what does -32 lbf/300 lbm mean? lbf/lbm has units of force/mass, so it is an acceleration. But how to convert to something useful like ft/s²? Multiply by 1 in the funny form of $g_c = 1 = 32.174$ lbm ft / lbf s², of course!

acceleration =
$$(-32 \text{ lbf}/300 \text{ lbm})$$
 (32.174 lbm ft / lbf s²) = -3.43 ft/s²

or, since $g_{\text{earth}} = 32.174 \text{ ft/s}^2$,

acceleration =
$$(-3.43 \text{ ft/s}^2)/(32.174 \text{ ft/s}^2 g_{\text{earth}}) = -0.107 g_{\text{earth}}$$
.

The negative sign indicates the acceleration is in the -x direction, i.e. down the slope of course.

A good function test is that the acceleration has to be less than 1 g_{earth}, which is what you would get if you dropped the block vertically in a frictionless environment. Obviously, a block sliding down a slope (not vertical) with friction and with an external force acting up the slope must have a smaller acceleration.

Example 4. Wheels and friction

A car of known weight W is equipped with rubber tires with coefficient of static friction μ_s . Unlike the earlier example, there is no cable but the wheels are locked and thus the tires exert a friction force parallel to and in the plane of the ramp surface. As with the previous example, the car is on a ramp of angle θ with respect to horizontal. The center of gravity of the vehicle is a distance "c" above the ramp, a distance "a" behind the front wheels, and a distance "b" in front of the rear wheels.

Figure 9. Free body diagram for car-on-ramp with friction example

(a) What is the minimum μ_s required to keep the car from sliding down the ramp?