Graz University of Technology

IAIK Institute

Rechnerorganisation Übungen 2010

Toy CPU Assignment 4

composed by

Robin Ankele Christoph Bauernhofer

- 5 Testprogramme
- Funktionales Modell einer Toy CPU
- Mixed Modell einer Toy CPU

16bit CPU

Adressen 0-254 MEM

255 I/O

Register 16 Register

Befehlssatz

16 Befehle:

- 6 ALU Befehle (Arithmetic Logic)
- 10 Speicherzugriffsbefehle

5 Testprogramme

- alle Befehle der TOY CPU kommen vor
- zum Überprüfen der Verilog Simulation der entwickelten TOY CPU

5 Testprogramme

- alle Befehle der TOY CPU kommen vor
- zum Überprüfen der Verilog Simulation der entwickelten TOY CPU

funktionale Modell:

- top module
- toy module
- io module
- mem module
- toy_cpu module

Funktionales Modell

Funktionales Modell

Funktionales Modell

Im Mixed Modell wird das funktionale Modell als Hardware aufgebaut:

Im **Datapath Module** werden die einzelnen Module, welche im Schaltplan ersichtlich sind **instanziert.**

Im **Controller Module** werden die einzelnen **Flags gesetzt** um die Register und Multiplexer zu aktivieren / deaktivieren.

Arbeitsaufwand nach Aufzeichnungen laut Journal:

durchschnittliche Arbeit: ~51,5h

Functional Model: ~16h

Mixed Model: ~17h

Dokumentation: ~9h

Testprogramme: ~3h

Sontiges: ~6,5h