COLLEGE BILINGUE LE PETIT ROUSSEAU						
EXAMEN:	CLASSE	EPREUVE : PHYSIQUE	Durée :	Session:	Coef:	
Evaluation N ₋ 2	TleC		4Heures	Nov. 2022	4	

Proposé par Mr KENNE Kessel

L'épreuve comporte deux parties indépendantes que le candidat traitera dans l'ordre voulu PARTIE A: EVALUATIONS DES RESSOURCES /24points

3.1- Pour un solide ponctuel en rotation autour d'un axe fixe, on peut appliquer le théorème du centre d'inertie pour

Exercice1: Evaluation des savoirs /8pts

son étude.

1- Définir : Dimension d'une grandeur physique ; Centre d'inertie d'un système.

1pt

2- Donner l'énoncé de : le théorème de Huygens ; la première loi de Newton.

2pts

3- Répondre par VRAI ou FAUX en justifiant chaque fois votre réponse.

3.2- La déclinaison magnétique nulle correspond à la ligne qui délimite les deux hémisphères magnétiques.

2pts

1pt

1pt

1pt

- 3.3- Un mouvement rectiligne sinusoïdal est uniformément varié.
- 3.4- Un référentiel qui est galiléen vérifie la première loi de Newton sur le mouvement. 4- Donner l'expression traduisant : le théorème du centre d'inertie ; le théorème de l'accélération angulaire.
- 5- Donner l'expression de l'accélération normale et celle de l'accélération tangentielle en fonction des grandeurs
- linéaires.
- 6- Citer un phénomène dans la nature mettant en jeu : le champ électrostatique, le champ gravitationnel.

Exercice 2 : Evaluation des savoirs faire /8pts

Partie A: Champ de gravitation /2points

- 1-On considère deux corps ponctuels A et B, de masse respective $m_A = 500$ g et $m_B = 3$ kg. La distance entre les deux corps est 50 cm. Calculer la valeur de la force d'interaction entre A et B.
- 2-A la surface de la Terre, l'intensité du champ de pesanteur est $g_0 = 9.8$ N/kg. Le rayon de la Terre supposée sphérique est 6380 km. On constate qu'à une altitude h de la surface de la Terre, le champ de pesanteur g est 4N/kg. Donner l'expression de g en fonction de g₀, R et h. Puis déterminer l'altitude h. 1pt

Partie B: Mouvement d'un solide sur un plan incliné / 2points

Un corps supposé ponctuel dévale sans vitesse initiale un plan incliné d'un angle α sur la verticale. Les forces de frottements sont négligeables.

- 1-Faire le schéma et représenter les forces qui s'appliquent sur le corps.
- 2-Déterminer l'accélération du mouvement et déduire sa nature.

On donne : g = 9.80 N/kg ; $\sin \alpha = 0.99$

1pt

1pt

1pt

Partie C : Mouvement rectiligne uniformément varié/4points

Partant du repos en un point A, un mobile M₁ en mouvement rectiligne passe par un point B avec une vitesse de **20m/s**. On donne : AB= 250m.

- 1-Calculer son accélération sachant qu'elle est constante et déduire la nature du mouvement
- 2-Écrire l'équation horaire du mouvement de M₁ en prenant pour origines des espaces le point B et pour origine des dates l'instant de son passage en B. 1pt
- 3-Deux secondes après le passage de M₁ en B, et dans le sens contraire et sur la même trajectoire, un autre mobile M₂ passe en un point C à la vitesse constante de 72km/h. On donne BC = 1000m. En prenant les mêmes origines des espaces et des dates, que précédemment, écrire l'équation horaire du mouvement de M₂. 1pt
- 4-Quand et où les mobiles se rencontrent-ils? 1pt

Exercice 3 : Vérification des acquis /8pts

Partie 1:/4 pts

Entre les armatures verticales d'un condensateur plan, règne un champ électrique uniforme. La différence de potentiel entre les armatures A et B est variable. On place entre les armatures, un palet conducteur (supposé ponctuel) de masse m, posé sur un support isolant lisse horizontal et relié à un ressort en matériau isolant. Le palet est électrisé et porte une charge Q inconnue. L'autre extrémité du ressort étant reliée à un support fixe, on fait varier la tension UAB entre les armatures et pour chaque valeur, on mesure la longueur \boldsymbol{l} du ressort. On obtient le tableau suivant :

U _{AB} (kV)	-4,00	-2,00	-1,00	1,50	3,00	5,00
l(cm)	16,8	18,4	19,2	21,2	22,4	24,0

1- Trouver le signe de la charge Q en justifiant.

0,5pt

0,5pt

1pt

2- Représenter toutes les forces qui s'exercent sur le palet pour $U_{AB} > 0$.

3- Etablir la relation théorique qui existe entre U_{AB} , d, Q, l; et l_0 (longueur à vide du ressort).

4- Tracer le graphe $U_{AB} = f(l)$. Préciser l'échelle utilisée.

5- Déterminer à partir du graphe la charge Q et la longueur à vide du ressort. 1pt

Partie 2:/4 pts

On considère le dispositif ci-contre : une poulie de rayon $\mathbf{r_0}$, de masse \mathbf{M} supposée uniformément répartie sur sa jante, peut tourner sans frottement autour de son axe O horizontal. Elle est solidaire d'une barre AB homogène de masse \mathbf{m} , passant par un diamètre de la poulie, portant à chacune de ses extrémités A et B un solide ponctuel de masse \mathbf{m} . Un fil inextensible, de masse négligeable est enroulé sur la gorge de la poulie, son extrémité libre supporte un solide de masse \mathbf{m}_0 . On note OA = OB = l.

1- Etablir l'expression du moment d'inertie J_{Δ} , par rapport à l'axe Δ , du système « poulie+ barre AB + solides ponctuels » en fonction de M, m, l et r_0 .

2- Simplifier ensuite cette expression pour M = 4 m et $l = 6r_0$.

0,5pt

1pt

1pt

3- L'ensemble dispositif est abandonné sans vitesse initiale. A l'aide de deux études dynamiques (translation et rotation), retrouver l'expression l'accélération du centre d'inertie du solide de masse m_0 , en fonction de m, m_0 et J_{Δ} .

4- Soit $\mathbf{m_0} = 11 \text{ x m}$. Simplifier l'expression précédente et préciser la nature du mouvement.

PARTIE B: ÉVALUATION DES COMPETENCES /16 points

SITUATION 1: /8 pts

En rangeant le matériel dans le laboratoire de physique du collège Petit Rousseau, AKONO et BEGO deux élèves de Tle C trouvent un aimant en U dont l'étiquette abimée par une grosse tache d'encre, est illisible. La Responsable du laboratoire madame SANDRINE donne aux deux camarades la balance de Cotton cicontre : l'ensemble est mobile autour de l'axe Δ passant par O perpendiculaire au plan de figure ; la surcharge de masse \mathbf{m} 'ne porte aucune inscription.

Madame SANDRINE leur demande de mettre une étiquette sur l'aimant en U et de la renseigner sur la surcharge fixée sur la balance.

AKONO fait passer un courant électrique dans le fil et pour différentes valeurs de l'intensité *I* BEGO pose des masses marquées de valeur **m** sur le plateau pour rétablir l'équilibre de la balance. Les deux camarades obtiennent le tableau ci-dessous :

I (A)	1,0	2,0	3,0	4,0	5,0	6,0
m(kg)	0,001	0,007	0,013	0,019	0,025	0,031

Données: L' = L; AC = 0.02 m; $g = 9.80 \text{ m.s}^{-2}$.

<u>Tâche</u>: A partir d'un raisonnement scientifique, aide AKONO et BEGO à satisfaire madame SANDRINE. Tu accompagneras ton raisonnement d'un graphe sur papier millimétré, en précisant l'échelle utilisée.

SITUATION 2:/8 pts

AHMADOU et TSAFAC deux élèves de T_{le} C, passent devant un chantier et observent le dispositif de la figure ci-dessous utilisé par un ouvrier pour soulever une charge A à l'ide d'un « poids » B.

applications numériques.

Une poulie constituée de deux cylindres pleins et homogènes solidaires d'un axe horizontal, a pour moment d'inertie J_{Δ} . Les rayons respectifs sont R et r. Deux câbles inextensibles de masse négligeable s'enroulent en sens inverses autour des cylindres. Le « poids » B a une masse m et la charge A possède une masse m. L'ensemble est abandonné sans vitesse initiale.

AHMADOU déclare : « Au cours de cette manœuvre, le câble 1 possède une tension égale à quatre fois celle du câble 2».

TSAFAC ne partage pas cet avis.

Données : M=1 kg ; m= 0,80 kg ; J Δ = 2. 10^{-3} kg.m 2 ; R=2r.

r = 0.02 m; $g = 9.80 \text{ m.s}^{-2}$.

<u>Tâche</u>: A l'aide d'un raisonnement scientifique, départage les deux camarades.

Tu accompagneras ton raisonnement par un schéma clair et précis et, des