The transformation of a DODECA is given as

 $\exp(: F_{in} :) \exp(: aL :) \exp(: H_5/2 :) \exp(: bL :)$

 $\times \exp(: V_5:) \exp(: aL:) \exp(: H_5/2:) \exp(: bL:) \exp(: F_{out}:)$

where L and H₅ are the Hamiltonians of a drift of length L and a thin dodecapole kick with integrated strength K5:

nonlinear fringes. The term $\exp(: V_5:)$ is a correction to adjust the third-order terms in L:

 $H_5 = \frac{K5}{6!} \Re(x - iy)^6,$ respectively. The coefficients are $a = 1/2 - 1/\sqrt{12}$ and b = 1/2 - a. Terms exp(: F_{in} :) and exp(: F_{out} :) are transformation

 $V_5 = \sum_{j=(x,y),k=(x,y)} -\frac{\beta}{2} H_{5,k}^2 + \gamma H_{5,j} H_{5,k} H_{5,j,k} ,$

where , i represents the derivative by x or y. We have also introduced two coefficients $\beta = 1/6 - 1/\sqrt{48}$ and $\gamma = 1/40 - 1$