代数结构

中国海洋大学 计算机系

代数结构

- 代数系统
- 半群与独异点
- ■群
- ■环与域
- 格和布尔代数

代数结构 (知识图)

代数结构的主要内容

- 运算及其性质
- 代数系统
- 半群与独异点
- 群与子群
- Abel群和循环群
- 陪集与拉格朗日定理
- 正规子群与商群
- 同态与同构
- ■环与域

15.1 二元运算及其性质

- 运算的定义
- <u>运算的表示</u>
- 二元运算的性质
 - 交换律、结合律、等幂律、消去律
 - 分配律、吸收律
- 二元运算的特异元素
 - 幺元与零元
 - 可逆元素及其逆元
- 例题分析
- 学习要点与基本要求

n元运算的定义

■ 定义 对于集合A,映射 f: $A^n \rightarrow A$,称为集合A上的 一个n元运算。

$$n=0$$
, 0 元运算, $f: \to A$
 $n=1$, 一元运算, $f: A \to A$
 $n=2$, 二元运算, $f: A \times A \to A$

■ 封闭性:

任何A中的元素均可参加运算,运算结果属于A。

n元运算的实例

集合	二元运算	一元运算	0元运算
Z,Q,R,C	+, X	-	0,1
$M_n(R)$	+, ×	-	θ,Ε
P(B)	∪,∩,-,⊕	~	Ø,B
R(B)	0		I_B
A^A	O		I_A

R(B): B上的关系集合

n元运算的表示

- 算符: °,*,·,*, △, ○等符号
- 表达式:

$$(x_1, x_1, ..., x_n) = y$$

 $x * y = z;$
 $x = y$

■ 表示方法:

解析表达式、运算表(有穷集的)

■ 注意: 在同一问题中不同的运算使用不同的算符

运算的表示实例

例 设 R 为实数集合,R 上的二元运算*:

$$\forall x, y \in R, x * y = x+y-2xy.$$

那么
$$3*4=3$$
, $0.5*(-3)=0.5$, $3^2=-12$

例 $A = P(\{a, b\}), \oplus, \sim$ 分别为对称差和绝对补运算

⊕	Ø	<i>{a}</i>	{ <i>b</i> }	{a,b}
Ø	Ø	<i>{a}</i>	{ b }	$\{a,b\}$
<i>{a}</i>	<i>{a}</i>	Ø	{ <i>a.b</i> }	{ <i>b</i> }
{ <i>b</i> }	{ <i>b</i> }	{ <i>a</i> , <i>b</i> }	Ø	<i>{a}</i>
{a,b}	{ <i>a</i> , <i>b</i> }	{ b }	<i>{a}</i>	Ø

X	~X
Ø	$\{a,b\}$
{a}	{ <i>b</i> }
{ <i>b</i> }	<i>{a}</i>
{a,b}	Ø

运算表的一般形式(有穷集)

二元运算表

0	<i>a</i> ₁	a_2	• • •	a_n
a_1	$a_1 \circ a_1$	a_1 ° a_2	• • •	$a_1 \circ a_n$
a_2	$a_2 \circ a_1$	a_2 ° a_2	•••	$a_2 \circ a_n$
•		• • •		
•		• • •		
•		• • •		
a_n	$a_n \circ a_1$	$a_n \circ a_2$	•••	$a_n \circ a_n$

一元运算表

	$\circ a_i$
a_1	$\circ a_1$
a_2	$\circ a_2$
•	•
•	•
•	•
a_n	$\circ a_n$

运算表的实例 (续)

例 $Z_5 = \{0, 1, 2, 3, 4\}, +_5, \times_5$ 为模5加法与模5乘法 $+_5$ 的运算表 \times_5 的运算表

+5	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

× ₅	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

二元运算的算律

- 涉及一个二元运算的算律
 - ■交換律
 - ■结合律——广义结合
 - ■幂等律
 - ■消去律
- 涉及两个不同的二元运算
 - 分配律——广义分配
 - 吸收律(以交换为前提)

算律的定义

交換律 $\forall x, y \in A$, 有 x * y = y * x

结合律 $\forall x, y, z \in A$, 有 (x * y) * z = x * (y * z)

幂等律 $\forall x \in A$, 有 x * x = x

如果A中的某些x满足 $x^*x=x$,则称x为运算 x^* 的幂等元。

分配律 $\forall x, y, z \in A$,

 $x \circ (y*z) = (x \circ y)*(x \circ z)$ 左分配 $(y*z) \circ x = (y \circ x)*(z \circ x)$ 右分配

吸收律 设°,*可交换, $\forall x,y \in A$

 $x \circ (x^*y) = x, x^*(x \circ y) = x$

例:交换、结合、幂等

Z, Q, R分别为整数、有理数、实数集; $M_n(R)$ 为 n 阶实矩阵集合, $n \ge 2$; P(B)为幂集; A^A 为 A上A, $|A| \ge 2$.

集合	运算	交换律	结合律	幂等律
Z, Q, R	普通加法+	有	有	无
	普通乘法×	有	有	无
$M_n(R)$	矩阵加法+	有	有	无
	矩阵乘法×	无	有	无
P(B)	并∪	有	有	有
	交○	有	有	有
	相对补-	无	无	无
	对称差⊕	有	有	无
A^A	函数复合o	无	有	无

实例:分配、吸收律

集合	运算	分配律	吸收律
Z, Q, R	普通加法 + 与乘法	× 对 + 可分配	无
	×	+ 对 × 不分配	
$M_n(R)$	矩阵加法 + 与乘法	× 对 + 可分配	无
	×	+ 对 × 不分配	
P(B)	并∪与交∩	∪对○可分配	有
		○对∪可分配	
	交○与对称差⊕	○对⊕可分配	无
		⊕对○不分配	

二元运算的特异元素

- 特异元素的名称
 - 单位元(幺元) e
 - ■零元
 - ■幂等元
 - ■可逆元和逆元
- 说明:特异元素也可以作为算律
 - 同一律(存在单位元)
 - ■零律(存在零元)

特异元素的定义与性质

定义设。是A上的二元运算

单位元e: $\forall a \in A, e \circ a = a \circ e = a$

零元 θ : $\forall a \in A, \theta \circ a = a \circ \theta = \theta$

幂等元 $a: \forall a \in A, a \circ a = a$

可逆元x(逆元y): $x \in A$, $y \in A$, $x \circ y = y \circ x = e$

特异元素的性质

单位元、零元的唯一性

如果|A|>1, $e \neq \theta$

可结合运算的逆元唯一性: x的逆元标记为x

单位元、零元的唯一性

■ 定理15.2 对于给定集合A和A上的二元运算。,如果存在 $e_{\ell} \subseteq A$, $e_{r} \subseteq A$,使得 $\forall x \in A$ 满足 $e_{\ell}*x=x*e_{r}=x$,则 $e_{\ell}=e_{r}=e$,且 e 就是A中关于。运算的唯一单位元.

证明: $e_{\ell} = e_{\ell} * e_{r} = e_{r}$,则 $e_{\ell} = e_{r}$,将这个单位元记作 e_{r} . 设另有一单位元 $e_{1} \in A$,则 $e_{1} = e_{1} * e_{2} = e_{3}$.

定理15.3 对于给定集合A和A上的二元运算。,如果存在 $\theta_{\ell} \in A$, $\theta_{r} \in A$,使得 $\forall x \in A$ 满足

 $\theta_{\ell}^* x = \theta_{\ell}$, $x^* \theta_r = \theta_r$,则 $\theta_{\ell} = \theta_r = \theta$,且 θ 就是A中 关于。运算的唯一零元.

当|A|>1时, θ≠e

定理15.4 设*是定义在A上的二元运算,且|A|>1。如果该代数系统中存在幺元e和零元 θ ,则 $\theta \neq e$ 。

证明用反证法。

设 θ =e,那么对于任意的x∈A,必有

$$x=e^*x=\theta^*x=\theta=e$$
,

所以A中的所有元素都是相同的,这与|A|>1相矛盾。

逆元的唯一

定理15.5 对于集合A和A上可结合的二元运算°,A中存在 幺元e. 如果对于 $x \in A$,存在左逆元y,和右逆元y,使得

$$y_l \circ x = x \circ y_r = e$$

则有 $y_i = y_i = y$,且 $y \in x$ 的唯一的逆元. 称x是可逆的.

证明
$$y_l = y_l \circ e = y_l \circ (x \circ y_r) = (y_l \circ x) \circ y_r$$

= $e \circ y_r = y_r$

令 $y_l = y_r = y$, 则 $y \in x$ 的逆元.

假设 y 也 是 x 的逆元,则 $y'=y'\circ e=y'\circ (x\circ y)=(y'\circ x)\circ y=e\circ y=y$ 所以y是x的唯一逆元.

说明

- (1) 当 $y_l \neq y_r$, 分别称为左、右逆元.
- (2) 当 $e_l \neq e_r$, 分别称为左、右幺元.
- (3) 当 $\theta_{\ell} \neq \theta_{r}$, 分别称为左、右零元.
- (4) 如果y是x的逆元,也称x与y互为逆元。

实例:单位元、零元、可逆元

集合	运算	幺元	零元	逆元
Z,	普通加法+	0	无	x 的逆元 -x
Q, R	普通乘法×	1	0	x 的逆元 x ⁻¹ (0无 逆元, x ⁻¹ 属于给 定集合)
$M_n(R)$	矩阵加法+	n阶全0矩阵	无	X逆元–X
	矩阵乘法×	n阶单位 矩阵	n阶全0 矩阵	X的逆元 X ⁻¹ (X是可逆矩阵)
P(B)	井∪	Ø	В	Ø的逆元为Ø
	交○	В	Ø	B 的逆元为 B
	对称差⊕	Ø	无	X 的逆元为 X

消去律定义

定义 设°是集合A上的一个二元运算,若对于任意的 $a,b,c \in A$ 满足以下条件:

- (1) 若 $a \circ b = a \circ c$ 且 $a \neq \theta$, 则 b = c;
- (2) 若 $b \circ a = c \circ a$ 且 $a \neq \theta$, 则 b = c;

那么称运算。满足消去律,其中

- (1) 称作左消去律,
- (2) 称作右消去律。

说明

◆ 若A上的元素都存在逆元,则°满足消去律。反 之不然。

消去律举例

- Z,Q,R: +, ×满足消去律
- $M_n(R)$: 矩阵+满足消去律; 矩阵×不满足消去律
- P(B): ⊕满足消去律; \cup 、 \cap 、-不满足消去律
- A^A: °不满足消去律

例 设 °运算为 Q 上的二元运算, $\forall x, y \in Q$, $x \circ y = x+y+2xy$,

- (1)°运算是否满足交换,结合,幂等,消去律?
- (2) 求°运算的幺元、零元和所有可逆元.

【思路】证明定律成立: 定义验证; 证明其不成立: 举反例。

解 (1)°运算满足交换律,结合律,消去律,不满足幂等律.

$$\forall x, y, z \in Q$$

$$x \circ y = x+y+2xy = y+x+2yx = y \circ x$$
, 满足交换律.
 $(x \circ y) \circ z = (x+y+2xy) + z + 2(x+y+2xy) z$
 $= x+y+z+2xy+2xz+2yz+4xyz$
 $x \circ (y \circ z) = x + (y+z+2yz) + 2x(y+z+2yz)$
 $= x+y+z+2xy+2xz+2yz+4xyz$
所以 $(x \circ y) \circ z = x \circ (y \circ z)$,满足结合律.

例解

$$x \circ e = x + e + 2xe = x \Rightarrow e = 0$$

$$x \circ \theta = x + \theta + 2x \theta = \theta \Rightarrow \theta = -1/2$$

°运算的单位元是0,零元为-1/2.

$$\forall x, y, z \in Q, x \neq -1/2, \Leftrightarrow x \circ y = x \circ z$$

$$x+y+2xy=x+z+2xz\Leftrightarrow y(1+2x)=z(1+2x)\Leftrightarrow y=z$$
,满足消去律

取
$$x=1$$
, 得 $x \circ x = x+x+2x^2 = 4 \neq x$, 不满足幂等律

(2) 给定x,设y是x的逆元,则有

$$x^{\circ}y = 0 \Leftrightarrow x+y+2xy=0 \Leftrightarrow y = -\frac{x}{2x+1} (x \neq -\frac{1}{2})$$

因此当
$$x \neq$$
时 $\frac{1}{2}$ x 的逆元是 $y = -\frac{x}{2x+1}$

- 例 (1) 说明哪些运算是交换的、幂等的.
- (2) 求出运算的幺元、零元、所有可逆元素的逆元.
- (3)哪些运算满足消去律.

*	a b c
a	c a b
b	a b c
C	b c a

O	a b c
a	a a a
b	b b b
C	c c c

•	a b c
a	a b c
b	b b c
C	c c c

- 解: (1) *满足交换;°满足幂等律;●满足交换、幂等律.
 - (2) * 的单位元为b, 没有零元, $a^{-1} = c$, $b^{-1} = b$, $c^{-1} = a$
 - [°] 的单位元和零元都不存在,没有可逆元素.
 - 的单位为 a,零元为c, $a^{-1}=a$. b, c不可逆.

由运算表判别算律的一般方法

设*是A上的一个二元运算,那么该运算的有些性质可以从运算表中直接看出:

▶ 封闭性: 运算表中的每个元素都属于A

交換性: 运算表关于主对角线是对称的。

> 等幂性: 主对角线元素排列与表头顺序一致

消去律:同一行或同一列中没有重复元素

接上页

- \triangleright 零元: θ 所在的行与列都由该元素自身构成
- > 幺元: e所在的行与列的元素排列都与表头一致
- ▶ 结合律:除了幺元、零元之外,要对任意3个元素 验证结合律等式是否成立

例 设Q是有理数集合, Δ 是Q上的二元运算,

 $\forall a,b \in Q$, $a \triangle b = a + b - a \bullet b$

问运算∆是否可交换、可结合的、等幂的。

 \mathbf{p} $a\Delta b=a+b-a\bullet b=b+a-b\bullet a=b\Delta a$,

所以运算∆是可交换的。

$$(a\Delta b)\Delta c = (a+b-a\bullet b)\Delta c = (a+b-a\bullet b+c)-(a+b-a\bullet b)\bullet c,$$
$$= a+b+c-a\bullet b-a\bullet c-b\bullet c+a\bullet b\bullet c,$$

$$a\Delta(b\Delta c) = a\Delta(b+c-b\bullet c) = (a+b+c-b\bullet c) - a\bullet(b+c-b\bullet c),$$

= $a+b+c-a\bullet b-a\bullet c-b\bullet c+a\bullet b\bullet c,$

所以 $(a\Delta b)\Delta c=a\Delta(b\Delta c)$, Δ 可结合的。

 $a \Delta a = a + a - a \bullet a = a \Rightarrow a = a \bullet a$, 所以只有0,1是等幂元。

例 设Q是有理数集合, Δ 和 $\pm Q$ 上的二元运算,且 $\forall a,b \in Q$, $a\Delta b=a+b-ab$, $a \pm b=b$

问: △对★可分配吗? ★ 对△可分配吗?

解: $\forall a,b,c \in \mathbb{Q}$, $a \Delta(b \bigstar c) = a\Delta c$, $(a \Delta b) \bigstar (a\Delta c) = a\Delta c$ $(b \bigstar c) \Delta a = c\Delta a$, $(b\Delta a) \bigstar (c\Delta a) = c\Delta a$

所以△对★可分配。

 $\forall a,b,c \in \mathbb{Q}$, $a \bigstar (b \Delta c) = b \Delta c$, $(a \bigstar b) \Delta (a \bigstar c) = b \Delta c$ $(b \Delta c) \bigstar a = a$, $(b \bigstar a) \Delta (c \bigstar a) = a \Delta a$ 所以 \bigstar 对公可左分配。

例 设集合N为自然数全体,在N上定义两个二元运算* 和★,

$$\forall x,y \in \mathbb{N}, x^*y = \max(x,y) \quad x \neq y = \min(x,y)$$

验证运算*和★满足吸收律。

解:运算*和★满足交换律,且对于任意 $x,y \in \mathbb{N}$, $x^*(x \bigstar y) = x^* \min(x,y) = \max(x, \min(x,y)) = x$, $x \bigstar (x^*y) = x \bigstar \max(x,y) = \min(x, \max(x,y)) = x$ 。 运算*和★满足吸收律.

例 设集合 $S=\{$ 浅色,深色 $\}$,定义在S上的一个二元运算*如表所示,指出零元和幺元。

所以,深色是零元,浅色是幺元。

说明

- ◆ 零元对应的列(行)全是零元。
- ◆ 右幺元对应的列与标题列相同, 左幺元对 应的行与标题行相同。

例 设 $S=\{\alpha,\beta,\gamma,\delta,\zeta\}$,定义在S上的二元运算*如表所示。

*	α	β	γ	δ	ζ
α	a	β	γ	δ	5
β	β	δ	α	γ	δ
γ	γ		B	æ	β
δ	δ	X	γ	8	γ
ζ	ζ	8	a	γ	ζ
			<u> </u>		

β和γ互逆;

 δ 的左逆元是 γ 而右逆元是 β , β的左逆元γ和δ,右逆元是γ; ζ的右逆元是γ,但ζ无左逆元。

说明 一个元素可以没有逆元,或 只有左逆元,或只有右逆元。 一个元素的左(右)逆元还可 以有多个。

> 从逆元可以直接判断该运算 不是可结合的。

例题8 对于代数系统 $< N_k, +_k >$, $N_k = \{0,1,2,...,k-1\}$, $+_k$ 是定义在 N_k 上的模k加法运算,定义如下:

$$\forall x,y \in N_k, x +_k y = (x+y) \mod k$$

试问是否每个元素都有逆元。

解:
$$\forall x,y,z \in N_k$$
, $(x +_k y) +_k z = ((x+y) \mod k) +_k z$
 $= ((x+y) \mod k + z) \mod k = (x+y+z) \mod k$
 $x +_k (y +_k z) = x +_k ((y+z) \mod k) = (x+(y+z) \mod k) \mod k$
 $= (x+y+z) \mod k$

所以+,是一个可结合的二元运算。

例(续)

由于 $\forall x \in N_k$, $x +_k 0 = 0 +_k x = x$

所以0是 N_k 中关于运算 $+_k$ 的幺元。0的逆元是0。

 $\forall x \in N_k$, $x \neq 0$,则 $k-x \in N_k$, $x +_k(k-x) = (k-x) +_k x = 0$ 而 N_k 中的每一个元素都有唯一的逆元,每个非零元素x的逆元是k-x。

例 设 $A = \{a, b, c\}$, 构造 A 上的二元运算* 使得 a*b =c, c*b = b, 且*运算是幂等的、可交换的。给出关于* 运算的一个运算表,*是否可结合,为什么?

*	a	b	C
a	a	C	S
b	C	b	b
C	S	b	C

解: 由幂等律和a*b = c, c*b = b得到运算表如左,

根据交换律得到新的运算表,

方框 \Im 可以填入a, b, c中任一选定的符号,完成运算表。

运算*不可结合,

因为 $(a*b)*b = c*b = b, \ a*(b*b) = a*b = c.$

学习要点与基本要求

- ■掌握运算的定义
- 掌握二元运算性质的判别及证明
- ■掌握幺元、零元、逆元的求法
- 作业: p237: 2,7,11,12