

Distance Learning System

Upotreba biblioteka NumPy i matplotlib

Python Data Access

NumPy

- NumPy je Python biblioteka za napredno rukovanje nizovima / matricama
- Neizostavni je sastojak paketa za rad sa podacima

pip install numpy

import numpy as np

Kreiranje numpy niza

- NumPy najvećim delom radi sa objektima tipa ndarray
- Ndarray je višedimenzionalni niz
- Generisanje ndarray objekta, vrši se pozivom funkcije array
- Funkciji array prosleđuje se nabrojivi tip ili se niz generiše funkcijom arange ili transformacijom python sekvence

```
arr = np.array([1,2,3,4])
```

arr = np.arange(1,5)

- Dobijeni objekat je tipiziran i tretiran kao matrica
- Svaki niz (red) matrice, naziva se osa (axis)

[1 2 3 4]

Tipizacija numpy niza

- Numpy nizovi su strogo tipizirani
- Tip niza se određuje automatski

Dostupni tipovi podataka

https://numpy.org/devdocs/user/basics.types.html

Numpy type	Description	
np.int8	Byte (-128 to 127)	
np.int16	Integer (-32768 to 32767)	
np.int32	Integer (-2147483648 to 2147483647)	
np.int64	Integer (-9223372036854775808 to 9223372036854775807)	
np.uint8	Unsigned integer (0 to 255)	
np.uint16	Unsigned integer (0 to 65535)	
np.uint32	Unsigned integer (0 to 4294967295)	
np.uint64	Unsigned integer (0 to 18446744073709551615)	
np.intp	Integer used for indexing, typically the same as ssize_t	
np.uintp	Integer large enough to hold a pointer	
np.float32	Note that this matches the precision of the builtin python float	
np.float64 / np.float_		
np.complex64	Complex number, represented by two 32-bit floats (real and imaginary components)	
np.complex128 / np.complex_		

Višedimenzionalni nizovi

 Nympe je u stanju da detektuje višedimenzionalne nizove, i podržava različite aritmetičke operacije nad njima

```
arr = np.array([[1,2,3],[4,5,6]])
print(arr)

[[1 2 3]
[4 5 6]]
```

 Nympy je u stanju da detektuje višedimenzionalne nizove, i podržava različite aritmetičke operacije nad njima

Aritmetika nad nizovima

 Numpy primenjuje aritmetičke operacije nad nizovima ukoliko se dimenzije mogu poklopiti:

```
a = np.array([[1,2],[3,4]])
b = np.array([[2,3],[4,5]])
print(a*b)
```

```
1*2 , 2*3
3*4 , 4*5
```

Aritmetika nad nizovima

· Ukoliko se dimenzije ne poklapaju, numpy prijavljuje grešku

```
a = np.array([1,2,3])
b = np.array([1,2])
print(a*b)
```

```
1*1,2*2,3*?
```

ValueError: operands could not be broadcast together with shapes (3,) (2,)

Preoblikovanje nizova

 Numpy može preoblikovati višedimenzionalne nizove i tada se takođe mora voditi računa o tome da ciljni oblik odgovara trenutnom sadržaju

```
Može

arr = np.array([[1,2,3,4],[5,6,7,8]])
arr = arr.reshape(4,2)
print(arr)
```

```
Ne može
arr = np.array([[1,2,3,4],[5,6,7,8]])
arr = arr.reshape(3,2)
print(arr)
```

```
[[1 2]
[3 4]
[5 6]
[7 8]]
```

ValueError: cannot reshape array of size 8 into shape (3,2)

Kompresovanje nizova

 Metod squeeze, svodi niz na vrednosti jednodimenzionalnih nizova

[1 2 3]

Transponovanje matrice

```
arr = np.array([
     [1,2,3,4,5,6,7,8,9,10],
     [1,2,3,4,5,6,7,8,9,10]
]
print(arr.T)
```

print(arr.T)

Matrična aritmetika nad nizovima

Definisanje jedinične matrice

```
mat = np.eye(4)
```

mat = np.identity(4)

1	0	0	0
0	1	0	0
0	0	1	0
0	0	0	1

Definisanje jedinične matrice

Množenje matrica

```
a = np.array([1,2])
b = np.array([[1,2],[3,4]])
c = np.matmul(a,b)
```

```
a = np.array([1,2])
b = np.array([[1,2],[3,4]])
c = a@b
print(c)
```


Struktuirani nizovi

 Numpy omogućava simuliranje strukture podataka kroz specijalno definisane višedimenzionalne nizove

```
tp=[('name', 'U10'), ('price', float)]
b = np.array([("Phone",125.99),("Bicycle",100.5),("TV",82.22)],tp)
print(
    b[0]["name"],
    b[0]["price"]
)
```