IET Autumn School

一遷移式學習範例與實作—不用重新發明輪子的深度學習

Huan Chen,

Associate Professor,

Department of Computer Science and Engineering, National Chung Hsing University (NCHU)

huan@nchu.edu.tw

遷移式學習

Transfer learning

'想看得更遠,就要站在巨人的身上'

目錄 CONTENTS

01 深度學習基礎

02 遷移式學習 環境設定

03 模型訓練

04 Gradio 介面

深度學習基礎

Deep Learning Basics

CNN 模型

Image

Convolved Feature

Reference: https://cinnamonaitaiwan.medium.com/%E6%B7%B1%E5%BA%A6%E5%AD%B8%E7%BF%92-cnn%E5%8E%9F%E7%90%86-keras%E5%AF%A6%E7%8F%BE-432fd9ea4935

圖.第一層濾波器(Filter)。

圖. 第二層濾波器(Filter)。

圖. 第三層濾波器(Filter)。

图 笠四層滤波器(Filtor)。

Reference: https://ithelp.ithome.com.tw/articles/10191820

Maxpool 池化

攤平過程 (Flattening)

全連結層 Fully Connected

Softmax分類器

$$H_{y^i}(y) := -\sum_i y_i' log(y_i)$$

CNN模型的流程

VGG19

IMAGENET

ImageNet 競賽的冠軍們

Model	Size	Top-1 Accuracy	Top-5 Accuracy	Parameters	Depth
Xception	88 MB	0.790	0.945	22,910,480	126
VGG16	528 MB	0.715	0.901	138,357,544	23
VGG19	549 MB	0.727	0.910	143,667,240	26
ResNet50	99 MB	0.759	0.929	25,636,712	168
InceptionV3	92 MB	0.788	0.944	23,851,784	159
InceptionResNetV2	215 MB	0.804	0.953	55,873,736	572
MobileNet	17 MB	0.665	0.871	4,253,864	88

ResNet

17

Activation Function

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU max(0.1x, x)

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0, x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Overview:CNN

CNN優點:

- 1) 輸入圖像和網路的拓撲結構能很好的吻合
- 2) 儘管使用較少參數,仍然有出色性能
- 3) 避免了顯式的特徵抽取,而隱式地從訓練數據中進行學習
- 4) 特徵提取和模式分類同時進行,並同時在訓練中產生,網路可以並行學習
- 5) 權值共享減少網路的訓練參數,降低了網路結構的複雜性,適用性更強
- 6) 無需手動選取特徵,訓練好權重,即得特徵,分類效果好
- 7) 可以直接輸入網路,避免了特徵提取和分類過程中,數據重建的複雜度

• 改良方法:

- 1. Sparse interaction
- 2. 參數共享
- 3. 丟失率避免過度擬合

• 解決梯度消失

- Random Initialization 破壞 weighting對稱性
- 2. Bachnormalization
- 3. Residual network

Overview:CNN

➤ CNN 特色:

Question 1: 如何有效地在圖像中找到圖案

Question 2:如何能得到更多細節的特徵,如平移,旋轉,放大縮小 etc.

▶延伸應用:

1D-CNN(心電圖、語音、股票.....、電氣特性I、v)

3D-CNN (3D物體識別)

深度學習三大框架

- 01 深度學習三大框架 Keras/TF/Pytorch
 - 02 手寫辨認 MNIST using Keras ANN
 - 03 精品辨認 MNIST using Keras CNN
- 04 TF.keras 手寫辨認

2018 DL Framework

96.77

51.55

22.72

17.15

12.02

8.37

4.89

3.65

2.71

1.18

1.06

Deep Learning Framework Power Scores 2018

2019 DL Framework

2020 研究論文數量

2019 NIPS

圖源: https://chillee.github.io/pytorch-vs-tensorflow/

Google Trend

三大框架比較

Keras

建模簡單直覺

輸入輸出方便

TF 1.0

TF 1.0 計算圖

TF 2.0

Eager Execution

Keras 套件功能

Pytorch

Pythonic 風格

動態計算圖

反向自動求導技術

研究社群Github

>> ML/DL對應CRISP-DM

	ML/Sklearn	tf(keras)	Pytorch
Step 1: Load Library and Data	from sklearn import Linear_model data = pd.read_csv("data.csv") *csv(收集) *opendata(爬蟲) *Database	import tensorflow as tf	colab run GPU 1.切換執行model至GPU 2.把model, data放入GPU
Step 2: Data Processing	*missing(差補) *Data Augmentation(資料擴增) *normalization *type transform		
Step 3-1: Build model	model = LR()	model = sequential() #框架 model.add(layer) #加層 model.compile()	第1法:自己定義 def Class : 第2法:pretrained model from *** import ****
Step 3-2: training	model.fit(X, Y)	model.fit(X, Y)	Training loop =>梯度下降演算法 W<- W
Step 4: Model Evaluation (test)	迴歸:R², MSE, MAE 分類:confusion matrix		
Step 5: Model deploy and predict	Y = model.predict(X)		

Pytorch Programming SOP

DEMO

https://transcranial.github.io/keras-js/#/mnist-cnn

Part 2

- 01 深度學習三大框架 Keras/TF/Pytorch
 - 02 手寫辨認 MNIST using Keras ANN
 - 03 精品辨認 MNIST using Keras CNN
 - 04 TF.keras 手寫辨認

Keras

01 導入函式庫載入資料

```
# 導入函式庫
import numpy as np
from keras.models import Sequential
from keras.datasets import mnist
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.utils import np_utils # 用來後續將 label 標籤轉為 one-hot-encoding
from matplotlib import pyplot as plt
# 載入 MNIST 資料庫的訓練資料,並自動分為『訓練組』及『測試組』
(X_train, y_train), (X_test, y_test) = mnist.load_data()
```

Keras

02 建立模型

```
# 建立簡單的線性執行的模型
model = Sequential()
# Add Input layer, 隱藏層(hidden layer) 有 256個輸出變數
model.add(Dense(units=256, input_dim=784, kernel_initializer='normal', activat ion='relu'))
# Add output layer
model.add(Dense(units=10, kernel_initializer='normal', activation='softmax'))
# 編譯: 選擇損失函數、優化方法及成效衡量方式
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['acc uracy'])
```

Keras

02 建立模型

```
# 建立簡單的線性執行的模型
model = Sequential()
# Add Input layer, 隱藏層(hidden layer) 有 256個輸出變數
model.add(Dense(units=256, input_dim=784, kernel_initializer='normal', activat ion='relu'))
# Add output layer
model.add(Dense(units=10, kernel_initializer='normal', activation='softmax'))
# 編譯: 選擇損失函數、優化方法及成效衡量方式
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['acc uracy'])
```

Keras

03 One-Hot encoding 資料降維 標準化 植型訓練

```
# 將 training 的 label 進行 one-hot encoding,例如數字 7 經過 One-hot encoding
轉換後是 0000001000 , 即第7個值為 1
y TrainOneHot = np utils.to categorical(y train)
y TestOneHot = np utils.to categorical(y test)
# 將 training 的 input 資料轉為2維
X train 2D = X train.reshape(60000, 28*28).astype('float32')
X test 2D = X test.reshape(10000, 28*28).astype('float32')
x Train norm = X train 2D/255
x Test norm = X test 2D/255
# 進行訓練,訓練過程會存在 train_history 變數中
train history = model.fit(x=x Train norm, y=y TrainOneHot, validation split=0.
2, epochs=10, batch size=800, verbose=2)
```

Keras

04 顯示訓練結果 顯示預測結果

```
# 顯示訓練成果(分數)
scores = model.evaluate(x_Test_norm, y_TestOneHot)
print()
print("\t[Info] Accuracy of testing data = {:2.1f}%".format(scores[1]*100.0))

# 預測(prediction)
X = x_Test_norm[0:10,:]
predictions = np.argmax(model.predict(X), axis=-1)
# get prediction result
print(predictions)
```

Keras

05 顯示圖片

```
# 顯示 第一筆訓練資料的圖形,確認是否正確
plt.imshow(X_test[0])
plt.show()
```


Keras

06 收斂結果

```
plt.plot(train_history.history['loss'])
plt.plot(train_history.history['val_loss'])
plt.title('Train History')
plt.ylabel('loss')
plt.xlabel('Epoch')
plt.legend(['loss', 'val_loss'], loc='upper left')
plt.show()
```


Part 3

- 01 深度學習三大框架 Keras/TF/Pytorch
 - 02 手寫辨認 MNIST using Keras ANN
 - 03 **手寫辨認MNIST** using Keras CNN
 - 04 TF.keras 手寫辨認

Keras

 導入函式庫 定義參數 載入資料

```
from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
# 定義梯度下降批量
batch size = 128
# 定義分類數量
num classes = 10
# 定義訓練週期
epochs = 12
# 定義圖像寬、高
img rows, img cols = 28, 28
# 載入 MNIST 訓練資料
(x_train, y_train), (x_test, y_test) = mnist.load_data()
```

Keras

2 標準化 One-Hot encodinc

```
# 轉換色彩 0~255 資料為 0~1
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255

# y 值轉成 one-hot encoding
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
```

Keras Mnist

Keras MNIST CNN

Keras

2 建立模型

```
# 建立簡單的線性執行的模型
model = Sequential()
# 建立卷積層, filter=32,即 output space 的深度, Kernal Size: 3x3, activation fun
ction 採用 relu
model.add(Conv2D(32, kernel_size=(3, 3),
               activation='relu',
               input shape=input shape))
# 建立卷積層,filter=64,即 output size, Kernal Size: 3x3, activation function
採用 relu
model.add(Conv2D(64, (3, 3), activation='relu'))
# 建立池化層,池化大小=2x2,取最大值
model.add(MaxPooling2D(pool_size=(2, 2)))
# Dropout 層隨機斷開輸入神經元,用於防止過度擬合,斷開比例:0.25
model.add(Dropout(0.25))
# Flatten層把多維的輸入一維化,常用在從卷積層到全連接層的過渡。
model.add(Flatten())
# 全連接層: 128個output
model.add(Dense(128, activation='relu'))
# Dropout 層隨機斷開輸入神經元,用於防止過度擬合,斷開比例:0.5
model.add(Dropout(0.5))
# 使用 softmax activation function,將結果分類
model.add(Dense(num classes, activation='softmax'))
#編譯:選擇損失函數、優化方法及成效衡量方式
model.compile(loss=keras.losses.categorical_crossentropy,
            optimizer=keras.optimizers.Adadelta(),
            metrics=['accuracy'])
```

Keras

03 模型訓練

Keras

04 顯示訓練結果

```
# 顯示損失函數、訓練成果(分數)
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
```

```
). 9863
Spoch 5/12
poch 6/12
50000/60000 [_________] - 239s 4ms/step - loss: 0.0562 - acc: 0.9831 - val_loss: 0.0336 - val_acc:
Spoch 7/12
poch 8/12
poch 9/12
Spoch 10/12
0000/60000 [___________] - 240s 4ms/step - loss: 0.0403 - acc: 0.9882 - val_loss: 0.0284 - val_acc:
Spoch 11/12
poch 12/12
Test loss: 0.0277547532808
Test accuracy: 0.9911
:\0_DataMining\0_lTHone>_
```

Keras

05 模型存檔

```
# 模型結構存檔
from keras.models import model_from_json
json_string = model.to_json()
with open("cnn.config", "w") as text_file:
    text_file.write(json_string)

# 模型訓練結果存檔
model.save_weights("cnn.weight")
```

Keras

06 計算混淆矩陣

```
# 計算『混淆矩陣』(Confusion Matrix),顯示測試集分類的正確及錯認總和數
import pandas as pd
predictions = model.predict_classes(x_test)
pd.crosstab(y_test_org, predictions, rownames=['實際值'], colnames=['預測值'])
```

TF.Keras

```
import tensorflow as tf
mnist = tf.keras.datasets.mnist
# 匯入 MNIST 手寫阿拉伯數字 訓練資料
(x_train, y_train),(x_test, y_test) = mnist.load_data()
# 特徵縮放,使用常態化(Normalization),公式 = (x - min) / (max - min)
# 顏色範圍:0~255,所以,公式簡化為 x / 255
x train, x test = x train / 255.0, x test / 255.0
# 建立模型
model = tf.keras.models.Sequential([
 tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(128, activation='relu'),
 tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation='softmax')
# 設定優化器(optimizer)、損失函數(loss)、效能衡量指標(metrics)的類別
model.compile(optimizer='adam',
             loss='sparse categorical_crossentropy',
            metrics=['accuracy'])
# 模型訓練
model.fit(x train, y train, epochs=5)
# 模型評估,打分數
model.evaluate(x test, y test)
```

MNIST to CIFAR-10

CIFAR-10

Transfer Learning (How to use pretrained model)

將source 去萃取其 有萃取的 去訓練學

遷移式學習環境設定

請配合Colab ipynb程式

>> 1.

```
!pip3 install torch torchvision
!pip3 install gradio
import gradio as gr
from torchvision import datasets, transforms, models
import torch
!git clone https://github.com/chandrikadeb7/Face-Mask-Detection.git
```

- ➤ 載入pytorch & gradio套件
- ▶載入要mask_detection圖檔

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

→若cuda環境可用則使用GPU計算 否則使用CPU

>> 3.

```
transform_train = transforms.Compose([transforms.Resize((224,224)),
                                      transforms.RandomHorizontalFlip(),
                                      transforms.RandomAffine(0, shear=10, scale=(0.8,1.2)),
                                      transforms.ColorJitter(brightness=1, contrast=1, saturation=1),
                                      transforms.ToTensor(), # 轉為tensor數據
                                      transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) # 資料正規化
                               1)
transform = transforms.Compose([transforms.Resize((224,224)),
                               transforms.ToTensor(),
                               transforms. Normalize ((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
                               ])
```

- 〉針對訓練集做資料擴增
- ▶將資料轉成Tensor數據且正規化


```
training_dataset = datasets.ImageFolder('Face-Mask-Detection/dataset/', transform=transform_train)
validation_dataset = datasets.ImageFolder('Face-Mask-Detection/dataset/', transform=transform)

training_loader = torch.utils.data.DataLoader(training_dataset, batch_size=20, shuffle=True)
validation_loader = torch.utils.data.DataLoader(validation_dataset, batch_size = 20, shuffle=False)
```

- ➤分為訓練集與測試集 並做 transform
- ▶每20筆資料為一個batch

>> 1.

```
model = models.vggl6(pretrained=True)
```

▶載入模型與pytorch訓練好的權重

```
for param in model.features.parameters():
   param.requires_grad = False
```

▶只訓練最後一層全連接層的權重

>> 2.

```
import torch.nn as nn
classes=('mask', 'no_mask')
n inputs = model.classifier[6].in_features
# 第六層(最後一層)原輸入node數
last_layer = nn.Linear(n_inputs, len(classes))
# layer的輸入:4096,輸出:2
model.classifier[6] = last layer
# 最後一層設為自定義的layer
model.to(device)
# 模型加載到指定設備
```

▶將原本VGG16的最後一層 從1000個輸出改成2個

>> 3.

>> 4.

```
VGG(
 (features): Sequential(
   (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
   (1): ReLU(inplace=True)
   (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
   (3): ReLU(inplace=True)
   (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
   (5): Conv2d(64, 128, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
   (6): ReLU(inplace=True)
   (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
   (8): ReLU(inplace=True)
   (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
   (10): Conv2d(128, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
   (11): ReLU(inplace=True)
   (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
   (13): ReLU(inplace=True)
   (14): Conv2d(256, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
   (15): ReLU(inplace=True)
   (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
   (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
   (18): ReLU(inplace=True)
   (19): Conv2d(512, 512, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
   (20): ReLU(inplace=True)
   (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
   (22): ReLU(inplace=True)
   (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
   (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
   (25): ReLU(inplace=True)
   (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
   (27): ReLU(inplace=True)
   (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
   (29): ReLU(inplace=True)
   (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
 (classifier): Sequential(
   (0): Linear(in_features=25088, out_features=4096, bias=True)
   (1): ReLU(inplace=True)
   (2): Dropout(p=0.5, inplace=False)
   (3): Linear(in_features=4096, out_features=4096, bias=True)
   (4): ReLU(inplace=True)
   (5): Dropout(p=0.5, inplace=False)
   (6): Linear(in_features=4096 out features=1000 bias=True)
```

```
VGG(
  (features): Sequential(
   (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
   (1): ReLU(inplace=True)
    (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU(inplace=True)
    (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (6): ReLU(inplace=True)
    (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (8): ReLU(inplace=True)
    (9): MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
    (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (11): ReLU(inplace=True)
    (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (13): ReLU(inplace=True)
    (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (15): ReLU(inplace=True)
    (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (18): ReLU(inplace=True)
    (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (20): ReLU(inplace=True)
    (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (22): ReLU(inplace=True)
    (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (24): Conv2d(512, 512, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
    (25): ReLU(inplace=True)
    (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (27): ReLU(inplace=True)
    (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (29): ReLU(inplace=True)
    (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
  (classifier): Sequential(
    (0): Linear(in_features=25088, out_features=4096, bias=True)
    (1): ReLU(inplace=True)
    (2): Dropout(p=0.5, inplace=False)
    (3): Linear(in_features=4096, out_features=4096, bias=True)
   (4): ReLU(inplace=True)
    (5): Dropout(p=0.5, inplace=False)
    (6): Linear(in_features=4096, out_features=2, bias=True)
```


>> 1.

```
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr = 0.0001)
```

- ▶損失函數用crossentropy
- ▶學習優化器用adam
- > learning rate = 0.0001

>> 2.

```
epochs = 5
for e in range(epochs):
    running_loss = 0.0
    running corrects = 0.0
    val_running_loss = 0.0
    val_running_corrects = 0.0
    for inputs, labels in training loader:
        inputs = inputs.to(device)
        labels = labels.to(device)
        outputs = model(inputs) # 1
        loss = criterion(outputs, labels) # 2
        optimizer.zero grad() # 3
        loss.backward() # 4
        optimizer.step() # 5
_, preds = torch.max(outputs, 1)
# 輸出所在行最大值的欄位(預測機率最高)
running loss += loss.item()
running corrects += torch.sum(preds == labels.data)
```

- ▶1. 將data傳入model進行forward propagation
- ▶2. 計算loss
- ▶3. 清空前一次的gradient
- ▶4. 根據loss進行back propagation, 計算gradient
- ▶5. 做gradient descent

▶計算loss值與accurncy


```
else:
    with torch.no_grad():
        for val_inputs, val_labels in validation_loader:
            val_inputs = val_inputs.to(device)
            val_labels = val_labels.to(device)
            val_outputs = model(val_inputs)
            val_loss = criterion(val_outputs, val_labels)

            _, val_preds = torch.max(val_outputs, 1)
            val_running_loss += val_loss.item()
            val_running_corrects += torch.sum(val_preds == val_labels.data)
```

➤當不需要再計算梯度時 用測試集測試模型

```
epoch_loss = running_loss/len(training_loader.dataset)
epoch_acc = running_corrects.float()/ len(training_loader.dataset)
running_loss_history.append(epoch_loss)
running_corrects_history.append(epoch_acc)

val_epoch_loss = val_running_loss/len(validation_loader.dataset)
val_epoch_acc = val_running_corrects.float()/ len(validation_loader.dataset)
val_running_loss_history.append(val_epoch_loss)
val_running_corrects_history.append(val_epoch_acc)
```

➤計算訓練集與測試集 之

Loss與accurency

>> 1.

```
def predict(img):
    labels = ['mask', 'no_mask']
    image = transforms.ToTensor()(img).unsqueeze(0)
    prediction = torch.nn.functional.softmax(model(image)[0], dim=0)
    confidences = {labels[i]: float(prediction[i]) for i in range(2)}
    return confidences
```

- ➤image轉為tensor數據
- ▶每個維度進行softmax運算

>> 2.

- ▶創建gradio接□
- ▶連接predict function

>> 3.

