绪论2:数据和程序的存储与表示

内容

- (1) 计算机的数字系统有哪些?
- (2) 如何进行不同进制数之间的转换?
- (3) 计算机中如何表示正、负数?
- (4) 计算机中如何表示整数和小数?

1、计算机的数字系统

■基数为R的进制数: 逢R进1

进制	基数	进位原则	基本符号
2进制	2	逢2进1	0 1
10进制	10	逢10进1	0123456789
16进制	16	逢16进1	0123456789ABCDEF
10年前	10	度10近1	U I Z 3 4 3 0 / 0 9 A B C D E F

- ■所有的计算机都采用2进制的数字系统
- ■优点: 易于实现、运算简单、可靠性高、通用性强

2、不同进制数之间的转换

■任意R进制数X,其10进制值可表示为

$$V(X) = \sum_{i=0}^{n-1} X_i R^i + \sum_{i=-1}^{-m} X_i R^i$$

整数部分 小数部分

■10进制数

$$8844.43 = 8000 + 800 + 40 + 4 + 0.4 + 0.03$$
$$= 8x10^{3} + 8x10^{2} + 4x10^{1} + 4x10^{0} + 4x10^{-1} + 3x10^{-2}$$

- ■常用的转换形式有:
 - (1) 2进制、16进制←→10进制
 - (2)2进制←→16进制

2.A、2/16进制数→十进制的转换

$$V(X) = \sum_{i=0}^{n-1} X_i R^i + \sum_{i=-1}^{-m} X_i R^i$$

整数部分 小数部分

■各位数与权相成,积相加

$$(10001001.11)_2 = 1x2^7 + 1x2^3 + 1x2^0 + 1x2^{-1} + 1x2^{-2}$$

= $(137.75)_{10}$

$$(0.2A)_{16} = 2x16^{-1} + 10x16^{-2}$$

= $(0.1640625)_{10}$

2.B、十进制数→R进制的转换

2.C、十进制数→R进制的转换

■小数转换: 乘R取整

例: 10进制整0.3125

2.D、16进制 ←→2进制

■ 1:4 (每位16进制数相当于4位2进制数)

$$(1011010.10)_2 = (0101 1010 .1000)_2 = (5A.8)_{16}$$

 $(F7)_{16} = (1111 0111)_2 = (11110111)_2$

练习: 2进制数到10进制数

2进制数	10进制值	
0000 0001	=2 <mark>0</mark>	=1
0000 0010	=2 <mark>1</mark>	=2
0000 0100	=2 <mark>2</mark>	=4
0000 1000	=2 <mark>3</mark>	=8
0001 0000	=2 <mark>4</mark>	=16
0010 0000	=2 <mark>5</mark>	=32
0100 0000	=2 <mark>6</mark>	=64
1000 0000	=27	=128
0100 0010	=2 ⁶ +2 ¹	=66

练习: 2进制数到16进制数

2进制	16进制
0000 0001	=0x01
0000 0010	=0x02
0000 0011	=0x03
0000 0100	=0x04
0000 0101	=0x05
0000 0110	=0x06
0000 0111	=0x07
0000 1000	=0x08
0000 1001	=0x09

2进制	16进制
0000 1010	=0x0A
0000 1011	=0x0B
0000 1100	=0x0C
0000 1101	=0x0D
0000 1110	=0x0E
0000 1111	=0x0F

练习: 2进制数到16进制数

2进制	16进制
0001 1000	=0x18
0011 1100	=0x3C
1110 0000	=0xE0
0101 0100	=0x54
0111 0111	=0x77
1001 1010	=0x9A
1011 0010	=0xB2
0110 0001	=0x61
1111 0100	=0xF4

2进制	16进制
1000 0101	=0x85
1010 1010	=0xAA
0101 1011	=0x5B
0110 1101	=0x6D
1101 0000	=0xD0
1110 0100	=0xE4
0001 0111	=0x17
0011 1000	=0x38
1001 1001	=0x99

• 3.A 数据的不同理解

• 数据在存储器中的表示

• 数据在存储器中的表示

• 3.B -1如何表示

$$0000$$
 -0001
 $????$

• -1的表示

• 3.C 负数的一般表达

3.6 贝奴的一	对农丛	—特点 :
二进制补码	表示的数字	—— 1. 以 0 开头的为非负数,
0111	7	
0110	6	以1开头的为负数。
0101	5	2. 从0000到0111是递
0100	4	增的。从1000~1111是递
0011	3	增的。
0010	2	3. 二进制数据0111表
0001	1	
0000	0	达的是最大整数7,0111只
1111	-1	一要加上1,就会变成1000,
1110	-2	而1000表达的是最小数字 -
1101	-3	8 。
1100	-4	4. 0和-1同样只有一步
1011	-5	
1010	-6	之遥,但是表达他们的二
1001	-7	进制数字却是最小的0000
1000	-8	和最大的1111。

• 补码环

3.D 补码的计算

补码的一大优点就是计算机在做加法或减法运算时,不需要考虑补码的存在而直接运算,结果却依然正确。我们可以利用竖式计算-2+5,以及2-5(-2、2、5在四位补码系统中分别为1110、0010和0101):

$$\begin{array}{c|ccccc}
 & 1110 & & (1)0010 \\
 & + & 0101 & & - & 0101 \\
\hline
 & (1) & 0011 & & 1101
\end{array}$$

从左式中我们可以看到,1110(-2)和0101(5)求和,得到10011,去掉首位进位1,留下0011,即为答案3。右式中,0010(2)强行借位后减去0101(5),得到1101,在表15中我们看到,1101即为答案-3。

3.E 补码的计算中的溢出

这种计算其实不总是正确的,如果 0110+0110,也就是 6+6,会得到1100。而1100在补码表示的是-4,却不是我们希望的12。究其原因是12已经超出了四位补码系统所能表达的最大数字7(0111)。我们把这种现象叫做"溢出"。"溢出"的问题我们之前在上一讲中已经介绍了,防止溢出通常是采用更多的数据位,有时候调整一下计算次序也可以避免溢出。

3.F 扩展到N位的补码

我们可以将四位补码推广到N位补码系统。在N位补码系统中,有以下规律:

- 1. 各位全部为0, 总是表示0;
- 2. 各位全部为1, 总是表示 -1;
- 3.首位为0,后面全部为1,表示的是最大整数:2的N-1次方减去1;
- 4.首位为1,后面全部为0,表示的是最小整数:负的2的N-1次方。

THE HELLINE	数值	8位
	127	0111 1111
75	126	0111 1110
正	125	0111 1101
数		
部分	2	0000 0010
Л	1	0000 0001
	0	0000 0000
	-1	1111 1111
4	-2	1111 1110
负	-3	1111 1101
数	***	
部分	-126	1000 0010
20	-127	1000 0001
	-128	1000 0000

	数值	16位
	32767	0111 1111 1111 1111
	32766	0111 1111 1111 1110
正 ***	32765	0111 1111 1111 1101
数		
部分	2	0000 0000 0000 0010
77	1	0000 0000 0000 0001
	0	0000 0000 0000 0000
	-1	1111 1111 1111 1111
4	-2	1111 1111 1111 1110
负 ***	-3	1111 1111 1111 1101
数		440
部分	-32766	1000 0000 0000 0010
73	-32767	1000 0000 0000 0001
	-32768	1000 0000 0000 0000

	数值	32位
	$2^{31}-1$	0111 1111
Œ	$2^{31}-2$	0111 1110
数数	$2^{31} - 3$	0111 1101
部		***
分	2	0000 0010
77	1	0000 0001
	0	0000 0000
负	-1	1111 1111
	-2	1111 1110
数	-3	1111 1101
部		
分	$-2^{31}+2$	1000 0010
	$-2^{31}+1$	1000 0001
	-2^{31}	1000 0000

	数值	64位
	$2^{63}-1$	0111 1111
ĪĒ	$2^{63}-2$	0111 1110
数数	$2^{63} - 3$	0111 1101
部		
分	2	0000 0010
73	1	0000 0001
	0	0000 0000
	-1	1111 1111
负	-2	1111 1110
数数	-3	1111 1101
部		
分	$-2^{63}+2$	1000 0010
	$-2^{63}+1$	1000 0001
	-2^{63}	1000 0000

3.C、正数和负数的表示

- ■在计算机中,各种信息都是以二进制编码形式存储
- ■一般用最高位作为符号位,0表示正,1表示负
- ■计算机中一般用原码表示"正数",用"补码"表示负数
- ■概念:原码、反码、补码

■"符号一绝对值"表示的编码称为原码

原码的表示规则和优缺点

- ■最左1位作符号位, "符号一绝对值"表示法
- ■表示规则:正数不变、负数用"1-绝对值"表示

2进制真值	原码表示的机器数
+0101011	00101011
-0101011	10101011
+0.1011	0.1011
-0.1011	1.1011
+0	0000000
- 0	10000000

- ■优点: 简单直观 与真值转换方便
- ■缺点: 判0麻烦 符号处理且很复杂

反码的表示规则

- ■正数的反码与原码相同
- ■负数的反码符号位与原码相同,其余取反(0变1、1变0)

2进制真值	原码表示的机器数	反码表示的机器数
+0101011	00101011	00101011
—0101011	10101011	11010100
+0.1011	0.1011	0.1011
-0.1011	1.1011	1.0100
+0	0000000	0000000
-0	10000000	11111111

补码的表示规则

■正数:原码、反码、补码相同

■负数:补码=反码的最后一位+1

2进制真值	反码表示的机器数	补码表示的机器数
+0101011	00101011	00101011
-0101011	11010100	11010101
+0.1011	0.1011	0.1011
-0.1011	1.0100	1.0101
+0	0000000	0000000
- 0	11111111	0000000

7、整数的表示

■用"补码"表示

■正整数:原码

■负整数: 反码最后一位+1

8、浮点数的表示

3.1415926535

312563810.28

-11.2357823122

0.000000000963

0.31415926535x10¹

0.31256381028x109

-0.112357823122x10²

 0.963×10^{-9}

■ 整数部分.小数部分

■科学表示法: N=MxRE

尾数,N的 有效数字

基数

阶码:小数点的位置

8、浮点数的表示

■float科学表示法: N=MxRE

符号位(s)	阶码(E)	尾数(M)
1	8	23

■float表示法范围.

$$-3.4 \times 10^{38}$$
 -3.4×10^{-38} , $0, 3.4 \times 10^{-38}$ -3.4×10^{38}

■double科学表示法: N=MxRE

符号位(s)	阶码(E)	尾数(M)
1	11	52

■double表示法范围.

$$-1.7x10^{308}$$
 $-1.7x10^{-308}$, 0 , $1.7x10^{-308}$ $-1.7x10^{308}$

9、字符的表示

- (1) 西文字符(如: a, b, c, d, 1, 2, 3, 4, A, B, C等)
- ■ASCII码:用7位二进制数表示一个字符,可表示128个字符
- ■EBCDIC码: 用8位二进制数表示一个字符,可表示256个字符 (2)汉字
- ■国标码(GB2312-80标准): 应用较为广泛的是"国家标准信息交换用汉字编码" 二字节码,用二个七位二进制数编码表示一个汉字。
 - (3) 日、韩、俄等全球其他语言字符(如:サぶアセ)
- ■Unicode 全球统一多字节编码字符集

低4位

编七位ASCII码表

高3位

	000	001	010	011	100	101	110	111
0000	NUL	DLE		0	@	P		p
0001	SOH	DC1	!	1	A	Q	a	q
0010	STX	DC2	"	2	В	R	b	r
0011	ETX	DC3	#	3	C	S	c	S
0100	ЕОТ	DC4	\$	4	D	Т	d	t
0101	ENQ	NAK	0/2	5	F	U	A	
0110	ACK	Ş	0x31	6 7	0x41	V	0x61	7
0111	BEL	Еть		7	U	W	g	W
1000	BS	CAN	(8	Н	X	h	X
1001	НТ	EM)	9	I	Y	i	у
1010	LF	SUB	*	:	J	Z	j	Z
1011	VT	ESC	+	••	K	[k	{
1100	FF	FS	,	<	L	\	1	
1101	CR	GS	_	=	M]	m	}
1110	SO	RS	0	>	N		n	
1111	SI	US	/	?	О		0	DEL

模数与补码

- ■模数:类似于某种计量器的容量,如时钟。
- ■R进制的模数=R
- ■模运算、取余运算(mod): C++中用%作为模运算符
- ■R进制的模运算结果>=0,<=R-1
- ■模运算、取余运算示例:

$$3\%12 = 3$$
 $14\%12 = 2$

■模运算的特点: 减法统一为加法 8-2 = (8+10)%12

10是-2在模12下的补码

课后阅读

(1) 《计算机高级语言》学习材料,Page 4

课后作业

(1) 完成《计算机高级语言》第1次作业

谢 谢!