Nevyvážený Wheatstoneův můstek vyhodnocení změny odporu odporového snímače

Jakub Dvořák

21.11.2020

1 Úkol měření

- 1. a) Zapojte převodník R \rightarrow U s operačním zesilovačem podle schématu na obr. 1 ($U_{\rm r}$ = 10 V, $R_{\rm N1}$ = 10 k Ω) a změřte závislost fp odporu snímače na jeho úhlové výchylce $\alpha_{\rm v}$ rozsahu α = 0 až 180° po 15° (klidové poloze snímače $\alpha_{\rm =}$ 90° odpovídá hodnota odporu R_0 , tj. ΔR = 0).
 - b) Odporový snímač zapojte do Wheatstoneova můstku napájeného ze zdroje napětí U_{AC} = 5 V (obr. 2). Můstek vyvažte odporovou dekádou R_D pro hodnotu α = 90° a změřte závislost f_{MN} výstupního napětí U_{BD} na změně úhlu α , tj. na změně odporu ΔR (pro stejné hodnoty α jako v bodě 1). Odvod'te teoretický vztah pro toto napětí, tj.

$$U_{BD} = f_{MN}(\Delta R) = \frac{U_{AC}}{4} \frac{\frac{\Delta R}{R_0}}{1 + \frac{\Delta R}{2R_0}} \tag{1}$$

2. Odporový snímač zapojte do Wheatstoneova můstku napájeného ze zdroje proudu I=2,5 mA. Zdroj proudu realizujte pomocí operačního zesilovače (obr. 3). Můstek opět vyvažte odporovou dekádou $R_{\rm D}$ pro hodnotu $\alpha=90^{\circ}$ a změřte závislost fMP výstupního napětí $U_{\rm BD}$ na změně úhlu α , tj. na změně odporu Δ R (pro stejné hodnoty α jako v bodě 1). Odvod'te teoretický vztah pro toto napětí, tj.

$$U_{BD} = f_{MN}(\Delta R) = \frac{I}{4} \frac{\Delta R}{1 + \frac{\Delta R}{4R_0}}$$
 (2)

3. Podle schématu na obr. 4 zapojte tzv. "linearizovaný můstek" (velikost napájecího napětí volte U_Z = 2,5 V). Můstek vyvažte odporovou dekádou RD pro hodnotu α = 90° a změřte závislost U₂ = f_{LM} výstupního napětí U₂ na změně úhlu α, tj. na změně odporu ΔR (pro stejné hodnoty úhlu αjako v předešlých bodech). Odvoď te teoretický vztah pro toto napětí, tj.

$$U_2 = f_{LM}(\Delta R) = -\frac{\Delta R}{2R_0} U_Z \tag{3}$$

4. Do společného grafu vyneste odchylky hodnot naměřených dle bodů 2, 3 a 4 od lineárního průběhu. Směrnici přímky, od které budete určovat odchylky od linearity, stanovte z koncových bodů naměřené závislosti f_{LM}(ΔR) (tedy pro α = 0 a α = 180°). Pokud se absolutní hodnoty napětí v koncových bodech liší, nahraď te je aritmetickým průměrem těchto absolutních hodnot (spojnice U'₂ = f'_{LM}(ΔR) takto upravených koncových bodů prochází počátkem souřadnic [ΔR, U₂]). Odchylky závislostí f_{MN}(ΔR), f_{MP}(ΔR) a f_{LM}(ΔR) od linearity určete jako odchylky těchto závislostí od přímky U'₂ = f'_{LM}(ΔR). To lze udělat proto, že pro měření dle bodů 2, 3 a 4 jsou v zadáních zvoleny hodnoty napájecích napětí (resp. proudu) tak, aby směrnice všech závislostí v počátku byly zhruba stejné.

Jakub Dvořák 1

2 Schéma zapojení

Obrázek 1: Schéma zapojení pro převodník $R \rightarrow U$

- 3 Seznam použitých přístrojů
- 4 Teoretický úvod
- 5 Naměřené hodnoty
- 6 Zpracování naměřených hodnot
- 7 Závěrečné vyhodnocení

Jakub Dvořák 2

Seznam použité literatury a zdrojů informací

Seznam použitých internetových zdrojů

[1] Návod k laboratorní úloze

Jakub Dvořák 3