Groups Gret w/ a binary operation * Definition: An identity for G is an element exq satisfying x * e = e * x = x for all $x \in G$. Prop: If e and e are two identities for G, then e= e. Prof: [exe=e because e is an identity]
= lexe=e because e is an identity Hence e= E Remark: It's important that both xxe=x and exx=x Assume G has an identity e. Definition: An muerse of an element affe is an element by at the ownerse of a is denoted by at thoposition: Inverses, if they exist, are unique! As long as * is associative.

Proof: S'pose b, c EG are inverses of a EG. Then axb=bxa=e and axc=cxa=e. $C = e \times c = (b \times a) \times c = b \times (a \times c) = b \times e = b$ <u>Definition</u>: A semigroup is a set of with an associative bonary relation * A monoid is a semigroup with an identity e. A group is a monoid with Threeses. Groups = Monoids = Sumigroups

	Def: A group B a set G with a binary relation *
	satisfying the following there properties
Su	ignification) monaid
	Def: A group B a set G with a binary relation * saksfying the following three properties ingel? (L) * is associative } monoid (2) there is an identity e=6 (3) every a=6 has an inverse a-1
	(3) every ac G has an ownerse a-
	O
	Ex: The sot
	$S_n = \left\{ \sigma : \left\{ 1,, n \right\} \rightarrow \left\{ 1,, n \right\} \right\} \in \mathbb{R}$ is a bijection by
	is a grap with bitrary operation given by composition. How we write these elements is flexible. This is the symmetric group on §1,, nig.
	Ti - Il commissis fluxible
	This is the symmetric dumb on (1)
	Fix: The cost 7/1 = 90,1, x-12 with honora
	Ex: The set $7/n = \{0,1,,n-1\}$ with binary operation + is a group. Abelian.
	obersoles M
	Def: A group & whose binary operation * is
	Commutative is called abelian.
	12 Huy Rx = units
	Commutative is called abelian. R trus R'= units Ex: The set Q'= {+ ris a nonzero testional #}
	is a group under multiplication Abelian
	EX: The set General honear Group
	GLn(IR) = (A A is an shoutible non red matrixy
	GLn(IR) = {A A is an invertible non red matrix? To a group with matrix multiplication.
	Subgroups: G group, birrary operation *, identity e
	Def: A subagroup of G TS a subset HCG which TS also a group under *.
	which is also a group under *.

In other words $H \subseteq G$ is a subgroup iff
(1) ee H
(2) If a, b ∈ H Hun a*b ∈ H (3) If a ∈ H Hun a ⁻¹ ∈ H
Notation: H < G means H is a subgroup of G
Two obvious subgroups of G:
· G improper subgroup any other to called proper
· G improper subgroup any other is called montrivial
01
Ex: SLn(IR) = {A = GLn(IR) / det (A) = 1}
Special linear group.
Ex: H= 90,2,4,69 13 a suburous of 1/2 = 90,1,,7}
Ex: H= {0,2,4,6} 13 a subgroup of \$2 = {0,1,,7}
Theorem: \$ #H & G 73 a subsyroup off
· a*beH for all a, bett
Proof: Choose a e H. Then at e H so a * a = E H. Srua a * a'=e, we get e = H
so a * a = E ff. Struce a * a = e , ve get e = ff
so a * a = f. Drua a * a = e, ve get e + 1
Theorem: \$ \$ # 6 G is a suboproup iff
Theorem: \$ \$ # 6 is a subgroup iff. • a* 6-1 c A for all a, b c H.
Choose a ett. Know a * a - (E H -> e E H
Choose a ett. Khoo a * a - (e H => e e H Thus e * a - L e H => a - L e H.
S'ps a, bet. Then 6'elf so a*(6') elf

Use fact that $(b^{-1})^{-1} = b$. So $a * b \in H$
Cyclic Groups
Ez group, brnairy operation *, identity e.
Proposition: Let a & Gr. The set
La7 = { at k67/2 } is a subgroup of G
Proof :
NTS given x, y & La> that xy' & La>.
$x=a^{-1}$, $y=a^{-1}$ so $y^{-1}=a^{-1}$ and
NTS given $x, y \in \langle a \rangle$ that $xy' \in \langle a \rangle$. $x = a^m$, $y = a^n$ so $y^{-1} = a^{-n}$ and $x \neq y' = a^m \neq a^n = a^{mn} \in \langle a \rangle$.
The state of the s
Here at = axaka xax * a
$a^{-k} = a' * a' * a' * \cdots * a'$
Definition: La7 is called the cyclic subgroup generated by a. If G = La7 for some a, then G is called cyclic.
by a. If G = La7 for some a, thun G
is called cyclic.
Ex: Then = <17 is cyclic.
J
Ex: The with bonen operation + is cyclic.
7/ = <1> = {1,1*1=2,1*1=3,-1,-2,-3,}
Theorem: If G is cyclic, then either
(1) [G] is refrite and isomorphic to the
(2) 19/1 < 00 and Bomorphic to 7/4 n for n=19/1.
Note: 4 G, 4 groups, G =(H) > G, H isomorphic
Ex: Thy 1/2×1/2 are not isomorphic
t Klein 4-group.

$$\langle (0,-1) \rangle = \{ (0,-1), (-1,0), (0,1) \}$$

isomorphic to Thy

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \mapsto \uparrow \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \mapsto 3$$

$$\begin{pmatrix} -(0) & \mapsto 2 & \begin{pmatrix} 10 \\ 01 \end{pmatrix} & \mapsto 0$$

1mapsto

$$\left(\begin{array}{c} \left(\begin{array}{c} 0 \\ 0 \end{array}\right)_{k} \\ \end{array}\right)_{k}$$

$$a = a \times a \times ... \times a$$

