Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет Информационных технологий и управления

Кафедра Интеллектуальных информационных технологий

РАСЧЕТНАЯ РАБОТА

по дисциплине «Представление и обработка информации в интеллектуальных системах» на тему

Задача нахождение графа смежностей для неориентированного графа

Выполнил: А. А. Хачатрян

Студент группы 321702

Проверил: Н. В. Малиновская

1 ВВЕДЕНИЕ

Цель: Получить навыки формализации и обработки информации с использованием семантических сетей

Задача: Найти граф смежностей для неориентированного графа

2 СПИСОК ПОНЯТИЙ

- 1. Граф математическая абстракция реальной системы любой природы, объекты которой обладают парными связями. (абсолютное понятие)
- 2. Матрица смежности графа G с конечным числом вершин n (пронумерованных числами от 1 до n) это квадратная целочисленная матрица A размера n × n,в которой значение элемента аi,j равно числу рёбер из i-й вершины графа в j-ю вершину. (абсолютное понятие)

Рисунок 2.1 – Пример матрицы смежности

3. Неориентированный граф — граф, в котором рёбра не имеют направления. На рисунке выше показан как раз неориентированный граф. В таком неориентированном графе можно перемещаться вдоль ребра в любом из двух направлений. (абсолютное понятие)

Рисунок 2.2 – Пример простого неориентированного графа

3 ТЕСТОВЫЕ ПРИМЕРЫ

Во всех тестах графы будет приведены в сокращенной форме со скрытыми ролями элементов графа.

3.1 Tect 1

Вход:

Необходимо найти граф смежности для неориентрованного графа.

Рисунок 3.1 – Вход теста 1

Выход:

Будет выведена матрица смежности:

		1	2	3	4	5
	1	0	1	0	1	1
	2	1	0	1	1	0
Ī	3	0	1	0	0	1
	4	1	1	0	0	0
	5	1	0	1	0	0

Рисунок 3.2 – Выход теста 1

3.2 Tect 2

Вход:

Необходимо найти граф смежности для неориентрованного графа.

Рисунок 3.3 — Вход теста 2

Будет выведена матрица смежности:

	1	2	3	4	5	6
1	0	0	0	0	1	0
2	0	0	1	1	0	0
3	0	1	0	0	0	0
4	0	1	0	0	0	0
5	1	0	0	0	0	0
6	0	0	0	0	0	0

Рисунок 3.4 — Выход теста 2

3.3 Тест 3

Вход:

Необходимо найти граф смежности для неориентрованного графа.

Рисунок $\it 3.5$ — Вход теста $\it 3$

Будет выведена матрица смежности:

	1	2	3	4
1	0	1	0	0
2	1	0	1	1
3	0	1	0	0
4	0	1	0	0

Рисунок 3.6 — Выход теста 3

3.4 Tect 4

Вход:

Необходимо найти граф смежности для неориентрованного графа.

Рисунок 3.7 – Вход теста 4

Будет выведена матрица смежности:

	1	2	3
1	0	1	1
2	1	0	1
3	1	1	0

Рисунок 3.8 – Выход теста 4

3.5 Tect 5

Вход: Необходимо найти граф смежности для неориентрованного графа.

Рисунок $\it 3.9$ – Вход теста $\it 5$

Будет выведена матрица смежности:

	1	2	3	4	5	6
1	0	1	1	0	0	0
2	1	0	1	0	0	0
3	1	1	0	0	0	0
4	0	0	0	0	1	1
5	0	0	0	1	0	1
6	0	0	0	1	1	0

Рисунок 3.10 — Выход теста 5

4 ПРИМЕР РАБОТЫ АЛГОРИТМА В СЕМАНТИЧЕСКОЙ ПАМЯТИ

Задание входного графа
Граф задается пользователем:
Шаг 1. Пользователь вводит кол-во вершин в графе.

Рисунок 4.1 – Шаг 1

Шаг 2. Задаётся количество рёбер графа и с какими вершинами они соединяются.

Рисунок 4.2 – Шаг 2

Шаг 3. Создаётся пустой список для хранения смежных вершин.

	1	2	3	4	5
1	0	0	0	0	0
2	0	0	0	0	0
3	0	0	0	0	0
4	0	0	0	0	0
5	0	0	0	0	0

Рисунок 4.3 – Шаг 4

Шаг 4. Проходим по каждому ребру, связанному с текущей вершиной. Если ребро связывает текущую вершину с другой вершиной, происходит добавление этой вершины в список смежности текущей вершины.

	1	2	3	4	5
1	0	1	0	1	0
2	1	0	1	0	1
3	0	1	0	1	0
4	1	0	1	0	1
5	0	1	0	1	0

Рисунок 4.4 – Шаг 4

5 ЗАКЛЮЧЕНИЕ

В этой работе мы исследовали алгоритм поиска графа смежностей для неориентированного графа.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- [1] Кормен, Д. Алгоритмы. Построение и анализ / Д. Кормен. Вильямс, 2015. Р. 1328.
- [2] Кузнецов, О. П. Дискретная математика для инженера / О. П. Кузнецов, Г. М. Адельсон-Вельский. Энергоатомиздат, 1988. Р. 480.
 - [3] Оре, О. Теория графов / О. Оре. Наука, 1980. Р. 336.
- [4] Харарри, Ф. Теория графов / Ф. Харарри. Эдиториал УРСС, 2018. Р. 304.