Support vector machines

Gianluca Campanella

Support vectors

From Li et al. (2011)

Margin

Via Wikimedia Commons

Margin

- Maximising the margin is good
- \rightarrow Less overfitting
- → Model generalises better
 - Only support vectors are important
 - Can be done by solving a quadratic optimisation problem subject to linear constraints

Hard and soft-margin SVM

Hard-margin

- Requires correct classification of all samples
- Only solvable if samples are linearly separable

Hard and soft-margin SVM

Hard-margin

- Requires correct classification of all samples
- Only solvable if samples are linearly separable

Soft-margin

- Some misclassification is allowed
- Will 'compromise' on model performance to obtain a larger margin → more generalisable model

Non-linear SVM

Idea

Map the original input space to some higher-dimensional space where the training set is linearly separable

'Kernel trick'

- Effectively introduces new predictors
- No need to compute (and store) the expanded dataset

Pros and cons

Pros

- Can handle large datasets (only support vectors matter)
- Effective in high-dimensional spaces (p > n)
- Mathematically 'convenient' (also 'kernel trick')

Cons

- Prone to overfitting (→ use soft-margin)
- Do not provide probability estimates directly