AEEM 3042 – Integrated Aircraft Engineering

Aircraft Performance Equations of Motion Thrust Required

Finite Wing

Wing Planform Characteristics

Wing Area (S) Leading Edge Sweep (Δ_{LE})

Wing Span (b) Trailing Edge Sweep (Δ_{TE})

Average Chord (c) Aspect Ratio (AR)

Root Chord (c_r) Taper Ratio (λ)

Tip Chord (c_t) Quarter-Chord Angle (Λ)

$$S = b c$$

$$AR = \frac{b^2}{S} = \frac{b}{C}$$

$$\lambda = \frac{c_t}{c_r}$$

Aircraft Aerodynamics

Finite Wing Drag

$$C_{D_0} \sim f(M, h)$$

$$C_{D_L} \sim f(C_L, M, c.g.)$$

Aircraft Drag Polar

Aircraft Thrust

Piston engine / propeller

$$T_{A} = SHP_{SL} \left(\frac{\eta_{P}}{V}\right) \left(\frac{\rho}{\rho_{SL}}\right)$$

Turboprop

$$T_{A} = ESHP_{SL} \left(\frac{\eta_{P}}{V}\right) \left(\frac{\rho}{\rho_{SL}}\right)$$

High-bypass turbofan

$$T_{A} = T_{SL} \left(\frac{0.1}{M} \right) \left(\frac{\rho}{\rho_{SL}} \right)$$

Low-bypass turbofan & Turbojet

$$T_{A} = T_{SL} \left(\frac{\rho}{\rho_{SL}} \right)$$

Afterburner

$$T_{A} = T_{SL} \left(\frac{\rho}{\rho_{SL}} \right) (1 + 0.7 \text{ M})$$

Aircraft Fuel Flow

Piston engine / propeller

FFR = SHP c

 $c\left(\frac{lb}{HPhr}\right)$

Turboprop

FFR = ESHP c

High-bypass turbofan

 $\begin{aligned} \text{FFR} &= \text{T } c_{t_{SL}} \left(\frac{a}{a_{SL}} \right) \\ \text{FFR} &= \text{T } c_{t_{SL}} \left(\frac{a}{a_{SL}} \right) \end{aligned} c_{t} \left(\frac{\text{lb}}{\text{lb}_{t} \text{ hr}} \right) \end{aligned}$

Low-bypass turbofan & Turbojet

 $FFR = T c_{t_{SL}} \left(\frac{a}{a_{SL}} \right)$ **Afterburner**

Aircraft Weights

Basic Mission Takeoff Gross Weight = OW + Mission Payload + Mission Fuel

Maximum Fuel – full capacity
Mission Fuel – specific mission capability

Maximum Payload – full capacity loadout Mission Payload – specific mission loadout

Maximum Takeoff Gross Weight = OW + Maximum Payload + Maximum Fuel

- or -

Maximum Takeoff Gross Weight could be set by other factors (landing gear limit, c.g. limits, etc)

Simple Free Body Diagram

Straight and Level Flight

Stability Axis System

Straight and Level Flight

Stability Axis System

AEEM 3042 – Integrated Aircraft Engineering

Aircraft Performance Equations of Motion for Steady Flight

Stability Axis System

Straight and Level Flight

Straight and Level Flight

$$\Sigma \; F_x = T \cos \alpha - D = \frac{d(mV)}{dt} = \; \dot{m} \; V + m \; \dot{V} \label{eq:delta_fit}$$

$$\Sigma F_z = L + T \sin \alpha - W = 0$$

Straight and Level = Constant Altitude = Not Climbing or Descending

$$\Sigma F_{x} = T \cos \alpha - D = \frac{d(mV)}{dt} = \dot{m} V + m\dot{V}$$

$$\Sigma F_z = L + T \sin \alpha - W = 0$$

Steady = Constant Speed = Not Accelerating or Decelerating

$$\Sigma F_{x} = T \cos \alpha - D = \frac{d(mV)}{dt} = \dot{m}V + \dot{m}\dot{V}$$

$$\Sigma F_z = L + T \sin \alpha - W = 0$$

Steady = Constant Weight = "Point" Calculations

Small Angle Approximation Assumption for Angle of Attack (α)

$$T = D$$

$$L = W$$

An aircraft is flying at a given flight condition (velocity and altitude at the aircraft weight)

We already know that Lift is determined by Weight

How much Thrust is required to keep the aircraft at that flight condition?

$$T = D$$

$$L = W$$

The amount of Thrust Required is dependent on:

- Velocity
- Altitude
- Weight
- Aerodynamics (Aspect Ratio, Wing Sweep, etc)

$$\begin{split} &C_D = C_{D_0} + K \, C_L \\ &\text{Gulfstream IV} \\ &\text{twin-turbofan biz jet:} \\ &C_{D_0} = 0.0150 \quad K = 0.08 \\ &W = 73,000 \text{ lb} \\ &h = 30,000 \text{ ft} \\ \end{split}$$

lb	73,000	Wt	0.0150	CD0
ft	30,000	Alt	0.08	K
	439.9	QMS		
ft/sec	994.67	а		
sq ft	950	S		
	D (lb)	CD	CL	Vel (fps)
	11785	0.3100	1.9203	300
	9015	0.1742	1.4108	350
	7322	0.1083	1.0801	400
	6267	0.0733	0.8535	450
	5621	0.0532	0.6913	500
	5253	0.0411	0.5713	550
	5085	0.0334	0.4801	600
	5066	0.0284	0.4091	650
	5164	0.0250	0.3527	700
	5358	0.0226	0.3072	750
	5632	0.0208	0.2700	800
	5975	0.0196	0.2392	850
	6378	0.0186	0.2134	900
	6837	0.0179	0.1915	950
	7345	0.0174	0.1728	1000
	7901	0.0170	0.1568	1050
	8501	0.0166	0.1428	1100
	9142	0.0164	0.1307	1150
	9825	0.0162	0.1200	1200
UNIVERS	10546	0.0160	0.1106	1250
Ci	11305	0.0158	0.1023	1300

Minimum Drag occurs where the Drag due to Lift and Zero Lift Drag curves intersect

$$C_{D_0} = K C_L^2$$

Minimum Drag also occurs where L/D is maximum

L/D is one of the most important parameters affecting aircraft performance

Maximum L / D occurs where the Drag due to Lift and Zero Lift Drag curves intersect

$$C_{D_0} = K C_L^2$$

$$\left(\frac{L}{D}\right)_{max} = \left(\frac{C_L}{C_D}\right)_{max} = \sqrt{\frac{1}{4 \; C_{D_0} \; K}}$$

$$V_{L/D_{max}} = \left(\frac{2}{\rho} \sqrt{\frac{K}{C_{D_0}}} \frac{W}{S}\right)^{1/2}$$

12000

$$\left(\frac{L}{D}\right)_{max} = \left(\frac{C_L}{C_D}\right)_{max} = \sqrt{\frac{1}{4 C_{D_0} K}}$$

$$\left(\frac{D}{W}\right)_{min} = \left(\frac{T_{req}}{W}\right)_{min} = \sqrt{4 \ C_{D_0} K}$$

$$V_{L/D_{max}} = \left(\frac{2}{\rho} \sqrt{\frac{\kappa}{c_{D_0}}} \frac{w}{s}\right)^{1/2}$$

Gulfstream IV twin-turbofan biz jet: $C_{D_0} = 0.0150 \text{ K} = 0.08$ W = 73,000 lbh = 30,000 ft

$$\left(\frac{L}{D}\right)_{max} = \left(\frac{C_L}{C_D}\right)_{max} = \sqrt{\frac{1}{4 C_{D_0} K}} = 14.4$$

$$V_{L/D_{max}} = \left(\frac{2}{\rho} \sqrt{\frac{K}{C_{D_0}}} \frac{W}{S}\right)^{1/2} = 632 \text{ ft/sec}$$

Gulfstream IV twin-turbofan biz jet: $C_{D_0} = 0.0150 \text{ K} = 0.08$ W = 73,000 lbh = 30,000 ft

$$\left(\frac{D}{W}\right)_{min} = \left(\frac{T_{req}}{W}\right)_{min} = \sqrt{4 \ C_{D_0} K}$$

$$D_{min} = (T_{req})_{min} = W \sqrt{4 C_{D_0} K}$$
 = 5,058 lb

Steady Flight Summary

$$V_{L/D_{max}} = \left(\frac{2}{\rho} \sqrt{\frac{K}{C_{D_0}}} \frac{W}{S}\right)^{1/2}$$

$$\left(\frac{L}{D}\right)_{max} = \left(\frac{C_L}{C_D}\right)_{max} = \sqrt{\frac{1}{4 C_{D_0} K}}$$

$$\left(\frac{\mathbf{D}}{\mathbf{W}}\right)_{\min} = \left(\frac{\mathbf{T}_{req}}{\mathbf{W}}\right)_{\min} = \sqrt{4 \, C_{D_0} K}$$

$$T = D$$

$$L = W$$

Minimum Drag & Max L / D occur where the Drag due to Lift and Zero Lift Drag curves intersect

$$C_{D_0} = K C_L$$

Altitude Effects

$$\begin{split} V_{L/D_{max}} &= \left(\frac{2}{\rho} \sqrt{\frac{K}{C_{D_0}}} \frac{W}{S}\right)^{1/2} \\ \left(\frac{L}{D}\right)_{max} &= \left(\frac{C_L}{C_D}\right)_{max} = \sqrt{\frac{1}{4 C_{D_0} K}} \\ \left(\frac{D}{W}\right)_{min} &= \left(\frac{T_{req}}{W}\right)_{min} = \sqrt{4 C_{D_0} K} \end{split}$$

Hint: if a velocity equation is a function of $\sqrt{\rho}$ then it is probably correlated to dynamic pressure and a direct function of KEAS

Altitude Effects

$$T = D$$

$$L = W$$

$$\left(\frac{\mathbf{D}}{\mathbf{W}}\right)_{\min} = \left(\frac{\mathbf{T}_{\text{req}}}{\mathbf{W}}\right)_{\min} = \sqrt{4 \, \mathbf{C}_{\mathbf{D}_0} \mathbf{K}}$$

$$C_{D} = C_{D_{0}} + K C_{L}^{2}$$

$$V_{L/D_{max}} = \left(\frac{2}{\rho} \sqrt{\frac{K}{C_{D_0}}} \frac{W}{S}\right)^{1/2}$$

$$\left(\left(\frac{L}{D}\right)_{max}\right) = \left(\frac{C_L}{C_D}\right)_{max} = \sqrt{\frac{1}{4 C_{D_0} K}}$$

Fundamental Parameters

 $\frac{T}{W}$ ~ Thrust to Weight Ratio

 $\frac{W}{S}$ ~ Wing Loading (lb/ft²)

 $\frac{L}{D}$ ~ Lift to Drag Ratio

$$C_D = C_{D_0} + K C_L^2$$
 ~ Drag Polar

Questions?

