donde $\mathbf{v}_1, \mathbf{v}_2$ son dos puntos cualesquiera de l_1 y l_2 , respectivamente, y \mathbf{a}_1 y \mathbf{a}_2 son las direcciones de l_1 y l_2 . [SUGERENCIA: Considere el plano que contiene a l_2 y que es paralelo a l_1 . Demuestre que el vector $(\mathbf{a}_1 \times \mathbf{a}_2)/\|\mathbf{a}_1 \times \mathbf{a}_2\|$ es un vector unitario normal a este plano; y proyecte $\mathbf{v}_2 - \mathbf{v}_1$ sobre esta dirección normal.]

- (b) Hallar la distancia entre la recta l_1 determinada por los puntos (-1, -1, 1) y (0, 0, 0) y la recta l_2 determinada por los puntos (0, -2, 0) y (2, 0, 5).
- **26.** Demostrar que dos planos dados por las ecuaciones $Ax+By+Cz+D_1=0$ y $Ax+By+Cz+D_2=0$ son paralelos y que la distancia entre ellos es

$$\frac{|D_1 - D_2|}{\sqrt{A^2 + B^2 + C^2}}.$$

27. (a) Demostrar que el área del triángulo en el plano con los vértices (x_1, y_1) , (x_2, y_2) , (x_3, y_3) es el valor absoluto de

$$\frac{1}{2} \begin{vmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix}.$$

- (b) Hallar el área del triángulo con vértices (1,2), (0,1), (-1,1).
- **28.** Transformar los siguientes puntos dados en coordenadas cartesianas a coordenadas cilíndricas y esféricas y dibujarlos:
 - (a) (0,3,4)
- (d) (-1,0,1)
- (b) $(-\sqrt{2},1,0)$
- (e) $(-2\sqrt{3}, -2, 3)$
- (c) (0,0,0)
- 29. Transformar los siguientes puntos dados en coordenadas cilíndricas a coordenadas cartesianas y esféricas y dibujarlos:
 - (a) $(1, \pi/4, 1)$
- (d) $(2, -\pi/2, 1)$
- (b) $(3, \pi/6, -4)$
- (e) $(-2, -\pi/2, 1)$
- (c) $(0, \pi/4, 1)$
- **30.** Transformar los siguientes puntos dados en coordenadas esféricas a coordenadas cartesianas y cilíndricas, y dibujarlos:
 - (a) $(1, \pi/2, \pi)$
- (d) $(2, -\pi/2, -\pi)$
- (b) $(2, -\pi/2, \pi/6)$
- (e) $(-1, \pi, \pi/6)$
- (c) $(0, \pi/8, \pi/35)$

- **31.** Reescribir la ecuación $z = x^2 y^2$ utilizando coordenadas cilíndricas y esféricas.
- 32. Utilizando coordenadas esféricas, demostrar que

$$\phi = \cos^{-1}\left(\frac{\mathbf{u} \cdot \mathbf{k}}{\|\mathbf{u}\|}\right),\,$$

donde $\mathbf{u} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$. Proporcionar una interpretación geométrica.

33. Verificar la desigualdades de Cauchy–Schwarz y triangular para

$$\mathbf{x} = (3, 2, 1, 0)$$
 e $\mathbf{y} = (1, 1, 1, 2)$.

34. Multiplicar las matrices

$$A = \begin{bmatrix} 3 & 0 & 1 \\ 2 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{y} \qquad B = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}.$$

¿Es cierto que AB = BA?

35. (a) Demostrar que si A y B son matrices $n \times n$ $y \mathbf{x} \in \mathbb{R}^n$,

$$(AB)\mathbf{x} = A(B\mathbf{x}).$$

- (b) ¿Qué implica la igualdad del apartado (a) respecto a la relación entre la composición de las aplicaciones $\mathbf{x} \mapsto B\mathbf{x}, \mathbf{y} \mapsto A\mathbf{y}$, y la multiplicación de matrices?
- **36.** Hallar el volumen del paralelepípedo generado por los vectores

$$(1,0,1), (1,1,1)$$
 y $(-3,2,0).$

- **37.** (Para estudiantes con conocimientos de álgebra lineal.) Comprobar que una aplicación lineal T de \mathbb{R}^n en \mathbb{R}^n está determinada por una matriz $n \times n$.
- **38.** Hallar la ecuación del plano que contiene el punto (3, -1, 2) y la recta de ecuación $\mathbf{v} = (2, -1, 0) + t(2, 3, 0)$.
- **39.** El trabajo W realizado al mover un objeto desde (0,0) a (7,2) sometido a una fuerza constante \mathbf{F} es $W = \mathbf{F} \cdot \mathbf{r}$, donde \mathbf{r} es el vector con su extremo en (7,2) y su inicio en (0,0). Las unidades son metros y kilogramos.
 - (a) Sea la fuerza $\mathbf{F} = 10 \cos \theta \mathbf{i} + 10 \sin \theta \mathbf{j}$. Hallar W en función de θ .