Problem §1

(a) Prove that if α is a cut, then

$$-\alpha := \{c - b \mid c \in \mathbb{Q}, c < 0, b \in \mathbb{Q} \setminus \alpha\}$$

is a cut.

(b) Prove that for all cuts α , $\alpha \geq 0^*$ if and only if $-\alpha \leq 0^*$.

Solution:

(a) Clearly, $-\alpha \neq \emptyset$. Choose any $c \in \mathbb{Q}$, c < 0; since α is a cut, there exists a $b \in \mathbb{Q} \setminus \alpha$, and so $c - b \in \alpha \neq \emptyset$. Additionally, $-\alpha \neq \mathbb{Q}$, as one can choose any $a \in \alpha$; $c - \alpha \notin -\alpha$. Thus property (i) holds.

Observe that $c \in 0^*$. Suppose $r \in -\alpha$; then $r = c_1 - b_1$ for some $c_1 \in 0^*$, $b_1 \in \mathbb{Q} \setminus \alpha$. For any $s \in \mathbb{Q}$, if s < r, then either

- $s = c_2 b_1$, $c_2 < c_1$. By property (ii) for 0^* , for any $c \in 0^*$, if $c' \in \mathbb{Q}$ and c' < c, then $c' \in 0^*$. Hence $s = c_2 b_1 \in -\alpha$, as required.
- $s = c_1 b_2$, $b_2 > b_1$. By property (ii), if $b_1 \in \mathbb{Q} \setminus \alpha$, and $b_2 > b_1$, then $b_2 \in \mathbb{Q} \setminus \alpha$ as well. Hence $s = c_1 b_2 \in -\alpha$, as required.

Thus property (ii) holds.

For any $r \in -\alpha$, where $r = c_1 - b_1$, since $c_1 \in 0^*$, we can choose $c_2 \in 0^*$ such that $c_2 > c_1$ (by property (iii) of 0^*), and so there exists an $s \in -\alpha$, where $s = c_2 - b_1 > c_1 - b_1 = r$. Thus property (iii) holds. Therefore all three properties hold, and so $-\alpha$ is a cut.

(b) Suppose $a \ge 0^*$. Then $0^* \subset \alpha$. Let $r \in -\alpha$. Then r = c - b for some $c \in 0^*$, $b \in \mathbb{Q} \setminus \alpha$. Since $b \in \mathbb{Q} \setminus \alpha$, and $0 \in \alpha$, we have 0 < b by property (ii) (and so -b < 0); moreover, c < 0 for any $c \in 0^*$. Thus, we have

$$r = c - b < 0 - b = -b < 0$$
,

and so r < 0; hence $r \in -\alpha$ implies that $r \in 0^*$, and so $-\alpha \subset 0^*$. Therefore $-\alpha \leq 0^*$.

Now, suppose that $-\alpha \leq 0^*$. Then $-\alpha \subset 0^*$; that is, for any $r \in -\alpha$, where r = c - b for some $c \in 0^*$, $b \in \mathbb{Q} \setminus \alpha$, we have r = c - b < 0.

Since $b \in \mathbb{Q} \setminus \alpha$, any b satisfies a < b for any $a \in \alpha$. Moreover, r = c - b < 0 implies that c < b for all $c \in 0^*$. In other words, $b \ge 0$; and by the denseness of Q^* , there exists an $a \in \mathbb{Q}$ such that $a \le b$ and $0 \le a$. Since a < b, we have $a \in \alpha$; hence $0^* \subset \alpha$, and so $0^* \le \alpha$.

Problem §2 Let α be a cut, $\alpha > 0^*$. Prove that

$$\alpha^{-1} := \{ r \in \mathbb{Q} \mid r < 0 \} \cup \{ r \in \mathbb{Q} \mid 0 \le r < t \text{ for some } t \in \mathbb{Q} \text{ such that } \frac{1}{t} \notin \alpha \}$$

is a cut and $\alpha^{-1} > 0^*$.

Solution: Clearly, $\alpha^{-1} \neq \emptyset$ (since $-1 \in \alpha^{-1}$) and $\alpha^{-1} \neq \mathbb{Q}$ (choose any s > t; $s \notin \alpha^{-1}$). Thus property (i) holds.

Suppose $r \in \alpha^{-1}$, and let $s \in \mathbb{Q}$ such that s < r. If s < 0, clearly $s \in \alpha^{-1}$, so choose $s \ge 0$. Since $0^* < \alpha$, there exists an $a \in \alpha$ that satisfies a > 0; and by properties of ordered fields, we know $a^{-1} = \frac{1}{a} > 0$. Hence if $\frac{1}{t} \not\in \alpha$, then $\frac{1}{t} > a > 0$ and so t > 0. From this, we get $0 \le s < r < t$, and so $s \in \alpha^{-1}$. Thus property (ii) holds.

Homework 4 MATH1010

Suppose $r \in alpha^{-1}$, and choose $s = \frac{r+t}{2}$. Since $s = \frac{r+t}{2} < \frac{t+t}{2} = t$, s < t; additionally, $s = \frac{r+t}{2} > \frac{r+r}{2} = r$, so r < s. From this, we get that $0 \le r < s < t$, and so $s \in \alpha^{-1}$. Hence for any $r \in \alpha^{-1}$, there exists an $s \in \alpha^{-1}$ such that r < s.

Since $\alpha > 0$, any $a \in \alpha$ satisfies $\alpha > 0$; thus any $t \notin \alpha$ satisfies $t > \alpha > 0$. Choose any $0 \le s < t$; clearly $s \notin 0^*$, so we have $0^* \ne alpha^{-1}$. Since we also have $0^* \le \alpha^{-1}$ (one can easily see $0^* = \{r \in \mathbb{Q} \mid r < 0\} \subset \alpha^{-1}$), we necessarily have $0^* < \alpha^{-1}$.

Problem §3 (8.2.a,e) Determine the limits of the following sequences, and then prove your claims:

a.
$$a_n = \frac{n}{n^2 + 1}$$

e.
$$s_n = \frac{1}{n} \sin n$$

(8.7.a) Show that $\cos\left(\frac{n\pi}{3}\right)$ does not converge.

Solution: (8.2)

a. Intuitively, the denominator increases faster than the numerator, so we hypothesize that $\lim a_n = 0$. For $n \ge 1$, we can drop the absolute value. Since $\frac{n}{n^2+1} < \frac{n}{n^2} = \frac{1}{n} < \varepsilon$, we have $n > \frac{1}{\varepsilon}$.

Proof. Let $\varepsilon > 0$ and set $N = \frac{1}{\varepsilon}$. Then for any n > N, we have $n > \frac{1}{\varepsilon}$, hence $\varepsilon > \frac{1}{n} = \frac{n}{n^2} > \frac{n}{n^2+1}$, and so $\left|\frac{n}{n^2+1} - 0\right| < \varepsilon$, as desired. \square

e. We propose $\lim s_n = 0$. We know that for any n, $|\sin n| \le 1$, so $\left|\frac{1}{n}\sin n\right| \le \left|\frac{1}{n}\right| < \varepsilon$. Dropping the absolute value for positive n, we get $n > \frac{1}{\varepsilon}$.

Proof. Let $\varepsilon > 0$, $N = \frac{1}{\varepsilon}$. Then n > N implies $n > \frac{1}{\varepsilon}$, hence $\varepsilon > \frac{1}{n} = \left| \frac{1}{n} \right| \ge \left| \frac{1}{n} \sin n - 0 \right|$, as desired.

(8.7) Assume that $\lim \cos \left(\frac{n\pi}{3}\right) = a$ for some a. Setting $\varepsilon = 1$,

$$\left|\cos\frac{n\pi}{3} - a\right| < 1.$$

Considering multiples of 3, we see both

$$\left|\cos\frac{3\pi}{3} - a\right| = |-1 - a| < 1$$

, and

$$\left|\cos\frac{6\pi}{3} - a\right| = |1 - a| < 1.$$

By the Triangle Inequality, we have

$$2 = |1 - (-1)| = |(1 - a + a - (-1))| < |1 - a| + |a - (-1)| < 1 + 1 = 2,$$

a contradiction. Hence $\lim \cos \left(\frac{n\pi}{3}\right)$ does not converge.

Problem §4 (8.4) Let (t_n) be a bounded sequence (i.e. there exists M such that for all $n, t_n \leq M$), and let (s_n) be a sequence such that $\lim s_n = 0$. Prove that $\lim s_n t_n = 0$.

Solution: Let $\varepsilon > 0$. Since $\lim s_n = 0$, there exists an N such that n > N implies $|s_n| < \varepsilon_1$ for any $\varepsilon_1 > 0$. Moreover, since $|t_n| \le M$, n > N implies

$$|s_n t_n| < |\varepsilon_1 t_n| \le |\varepsilon_1 M| = \varepsilon_1 |M|$$
 [since $\varepsilon_1 > 0$] (1)

By the Archimedean property, since both $\varepsilon_1 |M|$ and ε are positive, there exists a k such that $k\varepsilon > \varepsilon_1 |M|$. Since Equation (1) holds for any $\varepsilon_1 > 0$, set $\varepsilon_1 = \frac{k}{|M|} \left(\frac{\varepsilon}{1+\varepsilon} \right)$. Then

$$\begin{split} k\varepsilon &> \varepsilon_1 \, |M| = \frac{k \, |M|}{|M|} \left(\frac{\varepsilon}{1+\varepsilon} \right) \\ k\varepsilon &> k \left(\frac{\varepsilon}{1+\varepsilon} \right) \\ \varepsilon &> \frac{\varepsilon}{1+\varepsilon}, \end{split}$$

which is true for any $\varepsilon > 0$. Hence

$$|s_n t_n - 0| < \varepsilon,$$

as required.

Problem §5 (8.6) Let (s_n) be a sequence in \mathbb{R} .

- (a) Prove $lims_n = 0$ if and only if $lim|s_n| = 0$.
- (b) Observe that if $s_n = (-1)^n$, then $\lim |s_n|$ exists, but $\lim s_n$ does not exist.

Solution:

- (a) Suppose $\lim_{n \to \infty} s_n = 0$. Then $|s_n 0| = |s_n| < \varepsilon$; thus $||s_n| 0| = |s_n| < \varepsilon$ as well. Conversely, suppose $\lim_{n \to \infty} |s_n| = 0$. Then $||s_n| - 0| < \varepsilon$; but $||s_n|| = |s_n|$ (repeatedly applying absolute values has the same effect as applying only once); hence $|s_n| = |s_n - 0| < \varepsilon$, so $\lim_{n \to \infty} s_n = 0$.
- (b) Observe that $|s_n| = |(-1)^n| = 1$. Clearly, $|1 1| = 0 < \varepsilon$ for any $\varepsilon > 0$, so $\lim |s_n|$ exists, and equals 1. From Example 4, however, one can clearly see that $\lim s_n$ does not exist.

Problem §6 (8.10) Let (s_n) be a convergent sequence, and suppose $\lim s_n > a$. Prove there exists a number N such that n > N implies $s_n > a$.

Solution: Since $\lim s_n$ exists, let $s = \lim s_n$. Then for some n > N, we have

$$|s_n - s| < \varepsilon$$

for all $\varepsilon > 0$. Moreover, since s > a, there exists some $\delta > 0$ such that $s - \delta > a$. Choose an N' such that n > N' implies

$$|s_n - s| < \varepsilon$$

$$s_n - s < \varepsilon \implies s_n < s + \varepsilon$$

$$s_n - s > -\varepsilon \implies s_n > s - \varepsilon.$$

Thus for any $\varepsilon > 0$, we have $s - \varepsilon < s_n < s + \varepsilon$. Set $\varepsilon = \delta$. Then we have $s_n > s - \varepsilon > s - \delta > a$, and so $s_n > a$, as required.

Problem §7 (9.1) Use limit Theorems 9.2-9.7 to prove:

- (a) $\lim \frac{n+1}{n} = 1$
- (b) $\lim \frac{3n+7}{6n-5} = \frac{1}{2}$
- (c) $\lim \frac{17n^5 + 73n^4 18n^2 + 3}{23n^5 + 13n^3} = \frac{17}{23}$

Solution:

- (a) Multiplying by $\frac{1}{n}$, we get $\frac{1+\frac{1}{n}}{1}$. Trivially, $\lim_{n \to \infty} 1 = 1$. By Theorem 9.7(a), we get $\lim_{n \to \infty} \frac{1}{n} = 0$; by Theorem 9.3 we get $\lim_{n \to \infty} 1 + \lim_{n \to \infty} \frac{1}{n} = 1 + 0 = 1$; and by Theorem 9.6, we have $\lim_{n \to \infty} \frac{n+1}{n} = \frac{1}{1} = 1$, as desired.
- (b) Multiplying by $\frac{\frac{1}{n}}{\frac{1}{n}}$, we get $\frac{3+\frac{7}{n}}{6-\frac{5}{n}}$. Trivially, $\lim 3 = 3$, $\lim 6 = 6$, and by Theorems 9.2 and 9.7(a), we get $\lim \frac{7}{n} = \lim \frac{5}{n} = 0$. By Theorem 9.3 we get $\lim 3 + \frac{7}{n} = 3$, $\lim 6 \frac{5}{n} = 6$, and so by Theorem 9.6 we get $\lim \frac{3n+7}{6n-5} = \frac{3}{6} = \frac{1}{2}$.
- (c) Multiplying by $\frac{1}{n^5}$, we get $\frac{17 + \frac{73}{n^3} \frac{18}{n^5}}{23 + \frac{3}{n^5}}$. By Theorems 9.2 and 9.7(a), we get any $\frac{a}{n^p} = 0$, for all $a \in \mathbb{Z}$ and p > 0 (e.g. all the ones with some form of $\frac{1}{n^p}$). Trivially, $\lim \alpha = \alpha$ for $\alpha \in \mathbb{Z}$, so we get $\lim \frac{17n^5 + 73n^4 18n^2 + 3}{23n^5 + 13n^3} = \frac{17 + 0 0 + 0}{23 + 0} = \frac{17}{23}$.

Problem §8 (9.6) Let $x_1 = 1$, $x_{n+1} = 3x_n^2$.

- (a) Show that if $a = \lim x_n$, then $a = \frac{1}{3}$ or a = 0.
- (b) Does $\lim x_n$ exist? Explain.
- (c) Discuss the apparent contradiction between (a) and (b).

Solution:

- (a) Suppose that for all n > N, we have $\lim x_n = a$. If $a \neq 0$, then $\lim x_{n+1} = a = \lim 3x^2 = 3a^2$, and so $\frac{a^2}{a} = a = \frac{1}{3}$. However, if a = 0, then the above equality also holds (indeed, if a = 0, we cannot do $\frac{a^2}{a}$): $0 = 3 \cdot 0^2 = 0$. Hence $a = \frac{1}{3}$ or 0.
- (b) The limit does not actually exist; Since $x_1 = 1 \ge 1$, then $x_n^2 \ge 1$ for any $n \ge 1$, and so $3x_n^2$ will always increase (and thus never converse to a value).
- (c) Part (a) relies on the assumption that $\lim x_n$ exists in the first place; it assumes $\lim x_n = a$ for some a, and then proceeds with finding the value of a. If the limit did not exist in the first place, then such calculations would be meaningless; any result could be returned. That is also why we see that $\lim x_n$ approaches 2 values, a clear contradiction of what a limit is.