Notes on Charles Pinter's book of abstract algebra

Unathi Skosana

June 13, 2021

These are notes taken while reading Charles Pinter's 'A Book Of Abstract Algebra'

Contents

Operations

1

Operations

Question 1. What is an operation on a set A?

Definitions 2 (Informal definition). An operation is any rule which assigns to each ordered pair of elements of *A* a unique element in *A*.

Definitions 3 (Formal definition). Let *A* be any set:

An operation * on A is a rule which assigns to each ordered pairs (a, b) of elements of A exactly one a * b in A

- a * b is defined for *every* ordered pair (a, b) of elements of A. ¹
- *a* * *b* must be *uniquely* defined. ²
- If $a, b \in A$, then $a * b \in A$. 3

Definitions 4 (Superfluous properties). • An operation * is said to be *commutative* if it satisfies

$$a * b = b * a \tag{1}$$

for any two elements *a* and *b* in *A*.

• An operation * is said to be associative if it satisfies

$$(a*b)*c = a*(b*c)$$
 (2)

for any three elements a, b and c in A.

• The *identity* element *e* with respect to the operation * has the property that:

$$e * a = a$$
 and $a * e = a$ (3)

for every element in a in A.

• The inverse of any element a, denoted by a^{-1} has the property that;

$$a * a^{-1} = e$$
 and $a^{-1} * a = e$ (4)

¹ In \mathbb{R} , division does not qualify as operation since it does not satisfy this condition. i.e. the ordered pair (a, 0) has undefined quotient a/0.

² If \diamond is defined on (a,b) to be the number whose square is ab. In \mathbb{R} , \diamond does not qualify as an operation since 2 \$2 could be either 2,

 3 A is closed under the operation *