Методы оптимизации. Задание 2

Сергей Володин, 374 гр.

задано 2016.03.29

Задача 1

(2016.03.29) Доказать: Пусть $f-\beta$ -гладкая. Тогда $\forall x,y \hookrightarrow f(x) \leqslant f(y) + \nabla^T f(y)(x-y) + \frac{\beta}{2}||x-y||^2$.

- 1. Имеем $||\nabla f(x) \nabla f(y)||_* \le \beta ||x y||$. Тогда
- 2. Обозначим $\mu(t) = f(y+t(x-y)) \colon [0,1] \to \mathbb{R}$. Поскольку f дифференцируема, μ также дифференцируема как композиция дифференцируемых функций. Тогда $\mu(1) = \mu(0) + \int\limits_0^1 \mu'(t) dt$. Подставим определение μ , получим формулу Ньютона-Лейбница для f на отрезке $[y,x] \in \mathbb{R}^n \colon f(x) = f(y) + \int\limits_0^1 dt \nabla^T f(y+t(x-y))(x-y)$.
- 3. Рассмотрим величину $\alpha \stackrel{\text{def}}{=} f(x) f(y) \nabla^T f(y)(x-y)$ и докажем, что $\alpha \leqslant 0$:
- 4. $\alpha = \int_0^1 dt \nabla^T f(y + t(x y))(x y) \nabla^T f(y)$. Внесем второе слагаемое под интеграл, получим

$$\alpha = \int_{0}^{1} dt \left(\nabla^{T} f(y + t(x - y)) - \nabla^{T} f(y) \right) (x - y)$$

5.
$$|\alpha| \leqslant \int_{0}^{1} dt |\underbrace{\left(\nabla^{T} f(y + t(x - y)) - \nabla^{T} f(y)\right)}_{A} (x - y)|.$$

6.
 A- оператор, действующий на x-y. Поскольку
 $f-\beta$ -гладкая, т.е.

$$\forall x, y \hookrightarrow ||\nabla f(x) - \nabla f(y)||_* \leqslant \beta ||x - y||,$$

Получаем $||A||_* = \sup_{x \in \mathbb{R}} \frac{|Ax|}{||x||} \leqslant \beta ||y - t(x - y) - y|| = \beta t ||x - y||$, откуда $|A(x - y)| \leqslant ||A||_* ||x - y|| \leqslant \beta t ||x - y||^2$

7. Получаем $|\alpha| \le \int_{0}^{1} \beta t ||x-y||^2 dt = \frac{\beta}{2} ||x-y||^2$

Задача 2

Определим $\delta_t \stackrel{\text{def}}{=} f(x_t) - f(x^*)$, где $x_t - t$ -я точка в алгоритме Frank-Wolfe. Получена оценка $\delta_{t+1} \leqslant \frac{\beta R^2}{2} (\prod_{k=1}^t (1 - \gamma_k) + \sum_{k=1}^n \gamma_{t-k}^2 \prod_{j=t-k}^t (1 - \gamma_j)$. Оценить выражение как функцию γ_t и выбрать γ_t как минимум этой функции.

Задача 3

 $E=(\mathbb{R}^n,||\cdot||).$ Определим $f^*(p)\stackrel{\mathrm{def}}{=}\sup_{x\in\mathbb{R}^n}(p^Tx-f(x)),\,p\in E^*.$ Найти субдифференциал $\partial f^*(p).$

Задача 4

(2016.04.05) Доказать, что метод возможных направлений с $S \stackrel{\text{def}}{=} \{s|||s||^2 \leqslant r\}$ эквивалентен задаче квадратичного программирования

$$\begin{cases} \sigma + \gamma ||s||^2 \to \min \\ \sigma \geqslant (\nabla f, s) \\ \sigma \geqslant (\nabla g_i, s) \end{cases}$$

Задача 5

(2016.04.12) Пусть φ — дифференцируемая. Доказать или опровергнуть: $\nabla \varphi$ — липшицев с константой $L \Leftrightarrow \varphi^*$ — выпуклая/сильно выпуклая

Задача 6

(2016.04.12) $\varphi(x) \stackrel{\text{def}}{=} f(y) - \nabla^T f(x) \cdot y$ — выпуклая (?), если f — выпуклая

Задача 7

Доказать

- 1. $\frac{1}{\epsilon_{k+1}} \frac{1}{\epsilon_k} \geqslant \omega_k$
- 2. $\forall k\omega_k \geqslant \omega_1$.

Обозначения — метод быстрых градиентов

Задача 8

Пусть $x_{k+1} \stackrel{\text{def}}{=} \text{prox}_{D_{\bar{\sigma}}}(C, y_{k+1})$. Доказать $\forall x \ (\nabla \Phi(x_{k+1}) - \nabla \Phi(y_{k+1}))^T (x_{k+1} - x) \leqslant 0$

Задача 9

Исследовать, выполняется ли неравенство треугольника (с обратным знаком) для D_{Φ} для произвольных трех точек

Задача 10

Выбрать наилучшее γ для полученной на семинаре оценки $\sum (f(x_j) - f(x))$. Оценить $D_{\Phi}(x, x_1)$ через

$$R^2 \stackrel{\text{def}}{=} \sup_{x \in C} |\Phi(x) - \Phi(x_1)|$$