Elements of Analysis Notes

Joseph McGuire

October 19, 2024

0 Introduction

0.1 The Algebra of Sets

Definition 1 (Set Equality) Two sets are equal if the contain the same elements. A = B

Definition 2 (Intersection of Sets) If A, B are sets, then their intersection is the set of all elements that belong to both A and B. $A \cap B$

Definition 3 (Union of Sets) If A, B are sets then their union is the set of all elements which belong either to A or B or to both A, B. $A \cup B$

Definition 4 (Empty Set) The empty set \emptyset is the set that has no elements. Two sets A, B are disjoint if $A \cap B = \emptyset$.

Theorem 5 Let A, B, C be any sets, then

- 1. $A \cap A = A, A \cup A = A$;
- 2. $A \cap B = B \cap A$, $A \cup B = B \cup A$;
- 3. $(A \cap B) \cap C = A \cap (B \cap C)$, $(A \cup B) \cup C = A \cup (B \cup C)$;
- $4. \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C), \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$

Definition 6 (Set Complement) If A, B are sets, then the complement of B relative to A is the set of all elements of A which do not belong to B.

$$A \setminus B = \{ x \in A : x \notin B \}$$

Theorem 7 The sets $A \cap B$ and $A \setminus B$ are disjoint and $A = (A \cap B) \cup (A \setminus B)$.

Theorem 8 If A, B, C are any sets, then

$$A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$$

$$A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$$

Definition 9 (Cartesian Products) If A, B are two non-empty sets, then the Cartesian product $A \times B$ is the set of all ordered pairs (a, b) with $a \in A$ and $b \in B$.

0.2 Functions

Definition 10 (Functions, Domain, Range) Let A, B be two sets not necessarily distinct. A function from A to B is a set f of ordered pairs in $A \times B$ with the property that if $(a,b), (a,b') \in f$, then b=b'. The set of all elements of A that can occur as first members is called the domain of f denoted D(f). The set of all elements B that occur in f is called the range of f. $f: A \to B$ is a function from A into B. When B is equal to the range of f, then f maps onto B.

Definition 11 (Composition of Functions) Let f be a function with domain D(f) in A and range R(f) in B and let g be a function with domain D(g) in B and range R(g) in C. The composition $g \circ f = \{(a,c) \in A \times C : \exists b \in B \text{ such that } (a,b) \in f, (b,c) \in g\}$

Theorem 12 If f and g are functions, the composition of $g \circ f$ is a function with

$$D(g \circ f) = \{x \in D(f) : f(x) \in D(g)\}$$

$$R(g \circ f) = \{g(f(x)) : x \in D(g \circ f)\}.$$

Definition 13 (One-One) Let f be a function with domain D(f) in A and range R(f) in B. We say that f is one-to-one if and only if when $a, a' \in D(f)$ and $a \neq a'$, then $f(a) \neq f(a')$.

Definition 14 (Inverse) Let f be a one-to-one function with domain D(f) in A and range R(f) in B. If $g = \{(b, a) \in B \times A : (a, b) \in f\}$, then g is a one-to-one function with domain D(g) = R(f) in B and with range D(g) = D(f) in A. The function g is called the function inverse to f and we ordinarily denote g by f^{-1} .

Definition 15 (Direct Image) If E is a subset of A, then the direct image of E under f is the subset of R(f) given by $\{f(x) : x \in E \cap D(f)\}$.

Theorem 16 Let f be a function with domain in A and range in B and let E, F be subsets of A.

- 1. If $E \subseteq F$, then $f(E) \subseteq f(F)$;
- 2. $f(E \cap F) \subseteq f(E) \cap f(F)$;
- 3. $f(E \cup F) = f(E) \cup f(F)$;
- 4. $f(E \setminus F) \subseteq f(E)$.

Definition 17 (Inverse Image) If $H \subseteq B$, then the inverse image of H under f is the subset of D(f) given by $f^{-1}(H) = \{x : f(x) \in H\}$.

Theorem 18 Let $f: A \to B$ be a functions and let $G, H \subseteq B$.

- 1. If $G \subseteq H$, then $f^{-1}(G) \subseteq f^{-1}(H)$;
- 2. $f^{-1}(G \cap H) = f^{-1}(G) \cap f^{-1}(H);$
- 3. $f^{-1}(G \cup H) = f^{-1}(G) \cup f^{-1}(H)$;
- 4. $f^{-1}(G \setminus H) = f^{-1}(G) \setminus f^{-1}(H)$.

Theorem 19 (Interchanging of Derivative and Limit) Let (f_n) be a sequence defined on an interval $J \subseteq \mathbb{R}$ and with values in \mathbb{R} . Suppose that there's a point $x_0 \in J$ at which the sequence $(f_n(x_0))$ converges, that the derivatives f'_n exist on J, and that the sequence (f'_n) converges uniformly on J to a function g. Then the sequence (f_n) converges uniformly on J to a function f which has a derivative at every point of J and f' = g.

0.3 Finite and Infinite Sets

Theorem 20 Any subset of a finite set is finite. Any subset of a countable set is countable.

Theorem 21 The union of a finite collection of finite sets is a finite set. The union of a countable collection of countable sets is a countable sets is a countable set.

1 The Real Numbers

1.1 Fields

1.2 Ordered Fields

Corollary 22 If a > b, then $a > \frac{a+b}{2} > b$

Theorem 23 1. |a| = 0 iff a = 0;

- 2. |-a| = |a| for all $a \in F$;
- 3. |ab| = |a||b| for all $a, b \in F$;
- 4. If $c \ge 0$, then $|a| \le c$ if and only if $-c \le a \le c$;
- 5. $-|a| \le a \le |a|$ for all $a \in F$.

Theorem 24 Let $a, b \in F$, then $||a| - |b|| \le |a \pm b| \le |a| + |b|$.

Corollary 25 Let $x_1, ..., x_n \in F$, then $|x_1 + x_2 + ... + x_n| \le |x_1| + |x_2| + ... + |x_n|$.

Theorem 26 Let F be an Archimedean field.

- 1. If y > 0 and z > 0, there's a $n \in \mathbb{N}$ such that ny > z;
- 2. If z > 0, there's $a \ n \in \mathbb{N}$ such that $0 < \frac{1}{n} < z$;
- 3. If y > 0, there's $a \ n \in \mathbb{N}$ such that $n 1 \le y < n$.

Theorem 27 Let F be an Archimedean field containing a positive irrational element ζ . If z is a positive element in F, then there's a natural number m such that the positive irrational element $\frac{\zeta}{m}$ satisfies $0 < \frac{\zeta}{m} < z$.

Theorem 28 If $y, z \in F$ and y < z, then there's a rational number $r \in F$ such that y < r < z.

Theorem 29 If the Archimedean field F contains an irrational elements ζ and if y < z, then there's a rational number r such that the irrational number $r\zeta$ satisfies $y < r\zeta < z$.

Theorem 30 Let $x \in F$. For each integer $n \in \mathbb{N}$, there's a closed interval $I_n = [a_n, a_n + \frac{1}{2^n}]$ containing the point x, where a_n is a rational element and $I_{n+1} \subseteq I_n$ for $n \in \mathbb{N}$.

1.3 The Real Number System

Definition 31 An Archimedean field R is said to be complete if each sequence of non-empty intervals $I_n = [a_n, b_n], n \in \mathbb{N}$, of R which is nested such that $I_1 \supseteq I_2 \supseteq ... \supseteq I_n \supseteq ...$, has an element which belongs to all of the intervals $I_n, n \in \mathbb{N}$.

Definition 32 (Upper/Lower Bound) Let S be a subset of \mathbb{R} . An element $u \in \mathbb{R}$ is said to be an upper bound of S if $s \leq u$ for all $s \in S$. Similarly, an element $w \in \mathbb{R}$ is said to be a lower bound of S if $w \leq s$ for all $s \in S$.

Definition 33 (Supremum/Infimum) Let $S \subseteq \mathbb{R}$ be bounded above. An upper bound of S is said to be a supremum of S if it's less than any other upper bound of S. Similarly, if S is bounded below, then a lower bound of S is an infimum of S if it's greater than any other lower bound of S.

Theorem 34 A number u is the supremum of a non-empty set S of real numbers if and only if it has the following two properties:

- 1. There are no elements $s \in S$ with u < s;
- 2. If v < u, then there's an element $s \in S$ such that v < s.

Theorem 35 (Supremum Principle) Every non-empty subset of real numbers which has an upper bound also has a supremum.

Corollary 36 Every non-empty subset of real numbers which has a lower bound has an infimum.

Definition 37 (Cuts) Let F be an ordered field. An ordered pair of non-void subsets $A, B \subseteq F$ is said to form a cut in F if $A \cap B = \emptyset$, $A \cup B = F$, and if whenever $a \in A$ and $b \in B$, then a < b.

Theorem 38 (Cut Principle) If the pair A, B form a cut in \mathbb{R} , then there exists a real number ζ such that every element $a \in A$ satisfies $a \leq \zeta$ and every element $b \in B$ satisfies $b \geq \zeta$.

2 The Topology of Cartesian Spaces

2.1 Cartesian Spaces

Theorem 39 (Cauchy-Bunyakovskii-Schwarz Inequality) If $x, y \in \mathbb{R}^p$, then $x \cdot y \leq |x||y|$.

Corollary 40 If $x, y \in \mathbb{R}^p$, then $|x \cdot y| \le |x||y|$. Moreover, if $|x \cdot y| = |x||y|$ if and only if there exists $c \in \mathbb{R}$ such that x = cy for non-zero $x, y \in \mathbb{R}^p$.

Theorem 41 (Norm Properties) Let $x, y \in \mathbb{R}^p$ and let $c \in \mathbb{R}$, then

1. $|x| \ge 0$;

- 2. |x| = 0 if and only if x = 0;
- 3. |cx| = |c||x|;
- 4. $||x| |y|| \le |x \pm y| \le |x| + |y|$.

Definition 42 (Open/Closed Balls and Spheres) Let $x \in \mathbb{R}^p$ and r > 0. Then the set $\{y \in \mathbb{R}^p : |x-y| < r\}$ is an open ball with center x and radius r, with $\leq r$ this is a closed ball, with = r this is a sphere.

Theorem 43 (Parallelogram Identity) If $x, y \in \mathbb{R}^p$, then $|x+y|^2 + |x-y|^2 = 2(|x|^2 + |y|^2)$

Theorem 44 If $x = (\zeta_1, ..., \zeta_p) \in \mathbb{R}^p$, then $|\zeta_j| \le |x| \le \sqrt{p} \sup\{|\zeta_1|, ..., |\zeta_p|\}$ for all $j \in \{1, ..., p\}$.

2.2 Elementary Topological Concepts

Definition 45 (Open Set) A set $G \subset \mathbb{R}^p$ is said to be open in \mathbb{R}^p if, for each point $x \in G$, there exists a positive real number r such that every point $y \in \mathbb{R}^p$ satisfying |x - y| < r also belongs to the set G.

Theorem 46 (Open Set Properties) 1. The empty set \emptyset and the entire space \mathbb{R}^p are open in \mathbb{R}^p ;

- 2. The intersection of any two open sets (any finite number) is open in \mathbb{R}^p ;
- 3. The union of any collection of open sets is open in \mathbb{R}^p .

Definition 47 (Closed Sets) A set $F \subseteq \mathbb{R}^p$ is said to be closed in \mathbb{R}^p in case its complement $C(F) = \mathbb{R}^p \setminus F$ is open in \mathbb{R}^p .

Theorem 48 (Closed Set Properties) 1. The empty set \emptyset and the entire space \mathbb{R}^p are closed in \mathbb{R}^p ;

- 2. The union of any two closed sets (any finite number) is closed in \mathbb{R}^p ;
- 3. The intersection of any collection of closed sets is closed in \mathbb{R}^p .

Definition 49 (Neighborhoods/Interior Points/Limit Points) If $x \in \mathbb{R}^p$, then any set which contains an open set containing x is called a neighborhood of $x \in \mathbb{R}^p$. A point x is said to be an interior point of a set A in case A is a neighborhood of the point x. A point x is said to be a cluster point of a set A in case every neighborhood of x contains at least one point of A distinct from x.

Theorem 50 Let $B \subseteq \mathbb{R}^p$, then the following statements are equivalent:

- 1. B is open.
- 2. Every point of B is an interior point of B.
- 3. B is a neighborhood of each of its points.

Theorem 51 A set F is closed in \mathbb{R}^p if and only if it contains all of its cluster points.

Theorem 52 (Nested Intervals Theorem) Let (I_k) be a sequence of non-empty closed intervals in \mathbb{R}^p which is nested in the sense that $I_1 \supseteq I_2 \supseteq ... \supseteq I_k \supseteq ...$. Then there exists a point in \mathbb{R}^p which belongs to all of the intervals.

Theorem 53 (Bolzano-Weierstrass Theorem.) Every bounded infinite subset of \mathbb{R}^p has a cluster point.

Definition 54 (Disconnected/Connected) A subset $D \subseteq \mathbb{R}^p$ is said to be disconnected if there exist two open sets A, B such that $A \cap D$ and $B \cap D$ are disjoint non-empty sets whose union is D. In that case A, B is said to form a disconnection of D. A subset $C \subseteq \mathbb{R}^p$ which is not disconnected is said to be connected.

Theorem 55 The closed unit interval I = [0, 1] is a connected subset of \mathbb{R}

Theorem 56 The entire space \mathbb{R}^p is connected.

Corollary 57 The only subsets of \mathbb{R}^p which are both open and closed are \emptyset and \mathbb{R}^p .

Theorem 58 Let G be an open set in \mathbb{R}^p . Then G is connected if and only if any pair of points x, y in G can be joined by a polygonal curve lying entirely in G.

2.3 The Theorems of Heine-Borel and Baire

Definition 59 (Compact) A set K is said to be compact if, whenever it's contained in the union of a collection $G = \{G_{\alpha}\}$ of open sets, then it's also contained in the union of some finite number of the sets in G.

Theorem 60 (Heine-Borel Theorem) A subset of \mathbb{R}^p is compact if and only if it's closed and bounded.

Theorem 61 (Cantor Intersection Theorem) Let F_1 be a non-empty subset of \mathbb{R}^p and let

$$F_1 \supseteq F_2 \supseteq ... \supseteq F_n \supseteq ...$$

be a sequence of non-empty closed sets. Then there exists a point belonging to all of the sets $\{F_k : k \in \mathbb{N}\}$

Theorem 62 (Lebesque Covering Theorem) Suppose $G = \{G_{\alpha}\}$ is a covering of a compact subset $K \subseteq \mathbb{R}^p$. There exists a positive number λ such that if $x, y \in K$ and $|x - y| < \lambda$, then there's a set G containing both x and y.

Theorem 63 (Nearest Point Theorem) Let F be a non-void closed subset of \mathbb{R}^p and let x be a point outside of F. Then there exists at least one point y belonging to F such that $|z - x| \ge |y - x|$ for all $x \in F$.

Theorem 64 (Circumscribing Contour Theorem) Let F be a closed and bounded set in \mathbb{R}^p and let G be an open set which contains F. Then there exists a closed curve C, lying entirely in G and made up of arcs of a finite number of circles, such that F is surrounded by C.

Theorem 65 (Baire's Theorem) If $\{H_k : k \in \mathbb{N}\}$ is a countable family of closed subsets of \mathbb{R}^p whose union contains a non-void open sey, then at least one of the sets H_k contains a non-void open set.

Corollary 66 The space R^2 isn't the union of a countable number of lines.

Corollary 67 The set of irrational numbers in \mathbb{R} isn't the union of a countable family of closed sets, none which contains a non-empty open set.

3 Convergence

3.1 Introduction to Sequences

Definition 68 (Sequence in \mathbb{R}^p) A sequence in \mathbb{R}^p is a function whose domain is the set \mathbb{N} of natural numbers and whose range is contained in \mathbb{R}^p .

Definition 69 (Sequence Operations) If $X = (x_n)$ and $Y = (y_n)$ are sequences in \mathbb{R}^p then we define their sum to be the sequence $X + Y = (x_n + y_n)$ in \mathbb{R}^p , their difference to be the sequence $X - Y = (x_n - y_n)$, and their inner product to be the sequence $X \cdot Y = (x_n \cdot y_n)$ in \mathbb{R}^p which is obtained by taking the inner product of corresponding terms. Similarly, if $X = (x_n)$ is a sequence in \mathbb{R} and $Y = (y_n)$ is a sequence in \mathbb{R}^p , we define $XY = (x_n y_n)$. Finally, if $Y = (y_n)$ is a sequence in \mathbb{R} with $y_n \neq 0$ we definite the quotient of a sequence $X = (x_n)$ in \mathbb{R}^p by Y to be the sequence $X/Y = (x_n/y_n)$.

Definition 70 (Limit of a Sequence) Let $X = (x_n)$ be a sequence in \mathbb{R}^p . An element $x \in \mathbb{R}^p$ is said to be a limit of X if, for each neighborhood V of x there's a natural number K_V such that if $n \geq K_V$, then $x_n \in V$. If x is a limit of X, we also say that X converges to x. If a sequence has a limit, we say that the sequence is convergent. If a sequence has no limit then we say that it's divergent.

Theorem 71 Let $X = (x_n)$ be a sequence in \mathbb{R}^p . An element $x \in \mathbb{R}^p$ is a limit of X if and only if for each positive real number ϵ there is a natural number $K(\epsilon)$ such that if $n \geq K(\epsilon)$, then $|x_n - x| < \epsilon$.

Theorem 72 (Uniqueness of Limits) A sequence in \mathbb{R}^p can have at most one limit.

Lemma 73 A convergent sequence in \mathbb{R}^p is bounded.

Theorem 74 A sequence (x_n) in \mathbb{R}^p with $x_n = (\zeta_{1n}, ..., \zeta_{pn}), n \in \mathbb{N}$ converges to an element $y = (\eta_1, ..., \eta_p)$ if and only if the corresponding p sequences of real numbers $(\zeta_{1n}, ..., \zeta_{pn})$, converge to $\eta_1, ..., \eta_p$ respectively.

Definition 75 (Subsequences) If $X = (x_n)$ is a sequence in \mathbb{R}^p and if $r_1 < r_2 < ... < r_n < ...$ is a strictly increasing sequence of natural numbers, then the sequence X' in \mathbb{R}^p is given by $(x_{r_1}, ..., x_{r_n}, ...)$, is called a subsequence of X.

Lemma 76 Is a sequence X in \mathbb{R}^p converges to an element x, then any subsequence of X also converges to x.

Corollary 77 If $X = (x_n)$ is a sequence which converges to an element $x \in \mathbb{R}^p$ and if $m \in \mathbb{N}$, then the sequence $X' = (x_{m+1}, x_{m+2}, ...)$ also converges to x.

Theorem 78 If $X = (x_n)$ is a sequence in \mathbb{R}^p , then the following statements are equivalent:

- 1. X doesn't converge to x.
- 2. Then there exists a neighborhood V of x such that if $n \in \mathbb{N}$, then there's a natural number $m = m(n) \ge n$ such that $x_m \notin V$
- 3. There exists a neighborhood V of x and a subsequence X' of X such that none of the elements of X' belong to V.

Theorem 79 1. Let X and Y be sequences in \mathbb{R}^p which converge to x, y, respectively. Then the sequences X + Y, X - Y, and $X \cdot Y$ converge to $x + y, x - y, x \cdot y$, respectively.

- 2. Let $X = (x_n)$ be a sequences in \mathbb{R}^p which converges to x and let $A = (a_n)$ be a sequence in \mathbb{R} which converges to a. Then the sequence $(a_n x_n)$ in \mathbb{R}^p converges to ax.
- 3. Let $X = (x_n)$ be a sequence in \mathbb{R}^p which converges to x and let $B = (b_n)$ be a sequence of non-zero real numbers which converges to a non-zero number b. Then the sequence $(b_n^{-1}x_n)$ in \mathbb{R}^p converges to $b^{-1}x$

Lemma 80 Suppose that $X = (x_n)$ is a convergent sequence in \mathbb{R}^p with limit x. If there exists an element $c \in \mathbb{R}^p$ and a number r > 0 such that $|x_n - c| \le r$ for n sufficiently large, then $|x - c| \le r$.

3.2 Criteria for the Convergence of Sequences

Theorem 81 (Monotone Convergence Theorem) Let $X = (x_n)$ be a sequence of real numbers which is monotone increasing in the sense that $x_1 \le x_2 \le ... \le x_n \le x_{n+1} \le ...$ Then the sequence X converges if and only if it's bounded, in which case $\lim(x_n) = \sup\{x_n\}$.

Corollary 82 Let $X = (x_n)$ be a sequence of real numbers which is monotone decreasing in the sense that $x_1 \ge x_2 \ge ... \ge x_n \ge x_{n+1} \ge ...$ Then the sequence X converges if and only if it's bounded, in which case $\lim(x_n) = \inf\{x_n\}$

Theorem 83 (Bolzano-Weierstrass Theorem) A bounded sequence in \mathbb{R}^p has a convergent subsequence.

Corollary 84 If $X = (x_n)$ is a sequence in \mathbb{R}^p and x^* is a cluster point of the set $\{x_n : n \in \mathbb{N}\}$, then there's a subsequence X' of X which converges to x^* .

Definition 85 (Cauchy Sequence) A sequence $X = (x_n)$ in \mathbb{R}^p is said to be a Cauchy sequence in case for every positive real number ϵ there's a natural number $M(\epsilon)$ such that if $m, n \geq M(\epsilon)$, then $|x_m - x_n| < \epsilon$.

Lemma 86 If $X = (x_n)$ is a convergent sequence in \mathbb{R}^p , then X is a Cauchy sequence.

Lemma 87 If a subsequence X' of a Cauchy sequence X in \mathbb{R}^p converges to an element x, then the entire sequence X converges to x.

Theorem 88 (Cauchy Convergence Criterion) A sequence in \mathbb{R}^p is convergent if and only if it's a Cauchy sequence.

3.3 Sequences of Functions

Definition 89 (Convergence of Sequences of Functions) Let (f_n) be a sequence of functions with common domain $D \subseteq \mathbb{R}^p$ and with range in \mathbb{R}^q , let $D_0 \subseteq D$, and let $f: D_0 \to \mathbb{R}^q$. We say that the sequence (f_n) converges on D_0 to f if, for each $x \in_0$ the sequence $(f_n(x))$ converges in \mathbb{R}^q to f(x). In this case we call the function f the limit on D_0 of the sequence (f_n) . When such a function f exists we say that the sequence (f_n) converges f on f or f or f or f in f in

Lemma 90 (Epsilon Def. of Seq. of Functions Convergence) A sequence (f_n) of functions on $D \supseteq \mathbb{R}^p$ to \mathbb{R}^q converges to a function f on a set $D_0 \subseteq D$ if and only if for each $\epsilon > 0$ and each $x \in D_0$ there is a natural number $K(\epsilon, x)$ such that if $n \ge K(\epsilon, x)$, then $|f_n(x) - f(x)| < \epsilon$.

Definition 91 (Uniform Convergence of Seq. of Functions) A sequence (f_n) of functions on $D \subseteq \mathbb{R}^p$ to \mathbb{R}^q converges uniformly on a subset $D_0 \subseteq D$ to a function f in case for each $\epsilon > 0$ there's a natural number $K(\epsilon)$ such that if $n \geq K(\epsilon)$ and $x \in D_0$, then $|f_n(x) - f(x)| < \epsilon$. In this case the sequence is called uniformly convergent on D_0 .

Lemma 92 (Criterion for non-uniform convergence) A sequence (f_n) doesn't converge uniformly on D_0 to f if and only if for some $\epsilon_0 > 0$ there exists a subsequence (f_{n_k}) of (f_n) and a sequence (x_k) in D_0 such that $|f_{n_k}(x_k) - f(x_k)| \ge \epsilon_0$ for $k \in \mathbb{N}$.

Definition 93 (D-Norm of f) If f is a bounded function defined on a subset $D \subseteq \mathbb{R}^p$ to \mathbb{R}^q , then the D-norm of f is the real number given by: $||f||_D = \sup\{|f(x): x \in D|\}$.

Lemma 94 (D-Norm Properties) If f, g are bounded functions defined on $D \subseteq \mathbb{R}^p$ to \mathbb{R}^q , then the D-norm satisfies:

- 1. ||f|| = 0 if and only if f(x) = 0 for all $x \in D$.
- 2. ||cf|| = |c|||f|| for any real number c.
- 3. $|||f|| ||g||| \le ||f \pm g|| \le ||f|| + ||g||$.

Lemma 95 (D-Norm Uniform Convergence) A sequence (f_n) of bounded functions on $D \subseteq \mathbb{R}^p$ to \mathbb{R}^q converges uniformly on D to a function f if and only if $||f_n - f|| \to 0$.

Theorem 96 (Cauchy Criterion for Uniform Convergence) Let (f_n) be a sequence of bounded functions on $D \subseteq \mathbb{R}^p$ with values in \mathbb{R}^q . Then there's a function to which (f_n) is uniformly convergent on D if and only if for each $\epsilon > 0$ there's a number $M(\epsilon)$ such that if $m, n \geq M(\epsilon)$, then the D-norm satisfies $||f_m - f_n|| < \epsilon$.

3.4 Some Extensions and Applications

Definition 97 (Limit Superior/Inferior) If $X = (x_n)$ is a sequence of real number which is bounded above (below), then the limit superior (inferior) of $X = (x_n)$ which we denote $\limsup X = \limsup (x_n)$ is the infimum (supremum) of real numbers v with the property that there are only a finite number of natural numbers n such that $v < x_n$ $(x_n < v)$.

Lemma 98 (Uniqueness and Existence of Limit Superior/Inferior) Let $X = (x_n)$ be a sequence of real numbers which is bounded. Then the limit superior of X exists and is uniquely determined.

Theorem 99 (Limit Superior/Inferior Connection to Sequence Limits) If $X = (x_n)$ is a sequence of real numbers which is bounded above, then the following statements are equivalent:

- 1. $x^* = \limsup(x_n)$.
- 2. If $\epsilon > 0$, there are only a finite number of natural numbers n such that $x^* + \epsilon < x_n$ but there are an infinite number such that $x^* \epsilon < x_n$.
- 3. If $v_m = \sup\{x_n : n \ge m\}$, then $x^* = \inf\{v_m : m \ge 1\}$.
- 4. If $v_m = \sup\{x_n : n \ge m\}$, then $x^* = \lim(v_m)$.
- 5. If V is the set of real numbers v such that there's a subsequence of X which converges to v, then $x^* = \sup V$.

Theorem 100 (Limit Superior/Inferior Algebraic Properties) Let $X = (x_n)$ and $Y = (y_n)$ be bounded sequences of real numbers. Then the following relations hold:

- 1. $\liminf (x_n) \leq \limsup (x_n)$.
- 2. If $c \ge 0$, then $\liminf(cx_n) = c \liminf(x_n)$ and $\limsup(cx_n) = c \limsup(x_n)$.
- 3. If $c \le 0$, then $\liminf(cx_n) = c \limsup(x_n)$ and $\limsup(cx_n) = c \liminf(x_n)$.
- 4. $\liminf (x_n) + \liminf (y_n) \le \liminf (x_n + y_n)$.
- 5. $\limsup (x_n + y_n) \le \limsup (x_n) + \limsup (y_n)$.

K such that $|x_n| \leq K|y_n|$ for all n sufficiently large.

6. If $x_n \leq y_n$ for all n, then $\liminf(x_n) \leq \liminf(y_n)$ and $\limsup(x_n) \leq \limsup(y_n)$.

Lemma 101 (Limit Superior/Inferior as Limit of Sequence) Let X be a bounded sequence of real numbers. Then X is convergent if and only if $\liminf X = \limsup X$ in which case $\lim X$ is the common value.

Definition 102 (Big O and little o Notation) Let $X = (x_n)$ be the sequence of \mathbb{R}^p and let $Y = (y_n)$ be a non-zero sequence in \mathbb{R}^p . We say that they are equivalent and write X Y or (x_n) (y_n) in case $\lim \left(\frac{|x_n|}{|y_n|}\right) = 1$. We say X is of lower order of magnitude than Y and write X = o(Y) or $x_n = o(y_n)$, in case $\lim \left(\frac{|x_n|}{|y_n|}\right) = 0$. Finally we say that X is dominated by Y and write X = O(Y) or $x_n = O(y_n)$ in case there's a positive constant

Definition 103 (Arithmetic Mean of a sequence) If $X = (x_n)$ is a sequence of elements in \mathbb{R}^p , then the sequence $S = (\sigma_n)$ is defined by: $\sigma_1 = x_1, \sigma_2 = \frac{x_1 + x_2}{2}, ..., \sigma_n = \frac{x_1 + x_2 + ... + x_n}{n}, ...$ is called the sequence of arithmetic means of X.

Theorem 104 (Convergence \rightarrow **Arithmetic Convergence)** If the sequence $X = (x_n)$ converges to x, then the sequence $S = (\sigma_n)$ of arithmetic means of X also converges to x.

4 Continuous Functions

4.1 Local Properties of Continuous Functions

Definition 105 (Continuity at a point) Let $a \in D$ of the function f. We say that f is continuous at a if for every neighborhood V of f(a) there's a neighborhood U of a (depending on V) such that if $x \in D \cap U$, then $f(x) \in V$. If D_1 is a subset of D, we say that f is continuous on D_1 in case it's continuous at every point in D_1 .

Theorem 106 (Equivalent Definitions of Continuity at a Point) Let $a \in D$ of the function f. The following statements are equivalent:

- 1. f is continuous at a.
- 2. If $\epsilon > 0$ there exists a $\delta(\epsilon) > 0$ such that if $x \in D$ and $|x a| < \delta(\epsilon)$, then $|f(x) f(a)| < \epsilon$.
- 3. If (x_n) is any sequence of elements in D which converge to a, then the sequence $(f(x_n)) \to f(a)$.

Theorem 107 (Discontinuity Criterion) The function f is not continuous at a point $a \in D$ if and only if there's a sequence $(x_n) \to a$ in D but $(f(x_n)) \not\to f(a)$

Theorem 108 (Open Sets in Codomain Correspond Open Sets in the Domain Under Continuous Maps) The function f is continuous at a point in D if and only if for every neighborhood V of f(a) there's a neighborhood V_1 of a such that $V_1 \cap D = f^{-1}(V)$.

Theorem 109 (Algebraic Properties of Continuous Functions) If the function f, g, ϕ are continuous at a point then their algebraic combinations $f + g, f - g, f \cdot g, cf, \phi f$, and f/ϕ are also continuous at this point.

Theorem 110 (Absolute Value of a Continuous Function is Continuous) If f is continuous at a point a, then |f| is also continuous there.

Theorem 111 (Composition of Continuous Functions are Continuous) If f is continuous at a and g is continuous at b = f(a), then their composition $g \circ f$ is continuous at a.

Definition 112 (Linear Functions) A function with domain \mathbb{R}^p and range in \mathbb{R}^q is a linear transformation if for all $x, y \in \mathbb{R}^p$ and $c \in \mathbb{R}$, f(x + y) = f(x) + f(y), f(cx) = cf(x).

Theorem 113 (Linear Functions are Lipshitz) If f is a linear function with domain \mathbb{R}^p and range in \mathbb{R}^q , then there exist a positive constant A such that if $u, v \in \mathbb{R}^p$, $|f(u) - f(v)| \leq A|u - v|$. Therefore, a linear function on \mathbb{R}^p to \mathbb{R}^q is continuous at every point.

4.2 Global Properties of Continuous Functions

Theorem 114 (Global Continuity Theorem) The following statements are equivalent:

- 1. f is continuous on its domain D.
- 2. If G is any open(closed) set in \mathbb{R}^q , then there exists an open(closed) set G_1 in \mathbb{R}^p such that $G_1 \cap D = f^{-1}(G)$.

Corollary 115 (Inverse Images of Open/Closed Sets are Preserved Under Continuous Maps) Let f be defined on all of \mathbb{R}^p and with range in \mathbb{R}^q . Then the following statements are equivalent:

- 1. f is continuous on \mathbb{R}^p .
- 2. If G is open (closed) in \mathbb{R}^q , then $f^{-1}(G)$ is open in \mathbb{R}^p .

Theorem 116 (Preservation of Connectedness) If H is connected and f is continuous on H, then f(H) is connected.

Theorem 117 (Bolzano's Intermediate Value Theorem) Let H be a connected subset of \mathbb{R}^p and let f be bounded and continuous on H and with values in R. If $k \in \mathbb{R}$ satisfies $\inf\{f(x) : x \in H\} < k < \sup\{f(x) : x \in H\}$, then there's at least one point in H where f takes the value of k.

Theorem 118 (Preservation of Compactness) If K is compact and f is continuous on K, then f(K) is compact.

Theorem 119 (Maximum and Minimum Value Theorem) Let f be continuous on a compact set $K \subseteq \mathbb{R}^p$ and with values in \mathbb{R}^q . Then there are points x^* and x_* in K such that: $|f(x^*)| = \sup\{|f(x)| : x \in K\}$ and $|f(x_*)| = \inf\{|f(x)| : x \in K\}$

.

Corollary 120 (More Useful Max/Min Value Theorem) If f is continuous on a compact subset K of \mathbb{R}^p and has real values, then there exists $x^*, x_* \in K$ such that: $f(x^*) = \sup\{f(x) : x \in K\}$ and $f(x_*) = \inf\{f(x) : x \in K\}$.

Corollary 121 (Linear Functions are Greater than Some Tangent Line) If f is a one-one linear function on \mathbb{R}^p to \mathbb{R}^q , then there's a positive number m such that $|f(x)| \ge m|x|$ for all $x \in \mathbb{R}^p$.

Theorem 122 (Continuity of the Inverse Function) Let K be a compact subset of \mathbb{R}^p and let f be a continuous one-one function with domain K and range f(K) in \mathbb{R}^q . Then the inverse function is continuous with domain f(K) and range K.

Theorem 123 (Pointwise Continuity) If f is defined on a subset $D \subseteq \mathbb{R}^p$ and range in \mathbb{R}^q , then it's readily seen that the following statements are equivalent:

- 1. f is continuous on D.
- 2. Given $\epsilon > 0$ and $u \in D$, there's a $\delta(\epsilon, u) > 0$ such that if $x \in D$ and $|x u| < \delta$, then $|f(x) f(u)| < \epsilon$.

Definition 124 (Uniform Continuity) Let f have domain $D \subseteq \mathbb{R}^p$ and range in \mathbb{R}^q . We say that f is uniformly continuous on D if for each $\epsilon > 0$ there exists a $\delta(\epsilon) > 0$ such that if $x, u \in D$ and $|x - u| < \delta(\epsilon)$, then $|f(x) - f(u)| < \epsilon$.

Lemma 125 (Dis-Uniform Continuity Criterion) A necessary and sufficient condition that the function f isn't uniformly continuous on its domain is that there exists a positive $\epsilon_0 > 0$ and two sequences $X = (x_n), Y = (y_n)$ in D such that if $n \in \mathbb{N}$, then $|x_n - y_n| < \frac{1}{n}$ and $|f(x_n) - f(y_n)| \ge \epsilon_0$.

4.3 Sequences of Continuous Functions

Theorem 126 (Uniformly Convergent Sequence of Functions Converge to Continuous Functions) Let $F = (f_n)$ be a sequence of continuous functions with domain $D \subseteq \mathbb{R}^p$ and range in \mathbb{R}^q and let this sequence converge uniformly on D to a function f. Then f is continuous on D.

Definition 127 (Step Functions) A function g with domain \mathbb{R}^p and range in \mathbb{R}^q is called a step function if it assumes only a finite number of distinct values in \mathbb{R}^q , each non-zero value being taken on an interval in \mathbb{R}^p .

Theorem 128 (Step Function Approx. on Compact Sets) Let f be a continuous function whose domain D is a compact interval in \mathbb{R}^p and whose values belong to \mathbb{R}^q . Then f can be uniformly approximated on D by step functions.

Theorem 129 (Peicewise Approx. Theorem) Let f be a continuous function whose domain is a compact interval J in \mathbb{R} . Then f can be uniformly approximated on J by continuous piecewise linear functions.

Definition 130 (Bernstein Polynomial) Let f be a function with domain $\mathbb{I} = [0, 1]$ and range in \mathbb{R} . The nth Bernstein polynomial for f is defined to be

$$B_n(x) = B_n(x; f) = \sum_{k=0}^{n} f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k}$$

Theorem 131 (Bernstein Approximation Theorem) Let f be continuous on $\mathbb{I} = [0,1]$ with values in \mathbb{R} . Then the sequence of Bernstein polynomials for f converges uniformly on $\mathbb{I} = [0,1]$ to f.

Theorem 132 (Weierstrass Approximation Theorem) *Let* f *be a continuous function on a compact interval on* \mathbb{R} *and with values in* \mathbb{R} *. Then* f *can be uniformly approximated by polynomials.*

Theorem 133 (Stone Approximation Theorem) Let K be a compact subset of \mathbb{R}^p and let G be a collection of continuous functions on K to \mathbb{R} with the properties:

- 1. If $f, g \in G$, then $\sup\{f, g\}$ and $\inf\{f, g\}$ belong in G.
- 2. If $a, b \in \mathbb{R}$ and $x \neq y \in K$, then there exists a function $f \in G$ such that f(x) = a, f(y) = b.

Then any continuous function on K to \mathbb{R} can be uniformly approximated on K by functions in G.

Theorem 134 (Stone-Weierstrass Theorem) Let K be a compact subset of \mathbb{R}^p and let G be a collection of continuous functions on K to \mathbb{R} with the properties:

- 1. The constant function c(x) = 1, $x \in K$ belongs to G.
- 2. If $f, g \in G$, then $\alpha f + \beta b \in G$.
- 3. If $f, g \in G$, then $fg \in G$.
- 4. If $x \neq y$ are two points of K, there exists a function $f \in G$ such that $f(x) \neq f(y)$.

Then any continuous function on K to \mathbb{R} can be uniformly approximated on K by functions in G.

4.4 Limits of Functions

- **Definition 135 (Deleted/Non-Deleted Limits)** 1. An element $b \in \mathbb{R}^q$ is said to be the deleted limit of f at c if for every neighborhood V of b there's a neighborhood U of c such that if $x \in U \cap D$ and $x \neq c$, then $f(x) \in V$. In this case we write $b = \lim_{c} f$ or $b = \lim_{x \to c} f(x)$
 - 2. An element $b \in \mathbb{R}^q$ is said to be the non-deleted limit of f at c if for every neighborhood V of b there's a neighborhood U of c such that if $x \in U \cap D$, then $f(x) \in V$. In this case, $b = Lim_c f$ or $b = Lim_{x \to c} f(x)$

Lemma 136 1. If either of the limits $\lim_{c} f$, $\lim_{c} f$ exists, it's uniquely determined.

- 2. If the non-deleted limit exists, then the deleted limit exists and $\lim_{c} f = Lim_{c}f$.
- 3. If $c \notin D$ of f, then the deleted limit exists if and only if the non-deleted limit exists.

Theorem 137 (Equivalent Definitions of Deleted Limits) The following statements, pertaining to the deleted limit, are equivalent.

- 1. The deleted limit $b = \lim_{c} f$ exists.
- 2. If $\epsilon > 0$, there's $a \delta > 0$ such that if $x \in D$ and $0 < |x c| < \delta$, then $|f(x) b| < \epsilon$.
- 3. If (x_n) is any sequence in D such that $x_n \neq c$ and $c \neq \lim(x_n)$, then $b = \lim(f(x_n))$

Theorem 138 (Equivalent Definitions of Non-Deleted Limits) The following statements, pertaining to the non-deleted limit, are equivalent.

- 1. The non-deleted limit $b = Lim_c f$ exists.
- 2. If $\epsilon > 0$, there's a $\delta > 0$ such that if $x \in D$ and $0 \le |x c| < \delta$, then $|f(x) b| < \epsilon$.
- 3. If (x_n) is any sequence in D such that $c = \lim(x_n)$ then we have $b = \lim(f(x_n))$.

Theorem 139 (Cluster Points and Deleted/Non-Deleted Limits) If $c \in D$ is a cluster point, then the following statements are equivalent:

- 1. The function f is continuous at c.
- 2. The deleted limit $\lim_{c} f$ exists and equals f(c) (Deleted limits are the typical limit)
- 3. The non-deleted limit $Lim_c f$ exists.

Theorem 140 (Composition of Limits) Suppose that f has domain D(f) in \mathbb{R}^p and range in \mathbb{R}^q has domain D(g) in \mathbb{R}^q and range in \mathbb{R}^r . Let $g \circ f$ be the composition of g and f and let c be a cluster point of $D(g \circ f)$.

1. If the deleted limits $b = \lim_c f$, $a = \lim_b g$ both exist and if either g is continuous at b or $f(x) \neq b$ for x in a neighborhood of c, then the deleted limit of $g \circ f$ exists at c and $a = \lim_c (g \circ f)$.

2. If the non-deleted limits $b = Lim_a f$, $a = Lim_b g$ both exist, then the non-deleted limit of $g \circ f$ exists at c and $a = Lim(g \circ f)$

Definition 141 (Deleted/Non-Deleted Limit Superiors) Suppose that f is bounded on a neighborhood of the point c. If r > 0, define $\phi(r)$ and $\Phi(r)$ by:

$$\phi(r) = \sup\{f(x) : 0 < |x - c| < r, x \in D\}$$

$$\Phi(r) = \sup\{f(x) : 0 \le |x - c| < r, x \in D\}$$

and the set

$$\limsup f_{x\to c} = \inf\{\phi(r) : r > 0\}$$

$$\lim \sup_{r \to c} f = \inf \{ \Phi(r) : r > 0 \}$$

These quantities are called the deleted limit superior and the non-deleted limit superior of f at c, respectively.

Lemma 142 (Equivalent Limit Superior Definitions) If ϕ, Φ are as defined above, then $\limsup_{x\to c} f = \lim_{r\to 0} \phi(r)$, $\lim\sup_{x\to c} f = \lim_{r\to 0} \Phi(r)$.

Lemma 143 1. If $M > \limsup_{x \to c} f$, then there exists a neighborhood U of c such that $f(x) < M, c \neq x \in D \cap U$.

2. If $M > \lim \sup_{x \to c} f$, then there exists a neighborhood U of c such that $f(x) < M, x \in D \cap U$.

Lemma 144 (Triangle Inequality for Limit Superiors) Let f, g be bounded on a neighborhood of c and suppose that c is a cluster point of D(f+g). Then

$$\limsup_{x \to c} (f + g) \le \limsup_{x \to c} f + \limsup_{x \to c} g$$

$$\lim \sup_{x \to c} (f+g) \le \lim \sup_{x \to c} f + \lim \sup_{x \to c} g$$

Definition 145 (Upper Semi-Continuous) A function f on D to R is said to be upper semi-continuous at a point c in D in case $f(c) = \limsup_{x \to c} f$. It's said to be upper semi-continuous on D if it's upper semi-continuous at every point of D.

Lemma 146 (Upper Semi-Continuous "Splitting" of the Range) Let f be an upper semi-continuous function with domain $D \subseteq \mathbb{R}^p$ and let $k \in \mathbb{R}$. Then there exists an open set G and closed set K such that: $G \cap D = \{x \in D : f(x) < k\}$ and $F \cap D = \{x \in D : f(x) \ge k\}$

5 Differentiation

5.1 The Derivative in \mathbb{R}

Definition 147 (Def. of a Derivative) If c is a cluster point of D and belongs to D, we say that a real number L is the derivative of f at c if for every positive ϵ there's a positive $\delta(\epsilon) > 0$ such that if $x \in D$ and $0 < |x - c| < \delta(\epsilon)$, then

$$\left| \frac{f(x) - f(c)}{x - c} - L \right| < \epsilon.$$

In this case we write f'(c) = L.

Lemma 148 (Differentiability Implies Continuity) If f has a derivative at c, then f is continuous there.

Lemma 149 (Signs of Derivative Imply Maximum on a Open Interval) 1. If f has a derivative at c and f'(c) > 0, there exists a positive number δ such that if $x \in D$ and $c < x < c + \delta$, then f(c) < f(x).

2. If f'(c) < 0, there exists a positive number δ such that if $x \in D$ and $c\delta < x < c$, then f(c) < f(x).

Theorem 150 (Interior Maximum Theorem) Let c be an interior point of D at which f has a relative maximum. If the derivative of f at c exists, then it must equal zero.

Theorem 151 (Rolle's Theorem) Suppose that f is continuous on a closed interval J = [a, b], that the derivative f' exists in the open interval (a, b), and that f(a) = f(b) = 0. Then there exists a point $c \in (a, b)$ such that f'(c) = 0.

Theorem 152 (Mean Value Theorem) Suppose that f is continuous on a closed interval J = [a, b] and has a derivative on (a, b). Then there exists a point $c \in (a, b)$ such that f(b) - f(a) = f'(c)(b - a).

Corollary 153 (Mean Value Theorem + Differentiability \rightarrow Continuity) If f has a derivative on J = [a,b], then there exists a point $c \in (a,b)$ such that f(b) - f(a) = f'(c)(b-a).

Theorem 154 (Cauchy Mean Value Theorem) Let f, g be continuous on J = [a, b] and has derivative on (a, b). Then there exists a point $c \in (a, b)$ such that f'(c)[g(b) - g(a)] = g'(c)[f(b) - f(a)].

Theorem 155 (Taylor's Theorem) Suppose that $n \in \mathbb{N}$, that f has derivatives $f', f'', ..., f^{(n-1)}$ are defined and continuous on J = [a, b], and that $f^{(n)}$ exists in (a, b). If $\alpha, \beta \in J$, then there exists a $\gamma \in \mathbb{N}$ between α and β such that:

$$f(\beta) = \sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!} (\beta - \alpha)^k + \frac{f^{(n)}(\gamma)}{n!} (\beta - \alpha)^n$$

Corollary 156 (Applications of the Mean Value Theorem) Assume that f is continuous on J = [a, b] and its derivative exists on (a, b).

- 1. If f'(x) = 0 for a < x < b, then f is constant on J.
- 2. If f'(x) = g'(x) for a < x < b, then f, g differ on J by a constant.
- 3. If $f'(x) \ge 0$ for a < x < b and if $x_1 \le x_2$ belong to J, then $f(x_1) \le f(x_2)$.
- 4. If f'(x) > 0 for a < x < b and if $x_1 < x_2$ belong to J, then $f(x_1) < f(x_2)$.
- 5. If $f'(x) \ge 0$ for $a < x < a + \delta$, then a is a relative minimum point of J.
- 6. If f'(x) > 0 for $b \delta < x < b$, then b is a relative maximum point of f.
- 7. If $|f'(x)| \le M$ for a < x < b, then f satisfies the Lipschtiz condition: $|f(x_1)f(x_2)| \le |x_1 x_2|, x_1, x_2 \in J$.

5.2 The Derivative in \mathbb{R}^p

Definition 157 (Directional Derivative) Let f be defined on $D \subseteq \mathbb{R}^p$ and have values in \mathbb{R}^q , let $c \in D$ be an interior point of D, and u be any point in \mathbb{R}^p . A vector L_u in \mathbb{R}^q is said to be the directional derivative of f at c in the direction of u if for each positive real number $\epsilon > 0$, there exists a positive number $\delta(\epsilon) > 0$ such that if $0 < |t| < \delta(\epsilon)$, then $\left| \frac{f(c+tu)-f(c)}{t} - L_u \right| < \epsilon$.

Definition 158 (Differentiable at a Point) Let f have domain $D \subseteq \mathbb{R}^p$ and range in \mathbb{R}^q and let c be an interior point of D. We say that f is differentiable at c if there exists a linear function L on \mathbb{R}^p to \mathbb{R}^q such that for every positive number $\epsilon > 0$ there exist $\delta(\epsilon) > 0$ such that if $|x-c| < \delta(\epsilon)$, then $x \in D$ and $|f(x)-f(c)-L(x-c)| \le \epsilon |x-c|$. The linear function L is called the derivative of f at c. (Also called differential)

Lemma 159 (Differential is unique, if it Exists) A function has at most one derivative at a point.

Lemma 160 (Differentiability implies Lipschitz) If f is differentiable at a point c, then there exist positive real number δ , K such that if $|x-c| < \delta$, then $|f(x) - f(c)| \le K|x-c|$.

Theorem 161 (Differential \Longrightarrow **Directional Derivative)** Let f be defined on $D \subseteq \mathbb{R}^p$ and have range in \mathbb{R}^q . If f is differentiable at the point $c \in D$ and u is any point in \mathbb{R}^p , then the directional derivative of f at c in the direction of u exists and equals Df(c)(u).

Theorem 162 (Partial Derivative in a Neighborhood \implies Differential in Neighborhood) If the partial derivatives of f exist in a neighborhood of c and are continuous at c, then f is differentiable at c.

- Theorem 163 (Algebraic Properties of Differential) 1. If f, g are differentiable at a point $c \in \mathbb{R}^p$ and have values in \mathbb{R}^q and if $\alpha, \beta \in \mathbb{R}$, then the function $h = \alpha f + \beta g$ is differentiable at c and $Dh(c) = \alpha Df(c) + \beta Dg(c)$.
 - 2. If f, g are as above, then their inner product $k = f \cdot g$ is differentiable at c and $Dk(c)(u) = Df(c)(u) \cdot g(c) + f(c) \cdot Dg(c)(u)$.
 - 3. If ϕ is differentiable at $c \in \mathbb{R}^p$ and has values in \mathbb{R} , then the product ϕf is differentiable at c and $D(\phi f)(c)(u) = D\phi(c)(u)f(c) + \phi(c)Df(c)(u)$.

Theorem 164 (Chain Rule) Let f be a function with domain $D(f) \subseteq \mathbb{R}^p$ and range in \mathbb{R}^q and let g have domain $D(g) \subseteq \mathbb{R}^q$ and range in \mathbb{R}^r . Suppose that f is differentiable at point c and that g is differentiable at f(c). Then the composition $g \circ f$ is differentiable at c and is $Dg(b) \circ Df(c)$.

Theorem 165 (Mean Value Theorem) Let f be defined on a subset $D \subseteq \mathbb{R}^p$ and have values in \mathbb{R} . Suppose that the set D contains the points a, b and the line segment joining them and that f is differentiable at every point of the line segment. Then there exists a point c on this line segment such that f(b) - f(a) = Df(c)(b-a).

Corollary 166 (Mean Value Theorem in \mathbb{R}^n) Let f be defined on $D \subseteq \mathbb{R}^p$ and with values in \mathbb{R}^q . Supposed that D contains the points a, b and the line segment joining them and that f is differentiable at every point of this segment. If $y \in \mathbb{R}^p$, then there exists a point c on this line segment such that $\{f(b) - f(a)\} \cdot y = \{Df(c)(b-a)\} \cdot y$.

Corollary 167 (Mean Value Theorem with Linear Function) Let f be defined on $D \subseteq \mathbb{R}^p$ and with values in \mathbb{R}^q . Suppose that the set D contains points a, b and the line segment joining them and that f is differentiable at every point of this segment. Then there exists a linear function L of $\mathbb{R}^p \to \mathbb{R}^q$ such that f(b) - f(a) = L(b-a).

Lemma 168 (Limit Definition of Partial Derivative at (0,0)) Suppose that f is defined on a neighborhood U of the origin in \mathbb{R}^2 with values in \mathbb{R} , that the partial derivatives of f_x and f_{xy} exist in U, and that f_{xy} is continuous at (0,0). If A(h,k) = f(h,k) - f(h,0) - f(0,k) + f(0,0), then we have $f_{xy}(0,0) = \lim_{(k,k)\to(0,0)} \frac{A(h,k)}{hk}$

Theorem 169 (Commutativity of Second Derivatives) Suppose that f is defined on a neighborhood U of a point $(x,y) \in \mathbb{R}^2$ with values in R. Suppose that the partial derivatives f_x , f_y , f_{xy} exist in U and that f_{xy} is continuous at (x,y). Then the partial derivative f_{yx} exists at (x,y) and $f_{yx}(x,y) = f_{xy}(x,y)$

5.3 Mapping Theorems and Extremum Problems

Definition 170 (Definition of Continuity Class of Functions) If the partial derivatives of f exists and are continuous at a point c interior to D, then we say that f belongs to Class C' at c. If $D_0 \subseteq D$ and if $f \in C'$ at every point in D_0 , we say that $f \in C'$ on D_0 .

Lemma 171 (Sort of Lipschitz for Continuous Differentiable Functions) If $f \in C'$ on a neighborhood of a point c and $\epsilon > 0$, then there exists a $\delta(\epsilon) > 0$ such that if $|x - c| < \delta(\epsilon)$, then $|Df(x)(z) - Df(c)(z)| \le \epsilon |z|$, for all $z \in \mathbb{R}^p$.

Theorem 172 (Approximation Lemma) If $f \in C'$ on a neighborhood of a point c and if $\epsilon > 0$, then there exists a $\delta(\epsilon) > 0$ such that if $|x_i - c| < \delta(\epsilon)$, i = 1, 2, then $|f(x_1) - f(x_2) - Df(c)(x_1 - x_2)| \le \epsilon |x_1 - x_2|$.

Theorem 173 (Locally One-One Mapping) If $f \in C'$ on a neighborhood of c and the derivative Df(c) is one-to-one, then there exists a positive $\delta > 0$ such that the restriction of f to $U = \{x \in \mathbb{R}^p : |x - c| \leq \delta\}$ is one-to-one.

Lemma 174 (Surjective Linear Image Inequality) If L is a linear function of \mathbb{R}^p onto all of \mathbb{R}^q , then there's a positive constant m such that every element $y \in \mathbb{R}^q$ is the image under L of an element $x \in \mathbb{R}^p$ such that $|x| \leq m|y|$.

Lemma 175 Let g be continuous on $D(g) = \{x \in \mathbb{R}^p : |x| < \alpha\}$ with values $in\mathbb{R}^q$ and that g(0) = 0. Let L be linear and map \mathbb{R}^p onto all \mathbb{R}^q and let m > 0 as in the preceding lemma. Suppose that $|g(x_1) - g(x_2) - L(x_2 - x_1)| \le \frac{1}{2m}|x_1 - x_2|$ for $|x_i| < \alpha$. Then any vector $y \in \mathbb{R}^q$ satisfying $|y| < \beta = \frac{\alpha}{2m}$ is the image under g of an element in D(g).

Theorem 176 (Local Solvability Theorem) Suppose that $f \in C'$ on a neighborhood of c and that the derivative Df(c) maps \mathbb{R}^p onto all of \mathbb{R}^q . There are positive numbers α, β such that if $y \in \mathbb{R}^q$ and $|y - f(c)| < \beta$, then there is an element $x \in \mathbb{R}^p$ with $|x - c| < \alpha$ such that f(x) = y.

Theorem 177 (Open Mapping Theorem) Let D be an open subset \mathbb{R}^p and let $f \in C'(D)$. If, for each $x \in D$, the derivative Df(x) maps \mathbb{R}^p onto \mathbb{R}^q , then f(D) is open in \mathbb{R}^q . Moreover, if G is any subset of D, then f(G) is open in \mathbb{R}^q .

Theorem 178 (Inversion Theorem) Suppose that f is in class C' on a neighborhood of $c \in \mathbb{R}^p$ with values in \mathbb{R}^p and the derivative Df(c) is a one-one map of \mathbb{R}^p onto \mathbb{R}^p . Then there exists a neighborhood U of C such that V = f(U) is a neighborhood of f(c), f is a one-one mapping of U onto V, and f has a continuous inverse function G defined on G to G. Moreover, G is an if G on G and if G and G and G is the inverse of the linear function G is in G is in class G' on G and G in G and G is the inverse of the linear function G in G is in class G' on G and G in G in G is in class G' on G and G in G

Theorem 179 (Implicit Function Theorem) Suppose that $F \in C'$ on a neighborhood of (0,0) in $\mathbb{R}^p \times \mathbb{R}^q$ and has values in \mathbb{R}^p . Suppose that F(0,0) = 0 and that the linear function L, defined by $L(u) = DF(0,0)(u,0), u \in \mathbb{R}^p$, is a one-to-one function of \mathbb{R}^p onto \mathbb{R}^p . Then there exists a function $\phi \in C'$ on a neighborhood W of 0 in \mathbb{R}^q to \mathbb{R}^p such that $\phi(0) = 0$ and $F[\phi(y), y] = 0, y \in W$.

Corollary 180 (Corollary to Implicit Function Theorem) With the hypothesis just stated and notation above, the derivative of ϕ at $y \in W$ is the linear function on \mathbb{R}^q to \mathbb{R}^p given by $D\phi(y) = -(D_x F)^{-1} \circ (D_y F)$.

Theorem 181 (Relative Extremum Theorem) Let f be a function with domain $D \subseteq \mathbb{R}^P$ and with range in \mathbb{R} . If C is an interior point of D at which f is differentiable and has a relative extremum, then Df(c) = 0.

Corollary 182 (Concavity Extremization) Let the real-valued function f have continuous second partial derivatives in a neighborhood of a critical point $c \in \mathbb{R}^2$, and let $\Delta = f_{\zeta\zeta}(c)f_{\eta\eta}(c) - [f_{\zeta\eta}(c)]^2$.

- 1. If $\Delta > 0$ and if $f_{\zeta\zeta}(c) > 0$, then f has a relative minimum at c.
- 2. If $\Delta > 0$ and if $f_{\zeta\zeta}(c) < 0$, then f has relative maximum at c.
- 3. If $\Delta < 0$, then the point c is a saddle point of f.

Theorem 183 (Lagrange's Method) Let $f, g \in C'$ on a neighborhood of a point $c \in \mathbb{R}^p$ and with values in \mathbb{R} . Suppose that there exists a neighborhood of c such that $f(x) \geq f(c)$ or $f(x) \leq f(c)$ for all x in this neighborhood which also satisfy the constraint g(x) = 0. If $Dg(c) \neq 0$, then there exists a real number λ such that $Df(c) = \lambda Dg(c)$.

6 Integration

6.1 The Riemann-Stieltjes Integral

Definition 184 (Partition/Partition Points/Refinements) A partition of J = [a, b] is a finite collection of non-overlapping intervals whose union is J. Described as $P = (x_0, x_1, ..., x_n)$ such that $a = x_0 \le x_1 \le ... \le x_n = b$ and such that the subintervals occurring are the intervals $[x_{k-1}, x_k], k \in \{1, ..., n\}$. $x'_k s$ are the partition points corresponding to P. If P, Q are partitions of J, we say that Q is a refinement of P or that Q is finer than P in case every subinterval in Q is contained in some subinterval in P. Equivalent to every partition point in P is also a partition point in Q. Written $P \subseteq Q$

Definition 185 (Riemann-Stieltjes Sum) If P is a refinement of J, then a Reimann-Stieltjes sum of f with respect to g and corresponding to $P = (x_0, x_1, ..., x_n)$ is a real number

$$S(P; f, g) = \sum_{k=1}^{n} f(\zeta_k) \{ g(x_k) - g(x_{k-1}) \}$$

Here we have selected numbers ζ_k satisfying $x_{k-1} \leq \zeta_k \leq x_k, k \in \{1, ..., n\}$.

Definition 186 (Reimann Integratable + The Integral) We say that f is integratable with respect to g on J if there exists a real number I such that for every $\epsilon > 0$ there's a partition P_{ϵ} of J such that if P is any refinement of P_{ϵ} and S(P; f, g) is any Reimann-Stieltjes sum corresponding to P, then $|S(P; f, g) - I| < \epsilon$. In case that I is uniquely determined then we denote $I = \int_a^b f \ dg = \int_a^b f(t) \ dg(t)$; it's called the Riemann-Stieltjes integral of f with respect to g over J = [a, b]. We call the function f, the integrand, g the integrator. In the special case g(x) = x, if f is integratable with respect to g, we usually say that f is Reimann integratable.

Theorem 187 (Cauchy Criterion for Integratability) The function f is integratable with respect to g over J = [a,b] if and only if for each positive real number ϵ there's a partition Q_{ϵ} of J such that if P and Q are refinements of Q_{ϵ} and if S(P;f,g), S(Q;f,g) are any corresponding Riemann Stieltjes sums, then $|S(P;f,g) - S(Q;f,g)| < \epsilon$.

Theorem 188 (Algebraic Properties of the Integral) 1. If f_1, f_2 are integratable with respect to g on J and $\alpha, \beta \in \mathbb{R}$, then $\alpha f_1 + \beta f_2$ is integratable with respect to g on J and

$$\int_a^b (\alpha f_1 + \beta f_2) \ dg = \alpha \int_a^b f_1 \ dg + \beta \int_a^b f_2 \ dg$$

2. If f is integratable with respect to g_1, g_2 on J and $\alpha, \beta \in \mathbb{R}$, then f is integrable with respect to $g = \alpha g_1 + \beta g_2$ on J and

$$\int_a^b f \ dg = \alpha \int_a^b f \ dg_1 + \beta \int_a^b f \ dg_2$$

Theorem 189 (Breaking Up the Domain of Integration) 1. Suppose that a < c < b and that f is integratable with respect to g over both of the subintervals [a, c], [c, b]. Then f is integratable with respect to g on the interval [a, b] and

$$\int_a^b f \ dg = \int_a^c f \ dg + \int_c^b f \ dg$$

2. Let f be integratable with respect to g on the interval [a,b] and let c satisfy a < c < b. Then f is integratable with respect to g on the subintervals [a,c],[c,b] and the above formula also holds.

Theorem 190 (Integration by Parts) A function f is integratable with respect to g over [a,b] if and only if g is integratable with respect to f over [a,b]. In this case,

$$\int_{a}^{b} f \, dg + \int_{a}^{b} g \, df = f(b)g(b) - f(a)g(a)$$

Theorem 191 (Integratability Theorem) If f is continuous on J and g is monotone increasing, then f is integratable with respect to g over J.

Corollary 192 If f is monotone and g is continuous on J, then f is integratable with respect to g over J.

Lemma 193 (Absolute Values over Inequalities, Integrals) Let f be continuous and let g be monotone increasing on J. Then we have the estimate:

$$\left| \int_{a}^{b} f \ dg \right| \le \int_{a}^{b} |f| \ dg \le ||f|| \{g(b) - g(a)\}$$

If $m \le f(x) \le M$ for all $x \in J$, then

$$m\{g(b) - g(a)\} \le \int_a^b f \ dg \le M\{g(b) - g(a)\}$$

Theorem 194 (Interchanging Limits and Integrals) Let g be a monotone increasing function on J and let (f_n) be a sequence which are integratable with respect to g over J. Suppose that the sequence (f_n) converges uniformly on J to a limit function f. Then f is integratable with respect to g and

$$\int_{a}^{b} f \ dg = \lim \int_{a}^{b} f_n \ dg$$

Lemma 195 Let f be a non-negative Riemann integratable function on J = [0, 1], and suppose that $\alpha = \int_0^1 f > 0$. Then the set $E = \{x \in J : f(x) \ge \frac{\alpha}{3}\}$ contains a finite number of intervals of total length exceeding $\frac{\alpha}{3||f||}$.

Theorem 196 (Bounded Convergence Theorem) Let (f_n) be a sequence of functions which are Riemann integratable on J = [a,b] and such that $||f_n|| \leq B, n \in \mathbb{N}$. If the sequence converges at each point on J to a Riemann integratable function f, then

$$f_a^b f = \lim \inf_a^b f_n$$

Theorem 197 (Monotone Convergence Theorem) Let (f_n) be a monotone sequence of Riemann integratable functions which converges at each point of J = [a, b] to a Riemann integratable function f. Then

$$\int_{a}^{b} f = \lim \int_{a}^{b} f_{n}.$$

Definition 198 (Linear Functional) Denote the collection of all real-valued continuous functions defined on $C_{\mathbb{R}}(J)$ and write $||f|| \sup\{|f(x)| : x \in J\}$. A linear functional on $C_{\mathbb{R}}(J)$ is a real-valued function G defined for each function in $C_{\mathbb{R}}(J)$ such that if $f_1, f_2 \in C_{\mathbb{R}}(J)$ and $\alpha, \beta \in \mathbb{R}$, then $G(\alpha f_1 + \beta f_1) = \alpha G(f_1) + \beta G(f_2)$. The linear functional G on $C_{\mathbb{R}}(J)$ is positive if, for each $f \in C_{\mathbb{R}}(J)$ such that $f(x) \geq 0$ for $x \in J$, then $G(f) \geq 0$. The linear functional G on $C_{\mathbb{R}}(J)$ is bounded if there exists a constant M such that $|G(f)| \leq M||f||$, $f \in C_{\mathbb{R}}(J)$.

Lemma 199 (Monotonic Integrals \Longrightarrow **Functional is Bounded)** If g is a monotone increasing function and G is defined for $f \in C_{\mathbb{R}}(J)$ by $G(f) = \int_a^b f \ dg$, then G is bounded positive linear functional on $C_{\mathbb{R}}(J)$.

Theorem 200 (Riesz Representation Theorem) If G is a bounded positive linear functional on $C_{\mathbb{R}}(J)$, then there exists a monotone increasing function g on J such that

$$G(f) = \int_a^b f \ dg, f \in C_{\mathbb{R}}(J)$$

6.2 The Main Theorems of Integral Calculus

Theorem 201 (First Mean Value Theorem) *If* g *is increasing on* J = [a, b] *and* f *is continuous on* J *to* \mathbb{R} , *then there exists a number* $c \in J$ *such that*

$$\int_{a}^{b} f \ dg = f(c) \int_{a}^{b} = f(c) \{ g(b) - g(a) \}$$

Theorem 202 (Differentiation Theorem) Suppose that f is continuous on J and that g is increasing on J and has derivative at a point $c \in J$. Then the function F, defined for $x \in J$ by:

$$F(x) = \int_{a}^{x} f \ dg$$

Theorem 203 (Fundamental Theorem of Integral Calculus) Let f be continuous on J = [a, b]. A function F on J satisfies

$$F(x) - F(a) = \int_{a}^{x} f(x) dx \in J \iff F' = f \text{ on } J$$

Theorem 204 If the derivative g' = h exists and is continuous on J and if f is integratable with respect to g, then the product fh is Riemann integratable and

$$\int_{a}^{b} f \ dg = \int_{a}^{b} f h$$

Theorem 205 (First Mean Value Theorem) If f, h are continuous on J and h is non-negative, then there exists a point c in J such that

$$\int_a^b f(x)h(x) \ dx = f(c) \int_a^b h(x) \ dx$$

Theorem 206 (Integration by Parts) If f, g have continuous derivatives on [a, b], then

$$\int_{a}^{b} fg' = f(b)g(b) - f(a)g(a) - \int_{a}^{b} f'g(a) da$$

Theorem 207 (Second Mean Value Theorem) 1. If f is increasing and g is continuous on J = [a, b], then there exists a point $c \in J$ such that

$$\int_{a}^{b} f \ dg = f(a) \int_{a}^{c} dg + f(b) \int_{c}^{b} dg$$

2. If f is increasing and h is continuous on J, then there exists a point $c \in J$ such that

$$\int_{a}^{b} fh = f(a) \int_{a}^{c} h + f(b) \int_{c}^{b} h$$

3. If f is non-negative and increasing and h is continuous on J, then there exists a point $c \in J$ such that

$$\int_{a}^{b} fh = f(b) \int_{c}^{b} h$$

Theorem 208 (Change of Variable Theorem) Let ϕ be defined on an interval $[\alpha, \beta]$ to \mathbb{R} with continuous derivative and suppose that $a = \phi(\alpha) < b = \phi(\beta)$. If f is continuous on the range of ϕ , then

$$\int_{a}^{b} f(x) \ dx = \int_{\alpha}^{\beta} f[\phi(t)]\phi'(t) \ dt$$

Theorem 209 If f is continuous on D to \mathbb{R} and if $F(t) = \int_a^b f(x,t) \ dx$, then F(t) is continuous on [c,d] to \mathbb{R} .

Theorem 210 If f and its partial derivative f_t are continuous on D to \mathbb{R} , then the function $F(t) = \int_a^b f(x,t) dx$ has a derivative on [c,d] and $F'(t) = \int_a^b f_t(x,t) dx$.

Theorem 211 (Leibniz's Formula) Suppose that f, f_t are continuous on D to \mathbb{R} and that α, β are functions which are differentiable on the interval [c,d] and have values in [a,b]. If ϕ is defined on [c,d] by: $\phi(t) = \int_{\alpha(t)}^{\beta(t)} f(x,t) dx$, then ϕ has a derivative for each $t \in [c,d]$ which is given by:

$$\phi'(t) = f[\beta(t), t]\beta'(t) - f[\alpha(t), t]\alpha'(t) + \int_{\alpha(t)}^{\beta(t)} f_t(x, t) dx$$

Theorem 212 (Interchange Theorem) If f is continuous on D with values in \mathbb{R} , then

$$\int_{c}^{d} \int_{a}^{b} f(x,t) dx dt = \int_{a}^{b} \int_{c}^{d} f(x,t) dt dx$$

Theorem 213 (Taylor's Theorem) Suppose that f and its derivative $f', f'', ..., f^{(n)}$ are continuous on $[a, b] \subseteq \mathbb{R}$. Then

$$f(b) = f(a) + \frac{f'(a)}{1!}(b-a) + \dots + \frac{f^{(n-1)}(a)}{(n-1)!}(b-a)^{n-1} + R_n$$

with $R_n = \frac{1}{(n-1)!} \int_a^b (b-t)^{n-1} f^{(n)}(t) dt$.

- 6.3 Integration in Cartesian Spaces
- 6.4 Improper and Indefinite Integrals

7 Infinite Series

7.1 Convergence of Infinite Series

Definition 214 (Infinite Series/ Partial Sums) If $X = (x_n)$ is a sequence in \mathbb{R}^p , then the infinite series generated by X is the sequence $S = (s_k)$ defined by $s_1 = x_1, s_2 = s_1 + x_2, ..., s_k = s_{k-1} + x_k$. If S converges, we refer to $\lim S$ as the sum of the infinite series. The elements x_n are called the terms and the elements s_k are called the partial sums of this infinite series

Theorem 215 (Algebraic Properties of Infinite Series) 1. If the series $\sum (x_n)$ and $\sum (y_n)$ converge, then the series $\sum (x_n+y_n)$ converges and the sums are related by the formula $\sum (x_n+y_n)=\sum (x_n)+\sum (y_n)$. Similarly for X-Y.

2. If the series $\sum (x_n)$ is convergent, $c \in \mathbb{R}$, and w is a fixed element of \mathbb{R}^p , then the series $\sum (cx_n)$ and $\sum (w \cdot x_n)$ converge and $\sum (cx_n) = c \sum (x_n), \sum (w \cdot x_n) = w \cdot \sum (x_n)$.

Lemma 216 If $\sum (x_n)$ converges in \mathbb{R}^p , then $\lim (x_n) = 0$.

Theorem 217 (Non-Negative Series Convergent \iff Partial Sums Converge) Let (x_n) be a sequence of non-negative real numbers. Then $\sum (x_n)$ converges if and only if the sequence $S=(s_k)$ of partial sums is bounded. In this case, $\sum x_n = \lim(s_k) = \sup\{s_k\}$

Definition 218 (Absolute Convergence) Let $X = (x_n)$ be a sequence in \mathbb{R}^p . We say that the series $\sum (x_n)$ is absolutely convergent if the series $\sum (|x_n|)$ is convergent in \mathbb{R} . A series is said to be conditionally convergent if it's convergent but not absolutely convergent.

Theorem 219 (Absolute Convergent \implies Convergence) If a series in \mathbb{R}^p is absolutely convergent, then it's convergent.

Theorem 220 (Rearrangement Theorem) Let $\sum (x_n)$ be an absolutely convergent series in \mathbb{R}^p . Then any rearrangement of $\sum (x_n)$ converges absolutely to the same value.

Lemma 221 Suppose that the iterated series $\sum_{j=1}^{\infty} \sum_{i=1}^{\infty} (|x_{ij}|)$ converges. Then the double series $\sum (x_{ij})$ is absolutely convergent.

Theorem 222 Suppose that the double series $\sum (x_{ij})$ converges absolutely to $x \in \mathbb{R}^p$. Then both of the iterated series $\sum_{j=1}^{\infty} \sum_{i=1}^{\infty} x_{ij} = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} (x_{ij}) = x$.

7.2 Tests of Convergence

Theorem 223 (Comparison Test) Let $X = (x_n), Y = (y_n)$ be non-negative real sequences and suppose that for some natural number K, $x_n \leq y_n, n \geq K$. Then the convergence of $\sum (y_n) \implies$ the convergence of $\sum (x_n)$.

Theorem 224 (Limits Comparison Test) Suppose that $X = (x_n), Y = (y_n)$ are non-negative real sequences.

- 1. If the relation $\lim \frac{X}{Y} \neq 0$ holds, then $\sum (x_n)$ is convergent if and only if $\sum (y_n)$ is convergent.
- 2. If $\lim \frac{X}{Y} = 0$ and $Y = (y_n)$ is convergent, then $\sum (x_n)$ is convergent.

Theorem 225 (Root Test) 1. If $X = (x_n)$ is a sequence in \mathbb{R}^p and there exists a non-negative number r < 1 and $K \in \mathbb{N}$ such that $|x_n|^{1/n} \le r, n \ge K$, then the series $\sum (x_n)$ is absolutely convergent.

2. If there exists a number r > 1 and a natural number K such that $|x_n|^{1/n} \ge r, n \ge K$, then the series $\sum (x_n)$ is divergent.

Corollary 226 If r satisfies 0 < r < 1 and if the sequence $X = (x_n)$ satisfies the root test (a), then the partial sums $s_n, n \ge K$, approximate the sum $s = \sum (x_n)$ according to the estimate

$$|s - s_n| \le \frac{r^{n+1}}{1 - r}, n \ge K$$

Corollary 227 Let $X = (x_n)$ be a sequence in \mathbb{R}^p and set $r = \lim(|x_n|^{1/n})$ whenever this limit exists. Then $\sum (x_n)$ is absolutely convergent when r < 1 and is divergent when r > 1.

Theorem 228 (Ratio Test) 1. If $X = (x_n)$ is a sequence of non-zero elements of \mathbb{R}^p and there's a positive number r < 1 and natural number K such that $\frac{|x_{n+1}|}{x_n} \le r, n \ge K$, then the series $\sum (x_n)$ is divergent.

2. If there exists a number r > 1 and $K \in \mathbb{N}$ such that $\frac{|x_{n+1}|}{|x_n|} \ge r, n \ge K$, then the series $\sum (x_n)$ is divergent.

Corollary 229 If r satisfies $0 \le r < 1$ and if the sequence $X = (x_n)$ the convergent root test for $n \ge K$, then the partial sums approximate the sum $s = \sum (x_n)$ according to the estimate $|s - s_n| \le \frac{r}{1-r} |x_n|, n \ge K$.

Corollary 230 Let $X = (x_n)$ be a sequence in \mathbb{R}^p and set $r = \lim_{n \to \infty} \left(\frac{|x_{n+1}|}{|x_n|} \right)$ whenever the limit exists. Then the series $\sum (x_n)$ is absolutely convergent when r < 1 and divergent when r > 1.

Theorem 231 (Raabe's Test) 1. If $X = (x_n)$ is a sequence of non-zero elements in \mathbb{R}^p and there's a real number a > 1 and a natural number K such that $\frac{|x_{n+1}|}{|x_n|} \le 1 - \frac{a}{n}, n \ge K$, then the series $\sum (x_n)$ is absolutely convergent.

2. If there's a real number $a \leq 1$ and $K \in \mathbb{N}$ such that $\frac{|x_{n+1}|}{|x_n|} \geq 1 - \frac{a}{n}, n \geq K$, then the series $\sum (x_n)$ is not absolutely convergent.

Corollary 232 If a > 1 and if the sequence $X = (x_n)$ satisfies Raabe's Test for convergent series, then the partial sums approximate the sum s of $\sum (x_k)$ according to the estimate $|s - s_n| \le \frac{n}{a-1} |x_{n+1}|, n \ge K$.

Corollary 233 Let $X = (x_n)$ be a sequence of non-zero elements of \mathbb{R}^P and set $a = \lim \left(n\left(a - \frac{|x_{n+1}|}{|x_n|}\right)\right)$, whenever this limit exists. Then $\sum (x_n)$ is absolutely convergent when a > 1 and is not absolutely convergent when a < 1.

Theorem 234 (Integral Test) Let f be a positive, non-increasing continuous function on $\{t: t \geq 1\}$. Then the series $\sum (f(n))$ converges if and only if the infinite integral $\int\limits_{1}^{\infty} f(t) \ dt = \lim\limits_{n} \left(\int\limits_{1}^{n} f(t) \ dt\right)$ exists. In the case of convergence, the partial sums $s_n = \sum\limits_{k=1}^{n} (f(k))$ and the sum s of $\sum\limits_{k=1}^{\infty} (f(k))$ satisfy the estimate:

$$\int_{n+1}^{\infty} f(t) dt \le s - s_n \le \int_{n}^{\infty} f(t) dt$$

Lemma 235 (Abel's Lemma) Let $X = (x_n)$ and $Y = (y_n)$ be sequences and let the partial sums of $\sum (y_n)$ be denoted by (s_k) . If $m \ge n$, then $\sum_{j=n}^m x_j y_j = (x_{m+1}s_n - x_n s_{n-1}) + \sum_{j=n}^m (x_j - x_{j+1}) s_j$.

Theorem 236 (Dirichlet's Test) Suppose that the partial sums of $\sum (y_n)$ are bounded.

- 1. If the sequence $X = (x_n)$ converges to zero, and if $\sum |x_n x_{n+1}|$ is convergent, then the series $\sum (x_n y_n)$ is convergent.
- 2. In particular, if $X = (x_n)$ is a decreasing sequence of positive real numbers which converge to 0, then the series $\sum (x_n y_n)$ is convergent.

Corollary 237 In part (b) of Dirichlet's Test, the error estimate $\left|\sum_{j=1}^{\infty} x_j y_j - \sum_{j=1}^{n} x_j y_j\right| \le 2|x_{n+1}|B|$, with B an upper bound for the partial sums of $\sum (y_j)$.

Theorem 238 (Abel's Test) Suppose that the series $\sum (y_n)$ is convergent in \mathbb{R}^p and that $X = (x_n)$ is a convergent monotone sequence in \mathbb{R} . Then the series $\sum (x_n y_n)$ is convergent.

Definition 239 (Alternating Series) A sequence $X = (x_n)$ of non-zero real numbers is alternating if the terms $(-1)^n x_n, n \in \mathbb{N}$ are all positive (or all negative) real numbers. If a sequence $X = (x_n)$ is alternating, we say that the series $\sum (x_n)$ it generates an alternating series.

Theorem 240 (Alternating Series Test) Let $Z = (z_n)$ be a non-increasing sequence of positive numbers with $\lim(z_n) = 0$. Then the alternating series $\sum((-1)^n z_n)$ is convergent. Moreover, if s is a sum of this series and s_n is the n^{th} partial sum, then we have the estimate $|s - s_n| \le z_{n+1}$ for rapidity of convergence.

7.3 Series of Functions

Definition 241 If (f_n) is a sequence of functions defined on $D \subseteq \mathbb{R}^p$ with values in \mathbb{R}^q , the sequence of partial sums (s_n) of the infinite series $\sum (f_n)$ is defined for $x \in D$ by: $s_1(x) = f_1(x), s_2(x) = s_1(x) + f_2(x), ..., s_{n+1}(x) = s_n(x) + f_{n+1}(x)$. In the case the sequence (s_n) converge on D to a function f, we say that the infinite series of functions $\sum (f_n)$ converges to f on D. We write $\sum (f_n) = \sum_{n=1}^{\infty} (f_n) = \sum_{n=1}^{\infty} f_n$ or denote either the series or the limits function, when it exists. When $\sum (|f_n(x)|)$ converges for each $x \in D$, then we say that $\sum (f_n)$ is absolutely convergent on D. If the sequence (s_n) is uniformly convergent on D to f, then we say that $\sum (f_n)$ is uniformly convergent on D, or that it converges to f uniformly on D.

Theorem 242 If f_n is continuous on $D \subseteq \mathbb{R}^p$ to \mathbb{R}^q for each $n \in \mathbb{N}$ and if $\sum (f_n)$ converges to f uniformly on D, then f is continuous on D.

Theorem 243 Suppose that the real-valued functions f_n are Riemann-Stieltjes integratable with respect to g on the interval J = [a,b] for each $n \in \mathbb{N}$. If the series $\sum (f_n)$ converges to f uniformly on D, then f is Riemann-Stieltjes integratable with respect to g and $\int_a^b f \, dg = \sum_{n=1}^\infty \int_a^b f_n \, dg$.

Theorem 244 If f_n are non-negative Riemann integratable functions on J = [a, b] and if their sum $f = \sum (f_n)$ is Riemann integratable, then $\int_a^b f = \sum_{n=1}^\infty \int_a^b f_n$.

Theorem 245 For each $n \in \mathbb{N}$, let f_n be a real-valued function on J = [a,b] which has a derivative f'_n on J. Suppose that the infinite series $\sum (f_n)$ converges for at least one point of J and that the series of derivatives $\sum (f'_n)$ converges uniformly on J. Then there exists a real-valued function f on J such that $\sum (f_n)$ converges uniformly on J to f. In addition, f has a derivative on J and $f' = \sum f'_n$.

Theorem 246 (Cauchy's Criterion) Let (f_n) be a sequence of functions on $D \subseteq \mathbb{R}^p$ to \mathbb{R}^q . The infinite series $\sum (f_n)$ is uniformly convergent on D if and only if for all $\epsilon > 0$ there exists a $M(\epsilon)$ such that if $m \ge n \ge M(\epsilon)$, then $||f_n + f_{n+1} + ... + f_m||_D < \epsilon$.

Theorem 247 (Weierstrass M-Test) Let (M_n) be a sequence of non-negative real numbers such that $||f_n|| \le M_n$, $n \in \mathbb{N}$. If the infinite series $\sum (M_n)$ is convergent, then $\sum (f_n)$ is uniformly convergent on D.

Theorem 248 (Dirichlet's Test) Let (f_n) be a sequence of functions on $D \subseteq \mathbb{R}^p$ to \mathbb{R}^q such that the partial sums $s_n = \sum_{j=1}^n f_j, n \in \mathbb{N}$, are all bounded in D-norm. Let (ϕ_n) be a decreasing sequence of functions on D to \mathbb{R} which converges uniformly on D to 0. Then the series $\sum (\phi_n f_n)$ converges uniformly on D.

Theorem 249 (Abel's Test) Let $\sum (f_n)$ be a series of functions on $D \subseteq \mathbb{R}^p$ to \mathbb{R}^q which is uniformly convergent on D. Let (ϕ_n) be a bounded and monotone sequence of real-valued functions on D. Then the series $\sum (\phi_n f_n)$ converges uniformly on D.

Definition 250 (Power Series) A series of real functions $\sum (f_n)$ is said to be a power series around x = c if the function f_n has the form $f_n(x) = a_n(x - c)^n$, with $a_n, c \in \mathbb{R}, n \in \mathbb{N} \cup \{0\}$.

Definition 251 (Radius/Interval of Convergence) Let $\sum (a_n x^n)$ (a power series around c = 0) be a power series. If the sequence $(|a_n|^{1/n})$ is bounded, we set $\rho = \limsup(|a_n|^{1/n})$; if this sequence is not bounded we set $\rho = +\infty$. We define the radius of convergence of $\sum (a_n x^n)$ to be given by $R = -\infty$.

$$0, \rho = +\infty$$

$$\frac{1}{\rho}, 0 < \rho < +\infty$$

$$-\infty$$

The interval of convergence is the open interval (-R, R).

Theorem 252 (Cauchy-Hadaman Theorem) If the radius of convergence R for the power series $\sum (a_n x^n)$, then the series is absolutely convergent if |x| < R and divergent if |x| > R.

Theorem 253 Let R be the radius of convergence of $\sum (a_n x^n)$ and let K be a compact subset of the interval of convergence (-R, R). Then the power series converges uniformly on K.

Theorem 254 The limit of a power series is continuous on the interval of convergence. A power series can be integrated term-by-term over any compact interval contained in the interval of convergence.

Theorem 255 (Differentiataion Theorem) A power series can be differentiated term-by-term within the interval of convergence. In fact, if $f(x) = \sum_{n=0}^{\infty} (a_n x^n)$, then $f'(x) = \sum_{n=1}^{\infty} (na_n x^{n-1})$. Both series have the same radius of convergence.

Theorem 256 (Uniqueness Theorem) If $\sum (a_n x^n)$ and $\sum (b_n x^n)$ converge on some interval (-r, +r), r > 0, to the same function f, then $a_n = b_n, n \in \mathbb{N}$.

Theorem 257 (Multiplication Theorem) If f, g are given on the interval (-r, r) by the power series $f(x) = \sum_{n=0}^{\infty} a_n x^n$ and $g(x) = \sum_{n=0}^{\infty} b_n x^n$, their product is given on this interval by the series $\sum (c_n x^n)$, where the coefficients (c_n) are $c_n = \sum_{k=0}^{\infty} a_k b_{n-k}$, $n \in \{0, 1, 2, ...\}$.

Theorem 258 (Bernstein's Theorem) Let f be defined and possess derivatives of all order on an interval [0,r] and suppose that f and all of its derivatives are non-negative on the interval [0,r]. If $0 \le x < r$, then $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$.

Theorem 259 (Abel's Theorem) Suppose that the power series $\sum_{n=0}^{\infty} (a_n x^n)$ converges to f(x) for |x| < 1 and that $\sum_{n=0}^{\infty} (a_n)$ converges to A. Then the power series converges uniformly in $\mathbb{I} = [0,1]$ and $\lim_{x \to 1^-} f(x) = A$.

Theorem 260 (Tauber's Theorem) Suppose that the power series $\sum (a_n x^n)$ converges to f(x) for |x| < 1 and that $\lim (na_n) = 0$. If $\lim f(x) = A$ as $x \to 1-$, then the series $\sum (a_n)$ converges to A.

8 Alternatives from "An Introduction to Analysis" by Wade

8.1 The Riemann Integral

Definition 261 Let [a, b] be a closed and bounded interval.

- 1. A partition of [a, b] is a set of points $P = \{x_0, x_1, ..., x_n\}$ such that $a < x_0 < x_1 < ... < x_n = b$.
- 2. The norm of a partition $P = \{x_0, x_1, ..., x_n\}$ is the number $||P|| = \max_{1 \le j \le n} |x_j x_{j-1}|$.

3. A refinement of a partition $P = \{x_0, x_1, ..., x_n\}$ is a partition Q of [a, b] which satisfies $Q \supseteq P$. In this case we say that Q is finer than P.

Definition 262 Let [a,b] be a closed bounded interval, $P = \{x_0, x_1, ..., x_n\}$ be a partition of [a,b], and $f : [a,b] \rightarrow \mathbb{R}$ be bounded.

- 1. The upper Riemann sum of f over P is the number $U(f,P) := \sum_{j=1}^{n} M_j(f)(x_j x_{j-1})$ where $M_j(f) := \sup_{x \in [x_{j-1},x_j]} f(x)$.
- 2. The lower Riemann sum of f over P is the number $L(f,P) := \sum_{j=1}^{n} m_j(f)(x_j x_{j-1})$ where $m_j(f) := \inf_{x \in [x_{j-1},x_j]} f(x)$.

Lemma 263 If $g: \mathbb{N} \to \mathbb{R}$, then $\sum_{k=m}^{n} (g(k+1) - g(k)) = g(n+1) - g(m)$ for all $n \ge m$ in \mathbb{N}

Remark* 1 If $f(x) = \alpha$ is constant on [a,b], then $U(f,P) = L(f,P) = \alpha(b-a)$ for all partitions P on [a,b].

Remark* 2 $L(f, P) \leq U(f, P)$ for all partitions P and all bounded functions f.

Remark* 3 If $P = \{x_0, x_1, ..., x_n\}$ is a partition of [a, b] and $Q = \{c\} \cup P$ for some $c \in (a, b)$, then $L(f, P) \leq L(f, Q) \leq U(f, P)$.

Lemma 264 1. If P is any partition of [a,b] and Q is a refinement of P, then $L(f,P) \leq L(f,Q) \leq U(f,Q) \leq U(f,P)$.

2. If P,Q are any partitions of [a,b] then $L(f,P) \leq U(f,Q)$.

Theorem 265 If f is continuous on a closed bounded interval [a, b], then f is integratable on [a, b].

Definition 266 Let [a,b] be a closed and bounded nondegenerate interval and $f:[a,b]\to\mathbb{R}$ be bounded.

- 1. The upper integral of f on [a,b] is the number $(U)\int\limits_a^b f(x)\ dx:=\inf\{U(f,P):P\ is\ a\ partition\ of\ [a,b]\}$.
- 2. The lower integral of f on [a,b] is the number $(L)\int\limits_a^b f(x)\ dx:=\sup\{L(f,P):P\ is\ a\ partition\ of\ [a,b]\}.$

Remark* 4 If $f:[a,b] \to \mathbb{R}$ is bounded, then its upper and lower integrals exist and are finite, and satisfy $(L)\int\limits_a^b f(x)\ dx \le (U)\int\limits_a^b f(x)\ dx.$

Theorem 267 Let [a,b] be a closed bounded nondegenerate interval and $f:[a,b] \to \mathbb{R}$ be bounded. Then f is integratable on [a,b] if and only if

$$(L) \int_{a}^{b} f(x) dx = (U) \int_{a}^{b} f(x) dx,$$

in which case we define the integral of f on [a,b] to be the number

$$\int_{a}^{b} f(x) \ dx := (U) \int_{a}^{b} f(x) \ dx = (L) \int_{a}^{b} f(x) \ dx.$$

Theorem 268 If $f(x) = \alpha$ on [a,b], then $\int_a^b f(x) dx = \alpha(b-a)$.

Definition 269 Let $P = \{x_0, x_1, ..., x_n\}$ be a partition of [a, b] and $f : [a, b] \to \mathbb{R}$

- 1. A Riemann sum of f with respect to P is a sum of the form $\sum_{j=1}^{n} f(t_j)(x_j x_{j-1})$, where the choice of $t_j \in [x_{j-1}, x_j]$ is arbitrary.
- 2. The Riemann sum of f is said to converge to I(f) as $||P|| \to 0$ if given for all $\epsilon > 0$ there's a partition P_{ϵ} of [a,b] such that $P \supseteq P_{\epsilon}$ implies $\left|\sum_{j=1}^{n} f(t_{j})(x_{j}-x_{j-1}) I(f)\right| < \epsilon$ for all choices of $t_{j} \in [x_{j-1},x_{j}]$, j=1,...,n. In this case we shall use the notation $I(f)=\lim_{\|P\|\to 0}\sum_{j=1}^{n} f(t_{j})(x_{j}-x_{j-1})$.

Theorem 270 Let [a,b] be a closed bounded nondegenerate interval and $f:[a,b] \to \mathbb{R}$ be bounded. Then f is Riemann integratable on [a,b] if and only if $I(f) = \lim_{|P| \to 0} \sum f(t_j)(x_j - x_{j-1})$ exists, in which case $I(f) = \int_a^b f(x) \ dx$.

Theorem 271 If $f:[a,b] \to \mathbb{R}$ is bounded and has at most a countable number of discontinuities, then f is Reimann integratable.