Examenul de bacalaureat național 2020

Proba E. c)

Matematică *M_pedagogic*

BAREM DE EVALUARE ȘI DE NOTARE

Test 10

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$S_4 = \frac{(a_1 + a_4) \cdot 4}{2} = \frac{(3+9) \cdot 4}{2} =$	3p
	= 24	2p
2.	f(-1)=2, $f(0)=4$, $f(1)=6$	3 p
	f(a) = 2a + 4, deci $2a + 4 = 12$, de unde obținem $a = 4$	2p
3.	$\log_3((x-3)(x+3)) = 3 \Rightarrow x^2 - 9 = 3^3 \Rightarrow x^2 - 36 = 0$	3 p
	x = -6, care nu convine sau $x = 6$, care convine	2 p
4.	După prima scumpire cu 10%, prețul obiectului este $1200 + \frac{10}{100} \cdot 1200 = 1320$ de lei	3 p
	După a doua scumpire cu 10%, prețul obiectului este $1320 + \frac{10}{100} \cdot 1320 = 1452$ de lei	2p
5.	AB = 5, $BC = 5$, $CD = 5$	3p
	$AD = 5$, deci $P_{ABCD} = 20$	2p
6.	$\triangle ABC$ este dreptunghic isoscel, deci $AB = 5$, $AC = 5$	3 p
	$\mathcal{A}_{\Delta ABC} = \frac{AB \cdot AC}{2} = \frac{25}{2} = 12,5$	2p

SUBIECTUL al II-lea (30 de puncte)

1.	1*(-1)=1+(-1)-3=	3p
	=-3	2p
2.	x * y = x + y - 3 =	2p
	= $y + x - 3 = y * x$, pentru orice numere reale x și y , deci legea de compoziție "*" este comutativă	3 p
3.	(x*y)*z = (x+y-3)*z = x+y+z-6, pentru orice numere reale x, y și z	2p
	x*(y*z) = x*(y+z-3) = x+y+z-6 = (x*y)*z, pentru orice numere reale x , y și z , deci legea de compoziție "*" este asociativă	3р
4.	$(x-1)+(x+1)-3 \le 1 \Leftrightarrow 2x-3 \le 1$	3 p
	$x \in (-\infty, 2]$	2p
5.	$4^{x} * 2^{x+1} = 4^{x} + 2^{x+1} - 3$, deci $2^{2x} + 2 \cdot 2^{x} - 8 = 0$	3p
	$(2^x + 4)(2^x - 2) = 0$, de unde obținem $x = 1$	2p
6.	$(x-1)*(y+2)=3 \Leftrightarrow x+y=5 \text{ si } (2x)*(y-2)=2 \Leftrightarrow 2x+y=7$	3 p
	x = 2 si y = 3	2p

SUBIECTUL al III-lea (30 de puncte)

1.	$A(0,0) = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \Rightarrow \det(A(0,0)) = \begin{vmatrix} 1 & 1 \\ 0 & 0 \end{vmatrix} = 1 \cdot 0 - 0 \cdot 1 =$	3p
	=0	2p
2.	$A(1,1) = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$	2p
	$A(0,0) \cdot A(1,1) = \begin{pmatrix} 2 & 2 \\ 0 & 0 \end{pmatrix}$	3 p
3.	$\det(A(x,y)) = \begin{vmatrix} 1 & 1 \\ x & y \end{vmatrix} = y - x, \text{ pentru orice numere reale } x \text{ si } y$	2p
	$\det(A(y,x)) = \begin{vmatrix} 1 & 1 \\ y & x \end{vmatrix} = x - y \Rightarrow \det(A(x,y)) + \det(A(y,x)) = y - x + x - y = 0, \text{ pentru orice}$	3р
	numere reale x și y	
4.	$ \begin{pmatrix} 1 & 1 \\ x & y \end{pmatrix} \begin{pmatrix} 1 & 1 \\ x & y \end{pmatrix} = 2 \begin{pmatrix} 1 & 1 \\ x & y \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1+x & 1+y \\ x+xy & x+y^2 \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 2x & 2y \end{pmatrix} $	3 p
	Obţinem $x = 1$ şi $y = 1$	2p
5.	$A(1,1) + A(2,2) + \dots + A(n,n) = \begin{pmatrix} n & n \\ \frac{n(n+1)}{2} & \frac{n(n+1)}{2} \end{pmatrix} = n \begin{pmatrix} 1 & 1 \\ \frac{n+1}{2} & \frac{n+1}{2} \end{pmatrix}, \text{ unde } n \text{ este număr}$ natural nenul	3p
	$\begin{bmatrix} 1 & 1 \\ \frac{n+1}{2} & \frac{n+1}{2} \end{bmatrix} = \begin{pmatrix} 1 & 1 \\ 4 & 4 \end{pmatrix} \Leftrightarrow n = 7$	2 p
6.	Suma elementelor matricei $A(m,n)$ este $m+n+2$, deci $m+n+2=102 \Leftrightarrow m+n=100$	2p
	Cum m și n sunt numere naturale, obținem $m = k$ și $n = 100 - k$, unde $k \in \{0,1,2,,100\}$, deci există 101 perechi de numere naturale cu proprietatea cerută	3 p