Sum of Squared Edges for MST of a Point Set in a Unit Square

Oswin Aichholzer* Sarah R. Allen^{†‡§} Greg Aloupis¶ Luis Barba^{||}¶

Prosenjit Bose^{||} Jean-Lou De Carufel^{||} John Iacono[‡] Stefan Langerman¶

Diane L. Souvaine[†] Perouz Taslakian**

1 Introduction

Let the weight of a tree be the sum of the squares of its edge lengths. Given a set of points P in the unit square let W(P) be the weight of the minimum spanning tree of P, where an edge length is the Euclidean distance between its endpoints. If P consists of the four corners of the square, then W(P)=3. Gilbert and Pollack [2] proved that W(P) is O(1) and this was extended to an arbitrary number of dimensions by Bern and Eppstein [1]. While more recent divide-and-conquer approaches have shown that $W(P) \leq 4$, no point set is known with W(P) > 3, and hence it has been widely conjectured (e.g. see [4]) that $W(P) \leq 3$. Here we show that W(P) < 3.41.

For a point set P in a unit square, MST(P) denotes a minimum spanning tree of P. Let $MST_k(P)$ denote the subgraph of MST(P) in which all edges of length greater than k have been removed from MST(P). For any given point $X \in P$, define $MST_k(X,P)$ to be the connected component of $MST_k(P)$ containing X. Let \square be the set of corners of the unit square.

Lemma 1. For all $P, W(P) \leq W(P \cup \boxplus)$.

Lemma 2. No edge in $MST(P \cup \boxplus)$ has length greater than 1.

2 Bounding the Weight of the MST

By Lemma 1 it suffices to consider only point sets that include the corners of an enclosing unit square.

Kruskal's MST construction algorithm [3] considers all possible edges defined by P in order of increasing length. When an edge is considered, it is added to the existing graph only if no cycle is created. Let e_m be the $m^{\rm th}$ edge added. At step m=0 no edges have been added and at step $m=|P|-1=:M,\,MST(P)$ is complete.

At each step of Kruskal's algorithm, each connected component is a tree. We define t_X^m to be the tree at step m that contains point X. It helps to initialize the algorithm at m = 0 by letting every point $X \in P$ be a singular tree t_X^0 that is augmented when an edge is added between X and some other point of P. We also initialize $|e_0|$ to be 0. Notice that $t_X^m = MST_{|e_m|}(X, P)$. Let $\mathcal{CH}(t)$ denote the vertices of the convex hull of a tree t. If X is on $\mathcal{CH}(t_X^m)$, let $\angle^m(X)$ be the range of angles for which X is extreme with respect to the vertices of t_X^m . We set $\angle^0(X) = [0^\circ, 360^\circ]$. Over time this range of angles is reduced, and may have size 0 if X is no longer in the convex hull. At any time m, for any given connected component Z, the set of all $\angle^m(X)$ for each point $X \in \mathbb{Z}$ partitions the angle range [0, 360].

With this in place we define the region $C^m(X)$ as follows. At time m, if X is on $\mathcal{CH}(t_X^m)$ and extreme in some range $[\alpha,\beta]=\angle^m(X)$, then $C^m(X)$ is the sector of a circle centered at X, with radius $\frac{|e_m|}{2}$ and spanning the angle range $[\alpha,\beta]$. If X is not in $\mathcal{CH}(t_X^m)$, then $C^m(X)$ is empty. Let $C^{*m}(X)$ be the union of all the sectors that X has defined up to step m; that is $C^{*m}(X)=\cup_{m=0}^m C^m(X)$.

For a tree t_X^m , we define the region A_X^m as follows.

$$A_X^m = \bigcup_{Y \in t_X^m} C^{*m}(Y).$$

Notice that A_X^m is contained in the union of discs of radius $\frac{|e_m|}{2}$ centered on all points of P in the same component as X. Points in separate components have distance greater than $|e_m|$, otherwise an edge between them would have already been added and they would be in the same component. Thus if $A_X^m \neq A_Y^m$, the two regions are disjoint. Let A^m be the union of A_i^m for all $i \in P$ and let Φ^m be the area of A^m at time m.

At time m, there are |P|-m trees. (Points of P not yet joined to other points are also considered to be trees.) Let $\ell^m = |e_m|^2$.

Lemma 3.
$$\Phi^{m+1} = \Phi^m + \frac{\pi}{4}(|P| - m)(\ell^{m+1} - \ell^m).$$

Proof. At time m, each point X in $\mathcal{CH}(t_X^m)$ has a sector $C^m(X)$ with radius $\frac{|e_m|}{2} = \frac{\sqrt{\ell^m}}{2}$. From our definition of $C^m(X)$, the sectors of all points in $\mathcal{CH}(t_X^m)$ partition a circle of radius $\frac{\sqrt{\ell^m}}{2}$, which has area $\frac{\pi\ell^m}{4}$. From step m to m+1, the radius of

^{*}Institute for Software Technology, Graz University of Technology, ESF EUROCORES programme EuroGIGA CRP ComPoSe, Austrian Science Fund (FWF): I648-N18.

[†]Tufts University, NSF CCF-0830734.

[‡]Polytechnic Institute of New York University.

[§]Carnegie Mellon University, NSF GRFP 0946825

[¶]Université Libre de Bruxelles. (G. Aloupis: Chargé de Recherches du F.R.S-FNRS; S. Langerman: Directeur de Recherches du F.R.S.-FNRS.)

Carleton University.

^{**}American University of Armenia

Figure 1: Depiction of *R* for $d \in \{0.3, 0.6, 0.7, 1.0\}$.

each of these sectors increases to $\frac{\sqrt{\ell^{m+1}}}{2}$ and the total area of the partitioned circle increases to $\frac{\pi\ell^{m+1}}{4}$. There are |P|-m trees that each have this growth, and whose regions are disjoint, so multiplying the difference $\frac{\pi}{4}(\ell^{m+1}-\ell^m)$ from each tree by the number of trees, |P|-m, gives the result.

Let W^m denote the sum of the weights of all trees at step m.

Lemma 4.
$$W^m = \frac{4}{\pi} \Phi^m - (|P| - m) \ell^m$$
.

Proof. We induct on m. For the base case, m=0, the spanning tree consists of no edges and the points are disconnected. Consequently, $W^0=0$, $\Phi^0=0$, and $\ell^0=0$. Assume that the statement holds for W^m . We will prove that it holds for W^{m+1} .

Because e_{m+1} is the edge added at step m+1, $W^{m+1}=W^m+\ell^{m+1}$. We substitute W^m with the value from our induction hypothesis to obtain $\frac{4}{\pi}\Phi^m-(|P|-m)\ell^m+\ell^{m+1}$. By substitution, using Lemma 3, this equals $\frac{4}{\pi}\Phi^{m+1}-(|P|-m)\ell^{m+1}+\ell^{m+1}$. Simple algebra yields the claimed result. \square

Lemma 5. Let d denote $|e_M|$. If $d \leq \frac{1}{2}$, $\Phi^M \leq 2d + \frac{\pi d^2}{4} + 1$. Otherwise, $\Phi^M \leq d^2 \sqrt{3} - \frac{1}{\sqrt{3}} + \frac{5\pi d^2}{12} + 4(d - d^2) + 1$.

Proof. In Figure 1, we depict a region R that we claim covers A^M . For every point x on each edge \overline{e} of the square, define a circle of radius $\min\{\frac{d}{2}, \frac{f}{2}\}$, where f is the distance from x to the farther endpoint of \overline{e} . This circle is meant to cover the area that could be occupied by the region of a point at x. If x were a point in P and its region exceeded this circle outside the unit square, then its region would intersect both growing circles centered on the endpoints of \overline{e} . Therefore x would be connected to both

endpoints and it would no longer be extremal in the direction outside of the square. This would further imply that no sector of x could keep expanding outside the square once $C^*(x)$ exceeds this circle. We define R to be the union of all such circles centered on the boundary of the square, together with the square region itself. This represents an upper bound on the region that A^M can occupy, as the extreme case occurs when points in P are located on the boundary of the square.

It remains to show that R cannot grow any more due to points of P inside the square. Suppose that an interior point y grows some sector $C^m(y)$ that contributes towards Φ^M outside R. Without loss of generality let this extra contribution be closest to the top edge \overline{e} of the square. Just like above, $C^{m}(y)$ can only grow above \overline{e} if y is part of the upper hull of t_y^m and that cannot happen if y is in the same component as both endpoints of \overline{e} . Let xbe the orthogonal projection of y on e and assume without loss of generality that the endpoint of \overline{e} farthest from y is the right endpoint r. Therefore the endpoint of \overline{e} farthest to x is also r. Furthermore, the midpoints of \overline{xr} and \overline{yr} have the same xcoordinate. Therefore, the portion of $C^{M}(y)$ above \overline{e} is contained in the circle of radius min $\{\frac{d}{2},\frac{f}{2}\}$ centered at x, which contradicts the assumption. All that remains is to calculate the area of R. This can be done algebraically but details are omitted from this version.

Theorem 6. For any set of points P in the unit square, $W(P) \leq \frac{3\sqrt{3}+4}{\pi} - \frac{1}{\pi\sqrt{3}} + \frac{2}{3} \approx 3.4101$.

Proof. From Lemma 1, we can assume that P includes the corners of its enclosing unit square. $W^M=W(P)$, and by Lemma 4 is equal to $\frac{4}{\pi}\Phi^M-\ell^M$. This in turn is bounded in terms of d in Lemma 5. Combining, we obtain the following upper bounds on W(P) in terms of d: $W(P) \leq \frac{4d^2\sqrt{3}+16(d-d^2)+4}{\pi}-\frac{4}{\pi\sqrt{3}}+\frac{5d^2}{3}-d^2$ when d>0.5 and $W(P) \leq \frac{8d+4}{\pi}$ for $d\leq 0.5$. This function is monotonically increasing for $0\leq d\leq 1$, so substituting d=1 and simplifying gives the claimed upper bound of $\frac{4\sqrt{3}+4}{\pi}-\frac{4}{\pi\sqrt{3}}+\frac{5}{3}-1\approx 3.4101$. \square

References

- M. W. Bern and D. Eppstein. Worst-case bounds for subadditive geometric graphs. In *Proc. 9th Symp.* on Comp. Geom., pages 183–188, 1993.
- [2] E. N. Gilbert and H. O. Pollack. Steiner minimal trees. SIAM J. App. Math., 16(1):1–29, 1968.
- [3] J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem. *Proc.* American Math. Soc., 7(1):48–50, Feb 1956.
- [4] D. B. West. http://www.math.uiuc.edu/~west/regs/mstsq.html.