Lemma 5.4.1

 $\overline{a} \in \mathbb{F}_{\underline{p}}$ is a root of $f(T) \in \mathbb{F}_{\underline{p}}[T]$ if and only if $T - \overline{a} \mid f(T)$.

Lemma 5.4.1

 $\overline{a} \in \mathbb{F}_{p}$ is a root of $f(T) \in \mathbb{F}_{p}[T]$ if and only if $T - \overline{a} \mid f(T)$.

Proof. By the division of polynomials over \mathbb{F}_p (theorem 5.2.1), there are polynomials $q(T), r(T) \in \mathbb{F}_p[T]$ such that

$$f(T) = q(T) \cdot (T - \overline{a}) + r(T), \qquad \deg(r) < \deg(T - \overline{a}) = 1.$$

Therefore, r is a constant.

Lemma 5.4.1

 $\overline{a} \in \mathbb{F}_p$ is a root of $f(T) \in \mathbb{F}_p[T]$ if and only if $T - \overline{a} \mid f(T)$.

Proof. By the division of polynomials over \mathbb{F}_p (theorem 5.2.1), there are polynomials $q(T), r(T) \in \mathbb{F}_p[T]$ such that

$$f(T) = q(T) \cdot (T - \overline{a}) + r(T), \qquad \deg(r) < \deg(T - \overline{a}) = 1.$$

Therefore, *r* is a constant.

If we plug in \overline{a} , we get:

$$f(\overline{a}) = q(\overline{a}) \cdot (\overline{a} - \overline{a}) + r.$$

Hence, \overline{a} is a root of f(T) in \mathbb{F}_p if and only if r=0, which means $T-\overline{a}\mid f(T)$.

П

Lemma 5.4.2

Let \overline{a} and \overline{b} be two congruence classes in \mathbb{F}_p . Then the polynomials $T - \overline{a}$ and $T - \overline{b}$ are coprime if and only if $\overline{a} \neq \overline{b}$.

Lemma 5.4.2

Let \overline{a} and \overline{b} be two congruence classes in \mathbb{F}_p . Then the polynomials $T - \overline{a}$ and $T - \overline{b}$ are coprime if and only if $\overline{a} \neq \overline{b}$.

Proof. (\Rightarrow) If there are polynomials $h_1(T), h_2(T) \in \mathbb{F}_p[T]$ such that

$$(T - \overline{a})h_1(T) + (T - \overline{b})h_2(T) = \overline{1}.$$

Plug in \overline{a} , we get

$$(\overline{a} - \overline{b})h_2(\overline{a}) = \overline{1}.$$

This means $\overline{a} - \overline{b}$ is a unit. Hence, $\overline{a} \neq \overline{b}$.

Lemma 5.4.2

Let \overline{a} and \overline{b} be two congruence classes in \mathbb{F}_p . Then the polynomials $T - \overline{a}$ and $T - \overline{b}$ are coprime if and only if $\overline{a} \neq \overline{b}$.

Proof. (\Leftarrow) If $\overline{a} \neq \overline{b}$, then $\overline{a} - \overline{b}$ is a unit. Suppose $\overline{c} \in \mathbb{F}_p$ is its inverse. Then we have

$$\overline{-c}(T-\overline{a})+\overline{c}(T-\overline{b})=\overline{1}.$$

This means $T - \overline{a}$ and $T - \overline{b}$ are coprime.

Theorem 5.4.3

The number of roots of $f(T) \in \mathbb{F}_{p}[T]$ in \mathbb{F}_{p} is at most $\deg(f)$.

Theorem 5.4.3

The number of roots of $f(T) \in \mathbb{F}_p[T]$ in \mathbb{F}_p is at most $\deg(f)$.

Proof. By lemma 5.4.1, for any root \overline{a} of f(T) in \mathbb{F}_p , we have $T - \overline{a} \mid f(T)$. By lemma 5.4.2, different roots give coprime factors of f(T). Therefore, we have

In particular, the degree of the left-hand side is at most $\deg(f)$. But each $T - \overline{a}$ is of degree 1. Hence, the degree of the left-hand side is the number of roots of $f(T) \in \mathbb{F}_p[T]$ in \mathbb{F}_p .

Example 5.4.4

$$\overline{0}^2 - \overline{1} =$$

$$\overline{2}^2 - \overline{1} =$$

$$\overline{4}^2 - \overline{1} =$$

$$\overline{6}^2 - \overline{1} =$$

$$\bar{1}^2 - \bar{1} =$$

$$\overline{3}^2 - \overline{1} =$$

$$\overline{5}^2 - \overline{1} =$$

$$\overline{7}^2 - \overline{1} =$$

Example 5.4.4

$$\overline{0}^2 - \overline{1} = \overline{0 - 1} = \overline{7}$$

$$\overline{1}^2 - \overline{1} =$$

$$\overline{2}^2 - \overline{1} =$$

$$\overline{3}^2 - \overline{1} =$$

$$\overline{4}^2 - \overline{1} =$$

$$\overline{5}^2 - \overline{1} =$$

$$\overline{6}^2 - \overline{1} =$$

$$\overline{7}^2 - \overline{1} =$$

Example 5.4.4

$$\overline{0}^2 - \overline{1} = \overline{0} - \overline{1} = \overline{7}$$

$$\overline{1}^2 - \overline{1} = \overline{1} - \overline{1} = \overline{0}$$

$$\overline{2}^2 - \overline{1} = \overline{3}^2 - \overline{1} = \overline{4}^2 - \overline{1} = \overline{5}^2 - \overline{1} = \overline{5}^2 - \overline{1} = \overline{7}^2 - \overline{1}^2 - \overline{1} = \overline{7}^2 - \overline{1}^2 -$$

Example 5.4.4

$$\overline{0}^2 - \overline{1} = \overline{0} - \overline{1} = \overline{7}$$

$$\overline{1}^2 - \overline{1} = \overline{1} - \overline{1} = \overline{0}$$

$$\overline{2}^2 - \overline{1} = \overline{4} - \overline{1} = \overline{3}$$

$$\overline{3}^2 - \overline{1} =$$

$$\overline{4}^2 - \overline{1} =$$

$$\overline{5}^2 - \overline{1} =$$

$$\overline{6}^2 - \overline{1} =$$

$$\overline{7}^2 - \overline{1} =$$

Example 5.4.4

$$\overline{0}^2 - \overline{1} = \overline{0} - \overline{1} = \overline{7}$$

$$\overline{1}^2 - \overline{1} = \overline{1} - \overline{1} = \overline{0}$$

$$\overline{2}^2 - \overline{1} = \overline{4} - \overline{1} = \overline{3}$$

$$\overline{3}^2 - \overline{1} = \overline{9} - \overline{1} = \overline{0}$$

$$\overline{4}^2 - \overline{1} = \overline{5}^2 - \overline{1} = \overline{7}^2 - \overline{7}^2 -$$

Example 5.4.4

$$\overline{0}^{2} - \overline{1} = \overline{0} - \overline{1} = \overline{7}$$
 $\overline{1}^{2} - \overline{1} = \overline{1} - \overline{1} = \overline{0}$
 $\overline{2}^{2} - \overline{1} = \overline{4} - \overline{1} = \overline{3}$
 $\overline{3}^{2} - \overline{1} = \overline{9} - \overline{1} = \overline{0}$
 $\overline{4}^{2} - \overline{1} = \overline{16} - \overline{1} = \overline{7}$
 $\overline{5}^{2} - \overline{1} = \overline{7}$
 $\overline{6}^{2} - \overline{1} = \overline{7}$
 $\overline{7}^{2} - \overline{1} = \overline{7}$

Example 5.4.4

$$\overline{0}^{2} - \overline{1} = \overline{0} - \overline{1} = \overline{7}$$
 $\overline{1}^{2} - \overline{1} = \overline{1} - \overline{1} = \overline{0}$
 $\overline{2}^{2} - \overline{1} = \overline{4} - \overline{1} = \overline{3}$
 $\overline{3}^{2} - \overline{1} = \overline{9} - \overline{1} = \overline{0}$
 $\overline{4}^{2} - \overline{1} = \overline{16} - \overline{1} = \overline{7}$
 $\overline{5}^{2} - \overline{1} = \overline{25} - \overline{1} = \overline{0}$
 $\overline{6}^{2} - \overline{1} = \overline{7}$
 $\overline{7}^{2} - \overline{1} = \overline{1}$

Example 5.4.4

$$\overline{0}^{2} - \overline{1} = \overline{0} - \overline{1} = \overline{7}
\overline{1}^{2} - \overline{1} = \overline{1} - \overline{1} = \overline{0}
\overline{2}^{2} - \overline{1} = \overline{4} - \overline{1} = \overline{3}
\overline{3}^{2} - \overline{1} = \overline{9} - \overline{1} = \overline{0}
\overline{4}^{2} - \overline{1} = \overline{16} - \overline{1} = \overline{7}
\overline{5}^{2} - \overline{1} = \overline{25} - \overline{1} = \overline{0}
\overline{6}^{2} - \overline{1} = \overline{36} - \overline{1} = \overline{3}$$

$$\overline{7}^{2} - \overline{1} = \overline{1} = \overline{1} - \overline{1} = \overline{0}$$

Example 5.4.4

$$\overline{0}^2 - \overline{1} = \overline{0 - 1} = \overline{7}$$
 $\overline{2}^2 - \overline{1} = \overline{4 - 1} = \overline{3}$
 $\overline{4}^2 - \overline{1} = \overline{16 - 1} = \overline{7}$
 $\overline{6}^2 - \overline{1} = \overline{36 - 1} = \overline{3}$

$$\overline{1}^{2} - \overline{1} = \overline{1 - 1} = \overline{0}$$

$$\overline{3}^{2} - \overline{1} = \overline{9 - 1} = \overline{0}$$

$$\overline{5}^{2} - \overline{1} = \overline{25 - 1} = \overline{0}$$

$$\overline{7}^{2} - \overline{1} = \overline{49 - 1} = \overline{0}$$