

AUTUMN MEETING 2022 BRAZILIAN PHYSICAL SOCIETY APRIL 10-14, 2022

Majorana fermions in Condensed Matter systems

Edson Vernek Federal University of Uberlândia – Brazil

Tobias Micklitz Centro Brasileiro de Pesquisas Físicas – Brazil

Insulators vs Conductors

Classification of solids regarding their electrical conductivity

Band structure?

yes

conductor

What is a topological material?

Topological insulator

A topological insulator is a material that is gaped in its bulk and gapless on the edges

Edge states are helical states

Topological superconductor

A topological superconductor is a material that is gaped in its bulk and gapless on the edges

Edge states are Majorana bound states

Edge states are protected by symmetry!

Program

Part I: On Topological Phases in Condensed Matter Systems (by Tobias)

Part II: On Majoran Fermions in Condensed Matter Systems (Edson)

Part I

On Topological Phases in Condensed Matter Systems

Tobias Micklitz

Part II

On Majorana Fermions in Condensed Matter Systems

Edson Vernek

What is a Majorana fermion?

$$\gamma = \gamma^{\dagger}$$

It is a particle that is its own antiparticle

Ettore Majorana

Never found though ...

In condensed Matter "Majorana fermions" are just excitations with peculiar properties!

Appear in Topological materials!

Majorana fermions in condensed matter

Basic Theory

- 1) N. Read and D. Green, PRB (2000).
- 2) A. Y. Kitaev, Physics-Uspekhi, (2001).
- 3) L. Fu and C. L. Kane, PRL (2008).

Main proposals

- 1) Lutchyn -Sau-Das Sarma, PRL (2010).
- 2) Y. Oreg, et al., PRL (2010).
- 3) M. Sato et al., PRL (2009).
- 4) I. Fulga, et al., New J. Phys. (2013).

Some experiments

- 1) Mourik et al, Science (2012).
- 2) M. T. Deng, et al., Nano Lett. (2012).
- 3) A. Das, et al., Nat. Phys. (2012).
- 4) E. J. H. Lee et al., PRL (2012).
- 5) O. H. Churchill et al., Phys. Rev. B 87, 241401(R) (2013).
- 6) H. Zhang, et al., Nature (2018) (RETRACTED).
- 7) S. Vaitiekėnas, Science, (2020).
- 8) S. Frolov AND V. Mourik, arXiv:2203.17060 (2022).

Alicea, 2012.

Zero-energy peaks.
Majorana Fermions?

Basic ideas

$$\gamma = \gamma^{\dagger}$$
, How?

Electrons and hole in a metal:

$$\begin{cases} \text{electron } -e \\ \text{hole} & +e \end{cases}$$

Charge is the problem!

Superconductor: (Bogoliubov quasiparticles)
$$\begin{cases} d = uc^{\dagger}_{\uparrow} + vc_{\downarrow} & \text{if } u = v^{*}_{\downarrow} \\ d^{\dagger} = u^{*}c_{\downarrow} + v^{*}c^{\dagger}_{\downarrow} & \text{Good!} \end{cases}$$

if
$$u = v^*$$

if
$$\mathbf{u} = \mathbf{v}^{\bullet}$$
 \longrightarrow $d = uc_{\uparrow}^{\dagger} + u^{*}c_{\downarrow} \neq d^{\dagger} = uc_{\downarrow}^{\dagger} + u^{*}c_{\uparrow}$

Here the problem is the spin!

chargless and spinless quasi-particles are required!

It was realized that spin-orbit+magnetic field + superconductivity provides a natural route to the Majoran Fermions

Spin-orbit in 1 and 2D systems

Rashba Spin-orbit in 1D

Magnetic field

$$\mathcal{H}_Z(k_x) = V_Z \sigma_z$$
 $\mathcal{H}_0(k_x) = \left(\frac{k_x^2}{2m} - \mu\right) \mathbf{I} - \alpha \sigma_y k_x + V_Z \sigma_Z$

Note that

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \sigma_y = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad \mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

"magnetic field"

Superconductivity

The BCS theory: mean field approximation

Coulomb interaction (mediated by electron-phonon interaction)

$$H_U = \sum_{\mathbf{k},\mathbf{k}'} V_{\mathbf{k}\mathbf{k}'} c_{\mathbf{k}'\uparrow}^{\dagger} c_{-\mathbf{k}'\downarrow}^{\dagger} c_{-\mathbf{k}\downarrow} c_{\mathbf{k}\uparrow}$$

Mean field

$$H_{U} = \frac{1}{2} \sum_{\mathbf{k}, \mathbf{k}'} V_{\mathbf{k}\mathbf{k}'} \left[\langle c_{\mathbf{k}'\uparrow}^{\dagger} c_{-\mathbf{k}'\downarrow}^{\dagger} \rangle c_{-\mathbf{k}\downarrow} c_{\mathbf{k}\uparrow} + c_{\mathbf{k}'\uparrow}^{\dagger} c_{-\mathbf{k}'\downarrow}^{\dagger} \langle c_{-\mathbf{k}\downarrow} c_{\mathbf{k}\uparrow} \rangle \right]$$

$$H_{SC} = \sum_{\mathbf{k}} \left[\Delta_{\mathbf{k}} c_{-\mathbf{k}\downarrow} c_{\mathbf{k}\uparrow} + \Delta_{\mathbf{k}}^* c_{\mathbf{k}\uparrow}^{\dagger} c_{-\mathbf{k}\downarrow}^{\dagger} \right]$$

$$\Delta_{\mathbf{k}} = \sum_{\mathbf{k}'} V_{\mathbf{k}\mathbf{k}'} \langle c^{\dagger}_{\mathbf{k}'\uparrow} c^{\dagger}_{-\mathbf{k}'\downarrow} \rangle$$
 is the mean-field pairing potential

Proximity effect

normal wire with Rashba spin-orbit interaction

Induced superconductivity

s-wave superconductor

Toy model

$$\begin{array}{c} \Delta \\ \bullet \\ 0 \end{array}$$

- Superconductor
- Normal

Hamiltonian

$$H = H_0 + H_1 + H_T$$

$$H_0 = \sum \epsilon_1 c_{0\sigma}^{\dagger} c_{0\sigma} + \Delta \left(c_{0\uparrow}^{\dagger} c_{0\uparrow}^{\dagger} + c_0 c_{0\uparrow} \right)$$

$$H_1 = \sum_{\sigma}^{\sigma} \epsilon_1 c_{1\sigma}^{\dagger} c_{1\sigma} \qquad H_T = t \sum_{\sigma} \left(c_{1\sigma}^{\dagger} c_{0\sigma} + c_{0\sigma}^{\dagger} c_{1\sigma} \right)$$

Nambu representation

$$\hat{C} = \begin{pmatrix} c_{0\uparrow} \\ c_{0\downarrow}^{\dagger} \\ c_{1\uparrow} \\ c_{1\downarrow}^{\dagger} \end{pmatrix} \qquad \hat{C}^{\dagger} = \begin{pmatrix} c_{0\uparrow} & c_{0\downarrow} & c_{1\uparrow}^{\dagger} & c_{1\downarrow} \end{pmatrix}$$

Proximity effect

Nambu representation

$$H = \hat{C}^{\dagger} \mathcal{H} \hat{C} + E_{0} \quad \text{where} \quad E_{0} = \varepsilon_{0} + \epsilon_{1}$$

$$\mathcal{H} = \begin{pmatrix} \varepsilon_{0} & \Delta & t & 0 \\ \Delta & -\varepsilon_{0} & 0 & t \\ \hline t & 0 & \varepsilon_{1} & 0 \\ 0 & -t & 0 & -\varepsilon_{1} \end{pmatrix} \equiv \begin{pmatrix} \mathcal{H}_{00} & \mathcal{H}_{01} \\ - & - & - \\ \mathcal{H}_{10} & \mathcal{H}_{11} \end{pmatrix}$$

Löwdin perturbation theory

$$\hat{\Psi} \begin{pmatrix} \Psi_0 \\ \Psi_1 \end{pmatrix} \longrightarrow \mathcal{H} \hat{\Psi} = E \hat{\Psi} \qquad \mathcal{H}_{00} \Psi_0 + \mathcal{H}_{01} \Psi_1 = E \Psi_0$$

$$\mathcal{H}_{10} \Psi_0 + \mathcal{H}_{11} \Psi_1 = E \Psi_1$$

Upon eliminating Ψ_0

$$\mathcal{H}_{10}\left[\left(E-\mathcal{H}_{00}\right)^{-1}+\mathcal{H}_{11}\right]\Psi_{1}=E\Psi_{1}$$
 Schrödinger-like (not quite!) equation

$$\mathcal{H}_{11}\Psi_1=E\Psi_1$$
 $ilde{\mathcal{H}}=\mathcal{H}_{11}+\left(E-\mathcal{H}_{00}\right)^{-1}$ Só far exact!

$$\tilde{\mathcal{H}} = \mathcal{H}_{11} + (E - \mathcal{H}_{00})^{-1} = \mathcal{H}_{11} + \frac{\mathcal{H}_{10}}{E} \left[1 + \left(\frac{\mathcal{H}_{00}}{E} \right) + \cdots \right] \mathcal{H}_{01}$$

$$\mathcal{H} = \mathcal{H}^{(0)} + \mathcal{H}^{(1)} + \mathcal{H}^{(2)} + \cdots$$

Taylor expansion

$$\mathcal{H}^{(0)} = \mathcal{H}_{11} = \begin{pmatrix} \varepsilon_1 & 0 \\ 0 & -\varepsilon_1 \end{pmatrix} \qquad \mathcal{H}^{(1)} = \frac{\mathcal{H}_{10}\mathcal{H}_{01}}{E} = \frac{t}{E} \begin{pmatrix} t & 0 \\ 0 & t \end{pmatrix}$$

$$\mathcal{H}^{(2)} = \frac{\mathcal{H}_{10}\mathcal{H}_{00}\mathcal{H}_{01}}{E^2} = \frac{t^2}{E^2} \begin{pmatrix} \varepsilon_0 & -\Delta \\ -\Delta & -\varepsilon_0 \end{pmatrix}$$

$$\tilde{\mathcal{H}} \approx \begin{pmatrix} \varepsilon_1 + \varepsilon_0 + (t^2/E)(1 + \varepsilon_0/E) & -t^2\Delta/E^2 \\ -t^2\Delta/E^2 & -\varepsilon_1 - \varepsilon_0 + (t^2/E)(1 + \varepsilon_0/E) \end{pmatrix}$$

$\tilde{\Delta} = t^2 \Delta / E$ Effective induced pairing potential

Validity (quick analysis):

$$E \sim E_0 + E_1 \approx \varepsilon_1 + \sqrt{\varepsilon_0^2 + \Delta^2}$$

Typical value

The truncation is expected to bevalid if

$$\sqrt{\varepsilon_0 + \Delta^2} \ll \varepsilon_1$$

Superconductivity+Rashba+Zeeman

s-wave superconductor

Magnetic field

Induced by proximity

$$\mathcal{H}(k) = \left(rac{k^2}{2m} - \mu
ight)\mathbf{I} - lpha\sigma_y k + V_Z \sigma_Z + H_{SC} = \mathcal{H}_0 + \mathcal{H}_{SC}$$

$$\mathcal{H}_0 = \left(\frac{k^2}{2m} - \mu\right)\mathbf{I} - \alpha\sigma_y k + V_Z \sigma_Z = \begin{pmatrix} \frac{k^2}{2m} - \mu + V_Z & i\alpha k \\ -i\alpha k & \frac{k^2}{2m} - \mu - V_Z \end{pmatrix}$$

Diagonalizing \mathcal{H}_0 we obtain $\mathcal{H}_0(k)\psi_{k\pm} = \varepsilon_{k\pm}\psi_{k\pm}$

$$arepsilon_{k\pm} = rac{k^2}{2m} - \mu \pm \sqrt{V_Z^2 + lpha^2 k^2} \qquad \qquad \begin{pmatrix} \psi_{k\uparrow} \\ \psi_{k\downarrow} \end{pmatrix} = \begin{pmatrix} a_{k+}^* & a_{k-}^* \\ b_{k+}^* & b_{k-}^* \end{pmatrix} \begin{pmatrix} \psi_{k+} \\ \psi_{k-} \end{pmatrix}$$

$$\mathcal{H}_{SC} = \frac{1}{2} \left[\Delta_{++}(k) \psi_{k+}^{\dagger} \psi_{-k+}^{\dagger} + \Delta_{--}(k) \psi_{k-}^{\dagger} \psi_{-k-}^{\dagger} + \Delta_{+-}(k) \psi_{k+}^{\dagger} \psi_{-k-}^{\dagger} + \Delta_{+-}(k) \psi_{-k+}^{\dagger} \psi_{-k-}^{\dagger} + \Delta_{+-}(k) \psi_{-k-}^{\dagger} \psi_{k-k-}^{\dagger} \psi_{-k-}^{\dagger} + \Delta_{+-}(k) \psi_{-k-}^{\dagger} \psi_{k+}^{\dagger} \right]$$

Four component spinor $C_k^{\dagger} = [\psi_{k-}^{\dagger}, \psi_{-k-}, \psi_{k+}^{\dagger}, \psi_{-k+}]$ (Nambu formalism)

$$\mathcal{H}_{SC}(k) = \begin{bmatrix} \varepsilon_{k-} & \Delta_{--}(k) & 0 & 0 \\ \Delta_{--}^*(k) & -\varepsilon_{k-} & \Delta_{+-}^*(k) & 0 \\ 0 & \Delta_{+-}(k) & \varepsilon_{k+} & \Delta_{++}(k) \\ 0 & 0 & \Delta_{++}^*(k) & -\varepsilon_{k+} \end{bmatrix}.$$

$$\Delta_{++}(k) = \frac{-i\Delta\alpha k}{\sqrt{V_Z^2 + \alpha^2 k^2}}, \qquad \Delta_{--}(k) = \frac{-i\Delta\alpha k}{\sqrt{V_Z^2 + \alpha^2 k^2}}$$
 intra-band p-wave pairing
$$\begin{cases} \Delta_{++}(-k) = -\Delta_{++}(k) \\ \Delta_{--}(-k) = -\Delta_{--}(k) \end{cases}$$

$$\Delta_{+-}(k) = \frac{\Delta V_Z}{\sqrt{V_Z^2 + \alpha^2 k^2}} \text{ s-wave inter-band pairing } \quad \Delta_{+-}(-k) = \Delta_{+-}(k)$$

Band structure: infinite wire

s-wave superconductor

Magnetic field

Mourik *et al*, (2012)

Rashba bands
$$arepsilon_{k\pm}=rac{k^2}{2m}-\mu\pm\sqrt{V_Z^2+lpha^2k^2}$$

Effect of the magnetic field

From 4x4 to 2x2 matrix

Löwdin perturbation theory

$$\mathcal{H}_{SC}(k) = \begin{bmatrix} \varepsilon_{k-} & \Delta_{--}(k) & 0 & 0 \\ \Delta_{--}^*(k) & -\varepsilon_{k-} & \Delta_{+-}^*(k) & 0 \\ \hline 0 & \Delta_{+-}(k) & \varepsilon_{k+} & \Delta_{++}(k) \\ 0 & 0 & \Delta_{++}^*(k) & -\varepsilon_{k+} \end{bmatrix} = \begin{bmatrix} H_P & H_{PQ} \\ H_{QP} & H_Q \end{bmatrix},$$

$$\tilde{\mathcal{H}}(k) = H_P + H_{PQ} (E - H_Q)^{-1} H_{QP}$$

$$= H_P + \frac{H_{PQ}}{E} \left[1 + \frac{H_Q}{E} + \left(\frac{H_Q}{E} \right)^2 + \cdots \right] H_{QP}$$

$$\tilde{\mathcal{H}}(k) = \begin{bmatrix} \varepsilon_{k-} & \Delta_{--}(k) \\ \Delta_{--}^*(k) & -\varepsilon_{k-} \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & \Delta_{+-}^2 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & \Delta_{+-}^2 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & \frac{\Delta_{+-}^2}{E^2} \end{bmatrix} + \cdots$$

For
$$\Delta \ll |V_Z - \mu|$$
 $ilde{\mathcal{H}}(k) pprox \left| egin{array}{c} arepsilon_k - \ \Lambda^* & (I_{oldsymbol{k}}) \end{array}
ight|$

 $ilde{\mathcal{H}}(k) pprox egin{array}{cccc} arepsilon_{k-} & \Delta_{--}(k) \ \Delta^* & (k) & -arepsilon_{k-} \end{array}$

This is the 2x2 Bogoliubov-de Gennes Hamiltonian for the 1D topological supercunductor

Trivial vs topological phases

BdG Hamiltonian

$$\mathcal{H}_{k} = \begin{pmatrix} \varepsilon_{k} & \tilde{\Delta}_{k}^{*} \\ \tilde{\Delta}_{k} & -\varepsilon_{k} \end{pmatrix} = \begin{pmatrix} \varepsilon_{k} & \operatorname{Re}\left[\tilde{\Delta}_{k}\right] - i\operatorname{Im}\left[\tilde{\Delta}_{k}\right] \\ \operatorname{Re}\left[\tilde{\Delta}_{k}\right] + i\operatorname{Im}\left[\tilde{\Delta}_{k}\right] & -\varepsilon_{k} \end{pmatrix}$$

Pauli matrices

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\mathcal{H}_k = \operatorname{Re}\left[\tilde{\Delta}_k\right]\sigma_x + \operatorname{Im}\left[\tilde{\Delta}_k\right]\sigma_y + \varepsilon_k\sigma_z$$

Compacting the notation:
$$\begin{cases} \mathbf{h}(k) = (\operatorname{Re}\ [\tilde{\Delta}_k], \operatorname{Im}\ [\tilde{\Delta}_k], \varepsilon_k) \\ \sigma = (\sigma_x, \sigma_y, \sigma_z) \end{cases}$$

$$h_x(k) = \operatorname{Re}\left[\tilde{\Delta}_k\right], h_y(k) = \operatorname{Im}\left[\tilde{\Delta}_k\right], h_z(k) = \varepsilon_k$$

This is formally equivalent to a particle in a k-dependent magnetic field

Trivial vs topological phases

$$\tilde{\Delta}(k)=\frac{i\Delta\alpha k}{\sqrt{V_Z^2+\alpha^2k^2}}\quad \text{For Δ} \ \ \text{Real, } \ \mathrm{Re}\tilde{\Delta}(k)=0$$

$$\mathbf{h}(k) = (0, \operatorname{Im} \left[\tilde{\Delta}_k\right], \varepsilon_k)$$

$$h_y(k)=rac{{
m Re}[\Delta]lpha k}{\sqrt{V_Z^2+lpha^2k^2}} \qquad h_y(-k)=-h_y(k) \qquad \hbox{(p-wave)}$$

$$h_z(k) = rac{k^2}{2m} - \mu - \sqrt{V_Z^2 + lpha^2 k^2}$$

$$\hat{\mathbf{h}}(k) = rac{\mathbf{h}(k)}{|\mathbf{h}(k)|}$$

$$\hat{\mathbf{h}}(k) = \frac{\mathbf{h}(k)}{|\mathbf{h}(k)|} \qquad \hat{\mathbf{h}}(0) = \frac{-\mu - V_Z}{|-\mu - V_Z|} \hat{z} \qquad \hat{\mathbf{h}}(\infty) = \hat{z}$$

$$\hat{\mathbf{h}}(0) = \frac{-\mu - V_Z}{|-\mu - V_Z|} \hat{z} \quad \hat{\mathbf{h}}(\infty) = \hat{z}$$

Topological invariant

$$(-1)^{\nu} = \hat{\mathbf{h}}(0) \cdot \hat{\mathbf{h}}(\infty) = \frac{-\mu - V_Z}{|-\mu - V_Z|} = \begin{cases} 1 \text{ if } \mu < -V_Z \\ -1 \text{ if } \mu > -V_Z \end{cases}$$

$$\begin{cases} \nu=0 \mod 2 \text{ if } \mu<-V_Z & \text{Trivial phase} \\ \nu=1 \mod 2 \text{ if } \mu>-V_Z & \text{Topological phase} \end{cases}$$

$$u=1 \mod 2$$
 if $\,\mu>-V_Z\,$ Topological phase

 ν is the so-called \mathbb{Z}_2 topological invariant

Chern number

$$C = \frac{1}{4\pi} \int_{occ} d^2k \hat{\mathbf{h}} \cdot \left(\frac{\partial \hat{\mathbf{h}}}{\partial k_x} \times \frac{\partial \hat{\mathbf{h}}}{\partial k_y} \right)$$

Connection with the Kitaev model

Discrete version of the Hamiltonian

For small k we make $\alpha k \ll V_Z$ (Low-energy regime)

$$ilde{\Delta}(k)=rac{i\Delta \alpha k}{\sqrt{V_Z^2+lpha^2 k^2}} o rac{i\Delta \alpha k}{V_Z}=i\Delta_0 k \qquad V_Z>0$$
 , for simplicity

$$h_z(k) = \frac{k^2}{2m} - \mu - \sqrt{V_Z^2 + \alpha^2 k^2} \to \frac{k^2}{2m} - \mu - V_Z^2$$

The discretized version (tight-binding)

$$k \to \sin ka$$
 $\frac{k^2}{2m} \to t \cos ka$

Looks like the Kitaev model

$$\mathcal{H}_k = egin{pmatrix} -\mu - V_z - t \cos ka & \Delta_0^* \sin(ka) \ \Delta_0 \sin(ka) & -(-\mu - V_z - t \cos ka) \end{pmatrix}$$

Kitaev toy model

Chain of spinless fermions

Features: Superconducting gap
Topological phase
Majorana edge modes

Main question: How Majorana modes appear in the Kitaev model?

$$H = \mu \sum_{j} c_{j}^{\dagger} c_{j} - \frac{1}{2} \sum_{j} \left(t c_{j}^{\dagger} c_{j+1} + \Delta e^{i\phi} c_{j} c_{j+1} + H.c. \right)$$

Introduce the Majorana operators

Just a replacement

$$\begin{cases} c_j = \frac{e^{-i\phi/2}}{2} \left(\gamma_{Bj} + i\gamma_{Aj}\right) \\ c_j^{\dagger} = \frac{e^{i\phi/2}}{2} \left(\gamma_{Bj} - i\gamma_{Aj}\right) \end{cases}$$

$$H = -\frac{\mu}{2} \sum_{j=1}^{N} (1 + i\gamma_{Bj}\gamma_{Aj}) - \frac{i}{4} \sum_{j=1}^{N-1} \left[(\Delta + t)\gamma_{Bj}\gamma_{Aj+1} + (\Delta - t)\gamma_{Aj}\gamma_{Bj+1} \right].$$

Majorana chain representation

B

Trivial phase: $\mu < 0$, $\Delta = t = 0$ (for instance)

$$H = -\frac{\mu}{2} \sum_{j=1}^{N} (1 + i\gamma_{Bj}\gamma_{Aj}) - \frac{i}{4} \sum_{j=1}^{N-1} \left[(\Delta + t)\gamma_{Bj}\gamma_{Aj+1} + (\Delta - t)\gamma_{Aj}\gamma_{Bj+1} \right].$$

Infinite chain → gapped

Regular fermion representation

This is the atomic limit of a tight binding chain

Electron simply cannot hop between the sites \rightarrow trivial insulator

Topological phase: $\mu = 0, \Delta = t$

$$H = -rac{\mu}{2} \sum_{j=1}^{N} (1 + i \gamma_{Bj} \gamma_{Aj}) - rac{i}{4} \sum_{j=1}^{N-1} \left[(\Delta + t) \gamma_{Bj} \gamma_{Aj+1} + (\Delta - t) \gamma_{Aj} \gamma_{Bj+1} \right]$$

Infinite chain → gapped

Finite chain → bound states

Topological phase: $\mu = 0, \Delta = t$

$$H = -\frac{i}{4} \sum_{j=1}^{N-1} \left[(\Delta + t) \gamma_{Bj} \gamma_{Aj+1} \right].$$

Note that γ_{A1} and γ_{BN} do not appear in the Hamiltonian. This mean that there is a zero-energy state.

Let us make the following transformation within the A1 and BN Majorana subspaces.

$$f^{\dagger} = rac{1}{2} \left(\gamma_{BN} - i \gamma_{A1}
ight) \quad ext{and} \quad f = rac{1}{2} \left(\gamma_{BN} + i \gamma_{A1}
ight)$$

These operators creates and annihilates non-local conventional Fermions. They live in the Fock space $\{|0\rangle, |1\rangle\}$. We can then write the "edge" Hamiltonian

$$H_{\mathrm{``edge''}} = egin{pmatrix} arepsilon_1 = 0 & 0 \ 0 & arepsilon_2 = 0 \end{pmatrix}$$

 $H_{\text{``edge''}} = \begin{pmatrix} \varepsilon_1 = 0 & 0 \\ 0 & \varepsilon_2 = 0 \end{pmatrix}$ Since this block Hamiltonian is completely decoupled from the rest, the diagonal elements are eigenenergies of the system

We have seen

- What a Majorana Fermion is;
- What a Majorana bound state is;
- How MBS appear in condensed matter;
- The main ingredient to obtain MBS;
- The Mechanism of the proximity effect;
- Effective Hamiltonian & Kitaev's toy model;
- How non-local fermions appear in topological wires.

Band analysis

- Assume infinite chain or periodic boundary conditions
- Take Fourier transform

$$c_k = rac{1}{\sqrt{\mathcal{N}}} \sum_j e^{ikx_j} c_j$$
 $c_j = rac{1}{\sqrt{\mathcal{N}}} \sum_k e^{-ikx_j} c_k$ $\mathcal{N} o \# ext{ of sites}$

After some straightforward manipulations ...

$$H = \frac{1}{2} \sum_{k} \left\{ -2 \left[\mu + t \cos(ka) \right] c_{k}^{\dagger} c_{k} \right\} \qquad \leftarrow \text{ kinetic term}$$
 pairing term $\rightarrow \qquad + \frac{1}{2} \sum_{k} \left\{ i \Delta e^{i\phi} \sin(ka) c_{k} c_{-k} - i \Delta e^{-i\phi} \sin(ka) c_{-k}^{\dagger} c_{k}^{\dagger} \right\}$

Bogoliubov-de Gennes form

Two-component spinor:
$$C_k^\dagger = [c_k^\dagger, c_{-k}]$$
 2x2 Matrix (p-type)
$$H = \frac{1}{2} \sum_k C_k^\dagger \mathcal{H}_k C_k \qquad \qquad \text{With} \quad \rightarrow \qquad \mathcal{H}_k = \begin{pmatrix} \varepsilon_k & \tilde{\Delta}_k^* \\ \tilde{\Delta}_k & -\varepsilon_k \end{pmatrix}$$

 $\Delta = 0$: Duplicated bands: redundancy

$$\mathcal{H}_k = egin{pmatrix} arepsilon_k & 0 \ 0 & -arepsilon_k \end{pmatrix} \qquad egin{matrix} ext{eigenvalues} \ arepsilon_\pm = \pm |arepsilon_k| \end{pmatrix}$$

$$\varepsilon_k = -\left[\mu + t\cos(ka)\right]$$

 $\Delta \neq 0$: bands are coupled

$$\mathcal{H}_k = egin{pmatrix} oldsymbol{arepsilon_k} & \Delta_k^* \ ilde{\Delta}_k & -oldsymbol{arepsilon_k} \end{pmatrix}$$

eigenvalues
$$arepsilon_{\pm}=\pm\sqrt{arepsilon_k^2+| ilde{\Delta}_k|^2}$$

bands are coupled → a gap is open

While the BdG Formalism seems to be useless in free electron systems, it proves to be very useful for the superconducting case!

 k/π

The system is gapped for all $\Delta > 0$ and $\mu \neq \pm t$

 k/π

The system is gapped for all $\Delta > 0$ and $\mu \neq \pm t$

Summary:

Central question: What is the difference between these gapped phases?

Gapless excitation at the interfaces

Detecting Majorana Fermions using Quantum dots

QD coupled to a Kitaev chain

Subtle leakage of a Majorana mode into a quantum dot, Vernek, et al., Phys. Rev. B 89, 165314 (2014)

The Hamiltonian

$$H_{\text{dot-chain}} + H_{\text{leads}} + H_{\text{dot-leads}}$$

p-wave pairing

$$H_{\text{chain}} = -\mu \sum_{j=1}^{N} c_{j}^{\dagger} c_{j} - \frac{1}{2} \sum_{j=1}^{N-1} \left[t c_{j}^{\dagger} c_{j+1} + \Delta e^{i\phi} c_{j} c_{j+1} + H.c. \right]$$

Majorana Green's function

$$M_{\alpha i,\beta j}(\varepsilon) = -i \int_{-\infty}^{\infty} \Theta(\tau) \langle [\gamma_{\alpha i}(\tau), \gamma_{\beta j}(0)]_{+} \rangle e^{i\varepsilon(\tau)} d\tau$$

Electron Green's function
$$G_{ij}(\varepsilon) = \frac{1}{4} \left[M_{Ai,Aj} + M_{Bi,Bj}(\varepsilon) + i \left(M_{Ai,Bj} - M_{Bi,Aj} \right) \right]$$

Conductance: $G/G_0 \propto \text{Im} G_{00}(\varepsilon=0)$

$$c_j = rac{e^{-i\phi/2}}{2} (\gamma_{Bj} + i\gamma_{Aj}) \ c_j^\dagger = rac{e^{i\phi/2}}{2} (\gamma_{Bj} - i\gamma_{Aj})$$

Majorana-electron transformation (performed even for the QD site)

Clifford algebra: $[\gamma_{\alpha}, \gamma_{\beta}]_{+} = 2\delta_{\alpha\beta}$

Majorana leaking

→ The QD can be thought as a new site of the chain, so the zero mode is always at the edge.

QD coupled-system seems NOT to be a non invasive way to probe Majorana bound states.

Pinning of the Majorana zero mode

Majorana vs Kondo

Spin-orbit interaction

Spin-orbit interaction

Dirac Equation

$$\left(c\alpha \cdot \mathbf{p} + \beta m_o c^2 + V\right)\psi = E\psi$$

$$\alpha = \begin{pmatrix} 0 & \sigma \\ \sigma & 0 \end{pmatrix} \qquad \beta = \begin{pmatrix} \mathbf{I}_{2 \times 2} & 0 \\ 0 & -\mathbf{I}_{2 \times 2} \end{pmatrix}$$

 σ are Pauli matrices

$$\psi = \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix}$$
 denotes a four-component spinor, where ψ_A e ψ_B are two-component spinors

$$\begin{cases} \sigma \cdot \mathbf{p}\psi_B = \frac{1}{c} \left(\tilde{E} - V\right) \psi_A \\ \sigma \cdot \mathbf{p}\psi_A = \frac{1}{c} \left(\tilde{E} - V + 2m_0 c^2\right) \psi_A \end{cases} \qquad \tilde{E} = E - m_0 c^2$$

$$\sigma \cdot \mathbf{p} \left[rac{e^2}{ ilde{E} - V + 2m_0 c^2}
ight] \sigma \cdot \mathbf{p} \psi_{A} = \left(ilde{E} - V
ight) \psi_{A}$$

Spin-orbit interaction

$$\sigma \cdot \mathbf{p} \left[\frac{e^2}{\tilde{E} - V + 2m_0 c^2} \right] \sigma \cdot \mathbf{p} \psi_A = \left(\tilde{E} - V \right) \psi_A$$

Non-relativistic approximation: The Pauli Equation

$$rac{e^2}{ ilde{E}-V+2m_0c^2}pprox rac{1}{2} \ 1-rac{ ilde{E}-V}{2m_0c^2}+\cdots
ight]$$
 Minimal coupling ψ_A Not normalized $ilde{\psi}_A=\left(1+rac{p^2+e^2\hbar\sigma\cdot {f B}}{8m_0^2c^2}
ight)\psi_A$ normalized

Up to order of
$$rac{v^2}{c^2}pproxrac{ ilde{E}-V}{2m_0c^2}$$

Pauli Hamiltonian

$$\left[\frac{p^2}{2m_0} + V + \frac{e\hbar}{2m_0}\sigma \cdot \mathbf{B} - \frac{e\hbar\sigma \cdot \mathbf{p} \times \mathcal{E}}{4m_0^2c^2} - \frac{e\hbar^2}{8m_0^2c^2}\nabla \cdot \mathcal{E}\right]$$

Spin-orbit in 1 and 2D systems

$$H_{
m P} = rac{e\hbar\sigma\cdot{f p} imes{\cal E}}{4m_0^2c^2}$$

$$H_{
m P}-rac{e\hbar\sigma\cdot{f p} imes{\cal E}}{4m_{
m o}^2c^2}$$
 ${\cal E}=rac{1}{e}
abla{f V}$ is the electric field

Rashba Spin-orbit in 2D

$$H_{\rm R} = \int d^2k \psi_{\mathbf{k}}^{\dagger} \mathcal{H}_0(\mathbf{k}) \psi_{\mathbf{k}}$$

$$\psi_{\mathbf{k}} = \begin{pmatrix} \psi_{\mathbf{k}\uparrow} \\ \psi_{\mathbf{k}\downarrow} \end{pmatrix}$$

$$\mathcal{H}_0(\mathbf{k}) = \left(\frac{k^2}{2m} - \mu\right)\mathbf{I} + \alpha(\sigma_x k_y - \sigma_y k_x)$$

Forbidden scatterings from k to -k, unless a spin flip occurs.

Berry phase and Berry connection

$$\mathcal{H}(\mathbf{k}) = \hat{\mathbf{h}}(\mathbf{k}) \cdot \sigma$$

Upon diagonalization we get $\Psi_n(\mathbf{k})$, the bands "n".

$$\Omega_n(\mathbf{k}) = \nabla \times \mathbf{A}_n(\mathbf{k})$$
 (Berry curvature)

Chern number

$$C_n = \frac{1}{2\pi} \oint_S \mathbf{\Omega}_n(\mathbf{k}) \cdot d\mathbf{S} \quad \Box \quad C = \frac{1}{4\pi} \int_{occ} d^2k \hat{\mathbf{h}} \cdot \left(\frac{\partial \hat{\mathbf{h}}}{\partial k_x} \times \frac{\partial \hat{\mathbf{h}}}{\partial k_y} \right)$$