

中山大学软件学院 2012 级软件工程专业(2012-11)

《线性代数》期中考试题

(考试形式: 闭卷 考试时间: 2小时)

《中山大学授予学士学位工作细则》第六条 考 试 作 弊 不 授 予 学 士 学 位

教学班:	学号: 成绩:
------	---------

1. Fill in the blank $(5\times4=20 \text{ Pts})$

(1)Let
$$u = \begin{bmatrix} 1 \\ 0 \\ -2 \\ 1 \\ 0 \end{bmatrix}$$
, $v = \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $w = \begin{bmatrix} -3 \\ 0 \\ 2 \\ 0 \\ 2 \end{bmatrix}$, is the set $\{u, v, w\}$ linearly dependent? _____.

(2) Suppose $T: \mathbb{R}^2 \to \mathbb{R}^2$ first performs a horizontal shear that transforms e_2 into $e_2 - 2e_1$ (leaving e_1 unchanged) and then reflects points through the line x_1 -axis. So the standard matrix of T is _______.

(3) If
$$A = \begin{bmatrix} -2 & 0 & 0 & -3 \\ 0 & 1 & 0 & -2 \\ 3 & -1 & 2 & 1 \\ -1 & 0 & 3 & 0 \end{bmatrix}$$
, then $\det(-2A) =$ _____.

(4) The matrices A and B below are row equivalent,

$$A = \begin{bmatrix} 2 & -6 & 14 & 4 & 18 \\ -1 & 6 & -19 & 4 & -6 \\ -2 & 7 & -18 & 1 & -11 \\ 3 & -8 & 17 & 3 & 18 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 0 & -10 & 0 & -8 \\ 0 & 1 & -4 & 0 & -3 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

then dim Nul $A = \underline{\hspace{1cm}}$, and a basis for the Col A is $\underline{\hspace{1cm}}$.

(5) Suppose matrix
$$A = \begin{bmatrix} -7 & -5 & 0 & 0 & 0 \\ 3 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 5 \\ 0 & 0 & 0 & -3 & -7 \end{bmatrix}$$
, find $A^{-1} =$ _____.

2. Make each statement True or False, and descript your reasons. (6×4=24 Pts)

- (1) A set of five vectors in \mathbb{R}^4 is linear independent.
- (2) If A is a 4×4 matrix, then det(-A) = det A.
- (3) Suppose a 3×5 matrix A has three pivot columns, is $Nul\ A=R^2$?
- (4) If A and B are row equivalent $m \times n$ matrices and if the columns of A span R^m , then so do the columns of B.
- (5) The equation Ax = 0 has the trivial solution if and only if there are no free variables.
- (6) Any system of n linear equation in n variables can be solved by Cramer's rule.

3. Calculation (5×8=40 Pts)

(1) Find the general solution of the following system of equation. Write your answer in parametric vector form.

$$2x_2 + 6x_3 - 8x_4 = 4$$
$$x_1 - 5x_2 - 9x_3 + 8x_4 = -7$$
$$x_2 + 3x_3 - 4x_4 = 2$$

(2) If A and B are 3×3 matrices, I is the identity matrix, and $A^TB = A^2 + B - I$,

where
$$A = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$
. Find B .

(3) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation such that

$$T(e_1) = \begin{bmatrix} 1 \\ 3 \\ -5 \end{bmatrix}, \ T(e_2) = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}, \ T(e_3) = \begin{bmatrix} -2 \\ -2 \\ 9 \end{bmatrix}, \text{ where } e_1, e_2, e_3 \text{ are the columns of } I_3$$

- a. Determine if T maps R^3 onto R^3 . Explain.
- b. Write the 4×4 matrix that represents T when homogeneous coordinates are used for vectors in \mathbb{R}^3 .
- (4) Find an LU factorization of $A = \begin{bmatrix} 1 & -2 & -4 & -3 \\ 2 & -7 & -7 & -6 \\ -1 & 2 & 6 & 4 \\ -4 & -1 & 9 & 8 \end{bmatrix}$
- (5) Determine the value(s) of a such that $\left\{\begin{bmatrix} 1\\2a\end{bmatrix},\begin{bmatrix} 1-a\\3a\end{bmatrix}\right\}$ is linearly independent.

4. Prove issues $(2\times8=16 \text{ Pts})$

- (1) Let $T: R^3 \to R^3$ be a linear transformation and its standard matrix is invertible, let $\{v_1, v_2\}$ be a linear independent set in R^n . Show that the set $\{T(v_1), T(v_1 + v_2)\}$ is also linear independent.
- (2) Suppose A is an $n \times n$ matrix and rank A = n. Explain why $A^T A$ is invertible, then show that $A^{-1} = (A^T A)^{-1} A^T$.