Forward and Backward Kinematics on Manipulator

Md. Khalilur Rhaman
Associate Professor
CSE Department
BRAC University

Forward Kinematics

https://www.youtube.com/watch?v=NRgNDIVtmz0

Area of a triangle

• area of a triangle = $\frac{1}{2}$ X base X height

Pythagoras' Theorem for right triangle

•
$$c^2 = a^2 + b^2$$

Basic Trigonometric Functions

The Sine and Cosine Rules

• Sine Rule:

•
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

- Cosine Rule:
- $a^2 = b^2 + c^2 2bcCosA$
- or
- $\cdot CosA = \frac{b^2 + c^2 a^2}{2bc}$

4 DOF Arm Calculation

- *l1=Length of first arm*
- *12=Length of 2nd Arm*
- *13=Length of 3rd Arm (end effector)*
- *d2=height of base*
- $\theta_1 = Angle \ of \ base \ rotation$
- $\theta_2 = Angle\ of\ first\ arm\ from\ horizon$
- θ_3 = Angle between 1st and 2nd arm
- θ_4 = Angle between 2nd arm and end effector

Example with a Value

•
$$\theta_1 = 50$$

•
$$\theta_1 = 50$$
• $\theta_2 = 60$

•
$$\theta_3 = 95$$

Forward Kinematics Calculation

- If we draw a right angle triangle with first arm,
- θ_x is the angle with opposit d3
- θ_y is the angle with Adjacent d4
- $So, \theta_3 = \theta_x + \theta_y$
- *Here l1 is hypotenus*
- So, $sin\theta = \frac{O}{H}$; $sin\theta_2 = \frac{d3}{l1}$
- $d3 = sin\theta_2 * l1$
- $cos\theta = \frac{A}{H}$; $cos\theta_2 = \frac{d4}{l1}$
- $d4 = cos\theta_2 * l1$

•
$$\theta_x = 180 - 90 - \theta_2$$

•
$$\theta_x = 180 - 90 - 60 = 30$$

•
$$\theta_3 = \theta_x + \theta_y$$

•
$$\theta_y = (\theta_3 - \theta_x)$$

•
$$\theta_{v} = 95 - 30 = 65$$

•
$$d3 = sin\theta_2 * l1$$

•
$$d3 = sin60 * l1$$

•
$$d3 = 0.866 * 20 = 17.32$$

•
$$d4 = cos\theta_2 * l1$$

•
$$d4 = cos60 * l1$$

•
$$d4 = .5 * 20 = 10$$

$$11=20"$$

 $12=14"$
 $13=8"$
 $d2=18"$
 $\theta_1 = 50$
 $\theta_2 = 60$
 $\theta_3 = 95$

Forward Kinematics Calculation

- If we draw a right angle triangle with 2nd arm l2
- θ_{y} is the angle with opposit d6
- *l2* is hypotenus

• So,
$$cos\theta = \frac{A}{H}$$
; $cos\theta_y = \frac{d6}{l2}$;

•
$$d6 = cos\theta_y * l2$$
;

•
$$sin\theta = \frac{O}{H}$$
; $sin\theta_y = \frac{d5}{l2}$;

•
$$d5 = sin\theta_v * l2$$

•
$$d6 = cos\theta_{y} * l2$$
;

•
$$d6 = cos65 * l2$$
;

•
$$d6 = 0.4226 * 14 = 5.91$$

•
$$d5 = sin\theta_v * l2$$

•
$$d5 = sin65 * l2$$

•
$$d5 = .9 * 14$$

•
$$d5 = 12.69$$

11=20" 12=14" 13=8" d2=18" $\theta_{1} = 50$ $\theta_{2} = 60$ $\theta_{3} = 95$ $\theta_{x} = 30$ $\theta_{y} = 65$ d3 = 17.32 d4 = 10

Forward Kinematics Calculation

- Z = d2 + (d3 d6)
- d1 = d4 + d5

- So, d1+l3 is the current length of arm from base
- Z is the height of arm endpoint

Now transferm from top view

•
$$cos\theta_1 = \frac{x}{d1+l3}$$
;

•
$$x = cos\theta_1 * (d1 + l3)$$

•
$$sin\theta_1 = \frac{y}{d1}$$
;

•
$$y = sin\theta_1 * (d1 + l3)$$

• Position is: (x, y, z)

y

 \boldsymbol{x}

•
$$Z = d2 + (d3 - d6)$$

• $Z = 18 + 17.32 - 5.916 = 29.4$

•
$$d1 = d4 + d5 = 10 + 12.69 = 22.69$$

•
$$x = cos\theta_1 * (d1 + l3)$$

•
$$x = cos50 * (22.69 + 8) = 19.73$$

•
$$y = sin50 * (22.69 + 8) = 23.51$$

•
$$(x, y, z) = (19.73, 23.51, 29.4)$$

$$d3=8''$$

$$d2=18''$$

$$\theta_1 = 50$$

$$\theta_2 = 60$$

$$\theta_3 = 95$$

$$\theta_x = 30$$

$$\theta_y = 65$$

$$d3 = 17.32$$

l1=20" l2=14"

d4 = 10 d6 = 5.91d5 = 12.69

Forward Kinematics Calculation

•
$$Z = d2 + (d3 - d6) - l3$$

• d1 = d4 + d5

- So, d1 is the current length of arm from base
- Z is the height of arm endpoint

Now transferm from top view

•
$$Z = d2 + (d3 - d6) - l3$$

•
$$cos\theta_1 = \frac{x}{d1}$$
;

•
$$x = cos\theta_1 * d1$$

•
$$sin\theta_1 = \frac{y}{d1}$$
;

•
$$y = sin\theta_1 * d1$$

• Position is: (x, y, z)

Now transferm from top view

•
$$Z = d2 + (d3 - d6) - l3$$

•
$$Z = 18 + 17.32 - 5.916 - 8 = 21.4$$

•
$$d1 = d4 + d5 = 10 + 12.69 = 22.69$$

•
$$x = cos\theta_1 * d1$$

•
$$x = cos50 * 22.69 = 14.58$$

•
$$y = sin\theta_1 * d1$$

•
$$y = \sin 50 * 22.69 = 17.38$$

•
$$(x, y, z) = (14.58, 17.38, 21.4)$$

22.69
$$11=20"$$

$$12=14"$$

$$13=8"$$

$$d2=18"$$

$$d_1 = 50$$

$$\theta_2 = 60$$

$$\theta_3 = 95$$

$$\theta_x = 30$$

$$\theta_y = 65$$

$$d3 = 17.32$$

$$d4 = 10$$

$$d6 = 5.91$$

$$d5 = 12.69$$

Reverse Kinematics

- x = Position on front
- y = Position on left or right
- z = Position on height
- l1 = Length og first arm
- $l2 = Length \ of \ second \ arm$
- $l3 = Length \ of \ third \ arm$
- d2 = Height of base from ground

Reverse Kinematics Example value

•
$$x = 20$$

•
$$y = 25$$

•
$$z = 30$$

•
$$l1 = 20$$

•
$$l2 = 14$$

•
$$l3 = 8$$

•
$$d2 = 18$$

Reverse Kinematics

•
$$(d1 + l3)^2 = x^2 + y^2$$

•
$$d1 = \sqrt{x^2 + y^2} - l3$$

•
$$Cos\theta_1 = \frac{x}{d1+l3}$$

•
$$\theta_1 = Cos^{-1} \left(\frac{x}{d1+l3} \right)$$

•
$$d1 = \sqrt{x^2 + y^2} - l3$$

•
$$d1 = \sqrt{19.73^2 + 23.51^2} - 8$$

•
$$d1 = 22.692$$

$$\bullet \ \theta_1 = Cos^{-1} \left(\frac{x}{d1 + l3} \right)$$

•
$$\theta_1 = Cos^{-1} \left(\frac{19.73}{22.69+8} \right)$$

•
$$\theta_1 = 50$$

$$x = 19.73,$$

 $y = 23.51,$
 $z = 29.4$
 $l1 = 20$
 $l2 = 14$
 $l3 = 8$
 $d2 = 18$

Reverse Kinematics

•
$$d6^2 = d1^2 + (z - d2)^2$$

•
$$d6 = \sqrt{d1^2 + (z - d2)^2}$$

•
$$Cos\theta_7 = \frac{d1}{d6}$$
;

$$\bullet \ \theta_7 = Cos^{-1}(\frac{d1}{d6})$$

•
$$d6 = \sqrt{d1^2 + (z - d2)^2}$$

•
$$d6 = \sqrt{22.69^2 + (29.4 - 18)^2}$$

•
$$d6 = 25.393$$

•
$$\theta_7 = Cos^{-1}(\frac{d1}{d6})$$

•
$$\theta_7 = Cos^{-1}(\frac{22.692}{25.393})$$

• $\theta_7 = 26.67$

•
$$\theta_7 = 26.67$$

$$x = 19.73,$$

 $y = 23.51,$
 $z = 29.4$
 $l1 = 20$
 $l2 = 14$
 $l3 = 8$
 $d2 = 18$
 $d1 = 22.692$
 $\theta_1 = 50$

Reverse Kinematics

•
$$b^2 = a^2 + c^2 - 2acCosB$$

•
$$Cos\theta_3 = \left(\frac{l1^2 + l2^2 - d6^2}{2*l1*l2}\right);$$

•
$$\theta_3 = \cos^{-1}(\frac{l1^2 + l2^2 - d6^2}{2*l1*l2})$$

•
$$Cos\theta_6 = \left(\frac{l1^2 + d6^2 - l2^2}{2*l1*d6}\right);$$

•
$$\theta_6 = Cos^{-1} \left(\frac{l1^2 + d6^2 - l2^2}{2 * l1 * d6} \right)$$

•
$$\theta_4 = \theta_2 + \theta_3$$

•
$$\theta_3 = Cos^{-1} \left(\frac{l1^2 + l2^2 - d6^2}{2*l1*l2} \right)$$

• $\theta_3 = Cos^{-1} \left(\frac{20^2 + 14^2 - 25.39^2}{2*20*14} \right)$

$$\bullet \ \theta_3 = \cos^{-1}\left(\frac{20^2 + 14^2 - 25.39^2}{2*20*14}\right)$$

•
$$\theta_3 = 95$$

$$x = 19.73,$$

 $y = 23.51,$
 $z = 29.4$
 $l1 = 20$
 $l2 = 14$
 $l3 = 8$
 $d2 = 18$
 $d1 = 22.692$
 $\theta_1 = 50$
 $d6 = 25.393$
 $\theta_7 = 26.67$

•
$$\theta_6 = Cos^{-1} \left(\frac{l1^2 + d6^2 - l2^2}{2*l1*d6} \right)$$

•
$$\theta_6 = Cos^{-1} \left(\frac{l1^2 + d6^2 - l2^2}{2*l1*d6} \right)$$

• $\theta_6 = Cos^{-1} \left(\frac{20^2 + 25.39^2 + 14^2}{2*20*25.39} \right)$

•
$$\theta_6 = 33.31$$

•
$$\theta_2 = 33.31 + 26.67$$

•
$$\theta_2 = 59.98 \approx 60$$

•
$$(\theta_1, \theta_2, \theta_3, \theta_4)$$

$$\bullet$$
 (50, 60, 95)

$$x = 19.73,$$

 $y = 23.51,$
 $z = 29.4$
 $l1 = 20$
 $l2 = 14$
 $l3 = 8$
 $d2 = 18$
 $d1 = 22.692$
 $\theta_1 = 50$
 $d6 = 25.393$
 $\theta_7 = 26.67$

Reverse Kinematics

$$\bullet \ d1 = \sqrt{x^2 + y^2}$$

•
$$\theta_1 = Cos^{-1} \left(\frac{x}{d1}\right)$$

•
$$d6 = \sqrt{d1^2 + (z - d2)^2}$$

$$\bullet \ \theta_7 = Cos^{-1}(\frac{d1}{d6})$$

•
$$\theta_3 = \cos^{-1}(\frac{l1^2 + l2^2 - d6^2}{2*l1*l2})$$

•
$$\theta_6 = Cos^{-1} \left(\frac{l1^2 + d6^2 - l2^2}{2 * l1 * d6} \right)$$

•
$$\theta_2 = \theta_6 + \theta_7$$

•
$$\theta_4 = \theta_2 + \theta_3 + 90$$

•
$$(\theta_1, \theta_2, \theta_3, \theta_4)$$