Day71	RNN	Quiz:	Attempt review	
-------	-----	-------	----------------	--

Started on	Thursday, 12 June 2025, 4:53 PM
State	Finished
	Thursday, 12 June 2025, 4:58 PM
Time taken	4 mins 44 secs
Marks	8.00/15.00
Grade	53.33 out of 100.00
Question 1	
Complete	
Mark 1.00 out of 1.00	
In a standard RNN, t	he hidden state h _t is updated as:
\bigcirc a. $h_t = ReLU(x_t)$	
\bigcirc b. $h_t = \sigma(W x_t +$	b)
c. h _t =tanh(W x	$f_{t} + U h_{t-1} + b$
\bigcirc d. $h_t = tanh(W)$	
O 21 11 12 12 11 11 11 11 11 11 11 11 11	
Question 2	
Complete	
Mark 1.00 out of 1.00	
In an LSTM cell, what	is the function of the cell state C _t ?
a. Acts as the o	output lavor
b. Stores hidde	
c. Calculates g	
d. Stores long-	term memory
Question 3	
Complete	
Mark 0.00 out of 1.00	
In an LSTM cell, whic	h gate controls how much of the previous hidden state should be carried forward?
a. Forget gate	
○ b. Input gate	
c. Memory gat	e e
d. Output gate	

1 of 5

NN_Quiz:	:: Attempt review	http://10.11.52.100/mod/quiz/review.php?attempt=21738&
Question 4	<u> </u>	
Complete		
Mark 1.00 ou	out of 1.00	
In seque	ence-to-sequence models, what is the role of the encoder?	
a.	Encode input sequence into a fixed representation	
	Predict next token	
	Update output vocabulary	
	Translate output sequence	
Question 5	5	
Complete Mark 1.00 ou		
What do	oes teacher forcing refer to during RNN training?	
○ a.	Resetting hidden states between batches	
b.	Feeding the ground truth output at time t-1 to predict time t	
○ c.	Using the model's own output as input	
() d.	Pre-training the encoder before decoder	
Question 6	5	
Complete		
Mark 1.00 ou	out of 1.00	
What is	gradient clipping in the context of training RNNs?	
○ a.	Limiting updates to only the final layer	
b.	Restricting the magnitude of gradients to prevent exploding gradien	nts
○ c.	Reducing batch size to avoid overfitting	
○ d.	Applying dropout to avoid vanishing gradients	
Question 7	7	
Complete		
	out of 1.00	

6/12/2025, 4:59 PM 2 of 5

What is the main reason RNNs struggle with learning long-term dependencies?

 \bigcirc a. Insufficient parameters b. Gradient explosion o. Vanishing gradients

Od. Lack of activation functions

Question 8
Complete
Mark 1.00 out of 1.00
What is the primary advantage of using bidirectional RNNs?
a. Access to both past and future context
b. Replaces the need for attention mechanisms
c. Works with images
○ d. Reduced computation time
Question 9
Complete
Mark 0.00 out of 1.00
What technique is commonly used during inference in seq2seq models to improve generation quality?
a. Adam optimizer
b. Batch normalization
C. Beam search
○ d. Dropout
Question 10
Complete
Mark 0.00 out of 1.00
Which loss function is most commonly used in training sequence-to-sequence models with RNNs for classification?
a. Binary Crossentropy
b. Categorical Crossentropy
○ c. Mean Squared Error
d. Hinge Loss
Question 11
Question 1 I Complete
Mark 0.00 out of 1.00
Which mechanism allows RNN-based models to focus on specific parts of the input during decoding?
a. Attention
○ b. Dropout
© c. Beam search
○ d. Batch normalization

3 of 5

NN_Quiz: Attempt review	http://10.11.52.100/mod/quiz/review.php?attempt=
Question 12	
Complete	
Mark 0.00 out of 1.00	
Which of the following statements about GRU is i	ncorrect?
a. GRU is generally faster to train than LSTN	\mathcal{M}
O b. GRU has fewer parameters than LSTM	
c. GRU combines the forget and input gate	s into a single update gate
○ d. GRU has a separate memory cell c_t like	LSTM
Question 13	
Complete	
Mark 0.00 out of 1.00	
Which one is not a typical application of RNNs?	
a. Object detection	
b. Machine translation	
c. Sentiment analysis	
d. Speech recognition	
Question 14	
Complete	
Mark 1.00 out of 1.00	
Which RNN variant is specifically designed to solv	ve the vanishing gradient problem?
a. Vanilla RNN	
b. LSTM	
C. Bidirectional RNN	
od. GRU	
Question 15	
Complete	
Mark 1.00 out of 1.00	

6/12/2025, 4:59 PM 4 of 5

 \bigcirc a. They use convolutional filters

oc. Due to weight sharing Od. They have attention layers

b. Each output depends on previous output

5 of 5