Nombre de la asignatura: Análisis y control de sistemas no lineales

LGAC: Control de procesos energéticos

Tiempo de dedicación del estudiante a las actividades:

DOC (48) - TIS (20) - TPS (100) - 168 horas totales - 6 Créditos

1. Historia de la asignatura.

Fecha revisión/actualización	Participantes	Observaciones, cambios y justificación.
Marzo de 2017 Instituto Tecnológico de	M.C. Marcos Alonso Méndez Gamboa	Primera versión como curso básico del programa de posgrado.
Veracruz	M.C. José Antonio Hernández Reyes	

2. Prerrequisitos y correquisitos.

Matemáticas aplicadas a la ingeniería y sistemas electrónicos de instrumentación y control

3. Objetivo de la asignatura.

Estudiar conceptos, teorías y conocimientos recientes sobre el control de sistemas no lineales para realizar diferentes tipos de análisis y síntesis en estos sistemas.

4. Aportaciones al perfil del graduado.

La materia contribuye en la formación del alumno en lo referente al control de sistemas no lineales de manera que pueda analizar y aportar soluciones originales desde el punto de vista tanto científico como tecnológico.

5. Contenido temático.

UNIDAD	TEMA	SUBTEMAS	
1	Introducción	1.1. Conceptos básicos sobre sistemas no lineales.	
		1.2. Sistemas de segundo orden.	
		1.3. Preliminares matemáticos.	
2	Algebra Lineal y	2.1. Estabilidad en el sentido de Lyapunov.	
	Vectorial	2.2. Estabilidad de sistemas perturbados.	
		2.3. Estabilidad entrada-salida.	
3	Control por rediseño	3.1 Introducción.	
	de Lyapunov.	3.2 Mejoramiento de la robustez.	
4	Sistemas en tiempo	4.1 Control "backsteping"	
	discreto	4.2 Control por modos deslizantes.	
		4.3 Control adaptable.	

6. Metodología de desarrollo del curso.

El docente impartirá la materia desarrollando problemas relacionados con el contenido temático de una manera analítica y comprobando resultados con la aplicación de herramientas de software para simulación como Matlab y Maple. También debe validar experimentalmente los conocimientos adquiridos.

7. Sugerencias de evaluación.

Se sugiere que la evaluación de la asignatura se realice con base en el siguiente desempeño:

- Que el alumno estudie y analice un articulo relacionado con su línea de investigación y establezca las correspondencias con los temas tratados.
- Realizar reportes intermedios durante el semestre para evaluar el avance de su trabajo.
- Exámenes por unidad para evaluar sus conocimientos.
- Elaboración de prácticas ya sea bajo simulación o experimentos para comprobar lo estudiado.
- Proyecto experimental final.

8. Fuentes de información

Lectura obligatoria:

H. Khalil, "Nonlinear Systems". Ed. Prentice Hall. 1996

Lectura complementaria:

- M.W. Spong and M. Vidyasagar, "Robot dynamics and control". Ed. John Wiley and Sons. 1989.
- J.J.E Slotine and W. Li, "Applied nonlinear control". Ed. Prentice Hall. 1991.
- R. Sepulchre, M. Jankovic and P. Kokotovic, "Constructive nonlinear control", Ed. Springer-Verlag. 1997

Software de apoyo:

- Matlab
- Maple

9. Actividades propuestas

 Para complementar los conocimientos teóricos estudiados se propone la elaboración de prácticas bajo simulación o experimentación. Por ejemplo, simulación y experimentación de un sistema de control no lineal para un péndulo simple, para un levitador magnético, para un helicóptero de 2 grados de libertad, para un robot móvil, para un sistema caótico, etc.

10. Nombre y firma de los catedráticos responsables.

M.C. Marcos Alonso Méndez Gamboa	
M.C. José Antonio Hernández Reyes	