UNIVERZITET U TUZLI FAKULTET ELEKTROTEHNIKE

Uvod u računarske algoritme

Elementarni algoritmi pretraživanja i sortiranja Zadaća 3

Tuzla, maj/svibanj 2018.

Sadržaj

Sadržaj	2
Napomena	3
Zadatak 1:	3
Zadatak 2:	3
Zadatak 3:	3
Zadatak 4:	4

Napomena

U svim problemima koji slijede nije dozvoljena upotreba komandi i funkcija koje dosad nisu korištene na predavanjima ili vježbama. Dozvoljena je upotreba kontejnera iz standardne biblioteke (std::vector i std::list), kao i C nizova.

Zadatak 1:

Posmatrati *merge sort* algoritam kao algoritam za sortiranje u mjestu (*in-place* algoritam - algoritam koji transformiše ulaz korištenjem konstantne memorije, izvodi se na orginalnom nizu). Ilustrirati izvršavanje algoritma na sljedećem nizu cijelih brojeva:

```
A = \{3, 13, 89, 34, 21, 44, 99, 56, 9\};
```

Za svaku iteraciju izvršenja algoritma napisati sadržaj niza u tom trenutku.

Zadatak 2:

Implementirati funkciju **pronadjiNajmanji** koja vraća najmanji element proslijeđenog niza korištenjem *divide and conquer* strategije.

```
int pronadjiNajmanji(int*, int);
```

Zadatak 3:

Potrebno je implementirati *divide and conquer* algoritam koji u O(logN) vremenu pronalazi minimalan element u cirkularno pomjerenom sortiranom nizu.

Naprimjer, ukoliko imamo sortiran niz $A = \{1, 2, 3, 4, 5, 6\}$ cirkularno pomjeren niz za 2 elementa je $A' = \{5, 6, 1, 2, 3, 4\}$.

Zadatak 4:

a)
Implementirati quick sort algoritam. Implementaciju testirati na nizu od 20000 elemenata.

b)
U najboljem slučaju pivot dijeli niz napola za sve rekurzivne pozive. Potrebno je naći sekvencu od 3 broja i sekvencu od 7 brojeva koja uzrokuje ovaj najbolji slučaj. (Hint: za sekvencu od 7 brojeva, prva dva rekurzivna poziva trebaju biti nad sekvencama od 3 broja)