IDS Detection Performance

Ramin Sadre

Classification

- An IDS is a (binary) classifier: It takes some sample and has to decide whether it is normal or malicious
 - Input can be a log file entry, network packet, a function call,...
 - Input can be also a system state, a sequence of packets, a sequence of function calls,...

Classification (2)

 Ideally, normal samples are very different from malicious samples

Detection error

- In reality, normal and malicious samples can overlap for a chosen metric
- Of course, you can choose another metric, but 0% error is in general impossible

Some observed metric, for example mail length

Ground truth

- How do you know whether your IDS makes mistakes?
- Important for
 - Developers of new IDS
 - Users of IDS
- You need a ground truth:
 An input dataset where each sample is labeled as normal or malicious
- Very hard to get good ground truth datasets
 - Must contain all possible attacks. What about 0-day attacks?
 - Must contain realistic normal data, otherwise the test might become too easy

Performance of an IDS

- To test an IDS you run it on the ground truth dataset and compare the IDS alerts with the labels of the samples.
- For each sample, we get

		What the IDS says		
		Normal	Malicious	
What the label says	Normal	True Negative (TN)	False Positive (FP)	
	Malicious	False Negative (FN)	True Positive (TP)	

Confusion Matrix

- Such a matrix is called confusion matrix
- Typically, you write the number of samples in the matrix
- For example, for a labeled dataset with 20 malicious samples and 80 normal samples:

		What the IDS says		
		Normal	Malicious	
What the label says	Normal	70 (TN)	10 (FP)	
	Malicious	5 (FN)	15 (TP)	

Tuning

- Ideally, False Positives and False Negatives are very close to 0
 - FP = Expensive: Alerts have to be checked.
 - FN = Security risk: Unnoticed intrusions!
- When designing an IDS (or writing rules for an IDS), a compromise has to be found
- Stupid example: Alert on <u>all</u> ICMP packets
 - TP = high, FN = low : All ICMP-based attacks are detected
 - But: FP = high, too.
- Acceptable FP and FN depend on your security policy

Tuning (2)

- IDS rules using thresholds have to be adapted to the target system
- Example:
 - Rule: "Raise alert if UDP traffic is higher than 5 Gbps"
- The threshold is chosen based on experience. Some IDS try to "learn" the threshold automatically by observing.

Receiver Operator Characteristic (ROC)

 The dependency of the IDS performance on a specific detection parameter (e.g. threshold) can be visualized by the ROC curve

Source: scikit-learn.org