CS204: Discrete Mathematics

Ch 1. The Joundations: Logic and Proofs Propositional Logic-3 Tautology, Contradiction, Satisfiability

Sungwon Kang

Acknowledgement

- [Rosen 19] Kenneth H. Rosen, for Discrete Mathematics & Its Applications (8th Edition), Lecture slides
- [Hunter 11] David J. Hunter, Essentials of Discrete Mathematics, 2nd Edition, Jones & Bartlett Publishers, 2011, Lecture Slides

Propositional Logic

Special Kinds of Propositions

- Tautologies
- Contradictions
- Contingencies

Property of Propositions

Propositional Satisfiability

Statements that are always true, no matter what the truth values of the component statements take.

Example: $(p \land q) \rightarrow p$ is always true:

Statements that are always true, no matter what the truth values of the component statements are.

Example: $(p \land q) \rightarrow p$ is always true:

p	q	$p \wedge q$	$(p \wedge q) ightarrow p$
T	Η		
Т	F		
F	Т		
F	F		

Statements that are always true, no matter what the truth values of the component statements are.

Example: $(p \land q) \rightarrow p$ is always true:

p	q	$p \wedge q$	$(p \wedge q) o p$
T	Η	Т	
Т	F	F	
F	Т	F	
F	F	F	

Statements that are always true, no matter what the truth values of the component statements are.

Example: $(p \land q) \rightarrow p$ is always true:

p	q	$p \wedge q$	(p ^	(q)	$\rightarrow p$
Т	\vdash	Т		Т	
Т	F	F		Т	
F	Т	F		Т	
F	F	F		Т	

Contradictions

Statements that are never true are called *contradictions*. For example:

$$\begin{array}{c|ccc} p & \neg p & p \land \neg p \\ \hline T & F \\ F & T & \end{array}$$

Contradictions

Statements that are never true are called *contradictions*. For example:

$$\begin{array}{c|ccc} p & \neg p & p \land \neg p \\ \hline T & F & F \\ F & T & F \end{array}$$

Contingencies

A *contingency* is a proposition which is neither a tautology nor a contradiction.

Example Which of the following are contingencies?

P	$\neg p$	$p \lor \neg p$	$p \land \neg p$
T	F	Т	F
F	Т	Т	F

A compound proposition is *satisfiable* if there is an assignment of truth values to its variables that make it true. When no such assignments exist, the compound proposition is *unsatisfiable*.

Theorem A compound proposition is *unsatisfiable* if and only if its negation is a tautology.

A compound proposition is *satisfiable* if there is an assignment of truth values to its variables that make it true. When no such assignments exist, the compound proposition is *unsatisfiable*.

Theorem A compound proposition is *unsatisfiable* if and only if its negation is a tautology.

Example: Determine the satisfiability of the following compound propositions:

$$(1) \qquad (p \vee \neg q) \wedge (q \vee \neg r) \wedge (r \vee \neg p)$$

Example: Determine the satisfiability of the following compound propositions:

$$(1) \qquad (p \vee \neg q) \wedge (q \vee \neg r) \wedge (r \vee \neg p)$$

Solution: Satisfiable. Assign **T** to *p*, *q*, and *r*.

$$(2) \qquad (p \lor q \lor r) \land (\neg p \lor \neg q \lor \neg r)$$

Example: Determine the satisfiability of the following compound propositions:

$$(1) \qquad (p \vee \neg q) \wedge (q \vee \neg r) \wedge (r \vee \neg p)$$

Solution: Satisfiable. Assign **T** to *p*, *q*, and *r*.

$$(2) \qquad (p \lor q \lor r) \land (\neg p \lor \neg q \lor \neg r)$$

Solution: Satisfiable. Assign **T** to *p* and *F* to *q*.

$$(3) (p \lor \neg q) \land (q \lor \neg r) \land (r \lor \neg p) \land (p \lor q \lor r) \land (\neg p \lor \neg q \lor \neg r)$$

Example: Determine the satisfiability of the following compound propositions:

$$(1) \qquad (p \vee \neg q) \wedge (q \vee \neg r) \wedge (r \vee \neg p)$$

Solution: Satisfiable. Assign **T** to *p*, *q*, and *r*.

$$(2) \qquad (p \lor q \lor r) \land (\neg p \lor \neg q \lor \neg r)$$

Solution: Satisfiable. Assign **T** to *p* and *F* to *q*.

$$(3) (p \lor \neg q) \land (q \lor \neg r) \land (r \lor \neg p) \land (p \lor q \lor r) \land (\neg p \lor \neg q \lor \neg r)$$

Solution: Not satisfiable. Check each possible assignment of truth values to the propositional variables and none will make the proposition true.

Quiz 03-2

Answer whether each of the following assertions is true or false.

- [1] The negation of a satisfiable proposition is unsatisfiable. []
- [2] The negation of a tautology is a contradiction.
- [3] The negation of a contingency is a contingency. []

