Algorithms II Cheat-Sheet

Notation

```
A \in [10] \equiv A \in [1..10]
{a, b c} is a set of vertices
G\{a, b, c\} is a graph
\overrightarrow{x} just represents a vector x
```

Big O

Notation	Intuitive meaning	Analogue
$f(n) \in O(g(n))$	f grows at most as fast as g	<u> </u>
$f(n) \in \Omega(g(n))$	f grows at least as fast as g	≥
$f(n) \in \Theta(g(n))$	f at the same rate as g	=
$f(n) \in o(g(n))$	f grows strictly less fast than g	<
$f(n) \in \omega(g(n))$	f grows strictly faster than g	>

Notation	Formal definition
$f(n) \in O(g(n))$	$\exists C, n_0 \colon \forall n \geq n_0 \colon f(n) \leq C \cdot g(n)$
$f(n) \in \Omega(g(n))$	$\exists c, n_0 \colon \forall n \geq n_0 \colon f(n) \geq c \cdot g(n)$
$f(n) \in \Theta(g(n))$	$\exists c, C, n_0 : \forall n \geq n_0 : c \cdot g(n) \leq f(n) \leq C \cdot g(n)$
$f(n) \in o(g(n))$	$\forall C \colon \exists n_0 \colon \forall n \geq n_0 \colon f(n) \leq C \cdot g(n)$
$f(n) \in \omega(g(n))$	$\forall c \colon \exists n_0 \colon \forall n \geq n_0 \colon f(n) \geq c \cdot g(n)$

Interval Scheduling

A request is a pair of integers (s, f) with $0 \le s \le f$. We call s the start time and f the finish time.

A set A of requests is **compatible** if for all distinct (s, f), $(s', f') \in A$, either $s' \ge f$ or $s \ge f'$ — that is, the requests' time intervals don't overlap.

Interval Scheduling Problem

Input: An array \mathcal{R} of n requests $(s_1, f_1), \ldots, (s_n, f_n)$.

Desired Output: A compatible subset of \mathcal{R} of maximum possible size.

Algorithm: GREEDYSCHEDULE Input: An array \mathcal{R} of n requests.

Output: A maximum compatible subset of \mathcal{R} .

1 begin

```
Sort \mathcal{R}'s entries so that \mathcal{R} \leftarrow [(s_1, f_1), \dots, (s_n, f_n)] where f_1 \leq \dots \leq f_n. Initialise A \leftarrow [], lastf \leftarrow 0. foreach i \in \{1, \dots, n\} do
```

if $s_i \ge \text{lastf then}$

Append (s_i, f_i) to A and update lastf $\leftarrow f_i$.

Return A.

Complexity:

Step 2 takes O(n log n)

Steps 3-6 all take O(1) time and are executed at most n times.

 $\ \, :. \ \, totalrunning time \ \, = \ \, O(nlogn) \, + \, O(n)O(1) \, \, = \, O(nlogn).$

Interval Scheduling

Formal GreedySchedule:

 $A^+:= \operatorname{argmin} \{f: (s,f) \in R, A \cup \{(s,f)\} \text{ is compatible} \} \text{ for all } A \subseteq R,$

 $A_0 := \emptyset, \qquad A_{i+1} := A_i \cup \{A_i^+\}$

 $t := \max\{i: A_i \text{ is defined}\}\$

Interval Scheduling Proofs

Lemma: Greedy Schedule always outupts A_t

Proof: By induction form the following loop invariant. At the start of the i'th iteration of 4-7:

- A is equal to $A_t \cap \{(s_1, f_1), ..., (s_{i-1}, f_{i-1})\}$
- last f is equal to the latest finish time of any request in A (or 0 if A = [])

Lemma: A_t is a compatible set

Proof: Instant by induction; A_0 is compatible, and if A_i is compatible then so is $A_{i+1} = A_i \cup A^+$ by the definition of A_i^+

Lemma: A_t is a maximum compatible subset of the Array R (look in pseudocode)

Proof:

Base case for i = 1: A_0^+ is the fastest finishing request in R by definition

Inductive step: Suppose A_i finishes faster than B_i .

Let B_i^+ be the (i+1)'st fastetst-finishing element of B. Since A_i finishes faster than B_i , $A_i \cup \{B_i^+\}$ is compatible. Hence by definition, A_i^+ exists and finishes no later than B_i^+

Theorem: GreedySchedule outputs A_t , which is a maximum compatible set.

Proof: putting all of the above proofs together, we prove the theorem.

Graph Theory

Graph: G = (V, E)

Edge: E = E(G) is a set of edges contained in

 $\{\{u,v\}: u,v\in V, u\neq v\}$

Vertex: V = V(G) is a set of vertices

Subgraph: $H = (V_H, E_H)$ of G is a graph with $V_H \subset V$ and $E_H \subset E$

Induced Subgraph: is a subgraph if $E_H = \{e \in E : e \subset V_H\}$

Component: H of G is a maximal connected induced subgraph of G.

Degree: d(v) = |N(v)|

Neighbourhood: $N(v) = \{w \in V : \{v, w\} \in E\}$

Walk: sequence of vertices $v_0...v_k$ such that $\{v_i, v_{i+1}\} \in E$ for all $i \leq k-1$

Length: the value of k (see above walk definition)

Euler Walk: a walk that contains every edge in G exactly once.

Isomorphism: two graphs are isomorphic if there is a bijection $f: V_1 \to V_2$ such that $\{f(u), f(v)\} \in E_2$ if and only if $\{u, v\} \in E_1$

Path: is a walk in which no vertices repeat

Connected: A graph is connected if any two vertices are joined by a path

Digraph: is a pair G = (V, E), V is a set of vertices and E is a set of edges contained in $\{(u, v) : u, v \in V, u \neq v\}$

Strongly connected: G is .. if for all $u, v \in V$, there is a path from u to v and a path from v to u.

Weakly connected:

In-Neighbourhood: $N^-(v) = \{u \in V(G) : (u, v) \in E(G)\}$

Out-Neighbourhood: $N^+(v) = \{w \in V(G) : (v,w) \in E(G)\}$

Cycle: is a walk $W = w_0...w_k$ with $w_0 = w_k$ and $k \geq 3$, in which every vertex appears at most once except for w_0 and w_k (which appear twice)

Hamilton cycle: is a cycle containing every vertex in the graph

 $\mathbf{k\text{-}regular};\ \mathbf{a}\ \mathrm{graph}\ \mathrm{is}\ ..\ \mathrm{if}\ \mathrm{every}\ \mathrm{vertex}\ \mathrm{has}\ \mathrm{degree}\ \mathrm{k}$ $\mathbf{Bijection};$

Planar: a graph is planar if it can be drawn without any two edges overlapping.

Graph Theory

Theorem: If G has an Euler walk, then either:

- every vertex of G has even degree; or
- all but two vertices v_0 and v_k have even degree, and any euler walk must have v_0 and v_k as endpoints

Theorem: let G = (V, E) be a digraph with no isolated vertices, and let $U, v \in V$. Then G has an Euler walk from u to v if and only if G is weakly connected and either:

- u = v and every vertex of G has equal in- and out-degrees; order
- $u \neq v, d^+(u) = d^-(u) + 1, d^-(v) = d^+(v) + 1$ and every other vertex of G has equal in- and out-degrees

Dirac's Theorem: Let $n \geq 3$. Then any n-vertex graph G with minimum degree at least $\frac{n}{2}$ has a Hamilton cycle.

Handshake lemma: For any graph

 $G = (V, E), \sum_{v \in V} d(v) = 2|E|$

Proof: All edges contain two vertices, and each vertex v is in d(v) edges. Count the number of verted-edge pairs: Let $X = \{(v,e) \in V \times E : v \in E\}$. Then |X| = 2|E| and $|X| = \sum_{v \in V} d(v)$, so we're done. **Directed Handshake lemma**: For any graph

G = (V, E), $\sum_{v \in V} d^+(v) = \sum_{v \in V} d^-(v) = 2|E|$

Proof: TODO. Instead of counting vertex-edge pairs, we count tail-edge pairs. Each edge has one tail so |X| = |E|

Trees

Forest: a graph with no cycles

Tree: a forest that is connected

Root: for T = (V, E). Root $r \in V$ as follows. For all vertices $v \neq r$, let P_v be the unique path from r to v. Then direct each P_v from r to v.

Leaf: is a degree-1 vertex. Root cannot be a leaf.

Ancestor: u is an .. of v if u i on P_v **Parent**: u is the .. of v if $u \in N^-(v)$

level: first .. L_0 of T is r, and $L_{i+1} = N^+(L_i)$.

depth: of T is max{i: $L_i \neq \emptyset$ }. Root doesn't count

Lemma 1: If T = (V, E) is a tree, then any pair of vertices $u, v \in V$ is joined by a unique path uTv in T.

Lemma 2: Any n-vertex tree has n-1 edges

Lemma 3: Any n-vertex tree T = (V, E) with $n \ge 2$ has at least 2 leaves

Tree Properties:

A: T is connected and has no cycles

B: T has n-1 edges and is connected

C: T has n-1 edges and has no cycles

D: T has a unique path between any pair of vertices

 $A \implies B, C, D$ $A \Longleftarrow B, C, D$.

Depth First Search

Graphs as data structures:

Adjacency Matrix:

Storing: $\Theta(|V|^2)$ space

Adjacency query: $\Theta(1)$ time

Neighbourhood query: $\Theta(|V|)$ time

Adjacency List:

$$\boxed{\mathbf{s}} \rightarrow b, c$$

$$\boxed{\mathbf{a}} \rightarrow s, \epsilon$$

Storing: $\Theta(|V| + |E|)$ space Adjacency query: $\Theta(d^+(u))$ time Neighbourhood query: $\Theta(d^+(u))$ time

 \mathbf{DFS} :

Input : Graph G = (V, E), vertex $v \in V$.

Output: List of vertices in *v*'s component.

- 1 Number the vertices of G as v_1, \ldots, v_n .
- 2 Let explored[i] \leftarrow 0 for all $i \in [n]$.
- 3 Procedure helper(v_i)

- 9 Call helper(v).
- 10 Return $[v_i: explored[i] = 1]$ (in some order).

Complexity: In total there are $\sum_{v \in V} d(v) = O(|E|)$ calls to helper (each vertex only runs lines 5-7 once), and there is O(1) time between calls. So the running time is O(|V| + |E|).

Invariant: When helper is called, if explored[i] = 1 then $v_i \in V(C)$.

Claim: Every vertex in P is explored

Proof by induction: We prove $x_1, ..., x_i$ are explored for all $i \leq t$. x_1 is explored. If x_i is explored, then helper (x_{i+1}) will be called from helper (x_i) . so x_{i+1} will also be explored.

DFS Tree: a .. T of G is a rooted tree satisfying:

- V(T) is the vertex set of a component of G;
- If $\{x, y\} \in E(G)$, then x is an ancestor of y in T or vice versa.

Breadth First Search

Distance: The distance between x and y, d(x, y), is the length in edges of a shortest path between x and y, or ∞ if no such path exists.

BFS:

```
Input : Graph G = (V, E), vertex v \in V.

Output : d(v, y) for all y \in V and "a way of finding shortest paths".

1 Number the vertices of G as v = v_1, \ldots, v_n.

2 Let L[i] \leftarrow \infty for all i \in [n].

3 Let L[i] \leftarrow 0, pred[i] \leftarrow N one.
```

4 Let queue be a queue containing all tuples (v, v_j) with $\{v, v_j\} \in E$.

```
5 while queue is not empty do
6 Remove front tuple (v_i, v_j) from queue.
7 if L[j] = \infty then
8 Add (v_j, v_k) to queue for all \{v_j, v_k\} \in E, k \neq i.
9 Set L[j] \leftarrow L[i] + 1, pred[j] = i.
```

10 Return L and pred.

Complexity: If G is in adjacency list form, each edge is added to queue at most twice, incurring O(1) overhead each time, so the running time is O(|V| + |E|).

BFS

explanation: BFS works by starting at a vertex and then adding all adjacent vertices to a queue. We then take the first vertex in the queue and look for a new set of adjacent vertices to add, repeating the process until we have reached our destination.

Dijkstra's Algorithm

graph and $w: E(G) \to \mathbb{R}$ is a **weight function Length**: of a path/walk $P = x_1 \dots x_t$ is the total weight of P's edges: length(P) = $\sum_{i=1}^{t-1} w(x_i, x_{i+1})$. **Distance**: from x to y is the shortest length of any path/walk from x to y, or ∞ if they are in different

Weighted Graph: is a pair (G, w), where G is a

Priority queue: each element has a priority, and the first element is the one with the lowest priority.

Dijkstra:

components

```
: Weighted graph G = ((V, E), w), v \in V.
   Input
   Output : d(v, y) for all y \in V.
 1 Number the vertices of G as v = v_1, \dots, v_n.
2 queue \leftarrow StartQueue(n).
3 foreach i = 1 to n do
         \operatorname{dist}[i] \leftarrow \infty and call queue. Insert(v_i, \infty).
5 Call queue.ChangeKey(v_1, 0).
6 do
         vert \leftarrow queue.Extract(), say vert = v_i.
          foreach (v_i, v_i) \in E do
8
9
               \operatorname{dist}[i] \leftarrow \min\{\operatorname{dist}[i], \operatorname{dist}[i] + w(i, j)\}.
               Call queue.ChangeKey(v_i, dist[j]),
11 while queue is not empty
```

Complexity: We perform O(|V|) Insert operations and Extract operations, and O(|E|) ChangeKey operations, for a total of O((|V| + |E|)log|V|) time when G is given in adjacency list form.

Dijkstra Operations:

12 Return dist.

- StartQueue(n) returns a new priority queue of maximum length n.
- Insert(x, p) inserts a new element x with priority p.
- Exctract() removes and returns the lowest-priority element.
- ChangeKev(x, p) udpates the priority of x to p.
- StartQueue takes O(n) time, all other operations take $O(\log(n))$ time.

- Matchings

Matching: A matching in a graph is a collection of disjoint edges. It is **perfect** if every vertex is contained in some matching edge.

Lemma: G is bipartite if and only if it has no odd-length cycle.

Proof of "only if": Suppose G has bipartition (A, B) and $C = v_1 \dots v_k$ is an odd cycle in G.

Wlog $v_1 \in A$. Since A has no edges, this means $v_2 \in B$. Continuing the argument, $v_i \in A$ if i is odd, and $v_i \in B$ if i is even. In particular, $v_k \in A$.

But v_1 and v_k are adjacent, so this is a contradiction. \checkmark

Bipartite Graph: A graph $G=(V\ , E)$ is bipartite if V can be partitioned into disjoint sets A and B which contain no edges

MaxMatching:

```
1 begin
2 | Find a bipartition (A, B) of G. Initialise M \leftarrow [].
3 | repeat
4 | Form the graph D_{G,M}.
5 | Set P to be a path from U \cap A to U \cap B in D_{G,M} if one exists.
Otherwise, break.
6 | Update M \leftarrow Switch(M, P).
```

Return M.Complexity:

- Steps 2, 4 and 6 can all be done in O(|E|) time. (Exercise!)
- Step 5 can be done in O(|E|) time using breadth-first search, if G is in adjacency-list form.
- Steps 4–6 repeat at most |V| times.

So overall the running time is O(|E||V|).

Berg's Lemma: M has no augmenting paths \implies M is maximum.

Prim's Algorithm

Prim's Algorithm explanation: We work greedily: pick an arbitrary start vertex, then grow it into a spanning tree by always choosing one of the cheapest available edges.

Formal explanation:

```
Formally: Let T_1 = (\{v\}, \emptyset) for some arbitrary v \in V.
```

Let E_i be the set of edges from $V(T_i)$ to $V \setminus V(T_i)$.

Form T_{i+1} by adding a lowest-weight edge $e_i \in E_i$ to T_i , so $V(T_{i+1}) = V(T_i) \cup e_i$ and $E(T_{i+1}) = E(T_i) \cup \{e_i\}$.

Prim's algorithm is to calculate and return $T_{|V|}$. Why does this work?

Prim pseudocode:

Complexity:

Time analysis: As with breadth-first search, each edge is only processed twice. Processing each edge now takes $\Theta(\log |E|)$ worst-case time, so overall the algorithm runs in $O(|E|\log |E|)$ time. (Note $|E| \geq |V|$.)

Kruskal's Algorithm

Kruskal's Algorithm explanation: Rather than picking the lowest-weight edge that grows our component, we just pick the lowest-weight edge anywhere that doesn't make a cycle.

Formal explanation:

```
Formally: Let e_1, \ldots, e_m be the edges of G, with w(e_1) \leq \cdots \leq w(e_m).
```

Let $T_0 = (V, \emptyset)$ be the empty graph on V.

Given T_i , let $T_{i+1} = T_i + e_{i+1}$ if this is a forest, or T_i otherwise.

Kruskal's algorithm is to calculate and return T_m . Why does this work?

9 Return T.

Complexity:

Now line 3 takes O(|V|) time, and each iteration of lines 6 and 8 takes $O(\log |V|)$ time.

So overall, since G is connected and $|E| \ge |V| - 1$, the running time is $O(|E| \log |V|)$ — exactly what we got from Prim's algorithm!

Union-find data structure

Union-find data structure Operations:

MakeUnionFind(X): Makes a new union-find data structure containing a 1-element set x for each element $x \in X$. Takes O(-X-) time.

Union(x, y): Merge the set containing x with the set containing y into a single set in the data structure. Takes O(log —X—) time.

FindSet(x): Returns a unique identifier for the set containing x. Takes O(log —X—) time.

Union/2-3-4 tree:

Union (x_4, x_7) ;

Insertion:

To insert a value k, first we find the leaf that would contain it if it was there. If it's a 2-node or a 3-node, we can just add the new value.

If it's a 4-node, we first ${\sf split}$ it, sending one value up to its parent and keeping the others as 2-nodes.

If its parent is a 4-node as well, we're in trouble... so we split all 4-nodes we find on the way down. Still only takes O(d) time.

If we have to split the root, *d* increases by 1. But balance is maintained!

Searching:

Say a 3-node has values $x_1 \le x_2$, and children c_1 , c_2 and c_3 .

Then all descendants of c_1 must have values at most $x_1...$

All descendants of c_2 must have values greater than x_1 and less than x_2 ... And all descendants of c_3 must have values greater than x_3 .

4-nodes work the same way. So we can still find a value in O(d) time.

Deletion:

If v is a 2-node with a 3-node or 4-node sibling w, we transfer a value from w to v, reducing to the 3-node case.

If v is a 2-node with a 2-node sibling w, and a 3-node or 4-node parent, we fuse v, w and a value from v's parent, reducing to the 4-node case.

non-leaf-deletion:

Exercise: If v is not stored in a leaf, then the **predecessor** w of v — the value just before v in sorted order — will always be in a leaf.

So we can overwrite v with w, and then delete w from its leaf — leaving the structure of the tree untouched!

Linear Programming

Feasible: We say $\overrightarrow{x} \in \mathbb{R}^n$ is a feasible solution if $\overrightarrow{x} > \overrightarrow{0}$ and $A\overrightarrow{x} < \overrightarrow{b}$.

Optimal: We say \overrightarrow{x} is an optimal solution if $f(\overrightarrow{y}) \leq f(\overrightarrow{x})$ for all feasible $y \in \mathbb{R}^n$

Polytope: is a geometric object with flat sides

Corollary: There will always be an optimal solution

Non-Standard Form:

$$\begin{array}{l} -4x+5y-z \rightarrow \text{max subject to} \\ x+y+z \leq 5; \\ x+y+z \geq 5; \\ x+2y \geq 2; \\ x,z > 0. \end{array}$$

Standard Form:

$$\begin{array}{l} -4x+5(y_1-y_2)-z\to \text{max subject to}\\ x+(y_1-y_2)+z\le 5;\\ -x-(y_1-y_2)-z\le -5;\\ -x-2(y_1-y_2)\le -2;\\ x,y_1,y_2,z\ge 0. \end{array}$$

Matrix Form:

$$-4x + 5y_1 - 5y_2 - z \rightarrow \text{max subject to}$$

$$\begin{pmatrix} 1 & 1 & -1 & 1 \\ -1 & -1 & 1 & -1 \\ -1 & -2 & 2 & 0 \end{pmatrix} \begin{pmatrix} x \\ y_1 \\ y_2 \\ z \end{pmatrix} \le \begin{pmatrix} 5 \\ -5 \\ -2 \end{pmatrix};$$

$$x, y_1, y_2, x > 0.$$

Simplex Method: Search greedily for a vertex of the feasible polytope which maximises the objective function

Worst case: hypercube which has $\Omega(2^n)$ vertices.

In practice it only need $\Theta(n)$ steps

Vertex Cover: in a graph G, is a set $X \subseteq V$ such that every edge in E has at least one vertex in X

We can express finding a minimum vertex cover as solving a linear program in which the solutions must be integers: an integer linear program.

$$\sum_{v} x_{v} \rightarrow \text{min subject to}$$

$$x_{u} + x_{v} \ge 1 \text{ for all } \{u, v\} \in E;$$

$$x_{v} \le 1 \text{ for all } v \in V;$$

$$x_{v} \ge 0 \text{ for all } v \in V;$$

$$x_{v} \in \mathbb{N} \text{ for all } v \in V.$$

 $X = \{1, 3, 5, 7\}$ is **not** a vertex cover.

Here we have $x_1 = x_3 = x_5 = x_7 = 1$ and $x_0 = x_2 = x_4 = x_6 = 0$.

The uncovered edge $\{2,4\}$ corresponds to the constraint $x_2+x_4\geq 1$, which is violated.

Flow Networks

Flow Network: consists of a directed graph G = (V, E), a capacity function $c : E \to \mathbb{N}$, a source vertex $s \in V$ with $N^-(s) = \emptyset$, and a sink vertex $t \in V$ with $N^+(t) = \emptyset$

Flow: is a function in (G, c, s, t) $f : E \to \mathbb{R}$ with properties:

- No edge has more flow than capacity; formally, for all $e \in E, 0 \le f(e) \le c(e)$
- Flow is conserved at vertices; flow in = flow out **Maximum Flow**: a flow f maximising the value of

Maximum Flow: a flow f maximising the value of the flow, v(f)

Cut: is any pair of disjoint edges $A, B \subseteq V$ with $A \cup B = V$, $s \in A$ and $t \in B$.

Lemma 1: For all sets $X \subseteq V$ $\{s,t\}$, we have $f^+(X) = f^-(X)$. So flow is conserved in sets/cuts as well as vertices

Proof: By summing conservation of flow over all $v \in X$:

 $\sum_{v \in X} \sum_{u \in N^-(v)} f(u, v) = \sum_{v \in X} \sum_{w \in N^+(v)} f(v, w)$. For all $e \subseteq X$, f(e) appears once on each side; after cancelling those terms we're left with $f^+(X) = f^-(X)$.

Lemma 2: For all cuts (A, B), $f^{+}(A) - f^{-}(A) = f^{-}(B) - f^{+}(B)$.

Proof: We have shown that $v(f) = f^+(A) - f^-(A)$ because A and B are disjoint and $A \cup B = V$.

Lemma 3: Push(G, c,s,t, f, P) returns a new flow f', with value v(f') = v(f) + C in O(|V(G)|) time

Ford-Fulkerson:

Input : A (weakly connected) flow network (G, c, s, t). **Output** : A flow f with no augmenting paths.

1 begin

- Construct the flow f with f(e) = 0 for all $e \in E(G)$.
- 3 Construct the residual graph G_f .
- while G_f contains a path P from s to t do
- Find *P* using depth-first (or breadth-first) search.
- Update $f \leftarrow \text{Push}(G, c, s, t, f, P)$.
- 7 Update G_f on the edges of P.
- Return f.

Complexity: Every step takes O(|E|) time or O(|V|) time, and since G is weakly connected we have |V| = O(|E|). So the running time is O(v(f*)|E|).

Flow Networks

Residual graph: G_f of (G, c, s, t) on V(G) as follows:

- if flow < capacity: then forward edge with value capacity-flow
- if flow > 0: add backward edge with value flow

Residual capacity of edge: max{capacity - flow, backward edge flow}

Residual capacity of network: minimum residual capacity of it's edges

Augmenting Path:

Max-flow min-cut theorem: The value of a maximum flow is equal to the minimum capacity of a cut, i.e. the minimum value of $c^+(A)$ over all cuts (A, B).

Proof: Let f be a maximum flow, and let (A, B) be a cut minimising $c^+(A)$. We already proved $v(f) \leq c^+(A)$. Moreover, there is no augmenting path for f, so exactly as before, there is a cut (A'.B') with $c^+(A') = v(f)$; thus $v(f) \geq c^+(A)$. The result follows.

Special Flow Graphs

Circulation network: A circulation network (G, c, D) is a directed graph G = (V, E), a capacity function $c : E \to \mathbb{N}$, and a **Demand function** $D : V \to \mathbb{Z}$.

Circulation: A circulation is a function $f: E \to \mathbb{R}$ with $0 \le f(e) \le c(e)$ for all $e \in E$, and $f^-(v) - f^+(e) = D(v)$ for all $v \in V$.

Demand Networks::

Transformed into normal flow graph:

Capacity flow:

Transformed into normal flow graph:

NP problems

 $\overline{\mathbf{NP}}$: Formally, \overline{NP} is the class of all decision problems X which have a polynomial-time algorithm $\overline{\mathbf{Verify}}$ such that if and only if x is a Yes instance of X, then there is some bit string w (called a witness) with $\overline{\mathbf{Verify}}(x,w) = \mathrm{Yes}$.

NP-hard: any problem in NP is Cook-reducible to it

NP-complete: is both NP-hard and in NP

CNF: And of Or clauses e.g. $(A \cup B) \cap (C \cup D)$

SAT problem: asks, "is this input satisfiable?". SAT is NP-complete.

Cook-levin Theorem: every problem in NP is reducable to SAT.

Cook reduction: from X to Y is an algorithm for problem X which, given an input of size s, runs in time poly(s) while making poly(s) calls to an oracle for Y whose input instances are all of size poly(s).

Oracle: for Y is a black box which, given an instance of problem Y, outputs a valid solution in O(1) time.

3-SAT: asks: is the input width-3 CNF formula satisfiable?

Theorem: 3-sat is np-complete

Proof:

 C_i has width 2: Say $C_i = x \vee y$. Then we would like to replace C_i with $x \vee y \vee \text{False}$ in F', since this is True if and only if $x \vee y = \text{True}$.

But False is not a literal... Can we add a new variable which is always False in any satisfying assignment? Yes! If we add this CNF to F:

$$F_z = (\neg z_1 \lor z_2 \lor z_3) \land (\neg z_1 \lor z_2 \lor \neg z_3) \land (\neg z_1 \lor \neg z_2 \lor z_3) \land (\neg z_1 \lor \neg z_2 \lor \neg z_3)$$

then z_1 is forced to be False: No matter what value z_2 and z_3 take, their literals must both be False in one of the above OR clauses.

If C_i has width 1: Say $C_i = \neg x$. Then we would like to replace C_i with $\neg x \lor \text{False} \lor \text{False}$... which we already know how to do!

We just need to introduce an extra copy of our always-False variable z_1 (since OR clauses can't contain two copies of the same literal).

If C_i has width 3: We can just leave it as it is.

If C_i has width k > 4: Say $C_i = \ell_1 \vee \cdots \vee \ell_k$. We would like to replace

$$C_i \rightarrow (e_1 = \ell_1 \vee \ell_2) \wedge (e_2 = e_1 \vee \ell_3) \wedge \cdots \wedge (e_{k-2} = e_{k-3} \vee \ell_{k-2}) \wedge (e_{k-2} \vee \ell_k),$$

as given the values of ℓ_1,\ldots,ℓ_k , this is satisfiable if and only if $\ell_1\vee\cdots\vee\ell_k=$ True. How do we implement the e_i 's? We have

$$(a = b \lor c)$$
 if and only if $(a \lor \neg b) \land (a \lor \neg c) \land (\neg a \lor b \lor c)$;

the first two clauses on the right enforce $a = \mathtt{False} \Rightarrow b \lor c = \mathtt{False}$, and the last enforces $b \lor c = \mathtt{False} \Rightarrow a = \mathtt{False}$.

NP:

NP problems

Independent Set (IS): an independent set is a subset of V which contains no edges.

Decision problem example:

problem: what is the maximum independent set for graph G

Decision problem: Is there an independent set of size at least k for graph G

Theorem: IS is np-complete

Proof:

To simulate the variables of F, we want a gadget that can be in one of two states which will represent True and False...

So if $F = (x \lor \neg y \lor z) \land (w \lor \neg x \lor \neg z)$, say, how do we build G? w False w True x False x True y False y True z False z True

Vertex Cover (VC):

Theorem: VC is NP-complete.

We can verify a set is a vertex cover in polynomial time, so $VC \in NP$. We'll prove NP-hardness by proving $IS \leq_C VC$.

This time though, we'll do it non-constructively, without gadgets.

Lemma: X is an independent set if and only if $V \setminus X$ is a vertex cover. (Because an edge intersects $V \setminus X$ if and only if it's **not** a subset of X.)

So G contains an independent set of size at **least** k if and only if G contains a vertex cover of size at **most** |V| - k.

Our reduction just passes the instance (G, |V| - k) to our VC-oracle.

$SAT \le_c 3-SAT \le_c IS \le_c VC \le_c ILP$

Complement: Given a decision problem X, we write \overline{X} for it's complement. Yes instances of X become No instances of \overline{X} and vice-versa.

Co-NP: We define Co-NP to be the set of decision problems whose complements are in NP, such as \overline{SAT}

Karp Reduction vs Cook reduction:

 $X \leq_C Y$ means "X is no harder than Y".

 $X \leq_K Y$ means "X is a special case of Y."

Dynamic Programming

Dynamic programming design steps:

step 1: come up with an exponential-time recursive algorithm for your problem by reducing it to multiple smaller versions of itself

step 2: arrange things so that most of the calls of your recursive algorithm are repeated, and use this to make it polynomial

step 3: rewrite the algorithm as an iterative one (table) note: how can you collapse the recursive algorithm?

tips:

Think of your problem as a sequence of choices/decisions

Recursively call program on each case that arises from the decision

Example:

```
Input : An array \mathcal{R} of n requests and a weight function w.

Output : A maximum-weight compatible subset of \mathcal{R}.

1 begin : A maximum-weight compatible subset of \mathcal{R}.

1 begin : A maximum-weight compatible subset of \mathcal{R}.

1 begin : A maximum-weight compatible subset of \mathcal{R}.

1 begin : A maximum-weight compatible subset of \mathcal{R}.

1 else : A maximum-weight compatible subset of \mathcal{R}.

1 characteristic subset of \mathcal{R}.

2 characteristic subset of \mathcal{R}.

2 characteristic subset of \mathcal{R}.

3 characteristic subset of \mathcal{R}.
```

Memoise: every-time we do a call (maybe recursive), we store the result in a hashmap/ data structure

Why dijkstra doesn't work with negatives: dijkstra works locally, therefore doesn't work with negative weights

Complexity: $|V|^2$ calls, each call is O(|V|). $\therefore O(|V|^3)$

