Modeling the Motion of a Ball with Spring and Damper

Paulina Fuentes Juárez

June 20, 2025

In the document, it will be present the mathematical development that was used for the work of analyzing the mathematical models.

Definitions and Initial Equations

Equation of motion of the ball:

$$m_b \ddot{y}_b + c_b (\dot{y}_b - \dot{y}_i) + k_b (y_b - y_i) = 0 \tag{1}$$

Where:

- $m_b = \text{mass of the ball}$
- y_b = vertical position of the ball
- y_j = vertical position of the string
- \dot{y}_b = velocity of the ball
- \dot{y}_j = velocity of the string
- \ddot{y}_b = acceleration of the ball
- $c_b = \text{damping constant}$
- $k_b = \text{spring constant}$

Fundamental Laws

Newton's Second Law:

$$F = ma (2)$$

Hooke's Law:

$$F_{\text{spring}} = -k\Delta x \tag{3}$$

Where Δx is replaced with:

$$\Delta y = y_b - y_i$$

Therefore:

$$F_{\text{spring}} = -k_b(y_b - y_j) \tag{3'}$$

Newton's Law of Viscosity

$$\tau = \mu \frac{du}{dy} \tag{5}$$

Shear Stress Definition

$$\tau = \frac{F}{A} \tag{6}$$

Equating equations (5) and (6):

$$\frac{F}{A} = \mu \frac{du}{dy} \Rightarrow F = \mu A \frac{du}{dy}$$

Approximation

Assume:

$$\frac{du}{dy} \approx \frac{\dot{y}_b - \dot{y}_j}{L} \tag{7}$$

Substitute into the previous equation:

$$F = \mu A \left(\frac{\dot{y}_b - \dot{y}_j}{L} \right)$$

Define the constant:

$$c = \frac{\mu A}{L}$$

And substitute:

$$F = c(\dot{y}_b - \dot{y}_j) \tag{1}$$

Linear Viscous Damper

Damping force:

$$F_{\rm damp} = -c_b(\dot{y}_b - \dot{y}_j)$$

Total Forces

$$F_T = F_{\text{spring}} + F_{\text{damp}} \tag{4}$$

$$F_T = -k_b(y_b - y_j) - c_b(\dot{y}_b - \dot{y}_j)$$

Using equation (2):

$$m_b \ddot{y}_b = -k_b (y_b - y_j) - c_b (\dot{y}_b - \dot{y}_j)$$

Bringing everything to one side:

$$m_b \ddot{y}_b + c_b (\dot{y}_b - \dot{y}_j) + k_b (y_b - y_j) = 0$$
 (1, rewritten)