

The team

Naira Ibrahim

Doha Sayed

Eman Hisham

under supervistion:

Eng/ Michael Medhat

Dr/Mahmoud Abdelal

Introduction

In this project, we are working on a path planning problem for a robot on a grid.

- Objective: Move from a defined **start point to a goal point, while:
 - Collecting predefined items
 - Avoiding obstacles

Introduction

To achieve this, we implemented and compared the performance of three bio-inspired optimization algorithms:

- Ant Colony Optimization (ACO)
- Artificial Bee Colony (ABC)
- Particle Swarm Optimization (PSO)
 The goal is to find the most efficient and intelligent path for the robot.

BFS WITH RANDOM EXPLORATION

This function finds a path from the start to the goal using Breadth-First Search, exploring neighbors in a random order.

How It Works:

- Starts from the initial position.
- Explores all valid neighboring cells using a queue.
- Randomizes neighbor order to introduce variety.
- Stops when the goal is reached.

Returns:

- A list of positions from start to goal.
- None if no path is found.

Useful for generating diverse paths in ABC and PSO algorithms

ARTIFICIAL BEE COLONY (ABC) "LET THE BEES GUIDE THE WAY

- Key Roles:
 - Employed Bees: Search around known food sources (paths).
 - Onlooker Bees: Observe and choose promising sources.
- Scout Bees: Explore randomly for new food sources.
- Steps:
 - 1. Generate initial random paths (food sources).
 - 2. Evaluate them based on path quality (fitness).
 - 3. Explore around best paths to improve.
 - 4. Replace bad solutions with new random ones (scouting).
- In Our Project:
 - Each path is a bee's "foraging route".
 - Bees try to collect as many items as possible on the way to the goal.
 - Fitness is based on:
 - o Path length
 - Number of items collected
 - Reaching the goal
- Good for exploring a diverse set of solutions.

PARTICLE SWARM (PSO) OPTIMIZATION (PSO) "FLOCKING TO THE BEST PATH"

- Concept:
 - Each particle represents a path solution.
 - Particles adjust their path by:
 - Their own best solution (pBest)
 - The global best solution (gBest)
- Steps:
 - 1. Initialize particles (random paths).
 - 2. Evaluate fitness of each.
 - 3. Update particles to move toward the best-known solutions.
 - 4. Iterate until convergence.
- In Our Project:
 - A path is a particle's position.
 - The particle learns from:
 - Its own past best (shorter, item-rich path)
 - Best path found by others
 - Particles "move" by altering path decisions slightly.
- **▼** PSO helps quickly converge to optimal or near-optimal paths

ANT COLONY OPTIMIZATION "FOLLOW THE PHEROMONES"

- Core Ideas:
- Each ant lays a pheromone on its path.
- Future ants are more likely to follow stronger pheromone trails.
- Over time, good paths get reinforced.
- Steps:
 - 1. Generate many random paths (ants explore).
 - 2. Evaluate each path.
 - 3. Add pheromone based on path quality.
 - 4. Evaporate pheromone over time (to avoid overfitting).
- In Our Project:
 - Each ant creates a path from start to goal while collecting items.
 - Better paths leave more pheromone.
 - Ants are more likely to follow better paths in the future.
- Excellent for balancing exploration and exploitation.

Each algorithm was tested on the same environment to ensure fairness:

Same grid configuration

Same start & goal

Same number of items and obstacles

Artificial Bee Colony (ABC)

Bees explore and exploit food sources (paths).
Employed bees search locally, while scout bees explore randomly.

* Ant Colony Optimization (ACO)

••••••

Simulates ants leaving pheromone trails. Better paths leave stronger pheromones, guiding others toward optimal paths.

Particle Swarm Optimization (PSO)

Particles move in the grid and adjust their directions based on their best path and the global best, mimicking bird flocking behavior.

Best Performer

PARTICLE SWARM
OPTIMIZATION (PSO) IT
PROVIDED THE BEST
BALANCE BETWEEN
EFFICIENCY AND
EFFECTIVENESS IN OUR
GRID SCENARIO.

Algorithm	Path Length	Items Collected	Valid Path
ABC		2/5	<u>~</u>
ACO PSO	49 29	4/5 3/5	

THANK

www.reallygreatsite.com