РУБЕННЫЙ КОНТРОЛЬ 10 МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ

Denoycoba HO.C.

UY7-615

Количество листов: 4

14.05.2020

[m]
$$f_{\chi}[x] = \frac{2\lambda^2}{x^3}$$
, $\chi \ge \lambda$, $\lambda > 0$

The second $f_{\chi}[x]$ is $f_{\chi}[x]$ and $f_{\chi}[x]$ is $f_{\chi}[x]$ in $f_{\chi}[x]$ in $f_{\chi}[x]$ is $f_{\chi}[x]$ in $f_{\chi}[x]$ in $f_{\chi}[x]$ in $f_{\chi}[x]$ is $f_{\chi}[x]$ in $f_{\chi}[x]$

b)
$$D \hat{\lambda}(\vec{x}) \geq \frac{1}{n \cdot 5}$$
 $J = M \left[\frac{1}{2N} \ln f(k) \right]^{L}$
 $\ln f(k) = \ln k + L \ln k - 5 \ln k$
 $\frac{1}{2} \ln k = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$
 $\frac{1}{2} \ln k = \frac{1}{2} = \frac{1}{$

huer 4 W2 X ~ (m, 62) m 4 6 - mugbeemute X= 0,9 n = 16 $\overline{X} = 3.52$ $S^{2}(x^{2}) = 1,21$ Дия заранных усновно интервал empouree enegypousem orpagous: Menonogyemese comamucamura: $\frac{m-\chi}{3(\overline{\chi})} \sqrt{n} \sim St(n-1)$ $P^{\frac{1}{1}} + \frac{1-r}{r} < \frac{m-x}{s(x^{2})} \cdot \sqrt{n} < t_{1+r}^{2} = \delta$ $\begin{array}{c|c} P \downarrow & t_{1-x} \\ \hline \hline \hline & S(\vec{x}) + \overline{\chi} & \leq m \leq \frac{t_{1+x}}{2} \cdot S(\vec{x}) + \overline{\chi} = y \end{array}$ t 1+1 = t 0,05 = - t 1-1 to,95 = 1,753 - uj ma 6 muzu P 1 3,52 - 1,753 · 11 < m < 1,753 · 11 + 3,52 = 0,9 2 4,82 -1,3 < m < 8,34Om bem: m ∈ (-1,3; 8,34)