Fast Food Marketing Campaign A\B Test

Goal

Business Context:

A fast-food chain wants to launch a new menu item but is unsure which of three marketing campaigns will drive the most sales. To find out, the company tested each campaign in randomly selected markets.

Test Objective:

Evaluate the performance of each promotion using sales data, and decide which campaign is most effective at increasing revenue.

For analysis of A/B test results we will use a **confidence level of 99%**.

Target Metric

The primary target metric is average sales revenue per store.

Why this metric?

Because it directly reflects how effective each campaign is in driving revenue.

Calculations

The table contains the numbers necessary to analyze the A/B test and reach a decision. You can find the query in the appendix.

marketing campaign #	total stores	avg sales (\$K)	stddev
1	43	232.396	64.113
2	47	189.318	57.988
3	47	221.458	65.535

Table 1. Summary of the results of the fast food marketing campaign A/B test.

Insights:

- Campaign 1 achieved the highest average weekly sales, indicating the strongest performance.
- Campaign 2 had the lowest sales, suggesting it was the least effective.
- Campaign 3 performed moderately well but did not outperform Campaign 1.

Based on the data, **Campaign 1** is the most promising strategy for promoting the new product.

Statistical Testing:

To confirm if the differences are statistically significant, I applied a T-Test via the Evan Miller A/B test calculator, comparing all three campaigns at a 99% confidence level.

Null hypothesis (H₀): There is no statistically significant difference in total sales between Campaign 1 and Campaign 2 (total sales #1 = total sales #2).

Alternative hypothesis (H_1): There is a statistically significant difference in total sales between Campaign 1 and Campaign 2 (total sales #1 \neq total sales #2).

Verdict: Sample 1 mean is greater

Hypothesis:	\bigcirc d = 0	$\bigcirc \ d \leq 0$	$\bigcirc \ d \geq 0$	
Confidence:				99%

 H_0 rejected (p = 0.00128): significant difference in revenue.

Null hypothesis (H₀): There is no statistically significant difference in total sales between Campaign 1 and Campaign 3 (total sales #1 = total sales #3).

Alternative hypothesis (H_1): There is a statistically significant difference in total sales between Campaign 1 and Campaign 3 (total sales #1 \neq total sales #3).

Confidence intervals and estimated difference

Verdict: No significant difference

 H_0 not rejected (p = 0.43): no significant difference.

Null hypothesis (H₀): There is no statistically significant difference in total sales between Campaign 3 and Campaign 2 (total sales #3 = total sales #2).

Alternative hypothesis (H_1): There is a statistically significant difference in total sales between Campaign 3 and Campaign 2 (total sales #3 \neq total sales #2).

Confidence intervals and estimated difference

Verdict: No significant difference

Confidence: 99%

 H_0 not rejected (p = 0.0136): no significant difference.

Decision

Based on the statistical analysis with a 99% confidence level:

- Campaign 2 is clearly the least effective and should be discontinued.
- Campaigns 1 and 3 both perform well, with no statistically significant difference between them.
- Since Campaign 1 has the highest average sales, it is the preferred option.
- However, if Campaign 3 is cheaper to implement than Campaign 1, it may be more cost-effective to select Campaign 3, balancing sales performance and cost.

Appendix

Query for Table 1

```
with data_set as (
select
   location_id,
   promotion,
    sum(sales_in_thousands) as total_revenue
   tc-da-1.turing_data_analytics.wa_marketing_campaign
group by
    location_id,promotion
select
    promotion as marketing_campaign,
    count (*) as total_stores,
    round(AVG(total_revenue),3) AS mean_sales,
    round(STDDEV(total_revenue),3) AS stddev_sales
from
    data_set
group by
```