Parte 5. Sottospazi

A. Savo – Appunti del Corso di Geometria 2013-14

Indice delle sezioni

- 1 Sottospazi di \mathbb{R}^n , 1
- 2 Equazioni di un sottospazio di \mathbb{R}^n , 3
- 3 Sottospazio intersezione, 6
- 4 Sottospazio somma, 8
- 5 Formula di Grassmann, 10
- 6 Somma diretta, 11
- 7 Serie di esempi, 14
- 8 Coordinate e criterio del rango, 17
- 9 Spazi vettoriali di matrici e polinomi, 19

1 Sottospazi di \mathbb{R}^n

Premettiamo la seguente

Proposizione Sia V uno spazio vettoriale di dimensione finita n ed E un suo sottospazio. Allora:

 $\dim E \le n.$

Inoltre dim E = n se e solo se E = V.

Dimostrazione. Sia v_1, \ldots, v_k una base di E, cosicché dim E = k. I k vettori della base di E sono linearmente indipendenti dunque $k \leq n$ (perche n è il massimo numero di vettori linearmente indipendenti di V). Supponiamo che dim $E = n = \dim V$: allora esiste una base di E con n vettori. Essendo tali vettori linearmente indipendenti, e in numero pari alla dimensione di V, essi formano una base anche di V. In conclusione, V ed E hanno in comune una base, dunque coincidono. \square

Quindi, l'unico sottospazio di V che ha dimensione massima (cioè pari a quella di V) è tutto lo spazio. Ricordiamo anche il sottospazio nullo $E = \{O\}$ composto dal solo vettore nullo, che per convenzione ha dimensione zero.

1.1 Dimensione e rango

Veniamo ora al seguente problema: dato un sottospazio E di \mathbb{R}^n , descritto con un insieme di generatori, calcolare la sua dimensione e trovare una base.

Lemma a) I vettori colonna v_1, \ldots, v_k di una matrice A sono linearmente indipendenti se e solo se $\operatorname{rk} A = k$.

b) Sia A una matrice, e sia A' è la matrice ottenuta da A aggiungendo la colonna v_{k+1} . Allora: v_{k+1} è combinazione lineare delle colonne precedenti se e solo se $\operatorname{rk} A' = \operatorname{rk} A$.

Dimostrazione. La parte a) è già stata dimostrata. Dimostriamo la b). Supponiamo che le colonne di A siano v_1, \ldots, v_k . Allora v_{k+1} è combinazione lineare delle colonne precedenti se e solo se possiamo trovare numeri reali x_1, \ldots, x_k tali che:

$$v_{k+1} = x_1 v_1 + \dots + x_k v_k.$$

Questa equazione vettoriale si traduce nel sistema lineare $AX = v_{k+1}$, che è compatibile se e solo se rkA' = rkA (teorema di Rouche'-Capelli). \square

In altre parole, se aggiungiamo una colonna v_{k+1} si ha che:

- $\operatorname{rk} A' = \operatorname{rk} A$, se v_{k+1} è combinazione lineare delle colonne precedenti,
- $\operatorname{rk} A' = \operatorname{rk} A + 1$, altrimenti.

Quindi, aggiungendo via via colonne che sono combinazioni lineari delle precedenti, il rango non cambia. Il teorema che segue dà una ulteriore caratterizzazione del rango di una matrice.

Teorema Sia A una matrice $m \times n$, con vettori colonna $v_1, \ldots, v_n \in \mathbf{R}^m$. Allora:

$$\operatorname{rk} A = \dim L[v_1, \dots, v_n].$$

Cioè, il rango di A uguaglia la dimensione del sottospazio di \mathbf{R}^m generato dalle colonne di A. Inoltre, una base di $L[v_1, \ldots, v_n]$ è data dalle colonne corrispondenti ad un minore di ordine massimo di A con determinante non nullo.

Dimostrazione. Il sottospazio $E = L[v_1, \ldots, v_n]$ ha generatori v_1, \ldots, v_n per ipotesi. Sappiamo che ogni insieme di generatori contiene una base, ottenuta scartando (eventualmente) i generatori inutili. Riordinando, possiamo supporre che una base di E sia formata dalle prime k colonne v_1, \ldots, v_k . Quindi tutte le colonne successive saranno combinazione lineare di v_1, \ldots, v_k e aggiungendole via via il rango rimarrà costante, per la parte b) del

lemma. Dunque abbiamo:

$$\dim E = k$$
= rango della matrice $\operatorname{Mat}(v_1, \dots, v_k)$
= rango della matrice $\operatorname{Mat}(v_1, \dots, v_k, v_{k+1})$
...
= rango della matrice $\operatorname{Mat}(v_1, \dots, v_n)$
- rk A

Questo dimostra la prima parte del teorema. Sia ora M un minore di ordine massimo di A con determinante non nullo. Le colonne di A corrispondenti a quelle di M sono evidentemente linearmente indipendenti, e formano quindi una base del sottospazio E. \square Poiché il rango di una matrice uguaglia quello della sua trasposta, avremo anche che

 $\bullet~$ Il rango di una matrice Auguaglia la dimensione del sottospazio generato dalle righe di A.

Esempio Siano $v_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}, v_3 = \begin{pmatrix} 2 \\ -3 \\ 4 \\ -3 \end{pmatrix}$. Calcolare la dimensione del sot-

tospazio E di \mathbf{R}^4 generato da v_1, v_2, v_3 .

Soluzione. Il rango della matrice $\begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & -3 \\ 2 & 0 & 4 \\ 1 & 1 & -3 \end{pmatrix}$ vale 2, dunque dim E=2. Una base può

essere formata dai primi due vettori v_1, v_2 , corrispondenti al minore $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$. Notiamo che in effetti $v_3 = 2v_1 - 5v_2$. \square

Esempio Calcolare la dimensione del sottospazio E di ${\bf R}^3$ generato dai vettori

$$u_1 = \begin{pmatrix} 0 \\ -1 \\ -1 \end{pmatrix}, u_2 = \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix}, u_3 = \begin{pmatrix} 1 \\ -3 \\ -2 \end{pmatrix}, u_4 = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}.$$

Soluzione. Incolonniamo i vettori, e osserviamo che il rango vale 2. Dunque dim E=2.

Una base possibile è (u_2, u_3) . Notiamo, a posteriori, qualche relazione fra le colonne:

$$u_2 = -2u_1$$

$$u_4 = u_1 - u_3$$

Dunque potevamo eliminare i generatori u_2 e u_4 , e un'altra base è (u_1, u_3) . \square

2 Equazioni di un sottospazio di \mathbb{R}^n

Sappiamo che l'insieme delle soluzioni di un sistema lineare omogeneo è sempre un sottospazio di \mathbb{R}^n . Vogliamo ora far vedere che è vero anche il viceversa, cioè:

 $\bullet\,$ Ogni sottospazio di ${\bf R}^n$ è l'insieme delle soluzioni di un opportuno sistema lineare omogeneo.

Iniziamo con un esempio.

Esempio Consideriamo il sottospazio E di \mathbf{R}^3 generato dai vettori $v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$

 $\begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$. Esprimiamo E con equazioni.

Per definizione, un vettore $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ appartiene a E se e solo esso è combinazione lineare

di v_1 e v_2 . I generatori sono linearmente indipendenti, quindi formano una base di E. Incolonnando i tre vettori, otteniamo la matrice

$$A = \begin{pmatrix} 1 & 2 & x \\ 1 & 1 & y \\ 0 & -1 & z \end{pmatrix}.$$

Ora la terza colonna è combinazione lineare delle precedenti se e solo se rkA=2. Quindi dobbiamo semplicemente imporre la condizione

$$\begin{vmatrix} 1 & 2 & x \\ 1 & 1 & y \\ 0 & -1 & z \end{vmatrix} = 0.$$

Sviluppando, otteniamo l'equazione:

$$S: x - y + z = 0.$$

• L'equazione S: x-y+z=0 si dice equazione cartesiana del sottospazio E. Essa rappresenta E nel senso che $E=\mathrm{Sol}(S)$.

Esempio Vediamo di rappresentare il seguente sottospazio di \mathbb{R}^4 mediante equazioni:

$$E = L \begin{bmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ -1 \\ 1 \end{bmatrix}.$$

Innanzitutto osserviamo che i due generatori sono linearmente indipendenti, dunque formano una base di E. Consideriamo la matrice ottenuta incolonnando la base, con l'aggiunta del vettore colonna delle incognite: $(x_1, x_2, x_3, x_4)^t$:

$$A = \begin{pmatrix} 1 & 0 & x_1 \\ 1 & 2 & x_2 \\ 0 & -1 & x_3 \\ 0 & 1 & x_4 \end{pmatrix}.$$

Affinche' il vettore colonna delle incognite sia combinazione lineare delle prime due colonne, occorre e basta che rkA = 2 (il rango della matrice ottenuta sopprimendo l'ultima colonna).

Orlando il minore $\begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}$ (che ha determinante non nullo) otteniamo due condizioni:

$$\begin{vmatrix} 1 & 0 & x_1 \\ 1 & 2 & x_2 \\ 0 & -1 & x_3 \end{vmatrix} = 0, \quad \begin{vmatrix} 1 & 0 & x_1 \\ 1 & 2 & x_2 \\ 0 & 1 & x_4 \end{vmatrix} = 0,$$

che dànno luogo alle equazioni richieste:

$$S: \begin{cases} x_1 - x_2 - 2x_3 = 0 \\ x_1 - x_2 + 2x_4 = 0 \end{cases}$$

Quindi un vettore appartiene a E se e solo se le sue coordinate soddisfano il sistema S, e si ha

$$E = Sol(S)$$
.

I due esempi precedenti giustificano il risultato generale che segue.

Proposizione Sia E un sottospazio di \mathbb{R}^n di dimensione k. Allora esiste un sistema lineare omogeneo S di n-k equazioni in n incognite tale che

$$E = Sol(S)$$
.

• Le equazioni che compongono il sistema S si dicono equazioni del sottospazio E. Tali equazioni non sono uniche; esse pero' sono sempre, in numero, $n - k = n - \dim E$ (tale numero è detto la codimensione del sottospazio E).

Dimostrazione. La dimostrazione fornisce anche un metodo per trovare le equazioni del sottospazio. Fissiamo una base di E, diciamo (v_1, \ldots, v_k) , e consideriamo il vettore generico di \mathbf{R}^n , diciamo $v = (x_1, \ldots, x_n)^t$. Ora $v \in E$ se e solo se v è combinazione lineare di v_1, \ldots, v_k . Questo avviene se e solo se la matrice

$$A = \operatorname{Mat}(v_1, \dots, v_k, v)$$

ha rango uguale a k. La sottomatrice $\mathrm{Mat}(v_1,\ldots,v_k)$ ha rango k per ipotesi; dunque possiamo trovare un minore M di tale sottomatrice che ha ordine k e determinante non nullo. Consideriamo i minori orlati di M: essi sono, in numero, n-k. Si noti che l'ultima colonna di tali minori è formata da un certo numero di incognite. Annullando i determinanti di tutti i minori orlati otterremo n-k equazioni, che sono le equazioni del sottospazio.

Si noti anche che le equazioni trovate dipendono dalla base scelta, dunque non sono uniche; pero', in numero, sono sempre n-k. \square

3 Sottospazio intersezione

Consideriamo due sottospazi E, F di uno spazio vettoriale V. Si verifica facilmente che

• l'intersezione $E \cap F$ è un sottospazio di V.

Inoltre $E \cap F$ è un sottospazio sia di E che di F, dunque:

$$\dim(E \cap F) < \min\{\dim E, \dim F\}.$$

Esempio Dati i vettori di \mathbb{R}^3

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}, v_3 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, v_4 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, v_5 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

consideriamo i sottospazi

$$E = L[v_1, v_2, v_3], F = L[v_4, v_5].$$

Calcolare:

- a) La dimensione e una base di E e di F;
- b) Una base di $E \cap F$.

Soluzione. a) E ha dimensione 2 con base (v_1, v_2) . Infatti, $v_3 = v_2 - v_1$. I generatori di

F sono linearmente indipendenti, dunque una base di F è (v_4, v_5) . Entrambi i sottospazi hanno dimensione 2.

b) Il vettore generico di E si scrive

$$a_1 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + a_2 \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} a_1 + 2a_2 \\ a_1 + a_2 \\ -a_2 \end{pmatrix},$$

con $a_1, a_2 \in \mathbf{R}$. Analogamente, il vettore generico di F è del tipo:

$$\begin{pmatrix} a_3 + a_4 \\ 2a_4 \\ a_4 \end{pmatrix}$$

con $a_3, a_4 \in \mathbf{R}$. Uguagliando, otterremo condizioni affinche' un vettore appartenga all'intersezione:

$$\begin{cases} a_1 + 2a_2 = a_3 + a_4 \\ a_1 + a_2 = 2a_4 \\ -a_2 = a_4 \end{cases}.$$

Questo è un sistema omogeneo di tre equazioni in quattro incognite le cui soluzioni sono:

$$\begin{cases} a_1 = 3t \\ a_2 = -t \\ a_3 = 0 \\ a_4 = t \end{cases}$$

con $t \in \mathbf{R}$. Sostituendo nel vettore generico di E (o anche E) otteniamo che il vettore generico dell'intersezione è del tipo:

$$\begin{pmatrix} t \\ 2t \\ t \end{pmatrix} = t \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}.$$

Dunque $E \cap F$ ha dimensione 1, con base $\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$.

Potevamo procedere anche nel modo seguente. Esprimiamo i due sottospazi con equazioni. Poiché E ha dimensione 2, ed è un sottospazio di \mathbf{R}^3 , possiamo descrivere E con una sola equazione, ottenuta annullando il determinante della matrice di colonne v_1, v_2 (la base di E) e il vettore generico:

$$\begin{vmatrix} 1 & 2 & x \\ 1 & 1 & y \\ 0 & -1 & z \end{vmatrix} = 0.$$

Dunque E è descritto dall'equazione:

$$x - y + z = 0.$$

Analogamente F è descritto dall'equazione:

$$y - 2z = 0.$$

Risulterà quindi che le equazioni di $E \cap F$ sono:

$$\begin{cases} x - y + z = 0 \\ y - 2z = 0 \end{cases}$$

e risolvendo il sistema otteniamo la base $\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$. \Box

Esercizio Supponiamo che vettori v_1, \ldots, v_n di uno spazio vettoriale V siano linearmente indipendenti, e poniamo:

$$E = L[v_1, \dots, v_k], F = L[v_{k+1}, \dots, v_n].$$

Dimostrare che $E \cap F = \{O\}$.

4 Sottospazio somma

L'unione di due sottospazi E ed F non \grave{e} in generale un sottospazio.

Esempio Siano $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ i vettori della base canonica di \mathbf{R}^2 , e poniamo:

$$E = L[e_1], F = L[e_2].$$

Allora $e_1 + e_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ non appartiene né a E né a F, dunque $E \cup F$ non è chiuso rispetto alla somma

Possiamo pero' definire il sottospazio somma E + F, semplicemente sommando, in tutti i modi possibili, un vettore di E e un vettore di F:

$$E+F=\{u+v\in V:u\in E,v\in F\}$$

Proposizione $E + F \stackrel{.}{e} un sottospazio di V.$

Dimostrazione. Esercizio. \square

È evidente che E+F contiene E. Infatti se $v \in E$ possiamo scrivere v=v+O e sappiamo che $O \in F$, poiché F è un sottospazio. Analogamente, E+F contiene anche F. Dunque:

$$\dim(E+F) \ge \max\{\dim E, \dim F\}.$$

Se conosciamo i generatori di E e di F, allora è facile trovare dei generatori della somma.

Proposizione Se E è generato dai vettori u_1, \ldots, u_k ed F è generato dai vettori w_1, \ldots, w_h allora E + F è generato da $u_1, \ldots, u_k, w_1, \ldots, w_h$.

Dimostrazione. Un vettore della somma E+F è sempre somma di un vettore u di E e di un vettore w di F. Il primo è combinazione lineare di u_1, \ldots, u_k , e il secondo è combinazione lineare di w_1, \ldots, w_h . Dunque la loro somma sarà combinazione lineare di $u_1, \ldots, u_k, w_1, \ldots, w_h$. \square

Quindi:

• Generatori del sottospazio somma si ottengono prendendo l'unione dei generatori degli addendi.

Esempio In \mathbb{R}^3 consideriamo i sottospazi:

$$E = L \begin{bmatrix} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \end{bmatrix}, \quad F = L \begin{bmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \end{bmatrix}.$$

Determiniamo il sottospazio somma. Dalla proposizione, vediamo che

$$E + F = L \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \end{bmatrix},$$

e quindi la dimensione di E+F è pari al rango della matrice

$$\begin{pmatrix} 1 & 1 & 1 & 2 \\ 2 & 1 & 0 & 1 \\ 1 & 0 & 0 & -1 \end{pmatrix}.$$

Tale rango è tre e quindi $\dim(E+F)=3$. L'unico sottospazio di \mathbf{R}^3 di dimensione 3 è tutto \mathbf{R}^3 , dunque:

$$E + F = \mathbf{R}^3$$
.

Esercizio Sia V uno spazio vettoriale con base v_1, \ldots, v_n . Sia $1 \le k \le n$ e poniamo

$$E = L[v_1, \dots, v_k], F = [v_{k+1}, \dots, v_n].$$

Dimostrare che E+F=V e $E\cap F=\{O\}.$

Esercizio Dati i sottospazi E, F di uno spazio vettoriale V, dimostrare che $E \subseteq F$ se e solo se E + F = F.

5 Formula di Grassmann

C'è una relazione fra le dimensioni dei sottospazi $E, F, E+F, E\cap F$, detta formula di Grassmann.

Teorema Siano E, F sottospazi di uno spazio vettoriale V. Allora si ha:

$$\dim(E+F) + \dim(E \cap F) = \dim E + \dim F.$$

Dimostrazione. Omessa.

La formula di Grassmann semplifica il calcolo delle dimensioni.

Esempio In \mathbb{R}^3 , consideriamo i sottospazi

$$E = L \begin{bmatrix} \begin{pmatrix} -2 \\ 0 \\ 0 \end{pmatrix} \end{bmatrix}, F = L \begin{bmatrix} \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \end{bmatrix}.$$

Determiniamo $E \cap F$ e E + F.

Notiamo che dim E=1 e dim F=2. Ora E+F ha dimensione data da:

$$\operatorname{rk} \begin{pmatrix} -2 & 1 & 1\\ 0 & 2 & 1\\ 0 & -1 & 0 \end{pmatrix} = 3.$$

Dalla formula di Grassmann otteniamo $\dim(E \cap F) = 0$, dunque $E \cap F = \{O\}$.

Esempio Supponiamo che E ed F siano due sottospazi di \mathbb{R}^6 , tali che:

$$\dim E = 3$$
, $\dim F = 5$.

Quali valori può assumere $\dim(E \cap F)$?

Soluzione. Sappiamo che $E \cap F$ è un sottospazio sia di E che di F. Dunque si ha sicuramente:

$$0 < \dim(E \cap F) < 3$$
.

La formula di Grassmann ci permette di essere più precisi. Infatti, F è un sottospazio di E + F, che è a sua volta un sottospazio di \mathbf{R}^6 , dunque:

$$5 \le \dim(E + F) \le 6$$
,

inoltre $\dim(E+F)=5$ se e solo se $E\subseteq F.$ Dalla formula di Grassmann otteniamo

$$\dim(E \cap F) = \dim E + \dim F - \dim(E + F)$$
$$= 8 - \dim(E + F).$$

Quindi $\dim(E\cap F)$ può valere 2 oppure 3, e vale 3 esattamente quando $E\subseteq F$. In conclusione:

$$\dim(E \cap F) = \begin{cases} 2 & \text{se } E \text{ non è contenuto in } F, \\ 3 & \text{se } E \text{ è contenuto in } F. \end{cases}$$

6 Somma diretta

Diremo che la somma di due sottospazi U+W è somma diretta se $U\cap W=\{O\}$. Scriveremo in tal caso:

$$U + W = U \oplus W$$
.

Proposizione Sia V uno spazio vettoriale e U, W due suoi sottospazi. Allora $V = U \oplus W$ se e solo se ogni vettore $v \in V$ si decompone, in modo unico, come seque:

$$v = u + w$$
,

dove $u \in U$ e $w \in W$.

Dimostrazione. È un caso particolare del teorema enunciato piu' avanti. \Box

Esempio La somma di due sottospazi U, W di \mathbb{R}^3 , entrambi di dimensione 2, non è mai diretta: infatti si verifica che dim $(U+W) \geq 1$.

Esempio In \mathbf{R}^3 consideriamo $U=L\begin{bmatrix} 1\\2\\1 \end{pmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, W=L\begin{bmatrix} 1\\0\\0 \end{bmatrix}$. Si verifica che U+W ha dimensione 3, dunque $U+W=\mathbf{R}^3$. Dalla formula di Grassmann otteniamo

 $U \cap W = \{O\}$. Dunque $\mathbf{R}^3 = U \oplus W$. Decomponiamo il vettore $\begin{pmatrix} 2\\3\\5 \end{pmatrix}$ nella somma u + w con $u \in U$ e $w \in W$. Il vettore generico di U si scrive

$$\begin{pmatrix} a+b\\2a+b\\a \end{pmatrix}$$

mentre il vettore generico di $W
in \begin{pmatrix} c \\ 0 \\ 0 \end{pmatrix}$. Imponiamo:

$$\begin{pmatrix} 2\\3\\5 \end{pmatrix} = \begin{pmatrix} a+b\\2a+b\\a \end{pmatrix} + \begin{pmatrix} c\\0\\0 \end{pmatrix},$$

e otteniamo a = 5, b = -7, c = 4. Dunque

$$\begin{pmatrix} 2\\3\\5 \end{pmatrix} = \begin{pmatrix} -2\\3\\5 \end{pmatrix} + \begin{pmatrix} 4\\0\\0 \end{pmatrix},$$

in cui il primo vettore appartiene a U mentre il secondo appartiene a W. \square

Esempio Nello spazio vettoriale $\mathbf{Mat}(n \times n)$ si consideri il sottospazio S(n) formato dalle matrici simmetriche, e il sottospazio W(n) formato dalle matrici antisimmetriche. Allora

$$\mathbf{Mat}(n \times n) = S(n) \oplus W(n).$$

Dimostrare inoltre che

$$\dim S = \frac{n(n+1)}{2}$$
, e $\dim W = \frac{n(n-1)}{2}$.

Soluzione. Occorre dimostrare che ogni matrice è somma di una matrice simmetrica e di una matrice antisimmetrica, e che $S(n) \cap W(n) = \{0\}$. Ora possiamo scrivere, per ogni $A \in \mathbf{Mat}(n \times n)$:

$$A = \frac{1}{2}(A + A^t) + \frac{1}{2}(A - A^t);$$

si verifica facilmente che $B = \frac{1}{2}(A + A^t)$ è simmetrica mentre $C = \frac{1}{2}(A - A^t)$ è antisimmetrica, il che dimostra la prima parte. Se $A \in S(n) \cap W(n)$ allora $A = A^t$ e, al tempo stesso,

 $A = -A^t$. Quindi A è necessariamente la matrice nulla, il che dimostra l'affermazione sulla somma diretta.

Il calcolo delle dimensioni è lasciato per esercizio (partire dalle dimensioni basse, e generalizzare alla dimensione arbitraria).

Esempio Decomporre la matrice $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ nella somma di una matrice simmetrica e di una matrice antisimmetrica.

Solutione.

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 5/2 \\ 5/2 & 4 \end{pmatrix} + \begin{pmatrix} 0 & -1/2 \\ 1/2 & 0 \end{pmatrix}.$$

Diamo ora dei criteri per la somma diretta.

Teorema Le sequenti condizioni sono equivalenti:

- a) $V^n = U \oplus W$.
- b) $\dim U + \dim W = n$ e inoltre $U \cap W = \{O\}$.
- c) Se $B = (u_1, ..., u_k)$ è una base di U e $(w_1, ..., w_h)$ è una base di W allora i vettori $u_1, ..., u_k, w_1, ..., w_h$ formano una base di V^n .
- d) Ogni vettore di V si decompone, in modo unico, nella somma u+w, con $u\in U$ e $w\in W$.

Dimostrazione. È sufficiente dimostrare le implicazioni:

$$(a) \Longrightarrow (b), (b) \Longrightarrow (c), (c) \Longrightarrow (d), (d) \Longrightarrow (a).$$

- $a) \Longrightarrow b$). Basta verificare che dim $U + \dim W = n$, e questo discende immediatamente dall'ipotesi a) e dalla formula di Grassmann.
- b) \Longrightarrow c). Per ipotesi, k+h=n e quindi basta dimostrare che i vettori $u_1,\ldots,u_k,w_1,\ldots,w_h$ sono linearmente indipendenti. Supponiamo

$$a_1u_1 + \cdots + a_ku_k + b_1w_1 + \cdots + b_hw_h = 0,$$

dunque:

$$a_1u_1 + \cdots + a_ku_k = -(b_1w_1 + \cdots + b_hw_h).$$

L'uguaglianza mostra che il vettore a sinistra è in $U \cap W$, dunque:

$$a_1u_1 + \dots + a_ku_k = 0$$

per l'ipotesi $U \cap W = \{O\}$. Siccome u_1, \dots, u_k sono linearmente indipendenti, necessariamente $a_1 = \dots = a_k = 0$. Analogamente si dimostra che $b_1 = \dots = b_h = 0$.

 $c) \Longrightarrow d$). Per l'ipotesi c), si ha che $(u_1, \ldots, u_k, w_1, \ldots, w_h)$ è una base di V^n . Dato un vettore v in V^n , possiamo scrivere:

$$v = a_1 u_1 + \dots + a_k u_k + b_1 w_1 + \dots + b_h w_h$$

= $(a_1 u_1 + \dots + a_k u_k) + (b_1 w_1 + \dots + b_h w_h).$

Se poniamo $u=a_1u_1+\cdots+a_ku_k$ e $w=b_1w_1+\cdots+b_hw_h$, allora $u\in U, w\in W$ e

$$v = u + w$$
,

e questa decomposizione è evidentemente unica, poiché abbiamo usato basi di U e di W.

 $d) \Longrightarrow a$). È evidente che $V^n = U + W$. Occorre solamente dimostrare che $U \cap W = \{O\}$. Supponiamo che $v \in U \cap W$. Allora possiamo scrivere:

$$v = v + O$$
$$v = O + v$$

dove nella prima uguaglianza O è pensato come vettore di W, mentre nella seconda come vettore di U. Dall'unicità della decomposizione, si v = O. Dunque $U \cap W = \{O\}$. \square

7 Serie di esempi

Dati i sottospazi U,W dello spazio vettoriale V indicato, determinare in ciascuno dei casi: base e dimensione di U e W, della somma U+W e dell'intersezione $U\cap W$. Stabilire inoltre se la somma è diretta.

7.1 Esempio

In $V = \mathbf{R}^3$:

$$U = L \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, W = L \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}.$$

Soluzione. Risposte: $U \cap W$ è generato da $\begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$, $U + W = \mathbf{R}^3$, ma la somma non è

diretta.

Per trovare l'intersezione determiniamo prima le equazioni dei due sottospazi. I generatori sono linearmente indipendenti e quindi formano una base in ciascun caso. Equazione di U:

$$\begin{vmatrix} 1 & 1 & x \\ 2 & 1 & y \\ 1 & 0 & z \end{vmatrix} = 0, \quad \text{quindi} \quad x - y + z = 0.$$

Equazione di W:

$$\begin{vmatrix} 1 & 2 & x \\ 0 & 1 & y \\ 0 & -1 & z \end{vmatrix} = 0, \quad \text{quindi} \quad y + z = 0.$$

Equazioni di $U \cap W$:

$$\begin{cases} x - y + z = 0 \\ y + z = 0 \end{cases}$$

da cui, risolvendo, otteniamo la base $\begin{pmatrix} 2\\1\\-1 \end{pmatrix}$ di $U \cap W$.

Dalla formula di Grassmann otteniamo immediatamente $\dim(U+W)=3$ dunque $U+W=\mathbf{R}^3$. La somma non è diretta perché l'intersezione non è nulla. L'esercizio è finito. Osserviamo che per determinare la somma potevamo anche procedere come segue. Sappiamo che

$$U + W = L \begin{bmatrix} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \end{bmatrix},$$

e quindi la dimensione è pari al rango della matrice

$$\begin{pmatrix} 1 & 1 & 1 & 2 \\ 2 & 1 & 0 & 1 \\ 1 & 0 & 0 & -1 \end{pmatrix}.$$

Tale rango vale tre, quindi $\dim(U+W)=3$ e necessariamente $U+W=\mathbf{R}^3$.

7.2 Esempio

In $V = \mathbf{R}^3$:

$$U = L \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}, W = L \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}.$$

Soluzione. Risposte: $U \cap W = \{O\}$, $U + W = \mathbf{R}^3$, e la somma è diretta: $\mathbf{R}^3 = U \oplus W$.

Calcoliamo la dimensione di U. I tre generatori sono linearmente dipendenti perché il terzo è la somma dei primi due: dunque possiamo scartare il terzo generatore e

$$U = L \left[\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right],$$

che coincide con il sottospazio U dell'esempio precedente. Dunque dim U=2. È immediato che dim W=1. Sappiamo già che l'equazione di U è x-y+z=0. Le equazioni di W sono immediatamente date da y=0,z=0. Dunque $U\cap W$ è descritto dalle equazioni:

$$\begin{cases} x - y + z = 0 \\ y = 0 \\ z = 0 \end{cases}$$

che ammettono solamente la soluzione comune nulla, dunque $U \cap W = \{0\}$. Dalla formula di Grassmann otteniamo dim(U + W) = 3 dunque $U + W = \mathbf{R}^3$. La somma è diretta perché l'intersezione è nulla.

7.3 Esempio

In $V = \mathbf{R}^4$:

$$U = L \begin{bmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ -1 \\ 2 \end{bmatrix}, W = L \begin{bmatrix} \begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \end{bmatrix}$$

Soluzione. Risposte: $U \cap W = \{0\}, \ U + W = \mathbf{R}^4 \ e \ quindi \ \mathbf{R}^4 = U \oplus W.$

Siano u_1, u_2 i generatori di U e w_1, w_2 i generatori di W. In entrambi i casi essi sono linearmente indipendenti, quindi dim $U = \dim W = 2$. Si ha che

$$U + W = L[u_1, u_2, w_1, w_2]$$

e poiché i quattro generatori sono linearmente indipendenti (ciò si verifica osservando che il rango della matrice corrispondente è quattro) otteniamo che dim(U+W)=4 e quindi $U+W=\mathbf{R}^4$. Dalla formula di Grassmann otteniamo che $U\cap W=\{O\}$, e la somma è diretta.

Si può però procedere in modo alternativo. Sia $v \in U \cap W$. Poichè $v \in U$, possiamo trovare $a, b \in \mathbf{R}$ tali che:

$$v = au_1 + bu_2.$$

Analogamente, poiché $v \in W$ esisteranno numeri reali c e d tali che

$$v = cw_1 + dw_2.$$

Uguagliando, a, b, c, d verificano l'equazione vettoriale:

$$au_1 + bu_2 = cw_1 + dw_2,$$

e quindi

$$au_1 + bu_2 - cw_1 - dw_2 = 0.$$

Ora sappiamo che i vettori u_1, u_2, w_1, w_2 sono linearmente indipendenti, e quindi necessariamente a = b = c = d = 0. Dunque l'unico vettore nell'intersezione è il vettore nullo.

7.4 Esempio

In $V = \mathbf{R}^4$:

$$U = L \begin{bmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 1 \\ 1 \end{bmatrix}, W = L \begin{bmatrix} \begin{pmatrix} 5 \\ 1 \\ 2 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \\ -1 \\ -1 \end{pmatrix} \end{bmatrix}$$

Soluzione. Risposte: $\dim U = \dim W = \dim(U \cap W) = \dim(U + W) = 2$. Quindi U = W.

La somma non è diretta.

Chiamiamo u_1, u_2, u_3 i generatori di U, nell'ordine. Poiché il rango della matrice da essi formata è 2, la dimensione di U è 2 e una base è data da u_1, u_2 . I generatori di W sono linearmente indipendenti e formano una base. Dunque entrambi i sottospazi hanno dimensione 2. Procedendo come negli esempi precedenti, si trova (dopo qualche calcolo) che il rango della matrice di righe u_1, u_2, w_1, w_2 è 2, e quindi

$$\dim(U+W)=2.$$

Dalla formula di Grassmann $\dim(U \cap W) = 2 = \dim U$; poiché $U \cap W$ è un sottospazio di U di dimensione pari a quella di U si dovrà avere

$$U = U \cap W$$
.

quindi $W \subseteq U$. Analogamente $U \subseteq W$ e quindi U = W. I due sottospazi coincidono! Possiamo anche dire che (u_1, u_2) e (w_1, w_2) sono due basi dello *stesso* sottospazio. Per dimostrare che U = W si poteva anche osservare che

$$w_1 = u_1 + 2u_2 w_2 = 3u_1 - u_2$$

che dimostra $W \subseteq U$. Poiché U e W hanno la stessa dimensione, necessariamente U = W.

8 Coordinate e criterio del rango

Nei precedenti esempi abbiamo studiato questioni di dipendenza e indipendenza lineare, e questioni riguardanti i sottospazi, principalmente nello spazio vettoriale \mathbb{R}^n . In tal caso possiamo utilizzare il rango di opportune matrici per risolvere i problemi. In questa sezione faremo vedere come sia possibile utilizzare il criterio del rango in ogni spazio vettoriale (di dimensione finita).

In ciò che segue, utilizzeremo la notazione V^n per indicare uno spazio vettoriale di dimensione n.

8.1 Coordinate di un vettore rispetto a una base

Ricordiamo che, se $\mathcal{B} = (e_1, \dots, e_n)$ è una base (ordinata) di uno spazio vettoriale V^n allora possiamo esprimere ogni vettore $v \in V$ come combinazione lineare:

$$v = x_1 e_1 + \dots + x_n e_n,$$

in modo unico. Questo significa che i coefficienti x_1, \ldots, x_n sono univocamente determinati dal vettore v (e dalla base \mathcal{B}). Il vettore di \mathbf{R}^n dato dai coefficienti:

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

è detto il vettore delle coordinate di v rispetto alla base \mathcal{B} .

Se scriviamo

$$\mathcal{F}(v) = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix},\tag{1}$$

abbiamo cosi' una corrispondenza tra i vettori di V e quelli di ${\bf R}^n,$ che esprimeremo con la notazione:

$$\mathcal{F}:V\to\mathbf{R}^n$$
.

• \mathcal{F} è un esempio di applicazione dall'insieme V nell'insieme \mathbb{R}^n .

Notiamo che $\mathcal{F}(O) = O$, e $\mathcal{F}(v_j) = e_j$ (j-esimo vettore della base canonica di \mathbf{R}^n). È chiaro che l'applicazione \mathcal{F} dipende in modo essenziale dalla base scelta: lo stesso vettore ha coordinate diverse in basi diverse.

• In generale, se A e B sono insiemi, un'applicazione f dall'insieme A nell'insieme B è una legge che associa ad ogni elemento $a \in A$ uno ed un solo elemento di B, denotato f(a). Un'applicazione si scrive:

$$f: A \to B$$
,

dove A (insieme di destra) è l'insieme di partenza e B (insieme di sinistra) è l'insieme di arrivo.

Nelle prossime lezioni studieremo in dettaglio una classe naturale di applicazioni fra spazi vettoriali: le cosiddette applicazioni lineari.

8.2 Proprietà delle coordinate

L'applicazione \mathcal{F} ha le seguenti proprietà.

Proposizione a) Sia V^n uno spazio vettoriale di dimensione n e sia $\mathcal{B} = (v_1, \dots, v_n)$ una base ordinata di V^n . Se $v \in V$, indichiamo con

$$\mathcal{F}(v) = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

il vettore delle coordinate di v rispetto a \mathcal{B} . Allora:

- a) I vettori w_1, \ldots, w_k sono linearmente indipendenti (in V) se e solo le rispettive coordinate $\mathcal{F}(w_1), \ldots, \mathcal{F}(w_k)$ sono vettori linearmente indipendenti (in \mathbf{R}^n).
- b) I vettori $w_1, ..., w_k$ generano V se e solo le rispettive coordinate $\mathcal{F}(w_1), ..., \mathcal{F}(w_k)$ generano \mathbf{R}^n .
- c) In particolare, \mathcal{F} trasforma basi di V in basi di \mathbb{R}^n .

Dimostrazione. La dimostrazione sarà data in seguito. \square

Dunque, l'applicazione delle coordinate permette di trasferire problemi di dipendenza e indipendenza lineare dallo spazio vettoriale V allo spazio vettoriale \mathbf{R}^n , dove possiamo usare il criterio del rango.

Proposizione Sia V un qualunque spazio vettoriale e $\mathcal{B} = (v_1, \ldots, v_n)$ una sua base. Dati i vettori w_1, \ldots, w_k di V, consideriamo la matrice A ottenuta incolonnando le coordinate di w_1, \ldots, w_k rispetto a \mathcal{B} . Allora:

- a) I vettori w_1, \ldots, w_k sono linearmente indipendenti se e solo se $\operatorname{rk} A = k$.
- b) Piu' in generale si ha: $\dim L[w_1, \ldots, w_k] = \operatorname{rk} A$.

9 Spazi vettoriali di matrici e polinomi

9.1 Esempi su spazi di matrici

Per semplicità ci ridurremo a considerare lo spazio vettoriale $V = \mathbf{Mat}(2 \times 2)$. La base piu' semplice di $\mathbf{Mat}(2 \times 2)$ è la cosiddetta base canonica di $\mathbf{Mat}(2 \times 2)$, cioè la base $(E_{11}, E_{12}, E_{21}, E_{22})$ dove:

$$E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

Quindi dim $Mat(2 \times 2) = 4$. La matrice generica si scrive

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = aE_{11} + bE_{12} + cE_{21} + dE_{22},$$

e scelta la base canonica, abbiamo

$$\mathcal{F} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}.$$

Esempio Sono date le matrici $A_1 = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}, A_2 = \begin{pmatrix} 2 & 1 \\ 0 & -1 \end{pmatrix}, A_3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, A_4 = \begin{pmatrix} 4 & 1 \\ 0 & 1 \end{pmatrix}.$

- a) Stabilire se A_1, A_2, A_3, A_4 sono linearmente indipendenti oppure no.
- b) Calcolare la dimensione del sottospazio E di $Mat(2\times2)$ generato dalle quattro matrici.

Soluzione. a) Incolonniamo le coordinate delle quattro matrici (rispetto alla base canonica $(E_{11}, E_{12}, E_{21}, E_{22}))$ e otteniamo la matrice

$$A = \begin{pmatrix} 1 & 2 & 1 & 4 \\ 1 & 1 & 0 & 1 \\ 2 & 0 & 0 & 0 \\ 1 & -1 & 1 & 1 \end{pmatrix}.$$

Se il rango di A vale 4 le matrici sono linearmente indipendenti, altrimenti no. Un calcolo mostra che det A=0, dunque rkA<4 e le matrici risultano linearmente dipendenti. In effetti, possiamo notare che $A_4=A_2+2A_3$.

b) Basta calcolare il rango di A. Sappiamo che rk $A \leq 3$; ora il minore di ordine 3 in alto a sinistra ha determinante non nullo, dunque il rango vale 3, e tale è la dimensione del sottospazio cercato. Possiamo verificare che le matrici A_1, A_2, A_3 sono linearmente indipendenti: poiché tali matrici sono in numero pari alla dimensione di E, esse formano una base di E.

Esempio Sono date le matrici
$$M_1 = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}, M_2 = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}, M_3 = \begin{pmatrix} 1 & 4 \\ 0 & 0 \end{pmatrix}, M_4 = \begin{pmatrix} -2 & 0 \\ 0 & 0 \end{pmatrix}$$
. Verificare che le quattro matrici formano una base di $\mathbf{Mat}(2 \times 2)$.

Soluzione. In effetti, la matrice delle coordinate è:

$$A = \begin{pmatrix} 1 & 2 & 1 & -2 \\ 1 & 1 & 4 & 0 \\ 2 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}.$$

Si verifica facilmente che il suo determinante è non nullo, dunque la quattro matrici sono linearmente indipendenti. Poiche' dim $\mathbf{Mat}(2 \times 2) = 4$, questo è sufficiente per affermare che esse formano una base. Altrimenti, potevamo osservare che le coordinate delle quattro matrici formano una base di \mathbf{R}^4 . \square

Esempio Data la matrice $N = \begin{pmatrix} 1 & -2 \\ -1 & 2 \end{pmatrix}$, consideriamo il sottoinsieme E di $\mathbf{Mat}(2 \times 2)$ costituito dalle matrici $X \in \mathbf{Mat}(2 \times 2)$ tali che NX = O, dove O è la matrice nulla. In altre parole:

$$E = \{X \in \mathbf{Mat}(2 \times 2) : NX = O\}.$$

- a) Dimostrare che E è un sottospazio di $Mat(2 \times 2)$.
- b) Trovare una base di E e calcolare la sua dimensione.

Soluzione. a) È chiaro che la matrice nulla appartiene a E, perché NO=O. Se $X_1,X_2\in E$ allora per ipotesi $NX_1=NX_2=O$. Dunque

$$N(X_1 + X_2) = NX_1 + NX_2 = O + O = O$$
,

e anche $X_1 + X_2 \in E$. Di conseguenza E è chiuso rispetto alla somma. La chiusura rispetto al prodotto per uno scalare si dimostra in modo analogo. E è un sottospazio.

b) Cerchiamo un'espressione per la matrice generica del sottospazio E. Partiamo dalla matrice generica di $\mathbf{Mat}(2\times 2)$

$$X = \begin{pmatrix} x & y \\ z & w \end{pmatrix}$$

e imponiamo la condizione NX = O. Si ottiene

$$\begin{pmatrix} x - 2z & y - 2w \\ -x + 2z & -y + 2w \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$

che equivale al sistema lineare omogeneo

$$\begin{cases} x - 2z = 0 \\ y - 2w = 0 \\ -x + 2z = 0 \\ -y + 2w = 0 \end{cases}$$

La terza (risp. quarta) equazione è equivalente alla prima (risp. seconda). Dunque il sistema si riduce a

$$\begin{cases} x - 2z = 0 \\ y - 2w = 0 \end{cases}.$$

Ponendo z=t e w=s otteniamo le ∞^2 soluzioni

$$\begin{cases} x = 2t \\ y = s \\ z = t \\ w = s \end{cases}$$

con $t, s \in \mathbf{R}$ e la matrice generica di E si scrive $\begin{pmatrix} 2t & 2s \\ t & s \end{pmatrix}$, con $t, s \in \mathbf{R}$. Per trovare una base di E, basta scrivere la matrice generica nel seguente modo:

$$\begin{pmatrix} 2t & 2s \\ t & s \end{pmatrix} = t \begin{pmatrix} 2 & 0 \\ 1 & 0 \end{pmatrix} + s \begin{pmatrix} 0 & 2 \\ 0 & 1 \end{pmatrix}.$$

Dunque le matrici $\begin{pmatrix} 2 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 2 \\ 0 & 1 \end{pmatrix}$ generano E, e si vede subito che sono anche linearmente indipendenti. In conclusione, E ha dimensione 2 e una sua base è $\begin{pmatrix} 2 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 2 \\ 0 & 1 \end{pmatrix}$.

Esercizio Sia $M \in \mathbf{Mat}(2 \times 2)$ una matrice invertibile. Dimostrare che il sottospazio

$$E = \{X \in \mathbf{Mat}(2 \times 2) : MX = O\}$$

è costituito solo dalla matrice nulla, cio
è $E=\{O\}.$

Esercizio Nello spazio vettoriale $\mathbf{Mat}(n \times n)$, si considerino il sottoinsieme $T^+(n)$ (rispettivamente $T^-(n)$) formato dalle matrici triangolari superiori (rispettivamente, triangolari inferiori).

- a) Dimostrare che $T^+(n)$ e $T^-(n)$ sono entrambi sottospazi di $\mathbf{Mat}(n \times n)$.
- b) Trovare una base e la dimensione di $T^+(2)$ e $T^-(2)$.
- c) Descrivere il sottospazio intersezione $T^+(2) \cap T^-(2)$.
- d) Dimostrare che $Mat(2 \times 2) = T^{+}(2) + T^{-}(2)$.
- e) Verificare che $\mathbf{Mat}(2 \times 2) \neq T^{+}(2) \oplus T^{-}(2)$.

Esercizio Si consideri il sottoinsieme

$$E = \{ A \in \mathbf{Mat}(n \times n) : \det A = 0 \}.$$

Verificare che E non è un sottospazio di $\mathbf{Mat}(n \times n)$.

(In effetti, E contiene la matrice nulla ed è chiuso rispetto al prodotto per uno scalare. Mostrare però che E non è chiuso rispetto alla somma, fornendo un controesempio).

Esercizio Data una matrice quadrata A, si definisce traccia di A la somma di tutti gli elementi diagonali. Esempio:

$$\operatorname{tr}\begin{pmatrix} 1 & 2 & 3\\ 4 & 5 & 6\\ 7 & 8 & 9 \end{pmatrix} = 1 + 5 + 9 = 15.$$

La traccia di una matrice è quindi un numero. Dimostrare che il sottoinsieme

$$E = \{ A \in \mathbf{Mat}(2 \times 2) : \operatorname{tr} A = 0 \}$$

è un sottospazio di $Mat(2 \times 2)$, e trovare una base di E.

9.2 Esempi su spazi di polinomi

Consideriamo lo spazio vettoriale $\mathbf{R}^n[x]$ dei polinomi di grado minore di n. Una base di $\mathbf{R}^n[x]$ è

$$(1, x, x^2, \dots, x^{n-1}),$$

detta anche base canonica di $\mathbf{R}^n[x]$. Quindi dim $\mathbf{R}^n[x]=n$. Rispetto a tale base, il

polinomio
$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}$$
 ha coordinate $\begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{pmatrix}$. L'applicazione

delle coordinate $\mathcal{F}: \mathbf{R}^n[x] \to \mathbf{R}^n$ è data da

$$\mathcal{F}(a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}) = \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{pmatrix}.$$

Esempio Stabilire se i polinomi $p_1(x) = 1 + x, p_2(x) = 1 - x + 2x^2, p_3(x) = 1 + x^2$ sono linearmente indipendenti oppure no, e calcolare la dimensione del sottospazio E di $\mathbf{R}^3[x]$ da essi generato.

Soluzione. Incolonniamo le coordinate rispetto alla base $(1,x,x^2)$ (la base canonica) e otteniamo la matrice

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 0 & 2 & 1 \end{pmatrix}.$$

Il determinante si annulla, e il rango vale 2. Dunque i polinomi sono linearmente dipendenti e il sottospazio da essi generato ha dimensione 2. In effetti si ha la relazione di dipendenza lineare

$$p_1(x) + p_2(x) - 2p_3(x) = 0.$$

Una base di E sarà data da una qualnque coppia di polinomi linearmente indipendenti, ad esempio $(p_1(x), p_2(x))$. Notiamo infine che E è un sottospazio propriamente contenuto in $\mathbf{R}^3[x]$, poiché ha dimensione minore di 3 (la dimensione di $\mathbf{R}^3[x]$). \square

Esempio Verificare che i polinomi $p_1(x) = x, p_2(x) = 1 - x + 2x^2, p_3(x) = 1 + 2x^2$ sono linearmente indipendenti e formano una base di $\mathbf{R}^3[x]$.

Soluzione. La matrice delle coordinate:

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

ha determinante non nullo e i tre polinomi sono linearmente indipendenti; essi formano automaticamente una base dato che dim $\mathbf{R}^3[x] = 3$. \square