Introdução à sistemas embarcados

Sistemas embarcados Prof. Allan Rodrigo Leite

O que são sistemas embarcados?

- Sistemas embarcados
 - Sistema dedicado e especialista
 - Constituído de hardware, software e periféricos
- Sistemas tradicionais
 - Chamados de sistemas de propósito geral
 - São projetados para uma vasta finalidade de uso

- Um sistema embarcado normalmente é composto por
 - Microprocessador
 - Memória
 - o Interfaces de comunicação
 - Circuito integrado

Arquitetura básica de um microcontrolador

- Arquitetura básica de um microcontrolador (cont.)
 - Conversão de sinal digital para analógico
 - Técnica conhecida como modulação de largura de pulso (PWM)

- Sistemas atuais seguem a arquitetura System on Chip (SoC)
 - São mais robustos em termos de capacidade física
- Esta arquitetura pode ser estendida para múltiplos processadores
 - o Necessidade cada vez maior para processamento em tempo tolerável
- Sistemas MultiPreprocessor System on Chip (MPSoC)
 - Não trata apenas de múltiplos processadores
 - Define que os processadores devem ser otimizados para a aplicação alvo e vice-versa

- Desafios recentes de sistemas embarcados
 - Lei de Moore e o poder computacional
 - A cada 18 meses dobra a capacidade de transistores em um único circuito
 - Crescimento acelerado de hardware gera descompasso com software
 - Necessidade de softwares cada vez mais complexos
 - Poucas ferramentas especializadas de apoio
 - Segurança da informação em sistemas embarcados

SOURCE: RAY KURZWEIL, "THE SINGULARITY IS NEAR: WHEN HUMANS TRANSCEND BIOLOGY", P.67, THE VIKING PRESS, 2006. DATAPOINTS BETWEEN 2000 AND 2012 REPRESENT BCA ESTIMATES.

Componentes de sistemas embarcados

- Interfaces e periféricos
 - Refere-se à maneira como sistema embarcado interage com o ambiente
 - Seja para capturar percepções ou atuar sobre o ambiente
- Processamento
 - Sistemas embarcados normalmente utilizam microcontroladores
 - Visa redução de custo pelos periféricos estarem integrados
 - Fazem parte do mesmo componente

Tipos de sistemas embarcados

- Projeto de hardware reconfigurável
 - Adequa-se o hardware existente para as necessidades do software
 - FPGA (Field Programmable Gate Array)
- Projeto de hardware específico
 - O hardware é projetado para as características do software
 - ASIC (Application Specific Integrated Circuit)

Características de sistemas embarcados

- Disponibilidade e tolerância a falhas
 - Capacidade do software se recuperar de uma falha
 - Após ser percebido algum erro pelo sistema
 - Técnicas de notificação são as mais comuns
- Tempo real
 - Exigência de tempo máximo de execução em uma dada operação
 - Normalmente requer que o software seja projetado para tal

Características de sistemas embarcados

- Usualmente as aplicações são monoprocesso
 - O comportamento do software é definido por meio de ciclos iterativos
- Cada iteração define uma tarefa específica
 - Determinística
 - Leitura de dados de um sensor
 - Processamento local
 - Não determinística
 - Comunicação (sinal digital/analógico, wifi)
 - E/S de dados (arquivo, serial, USB)

- Apresentam restrições de tempo quanto à execução das tarefas
- O hardware e o software devem estar adaptados a esta necessidade
 - Além do próprio sistema em questão

- Categorias de sistemas de tempo real
 - Hard real-time
 - Tempo de resposta pode resultar em uma catástrofe quando não atendido
 - O desempenho em uma situação de pico de carga deve ser previsível
 - A resposta n\u00e3o deve violar prazos predefinidos
 - Permanece sincronizado com o estado do ambiente em todos os casos
 - Soft real-time
 - Tempo de resposta são rigorosos, mas não são essenciais para a tarefa
 - A operação degradada em um pico de carga pode ser tolerada
 - Diminui o tempo de resposta em um pico de carga

Escalonamento de tarefas em hard real-time

- Temporizadores e contadores
 - Utilizado para definir o fim de cada ciclo de iteração (tempo real)
 - Número de ciclos (clock)
 - Pulsos sobre os dispositivos de E/S
- Watchdog (sistema emergencial)
 - Dispositivo eletrônico ou temporizador que realiza um reset quando
 - Identificada alguma condição de erro
 - O temporizador alcançou um limite

Etapas do processo de desenvolvimento

- Em um veículo
 - Anti-blocking system (ABS)
 - Central eletrônica
 - Transmissão automática
 - Controle de tração
 - Computador de bordo
 - Aparelhos de som
 - Demais sensores e dispositivos

- Em uma cozinha
 - Refrigerador
 - Micro-ondas
 - Forno elétrico
 - Lava louças
- Em uma sala de estar
 - Televisão
 - Receptores de TV a cabo
 - Controles remotos
 - Vídeo games
 - Condicionador de ar

- Automação residencial
 - Também conhecida por domótica
 - Precursor do IoT (Internet of Things)
 - Tem por objetivo oferecer
 - Segurança
 - Conforto
 - Economia de energia
 - Comunicação

Residência gerenciada por um conjunto de sistemas dispostos de forma descentralizada

- Dispositivo utilizado para coletar e compartilhar informações
 - A comunicação pode ser realizada em redes públicas ou privadas
- Utiliza técnicas de M2M (Machine to Machine communication)
 - o Fornece um meio de comunicação entre sistemas
- Suporte a diferentes protocolos de comunicação
 - Rádio frequência (Bluetooth, ZigBee, RFID)
 - Suporte a protocolos TCP/UDP e suas especializações (HTTP, por exemplo)
 - Comunicação direta entre microcontroladores
- Restrito quanto a capacidade de processamento e autonomia

- Ambientes de desenvolvimento para IoT
 - PlatformIO
 - Suporte a várias arquiteturas e plataformas embarcadas
 - Arduino, ARM, CMSIS, Raspberri, WiringPI e Simba RTOS
 - Baseada em command line interface (CLI)
 - loT Eclipse
 - Plug-ins no Eclipse para sistemas embarcados
 - Voltados para M2M e protocolos de comunicação

- Plataformas para IoT
 - Arduino
 - Plataforma aberta
 - Fornece um conjunto de interfaces bem definido
 - Acesso aos componentes conectados ao circuito integrado
 - Dispõe de GPIO (General Purpose Input/Output)
 - Utiliza como base linguagem de programação C

- Plataformas para IoT (cont.)
 - Raspberry Pl
 - Mini computador em uma única placa integrada
 - Além dos tradicionais dispositivos de E/S, conta também com pinos GPIO
 - QEMU para emulação do Raspberry PI

- Plataformas para IoT (cont.)
 - ESP8266
 - Microcontrolador de baixo custo com conectividade Wifi (IEEE 802.11)
 - Também dispõe de pinos GPIO

Evolução dos sistemas embarcados

- Sistemas embarcados estão evoluindo para
 - Interface para entrada de dados de sistemas legado
 - Capturam informações sobre o ambiente
 - Repassam as informações para outros sistemas realizar o processamento
- Sistemas tradicionais estão evoluindo para
 - Arquitetura orientada a serviços
 - SOA, Remote Objects, Microsserviços, etc.
 - Tratam sobre o que fazem com os dados coletados
 - Como interpretá-los, processá-los e quais ações serão tomadas

O desafio consiste em unir estas abordagens

- CAT Condução Automática de Trens
 - Treinamento simulado de maquinistas
 - Auxiliar maquinistas em tomadas de decisão durante uma viagem

- Funcionamento de um trem de carga
 - Rodas e trilhos são feitos de material metálico
 - Reduz a resistência de atrito
 - Cada locomotiva possui motor a combustão que gera energia aos motores elétricos de tração
 - Produz esforço trator e potência contínuos

- Funcionamento de um trem de carga (cont.)
 - Consumo x potência para uma locomotiva típica (C30)

Ponto de aceleração	Potência (HP)	Consumo (I/min)
Marcha lenta	0	0,3168
Freio dinâmico	0	1,767
1	100	0,567
2	275	1,0668
3	575	1,95
4	960	3,033
5	1440	4,533
6	1930	6,183
7	2500	7,6998
8	2940	9,4002

- Como auxiliar o maquinista na tomada de decisão?
 - Sugerir o ponto de aceleração mais indicado para uma dado momento
 - Requer conhecer a geografia da ferrovia
- Estratégia adotada
 - Sensores do trem indicam a posição na via férrea
 - Computador planeja a melhor ação com base na posição atual
 - Requer um planejamento das ações para evitar ótimo local

- Alguns dos desafios
 - Simulação da dinâmica do movimento
 - Planejamento das ações
 - Restrição computacional de hardware
- Especificação
 - Representação da geografia da ferrovia
 - Representação da composição férrea
 - Comportamento da dinâmica do movimento
 - Planejamento das ações futuras

Introdução à sistemas embarcados

Sistemas embarcados Prof. Allan Rodrigo Leite