

卷积神经网络

神经网络的问题

◇ 导入

> 考虑一种情形:

- ✓ 以1000*1000的灰度图像作为 输入层
- ✓ 希望隐层有和输入相同的神经单元

▶ 全连接:

- ✓ 10⁶ * 10⁶ = 1M * 1M = 1
 T个参数,一个参数以浮点数4Byte的方式存储
- ✓ 需要不小于4T内存

:这才是第一个隐层,有什么机器能受得了这种计算?

:从入门到放弃系列。。

对于图像处理,我们是不是可以利用图像的某些模式或者说是特点,简化每一层的计算过程?

卷积神经网络的诞生

◇ 图像模式的特性——小结

- ▶ 第一个发现对应的可能的做法:
 - 1. 定义一种提取局部的特征的方法,可有效响应特定局部模式
 - 2. 用这种方法遍历整张图片

卷积: 平移不变模式

▶ 第二个发现对应的可能的做法:

在神经网络逐层累加的过程中,可以直接对图像进行缩放

池化: 下采样被检测物体不变模式

◇ 卷积的直觉

计算机如何能知道图上有什么物体?

检测图像的边缘

卷积计算=特征抽取

灰度图像

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

垂直边缘

滤波器

1	0	-1
1	0	-1
1	0	-1

结果图像

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

vertical edges

AI DISCOVERY

◇ RGB图像上使用多卷积核:多个不同特征的提取

> 多个卷积核

- ✓ 一个卷积核提取一种局部模式
- ✓ 在对每一层的卷积操作中,都要同时使用多个卷积核,提取 多种不同的局部模式

Input channel: 3

of filters: 2

Output channel: 2

◇ 卷积隐层的堆叠

Notes 2

- ✓ 卷积核的个数 = 下一层数据的深度 = 下一卷积层 卷积核的深度
- ✓ 卷积核的个数 = 提取特征的数 量,超参数,可以自己调节

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with activation functions

◇ 隐层的卷积:特征组合

✓ 多层卷积:

一层卷积得到的特征往往是局部的 层数越高,学到的特征就越全局化

> Stride

- ✓ 一次滑动的步长
- ✓有height上的stride和width上的stride
- ✓ 图片中的stride = 2,指在两个维度上的 stride都为2

10	10	10	0	0
10	10	10	0	0
10	10	10	0	0
10	10	10	0	0
10	10	10	0	0

Stride =1: 一次滑动1格							格
	1	0	-1	0	0	30	30
	1	0	-1		0	30	30
	1	0	-1		0	30	30

10	10	10	0	0
10	10	10	0	0
10	10	10	0	0
10	10	10	0	0
10	10	10	0	0

Stride =2: 一次滑动2格

1	0	-1
1	0	-1
1	0	-1

0	30
0	30

AI DISCOVERY

☆ 需要注意的参数: stride

> Stride

- ✓ stride设置为超过1的参数,就相当于 在stride=1的卷积结果中作了下采样
- ✓ 实际上是跳过去不计算,能够成倍减少计算量

AI DISCOVERY

☆ 需要注意的参数: padding

- > Padding = valid
 - ✓ 不进行补零操作, s=1时, 每卷积一次, 宽和高方向的数据维度下降F-1, 其中F为卷积核大小
- > Padding = same
 - ✓ 在输入的周围进行()或复制填充
 - ✓ 卷积前width=卷积后width, 卷积前height= 卷积后height
 - \checkmark F = 3, stride = 1, pad = 1

10	10	10	0	0
10	10	10	0	0
10	10	10	0	0
10	10	10	0	0
10	10	10	0	0

		24 49
1	0	-1
1	0	-1
1	0	-1

0	0	0	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
0	0	0	0	0	0
	10 10 10 10	10101010101010101010	10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	10 10 10 0 10 10 10 0 10 10 10 0 10 10 10 0 10 10 10 0	10 10 10 0 0 10 10 10 0 0 10 10 10 0 0 10 10 10 0 0 10 10 10 0 0

	pa
0	-1
0	-1
12	

padding:	valid
padams.	vana

0	30	30
0	30	30
0	30	30

padding:	same

-20	0	20	20	0
-30	0	30	30	0
-30	0	30	30	0
-30	0	30	30	0
-20	0	20	20	0

池化层

AI DISCOVERY

> 池化

- ✓ 在width和height维度上进行下采样,不改变 depth的维度
- ✓ 右图相当于对输入数据使用了2*2, stride = 2的 卷积核,但是该卷积核不是通过学习获得,而 是人为定义的卷积核(不算做参数)
- ✔ 能够成倍减少计算量
- ✓ 相比stride, 池化层可以选择进行下采样的方式

池化层

max-pooling

Max-Pooling:

对邻域内特征点取最大作为最后的特征值

$$\max(0.3,0.2,0.5,0.6) = 0.6$$

Mean-Pooling:

对邻域内特征点取平均作为最后的特征值

$$\frac{0.3 + 0.2 + 0.5 + 0.6}{4} = 0.4$$

全连接层分类

AIDISCOVERI

> Notes

- ✓ 将多层的特征映射抻直成一个一维的向量
- ✓ 采用全连接的方式将向量连接向输出层, 打破卷积特征的空间限制 对卷积层获得的不同的特征进行加权 最终目的是得到一个可以对不同类别进

行区分的得分

✓ 输出层就是对应每个类别的得分

网络搭建小结

卷积神经网络的一般结构

1. 卷积层+ReLU和 池化层 的组合多次出现

2. 多个全连接 或 特殊的CNN结构 作为输出层

提取特征

作分类器/检测器/分割器

模型的泛化

AI DISCOVERY

◆ 深度神经网络的泛化能力

- 1) 高模型容量——高拟合各种函数的能力,模型偏向于过拟合
- 2) 正则化——对学习算法的修改,为了 减少测试误差(泛化误差)而不是训练误差

MNIST

http://yann.lecun.com/exdb/mnist/

- ✓ 手写数字
- ✓ 10个互斥的类别, 28*28的灰度图像
- ✓ 美国国家标准与技术研究所, National Institute of Standards and Technology (NIST)
- ✓ 250个人的手写数字。50%来自人口普查局工作人员, 50%来自高中学生。
- ✓ 训练: 60,000个样本
- ✓ 测试: 10,000个样本

Four files are available on this site:

train-images-idx3-ubyte.gz: training set images (9912422 bytes)
train-labels-idx1-ubyte.gz: training set labels (28881 bytes)
t10k-images-idx3-ubyte.gz: test set images (1648877 bytes)
t10k-labels-idx1-ubyte.gz: test set labels (4542 bytes)

CIFAR

http://www.cs.toronto.edu/~kriz/cifar.html

- ✓ 数据集的类别分布见右图
- ✓ 60000张32*32 的RGB图像
- ✓ 10个互斥的类别,每类6000张图片
- ✓ 训练: 50000张, 5个训练批,每批10000张 每类图像随机抽取,张数不平均
- ✓ 测试: 10000张,单独构成一批,每类1000张

Download

If you're going to use this dataset, please cite the tech report at the bottom of this page.

 Version
 Size
 md5sum

 CIFAR-10 python version
 163 MB c58f30108f718f92721af3b95e74349a

 CIFAR-10 Matlab version
 175 MB 70270af85842c9e89bb428ec9976c926

 CIFAR-10 binary version
 162 MB c32a1d4ab5d03f1284b67883e8d87530

ImageNet

http://image-net.org/

- 1) Total number of non-empty synsets: 21841
- 2) Total number of images: **14,197,122**
- 3) Number of images with bounding box annotations:
- 1,034,908
- 4) Number of synsets with SIFT features: 1000
- 5) Number of images with SIFT features: 1.2 million
- ✓ 可供用于图像分类、目标定位、目标检测、实例 分割等多个计算机视觉任务。
- ✓ ImageNet国际计算机视觉挑战赛(ILSVRC)

Computer Vision Tasks

Instance Segmentation

CAT, DOG, DUCK

CAT, DOG, DUCK

经典CNN

VGG

牛津大学计算机视觉组

深度增加 & 小卷积核 > 对网络最后的分类识别效果有很大作用

小卷积核: 3*3: 表示上下、左右、中心这些概念的最小卷积核尺寸

深度: AlexNet 8 层 → VGG最深19层

		Cany Nat C	onfiguration		
	A I DNI		onliguration	D	E
A	A-LRN	В	C	D	E
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers	layers	layers	layers	layers
	i		24 RGB image	e)	
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
			pool		
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
			pool		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
					conv3-256
			pool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
			pool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
			pool		
			4096		
			4096		
			1000		
		soft-	-max		

GoogLeNet/Inception

Google提出的神经网络,一共有V1-V4共4个不同的模型

✓ 使用了Inception模块

可以并行执行多个具有不同尺度的卷积运算或池化操作 将多个卷积核卷积的结果拼接成一个非常深的特征图

✓ 使用了大量的trick提高网络性能

- Bottleneck (瓶颈):1*1的卷积核, 借鉴NIN
- 使用全局平均池化GAP代替全连接
- 在v2中,采用Batch Normalization(批归一化)
- 在v3中,采用非对称卷积降低运算量
- 在v4中,结合了ResNet中的思想,发现Residual Connections貌似只能加快网络收敛速度,是更大的网络规模提高了精度

ResNet

微软提出的神经网络, CVPR当年的最佳论文

✓ 使用了恒等映射

传统神经网络训练的函数为F(x)

添加恒等映射后,神经网络训练的函数变为F(x)+x

作者认为这样训练出来的网络,相当于是在对x作修正,修正的幅度就是F(x),F(x)在数学上称为残差 所以作者提出的网络称为残差网络

method	top-1 err.	top-5 err.
VGG [41] (ILSVRC'14)	82	8.43 [†]
GoogLeNet [44] (ILSVRC'14)	-	7.89
VGG [41] (v5)	24.4	7.1
PReLU-net [13]	21.59	5.71
BN-inception [16]	21.99	5.81
ResNet-34 B	21.84	5.71
ResNet-34 C	21.53	5.60
ResNet-50	20.74	5.25
ResNet-101	19.87	4.60
ResNet-152	19.38	4.49

ResNets @ ILSVRC & COCO 2015 Competitions

1st places in all five main tracks

- ImageNet Classification: "Ultra-deep" 152-layer nets
- ImageNet Detection: 16% better than 2nd
- ImageNet Localization: 27% better than 2nd
- · COCO Detection: 11% better than 2nd
- COCO Segmentation: 12% better than 2nd

ResNet

▶ 一点直觉:

平凡网络中,为什么深度增加到一定程度后,训练的效果 反而下降了?

梯度下降算法本身的缺陷

深度增加后,相比浅一些的网络来说梯度减小。误差传播过程变慢,网络的优化速度就慢

残差网络中,为什么能够避免这种现象?

恒等映射下,虽然网络的深度加深,但是每层中都会有足 够多的由梯度承载的信息量,梯度不会太小

加快了深层网络的收敛速度

如何提升一个神经网络的性能?

Aspect 1: 修改网络: 增加深度,增加宽度

减少参数量, 防止过拟合, 解决梯度消失问题

数据集: 尽可能多的数据防止过拟合 Aspect 2:

✓ AlexNet:

Group Convolution(分组卷积), Dropout, Data Augmentation (数据增强)

✓ VGG:

深度, 小卷积核

✓ Inception (Google-Net):

同一层使用多个类型的卷积核, Bottleneck, Batch Normalization (批归一化)

✓ ResNet:

skip/identity connection 残差的引入