第2回 季節性・トレンド・構造変化(2.3.1, 4.3.3)

村澤 康友

2022年10月4日

今日のポイント

- 1. 時系列から特定の成分を取り出す(取り除く)手法をフィルターという.
- 2. 時系列における季節特有の変動を季節性 (季節変動)という. 時系列から季節性を 取り除くことを季節調整という. 季節ダ ミー・季節階差・その他の様々な季節調整 法がある.
- 3. 時系列の長期的な傾向をトレンドという. 時点 t の n 次多項式で表すトレンドを n 次トレンドという. 時系列を滑らかにしてトレンドを求めることを平滑化という. 移動平均など様々な平滑化法がある.
- 4. 時系列(確率過程)の特性の予期せぬ変化 を構造変化という. 構造変化ダミーで構 造変化を調整する.

目次

フィルター

2	季節性	1	定拿
2.1	季節調整(p. 37)	1	(季
2.2	季節ダミー	1	定拿
2.3	季節階差	2	整
3	トレンドと平滑化	2	注
3.1	トレンドと平滑化 多項式トレンド	_	注い場
		2	

4	構造変化	4
4.1	構造変化ダミー	4
4.2	回帰モデル(p. 80)	4
_	A = 1, - 10	
5	今日のキーワード	4
6	次回までの準備	4

1 フィルター

必要なら時系列 $\{y_t\}$ を季節特有の変動 $\{S_t\}$,長期的な傾向 $\{T_t\}$,短期的な循環変動 $\{C_t\}$,不規則変動 $\{E_t\}$ に分解する.すなわち

$$y_t = S_t + T_t + C_t + E_t$$

 $\{T_t\}$ は長期予測, $\{C_t\}$ は短期予測に役立つ.

定義 1. 時系列から特定の成分を取り出す(取り除く)手法を**フィルター**という.

2 季節性

2.1 季節調整 (p. 37)

日本の月次の所得は6月と12月が多いなど,月次・四半期系列は季節特有の変動を含む.

定義 2. 時系列における季節特有の変動を季節性 (季節変動)という.

定義 3. 時系列から季節性を取り除くことを季節調整という.

注 1. 様々な季節調整法がある. 季節性に関心がない場合, 時系列を季節調整してから分析する.

2.2 季節ダミー

季節性の周期をJとする.

定義 4. j 番目の季節ダミーは

$$D_t^j := egin{cases} 1 & t & \text{id} j & \text{番目の季節} \\ 0 & \text{その他} \end{cases}$$

例 1. 四半期系列なら第 1 四半期~第 4 四半期ダ ミー. 月次系列なら 1 月~12 月ダミー.

注 2. 季節変動は次のように表せる.

$$S_t = \beta_1 D_t^1 + \dots + \beta_J D_t^J$$

 (β_1,\ldots,β_J) は OLS で推定できる。ただし定数項があると多重共線性が生じる。その場合は季節ダミーを1つ落とす。

2.3 季節階差

季節変動は季節ダミーで OLS 推定できるが、季 節階差で消してもよい.

定義 5. 周期 J の季節性をもつ時系列 $\{y_t\}$ の季節階差系列は $\{\Delta_J y_t\}$.

注 3. Δ_J は(後退)季節階差演算子. すなわち $\Delta_J y_t := y_t - y_{t-J}$.

定理 1.

$$S_t := \beta_1 D_t^1 + \dots + \beta_J D_t^J \Longrightarrow \Delta_J S_t = 0$$

証明.

$$\Delta_{J}S_{t} := S_{t} - S_{t-J}$$

$$= \beta_{1}D_{t}^{1} + \dots + \beta_{J}D_{t}^{J}$$

$$- (\beta_{1}D_{t-J}^{1} + \dots + \beta_{J}D_{t-J}^{J})$$

$$= \beta_{1} (D_{t}^{1} - D_{t-J}^{1}) + \dots$$

$$+ \beta_{J} (D_{t}^{J} - D_{t-J}^{J})$$

$$= 0$$

例 2. スイスの医薬品販売額の原系列・対数系列・ 対数階差・対数季節階差(図 1).

3 トレンドと平滑化

3.1 多項式トレンド

定義 6. 時系列の長期的な傾向をトレンドという.

定義 7. 時点 t の n 次多項式で表すトレンドを n 次トレンドという.

注 4. すなわち

$$T_t := \beta_0 + \beta_1 t + \dots + \beta_n t^n$$

 $(\beta_0, \dots, \beta_n)$ は OLS で推定できる.また 1 次トレンド=線形トレンド.

例 3. NYSE 総合指数(対数値)の 1 次トレンドと 残差(図 2).

3.2 階差

n 次トレンドは OLS 推定できるが,n 階差で消してもよい.

例 4. $T_t := \beta_0 + \beta_1 t$ とすると

$$\Delta T_t := T_t - T_{t-1}$$
= $(\beta_0 + \beta_1 t) - [\beta_0 + \beta_1 (t-1)]$
= β_1

 $T_t := \beta_0 + \beta_1 t + \beta_2 t^2$ とすると

$$\Delta T_t := T_t - T_{t-1}$$

$$= (\beta_0 + \beta_1 t + \beta_2 t^2)$$

$$- [\beta_0 + \beta_1 (t-1) + \beta_2 (t-1)^2]$$

$$= \beta_1 + \beta_2 [t^2 - (t-1)^2]$$

$$= \beta_1 + \beta_2 (2t-1)$$

$$\Delta^2 T_t := \Delta T_t - \Delta T_{t-1}$$

$$\Delta^{2}T_{t} := \Delta T_{t} - \Delta T_{t-1}$$

$$= [\beta_{1} + \beta_{2}(2t-1)]$$

$$- \{\beta_{1} + \beta_{2}[2(t-1) - 1]\}$$

$$= \beta_{2}[(2t-1) - (2t-3)]$$

$$= 2\beta_{2}$$

3.3 平滑化

定義 8. 時系列を滑らかにしてトレンドを求めることを**平滑化**という.

定義 9. 時系列の直近 *n* 期の観測値の平均を *n* **期** (単純) 移動平均という.

注 5. すなわち

$$T_t := \frac{y_t + \dots + y_{t-n+1}}{n}$$

ただし T_1, \ldots, T_{n-1} は求まらない.

図 1 スイスの医薬品販売額の原系列・対数系列・対数階差・対数季節階差

図 2 NYSE 総合指数 (対数値) の 1 次トレンドと残差

注 6. 他にも様々な平滑化法がある.

4 構造変化

4.1 構造変化ダミー

オイル・ショックやバブル崩壊など大きなショックにより,ある時点を境に時系列(確率過程)の特性が大きく変化する場合がある.確率過程 $\{Y_t\}$ の平均が時点 T で変化する場合は

$$E(Y_t) = \begin{cases} \mu_0 & \text{for } t < T \\ \mu_1 & \text{for } t \ge T \end{cases}$$

定義 10. 時系列(確率過程)の特性の予期せぬ変化を**構造変化**という.

定義 11. 時点 T の構造変化ダミーは

$$D_t := \begin{cases} 0 & \text{for } t < T \\ 1 & \text{for } t \ge T \end{cases}$$

注 7. 構造変化ダミーを用いると

$$E(Y_t) = (1 - D_t)\mu_0 + D_t\mu_1$$

= \(\mu_0 + (\mu_1 - \mu_0)D_t\)

 $(\mu_0, \mu_1 - \mu_0)$ は OLS で推定できる.

4.2 回帰モデル (p. 80)

 X_t を説明変数、 Y_t を被説明変数とし、 Y_t の X_t 上への単回帰モデルを考える.時点 T で係数が変わる場合は

$$E(Y_t|X_t) = \begin{cases} \alpha_0 + \beta_0 X_t & \text{for } t < T \\ \alpha_1 + \beta_1 X_t & \text{for } t \ge T \end{cases}$$

構造変化ダミーを用いると

 $E(Y_t|X_t)$

$$= \alpha_0 + (\alpha_1 - \alpha_0)D_t + [\beta_0 + (\beta_1 - \beta_0)D_t]X_t$$

= \alpha_0 + (\alpha_1 - \alpha_0)D_t + \beta_0 X_t + (\beta_1 - \beta_0)D_t X_t

すなわち $D_t, X_t, D_t X_t$ を説明変数として構造変化 前後の係数を推定できる.また各係数の構造変化の 有無の t 検定や F 検定(チョウ検定)も可能.

5 今日のキーワード

フィルター,季節性 (季節変動),季節調整,季節 ダミー,季節階差系列,トレンド,n次トレンド, 平滑化,n期 (単純)移動平均,構造変化,構造変 化ダミー

6 次回までの準備

提出 宿題 2

復習 教科書第2章3節,第4章3.3節,復習テスト2