Label Attention Network для последовательной классификации по нескольким меткам

Галина Боева

Московский физико-технический институт

Курс: Моя первая научная статья /М05-304 Эксперт: к.ф-м.н А. Зайцев

2024

Цель исследования

Проблема

Современные подходы фокусируются на архитектуре преобразования последовательных данных, вводящей self-attention к элементам в последовательности. В этом случае мы учитываем временные взаимодействия событий, но теряем информацию о взаимозависимостях меток.

Цель работы

Создание подхода, основанного на механизме собственного внимания над метками, предшествующими прогнозируемому шагу.

Задачи работы

- 1) изучение существующих моделей, работающих в области предсказаний множества меток
- разработка метода на основе внимания для предсказания множества меток
- 3) валидация разработанных методов
- 4) обоснование причинно-следственных связей с помощью построения графа на основе внимания

Обзор литературы

- Классификация с несколькими метками. Thomas Hartvigsen, Cansu Sen, Xiangnan Kong, and Elke Rundensteiner. Recurrent halting chain for early multi-label classification. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 1382–1392, 2020. Wenyu Zhang, Devesh K Jha, Emil Laftchiev, and Daniel Nikovski.Multi-label prediction in time series data using deep neural networks. arXiv preprint arXiv:2001.10098, 2020.
- метками. Xiao Shou, Tian Gao, Shankar Subramaniam, Debarun Bhattacharjya, and Kristin Bennett. Concurrent multi-label prediction in event streams. In AAAI Conference on Artificial Intelligence, 2023.

▶ Основные подходы для задачи классификации с несколькими

Fan Zhang, Shuai Wang, Yongjie Qin, and Hong Qu. Conv-based temporal sets prediction for next-basket recommendation. In 2023 International Conference on Frontiers of Robotics and Software Engineering (FRSE), pages 419–425. IEEE, 2023.

Постановка задачи

Набор меток - $\mathcal{L}=\{1,2,\ldots,L\}$. Рассмотрим набор из N последовательностей $D=(\mathbf{X}_n,\mathbf{Y}_n)_{n=1}^N$. Предполагается, что пары $(\mathbf{X}_n,\mathbf{Y}_n)$ являются случайными величинами, которые подчиняются неизвестному распределению $P(\mathbf{X},\mathbf{Y})$. Пусть $T_n=|\mathbf{Y}_n|$ обозначает размер набора меток, связанного с \mathbf{X}_n .

В нашей постановке есть ограничение на размер прошлого, доступного модели. Обозначим au означает количество событий, предшествующих рассматриваемому событию, тогда $D^u_t = (\mathbf{X}^u_j, \mathbf{Y}^u_j)^{t-1}_{j=t-\tau}$, следующих одному и тому же неизвестному распределению $P(\mathbf{X}, \mathbf{Y})$. Формально $f(\cdot)$ имеет вид:

$$f:D_t^u\to (p_1,p_2,\ldots,p_L),$$

где p_i — вероятность присутствия данной метки в наборе, для предсказания Y_t .

Цель изучения f - минимизировать ожидаемую потерю на подвыборке в соответствии с базовым распределением P:

$$\min_{f} \mathbb{E}_{(\mathbf{X}, \mathbf{Y}) \sim P}[Loss(\mathbf{Y}, f(\mathbf{X}))],$$

где Loss — это логарифмическая функция потерь.

Предложенный метод

Пусть $E=\{\mathbf{e}_0,\dots,\mathbf{e}_K\},\mathbf{e}_i\in\mathbb{R}^d$ - последовательность входных представлений, где \mathbf{e}_0 соответствует эмбеддингу \mathbf{z} , а все остальные \mathbf{e}_i соответствуют представлениям, фиксирующим историческую информацию с точки зрения метки. Вес внимания α_{ij} и обновленное представление \mathbf{e}_i' рассчитываются как:

$$\mathbf{e}_i' = \sum_{j=0}^K \alpha_{ij}(W^{\mathsf{v}} \mathbf{e}_j); \alpha_{ij} = \textit{softmax}\left(\frac{(W^q \mathbf{e}_i)^T (W^k \mathbf{e}_j)}{\sqrt{d}}\right)$$

где W^k - матрица ключевых весов, W^q - является весовой матрицей запроса, а W^v - весовой матрицей значения.

Рис.: Общий пайплайн получения глобальных представлений

Вычислительный эксперимент: Данные

Dataset	# events	Median	Max	# unique	Diff
		set size	set size	labels	
Sales	47 217	16	48	84	0.0632
Demand	5 912	13	24	33	0.0957

Таблица: Характеристики наборов данных, используемых в задачах последовательной классификации с несколькими метками.

- Demand описывает исторический спрос на продукцию нескольких складов. Функция метки означает категорию продукта, а функция количества относится к соответствующему спросу.
- Sales это исторические данные о продажах в разных магазинах.
 Метки относятся к категориям товаров, а сумма это количество проданных товаров для определенной категории.

Вычислительный эксперимент: Основные результаты

Dataset	Model	Micro-AUC↑	Macro-AUC↑	Micro-F1↑	Macro-F1↑
	LSTM	0.8670	0.7346	0.5600	0.4389
Sales	TransformerBase	0.8604	0.7206	0.5348	0.3751
	CLASS2C2AE	0.8528	0.6881	0.5116	0.4217
	LANET (ours)	0.9069	0.7627	0.6235	0.4901
	LSTM	0.8829	0.7633	0.6746	0.5929
Demand	TransformerBase	0.8624	0.7240	0.6491	0.5678
	CLASS2C2AE	0.8342	0.7079	0.6738	0.5581
	LANET (ours)	<u>0.8806</u>	<u>0.7373</u>	0.7038	<u>0.5908</u>

Таблица: Сравнение нашего метода LANET с базовыми данными по двум различным наборам данных. Выделены лучшие значения, а значения вторые по рангу подчеркнуты.

Вычислительный эксперимент: Дополнительные исследования

Рис.: а. Зависимость micro-AUC от параметра au. б. Зависимость micro-AUC от размера векторных представлений.

	Micro-AUC↑	Macro-AUC↑	Micro-F1↑	Macro-F1↑
Label-attention	0.881 ± 0.007	0.737 ± 0.017	0.704 ± 0.018	0.591 ± 0.003
Time-attention	0.837 ± 0.004	0.682 ± 0.007	0.674 ± 0.009	0.588 ± 0.002
Concat-attention	0.835 ± 0.001	0.681 ± 0.010	0.666 ± 0.000	0.587 ± 0.001
Gated-attention	0.829 ± 0.030	0.668 ± 0.048	0.672 ± 0.010	0.578 ± 0.011
Absence-indication	0.882 ± 0.004	0.742 ± 0.003	0.704 ± 0.010	0.589 ± 0.004

Таблица: Сравнение показателей при расчете посещаемости между различными видами в LANET.

CLEANN

Рис.: CLEANN

Заключение

- Проведены исследования по анализу различных наборов данных, используемых при сравнении реализованной модели LANET.
- Проведены ряд экспериментов для задачи классификации с несколькими метками на двух различных выборках и сравнение с базовыми подходами в данной области.
- ▶ Проведена оценка метрики в зависимости от гиперпараметра, отвечающего за информацию о предыдущих временных метках, размера входных представлений.

Список литературы

- 1. Kovtun E., Boeva G. Label Attention Network for sequential multi-label classification: you were looking at a wrong self-attention // arXiv 2023.
- 2. Zhuzhel, V., Grabar, V., Boeva, G., Zabolotnyi, A., Stepikin, A., Zholobov, V., Ivanova, M., Orlov, M., Kireev, I., Burnaev, E., Rivera-Castro, R., Zaytsev, A.:Continuous-time convolutions model of event sequences (2023)