SPOTIFY RECOMMENDER SYSTEM

1/27/2021

Using continuous DATA to recommend products

Here I attempt to create a recommendation system utilizing objective measures that define a product, rather than via collaborative filtering using user ratings.

Spotify Recommender System

USING CONTINUOUS DATA TO RECOMMEND PRODUCTS

MHAS

If you are familiar with recommendation systems, then you are aware that most companies that implement them utilize some method of collaborative filtering, namely, user-based, or item-based. This is ultimately the ideal way to do this, as it makes it so that products do not have to have some abstract measure of being to evaluate where they stand in relation to others. However, I wanted to see if utilizing objective numerical measures assigned to different 'products' could produce a recommendation system in some way that mirrored the effectiveness of collaborative filtering systems, which rely on users' ratings of products to make recommendations.

THE DATA

My interest was piqued when I came across a dataset containing 170,000 songs from Spotify, ranging from 1920 to 2020. What interested me is that the songs all had associated numerical values assigned to them that described their being. An example of some of these measures included energy, loudness, acoustic-ness, danceability, and other similar continuous measures mostly lying between zero and one. The reason this is interesting is because it provides a unique opportunity to attempt to find similarities in numerical measures, that is, relationships between the products themselves rather than using user ratings to find them.

INITIAL FINDINGS | EDA | CORRELATIONS IN THE DATA

The data was simple upon import. There were no missing values, and nothing to take care of regarding incorrect or clearly misplaced values. Some valuable findings may have arisen from some EDA and visualization.

A PEEK INTO THE DATA:

	artists	name	year	acousticness	danceability	energy	explicit	instrumentalness	key	liveness	loudness	mode	popularity
0	['Sergei Rachmaninoff', 'James Levine', 'Berli	Piano Concerto No. 3 in D Minor, Op. 30: III	1921	0.982	0.279	0.211	0	0.878000	10	0.665	-20.096	1	4
1	['Dennis Day']	Clancy Lowered the Boom	1921	0.732	0.819	0.341	0	0.000000	7	0.160	-12.441	1	5
2	['KHP Kridhamardawa Karaton Ngayogyakarta Hadi	Gati Bali	1921	0.961	0.328	0.166	0	0.913000	3	0.101	-14.850	1	5
3	['Frank Parker']	Danny Boy	1921	0.967	0.275	0.309	0	0.000028	5	0.381	-9.316	1	3
4	['Phil Regan']	When Irish Eyes Are Smiling	1921	0.957	0.418	0.193	0	0.000002	3	0.229	-10.096	1	2

The inspiration for this project came from the data layout. It interests me to think that you might be able to objectively describe songs with numbers, as opposed to user ratings, and as such group them as a result.

LOUDNESS VS. ENERGY

An interesting correlation found between loudness and energy. Louder songs have more energy than music that is quiet within the dataset. This becomes important later in discussing how music has gotten louder over the years.

MUSIC OVER THE YEARS

A few interesting changes in music over the years was found through simple time series analysis. Graphs of these findings follow:

Since the 1920's, music has become more 'energetic' in recent years.

'Acoustic-ness' likely references the nature of the music, that is, does it contain instrumentation that utilizes more acoustic elements rather than electronic ones. As you can see, acoustic-ness has decreased heavily on average since 1920.

Finally, music has gotten louder over the years.

THE LOUDNESS WAR

There is a correlation between two measures that weave a significant story.

- 1. Energy
- 2. Loudness

This is rather unsurprising when you investigate the history of music. Since the 1950's especially, audio engineers began to intuitively take note of this correlation — Louder music has more energy. Since this correlation was discovered in recorded music, the goal of audio engineers has been to bring music to a threshold below 0 decibels that is as "loud" as possible. Zero decibels represent a threshold in recorded music, as anything louder than that will 'peak' and produce unpleasant, scratchy sounds.

Because of this correlation, audio engineers have pushed music as close as possible to this threshold, sometimes beyond the capability of hardware and software at the time. This reduces the dynamic range in music, but also increases the perceived energy as well.

RECAP: THE LOUDNESS WAR IN TWO GRAPHS

MAKING RECOMMENDATIONS

Cosine Similarities by Hand:

- 1. Dimensionality reduction via PCA
 - a. Reduced dimensions to a desired number of components
- 2. Normalize Data
 - a. Normalize the data as part of the cosine similarity computation.
- 3. Dot Product of a chosen Artist
 - a. Take the dot product of the original dataset in relation to a chosen artist catalogue to complete the cosine similarity computation.
 - b. This returns a dataset of cosine similarities, for which we then sort from largest to smallest.

RESULTS

Noticing a Blend in the Data:

- 1. There is something about rap music that makes it easily identifiable.
- 2. The lines start to get blurry when the genre starts to lean more towards softer genres.
 - a. Many mainstream artists have a mix of songs that are both low and high energy, ranging in acoustic-ness, danceability, and so on. It is not hard to picture one of a few Taylor Swift songs, for example She has songs that range from country with high levels of 'acoustic-ness' to more pop oriented music, and maybe a few slow, sad songs in there as well. All of these could have a range of values that blend in certain areas yet act as opposites in others.

ARTIST RECOMMENDATION ONLY - THE GOOD RESULTS

The following are examples of artists return that make a lot of sense. A quick YouTube search corroborates these results. Bear in mind these results are based on the song chosen as well:

ARTIST RECOMMENDATION - THE BAD RESULTS

The following are examples that do not make any sense at all. This is where I discovered that there are underlying connections in the data in which certain features blend into each other and thus make sense on an objective level of measurement, but do not make sense from a practicality standpoint.

```
1 recommend_artist('Bring Me The Horizon', 1)
Bring Me The Horizon
                                                                                       1.000000
                                                                                       0.987953
Calvin Harris, John Newman
                                                                                       0.981160
Alison Wonderland
Chevelle
                                                                                       0.976773
One Direction
                                                                                       0.971795
Rihanna
                                                                                       0.971090
Jory Boy, Bad Bunny
                                                                                       0.971080
Stereophonics
                                                                                       0.970913
Rihanna
                                                                                       0.970903
K/DA, Madison Beer, (G)I-DLE, Lexie Liu, Jaira Burns, Seraphine, League of Legends
                                                                                       0.970775
                                                                                       0.970318
Bad Wolves
                                                                                       0.969700
Jason Aldean
                                                                                       0.969397
Justin Bieber, Big Sean
                                                                                       0.968851
                                                                                       0.968655
Bring Me The Horizon
dtype: float64
Song Referenced:
Throne
```

Mumfo	rd & Sons	1.000000				
Pierce The Veil		0.981555				
Moder	atto	0.975989				
ZAYN,	Zhavia Ward	0.973609				
Hills	ong Worship	0.970897				
Julie	Roberts	0.969972				
LeAnn	Rimes	0.969792				
Lorde		0.968064				
Vince	Staples	0.967429				
Lorde		0.967256				
Taylo	r Swift	0.965110				
ZAYN,	Taylor Swift	0.965075				
Taylo	r Swift	0.962409				
Faith	Hill	0.961677				
Penta	tonix	0.961104				
dtype	: float64					

SONG RECOMMENDATION - THE GOOD RESULTS

The same process, but filtered by song:

```
Song Chosen: Picture To Burn
```

By: Taylor Swift

Recommended:

16846 16874 16885 16904	Our Song Teardrops On My Guitar - Radio Single Remix Picture To Burn Tim McGraw
16932	Should've Said No
10932	Should he said no
	•••
138465	Silent Night
138467	White Christmas
140553	It's Nice To Have A Friend
153303	You Belong With Me
168573	Drops Of Jupiter - Live/2011
Name: nam	e, Length: 207, dtype: object

By: Taylor Swift

16582	Take Your Mama
16882	I Can't Decide
54484	I Don't Feel Like Dancin' - Radio Edit
72292	I Don't Feel Like Dancin'
139341	Let's Have A Kiki
152518	Filthy/Gorgeous

Name: name, dtype: object

By: Scissor Sisters

18269	How Country Feels
18299	Runnin' Outta Moonlight
36194	Boots On
73128	Whistlin' Dixie
73720	Like a Cowboy
90821	Goodnight Kiss
91455	We Went
168204	My Kinda Country

Name: name, dtype: object

By: Randy Houser

Song Chosen: Who You Foolin

By: Gunna

Recommended:

57143 Isis 75110 Isis (feat. Logic) Name: name, dtype: object

By: Joyner Lucas, Logic

19424	BOP
19459	Suge
19496	VIBEZ
38375	Goin Baby
38447	Brother's Keeper
38460	Gucci Peacoat
38494	Shanyah
38499 M	ore Money More Problems
74693	21
74850	INTRO
108299	Next Song
108324	Walker Texas Ranger
124647	OFF THE RIP
155362	XXL
170105	Today - Intro
170425	Taking It Out
Name: name,	dtype: object

By: DaBaby

74532 All Of A Sudden 170461 No Sucker (feat. Moneybagg Yo)

Name: name, dtype: object

By: Lil Baby, Moneybagg Yo

SONG RECOMMENDATION – THE BAD RESULTS

This also yielded some poor recommendations due to the aforementioned blending of measures

```
Song Chosen: Throne
By: Bring Me The Horizon
Recommended:
18570
       Blame (feat. John Newman)
Name: name, dtype: object
By: Calvin Harris, John Newman
17422
                                            Little Lion Man
17435
                                                   The Cave
17570
                                              Awake My Soul
                                                I Will Wait
18042
36366
                                           White Blank Page
                                              Winter Winds
36440
```

The first recommendations for this metal band are Calvin Harris, an EDM artist, and Mumford & Sons, a folk band. Very impractical and unlikely.

```
Song Chosen: El Farsante
By: Ozuna
Recommended:
74664
          El Farsante - Remix
108316
                        Ibiza
Name: name, dtype: object
By: Ozuna, Romeo Santos
18497
         Break Free
Name: name, dtype: object
By: Ariana Grande, Zedd
         Tinted Eyes (feat. blackbear & 24kGoldn)
92235
Name: name, dtype: object
By: DVBBS, 24kGoldn, blackbear
```

The model has no way of filtering by language, as no language was included. This would be an ideal way to improve results, as Ozuna is a Spanish artist, and we receive English artists in return.

FUTURE IMPROVEMENTS

- 1. Overall, the model performs great on some music, but poorly on others.
- 2. What this project revealed overall is that collaborative filtering techniques are easily the most valuable and reliable way to make reliable recommendations. It is likely that it would be impossible to maintain these kinds of measures across a wide variety of products, and subsequently maintain them accurately without subjective bias.
- 3. Further exploration of the data may lead to discovering trends in the dataset that would assist in figuring out how to make the recommendations more realistic and applicable.