

Mark Scheme (Results) January 2009

GCE

GCE Mathematics (6678/01)

January 2009 6678 Mechanics M2 Mark Scheme

	Question Scheme		Marks		
1		R	F = ma parallel to the slope, $T - 1500g\sin\theta - 650 = 1500a$	M1*	
		650	Tractive force, $30000 = T \times 15$	M1*	
		1500g	$a = \frac{\frac{30000}{15} - 1500(9.8)(\frac{1}{14}) - 650}{1500}$	d*M1	
			$0.2 \text{ (m s}^{-2})$	A1	(5) [5]
2	(a)		$R(\uparrow): R = 25g + 75g (= 100g)$	B1	
		$S \leftarrow \nearrow B$	$F = \mu R \Rightarrow F = \frac{11}{25} \times 100g$	M1	
		c /	=44g (=431)	A1	(0)
	(b)	75g	M(A): $25g \times 2\cos \beta + 75g \times 2.8\cos \beta$ $= S \times 4\sin \beta$ $R(\leftrightarrow): F = S$	M1 A2,1,0	(3)
		$ \begin{array}{c c} & & & & \\ \hline & A & & & \\ \hline \end{array} $	$176g\sin\beta = 260g\cos\beta$	M1A1	
			$\beta = 56(^{\circ})$	A1	(1)
	(c)	So that Reece's weight acts directly a	at the point C	B1	(6)
	(0)	So that Record 5 weight acts directly a	a de point e.		[10]

	estion Scheme		Marks	
3	(a)	<i>R</i> ↑	$R(\updownarrow): R = 10g$	B1
		<i>μ</i> R ← 	$F = \mu R \Rightarrow F = \frac{4}{7} (10g) = 56$	B1
			$\therefore \text{WD against friction} = \frac{4}{7} (10g)(50)$	M1
		10 <i>g</i>	2800(J)	A1
Or		70(50) - "2800" = $\frac{1}{2}$ (10) $v^2 - \frac{1}{2}$ (10)	144	(4) M1* A1ft d*M1 A1 cao (4) M1* A1ft
		7 $AB (\rightarrow): v^2 = (2)^2 + 2(1.4)(50)$ Hence, $v = \underline{12} \text{ (m s}^{-1})$		d*M1 A1 cao (4) [8]
4	(a)	$v = 10t - 2t^{2}, \ s = \int vdt$ = $5t^{2} - \frac{2t^{3}}{3}(+C)$		M1 A1
		$t = 6 \implies s = 180 - 144 = 36$ (m)		A1 (3)
	(b)	$\underline{s} = \int v dt = \frac{-432 t^{-1}}{-1} \left(+ K \right) = \frac{432}{\underline{t}} \left(-\frac{1}{2} \right)$	(+ K)	B1
		$t = 6, s = "36" \Rightarrow 36 = \frac{432}{6} + K$ $\Rightarrow K = -36$		M1*
				A1
		At $t = 10$, $s = \frac{432}{10} - 36 = \frac{7.2}{10}$ (m)		d*M1 <u>A1</u> (5) [8]

Question Number	Scheme			Marks	
5 (a)		7		2	
	MR	108	18π	$108 + 18\pi$	B1
	$x_i (\rightarrow)$ from AD	4	6	_ X	B1
	$y_i \ (\downarrow)$ from BD	6	$-\frac{8}{\pi}$	- y	
	<i>AD</i> (→): 108(4) + 18.	π (6) = (108 -	+18 <i>π</i>) x^{-}		M1
	$x = \frac{432 + 108\pi}{108 + 18\pi} = 4.$	68731 =	4.69 (cm) (3 sf)	AG	A1 (4)
(b)	$y_i \ (\downarrow)$ from BD	6	$-\frac{8}{\pi}$	_ y	B1 oe
	$BD(\downarrow)$: 108(6) + 18 π				M1 A1ft
(c)	$y = \frac{504}{108 + 18\pi} = 3.0$)6292 = 3	.06 (cm) (3 st)		A1 (4)
	$D = \frac{12 - \overline{x}}{\overline{y}}$ $\tan \theta = \frac{\overline{y}}{12 - \overline{x}}$				M1
	$\frac{12-4.68/31}{3.06392}$			A1	
	$\theta = 22.72641 = 23$	3 (nearest deg	gree)		A1 (4) [12]

Question Number	Question Number Scheme		Marks
6 (a)	Horizontal distance: $57.6 = p \times 3$ p = 19.2	M1 A1	(2)
(b	Use $s = ut + \frac{1}{2}at^2$ for vertical displacement.	M1	
	$-0.9 = q \times 3 - \frac{1}{2} g \times 3^2$	A1	
	$-0.9 = 3q - \frac{9g}{2} = 3q - 44.1$		
	$q = \frac{43.2}{3} = 14.4$ *AG*	A1	CSO (12)
(c	initial speed $\sqrt{p^2 + 14.4^2}$ (with their p)	M1	(3)
	$=\sqrt{576} = 24 \text{ (m s}^{-1})$	A1	cao (2)
(d	$\tan \alpha = \frac{14.4}{p} (= \frac{3}{4})$ (with their p)	B1	
(e	When the ball is 4 m above ground:		(1)
	$3.1 = ut + \frac{1}{2}at^2 $ used	M1	
	$3.1 = 14.4t - \frac{1}{2}gt^2$ o.e $(4.9t^2 - 14.4t + 3.1 = 0)$	A1	
	$\Rightarrow t = \frac{14.4 \pm \sqrt{(14.4)^2 - 4(4.9)(3.1)}}{2(4.9)}$ seen or implied	M1	
	$t = \frac{14.4 \pm \sqrt{146.6}}{9.8} = 0.023389 \text{ or } 2.70488 \text{ awrt } 0.23 \text{ and } 2.7$	A1	
	duration = 2.70488 0.23389 = 2.47 or 2.5 (seconds)	M1 A1	(/)
or 6 (e)			(6)
	$t = \frac{14.4 \pm \sqrt{146.6}}{9.8}$	A1	
	Duration $2 \times \frac{\sqrt{146.6}}{9.8}$ o.e.	M1	
,-	= 2.47 or 2.5 (seconds)	A1	(6)
(f	Eg. : Variable 'g', Air resistance, Speed of wind, Swing of ball, The ball is not a particle.	B1	(1)
			(1) [15]

Ques		Scheme		
7	(a)	Before $\frac{2u}{P(3m)}$ $\frac{u}{(2m)}Q$ Correct use of NEL	M1*	
		After $y - x = e(2u + u)$ o.e.	A1	
		CLM (\rightarrow): $3m(2u) + 2m(-u) = 3m(x) + 2m(y)$ ($\Rightarrow 4u = 3x + 2y$)	B1	
		Hence $x = y - 3eu$, $4u = 3(y-3eu) + 2y$, $(u(9e+4) = 5y)$	d*M1	
		Hence, speed of $Q = \frac{1}{5}(9e+4)u$ AG	A1 cso	
			(5)	
	(b)	$x = y - 3eu = \frac{1}{5}(9e + 4)u - 3eu$	M1 [#]	
		Hence, speed P = $\frac{1}{5}(4-6e)u = \frac{2u}{5}(2-3e)$ o.e.	A1	
		$x = \frac{1}{2}u = \frac{2u}{5}(2 - 3e) \Rightarrow 5u = 8u - 12eu, \Rightarrow 12e = 3$ & solve for e	d [#] M1	
		gives, $e = \frac{3}{12} \implies e = \frac{1}{4}$ AG	A1	
Or	(b)	Using NEL correctly with given speeds of P and Q $3eu = \frac{1}{5}(9e+4)u - \frac{1}{2}u$ $3eu = \frac{9}{5}eu + \frac{4}{5}u - \frac{1}{2}u , 3e - \frac{9}{5}e = \frac{4}{5} - \frac{1}{2} \qquad & \text{solve for } e$	(4) M1 [#] A1 d [#] M1	
		$\frac{6}{5} \mathbf{e} = \frac{3}{10} \implies \mathbf{e} = \frac{15}{60} \implies \mathbf{e} = \frac{1}{4}.$	A1 (4)	
	(c)	Time taken by Q from A to the wall $=\frac{d}{\underline{y}} = \left\{\frac{4d}{5u}\right\}$	(4) M1 [†]	
		Distance moved by P in this time $=\frac{u}{2} \times \frac{d}{y} = (=\frac{u}{2} \left(\frac{4d}{5u} \right) = \frac{2}{5}d)$	A1	
		Distance of P from wall = $d - x \left(\frac{\overline{d}}{y} \right)$; = $d - \frac{2}{5}d = \frac{3}{5}d$ AG	d [†] M1; A1 cso	
			(4)	
or	(c)	Ratio speed P:speed Q = x:y = $\frac{1}{2}u : \frac{1}{5}(\frac{9}{4} + 4)u = \frac{1}{2}u : \frac{5}{4}u = 2:5$	M1 [†]	
		So if Q moves a distance d, P will move a distance $\frac{2}{5}d$	A1	
		Distance of <i>P</i> from wall = $d - \frac{2}{5}d$; = $\frac{3}{5}d$ AG cso	d [†] Μ1; Α1	
			(4)	

Question Number	Scheme	Marks
(d)	After collision with wall, speed $Q = \frac{1}{5}y = \frac{1}{5}\left(\frac{5u}{4}\right) = \frac{1}{4}u$ their y	B1ft
	Time for P , $T_{AB} = \frac{\frac{3d}{5} - X}{\frac{1}{2}u}$, Time for Q , $T_{WB} = \frac{X}{\frac{1}{4}u}$ from their y	B1ft
	Hence $T_{AB} = T_{WB} \Rightarrow \frac{\frac{3d}{5} - X}{\frac{1}{2}u} = \frac{X}{\frac{1}{4}u}$	M1
	gives, $2(\frac{3d}{5} - x) = 4x \implies \frac{3d}{5} - x = 2x$, $3x = \frac{3d}{5} \implies x = \frac{1}{5}d$	A1 cao
		(4)
or (d)	After collision with wall, speed $Q = \frac{1}{5}y = \frac{1}{5}\left(\frac{5u}{4}\right) = \frac{1}{4}u$ their y	B1ft
	speed $P = x = \frac{1}{2}u$, speed P : new speed $Q = \frac{1}{2}u : \frac{1}{4}u = 2:1$ from their y	B1ft
	Distance of B from wall = $\frac{1}{3} \times \frac{3d}{5}$; = $\frac{d}{5}$ their $\frac{1}{2+1}$	M1; A1
		(4)
2 nd or (d)	After collision with wall, speed $Q = \frac{1}{5}y = \frac{1}{5}\left(\frac{5u}{4}\right) = \frac{1}{4}u$ their y	B1ft
	Combined speed of P and $Q = \frac{1}{2}u + \frac{1}{4}u = \frac{3}{4}u$	
	Time from wall to 2^{nd} collision $=\frac{\frac{3d}{5}}{\frac{3u}{4}} = \frac{3d}{5} \times \frac{4}{3u} = \frac{4d}{5u}$ from their y	B1ft
	Distance of B from wall = (their speed)x(their time) = $\frac{u}{4} \times \frac{4d}{5u}$; = $\frac{1}{5}d$	M1; A1
		(4) [17]