Chapter 1 Vector Spaces

LEARNING OBJECTIVES

- Basic Properties of Complex Numbers
- \mathbb{R}^n and \mathbb{C}^n
- Vector Spaces
- Subspaces
- Sums and direct sums of subspaces

1.A \mathbb{R}^n and \mathbb{C}^n

Complex Numbers

Definition 1.1 Complex Numbers

- A **complex number** is an ordered pair (a,b) where $a,b\in\mathbb{R}$, and is written as a+bi.
- The set of all complex numbers is denoted by the set $\mathbb C:$

$$\mathbb{C}=\{a+bi\ :\ a,b\in\mathbb{R}\}.$$

• Addition and Multiplication on $\mathbb C$ are defined by

$$(a+bi)+(c+di)=(a+c)+(b+d)i$$

$$(a+bi)(c+di)=(ac-bd)+(ad+bc)i$$

where $a,b,c,d\in\mathbb{R}$.

Definition 1.2 Properties of Complex Arithmetic

- Commutativity: $\alpha + \beta = \beta + \alpha$ and $\alpha\beta = \beta\alpha$ for all $\alpha, \beta \in \mathbb{C}$
- Associativity: $(\alpha + \beta) + \lambda = \alpha + (\beta + \lambda)$ and $(\alpha\beta)\lambda = \alpha(\beta\lambda)$ for all $\alpha, \beta, \lambda \in \mathbb{C}$
- **Identities**: $(\lambda + 0) = \lambda$ and $\lambda 1 = \lambda$ for all $\lambda \in \mathbb{C}$
- Additive Inverse: For every $\alpha \in \mathbb{C}$, there exists a unique $\beta \in \mathbb{C}$ such that $\alpha + \beta = 0$
- Multiplicative Inverse: For every $\alpha\in\mathbb{C}$ with $\alpha\neq 0$, there exists a unique $\beta\in\mathbb{C}$ such that $\alpha\beta=1$
- Distributive Property: $\lambda(\alpha + \beta) = \lambda \alpha + \lambda \beta$ for all $\lambda, \alpha, \beta \in \mathbb{C}$.

Definition 1.3 Inverse, Subtraction, and Division of $\mathbb C$

Let $\alpha, \beta \in \mathbb{C}$.

• Let $-\alpha$ be the additive inverse of α . Thus $-\alpha$ is the unique complex number such that $\alpha+(-\alpha)=0$

• **Subtraction** on \mathbb{C} is defined by

$$\beta - \alpha = \beta + (-\alpha)$$

- For $\alpha \neq 0$, let $1/\alpha$ be the multiplicative inverse of α . Thus $1/\alpha$ is the unique complex number such that $\alpha(1/\alpha)=1$
- **Division** on \mathbb{C} is defined by

$$\beta/\alpha = \beta(1/\alpha)$$

Lists

Definition 1.4 Lists

- A **list** of **length** n, where n is a nonnegative integer, is an ordered collection of n elements.
- A list of length n looks like this: (x_1, \ldots, x_n)
- A list can contain numbers, other lists abstract entities, etc.
- Two lists are equal *if and only if* they have the same length with the same elements in the same order.

Definition 1.5 List of \mathbb{F}^n

• \mathbb{F}^n is the set of all lists of length n of elements of \mathbb{F} such that

$$\mathbb{F}^n = \{(x_1,\ldots,x_n) \mid x_j \in \mathbb{F} ext{ for } j=1,\ldots,n\}$$

• We say x_j is the jth **coordinate** of (x_1, \ldots, x_n) .

Definition 1.6 Addition in \mathbb{F}^n

• Addition in \mathbb{F}^n is defined by adding the corresponding coordinates in two lists of the same length:

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n)$$

Proof 1.7 Commutativity of addition in \mathbb{F}^n

- If $x, y \in \mathbb{F}^n$, then x + y = y + x.
- **Proof:** Let $x=(x_1,\ldots,x_n)$ and $y=(y_1,\ldots,y_n)$. Then,

$$egin{aligned} x+y &= (x_1,\ldots,x_n) + (y_1,\ldots,y_n) \ &= (x_1+y_1,\ldots,x_n+y_n) \ &= (y_1+x_1,\ldots,y_n+x_n) \ &= (y_1,\ldots,y_n) + (x_1,\ldots,x_n) \ &= y+x. \ \Box \end{aligned}$$

• Let 0 denote the list of length n whose coordinates are all $0: 0 = (0, \dots, 0)$.

Definition 1.9 Additive Inverse in \mathbb{F}^n

• For $x\in\mathbb{F}^n$, the **additive inverse** of x, denoted as -x, is the vector $-x\in\mathbb{F}^n$ such that x+(-x)=0. In other words, if $x=(x_1,\ldots,x_n)$, then $-x=(-x_1,\ldots,-x_n)$.

Definition 1.10 Scalar Multiplication in \mathbb{F}^n

• The **product** of a number λ and a vector in \mathbb{F}^n is computed by multiplying each coordinate of the vector by λ .

$$\lambda(x_1,\ldots x_n)=(\lambda x_1,\ldots,\lambda x_n)$$

where $\lambda \in \mathbb{F}$ and $(x_1,\ldots,x_n) \in \mathbb{F}^n.$

1.B Vector Spaces

Vector Spaces

Definition 1.11 Addition and Scalar Multiplication

- An **addition** on a set V is a function that assigns an element $u+v\in V$ to each pair of elements $u,v\in V$.
- A scalar multiplication on a set V is a function that assigns an element $\lambda v \in V$ to each $\lambda \in \mathbb{F}$ and each $v \in V$.

Definition 1.12 Vector Space

- A **vector space** is a set V along with an addition on V and a scalar multiplication on V such that the following properties hold:
 - Commutativity (Ordering)
 - Associativity (Grouping)
 - Additive Identity (There is a $0 \in V$ such that v + 0 = v for all $v \in V$)
 - Additive Inverse (For every $v \in V$, there exists $w \in V$ such that v + w = 0)
 - Multiplicative Identity (1v = v for all $v \in V$)
 - Distributive Properties

Definition 1.13 Vectors and Points

Elements of a vector space are called vectors or points.

- A vector space over \mathbb{R} is called a **real vector space**.
- A vector space over \mathbb{C} is called a **complex vector space**.

- The scalar multiplication in a vector space depends on \mathbb{F} , so we will say that V is a vector space over \mathbb{F} .
 - \mathbb{R}^n is a vector space over \mathbb{R} and \mathbb{C}^n is a vector space over \mathbb{C} .

Definition 1.15 Set of Functions

- If S is a set, then \mathbb{F}^S is the set of functions from S to \mathbb{F} .
- For $f,g\in \mathbb{F}^S$, the **sum** $f+g\in \mathbb{F}^S$ is the function defined by (f+g)(x)=f(x)+g(x) for all $x\in S$.
- For $\lambda \in \mathbb{F}$ and $f \in \mathbb{F}^S$, the **product** $\lambda f \in \mathbb{F}^S$ is the function defined by $(\lambda f)(x) = \lambda f(x)$ for all $x \in S$.

Note 1.16 Unique Additive Properties

- A vector space has a unique additive identity.
- Every element in a vector space has a unique additive inverse.

1.C Subspaces

Subspaces

Definition 1.17 Subspace

• A subset U of V is a **subspace** of V if U is also a vector space.

Theorem 1.18 Conditions of a Subspace

- A subset U of V is a subspace of V if and only if U satisfies the following 3 conditions:
 - ullet Additive Identity: $0 \in U$
 - Closed under Addition: $u,w \in U$ implies $u+w \in U$
 - Closed under Scalar Multiplication: $a \in \mathbb{F}$ and $u \in U$ implies $au \in U$

Sum of Subspaces

Definition 1.19 Sub of Subsets

- Suppose U_1, \ldots, U_m are subsets of V. The **sum** of U_1, \ldots, U_m , denoted by $U_1 + \cdots + U_m$, is the set of all possible sums of elements of U_1, \ldots, U_m .
- $U_1 + \cdots + U_m = \{u_1 + \cdots + u_m \ : \ u_1 \in U, \ldots, u_m \in U\}$

Theorem 1.20 Sum of Subspaces is the Smallest Containing Subspace

• Suppose U_1,\ldots,U_m are subspaces of V. Then $U_1+\cdots+U_m$ is the smallest subspace of V containing U_1,\ldots,U_m .

Direct Sums

Definition 1.21 Direct Sums

- Suppose U_1, \ldots, U_m are subspaces of V.
 - The sum $U_1+\cdots+U_m$ is called a **direct sum** if each element of $U_1+\cdots+U_m$ can be written in only one way as a sum $u_1+\cdots+u_m$, where each u_j is in U_j .
 - If $U_1+\cdots+U_m$ is a direct sum, then $U_1\oplus\cdots\oplus U_m$ denotes $U_1+\cdots+U_m$, where the \oplus symbol indicates that this is a direct sum.

Theorem 1.22 Condition for a direct sum

Theorem 1.23 Direct Sum of Two Subspaces

proof