Национальный исследовательский Университет ИТМО

Учебно-исследовательская работа "Обработка результатов измерений" по дисциплине моделирование

Выполнили: Калугина Марина

Саржевский Иван

Группа: Р3302

г. Санкт-Петербург

2019 г.

Цель работы:

Изучение методов обработки и статистического анализа результатов измерений на примере заданной исходной числовой последовательности путем оценки числовых моментов и выявления свойств последовательности (случайности и периодичности на основе корреляционного анализа), а также аппроксимация закона распределения исходной последовательности по двум числовым моментам.

Характеристики исходной числовой последовательности: Таблица 1

Характеристика	10	50	100	200	300
Мат. ожид.	1.921	2.200	1.933	1.444	1.639
Дов.инт. (0,9)	±6.416	±6.524	±6.279	±4.850	±5.518
Дов.инт. (0,95)	±7.654	±7.782	±7.490	±5.785	±6.583
Дов.инт. (0,99)	±10.076	±10.244	±9.859	±7.615	±8.665
Дисперсия	15.251	15.766	14.603	8.713	11.281
С.к.о.	3.905	3.970	3.821	2.952	3.359
К-т вариации	2.033	1.805	1.977	2.044	2.050

Коэффициенты АК для числовой последовательности:

Ta	бı	٦и	ца	2
1 4	v	111	ца	_

Сдвиг ЧП	1	2	3	4	5	6	7	8	9	10
К-т АК	-0.003	-0.015	-0.057	-0.015	-0.056	0.032	0.095	0.002	0.027	0.133

График заданной последовательности:

Рис. 1 График заданной последовательности

На рис. 1 представлены входные данные последовательности из 300 элементов.

График коэффициентов автокорреляции:

Рис. 2 График коэффициентов автокорреляции

На рис. 2 представлен график распределения автокорреляции. Заметим, что значения автокорреляции находятся около нуля, при любом сдвиге, а значит, входную последовательность можно назвать случайной.

Гистограмма распределения частот исходной числовой последовательности:

Рис. 3

На рисунке 3 представлена гистограмма распределения частот исходной последовательности. По данной гистограмме можно сделать вывод, что исходная последовательность близка гиперэкспоненциальному распределению, так как подавляющее большинство значений находятся в одном отрезке. Коэффициент вариации при этом равен 2.050, что подтверждает данную гипотезу.

Выбор аппроксимирующего распределения случайной последовательности:

Так как значение коэффициента вариации равна 2.050, то нужно использовать гиперэкспоненциальное распределение.

Характеристики случайной последовательности:

Таблица 3

Характеристика	10	50	100	200	300
Мат. ожид.	0.905	0.748	1.024	1.041	1.019
Дов.инт. (0,9)	±2.596	±1.565	±2.572	±2.397	±2.225
Дов.инт. (0,95)	±3.097	±1.867	±3.069	±2.859	±2.654
Дов.инт. (0,99)	±4.077	±2.458	±4.040	±3.764	±3.494
Дисперсия	2.497	0.908	2.451	2.128	1.834
С.к.о.	1.580	0.953	1.566	1.459	1.354
К-т вариации	1.745	1.273	1.529	1.402	1.329

Коэффициенты АК для числовой последовательности:

Ta	ιбι	٦и	ца	4

Сдвиг ЧП	1	2	3	4	5	6	7	8	9	10
К-т АК	0.008	0.005	-0.041	0.009	0.050	0.076	-0.052	-0.074	-0.009	0.015

График случайной последовательности

Рис. 4

На рис. 4 представлены входные данные последовательности из 300 элементов, сгенерированной гиперэкспоненциальным законом распределения.

График коэффициентов автокорреляции случайной последовательности:

Рис. 5

Из рис. 5 следует, что график коэффициентов автокорреляции для случайной последовательности и исходной отличаются незначительно, что подтверждает утверждение о том, что исходную последовательность можно назвать случайной.

Гистограмма распределения частот случайной последовательности:

Рис. 6

Из рисунка 6 видно, что случайная последовательность ведет себя как случайная величина распределенная по гиперэкспоненциальному закону.

Вывод:

Исходную последовательность можно назвать случайной в силу значений коэффициента автокорреляции, стремящихся к 0. Коэффициент вариации стремится к 2, что делает исходную последовательность близкой к распределенной по гиперэкспоненциальному закону, который был выбран в качестве аппроксимирующего закона.

Из рисунка 7 следует что графики автокорреляции обоих распределений отличаются незначительно, из чего можно сделать вывод о том, что обе последовательности являются случайными. Гистограммы распределений исходной и случайной величин имеют одинаковый характер.

Сравнительный график коэффициентов АК изначальной и случайной последовательностей:

Рис. 7