

Chi Zhang

E-mail: zhangchi2018@itp.ac.cn

Contents		
1	Projective Modules	1
2	The Grothendieck Group $K_0(R)$	2
3	Topological K-Theory and Swan's Theorem	3

This essay gives a complete proof of Swan's Theorem, which provides a prominent example of one ever-lasting philosophy of modern mathematics: the geometric properties of an object can be largely determined by the algebraic properties of the functions on this object, and *vice versa*.

In this essay, we first define the $K_0(R)$ group of a ring R, as the group completion of the monoid Proj(R) of equivalence classes of finitely generated projective modules over R.

Then we introduce the topological K-theory, say $K^0(X)$ of a compact Hausdorff topological space X. The group $K^0(X)$ is defined as the group completion of the monoid $\operatorname{Vect}_{\mathbb{F}} X$, which is the monoid of equivalence classes of the (trivializable) \mathbb{F} -vector bundles over X.

Finally, we reach the apex of this essay, Swan's Theorem. The proof of Swan's Theorem is standard and elementary, and we follow the lines of [Ros, pp. 34].

1 Projective Modules

Now let's recall the basics projective modules over a ring R. The word **ring** in this essay means a ring with unit, and the word R-**module** means a left R-module.

Definition 1.1. Let R be a ring. A **projective module** over R means an R-module P satisfies the following lifting property: if $\phi: P \to N$ is any homomorphism of R-modules, and $\psi: M \to N$ is a surjective homomorphism, for R-modules M, N; then there exists a homomorphism $\tilde{\phi}: P \to M$ such that the diagram

$$\begin{array}{ccc}
 & M \\
 & \downarrow \psi \\
P & \longrightarrow & N
\end{array}$$

commutes.

There is another equivalent characterization of projective modules:

Theorem 1.1. Let R be a ring. An R-module is projective if and only if it is isomorphic to a direct summand in a free R-module. In particular, a finitely generated R-module is projective if and only if it is isomorphic to a direct summand in \mathbb{R}^n for some n.

Proof. This is a standard result. See any textbook of algebra. Or, see [Ros, pp.2]

By the last theorem, we know that the direct sum of two projective R-modules is again projective, since the direct sum of free modules is again free. So the isomorphism classes of finitely generated projective modules over R form an abelian semigroup $\operatorname{Proj}(R)$, in fact a monoid, with \oplus as the addition operation and with the 0-module as the identity element. In general, $\operatorname{Proj}(R)$ is not a group, but we may force it into a group. The ideal of how to do this is similar to the way $\mathbb Z$ is constructed from the additive semigroup of positive integers, or $\mathbb Q^*$ is constructed from the multiplicative semigroup of non-zero integers.

2 The Grothendieck Group $K_0(R)$

Theorem 2.1. Let S be a commutative semigroup (not necessarily having a unit). There is an abelian group G (called the **Grothendieck group** or **group completion** of S), together with a semigroup homomorphism $\phi: S \to G$, such that for any group H and homomorphism $\psi: S \to H$, there is a unique homomorphism $\theta: G \to H$ with $\psi = \theta \circ \varphi$.

Proof. We define G to be the set of equivalence classes of pairs (x,y) with $x,y \in S$, where $(x,y) \sim (u,v)$ iff there is some $t \in S$ such that

$$x + v + t = u + y + t \in S.$$

We denote by [(x,y)] the equivalence class of (x,y) under the relation \sim . Then addition is defined by the rule

$$[(x,y)] + [(x',y')] := [(x+x',y+y')].$$

It's easy to check that this addition is well-defined and associative.

Note that for any $x, y \in S$,

$$[(x,x)] = [(y,y)]$$

follows, as x + y = y + x. Let 0 be this distinguished element [(x, x)]. This is the zero element for G, as for any $x, y, t \in S$, $(x + t, y + t) \sim (x, y)$.

Also, G is a group since

$$[(x,y)] + [(y,x)] = [(x+y,x+y)] = 0.$$

We define $\phi: S \to G$ by

$$\varphi(x) := [(x+x,x)],$$

and it is easy to see that this is a homomorphism. Note that the image of φ generates G as a group, since

$$[(x,y)] = \phi(x) - \phi(y)$$

in G. Given a group H and homomorphism $\psi:S\to H,$ the homomorphism $\theta:G\to H$ is defined by

$$\theta([(x,y)]) = \psi(x) - \psi(y).$$

Hence $\psi = \theta \circ \phi$.

Now we are ready to define $K_0(R)$:

Definition 2.1. Let R be a ring. Then $K_0(R)$ is the Grothendieck group of the semi-group Proj(R) of isomorphism classes of finitely generated projective modules over R.

3 Topological K-Theory and Swan's Theorem

Definition 3.1. Let X be a compact Hausdorff topological space and let $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . An \mathbb{F} -vector bundle consists of a topological space E and a continuous surjective map $p: E \to X$ with extra structure defined by the following:

- (i) each fiber $p^{-1}(x)$ of p for $x \in X$, is a finite-dimensional vector space over \mathbb{F} ;
- (ii) the are continuous maps

$$E \times_{\mathfrak{p}} E \to E$$

and

$$\mathbb{F} \times \mathsf{E} \to \mathsf{E}$$

which restrict to addition and scalar multiplication of F-vector space on each fiber.

We may define the **Whitney sum** on two two vector bundles $E \xrightarrow{p} X$ and $E' \xrightarrow{p'} E$ over X by taking direct sum fiber-wise, denoted by $E \oplus E'$. More precisely

$$E \oplus E' := \left\{ (x, x') \mid x \in E, x' \in E', p(x) = p'(x') \right\}.$$

For most purpose we want our vector bundles to be locally trivial.

Definition 3.2. If X is a compact Hausdorff space, let $\operatorname{Vect}_{\mathbb{F}}(X)$ denote the monoid of isomorphic classes of locally trivial \mathbb{F} -vector bundles over X, with the monoid operation induced by the Whitney sum and the 0-element the trivial bundle of rank 0. The **topological** K-**theory** of X is defined by $K^0_{\mathbb{F}}(X) := G(\operatorname{Vect}_{\mathbb{F}}(X))$. Some times this is denoted simply K(X) or KU(X) if $\mathbb{F} = \mathbb{C}$, KO(X) if $\mathbb{F} = \mathbb{R}$. If X is connected, the **reduced** topological K-theory $\tilde{K}^0_{\mathbb{F}}(X) = \ker(\operatorname{rank} : K^0_{\mathbb{F}}(X) \to \mathbb{Z})$.

Theorem 3.1 (Swan's Theorem). Let $\mathbb{F}=\mathbb{R}$ or \mathbb{C} , let X be a compact Hausdorff space, and let $R:=C(X,\mathbb{F})$ be the ring of continuous \mathbb{F} -valued continuous functions on X. If $E \stackrel{p}{\to} X$ is a locally trivial \mathbb{F} -vector bundle over X, let $\Gamma(X,E)$ be the set of continuous sections of p. Observe that $\Gamma(X,E)$ is naturally an R-module. Then $\Gamma(X,E)$ is finitely generated and projective over R arises from this construction. The map $E \mapsto \Gamma(X,E)$ an isomorphism of categories from the category of vector bundles over X to the vector bundles over X to the category of finitely generated projective X-modules. It also induces an isomorphism $K^0(X) \to K_0(R)$.

Proof. Let $E \xrightarrow{p} X$ be a locally trivial \mathbb{F} -vector bundle over X and let $\Gamma(X,E)$ to be its R-module of sections. For each $x \in X$, there is an open neighborhood U over which E looks like a trivial bundle $U \times \mathbb{F}^n$. Locally, there exist n constant functions $e_j : U \to \mathbb{F}^n$ determined by the standard basis of \mathbb{F}^n . It's clear that these e_j 's form a basis of the $C(U,\mathbb{F})$ -linear space $\Gamma(U,U \times \mathbb{F}^n)$. Since X is compact, we can cover X by finitely many U_i , such that E is locally trivial on each U_i . Then we choose a partition of unity $\{\rho_i\}$ subordinate to this covering $\{U_i\}$. Define $e_{ij} := \rho_i e_j$ and we get each e_{ij} supported in U_i . e_{ij} 's can be viewed as global sections of $E \xrightarrow{p} X$, via extension by zero. $\{e_{ij}\}$ thus generates $\Gamma(X,E)$ as an R-module, by construction, with $R := C(X,\mathbb{F})$. This shows that $\Gamma(X,E)$ is a finitely generated R-module.

Next we show that $\Gamma(X,E)$ is projective. It suffices to show that $\Gamma(X,E)$ is a direct summand of a free R-module of finite rank. Since $\Gamma(X,E)$ is finitely generated as an R-module, we can find its generators $s_j, 1 \le j \le k$, where s_j 's may not be e_{ij} 's constructed before. Then consider the trivial bundle $X \times \mathbb{F}^k \stackrel{\pi_1}{\to} X$, and define a morphism of vector bundles

$$\phi: X \times \mathbb{F}^k \to E,$$

$$(x, \nu_1, \dots, \nu_k) \mapsto \sum_{j=1}^k \nu_j s_j(x).$$

Since the $s_j(x)$'s span $p^{-1}(x)$ for each x, ϕ is surjective on each fiber. We define a subbundle E' of the trivial bundle $X \times \mathbb{F}^k$ by taking kernel of ϕ , or namely, let $E'_x = \ker \phi_x$. E' is indeed a vector bundle, since each fiber E_x is a subspace of the vector space \mathbb{F}^k . E' is also trivializable on open subset U where E is trivializable, hence is a locally trivial vector bundle. Now we claim that

Claim 3.2. There is an isomorphism of vector bundles

$$E \oplus E' \simeq X \times \mathbb{F}^k$$
.

Proof. It is well-known that there exists an Hermitian metric $\langle -, - \rangle_E$ on E, which can be obtained by gluing the trivial metrics on each open subset by a partition of unity. There is also a canonical Hermitian metric $\langle -, - \rangle_{X \times \mathbb{F}^k}$ on the trivial bundle $X \times \mathbb{F}^k$, and furthermore φ is compatible with these metrics. Denote the adjoint φ^* of φ with respect to these metrics. Since $\varphi: X \times \mathbb{F}^k \to E$ is surjective on each fiber, $\varphi^*: E \to X \times \mathbb{F}^k$ is injective on each fiber, by adjointness. For any $\mathfrak{u} \in \Gamma(X, X \times \mathbb{F}^k)$ and $w \in \Gamma(X, E)$, the adjointness relation

$$\langle \phi(v), w \rangle_{\mathsf{F}} = \langle v, \phi^*(w) \rangle_{\mathsf{X} \times \mathsf{F}^k}$$

tells us that $v \in \ker \varphi = E'$ iff $v \perp \varphi^*(E)$. This means $E' \perp \varphi^*(E)$, where both sides are viewed as subbundles of $X \times \mathbb{F}^k$. Since φ^* is injective on each fiber, $\varphi^* : E \to \varphi^*(E)$ is bijective on each fiber and hence is an isomorphism of vector bundles. Via the identification $E \simeq \varphi^*(E)$, we know that $E \perp E'$. Since

$$X \times \mathbb{F}^k = E \oplus E^{\perp} \simeq E \oplus E'$$
.

By Claim 3.2,

we are done.

$$\Gamma(X, E) \oplus \Gamma(X, E') \simeq \Gamma(X, E \oplus E') \simeq \Gamma(X, X \times \mathbb{F}^k) \simeq \mathbb{R}^k$$

where the first and the last isomoprhism follow directly by definition. The last equation shows that $\Gamma(X,E)$ is a direct summand of the free R-module R^k , hence is a projective R-module. If we denote by $V(X,\oplus)$ the tensor category of vector bundles over X with \oplus the Whitney sum, then the above argument shows that $\Gamma(X,-):V(X,\oplus)\to R$ -**Proj** is a functor between tensor categories, where R-**Proj** is the tensor category of projective R-modules, equipped with the direct sum of R-modules. Now we work on the other direction, *i.e.*, we need to find a functor V:R-**Proj** $\to V(X,\oplus)$, sending each projective R-module to a vector bundle over X. Suppose P is a

projective R-module, so we can find an R-module Q and an integer $n \in \mathbb{N}$ such that $P \oplus Q = R^n$. Note that $R^n = C(X, \mathbb{F})^n \simeq C(X, \mathbb{F}^n)$, we may view P as a subset of $C(X, \mathbb{F}^n)$ and define

$$V(P) \coloneqq \left\{ \, (x, \nu_1, \dots, \nu_n) \in X \times \mathbb{F}^n \, \left| \, \text{if } \exists s \in P \text{ such that } s(x) = (\nu_1, \dots, \nu_n) \, \right. \right\}$$

Define $p:V(P)\to X$ to be the projection on to the first factor. We need to show that $V(P)\stackrel{p}{\to} X$ is indeed a vector bundle. It's easy to see that V(P) is fiber-wise linear, since P is linear. We need only check that V(P) is trivializable. Given $x\in X$, it's possible to choose elements $e^1,\ldots,e^r\in P$ such that $e^1(x),\ldots,e^r(x)$ form a basis for $V(P)_x:=p^{-1}(x)$, with $p^{-1}(x)$ viewed as a subspace of \mathbb{F}^n . Recall that e^i 's are vector-valued functions, so we write $e^i=(e^i_1,\ldots,e^i_n)$. Since $e^1(x),\ldots,e^r(x)$ are linearly independent, we can choose $1\leqslant j_1<\cdots< j_r\leqslant n$ such that

$$e \coloneqq \det \begin{pmatrix} e_{j_1}^1 & e_{j_2}^1 & \cdots & e_{j_r}^1 \\ \vdots & & \vdots \\ e_{j_1}^r & e_{j_2}^r & \cdots & e_{j_r}^r \end{pmatrix}$$

is non-zero at x. Since e is continuous, there must exist some neighborhood U of x in which e is non-vanishing. Thus for $\forall y \in U, e^1(y), \dots, e^r(y)$ are linearly independent and form a basis of the vector space $V(P)_y$, showing that V(P) is trivial over such U. Moreover, V maps direct sum to Whitney sum, by definition.

The verification of $V \circ \Gamma(X,-) = id$ and $\Gamma(X,-) \circ V = id$ is tautological. Finally, let $X \times \{0\}$ be the trivial rank 0 vector bundle over X, then $\Gamma(X,X \times \{0\}) \simeq C(X,\{0\}) \simeq \{0\}$, which is the trivial rank 0 module. Thus $\Gamma(X,-) : V(X,\oplus) \to R$ -**Proj** is an isomorphism of tensor categories.

Passing to equivalence classes, $\Gamma(X,-)$ induces an isomorphism $\text{Vect}_{\mathbb{F}}X \simeq \text{Proj}(R)$ between monoids. By virtue of Theorem 2.1, this furthermore induces an isomorphism $K^0(X) \simeq K_0(R)$.

References

[Ros] Jonathan M. Rosenberg. Algebraic K-Theory and Its Applications. Number 147 in Graduate Texts in Mathematics. Springer, corr. 2nd print edition.