

SEQUENCE LISTING

<110> Haruo HANAWA

<120> VECTOR FOR GENE THERAPY AND METHOD OF QUANTIFYING TARGET PROTEIN IN MAMMAL OR CULTURED CELLS WITH THE ADMINISTRATION OF THE VECTOR FOR GENE THERAPY

<130> 0760-0347PUS1

<140> US 10/541,626

<141> 2005-07-07

<150> PCT/JP2003/016956

<151> 2003-12-26

<150> JP 2003-3967

<151> 2003-01-10

<160> 24

<210> 1

<211> 11

<212> PRT

<213> Artificial Sequence

<220>

<223> oligopeptide encoding C19-29 region of glucagon of human, mouse or rat

<400> 1

Ala Gln Asp Phe Val Gln Trp Leu Met Asn Thr

1

5

10

<210> 2

<211> 1471

<212> DNA

<213> Artificial Sequence

<220>

<223> DNA insert encoding rat IFN-r receptor, rat IgG Fc region and glucagon C19-29 region

<220>

<221> CDS

<222> (13)..(1461)

<223> DNA insert encoding rat IFN-r receptor, rat IgG Fc region and glucagon C19-29 region

<400> 2

gaatttcattt aa atg att ctg ctg gtg gtc ctg atg ctg tct gcg gag atc
Met Ile Leu Leu Val Val Leu Met Leu Ser Ala Glu Ile

1

5

10

ggg agt gga gct ttg atg agc acc gag gat cct aag ccg ccc tcg gtg 99

Gly Ser Gly Ala Leu Met Ser Thr Glu Asp Pro Lys Pro Pro Ser Val			
15	20	25	
cct gcg cca aca aat gtt cta att acg tcc tat gac ttg aac cct gtc			147
Pro Ala Pro Thr Asn Val Leu Ile Thr Ser Tyr Asp Leu Asn Pro Val			
30	35	40	45
gta cat tgg aag cac cag aac gtg tcg cag gct gcc gtc ttc act gta			195
Val His Trp Lys His Gln Asn Val Ser Gln Ala Ala Val Phe Thr Val			
50	55	60	
cag gta aag atg tat cca gaa tac tgg act gat gcc tgc acc aac att			243
Gln Val Lys Met Tyr Pro Glu Tyr Trp Thr Asp Ala Cys Thr Asn Ile			
65	70	75	
gcc cat cat tat tgt aat atc tac aaa cac att tcc tat cct gac tca			291
Ala His His Tyr Cys Asn Ile Tyr Lys His Ile Ser Tyr Pro Asp Ser			
80	85	90	
tct gcc tgg gcc aga gtt aag gcc aag gtt gga caa aga gaa tct gcc			339
Ser Ala Trp Ala Arg Val Lys Ala Lys Val Gly Gln Arg Glu Ser Ala			
95	100	105	
tat gcg cag tca gaa gag ttt att atg tgc cga aag ggg aag gtt gga			387
Tyr Ala Gln Ser Glu Glu Phe Ile Met Cys Arg Lys Gly Lys Val Gly			
110	115	120	125
ccg cct ggc ctg gac atc gga agg aag gaa gat cag ctg att gtc cac			435
Pro Pro Gly Leu Asp Ile Gly Arg Lys Glu Asp Gln Leu Ile Val His			
130	135	140	
ata ttt cac cct aag gtc aat gtg agt cag gaa acc atg ttt ggt gac			483
Ile Phe His Pro Lys Val Asn Val Ser Gln Glu Thr Met Phe Gly Asp			
145	150	155	
gga aat acc tgt tac aca ttc gac tac act gtg ttt gtg aaa cat tac			531
Gly Asn Thr Cys Tyr Thr Phe Asp Tyr Thr Val Phe Val Lys His Tyr			
160	165	170	
agg agt ggg gag atc cta cat aca gaa cat agc gtc cta aaa gaa gat			579
Arg Ser Gly Glu Ile Leu His Thr Glu His Ser Val Leu Lys Glu Asp			
175	180	185	
tgt agc gaa act ctg tgt gag tta aac atc tca gtg tcc acg ctg aat			627
Cys Ser Glu Thr Leu Cys Glu Leu Asn Ile Ser Val Ser Thr Leu Asn			
190	195	200	205
tcc aat tac tgt gtt tca gta gtt gga aag tcg tct ttc tgg caa gtt			675
Ser Asn Tyr Cys Val Ser Val Val Gly Lys Ser Ser Phe Trp Gln Val			
210	215	220	
aat aca gaa aca tca aaa gac gcc tgt atc ccc ttt ctc cat gat gac			723
Asn Thr Glu Thr Ser Lys Asp Ala Cys Ile Pro Phe Leu His Asp Asp			
225	230	235	
aga gaa gaa gcg gcc gcc gtg ccc aga aac tgt gga ggt gat tgc aag			771
Arg Glu Glu Ala Ala Val Pro Arg Asn Cys Gly Gly Asp Cys Lys			

240	245	250	
cct tgt ata tgt aca ggc tca gaa gta tca tct gtc ttc atc ttc ccc Pro Cys Ile Cys Thr Gly Ser Glu Val Ser Ser Val Phe Ile Phe Pro			819
255	260	265	
cca aag ccc aaa gat gtg ctc acc atc act ctg act cct aag gtc acg Pro Lys Pro Lys Asp Val Leu Thr Ile Thr Leu Thr Pro Lys Val Thr			867
270	275	280	285
tgt gtt gtg gta gac att agc cag gac gat ccc gag gtc cat ttc agc Cys Val Val Val Asp Ile Ser Gln Asp Asp Pro Glu Val His Phe Ser			915
290	295	300	
tgg ttt gta gat gac gtg gaa gtc cac aca gct cag act cga cca cca Trp Phe Val Asp Asp Val Glu Val His Thr Ala Gln Thr Arg Pro Pro			963
305	310	315	
gag gag cag ttc aac agc act ttc cgc tca gtc agt gaa ctc ccc atc Glu Glu Gln Phe Asn Ser Thr Phe Arg Ser Val Ser Glu Leu Pro Ile			1011
320	325	330	
ctg cac cag gac tgg ctc aat ggc agg acg ttc aga tgc aag gtc acc Leu His Gln Asp Trp Leu Asn Gly Arg Thr Phe Arg Cys Lys Val Thr			1059
335	340	345	
agt gca gct ttc cca tcc ccc atc gag aaa acc atc tcc aaa ccc gaa Ser Ala Ala Phe Pro Ser Pro Ile Glu Lys Thr Ile Ser Lys Pro Glu			1107
350	355	360	365
ggc aga aca caa gtt ccg cat gta tac acc atg tca cct acc aag gaa Gly Arg Thr Gln Val Pro His Val Tyr Thr Met Ser Pro Thr Lys Glu			1155
370	375	380	
gag atg acc cag aat gaa gtc agt atc acc tgc atg gta aaa ggc ttc Glu Met Thr Gln Asn Glu Val Ser Ile Thr Cys Met Val Lys Gly Phe			1203
385	390	395	
tat ccc cca gac att tat gtg gag tgg cag atg aac ggg cag cca cag Tyr Pro Pro Asp Ile Tyr Val Glu Trp Gln Met Asn Gly Gln Pro Gln			1251
400	405	410	
gaa aac tac aag aac act cca cct acg atg gac aca gat ggg agt tac Glu Asn Tyr Lys Asn Thr Pro Pro Thr Met Asp Thr Asp Gly Ser Tyr			1299
415	420	425	
ttc ctc tac agc aag ctc aat gtg aag aag gaa aaa tgg cag cag gga Phe Leu Tyr Ser Lys Leu Asn Val Lys Glu Lys Trp Gln Gln Gly			1347
430	435	440	445
aac acg ttc acg tgt tct gtg ctg cat gaa ggc ctg cac aac cac cat Asn Thr Phe Thr Cys Ser Val Leu His Glu Gly Leu His Asn His His			1395
450	455	460	
act gag aag agt ctc tcc cac tct ccg ggt aaa gcc caa gat ttt gtg Thr Glu Lys Ser Leu Ser His Ser Pro Gly Lys Ala Gln Asp Phe Val			1443
465	470	475	

cag tgg ttg atg aat acc tgagaattct 1471
Gln Trp Leu Met Asn Thr
480

<210> 3
<211> 4790
<212> DNA
<213> Artificial Sequence

<220>
<223> DNA sequence of artificial expression vector pCAGGS

<400> 3	
gtcgacattt attattgact agttattaaat agtaatcaat tacgggtca tttagttcata	60
gcccatatat ggagttccgc gttacataac ttacgtaaa tggccgcct ggctgaccgc	120
ccaaacgaccc ccgccccattt acgtcaataaa tgacgtatgt tcccatagta acgccaatag	180
ggactttcca ttgacgtcaa tgggtggact atttacggta aactgcccac ttggcagtac	240
atcaagtgtta tcataatgcca agtacgcccc ctattgacgt caatgacggt aaatggcccg	300
cctggcatta tgcccagttac atgaccttat gggactttcc tacttggcag tacatctacg	360
tattagtcat cgcttattacc atgggtcgag gtgagcccc cgttctgctt cactctcccc	420
atctcccccc cctccccacc cccaattttt tatttattta ttttttaatt attttgtca	480
gcgatgggggg cgggggggggg gggggcgccgc gccaggcggg gcggggcggg gcgagggcg	540
ggcgccggcg aggccggagag gtgcggcgcc agccaatcag agcggcgccgc tccgaaagtt	600
tcctttatg gcgaggcgcc ggcggcgccgc gccctataaa aagcgaagcg cgccggcgcc	660
gggagtcgct gcgttgccctt cgccccgtgc cccgctccgc gccgcctcgc gccggccgc	720
ccggctctga ctgaccgcgt tactcccaca ggtgagcggg cgggacggcc cttctccctcc	780
gggctgtaat tagcgcttgg ttaatgacg gctcggttct tttctgtggc tgcgtgaaag	840
ccttaaaggc ctccgggagg gccctttgtg cgggggggag cggctcgaaa ggtgcgtgcg	900
tgtgtgtgtc cgtggggagc gccgcgtgcg gcccgcgctg cccggcggtc gtgagcgctg	960
cggcgccggc gcggggctt gtgcgtccg cgtgtgcgcg aggggagcgc ggcgggggc	1020
ggtgccccgc ggtgcggggg ggctgcgagg ggaacaaagg ctgcgtgcgg ggtgtgtgc	1080
tgggggggtg agcaggggggt gtgggcgcgg cggtcggct gtaacccccc cctgcacccc	1140
cctccccgag ttgctgagca cggcccggtc tcgggtgcgg ggctccgtgc gggcggtggc	1200
cgccggcgcc cggtgcggg cgggggggtgg cggcaggtgg ggtgcgggg cggggcgccgg	1260

ccgcctcggg ccggggaggg ctcggggag gggcgccgcg gccccggagc gccggcggct	1320
gtcgaggcgc ggcgagccgc agccattgcc ttttatggta atcgtgcgag agggcgcagg	1380
gacttcctt gtcccaaatac tgccggagcc gaaatctggg aggccgcgc gcacccctc	1440
tagccggcgc gggcgaagcg gtgcggcgcc ggcaggaagg aaatggcgg ggagggcctt	1500
cgtgcgtcgc cgccgcgcg tcccctctc catctccagc ctccgggctg ccgcaggggg	1560
acggtgcct tcggggggga cggggcaggg cggggttcgg cttctggcgt gtgaccggcg	1620
gctctagagc ctctgctaaccatgttcatg ctttcttctt ttccctacag ctccctggca	1680
acgtgctggcgtt ttttgtgtctg ttcatttcatt ttggcaaaga attcctcgag gaattcactc	1740
ctcagggtgca ggctgcctat cagaagggtgg tggctgggtgt ggccaatgcc ctggctcaca	1800
aataccactg agatctttt ccctctgcca aaaattatgg ggacatcatg aagcccttg	1860
agcatctgac ttctggctaa taaaggaaat ttatttcat tgcaatagtg ttttggatt	1920
tttgtgtct ctcactcgga aggacatatg ggagggcaaa tcatttaaaa catcagaatg	1980
agtatttggt ttagagtttgc gcaacatatg ccatatgctg gctgccatga acaaagggtgg	2040
ctataaagag gtcatcagta tatgaaacag cccctgctg tccattcctt attccataga	2100
aaagccttga cttgaggta gatttttttt atattttgtt ttgtgttatt tttttctta	2160
acatccctaa aattttcctt acatgtttta ctggccatgtt tttccctcct ctcctgacta	2220
ctcccaatca tagctgtccc ttttctctta tggccatgtt tcggccatgtt gccaagctt	2280
ggcgtaatca tggcatagc ttttccctgt gtggaaattgt tatccgtca caattccaca	2340
caacatacga gccggaagca taaagtgtaa agcctgggt gcctaatgag tgagctaaact	2400
cacattaatt gcgttgcgtt cactgcccgc tttccagtcg ggaaacctgt cgtgccagcg	2460
gatccgcattc tcaatttagtc agcaaccata gtcccgcccc taactccgcc catccgccc	2520
ctaactccgc ccagttccgc ccattctccg ccccatggct gactaatttt ttttatttt	2580
gcagaggccg aggccgcctc ggctctgag ctattccaga agtagtgagg aggcttttt	2640
ggaggccctag gcttttgc当地 aaagctaaact tttttattgc agcttataat gtttacaaat	2700
aaagcaatag catcacaat ttcacaataa aagcattttt ttcactgcat tcttagttgt	2760
gtttgtccaa actcatcaat gtttattttt atgtctggat ccgtgcatt aatgaatcgg	2820
ccaaacgcgcg gggagaggcg gtttgcgtat tggccgtct tccgcttcct cgctcactga	2880
ctcgctgcgc tcgggtcggtt ggctgcggcg agcggtatca gctcactcaa aggccgtat	2940
acggttatcc acagaatcag gggataacgc agaaagaac atgtgagcaa aaggccagca	3000

aaaggccagg aaccgtaaaa aggccgcgtt gctggcggtt ttccataggc tccgcccccc 3060
tgacgagcat cacaaaaatc gacgctcaag tcagaggtgg cgaaaccgcga caggactata 3120
aagataccag gcgtttcccc ctggaagctc cctcgtgcgc tctccctgttc cgaccctgcc 3180
gcttaccgga tacctgtccg cctttctccc ttcgggaagc gtggcgctt ctcaatgctc 3240
acgctgttagg tatctcagtt cggtgttagt cgttcgctcc aagctggct gtgtgcacga 3300
accccccgtt cagcccgacc gctgcgcctt atccggtaac tattgtcttg agtccaaccc 3360
ggtaagacac gacttatcgc cactggcagc agccactggt aacaggatta gcagagc gag 3420
gtatgttaggc ggtgctacag agttcttcaa gtggtggcct aactacggct acactagaag 3480
gacagtattt ggtatctgcg ctctgctgaa gccagttacc ttccggaaaaa gagttggtag 3540
ctcttgatcc ggcaaacaaa ccaccgctgg tagcgggttgt tttttgttt gcaaggcagca 3600
gattacgcgc agaaaaaaaaag gatctcaaga agatccttg atctttctta cggggtctga 3660
cgctcagtgaa acggaaaact cacgttaagg gattttggc atgagattat caaaaaggat 3720
cttcacccatg atcctttaa attaaaaatg aagtttaaa tcaatctaaa gtatatatga 3780
gtaaacctgg tctgacagtt accaatgctt aatcagttag gcacccatct cagcgatctg 3840
tctatttcgt tcatccatag ttgcctgact ccccgctgt tagataacta cgatacggga 3900
gggcttacca tctggcccca gtgctgcaat gataccgcga gaccacgct caccggctcc 3960
agatttatca gcaataaaacc agccagccgg aaggggccgag cgccagaagtg gtcctgcaac 4020
tttatccgcc tccatccagt ctattaattt tgccggaa gctagagtaa gtagttcgcc 4080
agttaatagt ttgcgcacg ttgttgcct tgctacaggc atcgtggtgt cacgctcgcc 4140
gtttggatg gcttcattca gctccggttc ccaacgatca aggcgagttt catgatcccc 4200
catgttgtgc aaaaaagcgg ttagctcctt cggtcctcg atcgttgtca gaagtaagtt 4260
ggccgcagtg ttatcactca tggttatggc agcactgcat aattctctta ctgtcatgcc 4320
atccgttaaga tgctttctg tgactgggtga gtactcaacc aagtcttctt gagaatagtg 4380
tatgcggcga ccgagttgct cttgcccggc gtcaatacgg gataataccg cgccacatag 4440
cagaacttta aaagtgcgtca tcattggaaa acgttctcg gggcgaaaaac tctcaaggat 4500
cttaccgctg ttgagatcca gttcgatgtt acccactcgat gcacccaaact gatcttcagc 4560
atctttactttt ttcaccagcg tttctgggtg agcaaaaaca ggaaggcaaa atgcccggaaa 4620
aaagggaata agggcgacac ggaaatgttg aataactcata ctcttcctt ttcaatatta 4680

ttgaaggatt tatcagggtt attgtctcat gagcgatac atatttgaat gtatttagaa 4740
 aaataaacaa ataggggttc cgcgacatt tccccaaaa gtcgcacactg 4790

<210> 4
 <211> 1233
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> DNA insert encoding rat CTLA4, rat IgG Fc region and glucagon C19-29
 region

<220>
 <221> CDS
 <222> (13)..(1224)
 <223> DNA insert encoding rat CTLA4, rat IgG Fc region and glucagon C19-29
 region

<400> 4
 gaattcattt aa atg gct tgt ctt gga ctc cag agg tac aaa act cac ctg 51
 Met Ala Cys Leu Gly Leu Gln Arg Tyr Lys Thr His Leu
 1 5 10

cag ctg cct tct agg act tgg cct ttt gga gtc ctg ctt tct ctt ctc 99
 Gln Leu Pro Ser Arg Thr Trp Pro Phe Gly Val Leu Leu Ser Leu Leu
 15 20 25

ttc atc cca atc ttc tct gaa gcc ata caa gtg acc caa cct tca gtg 147
 Phe Ile Pro Ile Phe Ser Glu Ala Ile Gln Val Thr Gln Pro Ser Val
 30 35 40 45

gtg ttg gcc agc agc cac ggt gtc gcc agc ttt cca tgt gaa tat gca 195
 Val Leu Ala Ser Ser His Gly Val Ala Ser Phe Pro Cys Glu Tyr Ala
 50 55 60

tct tca cac aac act gat gag gtc cgg gtg acg gtg ctg cgg cag aca 243
 Ser Ser His Asn Thr Asp Glu Val Arg Val Thr Val Leu Arg Gln Thr
 65 70 75

aat gac caa gtg aca gag gtc tgt gcc acg aca ttc aca gtg aag aac 291
 Asn Asp Gln Val Thr Glu Val Cys Ala Thr Thr Phe Thr Val Lys Asn
 80 85 90

acg ttg ggc ttc cta gat gac ccc ttc tgc agt ggt acc ttt aat gaa 339
 Thr Leu Gly Phe Leu Asp Asp Pro Phe Cys Ser Gly Thr Phe Asn Glu
 95 100 105

agc aga gtg aac ctc acc atc caa gga ctg agg gct gct gac acc gga 387
 Ser Arg Val Asn Leu Thr Ile Gln Gly Leu Arg Ala Ala Asp Thr Gly
 110 115 120 125

ctg tac ttc tgc aag gtg gaa ctc atg tac cca ccg cca tac ttt gtg 435
 Leu Tyr Phe Cys Lys Val Glu Leu Met Tyr Pro Pro Pro Tyr Phe Val
 130 135 140

ggc atg ggc aac ggg acc cag att tat gtc atc gat cca gaa cca tgc Gly Met Gly Asn Gly Thr Gln Ile Tyr Val Ile Asp Pro Glu Pro Cys 145 150 155	483
cca gat tca gac gcg gcc gcc gtg ccc aga aac tgt gga ggt gat tgc Pro Asp Ser Asp Ala Ala Val Pro Arg Asn Cys Gly Gly Asp Cys 160 165 170	531
aag cct tgt ata tgt aca ggc tca gaa gta tca tct gtc ttc atc ttc Lys Pro Cys Ile Cys Thr Gly Ser Glu Val Ser Ser Val Phe Ile Phe 175 180 185	579
ccc cca aag ccc aaa gat gtg ctc acc atc act ctg act cct aag gtc Pro Pro Lys Pro Lys Asp Val Leu Thr Ile Thr Leu Thr Pro Lys Val 190 195 200 205	627
acg tgt gtt gtg gta gac att agc cag gac gat ccc gag gtc cat ttc Thr Cys Val Val Asp Ile Ser Gln Asp Asp Pro Glu Val His Phe 210 215 220	675
agc tgg ttt gta gat gac gtg gaa gtc cac aca gct cag act cga cca Ser Trp Phe Val Asp Asp Val Glu Val His Thr Ala Gln Thr Arg Pro 225 230 235	723
cca gag gag cag ttc aac agc act ttc cgc tca gtc agt gaa ctc ccc Pro Glu Glu Gln Phe Asn Ser Thr Phe Arg Ser Val Ser Glu Leu Pro 240 245 250	771
atc ctg cac cag gac tgg ctc aat ggc agg acg ttc aga tgc aag gtc Ile Leu His Gln Asp Trp Leu Asn Gly Arg Thr Phe Arg Cys Lys Val 255 260 265	819
acc agt gca gct ttc cca tcc ccc atc gag aaa acc atc tcc aaa ccc Thr Ser Ala Ala Phe Pro Ser Pro Ile Glu Lys Thr Ile Ser Lys Pro 270 275 280 285	867
gaa ggc aga aca caa gtt ccg cat gta tac acc atg tca cct acc aag Glu Gly Arg Thr Gln Val Pro His Val Tyr Thr Met Ser Pro Thr Lys 290 295 300	915
gaa gag atg acc cag aat gaa gtc agt atc acc tgc atg gta aaa ggc Glu Glu Met Thr Gln Asn Glu Val Ser Ile Thr Cys Met Val Lys Gly 305 310 315	963
ttc tat ccc cca gac att tat gtg gag tgg cag atg aac ggg cag cca Phe Tyr Pro Pro Asp Ile Tyr Val Glu Trp Gln Met Asn Gly Gln Pro 320 325 330	1011
cag gaa aac tac aag aac act cca cct acg atg gac aca gat ggg agt Gln Glu Asn Tyr Lys Asn Thr Pro Pro Thr Met Asp Thr Asp Gly Ser 335 340 345	1059
tac ttc ctc tac agc aag ctc aat gtg aag aag gaa aaa tgg cag cag Tyr Phe Leu Tyr Ser Lys Leu Asn Val Lys Lys Glu Lys Trp Gln Gln 350 355 360 365	1107
gga aac acg ttc acg tgt tct gtg ctg cat gaa ggc ctg cac aac cac	1155

Gly Asn Thr Phe Thr Cys Ser Val Leu His Glu Gly Leu His Asn His		
370	375	380
cat act gag aag agt ctc tcc cac tct ccg ggt aaa gcc caa gat ttt		1203
His Thr Glu Lys Ser Leu Ser His Ser Pro Gly Lys Ala Gln Asp Phe		
385	390	395
gtg cag tgg ttg atg aat acc tgagaattc		1233
Val Gln Trp Leu Met Asn Thr		
400		
<210> 5		
<211> 1143		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> DNA insert encoding rat IL13, rat IgG Fc region and glucagon C19-29		
region		
<220>		
<221> CDS		
<222> (13)..(1134)		
<223> DNA insert encoding rat IL13, rat IgG Fc region and glucagon C19-29		
region		
<400> 5		
gaattcattt aa atg gca ctc tgg gtg act gca gtc ctg gct ctc gct tgc		51
Met Ala Leu Trp Val Thr Ala Val Leu Ala Leu Ala Cys		
1 5 10		
ctt ggt ggt ctt gcc acc cca ggg cca gtg cggtt ccc		99
Leu Gly Gly Leu Ala Thr Pro Gly Pro Val Arg Arg Ser Thr Ser Pro		
15 20 25		
cct gtg gcc ctc agg gag ctt atc gag gag ctg agc aac atc aca caa		147
Pro Val Ala Leu Arg Glu Leu Ile Glu Glu Leu Ser Asn Ile Thr Gln		
30 35 40 45		
gac cag aag act tcc ctg tgc aac agc agc atg gta tgg agc gtg gac		195
Asp Gln Lys Thr Ser Leu Cys Asn Ser Ser Met Val Trp Ser Val Asp		
50 55 60		
ctg aca gct ggc ggg ttc tgt gca gcc ctg gaa tcc ctg acc aac atc		243
Leu Thr Ala Gly Gly Phe Cys Ala Ala Leu Glu Ser Leu Thr Asn Ile		
65 70 75		
tcc agt tgc aat gcc atc cac agg acc cag agg ata ttg aat ggc ctc		291
Ser Ser Cys Asn Ala Ile His Arg Thr Gln Arg Ile Leu Asn Gly Leu		
80 85 90		
tgt aac caa aag gcc tcg gat gtg gct tcc agc ccc cca gat acc aaa		339
Cys Asn Gln Lys Ala Ser Asp Val Ala Ser Ser Pro Pro Asp Thr Lys		
95 100 105		
atc gaa gta gcc cag ttt ata tca aaa ctg ctc aat tac tcc aag caa		387

Ile Glu Val Ala Gln Phe Ile Ser Lys Leu Leu Asn Tyr Ser Lys Gln			
110	115	120	125
ctt ttc cgc tat ggc cac gcg gcc gcc gtg ccc aga aac tgt gga ggt			435
Leu Phe Arg Tyr Gly His Ala Ala Val Pro Arg Asn Cys Gly Gly			
130	135	140	
gat tgc aag cct tgt ata tgt aca ggc tca gaa gta tca tct gtc ttc			483
Asp Cys Lys Pro Cys Ile Cys Thr Gly Ser Glu Val Ser Ser Val Phe			
145	150	155	
atc ttc ccc cca aag ccc aaa gat gtg ctc acc atc act ctg act cct			531
Ile Phe Pro Pro Lys Pro Lys Asp Val Leu Thr Ile Thr Leu Thr Pro			
160	165	170	
aag gtc acg tgt gtt gtg gta gac att agc cag gac gat ccc gag gtc			579
Lys Val Thr Cys Val Val Val Asp Ile Ser Gln Asp Asp Pro Glu Val			
175	180	185	
cat ttc agc tgg ttt gta gat gac gtg gaa gtc cac aca gct cag act			627
His Phe Ser Trp Phe Val Asp Asp Val Glu Val His Thr Ala Gln Thr			
190	195	200	205
cga cca cca gag gag cag ttc aac agc act ttc cgc tca gtc agt gaa			675
Arg Pro Pro Glu Glu Gln Phe Asn Ser Thr Phe Arg Ser Val Ser Glu			
210	215	220	
ctc ccc atc ctg cac cag gac tgg ctc aat ggc agg acg ttc aga tgc			723
Leu Pro Ile Leu His Gln Asp Trp Leu Asn Gly Arg Thr Phe Arg Cys			
225	230	235	
aag gtc acc agt gca gct ttc cca tcc ccc atc gag aaa acc atc tcc			771
Lys Val Thr Ser Ala Ala Phe Pro Ser Pro Ile Glu Lys Thr Ile Ser			
240	245	250	
aaa ccc gaa ggc aga aca caa gtt ccg cat gta tac acc atg tca cct			819
Lys Pro Glu Gly Arg Thr Gln Val Pro His Val Tyr Thr Met Ser Pro			
255	260	265	
acc aag gaa gag atg acc cag aat gaa gtc agt atc acc tgc atg gta			867
Thr Lys Glu Glu Met Thr Gln Asn Glu Val Ser Ile Thr Cys Met Val			
270	275	280	285
aaa ggc ttc tat ccc cca gac att tat gtg gag tgg cag atg aac ggg			915
Lys Gly Phe Tyr Pro Pro Asp Ile Tyr Val Glu Trp Gln Met Asn Gly			
290	295	300	
cag cca cag gaa aac tac aag aac act cca cct acg atg gac aca gat			963
Gln Pro Gln Glu Asn Tyr Lys Asn Thr Pro Pro Thr Met Asp Thr Asp			
305	310	315	
ggg agt tac ttc ctc tac agc aag ctc aat gtg aag aag gaa aaa tgg			1011
Gly Ser Tyr Phe Leu Tyr Ser Lys Leu Asn Val Lys Lys Glu Lys Trp			
320	325	330	
cag cag gga aac acg ttc acg tgt tct gtg ctg cat gaa ggc ctg cac			1059
Gln Gln Gly Asn Thr Phe Thr Cys Ser Val Leu His Glu Gly Leu His			

335	340	345	
aac cac cat act gag aag agt ctc tcc cac tct ccg ggt aaa gcc caa Asn His His Thr Glu Lys Ser Leu Ser His Ser Pro Gly Lys Ala Gln 350	355	360	365
gat ttt gtg cag tgg ttg atg aat acc tgagaattc Asp Phe Val Gln Trp Leu Met Asn Thr 370			1107
<p><210> 6 <211> 825 <212> DNA <213> Artificial Sequence</p> <p><220> <223> DNA insert encoding rat signal peptide, rat IgG Fc region and glucagon C19-29 region</p> <p><220> <221> CDS <222> (13)..(816) <223> DNA insert encoding rat signal peptide, rat IgG Fc region and glucagon C19-29 region</p>			
<p><400> 6</p>			
gaattcattt aa atg aag tcc tgc ggc ctg ttc cct ctc atg gtg ctc ctt Met Lys Ser Cys Gly Leu Phe Pro Leu Met Val Leu Leu 1 5 10			51
gct ctg ggt gta ctg gca ccc tgg agt gtg gaa gga gcg gcc gcc gtg Ala Leu Gly Val Leu Ala Pro Trp Ser Val Glu Gly Ala Ala Ala Val 15 20 25			99
ccc aga aac tgt gga ggt gat tgc aag cct tgt ata tgt aca ggc tca Pro Arg Asn Cys Gly Gly Asp Cys Lys Pro Cys Ile Cys Thr Gly Ser 30 35 40 45			147
gaa gta tca tct gtc ttc atc ttc ccc cca aag ccc aaa gat gtg ctc Glu Val Ser Ser Val Phe Ile Phe Pro Pro Lys Pro Lys Asp Val Leu 50 55 60			195
acc atc act ctg act cct aag gtc acg tgt gtt gtg gta gac att agc Thr Ile Thr Leu Thr Pro Lys Val Thr Cys Val Val Val Asp Ile Ser 65 70 75			243
cag gac gat ccc gag gtc cat ttc agc tgg ttt gta gat gac gtg gaa Gln Asp Asp Pro Glu Val His Phe Ser Trp Phe Val Asp Asp Val Glu 80 85 90			291
gtc cac aca gct cag act cga cca cca gag gag cag ttc aac agc act Val His Thr Ala Gln Thr Arg Pro Pro Glu Glu Gln Phe Asn Ser Thr 95 100 105			339
ttc cgc tca gtc agt gaa ctc ccc atc ctg cac cag gac tgg ctc aat Phe Arg Ser Val Ser Glu Leu Pro Ile Leu His Gln Asp Trp Leu Asn 110 115 120			387

ggc agg acg ttc aga tgc aag gtc acc agt gca gct ttc cca tcc ccc		435	
Gly Arg Thr Phe Arg Cys Lys Val Thr Ser Ala Ala Phe Pro Ser Pro			
130	135	140	
atc gag aaa acc atc tcc aaa ccc gaa ggc aga aca caa gtt ccg cat		483	
Ile Glu Lys Thr Ile Ser Lys Pro Glu Gly Arg Thr Gln Val Pro His			
145	150	155	
gta tac acc atg tca cct acc aag gaa gag atg acc cag aat gaa gtc		531	
Val Tyr Thr Met Ser Pro Thr Lys Glu Glu Met Thr Gln Asn Glu Val			
160	165	170	
agt atc acc tgc atg gta aaa ggc ttc tat ccc cca gac att tat gtg		579	
Ser Ile Thr Cys Met Val Lys Gly Phe Tyr Pro Pro Asp Ile Tyr Val			
175	180	185	
gag tgg cag atg aac ggg cag cca cag gaa aac tac aag aac act cca		627	
Glu Trp Gln Met Asn Gly Gln Pro Gln Glu Asn Tyr Lys Asn Thr Pro			
190	195	200	205
cct acg atg gac aca gat ggg agt tac ttc ctc tac agc aag ctc aat		675	
Pro Thr Met Asp Thr Asp Gly Ser Tyr Phe Leu Tyr Ser Lys Leu Asn			
210	215	220	
gtg aag aag gaa aaa tgg cag cag gga aac acg ttc acg tgt tct gtg		723	
Val Lys Lys Glu Lys Trp Gln Gln Gly Asn Thr Phe Thr Cys Ser Val			
225	230	235	
ctg cat gaa ggc ctg cac aac cac cat act gag aag agt ctc tcc cac		771	
Leu His Glu Gly Leu His Asn His His Thr Glu Lys Ser Leu Ser His			
240	245	250	
tct ccg ggt aaa gcc caa gat ttt gtg cag tgg ttg atg aat acc		816	
Ser Pro Gly Lys Ala Gln Asp Phe Val Gln Trp Leu Met Asn Thr			
255	260	265	
tgagaattc		825	
<210> 7			
<211> 1284			
<212> DNA			
<213> Artificial Sequence			
<220>			
<223> DNA insert encoding rat IL1 receptor antagonist, rat IgG Fc region and glucagons C19-29 region			
<220>			
<221> CDS			
<222> (13)..(1275)			
<223> DNA insert encoding rat IL1 receptor antagonist, rat IgG Fc region and glucagons C19-29 region			
<400> 7			
gaattcattt aa atg gaa atc tgc tgg gga ccc tac agt cac cta atc tct		51	

Met Glu Ile Cys Trp Gly Pro Tyr Ser His Leu Ile Ser		
1	5	10
ctc ctt ctc atc ctt ctg ttt cat tca gag gca gcc tgc cgc cct tct		99
Leu Leu Leu Ile Leu Leu Phe His Ser Glu Ala Ala Cys Arg Pro Ser		
15	20	25
ggg aaa aga ccc tgc aag atg caa gcc ttc aga atc tgg gat act aac		147
Gly Lys Arg Pro Cys Lys Met Gln Ala Phe Arg Ile Trp Asp Thr Asn		
30	35	40
45		
cag aag acc ttt tac ctg aga aac aac cag ctc att gct ggg tac tta		195
Gln Lys Thr Phe Tyr Leu Arg Asn Asn Gln Leu Ile Ala Gly Tyr Leu		
50	55	60
caa gga cca aat atc aaa cta gaa gaa aag ata gac atg gtg cct att		243
Gln Gly Pro Asn Ile Lys Leu Glu Glu Lys Ile Asp Met Val Pro Ile		
65	70	75
gac ctt cat agt gtg ttc ttg ggc atc cac ggg ggc aag ctg tgc ctg		291
Asp Leu His Ser Val Phe Leu Gly Ile His Gly Gly Lys Leu Cys Leu		
80	85	90
tct tgt gcc aag tct gga gat gat atc aag ctc cag ctg gag gaa gtt		339
Ser Cys Ala Lys Ser Gly Asp Asp Ile Lys Leu Gln Leu Glu Glu Val		
95	100	105
aac atc act gat ctg agc aag aac aaa gaa gaa gac aag cgc ttt acc		387
Asn Ile Thr Asp Leu Ser Lys Asn Lys Glu Glu Asp Lys Arg Phe Thr		
110	115	120
125		
ttc atc cgc tct gag aaa ggc ccc acc acc agc ttt gag tca gct gcc		435
Phe Ile Arg Ser Glu Lys Gly Pro Thr Thr Ser Phe Glu Ser Ala Ala		
130	135	140
tgt cca gga tgg ttc ctc tgc aca aca cta gag gct gac cgt cct gtg		483
Cys Pro Gly Trp Phe Leu Cys Thr Thr Leu Glu Ala Asp Arg Pro Val		
145	150	155
agc ctc acc aac aca ccg gaa gag ccc ctt ata gtc acg aag ttc tac		531
Ser Leu Thr Asn Thr Pro Glu Glu Pro Leu Ile Val Thr Lys Phe Tyr		
160	165	170
ttc cag gaa gac caa gcg gcc gcc gtg ccc aga aac tgt gga ggt gat		579
Phe Gln Glu Asp Gln Ala Ala Val Pro Arg Asn Cys Gly Gly Asp		
175	180	185
tgc aag cct tgt ata tgt aca ggc tca gaa gta tca tct gtc ttc atc		627
Cys Lys Pro Cys Ile Cys Thr Gly Ser Glu Val Ser Ser Val Phe Ile		
190	195	200
205		
ttc ccc cca aag ccc aaa gat gtg ctc acc atc act ctg act cct aag		675
Phe Pro Pro Lys Pro Lys Asp Val Leu Thr Ile Thr Leu Thr Pro Lys		
210	215	220
gtc acg tgt gtt gtg gta gac att agc cag gac gat ccc gag gtc cat		723
Val Thr Cys Val Val Asp Ile Ser Gln Asp Asp Pro Glu Val His		

225	230	235	
ttc agc tgg ttt gta gat gac gtg gaa gtc cac aca gct cag act cga Phe Ser Trp Phe Val Asp Asp Val Glu Val His Thr Ala Gln Thr Arg 240	245	250	771
cca cca gag gag cag ttc aac agc act ttc cgc tca gtc agt gaa ctc Pro Pro Glu Glu Gln Phe Asn Ser Thr Phe Arg Ser Val Ser Glu Leu 255	260	265	819
ccc atc ctg cac cag gac tgg ctc aat ggc agg acg ttc aga tgc aag Pro Ile Leu His Gln Asp Trp Leu Asn Gly Arg Thr Phe Arg Cys Lys 270	275	280	867
gtc acc agt gca gct ttc cca tcc ccc atc gag aaa acc atc tcc aaa Val Thr Ser Ala Ala Phe Pro Ser Pro Ile Glu Lys Thr Ile Ser Lys 290	295	300	915
ccc gaa ggc aga aca caa gtt ccg cat gta tac acc atg tca cct acc Pro Glu Gly Arg Thr Gln Val Pro His Val Tyr Thr Met Ser Pro Thr 305	310	315	963
aag gaa gag atg acc cag aat gaa gtc agt atc acc tgc atg gta aaa Lys Glu Glu Met Thr Gln Asn Glu Val Ser Ile Thr Cys Met Val Lys 320	325	330	1011
ggc ttc tat ccc cca gac att tat gtg gag tgg cag atg aac ggg cag Gly Phe Tyr Pro Pro Asp Ile Tyr Val Glu Trp Gln Met Asn Gly Gln 335	340	345	1059
cca cag gaa aac tac aag aac act cca cct acg atg gac aca gat ggg Pro Gln Glu Asn Tyr Lys Asn Thr Pro Pro Thr Met Asp Thr Asp Gly 350	355	360	1107
agt tac ttc ctc tac agc aag ctc aat gtg aag aag gaa aaa tgg cag Ser Tyr Phe Leu Tyr Ser Lys Leu Asn Val Lys Glu Lys Trp Gln 370	375	380	1155
cag gga aac acg ttc acg tgt tct gtg ctg cat gaa ggc ctg cac aac Gln Gly Asn Thr Phe Thr Cys Ser Val Leu His Glu Gly Leu His Asn 385	390	395	1203
cac cat act gag aag agt ctc tcc cac tct ccg ggt aaa gcc caa gat His His Thr Glu Lys Ser Leu Ser His Ser Pro Gly Lys Ala Gln Asp 400	405	410	1251
ttt gtg cag tgg ttg atg aat acc tgagaattc Phe Val Gln Trp Leu Met Asn Thr 415	420		1284

<210> 8
 <211> 369
 <212> DNA
 <213> Artificial Sequence

<220>

<223> DNA insert encoding human IL8 and glucagon C19-29 region

<220>

<221> CDS

<222> (13)..(360)

<223> DNA insert encoding human IL8 and glucagon C19-29 region

<400> 8

gaattcattt aa atg act tcc aag ctg gcc gtg gct ctc ttg gca gcc ttc
Met Thr Ser Lys Leu Ala Val Ala Leu Ala Ala Phe
1 5 10

51

ctg att tct gca gct ctg tgt gaa ggt gca gtt ttg cca agg agt gct
Leu Ile Ser Ala Ala Leu Cys Glu Gly Ala Val Leu Pro Arg Ser Ala
15 20 25

99

aaa gaa ctt aga tgt cag tgc ata aag aca tac tcc aaa cct ttc cac
Lys Glu Leu Arg Cys Gln Cys Ile Lys Thr Tyr Ser Lys Pro Phe His
30 35 40 45

147

ccc aaa ttt atc aaa gaa ctg aga gtg att gag agt gga cca cac tgc
Pro Lys Phe Ile Lys Glu Leu Arg Val Ile Glu Ser Gly Pro His Cys
50 55 60

195

gcc aac aca gaa att att gta aag ctt tct gat gga aga gag ctc tgt
Ala Asn Thr Glu Ile Ile Val Lys Leu Ser Asp Gly Arg Glu Leu Cys
65 70 75

243

ctg gac ccc aag gaa aac tgg gtg cag agg gtt gtg gag aag ttt ttg
Leu Asp Pro Lys Glu Asn Trp Val Gln Arg Val Val Glu Lys Phe Leu
80 85 90

291

aag agg gct gag aat tca gcg gcc gcc ccg ggt aaa gcc caa gat ttt
Lys Arg Ala Glu Asn Ser Ala Ala Pro Gly Lys Ala Gln Asp Phe
95 100 105

339

gtg cag tgg ttg atg aat acc tgagaattc
Val Gln Trp Leu Met Asn Thr
110 115

369

<210> 9

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide primer used for constructing a vector pCAGGS-IgG-glu19-29

<400> 9

gagaattcat ttaaatgaga gcggccgccc tgccccagaaa ctgtg

45

<210> 10

<211> 49

<212> DNA

<213> Artificial Sequence

```

<220>
<223> Oligonucleotide primer used for constructing a vector pCAGGS-IgG-glu19-29

<400> 10
tcaaccactg cacaaaatct tgggctttac ccggagagtg ggagagact 49

<210> 11
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer used for constructing a vector pCAGGS-IgG-glu19-29

<400> 11
gagaattcat ttaaaatgaga gcggccgccc tgcccagaaa ctgtg 45

<210> 12
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer used for constructing a vector pCAGGS-IgG-glu19-29

<400> 12
gagagagaga attctcaggt attcatcaac cactgcacaa aatcttggc 50

<210> 13
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer used for constructing a vector
      pCAGGS-IFN-rR-IgG-glu19-29

<400> 13
gagaattcat ttaaaatgatt ctgctggtgg tcctgatg 38

<210> 14
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer used for constructing a vector
      pCAGGS-IFN-rR-IgG-glu19-29

<400> 14
gcagcatcgc ggccgcttct tctctgtcat catggagaaa 40

```

<210>	15	
<211>	38	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Oligonucleotide primer used for constructing a vector	
	pCAGGS-CTLA4-IgG-glu19-29	
<400>	15	
	gagaattcat ttaaatggct tgtcttggac tccagagg	38
<210>	16	
<211>	40	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Oligonucleotide primer used for constructing a vector	
	pCAGGS-CTLA4-IgG-glu19-29	
<400>	16	
	gcagcatcgc ggccgcgtct gaatctgggc atggttctgg	40
<210>	17	
<211>	38	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Oligonucleotide primer used for constructing a vector	
	pCAGGS-IL13-IgG-glu19-29	
<400>	17	
	gagaattcat ttaaatggca ctctgggtga ctgcagtc	38
<210>	18	
<211>	40	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Oligonucleotide primer used for constructing a vector	
	pCAGGS-IL13-IgG-glu19-29	
<400>	18	
	gcagcatcgc ggccgcgtgg ccatagcgga aaagttgctt	40
<210>	19	
<211>	38	
<212>	DNA	
<213>	Artificial Sequence	

<220>		
<223>	Oligonucleotide primer used for constructing a vector	
	pCAGGS-IL1RA-IgG-glu19-29	
<400> 19	gagaattcat ttaaatggaa atctgctggg gaccctac	38
<210> 20		
<211> 40		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223>	Oligonucleotide primer used for constructing a vector	
	pCAGGS-IL1RA-IgG-glu19-29	
<400> 20	gcagcatcgc ggccgcttgg tcttcctgga agtagaactt	40
<210> 21		
<211> 62		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223>	Oligonucleotide primer used for constructing a vector pCAGGS-glu19-29	
<400> 21	gagaattcat ttaaatgaga gcggccgccc cggtaaagc ccaagatttt gtgcagtgg	60
	tg	62
<210> 22		
<211> 50		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223>	Oligonucleotide primer used for constructing a vector pCAGGS-glu19-29	
<400> 22	gagagagaga attctcaggt attcatcaac cactgcacaa aatcttggc	50
<210> 23		
<211> 38		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223>	Oligonucleotide primer used for constructing a vector pCAGGS-IL8-glu19-29	
<400> 23	gagaattcat ttaaatgact tccaagctgg ccgtggct	38

<210> 24
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer used for constructing a vector pCAGGS-IL8-glu19-29

<400> 24
gcagcatacgccggccgtgaa ttctcagccc tcttcaaaaa 40