Exercise 3D Machine Vision

Prof. Dr.-Ing. Volker Willert

Sheet 5

In this exercise we cover *triangulation*, *epipolar geometry* and the *discrete epipolar constraint*, as well as the *8-point-algorithm* and *rectification*. The questions are small-scale and can be seen as examples of potential exam questions.

Task 5.1: Triangulation
<u>5.1a)</u>
Name a triangulation procedure and explain how it is implemented.
5.1b)
Which of the following triangulation procedures cannot be easily extended to more than two views?
☐ Geometric construction of minimum distances of rays
☐ Algebraic approach using projection equation
□ Nonlinear approach via the reprojection error
5.1c)
Which triangulation method leads to an (over)determined linear system of equations? How can this system of equations be solved in a numerically stable way?
Task 5.2: Epipolar Geometry
5.2a)
Construct the epipoles of a stereo camera system for any relative pose. Make a sketch for this purpose.
5.2b)

What points do all epipolar planes have in common? What kind of curve do these points describe?

5.2c)
What quantity of epipolar geometry corresponds to the null space of the essential matrix?
\square epipolar line
□ baseline
\square epipolar plane
\square epipole
\Box intersection of rays of two corresponding points
\square translation vector between the optical centers
\square rotation matrix of the relative pose between cameras
5.2d)
Which statements regarding the essential matrix are correct?
☐ the columns of the essential matrix correspond to the cross products between the translation vector and the columns of the rotation matrix
\Box the essential matrix equals the product of the skew symmetric matrix of the translation vector and the rotatic matrix
\square the essential matrix has full rank
\square the essential matrix has two linearly independent row-vectors
\square the eigenvalues of the essential matrix are non-zero
\square the essential matrix has two identical eigenvalues
Task 5.3: Epipolar Constraint & 8-Point-Algorithm
5.3a)
What is the minimum number of corresponding point pairs needed to compute the relative pose from the discre-
□ 3
\Box 4
□ 5
□ 6
□ 8
5.3b)

Explain why the eight-point algorithm requires a projection onto the essential space.

5.3c)

How many solutions result from the eight-point algorithm for which quantities?

5.3d)

Compute a first approximation of the essential matrix for the following relative pose: $\mathbf{R} = \begin{bmatrix} \cos(\pi/4) & 0 & \sin(\pi/4) \\ 0 & 1 & 0 \\ -\sin(\pi/4) & 0 & \cos(\pi/4) \end{bmatrix}$,

$$\mathbf{T} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}.$$

5.3e)

The SVD of an essential matrix is given as follows:

$$\mathbf{E} = \mathbf{U}\mathbf{S}\mathbf{V}^{\top} = \begin{bmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} -\sqrt{2}/2 & 0 & -\sqrt{2}/2 \\ 0 & 1 & 0 \\ \sqrt{2}/2 & 0 & -\sqrt{2}/2 \end{bmatrix}.$$

From this, calculate all possible relative poses between the cameras.

Task 5.4: Rectification

5.4a)

Why do you need rectification in a stereo system?

5.4b)

Where are the epipoles located after rectification?

5.4c)

The following normalized translation vector results from the eight-point algorithm: $\mathbf{T} = \frac{1}{\sqrt{6}}[1,1,2]^{\top}$. Construct the rotation matrix \mathbf{R}_{rect} which generates parallel scan lines.