Circuit Design and Architecture Exploration of FPGAs

Topics

- Circuit Design for FPGAs
- Logic Block Architecture Study
- Routing Architecture Study

Lookup Table Circuitry

- 2 options for bit-selection
 - □ decoder or multiplexer?

Bit-Selection in Conventional RAM/ROM

■ RAM/ROM typically uses decoder for bit-selection

Bit-Selection for LUT

■ FPGA's LUT uses a multiplexer for bit-selection.

- Multiplexer presents smaller load to memory cells.
 - ☐ Allows smaller memory cells

Multiplexers in FPGA

• Muxes used inside LUTs and for routing (intrablock and inter-block).

A logic block and its periphery

Multiplexer Design

By static gates

By pass transistors

Multiplexer Design

- How about using complementary switches instead of pass transistors?
- Pass transistor uses 1 transistor while complementary switch uses 2.
- Pass transistor is faster than complementary switch:
 - □ Equal-strength p-type is 2.5X n-type width.
 - \square Total resistance is 0.5X, total capacitance is 3.5X.
 - \square RC delay is $0.5 \times 3.5 = 1.75$ times n-type switch.

Performance of Static Gate MUX

- Delay through *n*-input NAND is (*n*+2)/3 using logical effort computation.
- For *b*-to-1 MUX
 - \square Lg b + 1 inputs at first level, so delay is $(\lg b + 3)/3$.
 - \square Delay at second level is (b+2)/3.
- \blacksquare Delay grows as b.

Performance of Tree-based Pass Transistor MUX

- Delay proportional to square of path length.
- Delay grows as $(\lg b)^2$.

Encoded MUX vs Decoded MUX

■ Tradeoff between transistor count and delay

a) decoded multiplexer

b) encoded multiplexer

Leakage in MUX-based Routing Switch

■ Level restoring buffer to avoid leakage at MP2 due to a weak V_{INT}

a) Routing switch (abstract)

b) 4-input routing switch (transistor-level view)

MUX-based Routing Switch Design

Optimize: transistor count, delay, leakage

v

Architectural Issues

- Granularity of logic elements in the FPGA?
- LE structure:
 - □ What functions?
 - ☐ How many inputs?
 - □ Dedicated logic?
- What types of interconnect?
 - ☐ How much of each type?
- How long should interconnect segments be?
- How should we vary interconnect?
 - □ Uniform or non-uniform over chip?

FPGA Architecture Evaluation Methodology

 Empirical approach to explore different architectures is typical

Logic Block Structure

Logic Block Granularity Study

- How large should the LUT size (K) be?
- Effects on area & speed
 - □ Area
 - As K increases, fewer logic blocks are needed for a design but area per block increases (LUT's SRAM bits is 2^K)
 - □ Speed
 - As *K* increases, each critical path contains fewer blocks but delay per block increases

Effect of LUT Size on Area

- \blacksquare As LUT size (K) increases
 - □ Total FPGA area first decreases and then increases

blocks required & area per block for different LUT sizes

Total FPGA area for different LUT18izes

Effect of LUT Size on Speed

■ As *K* increases, each critical path contains fewer blocks but delay per block increases

#LUTs on a critical path & delay per LUT for different LUT sizes

Innovative Idea – Adaptive Logic Module

Altera Stratix ALM (adaptive logic module)

Flexibility of Adaptive Logic Module

■ Fracturable into two

Output 1	Output 2	Shared inputs (min)
6-LUT	-	-
5-LUT	5-LUT	2
5-LUT	4-LUT	1
5-LUT	3-LUT	0
4-LUT	4-LUT	0
4-LUT	3-LUT	0
3-LUT	3-LUT	0

Adaptive Logic Module

■ *Observation*: Functions generated by synthesis have different input sizes.

Advantages of Adaptive Logic Module

- ALM-based architecture vs traditional 4-LUT-based architecture
 - ☐ Improved area efficiency
 - ☐ Improved timing performance

Logic Block Clustering

Logic block made up of a cluster of LUTs and FFs

Logic Cluster Study

- How many cluster input pins (I) are needed?
 - □BLEs in a cluster often share many input signals
 - □ Empirically, # input pins *I* needed to fully utilize a cluster of *N K*-LUT is
 - I = K(N+1)/2

Area Efficiency of Different Cluster Sizes

Clusters in size 1-8 are area-efficient.

Transistors per BLE vs. cluster size (includes overhead circuits)

Effect of Cluster Size and LUT Size on Speed

- As LUT and cluster size increase, critical path delay monotonically decreases with diminishing returns
- Significant returns to increase LUT size up to 6 and cluster size up to 3 or 4

Critical path delay for different LUT and cluster sizes

Programmable Routing

Programmable switches connect fixed metal wires

Routing Architecture

Some Parameters of Routing Architecture

- Input connection block flexibility $F_{c.in}$
 - ☐ Fraction of wire segments in a channel connected to an input pin of a block
- Output connection block flexibility $F_{c.out}$
 - Fraction of wire segments in a channel connected to an output pin of a block
- Switch block flexibility F_s
 - No. of possible connections a wire segment can make to other w wire segments

Switch Block Structure

(a)

■ E.g. Xilinx XC4000 switch block and its abstract representation

(b)

Switch block
 structure dictates
 which wire segments
 can be connected,
 and hence influences
 routability

Switch Block Structure

6 types of connections

- Routing requirement vector (*n1*, *n2*, *n3*, *n4*, *n5*, *n6*) where *ni* denotes #type-*i* connections
 - \square e.g. (0,1,1,0,1,0) is routable but (2,0,0,0,0,0) is not with the switch block below
- Want a switch block structure with max no. of routable RRVs

2 Types of Routing Switches

■ Typically, mix pass transistor switches & tristate buffer switches (*why*?)

- Small area
- Resistive switch
- Faster for short paths
- Delay grows as the square of no. of switches

Tri-state Buffer Routing Switch

- Larger area
- Regenerative driver
- Faster for long paths passing through many switches
- Delay grows linearly as no. of switches

Other Routing Architecture Factors and Parameters

- Speed, Area and Power also depend on
 - □ Channel segmentation
 - ☐ Transistor size
 - ☐ Buffer size
 - □ Ratio of pass transistor switches & tri-state buffer switches
 - Metal width
 - ☐ Wire spacing
 - □ . . .

- What is the # hops required to get from one logic block to another?
- Fewer hops → better performance
- More predictable pattern → easier CAD tool optimization

Stratix FPGA series connectivity

Clock Nets

■ Must drive all LEs.

Clock Drivers

- Clock driver tree.
- Determine optimal buffer sizes.

- How many pins?
 - ☐ Limited by technology.
 - □ Too much logic, not enough pins means we can't get signals off-chip.

Rent's Rule

- Developed by E. F. Rent (IBM) in 1960.
 - □ Experimentally derived from sample designs.
- Number of pins vs. number of components is a line on a log-log plot:
 - \square $N_p = K_p N_s^{\beta}$
- Parameters may vary based on technology:
 - \square Rent measured $\beta = 0.6$, $K_p = 2.5$.
 - \square Modern microprocessor has $\beta = 0.455$, $K_p = 0.82$.

FPGAs and Pins

- Chip capacity is growing faster than package pinout.
- Harder to use logic in a multi-FPGA design
 - □ must try to fit a large function with a small interface into the FPGA
 - □ may use time-division multiplexing for I/Os

м

References

- "Flexibility of interconnection structures for field programmable gate arrays", *IEEE J. Solid-State Circuits*, vol. 26(3), 1991.
- "Mixing Buffers and Pass Transistors in FPGA Routing Architectures", in FPGA '01.
- "The Effect of LUT and Cluster Size on Deep-Submicron FPGA Performance and Density", *IEEE Trans. VLSI Syst.* 12(3), 2004, 288-298.
- "Improving FPGA Performance and Area Using an Adaptive Logic Module", in *FPL'04*.
- "Leakage Control in FPGA Routing Fabric", in *ASP-DAC'05*.
- "FPGA Architecture: Survey and Challenges", Foundations and Trends in Electronic Design Automation, vol.2(2), 2007.
- "VPR 5.0: FPGA CAD and Architecture Exploration Tools with Single-Driver Routing, Heterogeneity and Process Scaling", in FPGA'09.
- "Should FPGAs abandon the pass-gate?", in *FPL'13*.
- "FPGA Architecture: Principles and Progression", *IEEE Circuits and Systems Magazine*, vol.21(2), 2021.