Kapitel 5

Komplexe Zahlen

5.1 Grundlagen

5.1.1 Einleitung

Bekanntlich gibt es kein reelles $x \in \mathbb{R}$ mit $x^2 < 0$. Das bedeutet, für a < 0 hat die Gleichung

$$x^2 = a \tag{5.1}$$

keine Lösungen. Die Idee ist nun, eine noch größere Zahlenmenge zu konstruieren, so dass auch alle negativen reellen Zahlen als Quadrate geschrieben werden können.

5.1.2 Konstruktion

Wir betrachten folgende Definition.

Definition 5.1 Komplexe Zahlen

Die komplexen Zahlen $\mathbb C$ sind die kleinste Menge, welche die folgenden Eigenschaften erfüllt.

A1 $\mathbb{R} \subseteq \mathbb{C}$.

 $A2 (\mathbb{C}; +; \cdot)$ bildet einen Zahlenkörper.

A3 Es gibt ein $i \in \mathbb{C}$ mit $i^2 = -1$.

Bemerkungen:

- i) Die Zahl i heißt imaginäre Einheit.
- ii) Weil in der Elektrotechnik i schon die elektrische Stromstärke bezeichnet, wird in der Literatur oft auch ein j verwendet.
- iii) Alle Elemente von C lassen sich durch reelle Zahlen und i beschreiben.
- iv) Man kann zeigen, dass C der größtmögliche Zahlenkörper ist.
- v) Man kann zeigen, dass $\mathbb C$ algebraisch abgeschlossen ist und somit kein Bedarf für eine noch größere Zahlenmenge besteht.