Determinacy in and out second order arithmetic An introduction to the proof theoretic strength of the determinacy scale

Thibaut Kouptchinsky

December 22, 2022

Program

- 1 Who am I?
- 2 Introduction
- 3 Inside second order arithmetic
- 4 Back in ZF set theory
- 5 Perspectives and Material

Who am I?

イロト イ御 ト イミト イミト

What is determinacy?

Consider a set A and a payoff set $X \subseteq A^{\omega}$.

$$1: \quad a_0 \qquad \qquad a_2 \qquad \qquad a_{2n}$$

II:
$$a_1 a_3 a_{2n+1}$$

$$\cdots \qquad (a_i)_{i<\omega} \stackrel{?}{\in} X$$

Player I wins if yes. Otherwise player II wins.

Axiom of determinacy (AD): "All these games are determined". (False in ZF + C.)

Theorem (Mycielski-Swierczkowski; Mazur, Banach; Davis)

ZF + AD proves that every sets of real numbers is Lebesgue measurable (M1), has the Baire property (M2), and has the perfect set property (M3).

Theorem (Mycielski-Swierczkowski; Mazur, Banach; Davis)

ZF + AD proves that every sets of real numbers is Lebesgue measurable (M1), has the Baire property (M2), and has the perfect set property (M3).

■ Study these properties for projective Σ_n^1 sets in ω^{ω} .

Theorem (Mycielski-Swierczkowski; Mazur, Banach; Davis)

ZF + AD proves that every sets of real numbers is Lebesgue measurable (M1), has the Baire property (M2), and has the perfect set property (M3).

- \blacksquare Study these properties for projective Σ_n^1 sets in ω^{ω} .
- \blacksquare Are Σ_2^1 , Σ_3^1 , etc sets Lebesgue measurable?

Theorem (Mycielski-Swierczkowski; Mazur, Banach; Davis)

ZF + AD proves that every sets of real numbers is Lebesgue measurable (M1), has the Baire property (M2), and has the perfect set property (M3).

- Study these properties for projective Σ_n^1 sets in ω^{ω} .
- Are Σ_2^1 , Σ_3^1 , etc sets Lebesgue measurable?
- Applications in measure theory, descriptive set theory, harmonic analysis, ergodic theory, dynamical systems etc.

■ First best result (1964): $Det(\Sigma_3^0)$ by Davis.

- First best result (1964): $Det(\Sigma_3^0)$ by Davis.
- The proof can be carried out in $ZC^- + \Sigma_1$ Replacement.

- First best result (1964): $Det(\Sigma_3^0)$ by Davis.
- The proof can be carried out in $ZC^- + \Sigma_1$ Replacement.
- Friedman (1968): Borel determinacy requires existence of V_{ω_1} .

- First best result (1964): $Det(\Sigma_3^0)$ by Davis.
- The proof can be carried out in $ZC^- + \Sigma_1$ Replacement.
- Friedman (1968): Borel determinacy requires existence of V_{ω_1} .

Theorem (Martin, ZFC)

All Borel games are determined.

Sketch of the proof

Back in ZF set theory

A conservation result

Theorem

 ZFC^- is a Π^1_4 conservative extension of Z_2 .

A conservation result

Theorem

 ZFC^- is a Π^1_4 conservative extension of Z_2 .

 \blacksquare We can construct L(X) in Z₂;

A conservation result

Theorem

 ZFC^- is a Π^1_4 conservative extension of Z_2 .

- \blacksquare We can construct L(X) in Z₂;
- We can show in that Z_2 that $L(X) \models ZFC^-$;

A conservation result

$\mathsf{Theorem}$

 ZFC^- is a Π^1_4 conservative extension of Z_2 .

- \blacksquare We can construct L(X) in Z₂;
- We can show in that Z_2 that $L(X) \models ZFC^-$;
- We use Shoenfield Absoluteness theorem $(\Pi_1^1 CA_0)$.

Some right axioms systems

Theorem (Steel, Simpson)

Over RCA₀, Det(Σ_1^0) is equivalent to ATR₀.

Theorem (Tanaka)

 $\mathsf{Det}(\Sigma_2^0)$ is equivalent to $\Sigma_1^1 - \mathsf{MI}$.

Back in ZF set theory

How much determinacy can we prove in \mathbb{Z}_2 ?

Theorem (Montalbán and Shore)

$$\Pi^1_{n+2}$$
-CA₀ \vdash Det $(n$ - $\Pi^0_3)$ but Δ^1_{n+2} -CA₀ $\not\vdash$ Det $(n$ - $\Pi^0_3)$.

However, Π_{n+2}^1 -CA₀ is not the right set of axioms for $Det(n-\Pi_3^0)$.

Theorem (MedSalem and Tanaka)

Borel determinacy does not imply Δ_2^1 -CA₀.

Reversals

Theorem (Hachtman)

 $\mathsf{Det}(\Sigma_3^0)$ is equivalent to the existence of a β -model satisfying $\mathsf{\Pi}_1^2-\mathsf{MI}$.

Theorem (Aguilera and Welch)

Over Π^1_1 -CA $_0$, for each $m \in \mathbb{N}$ we have an equivalence between

- 1 Det $(m-\Pi_3^0)$,
- **2** Every real belongs to a β -model of Π^1_{m+1} -MI.

Inside second order arithmetic

Game encoding models

Theorem (Friedman < Martin < M. and S.)

We cannot prove $\operatorname{Det}(\Sigma_0^5) < \operatorname{Det}(\Sigma_0^4) < \operatorname{Det}(\omega - \Pi_0^3)$ in ZCF^-

Game encoding models

Theorem (Friedman < Martin < M. and S.)

We cannot prove $\operatorname{Det}(\Sigma_0^5) < \operatorname{Det}(\Sigma_0^4) < \operatorname{Det}(\omega - \Pi_0^3)$ in ZCF^-

■ Same technique as for the limitative result of Friedman for Borel determinacy.

Theorem (Friedman < Martin < M. and S.)

We cannot prove $\operatorname{Det}(\Sigma_0^5) < \operatorname{Det}(\Sigma_0^4) < \operatorname{Det}(\omega - \Pi_0^3)$ in ZCF^-

- Same technique as for the limitative result of Friedman for Borel determinacy.
- The games are deemed to encode fragments of set theory using Gödel numbering.

Measurability properties

Theorem (Kechris, Martin)

In ZF + AC $_{\omega}(\omega^{\omega})$, Det (Π_n^1) proves that every Σ_{n+1}^1 sets of reals satisfies M1, M2 and M3.

Theorem (Shelah-Woodin)

Given $n \in \omega$, if there are n Woodin cardinals with a measurable cardinal above them, then every Σ^1_{n+2} sets of reals satisfies M1, M2 and M3.

Determinacy and high cardinal hypotheses

$\mathsf{Theorem}$

Given $n \in \omega$, if there are n Woodin cardinals with a measurable cardinal above them, then $Det(\Pi_{n+1}^1)$.

Remark

This is a corollary from a theorem of Martin-Steel, which is out of the scope of the present talk.