Ch 20 Neural Networks: sample complexity

Friday, March 27, 2020 3:05 PM

i.e. I Estimation / generalization error

In direct competition w, approximation error, now we want of to be small (low-complexity) we'll analyze by boundary VC dimension.

We learn |E| parameters (weights), so via discretization trick, we can think of $\mathcal{H}_{V,E,\sigma}$ as having finite size |E|-constant, so expect $VCdim(\mathcal{H}_{V,E,\sigma})\approx O(|E|)$ That large, like b $\downarrow \downarrow$

Casel: T=Sign

Thm 20.6 Vodin (HV, E, sign) = O(IEI · log(IEI))

Proof Recall growth for Ty(m) = max |Hc| = 2m

C=X

Ic|=m i.e. # dichotomies.

Can extend to any finite Y, not just Y= \(\frac{1}{2} \) if want to

Exercise 20.4: Showed that if $H = \{f \circ g, f \in \mathcal{H}_1, g \in \mathcal{H}_2\}$ then $T_{\mathcal{H}}(m) \stackrel{!}{=} T_{\mathcal{H}_1}(m) \cdot T_{\mathcal{H}_2}(m)$

Using the ANN's layered structure, $H = H^{(T)} \circ ... \circ H^{(2)} \circ H^{(1)}$ and each layer maps $\mathbb{R}^{|V_{k-1}|} \to \{\pm i\}^{|V_k|}$ since sign(...)

Also, each layer $\mathcal{H}^{(t)}$ is a direct product of its individual neurons (all independent) $\mathcal{H}^{(t)} = \mathcal{H}^{(t,1)} \times \mathcal{H}^{(t,2)} \times ... \times \mathcal{H}^{(t,|V_t|)}$

and using exercise 20.3

C= holfspace classifier, So VCdim (H(t,i)) = dimension of import

So, combining everything, $T_{H}(m) \leq \prod_{i \in [V_{k}]} T_{i} \left(e \cdot m\right)^{d_{i}} = \left(e \cdot m\right)^{d_{i}} = \left(e \cdot m\right)^{d_{i}} = \left(e \cdot m\right)^{d_{i}}$

Now "reverse Samer's lemma" using Lemma A.2:

If
$$Vcdim(H) = m \Rightarrow T_{H}(m) > 2^{m}$$
, i.e., $2^{m} \neq (em)$

i.e. $m \neq |E| \cdot \log_{2} |em|$

So Lemma A.2 $\Rightarrow m \neq H \cdot |E| \cdot \log_{2} |e| + const. \Rightarrow Vcodim(H_{N,E|Sijh}) \neq O(|E| \cdot \log_{2} |e|)$

Case 2: $T = Signoid$

Exercise 20.5 : $Vcdim(H_{N,E|T}) = D(|E|^{2})$

Ti.e. at least. BAb!

and (not prova) $Vcdim(H_{N,E,T}) \neq O(|E|^{2} \cdot |V|^{2})$ also bad

though it provide $Vcdim(H_{N,E,T}) \neq O(|E|^{2} \cdot |V|^{2})$ also bad

wis discretization trick w, by bits

Nick Harvey, Chris Liaw, and Abbas Mehrabian. Nearly-tight VC-dimension bounds for piece-wise linear neural networks. COLT 2017

Let
$$dV_{i,E,\sigma}$$
 have $|E|$ edges (weights), T layers

Then (lower bound) $VCdin(H_{V,E,\sigma}) \ni \Omega(|E| \cdot T \cdot \log(\frac{|E|}{T}))$

Then (upper bound) $VCdin(H_{V,E,\sigma}) \doteq O(|E| \cdot T \cdot \log(|E|))$

Since T is mid (even for a "deep network", $T = O(10)$),

this is saying $VCdin \approx |E| \cdot \log(|E|)$, same result we derived for $\sigma = sign$ case