Metody numeryczne projekt nr 2

Dominika Gimzicka nr albumu: grupa wtorek 12

15.12.2023

1 Treść zadania

Rozwiązywanie układu równań liniowych XA=B, gdzie A $\in R^{n\times x}$ i B $\in R^{n\times x}$, zmodyfikowaną metodą Doolittle'a (tj. poprzez rozkład A = UL, gdzie U jest macierzą trójkątną góną, a L macierzą trójkątną dolną z jedynkami na głównej przekątnej).

Wyznaczanie macierzy A^{-1} oraz det(A) na podstawie rozkładu.

Porównać wyniki z otrzymanymi wbudowaną funkcją Matlaba inv.

2 Opis wykorzystanych metod

2.1 Zmodyfikowana Metoda Doolittle'a

Standardowa metoda Doolittle'a służy do wyznaczania rozkładu LU dowolnej kwadratowej macierzy nieosobliwej. W rozkładzie A=LU tej metody, U jest macierzą trójkątną górną, a L macierzą dolną trójkątną z jedynkami na głównej przekątnej.

W przypadku tego zadania rozważać będziemy lekko zmodyfikowaną wersję tej metody, która różni się jedynie tym, że szukamy rozkładu A=UL (założenia co do macierzy U i L pozostają takie same jak w standardowej wersji). Algorytm tej metody wyznacza się następująco.

Najpierw zapisuje się macierz A jako iloczyn macierzy U i L, jak poniżej:

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} = \begin{bmatrix} u_{11} & u_{12} & \dots & u_{1n} \\ 0 & u_{22} & \dots & u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & u_{nn} \end{bmatrix} \begin{bmatrix} 1 & 0 & \dots & 0 \\ l_{21} & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ l_{n1} & l_{n2} & \dots & 1 \end{bmatrix}$$

Następnie rozpisuje się iloczyn po prawej stronie równania i porównuje się odpowiedające sobie elementy macierzy A i UL. W ten sposób otrzymujemy zależności, dzięki którym możemy wyznaczyć kolejne elementy macierzy U oraz L. Będzie się to odbywało naprzemiennie, tj. raz wyznacza się kolumnę macierzy U, raz wiersz macierzy L.

2.2 Rozwiązywanie układu równań liniowaych dzięi rozkładowi UL

Metoda ta jest analogiczna do rozwiązywania równań liniowych postaci xA=b metodą LU. Polega to na tym, że do równania xA=b podstawiamy A=UL. Otrzymujemy:

$$x(UL) = b$$

Przekształacając dalej otrzymamy:

$$(xU)L = b$$

Rozwiązanie tego otrzymamy rozwiązując dane 2 układy:

$$yL = b \text{ oraz } xU = b$$

2.3 Wyznaczanie macierzy A⁻¹ na podstawie rozkładu

Wiemy, że macierz odwrotna spełnia dane równanie:

$$A^{-1}$$
. $A = I$, gdzie I jest macierzą jednostkowa

Podstawiając $X=A^{-1}$ otrzymamy

$$X \cdot A = I$$

Dane równanie jest przykładem równania liniowego opisanego sekcję powyżej i rozwiązuje się je zgodnie z metodą tam opisaną.

2.4 Wyznaczanie det(A) na podstawie rozkładu

Zarówno macierz U, jak i L to macierze trójkątne, co ułatwia obliczenie wyznacznika macierzy A=UL. Zauważmy, że wyznacznikiem macierzy trójkątnej jest iloczyn wartości znajdujących się na jej głównej przekątnej. Ponadto wiemy, że na głównej przekątnej macierzy L są same jedynki, stąd det(L)=1. Zatem podstawiając A=UL otrzymujemy:

$$\det(\mathbf{A}) = \det(\mathbf{UL}) = \det(\mathbf{U})\det(\mathbf{L}) = 1 \cdot \prod_{i=1}^{n} u_{ii}$$

3 Opis programu obliczeniowego

3.1 rozkladDoolittleUL

Jest to funkcja służąca do stworzenia zmodyfikowanego rozkładu Doolittle'a macierzy A tj. A=UL. Funkcja rozkladDoolittleUL przyjumje następujące argumenty:

• A - macierz wejściowa, którą poddamy rozkładowi

Funkcja zwraca następujące macierze:

- U macierz trójkatna górna
- L macierz trójkątna dolna z jedynkami na głównej przekątnej

Poniżej zamieszczony jest algorytm napisany przeze mnie w języku MATLAB:

```
function [U,L] = rozkladDoolittleUL(A)
3
4
5
6
7
       [rows, columns] = size(A);
       % sprawdzamy czy macierz jest kwadratowa - jeśli nie to rozkład UL nie istnieje
       if rows ~= columns
           error("Macierz nie jest kwaddratowa")
8
9
10
       % sprawdzamy, czy macierz jest nieosobliwa, tzn. det(A)!=0
11
           error("Macierz jest osobliwa")
12
13
14
15
       n = rows;
16
       L = eye(n); % inicjalizacja macierzy jednostkowej
17
18
19
       % uzupełnianie pierwszego rzędu macierzy U
20 -
       for i = 1:n
21
           U(i,n) = A(i,n);
22
23
24
       % uzupełnianie ostatniego rzedu macierzy L
25
       for i = 1:n-1
26
           L(n,i) = A(n,i)/U(n,n);
27
28
```

```
29 🗖
       for i = n-1:-1:1
30
           % obliczanie dla macierzy U
31 =
           for j = i:-1:1
32
               sum = 0;
33 🖹
               for k = n:-1:i+1
                   sum = sum + L(k,i)*U(j,k);
34
35
36
               U(j,i) = A(j,i) - sum;
37
38 🖹
               % sprawdzanie czy któryś z głównych minorów macierzy U jest równy 0,
39
               % ponieważ w takim przypadku przy obliczaniu elementów macierzy L
40
               % występuje dzielenie przez 0. Zatem rozkład UL wtedy nie istnieje.
41
               if U(i,i)==0
42
                    error("Jeden z głównych minorów macierzy U równy 0 -> rozkład UL nie istnieje")
43
44
45
           end
46
47
           % obliczenia dla macierzy L
48
           for j = i-1:-1:1
49
               sum = 0;
50
                for k = n:-1:i+1
51
                   sum = sum + L(k,j)*U(i,k);
52
53
               L(i,j) = (A(i,j) - sum) / U(i,i);
54
55
       end
56
57
       end
```

3.2 rozwiazUkladRownan

Jest to funkcja służąca do rozwiązywania układu równań liniowych postaci XA=B. Przyjmuje ona następujące argumenty:

- A macierz, której uzyskamy rozkład UL i rozwiążemy równanie XA=B
- B macierz będąca prawą stroną w ukladzie równań XA=B

Funkcja zwraca macierzXbędącą macierzą wynikową układu równań XA=B. Poniżej zamieszczony jest algorytm napisany przeze mnie w języku MATLAB:

```
function [X] = rozwiazUkladRownan(A,B)
 2 🖹
       % wszystkie warunki jakie musi spełniać macierz A, aby posiadała rozkład są
       % sprawdzane w funkcji rozkladDoolitleUL
 3
 4
 5
       % otrzymanie rozkładu UL macierzy A wcześniej napisaną funkcją
 6
       [U,L] = rozkladDoolittleUL(A);
 7
 8
       % rozwiązywanie równania LY=B
9
       Y = B/L;
10
11
       %rozwiązywanie równania XU=Y
12
       X=Y/U;
13
14
       end
```

3.3 macierzOdwrotna

Jest to funkcja służąca do stworzenia macierzy odwrotnej do A na podstawie rozkładu UL. Przyjmuje ona następujące argumenty:

• A - macierz do odwrócenia

Funkcja zwraca macierz *invA* będącą macierzą odwrotną do A. Poniżej zamieszczony jest algorytm napisany przeze mnie w języku MATLAB:

3.4 obliczWyznacznik

Jest to funkcja służąca do obliczania wyznacznika macierzy A na podstawie rozkładu UL. Przyjmuje ona następujące argumenty:

• A - macierz, której wyznacznik będzie obliczany

Funkcja zwraca liczbę *wyznacznik* będącą obliczonym wyznacznikiem macierzy A. Poniżej zamieszczony jest algorytm napisany przeze mnie w języku MATLAB:

```
function [wyznacznik] = obliczWyznacznik(A)
       % otrzymanie rozkładu UL macierzy A wcześniej napisaną funkcją
 2
 3
       [U,L] = rozkladDoolittleUL(A);
 4
 5
       % obliczenie iloczynu wyrazów po głównej przekątnej
 6
       wyznacznik = 1;
 7 🗀
       for i = 1:length(U(1,:))
           wyznacznik = wyznacznik*U(i,i);
 9
       end
10
11
       end
```

3.5 przedstawBledy

Jest to funkcja służąca do wywoływania wszystkich funkcji powyżej opisanych na macierzy wejściowej A. Ponadto sprawdza poprawność obliczeń tych funkcji oraz błędy bezwględne i względne przy nich zachodzące.

Przyjmuje ona następujące argumenty:

- A macierz, którą poddajemy rozkładowi UL i na której wywołujemy wszystkie funkcje
- \bullet B macierz, która będzie prawą stroną w układzie równań XA=B (drugi argument funkcji rozwiaz Układ
Rownan)

Funkcja nie zwraca nic, a tylko wypisuje odpowiednie informacje na konsolę.

Poniżej zamieszczony jest algorytm napisany przeze mnie w języku MATLAB:

```
% Wyświetlamy wyniki
           function [] = przedstawBledy(A,B)
                                                                                                                      disp('Macierz A:');
disp(A);
                                                                                                              25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
           % Obliczamy rozkład A=UL
2
          [U, L] = rozkladDoolittleUL(A);
 4
                                                                                                                      disp('Rozkład A = UL:');
                                                                                                                      disp('U:');
disp(U);
disp('L:');
disp(L);
           % Sprawdzamy poprawność rozkładu UL
 6
           A_byUL = U*L;
          % Obliczanie równania liniowego XA=B
 8
                                                                                                                      disp('Sprawdzanie poprawności rozkładu UL');
          X_byUL = rozwiazUkladRownan(A,B);
B_byUL = X_byUL*A;
                                                                                                                       disp('U*L:')
disp(A_byUL);
10
                                                                                                                      disp('Macierz A:');
disp(A);
                                                                                                                     disp("-----");
disp("Macierz X z układu równanń XA=B obliczony za pomocą rozkładu UL:')
disp(X_byUL);
disp("Macierz XA:');
disp("Macierz XA:');
disp("Wejściowa macierz B:');
disp("Wejściowa macierz B:');
12
          % Obliczamy macierz odwrotną na podstawie rozkładu
13
          A_inv_byUL = macierzOdwrotna(A);
14
          % Obliczamy wyznacznik macierzy A na podstawie rozkładu
15
16
          det_A_byUl = obliczWyznacznik(A);
17
18
          % Obliczamy macierz odwrotną za pomocą wbudowanej funkcji inv
                                                                                                                     disp("-----");
disp('Macierz odwrotna do A obliczona na podstawie rozkładu A = UL:');
disp(A_inv_byUL);
disp('Macierz odwrotna do A obliczona za pomocą funkcji inv:');
disp(A_inv_builtin);
19
           A_inv_builtin = inv(A);
20
          % Obliczamy wyznacznik za pomocą wbudowanej funkcji det
21
22
          det_A_builtin = det(A);
```

```
54
      disp("----");
55
      disp('Wyznacznik macierzy A obliczony na podstawie rozkładu A = UL:');
56
      disp(det A byUl);
57
      disp('Wyznacznik macierzy A obliczony za pomocą funkcji det:');
58
      disp(det A builtin);
59
60
61
      disp("Błedv obliczania rozkładu UL");
      disp('Błąd bezwzględny:');
62
      disp(abs(A byUL - A));
63
      disp('Błąd względny:');
64
65
      disp(abs( (A_byUL - A)/A) );
66
      disp("-----
                .----");
      disp("Błędy rozwiązywania układu równań liniowych XA=B");
67
      disp('Błąd bezwzględny:');
68
      disp(abs(B_byUL - B));
69
70
      disp('Błąd względny:');
71
      disp(abs( (B_byUL - B)/B) );
72
      disp("----
      disp("Błędy obliczania macierzy odwrotnej");
73
74
      disp('Błąd bezwzględny:');
75
      disp(abs(A_inv_byUL - A_inv_builtin));
      disp('Błąd względny:');
76
77
      disp(abs( (A_inv_byUL - A_inv_builtin)/A_inv_builtin) );
78
      disp("----");
79
      disp("Błędy obliczania wyznacznika");
80
      disp('Błąd bezwzględny:');
      disp(abs(det_A_byUl - det_A_builtin));
81
82
      disp('Błąd względny:');
      disp(abs( (det_A_byUl - det_A_builtin)/det_A_builtin) );
83
      disp("----");
84
85
      end
```

4 Przykłady obliczeniowe

Poniżej przedstawię parę ciekawych przykładów, podzielonych na sekcje ze względu na to, co będziemy w danym momencie testować. Do każdego przykładu pokażę także jakie błędy zachodzą przy takich obliczeniach.

Wyniki przedstawione do każdego przykładu są efektem uruchomienia funckji przedstawBledy.

4.1 "Szczególne" przypadki macierzy wejściowych

4.1.1 macierz nie jest kwadratowa

```
>> A = rand(2,3)

A =

0.3692  0.7803  0.2417
0.1112  0.3897  0.4039

>> przedstawBledy(A)

Error using rozkladDoolittleUL

Macierz nie jest kwadratowa

Error in przedstawBledy (line 3)

[U, L] = rozkladDoolittleUL(A);
```

Jak widzimy przy wywołaniu funkcji rozkład Doolittle
UL na macierzy rozmiaru 2x3 z losowymi wartościami, funkcja ta zachowuje się prawidłowo - wyrzuca błąd.

>> macierzOdwrotna(A)

Zobaczmy jak się zachowa reszta funkcji.

```
Error using rozkladDoolittleUL
                                                                              Macierz nie jest kwadratowa
                                      >> rozwiazUkladRownan(A)
>> obliczWyznacznik(A)
                                                                              Error in rozwiazUkladRownan (line 13)
                                      Error using rozkladDoolittleUL
Error using rozkladDoolittleUL
                                      Macierz nie jest kwadratowa
                                                                              [U,L] = rozkladDoolittleUL(A);
Macierz nie jest kwadratowa
                                                                              Error in macierzOdwrotna (line 12)
                                     Error in rozwiazUkladRownan (line 13)
Error in obliczWyznacznik (line 9)
                                                                              invA = rozwiazUkladRownan(A,I);
                                      [U,L] = rozkladDoolittleUL(A);
[U,L] = rozkladDoolittleUL(A);
```

Jak widzimy reszta funckji też zadziałała prawidłowo i wyrzuciła błąd.

4.1.2 macierz jest osobliwa

Weźmy macierz jak poniżej

Jak widzimy macierz, którą wybraliśmy jest osobliwa, ponieważ $\det(A)=0$. Zobaczmy jak się zachowają funkcje na niej wywołane.

```
>> macierzOdwrotna(A)
                                                Error using rozkladDoolittleUL
                                                Macierz jest osobliwa
>> przedstawBledy(A)
Error using rozkladDoolittleUL
                                                Error in rozwiazUkladRownan (line 13)
Macierz jest osobliwa
                                                [U,L] = rozkladDoolittleUL(A);
Error in przedstawBledy (line 3)
                                               Error in macierzOdwrotna (line 12)
[U, L] = rozkladDoolittleUL(A);
                                               invA = rozwiazUkladRownan(A,I);
>> rozwiazUkladRownan(A)
                                               >> obliczWyznacznik(A)
                                               Error using rozkladDoolittleUL
Error using rozkladDoolittleUL
                                               Macierz jest osobliwa
Macierz jest osobliwa
                                              Error in obliczWyznacznik (line 9)
Error in rozwiazUkladRownan (line 13)
                                              [U,L] = rozkladDoolittleUL(A);
[U,L] = rozkladDoolittleUL(A);
```

Widzimy, że również gdy macierz jest osobliwa, program zachowuje się prawidłowo i za każdym razem wyrzuca błąd.

4.2 Macierz 3x3

4.2.1 wartości macierzy z przedziału [0,10]

Wylosujmy macierz A rozmiaru 3x3 z wartościami z przedziału [0,10] oraz macierz B rozmiaru 3x3. Wylosowane macierze to:

```
A =

3.9552  0.3774  7.9618
3.6744  8.8517  0.9871
9.8798  9.1329  2.6187

B =

0.3354  0.7212  0.4942
0.6797  0.1068  0.7791
0.1366  0.6538  0.7150
```

Zobaczmy teraz jak po kolei działają na nich nasze funckje.

```
Macierz X z układu równanń XA=B obliczony za pomocą rozkładu UL:
                                                                   0.0584 0.1105 -0.0305
0.0867 -0.0435 0.0503
Rozkład A = UL:
                                                                   0.0979 0.1555 -0.0832
                       7.9618
  -26.3354 -27.3899
                                                               Macierz XA:
       0 5.4090
                        0.9871
                                                                   0.3354
                                                                           0.7212
                                                                                     0.4942
         0
                 0 2.6187
                                                                   0.6797
                                                                            0.1068
                                                                                     0.7791
                                                                   0.1366
                                                               Wejściowa macierz B:
    1.0000
                         0
                                                                                      0.4942
   -0.0092
            1.0000
                                                                   0.6797
                                                                            0.1068
                                                                                     0.7791
    3.7728
              3.4875
                         1.0000
                                                                                     0.7150
                                                                   0.1366
                                                                            0.6538
Sprawdzanie poprawności rozkładu UL
                                                               Macierz odwrotna do A obliczona na podstawie rozkładu A = UL:
   3.9552
              0.3774
                                                                  -0.0380 -0.1923 0.1879
    3.6744
             8.8517
                        0.9871
                                                                  -0.0003
                                                                            0.1831
                                                                                    -0.0680
    9.8798
             9.1329
                        2.6187
                                                                   0.1445
                                                                           0.0868
                                                                                    -0.0901
                                                               Macierz odwrotna do A obliczona za pomocą funkcji inv:
Macierz A:
                                                                 -0.0380 -0.1923 0.1879
-0.0003 0.1831 -0.0680
   3.9552 0.3774
                      7.9618
    3.6744 8.8517 0.9871
9.8798 9.1329 2.6187
                        0.9871
                                                                  0.1445 0.0868 -0.0901
```

```
Wyznacznik macierzy A obliczony na podstawie rozkładu A = UL:
-373.0344

Wyznacznik macierzy A obliczony za pomocą funkcji det:
-373.0344
```

Jak widać wyniki na pierwszy rzut oka wszędzie są poprawne. Zobaczmy jak wygladają błędy przy takim rozmiarze i wartościach macierzy.

```
Błędy obliczania rozkładu UL
                                             Błędy rozwiązywania układu równań liniowych XA=B
Błąd bezwzględny:
                                             Błąd bezwzględny:
  1.0e-15 *
                                               1.0e-15 *
  0.4441 0 0
0 0 0
0 0 0
                                                0.0555 0.1110 0.0555
                                                0.3331 0.1110 0
0.3331 0.3331 0
Błąd względny:
                                             Błąd względny:
  1.0e-16 *
                                               1.0e-15 *
   0.1686 0.8539 0.8346
                                                0.0278 0.1119 0.2188
0.9019 0.2179 0.8608
     0 0 0
0 0 0
                                                0.0860 0.5883 0.7004
_____
```

```
Błędy obliczania macierzy odwrotnej
Błąd bezwzględny:

1.0e-16 *

0 0.2776 0
0.0157 0 0
0 0.1388 0.2776

Błąd względny:
1.0e-15 *

0.1020 0.2457 0.0274
0.0062 0.0006 0.0125
0.3252 0.3763 0.0864

Błąd względny:
0
```

Widać tu, że błąd przy obliczeniach dla małych cyfr oraz małych rozmiarów macierzy jest niewielki, a wręcz pomijalny. Ponadto dla obliczania wyznacznika oba błędy wynoszą dokładnie 0.

4.2.2 wartości macierzy z przedziału [1000, 10000]

Wylosujmy macierz A rozmiaru 3x3 z wartościami w danym przedziale oraz macierz B rozmiaru 3x3. Wylosowane macierze to:

```
>> A = 9000 * rand(3, 3) + 1000

A =

1.0e+03 *

9.1335    7.2887    7.6967
9.0183    2.7803    5.5002
4.0075    1.2749    5.3193

>> B = rand(3,3)

B =

0.9047    0.8594    0.1829
0.6099    0.8055    0.2399
0.6177    0.5767    0.8865
```

Zobaczmy jak zadziałają teraz funckje.

```
Rozkład A = UL:
  1.0e+04 *
   -1.4816 0.5444 0.7697
             0.1462 0.5500
0 0.5319
        0
        0
L:
               0 0
    1.0000
            1.0000
   3.3340
   0.7534
             0.2397
                      1.0000
Sprawdzanie poprawności rozkładu UL
                                            Macierz X z układu równanń XA=B obliczony za pomocą rozkładu UL:
                                              1.0e-03 *
  1.0e+03 *
                                               0.1318
                                                       0.0672 -0.2257
                                               0.1394 -0.0073 -0.1490
    9.1335 7.2887 7.6967
                                               0.0854 -0.0687
    9.0183 2.7803 5.5002
   4.0075 1.2749 5.3193
                                            Macierz XA:
                                               0.9047
                                                       0.8594
                                                                0.1829
Macierz A:
                                               0.6099
                                                       0.8055
                                                                0.2399
  1.0e+03 *
                                               0.6177
                                                       0.5767
                                            Wejściowa macierz B:
   9.1335 7.2887 7.6967
                                               0.9047 0.8594
0.6099 0.8055
                                                                0.1829
   9.0183 2.7803 5.5002
4.0075 1.2749 5.3193
                                                                0.2399
                                               0.6177 0.5767
```

```
Macierz odwrotna do A obliczona na podstawie rozkładu A = UL:

1.0e-03 *

-0.0675  0.2513  -0.1622
0.2250  -0.1540  -0.1664
-0.0031  -0.1524  0.3501

Macierz odwrotna do A obliczona za pomocą funkcji inv:

1.0e-03 *

-0.0675  0.2513  -0.1622
0.2250  -0.1540  -0.1664
-0.0031  -0.1524  0.3501

Wyznacznik macierzy A obliczony na podstawie rozkładu A = UL:
-1.1522e+11

Wyznacznik macierzy A obliczony za pomocą funkcji det:
-1.1522e+11
```

Ponownie widzimy, że wyniki moich funkcji niewiele się różnią od tych poprawnych. Sprawdźmy jak wyglądają błędy przy takich danych.

```
Błedy obliczania rozkładu UL
                                              Błędy obliczania macierzy odwrotnej
Błąd bezwzględny:
                                              Błąd bezwzględny:
   0 0 0
                                                 1.0e-18 *
    0
        0
              0
    0
         0
              0
                                                  0.0271
                                                            0.0542
                                                                      0.0271
                                                  0.0271
                                                            0.1084
                                                                      0.0542
Błąd względny:
                                                  0.0436
                                                            0.0271
   0 0
              0
    0
         0
              0
    0
         0
              0
                                              Błąd względny:
                                                 1.0e-15 *
Błędy rozwiązywania układu równań liniowych XA=B
                                                          0.0814
                                                                     0.0546
                                                  0.1327
Błąd bezwzględny:
                                                          0.0348
                                                                      0.0994
  1.0e-15 *
                                                  0.5130
                                                  0.1540
                                                            0.2426
                                                                      0.1867
           0.1110
   0.5551
                    0.1110
   0.1110
           0.1110
                    0.1110
      0
             0
                                              Błędy obliczania wyznacznika
                                              Błąd bezwzględny:
Błąd względny:
  1.0e-14 *
                                                 3.0518e-05
   0.1656 0.1829
                  0.0278
                                              Błąd względny:
   0.0582 0.0946
                    0.0261
                                                 2.6486e-16
      0
             0
```

Od razu widzimy, że zwiększyły się oba błędy obliczania wyznacznika, ale zato zmniejszył się błąd obliczania rozkładu UL do zera. Zmniejszyły się także nieznacznie błędy obliczania macierzy odwrotnej, zato błędy rozwiązywania układów liniowych nieznacznie wzrosły. Nadal jednak wszystkie te błędy są bardzo małe i pomijalne.

4.3 Macierze 10x10

4.3.1 wartości macierzy z przedziału [0,10]

>> A = 10 * rand(10,10)

Wylosujmy macierz A rozmiaru 10x10 z wartościami z przedziału [0,10] oraz macierz B rozmiaru 10x10. Wylosowane macierze to:

```
8.8654
                       4.7749
                                 4.8976
                                           2.1015
                                                     8.1160
                                                                                   3.2775
                                                                                             6.2457
             8.4321
                                                               9.3603
                                                                         9.7913
   4.5469
             9.2233
                       6.2372
                                 1.9325
                                           5.1015
                                                     4.8565
                                                               1.2477
                                                                         5.4931
                                                                                   8.3780
                                                                                             5.9061
   4.1343
             7.7095
                       2.3644
                                 8.9589
                                           9.0636
                                                     8.9445
                                                               7.3059
                                                                         3.3042
                                                                                   7.3907
                                                                                             6.6044
   2.1773
             0.4266
                       1.7712
                                 0.9909
                                           6.2892
                                                     1.3755
                                                               6.4648
                                                                         6.1947
                                                                                   9.5417
                                                                                             0.4755
   1.2565
             3.7819
                       8.2964
                                 0.4417
                                           1.0153
                                                     3.9000
                                                               8.3315
                                                                         3.6064
                                                                                   0.3192
                                                                                             3.4878
   3.0891
             7.0434
                       7.6692
                                 5.5730
                                           3.9085
                                                     9.2736
                                                               3.9828
                                                                         7.5651
                                                                                   3.5687
                                                                                             4.5134
   7.2610
             7.2951
                       9.3448
                                 7.7250
                                           0.5462
                                                     9.1749
                                                               7.4982
                                                                         4.1390
                                                                                   6.6265
                                                                                             2.4090
   7.8287
             2.2428
                       1.0789
                                 3.1194
                                           5.0128
                                                     7.1357
                                                               8.3522
                                                                         4.9235
                                                                                   2.8150
                                                                                             7.1505
   6 9379
             2,6905
                       1 8223
                                 1.7898
                                           4.3172
                                                     6.1834
                                                               3 2246
                                                                         6 9474
                                                                                   2.3038
                                                                                             8 5618
   0.0980
             6.7303
                       0.9910
                                 3.3896
                                           9.9756
                                                     3.4329
                                                               5.5226
                                                                         9.7273
                                                                                   7.1113
                                                                                             2.8151
>> B = rand(10,10)
B =
    0.7311
             0.3531
                       0.6203
                                 0.2578
                                           0.3424
                                                     0.7202
                                                               0.7157
                                                                         0.1387
                                                                                   0.9394
                                                                                             0.5768
    0.1378
             0.4494
                       0.8112
                                 0.3317
                                           0.7360
                                                     0.7218
                                                               0.8390
                                                                         0.4756
                                                                                   0.9809
                                                                                             0.0259
    0.8367
             0.9635
                       0.0193
                                 0.1522
                                           0.7947
                                                     0.8778
                                                               0.4333
                                                                         0.3625
                                                                                   0.2866
                                                                                             0.4465
    0.1386
             0.0423
                       0.0839
                                 0.3480
                                           0.5449
                                                     0.5824
                                                               0.4706
                                                                         0.7881
                                                                                   0.8008
                                                                                             0.6463
    0.5882
             0.9730
                       0.9748
                                 0.1217
                                           0.6862
                                                     0.0707
                                                               0.5607
                                                                         0.7803
                                                                                   0.8961
                                                                                             0.5212
    0.3662
             0.1892
                       0.6513
                                 0.8842
                                           0.8936
                                                     0.9227
                                                               0.2691
                                                                         0.6685
                                                                                   0.5975
                                                                                             0.3723
    0.8068
             0.6671
                       0.2312
                                 0.0943
                                           0.0548
                                                     0.8004
                                                               0.7490
                                                                         0.1335
                                                                                   0.8840
                                                                                             0.9371
    0.5038
             0.5864
                       0.4035
                                 0.9300
                                           0.3037
                                                     0.2859
                                                               0.5039
                                                                         0.0216
                                                                                   0.9437
                                                                                             0.8295
    0.4896
             0.6751
                       0.1220
                                 0.3990
                                           0.0462
                                                     0.5437
                                                               0.6468
                                                                         0.5598
                                                                                   0.5492
                                                                                             0.8491
    0.8770
             0.3610
                       0.2684
                                 0.0474
                                           0.1955
                                                     0.9848
                                                               0.3077
                                                                         0.3008
                                                                                   0.7284
                                                                                             0.3725
```

Ze wzgledu na rozmiar tej macierzy, zaprezentuję tylko wyniki rozkładu, a resztę funkcji wykorzystam przy przedstawieniu błędów.

	Rozkład A = U	JL:									
	-2.8995	-0.0589	-11.5569	2.0576	-9.6611	8.0660	13.3551	2.8525	-12.5001	6.2457	
	0	8.2740	9.8924	-3.2762	6.9055	-11.6355	-24.7322	-7.2520	-6.5416	5.9061	
	0	0	12.8095	1.2100	11.2387		-21.7217	-8.6308	-9.2929	6.6044	
	0	0	0	-3.1257	0.1030		-13.9899	-5.2188	8.3404	0.4755	
	0	0	0	0	-6.9077	4.7611	11.3845	1.5016	-8.4916	3.4878	
	0	0	0	0	0	7.1442	3.6272 -10.2251	1.1449 -4.8190	-7.8328 0.5409	4.5134 2.4090	
	0	0	0	0	0	0	-10.2231	-1.9224	-15.2480	7.1505	
	0	0	0	0	0	0	0	0	-19.3246	8.5618	
	0	0	0	0	0	0	0	0	0	2.8151	
	L:										
	1.0000	0	0	0	0	0	0	0	0	0	
	0.2818	1.0000	0	0	0	0	0	0	0	0	
	-0.8032	0.4458	1.0000	0	0	0	0	0	0	0	
	0.2886	1.8251	-0.1267	1.0000	0	0	0	0	0	0	
	-0.0388	-0.4857	-1.6712	0.0899	1.0000	0	0	0	0	0	
	0.3031	0.5696	1.3594	0.6798	-0.6567	1.0000	0	0	0	0	
	-0.1463	-0.3035	-0.9498	-0.1465	0.9036	-0.1631	1.0000	0	0	0	
	-1.2175 -0.3436	0.4286	0.2590	-0.6408 0.4409	-0.1079	-0.9235 0.2203	-2.6183 0.7023	1.0000	1.0000	0	
	0.0348	2.3908	0.0617 0.3520	1.2041	1.3466 3.5436	1.2195	1.9618	3.4554	2.5261	1.0000	
a	ie poprawno		_1-11 ***								
Jprawuzan U*L:	re poprawno	JSCI IO	ZKiadu U.	ь							
8.865	4 8.4321	1 4.	7749	4.8976	2.1015	8.116	0 9.3	603	9.7913	3.2775	6.2457
4.546	9.2233	3 6.	2372	1.9325	5.1015	4.856	5 1.2	477	5.4931	8.3780	5.9061
4.134	3 7.7095	5 2.	3644	3.9589	9.0636	8.944	5 7.3	059	3.3042	7.3907	6.6044
2.177				0.9909	6.2892	1.375			6.1947	9.5417	0.4755
1.256				0.4417	1.0153	3.900			3.6064	0.3192	3.4878
				5.5730	3.9085	9.273			7.5651	3.5687	4.5134
3.089											
7.261				7.7250	0.5462	9.174			4.1390	6.6265	2.4090
7.828				3.1194	5.0128	7.135	7 8.3	1522	4.9235	2.8150	7.1505
6.937	9 2.6905	5 1.	8223	1.7898	4.3172	6.183	4 3.2	246	6.9474	2.3038	8.5618
0.098	0 6.7303	3 0.	9910	3.3896	9.9756	3.432	9 5.5	226	9.7273	7.1113	2.8151
Macierz A	:										
8.865	4 8.4321	1 4.	7749	4.8976	2.1015	8.116	0 9.3	603	9.7913	3.2775	6.2457
4.546	9.2233	3 6.	2372	1.9325	5.1015	4.856	5 1.2	477	5.4931	8.3780	5.9061
4.134				3.9589	9.0636	8.944			3.3042	7.3907	6.6044
2.177				0.9909	6.2892	1.375			6.1947	9.5417	0.4755
1.256				0.4417	1.0153	3.900			3.6064	0.3192	3.4878
3.089				5.5730	3.9085	9.273			7.5651	3.5687	4.5134
7.261				7.7250	0.5462	9.174			4.1390	6.6265	2.4090
7.828				3.1194	5.0128	7.135			4.9235	2.8150	7.1505
6.937	9 2.6905	5 1.	8223	1.7898	4.3172	6.183	4 3.2	246	6.9474	2.3038	8.5618
0.098	0 6.7303	3 0.	9910	3.3896	9.9756	3.432	9 5.5	226	9.7273	7.1113	2.8151

Jak widać taka prezentacja nie jest zbyt czytelna, i chociaż wszystkie elementy wyglądają na pierwszy rzut oka tak samo, to przyjrzyjmy się błędom jakie generują (tym razem wszystkich funkcji).

ania rozkł	adu UL							
ędny:								
-						-	-	0
-								0
		-				_		0
				0		0		0
0.0444	0	0.0222	0.0222	0	0	0	0.0666	0
0	0.0888	0	0.0888	0	0	0.0888	0.0444	0
0.0888	0	0.0888	0.0888	0.1776	0.0888	0.0888	0	0
0	0	0	0	0	0	0.1776	0	0
0.0888	0	0.0444	0.3553	0	0.1776	0.0888	0	0
0	0.0111	0	0	0.0444	0	0	0	0
y:								
0.0115	0.0338	0.0414	0.0185	0.0476	0.0903	0.0316	0.0841	0.0592
0.0115	0.0251	0.0419	0.0083	0.0161	0.0224	0.0887	0.0410	0.0590
0.0012	0.0670	0.0816	0.0157	0.0646	0.1016	0.0640	0.0324	0.1027
0.0104	0.0230	0.0449	0.0234	0.0241	0.0440	0.0062	0.0208	0.0466
0.0153	0.0054	0.0139	0.0053	0.0168	0.0243	0.0088	0.0266	0.0199
0.0072	0.0206	0.0365	0.0043	0.0173	0.0262	0.0525	0.0152	0.0403
0.0106	0.0546	0.0913	0.0191	0.1099	0.1146	0.0315	0.0545	0.1246
0.0139	0.0016	0.0109	0.0022	0.0058	0.0040	0.0282	0.0212	0.0017
0.0204	0.1221	0.1581	0.0138	0.1194	0.1778	0.1827	0.0010	0.2166
0.0074	0.0051	0.0141	0.0083	0.0299	0.0281	0.0405	0.0282	0.0244
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.2665 0 0.0888 0 0.0888 0.1332 0.0666 0.0444 0 0 0.0888 0.0888 0 0 0 0.0111 y: 0.0115 0.0338 0.0115 0.0251 0.0012 0.0670 0.0104 0.0230 0.0153 0.0054 0.0072 0.0206 0.0106 0.0546 0.0129 0.0016 0.0204 0.1221	Qdny: 0 0.2665 0 0 0.0888 0.0222 0 0.0888 0 0.1332 0.0666 0.0555 0.0444 0 0.0222 0 0.0888 0 0.0888 0 0 0 0 0.0888 0 0.0888 0 0.0011 0 0.0115 0.0338 0.0414 0.0115 0.0251 0.0419 0.0012 0.0670 0.0816 0.0104 0.0230 0.0449 0.0153 0.0054 0.0139 0.0072 0.0206 0.0365 0.0106 0.0546 0.0913 0.0139 0.0016 0.0109 0.0024 0.1221 0.1581	Qdny: 0 0.2665 0 0.0888 0 0.0888 0.0222 0.2665 0 0.0888 0 0.0222 0.2665 0 0.0888 0 0 0 0.0444 0 0.0222 0.0222 0 0.0888 0 0.0888 0 0.0888 0 0.0888 0 0 0 0 0 0 0.0888 0 0.0444 0.3553 0 0.0111 0 0 y: 0.0115 0.0338 0.0414 0.0185 0.0115 0.0251 0.0419 0.0083 0.0012 0.0670 0.0816 0.0157 0.0104 0.0230 0.0449 0.0234 0.0105 0.0030 0.0449 0.0234 0.0105 0.0054 0.0139 0.0053 0.0072 0.0206 0.0365 0.0043 0.0106 0.0546 0.0913 0.0191 0.0139 0.0016 0.0109 0.0022 0.0204 0.1221 0.1581 0.0138	edny: 0 0.2665 0 0.0888 0 0 0.0888 0.0222 0.2665 0 0 0.0888 0 0 0 0 0.0444 0 0.0222 0.0222 0 0 0.0888 0 0.0888 0 0.0888 0 0.0888 0.0888 0.1776 0 0 0 0 0 0 0 0.0888 0 0.0888 0.0888 0.1776 0 0 0 0 0 0 0 0.0888 0 0.0444 0.3553 0 0 0.0111 0 0 0.0444 y: 0.0115 0.0338 0.0414 0.0185 0.0476 0.0115 0.0251 0.0419 0.0083 0.0161 0.0012 0.0670 0.0816 0.0157 0.0646 0.0104 0.0230 0.0449 0.0234 0.0241 0.0153 0.0054 0.0190 0.0023 0.0168 0.0072 0.0206 0.0365 0.0043 0.0173 0.0106 0.0546 0.0913 0.0191 0.1099 0.0139 0.0016 0.0109 0.0022 0.0058 0.0024 0.0121 0.1581 0.0138 0.1194	edny: 0 0.2665 0 0.0888 0 0.1776 0 0.0888 0.0222 0.2665 0 0.1554 0 0.0888 0 0 0 0 0.0888 0.1332 0.0666 0.0555 0 0 0.2665 0.0444 0 0.0222 0.0222 0 0 0 0.0888 0 0.0888 0 0 0 0 0 0 0 0 0 0 0.0888 0 0.0888 0.1776 0.0888 0 0 0 0 0 0 0 0 0 0.0888 0 0.0444 0.3553 0 0.1776 0 0.0111 0 0 0.0444 0 y: 0.0115 0.0338 0.0414 0.0185 0.0476 0.0903 0.0115 0.0251 0.0419 0.0083 0.0161 0.0224 0.0012 0.0670 0.0816 0.0157 0.0646 0.1016 0.0104 0.0230 0.0449 0.0234 0.0241 0.0440 0.0153 0.0054 0.0199 0.0033 0.0168 0.0243 0.0072 0.0206 0.0365 0.0043 0.0173 0.0262 0.0106 0.0546 0.0913 0.0191 0.1099 0.1146 0.0103 0.0014 0.0121 0.1581 0.0138 0.1194 0.1778	edny: 0 0.2665 0 0.0888 0 0.1776 0 0 0.0888 0.0222 0.2665 0 0.1554 0.0888 0 0.0888 0 0 0 0 0.0888 0 0.1332 0.0666 0.0555 0 0 0.2665 0 0.0444 0 0.0222 0.0222 0 0 0 0 0.0888 0 0.0888 0 0 0 0.0888 0.0888 0 0.0888 0.1776 0.0888 0.0888 0 0 0 0 0 0 0 0 0.1776 0.0888 0 0.0444 0.3553 0 0.1776 0.0888 0 0 0.0111 0 0 0.0444 0 0.0776 0.0888 0 0.0115 0.0338 0.0414 0.0185 0.0476 0.0903 0.0316 0.0115 0.0251 0.0419 0.0083 0.0161 0.0224 0.0887 0.0012 0.0670 0.0816 0.0157 0.0646 0.1016 0.0640 0.0104 0.0230 0.0449 0.0234 0.0241 0.0440 0.0062 0.0153 0.0054 0.0139 0.0053 0.0168 0.0243 0.0088 0.0072 0.0206 0.0365 0.0043 0.0173 0.0262 0.0525 0.0106 0.0546 0.0913 0.0191 0.1099 0.1146 0.0315 0.0157 0.0012 0.0646 0.0109 0.0022	edny: 0 0.2665 0 0.0888 0 0.1776 0 0 0 0 0.0888 0 0 0.222 0.2665 0 0.1554 0.0888 0 0 0.0888 0 0 0 0 0.0888 0 0.0888 0.1332 0.0666 0.0555 0 0 0.2665 0 0 0.0888 0.0444 0 0.0222 0.0222 0 0 0 0 0.0888 0.0444 0.0888 0 0.0888 0 0.0888 0 0 0 0.0888 0.0444 0.0888 0 0.0888 0.1776 0.0888 0.0888 0 0 0 0 0 0 0 0 0 0.1776 0.0888 0 0 0.0888 0 0.0444 0.3553 0 0.1776 0.0888 0 0 0.0111 0 0 0.0444 0 0 0.0776 0.0888 0 0 0.0111 0 0 0.0444 0 0.0776 0.0888 0 0 0.0111 0 0 0.0444 0 0.0776 0.0888 0 0 0.0011 0 0 0.0444 0 0.0000 0 0 0.00000 0 y:

Błędy rozwią Błąd bezwzgl		ładu równa	ń liniow y c	th XA=B					
1.0e-14 *									
0.0777	0.0111	0.0222	0.0333	0.0666	0.0444	0.0999	0.0777	0.0888	0.0333
0.0555	0.0111	0.0222	0.0333	0.0333	0.0444	0.0999	0.0056	0.0222	0.0333
0.0666	0.1887	0.0333	0.0666	0.3553	0.0444	0.0111	0.2554	0.1776	0.0219
0.0611	0.1443	0.0472	0.0000	0.3333	0.1443	0.0555	0.2334	0.1776	0.0222
0.0011	0.0222	0.0999	0.0222	0.2003	0.0222	0.0555	0.1665	0.0666	0.0222
0.0333	0.0222	0.0999	0.0222	0.2665	0.0222	0.2334	0.3997	0.0000	0.0222
0.0555	0.0222	0.0888	0.0333	0.2109	0.0444	0.1332	0.1554	0.3775	0.0444
0.0666	0.0222	0.0000	0.0666	0.2331	0.1277	0.0111	0.0666	0.0333	0.0111
0.0722	0.1221	0.1721	0.0444	0.2331	0.12//	0.0222	0.2220	0.0333	0.0222
0.0722	0.0333	0.0222	0.0444	0.1998	0.0999	0.1998	0.1665	0.1665	0.0333
0.0111	0.0333	0.0222	0.0000	0.1550	0.0555	0.1550	0.1003	0.1003	0.0555
Błąd względn 1.0e-13 *									
0.0515	0.0019	0.0155	0.0170	0.0095	0.0342	0.0750	0.0083	0.0278	0.0175
0.0183	0.0077	0.0009	0.0003	0.0029	0.0022	0.0062	0.0036	0.0014	0.0030
0.0279	0.0084	0.0221	0.0274	0.0172	0.0157	0.0284	0.0209	0.0198	0.0243
0.0099	0.0085	0.0198	0.0384	0.0258	0.0296	0.0415	0.0241	0.0187	0.0214
0.0600	0.0151	0.0243	0.0095	0.0272	0.0393	0.0406	0.0106	0.0194	0.0221
0.0968	0.0076	0.0064	0.0089	0.0347	0.0281	0.0385	0.0000	0.0227	0.0225
0.1584	0.0201	0.0549	0.0614	0.0355	0.1087	0.1287	0.0278	0.0188	0.0299
0.0529	0.0179	0.0355	0.0408	0.0062	0.0387	0.0608	0.0109	0.0116	0.0058
0.0109	0.0023	0.0078	0.0061	0.0191	0.0027	0.0347	0.0002	0.0056	0.0083
0.1019	0.0076	0.0305	0.0466	0.0063	0.0602	0.1228	0.0145	0.0355	0.0010
Błędy oblicz Błąd bezwzgl 1.0e-14 *	.ędny:	rz y odwrot	nej						
0.1055	0.0160	0.0777	0.0944	0.0021	0.0944	0.1443	0.0056	0.1249	0.1055
0.1055	0.0100	0.0777	0.0347	0.0021	0.0944	0.1443	0.0056	0.1249	0.1055
0.0500	0.0123	0.0309	0.0347	0.0042	0.0333	0.0555	0.0230	0.0278	0.1055
0.0930	0.0222	0.0611	0.0583	0.0083	0.0666	0.1110	0.0555	0.0500	0.0722
0.1499	0.0147	0.0888	0.1277	0.0101	0.1166	0.1887	0.0111	0.1388	0.1887
0.0666	0.0028	0.0375	0.0389	0	0.0555	0.0777	0.0555	0.0222	0.0944
0.0222	0.0029	0.0139	0.0208	0.0021	0.0160	0.0305	0.0022	0.0236	0.0250
0.0819	0.0153	0.0505	0.0652	0.0120	0.0694	0.1058	0.0194	0.0638	0.1015
0.1110	0.0153	0.0694	0.0999	0.0160	0.0916	0.1443	0.0056	0.1249	0.1388
0.1776	0.0173	0.1110	0.1416	0.0167	0.1381	0.2054	0.0666	0.1138	0.2109
Błąd względn 1.0e-14 *	-								
0.0577	0.2472	0.0138	0.1837	0.3258	0.2069	0.5225	0.2049	0.3125	0.0560
0.0338	0.0415	0.0194	0.0454	0.2223	0.0240	0.1344	0.1745	0.0968	0.0252
0.0785	0.2229	0.0087	0.0437	0.3853	0.0240	0.0200	0.3954	0.1707	0.0693
0.0945	0.3676	0.0120	0.1058	0.2061	0.1027	0.0611	0.2872	0.2131	0.1192
0.0502	0.1234	0.1613	0.0508	0.1970	0.0170	0.2783	0.1574	0.0416	0.0920
0.1480	0.1026	0.0016	0.1180	0.4028	0.1129	0.2661	0.2152	0.3061	0.0910
0.0112	0.0146	0.0515	0.0086	0.0218	0.0091	0.0689	0.0009	0.0268	0.0079
0.0280	0.0214	0.0728	0.0075	0.0664	0.0241	0.0306	0.0261	0.0109	0.0113
0.0637	0.0712	0.1714	0.0057	0.0643	0.0129	0.2380	0.1332	0.0644	0.1209
0.0035	0.1101	0.0172	0.0875	0.1605	0.1417	0.1935	0.0423	0.0754	0.0384
				liczani względn	_	acznika			
			1.192	Te-0/					

Błąd względny: 2.3518e-15

Jak można zauważyć błędy generowane przez wszystkie te funkcje są nadal niewielkie, jedynie błąd bezwględny obliczania wyznacznika znacznie się zwiększył. Przykładowo błędy obliczania rozkładu UL są porównywalne z tymi, gdzie macierz była 3x3, a wartości też z przedziału [0,10].

4.3.2 wartości macierzy z przedziału [1000, 10000]

Wylosujmy macierz A rozmiaru 10x10 z wartościami z przedziału [1000, 10000] oraz macierz B rozmiaru 10x10. Wylosowane macierze to:

```
>> A = 9000 * rand(10,10) + 1000
A =
  1.0e+03 *
   6.3387
             8.2986
                        8.0598
                                 7.8633
                                           9.0658
                                                     7.4242
                                                               3.2161
                                                                         7.5011
                                                                                   5.8591
                                                                                             3.9761
   8.8530
             5.3609
                        8.9455
                                  8.9424
                                           8.4392
                                                      8.9596
                                                               4.0844
                                                                         4.6007
                                                                                   1.8584
                                                                                             4.8700
    9.4015
             7.8107
                                  3.5646
                                            4.5102
                                                      7.4877
                                                                         8.4868
                                                                                   2.3186
   7.0162
             4.7534
                        6.0246
                                  7.0590
                                           5.4811
                                                     1.1675
                                                               5.9190
                                                                         2,2090
                                                                                   6.6803
                                                                                             1.6393
                                  6.9785
                                           7.2532
                                                                                             8.9897
   2.8610
             9.7461
                        6.3898
                                                      7.0730
                                                               6.0573
                                                                         1.5442
                                                                                   8.7339
   6.8847
             9.8918
                        2.3399
                                 2.1053
                                           8.5093
                                                      4.9466
                                                                4.5624
                                                                         1.7582
                                                                                   9.7680
                                                                                             1.5817
             8.7773
                        9.0974
                                  4.6659
                                                      4.9404
                                                                4.5832
                                                                                   6.1375
                                                                                             4.9257
   1.6485
    4.6605
             4.5000
                        5.0535
                                  3.4776
                                           6.1726
                                                      2.0533
                                                                5.6383
                                                                         3.9180
                                                                                   9.9717
                                                                                             8.4397
   7.0024
             5.0927
                        2.8511
                                 7.4500
                                           3.9344
                                                     8.3321
                                                                6.9178
                                                                         3.7155
                                                                                   5.9819
                                                                                             4.5508
   9.4035
             3.2202
                        9.0969
                                 3.5505
                                           5.1078
                                                     3.9237
                                                               9.5582
                                                                         1.1051
                                                                                   5.6391
                                                                                             6.5213
>> B = rand(10,10)
    0.8186
             0.5319
                        0.5567
                                  0.7756
                                            0.4594
                                                      0.5716
                                                                0.6174
                                                                         0.7667
                                                                                   0.0830
                                                                                              0.8397
    0.8862
             0.2021
                        0.1565
                                  0.7343
                                            0.0503
                                                      0.1222
                                                                0.5201
                                                                         0.8487
                                                                                   0.6616
                                                                                             0.5326
             0.4539
                        0.5621
                                  0.4303
                                            0.2287
                                                                0.8639
                                                                                   0.5170
                                                                                              0.5539
    0.9311
                                                      0.6712
                                                                         0.9168
    0.1908
             0.4279
                        0.6948
                                  0.6938
                                            0.8342
                                                      0.5996
                                                                0.0977
                                                                          0.9870
                                                                                   0.1710
                                                                                              0.6801
    0.2586
             0.9661
                        0.4265
                                  0.9452
                                            0.0156
                                                      0.0560
                                                                0.9081
                                                                          0.5051
                                                                                   0.9386
                                                                                              0.3672
    0.8979
             0.6201
                        0.8363
                                  0.7842
                                            0.8637
                                                      0.0563
                                                                0.1080
                                                                         0.2714
                                                                                   0.5905
                                                                                             0.2393
    0.5934
                                  0.7056
                        0.7314
                                            0.0781
                                                                                              0.5789
             0.6954
                                                      0.1525
                                                                0.5170
                                                                         0.1008
                                                                                   0.4406
             0.7202
                        0.3600
                                                      0.0196
                                                                0.1432
                                                                                   0.9419
    0.6128
             0.3469
                        0.4542
                                  0.3899
                                            0.5002
                                                      0.4352
                                                                0.5594
                                                                          0.5856
                                                                                   0.6559
                                                                                              0.4068
    0.8194
             0.5170
                        0.3864
                                  0.5909
                                            0.2180
                                                      0.8322
                                                                0.0046
                                                                         0.7629
                                                                                   0.4519
                                                                                             0.1126
```

Ze względu na to, że wstawienie tu efektów wywołań wszystkich funkcji mogłoby być nieczytelne, skupmy się tutaj tylko na błędach generowanych przez te funkcje.

Błą	dy oblic d bezwzg 1.0e-10		tadu UL							
	0.0091	0.0182	0.0273	0.0091	0.0182	0.0364	0.0091	0	0	0
	0.0182	0.0728	0	0.0182	0.0182	0	0.0136	0.0091	0.0023	0
	0.0364	0.0637	0.0909	0.0045	0.0455	0.0637	0.0364	0.0182	0	0
	0.0455	0.0091	0.0273	0	0.0273	0.0091	0.0091	0.0045	0	0
	0	0	0.0091	0	0.0273	0	0.0091	0.0023	0	0
	0.0364	0.0364	0.1683	0.0045	0.0909	0.0273	0.0182	0.0091	0	0
	0.0023	0	0.0182	0	0	0	0	0	0	0
	0	0	0	0.0045	0	0.0136	0.0091	0	0	0
	0	0	0	0	0	0	0	0.0045	0	0
	0	0	0	0.0045	0	0	0	0	0	0
	d względ	-								
	1.0e-14	*								
	0.0068	0.0224	0.0298	0.0754	0.0759	0.0208	0.1113	0.0005	0.0405	0.0177
	0.1825	0.0342	0.1079	0.1193	0.0859	0.0135	0.0374	0.0210	0.0178	0.1444
	0.0205	0.1380	0.1943	0.2411	0.4438	0.0127	0.4496	0.1651	0.2094	0.0470
	0.2232	0.1868	0.0087	0.0086	0.1561	0.0554	0.1405	0.1178	0.0296	0.0904
	0.0983	0.0164	0.0361	0.0286	0.0337	0.0046	0.0535	0.0281	0.0523	0.0552
	0.3532	0.3869	0.1588	0.1507	0.5825	0.0409	0.6861	0.3062	0.1414	0.1237
	0.2108	0.1318	0.0241	0.0231	0.1326	0.0220	0.1663	0.1056	0.0507	0.1159
	0.0546	0.0329	0.0182	0.0236	0.0114	0.0074	0.0139	0.0309	0.0154	0.0383
	0.0418	0.0264	0.0027	0.0050	0.0165	0.0067	0.0243	0.0159	0.0071	0.0204
	0.0037	0.0031	0.0001	0.0066	0.0022	0.0027	0.0006	0.0004	0.0013	0.0052

Dlady	mmanda	eladu f-	.ú 1iui	h V1-D					
Błędy rozwią Błąd bezwzgl	_	radu rown	an liniowyc	n xa=B					
1.0e-14 *									
0.5773	0.5329	0.5884	0.3331	0.0555	0.4552	0.1887	0.0777	0.0777	0.0444
0.1221	0.1582	0.4330	0.0999	0.0333	0.2082	0	0	0.0222	0.0111
0.0222	0.2776	0.3220	0.4108	0.1221	0	0.1443	0.0333	0.0444	0.0333
0.1776	0.2331	0.6328	0.1110	0.4108	0.7327	0.3220	0.0666	0.0888	0.0444
0.0666	0.5773	0.9659	0.1998	0.3775	0.4885	0.1665	0.0444	0.1110	0.0111
0.0777	0.0444	0.2665	0.3109	0.3886	0.2331	0.0111	0.0444	0.0555	0.0222
0.1665	0.5218	0.6661	0.2776	0.0999	0.0777	0.0111	0.0444	0.0444	0
0.0777	0.0777	0.2665	0.1943	0.0333	0.1110	0.0333	0	0	0.0111
0.0555	0.0666	0.1665	0.0444	0.0777	0.0666	0.0111	0	0.0111	0
0.6106	0.3331	0.6439	0.3220	0.5218	0.7994	0.3775	0.0666	0	0.0777
Plad uzaloda									
Błąd względn 1.0e-13 *									
1.00-15									
0.1140	0.0146	0.0932	0.1038	0.0446	0.0492	0.0519	0.0103	0.1886	0.0417
0.0522	0.0178	0.0442	0.0291	0.0191	0.0075	0.0584	0.0127	0.0202	0.0079
0.1071	0.0000	0.0975	0.0518	0.0565	0.0162	0.0510	0.0012	0.0250	0.0359
0.0025	0.0998	0.0553	0.0093	0.0204	0.0013	0.0297	0.0223	0.0776	0.0090
0.0928	0.1196	0.1555	0.0448	0.0088	0.0376	0.0604	0.0068	0.0551	0.0020
0.0123	0.0559	0.0647	0.0068	0.0165	0.0270	0.0201	0.0113	0.0003	0.0095
0.0630	0.0526	0.0837	0.0592	0.0221	0.0353	0.0519	0.0073	0.1121	0.0045
0.0227	0.0030	0.0067	0.0180	0.0073	0.0064	0.0348	0.0200	0.0037	0.0031
0.0208	0.0191	0.0278	0.0160	0.0019	0.0055	0.0108	0.0006	0.0108	0.0054
0.0355	0.1261	0.0697	0.0488	0.0367	0.0180	0.0138	0.0027	0.0889	0.0213
Błędy oblicz		erzy odwro	tnej						
Błąd bezwzgl	-								
1.0e-16 *									
0.0043	0.0081	0.0008	0.0084	0.0087	0.0049	0.0108	0.0049	0.0001	0.0038
0.0894	0.0618	0.0079	0.0025	0.0596	0.0150	0.0710	0.0477	0.0206	0.0493
0.0802	0.0607	0.0034	0.0066	0.0640	0.0169	0.0824	0.0466	0.0136	0.0466
0.0024	0.0047	0.0029	0.0019	0.0068	0.0003	0.0052	0.0043	0.0018	0.0004
0.0499	0.0390	0.0022	0.0108	0.0379	0.0159	0.0488	0.0304	0.0022	0.0260
0.0997	0.0683	0.0087	0.0009	0.0705	0.0190	0.0759	0.0575	0.0260	0.0542
0.1193	0.0911	0.0027	0.0160	0.0932	0.0260	0.0932	0.0802	0.0390	0.0672
0.0726	0.0520	0.0032	0.0043	0.0510	0.0146	0.0466	0.0504	0.0192	0.0417
0.1084	0.0835	0.0033	0.0149	0.0932	0.0225	0.1214	0.0477	0.0390	0.0510
0.0339	0.0222	0.0055	0.0038	0.0168	0.0060	0.0173	0.0178	0.0076	0.0211
Błąd względn									
1.0e-13 *									
0.0000	0.0000	0.0040	0.0000	0.0007	0.0251	0.0040	0.0150	0.0024	0.0021
0.0093	0.0292	0.0240	0.0208	0.0387	0.0351	0.0243	0.0159	0.0034	0.0031
0.0239	0.0134	0.0706	0.0140	0.0389	0.0306	0.0134	0.0046	0.0078	0.0042
0.0426	0.0507	0.1184	0.0514	0.0816 0.0133	0.0301	0.0560 0.0047	0.0080	0.0018	0.0071
0.0064	0.0164 0.0399	0.0126 0.0632	0.0040	0.0133	0.0022 0.0124	0.0047	0.0009	0.0023 0.0048	0.0015 0.0064
0.0333	0.0399	0.0632	0.0864	0.0668			0.0118	0.0048	0.0064
0.0423	0.0143	0.0380	0.0456	0.0292		0.0138	0.0124	0.0150	0.0021
0.0088			0.0503						
0.0826			0.0394				0.0027		
0.0320		0.0173		0.0012		0.0162		0.0003	0.0002
1 3.0103	0.0002	0.01/0	0.0010	0.0012	0.0002	0.0102	0.0015	0.0020	5.5002
			D1-2	12		d 1c-			
Błędy obliczania wyznacznika									
			Błąd bez	względny	y:				
1.7473e+23									
			Błąd wzg	lednv:					
				8e-15					
			0.333	06-13					

Ponownie widzimy, że większość błedów się nie zwiększyła znacznie. Jedynie błąd bezwględny obliczania wyznacznika się drastycznie zwiększył.

5 Wnioski

Zmodyfikowana metoda Doolitle'a okazała się bardzo skuteczna przy tworzeniu rozkładów A=UL oraz rozwiązywaniu z ich udziałem układów równań liniowych typu XA=B, liczenia A⁻¹ oraz det(A). Jak można było zauważyć zwiększenie znacznie rozmiaru macierzy nie zmnieniało znacząco błędów generowanych przez te funkcje. Podobnie było ze zwiększaniem wartości elementów w macierzy, z jednym wyjątkiem - błędem obliczania wyznacznika. Błąd bezwględny obliczania det(A) był jedynym błędem, który tak drastycznie się zmieniał przy zwiększeniu rozmiaru macierzy oraz jej wartości.

6 Zastosowania

Metoda Doolittle'a, choć nie jest bezpośrednio związana z wieloma algorytmami uczenia maszynowego, może znaleźć zastosowanie w kontekście analizy danych i pewnych procedur statystycznych. Jednym z nich jest np. regresja liniowa. W jej przypadku ta metoda może być stosowana do rozwiązania układu równań, które występują podczas obliczania współczynników regresji oraz w analizie regresji liniowej. Dodatkowo może być używana do obliczania macierzy odwrotnej (A^{-1}) , co jest przydatne w estymacji współczynników regresji.

7 Źródła

- Notatki do Metod Numerycznych autorstwa dr inż. Iwony Wróbel
- https://mattomatti.com/pl/a0308?plang=py#elcode0
- https://pl.wikipedia.org/wiki/Metoda_LU
- https://www.if.pw.edu.pl/~agatka/numeryczne/wyklad_03.pdf
- http://wsehsk.pl/files/zarzadzanie/materialy/Rownania_liniowe.pdf
- https://matematyka.poznan.pl/artykul/regresja-liniowa-czyli-o-zastosowaniu-funkcji-liniowej-w-and the state of the state