Summary of the Previous Lecture

- Diagonalization of Hermitian matrices
 - Matrix representation of a Hermitian operator with eigenbasis becomes diagonal
 - Simultaneous diagonalization is possible for two commuting operators
- Function of operator: $e^{\Omega} = \sum_{n=0}^{\infty} \frac{1}{n!} \Omega^n$

$$f(\Omega) = \begin{bmatrix} f(\omega_1) & & & \\ & f(\omega_2) & & \\ & & \ddots & \\ & & f(\omega_n) \end{bmatrix} \text{ when } f(\Omega) \text{ is represented in}$$
 the eigenbasis of Ω

 $\frac{\partial}{\partial t} |\psi\rangle = i\Omega |\psi\rangle \implies |\psi(t)\rangle = e^{i\Omega t} |\psi(0)\rangle = U(t) |\psi(0)\rangle \implies \text{ When } \Omega \text{ is Hermitian, } U(t) \text{ is unitary.}$

Peep into Quantum Mechanics I

- Postulate 1: the state of the particle is represented by a vector $|\psi(t)\rangle$ in a Hilbert space
 - However, the law of quantum mechanics doesn't tell us what the state space of Hilbert space should be.
 - Therefore state space should be found by experiment
 - Example space: space composed of |0> & |1>

Peep into Quantum Mechanics II

 Postulate 2: the evolution of a "closed" quantum system is described by a unitary transformation

$$|\psi\rangle$$
 at t_1 unitary transformation $|\psi'\rangle$ at t_2

• Example:
$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, X|0\rangle = |1\rangle, X|1\rangle = |0\rangle$$

 Postulate 2' (continuous time version): the time evolution of the state of a "closed" quantum system is described by Schrödinger equation,

$$i\hbar \frac{\partial}{\partial t} |\psi\rangle = \mathcal{H} |\psi\rangle$$

- \hbar is Planck's constant, 1.054 1.054 \times 10⁻³⁴ $(J \cdot s)$
- \mathcal{H} is called *Hamiltonian*. Hamiltonian describes how the system should evolve.

Analogy with Solution of Coupled Masses

- Solve for x_1 and x_2 .
 - $m\ddot{x_1} = k(x_2 x_1) kx_1 = -2kx_1 + kx_2$
 - $m\ddot{x_2} = -k(x_2 x_1) kx_2 = kx_1 2kx_2$
 - Initial condition: non-zero displacement $x_1(0)$, $x_2(0)$ and zero velocity $\dot{x_1}(t=0) = \dot{x_2}(t=0) = 0$

$$m \begin{bmatrix} \ddot{x_1} \\ \ddot{x_2} \end{bmatrix} = \begin{bmatrix} -2k & k \\ k & -2k \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \rightarrow m \begin{bmatrix} \ddot{x_1} \\ x_2 \end{bmatrix} = \begin{bmatrix} -2k & k \\ k & -2k \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\rightarrow m \frac{d^2}{dt^2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -2k & k \\ k & -2k \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\rightarrow m \frac{d^2}{dt^2} |x\rangle = K|x\rangle \quad \stackrel{Similarity?}{\longleftarrow} i\hbar \frac{\partial}{\partial t} |\psi\rangle = \mathcal{H} |\psi\rangle \text{ Schrödinger equation}$$

$$|x(t)\rangle = U(t)|x(0)\rangle$$

$$|\psi_{final}\rangle = U|\psi_{initial}\rangle$$

•
$$\begin{bmatrix} \ddot{x_1} \\ \ddot{x_2} \end{bmatrix} = \begin{bmatrix} -2k/m & k/m \\ k/m & -2k/m \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \Omega \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 • Matrix Ω is Hermitian

- We can view x_1 , x_2 as the components of an abstract vector $|x\rangle$.
- Abstract form: $|x(t)\rangle = \Omega |x(t)\rangle$
- We can view the top equation as a projection of the abstract equation on the basis vectors |1⟩, |2⟩ which have the following physical significance:

 - An arbitrary state, in which the masses are displaced by x_1 and x_2 , is given in this basis by
 - $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} \Leftrightarrow |x\rangle = x_1 |1\rangle + x_2 |2\rangle$
 - Representation of vector $|x\rangle$ in $|1\rangle$, $|2\rangle$ basis has simple physical interpretation, but not an ideal choice of basis to solve due to **coupling between** x_1 **and** x_2 .

- Switch to a basis in which Ω is diagonal
 - Recall Ω is Hermitian \rightarrow normalized eigenvector basis $|I\rangle$, $|II\rangle$
 - The equations will become simplified into the following form:
 - $\Omega |I\rangle = -\omega_I^2 |I\rangle$
 - $\Omega | II \rangle = -\omega_{II}^2 | II \rangle$
- Find out eigenvectors
 - $\det(\Omega \lambda I) = 0$

$$\det \begin{bmatrix} -\frac{2k}{m} - \lambda & \frac{k}{m} \\ \frac{k}{m} & -\frac{2k}{m} - \lambda \end{bmatrix} = \left(\lambda + 2\frac{k}{m}\right)^2 - \left(\frac{k}{m}\right)^2 = \lambda^2 + 4\lambda\left(\frac{k}{m}\right) + 3\left(\frac{k}{m}\right)^2$$
$$= \left(\lambda + \frac{k}{m}\right)\left(\lambda + 3\frac{k}{m}\right) = 0 \implies \lambda = -\frac{k}{m} \text{ and } \lambda = -3\frac{k}{m}$$

For
$$\lambda = -\frac{k}{m} = -\omega_{\mathrm{I}}^2$$
, $\omega_{\mathrm{I}} = \sqrt{k/m}$

$$\begin{bmatrix} -\frac{2k}{m} + \frac{k}{m} & \frac{k}{m} \\ \frac{k}{m} & -\frac{2k}{m} + \frac{k}{m} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = 0 \Rightarrow a - b = 0 \Rightarrow |\mathrm{I}\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

For
$$\lambda = -\frac{3k}{m} = -\omega_{\text{II}}^2$$
, $\omega_{\text{II}} = \sqrt{3k/m}$

$$\begin{bmatrix} -\frac{2k}{m} + \frac{3k}{m} & \frac{k}{m} \\ \frac{k}{m} & -\frac{2k}{m} + \frac{3k}{m} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = 0 \Rightarrow a + b = 0 \Rightarrow |\text{II}\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

- Now the vector $|x(t)\rangle$ can be expanded in the basis of $|I\rangle$, $|II\rangle$ as $|x(t)\rangle = x_I(t)|I\rangle + x_{II}(t)|II\rangle$
- The representation of the equation $|x(t)\rangle = \Omega|x(t)\rangle$ in $|I\rangle$, $|II\rangle$ is $\begin{bmatrix} \ddot{x}_I \\ \ddot{x}_{II} \end{bmatrix} = \begin{bmatrix} -\omega_I^2 x_I \\ -\omega_{II}^2 x_{II} \end{bmatrix} = \begin{bmatrix} -\omega_I^2 x_I \\ -\omega_{II}^2 x_{II} \end{bmatrix}$

$$\begin{cases} \ddot{x_{\rm I}} = -\omega_{\rm I}^2 x_{\rm I} \\ \ddot{x_{\rm II}} = -\omega_{\rm II}^2 x_{\rm II} \end{cases}$$

- General solution of diff. eq. : $x_1(t) = A \cos \omega_1 t + B \sin \omega_1 t$
- If initial condition of $x_I(t)$ is $x_I(0)$, $A = x_I(0)$
- Use zero velocity initial condition: $\dot{x}_{\rm I}(t) = -A\omega_{\rm I}\sin\omega_{\rm I}t + B\omega_{\rm I}\cos\omega_{\rm I}t \rightarrow B = 0$
- $x_{I}(t) = x_{I}(0) \cos \omega_{I} t$
- Similarly for $x_{II}(t)$, $x_{II}(t) = x_{II}(0) \cos \omega_{II} t$
- $|x(t)\rangle = x_{\rm I}(0)\cos\omega_{\rm I}t\,|{\rm I}\rangle + x_{\rm II}(0)\cos\omega_{\rm II}t\,|{\rm II}\rangle$
- If we define initial state vector as $|x(t=0)\rangle = x_{\rm I}(0)|{\rm I}\rangle + x_{\rm II}(0)|{\rm II}\rangle$, $x_{\rm I}(0) = \langle {\rm I}|x(t=0)\rangle$ and $x_{\rm II}(0) = \langle {\rm II}|x(t=0)\rangle$
- Then $|x(t)\rangle = \langle I|x(t=0)\rangle \cos \omega_I t |I\rangle + \langle II|x(t=0)\rangle \cos \omega_{II} t |II\rangle$ $= [\cos \omega_I t |I\rangle\langle I| + \cos \omega_{II} t |II\rangle\langle II|] |x(t=0)\rangle$ $= U(t) |x(t=0)\rangle$
- → For this specific mechanical example, it is not unitary, but it is generally called as a propagator.

- Procedure
 - Step (1). Solve the eigenvalue problem of Ω Step (2). Find the coefficients , $x_{\rm I}(0) = \langle {\rm I}|x(t=0)\rangle$ and $x_{\rm II}(0) = \langle {\rm II}|x(t=0)\rangle$ for the expansion $|x(t=0)\rangle = x_{\rm I}(0)|{\rm II}\rangle + x_{\rm II}(0)|{\rm II}\rangle$ Step (3). Append to each coefficient $x_i(0)$ ($i={\rm I,II}$) a time dependence $\cos \omega_i t$ to get the coefficients in the expansion of $|x(t)\rangle$.
- Step (2): to find out $x_1(0)$ and $x_{11}(0)$ in terms of $x_1(0)$ and $x_2(0)$:

$$x_{I}(0) = \langle I | x(t=0) \rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_{1}(0) \\ x_{2}(0) \end{bmatrix} = \frac{x_{1}(0) + x_{2}(0)}{\sqrt{2}}$$

$$x_{II}(0) = \langle II | x(t=0) \rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \frac{x_1(0) - x_2(0)}{\sqrt{2}}$$

- Step (3): $|x(t)\rangle = \frac{x_1(0) + x_2(0)}{\sqrt{2}} \cos \omega_{\rm I} t |{\rm I}\rangle + \frac{x_1(0) x_2(0)}{\sqrt{2}} \cos \omega_{\rm II} t |{\rm II}\rangle$ where $\omega_{\rm I} = \sqrt{k/m}$ and $\omega_{\rm II} = \sqrt{3k/m}$
- Find out the location of mass: $x_1(t) = \langle 1|x(t)\rangle$

By using
$$\langle 1|I\rangle = \frac{1}{\sqrt{2}}$$
 and $\langle 1|II\rangle = \frac{1}{\sqrt{2}}$, $x_1(t) = \frac{x_1(0) + x_2(0)}{2}\cos\omega_I t + \frac{x_1(0) - x_2(0)}{2}\cos\omega_{II} t$

Similarly,
$$x_2(t) = \langle 2|x(t)\rangle = \frac{x_1(0) + x_2(0)}{2}\cos\omega_{\rm I}t - \frac{x_1(0) - x_2(0)}{2}\cos\omega_{\rm II}t$$

Propagator

Displacement:

$$\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} \frac{\cos \omega_{\mathrm{I}}t + \cos \omega_{\mathrm{II}}t}{2} & \frac{\cos \omega_{\mathrm{I}}t - \cos \omega_{\mathrm{II}}t}{2} \\ \frac{\cos \omega_{\mathrm{I}}t - \cos \omega_{\mathrm{II}}t}{2} & \frac{\cos \omega_{\mathrm{I}}t + \cos \omega_{\mathrm{II}}t}{2} \end{bmatrix} \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix}$$

- Eigenbasis: $|x(t)\rangle = [\cos \omega_I t | I \rangle \langle I | + \cos \omega_{II} t | II \rangle \langle II |] | x(t=0) \rangle$
- The final-vector is obtained from the initial-state vector upon multiplication by a matrix.
- This matrix is independent of the initial state. → Propagator
- Procedure to solve $|x(t)\rangle = \Omega |x(t)\rangle$ using propagator Step (1). Solve the eigenvalue problem of Ω Step (2). Construct the propagator U in terms of the eigenvalues and eigenvectors.

Step (3).
$$|x(t)\rangle = U(t)|x(t=0)\rangle$$

Normal Modes

- Two initial states for which the time evolution is particularly simple
 → Eigenkets |I⟩, |II⟩
- $|I(t)\rangle = U(t)|I\rangle = [\cos \omega_I t |I\rangle\langle I| + \cos \omega_{II} t |II\rangle\langle II|]|I\rangle = \cos \omega_I t |I\rangle$
- These two modes of vibration are called normal modes

$$|I\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix} \Rightarrow |I(t)\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} \cos\left(\sqrt{\frac{k}{m}} \ t\right) \\ \cos\left(\sqrt{\frac{k}{m}} \ t\right) \end{bmatrix} \Rightarrow \text{Center of mass mode}$$

$$|II\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix} \Rightarrow |II(t)\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} \cos\left(\sqrt{\frac{3k}{m}} t\right) \\ -\cos\left(\sqrt{\frac{3k}{m}} t\right) \end{bmatrix} \Rightarrow \text{ Breathing mode}$$

• If the system starts off in a linear combination of $|I\rangle$ and $|II\rangle$, it evolves into the corresponding linear combination of the normal modes $|I(t)\rangle$ and $|II(t)\rangle$. Propagator $U(t)=[\cos\omega_I t\,|I\rangle\langle I|+\cos\omega_{II}t\,|II\rangle\langle II|]$ projects on each of them.

Summary of previous lecture

- $m \frac{\partial^2}{\partial t^2} |x\rangle = \Omega |x\rangle$ can be solved by finding U(t) evolution operator satisfying $|x(t)\rangle = U(t)|x(0)\rangle$
 - The same solution $|x(t)\rangle$ can be represented in either $|1\rangle$, $|2\rangle$ basis or $|I\rangle$, $|II\rangle$ basis
 - $|x\rangle = x_1|1\rangle + x_2|2\rangle = x_1\begin{bmatrix}1\\0\end{bmatrix} + x_2\begin{bmatrix}0\\1\end{bmatrix}$
 - $|x\rangle = x_{\mathrm{I}}|\mathrm{I}\rangle + x_{\mathrm{II}}|\mathrm{II}\rangle = x_{\mathrm{I}}\frac{1}{\sqrt{2}}\begin{bmatrix}1\\1\end{bmatrix} + x_{\mathrm{II}}\frac{1}{\sqrt{2}}\begin{bmatrix}1\\-1\end{bmatrix}$

- The normal modes have $\omega_{\rm I} = \sqrt{k/m}$ and $\omega_{\rm II} = \sqrt{3k/m}$ frequencies.
- Energy of the simple harmonic oscillator
 - $m\ddot{x} = kx$ with zero initial velocity $\left(\omega \equiv \sqrt{\frac{k}{m}}\right)$

- $x = A\cos\sqrt{\frac{k}{m}}t \equiv A\cos\omega t \implies v = -A\omega\sin\omega t$
- Total energy: $\frac{1}{2}mv^2 + \frac{1}{2}kx^2 = \frac{1}{2}m(-A\omega\sin\omega t)^2 + \frac{1}{2}k(A\cos\omega t)^2$
- $= \frac{1}{2}m\omega^2 A^2 \sin^2 \omega t + \frac{1}{2}kA^2 \cos^2 \omega t = \frac{1}{2}m\omega^2 A^2$