Learning Associations

Basket analysis:

P(Y|X) probability that somebody who buys X also buys Y where X and Y are products/services.

Market-Basket transactions

Example: P (chips | beer) = 0.7

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Training and testing

Training and testing

- Training is the process of making the system able to learn.
- No free lunch rule:
- Training set and testing set come from the same distribution
- Need to make some assumptions or bias

Performance

- There are several factors affecting the performance:
 - Types of training provided
 - The form and extent of any initial background knowledge
 - The type of feedback provided
 - The learning algorithms used
- Two important factors:
 - Modeling
 - Optimization

Classification: Applications

- Face recognition: Pose, lighting, occlusion (glasses, beard), make-up, hair style
- Character recognition: Different handwriting styles.
- Speech recognition: Temporal dependency.
 - Use of a dictionary or the syntax of the language.
 - Sensor fusion: Combine multiple modalities; eg, visual (lip image) and acoustic for speech
- Medical diagnosis: From symptoms to illnesses
- Web Advertising: Predict if a user clicks on an ad on the Internet.

Steps

Testing

Prediction: Regression

- Example: Price of a used car
- x: car attributes

y: price

$$y = g(x \mid \theta)$$

g() model,

θ parameters

Regression Applications

- Navigating a car: Angle of the steering wheel (CMU NavLab)
- Kinematics of a robot arm

Inductive Learning

- Given examples of a function (X, F(X))
- Predict function F(X) for new examples X
 - Discrete F(X): Classification
 - Continuous F(X): Regression
 - -F(X) = Probability(X): Probability estimation

Supervised Learning: Uses

Example: decision trees tools that create rules

- Prediction of future cases: Use the rule to predict the output for future inputs
- Knowledge extraction: The rule is easy to understand
- Compression: The rule is simpler than the data it explains
- Outlier detection: Exceptions that are not covered by the rule, e.g., fraud

Algorithms

- The success of machine learning system also depends on the algorithms.
- The algorithms control the search to find and build the knowledge structures.
- The learning algorithms should extract useful information from training examples.

Algorithms

- Supervised learning ($\{x_n \in \mathbb{R}^d, y_n \in \mathbb{R}\}_{n=1}^N$)
 - Prediction
 - Classification (discrete labels), Regression (real values)
- Unsupervised learning ($\{x_n \in \mathbb{R}^d\}_{n=1}^N$)
 - Clustering
 - Probability distribution estimation
 - Finding association (in features)
 - Dimension reduction
- Semi-supervised learning
- Reinforcement learning
 - Decision making (robot, chess machine)

Algorithms

What are we seeking?

Supervised: Low E-out or maximize probabilistic terms

$$error = \frac{1}{N} \sum_{n=1}^{N} [y_n \neq g(x_n)]$$
 E-in: for training set

E-out: for testing

$$Eout(g) \le Ein(g) \pm O\left(\sqrt{\frac{d_{VC}}{N}} \ln N\right)$$

 Unsupervised: Minimum quantization error, Minimum distance, MAP, MLE(maximum likelihood estimation)

Machine learning structure

Supervised learning

Unsupervised Learning

- Learning "what normally happens"
- No output
- Clustering: Grouping similar instances
- Other applications: Summarization, Association Analysis
- Example applications
 - Customer segmentation in CRM
 - Image compression: Color quantization
 - Bioinformatics: Learning motifs

Machine learning structure

Unsupervised learning

Clustering Analysis

Definition

Grouping unlabeled data into clusters, for the purpose of

inference of hidden structures or inform

Dissimilarity measurement

Distance: Euclidean(L₂), Manhattan(L₁)

- Angle: Inner product, ...

- Non-metric: Rank, Intensity, ...

- Types of Clustering
 - Hierarchical
 - Agglomerative or divisive
 - Partitioning
 - K-means, VQ, MDS, ...

K-Means

 Find K partitions with the total intra-cluster variance minimized

$$E = \sum_{i=1}^{K} \sum_{\mathbf{x} \in C_i} (\mathbf{x} - \mathbf{y}_i)^2$$

- Iterative method
 - Initialization : Randomized y_i
 - Assignment of $x(y_i)$ fixed)
 - Update of y_i (x fixed)

- Problem?
 - → Trap in local minima

Deterministic Annealing (DA)

- Deterministically avoid local minima
 - No stochastic process (random walk)
 - Tracing the global solution by changing level of randomness
- Statistical Mechanics
 - Gibbs distribution

$$P(E_x) = \exp(-E_x/T)/Z_x \qquad Z_x = \sum_{x \in \Omega} \exp(-E_x/T)$$

- Helmholtz free energy F = D TS
 - Average Energy D = $\langle \sum E_x \rangle$
 - Entropy S = $P(E_x)$ In $P(E_x)$
 - $F = -T \ln Z$
- In DA, we make F minimized

(Maxima and Minima, Wikipedia)

Deterministic Annealing (DA)

- Analogy to physical annealing process
 - Control energy (randomness) by temperature (high → low)
 - Starting with high temperature (T = 1)
 - Soft (or fuzzy) association probability
 - Smooth cost function with one global minimum
 - Lowering the temperature (T!0)
 - Hard association
 - Revealing full complexity, clusters are emerged
- Minimization of F, using $E(\mathbf{x}, \mathbf{y}_j) = ||\mathbf{x} \mathbf{y}_j||^2$

$$\frac{\partial}{\partial \mathbf{y}_j} F = 0 \Longleftrightarrow -T \sum_{\mathbf{x}} \frac{d(Z_{\mathbf{x}})}{Z_{\mathbf{x}}} = 0 \Longleftrightarrow \mathbf{y}_j = \frac{\sum_{\mathbf{x}} \mathbf{x} P(\mathbf{y}_j | \mathbf{x})}{\sum_{\mathbf{x}} P(\mathbf{y}_j | \mathbf{x})}$$

Iteratively,

$$\mathbf{y}_{j}^{(n+1)} = f\left(\mathbf{y}_{j}^{(n)}\right)$$

Dimension Reduction

Definition

Process to transform high-dimensional data into lowdimensional ones for improving accuracy, understanding, or removing noises.

- Curse of dimensionality
 - Complexity grows exponentially in volume by adding extra dimensions

- Types
 - Feature selection : Choose representatives (e.g., filter,...)
 - Feature extraction : Map to lower dim. (e.g., PCA, MDS, ...)

Machine Learning in a Nutshell

- Tens of thousands of machine learning algorithms
- Hundreds new every year
- Every machine learning algorithm has three components:
 - Representation
 - Evaluation
 - Optimization

Generative vs. Discriminative Classifiers

Generative Models

- Represent both the data and the labels
- Often, makes use of conditional independence and priors
- Examples
 - Naïve Bayes classifier
 - Bayesian network
- Models of data may apply to future prediction problems

Discriminative Models

- Learn to directly predict the labels from the data
- Often, assume a simple boundary (e.g., linear)
- Examples
 - Logistic regression
 - SVM
 - Boosted decision trees
- Often easier to predict a label from the data than to model the data

Classifiers: Logistic Regression

Maximize likelihood of label given data, assuming a log-linear model

x1 Pitch of voice

$$\log \frac{P(x_1, x_2 \mid y = 1)}{P(x_1, x_2 \mid y = -1)} = \mathbf{w}^T \mathbf{x}$$

$$P(y = 1 | x_1, x_2) = 1/(1 + \exp(-\mathbf{w}^T \mathbf{x}))$$

Classifiers: Nearest neighbor

$f(\mathbf{x})$ = label of the training example nearest to \mathbf{x}

All we need is a distance function for our inputs No training required!

Nearest Neighbor Classifier

Assign label of nearest training data point to each test data point

partitioning of feature space for two-category 2D and 3D data

K-nearest neighbor

- It can be used for both classification and regression problems.
- However, it is more widely used in classification problems in the industry.
- K nearest neighbours is a simple algorithm
 - stores all available cases and
 - classifies new cases by a majority vote of its k neighbours.
 - The case being assigned to the class is most common amongst its K
 nearest neighbours measured by a distance function.
 - These distance functions can be Euclidean, Manhattan, Minkowski and Hamming distance.
 - First three functions are used for continuous function and
 - Fourth one (Hamming) for categorical variables.
 - If K = 1, then the case is simply assigned to the class of its nearest neighbour.
 - At times, choosing K turns out to be a challenge while performing KNN modelling.

Naïve Bayes

- Bayes theorem provides a way of calculate
 - posterior probability P(c|x) from P(c), P(x) and P(x|c).
- Look at the equation belove

$$P(c \mid X) = P(x_1 \mid c) \times P(x_2 \mid c) \times \cdots \times P(x_n \mid c) \times P(c)$$

- Here,
- P(c|x) is the posterior probability of class (target) given predictor (attribute).
- P(c) is the prior probability of *class*.
- -P(x|c) is the likelihood which is the probability of *predictor* given *class*.
- -P(x) is the prior probability of *predictor*

Naïve Bayes Example

- Let's understand it using an example.
 - Have a training data set of weather and corresponding target variable 'Play'.
 - Now, we need to classify whether players will play or not based on weather condition.
 - Let's follow the below steps to perform it.
 - Step 1: Convert the data set to frequency table
 - Step 2: Create Likelihood table by finding the probabilities like
 - Overcast probability = 0.29 and

bability of playing is 0.64.

Weather	Play	
Sunny	No	
Overcast	Yes	
Rainy	Yes	
Sunny	Yes	
Sunny	Yes	
Overcast	Yes	
Rainy	No	
Rainy	No	
Sunny	Yes	
Rainy	Yes	
Sunny	No	
Overcast	Yes	
Overcast	Yes	
Rainy	No	

Frequency Table						
Weather	No	Yes				
Overcast		4				
Rainy	3	2				
Sunny	2	3				
Grand Total	5	9				

Likelihood table]	
Weather	No	Yes		
Overcast		4	=4/14	0.29
Rainy	3	2	=5/14	0.36
Sunny	2	3	=5/14	0.36
All	5	9		
	=5/14	=9/14]	
	0.36	0.64]	

Naïve Bayes

- Step 3: Now, use Naive Bayesian equation to calculate the posterior probability for each class.
 - The class with the highest posterior probability is the outcome of prediction.

Problem:

- Players will pay if weather is sunny, is this statement is correct?
- We can solve it using above discussed method,
 - so P(Yes | Sunny) = P(Sunny | Yes) * P(Yes) / P (Sunny)
 - Here we have, P(Sunny | Yes) = 3/9 = 0.33, P(Sunny) = 5/14 = 0.36, P(Yes) = 9/14 = 0.64
 - Now, P (Yes | Sunny) = 0.33 * 0.64 / 0.36 = 0.60,
 - · which has higher probability.
- Naive Bayes uses a similar method to
 - predict the probability of different class based on various attributes.
 - This algorithm is mostly used in text classification and
 - with problems having multiple classes.

EM algorithm

- Problems in ML estimation
 - Observation X is often not complete
 - Latent (hidden) variable Z exists
 - Hard to explore whole parameter space
- Expectation-Maximization algorithm
 - Object: To find ML, over latent distribution $P(Z | X, \theta)$
 - Steps
 - 0. Init Choose a random θ^{old}
 - 1. E-step Expectation $P(Z | X, \theta^{\text{old}})$
 - 2. M-step Find θ^{new} which maximize likelihood.
 - 3. Go to step 1 after updating $\theta^{\text{old}} \tilde{A} \theta^{\text{new}}$

Maximum Likelihood (ML) Estimation

Problem

Estimate hidden parameters ($\theta = \{\mu, \sigma\}$) from the given data extracted from k Gaussian distributions

Gaussian distribution

$$\mathcal{N}(x|\mu,\sigma) = \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Maximum Likelihood

$$\theta_{\text{ML}} = \underset{\theta \in \Theta}{\operatorname{argmax}} P(\mathcal{X}|\theta) = \underset{\theta \in \Theta}{\operatorname{argmax}} \prod_{i=1}^{m} P(x_i|\theta) = \underset{\theta \in \Theta}{\operatorname{argmax}} \prod_{i=1}^{m} \ln\{P(x_i|\theta)\}$$

•With Gaussian (P = N),
$$\theta_{\scriptscriptstyle{\mathrm{ML}}} = \operatorname*{argmin}_{\{\mu\} \in \Theta} \sum_{i=1}^{m} (x_i - \mu)^2$$

Solve either brute-force or numeric method