MA 34100 Homework 7

Josh Park

Spring 2024

Exercise 5.2.1

(a)
$$f(x) = \frac{x^2 + 2x + 1}{x^2 + 1}$$
 $(x \in \mathbb{R})$

Notice f is a rational function.

Ex 5.2.3(a) gives us that any rational function is continuous for every $x \in \mathbb{R}$ for which it is defined.

The domain of f is \mathbb{R} , so it follows that f(x) is continuous on \mathbb{R} .

(b)
$$g(x) = \sqrt{x + \sqrt{x}}$$
 $(x \ge 0)$

Let f(x) = x for all $x \in \mathbb{R}$ and $h(x) = \sqrt(x)$ for $x \ge 0$.

It is trivial that f(x) is continuous on \mathbb{R} , so by Thm 5.2.5(b) h(x) is continuous on $\mathbb{R}^+ \cup \{0\}$. We know that $(f+h)(x) = f(x) + h(x) = x + \sqrt{x}$, so from Thm 5.2.2(a) it follows that f+h

Then Thm 5.2.7 gives that $g(x) = h \circ (f + h)$ is continuous on $\mathbb{R}^+ \cup \{0\}$.

(c)
$$h(x) = \frac{\sqrt{1 + |\sin x|}}{x}$$
 $(x \neq 0)$

is continuous on $\mathbb{R}^+ \cup \{0\}$.

Define $\phi(x) = x$ for $x \in \mathbb{R}$, $\gamma(x) = \sin(x)$ for $x \in \mathbb{R}$, $\mu(x) = 1 + x$ for $x \in \mathbb{R}$, $\chi(x) = |x|$ for $x \in \mathbb{R}$, and $\eta(x) = \sqrt{x}$.

Then, we can write $h = \frac{\eta \circ (\mu \circ (\chi \circ (\gamma \circ \phi)))}{\phi}$.

We know ϕ , γ , μ , and χ are continuous over \mathbb{R} , so by Thm 5.2.7 $\mu \circ (\chi \circ \gamma)$ is continuous over \mathbb{R} .

We also know that the domain of η is $\mathbb{R}^+ \cup \{0\}$ and the range of $\mu \circ (\chi \circ \gamma)$ is a subset of $\mathbb{R}^+ \cup \{0\}$.

So, the range of $\eta \circ \mu \circ (\chi \circ (\gamma \circ \phi))$ is \mathbb{R} .

So, h(x) is continuous on $\mathbb{R} \setminus \{0\}$ by Thm 5.2.2(b).

(d)
$$k(x) = \cos\sqrt{1+x^2}$$
 $(x \in \mathbb{R})$

Let $\alpha(x) = x^2$ for $x \in \mathbb{R}$, $\beta(x) = 1 + x$ for $x \in \mathbb{R}$, $\gamma(x) = \sqrt{x}$ for $x \ge 0$, and $\epsilon(x) = \cos(x)$ for $x \in \mathbb{R}$.

We know α is continuous on \mathbb{R} , so from Thm 5.2.7 it follows that $\beta \circ \alpha$ is continuous on \mathbb{R} . Notice that the domain of γ is $\mathbb{R}^+ \cup \{0\}$, of which the range of $\beta \circ \alpha$ is a subset. So, $\gamma \circ (\beta \circ \alpha)$ is continuous on \mathbb{R} .

Then from Thm 5.2.7 it follows that $\eta \circ (\gamma \circ (\beta \circ \alpha))$ is continuous on \mathbb{R} .

Exercise 5.2.3

Consider the functions f and g where

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases} \qquad g(x) = \begin{cases} 0 & \text{if } x \in \mathbb{Q} \\ 1 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$
 (1)

Notice they are both discontinuous everywhere on \mathbb{R} . We can see that

$$(f+g)(x) = \begin{cases} 1+0 & \text{if } x \in \mathbb{Q} \\ 0+1 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases} \implies (f+g)(x) = 1 \quad \forall x \in \mathbb{R}$$
 (2)

and

$$fg(x) = \begin{cases} 0 \cdot 1 & \text{if } x \in \mathbb{Q} \\ 1 \cdot 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases} \implies fg(x) = 0 \quad \forall x \in \mathbb{R}, \tag{3}$$

so (f+g) and fg are both continuous for any $c \in \mathbb{R}$.

Exercise 5.2.7

Consider the function

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ -1 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}, \tag{4}$$

where f is known to be everywhere discontinuous on \mathbb{R} (and subsequently on [0,1]). Then,

$$|f(x)| = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 1 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$
 (5)

Notice that |f(x)| = 1 for all $x \in \mathbb{R}$, so it is trivially continuous on [0,1].

Exercise 5.2.8

True. Let $c \in \mathbb{R} \setminus \mathbb{Q}$. By the density theorem, there exists a sequence of rational numbers (x_n) such that $(x_n) \to c$. Then, $r_n \in \mathbb{R} \setminus \mathbb{Q}$. We are given that f and g are both continuous on \mathbb{R} , so by the Sequential Criterion for continuity:

$$(f(x_n)) \to f(c) \qquad (g(x_n)) \to g(c). \tag{6}$$

Then, for all $n \in \mathbb{N}$, we have that $f(x_n) = g(x_n)$. This implies that

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} g(x_n) \quad \Longrightarrow \quad f(c) = g(c). \tag{7}$$

Since c is an arbitrary element of $\mathbb{R} \setminus \mathbb{Q}$, we can deduce that

$$f(c) = g(c) \quad \forall c \in \mathbb{R} \setminus \mathbb{Q} \implies f(n) = g(n) \quad \forall n \in \mathbb{R}$$
 (8)

Exercise 5.3.3

f is continuous on $I \Longrightarrow |f|$ is continuous on I.

Let $\alpha = \inf |f|(I)$.

By the Maximum-Minimum Thm, there exists some $c \in I$ such that $|f|(c) = |f(c)| = \alpha$.

Now, we conjecture that $\alpha = 0$. For contradiction, we assume $\alpha \neq 0$.

Proof. We know that for any $x \in I$, there exists some $y \in I$ with the property that $|f(y)| \le \frac{1}{2}|f(c)| = \frac{1}{2}m$.

Then, $\alpha \neq 0 \implies \alpha > 0 \implies |f(y)| < m = \inf |f|(I)$.

However this is a contradiction by definition of infimum.

Thus our assumption that $\alpha \neq 0$ must be false.

So, there necessarily exists some $c \in I$ with f(c) = 0.

Exercise 5.3.17

Yes, $f:[0,1]\to\mathbb{R}$ is a constant function.

Proof. Suppose for contradiction that f was not a constant function.

Then, there must exist numbers $\alpha, \beta \in [0, 1]$ such that $f(\alpha) \neq f(\beta)$.

Without loss of generality, let $f(\alpha) < f(\beta)$.

By the Density Theorem, there exists some $\gamma \in \mathbb{R} \setminus \mathbb{Q}$ such that $f(\alpha) < \gamma < f(\beta)$.

By the Intermediate Value Theorem, there exists some $\delta \in [0,1]$ with $f(\delta) = \gamma$.

We know f only produces rational numbers so $\gamma \in \mathbb{Q}$.

However, this contradicts with $\gamma \in \mathbb{R} \setminus \mathbb{Q}$.

Thus our assumption that f is not a constnat function must be false. Thus f is necessarily a constant function.

Exercise 5.4.2

Let $\varepsilon > 0$ be given and let $\delta = \frac{\varepsilon}{2}$.

Then for all $x, y \in A$ if $|x - y| < \delta$, then

$$|f(x) - f(y)| = \left| \frac{1}{x^2} - \frac{1}{u^2} \right| \tag{9}$$

$$= \left(\frac{y+x}{x^2y^2}\right)|y-x|\tag{10}$$

$$= \left(\frac{1}{x^2y} + \frac{1}{xy^2}\right)|y - x| \tag{11}$$

$$\leq 2\left|x-u\right|\tag{12}$$

$$<2\frac{\varepsilon}{2} = \varepsilon \tag{13}$$

So f is uniformly continuous over A.

For B, suppose we have sequences $x_n = \frac{1}{n}$ and $y_n = \frac{1}{n+1}$.

It follows then that $|x_n - y_n| \to 0$, but

$$|f(x_n) - f(y_n)| = |n^2 - n^2 + 2n + 1|$$
(14)

$$= |2n+1| \ge 1 \text{ for all } n \tag{15}$$

Thus f is not uniformly convergent on B.

Exercise 5.4.5

Let $|x-y| < \min \{\delta_f(\frac{\varepsilon}{2}), \delta_g(\frac{\varepsilon}{2})\}$. Then,

$$|(f+g)(x) - (f+g)(y)| = |(f(x) + g(x)) - (f(y) + g(y))|$$
(16)

$$\leq |f(x) + f(y)| + |g(x) + g(y)|$$
 (17)

$$<\frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \tag{18}$$

Exercise 5.4.6

Let $|x-y|<\min\left\{\delta_f(\frac{\varepsilon}{2M}),\delta_g(\frac{\varepsilon}{2M})\right\}$ and let M be an upper bound for f and g. Then,

$$|(fg)(x) - (fg)(y)| = |f(x)g(x) - f(x)g(y) + f(y)g(x) - f(y)g(y)|$$
(19)

$$= |f(x)g(x) - f(x)g(y)| + |f(y)g(x) - f(y)g(y)|$$
 (20)

$$= |f(x)||g(x) - g(y)| + |g(y)||f(x) - f(y)|$$
(21)

$$\leq M |g(x) - g(y)| + M |f(x) - f(y)|$$
 (22)

$$\leq M \frac{\varepsilon}{2M} + M \frac{\varepsilon}{2M} \tag{23}$$

$$\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \tag{24}$$