Filtering Triangles

Siu-Wing Cheng

Room 3514
Phone: 2358-6973
scheng@cse.ust.hk
http://www.cse.ust.hk/faculty/scheng

Department of Computer Science and Engineering The Hong Kong University of Science and Technology Hong Kong

Properties of Good Delaunay Triangles

 Every restricted Delaunay triangle has small circumradius relative to interpoint distances.

Properties of Good Delaunay Triangles

- Every restricted Delaunay triangle has small circumradius relative to interpoint distances.
- The triangle normal, which is parallel to the dual Voronoi edge, is close to the surface normals at the triangle vertices.

Properties of Good Delaunay Triangles

- Every restricted Delaunay triangle has small circumradius relative to interpoint distances.
- The triangle normal, which is parallel to the dual Voronoi edge, is close to the surface normals at the triangle vertices.
- For every restricted Delaunay triangle, its dual Voronoi edge intersects the surface exactly once.

Filter I

For each given point sample a, define r(a) to be the distance from a to its fifth nearest neighbor.

We delete a Delaunay triangle abc if the circumradius of abc is greater than $\max\{3r(a),3r(b),3r(c)\}.$

- Delete those with very long edge lengths first.
- Then, compute the circumradius to prune the rest.

Filter II

Delete a Delaunay triangle abc if the normal of abc makes an angle greater than $\pi/3$ with \mathbf{n}_a , \mathbf{n}_b , or \mathbf{n}_c .

Recall that the normal of abc is parallel to the dual Voronoi edge.

Filter III

Let V_{abc} be the dual Voronoi edge of a Delaunay triangle abc. Evaluate the sign of f(x) at the endpoints of V_{abc} . If the signs are opposite, V_{abc} intersects the surface f(x)=0. Otherwise, V_{abc} does not intersect the surface f(x)=0.

Evaulate f using only point samples close to the endpoints of V_{abc} .

The Bunny Model and Formats

