Biogeografía de islas

Función de incidencia de Hanski

Gerardo Martín

28-07-2023

Intro

Modelos anteriores representan:

- · Número de especies como función de:
 - · Especies continentales
 - · Riesgo de extinción
 - · Probailidad de inmigración
- · Determinantes geográficos del número de especies
 - · Áreas y Distancias

Un marco para análisis de datos

- · Levins y MacArthur y Wilson ignoran características de islas
- · No permiten estimar efectos sobre número de especies

MacArthur y Wilson (1963): $\uparrow \text{Area} \to \text{Extinción} \downarrow$

Hanski propuso modelo para relacionarlos

El modelo de incidencia de Hanski (1994)

- · Ocupación es función de colonización y extinción
- · Modelo representa probabilidad de transición:

· De modo que:

$$Estado_t = Vacío (1)$$

$$Estado_{t+1} = Ocupado (2)$$

Los dos estados posibles de un parche

Parámetros

- \cdot $\,$ C_i es la probabilidad de ser colonizado en período t
- \cdot E_i es la probabilidad de sufrir una extinción
- $\cdot \ 1 C_i$ es pa probabilidad de permanecer ocupado
- $\cdot \ 1 E_i$ es la probabilidad de permanecer vacío

Probabilidad de que parche esté ocupado

$$J_i = \frac{C_i}{C_i + E_i} \tag{3}$$

Si $C_i=0.3$ y $E_i=0.5$

$$J_i = \frac{0.3}{0.3 + 0.5} = 0.375 \tag{4}$$

Matriz de transiciones

Table 1: Primera fila es la probabilidad asociada a t. Segunda fila a t+1.

	Vacío	Ocupado
Vacío	0.7	0.5
Ocupado	0.3	0.5

 J_i es la probabilidad a largo plazo de ocupación, por lo tanto el punto de equilibrio. La sitribución estable de los valores propios λ es:

Estimación de la probabilidad de extincion (E_i)

- Se determina como función del Área (A_i)
 - \cdot En áreas grandes E_i es pequeño

$$x = 1 \tag{5}$$