Decidability and Undecidability

Major Ideas from Last Time

- Every TM can be converted into a string representation of itself.
 - The **encoding** of M is denoted $\langle M \rangle$.
- The universal Turing machine U_{TM} accepts an encoding $\langle M, w \rangle$ of a TM M and string w, then simulates the execution of M on w.
- The language of U_{TM} is the language A_{TM} :

```
A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts } w. \}
```

• Equivalently:

```
A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } w \in \mathcal{L}(M) \}
```

Major Ideas from Last Time

• The universal Turing machine U_{TM} can be used as a subroutine in other Turing machines.

H = "On input $\langle M \rangle$, where M is a Turing machine:

- Run M on ε .
- If M accepts ε , then H accepts $\langle M \rangle$.
- If M rejects ε , then H rejects $\langle M \rangle$.

H = "On input $\langle M \rangle$, where M is a Turing machine:

- Nondeterministically guess a string *w*.
- Run *M* on *w*.
- If M accepts w, then H accepts $\langle M \rangle$.
- If M rejects w, then H rejects $\langle M \rangle$.

Major Ideas from Last Time

• The diagonalization language, which we denote $L_{\rm D}$, is defined as

$$L_{\rm D} = \{ \langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \notin \mathcal{L}(M) \}$$

- That is, $L_{\rm D}$ is the set of descriptions of Turing machines that do not accept themselves.
- Theorem: $L_D \notin \mathbf{RE}$

All Languages

Outline for Today

More non-RE Languages

• We now know $L_{\rm D} \notin \mathbf{RE}$. Can we use this to find other non-**RE** languages?

Decidability and Class R

How do we formalize the idea of an algorithm?

Undecidable Problems

What problems admit no algorithmic solution?

Additional Unsolvable Problems

Finding Unsolvable Problems

- We can use the fact that $L_{\rm D} \notin \mathbf{RE}$ to show that other languages are also not \mathbf{RE} .
- General proof approach: to show that some language L is not \mathbf{RE} , we will do the following:
 - Assume for the sake of contradiction that $L \in \mathbf{RE}$, meaning that there is some TM M for it.
 - Show that we can build a TM that uses M as a subroutine in order to recognize $L_{\scriptscriptstyle D}$.
 - Reach a contradiction, since no TM recognizes $L_{\rm D}$.
 - Conclude, therefore, that $L \notin \mathbf{RE}$.

The Complement of A_{TM}

• Recall: the language A_{TM} is the language of the universal Turing machine U_{TM} :

$$A_{TM} = \mathcal{L}(U_{TM}) = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$$

- The complement of A_{TM} (denoted \overline{A}_{TM}) is the language of all strings not contained in A_{TM} .
- Questions:
 - What language is this?
 - Is this language **RE**?

A_{TM} and \overline{A}_{TM}

• The language A_{TM} is defined as

 $\{\langle M, w \rangle \mid M \text{ is a TM that accepts } w\}$

• Equivalently:

 $\{x \mid x = \langle M, w \rangle \text{ for some TM } M \text{ and string } w, \text{ and } M \text{ accepts } w\}$

• Thus \overline{A}_{TM} is

 $\{x \mid x \neq \langle M, w \rangle \text{ for any TM } M \text{ and string } w, \text{ or } M \text{ is a TM that does not accept } w\}$

 $\{x \mid x \neq \langle M, w \rangle \text{ for any TM } M \text{ and string } w, \text{ or } M \text{ is a TM that does not accept } w\}$

Cheating With Math

• As a mathematical simplification, we will assume the following:

Every string can be decoded into any collection of objects.

- Every string is an encoding of some TM M.
- Every string is an encoding of some $TM\ M$ and string w.
- Can do this as follows:
 - If the string is a legal encoding, go with that encoding.
 - Otherwise, pretend the string decodes to some predetermined group of objects.

Cheating With Math

- Example: Every string will be a valid C++ program.
- If it's already a C++ program, just compile it.
- Otherwise, pretend it's this program:

```
int main() {
    return 0;
}
```

A_{TM} and \overline{A}_{TM}

• The language A_{TM} is defined as

 $\{\langle M, w \rangle \mid M \text{ is a TM that accepts } w\}$

• Thus \overline{A}_{TM} is the language

 $\{\langle M, w \rangle \mid M \text{ is a TM that doesn't accept } w\}$

$\overline{A}_{TM} \notin \mathbf{RE}$

- Although the language $A_{TM} \in \mathbf{RE}$ (since it's the language of U_{TM}), its complement $\overline{A}_{TM} \notin \mathbf{RE}$.
- We will prove this as follows:
 - Assume, for contradiction, that $\overline{A}_{TM} \in \mathbf{RE}$.
 - This means there is a TM R for \overline{A}_{TM} .
 - Using R as a subroutine, we will build a TM H that will recognize $L_{\rm D}$.
 - This is impossible, since $L_D \notin \mathbf{RE}$.
 - Conclude, therefore, that $\overline{A}_{TM} \notin \mathbf{RE}$.

Comparing $L_{\scriptscriptstyle m D}$ and $\overline{ m A}_{\scriptscriptstyle m TM}$

- The languages $L_{\rm D}$ and $\overline{\rm A}_{\rm TM}$ are closely related:
 - $L_{\rm D}$: Does M not accept $\langle M \rangle$?
 - $\overline{\mathbf{A}}_{\text{TM}}$: Does M not accept string w?
- Given this connection, we will show how to turn a hypothetical recognizer for \overline{A}_{TM} into a hypothetical recognizer for L_D .

H = "On input $\langle M \rangle$:

- Construct the string $\langle M, \langle M \rangle \rangle$.
- Run R on $\langle M, \langle M \rangle \rangle$.
- If R accepts $\langle M, \langle M \rangle \rangle$, then H accepts $\langle M \rangle$.
- If R rejects $\langle M, \langle M \rangle \rangle$, then H rejects $\langle M \rangle$."

H = "On input $\langle M \rangle$:

- Construct the string $\langle M, \langle M \rangle \rangle$.
- Run R on $\langle M, \langle M \rangle \rangle$.
- If R accepts $\langle M, \langle M \rangle \rangle$, then H accepts $\langle M \rangle$.
- If R rejects $\langle M, \langle M \rangle \rangle$, then H rejects $\langle M \rangle$."

What happens if...

H = "On input $\langle M \rangle$:

- Construct the string $\langle M, \langle M \rangle \rangle$.
- Run R on $\langle M, \langle M \rangle \rangle$.
- If R accepts $\langle M, \langle M \rangle \rangle$, then H accepts $\langle M \rangle$.
- If R rejects $\langle M, \langle M \rangle \rangle$, then H rejects $\langle M \rangle$."

What happens if...

M does not accept $\langle M \rangle$?

H = "On input $\langle M \rangle$:

- Construct the string $\langle M, \langle M \rangle \rangle$.
- Run R on $\langle M, \langle M \rangle \rangle$.
- If R accepts $\langle M, \langle M \rangle \rangle$, then H accepts $\langle M \rangle$.
- If R rejects $\langle M, \langle M \rangle \rangle$, then H rejects $\langle M \rangle$."

What happens if...

M does not accept $\langle M \rangle$?

Machine R accepts $\langle M, \langle M \rangle \rangle$

H = "On input $\langle M \rangle$:

- Construct the string $\langle M, \langle M \rangle \rangle$.
- Run R on $\langle M, \langle M \rangle \rangle$.
- If R accepts $\langle M, \langle M \rangle \rangle$, then H accepts $\langle M \rangle$.
- If R rejects $\langle M, \langle M \rangle \rangle$, then H rejects $\langle M \rangle$."

What happens if...

M does not accept $\langle M \rangle$?

Machine R accepts $\langle M, \langle M \rangle \rangle$

H = "On input $\langle M \rangle$:

- Construct the string $\langle M, \langle M \rangle \rangle$.
- Run R on $\langle M, \langle M \rangle \rangle$.
- If R accepts $\langle M, \langle M \rangle \rangle$, then H accepts $\langle M \rangle$.
- If R rejects $\langle M, \langle M \rangle \rangle$, then H rejects $\langle M \rangle$."

What happens if...

M does not accept $\langle M \rangle$? **Accept**

Machine R accepts $\langle M, \langle M \rangle \rangle$

H = "On input $\langle M \rangle$:

- Construct the string $\langle M, \langle M \rangle \rangle$.
- Run R on $\langle M, \langle M \rangle \rangle$.
- If R accepts $\langle M, \langle M \rangle \rangle$, then H accepts $\langle M \rangle$.
- If R rejects $\langle M, \langle M \rangle \rangle$, then H rejects $\langle M \rangle$."

What happens if...

M does not accept $\langle M \rangle$? **Accept**

H = "On input $\langle M \rangle$:

- Construct the string $\langle M, \langle M \rangle \rangle$.
- Run R on $\langle M, \langle M \rangle \rangle$.
- If R accepts $\langle M, \langle M \rangle \rangle$, then H accepts $\langle M \rangle$.
- If R rejects $\langle M, \langle M \rangle \rangle$, then H rejects $\langle M \rangle$."

What happens if...

M does not accept $\langle M \rangle$? **Accept**

M accepts $\langle M \rangle$?

H = "On input $\langle M \rangle$:

- Construct the string $\langle M, \langle M \rangle \rangle$.
- Run R on $\langle M, \langle M \rangle \rangle$.
- If R accepts $\langle M, \langle M \rangle \rangle$, then H accepts $\langle M \rangle$.
- If R rejects $\langle M, \langle M \rangle \rangle$, then H rejects $\langle M \rangle$."

What happens if...

M does not accept $\langle M \rangle$? **Accept**

M accepts $\langle M \rangle$?

Machine R does not accept $\langle M, \langle M \rangle \rangle$

H = "On input $\langle M \rangle$:

- Construct the string $\langle M, \langle M \rangle \rangle$.
- Run R on $\langle M, \langle M \rangle \rangle$.
- If R accepts $\langle M, \langle M \rangle \rangle$, then H accepts $\langle M \rangle$.
- If R rejects $\langle M, \langle M \rangle \rangle$, then H rejects $\langle M \rangle$."

What happens if...

M does not accept $\langle M \rangle$? **Accept**

M accepts $\langle M \rangle$? **Reject** or **Loop**

Machine R does not accept $\langle M, \langle M \rangle \rangle$

H = "On input $\langle M \rangle$:

- Construct the string $\langle M, \langle M \rangle \rangle$.
- Run R on $\langle M, \langle M \rangle \rangle$.
- If R accepts $\langle M, \langle M \rangle \rangle$, then H accepts $\langle M \rangle$.
- If R rejects $\langle M, \langle M \rangle \rangle$, then H rejects $\langle M \rangle$."

What happens if...

M does not accept $\langle M \rangle$? **Accept**

M accepts $\langle M \rangle$? **Reject** or **Loop**

H = "On input $\langle M \rangle$:

- Construct the string $\langle M, \langle M \rangle \rangle$.
- Run R on $\langle M, \langle M \rangle \rangle$.
- If R accepts $\langle M, \langle M \rangle \rangle$, then H accepts $\langle M \rangle$.
- If R rejects $\langle M, \langle M \rangle \rangle$, then H rejects $\langle M \rangle$."

What happens if...

M does not accept $\langle M \rangle$? **Accept**

M accepts $\langle M \rangle$? **Reject** or **Loop**

H is a TM for $L_{\rm D}$!

Theorem: $\overline{A}_{TM} \notin \mathbf{RE}$.

Theorem: $\overline{A}_{TM} \notin \mathbf{RE}$.

Proof:

Theorem: $\overline{A}_{TM} \notin \mathbf{RE}$.

Proof: By contradiction; assume that $\overline{A}_{TM} \in \mathbf{RE}$.

Proof: By contradiction; assume that $\overline{A}_{TM} \in \mathbf{RE}$. Then there must be a recognizer for \overline{A}_{TM} ; call it R.

Proof: By contradiction; assume that $\overline{A}_{TM} \in \mathbf{RE}$. Then there must be a recognizer for \overline{A}_{TM} ; call it R.

Consider the TM *H* defined below:

H = "On input $\langle M \rangle$, where M is a TM: Construct the string $\langle M, \langle M \rangle \rangle$. Run R on $\langle M, \langle M \rangle \rangle$. If R accepts $\langle M, \langle M \rangle \rangle$, H accepts $\langle M \rangle$. If R rejects $\langle M, \langle M \rangle \rangle$, H rejects $\langle M \rangle$."

Proof: By contradiction; assume that $\overline{A}_{TM} \in \mathbf{RE}$. Then there must be a recognizer for \overline{A}_{TM} ; call it R.

Consider the TM *H* defined below:

 $H = \text{``On input } \langle M \rangle, \text{ where } M \text{ is a TM:}$ $\text{Construct the string } \langle M, \langle M \rangle \rangle.$ $\text{Run } R \text{ on } \langle M, \langle M \rangle \rangle.$ $\text{If } R \text{ accepts } \langle M, \langle M \rangle \rangle, H \text{ accepts } \langle M \rangle.$ $\text{If } R \text{ rejects } \langle M, \langle M \rangle \rangle, H \text{ rejects } \langle M \rangle.$

We claim that $\mathcal{L}(H) = L_{D}$.

Proof: By contradiction; assume that $\overline{A}_{TM} \in \mathbf{RE}$. Then there must be a recognizer for \overline{A}_{TM} ; call it R.

Consider the TM *H* defined below:

H = "On input $\langle M \rangle$, where M is a TM: Construct the string $\langle M, \langle M \rangle \rangle$. Run R on $\langle M, \langle M \rangle \rangle$. If R accepts $\langle M, \langle M \rangle \rangle$, H accepts $\langle M \rangle$. If R rejects $\langle M, \langle M \rangle \rangle$, H rejects $\langle M \rangle$."

We claim that $\mathcal{L}(H) = L_{\mathrm{D}}$. We will prove this by showing that $\langle M \rangle \in L_{\mathrm{D}}$ iff H accepts $\langle M \rangle$.

Proof: By contradiction; assume that $\overline{A}_{TM} \in \mathbf{RE}$. Then there must be a recognizer for \overline{A}_{TM} ; call it R.

Consider the TM *H* defined below:

 $H = \text{``On input } \langle M \rangle, \text{ where } M \text{ is a TM:}$ $\text{Construct the string } \langle M, \langle M \rangle \rangle.$ $\text{Run } R \text{ on } \langle M, \langle M \rangle \rangle.$ $\text{If } R \text{ accepts } \langle M, \langle M \rangle \rangle, H \text{ accepts } \langle M \rangle.$ $\text{If } R \text{ rejects } \langle M, \langle M \rangle \rangle, H \text{ rejects } \langle M \rangle.$

We claim that $\mathcal{L}(H) = L_{\mathrm{D}}$. We will prove this by showing that $\langle M \rangle \in L_{\mathrm{D}}$ iff H accepts $\langle M \rangle$.

By construction we have that H accepts $\langle M \rangle$ iff R accepts $\langle M, \langle M \rangle \rangle$.

Proof: By contradiction; assume that $\overline{A}_{TM} \in \mathbf{RE}$. Then there must be a recognizer for \overline{A}_{TM} ; call it R.

Consider the TM *H* defined below:

H = "On input $\langle M \rangle$, where M is a TM: Construct the string $\langle M, \langle M \rangle \rangle$. Run R on $\langle M, \langle M \rangle \rangle$. If R accepts $\langle M, \langle M \rangle \rangle$, H accepts $\langle M \rangle$. If R rejects $\langle M, \langle M \rangle \rangle$, H rejects $\langle M \rangle$."

We claim that $\mathcal{L}(H) = L_{\mathrm{D}}$. We will prove this by showing that $\langle M \rangle \in L_{\mathrm{D}}$ iff H accepts $\langle M \rangle$.

By construction we have that H accepts $\langle M \rangle$ iff R accepts $\langle M, \langle M \rangle \rangle$. Since R is a recognizer for \overline{A}_{TM} , R accepts $\langle M, \langle M \rangle \rangle$ iff M does not accept $\langle M \rangle$.

Proof: By contradiction; assume that $\overline{A}_{TM} \in \mathbf{RE}$. Then there must be a recognizer for \overline{A}_{TM} ; call it R.

Consider the TM *H* defined below:

We claim that $\mathcal{L}(H) = L_{D}$. We will prove this by showing that $\langle M \rangle \in L_{D}$ iff H accepts $\langle M \rangle$.

By construction we have that H accepts $\langle M \rangle$ iff R accepts $\langle M, \langle M \rangle \rangle$. Since R is a recognizer for \overline{A}_{TM} , R accepts $\langle M, \langle M \rangle \rangle$ iff M does not accept $\langle M \rangle$. Finally, note that M does not accept $\langle M \rangle$ iff $\langle M \rangle \in L_D$.

Proof: By contradiction; assume that $\overline{A}_{TM} \in \mathbf{RE}$. Then there must be a recognizer for \overline{A}_{TM} ; call it R.

Consider the TM *H* defined below:

We claim that $\mathcal{L}(H) = L_{D}$. We will prove this by showing that $\langle M \rangle \in L_{D}$ iff H accepts $\langle M \rangle$.

By construction we have that H accepts $\langle M \rangle$ iff R accepts $\langle M, \langle M \rangle \rangle$. Since R is a recognizer for \overline{A}_{TM} , R accepts $\langle M, \langle M \rangle \rangle$ iff M does not accept $\langle M \rangle$. Finally, note that M does not accept $\langle M \rangle$ iff $\langle M \rangle \in L_D$. Therefore, we have H accepts $\langle M \rangle$ iff $\langle M \rangle \in L_D$, so $\mathcal{L}(H) = L_D$.

Proof: By contradiction; assume that $\overline{A}_{TM} \in \mathbf{RE}$. Then there must be a recognizer for \overline{A}_{TM} ; call it R.

Consider the TM *H* defined below:

 $H = \text{``On input } \langle M \rangle, \text{ where } M \text{ is a TM:}$ $\text{Construct the string } \langle M, \langle M \rangle \rangle.$ $\text{Run } R \text{ on } \langle M, \langle M \rangle \rangle.$ $\text{If } R \text{ accepts } \langle M, \langle M \rangle \rangle, H \text{ accepts } \langle M \rangle.$ $\text{If } R \text{ rejects } \langle M, \langle M \rangle \rangle, H \text{ rejects } \langle M \rangle.$

We claim that $\mathcal{L}(H) = L_{D}$. We will prove this by showing that $\langle M \rangle \in L_{D}$ iff H accepts $\langle M \rangle$.

By construction we have that H accepts $\langle M \rangle$ iff R accepts $\langle M, \langle M \rangle \rangle$. Since R is a recognizer for \overline{A}_{TM} , R accepts $\langle M, \langle M \rangle \rangle$ iff M does not accept $\langle M \rangle$. Finally, note that M does not accept $\langle M \rangle$ iff $\langle M \rangle \in L_D$. Therefore, we have H accepts $\langle M \rangle$ iff $\langle M \rangle \in L_D$, so $\mathscr{L}(H) = L_D$. But this is impossible, since $L_D \notin \mathbf{RE}$.

Proof: By contradiction; assume that $\overline{A}_{TM} \in \mathbf{RE}$. Then there must be a recognizer for \overline{A}_{TM} ; call it R.

Consider the TM *H* defined below:

H = "On input $\langle M \rangle$, where M is a TM: Construct the string $\langle M, \langle M \rangle \rangle$. Run R on $\langle M, \langle M \rangle \rangle$. If R accepts $\langle M, \langle M \rangle \rangle$, H accepts $\langle M \rangle$. If R rejects $\langle M, \langle M \rangle \rangle$, H rejects $\langle M \rangle$."

We claim that $\mathcal{L}(H) = L_{D}$. We will prove this by showing that $\langle M \rangle \in L_{D}$ iff H accepts $\langle M \rangle$.

By construction we have that H accepts $\langle M \rangle$ iff R accepts $\langle M, \langle M \rangle \rangle$. Since R is a recognizer for \overline{A}_{TM} , R accepts $\langle M, \langle M \rangle \rangle$ iff M does not accept $\langle M \rangle$. Finally, note that M does not accept $\langle M \rangle$ iff $\langle M \rangle \in L_D$. Therefore, we have H accepts $\langle M \rangle$ iff $\langle M \rangle \in L_D$, so $\mathscr{L}(H) = L_D$. But this is impossible, since $L_D \notin \mathbf{RE}$.

We have reached a contradiction, so our assumption must have been incorrect.

Proof: By contradiction; assume that $\overline{A}_{TM} \in \mathbf{RE}$. Then there must be a recognizer for \overline{A}_{TM} ; call it R.

Consider the TM *H* defined below:

 $H = \text{``On input } \langle M \rangle$, where M is a TM:
 Construct the string $\langle M, \langle M \rangle \rangle$.
 Run R on $\langle M, \langle M \rangle \rangle$.
 If R accepts $\langle M, \langle M \rangle \rangle$, H accepts $\langle M \rangle$.
 If R rejects $\langle M, \langle M \rangle \rangle$, H rejects $\langle M \rangle$."

We claim that $\mathcal{L}(H) = L_{D}$. We will prove this by showing that $\langle M \rangle \in L_{D}$ iff H accepts $\langle M \rangle$.

By construction we have that H accepts $\langle M \rangle$ iff R accepts $\langle M, \langle M \rangle \rangle$. Since R is a recognizer for \overline{A}_{TM} , R accepts $\langle M, \langle M \rangle \rangle$ iff M does not accept $\langle M \rangle$. Finally, note that M does not accept $\langle M \rangle$ iff $\langle M \rangle \in L_D$. Therefore, we have H accepts $\langle M \rangle$ iff $\langle M \rangle \in L_D$, so $\mathscr{L}(H) = L_D$. But this is impossible, since $L_D \notin \mathbf{RE}$.

We have reached a contradiction, so our assumption must have been incorrect. Thus $\overline{A}_{\scriptscriptstyle TM} \notin \mathbf{RE}$, as required.

Proof: By contradiction; assume that $\overline{A}_{TM} \in \mathbf{RE}$. Then there must be a recognizer for \overline{A}_{TM} ; call it R.

Consider the TM *H* defined below:

We claim that $\mathcal{L}(H) = L_{D}$. We will prove this by showing that $\langle M \rangle \in L_{D}$ iff H accepts $\langle M \rangle$.

By construction we have that H accepts $\langle M \rangle$ iff R accepts $\langle M, \langle M \rangle \rangle$. Since R is a recognizer for \overline{A}_{TM} , R accepts $\langle M, \langle M \rangle \rangle$ iff M does not accept $\langle M \rangle$. Finally, note that M does not accept $\langle M \rangle$ iff $\langle M \rangle \in L_D$. Therefore, we have H accepts $\langle M \rangle$ iff $\langle M \rangle \in L_D$, so $\mathscr{L}(H) = L_D$. But this is impossible, since $L_D \notin \mathbf{RE}$.

We have reached a contradiction, so our assumption must have been incorrect. Thus $\overline{A}_{\scriptscriptstyle TM} \notin \mathbf{RE}$, as required. \blacksquare

Why All This Matters

- We *finally* have found concrete examples of unsolvable problems!
- We are starting to see a line of reasoning we can use to find unsolvable problems:
 - Start with a known unsolvable problem.
 - Try to show that the unsolvability of that problem entails the unsolvability of other problems.
- We will see this used extensively in the upcoming weeks.

Revisiting **RE**

Recall: Language of a TM

• The language of a Turing machine M, denoted $\mathcal{L}(M)$, is the set of all strings that M accepts:

$$\mathscr{L}(M) = \{ w \in \Sigma^* \mid M \text{ accepts } w \}$$

- For any $w \in \mathcal{L}(M)$, M accepts w.
- For any $w \notin \mathcal{L}(M)$, M does not accept w.
 - It might loop forever, or it might explicitly reject.
- A language is called **recognizable** if it is the language of some TM.
- Notation: **RE** is the set of all recognizable languages.

 $L \in \mathbf{RE}$ iff L is recognizable

Why "Recognizable?"

- Given TM M with language $\mathcal{L}(M)$, running M on a string w will not necessarily tell you whether $w \in \mathcal{L}(M)$.
- If the machine is running, you can't tell whether
 - It is eventually going to halt, but just needs more time, or
 - It is never going to halt.
- However, if you know for a fact that $w \in \mathcal{L}(M)$, then the machine can confirm this (it eventually accepts).
- The machine can't *decide* whether or not $w \in \mathcal{L}(M)$, but it can *recognize* strings that are in the language.
- We sometimes call a TM for a language L a **recognizer** for L.

Deciders

- Some Turing machines always halt; they never go into an infinite loop.
- Turing machines of this sort are called deciders.
- For deciders, accepting is the same as not rejecting and rejecting is the same as not accepting.

Decidable Languages

- A language L is called **decidable** iff there is a decider M such that $\mathcal{L}(M) = L$.
- Given a decider M, you can learn whether or not a string $w \in \mathcal{L}(M)$.
 - Run *M* on *w*.
 - Although it might take a staggeringly long time, M will eventually accept or reject w.
- The set \mathbf{R} is the set of all decidable languages.

 $L \in \mathbf{R}$ iff L is decidable

R and RE Languages

- Intuitively, a language is in \mathbf{RE} if there is some way that you could exhaustively search for a proof that $w \in L$.
 - If you find it, accept!
 - If you don't find one, keep looking!
- Intuitively, a language is in \mathbf{R} if there is a concrete algorithm that can determine whether $w \in L$.
 - It tends to be *much* harder to show that a language is in **R** than in **RE**.

Examples of **R** Languages

- All regular languages are in R.
 - If *L* is regular, we can run the DFA for *L* on a string *w* and then either accept or reject *w* based on what state it ends in.
- { $0^n 1^n \mid n \in \mathbb{N}$ } is in **R**.
 - The TM we built last Wednesday is a decider.
- Multiplication is in **R**.
 - Can check if $m \times n = p$ by repeatedly subtracting out copies of n. If the equation balances, accept; if not, reject.

CFLs and **R**

- Using an NTM, we sketched a proof that all CFLs are in **RE**.
 - Nondeterministically guess a derivation, then deterministically check that derivation.
- Harder result: all CFLs are in R.
 - Read Sipser, Ch. 4.1 for details.
 - Or come talk to me after lecture!

Why R Matters

- If a language is in **R**, there is an algorithm that can decide membership in that language.
 - Run the decider and see what it says.
- If there is an algorithm that can decide membership in a language, that language is in \mathbf{R} .
 - By the Church-Turing thesis, any effective model of computation is equivalent in power to a Turing machine.
 - Thus if there is *any* algorithm for deciding membership in the language, there must be a decider for it.
 - Thus the language is in \mathbf{R} .
- A language is in R iff there is an algorithm for deciding membership in that language.

$\mathbf{R} \stackrel{?}{=} \mathbf{RE}$

- Every decider is a Turing machine, but not every Turing machine is a decider.
- Thus $\mathbf{R} \subseteq \mathbf{RE}$.
- Hugely important theoretical question:

Is $\mathbf{R} = \mathbf{R}\mathbf{E}$?

• That is, if we can *verify* that a string is in a language, can we *decide* whether that string is in the language?

Which Picture is Correct?

All Languages

Which Picture is Correct?

All Languages

An Important Observation

R is Closed Under Complementation

If $L \in \mathbf{R}$, then $\overline{L} \in \mathbf{R}$ as well.

M' = "On input w:
 Run M on w.
 If M accepts w, reject.
 If M rejects w, accept."

Will this work if M is a recognizer, rather than a decider?

Proof: Consider any $L \in \mathbf{R}$.

Proof: Consider any $L \in \mathbf{R}$. We will prove that $\overline{L} \in \mathbf{R}$ by constructing a decider M' such that $\mathcal{L}(M') = \overline{L}$.

Proof: Consider any $L \in \mathbf{R}$. We will prove that $\overline{L} \in \mathbf{R}$ by constructing a decider M' such that $\mathcal{L}(M') = \overline{L}$.

This is the standard way to show that a language is in **R**. Note that we aren't just building any arbitrary TM; it has to be a decider.

Proof: Consider any $L \in \mathbf{R}$. We will prove that $\overline{L} \in \mathbf{R}$ by constructing a decider M' such that $\mathcal{L}(M') = \overline{L}$.

Let M be a decider for L.

Proof: Consider any $L \in \mathbf{R}$. We will prove that $\overline{L} \in \mathbf{R}$ by constructing a decider M' such that $\mathcal{L}(M') = \overline{L}$.

Let M be a decider for L. Then construct the machine M' as follows:

M' = "On input $w \in \Sigma^*$:
 Run M on w.
 If M accepts w, reject.
 If M rejects w, accept."

Proof: Consider any $L \in \mathbf{R}$. We will prove that $\overline{L} \in \mathbf{R}$ by constructing a decider M' such that $\mathcal{L}(M') = \overline{L}$.

Let M be a decider for L. Then construct the machine M' as follows:

M' = "On input $w \in \Sigma^*$:
 Run M on w.
 If M accepts w, reject.
 If M rejects w, accept."

We need to show that M' is a decider and that $\mathcal{L}(M') = \overline{L}$.

Proof: Consider any $L \in \mathbf{R}$. We will prove that $\overline{L} \in \mathbf{R}$ by constructing a decider M' such that $\mathcal{L}(M') = \overline{L}$.

Let M be a decider for L. Then construct the machine M' as follows:

M' = "On input $w \in \Sigma^*$:
 Run M on w.
 If M accepts w, reject.
 If M rejects w, accept."

We need to show that M' is a decider and that $\mathcal{L}(M') = \overline{L}$.

There are two proofs required here, and they're separate from one another. Just showing one or the other isn't sufficient.

Proof: Consider any $L \in \mathbf{R}$. We will prove that $\overline{L} \in \mathbf{R}$ by constructing a decider M' such that $\mathcal{L}(M') = \overline{L}$.

Let M be a decider for L. Then construct the machine M' as follows:

M' = "On input $w \in \Sigma^*$:
 Run M on w.
 If M accepts w, reject.
 If M rejects w, accept."

We need to show that M' is a decider and that $\mathcal{L}(M') = \overline{L}$.

To show that M' is a decider, we will prove that it always halts.

Proof: Consider any $L \in \mathbf{R}$. We will prove that $\overline{L} \in \mathbf{R}$ by constructing a decider M' such that $\mathcal{L}(M') = \overline{L}$.

Let M be a decider for L. Then construct the machine M' as follows:

M' = "On input $w \in \Sigma^*$:
 Run M on w.
 If M accepts w, reject.
 If M rejects w, accept."

We need to show that M' is a decider and that $\mathcal{L}(M') = \overline{L}$.

To show that M' is a decider, we will prove that it always halts. Consider what happens if we run M' on any input w.

Proof: Consider any $L \in \mathbf{R}$. We will prove that $\overline{L} \in \mathbf{R}$ by constructing a decider M' such that $\mathcal{L}(M') = \overline{L}$.

Let M be a decider for L. Then construct the machine M' as follows:

M' = "On input $w \in \Sigma^*$:
 Run M on w.
 If M accepts w, reject.
 If M rejects w, accept."

We need to show that M' is a decider and that $\mathcal{L}(M') = \overline{L}$.

To show that M' is a decider, we will prove that it always halts. Consider what happens if we run M' on any input w. First, M' runs M on w.

Proof: Consider any $L \in \mathbf{R}$. We will prove that $\overline{L} \in \mathbf{R}$ by constructing a decider M' such that $\mathcal{L}(M') = \overline{L}$.

Let M be a decider for L. Then construct the machine M' as follows:

M' = "On input $w \in \Sigma^*$:
 Run M on w.
 If M accepts w, reject.
 If M rejects w, accept."

We need to show that M' is a decider and that $\mathcal{L}(M') = \overline{L}$.

To show that M' is a decider, we will prove that it always halts. Consider what happens if we run M' on any input w. First, M' runs M on w. Since M is a decider, M either accepts w or rejects w.

Proof: Consider any $L \in \mathbf{R}$. We will prove that $\overline{L} \in \mathbf{R}$ by constructing a decider M' such that $\mathcal{L}(M') = \overline{L}$.

Let M be a decider for L. Then construct the machine M' as follows:

M' = "On input $w \in \Sigma^*$:
 Run M on w.
 If M accepts w, reject.
 If M rejects w, accept."

We need to show that M' is a decider and that $\mathcal{L}(M') = \overline{L}$.

To show that M' is a decider, we will prove that it always halts. Consider what happens if we run M' on any input w. First, M' runs M on w. Since M is a decider, M either accepts w or rejects w. If M accepts w, M' rejects w.

Proof: Consider any $L \in \mathbf{R}$. We will prove that $\overline{L} \in \mathbf{R}$ by constructing a decider M' such that $\mathcal{L}(M') = \overline{L}$.

Let M be a decider for L. Then construct the machine M' as follows:

M' = "On input $w \in \Sigma^*$:
 Run M on w.
 If M accepts w, reject.
 If M rejects w, accept."

We need to show that M' is a decider and that $\mathcal{L}(M') = \overline{L}$.

To show that M' is a decider, we will prove that it always halts. Consider what happens if we run M' on any input w. First, M' runs M on w. Since M is a decider, M either accepts w or rejects w. If M accepts w, M' rejects w. If M rejects w, M' accepts w.

Proof: Consider any $L \in \mathbf{R}$. We will prove that $\overline{L} \in \mathbf{R}$ by constructing a decider M' such that $\mathcal{L}(M') = \overline{L}$.

Let M be a decider for L. Then construct the machine M' as follows:

M' = "On input $w \in \Sigma^*$:
 Run M on w.
 If M accepts w, reject.
 If M rejects w, accept."

We need to show that M' is a decider and that $\mathcal{L}(M') = \overline{L}$.

To show that M' is a decider, we will prove that it always halts. Consider what happens if we run M' on any input w. First, M' runs M on w. Since M is a decider, M either accepts w or rejects w. If M accepts w, M' rejects w. If M rejects w, M' accepts w. Thus M' always accepts or rejects, so M' is a decider.

Proof: Consider any $L \in \mathbf{R}$. We will prove that $\overline{L} \in \mathbf{R}$ by constructing a decider M' such that $\mathcal{L}(M') = \overline{L}$.

Let M be a decider for L. Then construct the machine M' as follows:

M' = "On input $w \in \Sigma^*$:
 Run M on w.
 If M accepts w, reject.
 If M rejects w, accept."

We need to show that M' is a decider and that $\mathcal{L}(M') = \overline{L}$.

To show that M' is a decider, we will prove that it always halts. Consider what happens if we run M' on any input w. First, M' runs M on w. Since M is a decider, M either accepts w or rejects w. If M accepts w, M' rejects w. If M rejects w, M' accepts w. Thus M' always accepts or rejects, so M' is a decider.

To show that $\mathcal{L}(M') = \overline{L}$, we will prove that M' accepts w iff $w \in \overline{L}$.

Proof: Consider any $L \in \mathbf{R}$. We will prove that $\overline{L} \in \mathbf{R}$ by constructing a decider M' such that $\mathcal{L}(M') = \overline{L}$.

Let M be a decider for L. Then construct the machine M' as follows:

M' = "On input $w \in \Sigma^*$:
 Run M on w.
 If M accepts w, reject.
 If M rejects w, accept."

We need to show that M' is a decider and that $\mathcal{L}(M') = \overline{L}$.

To show that M' is a decider, we will prove that it always halts. Consider what happens if we run M' on any input w. First, M' runs M on w. Since M is a decider, M either accepts w or rejects w. If M accepts w, M' rejects w. If M rejects w, M' accepts w. Thus M' always accepts or rejects, so M' is a decider.

To show that $\mathcal{L}(M') = \overline{L}$, we will prove that M' accepts w iff $w \in \overline{L}$. Note that M' accepts w iff $w \in \Sigma^*$ and M rejects w.

Proof: Consider any $L \in \mathbf{R}$. We will prove that $\overline{L} \in \mathbf{R}$ by constructing a decider M' such that $\mathcal{L}(M') = \overline{L}$.

Let M be a decider for L. Then construct the machine M' as follows:

M' = "On input $w \in \Sigma^*$:
 Run M on w.
 If M accepts w, reject.
 If M rejects w, accept."

We need to show that M' is a decider and that $\mathcal{L}(M') = \overline{L}$.

To show that M' is a decider, we will prove that it always halts. Consider what happens if we run M' on any input w. First, M' runs M on w. Since M is a decider, M either accepts w or rejects w. If M accepts w, M' rejects w. If M rejects w, M' accepts w. Thus M' always accepts or rejects, so M' is a decider.

To show that $\mathcal{L}(M') = \overline{L}$, we will prove that M' accepts w iff $w \in \overline{L}$. Note that M' accepts w iff $w \in \Sigma^*$ and M rejects w. Since M is a decider, M rejects w iff M does not accept w.

Proof: Consider any $L \in \mathbf{R}$. We will prove that $\overline{L} \in \mathbf{R}$ by constructing a decider M' such that $\mathcal{L}(M') = \overline{L}$.

Let M be a decider for L. Then construct the machine M' as follows:

M' = "On input $w \in \Sigma^*$:
 Run M on w.
 If M accepts w, reject.
 If M rejects w, accept."

We need to show that M' is a decider and that $\mathcal{L}(M') = \overline{L}$.

To show that M' is a decider, we will prove that it always halts. Consider what happens if we run M' on any input w. First, M' runs M on w. Since M is a decider, M either accepts w or rejects w. If M accepts w, M' rejects w. If M rejects w, M' accepts w. Thus M' always accepts or rejects, so M' is a decider.

To show that $\mathscr{L}(M') = \overline{L}$, we will prove that M' accepts w iff $w \in \overline{L}$. Note that M' accepts w iff $w \in \Sigma^*$ and M rejects w. Since M is a decider, M rejects w iff M does not accept w. M does not accept w iff $w \notin \mathscr{L}(M)$.

Proof: Consider any $L \in \mathbf{R}$. We will prove that $\overline{L} \in \mathbf{R}$ by constructing a decider M' such that $\mathcal{L}(M') = \overline{L}$.

Let M be a decider for L. Then construct the machine M' as follows:

M' = "On input $w \in \Sigma^*$:
 Run M on w.
 If M accepts w, reject.
 If M rejects w, accept."

We need to show that M' is a decider and that $\mathcal{L}(M') = \overline{L}$.

To show that M' is a decider, we will prove that it always halts. Consider what happens if we run M' on any input w. First, M' runs M on w. Since M is a decider, M either accepts w or rejects w. If M accepts w, M' rejects w. If M rejects w, M' accepts w. Thus M' always accepts or rejects, so M' is a decider.

To show that $\mathscr{L}(M') = \overline{L}$, we will prove that M' accepts w iff $w \in \overline{L}$. Note that M' accepts w iff $w \in \Sigma^*$ and M rejects w. Since M is a decider, M rejects w iff M does not accept w. M does not accept w iff $w \notin \mathscr{L}(M)$. Thus M' accepts w iff $w \in \Sigma^*$ and $w \notin \mathscr{L}(M)$, so M' accepts w iff $w \in \overline{L}$.

Proof: Consider any $L \in \mathbf{R}$. We will prove that $\overline{L} \in \mathbf{R}$ by constructing a decider M' such that $\mathcal{L}(M') = \overline{L}$.

Let M be a decider for L. Then construct the machine M' as follows:

M' = "On input $w \in \Sigma^*$:
 Run M on w.
 If M accepts w, reject.
 If M rejects w, accept."

We need to show that M' is a decider and that $\mathcal{L}(M') = \overline{L}$.

To show that M' is a decider, we will prove that it always halts. Consider what happens if we run M' on any input w. First, M' runs M on w. Since M is a decider, M either accepts w or rejects w. If M accepts w, M' rejects w. If M rejects w, M' accepts w. Thus M' always accepts or rejects, so M' is a decider.

To show that $\mathscr{L}(M') = \overline{L}$, we will prove that M' accepts w iff $w \in \overline{L}$. Note that M' accepts w iff $w \in \Sigma^*$ and M rejects w. Since M is a decider, M rejects w iff M does not accept w. M does not accept w iff $w \notin \mathscr{L}(M)$. Thus M' accepts w iff $w \in \Sigma^*$ and $w \notin \mathscr{L}(M)$, so M' accepts w iff $w \in \overline{L}$. Therefore, $\mathscr{L}(M') = \overline{L}$.

Proof: Consider any $L \in \mathbf{R}$. We will prove that $\overline{L} \in \mathbf{R}$ by constructing a decider M' such that $\mathcal{L}(M') = \overline{L}$.

Let M be a decider for L. Then construct the machine M' as follows:

M' = "On input $w \in \Sigma^*$:
 Run M on w.
 If M accepts w, reject.
 If M rejects w, accept."

We need to show that M' is a decider and that $\mathcal{L}(M') = \overline{L}$.

To show that M' is a decider, we will prove that it always halts. Consider what happens if we run M' on any input w. First, M' runs M on w. Since M is a decider, M either accepts w or rejects w. If M accepts w, M' rejects w. If M rejects w, M' accepts w. Thus M' always accepts or rejects, so M' is a decider.

To show that $\mathscr{L}(M') = \overline{L}$, we will prove that M' accepts w iff $w \in \overline{L}$. Note that M' accepts w iff $w \in \Sigma^*$ and M rejects w. Since M is a decider, M rejects w iff M does not accept w. M does not accept w iff $w \notin \mathscr{L}(M)$. Thus M' accepts w iff $w \in \Sigma^*$ and $w \notin \mathscr{L}(M)$, so M' accepts w iff $w \in \overline{L}$. Therefore, $\mathscr{L}(M') = \overline{L}$.

Since M' is a decider with $\mathcal{L}(M') = \overline{L}$, we have $\overline{L} \in \mathbf{R}$, as required.

Proof: Consider any $L \in \mathbf{R}$. We will prove that $\overline{L} \in \mathbf{R}$ by constructing a decider M' such that $\mathcal{L}(M') = \overline{L}$.

Let M be a decider for L. Then construct the machine M' as follows:

M' = "On input $w \in \Sigma^*$:
 Run M on w.
 If M accepts w, reject.
 If M rejects w, accept."

We need to show that M' is a decider and that $\mathcal{L}(M') = \overline{L}$.

To show that M' is a decider, we will prove that it always halts. Consider what happens if we run M' on any input w. First, M' runs M on w. Since M is a decider, M either accepts w or rejects w. If M accepts w, M' rejects w. If M rejects w, M' accepts w. Thus M' always accepts or rejects, so M' is a decider.

To show that $\mathscr{L}(M') = \overline{L}$, we will prove that M' accepts w iff $w \in \overline{L}$. Note that M' accepts w iff $w \in \Sigma^*$ and M rejects w. Since M is a decider, M rejects w iff M does not accept w. M does not accept w iff $w \notin \mathscr{L}(M)$. Thus M' accepts w iff $w \in \Sigma^*$ and $w \notin \mathscr{L}(M)$, so M' accepts w iff $w \in \overline{L}$. Therefore, $\mathscr{L}(M') = \overline{L}$.

Since M' is a decider with $\mathcal{L}(M') = \overline{L}$, we have $\overline{L} \in \mathbf{R}$, as required.

$\mathbf{R} \stackrel{?}{=} \mathbf{RE}$

- We can now resolve the question of $\mathbf{R} \stackrel{?}{=} \mathbf{RE}$.
- If **R** = **RE**, we need to show that if there is a recognizer for *any* **RE** language *L*, there has to be a decider for *L*.
- If $\mathbf{R} \neq \mathbf{RE}$, we just need to find a single language in \mathbf{RE} that is not in \mathbf{R} .

A_{TM}

- Recall: the language A_{TM} is the language of the universal Turing machine U_{TM} .
- Consequently, $A_{TM} \in \mathbf{RE}$.
- Is $A_{TM} \in \mathbb{R}$?

Proof: By contradiction; assume $A_{TM} \in \mathbf{R}$.

Proof: By contradiction; assume $A_{TM} \in \mathbf{R}$. Since \mathbf{R} is closed under complementation, this means that $\overline{A}_{TM} \in \mathbf{R}$.

Proof: By contradiction; assume $A_{TM} \in \mathbf{R}$. Since \mathbf{R} is closed under complementation, this means that $\overline{A}_{TM} \in \mathbf{R}$. Since $\mathbf{R} \subseteq \mathbf{RE}$, this means that $\overline{A}_{TM} \in \mathbf{RE}$.

Proof: By contradiction; assume $A_{TM} \in \mathbf{R}$. Since \mathbf{R} is closed under complementation, this means that $\overline{A}_{TM} \in \mathbf{R}$. Since $\mathbf{R} \subseteq \mathbf{RE}$, this means that $\overline{A}_{TM} \in \mathbf{RE}$. But this is impossible, since we know $\overline{A}_{TM} \notin \mathbf{RE}$.

Proof: By contradiction; assume $A_{TM} \in \mathbf{R}$. Since \mathbf{R} is closed under complementation, this means that $\overline{A}_{TM} \in \mathbf{R}$. Since $\mathbf{R} \subseteq \mathbf{RE}$, this means that $\overline{A}_{TM} \in \mathbf{RE}$. But this is impossible, since we know $\overline{A}_{TM} \notin \mathbf{RE}$.

We have reached a contradiction, so our assumption must have been incorrect.

Proof: By contradiction; assume $A_{TM} \in \mathbf{R}$. Since \mathbf{R} is closed under complementation, this means that $\overline{A}_{TM} \in \mathbf{R}$. Since $\mathbf{R} \subseteq \mathbf{RE}$, this means that $\overline{A}_{TM} \in \mathbf{RE}$. But this is impossible, since we know $\overline{A}_{TM} \notin \mathbf{RE}$.

We have reached a contradiction, so our assumption must have been incorrect. Thus $A_{TM} \notin \mathbf{R}$, as required.

Proof: By contradiction; assume $A_{TM} \in \mathbf{R}$. Since \mathbf{R} is closed under complementation, this means that $\overline{A}_{TM} \in \mathbf{R}$. Since $\mathbf{R} \subseteq \mathbf{RE}$, this means that $\overline{A}_{TM} \in \mathbf{RE}$. But this is impossible, since we know $\overline{A}_{TM} \notin \mathbf{RE}$.

We have reached a contradiction, so our assumption must have been incorrect. Thus $A_{TM} \notin \mathbf{R}$, as required. \blacksquare

The Limits of Computability

All Languages

What this Means

- The undecidability of A_{TM} means that we cannot "cheat" with Turing machines.
- We cannot necessarily build a TM to do an exhaustive search over a space (i.e. a recognizer), then decide whether it accepts without running it.
- **Intuition:** In most cases, you cannot *decide* what a TM will do without running it to see what happens.
- In some cases, you can *recognize* when a TM has performed some task.
- In some cases, you can't do either. For example, you cannot always recognize that a TM will not accept a string.

What this Means

- Major result: $R \neq RE$.
- There are some problems where we can only give a "yes" answer when the answer is "yes" and cannot necessarily give a yes-or-no answer.
- Solving a problem is fundamentally harder than recognizing a correct answer.

Another Undecidable Problem

$L_{\scriptscriptstyle \mathrm{D}}$ Revisited

• The diagonalization language $L_{\scriptscriptstyle D}$ is the language

 $L_{\rm D} = \{ \langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \notin \mathcal{L}(M) \}$

- As we saw before, $L_{\rm D} \notin \mathbf{RE}$.
- But what about \overline{L}_{D} ?

$$\overline{L}_{ ext{D}}$$

• The language $L_{\scriptscriptstyle \mathrm{D}}$ is the language

$$L_{\rm D} = \{ \langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \notin \mathcal{L}(M) \}$$

• Therefore, $\overline{L}_{\scriptscriptstyle \mathrm{D}}$ is the language

$$L_{\rm D} = \{ \langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \in \mathcal{L}(M) \}$$

- Two questions:
 - What is this language?
 - Is this language **RE**?

 M_0

 M_1

 M_2

 M_3

 M_4

 M_5

. . .

$\langle M_0 \rangle \langle M_1 \rangle \langle M_2 \rangle$	$\langle M_3 \rangle \langle M_4 \rangle$	$\langle M_5 \rangle$	
---	---	-----------------------	--

 M_0

M₁

 M_2

 M_4

 M_5

. . .

	$\langle M_0 \rangle$	(M ₁)	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1							
M_2							
M_3							
M_4							
M_5							

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2							
M_3							
M_4							
M_5							

. . .

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	

 M_3 M_4 M_5

	$\langle M_0 \rangle$	(M ₁)	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	

M₄
M₅

. . .

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M ₁	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	

 M_5

. . .

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

...

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M ₁	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

Acc Acc Acc No Acc No

"The language of all TMs that accept their own description."

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M ₁	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

 $\{ \langle M \rangle \mid M \text{ is a TM} \}$ that accepts $\langle M \rangle \}$

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M ₁	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

 $\{ \langle M \rangle \mid M \text{ is a TM}$ and $\langle M \rangle \in \mathcal{L}(M) \}$

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

 $\{ \langle M \rangle \mid M \text{ is a TM} \}$ and $\langle M \rangle \in \mathcal{L}(M) \}$

This language is \overline{L}_{D} .

$$\overline{L}_{\scriptscriptstyle \mathrm{D}} \in \mathbf{RE}$$

• Here's an TM for $\overline{L}_{\mathrm{D}}$:

R = "On input $\langle M \rangle$:

Run M on $\langle M \rangle$.

If M accepts $\langle M \rangle$, accept.

If M rejects $\langle M \rangle$, reject."

• Then R accepts $\langle M \rangle$ iff $\langle M \rangle \in \mathcal{L}(M)$ iff $\langle M \rangle \in \overline{L}_D$, so $\mathcal{L}(R) = \overline{L}_D$.

Is $\overline{L}_{\scriptscriptstyle \mathrm{D}}$ Decidable?

- We know that $\overline{L}_{\mathrm{D}} \in \mathbf{RE}$. Is $\overline{L}_{\mathrm{D}} \in \mathbf{R}$?
- No by a similar argument from before.
 - If $\overline{L}_D \in \mathbf{R}$, then $\overline{L}_D = L_D \in \mathbf{R}$.
 - Since $\mathbf{R} \subset \mathbf{RE}$, this means that $L_{\scriptscriptstyle D} \in \mathbf{RE}$.
 - This contradicts that $L_{\rm D} \notin \mathbf{RE}$.
 - So our assumption is wrong and $\overline{L}_{\rm D} \notin \mathbf{R}$.

The Limits of Computability

All Languages

Finding Unsolvable Problems

