QI LING

https://qiling07.github.io qiling@umich.edu | (734) 834-7174 1857 Shirley LN Apt A1, MI 48105

RESEARCH INTERESTS

I want to make computer systems more efficient and secure. Currently, my work focuses on computer micro-architecture, but my interest spans many other fields in computer architecture and operating systems.

EDUCATION

• University of Michigan
Bachelor's Degree in CS
College of Engineering

Expected graduation date: 2024
Overall GPA: 3.88/4

• Shanghai Jiao Tong University Expected graduation date: 2024
Bachelor's Degree in ECE Overall GPA: 3.79/4
UM-SJTU Joint Institute

AWARDS AND HONORS

• ACM Student Research Competition 2nd Place Award Presented a poster and gave a 10min talk at MICRO'23	2023
• ACM MICRO Student Travel Grant	2023
• Dean's Honor List	2022,2023
• Jackson and Murial Lum Scholarship 5 recipients each year	2022, 2023
• SJTU Undergraduate Excellence Scholarship	2021

PEER-REVIEWED WORKS

• Accurate Detection and Assessment of Spectre-PHT Gadget
Qi Ling and Yi Ren, Baris Kasikci, Shuwen Deng
Won 2nd Place at MICRO'23 Student Research Competition
Submitted to ASPLOS'24

August 2023
August 2023

• Towards Fine-Grained, High-Coverage Internet Monitoring at Scale
Hongyu Wu, Qi Ling, Penghui Mi, Chaoyang Ji, Yinliang Hu, Yibo Pi
Accepted by APNet'23

RESEARCH EXPERIENCE

• EFESLAB, University of Michigan Advisors: Shuwen Deng and Baris Kasikci January 2023 - August 2023

- Detecting and evaluating Spectre-PHT gadgets in programs.
- Improved modelling of Spectre-PHT gadget by accounting for Windowing Primitive.
- Identified limitations of existing Spectre-PHT gadget scanners.
- Proposed and implemented a new approach, which models Windowing Primitive at runtime.
- Validated our approach and evaluated it against SOTA scanners on 8 programs.

• Network Measurement and System Lab, SJTU Advisor: Yibo Pi

August 2021 - August 2022

Optimizing the accuracy and coverage of large-scale network monitoring.

- Challenged two root assumptions of conventional network monitoring practice with experiments.
- Proposed and implemented a greedy end-to-end network monitoring approach.
- Evaluated the accuracy, coverage and overhead of our approach.

TECHNICAL SKILLS

- **Programming Languages**: C/C++, Rust, Elm, Python, Matlab, Mathematica, Latex, JavaScript, Verilog, Assembly, Bash
- Software Tools: LLVM, Honggfuzz, Syzkaller, Linux Perf, Gem5, Git, Docker, Zmap

RELEVANT COURSE WORK

• Math Courses	
– Linear Algebra	A^+
- Discrete Mathematics	A^+
- Probabilistic Methods in Engineering	A^+
• Computer Science Courses	
 Data Structures and Algorithms 	A^{\dashv}
- Introduction to Computer Organization	A^\dashv
- Introduction to Computer Security	A^\dashv
 Introduction to Operating Systems & Advanced Projects 	A^{\dashv}
 Introduction to Cryptography 	A^{-}
- Compiler Construction	-
- Introduction to Machine Learning	_