

Calcule |A|, si
$$A = \begin{pmatrix} -2 & 1 & 0 & 4 \\ 3 & -1 & 5 & 2 \\ -2 & 7 & 3 & 1 \\ 3 & -7 & 2 & 5 \end{pmatrix}$$

SOLUCIÓN Existen varias formas de proceder en este caso y no es evidente cuál de ellas será la más rápida para llegar a la respuesta. Sin embargo, como ya existe un cero en el primer renglón, se comienza la reducción en ese renglón.

Se multiplica la segunda columna por 2 y por -4 y se suma a la primera y cuarta columnas, respectivamente

$$|A| = \begin{vmatrix} 0 & 1 & 0 & 0 \\ 1 & -1 & 5 & 6 \\ 12 & 7 & 3 & -27 \\ -11 & -7 & 2 & 33 \end{vmatrix}$$

Se intercambian las primeras dos columnas.

$$= - \begin{vmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 5 & 6 \\ 7 & 12 & 3 & -27 \\ -7 & -11 & 2 & 33 \end{vmatrix}$$

Se multiplica la segunda columna por -5 y por -6 y se suma a la tercera y cuarta columnas, respectivamente.

$$= - \begin{vmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 7 & 12 & -57 & -99 \\ -7 & -11 & 57 & 99 \end{vmatrix}$$

Como la cuarta columna es ahora un múltiplo de la tercera (columna $4 = \frac{99}{57} \times \text{columna } 3$) se ve que |A| = 0.

Calcule |A|, si
$$A = \begin{pmatrix} 1 & -2 & 3 & -5 & 7 \\ 2 & 0 & -1 & -5 & 6 \\ 4 & 7 & 3 & -9 & 4 \\ 3 & 1 & -2 & -2 & 3 \\ -5 & -1 & 3 & 7 & -9 \end{pmatrix}$$