

Nasima Akter Mukta, PhD

Assistant Professor Department of Mathematics and Physical Sciences East West University

Course Outline: Fall-2024

Course Title : Engineering Chemistry-1

Course Code : CHE 109
Pre- requisite : None
Credit Hours : 04

Course Instructor : Nasima Akter Mukta, PhD Email : nasima.mukta@ewubd.edu

Office : FUB- 904

Objectives: This course aims to give a basic knowledge of atoms and molecules, concept of chemical bonding, structure of molecule, introduces the mole concept and ideas of solution concentrations, acid-base titration, and how structure relates to bonding and bulk properties. The course also treats phases and solution behavior, equilibrium and thermodynamics, electrochemistry and basics of biochemistry.

Course Learning Outcomes:

CLO1	Acknowledge the fundamentals and application of current chemical theories.
CLO2	Apply knowledge in problem solving, critical thinking and analytical reasoning.
CLO3	Design and carry out experiments as well as accurately record and analyze the results of such experiments.

Constructive Alignment

CLOs	Bloom's Taxonomy	Teaching-learning strategies	Assessment Method
CLO2	Cognitive- Remember (Level 1) Understand (Level 2) Cognitive- Understand (Level 2) Apply (Level 3) Analyze (Level 4) Evaluate (Level 5) Create (Level 6)	Lecture Discussion Lecture Blended Learning Brainstorming Think-Pair Share (TPS) Problem Solving	Quizzes, Mid-Term Exam, Final Exam, Course Viva, Lab Viva Quizzes, Mid-Term Exam, Final Exam, Course Viva, Lab Viva, Assignment, Presentation
CLO3	Cognitive- Understand (Level 2) Apply (Level 3) Analyze (Level 4)	Lecture Blended Learning Problem Solving	Lab Classwork, Lab Report, Lab Exam

Course Content and Course Timeline:

Sl	Course Content-Theory	Planned	CLOs
No			
		lectures	
1	Chemical Solution of acids and bases: Types of solutions and ways of expressing	04	CLO1
	concentration, Strong and weak acids/bases, relative strength of acids/base, pH and		CLO2
	buffer solutions, neutralization curves, acid base titration, Measurement of pH.		CLO3
			CLO3
2	Atomic structure and properties: Atomic particles, atomic number, mass number,	03	CLO1
	atomic orbitals, isotopes, electronic configurations of atoms, Pauli exclusion principle,		
	Hund's rule, Aufbau principles atomic models/postulations, periodic table and periodic		
	properties of elements, photoelectric effect, electromagnetic radiation.		
3	Chemical Bonding: Forces between atoms and molecules, Forces in Solid bindings,	03	CLO1
	ionic bond, covalent bond, metallic bond, hydrogen bond, hybridization, valence bond		
	theory (VBT), VESPER theory, geometry of molecules.		
4	Nuclear Chemistry: Radioactive elements, properties of alpha, beta and gamma rays,	02	CLO1
	radioactive decay, calculation of half-life period of radioactive isotope, radioactive		CLO2
	dating, nuclear reaction.		
5	Nanochemistry: nanomaterials, classification and properties of nanomaterials,	02	CLO1
	synthesis and processing of nanomaterials, Characterization techniques of		CLO2
	nanomaterials, nanowires, carbon nanotubes, graphene. Application of nanomaterials		
	in energy storage and environmental issues (air, water, and fuel purification).		
	Mid Exam Date: (08.12.2024, Slot: 8:00 AM-9:15 AM, Room FUB 80	03)	1
6	Properties of gases: Gas Laws (Boyles, law, Charles's Law, combined gas law, Gay-	02	CLO1
	Lussac law, ideal gas law, Dalton's law of partial pressure). Mathematical problems.		CLO2
7	Electrochemistry: Oxidants and reductants, oxidation number, Electrode, electrolyte,	04	CLO1
	standard hydrogen electrode, electrolysis, Electrochemical cell, electromotive force,		CLO2
	electrode reactions, reduction potential, the chemical series, electroplating, product		

	deposition within the electrodes, Galvanic cell, Daniel cell, dry cell, Hydrogen fuel cell.		CLO3
8	Environmental Chemistry: sources and effects of air pollution, acid rain, ozone depletion, water pollutants, soil pollution, greenhouse effect, prevention of environmental pollution. Water and air purification via adsorption.	02	CLO1
9	Basics of organic chemistry: Introduction of aliphatic and aromatic hydrocarbons, nomenclature of various organic compounds, synthesis of various hydrocarbons (alkane, alkene, alkyne, alcohol, acid, benzene, phenol, etc), important organic reactions such as addition reaction, elimination reaction, substitution reaction, Friedel craft reactions, Selected organic compounds (phenol and its derivatives; alcohols and its derivatives).	03	CLO1
10	Basics of biochemistry: photosynthesis, carbohydrates (saccharides), protein (amino acids, peptide bond), lipids, fat/oil (saturated/unsaturated), nucleic acids, DNA, RNA.	02	CLO1
11	Basics of chemical hazard and Chemical weapons convention (CWC): Basics of chemical safety, explosive/hazardous chemicals, storage/handling chemicals, hazard communications, health risks of chemical exposer, personal protective equipment, chemical safety rules and regulations, Chemical weapons and their classification, dual use of chemicals, chemical threat.	01	CLO1
	Final Exam (09.02.2025, Sunday)		
	Mid Exam	01	
	Review class (04.02.2025)	01	
	Total	30	
	 Books Chemistry by Kenneth A. Goldsby, Raymond Chang Essentials of Physical Chemistry, B.S. Bhal, G.D. Tuli, Arun Bhal General Chemistry Principles and Modern Applications by Ralph H. Petrucci Riam Abu Much, Kurt Winkelmann, Muhamad Hugerat- Nanochemistry for Chemistry Educators, Royal Society of Chemistry Stanley E. Manahan - Environmental Chemistry (2022, CRC Press) 		

Course Content-Lab	Hrs	CLOs
		CI O1
		CLO1
1. Determination of the water of crystallization of copper (II) sulphate (CuSO ₄).		CLO2
2. Standardization of sodium hydroxide solution with a standard solution of oxalic acid.		
3. Standardization of HCL solution with a standard solution of sodium hydroxide (NaOH).		CLO3
 Determination of the Molar Mass of an Unknown, Diprotic Acid, H₂A using NaOH. Standardization of sodium thiosulphate (Na₂S₂O₃) solution with a standard solution of 		
potassium dichromate ($K_2Cr_2O_7$)		
6. Standardization of potassium permanganate (KMnO ₄) solution with standard sodium		
oxalate solution.		
7. Preparation of a buffer solution.		
8. Solubility test for inorganic compounds.		
9. Qualitative analysis of inorganic compounds.		
10. Estimation of ferrous ions present in a supplied solution of ferrous sulphate by a		
standard potassium permanganate (KMnO ₄) solution.		
11. Determination of available chlorine in bleaching powder.		
12. Qualitative tests for organic functional groups (-OH, -COOH, -CHO, =CO, -NH ₂ , NO ₂)		
13. Qualitative tests for carbohydrates.		

Textbook

- 1. Chemistry by Kenneth A. Goldsby, Raymond Chang
- 2. Essentials of Physical Chemistry, B.S. Bhal, G.D. Tuli, Arun Bhal
- 3. General Chemistry Principles and Modern Applications by Ralph H. Petrucci
- 4. John Wiley and Son's Vogel's Textbook of Quantitative Chemical Analysis
- 5. N. Haque and M. Uddin -Practical Chemistry Introduction.

Evaluation and Grading Policy:

Evaluation (Total marks: 100)

Theory (75)		Lab (25)	
Quiz	10	Lab Report	8
Presentation	5	Lab Performance	5

Assignment	5	Lab Final Assessment	7
		Lab-Viva	5
Class	5		
performance			
Mid Exam	20		
Term Final Exam	30		

Grading Policy: University Grading Scheme

Grading Folicy. Oniversity Grading Benefite				
Range of Marks (%)	Letter Grade	Grade Point		
80 - 100	A +	4.00		
75 – 79	A	3.75		
70 – 74	A-	3.50		
65 – 69	B+	3.25		
60 – 64	В	3.00		
55 – 59	В-	2.75		
50 – 54	C+	2.50		
45 – 49	С	2.25		
40 – 44	D	2.00		
Less than 40	F	0.00		

Exam Schedule

Mid Exam	Last day of classes	Term Final
Google classroom notice 08.12.2024	Academic calendar of EWU 04.02.2025	Academic calendar of EWU 09.02.2025, Sunday

Special Instructions:

- Apron is mandatory for Lab class.
- Students are required to come to the class on time and expected to attend all classes and examinations.
- No section change is allowed for class or lab.
- No make-up lab is allowed without proper reason.
- All mobile phones MUST be turned to silent mode during class and exam period.
- Plagiarism in assignments will not be allowed.
- Cheating in exam is a punishable offence and strict actions will be taken according to EWU rule.

