StemmaBench Benchmarking stemmatology algorithm

Dr. Sophie Robert-Hayek - Pr. Frédérique Rey

University of Lorraine Écritures - Maison des Sciences de l'Homme

2023 Society of Biblical Literature

- The SHERBET project
- 2 Computational stemmatology
 - Distance based algorithms
 - Probability algorithms
- 3 Motivation
- 4 Introducing StemmaBench
- S Next steps

Outline

- 1 The SHERBET project
- 2 Computational stemmatology
- Motivation
- 4 Introducing StemmaBench
- Next steps

SHERBET (Stemmatology for the HEbRew BiblE Transmission)

4 years funding (French ANR grant) to reconstruct the genealogical linkage of Qumran and Cairo Genizah manuscripts using **computational tools**, led by **Frédérique Rey**.

Consortium of philology laboratory (Ecritures), computer science laboratory (LORIA) and applied mathematics laboratories (IECL, LJK).

3 anticipated work packages:

 Benchmarking and calibrating stemmatology algorithms to the Qumran and Cairo Genizah textual traditions;

3 anticipated work packages:

- Benchmarking and calibrating stemmatology algorithms to the Qumran and Cairo Genizah textual traditions;
- ② Development of novel computational stemmatology algorithms:
 - Using a precise probability transition model;
 - Leveraging recent advances in Natural Language Processing;
 - Outperforming current algorithms;

3 anticipated work packages:

- Benchmarking and calibrating stemmatology algorithms to the Qumran and Cairo Genizah textual traditions;
- ② Development of novel computational stemmatology algorithms:
 - Using a precise probability transition model;
 - Leveraging recent advances in Natural Language Processing;
 - Outperforming current algorithms;
- Applications of these algorithms to build the genealogical lineage of several traditions, starting with Hebrew manuscripts of Ben Sira.

Outline

- 1 The SHERBET project
- 2 Computational stemmatology
 - Distance based algorithms
 - Probability algorithms
- Motivation
- 4 Introducing StemmaBench
- 6 Next steps

Stemmatology

Stemmatology

Stemmatology consists in building the **genealogical lineage** of a set of textual witnesses by analyzing the textual **variants**, to better understand textual transformations and scribal behavior.

Schema Cognationis Codicum manusc.

Usual method rely on manual variant analysis:

• Paul Maas conjunctive/separative errors (Maas 1958)

The improvements in computational algorithms and computer speed has led to:

- the development of automatic algorithms;
- inspired from **biology**;

The improvements in computational algorithms and computer speed has led to:

- the development of automatic algorithms;
- inspired from **biology**;

Computational stemmatology

Computational stemmatology uses computational techniques and algorithms to reconstruct the evolutionary relationships between the witnesses.

Many algorithms have been designed over the last 50 years:

• Encoding "standard" stemmatology algorithms: Poole's algorithm (Camps 2015), RHM algorithm (Roos and Heikkila 2009) ...

Many algorithms have been designed over the last 50 years:

 Encoding "standard" stemmatology algorithms: Poole's algorithm (Camps 2015), RHM algorithm (Roos and Heikkila 2009) ...

- Borrowing from **philogeny** (study of the evolutionary history among organisms):
 - Distance based algorithms;
 - Probabilistic based algorithms.

Distance based algorithms

Computational stemmatology: distance based algorithms

- Define a distance matrix between manuscripts;
- Iteratively group together the closest manuscripts;

Computational stemmatology: distance based algorithms

- Define a distance matrix between manuscripts;
- Iteratively group together the closest manuscripts;

Example algorithms

UPGMA (Sokal and Michener 1958) and Neighbor Joining (Saitou N 1987).

Probability algorithms

Computational stemmatology: probability based algorithms

- Define a probability model of transition between manuscripts: probability of going from manuscript P_i to manuscript P_i given the variants:
- Select the tree that is the **most likely true** given the data.

The likelihood, L(T)of observing the given manuscript data D, under the tree T and the tradition parameters Θ , can be calculated as:

$$L(T) = \mathbb{P}(D|T,\Theta)$$

Computational stemmatology: probability based algorithms

- Define a probability model of transition between manuscripts: probability of going from manuscript P_i to manuscript P_i given the variants:
- Select the tree that is the most likely true given the data.

The likelihood, L(T)of observing the given manuscript data D, under the tree T and the tradition parameters Θ , can be calculated as:

$$L(T) = \mathbb{P}(D|T,\Theta)$$

Example algorithms

Bayesian Inference (Drummond and Bouckaert 2015), Maximum Likelihood trees (Felsenstein 1981) ...

Motivation

Outline

- 1 The SHERBET project
- 2 Computational stemmatology
- Motivation
- Introducing StemmaBench
- Next steps

Selecting the right algorithms

Faced with as many possible choices ...

Selecting the right algorithms

Faced with as many possible choices ...

What algorithm should we select given a textual tradition?

Selecting the right algorithms

Faced with as many possible choices ...

What algorithm should we select given a textual tradition?

There is no single optimum algorithms that will outperform all others and the algorithms should be selected given the particularity of each tradition.

(Machine Learning/Deep Learning community refers to this as the "no free lunch" theorem)

Benchmarking

Benchmarking refers **to the process of evaluating the performance** of a new model, algorithm, or technique by comparing it against established and standardized datasets, metrics, or existing models.

Benchmarking

Benchmarking refers **to the process of evaluating the performance** of a new model, algorithm, or technique by comparing it against established and standardized datasets, metrics, or existing models.

Benchmarking is required to:

- Suggest new algorithms and compare them to the state of the art;
- Select the optimum algorithm given the particularity of a tradition.

Why should we benchmark stemmatology algorithms?

Suggesting a new algorithm: A new variation of algorithms should perform at least as well on at least one case study to be an acceptable.

Why should we benchmark stemmatology algorithms?

Suggesting a new algorithm: A new variation of algorithms should perform at least as well on at least one case study to be an acceptable.

Example

When suggesting to use a **new distance** in a distance based stemmatology algorithms such as Neighbor Joining, we should show that in practice it outperforms other textual distances to be **suggested as an alternative**.

Why should we benchmark stemmatology algorithms?

Selecting the algorithm:

Select the best performing algorithms given the characteristics of the variants within the studied textual tradition.

Why should we benchmark stemmatology algorithms ?

Selecting the algorithm:

Select the best performing algorithms given the characteristics of the variants within the studied textual tradition.

Example

Given a tradition with a:

- 1% word omission rate;
- 5% letter inversion;
- 2% word inversion;
- 10% of missing manuscripts;

probability at each generation,

What algorithm should I select given these characteristics?

To perform benchmarking we need:

- A golden standard (**ground truth**): a tradition where we know the true stemma;
- A set of stemmatology algorithms to compare;
- **3** A metric to compare the different results between them.

Two possible approaches:

Two possible approaches:

 Use "real" handwritten benchmarking data or traditions with known ground truth.

Benchmarking of stemmatology algorithms

Two possible approaches:

- Use "real" handwritten benchmarking data or traditions with known ground truth.
- Use computer generated traditions that imitates observed traditions and simulates variants over time.

Using handwritten data

Landmark study of Roos et al. (Roos and Heikkila 2009) that compare 22 different variations of stemmatology algorithms on 4 traditions (3 synthetic, 1 "real"):

Data	Number of manuscripts	
Heinrichi	67	
Parzival	21	
Notre besoin	14	
Legend	52*	

Using handwritten data (Roos and Heikkila 2009)

Method	Data			
	Heinrichi (%)	Parzival (%)	Notre besoin (%	
RHM	76.0	79.9	76.9	
PAUP*				
Parsimony	74.4	77.8	74.5	
Parsimony BS ^b	73.6	85.4	77.3	
Neighbour Joining	64.4	81.5	76.2	
Neighbour Joining BSb	62.9	87.1	77.4	
Least squares	64.2	81.5	70.2	
Least squares BS ^b	62.6	79.8	73.0	
n-Gram clustering	64.4	79.3	66.4	
SplitsTree4				
NeighborNet	59.1	77.8	70.2	
SplitDecomp.	53.1	74.5	73.1	
ParsimonySplits	56.8	83.7	71.6	
CompLearn	52.7	81.5	70.6	
Hierarchical clustering	51.4	72.6	60.2	
'Classical' method Aa			74.4	
'Classical' method Ba			85.1	
Weighted support method			66.3	
Neighbour joining A			76.0	
Neighbour joining B			75.0	
Parsimony			74.4	
Data compression			62.0	

Limits

Handwritten texts in conditions that resemble the working conditions of scribes, but:

Limits

Handwritten texts in conditions that resemble the working conditions of scribes, but:

- Very expensive;
- No guarantee of being representative;
- Very dependent on experimental parameters;
- Hard to fine tune.

Benchmarking of stemmatology algorithms

Suggestion of a complementary approach based on simulation to generate representative textual traditions.

Benchmarking of stemmatology algorithms

Suggestion of a complementary approach based on simulation to generate representative textual traditions.

We present the **StemmaBench** Python library, a set of utilities to **generate ground truth traditions for benchmarking of stemmatology algorithms**.

Introducing StemmaBench

Outline

- 1 The SHERBET project
- 2 Computational stemmatology
- 3 Motivation
- Introducing StemmaBench
- Next steps

Purpose

StemmaBench is a Python library that allows you to quickly generate an artificial textual traditions given:

- An input text;
- A configuration file.

Example

Input text: Extract from the Lion, The Witch and The Wardrobe, by C.S. Lewis

Once there were four children whose names were Peter, Susan, Edmund and Lucy.

Configuration file:

```
meta:
  language: eng
variants:
  words:
    synonym:
      law: Bernouilli
      rate: 0.01
    mispell:
      law: Rernouilli
      rate: 0.1
    omit:
      law: Bernouilli
      rate: 0.05
  sentences:
    duplicate:
      args:
        nbr words: 2
      law: Bernouilli
      rate: 0.1
stemma:
  depth: 2
  width:
    law: Uniform
    min · 2
    max · 4
```

Example

StemmaBench will generate the following artificial tradition:

• Easy install using Python;

- Easy install using Python;
- Fast and easy tradition generation;

- Easy install using Python;
- Fast and easy tradition generation;
- Effortless result vizualization and manipulation;

- Easy install using Python;
- Fast and easy tradition generation;
- Effortless result vizualization and manipulation;
- Flexible scribal modelization: possibly to define your own probabilities for:
 - Mispells
 - Synonym insertions
 - Word omission
 - Word repetition
 - Word order change

Using stemmabench

Input:

- Define the text: input_text.txt
- Define the wanted configuration: config.yml

generate narnia.txt output_folder config.yaml

Using stemmabench

Input:

- Define the text: input_text.txt
- Define the wanted configuration: config.yml

generate narnia.txt output_folder config.yaml

Output:

- edges.txt: A display of the generated tree.
- A text file per generated manuscript within the tradition.

Supported languages

For now, supported languages for synonym generation are:

- English;
- Koiné Greek.

Incoming supported language: biblical hebrew.

Next steps

Outline

- 1 The SHERBET project
- 2 Computational stemmatology
- Motivation
- Introducing StemmaBench
- Next steps

3 improvement direction

• Improving scribal modelization;

• **Estimating** the parameters of the tradition;

• Dealing with **contamination** / horizontal transmission.

• Introduce different probabilities depending on letters (make some switches more likely than others);

- Introduce different probabilities depending on letters (make some switches more likely than others);
- Introduce possible variants within words cut-off;

- Introduce different probabilities depending on letters (make some switches more likely than others);
- Introduce possible variants within words cut-off;
- Take into account word inflection whenever computing synonyms;

- Introduce different probabilities depending on letters (make some switches more likely than others);
- Introduce possible variants within words cut-off;
- Take into account word inflection whenever computing synonyms;
- Perform omissions depending on POS (adjectives and conjunctions are most likely to be dropped);

- Introduce different probabilities depending on letters (make some switches more likely than others);
- Introduce possible variants within words cut-off;
- Take into account word inflection whenever computing synonyms;
- Perform omissions depending on POS (adjectives and conjunctions are most likely to be dropped);
- Include manuscript fragmentation.

Estimating parameters of the traditions

Selecting **realistic configuration** file will require analysis of existing traditions: quite mathematically tricky!

Estimating parameters of the traditions

Selecting **realistic configuration** file will require analysis of existing traditions: quite mathematically tricky!

Current works are being done on **analyzing the statistical distribution of variants** in the:

- Traditions used by Roos et al. for result reproducibility.
- Ben Sira tradition (Genizah, Qumran ...)
- Isaiah tradition (Qumran, ...)

Dealing with horizontal transmission

Horizontal transmission refers to a situation where two or more textual traditions or manuscripts that are being studied become mixed or intermingled, leading to uncertainty about the relationships between different versions of a text.

Dealing with horizontal transmission

Horizontal transmission refers to a situation where two or more textual traditions or manuscripts that are being studied become mixed or intermingled, leading to uncertainty about the relationships between different versions of a text.

Very little work has been done regarding the impact of horizontal transmission on computational stemmatology algorithms.

Dealing with horizontal transmission

Horizontal transmission refers to a situation where two or more textual traditions or manuscripts that are being studied become mixed or intermingled, leading to uncertainty about the relationships between different versions of a text.

Very little work has been done regarding the impact of horizontal transmission on computational stemmatology algorithms.

StemmaBench will generate "contaminated" traditions to quantify its impact on the computational stemmatology algorithms.

Using the software

Link to GitHub project:

https://github.com/metz-theolab/stemmabench.

Link to project's website:

https://metz-theolab.github.io/stemmabench/.

Link to PyPi module:

https://pypi.org/project/stemmabench/.

Questions

Questions?

Bibliography I

- Camps, Jean-Baptiste (Jan. 2015). "Copie, authenticité, originalité dans la philologie et son histoire". fr. In: *Questes* 29, pp. 35–67. ISSN: 2102-7188, 2109-9472. DOI: 10.4000/questes.3535.
- Drummond, Alexei J. and Remco R. Bouckaert (2015). *Bayesian evolutionary analysis with BEAST*. Cambridge: Cambridge University Press.
- Felsenstein, Joseph (1981). "Evolutionary trees from DNA sequences: A maximum likelihood approach.". In: *Journal of Molecular Evolution* 17, pp. 168–376.
- Maas, Paul (Jan. 1958). *Textual criticism*. London: Oxford University Press. ISBN: 978-0-19-814318-5.
- Roos, Teemu and T. Heikkila (2009). "Evaluating methods for computer-assisted stemmatology using artificial benchmark datasets". In: *Literary and Linguistic Computing* 24, pp. 417–433.

Bibliography II

- Saitou N, Nei M. (July 1987). "The neighbor-joining method: a new method for reconstructing phylogenetic trees.". In: *Mol Biol Evol.* 4, pp. 406–425.
- Sokal, Robert R. and Charles Duncan Michener (1958). "A statistical method for evaluating systematic relationships". In: *University of Kansas science bulletin* 38, pp. 1409–1438. URL: https://api.semanticscholar.org/CorpusID:61950873.