Tarea 2 (Solución)

Álgebra Superior 1, 2025-4

Profesor: Luis Jesús Trucio Cuevas. Ayudante: Hugo Víctor García Martínez.

Ej. 1 (1 pt) Sean I, J, K conjuntos no vacíos y supongamos que $J \cup K = I$. Si $\{X_i \mid i \in I\}$ es una familia indexada de conjuntos, demuestra que:

$$\bigcap_{i \in I} X_i = \left(\bigcap_{i \in I} X_i\right) \cap \left(\bigcap_{i \in K} X_i\right)$$

Demostración. (\subseteq) Supongamos que $x \in \bigcap_{i \in I} X_i$, por definición de intersección (indexada):

$$\forall i \in I (x \in X_i) \equiv \forall (i \in I \to x \in X_i) \tag{1}$$

Veamos que $x \in \bigcap_{i \in J} X_i$ y $x \in \bigcap_{i \in K} X_i$. Para lo primero, sea $j \in J$ cualquier elemento, como $I = J \cup K$, entonces $j \in I$ y debido a la proposición $1, x \in X_j$, por lo tanto $x \in \bigcap_{j \in J} X_j = \bigcap_{i \in J} X_i$. Similarmente, si $k \in K$ es cualquiera, como $I = J \cup K$, entonces $k \in K$ y debido a la proposición 1, $x \in X_k$, por lo tanto $x \in \bigcap_{k \in K} X_k = \bigcap_{i \in K} X_i$. Así que $x \in (\bigcap_{i \in J} X_i) \cap (\bigcap_{i \in K} X_i)$, hemos mostrado que:

$$\forall x \Big(x \in \bigcap_{i \in I} X_i \to x \in \Big(\bigcap_{i \in J} X_i\Big) \cap \Big(\bigcap_{i \in K} X_i\Big)\Big)$$

es decir, $\bigcap_{i \in I} X_i \subseteq (\bigcap_{i \in J} X_i) \cap (\bigcap_{i \in K} X_i)$.

(⊇) Sea $x \in (\bigcap_{i \in J} X_i) \cap (\bigcap_{i \in K} X_i)$ cuaĺquier elemento, entonces $x \in \bigcap_{i \in J} X_i$ y $x \in \bigcap_{i \in K} X_i$. Luego, por definición de intersección (indexada):

$$\forall (i \in J \to x \in X_i) \quad y \quad \forall (i \in K \to x \in X_i)$$
 (2)

Ahora, si $i \in I$ es cualquier elemento entonces $i \in J$ o $i \in K$, esto último se debe a que $I = J \cup K$. Por tanto, se sigue de la proposición 2, que (en cualquiera de estos dos casos) $x \in X_i$. Por tanto $x \in \bigcap_{i \in I} X_i$, probando que:

$$\forall x \Big(x \in \Big(\bigcap_{i \in J} X_i\Big) \cap \Big(\bigcap_{i \in K} X_i\Big) \to x \in \bigcap_{i \in J} X_i\Big)$$

es decir, $(\bigcap_{i \in I} X_i) \cap (\bigcap_{i \in K} X_i) \subseteq \bigcap_{i \in I} X_i$.

Ej. 2 (1 pt) Sean A, B, X y Y conjuntos no vacíos. Demuestra:

- i) $A \times B \subseteq X \times Y$ si y sólo si $A \subseteq X$ y $B \subseteq Y$.
- ii) $A \times B = X \times Y$ si y sólo si A = X y B = Y.
- iii) $(A \setminus X) \times B = (A \times B) \setminus (X \times B)$.

Sugerencia: Para (ii), utiliza el inciso (i) y el hecho de que dos conjuntos son iguales si y sólo si, uno está contenido en el otro y el otro en el uno.

Demostración. Como todos los conjuntos son no vacíos, existen elementos $a_0 \in A$, $b_0 \in B$, $x_0 \in X$ y $y_0 \in Y$, respectivamente.

(i) (\Rightarrow) Supongamos que $A \times B \subseteq X \times Y$, veamos que $A \subseteq X \text{ y } B \subseteq Y$. Para lo primero, sea $a \in A$ cualquier elemento, como $b_0 \in B$, entonces $(a, b_0) \in A \times B$, pero como $A \times B \subseteq X \times Y$, entonces $(a, b_0) \in X \times Y$; particularmente, $a \in X$. Por lo tanto, $\forall x (x \in A \rightarrow x \in X)$; esto es $A \subseteq X$.

Para la otra contención, sea $b \in B$ arbitrario, como $a_0 \in A$, entonces $(a_0, b) \in A \times B$, pero como $A \times B \subseteq X \times Y$, entonces $(a_0, b) \in X \times Y$; particularmente, $b \in Y$. Por lo tanto, $\forall x (x \in B \to x \in Y)$; esto es $B \subseteq Y$.

- (\Leftarrow) Supongamos que $A \subseteq X$ y que $B \subseteq Y$, veamos que $A \times B \subseteq X \times Y$. Supongamos que $x \in A \times B$ es cualquiera, por definición de producto cartesiano, x = (a, b), donde $a \in A$ y $b \in B$; en consecuencia, $a \in X$ y $b \in Y$, respectivamente (ya que $A \subseteq X$ y que $B \subseteq Y$, respectivamente). Así, $x = (a, b) \in X \times Y$. Por lo tanto $\forall x (x \in A \times B \rightarrow x \in X \times Y)$; esto es $A \times B \subseteq X \times Y$.
 - (ii) Utilizando el inciso anterior (y el hecho de que todos estos conjuntos son no vacíos):

$$A \times B = X \times Y \Leftrightarrow (A \times B \subseteq X \times Y) \land (A \times B \subseteq X \times Y)$$
 Doble contención
$$\Leftrightarrow (A \subseteq X \land B \subseteq Y) \land (X \subseteq A \land Y \subseteq B)$$
 Inciso anterior
$$\Leftrightarrow (A \subseteq X \land X \subseteq A) \land (B \subseteq Y \land Y \subseteq B)$$
 Equivalencias lógicas
$$\Leftrightarrow A = X \land B = Y$$
 Doble contención

(iii) (\subseteq) Sea $x \in (A \setminus X) \times B$ cualquiera, entonces x = (u, w) para ciertos $u \in A \setminus X$ y $w \in B$. Así, $u \in A$, $u \notin X$ y $w \in B$.

Como $u \in A$ y $w \in B$, entonces $x = A \times B$; y, como $u \notin X$ y $w \in B$, entonces $x \notin X \times B$. Por tanto $x \in (A \times B) \setminus (X \times B)$, por lo que $\forall x (x \in (A \setminus X) \times B \to x \in (A \times B) \setminus (X \times B))$, es decir, $(A \setminus X) \times B \subseteq (A \times B) \setminus (X \times B)$.

(⊇) Supongamos que $y \in (A \times B) \setminus (X \times B)$, entonces $y \in (A \times B)$ y $y \notin (X \times B)$. Como $y \in A \times B$, entonces y = (f, g) con $f \in A$ y $g \in B$. Notemos que, como $y = (f, g) \notin (X \times B)$, es necesario que $f \notin X$ o $g \notin B$, pero sabemos que $g \in B$, así que $f \notin X$. Por lo tanto $f \in A \setminus X$ y $g \in B$; es decir, $y = (f, g) \in (A \setminus X) \times B$.

Por lo tanto $\forall x (x \in (A \times B) \setminus (X \times B) \rightarrow x \in (A \setminus X) \times B)$, es decir, $(A \times B) \setminus (X \times B) \subseteq (A \setminus X) \times B$.

Ej. 3 (1 pt) Sean A un conjunto y $R, S \subseteq A \times A$ relaciones sobre A. Demuestra que:

- i) $R \cap S$ es reflexiva si y solamente si R y S son reflexivas.
- ii) R es simétrica si y sólo si $R = R^{-1}$.

Demostración. (i) Nótese que $R \cap S \subseteq A \times A$, esto es debido a que $R \subseteq A \times A$ y $S \subseteq A \times A$, entonces $R \cap S \subseteq A \times A$ (es decir, $R \cap S$ es relación en A). Por ello:

$$R \cap S$$
 es reflexiva $\Leftrightarrow \forall a \in A \ (a \ R \cap S \ a)$ Def. de reflexividad $\Leftrightarrow \forall a \in A \ ((a,a) \in R \cap S)$ Notación $\Leftrightarrow \forall a \in A \ ((a,a) \in R \land (a,a) \in S)$ Def. de intersección $\Leftrightarrow \forall a \in A \ ((a,a) \in R) \land \forall a \in A \ ((a,a) \in S)$ \forall respeta conjunciones $\Leftrightarrow \forall a \in A \ (a \ R \ a) \land \forall a \in A \ (a \ S \ a)$ Notación $\Leftrightarrow R$ es reflexiva $\land S$ es reflexiva Def. de reflexividad

Lo cual finaliza la prueba de la equivalencia deseada.

(ii) Dado que $R \subseteq A \times A$, se tiene que $R^{-1} \subseteq A \times A$ (es decir, R^{-1} es relación sobre A). Por ello:

$$R \text{ es simétrica} \Leftrightarrow \forall a \in A \forall b \in A \left(a R b \to b R a \right)$$
 Def. de simetría
$$\Leftrightarrow \forall a \in A \forall b \in A \left(b R^{-1} a \to a R^{-1} b \right)$$
 Def. de relación inversa
$$\Leftrightarrow \forall y \in A \forall x \in A \left(x R^{-1} y \to y R^{-1} x \right)$$
 Variables "mudas"
$$\Leftrightarrow \forall x \in A \forall y \in A \left(x R^{-1} y \to y R^{-1} x \right)$$
 Variables "mudas"
$$\Leftrightarrow R^{-1} \text{ es simétrica}$$
 Def. de simetría

Finalizando el segundo inciso.

Ej. 4 (1 pt) Sea R una relación cualquiera. Prueba que, si $dom(R) \cap ima(R) = \emptyset$, entonces R es antisimétrica. ¿Qué ocurre con el recíproco de lo anterior? Es decir, ?'Si R es antisimétrica, entonces $dom(R) \cap ima(R) = \emptyset$?

Demostración. Probaremos lo que se pide por contradicción.

Supongamos pues que $dom(R) \cap ima(R) = \emptyset$ y que R no es antireflexiva. Como R no es antireflexiva, existe $a \in dom(R)$ tal que a R a; es decir, $(a, a \in R)$, con ello $a \in dom(R)$ y $a \in ima(R)$, lo cual implica que $a \in dom(R) \cap ima(R)$ y se contradice que $dom(R) \cap ima(R) = \emptyset$. El absurdo surge de suponer la negación de la implicación que queríamos probar, por tanto, tal implicación es cierta.

El recíproco es falso (en general). Como contraejemplo, consideremos $A := \{1, 2\}$ y:

$$R := \{(1,2),(2,1)\} \subseteq A$$

Notemos que $1 \in \text{dom}(R)$ pues hay cierto y (a saber, 2) tal que $(1, y) \in R$, además, $1 \in \text{ima}(R)$ pues existe un elemento x (a saber, 2) tal que $(x, 1) \in R$. Por lo tanto $1 \in \text{dom}(R) \cap \text{ima}(R)$ y por ello $\text{dom}(R) \cap \text{ima}(R) \neq \emptyset$. Sin embargo, R es antisimétrica pues, como $(1, 1), (2, 2) \notin R$, se tiene que $\forall a \in A(a \not R a)$.

Ej. 5 (1 pt) En cada inciso *R* es una relación sobre un conjunto *A*. Indica en cada caso, si *R* es: reflexiva, simétrica, transitiva, antireflexiva o antisimétrica. Si en algún caso *R* es relación de orden parcial, o de equivalencia, indícalo. No es necesario justificar.

- i) A es el conjunto $\{0, 1, 2\}$ y $R := \{(1, 1), (2, 2), (0, 1), (1, 0)\}$.
- ii) A es el conjunto {Piedra, Papel, Tijeras} y $R \subseteq A \times A$ la relación:

$$R := \{(Piedra, Tijeras), (Tijeras, Papel), (Papel, Piedra)\}$$

- iii) A es cualquier conjunto y $R = id_A$.
- iv) A es el conjunto de todas las rectas del plano (digamos, \mathbb{R}^2) y $R \subseteq A \times A$ es la relación $R := \{(x, y) \in A \times A \mid x \text{ es paralela a } y\}.$
- v) $A = \mathbb{Z} y R \subseteq A \times A$ está dada por: n R m si y sólo si $n^2 \leq m^2$.
- vi) $A = \mathcal{P}(\{0, 1, 2, ..., 1534\})$ y R está dada por: a R b si y sólo si a tiene (estrictamente) menos elementos que b.

Solución. Organizaremos en una tabla las propiedades, recordemos que una relación es de equivalencia si y sólo si es reflexiva, simétrica y transitiva; y, una relación es de orden parcial si es reflexiva, transitiva y antisimétrica.

Inciso	Reflexiva	Simétrica	Transitiva	Antireflexiva	Antisimétrica
i)	No	Sí	No	No	No
ii)	No	No	No	Sí	Sí
iii)	Sí	Sí	Sí	No	Sí
iv)	Sí	Sí	Sí	No	No
v)	Sí	No	Sí	No	No
vi)	No	No	Sí	Sí	No

Así que las relaciones de equivalencia son sólo las de (iii) y (iv); y, no hay relaciones de orden. \Diamond

Ej. 6 (1 pt) Sea R una relación de equivalencia sobre un conjunto A. Demuestra que R es la diagonal de A si y sólo si para cualesquiera $a, b \in A$ se tiene que [a] = [b] implica a = b.

Demostración. (\Rightarrow) Supongamos que $R = \triangle_A = \mathrm{id}_A$, y, sean $a, b \in A$, veamos que:

$$[a] = [b]$$
 implica $a = b$.

Supongamos pues que [a] = [b], esto significa que $a \ R \ b$, pero, como R es la identidad de A, a = b. Como $a, b \in A$ fueron arbitrarios, hemos probado que $\forall a \in A \forall b \in A([a] = [b] \rightarrow a = b)$.

(⇔) Supongamos que $\forall a \in A \forall b \in A([a] = [b] \rightarrow a = b)$, veamos que $R = \mathrm{id}_A$ por doble contención. Notemos que, como R es de equivalencia, entonces es reflexiva, lo cual significa que $\mathrm{id}_A \subseteq R$; así, sólo falta verificar:

$$R \subseteq \mathrm{id}_{A}$$

Efectivamente, si $x = (a, b) \in R$ es cualquier elemento; entonces, por definición de clases [a] = [b], y por hipótesis, a = b, lo cual prueba que $x = (a, b) = (a, a) \in \mathrm{id}_A$; y con ello, $\forall x (x \in R \to x \in \mathrm{id}_A)$; es decir, $R \subseteq \mathrm{id}_A$.

Ej. 7 (1 pt) Sean A, B conjuntos y $\{f_i \mid i \in I\}$ una familia indexada de funciones tal que para cada $i \in I$, f_i es una función de A en B. Demuestra que la relación R sobre A definida por:

$$x R y \text{ si y sólo si } \forall i \in I(f_i(x) = f_i(y))$$

es de equivalencia.

Demostración. Veamos que *R* es reflexiva, simétrica y transitiva, en orden (pero claro, el orden da igual).

 $(R ext{ es reflexiva}) ext{ Sea } a \in A ext{ cualquier elemento, veamos (por definición de } R) ext{ que } a ext{ } R ext{ } a.$ Efectivamente, si $i \in I$ es cualquiera, entonces $f_i(a) = f_i(a)$ (ya que f es función); por ello, $\forall i \in I(f_i(a) = f_i(a))$. Es decir, hemos mostrado que $a ext{ } R ext{ } a$; y esto, para cada $a \in A$, lo cual prueba que R es reflexiva.

(R es simétrica) Sean $a, b \in A$ y supongamos que $(a, b) \in R$. Por definición de R, entonces:

$$\forall i \in I(f_i(x) = f_i(y)) \tag{3}$$

Veamos que b R a. En efecto, si $i \in I$ es cualquiera, entonces por la proposición proposición 3, se tiene que $f_i(a) = f_i(b)$. De esta manera, $f_i(b) = f_i(a)$, lo cual prueba que $\forall i \in I(f_i(b) = f_i(a))$. Así que, b R a, y entonces $\forall a, b \in A(a R b \rightarrow b R a)$, es decir, R es simétrica.

(R es transitiva) Supongamos que $a, b, c \in A$ son tales que a R b y b R c; entonces:

$$\forall i \in I(f_i(a) = f_i(b)) \quad \forall i \in I(f_i(b) = f_i(c))$$
 (4)

Veamos que $a \ R \ c$; en efecto, sea $i \in I$ cualquiera, debido a la proposición 4, se tiene que $f_i(a) = f_i(b)$ y que $f_i(b) = f_i(c)$. Debido a lo anterior, $f_i(a) = f_i(c)$, probando que $\forall i \in I(f_i(a) = f_i(c))$; es decir, $a \ R \ c$. Hemos probado que:

$$\forall a, b, c \in A \Big(\big(a \ R \ b \wedge b \ R \ c \big) \to a \ R \ c \Big)$$

probando que R es transitiva; y a consecuencia de lo anterior, de equivalencia.

Ej. 8 (1 pt) Sean A, B, C cualesquiera conjuntos y $f: A \to B, g: B \to C$ funciones arbitrarias. Entre las siguientes implicaciones, hay una que es falsa, demuestra las dos verdaderas y da un contraejemplo para la falsa.

- i) Si $g \circ f$ es sobreyectiva, entonces g es sobreyectiva.
- ii) Si f es biyectiva, entonces $g \circ f$ es biyectiva.
- iii) Si go f es inyectiva, entonces f es inyectiva.

Solución. La única afimación falsa es (ii). Probemos primero (i) y (iii); al final, daremos el contraejemplo para (ii).

(i) Supongamos que $g \circ f$ es sobreyectiva; veamos que $g : B \to C$ es sobreyectiva. Sea $c \in C$ cualquier elemento, como $g \circ f : A \to C$ es sobreyectiva, existe $a \in A$ de modo que:

$$(g \circ f)(a) = g(f(a)) = c$$

De esta manera, b := f(a) es un elemento del conjunto B que satisface g(b) = c. Hemos mostrado entonces que $\forall c \in C \exists b \in B(g(b) = c)$; esto es, g es sobreyectiva.

(iii) Supongamos que $g \circ f$ es inyectiva, veamos que $f : A \to B$ es inyectiva. Sean $x, y \in A$ y supongamos que f(x) = f(y). Por ser g función, se tiene que:

$$\big(g \circ f\big)(x) = g\big(f(x)\big) = g\big(f(y)\big) = \big(g \circ f\big)(y)$$

Así que, por ser $g \circ f$ biyectiva, x = y. Hemos mostrado entonces que la siguiente proposición es verdadera: $\forall x, y \in A(f(x) = f(y) \rightarrow x = y)$; es decir, f es inyectiva.

(ii) Por último, daremos un contraejemplo para este inciso; esto es, buscaremos conjuntos A y B; y, funciones $f: A \to B$ y $g: B \to C$, de forma que f es biyectiva, pero, $g \circ f$ no es biyectiva.

Consideremos $A := \{2\}$, $B := A y C := \{0, 2\}$, $f := \mathrm{id}_A y \operatorname{sea} g : B \to C$ definida por g(2) = 0 (basta dar g sólo en este punto, pues B sólo tiene un elemento, 2). Notemos que f es biyectiva (toda identidad lo es) $2 \notin \operatorname{ima}(g \circ f)$; es decir, no existe $x \in A$ de modo que $(g \circ f)(x) = 2$. Efectivamente, de ocurrir lo contrario (por contradicción), existiría $x \in A$ de modo que $(g \circ f)(x) = 2$; sin embargo, entonces se tendría que:

$$2 = (g \circ f)(x)$$
 Recién mencionado
 $= g(f(x))$ Def. de composición
 $= g(x)$ $f = id_A$
 $= g(2)$ $x = 2$, pues $x \in A$ y $A = \{2\}$
 $= 0$ Def. de g

lo cual es un absurdo (pues $0 \neq 2$); así, no existe $x \in A$ de modo que $(g \circ f)(x) = 2$. Por lo tanto, $g \circ f : A \to C$ no es sobreyectiva; y por ello, tampoco es biyectiva.

Ej. 9 (1 pt) En cada inciso f es una función de A en B. Indica en cada caso, si f es: inyectiva, sobreyectiva o biyectiva. No es necesario justificar.

- i) $A = \mathbb{N}, B = \mathbb{N}$ y, para cada $a \in A$, f(a) = a.
- ii) $A = \mathcal{P}(\{0, 2, 4, 6, ..., 30\}), B = A$ y, para cada $a \in A$, f(a) es el mínimo de a.
- iii) $A = \mathbb{N}, B = \mathbb{Z}$ y, para cada $a \in A, f(a) = a$.
- iv) $A = \mathbb{R}, B = \mathbb{R}^+ \cup \{0\}$ y, para cada $a \in A$, $f(a) = a^2$.
- v) $A = \mathbb{R}^+ \cup \{0\}, B = \mathbb{R}^+ \cup \{0\}$ y, para cada $a \in A$, $f(a) = a^2$.
- vi) $A = \mathbb{N} \times \mathbb{N}, B = \mathbb{N}$ y, para cada $(a, b) \in A, f(a, b) = 2^a \cdot 3^b$.
- vii) $A = \{0, 1, 2, 3, ..., 10\}, B = \mathcal{P}(\mathbb{R}^2)$ y, para cada $a \in A$, $f(a) = \{(x, y) \in \mathbb{R}^2 \mid x y = 2\}$.
- viii) $A = \mathbb{R}, B = \{0, 1\}$ y, para cada $a \in A$; si $a \in \mathbb{Q}, f(a) = 1$; y, si $a \notin \mathbb{Q}, f(a) = 0$.

Solución. De nuevo, organizaremos la información en una tabla.

Inciso	Inyectiva	Sobreyectiva	
i)	Sí	Sí	
ii)	No	Sí	
iii)	Sí	No	
iv)	No	Sí	
v)	Sí	Sí	
vi)	Sí	No	
vii)	No	No	
viii)	No	No	

Por lo tanto, sólo (i) y (v) son biyecciones.

Ej. 10 (1 pt) Sean A, B conjuntos y $f: A \to B$ una función. La relación $\sim \subseteq A \times A$ definida por $x \sim y \iff f(x) = f(y)$ es de equivalencia (¿por qué?). Sea $q: A \to A/_{\sim}$ definida por q(x) = [x]. Demuestre que q es biyectiva si y sólo si $\sim = \mathrm{id}_A$.

♦

Demostración. Lo primero es notar que \sim es de equivalencia, ya que si $f_1 := f$, entonces $\{f_1\} = \{f_i \mid i \in \{1\}\}\}$ es una familia indexada de funciones de A en B; y entonces, \sim es exactamente la relación R del Ejercicio 7. Ahora sí, veamos que:

q es biyectiva si y sólo si $\sim = id_A$.

Nótese que:

$$q$$
 es inyectiva $\Leftrightarrow \forall a, b \in A \big(q(a) = q(b) \to a = b \big)$ Def. de inyectividad $\Leftrightarrow \forall a, b \in A \big([a] = [b] \to a = b \big)$ Def. de q Ejercicio 6 $\Leftrightarrow R$ es la diagonal de A Def. de diagonal

Además q es siempre sobreyectiva, pues para cada $b = [x] \in A /_{\sim}$ se tiene que q(x) = [x] = b. Entonces, q es biyectiva si y sólo si q es inyectiva (de nuevo, porque q ya es sobreyectiva), y dado lo anterior, esto último ocurre si y solamente si $R = \mathrm{id}_A$.