第四章作业

1. 有一信源,它有 6 个可能的输出,其概率分布如下表所示,表中给出了对应的码 A、B、C、D、E 和 F。

消息	$p(a_i)$	A	В	С	D	Е	F
a_1	1/2	000	0	0	0	0	0
a_2	1/4	001	01	10	10	10	100
a_3	1/16	010	011	110	110	1100	101
a_4	1/16	011	0111	1110	1110	1101	110
a_5	1/16	100	01111	11110	1011	1110	111
a_6	1/16	101	011111	111110	1101	1111	011

- (1)、求这些码中哪些是唯一可译码:
- (2)、求哪些是非延长码(即时码);
- (3)、对所有唯一可译码求出其平均码长和编码效率。
- 2. 有一个信源 X 如下:

$$\begin{bmatrix} X \\ p(x) \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\ 0.32 & 0.22 & 0.18 & 0.16 & 0.08 & 0.04 \end{bmatrix}$$

- (1)、求信源熵H(X);
- (2)、用 Shannon 编码法编成二进制变长码,并计算其编码效率;
- (3)、用 Fano 编码法编成二进制变长码,并计算其编码效率;
- (4)、用 Huffman 码编码成二进制变长码,并计算其编码效率;
- (5)、用 Huffman 码编码成三进制变长码,并计算其编码效率;
- (6)、比较三种编码方法的优缺点。
- (7)、如果对信源采用定长二元编码,允许错误概率 $P_{\varepsilon} \le 10^{-3}$,要求编码效率 η 达到上述的三进制 Huffman 变长编码的效率,求所需要的信源符号序列长度 N。
- 3. 现有一幅已离散量化后的图像,图像的灰度量化分成8级,如下表所示。表中数字为相应像素上的灰度级。另有一无噪无损二元信道,单位时间(秒)内传输

1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	3	3	3
3	3	3	3	3	3	3	4	4	4

4	4	4	4	4	4	4	5	5	5
5	5	5	5	6	6	6	6	6	6
7	7	7	7	7	8	8	8	8	8

100个二元符号。

- (1)、现将图像通过给定的信道传输,不考虑图像的任何统计特性,并采用二元等长码,问需要多长时间才能传送完这幅图像?
- (2)、若考虑图像的统计特性(不考虑图像的像素之间的依赖性),求这幅图像的信源熵 H(S),并对每个灰度级进行 Huffman 最佳二元编码,问平均每个像素需用多少二元码符号来表示?这时需多少时间才能传送完这幅图像?
- (3)、从理论上简要说明这幅图像还可以压缩,而且平均每个像素所需的二元码符号数可以小于多少比特。
- (4)、能否采用二元游程码进行信源编码,给你的方案。
- 4.一个离散无记忆信源,它的样本空间为 $\{W, B\}$,符号 W 出现概率为 0.99,符号 B 出现的概率为 0.01.
- (1)、对此信源的二次扩展信源,求出信源符号序列的概率分布, 找出与之相应 的二元 Huffman 编码,并求出平均码长;
- (2)、对此信源的三次扩展信源,重复上一问;
- (3)、计算信源的单符号熵,并于以上两个结果进行比较;
- (4)、要想使得单符号平均码长 \overline{L}_n/n 只比单符号信源熵大 10%,请确定信源最小的扩展次数 n。
- 5.假设有一页传真文件,其中有三条扫描线上的像素点如下图所示,分别为第一行、第二行以及最后一行。
- 1) 请编制这些扫描行的 MH(Modified Huffman)编码;
- 2) 计算第三行的数据压缩比。

686 黑		455 白		355 黑 155 白		13 黑	5 白	14 黑	45 白
85 白	720 黑	108 白	3 黑	64 白	6 黑	30 白	712	黑	
••••									
	832 白		728	黑		68 白	64	黑	36 白