Inexact Tensor Methods with Dynamic Accuracies

Nikita Doikov Yurii Nesterov

UCLouvain, Belgium

ICML 2020

- 1. Introduction: Tensor Methods in Convex Optimization
- 2. Inexact Tensor Methods
- 3. Acceleration
- 4. Numerical Example

- 1. Introduction: Tensor Methods in Convex Optimization
- 2. Inexact Tensor Methods
- 3. Acceleration
- 4. Numerical Example

Gradient Method

Composite optimization problem

$$\min_{x \in \text{dom } F} F(x) := f(x) + \psi(x),$$

- f is convex and smooth;
- $\psi: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is convex (possibly nonsmooth, but *simple*).

The Gradient Method:

$$x_{k+1} = \underset{y}{\operatorname{argmin}} \Big\{ \langle \nabla f(x_k), y - x_k \rangle + \frac{H}{2} ||y - x_k||^2 + \psi(y) \Big\}, \ k \ge 0.$$

► Gradient of *f* is Lipschitz continuous:

$$\|\nabla f(y) - \nabla f(x)\| \le L_1 \|y - x\| \Rightarrow H := L_1$$

▶ Global sublinear convergence: $F(x_k) - F^* \leq O(1/k)$.

Newton Method with Cubic Regularization

► Hessian of *f* is Lipschitz continuous:

$$\|\nabla^2 f(y) - \nabla^2 f(x)\| \le L_2 \|y - x\|.$$

Cubic Newton:

$$x_{k+1} = \underset{y}{\operatorname{argmin}} \Big\{ \langle \nabla f(x_k), y - x_k \rangle + \frac{1}{2} \langle \nabla^2 f(x_k) (y - x_k), y - x_k \rangle + \frac{H}{6} \|y - x_k\|^3 + \psi(y) \Big\}, \quad k \ge 0.$$

- $ightharpoonup H := 0 \Rightarrow Classical Newton.$
- ▶ $H := L_2$ \Rightarrow Global convergence: $F(x_k) F^* \leq O(1/k^2)$.

[Nesterov-Polyak, 2006]

Tensor Methods

Let $x \in \mathbb{R}^n$ be fixed, consider arbitrary $h \in \mathbb{R}^n$ and one-dimensional

$$\phi(t) := f(x+th), \quad t \in \mathbb{R}.$$

Then $\phi(0) = f(x)$, $\phi'(0) = \langle \nabla f(x), h \rangle$, $\phi''(0) = \langle \nabla^2 f(x)h, h \rangle$. Denote:

$$D^p f(x)[h]^p := \phi^{(p)}(0).$$

The model:

$$\Omega_H(x;y) := \sum_{k=1}^p \frac{1}{k!} D^k f(x) [y-x]^k + \frac{H}{(p+1)!} ||y-x||^{p+1} + \psi(y).$$

Tensor Method of order $p \ge 1$:

$$x_{k+1} = \underset{y}{\operatorname{argmin}} \Omega_H(x_k; y), \quad k \geq 0.$$

p-th derivative is Lipschitz continuous:

$$||D^p f(y) - D^p f(x)|| \le L_p ||y - x||.$$

▶ Global convergence: $F(x_k) - F^* \le O(1/k^p)$. [Baes, 2009]

Tensor Methods: Solving the Subproblem

At each iteration $k \ge 0$, the subproblem is

$$\min_{y} \Omega_{H}(x_{k}; y) := \sum_{k=1}^{p} \frac{1}{k!} D^{k} f(x) [y - x]^{k} + \frac{H}{(p+1)!} ||y - x||^{p+1} + \psi(y).$$

- ► $H \ge pL_p$ \Rightarrow $\Omega_H(x_k; y)$ is **convex** in y. [Nesterov, 2018]
- ► For *p* = 3: efficient implementation, using Gradient Method with <u>relative smoothness</u> condition [Van Nguyen, 2017; Bauschke-Bolte-Teboulle, 2016; Lu-Freund-Nesterov, 2018].

The cost of minimizing $\Omega_H(x_k;\cdot)$ is: $O(n^3) + \tilde{O}(n)$.

Some Recent Results

- ▶ Accelerated Tensor Methods: $F(x_k) F^* \le O(1/k^{p+1})$ [Baes, 2009; Nesterov, 2018].
- ▶ **Optimal** Tensor Methods: $F(x_k) F^* \le O(1/k^{\frac{3p+1}{2}})$ [Gasnikov et al., 2019; Kamzolov-Gasnikov-Dvurechensky, 2020]. The oracle complexity matches the lower bound (up to logarithmic factor) from [Arjevani-Shamir-Shiff, 2017].
- ▶ Universal Tensor Methods: [Grapiglia-Nesterov, 2019].
- ▶ Stochastic Tensor Methods: [Lucchi-Kohler, 2019].
- **.**..

- 1. Introduction: Tensor Methods in Convex Optimization
- 2. Inexact Tensor Methods
- 3. Acceleration
- 4. Numerical Example

Definition of Inexactness

Use a point $T = T_{H,\delta}(x_k)$ with small residual in function value:

$$\Omega_H(x_k; T) - \min_{y} \Omega_H(x_k; y) \leq \delta.$$

- Easier to achieve by inner method.
- Can be controlled in practice using the duality gap.

Set $H := pL_p$. We have

$$F(T) \leq F(x_k) + \delta.$$

Inexact step can be nonmonotone.

Monotone Inexact Tensor Methods

Initialization: choose $x_0 \in \text{dom } F$, set $H := pL_p$.

Iterations: k > 0.

- 1: Pick up $\delta_{k+1} \geq 0$.
- 2: Compute inexact monotone tensor step T, such that

$$\Omega_H(x_k; T) - \min_{y} \Omega_H(x_k; y) \le \delta_{k+1},$$

and $F(T) < F(x_k).$

 $F(x_k) - F^* \leq O(\frac{1}{kp}).$

3: $x^{k+1} := T$.

Theorem 1. Set
$$\delta_k := \frac{c}{k^{p+1}}$$
, for $c \ge 0$. Then

Adaptive Strategy for Inner Accuracy

Let us set
$$\delta_k := c(F(x_{k-2}) - F(x_{k-1})).$$

Theorem 2. (General convex case)

$$F(x_k) - F^* \leq O(\frac{1}{k^p}).$$

Theorem 3. (Uniformly convex objective) Let

$$F(y) \geq F(x) + \langle F'(x), y - x \rangle + \frac{\sigma_{p+1}}{p+1} ||y - x||^{p+1}.$$

Denote $\omega_p := \max\{\frac{(p+1)^2 L_p}{p! \sigma_{p+1}}, 1\}$. Then we have <u>linear rate</u>

$$F(x_{k+1}) - F^* \le \left(1 - \frac{p\omega_p^{-1/p}}{2(p+1)}\right) (F(x_k) - F^*).$$

▶ This works for methods, starting from $p \ge 1$.

Theorem 4. For $p \ge 2$ and strongly convex objective, we have local superlinear rate.

- 1. Introduction: Tensor Methods in Convex Optimization
- 2. Inexact Tensor Methods
- 3. Acceleration
- 4. Numerical Example

Contracting Proximal Scheme

Fix prox-function d(x).

Bregman divergence: $\beta_d(x; y) := d(y) - d(x) - \langle \nabla d(x), y - x \rangle$.

- ▶ Two sequences of points $\{x_k\}_{k\geq 0}$, $\{v_k\}_{k\geq 0}$, $v_0=x_0$.
- ▶ Sequence of positive coefficients $\{a_k\}_{k\geq 0}$, $A_k \stackrel{\text{def}}{=} \sum_{i=1}^k a_i$.

Iterations, $k \ge 0$:

1. Compute

$$v_{k+1} = \underset{y}{\operatorname{argmin}} \Big\{ A_{k+1} f\big(\tfrac{a_{k+1}y + A_k x_k}{A_{k+1}} \big) + a_{k+1} \psi(y) + \beta_d(v_k;y) \Big\}.$$

2. Put $x_{k+1} = \frac{a_{k+1}v_{k+1} + A_kx_k}{A_{k+1}}$.

The rate of convergence: $F(x_k) - F^* \leq \frac{\beta_d(x_0; x^*)}{A_{\nu}}$.

[Doikov-Nesterov, 2019]

Acceleration of Tensor Steps

For Tensor Method of order $p \ge 1$:

- ► Set $d(x) := \frac{1}{p+1} ||x x_0||^{p+1}$.
- $A_{k+1} := \frac{(k+1)^{p+1}}{L_p}.$

For contracted objective with regularization

$$h_{k+1}(y) := A_{k+1}f(\frac{a_{k+1}y+A_kx_k}{A_{k+1}}) + a_{k+1}\psi(y) + \beta_d(v_k;y),$$

we compute inexact minimizer v_{k+1} :

$$h_{k+1}(v_{k+1}) - h_{k+1}^* \le \frac{c}{(k+1)^{p+2}}.$$

lt requires $\tilde{O}(1)$ inexact Tensor Steps.

Theorem. For outer iterations, we obtain <u>accelerated rate</u>:

$$F(x_k) - F^* \le O(\frac{1}{k^{p+1}}).$$

- 1. Introduction: Tensor Methods in Convex Optimization
- 2. Inexact Tensor Methods
- 3. Acceleration
- 4. Numerical Example

Log-sum-exp

$$\min_{x \in \mathbb{R}^n} f(x) := \mu \log \left(\sum_{i=1}^m \exp \left(\frac{\langle a_i, x \rangle - b_i}{\mu} \right) \right)$$
 (SoftMax).

- $ightharpoonup a_1, \ldots, a_m, b$ given data.
- $ightharpoonup \mu > 0$ smoothing parameter.
- ▶ Denote $B \equiv \sum_{i=1}^{m} a_i a_i^T \succeq 0$, and use $||x|| \equiv \langle Bx, x \rangle^{1/2}$.

We have

$$L_1 \leq \frac{1}{\mu}, \quad L_2 \leq \frac{2}{\mu^2}, \quad L_3 \leq \frac{4}{\mu^3}.$$

- ▶ Cubic Newton (p = 2).
- Compute each step (inexactly) by Fast Gradient Method.

Log-sum-exp: Constant strategies

 $ightharpoonup \delta_{k} := \text{const.}$

Log-sum-exp, $\mu = 0.05$: constant strategies

Log-sum-exp: Dynamic strategies

 $\delta_k := 1/k^{\alpha}$.

Log-sum-exp, $\mu = 0.05$: dynamic strategies

Log-sum-exp: Adaptive strategies

Log-sum-exp, $\mu = 0.05$: adaptive strategies

Log-sum-exp: Cubic Newton vs. Tensor Method

► *H* is fixed.

Conclusion

Inexact Tensor Methods of degree $p \ge 1$:

- p = 1: Gradient Method.
- p = 2: Newton method with Cubic regularization.
- p = 3: Third order Tensor method.

We admit to solve the subproblem inexactly, δ_k — accuracy in functional residual for the subproblem.

- **Dynamic strategy** $\delta_k := \frac{c}{k^{p+1}}$.
- Adaptive strategy $\delta_k := c(F(x_k) F(x_{k-1})).$

Global rate of convergence: $F(x_k) - F^* \leq O(\frac{1}{k^p})$.

▶ Using contracting proximal iterations we obtain accelerated $O(\frac{1}{k^{p+1}})$ rate.

Thank you for your attention!