

Deep Reinforcement Learning for Traveling Purchaser Problems

2025. 08. 25

AI&OPT 김정현

01 TPP vs TSP

❖ 문제 설명

- ✓ TSP (Traveling Salesman Problem)
 - 주어진 모든 도시를 한 번씩 방문하고 시작점으로 돌아오는 최소 거리 경로 탐색
 - 목표: 이동 비용 최소화
 - 의사결정 = 도시 방문 순서
- √ "TPP (Traveling Purchaser Problem)"
 - 여러 상품을 구매해야 하고, 각 시장에서 가격·재고가 다름
 - 주어진 제품 수요를 충족하기 위해 일부 시장만 방문
 - 목표: 총 비용(이동 비용 + 구매 비용) 최소화
 - 의사결정 = 방문할 시장 순서 + 어떤 시장에서 어떤 상품 구매
- ✓ 특징
 - TSP는 TPP의 서브케이스
 - 만약 각 시장이 모든 상품을 동일 가격·재고로 제공한다면, → TSP와 동일
 - TPP는 TSP보다 복잡한 구조의 문제

02 Related Work

❖ 기존 접근법의 한계

- ✓ 이동 비용 vs 구매 비용 시장 간의 상충 관계 → 방대한 탐색 공간
- ✓ Exact Method: 현실적인 크기의 문제에서 너무 높은 계산 비용
- ✓ 휴리스틱: 특정 상황에만 효과적이며, 복잡한 설계 및 높은 전문 지식을 요구, 일반화 성능 부족

❖ 본 논문의 핵심 아이디어

- ✓ 두 단계 분리 접근(Solve Separately, Learn Globally)
 - I. 경로 구성: DRL 기반으로 시장 방문 순서 결정
 - II. 구매 계획: 경로가 결정된 후, 선형계획법(LP)으로 최적 구매 계획 도출

03 DRL Approach

❖ DRL 접근법의 주요 구성 요소

- ✓ 이분 그래프 표현 (Bipartite Graph Representation)
 - 시장과 제품 간의 관계를 그래프로 표현
 - 시장-제품 간의 공급량. 가격 등 관계 정보를 명확히 포착
 - 문제 크기(시장/제품 수)에 독립적인 특징 차원 → 다양한 크기의 문제에 유연하게 적용 가능! (Size-agnostic)
- ✓ 정책 네트워크 (Policy Network) 설계
 - 아키텍처: GNN(Graph Neural Networks) + MHA(Multi-Head Attention) 기반
 - 역할: 시장-제품 간의 복잡한 관계 정보(예: 대체 가능성, 보완성)를 효과적으로 추출하여 최적의 경로 결정
 - 효율성: 정적 정보(그래프 임베딩)와 동적 정보(부분 경로, 남은 수요) 처리를 분리하여 계산 효율성 극대화
- ✓ 메타 학습 전략 (Meta-Learning Strategy)
 - 훈련 안정성/효율성: 초기 탐색 공간이 큰 대규모 TPP에서 훈련 붕괴(training collapse) 방지
 - 일반화 능력(Generalization): 훈련 데이터에 없던 훨씬 큰 규모나 다른 분포의 인스턴스에 대한 'Zero-shot generalization' 가능
 - 여러 인스턴스 분포에서 초기화된 정책을 학습 → 새로운 인스턴스에 빠르게 적응 가능

04 Graph vs Bipartite Graph

❖ 그래프(Graph)란?

- ✓ 그래프는 점(Nodes/Vertices)들과 이 점들을 잇는 선(Edges/Links)들로 이루어진 구조
 - 점 (Node): 어떤 '개체'를 나타냄 (예: 도시, 사람, 시장, 제품)
 - 선 (Edge): 점들 사이의 '관계'를 나타냄 (예: 도시 간의 도로, 친구 관계, 시장에서 제품 구매 가능 여부)

❖ 이분 그래프(Bipartite Graph)란?

- ✓ 일반 그래프는 노드들이 자유롭게 연결됨
- ✔ 이분 그래프는 두 그룹으로 나뉜 노드 집합만 존재
 - 같은 그룹 안에서는 연결 불가
 - 오직 다른 그룹 노드끼리만 연결
- ✓ 예시:
 - 그룹 A: 사람 (철수, 영희, 민수)
 - 그룹 B:취미(독서, 요리, 운동)
 - 연결: 철수 ↔ 독서 / 영희 ↔ 요리 / 민수 ↔ 운동, 독서

04 Graph vs Bipartite Graph

❖ TPP를 위한 이분 그래프 구성

- ✓ 시장: M1, M2 (총 2개 시장 + depot (출발/도착 지점 v0)
- ✓ 제품: P1, P2 (총 2개 제품)
- ✓ 수요량: P1 = 10개, P2 = 5개
- ✓ 시장별 공급 정보:
 - M1: P1을 8개 공급 (가격 3), P2를 3개 공급 (가격 4)
 - M2: P1을 5개 공급 (가격 2), P2를 4개 공급 (가격 5)
- ✓ 노드 구성:
 - 그룹 A: 시장 노드 (M1, M2, v0)
 - 노드 특징: 각 시장의 위치 좌표, depot 여부
 - 그룹 B: 제품 노드 (P1, P2)
 - 노드 특징: 각 제품의 총 수요량
- ✓ 엣지 (시장-제품 관계):
 - 연결 조건: 시장에서 특정 제품을 구매할 수 있다면 연결
 - 엣지 특징:
 - 해당 시장에서 해당 제품을 구매할 수 있는 가격 / 해당 시장에서 해당 제품의 최대 공급량
 - 예: M1 ↔ P1 : [가격: 3, 공급량: 8] / M1 ↔ P2 : [가격: 4, 공급량: 3]

04 Graph vs Bipartite Graph

❖ TPP를 위한 이분 그래프 구성

✓ 시장 노드 : M1, M2, v0 (depot)

✓ 제품:P1,P2

	Χ	Υ						
v0	0	0						
M1	10	20						
M2	30	5						
시장 노드 피처								

- ✓ 제품 노드 임베딩 g0_k
- ✓ 시장 노드 임베딩 h0_m

❖ 정책 네트워크 구조

- ✓ Input Embedding Module: 정적 TPP 인스턴스(이분 그래프)를 임베딩
- ✓ Market Encoder: 시장 노드 간의 관계를 심층적으로 인코딩
- ✓ Decoder: 현재 상태와 인코딩된 정보를 바탕으로 다음 시장을 선택

Input Embedding Module

- ✓ TPP 인스턴스의 정적 정보, 즉 이분 그래프 표현을 받아 신경망이 처리할 수 있는 고차원 임베딩으로 변환하는 역할
- ✔ 시장/제품 특징과 그래프 연결 구조를 바탕으로, 각 시장 노드와 제품 노드에 대한 의미 있는 벡터를 생성
- ✓ 세부과정:
 - I. 초기 선형 임베딩: 각 시장 노드, 제품 노드, 엣지의 원시 특징(위치, 수요량, 가격, 공급량 등)을 고정 차원의 벡터로 변환
 - II. 두 단계 메시지 전달 (GNN):
 - 1단계 (제품 노드): 각 제품 노드는 연결된 시장 노드들로부터 자신의 공급 관련 정보를 취합하여 임베딩 업데이트 $g^0_{\ k}$
 - 2단계 (시장 노드): 각 시장 노드는 연결된 제품 노드들로부터 자신의 제품 공급 및 다른 시장과의 관계 정보를 취합하여 임베딩 업데이트 $h^0{}_m$

❖ 정책 네트워크 구조

- ✓ Input Embedding Module: 정적 TPP 인스턴스(이분 그래프)를 임베딩
- ✓ Market Encoder: 시장 노드 간의 관계를 심층적으로 인코딩
- ✓ Decoder: 현재 상태와 인코딩된 정보를 바탕으로 다음 시장을 선택

Market Encoder

- ✓ 입력 임베딩 모듈에서 나온 시장 노드 임베딩 h^0_m 를 더욱 심층적으로 처리
- ✔ 시장 노드들 간의 관계를 깊게 학습하여, 각 시장이 전체 시장 네트워크 내에서 어떤 '역할'을 하는지 파악
- ✓ 세부과정 (Transformer Architecture 기반):
 - I. MHA (Multi-Head Attention) Layer : 각 시장 노드 m 은 다른 모든 시장 노드들 n 과의 관계를 학습
 - II. Node-wise MLP Feed-Forward Layer: 어텐션으로 취합된 정보를 각 노드별로 추가 처리
 - III. 잔차 연결(Residual Connection) 및 배치 정규화(Batch Normalization) 적용
- ✓ 결과: h^N_m (최종 시장 노드 임베딩)
- ✓ 이들의 평균을 취한 전역 임베딩 h_m 도 생성됨

Decoder

- ✓ 디코더는 경로가 완성될 때까지 반복적으로 실행됨
- ✓ 현재까지의 경로, 남은 제품 수요, 그리고 TPP 인스턴스 전체의 정보 (h_M) 를 종합하여 다음에 방문할 최적의 시장을 선택
- ✓ 세부과정:
 - I. 디코딩 컨텍스트 (h_d) 생성:
 - 글로벌 임베딩 (h_M) : 시장 인코더에서 얻은 TPP 인스턴스 전체의 고수준 정보
 - 수요 컨텍스트 (g^t_{κ}) : 현재 시점에서 남은 제품 수요량과 제품 노드 임베딩을 가중 합한 벡터
 - 경로 컨텍스트 (o^t_{π}) : 지금까지 방문한 부분 경로의 정보를 담은 LSTM(Long Short-Term Memory) 벡터
 - Ⅱ. 원-투 매니 어텐션:
 - 디코딩 컨텍스트 (h_d) 를 쿼리로 사용, 시장 인코더에서 나온 최종 시장 노드 임베딩 $h^N_{\ m}$ 들을 키와 밸류으로 사용
 - 마스킹: 제약 조건을 준수하지 않는 경우는 스코어를 -∞로 설정
 - III. Softmax를 통한 확률 분포 생성 $p_{\theta}(a_t|s_t)$
 - IV. 행동 선택:
 - 훈련 시: 이 확률 분포에서 다음 시장을 샘플링(sampling)하여 탐색(exploration)을 유도
 - 추론 시: 가장 높은 확률을 가진 시장을 greedy 선택하여 최적의 경로를 찾음
 - V. 상태 업데이트:
 - 선택된 시장이 부분 경로에 추가되고, 남은 수요량 d_k 가 업데이트됨

❖ Architecture

06 Training Strategy

❖ DRL 학습 과정

```
Algorithm 1: REINFORCE Algorithm With Greedy Rollout Baseline.
```

```
Input: Initial policy network parameter \theta, TPP instance distribution \mathcal{P},
          number of epochs E, batch size B, steps per epoch T, learning rate \epsilon, significance \alpha.
Output: The learned policy network parameter \theta.
Initialize baseline network parameter \theta^{BL} \leftarrow \theta;
for e = 1, ..., E do
     for t = 1, \ldots, T do
          Generate B instances randomly from \mathcal{P};
          Sample route \pi_i \sim p_{\theta}(\pi_i|U_i), i \in \{1, \dots, B\};
         Greedy rollout b(U_i) from p_{\theta^{BL}}, i \in \{1, ..., B\};
                                                                                                                             // compute baseline
         \nabla \mathcal{L} \leftarrow \sum_{i=1}^{B} \left( L\left(\pi_i | U_i\right) - b(U_i) \right) \nabla_{\theta} \log p_{\theta} \left(\pi_i | U_i\right) ;
                                                                                                                                     // get gradient
         \theta \leftarrow \operatorname{Adam}(\theta, \nabla \mathcal{L});
                                                                                                                   // update policy network
     end
     if OneSidedPairedTTest (p_{\theta}, p_{\theta^{BL}}) < \alpha then
          \theta^{\mathrm{BL}} \leftarrow \theta:
                                                                                                                    update baseline network
     end
end
```

07 Meta-Learning Strategy

❖ 메타 학습 필요성

- ✓ 작은 규모의 TPP 인스턴스 → 기존 DRL 학습 과정으로도 잘 작동
- ✓ 대규모 인스턴스 → 무작위 초기화된 정책망이 합리적 해 탐색 실패, 학습의 불안정, training collapse 발생
- ✓ 특정 분포에서만 훈련된 정책망은 다른 분포/규모로 전이 시 성능 저하
- ✓ 따라서 다양한 TPP 인스턴스 분포 (시장 수/제품 수)를 경험하며 학습하는 전략 필요

❖ 메타 학습 절차

- 1. 메타 정책 네트워크 θ 초기화:
 - θ 를 무작위로 초기화
- Ⅱ. 문제 유형 *Pin* 선택:
 - TPP 문제 집합 D_{TPP} 에서 무작위 선택
- III. 임시 정책 네트워크 θ_{in} 생성:
 - θ 를 복사하여 θ_{in} 생성
- IV. 특정 P_{in} 문제 유형에 맞춰 훈련:
 - θ_{in} 를 학습 알고리즘(REINFORCE with Baseline)을 사용해서 N번 업데이트
- V. 메타 정책 네트워크 θ 업데이트:
 - $\theta = \theta_{in}$ 방향으로 업데이트

08 Result

❖ 실험 결과

- ✓ U-TPP (Unrestricted Traveling Purchaser Problem): 무제한 공급 여행 구매자 문제
- ✓ R-TPP (Restricted Traveling Purchaser Problem): 제한된 공급 여행 구매자 문제

TABLE II RESULTS ON SYNTHETIC U-TPP INSTANCES

Instance GSH + TRH			CAH	+ TRH	RL -	E2E	RL + TRH		
M	K	Obj.	Time	Obj.	Time	Obj.	Time	Obj.	Time
50 100	100 50	2750 2050	$0.008 \\ 0.011$	2552 1571	0.017 0.033 0.033 0.072	2542 1563	0.025 0.020	2446 1524	0.033 0.027

TABLE III
RESULTS ON SYNTHETIC R-TPP INSTANCES

Iı	nstanc	ee	GSH + TRH		CAH	+ TRH	RL -	E2E	RL + TRH		
M	K	λ	Obj.	Time	Obj.	Time	Obj.	Time	Obj.	Time	
50	50	0.99	2152	0.016	2257	0.073	2032	0.020	1954	0.030	
50	100	0.99	2671	0.032	2863	0.161	2567	0.026	2466	0.042	
100	50	0.99	2062	0.058	2174	0.243	1753	0.029	1711	0.043	
100	100	0.99	2578	0.142	2853	0.704	2302	0.033	2235	0.053	
50	50	0.95	2845	0.044	2914	0.124	2645	0.025	2594	0.036	
50	100	0.95	3569	0.095	3709	0.243	3457	0.034	3368	0.059	
100	50	0.95	3384	0.300	3440	0.598	3027	0.040	2980	0.073	
100	100	0.95	4281	0.696	4405	1.499	3993	0.053	3920	0.111	
50	50	0.9	3910	0.099	3965	0.201	3704	0.033	3644	0.052	
50	100	0.9	5080	0.195	5137	0.350	4927	0.043	4855	0.080	
100	50	0.9	5293	0.789	5310	1.218	4956	0.060	4900	0.124	
100	100	0.9	6963	1.666	7014	2.637	6672	0.073	6660	0.186	

08 Result

❖ 실험 결과

✔ Opt 값은 TPPLIB 벤치마크의 웹사이트에서 제공된 각 인스턴스의 최적해 또는 현재까지 알려진 가장 좋은 솔루션 값

TABLE IV
RESULTS ON TPPLIB BENCHMARK INSTANCES

Instance	Opt.		GSH + TRH		CAH + TRH		RL - E2E			RL + TRH				
mstance	Obj.	Time	Obj.	Gap	Time	Obj.	Gap	Time	Obj.	Gap	Time	Obj.	Gap	Time
EEuclideo.50.50	1482	4	1779	17.20%	0.007	1643	9.97%	0.015	1524	2.63%	0.014	1497	1.06%	0.019
EEuclideo.50.100	2417	6	2652	9.74%	0.008	2726	13.82%	0.032	2588	7.01%	0.025	2446	1.03%	0.037
EEuclideo.100.50	1655	72	1979	24.89%	0.009	1796	9.45%	0.031	1701	2.96%	0.019	1688	2.30%	0.027
EEuclideo.100.100	2085	183	2388	15.47%	0.013	2251	8.65%	0.075	2220	7.09%	0.025	2146	2.99%	0.064
CapEuclideo.50.50.99	1862	6	2189	20.86%	0.017	2243	23.72%	0.089	2047	9.09%	0.020	1929	3.51%	0.027
CapEuclideo.50.100.99	2313	7	2578	12.30%	0.031	2710	18.23%	0.160	2483	7.18%	0.025	2394	3.33%	0.033
CapEuclideo.100.50.99	1504	58	1951	29.97%	0.061	1988	35.73%	0.179	1561	3.91%	0.025	1531	1.84%	0.034
CapEuclideo.100.100.99	1865	134	2283	21.76%	0.118	2406	27.95%	0.686	1955	4.86%	0.028	1914	2.79%	0.039
CapEuclideo.50.50.95	2444	10	2904	21.16%	0.036	2751	15.61%	0.104	2643	7.40%	0.028	2581	5.09%	0.040
CapEuclideo.50.100.95	3187	23	3441	7.97%	0.072	3672	15.75%	0.234	3421	7.35%	0.036	3299	3.56%	0.054
CapEuclideo.100.50.95	2860	466	3144	9.85%	0.199	3221	12.73%	0.629	3026	5.93%	0.039	2962	3.66%	0.063
CapEuclideo.100.100.95	3555	1178	3991	12.31%	0.521	4096	15.24%	1.249	3769	5.94%	0.049	3664	3.00%	0.094
CapEuclideo.50.50.9	3571	28	3927	10.05%	0.061	3873	8.49%	0.145	3744	4.73%	0.036	3673	2.81%	0.053
CapEuclideo.50.100.9	4668	30	4961	6.33%	0.128	5046	8.07%	0.289	4876	4.47%	0.043	4834	3.57%	0.067
CapEuclideo.100.50.9	4674	243	4981	6.64%	0.439	5106	9.26%	0.999	4891	4.66%	0.053	4825	3.25%	0.097
CapEuclideo.100.100.9	6442	537	6961	8.11%	1.668	6850	6.43%	2.307	6637	3.01%	0.070	6534	1.42%	0.156
Average	2912	187	3257	14.66%	0.212	3274	14.94%	0.451	3068	5.51%	0.033	2995	2.83%	0.057

08 Result

❖ 실험 결과

- ✓ 대규모 인스턴스에 대한 일반화 능력 (Zero-shot Generalization)
 - 학습 인스턴스: M, K가 최대 (100, 100)인 인스턴스에서 메타 학습 전략을 사용하여 정책 네트워크를 훈련
 - 평가 인스턴스: 더 큰 인스턴스 ((150, 150), (200, 200), (300, 300))에 대해 미세 조정 없이 적용하여 성능 평가

TABLE V
ZERO-SHOT GENERALIZATION ON LARGER-SIZED INSTANCES

I	nstano	e	GSH +	- TRH	CAH -	- TRH	RL -	E2E	RL +	TRH	
M	K	λ	Obj.	Time	Obj.	Time	Obj.	Time	Obj.	Time	
200	150 200 300	/ /	2885	0.034		0.259	2485	0.040			
150	150	0.95	2918 5642 10008	1.318	5884	1.862	6133	0.074	6014	0.150	

09 Conclusion

❖ 결론 및 향후 연구

- ✓ 경로 (Routing)와 구매 (Purchasing) 결정이 강하게 연동된 복잡한 NP-hard 문제인 Traveling Purchaser Problem (TPP)
- ✓ 기존 해법들은 계산 비용 높거나 일반화에 한계
- ✓ 제안: "따로 풀고, 전체를 학습(Solve Separately, Learn Globally)"하는 DRL (Deep Reinforcement Learning) 기반 프레임워크 제시