姓名				
一) 选择题,每题3分,共45分。				
(1)	i^i 的所有可能取值为 $(\ \)$			
	(A) -1 (B) ± 1 (C) $e^{-\frac{\pi}{2}}$ (D) $e^{-(2n+\frac{1}{2})\pi}$, $n \in \mathbb{Z}$			
(2)	在幅角连续变化的意义下, \sqrt{z} 的原函数为 (忽略不写积分常数) ()			
4.0	$(\mathbf{A}) \frac{2}{3} z^{\frac{3}{2}} (\mathbf{B}) \frac{1}{2\sqrt{z}} (\mathbf{C}) \frac{4}{3} z^{\frac{3}{4}} (\mathbf{D}) \frac{1}{2} \ln z$			
(3)	方程 $z^5 + z^4 + z^3 + 2 = 0$ 的所有复数根的倒数之和为 () (A) 0 (B) 1 (C) -1 (D) -2			
(4)	下列哪一个复数在单位圆 $ z =1$ 的内部 ()			
,	$(\mathbf{A}) \frac{5}{6} + i \cos 1 \ (\mathbf{B}) \frac{1}{2} + i \cos \frac{1}{2} \ (\mathbf{C}) \cos 2 + i \sin 2 \ (\mathbf{D}) \frac{1}{2} - i$			
(5)	z_1, z_2, z_3, z_4 是四个互不相同的复数,且 $\frac{(z_1-z_2)(z_3-z_4)}{(z_2-z_3)(z_4-z_1)}$ 为实数。那么 z_1, z_2, z_3, z_4 在复平面上对应的四个点()			
	(\mathbf{A}) 构成平行四边形 (\mathbf{B}) 共圆 (\mathbf{C}) 构成平行四边形或共线 (\mathbf{D}) 共圆或共线			
(6)	$\frac{1}{(z+1)(z+2)}$ 在环形区域 $1 < z < 2$ 内Laurent展开的 $\frac{1}{z^2}$ 的系数为()			
(-)	$ (\mathbf{A}) \ 0 \ (\mathbf{B}) \ 1 \ (\mathbf{C}) - 1 \ (\mathbf{D}) - 3 $ $ \sin^2 x = t^2 $			
(7)	$\frac{\sin^2 z}{(z-\pi)^5} \text{ 在 } z = \pi \text{ 处的留数等于 ()}$			
(0)	(A) 0 (B) $\frac{2}{3}$ (C) $-\frac{2}{3}$ (D) $-\frac{1}{3}$ 下列哪个多值函数在区域 $1 < z < 2$ 内可以取单值分枝成为解析函数 ()			
(0)	(A) $\ln \frac{z}{z-2}$ (B) $\sqrt{z(z-2)}$ (C) $\ln \frac{z-1}{z-2}$ (D) $\sqrt{z(z-1)(z-2)}$			
(9)	考虑以原点为中心的一段小圆弧上的积分。当圆弧半径趋向于零时,下列哪个函数的积分一定趋向于零?()			
	$(\mathbf{A}) \frac{e^z}{z} (\mathbf{B}) \frac{1}{z^2} (\mathbf{C}) \frac{1}{\sqrt{z}}$ 的任意单值分枝 $(\mathbf{D}) \frac{\ln z}{z}$ 的任意单值分枝			
(10)	z=0是下列哪一个函数的本性奇点(即邻域Laurent展开有无穷多个负次幂项)? ()			
	$(\mathbf{A}) \frac{z}{1-\cos z} (\mathbf{B}) \frac{1}{z^{1000}} (\mathbf{C}) \frac{1}{e^z - 1} (\mathbf{D}) e^{\frac{1}{z}}$			
(11)	记 $f(x) = e^{-\frac{x^4}{2}}$ 的傅立叶变换为 $F(k)$,则积分 $\int_{-\infty}^{\infty} F(k) ^2 dk$ 等于 ()			
	$(\mathbf{A}) \frac{1}{2} \Gamma \left(\frac{1}{4}\right) (\mathbf{B}) \frac{1}{2} \Gamma \left(\frac{1}{3}\right) (\mathbf{C}) \frac{1}{2} \sqrt{\pi} (\mathbf{D}) \frac{1}{2}$			
(12)	下列哪个数最大? ()			
(13)	$(A) \Gamma(\frac{1}{5}) (B) \Gamma(\frac{6}{5}) (C) \Gamma(\frac{11}{5}) (D) \Gamma(\frac{16}{5})$ 随机抛6000次骰子,恰好 1, 2, 3, 4, 5, 6 每个面向上都是1000次的概率和下列哪个			
(13)	数量级最接近? ()			
	$(\mathbf{A}) 10^{-3} (\mathbf{B}) 10^{-6} (\mathbf{C}) 10^{-9} (\mathbf{D}) 10^{-12}$			
(14)	三维直角坐标系中,曲面 $x^4 + y^4 + z^4 = 1$ 包围的体积为 ()			
	$(\mathbf{A}) \frac{\Gamma\left(\frac{1}{4}\right)}{6\sqrt{2}\pi} (\mathbf{B}) \frac{\Gamma\left(\frac{1}{4}\right)^2}{6\sqrt{2}\pi} (\mathbf{C}) \frac{\Gamma\left(\frac{1}{4}\right)^3}{6\sqrt{2}\pi} (\mathbf{D}) \frac{\Gamma\left(\frac{1}{4}\right)^4}{6\sqrt{2}\pi}$			
(15)	已知全平面上解析的函数满足 $f(0)=1$, $ f(z) >2 z -1$ 。那么,下列哪个区域内一定有 $f(z)$ 的零点? ()			
	(A) $ z < 1$ (B) $ z > 1$ (C) $ 2z - 1 < 1$ (D) $ 2z - 1 > 1$			

/ \	十二 (六) 日立	每题5分,	共40分。
1		************************************	/ //
1 — 1			ノヘオひフルド

- (1) 复变函数 $f(z) = ze^z$ 的原函数为 ______.
- (2) 近似到小数点后两位 $\cos \frac{i}{10} \approx$ _____.
- (3) 逆时针方向沿着单位圆的围道积分 $\oint_{|z|=1} \frac{1}{(10z^6-1)(z-2)} dz$ 等于 ______.
- (4) 规定在 z=1 处 z 的幅角为零,且幅角连续变化。逆时针方向沿着上半个单位圆(从1到-1)的积分 $\int_{|z|=1,{\rm Im}(z)\geq 0} \ln z\,dz=$ ______.
- (5) 函数 $f(t) = \delta(t^2 1)$ 的拉普拉斯变换为_____.
- (6) $\forall \exists F(k) = \int_{-\infty}^{\infty} \frac{\cos[k(x^2-1)]}{1+x^4} dx$, $\forall \int_{-\infty}^{\infty} F(k) dk = \underline{\qquad}$.
- (7) $f(z) = \frac{z^8}{z^9 + z^8 + 1}$ 的所有孤立奇点处的留数之和等于 _______.
- (8) 实积分 $\int_0^{\frac{\pi}{2}} \ln(\sin x) dx =$ ______.

(三) 函数f(t)满足微分方程

$$f'' + 2f' + f = 2\cos t$$

和初始条件

$$f(0) = 1, f'(0) = -1.$$

- (1) 设f(t)的拉普拉斯变换为F(p),写出F(p)满足的代数方程,并解出F(p); (10分)
- (2) 把F(p)逆变换求出f(t)。 (5分)