Introduction to Statistics and Data Science using eStat

Chapter 11 Testing Hypothesis for Categorical Data

11.1.2 Goodness of Fit Test for Continuous Data

Jung Jin Lee
Professor of Soongsil University, Korea
Visiting Professor of ADA University, Azerbaijan

- 11.1.1 Goodness of Fit Test for Categorical Data
- 11.1.2 Goodness of Fit Test for Continuous Data
- 11.2 Testing Hypothesis for Contingency Table
 - 11.2.1 Independence Test
 - 11.2.2 Homogeneity Test

11.1.2 Goodness of Fit Test for Continuous Data

[Example 11.1.2] The age of 30 people who visited a library in the morning is as follows. Test the hypothesis that the population is normally distributed at the significance level of 5%.

28 55 26 35 43 47 47 17 35 36 48 47 34 28 43

20 30 53 27 32 34 43 18 38 29 44 67 48 45 43

< Answer of Example 11.1.2>

Histogram Frequency Table	Group Name	0	
Interval (Age)		Total	
1	2	2	
[10.00, 20.00)	(6.7%)	(6.7%)	
2	6	6	
[20.00, 30.00)	(20.0%)	(20.0%)	
3	8	8	
[30.00, 40.00)	(26.7%)	(26.7%)	
4	11	11	
[40.00, 50.00)	(36.7%)	(36.7%)	
5	2	2	
[50.00, 60.00)	(6.7%)	(6.7%)	
6	1	1	
[60.00, 70.00)	(3.3%)	(3.3%)	
Total	30 (100%)	30 (100%)	

< Answer of Example 11.1.2>

Interval id	Interval	Observed frequency
1	X < 20	2
2	$20 \le X < 30$	6
3	$30 \leq X < 40$	8
4	$40 \leq X < 50$	11
5	$50 \le X < 60$	2
6	$X \geq 60$	1

Hypothesis

 H_0 : Sample data follow a normal distribution.

 H_1 : Sample data do not follow a normal distribution

 \Rightarrow

 H_0 : Sample data follow $N(38.000, 11.519^2)$

 H_1 : Sample data do not follow $N(38.000, 11.519^2)$

Descriptive Statistics	Analysis Var (Age)	
Observation	30	
Missing Observations	0	
Mean	38.000	
Variance (n)	128.267	
Variance (n-1)	132.690	
Std Dev (n)	11.325	
Std Dev (n-1)	11.519	
Minimum	17.000	
1st Quartile	29.250	
Median	37.000	
3rd Quartile	46.500	
Maximum	67.000	
Range	50.000	
Interquartile Range	17.250	
Coefficient of Variation (n)	29.80 %	
Coefficient of Variation (n-1)	30.31 %	

- < Answer of Example 11.1.2>
- Probability of $N(38.000, 11.519^2)$

$$P(X < 20) = 0.059$$
 $P(20 \le X < 30) = 0.185$
 $P(30 \le X < 40) = 0.325$
 $P(40 \le X < 50) = 0.282$
 $P(50 \le X < 60) = 0.121$
 $P(X \ge 60) = 0.028$

< Answer of Example 11.1.2>

Interval id	Interval	Observed frequency	Expected probability	Expected frequency
1	X < 20	2	0.059	1.77
2	$20 \le X < 30$	6	0.185	5.55
3	$30 \le X < 40$	8	0.325	9.75
4	$40 \le X < 50$	11	0.282	8.46
5	$50 \le X < 60$	2	0.121	3.63
6	$X \ge 60$	1	0.028	0.84

Interval id	Interval	Observed frequency	Expected probability	Expected frequency
1	X < 30	8	0.244	7.32
2	$30 \le X < 40$	8	0.325	9.75
3	$40 \le X < 50$	11	0.282	8.46
4	X ≥ 50	3	0.149	4.47
	Total	30	1.000	30.00

<Answer of Example 11.1.2>

Test Statistic

$$\chi_{obs}^{2} = \frac{(O_{1} - E_{1})^{2}}{E_{1}} + \frac{(O_{2} - E_{2})^{2}}{E_{2}} + \frac{(O_{3} - E_{3})^{2}}{E_{3}} + \frac{(O_{4} - E_{4})^{2}}{E_{4}}$$

$$= \frac{(8 - 7.32)^{2}}{7.32} + \frac{(8 - 9.75)^{2}}{9.75} + \frac{(11 - 8.46)^{2}}{8.46} + \frac{(3 - 4.47)^{2}}{4.47} = 1.623$$

Decision Rule

'If
$$\chi^2_{obs} > \chi^2_{k-m-1;\alpha}$$
 , reject H_0 '

Since $\chi^2_{4-2-1;\ 0.05} = 3.841$, H_0 cannot be rejected.

<Answer of Example 11.1.2>

Thank you