MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.8077 Spring 2018 Recitation 3 Friday 2/23

Problem: Let X_1, X_2, W_1, W_2 be random variables such that $X_1 = \theta + W_1, X_2 = \theta + W_2, W_1 \sim \mathcal{N}(0,1), W_2 \sim \mathcal{N}(0,1/4)$ where $\theta \in \mathbb{R}$ is an unknown parameter.

- (a) Find the ML estimator $\hat{\Theta}_{ML}$ for θ in terms of X_1 and X_2 .
- (b) Is $\hat{\Theta}_{ML}$ unbiased?
- (c) Calculate the variance of $\hat{\Theta}_{ML}$.
- (d) Suppose we have a linear estimator $\hat{\Theta}_L = aX_1 + bX_2$. Find a and b so that $\hat{\Theta}_L$ is unbiased and has minimum variance.

Now suppose θ is drawn from the distribution $\Theta \sim \mathcal{N}(5,1)$ i.e. $X_1 = \Theta + W_1$, $X_2 = \Theta + W_2$.

- (e) Find the posterior distribution $p(\theta|x_1, x_2)$.
- (f) Find the peak of the posterior distribution in terms of x_1 and x_2 .
- (g) Find the variance of the posterior distribution. Is it affected by the values of x_1 and x_2 ? Compare it to the variance of the prior distribution.

Now suppose we had two additional observations $Y_1 = \Theta + W_1$, $Y_2 = \Theta + W_2$.

- (h) Find the posterior distribution $p(\theta|x_1, x_2, y_1, y_2)$.
- (i) Find the peak of the posterior distribution in terms of x_1, x_2, y_1, y_2 .
- (j) Find the variance of the posterior distribution. Compare it to the variance of the previous posterior distribution with two observations.

Solution:

(a) The log-likelihood function (removing additive constants) is

$$l(\theta; x_1, x_2) = -\frac{(x_1 - \theta)^2}{2} - 2(x_2 - \theta)^2$$

We set the derivative to 0 to get the maximum likelihood estimate.

$$\frac{dl}{d\theta} = (x_1 - \theta) + 4(x_2 - \theta) = 0$$

$$\Rightarrow \theta_{ML} = \frac{x_1 + 4x_2}{5}$$

so the estimator is $\hat{\Theta}_{ML} = \frac{X_1 + 4X_2}{5}$.

(b) Yes.

$$\mathbb{E}[\hat{\Theta}_{ML}] = \frac{\mathbb{E}[X_1] + 4\mathbb{E}[X_2]}{5} = \theta$$

(c)

$$\operatorname{Var}[\hat{\Theta}_{ML}] = \frac{\operatorname{Var}[X_1] + 16\operatorname{Var}[X_2]}{25} = \frac{1}{5}$$

- (d) We have $\mathbb{E}[\hat{\Theta}_L] = (a+b)\theta \Rightarrow a+b=1$ and $\operatorname{Var}[\hat{\Theta}_L] = a^2 + \frac{b^2}{4}$. We therefore want to minimize $a^2 + \frac{(1-a)^2}{4} \Rightarrow 2a \frac{1-a}{2} = 0 \Rightarrow a = \frac{1}{5}, b = \frac{4}{5}$. Therefore $\hat{\Theta}_L = \hat{\Theta}_{ML}$.
- (e) From Bayes' theorem

$$p(\theta|x_1, x_2) = \frac{p(x_1, x_2|\theta) \cdot p(\theta)}{p(x_1, x_2)}$$

$$\propto \exp\left(-\frac{(x_1 - \theta)^2}{2} - 2(x_2 - \theta)^2 - \frac{(\theta - 5)^2}{2}\right)$$

$$\propto \exp\left(-3\theta^2 + (x_1 + 4x_2 + 5)\theta\right)$$

$$\propto \exp\left(-3\left(\theta - \frac{x_1 + 4x_2 + 5}{6}\right)^2\right)$$

$$\Rightarrow p(\theta|x_1, x_2) = \mathcal{N}\left(\frac{x_1 + 4x_2 + 5}{6}, \frac{1}{6}\right)$$

(f) Since the posterior is a normal distribution, the peak is its mean or $\frac{x_1+4x_2+5}{6}$. Note that by symmetry of the normal distribution this is also $\mathbb{E}[\Theta|x_1,x_2]$.

- (g) The variance can also be easily read off and is $\frac{1}{6}$. We note that this does not depend on x_1 nor x_2 and is smaller than the variance of the prior.
- (h) Similar computation yields

$$p(\theta|x_1, x_2, y_1, y_2) \propto \exp\left(-\frac{11}{2}\theta^2 + (x_1 + 4x_2 + y_1 + 4y_2 + 5)\theta\right)$$
$$\propto \exp\left(-\frac{11}{2}\left(\theta - \frac{x_1 + 4x_2 + y_1 + 4y_2 + 5}{11}\right)^2\right)$$
$$\Rightarrow p(\theta|x_1, x_2, y_1, y_2) = \mathcal{N}\left(\frac{x_1 + 4x_2 + y_1 + 4y_2 + 5}{11}, \frac{1}{11}\right)$$

- (i) The peak is $\frac{x_1+4x_2+y_1+4y_2+5}{11}$.
- (j) The variance is $\frac{1}{11}$ and is smaller than that for the posterior after two observations.