Case Study: uniNDTotal Consistency Relation

October 2, 2013

1 Motivation and origin

_

2 Specification

2.1 Metamodels (M,N)

Figure 1: Metamodels

2.2 Consistency relation (R)

Type: uniNDTotal, one <> some

For every M instance there exists **one** N instance such that both are related by R;

For every N instance there exists **exactly one** M instance such that both are related by R.

	injective	entire	simple	surjective
R	1	✓		✓

Definition

For every A in RootA there exists **one** B in RootB; ¹ For every B in RootB there exists **exactly one** A in RootA.

 $[\]overline{}^1$ This direction is non deterministic since any B is consistent regardless of its attribute value.

- 3 Test instances (m,n)
- 3.1 One A

Figure 2: One A (m)

3.2 No As

 $(no\ As\ (m))$

3.3 One B attribute 0

Figure 3: One B with attribute value $0\ (n)$

3.4 One B attribute 15

Figure 4: One B with attribute value 15 (n)

3.5 Transformations to assess

	m	n	\overrightarrow{R}	\overline{R}
T1	One A	One B attribute 0	1	
T2	No As	One B attribute 15		✓
Т3	One A	One B attribute 15	1	

4 Tools assessment

$4.1 \quad eMoflon$

4.1.1 Specification implementation

Specification environment: Enterprise Architect [4]

Metamodels

Figure 5: Metamodels modelled as EA Ecore Diagrams

Consistency Relation

Figure 6: TGG Schema Diagram

Figure 7: TGG Rule Diagram RootAToRootB

Figure 8: TGG Rule Diagram AToB

4.1.2 Instances transformation results

Integration environment: Eclipse Modelling Tools [5]

T1 - One A / One B attribute 0 (\overrightarrow{R})

Figure 9: T1 result

T2 - No As / One B attribute 15 (\overleftarrow{R})

Figure 10: T2 result

T3 - One A / One B attribute 15 (\overrightarrow{R})

Figure 11: T3 result

4.1.3 Assessment

correct	1
hippocratic	
undoable	
history-ignorant	
simply-matching	
matching	
least-change	

4.2 *Echo*

4.2.1 Specification implementation

 $Specification\ environment:$

 ${\bf Metamodels}$

Consistency Relation

4.2.2 Instances transformation results

 $Integration\ environment:$

4.2.3 Assessment

correct	
hippocratic	
undoable	
history-ignorant	
simply-matching	
matching	
least-change	

4.3 Focal

4.3.1 Specification implementation

 $Specification\ environment:$

 ${\bf Metamodels}$

Consistency Relation

4.3.2 Instances transformation results

 $Integration\ environment:$

4.3.3 Assessment

correct	
hippocratic	
undoable	
history-ignorant	
simply-matching	
matching	
least-change	

4.4 Summary table and comparison

5 Discussion

References

- [1] http://homepages.inf.ed.ac.uk/perdita/
- [2] Stevens, Perdita. "Bidirectional model transformations in QVT: Semantic issues and open questions." Model Driven Engineering Languages and Systems. Springer Berlin Heidelberg, 2007. 1-15.
- [3] Stevens, Perdita. "Observations relating to the equivalences induced on model sets by bidirectional transformations." Electronic Communications of the EASST 49 (2012).
- [4] http://www.sparxsystems.com/products/ea/index.html
- [5] http://www.eclipse.org/