

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ Институт информационных систем и защиты информации Кафедра инфокоммуникационных систем (№52)

Выпускная квалификационная работа бакалавра

Сравнительный анализ характеристик каскадного кодирования

Выполнила студентка группы 5721 Ковалева А.Е. Научный руководитель ВКРБ Трофимов А.Н.

Содержание

- 1. Постановка задачи
- 2. Каскадный код
- 3. Код Адамара
- 4. Модель канала
- 5. Схемы приемников
- 6. Быстрое преобразование Адамара
- 7. Оценка вероятности ошибки на бит внутреннего кода
- 8. Оценка вероятности ошибки на бит каскадного кода
- 9. Результаты теоретических расчетов
- 10. Заключение по проделанной работе

Постановка задачи

Цель работы – проведение сравнительного анализа характеристик каскадного кодирования с кодом Адамара на внутренней ступени применительно к коду в канале с АБГШ и случайной фазой.

Для достижения поставленной цели необходимо:

- 1. Вычислить вероятности ошибки для сигналов с ортогональными огибающими, построенные с использованием кода Адамара, в канале с АБГШ и случайной фазой с использованием быстрого преобразования Адамара
- 2. Получить формулы для расчета вероятности ошибки на бит каскадного кода в канале с АБГШ и случайной фазой
- 3. Произвести сравнительный анализ вероятности ошибки на бит с использованием кода Рида-Соломона и без использования кода Рида-Соломона на внешней ступени

Каскадные коды

Пример системы, использующей последовательный каскадный код с двумя составляющими кодами

$$R_o = \frac{K_0}{N_0} = \frac{kK}{nN} = R_a R_{rs}$$

кодовая скорость полученного каскадного кода

Код Адамара

$$egin{aligned} oldsymbol{H}_n = egin{bmatrix} oldsymbol{H}_{n/2} & oldsymbol{H}_{n/2} \ oldsymbol{H}_{n/2} & -oldsymbol{H}_{n/2} \end{bmatrix}$$

где $n = 2^l, l$ – любое целое положительное число

Рекурсивное определение матрицы Адамара

Пример рекурсивного определения матриц

Ортогональные огибающие, построенные на основе кода Адамара, n=8

Модель канала

Канал с аддитивным белым гауссовским шумом и случайной фазой

Модель канала

Схемы приемников

для сигналов с ортогональными огибающими

Быстрое преобразование Адамара

$$C_1 = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 \end{bmatrix} \\ C_2 = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0$$

$$C_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 \end{bmatrix}$$

Разреженные матрицы C₁,C₂,C₃ для n=8

Граф алгоритма БПА для n=8

Схема формирования результирующего вектора, путем перемножения матриц

Вероятность ошибки декодирования

для ортогональных сигналов в канале с АБГШ и случайной фазой

Вероятность ошибки

$$P_e = \sum_{l=1}^{q-1} C_{q-1}^l (-1)^{l+1} \frac{1}{1+l} e^{(\frac{-l}{1+l}\gamma)}$$

Аддитивная граница

$$P_e < \frac{q-1}{2}e^{\frac{-E}{2N_0}}$$

Вероятность ошибки на бит

$$P_b = \frac{2^{m-1}}{2^m - 1} P_e$$

График вероятности ошибки декодирования при расчете по точной формуле для ортогональных сигналов в канале с АБГШ и случайной фазой при q=[16, 32]

Оценка вероятности ошибки на бит

для ортогональных сигналов в канале с АБГШ и случайной фазой

Верхняя оценка

$$P_e < \min_{0 \le \rho \le 1} \frac{(q-1)^{\rho}}{1+\rho} e^{\frac{-\rho}{1+\rho} \frac{E}{N_0}}$$

График вероятности ошибки для ортогональных сигналов в канале с АБГШ и случайной фазой при q=[256,512,1024]

Подходы к вычислению вероятности ошибки декодирования

кода Рида-Соломона

Вероятность ошибки декодирования кода РС

Формулу
$$P \leq \sum_{i=t+1}^N C_N^i p^i (1-p)^{N-i}$$

можно привести к виду
$$P \leq \sum_{i=t+1}^{N} C_N^i \tau^i (1-\tau)^{N-i} \left(\frac{p}{1-p} \frac{1-\tau}{\tau} \right)^i \left(\frac{1-p}{1-\tau} \right)^N$$

где
$$t = \tau N, t > p$$

Модифицированная граница Чернова[1]

$$P < \frac{p(1-\tau)}{\tau - p} \frac{1}{\sqrt{2\pi N\tau (1-\tau)}} e^{-N(T_p(\tau) - H(\tau))}$$

Оценка вероятности ошибки декодирования кода РС

С использованием данного подхода получаем верхнюю границу для каскадного кода

$$P < \frac{p(1-\tau)}{\tau-p} \frac{1}{\sqrt{2\pi N\tau(1-\tau)}} e^{-N(T_p(\tau)-H(\tau))}$$

где
$$\tau = t/N$$
,
$$t = \frac{d-1}{2} = \frac{N-K+1}{2}$$

$$H(\tau) = -\tau \ln \tau - (1-\tau) \ln (1-\tau),$$

$$T_p(\tau) = -\tau \ln p - (1-\tau) \ln (1-p),$$

$$p < \min_{0 \le \rho \le 1} \frac{(q-1)^\rho}{1+\rho} e^{\frac{-\rho}{1+\rho} \frac{E}{N_0}}.$$

Приведенная граница:

- 1. дает достаточно точные значения
- 2. значительно проще вычисляется

График зависимости вероятности ошибки декодирования

внутреннего кода для различного числа сигналов

График зависимости вероятности ошибки декодирования

Каскадного кода для различного числа сигналов

График зависимости вероятности ошибки на бит от отношения сигнал/шум при передаче по каналу с АБГШ и случайной фазой с использованием кода РС и без использования кода РС при различных значениях *q*

Заключение

- 1. Изучены и реализованы код Адамара и БПА
- 2. Изучен каскадный код, внутренней ступенью которого является код Адамара, внешней код Рида-Соломона
- 3. Выведена формула, построены графики верхней оценки вероятности ошибки на бит для сигналов с ортогональными огибающими в канале с АБГШ и случайной фазой
- 4. Выведены формулы, построены графики вероятности ошибки на бит каскадного кода с использованием кода Рида-Соломона на внешней ступени
- 5. Проведено и графически проиллюстрировано сравнение вероятности ошибки на бит при использовании кода Рида-Соломона на внешней ступени каскадного кода и без использования кода Рида-Соломона

Спасибо за внимание!