Lecture 2:

> Invertible Linear Transformation

A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ defined by T(X) = AX = Y is said to be **invertible** or **non** singular or **regular** if the matrix of transformation A is non singular matrix, i.e., invertible. The corresponding inverse transformation $S: \mathbb{R}^m \to \mathbb{R}^n$ is given by $S(Y) = A^{-1}Y = X$.

Note That : If $T: \mathbb{R}^n \to \mathbb{R}^m$ and its inverse is $S: \mathbb{R}^m \to \mathbb{R}^n$ then $S \circ T: \mathbb{R}^n \to \mathbb{R}^n$ is such that $S \circ T(X) = S(T(X)) = S(AX) = A^{-1}AX = X$. Also $T \circ S: \mathbb{R}^m \to \mathbb{R}^m$ is such that $T \circ S(Y) = T(S(Y)) = T(A^{-1}Y) = AA^{-1}Y = Y$. This implies $S \circ T$ is identity map on \mathbb{R}^n and $T \circ S$ is identity map on \mathbb{R}^m . Example :

Is
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 defined by $T \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 - x_2 \\ 2x_1 + x_2 \end{pmatrix}$ regular? If regular, find the inverse

transformation.

$$T\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 - x_2 \\ 2x_1 + x_2 \end{pmatrix} = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}. \text{ Thus } T(X) = AX \text{ , where } A = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}.$$

Further $det(A) \neq 0$. Therefore T is a regular transformation. The inverse transformation

$$S: \mathbb{R}^2 \to \mathbb{R}^2 \text{ is given by } S \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = A^{-1} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = A^{-1} = \frac{1}{3} \begin{bmatrix} 1 & 1 \\ -2 & 1 \end{bmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} (y_1 + y_2)/3 \\ (-2y_1 + y_2)/3 \end{pmatrix}.$$

➤ Kernel and Range of a Linear transformation

Let V and W be vector spaces. For a linear transformation $T:V\to W$ the **Kernel** or **null space** of T, denoted by Ker(T) or N(T), is the collection of all vectors in $v\in V$ which are map to zero vector of W. Thus $Ker(T)=N(T)=\left\{v\in V:T(v)=0\right\}$.

The **range** of T, denoted by R(T) is the collection of all vectors $w \in W$ which are images of vectors $v \in V$ under the map T. Thus $R(T) = \{w = T(v) : v \in V\}$.

Note That: The linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is with the matrix representation [T] = A then

- Range of $T = \{Y \in \mathbb{R}^m : \text{ such that } AX = Y\} = col(A) = column \text{ space of } A$.
- Kernel of $T = \{X \in \mathbb{R}^n : AX = 0\} = Null(A) = Null space of A$.

Result: 1) Ker(T) or N(T) is subspace of V.

Let $u,v\in Ker(T)\subseteq V\Rightarrow T(u)=0, T(v)=0$, $k\in\mathbb{R}$. Now T(u+v)=T(u)+T(v)=0 and T(ku)=kT(u)=0. Therefore Ker(T) is closed under addition and scalar multiplication. Therefore Ker(T) is subspace of V.

2) R(T) is subspace of W.

Let $w_1, w_2 \in R(T) \subseteq W \Rightarrow \exists v_1, v_2 \in V \text{ such that } T(v_1) = w_1, T(v_2) = w_2$.

Now $w_1 + w_2 = T(v_1) + T(v_2) = T(v_1 + v_2)$. Thus $w_1 + w_2 \in W$ is image of $v_1 + v_2 \in V$. Therefore

 $w_1 + w_2 \in R(T)$. For $k \in \mathbb{R}$, $kw_1 = kT(v_1) = T(kv_1)$. Thus kw_1 is image of kv_1 . Therefore $kw_1 \in R(T)$. Therefore R(T) is closed under addition and scalar multiplication. Therefore R(T) is subspace of W.

Examples:

1) Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be the linear transformation defined by

$$T(x_1, x_2, x_3, x_4) = (x_1 - x_2 + x_3 + x_4, 2x_1 - 2x_2 + 3x_3 + 4x_4, 3x_1 - 3x_2 + 4x_3 + 5x_4)$$
. Find

- a) Basis and dimension of the range of T.
- b) Basis and dimension of the kernel of T.

$$T(1, 0, 0, 0) = (1, 2, 3), T(0, 1, 0, 0) = (-1, -2, -3), T(0, 0, 1, 0) = (1, 3, 4)$$
 and

T(0, 0, 0, 1) = (1, 4, 5). Therefore the matrix of the transformation is

$$A = \begin{bmatrix} 1 & -1 & 1 & 1 \\ 2 & -2 & 3 & 4 \\ 3 & -3 & 4 & 5 \end{bmatrix}.$$

a) To find the basis of image of T which is nothing but column space of A, we reduce A to row Echelon form

$$A = \begin{bmatrix} 1 & -1 & 1 & 1 \\ 2 & -2 & 3 & 4 \\ 3 & -3 & 4 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Therefore the basis of range of T is $\left\{\begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 1\\3\\4 \end{bmatrix}\right\}$ and the dimension of R(T) the space is 2.

b) To find the basis for Kernel of T which is the null space of A, consider AX = 0. Solving this homogeneous system of linear equations the solution is

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} l+k \\ l \\ -2k \\ k \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} l + \begin{bmatrix} 1 \\ 0 \\ -2 \\ 1 \end{bmatrix} k$$
. Therefore the basis for kernel is $\begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 0 \\ -2 \\ 1 \end{bmatrix}$

and the dimension of the kernel is 2.

2) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear operator and $B = \{v_1, v_2, v_3\}$ a standard basis for \mathbb{R}^3 . Suppose that

$$T(v_1) = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, T(v_2) = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, T(v_3) = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}.$$
 a) Is $\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \in R(T)$? b) Find basis and dimension of

R(T) . c) Find basis and dimension of null space N(T) = Ker(T) .

$$\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \in R(T) \text{ if there exist } k_1, k_2, k_3 \in \mathbb{R} \text{ such that } \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = k_1 T(v_1) + k_2 T(v_2) + k_3 T(v_3).$$

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} 2 \\ 1 \end{pmatrix} \qquad k_1 + k_2 + 2k_3 = 1$$

i.e.,
$$\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = k_1 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + k_2 \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + k_3 \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \Rightarrow k_1 + k_2 + 2k_3 = 1 \\ \Rightarrow k_1 + k_3 = 2 \\ -k_2 - k_3 = 1$$

Augmented matrix
$$(A:B) = \begin{bmatrix} 1 & 1 & 2 & \vdots & 1 \\ 1 & 0 & 1 & \vdots & 2 \\ 0 & -1 & -1 & \vdots & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 2 & \vdots & 1 \\ 0 & -1 & -1 & \vdots & 1 \\ 0 & 0 & 0 & \vdots & 0 \end{bmatrix} : \rho(A:B) = \rho(A).$$
Thus the system is consistent. Therefore $\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \in R(T)$.

b) To find basis and dimension of R(T)

As images of basis vectors are given, matrix of $T: \mathbb{R}^3 \to \mathbb{R}^3$ is $A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 0 & -1 & -1 \end{bmatrix}$.

As R(T) = Col(A), Reduce A to Echelon form. A $\sim \begin{bmatrix} 1 & 1 & 2 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$. Pivot columns of reduce matrix

are 1^{st} and 2^{nd} . Therefore $R(T) = span \begin{Bmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \end{Bmatrix}$. Further vectors $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ are not scalar

multiples of each other, hence are linearly independent. Thus basis of R(T) is

 $\left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1 \end{bmatrix} \right\} \text{ and dimension of } R(T) \text{ is } 2.$

c) $Ker(T) = \{v \in \mathbb{R}^3 : T(v) = 0\}$. Now every $v \in \mathbb{R}^3$ can be expressed as $v = k_1v_1 + k_2v_2 + k_3v_3$, as $B = \{v_1, v_2, v_3\}$ is basis. Therefore $0 = T(v) = k_1 T(v_1) + k_2 T(v_2) + k_3 T(v_3)$

i.e., $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = k_1 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + k_2 \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + k_3 \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \Rightarrow k_1 + k_2 + 2k_3 = 0$. This homogeneous system has reduce $-k_2 - k_3 = 0$.

form $\begin{bmatrix} 1 & 1 & 2 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$. Hence the system possesses 1-parametric solution, $\begin{pmatrix} k_1 \\ k_2 \\ k_2 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} t, t \in \mathbb{R}$.

Therefore $Ker(T) = span \begin{Bmatrix} \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$. Basis of Ker(T) is $\begin{Bmatrix} \begin{pmatrix} -1 \\ -1 \\ 1 \end{Bmatrix}$. Dimension of Ker(T) is 1.

Also note that: $\dim(Ker(T)) + \dim(R(T)) = 1 + 3 = \dim(\mathbb{R}^3)$

1) Dimension of Ker(T) is known as nullity. **Results:**

- 2) Dimension of R(T) is known as rank.
- 3) Rank-Nullity Theorem : Let $T: V \to W$ be a linear then $\dim(Ker(T)) + \dim(R(T)) = \dim(V)$.

dim(range)+ dim(kernel)= dim(domain)

Problem Session

Attempt the following

Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be the linear transformation given by 1) $T(x_1, x_2, x_3, x_4) = (4x_1 + x_2 - 2x_3 - 3x_4, 2x_1 + x_2 + x_3 - 4x_4, 6x_1 - 9x_3 + 9x_4).$

Find range and kernel of T. Find the basis and dimension for range and kernel of T.

2) Find range and kernel of T, where T(X) = AX. Find the basis and dimension for range and

kernel of T. Verify rank-nullity theorem. $A = \begin{vmatrix} 4 & -1 & -18 \\ -1 & 3 & 10 \\ 1 & 2 & 0 \end{vmatrix}$

- Let $T: M_{3\times 2}(\mathbb{R}) \to M_{2\times 3}(\mathbb{R})$ be the linear transformation $T(A) = A^t$ Find the kernel of T.
- Let $T: \mathbb{R}^5 \to \mathbb{R}^4$ defined by $T(X) = AX, A = \begin{bmatrix} 1 & 2 & 0 & 1 & -1 \\ 2 & 1 & 3 & 1 & 0 \\ -1 & 0 & -2 & 0 & 1 \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix}$ 4)

Find range and kernel of T. Find the basis and

dimension for range and kernel of T. Verify rank-nullity theorem.

- 5) Let $T: \mathbb{R}^5 \to \mathbb{R}^7$ be the linear transformation
 - a) Find the dimension of the kernel of T if the dimension of the range is 2.
 - b) Find the rank of T if the nullity of T is 4.
 - c) Find the rank of T if $Ker(T) = \{0\}$.
- 6) Show that $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T\begin{pmatrix} x_1 \\ x_2 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2x_1 + 3x_2 + x_3 \\ 3x_1 + 3x_2 + x_3 \\ 2x_1 + 4x_2 + x_2 \end{pmatrix}$ is invertible. Hence find it's inverse.
- 7) Given the transformation $\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 1 & 2 \\ 1 & 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$. Find the coordinates $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ of

X corresponding to $\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$ in Y.

8) Find the kernel of $T: P_3 \rightarrow P_2$ defined by

 $T(a_0x^3 + a_1x^2 + a_2x + a_3) = 3a_0x^2 + 2a_1x + a_2$. Find kernel of T.

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation. Use the given information to find the nullity of 9) T and give a geometric description of the kernel and range of T.

a) rank(T) = 2b) rank(T) = 1c) rank(T) = 0 d) rank(T) = 3

10) Let $T: P_2 \to \mathbb{R}$ be a linear transformation defined as $T(p) = \int_0^1 p(x) dx$. Find kernel of

11) Find the nullity of *T*

a) $T: \mathbb{R}^4 \to \mathbb{R}^3$, rank(T) = 2

c) $T: \mathbb{R}^4 \to \mathbb{R}^4$, rank(T) = 0

b) $T: \mathbb{R}^5 \to \mathbb{R}^2$, rank(T) = 2d) $T: P_3 \to P_1$, rank(T) = 2