

Fig. 1

Fig. 7

Fig. 2

Fig. 3

$$p_1 = V_{\text{pk}} \times \sin(\text{phase}) + \text{dc}$$

$$p_2 = V_{\text{pk}} \times \sin(\text{phase} + 90^\circ) + \text{dc} = V_{\text{pk}} \times \cos(\text{phase}) + \text{dc}$$

$$p_3 = V_{\text{pk}} \times \sin(\text{phase} + 180^\circ) + \text{dc} = -V_{\text{pk}} \times \sin(\text{phase}) + \text{dc}$$

$$p_4 = V_{\text{pk}} \times \sin(\text{phase} + 270^\circ) + \text{dc} = -V_{\text{pk}} \times \cos(\text{phase}) + \text{dc}$$

$$p_1 - p_3 = 2 \times V_{\text{pk}} \times \sin(\text{phase})$$

$$p_2 - p_4 = 2 \times V_{\text{pk}} \times \cos(\text{phase})$$

$$\text{phase} = \text{atan}(p_1 - p_3)/(p_2 - p_4)$$

$$V_{\text{pk}} = (p_1 - p_3)/\sin(\text{phase})$$

Fig. 4

Fig. 5

Fig. 6