We claim:

l	1.	A method for generating electricity, comprising:
2		converting wave motion into mechanical power;
3		driving a fluid matter as a function of the mechanical power to a reservoir;
ļ		flowing the fluid matter from the reservoir; and
5		converting at least a portion of a kinetic energy of the flowing fluid matter into
5	electrical ener	rgy.
Ĺ	2.	The method according to claim 1, wherein said converting wave motion into
2	mechanical p	ower includes moving a member in a first direction and a second direction in
3	response to th	e wave motion moving the member in the first and second directions, respectively.
l	3.	The method according to claim 2, wherein said driving the fluid matter further
2	includes:	
3		intaking the fluid matter in response to the wave motion moving the member in
ļ	the first direct	tion; and
5		exhausting the fluid matter in response to the wave motion moving the member in
5	the second dir	rection.
l	4.	The method according to claim 1, wherein said driving the fluid matter includes
2	forcing fluid	matter to an increased elevation to the reservoir.

2	the reservoir.		
1	6.	The method according to claim 1, further comprising increasing pressure of the	
2	fluid matter in the reservoir.		
1	7.	The method according to claim 1, wherein said flowing the fluid matter includes	
2	gravitating th	e fluid matter for converting the kinetic energy of the flowing fluid matter into	
3	electrical energy.		
1	8.	The method according to claim 1, wherein said flowing includes utilizing pressure	
2	to flow the fluid matter for said converting the kinetic energy of the flowing fluid matter int		
3	electrical energy.		
1	9.	The method according to claim 1, wherein said converting the flowing fluid	
2	matter include	es driving a turbine utilizing the flowing fluid matter.	
1	10.	The method according to claim 1, further comprising applying the electrical	
2	energy onto a power grid.		

The method according to claim 1, further comprising storing the fluid matter in

1

5.

1	11.	A system for generating electricity, comprising:
2	;	a pump located in a body of water and operable to convert wave motion from the
3	body of water i	nto mechanical energy, said pump including an input port and an output port;
4	:	an outlet line coupled to the output port of said pump;
5	;	a reservoir including an input feed port coupled to said outlet line, said pump
6	further operable	e to intake a fluid matter from the input port and drive the fluid matter through
7	said outlet line	to said reservoir via the input feed port, said reservoir further including an output
8	feed port to flow	w the fluid matter from said reservoir; and
9	:	a turbine operable to receive the flowing fluid matter from the output feed port of
10	said reservoir a	and convert at least a portion of a kinetic energy of the flowing fluid matter into
11	electrical energ	y.
1	12.	The system according to claim 11, wherein said pump is portable.
1	13.	The system according to claim 11, wherein said reservoir is located on land.
1	14.	The system according to claim 13, wherein the land is on top of a cliff.
1	15.	The system according to claim 13, wherein said reservoir is located over the body
2	of water.	
1	16.	The system according to claim 13, wherein said reservoir is located on a boat.
1	17.	The system according to claim 11, wherein the fluid matter is water.

1	19.	The system according to claim 11, wherein said reservoir is configured for a dual
2	purpose.	
1	20	
1	20.	The system according to claim 19, wherein the configuration of the reservoir
2	includes a fish hatchery.	
1	21.	The system according to claim 11, further comprising multiple pumps configured
2	to each receiv	e approximately the same amount of energy from a wave.
1	22.	The system according to claim 21, wherein the configuration of the multiple
2	pumps includ	es a grid for the pumps to be aligned.
1	23.	The system according to claim 22, wherein the grid includes a plot for each pump,
2	each pump ha	ving an empty plot between each other pump.
1	24.	The system according to claim 23, wherein the pumps are positionally offset by a
2	row along cor	secutive columns.
1	25	The greatest energies to claim 21 submain the configuration of the course
1	25.	The system according to claim 21, wherein the configuration of the pumps forms
2	a pump field,	a shoreline located perpendicular to the direction of travel of the wave receiving
3	substantially t	he same sized wave as if the pump field did not exist.

The system according to claim 11, wherein said pump is a buoyancy pump.

18.

1

- 1 26. The system according to claim 11, wherein said pump includes at least one
- 2 adjustable element operable to be altered based on the wave motion.
- 1 27. The system according to claim 11, wherein said pump is composed of a plurality
- 2 of pilings aligned by at least one buoyancy chamber ring.

1	28.	A system for generating electricity, comprising:
2		means for converting wave motion into mechanical power;
3		means for driving a fluid matter as a function of the mechanical power to a
4	reservoir, said	I means for driving functioning in conjunction with said means for converting;
5		means for flowing the fluid matter coupled to the reservoir; and
6		means for converting at least a portion of a kinetic energy of the flowing fluid
7	matter into electrical energy, said means for converting operable to receive the flowing flui	
8	matter from said means for flowing.	
1	29.	The system according to claim 28, further comprising means for increasing
2	pressure of the fluid matter in the reservoir.	
1	30.	The system according to claim 28, further comprising means for applying the
2	electrical ener	gy onto a power grid.

1 31. A system for designing a buoyancy pump device, said system comprising:
2 a computing system including a processor operable to execute software, the
3 software operable to receive input parameters containing historical wave data from an area of a
4 body of water and calculate at least one dimension of a buoyancy device of the buoyancy pump
5 device as a function of the input parameters, the at least one dimension of the buoyancy device
6 adapted to enable the buoyancy device to create lift pressure for a fluid matter being driven by
7 the buoyancy pump device.

- 1 32. The system according to claim 31, wherein said computing system includes a storage unit containing the historical wave data.
- 1 33. The system according to claim 31, wherein said computing system further 2 includes an input/output (I/O) unit in communication with the processor and a network, the I/O unit operable to communicate with and access a wave data server storing the historical wave data.
- 1 34. The system according to claim 31, wherein the historical wave data includes 2 average wave data over at least one duration of time.
- 1 35. The system according to claim 31, wherein the fluid matter is a liquid.
- 1 36. The system according to claim 31, wherein the fluid matter is a gas.

The system according to claim 31, wherein the at least one dimension includes a 2 diameter of a buoyancy block. 38. 1 The system according to claim 31, wherein the at least one dimension includes a 2 dimension for a piston. The system according to claim 31, wherein the software includes a spreadsheet. 1 39. 40. 1 The system according to claim 31, wherein the software includes lines of code. 1 41. The system according to claim 31, wherein the software is operable to receive the

1

2

37.

input parameters automatically.

1 42. A system for generating electricity from a turbine as a function of wave energy 2 from a body of water, said system comprising: 3 a plurality of buoyancy pump devices configured in the body of water at spacings 4 (i) to enable a wave to substantially re-form after passing at least one first buoyancy pump device 5 and (ii) to drive at least one second buoyancy pump device, said buoyancy pump devices 6 operable to displace a fluid matter to drive the turbine. 1 43. The system according to claim 42, wherein said buoyancy pumps are configured 2 in a grid arrangement of plots formed of rows and columns. 1 44. The system according to claim 43, wherein each buoyancy pump is separated by 2 at least one plot along at least one of a row and column. 45. 1 The system according to claim 41, further comprising a reservoir for receiving the 2 displaced fluid matter and flowing the fluid matter to drive the turbine. 1 46. The system according to claim 41, further comprising power lines coupled to the 2 turbine for distributing electricity generated by the turbine in response to the turbine being driven 3 by the fluid matter. 1 47. The system according to claim 41, wherein said buoyancy pump devices include 2 at least one component configured to be altered during operation to alter operation of the 3 buoyancy pump devices based on wave parameters.

- 1 48. The system according to claim 47, wherein the at least one component is 2 configured to be automatically altered.
- 1 49. The system according to claim 41, wherein the number of said buoyancy pump 2 devices is based on an amount of power to be produced based on energy demands.
- 1 50. The system according to claim 49, wherein the number is scalable based on 2 energy demands.