard della media. Essendo il campione statisticamente poco rilevante a causa dell'esiguo numero di misure, è stata calcolata anche la deviazione standard della media pesata σ_p . Come si puo notare dal grafico in figura 2, i valori misurati, tranne il Quarzo, riusltano essere compatibili entro le incertezze sperimentali con i valori noti. Probabilmente, oltre agli effetti sistematici, il motivo dell'incompatibilità del quarto materiale con il quarzo è dovuto al fatto che si tratta di okite, un materiale che seppur composto principalmente da guarzo, viene miscelato con resine, vetro e materiali ferrosi che ne alterano la struttura e le propietà fisiche. Le

misure risultano essere molto grossolane, con errori assoluti anche superiori al 50 %, questo è dovuto principalmente alla variazione di temperatura durante l'esperimento che risulta essere molto piccola, dell'ordine di $1-2^{\circ}\mathrm{C}$, nella misura del calore latente di fusione del ghiaccio, infatti, in cui la variazione di temperatura è risultata essere maggiore l'errore relativo è risultato essere molto piu basso e pari circa al 3 %. Inoltre potrebbero essere presenti errori sistematici dovuti alla dispersione termica di calore durante le procedure, come l'apertura e la chiusura del thermos, al fatto che il thermos non isola completamente il sistema dall'amabiente esterno.

Fig. 1: Distribuzione delle 5 misure di calore specifico per il materiale 1.

Fig. 2: Compatibilità tra misure effettuate e valori noti, consultati sul sito www.matweb.com, in cui i valori riportati fanno riferimento al manuale CRC Handbook of Chemistry and Physics, Robert C. Weast, Ed. 62 Edition, CRC Press, Boca Raton, FL, 1981.

5. CONCLUSIONI

Nel complesso, l'esperimento ha fornito risultati soddisfacenti per la maggior parte dei materiali testati, sebbene ci sia margine per migliorare la precisione e ridurre gli errori sistematici con ulteriori accorgimenti sperimentali.

Materiale	μ	σ	σ_m	σ_p
1	0.20	0.04	0.02	0.04
2	0.060	0.01	0.01	0.03
3	0.07	0.03	0.02	0.05
4	0.26	0.01	0.004	0.1

Table 2: Misure effettuate per il calore latente del ghiaccio. le misure di masse sono riportate in g mentre quelle di temperature in °C, il calore latente del ghiaccio è invece espresso in cal/g

$\overline{m_a}$	T_a	T_f	m_g	λ_g	σ_{λ_g}
238.4	52.4	28.4	63.2	72	2
231.5	55.0	24.6	75.6	78	3