# Introduction réseaux - Épisode 3

Pascal Cotret, ENSTA Bretagne

9 septembre 2022



### Au menu de ce matin

- 1. Wireshark Capture d'une page : HTTP vs. HTTPS
- 2. Petits exercices Wireshark
- 3. Partie cours Protocole Ethernet
- 4. Liaison de données

### HTTP vs. HTTPS



### HTTP vs. HTTPS





### HTTP vs. HTTPS



Comment Wireshark voit tout ça?

### Petits exercices Wireshark

### Session FTP

Extrait d'un challenge Root-Me: https://www.root-me.org

### Petits exercices Wireshark

### Session FTP

Extrait d'un challenge Root-Me : https://www.root-me.org

Analyse d'une requête HTTP

Un exemple de l'intérêt du HTTPS...

# Objectifs du cours

- Comprendre les principes des services implémentés dans la couche liaison :
  - Accès au support
  - Adressage
  - Détection et correction d'erreurs
- Comprendre la mise œuvre de ces principes dans les réseaux Ethernet et le Wifi
- ▶ Identifier les problématiques de sécurité des réseaux Wifi

## Modèle OSI I

Pile OSI

Couches hautes : implémentées dans les applications

Couches intermédiaires : implémentées dans les systèmes d'exploitations

Couches basses implémentées dans le matériel (e.g carte réseau)

| _ |   |                    |
|---|---|--------------------|
|   | 7 | Application        |
|   | 6 | Présentation       |
|   | 5 | Session            |
|   | 4 | Transport          |
|   | 3 | Réseau             |
| _ | 2 | Liaison de données |
|   | 1 | Physique           |

### Modèle OSI I

Pile OSI

Couches hautes : implémentées dans les applications

Couches intermédiaires : implémentées dans les systèmes d'exploitations

Couches basses implémentées dans le matériel (e.g carte réseau)



### **Application**

- Correspond aux différentes applications réseau.
- ► Par exemple : Web (HTTP), courriel (SMTP, POP, IMAP), DNS, etc.

### Modèle OSI II

Couches hautes : implémentées dans les applications

Couches intermédiaires : implémentées dans les systèmes d'exploitations

Couches basses implémentées dans le matériel (e.g carte réseau)



#### Présentation

- Correspond au codage des données applicatives
- Conversion entre les données des applications et celles effectivement transmises
- ► Compression, chiffrement
- Par exemple : codage en BER ou DER de données spécifiées en ASN.1

## Modèle OSI III

Pile OSI

Couches hautes : implémentées dans les applications

Couches intermédiaires : implémentées dans les systèmes d'exploitations

Couches basses implémentées dans le matériel (e.g carte réseau)



#### Session

- Gestion de la session entre plusieurs connexions
- ► Peu utilisé en pratique

### Modèle OSI IV



### Transport

- Gestion de la communication de bout-en-bout (entre la source et le destinataire)
- Exemples : TCP, UDP
- Détection d'erreur (CRC)
- Multiplexage applicatif (notion de ports TCP ou UDP)
- Mode connecté (TCP)
  - Contrôle de flux
  - Livraison fiable des données (sans perte, dans l'ordre)

### Modèle OSI V

Pile OSI

Couches hautes : implémentées dans les applications

Couches intermédiaires : implémentées dans les systèmes d'exploitations

Couches basses implémentées dans le matériel (e.g carte réseau)



# Réseau (par exemple IP)

- Détermination du chemin emprunté par les données (routage)
- Adressage logique des différent nœuds sur l'ensemble du réseau
- Relais (acheminement) des paquets à chaque noeud du réseau

## Modèle OSI VI

Couches hautes : implémentées dans les applications

Couches intermédiaires : implémentées dans les systèmes d'exploitations

Couches basses implémentées dans le matériel (e.g carte réseau)



#### Liaison de données

- Livraison locale des trames sur un même réseau local
- Protocole utilisé entre noeuds adjacents
- Deux sous-couches (protocoles IEEE)
  - Contrôle d'accès au support (MAC)
  - Contrôle de la liaison logique (LLC) : contrôle de séquence et de flux
- Par exemple : Ethernet, WiFi, PPP

### Modèle OSI VII



## Physique

- Transmission effective des signaux (train de bits)
- Spécification du support (connecteurs, type de câble, bande de fréquences, etc.)
- Codage en bande de base : NRZ, Manchester, etc
- Modulation, etc
- Par exemple : Ethernet couche physique (10BASE-T, 100BASE-T, 1000 BASET-T, etc.),
   Wifi couche physique (différentes fréquences)

# Couches basses dans les piles protocolaires



|   | Pile Internet |
|---|---------------|
| 4 | Application   |
| 3 | Transport     |
| 2 | Internet      |
| 1 | Accès réseau  |

D: 1 . .

### Définitions I

### Accès au réseau

Les protocoles de la couche "Accès au réseau" gèrent les échanges entre les différents noeuds *adjacents* d'un *même réseau* (LAN, WAN, etc.).

#### Noeuds

- Ordinateurs connectés au réseau.
- ► Routeurs (commutateurs de niveau 3).

### Définitions II

### Paquet, PDU (Protocol Data Unit)

Les paquets (PDU) échangés par ces protocoles sont des trames (frame).

#### **Trames**

Les trames ne sont pas transférées par les routeurs d'un réseau à un autre :

- Le routeur décapsule le PDU en entrée pour analyser la couche réseau.
- ► Le routeur encapsule le paquet dans un nouveau PDU en sortie.
- Les réseaux d'entrée et de sortie peuvent utiliser différents protocoles d'accès au réseau (par exemple ADSL/Ethernet).

### Les services de la couche liaison I

### Une histoire de capsules...

- ► Encapsulation/décapsulation des datagrammes (PDU de la couche réseau) :
  - ► Identification du début et de la fin de la trame.
  - ► Gestion de l'en-tête de niveau 2.

### Adressage

Les protocoles standardisés par l'IEEE (Ethernet, Wifi) utilisent des adresses MAC

### Les services de la couche liaison II

# Contrôle de l'accès au support lorsqu'il est partagé

- ▶ Un seul noeud peut émettre sur un support à un instant donné.
- ▶ Pour les bus ou les réseaux sans fil qui relient plusieurs noeuds sur un même support, il faut contrôler l'accès au support pour éviter ou détecter les collisions.
- Détection/correction d'erreurs.

# Livraison fiable des données, contrôle de flux

- ► Ces services ne sont pas toujours fournis.
- La livraison fiable des données est implémentée pour les supports peu fiables (e.g. liaisons sans fils).

# Adressage I

- ► Adresses MAC (Ethernet, physique): standard IEEE 802 [2]
  - **EUI-48** (MAC-48) : Ethernet, Wifi, Bluetooth, etc.
  - ► EUI-64 : FireWire, ZigBee, etc.
- Permet d'adresser des noeuds reliés sur le même lien (même réseau).

# Adressage II

- ► Adresse spécifique à chaque carte/interface réseau :
  - Stockée physiquement dans la carte réseau par le fabricant.
  - ► Chaque adresse doit être unique au monde.
  - Parfois, il est possible de la modifier logiciellement.



# Détection/correction d'erreur I

#### **Principe**

Ajouter des bits redondants pour détecter voir corriger les données altérées.



# Détection/correction d'erreur II

#### Mise en oeuvre

- Détection d'erreur : somme de contrôle, contrôle de redondance cyclique.
- La détection n'est pas parfaite [1].
- Correction d'erreur :
  - Code correcteur d'erreur (Forward Error Correction): Hamming, Reed-Solomon, Turbocode.
  - Requête automatique de répétition (Automatic Repeat reQuest).

# Détection d'erreurs : exemples I

Exemple simple : code de parité



### Références I

- [1] Noah DAVIDS. The Limitations of the Ethernet CRC and TCP/IP checksums for error detection. Nov. 2012. URL:
  http://noahdavids.org/self\_published/CRC\_and\_checksum.html.
- [2] Guidelines for Use of Extended Unique Identifier (EUI), Organizationally Unique Identifier (OUI), and Company ID (CID). IEEE, août 2017. URL: http://standards.ieee.org/develop/regauth/tut/eui.pdf.
- [3] IEEE 802.1Q-2018 IEEE Standard for Local and Metropolitan Area Networks, Bridges and Bridged Networks. IEEE, mai 2018. URL: https://standards.ieee.org/standard/802\_1Q-2018.html.
- [4] IEEE 802.3-2018 IEEE Standard for Ethernet. IEEE, nov. 2018. URL: https://standards.ieee.org/standard/802\_3-2018.html.

### Références II

- [5] Célestin MATTE et Mathieu CUNCHE. Tracage Wi-Fi: applications et contre-mesures. Mai 2016 URL: https://connect.ed-diamond.com/GNU-Linux-Magazine/GLMFHS-084/Tracage-Wi-Fi-applications-et-contre-mesures.
- [6] P802.11 - IEEE Draft Standard for Information Technology – Telecommunications and Information Exchange Between Systems Local and Metropolitan Area Networks – Specific Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Laver (PHY) Specifications, IEEE. mars 2017. URL: https://standards.ieee.org/project/802\_11.html.