# Dissecting Neural ODEs

Stefano Massaroli\* $^{1,3}$  and Michael Poli\* $^{2,3}$ , Jinkyoo Park $^{2}$ , Atsushi Yamashita $^{1}$ , Hajime Asama $^{1}$  \*Equal contribution,  $^{1}$ The University of Tokyo,  $^{2}$ KAIST,  $^{3}$ DiffEqML





**Previous result**: Neural ODEs cannot represent certain functions (e.g reflections) due to the topology—preserving property of the flows.

Augmented Neural ODEs [Dupont et al. 2019] offer a solution:

$$\begin{bmatrix} \dot{\mathbf{z}}_x(s) \\ \dot{\mathbf{z}}_a(s) \end{bmatrix} = f_{\theta(s)}(s, \mathbf{z}_x, \mathbf{z}_a), \quad \begin{bmatrix} \mathbf{z}_x(0) \\ \mathbf{z}_a(0) \end{bmatrix} = \begin{bmatrix} \mathbf{x} \\ 0 \end{bmatrix}$$

► We generalize **augmentation** strategies for Neural ODEs

Input Layer (IL) Augmentation:

$$\begin{bmatrix} \mathbf{z}_x(0) \\ \mathbf{z}_a(0) \end{bmatrix} = h_x(\mathbf{x}), \quad h_x : \mathbb{R}^{n_x} \to \mathbb{R}^{n_x + n_a}$$

► The initial condition of the augmented state is determined by an input network (e.g. a single linear layer)

#### Higher–Order Neural ODEs

► An alternative **parameter efficient** alternative to augmentation is increasing the order of the differential equation

### Higher-Order (HO) Neural ODEs:

$$\begin{cases} \dot{\mathbf{z}}^{i}(s) = \mathbf{z}^{i+1}(s) \\ \dot{\mathbf{z}}^{n}(s) = f_{\theta(s)}(s, \mathbf{z}(s)) \end{cases} \quad \mathbf{z} = [\mathbf{z}^{1}, \mathbf{z}^{2}, \dots, \mathbf{z}^{n}], \ \mathbf{z}^{i} \in \mathbb{R}^{n_{z}/n} \\ f_{\theta(s)} : \mathbb{R}^{n_{z}} \to \mathbb{R}^{n_{z}/n} \end{cases}$$

e.g. 2nd-order 
$$egin{bmatrix} \dot{\mathbf{z}}_q(s) \ \dot{\mathbf{z}}_p(s) \end{bmatrix} = egin{bmatrix} \mathbf{z}_p \ f_{ heta(s)}(s,\mathbf{z}_q,\mathbf{z}_p) \end{bmatrix}$$

► An alternative **parameter efficient** alternative to augmentation is increasing the order of the differential equation

## Ranking Augmentation Strategies

No aug.: expressivity limitations, low performance.

0-aug.: cannot learn the initial condition, higher NFEs.

IL aug.: can learn initial conditions, best performance.

HO aug: parameter efficiency, comparable performance.

A single linear layer is sufficient to relieve vanilla Neural ODEs of their limitations and achieves the best performance.

|           | NODE A |       | ANC   | ANODE |       | IL-NODE |       | 2nd-Ord.  |  |
|-----------|--------|-------|-------|-------|-------|---------|-------|-----------|--|
|           | MNIST  | CIFAR | MNIST | CIFAR | MNIST | CIFAR   | MNIST | CIFAR     |  |
| Test Acc. | 96.8   | 58.9  | 98.9  | 70.8  | 99.1  | 73.4    | 99.2  | 72.8      |  |
| NFE       | 98     | 93    | 71    | 169   | 44    | 65      | 43    | <b>59</b> |  |
| Param.[K] | 21.4   | 37.1  | 20.4  | 35.0  | 20.7  | 36.1    | 20.0  | 34.6      |  |

#### Complete Neural ODE Formulation

The Neural ODE formulation is enhanced

#### **Neural Ordinary Differential Equation**

$$\begin{cases} \dot{\mathbf{z}}(s) = f_{\boldsymbol{\theta}(s)}(s, \mathbf{x}, \mathbf{z}(s)) \\ \mathbf{z}(0) = \boldsymbol{h}_{\boldsymbol{x}}(\mathbf{x}) & s \in \mathcal{S} \\ \hat{\mathbf{y}}(s) = h_{\boldsymbol{y}}(\mathbf{z}(s)) \end{cases}$$

| Input               | $\mathbf{x}$       | $\mathbb{R}^{n_x}$                      |
|---------------------|--------------------|-----------------------------------------|
| Output              | $\hat{\mathbf{y}}$ | $\mathbb{R}^{n_y}$                      |
| (Hidden) State      | Z                  | $\mathbb{R}^{n_z}$                      |
| Parameters          | $\theta(s)$        | $\mathbb{R}^{n_{	heta}}$                |
| Neural Vector Field | $f_{\theta(s)}$    | $\mathbb{R}^{n_z}$                      |
| Input Network       | $h_x$              | $\mathbb{R}^{n_x} \to \mathbb{R}^{n_z}$ |
| Output Network      | $h_y$              | $\mathbb{R}^{n_z} \to \mathbb{R}^{n_y}$ |

#### Generalized Adjoint for Neural ODEs

Traditionally, Neural ODEs:

- lacktriangle have constant parameters (i.e.  $heta \in \mathbb{R}^{n_{ heta}}$ )
- representation are optimized to minimize only terminal loss functions  $L(\mathbf{z}(S))$ .

We consider loss functions

$$\ell = L(\mathbf{z}(S)) + \int_{S} l(\tau, \mathbf{z}(\tau)) d\tau$$

distributed on the whole depth domain

### Generalized Adjoint Gradients

$$\frac{\mathrm{d}\ell}{\mathrm{d}\theta} = \nabla_{\theta}L + \int_{\mathcal{S}} (\mathbf{a}^{\top}(\tau)\nabla_{\theta}f_{\theta} + \nabla_{\theta}l)\mathrm{d}\tau \quad \text{ where } \quad \frac{\dot{\mathbf{a}}^{\top}(s) = -\mathbf{a}^{\top}(s)\nabla_{\mathbf{z}}f_{\theta} - \nabla_{\mathbf{z}}l}{\mathbf{a}^{\top}(S) = \nabla_{\mathbf{z}(S)}L}$$

## lacktriangle Proper Parameter Depth-Variance: $\theta(s)$

- ▶ When the model parameters are depth–varying, i.e.  $\theta: \mathcal{S} \to \mathbb{R}^{n_{\theta}}$ , we should iterate GD in functional space
- Implementation requires discretizing the problem

## Infinite-dim. Adjoint Gradients Let $\theta(s) \in \mathbb{L}_2(\mathcal{S} \to \mathbb{R}^{n_\theta})$ . Then

$$\frac{\delta \ell}{\delta \theta(s)} = \mathbf{a}^{\mathsf{T}}(s) \frac{\partial f_{\theta(s)}}{\partial \theta(s)}$$

## Galerkin and Stacked Neural ODEs

We propose two discretizations:

▶ spectral gradients:  $\frac{\mathrm{d}\ell}{\mathrm{d}\alpha} = \int_{\mathcal{S}} \mathbf{a}^{\top}(\tau) \frac{\partial f_{\theta(s)}}{\partial \theta(s)} \psi(\tau) \mathrm{d}\tau$ 

Spectral (Galërkin) Depth (stacked)  $\frac{\theta(s) = \sum_{j=1}^{m} \alpha_j \odot \psi_j(s)}{\theta(s) = \sum_{j=1}^{m} \alpha_j \odot \psi_j(s)} \frac{\theta(s) = \theta_i}{\theta(s) = \theta_i} \forall s \in [s_i, s_{i+1}]$ 

> stacked inference:  $\mathbf{z}(S) = h_x(\mathbf{x}) + \sum_{i=0}^{p-1} \int_{s_1}^{s_{i+1}} f_{\theta_i}(\tau, \mathbf{z}(\tau)) d\tau$ 

## Depth-Variant Neural ODEs



#### Data-Controlled Neural ODE

Augmentation strategies are <u>not</u> always necessary for Neural ODEs to solve challenging tasks.

- ▶ Classic benchmark of reflection  $\varphi(x) = -x$
- ▶ Neural ODEs can approximate  $\varphi$  without augmentation if the also input x is fed to  $f_\theta \Rightarrow$  data—conditioned vector field



► We can define the general *data-controlled* Neural ODEs:

$$\dot{\mathbf{z}}(s) = f_{\theta(s)}(s, \mathbf{x}, \mathbf{z}(s))$$
  
 $\mathbf{z}(0) = h_x(\mathbf{x})$ 

It learns a family of vector fields rather than a single one

#### Conditional Continuous Normalizing Flows



- ▶ Data—controlled CNFs can be used in multi—objective generative tasks
- Use a single model to sample from N different distribution  $p_{\theta}$  by warping N predetermined known distributions  $q_i$ .

e.g. we can learn to conditionally sample from two distributions:

$$\dot{z}(s) = f_{ heta}(z_S, z(s))$$
  $z(S) = z_S, \quad z_S \sim q_1 ext{ or } z_S \sim q_2$ 

## Adaptive—Depth Neural ODE



- $ightharpoonup \varphi(x)$  can be learned without the need of any crossing trajectory.
- ▶ If each input is integrated in a different depth domain S(x), no crossing flows are needed.
- ► A hypernetwork  $g_{\omega} : \mathbb{R}^{n_x} \times \mathbb{R}^{n_{\omega}} \to \mathbb{R}$  can be trained to learn the integration depth of each sample.

We define the general adaptive depth class as Neural ODEs performing the mapping  $\mathbf{x}\mapsto\phi_{g_{\omega}(\mathbf{x})}(\mathbf{x})$ , i.e.

$$\hat{\mathbf{y}} = h_y \left( h_x(\mathbf{x}) + \int_0^{g_\omega(\mathbf{x})} f_{\theta(s)}(\tau, \mathbf{x}, \mathbf{z}(\tau)) dt \tau \right),$$

