Data Sheet ADF4351

SPECIFICATIONS

 $AV_{DD} = DV_{DD} = V_{VCO} = SDV_{DD} = V_P = 3.3 \ V \pm 10\%; AGND = DGND = 0 \ V; T_A = T_{MIN} \ to \ T_{MAX}, unless \ otherwise \ noted. Operating temperature range is -40°C to +85°C.$

Table 1.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
REF _{IN} CHARACTERISTICS					
Input Frequency	10		250	MHz	For f < 10 MHz, ensure slew rate > 21 V/μs
Input Sensitivity	0.7		AV_DD	V p-p	Biased at AV _{DD} /2; ac coupling ensures AV _{DD} /2 bias
Input Capacitance		10		pF	
Input Current			±60	μΑ	
PHASE FREQUENCY DETECTOR (PFD)					
Phase Detector Frequency			32	MHz	Fractional-N
			45	MHz	Integer-N (band select enabled)
			90	MHz	Integer-N (band select disabled)
CHARGE PUMP					
I _{CP} Sink/Source ¹					$R_{SET} = 5.1 \text{ k}\Omega$
High Value		5		mA	
Low Value		0.312		mA	
R _{SET} Range	3.9		10	kΩ	
Sink and Source Current Matching		2		%	$0.5 \text{ V} \le \text{V}_{CP} \le 2.5 \text{ V}$
I _{CP} vs. V _{CP}		1.5		%	$0.5 \text{ V} \leq \text{V}_{CP} \leq 2.5 \text{ V}$
I _{CP} vs. Temperature		2		%	$V_{CP} = 2.0 \text{ V}$
LOGIC INPUTS		_		7.0	10 2.0 1
Input High Voltage, V _{INH}	1.5			V	
Input Low Voltage, V _{INL}	1.5		0.6	V	
Input Current, Inh/InL			±1	μA	
Input Capacitance, C _{IN}		3.0		pF	
LOGIC OUTPUTS		3.0		Pi	
Output High Voltage, V _{OH}	DV _{DD} - 0.4			V	CMOS output selected
Output High Current, I _{OH}	0.4		500	μΑ	Civios output selected
Output Low Voltage, V _{OL}			0.4	V	I _{OL} = 500 μA
POWER SUPPLIES			0.4	V	10ξ – 300 μ/τ
AV _{DD}	3.0		3.6	V	
DV_{DD} , V_{VCO} , SDV_{DD} , V_{P}	3.0	AV_DD	3.0	V	These voltages must equal AV _{DD}
DI _{DD} + AI _{DD} ²		21	27	m A	mese voitages must equal AVDD
		6 to 36	21	mA mA	Each output divide by 3 consumes 6 m/
Output Dividers			00		Each output divide-by-2 consumes 6 mA
Ivco ² Irfout ²		70 21	80 26	mA	DE autout eta e a la reva eva eva esta la
Low Power Sleep Mode		7	10	mA 	RF output stage is programmable
RF OUTPUT CHARACTERISTICS		/	10	μΑ	
	2200		4400	MHz	Fundamental VCO mode
VCO Output Frequency Minimum VCO Output Frequency	34.375		4400	MHz	2200 MHz fundamental output and
Using Dividers	34.373			IVITZ	divide-by-64 selected
VCO Sensitivity, K _V		40		MHz/V	divide by 04 selected
Frequency Pushing (Open-Loop)		1		MHz/V	
Frequency Pulling (Open-Loop)		90		kHz	Into 2.00 VSWR load
Harmonic Content (Second)		-19		dBc	Fundamental VCO output
Harmonic Content (Second)		-19 -20		dBc	Divided VCO output
Harmonic Content (Third)		-20 -13		dBc	Fundamental VCO output
Harmonic Content (Illia)					-
		-10		dBc	Divided VCO output

ADF4351 Data Sheet

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
Minimum RF Output Power ³		-4		dBm	Programmable in 3 dB steps
Maximum RF Output Power ³		5		dBm	
Output Power Variation		±1		dB	
Minimum VCO Tuning Voltage		0.5		V	
Maximum VCO Tuning Voltage		2.5		V	
NOISE CHARACTERISTICS					
VCO Phase Noise Performance					VCO noise is measured in open-loop conditions
		-89		dBc/Hz	10 kHz offset from 2.2 GHz carrier
		-114		dBc/Hz	100 kHz offset from 2.2 GHz carrier
		-134		dBc/Hz	1 MHz offset from 2.2 GHz carrier
		-148		dBc/Hz	5 MHz offset from 2.2 GHz carrier
		-86		dBc/Hz	10 kHz offset from 3.3 GHz carrier
		-111		dBc/Hz	100 kHz offset from 3.3 GHz carrier
		-134		dBc/Hz	1 MHz offset from 3.3 GHz carrier
		-145		dBc/Hz	5 MHz offset from 3.3 GHz carrier
		-83		dBc/Hz	10 kHz offset from 4.4 GHz carrier
		-110		dBc/Hz	100 kHz offset from 4.4 GHz carrier
		-131		dBc/Hz	1 MHz offset from 4.4 GHz carrier
		-145		dBc/Hz	5 MHz offset from 4.4 GHz carrier
Normalized Phase Noise Floor (PN _{SYNTH}) ⁴					PLL loop BW = 500 kHz
		-220		dBc/Hz	ABP = 6 ns
		-221		dBc/Hz	ABP = 3 ns
Normalized 1/f Noise (PN _{1_f}) ⁵					10 kHz offset; normalized to 1 GHz
		-116		dBc/Hz	ABP = 6 ns
		-118		dBc/Hz	ABP = 3 ns
In-Band Phase Noise		-100		dBc/Hz	3 kHz from 2111.28 MHz carrier
Integrated RMS Jitter ⁶		0.27		ps	
Spurious Signals Due to PFD Frequency		-80		dBc	
Level of Signal with RF Mute Enabled		-40		dBm	

 $^{^{1}\,}I_{CP}$ is internally modified to maintain constant loop gain over the frequency range.

 $^{^{2}}$ T_A = 25°C; AV_{DD} = DV_{DD} = V_{VCO} = 3.3 V; prescaler = 8/9; f_{REFIN} = 100 MHz; f_{PFD} = 25 MHz; f_{RF} = 4.4 GHz.

 $^{^3}$ Using 50 Ω resistors to V_{VCO} , into a 50 Ω load. Power measured with auxiliary RF output disabled. The current consumption of the auxiliary output is the same as for the main output.

⁴ The synthesizer phase noise floor is estimated by measuring the in-band phase noise at the output of the VCO and subtracting 20 log N (where N is the N divider value) and 10 log f_{PFD}. To calculate in-band phase noise performance as seen at the VCO output, use the following formula: PN_{SYNTH} = PN_{TOT} – 10 log(f_{PFD}) – 20 log N.

⁵ The PLL phase noise is composed of flicker (1/f) noise plus the normalized PLL noise floor. The formula for calculating the 1/f noise contribution at an RF frequency (f_{RF}) and at a frequency offset (f) is given by PN = PN_{1-f} + 10 log(10 kHz/f) + 20 log(f_{RF}/1 GHz). Both the normalized phase noise floor and flicker noise are modeled in ADIsimPLL.

⁶ f_{REFIN} = 122.88 MHz; f_{PFD} = 30.72 MHz; VCO frequency = 4222.56 MHz; RF_{OUT} = 2111.28 MHz; N = 137; loop BW = 60 kHz; I_{CP} = 2.5 mA; low noise mode. The noise was measured with an EVAL-ADF4351EB1Z and the Rohde & Schwarz FSUP signal source analyzer.

Data Sheet ADF4351

TIMING CHARACTERISTICS

 $AV_{DD} = DV_{DD} = V_{VCO} = SDV_{DD} = V_P = 3.3 \ V \pm 10\%; AGND = DGND = 0 \ V; 1.8 \ V \ and 3 \ V \ logic levels used; T_A = T_{MIN} \ to \ T_{MAX}, unless \ otherwise noted.$

Table 2.

Parameter	Limit	Unit	Description	
t ₁	20	ns min	LE setup time	
t_2	10	ns min	DATA to CLK setup time	
t_3	10	ns min	DATA to CLK hold time	
t ₄	25	ns min	CLK high duration	
t ₅	25	ns min	CLK low duration	
t ₆	10	ns min	CLK to LE setup time	
t ₇	20	ns min	LE pulse width	

Timing Diagram

Figure 2. Timing Diagram