Ruigiang Xiao

Personal Webpage
MSc of Data-driven Modeling, School of Science
Hong Kong University of Science and Technology, Hong Kong SAR

EDUCATION

•Southeast University, Nanjing, China

B.E. in Highway and Bridge Engineering, School of Transportation

Sept. 2018-June. 2022

GPA: 90/100 Sept. 2021-May. 2022

National University of Singapore, Singapore

A one-year joint training program between National University of Singapore and Southeast University

Sept. 2022-June. 2023

•The Hong Kong University of Science and Technology (HKUST), Hong Kong MSc in Data-driven Modeling, School of Science

CGPA: 4.02/4.3 Percentage: 10%

•Main Courses: Statistical Machine Learning(A+), Stochastic Processes and Applications(A), Deep Learning for Modeling: Concepts, Tools, and Techniques(A+)

PUBLICATION AND PREPRINTS

• Xiao, R., Wan, Z., & Xiang, Y. (2023). Gaei-unet: Global attention and elastic interaction u-net for vessel image segmentation. (The article is submitted to BIBM 2023 and is under review. link)

RESEARCH INTEREST

- Medical image segmentation, computer vision, and machine learning
- Large-scale multi-modality biomedical image data integration for more precise medical analysis

RESEARCH EXPERIENCE

•Medical Image Segmentation using Active Contour and Deep Learning Methods

Hong Kong SAR

Project Leader - Supervised by Prof. Yang Xiang

 $Sept.\ 2022\text{-June.}\ 2023$

- Designed and implemented a novel image segmentation approach by integrating unique active contour methods elastic interaction-based method with the U-shape deep learning framework.
- Proposed an attention module to leverage spatial and channel context information to enhance high-level semantic understanding, prompting thin structure segmentation accuracy and efficiency.
- Focused on applications in medical imaging, contributing to improved diagnosis and treatment planning.
- The article GAEI-UNet: Global Attention and Elastic Interaction U-Net for Vessel Image Segmentation is submitted to BIBM 2023.

•The Detection of Apparent Cracks in Bridges Using Computer Vision

Nanjing, China

Project Leader - Supervised by Prof. Yanjie Zhu

Aug. 2021-Jun. 2022

- Developed a deep learning model using YOLOv5's image recognition algorithm to detect and analyze cracks in bridge structures.
- Implemented lens distortion correction and orthogonal projection methods to quantify the identified cracks accurately.
- An article in process of modifying: YOLOv5s-GTB: light-weighted and improved YOLOv5s for bridge crack detection.

•Automated Road Information Extraction Based on Laser Scanning Point Cloud

Nanjing, China

Project Leader - Supervised by Prof. Bin Yu

Aug. 2020-Aug. 2021

- Utilized machine learning techniques to extract road level data sets, contributing to urban planning and development.
- Innovated a linear index-based segmentation strategy for efficient point cloud data processing.
- Addressed noise issues through data refinement, enhancing the accuracy of surface segmentation.

• Vehicle Dispatching Considering User Preference Based on Reinforcement Learning

Singapore

Project Leader - Supervised by Prof. Yang Liu

Aug. 2021- May. 2022

- Led a team to analyze NYC taxi data, studying user behavior preferences for carpooling platforms.
- Developed and tested incentive strategies using multi-agent reinforcement learning, maximizing platform efficiency and user satisfaction.
- Implemented a deep Q-network-based ordered allocation system, contributing to the field of intelligent transportation systems.

Honours and Awards

- Honours: Subot Scholarships (2021-2022) (top 1 out of 95), Outstanding Graduate of Southeast University (2022)
- Awards: First Prize of Jiangsu Student Transportation Technology Competition (2021) (top 6 out of 122), The Second Prize Contemporary Undergraduate Mathematical Contest in Modeling (2020)

WORKING EXPERIENCE

•Hong Kong Center for Construction Robotics (HKCRC)

Hong Kong

Research Intern Sep. 2022-Jan. 2023

 Conducted comprehensive data collection and organization, tracking the latest trends and technologies in the Hong Kong construction industry.

- Developed strategic plans for implementing robotics, focusing on the digitalization of construction sites, with potential applications in medical and structural imaging.

TECHNICAL SKILLS AND INTERESTS

Languages: C/C++, Python, LaTeX

Technical: Pytorch, Git, Linux, Tensorflow, Matlab

Specialized Skills: Medical Image Analysis, Deep Learning, Computer Vision, Active Contour Methods

Libraries : C++ STL, Python Libraries, CUDA Libraries

Soft Skills: Problem Solving, Self-learning, Presentation, Adaptability