Bank Customer Churn Rate Prediction using ANN

```
In [150]:
               # Importing all the required library
               import pandas as pd
               import numpy as np
               import matplotlib.pyplot as plt
               import seaborn as sns
               %matplotlib inline
               import warnings
               warnings.filterwarnings('ignore')
In [151]:
              data = pd.read_csv('Churn_Modelling.csv')
               data.head()
   Out[151]:
                  RowNumber Customerld Surname
                                                  CreditScore Geography
                                                                        Gender Age Tenure
                                                                                              Balar
                0
                           1
                                15634602
                                                                                                 0
                                         Hargrave
                                                         619
                                                                 France
                                                                        Female
                                                                                 42
                           2
                1
                                15647311
                                              Hill
                                                         608
                                                                  Spain
                                                                        Female
                                                                                 41
                                                                                             83807
                2
                           3
                                15619304
                                             Onio
                                                         502
                                                                 France
                                                                        Female
                                                                                            159660
                3
                                                         699
                           4
                                15701354
                                             Boni
                                                                 France
                                                                        Female
                                                                                                 0
                                                                                 39
                                15737888
                                           Mitchell
                                                         850
                                                                  Spain
                                                                        Female
                                                                                            125510
In [152]:
               data.shape
   Out[152]: (10000, 14)
In [153]:
            M data.columns
   Out[153]: Index(['RowNumber', 'CustomerId', 'Surname', 'CreditScore', 'Geography',
                       'Gender', 'Age', 'Tenure', 'Balance', 'NumOfProducts', 'HasCrCard',
                       'IsActiveMember', 'EstimatedSalary', 'Exited'],
                     dtype='object')
```

```
In [154]:
            ▶ data.dtypes
   Out[154]: RowNumber
                                     int64
               CustomerId
                                     int64
               Surname
                                    object
               CreditScore
                                     int64
                                    object
               Geography
               Gender
                                    object
                                     int64
               Age
               Tenure
                                     int64
               Balance
                                   float64
               NumOfProducts
                                     int64
               HasCrCard
                                     int64
               IsActiveMember
                                     int64
                                  float64
               EstimatedSalary
               Exited
                                     int64
               dtype: object
In [155]:
            ▶ # checking the total number of missing values present in the data
              data.isnull().sum()
   Out[155]: RowNumber
                                   0
                                   0
               CustomerId
               Surname
                                   0
               CreditScore
                                   0
               Geography
                                   0
               Gender
                                   0
               Age
                                   0
               Tenure
                                   0
               Balance
                                   0
               NumOfProducts
                                   0
               HasCrCard
                                   0
               IsActiveMember
                                   0
               EstimatedSalary
                                   0
                                   0
               Exited
               dtype: int64
In [156]:

    data.duplicated().sum()

   Out[156]: 0
```

```
In [157]:

    data.nunique()

   Out[157]: RowNumber
                                  10000
              CustomerId
                                  10000
              Surname
                                   2932
              CreditScore
                                    460
                                       3
              Geography
              Gender
                                       2
                                     70
              Age
              Tenure
                                     11
              Balance
                                   6382
              NumOfProducts
              HasCrCard
                                       2
                                       2
              IsActiveMember
                                   9999
              EstimatedSalary
              Exited
                                       2
              dtype: int64
           data.drop(['RowNumber','CustomerId','Surname'], axis=1, inplace=True)
In [158]:
```

Descriptive statistics for numerical columns

In	[159]: ▶	data.describe()								
	Out[159]:		CreditScore	Ago	Tonuro	Balance	NumOfProducts	HasCrCard		
			CreditScore	Age	Tenure	Balance	NumorProducts	паѕстсаги		
		count	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000		
		mean	650.528800	38.921800	5.012800	76485.889288	1.530200	0.70550		
		std	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584		
		min	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000		
		25%	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000		
		50%	652.000000	37.000000	5.000000	97198.540000	1.000000	1.00000		
		75%	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000		
		max	850.000000	92.000000	10.000000	250898.090000	4.000000	1.00000		
		4								

Descriptive statistics for categorical columns

Outlier detection

freq

5014

5457

```
In [162]:  # univariate analysis on numerical columns
    plt.style.use('fivethirtyeight')
    plt.rcParams['figure.figsize'] = (15, 4)

    plt.subplot(2, 3, 1)
    sns.boxplot(data_col['CreditScore'])

    plt.subplot(2, 3, 2)
    sns.boxplot(data_col['Age'])

    plt.subplot(2, 3, 3)
    sns.boxplot(data_col['Tenure'])

    plt.suptitle('Outliers Present in the Data')
    plt.show()
```


Univariate Analysis on the Numerical Columns

```
plt.style.use('fivethirtyeight')
In [163]:
              plt.rcParams['figure.figsize'] = (18, 4)
              plt.subplot(1, 2, 1)
              sns.distplot(data_col['Age'])
              plt.subplot(1, 2, 2)
              sns.distplot(data_col['CreditScore'])
```

Out[163]: <AxesSubplot:xlabel='CreditScore', ylabel='Density'>

Univariate Analysis on the Categorical Columns

```
In [164]:
              # univariate analysis on categorical column
              plt.rcParams['figure.figsize'] = (15, 8)
              plt.subplot(2, 3, 1)
              sns.countplot(data['Gender'])
              plt.subplot(2, 3, 2)
              sns.countplot(data['Geography'])
              plt.subplot(2, 3, 3)
              sns.countplot(data_col['Exited'])
              plt.xlabel('Exited the bank or not?', fontsize = 15)
              plt.subplot(2, 3, 4)
              data_col['Exited'].value_counts().plot(kind = 'pie', explode = [0, 0.1], auto
                                                      labels = ['0','1'], shadow = True, pct
              plt.subplot(2, 3, 5)
              sns.countplot(data col['IsActiveMember'])
              plt.subplot(2, 3, 6)
              sns.countplot(data_col['HasCrCard'])
```

Out[164]: <AxesSubplot:xlabel='HasCrCard', ylabel='count'>


```
In [165]:
           print('Impact of Gender on Churn rate')
              print(pd.crosstab(data_col['Gender'], data['Exited']))
              print('\n')
              Impact of Gender on Churn rate
              Exited
              Gender
              Female 3404 1139
                      4559 898
              Male
```

Bivariate Analysis

Impact of Gender on Churn Rate

```
plt.rcParams['figure.figsize'] = (15, 3)
In [226]:
              x = pd.crosstab(data_col['Gender'], data_col['Exited'])
              barplot = x.plot.bar(rot=0)
              plt.title('Effect of Gender on Churn Rate', fontsize = 15)
```

Out[226]: Text(0.5, 1.0, 'Effect of Gender on Churn Rate')

it appears that female customers are slightly more likely to churn from the bank across all three countries.

Multivariate Analysis

```
In [234]:
              # multivariate analysis
              # lets check the Heat Map for the Data with respect to correlation.
              plt.rcParams['figure.figsize'] = (15, 8)
              sns.heatmap(data_col.corr(), annot = True, linewidth = 0.5, cmap = 'Wistia')
              plt.title('Correlation Heat Map', fontsize = 15)
              plt.show()
```


Encoding the categorical columns to convert them into numerical columns using LabelEncoder

```
In [180]:
            ▶ # lets start encoding these categorical columns to convert them into numerical
               from sklearn.preprocessing import LabelEncoder
               le = LabelEncoder()
               data['Gender'] = le.fit_transform(data['Gender'])
               data['Geography'] = le.fit_transform(data['Geography'])
In [181]:

    data.head()

   Out[181]:
                  CreditScore Geography Gender Age Tenure
                                                             Balance
                                                                    NumOfProducts HasCrCard IsA
               0
                                     0
                                            0
                                                24
                                                        2
                                                               0.00
                                                                                           1
                         619
                                                                                1
                1
                                                23
                                                            83807.86
                         608
                                     2
                                            0
                                                        1
                                                                                1
                                                                                          0
                2
                         502
                                     0
                                            0
                                                24
                                                        8 159660.80
                                                                                3
                                                                                           1
                3
                         699
                                     0
                                             0
                                                21
                                                               0.00
                                                                                           0
                         850
                                     2
                                            0
                                                25
                                                        2 125510.82
                                                                                           1
              x = data.drop(['Exited'], axis=1)
In [195]:
              y = data['Exited']
In [196]:
            from sklearn.model selection import train test split
              x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, rand
               print("Shape of the x Train :", x_train.shape)
               print("Shape of the y Train :", y_train.shape)
               print("Shape of the x Test :", x_test.shape)
               print("Shape of the y Test :", y_test.shape)
               Shape of the x Train : (8000, 10)
               Shape of the y Train : (8000,)
               Shape of the x Test: (2000, 10)
               Shape of the y Test: (2000,)
```

Feature Scalling using StandardScaler

```
In [198]:
           ▶ from sklearn.preprocessing import StandardScaler
              scaler = StandardScaler()
              scaler.fit(x train)
              x trained scaler = scaler.transform(x train)
              x test scaler = scaler.transform(x test)
In [202]:
           ▶ x trained scaler.shape
   Out[202]: (8000, 10)
```

Creating the model using Artifical Neural Network

```
Bank Customer Churn Prediction - Jupyter Notebook
In [232]:

    import tensorflow as tf

            from tensorflow import keras
            model = keras.Sequential([
                keras.layers.Dense(10, input shape=(10,), activation='relu'),
                keras.layers.Dense(14, activation='relu'),
                keras.layers.Dense(1, activation='sigmoid')
             ])
            model.compile(optimizer='adam',
                         loss = 'binary crossentropy',
                         metrics=['accuracy'])
            model.fit(x trained scaler, y train, epochs=50)
             Epoch 1/50
             250/250 [=============== ] - 1s 1ms/step - loss: 0.4792 - acc
             uracy: 0.7945
             Epoch 2/50
             uracy: 0.7945
```

```
Epoch 3/50
250/250 [================ ] - 0s 1ms/step - loss: 0.4347 - acc
uracy: 0.7946
Epoch 4/50
uracy: 0.8069
Epoch 5/50
250/250 [================ ] - 0s 1ms/step - loss: 0.4147 - acc
uracy: 0.8216
Epoch 6/50
250/250 [================ ] - 0s 1ms/step - loss: 0.4025 - acc
uracy: 0.8276
Epoch 7/50
250/250 [================ ] - 0s 1ms/step - loss: 0.3904 - acc
uracy: 0.8335
Epoch 8/50
250/250 [================ ] - 0s 1ms/step - loss: 0.3796 - acc
uracy: 0.8419
Epoch 9/50
250/250 [=============== ] - 0s 1ms/step - loss: 0.3702 - acc
uracy: 0.8457
Epoch 10/50
250/250 [================ ] - 0s 1ms/step - loss: 0.3631 - acc
uracy: 0.8479
Epoch 11/50
250/250 [================ ] - 0s 1ms/step - loss: 0.3574 - acc
uracy: 0.8520
Epoch 12/50
250/250 [================ ] - 0s 1ms/step - loss: 0.3533 - acc
uracy: 0.8526
Epoch 13/50
250/250 [================ ] - 0s 1ms/step - loss: 0.3503 - acc
uracy: 0.8549
Epoch 14/50
250/250 [================ ] - 0s 1ms/step - loss: 0.3482 - acc
```

```
uracy: 0.8571
Epoch 15/50
250/250 [================ ] - 0s 1ms/step - loss: 0.3461 - acc
uracy: 0.8576
Epoch 16/50
250/250 [================ ] - 0s 1ms/step - loss: 0.3448 - acc
uracy: 0.8591
Epoch 17/50
250/250 [================ ] - 0s 1ms/step - loss: 0.3435 - acc
uracy: 0.8584
Epoch 18/50
250/250 [================ ] - 0s 1ms/step - loss: 0.3421 - acc
uracy: 0.8602
Epoch 19/50
250/250 [================ ] - 0s 1ms/step - loss: 0.3408 - acc
uracy: 0.8601
Epoch 20/50
250/250 [================ ] - 0s 1ms/step - loss: 0.3405 - acc
uracy: 0.8611
Epoch 21/50
250/250 [================ ] - 0s 1ms/step - loss: 0.3396 - acc
uracy: 0.8612
Epoch 22/50
250/250 [================ ] - 0s 1ms/step - loss: 0.3398 - acc
uracy: 0.8611
Epoch 23/50
uracy: 0.8608
Epoch 24/50
250/250 [================ ] - 0s 1ms/step - loss: 0.3382 - acc
uracy: 0.8605
Epoch 25/50
uracy: 0.8610
Epoch 26/50
250/250 [================ ] - 0s 1ms/step - loss: 0.3376 - acc
uracy: 0.8611
Epoch 27/50
250/250 [================ ] - 0s 2ms/step - loss: 0.3373 - acc
uracy: 0.8625
Epoch 28/50
250/250 [================ ] - 0s 1ms/step - loss: 0.3363 - acc
uracy: 0.8615
Epoch 29/50
250/250 [================ ] - 0s 1ms/step - loss: 0.3363 - acc
uracy: 0.8612
Epoch 30/50
250/250 [================ ] - 0s 1ms/step - loss: 0.3356 - acc
uracy: 0.8612
Epoch 31/50
250/250 [================ ] - 0s 1ms/step - loss: 0.3357 - acc
uracy: 0.8606
Epoch 32/50
250/250 [================ ] - 0s 1ms/step - loss: 0.3356 - acc
uracy: 0.8616
Epoch 33/50
```

```
uracy: 0.8629
Epoch 34/50
250/250 [================ ] - 0s 2ms/step - loss: 0.3351 - acc
uracy: 0.8621
Epoch 35/50
250/250 [================ ] - 0s 1ms/step - loss: 0.3346 - acc
uracy: 0.8627
Epoch 36/50
250/250 [================ ] - 0s 1ms/step - loss: 0.3345 - acc
uracy: 0.8627
Epoch 37/50
250/250 [================ ] - 0s 1ms/step - loss: 0.3341 - acc
uracy: 0.8648
Epoch 38/50
250/250 [================ ] - 0s 1ms/step - loss: 0.3342 - acc
uracy: 0.8644
Epoch 39/50
250/250 [=============== ] - 0s 1ms/step - loss: 0.3336 - acc
uracy: 0.8648
Epoch 40/50
250/250 [================ ] - 0s 1ms/step - loss: 0.3341 - acc
uracy: 0.8634
Epoch 41/50
250/250 [================ ] - 0s 1ms/step - loss: 0.3335 - acc
uracy: 0.8627
Epoch 42/50
uracy: 0.8634
Epoch 43/50
250/250 [================ ] - 0s 1ms/step - loss: 0.3329 - acc
uracy: 0.8645
Epoch 44/50
250/250 [================== ] - 0s 1ms/step - loss: 0.3331 - acc
uracy: 0.8627
Epoch 45/50
250/250 [================ ] - 0s 1ms/step - loss: 0.3328 - acc
uracy: 0.8641
Epoch 46/50
250/250 [================ ] - 0s 2ms/step - loss: 0.3328 - acc
uracy: 0.8648
Epoch 47/50
250/250 [================ ] - 0s 1ms/step - loss: 0.3325 - acc
uracy: 0.8626
Epoch 48/50
250/250 [============= ] - Os 1ms/step - loss: 0.3318 - acc
uracy: 0.8637
Epoch 49/50
250/250 [================ ] - 0s 1ms/step - loss: 0.3326 - acc
uracy: 0.8648
Epoch 50/50
250/250 [================ ] - 0s 1ms/step - loss: 0.3320 - acc
uracy: 0.8655
```

Out[232]: <keras.callbacks.History at 0x267e9c92850>

```
acy: 0.8595
   Out[210]: [0.34178730845451355, 0.859499990940094]
        y_predict = model.predict(x_test_scaler)
In [213]:
           y_predict[:5]
           63/63 [========= ] - 0s 1ms/step
   Out[213]: array([[0.04401844],
                 [0.03105499],
                 [0.08082822],
                 [0.10456759],
                 [0.11255805]], dtype=float32)
In [214]: ► y_pred = []
           for element in y_predict:
              if element > 0.5:
                 y_pred.append(1)
              else:
                 y_pred.append(0)
In [215]:  ▶ y_pred[:10]
   Out[215]: [0, 0, 0, 0, 0, 0, 0, 0, 1]
In [218]:  ▶ y_test[:10]
   Out[218]: 6252
                 0
           4684
                 0
           1731
                 0
           4742
                 0
           4521
                 0
           6340
           576
                 0
           5202
                 1
           6363
                 0
           439
                 0
           Name: Exited, dtype: int64
```

```
In [225]:
           ▶ | from sklearn.metrics import confusion matrix, classification report
              print(classification_report(y_test, y_pred))
              cm = tf.math.confusion_matrix(labels=y_test,predictions=y_pred)
              plt.rcParams['figure.figsize'] = (10, 7)
              sns.heatmap(cm, annot = True, linewidth = 0.5, cmap = 'Wistia', fmt='d')
              plt.title('Correlation Heat Map', fontsize = 15)
              plt.xlabel('Predicted')
              plt.ylabel('Truth')
              plt.show()
```

	precision	recall	f1-score	support
0 1	0.88 0.72	0.96 0.47	0.92 0.57	1607 393
accuracy macro avg weighted avg	0.80 0.85	0.71 0.86	0.86 0.74 0.85	2000 2000 2000

The Accuracy of the model using ANN is 86%

In []: M	
-----------	--