Math 523H-Homework 3

- 1. For each of the following sequences, compute $\sup\{s_n\}$, $\inf\{s_n\}$, $\lim\sup\{s_n\}$ and $\liminf\{s_n\}$ and determine all the accumulation points.
 - (a) $s_n = 5^{(-1)^n}$
 - (b) $s_n = (-1)^n + \sin(\frac{n\pi}{2})$.
 - (c) $s_n = (-1)^n \frac{n+5}{n}$
 - (d) $s_n = n \cos(\frac{n\pi}{4})$
- 2. Construct a sequence whose accumulation points are all the non-negative integers $0, 1, 2, \cdots$.
- 3. Show the following facts:
 - (a) If the sequence $\{s_n\}$ converges then every subsequence of $\{s_n\}$ converges to the same limit.
 - (b) A sequence $\{s_n\}$ converges if and only if $\liminf_{n\to\infty} s_n = \limsup_{n\to\infty} s_n$.
- 4. Equivalent definitions of \limsup Suppose $\{s_n\}$ is a bounded sequence. In class we have defined $\limsup s_n$ as

$$\xi = \limsup_{n \to \infty} s_n = \sup\{x \mid s_n > x \text{ for infinitely many } n\}$$

and have established in the Bolzano-Weierstrass theorem that

$$\xi = \limsup_{n \to \infty} s_n$$
 is the largest accumulation point of the sequence $\{s_n\}$

which gives another characterization of lim sup. Here is a third one: prove the formula

$$\xi = \limsup_{n \to \infty} s_n = \lim_{n \to \infty} t_n \text{ where } t_n = \sup_{k \ge n} \{s_k\}.$$

Hint: Show that t_n is a monotone sequence and that its limit t is greater than ξ . Then show that t is an accumulation point.

5. Write down the three characterizations of liminf similarly to Problem 4. (You do not need to prove it.) Show also that

$$\lim\inf s_n = -\lim\sup (-s_n).$$

6. Let $\{s_n\}$ and $\{v_n\}$ be bounded sequences. Show that

$$\limsup(s_n + v_n) \le \limsup(s_n) + \limsup(v_n) \tag{1}$$

$$\liminf(s_n + v_n) \ge \liminf(s_n) + \liminf(v_n) \tag{2}$$

Provide examples that show that the equalities may be strict.

Hint: Choose the right definition!

- 7. Consider the series $\sum_{n=1}^{\infty} \left(-\frac{1}{3}\right)^n$. Give at least four different proofs that the series converges.
- 8. Determine which of the following series converge, and which ones converges absolutely. Justify your answer by stating the appropriate criterion.
 - (a) $\sum \frac{n^4}{2^n}.$
 - (b) $\sum \frac{100^n}{\sqrt{n!}}$
 - (c) $\sum \frac{\cos^2(n^2)}{n^2}$
 - (d) $\sum \frac{(-1)^n}{n^{1/3}}$