# 4: SINGLE-PERIOD MARKET MODELS MATH3975

Marek Rutkowski

School of Mathematics and Statistics University of Sydney

Semester 2, 2020

# General Single-Period Market Models

- The main differences between the elementary and general single period market models are:
  - The investor is allowed to invest in several risky securities instead of only one.
  - The sample set  $\Omega$  has more  $k \geq 2$  elements, that is, there are more possible states of the world at time t=1 than only two.
- The sample space is  $\Omega = \{\omega_1, \omega_2, \dots, \omega_k\}$  with  $\mathcal{F} = 2^{\Omega}$ .
- An investor's personal beliefs about the future behaviour of stock prices are given by the probabilities  $\mathbb{P}(\omega_i) = p_i > 0$  for  $i = 1, 2, \dots, k$ .
- The price of the jth stock is denoted by  $S_t^j$  for t=0,1 and  $j=1,\ldots,n$ . Then  $S_0^j>0$  and  $S_1^j$  is a random variable on  $\Omega$ .
- The savings account B equals  $B_0=1$  and  $B_1=1+r$  for some constant r>-1.
- A contingent claim  $X = (X(\omega_1), \dots, X(\omega_k))$  is a random variable on the probability space  $(\Omega, \mathcal{F}, \mathbb{P})$ .

### Questions

- ① Under which conditions on  $B, S^1, \ldots, S^n$  a general single-period market model  $\mathcal{M} = (B, S^1, \ldots, S^n)$  is arbitrage-free?
- 4 How to define the concept of a risk-neutral probability measure for a model?
- Mow to use risk-neutral probability measures to analyse a general single-period market model?
- Under which conditions a general single-period market model is complete?
- Is completeness of a market model related to risk-neutral probability measures?
- 6 How to define an arbitrage price of an attainable claim?
- Can we still apply the risk-neutral valuation formula to compute the 'fair' price of an attainable claim?
- Mow to deal with contingent claims that are not attainable?
- How to use the class of risk-neutral probability measures to value non-attainable claims?

### Outline

We will examine the following issues:

- Trading Strategies and Arbitrage-Free Models
- Fundamental Theorem of Asset Pricing (FTAP)
- Examples of Market Models
- Risk-Neutral Valuation of Contingent Claims
- Stochastic Volatility Model
- Ompleteness of a Market Model

#### PART 1

TRADING STRATEGIES AND ARBITRAGE-FREE MODELS

### Trading Strategy

#### Definition (Trading Strategy)

A **trading strategy** (or a **portfolio**) in a general single-period market model is defined as the vector

$$(x, \phi^1, \dots, \phi^n) \in \mathbb{R}^{n+1}$$

where x is the initial wealth of an investor and  $\phi^j$  stands for the number of shares of the jth stock purchased/sold at time t=0.

• If an investor adopts the trading strategy  $(x,\phi^1,\ldots,\phi^n)$  at time t=0 then the cash value of his portfolio at time t=1 equals

$$V_1(x,\phi^1,\ldots,\phi^n) := \left(x - \sum_{j=1}^n \phi^j S_0^j\right) (1+r) + \sum_{j=1}^n \phi^j S_1^j.$$

# Wealth Process of a Trading Strategy

#### Definition (Wealth Process)

The **wealth process** (or the **value process**) of a trading strategy  $(x, \phi^1, \dots, \phi^n)$  is the pair

$$(V_0(x,\phi^1,\ldots,\phi^n),V_1(x,\phi^1,\ldots,\phi^n)).$$

The real number  $V_0(x,\phi^1,\ldots,\phi^n)$  is simply the initial wealth x so that

$$V_0(x,\phi^1,\ldots,\phi^n) := x$$

and the real-valued random variable  $V_1(x,\phi^1,\dots,\phi^n)$  represents the cash value of the portfolio at time t=1

$$V_1(x,\phi^1,\ldots,\phi^n) := \left(x - \sum_{j=1}^n \phi^j S_0^j\right) (1+r) + \sum_{j=1}^n \phi^j S_1^j.$$

### **Undiscounted Gains Process**

- Nominal profits or losses an investor obtains from the investment can be calculated by subtracting  $V_0(\cdot)$  from  $V_1(\cdot)$ . That quantity defines the undiscounted gains process but it is not very useful.
- A 'gain' can be negative; hence it may also represent a 'loss'.

#### Definition (Gains Process)

The (undiscounted) gains process is defined as  $G_0(x,\phi^1,\ldots,\phi^n)=0$  and

$$G_1(x, \phi^1, \dots, \phi^n) := V_1(x, \phi^1, \dots, \phi^n) - V_0(x, \phi^1, \dots, \phi^n)$$
$$= \left(x - \sum_{j=1}^n \phi^j S_0^j\right) r + \sum_{j=1}^n \phi^j \Delta S_1^j$$

where the random variable  $\Delta S_1^j=S_1^j-S_0^j$  represents the nominal change in the price of the  $j{\rm th}$  stock.

### Discounted Stock Price and Value Process

 To understand whether the jth stock appreciates in real terms, we consider the discounted stock prices of the jth stock

$$\widehat{S}_0^j := S_0^j = \frac{S_0^j}{B_0}, \quad \widehat{S}_1^j := \frac{S_1^j}{1+r} = \frac{S_1^j}{B_1}.$$

• Similarly, we define the **discounted wealth process** as

$$\widehat{V}_0(x,\phi^1,\ldots,\phi^n) := x, \quad \widehat{V}_1(x,\phi^1,\ldots,\phi^n) := \frac{V_1(x,\phi^1,\ldots,\phi^n)}{B_1}.$$

• It is easy to see that

$$\widehat{V}_{1}(x,\phi^{1},\dots,\phi^{n}) = \left(x - \sum_{j=1}^{n} \phi^{j} S_{0}^{j}\right) + \sum_{j=1}^{n} \phi^{j} \widehat{S}_{1}^{j}$$
$$= x + \sum_{j=1}^{n} \phi^{j} (\widehat{S}_{1}^{j} - \widehat{S}_{0}^{j}).$$

### Discounted Gains Process

#### Definition (Discounted Gains Process)

The discounted gains process for the investor is defined as

$$\widehat{G}_0(x,\phi^1,\ldots,\phi^n)=0$$

and

$$\widehat{G}_1(x,\phi^1,\ldots,\phi^n) := \widehat{V}_1(x,\phi^1,\ldots,\phi^n) - \widehat{V}_0(x,\phi^1,\ldots,\phi^n)$$
$$= \sum_{j=1}^n \phi^j \Delta \widehat{S}_1^j$$

where  $\Delta \widehat{S}_1^j = \widehat{S}_1^j - \widehat{S}_0^j$  is the change in the discounted price of the jth stock.

• Notice that the discounted gains process does not depend on the initial wealth x so that  $\widehat{G}_1(x,\phi^1,\ldots,\phi^n)=\widehat{G}_1(0,\phi^1,\ldots,\phi^n)$  for every  $x\in\mathbb{R}$ .

### Arbitrage: Definition

- The concept of an arbitrage opportunity in a general single-period market model is essentially the same as in the elementary market model.
- It is worth noting that in the definition below the real-world probability  $\mathbb P$  can be replaced by any equivalent probability measure  $\mathbb Q$ .

#### Definition (Arbitrage)

A trading strategy  $(x,\phi^1,\dots,\phi^n)$  in a general single-period market model is called an **arbitrage opportunity** if

- A.1.  $V_0(x, \phi^1, \dots, \phi^n) = 0$ ,
- A.2.  $V_1(x, \phi^1, \dots, \phi^n)(\omega_i) \ge 0$  for  $i = 1, 2, \dots, k$ ,
- A.3. There exists  $\omega \in \Omega$  such that  $V_1(x, \phi^1, \dots, \phi^n)(\omega) > 0$ .

### Arbitrage: Equivalent Conditions

Under A.2, the following condition A.3' is equivalent to A.3:

 $\bullet \ \ \mathsf{A.3'.} \ \ \mathbb{E}_{\mathbb{P}}\left\{V_1(x,\phi^1,\dots,\phi^n)\right\}>0, \ \mathsf{that} \ \mathsf{is,}$ 

$$\sum_{i=1}^k V_1(x,\phi^1,\ldots,\phi^n)(\omega_i) \mathbb{P}(\omega_i) > 0.$$

It is important to observe that the definition of arbitrage can be formulated using the discounted wealth and gains processes.

#### Proposition (4.1)

A trading strategy  $(x, \phi^1, \dots, \phi^n)$  in a general single-period market model is an arbitrage opportunity if and only if one of the following conditions holds:

- **1** Assumptions A.1-A.3 in the definition of an arbitrage opportunity hold with  $\widehat{V}(x,\phi^1,\ldots,\phi^n)$  instead of  $V(x,\phi^1,\ldots,\phi^n)$ .
- 2 x=0 and A.2-A.3 in the definition of an arbitrage opportunity are satisfied with  $\widehat{G}_1(x,\phi^1,\ldots,\phi^n)$  instead of  $V_1(x,\phi^1,\ldots,\phi^n)$ .

### Proof of Proposition 4.1

#### Proof of Proposition 4.1: First step.

We will show that the following two statements are true:

- The definition of an arbitrage opportunity and condition 1 in Proposition 4.1 are equivalent.
- In Proposition 4.1, condition 1 is equivalent to condition 2.

To prove the first statement, we use the relationships between  $V(x,\phi^1,\dots,\phi^n)$  and  $\widehat{V}(x,\phi^1,\dots,\phi^n)$ :

$$\widehat{V}_0(x, \phi^1, \dots, \phi^n) = V_0(x, \phi^1, \dots, \phi^n) = x,$$

$$\widehat{V}_1(x, \phi^1, \dots, \phi^n) = \frac{1}{1+r} V_1(x, \phi^1, \dots, \phi^n).$$

This shows that the first statement holds.



### Proof of Proposition 4.1

#### Proof of Proposition 4.1: Second step.

• To prove the second statement, we recall the relationship between  $\widehat{V}(x,\phi^1,\ldots,\phi^n)$  and  $\widehat{G}_1(x,\phi^1,\ldots,\phi^n)$ 

$$\widehat{G}_{1}(x,\phi^{1},\ldots,\phi^{n}) = \widehat{V}_{1}(x,\phi^{1},\ldots,\phi^{n}) - \widehat{V}_{0}(x,\phi^{1},\ldots,\phi^{n})$$
$$= \widehat{V}_{1}(x,\phi^{1},\ldots,\phi^{n}) - x.$$

It is now clear that for x = 0 we have

$$\widehat{G}_1(x,\phi^1,\ldots,\phi^n) = \widehat{V}_1(x,\phi^1,\ldots,\phi^n).$$

Hence the second statement is true as well.

• We have already observed that  $\widehat{G}_1(x,\phi^1,\ldots,\phi^n)$  does not depend on x since  $\widehat{G}_1(x,\phi^1,\ldots,\phi^n) = \sum_{j=1}^n \phi^j \Delta \widehat{S}_j^j$ .



### Verification of the Arbitrage-Free Property

- It can be sometimes hard to check directly whether arbitrage opportunities exist in a given market model, especially when dealing with several risky assets or in the multi-period setup.
- We have introduced the risk-neutral probability measure in the elementary market model and we noticed that it can be used to compute the arbitrage price of any contingent claim.
- We will show that the concept of a risk-neutral probability measure is also a convenient tool for checking whether a general single-period market model is arbitrage-free or not.
- In addition, we will argue that a risk-neutral probability measure can also be used for the purpose of valuation of a contingent claim (either attainable or not attainable).

# Risk-Neutral Probability

#### Definition (Risk-Neutral Probability)

A probability measure  $\mathbb Q$  on  $\Omega$  is called a **risk-neutral probability measure** for a general single-period market model  $\mathcal M=(B,S^1,S^2,\ldots,S^n)$  if:

- R.1  $\mathbb{Q}(\omega_i) > 0$  for all  $\omega_i \in \Omega$ ,
- R.2  $\mathbb{E}_{\mathbb{Q}}(\Delta \widehat{S}_1^j) = 0$  for  $j = 1, 2, \dots, n$ .

We denote by  $\mathbb{M}$  the class of all risk-neutral probability measures for  $\mathcal{M}$ .

- ullet R.1 means that  $\mathbb Q$  and  $\mathbb P$  are equivalent probability measures on  $\Omega.$
- ullet R.2 is equivalent to  $\mathbb{E}_{\mathbb{Q}}(\widehat{S}_1^j)=\widehat{S}_0^j$  or, more explicitly,

$$\mathbb{E}_{\mathbb{Q}}(S_1^j) = (1+r)S_0^j.$$

• A risk-neutral probability measure is also known as a martingale measure.

### Example A: Stock Prices

#### Example (Stock prices)

- We consider the following model featuring two stocks  $S^1$  and  $S^2$  given on the sample space  $\Omega = \{\omega_1, \omega_2, \omega_3\}$ .
- The interest rate  $r=\frac{1}{10}$  so that  $B_0=1$  and  $B_1=1+\frac{1}{10}=1.1.$
- We deal here with the market model  $\mathcal{M} = (B, S^1, S^2)$ .
- The stock prices at t=0 are given by  $S_0^1=2$  and  $S_0^2=3$ .
- The stock prices at t = 1 are represented in the table:

|         | $\omega_1$ | $\omega_2$ | $\omega_3$ |
|---------|------------|------------|------------|
| $S_1^1$ | 1          | 5          | 3          |
| $S_1^2$ | 3          | 1          | 6          |

### Example A: Wealth Process

#### Example (Wealth process)

• For any trading strategy  $(x, \phi^1, \phi^2) \in \mathbb{R}^3$ , we have

$$V_1(x,\phi^1,\phi^2) = (x - 2\phi^1 - 3\phi^2)\left(1 + \frac{1}{10}\right) + \phi^1 S_1^1 + \phi^2 S_1^2.$$

- We denote  $\phi^0:=x-2\phi^1-3\phi^2$  so that  $\phi^0$  is the amount of cash invested in the savings account B at time 0.
- Then  $V_1(x,\phi^1,\phi^2)$  equals

$$V_1(x, \phi^1, \phi^2)(\omega_1) = 1.1\phi^0 + \phi^1 + 3\phi^2,$$
  

$$V_1(x, \phi^1, \phi^2)(\omega_2) = 1.1\phi^0 + 5\phi^1 + \phi^2,$$
  

$$V_1(x, \phi^1, \phi^2)(\omega_3) = 1.1\phi^0 + 3\phi^1 + 6\phi^2.$$

### **Example A: Undiscounted Gains Process**

#### Example (Undiscounted gains process)

ullet The increments  $\Delta S_1^j$  are represented by the following table

|                | $\omega_1$ | $\omega_2$ | $\omega_3$ |
|----------------|------------|------------|------------|
| $\Delta S_1^1$ | -1         | 3          | 1          |
| $\Delta S_1^2$ | 0          | -2         | 3          |

• The undiscounted gains process is thus given by  $G_0(x,\phi^1,\phi^2)=0$  and  $G_1(x,\phi^1,\phi^2)=V_1(x,\phi^1,\phi^2)-x$  that is

$$G_1(x,\phi^1,\phi^2)(\omega_1) = 0.1\phi^0 - \phi^1 + 0\phi^2,$$
  

$$G_1(x,\phi^1,\phi^2)(\omega_2) = 0.1\phi^0 + 3\phi^1 - 2\phi^2,$$
  

$$G_1(x,\phi^1,\phi^2)(\omega_3) = 0.1\phi^0 + \phi^1 + 3\phi^2.$$

### **Example A: Discounted Stock Prices**

#### Example (Discounted stock prices)

- Out next goal is to compute the discounted wealth process  $\widehat{V}(x,\phi^1,\phi^2)$  and the discounted gains process  $\widehat{G}_1(x,\phi^1,\phi^2)$ .
- To this end, we first compute the discounted stock prices.
- Of course,  $\widehat{S}_0^j = S_0^j$  for j = 1, 2.
- ullet The following table represents the discounted stock prices  $\widehat{S}_1^j$  for j=1,2

|                   | $\omega_1$      | $\omega_2$      | $\omega_3$      |
|-------------------|-----------------|-----------------|-----------------|
| $\widehat{S}_1^1$ | $\frac{10}{11}$ | $\frac{50}{11}$ | $\frac{30}{11}$ |
| $\widehat{S}_1^2$ | $\frac{30}{11}$ | $\frac{10}{11}$ | $\frac{60}{11}$ |

### **Example A: Discounted Wealth Process**

#### Example (Discounted wealth process)

• The discounted wealth process  $\widehat{V}(x,\phi^1,\phi^2)$  is thus given by

$$\widehat{V}_0(x,\phi^1,\phi^2) = V_0(x,\phi^1,\phi^2) = x$$

and

$$\begin{split} \widehat{V}_1(x,\phi^1,\phi^2)(\omega_1) &= \phi^0 + \frac{10}{11}\phi^1 + \frac{30}{11}\phi^2, \\ \widehat{V}_1(x,\phi^1,\phi^2)(\omega_2) &= \phi^0 + \frac{50}{11}\phi^1 + \frac{10}{11}\phi^2, \\ \widehat{V}_1(x,\phi^1,\phi^2)(\omega_3) &= \phi^0 + \frac{30}{11}\phi^1 + \frac{60}{11}\phi^2, \end{split}$$

where  $\phi^0 = x - 2\phi^1 - 3\phi^2$  is the amount of cash invested in B at time 0 (as opposed to the initial wealth given by x).

### Example A: Discounted Gains Process

#### Example (Discounted gains)

• The increments of the discounted stock prices equal

|                          | $\omega_1$       | $\omega_2$       | $\omega_3$      |
|--------------------------|------------------|------------------|-----------------|
| $\Delta \widehat{S}_1^1$ | $-\frac{12}{11}$ | $\frac{28}{11}$  | $\frac{8}{11}$  |
| $\Delta \widehat{S}_1^2$ | $-\frac{3}{11}$  | $-\frac{23}{11}$ | $\frac{27}{11}$ |

• Hence the discounted gains  $\widehat{G}_1(x,\phi^1,\phi^2)$  are given by

$$\widehat{G}_1(x,\phi^1,\phi^2)(\omega_1) = -\frac{12}{11}\phi^1 - \frac{3}{11}\phi^2,$$

$$\widehat{G}_1(x,\phi^1,\phi^2)(\omega_2) = \frac{28}{11}\phi^1 - \frac{23}{11}\phi^2,$$

$$\widehat{G}_1(x,\phi^1,\phi^2)(\omega_3) = \frac{8}{11}\phi^1 + \frac{27}{11}\phi^2.$$

# Example A: Arbitrage-Free Property

#### Example (No-arbitrage)

• The condition  $\widehat{G}_1(x,\phi^1,\phi^2) \geq 0$  is equivalent to

$$-12\phi^{1} - 3\phi^{2} \ge 0$$
$$28\phi^{1} - 23\phi^{2} \ge 0$$
$$8\phi^{1} + 27\phi^{2} \ge 0$$

- Can we find  $(\phi^1, \phi^2) \in \mathbb{R}^2$  such that all inequalities are valid and at least one of them is strict?
- It appears that the answer is negative, since it is easy to check that the unique vector satisfying all inequalities above is  $(\phi^1, \phi^2) = (0, 0)$ .
- ullet Hence the single-period market model  $\mathcal{M}=(B,S^1,S^2)$  is arbitrage-free.

### Example A: Risk-Neutral Probability

#### Example (Risk-neutral probability)

- We will now show that this market model admits a unique risk-neutral probability measure on  $\Omega = \{\omega_1, \omega_2, \omega_3\}$ .
- Let us denote  $q_i = \mathbb{Q}(\omega_i)$  for i = 1, 2, 3.
- By the definition of a risk-neutral probability measure  $\mathbb{Q}$ , we have that  $\mathbb{E}_{\mathbb{Q}}(\Delta \widehat{S}_1^j) = 0$  for j = 1, 2.
- We obtain the following conditions:  $0 < q_i < 1$  and

$$-\frac{12}{11}q_1 + \frac{28}{11}q_2 + \frac{8}{11}q_3 = 0,$$
  
$$-\frac{3}{11}q_1 - \frac{23}{11}q_2 + \frac{27}{11}q_3 = 0,$$
  
$$q_1 + q_2 + q_3 = 1.$$

• The unique solution equals  $\mathbb{Q} = (q_1, q_2, q_3) = (\frac{47}{80}, \frac{15}{80}, \frac{18}{80}).$ 

#### PART 2

#### FUNDAMENTAL THEOREM OF ASSET PRICING

### Fundamental Theorem of Asset Pricing (FTAP)

- In Example A, we have shown that  $\mathcal{M}=(B,S^1,S^2)$  is arbitrage-free and a unique risk-neutral probability measure for  $\mathcal{M}$  exists.
- Is there any relation between no arbitrage property of a market model  $\mathcal{M}$  and the existence of a risk-neutral probability measure for  $\mathcal{M}$ ?
- The following important result, which is due to Harrison and Pliska (1981), gives a complete answer to this question within the present setup.

#### Theorem (FTAP)

A general single-period model  $\mathcal{M}=(B,S^1,\ldots,S^n)$  is arbitrage-free if and only if there exists a risk-neutral probability measure for  $\mathcal{M}$ , that is, the class  $\mathbb{M}\neq\emptyset$ .

• J. M. Harrison and S. R. Pliska: Martingales and stochastic integrals in the theory of continuous trading. *Stochastic Processes and their Applications* 11 (1981), 215–260.

# Proof of $(\Leftarrow)$ in FTAP

#### Proof of $(\Leftarrow)$ in FTAP.

 $(\Leftarrow)$  We first prove the 'if' part.

- We assume that the class  $\mathbb M$  is nonempty so that a risk-neutral probability measure  $\mathbb Q$  for  $\mathcal M$  exists.
- Let  $(0,\phi)=(0,\phi^1,\dots,\phi^n)$  be any trading strategy with null initial wealth. Then for any  $\mathbb{Q}\in\mathbb{M}$

$$\mathbb{E}_{\mathbb{Q}}(\widehat{V}_1(0,\phi)) = \mathbb{E}_{\mathbb{Q}}(\widehat{G}_1(0,\phi)) = \mathbb{E}_{\mathbb{Q}}(\sum_{j=1}^n \phi^j \Delta \widehat{S}_1^j) = \sum_{j=1}^n \phi^j \underbrace{\mathbb{E}_{\mathbb{Q}}(\Delta \widehat{S}_1^j)}_{=0} = 0.$$

- If we assume that  $\widehat{V}_1(0,\phi) \geq 0$  then the last equation implies that the equality  $\widehat{V}_1(0,\phi)(\omega) = 0$  must hold for all  $\omega \in \Omega$ .
- Hence no trading strategy satisfying all conditions of an arbitrage opportunity may exist.

### Geometric Interpretation of X and $\mathbb Q$

- The proof of the implication (⇒) in the FTAP is harder and thus the full proof is for MATH3975 only. We will now find an equivalent geometric representation of the arbitrage-free property.
- ullet Any random variable on  $\Omega$  can be identified with a vector in  $\mathbb{R}^k$  since

$$X = (X(\omega_1), \dots, X(\omega_k))^T = (x_1, \dots, x_k)^T \in \mathbb{R}^k.$$

• An arbitrary probability measure  $\mathbb Q$  on  $\Omega$  can also be interpreted as a vector in  $\mathbb R^k$ 

$$\mathbb{Q} = (\mathbb{Q}(\omega_1), \dots, \mathbb{Q}(\omega_k)) = (q_1, \dots, q_k) \in \mathbb{R}^k.$$

We note that

$$\mathbb{E}_{\mathbb{Q}}(X) = \sum_{i=1}^{k} X(\omega_i) \mathbb{Q}(\omega_i) = \sum_{i=1}^{k} x_i q_i = \langle X, \mathbb{Q} \rangle$$

where  $\langle \cdot, \cdot \rangle$  denotes the usual inner product of two vectors in  $\mathbb{R}^k$ .

# Auxiliary Subsets of $\mathbb{R}^k$

• We define the following classes:

$$\begin{split} \mathbb{W} &= \left\{ X \in \mathbb{R}^k \ \middle| \ X = \widehat{V}_1(0, \phi^1, \dots, \phi^n) \text{ for some } \phi^1, \dots, \phi^n \right\} \\ \mathbb{W}^\perp &= \left\{ Z \in \mathbb{R}^k \ \middle| \ \langle X, Z \rangle = 0 \text{ for all } X \in \mathbb{W} \right\} \end{split}$$

- The set  $\mathbb{W}$  is the image of the map  $\widehat{V}_1(0,\cdot,\ldots,\cdot):\mathbb{R}^n\to\mathbb{R}^k$ .
- We note that  $\mathbb{W}$  represents all discounted values at t=1 of trading strategies with null initial wealth.
- The set  $\mathbb{W}^{\perp}$  is the set of all vectors in  $\mathbb{R}^k$  orthogonal to  $\mathbb{W}$ .
- We introduce the following sets of *k*-dimensional vectors:

$$\mathbb{A} = \left\{ X \in \mathbb{R}^k \mid X \neq 0, \ x_i \ge 0 \text{ for } i = 1, \dots, k \right\}$$
$$\mathcal{P}^+ = \left\{ \mathbb{Q} \in \mathbb{R}^k \mid \sum_{i=1}^k q_i = 1, \ q_i > 0 \right\}$$

# $\mathbb{W}$ and $\mathbb{W}^{\perp}$ as Vector Spaces

#### Corollary

The sets  $\mathbb{W}$  and  $\mathbb{W}^{\perp}$  are vector (linear) subspaces of  $\mathbb{R}^k$ .

#### Proof.

- ullet It suffices to observe that the mapping  $\widehat{V}_1(0,\cdot,\dots,\cdot):\mathbb{R}^n o\mathbb{R}^k$  is linear.
- In other words, for any trading strategies  $(0, \eta^1, \dots, \eta^n)$  and  $(0, \kappa^1, \dots, \kappa^n)$  and arbitrary real numbers  $\alpha, \beta$

$$(0,\phi^1,\ldots,\phi^n) = \alpha(0,\eta^1,\ldots,\eta^n) + \beta(0,\kappa^1,\ldots,\kappa^n)$$

is also a trading strategy. Hence the set  $\mathbb{W}$  is a vector subspace of  $\mathbb{R}^k$ . In particular, the zero vector  $(0,0,\ldots,0)$  belongs to  $\mathbb{W}$ .

• It is easy to check that  $\mathbb{W}^{\perp}$ , that is, the orthogonal complement of  $\mathbb{W}$  is a vector subspace of  $\mathbb{R}^k$  as well.



# Risk-Neutral Probability Measures

#### Lemma (4.1)

A single-period market model  $\mathcal{M}=(B,S^1,\ldots,S^n)$  is arbitrage-free if and only if  $\mathbb{W}\cap\mathbb{A}=\emptyset$ .

#### Proof.

The proof is obvious since it suffices to apply Proposition 4.1.

#### Lemma (4.2)

- A probability  $\mathbb Q$  is a risk-neutral probability measure for a single-period market model  $\mathcal M=(B,S^1,\ldots,S^n)$  if and only if  $\mathbb Q\in\mathbb W^\perp\cap\mathcal P^+$ .
- Hence the set  $\mathbb M$  of all risk-neutral probability measures for the model  $\mathcal M$  satisfies  $\mathbb M=\mathbb W^\perp\cap\mathcal P^+$  and thus

$$\mathbb{M} \neq \emptyset \quad \Leftrightarrow \quad \mathbb{W}^{\perp} \cap \mathcal{P}^{+} \neq \emptyset.$$

### Proof of Lemma 4.2

#### Proof of $(\Rightarrow)$ in Lemma 4.2.

- $(\Rightarrow)$  Assume that  $\mathbb Q$  is any risk-neutral probability measure, that is,  $\mathbb Q\in\mathbb M$ .
  - By the property R.1, it is obvious that  $\mathbb Q$  belongs to  $\mathcal P^+$ .
  - Using the property R.2, we obtain for any vector  $X = \widehat{V}_1(0,\phi) \in \mathbb{W}$

$$\langle X, \mathbb{Q} \rangle = \mathbb{E}_{\mathbb{Q}} (\widehat{V}_1(0, \phi)) = \mathbb{E}_{\mathbb{Q}} (\widehat{G}_1(0, \phi)) = \mathbb{E}_{\mathbb{Q}} (\sum_{j=1}^n \phi^j \Delta \widehat{S}_1^j)$$
$$= \sum_{j=1}^n \phi^j \underbrace{\mathbb{E}_{\mathbb{Q}} (\Delta \widehat{S}_1^j)}_{=0} = 0$$

and thus  $\mathbb Q$  belongs to the set  $\mathbb W^\perp$ .

• We conclude that  $\mathbb{Q} \in \mathbb{W}^{\perp} \cap \mathcal{P}^+$  and thus  $\mathbb{M} \subset \mathbb{W}^{\perp} \cap \mathcal{P}^+$ .



### Proof of Lemma 4.2

#### Proof of $(\Leftarrow)$ in Lemma 4.2.

 $(\Leftarrow)$  We now assume that  $\mathbb Q$  is an arbitrary vector in  $\mathbb W^\perp\cap\mathcal P^+$ .

- Since  $\mathbb{Q} \in \mathcal{P}^+$ , we see that  $\mathbb{Q}$  defines a probability measure satisfying condition R.1, that is,  $\mathbb{Q}$  is equivalent to  $\mathbb{P}$ .
- It remains to show that  $\mathbb Q$  satisfies condition R.2 as well. To this end, for a fixed (but arbitrary)  $j=1,2,\ldots,n$ , we consider the trading strategy  $(0,\phi^1,\ldots,\phi^n)$  with

$$(\phi^1, \dots, \phi^n) = (0, \dots, 0, 1, 0, \dots, 0) =: e_j.$$

This trading strategy only invests in the savings account and the jth asset.

 $\bullet$  The discounted wealth at time t=1 of this strategy equals  $\widehat{V}_1(0,e_j)=\Delta\widehat{S}_1^j.$ 



### Proof of Lemma 4.2

#### Proof of $(\Leftarrow)$ in Lemma 4.2 (Continued).

• Since  $\widehat{V}_1(0,e_j)\in \mathbb{W}$  and  $\mathbb{Q}\in \mathbb{W}^\perp$ , we obtain

$$0 = \langle \widehat{V}_1(0, e_j), \mathbb{Q} \rangle = \langle \Delta \widehat{S}_1^j, \mathbb{Q} \rangle = \mathbb{E}_{\mathbb{Q}} (\Delta \widehat{S}_1^j).$$

- Since j is here arbitrary, we see that  $\mathbb Q$  satisfies condition R.2.
- We conclude that any  $\mathbb{Q} \in \mathbb{W}^{\perp} \cap \mathcal{P}^{+}$  is a martingale measure and thus  $\mathbb{W}^{\perp} \cap \mathcal{P}^{+} \subset \mathbb{M}$ .

In view of Lemmas 4.1 and 4.2, the FTAP can be restated the follows.

#### Proposition (Geometric FTAP)

The following equivalence holds:  $\mathbb{W} \cap \mathbb{A} = \emptyset \quad \Leftrightarrow \quad \mathbb{W}^{\perp} \cap \mathcal{P}^{+} \neq \emptyset$ .

### Separating Hyperplane Theorem: Statement

#### Theorem (Separating Hyperplane Theorem)

Let  $B,C\subset\mathbb{R}^k$  be nonempty, closed, convex sets such that  $B\cap C=\emptyset$ . Assume, in addition, that at least one of these sets is compact (that is, bounded and closed). Then there exist vectors  $a,y\in\mathbb{R}^k$  such that

$$\langle b-a,y \rangle < 0 \quad \textit{for all} \quad b \in B$$

and

$$\langle c-a,y\rangle>0$$
 for all  $c\in C$ .

#### Proof of the Separating Hyperplane Theorem.

The proof can be found in any textbook of convex analysis or functional analysis. It is sketched in the course notes.

# Separating Hyperplane Theorem: Interpretation

- $\bullet$  Let the vectors  $a,y\in\mathbb{R}^k$  be as in the statement of the Separating Hyperplane Theorem
- It is clear that  $y \in \mathbb{R}^k$  is never a zero vector.
- ullet We define the (k-1)-dimensional **hyperplane**  $H\subset \mathbb{R}^k$  by setting

$$H=a+\left\{x\in\mathbb{R}^k\,|\,\langle x,y\rangle=0\right\}=a+\{y\}^\perp.$$

- ullet Then we say that the hyperplane H strictly separates the convex sets B and C.
- ullet Intuitively, the sets B and C lie on different sides of the hyperplane H and thus they can be seen as geometrically separated by H.
- Note that the compactness of at least one of the sets is a necessary condition for the **strict** separation of *B* and *C*.

# Separating Hyperplane Theorem: Corollary

- The following corollary is a consequence of the separating hyperplane theorem.
- It is more suitable for our purposes: it will be later applied to  $B=\mathbb{W}$  and  $C=\mathbb{A}^+:=\{X\in\mathbb{A}\,|\,\langle X,\mathbb{P}\rangle=1\}\subset\mathbb{A}.$

#### Corollary (4.1)

Assume that  $B \subset \mathbb{R}^k$  is a vector subspace and set C is a compact convex set such that  $B \cap C = \emptyset$ . Then there exists a vector  $y \in \mathbb{R}^k$  such that

$$\langle b,y\rangle=0 \quad \textit{for all} \quad b\in B$$

that is,  $y \in B^{\perp}$ , and

$$\langle c, y \rangle > 0$$
 for all  $c \in C$ .

### Proof of Corollary 4.1

#### Proof of Corollary 4.1: First step.

- We note that any vector subspace of  $\mathbb{R}^k$  is a closed and convex set.
- ullet From the separating hyperplane theorem, there exist  $a,y\in\mathbb{R}^k$  such that the inequality

$$\langle b, y \rangle < \langle a, y \rangle$$

is satisfied for all vectors  $b \in B$ .

• Since B is a vector subspace, the vector  $\lambda b$  belongs to B for any  $\lambda \in \mathbb{R}$ . Hence for any  $b \in B$  and  $\lambda \in \mathbb{R}$  we have

$$\langle \lambda b, y \rangle = \lambda \langle b, y \rangle < \langle a, y \rangle.$$

• This in turn implies that  $\langle b,y\rangle=0$  for any vector  $b\in B$ , meaning that  $y\in B^\perp$ . Also, we have that  $\langle a,y\rangle>0$ .



### Proof of Corollary 4.1

#### Proof of Corollary 4.1: Second step.

To establish the second inequality, we observe that from the separating hyperplane theorem, we obtain

$$\langle c, y \rangle > \langle a, y \rangle$$
 for all  $c \in C$ .

Consequently, for any  $c \in C$ 

$$\langle c, y \rangle > \langle a, y \rangle > 0.$$

We conclude that  $\langle c, y \rangle > 0$  for all  $c \in C$ .

• We now are ready to establish the implication ( $\Rightarrow$ ) in the FTAP:

$$\mathbb{W} \cap \mathbb{A} = \emptyset \quad \Rightarrow \quad \mathbb{W}^{\perp} \cap \mathcal{P}^{+} \neq \emptyset.$$

# Proof of ( $\Rightarrow$ ) in FTAP: 1

#### Proof of $(\Rightarrow)$ in FTAP: First step.

- We assume that the model is arbitrage-free. From Lemma 4.1, this is equivalent to the condition  $\mathbb{W} \cap \mathbb{A} = \emptyset$ .
- Our goal is to show that the class M is non-empty.
- In view of Lemma 4.2, it thus suffices to show that

$$\mathbb{W} \cap \mathbb{A} = \emptyset \quad \Rightarrow \quad \mathbb{W}^{\perp} \cap \mathcal{P}^{+} \neq \emptyset.$$

- We define an auxiliary set  $\mathbb{A}^+ = \{X \in \mathbb{A} \mid \langle X, \mathbb{P} \rangle = 1\}.$
- Observe that  $\mathbb{A}^+$  is a closed, bounded (hence compact) and convex subset of  $\mathbb{R}^k$ . Since  $\mathbb{A}^+ \subset \mathbb{A}$ , it is clear that

$$\mathbb{W} \cap \mathbb{A} = \emptyset \Rightarrow \mathbb{W} \cap \mathbb{A}^+ = \emptyset.$$

• Hence in the next step we may assume that  $\mathbb{W} \cap \mathbb{A}^+ = \emptyset$ .

# Proof of $(\Rightarrow)$ in FTAP: 2

#### Proof of ( $\Rightarrow$ ) in FTAP: Second step.

• By applying Corollary 4.1 to  $B=\mathbb{W}$  and  $C=\mathbb{A}^+$ , we see that there exists a vector  $Y\in\mathbb{W}^\perp$  such that

$$\langle X, Y \rangle > 0$$
 for all  $X \in \mathbb{A}^+$ . (1)

- Our goal is to show that Y can be used to define a risk-neutral probability  $\mathbb{Q}$ . We need first to show that  $y_i>0$  for every i.
- For this purpose, for any fixed i = 1, 2, ..., k, we define

$$X_i = (\mathbb{P}(\omega_i))^{-1} (0, \dots, 0, 1, 0 \dots, 0) = (\mathbb{P}(\omega_i))^{-1} e_i$$

so that  $X_i \in \mathbb{A}^+$  since

$$\mathbb{E}_{\mathbb{P}}(X_i) = \langle X_i, \mathbb{P} \rangle = 1.$$



# Proof of $(\Rightarrow)$ in FTAP: 3

#### Proof of ( $\Rightarrow$ ) in FTAP: Third step.

• Let  $y_i$  be the *i*th component of Y. It follows from (1) that

$$0 < \langle X_i, Y \rangle = (\mathbb{P}(\omega_i))^{-1} y_i$$

and thus  $y_i > 0$  for all  $i = 1, 2, \dots, k$ . We set  $\mathbb{Q}(\omega_i) = q_i$  where

$$q_i := \frac{y_i}{y_1 + \dots + y_k} = cy_i > 0$$

It is clear that  $\mathbb Q$  is a probability measure and  $\mathbb Q\in\mathcal P^+.$ 

- Since  $Y \in \mathbb{W}^{\perp}$ ,  $\mathbb{Q} = cY$  for some scalar c and  $\mathbb{W}^{\perp}$  is a vector space, we have that  $\mathbb{Q} \in \mathbb{W}^{\perp}$ . We conclude that  $\mathbb{Q} \in \mathbb{W}^{\perp} \cap \mathcal{P}^{+}$  so that  $\mathbb{W}^{\perp} \cap \mathcal{P}^{+} \neq \emptyset$ .
- From Lemma 4.2,  $\mathbb Q$  is a risk-neutral probability and thus  $\mathbb M \neq \emptyset$ .



#### PART 3

#### **EXAMPLES OF MARKET MODELS**

#### Example (Revisited)

- $\bullet$  We consider the market model  $\mathcal{M}=(B,S^1,S^2)$  introduced in Example A.
- The interest rate r = 0.1 so that  $B_0 = 1$  and  $B_1 = 1.1$ .
- The stock prices at t=0 are given by  $S_0^1=2$  and  $S_0^2=3$ .
- We have shown that the increments of the discounted stock prices  $\widehat{S}^1$  and  $\widehat{S}^2$  are given by:

|                          | $\omega_1$       | $\omega_2$       | $\omega_3$      |
|--------------------------|------------------|------------------|-----------------|
| $\Delta \widehat{S}_1^1$ | $-\frac{12}{11}$ | $\frac{28}{11}$  | $\frac{8}{11}$  |
| $\Delta \widehat{S}_1^2$ | $-\frac{3}{11}$  | $-\frac{23}{11}$ | $\frac{27}{11}$ |

#### Example (Spaces $\mathbb{W}$ and $\mathbb{W}^{\perp}$ )

• The vector spaces  $\mathbb{W}$  and  $\mathbb{W}^{\perp}$  are given by

$$\mathbb{W} = \left\{ \alpha \begin{pmatrix} -12 \\ 28 \\ 8 \end{pmatrix} + \beta \begin{pmatrix} -3 \\ -23 \\ 27 \end{pmatrix} \middle| \alpha, \beta \in \mathbb{R} \right\}$$

and

$$\mathbb{W}^{\perp} = \left\{ \gamma \left( \begin{array}{c} 47\\15\\18 \end{array} \right) \,\middle|\, \gamma \in \mathbb{R} \right\}.$$

- We first show the model is arbitrage-free using Lemma 4.1.
- It thus suffices to check that  $\mathbb{W} \cap \mathbb{A} = \emptyset$ .

#### Example ( $\mathbb{W} \cap \mathbb{A} = \emptyset$ )

• If there exists a vector  $X \in \mathbb{W} \cap \mathbb{A}$  then the following three inequalities are satisfied by  $X = (x_1, x_2, x_3) \in \mathbb{R}^3$ 

$$x_1 = x_1(\alpha, \beta) = -12\alpha - 3\beta \ge 0,$$
  
 $x_2 = x_2(\alpha, \beta) = 28\alpha - 23\beta \ge 0,$   
 $x_3 = x_3(\alpha, \beta) = 8\alpha + 27\beta \ge 0,$ 

with at least one strict inequality where  $\alpha, \beta \in \mathbb{R}$  are arbitrary.

- It can be verified that such a vector  $X \in \mathbb{R}^3$  does not exist and thus  $\mathbb{W} \cap \mathbb{A} = \emptyset$ . This is left as an easy exercise.
- In view of Lemma 4.1, we conclude that the market model is arbitrage-free.
- In the next step, our goal is to show that the class M is non-empty.

#### Example (Risk-neutral probability)

• Lemma 4.2 tells us that  $\mathbb{M}=\mathbb{W}^\perp\cap\mathcal{P}^+$ . If  $\mathbb{Q}\in\mathbb{W}^\perp$  then

$$\mathbb{Q} = \gamma \begin{pmatrix} 47 \\ 15 \\ 18 \end{pmatrix} \quad \text{for some } \gamma \in \mathbb{R}.$$

If  $\mathbb{Q} \in \mathcal{P}^+$  then  $47\gamma + 15\gamma + 18\gamma = 1$  so that  $\gamma = \frac{1}{80} > 0$ .

• We conclude that the unique martingale measure  $\mathbb Q$  equals

$$\mathbb{Q} = \frac{1}{80} \left( \begin{array}{c} 47\\15\\18 \end{array} \right).$$

 $\bullet$  Hence the FTAP confirms that the market model  $\mathcal{M}=(B,S^1,S^2)$  is arbitrage-free.

#### Example (Stock prices)

- We consider the following model featuring two stocks  $S^1$  and  $S^2$  on the sample space  $\Omega = \{\omega_1, \omega_2, \omega_3\}$ .
- The interest rate  $r=\frac{1}{10}$  so that  $B_0=1$  and  $B_1=1+\frac{1}{10}$ .
- The stock prices at t=0 are given by  $S_0^1=1$  and  $S_0^2=2$  and the stock prices at t=1 are represented in the table:

|         | $\omega_1$    | $\omega_2$    | $\omega_3$     |
|---------|---------------|---------------|----------------|
| $S_1^1$ | 1             | $\frac{1}{2}$ | 3              |
| $S_1^2$ | $\frac{5}{2}$ | 4             | $\frac{1}{10}$ |

Does this market model admit an arbitrage opportunity?

#### Example (Discounted stocks)

- Once again, we will analyse this problem using Lemma 4.1, Lemma 4.2 and the FTAP.
- To tell whether a model is arbitrage-free it suffices to know the increments of discounted stock prices.
- The increments of discounted stock prices are represented in the following table:

|                          | $\omega_1$      | $\omega_2$      | $\omega_3$       |
|--------------------------|-----------------|-----------------|------------------|
| $\Delta \widehat{S}_1^1$ | $-\frac{1}{11}$ | $-\frac{6}{11}$ | $\frac{20}{11}$  |
| $\Delta \widehat{S}_1^2$ | $\frac{3}{11}$  | $\frac{18}{11}$ | $-\frac{21}{11}$ |

#### Example ( $\mathbb{W} \cap \mathbb{A} \neq \emptyset$ )

Recall that

$$\widehat{G}_1(x,\phi^1,\phi^2) = \phi^1 \Delta \widehat{S}_1^1 + \phi^2 \Delta \widehat{S}_1^2$$

Hence, by the definition of  $\mathbb{W}$ , we have

$$\mathbb{W} = \left\{ \alpha \begin{pmatrix} -1 \\ -6 \\ 20 \end{pmatrix} + \beta \begin{pmatrix} 3 \\ 18 \\ -21 \end{pmatrix} \middle| \alpha, \beta \in \mathbb{R} \right\}.$$

- Let us take  $\alpha=3$  and  $\beta=1$ . Then we obtain the vector  $(0,0,39)^T$ , which manifestly belongs to  $\mathbb{A}$ .
- We conclude that  $\mathbb{W} \cap \mathbb{A} \neq \emptyset$  and thus, by Lemma 4.1, the market model is not arbitrage-free.

#### Example (No risk-neutral probability)

We note that

$$\mathbb{W}^{\perp} = \left\{ \gamma \left( \begin{array}{c} -6\\1\\0 \end{array} \right) \, \middle| \, \gamma \in \mathbb{R} \right\}.$$

- If there exists a risk-neutral probability measure  $\mathbb{Q}$  then  $\mathbb{Q} \in \mathbb{W}^{\perp} \cap \mathcal{P}^+$ .
- Since  $\mathbb{Q} \in \mathbb{W}^{\perp}$ , we obtain  $\mathbb{Q}(\omega_1) = -6\mathbb{Q}(\omega_2)$ .
- However,  $\mathbb{Q} \in \mathcal{P}^+$  implies that  $\mathbb{Q}(\omega) > 0$  for all  $\omega \in \Omega$ .
- We conclude that  $\mathbb{W}^{\perp} \cap \mathcal{P}^{+} = \emptyset$  and thus, by Lemma 4.2, no martingale measure exists, that is,  $\mathbb{M} = \emptyset$ .
- Hence the FTAP confirms that the model is not arbitrage-free.

#### PART 4

# RISK-NEUTRAL VALUATION OF CONTINGENT CLAIMS IN ARBITRAGE-FREE MARKET MODELS

### Contingent Claims

- ullet We now know how to check whether a given model is arbitrage-free and thus we henceforth assume that  ${\cal M}$  is arbitrage-free.
- Our next question reads: What should be the 'fair' price of a call or put option in a general **arbitrage-free** single-period market model?
- The idea of pricing European options can be extended to any contingent claim, for instance,  $X = g(S_1^1, S_1^2, \dots, S_1^n)$ .

#### Definition (Contingent Claim)

A **contingent claim** is a real-valued random variable X defined on  $\Omega$  and representing the payoff at the maturity date.

 Derivatives nowadays are usually quite complicated and thus it makes sense to analyse valuation and hedging of a general contingent claim and not only European call and put options.

### Extended Market Model and No-Arbitrage Principle

Let X be an arbitrary contingent claim. We denote by  $p_0(X)$  a real number representing a putative price for X at time 0.

#### Definition

We say that a price  $p_0(X)$  of a contingent claim X is **consistent with the no-arbitrage principle** if the extended model, which consists of B, the original stocks  $S^1,\ldots,S^n$ , as well as an additional asset  $S^{n+1}$  satisfying  $S^{n+1}_0=p_0(X)$  and  $S^{n+1}_1=X$ , is arbitrage-free.

The interpretation of that definition is as follows:

- ullet We assume that the model  $\mathcal{M}=(B,S^1,\ldots,S^n)$  is arbitrage-free.
- We consider X as an additional tradable risky asset in the extended market model  $\widetilde{\mathcal{M}}=(B,S^1,\ldots,S^{n+1}).$
- Then its price at time 0 should be selected in such a way that the extended market model  $\widetilde{\mathcal{M}}$  is still arbitrage-free.

### Arbitrage Pricing via Replication

#### Definition (Replication and Arbitrage Price)

A trading strategy  $(x,\phi^1,\ldots,\phi^n)$  is called a **replicating strategy** (or a **hedging strategy**) for a claim X when  $V_1(x,\phi^1,\ldots,\phi^n)=X$ . Then the initial wealth is denoted as  $\pi_0(X)$  and it is called the **arbitrage price** of X.

Notice that the initial wealth x is the same for **all** replicating strategies for X.

#### Proposition (Arbitrage Price)

Assume that a contingent claim X can be replicated by means of a trading strategy  $(x,\phi^1,\ldots,\phi^n)$ . Then the unique price  $p_0(X)$  for X at 0 consistent with the no-arbitrage principle equals  $V_0(x,\phi^1,\ldots,\phi^n)=x$ , that is,  $p_0(X)=\pi_0(X)$ .

#### Proof.

If the price  $p_0(X)$  for X is higher (lower) than x, one can sell (buy) X for  $p_0(X)$  and buy (sell) the replicating portfolio for x. This is an arbitrage opportunity in the extended market in which X is traded at time t=0 at  $p_0(X)$ .

### Valuation of Attainable Contingent Claims

#### Definition (Attainable Contingent Claim)

A contingent claim X is called to be **attainable** if there exists at least one replicating strategy for X.

Let us summarise the known properties of attainable claims:

- It is clear how to price attainable contingent claims by the replicating principle.
- There might be more than one replicating strategy, but since  $\mathcal{M}$  is arbitrage-free the initial wealth x is unique.
- In the two-state single-period market model, one can use the risk-neutral probability measure to price contingent claims.
- Our next objective is to extend the **risk-neutral valuation formula** to any attainable contingent claim within the framework of a general single-period market model. We assume that  $\mathbb{M} \neq \emptyset$ .

### Arbitrage Pricing via Risk-Neutral Valuation

Recall that if X is an attainable contingent claim, then its unique arbitrage price  $\pi_0(X)$  at t=0 is defined by replication. The next result shows that  $\pi_0(X)$  can also be computed using the **risk-neutral valuation formula**.

#### Proposition (4.2)

If X is an attainable contingent claim then  $\pi_0(X)$  satisfies

$$\pi_0(X) = \frac{1}{1+r} \, \mathbb{E}_{\mathbb{Q}}(X)$$

where  $\mathbb{Q} \in \mathbb{M}$  is an arbitrary martingale measure. In particular, the expected value  $\mathbb{E}_{\mathbb{Q}}(X)$  does not depend on  $\mathbb{Q} \in \mathbb{M}$ .

#### Proof of Proposition 4.2.

Recall that a trading strategy  $(x, \phi^1, \dots, \phi^n)$  is a replicating strategy for X whenever  $V_1(x, \phi^1, \dots, \phi^n) = X$ . We wish to compute the initial wealth x.



#### Proof of the Risk-Neutral Valuation Formula

#### Proof of Proposition 4.2.

We divide both sides by 1 + r, to obtain

$$\frac{X}{1+r} = \frac{V_1(x, \phi^1, \dots, \phi^n)}{1+r} = \widehat{V}_1(x, \phi^1, \dots, \phi^n).$$

Hence

$$\frac{1}{1+r} \mathbb{E}_{\mathbb{Q}}(X) = \mathbb{E}_{\mathbb{Q}} \left\{ \widehat{V}_1(x, \phi^1, \dots, \phi^n) \right\} = \mathbb{E}_{\mathbb{Q}} \left\{ x + \widehat{G}_1(x, \phi^1, \dots, \phi^n) \right\}$$
$$= x + \mathbb{E}_{\mathbb{Q}} \left\{ \sum_{j=1}^n \phi^j \Delta \widehat{S}_1^j \right\} = x + \sum_{j=1}^n \phi^j \underbrace{\mathbb{E}_{\mathbb{Q}} \left( \Delta \widehat{S}_1^j \right)}_{=0} = x.$$

Recall that the uniqueness of x (hence its independence of  $\mathbb{Q}$ ) is an easy consequence of the assumption that the model  $\mathcal{M}$  is arbitrage-free.



#### Valuation of Non-Attainable Claims

- We already know that the risk-neutral valuation formula returns the arbitrage price for any attainable contingent claim.
- The next result shows that it also yields a price consistent with the no-arbitrage principle when it is applied to any non-attainable claim.
- We will later see that the arbitrage price obtained in this way is not unique, however, unless a claim X is attainable so that  $p_0(X) = \pi_0(X)$ .

#### Proposition (4.3)

Let X be a possibly non-attainable contingent claim and  $\mathbb Q$  is an arbitrary risk-neutral probability measure. Then  $p_0(X)$  given by

$$p_0(X) := \frac{1}{1+r} \mathbb{E}_{\mathbb{Q}}(X) \tag{2}$$

defines a price for X at t=0, which is consistent with the no-arbitrage principle, that is, the extended model  $\widetilde{\mathcal{M}}$  is arbitrage-free.

### Proof of Proposition 4.3

#### Proof of Proposition 4.3.

- Let  $\mathbb{Q} \in \mathbb{M}$  be an arbitrary martingale measure for  $\mathcal{M}$ .
- We will show that  $\mathbb Q$  is also a martingale measure for the extended model  $\widetilde{\mathcal M}=(B,S^1,\dots,S^{n+1})$  in which  $S_0^{n+1}=p_0(X)$  and  $S_1^{n+1}=X$ .
- For this purpose, we check that

$$\mathbb{E}_{\mathbb{Q}}\left(\Delta \widehat{S}_{1}^{n+1}\right) = \mathbb{E}_{\mathbb{Q}}\left\{\frac{X}{1+r} - p_{0}(X)\right\} = 0$$

and thus  $\mathbb{Q} \in \widetilde{\mathbb{M}}$  is indeed a martingale measure for the extended market model.

• By the FTAP, the extended model  $\widetilde{\mathcal{M}}$  is arbitrage-free and thus the price  $p_0(X)$  given by (1) complies with the no-arbitrage principle.



#### PART 5

#### STOCHASTIC VOLATILITY MODEL

### Example C: Stochastic Volatility Model

#### Example (Stochastic volatility)

- In the elementary market model, a replicating strategy for any contingent claim always exists. However, in a general single-period market model, a replicating strategy may fail to exist for some contingent claims.
- For instance, when there are more sources of randomness than there are stocks available for investment then replicating strategies do not exist for some contingent claims.
- ullet Consider a market model consisting of bond B, stock S, and a random variable v called the **volatility**.
- The volatility is used to specify the size of the stock price movement over one period.
- This is a simple example of a stochastic volatility model.

### Example C: Stock Price

#### Example (Stock price)

• The sample space is given by

$$\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4\}$$

and the volatility is defined as

$$v(\omega_i) = \begin{cases} h & \text{for } i = 1, 4, \\ l & \text{for } i = 2, 3. \end{cases}$$

ullet We furthermore assume that 0 < l < h < 1. The stock price  $S_1$  is given by

$$S_1(\omega_i) = \left\{ \begin{array}{ll} (1 + v(\omega_i))S_0 & \text{for } i = 1, 2, \\ (1 - v(\omega_i))S_0 & \text{for } i = 3, 4. \end{array} \right.$$

### Example C: Incompleteness

#### Example (Incompleteness)

• It is easy to check that the model is arbitrage-free whenever

$$1 - h < 1 + r < 1 + h$$
.

- We will check that for some contingent claims a replicating strategy does not exist, meaning that they are not attainable.
- ullet To this end, we consider the **digital call option** X with the following payoff

$$X = \left\{ \begin{array}{ll} 1 & \text{if } S_1 > K, \\ 0 & \text{otherwise,} \end{array} \right.$$

where K > 0 is the strike price.

### **Example C: Digital Call Option**

#### Example (Digital call)

• We assume that  $(1+l)S_0 < K < (1+h)S_0$ , so that

$$(1-h)S_0 < (1-l)S_0 < (1+l)S_0 < K < (1+h)S_0$$

and thus

$$X(\omega_i) = \begin{cases} 1 & \text{for } i = 1, \\ 0 & \text{otherwise.} \end{cases}$$

• Suppose that  $(x, \phi)$  is a replicating strategy for X. Equality  $V_1(x, \phi) = X$  becomes

$$(x - \phi S_0) \begin{pmatrix} 1+r\\1+r\\1+r\\1+r \end{pmatrix} + \phi \begin{pmatrix} (1+h)S_0\\(1+l)S_0\\(1-l)S_0\\(1-h)S_0 \end{pmatrix} = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}$$

# **Example C: Digital Call Option**

#### Example (Digital call)

• Upon setting  $\beta = \phi S_0$  and  $\alpha = (1+r)x - \phi S_0 r$ , we see that the existence of a solution  $(x,\phi)$  to this system is equivalent to the existence of a solution  $(\alpha,\beta)$  to the system

$$\alpha \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} + \beta \begin{pmatrix} h\\l\\-l\\-h \end{pmatrix} = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}$$

- It is obvious that the above system of equations has no solution and thus the digital call is not an attainable contingent claim within the framework of the stochastic volatility model.
- Intuitively, the randomness generated by the volatility cannot be hedged, since the volatility is not a traded asset.

### Example C: Discounted Stock Price

#### Example (Discounted stock)

- Propositions 4.2 and 4.3 show that martingale measures can be used to price contingent claims.
- We henceforth assume that the interest rate r=0.
- Then the model is arbitrage-free since we assume that 0 < h < 1 and thus 1 h < 1 + r = 1 < 1 + h. We will check that the class  $\mathbb M$  is non-empty.
- $\bullet$  The increments of the discounted stock price  $\widehat{S}$  are represented in the following table

|                        | $\omega_1$ | $\omega_2$ | $\omega_3$ | $\omega_4$ |
|------------------------|------------|------------|------------|------------|
| $\Delta \widehat{S}_1$ | $hS_0$     | $lS_0$     | $-lS_0$    | $-hS_0$    |

### Example C: Spaces $\mathbb{W}$ and $\mathbb{W}^{\perp}$

#### Example (Spaces $\mathbb{W}$ and $\mathbb{W}^{\perp}$ )

• By the definition of the linear subspace  $\mathbb{W} \subset \mathbb{R}^4$ , we have

$$\mathbb{W} = \left\{ \gamma \begin{pmatrix} h \\ l \\ -l \\ -h \end{pmatrix} \middle| \gamma \in \mathbb{R} \right\}.$$

 $\bullet$  The orthogonal complement of  $\mathbb W$  is thus the three-dimensional subspace of  $\mathbb R^4$  given by

$$\mathbb{W}^{\perp} = \left\{ \begin{pmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{pmatrix} \in \mathbb{R}^4 \mid \left\langle \begin{pmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{pmatrix}, \begin{pmatrix} h \\ l \\ -l \\ -h \end{pmatrix} \right\rangle = 0 \right\}.$$

### **Example C: Martingale Measures**

#### Example (Martingale measures)

- Recall that a vector  $(q_1, q_2, q_3, q_4)^{\top} \in \mathbb{R}^4$  belongs to  $\mathcal{P}^+$  if and only if the equality  $\sum_{i=1}^4 q_i = 1$  holds and  $q_i > 0$  for i = 1, 2, 3, 4.
- Since the set of martingale measures is given by  $\mathbb{M} = \mathbb{W}^{\perp} \cap \mathcal{P}^{+}$ , we have

$$\begin{pmatrix} q_1 \\ q_2 \\ q_3 \\ q_4 \end{pmatrix} \in \mathbb{M} \quad \Leftrightarrow \quad \Big\{ (q_1, q_2, q_3, q_4)^\top \in \mathbb{R}^4 \ \big| \ q_i > 0, \ \sum_{i=1}^4 q_i = 1 \\ \\ \text{and} \quad h(q_1 - q_4) + l(q_2 - q_3) = 0 \Big\}.$$

### **Example C: Martingale Measures**

#### Example (Martingale measures)

ullet The class  ${\mathbb M}$  of all martingale measures in our stochastic volatility model is therefore given by

$$\mathbb{M} = \left\{ \begin{pmatrix} q_1 \\ q_2 \\ q_3 \\ 1 - q_1 - q_2 - q_3 \end{pmatrix} \middle| \begin{array}{c} q_1 > 0, q_2 > 0, q_3 > 0, \\ q_1 + q_2 + q_3 < 1, \\ l(q_2 - q_3) = h(1 - 2q_1 - q_2 - q_3) \end{array} \right\}.$$

- This set appears to be non-empty and thus we conclude that our stochastic volatility model is arbitrage-free.
- ullet Recall that we have already shown that the digital call option is not attainable when K satisfies

$$(1+l)S_0 < K < (1+h)S_0.$$

### Example C: Pricing of the Digital Call

#### Example (Pricing of the digital call)

- It is not difficult to check that for every  $0 < q_1 < \frac{1}{2}$  there exists a probability measure  $\mathbb{Q} \in \mathbb{M}$  such that  $\mathbb{Q}(\omega_1) = q_1$ .
- ullet Indeed, it suffices to take any  $q_1 \in (0, \frac{1}{2})$  and to set

$$q_4 = q_1, \quad q_2 = q_3 = \frac{1}{2} - q_1.$$

• Let us apply the risk-neutral valuation formula to the digital call  $X=(1,0,0,0)^{\top}$ . For any  $\mathbb{Q}=(q_1,q_2,q_3,q_4)^{\top}\in\mathbb{M}$ , we obtain

$$\mathbb{E}_{\mathbb{Q}}(X) = q_1 \cdot 1 + q_2 \cdot 0 + q_3 \cdot 0 + q_4 \cdot 0 = q_1.$$

• Since  $q_1$  is any number from  $(0, \frac{1}{2})$ , we see that every value from the open interval  $(0, \frac{1}{2})$  can be achieved. Hence an arbitrage price for X is not unique.

#### PART 6

#### **COMPLETENESS OF A MARKET MODEL**

# Complete and Incomplete Models

- The non-uniqueness of arbitrage prices is a serious theoretical problem, which is still not completely resolved.
- We categorise market models into two classes: complete and incomplete models.

### Definition (Completeness)

A financial market model is called **complete** if for any contingent claim X there exists a replicating strategy  $(x,\phi)\in\mathbb{R}^{n+1}$ . A model is **incomplete** when there exists a claim X for which a replicating strategy does not exist.

- Given an arbitrage-free and complete model, the issue of pricing all contingent claims by replication is completely solved.
- How can we tell whether a given model is complete?

# Algebraic Criterion for Market Completeness

### Proposition (4.4)

Assume that a single-period market model  $\mathcal{M}=(B,S^1,\ldots,S^n)$  defined on the sample space  $\Omega=\{\omega_1,\ldots,\omega_k\}$  is arbitrage-free. Then  $\mathcal{M}$  is complete if and only if the  $k\times(n+1)$  matrix A

has a full row rank, that is, rank (A) = k. Equivalently,  $\mathcal{M}$  is complete whenever the linear subspace spanned by the vectors  $A_0, A_1, \ldots, A_n$  coincides with the full space  $\mathbb{R}^k$ .

#### Proof of Proposition 4.4.

- By the linear algebra, A has a full row rank if and only if for every  $X \in \mathbb{R}^k$  the equation AZ = X has a solution  $Z \in \mathbb{R}^{n+1}$ .
- If we set  $\phi^0 = x \sum_{i=1}^n \phi^j S_0^j$  then we have

where 
$$V_1(\omega_i) = V_1(x,\phi)(\omega_i)$$
.

• This shows that computing a replicating strategy for X is equivalent to solving the equation AZ = X.

## Example C: Incomplete Model

#### Example (Matrix A)

- Consider the stochastic volatility model from Example C.
- We already know that this model is incomplete, since the digital call is not an attainable claim.
- The matrix A is given by

$$A = \begin{pmatrix} 1+r & S_1^1(\omega_1) \\ 1+r & S_1^1(\omega_2) \\ 1+r & S_1^1(\omega_3) \\ 1+r & S_1^1(\omega_4) \end{pmatrix}$$

- The rank of A is 2, and thus it is not equal to k=4.
- In view of Proposition 4.4, this confirms that the model is incomplete.

# Probabilistic Criterion for Attainability

- Proposition 4.4 yields a method for determining whether a market model is complete.
- Given an incomplete model, how to recognize an attainable claim?
- ullet Recall that if a model  ${\mathcal M}$  is arbitrage-free then the class  ${\mathbb M}$  is non-empty.

### Proposition (4.5)

Assume that a single-period model  $\mathcal{M}=(B,S^1,\ldots,S^n)$  is arbitrage-free. Then a contingent claim X is attainable if and only if the expected value

$$\mathbb{E}_{\mathbb{Q}}\left((1+r)^{-1}X\right)$$

has the same value for all martingale measures  $\mathbb{Q} \in \mathbb{M}$ .

• The proof of Proposition 4.5 is for MATH3975 only.

### Proof of Proposition 4.5.

 $(\Rightarrow)$  It is immediate from Proposition 4.2 that if a contingent claim X is attainable then the expected value

$$\mathbb{E}_{\mathbb{Q}}\left((1+r)^{-1}X\right)$$

has the same value for all  $\mathbb{Q} \in \mathbb{M}$ .

( $\Leftarrow$ ) **(MATH3975)** We prove this implication by contrapositive. Let us thus assume that the contingent claim X is not attainable. Our goal is to find two risk-neutral probabilities, say  $\mathbb{Q}$  and  $\mathbb{Q}$ , for which

$$\mathbb{E}_{\mathbb{Q}}\left((1+r)^{-1}X\right) \neq \mathbb{E}_{\widehat{\mathbb{Q}}}\left((1+r)^{-1}X\right). \tag{3}$$



### Proof of Proposition 4.5.

- Consider the matrix A introduced in Proposition 4.4.
- Since the claim X is not attainable, there is no solution  $Z \in \mathbb{R}^{n+1}$  to the linear system

$$AZ = X$$
.

ullet We define the following subsets of  $\mathbb{R}^k$ 

$$B = \operatorname{image}\left(A\right) = \left\{AZ \,|\, Z \in \mathbb{R}^{n+1}\right\} \subset \mathbb{R}^k$$

and 
$$C = \{X\}$$
.

• Then B is a proper subspace of  $\mathbb{R}^k$  and, obviously, the set C is convex and compact. Moreover,  $B\cap C=\emptyset$ .



### Proof of Proposition 4.5.

• In view of Corollary 4.1, there exists a non-zero vector  $Y=(y_1,\ldots,y_k)\in\mathbb{R}^k$  such that

$$\begin{array}{rcl} \langle b,Y\rangle & = & 0 \ \ \text{for all} \ \ b \in B, \\ \langle c,Y\rangle & > & 0 \ \ \text{for all} \ \ c \in C. \end{array}$$

• In view of the definition of B and C, this means that for every  $j=0,1,\ldots,n$ 

$$\langle A_j, Y \rangle = 0$$
 and  $\langle X, Y \rangle > 0$  (4)

where  $A_j$  is the jth column of the matrix A.

ullet It is worth noting that the vector Y depends on X.



#### Proof of Proposition 4.5.

- ullet We assumed that the market model is arbitrage-free and thus, by the FTAP, the class  $\mathbb M$  is non-empty.
- Let  $\mathbb{Q} \in \mathbb{M}$  be an arbitrary martingale measures.
- We may choose a real number  $\lambda>0$  to be small enough in order to ensure that for every  $i=1,2,\ldots,k$

$$\widehat{\mathbb{Q}}(\omega_i) := \mathbb{Q}(\omega_i) + \lambda(1+r)y_i > 0.$$
(5)

- In the next step, our next goal is to show that  $\widehat{\mathbb{Q}}$  is also martingale measures and it is different from  $\mathbb{Q}$ .
- In the last step, we will show that inequality (3) is valid.



### Proof of Proposition 4.5.

• From the definition of A in Proposition 4.4 and the first equality in (4) with j=0, we obtain

$$\sum_{i=1}^{k} \lambda(1+r)y_i = \lambda \langle A_0, Y \rangle = 0.$$

• It then follows from (5) that

$$\sum_{i=1}^{k} \widehat{\mathbb{Q}}(\omega_i) = \sum_{i=1}^{k} \mathbb{Q}(\omega_i) + \sum_{i=1}^{k} \lambda(1+r)y_i = 1$$

and thus  $\widehat{\mathbb{Q}}$  is a probability measure on the space  $\Omega$ .

• In view of (5), it is clear that  $\widehat{\mathbb{Q}}$  satisfies condition R.1.



### Proof of Proposition 4.5.

- It remains to check that  $\widehat{\mathbb{Q}}$  satisfies also condition R.2.
- $\bullet$  We examine the behaviour under  $\widehat{\mathbb{Q}}$  of the discounted stock price  $\widehat{S}_1^j.$
- For every  $j = 1, 2, \dots, n$ , we have

$$\begin{split} \mathbb{E}_{\widehat{\mathbb{Q}}}\big(\widehat{S}_{1}^{j}\big) &= \sum_{i=1}^{k} \widehat{\mathbb{Q}}(\omega_{i})\widehat{S}_{1}^{j}(\omega_{i}) \\ &= \sum_{i=1}^{k} \mathbb{Q}(\omega_{i})\widehat{S}_{1}^{j}(\omega_{i}) + \lambda \sum_{i=1}^{k} \widehat{S}_{1}^{j}(\omega_{i})(1+r)y_{i} \\ &= \mathbb{E}_{\mathbb{Q}}\big(\widehat{S}_{1}^{j}\big) + \lambda \underbrace{\langle A_{j}, Y \rangle}_{=0} \qquad \text{(in view of (4))} \\ &= \widehat{S}_{0}^{j} \qquad \qquad \text{(since } \mathbb{Q} \in \mathbb{M}) \end{split}$$

### Proof of Proposition 4.5.

- We conclude that  $\mathbb{E}_{\widehat{\mathbb{Q}}}(\Delta \widehat{S}_1^j) = 0$  and thus  $\widehat{\mathbb{Q}} \in \mathbb{M}$ , that is,  $\widehat{\mathbb{Q}}$  is a risk-neutral probability measure for the market model  $\mathcal{M}$ .
- From (5), it is clear that  $\mathbb{Q} \neq \widehat{\mathbb{Q}}$ . We have thus proven that if  $\mathcal{M}$  is arbitrage-free and incomplete then there exists more than one risk-neutral probability measure.
- ullet To complete the proof, it remains to show that inequality (3) is satisfied for a contingent claim X.
- Recall that X was a fixed non-attainable contingent claim and we constructed a risk-neutral probability measure  $\widehat{\mathbb{Q}}$  corresponding to X.



#### Proof of Proposition 4.5.

We observe that

$$\mathbb{E}_{\widehat{\mathbb{Q}}}\left(\frac{X}{1+r}\right) = \sum_{i=1}^{k} \widehat{\mathbb{Q}}(\omega_{i}) \frac{X(\omega_{i})}{1+r}$$

$$= \sum_{i=1}^{k} \mathbb{Q}(\omega_{i}) \frac{X(\omega_{i})}{1+r} + \lambda \sum_{i=1}^{k} y_{i} X(\omega_{i})$$

$$> \sum_{i=1}^{k} \mathbb{Q}(\omega_{i}) \frac{X(\omega_{i})}{1+r} = \mathbb{E}_{\mathbb{Q}}\left(\frac{X}{1+r}\right)$$

since the inequalities  $\langle X,Y\rangle>0$  and  $\lambda>0$  imply that the braced expression is strictly positive.

# Probabilistic Criterion for Market Completeness

### Theorem (4.1)

Assume that a single-period model  $\mathcal{M}=(B,S^1,\ldots,S^n)$  is arbitrage-free. Then  $\mathcal{M}$  is complete if and only if the class  $\mathbb{M}$  consists of a single element, that is, there exists a unique martingale measure for  $\mathcal{M}$ .

### Proof of $(\Leftarrow)$ in Theorem 4.1.

Since  $\mathcal M$  is assumed to be arbitrage-free, it follows from the FTAP that there exists at least one risk-neutral probability measure, that is, the class  $\mathbb M$  is non-empty.

( $\Leftarrow$ ) Assume first that a martingale measure for  $\mathcal M$  is unique. Then the condition of Proposition 4.5 is trivially satisfied for any claim X. Hence any claim X is attainable and thus the model  $\mathcal M$  is complete.

## Proof of $(\Rightarrow)$ in Theorem 4.1

### Proof of $(\Rightarrow)$ Theorem 4.1.

( $\Rightarrow$ ) Assume that  $\mathcal M$  is complete and consider any two martingale measures  $\mathbb Q$  and  $\widehat{\mathbb Q}$  from  $\mathbb M$ . For a fixed, but arbitrary,  $i=1,2,\ldots,k$ , let the contingent claim  $X^i$  be given by

$$X^{i}(\omega) = \begin{cases} 1+r & \text{if } \omega = \omega_{i}, \\ 0 & \text{otherwise.} \end{cases}$$

Since  $\mathcal M$  is now assumed to be complete, the contingent claim  $X^i$  is attainable and thus, from Proposition 4.2, it follows that

$$\mathbb{Q}(\omega_i) = \mathbb{E}_{\mathbb{Q}}\left(\frac{X^i}{1+r}\right) = \pi_0(X^i) = \mathbb{E}_{\widehat{\mathbb{Q}}}\left(\frac{X^i}{1+r}\right) = \widehat{\mathbb{Q}}(\omega_i).$$

Since i was arbitrary, we see that the equality  $\mathbb{Q} = \widehat{\mathbb{Q}}$  holds.

### Arrow-Debreu Prices

- In financial economics, by a canonical Arrow-Debreu security we mean a security that pays one unit of cash if a particular state of the world is reached and zero otherwise (a binary claim).
- The price of such a security is called a **state price**.
- Any European claim X whose payoff is a function of the price  $S_T$  of the underlying asset can be decomposed as linear combination of Arrow-Debreu securities.
- Since the work of Breeden and Litzenberger (1978), researchers have used traded options to extract Arrow-Debreu prices for a variety of applications in financial economics.
- Kenneth J. Arrow and Gérard Debreu: Existence of an equilibrium for a competitive economy. *Econometrica* 22(3) (1954), 265–290.
- Douglas T. Breeden and Robert H. Litzenberger: Prices of state-contingent claims implicit in option prices. *Journal of Business* 51(4) (1978), 621–651.

## Summary

Let us summarise the properties of single-period market models:

- **①** A single-period market model  $\mathcal{M}$  is arbitrage-free if and only if it admits at least one martingale measure, that is,  $\mathbb{M} \neq \emptyset$ .
- ② An arbitrage-free single-period market model  $\mathcal{M}$  is complete if and only if a martingale measure  $\mathbb{Q}$  is unique, that is,  $\mathbb{M} = {\mathbb{Q}}$ .
- $oldsymbol{0}$  If a single-period model  $\mathcal{M}$  is arbitrage-free, then:
  - Any attainable claim X (that is, any claim for which a replicating strategy exists) has the unique arbitrage price  $\pi_0(X)$ .
  - The arbitrage price  $\pi_0(X)$  of any attainable claim X can be computed from the risk-neutral valuation formula using any martingale measure  $\mathbb{Q} \in \mathbb{M}$ .
  - If X is not attainable then we may define a price  $p_0(X)$  for X, which is consistent with the no-arbitrage principle. It can be computed using the risk-neutral valuation formula, but it always depends on a choice of a martingale measure  $\mathbb{Q} \in \mathbb{M}$ .