

第1节 目标规划的数学模型

第2节 解目标规划的图解法

第3节解目标规划的单纯形法

第4节 灵敏度分析

第5节 应用举例

第1节 目标规划的数学模型

第2节 解目标规划的图解法

第3节 解目标规划的单纯形法

第4节 灵敏度分析

第5节 应用举例

第2节 解目标规划的图解法

对只具有两个决策变量的目标规划的数学模型,可以用图解法来分析求解。

例:某工厂生产I、II两种产品,数据如下

	I	II	拥有量
原材料(kg)	2	1	11
设备	1	2	10
利润(元/件)	8	10	

决策者在原材料供应严格受限制的情况考虑: 首先产品 的产量不低于产品的产量; 其次充分利用设备有效台时, 不加班; 再次利润不低于56元。列出模型, 并求解。

Min Z=P₁d₁++P₂ (d₂-+d₂+)+ P₃d₃-
约束方程:
$$2X_1+X_2 \le 11$$
 ①
$$X_1 - X_2 + d_1 - d_1 = 0$$
 ②
$$X_1 + 2X_2 + d_2 - d_2 = 10$$
 ③
$$8X_1 + 10X_2 + d_3 - d_3 = 56$$
 ④
$$X_1, X_2, \quad d_i^-, d_i^+ \ge 0$$
 (i=1,2,3)

Min $Z=P_1d_1^++P_2(d_2^-+d_2^+)+P_3d_3^-$

约束方程: 2X₁+X₂≤11

$$X_1 - X_2 + d_1 - d_1 = 0$$
 2

$$X_1 + 2X_2 + d_2 - d_2 = 10$$
 3

$$8X_1 + 10X_2 + d_3 - d_3 = 56$$

$$X_1,X_2, d_i^-, d_i^+ \ge 0 (i=1,2,3)$$

- 先在平面直角坐标系的第一象限内, 做各约束条件。绝对约束条件的作图与线性规划相同。
- 本例中满足绝对约束的可行 域为三角形*OAB*。
- 做目标约束时, 先令d_i-, d_i+=
- 0,做相应的直线,然后在这直线旁标上 d_i , d_i ,如图所示。这表明目标约束可以沿 d_i , d_i , d_i ,所示方向平移。

Min $Z=P_1d_1+P_2(d_2-d_2+)+P_3d_3-$

约束方程: 2X₁+X₂≤11

$$X_1 - X_2 + d_1 - d_1 = 0$$

$$X_1 + 2X_2 + d_2 - d_2 = 10$$

$$8X_1 + 10X_2 + d_3 - d_3 = 56$$

$$X_1,X_2, d_i^-, d_i^+ \ge 0 (i=1,2,3)$$

- 根据目标函数中的优先 因子来分析求解。
- 首先考虑具有P₁ 优先因 子的目标的实现,
- 在目标函数中要求实现 $mind_1^+$,从图中可见,可以 满足 $d_1 = 0$ 。
- 这时 x_1, x_2 只能在三角形 OBC的边界和其中取值

Min $Z=P_1d_1^++P_2(d_2^-+d_2^+)+P_3d_3^-$

约束方程: 2X₁+X₂≤11

1

$$X_1 - X_2 + d_1 - d_1 = 0$$

$$X_1 + 2X_2 + d_2 - d_2 = 10$$

$$8X_1 + 10X_2 + d_3 - d_3 = 56$$

$$X_1, X_2, d_i^-, d_i^+ \ge 0 (i=1,2,3)$$

- 最后考虑具有 P_3 优先 因子的目标的实现, 在目 标函数中要求实现min d_3 -。
- 从图中可以判断可以 使 d_3 = 0
- 这就使 x_1 、 x_2 取值范围缩小到线段GD上
- 这就是该目标规划问题的解。

Min $Z=P_1d_1^++P_2(d_2^-+d_2^+)+P_3d_3^-$

约束方程: 2X₁+X₂≤11

1

$$X_1 - X_2 + d_1 - d_1 = 0$$

2

$$X_1 + 2X_2 + d_2 - d_2 = 10$$
 3

$$8X_1 + 10X_2 + d_3 - d_3 = 56$$

$$X_1, X_2, d_i^-, d_i^+ \ge 0 (i=1,2,3)$$

注意目标规划问题求 解时,把绝对约束作 最高优先级考虑。在 本例中能依先后次序 都满足 $d_1+=0$, d_2++d_3- =0, d_3 -=0, 因而z*=0 但在大多数问题中并 非如此、会出现某些 约束得不到满足,故 将目标规划问题的最 优解称为满意解。

例: 某工厂生产彩电、黑白两种电视机,数据如下

	彩电	黑白	拥有量
装配线(小时)	1	1	40
销量	24	30	
利润(元/件)	80	40	

该厂确定的目标为:

- **第一优先级**:充分利用装配线每周计划开动40小时;
- ② 第二优先级:允许装配线加班;但加班时间每周尽量不超过10小时;
- ②第三优先级:装配电视机的数量尽量满足市场需要。因彩色电视机的利润高,取其权系数为2。
- 试建立这问题的目标规划模型,并求解黑白和彩色电视机的产量。

彩电	黑白	拥有量
1	1	40
24	30	
80	40	
	1 24	1 1 24 30

解:设X₁,X₂分别表示彩色和黑白电视机的产量。

P₁: 充分利用装配线每周计划开动40小时;

$$X_1 + X_2 + d_1 - d_1 + = 40$$

P₂: 允许装配线加班; 但加班时间每周尽量不超过10小时;

$$X_1 + X_2 + d_2 - d_2 = 50$$

P₃: 电视机的数量尽量满足市场要求,权系数为利润比。

$$X_1 + d_3 - d_3^+ = 24$$
; $X_2 + d_4 - d_4^+ = 30$

目标函数: Min $S=P_1d_1^- + P_2d_2^+ + P_3(2d_3^- + d_4^-)$

目标函数:
$$\min z = P_1 d_1^- + P_2 d_2^+ + P_3 (2d_3^- + d_4^-)$$

満足约束条件:
$$\begin{cases} x_1 + x_2 + d_1^- - d_1^+ = 40 \\ x_1 + x_2 + d_2^- - d_2^+ = 50 \\ x_1 + d_3^- - d_3^+ = 24 \\ x_2 + d_4^- - d_4^+ = 30 \\ x_1, x_2, d_i^-, d_i^+ \ge 0, \quad i = 1, 2, 3, 4 \end{cases}$$

②故E点为满意解。其坐标为 (24, 26),即该厂每周应装 配彩色电视机24台,黑白 电视机26台。 Min $Z=P_1d_1-P_2d_2+P_3(2d_3-d_4)$

约束方程: X₁ +X₂ +d₁-- d₁+=40

1

 $X_1 + X_2 + d_2 - d_2 = 50$

2

 $X_1 + d_3 - d_3 = 24$

3

 $X_2 + d_4 - d_4 = 30$

(4)

 $X_1, X_2, d_i^-, d_i^+ \ge 0 (i=1,2,3,4)$

- ?在考虑具有 P_1 、 P_2 的目标实现后, x_1 、 x_2 的取值范围为ABCD。
- ?考虑 P_3 的目标要求时,因 d_3 -的权系数大于 d_4 -,故先考虑 $mind_3$ -;这时 x_1 、 x_2 的取值范围缩小为ABEF区域。
- ? 然后考虑 d_4 -。在ABEF中无法满足 d_4 -=0,因此只能在ABEF中取一点,使 d_4 -尽可能小,这就是E点。

