页码	位置	原文	勘误
1	正文倒数第6行	赫喇帕斯	赫拉帕斯 (注: 与上文统一)
17	(1)式下一行	将方程(1.3. <mark>10</mark>)和(1.3. <mark>11</mark>)合并之后	将方程(1.3.9)和(1.3.10)合并之后
19	(14)式	$\lim_{\varepsilon^* \to \infty} = \frac{\Sigma_1(\varepsilon^*)}{(\pi/6)\varepsilon^{*3/2}} = 1$	$\lim_{\varepsilon^* \to \infty} \frac{\Sigma_1(\varepsilon^*)}{(\pi/6)\varepsilon^{*3/2}} = 1$
22	脚注 1	$\Delta/E = 0(E^{-1/2})$	$\Delta/E = O(E^{-1/2})$
26	(1.4.22a)式	$\cdots \exp\left(\frac{3S}{3Nk} - \frac{5}{3}\right)$	$\cdots \exp\left(\frac{2S}{3Nk} - \frac{5}{3}\right)$
30	习题 1.9	$\cdots + V \left(\frac{\partial S}{\partial V}\right)_{V,E} + \cdots$	$\cdots + V \left(\frac{\partial S}{\partial V}\right)_{N,E} + \cdots$
30	习题 1.15	考虑物质的量为 f_1 、 f_2 和······	考虑摩尔分数为 f_1 、 f_2 和
35	(14)式下一行	"来达到"后无换行。	
36	(2)式	$\omega \int' d\omega = \int' (d^{3N}q d^{3N}p)$	$\omega = \int' d\omega \equiv \int' (d^{3N}q d^{3N}p)$
39	(7)式	最左边的a不加粗。	
50	(14)式	$\left\langle n_r \right\rangle = \omega_r \frac{\partial}{\partial \omega_r} \left(\ln \Gamma \right) \bigg _{\text{MR} \uparrow \text{ in } \omega = 1}$	$\left\langle n_{r} ight angle =\omega_{r}rac{\partial}{\partial\omega_{r}}\left(\ln\Gamma ight) ight _{ m \mathfrak{M}}$ 有的 ω_{r} =1
53	(27)式	第二个约等号应为等号。	
54	(36)式	$\langle (\Delta n_r) \rangle^2 \equiv \cdots$	$\langle (\Delta n_r)^2 \rangle \equiv \cdots$

59	(8)式	$\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{\left(\beta' + i\beta''\right)^{E}} Q\left(\beta' + i\beta''\right) d\beta''$	$\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{(\beta' + \mathrm{i}\beta'')E} Q(\beta' + \mathrm{i}\beta'') \mathrm{d}\beta''$
61	(7)式下一行	对于这些积分的任一个,我们都得到一个因子	我们得到因子
65	(8)式	$P(E) = e^{-\beta E} g(E) \cdots$	$P(E) \propto e^{-\beta E} g(E) \cdots$
70	(2)式下一行	"这里 $\hbar = h/2\pi$ "后漏译一句。	这表示对平均可及微观态数的经典计数——即 <i>kT</i> 除以量子谐振子的能量间隔。
71	第2行	它们本身就分布在各种不可分辨的振子能级上!	这些粒子自身分布在各个振子能级上,它们是不可分辨的!
97	(6)式	$\ln \Omega'(N^{(0)}, E^{(0)}) - \frac{\mu'}{kT'} N_r - \frac{1}{kT'} E_s$	$\ln \Omega' (N^{(0)}, E^{(0)}) + \frac{\mu'}{kT'} N_r - \frac{1}{kT'} E_s$
266	图 9.1 中	<i>V</i> > 5000 km/s	v > 5000 km/s
329	(2b)式	$\{\psi(\mathbf{r}),\psi(\mathbf{r}')\}=\{\psi^{\dagger}(\mathbf{r}),\psi^{\dagger}(\mathbf{r}')\}=0$	$\{\psi(\mathbf{r}),\psi(\mathbf{r}')\}=\{\psi^{\dagger}(\mathbf{r}),\psi^{\dagger}(\mathbf{r}')\}=0$
330	(10)式	$\widehat{N}_{m{\psi}}(m{r}) \Psi_{NE} angle$	$\widehat{N}\psi(m{r}) \Psi_{NE} angle$
393	(17)式	$N = N N_+$	$N_{-}=N-N_{+}$
602	(3)式	$\sum_{q'} P_{\text{\tiny $\#$}}\!\left(q'\right)\!W\!\left(q'\to q\right) = P_{\text{\tiny eq}}\!\left(q\right)\!\sum_{q'}\!W\!\left(q'\to q\right)$	$\sum_{q'} P_{\text{Pff}}\left(q'\right) W\left(q' \to q\right) = P_{\text{Pff}}\left(q\right) \sum_{q'} W\left(q' \to q\right)$
615	(3)式	等号左边的k不应加粗。	