

Tarea 6

9 de noviembre de 2022

 2^{0} semestre 2022 - Profesores F. Suárez - S. Bugedo - N. Alvarado

Requisitos

- La tarea es individual. Los casos de copia serán sancionados con la reprobación del curso con nota 1,1.
- Entrega: Hasta las 23:59:59 del 29 de noviembre a través del buzón habilitado en el sitio del curso (Canvas).
 - Esta tarea debe ser hecha completamente en L^AT_EX. Tareas hechas a mano o en otro procesador de texto **no serán corregidas**.
 - Debe usar el template LATEX publicado en la página del curso.
 - Cada solución de cada problema debe comenzar en una nueva hoja. *Hint:* Utilice \newpage
 - Los archivos que debe entregar son el archivo PDF correspondiente a su solución con nombre numalumno.pdf, junto con un zip con nombre numalumno.zip, conteniendo el archivo numalumno.tex que compila su tarea. Si su código hace referencia a otros archivos, debe incluirlos también.
- El no cumplimiento de alguna de las reglas se penalizará con un descuento de 0.5 en la nota final (acumulables).
- No se aceptarán tareas atrasadas.
- Si tiene alguna duda, el foro de Canvas es el lugar oficial para realizarla.

Problemas

Problema 1

a) Sea G=(V,E) un bosque, demuestre que siempre existe una función $f:V\to\{0,1\}$ tal que se cumple que

$$(u, v) \in E$$
 entonces $f(u) \neq f(v)$

b) Sea G un grafo simple. Un árbol generador de G es un subgrafo de G tal que es un árbol que contiene a todos los vértices de G. De un ejemplo de un grafo simple G con 7 vértices y de un árbol generador asociado a G.

Problema 2

- a) Para n > 1 y $a^n 1$ primo, muestre que a = 2 y n es primo.
- b) Demuestre que si m es un entero positivo mayor que 1 y $ac \equiv bc \mod m$, entonces $a \equiv b \mod \frac{m}{\gcd(m,c)}$

Soluciones

Problema 1

a) Sea G=(V,E) un bosque, demuestre que siempre existe una función $f:V\to\{0,1\}$ tal que se cumple que

$$(u, v) \in E$$
 entonces $f(u) \neq f(v)$

- b) Sea G un grafo simple. Un árbol generador de G es un subgrafo de G tal que es un árbol que contiene a todos los vértices de G. De un ejemplo de un grafo simple G con 7 vértices y de un árbol generador asociado a G.
- Solución. a) Sea G un bosque. Notemos que el resultado es equivalente a probar que G es bipartito (la función f puede interpretarse como la asignación a una u otra partición). Demostraremos el resultado por inducción sobre el número de aristas de G.
 - Para |E| = 0, el bosque consiste en nodos desconectados. En este caso, basta con tomar $f: V \to \{0,1\}$ tal que f(v) = 0 para cada $v \in V$. Dado que no hay ninguna arista, f cumple la propiedad pedida, pues no hay vecinos que compartan la asignación.
 - Suponemos que un bosque con |E| = n cumple que existe f adecuada.
 - Consideremos un bosque G tal que |E| = n + 1. Sea $e \in E$ una arista cualquiera y sea G e el grafo resultante de extraer únicamente la arista e de G. Como G es un bosque, está formado por una colección de árboles. Al sacar una arista, no es posible que aparezcan ciclos en G e, de forma que G e es un bosque con a lo menos tantos árboles como G. Además, |E(G e)| = n.

Luego, por hipótesis inductiva, G-e tiene una función $f:V\to\{0,1\}$ adecuada. Es decir, para cada $(u,v)\in E-\{e\}$, se tiene que $f(u)\neq f(v)$. Luego, probaremos que f permite construir una función adecuada para G:

- Si $f(u) \neq f(v)$, es decir, f asigna distintas categorías a los nodos de la arista eliminada, f satisface también las propiedades para G.
- Si f(u) = f(v), es decir, f asigna una misma categoría a los nodos de la arista eliminada, hay que invertir la asignación de categoría para los nodos del mismo árbol de alguno de los vértices de la arista eliminada.

Denotaremos por $\overline{f(w)}$ al valor opuesto de f(w). En tal caso, definimos la función $g:V\to\{0,1\}$ según

$$g(w) = \begin{cases} \overline{f(w)} & \text{si } w \text{ est\'a en la misma componente conexa que } v \\ f(w) & \text{si no} \end{cases}$$

Para las aristas (u_1, u_2) que conectan vértices en componentes conexas diferentes de v, g cumple $g(u_1) \neq g(u_2)$ por las propiedades de f. Para aristas (v_1, v_2) entre vértices de la componente conexa de v, $g(v_1) \neq g(v_2)$ pues se invierten ambos valores que ya eran diferentes. Finalmente, para la arista (u, v), dado que se invierte el valor de f(v), $g(u) \neq g(v)$, lo que prueba lo pedido.

b) Consideremos el grafo simple G mostrado en la siguiente figura:

Figura 1: Grafo simple G de 7 vértices.

Notemos que G es conexo, pero no es un árbol. Si quitamos la aristas (a, e), (e, f) y (c, g) obtenemos un árbol generador asociado a G, pues sigue conteniendo a todos los vértices de G y es un árbol.

Figura 2: Un árbol generador asociado al grafo G.

■ P1a)

- \bullet 0,5 puntos por notar la equivalencia con probar que G es bipartito.
- 0,5 puntos por el caso base.
- 2 puntos por mostrar la tésis inductiva.

4

- P1b)
 - 1 puntos por un ejemplo de grafo simple G de 7 vértices.
 - 2 puntos por un árbol generador asociado a G.

Problema 2

- a) Para n > 1 y $a^n 1$ primo, muestre que a = 2 y n es primo.
- b) Demuestre que si m es un entero positivo mayor que 1 y $ac \equiv bc \mod m$, entonces $a \equiv b \mod \frac{m}{\gcd(m,c)}$

Solución. a) Sea n > 1. Luego notemos que

$$a^{n} - 1 = (a - 1)(a^{n-1} + a^{n-2} + \dots + a + 1),$$

lo que implica que $(a-1)|(a^n-1)$. De lo anterior y como a^n-1 es un número primo tenemos dos casos. O a-1=1 o $a-1=a^n-1$. Como n>1 es imposible que $a-1=a^n-1$ entonces se tiene que a-1=1 y así a=2.

Por otra parte, supongamos que $n = x \cdot y$, donde 1 < x, y < n. Luego,

$$a^{xy} - 1 = (a^x - 1)(a^{x(y-1)} + a^{x(y-2)} + \dots + a^x + 1),$$

lo que significa que $2^n - 1$ es un número compuesto y por lo tanto obtenemos una contradicción. De esta forma n es un número primo.

b) Sea m > 1 y $ac \equiv bc$ mód m. Entonces tenemos que m|c(a-b), lo que significa que existe algún entero k tal que mk = c(a-b). Ahora, para algunos $x, y \in \mathbb{Z}$ coprimos tenemos que $c = x \gcd(m, c)$ y que $m = y \gcd(m, c)$. Por lo tanto,

$$c(a - b) = mk$$

$$x(a - b) \gcd(m, c) = ky \gcd(m, c)$$

$$x(a - b) = ky.$$

De la última igualdad podemos asegurar que x|ky y por lo tanto x|k (ya que x e y son coprimos) y luego $k/x \in \mathbb{Z}$.

Finalmente a-b es un múltiplo de y lo que implica que $a\equiv b$ mód y, pero $y=m/\gcd(m,c)$ y de esta forma

$$a \equiv b \mod \frac{m}{\gcd(m,c)}.$$

■ P2a)

- 1 punto por concluir los casos a-1=1 y $a-1=a^n-1$ y justificar que a=2.
- ullet 2 puntos justificar que n es primo.

■ P2b)

- 1,5 puntos por encontrar $x, y \in \mathbb{Z}$ coprimos y asegurar que x|k.
- $\bullet\,$ 1,5 puntos por llegar a la conclusión correcta argumentando la multiplicidad de a-b respecto a y.