- 4. 1 Introducción
- 4.2 Circuitos virtuales y redes de datagramas
- 4.3 ¿Qué hay dentro de un router?
- 4.4 IP: Internet Protocol
 - Formato de Datagrama
 - Direccionamiento IPv4
 - ICMP
 - IPv6

- 4.5 Algoritmos de ruteo
 - Estado de enlace
 - Vector de Distancias
 - Ruteo Jerárquico
- 4.6 Ruteo en la Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Ruteo Broadcast y multicast

Algoritmos de ruteo

Según información global o descentralizada

Global:

- Todos los routers tienen la topología completa y constos de enlaces
- Algoritmo "estado de enlace"
- Descentralizada:
- El router comoce vecinos conectados físicamente y su costo del enlace a ellos.
- Proceso iterativo de cómputo e intercambio de información con sus vecinos
- Algoritmo "vector de distancia"

Según si es estático o dinámico

Estático:

 Las rutan cambian lentamente en el tiempo

Dinámico:

- Las rutas cambian más rápidamente
 - Actualizaciones periódicas
 - En respuesta a cambios de costos de enlaces

- 4. 1 Introducción
- 4.2 Circuitos virtuales y redes de datagramas
- 4.3 ¿Qué hay dentro de un router?
- 4.4 IP: Internet Protocol
 - Formato de Datagrama
 - Direccionamiento IPv4
 - ICMP
 - IPv6

- 4.5 Algoritmos de ruteo
 - Estado de enlace
 - Vector de Distancias
 - Ruteo Jerárquico
- 4.6 Ruteo en la Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Ruteo Broadcast y multicast

Algoritmo de estado de enlace

Algoritmo de Dijkstra

- Supone topología de red y costos de enlaces conocidos a todos los nodos
 - Se logra vía "difusión de estado de enlace"
 - Todos los nodos tienen la misma información
- Se calcula el camino de costo menor desde un nodo (fuente) a todos los otros
 - Entrega la tabla de reenvío para ese nodo
- iterativo: después de k iteraciones, conoce camino de menor costo a k destinos

Notación:

- c(x,y): costo del enlace desde nodo x a y; = ∞ si no es vecino directo
- D(v): valor actual del costo del camino desde fuente a destino v.
- p(v): nodo predecesor a v en el camino de fuente a v.
- N': conjunto de nodos cuyo camino de costo mínimo ya se conoce

Modelo abstracto de la red

Algoritmo de Dijsktra

```
1 Inicialización:
2 N' = {u}
3 para todos los nodos v
4 si v es adyacente a u
5 D(v) = c(u,v)
6 si no
7 D(v) = ∞
```

Notación:

- c(x,y): costo del enlace desde nodo x a y; = ∞ si no es vecino directo D(v): valor actual del costo del camino desde
- D(v): valor actual del costo del camino desde fuente a destino v
- p(v): nodo predecesor a v en el camino desde origen hasta v
- N': conjunto de nodos cuyo camino de costo mínimo ya se conoce

- 8 Repetir
- 9 buscar w no presente en N' tal que D(w) sea mínimo
- 10 agregar w a N'
- 11 actualizar D(v) para todo v adyacente a w y no en N' usando:
- 12 D(v) = min(D(v), D(w) + c(w,v))

/* el nuevo costo a v es, ya sea el costo del camino actual a v, o el costo del camino más corto conocido a w más el costo de w a v*/

15 hasta que todos los nodos estén en N'

Algoritmo de Dijkstra

step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	U	2, u	5,u	1,u	∞	∞
1	UX	2 , u	4,x		2,x	∞
2	uxy	2 ,u	3,y			4 ,y
3	UXYV		3,y			4 ,y
4	UXYVW					4 ,y
5	uxyvwz					

- 4. 1 Introducción
- 4.2 Circuitos virtuales y redes de datagramas
- 4.3 ¿Qué hay dentro de un router?
- 4.4 IP: Internet Protocol
 - Formato de Datagrama
 - Direccionamiento IPv4
 - ICMP
 - IPv6

- 4.5 Algoritmos de ruteo
 - Estado de enlace
 - Vector de Distancias
 - Ruteo Jerárquico
- 4.6 Ruteo en la Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Ruteo Broadcast y multicast

Algoritmo Vector de Distancia

<u>Ecuación de Bellman-Ford (programación dinámica)</u> Define

 $d_x(y) := costo del camino de menor costo de x a y$

Entonces:

 $d_x(y) = min \{c(x,v) + d_v(y) / v \text{ es vecino de } x\}$

Donde min es tomado sobre todos los vecinos v de x

Algoritmo Vector de Distancia

- D_x(y) = costo mínimo estimado de x a y
- Vector de distancia: $\mathbf{D}_{\mathbf{x}} = [\mathbf{D}_{\mathbf{x}}(\mathbf{y}): \mathbf{y} \in \mathbf{N}]$
- Nodo x conoce el costo a cada vecino v: c(x,v)
- Nodo x mantiene D_x = [D_x(y): y ∈ N]
- Nodo x también mantiene los vectores de distancia de sus vecinos
 - Para cada vecino v, x mantiene
 D_v = [D_v(y): y ∈ N]

Algoritmo Vector de distancia

Idea básica:

- Cada nodo envía periódicamente su vector de distancia estimado a sus vecinos
- Cuando el nodo x recibe un nuevo DV estimado desde un vecino, éste actualiza su propio DV usando la ecuación de B-F:

$$D_{x}(y) \leftarrow \min_{y} \{c(x,y) + D_{y}(y)\}$$
 para cada nodo $y \in N$

Bajo condiciones naturales, el valor estimado de $D_x(y)$ converge al menor costo real $d_x(y)$

Algoritmo Vector de Distancia

Iterativo y asincrónico

- Cada iteración local es causada por:
 - Cambio en costo de enlace local
 - Actualización de DV por mensaje de vecino

Distribuido:

- Cada nodo notifica a sus vecinos sólo cuando su DV cambia
 - Los vecinos entonces notifican a sus vecinos si es necesario

Cada nodo:

wait for (cambio en costo de enlace local o llegada de mensaje desde vecino) recompute DV estimado if (DV a cualquier destino ha cambiado) notificar a vecinos

Ejemplo Vector de distancia

Node x table

Time

Casos en algoritmo DV

Figure 4.28 ♦ Changes in link cost

- Considerar que y detecta el cambio:
- El caso a conduce a una situación estable en dos iteraciones.
- Caso b conduce a un loop
- Caso b la actualización toma mucho tiempo, se conoce como problema de cuenta al infinito
- ¿Solución?: Que nodo z informe a su vecino y que su ruta a x es infinita cuando z llega a x vía y

Comparación de Algoritmos de estado (LS) de enlace y vector de distancia (DV)

Complejidad de mensajes

- LS: con n nodos, E enlaces, O(nE) mensajes son enviados
- DV: sólo intercambios entre vecinos
 - Tiempo de convergencia varía

Rapidez de convergencia

- LS: O(n2), algoritmo requiere O(nE) mensajes
 - Puede tener oscilaciones
- DV: tiempo de convergencia varía
 - Podría entrar en loops
 - Problema de cuenta al infinito

Robustez

¿Qué pasa si un router funciona mal?

LS:

- Nodos pueden comunicar incorrecto costo *link*
- Cada nodo computa sólo su propia tabla

DV:

- DV nodo puede comunicar costo de camino incorrecto
- La tabla de cada nodo es usada por otros
 - error se propaga a través de la red

- 4. 1 Introducción
- 4.2 Circuitos virtuales y redes de datagramas
- □ 4.3 ¿Qué hay dentro de un router?
- 4.4 IP: Internet Protocol
 - Formato de Datagrama
 - Direccionamiento IPv4
 - O ICMP
 - IPv6

- 4.5 Algoritmos de ruteo
 - Estado de enlace
 - Vector de Distancias
 - Ruteo Jerárquico
- 4.6 Ruteo en la Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Ruteo Broadcast y multicast

Ruteo Jerárquico

Nuestro estudio del ruteo hasta ahora es idealizado. Suponemos que:

Todos los routers son idénticos

La red es "plana"

... esto no es verdad en la práctica

Escala: con 200 millones de destinos:

No podemos almacenar todos los destinos en tablas de ruteo

Los intercambios de tablas de ruteo inundarían los enlaces

Autonomía administrativa internet = red de redes Cada administrador de red puede querer controlar el ruteo en su propia red

Ruteo Jerárquico

- Agrupar routers en regiones, "sistemas autónomos" (autonomous systems, AS)
- Routers en el mismo AS corren el mismo protocolo de ruteo
- Protocolo de ruteo "intra-AS"
- Routers en diferentes AS pueden correr diferentes protocolos intra-AS

- Router de borde (Gateway router)
 - Tienen enlace directo a routers en otros sistemas autónomos

Ruteo Jerárquico

Figure 4.29 ◆ An example of interconnected autonomous systems

Tabla de re-envío en router 1d

- Supongamos que AS1 aprende del protocolo inter-AS que la subred x es alcanzable desde AS3 (gateway 1c) pero no desde AS2.
- El protocolo inter-AS propaga la información de alcance a todos los routers internos.
- Router 1d determina de la información de ruteo intra-AS que su interfaz I está en el camino de costo mínimo a 1c.
- Luego éste pone en su tabla de re-envío (x,I).

Elección entre múltiples ASes

- Ahora supongamos que AS1 aprende del protocolo inter-AS que la subred x es alcanzable desde AS3 y desde AS2.
- Para configurar la tabla de re-envío, router 1d debe determinar hacia qué gateway éste debería re-enviar los paquetes destinados a x.
- Ésta es también una tarea del protocolo de ruteo inter-AS!
- Ruteo de la papa caliente (Hot potato routing): enviar el paquete hacia el router más cercano de los dos.

- 4. 1 Introducción
- 4.2 Circuitos virtuales y redes de datagramas
- □ 4.3 ¿Qué hay dentro de un router?
- 4.4 IP: Internet Protocol
 - Formato de Datagrama
 - Direccionamiento IPv4
 - O ICMP
 - IPv6

- 4.5 Algoritmos de ruteo
 - Estado de enlace
 - Vector de Distancias
 - Ruteo Jerárquico
- 4.6 Ruteo en la Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Ruteo Broadcast y multicast