

Matrix Multiplication & Vectorization

Matrix Multiplication Formula:

$$C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

Example:

Given matrices:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$$

Their product C = AB:

$$C = \begin{bmatrix} (1)(5) + (2)(7) & (1)(6) + (2)(8) \\ (3)(5) + (4)(7) & (3)(6) + (4)(8) \end{bmatrix} = \begin{bmatrix} 19 & 22 \\ 43 & 50 \end{bmatrix}$$

Vectorization: Replace loops with efficient operations (e.g., NumPy's np.dot()).

Broadcasting in NumPy & PyTorch: Deep Learning **Notes**

What is Broadcasting?

Broadcasting allows element-wise operations between tensors of different shapes by automatically expanding their shapes without copying data.

It makes code concise, fast, and vectorized.

Broadcasting Rule

To check if two shapes are broadcast-compatible:

- 1. Align shapes from right to left
- 2. For each dimension:
 - They must be equal, or
 - One of them must be 1
 - X Otherwise: broadcasting fails
- 3. If ranks differ, left-pad the shorter shape with 1 s

Examples

Tensor A Shape	Tensor B Shape	Explanation
(3,)	(2, 3)	(3,) becomes (1, 3)
(2, 3)	(2, 1)	1 broadcasts to 3 (columns)
(2, 3)	(1, 3)	1 broadcasts to 2 (rows)

X Invalid Broadcasting

(4, 3, 2) (1, 3, 1)

Tensor A Shape	Tensor B Shape	Why It Fails
----------------	----------------	--------------

(2,	3)	(4, 1)	$2 \neq 4$, neither is 1
(4,	3, 2)	(2, 1)	$(2, 1)$ becomes $(1, 2, 1)$, but $3 \neq 2$

Left Padding

If shapes differ in length, pad the left side of the smaller shape with 1 s.

[\text{Example:} (4, 3, 2) \text{ and } (2, 1) \rightarrow (4, 3, 2) \text{ and } (1, 2, 1)]

Broadcasts across batch & last

Bias Addition in Deep Learning

Broadcasting enables efficient bias addition in layers like:

 $[y = x W^T + b]$

- (x): shape ((\text{batch_size}, \text{in_features}))
- (W): shape ((\text{out_features}, \text{in_features}))
- (b): shape ((\text{out_features},)) → broadcast across batch

Result: [y \in \mathbb{R}\'\text{batch_size} \times \text{out_features}}]

Function	Use Case
.unsqueeze(dim)	Add a singleton dimension
.view()	Reshape tensor (flexible)
expand()	Broadcast without copying memory
repeat()	Duplicate data (makes a copy)

Tips

- Always align shapes right to left
- Broadcasting is used in:
 - Bias addition
 - Normalization
 - Attention masking
 - Feature-wise operations across batches

Activation Functions & Logits

Logits: Raw, unnormalized outputs from neural networks.

Euler's number e:

- Approximately $e \approx 2.71828$
- Smooth differentiability: $\frac{d}{dx}(e^x) = e^x$

Detailed Activation Functions:

Activation	Formula	Output Range	Use
ReLU	max(0, x)	$[0,\infty)$	Hidden layers
Sigmoid	$\frac{1}{1+e^{-x}}$	(0, 1)	Binary classification
Tanh	$\frac{e^x - e^{-x}}{e^x + e^{-x}}$	(-1, 1)	Hidden layers
Softmax	$\frac{e^{x_l}}{\sum_j e^{x_j}}$	[0, 1], sum=1	Multi-class output
GELU	See below	Smooth ReLU	Transformers

Detailed GELU (Gaussian Error Linear Unit):

Intuition: GELU smoothly activates neurons using Gaussian probability.

Exact Formula:

GELU(x) =
$$x \cdot \frac{1}{2} \left[1 + \operatorname{erf} \left(\frac{x}{\sqrt{2}} \right) \right]$$

Approximation (common practice):

GELU(x)
$$\approx 0.5x \left[1 + \tanh\left(\sqrt{\frac{2}{\pi}} \left(x + 0.044715x^3\right)\right) \right]$$

Why GELU?

- · Smooth gradients
- Improved performance in modern NLP (Transformers, GPT models)

Activation Functions & Gradient Problems

Why Use Activation Functions?

- Add non-linearity to the network.
- · Allow stacking layers to model complex, non-linear patterns.
- Without activation functions, the network is just a linear mapping: $[f(W_2(W_1x)) = (W_2W_1)x]$

4 Common Activation Functions

Function	Formula	Gradient Behavior	Notes		
ReLU	(\max(0, x))	1 for $(x > 0)$, 0 for $(x < 0)$	Fast, simple, but can "die"		
GELU	(x \cdot \Phi(x) \approx 0.5x[1 + \tanh(\sqrt{2\pi}(x + 0.044715x^3))])	Smooth, non-zero for all (x)	Used in Transformers		
Sigmoid	(\frac{1}{1 + e^{-x}})	Vanishes for large (Х)	Not zero-centered
Tanh	(\tanh(x))	Vanishes for large (х)	Zero-centered

Vanishing Gradient Problem

What It Is:

- Gradients shrink exponentially during backpropagation.
- Eventually, they become so small that weights stop updating → network stops learning.

When It Happens:

- Deep networks
- · Using sigmoid or tanh
- · Poor weight initialization

Visual Clue:

• Gradient of sigmoid/tanh flattens out for large (IxI)

* Exploding Gradient Problem

What It Is:

- Gradients grow exponentially during backpropagation.
- · Leads to instability, large weights, or NaNs.

When It Happens:

- · Deep or recurrent networks
- Large initial weights
- · ReLU without proper controls

Why ReLU & GELU Are Popular

ReLU:

- No vanishing gradient for (x > 0)
- Sparse activation helps generalization
- Risk of "dying neurons" (stuck at 0)

GELU:

- · Smooth, differentiable everywhere
- Allows small negative values
- Excellent gradient flow
- Standard in Transformer architectures

■ Gradient Behavior Summary (Visual Insight)

- **ReLU**: 0 for (x < 0), 1 for (x > 0)
- GELU: Smooth curve; never flat like sigmoid
- Sigmoid/Tanh: Gradient vanishes as (IxI) increases → problem in deep nets

B Summary Table of Activation Functions

Activation	Output Range	Advantages	Issues
ReLU	$[0,\infty)$	Fast, reduces vanishing gradients	Can "die"
Sigmoid	(0, 1)	Probabilities	Vanishing gradients
Tanh	(-1, 1)	Zero-centered	Vanishing gradients
Softmax	[0, 1], sums=1	Multi-class probability	Computation cost
GELU	Smooth ReLU	Stable gradients, modern NLP	Slightly complex

Neural Network Layer Stacking (Shape Flow)

Tensor Dimensions Across Layers (Batch Size = 16)

```
Input: x \to (16, 100)
 Layer 1: Linear(100 \rightarrow 64)
 Weights: W1 → (100, 64)
 Bias: b1 \rightarrow (64,)
 Output: (16, 64)
 Activation: ReLU
 Output: (16, 64)
 Layer 2: Linear(64 → 32)
 Weights: W2 → (64, 32)
        b2 \rightarrow (32,)
 Output: (16, 32)
 Activation: ReLU
 Output: (16, 32)
 Layer 3: Linear(32 → 1)
 Weights: W3 → (32, 1)
 Bias: b3 \rightarrow (1,)
 Output: (16, 1)
 Activation: Sigmoid
 Final Output: (16, 1)
🖈 Each layer performs output = input @ weights + bias
```


3. Gradient Descent & Optimization

Gradient Descent (Basics)

Parameter update to minimize loss $L(\theta)$:

$$\theta = \theta - \eta \nabla_{\theta} L(\theta)$$

House Price Gradient Descent Example (Intuitive):

Predict house price from square footage:

$$Price = w \times (SqFt) + b$$

Given data:

- x = 1000, actual price y = 200000.
- Initial guess: w = 100, b = 0, prediction = \$100,000 (error = \$100,000)

Loss (MSE):

$$L = (v - (wx + b))^2$$

Gradients:

• Gradient w.r.t. weight w:

$$\frac{\partial L}{\partial w} = -2x(y - (wx + b))$$

Gradient w.r.t. bias b:

$$\frac{\partial L}{\partial b} = -2(y - (wx + b))$$

Numerical Gradient Calculation:

- w.r.t. w: $-2 \times 1000 \times (200000 100000) = -200,000,000$
- w.r.t. $b: -2 \times (200000 100000) = -200,000$

Update (learning rate $\eta = 0.00000001$):

• New w = 102, New b = 0.002 (Loss decreases iteratively)

Adam Optimizer

Combines momentum and adaptive scaling:

Formulas:

• First moment (momentum):

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$$

· Second moment (adaptive scaling):

$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$$

Bias correction:

$$\hat{m}_t = \frac{m_t}{1 - \beta_1^t}, \quad \hat{v}_t = \frac{v_t}{1 - \beta_2^t}$$

· Parameter update:

$$\theta_t = \theta_{t-1} - \frac{\eta}{\sqrt{\hat{v}_t} + \epsilon} \hat{m}_t$$

Typical hyperparameters: $\beta_1=0.9,\;\beta_2=0.999,\;\eta=0.001,\;\epsilon=10^{-8}$

Adam Optimizer — Summary Notes

What is Adam?

Adam (Adaptive Moment Estimation) is an optimizer that combines the benefits of:

- Momentum: Smooths the gradient using an exponentially weighted moving average
- RMSProp: Adapts the learning rate for each parameter based on gradient magnitudes

It's fast, robust to noise, and a strong default for deep learning tasks.

Adam Update Rules

Let g_t be the gradient at time step t. Adam keeps two moving averages:

1. First moment (mean of gradients)

$$m_t = \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t$$

2. Second moment (uncentered variance of gradients)

$$v_t = \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2$$

Bias-Corrected Estimates:

$$\hat{m}_t = \frac{m_t}{1 - \beta_1^t}, \quad \hat{v}_t = \frac{v_t}{1 - \beta_2^t}$$

Parameter Update:

$$\theta_t = \theta_{t-1} - \alpha \cdot \frac{\hat{m}_t}{\sqrt{\hat{v}_t} + \epsilon}$$

🔧 Default Hyperparameters

- Learning rate: $\alpha = 0.001$
- $\beta_1 = 0.9$ (momentum term)
- $\beta_2 = 0.999$ (RMSProp term)
- $\epsilon = 10^{-8}$ (prevents division by zero)

Intuition

- *m_t* tracks **direction** (momentum)
- v_t tracks **magnitude** (adaptive step size)
- Bias correction ensures values are accurate early on
- Works well with noisy or sparse gradients

Example Calculation

Given:

•
$$g_1 = 0.4$$
, $m_0 = 0$, $v_0 = 0$

•
$$\beta_1 = 0.9, \beta_2 = 0.999, \alpha = 0.001$$

Then:

•
$$m_1 = 0.1 \cdot 0.4 = 0.04$$

•
$$v_1 = 0.001 \cdot (0.4)^2 = 0.00016$$

$$\hat{m}_1 = \frac{0.04}{1 - 0.9} = 0.4$$

•
$$\hat{v}_1 = \frac{0.00016}{1 - 0.999} = 0.16$$

• Step size:

$$\alpha \cdot \frac{\hat{m}_1}{\sqrt{\hat{v}_1} + \epsilon} \approx 0.001 \cdot \frac{0.4}{0.4} = 0.001$$

- Fast convergence
- · Good for noisy or sparse data
- Adaptive step sizes per parameter
- · Little tuning required

X Cons

- Sometimes worse generalization than SGD
- Can converge to sharp minima
- Slightly higher memory usage

- Use Adam as your starting optimizer
- Try **SGD with momentum** for better generalization
- Use AdamW instead of L2 weight decay with Adam (better regularization)

Gradient Descent, SGD, and Adam — Notes

Goal: Minimize a loss function $J(\theta)$ with respect to parameters θ .

Update rule:

$$\theta = \theta - \eta \cdot \nabla_{\theta} J(\theta)$$

Where:

- η: Learning rate
- $\nabla_{\theta} J(\theta)$: Gradient of the loss function

In batch GD, the gradient is computed over the entire dataset:

$$\nabla_{\theta} J(\theta) = \frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta} J(\theta; x_i)$$

Stochastic Gradient Descent (SGD)

Key idea: Use a single (or a few) randomly selected data point(s) to approximate the gradient.

SGD update (single data point):

$$\theta = \theta - \eta \cdot \nabla_{\theta} J(\theta; x_i)$$

Mini-batch SGD update (batch *B*):

$$\theta = \theta - \eta \cdot \frac{1}{|B|} \sum_{x_i \in B} \nabla_{\theta} J(\theta; x_i)$$

Why use SGD?

- · Faster updates
- Can handle large datasets
- · Noisy updates help escape local minima

Adam Optimizer (Adaptive Moment Estimation)

Adam improves SGD by adapting the learning rate using running averages of gradient moments.

Step-by-step:

1. Compute gradient:

$$g_t = \nabla_{\theta} J(\theta_t)$$

2. Update biased first moment estimate (mean):

$$m_t = \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t$$

3. Update biased second moment estimate (uncentered variance):

$$v_t = \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2$$

4. Bias-correct the estimates:

$$\hat{m}_t = \frac{m_t}{1 - \beta_1^t}, \quad \hat{v}_t = \frac{v_t}{1 - \beta_2^t}$$

5. Update parameters:

$$\theta_t = \theta_{t-1} - \eta \cdot \frac{\hat{m}_t}{\sqrt{\hat{v}_t} + \epsilon}$$

Typical hyperparameters:

- $\eta = 0.001$
- $\beta_1 = 0.9$
- $\beta_2 = 0.999$
- $\epsilon = 10^{-8}$

Practical Notes

- Adam is usually used with mini-batches, not full-batch.
- SGD and its variants (like Adam) benefit from shuffling and batching data.
- · Adam often converges faster and works well out-of-the-box.

In []:	
In []:	