KEY FOR THE ASSIGNMENT

1. a. $A \cup (B \cap A') = A \cup B$

Proof.

$$A \cup (B \cap A') = (A \cup B) \cap (A \cup A')$$
 by Distributive Property of \cup over \cap

$$= (A \cup B) \cap U$$
 by Complement Law
$$= A \cup B$$
 by Identity Property

b. $(A \cap B) \cap (A' \cup B') = \emptyset$

Proof.

$$(A \cap B) \cap (A' \cup B') = ((A \cap B) \cap A') \cup ((A \cap B) \cap B')$$
 by Distributive Property of \cap over \cup
$$= ((B \cap A) \cap A') \cup ((A \cap B) \cap B')$$
 by Commutative Property of \cap by Associative Property of \cap by Associative Property of \cap by Complement Law
$$= (B \cap \emptyset) \cup (A \cap \emptyset)$$
 by Complement Law by Zero Property by Identity Property

c. $(A \cup B) \cap (A' \cup B') = (A \cap B') \cup (A' \cap B)$

Proof.

$$(A \cup B) \cap (A' \cup B') = ((A \cup B) \cap A') \cup ((A \cup B) \cap B')$$
 by Distributive Property of \cap over \cup
$$= ((A \cap A') \cup (B \cap A')) \cup ((A \cap B') \cup (B \cap B'))$$
 by Distributive Property of \cap over \cup
$$= (\emptyset \cup (B \cap A')) \cup ((A \cap B') \cup \emptyset)$$
 by Complement Law by Identity Property
$$= (A \cap B') \cup (A \cap B')$$
 by Commutative Property of \cup
$$= (A \cap B') \cup (A' \cap B)$$
 by Commutative Property of \cap

- 2. a.
- Let U be the set of the 100 respondents (students) in the survey.
 - A be the set of students who preferred MATH 1
 - B be the set of students who preferred MATH 2
 - C be the set of students who preferred NASC 3

- b. 20 students preferred MATH 1 but not MATH 2.
- c. 20 students preferred MATH 2 but not NASC 3.
- d. 13 students preferred NASC 3 only.
- e. 37 students did not prefer any of the three courses.

3. We know that if we have two sets, A_1 and A_2 ,

$$n(A_1 \cup A_2) = n(A_1) + n(A_2) - n(A_1 \cap A_2)$$
$$= \sum_{i=1}^{2} n(A_i) - \sum_{1 \le i < j \le 2} n(A_i \cap A_j)$$

And if we have three sets, A_1 , A_2 , and A_3 ,

$$n(A_{1} \cup A_{2} \cup A_{3}) = n(A_{1}) + n(A_{2}) + n(A_{3}) - n(A_{1} \cap A_{2}) - n(A_{1} \cap A_{3}) - n(A_{2} \cap A_{3}) + n(A_{1} \cap A_{2} \cap A_{3})$$

$$= \sum_{i=1}^{3} n(A_{i}) - \sum_{1 \le i < j \le 3} n(A_{i} \cap A_{j}) + \sum_{1 \le i < j \le m \le 3} n(A_{i} \cap A_{j} \cap A_{m})$$

We can generalize the formula for the cardinality of the union of k sets, $k \ge 4$, into

$$n(A_1 \cup A_2 \cup ... \cup A_k) = \sum_{i=1}^k n(A_i) - \sum_{1 \leq i < j \leq k} n(A_i \cap A_j) + \sum_{1 \leq i < j < m \leq k} n(A_i \cap A_j \cap A_m) - ... + (-1)^{k-1} n(A_1 \cap A_2 \cap ... \cap A_k)$$

where $\sum_{i=1}^k n(A_i)$ is the sum of the cardinalities of all the k sets, $\sum_{1 \le i < j \le k} n(A_i \cap A_j)$ is the sum of the cardinalities of all the $\frac{k(k-1)}{2}$ intersections of any pair of distinct sets, $\sum_{1 \le i < j < m \le k} n(A_i \cap A_j \cap A_m)$ is the sum of the cardinalities of all the $\frac{k(k-1)(k-2)}{6}$ intersections of any group of three distinct sets, and

$$n(A_1 \cap A_2 \cap ... \cap A_k)$$
 is the cardinality of the intersection of all the k sets.

4.
$$(A \cap B) \times C = (A \times C) \cap (B \times C)$$

Proof.

If
$$x \in (A \cap B) \times C$$
, $x = (u,v)$ where $u \in A \cap B$ and $v \in C$.
 $u \in A \cap B$ means that $u \in A$ and $u \in B$.

Since $u \in A$ and $v \in C$, we can say that x = (u,v) is an element of $A \times C$. Moreover, since $u \in B$ and $v \in C$, x = (u,v) is also an element of $B \times C$.

Hence, $x \in (A \times C) \cap (B \times C)$.

On the other hand, if $x \in (A \times C) \cap (B \times C)$, we can say that x is an element of both $A \times C$ and $B \times C$. By saying that $x \in A \times C$, we mean that x = (u,v) where $u \in A$ and $v \in C$.

And since x = (u,v) is also an element of $B \times C$, u must also be an element of B. Thus, it follows that $u \in A \cap B$; and therefore, x = (u,v) is also an element of $(A \cap B) \times C$.

So now, by the definition of equal sets, we can conclude that $(A \cap B) \times C = (A \times C) \cap (B \times C)$.