10 класс

Задача 1. Шарик в сосуде с водой

Пусть плотности воды, деревянного и металлического шариков равны ρ , ρ_1 и ρ_2 соответственно, объёмы шариков — V_1 и V_2 , расстояние от оси вращения до деревянного шарика R, силы натяжения верхней и нижней нитей T_1 и T_2 , угловая скорость вращения ω .

1. Рассмотрим мысленно вместо деревянного шарика шарик из воды. На эти шарики действует одинаковая сила Архимеда (рис. 19).

Водяной шарик \vec{F}_A \vec{q} \vec{q} \vec{q} $\rho V_1 \vec{q}$

Рис. 19

Ускорение шариков $a=\omega^2 R$. По второму закону Ньютона в проекциях на горизонтальное и вертикальное направления:

$$F_A \sin \gamma = \rho V_1 \omega^2 R$$
, $F_A \sin \gamma - T_1 \sin \alpha = \rho_1 V_1 \omega^2 R$,
 $F_A \cos \gamma = \rho V_1 g$, $F_A \cos \gamma - T_1 \cos \alpha = \rho_1 V_1 g$.

Отсюда:

$$\operatorname{tg} \gamma = \frac{\omega^2 R}{g}, \qquad \operatorname{tg} \alpha = \frac{\omega^2 R}{g}.$$

Итак, $\gamma=\alpha$, то есть получаем ответ на первый вопрос: сила Архимеда направлена под углом α к вертикали, то есть, вдоль нити.

2. Найдём горизонтальные и вертикальные составляющие сил Архимеда, действующих на шарики (рис. 20):

$$F_{A_1x} = \rho V_1 \omega^2 R, \quad F_{A_1y} = \rho V_1 g,$$

 $F_{A_2x} = \rho V_2 \omega^2 \cdot 3R, \quad F_{A_2y} = \rho V_2 g.$

По второму закону Ньютона:

$$\begin{cases} F_{A_1x} - T_1 \sin \alpha = \rho_1 V_1 \omega^2 R, \\ F_{A_1y} - \rho_1 V_1 g - T_1 \cos \alpha = 0, \\ F_{A_2x} + T_1 \sin \alpha + T_2 \cos \alpha = \rho_2 V_2 \omega^2 \cdot 3R, \\ F_{A_2y} - \rho_2 V_2 g + T_1 \cos \alpha - T_2 \sin \alpha = 0. \end{cases}$$

Из записанных уравнений находим:

$$\begin{cases} (\rho - \rho_1)V_1\omega^2 R = T_1\sin\alpha, \\ (\rho - \rho_1)V_1g = T_1\cos\alpha, \\ (\rho_2 - \rho)V_2\omega^2 \cdot 3R = T_1\sin\alpha + T_2\cos\alpha, \\ (\rho_2 - \rho)V_2g = T_1\cos\alpha - T_2\sin\alpha. \end{cases}$$

Отсюда:

$$3 \lg \alpha = \frac{x \sin \alpha + \cos \alpha}{x \cos \alpha - \sin \alpha}$$
, где $x = \frac{T_1}{T_2}$.

Зная α , находим:

$$x = \frac{T_1}{T_2} = \frac{19}{8}.$$

Критерии оценивания

 Направление силы Архимеда, действующей на деревянный шарик:

 Приведено объяснение
 2

 Найдено направление
 1

 Записана система уравнений Ньютона, описывающая движение системы
 4

 Найдено отношение сил натяжения
 3

Задача 2. Тепловая машина

1. По теореме Карно

$$\frac{Q_1 - Q_2}{Q_1} = \frac{T_1 - T_2}{T_1}; \qquad \frac{Q_1}{T_1} = \frac{Q_2}{T_2}.$$

Здесь Q_1 и Q_2 — количество теплоты, забираемое от нагревателя и передаваемое холодильнику соответственно.

$$Q_2 = mq$$
, $Q_1 = mq + A_{max}$.

Следовательно:

$$A_{max} = mq \left(\frac{T_1}{T_2} - 1 \right) = 2,45 \cdot 10^{13} \text{ Дж.}$$

2. Пусть в этом случае Q_2 — количество теплоты, перекаченное тепловым насосом в котёл, Q_1 — количество теплоты, забираемое от Гольфстрима.

$$\frac{Q_2}{T_0} = \frac{Q_1}{T_1}, \qquad Q_2 = \lambda m_{\text{B}}, \qquad Q_1 = Q_2 - A_{max}.$$

Отсюда:

Следовательно:

$$m_{\mathrm{B}} = \frac{A_{max}}{\lambda \left(1 - \frac{T_1}{T_0}\right)} = 5.12 \cdot 10^7 \text{ кг.}$$

Критерии оценивания

Записана теорема Карно для первого случая	3
Найдена максимальная работа в первом случае	2
Записана теорема Карно для второго случая)
Определена максимальная масса испарённой воды во втором случае)

Задача 3. Адиабатический процесс

Пусть при заполнении сосуда газом снаружи в сосуд перешёл газ, ранее занимавший объём V (рис. 21). Внешнее давление при "продавливании" внутрь этого объёма совершает работу $A_{\rm внеш}=P_0V$.

Закон сохранения энергии для системы газ в сосуде — "внешний" газ объёма V — поршень выглядит так:

$$U_1 + U_2 + A_{\text{внеш}} = U + \Delta E_{\pi},$$
 (13)

где U_1 — внутренняя энергия исходного газа в сосуде, U_2 — энергия "внешнего" газа из объёма V, U — энергия газа в сосуде после заполнения, $\Delta E_{\rm n}$ — изменение потенциальной энергии поршня.

$$U_1 = \frac{3P_0}{2}V_0; \quad U_2 = \frac{3}{2}P_0V; \quad U = \frac{3}{2}P_02V_0;$$
 (14)

$$\Delta E_{\pi} = mg\Delta h = \frac{P_0}{2}S\Delta h = \frac{P_0}{2}V_0. \tag{15}$$

Подставляя (14) и (15) в уравнение (13), после преобразований получим:

$$\frac{5}{2}P_0V = \frac{11}{4}P_0V_0,\tag{16}$$

$$V = \frac{11}{10}V_0. (17)$$

Исходное число молей газа в сосуде $\nu_1=\frac{P_0V_0}{2RT_0}$, число молей "внешнего"

газа в сосуде $\nu_2=\frac{11\,P_0V_0}{10\,RT_0}$. Итого $\nu=\nu_1+\nu_2=\frac{8\,P_0V_0}{5\,RT_0}$. Из уравнения состояния:

$$\frac{P_0 \cdot 2V_0}{RT} = \frac{8P_0V_0}{5RT_0},\tag{18}$$

откуда:

$$T = \frac{5}{4}T_0. (19)$$

Критерии оценивания

r		
Записан закон сохранения энергии	. 2	
Получены выражения для U_1,U_2,U и ΔE_{Π}		
(по баллу за каждую из формул)	. 4	
Найден объём V закачанного газа	. 1	
Записано уравнение состояния для газа,		
находящегося в сосуде после установления равновесия	. 2	
Определена конечная температура T газа	. 1	

Задача 4. Слоистый диэлектрик

1. Пусть E_1 и E_2 — напряжённости однородных электрических полей в верхней и нижней пластинах соответственно. Тогда:

$$E_1 \frac{d}{2} + E_2 \frac{d}{2} = \mathscr{E}. \tag{20}$$

Здесь $E_1d/2$ и $E_2d/2$ — падения напряжений на слоях. По закону Ома:

$$E_1 \frac{d}{2} = I_1 \frac{1}{\lambda_1} \frac{d/2}{S}, \quad E_2 \frac{d}{2} = I_2 \frac{1}{\lambda_2} \frac{d/2}{S},$$
 (21)

где $I_1 = I_2$ — силы токов, текущих в 1-ом и 2-ом слоях, S - площадь пластин конденсатора. Поделив почленно эти соотношения, получим:

$$\frac{E_1}{E_2} = \frac{\lambda_1}{\lambda_2}. (22)$$

Решая систему из двух уравнений (20) и (22), найдём:

$$E_1 = \frac{2\mathscr{E}}{d(1+\lambda_1/\lambda_2)}, \quad E_2 = \frac{2\mathscr{E}}{d(1+\lambda_2/\lambda_1)}. \tag{23}$$

Найдём теперь поверхностные плотности зарядов на пластинах конденсатора

$$\sigma_1 = \varepsilon_0 E_1 = \frac{2\varepsilon_0 \mathscr{E}}{d(1 + \lambda_1/\lambda_2)}; \quad \sigma_2 = -\varepsilon_0 E_2 = -\frac{2\varepsilon_0 \mathscr{E}}{d(1 + \lambda_2/\lambda_1)}. \tag{24}$$

2. Полный заряд конденсатора, включающий заряды на пластинах и заряд в плоскости контакта слоёв, равен нулю. Пусть σ — поверхностная плотность заряда в плоскости контакта. Условие равенства нулю полного заряда:

$$\sigma_1 + \sigma_2 + \sigma = 0. \tag{25}$$

Отсюда:

$$\sigma = -\sigma_1 - \sigma_2 = -\frac{2\varepsilon_0 \mathscr{E}}{d} \left(\frac{1}{1 + \lambda_1/\lambda_2} - \frac{1}{1 + \lambda_2/\lambda_1} \right) = -\frac{2\varepsilon_0 \mathscr{E}}{d} \frac{\lambda_2 - \lambda_1}{\lambda_1 + \lambda_2} \,. \tag{26}$$

Или, если выразить σ через удельные сопротивления:

$$\sigma = -\frac{2\varepsilon_0 \mathscr{E}}{d} \frac{\rho_1 - \rho_2}{\rho_1 + \rho_2}.$$
 (27)

Критерии оценивания

Указано соотношение между напряжённостями поля в конденсаторе
и напряжением на нём1
Найдено соотношение между напряжённостями E_1 и E_2 поля
в диэлектрических слоях
Определена напряжённость E_1 поля в слое с проводимостью λ_1
Определена напряжённость E_2 поля в слое с проводимостью $\lambda_2 \dots 1$
Найдена поверхностная плоотность заряда σ_1
Найдена поверхностная плотность заряда σ_2
Найдена поверхностная плотность заряда в плоскости контакта слоёв 2

Задача 5. Перезарядка конденсаторов

1. Рассмотрим процессы перезарядки конденсаторов в первом цикле.

$$C_1U_1 + CU_2 = (C_1 + C)U_1';$$
 $U_1' = \frac{C_1U_1 + CU_2}{C_1 + C}.$

$$C_2U_2 + CU_1' = (C_2 + C)U_2';$$

$$U_2' = \frac{C_2 U_2 + C \frac{C_1 U_1 + C U_2}{C_1 + C}}{C_2 + C} = \frac{C_2 C_1 U_2 + C C_2 U_2 + C_1 C U_1 + C^2 U_2}{(C_1 + C)(C_2 + C)}.$$

$$\Delta U' = U_2' - U_1' =$$

$$=\frac{C_{1}C_{2}U_{2}+CC_{2}U_{2}+CC_{1}U_{1}+C^{2}U_{2}-C_{1}C_{2}U_{1}-CC_{2}U_{2}-CC_{1}U_{1}-C^{2}U_{2}}{\left(C_{1}+C\right)\left(C_{2}+C\right)}=$$

$$=\frac{C_1C_2}{(C_1+C)(C_2+C)}(U_2-U_1);$$

$$\frac{\Delta U'}{(\Delta U)_0} = \frac{C_1 C_2}{(C_1 + C)(C_2 + C)} = A < 1$$

Таким образом, после каждого цикла разность напряжений на конденсаторах уменьшается в $\left(\frac{1}{A}\right)$ раз. После n циклов разность напряжений уменьшится в $\left(\frac{1}{A}\right)^n$ раз. По условию задачи

$$\left(\frac{1}{A}\right)^{44} = 100 \Rightarrow \frac{1}{A} = \left(1 + \frac{C}{C_1}\right) \left(1 + \frac{C}{C_2}\right) = \sqrt[44]{100} \approx 1,11.$$

Как видим, должны выполняться неравенства: $C \ll C_1, \ C \ll C_2$. Пренебрегая членами второго порядка малости относительно C/C_1 и C/C_2 , можем записать:

$$\frac{1}{A} - 1 \approx C \cdot \left(\frac{1}{C_1} + \frac{1}{C_2}\right) = 0.11.$$

Подставляя значения величин C_1 и C_2 , получим:

$$C=1\,\mathrm{mk}\Phi$$
.

2. После большого числа циклов напряжения на всех конденсаторах окажутся одинаковыми (U_{∞}) и их можно соединить параллельно. При этом заряд батареи конденсаторов равен первоначальному заряду конденсаторов:

$$C_1U_1 + C_2U_2 + CU_2 = (C_1 + C_2 + C)U_{\infty}$$

$$U_{\infty} = \frac{C_1 U_1 + C_2 U_2 + C U_2}{C_1 + C_2 + C} = \frac{9U_1 + 10U_2}{19} = 136 \text{ B}.$$

$$3. (W_{\mathfrak{d}})_0 = \frac{C_1 U_1^2}{2} + \frac{(C_2 + C) U_2^2}{2} = \frac{18 \cdot (76)^2}{2} \cdot 10^{-6} + \frac{20 \cdot (190)^2}{2} \cdot 10^{-6} = 0.413$$
 Дж.

$$(W_{\mathfrak{d}})_{\infty} = \frac{(C_1 + C_2 + C)U_{\infty}^2}{2} = \frac{38 \cdot (136)^2}{2} \cdot 10^{-6} = 0.351 \,\text{Дж.}$$

На резисторе выделится тепловая энергия $Q = \Delta W_{\rm s}$.

$$Q = \Delta W_{\mathfrak{d}} = (W_{\mathfrak{d}})_0 - (W_{\mathfrak{d}})_{\infty} = 0.062 \text{Дж}.$$

Критерии оценивания	
Ваписано выражение для U_1'	1
Ваписано выражение для U_2'	1
Получено выражение, связывающее $\Delta U'$ с ΔU	2
Определена ёмкость конденсатора $C\ldots\ldots$	2
Записан закон сохранения заряда для установившегося напряжения	2
Найдено установившееся напряжение	
Определена тепловая энергия, выделившаяся на резисторе $R \dots$	1