JPEG2000

Compression standard for interactive imaging

David Taubman

The University of New South Wales

Image Compression Preliminaries

- Array of sample intensities (e.g. 8 bits)
 - Colour: red, green and blue samples
 - 64 x 64 (small thumbnail)
 - 1024 x 1024 (small photographic)
 - 64k x 64k (typical GIS/military image)
- Lossless compression
 - Only ~2:1 compression (photographic)
- Lossy compression
 - Allows up to ~100:1 compression
 - Can't recover original samples exactly

Development of JPEG2000

- Developed by "JPEG" Working Group
 - ISO/IEC JTC1/SC29/WG1
 - Major international effort!
- ◆ 1996: work item proposed by Ricoh
- Nov 1997: 24 submissions evaluated
 - WTCQ selected after extensive testing
- ◆ Nov 1998: major algorithm change
 - EBCOT proposal adopted
- Jan 2001: part 1 became IS 15444-1
- Parts 1-6 complete; 8-11 ongoing

Some Benefits of JPEG2000

- Compress once decompress many ways
 - one codestream, many applications (example)
- Flexible information progressions
 - by quality, by resolution (size), top down, ...
- State-of-the-art compression efficiency
 - smallest compressed size, for given quality
- Compressed domain editing
 - crop images without accumulation of errors
- Content not limited by rendering devices
 - Limited hardware still handles complex images

Principles: Statistical Redundancy (1)

- Importance of prior expectations
 - Consider 4 events (e.g., snow, hail, rain, fine)
 - ◆ If we know it is summer, snow & hail highly unlikely
 - ◆ If we know precipitation is rare, only "fine" is likely
 - No need to spend 2 bits indicating the outcome
 - → e.g., send 0 if fine; 10 if rain; 110 if snow; 111 if hail
 - ◆ expect to send only 1 bit (0=fine) most of the time
- Lessons to learn
 - Average bit-rate depends on prior likelihoods
 - Likelihoods depend on context
 - ♦ e.g., "it is summer" or "precipitation in region is rare"

Principles: Statistical Redundancy (2)

- Context modeling
 - exploit knowledge of events already encoded
 - ♦ knowledge is also available at decoder
- Probability modeling
 - learn likelihoods of events in each context
 - use previously coded events in same context

Need for Quantization

- Coded events can be image sample values
 - Code 8 bit/sample (bps) image with < 8 bps</p>
 - Process is fully reversible (lossless)
 - But compression ratio not usually large ~2:1
- Need to quantize sample values into bins

Principles: Wavelet Transform (1)

Principles: Wavelet Transform (2)

Principles: Wavelet Transform (3)

- Subband images from
 - low- & high-pass filtering
 - plus sub-sampling
- Num samples preserved
 - same as original image
- Transform is invertible
 - get original image back from subband images
- Quantize subbands
 - Click for example
 - ♦ 1,.5,.25,.12,.06,.03 bps

Principles: Resolution Scalability (1)

Embedded codestream

Principles: Resolution Scalability (2)

Principles: Resolution Scalability (3)

Embedded codestream

- Can choose image size
 - after compression
 - prior to decompression
 - during transmission

Principles: Embedded Block Coding (1)

Principles: Embedded Block Coding (2)

- Each subband image divided into blocks
 - typically 32x32 or 64x64 samples per block
 - each block coded independently
- Embedded block coding algorithm
 - sample accuracy progressively refined
 - quantizer bin size effectively shrinks as bit-stream progresses
 - ultimate representation lossless (no quantization)
 - highly efficient representation
 - sophisticated context modeling within each block
 - adaptive probability modeling within each block

Principles: Abstract Quality Layers

- Block contributions to each layer optimized
 - Each block bit-stream optimally truncated
 - Permits custom interpretation of image quality

Principles: Dimensions of Scalability

 $\left(\begin{array}{c} 1 \\ \end{array}\right)$ Layer 3

aver

Layer 2

Quality Scalable Embedding

subset having low resolution, at very high quality

Res 0

Details for Res 1 Details for Res 2

Resolution Scalable Embedding

subset having moderate resolution, with coarse quantization

Principles: Spatial Access with Code-Blocks

Information Sequencing: Layer Dominant (LRCP)

more bits

Information Sequencing: Resolution Dominant (RLCP)

more bits

Information Sequencing: Position Dominant (PCRL)

more bits

Information Sequencing: Component Dominant (CPRL)

Information Sequencing Principles

- Fundamental mechanism
 - sequencing of code-block layer contributions
- Signalling mechanisms
 - code-blocks partitioned into precincts
 - ◆ 1 spatial region of 1 resolution, in 1 component
 - precincts divided into packets
 - ◆ 1 layer of 1 precinct
 - packet progression follows selected scheme
- Can always rearrange packet sequence
 - choose sequence best suited to compressor
 - later rearrange to suit consumer applications

JPEG2000 vs. JPEG: Visual Performance

Source: Chinen & Chien, "Visual evaluation of JPEG2000 color image compression performance," ISO/IEC JTC1/SC29/WG1 Technical Report N1583.

JPEG2000 vs. JPEG: Blocking Artefacts

JPEG2000 @ 0.25 bits/pixel

JPEG @ 0.25 bits/pixel

JPEG2000 vs. JPEG: Features

- Rich information progressions
 - JPEG: also offers progressive refinement
 - ◆ But, done with not inter-operable modes
- Progressive lossy to lossless compression
 - JPEG: no integrated lossy/lossless capability
- Spatial random access
 - JPEG: need to tile image
- Lossless image cropping
 - JPEG: editing ⇒ quantization error build-up
- Exact rate control in one shot

Complexity Issues: Kakadu Speed (2GHz)

- Large Image (24 bpp colour)
 - Compress to 0.5 bits/pel \Rightarrow 3.0 (4.0) Mpels/s
 - ♦ decompress ⇒ 10 Mpels/s
 - Compress to 1.0 bits/pel \Rightarrow 2.4 (3.2) Mpels/s
 - \diamond decompress \Rightarrow 7.5 Mpels/s
 - Compress to lossless \Rightarrow > 1 Mpels/s
 - → decompress ⇒ 1.3 Mpels/s
- Video (352x240, 4:2:0 colour)
 - Compress to 0.5 bits/pel \Rightarrow 60 frames/s
 - ♦ decompress ⇒ 160 frames/s
 - Compress to 1.0 bits/pel \Rightarrow 45 frames/s
 - ♦ decompress ⇒ 110 frames/s

Complexity Issues: Memory

- Transform and code-block buffering
 - Need 200 to 400 image lines equivalent
 - Does not depend on image height
- Code-block bit-stream buffering
 - Most packet progression orders:
 - ♦ About 20% more than final size of entire code-stream
 - Top-down packet progression order:
 - → Equivalent to about 1000 lines of compressed data
- Much more memory than JPEG
 - But, no need to buffer entire image

JPEG2000 File Formats

- JPEG2000 algorithm produces code-stream
 - no interpretation of compressed sample values
- ◆ JP2 file format (simple wrapper)
 - colour rendering info (1/3 colour ICC profiles)
 - other rendering info (alpha, resolution/size)
- JPX file format (extends JP2)
 - rich colour descriptions (arbitrary ICC profiles)
 - multiple code-streams, animation, IPR, XML, ...
- JPM file format (compound documents)
- ◆ MJ2 file format (Motion JPEG2000)
 - one code-stream per frame

Parts to the Standard

- Part 1: core technology (+ JP2 file format)
- Part 2: extended coding tools (+ JPX)
- ◆ Part 3 (12 & 13): motion JPEG2000 (MJ2)
- Part 4: conformance testing for Part 1
- Part 5: reference software (JJ2000+Jasper)
- Part 6: compound documents (JPM)
- Part 8: JPSEC (encryption, watermarking)
- Part 9: JPIP (interactive protocols)
- → Part 10: JP3D (hyperspectral/volumetric)
- Part 11: JPWL (robust comms for wireless)

Interactive Distribution with JPIP (JPEG2000 Internet Protocol)

- Demonstration
 - jpip://dst-m/wharf3.jp2
 - jpip://dst-m/phoenix.jp2

Applications for JPEG2000

- Internet
- Medical
 - adopted by DICOM: medical imaging standard
- Military/Surveillance/GIS
 - 7 of 8 military image standards to require J2K
- Digital Cameras
 - lossless image cropping; support for internet
- Scanners/printers
 - chips appearing for these markets already
- Mobile Devices
 - efficient interactive browsing of large images
- Digital Cinema and other Video
 - produce/archive/distribute; Yahoo Messanger; etc.

Available Implementations: Software

- JJ2000: Java (Canon/Ericsson/EPFL)
 - free reference software
- Jasper: "C" (Adams/Imagepower/UBC)
 - free reference software
- ◆ Kakadu: "C++" (Taubman/UNSW)
 - probably most popular commercial system
- Luratech/AlgoVision
- Aware Inc.
- → Ricoh (TRUEW)
- Imagepower

Available Implementations: Hardware

- Analog Devices
 - ADV-JP2000 was first to implement (partially)
- Amphion
 - IP Core claims 60 Msamples/second
 - May do only the wavelet transform part
- Picture Elements Inc.
 - Nearing release of high-performance compressor for scanners
- Ricoh, Imagepower, ...
 - Working on chips; status unknown

Useful References

Web-site

- www.jpeg.org is an excellent starting point
- www.crc.ricoh.com/~gormish/jpeg2000.html

Book

 "JPEG2000: image compression fundamentals, standards and practice," Kluwer, by Taubman and Marcellin

General Articles

- IEEE Signal Processing Magazine, Sept 2001
- Taubman & Marcellin, Proc. IEEE, August 2002