Математический анализ, Экзамен 1

Балюк Игорь

@lodthe, GitHub

Дата изменения: 2020.01.26 в 11:11

Содержание

1	Воп	Вопросы			
	1.1	Числовые последовательности. Примеры.			
	1.2	Понятие предела последовательности			
	1.3	Ограниченные и неограниченные последовательности.			
	1.4	Теорема об ограниченности сходящейся последовательности.			
	1.5	Теорема о единственности предела сходящейся последовательности.			
	1.6	Теорема о переходе к пределу в неравенствах.			
	1.7	Теорема о вынужденном пределе.			
	1.8	Теорема о сходимости монотонных ограниченных последовательностей.			
	1.9	Определение числа е.			
	1.10	Бесконечно малые последовательности.			
	1.11	Связь со сходящимися последовательностями.			
	1.12	Арифметические свойства бесконечно малых и сходящихся последовательностей.			
		Арифметические свойства для последовательностей, имеющих конечные и бесконечные			
		пределы.			
	1.14	Неопределенности.			
	1.15	Определение подпоследовательности.			
	1.16	Теорема Больцано-Вейерштрасса.			
	1.17	Критерий Коши сходимости последовательности.			
	1.18	Определение предела функции в точке по Коши и по Гейне.			
	1.19	Теорема об эквивалентности этих определений.			
	1.20	Односторонние пределы, их связь с двусторонними. Пределы функции в бесконечности			
	1.23	Первый и второй замечательные пределы.			
		1.23.1 Первый замечательный предел			
		1.23.2 Второй замечательный предел			
	1.24	Критерий Коши существования конечного предела функции			
	1.25	Определение непрерывности функции в точке			
	1.26	Точки разрыва, их классификация			
	1.27	Непрерывность элементарных функций			
	1.28	Арифметические свойства непрерывных функций.			
	1.29	Теорема о непрерывности сложной функции			
	1.30	Свойства функций, непрерывных на отрезке (первая и вторая теоремы Вейерштрасса) 1			
	1.31	Критерий существования и непрерывности обратной функции на промежутке			
	1.32	Теорема Коши о прохождении непрерывной функции через промежуточные значения 1			
	1.33	Понятие производной функции в точке			
	1.34	Геометрический и физический смысл производной			
	1.35	Уравнение касательной к графику функции в точке			
	1.36	Понятие дифференцируемости функции в точке			
	1.37	Необходимое условие дифференцируемости.			
	1.38	Правила дифференцирования			
	1.39	Теорема о дифференцируемости и производной сложной функции			
	1.40	Теорема о дифференцируемости обратной функции			
	1 41	Таблица произволных основных элементарных функций			

	1.42	Понятие дифференциала (первого) функции в точке	17
	1.43	Инвариативность формы первого дифференциала	17
	1.44	Производные и дифференциалы высших порядков функции одной переменной в точке.	17
	1.45	Понятие об экстремумах функции одной переменной.	19
	1.46	Локальный экстремум. Необходимое условие для внутреннего локального экстремума (тео-	
	1.47	рема Ферма)	19
		Лагранжа и Коши.	19
	1.48	Многочлен Тейлора и формула Тейлора для функций одной переменной с остаточным членом в форме Пеано и Лагранжа.	21
	1.49		22
	1.50	Правило Лопиталя	22
	1.51	Достаточное условие строгого возрастания (убывания) функции на промежутке	24
	1.52	Достаточные условия локального экстремума для функции одной переменной	24
2	Воп	росы, которые были убраны из программы экзамена	2 4
	2.1	Эквивалентность определений предела функции по Коши и Гейне	24
	2.2	Производные функций, графики которых заданы параметрически	25
	2.3	Геометрический смысл дифференциала.	25

1 Вопросы

1. Числовые последовательности. Примеры.

Определение из википедии: Пусть X — это либо множество вещественных чисел \mathbb{R} , либо множество комплексных чисел \mathbb{C} . Тогда последовательность $\{x_n\}_{n=1}^{\infty}$ элементов множества X называется числовой последовательностью.

<u>Определение из Ёжика</u>: Отображение $\mathbb{N} \mapsto X$ будем называть последовательностью и записывать как x_1, x_2, \dots, x_n . Отображение $\mathbb{N} \mapsto \mathbb{R}$ будем называть **числовой последовательностью**.

Примеры:

- $\{1/n\}_{n=1}^{\infty}$ является бесконечной последовательностью рациональных чисел. Элементы этой последовательности начиная с первого имеют вид $1, 1/2, 1/3, 1/4, 1/5, \ldots$
- $((-1)^n)_{n=1}^{\infty}$ является бесконечной последовательностью целых чисел. Элементы этой последовательности начиная с первого имеют вид $-1,1,-1,1,\dots$

2. Понятие предела последовательности.

Число a называется пределом числовой последовательности $\{x_n\}$, если

$$\forall \varepsilon > 0, \exists N(\varepsilon) : \forall n \geqslant N(\varepsilon) \implies |x_n - a| < \varepsilon$$

3. Ограниченные и неограниченные последовательности.

• Ограниченная сверху последовательность — это последовательность элементов множества \mathbb{R} , все члены которой не превышают некоторого элемента из этого множества. Этот элемент называется верхней гранью данной последовательности (говоря в общем, это верно и не только для \mathbb{R}).

$$\{x_n\}$$
 ограниченная сверху $\iff \exists M \in \mathbb{R}: \ \forall n \implies x_n \leqslant M$

 Ограниченная снизу последовательность — это последовательность элементов множества ℝ, для которой в этом множестве найдётся элемент, не превышающий всех её членов. Этот элемент называется нижней гранью данной последовательности.

$$\{x_n\}$$
 ограниченная снизу $\iff \exists m \in \mathbb{R}: \ \forall n \implies x_n \geqslant m$

• Ограниченная последовательность (ограниченная с обеих сторон последовательность) — это последовательность, ограниченная и сверху, и снизу.

$$\{x_n\}$$
 ограниченная $\iff \exists M, m \in \mathbb{R} : \forall n \implies m \leqslant x_n \leqslant M$

• Неограниченная последовательность — это последовательность, которая не является ограниченной.

$$\{x_n\}$$
 неограниченная $\iff \forall M, m \in \mathbb{R}: \exists N \implies (x_N < m) \lor (x_N > M)$

<u>Критерий ограниченности</u>: Числовая последовательность является ограниченной тогда и только тогда, когда существует такое число, что модули всех членов последовательности не превышают его.

$$\{x_n\}$$
 ограниченная $\iff \exists A \in \mathbb{R} : \forall N \implies |x_N| \leqslant A$

4. Теорема об ограниченности сходящейся последовательности.

Теорема. Всякая сходящаяся последовательность ограничена.

Доказательство. Все члены последовательности, кроме конечного их числа, принадлежат окрестности предела— ограниченному множеству.

Пусть последовательность $\{x_n\}$ сходится к a, т.е. $\lim_{n \to \infty} x_n = a$.

$$\forall \varepsilon > 0 \; \exists N : \; \forall n \geqslant N \implies |x_n - a| < \varepsilon$$

Пусть $\varepsilon=1$, тогда $A=\max\{|x_1|,\ldots,|x_N|,|a-\varepsilon|,|a+\varepsilon|\}$. Тогда, $\forall n\in\mathbb{N}:\ |x_n|\leqslant A$.

5. Теорема о единственности предела сходящейся последовательности.

Теорема. Если предел числовой последовательности существует, то он единственный.

Доказательство. Доказательство теоремы проведем «методом от противного». Предположим, что теорема неверна. Тогда, пусть $\lim_{n\to\infty} x_n = a = b$ и выполняется следующее:

$$\begin{cases} a < b, \\ \forall \varepsilon > 0, \exists N_1(\varepsilon) : \forall n \geqslant N_1(\varepsilon) \implies |x_n - a| < \varepsilon, \\ \forall \varepsilon > 0, \exists N_2(\varepsilon) : \forall n \geqslant N_2(\varepsilon) \implies |x_n - b| < \varepsilon, \end{cases}$$

Положим $\varepsilon=\frac{b-a}{2}$ и $N=\max\{N_1(\varepsilon),N_2(\varepsilon)\}$. Тогда, $\forall n\geqslant N\implies |x_n-a|<\varepsilon \land |x_n-b|<\varepsilon$. Возьмём $n\geqslant N$, тогда,

$$|b-a| = |b-a| = |b-x_n + x_n - a| \le |x_n - b| + |x_n - a| < \frac{b-a}{2} + \frac{b-a}{2} = b-a$$

Пришли к противоречию (b - a < b - a).

6. Теорема о переходе к пределу в неравенствах.

Теорема. Если элементы сходящейся последовательности $\{x_n\}$, начиная с некоторого номера, удовлетворяют неравенству $x_n \ge b$ $(x_n \le b)$, то и предел a этой последовательности удовлетворяет неравенству $a \ge b$ $(a \le b)$.

Доказательство. Пусть все элементы x_n , по крайней мере начиная с некоторого номера, удовлетворяют неравенству $x_n \geqslant b$. Требуется доказать неравенство $a \geqslant b$.

Предположим, что a < b. Поскольку a - предел последовательности $\{x_n\}$, то для положительного $\varepsilon = b - a$ можно указать номер N такой, что при $n \geqslant N$ выполняется неравенство $|x_n - a| < b - a$. Это неравенство эквивалентно следующим двум неравенствам: $-(b-a) < x_n - a < b - a$. Используя правое из этих неравенств, получим $x_n < b$, а это противоречит условию теоремы. Случай $x_n \leqslant b$ рассматривается аналогично..

Примечание. Элементы сходящейся последовательности $\{x_n\}$ могут удовлетворять строгому неравенству $x_n > b$, однако при этом предел a может оказаться равным b. Например, если $x_n = \frac{1}{n}$, то $x_n > 0$, однако $\lim_{n \to \infty} x_n = 0$.

7. Теорема о вынужденном пределе.

Теорема. Если $\forall n \in \mathbb{N} : x_n \leqslant y_n \leqslant z_n$ и $\exists \lim_{n \to \infty} x_n = a = \lim_{n \to \infty} z_n$, тогда $\lim_{n \to \infty} y_n = a$.

Доказательство. Из определения предела $\{x_n\}$, $\forall \varepsilon > 0 \ \exists N_1: \ \forall n \geqslant N_1 \implies |x_n-a| < \varepsilon \iff a-\varepsilon < x_n < a+\varepsilon$. Аналогично для предела $\{z_n\}$, $\forall \varepsilon > 0 \ \exists N_2: \ \forall n \geqslant N_2 \implies |z_n-a| < \varepsilon \iff a-\varepsilon < z_n < a+\varepsilon$.

Тогда,
$$\forall n \geqslant \max\{N_1, N_2\} \implies a - \varepsilon < x_n \leqslant y_n \leqslant z_n < a + \varepsilon \implies \lim_{n \to \infty} y_n = a.$$

8. Теорема о сходимости монотонных ограниченных последовательностей.

Теорема. Неубывающая числовая последовательность имеет предел, причём он в точности равен точной верхней границе (нижней границе, для ограниченной невозрастающей ч.п.).

Доказательство. Пусть $\{x_n\}$ — ограниченная неубывающая числовая последовательность. Тогда множество $\{x_n\}_{n\in\mathbb{N}}$ ограничено, следовательно, из определения супремума, имеет супремум. Обозначим его через S. Тогда $\lim_{n\to\infty} x_n = S$. Действительно, так как $S = \sup\{x_n\}_{n\in\mathbb{N}}$, то

$$\forall \varepsilon > 0 \ \exists N : \ \forall n \geqslant N \implies S - \varepsilon < x_N \leqslant x_n \leqslant S \implies |x_n - S| < \varepsilon$$

Аналогичное доказательство для ограниченной невозрастающей ч.п.

9. Определение числа е.

$$e = \sum_{n=0}^{\infty} \frac{1}{n!}$$

Теорема. Последовательность с общим членом $e_n = \left(1 + \frac{1}{n}\right)^n$ имеет конечный предел при $n \to \infty$. Для обозначение этого предела используется символ e.

Доказатель ство. Докажем сначала, что $\{e_n\}$ представляет собой монотонно возрастающую последовательность. Согласно биному Ньютона,

$$e_n = \left(1 + \frac{1}{n}\right)^n = 1 + n \cdot \frac{1}{n} + \frac{n(n-1)}{2!} \cdot \frac{1}{n^2} + \frac{n(n-1)(n-2)}{3!} \cdot \frac{1}{n^3} + \dots + \frac{1}{n^n}$$

$$= 2 + \frac{1}{2!} \cdot \left(1 - \frac{1}{n}\right) + \frac{1}{3!} \cdot \left(1 - \frac{1}{n}\right) \cdot \left(1 - \frac{2}{n}\right) + \frac{1}{n!} \cdot \left(1 - \frac{1}{n}\right) \dots \left(1 - \frac{1}{n-1}\right)$$

$$e_{n+1} = \left(1 + \frac{1}{n+1}\right)^{n+1}$$

$$= 2 + \frac{1}{2!} \cdot \left(1 - \frac{1}{n+1}\right) + \frac{1}{3!} \cdot \left(1 - \frac{1}{n+1}\right) \cdot \left(1 - \frac{2}{n+1}\right) + \dots$$

Сравним e_n и e_{n+1} :

- Оба выражения содержат только положительные слагаемые
- Начиная со второго слогаемого, каждый член в выражении e_{n+1} превышает соответствующий член в e_n , так как

$$\left(1-\frac{1}{n}\right)<\left(1-\frac{1}{n+1}\right),\left(1-\frac{2}{n}\right)<\left(1-\frac{2}{n+1}\right)\dots$$

• Выражение e_{n+1} состоит из большего числа слагаемых. Следовательно, $e_{n+1} > e_n$.

Далее докажем, что последовательность $\{e_n\}$ является ограниченной. Действительно, первый член любой монотонно возрастающей последовательности является ее наибольшей нижней границей и, таким образом, $e_n \geqslant 2 \ \forall n \in \mathbb{N}$.

Перейдем к доказательству существования верхней границы. Очевидно, что

$$e_n = 2 + \frac{1}{2!} \cdot \left(1 - \frac{1}{n}\right) + \frac{1}{3!} \cdot \left(1 - \frac{1}{n}\right) \cdot \left(1 - \frac{2}{n}\right) + \frac{1}{n!} \cdot \left(1 - \frac{1}{n}\right) \dots \left(1 - \frac{1}{n-1}\right) < 2 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \dots + \frac{1}{n!}$$

Кроме того, $\frac{1}{k!} < \frac{1}{2^k} \ \forall k > 3$. Тогда,

$$\frac{1}{4!} + \frac{1}{5!} + \dots + \frac{1}{n!} < \frac{1}{2^4} + \frac{1}{2^5} + \dots + \frac{1}{2^n}$$

Правая часть этого неравенства представляет собой сумму убывающей геометрической прогрессии, которая равна $\frac{\frac{1}{16}}{1-\frac{1}{2}}=\frac{1}{8}$. Таким образом, последовательность

$$e_n < 2 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \dots + \frac{1}{n!} < 2 + \frac{1}{2} + \frac{1}{6} + \frac{1}{8} < 3$$

представляет собой ограниченную монотонно возрастающую последовательность и, следовательно, имеет конечный предел.

10. Бесконечно малые последовательности.

Последовательность $\{a_n\}$ называется бесконечно малой, если

$$\forall \varepsilon > 0 \; \exists N : \; \forall n \geqslant N \implies |a_n| < \varepsilon$$

T.e.
$$\lim_{n\to\infty} a_n = 0$$
.

11. Связь со сходящимися последовательностями.

Если предел последовательности равен 0, то это бесконечно малая последовательность. Бесконечно малые последовательности являются сходящимися последовательностями.

Для того чтобы последовательность $\{x_n\}$ имела предел b, необходимо и достаточно, чтобы $x_n = b + \alpha_n$, где α_n — бесконечно малая последовательность.

12. Арифметические свойства бесконечно малых и сходящихся последовательностей.

Пусть $\{\alpha_n\}$ — бесконечно малая числовая последвательность.

Теорема. $\{\alpha_n\}$ ограничена

Доказательство. Как известно, $\forall \varepsilon > 0 \; \exists N : \; \forall n > N \implies |\alpha_n| < \varepsilon.$ Значит, для всех n > N доказано. Но $\forall n < N \implies \alpha_n \leqslant \max\{|\alpha_1|, |\alpha_2|, \dots, |\alpha_{N-1}|\}$. Тогда выберем $\varepsilon = 1, A = \max\{|\alpha_1|, |\alpha_2|, \dots, |\alpha_{N-1}|, 1\} \implies \forall n \in \mathbb{N}, |\alpha_n| \leqslant A$.

Теорема. Если $\{y_n\}$ ограничена, то $\{y_n \cdot \alpha_n\}$ — бесконечно малая.

 \mathcal{A} оказательство. $\{\alpha_n\}$ — бесконечно малая, поэтому $\forall \varepsilon > 0 \ \exists N: \ \forall n \geqslant N \implies |\alpha_n| < \frac{\varepsilon}{A}$. Ввиду ограниченности $\{y_n\}, \exists A: \ \forall n \in \mathbb{N} \implies |y_n| \leqslant A$. Но тогда $\{y_n \cdot \alpha_n\}: \forall \varepsilon > 0 \ \exists N: \ \forall n \geqslant N \implies |y_n \cdot \alpha_n| < \frac{\varepsilon}{A} \cdot A = \varepsilon$.

Теорема. Если $\{\beta_n\}$ — бесконечно малая, то $\{\alpha_n \pm \beta_n\}$ и $\{\alpha_n \cdot \beta_n\}$ — бесконечно малые.

Доказательство.

$$\forall \varepsilon > 0 \; \exists N_1 : \forall n \geqslant N_1 \implies |\alpha_n| < \frac{\varepsilon}{2} \; \text{и} \; \forall \varepsilon > 0 \; \exists N_2 : \forall n \geqslant N_2 \implies |\beta_n| < \frac{\varepsilon}{2}$$
 Тогда при $N = \max\{N_1, N_2\} \implies \forall n \geqslant N \implies |\alpha_n \pm \beta_n| \leqslant |\alpha_n| + |\beta_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$

Аналогично для произведения:

$$\forall \varepsilon>0 \; \exists N_1: \forall n\geqslant N_1 \implies |\alpha_n|<\frac{1}{\varepsilon} \; \text{и} \; \forall \varepsilon>0 \; \exists N_2: \forall n\geqslant N_2 \implies |\beta_n|<\varepsilon^2$$
 Тогда при $N=\max\{N_1,N_2\} \implies \forall n\geqslant N \implies |\alpha_n\cdot\beta_n|\leqslant |\alpha_n|\cdot |\beta_n|<\frac{1}{\varepsilon}\cdot \varepsilon^2=\varepsilon$

13. Арифметические свойства для последовательностей, имеющих конечные и бесконечные пределы.

Теорема. Если $\exists \lim_{n \to \infty} x_n = a$, $\lim_{n \to \infty} y_n = b$, то $\exists \lim_{n \to \infty} (x_n \pm y_n) = a \pm b$, $\lim_{n \to \infty} (x_n \cdot y_n) = a \cdot b$, а также $\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{a}{b}$, если $b \neq 0$.

Доказательство.

$$\lim_{n\to\infty}x_n=a, \lim_{n\to\infty}y_n=b\iff x_n=a+\alpha_n, y_n=b+\beta_n, \text{ где }\{\alpha_n\}\{\beta_n\}\text{— бесконечно малые.}$$

$$x_n\pm y_n=(a+\alpha_n)\pm(b+\beta_n)=(a\pm b)+\underbrace{(\alpha_n\pm\beta_n)}_{6\text{. м}}$$

$$x_n\cdot y_n=(a+\alpha_n)\cdot(b+\beta_n)=a\cdot b+\underbrace{(\alpha_n\cdot\beta_n+\alpha_n\cdot b+\beta_n\cdot a)}_{6\text{. м}}$$

Лемма. Пусть $\exists \lim_{n \to \infty} y_n = b \neq 0$. Тогда $\exists r > 0 : \exists N \in \mathbb{N} : \forall n \geqslant N \implies |y_n| > r > 0$.

Доказательство.
$$\forall \varepsilon > 0 \exists N : \forall n \geqslant N \implies |y_n - b| < \varepsilon \implies b - \varepsilon < y_n < b + \varepsilon$$
. Пусть $\varepsilon = \left| \frac{b}{2} \right|$, тогда $r < \left| \frac{b}{2} \right| < |y_n| < \left| \frac{3b}{2} \right|$.

Рассмотрим последовательность $\left\{ \frac{x_n}{y_n} - \frac{a}{b} \right\}$ — бесконечно малая.

$$\frac{x_n}{y_n} - \frac{a}{b} = \frac{a + \alpha_n}{b + \beta_n} - \frac{a}{b} = \frac{b \cdot a + b \cdot \alpha_n - b \cdot a - \beta_n \cdot a}{y_n \cdot b} = (\alpha_n \cdot b - \beta_b \cdot a) \cdot \frac{1}{y_n \cdot b}$$

По лемме $\left| \frac{1}{y_n \cdot b} \right| \leqslant max \left\{ \left| \frac{1}{y_1 \cdot b} \right|, \dots, \left| \frac{1}{y_N \cdot b} \right|, \frac{1}{rb} \right\} \implies \left\{ \frac{1}{y_n \cdot b} \right\}$ ограничена. Но тогда имеем про-

изведение бесконечно малой и ограниченной последовательностей, значит, $\left\{\frac{x_n}{y_n} - \frac{a}{b}\right\}$ — бесконечно малая.

14. Неопределенности.

Не очень понятно, что именно требуется в этом пункте

Основные виды неопределенностей: $\frac{0}{0},\frac{\infty}{\infty},0\cdot\infty,\infty-\infty,1^\infty,0^0,\infty^0$

Раскрывать неопределенность помогает:

- упрощение вида функции (преобразование выражения с использованием формул сокращенного умножения,
- тригонометрических формул, домножением на сопряженные выражения с последующим сокращением и т.п.); использование замечательных пределов;

15. Определение подпоследовательности.

Подпоследовательность последовательности $\{x_n\}$ — это последовательность $\{x_{n_k}\}=\{x_{n_1},x_{n_2},\ldots,x_{n_k}\}$, полученная из $\{x_n\}$, удалением ряда её членов без изменения порядка следования членов.

То есть подпоследовательность состоит из членов исходной последовательности $\{x_n\}$ с номерами n_k , где $\{n_k\}$ — строго монотонная последовательность натуральных чисел.

 Π римечание. Если $\lim_{n \to \infty} a_n = a$, тогда $\forall \{a_{n_k}\} : \lim_{k \to \infty} a_{n_k} = a$

16. Теорема Больцано-Вейерштрасса.

Теорема. Из любой ограниченной последовательности можно выделить сходящуюся подпоследовательность.

Доказательство. $\{x_n\}$ ограничена $\implies \exists [a,b]: \forall n \in N \implies a \leqslant x_n \leqslant b$. Поделим [a;b] на две равные части. Хотя бы одна из частей (пусть это $[a_1;b_1]$) содержит бесконечно много элементов $\{x_n\}$.

Выберем на $[a_1;b_1]$ произвольный элемент $\{x_n\}$. Назовем его x_{n_1} . Далее делим $[a_1;b_1]$ на две равные части. Хотя бы одна из этих частей содержит бесконечно много элементов $\{x_n\}$. Обозначим ее $[a_2;b_2]$. Выберем $x_{n_2}\in [a_2;b_2]$. Будем продолжать выполнять указанные действия. Обозначим за x_{n_k} число, полученное на k-ом шаге, т.е. $x_{n_k}\in [a_k;b_k]$.

 $\{[a_k;b_k]\}$ — система стягивающихся отрезков. Тогда, существует единственное $c: \forall k \implies c \in [a_k;b_k].$

$$\lim_{k \to \infty} a_k = \lim_{k \to \infty} b_k = c \implies \exists \lim_{k \to \infty} x_{n_k} = c$$
 (по теореме о двух милиционерах)

17. Критерий Коши сходимости последовательности.

Теорема. Для того, чтобы последовательность $\{x_n\}$ сходилась, необходимо и достаточно, чтобы она была фундаментальной.

Последовательность называется фундаментальной, если

$$\forall \varepsilon > 0 \; \exists N : \forall n, m \geqslant N : |x_n - x_m| < \varepsilon$$

Доказательство. Докажем необходимость и достаточность.

• Необходимость:

Пусть $\lim_{n\to\infty} x_n = a$ по определению:

$$\forall \varepsilon > 0: \exists N: \forall p \geqslant N \implies |x_p - a| < \varepsilon$$

Поскольку ε произвольное, можно взять вместо него $\frac{\varepsilon}{2}$

$$p = m \geqslant N \implies |x_m - a| < \frac{\varepsilon}{2}$$

$$p = n \geqslant N \implies |x_n - a| < \frac{\varepsilon}{2}$$

$$|x_n - x_m| = |x_n - a + a - x_m| \leqslant |x_n - a| + |a - x_m| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

То есть $|x_n - x_m| < \varepsilon$, а значит $\{x_n\}$ фундаментальная по определению. Необходимость доказана

• Достаточность:

Пусть $\{x_n\}$ — фундаментальная последовательность, докажем, что она имеет предел. Сначала покажем, что $\{x_n\}$ — ограничена. По определению фундаментальной последовательности

$$\forall \varepsilon > 0 \; \exists N : \forall n, m \geqslant N : |x_n - x_m| < \varepsilon$$

Так как ε произвольное, возьмём $\varepsilon=1$.

$$|x_n| = |(x_n - x_N) + x_N| \leqslant \underbrace{|x_n - x_N|}_{\leqslant \varepsilon} + |x_N| \leqslant 1 + |x_N|$$

$$\forall n \geqslant N \implies |x_n| \leqslant (1 + |x_N|) = const \leqslant A \implies |x_n| \leqslant A$$

$$A = \max\{1 + |x_N|; |x_1|; |x_2|; \dots; |x_N|\}$$

$$\forall n \geqslant N \implies |x_n| \leqslant A$$

По теореме ?? Больцано-Вейерштрасса, так как $\{x_n\}$ — ограниченная, $\{x_n\}$ имеет сходящуюся подпоследовательность $\{x_{n_k}\}$.

Пусть $\lim_{k\to\infty} x_{n_k} = a$, покажем, что число a и будет пределом всей последовательности $\{x_n\}$.

Так как $\{x_n\}$ фундаментальная:

$$\forall \varepsilon > 0: \exists N_1: \forall m, n \geqslant N_1 \implies |x_m - x_n| < \frac{\varepsilon}{2}$$

Так как $\{x_{n_k}\}$ сходящаяся:

$$\lim_{k\to\infty}x_{n_k}=a:\ \forall \varepsilon>0\ \exists N_2:\ \forall n_k\geqslant n_{N_2}\implies |x_{n_k}-a|<\frac{\varepsilon}{2}$$

$$\forall \varepsilon>0:\ |x_n-a|=|(x_n-x_{n_k})+(x_{n_k}-a)|\leqslant |x_n-x_{n_k}|+|x_{n_k}-a|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$$
 Возьмём $N=\max\{N_1,N_2\}:\ \forall \varepsilon>0\ \exists N:\ \forall n\geqslant N\implies |x_n-a|<\varepsilon$

Достаточность доказана.

18. Определение предела функции в точке по Коши и по Гейне.

- По Коши (или на языке $\varepsilon \delta$): A предел функции f(x) в точке a ($\lim_{x \to a} f(x) = A$), если $\forall \varepsilon > 0 \; \exists \delta > 0 : \forall x : \; 0 < |x a| < \delta \implies |f(x) A| < \varepsilon$
- По Гейне: A называется пределом функции f(x) в точке a, если $\forall \{x_n\} \to a, x_n \neq a$ (т.е. $\lim_{n \to \infty} x_n = a$), соответствующая последовательность значений $f(x_n) \to A$ (т.е. $\lim_{n \to \infty} f(x_n) = A$)

19. Теорема об эквивалентности этих определений.

• Из определения по Коши следует определение по Гейне: Выберем произвольную $\{x_n\} \to a, x_n \neq a$. По определению предела последовательности

$$\forall \delta > 0 \; \exists N : \; \forall n \geqslant N \implies |x_n - a| < \delta$$

Указанное неравенство выполняется для любого $\delta > 0$. Тогда какое бы $\varepsilon > 0$ мы бы ни выбрали, можно найти $\delta > 0$, такое, что по определению по Коши будет выполняться

$$\forall x: \ 0 < |x - a| < \delta \implies |f(x) - A| < \varepsilon$$

т.е. $\{f(x_n)\}\to A$, а значит из сходимости по Коши следует сходимость по Гейне.

• Из определения по Гейне следует определение по Коши: Пусть $\lim_{n\to\infty} f(x_n) = A$ По Гейне. От противного: если $\lim_{x\to a} f(x) = A$ по Гейне, то $\lim_{x\to a} f(x) \neq A$ по Коши. Напишем отрицание определения по Коши:

$$\exists \varepsilon_0 : \forall \delta > 0 : \exists x : 0 < |x - a| < \delta : |f(x) - A| \geqslant \varepsilon_0$$

Так как δ может быть любым, можно выбрать последовательность $\{\delta_n\} = \left\{\frac{1}{n}\right\}$, а соответствующие значения x будем обозначать как x_n . Тогда $0 < |x_n - a| < \delta_n = \frac{1}{n}$, и $|f(x_n) - A| \geqslant \varepsilon_0$. Отсюда следует, что последовательность $\{x_n\}$ является подходящей, но при этом число A не является пределом функции f(x) в точке a (по Гейне). Пришли к противоречию.

20. Односторонние пределы, их связь с двусторонними. Пределы функции в бесконечности.

Назовём число A левым (правым) пределом f по Коши, если:

$$\forall \varepsilon > 0 \; \exists \delta > 0 : \; \forall x \in (a - \delta; a)(x \in (a; a + \delta)) \implies |f(x) - A| < \varepsilon$$

Назовём число A левым (правым) пределом f по Гейне, если:

$$\forall \{x_n\}: \ \forall n \in \mathbb{N}, x_n \neq a, x_n < a \ (x_n > a) \ \text{if } \lim_{n \to \infty} x_n = a \implies \{f(x_n)\} \xrightarrow[n \to \infty]{} A$$

Обозначим односторонние пределы так: $\lim_{x\to a-0} f(x) = A = f(a-0)$ и $\lim_{x\to a+0} f(x) = A = f(a+0)$. Таким образом, когда мы можем «подойти» к предельному значению функции, двигаясь по x к точке a слева, говорят, что существует левый предел. Аналогично следует понимать и определение правого предела. Поэтому если мы можем подойти к a и слева, и справа, то существует предел в точке a. В кванторах это значит следующее:

$$\exists \lim_{x \to a} f(x) = A \iff \exists f(a-0) = f(a+0) = A$$
 (т. к. $\forall x: \ a-\delta < x < a \ \text{ и } \forall x: \ a < x < a+\delta \iff \forall x: \ 0 < |x-a| < \delta)$

Предел функции на бесконечности:

• По Коши:

$$\lim_{x\to\infty} f(x) = A \iff \forall \varepsilon > 0 \; \exists \delta > 0: \; \forall x \in D(f): \; |x| > \delta \implies |f(x) - A| < \varepsilon$$

• По Гейне:

$$\lim_{x \to \infty} f(x) = A \iff \forall \{x_n\} : \lim_{n \to \infty} x_n = \infty \implies \lim_{n \to \infty} f(x) = A$$

23. Первый и второй замечательные пределы.

1.23.1 Первый замечательный предел

Утверждение.

$$\lim_{x \to 0} \frac{\sin x}{x} = 0$$

Доказательство

1.23.2 Второй замечательный предел

Утверждение.

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x = e$$

Доказательство. Будем пользоваться тем фактом, что $e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$ (тут $n \in \mathbb{N}$, а x в утверждении — может быть не целым)

[x] — целая часть от числа x. Тогда

$$\begin{split} [x] \leqslant x \leqslant [x+1] &= [x] + 1 \\ \frac{1}{[x]+1} \leqslant \frac{1}{x} \leqslant \frac{1}{[x]} \\ 1 + \frac{1}{[x]+1} \leqslant 1 + \frac{1}{x} \leqslant 1 + \frac{1}{[x]} \\ \left(1 + \frac{1}{[x]+1}\right)^{[x]} \leqslant \left(1 + \frac{1}{x}\right)^{[x]} \leqslant \left(1 + \frac{1}{[x]}\right)^{[x]} \\ \left(1 + \frac{1}{[x]+1}\right)^{[x]} \leqslant \left(1 + \frac{1}{x}\right)^x \leqslant \left(1 + \frac{1}{[x]}\right)^{[x]+1} \end{split}$$

Воспользуемся теоремой о вынужденной сходимости

$$\left(1+\frac{1}{[x]}\right)^{[x]+1} = \left(1+\frac{1}{n}\right)^{n+1} \to e$$

$$\left(1+\frac{1}{[x]+1}\right)^{[x]} = \left(1+\frac{1}{[x]+1}\right)^{[x]+1-1} = \left(1+\frac{1}{n}\right)^{n-1} \to e$$
 Пояснение:
$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{n+1} = \lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n \cdot \left(1+\frac{1}{n}\right) = e \cdot 1 = e$$

Рассмотрим похожее утверждение

Утверждение.

$$\lim_{x \to -\infty} \left(1 + \frac{1}{x} \right)^x = e$$

Доказательство.

$$y = -x$$

$$x \to -\infty \iff y \to \infty$$

$$\lim_{x \to -\infty} \left(1 + \frac{1}{x} \right)^x \iff \lim_{y \to +\infty} \left(1 - \frac{1}{y} \right)^{-y} = \lim_{y \to +\infty} \left(\frac{y - 1}{y} \right)^{-y} =$$

$$= \lim_{y \to +\infty} \left(\frac{y - 1 + 1}{y - 1} \right)^y = \lim_{y \to +\infty} \left(1 + \frac{1}{y - 1} \right)^{y - 1 + 1} = e$$

24. Критерий Коши существования конечного предела функции.

Теорема. Для того, чтобы функция f имела конечный предел в точке x_0 , необходимо и достаточно, чтобы выполнялось условие Коши: для любого $\varepsilon > 0$ существовало такое число $\delta > 0$, что для всех $u,v \in X$ из неравенств $0 < |u-x_0| < \delta, 0 < |v-x_0| < \delta$ следует неравенство $|f(u)-f(v)| < \varepsilon$.

Доказательство

25. Определение непрерывности функции в точке.

Функция f(x) непрерывна в точке x_0 , если она определена на некоторой окрестности этой точки $\lim_{x\to x_0} f(x) = f(x_0)$. Другими словами, $A = f(x_0)$ и справедливы следующие определения предела функции в точке x_0 :

• По Koшu:

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \ \forall x, 0 < |x - x_0| < \delta \implies |f(x) - A| < \varepsilon$$

По Гейне:

$$\forall \{x_n\}: x_n \in \overset{\circ}{U}(x_0), \lim_{n \to \infty} x_n = x_0 \implies \lim_{n \to \infty} f(x_n) = A$$

26. Точки разрыва, их классификация.

Пусть f(x) определена в некоторой окрестности $U_{\delta}(a)$ и функция разрывна в a. Тогда говорят, что функция имеет

• **Устранимый разрыв**: пределы f(x) справа и слева существуют и равны друг другу, но отличаются от значения функции в исследуемой точке:

$$\lim_{x \to a-0} f(x) = \lim_{x \to a+0} f(x) \neq f(a)$$

- **Неустранимый разрыв первого рода**: пределы f(x) справа и слева существуют, но не равны друг другу
- **Неустранимый разрыв второго рода**: хотя бы один из односторонних пределов f(x) не существует или равен бесконечности.

27. Непрерывность элементарных функций.

Многие элементарные функции непрерывны на своей области определения (например, $\sin x, \cos x$). Докажем для некоторых из них

$$\lim_{\Delta \to 0} \sin(x_0 + \Delta) = \lim_{\Delta \to 0} (\sin x_0 \cos \Delta + \cos x_0 \sin \Delta) = \sin x_0 \cdot 1 + \cos x_0 \cdot 0 = \sin x_0$$

$$\lim_{\Delta \to 0} \cos(x_0 + \Delta) = \lim_{\Delta \to 0} (\cos x_0 \cos \Delta - \sin x_0 \sin \Delta) = \cos x_0 \cdot 1 - \sin x_0 \cdot 0 = \cos x_0$$

Тангенс и котангенс выражаются через синус и косинус. Воспользуемся арифметическими свойствами непрерывных функций. Поскольку синус и косинус определены и непрерывны для всех x, то тангенс и котангенс определены и непрерывны для всех x, кроме точек, в которых знаменатель обращается в нуль:

$$y = \operatorname{tg} x, \quad x \neq \frac{\pi}{2} + \pi n, n \in \mathbb{Z}$$

 $y = \operatorname{ctg} x, \quad x \neq \pi n, n \in \mathbb{Z}$

$$\lim_{\Delta \to 0} a^{x_0 + \Delta} = a^{x_0} \cdot a^0 = a^{x_0} \cdot 1 = a^{x_0}$$

28. Арифметические свойства непрерывных функций.

Теорема. Пусть g(x) и f(x) непрерывны в a, тогда функции $f \pm g, f \cdot g, \frac{f}{g} (g \neq 0)$ также непрерывны в точке a.

Доказательство. Рассмотрим сумму (f(x)+g(x)). Для остальных операций доказательство практически аналогично. По определению $\lim_{x\to a} f(x) = f(a)$ и $\lim_{x\to a} g(x) = g(a)$. Но тогда, используя свойство суммы для пределов, получаем, что $\lim_{x\to a} (f(x)+g(x)) = f(a)+g(a)$, что означает, что (f(x)+g(x)) непрерывна в точке a.

29. Теорема о непрерывности сложной функции.

Теорема. Если функция g(t) непрерывна в точке t_0 и функция f(x) непрерывна в точке $x_0 = g(t_0)$, то f(g(t)) непрерывна в t_0 .

Доказательство. Для доказательства этой теоремы воспользуемся формальным преобразованием двух выражений с кванторами.

f(x) непрерывна в x_0 :

$$\forall \varepsilon > 0 \ \exists \delta > 0: \ \forall x: \ 0 < |x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon$$

q(t) непрерывна в t_0 :

$$\forall \delta > 0 \ \exists \mu > 0 : \ \forall t : \ 0 < |t - t_0| < \mu \implies |g(t) - g(t_0)| < \delta$$

Получается, f(g(t)) непрерывна в t_0 :

$$\forall \varepsilon > 0 \ \exists \mu > 0 : \ \forall t : \ 0 < |t - t_0| < \mu \implies |f(g(t)) - f(g(t_0))| < \varepsilon$$

30. Свойства функций, непрерывных на отрезке (первая и вторая теоремы Вейерштрасса).

Теорема Вейерштрасса (первая) Если функция f(x) непрерывна на отрезке [a,b], то она на нём ограничена, то есть $\exists A: \forall x \in [a,b] \implies |f(x)| \leq A$

Доказательство. Докажем от противного.

Пусть f не ограничена на отрезке [a, b], тогда:

$$\forall A > 0 \ \exists x_A \in [a, b]: \ |f(x_A)| > A$$

$$A = 1 \implies \exists x_1 \in [a, b]: \ |f(x_1)| > 1$$

$$A = 2 \implies \exists x_2 \in [a, b]: \ |f(x_2)| > 2$$

$$\vdots$$

$$A = n \implies \exists x_n \in [a, b]: \ |f(x_n)| > n$$

Получим последовательность $\{x_n\} \subset [a,b]$, то есть последовательность $\{x_n\}$ ограничена.

По теореме Больцано-Вейерштрасса из неё можно выделить подпоследовательность, которая сходится к точке c, то есть

$$\lim_{k \to \infty} x_{n_k} = c$$

Тогда $c \in [a, b]$. Но по условию функция непрерывна в точке c и тогда по определению непрерывности в точке по Гейне $\lim_{t \to a} f(x_{n_k}) = f(c)$.

С другой стороны

$$|f(x_{n_k})| > n_k, n_k \geqslant k \implies \lim_{k \to \infty} f(x_{n_k}) = \infty$$

А это противоречит единственности предела.

Теорема Вейерштрасса (вторая) Непрерывная на отрезке [a,b] функция f достигает на нем своих точных нижней и верхней граней. То есть существуют такие точки $c_1, c_2 \in [a,b]$, так что для любого $x \in [a,b]$, выполняются неравенства:

$$f(c_2) \leqslant f(x) \leqslant f(c_1)$$

Доказатель ство. Докажем $\exists c_1 \in [a,b]: \ f(c_1) = \sup_{x \in [a,b]} f(x).$

Пусть $M=\sup_{x\in [a,b]}f(x)$ (существование следует из первой теоремы Вейерштрасса). В силу определения точной верхней грани выполняется условие:

$$\begin{cases} \forall x \in [a, b] \implies f(x) \leqslant M \\ \forall \varepsilon > 0 \ \exists x_{\varepsilon} \in [a, b] : \ M - \varepsilon < f(x_{\varepsilon}) \end{cases}$$

Полагая $\varepsilon=1,\frac{1}{2},\frac{1}{3},\ldots,\frac{1}{n}$ получим последовательность $\{x_n\}$ такую, что для всех $n\in\mathbb{N}$ выполняются условия $M-\frac{1}{n}< f(x_n)\leqslant M,$ откуда $\exists\lim_{n\to\infty}f(x_n).$ Существует подпоследовательность $\{x_{n_k}\}$ последовательности $\{x_n\}$ (она ограничена отрезком [a,b], а значит является ограниченной) и точка c (по теореме Больцано-Вейерштрасса, из последовательности можно выделить подпоследовательность, сходящуюся к точке c), такие что $\lim_{k\to\infty}x_{n_k}=c$, где $c\in[a,b]$.

В силу непрерывности функции f в точке c, получаем $\lim_{k\to\infty} f(x_{n_k}) = f(c)$.

С другой стороны, $\{f(x_{n_k})\}$ — подпоследовательность последовательности $\{f(x_n)\}$, сходящейся к числу M. Поэтому $\lim_{k\to\infty} f(x_{n_k}) = M$.

В силу единственности предела последовательности заключаем, что $f(c) = M = \sup_{x \in [a,b]} f(x)$.

Утверждение $\exists c_1 \in [a,b]: \ f(c_1) = \sup_{x \in [a,b]} f(x)$ доказано.

Аналогично доказывается $\exists c_2 \in [a,b]: \ f(c_2) = \inf_{x \in [a,b]} f(x)$

Функция непрерывна на интервале может не достигать своих точных граней (требовать непрерывности на сегменте существенно).

31. Критерий существования и непрерывности обратной функции на промежутке

32. Теорема Коши о прохождении непрерывной функции через промежуточные значения.

Теорема Больцано-Коши (первая), о нулях непрерывной функции Если функция f(x) непрерывна на сегменте [a,b] и на своих концах принимает значение разных знаков, то существует такая точка, принадлежащая этому отрезку, в которой функция обращается в нуль.

Алгебраически: разделим отрезок [a,b] точкой x_0 на два равных по длине отрезка, тогда либо $f(x_0)=0$ и, значит, искомая точка x_0 найдена, либо $f(x_0)\neq 0$ и тогда на концах одного из полученных промежутков функция f принимает значения разных знаков, точнее, на левом конце значение меньше нуля, на правом — больше.

Обозначим этот отрезок $[a_1,b_1]$ и разделим его снова на два равных подлине отрезка и т.д. В результате, либо через конечное число шагов придем к искомой точке x, в которой f(x)=0, либо получим последовательность вложенных отрезков $[a_n,b_n]$ по длине стремящихся к нулю и таких, что

$$f(a_n) < 0 < f(b_n)$$

Пусть γ — общая точка всех отрезков $[a_n,b_n]$. Тогда $\gamma=\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n$. Поэтому, в силу непрерывности функции f

$$f(\gamma) = \lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} f(b_n)$$

Но тогда

$$\lim_{n \to \infty} f(a_n) \leqslant 0 \leqslant \lim_{n \to \infty} f(b_n)$$

Откуда следует, что $f(\gamma) = 0$.

Теорема Больцано-Коши (вторая), о промежуточном значении непрерывных функций Если функция f непрерывна на отрезке [a,b] и $A=f(a)\neq f(b)=B$, число $C\in (A,B)$, тогда существует такая точка $c\in [a,b]$, что f(c)=C.

Другими словами, утверждается, что если непрерывная функция, принимает два значения, то она принимает и любое значение между ними.

Доказатель ство. Не нарушая общности будем считать, что A=f(a)< f(b)=B. Рассмотри функцию h(x)=f(x)-C, непрерывность на отрезке [a,b] которой следует из непрерывности функции f. Очевидно что h(a)=A-C<0 и h(b)=B-C>0. Применяем к h первую теорему Больцано-Коши и находим точку c, в которой h(c)=f(c)-C=0, то есть f(c)=C. Теорема доказана.

33. Понятие производной функции в точке.

Рассмотрим функцию, область определения которой содержит точку x_0 . Тогда функция f(x) является дифференцируемой в точке x_0 , и ее производная $f'(x_0)$ определяется следующей формулой, если существует предел

$$f'(x_0) = \lim_{\Delta \to 0} \frac{f(x_0 + \Delta) - f(x_0)}{\Delta}$$

34. Геометрический и физический смысл производной.

Геометрический смысл производной. Производная в точке x_0 равна угловому коэффициенту касательной к графику функции y = f(x) в этой точке.

Физический смысл производной. Если точка движется вдоль оси OX и ее координата изменяется по закону x(t), то мгновенная скорость точки: v(t) = x'(t).

35. Уравнение касательной к графику функции в точке.

Пусть дана функция f, которая в некоторой точке x_0 имеет конечную производную $f'(x_0)$. Тогда прямая, проходящая через точку $(x_0; f(x_0))$, имеющая угловой коэффициент $f'(x_0)$, называется касательной.

Итак, пусть дана функция y = f(x), которая имеет производную y = f'(x) на отрезке [a, b]. Тогда в любой точке $x_0 \in (a; b)$ к графику этой функции можно провести касательную, которая задается уравнением:

$$y = f'(x_0) \cdot (x - x_0) + f(x_0)$$

36. Понятие дифференцируемости функции в точке.

Функция f(x) является дифференцируемой в точке x_0 своей области определения D[f], если существует такая константа A, что:

$$f(x) = f(x_0) + A(x - x_0) + \bar{o}(x - x_0)$$

$$H$$

$$A = f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Теорема f(x) дифференцируема в точке x только и только тогда, когда $\exists f'(x)$, причем A = f'(x)

Доказательство. Докажем необходимость и достаточность

- **Необходимость**. Пусть f(x) дифференцируема в точке $x \implies \Delta y = A\Delta x + \bar{o}(\Delta x) \implies \frac{\Delta y}{\Delta x} = A + \frac{\bar{o}(\Delta x)}{\Delta x} = A + \bar{o}(1)$ Тогда $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = A \implies A = f'(x)$
- Достаточность. Пусть $\exists f'(x) \implies \exists \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x)$. Рассмотрим $\beta(\Delta x) = \frac{\Delta y}{\Delta x} f'(x)$. $\lim_{\Delta x \to 0} \beta(\Delta x) = 0$, т.е. $\beta(\Delta x) = \bar{o}(1) \implies \frac{\Delta y}{\Delta x} f'(x) = \bar{o}(1) \implies \Delta y = f'(x)\Delta x + \bar{o}(\Delta x)$

37. Необходимое условие дифференцируемости.

Теорема. Если функция f(x) дифференцируема в точке x_0 , то она непрерывна в этой точке.

$$\Delta y = A\Delta x + \bar{o}(\Delta x)$$

Но тогда при $\Delta x \to 0$ будет $\Delta y \to 0$, а это означает непрерывность функции y = f(x) в точке x_0 .

Обратите внимание, что из непрерывности не следует дифференцируемости (например, f(x) = |x|).

38. Правила дифференцирования.

Теорема. Если f(x) и g(x) дифференцируемы в точке x, то $f \pm g$, $f \cdot g$, $\frac{f}{g}(g \neq 0)$ также дифференцируемы в точке x, причем $(f \pm g)' = f' \pm g'$, $(f \cdot g)' = f'g + fg'$, $\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$

Доказательство. Будем считать, что Δf отвечает приращению f(x), Δg отвечает приращению g(x), а Δh отвечает приращению h(x).

1. $h(x) = f(x) \pm g(x)$

$$\begin{split} \Delta h &= h(x+\Delta x) - h(x) = (f(x+\Delta x) \pm g(x+\Delta x)) - (f(x) \pm g(x)) \\ &= (f(x+\Delta x) - f(x)) \pm (g(x+\Delta x) - g(x)) \\ &= \Delta f \pm \Delta g \end{split}$$

Таким образом,

$$\frac{\Delta h}{\Delta x} = \frac{\Delta f}{\Delta x} \pm \frac{\Delta g}{\Delta x}$$

При $\Delta x \to 0$ существует предел правой части, равный $f'(x) \pm g'(x)$, а значит, существует и предел левой части

$$h'(x) = f'(x) \pm g'(x)$$

 $2. \ h(x) = f(x) \cdot g(x)$

$$\Delta h = h(x + \Delta x) - h(x) = f(x + \Delta x) \cdot g(x + \Delta x) - f(x)g(x)$$
$$= (f(x + \Delta x) \cdot g(x + \Delta x) - f(x + \Delta x) \cdot g(x)) + (f(x + \Delta x) \cdot g(x) - f(x) \cdot g(x))$$

Далее можно записать

$$\Delta h = f(x + \Delta x) \cdot (g(x + \Delta x) - g(x)) + g(x) \cdot (f(x + \Delta x) - f(x)) = f(x + \Delta x) \cdot \Delta g + g(x) \Delta f(x)$$

Таким образом

$$\frac{\Delta h}{\Delta x} = f(x + \Delta x) \frac{\Delta g}{\Delta x} + g(x) \cdot \frac{\Delta f}{\Delta x}$$

Возьмем теперь предел правой части при $\Delta x \to 0$. В силу непрерывности f(x) в x (т.к. она дифференцируема в этой точке) $\lim_{\Delta x \to 0} f(x + \Delta x) = f(x)$. Тогда получаем, что

$$h'(x) = f(x) \cdot g'(x) + g(x) \cdot f'(x)$$

Лемма. Если f(x) непрерывна в точке a и f(a) > 0 (f(a) < 0), то $\exists \delta > 0 : f(x) > 0 (f(x) < 0) \forall x \in U_{\delta}(a)$

Доказательство. Так как $f(x) \in C(a)$, то $\forall \varepsilon > 0 \; \exists \delta > 0 : \; \forall x \in U_{\delta}(a) \implies |f(x) - f(a)| < \varepsilon \iff f(a) - \varepsilon < f(x) < f(a) + \varepsilon$. Положим $\varepsilon = \frac{|f(a)|}{2}$, тогда $f(a) - \varepsilon > 0$ при f(a) > 0 и $f(a) + \varepsilon < 0$ при f(a) < 0. Т.е. левая и правая части неравенства всегда одного знака, значит $\forall x \in U_{\delta}(a)$ выполнено требуемое.

3. $h(x) = \frac{f(x)}{g(x)}$. По лемме, $g(x) \neq 0$, то $g(x + \Delta x) \neq 0$ для малых Δx . Тогда

$$\begin{split} \Delta h &= h(x+\Delta x) - h(x) = \frac{f(x+\Delta x)}{g(x+\Delta x)} - \frac{f(x)}{g(x)} \\ &= \frac{f(x+\Delta x)g(x) - g(x+\Delta x)f(x)}{g(x)g(x+\Delta x)} \\ &= \frac{(f(x+\Delta x)g(x) - f(x)g(x)) - (g(x+\Delta x)f(x) - f(x)g(x))}{g(x)g(x+\Delta x)} \\ &= \frac{g(x)(f(x+\Delta x) - f(x)) - f(x)(g(x+\Delta x) - g(x))}{g(x)g(x+\Delta x)} \\ &= \frac{g(x)\Delta f - f(x)\Delta g}{g(x)g(x+\Delta x)} \end{split}$$

Таким образом,

$$\frac{\Delta h}{\Delta x} = \frac{g(x)\frac{\Delta f}{\Delta x} - f(x)\frac{\Delta g}{\Delta x}}{g(x)g(x + \Delta x)}$$

Снова используя непрерывность и беря предел правой и левой частей, получаем, что

$$h'(x) = \frac{g(x)f'(x) - f(x)g'(x)}{g^2(x)}$$

39. Теорема о дифференцируемости и производной сложной функции.

Теорема. Пусть функцию y = y(x) от переменной x можно представить как сложную функцию в следующем виде:

$$y(x) = f(u(x))$$

где f(u) и u(x) есть некоторые функции. Функция u=u(x) дифференцируема при некотором значении переменной x. Функция f(u) дифференцируема при значении переменной u=u(x). Тогда сложная (составная) функция y=f(u(x)) дифференцируема в точке x и ее производная определяется по формуле:

$$y'(x) = f'(u) \cdot u'(x)$$

Доказательство. Введем следующие обозначения.

$$\Delta u = u(x + \Delta x) - u(x)$$

$$\Delta f = f(u + \Delta u) - f(u) = f(u(x + \Delta x)) - f(u(x))$$

Здесь Δu есть функция от переменных x и Δx , Δf есть функция от переменных u и Δu . Но мы будем опускать аргументы этих функций, чтобы не загромождать выкладки.

Поскольку функции u и f дифференцируемы в точках x и u = u(x), соответственно, то в этих точках существуют производные этих функций, которые являются следующими пределами:

$$u'(x) = \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x}$$
$$f'(u) = \lim_{\Delta u \to 0} \frac{\Delta f}{\Delta u}$$

Рассмотрим следующую функцию:

$$\varepsilon(\Delta u) = \frac{\Delta f}{\Delta u} - f'(u)$$

При фиксированном значении переменной u, ε является функцией от Δu . Очевидно, что

$$\lim_{\Delta u \to 0} \varepsilon(\Delta u) = 0$$

Тогда

$$\Delta f = (f'(u) + \varepsilon(\Delta u)) \cdot \Delta u$$

Поскольку функция u(x) является дифференцируемой функцией в точке x, то она непрерывна в этой точке. Поэтому

$$\lim_{\Delta x \to 0} \Delta u = 0$$

Тогда

$$\lim_{\Delta x \to 0} \varepsilon(\Delta u) = \lim_{\Delta u \to 0} \varepsilon(\Delta u) = 0$$

Теперь находим производную.

$$y'(x) = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \left(f'(u) \frac{\Delta u}{\Delta x} + \varepsilon(\Delta u) \frac{\Delta u}{\Delta x} \right)$$

$$= f'(u) \cdot \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} + \lim_{\Delta x \to 0} \varepsilon(\Delta u) \cdot \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x}$$

$$= f'(u) \cdot u'(x) + 0 \cdot u'(x)$$

$$= f'(u) \cdot u'(x)$$

Формула доказана.

40. Теорема о дифференцируемости обратной функции

Теорема. Рассмотрим функцию f(x), которая является строго монотонной на некотором интервале (a,b). Если в этом интервале существует такая точка x_0 , что $f'(x_0) \neq 0$, то функция $x = \phi(y)$, обратная к функции y = f(x), также дифференцируема в точке $y_0 = f(x_0)$ и её производная равна

$$\phi'(y_0) = \frac{1}{f'(x_0)}$$

41. Таблица производных основных элементарных функций.

f(x)	f'(x)
const	0
x^a	$a \cdot x^{a-1}$
a^x	$a^x \cdot \ln a$
e^x	e^x
$\log_a x$	$\frac{1}{\ln a \cdot x}$
$\ln x$	$\frac{1}{x}$
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
$\operatorname{tg} x$	$\frac{1}{\cos^2 x}$
$\operatorname{ctg} x$	$-\frac{1}{\sin^2 x}$

f(x)	f'(x)
$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$
$\arccos x$	$-\frac{1}{\sqrt{1-x^2}}$
$\operatorname{arctg} x$	$\frac{1}{1+x^2}$
$\operatorname{arcctg} x$	$-\frac{1}{1+x^2}$

42. Понятие дифференциала (первого) функции в точке.

Функция f(x) является дифференцируемой в точке x_0 своей области определения D[f], если существует такая константа A, что:

$$f(x) = f(x_0) + A(x - x_0) + \bar{o}(x - x_0)$$
$$A = f'(x_0) = \lim_{\Delta \to 0} \frac{f(x_0 + \Delta) - f(x_0)}{\Delta}$$

Тогда выражение $f'(x_0)dx$ называют дифференциалом функции f(x) в точке x_0 . Обозначение: $df = df(x_0, dx)$. Обратите внимание, что df зависит и от точки, и от dx.

43. Инвариативность формы первого дифференциала

Найдем выражение для дифференциала сложной функции. Пусть y = f(u(x)). Тогда

$$dy = y'(x) \cdot dx = f'(u(x)) \cdot u'(x) \cdot dx = f' \cdot du$$

Таким образом, форма дифференциала не зависит от того, является аргумент функции независимой переменной или функцией другого аргумента. Это свойство называется свойством неизменности, или инвариантности, дифференциала.

44. Производные и дифференциалы высших порядков функции одной переменной в точке.

Рассмотрим функцию, дифференцируемую на множестве E. Т.е. $\exists f'(x)$, Если f'(x) тоже дифференцируема на E, то $\exists (f'(x))' = f''(x)$.

Производной n-ого порядка будем считать $f^{(n)}(x) = (f^{(n-1)}(x))'$, причем $f^{(0)}(x) = f(x)$. Разумеется, для существования производной n-ого порядка должны существовать производные всех меньших порядков.

Множество функций, имеющих все производные до порядка n включительно на множестве E, обозначается $C^{(n)}(E)$. Рассмотрми несколько примеров

•
$$f(x) = \sin x$$

$$f'(x) = \cos x = \sin\left(\frac{\pi}{2} + x\right)$$
$$f''(x) = -\sin x = \sin\left(\frac{2\pi}{2} + x\right)$$
$$f'''(x) = -\cos x = \sin\left(\frac{3\pi}{2} + x\right)$$
$$f^{(4)}(x) = \sin x = \sin x$$

Докажем по индукции, что $f^{(n)}(x)=\sin\left(\frac{\pi n}{2}+x\right)$. При n=1 уже было показано ранее. Пусть это верно при некотором n, покажем для n=n+1.

$$f^{(n+1)}(x) = \sin\left(\frac{\pi(n+1)}{2} + x\right)$$
$$f^{(n+1)}(x) = (f^{(n)}(x))' = \left(\sin\left(\frac{\pi n}{2} + x\right)\right)' = \cos\left(\frac{\pi n}{2} + x\right) = \sin\left(\frac{\pi(n+1)}{2} + x\right)$$

- $f(x) = e^x$. $f^{(n)}(x) = e^x$
- $f(x)=x^m$. Беря n раз производную, получаем, что $f^{(n)}(x)=m(m-1)\dots(m-n+1)x^{m-n}$
- $f(x) = \ln x$. $f'(x) = \frac{1}{x} = x^{-1}$. $f^{(n)}(x^{-1}) = (-1)(-2)\dots(-n)x^{-1-n} = (-1)^n \cdot n! \cdot x^{-1-n}$, Тогда получаем, что

$$f^{(n)}(x) = f^{(n-1)}(x-1) = (-1)^{n-1} \cdot (n-1)! \cdot x^{-n}$$

Дифференциал порядка n, где n > 1, от функции f в некоторой точке называется дифференциал в этой точке от дифференциала порядка (n-1), то есть

$$d^n f = d(d^{n-1}f) = f^{(n)} \cdot dx^n$$

Теорема (Формула Лейбница) Пусть u(x) и v(x) имеют не менее n производных на множестве E. Тогда

$$(u \cdot v)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} \cdot u^{(n-k)} \cdot v^{(k)}$$

$$(u \cdot v)' = u'v + uv' = \sum_{k=0}^{1} {1 \choose k} \cdot u^{(1-k)} \cdot v^{(k)}$$

Пусть равенство верно при некотором n, докажем его справедливость при n=n+1. Беря по определению производную $(u\cdot v)^{(n+1)}$

$$(u \cdot v)^{(n+1)} = \left(\sum_{k=0}^{n} \binom{n}{k} \cdot u^{(n-k)} \cdot v^{(k)}\right)'$$

$$= \sum_{k=0}^{n} \binom{n}{k} \cdot u^{(n-k+1)} \cdot v^{(k)} + \sum_{k=0}^{n} \binom{n}{k} \cdot u^{(n-k)} \cdot v^{(k+1)}$$

$$= \sum_{k=0}^{n} \binom{n}{k} \cdot u^{(n-k+1)} \cdot v^{(k)} + \sum_{k=1}^{n+1} \binom{n}{k-1} \cdot u^{(n-k+1)} \cdot v^{(k)}$$

$$= \binom{n}{0} \cdot u^{(n+1)} \cdot v + \sum_{k=1}^{n} \binom{n}{k} + \binom{n}{k-1} \cdot u^{(n-k+1)} \cdot v^{(k)} + \binom{n}{n} \cdot u \cdot v^{(n+1)}$$

$$= \binom{n}{0} \cdot u^{(n+1)} \cdot v + \sum_{k=1}^{n} \binom{n+1}{k} \cdot u^{(n-k+1)} \cdot v^{(k)} + \binom{n}{n} \cdot u \cdot v^{(n+1)}$$

$$= \sum_{k=0}^{n+1} \binom{n+1}{k} \cdot u^{(n-k+1)} \cdot v^{(k)}$$

Последний переход сделан при помощи следующего рассуждения:

$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$

45. Понятие об экстремумах функции одной переменной.

Точка x_0 называется точкой локального максимума (минимума) функции f, если существует такая окрестность $U_{\delta}(x_0)$ точки x_0 , что

$$\forall x \in U_{\delta}(x_0) \implies f(x) \leqslant f(x_0)$$

и точкой локального минимума, если

$$\forall x \in U_{\delta}(x_0) \implies f(x) \geqslant f(x_0)$$

Точка x_0 будет называться точкой строгого локального экстремума, если заменить окрестность на проколотую окрестность и нестрогий знак заменить на строгий.

Теорема Ферма Если функция y = f(x) имеет экстремум в точке x_0 , то ее производная $f'(x_0)$ либо равна нулю, либо не существует.

46. Локальный экстремум. Необходимое условие для внутреннего локального экстремума (теорема Ферма).

Теорема Ферма Пусть функция f определена на интервале (a,b) и в некоторой точке $x_0 \in (a,b)$ принимает наибольшее (наименьшее) значение на этом интервале. Если существует $f'(x_0)$, то $f'(x_0) = 0$.

Доказательство. Пусть x_0 — точка максимума функции f. Рассмотрим разностное отношение $\frac{f(x)-f(x_0)}{x-x_0}$. Так как $f(x)\leqslant f(x_0)$, то при $x>x_0$ имеем $\frac{f(x)-f(x_0)}{x-x_0}\leqslant 0$, и, следовательно, $f'_+(x_0)\leqslant 0$. Если же $x< x_0$, то $\frac{f(x)-f(x_0)}{x-x_0}\geqslant 0$, и поэтому $f'_-(x_0)\geqslant 0$. Но из дифференцируемости функции f в точке x_0 следует, что $f'_+(x_0)=f'_-(x_0)=f'(x_0)$ (следует из равности предела справа и слева).

С геометрической точки зрения теорема Φ ерма означает, что если в точке экстремума у графика функции существует касательная, то она параллельна оси OX.

47. Основные теоремы о дифференцируемых функций на отрезке (теорема Ролля, формулы Лагранжа и Коши.

Теорема Ролля. О нуле производной функции, принимающей на концах отрезка равные значения Π усть функция y=f(x)

- 1. непрерывна на отрезке [a, b];
- 2. дифференцируема на интервале (a, b);
- 3. f(a) = f(b)

Тогда на интервале (a,b) найдется, по крайней мере, одна точка x_0 , в которой $f'(x_0) = 0$.

Доказательство. Если функция f(x) постоянна на отрезке [a,b] (а значит, её минимальное и максимальное значение совпадают), то производная равна нулю в любой точке интервала (a,b), в этом случае утверждение справедливо.

Иначе, минимальное и максимальное значение функции не совпадают. По второй теореме Вейерштрасса (о достижении функции значения точной верхней/нижней грани на отрезке), функция достигает своего наибольшего или наименьшего значения в точке ξ интервала (a,b), т.е. в точке ξ существует локальный экстремум. Тогда по теореме Ферма производная в этой точке равна нулю

$$f'(\xi) = 0$$

Теорема Лагранжа. Формула конечных приращений Если функция f(x) непрерывна на отрезке [a,b] и дифференцируема на интервале (a,b), то в этом интервале существует хотя бы одна точка x_0 , что

$$\frac{f(b) - f(a)}{b - a} = f'(x_0)$$

Доказательство. Рассмотрим вспомогательную функцию $F(x) = f(x) + \lambda x$.

Выберем число λ таким, чтобы выполнялось условие F(a) = F(b), тогда

$$f(a) + \lambda a = f(b) + \lambda b \implies f(b) - f(a) = \lambda(a - b) \implies \lambda = -\frac{f(b) - f(a)}{b - a}$$

В результате получаем

$$F(x) = f(x) - \frac{f(b) - f(a)}{b - a} \cdot x$$

Функция F(x) непрерывна на отрезке [a,b], дифференцируема на интервале (a,b) и принимает одинаковые значения на концах отрезка. Следовательно, для неё выполнены все условия теоремы Ролля. Тогда в интервале (a,b) существует такая точка ξ , что $F'(\xi)=0$.

Отсюда следует, что $0 = f'(\xi) - \frac{f(b) - f(a)}{b - a}$ или

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}$$

Теорема Лагранжа имеет простой геометрический смысл. Хорда, проходящая через точки графика, соответствующие концам отрезка a и b имеет угловой коэффициент, равный

$$k = \operatorname{tg} \alpha = \frac{f(b) - f(a)}{b - a}$$

Тогда внутри отрезка существует точка $x = \xi$, в которой касательная к графику параллельна хорде.

Теорема Коши. Обобщает формулу конечных приращений Лагранжа. Пусть функции f(x) и g(x) непрерывны на отрезке [a,b] и дифференцируемы на интервале (a,b), причем $g'(x) \neq 0$ при всех $x \in (a,b)$. Тогда в этом интервале существует точка $x = \xi$ такая, что

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}$$

Доказательство. Доказательство совпадает с доказательством теормы Лагранжа.

Прежде всего заметим, что знаменатель в левой части формулы Коши не равен нулю: $g(b)-g(a)\neq 0$. Действительно, если g(a)=g(b), то по теореме Ролля найдется точка $\mu\in (a,b)$, в которой $g'(\mu)=0$. Это, однако, противоречит условию, где указано, что $\forall x\in (a,b):\ g'(x)\neq 0$.

Введем вспомогательную функцию $F(x) = f(x) + \lambda g(x)$.

Выберем число λ таким, чтобы выполнялось условие F(a)=F(b), тогда

$$f(a) + \lambda g(a) = f(b) + \lambda g(b) \implies f(b) - f(a) = \lambda (g(a) - g(b)) \implies \lambda = -\frac{f(b) - f(a)}{g(b) - g(a)}$$

В результате получаем

$$F(x) = f(x) - \frac{f(b) - f(a)}{g(b) - g(a)} \cdot g(x)$$

Функция F(x) непрерывна на отрезке [a,b], дифференцируема на интервале (a,b) и при найденном значении λ принимает одинаковые значения на концах отрезка. Следовательно, для неё выполнены все условия теоремы Ролля. Тогда в интервале (a,b) существует такая точка ξ , что $F'(\xi)=0$.

Отсюда следует, что

$$0 = f'(\xi) - \frac{f(b) - f(a)}{g(b) - g(a)} \cdot g'(\xi)$$

или

$$\frac{f'(\xi)}{g'(\xi)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

48. Многочлен Тейлора и формула Тейлора для функций одной переменной с остаточным членом в форме Пеано и Лагранжа.

Предположим, что имеется некоторая функция f(x) и надо исследовать ее поведение в некоторой точке x_0 или ее окрестности. Сама функция может быть при этом достаточно сложной, и поэтому непосредственное вычисление $\lim_{x\to x_0} f(x)$ (как пример того, что мы хотим узнать о функции в x_0) окажется крайне трудоемким. Идея в том, чтобы найти такой многочлен $P_n(x)$, что $f(x)\sim P_n(x-x_0)$ при $x\to x_0$, а затем исследовать его. Работать с многочленами практически всегда намного проще. Предположим пока, что $x_0=0$. Тогда $P_n(x)=c_0+c_1x+c_2x^2+\cdots+c_nx^n$. $P_n(0)=c_0$, а $P_n'(x)=c_1+2c_2x+\cdots+nc_nx^{n-1}$, из чего следует, что $c_1=P_n'(0)$. По аналогии можно получить, что $c_2=\frac{P_n''(0)}{2!},\ldots,c_n=\frac{P_n^{(n)}(0)}{n!}$. Т.е. получаем, что $P_n(x)=P_n(0)+\frac{P_n'(0)}{1!}x+\cdots+\frac{P_n^{(n)}(0)}{n!}x^n$.

Пусть $\exists f^{(n)}(x_0)$, тогда справедлива формула:

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + r_n(f, x)$$

Эта формула называется формулой Тейлора и обычно записывается в виде:

$$f(x) = \underbrace{\sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} \cdot (x - x_0)^k}_{\text{многочлен Тейлора}} + \underbrace{r_n(f, x)}_{\text{остаточный член}}$$

Лемма. Пусть $\exists f^{(n)}(x_0)$ и $\exists f'(x)$ на некоторой $U(x_0)$. Тогда $(r_n(f,x))' = r_{n-1}(f',x)$.

Доказательство.

$$r_n(f,x) = f(x) - \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$
$$(r_n(f,x))' = f'(x) - \sum_{k=1}^n \frac{f^{(k)}(x_0)}{(k-1)!} (x - x_0)^{k-1} = f'(x) - \sum_{k=0}^{n-1} \frac{f^{(k+1)}(x_0)}{k!} (x - x_0)^k = r_{n-1}(f',x)$$

так как $f^{(k+1)}(x_0) = (f')^{(k)}(x_0)$. Следует также обратить внимание на то, что дифференцирование $r_n(f,x)$ происходит по x, поэтому все члены суммы, кроме $(x-x_0)^k$, — константы.

Теорема о локальной форме остаточного члена (Форма Пеано) Пусть $\exists f^{(n)}(x_0)$ и $\exists f^{(n-1)}(x)$ на некоторой $U(x_0)$. Тогда справедлива формула Тейлора, причем $r_n(f,x) = \bar{o}((x-x_0)^n), x \to x_0$.

Доказательство. Докажем с помощью метода математической индукции. При $n=1, f(x)=f(x_0)+f'(x_0)(x-x_0)+\bar{o}(x-x_0)$, что верно, т.к. f(x) дифференцируема в точке x_0 . Предположим теперь, что теорема верна для **произвольной функции** f при n=n-1, и докажем её при n=n.

Заметим сначала, что $r_n(f,x_0)=0$ (следует из обычной формулы Тейлора). Тогда $r_n(f,x)=r_n(f,x)-r_n(f,x_0)=(r_n(f,\xi))'(x-x_0)$, где ξ принадлежит интервалу $(\min\{x,x_0\},\max\{x,x_0\})$ по теореме Лагранжа.

По лемме получаем, что $(r_n(f,\xi))'(x-x_0)=r_{n-1}(f',\xi)(x-x_0)$. По предположению для произвольной функции f, у которой есть n-ая производная в x_0 и (n-1)-ая в окрестности x_0 , можно выполнить индукционный переход для f', т.к. для r_{n-1} у f'(x) существуют (n-1)-ая производная в x_0 и (n-2)-ая в окрестности x_0 . Тогда $r_{n-1}(f',\xi)(x-x_0)=\bar{o}((\xi-x_0)^{n-1})(x-x_0)=[|\xi-x_0|<|x-x_0|\Longrightarrow \bar{o}((\xi-x_0)^{n-1})]=\bar{o}((x-x_0)^{n-1})(x-x_0)=\bar{o}((x-x_0)^n)$

Теорема о форме Лагранжа Пусть $n \in \mathbb{N} \cup \{0\}$ и $\exists f^{(n)}(x)$, причем $f^{(n)}(x)$ непрерывна на отрезке $[x_0,x]$. Кроме того, $\exists f^{(n+1)}(x)$ на (x_0,x) . Тогда справедлива формула Тейлора, причем $r_n(f,x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}$, где $\xi \in (x_0,x)$.

Доказательство. Снова воспользуемся методом математической индукции. При $n=0, \ f(x)=f(x_0)+f'(\xi)(x-x_0)$ — формула Лагранжа. Предположим теперь, что для произвольной функции f справедливо, что $r_{n-1}(f,x)=\frac{f^{(n)}(\xi)}{n!}(x-x_0)^n$, где $\xi\in(x_0,x)$. При n=n имеем:

$$\frac{r_n(f,x)}{(x-x_0)^{n+1}} = \frac{r_n(f,x) - r_n(f,x_0)}{(x-x_0)^{n+1} - (x_0-x_0)^{n+1}}$$
 [по формуле Коши] =
$$= \frac{(r_n(f,\mu))'}{(n+1)(\mu-x_0)^n}$$
 [по лемме, доказанной выше] =
$$= \frac{r_{n-1}(f',\mu)}{(n+1)(\mu-x_0)^n} = \frac{(f'(\xi))^{(n)}}{(n+1)n!} \implies r_n(f,x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-x_0)^{n+1}$$

49. Формулы Маклорена для основных элементарных функций (без доказательства).

При $x_0=0$ формула Тейлора с остаточным членом в форме Пеано называется формулой Маклорена Приведем пример: $f(x)=\sin x$. Вспомним, что

$$f^{(n)}(x) = \sin\left(x + \frac{\pi n}{2}\right) \implies f^{(n)}(0) = \sin\left(\frac{\pi n}{2}\right) = \begin{cases} 0, & \text{если } n = 2k, \\ (-1)^k, & \text{если } n = 2k + 1 \end{cases}$$

Тогда получаем следующее разложение:

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{n-1} \cdot \frac{x^{2n-1}}{(2n-1)!} + \bar{o}(x^{2n})$$

1.
$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \bar{o}(x^n), x \to 0$$

2.
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n+1} \cdot \frac{x^n}{n} + \bar{o}(x^n), x \to 0$$

3.
$$(1+x)^{\alpha} = 1 + \sum_{k=1}^{n} {\alpha \choose k} x^k + \bar{o}(x^n)$$

Например
$$(1+x)^{\frac{1}{3}}-1=\begin{pmatrix} \frac{1}{3}\\1 \end{pmatrix}x+\begin{pmatrix} \frac{1}{3}\\2 \end{pmatrix}x^2+\bar{\bar{o}}(x^2)=\frac{1}{3}x+\frac{\frac{1}{3}(\frac{1}{3}-1)}{2}x^2+\bar{\bar{o}}(x^2)$$

4.
$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{n-1} \cdot \frac{x^{2n-1}}{(2n-1)!} + \bar{o}(x^{2n})$$

5.
$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \bar{o}(x^{2n+1})$$

6.
$$\operatorname{tg}(x) = x + \frac{x^3}{3} + \frac{2}{15}x^5 + \dots + \frac{B_{2n}(-4)^n(1-4^n)}{(2n)!} \cdot x^{2n-1} + \bar{o}(x^{2n-1}),$$
 где B_{2n} — числа Бернулли

Но достаточно помнить, что $\operatorname{tg}(x) = x + \frac{x^3}{3} + \frac{2}{15}x^5 + \bar{o}(x^5)$, т.е. общая формула для семинаров <u>не</u> нужна

7.
$$\arcsin(x) = x + \frac{x^3}{6} + \frac{3}{40}x^5 + \dots + \frac{(2n)!}{4^n(n!)^2(2n+1)} \cdot x^{2n+1} + \bar{o}(x^{2n+1})$$

Достаточно знать $\arcsin(x) = x + \frac{x^3}{6} + \frac{3}{40} x^5 + \bar{\bar{o}}(x^5)$

8.
$$\arccos(x) = \frac{\pi}{2} - \arcsin(x)$$

9.
$$\operatorname{arctg}(x) = x - \frac{x^3}{3} + \frac{x^5}{5} + \dots + (-1)^{n+1} \frac{x^{2n-1}}{2n-1} + \bar{\delta}(x^{2n-1})$$

50. Правило Лопиталя.

Теорема Лопиталя (первое правило) Если функции f(x) и g(x) таковы, что

- 1. f(x) и g(x) дифференцируемы в проколотой окрестности точки a
- 2. $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$
- 3. $g'(x) \neq 0$ в окрестности U(a)
- 4. Существует $\lim_{x\to a} \frac{f'(x)}{g'(x)}$

Тогда существует
$$\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$$

 $\ \ \,$ Доказательство. Доопределим функции в точке a нулём (непрерывности не нарушится, так как предел этих функций при $x \to a$ равен 0). Из первого условия следует, что f(x) и g(x) непрерывны на отрезке [a,x], где x принадлежит рассматриваемой окрестности точки a.

Применим обобщённую формулу конечных приращений (Коши) к f(x) и g(x) на отрезке [a,x].

$$\exists \xi \in [a, x] : \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f'(\xi)}{g'(\xi)}$$

Так как g(a) = f(a) = 0 получим, что $\forall x \; \exists \xi \in [a, x] : \frac{f(x)}{g(x)} = \frac{f'(\xi)}{g'(\xi)}$

По определению предела, $\lim_{x\to a+0} \frac{f'(x)}{g'(x)} = A \iff \forall \varepsilon > 0 \; \exists \delta > 0 : \; \forall x : \; a < x < a + \delta \implies \left| \frac{f'(x)}{g'(x)} - A \right| < \varepsilon$. Но для каждого x из указанного интервала найдется своё ξ_x , такое что $\frac{f'(\xi_x)}{g'(\xi_x)} = \frac{f(x)}{g(x)}$. Но раз $\xi_x \in (a,x)$, то выполняется $\left| \frac{f'(\xi_x)}{g'(\xi_x)} - A \right| < \varepsilon \implies \left| \frac{f(x)}{g(x)} - A \right|$, что и требовалось доказать.

Теорема Лопиталя (второе правило) Если для функций f(x) и g(x) справедливо следующее:

- 1. f(x) и g(x) дифференцируемы на интервале (a,b)
- 2. $\lim_{x \to a+0} f(x) = \lim_{x \to a+0} g(x) = \infty$
- 3. $g'(x) \neq 0$ при $x \in (a, b)$
- 4. Существует $\lim_{x\to a+0} \frac{f'(x)}{g'(x)} = A$

To
$$\lim_{x \to a+0} \frac{f(x)}{g(x)} = \lim_{x \to a+0} \frac{f'(x)}{g'(x)} = A$$

Доказательство. Для начала положим, что $A \leqslant 0$ (при A>0 доказательство практически аналогично приведенному). Пусть $\varepsilon \in \left(0, \frac{1}{4}\right)$. Тогда по определению предела

$$\lim_{x \to a+0} \frac{f'(x)}{g'(x)} = A \iff \exists x_{\varepsilon} \in (a,b) : \forall x \in (a,x_{\varepsilon}) \implies \left| \frac{f'(x)}{g'(x)} - A \right| < \varepsilon$$

Здесь мы просто приняли, что $x_{\varepsilon} = a + \delta$, в остальном же интерпретация определения предела не изменилась.

Выберем произвольное x из данного интервала (a, x_{ε}) . Заметим, что выполняется теорема Коши (доопределим функции f и g в точке a, а в точке x_{ε} они уже определены):

$$\frac{f(x) - f(x_{\varepsilon})}{g(x) - g(x_{\varepsilon})} = \frac{f'(\xi)}{g'(\xi)}, \text{ где } a < x < \xi < x_{\varepsilon} < b$$

$$\frac{f(x)}{g(x)} \cdot \frac{1 - \frac{f(x_{\varepsilon})}{f(x)}}{1 - \frac{g(x_{\varepsilon})}{g(x)}} = \frac{f'(\xi)}{g'(\xi)}$$

$$\frac{f(x)}{g(x)} = \frac{f'(\xi)}{g'(\xi)} \cdot \frac{1 - \frac{g(x_{\varepsilon})}{g(x)}}{1 - \frac{f(x_{\varepsilon})}{f(x)}}$$

Заметим теперь, что $\lim_{x\to a+0} \frac{f(x_\varepsilon)}{f(x)} = \lim_{x\to a+0} \frac{g(x_\varepsilon)}{g(x)} = 0$, т.к. $f(x_\varepsilon)$ и $g(x_\varepsilon)$ — константы (а знаменатели по условию стремятся к ∞). Тогда выберем для текущего закрепленного ε такое $\delta(\varepsilon)>0$:

$$\forall x \in (a, a + \delta), \delta + a < b \implies \left| \frac{f(x_{\varepsilon})}{f(x)} \right| < \varepsilon, \left| \frac{g(x_{\varepsilon})}{g(x)} \right| < \varepsilon$$

Тогда получаем следующую оценку:

$$\frac{1 - \frac{g(x_{\varepsilon})}{g(x)}}{1 - \frac{f(x_{\varepsilon})}{f(x)}} \in \left(\frac{1 - \varepsilon}{1 + \varepsilon}, \frac{1 + \varepsilon}{1 - \varepsilon}\right)$$

Поскольку $\varepsilon \in \left(0, \frac{1}{4}\right)$, то $\frac{1-\varepsilon}{1+\varepsilon} = 1 - \frac{2\varepsilon}{1+\varepsilon} > 1 - 2\varepsilon$ и $\frac{1+\varepsilon}{1-\varepsilon} = 1 + \frac{2\varepsilon}{1-\varepsilon} < 1 + \frac{8}{3}\varepsilon$. Учитывая, что $\frac{f'(x)}{g'(x)} \in \overset{\circ}{U}_{\varepsilon}(A)$:

$$\frac{f(x)}{g(x)} = \frac{f'(\xi)}{g'(\xi)} \cdot \frac{1 - \frac{g(x_{\varepsilon})}{g(x)}}{1 - \frac{f(x_{\varepsilon})}{f(x)}} \in \left((A - \varepsilon)(1 - 2\varepsilon), (A + \varepsilon) \left(1 + \frac{8}{3}\varepsilon \right) \right) =$$

$$= \left(A - (\varepsilon + 2A\varepsilon - 2\varepsilon^2), A + \left(\varepsilon + \frac{8}{3}\varepsilon A + \frac{8}{3}\varepsilon^2 \right) \right) \implies$$

$$\implies \frac{f(x)}{g(x)} \in U_{\mu}(A), \text{ где } \mu = \max \left\{ \varepsilon + 2A\varepsilon - 2\varepsilon^2, \varepsilon + \frac{8}{3}\varepsilon A + \frac{8}{3}\varepsilon^2 \right\}$$

Как видно, $\lim_{\varepsilon\to 0}\mu=0$, а для любого сколько угодно малого μ всегда можно найти соответствующее ε , такое, что все значения отношения функций попадут в заданную μ -трубку. Это и означает, что предел отношения функции равен A.

51. Достаточное условие строгого возрастания (убывания) функции на промежутке.

Теорема. Для того чтобы дифференцируемая функция f(x) на интервале (a,b) строго возрастала, достаточно, чтобы $\forall x \in (a,b): f'(x) > 0$

Для того чтобы дифференцируемая функция f(x) на интервале (a,b) строго убывала, достаточно, чтобы $\forall x \in (a,b): f'(x) < 0$

Доказательство. Докажем для строгого возрастания. Пусть $f'(x) > 0 \ \forall x \in (a,b)$. Выберем произвольные точки $x_1, x_2 \in (a,b)$, и, не ограничивая общности, скажем, что $x_1 < x_2$.

Применим формулу конечных приращений Лагранжа. Так как $f'(\xi) > 0$ и $x_2 > x_1$, имеем

$$f(x_2) - f(x_1) = f'(\xi) \cdot (x_2 - x_1) > 0 \implies f(x_2) > f(x_1)$$

52. Достаточные условия локального экстремума для функции одной переменной.

2 Вопросы, которые были убраны из программы экзамена

1. Эквивалентность определений предела функции по Коши и Гейне

Теорема. Определения предела функции в точке по Коши и Гейне эквивалентны

Доказательство. Пусть f определена на множестве X и число A является пределом функции f в точке x_0 в смысле Коши. Выберем произвольную подходящую последовательность $x_n, n \in \mathbb{N}$, т.е. такую, для которой $\forall n \in \mathbb{N}: x_n \in X$ и $\lim_{n \to \infty} x_n = x_0$. Покажем, что A является пределом в смысле Гейне

Зададим произвольное число $\varepsilon > 0$ и укажем для него такое $\delta > 0$, что $\forall x \in X$ из условия $0 < |x - x_0| < \delta$ следует неравенство $|f(x) - A| < \varepsilon$. В силу того, что $\lim_{n \to \infty} x_n = x_0$, для $\delta > 0$ найдется такой номер $N \in \mathbb{N}$, что для всех $n \ge N$ будет выполняться неравенство $|f(x_n) - A| < \varepsilon$, т.е. $\lim_{n \to \infty} f(x_n) = A$.

Докажем теперь обратное утверждение: предположим, что $A = \lim_{x \to x_0} f(x)$ в смысле Гейне, и покажем, что число A является пределом функции f в точке x_0 в смысле Коши. Предположим, что это неверно, т.е.

$$\exists \varepsilon_0 > 0 \ \forall \delta > 0 \ \exists x_\delta \in X : \ 0 < |x_\delta - x_0| < \delta : \ |f(x_\delta) - A| \geqslant \varepsilon$$

В качестве δ рассмотрим $\delta = \frac{1}{n}$, а соответствующие значения x_{δ} будем обозначать x_{n} . Тогда при любом $n \in \mathbb{N}$ выполняются условия $x_{n} \neq x_{0}, |x_{n} - x_{0}| < \frac{1}{n}$ и $|f(x_{n}) - A| \geqslant \varepsilon$. Отсюда следует, что последовательность $\{x_{n}\}$ является подходящей, но число A не является пределом функции f в точке x_{0} . Получили противоречие.

Доказательство. Пусть переменная y в точке y_0 получает приращение $\Delta y \neq 0$. Соответствующее ему приращение переменной x в точке x_0 обозначим как Δx , причем $\Delta x \neq 0$ в силу строгой монотонности функции y = f(x). Запишем отношение приращений в виде

$$\frac{\Delta x}{\Delta y} = \frac{1}{\frac{\Delta y}{\Delta x}}$$

Допустим, что $\Delta y \to 0$, тогда $\Delta x \to 0$, поскольку обратная функция $x = \phi(y)$ является непрерывной в точке y_0 . В пределе, при $\Delta x \to 0$, правая часть записанного соотношения становится равной

$$\lim_{\Delta x \to 0} \frac{1}{\frac{\Delta y}{\Delta x}} = \frac{1}{f'(x_0)}$$

В таком случае левая часть тоже стремится к пределу, который по определению равен производной обратной функции:

$$\lim_{\Delta y \to 0} \frac{\Delta x}{\Delta y} = \phi'(y_0)$$

Таким образом,

$$\phi'(y_0) = \frac{1}{f'(x_0)}$$

2. Производные функций, графики которых заданы параметрически.

Теорема. Зависимость между аргументом x и функцией y может быть задана в параметрическом виде с помощью двух уравнений:

$$\begin{cases} x = \phi(t), \\ y = \psi(t) \end{cases}$$

Пусть $x = \phi(t)$ и $y = \psi(t)$ определены и дифференцируемы при $t \in (a,b)$, причем $x'_t = \phi'(t) \neq 0$ и $x = \phi(t)$ имеет обратную функцию $t = \theta(x)$, то

$$y_x' = \frac{\psi'(t)}{\phi'(t)}$$

Доказательство. Перейдем от параметрического задания к явному. При этом получаем сложную функцию $y = \psi(t) = \psi(\theta(x))$, аргументов которой является x.

По правилу нахождения производной сложной функции имеем

$$y'_x = (\psi(\theta(x)))' = \psi'(\theta(x)) \cdot \theta'(x)$$

По теореме об обратной функции $\theta'(x) = \frac{1}{\phi'(t)}$. А значит

$$y'_x = \psi'(\theta(x)) \cdot \theta'(x) = \frac{\psi'(t)}{\phi'(t)}$$

3. Геометрический смысл дифференциала.

Дифференциал функции численно равен приращению ординаты касательной, проведенной к графику функции y = f(x) в данной точке, когда аргумент x получает приращение Δx .

Подробнее тут