Why deep networks work

- 1 GPUs
- 2) Big data & Available. & Data ougmentation.
- 3 Activation functions (ReLu's)
- 4 Dropout method.
- 5 Pooling.

			-	=	_		_
	5	I	2	5	4	7	η
	6	2	1	4	7	6	
1	3	4	2	6	3	5	ľ
L	3	2	6	2	11	4	T
`	10	7	3	4	5	3	t
	10	2	1	1	1	4	t
_			_				77

	_			4	14.			
2	6	5	一子	Max	3,5	3	6	1 A
>	4	6	11	Max				, 1
f	10	11	-	pooling.				- Po
>	1,0	4	2	_			, •	
4 11			,					

Average	6	3	3,5
Pooling			

Convolution + Relut pooling.

	6]=	3 2	2 5
-6	-1	4	Ti	
7				
		-4		2
1				6
		١٦٠		

Como lution:

Kernel

Rosult

16	2	-10	-2
-10	3	-4	3
2	3	41	6
17	1		-1

Relle

Max Pooling

Average pooling

On MNIST database.

- 1 1 Riller layer of 100 newsons (fully connected) (sigmoidaf.) 97,8%
 - (Signaid a.f.)
- 3 3 but with 2 conv. layer 99,06%.
 + peoling.
- 4 3+ Relut Re ngularisation 99, 23%.

6 3+ dropont + 2 layers in the 99,6/.

(7) (6) + Ensembling. 99,7%.