On the Supersingular Locus of the GU(2, n-2)Shimura Variety

Ryosuke Shimada

Department of Mathematics, the University of Hong Kong

Slides are available at https://ryosukeshimada.github.io

Motivation

- Simple descriptions of the supersingular (or basic) locus of Shimura varieties have been used towards applications in number theory (the Kudla-Rapoport program, Zhang's Arithmetic Fundamental Lemma, the Tate conjecture for certain Shimura varieties, etc.).
- The study of the perfection of the basic (or supersingular) locus is essentially reduced to the study of the affine Deligne-Lusztig variety (ADLV) via the Rapoport-Zink uniformization.

Table of contents

- Basics of affine Deligne-Lusztig varieties
- Fully Hogde-Newton decomposable cases
- The GU(2, n-2)-case

Definition of ADLVs with Iwahori level

From now on, we will use the following notation.

F : a non-archimedean local field with uniformizer *t*.

 G/\mathcal{O}_F : an unramified connected reductive group.

 $T \subseteq B$: a max. torus, B: a Borel subgroup.

 σ : the Frobenius automorphism of L/F.

$$L = \widehat{F^{un}}, J_b = \{g \in G(L) \mid g^{-1}b\sigma(g) = b\}.$$

 $I\subseteq G(\mathcal{O}_L)$: the standard Iwahori subgroup associated to $T\subset B\subset G$.

 W_0 : the Weyl group, \widetilde{W} : the Iwahori-Weyl group $\cong W_0 \ltimes X_*(T)$.

Definition

For $w \in \widetilde{W}$ and $b \in G(L)$, the affine Deligne-Lusztig variety $X_w(b)$ is a scheme locally (perfectly) of finite type/ $\overline{\mathbb{F}}_q$ defined as

$$X_w(b) = \{gI \in G(L)/I \mid g^{-1}b\sigma(g) \in IwI\} \subset G(L)/I.$$

Review of Coxeter groups

Let W be a group generated by a subset $S = \{s_1, s_2, \dots, s_r\}$.

Definition

(W,S) is called a *Coxeter system* if there exist $2 \le m(i,j) \le \infty$ s.t.

$$W = \langle S \mid s_i^2 = 1, \forall i \text{ and } (s_i s_j)^{m(i,j)} = 1, \forall i \neq j \rangle.$$

A word of min. length among words of $w \in W$ is called *reduced*. $\ell(w) :=$ the length of any reduced word of w. $\operatorname{supp}(w) :=$ the subset of S occurring in some reduced word of w. $v \le w \Leftrightarrow v$ can be obtained as a subword of a reduced word of w.

 (W_0, S) is a Coxeter system with S = the set of simple reflections.

 $W_a\subseteq \widetilde{W}$: the affine Weyl group, $\widetilde{S}=$ the set of simple affine reflections.

Then (W_a, \tilde{S}) is a Coxeter system and $\widetilde{W} \cong W_a \rtimes \Omega$. Here $\Omega = \{ w \in \widetilde{W} \mid \ell(w) = 0 \}$.

Definition of closed ADLVs

For $v, w \in W_a$, $\tau, \tau' \in \Omega$, $v\tau < w\tau' \stackrel{\text{def}}{\Longrightarrow} v < w$ and $\tau = \tau'$. Let $Adm(\mu) = \{ w \in W \mid w < t^{w_0 \mu} \text{ for some } w_0 \in W_0 \}.$

 ${}^{S}\widetilde{W}$: the set of minimal length representatives for the cosets in $W_0 \setminus W$.

Set ${}^{S}\operatorname{Adm}(\mu) = \operatorname{Adm}(\mu) \cap {}^{S}\widetilde{W}$.

Definition

The closed affine Deligne-Lusztig variety in $G(L)/G(\mathcal{O}_L)$ is the closed reduced $\overline{\mathbb{F}}_q$ -subscheme defined as

$$X_{\mu}(b) := \bigsqcup_{w \in {}^{\mathcal{S}}\operatorname{Adm}(\mu)} \pi(X_{w}(b)),$$

where $\pi: G(L)/I \to G(L)/G(\mathcal{O}_I)$ is the projection.

- J_b acts on $X_w(b)$ and $X_u(b)$ by left multiplication.
- (Main theorem) In the GU(2, n-2), p inert case, $X_u(b)$ for basic b has a simple description.

Group-theoretic data in the case of GL_n

Example

Let $G = GL_n$.

T: the torus of diagonal matrices.

B: the subgroup of upper triangular matrices.

I= the inverse image of B^{op} under $\mathit{G}(\mathcal{O}_L) o \mathit{G}(\overline{\mathbb{F}}_q), arpi \mapsto 0$

$$W_0 \cong \mathfrak{S}_n, \quad S = \{(1\ 2), \ldots, (n-1\ n)\}.$$

$$X_*(T)\cong\{t^\lambda=egin{pmatrix}t^{m_1}&&&\\&\ddots&&\\&&t^{m_n}\end{pmatrix}\mid\lambda=(m_1,\ldots,m_n)\in\mathbb{Z}^n\}.$$

Thus $X_*(T) \cong \mathbb{Z}^n$ and $\widetilde{W} \cong \mathfrak{S}_n \ltimes \mathbb{Z}^n$, $\widetilde{S} = S \cup \{(1 \ n)t^{(-1,0,\dots,0,1)}\}$. Set $\tau = t^{(1,0,\dots,0)}s_1s_2\cdots s_{n-1}$. Then $\Omega = \{\tau^m \mid m \in \mathbb{Z}\} \cong \mathbb{Z}$. Set $s_0 = (1 \ n)t^{(-1,0,\dots,0,1)}$ and $s_i = (i \ i+1)$. Then $\tau s_i \tau^{-1} = s_{i+1}$.

Summary of part 1

- $(G, \mu, b) \rightsquigarrow X_{\mu}(b) := \bigsqcup_{w \in {}^{S}\operatorname{Adm}(\mu)} \pi(X_{w}(b)).$
- The study of the perfection of the basic locus is reduced to the study of $X_{\mu}(b)$ for basic b.

From now on, we pass to the perfection even in the equal characteristic case for simplicity.

Elements with spherical σ -support

Let τ_{μ} be the image of t^{μ} under the projection $\widetilde{W}=W_{a}\rtimes\Omega\to\Omega$. Then τ_{μ} is basic and $\pi(X_{w}(\tau_{\mu}))$ corresponds to the intersection of a global EO stratum with the basic Newton stratum.

Let
$$w \in W_a \tau, \tau \in \Omega$$
. Set $\operatorname{supp}_{\sigma}(w) = \bigcup_{m \in \mathbb{Z}} (\tau \sigma)^m \operatorname{supp}(w \tau^{-1})$.

Theorem (Görtz-He)

If $W_{\operatorname{supp}_{\sigma}(w)}$ is finite, then $X_w(\tau) = \bigsqcup_{J_{\tau}/J_{\tau} \cap P_{\operatorname{supp}_{\sigma}(w)}} Y(w)$, where Y(w) is a (classical) Deligne-Lusztig variety in $P_{\operatorname{supp}_{\sigma}(w)}/I$.

- Y(w) is an irreducible component of $X_w(\tau)$.
- Similar description is true for $\pi(X_w(\tau))$.
- The global EO stratum associated to w is contained in the basic locus if and only if W_{Supp_(w)} is finite.

Example (
$$G = GL_2$$
)

$$X_{s_1}(1) = \bigsqcup_{G(F)/G(\mathcal{O}_F)} \mathbb{P}^1 \setminus \mathbb{P}^1(\mathbb{F}_q), \quad X_1(1) = \bigsqcup_{G(F)/G(F) \cap I} \{ \operatorname{pt} \}.$$

Fully Hodge-Newton decomposable pairs

Set
$${}^{S}\mathrm{Adm}(\mu)_{\neq\emptyset} = \{ w \in {}^{S}\mathrm{Adm}(\mu) \mid X_{w}(\tau_{\mu}) \neq \emptyset \}.$$

Then $X_{\mu}(\tau_{\mu}) = \bigsqcup_{w \in {}^{S}\mathrm{Adm}(\mu)_{\neq\emptyset}} \pi(X_{w}(\tau_{\mu})).$
Let $\mathrm{depth}(G, \mu)$ be a certain rational number determined by (G, μ) .

Theorem (Görtz-He-Nie)

The pair (G, μ) is fully Hodge-Newton decomposable if and only if the following equivalent conditions are satisfied:

- **1** The cocharacter μ is minute $\stackrel{\text{def}}{\Leftrightarrow} \operatorname{depth}(G, \mu) \leq 1$.
- 2 $W_{\operatorname{supp}_{\sigma}(w)}$ is finite for every $w \in {}^{S}\operatorname{Adm}(\mu)_{\neq \emptyset}$.
- The classification of fully HN decomposable cases is known.

Theorem (Görtz-He-Nie)

If (G, μ) is fully Hodge-Newton decomposable, then $X_{\mu}(\tau_{\mu})$ is naturally a disjoint union of Deligne-Lusztig varieties.

Examples of fully Hodge-Newton decomposable cases

Example

The fully Hodge-Newton decomposable cases contain the following cases which have been studied in the context of Shimura varieties:

- The Siegel case of genus 2, which has been studied by Katsura-Oort and Kaiser.
- The GU(1, n-1), p split case, which has been studied by Harris-Taylor.
- The GU(1, n-1), p inert case, which has been studied by Vollaard-Wedhorn.
- The GU(2,2), p inert case, which has been studied by Howard-Pappas.

Example ($G = GL_2$)

We have
$${}^{S}\mathrm{Adm}((1,-1))_{\neq\emptyset} = \{s_0,1\}$$
 and $X_{(1,-1)}(1) = \bigsqcup_{G(F)/G(\mathcal{O}_F)} (\mathbb{P}^1 \setminus \mathbb{P}^1(\mathbb{F}_q)) \sqcup \bigsqcup_{G(F)/G(\mathcal{O}_F)} \{\mathrm{pt}\}.$

Beyond fully Hodge-Newton decomposable cases

Example (
$$G = GL_2$$
)

$$X_{s_1t^{(-r,r)}}(1)\cong \textstyle \bigsqcup_{G(F)/G(\mathcal{O}_F)}(\mathbb{P}^1\setminus \mathbb{P}^1(\mathbb{F}_q))\times \mathbb{A}^{r-1}.$$

Theorem (S.)

Let $G = \operatorname{GL}_n$ and let $\mu \in X_*(T)_+$. If $\operatorname{depth}(G, \mu) < 2$, then $X_{\mu}(\tau_{\mu})$ is naturally a disjoint union of the product of a Deligne-Lusztig variety and a finite-dimensional affine space.

• depth(GL_n , $(1^{(2)}, 0^{(n-2)})$) = $2 - \frac{4}{n} < 2$.

Theorem (S.-Takamatsu)

Let $G = GSp_{2n}$ and let $\mu = (1^{(n)}, 0^{(n)})$. If n = 3, 4, then $X_{\mu}(\tau_{\mu})$ is naturally a disjoint union of the product of a Deligne-Lusztig variety and a finite-dimensional affine space.

• We have $depth(GSp_{2n}, (1^{(n)}, 0^{(n)})) = \frac{n}{2}$.

Summary of part 2

- If $W_{\text{supp}_{\sigma}(w)}$ is finite, then $X_w(\tau)$ is a union of DLVs.
- (G, μ) is fully HN decomposable $\Leftrightarrow \operatorname{depth}(G, \mu) \leq 1$.
- If this is the case, then $X_{\mu}(\tau_{\mu})$ is a union of DLVs.
- The depth(G, μ) ≤ 2 condition also seems to imply a simple geometric structure on $X_{\mu}(\tau_{\mu})$.

It is easy to check that $depth(G, \mu) = 2$ for GU(2, n-2).

Non-emptiness criterion

Let $p := \widetilde{W} \to W_0$ be the projection. For $w \in \widetilde{W}$, LP(w) := {length positive elements} $\subseteq W_0$ (omitted).

Theorem (Görtz-He-Nie, Lim, Schremmer)

Assume that the Dynkin diagram of G is σ -connected. Let $w \in W_a \tau$. Then

$$X_w(\tau) \neq \emptyset \Leftrightarrow (i) \ W_{\operatorname{supp}_{\sigma}(w)}$$
 is finite, or,
 $(ii) \ \forall v \in \operatorname{LP}(w), \operatorname{supp}_{\sigma}(\sigma^{-1}(v^{-1})p(w)v) = S$

- (i) uses $\widetilde{W} \cong W_a \rtimes \Omega$.
- (ii) uses $\widetilde{W} \cong W_0 \ltimes X_*(T)$.
- This theorem can be seen as the non-emptiness criterion of the intersection of a global EO stratum with the basic Newton stratum in Shimura varieties.

Deligne-Lusztig reduction

Proposition (Deligne-Lusztig, Görtz-He)

Let $w \in \widetilde{W}$ and let $s \in \widetilde{S}$ be a simple affine reflection.

- (i) If $\ell(sw\sigma(s)) = \ell(w)$, then $X_w(b) \cong X_{sw\sigma(s)}(b)$.
- f) If $\ell(sw\sigma(s)) = \ell(w) 2$, then there exists a decomposition $X_w(b) = X_1 \sqcup X_2$ such that
 - X_1 is open and there exists a J_b -equivariant morphism $X_1 \to X_{sw}(b)$, which is a Zariski-locally trivial $\mathbb{G}_m^{\mathrm{pfn}}$ -bundle.
 - X_2 is closed and there exists a J_b -equivariant morphism $X_2 \to X_{sw\sigma(s)}(b)$, which is a Zariski-locally trivial $\mathbb{A}^{1,\mathrm{pfn}}$ -bundle.
- (General strategy) Reduce the length of w so that $W_{\text{supp}_{\sigma}(w)}$ is finite.

Main theorem

Let G be the unramified unitary group of degree n. Then $\widetilde{W}_G \cong \widetilde{W}_{\mathrm{GL}_n} \cong \mathfrak{S}_n \ltimes \mathbb{Z}^n$ and $\sigma(s_i) = s_{n-i}$ (by setting $s_n = s_0$). Set $\mu = (0^{(n-2)}, -1, -1)$, $w_{k,l} \coloneqq t^{\mu} s_{n-2} s_{n-3} \cdots s_k s_{n-1} s_{n-2} \cdots s_l$. Then ${}^S\mathrm{Adm}(\mu) = \{w_{k,l} \mid 1 \le k < l \le n\}$ and $\ell(w_{k,l}) = k + l - 3$. ${}^S\mathrm{Adm}(\mu)_{\mathrm{DL}} \coloneqq \{w \in {}^S\mathrm{Adm}(\mu) \mid \mathrm{supp}_{\sigma}(w) \ne \tilde{S}\} \subseteq {}^S\mathrm{Adm}(\mu)_{\ne \emptyset}$. ${}^S\mathrm{Adm}(\mu)_{\ne 0} \sqsubseteq {}^S\mathrm{Adm}(\mu)_{\ne \emptyset}$.

Theorem (S.)

We have ${}^{S}\mathrm{Adm}(\mu)_{\mathrm{DL}}=\{w_{k,l}\mid k=1 \text{ or } l\leq \frac{n+2}{2}\}.$ Moreover, $w_{k,l}\in {}^{S}\mathrm{Adm}(\mu)_{\neq\mathrm{DL}}$ if and only if $3\leq k<\frac{n+2}{2}< l\leq n-1$ and one of the following conditions is satisfied:

- (i) k is odd and $k+1 \le n+2$.
- **(†)** $l \equiv n 1 \pmod{2}$ and $k + l \ge n + 3$.
- If $w \in {}^{S}\mathrm{Adm}(\mu)_{\mathrm{DL}}$, then $\pi(X_{w}(\tau_{\mu}))$ is a union of DLVs.
- This was known for $n \le 5$ (by Howard-Pappas, ABFGGN).

Main theorem

For $w_{k,l} \in {}^{S}\mathrm{Adm}(\mu)_{\neq \mathrm{DL}_{l}}$

$$W_{k,l} = \begin{cases} w_{k-2,l} & (k+l \le n+2) \\ w_{k,l-2} & (k+l \ge n+4) \\ w_{k-1,l-1} & (k+l=n+3) \end{cases}$$

Then $w'_{k,l} \in {}^{S}\mathrm{Adm}(\mu)_{\neq\emptyset}$.

Theorem (S.)

Let $w_{k,l} \in {}^{S}\mathrm{Adm}(\mu)_{\neq \mathrm{DL}}$. Then $\pi(X_{w_{k,l}}(\tau_{\mu}))$ is a Zariski-locally trivial $\mathbb{A}^{1,\mathrm{pfn}}$ -bundle over $\pi(X_{W_{\iota_{\mu}}}(\tau_{\mu}))$. In particular, $X_{\mu}(\tau_{\mu})$ is naturally a disjoint union of iterated fibrations over (irreducible) Deligne-Lusztig varieties, whose fibers are all $\mathbb{A}^{1,\mathrm{pfn}}$.

- The stabilizers of the strata can also be explicitly described.
- The irreducible components of $X_{\mu}(\tau_{\mu})$ were studied by Fox, Howard and Imai in a different way.
- If n = 4, then this description coincides with Howard-Pappas.

Example of the main theorem

$$X_{\mu}(\tau_{\mu}) = \bigsqcup_{w \in {}^{S}\operatorname{Adm}(\mu)} \pi(X_{w}(\tau_{\mu})) = \bigsqcup_{w \in {}^{S}\operatorname{Adm}(\mu)_{\neq \emptyset}} \pi(X_{w}(\tau_{\mu}))$$

$${}^{S}\operatorname{Adm}(\mu) = \{w_{k,l} \mid 1 \leq k < l \leq n\}$$

$${}^{S}\operatorname{Adm}(\mu)_{\neq \emptyset} = {}^{S}\operatorname{Adm}(\mu)_{\neq \operatorname{DL}} \sqcup {}^{S}\operatorname{Adm}(\mu)_{\operatorname{DL}}$$

$${}^{S}\operatorname{Adm}(\mu)_{\operatorname{DL}} = \{w_{k,l} \mid k = 1 \text{ or } l \leq \frac{n+2}{2}\}$$

 ${}^{5}\mathrm{Adm}(\mu)_{\neq\emptyset}$ for n=13 consists of the following elements:

Example of the main theorem

$$X_{\mu}(\tau_{\mu}) = \bigsqcup_{w \in {}^{S}\operatorname{Adm}(\mu)} \pi(X_{w}(\tau_{\mu})) = \bigsqcup_{w \in {}^{S}\operatorname{Adm}(\mu)_{\neq \emptyset}} \pi(X_{w}(\tau_{\mu}))$$

$${}^{S}\operatorname{Adm}(\mu) = \{w_{k,l} \mid 1 \leq k < l \leq n\}$$

$${}^{S}\operatorname{Adm}(\mu)_{\neq \emptyset} = {}^{S}\operatorname{Adm}(\mu)_{\neq \operatorname{DL}} \sqcup {}^{S}\operatorname{Adm}(\mu)_{\operatorname{DL}}$$

$${}^{S}\operatorname{Adm}(\mu)_{\operatorname{DL}} = \{w_{k,l} \mid k = 1 \text{ or } l \leq \frac{n+2}{2}\}$$

 ${}^{5}\mathrm{Adm}(\mu)_{\neq\emptyset}$ for n=13 consists of the following elements:

Proof: Emptiness

Recall that $w_{k,l}:=t^{\mu}s_{n-2}s_{n-3}\cdots s_ks_{n-1}s_{n-2}\cdots s_l$. Then

$$X_w(\tau_\mu) = \emptyset \Leftrightarrow (i) \operatorname{supp}_\sigma(w) = \tilde{S}, \text{ and,}$$

$$(ii) \exists v \in \mathsf{LP}(w), \operatorname{supp}_\sigma(\sigma^{-1}(v^{-1})p(w)v) \neq S.$$

Here $p(w_{k,l}) = s_{n-2}s_{n-3}\cdots s_k s_{n-1}s_{n-2}\cdots s_l, \ p(w_{k,l})^{-1} \in LP(w_{k,l}).$

Lemma

Assume $1 \le k < l \le n$ satisfies one of the following conditions:

- (i) $\frac{n+2}{2} \le k < l \le n$.
- (i) $l \equiv n \pmod{2}$, $\frac{n+3}{2} \le l$ and $n-l+2 \le k \le \frac{n+1}{2}$.
- lambda k is even, $k \le \frac{n-1}{2}$ and $\frac{n+3}{2} \le l \le n-k+2$.

Then $X_{w_{k,l}}(b) = \emptyset$.

Proof. (i)
$$v = p(w_{k,l})^{-1}$$
.
(ii) $v = p(w_{k,l})^{-1} (s_{n-l}s_l \cdots s_2 s_{n-2}) (s_{n-l-1}s_{l+1} \cdots s_3 s_{n-3}) \cdots (s_{\frac{n-l}{2}+1}s_{\frac{n+l}{2}-1})$.

Proof: Key lemma

We write $w \approx_{\sigma} w'$ if \exists a sequence $w = w_0, w_1, \ldots, w_k = w'$ in \widetilde{W} such that $\forall i, \exists t_i \in \widetilde{S}$; $w_i = t_i w_{i-1} \sigma(t_i)$ and $\ell(t_i w_{i-1} \sigma(t_i)) = \ell(w_i)$.

Lemma

Assume that $3 \le k \le \frac{n+1}{2}$ and $\frac{n+3}{2} \le l \le n-1$.

- ① If k is odd and $k+l \le n+2$, then $\exists s \in \tilde{S}, w' \in \widetilde{W}$ such that $w_{k,l} \approx_{\sigma} w'$, $sw'\sigma(s) \approx_{\sigma} w_{k-2,l}$ and $sw' \approx_{\sigma} w_{k-1,l}$.
- f) If $l \equiv n-1$ and $k+l \geq n+4$, then $\exists s \in \tilde{S}, w' \in \widetilde{W}$ such that $w_{k,l} \approx_{\sigma} w'$, $sw'\sigma(s) \approx_{\sigma} w_{k,l-2}$ and $sw' \approx_{\sigma} w_{k,l-1}$.

Proof. Recall that $\sigma(s_i) = s_{n-i}$ and $\tau_{\mu} s_i \tau_{\mu}^{-1} = s_{i-2}$ ($\tau_{\mu} = w_{1,2}$). For $w_{3,l} = s_0 \cdots s_{l-3} s_{n-1} s_0 \tau_{\mu}$, $w' := s_{n-2} s_0 w_{3,l} \sigma(s_0 s_{n-2}), s := s_{n-1}$.

Summary of part 3

• In the $\mathrm{GU}(2,n-2)$ -case, $X_{\mu}(\tau_{\mu})$ is naturally a union of iterated fibrations over Deligne-Lusztig varieties.

Future works are

- Comparison with the Fox-Howard-Imai's description.
- Systematic study of the $depth(G, \mu) \leq 2$ cases.
- Description before taking perfection.
- Application towards number theory.