Surviving in a cosexual world: a cost-benefit analysis of dioecy in tropical trees Appendices

July 29, 2016

These appendices contain detailed information on used methodology and results.

Contents

S1 Lists of species included in each vital rate analysis	2
S2 Trait distributions for each breeding system and each vital rate analysis	5
S3.2 Seedling establishment S3.3 Recruit size distribution S3.4 Reproduction probability S3.5 Seedling growth and survival S3.6 Relation between DBH and seedling height	14 14 14
S4 Seed production and dispersal results	15
S5 Seedling establishment results	15
S6 Comparisons of species-specific vs. averaged trait-based estimates for each vital rate	17
S7 Correlations between vital rates	23
S8 IPM Sensitivity analysis	26
S9 Best candidate models and their estimated coefficients for each vital rate	27
S16Size dependency in sex ratios	37
S11Gender effects on growth	37

S1 Lists of species included in each vital rate analysis

Table S1.1: List of used species per vital rate analysis.

Abbreviation	Family	Genus	Species	$p_{reproduction}$	fecundity	$p_{establishment}$	Recruit distribution	Seedling survival	Seedling growth	$C_{seedling}$	Tree survival	Tree growth
ade1tr	Euphorbiacea	Adelia	triloba								X	X
alchco	Euphorbiacea	Alchornea	costaricensi	X		X	X	X	X	X	X	X
alibed	Rubiaceae	Alibertia	edulis			X		X	X	X	X	X
alsebl	Rubiaceae	Alseis	blackiana			X	X	X	X	X	X	X
andiin	Fabaceae	Andira	inermis								X	X
annoac	Annonaceae	Annona	acuminata								X	X
annosp	Annonaceae	Annona	spraguei								X	X
apeime	Tiliaceae	Apeiba	membranacea	X		X	X				X	X
apeiti	Tiliaceae	Apeiba	tibourbou	X								
aspicr	Apocynaceae	Aspidosperma	spruce a num	X		X		X	X	X	X	X
ast2gr	Anacardiaceae	Astronium	grave olens								X	X
beilpe	Lauraceae	Beilschmiedia	pendula	37		X	X	X	X	X	X	X
brosal	Moraceae	Brosimum	alicastrum	X		X	X	X	X	X	X	X
cappfr	Capparaceae	Capparis	frondosa			X	X	X	X	X	X	X
caseac	Flacourtiaceae	Casearia	acule ata								X	X X
casear	Flacourtiaceae	Casearia	arborea			X	X	X	X	X	X X	X X
cassel cecrin	Rhizophorace	Cassipourea Caronia	elliptica incianis	X	X	X	X	X	X	X	X	X
cecrob	Cecropiaceae Cecropiaceae	Cecropia $Cecropia$	$in sign is \ obtusifolia$	X	Λ	Λ	Λ	Λ	Λ	Λ	X	X
ceibpe	Bombacaceae	Ceiba	pentandra	Λ			X				Λ	Λ
chr2ar	Sapotaceae	Chrysophyllum	argenteum			X	X	X	X	X	X	X
chr2ca	Sapotaceae	Chrysophyllum	cainito			X	X	X	X	X	X	X
coccco	Polygonaceae	Coccoloba	coronata			71	21	71	71	71	X	X
coccma	Polygonaceae	Coccoloba	manzinellens								X	X
cordal	Boraginaceae	Cordia	alliodora	X	X	X	X	X	X	X	X	X
cordbi	Boraginaceae	Cordia	bicolor	X	X	X	X	X	X	X	X	X
cou2cu	Rubiaceae	Coussarea	curvigemmia	X	X	X	X	X	X	X	X	X
dendar	Araliaceae	Dendropanax	arboreus			X	X					
des2pa	Annonaceae	Desmopsis	panamensis	X	X	X	X	X	X	X	X	X
diptpa	Fabaceae	Dipteryx	oleifera	X	X			X	X			
drypst	Euphorbiacea	Drypetes	standleyi			X	X	X	X	X	X	X
ery2pa	Erythroxylaceae	Erythroxylum	panamense								X	X
eugeco	Myrtaceae	Eugenia	colorado en si			X		X	X	X	X	X
eugega	Myrtaceae	Eugenia	galalonens is				X	X	X	X	X	X
eugene	Myrtaceae	Eugenia	nesiotica			X		X	X	X	X	X
eugeoe	Myrtaceae	Eugenia	oerstediana	X		X	X	X	X	X	X	X
faraoc	Rubiaceae	Faramea	occidentalis	X		X	X	X	X	X	X	X
$\operatorname{gar2in}$	Clusiaceae	Garcinia	intermedia	X		X	X	X	X	X	X	X
geniam	Rubiaceae	Genipa	americana			X	X					
guapst	Nyctaginaceae	Guapira	standley an a			X	X				X	X
guargu	Meliaceae	Guarea	guidonia	X		X	X	X	X	X	X	X
guatdu	Annonaceae	Guatteria	dumetorum	3.7		X	X	37	37	37	X	X
gustsu	Lecythidaceae	Gustavia	superba	X		X	X	X	X	X	X	X
hameax	Rubiaceae	Hamelia	axillaris								X	X

Table S1.1: List of used species per vital rate analysis.

Abbreviation	ily	15	Species	$p_{reproduction}$	fecundity	$p_{establishment}$	Recruit distribution	Seedling survival	Seedling growth	$C_{seedling}$	Tree survival	•
[QQ	Family	Genus	oec.	epr	cm	sta	ecr	eq	eq	see	ree	
A				p_{τ}	fe			$\tilde{\mathbf{S}}$	$\tilde{\mathbf{S}}$	\mathcal{O}		
hampap	Malvaceae	Hampea	appendiculata			X	X				X	
hassfl	Flacourtiaceae	Hasseltia	floribunda			X	X				X	
neisac	Olacaceae	Heisteria	acuminata			X	X				X	
neisco	Olacaceae	Heisteria	concinna			X	X	X	X	X	X	
nerrpu	Sterculiaceae	Herrania	purpurea								X	
nirttr	Chrysobalanaceae	Hirtella	triandra	X	X	X	X	X	X	X	X	
ıybapr	Violaceae	Hybanthus	prunifolius			X	X	X	X	X	X	
nyeral	Euphorbiacea	Hieronyma	alchorneoide	X							X	
ngago	Fabaceae	Inga	goldmanii								X	
ngama	Fabaceae	Inga	marginata			X	X	X	X	X	X	
ngaqu	Fabaceae	Inga	nobilis								X	
ngasa	Fabaceae	Inga	sapindoides								X	
ngaum	Fabaceae	Inga	umbellifera								X	
ac1co	Bignoniaceae	Jacaranda	copaia	X	X	X	X				X	
aciag	Flacourtiaceae	Lacistema	aggregatum				X	X	X	X	X	
acmpa	Apocynaceae	Lacmellea	panamensis			X	X				X	
aetth	Flacourtiaceae	Laetia	thamnia								X	
icahy	Chrysobalanaceae	Licania	hypoleuca								X	
icapl	Chrysobalanaceae	Licania	platypus								X	
oncla	Fabaceae	Lonchocarpus	heptaphyllus			X	X				X	
uehse	Tiliaceae	Luehea	seemannii	X	X	X	X	X	X	X	X	
$_{ m nalmsp}$	Annonaceae	Mosannona	garwoodii	X							X	
naquco	Moraceae	Maquira	guianensis								X	
nourmy	Melastomataceae	Mouriri	myrtilloides	X	X	X	X	X	X	X	X	
nectci	Lauraceae	Nectandra	cissiflora								X	
cotce	Lauraceae	Ocotea	cernua					X	X	X	X	
$_{ m lmeas}$	Moraceae	Trophis	caucana				X	X	X	X	X	
rmoma	Fabaceae	Ormosia	macrocalyx			**		37	37	**	X	
ouralu	Ochnaceae	Ouratea	lucens			X	37	X	X	X	X	
oaligu	Rubiaceae	Palicourea	guianensis			X	X	X	X	X	X	
oentma	Rubiaceae	Pentagonia	macrophylla								X	
perexa	Moraceae	Perebea	xanthochyma			**	37	37	37	**	X	
ohoeci	Lauraceae	Cinnamomum	triplinerve			X	X	X	X	X	77	
oicrla ·	Simaroubaceae	Picramnia	latifolia			X	X	X	X	X	X	
pipeco	Piperaceae	Piper	cordulatum				X	37	37	37	37	
ola1pi	Fabaceae	Platymiscium	pinnatum					X	X	X	X	
ola2el	Fabaceae	Platypodium	elegans		37						Χ	
oular	Moraceae	Poulsenia	armata	37	X	37	37	37	37	37	37	
outre	Sapotaceae	Pouteria	reticulata	X	X	X	X	X	X	X	X	
ori2co	Fabaceae	Prioria	copaifera	X				**	37	X	X	
orotpa	Burseraceae	Protium	panamense					X	X	X	X	
orotte	Burseraceae	Protium	tenuifolium	X	X	X	X	X	X	X	X	
osycac	Rubiaceae	Psychotria	acuminata			X	X	X	X	X		
osycde	Rubiaceae	Psychotria	deflexa				X	X	X	X		
osycho	Rubiaceae	Psychotria	horizontalis			X	X	X	X	X	X	
osycli	Rubiaceae	Psychotria	limonensis				X					
osycma	Rubiaceae	Psychotria	marginata			X	X	\mathbf{X}	X	X	X	

Table S1.1: List of used species per vital rate analysis.

Abbreviation	Family	Genus	Species	$p_{reproduction}$	fecundity	Pestablishment	Recruit distribution	Seedling survival	Seedling growth	$C_{seedling}$	Tree survival	Tree growth
psycra	Rubiaceae	Psychotria	racemosa			X	X	X	X	X		
$_{ m pterro}$	Fabaceae	Pterocarpus	rohrii								X	X
quaras	Bombacaceae	Quararibea	asterolep is	X	X	X	X	X	X	X	X	X
quasam	Simaroubaceae	Quassia	amara								X	X
randar	Rubiaceae	Randia	armata	X		X	X	X	X	X	X	X
simaam	Simaroubaceae	Simarouba	amara	X	X	X	X	X	X	X	X	X
sloate	Elaeocarpaceae	Sloanea	terniflora	X							X	X
soroaf	Moraceae	Sorocea	affinis			X	X	X	X	X	X	X
sponmo	Anacardiaceae	Spondias	mombin				X				X	X
sponra	Anacardiaceae	Spondias	radlkoferi					X	X	X	X	X
stylst	Myrsinaceae	Stylogyne	turbacens is				X	X	X	X	X	X
swars2	Fabaceae	Swartzia	$simplex\ var$					X	X	X		
sympgl	Clusiaceae	Symphonia	globulifera								X	X
tab1gu	Bignoniaceae	Tabebuia	guaya can			X	X					
tab1ro	Bignoniaceae	Tabebuia	rosea			X	X	X	X	X	X	X
tab2ar	Apocynaceae	Tabernaemont	arborea			X	X	X	X	X	X	X
tachve	Fabaceae	Tachigali	versicolor					X	X	X	X	X
termam	Combretaceae	Terminalia	amazonia	X								
termob	Combretaceae	Terminalia	oblong a	X	X							
tet2pa	Burseraceae	Tetragastris	panamens is	X		X	X	X	X	X	X	X
thevah	Apocynaceae	The vetia	ahouai								X	X
tratas	Burseraceae	Trattinnicki	aspera	X								
tri2pa	Meliaceae	Trichilia	pallida	X		X	X				X	X
tri2tu	Meliaceae	Trichilia	tuberculata	X		X	X	X	X	X	X	X
tripcu	Polygonaceae	Triplaris	cuming iana	X	X	X	X				X	X
turpoc	Staphyleaceae	Turpinia	occidentalis								X	X
unonpi	Annonaceae	Unon opsis	pittieri	X		X	X	X	X	X	X	X
virose	Myristicacea	Virola	sebifera	X	X	X	X	X	X	X	X	X
virosu	Myristicacea	Virola	surinamensis								X	X
vochfe	Vochysiaceae	Vochysia	ferruginea			X	X					
xyl1ma	Annonaceae	Xylopia	macrantha	X				X	X		X	X
zantp1	Rutaceae	Zanthoxylum	panamense			X	X				X	X
total:				40	18	65	69	62	62	61	105	105

S2 Trait distributions for each breeding system and each vital rate analysis

To ensure that that estimated effects of breeding system were not biased by differing trait or size distributions between breeding systems, we compared distributions of wood density (WD), seed mass (SM), adult stature (D_{max}) and individual size between breeding systems for each vital rate. Recall that trait values were normalized accross all species in the BCI 50-ha FDP database, and seed mass and maximum size were log-transformed before normalization. Prior to normalization, mean seed mass was 0.0512 g, mean wood density was 0.548 g/cm^3 , and maximum size was 158 mm. Standard deviations were 0.95 (log-transformed), 0.15 and 0.51 (log transformed) for seed mass, wood density and maximum size respectively (Fig. S2.1).

In the figures below (Figs. S2.2-S2.7), the cumulative density distributions are given for seed mass, wood density, maximum DBH and size ranges, for each vital rate analysis for dioecious (thick lines) and hermaphroditic (thin lines) species. A summary of the differences in normalized trait values for the 25%, 50% and 75% quantiles of included species, for all vital rate analyses, is given in Table S2.1.

Table S2.1: Differences in normalized trait values between hermaphroditic and dioecious species, given for the 25%, 50% and 75% quantiles, for the species included in each vital rate analysis. $p_{reproduction}$ is reproduction probability, $p_{establishment}$ is seedling establishment, f_{dist} is recruit size distribution, $p_{sdlgrowth}$ and $p_{treegrowth}$ is seedling and tree growth, $p_{sdlsurvival}$ and $p_{treesurvival}$ is seedling and tree survival, x_{dbh} is the relation between seedling DBH and height.

Vital rate	Trait	25%	50%	75%
f_{dist}	WD	-0.464	-0.097	-0.027
f_{dist}	SM	-0.849	-0.395	-0.274
f_{dist}	D_{max}	-0.535	-0.154	0.088
$p_{establishment}$	WD	-0.22	-0.012	0.018
$p_{establishment}$	SM	-0.784	-0.075	-0.151
$p_{establishment}$	D_{max}	-0.384	-0.165	0.07
p_{repr}	WD	-0.3	0.287	0.337
p_{repr}	SM	-0.568	-0.066	-0.023
p_{repr}	D_{max}	-0.229	0.005	0.258
$p_{sdlgrowth}$ and $p_{sdlsurvival}$	WD	-0.045	-0.031	0.3
$p_{sdlgrowth}$ and $p_{sdlsurvival}$	SM	-0.709	-0.022	-0.116
$p_{sdlgrowth}$ and $p_{sdlsurvival}$	D_{max}	-0.341	-0.2	0.122
$p_{sdlgrowth}$ and $p_{sdlsurvival}$	size	0.018	0.031	0.017
$p_{treegrowth}$ and $p_{treesurvival}$	WD	-0.316	-0.056	0.101
$p_{treegrowth}$ and $p_{treesurvival}$	SM	-0.097	0.098	0.164
$p_{treegrowth}$ and $p_{treesurvival}$	D_{max}	-0.267	-0.099	-0.005
$p_{treegrowth}$ and $p_{treesurvival}$	size	-0.026	-0.067	-0.138
x_{dbh}	WD	-0.088	-0.157	-0.076
x_{dbh}	SM	-0.753	-0.051	-0.113
x_{dbh}	D_{max}	-0.402	-0.183	0.125
x_{dbh}	size	0.001	0.006	0.016

Figure S2.1: Histogram showing the distribution of each functional trait, combining all species.

Figure S2.2: Cumulative density distributions for normalized seed mass, wood density and maximum DBH across species included in the reproduction probability models for dioecious (thick lines) and hermaphroditic (thin lines) species.

Figure S2.3: Cumulative density distributions for normalized seed mass, wood density and maximum DBH across species included in the seedling establishment models for dioecious (thick lines) and hermaphroditic (thin lines) species.

Figure S2.4: Cumulative density distributions for normalized seed mass, wood density and maximum DBH across species included in the new recruit size distribution models for dioecious (thick lines) and hermaphroditic (thin lines) species.

Figure S2.5: Cumulative density distributions for normalized seed mass, wood density and maximum DBH across species included in the seedling survival and growth analyses, as well as the cumulative density distribution of individual seedling heights (mm), for dioecious (thick lines) and hermaphroditic (thin lines) species.

Figure S2.6: Cumulative density distributions for normalized seed mass, wood density and maximum DBH across species included in the tree survival and growth analyses, as well as the cumulative density distribution of individual tree DBHs (mm), for dioecious (thick lines) and hermaphroditic (thin lines) species.

Figure S2.7: Cumulative density distributions for normalized seed mass, wood density and maximum DBH across species included in the models relating seedling DBH to seedling height, for dioecious (thick lines) and hermaphroditic (thin lines) species.

S3 Supplementary methods

S3.1 Seed production

Fecundity (f_{seeds}) was estimated as a function of tree size by using inverse modeling (Ribbens et al., 1994; Clark et al., 1999; Muller-Landau et al., 2008). This technique estimates fecundity and dispersal parameters based on the spatial distribution of adult trees and arriving seeds. We assume the distribution of seeds around the mother tree, the seed shadow, is the product of two elements: (1) its estimated seed production, and (2) a dispersal kernel (i.e. the probability density function describing the distribution of seeds as a function of distance from the parent tree (Clark et al., 1999). The total expected number of seeds at a seed trap j, \hat{H}_j , is calculated as the sum over expected seed rain from all T mature trees i:

$$\hat{H}_j = \alpha \cdot \sum_{i=1}^T Q(p_i b_i | \beta) \cdot F(r_{ij} | \mu, \sigma)$$
(1)

where α is trap area (here 0.5 m^2). For tree i, the seed rain is calculated by multiplying the fecundity Q, which is a function of basal area b_i (calculated as $[DBH/2]^2\pi$) and estimated probability of reproduction p_i (which is itself a function of tree diameter). F is a two-dimensional dispersal kernel, with r_{ij} being the distance between tree i and trap j. β , is a seed production parameter denoting the number of seeds produced per unit basal area. Parameters μ and σ describe the shape and scale of the dispersal kernel.

For each hermaphroditic species, p_i was fitted as a function of size (DBH) using Generalized Linear Models. For the dioecious species, we used gender information collected in the field to identify fruiting female individuals. Here, observed females have a p_{female} of one, observed males have a p_{female} of zero. Individuals that were not reproductive at the time of the census are assigned a p_{female} using estimated relations between DBH and p_{female} estimated using logistic regression. Estimated coefficients of these regressions can be found in Appendix S10.

One challenge in calculating expected seed rain is that trees outside the plot could also contribute seeds. We omitted data from the traps within 20 meter from the edge of the plot in order to remove traps where seed rain might be dominated by off-plot contributions (Muller-Landau et al., 2008). Data from the remaining 188 traps and 45 gap traps were used. For each of these remaining traps, the contribution from unknown trees outside the plot was approximated under the assumption that tree density and seed production outside plot limits is equal to the mean within the plot (following Muller-Landau et al., 2008). Thus the total expected seed rain \hat{S}_j for trap j is then the sum of the expected contributions from trees inside the plot \hat{H}_j and the expected contributions from trees outside the plot \hat{I}_j .

$$\hat{S}_j = \hat{H}_j + \hat{I}_j \tag{2}$$

Seed numbers were predicted per trap and compared with observed seed numbers, whereby testing the different mentioned dispersal kernels. Observed seed rain was assumed to follow a negative binomial distribution around expected seed rain, in accordance with previous studies showing that seed arrival tends to be clumped (Muller-Landau et al., 2008). The likelihood of the data for N traps is thus

$$L(\beta, \mu, \sigma) = \prod_{j=1}^{N} NegBinom(S_j | \beta, \mu, \sigma, k)$$
(3)

where S_j is the total number of seeds that arrived in trap j between 2008 and 2012, and k is a negative binomial clumping parameter.

We tested several dispersal kernels, including the Exponential, the 2dt (Clark et al., 1999), 2dt1k (which is the 2dt distribution whereby the degrees of freedom parameter is set to 3) (Muller-Landau et al., 2008) and the Cauchy density distribution. Overall, the exponential distribution performed the best, so we used this dispersal kernel for all species $(f(x|\mu) = \mu \cdot e^{\mu \cdot x})$. Species-specific estimates of parameters β , μ and k can be found in Appendix S4. The fitted fecundity parameter β was related to species-specific traits using generalized linear models, and the fitted fecundity function $Q(p_i, b_i|\beta)$ was incorporated in the IPMs.

S3.2 Seedling establishment

For every species, the mean seed to seedling transition probability, $p_{establishment}$, was estimated by dividing the total flux of seedlings arriving per area per year by the total flux of seeds arriving per area per year in the corresponding set of years. We used data for recruitment into the seedling plots during 1995-2010, combined with appropriately paired data from seed rain into the seed traps, accounting for species-specific delays in germination between seed arrival and seedling recruitment, where relevant. Species-specific estimates of $p_{establishment}$ can be found in Appendix S5. The fitted seed-to-seedling transition probability, $p_{establishment}$, was related to seed mass, wood density and breeding system using generalized linear models, and incorporated in the IPMs.

S3.3 Recruit size distribution

The height distribution of new recruits was first estimated per species, including species for which at least 40 new recruits were observed during 1995-2011, using a Weibull distribution. A maximum likelihood approach was used to estimated the shape (k) and scale (λ) parameter. These were separately related to species-specific traits using generalized linear models.

S3.4 Reproduction probability

Individual reproductive status (either sterile or reproductive) was related to individual size and species-specific traits, using mixed effects logistic regression.

S3.5 Seedling growth and survival

Annual seedling height growth was calculated using data from consecutive censuses in 2001, 2002, and 2003. We used two time intervals; between 2001 and 2002, and between 2002 and 2003. For each individual and each interval, the difference in height was divided by time interval to obtain the absolute growth rate (mm/yr). The absolute growth rate was then related to initial size and species-specific traits using mixed effects linear regression with individual and year as a random effect. Variation in growth around the expected value, which is incorporated in the IPM, was first estimated on a species-level, including all species that were used in the trait-based seedling growth models. To do so, we fitted generalized linear growth models for each species separately, with initial size (mm height) as explanatory variable and growth (in mm/yr) as response variable. The standard deviations of the residuals for each model are then related to species-specific traits using generalized linear models. Yearly survival (0 or 1) was related to initial size and species-specific traits, using mixed effects logistic regression and individual and year as random effects.

S3.6 Relation between DBH and seedling height

For this analysis we used seedlings for which both DBH and height was measured. Individual seedling DBH (mm) was then related to individual height (mm) and species-specific traits, using mixed effects linear regression including individual and year as random effects.

S3.7 Tree growth and survival

Tree growth and survival were calculated in the same way as for seedlings, using data collected between 1990 and 2005. We used each consecutive census to fit growth and survival models. The natural logarithm of DBH as initial size was used in case of the growth models. Yearly growth was calculated as the difference in DBH divided by the time interval (in years). Variation in growth, which is incorporated in the IPM, is first estimated on a species-level, by fitting generalized linear growth models for each species seperately, including initial DBH as explanatory variable and growth (mm DBH/yr) as response variable. All species that were used in the trait-based tree growth models were included. The standard deviations of the residuals of each of these models were then related to species-specific traits using generalized linear models. Survival was related to individual size and species-specific traits, using mixed effects logistic regression. We took the fifth root of the estimated probabilities, since tree survival was censused on a 5 year basis.

S4 Seed production and dispersal results

Table S4.1: Seed production (fecundity) and seed dispersal parameters (with standard errors) estimated using inverse modeling as described in Appendix S3.1. Annual potential fecundity for trees of different DBH was calculated from the fecundity parameter β as $f_{seeds}(DBH|\beta) = [exp(\beta) \cdot \pi \cdot (DBH/2)^2]$, and used in the IPMs. The dispersal kernel has a single dispersal parameter, μ , from which median dispersal distance (in m) is calculated. The parameter k is for the negative binomial distribution for clumping of seed rain around the expected value. Median dispersal distance is on average 43 (± 59 SD) meters for dioecious species, and 36 (± 33 SD) meters for hermaphroditic species. Pouteria reticulata was excluded from this calculation, because the estimated μ value was equal to the lower limit of the constrained parameter range for μ . The value of this lower limit did not influence the estimated fecundity parameter for P. reticulata.

Latin binomial	β	μ	k	breeding	Median distance
Cecropia insignis	$1.8782 \ (\pm \ 0.343)$	$-3.9902 (\pm 0.332)$	$0.0446 \ (\pm \ 0.006)$	Dioecious	37
$Pouteria\ reticulata$	$-3.0138 \ (\pm \ 0.422)$	$-6.9078 (\pm 1.97)$	$0.0489 \ (\pm \ 0.011)$	Dioecious	NA
$Protium\ tenuifolium$	$-2.2976 (\pm 0.326)$	$-2.5895 (\pm 0.188)$	$0.1109 (\pm 0.026)$	Dioecious	9
$Simarouba\ amara$	$-2.4964 (\pm 0.296)$	$-3.2703 (\pm 0.152)$	$0.1089 (\pm 0.024)$	Dioecious	18
$Triplaris\ cumingiana$	$0.0635 \ (\pm \ 0.333)$	$-1.965 (\pm 0.126)$	$0.331 \ (\pm \ 0.074)$	Dioecious	5
$Virola\ sebifera$	$-1.6499 (\pm 0.247)$	$-5.3545 \ (\pm \ 0.635)$	$0.0748 \ (\pm \ 0.013)$	Dioecious	147
$Cordia\ alliodora$	$0.7082 \ (\pm \ 0.375)$	$-3.5621 \ (\pm \ 0.175)$	$0.0873 \ (\pm \ 0.012)$	Hermaphroditic	24
$Cordia\ bicolor$	$-2.0668 (\pm 0.175)$	$-3.6712 (\pm 0.171)$	$0.1791 \ (\pm \ 0.024)$	Hermaphroditic	27
$Coussarea\ curvigemmia$	$-1.9829 \ (\pm \ 0.223)$	$-4.0991 \ (\pm \ 0.257)$	$0.1392 \ (\pm \ 0.034)$	Hermaphroditic	42
$Desmops is \ panamens is$	$-1.1773 (\pm 0.257)$	$-2.9028 (\pm 0.509)$	$0.1396 (\pm 0.023)$	Hermaphroditic	13
$Dipteryx\ oleifera$	$-4.5218 \ (\pm \ 0.312)$	$-3.8011 (\pm 0.193)$	$0.0748 \ (\pm \ 0.019)$	Hermaphroditic	31
$Hirtella\ triandra$	$-3.021 (\pm 0.207)$	$-2.8388 (\pm 0.191)$	$0.1509 (\pm 0.027)$	Hermaphroditic	12
$Jacaranda\ copaia$	$0.0856 (\pm 0.083)$	$-3.5901 (\pm 0.088)$	$1.1461 \ (\pm \ 0.101)$	Hermaphroditic	25
$Luehea\ seemannii$	$0.503 (\pm 0.109)$	$-3.6447 (\pm 0.068)$	$0.6246 \ (\pm \ 0.051)$	Hermaphroditic	27
$Mouriri\ myrtilloides$	$-0.6029 \ (\pm \ 0.194)$	$-1.4827 (\pm 0.189)$	$0.2275 \ (\pm \ 0.031)$	Hermaphroditic	3
$Poulsenia\ armata$	$-4.1841 (\pm 0.335)$	$-4.8917 (\pm 0.437)$	$0.0879 (\pm 0.025)$	Hermaphroditic	92
$Quararibea\ asterolepis$	$-2.0078 (\pm 0.158)$	$-5.0952 (\pm 0.347)$	$0.192 (\pm 0.019)$	Hermaphroditic	113
Terminalia oblonga	$-1.0385 \ (\pm \ 0.266)$	$-3.4388 \ (\pm \ 0.107)$	$0.2271 \ (\pm \ 0.041)$	Hermaphroditic	22

S5 Seedling establishment results

Table S5.1: Species-specific seedling establishment probabilities (with standard errors) estimated following methods described in Appendix S3.2.

Latin binomial	Probability	Breeding
Alchornea costaricensi	$4.77e-04 \ (\pm 5.339e-05)$	Dioecious
$Brosimum\ alicastrum$	$2.08e-03 \ (\pm 1.992e-04)$	Dioecious
$Cecropia\ insign is$	$4.33e-04 \ (\pm 3.195e-05)$	Dioecious
$Drypetes\ standleyi$	$1.04e-02 \ (\pm 1.060e-03)$	Dioecious
$Garcinia\ intermedia$	$1.13e-02 \ (\pm 1.103e-03)$	Dioecious
$Guapira\ standley ana$	$5.22e-03 \ (\pm 3.956e-04)$	Dioecious
$Guarea\ guidonia$	$2.30e-02 \ (\pm 1.625e-03)$	Dioecious
$Hampea\ appendiculata$	$1.46e-01 \ (\pm 1.576e-02)$	Dioecious
Picramnia latifolia	$3.46e-02 \ (\pm 3.384e-03)$	Dioecious
$Pouteria\ reticulata$	$2.68e-02 \ (\pm 1.423e-03)$	Dioecious
$Protium\ tenuifolium$	$1.55e-02 \ (\pm 1.452e-03)$	Dioecious
$Randia\ armata$	$1.34e-01 \ (\pm 2.804e-03)$	Dioecious
$Simarouba\ amara$	$1.68e-03 \ (\pm 1.580e-04)$	Dioecious
$Tetragastris\ panamensis$	$1.98e-02 \ (\pm 8.050e-04)$	Dioecious

Table S5.1: Species-specific seedling establishment probabilities (with standard errors) estimated following methods described in Appendix S3.2.

Latin binomial	Probability	Breeding
Trichilia pallida	$5.48e-03 \ (\pm 8.034e-04)$	Dioecious
$Trichilia\ tuberculata$	$1.52e-02 \ (\pm 2.441e-04)$	Dioecious
$Triplaris\ cumingiana$	$3.67e-03 \ (\pm 2.914e-04)$	Dioecious
Virola sebifera	$1.23e-02 \ (\pm 1.106e-03)$	Dioecious
Zanthoxylum panamense	$3.40e-03 (\pm 3.934e-04)$	Dioecious
$Alse is\ blackiana$	$5.39e-05 (\pm 4.678e-06)$	Hermaphroditic
$Apeiba\ membranacea$	$8.49e-04 (\pm 7.289e-05)$	Hermaphroditic
$Aspidosperma\ spruceanum$	$9.70e-02 (\pm 1.873e-02)$	Hermaphroditic
$Beilschmiedia\ pendula$	$3.27e-02 (\pm 7.561e-04)$	Hermaphroditic
Cassipourea elliptica	$3.81e-03 (\pm 3.684e-04)$	Hermaphroditic
Chrysophyllum argenteum	$2.30e-01 (\pm 3.245e-02)$	Hermaphroditic
Chrysophyllum cainito	$1.48e-02 \ (\pm 9.914e-04)$	Hermaphroditic
$Cordia\ alliodora$	$3.35e-03 (\pm 3.093e-04)$	Hermaphroditic
Cordia bicolor	$1.22e-03 (\pm 1.474e-04)$	Hermaphroditic
Dendropanax arboreus	$5.47e-03 (\pm 3.881e-04)$	Hermaphroditic
Eugenia coloradoensi	$6.89e-03 (\pm 1.156e-03)$	Hermaphroditic
Eugenia oerstediana	$8.94e-02 (\pm 3.072e-03)$	Hermaphroditic
Genipa americana	$1.85e-02 (\pm 1.888e-03)$	Hermaphroditic
Guatteria dumetorum	$3.44e-03 (\pm 4.618e-04)$	Hermaphroditic
Hasseltia floribunda	$4.34e-03 \ (\pm 5.001e-04)$	Hermaphroditic
Heisteria concinna	$5.16e-02 \ (\pm 2.462e-03)$	Hermaphroditic
Hirtella triandra	$1.02e-02 \ (\pm 6.739e-04)$	Hermaphroditic
Inga marginata	$1.47e-01 \ (\pm 6.304e-03)$	Hermaphroditic
Jacaranda copaia	$3.07e-04 \ (\pm 2.439e-05)$	Hermaphroditic
Lacmellea panamensis	$9.28e-02 (\pm 1.077e-02)$	Hermaphroditic
Lonchocarpus heptaphyllus	$6.83e-02 (\pm 8.045e-03)$	Hermaphroditic
Luehea seemannii	$1.98e-04 \ (\pm 1.463e-05)$	Hermaphroditic
Mouriri myrtilloides	$4.20e-02 (\pm 1.877e-03)$	Hermaphroditic
Cinnamomum triplinerve	$5.09e-01 \ (\pm 6.621e-02)$	Hermaphroditic
Quararibea asterolepis	$9.27e-03 (\pm 2.421e-04)$	Hermaphroditic
Tabebuia guayacan	$3.37e-03 (\pm 4.230e-04)$	Hermaphroditic
Tabebuia rosea	$7.34e-03 (\pm 6.565e-04)$	Hermaphroditic
$Tabernaemont\ arborea$	$5.41e-03 (\pm 7.400e-04)$	Hermaphroditic
Unonopsis pittieri	$6.34e-03 (\pm 7.912e-04)$	Hermaphroditic
$Vochysia\ ferruginea$	$3.04e-02 \ (\pm 4.140e-03)$	Hermaphroditic

S6 Comparisons of species-specific vs. averaged trait-based estimates for each vital rate

For each vital rate, we compared averaged trait-based model predictions (without random effects) with predictions from models fitted seperately for each species. To do so, the relevant vital rate for all included species for which seed mass, wood density, maximum DBH and breeding system data was available, was estimated using generalized linear models. Growth and survival predictions are shown for seedlings with average height (400 mm) and for trees with a DBH 75 percent of the species-specific maximum DBH. For reproduction probability we show the DBH at which reproduction probability equals 0.5.

The grey dots show single species estimates (with dot size scaled to sample size) while the colored dots show the averaged model predictions (with red indicating dioecious and blue hermaphroditic). For each vital rate we calculated coefficients of determination (R^2) between averaged model predictions and species-specific predictions across all included species. R^2 ranged between 0.08 (seedling growth) and 0.53 (tree growth). Species are ordered by their predicted values. Full species names can be found in Appendix S1. Standard errors for species-specific rates are shown as error bars.

Figure S6.1: Comparison of species-specific predictions vs. estimates according to the averaged trait-based models for the DBH at which the reproduction probability is 0.5. Grey dots represent the species-specific predictions; the colored dots show the trait-based model predictions (red: dioecious; blue: hermaphroditic).

Figure S6.2: Comparison of species-specific predictions vs. estimates according to the averaged trait-based models for seedling survival. Grey dots represent the species-specific predictions (\pm 1 SD); the colored dots show the trait-based model predictions (red: dioecious; blue: hermaphroditic).

Figure S6.3: Comparison of species-specific predictions vs. estimates according to the averaged trait-based models for seedling growth. Grey dots represent the species-specific predictions (\pm 1 SD); the colored dots show the trait-based model predictions (red: dioecious; blue: hermaphroditic).

Figure S6.4: Comparison of species-specific predictions vs. estimates according to the averaged trait-based models for tree survival. Grey dots represent the species-specific predictions (\pm 1 SD); the colored dots show the trait-based model predictions (red: dioecious; blue: hermaphroditic).

Figure S6.5: Comparison of species-specific predictions vs. estimates according to the averaged trait-based models for tree growth. Grey dots represent the species-specific predictions (\pm 1 SD); the colored dots show the trait-based model predictions (red: dioecious; blue: hermaphroditic).

S7 Correlations between vital rates

We tested whether our modeling averaging approach captures the well-documented interspecific tradeoff between growth and survival. To do so, we first fitted species-specific growth and survival models for each of our focal species, conducting a separate analyses for both seedlings and trees. We used these models to predict expected growth and survival probability for trees with 50 mm DBH and seedlings at 500 mm height, and examined the interspecific relationships between growth and survival. This analysis documents the well-known trade-off between growth and survival across species (Figs. S6.1, S6.2). We then checked whether our model averaging approach was also capable of capturing these patterns. We used averaged models of each vital rate combined with the trait values of each species to predict for each species expected growth and survival rates of trees at 50 mm DBH and seedlings of 500 mm height. We did this with and without including estimated species random effects in the predictions. Analyses of interspecific variation in these predictions show that the average models successfully recapture the growth-survival tradeoff (Figs. S6.1, S6.2). The model without species random effects shows this tradeoff even more strongly than the one with these random effects (Figs. S6.1, S6.2).

Figure S7.1: Interspecific trade-off between growth and survival in seedlings, based on linear regressions of independent estimates for each species (top-left), on estimates from the averaged trait-based models with random effects (top-right) and on estimates from the average trait-based model without random effects, as we included it in the composite IPM (bottom-left). In the top-left panel, the linear regression was performed by weighting by the number of data available for each species. Each point represents one species, and is scaled to the amount of data available. Note that the y-axis differs between panels a and b,c,d. In the bottom-right panel, we show the regression lines of the three approaches simultaneously in one graph.

Figure S7.2: Interspecific trade-off between growth and survival in trees > 1 cm DBH, based on linear regressions of independent estimates for each species (top-left), on estimates from the averaged trait-based models with random effects (top-right) and on estimates from the average trait-based model without random effects, as we included it in the composite IPM (bottom-left). In the top-left panel, the linear regression was performed by weighting by the number of data available for each species. Each point represents one species, and is scaled to the amount of data available. In the bottom-right panel, we show the regression lines of the three approaches simultaneously in one graph.

S8 IPM Sensitivity analysis

The IPMs were used to project intrinsic growth rate r ($\ln[\lambda]$) for hypothetical species with varying trait values and breeding system. To evaluate the relative effects of traits we quantified the sensitivity of r to changes in trait values via their effects on different vital rates by performing the following analysis: First, an IPM was constructed based on vital rate functions for which normalized seed mass, wood density and maximum size were set to 0 (the community average). Subsequently, one of the vital rate functions was replaced with a vital rate function containing a new trait value (either wood density, seed mass or maximum size, ranging between -1 and +1 SD from the mean, while the other trait was kept constant). The IPM was constructed again and a new r was calculated. Thus, all vital rates were altered one by one, for both breeding systems. The change in r caused by a change in trait value for a given vital rate, was used as a measure for the sensitivity.

The sensitivity of r to changes in trait values depends both on the sensitivity of r to a vital rate, and the influence of a trait on that vital rate. With respect to seed mass, r is most sensitive to effects on fecundity (i.e. higher seed mass is associated with lower fecundity, which has a large effect on r), followed by an opposing effect of seed mass through tree survival (Fig. S7.1). On the other hand, seed mass had only a small influence on r through its effect on seedling establishment, seedling growth and survival, and tree growth. Changes in wood density affecting tree growth and tree survival resulted in the largest, but opposing, changes in r, followed by effects through seedling growth and survival. Changes in maximum DBH mainly affected seedling establishment.

Figure S8.1: Effects on population growth rates $(r=ln(\lambda))$ of changes in individual vital rates corresponding to estimated mean effects of variation in individual functional traits of seed mass (a), wood density (b), or maximum size (c) combined with dioecy (solid lines) or hermaphrodism (dotted lines). Black and grey dots show where dashed lines and solid lines respectively intersect, showing the intrinsic growth rate at average trait values for hermaphroditic and dioecious species.

S9 Best candidate models and their estimated coefficients for each vital rate

The following pages display two tables for each vital rate analysis: a first table listing the five best models with their AIC values and weights, and a second table giving the estimated parameters of each of these models and of the average model, where the average model was constructed from all models weighted by their Akaike weights. Recall that all possible models including each of the traits and interactions with size (when relevant), have been tested and used for averaging. For survival, reproduction and growth analyses, this resulted in a total of 82 models, the most complicated model being: $\sim size * breeding + size * SM + size * WD + size * D_{max}$.

Table S9.1: Five best models of reproduction probability (out of 82 total), with their AIC values and weights.

model	formulas	weight	ΔAIC
mod56	$repr \sim DBH * D_{max} + (1 species)$	0.352	0.000
mod59	$repr \sim DBH + SM + DBH * D_{max} + (1 species)$	0.135	1.915
mod58	$repr \sim DBH * breeding + DBH * D_{max} + (1 species)$	0.088	2.773
mod62	$repr \sim DBH * SM + DBH * D_{max} + (1 species)$	0.059	3.587
mod68	$repr \sim DBH + WD + SM + DBH * D_{max} + (1 species)$	0.054	3.735

Table S9.2: Estimated parameters of the five best models of reproduction probability, and of the average model, where the average model was constructed from all 82 models weighted by their weights.

	mod56	mod58	mod59	mod62	mod68	Weighted average
(Intercept)	-2.735e+00	-2.589e+00	-2.724e+00	-2.729e+00	-2.759e+00	$-2.705e+00 \ (\pm 1.651e-01)$
SM	0.000e+00	0.000e+00	-5.477e-02	-1.085e-01	-8.273e-02	$-3.411e-02 \ (\pm 3.610e-02)$
WD	0.000e+00	0.000e+00	0.000e+00	0.000e+00	9.485 e-02	$1.628e-02 \ (\pm 2.265e-02)$
breedingDIO	0.000e+00	-2.908e-01	0.000e+00	0.000e+00	0.000e+00	$-6.586e-02 \ (\pm 6.525e-02)$
DBH	2.479e-02	2.388e-02	2.475e-02	2.490e-02	2.478e-02	$2.461e-02 \ (\pm 5.108e-04)$
D_{max}	-7.598e-01	-7.549e-01	-7.704e-01	-7.483e-01	-7.460e-01	$-7.568e-01 \ (\pm 1.725e-01)$
DBH:SM	0.000e+00	0.000e+00	0.000e+00	1.611e-04	0.000e+00	$1.697e-05 \ (\pm 2.148e-05)$
DBH:WD	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	$7.231e-06 \ (\pm 2.338e-05)$
DBH:breedingDIO	0.000e+00	9.200e-04	0.000e+00	0.000e+00	0.000e+00	$1.846e-04 \ (\pm 1.362e-04)$
$DBH:D_{max}$	-1.189e-02	-1.148e-02	-1.185e-02	-1.203e-02	-1.188e-02	$-1.182e-02 (\pm 3.947e-04)$
var(species)	1.642e+00	1.652e + 00	1.629e+00	1.598e + 00	1.624e+00	1.634e + 00

Table S9.3: Five best models of fecundity parameter β (out of 16 total), with their AIC values and weights.

model	formulas	weight	ΔAIC
mod8	$fec \sim SM + D_{max} + breeding$	0.400	0.000
mod7	$fec \sim SM + D_{max} + WD + breeding$	0.235	1.066
mod5	$fec \sim SM + D_{max}$	0.127	2.302
mod3	$fec \sim SM + breeding$	0.063	3.691
$\mod 6$	$fec \sim SM + D_{max} + WD$	0.057	3.880

Table S9.4: Estimated parameters of the five best models of seed production (fecundity) parameter β , and of the average model, where the average model was constructed from all 16 models weighted by their weights.

	mod3	$\mod 5$	$\mod 6$	mod7	mod8	Weighted average
(Intercept)	-1.952e+00	-1.030e+00	-1.077e+00	-1.359e+00	-1.286e+00	$-1.363e+00 \ (\pm 2.093e-01)$
$_{\mathrm{SM}}$	-1.406e+00	-1.401e+00	-1.454e+00	-1.544e+00	-1.471e+00	$-1.470e+00 (\pm 1.151e-01)$
WD	0.000e+00	0.000e+00	1.514e-01	1.995e-01	0.000e+00	$7.500e-02 \ (\pm 7.493e-02)$
breedingDIO	8.047e-01	0.000e+00	0.000e+00	9.337e-01	8.946e-01	$6.694 \text{e-} 01 \ (\pm 2.638 \text{e-} 01)$
D_{max}	0.000e+00	-7.639e-01	-7.223e-01	-7.719e-01	-8.241e-01	$-6.490e-01 \ (\pm 2.029e-01)$

Table S9.5: Five best models of the scale parameter of the (Weibull) recruit size distribution (f_{dist}) (out of 16 total), with their AIC values and weights.

model	formulas	weight	ΔAIC
mod6	$scale \sim SM + D_{max}$	0.435	0.000
mod8	$scale \sim SM + breeding + D_{max}$	0.163	1.965
mod7	$scale \sim SM + WD + D_{max}$	0.160	1.994
mod2	$scale \sim SM$	0.096	3.022
mod9	$scale \sim SM + WD + breeding + D_{max}$	0.060	3.960

Table S9.6: Estimated parameters of the five best models of scale parameter of the (Weibull) recruit size distribution, and of the average model, where the average model was constructed from all 16 models weighted by their weights.

	mod2	mod6	mod7	mod8	mod9	Weighted average
(Intercept)	1.128e + 02	1.084e + 02	1.084e + 02	1.089e + 02	1.089e + 02	$1.093e + 02 (\pm 2.439e + 00)$
SM	2.252e+01	2.023e+01	2.034e+01	2.037e+01	2.047e + 01	$2.072e+01 (\pm 2.372e+00)$
WD	0.000e+00	0.000e+00	-3.853e-01	0.000e+00	-3.641e-01	$-1.577e-01 \ (\pm 9.190e-01)$
breedingDIO	0.000e+00	0.000e+00	0.000e+00	-1.645e+00	-1.630e+00	$-3.184e-01 (\pm 1.642e+00)$
D_{max}	0.000e+00	1.018e + 01	1.015e + 01	1.029e+01	1.025e+01	$8.344e+00 \ (\pm 2.607e+00)$

Table S9.7: Five best models of the shape parameter of the (Weibull) recruit size distribution (f_{dist}) (out of 16 total), with their AIC values and weights.

model	formulas	weight	ΔAIC
mod1	$shape \sim SM$	0.226	0.000
mod3	$shape \sim SM + breeding$	0.186	0.390
$\mod 2$	$shape \sim SM + WD$	0.138	0.988
$\mod 5$	$shape \sim SM + D_{max}$	0.122	1.225
mod4	$shape \sim SM + WD + breeding$	0.116	1.326

Table S9.8: Estimated parameters of the five best models of shape parameter of the (Weibull) recruit size distribution, and of the average model, where the average model was constructed from all 16 models weighted by their weights.

	mod1	mod2	mod3	mod4	mod5	Weighted average
(Intercept)	2.158e+00	2.165e+00	2.091e+00	2.097e+00	2.127e+00	$2.122e+00 \ (\pm 3.508e-02)$
SM	5.212e-01	5.456e-01	5.009e-01	5.255 e-01	5.050 e-01	$5.166e-01 \ (\pm 3.289e-02)$
WD	0.000e+00	-9.254e-02	0.000e+00	-9.375e-02	0.000e+00	$-3.425e-02 \ (\pm 2.476e-02)$
breedingDIO	0.000e+00	0.000e+00	2.034e-01	2.051e-01	0.000e+00	$8.858e-02 \ (\pm 5.499e-02)$
D_{max}	0.000e+00	0.000e+00	0.000e+00	0.000e+00	7.208e-02	$2.141e-02 \ (\pm 1.819e-02)$

Table S9.9: Five best models of seedling establishment (out of 16 total), with their AIC values and weights.

model	formulas	weight	ΔAIC
$\mod 6$	$qlogis(p) \sim SM + D_{max} + WD$	0.347	0.000
$\mod 5$	$qlogis(p) \sim SM + D_{max}$	0.270	0.501
mod7	$qlogis(p) \sim SM + D_{max} + WD + breeding$	0.217	0.939
mod8	$qlogis(p) \sim SM + D_{max} + breeding$	0.167	1.463
mod12	$qlogis(p) \sim D_{max} + WD$	0.000	28.109

Table S9.10: Estimated parameters of the five best models of seedling establishment, and of the average model, where the average model was constructed from all 16 models weighted by their weights.

	mod5	mod6	mod7	mod8	mod12	Weighted average
(Intercept)	-3.237e+00	-3.334e+00	-3.237e+00	-3.139e+00	-3.537e+00	$-3.254e+00 \ (\pm 1.093e-01)$
SM	1.160e+00	1.079e+00	1.095e+00	1.176e + 00	0.000e+00	$1.120e+00 \ (\pm 9.444e-02)$
WD	0.000e+00	3.002e-01	2.991e-01	0.000e+00	6.372 e-01	$1.689e-01 \ (\pm 1.097e-01)$
breedingDIO	0.000e+00	0.000e+00	-3.418e-01	-3.448e-01	0.000e+00	$-1.316e-01 \ (\pm 1.249e-01)$
D_{max}	-1.633e+00	-1.574e+00	-1.545e+00	-1.603e+00	-1.356e+00	$-1.588e + 00 \ (\pm 1.070e - 01)$

Table S9.11: Five best models of seedling growth (out of 82 total), with their AIC values and weights.

model	formulas	weight	ΔAIC
mod45	$growth \sim height + WD + height * SM + breeding + D_{max} + (1 species) + (1 tag)$	0.754	0.000
mod18	$growth \sim height + WD + height * SM + breeding + (1 species) + (1 tag)$	0.092	4.195
mod44	$growth \sim height + WD + height * SM + D_{max} + (1 species) + (1 tag)$	0.074	4.633
mod46	$growth \sim height + WD + height * SM + height * breeding + D_{max} + (1 species) + (1 tag)$	0.053	5.303
mod17	$growth \sim height + WD + height * SM + (1 species) + (1 tag)$	0.009	8.849

Table S9.12: Estimated parameters of the five best models of seedling growth, and of the average model, where the average model was constructed from all 82 models weighted by their weights.

	mod17	mod18	mod44	mod45	mod46	Weighted average
(Intercept)	4.775e + 01	4.867e + 01	4.970e + 01	5.039e+01	4.925e+01	$5.002e+01 \ (\pm 5.340e+00)$
SM	-1.700e+01	-1.684e+01	-1.512e+01	-1.506e+01	-1.620e+01	$-1.536e+01 (\pm 4.748e+00)$
WD	-1.635e+01	-1.645e+01	-1.692e+01	-1.699e+01	-1.711e+01	$-1.683e+01 (\pm 4.903e+00)$
breedingDIO	0.000e+00	-2.793e+00	0.000e+00	-2.165e+00	3.050e+00	$-1.719e+00 (\pm 8.264e+00)$
height	-1.161e-02	-1.162e-02	-1.162e-02	-1.162e-02	-9.639e-03	$-1.150e-02 \ (\pm 1.054e-03)$
D_{max}	0.000e+00	0.000e+00	-5.291e+00	-5.189e+00	-4.754e+00	$-4.593e+00 (\pm 4.811e+00)$
height:SM	9.530e-03	9.529 e-03	9.500 e-03	9.503e-03	1.061e-02	$9.574e-03 \ (\pm 1.068e-03)$
height:WD	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	$-8.782e-07 \ (\pm 3.509e-06)$
height:breedingDIO	0.000e+00	0.000e+00	0.000e+00	0.000e+00	-8.481e-03	$-5.146e-04 \ (\pm 6.080e-04)$
height: D_{max}	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	$-4.644e-06 \ (\pm 6.801e-06)$
var(tag)	4.540e + 03	4.539e + 03	4.545e + 03	4.542e + 03	4.586e + 03	4.545e + 03
var(species)	1.382e + 03	1.410e + 03	1.386e + 03	1.414e + 03	1.447e + 03	1.415e + 03

Table S9.13: Five best models of seedling survival (out of 82 total), with their AIC values and weights.

model	formulas	weight	ΔAIC
mod71	$survive \sim height + WD + height * SM + height * D_{max} + (1 species) + (1 tag)$	0.340	0.000
mod 80	$survive \sim height * WD + height * SM + height * D_{max} + (1 species) + (1 tag)$	0.277	0.407
mod72	$survive \sim height + WD + height * SM + breeding + height * D_{max} + (1 species) + (1 tag)$	0.127	1.974
mod81	$survive \sim height * WD + height * SM + height * D_{max} + breeding + (1 species) + (1 tag)$	0.103	2.381
mod73	$survive \sim height + WD + height * SM + height * breeding + height * D_{max} + (1 species) + (1 tag)$	0.081	2.858

Table S9.14: Estimated parameters of the five best models of seedling survival, and of the average model, where the average model was constructed from all 82 models weighted by their weights.

	mod71	mod72	mod73	mod 80	mod81	Weighted average
(Intercept)	1.495e + 00	1.505e + 00	1.495e + 00	1.511e + 00	1.521e+00	$1.505e+00 \ (\pm 5.538e-02)$
$_{ m SM}$	-9.274e-02	-9.135e-02	-9.169e-02	-8.903e-02	-8.766e-02	$-9.044e-02 \ (\pm 5.348e-02)$
WD	4.699e-01	4.684e-01	4.679e-01	4.325e-01	4.310e-01	$4.518e-01 \ (\pm 5.643e-02)$
breedingDIO	0.000e+00	-3.152e-02	2.481e-02	0.000e+00	-3.180e-02	$-3.279e-03 \ (\pm 3.930e-02)$
height	1.391e-03	1.391e-03	1.421e-03	1.356e-03	1.356e-03	$1.380e-03 \ (\pm 2.870e-05)$
D_{max}	-4.775e-01	-4.761e-01	-4.874e-01	-4.826e-01	-4.811e-01	$-4.811e-01 \ (\pm 5.590e-02)$
height:SM	4.355e-04	4.354 e-04	4.338e-04	4.258e-04	4.258e-04	$4.308e-04 \ (\pm 2.414e-05)$
height:WD	0.000e+00	0.000e+00	0.000e+00	9.128e-05	9.130e-05	$4.154e-05 \ (\pm 3.081e-05)$
height:breedingDIO	0.000e+00	0.000e+00	-1.490e-04	0.000e+00	0.000e+00	$-2.348e-05 \ (\pm 2.341e-05)$
height: D_{max}	4.334e-04	4.337e-04	4.651e-04	4.426e-04	4.428e-04	$4.427e-04 \ (\pm 2.926e-05)$
var(tag)	1.492e-13	0.000e+00	2.108e-10	8.444e-11	5.843e-15	4.073e-11
var(species)	4.794 e - 01	4.792 e-01	4.742e-01	4.753 e-01	4.750e-01	4.768e-01

model	formulas	weight	ΔAIC
mod7	$par \sim SM + WD + D_{max}$	0.247	0.000
mod3	$par \sim SM + WD$	0.229	0.151
mod5	$par \sim SM + WD + breeding$	0.154	0.951
mod9	$par \sim SM + WD + breeding + D_{max}$	0.150	0.992
$\mod 6$	$par \sim SM + D_{max}$	0.073	2.442

Table S9.16: Estimated parameters of the five best models of seedling growth residuals, and of the average model, where the average model was constructed from all 16 models weighted by their Akaike weights.

	mod3	$\mod 5$	$\mod 6$	mod7	mod9	Weighted average
(Intercept)	1.756e + 02	1.670e + 02	1.567e + 02	1.682e + 02	1.609e+02	$1.660e + 02 (\pm 6.145e + 00)$
SM	-5.929e+01	-6.067e + 01	-7.385e+01	-6.574e + 01	-6.666e + 01	$-6.484e+01 \ (\pm 5.572e+00)$
WD	-3.029e+01	-2.899e+01	0.000e+00	-2.839e+01	-2.731e+01	$-2.251e+01 (\pm 6.574e+00)$
breedingDIO	0.000e+00	2.522e+01	0.000e+00	0.000e+00	2.280e + 01	$9.925e+00 \ (\pm 7.148e+00)$
D_{max}	0.000e+00	0.000e+00	2.193e+01	1.922e+01	1.823e + 01	$1.014e+01 \ (\pm 5.697e+00)$

Table S9.17: Five best models of relation between seedling height and DBH (out of 82 total), with their AIC values and weights.

model	formulas	weight	ΔAIC
$\mod 55$	$DBH \sim height * WD + height * SM + height * breeding + D_{max} + (1 species) + (1 tag)$	0.780	0.000
mod28	$DBH \sim height*WD + height*SM + height*breeding + (1 species) + (1 tag)$	0.185	2.878
mod54	$DBH \sim height * WD + height * SM + breeding + D_{max} + (1 species) + (1 tag)$	0.014	8.038
mod81	$DBH \sim height * WD + height * SM + breeding + height * D_{max} + (1 species) + (1 tag)$	0.007	9.343
mod53	$DBH \sim height * WD + height * SM + D_{max} + (1 species) + (1 tag)$	0.006	9.760

Table S9.18: Estimated parameters of the five best models of the relation between seedling height and DBH, and of the average model, where the average model was constructed from all 82 models weighted by their Akaike weights.

-						
	mod28	$\mod 53$	mod54	$\mod 55$	mod81	Weighted average
(Intercept)	-4.071e+00	-3.695e+00	-3.950e+00	-4.287e+00	-4.079e+00	$-4.233e+00 \ (\pm 2.640e-01)$
SM	-1.415e+00	-1.467e + 00	-1.484e+00	-1.624e+00	-1.536e+00	$-1.580e+00 \ (\pm 2.160e-01)$
WD	1.344e-01	1.633e-01	1.505e-01	2.316e-01	2.690e-01	$2.117e-01 \ (\pm 2.520e-01)$
breedingDIO	2.198e+00	0.000e+00	8.623 e-01	2.097e+00	8.713e-01	$2.065e+00 \ (\pm 4.215e-01)$
height	5.889e-03	5.705 e-03	5.702e-03	5.887e-03	5.780e-03	$5.882e-03 \ (\pm 6.031e-05)$
D_{max}	0.000e+00	6.934 e-01	6.439 e-01	6.520 e-01	1.178e + 00	$5.344e-01 \ (\pm 2.500e-01)$
height:SM	4.953e-04	4.300e-04	4.296e-04	4.964e-04	4.488e-04	$4.941e-04 \ (\pm 4.299e-05)$
height:WD	-7.206e-04	-6.727e-04	-6.713e-04	-7.192e-04	-7.370e-04	$-7.185e-04 \ (\pm 6.039e-05)$
height:breedingDIO	-6.396e-04	0.000e+00	0.000e+00	-6.397e-04	0.000e+00	$-6.175e-04 (\pm 1.018e-04)$
height: D_{max}	0.000e+00	0.000e+00	0.000e+00	0.000e+00	-2.950e-04	$-3.101e-06 \ (\pm 3.435e-06)$
var(tag)	1.738e + 00	1.711e+00	1.712e+00	1.738e + 00	1.708e + 00	1.737e + 00
var(species)	2.835e+00	2.695e+00	2.530e+00	2.602e+00	2.557e + 00	2.646e+00

Table S9.19: Five best models of tree growth (out of 82 total), with their AIC values and weights.

model	formulas	weight	ΔAIC
mod71	$growth \sim log(DBH) + WD + log(DBH) * SM + log(DBH) * D_{max} + (1 species) + (1 tag)$	0.471	0.000
mod73	$growth \sim log(DBH) + WD + log(DBH) * SM + log(DBH) * breeding + log(DBH) * D_{max} + (1 species) + (1 tag)$	0.206	1.652
mod70	$growth \sim log(DBH) + WD + SM + log(DBH) * breeding + log(DBH) * D_{max} + (1 species) + (1 tag)$	0.146	2.340
mod72	$growth \sim log(DBH) + WD + log(DBH) * SM + breeding + log(DBH) * D_{max} + (1 species) + (1 tag)$	0.086	3.397
mod67	$growth \sim log(DBH) + WD + log(DBH) * breeding + log(DBH) * D_{max} + (1 species) + (1 tag)$	0.055	4.303

Table S9.20: Estimated parameters of the five best models of tree growth, and of the average model, where the average model was constructed from all 82 models weighted by their Akaike weights.

	mod67	mod70	mod71	mod72	mod73	Weighted average
(Intercept)	6.828e-01	6.790e-01	7.008e-01	6.667e-01	6.810e-01	$6.893e-01 (\pm 3.070e-02)$
$_{ m SM}$	0.000e+00	-1.330e-01	-1.719e-01	-1.687e-01	-1.632e-01	$-1.526e-01 \ (\pm 2.825e-02)$
WD	-3.365e-01	-3.111e-01	-3.104e-01	-3.114e-01	-3.116e-01	$-3.125e-01 \ (\pm 2.652e-02)$
breedingDIO	5.098e-02	3.547e-02	0.000e+00	1.139e-01	4.848e-02	$2.852e-02 \ (\pm 3.000e-02)$
$\log(\text{DBH})$	5.507e-02	5.510e-02	5.822e-02	5.820 e-02	5.439e-02	$5.683e-02 \ (\pm 1.911e-03)$
D_{max}	-1.117e + 00	-1.089e+00	-1.096e+00	-1.102e+00	-1.089e+00	$-1.096e+00 \ (\pm 3.425e-02)$
$\log(\text{DBH})$:SM	0.000e+00	0.000e+00	9.313e-03	9.317e-03	7.891e-03	$6.862e-03 \ (\pm 1.961e-03)$
$\log(\text{DBH})$:WD	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	$2.216e-05 \ (\pm 2.299e-05)$
log(DBH):breedingDIO	2.119e-02	2.119e-02	0.000e+00	0.000e+00	1.782e-02	$7.971e-03 \ (\pm 4.968e-03)$
$\log(\text{DBH}):D_{max}$	3.991e-01	3.990e-01	4.035e-01	4.036e-01	3.997e-01	$4.018e-01 \ (\pm 2.299e-03)$
var(tag)	2.566e-01	2.566e-01	2.567e-01	2.567e-01	2.567e-01	2.567e-01
var(species)	2.015e-01	1.873 e-01	1.903e-01	1.893e-01	1.888e-01	1.901e-01

Table S9.21: Five best models of tree survival (out of 82 total), with their AIC values and weights.

model	formulas	weight	ΔAIC
mod82	$surv \sim DBH * WD + DBH * SM + DBH * breeding + DBH * D_{max} + (1 species) + (1 tag)$	1.000	0.000
mod80	$surv \sim DBH * WD + DBH * SM + DBH * D_{max} + (1 species) + (1 tag)$	0.000	65.249
mod81	$surv \sim DBH * WD + DBH * SM + breeding + DBH * D_{max} + (1 species) + (1 tag)$	0.000	67.220
mod73	$surv \sim DBH + WD + DBH * SM + DBH * breeding + DBH * D_{max} + (1 species) + (1 tag)$	0.000	109.681
mod64	$surv \sim DBH * SM + DBH * breeding + DBH * D_{max} + (1 species) + (1 tag)$	0.000	135.109

Table S9.22: Estimated parameters of the five best models of tree survival, and of the average model, where the average model was constructed from all 82 models weighted by their Akaike weights.

	mod64	mod73	mod 80	mod81	mod82	Weighted average
(Intercept)	2.229e+00	2.088e+00	2.048e + 00	2.041e+00	2.067e + 00	$2.067e+00 \ (\pm 9.179e-02)$
$_{\mathrm{SM}}$	5.190e-01	4.461e-01	4.442e-01	4.450e-01	4.420 e-01	$4.420e-01 \ (\pm 7.058e-02)$
WD	0.000e+00	4.235e-01	4.830e-01	4.830 e - 01	4.925e-01	$4.925e-01 \ (\pm 7.528e-02)$
breedingDIO	-2.782e-02	-3.683e-02	0.000e+00	2.417e-02	-5.958e-02	$-5.958e-02 (\pm 1.418e-01)$
DBH	-5.143e-03	-5.138e-03	-4.386e-03	-4.387e-03	-4.830e-03	$-4.830e-03 \ (\pm 1.817e-04)$
D_{max}	-3.182e-01	-2.270e-01	-2.247e-01	-2.258e-01	-2.146e-01	$-2.146e-01 \ (\pm 9.527e-02)$
DBH:SM	-1.262e-03	-1.262e-03	-1.223e-03	-1.223e-03	-1.179e-03	$-1.179e-03 \ (\pm 6.525e-05)$
DBH:WD	0.000e+00	0.000e+00	-8.341e-04	-8.340e-04	-9.437e-04	$-9.437e-04 \ (\pm 8.852e-05)$
DBH:breedingDIO	9.315e-04	9.305e-04	0.000e+00	0.000e+00	1.160e-03	$1.160e-03 \ (\pm 1.397e-04)$
$DBH:D_{max}$	5.655 e-03	5.654 e-03	5.377e-03	5.377e-03	5.302e-03	$5.302e-03 \ (\pm 1.677e-04)$
var(tag)	9.167e-12	1.618e-11	0.000e+00	0.000e+00	0.000e+00	2.467e-35
var(species)	5.960e-01	4.539e-01	4.455e-01	4.453 e-01	4.471e-01	4.471e-01

Table S9.23: Five best models of tree growth residuals (out of 16 total), with their AIC values and weights.

model	formulas	weight	ΔAIC
mod7	$par \sim WD + SM + D_{max}$	0.507	0.000
mod9	$par \sim WD + SM + breeding + D_{max}$	0.488	0.079
mod8	$par \sim WD + breeding + D_{max}$	0.003	10.401
$\mod 6$	$par \sim WD + D_{max}$	0.002	10.675
$\mod 5$	$par \sim WD + SM + breeding$	0.000	50.091

Table S9.24: Estimated parameters of the five best models of tree growth residuals, and of the average model, where the average model was constructed from all 16 models weighted by their Akaike weights.

	mod5	mod6	mod7	mod8	mod9	Weighted average
(Intercept)	1.271e+00	1.160e+00	1.153e+00	1.129e+00	1.126e+00	$1.140e+00 \ (\pm 2.954e-02)$
SM	-7.500e-02	0.000e+00	-1.173e-01	0.000e+00	-1.147e-01	$-1.154e-01 \ (\pm 2.292e-02)$
WD	-2.852e-01	-2.606e-01	-2.382e-01	-2.608e-01	-2.389e-01	$-2.387e-01 \ (\pm 2.433e-02)$
breedingDIO	1.307e-01	0.000e+00	0.000e+00	1.023e-01	8.874e-02	$4.356e-02 \ (\pm 4.458e-02)$
D_{max}	0.000e+00	3.324 e-01	3.558 e-01	3.275 e-01	3.511e-01	$3.534e-01 \ (\pm 3.091e-02)$

S10 Size dependency in sex ratios

In the inverse modelling analysis (Appendix S3.1), a female probability for each tree is implemented for the dioecious species. This probability is multiplied with the reproduction probability, to obtain a seed-producing probability. To obtain these female probabilities, we performed logistic regressions relating gender (male=0, female=1) to DBH, for each species seperately. Only reproductive trees, with an identified gender, were included in this analysis. The results are shown below.

Table S10.1: Estimated coefficients (± 1 SE) for the logistic regression between DBH and gender (0=male, 1=female) in reproducing trees with identified gender.

Species	Intercept	DBH
alchco	$1.4276 \ (\pm \ 0.6782)$	$-0.0035 \ (\pm \ 0.0019)$
cecrin	$-0.9211 \ (\pm \ 0.3498)$	$0.003 \ (\pm \ 0.0012)$
cecrob	$-0.0281 \ (\pm \ 0.4876)$	$-0.0019 (\pm 0.0031)$
simaam	$-1.3312 \ (\pm \ 0.8475)$	$0.0034 (\pm 0.0021)$
poutre	$1.1718 (\pm 0.6646)$	$-0.004 (\pm 0.0017)$
protte	$0.8469 (\pm 0.4262)$	$-0.0046 \ (\pm \ 0.0018)$
tripcu	$-1.3055 (\pm 0.6883)$	$0.0082 (\pm 0.0034)$
virose	$-0.3995 \ (\pm \ 0.5975)$	$-0.0012 \ (\pm \ 0.0024)$

S11 Gender effects on growth

To test for growth differences in growth between males and females, a linear regression was performed to explain growth as a function of log(DBH) and gender (including only identified males and females). The results are shown below. These coefficients are not used in the IPM, because in the IPM, we used trait-based tree growth models (Appendix S1.7 for details).

Table S11.1: Estimated coefficients (± 1 SE) for the linear relation between log(DBH) and annual diameter growth in adult trees with identified gender. Gender was included as factor influencing both the intercept and slope. No general patterns across species were found.

Species	Intercept	Log(DBH)	Effect males	log(DBH):Males
cecrin	$3.6989 (\pm 3.527)$	$0.1137 (\pm 0.6798)$	$4.8552 (\pm 4.3379)$	$-1.0807 (\pm 0.85)$
poutre	$8.3732 (\pm 2.9073)$	$-0.8053 \ (\pm \ 0.5527)$	$-10.6762 (\pm 4.814)$	$1.9749 (\pm 0.8949)$
protte	$6.5804 (\pm 1.122)$	$-0.8061 \ (\pm \ 0.2226)$	$-0.696 \ (\pm \ 1.5026)$	$0.1614 \ (\pm \ 0.295)$
simaam	$3.124 (\pm 2.4929)$	$0.3843 (\pm 0.4459)$	$-1.7582 (\pm 3.2124)$	$0.1193 (\pm 0.5911)$
tripcu	$0.6158 (\pm 2.2492)$	$0.3191 (\pm 0.4503)$	$6.5067 (\pm 3.4999)$	$-1.3564 (\pm 0.709)$
alchco	$11.3638 \ (\pm \ 2.4232)$	$-1.5167 (\pm 0.4509)$	$8.1896 (\pm 4.1956)$	$-1.5146 \ (\pm \ 0.7678)$
cecrob	$0.1179 (\pm 10.5251)$	$0.6596 (\pm 2.1281)$	$4.8345 (\pm 12.0959)$	$-0.8225 \ (\pm \ 2.4823)$
virose	$6.3472 (\pm 1.3399)$	$-0.7313 \ (\pm \ 0.257)$	$2.7989 (\pm 1.729)$	$-0.4993 \ (\pm \ 0.3309)$

References

- Clark, J. S., M. Silman, R. Kern, E. Macklin, and J. HilleRisLambers. 1999. Seed dispersal near and far: patterns across temperate and tropical forests. Ecology 80:1475–1494.
- Muller-Landau, H. C., S. J. Wright, O. Calderón, R. Condit, and S. P. Hubbell. 2008. Interspecific variation in primary seed dispersal in a tropical forest. Journal of Ecology 96:653–667.
- Ribbens, E., J. A. Silander, and S. W. Pacala. 1994. Seedling recruitment in forests: calibrating models to predict patterns of tree seedling dispersion. Ecology 75:1794–1806.