GEOESTADÍSTICA

ANALISIS EXPLORATORIO DE DATOS TAREA 1

CONTENIDO

- Introducción
- Datos
- Estadística Univariada
- Estadística Bivariada
- Conclusiones

El conocimiento de las características y propiedades del subsuelo es un aspecto importante a considerar en el diseño y construcción de obras de ingeniería. En muchos casos, la caracterización del subsuelo no resulta sencilla, dada la complejidad y la variabilidad espacial que presenta en la naturaleza.

En Geotecnia, la práctica usual para caracterizar el subsuelo en un sitio particular consiste en extraer muestras, analizarlas y determinar sus propiedades. Recientemente, la obtención directa de las propiedades del suelo en el lugar mediante pruebas de campo ha tomado también mucha importancia. En ambos casos, la caracterización está basada en la familiaridad con la geología, la interpretación de los datos cuantitativos, la experiencia y la intuición.

Entre este tipo de propiedades, la que más destaca es el *contenido de agua*, *w*, (especialmente para materiales cohesivos), debido a las correlaciones que presenta con las propiedades mecánicas; además, es la propiedad que se determina en mayor número y a menor costo en un estudio geotécnico.

La *resistencia al esfuerzo cortante* (q_u) es uno de los parámetros más representativos de las propiedades mecánicas. Las pruebas de campo son las que más datos aportan, por ejemplo la prueba de *veleta* que puede ser aplicada en diferentes profundidades, a diferencia de una prueba de *compresión triaxial* en laboratorio que usualmente únicamente es determinada en especimenes de suelo obtenidos en algunas profundidades de interés.

Desde el punto de vista de la Mecánica de Suelos, la secuencia estratigráfica superficial típica del subsuelo de la zona lacustre en la Ciudad de México incluye una costra seca delgada, un estrato de arcilla de espesor fuerte y el primer estrato o capa resistente, **Figura 1**.

Figura 1. Estratigrafía del subsuelo de la Ciudad de México

Figura 2. Mapa de Ubicación de los Datos Ciudad de México

DATOS

		Formación A	rcillosa S	u p e rio r	1
Coordenada	Coordenada	Profundidad	0 /	W	q u
X	Y	Sup.	In f.	(%)	(kg/cm ²)
4 9 5 6 5 3 .0 0 0 0 4 9 8 6 0 3 .0 0 0 0 4 8 9 9 0 1 .7 8 3 4 8 8 6 1 7 .0 0 0 0 4 9 8 6 6 5 .0 0 0 0 4 9 1 7 9 6 .0 0 0 0 4 7 9 8 8 1 .0 0 0 0 4 9 7 9 3 8 1 .0 0 0 0 4 9 7 9 3 8 8 1 .0 0 0 0 4 9 7 9 3 8 8 1 .0 0 0 0 4 9 7 9 3 8 8 1 .0 0 0 0 4 9 7 9 3 8 8 1 .0 0 0 0 4 9 7 9 1 3 .2 0 7 4 8 5 9 8 7 .3 8 8 4 9 5 5 5 0 .0 0 0 4 9 7 8 1 9 .0 0 0 0 4 9 7 8 1 9 .0 0 0 0 4 9 7 8 1 9 .0 0 0 0 4 9 7 6 9 9 .0 0 0 4 9 7 6 9 9 .0 0 0 4 9 7 8 1 9 .0 0 0 0 4 9 7 8 1 9 .0 0 0 0 4 9 7 8 1 9 .0 0 0 0 4 9 7 8 1 9 .0 0 0 0 4 9 7 8 1 9 .0 0 0 0 4 9 7 8 1 9 .0 0 0 0 4 9 8 1 6 0 .0 0 0 0 4 8 1 8 1 6 0 .0 0 0 0 4 8 1 8 1 6 0 .0 0 0 4 8 1 8 1 6 0 .0 0 0 4 8 1 8 1 6 0 .0 0 0 4 8 1 8 1 6 0 .0 0 0 4 9 2 5 5 1 .0 6 0 0 4 9 2 5 5 1 .0 6 0 0 4 9 2 5 5 1 .0 6 0 0 4 9 2 5 5 1 .0 6 0 0 4 9 2 5 5 1 .0 6 0 0 4 9 2 5 5 1 .0 6 0 0 4 9 2 5 5 1 .0 6 0 0 4 9 2 5 5 1 .0 6 0 0 4 9 2 5 5 1 .0 6 0 0 4 9 2 5 5 1 .0 6 0 0 0 4 9 8 1 6 5 .7 0 0 0 4 9 8 1 6 5 .7 0 0 0 4 9 8 1 6 5 .7 0 0 0 0 4 9 8 1 6 5 .7 0 0 0 0 4 9 8 1 6 5 .7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Y 2 1 6 5 5 6 1 . 0 0 0 2 1 6 9 2 1 7 . 0 0 0 2 1 7 7 2 9 1 5 . 4 7 1 2 1 7 5 2 4 1 1 . 0 0 0 2 1 7 7 5 2 4 1 1 . 0 0 0 2 1 7 7 5 2 4 1 1 . 0 0 0 2 1 7 3 7 3 1 . 0 0 0 2 1 7 4 5 8 5 . 0 0 0 2 1 6 8 8 3 3 1 . 0 0 0 2 1 6 9 6 4 2 . 0 0 0 2 1 6 6 4 2 . 0 0 0 2 1 6 6 4 2 . 0 0 0 2 1 6 6 3 5 2 4 2 . 0 0 0 2 1 6 6 9 5 0 . 0 0 0 2 1 6 9 6 7 7 . 0 0 0 2 1 7 3 8 4 5 . 8 3 0 0 1 7 3 8 4 5 . 8 3 0 0 1 7 3 8 4 5 . 8 3 0 0 1 1 6 9 6 7 7 . 0 0 0 1 1 6 9 6 7 7 . 0 0 0 1 1 6 9 6 7 7 . 0 0 0 0 1 6 9 6 7 7 . 0 0 0 0 1 6 9 6 7 7 . 0 0 0 0 1 6 9 6 7 7 . 0 0 0 0 1 6 9 6 7 7 . 0 0 0 0 1 6 9 6 7 7 . 0 0 0 0 1 6 9 6 7 7 . 0 0 0 0 1 6 9 6 7 7 . 0 0 0 0 1 6 9 6 7 7 . 0 0 0 0 1 6 9 6 7 7 . 0 0 0 0 1 7 3 8 0 5 5 5 1 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1	S U P. 3 .0 0 1 .9 0 3 .8 0 2 .4 0 2 .8 0 2 .1 0 1 .0 0 0 .9 0 1 .2 0 0 .6 0 1 .4 0 2 .3 0 1 .4 0 2 .3 0 1 .4 0 2 .3 0 1 .4 0 2 .3 0 1 .4 0 2 .3 0 1 .4 0 2 .3 0 1 .4 0 2 .3 0 1 .6 0 3 .0 0 0 .8 0 1 .4 0 2 .2 0 0 .6 0 1 .7 5 0 .8 0 1 .4 0 2 .9 0 1 .6 0 1 .9 0 2 .9 0 2 .9 0 2 .9 0 2 .9 0 2 .9 0 2 .9 0 2 .9 0 2 .9 0 2 .9 0 2 .9 0 2 .9 0 2 .9 0 2 .9 0 2 .9 0 2 .9 0 2 .9 0 3 .9 0 2 .9 0 3 .9 0 2 .9 0 3 .9 0 3 .9 0 3 .9 0 3 .9 0 4 .9 0 3 .9 0 3 .9 0 3 .9 0 3 .9 0 3 .9 0 4 .9 0 3 .9 0 4 .9 0 3 .9 0 3 .9 0 3 .9 0 3 .9 0 4 .9 0 3 .9 0 3 .9 0 4 .9 0 3 .9 0 3 .9 0 3 .9 0 4 .9 0 4 .9 0 5 .9 0 5 .9 0 6 .9 0 7 .9 0 8 .9 0	In T. 7 .3 0 7 .9 0 8 .0 0 8 .5 0 9 .0 0 9 .3 5 9 .4 0 9 .5 0 9 .6 0 9 .6 0 9 .7 0 9 .8 0 0 .1 0 10 .1 0 10 .5 0 10 .6 0 10 .7 0 11 .0 0 11 .0 0 11 .0 0 12 .0 0 11 .1 0 12 .0 0 12 .0 0 12 .0 0 12 .0 0 12 .0 0 12 .0 0 12 .0 0 12 .0 0 13 .0 0 13 .2 0 14 .6 0 17 .3 0 17 .3 0 17 .3 0 18 .0 0 19 .6 0 20 .0 0	(%) 90.00 100.00 38.00 75.00 50.00 90.00 110.00 35.00 60.00 110.00 45.00 60.00 110.00	(k g / c m -) 1

ESTADISTICA UNIVARIADA

Variable w

Variable qu

Variable w

W	
	54
Mean	126.8148
Median	122.5000
Grouped Median	121.2500
Sum	6848.00
Minimum	34.00
Maximum	275.00
Range	241.00
First	90.00
Last	180.00
Std. Deviation	62.8202
Variance	3946.380
Kurtosis	873
Skewness	.396
Harmonic Mean	94.8086
Geometric Mean	110.6672

Graficos de la variable w

Graficos de la variable w

La distribución se aleja de una distribución normal.

Variable Log(w)

Transformación de la primera variable w usando logaritmo

Log (w)	
Mean	2.0440
Median	2.0880
Grouped Median	2.0836
Sum	110.38
Minimum	1.53
Maximum	2.44
Range	.91
First	1.95
Last	2.26
Std. Deviation	.2388
Variance	5.703E-02
Kurtosis	791
Skewness	376
Harmonic Mean	2.0150
Geometric Mean	2.0298

Graficos de la variable Log(w)

Graficos de la variable Log(w)

Normal Q-Q Plot of VAR00003

La distribución se aleja de una distribución normal.

Observed Value

Variable qu

qu	
Mean	1.0863
Median	1.1000
Grouped Median	1.0917
Sum	58.66
Minimum	.70
Maximum	1.65
Range	.95
First	1.25
Last	.80
Std. Deviation	.2637
Variance	6.956E-02
Kurtosis	983
Skewness	.255
Harmonic Mean	1.0241
Geometric Mean	1.0549

Graficos de la variable qu

Graficos de la variable qu

Normal Q-Q Plot of VAR00002

La distribución se aleja de una distribución normal.

Variable Log(qu)

Transformación de la primera variable qu usando logaritmo

Log (qu)	
Mean	2.320E-02
Median	4.139E-02
Grouped Median	3.803E-02
Sum	1.25
Minimum	15
Maximum	.22
Range	.37
First	.10
Last	10
Std. Deviation	.1068
Variance	1.141E-02
Kurtosis	-1.192
Skewness	063
Harmonic Mean	
Geometric Mean	.0000

Graficos de la variable Log(qu)

Graficos de la variable Log(qu)

La distribución se aleja de una distribución normal.

ESTADISTICA BIVARIADA

Variable w

Variable qu

variable w & variable qu

Correlación -.806

Covarianza -13.349

Gráfico de dispersión (scatterplot)

Regresión Lineal w & qu

R	0. 806
\mathbb{R}^2	0.649
Adjusted Square	0.642
Std. Error of the Estimate	37.5673

Coeficientes	В	Std. Error	Intervalo de Confianza	
Constante	335.275	21.860	291.410 291.	
qu	-191.900	19.565	379.139	379.139

Estadística de Residuos w & qu

	Minimum	Maximu	Mean	Std. Deviation	N
		m			
Predicte d Value	18.6403	200.9449	126.8148	50.6133	54
Residual	-62.9700	112.1698	-5.7896E-15	37.2112	54
Std. Predicte d Value	-2.137	1.465	.000	1.000	54
Std. Residual	-1.676	2.986	.000	.991	54

Graficas de Residuos w & qu

Histogram

Dependent Variable: VAR00001

Regression Standardized Residual

Normal P-P Plot of Regression Stand

Dependent Variable: VAR00001

Observed Cum Prob

variable Log(w) & variable Log (qu)

Correlación -.827

Covarianza -2.109E-02

Gráfico de dispersión (scatterplot)

Regresión Lineal Log(w) & Log(qu)

R	0.827
\mathbb{R}^2	0.684
Adjusted Square	0.678
Std. Error of the Estimate	0.1356

Coeficientes	В	Std. Error	Intervalo de Confianza	
Constante	2.087	0.019	2.049	2.049
Log(qu)	-1.849	0.174	2.125	2.125

Estadística de Residuos Log(w) & Log(qu)

	Minimum	Maximum	Mean	Std.	N
				Deviation	
Predicte d Value	1.6848	2.3733	2.0440	.1974	54
Residual	2445	.4411	1.234E-17	.1343	54
Std. Predicte d Value	-1.819	1.668	.000	1.000	54
Std. Residual	-1.803	3.252	.000	.991	54

Graficas de Residuos Log (w) & Log (qu)

Histogram

Dependent Variable: VAR00003

Regression Standardized Residual

Normal P-P Plot of Regression Stand

Dependent Variable: VAR00003

Observed Cum Prob

CONCLUSIONES

Análisis unívariado

• Primeramente se realizo el análisis unívariado para las variables w y qu, conjuntamente con sus transformaciones logarítmica, en ellas se vio que pese a la transformación existe un mejor ajuste a una normal en coordenadas naturales, también se observo que no hay valores atípicos apreciables en nuestros datos.

CONCLUSIONES

Análisis bivariado

- En éste análisis también se realizo primeramente a las variables w y qu, observándose un coeficiente de correlación de -.806, ajustándose a una recta un poco peor que en la transformación de las variables a coordenadas logarítmicas que obtuvo un coeficiente de correlación de -.827, pero creemos que no es necesario la transformación a coordenadas logarítmicas ya que la ganancia es mínima.
- ◆ También se realizo la regresión lineal obteniéndose un valor para R cuadrada de .649, y una recta de ajuste w = -191.900qu + 335.275, con una desviación estándar de 50.6133 y un error residual de 112.1698, en la transformación a coordenadas logarítmicas se obtiene un valor para R cuadrada de .684, y una recta de ajuste w = -1.849qu + 2.087, con una desviación estándar de .1974 y un error residual de .4411, aquí al igual que en el caso unívariado, pese a que existe una mejor regresión lineal en coordenadas logarítmicas, no es muy marcada la mejoría, por ello creemos que no es necesario la transformación a coordenadas logarítmicas ya que la ganancia es mínima.