

Computer Organization and Software Systems

CONTACT SESSION 2

PERFORMANCE ASSESSMENT & MEMORY ORGANISATION

BITS Pilani
Pilani Campus

Prof. C R Sarma WILP.BITS-PILANI

Today's Class

Contact Hour	List of Topic Title	Text/Ref Book/external
11001		resource
3	Performance Assessment	Class Slides
	1.5.1. MIPS Rate	
	1.5.2 Amdahl's Law	
4	Memory Organization	T1, R2
	Storage Technologies	
	Random Access Memory	
	Disk Storage	
	Solid State Disks	
	Storage Technology Trends	
	Locality	
	Locality of Reference to Program Data	
	Locality of instruction fetches	
	Memory Hierarchy	

Performance Assessment

BITS Pilani

Pilani Campus

Units

- Kilo- (K) = 1 thousand = 10^3 and 2^{10}
- Mega- $(M) = 1 \text{ million} = 10^6 \text{ and } 2^{20}$
- Giga- (G) = 1 billion = 10^9 and 2^{30}
- Tera- (T) = 1 trillion = 10^{12} and 2^{40}
- Peta- (P) = 1 quadrillion = 10^{15} and 2^{50}
- Exa (E) = 1 quintillion = 10^{18} and 2^{60}

Examples

Hertz = clock cycles per second (frequency)

- -1MHz = 1,000,000Hz
- Processor speeds are measured in MHz or GHz.

Byte = a unit of storage

- $1KB = 2^{10} = 1024$ Bytes
- $-1MB = 2^{20} = 1,048,576$ Bytes
- Main memory (RAM) is measured in MB / GB
- Disk storage is measured in GB for small systems,
 TB for large systems.

Units...

- Milli- (m) = 1 thousandth = 10^{-3}
- Micro- (μ) = 1 millionth = 10⁻⁶
- Nano- (n) = 1 billionth = 10⁻⁹
- Pico- (p) = 1 trillionth = 10^{-12}
- Femto- (f) = 1 quadrillionth = 10^{-15}

Examples

- Millisecond = 1 thousandth of a second
 - Hard disk drive access times are often 10 to 20 milliseconds.
- Nanosecond = 1 billionth of a second
 - Main memory access times are often 50 to 70 nanoseconds.
- Micron (micrometer) = 1 millionth of a meter
 - Circuits on computer chips are measured in microns.

Important Terms

- Execution time: The total time required for the computer to complete a task, including disk accesses, memory accesses, I/O activities, operating system overhead, CPU execution
- Throughput or bandwidth : number of tasks completed per unit time.

innovate achieve lead

Example

- Do the following changes to a computer system increase throughput, decrease execution time, or both?
- 1. Replacing the processor in a computer with a faster version
- 2. Adding additional processors to a system that uses multiple processors for separate tasks

Contd...

 Relationship between Performance and execution time of Computer X

$$Performance_{x} = \frac{1}{Execution time_{x}}$$

 if the performance of X is greater than the performance of Y, we have

$$\frac{1}{\text{Execution time}_{X}} > \frac{1}{\text{Execution time}_{Y}}$$

$$\frac{1}{\text{Execution time}_{Y}} > \frac{1}{\text{Execution time}_{Y}}$$

$$\text{Execution time}_{Y} > \text{Execution time}_{X}$$

Contd...

- Quantitative performance analysis
 - Computer X is "n" times faster than Computer Y

$$\frac{\text{Performance}_{X}}{\text{Performance}_{Y}} = n$$

 If X is n times faster than Y, then the execution time on Y is n times longer than it is on X:

$$\frac{\text{Performance}_{X}}{\text{Performance}_{Y}} = \frac{\text{Execution time}_{Y}}{\text{Execution time}_{X}} = r$$

Example

 If computer A runs a program in 10 seconds and computer B runs the same program in 15 seconds, how much faster is A than B?

$$\frac{\text{Performance}_{A}}{\text{Performance}_{B}} = \frac{\text{Execution time}_{B}}{\text{Execution time}_{A}} = n$$

• Computer A is therefore 1.5 times faster than B.

CPU performance and its factors

CPU execution time for a program:

$$\frac{\text{CPU execution time}}{\text{for a program}} = \frac{\text{CPU clock cycles for a program}}{\text{Clock rate}}$$

Example

Our favorite program runs in 10 seconds on computer A, which has a 2 GHz clock. We are trying to help a computer designer build a computer, B, which will run this program in 6 seconds. The designer has determined that a substantial increase in the clock rate is possible, but this increase will affect the rest of the CPU design, causing computer B to require 1.2 times as many clock cycles as computer A for this program. What clock rate should we tell the designer to target?

Let's first find the number of clock cycles required for the program on A:

$$CPU time_{A} = \frac{CPU clock cycles_{A}}{Clock rate_{A}}$$

$$10 seconds = \frac{CPU clock cycles_{A}}{2 \times 10^{9} \frac{cycles}{second}}$$

CPU clock cycles_A = 10 seconds
$$\times 2 \times 10^9 \frac{\text{cycles}}{\text{second}} = 20 \times 10^9 \text{ cycles}$$

CPU time for B can be found using this equation:

$$CPU time_{B} = \frac{1.2 \times CPU clock cycles_{A}}{Clock rate_{B}}$$

$$6 seconds = \frac{1.2 \times 20 \times 10^{9} cycles}{Clock rate_{D}}$$

Clock rate_B =
$$\frac{1.2 \times 20 \times 10^9 \text{ cycles}}{6 \text{ seconds}} = \frac{0.2 \times 20 \times 10^9 \text{ cycles}}{\text{second}} = \frac{4 \times 10^9 \text{ cycles}}{\text{second}} = 4 \text{ GHz}$$

innovate achieve lead

Instruction Performance

- CPI: Clock cycles Per Instruction
 - Average number of clock cycles per instruction for a program or program fragment.

CPU clock cycles = Instructions for a program × Average clock cycles per instruction

Example

Computer A has a clock cycle time of 250 ps and a CPI of 2.0 for some program, and computer B has a clock cycle time of 500 ps and a CPI of 1.2 for the same program. Which computer is faster for this program and by how much?

innovate achieve lead

Solution

- the number of processor clock cycles for each computer CPU clock cycles_A = $I \times 2.0$ CPU clock cycles_B = $I \times 1.2$
- Execution time for each computer Execution time = CPU clock cycles × Clock cycle time Execution time_A = $I \times 2.0 \times 250$ ps = $500 \times I$ ps
 - Execution time_B = $I \times 1.2 \times 500 \text{ ps} = 600 \times I \text{ ps}$
- Comparison:

```
CPU performance<sub>A</sub> Execution time<sub>B</sub> 600 I ps

-----= 1.2

CPU performance<sub>B</sub> Execution time<sub>A</sub> 500 I ps
```

Amdahl's Law

- proposed by Gene Amdahl in 1967
- deals with the potential speedup of a program using multiple processors compared to a single processor

Example-

A program needs 20 hours using a single processor core, and a particular part of the program which takes one hour to execute cannot be parallelized.

The remaining 19 hours (p = 0.95) of execution time can be parallelized, then regardless of how many processors are devoted to a parallelized execution of this program, the minimum execution time cannot be less than that critical one hour.

$$1/(1-p)$$

Hence, the theoretical speedup is limited to at most 20 times

. For this reason, parallel computing with many processors is useful only for highly parallelizable programs.

Amdahl's Law

$$Speedup = \frac{Performance after enhancement}{Performance before enhancement} = \frac{Execution time before enhancement}{Execution time after enhancement}$$

S=Speedup, f=fraction of time enhancement, k=speedup of the faster component

$$S = \frac{1}{(1-f) + \frac{f}{k}}$$

If 90% of a program is speeded up to run 10 times faster f=0.9 and k=10 Overall speedup is 1/(1-0.9)+(0.9/10)=1/(0.1+0.09)=1/(0.19)=5.26

Making 80% of a program run 20% faster f=0.80 and k=1.2 1/(1-0.8)+(0.8/1.2)= 1/(0.2+0.8/1.2)=1/(0.2+0.66)=1/0.866=1.53

Example

On a large system CPU upgrade makes it faster by 50% for INR 10,000. A disk drive upgrade of INR 7000 speeds it up by 150%. Evaluate the speedups? Generally Processes spend 70% in CPU and 30% waiting Diskdrives

Processor upgrade

Disk Drive upgrade

$$f = 0.70, S = \frac{1}{(1 - 0.7) + 0.7/1.5} = 1.304$$

$$f = 0.70, S = \frac{1}{(1 - 0.7) + 0.7/1.5} = 1.304$$
 $f = 0.30, S = \frac{1}{(1 - 0.3) + 0.3/2.5} = 1.219$

30% improvement

22% Improvement

CPU-30 % improvement -faster by 50% ---so 1% increment is INR 10000/30=INR 333

DISK DRIVE- 22% improvement – speeds up 150%---so a 1% increment is INR 7000/22=INR=318

Each 1% of improvement for the processor costs INR333, and for the disk a 1% improvement costs INR318. "Is cost/performance the most important metric?"

Memory Organization

BITS Pilani

Pilani Campus

Semiconductor Memory

Random-Access Memory (RAM)

- Key features
 - RAM is traditionally packaged as a chip.
 - Basic storage unit is normally a cell (one bit per cell).
 - Multiple RAM chips form a memory.
- RAM comes in two varieties:
 - SRAM (Static RAM)
 - DRAM (Dynamic RAM)
- SRAM and DRAM are volatile memories
 - Lose information if powered off.

SRAM vs DRAM Summary

		Access time	Needs refresh?	Needs EDC?	Cost	Applications
SRAM DRAM	4 to 6 1	1X 10X	No Yes	Maybe Yes	100x 1X	Cache Main memories, frame buffers

innovate achieve lead

Read Only Memory

- Permanent Storage and Nonvolatile Memories
- Read Only Memory Variants:
 - Read-only memory (ROM): programmed during production
 - Programmable ROM (PROM): can be programmed once
 - Erasable PROM (EPROM): can be bulk erased (UV, X-Ray)
 - Electrically erasable PROM (EEPROM): electronic erase capability
 - Flash memory: EEPROMs. with partial (block-level) erase capability
 - Wears out after about 100,000 erasing
- Firmware

Applications

- Storing fonts for printers
- Storing sound data in musical instruments
- Video game consoles
- Implantable Medical devices.
- High definition Multimedia Interfaces(HDMI)
- BIOS chip in computer
- Program storage chip in modem, video card and many electronic gadgets, controllers for disks, network cards,

Memory Read Operation (1)

CPU places address A and then read control signal on the memory bus

Memory Read Operation (2)

Main memory reads A from the memory bus, retrieves word x, and places it on the bus

Memory Read Operation (3)

CPU read word x from the bus and copies it into register R4.

Load operation: MOV R4, A
R4 ← [A]

Memory Write Operation (1)

CPU places address A and WRITE control signal on bus. Main memory reads them and waits for the corresponding data word to arrive.

Memory Write Operation (2)

CPU places data word y on the bus

Memory Write Operation (3)

Main memory reads data word y from the bus and stores it at address A.

Magnetic Disk Drive

Image courtesy of Seagate Technology

Disk Geometry

- Disks consist of platters, each with two surfaces.
- Each surface consists of concentric rings called tracks
- Aligned tracks form a cylinder

Disk Geometry

Each track consists of sectors separated by gaps.

Disk Capacity

- Capacity: maximum number of bits that can be stored.
 - Vendors express capacity in units of gigabytes (GB /TB), where 1 GB = 2^{30} Bytes, 1 TB = 2^{40} Bytes,
- Capacity is determined by these technology factors:
 - Recording density (bits/in): number of bits that can be squeezed into a 1 inch segment of a track.
 - Track density (tracks/in): number of tracks that can be squeezed into a 1 inch radial segment.
 - Areal density (bits/in2): product of recording and track density.

Recording zones

- Modern disks partition tracks into disjoint subsets called recording zones
 - Each track in a zone has the same number of sectors, determined by the circumference of innermost track.
 - Each zone has a different number of sectors/track, outer zones have more sectors/track than inner zones.
 - So we use average number of sectors/track when computing capacity.

Without Recording Zones

With Recording Zones

Computing Disk Capacity

- Capacity = (# bytes/sector) x (avg. # sectors/track) x
 (# tracks/surface) x (# surfaces/platter) x
 (# platters/disk)
- Example:
 - 512 bytes/sector
 - 300 sectors/track (on average)
 - 20,000 tracks/surface
 - 2 surfaces/platter
 - 5 platters/disk

```
    Capacity = 512 x 300 x 20000 x 2 x 5
    = 30,720,000,000
    = 28.61 GB
```

Disk Operation (Single-Platter View)

Disk Operation (Multi-Platter View)

lead

Disk Access

Need to access a sector colored in blue

Disk Access

Head in position above a track

Disk Access

Rotate the platter in counterclockwise direction

Disk Access - Read

About to read blue sector

Disk Access - Read

After BLUE

read

After reading blue sector

Disk Access - Read

Red request scheduled next

Disk Access - Seek

Seek to red's track

Disk Access - Rotational Latency

Wait for red sector to rotate around

Disk Access - Read

Complete read of red

Disk Access - Access Time Components

Disk Access Time

- Average time to access some target sector given by:
 - Taccess = Tavg seek + Tavg rotation + Tavg transfer
- Seek time (Tavg seek)
 - Time to position heads over cylinder containing target sector.
 - Typical Tavg seek is 3—9 ms
- Rotational latency (Tavg rotation)
 - Time waiting for first bit of target sector to pass under r/w head.
 - Tavg rotation = 1/2r, where r is rotation Speed in **revolution per Second**
 - Typical Tavg rotation = 7200 RPMs = 7200/60 RPS
- Transfer time (Tavg transfer)
 - Time to read the bits in the target sector.
 - Tavg transfer = b/rN, where b is the number of bytes to be transferred and N is the average number of bytes on a track

Disk Access Time Example

Given:

- Rotational rate = 7,200 RPM
- Average seek time = 9 ms.
- Avg # sectors/track = 400.
- 512 bytes per sector

Derived:

- Tavg rotation = $1/2r = 1/2 \times (60 \text{ secs}/7200 \text{ RPM})$ = 0.00416 = 4.16 ms.
- Tavg transfer =b/rN = $512 \times 60/7200 \times 1/(400*512)$ = 0.02 ms
- Taccess = 9 ms + 4.16ms + 0.02 ms=13.18ms

Contd...

Important points:

- Access time dominated by seek time and rotational latency.
- First bit in a sector is the most expensive, the rest are free.
- SRAM access time is about 4 ns/doubleword,
 DRAM about 60 ns
 - Disk is about 40,000 times slower than SRAM,
 - 2,500 times slower then DRAM.

Logical Disk Blocks

- Modern disks present a simpler abstract view of the complex sector geometry:
 - The set of available sectors is modeled as a sequence of b-sized logical blocks (0, 1, 2, ...)
- Mapping between logical blocks and actual (physical) sectors
 - Maintained by hardware/firmware device called disk controller.
 - Converts requests for logical blocks into (surface, track, sector) triples.
- Allows controller to set aside spare cylinders for each zone.
 - Accounts for the difference in "formatted capacity" and "maximum capacity".

I/O Bus

CPU chip

Reading a Disk Sector (1)

Reading a Disk Sector (2)

Reading a Disk Sector (3)

Solid State Disks (SSDs)

- Pages: 512KB to 4KB, Blocks: 32 to 128 pages
- Data read/written in units of pages.
- Page can be written only after its block has been erased
- A block wears out after about 100,000 repeated writes.

SSD Performance Characteristics

Sequential read input550 MB/sSequential write output470 MB/sRandom read input365 MB/sRandom write output303 MB/sAvg seq read time50 usAvg seq write time60 us

- Sequential access faster than random access
 - Common theme in the memory hierarchy
- Random writes are somewhat slower
 - Erasing a block takes a long time
 - Modifying a block page requires all other pages to be copied to new block
 - In earlier SSDs, the read/write gap was much larger.

SSD Tradeoffs vs Rotating Disks

- Advantages
 - No moving parts → faster, less power, more rugged
- Disadvantages
 - Have the potential to wear out
 - Mitigated by "wear leveling logic" in flash translation layer
 - E.g. Intel SSD 730 guarantees 128 petabyte (128 \times 10¹⁵ bytes) of writes before they wear out
 - In 2015, about 30 times more expensive per byte
- Applications
 - MP3 players, smart phones, laptops
 - Beginning to appear in desktops and servers