MODULE THEORY: BASIC RESULTS

COLTON GRAINGER (MATH 6140 ALGEBRA 2)

Assignment due 2019-01-23

[1, No. 10.1.1]. Given. R is a unital ring and M is a left R-module.

To prove. 0m = 0 and (-1)m = -m for all $m \in M$.

Proof. Let $0_R \in R$ and $0_M \in M$ be the respective additive identities. Then for all $m \in M$, by distributivity, $1.m = (1 + 0_R).m = 1.m + 0_R.m$. We have

 $m + 0_R \cdot m = m$ so by cancellation in $M = 0_R \cdot m = 0_M$.

Knowing $0_R.m = 0_M$ implies $0_M = (1 + (-1))_R.m = 1.m + (-1).m$, so that

$$-m = -(1.m) = (-1).m.$$

[1, No. 10.1.3]. Given. Say rm = 0 for some $r \in R$ and some $m \in M$ with $m \neq 0$.

To prove. There is no $s \in R$ such that sr = 1.

Proof by contradiction. Suppose there's $s \in R$ such that sr = 1. Then both

$$sr.m = m$$

$$r.m = 0$$

Try adding:

$$s.m + sr.m = s.m + s.(r.m)$$
 by module axioms
$$= s.(m + r.m)$$
 by distributivity of scalar multiplication
$$= s.(m + 0)$$
 by hypothesis
$$= s.m,$$

so sr.m had better be 0_M . But it's not, for sr=1 implies sr.m=m, which together with the last argument is absurd. \square

[1, No. 10.1.4]. Given. Let M be the modules R^n and let $\mathfrak{a}_1, \mathfrak{a}_2, \ldots, \mathfrak{a}_n$ be left ideals of R.

To prove. Both of the following are submodules of M:

a.
$$P = \{(x_1, x_2, \dots, x_n) : x_i \in \mathfrak{a}_i\},$$

b. $N = \{(x_1, x_2, \dots, x_n) : x_i \in R \text{ and } \sum_i x_i = 0\}.$

Proof.

a. P is nonempty, for $\prod 0_R$ is in each ideal, so in P as well. Now say x and y are in P. The ith components of x and y are in each \mathfrak{a}_i , so the sum x+y has ith component in each \mathfrak{a}_i by closure of ideals under addition. Whence $x+y\in P$. Lastly, take a ring element $\alpha\in R$. Then $\alpha x=\prod \alpha x_i$. By closure of ideals under left multiplication, $\alpha x_i\in \mathfrak{a}_i$. We conclude $\alpha x\in P$.

 $Date:\ 2019\mbox{-}01\mbox{-}14.$

b. N is nonempty, as it contains the additive identity of \mathbb{R}^n . Let x, y be in N. Then x + y has components summing

$$\sum_{i} (x_i + y_i) = \sum_{i} x_i + \sum_{i} y_i = 0.$$

So $x + y \in N$. Consider $\alpha \in R$. Then αx has the sum

$$\sum_{i} \alpha x_{i} = \alpha \left(\sum_{i} x_{i} \right) = \alpha.0 = 0,$$

by distributivity of multiplication over addition and previous argument [1, No. 10.1.3]. So $\alpha x \in N$. So N is a submodule of \mathbb{R}^n . \square

[1, No. 10.1.5]. Given. Consider a left ideal \mathfrak{a} of R. Let

$$\mathfrak{a}M = \left\{ \sum_{\text{finite}} a_i m_i : a_i \in \mathfrak{a}, m_i \in M \right\}.$$

To prove. We have $\mathfrak{a}M$ as a submodule of M.

Proof. First, both $0_R \in \mathfrak{a}$ and $0_M \in M$ so that $0 \in \mathfrak{a}M$. Second, let $x, y \in \mathfrak{a}M$ where $x = \sum_i a_i m_i$ and $y = \sum_j b_j n_j$. This sum of finite sums is finite, so that x + y is in $\mathfrak{a}M$. Lastly, for any $r \in R$, consider $rx = r(\sum_i a_i m_i) = \sum_i (ra_i) m_i \in \mathfrak{a}M$. \square

[1, No. 10.1.6]. Given. Let M be a module over R and $\{N_i\}$ be a nonempty collection of submodules.

To prove. The intersection $\bigcap_i N_i$ is a submodule of M.

Proof. Observe $0_M \in \cap_i N_i \neq \emptyset$. Next, suppose $x, y \in \cap_i N_i$. Then x + y is in each N_i , by closure of submodules under addition. If $r \in R$, then so too $rx \in N_i$ for all i, by closure of submodules under scalar multiplication. Thence $x + y \in \cap_i N_i$ and $rx \in \cap_i N_i$. \square

[1, No. 10.1.8]. Given. An element m of the R-module M is called a torsion element if rm = 0 for some nonzero element $r \in R$. The set of torsion elements is denoted

Tor
$$(M) = \{m \in M : rm = 0 \text{ for some nonzero } r \in R\}.$$

To prove.

- a. If R is an entire ring, then Tor(M) is a submodule of M (called the torsion submodule).
- b. If R has zero divisors, then every nonzero R-module has nonzero torsion elements.

Proof.

a. Tor (M) contains 0. Now say $x, y \in \text{Tor } (M)$. Then some $\alpha, \beta \in R$ kill x and y respectively:

$$\alpha x = 0, \qquad \beta y = 0.$$

Consider x + y. Because R is commutative and by module axioms,

$$\alpha\beta(x+y) = \beta(\alpha x) + \alpha(\beta y) = 0 + 0.$$

So the sum $x + y \in \text{Tor}(M)$. Next say $r \in R$ is nonzero. Consider rx. We have

$$\alpha rx = r(\alpha x) = 0$$

and because both r and α are nonzero elements in an entire ring, it can't be that $r\alpha = 0$ and it must be that rx = 0. So $rx \in \text{Tor}(M)$.

b. Let R have at least the pair of zero divisors α and β with $\alpha\beta=0$. Say that M is a non-trivial R-module, and take nonzero m in M. Either $\alpha m=0$ or not—in the former case $m\in \mathrm{Tor}\,(M)$, and in the later $\beta(\alpha m)=\beta\alpha m=0$, so that $\alpha m\in \mathrm{Tor}\,(M)$. Both cases force a nontrivial element in $\mathrm{Tor}\,(M)$. \square

[1, No. 10.1.9]. Given. If N is a submodule of M, the annihilator of N in R is defined to be

$$\{r \in R : rn = 0 \text{ for all } n \in N\}.$$

To prove. The annihilator of N in R is a 2-sided ideal of R.

Proof. Denote the annihilator of N in R by \mathfrak{a} . First note $0 \in \mathfrak{a}$ as 0n = 0 for all $n \in N$. Next take $\alpha, \beta \in \mathfrak{a}$. Then $(\alpha + \beta)n = \alpha n + \beta n = 0 + 0 = 0$. Then $\alpha + \beta \in \mathfrak{a}$; we see \mathfrak{a} is closed under finite sums. Moreover, each $\alpha \in \mathfrak{a}$ has an additive inverse $-\alpha \in R$. Since $0 = -\alpha n = (-\alpha)n$, \mathfrak{a} is closed under additive inverses. So \mathfrak{a} is an abelian subgroup of R. Now say that $r \in R$ and $a \in \mathfrak{a}$. Then

$$(ra)n = r(an) = r(0) = 0,$$

so $ra \in \mathfrak{a}$. Consider ar. We have

$$(ar)n = a(rn) = a(n_0) = 0,$$
 where $rn = n_0 \in N$,

so that $ar \in \mathfrak{a}$. We conclude \mathfrak{a} is a two-sided ideal. \square

[1, No. 10.1.15]. Given. Say M is a finite abelian group. M is naturally a **Z**-module.

To prove. This action cannot be extended to make M into a **Q**-module.

Proof by contradiction. Suppose **Q** extends the action of **Z** on M. Pick any nonzero $m \in M$. I claim for each $n \in \mathbb{N}$, $\frac{1}{n}.m \neq 0$. To wit, by the unital module axiom,

$$m = n \cdot \left(\frac{1}{n} \cdot m\right) \neq n \cdot (0) = 0$$
 by assumption than m is nonzero.

I claim for each distinct pair $a, b \in \mathbb{N}$, the image of m under the action of $\frac{1}{a}$ and $\frac{1}{b}$ is distinct. Else we could find

$$0 = \frac{1}{a}.m - \frac{1}{b}.m = \left(\frac{1}{a} - \frac{1}{b}\right).m = \frac{1}{ab}.m,$$

which is prevented by the previous claim. Since **N** is infinite, the image of $\frac{1}{n}$.m in M as n ranges through **N** must be infinite, which is absurd! (By hypothesis, M is a finite group.) \square

[1, No. 10.1.18]. Given. Say we have a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ with the associated matrix

$$A_T = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
, with respect to the standard basis.

Consider $V = \mathbb{R}^2$ as an $\mathbb{R}[x]$ -module where scalar multiplication is obviously defined by constant polynomials and x acts by the linear transformation x.v = Av.

To prove. If M is a submodule of V, then M is trivial or V.

Proof. Say M is a nontrivial submodule of V. Take some nonzero $m \in M$. By closure under the ring action, $x.m \in M$. I claim both m and x.m are nonzero and orthogonal, in the sense that

$$x.m = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} m_1 \\ m_2 \end{bmatrix} = \begin{bmatrix} m_2 \\ -m_1 \end{bmatrix}$$
 and $(x.m)^T m = \begin{bmatrix} m_1 & m_2 \end{bmatrix} \begin{bmatrix} m_2 \\ -m_1 \end{bmatrix} = 0$.

So x.m and m span \mathbb{R}^2 , which gives $M \supset \mathbb{R}^2$. \square

[1, No. 10.1.19]. Given. Say we have a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ with associated matrix

$$A_T = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix},$$
 with respect to the standard basis.

As before, consider $V = \mathbb{R}^2$ as an $\mathbb{R}[x]$ -module where x acts by the linear transformation x.v = Av.

To prove. If M is a submodule of V, then M is trivial, all of V, the x-axis, or the y-axis.

Proof. Let M be a nontrivial proper submodule of V. In particular, M is an \mathbf{R} -linear proper subspace, and as an \mathbf{R} -vector space, M has dimension exactly 1. It follows that M is of the form $\{\alpha v : \alpha \in \mathbf{R}\}$ for some

nonzero $v \in M$. Consider Av, which has exactly one nonzero component. Because v is an eigenvector of the matrix A, it must be that v has exactly one nonzero component. So M is either the x- or y-axis. \square

[1, No. 10.1.20]. Given. Let $F = \mathbf{R}$, let $V = \mathbf{R}^2$, and let T be the linear transformation from V to V that is rotation clockwise about the origin by π radians.

To prove. Every subspace of V is an F[x]-submodule for this T.

Proof. Say \mathbb{R}^2 is an $\mathbb{R}[x]$ -module with the action of $x \in \mathbb{R}[x]$ given by

$$x.v = Av$$
 where $A = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ w.r.t. the standard basis.

The property of being an $\mathbf{R}[x]$ -submodule is stronger than that of being an \mathbf{R} -linear subspace, so the submodules of \mathbf{R}^2 are all subspaces. Conversely, if $V \subset \mathbf{R}^2$ is a subspace, then V is an abelian group. For any $v \in V$, the image of v under the action of x is x.v = -v. So V is stable under the linear transformation; whence V is an $\mathbf{R}[x]$ -submodule. \square

[1, No. 10.1.21]. Given. Let $n \in \mathbf{Z}^+$, n > 1, and R be the ring $\mathcal{M}_n(F)$ of $n \times n$ matrices from the field F. Let $M \subset \mathcal{M}_n(F)$ be

$$M = \left\{ (a_i^j) : a_i^j = 0 \text{ if } j > 1 \right\},$$

that is, the set of matrices with arbitrary elements of F in the first column and zeros elsewhere.

To prove.

- \bullet M is a submodule of R when R is considered as a left module over itself.
- \bullet M is not a submodule of R when R is considered as a right module.

Proof. In either case (of $\mathcal{M}_n(F)$ being a left or right module over itself), the set M is an abelian subgroup of the ring $\mathcal{M}_n(F)$.

• Now consider $\mathcal{M}_n(F)$ as a left module. Let $[a_{ij}] \in \mathcal{M}_n(F)$ and $[m_{jk}] \in M$ (with respect to the standard unit basis for F^n). Then

$$[a_{ij}][m_{jk}] = \left[\sum_{j=1}^{n} a_{ij} m_{jk}\right] \in M,$$

as $m_{jk} = 0$ whenever the index k > 0. So M is closed under scalar multiplication. So M is a left submodule.

• On the other hand, consider $\mathcal{M}_n(F)$ as a right module. Then it's not necessarily true that for $[a_{jk}] \in \mathcal{M}_n(F)$ and $[m_{ij}] \in M$ that

$$[m_{ij}][a_{jk}] = \left[\sum_{j=1}^{n} m_{ij} a_{jk}\right]$$

will be in N, e.g., when $a_{12} \neq 0$. Because M is not closed under scalar multiplication, M is not (right) submodule. \square

References

[1] D. Dummit and R. Foote, Abstract algebra. Prentice Hall, 2004.