BUSINESS INTELLIGENCE PER I SERVIZI FINANZIARI

PROGETTO DI LABORATORIO IN PYTHON

Versione del 20 dicembre 2022

antonio.candelieri@unimib.it silvio.bencini@unimib.it

1. Informazioni generali

Il progetto è finalizzato a mostrare le capacità acquisite in:

- acquisizione dei dati;
- visualizzazione;
- analisi esplorativa delle serie;
- analisi esplorativa di portafoglio;
- previsione di rendimenti,

utilizzando le librerie di Python introdotte nei laboratori (Pandas, Matplotlib, Numpy, ScikitLearn, StatsModels eccetera) e le funzioni principali di ciascuno.

Gli studenti sono liberi di utilizzare altre librerie di Python (purché compatibili con versioni di Python superiori a 3.8).

Il progetto è individuale.

2. Dati da utilizzare

Lo studente deve scegliere almeno 6 azioni del mercato americano da analizzare, rappresentative di 3 diversi settori (per esempio banche, automobili, minerario, telecomunicazioni ...). La scelta degli emittenti deve essere basata su un'analisi di notizie finanziarie tratte dai principali siti web. Il periodo da utilizzare è 30.11.2012 – 30.11.2022.

3. Documenti di progetto

Lo studente deve produrre:

- un Jupyter Notebook contenente il codice utilizzato per il lavoro, adeguatamente commentato:
- una presentazione in ppt di 10/15 minuti per l'illustrazione dei principali risultati;
- una relazione completa divisa nei seguenti capitoli (vedi schema di dettaglio allegato):
 - o sommario dei dati utilizzati;
 - statistiche descrittive:
 - o analisi di previsione;
 - o beta di ciascun titolo;
 - o creazione di un portafoglio;
 - o conclusioni.

I documenti di progetto devono essere inviati una settimana prima della data dell'esame a silvio.bencini@unimib.it e antonio.candelieri@unimib.it

BUSINESS INTELLIGENCE PER I SERVIZI FINANZIARI PROGETTO DI LABORATORIO IN PYTHON

Schema di documento finale

- 1. Sommario dei dati utilizzati
 - a. Breve descrizione di ciascun titolo selezionato e motivazione della scelta (per esempio notizie rilevanti, trend osservati eccetera);
 - b. Funzioni utilizzate per scaricare i dati da Yahoo! Finance o da altri siti (es. Fama-French).
 - c. Funzioni utilizzate per la fusione (se necessario) delle serie in un unico DataFrame;
 - d. Presentazione dei dati con un grafico e le prime righe del DataFrame.

2. Statistiche descrittive

- a. Calcolare il rendimento cumulato e composto annuo di ciascun titolo nel periodo;
- b. Calcolare i rendimenti semplici e logaritmici e visualizzarli in un grafico;
- c. Commentare:
 - i. che cosa hanno in comune le serie storiche?
 - ii. c'è una correlazione positiva fra società dello stesso settore
 - iii. ci sono momenti di rendimenti molto lontani dalla media? Se sì cercate le notizie che potrebbero spiegarli.
- d. Presentare i rendimenti con istogrammi e confrontare la dispersione dei rendimenti dei diversi titoli
- e. Creare grafici diagnostici a 4 sezioni (istogramma, kernel density, boxplot, qq-plot) per ciascuna serie di rendimenti e commentare (i rendimenti sono distribuiti normalmente? Ci sono outliers?)
- f. Calcolare statistiche descrittive univariate (media, varianza, deviazione standard, asimmetria, curtosi) per ogni serie di rendimenti e commentare.
 - i. Quali azioni hanno il rendimento più basso e più alto?
 - ii. quali azioni hanno la deviazione standard più alta o più bassa?
 - iii. come si evolvono nel tempo rendimento e volatilità?
 - iv. quale azione ha la distribuzione di rendimenti più vicina o lontana dalla normale?
- g. Calcolare la matrice di varianze/covarianze e di correlazione dei rendimenti.
 - i. Quali sono i titoli più correlati?
 - ii. Quali i meno correlati?
- h. Fare il grafico dell'andamento nel tempo delle correlazioni fra i titoli e i grafici di dispersione (scatter plots) delle correlazioni medie.
 - i. Commentare le relazioni e il loro andamento nel tempo:
 - ii. Come cambia la correlazione fra le azioni nel tempo?
 - iii. Come cambiano le correlazioni in funzione dei rendimenti?
 - iv. La dispersione dei punti negli scatter plot conferma o no la relazione lineare fra i due rendimenti?

3. Analisi di previsione

- a. Costruire un modello di previsione (ARIMA, SVM o altro) per prevedere i prezzi o rendimenti di ciascun strumento finanziario, usando:
 - i. n (80) mesi come training set
 - ii. m (30) mesi come test set
 - iii. I (10) mesi per la validazione
 - iv. Utilizzare gli ultimi (10) mesi per confrontare le previsioni con i valori effettivi

4. Stategie di trading e backtesting

- a. Costruire una strategia di trading basata su un algoritmo a scelta che segnali l'acquisto o la vendita di un titolo o indice di borsa e farne il backtesting
- b. Misurare l'efficienza della strategia rispetto alla detenzione del titolo per tutto il periodo ("Buy & Hold");
- c. Utilizzare variabili di mercato ma non collegate ai prezzi passati del titolo (volume, VIX, andamento dell'indice o variabili non di mercato (Google Trends) Opzionale

5. CAPM

- a. Calcolare il beta di ciascun titolo rispetto al mercato (indice S&P 500, ticker Yahoo Finance ^GSPC)
- b. Calcolare l'esposizione di ciascun titolo ai fattori di rischio Fama-French
- c. Utilizzare il beta per calcolare il rendimento atteso a un anno del titolo (utilizzare una propria previsione o stima del rendimento dell'indice S&P500.

6. Costruzione di portafoglio

- a. Costruire il portafoglio ottimale in termini di media-varianza utilizzando i primi 108 mesi di dati, sia con metodo analitico sia con metodo di simulazione, utilizzando sia i rendimenti passati sia i rendimenti attesi costruiti nella parte 3
- b. Calcolare il beta del portafoglio rispetto al mercato
- c. Confrontare il rendimento del portafoglio ottimale con quello effettivo. Per "portafoglio effettivo" si intende un portafoglio composto dai sei titoli oggetto di analisi con peso uguale fra di loro.