Mathematical Underpinnings Lab 10 22.05.2024

Task 1 (Lars)

Load the prostate data dataset. The first 8 columns contain explanatory variables (X), while the 9th column named lpsa contains the response variable (Y). Scale and center X and Y (from this point on X and Y will denote preprocessed data).

- a) Apply the Lars algorithm using Lars from sklearn.linear_model. Do not fit the intercept. We will name the model model_lars In what order are the variables included in the model? To answer this question, do:
 - Draw a profile plot. On the x-axis, plot model_lars.alphas_ (the maximum of covariances in absolute value at each iteration) and on the y-axis, plot model_lars.coef_path_. Note that model_lars.alphas_does not mean exactly the same as α in the lecture.
 - Based on model_lars.coef_path_, list the order in which the variables are included in the model.
- b) Complete this exercise without using the Lars function for computations. First, compute the first element of $model_lars.alphas_$ vector (the largest correlation between Y and X_i). Then, perform the first and second steps of the algorithm described below:
 - (b1) Identify the first variable (S_1) selected by Lars, which is the one with the largest correlation with Y.
 - (b2) Calculate the OLS estimator for $\beta^{(1)}$ parameter associated with the selected variable.
 - (b3) Compute correlations between the $r_{1,\tilde{\alpha}}$ defined as $Y \tilde{\alpha}\hat{Y}$ and all the variables X for a 100 $\tilde{\alpha}$ values in the range of [0,1]. Plot the results, where the x-axis represents $\tilde{\alpha}$ and the y-axis represents correlations. Which line visualizes the theorem discussed in the lecture (Figure 1)?
 - (b4) Based on the plot, determine which variable will be chosen next (S_2) . What is the approximate value of $\tilde{\alpha}_2$? Based on the approximate value of $\tilde{\alpha}_2$ check, whether $\operatorname{Cor}(r_{1,\tilde{\alpha}_2},X_{S_1})=\operatorname{Cor}(r_{1,\tilde{\alpha}_2},X_i)$.
 - (b5) (On paper) Express the formula for $\operatorname{Cor}(Y \tilde{\alpha}\hat{Y}, X_i)$ in terms of the correlation between Y and X_i , and the correlation between \hat{Y} and X_i . Using that, derive the formula for $\tilde{\alpha}_2$. (On computer) Next, plot the values of $\sqrt{(\operatorname{Var}(Y))} \cdot \operatorname{Cor}(Y, X_i) \sqrt{(\operatorname{Var}(\hat{Y}))} \cdot \tilde{\alpha} \cdot \operatorname{Cor}(\hat{Y}, X_i)$ for a 100 $\tilde{\alpha}$ values in the range of [0, 1] and $i = 1, 2, \dots, 8$. Compute the exact value of $\tilde{\alpha}_2$.
 - (b6) (On computer) Compute α_2 , and $r_{1,\tilde{\alpha}_2}$. Update the vector of selected variables.

Then (third step):

- (b7) Compute the OLS estimator for $\beta^{(2)}$ using the selected variables as predictors and $r_{1,\tilde{\alpha}_2}$ as the explanatory variable.
- (b8) Compute the correlations between the $r_{2,\tilde{\alpha}_2} = r_{1,\tilde{\alpha}_2} \hat{Y}_2$ and all the variables for a 100 $\tilde{\alpha}$ values in the range of [0, 1]. Plot the results, where the x-axis represents $\tilde{\alpha}$ and the y-axis represents correlations. Which line/lines visualizes the theorem discussed in the lecture (Figure 1)?
- (b9) Based on the plot, determine which variable will be chosen next (S_2) . What is the approximate value of $\tilde{\alpha}_2$?
- (b10) (On paper) Express the formula for $Cor(Y \tilde{\alpha}\hat{Y}, X_i)$ in terms of the correlation between Y and X_i , and the correlation between \hat{Y} and X_i . Using that, derive the formula for $\tilde{\alpha}_2$. (On computer) Next, compute the exact value of $\tilde{\alpha}_2$.
- (b11) (On computer) Compute α_2 , and $r_{1,\tilde{\alpha}_2}$.
- c) (*) Implement Lars.

Lars for scaled and centered data

 S_k - a variable chosen in step k

 α_k - model_lars.alphas_ - the maximum of covariances in absolute value at kth iteration

First step

- 1. Compute correlations between Y and X_i for i = 1, 2, ..., p.
- 2. $S_1 = \operatorname{argmax}_i \operatorname{Cor}(Y, X_i)$
- 3. $\alpha_1 = \max_i \operatorname{Cor}(Y, X_i)$

Second step

- 1. Compute OLS estimator for the parameters $\beta^{(1)}$ in a linear model using X_{S_1} as the predictor variable and Y as an explanatory variable.
- 2. Denote $r_{1,\tilde{\alpha}} = Y \tilde{\alpha}\hat{Y}^{(1)}$, where $\hat{Y}^{(1)}$ is a prediction of the model from the previous step.
- 3. Compute correlations between $r_{1,\tilde{\alpha}}$ and X_i for $i \in \{1,2,\ldots,p\}$. Find $i \neq S_1$ and the smallest $\tilde{\alpha} \in [0,1]$ (denoted by $\tilde{\alpha}_2$) such that $\operatorname{Cor}(r_{1,\tilde{\alpha}}, X_{S_1}) = \operatorname{Cor}(r_{1,\tilde{\alpha}}, X_i)$.
- 4. $S_2 = i$ (from the previous step), and $\alpha_2 = \operatorname{Cor}(r_{1,\tilde{\alpha}_2}, X_{S_2})$.

k+1-th step

- 1. Compute OLS estimator of the parameters $\hat{\beta}^{(k)}$ in a linear model using $X_{S_1}, X_{S_2}, \dots, X_{S_k}$ as predictors and $r_{1,\tilde{\alpha}_2}$ as the explanatory variable.
- 2. $r_{k,\tilde{\alpha}_k} = r_{k-1,\tilde{\alpha}_{k-1}} \tilde{\alpha}_k \hat{Y}^{(k)}$ where $\hat{Y}^{(k)}$ is a prediction of the model from the previous step.
- 3. Compute correlations between $r_{k,\tilde{\alpha}_k}$ and X_i for $i \in \{1,2,\ldots,p\}$. Find $i \neq S_1,S_2,\ldots,S_k$ and the smallest $\tilde{\alpha}_{k+1} \in [0,1]$ such that $\operatorname{Cor}(r_{k,\tilde{\alpha}_{k+1}},X_{S_j}) = \operatorname{Cor}(r_{k,\tilde{\alpha}_{k+1}},X_i)$ for any j < k.
- 4. $S_{k+1} = i$ (from the previous step), and $\alpha_{k+1} = \operatorname{Cor}(r_{k,\tilde{\alpha}_{k+1}}, X_{S_{k+1}})$.

Least angle regression

The crux of the method is the following simple fact:

Lemma. Assume that x_j and y are standardized to have mean 0 and variance 1. Assume that for any j = 1, ..., p - 1

$$|\langle x_i, y \rangle| = \lambda$$

(note that $< x_j, y >$ corresponds to estimator for the model $y \sim x_j$). Let $u(\alpha) = \alpha X \hat{\beta}$ ($\hat{\beta}$ for the model $y \sim x = (x_1, \dots, x_{p-1})$) with $\alpha \in [0, 1]$ be a scaled prediction. Then for any $j = 1, \dots, p-1$

$$|\langle x_i, y - u(\alpha) \rangle| = (1 - \alpha)\lambda$$

and correlation between x_j and $y - u(\alpha) \rightarrow 0$ monotonically when $\alpha \rightarrow 1$.

Figure 1: Lemma from the lecture

Task 2 (Lars, lasso)

Load dataset from files SRBCT_X.txt and SRBCT_Y.txt. The first file contains standardised genes expression values collected from 83 cDNA microarrays. The second contains the classes including 4 different childhood tumors called small round blue cell tumors (SRBCTs) - Ewing's family of tumours (EWS), neuroblastoma (NB), Burkitt's lymphoma (BL), and rhabdomyosarcoma (RMS). Note that the dataset is not be well-suited for the task, as Y is categorical. However, for illustrative purposes, we will proceed with this dataset.

- a) Apply Lars. Stop algorithm when 80 variables are chosen (use n_nonzero_coefs = 80). Draw a profile plot. Which variables are chosen? In what order?
- b) Fit LassoLars model. Draw a profile plot. Compare the order in which variables are chosen with Lars. Why is there a difference?
- c) Fit Lasso models using shrinkage parameters corresponding to alphas in Lars. In a plot from b) mark estimated parameters for every model. What can you say about these models?