SBML Model Report

Model name: "DallePezze2014 - Cellular senescene-induced mitochondrial dysfunction"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following two authors: Vijayalakshmi Chelliah¹ and Piero Dalle Pezze² at August twelveth 2015 at 10:31 p.m. and last time modified at September tenth 2015 at 12:37 a.m. Table 1 shows an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	40
events	0	constraints	0
reactions	41	function definitions	32
global parameters	55	unit definitions	3
rules	17	initial assignments	0

Model Notes

DallePazze2014 - Cellular senescene-inducedmitochondrial dysfunction

¹EMBL-EBI, viji@ebi.ac.uk

²Newcastle University, piero.dallepezze@gmail.com

This model is described in the article: Dynamic modelling of pathways to cellular senescence reveals strategies for targeted interventions. Dalle Pezze P, Nelson G, Otten EG, Korolchuk VI, Kirkwood TB, von Zglinicki T, Shanley DP.PLoS Comput. Biol. 2014 Aug; 10(8): e1003728 Abstract:

Cellular senescence, a state of irreversible cell cycle arrest, is thought to help protect an organism from cancer, yet also contributes to ageing. The changes which occur in senescence are controlled by networks of multiple signalling and feedback pathways at the cellular level, and the interplay between these is difficult to predict and understand. To unravel the intrinsic challenges of understanding such a highly networked system, we have taken a systems biology approach to cellular senescence. We report a detailed analysis of senescence signalling via DNA damage, insulin-TOR, FoxO3a transcription factors, oxidative stress response, mitochondrial regulation and mitophagy. We show in silico and in vitro that inhibition of reactive oxygen species can prevent loss of mitochondrial membrane potential, whilst inhibition of mTOR shows a partial rescue of mitochondrial mass changes during establishment of senescence. Dual inhibition of ROS and mTOR in vitro confirmed computational model predictions that it was possible to further reduce senescence-induced mitochondrial dysfunction and DNA double-strand breaks. However, these interventions were unable to abrogate the senescence-induced mitochondrial dysfunction completely, and we identified decreased mitochondrial fission as the potential driving force for increased mitochondrial mass via prevention of mitophagy. Dynamic sensitivity analysis of the model showed the network stabilised at a new late state of cellular senescence. This was characterised by poor network sensitivity, high signalling noise, low cellular energy, high inflammation and permanent cell cycle arrest suggesting an unsatisfactory outcome for treatments aiming to delay or reverse cellular senescence at late time points. Combinatorial targeted interventions are therefore possible for intervening in the cellular pathway to senescence, but in the cases identified here, are only capable of delaying senescence onset.

This model is hosted on BioModels Database and identified by: BIOMD0000000582.

To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

2 Unit Definitions

This is an overview of five unit definitions of which two are predefined by SBML and not mentioned in the model.

2.1 Unit time

Name time

Definition 86400 s

2.2 Unit substance

Name substance

Definition dimensionless

2.3 Unit volume

Name volume

Definition dimensionless

2.4 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m^2

2.5 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
Cell	Cell		3	1	dimensionless	\checkmark	

3.1 Compartment Cell

This is a three dimensional compartment with a constant size of one dimensionless.

Name Cell

4 Species

This model contains 40 species. The boundary condition of 17 of these species is set to true so that these species' amount cannot be changed by any reaction. Section 9 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
Akt	Akt	Cell	dimensionless · dimensionless ⁻¹		
Akt_pS473	Akt_pS473	Cell	dimensionless · dimensionless -1		
AMPK	AMPK	Cell	dimensionless · dimensionless -1		
AMPK_pT172	AMPK_pT172	Cell	dimensionless · dimensionless -1		
mTORC1	mTORC1	Cell	dimensionless · dimensionless -1		
mTORC1_pS2448	mTORC1_pS2448	Cell	dimensionless · dimensionless -1		
Mitophagy	Mitophagy	Cell	dimensionless · dimensionless ⁻¹		
Fox03a	FoxO3a	Cell	dimensionless · dimensionless -1		
Fox03a_pS253	FoxO3a_pS253	Cell	dimensionless · dimensionless -1		
CDKN1A	CDKN1A	Cell	dimensionless · dimensionless ⁻¹		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
CDKN1B	CDKN1B	Cell	dimensionless · dimensionless ⁻¹	В	
JNK	JNK	Cell	$\begin{array}{c} \text{dimensionless} & \cdot \\ \text{dimensionless}^{-1} \end{array}$		
JNK_pT183	JNK_pT183	Cell	$\begin{array}{c} \text{dimensionless} & \cdot \\ \text{dimensionless}^{-1} \end{array}$		
ROS	ROS	Cell	$\begin{array}{c} \text{dimensionless} & \cdot \\ \text{dimensionless}^{-1} \end{array}$		
DNA_damage	DNA_damage	Cell	$\begin{array}{c} \text{dimensionless} & \cdot \\ \text{dimensionless}^{-1} \end{array}$		
SA_beta_gal	SA_beta_gal	Cell	$\begin{array}{c} \text{dimensionless} & \cdot \\ \text{dimensionless}^{-1} \end{array}$		
IKKbeta	IKKbeta	Cell	$\begin{array}{c} \text{dimensionless} & \cdot \\ \text{dimensionless}^{-1} \end{array}$		
Mito_mass_new	Mito_mass_new	Cell	$\begin{array}{c} \text{dimensionless} & \cdot \\ \text{dimensionless}^{-1} \end{array}$		
Mito_mass_old	Mito_mass_old	Cell	$\begin{array}{c} \text{dimensionless} & \cdot \\ \text{dimensionless}^{-1} \end{array}$		
Mito_mass- _turnover	Mito_mass_turnover	Cell	$\begin{array}{c} \text{dimensionless} & \cdot \\ \text{dimensionless}^{-1} \end{array}$		
Mito_membr_pot_new	Mito_membr_pot_new	Cell	$\begin{array}{c} \text{dimensionless} & \cdot \\ \text{dimensionless}^{-1} \end{array}$		
Mito_membr_pot_old	Mito_membr_pot_old	Cell	$\begin{array}{c} \text{dimensionless} & \cdot \\ \text{dimensionless}^{-1} \end{array}$		
Nil	Nil	Cell	$\begin{array}{c} \text{dimensionless} & \cdot \\ \text{dimensionless}^{-1} \end{array}$		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
Insulin	Insulin	Cell	dimensionless · dimensionless ⁻¹	В	Ø
Amino_Acids	Amino_Acids	Cell	dimensionless · dimensionless ⁻¹		
Irradiation	Irradiation	Cell	dimensionless · dimensionless ⁻¹		\square
DNA_damage- _gammaH2AX_obs	DNA_damage_gammaH2AX_obs	Cell	$\begin{array}{c} \text{dimensionless} & \cdot \\ \text{dimensionless}^{-1} \end{array}$		
Akt_pS473_obs	Akt_pS473_obs	Cell	$\begin{array}{c} \text{dimensionless} & \cdot \\ \text{dimensionless}^{-1} \end{array}$		
mTOR_pS2448_obs	mTOR_pS2448_obs	Cell	$\begin{array}{c} \text{dimensionless} & \cdot \\ \text{dimensionless}^{-1} \end{array}$	\Box	\mathbf{Z}
AMPK_pT172_obs	AMPK_pT172_obs	Cell	dimensionless · dimensionless ⁻¹	\Box	
CDKN1A_obs	CDKN1A_obs	Cell	dimensionless · dimensionless ⁻¹	\Box	
CDKN1B_obs	CDKN1B_obs	Cell	$\begin{array}{c} \text{dimensionless} & \cdot \\ \text{dimensionless}^{-1} \end{array}$		\mathbf{Z}
Fox03a_pS253_obs	FoxO3a_pS253_obs	Cell	$\begin{array}{c} \text{dimensionless} & \cdot \\ \text{dimensionless}^{-1} \end{array}$		\mathbf{Z}
FoxO3a_total_obs	FoxO3a_total_obs	Cell	$\begin{array}{c} \text{dimensionless} & \cdot \\ \text{dimensionless}^{-1} \end{array}$	\Box	
Mito_Mass_obs	Mito_Mass_obs	Cell	dimensionless · dimensionless ⁻¹	\Box	
Mito_Membr_Pot_obs	Mito_Membr_Pot_obs	Cell	dimensionless · dimensionless ⁻¹	\Box	Ø

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
Mitophagy_obs	Mitophagy_obs	Cell	dimensionless · dimensionless -1	В	
ROS_obs	ROS_obs	Cell	$\begin{array}{c} \text{dimensionless} & \cdot \\ \text{dimensionless}^{-1} \end{array}$		Ø
JNK_pT183_obs	JNK_pT183_obs	Cell	dimensionless · dimensionless ⁻¹		\square
SA_beta_gal_obs	SA_beta_gal_obs	Cell	dimensionless · dimensionless ⁻¹		Ø

5 Parameters

This model contains 55 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Akt_S473phos_byinsulin	Akt_S473_phos- _by_insulin		0.589		Ø
Akt_pS473- _dephos- _by_mTORC1- _pS2448	Akt_pS473- _dephos_by- _mTORC1_pS2448		0.115		Ø
AMPK_T172- _phos	AMPK_T172_phos		0.355		Ø
AMPK_pT172- _dephos_by- _Mito_membr- _pot_new	AMPK_pT172- _dephos_by_Mito- _membr_pot_new		0.118		Ø
AMPK_pT172dephos_byMito_membrpot_old	AMPK_pT172- _dephos_by_Mito- _membr_pot_old	1.0	000000000000003 · 10	-6	Ø
mTORC1- _S2448_phos- _by_AA	mTORC1_S2448- _phos_by_AA	1.0	00008999860285 · 10	-6	Ø
mTORC1- _S2448_phos- _by_AA_n_Akt- _pS473	mTORC1_S2448- _phos_by_AA_n- _Akt_pS473		162.471		Ø
mTORC1- _pS2448- _dephos_by- _AMPK_pT172	mTORC1_pS2448- _dephos_by- _AMPK_pT172		191.297		Ø
mitophagy- _activ_by- _FoxO3a_n- _AMPK_pT172	mitophagy_activ- _by_FoxO3a_n- _AMPK_pT172		1319.842		Ø
mitophagy- _inactiv- _by_mTORC1- _pS2448	mitophagy_inactiv- _by_mTORC1- _pS2448		645.999		Ø

Id	Name	SBO Value	Unit	Constant
Fox03a_phos- _by_Akt_pS473	FoxO3a_phos_by- _Akt_pS473	6.835	j	Ø
Fox03a_phos-	FoxO3a_phos_by-	0.113	}	
_by_JNK_pT183	_JNK_pT183			
FoxO3a-	FoxO3a_pS253-	39.407	!	$ \overline{\mathbf{Z}} $
_pS253_degrad	_degrad	407.205	,	
Fox03a-	FoxO3a_synthesis	407.307	'	\mathbf{Z}
_synthesis CDKN1A-	CDKN1A_transcr-	0.085	•	-
	_by_FoxO3a_n-	0.082	1	\mathbf{Z}
_transcr_by- _Fox03a_n-	_DNA_damage			
_F0XU3a_n= _DNA_damage	_DIA_uailiage			
CDKN1A-	CDKN1A_inactiv-	0.067	1	
_inactiv_by-	_by_Akt_pS473	0.007		W
_Akt_pS473	_0			
CDKN1B-	CDKN1B_transcr-	0.092	2	V
_transcr_by-	_by_FoxO3a_n-	0.07		
_FoxO3a_n-	_DNA_damage			
_DNA_damage	C			
CDKN1B-	CDKN1B_inactiv-	0.060)	
$_\mathtt{inactiv_by} extsf{-}$	_by_Akt_pS473			
_Akt_pS473				
DNA-	DNA_damaged_by-	9237.723	\$	
$_damaged_by-$	_irradiation			
$_{ extstyle }$ irradiation				
$\mathtt{DNA_repair}$	DNA_repair	0.326		
DNA_damaged-	DNA_damaged_by-	0.119)	$ \overline{\mathbf{Z}} $
_by_ROS	_ROS			
ROS_prod_by-	ROS_prod_by-	4.555)	\square
_Mito_membr-	_Mito_membr_pot-			
_pot_new	_new	772.920	\	-4
ROS_prod_by- _Mito_membr-	ROS_prod_by- _Mito_membr_pot-	772.829	•	\square
_mrto_membr- _pot_old	_old			
ROS_turnover	ROS_turnover	3.231		
JNK_activ-	JNK_activ_by_ROS	0.005		≥
_by_ROS	Jivii detiv by bivos	0.002	•	V
JNK_pT183-	JNK_pT183-	0.072	2	
_inactiv	_inactiv	3.072		™
IKKbeta-	IKKbeta_activ_by-	1.000)	
_activ_by_ROS	_ROS			12. 1

Id	Name	SBO	Value	Unit	Constant
IKKbeta- _inactiv	IKKbeta_inactiv		1.000		Ø
mTORC1- _S2448_phos- _by_AA_n- _IKKbeta	mTORC1_S2448- _phos_by_AA_n- _IKKbeta	1	.00008996727694 · 10	5	Ø
sen_ass- _beta_gal- _inc_by_ROS	sen_ass_beta_gal- _inc_by_ROS		0.070		\mathbf{Z}
sen_ass- _beta_gal- _inc_by- _Mitophagy	sen_ass_beta_gal- _inc_by_Mitophagy	1	.000000000000011 · 10	6	Ø
sen_ass- _beta_gal_dec	sen_ass_beta_gal- _dec		0.155		\square
mito- _biogenesis- _by_mTORC1- _pS2448	mito_biogenesis- _by_mTORC1- _pS2448		0.013		Ø
mito- _biogenesis- _by_AMPK- _pT172	mito_biogenesis- _by_AMPK_pT172		5.8915457309741 · 10 ⁻	5	Ø
mitophagy- _new	mitophagy_new		0.225		\square
mitophagy- _old	mitophagy_old		0.001		\square
mito- _dysfunction	mito_dysfunction		0.027		\square
mito_membr- _pot_new_inc	mito_membr_pot- _new_inc		9882.027		
mito_membr- _pot_old_inc	mito_membr_pot- _old_inc		0.006		\square
mito_membr- _pot_new_dec	mito_membr_pot- _new_dec		1094.584		
_pot_new_dec mito_membr- _pot_old_dec	mito_membr_pot- _old_dec		0.955		
scale_Akt- _pS473_obs	scale_Akt_pS473- _obs		1.000		\square
scale- _Fox03a- _pS253_obs	scale_FoxO3a- _pS253_obs		1.000		Ø

Id	Name	SBO	Value	Unit	Constant
scale-	scale_FoxO3a-		1.000		\overline{Z}
_FoxO3a-	_total_obs				
$_{ t total_obs}$					
scale_AMPK-	scale_AMPK-		1.000		
_pT172_obs	_pT172_obs				
scale_mTOR-	scale_mTOR-		1.000		\square
_pS2448_obs	_pS2448_obs				
scale-	scale_Mitophagy-		1.000		
_Mitophagy-	_obs				
_obs	1. M M		1 000		
scale_Mito-	scale_Mito_Mass- _obs		1.000		\square
_Mass_obs scale_Mito-	scale_Mito-		1.000		7
_Membr_Pot-	_Membr_Pot_obs		1.000		$ \overline{\mathbf{Z}} $
_obs					
scale-	scale_CDKN1A-		1.000		
_CDKN1A_obs	_obs		1.000		NZ.
scale-	scale_CDKN1B-		1.000		Ø
_CDKN1B_obs	_obs				
scale_ROS-	scale_ROS_obs		1.000		\checkmark
_obs					
scale_DNA-	scale_DNA-		1.000		
$_{ extstyle }$ damage-	_damage-				
$_{\mathtt{gammaH2AX-}}$	_gammaH2AX_obs				
_obs					
$scale_JNK-$	scale_JNK_pT183-		1.000		
_pT183_obs	_obs				_
scale_SA-	scale_SA_beta_gal-		1.000		\checkmark
_beta_gal_obs	_obs				

6 Function definitions

This is an overview of 32 function definitions.

6.1 Function definition function_2

Name Constant flux (irreversible)

 $\textbf{Argument} \ \ v$

Mathematical Expression

 \mathbf{v} (1)

6.2 Function definition function_4_reaction_1_1

Name function_4_reaction_1_1

Arguments [Akt], Akt_S473_phos_by_insulin, [Insulin]

Mathematical Expression

$$Akt_S473_phos_by_insulin \cdot [Akt] \cdot [Insulin]$$
 (2)

6.3 Function definition function_4_reaction_2_1

Name function_4_reaction_2_1

Arguments [Akt_pS473], Akt_pS473_dephos_by_mTORC1_pS2448, [mTORC1_pS2448]

Mathematical Expression

 $Akt_pS473_dephos_by_mTORC1_pS2448 \cdot [Akt_pS473] \cdot [mTORC1_pS2448] \quad (3)$

6.4 Function definition function_4_reaction_4_1

Name function_4_reaction_4_1

Arguments [AMPK_pT172], AMPK_pT172_dephos_by_Mito_membr_pot_new, [Mito_membr_pot_new]

Mathematical Expression

6.5 Function definition function_4_reaction_5_1

Name function_4_reaction_5_1

Arguments [AMPK_pT172], AMPK_pT172_dephos_by_Mito_membr_pot_old, [Mito_membr_pot_old]

Mathematical Expression

 $AMPK_pT172_dephos_by_Mito_membr_pot_old \cdot [AMPK_pT172] \cdot [Mito_membr_pot_old] \tag{5}$

6.6 Function definition function_4_reaction_6_1

Name function_4_reaction_6_1

Arguments [Amino_Acids], [mTORC1], mTORC1_S2448_phos_by_AA

Mathematical Expression

 $mTORC1_S2448_phos_by_AA \cdot [mTORC1] \cdot [Amino_Acids]$ (6)

6.7 Function definition function_4_reaction_7_1

Name function_4_reaction_7_1

Arguments [Akt_pS473], [Amino_Acids], [mTORC1], mTORC1_S2448_phos_by_AA_n_Akt_pS473

Mathematical Expression

 $mTORC1_S2448_phos_by_AA_n_Akt_pS473 \cdot [mTORC1] \cdot [Amino_Acids] \cdot [Akt_pS473]$

(7)

6.8 Function definition function_4_reaction_8_1

Name function_4_reaction_8_1

Arguments [AMPK_pT172], [mTORC1_pS2448], mTORC1_pS2448_dephos_by_AMPK_pT172

Mathematical Expression

 $mTORC1_pS2448_dephos_by_AMPK_pT172 \cdot [mTORC1_pS2448] \cdot [AMPK_pT17(28)]$

6.9 Function definition function_4_reaction_9_1

Name function_4_reaction_9_1

Arguments [AMPK_pT172], [FoxO3a], mitophagy_activ_by_FoxO3a_n_AMPK_pT172

Mathematical Expression

mitophagy_activ_by_FoxO3a_n_AMPK_pT172 · [FoxO3a] · [AMPK_pT172] (9)

6.10 Function definition function_4_reaction_10_1

Name function_4_reaction_10_1

Arguments [Mitophagy], [mTORC1_pS2448], mitophagy_inactiv_by_mTORC1_pS2448

Mathematical Expression

mitophagy_inactiv_by_mTORC1_pS2448 · [Mitophagy] · [mTORC1_pS2448] (10)

6.11 Function definition function_4_reaction_11_1

Name function_4_reaction_11_1

Arguments [Akt_pS473], [FoxO3a], FoxO3a_phos_by_Akt_pS473

Mathematical Expression

 $FoxO3a_phos_by_Akt_pS473 \cdot [FoxO3a] \cdot [Akt_pS473]$ (11)

6.12 Function definition function_4_reaction_12_1

Name function_4_reaction_12_1

Arguments [FoxO3a_pS253], FoxO3a_phos_by_JNK_pT183, [JNK_pT183]

Mathematical Expression

 $FoxO3a_phos_by_JNK_pT183 \cdot [FoxO3a_pS253] \cdot [JNK_pT183]$ (12)

6.13 Function definition function_4_reaction_15_1

Name function 4 reaction 15.1

Arguments CDKN1A_transcr_by_FoxO3a_n_DNA_damage, [DNA_damage], [FoxO3a]

Mathematical Expression

 $CDKN1A_transcr_by_FoxO3a_n_DNA_damage \cdot [DNA_damage] \qquad (13)$ $\cdot [FoxO3a]$

6.14 Function definition function_4_reaction_16_1

Name function_4_reaction_16_1

Arguments [Akt_pS473], [CDKN1A], CDKN1A_inactiv_by_Akt_pS473

Mathematical Expression

 $CDKN1A_inactiv_by_Akt_pS473 \cdot [CDKN1A] \cdot [Akt_pS473]$ (14)

6.15 Function definition function_4_reaction_17_1

Name function_4_reaction_17_1

Arguments CDKN1B_transcr_by_FoxO3a_n_DNA_damage, [DNA_damage], [FoxO3a]

Mathematical Expression

 $CDKN1B_transcr_by_FoxO3a_n_DNA_damage \cdot [DNA_damage]$ (15) $\cdot [FoxO3a]$

6.16 Function definition function_4_reaction_18_1

Name function_4_reaction_18_1

Arguments [Akt_pS473], [CDKN1B], CDKN1B_inactiv_by_Akt_pS473

Mathematical Expression

 $CDKN1B_inactiv_by_Akt_pS473 \cdot [CDKN1B] \cdot [Akt_pS473]$ (16)

6.17 Function definition function_4_reaction_19_1

Name function_4_reaction_19_1

Arguments DNA_damaged_by_irradiation, [Irradiation]

Mathematical Expression

DNA_damaged_by_irradiation · [Irradiation] (17)

6.18 Function definition function_4_reaction_20_1

Name function_4_reaction_20_1

Arguments DNA_damaged_by_ROS, [ROS]

Mathematical Expression

 $DNA_damaged_by_ROS \cdot [ROS]$ (18)

6.19 Function definition function_4_reaction_22_1

Name function_4_reaction_22_1

Arguments [Mito_membr_pot_new], ROS_prod_by_Mito_membr_pot_new

Mathematical Expression

ROS_prod_by_Mito_membr_pot_new · [Mito_membr_pot_new] (19)

6.20 Function definition function_4_reaction_23_1

Name function_4_reaction_23_1

Arguments [Mito_membr_pot_old], ROS_prod_by_Mito_membr_pot_old

Mathematical Expression

ROS_prod_by_Mito_membr_pot_old · [Mito_membr_pot_old] (20)

6.21 Function definition function_4_reaction_25_1

Name function_4_reaction_25_1

Arguments [JNK], JNK_activ_by_ROS, [ROS]

Mathematical Expression

 $JNK_activ_by_ROS \cdot [JNK] \cdot [ROS]$ (21)

6.22 Function definition function_4_reaction_27_1

Name function_4_reaction_27_1

Arguments [ROS], sen_ass_beta_gal_inc_by_ROS

Mathematical Expression

 $sen_ass_beta_gal_inc_by_ROS \cdot [ROS]$ (22)

6.23 Function definition function_4_reaction_28_1

Name function_4_reaction_28_1

Arguments [Mitophagy], sen_ass_beta_gal_inc_by_Mitophagy

Mathematical Expression

sen_ass_beta_gal_inc_by_Mitophagy · [Mitophagy] (23)

6.24 Function definition function_4_reaction_30_1

Name function_4_reaction_30_1

Arguments [Mito_mass_turnover], [mTORC1_pS2448], mito_biogenesis_by_mTORC1_pS2448

Mathematical Expression

mito_biogenesis_by_mTORC1_pS2448 · [Mito_mass_turnover] · [mTORC1_pS24424]

6.25 Function definition function_4_reaction_31_1

Name function_4_reaction_31_1

Arguments [Mito_mass_turnover], [mTORC1_pS2448], mito_biogenesis_by_AMPK_pT172

Mathematical Expression

mito_biogenesis_by_AMPK_pT172 · [Mito_mass_turnover] · [mTORC1_pS2448[25]

6.26 Function definition function_4_reaction_32_1

Name function_4_reaction_32_1

Arguments [Mito_mass_new], [Mitophagy], mitophagy_new

Mathematical Expression

mitophagy_new · [Mito_mass_new] · [Mitophagy] (26)

```
6.27 Function definition function_4_reaction_33_1
Name function_4_reaction_33_1
Arguments [Mito_mass_old], [Mitophagy], mitophagy_old
Mathematical Expression
                    mitophagy_old · [Mito_mass_old] · [Mitophagy]
                                                                        (27)
6.28 Function definition function_4_reaction_34_1
Name function_4_reaction_34_1
Arguments [CDKN1A], [Mito_mass_new], mito_dysfunction
Mathematical Expression
                   mito_dysfunction · [Mito_mass_new] · [CDKN1A]
                                                                        (28)
6.29 Function definition function_4_reaction_35_1
Name function_4_reaction_35_1
Arguments [Mito_mass_new], mito_membr_pot_new_inc
Mathematical Expression
                     mito_membr_pot_new_inc · [Mito_mass_new]
                                                                        (29)
6.30 Function definition function_4_reaction_36_1
Name function_4_reaction_36_1
Arguments [Mito_mass_old], mito_membr_pot_old_inc
Mathematical Expression
                      mito_membr_pot_old_inc · [Mito_mass_old]
                                                                        (30)
6.31 Function definition function_4_reaction_39_1
Name function_4_reaction_39_1
Arguments IKKbeta_activ_by_ROS, [ROS]
```

IKKbeta_activ_by_ROS · [ROS]

Mathematical Expression

(31)

6.32 Function definition function_4_reaction_41_1

Name function_4_reaction_41_1

Arguments [Amino_Acids], [IKKbeta], [mTORC1], mTORC1_S2448_phos_by_AA_n_IKKbeta

Mathematical Expression

mTORC1_S2448_phos_by_AA_n_IKKbeta·[mTORC1]·[Amino_Acids]·[IKKbe(32)

7 Rules

This is an overview of 17 rules.

7.1 Rule DNA_damage_gammaH2AX_obs

Rule DNA_damage_gammaH2AX_obs is an assignment rule for species DNA_damage_gammaH2AX_obs:

$$DNA_damage_gammaH2AX_obs = scale_DNA_damage_gammaH2AX_obs \cdot [DNA_damage] \eqno(33)$$

7.2 Rule Insulin

Rule Insulin is an assignment rule for species Insulin:

Insulin =
$$\begin{cases} 1 & \text{if time } < 1 \\ 1 & \text{if time } < 0 \\ 1 & \text{otherwise} \end{cases}$$
 (34)

7.3 Rule Amino_Acids

Rule Amino_Acids is an assignment rule for species Amino_Acids:

$$Amino_Acids = \begin{cases} 1 & \text{if time } < 1 \\ 1 & \text{if time } < 0 \\ 1 & \text{otherwise} \end{cases}$$
 (35)

7.4 Rule Irradiation

Rule Irradiation is an assignment rule for species Irradiation:

$$Irradiation = \begin{cases} 0 & \text{if time } < 1 \\ 0 & \text{if time } < 0 \\ \begin{cases} 1 & \text{if time } < 0.003472 \\ 0 & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}$$
 (36)

7.5 Rule Akt_pS473_obs

Rule Akt_pS473_obs is an assignment rule for species Akt_pS473_obs:

$$Akt_pS473_obs = scale_Akt_pS473_obs \cdot [Akt_pS473]$$
 (37)

7.6 Rule SA_beta_gal_obs

Rule SA_beta_gal_obs is an assignment rule for species SA_beta_gal_obs:

$$SA_beta_gal_obs = scale_SA_beta_gal_obs \cdot [SA_beta_gal]$$
 (38)

7.7 Rule JNK_pT183_obs

Rule JNK_pT183_obs is an assignment rule for species JNK_pT183_obs:

$$JNK_pT183_obs = scale_JNK_pT183_obs \cdot [JNK_pT183]$$
(39)

7.8 Rule ROS_obs

Rule ROS_obs is an assignment rule for species ROS_obs:

$$ROS_obs = scale_ROS_obs \cdot [ROS]$$
 (40)

7.9 Rule Fox03a_total_obs

Rule Fox03a_total_obs is an assignment rule for species Fox03a_total_obs:

$$FoxO3a_total_obs = scale_FoxO3a_total_obs \cdot ([FoxO3a] + [FoxO3a_pS253])$$
(41)

7.10 Rule Mitophagy_obs

Rule Mitophagy_obs is an assignment rule for species Mitophagy_obs:

$$Mitophagy_obs = scale_Mitophagy_obs \cdot [Mitophagy]$$
 (42)

7.11 Rule Mito_Membr_Pot_obs

Rule Mito_Membr_Pot_obs is an assignment rule for species Mito_Membr_Pot_obs:

$$\label{eq:mito_Membr_Pot_obs} \begin{aligned} \text{Mito_Membr_Pot_obs} &= \text{scale_Mito_Membr_Pot_obs} \\ &\cdot ([\text{Mito_membr_pot_new}] + [\text{Mito_membr_pot_old}]) \end{aligned} \tag{43}$$

7.12 Rule CDKN1B_obs

Rule CDKN1B_obs is an assignment rule for species CDKN1B_obs:

$$CDKN1B_obs = scale_CDKN1B_obs \cdot [CDKN1B]$$
 (44)

7.13 Rule CDKN1A_obs

Rule CDKN1A_obs is an assignment rule for species CDKN1A_obs:

$$CDKN1A_obs = scale_CDKN1A_obs \cdot [CDKN1A]$$
 (45)

7.14 Rule Mito Mass obs

Rule Mito_Mass_obs is an assignment rule for species Mito_Mass_obs:

$$Mito_Mass_obs = scale_Mito_Mass_obs \cdot ([Mito_mass_new] + [Mito_mass_old])$$
 (46)

7.15 Rule AMPK_pT172_obs

Rule AMPK_pT172_obs is an assignment rule for species AMPK_pT172_obs:

$$AMPK_pT172_obs = scale_AMPK_pT172_obs \cdot [AMPK_pT172]$$
 (47)

7.16 Rule Fox03a_pS253_obs

Rule Fox03a_pS253_obs is an assignment rule for species Fox03a_pS253_obs:

$$FoxO3a_pS253_obs = scale_FoxO3a_pS253_obs \cdot [FoxO3a_pS253]$$
 (48)

7.17 Rule mTOR_pS2448_obs

Rule mTOR_pS2448_obs is an assignment rule for species mTOR_pS2448_obs:

$$mTOR_pS2448_obs = scale_mTOR_pS2448_obs \cdot [mTORC1_pS2448]$$
 (49)

8 Reactions

This model contains 41 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

			Table 5: Overview of all reactions	
N₀	Id	Name	Reaction Equation	SBO
1	reaction_1	reaction_1	Akt Insulin, Akt, Insulin Akt_pS473	TODG1 C2440
2	${\tt reaction_2}$	reaction_2	Akt_pS473	$\xrightarrow{\text{MTORC1_pS2448}} \text{Akt}$
3	${\tt reaction_3}$	reaction_3	$AMPK \xrightarrow{AMPK} AMPK_pT172$	
4	${\tt reaction_4}$	reaction_4	AMPK_pT172 Mito_membr_pot_new, AM	
5	reaction_5	reaction_5	AMPK_pT172 Mito_membr_pot_old, AMF	PK_pT172 , Mito_membr_pot_old \rightarrow AMPK
6	${\tt reaction_6}$	reaction_6	mTORC1 Amino_Acids, Amino_Acids, m	TORC1 mTORC1_pS2448
7	reaction_7	reaction_7	mTORC1 Amino_Acids, Akt_pS473, Akt_	$pS473$, Amino_Acids, mTORC1 \longrightarrow mTORC1. $pT172$, mTORC1_pS2448 \longrightarrow mTORC1
8	reaction_8	reaction_8	mTORC1_pS2448 $\frac{AMPK_pT172, AMPK_pT172}{AMPK_pT172}$	$pT172, mTORC1_pS2448 $ mTORC1
9	reaction_9	reaction_9	$ θ $ FoxO3a, AMPK_pT172, AMPK_pT172,	FoxO3a Mitophagy
10	reaction_10	reaction_10	Mitophagy mTORC1_pS2448, Mitophagy	
11	reaction_11	reaction_11	FoxO3a $\xrightarrow{\text{Akt_pS473}, \text{Akt_pS473}, \text{FoxO3a}}$	FoxO3a_pS253
12	reaction_12	reaction_12	FoxO3a_pS253 JNK_pT183, FoxO3a_pS25	53, JNK_pT183 FoxO3a
13	reaction_13	reaction_13	$FoxO3a_pS253 \xrightarrow{FoxO3a_pS253} Nil$	
14	${\tt reaction_14}$	reaction_14	$\emptyset \longrightarrow FoxO3a$	
15	reaction_15	reaction_15	\emptyset DNA_damage, FoxO3a, DNA_damage, I	
16	reaction_16	reaction_16	CDKN1A Akt_pS473, Akt_pS473, CDKN	1A → Nil

22	N₀	Id	Name	Reaction Equation	SBO
	17	reaction_17	reaction_17	Ø DNA_damage, FoxO3a, DNA_damage, FoxO3a	CDKN1B
	18	reaction_18	reaction_18	CDKN1B $\xrightarrow{\text{Akt_pS473, Akt_pS473, CDKN1B}} \text{Nil}$	
	19	reaction_19	reaction_19	$\emptyset \xrightarrow{\text{Irradiation, Irradiation}} DNA_damage$	
	20	reaction_20	reaction_20	$\emptyset \xrightarrow{ROS, ROS} DNA_damage$	
	21	reaction_21	reaction_21	DNA_damage DNA_damage Nil	
	22	reaction_22	reaction_22	$\emptyset \xrightarrow{\text{Mito_membr_pot_new}, \text{Mito_membr_pot_new}} \text{RO}$	S
P_1	23	reaction_23	reaction_23	$\emptyset \xrightarrow{Mito_membr_pot_old, \ Mito_membr_pot_old} ROS$	
Produced by SBML2laTE×	24	reaction_24	reaction_24	ROS ROS Nil	
ced t	25	reaction_25	reaction_25	JNK $\xrightarrow{\text{ROS, JNK, ROS}}$ JNK_pT183	
₹ 2 1	26	reaction_26	reaction_26	$JNK_pT183 \xrightarrow{JNK_pT183} JNK$	
<u>≅</u>	27	reaction_27	reaction_27	$\emptyset \xrightarrow{ROS, ROS} SA_beta_gal$	
ĂĘ.	28	reaction_28	reaction_28	$\emptyset \xrightarrow{Mitophagy, Mitophagy} SA_beta_gal$	
	29	reaction_29	reaction_29	$SA_beta_gal \xrightarrow{SA_beta_gal} \emptyset$	
	30	reaction_30	reaction_30	Mito_mass_turnover mTORC1_pS2448, Mito_mass	$\frac{\text{turnover, mTORC1_pS2448}}{}]$
	31	reaction_31	reaction_31	Mito_mass_turnover mTORC1_pS2448, Mito_mass	
	32	reaction_32	reaction_32	Mito_mass_new Mitophagy, Mito_mass_new, Mitop	
	33	reaction_33	reaction_33	Mito_mass_old Mitophagy, Mito_mass_old, Mitoph	
	34	reaction_34	reaction_34	Mito_mass_new CDKN1A, CDKN1A, Mito_mass_	
	35	reaction_35	reaction_35	$\emptyset \xrightarrow{Mito_mass_new, Mito_mass_new} Mito_membr_po$	t_new
	36	reaction_36	reaction_36	Ø Mito_mass_old, Mito_mass_old Mito_membr_pot.	old

N₀	Id	Name	Reaction Equation	SBO
37	reaction_37		Mito_membr_pot_new Mito_membr_pot_new Nil	
38	reaction_38		$Mito_membr_pot_old \xrightarrow{Mito_membr_pot_old} Nil$	
39	reaction_39	reaction_39	$\emptyset \xrightarrow{\text{ROS}} \text{RKbeta}$	
40	${\tt reaction_40}$	reaction_40	$IKKbeta \xrightarrow{IKKbeta} Nil$	
41	reaction_41	reaction_41	mTORC1 Amino_Acids, IKKbeta, Amino_Acids, IK	$\xrightarrow{\text{Kbeta, mTORC1}} \text{mTORC1_pS24}$

8.1 Reaction reaction_1

This is an irreversible reaction of one reactant forming one product influenced by three modifiers.

Name reaction_1

Reaction equation

$$Akt \xrightarrow{Insulin, Akt, Insulin} Akt_pS473$$
 (50)

Reactant

Table 6: Properties of each reactant.

Id	Name	SBO
Akt	Akt	

Modifiers

Table 7: Properties of each modifier.

Id	Name	SBO
Insulin	Insulin	
Akt	Akt	
Insulin	Insulin	

Product

Table 8: Properties of each product.

Id	Name	SBO
Akt_pS473	Akt_pS473	

Kinetic Law

Derived unit contains undeclared units

$$v_1 = \text{vol}(\text{Cell}) \cdot \text{function_4_reaction_1_1}([\text{Akt}], \text{Akt_S473_phos_by_insulin}, [\text{Insulin}])$$
 (51)

8.2 Reaction reaction_2

This is an irreversible reaction of one reactant forming one product influenced by three modifiers.

Name reaction_2

Reaction equation

$$Akt_pS473 \xrightarrow{mTORC1_pS2448, Akt_pS473, mTORC1_pS2448} Akt$$
 (54)

Reactant

Table 9: Properties of each reactant.

Id	Name	SBO
Akt_pS473	Akt_pS473	

Modifiers

Table 10: Properties of each modifier.

Id	Name	SBO
mTORC1_pS2448	mTORC1_pS2448	
Akt_pS473	Akt_pS473	
mTORC1_pS2448	mTORC1_pS2448	

Product

Table 11: Properties of each product.

Id	Name	SBO
Akt	Akt	

Kinetic Law

Derived unit contains undeclared units

$$v_2 = \text{vol}(\text{Cell}) \cdot \text{function_4_reaction_2_1}([\text{Akt_pS473}], \\ \text{Akt_pS473_dephos_by_mTORC1_pS2448}, [\text{mTORC1_pS2448}])$$
 (55)

8.3 Reaction reaction_3

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name reaction_3

Reaction equation

$$AMPK \xrightarrow{AMPK} AMPK_pT172$$
 (58)

Reactant

Table 12: Properties of each reactant.

Id	Name	SBO
AMPK	AMPK	

Modifier

Table 13: Properties of each modifier.

Id	Name	SBO
AMPK	AMPK	

Product

Table 14: Properties of each product

Id	Name	SBO
AMPK_pT172	AMPK_pT172	

Kinetic Law

Derived unit contains undeclared units

$$v_3 = \text{vol}(\text{Cell}) \cdot \text{AMPK_T172_phos} \cdot [\text{AMPK}]$$
 (59)

8.4 Reaction reaction_4

This is an irreversible reaction of one reactant forming one product influenced by three modifiers.

Name reaction_4

Reaction equation

Reactant

Table 15: Properties of each reactant.

Id	Name	SBO
AMPK_pT172	AMPK_pT172	

Modifiers

Table 16: Properties of each modifier.

Id	Name	SBO
Mito_membr_pot_new AMPK_pT172 Mito_membr_pot_new	AMPK_pT172	

Product

Table 17: Properties of each product.

Id	Name	SBO
AMPK	AMPK	

Kinetic Law

Derived unit contains undeclared units

$$v_4 = \text{vol}(\text{Cell}) \cdot \text{function_4_reaction_4_1}([\text{AMPK_pT172}], \\ \text{AMPK_pT172_dephos_by_Mito_membr_pot_new}, [\text{Mito_membr_pot_new}])$$
 (61)

$$\label{eq:function_4_reaction_4_1} $$ ([AMPK_pT172], AMPK_pT172_dephos_by_Mito_membr_pot_new, $$ [Mito_membr_pot_new] = AMPK_pT172_dephos_by_Mito_membr_pot_new $$ \cdot [AMPK_pT172] \cdot [Mito_membr_pot_new] $$ (62)$$

$$\label{eq:function_4_reaction_4_1} $$ ([AMPK_pT172], AMPK_pT172_dephos_by_Mito_membr_pot_new, $$ [Mito_membr_pot_new] = AMPK_pT172_dephos_by_Mito_membr_pot_new $$ \cdot [AMPK_pT172] \cdot [Mito_membr_pot_new] $$ (63)$$

8.5 Reaction reaction_5

This is an irreversible reaction of one reactant forming one product influenced by three modifiers.

Name reaction_5

Reaction equation

Reactant

Table 18: Properties of each reactant.

Id	Name	SBO
AMPK_pT172	AMPK_pT172	

Modifiers

Table 19: Properties of each modifier.

Id	Name	SBO
Mito_membr_pot_old AMPK_pT172 Mito_membr_pot_old	AMPK_pT172	

Product

Table 20: Properties of each product.

Id	Name	SBO
AMPK	AMPK	

Kinetic Law

Derived unit contains undeclared units

$$v_{5} = \text{vol}\,(\text{Cell}) \cdot \text{function_4_reaction_5_1}\,([\text{AMPK_pT172}], \\ \text{AMPK_pT172_dephos_by_Mito_membr_pot_old}, [\text{Mito_membr_pot_old}])$$
 (65)
$$\text{function_4_reaction_5_1}\,([\text{AMPK_pT172}], \text{AMPK_pT172_dephos_by_Mito_membr_pot_old}, \\ [\text{Mito_membr_pot_old}]) = \text{AMPK_pT172_dephos_by_Mito_membr_pot_old} \\ \cdot [\text{AMPK_pT172}] \cdot [\text{Mito_membr_pot_old}]$$
 (66)
$$\text{function_4_reaction_5_1}\,([\text{AMPK_pT172}], \text{AMPK_pT172_dephos_by_Mito_membr_pot_old}, \\ [\text{Mito_membr_pot_old}]) = \text{AMPK_pT172_dephos_by_Mito_membr_pot_old} \\ \cdot [\text{AMPK_pT172}] \cdot [\text{Mito_membr_pot_old}]$$
 (67)

8.6 Reaction reaction_6

This is an irreversible reaction of one reactant forming one product influenced by three modifiers.

Name reaction_6

Reaction equation

Reactant

Table 21: Properties of each reactant.

Id	Name	SBO
mTORC1	mTORC1	

Modifiers

Table 22: Properties of each modifier.

Tuble 22: Troperties of each mounter.		
Id	Name	SBO
Amino_Acids Amino_Acids mTORC1		

Product

Table 23: Properties of each product.

Id	Name	SBO
mTORC1_pS2448	mTORC1_pS2448	

Kinetic Law

Derived unit contains undeclared units

$$v_6 = \text{vol}\left(\text{Cell}\right) \cdot \text{function_4_reaction_6_1}\left([\text{Amino_Acids}], [\text{mTORC1}], \\ \text{mTORC1_S2448_phos_by_AA}\right)$$
 (69)

8.7 Reaction reaction_7

This is an irreversible reaction of one reactant forming one product influenced by five modifiers.

Name reaction_7

Reaction equation

Reactant

Table 24: Properties of each reactant.

Id	Name	SBO
mTORC1	mTORC1	

Modifiers

Table 25: Properties of each modifier.

Table 23. I Toperties of each modifier.		
Id	Name	SBO
Amino_Acids	Amino_Acids	
Akt_pS473	Akt_pS473	
Akt_pS473	Akt_pS473	
${\tt Amino_Acids}$	Amino_Acids	
mTORC1	mTORC1	

Product

Table 26: Properties of each product.

Id	Name	SBO
mTORC1_pS2448	mTORC1_pS2448	

Kinetic Law

Derived unit contains undeclared units

$$v_7 = \text{vol} (\text{Cell}) \cdot \text{function_4_reaction_7_1} ([\text{Akt_pS473}], [\text{Amino_Acids}], [\text{mTORC1}], \\ \text{mTORC1_S2448_phos_by_AA_n_Akt_pS473})$$

$$(73)$$

 $\begin{aligned} & function_4_reaction_7_1 \ ([Akt_pS473], [Amino_Acids], [mTORC1], \\ & mTORC1_S2448_phos_by_AA_n_Akt_pS473) = mTORC1_S2448_phos_by_AA_n_Akt_pS473 \\ & \cdot [mTORC1] \cdot [Amino_Acids] \cdot [Akt_pS473] \end{aligned}$

(74)

8.8 Reaction reaction_8

This is an irreversible reaction of one reactant forming one product influenced by three modifiers.

Name reaction_8

Reaction equation

$$mTORC1_pS2448 \xrightarrow{AMPK_pT172, AMPK_pT172, mTORC1_pS2448} mTORC1$$
 (76)

Reactant

Table 27: Properties of each reactant.

Id	Name	SBO
mTORC1_pS2448	mTORC1_pS2448	

Modifiers

Table 28: Properties of each modifier.

Id	Name	SBO
AMPK_pT172	AMPK_pT172	
AMPK_pT172 mTORC1_pS2448	AMPK_pT172 mTORC1_pS2448	

Product

Table 29: Properties of each product.

Id	Name	SBO
mTORC1	mTORC1	

Kinetic Law

Derived unit contains undeclared units

$$v_8 = vol\left(Cell\right) \cdot function_4_reaction_8_1\left([AMPK_pT172], [mTORC1_pS2448], \\ mTORC1_pS2448_dephos_by_AMPK_pT172\right)$$
 (77)

$$\label{eq:function_4_reaction_8_1} $$ function_4_reaction_8_1 ([AMPK_pT172], [mTORC1_pS2448], $$ mTORC1_pS2448_dephos_by_AMPK_pT172) $$ = mTORC1_pS2448_dephos_by_AMPK_pT172 \cdot [mTORC1_pS2448] \cdot [AMPK_pT172] $$ (78)$$

$$function_4_reaction_8_1 ([AMPK_pT172], [mTORC1_pS2448], \\ mTORC1_pS2448_dephos_by_AMPK_pT172) \\ = mTORC1_pS2448_dephos_by_AMPK_pT172 \cdot [mTORC1_pS2448] \cdot [AMPK_pT172]$$
 (79)

8.9 Reaction reaction_9

This is an irreversible reaction of no reactant forming one product influenced by four modifiers.

Name reaction_9

Reaction equation

$$\emptyset \xrightarrow{FoxO3a, AMPK_pT172, AMPK_pT172, FoxO3a} Mitophagy$$
 (80)

Modifiers

Table 30: Properties of each modifier.

Id	Name	SBO
Fox03a	FoxO3a	
AMPK_pT172	AMPK_pT172	
AMPK_pT172	AMPK_pT172	
Fox03a	FoxO3a	

Product

Table 31: Properties of each product.

Id	Name	SBO
Mitophagy	Mitophagy	

Kinetic Law

Derived unit contains undeclared units

$$v_9 = \text{vol} (\text{Cell}) \cdot \text{function_4_reaction_9_1} ([\text{AMPK_pT172}], [\text{FoxO3a}], \\ \text{mitophagy_activ_by_FoxO3a_n_AMPK_pT172})$$
 (81)

8.10 Reaction reaction_10

This is an irreversible reaction of one reactant forming one product influenced by three modifiers.

Name reaction_10

Reaction equation

$$\underbrace{\text{mTORC1_pS2448, Mitophagy, mTORC1_pS2448}}_{\text{Mitophagy}} \text{Nil} \tag{84}$$

Reactant

Table 32: Properties of each reactant.

Id	Name	SBO
Mitophagy	Mitophagy	

Modifiers

Table 33: Properties of each modifier.

Id	Name	SBO
mTORC1_pS2448 Mitophagy mTORC1_pS2448	mTORC1_pS2448 Mitophagy mTORC1_pS2448	

Product

Table 34: Properties of each product.

Id	Name	SBO
Nil	Nil	

Kinetic Law

Derived unit contains undeclared units

$$v_{10} = vol\left(Cell\right) \cdot function_4_reaction_10_1\left([Mitophagy], [mTORC1_pS2448], \atop mitophagy_inactiv_by_mTORC1_pS2448\right) \tag{85}$$

8.11 Reaction reaction_11

This is an irreversible reaction of one reactant forming one product influenced by three modifiers.

Name reaction_11

Reaction equation

FoxO3a
$$\xrightarrow{\text{Akt_pS473, Akt_pS473, FoxO3a}} \text{FoxO3a_pS253}$$
 (88)

Reactant

Table 35: Properties of each reactant.

Id	Name	SBO
Fox03a	FoxO3a	

Modifiers

Table 36: Properties of each modifier.

Name	SBO
Akt_pS473 Akt_pS473	
	Akt_pS473

Product

Table 37: Properties of each product.

Id	Name	SBO
Fox03a_pS253	FoxO3a_pS253	

Kinetic Law

Derived unit contains undeclared units

$$v_{11} = \text{vol}\left(\text{Cell}\right) \cdot \text{function_4_reaction_11_1}\left([\text{Akt_pS473}], [\text{FoxO3a}], \text{FoxO3a_phos_by_Akt_pS473}\right)$$
(89)

8.12 Reaction reaction_12

This is an irreversible reaction of one reactant forming one product influenced by three modifiers.

Name reaction_12

Reaction equation

$$FoxO3a_pS253 \xrightarrow{JNK_pT183, FoxO3a_pS253, JNK_pT183} FoxO3a$$
 (92)

Reactant

Table 38: Properties of each reactant.

Id	Name	SBO
Fox03a_pS253	pS253 FoxO3a_pS253	

Modifiers

Table 39: Properties of each modifier.

Id	Name	SBO
JNK_pT183 FoxO3a_pS253 JNK_pT183	JNK_pT183 FoxO3a_pS253 JNK_pT183	

Product

Table 40: Properties of each product.

Id	Name	SBO
Fox03a	FoxO3a	

Kinetic Law

Derived unit contains undeclared units

$$v_{12} = vol (Cell) \cdot function_4_reaction_12_1 ([FoxO3a_pS253], FoxO3a_phos_by_JNK_pT183, [JNK_pT183])$$

$$(93)$$

$$function_4_reaction_12_1 ([FoxO3a_pS253], FoxO3a_phos_by_JNK_pT183, \\ [JNK_pT183]) = FoxO3a_phos_by_JNK_pT183 \cdot [FoxO3a_pS253] \cdot [JNK_pT183]$$

$$function_4_reaction_12_1 ([FoxO3a_pS253], FoxO3a_phos_by_JNK_pT183, \\ [JNK_pT183]) = FoxO3a_phos_by_JNK_pT183 \cdot [FoxO3a_pS253] \cdot [JNK_pT183]$$

8.13 Reaction reaction_13

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name reaction_13

Reaction equation

$$FoxO3a_pS253 \xrightarrow{FoxO3a_pS253} Nil$$
 (96)

Reactant

Table 41: Properties of each reactant.

Id	Name	SBO
Fox03a_pS253	FoxO3a_pS253	

Modifier

Table 42: Properties of each modifier.

Id	Name	SBO
Fox03a_pS253	FoxO3a_pS253	

Product

Table 43: Properties of each product.

Id	Name	SBO
Nil	Nil	

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = \text{vol}(\text{Cell}) \cdot \text{FoxO3a_pS253_degrad} \cdot [\text{FoxO3a_pS253}]$$
 (97)

8.14 Reaction reaction_14

This is an irreversible reaction of no reactant forming one product.

Name reaction_14

Reaction equation

$$\emptyset \longrightarrow FoxO3a$$
 (98)

Product

Table 44: Properties of each product.

Id	Name	SBO
Fox03a	FoxO3a	

Derived unit contains undeclared units

$$v_{14} = \text{vol}(\text{Cell}) \cdot \text{function}_2(\text{FoxO3a_synthesis})$$
 (99)

$$function_2(v) = v (100)$$

$$function_2(v) = v (101)$$

8.15 Reaction reaction_15

This is an irreversible reaction of no reactant forming one product influenced by four modifiers.

Name reaction_15

Reaction equation

$$\emptyset \xrightarrow{\text{DNA_damage, FoxO3a, DNA_damage, FoxO3a}} \text{CDKN1A}$$
 (102)

Modifiers

Table 45: Properties of each modifier.

Table 15. I roperties of each modifier.		
Id	Name	SBO
${\tt DNA_damage}$	DNA_damage	
FoxO3a	FoxO3a	
$\mathtt{DNA_damage}$	DNA_damage	
Fox03a	FoxO3a	

Product

Table 46: Properties of each product.

Id	Name	SBO
CDKN1A	CDKN1A	

Derived unit contains undeclared units

$$v_{15} = \text{vol}\left(\text{Cell}\right) \cdot \text{function_4_reaction_15_1}\left(\text{CDKN1A_transcr_by_FoxO3a_n_DNA_damage}, [\text{DNA_damage}], [\text{FoxO3a}]\right)$$
(103)

$$\label{eq:function_4_reaction_15_1} $$ (CDKN1A_transcr_by_FoxO3a_n_DNA_damage, $$ [DNA_damage], [FoxO3a]) = CDKN1A_transcr_by_FoxO3a_n_DNA_damage $$ (104) $$ \cdot [DNA_damage] \cdot [FoxO3a] $$$$

$$\label{eq:function_4_reaction_15_1} $$ (CDKN1A_transcr_by_FoxO3a_n_DNA_damage, \\ [DNA_damage], [FoxO3a]) = CDKN1A_transcr_by_FoxO3a_n_DNA_damage \\ \cdot [DNA_damage] \cdot [FoxO3a] $$ (105)$$

8.16 Reaction reaction_16

This is an irreversible reaction of one reactant forming one product influenced by three modifiers.

Name reaction_16

Reaction equation

$$CDKN1A \xrightarrow{Akt_pS473, Akt_pS473, CDKN1A} Nil$$
 (106)

Reactant

Table 47: Properties of each reactant.

Id	Name	SBO
CDKN1A	CDKN1A	

Modifiers

Table 48: Properties of each modifier.

Id	Name	SBO
Akt_pS473 Akt_pS473 CDKN1A	Akt_pS473 Akt_pS473 CDKN1A	

Table 49: Properties of each product.

Id	Name	SBO
Nil	Nil	

Kinetic Law

Derived unit contains undeclared units

$$v_{16} = \text{vol} (\text{Cell}) \cdot \text{function_4_reaction_16_1} ([\text{Akt_pS473}], [\text{CDKN1A}], \\ \text{CDKN1A_inactiv_by_Akt_pS473})$$
 (107)

8.17 Reaction reaction_17

This is an irreversible reaction of no reactant forming one product influenced by four modifiers.

Name reaction_17

Reaction equation

$$\emptyset \xrightarrow{DNA_damage, FoxO3a, DNA_damage, FoxO3a} CDKN1B$$
 (110)

Modifiers

Table 50: Properties of each modifier.

Id	Name	SBO
DNA_damage	DNA_damage	
Fox03a	FoxO3a	
${\tt DNA_damage}$	DNA_damage	
Fox03a	FoxO3a	

Table 51: Properties of each product.

Id	Name	SBO
CDKN1B	CDKN1B	

Kinetic Law

Derived unit contains undeclared units

$$v_{17} = vol\left(Cell\right) \cdot function_4_reaction_17_1\left(CDKN1B_transcr_by_FoxO3a_n_DNA_damage, \\ [DNA_damage], [FoxO3a]\right)$$
 (111)

$$\label{eq:function_4_reaction_17_1} $$ (CDKN1B_transcr_by_FoxO3a_n_DNA_damage, \\ [DNA_damage], [FoxO3a]) = CDKN1B_transcr_by_FoxO3a_n_DNA_damage \\ \cdot [DNA_damage] \cdot [FoxO3a] $$ (112)$$

$$\label{eq:function_4_reaction_17_1} $$ (CDKN1B_transcr_by_FoxO3a_n_DNA_damage, \\ [DNA_damage], [FoxO3a]) = CDKN1B_transcr_by_FoxO3a_n_DNA_damage \\ \cdot [DNA_damage] \cdot [FoxO3a] $$ (113)$$

8.18 Reaction reaction_18

This is an irreversible reaction of one reactant forming one product influenced by three modifiers.

Name reaction_18

Reaction equation

CDKN1B
$$\xrightarrow{\text{Akt_pS473, Akt_pS473, CDKN1B}} \text{Nil}$$
 (114)

Reactant

Table 52: Properties of each reactant.

Id	Name	SBO
CDKN1B	CDKN1B	

Modifiers

Table 53: Properties of each modifier.

Id	Name	SBO
Akt_pS473 Akt_pS473 CDKN1B	Akt_pS473 Akt_pS473 CDKN1B	

Product

Table 54: Properties of each product.

Id	Name	SBO
Nil	Nil	

Kinetic Law

Derived unit contains undeclared units

$$v_{18} = \text{vol} (\text{Cell}) \cdot \text{function_4_reaction_18_1} ([\text{Akt_pS473}], [\text{CDKN1B}], \\ \text{CDKN1B_inactiv_by_Akt_pS473})$$
 (115)

8.19 Reaction reaction_19

This is an irreversible reaction of no reactant forming one product influenced by two modifiers.

Name reaction_19

Reaction equation

$$\emptyset \xrightarrow{\text{Irradiation, Irradiation}} \text{DNA_damage}$$
 (118)

Modifiers

Table 55: Properties of each modifier.

Name	SBO
Irradiation Irradiation	
	1 (0.1110

Table 56: Properties of each product.

Id	Name	SBO
DNA_damage	DNA_damage	

Kinetic Law

Derived unit contains undeclared units

$$v_{19} = \text{vol}(\text{Cell}) \cdot \text{function_4_reaction_19_1}(\text{DNA_damaged_by_irradiation}, [\text{Irradiation}])$$
 (119)

8.20 Reaction reaction_20

This is an irreversible reaction of no reactant forming one product influenced by two modifiers.

Name reaction_20

Reaction equation

$$\emptyset \xrightarrow{ROS, ROS} DNA_damage$$
 (122)

Modifiers

Table 57: Properties of each modifier.

Id	Name	SBO
ROS	ROS	
ROS	ROS	

Table 58: Properties of each product.

Tuble 30. Troperties of each product.		
Id	Name	SBO
DNA_damage	DNA_damage	

Kinetic Law

Derived unit contains undeclared units

$$v_{20} = \text{vol}(\text{Cell}) \cdot \text{function_4_reaction_20_1}(\text{DNA_damaged_by_ROS}, [\text{ROS}])$$
 (123)

$$function_4_reaction_20_1 (DNA_damaged_by_ROS, [ROS]) = DNA_damaged_by_ROS \cdot [ROS]$$
 (124)

$$function_4_reaction_20_1 (DNA_damaged_by_ROS, [ROS]) = DNA_damaged_by_ROS \cdot [ROS]$$
 (125)

8.21 Reaction reaction_21

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name reaction_21

Reaction equation

$$DNA_damage \xrightarrow{DNA_damage} Nil$$
 (126)

Reactant

Table 59: Properties of each reactant.

Id	Name	SBO
DNA_damage	DNA_damage	

Modifier

Table 60: Properties of each modifier.

Two to do a troperties of twen mounted		
Id	Name	SBO
DNA_damage	DNA_damage	

Table 61: Properties of each product.

Id	Name	SBO
Nil	Nil	

Kinetic Law

Derived unit contains undeclared units

$$v_{21} = \text{vol}(\text{Cell}) \cdot \text{DNA_repair} \cdot [\text{DNA_damage}]$$
 (127)

8.22 Reaction reaction_22

This is an irreversible reaction of no reactant forming one product influenced by two modifiers.

Name reaction_22

Reaction equation

$$\emptyset \xrightarrow{\text{Mito_membr_pot_new}, \text{Mito_membr_pot_new}} ROS$$
 (128)

Modifiers

Table 62: Properties of each modifier.

Id	Name	SBO
Mito_membr_pot_new Mito_membr_pot_new	•	

Product

Table 63: Properties of each product.

Id	Name	SBO
ROS	ROS	

Derived unit contains undeclared units

$$v_{22} = \text{vol}(\text{Cell}) \cdot \text{function_4_reaction_22_1}([\text{Mito_membr_pot_new}], \\ \text{ROS_prod_by_Mito_membr_pot_new})$$
 (129)

$$function_4_reaction_22_1 ([Mito_membr_pot_new], ROS_prod_by_Mito_membr_pot_new) \\ = ROS_prod_by_Mito_membr_pot_new \cdot [Mito_membr_pot_new]$$
 (131)

8.23 Reaction reaction_23

This is an irreversible reaction of no reactant forming one product influenced by two modifiers.

Name reaction_23

Reaction equation

$$\emptyset \xrightarrow{\text{Mito_membr_pot_old}} \text{ROS}$$
 (132)

Modifiers

Table 64: Properties of each modifier.

Id	Name	SBO
Mito_membr_pot_old	*	
Mito_membr_pot_old	Mito_membr_pot_old	

Product

Table 65: Properties of each product.

Id	Name	SBO
ROS	ROS	

Derived unit contains undeclared units

$$v_{23} = \text{vol} (\text{Cell}) \cdot \text{function_4_reaction_23_1} ([\text{Mito_membr_pot_old}], \\ \text{ROS_prod_by_Mito_membr_pot_old})$$
(133)

8.24 Reaction reaction_24

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name reaction_24

Reaction equation

$$ROS \xrightarrow{ROS} Nil \tag{136}$$

Reactant

Table 66: Properties of each reactant.

Id	Name	SBO
ROS	ROS	

Modifier

Table 67: Properties of each modifier.

Id	Name	SBO
ROS	ROS	

Table 68: Properties of each product.

Id	Name	SBO
Nil	Nil	

Kinetic Law

Derived unit contains undeclared units

$$v_{24} = \text{vol}\left(\text{Cell}\right) \cdot \text{ROS_turnover} \cdot [\text{ROS}]$$
 (137)

8.25 Reaction reaction_25

This is an irreversible reaction of one reactant forming one product influenced by three modifiers.

Name reaction_25

Reaction equation

$$JNK \xrightarrow{ROS, JNK, ROS} JNK_pT183$$
 (138)

Reactant

Table 69: Properties of each reactant.

Id	Name	SBO
JNK	JNK	

Modifiers

Table 70: Properties of each modifier.

Id	Name	SBO
ROS	ROS	

Id	Name	SBO
JNK	JNK	
ROS	ROS	

Table 71: Properties of each product.

Id	Name	SBO
JNK_pT183	JNK_pT183	

Kinetic Law

Derived unit contains undeclared units

$$v_{25} = \text{vol}(\text{Cell}) \cdot \text{function_4_reaction_25_1}([\text{JNK}], \text{JNK_activ_by_ROS}, [\text{ROS}])$$
 (139)

8.26 Reaction reaction_26

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name reaction_26

Reaction equation

$$JNK_pT183 \xrightarrow{JNK_pT183} JNK$$
 (142)

Reactant

Table 72: Properties of each reactant.

Id	Name	SBO
JNK_pT183	JNK_pT183	

Modifier

Table 73: Properties of each modifier.

Id	Name	SBO
JNK_pT183	JNK_pT183	

Product

Table 74: Properties of each product.

Id	Name	SBO
JNK	JNK	

Kinetic Law

Derived unit contains undeclared units

$$v_{26} = \text{vol}\left(\text{Cell}\right) \cdot \text{JNK_pT183_inactiv} \cdot \left[\text{JNK_pT183}\right] \tag{143}$$

8.27 Reaction reaction_27

This is an irreversible reaction of no reactant forming one product influenced by two modifiers.

Name reaction_27

Reaction equation

$$\emptyset \xrightarrow{ROS, ROS} SA_beta_gal$$
 (144)

Modifiers

Table 75: Properties of each modifier.

Id	Name	SBO
ROS ROS	ROS ROS	

Product

Table 76: Properties of each product.

Tuote 70. Troperties of each product:		
Id	Name	SBO
SA_beta_gal	SA_beta_gal	

Derived unit contains undeclared units

$$v_{27} = \text{vol}(\text{Cell}) \cdot \text{function_4_reaction_27_1}([\text{ROS}], \text{sen_ass_beta_gal_inc_by_ROS})$$
 (145)

8.28 Reaction reaction_28

This is an irreversible reaction of no reactant forming one product influenced by two modifiers.

Name reaction_28

Reaction equation

$$\emptyset \xrightarrow{\text{Mitophagy}, \text{Mitophagy}} SA_\text{beta_gal}$$
 (148)

Modifiers

Table 77: Properties of each modifier.

Id	Name	SBO
Mitophagy	Mitophagy	
${ t Mitophagy}$	Mitophagy	

Product

Table 78: Properties of each product.

Id	Name	SBO
SA_beta_gal	SA_beta_gal	

Id	Name	SBO

Derived unit contains undeclared units

$$v_{28} = vol(Cell) \cdot function_4_reaction_28_1 ([Mitophagy], sen_ass_beta_gal_inc_by_Mitophagy)$$
 (149)

8.29 Reaction reaction_29

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name reaction_29

Reaction equation

$$SA_beta_gal \xrightarrow{SA_beta_gal} \emptyset$$
 (152)

Reactant

Table 79: Properties of each reactant.

Id	Name	SBO
SA_beta_gal	SA_beta_gal	

Modifier

Table 80: Properties of each modifier.

Id	Name	SBO
SA_beta_gal	SA_beta_gal	

Derived unit contains undeclared units

$$v_{29} = \text{vol}(\text{Cell}) \cdot \text{sen_ass_beta_gal_dec} \cdot [\text{SA_beta_gal}]$$
 (153)

8.30 Reaction reaction_30

This is an irreversible reaction of one reactant forming one product influenced by three modifiers.

Name reaction_30

Reaction equation

 $\underbrace{\text{Mito_mass_turnover}} \xrightarrow{\text{mTORC1_pS2448, Mito_mass_turnover, mTORC1_pS2448}} \xrightarrow{\text{Mito_mass_new}} \text{Mito_mass_new}$ (154)

Reactant

Table 81: Properties of each reactant.

Id	Name	SBO
Mito_mass_turnover	Mito_mass_turnover	

Modifiers

Table 82: Properties of each modifier.

Id	Name	SBO
mTORC1_pS2448	mTORC1_pS2448	
${\tt Mito_mass_turnover}$	Mito_mass_turnover	
${\tt mTORC1_pS2448}$	mTORC1_pS2448	

Product

Table 83: Properties of each product.

Id		Name	SBO
Mi	to_mass_new	Mito_mass_new	

Derived unit contains undeclared units

8.31 Reaction reaction_31

This is an irreversible reaction of one reactant forming one product influenced by three modifiers.

Name reaction_31

Reaction equation

$$\frac{mTORC1_pS2448,\ Mito_mass_turnover,\ mTORC1_pS2448}{Mito_mass_turnover,\ mTORC1_pS2448} \xrightarrow{Mito_mass_new} (158)$$

Reactant

Table 84: Properties of each reactant.

Id	Name	SBO
Mito_mass_turnover	Mito_mass_turnover	

Modifiers

Table 85: Properties of each modifier.

Id	Name	SBO
mTORC1_pS2448	mTORC1_pS2448	
Mito_mass_turnover	Mito_mass_turnover	

Id	Name	SBO
mTORC1_pS2448	mTORC1_pS2448	

Table 86: Properties of each product.

Id	Name	SBO
Mito_mass_new	Mito_mass_new	

Kinetic Law

Derived unit contains undeclared units

$$v_{31} = \text{vol} (\text{Cell}) \cdot \text{function_4_reaction_31_1} ([\text{Mito_mass_turnover}], [\text{mTORC1_pS2448}], \\ \text{mito_biogenesis_by_AMPK_pT172})$$
 (159)

8.32 Reaction reaction_32

This is an irreversible reaction of one reactant forming one product influenced by three modifiers.

Name reaction_32

Reaction equation

Reactant

Table 87: Properties of each reactant.

Id	-	Name	SBO
Mi	to_mass_new	Mito_mass_new	

Modifiers

Table 88: Properties of each modifier

Tuble 66. I repetites of each infoamer.		
Id	Name	SBO
Mitophagy Mito_mass_new Mitophagy	Mitophagy Mito_mass_new Mitophagy	

Product

Table 89: Properties of each product.

Id	Name	SBO
Mito_mass_turnover	Mito_mass_turnover	

Kinetic Law

Derived unit contains undeclared units

$$v_{32} = vol\left(Cell\right) \cdot function_4_reaction_32_1\left([Mito_mass_new], [Mitophagy], mitophagy_new\right) \tag{163}$$

8.33 Reaction reaction_33

This is an irreversible reaction of one reactant forming one product influenced by three modifiers.

Name reaction_33

Reaction equation

Mito_mass_old Mitophagy, Mito_mass_old, Mitophagy Mito_mass_turnover (166)

Reactant

Table 90: Properties of each reactant.

Id	Name	SBO
Mito_mass_old	Mito_mass_old	

Modifiers

Table 91: Properties of each modifier.

Id	Name	SBO
Mitophagy Mito_mass_old Mitophagy	Mitophagy Mito_mass_old Mitophagy	

Product

Table 92: Properties of each product.

Id	Name	SBO
Mito_mass_turnover	Mito_mass_turnover	

Kinetic Law

Derived unit contains undeclared units

$$v_{33} = \text{vol}(\text{Cell}) \cdot \text{function_4_reaction_33_1} ([\text{Mito_mass_old}], [\text{Mitophagy}], \text{mitophagy_old})$$
(167)

8.34 Reaction reaction_34

This is an irreversible reaction of one reactant forming one product influenced by three modifiers.

Name reaction_34

Reaction equation

Reactant

Table 93: Properties of each reactant.

Id	Name	SBO
Mito_mass_new	Mito_mass_new	

Modifiers

Table 94: Properties of each modifier.

Id	Name	SBO
CDKN1A	CDKN1A	
CDKN1A	CDKN1A	
Mito_mass_new	Mito_mass_new	

Product

Table 95: Properties of each product.

Id	Name	SBO
${\tt Mito_mass_old}$	Mito_mass_old	

Kinetic Law

Derived unit contains undeclared units

$$v_{34} = vol\left(Cell\right) \cdot function_4_reaction_34_1\left([CDKN1A],[Mito_mass_new],mito_dysfunction\right)$$
(171)

8.35 Reaction reaction_35

This is an irreversible reaction of no reactant forming one product influenced by two modifiers.

Name reaction_35

Reaction equation

$$\emptyset \xrightarrow{Mito_mass_new, Mito_mass_new} Mito_membr_pot_new$$
 (174)

Modifiers

Table 96: Properties of each modifier.

Id	Name	SBO
Mito_mass_new Mito_mass_new		

Product

Table 97: Properties of each product.

Id	Name	SBO
Mito_membr_pot_new	Mito_membr_pot_new	

Kinetic Law

Derived unit contains undeclared units

$$v_{35} = \text{vol}(\text{Cell}) \cdot \text{function_4_reaction_35_1}([\text{Mito_mass_new}], \text{mito_membr_pot_new_inc})$$
 (175)

8.36 Reaction reaction_36

This is an irreversible reaction of no reactant forming one product influenced by two modifiers.

Name reaction_36

Reaction equation

$$\emptyset \xrightarrow{\text{Mito_mass_old, Mito_mass_old}} \text{Mito_membr_pot_old}$$
 (178)

Modifiers

Table 98: Properties of each modifier.

Id	Name	SBO
Mito_mass_old Mito_mass_old	1.1100_111405_010	

Product

Table 99: Properties of each product.

Id	Name	SBO
Mito_membr_pot_old	Mito_membr_pot_old	

Kinetic Law

Derived unit contains undeclared units

$$v_{36} = \text{vol}(\text{Cell}) \cdot \text{function_4_reaction_36_1}([\text{Mito_mass_old}], \text{mito_membr_pot_old_inc})$$
 (179)

8.37 Reaction reaction_37

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name reaction_37

Reaction equation

$$Mito_membr_pot_new \xrightarrow{Mito_membr_pot_new} Nil$$
 (182)

Reactant

Table 100: Properties of each reactant.

Id	Name	SBO
Mito_membr_pot_new	Mito_membr_pot_new	

Modifier

Table 101: Properties of each modifier.

Id	Name	SBO
Mito_membr_pot_new	Mito_membr_pot_new	

Product

Table 102: Properties of each product.

Id	Name	SBO
Nil	Nil	

Kinetic Law

Derived unit contains undeclared units

$$v_{37} = \text{vol}(\text{Cell}) \cdot \text{mito_membr_pot_new_dec} \cdot [\text{Mito_membr_pot_new}]$$
 (183)

8.38 Reaction reaction_38

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name reaction_38

Reaction equation

$$Mito_membr_pot_old \xrightarrow{Mito_membr_pot_old} Nil$$
 (184)

Reactant

Table 103: Properties of each reactant.

Id	Name	SBO
Mito_membr_pot_old	Mito_membr_pot_old	

Modifier

Table 104: Properties of each modifier.

Id	Name	SBO
Mito_membr_pot_old	Mito_membr_pot_old	

Product

Table 105: Properties of each product.

Id	Name	SBO
Nil	Nil	

Kinetic Law

Derived unit contains undeclared units

$$v_{38} = \text{vol}(\text{Cell}) \cdot \text{mito_membr_pot_old_dec} \cdot [\text{Mito_membr_pot_old}]$$
 (185)

8.39 Reaction reaction_39

This is an irreversible reaction of no reactant forming one product influenced by two modifiers.

Name reaction_39

Reaction equation

$$\emptyset \xrightarrow{ROS, ROS} IKKbeta$$
 (186)

Modifiers

Table 106: Properties of each modifier.

	_	
Id	Name	SBO
ROS	ROS	
ROS	ROS	

Table 107: Properties of each product.

Id	Name	SBO
IKKbeta	IKKbeta	

Kinetic Law

Derived unit contains undeclared units

$$v_{39} = \text{vol}(\text{Cell}) \cdot \text{function_4_reaction_39_1}(\text{IKKbeta_activ_by_ROS}, [\text{ROS}])$$
 (187)

$$function_4_reaction_39_1 \\ (IKKbeta_activ_by_ROS, [ROS]) = IKKbeta_activ_by_ROS \\ \cdot [ROS] \\ (188)$$

$$function_4_reaction_39_1 \\ (IKKbeta_activ_by_ROS, [ROS]) = IKKbeta_activ_by_ROS \\ \cdot [ROS] \\ (189)$$

8.40 Reaction reaction_40

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name reaction_40

Reaction equation

$$IKKbeta \xrightarrow{IKKbeta} Nil$$
 (190)

Reactant

Table 108: Properties of each reactant.

Id	Name	SBO
IKKbeta	IKKbeta	

Modifier

Table 109: Properties of each modifier.

Id	Name	SBO
IKKbeta	IKKbeta	

Table 110: Properties of each product.

Id	Name	SBO
Nil	Nil	

Kinetic Law

Derived unit contains undeclared units

$$v_{40} = \text{vol}(\text{Cell}) \cdot \text{IKKbeta_inactiv} \cdot [\text{IKKbeta}]$$
 (191)

8.41 Reaction reaction_41

This is an irreversible reaction of one reactant forming one product influenced by five modifiers.

Name reaction_41

Reaction equation

Reactant

Table 111: Properties of each reactant.

Id	Name	SBO
mTORC1	mTORC1	

Modifiers

Table 112: Properties of each modifier.

Table 112: 11operties of each modifier.		
Id	Name	SBO
Amino_Acids	Amino_Acids	
IKKbeta	IKKbeta	
${\tt Amino_Acids}$	Amino_Acids	
IKKbeta	IKKbeta	
mTORC1	mTORC1	

Table 113: Properties of each product.

Id	Name	SBO
mTORC1_pS2448	mTORC1_pS2448	

Kinetic Law

Derived unit contains undeclared units

```
v_{41} = vol\,(Cell) \cdot function\_4\_reaction\_41\_1\,([Amino\_Acids], [IKKbeta], [mTORC1], \\ mTORC1\_S2448\_phos\_by\_AA\_n\_IKKbeta)  function\_4\_reaction\_41\_1\,([Amino\_Acids], [IKKbeta], [mTORC1], \\ mTORC1\_S2448\_phos\_by\_AA\_n\_IKKbeta) = mTORC1\_S2448\_phos\_by\_AA\_n\_IKKbeta \\ \cdot [mTORC1] \cdot [Amino\_Acids] \cdot [IKKbeta]  (194) function\_4\_reaction\_41\_1\,([Amino\_Acids], [IKKbeta], [mTORC1], \\ mTORC1\_S2448\_phos\_by\_AA\_n\_IKKbeta) = mTORC1\_S2448\_phos\_by\_AA\_n\_IKKbeta \\ \cdot [mTORC1] \cdot [Amino\_Acids] \cdot [IKKbeta]  (195)
```

9 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

9.1 Species Akt

Name Akt

Initial concentration 10 dimensionless · dimensionless ⁻¹

This species takes part in three reactions (as a reactant in reaction_1 and as a product in reaction_2 and as a modifier in reaction_1).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Akt} = |v_2| - |v_1| \tag{196}$$

9.2 Species Akt_pS473

Name Akt_pS473

Initial concentration 10 dimensionless · dimensionless ⁻¹

This species takes part in eleven reactions (as a reactant in reaction_2 and as a product in reaction_1 and as a modifier in reaction_2, reaction_7, reaction_7, reaction_11, reaction_16, reaction_16, reaction_18, reaction_18).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Akt_pS473} = v_1 - v_2 \tag{197}$$

9.3 Species AMPK

Name AMPK

Initial concentration 10 dimensionless · dimensionless ⁻¹

This species takes part in four reactions (as a reactant in reaction_3 and as a product in reaction_4, reaction_5 and as a modifier in reaction_3).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{AMPK} = |v_4| + |v_5| - |v_3| \tag{198}$$

9.4 Species AMPK_pT172

Name AMPK_pT172

Initial concentration 10 dimensionless · dimensionless ⁻¹

This species takes part in nine reactions (as a reactant in reaction_4, reaction_5 and as a product in reaction_3 and as a modifier in reaction_4, reaction_5, reaction_8, reaction_8, reaction_9, reaction_9).

$$\frac{d}{dt}AMPK_pT172 = |v_3| - |v_4| - |v_5|$$
 (199)

9.5 Species mTORC1

Name mTORC1

Initial concentration 10 dimensionless · dimensionless ⁻¹

This species takes part in seven reactions (as a reactant in reaction_6, reaction_7, reaction_41 and as a product in reaction_8 and as a modifier in reaction_6, reaction_7, reaction_41).

$$\frac{d}{dt} \text{mTORC1} = |v_8| - |v_6| - |v_7| - |v_{41}| \tag{200}$$

9.6 Species mTORC1_pS2448

Name mTORC1_pS2448

Initial concentration 10 dimensionless · dimensionless ⁻¹

This species takes part in 13 reactions (as a reactant in reaction_8 and as a product in reaction_6, reaction_7, reaction_41 and as a modifier in reaction_2, reaction_2, reaction_8, reaction_10, reaction_10, reaction_30, reaction_30, reaction_31, reaction_31).

$$\frac{d}{dt} \text{mTORC1_pS2448} = v_6 + v_7 + v_{41} - v_8$$
 (201)

9.7 Species Mitophagy

Name Mitophagy

Initial concentration 10 dimensionless · dimensionless ⁻¹

This species takes part in nine reactions (as a reactant in reaction_10 and as a product in reaction_9 and as a modifier in reaction_10, reaction_28, reaction_28, reaction_32, reaction_32, reaction_33, reaction_33).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Mitophagy} = |v_9| - |v_{10}| \tag{202}$$

9.8 Species Fox03a

Name FoxO3a

Initial concentration 10 dimensionless · dimensionless ⁻¹

This species takes part in ten reactions (as a reactant in reaction_11 and as a product in reaction_12, reaction_14 and as a modifier in reaction_9, reaction_9, reaction_11, reaction_15, reaction_15, reaction_17, reaction_17).

$$\frac{d}{dt} \text{FoxO3a} = |v_{12}| + |v_{14}| - |v_{11}| \tag{203}$$

9.9 Species Fox03a_pS253

Name FoxO3a_pS253

Initial concentration 10 dimensionless · dimensionless ⁻¹

This species takes part in five reactions (as a reactant in reaction_12, reaction_13 and as a product in reaction_11 and as a modifier in reaction_12, reaction_13).

$$\frac{d}{dt} \text{FoxO3a_pS253} = |v_{11}| - |v_{12}| - |v_{13}|$$
 (204)

9.10 Species CDKN1A

Name CDKN1A

Initial concentration 10 dimensionless · dimensionless ⁻¹

This species takes part in five reactions (as a reactant in reaction_16 and as a product in reaction_15 and as a modifier in reaction_16, reaction_34, reaction_34).

$$\frac{d}{dt}CDKN1A = v_{15} - v_{16}$$
 (205)

9.11 Species CDKN1B

Name CDKN1B

Initial concentration 10 dimensionless · dimensionless ⁻¹

This species takes part in three reactions (as a reactant in reaction_18 and as a product in reaction_17 and as a modifier in reaction_18).

$$\frac{d}{dt}CDKN1B = |v_{17}| - |v_{18}| \tag{206}$$

9.12 Species JNK

Name JNK

Initial concentration 25 dimensionless · dimensionless ⁻¹

This species takes part in three reactions (as a reactant in reaction_25 and as a product in reaction_26 and as a modifier in reaction_25).

$$\frac{d}{dt}JNK = |v_{26}| - |v_{25}| \tag{207}$$

9.13 Species JNK_pT183

Name JNK_pT183

Initial concentration 10 dimensionless · dimensionless ⁻¹

This species takes part in five reactions (as a reactant in reaction_26 and as a product in reaction_25 and as a modifier in reaction_12, reaction_12, reaction_26).

$$\frac{d}{dt}JNK_{p}T183 = v_{25} - v_{26}$$
 (208)

9.14 Species ROS

Name ROS

Initial concentration 10 dimensionless · dimensionless ⁻¹

This species takes part in twelve reactions (as a reactant in reaction_24 and as a product in reaction_22, reaction_23 and as a modifier in reaction_20, reaction_20, reaction_24, reaction_25, reaction_25, reaction_27, reaction_27, reaction_39, reaction_39).

$$\frac{\mathrm{d}}{\mathrm{d}t}ROS = |v_{22}| + |v_{23}| - |v_{24}| \tag{209}$$

9.15 Species DNA_damage

Name DNA_damage

Initial concentration 1 dimensionless · dimensionless ⁻¹

This species takes part in eight reactions (as a reactant in reaction_21 and as a product in reaction_19, reaction_20 and as a modifier in reaction_15, reaction_15, reaction_17, reaction_17, reaction_21).

$$\frac{d}{dt}DNA_{damage} = |v_{19}| + |v_{20}| - |v_{21}|$$
 (210)

9.16 Species SA_beta_gal

Name SA_beta_gal

Initial concentration 0.81 dimensionless · dimensionless ⁻¹

This species takes part in four reactions (as a reactant in reaction_29 and as a product in reaction_27, reaction_28 and as a modifier in reaction_29).

$$\frac{d}{dt}SA_{beta}gal = |v_{27}| + |v_{28}| - |v_{29}|$$
 (211)

9.17 Species IKKbeta

Name IKKbeta

Initial concentration 10 dimensionless · dimensionless ⁻¹

This species takes part in five reactions (as a reactant in reaction_40 and as a product in reaction_39 and as a modifier in reaction_40, reaction_41, reaction_41).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{IKKbeta} = |v_{39}| - |v_{40}| \tag{212}$$

9.18 Species Mito_mass_new

Name Mito_mass_new

Initial concentration 1 dimensionless · dimensionless ⁻¹

This species takes part in eight reactions (as a reactant in reaction_32, reaction_34 and as a product in reaction_30, reaction_31 and as a modifier in reaction_32, reaction_34, reaction_35, reaction_35).

$$\frac{d}{dt} \text{Mito_mass_new} = |v_{30}| + |v_{31}| - |v_{32}| - |v_{34}|$$
 (213)

9.19 Species Mito_mass_old

Name Mito_mass_old

Initial concentration 0 dimensionless · dimensionless ⁻¹

This species takes part in five reactions (as a reactant in reaction_33 and as a product in reaction_34 and as a modifier in reaction_33, reaction_36, reaction_36).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Mito_mass_old} = |v_{34}| - |v_{33}| \tag{214}$$

9.20 Species Mito_mass_turnover

Name Mito_mass_turnover

Initial concentration 25 dimensionless · dimensionless ⁻¹

This species takes part in six reactions (as a reactant in reaction_30, reaction_31 and as a product in reaction_32, reaction_33 and as a modifier in reaction_30, reaction_31).

$$\frac{d}{dt} \text{Mito_mass_turnover} = |v_{32}| + |v_{33}| - |v_{30}| - |v_{31}|$$
 (215)

9.21 Species Mito_membr_pot_new

Name Mito_membr_pot_new

Initial concentration 12.12 dimensionless · dimensionless ⁻¹

This species takes part in seven reactions (as a reactant in reaction_37 and as a product in reaction_35 and as a modifier in reaction_4, reaction_4, reaction_22, reaction_37).

$$\frac{d}{dt} \text{Mito_membr_pot_new} = |v_{35}| - |v_{37}|$$
 (216)

9.22 Species Mito_membr_pot_old

Name Mito_membr_pot_old

Initial concentration 0 dimensionless · dimensionless ⁻¹

This species takes part in seven reactions (as a reactant in reaction_38 and as a product in reaction_36 and as a modifier in reaction_5, reaction_5, reaction_23, reaction_23, reaction_38).

$$\frac{d}{dt} \text{Mito_membr_pot_old} = |v_{36}| - |v_{38}|$$
 (217)

9.23 Species Nil

Name Nil

Initial concentration 0 dimensionless · dimensionless ⁻¹

This species takes part in nine reactions (as a product in reaction_10, reaction_13, reaction_16, reaction_18, reaction_21, reaction_24, reaction_37, reaction_38, reaction_40).

$$\frac{d}{dt}Nil = v_{10} + v_{13} + v_{16} + v_{18} + v_{21} + v_{24} + v_{37} + v_{38} + v_{40}$$
 (218)

9.24 Species Insulin

Name Insulin

Initial concentration 1 dimensionless · dimensionless ⁻¹

Involved in rule Insulin

This species takes part in two reactions (as a modifier in reaction_1, reaction_1). Not these but one rule determines the species' quantity because this species is on the boundary of the reaction system.

9.25 Species Amino_Acids

Name Amino_Acids

Initial concentration 1 dimensionless · dimensionless ⁻¹

Involved in rule Amino_Acids

This species takes part in six reactions (as a modifier in reaction_6, reaction_6, reaction_7, reaction_41, reaction_41). Not these but one rule determines the species' quantity because this species is on the boundary of the reaction system.

9.26 Species Irradiation

Name Irradiation

Initial concentration 1 dimensionless · dimensionless ⁻¹

Involved in rule Irradiation

This species takes part in two reactions (as a modifier in reaction_19, reaction_19). Not these but one rule determines the species' quantity because this species is on the boundary of the reaction system.

9.27 Species DNA_damage_gammaH2AX_obs

Name DNA_damage_gammaH2AX_obs

Initial concentration 1 dimensionless · dimensionless ⁻¹

Involved in rule DNA_damage_gammaH2AX_obs

One rule determines the species' quantity.

9.28 Species Akt_pS473_obs

Name Akt_pS473_obs

Initial concentration 10 dimensionless · dimensionless ⁻¹

Involved in rule Akt_pS473_obs

One rule determines the species' quantity.

9.29 Species mTOR_pS2448_obs

Name $mTOR_pS2448_obs$

Initial concentration 10 dimensionless · dimensionless ⁻¹

Involved in rule mTOR_pS2448_obs

One rule determines the species' quantity.

9.30 Species AMPK_pT172_obs

Name AMPK_pT172_obs

Initial concentration 10 dimensionless · dimensionless ⁻¹

Involved in rule AMPK_pT172_obs

One rule determines the species' quantity.

9.31 Species CDKN1A_obs

Name CDKN1A_obs

Initial concentration 10 dimensionless · dimensionless ⁻¹

Involved in rule CDKN1A_obs

One rule determines the species' quantity.

9.32 Species CDKN1B_obs

Name CDKN1B_obs

Initial concentration 10 dimensionless · dimensionless ⁻¹

Involved in rule CDKN1B_obs

One rule determines the species' quantity.

9.33 Species Fox03a_pS253_obs

Name FoxO3a_pS253_obs

Initial concentration 10 dimensionless · dimensionless ⁻¹

Involved in rule Fox03a_pS253_obs

One rule determines the species' quantity.

9.34 Species Fox03a_total_obs

Name FoxO3a_total_obs

Initial concentration 20 dimensionless · dimensionless ⁻¹

Involved in rule Fox03a_total_obs

One rule determines the species' quantity.

9.35 Species Mito_Mass_obs

Name Mito_Mass_obs

Initial concentration 1 dimensionless · dimensionless ⁻¹

Involved in rule Mito_Mass_obs

One rule determines the species' quantity.

9.36 Species Mito_Membr_Pot_obs

Name Mito_Membr_Pot_obs

Initial concentration 12.12 dimensionless · dimensionless ⁻¹

Involved in rule Mito_Membr_Pot_obs

One rule determines the species' quantity.

9.37 Species Mitophagy_obs

Name Mitophagy_obs

Initial concentration 10 dimensionless · dimensionless ⁻¹

Involved in rule Mitophagy_obs

One rule determines the species' quantity.

9.38 Species ROS_obs

Name ROS_obs

Initial concentration 10 dimensionless · dimensionless ⁻¹

Involved in rule ROS_obs

One rule determines the species' quantity.

9.39 Species JNK_pT183_obs

Name JNK_pT183_obs

Initial concentration $10 \text{ dimensionless} \cdot \text{dimensionless}^{-1}$

Involved in rule <code>JNK_pT183_obs</code>

One rule determines the species' quantity.

9.40 Species SA_beta_gal_obs

Name SA_beta_gal_obs

Initial concentration 0.81 dimensionless · dimensionless ⁻¹

Involved in rule SA_beta_gal_obs

One rule determines the species' quantity.

 $\mathfrak{BML2}^{lAT}$ EX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany