Fundamentals of Information Theory Homework Four

王翎羽 U202213806 提高 2201 班 2024 年 6 月 10 日

Problem 1 Solutions:

(a)

(b)

(c)

(d)

Problem 2 Solutions:

Channel Model

Given the channel is memoryless and the noise Z is additive and independent of the input X, the output Y can be expressed as:

$$Y = X \oplus Z$$

where \oplus denotes the binary addition (XOR).

Channel Matrix

The channel transition probabilities are:

$X \backslash Y$	0	1
0	$\Pr[Z=0]$	$\Pr[Z=a]$
1	$\Pr[Z=a]$	$\Pr[Z=0]$

with
$$\Pr[Z=0] = \Pr[Z=a] = \frac{1}{2}$$
.

Channel Capacity Calculation

The channel capacity C is given by:

$$C = \max_{p(x)} I(X;Y)$$

Using the symmetry of the channel and the uniform distribution of Z, the mutual information I(X;Y) is maximized when X is also uniformly distributed. This gives us:

$$I(X;Y) = H(Y) - H(Y|X)$$

Since $Y=X\oplus Z$, and both X and Z are independent and uniformly distributed:

$$H(Y) = 1$$
 bit (Entropy of a fair coin)

$$H(Y|X) = H(Z) = 1$$
 bit

$$C = 1 - 1 = 0$$
 bits

This indicates that the capacity of this channel is 0 bits per channel use, meaning no reliable communication is possible if a=0. If $a\neq 0$, further analysis on the value of a would be required to compute its specific impact on the channel capacity.

Problem 3 Solutions:

(a) Given the transition probabilities shown in the figure:

$X \backslash Y$	0	E	1
0	$1-\alpha-e$	α	e
1	e	α	$1-\alpha-e$

The capacity C of this channel is given by:

$$C = \max_{p(x)} I(X;Y)$$

where I(X;Y) is the mutual information between X and Y. Assume X is distributed Bernoulli(0.5) for symmetry. The capacity can then be computed as:

$$C = 1 - H_b(e) - \alpha \log(2)$$

where $H_b(p)$ is the binary entropy function $-p \log_2(p) - (1-p) \log_2(1-p)$.

(b)

$$C = 1 - H_b(e)$$

(c)

$$C = 1 - \alpha$$