Accumulator A A Accumulator B B AU AUX Register C C Inc. AUX Register D D Stc.	Bit Registers Ecumulator pair AB IX register pair CD dex register SK ack pointer YG ogram counter PS
--	--

Status Flags (DK)

0 Becomes 0 after the execution.

1 Becomes 1 after the execution.

No changes after the execution.

Becomes 1 or 0 after the execution.

Status Flags(DK). Carry Ε Half Carry Y S Zero Negative Ν Overflow Τ Interrupt Κ

Addressing Methods **Immediate** Immediate memory Y Register L Direct D Indirect Κ Relative В S Indexed (SK) Incremental SK R Decremental SK 7 Indirect SK U Υ Indexed (YG)

K T S N Y E

	I	nitialization of	PIA for Ready Input	
D1	D0	Read	dy Input	Interrupt Output
0	0	From 1 to 0	D7 flag becomes 1	not genaretes interrupt
0	1	From 0 to 1	D7 flag becomes 1	not genaretes interrupt
1	0	From 1 to 0	D7 flag becomes 1	genaretes interrupt
1	1	From 0 to 1	D7 flag becomes 1	genaretes interrupt

		Initialization of	f PIA for ACK Input	
D3	D2	ACK	Input	Interrupt Output
0	0	From 1 to 0	D7 flag becomes 1	not genaretes interrupt
0	1	From 0 to 1	D7 flag becomes 1	not genaretes interrupt
1	0	From 1 to 0	D7 flag becomes 1	genaretes interrupt
1	1	From 0 to 1	D7 flag becomes 1	genaretes interrupt

		Initialization of PIA for Data Valid output
D5	D4	Data Valid output
0	0	Becomes 0
0	1	Becomes 1
1	0	Becomes 0 after data writen to port.
1	1	Becomes 1 after data writen to port.

				ARITHM	ETIC INS	TRUCTION	S	- (8	bit)			
Oper	Op Code	Adr met	1. Byte	Instruction 2. Byte	Format 3. Byte	4. Byte	St		Reg.	ΙE	А	Explanation
	Ai,V	V	00000011	0 0 0 0 Ai	Data	,			* *	_	3	Ai ← Ai +V
	Ai,Ki	L	01000011	0 0 Ai Ki			\$	\$	* *		3	Ai ← Ai + Ki
	Ai, <adr></adr>	D	00000011	0 0 1 0 0 Ai	Adr (H)	Adr (L)	\$	\$	* *	\$	4	Ai ← Ai + <adr></adr>
	Ai, <cd></cd>	К	00000011	0 1 0 0 0 Ai			\$	\$	* *		6	Ai ← Ai + < <cd>></cd>
ADD	Ai, <sk+s></sk+s>	S	00000011	0 1 1 0 0 Ai	S		\$	\$	* *	\$	7	Ai ← Ai + <sk+s></sk+s>
ADD	Ai, <sk+s>+R</sk+s>	R	00000011	1 0 0 0 0 Ai	S	R	\$	\$	* *		7	Ai ← Ai + <\$K+\$> +R
	Ai, <sk+s>-R</sk+s>	Z	00000011	1 0 1 0 0 Ai	S	R	\$	\$	* *	\$	7	Ai ← Ai + <sk+s> - R</sk+s>
	Ai, <sk+cd+s></sk+cd+s>	U	00000011	1 1 0 0 0 Ai	S		\$	\$	* *	\$	8	Ai ← Ai + <\$K+CD+\$>
	Ai, <yg+\$></yg+\$>	Υ	00000011	1 1 1 0 0 Ai	S		\$	\$	* *		7	Ai ← Ai + <yg+\$></yg+\$>
	Ai,V	٧	00000100	0 0 0 0 0 Ai	Data		\$	\$	\$ \$	\$	3	Ai ← Ai +V + E
	Ai,Ki	L	01000100	0 0 Ai Ki			\$	\$	\$ \$	\$	3	Ai ← Ai + Ki + E
	Ai, <adr></adr>	D	00000100	0 0 1 0 0 Ai	Adr (H)	Adr (L)	\$	\$	\$ \$	\$	4	Ai ← Ai + <adr> + E</adr>
ADC	Ai, <cd></cd>	K	00000100	0 1 0 0 0 Ai			\$	\$	\$ \$	\$	6	Ai ← Ai + < <cd>> + E</cd>
ADC	Ai, <sk+s></sk+s>	S	00000100	0 1 1 0 0 Ai	S		\$	\$	* *	\$	7	Ai ← Ai + <\$K+\$> + E
	Ai, <sk+s>+R</sk+s>	R	00000100	1 0 0 0 0 Ai	S	R	\$	\$	\$ \$	\$	7	Ai ← Ai + <\$K+\$> + E +R
	Ai, $<$ $SK+S>-R$	Z	00000100	1 0 1 0 0 Ai	S	R	\$	\$	\$ \$	\$	7	Ai ← Ai + <\$K+\$> + E - R
	Ai, <sk+cd+s></sk+cd+s>	U	00000100	1 1 0 0 0 Ai	S		\$	\$	* *	\$	8	Ai ← Ai + <\$K+CD+\$> + E
	Ai, <yg+\$></yg+\$>	Υ	00000100	1 1 1 0 0 Ai	S		\$	\$	\$ \$	•	7	Ai ← Ai + <yg+\$> + E</yg+\$>
	Ai,V	٧	00000101	0 0 0 0 0 Ai	Data		\$	\$	\$ -	• ♦	3	Ai ← Ai - V
	Ai,Ki	L	01000101	0 0 Ai Ki			\$	\$	* -	• 🛊	3	Ai ← Ai - Ki
	Ai, <adr></adr>	D	00000101	0 0 1 0 0 Ai	Adr (H)	Adr (L)	\$	♦	* -	• ♦	4	Ai ← Ai - <adr></adr>
SUB	Ai, <cd></cd>	K	00000101	0 1 0 0 0 Ai			\$	\$	+ -	• 🛊	6	Ai ← Ai - < <cd>></cd>
306	Ai, <sk+s></sk+s>	S	00000101	0 1 1 0 0 Ai	S		\$	\$	* -	• ♦	7	Ai ← Ai - <sk+s></sk+s>
	Ai, <sk+s>+R</sk+s>	R	00000101	1 0 0 0 0 Ai	Ş	R	\$	\$	\$ -	• 🛊	7	Ai ← Ai - <sk+s> +R</sk+s>
	Ai, <sk+s>-R</sk+s>	Z	00000101	1 0 1 0 0 Ai	S	R	\$	\$	\$ -	• 🛊	7	Ai ← Ai - <sk+s> - R</sk+s>
	Ai, <sk+cd+s></sk+cd+s>	U	00000101	1 1 0 0 0 Ai	S		\$	\$	\$ -	• 🛊	8	Ai ← Ai - <sk+cd+\$></sk+cd+\$>
	Ai, <yg+\$></yg+\$>	Υ	00000101	1 1 1 0 0 Ai	S		\$	\$	\$ -	• 🛊	7	Ai ← Ai - <yg+\$></yg+\$>
	Ai,V	٧	00000110	0 0 0 0 0 Ai	Data		\$	\$	♦ -	• 🛊	3	Ai ← Ai -V - E
	Ai,Ki	L	01000110	0 0 Ai Ki			\$	\$	\$ -	• 🛊	3	Ai ← Ai - Ki - E
	Ai, <adr></adr>	D	00000110	0 0 1 0 0 Ai	Adr (Y)	Adr (L)	\$	\$	♦ -	• 🛊	4	Ai ← Ai - <adr> - E</adr>
	Ai, <cd></cd>	K	00000110	0 1 0 0 0 Ai			\$	\$	\$ -	• 🛊	6	Ai ← Ai - < <cd>> - E</cd>
SUE	Ai, <sk+s></sk+s>	S	00000110	0 1 1 0 0 Ai	S		\$	\$	\$ -	• 🛊	7	Ai ← Ai - <sk+s> - E</sk+s>
	Ai, <sk+s>+R</sk+s>	R	00000110	10000 Ai	S	R	\$	\$	\$ -	• 🛊	7	Ai ← Ai - <sk+s> - E +R</sk+s>
	Ai, <sk+s>-R</sk+s>		00000110	1 0 1 0 0 Ai	S	R	\$	\$	\$ -	• 🛊	7	Ai ← Ai - <sk+s> - E - R</sk+s>
	Ai, <sk+cd+s></sk+cd+s>	U	00000110	1 1 0 0 0 Ai	S		\$	\$	\$ -	• 🛊	8	Ai ← Ai - <sk+cd+s> - E</sk+cd+s>
	Ai, <yg+\$></yg+\$>	Υ	00000110	1 1 1 0 0 Ai	S		\$	\$	\$ -	•	7	Ai ← Ai - <yg+\$> - E</yg+\$>

				ARITH	METIC IN	STRUCTIO	N S	-	(16	bit			
Oper	Op Code	Adr		Instruction	Format		St	tatus	Re	g. <u>.</u>	А	Explanation	
		met	1. Byte	2. Byte	3. Byte	4. Byte	T	S	N	_	_	Explanation	
	AB,VV	V	00100011		Data(H)	Data(L)	•	*	·	- 4	-	AB◀─ AB +VV	
	AB,Kii	L	0 1 1 0 0 0 1 1				♦	_	_	- 4	4	AB◀── AB + Kii	
	AB, <adr></adr>	D	00100011	0 0 1 0 0 AB	Adr (H)	Adr (L)	\$	\$	\$	- 4	5	AB← AB + (<adr> + <adr+1></adr+1></adr>)
	AB, <cd></cd>	K	00100011	0 1 0 0 0 AB			\$	\$	\$	- 4	7	AB ← AB +(< <cd>>+<<cd< td=""><td>+1>>)</td></cd<></cd>	+1>>)
ADD.	AB, <sk+s></sk+s>	S	00100011	0 1 1 0 0 AB	S		\$	\$	\$	- 4	-	AB ← AB +(<sk+s>+<sk+s+< td=""><td>1>)</td></sk+s+<></sk+s>	1>)
	AB, <sk+s>+R</sk+s>	R	00100011	1 0 0 0 0 AB	S	R	\$	\$	\$	- 4	8	AB ← AB +(<sk+s>+<sk+s></sk+s></sk+s>) +R
	AB, <sk+s>-R</sk+s>	Z	00100011	1 0 1 0 0 AB	S	R	*	\$	\$	- 4	8	AB ← AB +(<sk+s>+<sk+s+< td=""><td>1>) - R</td></sk+s+<></sk+s>	1>) - R
	AB, <sk+cd+s></sk+cd+s>	U	00100011	1 1 0 0 0 AB	S		\$	\$	\$	1	9	AB ← AB +(<sk+cd+s>+<sk< td=""><td>+CD+S+</td></sk<></sk+cd+s>	+CD+S+
	AB, <yg+\$></yg+\$>	Υ	00100011	1 1 1 0 0 AB	S		\$	\$	\$	1	8	AB ← AB +(<yg+\$>+<yg+\$< td=""><td>>)</td></yg+\$<></yg+\$>	>)
	AB,VV	٧	00100101	0 0 0 0 0 AB	Data (H)	Data (L)	\$	\$	\$	-	4	AB← AB - VV	
	AB,Kii	L	01100101	O O AB Kii			\$	\$	\$	- 4	4	AB← AB - Kii	
	AB, <adr></adr>	D	00100101	0 0 1 0 0 AB	Adr (H)	Adr (L)	\$	\$	\$	- 4	5	AB ← AB - (<adr> + <adr+1>)</adr+1></adr>	
UB	AB, <cd></cd>	К	00100101	0 1 0 0 0 AB			\$	\$	\$	- 4	7	AB - (< <cd>>+<<cd+< td=""><td>1>>)</td></cd+<></cd>	1>>)
UB	AB, <sk+s></sk+s>	S	00100101	0 1 1 0 0 AB	Š		\$	\$	\$	- 4	8	AB - (<sk+s>+<sk+s+1< td=""><td>>)</td></sk+s+1<></sk+s>	>)
	AB, <sk+s>+R</sk+s>	R	00100101	1 0 0 0 0 AB	S	R	\$	\$	\$	- 4	8	AB - (<sk+s>+<sk+s>)</sk+s></sk+s>	+R
	AB, <sk+s>-R</sk+s>	Z	00100101	1 0 1 0 0 AB	S	R	\$	\$	\$	- 4	8	AB ← AB -(<sk+s>+>SK+S+1</sk+s>	>) - R
	AB, <sk+cd+s></sk+cd+s>	U	00100101	1 1 0 0 0 AB	S		\$	\$	\$	- 4	9	<u> </u>	
	AB, <yg+s></yg+s>	Υ	00100101	1 1 1 0 0 AB	S		\$	\$	*	- 4	8	AB ← AB -(<yg+s>+<yg+s></yg+s></yg+s>)
	A,V	V	00000111	00000 A	Data		-	•	•		24	AB ← A * V	
	A,Ki	L	01000111	0 0 A Ki			-	\$	•	_	2 4	+	
	A, <adr></adr>	_	00000111	0 0 1 0 0 A	Adr (H)	Adr (L)	-	•	*	_	20	 	
	A, <cd></cd>	-	00000111				-	*	*	_	28	1	
ИUL	A, <\$K+\$>	_	00000111		S		-	*	*	_	-	· 	
	A, <sk+s>+R</sk+s>	R	00000111	10000 A	S	R		*	*	_	-	·	
	A, < \$K+\$>-R	- '	00000111		S	R	-	*	*	_	3	+	
	A, <sk+cd+s></sk+cd+s>	-	00000111		S		-	*	*	-	32	+	
	A, <yg+s></yg+s>	_	00000111		S		-	*	<u> </u>	_	-	1	
	AB,V	_	00100111		Data		-	*	*	\vdash	32	1	
	AB,Ki	Ľ		0 0 0 0 0 AB				*	*		-	1	
	AB, <adr></adr>			0 0 1 0 0 AB	Adr (H)	Adr (L)		*	*	\vdash	3,		
	AB, <cd></cd>	_	00100111	01000 AB			_	*	*	\vdash	30	1	
οίν	AB, <sk+s></sk+s>	_	00100111	01100 AB	S			*	-		100	<u> </u>	
۱V	AB, <sk+s>+R</sk+s>	-		1 0 0 0 0 AB		R		*	*	\vdash	38	 	
	AB, <sk+s>-R</sk+s>	_	00100111		S	P		*	*		+	,	
	AB, <sk+cd+s></sk+cd+s>	_	00100111		S			*	÷		1	, , , , ,	
	AB, <yg+s></yg+s>	Y					Е	1	♦			+	
	, w, < 10 + 5 ×	'	00100111	1 1 1 0 0 AB	Ş			\$	₹	-1	38	B AB← AB / <yg+s></yg+s>	

				TRANS	FER INSTR	UCTIONS	- (8 bit)						
Oper	Op Code	Adr		Ins	truction Format			S	tatus	Reg		Α	Explanation
Орог	op code	met	1. Byte	2. Byte	3. Byte	4. Byte	5. Byte	T	S	N	Y E		· ·
MOV	Ki,Kj	L	01000000	0 0 Ki Kj				_	\$	\$ •	_ _	1	Ki ← Kj
EXC	Ki,Kj	L	01000001	0 0 Ki Kj				_	_	-	- -	3	кі← кј
CHN	Ki	L	01000010	0 1 Ki				_	*	*	_ _	5	D3 D2 D1 D0 D7 D6 D5 D4
	Ki,V	٧	0000000	0 0 0 0 0 Ki	Data			_	\$	\$	- -	1	Ki ← ─V
	Ki, <adr></adr>	D	0000000	0 0 1 0 0 Ki	Adr (H)	Adr (L)		_	\$	*	_ _	2	Ki ← — <adr></adr>
	Ki, <cd></cd>	K	0000000	0 1 0 0 0 Ki				_	\$	\$	_ _	3	Ki ← < <cd>></cd>
LDA	Ki, <sk+s></sk+s>	S	0000000	0 1 1 0 0 Ki	S			_	\$	\$	_ _	4	Ki ← —<\$K+\$>
LDA	Ki, $< SK+S > +R$	R	0000000	1 0 0 0 0 Ki	S S	R		_	\$	\$	- -	5	Ki ← <sk+s> +R</sk+s>
	Ki, <sk+s>-R</sk+s>	Z	0000000	1 0 1 0 0 Ki	S	R		_	\$		_ _	5	Ki ← -<\$K+\$> -R
	Ki,<\$K+CD+\$>	U	0000000	1 1 0 0 0 Ki	Ś			_	\$	\$	- -	6	Ki ←—<\$K+CD+\$>
	Ki, <yg+\$></yg+\$>	Υ	0000000	1 1 1 0 0 Ki	S			_	\$	\$	- -	5	Ki ← <yg+\$></yg+\$>
	V,Adr	٧	0 0 0 0 0 0 0 1	00001	Datai	Adr (H)	Adr (L)	_	_	-	- -	3	Adr ← V
	Ki, <adr></adr>	D	00000001	0 0 1 0 0 Ki	Adr (H)	Adr (L)		_	_	-	_ _	2	Adr ← Ki
	Ki, <cd></cd>	K	0 0 0 0 0 0 0 1	0 1 0 0 0 Ki				_	_	-	_ _	3	< <cd>> ← Ki</cd>
STR	Ki, <sk+s></sk+s>	S	0 0 0 0 0 0 0 1	0 1 1 0 0 Ki	Ş			_	-	-	- -	4	<\$K+\$> ← Ki
JIK	Ki, $< SK + S > + R$	R	0 0 0 0 0 0 0 1	1 0 0 0 0 Ki	S	R		_	-	-	- -	5	<\$K+\$> ← Ki + R
	Ki, <sk+s>-R</sk+s>	Z	0 0 0 0 0 0 0 1	1 0 1 0 0 Ki	S	R			_	-	- -	5	<\$K+\$> ← Ki - R
	Ki, <sk+cd+s></sk+cd+s>	U	0 0 0 0 0 0 0 1	1 1 0 0 0 Ki	S			_		-	- -	6	<\$K+CD+\$> ← Ki
	Ki, <yg+\$></yg+\$>	Υ	0 0 0 0 0 0 0 1	1 1 1 0 0 Ki	S				_	-		5	<yg+\$> ← Ki</yg+\$>

				TRANSF	ER INSTRU	ICTIONS -(16	bit)					
Oper	On Code	Adr		Instru	uction Format			Sto	atus I	Reg.		А	Explanation
Opei	Op Code	met	1. Byte	2. Byte	3. Byte	4. Byte	Т	S	Ν	Υ	Е		. Explaination
MOV	Kii,Kjj	L	0 1 1 0 0 0 0 0	o o Kii Kjj			-	\$	\$		_	2	Kii ← Kjj
EXC	Kii,Kjj	L	0 1 1 0 0 0 0 1	o o Kii Kjj			_	_	1	ı	1	4	Kii ← Kjj
	Kii,VV	٧	0010000	0 0 0 0 0 Kii	Datai	Data	_	\$	\$	_	_	2	Kii ← W
	Kii, <adr></adr>	D	0010000	0 0 1 0 0 Kii	Adr (H)	Adr (L)	-	\$	\$	_	_	3	Kii ← <adr>+<adr+1></adr+1></adr>
	Kii, <cd></cd>	К	0010000	0 1 0 0 0 Kii			_	\$	\$	1	-	4	Kii ← < <cd>>+<<cd+1>></cd+1></cd>
	Kii, < SK+S>	S	0010000	0 1 1 0 0 Kii	S		_	\$	\$	1	_	5	Kii ← < SK+S>+ <sk+s+1></sk+s+1>
LDA	Kii, < SK+S>+R	R	0010000	1 0 0 0 0 Kii	S	R	_	\$	\$	_	_	6	Kii ← <sk+s>+<sk+s+1> +R</sk+s+1></sk+s>
	Kii, < SK+S>-R	Z	0010000	1 0 1 0 0 Kii	S	R	_	\$	\$	_	_	6	Kii ← <sk+s>+<sk+s+1> - R</sk+s+1></sk+s>
	Kii, < SK+CD+S>	U	0010000	1 1 0 0 0 Kii	S		_	\$	\$	1	-	7	Kii ← <\$K+CD+\$>+<\$K+CD+\$+1>
	Kii, <yg+\$></yg+\$>	Υ	0010000	1 1 1 0 0 Kii	S		-	\$	#	-	-	6	Kii ← <yg+\$>+<yg+\$+1></yg+\$+1></yg+\$>
	Kii, <adr></adr>	D	0 0 1 0 0 0 0 1	0 0 1 0 0 Kii	Adr (H)	Adr (L)	-	_	_	_	_	3	Adr+(Adr+1) ← Kii
	Kii, <cd></cd>	K	0 0 1 0 0 0 0 1	0 1 0 0 0 Kii			_	_	-	-	_	4	< <cd>>+<<cd+1>></cd+1></cd>
STR	Kii, < SK+S>	S	00100001	0 1 1 0 0 Kii	S		_	_	-	_	_	5	<\$K+\$>+<\$K+\$+1>
JIIK	Kii, < SK+S>+R	R	00100001	1 0 0 0 0 Kii	S	R	_	_	-	-	-	6	<\$K+\$>+<\$K+\$+1>
	Kii, < SK+S>-R	Z	00100001	1 0 1 0 0 Kii	S	R	_	_	-	-	-	6	<\$K+\$>+<\$K+\$+1>
	Kii, < SK+CD+S>	U	00100001	1 1 0 0 0 Kii	S		_	_	-	_	_	7	<\$K+CD+\$>+<\$K+CD+\$+1> ← K
	Kii, <yg+\$></yg+\$>	Υ	0 0 1 0 0 0 0 1	1 1 1 0 0 Kii	S		_	_	_	_	_	6	<yg+\$>+<yg+\$+1>← Kii</yg+\$+1></yg+\$>

				LOGI	C INSTRU	ICTIONS -(8	bit ;)					
Oper	I Ob-Code I	Adr met	1. Byte	Instruction 2. Byte	Format 3. Byte	4. Byte	-	_	Statu N		eg. E	А	Explanation
	Ai,V		00001000		,	4. Byle	T	\$	-	_	_	3	Ai ← Ai • V
	Ai,V Ai,Ki		01001000				-	+:	 ; 	_	-	3	Ai ← Ai • Ki
		-	00001000	0 0 1 0 0 Ai		Adr (L)	╢═	+ :	 ; 	\rightarrow		4	Ai ← Ai • <adr></adr>
	Ai, <adr></adr>		00001000			Adi (t)	#=	+:	 	\dashv		6	Ai ← Ai • < <cd>></cd>
	Ai, <cd> Ai,<sk+s></sk+s></cd>	-11	00001000	011000 Ai		_	E	+:	+ ; +	_	-	-	
AND	Ai, < 5K+5> Ai, < 5K+5>+R	-		011100	3	R	╗╢	+-		\rightarrow	\dashv	7	Ai ← Ai • <sk+s></sk+s>
	,	- 11	00001000		S	K	-	+*	 ' 	-	-	7	Ai ← Ai • <sk+s>+R</sk+s>
	Ai, <sk+s>-R</sk+s>	-	00001000		S	I R	4=	+*	<u> </u>	\rightarrow	_	7	Ai ← Ai • <sk+s> - R</sk+s>
	Ai, <sk+cd+s></sk+cd+s>	-	00001000	1 1 0 0 0 Ai	S		-	+*	*	-	-	8	Ai ← Ai • <\$K+CD+\$>
	Ai, <yg+\$></yg+\$>	-	00001000		S		-	♦	*	-	_	<u> </u>	Ai ← Ai • <yg+\$></yg+\$>
	Ai,V	٧	00001001	0 0 0 0 0 Ai	Data		-	+*	· *	-	-	3	Ai ← Ai + V
	Ai,Ki	L	01001001	0 0 Ai Ki			_	♦	\$	_	-	3	Ai ← Ai + Ki
	Ai, <adr></adr>	D	00001001	0 0 1 0 0 Ai	Adr (H)	Adr (L)	_	♦	\$	_	_	4	Ai ← Ai + <adr></adr>
OR	Ai, <cd></cd>	K	00001001	0 1 0 0 0 Ai			_	♦	\$	_	-	6	Ai ← Ai + < <cd>></cd>
OI.	Ai, <sk+s></sk+s>	S	00001001	0 1 1 0 0 Ai	S		-	♦	\$	-	-	7	Ai ← Ai + <\$K+\$>
	Ai, <sk+s>+R</sk+s>	R	00001001	1 0 0 0 0 Ai	S	R		♦	\$	-	-	7	Ai ← Ai + <sk+s>+R</sk+s>
	Ai, <sk+s>-R</sk+s>	Z	00001001	1 0 1 0 0 Ai	S	R			\$	-	-	7	Ai ← Ai + <sk+s> - R</sk+s>
	Ai, <sk+cd+s></sk+cd+s>	U	00001001	1 1 0 0 0 Ai	S		_	. \$	\$	-	-	8	Ai ← Ai + <\$K+CD+\$>
	Ai, <yg+\$></yg+\$>	Υ	00001001	1 1 1 0 0 Ai	S		-		\$	_	-	7	Ai ← Ai + <yg+\$></yg+\$>
	Ai,V	٧	00001010	0 0 0 0 0 Ai	Data		-		\$	-	-	3	Ai ← Ai ⊕ V
	Ai,Ki	L	0 1 0 0 1 0 1 0	0 0 Ai Ki			1-		\$	_	-	3	Ai ← Ai ⊕ Ki
	Ai, <adr></adr>	D	00001010	0 0 1 0 0 Ai	Adr (H)	Adr (L)	1 -		\$	-	_	4	Ai ← Ai ⊕ <adr></adr>
	Ai, <cd></cd>	K	00001010	0 1 0 0 0 Ai			-	♦	\$	-	-	6	Ai ← Ai ⊕ < <cd>></cd>
XOR	Ai, <sk+s></sk+s>	s	00001010	0 1 1 0 0 Ai	S		1-			_	_	7	Ai ← Ai ⊕ <sk+s></sk+s>
	Ai, <sk+s>+R</sk+s>	_	00001010			R	1 -	+:	+ : +	_	\rightarrow	-	Ai ← Ai ⊕ <sk+s>+R</sk+s>
	Ai, <sk+s>-R</sk+s>		00001010		S	R	1 -	†	1	-	_	7	Ai ← Ai ⊕ <sk+s> - R</sk+s>
	Ai,<\$K+CD+\$>	_	00001010		S		1-	+ +	-	-	_	8	Ai ← Ai ⊕ <\$K+CD+\$>
	Ai, <yg+s></yg+s>	-	00001010				-	+:	 ; 	-	\dashv	7	Ai ← Ai ⊕ <yg+\$></yg+\$>

						0	PΕΙ	RΑ	TIC	ИС	-1											
Oper	Op Code	Adr							Ins	structio	n For	mat				S	tatus	s Flo	ıgs		Α	Explanation
Opei	Op Code	met	1. By	/te			2.	Byte)	3.	Bytei		4	I. Byte		T	S	Ν	Υ	Е		
	Ki	L	0100)] (0 1 1	0	1		Ki							0	1	0	0	0	3	Ki ← 0
	<adr></adr>	D	0000)] (0 1 1	0	0 1 0	1		Α	dr (Yü	k)		Adr (Düş	;)	0	1	0	0	0	4	<adr> ← 0</adr>
	<cd></cd>	-	0000	_	_	0	100	1								0	1	0	0	0	6	< <cd>> ← 0</cd>
CLR	<sk+s></sk+s>	-	0000			0	1 1 0	1			S					0	1	0	0	0	7	<\$K+\$> ← 0
CLIX	<sk+s>+R</sk+s>		0000			1	000	1			S			R		0	1	0	0	0	7	<\$K+\$> ← 0, + R
	<\$K+\$>-R	Z	0000)] (0 1 1	1	0 1 0	1			S			R		0	1	0	0	0	7	<\$K+\$> ← 0, - R
	<sk+cd+s></sk+cd+s>	-	0000		0 1 1	1	1 O C	1			S					0	1	0	0	0	8	<\$K+CD+ \$ > ← 0
	<yg+\$></yg+\$>	Υ	0000)] (0 1 1	1	1 1 C	1			S					0	1	0	0	0	7	<yg+\$>←0</yg+\$>
	Ki	L	0 1 0 1	0	000	0	1		Ki							\$	‡	\$	_	\$	3	Ki ← Ki + 1
	<adr></adr>	D	0001	0	000	0	0 1 0	1		Α	dr (Yü	k)		Adr (Düş	;)	\$	‡	\$	_	\$	4	<adr> ← <adr> + 1</adr></adr>
INC	<cd></cd>	K	0 0 0 1	0	000	0	1 O C	1								‡	‡	\$	_	‡	6	< <cd>> ← <<cd>> + 1</cd></cd>
1110	<\$K+\$>	S	0 0 0 1	0	000	0	1 1 C	1			S					\$	‡	\$	_	\$	7	<\$K+\$> ← <\$K+\$> + 1
	<\$K+\$>+R	R	0 0 0 1	0	000	1	000	1			Ş			R		\$	\$	\$	_	\$	7	<\$K+\$> ← <\$K+\$> + 1, + R
	<\$K+\$>-R	Z	0 0 0 1	0	000	1	0 1 0	1			S			R		‡	‡	\$	_	‡	7	<\$K+\$> ← <\$K+\$> + 1, - R
	<sk+cd+s></sk+cd+s>	U	0 0 0 1	0	000	1	100	1			S					‡	‡	\$	_	\$	8	<\$K+CD+\$> ← <\$K+CD+\$> + 1
	<yg+\$></yg+\$>	Υ	0 0 0 1	0	000	1	1 1 0	1			S					‡	‡	\$	_	\$	7	<yg+\$> ← <yg+\$> + 1</yg+\$></yg+\$>
	Ki	L	0 1 0 1	0	0 0 1	0	1		Ki							\$	\$	\$	_	\$	3	Ki ← Ki - 1
	<adr></adr>	D	0001	0	0 0 1	0	0 1 0	1		Α	dr (Yü	k)		Adr (Dü)	\$	\$	\$	_	\$	4	<adr> ← <adr> - 1</adr></adr>
DEC	<cd></cd>	K	0001	0	0 1	0	100	1								‡	\$	\$	_	\$	6	< <cd>> ← <<cd>> - 1</cd></cd>
DLC	<\$K+\$>	S	0001	0	0 0 1	0	1 1 C	1			S					‡	\$	\$	_	\$	7	<\$K+\$> ← <\$K+\$> - 1
	<sk+s>+R</sk+s>	R	0 0 0 1	0	0 0 1	1	000	1			S			R		\$	‡	\$	_	\$	7	<\$K+\$> ← <\$K+\$> - 1, + R
	<\$K+\$>-R	Z	0 0 0 1	0	0 0 1	1	0 1 0	1			S			R		‡	\$	\$	_	\$	7	<\$K+\$> ← <\$K+\$> - 1, -R
	<sk+cd+s></sk+cd+s>	U	0 0 0 1	0	0 0 1	1	100	1			S					‡	‡	\$	_	\$	8	<\$K+CD+\$> ← <\$K+CD+\$> - 1
	<yg+\$></yg+\$>	Υ	0 0 0 1	0	0 0 1	1	1 1 0	1			S					‡	‡	\$	_	\$	7	<yg+\$> ← <yg+\$> - 1</yg+\$></yg+\$>
	Ki	L	0 1 0 1	0	0 1 0	0	1		Ki							_	‡	\$	_	_	3	Ki ←—com <ki></ki>
	<adr></adr>	D	0 0 0 1	0	0 1 0	0	010			A	dr (Yü	k)		Adr (Düş	i)	_	\$	\$	_	_	4	<adr> ← com<adr></adr></adr>
	<cd></cd>	K	0 0 0 1	0	0 1 0	0	1 0 C									_	\$	\$	_	_	6	< <cd>> ← com<<cd>></cd></cd>
СОМ	<\$K+\$>	_	0 0 0 1	_			1 1 0	$\Delta U/\Delta V$			S					_	‡	\$	-	_	7	<\$K+\$> ← com<\$K+\$>
	<\$K+\$>+R	R	0 0 0 1	0	0 1 0	1	000				S			R		_	\$	\$	_	_	7	<\$K+\$> ← com<\$K+\$>, + R
	<sk+s>-R</sk+s>	Z	0 0 0 1	0	0 1 0	1	0 1 0				S			R		_	\$	\$	_	_	7	<\$K+\$> ← com<\$K+\$>, - R
	<sk+cd+s></sk+cd+s>	U	0 0 0 1	0	0 1 0	1	100				S					_	*	\$	-	_	8	<\$K+CD+\$> ← com<\$K+CD+\$>
	<yg+\$></yg+\$>	Υ	0 0 0 1	0	0 1 0	1	1 1 0				S					_	‡	\$	-	_	7	<yg+\$></yg+\$>

				OPERATIO	DN - II								
Oper	Op Code	Adr		Inst	ruction Format		S	itatu	ıs Flo	ags		Α	Explanation
Opei	Op Code	met	1. Byte	2. Byte	3. Bytei	4. Byte	T	S	N	Υ	Е		
	Ki	L	01010011	0 1 Ki			_	\$	\$	_		3	Ki ← neg <ki></ki>
	<adr></adr>	D	00010011	00101	Adr (Yük)	Adr (Düş)	_	\$	\$	_	-	4	<adr> ← neg<adr></adr></adr>
	<cd></cd>	К	00010011	0 1 0 0 1			_	\$	\$	_		6	< <cd>>→ neg<cd>></cd></cd>
NEG	<\$K+\$>	S	00010011	01101	S		ı	\$	\$	_		7	<\$K+\$> ← neg<\$K+\$>
NEG	<SK $+$ S $>$ +R	R	00010011	10001	S	R	I	\$	\$	_	-	7	<\$K+\$> ← neg<\$K+\$>, + R
	<sk+s>-R</sk+s>	Z	00010011	10101	S	R		\$	\$	_	_	7	<\$K+\$> ← neg<\$K+\$>, - R
	<\$K+CD+\$>	U	00010011	1 1 0 0 1	S		-	\$	\$	-	-	8	<\$K+CD+\$>◆ neg<\$K+CD+\$>
	<yg+\$></yg+\$>	Υ	00010011	1 1 1 0 1	S		-	\$	\$	_	-	7	<yg+\$> ← neg<yg+\$></yg+\$></yg+\$>
	N,Ki	L	0 1 0 0 1 1 0 1	1 1 N Ki			_	\$	\$	_	-	3	Ki ← Ki(N=0)
	N, <adr></adr>	D	0 0 0 0 1 1 0 1	0 0 1 1 0 N	Adr (Yük)	Adr (Düş)	-	\$	\$	_	-	4	<adr> ← <adr,n=0></adr,n=0></adr>
CLR	N, <cd></cd>	К	0 0 0 0 1 1 0 1	0 1 0 1 0 N			-	\$	\$	_	-	6	< <cd>> ← <cd,n=0>></cd,n=0></cd>
CLIK	N, <sk+s></sk+s>	S	0 0 0 0 1 1 0 1	0 1 1 1 0 N	S		_	\$	\$	_		7	<\$K+\$> ← <\$K+\$,N=0>
	N, <sk+s>+R</sk+s>	R	0 0 0 0 1 1 0 1	1 0 0 1 0 N	S	R	_	\$	\$	_	-	7	<\$K+\$> ← <\$K+\$,N=0>, + R
	N, <sk+s>-R</sk+s>	Z	00001101	1 0 1 1 0 N	S	R	_	\$	\$	_		7	<\$K+\$> ← <\$K+\$,N=0>, - R
	N, <sk+cd+s></sk+cd+s>	U	00001101	1 1 0 1 0 N	S		_	\$	\$	_	-	8	<\$K+CD+\$> ← <\$K+CD+\$,N=0>
	N, <yg+s></yg+s>	Υ	0 0 0 0 1 1 0 1	1 1 1 1 0 N	S		-	\$	\$	_	-	7	<yg+\$> ← <yg+\$,n=0></yg+\$,n=0></yg+\$>
	N,Ki	L	0 1 0 0 1 1 1 1	1 1 N Ki			_	\$	\$	_		3	Ki ← Ki(N=1)
	N, <adr></adr>	D	0 0 0 0 1 1 1 1	0 0 1 1 0 N	Adr (Yük)	Adr (Düş)	_	\$	\$	_	-	4	<adr> ← <adr, n="1"></adr,></adr>
SET	N, <cd></cd>	К	0 0 0 0 1 1 1 1	0 1 0 1 0 N				\$	\$	_	_	6	< <cd>>→ <cd,n=1>></cd,n=1></cd>
JLI	N, <sk+s></sk+s>	S	0 0 0 0 1 1 1 1	0 1 1 1 0 N	S		-	\$	\$	-	-	7	<\$K+\$> ← <\$K+\$,N=1>
	N, <sk+s>+R</sk+s>	R	0 0 0 0 1 1 1 1	10010 N	S	R	I	\$	\$	_	-	7	<\$K+\$> ← <\$K+\$,N=1>, + R
	N, <sk+s>-R</sk+s>	Z	00001111	1 0 1 1 0 N	S	R	-	\$	\$	_	-	7	<\$K+\$> ← <\$K+\$,N=1>, - R
	N, <sk+cd+s></sk+cd+s>	U	0 0 0 0 1 1 1 1	1 1 0 1 0 N	S		-	\$	\$	_	-	8	<\$K+CD+\$> ◆ <\$K+CD+\$,N=1>
	N, <yg+s></yg+s>	Υ	00001111	1 1 1 1 0 N	S		_	\$	\$	_	_	7	<yg+s> ← <yg+s,n=1></yg+s,n=1></yg+s>

			OPER	ATION INSTR	UС	TIC	N S				
Oper	Op Code	Adr	Instruction	on Format		Statu	ıs Reç	j .		А	Explanation
Opo.	Op code	met	1. Byte	2. Byte	T	S	N	Υ	Е		·
	E	L	01001100	10000	_	_	_	_	0	1	E ← 0
	Υ	L	01001100	10 001	_	_	_	0	-	1	Y ← 0
CLR	N	L	01001100	10 010	_	_	0	_	_	1	N ← 0
	S	L	01001100	10 011	_	0	_	_	_	1	\$ ← 0
	Т	L	01001100	1000	0	_	_	_	_	1	T ← 1
	E	L	01001110	10 000	_	_	_	_	1	1	E ← 1
	Υ	L	01001110	10 001	_	_	_	1	-	1	Y ← 1
SET	N	L	01001110	10 010	_	_	1	_	_	1	N ← 1
	S	L	01001110	10 011	_	1	_	_	_	1	5 ← 1
	Т	L	01001110	1000	1	_	_	_	_	1	T← 1
INC	Kii	L	01110000	0 1 Kii	\$	\$	\$	_	\$	2	Kii ← Kii + 1
DEC	Kii	L	0 1 1 1 0 0 0 1	0 1 Kii	\$	\$	‡	_	\$	2	Kii ← Kii - 1
DAA	Ai	L	01010100	0 1 Ai	_	_	_	0	0	2	Binary to Decimal
PSH	Ai	L	01010101	0 1 Ai	_	_	_	_	_	2	Push Ai to Stack
PUL	Ai	L	01010110	0 1 Ai	_	\$	\$	_	_	2	Pull Stock to Ai
EIN		L	11000000		_	_	_	_	_	1	Enable Interrupt
DIN		L	11000001		_	_	_	_	_	1	Disable Interrupt
NOP		L	11000010		-	-	-	_	_	1	No Operation
RTS		L	11000100		_	_	_	_	_	5	Return fron subroutine
RTI		L	11000101		_	_	-	_	_	15	Return from interrupt
INT		L	1 1 0 0 0 0 1 1		_	_	_	_	_	15	Software Interrupt

				SHIFT	&ROTATE	INSTRUC	TIC	N	S				
		Adr		Instruction	Format		St	atus	Re	g.		Α	Contamortica
Oper	Op Code	met	1. Byte	2. Byte	3. Byte	4. Byte	Т	S	Ν	Υ	Е	А	Explanation
	Ki	L	01010111	0 1 Ki			-	\$	\$	_	\$	1	
	<adr></adr>	D	00010111	00101	Adr (H)	Adr (L)	_	\$	\$	-	\$	2	
	<cd></cd>	К	00010111	01001			_	\$	\$	_	\$	3	
LSL	<\$K+\$>	S	00010111	01101	S		_	\$	\$	-	\$	4	E V7 V6 V3 V4 V3 V2 VI V0
LOL	<\$K+\$>+R	R	00010111	10001	S	R	_	\$	\$		\$	5	
	<sk+s>-R</sk+s>	Z	00010111	10101	S	R	_	\$	♦	-	\$	5	
	<sk+cd+s></sk+cd+s>	U	00010111	11001	S		_	\$	\$	\rightarrow	\$	6	
	<yg+\$></yg+\$>	Υ	00010111	11101	S		-	\$	\$	-	\$	4	
	Ki	L	01011000	0 1 Ki			-	\$	♦	-	*	1	
	<adr></adr>	D		00101	Adr (H)	Adr (L)	-	-	\$	$\overline{}$	\$	2	
LSR	<cd></cd>	K	00011000				-	_	\$	\rightarrow	\$	3	
	<\$K+\$>	S	00011000		S		-	-	\$	\rightarrow	\$	4	V7 V6 V5 V4 V3 V2 V1 V0 E
	<\$K+\$>+R	R			S	R	-	-	\$	\rightarrow	\$	5	
	<sk+s>-R</sk+s>	-	00011000		S	R	_	_	\$	$\overline{}$	\$	5	∥ °
	<\$K+CD+\$>	U	00011000	11001	Ś		_	-	\$	\rightarrow	\$	6	
	<yg+\$></yg+\$>	Υ		- 1/2/////	S		_	\$	\$	\rightarrow	\$	4	
	Ki	L	01011001	0 1 Ki			-	\$	♦	-	\$	1	
	<adr></adr>	D	00011001	00101	Adr (H)	Adr (L)	-		\$	\rightarrow	\$	2	
ASR	<cd></cd>	K	00011001	01001			-	\$	\$	-	\$	3	
, tort	<sk+s></sk+s>	S	00011001	01101	S		-	-	\$	\rightarrow	*	4	V7 V6 V5 V4 V3 V2 V1 V0 E
	<\$K+\$>+R	R	00011001	10001	S	R	-		\$	\rightarrow	*	5	
	<sk+s>-R</sk+s>	Z	00011001	10101	S	R	-	\$	\$	\rightarrow	\$	5	
	<sk+cd+s></sk+cd+s>	U	00011001	1 1 0 0 1	Ś		_	\$	\$	-	\$	6	
	<yg+\$></yg+\$>	Υ	00011001	1 1 1 0 1	S S		-	\$	*	-	*	4	
	Ki	L	01011010	0 1 Ki			-	_	\$	-	-	1	
	<adr></adr>	D	00011010	00101	Adr (H)	Adr (L)	-	•	\$	-	_	2	
	<cd></cd>	K		01001			_	\$	\$	-	-	3	
ROL	<\$K+\$>	S		01101	S		-	_	\$	-	-	4	
	<\$K+\$>+R	R		10001	S	R	_	-	\$	-	-	5	E V7 V6 V5 V4 V3 V2 V1 V0
	<sk+s>-R</sk+s>	+-	00011010		S	R	-	-	*	\dashv	-	5	1
	<sk+cd+s></sk+cd+s>	U		11001	S		-		\$	-	-	6	
	<yg+\$></yg+\$>	Υ	00011010		S		-	\$	\$	-	-	4	
	Ki	L	01011011	0 1 Ki			_		\$	-	-	1	
	<adr></adr>	D	00011011	00101	Adr (H)	Adr (L)	-	-	\$	-	-	2	
	<cd></cd>	K		01001			-		\$	-	-	3	
ROR	<sk+s></sk+s>	S		01101	S		-	_	•	-	-	4	
	<\$K+\$>+R	R	00011011	10001	S	R	_	_	\$	-	-	5	V7 V6 V5 V4 V3 V2 V1 V0 E
	<sk+s>-R</sk+s>	Z	00011011		S	R	-	_	\$	-	-	5	V/ V0 V3 V4 V3 V2 V1 V0 E
	<sk+cd+s></sk+cd+s>	-	00011011		Š		-	$\overline{}$	\$	-	-	6	
	<yg+\$></yg+\$>	Υ	00011011	111101	S S		_	\$	\$	-	-	4	

COMPARE INSTRUCTIONS														
Oper	Instruction Format						Status Reg.				A	Explanation		
Ореі	Op Code	met	1. Byte	2. By	te	3. Byte	4. Byte	Т	S	N	Y E			
	Ki,V	٧	0001110	00000	Ki	Data		*	\$	\$	♦ (2	Ki - V
	Ki,Kj	L	0 1 0 1 1 1 0	0 0 Ki	Kj			*	\$	\$	♦ (2	Ki - Kj
	Ki, <adr></adr>	D	0001110	00100	Ki	Adr (H)	Adr (L)	*	\$	\$	♦ (3	Ki - <adr></adr>
	Ki, <cd></cd>	Κ	0001110	0 1 0 0 0	Ki			*	\$	*	♦ (3	Ki - < <cd>></cd>
CMP	Ki, <sk+s></sk+s>	S	0001110	0 1 1 0 0	Ki	Š.		\$	\$	\$	\$ {		4	Ki - <\$K+\$>
CIVIP	Ki, < \$K+\$>+R	R	0 0 0 1 1 1 0	10000	Ki	S	R	•	\$	\$	♦	}	5	$Ki - \langle SK + S \rangle + R$
	Ki, <sk+s>-R</sk+s>	Z	0 0 0 1 1 1 0	10100	Ki	S	R	*	\$	\$	\$ 4)	5	Ki - <sk+s> - R</sk+s>
	Ki, <sk+cd+s></sk+cd+s>	С	0 0 0 1 1 1 0	11000	Ki	S		*	#	\$	\$	}	6	Ki - <\$K+CD+\$>
	Ki, <yg+\$></yg+\$>	Υ	0001110	11100	Ki	S		*	\$	\$	\$ (5	Ki - <yg+\$></yg+\$>
	Kii,VV	٧	0 0 1 1 1 1 0	00000	Kii	Data (H)	Data (L)	*	\$	\$	- (•	4	Kii - VV
ı	Kii,Kjj	L	0 1 1 1 1 1 0	0 0 Kii	Kjj			*	\$	\$	-		4	Kii - Kjj
	Kii, <adr></adr>	D	0 0 1 1 1 1 0	00100	Kii	Adr (H)	Adr (L)	•	#	\$	-	•	5	Kii - (<adr>+<adr+1>)</adr+1></adr>
CMP	Kii, <cd></cd>	K	0 0 1 1 1 1 0	01000	Kii			\$	\$	\$	- 4	•	5	Kii - (< <cd>>+<<cd+1>>)</cd+1></cd>
CIVII	Kii, < SK+S>	S	0 0 1 1 1 1 0	01100	Kii	S		\$	#	\$	-	•	6	Kii - (<\$K+\$>+<\$K+\$+1>)
	Kii, < SK+S>+R	R	0 0 1 1 1 1 0	10000	Kii	S	R	*	\$	\$	- (7	Kii - (<\$K+\$>+<\$K+\$>) +R
ı	Kii, < SK+S>-R	Z	0 0 1 1 1 1 0	10100	Kii	S	R	\$	\$	\$	- 4	•	7	Kii - (<\$K+\$>+>\$K+\$+1>) - R
ı	Kii, < SK+CD+S>	U	0 0 1 1 1 1 0	11000	Kii	S		*	\$	\$	- (•	8	Kii - (<\$K+CD+\$>+<\$K+CD+\$+1>
ı	Kii, <yg+\$></yg+\$>	Υ	0 0 1 1 1 1 0	11100	Kii	S		\$	\$	\$	- 4	•	7	Kii - (<yg+\$>+<yg+\$>)</yg+\$></yg+\$>
	Ki,V	٧	0 0 0 1 1 1 0	00000	Ki	Data		-	\$	\$		•	2	Ki • V
	Ki,Kj	L	0 1 0 1 1 1 0	0 0 Ki	Kj			-	\$	\$		•	2	Ki • Ki
	Ki, <adr></adr>	D	0 0 0 1 1 1 0	00100	Ki	Adr (H)	Adr (L)	-	\$	\$		•	3	Ki • < Adr>
DIT	Ki, <cd></cd>	К	0 0 0 1 1 1 0	01000	Ki			-	\$	\$		•	3	Ki •< <cd>></cd>
BIT	Ki, <sk+s></sk+s>	S	0 0 0 1 1 1 0	01100	Ki	S		-	\$	\$		•	4	Ki • < \$K+\$>
	Ki, <sk+s>+R</sk+s>	R	0 0 0 1 1 1 0	10000	Ki	S	R	-	\$	\$		•	5	Ki • < SK+S> +R
	Ki, <sk+s>-R</sk+s>	Z	0001110	10100	Ki	S	R	-	\$	\$		•	5	Ki • < SK+S> - R
	Ki,<\$K+CD+\$>	U	0 0 0 1 1 1 0	11000	Ki	S		-	\$	\$		•	6	Ki • < SK+CD+S>
	Ki, <yg+\$></yg+\$>	Υ	0001110	11100	Ki	S		-	\$	\$		•	5	Ki • <yg+\$></yg+\$>

Part	JUMP & BRANCH INSTRUCTIONS								
JMC S.Adr	Op Code		Instruction Format	А	Explanation				
JMC SAdr D 0 0 0 1 1 1 1 1 1 0 0 1 1 1 0 0 1 1 0 1 0 1 Adr (t) Adr (t) 3 S=1 => jump to address JMC NAdr D 0 0 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 0 Adr (t) 3 N=1 => jump to address JMC RAdr D 0 0 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 0 Adr (t) 3 R=1 => jump to address JMC TAdr D D 0 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 Adr (t) 3 R=1 => jump to address JMC TAdr D D 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1	BRA V	В	1 0 0 0 0 0 0 Step count		2	Branch Always (V step)			
JMC NAdr D 0 0 1 1 1 1 1 1 1 1	JMP Adr	D	0 0 0 1 1 1 1 0 0 0 1 0 1 Adr (H)	Adr (L)	2	Jump Always (To address)			
JMC EAdr	JMC S,Adr	D	0 0 0 1 1 1 1 1 0 0 1 1 1 0 1 1 Adr (H)	Adr (L)	3	S=1 => jump to address			
JMC T,Adir D 0 0 1 1 1 1 1 1 1 1	JMC N,Adr	D	0 0 0 1 1 1 1 1 0 0 1 1 1 0 1 0 Adr (H)	Adr (L)	3	N=1 => jump to address			
BEQ	JMC E,Adr	D	0 0 0 1 1 1 1 1 0 0 1 1 1 0 0 0 Adr (H)	Adr (L)	3	E=1 => jump to address			
BNE	JMC T,Adr	D	0 0 0 1 1 1 1 1 0 0 1 1 1 1 0 0 Adr (H)	Adr (L)	3	T=1 => jump to address			
BGT V	BEQ	В	1 0 0 0 0 0 1 Step count		2	Branch if equal (V step)			
BGE V	BNE	В	1 0 0 0 0 0 1 0 Step count		2	Branch if not equal (V step)			
BIS V	BGT V	В	1 0 0 0 0 0 1 1 Step count		2	Branch if greater (V step)			
BHV	BGE V	В	1 0 0 0 0 1 0 0 Step count		2	Branch if greater or equal			
BHE V	BLS V	В	1 0 0 0 0 1 0 1 Step count		2	Branch if less than			
BHE V B 1 0 0 0 1 1 1 1 1 1	BHI V	В			2	Branch if higher			
Branch if lower Branch if	BHE V	В			2	Branch if higher or equal			
BIO V	BLO V	В			2	Branch if lower			
BNO V B 1 0 0 1 0 1 0 Step count 2 T=0 => jump V step	BIO V	В			2	T=1 => jump V step			
B	BNO V	В			2	T=0 => jump V step			
BNC V B 1 0 0 0 1 1 0 0 Step count 2 E=0 => jump V step BIH V B 1 0 0 0 1 1 1 0 Step count 2 Y=1 => jump V step BNH V B 1 0 0 0 1 1 1 10 Step count 2 Y=0 => jump V step BSR V B 1 0 0 0 1 1 1 10 Step count 2 Branch to subprogram (V step) JSR Adr D 0 0 0 1 0 1 0 10 Step count 6 S=1 => jump to subprogram (V step) BSC S,V B 1 0 0 1 0 10 Step count 6 N=1 => jump to subprogram (V step) BSC E,V B 1 0 0 1 0 10 Step count 6 E=1 => jump to subprogram (V step) BSC T,V B 1 0 0 1 0 1 0 10 Step count 6 S=1 => jump to subprogram (V step) BSC S,Adr D 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 1 Adr (H) Adr (L)	BIC V	В			2	E=1 => jump V step			
BIH V B 1 0 0 1 1 0 0 1 1 1	BNC V	В			2	E=0 => jump V step			
BNH V B 1 0 0 1 1 1 0 Step count 2 Y = 0 => jump V step	BIH V	В			2	Y=1 => jump V step			
BSR V B 1 0 0 0 1 1 1 1 1 Step count 2 Branch to subprogram (V step) JSR Adr D 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	BNH V	В			2	Y=0 => jump V step			
JSR Adr D 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 </td <td></td> <td>В</td> <td></td> <td></td> <td>2</td> <td>Branch to subprogram (V step)</td>		В			2	Branch to subprogram (V step)			
BSC S,V B 1 0 0 1 0 0 1 1 Step count 6 S=1 => jump to subprogram (V step) BSC N,V B 1 0 0 1 0 0 1 0 Step count 6 N=1 => jump to subprogram (V step) BSC E,V B 1 0 0 1 0 1 0 1 0 0 Step count 6 E=1 => jump to subprogram (V step) BSC T,V B 1 0 0 1 0 1 0 1 0 1 0 0 Step count 6 T=1 => jump to subprogram (V step) BSC S,Adr D 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0		D	0 0 0 1 0 1 0 0 0 0 1 0 1 Adr (H)	Adr (L)	5	Branch to subprogram (Address)			
BSC N,V B 1 0 0 1 0 0 1 0 Step count 6 N=1 => jump to subprogram (V step) BSC E,V B 1 0 0 1 0 1 0 0 0 Step count 6 E=1 => jump to subprogram (V step) BSC T,V B 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 1 0 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 1 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0		В	1 0 0 1 0 0 1 1 Step count		6	S=1 => jump to subprogram (V step)			
BSC E,V B 1 0 0 1 0 0 0 0 Step count 6 E=1 => jump to subprogram (V step) BSC T,V B 1 0 0 1 0 1 0 1 0 0 Step count 6 T=1 => jump to subprogram (V step) BSC S,Adr D 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 1 1 1 0 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 0 1 0 0 0 0 1 0 1 0 1 0 1 0 1 1 1 1 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0		В			6	N=1 = > jump to subprogram (V step)			
BSC T,V B 1 0 0 1 0 1 0 1 0 0 Step count 6 T=1 => jump to subprogram (V step) BSC S,Adr D 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 1 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0		В			6	E=1 => jump to subprogram (V step)			
BSC S,Adr D 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 0		В			6	T=1 => jump to subprogram (V step)			
BSC N,Adr D 0 0 1 0 1 1 0 Adr (L) 6 N=1 => jump to subprogram (Address) BSC E,Adr D 0 0 0 1 0 1 1 0 1 1 0 0 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 0		D	0 0 0 1 0 1 0 1 0 0 1 1 1 0 1 1 Adr (H)	Adr (L)	6	S=1 => jump to subprogram (Address)			
BSC E,Adr D 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 0 0 Adr (H) Adr (L) 6 E=1 => jump to subprogram (Address) BSC T,Adr D 0 0 0 1 0 1 0 1 0 1 0 1 1 1 1 0 0 Adr (H) Adr (L) 6 T=1 => jump to subprogram (Address) DBNZ KI,V B 1 1 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0		D	0 0 0 1 0 1 0 1 0 0 1 1 1 0 1 0 Adr (H)	Adr (L)		N=1 = jump to subprogram (Address)			
DBNZ KI,V B 1 1 0 0 1 KI Step count 8 Decrease Ki, branch if not zero (V step)		D	0 0 0 1 0 1 0 1 0 0 1 1 1 0 0 0 Adr (H)	Adr (L)	6	E=1 => jump to subprogram (Address)			
DBNZ KI,V B 1 1 0 0 1 I Step count 8 Decrease KI, branch if not zero (V step)	BSC T,Adr	D	0 0 0 1 0 1 0 1 0 0 1 1 1 1 0 0 Adr (H)	Adr (L)	6	T=1 => jump to subprogram (Address)			
		В	1 1 0 0 0 1 1 0 0 1 Ki Step count		8	Decrease Ki, branch if not zero (V step)			
DDITE - 1012 / D	DBNZ <adr>,V</adr>	В		Adr (L)	9	Decrease M[adr], branch if not zero (V step)			