Assignment 2 Writeup

I had initially assumed when making the assignment that I needed to average 100 runs for every part of the table, like last assignment. Because of this, for 3 of the algorithms, I did every run 100 times and averaged it out. However, once I learned this, I redid the table for British Museum so that I could get larger values for comparison.

DFS with Backtracking:

I only simulated through n=21 before becoming too impatient. Interestingly, the algorithm performs much better for odd ns than even ones, presumably because that's when there is a valid solution with a queen in the starting corner.

n	number_of_iterations	number_of_moves	time
10	1068	1940	0.0005248928070068359
11	559	1023	0.000260462760925293
12	3316	6120	0.0016379857063293457
13	1464	2717	0.0007703089714050293
14	28381	52976	0.014922852516174317
15	21625	40545	0.011211819648742676
16	170749	321408	0.09376379251480102
17	96580	182427	0.05374171733856201
18	784511	1486440	0.5060290265083313
19	50711	96349	0.03215226650238037
20	4192126	7985000	2.8517344403266907
21	188134	359163	0.3627978038787842

British Museum:

It turns out that British Museum is a truly terrible algorithm. No wonder Mr. Smithers wasn't getting the results he wanted. I considered making it more efficient (by choosing random permutations, so that no obviously invalid sets would be chosen) before deciding that it was a waste of time.

n	number_of_iterations	number_of_moves	time (seconds)
8	109606	876848	0.678992748260498
9	500717	4506453	3.2337429523468018
10	18614104	186141040	128.13617777824402
11	28882861	317711471	212.1617078781128

Stochastic Hill Climbing:

My Hill Climbing algorithm begins with a random board. In each iteration, it checks each queen and determines which queen has the largest number of conflicts with other queens (I didn't count those as iterations because you said on Piazza that iterations that involved ruling out where not to place a queen don't count). I then checked where in that queen's row I could move it that would minimize its number of conflicts (also not counted as iterations for the same reason). In both cases, whenever I found a tie, I flipped a coin to decide which to follow. Then I moved the queen, rinsed, and repeated.

When moving the queen didn't actually reduce the number of conflicts, I increased a plateau count, setting it to 0 if I progressed again. If that plateau count reached a certain limit (I chose the side-length of the board), I restarted the problem at a random board.

Below, I simulated from n=10 to n=40. After that, I decided to keep simulating every 10 queens to see how good my algorithm was. I got both working above n=40.

n	number_of_iterations	number_of_moves	time (seconds)
10	100.54	246.6	0.003960776329
11	126.14	308.6	0.005814881325
12	128.03	314.36	0.005565447807
13	123.29	303.65	0.006531567574
14	143.46	352.48	0.008818194866
15	138.6	341.5	0.009758768082
16	123.75	304.58	0.009040381908
17	125.79	309.88	0.009834201336
18	125.25	307.22	0.01073187828
19	143.68	352.85	0.01278418779
20	147.73	362.94	0.01473422289
21	152.13	373.13	0.01614058256
22	125.73	310.46	0.01430334091

23	135.84	333.94	0.0167406702
24	157.31	385.22	0.02111462593
25	139.79	343.59	0.02108673573
26	150.48	368.32	0.02678188801
27	153.98	376.46	0.03317564249
28	165.02	402.4	0.04463039875
29	142.52	348.11	0.04105499744
30	147.11	361.66	0.02969578505
31	169.45	415.78	0.03975070477
32	171.39	419.98	0.05567188501
33	147	359.58	0.04837871313
34	162.86	397.64	0.04129802465
35	158.68	390.93	0.04897524595
36	191.76	469.92	0.07598430872
37	171.41	418.52	0.05087075472
38	169.92	415.96	0.06965877295
39	185.07	453.24	0.06981954813
40	191.78	468.58	0.06008615255
50	194.24	476.72	0.09104444027
60	183.15	453.62	0.1187205315
70	235.07	580.34	0.2574866152
80	220.64	548.48	0.2297628498
90	256.62	635.32	0.3312775445
100	290.37	720.84	0.4637150049
110	360.17	885.74	0.680928998
120	338	839.2	0.7505497003
130	302.71	768.54	0.7884331369
140	372.98	928.88	1.138519239

For Forward Checking:

My Forward Checking algorithm uses a lookahead that keeps track of which queens we have already used or ruled out. The lookahead is an array, and at each index, it contains a set of all rows that a queen could be in for the column at that index. In each iteration of the algorithm, we

remove a random row for our column of the lookahead and place a queen there. We then move through all future columns and remove all possibilities that the queen conflicts with. If we ever find a column with no available rows, we backtrack.

When we remove a conflicted row, we add that move to a stack frame. Whenever we backtrack and remove the queen that banned that move, we pop the stack frame and add all its moves back to the lookahead. Additionally, whenever we remove a row from the lookahead to try placing a queen there, we add that move to the *previous* queen's stack frame. That way, we won't try to place another queen there in this branch of the tree, but when we backtrack through its parent, we can place another queen there in another branch of the tree.

If we ever successfully place a queen in the last row, we have an answer, and return it.

Originally, my algorithm had the same problem that DFS has (since it is fundamentally just DFS with a shortcut), where even numbers take much longer than odd numbers, because we can't place queens in corners. To fix that, I decided to randomly choose the order in which I test queens. This leads to wildly inconsistent behavior, where sometimes it performs amazingly and other times terribly. I suspect that if I added random restarts, it would work even better than my hill-climbing, though it would be extremely stochastic.

This table was made in the same way as Hill Climbing, where I ran the algorithm 100 times and averaged the results. Given the variance of this algorithm, that was necessary to get accurate data.

n	number_of_iterations	number_of_moves	time (seconds)
10	67.39	124.78	0.0004276418686
11	91.52	172.04	0.0005479192734
12	110.26	208.52	0.0006678462029
13	165.03	317.06	0.001025519371
14	152.73	291.46	0.001060805321
15	207.54	400.08	0.001442234516
16	204.76	393.52	0.001338984966
17	234.21	451.42	0.001594479084
18	214.65	411.3	0.001557514668
19	360.25	701.5	0.002385950089
20	470.28	920.56	0.002983646393
21	292.55	564.1	0.001739442348
22	643.26	1264.52	0.004358673096

23	526.34	1029.68	0.00350612402
24	374.54	725.08	0.002406718731
25	410.31	795.62	0.002417955399
26	364.13	702.26	0.002125716209
27	992.7	1958.4	0.006734297276
28	1508.83	2989.66	0.01017973185
29	1113.46	2197.92	0.007373092175
30	2744.08	5458.16	0.01705914974
31	2937.99	5844.98	0.01764408827
32	1099.87	2167.74	0.007069106102
33	1324.86	2616.72	0.008119785786
34	1889.53	3745.06	0.0119366765
35	5341	10647	0.03295289993
36	2007.8	3979.6	0.01258448839
37	2424.34	4811.68	0.015233953
38	4236.41	8434.82	0.02812412024
39	2277.68	4516.36	0.01360116005
40	1377.43	2714.86	0.008267858028
50	14175.02	28300.04	0.08823185682
60	101659.2	203258.4	0.5967064357
70	254388.0	508706.0	1.2013102626800538

Which algorithm is better changes depending on what the side-length is. At n=40, Hill Climbing takes 0.0601 seconds per iteration, while Forward Checking, on average, takes 0.00827 seconds per iteration, which is clearly superior. However, when we increase n to 70, Hill Climbing takes 0.489 seconds, while Forward Checking takes 1.201 seconds. So in the long run, my Hill-Climbing algorithm is superior to Forward Checking (and far more reliable, not that I measured the variance).

According to my numbers, Forward Checking always has much more iterations and moves at any level, but you should ignore that. It only has more iterations because of a quirk in how I measure data. You said on Piazza that any iteration that doesn't actually involve placing a queen, only ruling out where to place it, doesn't count as an iteration. Because of that, the many iterations within and applying my fitness function to determine which queen should be moved don't count as iterations, even though it takes $O(n^2)$ time to run. When I originally ran the algorithm counting all of those loops, I had a number of iterations in the millions by n=40.

Likewise, ignore that Forward Checking has more moves. It has much more moves because it is much more brute-force than my Hill-Climbing algorithm. Hill-Climbing takes $O(n^2)$ time determining where to place a queen, while Forward Checking only takes O(n) time determining where not to put it. Because of this, Forward Checking makes more, dumber iterations, but takes less time doing so.