Prüfungsleistung Bildverarbeitung

Details	
Autoren	Alexander Melde (7939560) Anja Ohlhäuser (6986288) Nina Zaske (4627174)
Betreuer	Stefan Gehrig
Vorlesung	Digitale Bildverarbeitung (6. Semester)
Studiengang/Kurs	B. Sc. Angewandte Informatik – Kommunikationsinformatik TINF15K
Titel der Arbeit	Projekt zu Grundlagen der Bildverarbeitung: Entwicklung eines Augmented Reality Sudoku-Lösers
Bearbeitungszeitraum	14.03.2018 - 10.04.2018
Abgabedatum	11.04.2018

Aufgabe

Im Rahmen einer Vorlesung sollte unter Verwendung des OpenCV Frameworks ein beliebiges Programm entwickelt werden, dass Techniken der digitalen Bildverarbeitung verwendet.

Umsetzung

Das mit Python 3 entwickelte Programm sucht im Kamerabild einer Computer-Webcam nach Sudoku-Feldern, extrahiert das Sudoku-Feld sowie jedes einzelne der 9x9 Zahlen-Felder, erkennt die Zahlen in den Feldern, löst das Sudoku und ergänzt die fehlenden Zahlen des Sudokus in Echtzeit im Kamerabild.

Eigenanteil

- Erkennung des Sudoku-Quadrats im Gesamtbild
- Aufteilung des Sudoku-Quadrats in 9x9 Felder mit zwei Versionen:
 - Erkennen der kleinen Quadrate anhand deren Konturen (Genauere Erkennung des Sudoku Felds und ermöglicht Validierung ob Quadrat ein Sudoku-Feld ist, oft werden aber nicht alle Felder erkannt.)
 - Feste Aufteilung des 9x9 Felds mit mathematischen Rechnungen (Es werden immer 9x9 Felder "erkannt", kann nicht zur Validierung von echten Sudoku-Feldern genutzt werden)
- · Anpassen eines Sudoku-Lösungs-Algorithmus an unsere Datenstruktur
- Einbinden eines Machine Learning Frameworks und Trainieren des Modells auf handschriftliche Zahlen (hierfür gab es bereits einen Datensatz)
- Vorbereiten der kleinen Sudoku-Bildausschnitte für die Ziffern-Klassifikation (Zuschnitt, Resizing, Farbwertumwandlung)
- Auswertung der Klassifikations-Antwort (Wahrscheinlichkeiten berücksichtigen um leere Felder zu unterscheiden)
- Anzeige der gelösten Sudoku-Ziffern im zugeschnittenen Bild und Ausgabe des Bilds
- Option zum Einlesen von Beispielbildern und zur Verwendung der Webcam als Eingabemöglichkeit

Funktionstest

- Grundsätzlich wird die Zielsetzung für manche Bilder erreicht
- In das Bild gehalten Sudokus werden in den meisten Fällen korrekt erkannt
- Ziffern werden oft nicht korrekt erkannt, weshalb der Sudoku-Solver eine falsche Eingabe erhält und dann auch die Ausgabe nicht stimmt.
- In Modultests wurde die Funktionalität des Sudoku-Solvers bestätigt

Weiterentwicklungsmöglichkeiten

- Einblendung des gelösten Sudokus in Original-Kamerabild (statt in Sudoku-Zuschnitt, erfordert rückrechnung der zum zugeschnittenen Sudoku relativen 9x9-Positionen zum Originialbild)
- Verbesserung der Ziffern-Erkennung (Datensatz mit höherer Auflösung und Computerschriftarten verwenden)

Entwicklungsumgebung

Zur Entwicklung wurde die Python Version 3.6.3 unter Windows und Mac verwendetet.

Verwendete Python Module

- opency-python
- pillow
- imutils
- numpy
- scipy
- skikit-learn
- sklearn