

Nguyen Viet Cuong Nguyen Thi Thuy Linh Ha Quang Thuy Phan Xuan Hieu

Speaker:葉昱廷

ABSTRACT

This paper presents a machine learning model for <u>Vietnamese</u> text/web content classification and filtering that is based on the maximum entropy principle

The difficulty in identifying word boundaries of Vietnamese (isolated language) is solved by Maximum Matching approach based on a Vietnamese lexicon (LacViet MTD)

Tof PowerPoint

Vietnamese Example

Vietnamese is an isolated language and whitespaces are not always used to identify the word boundaries

How are you doing?

Dạo này chị thế nào?

How # are # you # doing?

Dạo # này chị # thế nào ?

oner of Powerpo.

Maximum Matching

Cardinality

Maximal matching: 沒有辦法直接增加配對數的匹配。

Maximum matching: 配對數最多的匹配。

Perfect matching: 所有點都配對到的匹配。

Comer of Domerto of

Maximum Entropy

Constrain Equation

$$\sum_{d,c} \tilde{p}(d) p(c|d) f_i(d,c) = \sum_{d,c} \tilde{p}(d,c) f_i(d,c)$$

Exponential Form

$$p(c \mid d) = \frac{1}{Z(d)} \exp\left(\sum_{i} \lambda_{i} f_{i}(d, c)\right)$$

$D = \{(d_1, c_1), (d_2, c_2), \dots, (d_N, c_N)\}$ $d_1 \text{ is list of } context \ predicate$ $C \text{ is class } corresponding to \ d_1$

Normalization Factor

$$Z(d) = \sum_{c} \exp\left(\sum_{i} \lambda_{i} f_{i}(d,c)\right)$$

Maximum Entropy

Entropy

$$H(p) = -\sum_{d,c} \tilde{p}(d) p(c \mid d) \log p(c \mid d)$$

Likelihood

$$L(p) = \sum_{d,c} \tilde{p}(d,c) \log p(d \mid c)$$

Exponential form guarantees that the likelihood surface is convex

The same solution

$$p^* = \underset{p}{\operatorname{argmax}} H(p) = \underset{p}{\operatorname{argmax}} L(p)$$

N-Gram

N-gram of syllables

According to syllable, may contain meaningless words.

祝芃彣生日快樂

祝芃#芃彣# 彣生# 生日# 日快# 快樂

oner of powerpoint

N-Gram

N-gram of words

According to segmentation, combination of meaningful words

祝芃彣生日快樂

祝#芃彣#生日#快樂

祝芃彣#芃彣生日#生日快樂

Of Dowerpoin

Experimental Setup

"10-fold cross validation test"

Training data

Vietnamese

6,400 Vietnamese news pieces in 8 classes, so each class has 800 news pieces.

Vietnamese lexicon (LacViet MTD) with more than 70,000 entries

English

6,207 English news pieces in 8 classes were collected from **BBC** News

ower of Powerp

Building a Standard Class Tree

Vietnam Net

SI BORY

Class tree for text classification

No.	Class name	Label
1	Business	bss
2	Education	edu
3	Entertainment	ent
4	Health	hel
5	Politic	plt
6	Science	sci
7	Sport	spt
8	Technology	tec

For both Vietnamese and English training data.

Feature Selection

Predicate -	- Class =	Feature
công_ngh ệ	tec	công_ngh ệ , tec
công_ngh ệ	edu	công_ngh ệ , edu

Predicates come from N-gram of syllables or words

Features over predicates is approximate 5/3

Cower of Powersoin

SLIDBE 16

Classification Procedures

Examples of probability distribution

Class label	Probability	
bss	92.4%	
edu	0.5%	
ent	0.2%	
hel	1.1%	
plt	3.4%	
sci	0.2%	
spt	0.9%	
tec	1.3%	

Class label	Probability
bss	48.3%
edu	0.7%
ent	2.3%
hel	0.2%
plt	0.1%
sci	5.4%
spt	0.7%
tec	42.3%

Business

Business & Tech?

Choose *p_m* which is the highest probability value

Second

Calculate standard deviation

$$S_k = \sqrt{\frac{1}{k} \sum_{i=1}^k (p_i - \overline{p})^2}$$

Choose $p_j > p_m - S_k$

The corresponding class will be chosen

Dynamic threshold

Threshold value is flexible and is different for each situation.

Firstly, we choose p = 48.3%

$$S_k = \sqrt{\frac{1}{k} \sum_{i=1}^{k} (p_i - \overline{p})^2} \approx 19.1\%$$

Dynamic threshold td is:

$$t_d = p_1 - s_k = 48.3\% - 19.1\% = 29.2\%$$

Class label	Probability	
bss	48.3%	
edu	0.7%	
ent	2.3%	
hel	0.2%	
plt	0.1%	
sci	5.4%	
spt	0.7%	
tec	42.3%	

Business & Tech!

Results

F1 - Measure

No. of Predicates & Features

Model	No. of predicates	No. of features	
Vietnamese	3,127,333	3,709,185	
English	2,806,899	3,686,768	
Independent Language	4,743,595	5,860,664	

The ambiguity between English and Vietnamese is very low although both languages are written in Latin characters.

