HDU数学营:797646975

座位号:

杭州电子科技大学学生考试卷(A)卷

考试课程	试课程 离散数学 2			2020 年	1月	日	成 绩	
课程号	号 A0507042 教师号			任课	牧师:	性名		勤,袁友伟, 丽,吴向阳
考生姓名		学号 (8 位)		年级			专业	

一、判断题 (每题2分,共10分)

- 1. 二元关系 $\{\langle x, y \rangle | x, y \in N, x \equiv y \mod 3\}$ 不是 $N \to N$ 函数。 ()
- 2. 群中肯定没有零元。 ()
- 3. 群中次数为1的元素只有一个。 ()
- p 阶图中最多有 p-1 个割点。 ()
- 5. 有割点的连通图不可能是哈密尔顿图。

二、选择题 (每题 2 分, 共 20 分)

- 6. 下列函数是双射的为(
 - A. $f: Z \to 偶数集$, f(x) = 2x;
- B. $f: N \to N \times N$, $f(x) = \langle x, x+1 \rangle$;
- C. $f: R \to Z$, f(x) = [x] (取整数); D. $f: Z \to N$, f(x) = |x|
- 7. 集合 $A = \{1, 2, 3\}$, 它的幂集在对称差运算 \oplus 下构成群 < $\rho(A), \oplus$ >, 则群方程 $\{1, 2\} \oplus x = \{1, 3\}$ 的解为()
 - A. $\{2,3\}$;
- B. {1,2,3};
- C. {1,3};
- D. *\phi*
- 8. 一组学生进行扳手腕比臂力,设G表示这组学生组成的集合,定义G上的运算*为:

 $\forall a,b \in G$, a*b=(a,b间扳手腕的胜者)。则< G,*>是(

- A. 半群
- B. 幺半群
- C. 群 D. 以上都不是
- 9. 设i 是虚数,*是复数的乘法运算,则 $G = < \{1, -1, i, -i\}, *>$ 是群,下列为G的子群的是()
 - A. <{1}.*>
- B. $<\{-1\}, *>$
- C. $\langle \{i\}, * \rangle$ D. $\langle \{-i\}, * \rangle$
- 10. 在有理数集Q上定义的二元运算*: $\forall x, y \in Q$, $x^*y = x + y xy$, 则Q中(
 - A. 所有元素都有逆元;
- B. 有零元存在;
- C. $\forall x \in Q, x \neq 1$ 时有逆元 $x^{-1} = \frac{1}{x}$;
- D. 所有元素都无逆元。
- 11. 循环群 $< a^0, a^1, \dots a^8 >$ 的生成元数目有 () 个。
 - A 1
- B. 4
- C 6
- D 8
- 12. 一棵树有7个1度节点,3个3度结点,其余都是4度结点,则该树有()个4度结

点。

- A. 1:
- B. 2:
- C. 3:
- D. 4 .
- 13. 给定无向图 $G = \langle V, E \rangle$, 如下图所示,下面哪个边集不是边割集()。
 - $A = \{ \langle v_1, v_4 \rangle, \langle v_3, v_4 \rangle \}.$
 - B. $\{\langle v_1, v_4 \rangle, \langle v_4, v_7 \rangle\}$;

- $P = \{ \langle v_1, v_2 \rangle, \langle v_2, v_3 \rangle \}$
- 14. 一个边割集与任一生成树之间(

 - A、没有公共边; B. 偶数条公共边; C. 有一条公共边; D. 至少有一条公共边。
- 15. 下列无向图一定是树的是()
 - A. 连通图:

- B. 无回路但添加一条边则有回路的图:
- C. 每对顶点之间都有通路的图; D. 有n个顶点,n-1条边的图

三、 计算与证明题 (共70分)

16. $(10 分) < Z_6, +_6 >$ 是一个群,这里 $+_6$ 是模 6 加法, $Z_6 = \{0, 1, 2, 3, 4, 5\}$,试求出 $< Z_6, +_6 >$ 的所有非平凡子群及这些子群的所有左陪集。

17. (12 分) 设有代数系统 < G, *> , *是下表定义的运算。

*	а	b	с	d
а	с	а	d	b
b	а	b	с	d
С	d	c	b	а
d	b	d	a	С

- (1) 请说明 < G,* > 是群,并给出理由。(4分)
- (2) 求出各元素的次数。(4分)
- (3) < G.*> 是否为循环群?给出理由。如是循环群,则给出所有生成元。(4分)
- 18. (9 分) 设 < G. *>是半群, e, 是左单位元且 $\forall x \in G$, $\exists \hat{x} \in G$, 使得 $\hat{x} * x = e$, 证明:
- (1) (3 分) $\forall a.b.c \in A$. 若a*b = a*c 则 b = c
- (2)(6分) < G,*>是群(可利用(1)的结论)。

座位号:

- 19. (10 分) 设有 *A*, *B*, *C*, *D*, *E*, *F*, *G* 七个人,
- (1) 假设每两个人之间都会说某一种语言,而每一种语言恰好有两个人会说,请问他 们总共会说几种语言?请给出理由。(5分)
- (2) 假如他们会讲的语言如下: A: 英,B: 汉、英,C: 英、西班牙、俄,D: 日、 汉,E: 德、西班牙,F: 法、日、俄,G: 法、德,能否将这七个人的座位安排在圆桌
- 旁,使得每个人均能与他旁边的人交谈?请说明理由。(5分)
- **20**. (7 %) 证明: $\overline{H}_n \cap \overline{H}_n \cap \overline{H}$
- 21. (12 分) 如图所示一简单图 G (边包含实线边和虚线边)
 - (1) 求此图的点连通度 $\kappa(G)$ 和边连通度 $\lambda(G)$ (4分)。
- (2) 请问此图至少要增加多少条边才能成为欧拉图,并说明理由。 (4分)。
- (3) 此图的生成树如图中实线部分所示, 求枝 ef 的基本割集和弦

cg 的基本回路 (4分)。

- 22. (10 分)设有如下图 G = (V, E), $V = \{v_1, v_2, v_3, v_4\}$, $E = \{e_1, \dots e_7\}$
 - (1) 求G的邻接矩阵和关联矩阵(以下标顺序排列);(4分)

 - (3) 求 G 中经过 v, 的长度小于等于 3 回路有多少条。(2 分)

星光不问赶路人,时光不负有心人

HDU数学营:797646975

座位号:

杭州电子科技大学学生答题卷(A)卷

考试课程	离散数学 2	考试日期	2020 年	1月	H	成 绩		
课程号	A0507042 教师号			任课教	牧师:	姓名		勣,袁友伟, 丽,吴向阳
考生姓名		学号 (8 位)		年级			幸 亚	

一、判断题 (每格 2 分, 共 10 分)

,		,							
1	√	2	X	3	√	4	×	5	√

二、选择题 (每格 2 分, 共 20 分)

6	A	7	A	8	В	9	A	10	В
11	C	12	A	13	В	14	D	15	В

三、计算与证明题 (共 70 分)

16 (10 分) 解: 非平凡子群有: $H_1 = \{0,3\}$ 和 $H_1 = \{0,2,4\}$ (每个 2 分, 共 4 分)

 H_1 的左陪集有三个,分别为 $0H_1=\{0,3\}$, $1H_1=\{1,4\}$, $2H_1=\{2,5\}$ 。(共 3 分,错一个扣 1 分)

 H_2 的左陪集有两个,分别为 $0H_2=\{0,2,4\}$, $1H_2=\{1,3,5\}$ 。(共 3 分,错一个扣 1 分,错 2 个得 0 分

17 (12分)

- (1) i) 从运算表可看出 G 中任意两个元素都可以进行*运算,并且运算结果满足封闭性;
 - ii) 由表中的运算结果可验证*运算满足结合律。
 - iii) $\forall x \in G$, x*b=b*x=x, 所以b是< G, *>中的单位元。
 - iv) 由运算表可看出 $a^{-1} = d$, $b^{-1} = b$, $c^{-1} = c$, $d^{-1} = a$, 因而任意元素都有逆元。

综合以上四条知<G,*>是群。(每条1分,共4分)

- (2) |a|=4, |b|=1, |c|=2, |d|=4 (每个1分, 共4分)
- (3) 是循环群 (1分),

因为a和d的次数是4,等于群元素的个数,因而G = < a >和G = < d >。(1分)。 生成元有a和d。(每个1分,共2分)

18 (9分)

- (1) $\forall a,b,c \in G$, 如果 a*b=a*c, 根据已知条件知 $\exists \hat{a} \in G$, 使得 $\hat{a}*a=e$,
 - $\hat{a}^*(a^*b) = \hat{a}^*(a^*c)$, 即 $(\hat{a}^*a)^*b = (\hat{a}^*a)^*c$, 得 $e_i^*b = e_i^*c$
 - $\therefore b = c$

(3分)

(2) i) $\forall x \in G$,由已知条件知 $\exists \hat{x} \in G$,使得 $\hat{x} * x = e_i$ 。

$$\hat{x} \cdot \hat{x} * (x * e_i) = (\hat{x} * x) * e_i = e_i * e_i = e_i = \hat{x} * x$$

再由(1)的结论知 $x*e_t = x$,所以 e_t 也是右单位元,所以 e_t 就是单位元e。(3分)

ii) $\forall x \in G$, 由已知条件知 \hat{x} 是x的左逆元,

又 $\hat{x}*(x*\hat{x})=(\hat{x}*x)*\hat{x}=e*\hat{x}=\hat{x}=\hat{x}*e$, 再由(1)结论知 $x*\hat{x}=e$

- $\therefore \hat{x}$ 也是 x 的右逆元,
- $\therefore \hat{x} \, \exists x \,$ 的逆元。(3 分)

综合 i)ii)知< G,*>是群。

座位号:

19 (10分)

(1) 将 A,B,C,D,E,F,G 七个人表示为图中的 7 个顶点,由于每一种语言恰好有两个人会说,因此每种语言可表示为连接这两个人的边(2 分)。

因为任意两人间都会说某种语言,所以在图中任意两个节点间都有边相连,因此此图为完全图。 $(2\, 9)$ 完全图中边的数量就是语言的数量,因此他们共会说 (2×6) 第二个 (2×6) 第三个 (2×6)

(2) 将 A,B,C,D,E,F,G 七个人表示为图中的 7 个顶点,若两人都会讲同一种语言,则其间连一条边。得到的图如下图所示。(1分)

此图为哈密尔顿图(1分),因为存在哈密尔顿回路ABDFGECA(1分)。

因此只要按照此哈密尔顿回路的顺序将它们安排在圆桌就坐,则每个人与左右两边的人在图中都 有边相连,即他们都有共同语言可以交谈。(1分)

20 (7分)

证明:用反证法证明。

设 $G = \langle V, E \rangle + |V| = n$, |E| = n - 1.

由握手定理知:
$$\sum_{v} d(v) = 2 | E | = 2n - 2$$
。(2分)

如果假设图中至多一个节点度数为 1,则 G 中其余 n-1 个节点的度数都大于等于 2,因此节点度数之和 $\sum_{v \in I'} d(v) \ge 1 + 2(n-1) = 2n-1 > 2n-2$,与握手定理矛盾,因此假设不成立,因而至少有两个

节点度数为1. (5分)

21 (12分)

- (1) $\kappa(G)$ =3, $\lambda(G)$ =3. (每个2分, 共4分)
- (2) 需至少增加 4 条边。(2 分)

因为此图有 8 个奇点,因此如果要让此图成为欧拉图,则需将每个奇点变为偶点。因此至少需要在 8 个奇点间两两配对加一条边,因此需要 4 条边。(2 分)

(3) 枝 ef 所在的基本割集为 {ef, ab, eg, cg, cd}。(2分)

弦cg 所在的基本回路是cghfeac。(2分)

22 (10分)

(1) 邻接矩阵
$$A = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 2 \\ 1 & 1 & 0 & 1 \\ 0 & 2 & 1 & 0 \end{bmatrix}$$
 (2 分) 关联矩阵:
$$\begin{bmatrix} 2 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$
 (2 分)

(2)
$$A^2 = \begin{bmatrix} 3 & 2 & 2 & 3 \\ 2 & 6 & 3 & 1 \\ 2 & 3 & 3 & 2 \\ 3 & 1 & 2 & 5 \end{bmatrix}$$
 (1 $\%$) $A^3 = \begin{bmatrix} 7 & 11 & 8 & 6 \\ 11 & 7 & 9 & 15 \\ 8 & 9 & 7 & 9 \\ 6 & 15 & 9 & 4 \end{bmatrix}$ (1 $\%$)

因此 v₁ 到 v₃ 长度为 3 的通路有 8 条。(2 分)

(3) 经过 ν , 的长度小于等于 3 回路有6+7=13条。(2分)