Swarm intelligence

Prof Dr Marko Robnik Šikonja Intelligent Systems, October 2018

Nature inspired methods

- besides evolutionary computation, nature is an inspiration for many other computational algorithms
- Swarm intelligence (SI) is the collective behavior of decentralized, self-organized systems, natural or artificial.
- * A population of simple agents interacting locally with one another and with their environment.
- The agents follow very simple rules, and although there is no centralized control structure dictating how individual agents should behave, local, and to a certain degree random, interactions between such agents lead to the emergence of "intelligent" global behavior, unknown to the individual agents.
- Examples in natural systems of SI include ant colonies, bird flocking, animal herding, bacterial growth, fish schooling and microbial intelligence.

Computational SI

- computational properties

 - * Autonomous individual
 - ★ Communication between agents
- particle swarm optimization
- ant colony optimization

Swarming – the definition

aggregation of similar animals, generally cruising in the same direction

- * Termites swarm to build colonies
- Birds swarm to find food
- Bees swarm to reproduce

Swarming is powerful

Swarms can achieve things that an individual cannot

Human swarms

Powerful ... but simple

All evidence suggests:

- No central control
- Only simple rules for each individual
- Emergent phenomena
- Self-organization

Harness this power out of simplicity

- Technical systems are getting larger and more complex
 - ★ Global control hard to define and program
 - ★ Larger systems lead to more errors
- * Swarm intelligence systems are:
 - **※** Robust
 - Relatively simple (How to program a swarm?)

Swarming – example

Bird flocking

- * "Boids" model was proposed by Reynolds (1985)
 - ★ Boids = Bird-oids (bird like)

Only three simple rules

Collision Avoidance

Rule 1: Avoid Collision with neighboring birds

Velocity matching

Rule 2: Match the velocity of neighboring birds

Flock centering

Rule 3: Stay near neighboring birds

Define the neighborhood

- Model the view of a bird
- Only local knowledge, only local interaction
- * Affects the swarm behavior (fish vs. birds)

Swarming - characteristics

Simple rules for each individual

- * No central control
 - ★ Decentralized and hence robust

- Emergent
 - ★ Performs complex functions

Ant Colony Optimization - Biological Inspiration

- Inspired by foraging behavior of ants.
- Ants find shortest path to food source from nest.
- * Ants deposit pheromone along traveled path which is used by other ants to follow the trail.
- This kind of indirect communication via the local environment is called stigmergy.
- Has adaptability, robustness and redundancy.

2 ants start with equal probability of going on either path.

* The ant on shorter path has a shorter to-and-fro time from it's nest to the food.

* The density of pheromone on the shorter path is higher because of 2 passes by the ant (as compared to 1 by the other).

* The next ant takes the shorter route.

* Over many iterations, more ants begin using the path with higher pheromone, thereby further reinforcing it.

* After some time, the shorter path is almost exclusively used.

Ant colony

- Pheromones
- * Ants lead their sisters to food source
- Evaporation
- Moving targets

Generic ACO

- * Formalized into a metaheuristic.
- Artificial ants build solutions to an optimization problem and exchange info on their quality vis-àvis real ants.
- * A combinatorial optimization problem reduced to a construction graph.
- * Ants build partial solutions in each iteration and deposit pheromone on each edge.

ACO pseudo code

Initialization of pheromones

do {

for each ant

find solution: use pheromones and cost of path to select route apply local optimization (optional) update pheromones: enforcement, evaporation

} while (! satisfied)

return best overall solution

ACO details

- Pheromones updates
 - \bullet ρ speed of evaporation
 - ★ Trails updates
 - **Many variants**

$$\tau_{i,j} = (1 - \rho)\tau_{i,j} + \Delta \tau_{i,j}$$

$$\Delta \tau_{i,j} = \begin{cases} 1/C & \text{if ant takes the connection between i, j} \\ 0 & \text{otherwise} \end{cases},$$

where C is a cost of edge i, j

ACO for TSP

- cities 1,2,...,n
- cost c_{i,j}
- construct the cheapest Hamiltonian tour through cities

 $p_{i,j} = \frac{\tau_{i,j}^{\alpha} \eta_{i,j}^{\beta}}{\sum \tau_{i}^{\alpha} n_{i}^{\beta}}$

- * Attractiveness $\eta_{i,j} = 1/c_{i,j}$
- Probability of ant's transition
- * α impact of pheromones
- $*\beta$ impact of transition cost

A simple TSP example

 $d_{AB} = 100; d_{BC} = 60...; d_{DE} = 150$

Iteration 1

How to build next sub-solution?

Iteration 2

Iteration 3

Ε

Iteration 4

Iteration 5

Path and Pheromone Evaluation

End of First Run

Save Best Tour (Sequence and length)

Do Next Run

Stopping criteria

- Stagnation
- Max iterations

General ACO

- A stochastic construction procedure
- Probabilistically build a solution
- Iteratively adding solution components to partial solutions
 - Heuristic information
 - Pheromone trail
- Reinforcement Learning reminiscence
- Modify the problem representation at each iteration

General ACO

- Ants work concurrently and independently
- Collective interaction via indirect communication leads to good solutions

Some advantages

- Positive feedback accounts for rapid discovery of good solutions
- Distributed computation avoids premature convergence
- * The greedy heuristic helps find acceptable solution in the early stages of the search process.
- * The collective interaction of a population of agents.

Disadvantages in Ant Systems

- possibly slow convergence
- No centralized processor to guide the AS towards good solutions

Improvements to Ant Systems

- Daemon actions are used to apply centralized actions
 - Local optimization procedure
 - 🔀 Bias the search process from global information
- Max-Min Ant System

$$\tau_{min} \leq \tau_{ij} \leq \tau_{max}$$

- * pheromone values are limited
- ★ Only best ant can add pheromone
- X Sometimes uses local search to improve its performance

Quadratic Assignment Problem(QAP)

Problem is:

- Assign n activities to n locations (campus and mall layout).
- D= $[d_{i,j}]_{n,n}$, distance from location i to location j
- F= $[f_{h,k}]_{n,n}$, $f_{i,j}$, flow from activity h to activity k
- Assignment is permutation π
- Minimize:

$$C(\pi) = \sum_{i,j=1}^{n} d_{ij} f_{\pi(i)\pi(j)}$$

It's NP hard

QAP Example

How to assign facilities to locations?

Lower cost

SIMPLIFIED CRAFT (QAP)

Simplification Assume all departments have equal size

Notation

 $d_{i,\, i}$ distance between **locations** i and j

 $f_{k,h}$ travel frequency between **departments** k and h

 $X_{i,k}$ 1 if department k is assigned to location i 0 otherwise

Example

Department ("Facility")

Distance $d_{i,j}$						
	1	2	3	4		
1	•	1	1	2		
2	1	•	2	1		
3	1	2	•	1		
4	2	1	1	-		

Frequency $f_{k,h}$							
	1	2	3	4			
1	-	1	3	2			
2	2	•	0	1			
3	1	4		0			
4	1	1	1				

Ant System (AS-QAP)

Constructive method:

step 1: choose a facility j

step 2: assign it to a location i

Characteristics:

- each ant leaves trace (pheromone) on the chosen couplings (i,j)
- assignment depends on the probability (function of pheromone trail and a heuristic information)
- already coupled locations and facilities are inhibited (Tabu list)

AS-QAP Heuristic information

Distance and Flow Potentials

$$D_{ij} = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 4 & 5 \\ 2 & 4 & 0 & 6 \\ 3 & 5 & 6 & 0 \end{bmatrix} \Rightarrow D_{i} = \begin{bmatrix} 6 \\ 10 \\ 12 \\ 14 \end{bmatrix} \qquad F_{ij} = \begin{bmatrix} 0 & 60 & 50 & 10 \\ 60 & 0 & 30 & 20 \\ 50 & 30 & 0 & 50 \\ 10 & 20 & 50 & 0 \end{bmatrix} \Rightarrow F_{i} = \begin{bmatrix} 120 \\ 110 \\ 130 \\ 80 \end{bmatrix}$$

The coupling Matrix:

$$S = \begin{bmatrix} 720 & 1200 & 1440 & 1680 \\ 660 & 1100 & 1320 & 1540 \\ 780 & 1300 & 1560 & 1820 \\ 480 & 800 & 960 & 1120 \end{bmatrix} \qquad \begin{aligned} \mathbf{s}_{11} &= f_1 \bullet d_1 = 720 \\ \mathbf{s}_{34} &= f_3 \bullet d_4 = 960 \end{aligned}$$

Ants choose the location according to the heuristic desirability "Potential goodness"

$$\zeta_{ij} = \frac{1}{s_{ij}}$$

AS-QAP Constructing the Solution

- > The facilities are ranked in decreasing order of the flow potentials
- Ant k assigns the facility i to location j with the probability given by:

$$p_{ij}^{k}(t) = \begin{cases} \frac{\tau_{ij}(t)^{\alpha} \eta_{ij}^{\beta}}{\sum_{l \in N_{i}^{k}} \tau_{ij}(t)^{\alpha} \eta_{ij}^{\beta}} & \text{if} \quad j \in N_{i}^{k} \end{cases}$$

where N_i^k is the feasible Neighborhood of node i

- ➤When Ant k choose to assign facility j to location i it leave a substance, called trace "pheromone" on the coupling (i,j)
- Repeated until the entire assignment is found

AS-QAP Pheromone Update

Pheromone trail update to all couplings:

$$\tau_{ij}(t+1) = \rho \cdot \tau_{ij}(t) + \sum_{k=1}^{m} \Delta \tau_{ij}^{k}$$

 Δau_{ij}^k is the amount of pheromone ant k puts on the coupling (i,j)

$$\Delta_{ij}^{k} = \begin{cases} \frac{Q}{J_{\psi}^{k}} & \text{if facility i is assigned to location j in the solution of ant k} \\ 0 & \text{otherwise} \end{cases}$$

- \bullet J_{ψ}^{k} ...the objective function value
- Q...the amount of pheromone deposited by ant k

Hybrid Ant System For The QAP

Constructive algorithms often result in a poor solution quality compared to local search algorithms.

Repeating local searches from randomly generated initial solution results for most problems in a considerable gap to optimal soultion

➤ Hybrid algorithms combining solution constructed by (artificial) ant "probabilistic constructive" with local search algorithms yield significantly improved solution.

Hybrid Ant System For The QAP (HAS-QAP)

HAS-QAP uses of the pheromone trails in a non-standard way. used to modify an existing solution,

> improve the ant's solution using the local search algorithm.

Intensification and diversification mechanisms.

Hybrid Ant System For The QAP (HAS-QAP)

```
Generate m initial solutions, each one associated to one ant
   Initialise the pheromone trail
   For Imax iterations repeat
     For each ant k = 1, \ldots, m do
       Modify ant k;s solution using the pheromone trail
       Apply a local search to the modified solution
       new starting solution to ant k using an intensification mechanism
     End For
     Update the pheromone trail
     Apply a diversification mechanism
End For
```

HAS-QAP Intensification& diversification mechanisms

- The intensification mechanism is activated when the best solution produced by the search so far has been improved.
- The diversification mechanism is activated if during the last *S* iterations no improvement to the best generated solution is detected.

ACO for rule learning

- IF-THEN rules are comprehensible
- usually achieve lower classification accuracy compared to the best black-box machine learning approaches
- * ACO based rule mining algorithms build a discrete search space, represented by a graph, in which ants try to find the best rule set by discrete optimization.
- good for discrete optimization but can be problematic when datasets are described with numeric or mixed attribute types
- can use discretization as a pre-processing step

Ant-Miner idea

- Parpinelli (2002)
- separate and conquer approach for rule generation
 - ★ generate one rule
 - remove (separates) the covered examples from the dataset
 - learn the remaining rules (conquers) from the remaining
- can only use nominal attributes

Ant-Miner algorithm

- construct a discrete search space from given data
- ants forage the graph from the start to the end node and the path they make describes a classification rule
- * the found rules are evaluated and based on their quality, and the paths by which they were constructed are strengthened by artificial pheromones
- * the process is repeated until all or most of the ants converge to a single path and then the corresponding rule is added to the rule set
- * the examples covered by this rule are removed from the training data and the process is repeated until no more data remains.

Ant-Miner graph

Particle Swarm Optimization (PSO)

- A population based stochastic optimization technique
- Searches for an optimal solution in the computable search space
- Developed in 1995 by Eberhart and Kennedy
- Inspiration: swarms of bees, flocks of birds, schools of fish

More on PSO

- In PSO individuals strive to improve themselves and often achieve this by observing and imitating their neighbors
- Each PSO individual has the ability to remember
- PSO has simple algorithms and low overhead
 - Making it more popular in some circumstances than Genetic/Evolutionary Algorithms
 - Has only one operation calculation:
 - Velocity: a vector of numbers that are added to the position coordinates to move an individual

Psychological Systems

- A psychological system can be thought of as an "information-processing" function
- You can measure psychological systems by identifying points in psychological space
- Usually the psychological space is considered to be multidimensional

"Philosophical Leaps" Required:

- Individual minds = a point in space
- Multiple individuals can be plotted in a set of coordinates
- Measuring the individuals result in a "population of points"
- Individuals near each other imply that they are similar
- Some areas of space are better than others
 - Location, location, location...

Applying Social Psychology

- Individuals (points) tend to
 - Move towards each other
 - Influence each other
 - Why?
 - Individuals want to be in agreement with their neighbors
- Individuals (points) are influenced by:
 - Their previous actions/behaviors
 - The success achieved by their neighbors

What Happens in PSO

- Individuals in a population learn from previous experiences and the experiences of those around them
- The direction of movement is a function of:
 - Current position
 - Velocity (or in some models, probability)
 - Location of individuals "best" success
 - Location of neighbors "best" successes
- Therefore, each individual in a population will gradually move towards the "better" areas of the problem space
- Hence, the overall population moves towards "better" areas of the problem space

Performance of PSO Algorithms

- Relies on selecting several parameters correctly
- Parameters:
 - Constriction factor
 - Used to control the convergence properties of a PSO
 - Inertia weight
 - How much of the velocity should be retained from previous steps
 - Cognitive parameter
 - The individual's "best" success so far
 - Social parameter
 - Neighbors' "best" successes so far
 - Vmax
 - Maximum velocity along any dimension

PSO: Neighborhood

Particle Swarm Optimization (PSO)

one can imagine that each particle is represented with two vectors, location and velocity

$$\times$$
 Location $x = (x_1, x_2, ...)$

$$\approx$$
 velocity $V = (V_1, V_2, ...)$

x for locations x(t-1) and x(t) in time t-1 and t=1

$$\vec{v} = \vec{x}(t) - \vec{x}(t-1)$$

Initialization of locations and velocities (small initial values, e.g., one half of distance to the neighboring particle, random, or o)

Information exchange in the swarm

- ★ Best location of informants x⁺

Moving particles

- in each time step, the following operations are executed
- compute the fitness of each particle and update x*, x* in x!
- 2. update the representation of particle
 - \times velocity vector takes into account updated directions x^* , x^+ in $x^!$
 - each direction is updated with some random noise
- 3. move the particle in the direction of velocity vector

Computing new position

PSO - parameters

- lacktriangledown proportion of current velocity vector ${\bf v}$
- β proportion of the best value of location x*
 too large value pushes towards its maximum and we get a swarm of greedy searchers and no group dynamics
- \bullet δ proportion of the best global location $x^!$ too large value pushes particles towards the current global maximum and we get a single greedy search, instead of several local searches (often we set this parameter to o)
- * γ proportion of the best value of informants x^+ the effect between β and δ , depends also on the number of informants: more informants emphasizes global, less informants emphasiyes effect of local information
- ε speed of particle movement too large speed may cause too fast convergence without enough search (default value is 1)
- swarmsize size of swarm (between 20 and 50)

PSO pseudocode

```
P = []
for (i=0 ; i < swarmsize ; i++)
    P_i = new particle with random position x and random velocity v
best = null
do {
   for (i=0; i < swarmsize; i++) {</pre>
       compute fitness(P<sub>i</sub>)
        if (fitness(P<sub>i</sub>) > fitness(best) )
            best = P_{i}
   for (i=0 ; i < swarmsize ; i++) {
      x^* = update location of the best fitness of x_i
      x^{+} = update location of the best fitness of informants of x_{i}
      x^! = update location of the best fitness of all particles
       for (j=0; j < \#dimensions; j++) {
         b = random between 0 and <math>\beta
         c = random between 0 and \gamma
          d = random between 0 and \delta
          v_{i} = \alpha v_{i} + b(x_{i}^{*} - x_{i}) + c(x_{i}^{*} - x_{i}) + d(x_{i}^{!} - x_{i})
       x_i = x_i + \epsilon \cdot v
} while (!satisfied with best or our of time)
return best
```


simulation₃

simulation₅

simulation₈

PSO characteristics

Advantages

- Insensitive to scaling of design variables
- X Simple implementation
- Easily parallelized for concurrent processing
- Derivative free
- ★ Very few algorithm parameters
- ∀ Very efficient global search algorithm

Disadvantages

- Tendency to a fast and premature convergence in mid optimum points

More ideas from nature

- Bee swarm
- Immune systems
- Simulated annealing
- many more, some with dubious value