

Compilation of Quantum Programs with Control Flow Primitives in Superposition

Master Thesis

05.02.25

Sascha Thiemann

Supervisors: apl. Prof. Dr. Thomas Noll

Prof. Dr. rer. nat. Dominique Unruh

Outline

Introduction

Background

Quantum Control Flow

Quantum Control Machine

Language

Overview

Syntax

Translation

Implementation

Lexical and Syntactic Analysis

Semantic Analysis

Code Generation

Optimization

Evaluation

Conclusion

Introduction

Introduction

test [Aaby, 2003]

Quantum Control Flow

- The idea of Quantum Control Flow was first used by [Altenkirch and Grattage, 2005] to define function quantum programming language.
- For example, it was used to define the Hadamard gate as the function had:

```
had: Q \rightarrow Q
had: x \mapsto if^{\circ}x
then \{false \mid -true\}
else \{false \mid true\}
```

- Later, the concept was formally defined by [Ying et al., 2012].
- Quantum branching allows fot the execution of function based on values in superposition.
- The result is the superposition of the results of individual executions.

Limitations — Reversibity

- Quantum control flow is mainly limited by two principles: reversibility and synchronization.
- Any sequence of instructions on gate-based quantum computers, excluding measurements, is required to be reversible by definition, as they are all unitary transformations.
- As a result, control flow, as implemented in classical computers, is not possible.
- For example, any classical jump instruction is inherently irreversible.
- Landauer Embedding [Landauer, 1961] seems to offer solution.
- The embedding can turn any non-reversible function into a reversible one by not only returning the output but also the input of the function.
- For example, any non-reversible function $f: D \to D'$ can be given as a reversible function $g: D \to D' \times D$ with g(x) = (f(x), x).
- However, because the output is the result together with the program history and the result depends on the history, they become entangled.
- This leads to disruptive entanglement [Yuan et al., 2024].

Limitations — Synchronization

- The program counter can become entangled with the data and result in disruptive entanglement leading to an invalid result.
- The principle of synchronization states that control flow must become independent from the data.
- For example, loops cannot depend solely on value in superposition.
- Tortoise and hare problem
- Instead, a loop must be bounded by a classical value [Yuan et al., 2024].

Quantum Control Machine

- Quantum Control Machine (QCM), proposed by [Yuan et al., 2024], is an instruction set architecture, focused on quantum control flow.
- Both its syntax and logic are similar to classical assembly language, utilizing (conditional) jump instructions.
- The architecture employs a branch control register bcr to enable reversible jump instructions.
- Instead of increasing the IP by 1 after each statement, it is increased by the value in the bcr.
- The bcr can then by reversibly modified.
- To jump by 5, the *bcr* is increased by 5 and, at its destination, decreased by 5 again.

Intructions

Operation	Syntax	Semantics ¹
No-op	nop	Only increases instruction pointer by the
		bcr.
Addition	add <i>ra rb</i>	Adds register <i>rb</i> to <i>ra</i> .
Multiplication	mul <i>ra rb</i>	Multiplies register <i>ra</i> by <i>rb</i> .
Jump	jmp p	Increases <i>bcr</i> by <i>p</i> .
Conditional Jumps	jz <i>p ra</i>	Increases <i>bcr</i> by <i>p</i> if <i>ra</i> is 0.
	jne <i>p ra rb</i>	Increases bcr by p if ra is not equal to rb .

¹ After all operations, the instruction pointer is increased by the value of the *bcr*.

An excerpt of the QCM instruction set with instructions used in later examples.

(Non-) Reversible Example

```
add res $1
add r1 y
all: jz l2 r1
mul res x
radd r1 $1
jmp l1
rl2: nop
```

A non-reversible exponentiation algorithm.

```
add res $1
add r1 y
all: rjne rl1 r1 y
rl2: jz l2 r1
mul res x
radd r1 $1
rl1: jmp l1
l2: rjmp l2
```

A reversible exponentiation algorithm.

Reversible Synchronized Example

```
$1
        add
              res
        add
              r1
                   max
3 11:
    rjne rl1
                   r1
                       max
4 rl2:
        jΖ
           12
                   r1
5 rl3:
        jg 13
                   r1
                      У
        mul res
                   X
        jmp 14
7 rl4:
             rl3
8 13:
        rjmp
                            ; padding
        nop
10 14:
        rjle
             rl4
                   r1
                      У
        radd r1
                   $1
        jmp 11
12 rl1:
        rjmp rl2
13 12:
```

A synchronized, reversible exponentiation algorithm.

Language Overview

- The idea for our language is to provide a high-level language with the capabilities of the QCM.
- We want to remove low-level concepts and add high-level ones.
- Additionally, since jump instructions in superposition are removed, we need to add other control flow statements so that the language is as expressive as the QCM.
- For this, we introduce multiple high-level concepts and two basic control flow statements:
 - Blocks and scopes
 - Different data types
 - Composite gates
 - Loop statements, unrolled at compile time
 - Quantum if- and else-statements

Syntax

- We define a CFG CFG_{Luie} for our language.
- The start symbol is the program, consisting of arbitrarily many gate declarations and a block.
- A block is a list of translatables, either statements of declarations.

```
CFG_{Luie} = \left(V_{Luie}, \Sigma_{Luie}, R_{Luie}, prg_{Luie}\right)
V_{Luie} = \left\{exp, rExp, gate, qArg, stm, prg_{Luie}, \dots\right\}
\Sigma_{Luie} = \left\{\dots, range, (,), \dots\right\} where n \in \mathbb{N}_0, id \in Identifier
Program : prg_{Luie} ::= gDcl_1 \dots gDcl_n \ blk \ | \ blk
Block : blk ::= t_1 \dots t_n \mid \epsilon
Translatable : t ::= stm \mid dcl
Declaration : dcl ::= const \ id = exp; \mid 
qubit \ id;
GateDeclaration : gDcl ::= gate \ id \ (id_1, \dots, id_n) \ do \ blk \ end
```

Syntax

- There are three different statements: quantum if-statement, loop statement, and application of predefined or composite gate.
- The qubit argument differentiates between qubit or register access.
- For the register access or constant declarations, expressions can be used.
- Additionally, we defined a set of defined gates to differentiate the corresponding translations.

```
Statement : stm ::= qif qArg do blk end | for id in rExp do blk end | id qArg_1, ..., qArg_n; QubitArgument : qArg ::= id | id[exp]  
Expression : exp ::= n \mid id \mid exp_1 + exp_2 \mid exp_1 - exp_2 \mid ... RangeExpression : rExp ::= n_1..n_2 \mid range(exp) \mid range(exp_1, exp_2)  
ConstGates = \{h, x, y, z, cx, ccx\}
```

Example Program

```
gate c_h_reg(control, reg) do
   qif control do
         for i in range(sizeof(reg)) do
             h reg[i];
         end
    end
7 end
const regSize : int = 3;
10 qubit C;
qubit[regSize] a;
12 c_h_reg c, a;
```

An example Luie program.

Symbol Table

- The symbol tables saves the symbol information relevant for the translation.
- It contains four different types of symbols:
 - 1. Named constants
 - 2. Quantum registers and qubits
 - 3. Qubit arguments
 - 4. Composite gates

```
SymbolTable := \{st \mid st : Identifier \rightarrow (\{const\} \times \mathbb{Q}) \cup (\{qubit\} \times \mathbb{N} \times Identifier) \cup (\{arg\} \times QubitArgument) \cup (\{gate\} \times Block \times Identifier^+)\}
```

Translation Function and Block Translation

- The *trans* function translate the Luie program to OpenQASM.
- The initial symbol table st_{ϵ} contains no mappings.
- Next, the block translation function bt translates all translatables, i.e., statements and declarations.

$$trans: Program \dashrightarrow QASMProgam$$
 $trans(gDcl_1 \dots gDcl_n \ blk) = bt(blk, update(update(update(st_{\epsilon}, gDcl_1), \dots), gDcl_n))$ $bt: Block \times SymbolTable \dashrightarrow QASM$ $bt(t_1 \dots t_n, st_1) = tr_1 \quad \text{where } (tr_1, st_2) = tt(t_1, st_1)$ \dots $tr_n \quad \text{where } (tr_n, -) = tt(t_n, st_n)$

Translatable and Declaration Translation

- The translatable function *tt* translates each translatable.
- Since declarations update the symbol table, the function returns the updated symbol table.
- The language allows for different variable scopes and, in turn, an identifier can be used multiple times.
- Therefore, a unique identifier *uid* is generated for the translation of identifiers.

$$tt: Translatable imes SymbolTable op QASM imes SymbolTable$$
 $tt(t,st) = \begin{cases} dt(t,st) & \text{if } t \in Declarations \\ (ct(t,st),st) & \text{otherwise} \end{cases}$

$$dt: Declaration \times SymbolTable \longrightarrow QASM \times SymbolTable$$
 $dt(\underbrace{qubit\ id};, st) = (\underbrace{qubit\ uid};, st')$ where $st' = update(decl, st)$ and $st'[id] = (\underbrace{qubit, 1, uid})$

Command Translation

- The commands are translated with the ct function.
- We take a look at an example translation of a quantum if-statement.
- The qubit argument translation *qt* is used to differentiate between qubits and register accesses and looks up the *uid*.
- The *control* function adds the translated *qArg* as a guard to all gate applications in the block translation.

```
ct: Statement \times SymbolTable \dashrightarrow QASM ct(\text{qif } qArg \text{ do } blk \text{ end}, st) = control(qt(qArg, st), bt(blk, st)) control(qArg, \\ \text{ctrl}(1) \text{ @ } id \ qArg_1, \dots, qArg_{n'}; \\ control(qArg, \text{ctrl}(n) \text{ @ } id \ qArg_1, \dots, qArg_{n'}; \\ \text{ctrl}(n+1) \text{ @ } id \ qArg, qArg_1, \dots, qArg_{n'}; \\ \end{cases}
```

Overview

- The implementation of the compiler is differentiate into four different stages:
 - 1. Lexical and Syntactic Analysis
 - 2. Semantic Analysis
 - 3. Code Generation
 - 4. Optimizations
- The process is managed by a static compiler class.
- It parses the command line parameters, handles the input and output of files, and calls the different stages.

```
./LUIECompiler --input "./program.luie"

--output "./build/program.qasm"

--optimization nullgate+peepingcontrol
```

A command line interface example.

Symbols and Symbol Table

A diagram showing the hierarchy of symbol classes.

Code Generation

Code Generation

Code Generation

Optimization

. . .

Evaluation

Evaluation

. . .

Conclusion

References

- Aaby, A. A. (2003).
 Compiler construction using flex and bison.
- Altenkirch, T. and Grattage, J. (2005).
 A functional quantum programming language.
 In 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05), pages 249–258. IEEE.
- Landauer, R. (1961).

 Irreversibility and heat generation in the computing process.

 IBM Journal of Research and Development, 5(3):183–191.
- Ying, M., Yu, N., and Feng, Y. (2012). Defining quantum control flow.
- Yuan, C., Villanyi, A., and Carbin, M. (2024).

 Quantum control machine: The limits of control flow in quantum programming.

References

Proceedings of the ACM on Programming Languages, 8(OOPSLA1):1–28.