Tutoriat 4

Def: O multime A sn. inductiva daco Ø EA is (+) xEA, x+EA.

6) Axionia imfinitului:

Existo o multime infinito

Obs! 7 multime + Ø ale correi elemente sunt recultimi imductive => 07 imductiva.

In particular , x, y inclustive => x 1 y induction

Def: 0 multime includio s.n. reinimal inductiva daço (+) B = A , B inductiva -> B = A.

Prop: Fie A ruinimal inductivé. Atunci (4) B inductivé, aven A ⊆ B.

The particular, exists cel mult o resultine minimal induction.

Principiul inductiei (N minimula inductiva)

Fie $A \subseteq N$ a. â. $0 \in A$ & (4) $n \in A$ aven $n^+ \in A$.

Atueci A = N.

Principiul inductiei complete

Fie $A \subseteq N$ a. a. (4) $n \in N$ cu yrop. $c\delta$ (4) $k \in N$, k < n, aven $k \in A$, aven $n \in A$. Atunci A = N.

Obs! (N, <) runtime ordenato cu <

· trau sitia

· ireflexiva

Deci < relatie de ordine stricto pe N & < relatie de ordine partialo pe N.

Leuo: (+) $n, ne \in \mathbb{N}$ cu $n^+ = ne^+ = > ne = ne$. Leuo: (+) $n, ne \in \mathbb{N}$ cu $m < ne = > n^+ < ne$. Clss! Aveue = relative de ordine totalé pe N.

BIRURI:

Def: Fix A multime.

O familie care are imaginea imcluse in A so domeniul n(sir finit) san N (sir infinit) s.n. sir A-valuat.

Not.: (ai) $i \in N$ san (ai) i < n.

Obs! (4) for A-valuat & P(NXA).

Seg(A) = $\frac{2}{(ai)i}$ / $\frac{(ai)i}{sir}$ A-valuat $\frac{3}{sin}$. Seg_n(A) = $\frac{2}{(ai)i}$ / $\frac{(ai)i}{sir}$ A-valuat finit de lung. n $\frac{3}{sir}$ A-valuat finit de lung. n $\frac{3}{sir}$

Tecrema recursiei:

Fix $A \in A$ multiume, $a \in A$, $g: A \times N \longrightarrow A$. Atunci (2!) $f: N \longrightarrow A$ a.d. f(0) = a is (i) $n \in N$, f(n+) = g(f(n), n).

Teoremo recursiei complete:

Fig. A o rundtime, $g: deg(A) \longrightarrow A$. Atunci (3!) $f: N \longrightarrow A$ a.û.

(\(\forall \) $n \in \mathbb{N}$, f(n) = g((f(i))i < n).

Teorema recursiei zarametrizate:

The A,P resultine , a: $P \rightarrow A$. $g: P \times A \times N \longrightarrow A$. Atunci (7!) $f: P \times N \longrightarrow A$ a.a. (4) $p \in P$, f(p,0) = a(p) si (4) $p \in P$ si $n \in \mathbb{N}$, $f(p,n^+) = g(p,f(p,n),n)$.

Def: Fie A runtime. Daçã ne N, spunem et A are n elemente daçã (7) o bijectic de la n la A.

Daçã (7) ne N a.a. A are n elemente, spunem co A e finita.

Daçã A nu e finita, spunem co A e infinita.

Lemo: Un mr. nat. un este în bijectie en o parte stricto a so.

Corolar: • Daco $nu, n \in \mathbb{N}$, $n \neq nu$, nu f by deter nu f n.

• Function $f: \mathbb{N} \longrightarrow \mathbb{N} \setminus 303$, $f(n) = n^+$. Deci \mathbb{N} a simfinitä.

Prop: · O submultime a unei multirui fincite este finito.

· Daco f: A - B , A finité = 4(A) finité

· Daco A, B finite - AUB finite.

· Ruminuea muci familie finite de runstimi finite este finto.

· Daco A finito - P(A) finito.

Def: Dorea multime s.n. echipotiete: ANB doco (J) f: A -> B bij.

Prop: Fie A, B, C multimi. Atunci:

· ANB =) BNA

· ANB & BNC = ANC.

Jef: Fie A, B multimi. Aven (A/ ≤ /B/) san A ≤ B daco 7 4: A -> B inj.

Prop: Fie 4, B, C rentini. Atemei:

· AdB p ANC, ateuci CdB.

· Ad B & Brc, atuci AdC.

Prop: Fie A, B, C runtiuni Atunci:

• /A/ ≤ /A/

· 1A/= 1B/ & 1B/=/C/ => 1A/=/C/

Teorema Cantor - Berustein - Schröder

Dace X & Y & Y X , atuci X ~ Y.

Lemo: fie A,B,A1 ou A16BEA po ANAL. Atunci ANB.

Exercitii:

- 1) f: A B , A finita => f(A) finito Sol: I function => /A/=/f(A)/ => f(A) finite.
- 2) 4,8 finite -> AUB finite 3d: /AUB/=/A/+/B/-/ANB/ 2=) AUB finite.
- 3) U di finito, stiend co di finito (1) i=1, n. Sol: | U Ai | = | U Ai U An | 2 / U Ai + | An | \le \sum_{i=1}^n | Ai | + | An | \le \sum_{i=1}^n | Ai | + | Ai | + | Ai | \le \sum_{i=1}^n | Ai | + | Ai | + | Ai | \le \sum_{i=1}^n | Ai | + | Ai | \le \sum_{i=1}^n | Ai | + | Ai | \le \sum_{i=1}^n | Ai | + | Ai | \le \sum_{i=1}^n | Ai | \le \s
- 4) A finité => P(A) finité Sol: Fie |A| = n, aturci $|P(A)| = 2^n$ evident fruit.
- 5) A \ B & A N C => C \ B.
- 8d: A3B => (3) f:A -> B inj. ANC => (7) g: A -> c bij. -> (7) g-1: c -> A bij. }-=> fog1: (-> B inj.
- 6) ABB \$ BNC = ABC
- Sol. A & B => (7) f: A -> B inj 3 => (7) g. f: A -> C inj.
 BNC -> (7) g: B -> C bij 3 => (7) g. f: A -> C inj.
- 4) Dacê α, β carolinale au α ≤ β \$ β ≤ α, atunci α = β. 801: Fie /A/= a \$ 1B/= B. Atunci
- $\alpha \in \beta = (3) \ f: A \longrightarrow B \ iuj \ 3 \ \frac{\text{Caudor-}}{\text{Bernskin}}$ $\alpha = \beta$.