```
In [15]: import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         import warnings
         warnings.filterwarnings('ignore')
In [2]: df = pd.read_csv("./Mall_Customers.csv")
In [3]: df.head()
Out[3]:
            CustomerID Gender Age Annual Income (k$) Spending Score (1-100)
         0
                      1
                           Male
                                  19
                                                     15
                                                                           39
                           Male
                                                     15
                                                                           81
         1
                                  21
         2
                                  20
                                                                            6
                      3 Female
                                                     16
         3
                                  23
                                                     16
                                                                           77
                         Female
         4
                                                                           40
                        Female
                                  31
                                                     17
In [4]: df.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 200 entries, 0 to 199
       Data columns (total 5 columns):
        #
            Column
                                     Non-Null Count Dtype
            -----
        0
            CustomerID
                                     200 non-null
                                                     int64
        1
            Gender
                                     200 non-null
                                                     object
        2
                                     200 non-null
                                                     int64
            Age
        3
            Annual Income (k$)
                                     200 non-null
                                                     int64
            Spending Score (1-100)
                                     200 non-null
                                                     int64
       dtypes: int64(4), object(1)
       memory usage: 7.9+ KB
In [7]: df.describe()
```

Out[7]:		CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)				
	count	200.000000	200.000000	200.000000	200.000000				
	mean	100.500000	38.850000	60.560000	50.200000				
	std	57.879185	13.969007	26.264721	25.823522				
	min	1.000000	18.000000	15.000000	1.000000				
	25%	50.750000	28.750000	41.500000	34.750000				
	50%	100.500000	36.000000	61.500000	50.000000				
	75%	150.250000	49.000000	78.000000	73.000000				
	max	200.000000	70.000000	137.000000	99.000000				
[n [8]:	dC allama								
1 [0]:	df.shape								
t[8]:	(200, 5)								
[9]:	df.columns								
out[9]:	<pre>Index(['CustomerID', 'Gender', 'Age', 'Annual Income (k\$)',</pre>								
[10]:	<pre>plt.scatter(df['Age'], df['Spending Score (1-100)']) plt.xlabel('Age') plt.ylabel('Spending Score') plt.show()</pre>								


```
In [11]: plt.scatter(df['Age'], df['Annual Income (k$)'])
  plt.xlabel('Age')
  plt.ylabel('Annual Income')
  plt.show()
```



```
In [12]: plt.scatter(df['Annual Income (k$)'], df['Spending Score (1-100)'])
  plt.xlabel('Annual Income')
  plt.ylabel('Spending Score')
  plt.show()
```



```
from sklearn.cluster import KMeans
In [13]:
In [16]: sse = []
         for i in range(1, 10):
             km = KMeans(n_clusters = i)
             km.fit(df[['Annual Income (k$)', 'Spending Score (1-100)']])
             sse.append(km.inertia_)
In [17]:
        sse
Out[17]: [269981.28,
          181363.59595959593,
          106348.37306211118,
          73679.78903948836,
          44448.45544793371,
          37233.81451071001,
          30566.45113025186,
          25018.781613414074,
          21818.11458845218]
In [18]: plt.xlabel('Number of clusters')
         plt.ylabel("SSE")
         plt.plot(range(1,10), sse)
Out[18]: [<matplotlib.lines.Line2D at 0x20679b02f10>]
```



```
In [19]: km = KMeans(n_clusters = 5)
    predicted = km.fit_predict(df[['Annual Income (k$)', 'Spending Score (1-100)']])

Out[19]: array([2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4,
```

ut[20]:		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	Cluster
	0	1	Male	19	15	39	2
	1	2	Male	21	15	81	4
	2	3	Female	20	16	6	2
	3	4	Female	23	16	77	4
	4	5	Female	31	17	40	2
	•••						
	195	196	Female	35	120	79	3
	196	197	Female	45	126	28	1
	197	198	Male	32	126	74	3
	198	199	Male	32	137	18	1
	199	200	Male	30	137	83	3

200 rows × 6 columns

```
In [21]: df1 = df[df.Cluster==0]
    df2 = df[df.Cluster==1]
    df3 = df[df.Cluster==2]
    df4 = df[df.Cluster==3]
    df5 = df[df.Cluster==4]
    plt.scatter(df1['Annual Income (k$)'],df1['Spending Score (1-100)'],color='green')
    plt.scatter(df2['Annual Income (k$)'],df2['Spending Score (1-100)'],color='red')
    plt.scatter(df3['Annual Income (k$)'],df3['Spending Score (1-100)'],color='black')
    plt.scatter(df4['Annual Income (k$)'],df4['Spending Score (1-100)'],color='c')
    plt.scatter(df5['Annual Income (k$)'],df5['Spending Score (1-100)'],color='blue')
    plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color='purple',marker
    plt.xlabel('Annual Income (k$)')
    plt.ylabel('Spending Score (1-100)')
    plt.legend()
```

Out[21]: <matplotlib.legend.Legend at 0x2067c44e790>

In []: