Problem chi

$$R_0, X \vdash_{\text{ipl}} \tilde{g}$$
?

Proved

Clauses in R_0 : 17

Clauses in X: 6

Atoms: 16

Calls to the SAT-solver: 15

Restarts: 6

 \mathbb{R}_0 and X are defined at the end of the document

${\bf Start}$

(0) $R_0 \vdash_{\mathbf{c}} \tilde{g}$?

 $No(\emptyset)$

New world: w_0

Selected: $\langle w_0, \lambda_0 = (p_3 \to p_2) \to \tilde{p}_7 \rangle$

(1) $R_0, w_0, p_3 \vdash_{\mathbf{c}} p_2$?

No($\{\tilde{p}_{10}, \, \tilde{p}_6, \, p_3\}$)

New world: w_1

	W		λ s.t. $w \not \succ_W \lambda$
٠	w_1	$\tilde{p}_{10},\tilde{p}_{6},p_{3}$	λ_3,λ_5
	w_0	Ø	$\lambda_2, \lambda_3, \lambda_4, \lambda_5$

Selected: $\langle w_1, \lambda_3 = (p_2 \to p_1) \to \tilde{p}_2 \rangle$

(2) $R_0, w_1, p_2 \vdash_{\mathbf{c}} p_1$?

 $\operatorname{Yes}(\{\tilde{p}_6, p_2\})$

 $R_0, \, \tilde{p}_6, \, p_2 \, \vdash_{\mathrm{c}} \, p_1$

New clause: $\varphi_0 = \tilde{p}_6 \rightarrow \tilde{p}_2$

 $R_1 = R_0, \varphi_0$

Restart 1

(3) $R_1 \vdash_{\mathsf{c}} \tilde{g}$?

No(
$$\{\tilde{p}_1, \tilde{p}_{10}, \tilde{p}_7, p_2\}$$
)

New world: w_2

W		λ s.t. $w \not \succ_W \lambda$
w_2	$\tilde{p}_1, \tilde{p}_{10}, \tilde{p}_7, p_2$	λ_1

Selected: $\langle w_2, \lambda_1 = (p_3 \to p_1) \to \tilde{p}_9 \rangle$

(4) $R_1, w_2, p_3 \vdash_{\mathbf{c}} p_1 ?$

$$\operatorname{Yes}(\{\tilde{p}_1, p_3\})$$

 $R_1, \, \tilde{p}_1, \, p_3 \, \vdash_{\mathbf{c}} \, p_1$

New clause: $\varphi_1 = \tilde{p}_1 \rightarrow \tilde{p}_9$

 $R_2 = R_1, \varphi_1$

Restart 2

(5) $R_2 \vdash_{\mathsf{c}} \tilde{g}$?

No($\{\tilde{p}_{10}, \, \tilde{p}_{2}, \, \tilde{p}_{6}, \, p_{3}\}$)

New world: w_3

W		λ s.t. $w \not \succ_W \lambda$
w_3	\tilde{p}_{10} , \tilde{p}_{2} , \tilde{p}_{6} , p_{3}	λ_5

Selected: $\langle w_3, \lambda_5 = (p_1 \to p_2) \to \tilde{p}_1 \rangle$

(6) $R_2, w_3, p_1 \vdash_{c} p_2 ?$

Yes(
$$\{\tilde{p}_{10}, p_1\}$$
)

 $R_2, \, \tilde{p}_{10}, \, p_1 \, \vdash_{\mathrm{c}} \, p_2$

New clause: $\varphi_2 = \tilde{p}_{10} \to \tilde{p}_1$

 $R_3 \, = \, R_2, \varphi_2$

Restart 3

(7) $R_3 \vdash_{\mathsf{c}} \tilde{g}$?

No($\{\tilde{p}_2, \tilde{p}_6, \tilde{p}_9, p_1\}$)

New world: w_4

Selected: $\langle w_4, \lambda_0 = (p_3 \to p_2) \to \tilde{p}_7 \rangle$

(8) $R_3, w_4, p_3 \vdash_{c} p_2 ?$ Yes($\{p_3\}$)

 $R_3, p_3 \vdash_{\mathbf{c}} p_2$

New clause: $\varphi_3 = \tilde{p}_7$

 $R_4 = R_3, \varphi_3$

Restart 4

(9) $R_4 \vdash_{\mathbf{c}} \tilde{g}$?

No($\{\tilde{p}_1, \, \tilde{p}_7, \, \tilde{p}_9\}$)

New world: w_5

W		λ s.t. $w \not \succ_W \lambda$
w_5	$ ilde{p}_1, ilde{p}_7, ilde{p}_9$	$\lambda_2, \lambda_3, \lambda_4$

Selected: $\langle w_5, \lambda_2 = (p_2 \to p_3) \to \tilde{p}_6 \rangle$

(10) $R_4, w_5, p_2 \vdash_{\mathbf{c}} p_3 ?$

No($\{\tilde{p}_1, \tilde{p}_7, \tilde{p}_9, p_2\}$)

New world: w_6

W		λ s.t. $w \not \succ_W \lambda$
w_6	$\tilde{p}_1,\tilde{p}_7,\tilde{p}_9,p_2$	λ_4
w_5	$\tilde{p}_1,\tilde{p}_7,\tilde{p}_9$	λ_4

Selected: $\langle w_6, \lambda_4 = (p_1 \to p_3) \to \tilde{p}_{10} \rangle$

(11) $R_4, w_6, p_1 \vdash_{c} p_3$?

Yes($\{\tilde{p}_1, p_1\}$)

 $R_4, \, \tilde{p}_1, \, p_1 \, \vdash_{\operatorname{c}} \, p_3$

New clause: $\varphi_4 = \tilde{p}_1 \to \tilde{p}_{10}$

 $R_5 \, = \, R_4, \varphi_4$

Restart 5

(12)
$$R_5 \vdash_{\rm c} \tilde{g}$$
 ?

No(
$$\{\tilde{p}_2, \tilde{p}_7, \tilde{p}_9, p_1\}$$
)

New world: w_7

Selected: $\langle w_7, \lambda_2 = (p_2 \to p_3) \to \tilde{p}_6 \rangle$

(13)
$$R_5, w_7, p_2 \vdash_{\mathbf{c}} p_3 ?$$

$$\operatorname{Yes}(\{p_2\})$$

$$R_5, p_2 \vdash_{\mathrm{c}} p_3$$

New clause: $\varphi_5 = \tilde{p}_6$

$$R_6 = R_5, \varphi_5$$

Restart 6

(14)
$$R_6 \vdash_{c} \tilde{g}$$
?

$$\operatorname{Yes}(\emptyset)$$

$$R_6 \vdash_{\mathrm{c}} \tilde{g}$$

Goal proved

Problem description

Flat clauses R_0 (17):

- 1. $\tilde{p}_1 \wedge \tilde{p}_2 \rightarrow \tilde{p}_0$
- $2. \ \tilde{p}_3 \to p_2$
- 3. $\tilde{p}_3 \rightarrow p_3$
- 4. $\tilde{p}_4 \rightarrow p_1$
- 5. $\tilde{p}_4 \rightarrow \tilde{p}_3$
- 6. $\tilde{p}_0 \rightarrow \tilde{p}_4$
- 7. $\tilde{p}_6 \wedge \tilde{p}_7 \rightarrow \tilde{p}_5$
- 8. $\tilde{p}_5 \rightarrow \tilde{p}_4$
- 9. $\tilde{p}_9 \wedge \tilde{p}_{10} \rightarrow \tilde{p}_8$

- 10. $\tilde{p}_8 \rightarrow \tilde{p}_4$
- 11. $p_1 \wedge p_2 \wedge p_3 \rightarrow \tilde{g}$
- 12. $p_2 \rightarrow \tilde{p}_7$
- 13. $p_1 \rightarrow \tilde{p}_9$
- 14. $p_3 \rightarrow \tilde{p}_6$
- 15. $p_1 \rightarrow \tilde{p}_2$
- 16. $p_3 \rightarrow \tilde{p}_{10}$
- 17. $p_2 \rightarrow \tilde{p}_1$

Implication clauses X (6):

- $\lambda_0 = (p_3 \to p_2) \to \tilde{p}_7$
- $\lambda_1 = (p_3 \to p_1) \to \tilde{p}_9$
- $\lambda_2 \, = \, (p_2 \to p_3) \to \tilde{p}_6$
- $\lambda_3 = (p_2 \to p_1) \to \tilde{p}_2$
- $\lambda_4 = (p_1 \to p_3) \to \tilde{p}_{10}$
- $\lambda_5 = (p_1 \to p_2) \to \tilde{p}_1$

Added clauses (6):

- $\varphi_0 = \tilde{p}_6 \rightarrow \tilde{p}_2$
- $\varphi_1 = \tilde{p}_1 \to \tilde{p}_9$
- $\varphi_2 = \tilde{p}_{10} \to \tilde{p}_1$
- $\varphi_3 = \tilde{p}_7$
- $\varphi_4 = \tilde{p}_1 \to \tilde{p}_{10}$
- $\varphi_5 = \tilde{p}_6$