1.4. Isomorfismos en grupos

Dos grupos (G,*) y (G',\circ) son **isomorfos**, y se escribe $G \approx G'$, si existe una aplicación biyectiva $\phi: G \to G'$ tal que para todos $x, y \in G$ se verifica que

$$\phi(x * y) = \phi(x) \circ \phi(y)$$

La aplicación ϕ se denomina **isomorfismo de grupos**

Propiedades

Sea $\phi: G \to G'$ isomorfismo entre los grupos (G, *) y (G', \circ) . Entonces

- 1. $\phi(e_G) = e_{G'}$
- 2. $\phi(a^{-1}) = (\phi(a))^{-1}$
- 3. Para todo $a \in G$ se verifica que $|a|_G = |\phi(a)|_{G'}$

Observaciones

- $(\mathbb{Z},+)$ es isomorfo a un subgrupo de $(\mathbb{Q},+)$.
- $(\mathbb{Q},+)$ es isomorfo a un subgrupo de $(\mathbb{R},+)$.
- $(\mathbb{R},+)$ es isomorfo a un subgrupo de $(\mathbb{C},+)$.

Isomorfismos en grupos cíclicos

- 1. Todo grupo cíclico (G, *) de orden infinito, es isomorfo a $(\mathbb{Z}, +)$
- 2. Todo grupo cíclico (G, *) de orden n, es isomorfo a $(\mathbb{Z}_n, +_n)$

Producto de grupos cíclicos

El grupo $(\mathbb{Z}_m \times \mathbb{Z}_n, +_m \times +_n)$ es cíclico si y sólo si $\operatorname{mcd}(m, n) = 1$

Definición de producto directo interno

Sea (G, *) un grupo y sean $H \leq G$ y $K \leq G$.

Se dice que el grupo G es producto directo interno de los subgrupos H y K si se verifica que:

- 1. $H \cap K = \{e\}$
- 2. $G = HK = \{h * k : h \in H, k \in K\}$
- 3. Los elementos de H y de K conmutan: $\forall h \in H, k \in K$ es h * k = k * h

Relación entre producto directo interno y producto directo

Si (G,*) es producto directo interno de los subgrupos H y K entonces $G \approx H \times K$

Teorema de Cayley

Todo grupo de orden $n \in \mathbb{N}$ es isomorfo a un grupo de permutaciones.

Automorfismos de un grupo

Sea (G, *) grupo. El conjunto de todos los isomorfismos $\varphi : G \to G$, con la composición de aplicaciones, es un grupo que se denomina **grupo de automorfismos** de (G; *).

1.4.10. Problemas

- 1. En el grupo (S_4, \circ) sea $H = \{e = (1), a = (1, 2)(3, 4), b = (1, 3)(2, 4), c = (1, 4)(2, 3)\}$
 - a) Demostrar, mediante la construcción de su tabla de Cayley, que H es abeliano.
 - b) Estudiar si existe un isomorfismo de (H, \circ) en $(\mathbb{Z}_2 \times \mathbb{Z}_2, +_2 \times +_2)$.
- 2. a) Estudiar si $(U_8, \cdot_8) \approx (\mathbb{Z}_4, +_4)$
 - b) Estudiar si $(U_8, \cdot_8) \approx (M, \cdot)$, siendo $M = \{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \}$, con el producto usual de matrices
- 3. Entre los grupos $(\mathbb{Z}_n, +_n)$, (U_n, \cdot_n) , (D_n, \circ) , (S_n, \circ) , $(\mathbb{Z}_n \times \mathbb{Z}_m, +_n \times +_m)$ y cuaterniones, encontrar uno isomorfo a (V, \cdot) , siendo \cdot el producto usual de matrices y

$$V = \{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \}.$$

- 4. Estudiar si $(H = \{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} : a, b \in \mathbb{Z}_3 \}, \cdot_3)$ es isomorfo a $(\mathbb{Z}_9, +_9)$ o a $(\mathbb{Z}_3 \times \mathbb{Z}_3, +_3 \times +_3)$
- 5. Demostrar que $G = \{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} : a, b, c \in \mathbb{Z}_2 \}$ con la operación producto de matrices, módulo 2, es isomorfo a D_4 .
- 6. Estudiar si existe algún isomorfismo entre el grupo (\mathbb{C}^*,\cdot) y el siguiente subgrupo de $GL_2(\mathbb{R})$: $\mathcal{C} = \{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a,b \in \mathbb{R} \} \leq GL_2(\mathbb{R})$
- 7. Se considera el grupo $(G = \mathbb{R} \{-1\}, *)$, siendo a * b = a + b + ab. Demostrar que el grupo (G, *) es isomorfo al grupo (\mathbb{R}^*, \cdot)
- 8. Probar que D_4 no puede ser producto directo interno de dos subgrupos propios.
- 9. Probar que D_6 es producto directo interno de dos de sus subgrupos propios.
- 10. Obtener los automorfismos de $(\mathbb{Z}_6, +_6)$.