可知 X 为 $\triangle BCE$ 的垂心, 从而 $CX \perp BD$, 即 $AC \perp BD$.

7. 设正整数 $n=2^{\alpha}\cdot q$, 其中 α 为非负整数, q 为奇数. 证明: 对任意正整数 m, 方程 $x_1^2+x_2^2+\cdots+x_n^2=m$ 的整数解 (x_1,x_2,\cdots,x_n) 的个数能被 $2^{\alpha+1}$ 整除. (王广廷 供题)

证法一 设方程 $x_1^2 + x_2^2 + \cdots + x_n^2 = m$ 的解的个数为 N(m). 设 (x_1, x_2, \cdots, x_n) 是方程 $x_1^2 + x_2^2 + \cdots + x_n^2 = m$ 的一个非负整数解. 不妨设其中有 k 个非零项, 注意到 (x_1, x_2, \cdots, x_n) 的每个分量有正负两种情况, 则恰好对应原方程的 2^k 个整数解. 设 S_k 是该方程的恰有 k $(k = 1, 2, \cdots, n)$ 个非零项的非负整数解的个数. 则

$$N(m) = \sum_{k=1}^{n} 2^k \cdot S_k.$$

因为 k 个非零项的非负整数解有 $\binom{n}{k}$ 种位置可选, 故 $\binom{n}{k}$ | S_k .

故要证明 $2^{\alpha+1} \mid N(m)$, 只需证明: $2^{\alpha-k+1} \mid \binom{n}{k}$.

注意到 $\binom{n}{k}=\frac{n(n-1)\cdots(n-k+1)}{k!},$ 分子中 2 的因子个数至少为 α , 而分母中的 2 的因子个数为

$$\sum_{i=1}^{[\log_2 k]} \left[\frac{k}{2^i}\right] < \sum_{i=1}^{\infty} \frac{k}{2^i} = k,$$

故分母的 2 的因子至多有 k-1 个, 所以 $2^{\alpha-k+1}\mid \binom{n}{k}$. 即 $2^{\alpha-k+1}\mid N(m)$.

评注 这个问题中要证明 $2^{\alpha-k+1} \mid \binom{n}{k}$, 实际也可以用 Kummer 定理处理. Kummer 定理是指: 设 n, i 是正整数且 $i \leq n, p$ 是素数, 则 $p^t \mid \binom{n}{k}$ 当且仅当在 p 进制中, (n-i)+i 发生了至多 t $(t \geq 0)$ 次进位.

证法二 记 f(n,m) 为该方程整数解的个数. 首先证明如下关于 f(n,m) 的 递推关系:

引理
$$f(2n,m) = 2f(n,m) + \sum_{k=1}^{m-1} f(n,k)f(n,m-k).$$

引理证明 设 $(x_1, x_2, \dots, x_{2n})$ 是方程 $x_1^2 + x_2^2 + \dots + x_{2n}^2 = m$ 的一个解. 设 $x_1^2 + x_2^2 + \dots + x_n^2 = k$.

若 k=0, 则 $(x_1,x_2,\cdots,x_n)=(0,0,\cdots,0)$, 且 $x_{n+1}^2+x_{n+2}^2+\cdots+x_{2n}^2=m$, 这样的 $(x_{n+1},x_{n+2},\cdots,x_{2n})$ 有 f(n,m) 组. 故当 k=0 时,原方程有 f(n,m) 组解.

同理可知, 当 k = m 时, 原方程也有 f(n, m) 组解.

当 $1 \le k \le m-1$ 且 k 为正整数时, 方程 $x_1^2 + x_2^2 + \cdots + x_n^2 = k$ 有 f(n,k)