Vorlessung Noten

- 1. Vokabular
- 2. Einleitung
- 3. Daten problemstellungen und visualisierung
 - 1. Daten
 - 2. Welche Probleme sollen gelöst werden?
 - 3. Visualisierung
- 4. Einsatzszenario zur Statistischen Datenanalyse
 - 1. Übersicht
 - 2. Datenbank und Zusammenstellung Lerndatensatz
 - 3. Merkmalsextraktion
 - 4. Formalisierte Probleformulierungen
 - 5. Merkmalbewertung (Frosetzung)
 - 1. Distanzen
 - 2. Klassifikationsorientierte Masse
 - 6. Merkmalstransformation
 - 1. Idee Merkmalstranformationen

Vokabular

Deutsch	Franzosich	Deutsch	Franzosich	
Merkmale(n)	Caractéristique, paramètre	Ausreisser	valeur aberrante	
einsatz(en)	utilisation	schätzung	estimation	
Bewertung	évaluation	geeigneten	adapté	
Abstand	distance	Erzugen	produire	
Wichtung	pondération	Lerndatensatz	Ensemble d'apprentissage	
Datentupel	point de donnée	Fehlerquellen	sources d'erreur	
Auswahl	sélection	Hinweise	notes	
Masse	mesurer	Zusammenhänge	liens, relations, connexions	
zählen	compter	ganzzahlig	(nombre) entier	
Fehler	erreur	Wertebereiche	plage de valeurs (d'un paramètre)	
Entscheidung	décision	Bemerkungen	remarques	
Art(en)	types, genres	Hüllfläche	surface	
Zeitreihen	série chronologique	Umbgebung	environnement	
unvollständig	incomplet	Anordnung	arrangement	
Vorschlag	proposition	Entwurf	conception	
Anwendungsphase	phase d'application	notwendig	nécessaire	
Rechenaufwand	complexité de calcul	auswählen	sélectionner	

Einleitung

• Mündlinche Prüfung

• Date: 18/07/2018

Daten problemstellungen und visualisierung

Daten

- Datenstrukturen
 - Datentupel
 - Zeitreihen
 - o Merkmale

Skalenniveaus

Skalenniveau	Häufigkeiten	Grössenvergleich	Median	Mittelwert	Addition/Subtraktion	Multiplikation/Division
Nominalskala	ja	х	×	x	х	x
Ordinalskala	ja	ja	ja	x	х	х
Intervallskala	ja	ja	ja	ja	х	х
Ratioskala	ja	ja	ja	ja	ja	ja

Beispiel:

- Nominalskala: Profesor Name, Farben
- Ordinalskala: Temperatur in linguistischen Termen (Warm/Kalt/...)
- Intervalskala: Temperatur in [°C] (Ursprung(origine?) nicht 0, 2°C nicht doppelt so warm wie 1°C)
- Ratioskala: Temperatur in [K]

Welche Probleme sollen gelöst werden?

(gelöst = résolu)

Modellbildung

Expertenbasierter Entwurf:

- viel Know-how
- gut interpretierbar
- problematische Quatizifierung
- · unvollständig

Datenbasierter Entwurf:

- gut quantifizierbar
- · schwerer interpretierbar
- unvollständig

Fustion sinnvoll

Systemtheoretische Sicht

Definition laut DIN :

- Anordnung von Gebilden, die miteinander in Beziehung stehen Gebilden=structures, liées entre elles
- gegenüber ihrer Umbgebung (environnement) durch Hüllflache abgegrenzt (séparé)
- Nur spezielle Verbindungen gehen über (à travers) Hüllfläche (Ein- und Ausganggrissen)
- Gebilde können auch (Teil-) Systeme sein

Struktursuche und Parameterschätzung

- Struktur:
 - Wahl der Ein- und Ausgangsgrössen eines Systems (Wieviele? Welche?)
 - o mögliche Wertebereiche der Ein un Aus (z.B. reell, ganzzahlig)
 - Typ der Zusammenhänge in der Funktion
- · Parameter:
- · Vorwissen:
 - Wissen über das Problem, z.B. teilweise bekannte Strukturen un Parameter.
 - o qualitative oder quantitative Hinweise für Bewertung
 - o mögliche Fehlerquellen
- Lerndatensatz

muss zur Struktur und Aufgabenstellung passen

- Entwurf:
 - · Hypothesengenerierung

Erzugen einer oder mehrerer möglicher geeigneten Systemstrukturen

- Parameterschätzung :
- · Bewertung:

quantitative Einschätzung Q eines gefundenen Systemmodells f() mit Struktur und Parameten anhand der Lerndaten und evtl. zusätzlichen Vorwissens

· Anwendung:

routinemässige Erzeugung von Ausgangsgrössen unter Nutzung eines vorher entworfenen Systemmodells und neuer Eingangsgrössen

Überwachtes Lernen

- Regression
- Klassifikation (Eingangsgrösse ist reelwertig, Ausgangsgrösse ist nominal und kann als natürliche Zahl kodiert werden)
- Entscheidungsproblem (Ein- und Ausgangsgrössen ist nominal und kann als natürliche Zahl kodiert werden)
- Fuzzy-Klassifikation (Eingangsgrösse ist reelwertig, Ausgangsgrösse ist Fuzzy-Zugehörigkeit zwischen 0-1 zu verschiedenen Klassen)

Unüberwachtes lernen (Ausgangsgrösse für Lerndatensatz unbekannt)

- · Clustering (Eingangsgrösse ist reelwertig, Ausgangsgrösse ist nominal und kann als natürliche Zahl kodiert werden)
- Fuzzy-Clustering (Eingangsgrösse ist reelwertig, Ausgangsgrösse ist Fuzzy-Zugehörigkeit zwischen 0-1 zu verschiedenen Klassen)

Teilüberwachtes lernen

• (Ausgangsgröße ist nur für einen Teil der Datentupel im Lerndatensatz bekannt)

Visualisierung

- Scatterplot y=f(x):
 - o geeignet für ratio- oder intervallskalige Einzelmerkmale (simple)
 - o zeigt (montre) Zusammenhänge zwischen Merkmalen
 - Klassen : Farben
 - o unübersichtlich ab 2-3 Merkmalen
- Boxplots
 - o Einzelmerkmale nach Klassen sortiert
 - o Fahnen mit minimalen und maximalen Werten, die keine Ausreisser sind
 - o Punkte für Ausreißer
 - o kann nur 1 Merkmal zeigen, also keine Zusammenhänge zwischen Merkmalen
- · Histogramme:
 - · Auch ordinal und nominalskalierte
 - Klassen : als separate Histogramme
 - o zeigt keine Zusammenhänge zwischen Merkmalen

- 2-D Histogramme :
 - o zeigt Zusammenhänge zwischen 2 Merkmalen
- Korrelationsvisualiserungen:
 - keine Klasseninformation
 - o gut auch für bis ca. 100 Merkmale
 - o zeigt Zusammenhänge zwischen Merkmalen
- · Zeitlicher Verlauf
 - Klassen durch Farben
 - o de facto immer zeitdiskret
 - o auch für abgeleitete Größen (z.B. Klassenmittelwerte)
 - o problematisch bei vielen Datentupeln
- · Heatmaps:
 - Werte farbkodieren
 - o Klassen können durch Gruppieren berücksightigt (être pris en compte) werden

Einsatzszenario zur Statistischen Datenanalyse

Übersicht

Einsatzszenario (scenario d'utilisation)

(sieh Bild im vorlessung 3_1)

- · nur ein Vorschlag
- · automatisierbarer Teil möglich werden

Vereinfachte Abläufe in der Anwendungsphase

- Merkmalsselektion nicht mehr notwendig (nécessaire)
- Bewertungsmaße, visualisierung und (manuelle) Entscheidungsfindung optional
- In der Regel starke Reduzierung Rechenaufwand

Datenbank und Zusammenstellung Lerndatensatz

Merkmalsextraktion

Formalisierte Probleformulierungen

Merkmalbewertung (Frosetzung)

Distanzen

Definitheit: Abstand swischen zwei Objecten

Spezificationen:

d(Oi,Oj) >= 0

 $d(Oi,Ok) \le d(Oi,Oj) + d(Oj,Ok)$

Wichtige Distanzen:

Minkowski-Distanz (n-Dimension Raum Distanz)

Euklidisch-Distanz (2-Dimension Raum)

Quadratische Form (matrix Dimension raum)

Datentupeldistanzen:

- abhängig vos ausgewählten Merkmalen, Datentupeln und Distanzmass
- unübersichtlich von vielen Datentupeln

Klassifikationsorientierte Masse

- relativen Anteil Fehler wählen
- Entscheidungskosten

Spezifität, Sensitivität und ROC-Kurven?
 (Equilibre entre positif, faux-positif, faux négatif, négatif)
 On peut tracer une courbe qui calcule les gté suivantes :

Qsens = TP / (TP+FN)

Qspez = TN / (TN+FP)

y=Bc \ y^=Bc	Ok	Fehler
Ok	TP	FN
Fehler	FP	TN

• Regressionsorientierte Masse (1)

Evaluer l'écart entre la régression réelle et celle classifiée

Merkmalstransformation

Idee Merkmalstranformationen

Projizieren in s-dimensionalen Raum, dass möglichst viel Informationen erhalten bleiben

Comment on évalue la qualité d'une transformation par rotation ou projection