

INFORME DE LA PRÁCTICA 4: "Introducción al transistor bipolar: Amplificador en emisión común"

ALUMNOS:

DIEGO ISMAEL ANTOLINOS GARCÍA

ANDRÉS RUZ NIETO

PUESTO:

3C

PRÁCTICA 4. INTRODUCCIÓN AL TRANSISTOR BIPOLAR: AMPLIFICADOR EN EMISOR COMÚN.

Los componentes que utilizamos en esta práctica son los siguientes:

- Transistor bipolar 2N2222
- Resistencia de 220 kΩ
- Resistencia de 33 kΩ
- Resistencia de 220 Ω
- Resistencia de 2.2 Ω
- Condensador de 68 nF
- Condensador de 680 nF

1. Realización de la práctica.

1.1 <u>Calculos para la elección del punto de operación y la determinación del circuito de polarización.</u>

Procedemos montar el siguiente circuito amplificador (Fig.1).

1.1.1. Elección de Vcc y Vce. (Especificación de la ganancia Av)

Sabemos que $V_{CE} = V_{CC}/2$, que $R_E = R_L/10$, y que la ganancia es $A_v = -165$. Para todo esto debemos determinar el parámetro V_{AF} , nosotros hemos decidido tomar el valor por defecto de PSpice (VAF= 74.03 V). En la práctica, $V_{CC} = 10$ V con lo que V_{CE} tendrá un valor cercano a los 5 V.

Aplicaremos la fórmula 44, despejaremos V_{cc} y nos queda:

$$V_{cc} = -rac{A_v \cdot V_t \cdot 2.2}{1 + rac{\Delta v \cdot V_t}{V_{AF}}}$$
; sustituimos y obtenemos que $V_{cc} = -9.61V$

$$V_{ce} = \frac{|V_{cc}|}{2} = 4.80V$$

1.1.2. Elección de I_C y R_B. (Especificación de la impedancia de entrada, estabilidad)

La impedancia de entrada viene dada por lo siguiente:

$$Z_{in}=R_B \mid \mid r_{\pi} ; r_{\pi}=h_{fe}V_t/I_C$$

En el laboratorio la impedancia de salida de los generadores de señal (R_S) es de 50 Ω . Se debe cumplir que $Z_{in} >> R_S$ para que la ganancia A_{VS} sea prácticamente a la A_V . Para todo esto escogemos $Z_{in} \sim 100 * R_S = 5 \ k\Omega$.

A partir de las gráficas del anexo, hemos estimado los incrementos de intensidad para calcular h_{fe}

Para la V_{CE} medida de 6.29V, hemos medido la I_C sobre dos curvas más próximas a I_B medida (Gráfica 4) de I_B separadas 2 uA para obtener el incremento de esta corriente, y así determinar la ganancia.

$$h_{fe} = \frac{\Delta Ic}{\Delta Ib}\Big|_{V_{CE}=cte} = \frac{0.4mA}{2uA} = 200$$

$$I_c = \frac{h_{fe} \cdot V_t}{r_{\pi}} = \frac{200 \cdot 0.025}{7500} = 0.0006A$$

Podemos observar que si situamos sobre el siguiente gráfico los 6.29V medidos para la $I_B=1.1uA$ obtenemos una I_c de 1.7mA. Nuestra medida para I_c (1.5mA) no está en la zona estable del transistor, sino en zonas de ganancia mucho más altas.

Sobre la simulación hemos obtenido una tensión $V_{BE} = 0.6V$

$$Z_{in} = \frac{r_{\pi} \cdot R_B}{r_{\pi} + R_B}$$
; $R_B = \frac{r_{\pi} \cdot Z_{in}}{r_{\pi} - Z_{in}} = \frac{5 \cdot 7.5}{2.5} k = 15k\Omega$

1.1.3. Elección de R_L, R_E, R₁ y R₂.

El valor de las resistencias se determina por las ecuaciones de malla del circuito de polarización, en el cual suponemos que $I_E \approx I_C$

$$V_{cc} = V_{ce} + I_c(R_L + R_E) \ donde \ R_E = \frac{R_L}{10}$$

$$R_L = \frac{V_{cc} - V_{ce}}{I_c + \frac{I_c}{10}} = 7287.8\Omega$$

$$R_E = \frac{R_L}{10} = 728.78\Omega$$

Ahora pasamos a calcular R_1 y R_2

$$V_{BB} = R_2 \frac{V_{cc}}{R_1 + R_2} = I_B \cdot R_B + V_{BE} + I_C \cdot R_E$$

$$R_B = \frac{R_1 \cdot R_2}{R_1 + R_2} \; ; \; I_B = \frac{I_c}{\beta} = \frac{0.0006}{200} = 3\mu A$$

Despejando y sustituyendo los datos que tenemos, obtenemos:

$$R_2 = 0.126R_1$$

$$R_1 = \frac{R_B}{0.112} = 133928.57\Omega$$

$$R_2 = 16875\Omega$$

1.1.4. Elección de los condensadores de acoplo C₁ y C_E.

Tal y como se nos dice en la práctica, el beneficio del ancho de banda de C_1 y C_E deben ser lo más grandes posibles, pero el objetivo de esta será observar su influencia en la respuesta a bajas frecuencias. Los polos y los ceros los escogemos de forma que, en el diagrama de Bode, el cual mostraremos posteriormente, se encuentren separados.

Sabemos que

$$f_{z2} = \frac{1}{2\pi \cdot R_F \cdot C_F} = 1.2kHz$$

Despejando C_E

$$C_E = \frac{1}{2\pi \cdot R_E \cdot 1.2 \cdot 10^3} = 181nF$$

$$C_1 = \frac{C_E}{10} = 18.1nF$$

1.2. Caracterización del amplificador

Los componentes que forman el circuito quedan dispuestos de la siguiente manera, y tomando los elementos del circuito los siguientes valores:

$$V_{CC}$$
= 10 V

 $R_1 = 220 \text{ k}\Omega$

 $R_2 = 33 \text{ k}\Omega$

 $R_F = 220 \Omega$

 R_L (o R_C)= 2.2 $k\Omega$

C₁= 68 nF

C_F= 680 nF

Una vez que hemos montado el circuito procedemos a comprobar que el punto de operación en continua es el deseado, y para ello medimos los siguientes parámetros:

 $V_{CE} \rightarrow$ Para medir este voltaje medimos la tensión que cae entre el colector y el emisor del transistor. En nuestro caso V_{CE} = 6,29 V.

 $V_{BE} \rightarrow$ Para medir este voltaje medimos la tensión que cae entre la base y el emisor del transistor. En nuestro caso V_{BE} =0,63 V.

 $I_B \rightarrow$ Para medir la intensidad de corriente en la base abrimos el circuito, entre la base y el punto en el que se juntan R_1 y R_2 , insertando el amperímetro en dicho punto. También podríamos aplicar que $I_{R1}=I_B+I_{R2}$ siendo $I_B=I_{R1}-I_{R2}$, midiendo el voltaje en dichas resistencias y obteniendo sus intensidades a través de la Ley de Ohm. En nuestro caso $I_B=11.1\mu A$

 $I_C \rightarrow$ Procedemos de la misma manera que con I_B , pero esta vez introducimos el amperímetro entre el colector y R_L . También podíamos medir I_{RL} mediante la Ley de Ohm, ya que $I_C \approx I_{RL}$. En nuestro caso $I_C = 1.5$ mV

Una vez que hemos medido estos parámetros medimos experimentalmente el diagrama de Bode del amplificador (20 Hz-1MHz). A la hora de medir prestamos especial atención en los polos y los ceros según los cálculos del apartado 1.1.

 $f_{z1}\text{=}0$; $f_{p1}\text{=}120\;\text{Hz}$; $f_{z2}\text{=}1.2\;\text{kHz}$; $f_{p2}\text{=}20\;\text{kHz}$

Frecuencia (Hz)	Decibelios
100.6931	14.5816
110.1539	15.0657
120.2264	15.5063
130.0169	15.8740
140.6047	16.2166
150.6607	16.4984
250.6109	18.0567
450.8167	19.2432
550.8076	19.6703
901.5711	21.1313
1099.0058	21.9575
1202.2644	22.3837
1352.0725	22.9892
1503.1419	23.5804
1901.0782	25.0293
4008.6671	30.4305
10023.0523	36.9551
20090.9281	40.2579
30408.8502	41.3083
50003.4534	41.9325

Los valores obtenidos en el laboratorio fueron insuficientes para poder dibujar el bode correctamente, y, además no coinciden con los valores obtenidos en PSpice, por lo que para poder dibujar el bode hemos optado a usar los valores que nos da PSpice

Frecuencia (Hz)	Decibelios
141 Hz	10,45757491
325 Hz	11,44193536
1255 Hz	14,32006687
2096 Hz	20,98436045
2998 Hz	21,77453128
16712 Hz	36,58607546

1.4. Simulaciones con PSpice

Una vez que ya hemos realizado toda la parte experimental de la práctica realizamos simulaciones con PSpice de lo que hemos realizado en el laboratorio. La novedad de estas simulaciones, respecto a las prácticas anteriores, es la aparición del transistor, el cual es un elemento activo, y no pasivo (resistencias, condensadores, diodos, etc).

1.4.1. Características de entrada y de salida del transistor bipolar.

Para realizar la simulación de la característica de entrada del transistor bipolar realizamos el circuito siguiente:

Una vez que realizamos la simulación, tras seguir las indicaciones que se nos ponía en la práctica obtenemos la siguiente gráfica:

En la gráfica se nos muestran las distintas características de entrada que corresponden a los distintos valores de tensión colector-emisor.

Y para realizar la simulación de la característica de entrada del transistor bipolar realizamos el siguiente circuito:

Tras la simulación obtenemos esta gráfica:

En la gráfica se nos muestran las distintas características de salida para los valores de corriente de base.

1.4.2

Simulamos nuestro circuito de prácticas para obtener el diagrama de Bode, y así compararlo con el obtenido en la práctica.

Una vez simulado obtenemos el siguiente diagrama:

