GTU Department of Computer Engineering CSE 232 - Spring 2020

PROJECT 2 REPORT

ESRA ERYILMAZ 171044046

1. Decide states and draw the state diagram for your FSM controller.

- I get inputs (a_i and b_i) from user and return the multiplication result.
- User should also press "go" button once after entering the inputs.

(Since I used a single adder, I didn't put "mult = mult+b" and "a = a-1" with the same state.)

(I didn't need to write state for a < 0 because I made the signs positive at the beginning.)

Update FSM

(I accept ${\bf '1'}$ for signals written in the state , and for all the remaining signals ${\bf '0'}$.)

2. Draw datapath.

(I used one adder for addition and subtraction.)

3. Draw truth table.

I have 6 states so 3 bit is enough.

Pres	sent States (PS) P2 P1 P0	Inputs gt eq go	Next States (NS) N2 N1 N0
50	0 0 0 0	0 1	0 0 0 0 0 0 1
51	0 0 1		0 1 0
52	0 1 0 0 1 0	1 0 - 0 1 -	0 1 1 1 0 1
53	0 1 1		1 0 0
54	1 0 0		0 1 0
<i>S</i> 5	1 0 1		0 0 0

Outputs are just depends on states, so I showed it in separate truth table.

F	Present States (PS) P2 P1 P0	La	Lb	Lm	Sa	Sm	Sadd	Lr
5 0	0 0 0	0	0	0	0	0	0	0
S1	0 0 1	1	1	1	0	0	0	0
52	0 1 0	0	0	0	0	0	0	0
53	0 1 1	0	0	1	0	1	1	0
54	1 0 0	1	0	0	1	0	0	0
<i>S</i> 5	1 0 1	0	0	1	0	0	0	1

4. Derive Boolean expressions from the truth table.

$$N2 = P2'P1P0'eq + P2'P1P0$$

$$N1 = P2'P1'P0 + P2'P1P0'gt + P2P1'P0'$$

$$N0 = P2'P1'P0'go + P2'P1P0'gt + P2'P1P0'eq$$

$$La = S1 + S4$$

$$Lb = S1$$

$$Lm = S1 + S3 + S5$$

$$Sa = S4$$

$$Sm = S3$$

$$Sadd = S3$$

$$Lr = S5$$

5. Draw the circuit on Logisim.

Optimizations

- Since I used a single adder, I connected double multiplexer to the input of the adder and I connected one demultiplexer to the output of the adder.
 - According to multiplexer select bit (Sadd), state machine decided which action to take.
- After taking the inputs, I check their signs and turn the negatives into positive.
- If the input signs are opposite, I return the result negative.
 - → In this way, it works with negatives.

All parts are working.