Nome e Cognome:		
<u> </u>	(IN STAMPATELLO MAIUSCOLO)	
Codice Persona o Matricola: _		

RETI LOGICHE

O Prof. William Fornaciari

O Prof. Gianluca Palermo

○ Prof. Fabio Salice

Appello del 26 Gennaio 2024

!!! CON BOZZA DI SOLUZIONI !!!

Prima di iniziare la prova si prega di leggere con attenzione i seguenti punti:

- Il tempo massimo a disposizione per svolgere la prova é di 1h:45min
- Non è permessa la consultazione di alcun materiale didattico durante lo svolgimento della prova. È severamente vietato colloquiare durante l'esame con i compagni di corso o utilizzare telefoni, PC, libri e appunti.
- In caso di necessità, il docente potrà richiedere lo svolgimento di una prova orale.
- Tutte le risposte devono essere riportate su questi fogli. Non saranno considerate valide le risposte fornite su fogli diversi da quelli contenuti in questo plico.
- Si segnali chiaramente sulla prima pagina il docente di riferimento
- Il punteggio degli esercizi è da considerarsi INDICATIVO
- LE PARTI SCRITTE IN FORMATO NON LEGGIBILE DAL DOCENTE SARANNO CONSIDERATE ERRATE IN FASE DI CORREZIONE

NOTA: Per un voto sufficiente sarà necessario avere almeno 7 punti sul totale degli Esercizi 1 e 2 e almeno 7 punti sul totale degli Esercizi 4 e 5

	Esercizio 1	Esercizio 2	Esercizio 3	Esercizio 4	Esercizio 5
PUNTI	7	7	4	7	7
Esame					
TOTALE					

Date la seguenti espressioni algebriche,

$$F(A,B,C,D) = A'BC'+ABD+AC ; G(A,B,C,D) = A'+C'$$

- (A) Si ricavi, solo ed esclusivamente attraverso un processo algebrico, una funzione H che vale 1 quando le funzioni F e G valgono 1 contemporaneamente.
- (B) si ricavi, solo attraverso un processo algebrico, F-G (sottrazione di G da F) (lo si denomini L). Si ricordi che F AND G' rappresenta la sottrazione di G da F (F-G).
- (C) si ricavino i cofattori rispetto ad A e A' di F $(F_A \in F_{A'})$.
- (D) si sintetizzi la funzione BD+C utilizzando solo porte NAND a **3 ingressi** e si disegni il circuito. NOTA: ogni ingresso di una porta logica deve essere connesso ad un ingresso primario (es. B) o ad un valore costante (0 o 1).

NOTA: Per garantire la validità delle risposte, è necessario mostrare tutti i passaggi fatti elencando o descrivendo i teoremi dell'algebra booleana che sono stati utilizzati.
SOLUZIONE

- (B) L=(A'BC'+ABD+AC)*(A'+C')' = (A'BC'+ABD+AC)*AC = ABCD+AC = AC
- (C) $F_A = BD + C$; $F'_A = BC'$;
- (D) BD + C = ((BD)' C')' = ((B D 1)' C' 1)'

Data la seguente funzione di uscita multipla e non completamente specificata.

$$F(a,b,c,d): ON1_{set} = \{m0, m2, m8, m13, m15\} \quad DC1_{set} = \{m7, m9, m12\}$$

$$ON2_{set} = \{m1, m9, m13\} \quad DC2_{set} = \{m3, m8, m12, m15\}$$

$$ON3_{set} = \{m9, m13, m15\} \quad DC3_{set} = \{m1, m2, m7, m8, m12\}$$

- (A) Identificare con il metodo di Quine-McCluskey tutti gli implicanti primi.
- (B) Identificare, con il metodo di Quine-McCluskey, una copertura minima usando come funzione di costo il **numero di letterali** della copertura.

Si applichino ordinatamente, ESSENZIALITA' \Rightarrow DOMINANZA DI RIGA \Rightarrow DOMINANZA DI COLONNA per poi ripartire dalla essenzialità. Per ogni passaggio, utilizzare una tabella esclusivamente per l'applicazione della ESSENZIALITA' e una tabella esclusivamente per l'applicazione delle DOMINANZE (non utilizzare una sola tabella per applicare ESSENZIALITA' e DOMINANZA; prima di ripartire con una nuova essenzialità, si riporti la tabella delle dominanze e vice versa). Per ogni passo riportare chiaramente le trasformazioni avvenute sia un forma testuale che grafica.

(c) Si scriva la funzione minima identificata e si indichi il costo in termini di letterali.

NOTA: Per garantire la validità delle risposte, è necessario mostrare tutti i passaggi fatti. Per la fase di generazione degli implicanti primi, si usino le tabelle qui sotto riportate. Evidenziare chiaramente la separazione tra le diverse sotto-parti delle tabelle.

SOLUZIONE

Costo: F1= a' b' d' + P6 + P7
F2 = b' c' d + P7
F3 = P6 + P7
P6 = a b d
P7 = a c'
Costo =
$$5+4+2+3+2=16$$

Siano dato il numero in base 10 A= 1 e

- A Si codifichi A usando lo standard floating point 754 su 32 bit in forma normalizzata, mostrando i passaggi per ottenerli.
- B Si codifichi B in base 10 come $X * 2^{Y}$. Si identifichi X e Y.
- C Si calcoli C=A+B e lo si rappresenti, usando lo standard floating point 754 su 32 bit, nella forma adeguata.

NOTA: Per garantire la validità delle risposte, è necessario mostrare, in modo chiaro e completo, tutti i passaggi fatti.

— SOLUZIONE —

B. $B = 1 * 2^{-(127+22)}$.

C. C = A + B = A.

Passaggi C:

- Si porta l'esponente di B a quello di A shiftando i bit opportunamente: B=0 | 01111111 | 00000000000000000000 (bit nascosto = 0)
- Si esegue la somma delle mantisse:

- Si ottiene il risultato e lo si riporta in forma normalizzata (già in forma normalizzata) C=A=0 | 01111111 | 0000000000000000000

Dato il seguente circuito realizzato con FFD e le cui uscite sono Q0, Q1 e Q2

- (A) identificare la tabella delle eccitazioni/transizioni e la tabella degli stati;
- (B) eliminare gli stati irraggiungibili a partire dallo stato di reset S_0 e riscrivere la tabella degli stati minima;
- (C) ri-codificare gli stati con codifica 1-hot e scrivere la tabella delle eccitazioni usando FF-T. Si ricordi che nella codifica 1-hot ogni parola di codice ha un solo bit a 1. Per esempio, in caso di 5 stati le parole di codice sono 00001, 00010, 00100, 01000, 10000;
- (D) sintetizzare la macchina usando le mappe di Karnaugh e disegnare il circuito finale riportando anche i segnali di CLK e RST.

NOTA: si completino le tabelle riportate qui di seguito come risposta ESCLUSIVA ai punti (A), (B) e (C). Per il punto (D), si scrivano le mappe di Karnaugh, le equazioni risultati e il circuito.

Tabella Eccitazioni				
$Q_2Q_1Q_0$	$D_2D_1D_0$			
0 0 0	1 0 0			
0 0 1				
0 1 0				
0 1 1				
1 0 0				
1 0 1				
1 1 0				
1 1 1				

Tabella Stati		
$S_{presente}$	S_{futuro}	
$\overline{S_0}$	S_4	
S_1		
S_2		
S_3		
S_4		
S_5		
$\overline{S_6}$		
$\frac{3}{S_7}$		

Tabella Stati minima		
$S_{presente}$	S_{futuro}	
S_0	S_4	

Tabella 7	Transizioni		Tabella Eccitazioni (FFT			
$S_{pres.cod.}$	$S_{fut.cod.}$		Q_t	T_t		
		-				
		_				

SOLUZIONE

Tabella Eccitazioni				
$Q_2Q_1Q_0$	$D_2D_1D_0$			
0 0 0	1 0 0			
0 0 1	1 1 0			
0 1 0	0 0 0			
0 1 1	0 1 1			
1 0 0	0 1 0			
1 0 1	0 1 0			
1 1 0	1 1 0			
1 1 1	1 1 1			

Tabella	Stati
$S_{presente}$	S_{futuro}
S_0	S_4
S_1	S_6
S_2	S_0
S_3	S_3
$\overline{S_4}$	S_2
S_5	S_2
S_6	S_6
$\overline{S_7}$	S_7

Tabella S	Stati minima
$S_{presente}$	S_{futuro}
$\overline{S_0}$	S_4
$\overline{S_2}$	S_0
$\overline{S_4}$	S_2

Tabella T	Transizioni
$S_{pres.cod.}$	$S_{fut.cod.}$
0 0 1	1 0 0
0 1 0	0 0 1
1 0 0	0 1 0

Tabella E	Cccitazioni (FFT)
$Q_2Q_1Q_0$	$T_2T_1T_0$
0 0 1	1 0 1
0 1 0	0 1 1
1 0 0	1 1 0

		T2		
Q0/Q2 Q1	00	01	11	10
0	-	0	-	1
1	1	-	-	-

T1					
00	01	11	10		
-	1	-	1		
0	-	-	-		

	T0		
00	01	11	10
-	1	-	0
1	-	-	-

 $\mathrm{T2}=\,\mathrm{Q1}^{\circ}$ - $\mathrm{T1}=\,\mathrm{Q0}^{\circ}$ - $\mathrm{T0}=\,\mathrm{Q2}^{\circ}$ Contatore ad anello - Reset= 001

Data la seguente macchina a stati non completamente specificata

Stato\Ingresso	0	1	Z
S0	S1	-	1
S1	S2	-	1
S2	S3	S6	1
S3	S4	-	1
S4	-	S5	1
S5	S6	S3	1
S6	S2	-	0

- (A) partendo dallo stato di reset S0, analizzare la raggiungibilità. Si utilizzi il metodo che si ritiene più efficiente e rapido;
- (B) eliminare gli eventuali stati irraggiungibili a partire dallo stato di reset S0 e riscrivere la tabella degli stati minima;
- (C) analizzare la compatibilità;
- (D) identificare le classi di massima compatibilità utilizzando l'algoritmo da albero;
- (E) scrivere la tabella degli stati della macchina minima ottenuta mediante le classi di massima compatibilità.

NOTA: Per garantire la validità delle risposte, è necessario mostrare, in modo chiaro e completo, tutti i passaggi fatti.

SOLUZIONE

Tutti gli stati sono raggiungibli;

Analisi di compatibilità

Table 1: tabella delle implicazioni: INIZIALE

S1	{1-2}		•			
S2	{1-3}	{2-3}				
S3	{1-4}	{2-4}	{3-4}			
S4	V	V	{6-5}	V		
S5	{1-6}	{2-6}	{3-6}	{4-6}	{5-3}	
S6	X	X	X	X	X	X
	S0	S1	S2	S3	S4	S5

Propagazione delle distinguibilità:

Table 2: Passo 1

		Lable 2	. I asso	1		
S1	{1-2}					
S2	{1-3}	{2-3}				
S3	{1-4}	{2-4}	{3-4}			
S4	V	V	X	V		
S5	X	X	X	X	X	
S6	X	X	X	X	X	X
	S0	S1	S2	S3	S4	S5

Insieme degli stati: 0,1,2,3,4,5,6

Analisi S0: incompatibile con $2,5,6 \Rightarrow 0,1,3,4 - 1,2,3,4,5,6$

Analisi S1: incompatibile con $3.5.6 \Rightarrow 0.1.4 - 0.3.4 - 1.2.4 \ 2.3.4.5.6$

Analisi S2: incompatibile con $4.5.6 \Rightarrow 0.1.4 - 0.3.4 - 1.2 - 1.4 - 2.3 - 3.4.5.6$

Table 3: Passo 2

		1 able 9. 1 abbo 2				
S1	{1-2}					
S2	{1-3}	$\{2-3\}$				
S3	{1-4}	X	{3-4}			
S4	V	V	X	V		
S5	X	X	X	X	X	
S6	X	X	X	X	X	X
	S0	S1	S2	S3	S4	S5

Table 4: Passo 3 - FINALE

S1	{1-2}					
S2	X	{2-3}				
S3	{1-4}	X	{3-4}			
S4	V	V	X	V		
S5	X	X	X	X	X	
S6	X	X	X	X	X	X
	S0	S1	S2	S3	S4	S5

Analisi S3: incompatibile con $5.6 \Rightarrow 0.1.4 - 0.3.4 - 1.2 - 1.4 - 2.3 - 3.4 - 4.5.6$

Analisi S4: incompatibile con $5.6 \Rightarrow 0.1.4 - 0.3.4 - 1.2 - 1.4 - 2.3 - 3.4 - 4 - 5.6$ Analisi S5: incompatibile con $6 \Rightarrow 0.1.4 - 0.3.4 - 1.2 - 1.4 - 2.3 - 3.4 - 4 - 5 - 6$

Classi di massima compatibilità (non sono riporti i vincoli): A: 0,1,4 — B: 0,3,4 — C: 1,2 — D: 2,3 — E: 5 — F: 6

Stato \Ingresso	0	1	OUT
A	С	Е	1
В	A	Е	1
С	D	F	1
D	В	F	1
Е	F	В	1
F	С	-	0

S0, S1, S2, S3, S4, S5, S6

