Laboratório de Programação 01

Linguagem C (Tipos Agregados Homogêneos e String)

Agenda

- Vetores
- Matrizes
- String

Tipos Agregados de Dados

- Também conhecidos como "tipos estruturados de dados"
- Possibilitam tratar conjuntos de dados de forma coletiva, em contraposição aos tipos escalares, que são tratados de forma individual;
- Exemplo de dados escalares: o salário de uma pessoa; exemplo de dados agregados: o conjunto dos salários de todos os empregados de uma mesma empresa;

Tipos Agregados de Dados

- Dados agregados são formados a partir do agrupamento e da estruturação (ou organização) de um conjunto de dados escalares;
- São utilizados descritores para especificar a forma através da qual ocorre tal estruturação.

Variáveis Compostas

- São um conjunto de variáveis identificadas por um mesmo nome.
 - Homogêneas (vetores e matrizes)
 - Heterogêneas (estruturas)

Variáveis Compostas Homogêneas

- Correspondem a posições da memória:
 - identificadas por um único nome
 - individualizadas por índices
 - cujo conteúdo é de um mesmo tipo

Notas:	6,1	2,3	9,4	5,1	8,9	9,8	10	7,0	6,3	4,4
Posição:	0	1	2	3	4	5	6	7	8	9

Variáveis Compostas Homogêneas :: Exemplo

Posição do livro

		0	1	2		n-1
	0	788	598	265	:	156
ق	1	145	258	369	:	196
rateleira	2	989	565	345		526
Prat	:	:	:	:	·	:
	m- 1	845	153	564	892	210

Arranjos unidimensionais

 Utilizados para armazenar conjuntos de dados cujos elementos podem ser endereçados por um único índice.

Também são conhecidos como vetores.

Arranjos multidimensionais

- Utilizados para armazenar conjuntos de dados cujos elementos necessitam ser endereçados por mais de um índice.
- Também são conhecidos como arrays ou matrizes.

Arranjos multidimensionais :: Exemplos

Arranjos de 2 dimensões

	0	1	2		n-1
0	788	598	265		156
1	145	258	369		196
2	989	565	345		526
:	:	:	:	٠.	÷
m- 1	845	153	564	892	210

Arranjos multidimensionais

- :: Exemplos
- Arranjo de 3 dimensões

Como declarar:

```
<tipo> <nome> [<tamanho1>][<tamanho2>]...;
```

```
float VetReais[100];
int Vetor[5][9];
char Nome_cliente[50];
float cubo[20][12][7];
```

 O compilador C aloca uma porção contígua da memória para armazenar os elementos das matrizes e vetores.


```
int VetInt[n];
```


Índice do primeiro elemento: zero Índice do último elemento: n - 1 Quantidade de elementos: n

• Índices fora dos limites podem causar comportamento anômalo do código.


```
int X1;
int Vetor[6];
int X2
```

```
Vetor[1] = 9;
Vetor[-1] = 2;
Vetor[6] = 8;
```

- O tamanho de um vetor ou matriz é prédefinido, ou seja, após a compilação, não pode ser mudado.
- Portanto, vetores e matrizes são chamadas estruturas de dados estáticas, pois mantém o mesmo tamanho ao longo de toda a execução do programa.

Atribuir valores na declaração do vetor:

```
int vetor[5] = {1,2,3,4,5};
```

Atribuir valores na declaração da matriz:

```
float matriz[2][3] = \{\{1,2,3\},\{4,5,6\}\};
```

Colocar os números de 1 a 5 num vetor:

```
for (i=0; i<5; i++)
    Vetor[i] = i + 1;</pre>
```

Colocar os números de 5 a 1 num vetor:

```
for (i=0; i<5; i++)
Vetor[i] = 5 - i;
```

Preencher uma matriz n × m com zeros:

```
for (i=0; i < N; i++)
for (j=0; j < M; j++)
Matriz[i][j] = 0;
```

Copiar dados de um vetor para outro:

```
#define TAM_MAX 10
double VetReais[TAM_MAX], VetCopia[TAM_MAX];
for (i=0; i<TAM_MAX; i++)
    VetCopia[i] = VetReais[i];</pre>
```

- Boa prática de programação:
 - Definir o tamanho de vetores com constantes flexibiliza a manutenção do código.

Leitura dos dados de um vetor:

```
for (i=0; i<TAM_MAX; i++)
{
    printf("Digite um número: ");
    scanf("%f", &Vet[i]);
}</pre>
```

Anualização da inflação mensal

```
void main () {
  int i=0;
  float acum=1.0;
  float INFLACAO[12] =
   {10,15,8,13,20,17,6,11,23,19,12,5};
  while (i<12) {
     acum *= (1+INFLACAO[i]/100.0)
  printf ("Acumulado: %f\n", acum);
```

float INFLACAO[12] = $\{10,15,8,13,20,17,6,11,23,19,12,5\}$;

(supondo que float ocupe 4 bytes)

Índice	Endereço					Conteúdo
0	1200		10.0)		
1	<pre>120</pre>)4		15.0		
2	1208		8.0)		
3	1212		13.0)		
4	1216		20.0)		
5	1220		17.0)		
6	1224		6.0)		
7	1228		11.0)		
8	1232		23.0)		
9	1236		19.0)		
10	1240		12.0)		
11	1244		5.0)		

String na Linguagem C

Strings

- Uma string é um vetor de caracteres, cujo final é indicado com um caractere nulo (valor inteiro zero).
- O terminador nulo também pode ser escrito como '\0'.
- Ao definir uma string, deve-se levar em consideração, além do número de caracteres da string, o caractere nulo que termina a string.

Strings :: Leitura a partir do teclado

- Função gets()
 - Lê string até o primeiro enter
- Função scanf()
 - Lê string até o primeiro espaço em branco

Strings :: Atribuição de valores

Manipulação de caracteres

- A Linguagem C possui algumas funções especiais para análise e manipulação de caracteres.
- Tais funções estão definidas na biblioteca ctype.h
- A biblioteca ctype.h possibilita a manipulação de caracteres, não de strings inteiras.

Manipulação de caracteres :: Funções tolower e toupper

- Função toupper
 - Converte seu argumento para uma letra maiúscula:

```
<var1> = toupper(var2);
```

- Função tolower
 - Converte seu argumento para uma letra minúscula:

```
<var1> = tolower(var2);
```

Manipulação de caracteres :: Outras funções

Função	Testa se seu argumento é um
isalnum	caractere alfanumérico
isalpha	caractere alfabético
isascii	caractere ASCII (0 a 127)
iscntrl	caractere de controle (0-0x1F ou 0x7F)
isgraph	caractere imprimível na tela (não leva espaço em consideração)
isprint	caractere imprimível na tela (leva espaço em consideração)

Manipulação de caracteres :: Outras funções

Função	Testa se seu argumento é um
islower	caractere minúsculo
isupper	caractere maiúsculo
ispunct	caractere de pontuação
isspace	caractere de espaço, tabulação
isdigit	caractere numérico (0-9)
isxdigit	dígito hexadecimal (0-9, a-f ou A-F)

- A Linguagem C possui funções especiais para análise e manipulação de strings.
- Tais funções estão definidas na biblioteca string.h.
- A biblioteca string.h possibilita a manipulação de strings completas (sem considerar caractere a caractere).

strcat(str1, str2)
Concatena str2 ao final de str1

• int tam = strlen(str1);
Retorna o tamanho de str1

- int valor = strcmp(str1, str2);
 - valor = 0, se str1 e str2 são iguais;
 - valor < 0, se str1 < str2;
 - valor > 0, se str1 > str2;

• int valor = strcmpi(str1, str2);
Mesmo que strcmp, mas não é sensível ao caso

strupr(str)Converte uma string para maiúsculas.

strlwr(str)Converte uma string para minúsculas.

• strrev(str)
Inverte o conteúdo de uma string.

strset(str,char)

Substitui todos os caracteres de uma string pelo caractere especificado.

Manipulação de strings :: Conversão para números

 A seguintes funções fazem parte da biblioteca stdlib.h

Função	Converte
<pre>atoi(<str>)</str></pre>	String em int
<pre>atof(<str>)</str></pre>	String em float
<pre>itoa(<int>)</int></pre>	Int em string