

Construcción y edición de árboles filogenéticos

Día 3

Contenido del curso

- 1. Conceptos clave
- 2. Preparación de datos y herramientas
- 3. Reconstrucción de árboles filogenéticos

4. Edición e interpretación de árboles filogenéticos

Día 3: Reconstrucción de árboles filogenéticos

18:05 - 18:25

Repaso

• Información preliminar

18:25 - 18:35

• Descarga de genes ortólogos

• Exploración de los datos

18:35 - 18:50

• Alineamiento de secuencias

• Visualización del alineamiento

19:00 - 19:50

• Cálculo del método de sustitución

• Construcción del árbol filogenético

19:50 - 20:00

Dudas y comentarios finales

Información preliminar

Nucleótidos o proteínas para la reconstrucción de árboles, ¿cuál elijo?

Objetivo del estudio

Pregunta biológica e historia evolutiva

Nivel de conservación

Las proteínas suelen estar más conservadas que los nucleótidos (código genético)

Resolución filogenética

Los nucleótidos pueden proporcionar una resolución filogenética más alta cuando se trabaja con especies estrechamente relacionadas

Las proteínas son más útiles para resolver relaciones filogenéticas más profundas o divergencias evolutivas más antiguas

Nucleótidos o proteínas para la reconstrucción de árboles, ¿cuál elijo?

Prefereible nucleótidos:

- Casos de evolución reciente (especies estrechamente relacionadas)
- Análisis de mutaciones puntuales (SNPs, indels)

Preferible aminoácidos:

- Casos de divergencias evolutivas antiguas (especies lejanas)
- Análisis funcionales de proteínas

¿Qué es un outgroup (o grupo externo)?

- Es un taxón o grupo de organismos que se encuentra fuera del grupo principal de interés, pero que se utiliza como punto de referencia para determinar las relaciones evolutivas dentro del grupo principal
- Sirve como referencia externa que nos permite establecer la dirección y la naturaleza de los cambios evolutivos dentro de un grupo de interés

ML topology of 322 human-adapted and 529 animal-adapted MTBC members. Branch lenghts are proportional to nucleotide substitutions and the topology is **rooted** with *Mycobacterium canettii*.

¿Qué son los árboles enraizados (o rooted tree)?

- Son árboles que contienen una "raíz" o outgroup
- La raíz representa al ancestro común más reciente de todos los taxas del árbol filogenético
- La raíz es la parte más antigua del árbol, por lo tanto, nos indica la dirección de la evolución desde la raíz hacia las ramas

Estrategias para obtener un árbol enraizado

Midpoint rooting

- Se asume que todas las secuencias del árbol evolucionan con la misma tasa. Esto no aplica a muchos casos biológicos
- En este caso, la raíz se coloca en el punto medio de las dos ramas más largas
- Limita la interpretación evolutiva en comparación con otras alternativas

Unrooted tree

Midpoint rooted

Estrategias para obtener un árbol enraizado

Outgroup rooting

- Es el método más recomendado
- Incluir una o más secuencias "outgroup" al análisis que sabemos son más distantes a las del grupo de interés
- La raíz estimada será entonces el punto en el cual se conecta el outgroup con el resto de las secuencias de interés

Midpoint rooted

Outgroup rooted

¿Qué es el bootstrap?

Es una estrategia para estimar la confianza de un árbol filogenético inferido

Valores ≥70% de bootstrap probablemente indican agrupaciones confiables

"Existe un soporte constante (100% bootstrap) de que los taxa C y D están más estrechamente relacionados entre sí que con B"

"A partir de estos datos no queda claro que B, C y D sean los parientes más cercanos entre sí".

Beta-lactamasas

Árbol de genes: Beta-lactamasas

 Es una proteína presente en algunas bacterias que se encarga de degradar los anillos beta-lactámicos, que forman parte de varios antibióticos incluyendo las penicilinas, cefalosporinas, monobactámicos y carbapenémicos

Árbol de genes: Beta-lactamasas

Pregunta:

¿Cómo han evolucionado las beta-lactamasas en bacterias?

Objetivo:

Crear un árbol filogenético del gen de las beta-lactamasas considerando únicamente genes ortólogos en distintas bacterias

Dirígete el siguiente link, donde encontrarás las secuencias que usaremos para generar el árbol filogenético de las beta-lactamasas:

https://github.com/paumayell/Phylogenetic-tree-reconstruction

Exploración de los datos

Visualizar las secuencias en MEGA

- Abrir el programa MEGA
- Abrir o arrastrar el archivo FASTA de proteínas de las betalactamasas a la ventana principal de MEGA

Alineamiento de las secuencias

Alinear las secuencias usando Muscle

- Selecciona el algoritmo de alineamiento (Muscle)
- Selecciona el tipo de secuencias (proteínas)
- Parámetros del alineamiento (default)

Visualización del alineamiento

Exploración de la calidad del alineamiento

- Explora todos los taxas y revisa todo el alineamiento para ubicar la presencia de gaps
- Elimina las regiones no conservadas (exceso de gaps) que puedan meter ruido al análisis filogenético

Alternativa:

- Alinear con el software online
 T-coffee → Proteins → M-coffee
- Una vez que se obtiene el alineamiento, correr el análisis de Core/TCS análisis para obtener solo las regiones conservadas del alineamiento
- Guardar el resultado y cargarlo en MEGA

Cálculo del modelo de sustitución

Cálculo del modelo de sustitución

MEGA

- Cargar el alineamiento de regiones conservadas y ejecutar el análisis de alineamiento
- Guardar el alineamiento en formato MEGA
- Ejecutar el análsis del modelo de sustitución en la pestaña "Modelo"

Nota: Este proceso puede tardar varios minutos

ModelTest-NG

https://github.com/ddarriba/modeltest

Reconstrucción del árbol filogenético

Reconstrucción del árbol filogenético

MEGA

- Una vez que hemos obtenido el modelo de sustitución para nuestros datos, elegimos el método para la reconstrucción del árbol filogenético (Maximum Likelihood) y ajustamos los parámetros indicando el método de sustitución calculado
- Exportar el resultado del árbol en formato newick (.nwk)

Nota: Este proceso puede tardar varios minutos

RAxML-NG

https://github.com/amkozlov/raxml-ng

Dudas y comentarios finales

Contacto

Dra. Paulina M. Mejía-Ponce

paumayell@gmail.com