AQUERY - Solution

Nguồn: square869120Contest #3 - Problem F

https://atcoder.jp/contests/s8pc-3/tasks/s8pc_3_f

Ta nhận xét rằng, tại mọi thời điểm, dãy A luôn là một dãy giảm dần (tức là $A_i \ge A_{i+1}$ với mọi $1 \le i < N$).

- \bullet Hiển nhiên, dãy A ban đầu là dãy giảm dần.
- Giả sử ta tăng thêm 1 vào phần tử có giá trị nhỏ nhất từ vị trí 1 đến vị trí r (nếu có nhiều phần tử có giá trị bằng nhau, ta tăng vào phần tử có vị trí nhỏ nhất trong số chúng). Khi đó, phần tử được chọn chính là vị trí x nhỏ nhất sao cho A_x = A_r. Dễ dàng thấy rằng, dãy A vẫn giảm dần sau khi tăng A_x thêm 1 (xem Figure 1 để hiểu rõ hơn)

Figure 1: Hình vẽ minh họa cho phần chứng minh

Giả sử ta cần thực hiện truy vấn thứ i. Với một vị trí x bất kì, để giá trị của các phần tử có vị trí từ 1 đến r_i đều lớn hơn hoặc bằng A_x thì điều kiện sau phải được thỏa mãn: $(r-x+1)*A_x-\sum_{j=x}^r A_j \leq p_i$.

Gọi l là vị trí x nhỏ nhất thỏa điều kiện trên (ta có thể tìm l bằng cách chặt nhị phân). Gọi $t = (r - l + 1) * A_l - \sum_{j=l}^r A_j$ Khi đó, quá trình thực hiện truy vấn i gồm hai bước (xem Figure 2 để hiểu rõ hơn):

- 1. Tăng giá trị của các phần tử từ l đến r lên bằng A_l . Bước này được thực hiện trong t thao tác.
- 2. Lần lượt tăng giá trị của phần tử tại các vị trí sau thêm 1: l, l+1, ..., r, l, l+1, ..., r, ...Bước này được thực hiện trong $p_i - t$ thao tác còn lại.

Figure 2: Hình vẽ minh họa cho quá trình thực hiện truy vấn i

Gọi A_{new} là giá trị mới của A_r sau khi thực hiện truy vấn i. Ta có $A_{new} = A_l + \left\lfloor \frac{p_i - t}{r - l + 1} \right\rfloor$. Gọi m là vị trí cuối cùng nhận giá trị $A_{new} + 1$. Ta có $m = l + (p_i - t) \mod (r - l + 1) - 1$. Khi đó, sau khi thực hiện truy vấn i:

- Các phần tử có vị trí từ l đến m có giá trị bằng $A_{new}+1$
- Các phần tử có vị trí từ m+1 đến r có giá trị bằng A_{new}

Đến đây, ta thu được lời giải có độ phức tạp $O(QN \log N)$. Để cải tiến, ta cần thực hiện hai thao tác sau nhanh hơn:

- Tính $\sum_{j=l}^r A_j$ (tổng giá trị các phần tử có vị trí từ l đến r)
- Gán giá trị x cho một đoạn phần tử liên tiếp có vị trí từ l đến r.

Hai thao tác trên có thể được thực hiện bằng cây phân đoạn (Segment Tree) với kĩ thuật lazy update. Các bạn có thể tham khảo thêm về cây phân đoạn tại: http://vnoi.info/wiki/algo/data-structures/segment-tree-extend.

Độ phức tạp: $O(Q \log^2 N)$.

Tag: Data structure, Binary search