BCOV THEORY ON A COMPLEX SURFACE

Suppose X is a complex manifold of complex dimension $\dim_{\mathbb{C}}(X)=2$ equipped with a holomorphic symplectic form $\omega\in\Omega^{2,hol}(X)$. We study BCOV theory on X, which should be thought of as the theory of "divergence-free holomorphic polyvector fields" with respect to the volume form determined by the fixed symplectic structure.

Let $PV^{k,hol}(X)$ be the space of holomorphic k-polyvector fields; these are holomorphic sections of the kth exterior power of the holomorphic tangent bundle $\wedge^k T^{1,0}X$. The holomorphic volume form identifies

$$\mathrm{PV}^{0,hol}(X) \cong_{\omega} \Omega^{2,hol}(X) \ , \ \mathrm{PV}^{1,hol}(X) \cong_{\omega} \Omega^{1,hol}(X) \ , \ \mathrm{PV}^{2,hol}(X) \cong_{\omega} \Omega^{0,hol}(X) = 0^{hol}(X).$$

In particular, the holomorphic de Rham operator $\partial:\Omega^{i,hol}\to\Omega^{i+1,hol}$ defines an operator

(1)
$$\partial: PV^{k,hol}(X) \to PV^{k-1,hol}(X).$$

At the crudest level, the fields consist of those holomorphic polyvector fields in the kernel of the operator ∂ .

The problem with this definition is that it does not fit the usual definition of the space of fields for a classical field theory. In particular, the space of fields is not equal to the smooth sections of a vector bundle. The solution to this problem consists of two steps:

Resolve the space of holomorphic polyvector fields via its Dolbeualt resolution. This
amounts to replacing PV^{k,hol}(X) by the complex PV^{k,*}(X) equipped with its Dolbeualt
differential

$$\overline{\partial}: \mathrm{PV}^{k,l}(X) \to \mathrm{PV}^{k,l+1}(X).$$

As sheaves one has $PV^{k,*} \simeq PV^{k,hol}$. We equip the double complex $PV^{*,*}(X)$ with the grading coming from totalization. Notice that since the operator ∂ in (1) is a holomorphic differential operator it extends in a natural way to $PV^{*,*}(X)$.

• The next step is to resolve the kernel

$$\ker \partial \subset \mathrm{PV}^{*,hol}(X)$$
,

or more accurately its Dolbeualt version

$$(\ker \partial, \overline{\partial}) \subset (PV^{*,*}(X), \overline{\partial})$$

One introduces the formal parameter t of cohomological degree 2 ...

The non-local form of the action functional is

$$S(\alpha) = \frac{1}{2} \int_{X} \alpha \overline{\partial} (\partial^{-1} \alpha) + \frac{1}{3} \int_{X} \alpha^{3}.$$

Notice that in this form only elements in $PV^{\geq 1,*}$ appear in the action functional. There is a change of coordinates that will put this action functional in a more familiar form.

1

Suppose $\alpha^{1,*}$ is in the kernel of $\partial: PV^{1,*}(X) \to PV^{0,*}(X)$. Then, locally, we can assume that $\alpha^{1,*} = \partial(\alpha^{2,*})$ for some $\alpha^{2,*} \in PV^{2,*}(X)$. Under the isomorphisms between polyvector fields and Dolbeualt forms, we redefine our fields via

$$PV^{2,*}(X) \cong_{\omega} \Omega^{0,*}(X)$$
$$\alpha^{2,*} \leftrightarrow A^{0,*}$$

and

$$PV^{0,*}(X) \cong_{\omega} \Omega^{2,*}(X) = \omega \cdot \Omega^{0,*}(X)$$
$$\alpha^{0,*} \leftrightarrow \omega \cdot B^{0,*}$$

In particular, the new fields *A*, *B* are now Dolbeault forms. Keeping track of the cohomological degree, we find that the our new space of fields is

$$A + \epsilon B \in \Omega^{0,*}(X)[\epsilon][1]$$

where ϵ is a formal parameter of degree +1. In particular, the fields in degree zero are $A^{0,1} \in \Omega^{0,1}(X)$ and $B^0 \in \Omega^0(X)$. In terms of these new fields, the action functional takes the form

(2)
$$S(A,B) = \int_X \omega B \bar{\partial} A + \frac{1}{2} \int_X B \partial A \partial A.$$

There is yet another way we can recast this classical theory that more clearly reflects the dependence of the theory on the symplectic form. As above, suppose X is a symplectic surface with holomorphic symplectic form ω . We will consider the Lie algebra of holomorphic vector fields $\mathcal{X}^{hol}(X)$, or more accurately, its Dobleault resolution $\mathcal{X}^*(X) = \Omega^{0,*}(X, T^{1,0}X)$.

There is a sub Lie algebra of $\mathcal{X}^{hol}(X)$ consisting of holomorphic *symplectic* vector fields

$$\{X \in \mathcal{X}^{hol}(X) \mid L_X \omega = 0\} \subset \mathcal{X}^{hol}(X).$$

Since the symplectic form is holomorphic, there is a resolution via the Dolbeualt complex. Indeed, there is a sub dg Lie algebra

$$\mathcal{X}^*_{symp}(X) = \{ \xi \in \Omega^{0,*}(X, T^{1,0}X) \mid L_{\xi}\omega = 0 \} \subset \mathcal{X}^*(X).$$

When one equips the left hand side with the $\bar{\partial}$ differential, this is a resolution for holomorphic symplectic vector fields.

There is a related Lie algebra of holomorphic *Hamiltonian* vector fields. This Lie algebra has underlying vector space the space of holomorphic functions $\mathbb{O}^{hol}(X)$ and is equipped with Lie bracket given by the holomorphic Poisson bracket $\{-,-\}_{\omega}$ determined by the symplectic form ω . As we've done several times already, this Lie algebra admits a Dolbeualt resolution as a dg Lie algebra

(3)
$$\left(\Omega^{0,*}(X), \overline{\partial}, \{-, -\}_{\omega}\right).$$

Locally, every holomorphic symplectic vector field is Hamiltonian. Thus, as sheaves of dg Lie algebras we might as well replace $\mathcal{X}^*_{symp}(X)$ with the dg Lie algebra (3).

Given any dg Lie algebra, there is a standard construction to define a classical BV theory. BW: cotangent theory

The fields are

$$(A,B) \in \Omega^{0,*}(X)[1] \oplus \Omega^{2,*}(X)$$

The action functional is

(4)
$$\int_X B\overline{\partial}A + \frac{1}{2} \int_X B\{A, A\}.$$

The following lemma is an immediate consequence of our discussion.

Lemma 0.1. The action functional (2) is equivalent to the action functional (4). In other words, BCOV theory on a complex surface is equivalent to the cotangent theory associated to the Lie algebra of holomorphic symplectic vector fields.