

ACFLY EDU 飞控用户手册

V2.0

广州博睿创新科技有限公司 www.acfly.cn

0 阅读提示

0.1 使用建议

建议用户在 ACFLY 飞行控制的 QQ 交流群(购买后由官方发送邀请)下载或者 B 站(*)观看教学视频和阅读《ACFLY EDU Ti 飞控代码》了解产品,使用《ACFLY EDU 飞控用户手册》可快速了解使用过程。

*B 站: https://space.bilibili.com/250212993

产品对应资料有两种下载方式:

- (1) ACFLY 售后群-群文件
- (2) 百度网盘: https://pan.baidu.com/s/1jh9w8LYkVDMt_XuVKbfJyg 提取码: acac

0.2 安全提示

- 1. 严禁电机上电带桨进行程序烧录,以免发生意外;
- 2. 严禁电机上电带桨插拔电调信号线, 以免发生意外;
- 3. 严禁飞行器上电后用表笔直接对板子进行测量,容易导致单片机烧坏;
- 4. 产品一切源码和资料仅限于学习交流,禁止用于商业用途!违者必究!

0.3 正版注册

无人机飞行控制系统主要由电路板、固件和其他软件组成,ACFLY 主要产品已经具备自主知识产权,为了防止被直接抄板和拷贝代码。对飞控板均采用正版注册的防抄袭方式。出厂默认已经注册。

将飞控连接到电脑,飞控正常情况下会在<mark>滴滴两声后,RGB 三色灯交替闪烁</mark>,此种状态证明该飞控证明已经注册,可正常使用,并可在我的电脑—>右键—>管理—>设备管理器—>端口中查看飞控的 COM 口号。若飞控灯不亮或者亮其他颜色,请联系客服。

0.4 关注微信公众号

请使用移动设备的微信软件扫描以下二维码,关注【博睿开源飞控】微信公众号,实时获取产品更新 信息以及商务合作信息。

博睿开源飞控

目录

0	阅读提示	1
	0.1 使用建议	1
	0.2 安全提示	1
	0.3 正版注册	1
	0.4 关注微信公众号	1
1	开发环境搭建	3
	1.1 编译环境(MDK)安装	
	1.2 编译环境设置	
	1.3 固件烧录	
2	硬件接口定义与规格	5
3	飞控供电	7
4	屏幕显示说明	8
5	飞控安装	q
	- 5.1 飞控固定	
	5.2 电机转向及顺序	
	5.3 连接接收机	
6	飞控初始设置及校准	10
	6.1 飞控上电初始化	10
	6.2 遥控器校准	10
	6.3 加速度计校准	11
	6.4 磁罗盘校准	11
	6.5 机体水平校准	11
7	电调电机校准	12
8	飞控调参	13
	8.1 调参软件	13
	8.2 参数分类	13
	8.3 电池参数	14
	8.4 姿态控制参数	14
9	代码框架	15
	9.1 代码总体布局	15
	9.2 代码执行流程	17
	9.3 模式的执行	18
10)代码接口手册	19
	10.1 传感器接口	19
	10.2 接收机接口	21
11	I 代码二次开发教程	22
12	2 版本更新日志	22

1 开发环境搭建

1.1 编译环境(MDK)安装

(1) MDK 开发软件安装

到售后群下载或者在 keil 官网 http://www.keil.com/ 的 Download 页面自行下载双击安装 MDK5.26:

选自己喜欢的目录安装完成后,使用 keygen 注册机进行破解(File->Liscense Manger 中输入序列号, 具体怎么破解可以查百度)。

(2) 芯片支持包安装

在售后群中下载支持包进行安装:

或在 keil 官网 http://www.keil.com/pack 下载下图中的最新版本软件支持包并安装

1.2 编译环境设置

在 MDK 界面下点击下列按钮进入工程配置选项:

在 Target 选项卡中选择 V6 开头的编译器(如果没有,可以安装 MDK 较新的版本或者前往 https://developer.arm.com/products/software-development-tools/compilers/arm-compiler/downloads/version-6 网页单独下载编译器并安装进 MDK),并取消 Use MicroLib 复选框;在 C/C++(AC6)选项卡中进行下图中的配置(由于这款单片机内存较小,不选择编译优化可能导致栈越界):

1.3 固件烧录

代码烧录需要连接飞控 SWD 接口,接口定义如下图所示。将此接口与 ST-Link(推荐)、JLink 等下载器的对应接口连接,然后接通电源即可下载。若接上时电源灯不亮,则将所有外设包括接收机接口都拔掉,只保留 SWD 接口的接线。

2 硬件接口定义与规格

(1)接口定义

🊺 注意: 飞控朝上放置

								1 注	意: 飞	至朝上.	<u> </u>
序号	图示	接口定义									
_			TX RX	Ultrasonic: Echo Triger GND 5V							
A	passed		GND S								
В			UART1:	TX RX	PowerADC: Bat Cur GND 5V						
В		statem and a statement of the statement						V GND C	V GND GND 5V		
	Ammun,	PWM1	PWM2	PWM3	PWM 4	PWM5	PWM6	PWM 7	PWM8	PPM	SBUS
C		S	S	S	S	S	S	S	S	S	S
		+	+	+	+	+	+	+	+	+	+
		GND	GND	GND	GND	GND	GND	GND	GND	GND	GND
D		UART2: TX RX GND 5V UART7: TX RX GND 5V 5V						GND			
E	E 显示屏接口: GND 3.3V D0 D1 Rst DC GND										

(2) 外设接口

■ 超声波: Ultrasonic 接口

■ 光流串口: Uart1 接口

■ GPS 串口: Uart0 接口

■ 外置罗盘: IIC1 接口

■ OpenMV 串口: Uart3 接口

■ 激光串口: Uart7 接口

(3) 飞控尺寸重量

■ 长 53mm, 宽 40mm, 高 15mm

■ 重 23 克

3 飞控供电

ACFLY EDU 飞控支持双冗余供电,供电电压 5V,分别是 powerADC 端口和 Power 端口。以下面的电流计为例,电流计共有 6 个引脚,可以将其一路 5V 和一路 GND 接到飞控的 Power 端口,而剩余的 5V、GND、CURRENT、VOLTAGE 引脚则对应接到飞控的 powerADC 接口。可直接购买使用 ACFLY 电流计,免焊线。

Pin	Signal	Volt		
1 (red)	vcc	+5V		
2 (blk)	vcc	+5V		
3 (blk)	CURRENT	+3.3V		
4 (blk)	VOLTAGE	+3.3V		
5 (blk)	GND	GND		
6 (blk)	GND	GND		

电流计引脚说明

电流计与飞控的接口 GH1.25 4pin 接线方式

4 屏幕显示说明

参数	说明									
Sensors:	0	1	2		3	4	5	6	7	
Pos:	超声波	未定义	内部 气压计		外部 气压计	未定义	GPS	光流	未定义	
Mag:	外置罗 盘 1	外置罗 盘 2	内置罗 盘		RC:	接收机		Bat:	电压	
		FP:		定位是	是否成功					
Rol:	Roll 的简写,横滚角度, 单位度				Pit:	Pitch 的简写,俯仰角度,单位度				
Yaw:	偏航角度,单位度				Vz:	垂直方向速度,单位 cm/s				

*符号说明:

√ : 正常,已使用(GPS表示定位成功)

• : 已识别

×:没连接/没识别/不正常

5 飞控安装

5.1 飞控固定

● 飞控支持免减震安装, 需紧固在飞行器上, 可使用 3M 胶固定飞控四个角即可, 切勿只粘住飞控中间, 飞控松动会影响飞行稳定性。

5.2 电机转向及顺序

- 以四旋翼为例, 红色箭头为机头方向, 飞控需按照下右图中的方向放置。飞控左上角电机为 1 号电机, 六旋翼八旋翼类似, 按逆时针顺序分别为 1、2、3、4。1 和 3 号电机逆时针旋转, 2 和 4 号电机顺时针旋转。将飞控按上述方向紧固在飞行器上(需固定飞控四个角)。
- 分别将 1、2、3、4…号电机所连接的电调的信号线分别插在飞控板的 M1-M8 口。

5.3 连接接收机

- 如使用 SBUS 接收机,将接收机的 SBUS 信号线(3线)连接至飞控的 SBUS 口。
- 如使用 PPM 接收机,将接收机的 PPM 信号线(3线)连接至飞控的 PPM 口。

6 飞控初始设置及校准

6.1 飞控上电初始化

飞控上电后会进行初始化(校准等),此时飞控处于 M00_init 模式下等待初始化完成,状态灯三快一慢闪烁。待状态灯三色慢闪变化并发出滴滴后代表自检完成(进入 M01 Ground)模式。

飞控每次上电后会先进行陀螺校准,此时飞控会检测飞控是否在运动,如果飞控处于运动状态将无法通过陀螺校准。因此上电后请将飞控先保持 10 秒左右静止。

陀螺校准过后板子可以缓慢移动,飞控将进行位置加速度的初始对准,此过程比较长可能需要半分钟至一分钟(校准加速度计后此过程可以缩短)。

6.2 遥控器校准

此飞控要求遥控器至少具有 6 个通道,包含 4 个摇杆和 2 个按钮,最多支持 8 个通道,校准的第一个按钮用来切换定位和自动飞行模式。校准的第二个按钮支持一键起飞和航点自动飞行功能。

首先等待 4.1 中的飞控初始化完成,飞控在 M01_Ground 模式下,飞控状态灯切换至三色慢闪。将飞控连接到电脑,打开 ACFLY EDU 调参软件,在 COM 选择中找到飞控端口号,点击 open。

(1) 打开遥控器(已将接收机连接至飞控,参考3.3)

部分遥控器需要提前设置好遥控器的 PPM/SBUS 模式,根据需要设置 2 个按钮(即辅助通道)

(2) <mark>将四个摇杆通道回中,所设置的 2 个按钮拨到 2 档或 3 档(数字最大档)位置</mark>。在调参软件中点击"校准遥控器"按钮。飞控进入 M10 RCCalib 遥控器校准模式,此时红灯常亮。

- (3) 拨动一下任意摇杆或档位然后迅速回中,飞控状态灯变为蓝色渐变
- (4) 等待蓝灯闪烁两次(蜂鸣器哔),表示已记录所有摇杆初始位置
- (5)按如下顺序操作遥控器:油门最下(哔)—>偏航最左(哔)—>俯仰最下(哔)—>横滚最左(哔)—>油门最上(哔)—>偏航最右(哔)—>俯仰最上(哔)—>横滚最右(哔)—>杆回中—>按钮1拨向1挡位置(哔)—>按钮1拨回原位—>按钮2拨向1挡位置(哔)—>按钮2拨回原位—>按钮3拨向1档位置(哔)(或把油门拉低完成较准)—>按钮3拨回原位—>按钮4拨向1档位置(哔)(或把油门拉低完成较准)—>按钮4拨回原位—>按钮4拨回原位—>按钮4拨回原位—>按钮4拨回原位—>按钮4拨回原位—>按钮4拨回原位—>按钮4拨回原位—>按钮4拨回原位—>按钮4拨回原位—>按钮4拨回原位—>按钮4拨回原位—>按钮4拨回原位—>按钮4拨回原位—>按钮4拨回原位—>按钮4拨回原位—>按钮4拨回原位—>完成(绿灯闪哔哔)

错误情况:

- 红灯闪哔—长叫并退出模式回到 M01: 遥控器或接收机断开
- 完成校准时红灯闪哔—长叫:摇杆通道的最高油门、最低油门到摇杆中间的行程不一致。

6.3 加速度计校准

首先等待 4.1 中的飞控初始化完成,飞控在 M01_Ground 模式下,飞控状态灯切换至三色慢闪。 遥控器油门最小,偏航最左,俯仰最下,横滚最左,两秒左右将进入 M12_ACCCalib 加速度校准模式。 将装好飞控的无人机分别摆放六个面(不用按顺序,差不多水平即可)静止。校准时飞控蓝灯由暗变 亮,完成一个面后会闪烁然后变红。

飞控灯红色表示当前面已经校准或者飞控在移动无法校准。

6.4 磁罗盘校准

首先等待 4.1 中的飞控初始化完成,飞控在 M01_Ground 模式下,飞控状态灯切换至三色慢闪。 遥控器油门最小,偏航最左,俯仰最上,横滚最左。两秒左右将进入 M13_MagCalib 磁罗盘校准模式。 旋转无人机尽量多的三维角度,旋转时飞控指示灯会由暗变亮指示当前进度。完成后飞控指示灯闪烁 表示校准完成。

飞控灯红色表示飞控没有在旋转无法校准。

6.5 机体水平校准

此步骤非常关键,务必进行校准!

首先等待 4.1 中的飞控初始化完成,飞控在 M01 Ground 模式下,飞控状态灯切换至三色慢闪。

将无人机机体放平(是机体不是飞控)并静止不动。飞控遥控器油门最小,偏航最左,俯仰回中,横滚最左,两秒左右将进入 M15 HorizontalCalib 水平校准模式。

飞控指示灯会由暗变亮指示当前进度,完成后飞控指示灯闪烁表示校准完成

7 电调电机校准

(1) 电调行程校准

首先将桨拆下, 以免发生意外! 天行者电调必须校准, 不然可能堵转!

在 drv main 文件中,将下面几行取消注释:

编译后将代码烧进飞控,插电池给飞控和电调电机重新上电,之后会听到电调嘀嘀-嘀的声音,表示校准完成。

校准完成后将上述代码重新注释、编译并烧进飞控, 以免之后发生意外!

(2) 电机起转油门设置

■ 参数名: MT STThr

天行者电调必须认真设置,不然可能堵转!

乐天电调为 10, 天行者电调为 15 左右。

此值设置后,四个电机应当开始同时旋转(倾斜飞机不会出现有的在转有的不转的情况)

(3) 电机推力非线性补偿系数设置

- 非线性补偿系数参数名: MT NonlinF
- 电机满油门推力参数名: MT FullThrR

补偿电机推力不是线性的系数。非线性补偿系数为 0 时表示不修正,为 1 为最大修正,默认为 0.65。 电机满油门推力参数范围 0.65-1, 1 时表示最大油门时就是最大推力, 0.9 时表示 90%油门时已是最大推力 (后面的 10%无效)

计算:

假设油门推力方程为: $F = kx^2 + (1 - a)x$,其中 F 为推力,x 为油门(0-1),a 为系数。

又假设满推力时油门为 m(油门范围 0-1)

即有: $km^2 + (1-a)m = 1$

得:
$$k = \frac{1-(1-a)m}{m^2}$$

解方程组 $kx^2 + (1-a)x = out$,其中out为修正前的油门输出,得到的x即为线性修正后的油门输出。

8 飞控调参

8.1 调参软件

■ 本飞控使用 Mavlink 协议,支持使用 Mavlink 的参数协议进行调参。

(1) ACFLY 地面站

- 打开 ACFLY 地面站 (可到售后群下载),通过 USB 将飞控连接到电脑。
- 点击配置-参数表-可对相应参数进行修改。

(2) 支持 Mavlink 协议的开源地面站

以 Mission Planner 为例,将飞控连接至电脑,右上角选择 COM 口号,点击连接,地面站将获取飞控的参数列表。(注意:请在代码的 main 文件里将 init_debug 注释掉或在 Debug 文件里不要往此端口写入非 Mavlink 的调试数据,不然将导致 Mavlink 误码过多地面站不识别)

在配置调试-->参数表中修改参数,然后点击右侧的写入参数即可将参数写入飞控。

8.2 参数分类

不同类别参数以开头分组,如 AC 开头为姿态控制参数组,MT 开头为电机参数组。

- AC---Attitude Control 姿态控制参数:包括 Roll、Pitch、Yaw 三轴感度,增益等。
- MT---Motor 电机参数:包括电机惯性时间常数,非线性系数等。
- BAT---Battery 电池参数:包括标准电池电压等。
- UAV---飞行器参数:包括飞行器类型等。

8.3 电池参数

(1) 电池标准电压

参数名: BAT STVoltage

飞行器使用电池的标准电压,如 3s 电池可设置为 11.6v。

此值用于在电压检测可用时, 动态调整姿态控制器 b 参数。

比如调参设置 b 参数为 10, 标准电压为 10v, 当测量到电池电压为 15v 时会动态改变 b 值为 $10\times15v/10v=15$ 。

(2) 电池电压 ADC 采样放大倍数

参数名: BAT VADCMag

电压采集模块的分压倍数。

比如电压采集模块将电池电压分压到 1/10 给飞控采样,此值应设置为 10。

8.4 姿态控制参数

(1)参数类型

姿态参数分为四类:

- b 参数(参数名: AC_Roll_b、AC_Pitch_b、AC_Yaw_b): 飞行器控制对象的增益,飞机力气越大此参数越大。参数过小飞行器会高频振荡发抖,过大将控制不住(打杆软绵绵没力)。**主要调此参数就行。**
- T参数(参数名: MT_T): 飞行器电机的惯性时间常数。飞机桨加速至期望值的时间越长,此参数越大。此参数过小飞行器会高频振荡发抖。针对特定机型,此参数需微调。此参数越小(电机加速快),抗扰性能越好,此参数太小会导致 b 怎么调都会有震荡现象。此参数大不会震荡但是抗扰性能会打折扣(适中就行,没必要追求太强抗扰)
- TD4P 参数(参数名: AC_Roll_TD4Pn、AC_Pitch_TD4Pn、AC_Yaw_TD4Pn n=1...4): 前馈跟随速度 (打杆快慢),TD4 滤波器跟随打杆指令的增益 P1...P4。此参数越大打杆跟随越快。**可调节此参数来 调节手感。**
- P 参数(参数名: AC_Roll_Pn、AC_Pitch_Pn、AC_Yaw_Pn n=1...4): 第 1 到 4 层反馈环的反馈增益。此参数越大反馈增益越大。**不建议新手调节,调了用处也不大。**

(2) b、T 参数调节

以下参数标准电压: 3s=11.6v、4s=15.2v、6s=22.8v

	F450+U22	F450+dji2	精灵3机架	dh600+疯狂	Tarot X6+	f550 六轴	f330+朗宇
	16 800kv	312 940kv	+dji2312	4114 400kv	朗宇 4108	+dji 2312	x2212
配置	电机	电机	940kv 电机	电机+飞越	320kv 电	电机	1400kv 电
	+1147 桨	+9450 桨	+9450 自锁	1555 折叠桨	机+1855	+9450 自	机+8038
	+4 _S	+4 _S	桨+3s	+6s	碳桨 +6s	锁桨 +4s	奖 +3s
Т	0.1	0.1	0.1	0.05	0.15	0.1	0.1
Roll Pitch	b=5.5	b=7.5	b=8.5	b=5.5	b=1.2	b=5.5	b=7.5
Vov	b=1.0 b=1.0 b=2.	h-1 0	1-20	1 10	1 00	b=1.0	1-10
Yaw		0-2.0	b=1.0	b=0.8	T=0.005	b=1.0	

9 代码框架

9.1 代码总体布局

本飞控代码已经分组在 14 个大类里,如图所示。建议看的部分:(3)驱动中的 Sensors 接口及 Receiver接口;(5) Basic 中的时间实现;(7)解算系统中的解算系统接口;(8)任务调度器接口;(13)模式中的飞行模式;(14)控制系统中的控制系统接口。

(1) BSP(板级支持包)

板级支持文件,最底层的库,不用看基本不用修改(可以修改 startup.s 里面的堆栈设置)。

(2) Main (主函数文件)

主函数包括:

- 初始化所有需要用到的外设;
- 进入 STS 任务调度器 (while 循环执行任务)
- 错误中断拉低所有输出

(3) Driver(驱动)

驱动包含:

- 外设的初始化配置(drv_开头文件)
- 传感器接口,包括(**建议细看,二次开发必备**):
 - Sensors.c: 传感器接口实现函数
 - Sensors.h: 传感器读取接口函数声明, 建议细看
 - Sensors Backend.h: 传感器注册、更新接口函数声明,**建议细看**
- 接收机接口,包括:
 - Receiver.c: 接收机接口实现函数

Receiver.h:接收机读取接口函数声明,建议细看

其中,drv_Sensors.c 里面执行 IMU 传感器读取操作并写入 Sensors 接口,然后通过挂起一个不用的中断的方式进入解算及控制中断。

(4) DriverLib (TI 的库)

有需要自己写驱动的,可以在下面目录下查看库函数的实现及说明:

(5) Basic (基本)

Basic.c 里面初始化 systic 定时器用于计时,实现了 TIME 结构体用于时间计算,其他部分程序所有时间相关操作都是基于 TIME, **建议细看。**

Configurations.c 里有 EEPROM 的读取保存操作,用于保存记录参数等,可以不看。

(6) Math (数学库)

包含四元数、三维向量运算,以及一些简单的数学运算,重力等常量的定义。

(7)MeasurementSystem(解算系统)

姿态解算及位置解算。

建议细看解算系统接口 MeasurementSystem.h,包含解算结果的获取函数声明及使用说明。

(8) TaskScheduling(任务调度器)

简易任务调度器,就是在主循环刷任务。

建议细看 STS.h,包含任务调度器的函数声明及使用说明。

(9) InteractiveInterface(用户交互接口)

目前仅包含 LED 相关操作

(10) Filters (滤波器)

包含巴特沃斯低通滤波器、TD4 非线性滤波器、位置估计卡尔曼滤波器的实现。

(11) DataStructure(数据结构)

包含环形缓冲区的实现。

(12) Communic (通讯)

包含 Mavlink 库、调试通讯文件 Debug.c、通用端口交互文件 Commulink.c(驱动程序可通过 Commulink.h 里的函数注册端口成为通用端口用于 mavlink 等标准通讯)

(13) Modes (模式)

建议细看飞行模式! 二次开发必备

- 0-9 号为非飞行非校准的其他模式
- 10-19 号为校准模式
- 30-39 号为飞行模式
- M00 为初始化模式,等待解算系统初始化完成。然后进入 M01 地面模式。
- M01 下可通过遥控或上位机命令进入其他校准及飞行模式。

(14) ControlSystem (控制系统)

建议细看 ControlSystem.h! 二次开发必备

ControlSystem.h 包含控制系统的 API 接口。Ctrl Attitude 和 Ctrl Position 分别为姿态和位置控制器。

9.2 代码执行流程

(1) 初始化及任务调度

Main 函数中首先调用 init 开头的函数进行初始化。

初始化函数中,会调用 STS 任务调度接口将需要在主循环里执行的函数加入到任务调度列表。 STS Run 函数判断任务调度列表中的任务是否需要被执行,是就执行。

```
40
41 int main()
42 ⊟ {
43
      init_Basic();
      init drv EEPROM();
44
      init MS();
45
46
      init ControlSystem();
      init Drivers();
47
48
49
      init_Configurations();
50
51
      init Modes();
52
      init CommuLink();
53
54
    init Debug();
     //while(1);
55
      STS Run();
56
57
    }
```

(2) 解算及控制任务

只有解算及控制是在**中断**中执行的。

在 drv_Sensors.c 文件中,每次获取到传感器数据后,会通过挂起一个不用的中断的方式进入解算及控制中断。


```
/84 -
785 //主解算控制任务中断
786 static void MainMCHandler()
787 ⊡ {
        NVIC ClearPendingIRQ( I2C3 IRQn );
788
789
790
        MS main();
791
         static uint16 t Ctrl Counter = 0;
792
         if( ++Ctrl Counter >= 5 )
793
794
          Ctrl Counter = 0;
           //200hz运行控制
795
796
           ctrl main();
797
798 - }
```

该中断的优先级是 INT_PRIO_7, 位置传感器更新中断优先级不要高于此优先级(也就是只能INT_PRIO_7, 否则会导致线程问题)。

9.3 模式的执行

模式是在任务调度器主循环中执行的。

Modes.c 里将模式任务加入到任务列表:

```
Mode_Task_ID = STS_Add_Task( STS_Task_Trigger_Mode_RoughTime ,

Modes[ current_mode ].mode_enter();
```

模式任务触发时,进入模式的主函数:

10 代码接口手册

- 本代码接口中所有位置、速度、加速度数据单位均为 cm 厘米
- 本代码接口中所有角度、角速度、角加速度数据单位均为 rad 弧度
- 本代码接口中所有磁场数据单位均为 Gauss 高斯
- 本飞控模块化编程,不同模块通过接口进行访问操作,此文档必看!!
- 此文档包括:传感器接口、接收机接口

10.1 传感器接口

- 位于 Drivers 目录下
- 传感器接口分为: 传感器读取接口 和 传感器注册及更新接口。
- 函数声明分别位于: Sensors.h 和 Sensors Backend.h 里
- 函数定义位于: Sensors.c 里

(1) IMU 传感器定义(Sensors.h)

IMU 传感器包括加速度计、陀螺仪、磁力计、每种各支持 3 个。定义如下:

```
/*IMU传感器定义*/
12
     typedef struct
13 □ {
       bool present; //传感器是否存在
14
       TIME last_update_time; //上次
float sample_time; //采样时间
15
17
       float sensitivity; //灵敏度 (原始数据->实际单位 陀螺: rad/s 加速度: cm/s^2 磁场: gauss)
18
19
       vector3_int data_raw; //原始数据
       vector3_float data; //实际单位数据
     IMU Sensor;
   /*IMU传感器定义*/
23
```

(2) 位置传感器定义(Sensors.h)

位置传感器包括气压、光流、超声波等,本飞控最多支持同时存在8个定位传感器。定义如下:

```
typedef struct
54 □
          bool publishing; //是否正在更新
56
         bool present; //传感器是否存在
          bool available; //传感器是否可用
         TIME last_update_time; //上次更新时间
TIME inavailable_start_time; //传感器不可用开始时间
float_delay; //传感器延时
59
60
         float sample_time; //来样时间
62
63
         bool safe; //传感器是否安全(数据缓慢变化不会发生跳变 !!注意!!如不确定不要设置为safe)
Position_Sensor_Type sensor_type; //传感器类型(见枚举注释)
Position_Sensor_DataType sensor_DataType; //传感器数据类型(见枚举注释)
65
66
67
         Position_Sensor_frame velocity_data_frame; //速度数据坐标系(见枚举注释)
68
69
         vector3_double position_Global; //经纬度
         vector3_float position; //位置(cm)
vector3_float velocity; //速度(cm/s)
70
71
         //经纬度转平面坐标变量
73
     Map_Projection mp;
}Position_Sensor;
```

其中:

- sensor type 定义了传感器是经纬度定位、相对定位,还是测距定位传感器。
- sensor DataType 定义了传感器的数据类型:例如 z 轴位置数据, xy 速度数据等。
- velocity data frame 针对速度传感器, 定义了速度传感器所测速度所在的坐标系。

(3) IMU 传感器读取接口(Sensors.h)

IMU 传感器读取接口会返回 const 的 IMU 传感器结构体:

(4) IMU 传感器注册、更新接口(Sensors Backend.h)

在 IMU 传感器更新前,首先调用注册函数进行注册,设置传感器的灵敏度。

注册完成后把 IMU 传感器编号及原始数据送入 update 接口即可完成更新。

```
12
     /*IMU传感器注册函数*/
13
14
       bool IMUAccelerometerRegister( unsigned char index , float sensitivity);
15
       bool IMUGyroscopeRegister( unsigned char index , float sensitivity );
       bool IMUMagnetometerRegister( unsigned char index , float sensitivity);
16
     /*IMU传感器注册函数*/
17
18
     /*IMU传感器更新函数*/
19
       bool IMUAccelerometerUpdate( unsigned char index , vector3_int data );
20
21
       bool IMUGyroscopeUpdate( unsigned char index , vector3_int data );
22
       bool IMUMagnetometerUpdate( unsigned char index , vector3 int data );
     /*IMU传感器更新函数*/
```

(5) 位置传感器读取接口(Sensors.h)

位置传感器读取接口会返回 const 的位置传感器结构体:

```
95 /*位置传感器*/
96
97 /*位置传感器读取函数*/
98 const Position Sensor* GetPositionSensor(unsigned char index);
99 /*位置传感器读取函数*/
```

(6) 位置传感器注册、更新接口(Sensors Backend.h)

在位置传感器更新前,首先调用注册函数进行注册,设置传感器的类型等参数:

```
/*位置传感器注册函数*/
30
       //safe: 传感器是否安全 (数据缓慢变化不会发生跳变 !! 注意!! 如不确定不要设置为safe)
31
32 -
      bool PositionSensorRegister (
         unsigned char index ,\
33
34
         Position Sensor Type sensor type ,\
         Position_Sensor_DataType sensor_data_type ,\
35
36
         Position_Sensor_frame sensor_vel_frame ,\
37
         float delay ,\
38
         bool safe
39
       //注销传感器
40
41
     bool PositionSensorUnRegister(unsigned char index);
/*位置传感器注册函数*/
```

如果位置传感器很久没有更新, MS Main 解算任务中会自动把此传感器取消注册。

注册完成后把位置传感器编号及与传感器 sensor data type 对应的数据送入 update 接口即可完成更新:

```
/*位置传感器更新函数*/
//delay参数小于0则不会改变delay
bool PositionSensorUpdatePositionGlobal(unsigned char index, vector3_double p
bool PositionSensorUpdatePosition(unsigned char index, vector3_float position
bool PositionSensorUpdatePositionGlobalVel(unsigned char index, vector3_float position
bool PositionSensorUpdatePositionVel(unsigned char index, vector3_float posit
bool PositionSensorUpdatePositionVel(unsigned char index, vector3_float posit
bool PositionSensorUpdateVel(unsigned char index, vector3_float vel, bool av
/*IMU传感器更新函数*/
```


10.2 接收机接口

- 位于 Drivers 目录下
- 接收机接口分为:接收机读取接口和接收机更新接口。
- 函数声明分别位于: Receiver.h 和 Receiver Backend.h 里
- 函数定义位于: Receiver.c 里

(1) 接收机定义(Receiver.h)

接收机包含 SBUS、PPM 等协议的接收机(至少具有6个通道),定义如下:

```
6 //接收机定义
7 typedef struct
8 - {
    bool present; //是否存在
9
    bool connected; //是否已连接
10
    bool available; //是否可用
11
     TIME last update time; //上次更新时间
    float update time; //更新时间间隔
13
14
    float raw data[16]; //原始数据
15
    float data[8]; //校准后的数据
16
17 } Receiver;
```

(2)接收机读取接口(Receiver.h)

- get Receiver 会返回指定接收机的 const 结构体
- get_current_Receiver 会返回当前接收机的 const 结构体(自动选择序号最低的可用接收机,无可用接收机是返回随机接收机)
- get_current_Reciever_Type返回当前接收机的类型(SBUS 接收机、PPM 接收机等)

```
26 //获取指定的接收机
27 const Receiver* get Receiver(RC_Type rc);
28 //获取当前使用的接收机
29 const Receiver* get current_Receiver();
30 //获取当前使用的接收机
31 RC_Type get_current_Receiver_Type();
```

(3)接收机更新接口(Receiver Backend.h)

把接收机类型、原始数据、是否已连接等信息发送给接口即可完成接收机数据更新。

```
8 //更新接收机数据
9 void Receiver_Update( RC_Type _rc , bool connected
```


11 代码二次开发教程

本飞控二次开发采用视频教程的方式, 到售后群下载链接说明:

12 版本更新日志

日期	新版本	旧版本	更新内容	
20200423	V1.1			
20200721	V1.2	V1.1	• 更新第8章,去除分电板连接方式。	
20200803	V1.3	V1.2	• 调整 4.3、4.4 校准顺序	
20200925	V1.4	V1.3	• 优化配图说明	
20200923	V 1. 4	V1.5	• 修改部分细节表述	
				• 修改硬件接口定义与规格
20210331	V2.0	V1.4 •	• 新增屏幕显示说明	
			• 修改全文 LOGO 与排版	

ACFLY 开源飞控提供技术支持

内容如有更新, 恕不另行通知

您可以在 ACFLY 开源飞控售后群或百度云链接查询最新版本《ACFLY EDU 飞控用户手册》

Copyright © ACFLY 开源飞控 版权所有