

Implementation for asymmetric travelling salesman problem

Łukasz Grabarski, Magdalena Jeczeń, Karolina Mączka, Mateusz Nizwantowski, Marta Szuwarska

TABLE OF CONTENTS

Minimal Hamiltonian cycle = ?

Parallel Tempering Simulated Annealing

Modifications

- Starting with heuristic solution
- Implementing two types of metropolis transition
 - Shuffle transition
 - Swap transition
- Speeding metropolis transition up with multithreading
- Skipping solutions close to best solution in replica transition
- Restarting algorithm

Time needed to reach certain best solution deficit ratio

O4 PARAMETERS

10

Different parameters

Over 1600

Algorithm invokes for parameters testing

Stability

Parameters have minor impact on results

O5 RESULTS

~10%

Mean best solution deficit ratio

0%

Minimum best solution deficit ratio

~24%

Maximum best solution deficit ratio

Best solution length depending on time - SMALL **PROBLEM**

Best solution length depending on time - MEDIUM **PROBLEM**

Best solution length depending on time - BIG **PROBLEM**

Our best solution lengths compared with best known solution lengths

	Best known	Our best	Best solution
Name	solution	known solu-	deficit ratio
	length	tion length	(in percent)
br17	39	39	0.0000000
ftv33	1286	1382	7.4650078
ftv35	1473	1534	4.1412084
ftv38	1530	1614	5.4901961
p43	5620	5627	0.1245552
ftv44	1613	1713	6.1996280
ftv47	1776	1931	8.7274775
ry48p	14422	15105	4.7358203
ft53	6905	8019	16.1332368
ftv55	1608	1782	10.8208955
ftv64	1839	1976	7.4497009
ft70	38673	40597	4.9750472
ftv70	1950	2174	11.4871795
kro124p	36230	40276	11.1675407
ftv170	2755	3379	22.6497278
rbg323	1326	1527	15.1583710
rbg358	1163	1441	23.9036973
rbg403	2465	2742	11.2373225
rbg443	2720	3067	12.7573529

O6 CYTHON

~11%

Mean best solution deficit ratio

0%

Minimum best solution deficit ratio

~31%

Maximum best solution deficit ratio

O7 LONG-TERM RESULTS

~9%

Mean best solution deficit ratio

0%

Minimum best solution deficit ratio

~23%

Maximum best solution deficit ratio

O8 SUMMARY

Possibilities for further development

- Another method for generating heuristic solutions
- Testing parameters more thoroughly
- Rewriting the algorithm in a faster programing language
- Introduction of new parameters
- Tinkering with a different cooling functions

https://www.researchgate.net/publication/229004865_Multithreaded_Simulated_Annealing

https://www.peterbaumgartner.com/blog/intro-to-just-enough -cython-to-be-useful/

https://github.com/PrzeChoj/2023Lato-WarsztatyBadawcze

https://chat.openai.com/

https://www.scirp.org/journal/paperinformation.aspx?paperid= 109634

https://www.jetbrains.com/help/pycharm/cython.html

https://www.scirp.org/journal/paperinformation.aspx?paperid= 109634