DATA STRUCTURE

Data Structure and Algorithms

Muhammad Basit

TABLE OF CONTENTS

A typical syllabus for Data Structures and Algorithms (DSA) is divided into multiple modules covering various fundamental and advanced topics. Below is a detailed syllabus outline, which includes both data structures and algorithms along with their applications.

AND ALGORITHMS	L
Overview of Data Structures and Algorithms	1
Definition of Algorithms	
Importance of Time and Space Complexity	
Big-O Notation, Omega (Ω) , Theta (Θ) Notations	
Analyzing Algorithms	2
Space Complexity	
Asymptotic Analysis	
Recurrence Relations (e.g., Master Theorem)	

EMPHASIS ARRAYS AND STRINGS2
Arrays
String
EMPHASIS LINKED LISTS3
Singly Linked List
NO TABLE OF CONTENTS ENTRIES FOUND. EMPHASIS HASHING
Concept of Hashing1

Hash Functio	ns
Collision Han	dling: Separate Chaining, Open Addressing
Applications of Has Hash Maps /	hing2 Hash Tables
Implementin	g Set Data Structure
Cuckoo Hash	ing
EMPHASIS GRA	APHS9
Introduction to Gra	phs1
	ertices and Edges
Types of Gra	phs: Directed, Undirected, Weighted, Unweighted
Representati	on of Graphs (Adjacency Matrix, Adjacency List)
Graph Traversal Al Depth-First S	gorithms2 Search (DFS)
Breadth-First	Search (BFS)
Shortest Path Algo Dijkstra's Alg Bellman-Ford Floyd-Warsha	Algorithm
	rrees4 thm
Advanced Graph A Topological S Strongly Con	lgorithms5
EMPHASIS SEA	ARCHING ALGORITHMS10
	d Iterative Implementations
Binary Searc	h on a Sorted Array

Exponential Search
EMPHASIS SORTING ALGORITHMS11
Comparison-Based Sorting Algorithms
Non-Comparison-Based Sorting Algorithms
Stable vs Unstable Sorting Algorithms
EMPHASIS RECURSION AND BACKTRACKING12
Introduction to Recursion
Factorial, Fibonacci Sequence, Tower of Hanoi
Backtracking Algorithms
EMPHASIS DYNAMIC PROGRAMMING

ntroduction to Dynamic Programming	
Dynamic Programming Problems	
Fibonacci Sequence	
Longest Common Subsequence (LCS)	
0/1 Knapsack Problem	
Matrix Chain Multiplication	
Coin Change Problem	
Dynamic Programming on Trees	
Oynamic Programming on Graphs	1
Shortest Paths (Bellman-Ford)	
EMPHASIS GREEDY ALGORITHMS14	1
Introduction to Greedy Algorithms	1
Greedy Choice Property, Optimal Substructure Greedy Algorithm Problems	2
Activity Selection Problem	_
Fractional Knapsack Problem	
Huffman Coding	
Job Scheduling Problem	
EMPHASIS DIVIDE AND CONQUER15	5
Concept of Divide and Conquer	1
Dividing the Problem into Subproblems	
Merging the Subproblems Divide and Conquer Algorithms)
Merge Sort	_
Quick Sort	
Binary Search	
Closest Pair of Points	

EMPHASI	S BIT MANIPULATION	16
AND, C	wise Operations DR, XOR, NOT nift, Right Shift	1
Bit Manipulat	tion Tricks Sing Numbers without a Temporary Variable	2
	ng Set Bits	
	of Two Check of Bit Manipulation	3
EMPHASI S	S ADVANCED TOPICS	17
Knuth-	ning Algorithms -Morris-Pratt (KMP) Algorithm -Moore Algorithm	1
Amortized Ai Introdu	nalysisuction to Amortized Time Complexity	2
	ations: Dynamic Arrays, Splay Trees	_
Union	Union (Union-Find)by Rank, Path Compression ations in Graph Theory (e.g., Kruskal's Algorithm)	3
Advanced Da Trie (P Suffix Skip Li	ata Structures Prefix Tree) Trees ists	4
Approximatio Vertex	djusting Data Structures (Splay Trees, AVL Trees) on Algorithms c Cover Problem ing Salesman Problem (TSP)	5
EMPHASI	S PROBLEM SOLVING AND APPLICATIONS.	18
	Applications of Data Structures and Algorithmsases, Compilers, Operating Systems, Networking	1

Application in Machine Learning (e.g., Decision Trees)	
Competitive Programming Concepts2	
Problem-Solving Techniques (Greedy, Dynamic Programming,	
etc.)	
Common Problems from Online Platforms (LeetCode, Codeforces,	
etc.)	