13 Fonction exponentielle

I – Définition et premières propriétés

Nous pouvons généraliser la démarche qui nous a permis d'introduire dans le chapitre précédent le nombre e. Il suffit de remplacer le nombre 1 par un nombre réel a quelconque : il existe un unique nombre réel b tel que $\ln(b) = a$.

Ainsi pour a = 1, on trouve b = e. Pour a = 2, on trouve $b = e^2$. Pour a = 3, on trouve $b = e^3$. Pour a = -1, on trouve $b = e^{-1}$. Et pour a = n, où n est un entier relatif, on trouve $b = e^n$.

Définition 13.1 – Le nombre b tel que $\ln(b) = a$ est appelé **exponentielle de** a et est noté e^a .

Nous définissons ainsi une nouvelle fonction, appelée **fonction exponentielle**, notée exp, définie sur **R** et prenant ses valeurs dans $]0, +\infty[$. Pour des raisons évidentes, nous noterons le plus souvent $\exp(x) = e^x$.

$$]0, +\infty[\xrightarrow{\ln} \mathbf{R}]$$
 et en sens inverse $]0, +\infty[\xleftarrow{\exp} \mathbf{R}]$.

Proposition 13.2 —

- Pour tout réel $x \in \mathbb{R}$, $e^x > 0$.
- Pour tout réel $x \in \mathbf{R}$ et pour tout réel y > 0, $y = e^x \iff x = \ln(y)$.
- Pour tout réel $x \in \mathbf{R}$, $\ln(e^x) = x$.
- Pour tout réel x > 0, $e^{\ln(x)} = x$.

Remarque 13.3 - On a

$$ln(1) = 0 \iff e^0 = 1.$$

Exemple 13.4 – Résoudre dans R les équations suivantes.

•
$$e^x = 1$$

•
$$ln(x) = 2$$

•
$$e^{2t-1} = 1$$

•
$$\ln(3x) = \frac{1}{2}$$

Proposition 13.5

Pour tous réels a et b,

$$e^{a+b} = e^a \times e^b$$
.

Comme pour la fonction logarithme népérien, on peut tirer plusieurs conséquences de cette propriété fondamentale de la fonction exponentielle.

Proposition 13.6

- Pour tout réel $a \in \mathbb{R}$, $e^{-a} = \frac{1}{e^a}$.
- Pour tous réels a et b dans \mathbf{R} , $e^{a-b} = \frac{e^a}{e^b}$.
- Pour tout réel $a \in \mathbf{R}$ et pour tout entier relatif $n \in \mathbf{N}$, $e^{na} = (e^a)^n$.

Démonstration.

Exemple 13.7 – Soient *x* et *y* deux réels. Simplifier le plus possible les expressions suivantes.

1.
$$\frac{e^{2x}}{e^x}$$

4.
$$(e^{2x})^3 \times (e^{-x})^2$$

$$2. \ \frac{(e^x)^2}{e^x}$$

5.
$$e^0 \times e^{-x} \times (e^x)^2$$

3.
$$\frac{e^x}{e^{-x}}$$

6.
$$\frac{e^x}{e^y} \times e^{y-x}$$

II - Étude de la fonction exponentielle

1 - Dérivée et sens de variation

Proposition 13.8

La fonction exponentielle est dérivable sur **R** et $\exp'(x) = \exp(x)$.

Démonstration.

Proposition 13.9

La fonction exponentielle est ${f continue}$ et ${f strictement}$ ${f cross}$ sur ${f R}$.

Démonstration.

On déduit de ce théorème les propriétés suivantes.

Proposition 13.10

Pour tous réels a et b,

- $e^a = e^b$ si et seulement si a = b,
- $e^a > e^b$ si et seulement si a > b.

Exemple 13.11 – Résoudre dans **R** les équations et inéquations suivantes.

1.
$$\frac{e^{3x+5}}{e^{3-2x}} = e^{2x^2-1}$$

2.
$$e^{x^2+x-1}=1$$

3.
$$e^{2x} \leqslant e^x$$

4.
$$e^{2x}e^{x^2} < 1$$

2- Limites

Proposition 13.12

La fonction exponentielle a pour limite $+\infty$ en $+\infty$, *i.e.*

$$\lim_{x \to +\infty} e^x = +\infty.$$

Proposition 13.13

La fonction exponentielle a pour limite 0 en $-\infty$, *i.e.*

$$\lim_{x\to-\infty}e^x=0.$$

L'axe des abscisses est **asymptote horizontale** à la courbe d'équation $y = e^x$ en $-\infty$.

Exemple 13.14 – Calculer les limites suivantes.

•
$$\lim_{x \to +\infty} \exp\left(\frac{1}{x}\right)$$

•
$$\lim_{x\to 0^-} \exp\left(\frac{1}{x}\right)$$

•
$$\lim_{x\to 0^+} \exp\left(\frac{1}{x}\right)$$

3 – Courbe représentative

- $\lim_{x \to -\infty} e^x = 0$ donc l'axe des abscisses est asymptote à la courbe représentative de la fonction exponentielle en $-\infty$.
- La fonction exponentielle est la fonction réciproque de la fonction logarithme népérien.
 Dans un repère orthonormé, leurs courbes représentatives sont symétriques par rapport à la droite D d'équation y = x.

4 - Croissances comparées

Proposition 13.15

Pour tout entier n supérieur ou égal à 1, on a les limites suivantes :

$$\lim_{x \to -\infty} x^n e^x = 0 \quad \text{ et } \quad \lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty.$$

En particulier, lorsque n = 1,

$$\lim_{x \to -\infty} x e^x = 0 \quad \text{ et } \quad \lim_{x \to +\infty} \frac{e^x}{x} = +\infty.$$

Remarque 13.16 – Ces limites sont normalement des **formes indéterminées**. Pour lever de telles indéterminations, on applique les résultats de croissances comparées.

On retient que l'exponentielle "l'emporte" sur les puissances de *x*.

Exemple 13.17 -
$$\lim_{x \to -\infty} x^2 e^x$$

•
$$\lim_{x \to +\infty} e^x - x$$

III – Étude d'une fonction de la forme exp(u)

Proposition 13.18 -

Soit u une fonction dérivable sur un intervalle I, alors la fonction composée $f=e^u$ est dérivable sur I et

$$\forall x \in I, \quad f'(x) = u'(x)e^{u(x)}.$$

On note en abrégé

$$(e^u)'=u'e^u.$$

Exemple 13.19 – Soit f la fonction définie sur \mathbf{R} par $f(x) = e^{x^3 - 4x^2 + 2x - 3}$. Calculer f'(x).

Exemple 13.20 – Soit f la fonction définie sur \mathbf{R} par $f(x) = e^{2x^3 - 15x^2 + 36x - 25}$.

1. Calculer les limites de f en $-\infty$ et $+\infty$.

2. Étudier les variations	s de la fonction f .		