Section 3: Target Systems and Phenomena

Formalizing Theories with Difference Equations

Theories explain phenomena

Phenomenon: My coffee cools faster in the winter than it does in the summer

Theories explain phenomena

Verbal theory: My coffee's temperature will change proportional to the difference between its own temperature and the ambient temperature

Verbal theory: My coffee's temperature will change proportional to the difference between its own temperature and the ambient temperature

What does the theory predict?

Verbal theory: My coffee's temperature will change proportional to the difference between its own temperature and the ambient temperature

What does the theory predict?

Formal theory:
$$T_{t+1} = T_t + r(T_t - T_A)$$

Difference equations tell us where a variable will go next, based on where it is now

Allows us to simulate the behavior of the variable as it evolves over time given a set of initial conditions

Formal theory:
$$T_{t+1} = T_t + r(T_t - T_A)$$

$$T_A$$
= Ambient Temperature

$$r = Constant = -.20$$

Formal theory:
$$T_{t+1} = T_t + r(T_t - T_A)$$

$$T_{t+1} = T_t \pm .20(T_t - 40)$$

$$T_0 = 80$$

What does the theory predict?

What does the theory predict?

Formal theory:
$$T_{t+1} = T_t + r(T_t - T_A)$$

$$T_{t+1} = T_t \pm .20(T_t - 40)$$

Coffee **Temp**

$$T_{t+1} = T_t + r(T_t - T_A)$$

$$T_0 = 80.0$$

$$T_1 = 80.0 - .20(80.0 - 40) = 72.0$$

$$T_{t+1} = T_t + r(T_t - T_A)$$

$$T_0 = 80.0$$

t	
0	80.0
1	72.0
2	65.6
3	

$$T_1 = 80.0 - .20(80.0 - 40) = 72.0$$

$$T_2 = 72.0 - .20(72.0 - 40) = 65.6$$

$$T_{t+1} = T_t + r(T_t - T_A)$$

 t

 0
 80.0

 1
 72.0

 2
 65.6

 3
 60.5

$$T_0 = 80.0$$

$$T_1 = 80.0 - .20(80.0 - 40) = 72.0$$

$$T_2 = 72.0 - .20(72.0 - 40) = 65.6$$

$$T_3 = 65.6 - .20(65.6 - 40) = 60.5$$

Formal theory: $T_{t+1} = T_t + r(T_t - T_A)$

t	
0	80.0
1	72.0
2	65.6
3	60.5

Formal theory:
$$T_{t+1} = T_t + r(T_t - T_A)$$

Formal theories allows us to **deduce** precisely what a theory predicts

Accurate deduction is a prerequisite for explanation

Formal theory: $T_{t+1} = T_t + r(T_t - T_A)$

t	
0	80.0
1	72.0
2	65.6
3	60.5

t	
0	80.0
1	64.0
2	51.2
3	41.1

Phenomenon: My coffee cools faster in the winter than it does in the summer

Formal theory: $T_{t+1} = T_t + r(T_t - T_A)$

Formal theory:

```
temp<-vector()
temp[1]<-80
time_steps<-30

for (t in 1:time_steps) {
temp[t+1]<-temp[t]-.2*(temp[t]-20)}</pre>
```

A Computational Model of Coffee Temperature!

```
temp<-vector()
temp[1]<-80
time_steps<-30

for (t in 1:time_steps) {
temp[t+1]<-temp[t]-.2*(temp[t]-20)}</pre>
```


A Computational Model of Coffee Temperature!

Problem: Coffee doesn't change in discrete time

Difference **Equations**

Discrete Time

$$T_{t+1} = T_t - .2(T_t - 20)$$

Differential Equations

Continuous Time

$$\frac{dT}{dt} = -.2(T - 20)$$

Differential **Equations**

Problem: No analytic solution for many differential equations

Continuous Time

$$\frac{dT}{dt} = -.2(T - 20)$$

Solution: Back to Difference Equations (Euler's Method)

Euler's Method

```
out full<-simTemp(time steps=30,
                   stepsize=1,
                   subsample=1/1,
                  temp initial=80,
                  temp room=20)
out half<-simTemp(time steps=30,
                   stepsize=.5,
                   subsample=1/.5,
                  temp initial=80,
                  temp room=20)
```


Modeling Panic Attacks with Difference Equations

Phenomenon: Panic attacks and Panic Disorder

A verbal theory: If a stimulus "is perceived as a threat, a state of mild apprehension results. This state is accompanied by a wide range of bodily sensations. If these anxiety-produced sensations are interpreted in a catastrophic fashion, a further increase in apprehension occurs. This produces a further increase in body sensations and so on around in a vicious circle which culminates in a panic attack."

Formal theory: $A_{t+1} = A_t + T_t$

Formal theory:
$$\frac{dA}{dt} = (T)$$

Perceived Threat (T)

Formal theory: $\frac{dA}{dt} = (T - A)$

Formal theory:
$$\frac{dA}{dt} = (T - A)$$

Formal theory:
$$\frac{dA}{dt} = (T - A)$$

$$\frac{dA}{dt} = (T - A) = (.25 - .50) = -.25$$

$$\frac{dA}{dt} = (T - A) = (.25 - .50)$$

$$= (.25 - .50)$$

$$= -.25$$

$$= (.25 - .25)$$

$$= 0$$

$$\frac{dA}{dt} = (T - A)$$

$$\frac{dA}{dt} = (T - A) = (.60 - .50) = .10$$

$\frac{dA}{dt} = (T - A) = (.60 - .50)$ **Formal** theory: = (.60 - .60)Arousal (A) Arousal

= .10

= 0

Perceived

Threat

Perceived Threat (T)

Formal theory:

$$\frac{dA}{dt} = (\beta T - A) \qquad \beta = 2$$

Perceived Threat (T)

Formal theory: Arousal (A)

$$\frac{dA}{dt} = (\beta T - A) \qquad \beta = .5$$

Perceived Threat (T)

Formal theory:

$$\frac{dA}{dt} = (\beta T - A) \qquad \beta = 1$$

Perceived Threat (T)

$$\frac{dT}{dt} = (\beta A - T)$$

Arousal Schema (S) = 0.00

Arousal Schema (S) = 0.00

Robinaugh et al., 2019, Advancing the network theory of mental disorders: A computational model of panic disorder

Robinaugh et al., 2019, Advancing the network theory of mental disorders: A computational model of panic disorder

Robinaugh et al., 2019, Advancing the network theory of mental disorders: A computational model of panic disorder

Robinaugh et al., 2019, Advancing the network theory of mental disorders: A computational model of panic disorder

A Computational Model of Panic Disorder

```
simPanic <- function(time steps, stepsize)</pre>
  for(i in 1:(nIter)) {
      A eq <- s PT A*PT[i]
      A eq2 <--s H A*H[i]
      A[i+1] < -A[i] + r A*((A eq - A[i]) + A eq2)*stepsize
outlist <- list("A" = A, "PT" = PT, "H" = H, "E" = E)
return(outlist)
```

What does this earn us?

A tool to evaluate our theory!

Theory Evaluation

Simulation 1: Biological Challenge

Simulation 2: 3-Month Simulation

Simulation 3: Treatment Study

Panic Phenomenology

Some people experience surges of intense fear and somatic symptoms that come on "out of the blue."

Individual Differences

Individual Differences

Individual Differences

