Categorical Decisions

Andy Wills

Fergal Jones, Stian Reimers, Neil Stewart Mark Suret, Ian McLaren.

The Ratio Rule

$$P(i) = \frac{V_i}{\sum_{j=1}^n V_j}$$

- Constant-Ratio Rule (Clarke, 1957)
- Luce Choice Axiom (Luce, 1959)

$$P(A:A,B) = \frac{V_A}{V_A + V_B}$$

$$P(A:A,B) = \frac{12}{4+12} = 0.75$$

$$P(A:A,B) = \frac{9}{3+9} = 0.75$$

Generalisation Test

			-element emplars	Novel-element Test Exemplars			
Proportion	\boldsymbol{A}	\boldsymbol{B}	Novel	A	\boldsymbol{B}	Novel	
0/12	12	0	0	6	0	6	
2/12	10	2	O	5	1	6	
4/12	8	4	O	4	2	6	
6/12	6	6	O	3	3	6	
8/12	4	8	O	2	4	6	
10/12	2	10	0	1	5	6	
12/12	0	12	0	0	6	6	

Non-linear Magnitude Functions

Background Noise Constant

$$P(i) = \frac{V_i + X}{\sum_{j=1}^{n} V_j + nX}$$

- Aitken (1996)
- Nosofsky & Zaki (1998)

Central Assumption

• The magnitude term for a specific category produced by a stimulus is a **univariate** function of the number of category-appropriate elements that stimulus contains.

Full-set / Sub-set Relationship

- Train on three categories
- Test on examples where magnitude for one category is fixed:

A	4	4	4	4	4	4	4	4	4
В	8	7	6	5	4	3	2	1	0
\overline{C}	Q_{α}	1	2,	3	4	5 3 3	6	7	8

- Ask subjects one of two questions:
 - -Category A, B or C?
 - -Category B or C (A disallowed)?

Dependent Measure I

• Probability of choosing the fixed-magnitude alternative:

$$P(A:A,B,C) = \frac{V_A}{V_A + V_B + V_C}$$

Dependent Measure II

$$q = \frac{\Pi(B: B, X) - \Pi(B: A, B, X)}{\Pi(B: A, B, X)}$$

$$q = \frac{\frac{V_B}{V_B + V_C} - \frac{V_B}{V_A + V_B + V_C}}{\frac{V_B}{V_A + V_B + V_C}} \qquad q = \frac{V_A}{V_B + V_C}$$

A Prediction of the Ratio Rule

Compare the two equations:

$$P(A:A,B,C) = \frac{V_A}{V_A + V_B + V_C}$$
$$q = \frac{V_A}{V_B + V_C}$$

• Any given change in (v_B+v_C) must produce the same direction of change in q and P(A:A,B,C)

Further Predictions

Further Predictions

Replication and Extension

• Extra three-choice condition - category A elements replaced with novel elements at test.

$$q' = \frac{P(b:a,b,c)' - P(b:a,b,c)}{P(b:a,b,c)} = \frac{\frac{V_B}{V_N + V_B + V_C} - \frac{V_B}{V_A + V_B + V_C}}{\frac{V_B}{V_A + V_B + V_C}}$$

$$q' = \frac{\sigma_{\!\!A} - \sigma_{\!\!N}}{\sigma_{\!\!B} + \sigma_{\!\!A} + \sigma_{\!\!N}}$$

Modification of the Ratio Rule?

Restle modification

$$P(A:A,B) = \frac{V_A - O_{AB}}{V_A + V_B - 2O_{AB}}$$

Tversky extension

Thurstonian Choice

Pick the biggest from noisy alternatives

Thurstonian Choice

• Ratio Rule and Thurstonian Choice not equivalent

Simulation

Connectionist Implementation

Simulation

Simulation

Time Pressure

No Timeout

2.5s Timeout

1s Timeout

Summary

- The Ratio Rule is not a good theory of categorical decisions
- Could radically revise magnitude-based theories *a la* Tversky (1972)
- Or make the straightforward switch to Thurstonian choice