

TCP/IP and the Internet

- > In 1969
 - ARPA funded and created the "ARPAnet" network
 - Robust, reliable, vendor-independent data communications
- > In 1975
 - Convert from experimental to operational network
 - TCP/IP begun to be developed
- > In 1983
 - The TCP/IP is adopted as Military Standards
 - ARPnet \rightarrow MILNET + ARPnet = Internet
- > In 1985
 - The NSF created the NSFnet to connect to Internet
- > In 1990
 - ARPA passed out of existence, and in 1995, the NSFnet became the primary Internet backbone network

ARPA = Advanced Research Project Agency NSF = National Science Foundation

Introduction (1)

> TCP/IP

- Used to provide data communication between hosts
 - How to delivery data reliably
 - How to address remote host on the network
 - How to handle different type of hardware device
- 4 layers architecture
 - Each layer perform certain tasks
 - Each layer only need to know how to pass data to adjacent layers

Application	Telnet, FTP, e-mail, etc.
Transport	TCP, UDP
Network	IP, ICMP, IGMP
Link	device driver and interface card

Introduction (2)

- > Four layer architecture
 - Link Layer (Data Link Layer)
 - Network Interface Card + Driver
 - Handle all the hardware detail of whatever type of media
 - Network Layer (Internet Layer)
 - Handle the movement of packets on the network
 - Transport Layer
 - Provide end-to-end data delivery services
 - Application Layer
 - Handle details of the particular application

Introduction (3)

> Various Address

- MAC Address
 - Media Access Control Address
 - 48-bit Network Interface Card Hardware Address
 - > 24bit manufacture ID
 - > 24bit serial number
 - Ex:
 - > 00:07:e9:10:e6:6b
- IP Address
 - 32-bit Internet Address
 - Ex:
 - > 140.113.209.64
- Port
 - 16-bit uniquely identify application
 - Ex:
 - > FTP port 21, ssh port 22, telnet port 23

Introduction (4)

- Each layer has several protocols
 - A layer define a data
 communication function
 that may be performed
 by certain protocols
 - A protocol provides a service suitable to the function of that layer

Introduction (5)

- > Send data
 - encapsulation

Introduction (6)

- > Addressing
 - Nearby(same network)

Introduction (7)

- > Addressing
 - Faraway

(across network)

Introduction (8)

> Receive Data

Demultiplexing

Introduction of Link Layer

- > Purpose of the link layer
 - Send and receive IP datagram for IP module
 - ARP request and reply
 - RARP request and reply
- > TCP/IP support various link layers, depending on the type of hardware used:
 - Ethernet
 - Teach in this class
 - Token Ring
 - FDDI (Fiber Distributed Data Interface)
 - Serial Line

Ethernet

> Features

- Predominant form of local LAN technology used today
- Use CSMA/CD
 - Carrier Sense, Multiple Access with Collision Detection
- Use 48bit MAC address
- Operate at 10 Mbps
 - Fast Ethernet at 100 Mbps
- Ethernet frame format is defined in RFC894
 - This is the actually used format in reality

Ethernet Frame Format

- > 48bit hardware address
 - For both destination and source address
 - 16bit type is used to specify the type of following data
 - 0800 → IP datagram
 - 0806 → ARP, 8035 → RARP

Loopback Interface

- > Pseudo NIC
 - Allow client and server on the same host to communicate with each other using TCP/IP
 - IP
 - 127.0.0.1
 - Hostname
 - localhost

MTU

- > Maximum Transmission Unit
 - Limit size of payload part of Ethernet frame
 - 1500 bytes
 - If the IP datagram is larger than MTU,
 - IP performs "fragmentation"
- > MTU of various physical device
- > Path MTU
 - Smallest MTU of any data link MTU between the two hosts
 - Depend on route

Network	MTU (bytes)	
Hyperchannel	65535	
16 Mbits/sec token ring (IBM)	17914	
4 Mbits/sec token ring (IEEE 802.5)	4464	
FDDI	4352	
Ethernet	1500	
IEEE 802.3/802.2	1492	
X.25	576	
Point-to-point (low delay)	296	

Introduction to Network Layer

- > Unreliable, connectionless datagram delivery service
 - IP Routing
 - IP provides best effort service (unreliable)
 - IP datagram can be delivered out of order (connectionless)
- > Protocols using IP
 - TCP, UDP, ICMP, IGMP

IP Header (1)

> 20 bytes in total length, excepts options

IP Header (2)

- > Version (4bit)
 - 4 for IPv4 and 6 for IPv6
- > Header length (4bit)
 - The number of 32bit words in the header (15*4=60bytes)
 - Normally, the value is 5 (no option)
- > TOS-Type of Service (8bit)
 - 3bit precedence + 4bit TOS + 1bit unused
- > Total length (16bit)
 - Total length of the IP datagram in bytes

Application	Minimize delay	Maximize throughput	Maximize reliability	Minimize monetary cost	Hex value
Telnet/Rlogin FTP	1	0	0	0	0x10
control	1	0	0	0	0x10
data	0	1	0	0	0x08
any bulk data	0	1	0	0	0x08
TFTP	1	0 -	0	0	0x10
SMTP					
command phase	1	0	0	0	0x10
data phase	0	1	0	0	0x08

- > Identification (16bit)
- > Fragmentation offset (13bit)
- > Flags (3bit)
 - All these three fields are used for fragmentation

IP Header (4)

- > TTL (8bit)
 - Limit of next hop count of routers
- > Protocol (8bit)
 - Used to demultiplex to other protocols
 - TCP, UDP, ICMP, IGMP
- > Header checksum (16bit)
 - Calculated over the IP header only
 - If checksum error, IP discards the datagram and no error message is generated

IP Routing (1)

> Difference between Host and Router

- Router forwards datagram from one of its interface to another, while host does not
- Almost every Unix system can be configured to act as a router or both

> Router

- IP layer has a routing table, which is used to store the information for forwarding datagram
- When router receiving a datagram
 - If Dst. IP = my IP, demultiplex to other protocol
 - Other, forward the IP based on routing table

IP Routing (2)

- > Routing table information
 - Destination IP
 - IP address of next-hop router or IP address of a directly connected network
 - Flags
 - Next interface
- > IP routing
 - Done on a hop-by-hop basis
 - It assumes that the next-hop router is closer to the destination
 - Steps:
 - Search routing table for complete matched IP address
 - > Send to next-hop router or to the directly connected NIC
 - Search routing table for matched network ID
 - > Send to next-hop router or to the directly connected NIC
 - Search routing table for default route
 - > Send to this default next-hop router
 - host or network unreachable

IP Routing (3)

> Ex1: routing in the same network

- bsdi: 140.252.13.35

- sun: 140.252.13.33

Ex Routing table:

140.252.13.33

00:d0:59:83:d9:16

UHLW fxp1

IP Routing (4)

> Ex2:

routing across multi-network

IP Address (1)

- > 32-bit long
 - Network part
 - Identify a logical network
 - Host part
 - Identify a machine on certain network
- > IP address category

Class	1 st byte ^a	Format	Comments
Α	1-126	N.H.H.H	Very early networks, or reserved for DOD
В	128-191	N.N.H.H	Large sites, usually subnetted, were hard to get
C	192-223	N.N.N.H	Easy to get, often obtained in sets
D	224-239	-	Multicast addresses, not permanently assigned
E	240-254	_	Experimental addresses

a. The values 0 and 255 are special and are not used as the first byte of regular IP addresses. 127 is reserved for the loopback address.

IP Address (2)

- > Ex:
 - NCTU
 - Class B address: 140.113.0.0
 - Network ID: 140.113
 - Number of hosts: 255*255 = 65535
- > Problems of Class A or B network
 - Number of hosts is enormous
 - Hard to maintain and management
 - Solution → subnetting

subnetting and netmask (1)

> Subnetting

- Borrow some bits from network ID to extends hosts ID
- Ex:
 - ClassB address: 140.113.0.0
 - = 256 ClassC-like IP addresses in N.N.N.H subnetting method
 - 140.113.209.0 subnet

> netmask

- Specify how many bits of network-ID are used for network-ID
- Continuous 1 bits form the network part
- **Ex:**
 - 255.255.255.0 in NCTU-CSIE example
 - > 256 hosts available
 - 255.255.255.248 in ADSL example
 - > Only 8 hosts available
- Shorthand notation
 - Address/prefix-length
 - > Ex: 140.113.209.8/24

subnetting and netmask (2)

- > How to determine your network ID?
 - Bit-wise-and IP and netmask
 - Ex:
 - 140.113.214.37 & 255.255.255.0 → 140.113.214.0
 - 140.113.209.37 & 255.255.255.0 → 140.113.209.0
 - 140.113.214.37 & 255.255.0.0 → 140.113.0.0
 - 140.113.209.37 & 255.255.0.0 → 140.113.0.0
 - 211.23.188.78 & 255.255.255.248 → 211.23.188.76
 - > 78 = 01001110
 - > 78 & 248= 01001110 & 11111000 = 72

subnetting and netmask (3)

- > In a subnet, not all IP are usable
 - The first one IP → network ID
 - The last one IP → broadcast address
 - Ex:
 - Netmask 255.255.255.0
 - 140.113.209.32/24
 - 140.113.209.0 → network ID
 - 140.113.209.255 → broadcast address
 - 1 ~ 254, total 254 IPs are usable
 - Ex:
 - Netmask 255.255.255.252
 - 211.23.188.78/29
 - 211.23.188.72 → network ID
 - 211.23.188.79 → broadcast address
 - 73 ~ 78, total 6 IPs are usable

subnetting and netmask (4)

- > The smallest subnetting
 - Network portion: 30 bits
 - Host portion: 2 bits
 - → 4 hosts, but only 2 IPs are available
- > ipcalc.pl

```
[shrang@r21607
               ~]$ ./ipcalc 211.23.188.78/29
IP address
                                                               211.23.188.78/29
                                                  78
                                                          29
                    211
Netmask bits
Netmask bytes
                                       255
                                                               255.255.255.248
                    255
                             255
                                                 248
Address bits
                  11010011
                           00010111
                                    10111100
                                              01001110
Network
                    211
                               23
                                       188
                                                  72
                                                               211.23.188.72
Broadcast
                    211
                               23
                                       188
                                                  79
                                                               211.23.188.79
First Host
                    211
                               23
                                       188
                                                  73
                                                               211.23.188.73
Last Host
                    211
                               23
                                       188
                                                  78
                                                               211.23.188.78
Total Hosts
                  78.188.23.211.in-addr.arpa
PTR
IP Address (hex) D317BC4E
[shranq@r21607 ~]$
```

subnetting and netmask (5)

> Benefits of subnet

- Reduce the routing table size of Internet's routers
- Ex:
 - All external routers have only one entry for 140.113 Class B network

> Problems of Class C network

- 255*255*255 number of Class C network make the size of Internet routes huge
- Solution
 - Classless Inter-Domain Routing

CIDR

> Classless Inter-Domain Routing

- Use address mask instead of old address classes to determine the destination network
- CIDR requires modifications to routers and routing protocols
 - Need to transmit both destination address and mask

> Benefit of CIDR

- We can allocate continuous ClassC network to organization
 - Reflect physical network topology
 - Reduce the size of routing table

ARP – Address Resolution Protocol and RARP – Reverse ARP

ARP and RARP

> Mapping between IP and Ethernet address

- When an Ethernet frame is sent on LAN from one host to another,
 - It is the 48bit Ethernet address that determines for which interface the frame is destined

ARP Example

- % ftp ccbsd5
- (4) next-hop or direct host
- (5) Search ARP cache
- (6) Broadcast ARP request
- (7) ccbsd5 response ARP reply
- (9) Send original IP datagram

ARP Cache

- > Maintain recent ARP results
 - come from both ARP request and reply
 - expiration time
 - Complete entry = 20 minutes
 - Incomplete entry = 3 minutes
 - Use arp command to see the cache
 - Ex:
 - % arp -a
 - % arp -da
 - % arp -S ccbsd5.csie.nctu.edu.tw 00:07:e9:39:66:77

tytsai@tybsd:~> arp -a
ccamd.csie.nctu.edu.tw (140.113.235.1) at 00:0f:ea:48:92:85 on fxp0 [ethernet]
tybsd.csie.nctu.edu.tw (140.113.235.4) at 00:09:6b:7a:25:f7 on fxp0 permanent [ethernet]
e3rtn-235.csie.nctu.edu.tw (140.113.235.254) at 00:0e:38:a4:c2:00 on fxp0 [ethernet]
? (192.168.1.30) at (incomplete) on fxp1 [ethernet]

ARP/RARP Packet Format

- > Ethernet destination addr: all 1's (broadcast)
- > Known value for IP <-> Ethernet
 - Frame type: 0x0806 for ARP, 0x8035 for RARP
 - Hardware type: type of hardware address (1 for Ethernet)
 - Protocol type: type of upper layer address (0x0800 for IP)
 - Hard size: size in bytes of hardware address (6 for Ethernet)
 - Protocol size: size in bytes of upper layer address (4 for IP)
 - Op: 1, 2, 3, 4 for ARP request, reply, RARP request, reply

Ex: Use tcpdump to see ARP

- > Host 140.113.214.22 \rightarrow 140.113.214.49
 - Clear ARP cache of 140.113.214.22 (0:20:ed:6d:eb:c)
 - Run tcpdump on 140.113.214.49 (0:2:a5:6e:8d:4)
 - % sudo tcpdump –i fxp0 –e arp
 - % sudo tcpdump –i fxp0 –n –e arp
 - % sudo tcpdump -i fxp0 -n -t -e arp
 - On 140.113.214.22, ssh to 140.113.214.49

23:35:04.971913 0:20:ed:6d:eb:c Broadcast arp 60: arp who-has r21619.csie.nctu.edu.tw tel l u214.csie.nctu.edu.tw

23:35:04.971921 0:2:a5:6e:8d:42 0:20:ed:6d:eb:c arp 60: arp reply r21619.csie.nctu.edu.tw is-at 0:2:a5:6e:8d:42

23:44:12.407720 0:20:ed:6d:eb:c ff:ff:ff:ff:ff:ff 0806 60: arp who-has 140.113.214.49 tel 140.113.214.22

23:44:12.407730 0:2:a5:6e:8d:42 0:20:ed:6d:eb:c 0806 60: arp reply 140.113.214.49 is-at 0

:2:a5:6e:8d:42

0:20:ed:6d:eb:c ff:ff:ff:ff:ff:ff 0806 60: arp who-has 140.113.214.49 tell 140.113.214.22 0:2:a5:6e:8d:42 0:20:ed:6d:eb:c 0806 60: arp reply 140.113.214.49 is-at 0:2:a5:6e:8d:42

Proxy ARP

Let router answer ARP request on one of its networks for a host on another of its network

Gratuitous ARP

> Gratuitous ARP

- The host sends an ARP request looking for its own IP
- Provide two features
 - Used to determine whether there is another host configured with the same IP
 - Used to cause any other host to update ARP cache when changing hardware address

RARP

> Principle

 Used for the diskless system to read its hardware address from the NIC and send an RARP request to gain its IP

> RARP Server Design

- RARP server must maintain the map from hardware address to an IP address for many host
- Link-layer broadcast
 - This prevent most routers from forwarding an RARP request

ICMP – Internet Control Message Protocol

ICMP Introduction

- > Part of the IP layer
 - ICMP messages are transmitted within IP datagram
 - ICMP communicates error messages and other conditions that require attention for other protocols
- > ICMP message format

ICMP Message Type (1)

type	code	Description	Query	Error
0	0	echo reply (Ping reply, Chapter 7)		
3		destination unreachable:		
	0	network unreachable (Section 9.3)		•
	1	host unreachable (Section 9.3)		•
	2	protocol unreachable		•
	3	port unreachable (Section 6.5)		•
	4	fragmentation needed but don't-fragment bit set (Section 11.6)		•
	5	source route failed (Section 8.5)		•
	6	destination network unknown		•
	7	destination host unknown		•
	8	source host isolated (obsolete)		. •
	9	destination network administratively prohibited		.•
	10	destination host administratively prohibited		•
	11	network unreachable for TOS (Section 9.3)		•
	12	host unreachable for TOS (Section 9.3)		•
	13	communication administratively prohibited by filtering		•
	14	host precedence violation		•
	15	precedence cutoff in effect		•
4	0	source quench (elementary flow control, Section 11.11)		•

ICMP Message Type (2)

5		redirect (Section 9.5):		
	0	redirect for network		•
	1	redirect for host		•
	2	redirect for type-of-service and network		•
	3	redirect for type-of-service and host		•
8	0	echo request (Ping request, Chapter 7)	•	
9	0	router advertisement (Section 9.6)	•	
10	0	router solicitation (Section 9.6)	•	
11		time exceeded:		-
	0	time-to-live equals 0 during transit (Traceroute, Chapter 8)		•
	1	time-to-live equals 0 during reassembly (Section 11.5)		•
12		parameter problem:		
	0	IP header bad (catchall error)		•
×	1	required option missing		•
13	0	timestamp request (Section 6.4)	•	
14	0	timestamp reply (Section 6.4)	•	
15	0	information request (obsolete)	•	
16	0	information reply (obsolete)	•	
17	0	address mask request (Section 6.3)	•	
18	0	address mask reply (Section 6.3)	•	

ICMP Query Message Address Mask Request/Reply (1)

- > Address Mask Request and Reply
 - Used for diskless system to obtain its subnet mask
 - Identifier and sequence number
 - Can be set to anything for sender to match reply with request
 - The receiver will response an ICMP reply with the subnet mask of the receiving NIC

0	8	16	31	
TYPE (17 or 18)	CODE (0)	CHECKSUM		
IDENT	TIFIER	SEQUENCE NUMBER		
ADDRESS MASK				

ICMP Query Message Address Mask Request/Reply (2)

> Ex:

```
tytsai@tybsd:~/<1>tcpipi/icmpaddrmask> ping -M mask ccsun1
ICMP_MASKREQ
PING ccsun1.csie.nctu.edu.tw (140.113.209.101): 56 data bytes
68 bytes from 140.113.209.101: icmp_seq=0 ttl=254 time=0.389 ms
mask=not-a-legal-address (255.255.255.0)
68 bytes from 140.113.209.101: icmp_seq=1 ttl=254 time=0.363 ms
mask=not-a-legal-address (255.255.255.0)
^C
--- ccsun1.csie.nctu.edu.tw ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.363/0.376/0.389/0.013 ms
tytsai@tybsd:~/<1>
tytsai@tybsd:~/<1>tcpipi/icmpaddrmask> sudo ./icmpaddrmask ccsun1.csie.nctu.edu.tw
received mask = fffff00, from 140.113.209.101
```

ICMP Query Message Timestamp Request/Reply (1)

- > Timestamp request and reply
 - Allow a system to query another for the current time
 - Milliseconds resolution, since midnight UTC
 - Requestor
 - Fill in the originate timestamp and send
 - Reply system
 - Fill in the receive timestamp when it receives the request and the transmit time when it sends the reply

0	8	16 3	31	
TYPE (13 or 14)	CODE (0)	CHECKSUM		
IDENT	TIFIER	SEQUENCE NUMBER		
ORIGINATE TIMESTAMP				
RECEIVE TIMESTAMP				
TRANSMIT TIMESTAMP				

ICMP Query Message Timestamp Request/Reply (2)

> Ex:

```
tytsai@tybsd:~/<1>tcpipi/icmptime> sudo ./icmptime tybsd.csie.nctu.edu.tw
orig = 38167109, recv = 38167102
adjustment = -7 ms
correction = 0 \sec 7000 \sec
tytsai@tybsd:~> sudo tcpdump -i lo0 -e icmp
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on lo0, link-type NULL (BSD loopback), capture size 96 bytes
10:38:43.547811 ip 40: IP tybsd.csie.nctu.edu.tw > tybsd.csie.nctu.edu.tw: icmp 20:
time stamp query id 56635 seq 14640
10:38:43.547842 ip 40: IP tybsd.csie.nctu.edu.tw > tybsd.csie.nctu.edu.tw: icmp 20:
time stamp reply id 56635 seg 14640 : org 0x248c55b recv 0x248c556 xmit 0x248c556
10:38:55.961538 ip 96: IP tybsd.csie.nctu.edu.tw > tybsd.csie.nctu.edu.tw: icmp 76:
time stamp query id 57147 seq 0
10:38:55.961569 ip 96: IP tybsd.csie.nctu.edu.tw > tybsd.csie.nctu.edu.tw: icmp 76:
time stamp reply id 57147 seq 0 : org 0x248f5d9 recv 0x248f5d5 xmit 0x248f5d5
```

```
tytsai@tybsd:~/<1>tcpipi/icmptime> ping -M time tybsd.csie.nctu.edu.tw ICMP_TSTAMP
PING tybsd.csie.nctu.edu.tw (140.113.235.4): 56 data bytes
76 bytes from 140.113.235.4: icmp_seq=0 ttl=64 time=0.086 ms
tso=10:38:55 tsr=10:38:55 tst=10:38:55
76 bytes from 140.113.235.4: icmp_seq=1 ttl=64 time=0.066 ms
tso=10:38:56 tsr=10:38:56 tst=10:38:56
```

ICMP Unreachable Error Message

> Format

- 8bytes ICMP Header
- Application-depend data portion
 - IP header
 - > Let ICMP know how to interpret the 8 bytes that follow
 - first 8bytes that followed this IP header
 - > Information about who generates the error

ICMP Error Message – Port Unreachable (1)

- > ICMP port unreachable
 - Type = 3, code = 3
 - Host receives a UDP datagram but the destination port does not correspond to a port that some process has in use

ICMP Error Message – Port Unreachable (2)

> Ex:

- Using TFTP (Trivial File Transfer Protocol)
 - Original port: 69

tytsai@tybsd:~> tftp tftp> connect localhost 8888 tftp> get temp.foo Transfer timed out.

tftp>

tytsai@tybsd:~> sudo tcpdump -i lo0 -e

Password:

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode listening on lo0, link-type NULL (BSD loopback), capture size 96 bytes

11:55:38.482768 ip 48: IP localhost.53850 > localhost.8888: UDP, length: 20

11:55:38.482790 ip 56: IP localhost > localhost: icmp 36: localhost udp port 8888 unreachable

11:55:43.488100 ip 48: IP localhost.53850 > localhost.8888: UDP, length: 20

11:55:43.488123 ip 56: IP localhost > localhost: icmp 36: localhost udp port 8888 unreachable

Ping Program (1)

- Use ICMP to test whether another host is reachable
 - Type 8, ICMP echo request
 - Type 0, ICMP echo reply
- > ICMP echo request/reply format
 - Identifier: process ID of the sending process
 - Sequence number: start with 0
 - Optional data: any optional data sent must be echoed

Ping Program (2)

> Ex:

- 由 tybsd.csie.nctu.edu.tw 對自己 ping
- % tcpdump -i lo0 -x

```
tytsai@tybsd:~> ping tybsd.csie.nctu.edu.tw
PING tybsd.csie.nctu.edu.tw (140.113.235.4): 56 data bytes
64 bytes from 140.113.235.4: icmp_seq=0 ttl=64 time=0.086 ms
64 bytes from 140.113.235.4: icmp_seq=1 ttl=64 time=0.053 ms
```

```
12:48:00.153614 IP tybsd.csie.nctu.edu.tw > tybsd.csie.nctu.edu.tw: icmp 64: echo request seq 0
        0x0000:
                 0200 0000 4500 0054 d19b 0000 4001 ba21
                                                          .... E... T.... @...!
        0x0010: 8c71 eb04 8c71 eb04 0800 48c1 3b3d 0000 .g...q....H.;=...
        0x0020:
                8064 2442 e257 0200 0809 0a0b 0c0d 0e0f
                                                          .d$B.W......
       0x0030:
                 1011 1213 1415 1617 1819 1a1b 1c1d 1e1f
                                                          .!"#$%&'()*+, -./
        0x0040:
                 2021 2223 2425 2627 2829 2a2b 2c2d 2e2f
        0x0050:
                 3031 3233 3435 3637
                                                           01234567
12:48:00.153644 IP tybsd. csie. nctu. edu. tw > tybsd. csie. nctu. edu. tw: icmp 64: echo reply seq 0
                                                          0x0000:
                 0200 0000 4500 0054 d19c 0000 4001 ba20
        0x0010:
                 8c71 eb04 8c71 eb04 0000 50c1 3b3d 0000
                                                          . q. . . q. . . . P. ;=. .
                 8064 2442 e257 0200 0809 0a0b 0c0d 0e0f
        0x0020:
                                                           . d$B. W. . . . . . . . .
        0x0030:
                 1011 1213 1415 1617 1819 1a1b 1c1d 1e1f
                                                           .!"#$%&'()*+,-./
        0x0040:
                 2021 2223 2425 2627 2829 2a2b 2c2d 2e2f
        0x0050:
                 3031 3233 3435 3637
                                                           01234567
```

Ping Program – IP Record Route Option (1)

- > IP Record Route Option
 - ping -R
 - Cause every router that handles the datagram to add its IP address to a list in the options field
 - Format of Option field for IP RR Option
 - code: type of IP Option (7 for RR)
 - len: total number of bytes of the RR option
 - ptr:4 ~ 40 used to point to the next IP address
 - Only 9 IP addresses can be stored
 - Limitation of IP header

Ping Program – IP Record Route Option (2)

> Ex1:

Ping Program – IP Record Route Option (3)

> Ex2

```
tytsai@tybsd:~> less result

17:37:50.804929 00:09:6b:7a:25:f7 > 00:0e:38:a4:c2:00, ethertype IPv4 (0x0800), length 138:

IP (tos 0x0, ttl 64, id 2988, offset 0, flags [none], length: 124, optlength: 40
( RR{#0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0
```

Ping Program – IP Timestamp Option

- > Similar to RR option
 - Record Timestamp in option filed
 - code, len, ptr are the same as IP RR option
 - OF
 - > Overflow field
 - > Router will increment OF if it can't add a timestamp because of no room left
 - FL
 - > Flags
 - > 0: only timestamp
 - > 1: both timestamp and IP address
 - > 3: the sender initiates the options with up to 4 pairs of IP address and timestamp

Traceroute Program (1)

- > print the route packets take to network host
- > Drawbacks of IP RR options
 - Not all routers have supported the IP RR option
 - Limitation of IP header length
- > Background knowledge of traceroute
 - When a router receive a datagram, , it will decrement the TTL by one
 - When a router receive a datagram with TTL = 0 or 1,
 - it will through away the datagram and
 - sends back a "Time exceeded" ICMP message
 - Unused UDP port will generate a "port unreachable" ICMP message

Traceroute Program (2)

- > Operation of traceroute
 - Send UDP with port > 30000, encapsulated with IP header with TTL = 1, 2, 3, ... continuously
 - When router receives the datagram and TTL = 1, it returns a "Time exceed" ICMP message
 - When destination host receives the datagram and TTL =
 1, it returns a "Port unreachable" ICMP message

Traceroute Program (3)

- > Time exceed ICMP message
 - Type = 11, code = 0 or 1
 - Code = 0 means TTL=0 during transit
 - Code = 1 means TTL=0 during reassembly
 - First 8 bytes of datagram
 - UDP header

0		8	16	31		
	TYPE (11)	CODE (0 or 1)	CHECKSUM			
Г	UNUSED (MUST BE ZERO)					
Г	INTERNET HEADER + FIRST 64 BITS OF DATAGRAM					

Traceroute Program (4)

> Ex:

```
tytsai@tybsd:~> traceroute 140.113.1.1
traceroute to 140.113.1.1 (140.113.1.1), 64 hops max, 40 byte packets
1 e3rtn-235 (140.113.235.254) 0.518 ms 0.414 ms 0.339 ms
2 140.113.0.166 (140.113.0.166) 0.463 ms 0.359 ms 0.377 ms
3 140.113.0.149 (140.113.0.149) 0.763 ms 0.548 ms 0.594 ms
4 ns1.NCTU.edu.tw (140.113.1.1) 0.440 ms 0.359 ms 5.538 ms
```

```
tytsai@tybsd:~> sudo tcpdump -i fxp0 -t icmp
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on fxp0, link-type EN10MB (Ethernet), capture size 96 bytes
IP e3rtn-235.csie.nctu.edu.tw > tybsd.csie.nctu.edu.tw: icmp 36: time exceeded in-transit
IP e3rtn-235.csie.nctu.edu.tw > tybsd.csie.nctu.edu.tw: icmp 36: time exceeded in-transit
IP e3rtn-235.csie.nctu.edu.tw > tybsd.csie.nctu.edu.tw: icmp 36: time exceeded in-transit
IP 140.113.0.166 > tybsd.csie.nctu.edu.tw: icmp 36: time exceeded in-transit
IP 140.113.0.166 > tybsd.csie.nctu.edu.tw: icmp 36: time exceeded in-transit
IP 140.113.0.166 > tybsd.csie.nctu.edu.tw: icmp 36: time exceeded in-transit
IP 140.113.0.149 > tybsd.csie.nctu.edu.tw: icmp 36: time exceeded in-transit
IP 140.113.0.149 > tybsd.csie.nctu.edu.tw: icmp 36: time exceeded in-transit
IP 140.113.0.149 > tybsd.csie.nctu.edu.tw: icmp 36: time exceeded in-transit
IP 140.113.0.149 > tybsd.csie.nctu.edu.tw: icmp 36: nsl.NCTU.edu.tw udp port 33444 unreachable
IP nsl.NCTU.edu.tw > tybsd.csie.nctu.edu.tw: icmp 36: nsl.NCTU.edu.tw udp port 33445 unreachable
IP nsl.NCTU.edu.tw > tybsd.csie.nctu.edu.tw: icmp 36: nsl.NCTU.edu.tw udp port 33446 unreachable
IP nsl.NCTU.edu.tw > tybsd.csie.nctu.edu.tw: icmp 36: nsl.NCTU.edu.tw udp port 33446 unreachable
IP nsl.NCTU.edu.tw > tybsd.csie.nctu.edu.tw: icmp 36: nsl.NCTU.edu.tw udp port 33446 unreachable
```

Traceroute Program (5)

- > The router IP in traceroute is the interface that receives the datagram
 - Traceroute from left host to right host
 - if1, if3
 - Traceroute from right host to left host
 - if4, if2

Traceroute Program – IP Source Routing Option (1)

- > Source Routing
 - Sender specifies the route
- > Two forms of source routing
 - Strict source routing
 - Sender specifies the exact path that the IP datagram must follow
 - Loose source routing
 - As strict source routing, but the datagram can pass through other routers between any two addresses in the list
- > Format of IP header option field
 - Code = 0x89 for strict and code = 0x83 for loose SR option

Traceroute Program – IP Source Routing Option (2)

- > Scenario of source routing
 - Sending host
 - Remove first entry and append destination address in the final entry of the list
 - Receiving router != destination
 - Loose source route, forward it as normal
 - Receiving router = destination
 - Next address in the list becomes the destination
 - Change source address
 - Increment the pointer

Traceroute Program – IP Source Routing Option (3)

- > Traceroute using IP loose SR option
- > Ex:

```
tytsai@tybsd:~> traceroute u2. nctu. edu. tw
traceroute to u2. nctu. edu. tw (211.76.240.193), 64 hops max, 40 byte packets
1 e3rtn-235 (140.113.235.254) 0.549 ms 0.434 ms 0.337 ms
2 140.113.0.166 (140.113.0.166) 108.726 ms 4.469 ms 0.362 ms
3 v255-194. NTCU. net (211. 76. 255. 194) 0. 529 ms 3. 446 ms 5. 464 ms
4 v255-229. NTCU. net (211. 76. 255. 229) 1. 406 ms 2. 017 ms 0. 560 ms
5 h240-193. NTCU. net (211. 76. 240. 193) 0. 520 ms 0. 456 ms 0. 315 ms
tytsai@tybsd:~> traceroute -g 140.113.0.149 u2.nctu.edu.tw
traceroute to u2. nctu. edu. tw (211. 76. 240. 193), 64 hops max, 48 byte packets
1 e3rtn-235 (140.113.235.254) 0.543 ms 0.392 ms 0.365 ms
2 140.113.0.166 (140.113.0.166) 0.562 ms 9.506 ms 0.624 ms
3 140.113.0.149 (140.113.0.149) 7.002 ms 1.047 ms 1.107 ms
4 140.113.0.150 (140.113.0.150) 1.497 ms 6.653 ms 1.595 ms
5 v255-194. NTCU. net (211. 76. 255. 194) 1. 639 ms 7. 214 ms 1. 586 ms
6 v255-229. NTCU. net (211. 76. 255. 229) 1. 831 ms 9. 244 ms 1. 877 ms
7 h240-193. NTCU. net (211. 76. 240. 193) 1. 440 ms !S 2. 249 ms !S 1. 737 ms !S
```


Processing in IP Layer

Routing Table (1)

- % netstat -rn
- Flag
 - U: the route is up
 - G: the route is to a router (indirect route)
 - > Indirect route: IP is the dest. IP, MAC is the router's MAC
 - H: the route is to a host (Not to a network)
 - > The dest. filed is either an IP address or network address
- Refs: number of active uses for each route
- Use: number of packets sent through this route

```
tytsai@tybsd:~> netstat -rn
Routing tables
Internet:
Destination
                                                                 Netif Expire
                                       Flags
                                                 Refs
                   Gateway
                                                            Use
default
                   140, 113, 235, 254
                                       UGS
                                                        430243
                                                                  fxp0
                                                    0
127. 0. 0. 1
                   127. 0. 0. 1
                                       UH
                                                                   1o0
                                                            435
                                                    0
140. 113. 235/24
                   link#1
                                       UC
                                                              0
                                                                  fxp0
                                                    0
140. 113. 235. 4
                   00:09:6b:7a:25:f7 UHLW
                                                    0
                                                          6996
                                                                   1o0
140. 113. 235. 10
                   00:0d:88:b0:c2:5e UHLW
                                                    0
                                                          15092
                                                                  fxp0
                                                                         1099
140. 113. 235. 254
                   00:0e:38:a4:c2:00
                                       UHLW
                                                                  fxp0
                                                                          1199
```

Routing Table (2)

- 1. dst. = sun
- 2. dst. = slip
- 3. dst. = 192.207.117.2
- 4. dst. = svr4 or 140.252.13.34
- 5. dst. = 127.0.0.1

svr	4 %	ne	ts	ta	t	-rn

Routing tables

Destination	Gateway	Flags	Refcnt	Us
140.252.13.65	140.252.13.35	UGH	0	0
127.0.0.1	127.0.0.1	UH	1	0
default	140 252 13 33	UG	0	0

140.252.13.32

Flags Refcnt Use Interface UGH 0 0 emd0 UH 1 0 lo0 UG 0 emd0 UU 4 25043 emd0

loopback

No Route to Destination

- > If there is no match in routing table
 - If the IP datagram is generated on the host
 - "host unreachable" or "network unreachable"
 - If the IP datagram is being forwarded
 - ICMP "host unreachable" error message is generated and sends back to sending host
 - ICMP message
 - > Type = 3, code = 0 for host unreachable
 - > Type = 3, code = 1 for network unreachable

ICMP Redirect Error Message (1)

> Concept

- Used by router to inform the sender that the datagram should be sent to a different router
- This will happen if the host has a choice of routers to send the packet to
- **Ex**:
 - R1 found sending and receiving interface are the same

ICMP Redirect Error Message (2)

- > ICMP redirect message format
 - Code 0: redirect for network
 - Code 1: redirect for host
 - Code 2: redirect for TOS and network (RFC 1349)
 - Code 3: redirect for TOS and hosts (RFC 1349)

ICMP Router Discovery Messages (1)

- > Dynamic update host's routing table
 - ICMP router solicitation message (懇求)
 - Host broadcast or multicast after bootstrapping
 - ICMP router advertisement message
 - Router response
 - Router periodically broadcast or multicast
- > Format of ICMP router solicitation message

ICMP Router Discovery Messages (2)

- > Format of ICMP router advertisement message
 - Router address
 - Must be one of the router's IP address
 - Preference level
 - Preference as a default router address

0	7	8 15	16	31
1	type (9)	code (0)	checksum	0.1
1	umber of ddresses	address entry size (2)	lifetime	
	router address [1]			
preference level [1] router address [2] preference level [2]				
			ls'	

UDP – User Datagram Protocol

UDP

- > No reliability
 - Datagram-oriented, not stream-oriented protocol
- > UDP header
 - 8 bytes
 - Source port and destination port
 Identify sending and receiving process
 - UDP length: ≥ 8

IP Fragmentation (1)

> MTU limitation

- Before network-layer to link-layer
 - IP will check the size and link-layer MTU
 - Do fragmentation if necessary
- Fragmentation may be done at sending host or routers
- Reassembly is done only in receiving host

IP Fragmentation (2)

identification:

which unique IP datagram

flags:

more fragments?

fragment offset

offset of this datagram from the beginning of original datagram

identification:

flags:

fragment offset

the same more fragments

0

identification:

flags:

fragment offset

the same end of fragments

1480

IP Fragmentation (3)

- > Issues of fragmentation
 - One fragment lost, entire datagram must be retransmitted
 - If the fragmentation is performed by intermediate router,
 there is no way for sending host how fragmentation did
 - Fragmentation is often avoided
 - There is a "don't fragment" bit in flags of IP header

ICMP Unreachable Error – Fragmentation Required

- > Type=3, code=4
 - Router will generate this error message if the datagram needs to be fragmented, but the "don't fragment" bit is turn on in IP header
- > Message format

ICMP Source Quench Error

- > Type=4, code=0
 - May be generated by system when it receives datagram at a rate that is too fast to be processed
 - Host receiving more than it can handle datagram
 - Send ICMP source quench or
 - Throw it away
 - Host receiving UDP source quench message
 - · Ignore it or
 - Notify application

TCP – Transmission Control Protocol

TCP

> Services

- Connection-oriented
 - Establish TCP connection before exchanging data
- Reliability
 - Acknowledgement when receiving data
 - Retransmission when timeout
 - Ordering
 - Discard duplicated data
 - Flow control

TCP Header (1)

TCP Header (2)

> Flags

- SYN
 - Establish new connection
- ACK
 - Acknowledgement number is valid
 - Used to ack previous data that host has received
- RST
 - Reset connection
- FIN
 - The sender is finished sending data

TCP connection establishment and termination

