Lecture 19

Poisson Regression

STAT 8020 Statistical Methods II October 27, 2020

> Whitney Huang Clemson University

Poisson Regression
CLEMS N

Notes

Count Data

Daily COVID-19 Cases in South Carolina

Number of landfalling hurricanes per hurricane season

Notes

Modeling Count Data

So far we have talked about:

- Linear regression: $Y=\beta_0+\beta_1x+\varepsilon,\, \varepsilon\stackrel{\mathrm{i.i.d.}}{\sim} \mathrm{N}(0,\sigma^2)$
- Logistic Regression:

$$\log(\frac{\pi}{1-\pi}) = \beta_0 + \beta_1 x, \quad \pi = P(Y=1)$$

Count data

- Counts typically have a right skewed distribution
- Counts are not necessarily binary

We could use Poisson Regression to model count data

Notes			

Poisson Distribution

If Y follow a Poisson distribution, then we have

$$P(Y = y) = \frac{e^{-\lambda} \lambda^y}{y!}, \quad y = 0, 1, 2, \cdots,$$

where λ is the rate parameter that describe the event occurrence frequency

- $E(Y) = Var(Y) = \lambda \text{ if } Y \sim Pois(\lambda), \quad \lambda > 0$
- A useful model to describe the probability of a given number of events occurring in a fixed interval of time or space

19.4

- (a), $\lambda=0.5$: distribution gives highest probability to y=0 and falls rapidly as y \uparrow
- \bullet (b), $\lambda=2\text{:}$ a skew distribution with longer tail on the right
- (c), $\lambda=5$: distribution become more normally shaped

Flying-Bomb Hits on London During World War II [Clarke, 1946; Feller, 1950]

The City of London was divided into 576 small areas of one-quarter square kilometers each, and the number of areas hit exactly k times was counted. There were a total of 537 hits, so the average number of hits per area was $\frac{537}{576}=0.9323$. The observed frequencies in the table below are remarkably close to a Poisson distribution with rate $\lambda=0.9323$

Hits	0	1	2	3	4	5+
Observed	229	211	93	35	7	1
Expected	226.7	2114	98.5	30.6	7 1	16

Notes	

Notes

Notes

US Landfalling Hurricanes

son ssion	Notes
19.7	

Number of US Landfalling Hurricanes Per Hurricane Season

analysis-on-us-hurricane-landfalls

Research question: Can the variation of the annual counts be explained by some environmental variable, e.g., Southern Oscillation Index (SOI)?

Notes

Some Potentially Relevant Predictors

- Southern Oscillation Index (SOI): an indicator of wind shear
- Sea Surface Temperature (SST): an indicator of oceanic heat content
- North Atlantic Oscillation (NAO): an indicator of steering flow
- Sunspot Number (SSN): an indicator of upper air temperature

Poisson Regression
CLEMS#N

Notes			
·			

Hurricane Count vs. Environmental Variables

Notes

Poisson Regression

$$\log(\lambda) = \beta_0 + \beta_1 x_1 + \dots + \beta_{p-1} x_{p-1}$$

$$\Rightarrow Y \sim \text{Pois}(\lambda = \exp(\beta_0 + \beta_1 x_1 + \dots + \beta_{p-1} x_{p-1}))$$

- Model the logarithm of the mean response as a linear combination of the predictors
- Parameter estimation is carry out using maximum likelihood method
- Interpretation of $\beta's$: every one unit increase in x_j , given that the other predictors are held constant, the λ increases by a factor of $\exp(\beta_j)$

Notes

US Hurricane Count: Poisson Regression Fit

Poisson Regression Model:

$$\log(\lambda_{\text{Count}}) \sim \text{SOI} + \text{NAO} + \text{SST} + \text{SSN}$$

Table: Coefficients of the Poisson regression model.

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	0.5953	0.1033	5.76	0.0000
SOI	0.0619	0.0213	2.90	0.0037
NAO	-0.1666	0.0644	-2.59	0.0097
SST	0.2290	0.2553	0.90	0.3698
SSN	-0.0023	0.0014	-1 68	0.0928

 \Rightarrow every one unit increase in SOI, the hurricane rate increases by a factor of $\exp(0.0619)=1.0639$ or 6.39%.

Notes

Issue with Linear Regression Fit

Linear Regression Model:

 $E(Count) \sim SOI + NAO + SST + SSN$

Table: Coefficients of the linear regression model.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	1.8869	0.1876	10.06	0.0000
SOI	0.1139	0.0402	2.83	0.0053
NAO	-0.2929	0.1173	-2.50	0.0137
SST	0.4314	0.4930	0.88	0.3830
SSN	-0.0039	0.0024	-1.66	0.1000

If we use this fitted model to predict the mean hurricane count, say ${\tt SOI}=\text{-3},~{\tt NAO=3},~{\tt SST}=0,~{\tt SSN=250}$

> predict(lmFull, newdata = data.frame(SOI = -3, NAO = 3, SST = 0, SSN = 250))
1

-0.318065

This number does not make sense

Notes

Model Selection

> step(PoiFull)
Start: AIC-479.64
All ~ SOI + NA0 + SST + SSN

Df Deviance AIC
- SST 1 175.61 478.44

<none> 174.81 479.64
- SSN 1 177.75 480.59
- NA0 1 181.58 484.41
- SOI + NA0 + SSN

Df Deviance AIC
<none> 175.61 478.44
All ~ SOI + NA0 + SSN

Df Deviance AIC
<none> 175.61 478.44
- SSN 1 178.29 479.12
- NA0 1 183.57 484.41
- SOI 1 183.91 484.74

Call: glm(formula = All ~ SOI + NA0 + SSN, family = "poisson", data = df)

Coefficients:
Cintercept) SOI NA0 SSN
0.584957 0.061533 -0.177439 -0.002201

Degrees of Freedom: 144 Total (i.e. Null); 141 Residual
Null Deviance: 197.9
Residual Deviance: 197.6 AIC: 478.4

Notes			
Notes			