Отчет по части I

Отчет Аскара

Часть 1. Зависимость от параметров распределений

Значения на графиках — это среднее по M=100 независимым реализациям для каждого набора параметров. Число вершин графа n=100, параметр k=5 для kNN-графа и порог d=1 для DIST-графа.

- 1. **kNN-граф:** Среднее число компонент связности практически не зависит от параметра α SkewNormal (почти горизонтальная кривая около 6–6.5). Для Student-t с ростом ν число компонент убывает, то есть при «тяжёлых хвостах» (ν меньше) граф рассоединён сильнее.
- 2. **DIST-граф:** Среднее кликовое число минимально при $\alpha=0$ и симметрично растёт при удалении от нуля (от ~ 40 до ~ 70). Для Student-t кликовое число увеличивается с ν (от ~ 30 при $\nu\approx 1$ до ~ 40 –45 при $\nu\approx 10$).

Часть 2. Зависимость от n, k и d

Значения на графиках — это среднее по M=100 независимым реализациям для каждого набора параметров.

• kNN-граф:

- При увеличении числа вершин n (при $\alpha = \alpha_0, \nu = \nu_0, k = 5$) среднее число компонент связности возрастает.
- При увеличении числа соседей k (при $\alpha=\alpha_0, \nu=\nu_0, n=100$) число компонент резко убывает.

• DIST-граф:

- При увеличении числа вершин n (при $\alpha = \alpha_0$, $\nu = \nu_0$, d = 1) среднее кликовое число растёт, причём скорость роста выше для SkewNormal-графов.
- При увеличении d (при $\alpha=\alpha_0,\ \nu=\nu_0,\ n=100$) кликовое число также увеличивается, и для SkewNormal-графов этот рост быстрее. Рост вызван тем, что точки чаще попадают в радиус d.

Часть 3. Разделяющая способность статистик

Построено по $M_{\rm large}=5000$ реализаций каждого распределения.

- kNN-граф: Распределения числа компонент при H_0 и H_1 сильно перекрываются низкая разделяющая способность, мощность маленькая.
- **DIST-граф:** Распределения кликового числа сдвинуты друг от друга: для SkewNormal значения пик около 50, для Student-t около 39. Красная зона область принятия H_1 : мощность выше.

Отчет Ярослава

Часть 1. Влияние параметров распределений

Среднее по M=100 реализациям, $n=100,\,k=5$ (kNN) / d=1 (DIST).

- 1. **kNN-граф:** Число треугольников почти не меняется при изменении λ Weibull (около 150–151); при увеличении дисперсии σ у Lognormal падает с 151 до 91.
- 2. **DIST-граф:** Кликовое число уменьшилось с 62 до 27 при росте λ (Weibull) и с 55 до 50 при росте σ (Lognormal).

Часть 2. Зависимость от n, k и d

Выводы

- 1. Для метрики «треугольники» оба распределения ведут себя почти одинаково выбор распределения практически не влияет на итог.
- 2. Для «кликового числа» Weibull формирует более плотные графы: прирост относительно Lognormal усиливается с ростом n и d.
- 3. Чувствительность метрик:
 - «Треугольники» сильнее реагируют на увеличение k (приблизительно $\propto k^3$), чем на n (приблизительно $\propto n$).
 - \bullet «Клики» линейны по n, но по d быстро достигают плато.

Часть 3. Проверка статистических гипотез

- Мощность теста по треугольникам (kNN) составляет 0.1 при ошибке I рода 0.05.
- \bullet Мощность теста по кликовому числу (DIST) 0.78 при ошибке 0.03.