Online Appendix to "Unobserved Heterogeneity in the Productivity Distribution and Gains From Trade"

Ruben Dewitte, Michel Dumont, Glenn Rayp, Peter Willemé*
26th May 2020

^{*}Dewitte: Ghent University, Tweekerkenstraat 2, 9000 Ghent, Belgium, rubenl.dewitte@ugent.be, Dumont: Federal Planning Bureau and Ghent University, Rue Belliard - Belliardstraat 14-18 1040 Brussels, dm@plan.be , Rayp: Ghent University, Tweekerkenstraat 2, 9000 Ghent, Belgium, glenn.rayp@ugent.be, Willemé: Federal Planning Bureau and Ghent University, Rue Belliard - Belliardstraat 14-18 1040 Brussels, pw@plan.be. We thank Pete Klenow, Luca David Opromolla, Gonzague Vannoorenberghe, Gerdie Everaert, Bruno Merlevede, Marijn Verschelde and participants at the 2018 ETSG conference in Warsaw, the 2019 ETSG conference in Bern, the DEGIT XIV conference in Odense and the 2019 workshop on "Firm Heterogeneity in Technical Change" in Ghent for their helpful comments and suggestions.

Appendix A Additional Figures and table

A.1 Figures

Figure 1: Density comparison of the SCIE dataset with and without individual companies.

Figure 2: Empirical probability density function of Portuguese firm productivity in 2006 (upper panel) with fitted Pareto and (4-component) Lognormal densities. The lower left and right panels focus in on the left and right tail respectively.

Notes: Productivity is measured as domestic sales (relative to the mean) to the power of $1/(\sigma - 1)$ with σ , the elasticity of substitution between varieties, set to four. Distributions are fitted using maximum likelihood methods (cf. infra) to the complete dataset.

Figure 3: Probability-Probability plot for the Double-Pareto Lognormal, Lognormal-Pareto, Lognormal and 4-component Lognormal over the complete range of domestic sales in Portugal, 2006.

Figure 4: Percentage errors in parametric GFT calculations relative to the empirical benchmark for different values of the elasticity of substitution (left upper panel) and different fixed entry costs (left bottom panel) for a reduction in variable trade costs $(\tau^{ij} = 3 \to (\tau^{ij})' = 1)$. The right upper panel displays percentage errors in parametric GFT for different starting values of the iceberg trade costs $(\tau^{ij} \in [1;3] \to (\tau^{ij})' = 1)$. The bottom left panel showcases the error in parametric GFT for a reduction in fixed exporting costs with different starting values $(f^{ij} \in [1;3] \to (f^{ij})' = 1)$.

Notes: Full lines represent the parametric population GFT, while shaded areas delineate the 5th and 95th quantile of the parametric bootstrapped (999 replications) finite sample GFT. The Double-Pareto Lognormal has no finite population GFT value.

A.2 Tables

Table 1: Overview of all distributions considered.

Distribution	Abbreviation	Support	Parameters	Change in parameters from power transformation ax^b
Pareto	Р	$[x_{min}, \infty[$	k, x_{min}	$kb, \left(\frac{x_{min}}{a}\right)^{\frac{1}{b}}$
Inverse Pareto	IP	$[0, x_{max}]$	k, x_{max}	$kb,\left(rac{x_{m{max}}}{a} ight)^{rac{1}{b}}$
Lognormal	LN	$[0,\infty[$	μ, Var	$\frac{\mu - lna}{b}, \ \frac{Var}{b}$
Weibull	W	$[0,\infty[$	k,s	$bk, \left(rac{s}{a} ight)^{rac{1}{b}}$
Exponential	Exp	$[0,\infty[$	s	$W\left(b,\left(\frac{s}{a}\right)^{\frac{1}{b}}\right)$
Burr	В	$[0,\infty[$	k, c, s	$k,bc,\left(rac{s}{a} ight)^{rac{1}{b}}$
Fréchet	F	$[0,\infty]$	k,s	$bk, \left(rac{s}{a} ight)^{rac{1}{b}}$
Generalized Gamma	GG	$[0,\infty[$	k, c, s	$bk,bc,\left(rac{s}{a} ight)^{rac{1}{b}}$
Gamma	G	$[0,\infty[$	k,s	$GG\left(bk,b,\left(rac{s}{a} ight)^{rac{1}{b}} ight)$
Finite Mixture Model	FMM	See ind. comp.	Ψ	See ind. comp.
Piecewise composite	PC	See ind. comp.	heta	See ind. comp.
Double-Pareto Lognormal	DPLN	$[0,\infty[$	k_1, μ, Var, k_2	$\frac{k_1}{b}, b\mu + log(a), Var, \frac{k_2}{b}$
Left-Pareto Lognormal	LPLN	$[0,\infty[$	k_1, μ, Var	$\frac{k_1}{b}, b\mu + log(a), Var$
Right-Pareto Lognormal	RPLN	$[0,\infty[$	μ, Var, k_2	$b\mu + log(a), Var, \frac{k_2}{b}$

Table 2: Overview of the probability and cumulative density functions of single distributions considered.

Distribution	PDF	CDF
Р	$\frac{kx_{min}^k}{x^{k+1}}$	$1 - \left(\frac{x_{min}}{x}\right)^k$
IP	$\frac{kx_{max}^{-k}}{x^{-k+1}}$	$1 - \left(\frac{x_{max}}{x}\right)^{-k}$
LN	$\frac{1}{xVar\sqrt{2\pi}}e^{-(lnx-\mu)^2/2Var^2}$	$\Phi\left(\frac{lnx-\mu}{Var}\right)$
W	$\frac{k}{s} \left(\frac{x}{s}\right)^{k-1} e^{-\left(\frac{x}{s}\right)^k}$	$1 - e^{-\left(\frac{x}{s}\right)^k}$
Exp	$\frac{1}{s}e^{-\frac{x}{s}}$	$1 - e^{-\frac{x}{s}}$
В	$\frac{\frac{kc}{s}\left(\frac{x}{s}\right)^{c-1}}{\left(1+\left(\frac{x}{s}\right)^{c}\right)^{k+1}}$	$1 - \frac{1}{\left(1 + \left(\frac{x}{s}\right)^c\right)^k}$
F	$\frac{k}{s} \left(\frac{x}{s}\right)^{-1-k} e^{-\left(\frac{x}{s}\right)^{-k}}$	$e^{-\left(\frac{x}{s}\right)^{-k}}$
$\mathrm{G}\mathrm{G}^a$	$\frac{c}{s^k\Gamma(\frac{k}{c})}x^{k-1}e^{-\left(\frac{x}{s}\right)^c}$	$\frac{1}{\Gamma(\frac{k}{c})}\gamma(\frac{k}{c},\left(\frac{x}{s}\right)^c)$
G^a	$\frac{1}{s^k\Gamma(k)}x^{k-1}e^{-\frac{x}{s}}$	$\frac{1}{\Gamma(k)}\gamma(k,rac{x}{s})$

Notes: ${}^a\Gamma(x)$ stands for the Gamma function, while $\gamma(s,x)$ stands for the lower incomplete Gamma function with upper bound x.

Table 3: Overview of the probability and cumulative density functions of combined distributions considered.

Distribution	PDF	CDF
FMM	$\sum_{i=1}^{I} \pi_i m_i(x m{ heta}_i)$	$\sum_{i=1}^{I} \pi_i M(x m{ heta}_i)$
DC4	$\begin{cases} \frac{\alpha_1}{1 + \alpha_1 + \alpha_2} m_1^*(x \boldsymbol{\theta}_1) & \text{if} 0 < x \le c_1 \end{cases}$	$ \begin{cases} \frac{\alpha_1}{1+\alpha_1+\alpha_2} \frac{M_1(x \boldsymbol{\theta}_1)}{M_1(c_1 \boldsymbol{\theta}_1)} & \text{if } 0 < x \le c_1 \end{cases} $
PC^a	$\begin{cases} \frac{\alpha_1}{1+\alpha_1+\alpha_2} m_1^*(x \boldsymbol{\theta}_1) & \text{if} 0 < x \le c_1 \\ \\ \frac{1}{1+\alpha_1+\alpha_2} m_2^*(x \boldsymbol{\theta}_2) & \text{if} c_1 < x \le c_2 \\ \\ \frac{\alpha_2}{1+\alpha_1+\alpha_2} m_3^*(x \boldsymbol{\theta}_3) & \text{if} c_2 < x < \infty \end{cases}$	$\begin{cases} \frac{\alpha_1}{1+\alpha_1+\alpha_2} \frac{M_1(x \theta_1)}{M_1(c_1 \theta_1)} & \text{if } 0 < x \le c_1 \\ \\ \frac{\alpha_1}{1+\alpha_1+\alpha_2} + \frac{1}{1+\alpha_1+\alpha_2} \frac{M_2(x \theta_2) - M_2(c_1 \theta_2)}{M_2(c_2 \theta_2) - M_2(c_1 \theta_2)} & \text{if } c_1 < x \le c_2 \\ \\ \frac{1+\alpha_1}{1+\alpha_1+\alpha_2} + \frac{\alpha_2}{1+\alpha_1+\alpha_2} \frac{M_3(x \theta_3) - M_3(c_2 \theta_3)}{1 - M_3(c_2 \theta_3)} & \text{if } c_2 < x < \infty \end{cases}$
DPLN^b	$\frac{k_2k_1}{k_2+k_1} \left[x^{-k_2-1} e^{k_2\mu + \frac{k_2^2 Var^2}{2}} \Phi\left(\frac{\ln x - \mu - k_2 Var^2}{Var}\right) + x^{k_1-1} e^{-k_1\mu + \frac{k_1^2 Var^2}{2}} \Phi^c\left(\frac{\ln x - \mu + k_1 Var^2}{Var}\right) \right]$	$\Phi\left(\frac{\ln x - \mu}{Var}\right) - \frac{1}{k_2 + k_1} \left[k_1 x^{-k_2} e^{k_2 \mu + \frac{k_2^2 Var^2}{2}} \Phi\left(\frac{\ln x - \mu - k_2 Var^2}{Var}\right) - k_2 x^{k_1} e^{-k_1 \mu + \frac{k_1^2 Var^2}{2}} \Phi^c\left(\frac{\ln x - \mu + k_1 Var^2}{Var}\right) \right]$
LPLN^b	$k_1 x^{k_1 - 1} e^{-k_1 \mu + \frac{k_1^2 Var^2}{2}} \Phi^c \left(\frac{\ln x - \mu + k_1 Var^2}{Var} \right)$	$\Phi\left(\frac{\ln x - \mu}{Var}\right) - x^{k_1} e^{-k_1 \mu + \frac{k_1^2 Var^2}{2}} \Phi^c\left(\frac{\ln x - \mu + k_1 Var^2}{Var}\right)$
RPLN^b	$k_2 x^{-k_2 - 1} e^{k_2 \mu + \frac{k_2^2 Var^2}{2}} \Phi\left(\frac{\ln x - \mu - k_2 Var^2}{Var}\right)$	$\Phi\left(\frac{\ln x - \mu}{Var}\right) - x^{-k_2} e^{k_2 \mu + \frac{k_2^2 Var^2}{2}} \Phi\left(\frac{\ln x - \mu - k_2 Var^2}{Var}\right)$

Notes: $a \ \forall i \in I : m_i^*(x) = \frac{m_i(x)}{\int_{C_{i-1}}^{C_i} m_i(x) dx}, \ b \ \Phi \text{ and } \Phi^c \text{ stand for the standard normal and complementary standard normal cdfs.}$

Distribution	μ_y^r	${\bf Additional\ parameter\ restrictions}^a$
P	$-(y)^{r-k} \frac{k\omega_{min}^k}{r-k}$	k > r
IP	$k\omega_{max}^{-k} \frac{(\omega_{max})^{r+k} - (y)^{r+k}}{r+k}$	-
LN	$e^{rac{r\left(rVar^2+2\mu\right)}{2}}\left[1-\Phi\left(rac{lny-\left(rVar^2+\mu\right)}{Var} ight) ight]$	-
W^c	$s^{\sigma_s-1}\Gamma\left(\frac{\sigma_s-1}{k}+1,\left(\frac{y}{s}\right)^k\right)$	-
Exp^c	$s^{\sigma_s-1}\Gamma\left(\sigma_s+1,rac{y}{s} ight)$	-
B^b	$s^r k \left[\boldsymbol{B} \left(\frac{r}{c} + 1, k - \frac{r}{c} \right) - \boldsymbol{B} \left(\frac{\left(\frac{y}{s} \right)^c}{1 + \left(\frac{y}{s} \right)^c}; \frac{r}{c} + 1, k - \frac{r}{c} \right) \right]$	$c > r, \ kc > r$
\mathbf{F}^c	$s^{\sigma_s-1}\left[1-\Gamma\left(1-\frac{\sigma_s-1}{k},\left(\frac{y}{s}\right)^{-k}\right)\right]$	k > r
GG^c	$rac{s^{\sigma_s-1}}{\Gamma(rac{k}{c})}\Gamma\left(rac{\sigma_s-1+k}{c},\left(rac{y}{s} ight)^c ight)$	-
G^c	$\frac{s^{\sigma_s-1}}{\Gamma(k)}\Gamma\left(\sigma_s-1+k,\frac{y}{s}\right)$	-

 ∞

Notes: ^a Additional parameter restrictions represent parameter restrictions needed to keep the statistic finite. ^b B(a,b) stands for the beta function, while B(x,a,b) stands for the lower incomplete beta function with upper bound x. ^c $\Gamma(x)$ stands for the Gamma function, while $\Gamma(s,x)$ stands for the upper incomplete Gamma function with lower bound x.

Table 5: Expression of the y-bounded rth moment (μ_y^r) for the combined considered.

Distribution	μ^r_y	${\bf Additional\ parameter\ restrictions}^a$
FMM	$\sum_{i=1}^I \pi_i(\mu_i)_y^r$	See ind. comp.
PC	$\begin{cases} \frac{\alpha_{1}}{1+\alpha_{1}+\alpha_{2}} \frac{(\mu_{1})_{y}^{r} - (\mu_{1})_{c_{1}}^{r}}{M_{1}(c_{1})} + \frac{1}{1+\alpha_{1}+\alpha_{2}} \frac{(\mu_{2})_{c_{1}}^{r} - (\mu_{2})_{c_{2}}^{r}}{M_{2}(c_{2}) - M_{2}(c_{1})} + \frac{\alpha_{2}}{1+\alpha_{1}+\alpha_{2}} \frac{(\mu_{3})_{y}^{r}}{1-M_{3}(c_{2})} & \text{if} 0 < y \le c_{2} \end{cases}$ $\frac{1}{1+\alpha_{1}+\alpha_{2}} \frac{(\mu_{2})_{y}^{r} - (\mu_{2})_{c_{2}}^{r}}{M_{2}(c_{2}) - M_{2}(c_{1})} + \frac{\alpha_{2}}{1+\alpha_{1}+\alpha_{2}} \frac{(\mu_{3})_{c_{2}}^{r}}{1-M_{3}(c_{2})} & \text{if} c_{1} < y \le c_{2} \end{cases}$ $\frac{\alpha_{2}}{1+\alpha_{1}+\alpha_{2}} \frac{(\mu_{3})_{y}^{r}}{1-M_{3}(c_{2})} & \text{if} c_{2} < y < \infty$	See ind. comp.
DPLN	$ \left(\begin{array}{c}\frac{\alpha_{2}}{1+\alpha_{1}+\alpha_{2}}\frac{(\mu_{3})_{y}}{1-M_{3}(c_{2})} & \text{if} c_{2} < y < \infty \\\\ -\frac{k_{2}k_{1}}{k_{2}+k_{1}}e^{k_{2}\mu+\frac{k_{2}^{2}V^{a}r^{2}}{2}}\frac{y^{\sigma_{s}-k_{2}-1}}{\sigma_{s}-k_{2}-1}\Phi\left(\frac{\ln y-\mu-k_{2}Var^{2}}{Var}\right) \\\\ -\frac{k_{2}k_{1}}{k_{2}+k_{1}}\frac{1}{r-k_{2}}e^{\frac{r^{2}Var^{2}+2\mu r}{2}}\Phi^{c}\left(\frac{\ln y-rVar^{2}-\mu}{Var}\right) \\\\ -\frac{k_{2}k_{1}}{k_{2}+k_{1}}e^{-k_{1}\mu+\frac{k_{1}^{2}Var^{2}}{2}}\frac{y^{\sigma_{s}+k_{1}-1}}{\sigma_{s}+k_{1}-1}\Phi^{c}\left(\frac{\ln y-\mu+k_{1}Var^{2}}{Var}\right) \\\\ +\frac{k_{2}k_{1}}{k_{2}+k_{1}}\frac{1}{r+k_{1}}e^{\frac{r^{2}Var^{2}+2\mu r}{2}}\Phi^{c}\left(\frac{\ln y-rVar^{2}-\mu}{Var}\right) \end{array} $	$k_2 > r$
LPLN	$-k_{1}e^{-k_{1}\mu+\frac{k_{1}^{2}Var^{2}}{2}}\frac{y^{\sigma_{s}+k_{1}-1}}{\sigma_{s}+k_{1}-1}\Phi^{c}\left(\frac{\ln y-\mu+k_{1}Var^{2}}{Var}\right) + \frac{k_{1}}{r+k_{1}}e^{\frac{r^{2}Var^{2}+2\mu r}{2}}\Phi^{c}\left(\frac{\ln y-rVar^{2}+\mu}{Var}\right)$	-
RPLN	$-k_{2}e^{k_{2}\mu+\frac{k_{2}^{2}Var^{2}}{2}}\frac{y^{\sigma_{s}-k_{2}-1}}{\sigma_{s}-k_{2}-1}\Phi\left(\frac{lny-\mu-k_{2}Var^{2}}{Var}\right)$ $-\frac{k_{2}}{r-k_{2}}e^{\frac{r^{2}Var^{2}+2\mu r}{2}}\Phi^{c}\left(\frac{lny-rVar^{2}+\mu}{Var}\right)$	$k_2 > r$

Notes: ^a Additional parameter restrictions represent parameter restrictions needed to keep the statistic finite.

Table 6: Coverage ratio of SCIE vs OECD SDBS database.

	Number of Enterprises						Total Employment					Turnover						
NACE Rev.2	1-9	10-19	20-49	50-249	> 250	Total	1-9	10-19	20-49	50-249	> 250	Total	1-9	10-19	20-49	50-249	> 250	Total
13	100				100	100												
14	100	100	100	100		100		100	100					100	100			
15	100	100	100	100	100	100	100	100	100			100	100	100	100			100
16				100	100	100						100						100
17	100	100	100	100	100	100				100	100	100				100	100	100
18	100	100	100	100	100	100				100	100	100				100	100	100
19	100	100	100	100	100	100		100	100	100				100	100	100		
20	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
21	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
22	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
23					100	100												
24	100	100	100	100	100	100				100	100					100	100	
25	100	100	100	100	100	100				100	100	100				100	100	100
26	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
27	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
28	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
29	100	100	100	100	100	100	100			100	100	100	100			100	100	100
30	100	100	100	100	100	100												
31	100	100	100	100	100	100			100	100	100	100			100	100	100	100
32	100	100	100	100	100	100		100	100	100	100			100	100	100	100	
33	100	100	100	100	100	100	100	100	100				100	100	100			
34	100	100	100	100	100	100			100	100	100				100	100	100	
35	100	100	100	100	100	100			100	100	100				100	100	100	
36	100	100	100	100	100	100		100		100	100	100		100		100	100	100
37	100	100	100	100		100				100		100				100		100
40	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
41	100	100	100	100	100	100	100	100	100			100	100	100	100			100
45	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
50	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
51	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
52	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
55	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
60	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
61	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
62	100	100	100	100	100	100		100	100	100		100		100	100	100		100
63	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
64	100	100	100	100	100	100	100		100	100	100	100	100		100	100	100	100
70	100	100	100	100	100	100	100	100	100	200	200	100	100	100	100		200	100
71	100	100	100	100	100	100	100	100	100			100	100	100	100			100
72	100	100	100	100	100	100	100		100	100	100	100	100		100	100	100	100
73	100	100	100	100	100	100	100			100	100	100	100			100	100	100
74	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100

Notes: Each cell corresponds to the ratio of our dataset compared to the data from the OECD structural SDBS database for the year 2006. Size classes are based on total employment. Empty cells and absent industries are due to missing information from SBDS, even though the data is available in our SCIE database.

Table 7: Distribution fits to Portuguese domestic sales in 2006.

		Goodness of fit					Information Criteria		
Distribution	Parms.	T_a^0	S_b^0	T_a^1	S_b^1	Loglike	R_{AIC}	R_{BIC}	
5-comp. Lognormal	14	0.18	0.11	3.08	2.37	12,776	1	3+++	
		(0.10;0.25)	(0.08; 0.32)	(2.03; 9.73)	(0.82;26.24)				
4-comp. Lognormal	11	0.19	0.11	2.78	0.13	12,770	2	2	
		(0.09; 0.25)	(0.08; 0.32)	(2.07; 9.23)	(0.83;24.67)				
5-comp. Burr	19	0.19	0.12	-	- · · · ·	12,767	3	7+++	
-		(0.10;0.25)	(0.08; 0.32)	(-;-)	(-;-)				
4-comp. Burr	15	0.24	0.14	-	-	12,754	4	6+++	
-		(0.10;0.25)*	(0.08; 0.32)	(-;-)	(-;-)				
3-comp. Burr	11	0.25	0.17	-	-	12,748	6	4+++	
-		(0.09;0.25)*	(0.08; 0.30)	(-;-)	(-;-)	•			
2-comp. Burr	7	0.20	0.20	-	-	12,745	5	1	
•		(0.09; 0.25)	(0.08; 0.32)	(-;-)	(-;-)	,			
5-comp. Weibull	14	0.25	0.14	6.96	11.95	12,731	7	8+++	
1		(0.10;0.25)**	(0.08; 0.31)	(1.29;5.00)***	(0.59;13.45)*	,		-	
3-comp. Lognormal	8	0.29	0.34	4.39	9.91	12,723	8	5+++	
		(0.10;0.24)**	(0.09;0.32)**	(2.34;11.34)	(0.93;30.68)	,	_		
5-comp. Gamma	14	0.26	0.16	7.27	0.09	12,639	9	9+++	
,		(0.10;0.26)**	(0.09;0.33)	(1.29;5.11)***	(0.44;14.23)	,			
Inv. Pareto-Burr	4	0.51	0.61	(1.20,0.11)	(0.11,11.20)	12,561	10	10+++	
		(0.09;0.24)***	(0.08;0.33)***	(-;-)	(-;-)	,,-			
Inv. Pareto-Burr-Pareto	5	0.51	0.61	-	-	12,561	11	11+++	
IIII Tarete Barr Tarete	9	(0.09;0.25)***	(0.08;0.33)***	(-;-)	(-;-)	12,001			
5-comp. Exponential	9	0.32	0.23	7.96	0.15	12,548	12	12+++	
o comp. Exponencia	Ü	(0.09;0.26)***	(0.09;0.31)	(1.31;4.78)***	(0.40;12.83)	12,010	12	12	
4-comp. Weibull	11	0.31	0.25	14.75	27.04	12,543	13	13+++	
roomp. Weibun	11	(0.09;0.25)***	(0.08;0.31)	(0.87;3.44)***	(0.29;8.78)***	12,010	10	10	
Burr-Pareto	4	0.73	0.95	(0.01,0.44)	(0.25,0.10)	12,451	15	15+++	
Dair Taroto	-	(0.09;0.25)***	(0.08;0.33)***	(-;-)	(-;-)	12,101	10	10	
Burr	3	0.73	0.95	-,-)	(-,-)	12,451	14	14+++	
Dull	0	(0.10;0.24)***	(0.08;0.31)***	(-;-)	(-;-)	12,401	1-1	1-1	
Double-Pareto Lognormal	4	0.66	0.80	(-,-)	(-,-)	12,429	16	16+++	
Double-1 areto Lognormai	-1	(0.09;0.25)***	(0.08;0.33)***	(-;-)	(-;-)	12,423	10	10	
2-comp. Lognormal	5	0.53	0.71	8.70	10.15	12,401	17	17+++	
2-comp. Dognormal	J	(0.10;0.24)***	(0.09;0.32)***	(1.32;5.87)**	(0.54;16.11)	12,401	11	T1	
Inv. Pareto-Lognormal-Pareto	4	0.10,0.24)	1.01	(1.32,3.61)	(0.04,10.11)	12,231	18	18+++	
mv. i areto-nognormai-r areto	4	(0.09;0.26)***	(0.08;0.34)***	_ (-;-)	(-;-)	12,231	10	10	
4-comp. Gamma	11	0.40	0.63	(-;-) 11.95	0.26	12,173	19	19+++	
4-comp. Gamma	11	(0.10;0.25)***	(0.08;0.32)***			12,113	19	19	
In. Daneta Enáskat Daneta	4		, ,	(1.00;3.92)***	(0.26;10.38)	11.052	20	20+++	
Inv. Pareto-Fréchet-Pareto	4	1.11	1.48	-	-	11,953	20	20 1 1	

		(0.09;0.25)***	(0.08;0.33)***	(.)	(.)			
3-comp. Weibull	8	0.69	0.92	(-;-) 20.31	(-;-) 39.45	11,855	21	21+++
5-comp. werbun	0	(0.10;0.25)***	(0.09;0.31)***	(0.73;2.60)***	(0.23;6.78)***	11,655	21	21'''
4 comm. Francouctial	7		,		, ,	11 001	22	22+++
4-comp. Exponential	1	0.57 (0.10;0.25)***	0.89 (0.09;0.32)***	13.91 (0.95;3.61)***	0.36	11,801	22	22 1 1 1
Inv. Pareto-Weibull-Pareto	4	1.60	2.00	(0.95;5.01)	(0.34;9.44)	11,338	24	24+++
mv. Fareto-weibun-Fareto	4	(0.09;0.25)***	(0.08;0.32)***	- (.)		11,556	24	24'''
W-th-all Daneta	9			(-;-)	(-;-)	11 220	0.9	23+++
Weibull-Pareto	3	1.60 (0.09;0.25)***	2.00 (0.08;0.32)***	- (.)	- (.)	11,338	23	23
Inv. Pareto-Gamma-Pareto	4			(-;-)	(-;-)	11 240	26	26+++
mv. Fareto-Gamma-Fareto	4	1.70	2.17	- (-)	-	11,249	20	20 1 1 1
C D		(0.10;0.26)***	(0.08;0.35)***	(-;-)	(-;-)	11.040	0.5	25+++
Gamma-Pareto	3	1.70	2.17	-	-	11,249	25	25 ' ' '
I D (E () I D ((0.09;0.25)***	(0.08;0.32)***	(-;-)	(-;-)	11.044	07	27+++
Inv. Pareto-Exponential-Pareto	3	1.97	2.71	-	-	11,044	27	27
T		(0.10;0.25)***	(0.09;0.33)***	(-;-)	(-;-)	44.040		20111
Exponential-Pareto	2	2.00	2.83	-	-	11,012	28	28+++
	_	(0.09;0.25)***	(0.08;0.32)***	(-;-)	(-;-)			
3-comp. Gamma	8	1.00	1.56	19.47	0.62	10,288	29	29+++
		(0.10;0.25)***	(0.09;0.32)***	(0.73;2.75)***	(0.30; 7.18)			
Inv. Pareto-Lognormal	3	3.02	4.26	45.72	127.97	$9,\!198$	30	30^{+++}
		(0.09;0.24)***	(0.08;0.31)***	(0.43;1.67)***	(0.16;4.36)***			
Lognormal-Pareto	3	2.56	3.78	562.07	1683.18	8,721	31	31^{+++}
		(0.09;0.25)***	(0.08;0.32)***	(169.39;451.06)***	(371.67;1342.23)***			
3-comp. Exponential	5	1.64	2.60	22.73	0.87	8,387	32	32^{+++}
		(0.09;0.25)***	(0.08;0.32)***	(0.67;2.36)***	(0.21;6.27)			
Left-Pareto Lognormal	3	3.23	4.91	46.00	127.70	8,059	33	33+++
		(0.10;0.25)***	(0.09;0.32)***	(0.41;1.58)***	(0.18;4.05)***			
Right-Pareto Lognormal	3	2.82	4.38	19.27	49.88	8,028	34	34^{+++}
		(0.09;0.25)***	(0.08;0.32)***	(3.10;11.90)**	(1.23;32.23)**			
Lognormal	2	2.93	5.03	41.38	113.04	7,372	35	35+++
		(0.10;0.25)***	(0.08;0.33)***	(0.47;1.84)***	(0.17;4.76)***			
2-comp. Weibull	5	2.10	3.19	35.20	72.85	6,442	36	36^{+++}
		(0.09;0.24)***	(0.08;0.31)***	(0.42;1.50)***	(0.16;3.80)***			
2-comp. Fréchet	5	6.92	10.64	-		-3,041	37	37+++
		(0.09;0.25)***	(0.08;0.32)***	(-;-)	(-;-)			
5-comp. Fréchet	14	6.96	10.63	-	-	-3,045	40	40^{+++}
•		(0.10;0.25)***	(0.09;0.31)***	(-;-)	(-;-)	,		
3-comp. Fréchet	8	6.96	10.63	-	-	-3,046	38	38+++
•		(0.09;0.25)***	(0.08;0.32)***	(-;-)	(-;-)	,		
4-comp. Fréchet	11	6.98	10.63	-	-	-3,047	39	39+++
		(0.10;0.25)***	(0.09;0.32)***	(-;-)	(-;-)	0,0 = 1		
2-comp. Gamma	5	4.00	5.93	31.79	2.24	-3,381	41	41+++
r	Ŭ	(0.09;0.25)***	(0.08;0.32)***	(0.45;1.67)***	(0.14;4.45)	-,		
2-comp. Exponential	3	7.06	11.51	37.63	3.23	-18,112	42	42+++
2-comp. Exponential	9	1.00	11.01	37.03	0.20	-10,112	42	44

_	_
Ξ	_
C	Ü

		(0.10;0.25)***	(0.08;0.33)***	(0.38;1.40)***	(0.14;3.52)*			
Inv. Pareto-Weibull	3	9.18	16.52	54.06	123.38	-29,711	43	44+++
		(0.10;0.25)***	(0.08;0.31)***	(0.26;0.92)***	(0.11;2.22)***			
Weibull	2	9.18	16.51	54.06	123.40	-29,713	44	43^{+++}
		(0.09;0.25)***	(0.09;0.32)***	(0.25;0.90)***	(0.15;2.20)***			
Fréchet	2	8.91	16.72	-	-	-32,908	45	45^{+++}
		(0.10;0.26)***	(0.08;0.33)***	(-;-)	(-;-)			
Fréchet-Pareto	3	8.91	16.72	-	-	-32,908	46	46.5^{+++}
		(0.10;0.25)***	(0.08;0.31)***	(-;-)	(-;-)			
Inv. Pareto-Fréchet	3	8.91	16.72	-	-	-32,908	46	46.5^{+++}
		(0.09;0.25)***	(0.08;0.33)***	(-;-)	(-;-)			
Inv. Pareto-Gamma	3	20.93	32.98	50.26	9.56	-104,785	48	48+++
		(0.10;0.25)***	(0.08;0.33)***	(0.22;0.76)***	(0.13;1.81)***			
Gamma	2	20.98	33.03	50.29	9.58	-104,878	49	49+++
		(0.10;0.25)***	(0.08;0.32)***	(0.22;0.76)***	(0.11;1.71)***			
Exponential	1	44.64	79.71	60.73	16.76	-299,935	50	50+++
		(0.10;0.25)***	(0.09;0.33)***	(0.15;0.49)***	(0.11;1.08)***			
Inv. Pareto-Exponential	2	44.64	79.71	60.73	16.76	-299,935	51	51+++
		(0.09;0.24)***	(0.08;0.32)***	(0.15;0.51)***	(0.11;1.12)***			
Pareto	2	48.34	68.18	-	-	-436,227	52	52^{+++}
		(0.09;0.25)***	(0.08;0.33)***	(-;-)	(-;-)			

Values between parentheses report the 5th and 95th quantile of the parametric bootstrapped test statistic with 999 replications. ***, **, * indicate significance of this test at 1%, 5% and 10% respectively.

 $^{^{++}}$, $^{++}$, $^{++}$ indicates the difference between this distribution's BIC and the first-ranked distribution in terms of BIC (ΔBIC) providing strong evidence in favour of the first-ranked distribution ($\Delta BIC > 10$), moderate evidence ($6 < \Delta BIC \le 10$) and weak evidence ($2 < \Delta BIC \le 6$) respectively.

a Values multiplied by 100 for expositional purpose, b Values divided by 1,000 for expositional purpose.

Table 8: Distribution fits to domestic sales of the Portuguese manufacturing sector in 2006.

		Goodne	ess of fit	Infor	mation C	riteria
Distribution	Parms.	T_a^0	S_b^0	Loglike	R_{AIC}	R_{BIC}
5-comp. Burr	19	0.24 (0.25;0.66)	0.02 (0.03;0.12)	-2,095	7	10+++
5-comp. Lognormal	14	0.28 (0.25;0.67)	0.03 (0.03;0.12)	-2,095	3	5+++
4-comp. Burr	15	0.24 $(0.25;0.67)$	0.02 (0.03;0.12)	-2,096	5	6+++
3-comp. Burr	11	0.23 (0.25;0.67)	0.03 (0.03;0.12)	-2,099	4	3+++
2-comp. Burr	7	0.22 $(0.25;0.66)$	0.02 (0.03;0.12)	-2,099	1	1
3-comp. Lognormal	8	0.28 $(0.25;0.69)$	0.02 (0.03;0.12)	-2,101	2	2+++
4-comp. Lognormal	11	0.27 $(0.25;0.67)$	0.02 (0.03;0.12)	-2,101	6	4+++
5-comp. Weibull	14	0.34 $(0.26;0.65)$	0.03 (0.03;0.11)	-2,104	8	7+++
5-comp. Gamma	14	0.31 (0.26;0.66)	0.04 (0.03;0.12)	-2,114	9	8+++
4-comp. Weibull	11	0.40 $(0.26;0.65)$	0.04 (0.03;0.11)	-2,131	10	9+++
5-comp. Exponential	9	1.29 (0.25;0.66)***	0.15 (0.03;0.12)***	-2,171	11	13+++
4-comp. Gamma	11	0.50 (0.26;0.65)	0.09 (0.03;0.12)	-2,178	12	15+++
Inv. Pareto-Fréchet-Pareto	4	0.65 (0.25;0.65)*	0.09 (0.03;0.12)	-2,187	13	11+++
Inv. Pareto-Burr	4	0.88 (0.26;0.65)***	0.13 (0.03;0.12)**	-2,197	14	12+++
Inv. Pareto-Burr-Pareto	5	0.88 (0.25;0.69)***	0.13 (0.03;0.12)**	-2,197	15	14+++
3-comp. Weibull	8	0.83 (0.25;0.66)***	0.14 (0.03;0.11)**	-2,222	16	17+++
2-comp. Lognormal	5	0.73 (0.26;0.67)**	0.11 (0.03;0.12)*	-2,232	17	16+++
Double-Pareto Lognormal	4	1.08 (0.26;0.66)***	0.17 (0.03;0.12)***	-2,245	18	18+++
4-comp. Exponential	7	1.18 (0.26;0.66)***	0.16 (0.03;0.12)***	-2,251	19	20+++
Inv. Pareto-Lognormal-Pareto	4	1.27 (0.25;0.66)***	0.18 (0.03;0.11)***	-2,263	20	19+++
Burr-Pareto	4	1.18 (0.26;0.67)***	0.25 (0.03;0.12)***	-2,284	22	22+++
Burr	3	1.18 (0.26;0.67)***	0.25 (0.03;0.12)***	-2,284	21	21+++
Inv. Pareto-Gamma-Pareto	4	1.65 (0.25;0.65)***	0.28 (0.03;0.12)***	-2,346	23	24+++
Inv. Pareto-Weibull-Pareto	4	1.62 (0.25;0.68)***	0.28 (0.03;0.12)***	-2,348	24	25+++
Gamma-Pareto	3	1.58 (0.25;0.68)***	0.27 (0.03;0.12)***	-2,355	26	26+++
Weibull-Pareto	3	1.58 (0.27;0.67)***	0.27 (0.03;0.11)***	-2,355	27	27+++
Exponential-Pareto	2	1.57 (0.26;0.68)***	0.27 (0.03;0.12)***	-2,355	25	23+++
Inv. Pareto-Exponential-Pareto	3	1.57 (0.26;0.67)***	0.27 (0.03;0.12)***	-2,355	28	28+++

3-comp. Gamma	8	1.01	0.20	-2,408	29	29+++
3-comp. Exponential	5	(0.26;0.68)*** 1.44	(0.03;0.12)*** 0.26	-2,608	30	30+++
Inv. Pareto-Lognormal	3	(0.25;0.65)*** 4.18	(0.03;0.12)*** 0.81	-2,875	31	31+++
2-comp. Weibull	5	(0.26;0.65)*** 2.19	(0.03;0.12)*** 0.43	-2,918	32	32+++
Lognormal-Pareto	3	(0.25;0.66)*** 3.25	(0.03;0.12)*** 0.64	-3,051	33	33+++
Left-Pareto Lognormal	3	(0.25;0.67)*** 4.39	(0.03;0.12)*** 0.89	-3,103	34	34+++
Right-Pareto Lognormal	3	(0.25;0.65)*** 3.51	(0.03;0.11)*** 0.73	-3,143	35	35+++
Lognormal	2	(0.26;0.66)*** 3.96	(0.03;0.12)*** 0.88	-3,250	36	36+++
2-comp. Gamma	5	(0.25;0.65)*** 3.35	(0.03;0.11)*** 0.71	-4,108	37	37+++
5-comp. Fréchet	14	(0.25;0.65)*** 8.11	(0.03;0.12)*** 1.79	-4,863	38	40+++
4-comp. Fréchet	11	(0.26;0.67)*** 8.35	(0.03;0.12)*** 1.80	-4,870	39	39+++
3-comp. Fréchet	8	(0.25;0.66)*** 8.59	(0.03;0.12)*** 1.82	-4,881	40	38+++
2-comp. Fréchet	5	(0.26;0.67)*** 9.55	(0.03;0.12)*** 1.92	-4,955	41	41+++
2-comp. Exponential	3	(0.25;0.67)*** 5.75	(0.03;0.12)*** 1.20	-5,550	42	42+++
Inv. Pareto-Weibull	3	(0.25;0.67)*** 9.91	(0.03;0.12)*** 2.42	-8,321	44	44+++
Weibull	2	(0.26;0.65)*** 9.91	(0.03;0.12)*** 2.42	-8,321	43	43+++
Inv. Pareto-Fréchet	3	(0.26;0.67)*** 10.04	(0.03;0.11)*** 2.61	-9,885	46	46+++
Fréchet-Pareto	3	(0.26;0.68)*** 10.04	(0.03;0.12)*** 2.61	-9,885	47	47+++
Fréchet	2	(0.25;0.69)*** 10.04 (0.25;0.65)***	(0.03;0.13)*** 2.61	-9,885	45	45+++
Inv. Pareto-Gamma	3	20.68	(0.03;0.11)*** 4.43 (0.03;0.11)***	-17,309	48	48+++
Gamma	2	(0.26;0.67)*** 20.72 (0.25:0.67)***	(0.03;0.11)*** 4.44 (0.03;0.12)***	-17,318	49	49+++
Exponential	1	(0.25;0.67)*** 43.48	10.42	-41,128	50	50+++
Inv. Pareto-Exponential	2	(0.27;0.66)*** 43.48	(0.03;0.12)*** 10.42	-41,128	51	51+++
Pareto	2	(0.26;0.65)*** 49.14 (0.26;0.65)***	(0.03;0.11)*** 9.43 (0.03;0.11)***	-66,043	52	52+++
		(0.20,0.00)	(0.03,0.11)			

Values between parentheses report the 5th and 95th quantile of the parametric bootstrapped test statistic with 999 replications. ***, **, * indicate significance of this test at 1%, 5% and 10% respectively. **+++, ++ indicates the difference between this distribution's BIC and the first-ranked distribution in terms

of BIC (ΔBIC) providing strong evidence in favour of the first-ranked distribution ($\Delta BIC > 10$), moderate evidence ($6 < \Delta BIC \le 10$) and weak evidence ($2 < \Delta BIC \le 6$) respectively.

 $_a$ Values multiplied by 100 for expositional purpose, $_b$ Values divided by 1,000 for expositional purpose.

Table 9: Distribution fits to Portuguese domestic sales leaving out the first and last 1,000 observations in 2006.

	Goodness of fit				Information Criteria			
Distribution	Parms.	T_a^0	S_b^0	Loglike	R_{AIC}	R_{BIC}		
4-comp. Lognormal	11	0.18	0.18	23,100	1	1		
5-comp. Lognormal	14	(0.09;0.24) 0.21 $(0.09;0.24)$	0.20		2	2+++		
3-comp. Lognormal	8	0.25 (0.10;0.25)*	0.28 (0.09;0.31)*	22,844	3	3+++		
5-comp. Weibull	14	0.33 (0.09;0.25)***	0.27 $(0.08; 0.32)$	22,764	4	4+++		
5-comp. Gamma	14	0.36 (0.09;0.24)***	0.29 (0.08;0.31)*	22,758	5	5+++		
4-comp. Gamma	11	0.40 (0.09;0.24)***	0.30 (0.08;0.31)*	22,724	6	7+++		
2-comp. Lognormal	5	0.29 (0.10;0.25)**	0.26 (0.09;0.31)	22,695	7	6+++		
4-comp. Weibull	11	0.40 $(0.10;0.25)^{***}$	0.29 (0.08;0.31)*	22,691	8	8+++		
4-comp. Exponential	7	0.60 (0.10;0.25)***	0.34 (0.08;0.33)**	22,544	9	9+++		
5-comp. Exponential	9	0.59 (0.09;0.25)***	0.36 (0.08;0.32)**	22,541	10	10+++		
3-comp. Burr	11	0.30	0.38	22,477	11	11+++		
3-comp. Weibull	8	(0.09;0.26)*** 0.40 (0.09;0.24)***	(0.08;0.32)** 0.66 (0.08;0.31)***	22,247	12	12+++		
5-comp. Fréchet	14	0.67 $(0.09;0.25)***$	0.56	22,240	13	13+++		
3-comp. Gamma	8	0.56 (0.10;0.25)***	(0.08;0.32)*** 0.88 (0.09;0.32)***	22,132	14	14+++		
4-comp. Fréchet	11	0.68 (0.09;0.26)***	0.66	22,056	15	16+++		
3-comp. Exponential	5	0.64 (0.10;0.25)***	(0.08;0.32)*** 1.00 (0.08;0.33)***	22,025	16	15+++		
3-comp. Fréchet	8	0.67	0.65 (0.09;0.33)***	21,911	17	17+++		
2-comp. Burr	7	(0.09;0.25)*** 0.80	0.76	21,614	22	22+++		
Inv. Pareto-Burr-Pareto	5	(0.09;0.25)*** 0.80	(0.08;0.30)*** 0.76	21,614	21	21+++		
Inv. Pareto-Burr	4	(0.09;0.24)*** 0.80	(0.08;0.30)*** 0.76	21,614	19	19+++		
Burr	3	(0.09;0.25)*** 0.80	(0.08;0.32)*** 0.76	21,614	18	18+++		
Burr-Pareto	4	(0.10;0.25)*** 0.80	(0.08;0.32)*** 0.76	21,614	20	20+++		
5-comp. Burr	19	(0.09;0.24)*** 0.80	(0.08;0.31)*** 0.76	21,614	23	24+++		
Double-Pareto Lognormal	4	(0.09;0.25)*** 1.04	(0.08;0.31)*** 1.36	21,592	24	23+++		
Inv. Pareto-Lognormal-Pareto	4	(0.10;0.25)*** 1.18	(0.09;0.33)*** 1.51	21,179	25	25+++		
Inv. Pareto-Lognormal	3	(0.10;0.25)*** 2.48	(0.09;0.33)***	20,614	26	26+++		
Right-Pareto Lognormal	3	(0.10;0.25)*** 2.02	(0.09;0.33)*** 3.25	20,585	27	27+++		
Lognormal-Pareto	3	(0.10;0.25)*** 1.85	(0.08;0.33)*** 3.01	20,494	28	28+++		

		(0.10.0.05)***	(0,00,0,20)***			
Left-Pareto Lognormal	3	(0.10;0.25)*** 2.49	(0.09;0.32)*** 3.70	20. 422	29	29+++
Leit-Pareto Lognormai	3	(0.09;0.25)***	(0.08;0.33)***	20,423	29	29
Lognormal	2	2.35	3.68	20,407	30	30+++
Lognormai	2	(0.10;0.25)***	(0.09;0.33)***	20,401	30	30
Inv. Pareto-Fréchet-Pareto	4	1.46	2.06	20,193	31	31+++
III. I dieto l'Iodiet I dieto	•	(0.10;0.25)***	(0.08;0.32)***	20,100	91	01
Inv. Pareto-Weibull-Pareto	4	1.95	2.55	19,520	33	33+++
		(0.10;0.25)***	(0.08;0.32)***	- ,		
Weibull-Pareto	3	1.95	2.55	19,520	32	32^{+++}
		(0.09;0.25)***	(0.08;0.33)***			
Inv. Pareto-Gamma-Pareto	4	2.06	2.75	19,441	35	35^{+++}
		(0.10;0.25)***	(0.09;0.32)***			
Gamma-Pareto	3	2.06	2.75	19,441	34	34^{+++}
		(0.09;0.25)***	(0.09;0.34)***			
2-comp. Weibull	5	1.31	2.24	19,404	36	38^{+++}
		(0.09;0.25)***	(0.08;0.32)***			
Inv. Pareto-Exponential-Pareto	3	2.20	3.02	19,394	38	37+++
		(0.09;0.24)***	(0.08;0.31)***			
Exponential-Pareto	2	2.20	3.02	19,394	37	36^{+++}
		(0.09;0.24)***	(0.08;0.30)***			
2-comp. Fréchet	5	1.49	2.25	$19,\!272$	39	39+++
		(0.10;0.25)***	(0.08;0.32)***			
2-comp. Gamma	5	2.30	3.50	16,675	40	40+++
		(0.09;0.25)***	(0.08;0.32)***			
2-comp. Exponential	3	3.73	5.90	13,268	41	41+++
	_	(0.10;0.26)***	(0.08;0.33)***			
Fréchet	2	7.68	12.96	-6,681	42	42^{+++}
T. C. D.		(0.09;0.26)***	(0.08;0.33)***	0.004		10 7 1 1 1
Fréchet-Pareto	3	7.68	12.96	-6,681	44	43.5^{+++}
I D : E(I)		(0.10;0.25)***	(0.08;0.32)***	0.001	4.4	40 5
Inv. Pareto-Fréchet	3	7.68	12.96	-6,681	44	43.5^{+++}
I D + W 1 11	0	(0.10;0.25)***	(0.09;0.33)***	0.797	4.0	46111
Inv. Pareto-Weibull	3	8.40	14.21	-8,737	46	46+++
W7-:111	0	(0.10;0.26)***	(0.09;0.33)***	0.720	45	45+++
Weibull	2	8.40	14.21	-8,738	45	45'''
In. Danata Canama	9	(0.10;0.24)***	(0.09;0.31)***	42 526	47	47+++
Inv. Pareto-Gamma	3	15.94	24.26	-43,526	47	47 1 1 1
Gamma	2	(0.09;0.26)***	(0.08;0.34)***	42 522	48	48+++
Gamma	2	15.94 (0.09;0.24)***	24.27 (0.08;0.30)***	-43,533	46	40'''
Exponential	1	32.58	56.49	-139,654	49	49+++
Exponential	1	(0.10;0.25)***	(0.08;0.32)***	-135,034	43	43
Inv. Pareto-Exponential	2	32.58	56.49	-139,654	50	50+++
inv. i areto-naponentiai	4	(0.10;0.25)***	(0.09;0.33)***	.100,004	50	90
Pareto	2	37.07	55.02	-214,535	51	51+++
1 61000	4	(0.09;0.25)***	(0.08;0.32)***	-214,000	91	91
	3.5 .	(0.00,0.20)	(0.00,0.02)			

Values between parentheses report the 5th and 95th quantile of the parametric bootstrapped test statistic with 999 replications. ***, **, * indicate significance of this test at 1%, 5% and 10% respectively. +++, ++, + indicates the difference between this distribution's BIC and the first-ranked distribution in terms of BIC (ΔBIC) providing strong evidence in favour of the first-ranked distribution ($\Delta BIC > 10$), moderate

evidence (6 $< \Delta BIC \le 10$) and weak evidence (2 $< \Delta BIC \le 6$) respectively.

 $_a$ Values multiplied by 100 for expositional purpose, $_b$ Values divided by 1,000 for expositional purpose.

Table 10: Distribution fits to the U.S. Census 2000 city size distribution.

		Goodne	Information Criteria			
Distribution	Parms.	T_a^0	S_b^0	Loglike	R_{AIC}	R_{BIC}
5-comp. Burr	19	0.22 (0.33;0.87)	0.02 (0.02;0.09)	-6,004	3	9+++
3-comp. Burr	11	0.25 $(0.33;0.85)$	0.25 0.02		1	2++
4-comp. Burr	15	0.32 (0.33;0.83)	0.32 0.02		2	5+++
5-comp. Lognormal	14	0.58 $(0.32;0.87)$	0.05 (0.02;0.10)	-6,016	6	6+++
4-comp. Lognormal	11	0.60 $(0.32;0.82)$	0.05 $(0.02;0.09)$	-6,016	5	4+++
3-comp. Lognormal	8	0.62 $(0.32;0.86)$	0.05 $(0.02;0.09)$	-6,017	4	1
5-comp. Gamma	14	0.29 $(0.32;0.84)$	0.03 $(0.02;0.09)$	-6,033	7	10++-
5-comp. Weibull	14	0.38 $(0.33;0.88)$	0.04 $(0.03; 0.10)$	-6,037	9	12++-
2-comp. Lognormal	5	0.71 $(0.33;0.82)$	0.05 $(0.02;0.09)$	-6,044	8	3+++
2-comp. Burr	7	0.87 (0.32;0.85)**	0.09 (0.02;0.09)*	-6,056	10	7+++ 8+++
Right-Pareto Lognormal Double-Pareto Lognormal	3 4	1.33 (0.31;0.84)*** 1.39	0.17 (0.02;0.09)*** 0.17	-6,085 -6,085	11 12	11++-
Inv. Pareto-Lognormal-Pareto	4	1.39 (0.32;0.85)*** 1.76	(0.02;0.09)*** 0.25	-6,135	14	14++-
Lognormal-Pareto	3	(0.33;0.87)*** 1.75	(0.02;0.09)*** 0.25	-6,135	13	13++-
4-comp. Weibull	11	(0.33;0.86)***	(0.02;0.10)*** 0.08	-6,144	16	18++-
Inv. Pareto-Lognormal	3	(0.32;0.82) 1.90	(0.02;0.09)* 0.27	-6,152	17	16++-
Lognormal	2	(0.33;0.84)*** 1.89	(0.02;0.09)*** 0.27	-6,152	15	15++-
Left-Pareto Lognormal	3	(0.32;0.85)*** 3.12	(0.02;0.09)*** 0.42	-6,152	18	17++-
4-comp. Gamma	11	(0.98;1.93)*** 0.99	(0.14;0.29)*** 0.11	-6,163	19	19++-
5-comp. Fréchet	14	(0.33;0.84)** 1.73	(0.02;0.09)** 0.15	-6,172	21	21++-
4-comp. Fréchet	11	(0.33;0.85)*** 1.57	(0.02;0.09)*** 0.14	-6,174	20	20++-
5-comp. Exponential	9	(0.33;0.85)*** 1.94 (0.32;0.86)***	(0.02;0.09)*** 0.11 (0.02;0.10)**	-6,260	22	23++-
3-comp. Fréchet	8	1.61 (0.32;0.83)***	0.17 (0.02;0.09)***	-6,261	23	22++-
4-comp. Exponential	7	1.79 (0.32;0.84)***	0.14 (0.02;0.09)***	-6,298	24	24++-
Inv. Pareto-Burr	4	2.17 (0.33;0.85)***	0.30 (0.03;0.09)***	-6,370	26	26++-
Inv. Pareto-Burr-Pareto	5	2.17 (0.32;0.85)***	0.30 (0.02;0.10)***	-6,370	28	28++-
Burr-Pareto	4	2.17 (0.32;0.85)***	0.30 (0.02;0.09)***	-6,370	27	27++-
	3	2.17	0.30	-6,370	25	25++-

3-comp. Weibull	8	1.71	0.18	-6,393	29	29+++
Inv. Pareto-Fréchet-Pareto	4	(0.32;0.84)*** 3.05	(0.02;0.10)*** 0.40	-6,530	30	30+++
3-comp. Gamma	8	(0.33;0.83)*** 2.37	(0.02;0.09)*** 0.25	-6,532	31	32+++
2-comp. Fréchet	5	(0.33;0.85)*** 2.55	(0.02;0.09)*** 0.32	-6,538	32	31+++
3-comp. Exponential	5	(0.32;0.84)*** 2.76	(0.02;0.09)*** 0.28	-6,633	33	33+++
Inv. Pareto-Weibull-Pareto	4	(0.32;0.85)*** 3.60	(0.02;0.09)*** 0.48	-6,829	35	35+++
Weibull-Pareto	3	(0.32;0.86)*** 3.60	(0.02;0.09)*** 0.48	-6,829	34	34+++
Inv. Pareto-Gamma-Pareto	4	(0.32;0.88)*** 3.87	(0.02;0.10)*** 0.52	-6,848	37	39+++
Gamma-Pareto	3	(0.31;0.87)*** 3.87	(0.02;0.09)*** 0.52	-6,848	36	37+++
Inv. Pareto-Exponential-Pareto	3	(0.32;0.84)*** 3.96	(0.02;0.10)*** 0.54	-6,851	39	38+++
Exponential-Pareto	2	(0.32;0.82)*** 3.96	(0.02;0.09)*** 0.54	-6,851	38	36+++
2-comp. Weibull	5	(0.32;0.85)*** 2.96	(0.03;0.09)*** 0.32	-6,920	40	40+++
Fréchet-Pareto	3	(0.32;0.87)*** 4.60	(0.03;0.09)*** 0.64	-7,404	42	42.5+++
Inv. Pareto-Fréchet	3	(0.32;0.85)*** 4.60	(0.02;0.09)*** 0.64	-7,404	42	42.5+++
Fréchet	2	(0.33;0.85)*** 4.60	(0.02;0.09)*** 0.64	-7,404	41	41+++
2-comp. Gamma	5	(0.32;0.84)*** 4.23	(0.02;0.09)*** 0.54	-7,694	44	44+++
2-comp. Exponential	3	(0.32;0.86)*** 7.16	(0.02;0.10)*** 0.84	-8,488	45	45+++
Inv. Pareto-Weibull	3	(0.33;0.84)*** 8.31	(0.03;0.09)*** 1.13	-9,030	47	47+++
Weibull	2	(0.32;0.85)*** 8.31	(0.02;0.09)*** 1.13	-9,030	46	46+++
Inv. Pareto-Gamma	3	(0.32;0.82)*** 16.40	(0.02;0.09)*** 2.26	-13,169	48	49+++
Gamma	2	(0.33;0.84)*** 16.42	(0.02;0.09)*** 2.26	-13,171	49	48+++
Exponential	1	(0.32;0.87)*** 37.71	(0.02;0.10)*** 5.58	-25,359	50	50+++
Inv. Pareto-Exponential	2	(0.32;0.87)*** 37.71	(0.02;0.09)*** 5.58	-25,359	51	51+++
Pareto	2	(0.32;0.85)*** 41.69	(0.02;0.09)*** 5.06	-31,612	52	52+++
		(0.33;0.83)***	(0.02;0.09)***			

Values between parentheses report the 5th and 95th quantile of the parametric bootstrapped test statistic with 999 replications. ***, **, * indicate significance of this test at 1%, 5% and 10% respectively.

^{+++, ++, +} indicates the difference between this distribution's BIC and the first-ranked distribution in terms of BIC (ΔBIC) providing strong evidence in favour of the first-ranked distribution ($\Delta BIC > 10$), moderate evidence ($6 < \Delta BIC \le 10$) and weak evidence ($2 < \Delta BIC \le 6$) respectively.

 $_a$ Values multiplied by 100 for expositional purpose, $_b$ Values divided by 1,000 for expositional purpose.

Table 11: Decomposition of procentual welfare gains from a reduction in variable trade costs $\tau^{ij} = 3 \rightarrow (\tau^{ij})' = 1$.

Distribution	Parms.	$lnrac{U_i'}{U_i}$	$lnrac{ au_{ij}'}{ au_{ij}}$	$ln rac{M_i'}{M_i}$	$ln\frac{1-G(\omega_{ij}^*)'}{1-G(\omega_{ij}^*)}$	$ln rac{ ilde{\omega}(\omega_{ij}^*)'}{ ilde{\omega}(\omega_{ij}^*)}$	$lnrac{\lambda'_{ij}}{\lambda_{ij}}$
Pareto	2	-	1.10	-	-	-	-
		(-0.00;0.00)***	(1.10;1.10)	(-0.22;-0.22)***	(-0.00;0.00)***	(0.00;0.00)***	(-0.88;-0.88)***
Weibull	2	0.15	1.10	-0.16	0.12	1.35	-2.26
		(0.15;0.15)***	(1.10;1.10)	(-0.16;-0.16)***	(0.12;0.13)***	(1.30;1.41)***	(-2.32;-2.21)***
Inv. Pareto-Weibull	3	0.15	1.10	-0.16	0.12	1.35	-2.26
		(0.15;0.15)***	(1.10;1.10)	(-0.16;-0.16)***	(0.12;0.13)***	(1.30;1.41)***	(-2.32;-2.21)***
Left-Pareto Lognormal	3	0.16	1.10	-0.17	0.15	0.60	-1.51
		(0.16;0.17)***	(1.10;1.10)	(-0.17;-0.17)***	(0.15;0.15)***	(0.58;0.62)***	(-1.53;-1.49)***
Inv. Pareto-Lognormal	3	0.17	1.10	-0.17	0.15	0.58	-1.49
<u> </u>		(0.16;0.17)***	(1.10;1.10)	(-0.17;-0.17)***	(0.15;0.15)***	(0.56;0.60)***	(-1.51;-1.47)***
Lognormal	2	0.17	1.10	-0.17	0.15	0.53	-1.44
~		(0.17;0.17)***	(1.10;1.10)	(-0.17;-0.17)***	(0.15;0.15)***	(0.51;0.55)***	(-1.46;-1.42)***
Right-Pareto Lognormal	3	0.18	1.10	-0.18	0.17	0.28	-1.19
		(0.18;0.19)**	(1.10;1.10)	(-0.19; -0.18)	(0.17;0.18)	(0.23;0.33)**	(-1.24;-1.13)**
2-comp. Weibull	5	0.18	1.10	-0.13	0.11	0.57	-1.46
•		(0.18;0.18)***	(1.10;1.10)	(-0.14;-0.13)***	(0.11;0.11)***	(0.56;0.59)***	(-1.48;-1.45)***
3-comp. Weibull	8	0.19	1.10	-0.19	0.18	$0.25^{'}$	-1.16
•		(0.18;0.19)***	(1.10;1.10)	(-0.19;-0.19)***	(0.18;0.19)***	(0.25;0.26)***	(-1.17;-1.15)***
4-comp. Weibull	11	0.19	1.10	-0.18	0.17	$0.22^{'}$	-1.12
•		(0.19;0.19)***	(1.10;1.10)	(-0.18;-0.17)***	(0.16;0.17)***	(0.21;0.23)***	(-1.13;-1.11)***
5-comp. Weibull	14	0.19	1.10	-0.18	0.18	$0.22^{'}$	-1.12
•		(0.19;0.19)**	(1.10;1.10)	(-0.19; -0.18)	(0.17;0.18)	(0.21;0.23)***	(-1.14;-1.11)***
Empirical	0	0.19	1.10	-0.18	0.18	0.20	-1.10
4-comp. Lognormal	11	0.19	1.10	-0.18	0.18	0.20	-1.10
1 0		(0.19; 0.19)	(1.10;1.10)	(-0.19; -0.18)	(0.17;0.18)	(0.18; 0.22)	(-1.13;-1.08)
5-comp. Lognormal	14	0.19	1.10	-0.19	0.18	0.20	-1.10
. 0		(0.19; 0.19)	(1.10;1.10)	(-0.19; -0.18)	(0.17;0.19)	(0.17;0.22)	(-1.12;-1.07)
2-comp. Lognormal	5	0.19	1.10	-0.17	0.17	0.23	-1.13
1 0		(0.19; 0.19)	(1.10;1.10)	(-0.18;-0.17)***	(0.16;0.17)***	(0.22;0.25)***	(-1.15;-1.12)***
3-comp. Lognormal	8	0.19	1.10	-0.18	0.18	0.19	-1.09
1 0		(0.19; 0.19)	(1.10;1.10)	(-0.19; -0.18)	(0.17;0.18)	(0.16;0.22)	(-1.12;-1.06)
Lognormal-Pareto	3	0.22	1.10	-0.22	0.22	0.02	-0.90
		(0.20;0.21)***	(1.10;1.10)	(-0.22;-0.20)***	(0.20;0.22)***	(0.04;0.14)***	(-1.04;-0.93)***
Burr	3	-	1.10	-	-	-	-
		(0.20;0.21)***	(1.10;1.10)	(-0.21;-0.19)***	(0.19;0.21)***	(0.03;0.12)***	(-1.02;-0.92)***
2-comp. Burr	7	-	1.10	-	-	-	-
•		(0.19;0.20)	(1.10;1.10)	(-0.20;-0.18)	(0.17;0.20)	(0.10;0.22)	(-1.12;-1.00)
3-comp. Burr	11	-	1.10	-	-	-	-
•		(0.19;0.20)**	(1.10;1.10)	(-0.21;-0.18)	(0.18; 0.21)	(0.08;0.20)	(-1.11;-0.97)
4-comp. Burr	15	-	1.10	-	-	-	
1							

		(0.19;0.21)**	(1.10;1.10)	(-0.21;-0.18)**	(0.18;0.21)**	(0.07;0.20)**	(-1.10;-0.96)**
5-comp. Burr	19	-	1.10	-	-	-	-
		(0.19;0.21)***	(1.10;1.10)	(-0.22;-0.19)***	(0.18;0.22)***	(0.05;0.19)***	(-1.09;-0.94)***
Burr-Pareto	4	-	1.10	-	-	-	-
		(0.20;0.21)***	(1.10;1.10)	(-0.21;-0.19)***	(0.19;0.21)***	(0.02;0.12)***	(-1.02;-0.91)***
Double-Pareto Lognormal	4	-	1.10	-	-	-	-
		(0.20;0.22)***	(1.10;1.10)	(-0.20;-0.19)***	(0.19;0.20)***	(0.02;0.09)***	(-0.98;-0.90)***
Fréchet	2	-	1.10	-	-	-	-
		(0.22;0.22)***	(1.10;1.10)	(-0.14;-0.08)***	(0.08;0.14)***	(0.00;0.01)***	(-0.89;-0.88)***
2-comp. Fréchet	5	-	1.10	-	-	-	-
		(0.22;0.22)***	(1.10;1.10)	(-0.15;-0.10)***	(0.10;0.15)***	(0.00;0.01)***	(-0.89;-0.88)***
3-comp. Fréchet	8	-	1.10	-	-	-	-
		(0.22;0.22)***	(1.10;1.10)	(-0.15;-0.11)**	(0.11;0.15)**	(0.00;0.01)***	(-0.89;-0.88)***
4-comp. Fréchet	11	-	1.10	-	-	-	-
		(0.22;0.22)***	(1.10;1.10)	(-0.15;-0.11)**	(0.11;0.15)**	(0.00;0.01)***	(-0.89;-0.88)***
5-comp. Fréchet	14	-	1.10	-	-	-	-
		(0.22;0.22)***	(1.10;1.10)	(-0.15;-0.10)***	(0.10;0.15)**	(0.00;0.01)***	(-0.89;-0.88)***
Fréchet-Pareto	3	-	1.10	-	-	-	-
		(0.22;0.22)***	(1.10;1.10)	(-0.14;-0.08)***	(0.08;0.14)***	(0.00;0.01)***	(-0.89;-0.88)***
Inv. Pareto-Burr	4	-	1.10	-	-	-	-
		(0.20;0.22)***	(1.10;1.10)	(-0.21;-0.19)***	(0.19;0.21)***	(0.02;0.11)***	(-1.00;-0.90)***
Inv. Pareto-Burr-Pareto	5	-	1.10	-	-	-	-
		(0.20;0.22)***	(1.10;1.10)	(-0.21;-0.19)***	(0.19;0.20)***	(0.02;0.11)***	(-1.00;-0.90)***
Inv. Pareto-Fréchet	3	-	1.10	-	-	-	-
		(0.22;0.22)***	(1.10;1.10)	(-0.14;-0.08)***	(0.08;0.14)**	(0.00;0.01)***	(-0.89;-0.88)***
Inv. Pareto-Fréchet-Pareto	4	-	1.10	-	-	-	-
		(0.21;0.22)***	(1.10;1.10)	(-0.19; -0.18)	(0.18;0.19)**	(0.01;0.07)***	(-0.96;-0.89)***
Inv. Pareto-Lognormal-Pareto	4	-	1.10	-	-	-	-
		(0.21;0.22)***	(1.10;1.10)	(-0.20;-0.18)	(0.18;0.20)***	(0.01;0.08)***	(-0.97;-0.89)***
Inv. Pareto-Weibull-Pareto	4	-	1.10	-	-	-	-
		(0.21;0.22)***	(1.10;1.10)	(-0.18;-0.16)**	(0.16;0.18)	(0.00;0.05)***	(-0.93;-0.88)***
Weibull-Pareto	3	-	1.10	-	-	-	-
		(0.21;0.22)***	(1.10;1.10)	(-0.18;-0.16)**	(0.16;0.18)	(0.00;0.05)***	(-0.93;-0.88)***

Notes: Values between parentheses report the 5th and 95th quantile of the parametric bootstrapped statistics with 999 replications. ***, **, * indicate the rejection of a significant overlap of the parametric bootstrapped statistic with the empirical statistic at 1%, 5% and 10% respectively.

Appendix B Motivation and identification of generative processes for mixture models

FMMs can be utilized in two ways. First, they can be used as a semi-parametric, flexible approximation of the overall distribution, which is the case in this paper. Second, they are model-based clustering methods when a certain distribution is imposed (Fop et al., 2018; Grün, 2018). While both applications rely on the idea that discrete subpopulations define the overall distribution, the semi-parametric approximation does not claim to identify these subpopulations. In this appendix, we conceptualize possible Data Generative Processes (DGPs) for FMMs based on theoretical and empirical work in the economics literature. We then elaborate on the identification difficulties/opportunities of the underlying mixture components in the context of productivity distributions.

B.1 Generative processes

Many economic models rely on the assumption that the firm size distribution originates from firm dynamics in productivity (see for instance Hopenhayn (1992); Luttmer (2007); Rossi-Hansberg and Wright (2007); Costantini and Melitz (2008); Arkolakis (2016)). In this section, we will use a simplified version of such productivity dynamics for explanatory purposes. Consider productivity dynamics specified as a first-order autoregressive process:

$$ln\omega_{bt} = c + \rho ln\omega_{bt-1} + \eta_{bt},\tag{1}$$

where η_{bt} is a white noise process with zero mean and constant variance σ^2 .

There exists empirical evidence arguing that productivity dynamics, and therefore the resulting productivity distributions, are endogenous to exporting (De Loecker, 2013), importing (Kasahara and Rodrigue, 2008), innovation (Aw et al., 2011), management practices (Bloom and Reenen, 2011; Caliendo et al., 2020), ... Overall, there are "many sources of heterogeneity that support the idea of discrete subpopulations likely to differ in important characteristics ..." (Perline (2005),p.80). In the case of exporting, the endogenous evolution of productivity results in an exporting productivity premium. This can empirically be observed from the standard textbook comparison of cross-sectional productivity densities between exporting and non-exporting firms (see Figure 5). Building on equation 1, a simplified version of the empirical specification to identify such exporting productivity premium, and replicate Figure 5, is essentially a specifically parametrized FMM:

$$ln\omega_{bt} = \alpha_0 + \beta_0 EXP_b + \alpha_1 ln\omega_{bt-1} + \beta_1 EXP_b \times ln\omega_{bt-1} + \eta_{bt}$$

= $EXP_b \left[\beta_0 + \beta_1 ln\omega_{bt-1}\right] + \left(1 - EXP_b\right) \left[\alpha_0 + \alpha_1 ln\omega_{bt-1}\right] + \eta_{bt},$ (2)

with EXP_b a dummy variable that takes the value 1 when the firm b is an exporter and 0 otherwise.

Whereas the components are identified by means of an exporter dummy variable in this example, FMMs are a semi-parametric specification that remain agnostic about the (possibly multiple) determinants of the unobserved components and allow the data to determine these components:¹

$$ln\omega_{bt} = \sum_{i=1}^{I} \mathbb{I}_b^i \left[\beta_0^i + \beta_1^i ln\omega_{bt-1} \right] + \eta_{bt}. \tag{3}$$

¹Note that, for simplicity, we specify the variance to be constant between components. FMMs in the main analysis allow for the variance to differ between components.

Figure 5: Productivity density of Portuguese firm productivity in 2006 for all, exporting- and non-exporting firms.

Notes: Productivity is measured as domestic sales (relative to the mean) to the power of $1/(\sigma - 1)$ with σ , the elasticity of substitution between varieties, set to four.

B.2 Identification

As stated before, the use of FMM's can focus on the semi-parametric, flexible approximation of the overall distribution or on model-based clustering. This paper purely focuses on the semi-parametric approximation, with good reason. First, we take no à-priori stance on distributional specification.² Second, even if one is willing to assume distributional specification such as the Lognormal, the underlying components remain unidentifiable in the current setting. As the overall distribution is unimodal (see Figure 5), there is a large overlap between the underlying individual densities. These individual densities will therefore be poorly identified. Indeed, Figure 6 displays the posterior probability distribution for each component of the fitted 4-component Lognormal mixture from the main text. Whereas well-identified components have a large weight near zero and 1, average probabilities lie close to 0.25 in our case, and are therefore not well-identified. While the overall distribution can be closely approximated, the large overlap of individual densities results in a large uncertainty on which observation can be assigned to which density. Neither the parameter estimates used to characterize the clusters nor the partitions derived can therefore be uniquely determined, rendering the interpretation of results in terms of clustering futile (Follmann and Lambert, 1991; Hennig, 2000; Grün, 2018; Grün and Leisch, 2008).

²The empirical evidence in this paper seems to favor a Lognormal specification. This can be motivated from two perspectives. From the perspective of overall fit, a mixture of (log-) normal distributions with sufficient components is assumed to be able to approach all distributions (McLachlan and Peel, 2000). From a generative perspective for individual components, the Lognormal distribution is the realization of applying the Central Limit Theorem (CLT) in the log domain: firm heterogeneity will approximately be Lognormal if it is the multiplicative product of many independent random variables. Whereas firm heterogeneity reduces to firm-level productivity in the Melitz (2003)-model, it has been argued to be multi-dimensional when taking into consideration for instance the product dimension (Bernard et al., 2009) or uncertainty in demand and/or supply (see (De Loecker, 2011; Bas et al., 2017; Sager and Timoshenko, 2019; Gandhi et al., 0))

Figure 6: Posterior probability distribution for each component of the 4-components Lognormal mixture.

Future research might resolve the identifiability problem relying on panel rather than cross-sectional data. The problem as specified now is a problem in levels (the cross-section), where it appears there is insufficient distance between different components for them to be identified. From empirical evidence, however, it can be deduced that the different components likely originate from differences in growth rates (Kasahara and Rodrigue, 2008; Aw et al., 2011; De Loecker, 2013; Caliendo et al., 2020). Tracking the growth rates of individual firms over time might allow for the variation needed to identify the components of the overall distribution.

This observation can be easily illustrated using simulated data. Building on the example of the previous paragraph, imagine $ln\omega_{bt}$ follows an AR(1)-process with an exporting productivity premium of 20%:

$$ln\omega_{bt} = 1 + 1.2 \times EXP_b + 0.7 \times ln\omega_{bt-1} + \eta_{bt},$$

with $\eta_{bt} \sim \mathcal{N}(0, 0.3)$. We simulate this evolution for 200 exporters $(EXP_b = 1)$ and 800 purely domestic businesses over 10 years.³ The firm densities of the simulated data will look similar to Figure 5, with two densities largely overlapping but the exporter productivity density located on the right of domestic firms density.

If we fit, as in our main analysis, a FMM on the cross-sectional data of a selected (the first) year, we obtain a familiar posterior probability distribution (see Figure 7). Individual clusters are not well-identified. Exploiting the panel dimension of the data,⁴ however, results in well-identified

$$\pi_{bi}^{(s)} = E\left[z_{bi}|\omega_b, \mathbf{\Psi}^{(s-1)}\right] = \frac{\pi_i^{(s-1)} m_i(\omega_b|\boldsymbol{\theta}_i^{(s-1)})}{\sum_{i=1}^{I} \pi_i^{(s-1)} m_i(\omega_b|\boldsymbol{\theta}_i^{(s-1)})}.$$

When working with panel data, we adapt this specification to take into account the time dimension:

$$\pi_{bi}^{(s)} = E\left[z_{bi}|\omega_{bt}, \mathbf{\Psi}^{(s-1)}\right] = \frac{\pi_{i}^{(s-1)} \prod_{t=1}^{T} m_{it}(\omega_{bt}|\boldsymbol{\theta}_{i}^{(s-1)})}{\sum_{i=1}^{I} \pi_{i}^{(s-1)} \prod_{t=1}^{T} m_{it}(\omega_{bt}|\boldsymbol{\theta}_{i}^{(s-1)})}.$$

Note that the probabilities are specified to be constant over time, meaning that we do not allow for regime switching

³When simulating, we allow for a run-in period of 90 years.

⁴Specifically, the EM estimation procedure is adapted to take into account panel data. The component probabilities in our main analysis are specified over the complete data (eq. 9):

components. As can be observed in Figure 8, the posterior probabilities predominantly take the values zero or one. Once components are well-identified, one can try to determine which mechanisms motivate the existence of FMMs from a generative perspective.

Figure 7: Cross-sectional posterior probability distribution for each component of the simulated 2-components normal mixture.

Figure 8: *Panel* posterior probability distribution for each component of the simulated 2-components normal mixture.

in this exercise.

Appendix C Heterogeneous firms model

This appendix provides a detailed description of the heterogeneous firms models relied upon in the paper. We follow (Dewitte, 2020) in presenting a firm heterogeneous open economy model of Melitz (2003) with a finite number of firms. The model features Constant Elasticity of Substitution (CES)-demand and monopolistic competition between a finite number of firms who ignore their aggregate impact (Dixit and Stiglitz, 1977; Krugman, 1980; di Giovanni and Levchenko, 2012), while remaining agnostic on the parametric specification of firm-level heterogeneity. For the number of firms going to infinity, the model is equivalent to the Melitz (2003)- model.

C.1 Setup

Demand Consumer preferences in country $j \in J$ are defined over a finite number of horizontally differentiated varieties $(\varpi \in \Omega^i)$ originating from country $i \in I$ and are assumed to take the Constant Elasticity of Substitution (CES) utility (U) form

$$U^{j} = \left(\sum_{i=1}^{I} \sum_{\varpi \in \Omega^{i}} q^{ij} \left(\varpi\right)^{\frac{\sigma-1}{\sigma}} d\varpi\right)^{\frac{\sigma}{\sigma-1}}, \tag{4}$$

with σ the elasticity of substitution between varieties. Utility maximization defines the optimal consumption and expenditure decisions over the individual varieties

$$\frac{q^{ij}(\varpi)}{Q^j} = \left[\frac{p^{ij}(\varpi)}{P^j}\right]^{-\sigma},\tag{5}$$

where the set of varieties consumed is considered as an aggregate good $Q \equiv U$ and P is the CES aggregate price index.

Supply There is a finite number of businesses $(b \in B)$ which choose to supply a distinct horizontally-differentiated variety. They are heterogeneous in terms of their productivity $\omega_b \in [0, \infty]$ drawn from the unconditional Cumulative Distribution Function (CDF) $G(\omega_b)$ after paying a fixed cost f^{ie} in terms of production factor L^i to enter the market.⁵ There is zero probability of firm death.⁶ Supply of the production factor to the individual firm is perfectly elastic, so that firms are effectively price (W^i) takers on the input markets. Once active, firms from country i have to pay a fixed cost f^{ij} to produce goods destined for country j. The cost function of the firm involves a fixed production cost, iceberg trade costs $\tau^{ij} > 1$ and a constant marginal costs that depends on its productivity: $f^{ij} + \left(\frac{\tau^{ij}q^{ij}}{\omega}\right)W^i$. Profit maximization of the firm, then:

$$\max_{q^{ij}} \pi^{ij} = \max_{q^{ij}} \left[p^{ij} q^{ij} - \left(f^{ij} - \frac{\tau^{ij} q^{ij}}{\omega} \right) W^i \right]
= \max_{q^{ij}} \left[\left(q^{ij} \right)^{\frac{\sigma - 1}{\sigma}} \left(Q^j \right)^{\frac{1}{\sigma}} P^j - \left(f^{ij} - \frac{\tau^{ij} q^{ij}}{\omega} \right) W^i \right],$$
(6)

 $^{^{-5}}$ As ω_b is the sole heterogeneity component identifying individual firms, we drop the subscript b in further derivations.

⁶The static specification in which there is zero probability of firm death follows most of the international trade literature.

results in an optimal quantity produced:

$$\frac{\partial \pi^{ij}}{\partial q^{ij}} = 0$$

$$\Leftrightarrow \frac{\sigma - 1}{\sigma} (q^{ij})^{-\frac{1}{\sigma}} (Q^{j})^{\frac{1}{\sigma}} P^{j} = \frac{\tau^{ij} W^{i}}{\omega}$$

$$\Leftrightarrow q^{ij} = \left(\frac{\sigma}{\sigma - 1} \frac{\tau^{ij} W^{i}}{\omega}\right)^{-\sigma} Q^{j} (P^{j})^{\sigma}.$$
(7)

and an equilibrium price as a constant markup over marginal costs $p^{ij} = \frac{\sigma}{\sigma-1} \frac{\tau^{ij} W^i}{\omega}$:

$$\left(\frac{q^{ij}}{(Q^j)}\right)^{\frac{-1}{\sigma}} P^j = p^{ij}$$

$$p^{ij} = \frac{\sigma}{\sigma - 1} \frac{\tau^{ij} W^i}{\omega}.$$
(8)

The realized revenue expression for firms from country i selling in destination j at time t can then be expressed as:

$$x^{ij} = p^{ij}q^{ij} = (q^{ij})^{\frac{\sigma-1}{\sigma}} (Q^j)^{\frac{1}{\sigma}} P^j$$

$$= \left(\frac{\sigma}{\sigma - 1} \frac{\tau^{ij}W^i}{\omega}\right)^{1-\sigma} Q^j (P^j)^{\sigma}$$
(9)

C.2 Operating decisions

In line with (Dixit and Stiglitz, 1977; Krugman, 1980; di Giovanni and Levchenko, 2012), we assume that the marginal firm ignores the impact its own production level on the aggregate economy. The necessary productivity levels for serving each market are then determined by the zero cutoff profit conditions.

$$\pi^{ij} = 0 = p^{ij}q^{ij} - \left(f^{ij} - \frac{\tau^{ij}q^{ij}}{\omega^{ij*}}\right)W^{i},$$

$$= \left(\frac{\sigma}{\sigma - 1} \frac{\tau^{ij}W^{i}}{\omega^{ij*}}\right)^{1-\sigma} Q^{j} \left(P^{j}\right)^{\sigma} - f^{ij}W^{i} - \left(\frac{\sigma}{\sigma - 1} \frac{\tau^{ij}W^{i}}{\omega^{ij*}}\right)^{-\sigma} Q^{j} \left(P^{j}\right)^{\sigma} \frac{\tau^{ij}}{\omega^{ij*}}W^{i},$$

$$= \left(\frac{\sigma}{\sigma - 1} \frac{\tau^{ij}W^{i}}{\omega^{ij*}}\right)^{1-\sigma} Q^{j} \left(P^{j}\right)^{\sigma} - f^{ij}W^{i} - \left(\frac{\sigma}{\sigma - 1}\right)^{-\sigma} \left(\frac{\tau^{ij}W^{i}}{\omega^{ij*}}\right)^{1-\sigma} Q^{j} \left(P^{j}\right)^{\sigma},$$

$$= \left(1 - \frac{\sigma - 1}{\sigma}\right) \left(\frac{\sigma}{\sigma - 1} \frac{\tau^{ij}W^{i}}{\omega^{ij*}}\right)^{1-\sigma} Q^{j} \left(P^{j}\right)^{\sigma} - f^{ij}W^{i},$$

$$\Leftrightarrow$$

$$\sigma f^{ij}W^{i} = \left(\frac{\sigma}{\sigma - 1} \frac{\tau^{ij}W^{i}}{\omega^{ij*}}\right)^{1-\sigma} Q^{j} \left(P^{j}\right)^{\sigma}.$$

$$(10)$$

Combining the zero cutoff profit conditions allows us to write the export cutoff as a function of a foreign domestic productivity cutoff, variable and fixed costs and the wages:

$$\omega^{ij*} = \left(\frac{W^i}{W^j}\right)^{\frac{\sigma}{\sigma-1}} \left(\frac{f^{ij}}{f^{jj}}\right)^{\frac{1}{\sigma-1}} \left(\frac{\tau^{ij}}{\tau^{jj}}\right) \omega^{jj*}.$$
 (11)

Similarly, we can combine the zero cutoff profit conditions from a single origin country, linking the domestic and export productivity cutoffs:

$$\omega^{ij*} = \frac{\tau^{ij}}{\tau^{ii}} \left(\frac{P^j}{P^i}\right)^{\frac{\sigma}{1-\sigma}} \left(\frac{Q^i}{Q^j} \frac{f^{ij}}{f^{ii}}\right)^{\frac{1}{\sigma-1}} \omega^{ii*}.$$
 (12)

In this paper, we focus on parameter values such that there is, in line with empirical evidence, selection into exporting $(\omega^{ij*} > \omega^{ii*})$. This implies

- A large fixed cost of exporting relative to the fixed cost of production. The revenue required
 to cover the fixed export cost is then large relative to the revenue required to cover the fixed
 production cost, implying that only firms of high productivity find it profitable to serve both
 markets.
- A high home price index relative to the foreign price index, and a large home market relative to the foreign market. Only high productivity firms receive enough revenue in the relatively small and competitive foreign market to cover the fixed cost of exporting.
- Variable trade costs increase the exporting productivity cutoff relative to the zero-profit productivity cutoff by increasing prices and reducing revenue in the export market.

The equilibrium value of these cutoffs are uniquely determined by the free entry condition, requiring the probability of successful entry times the expected future value of entry conditional upon successful entry to equal the sunk entry cost:

$$\sum_{j=1}^{J} \mathbb{E} \left[\pi^{ij} | \omega > \omega^{ij*} \right] = f^{ie} W^{i}$$

$$\sum_{j=1}^{J} \frac{1}{B} \sum_{b=1}^{B} \mathbb{I} \left(\omega > \omega^{ij*} \right) \pi^{ij} = f^{ie} W^{i}$$

$$\sum_{j=1}^{J} \frac{1}{B} \sum_{b=1}^{B} \mathbb{I} \left(\omega > \omega^{ij*} \right) \left[\frac{1}{\sigma} \left(\frac{\sigma}{\sigma - 1} \frac{\tau^{ij} W^{i}}{\omega} \right)^{1 - \sigma} Q^{j} \left(P^{j} \right)^{\sigma} - f^{ij} W^{i} \right] = f^{ie} W^{i}$$

$$\sum_{j=1}^{J} f^{ij} W^{i} \frac{1}{B} \sum_{b=1}^{B} \mathbb{I} \left(\omega > \omega^{ij*} \right) \left[\left(\frac{\omega}{\omega^{ij*}} \right)^{\sigma - 1} - 1 \right] = f^{ie} W^{i}$$

$$\sum_{j=1}^{J} f^{ij} \left[\left(\omega^{ij*} \right)^{1 - \sigma} \frac{1}{B} \sum_{b=1}^{B} \mathbb{I} \left(\omega > \omega^{ij*} \right) \omega^{\sigma - 1} - \frac{1}{B} \sum_{b=1}^{B} \mathbb{I} \left(\omega > \omega^{ij*} \right) \omega^{0} \right] = f^{ie}$$

$$\sum_{j=1}^{J} f^{ij} \left[\left(\omega^{ij*} \right)^{1 - \sigma} m_{\omega^{ij*}}^{\sigma - 1} - m_{\omega^{ij*}}^{0} \right] = f^{ie}, \tag{13}$$

where we denote by m_y^r the y-bounded, r-th sample moment of the productivity distribution. For the number of firms going to infinity, the law of large numbers kicks in such that we replace these sample moments with their continuous equivalent $\left(\mu^r(y) = \int_y^\infty \omega^r g(\omega) d\omega\right)$, providing us with the well-known continuous free-entry equation as specified by (Melitz, 2003).

Using the relation between productivity cutoffs (eq. 11), the free entry condition (eq. 13) determines a unique equilibrium values of these cutoffs.⁷ Thus, a parametrization of the Melitz (2003)-model in relation to firm heterogeneity relies solely on the bounded (by the respective productivity cutoffs) 0th and $(\sigma - 1)$ th moments of the productivity distribution (Nigai, 2017; Dewitte, 2020).

C.3 Aggregation

Summing equation 9 across all active firms, we obtain an expression for aggregate trade between country i and j:

$$X^{ij} = \left(\frac{\sigma}{\sigma - 1} \tau^{ij} W^i\right)^{1 - \sigma} Q^j \left(P^j\right)^{\sigma} M^{ie} m_{\omega^{ij*}}^{\sigma - 1} \tag{14}$$

The number of successful entrants $\left[1-G(\omega^{ii*})\right]M^{ie}$ is specified as the ratio of aggregate over average revenue:

$$M^{i} = \left[1 - G(\omega^{ii*})\right] M^{ie} = \frac{X^{i}}{\mathbb{E}\left[x^{i}\right]}.$$
 (15)

⁷Sufficient conditions for this equilibrium to exist are that the term in brackets of equation (13) is (i) finite and (ii) a decreasing function of the cutoffs (Melitz, 2003, p.1704). The second condition corresponds to $\frac{g(x)x}{1-G(x)}$ increasing to infinity on $(0, \infty)$.

We can rewrite this number of firms, using the free entry condition, goods and labor market clearing $(X^i = W^i L^i)$, as a function of exogenous variables:

$$M^{i} = \frac{W^{i}L^{i}}{\sigma\left(\frac{f^{ie}}{1 - G(\omega^{ii*})} + \sum_{j=1}^{J} \frac{1 - G(\omega^{ij*})}{1 - G(\omega^{ii*})} f^{ij}\right) W^{i}}$$
$$= \frac{L^{i}}{\sigma\left(\frac{f^{ie}}{1 - G(\omega^{ii*})} + \sum_{j=1}^{J} \frac{1 - G(\omega^{ij*})}{1 - G(\omega^{ii*})} f^{ij}\right)}.$$
 (16)

Assuming a two-country symmetric economy and setting the wage of the composite factor as the numeraire, welfare can be calculated as the inverse of the price index

$$\mathbb{W}^i = (P^i)^{-1}. \tag{17}$$

The price index can be deduced from equation 14:

$$P^{j} = \left[\left(\frac{\sigma}{\sigma - 1} \tau^{ij} W^{i} \right)^{1 - \sigma} \frac{1}{\lambda_{ij}} \frac{M^{i}}{1 - G(\omega^{ii*})} m_{\omega^{ij*}}^{\sigma - 1} \right]^{\frac{1}{1 - \sigma}}, \tag{18}$$

where we denote the bilateral trade share by $\lambda^{ij} = \frac{X^{ij}}{X^j}$.

The percentage changes in welfare from a change in variable trade costs $(\tau \to \tau')$ can then written as:

$$100 \times \ln \frac{(\mathbb{W}^{i})'}{\mathbb{W}^{i}} = 100 \times -\ln \frac{(P^{i})'}{P^{i}}$$

$$= 100 \times -\ln \frac{(P^{j})'}{P^{j}}$$

$$= 100 \times -\left[\ln \frac{(\tau^{ij})'}{(\tau^{ij})} - \frac{1}{\sigma - 1} \left(\ln \frac{(M^{i})'}{M^{i}} - \ln \frac{1 - G(\omega^{ii*})'}{1 - G(\omega^{ii*})'} + \ln \frac{(m_{\omega^{ij*}}^{\sigma - 1})'}{m_{\omega^{ij*}}^{\sigma - 1}} - \ln \frac{(\lambda^{ij})'}{\lambda^{ij}}\right)\right]$$

$$= 100 \times -\left[\ln \frac{(\tau^{ij})'}{(\tau^{ij})} - \frac{1}{\sigma - 1} \left(\ln \frac{(M^{i})'}{M^{i}} - \ln \frac{(m_{\omega^{ij*}}^{0})'}{m_{\omega^{ij*}}^{0}} + \ln \frac{(m_{\omega^{ij*}}^{\sigma - 1})'}{m_{\omega^{ij*}}^{\sigma - 1}} - \ln \frac{(\lambda^{ij})'}{\lambda^{ij}}\right)\right].$$

C.4 Parametrization

In order to parametrize the previously described model, we need to parametrize two statistics related to the productivity distribution: the 0th and $(\sigma - 1)$ the y-bounded moments of the productivity distribution (Nigai, 2017). As described in (Dewitte, 2020), this corresponds to the 0th and 1st y-bounded moments of the sales distribution if the parametric distribution is stable under power-law transformations.

Assuming a parametric distribution and under the assumption of an *infinite* number of firms, we can calculate the necessary analytical expressions using the distributional parameters from our empirical analysis to capture heterogeneity. This is the standard approach in the literature. Following (Nigai, 2017; Dewitte, 2020), we can also capture heterogeneity directly from the empirical,

finite, data. To allow comparison between GFT obtained assuming a parametric distribution and GFT obtained from the finite data, we perform a parametric bootstrap. This parametric bootstrap generates a range of finite sample estimates under the hypothesis that the observed data is generated by a certain parametric distribution (Dewitte, 2020).

C.4.1 Continuum of firms

When there are an infinite number of firms, the parametrization of the heterogeneity distribution consists of calculating the y-bounded 0th and 1st population moments of the sales distribution:

$$\mu_y^r = \int_y^\infty x^r g(x) dx. \tag{20}$$

The analytical expressions of these parametric implied population moments are gathered in Table 4 and 5 for all distributions considered. As bounded moments are not generally available, the mathematical elaboration on how to obtain these expressions can be found in the section D.

C.4.2 Finite number of firms

Under the assumption of a finite number of firms in the economy, the parametrization of the model consists of calculating the y-bounded 0th and 1st moment of the sales distribution:

$$m_y^r = \frac{1}{B} \sum_{b=1}^B \mathbb{I}(x > y) x^r.$$
 (21)

These moments can easily be retrieved if the data is available. To allow comparison between GFT obtained assuming a parametric distribution and GFT obtained from the finite data, we perform a parametric bootstrap. This parametric bootstrap generates a range of finite sample estimates under the hypothesis that the observed data is generated by a certain parametric distribution:

- 1. Assume B i.i.d. random variables with distribution $G(\cdot|\boldsymbol{\theta})$, with empirical finite sample moments m_{u}^{r} for r=0,1, as specified in equation 21 and corresponding GFT_{B} ;
- 2. Estimate the parameters $\boldsymbol{\theta}$ of the distribution using MLE, calculate the parametric plugin population moments as specified in equation 20, $\hat{\mu}^r(y|\hat{\boldsymbol{\theta}})$ for r=0,1, and corresponding $G\hat{F}T(\hat{\boldsymbol{\theta}})$;
- 3. $H_0: GFT = G\hat{F}T(\hat{\boldsymbol{\theta}});$
- 4. Draw N bootstrap samples of size B from $G(\cdot|\hat{\boldsymbol{\theta}})$;
- 5. For each sample of the parametric distribution, calculate the bootstrapped sample moments $(m_n^r)^*$ and calculate the corresponding GFT_B^* .

⁸Note that we do not re-fit the parametric distribution to the bootstrap sample. The vastness of the dataset at our availability in the empirical section results both in a large computational burden but also a very precise estimation of the distribution parameters. The influence of not refitting the parametric distribution to the bootstrap sample is therefore negligent.

6. The p-value for the left-, and right-tailed test is then respectively specified as:

$$\hat{p}_{l} = \frac{1}{N+1} \left[\sum_{n=1}^{N} \mathbb{I} \left(GFT_{B}^{*} \ge GFT_{B} \right) + 1 \right]; \qquad \hat{p}_{r} = \frac{1}{N+1} \left[\sum_{n=1}^{N} \mathbb{I} \left(GFT_{B}^{*} \le GFT_{B} \right) + 1 \right].$$
(22)

The bootstrap exercise should therefore be interpreted as 'the likelihood of observing GFT as small or as large as GFT_B under the null hypothesis that the observed data originates from the parametric distribution $G(\cdot|\boldsymbol{\theta})$ ', allowing us to evaluate whether the distributional assumption provides a good fit to calculate GFT within the proposed model.

When calculating the bounded sample moments, complications can arise related to the lower bound y. This lower bound is ex ante unknown, can take values not observed in the data and/or resides in an unrepresentative part of the finite dataset. We address each issue below and argue that these complications have little influence on our results.

- 1. y can take values within the boundaries of the data but are not observed. We use the 'approxfun' interpolation function of the R base distribution to approximate the statistics for such lower bounds. As the calculation of Gains From Trade (GFT) relies on domestic cutoffs residing in the dense part of the productivity distribution, the influence of interpolation is negligible.
- 2. y can take values below the lowest observed value in the data $(y < x_{min})$:

$$\mu_y^r = \underbrace{\sum \mathbb{I}\left(y < x < x_{min}\right)x^r}_{\text{unobserved}} + \underbrace{\frac{1}{B}\sum_{b=1}^B \mathbb{I}\left(x \ge x_{min}\right)x^r}_{observed}.$$
 (23)

The error arising from neglecting the unobserved part of the distribution is likely small as (i) the smallest observation x_{min} in our dataset is rather small, (ii) the density in the unobserved part is most likely very low and (iii) the relative weight of the observations in the unobserved part is small (see also Figure 1).

3. As the presented model is a stylized model, it is conceivable firms produce below the model's implied zero-profit productivity cutoff, for instance when there is a positive expectation of future profits (Impullitti et al., 2013). This can explain very low observed productivity values, but will result in an unrepresentative left tail of the distribution (the lower the actual zero-profit productivity cutoff, the more firms will have a positive expectation of future profits and the denser the left tail of the distribution will be). This issue affects both the nonparametric and parametric estimates, as the parametric distribution is fitted to the observed distribution. Also in this case, however, provided the low density in the left tail of the distribution and the low relative weight of the observations in the left tail, the influence of this issue is likely small.

⁹We thank Gonzague Vannoorenberghe for pointing this out.

¹⁰All code available on request.

Appendix D Analytical expressions of μ_y^r

D.1 Pareto

$$\mu_y^r = \int_y^\infty x^r \frac{kx_{min}^k}{x^{k+1}} dx$$

$$= kx_{min}^k \frac{-y^{r-k}}{r-k} \quad \text{if } k > r$$
(24)

D.2 Inverse Pareto

$$\mu_y^r = \int_y^{x_{max}} x^r \frac{kx_{max}^{-k}}{x^{-k+1}} dx$$

$$= kx_{max}^{-k} \frac{x_{max}^{r+k} - y^{r+k}}{r+k}$$
(25)

D.3 Lognormal

$$\mu_y^r = \int_y^\infty x^r \frac{1}{x V a r \sqrt{2\pi}} e^{-(lnx-\mu)^2/2V a r^2} dx$$

$$= \int_y^\infty e^{r lnx} \frac{1}{x V a r \sqrt{2\pi}} e^{-(lnx-\mu)^2/2V a r^2} dx$$
(26)

Note that

$$rlnx - (lnx - \mu)^{2} / 2Var^{2} = \frac{2Var^{2}rlnx - (lnx)^{2} - \mu^{2} + 2\mu lnx}{2Var^{2}}$$

$$= -\frac{(lnx)^{2} - 2(Var^{2}r + \mu)lnx + ((Var^{2}r + \mu))^{2} - (Var^{2}r + \mu)^{2} + \mu^{2}}{2Var^{2}}$$

$$= -\frac{\left[lnx - (Var^{2}r + \mu)\right]^{2}}{2Var^{2}} + \frac{(Var^{2}r + \mu)^{2} - \mu^{2}}{2Var^{2}}$$

$$= -\frac{\left[lnx - (Var^{2}r + \mu)\right]^{2}}{2Var^{2}} + \frac{r(rVar^{2} + 2\mu)}{2}$$

so that

$$\mu_{y}^{r} = e^{\frac{r(rVar^{2}+2\mu)}{2}} \int_{y}^{\infty} \frac{1}{xVar\sqrt{2\pi}} e^{-\frac{\left[\ln x - \left(Var^{2}r + \mu\right)\right]^{2}}{2Var^{2}}} dx$$

$$\det z = \frac{\ln x - \left(rVar^{2} + \mu\right)}{Var}, \ dz = \frac{dx}{xVar}$$

$$= e^{\frac{r(rVar^{2}+2\mu)}{2}} \int_{\frac{\ln y - \left(rVar^{2} + \mu\right)}{Var}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^{2}} dx$$

$$= e^{\frac{r(rVar^{2}+2\mu)}{2}} \left[1 - \Phi\left(\frac{\ln y - \left(rVar^{2} + \mu\right)}{Var}\right)\right]$$
(27)

D.4 Weibull¹¹

$$\mu_y^r = \int_y^\infty x^r \frac{k}{s} \left(\frac{x}{s}\right)^{k-1} e^{-\left(\frac{x}{s}\right)^k} dx$$

$$\det z = \left(\frac{x}{s}\right)^k, dz = \frac{k}{s} \left(\frac{x}{s}\right)^{k-1} dx$$

$$\text{s.t. } x = sz^{\frac{1}{k}}$$

$$= \int_{\left(\frac{y}{s}\right)^k}^\infty s^r z^{\frac{r}{k}} e^{-z} dz$$

$$= s^r \int_{\left(\frac{y}{s}\right)^k}^\infty z^{\left(\frac{r}{k}+1\right)-1} e^{-z} dz$$

$$= s^r \Gamma\left(\frac{r}{k} + 1, \left(\frac{y}{s}\right)^k\right)$$
(28)

where $\Gamma(,)$ denotes the upper incomplete gamma function.

D.5 Fréchet

$$\mu_y^r = \int_y^\infty x^r \frac{k}{s} \left(\frac{x}{s}\right)^{-1-k} e^{-\left(\frac{x}{s}\right)^{-k}} dx$$

$$\det z = \left(\frac{x}{s}\right)^{-k}, dz = \frac{-k}{s} \left(\frac{x}{s}\right)^{-k-1} dx$$

$$\text{s.t. } x = sz^{-\frac{1}{k}}$$

$$= -\int_{\left(\frac{y}{s}\right)^{-k}}^0 s^r z^{-\frac{r}{k}} e^{-z} dz, \quad \text{if } k > 0$$

$$= \int_0^{\left(\frac{y}{s}\right)^{-k}} s^r z^{-\frac{r}{k}} e^{-z} dz$$

$$= s^r \int_0^{\left(\frac{y}{s}\right)^{-k}} z^{1-\left(\frac{r}{k}\right)-1} e^{-z} dz$$

$$= s^r \left[1 - \Gamma\left(1 - \frac{r}{k}, \left(\frac{y}{s}\right)^{-k}\right)\right] \quad \text{if } k > r$$

$$(29)$$

 $^{^{11}}$ The bounded moments of the exponential distribution are obtained setting k=1.

D.6 Burr

$$\begin{split} \mu_y^r &= \int_y^\infty x^r \frac{\frac{k}{s} \left(\frac{x}{s}\right)^{c-1}}{\left(1 + \left(\frac{x}{s}\right)^c\right)^{k+1}} dx \\ &\text{let } z = \left(\frac{x}{s}\right)^c, dz = \frac{c}{s} \left(\frac{x}{s}\right)^{c-1} dx \\ &\text{s.t. } x = sz^{\frac{1}{c}} \\ &= \int_{\left(\frac{x}{s}\right)^c}^\infty s^r z^{\frac{r}{c}} \frac{k}{(1+z)^{k+1}} dz, \quad \text{if } c > 0 \\ &= s^r k \int_{\left(\frac{x}{s}\right)^c}^\infty z^{\frac{r}{c}+1} e^{-1} \frac{1}{(1+z)^{k+1}} dz \\ &= s^r k \int_{\left(\frac{x}{s}\right)^c}^\infty z^{\frac{r}{c}+1} e^{-1} \frac{1}{(1+z)^{k+1}} dz \\ &= s^r k \int_{\left(\frac{x}{s}\right)^c}^\infty z^{\frac{r}{c}+1} e^{-1} \frac{1}{(1+z)^{k+1}} dz \\ &= s^r k \left[\int_0^\infty z^{\frac{r}{c}+1} e^{-1} \frac{1}{(1+z)^{k+1}} dz - \int_0^{\left(\frac{x}{s}\right)^c} z^{\frac{r}{c}+1} e^{-1} \frac{1}{(1+z)^{k+1}} dz \right] \\ &= u = \frac{z}{1+z}, du = \frac{1}{(1+z)^2} \\ &z = \frac{u}{1-u} \\ &= s^r k \left[\int_0^1 \left(\frac{u}{1-u}\right)^{\left(\frac{r}{c}+1\right)-1} \frac{1}{\left(1+\frac{u}{1-u}\right)^{k-1}} du - \int_0^{\left(\frac{x}{s}\right)^c} \left(\frac{u}{1-u}\right)^{\left(\frac{r}{c}+1\right)-1} \frac{1}{\left(1+\frac{u}{1-u}\right)^{k-1}} du \right] \\ &= s^r k \left[\int_0^1 u^{\left(\frac{r}{c}+1\right)-1} (1-u)^{k-1-\left(\frac{r}{c}+1\right)+1} du - \int_0^{\left(\frac{x}{s}\right)^c} u^{\frac{r}{c}+1-1} du \right] \\ &= s^r k \left[\int_0^1 u^{\left(\frac{r}{c}+1\right)-1} (1-u)^{k-1-\left(\frac{r}{c}+1\right)+1} du - \int_0^{\left(\frac{x}{s}\right)^c} u^{\frac{r}{c}+1-1} du \right] \\ &= s^r k \left[\int_0^1 u^{\left(\frac{r}{c}+1\right)-1} (1-u)^{k-\left(\frac{r}{c}+1\right)} du - \int_0^{\left(\frac{r}{s}\right)^c} u^{\frac{r}{c}+1-1} (1-u)^{k-1-\left(\frac{r}{c}+1\right)+1} du \right] \\ &= s^r k \left[\int_0^1 u^{\left(\frac{r}{c}+1\right)-1} (1-u)^{k-\left(\frac{r}{c}+1\right)} du - \int_0^{\left(\frac{r}{s}\right)^c} u^{\frac{r}{c}+1-1} (1-u)^{k-1-\left(\frac{r}{c}+1\right)+1} du \right] \\ &= s^r k \left[\int_0^1 u^{\left(\frac{r}{c}+1\right)-1} (1-u)^{k-\left(\frac{r}{c}+1\right)} du - \int_0^{\left(\frac{r}{s}\right)^c} u^{\frac{r}{c}+1-1} (1-u)^{k-1-\left(\frac{r}{c}+1\right)+1} du \right] \\ &= s^r k \left[\int_0^1 u^{\left(\frac{r}{c}+1\right)-1} (1-u)^{k-\left(\frac{r}{c}+1\right)} du - \int_0^{\left(\frac{r}{s}\right)^c} u^{\frac{r}{c}+1-1} (1-u)^{k-\left(\frac{r}{c}+1\right)+1} du \right] \\ &= s^r k \left[\int_0^1 u^{\left(\frac{r}{c}+1\right)-1} (1-u)^{k-\left(\frac{r}{c}+1\right)} du - \int_0^{\left(\frac{r}{s}\right)^c} u^{\frac{r}{c}+1-1} du \right] \\ &= s^r k \left[\int_0^1 u^{\frac{r}{c}-1} du - \int_0^1 u$$

where B(a, b) stands for the beta function, while B(x, a, b) stands for the lower incomplete beta function with upper bound x.

D.7 Generalized Gamma¹²

$$\mu_y^r = \int_y^\infty x^r \frac{c}{s^k \Gamma(\frac{k}{c})} x^{k-1} e^{-\left(\frac{x}{s}\right)^c} dx$$

$$\det z = \left(\frac{x}{s}\right)^c, dz = \frac{c}{s} \left(\frac{x}{s}\right)^{c-1} dx$$

$$\text{s.t. } x = sz^{\frac{1}{c}}$$

$$= \int_{\left(\frac{y}{s}\right)^c}^\infty s^r \frac{z^{\frac{r}{c}}}{\Gamma(\frac{k}{c})} \left(\frac{sz^{\frac{1}{c}}}{s}\right)^{(k-1)-(c-1)} e^{-z} dz, \quad \text{if } c > 0$$

$$= \frac{s^r}{\Gamma(\frac{k}{c})} \int_{\left(\frac{y}{s}\right)^c}^\infty z^{\frac{r+k}{c}-1} e^{-z} dz$$

$$= \frac{s^r}{\Gamma(\frac{k}{c})} \Gamma\left(\frac{r+k}{c}, \left(\frac{y}{s}\right)^c\right)$$
(31)

D.8 Finite Mixture Model

The statistics for a Finite Mixture Model can easily be obtained from the calculated statistics for the underlying individual distributions on which the mixture consists. For a mixture of the form:

$$g(x|\Psi) = \sum_{i=1}^{I} \pi_i m_i(x|\theta_i), \qquad \pi_i \ge 0, \quad \sum_{i=1}^{I} \pi_i = 1,$$
 (32)

we obtain, due to its additivity and applying the sum rule in integration:

$$\mu_y^r = \int_y^\infty x^r g(x|\mathbf{\Psi}) dx = \int_y^\infty x^r \sum_{i=1}^I \pi_i m_i(x|\mathbf{\theta_i}) dx = \sum_{i=1}^I \pi_i \int_y^\infty x^r m_i(x) dx = \sum_{i=1}^I \pi_i (\mu_i)_y^r.$$
(33)

D.9 Piecewise composite

$$\mu_{y}^{r} = \int_{y}^{\infty} x^{r} g(x|\boldsymbol{\theta}) dx$$

$$= \begin{cases} \frac{\alpha_{1}}{1+\alpha_{1}+\alpha_{2}} \frac{(\mu_{1})_{y}^{r} - (\mu_{1})_{c_{1}}^{r}}{M_{1}(c_{1})} + \frac{1}{1+\alpha_{1}+\alpha_{2}} \frac{(\mu_{2})_{c_{1}}^{r} - (\mu_{2})_{c_{2}}^{r}}{M_{2}(c_{2}) - M_{2}(c_{1})} + \frac{\alpha_{2}}{1+\alpha_{1}+\alpha_{2}} \frac{(\mu_{3})_{y}^{r}}{1-M_{3}(c_{2})} & \text{if } 0 < y \leq c_{2} \\ \frac{1}{1+\alpha_{1}+\alpha_{2}} \frac{(\mu_{2})_{y}^{r} - (\mu_{2})_{c_{2}}^{r}}{M_{2}(c_{2}) - M_{2}(c_{1})} + \frac{\alpha_{2}}{1+\alpha_{1}+\alpha_{2}} \frac{(\mu_{3})_{c_{2}}^{r}}{1-M_{3}(c_{2})} & \text{if } c_{1} < y \leq c_{2} \\ \frac{\alpha_{2}}{1+\alpha_{1}+\alpha_{2}} \frac{(\mu_{3})_{y}^{r}}{1-M_{3}(c_{2})} & \text{if } c_{2} < y < \infty \end{cases}$$

$$(34)$$

 $^{^{12}}$ The bounded moments of the Gamma distribution are obtained setting c=1.

D.10 Right-Pareto Lognormal

$$\mu_{y}^{r} = \int_{y}^{\infty} x^{r} k_{2} x^{-k_{2}-1} e^{k_{2}\mu + \frac{k_{2}^{2} V a r^{2}}{2}} \Phi\left(\frac{\ln x - \mu - k_{2} V a r^{2}}{V a r}\right) dx$$

$$= k_{2} e^{k_{2}\mu + \frac{k_{2}^{2} V a r^{2}}{2}} \int_{y}^{\infty} x^{\sigma - k_{2} - 2} \Phi\left(\frac{\ln x - \mu - k_{2} V a r^{2}}{V a r}\right) dx$$

$$dv = x^{\sigma - k_{2} - 2} dx, v = \frac{x^{\sigma - k_{2} - 1}}{\sigma - k_{2} - 1}$$

$$u = \Phi\left(\frac{\ln x - \mu - k_{2} V a r^{2}}{V a r}\right), du = d\Phi\left(\frac{\ln x - \mu - k_{2} V a r^{2}}{V a r}\right)$$

$$= k_{2} e^{k_{2}\mu + \frac{k_{2}^{2} V a r^{2}}{2}} \left[\frac{x^{\sigma - k_{2} - 1}}{\sigma - k_{2} - 1} \Phi\left(\frac{\ln x - \mu - k_{2} V a r^{2}}{V a r}\right)\right]_{y}^{\infty}$$

$$- k_{2} e^{k_{2}\mu + \frac{k_{2}^{2} V a r^{2}}{2}} \int_{y}^{\infty} \frac{x^{\sigma - k_{2} - 1}}{\sigma - k_{2} - 1} \Phi\left(\frac{\ln x - \mu - k_{2} V a r^{2}}{V a r}\right)$$

$$= k_{2} e^{k_{2}\mu + \frac{k_{2}^{2} V a r^{2}}{2}} \left[0 - \frac{x_{ij^{*}}^{\sigma - k_{2} - 1}}{\sigma - k_{2} - 1} \Phi\left(\frac{\ln y - \mu - k_{2} V a r^{2}}{V a r}\right)\right]$$

$$- k_{2} e^{k_{2}\mu + \frac{k_{2}^{2} V a r^{2}}{2}} \int_{y}^{\infty} \frac{x^{\sigma - k_{2} - 1}}{\sigma - k_{2} - 1} \frac{1}{x V a r \sqrt{2\pi}} e^{-\frac{\left[\ln x - \mu - k_{2} V a r^{2}\right]^{2}}{2V a r^{2}}} dx \tag{35}$$

The last integral resembles the bounded moment condition of the Lognormal distribution solved earlier with moment $(r - k_2)$ and mean $(\mu + k_2 Var^2)$ so that

$$\mu_{y}^{r} = -k_{2}e^{k_{2}\mu + \frac{k_{2}^{2}Var^{2}}{2}} \frac{x_{ij^{*}}^{\sigma - k_{2} - 1}}{\sigma - k_{2} - 1} \Phi\left(\frac{\ln y - \mu - k_{2}Var^{2}}{Var}\right) - \frac{k_{2}e^{k_{2}\mu + \frac{k_{2}^{2}Var^{2}}{2}}}{r - k_{2}}e^{\frac{(r - k_{2})\left((r - k_{2})Var^{2} + 2(\mu + k_{2}Var^{2})\right)}{2}}\left[1 - \Phi\left(\frac{\ln y - \left((r - k_{2})Var^{2} - (\mu + k_{2}Var^{2})\right)}{Var}\right)\right]$$

$$(36)$$

Note that

$$e^{k_2\mu + \frac{k_2^2Var^2}{2} + \frac{(r-k_2)\left((r-k_2)Var^2 + 2(\mu + k_2Var^2)\right)}{2}}$$

$$e^{\frac{2k_2\mu + k_2^2Var^2 + (r-k_2)\left[rVar^2 + 2\mu + k_2Var^2\right]}{2}}$$

$$e^{\frac{2k_2\mu + k_2^2Var^2 + r^2Var^2 + 2\mu r + k_2rVar^2 - k_2rVar^2 - 2\mu k_2 + k_2^2Var^2}{2}}$$

$$e^{\frac{r^2Var^2 + 2\mu r}{2}}$$

so that we get

$$\mu_y^r = -k_2 e^{k_2 \mu + \frac{k_2^2 Var^2}{2}} \frac{x_{ij^*}^{\sigma - k_2 - 1}}{\sigma - k_2 - 1} \Phi\left(\frac{\ln y - \mu - k_2 Var^2}{Var}\right) - \frac{k_2}{r - k_2} e^{\frac{r^2 Var^2 + 2\mu r}{2}} \Phi^c\left(\frac{\ln y - rVar^2 - \mu}{Var}\right)$$
(37)

D.11 Left-Pareto Lognormal

$$\mu_{y}^{r} = \int_{y}^{\infty} x^{r} x^{k_{1}-1} e^{-k_{1}\mu + \frac{k_{1}^{2} Var^{2}}{2}} \Phi^{c} \left(\frac{\ln x - \mu + k_{1} Var^{2}}{Var} \right) dx$$

$$= k_{1} e^{k_{2}\mu + \frac{k_{2}^{2} Var^{2}}{2}} \left[\left(\frac{-(y)^{\sigma - k_{2} - 1}}{\sigma - k_{2} - 1} \right) - e^{-k_{1}\mu + \frac{k_{1}^{2} Var^{2}}{2}} \int_{y}^{\infty} x^{\sigma - 2 + k_{1}} \Phi\left(\frac{\ln x - \mu + k_{1} Var^{2}}{Var} \right) dx \right]$$

$$= -k_{1} e^{-k_{1}\mu + \frac{k_{1}^{2} Var^{2}}{2}} \frac{x_{ij^{*}}^{\sigma + k_{1} - 1}}{\sigma + k_{1} - 1} \Phi^{c} \left(\frac{\ln y - \mu + k_{1} Var^{2}}{Var} \right)$$

$$+ \frac{k_{1}}{r + k_{1}} e^{\frac{r^{2} Var^{2} + 2\mu r}{2}} \Phi^{c} \left(\frac{\ln y - r Var^{2} + \mu}{Var} \right)$$

$$(38)$$

D.12 Double-Pareto Lognormal

$$\mu_{y}^{r} = \frac{k_{2}k_{1}}{k_{2} + k_{1}} \int_{y}^{\infty} x^{r} x^{-k_{2} - 1} e^{k_{2}\mu + \frac{k_{2}^{2}Var^{2}}{2}} \Phi\left(\frac{\ln x - \mu - k_{2}Var^{2}}{Var}\right) dx$$

$$+ \frac{k_{2}k_{1}}{k_{2} + k_{1}} \int_{y}^{\infty} x^{r} x^{k_{1} - 1} e^{-k_{1}\mu + \frac{k_{1}^{2}Var^{2}}{2}} \Phi^{c}\left(\frac{\ln x - \mu + k_{1}Var^{2}}{Var}\right) dx$$

$$= -\frac{k_{2}k_{1}}{k_{2} + k_{1}} e^{k_{2}\mu + \frac{k_{2}^{2}Var^{2}}{2}} \frac{x_{ij^{*}}^{\sigma - k_{2} - 1}}{\sigma - k_{2} - 1} \Phi\left(\frac{\ln y - \mu - k_{2}Var^{2}}{Var}\right)$$

$$- \frac{k_{2}k_{1}}{k_{2} + k_{1}} \frac{1}{r - k_{2}} e^{\frac{r^{2}Var^{2} + 2\mu r}{2}} \Phi^{c}\left(\frac{\ln y - rVar^{2} - \mu}{Var}\right)$$

$$- \frac{k_{2}k_{1}}{k_{2} + k_{1}} e^{-k_{1}\mu + \frac{k_{1}^{2}Var^{2}}{2}} \frac{x_{ij^{*}}^{\sigma + k_{1} - 1}}{\sigma + k_{1} - 1} \Phi\left(\frac{\ln y - \mu + k_{1}Var^{2}}{Var}\right)$$

$$- \frac{k_{2}k_{1}}{k_{2} + k_{1}} \frac{1}{r + k_{1}} e^{\frac{r^{2}Var^{2} + 2\mu r}{2}} \Phi^{c}\left(\frac{\ln y - rVar^{2} - \mu}{Var}\right)$$

$$(39)$$

Appendix References

- Arkolakis, C. (2016). A Unified Theory of Firm Selection and Growth. *The Quarterly Journal of Economics* 131(1), 89.
- Aw, B. Y., M. J. Roberts, and D. Y. Xu (2011, June). R&D Investment, Exporting, and Productivity Dynamics. *American Economic Review* 101(4), 1312–44.
- Bas, M., T. Mayer, and M. Thoenig (2017). From micro to macro: Demand, supply, and heterogeneity in the trade elasticity. *Journal of International Economics* 108, 1-19.
- Bernard, A. B., S. J. Redding, and P. K. Schott (2009). Products and productivity. *The Scandinavian Journal of Economics* 111(4), 681–709.
- Bloom, N. and J. V. Reenen (2011). Chapter 19 human resource management and productivity. Volume 4 of *Handbook of Labor Economics*, pp. 1697–1767. Elsevier.
- Caliendo, L., G. Mion, L. D. Opromolla, and E. Rossi-Hansberg (2020). Productivity and organization in portuguese firms. *Journal of Political Economy forthcoming*.
- Costantini, J. and M. Melitz (2008). The dynamics of firm-level adjustment to trade liberalization. The organization of firms in a global economy 4, 107–141.
- De Loecker, J. (2011). Product differentiation, multiproduct firms, and estimating the impact of trade liberalization on productivity. *Econometrica* 79(5), 1407–1451.
- De Loecker, J. (2013). Detecting learning by exporting. American Economic Journal: Microeconomics 5(3), 1–21.
- Dewitte, R. (2020). From Heavy-tailed Micro to Macro: On the characterization of ffirm-level heterogeneity and its aggregation properties. mimeo, Ghent University.
- di Giovanni, J. and A. A. Levchenko (2012). Country size, international trade, and aggregate fluctuations in granular economies. *Journal of Political Economy* 120(6), 1083–1132.
- Dixit, A. K. and J. E. Stiglitz (1977). Monopolistic competition and optimum product diversity. *The American Economic Review* 67(3), 297–308.
- Follmann, D. A. and D. Lambert (1991). Identifiability of finite mixtures of logistic regression models. *Journal of Statistical Planning and Inference* 27(3), 375–381.
- Fop, M., T. B. Murphy, et al. (2018). Variable selection methods for model-based clustering. Statistics Surveys 12, 18–65.
- Gandhi, A., S. Navarro, and D. A. Rivers (0). On the identification of gross output production functions. *Journal of Political Economy forthcoming*.
- Grün, B. (2018). Model-based clustering. arXiv preprint 1807.01987, arXiv.
- Grün, B. and F. Leisch (2008). Identifiability of finite mixtures of multinomial logit models with varying and fixed effects. *Journal of classification* 25(2), 225–247.
- Hennig, C. (2000). Identifiablity of models for clusterwise linear regression. *Journal of classification* 17(2).

- Hopenhayn, H. A. (1992). Entry, exit, and firm dynamics in long run equilibrium. *Econometrica* 60(5), 1127-1150.
- Impullitti, G., A. A. Irarrazabal, and L. D. Opromolla (2013). A theory of entry into and exit from export markets. *Journal of International Economics* 90(1), 75 90.
- Kasahara, H. and J. Rodrigue (2008). Does the use of imported intermediates increase productivity? plant-level evidence. *Journal of Development Economics* 87(1), 106–118.
- Krugman, P. (1980). Scale economies, product differentiation, and the pattern of trade. The American Economic Review 70(5), 950–959.
- Luttmer, E. G. (2007). Selection, growth, and the size distribution of firms. The Quarterly Journal of Economics 122(3), 1103–1144.
- McLachlan, G. J. and D. Peel (2000). *Finite mixture models*. New York: Wiley Series in Probability and Statistics.
- Melitz, M. J. (2003). The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry Productivity. *Econometrica* 71(6), 1695–1725.
- Nigai, S. (2017). A tale of two tails: Productivity distribution and the gains from trade. *Journal of International Economics* 104, 44–62.
- Perline, R. (2005). Strong, weak and false inverse power laws. Statistical Science 20(1), 68–88.
- Rossi-Hansberg, E. and M. L. J. Wright (2007, December). Establishment size dynamics in the aggregate economy. *American Economic Review* 97(5), 1639–1666.
- Sager, E. and O. A. Timoshenko (2019). The double emg distribution and trade elasticities. Canadian Journal of Economics/Revue canadienne d'économique 52(4), 1523–1557.