

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/US04/026345

International filing date: 13 August 2004 (13.08.2004)

Document type: Certified copy of priority document

Document details: Country/Office: US
Number: 60/495,056
Filing date: 14 August 2003 (14.08.2003)

Date of receipt at the International Bureau: 06 October 2004 (06.10.2004)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland
Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

1228319

UNITED STATES OF AMERICA

INDIA, THE VELVET EYES, INCUSENTS, SILKES, CLOTHES

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

October 01, 2004

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM
THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK
OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT
APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A
FILING DATE UNDER 35 USC 111.

APPLICATION NUMBER: 60/495,056
FILING DATE: *August 14, 2003*

Certified by

Jon W Dudas

Acting Under Secretary of Commerce
for Intellectual Property
and Acting Director of the U.S.
Patent and Trademark Office

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

16623 U.S. PTO
08/14/037497 155056 PTO
08/14/03**PROVISIONAL APPLICATION FOR PATENT COVER SHEET**

This is a request for filing a PROVISIONAL APPLICATION FOR PATENT under 37 CFR 1.53(c).

Express Mail Label No.

EU 982358560 US

INVENTOR(S)		
Given Name (first and middle [if any])	Family Name or Surname	Residence (City and either State or Foreign Country)
Mark D. Scott	Shuster Costa	Houston, Texas Kingwood, Texas

 Additional inventors are being named on the One separately numbered sheets attached hereto

TITLE OF THE INVENTION (500 characters max)

EXPANDABLE PIPE

Direct all correspondence to:

CORRESPONDENCE ADDRESS

 Customer Number

000027684

Place Customer Number
Bar Code Label here

OR

Type Customer Number here

 Firm or
Individual Name

Todd Mattingly

Address

1000 Louisiana Street

Address

Suite 4300

City

Houston

State

TX

ZIP

77002-5012

Country

USA

Telephone

713-547-2301

Fax

713-236-5585

ENCLOSED APPLICATION PARTS (check all that apply)

 Specification Number of Pages

39

 CD(s), Number Drawing(s) Number of Sheets Other (specify)

Return Receipt Postcard

 Application Data Sheet. See 37 CFR 1.76

METHOD OF PAYMENT OF FILING FEES FOR THIS PROVISIONAL APPLICATION FOR PATENT

 Applicant claims small entity status. See 37 CFR 1.27.FILING FEE
AMOUNT (\$) A check or money order is enclosed to cover the filing fees

08-1394

 The Commissioner is hereby authorized to charge filing
fees or credit any overpayment to Deposit Account Number:

\$160.00

 Payment by credit card. Form PTO-2038 is attached.The invention was made by an agency of the United States Government or under a contract with an agency of the
United States Government. No. Yes, the name of the U.S. Government agency and the Government contract number are: _____

Respectfully submitted,

SIGNATURE Todd Mattingly, PTO

Date 08/14/2003

TYPED or PRINTED NAME Todd MattinglyREGISTRATION NO.
(if appropriate)
Docket Number:TELEPHONE 713-547-2301

40,298

25791.301

USE ONLY FOR FILING A PROVISIONAL APPLICATION FOR PATENT

This collection of information is required by 37 CFR 1.51. The information is used by the public to file (and by the PTO to process) a provisional application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 8 hours to complete, including gathering, preparing, and submitting the complete provisional application to the PTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, Washington, D.C. 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Box Provisional Application, Assistant Commissioner for Patents, Washington, D.C. 20231.

PROVISIONAL APPLICATION COVER SHEET
Additional Page

PTO/SB/16 (02-01)

Approved for use through 10/31/2002, OMB 0651-0032
U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

Docket Number	25791.301
---------------	-----------

INVENTOR(S)/APPLICANT(S)

Given Name (first and middle if any)	Family or Surname	Residence (City and either State or Foreign Country)
Lawrence	Kendziora	Needville, Texas
Kevin	Waddell	Houston, Texas
Jose	Menchaca	Houston, Texas
Edward	Zwald, Jr.	Houston, Texas

Number 2 of 2

WARNING: Information on this form may become public. Credit card information should not be included on this form. Provide credit card information and authorization on PTO-2038.

EXPRESS MAIL NO. EU 982358560 US

DATE OF DEPOSIT: August 14, 2003

The Provisional Application for Patent Cover Sheet, Initial Information Data Sheet and the following thirty-nine (39) pages are being deposited with the U.S. Postal Service Express Mail Post Office to Addressee Service under 37 CFR §1.10 on the date indicated above and is addressed to: MAIL STOP PROVISIONAL PATENT APPLICATION, Commissioner for Patents, P. O. Box 1450, Alexandria, VA 22313-1450.

Vikki M. Meriwether (25791.301)
Name of person mailing paper and fee

Vikki M. Meriwether
Signature of person mailing paper and fee

Addn to # AFT - 2003.009

MORSE Shuster
6/30/03

EGT Super Pipe Requirements

Absorbed energy (min) at -4°F (-20°C)	Flare expansion 45% min
Longitudinal direction 80 ft-lb	Crack-free
Transverse direction 60 ft-lb	Regular expansion forces
Transverse weld area 60 ft-lb	Mechanical expansion forces
Carbon	Tensile strength 60-120 ksi
Sulfur	Yield strength 40-100 ksi
Phosphor	Y/T ratio 50/85 %max
Inclusions	Elongation 35% min
Defects	Width reduction 40% min
	Thickness reduction 30% min
	Anisotropy 1.5 min

Privileged/confidential

Meeting Notes: May 20, 2003

①

Discussion

Enventure 50% Shell/Halliburton
400 People

• Bob Hinkel

•

Mondia . 20-40%

• Baker Hughes
• Weatherford
• Schlumberger

Attendee: J. Malcolm Gray
W. J. (Bill) Fazackerley
(Microalloying Int)
Mark Swanson
(Enventure)

Mark Swanson
Enventure

3

Meeting notes : May 20, 2003

2

Discussion about optimization of the stress-strain curve for selection of pipe for expandable tubular applications

③

Methodology of the sample shape for evaluating
of the stress-strain properties in longitudinal & 5
transverse directions

Meeting notes

The main idea of Takee invention consists of application of the very formable steel with 35-yo tensile yield for expandable tubular. Special heat treatment with mechanical influence will provide a good cold work hardening and as a result of this we will receive 80ksi yield after expansion

80ksi

1000 SWSTL
05/00/03 6

Meeting notes

⑤

Discussion about application motions and
various steel for expandable tubulars

leero swstuk

05/20/03

Meeting notes

⑥

Discussion about 7 5/8 pipe with 40% expansion for monometer applications and application of the dual phase steel and method how to do it.

mark slusher 05/20/03 8

EGT-2003-19

EGT-#4462-v1
Pipe for Expandable...

Stress-Strain Property of the Target vs. Quench & Temper N Steel Pipes*

material	Yield lb/in ²	Yield/ Tensile ratio	Strength Lb/in ²	Strain at break %	Yield Strength Ratio	Yield Strength %
target	80.18	0.857	14.75	38.3	43.0	0.858
Quench & temper pipe-1	81.23	0.829	14.80	37.8	43.25	0.830
Quench & temper pipe-2	78.77	0.822	15.80	44.0	43.33	1.03

*An average from 4 (target) and 6 (quench & temper measurements)

5 = base line

Stress-Strain Property of the Target vs. Quench & Temper Nippon Steel Pipes*

material	Yield lb/in ²	Yield/ Tensile ratio	Strength Lb/in ²	Strain at break %	Yield Strength Ratio	Yield Strength %
target	80.18	0.857	14.75	38.3	43.0	0.858
Quench & temper pipe	80.19	0.828	15.25	40.4	43.3	0.715

*An average from 4 (target) and 6 (quench & temper measurements)

5 = base line

Parameters Required for Formability Evaluation	
Stress-Strain Properties	
<ul style="list-style-type: none"> Optimum combination of the strength & elongation Charpy V-notch impact value Impact tests on notched specimens are used to predict the likelihood of brittle fracture 	
Stress Rupture (burst, collapse)	
<ul style="list-style-type: none"> Higher strength is better but decreased ductility/toughness with increased susceptibility to environmental cracking Strain-hardening exponent (n - value) Material with higher strain-hardening exponent can avoid failure during tube expansion 	
Plastic strain ratio (r or Lankford - value)	
<ul style="list-style-type: none"> The ratio of the strains occurring in the width and thickness directions. In case greater than 1.0 will be more resistant to bending and better suited to tubular expansion 	
Enventure Global Technology LLC Proprietary Information	

$$r \text{ or Lankford - value (Anisotropy)}$$

$$R = \frac{R_0 + 2R_{45} + R_{90}}{4}$$

$$r = \frac{\ln \frac{b_0}{b_t}}{\ln \frac{L_0}{L_t} \frac{b_0}{b_t}}$$

r' - normalized anisotropy coefficient,
 b_0 & b_t - Initial and final width,
 L_0 & L_t - Initial and final length,
 w/o, r/o - Crystallographic (grain orientation)
 Mechanical (impurities, inclusions, voids)

EGT Pipe Requirements	
Absorbed energy (min) at 4° F(-20°C)	45% min
Longitudinal direction	80 ft-lb
Transverse direction	60 ft-lb
Transverse cold area	60 ft-lb
Carbon	
Sulfur	
Phosphorus	
Hydrogen	
Defects	

Rate expansion 45% min
 Crack-free, regular
 expansion forces
 Yield strength 60-80 ksi
 Y/Y ratio 65 %max
 Elongation 22% min
 Width reduction 30% min
 Thickness reduction 35% min
 Anisotropy 0.8 min

Enventure Global Technology LLC Proprietary Information

Bone Sample Formability Judgment						
Sample	Yield	Y/Y	Strain	Width	Width	Technology
L000	80.2	.89	24.0	33	43	89
4003	80.1	.72	23	33	32	82
4-100	80.7	.86	25	22	30	1.1
3-700	83.1	.87	18	34	30	7.6
4003	47.7	.79	23	43	42	82
4004	45.8	.89	40	50	52	80
4001	52.7	.89	40	40	40	1.1

Sample	Yield	Y/Y	Strain	Width	Width	Technology
L000	80.2	.89	24.0	33	43	89
4003	80.1	.72	23	33	32	82
4-100	80.7	.86	25	22	30	1.1
3-700	83.1	.87	18	34	30	7.6
4003	47.7	.79	23	43	42	82
4004	45.8	.89	40	50	52	80
4001	52.7	.89	40	40	40	1.1

Bone Sample Formability Judgment							
Sample	Yield	YU	Drop	Width	Wall	Form	Technology
	lb/in	lb/in	inches	reduction	reduction	inches	
60000	60.3	.66	24.0	33	42	.06	Smooth, round (100% elongation, 100% width reduction)
60015	60.1	.72	25	33	33	.05	Smooth, round (100% elongation, 100% width reduction)
6-100	60.7	.48	25	22	30	1.1	Smooth, round (100% elongation, 100% width reduction)
6-700	60.1	.47	18	34	30	.76	Smooth, round (100% elongation, 100% width reduction)
60013	67.7	.73	35	43	43	.05	Smooth, round (100% elongation)
60014	65.8	.66	40	50	52	.06	Smooth, round (100% elongation)
60011	62.7	.45	40	43	46	1.1	Smooth, round (100% elongation)

Bone Sample Formability Judgment							
Sample	Yield	YU	Drop	Width	Wall	Form	Technology
	lb/in	lb/in	inches	reduction	reduction	inches	
60000	60.2	.66	24.0	33	42	.06	Smooth, round (100% elongation, 100% width reduction)
60015	60.1	.72	25	33	33	.05	Smooth, round (100% elongation, 100% width reduction)
6-100	67.7	.48	25	22	30	1.1	Smooth, round (100% elongation, 100% width reduction)
6-700	60.1	.47	18	34	30	.76	Smooth, round (100% elongation, 100% width reduction)
60013	67.7	.73	35	43	43	.05	Smooth, round (100% elongation)
60014	65.8	.66	40	50	52	.06	Smooth, round (100% elongation)
60011	62.7	.45	40	43	46	1.1	Smooth, round (100% elongation)

Absorbed Energy and Flare Expansion Testing							
Material	Absorbed energy ^a Longitudinal Flare Test			Flare expansion %			
torped	80	62	52	65			
Quench & temper	125	52	178	42			
Quench & temper	113	50	174	52			
As-Is, 40 grade	130	40	70	32			
As-Is, 40 grade	80	30	4	30 ^b			

^a Quench & temper pipe, texture of pipe ^b Expansion load of 800000 & 1,200000 lbf
As received pipe, cracking in weld area
^b Measured at -4°F (-20°C)

Bone Sample Formability Judgment							
Sample	Yield	YU	Drop	Width	Wall	Form	Technology
	lb/in	lb/in	inches	reduction	reduction	inches	
60000	60.3	.66	24.0	33	42	.06	Smooth, round (100% elongation, 100% width reduction)
60015	60.1	.72	25	33	33	.05	Smooth, round (100% elongation, 100% width reduction)
6-100	60.7	.48	25	22	30	1.1	Smooth, round (100% elongation, 100% width reduction)
6-700	60.1	.47	18	34	30	.76	Smooth, round (100% elongation, 100% width reduction)
60013	67.7	.73	35	43	43	.05	Smooth, round (100% elongation)
60014	65.8	.66	40	50	52	.06	Smooth, round (100% elongation)
60011	62.7	.45	40	43	46	1.1	Smooth, round (100% elongation)

EGT Super Pipe Requirements							
Material	Yield	YU	Drop	Width	Wall	Form	
As received	60	60	60	60	60	75% min	Crack-free
Longitudinal direction	60	60	60	60	60	Crack-free	Regular expansion forces
Transverse direction	60	60	60	60	60	Crack-free	
Transverse weld area	60	60	60	60	60	Crack-free	
Carbon	60-120	60-120	60-120	60-120	60-120	Crack-free	
Sulfur	40-100	40-100	40-100	40-100	40-100	Crack-free	
Phosphorus	30/35	30/35	30/35	30/35	30/35	Crack-free	
Inclusions	40%	40%	40%	40%	40%	Crack-free	
Defects	30%	30%	30%	30%	30%	Crack-free	

**Different Material n - Values
(Strain-Hardening Exponent)**

$$f = r \times n$$

$\begin{cases} f - \text{expandability coefficient} \\ r - \text{anisotropy} \\ n - \text{strain hardening exponent} \end{cases}$

	LSX60 pipe	"History" pipe	Dual phase steel	TRIP steel	Inconel, Incoloy pipes
n	0.12	0.21	-0.30	-0.35	-0.41
Yield ratio	0.85	0.62	-0.58	-0.45	-0.43

Pipe design for expandable application: - selection of the composition and pre-expansion TMT to achieve maximum ductility before and maximum strength after expansion

ECT-2003-23

7-18-2003

Vikki Meriwether

Vikki

From: Mark Shuster
Sent: Friday, July 18, 2003 4:18 PM
To: Vikki Meriwether
Cc: Todd Mattingly; Larry Kendziora; Scott Costa; 'Grigoriy Grinberg'; Mark Shuster
Subject: Invention proposal

Connection for expandable tubular with deformable thread profile (Invention proposal)

There are technical contradictions for expandable tubular connections. The thread needs to have enough strength for load carrying of the pipe string with a grade steel of at least 60 - 80 ksi yield with corresponding hardness (~20HRC). During expansion a lower yield material, 15-40 ksi, in the thread profile prevents or creates a bonding across the threads during expansion. The main idea of invention is a deformable thread profile of the connection for expandable tubular. This type of the contradiction could be solved by different designs, material and technology application providing easy plastic deformation and corresponding smashing of the thread profile surfaces. There are a lot of technical decisions which could provide such thread surface deformation.

The main are:

- ⇒ Soft insert application, such copper, aluminum or other soft metal. The other benefit of the application of the soft inner layer on connection cross section is different stress strain (residual stress on pipe ID and OD distribution which can provide tighter joint after expansion. Soft inner layer can be produced by insert, spraying, galvanizing, etc.
- ⇒ Localized thread surface annealing by induction treatment or torch flame. In the case of induction heat we can use high frequency to achieve thinner layer (less than 0.08") or low frequency for thicker annealed layer (more than 0.08'). Plastic deformation of the relatively softer thread surfaces will provide a better condition for localized scuffing (galling, scoring, seizure phenomenon) with following clinching of the tread surfaces during expansion
- ⇒ Special thread geometry (shape) with lower load capacity (groove, notches, etc) provides easy deformation during expansion (see attachment)
- ⇒ Special chemical or thermo chemical treatment to thread softening surfaces
- ⇒ Application of the active termite type of composition provides extra heat in contact between thread surfaces with following surface softening

The authors: M. Shuster, S. Costa, L. Kendziora – all Enventure
 G. Grinberg (GS Engineering) –father of the original soft insert idea

Mark Shuster, PhD
 Senior Technical Advisor
 ENVENTURE Global Technology
 16200-A Park Row | Houston, TX 77084

phone: 281.492.5039 | cell: 281.615.0770
main: 281.492.5000 | fax: 281.492.5050
mark.shuster@enventureGT.com
www.enventureGT.com

Confidentiality Notice

This message is intended exclusively for the individual or entity to which it is addressed. This communication may contain information that is proprietary, privileged or confidential or otherwise legally exempt from disclosure. If you are not the named addressee, you are not authorized to read, print, retain, copy or disseminate this message or any part of it. If you have received this message in error, please notify the sender immediately by e-mail and delete all copies of the message.

7-22-2003

Vikki Meriwether

VMM

From: Mark Shuster
Sent: Tuesday, July 22, 2003 9:21 PM
To: Vikki Meriwether
Cc: Todd Mattingly; Kevin Waddell; Edwin Zwald; Jose Menchaca
Subject: A NEW PROPOSAL OR INVENTION

One of the main disadvantages or better say challenges for expandable tubular application is decreasing pipe collapse performance. This possible invention is leading to extended collapse performance for expandable tubular. Previous analysis of the different lubricants efficiency during mechanical expansion point that low friction lubricant (pipe ID solid film as well as special greases or combination of these options) significantly decrease an expansion load. This indicates an opportunity of thicker pipe application with the same affordable expansion forces. Additionally, low friction lubricant decrease residual stresses, increase shrinkage, slightly decrease pipe wall thinning (see attached power point presentation). All of these options improve collapse after expansion. The other resource of the collapse enhancement is special pipe material and heat treatment application provides low yield material characteristics during expansion but as results of high n-value (hardening exponent) high yield performance after expansion. Computer modeling prediction and calculation of the possible affordable pipe wall thickness and collapse performance indicates significant possibility for collapse increasing.

For instance, only decreasing level of the friction coefficient from current 0.12 (expansion at water base mud) to 0.075 (Brighton film application) leads to the possibility of wall thickness increasing from 0.305" to 0.350" and correspondently to 36% collapse improvement.

Application of the best available lubricant (combination of the low friction film and special greases) provides the opportunity increase wall thickness to 0.450" and correspondently to 145% collapse improvement. And finally the application of the best available lubrication (solid film and special grease) and special pipe with high n-value material and heat treatment can increase collapse in more than 3.5 times in comparison with current 6" X 0.305" pipe.

The details of this proposal are shown in the presentation.

The co-authors of this proposal (or invention) are Kevin Waddell (idea and preliminary performance evaluation), Jose Menchaca (computer modeling) and Ed Zwald (final pipe wall thickness and collapse performance calculation).

Sincerely,

Mark Shuster, PhD
Senior Technical Advisor
ENVENTURE Global Technology
16200-A Park Row | Houston, TX 77084
phone: 281.492.5039 | cell: 281.615.0770
main: 281.492.5000 | fax: 281.492.5050
mark.shuster@enventureGT.com
www.enventureGT.com

Confidentiality Notice

This message is intended exclusively for the individual or entity to which it is addressed. This communication may contain information that is proprietary, privileged or confidential or otherwise legally exempt from disclosure. If you are not the named addressee, you are not authorized to read, print, retain, copy or disseminate this message or any part of it. If you have received this message in error, please notify the sender immediately by e-mail and delete all copies of the message.

Vikki Meriwether

From: Mark Shuster
Sent: Thursday, August 14, 2003 7:36 AM
To: Vikki Meriwether
Cc: Kevin Waddell; Todd Mattingly; 'todd.mattingly@haynesboone.com'
Subject: RE: Invention addition

Vikki,

Please see an attachment for patent related to collapse performance enhancement proved that pipe material with high n-value significant increases yield (from 50 ksi to more than 100 ksi) and then collapse due work hardening during expansion. For comparison (slide 3) LSX80 yield doesn't change much even after 24% expansion.

Mark Shuster
phone: 281.492.5039 | cell: 281.615.0770
main: 281.492.5000 | fax: 281.492.5050

Confidentiality Notice

This message is intended exclusively for the individual or entity to which it is addressed. This communication may contain information that is proprietary, privileged or confidential or otherwise legally exempt from disclosure. If you are not the named addressee, you are not authorized to read, print, retain, copy or disseminate this message or any part of it. If you have received this message in error, please notify the sender immediately by e-mail and delete all copies of the message.

-----Original Message-----

From: Vikki Meriwether
Sent: Wednesday, August 13, 2003 4:12 PM
To: Mark Shuster
Cc: Kevin Waddell; Todd Mattingly; 'todd.mattingly@haynesboone.com'
Subject: I forgot to tell you
Importance: High

that the US provisional application we plan to file tomorrow will also contain Invention Disclosures EGT-2003-19 ("Pipe for Expandable Tubular Applications") and EGT-2003-24 ("Decreasing Pipe Collapse Performance," as well as EGT-2003-23. These Invention Disclosures have all been approved for filing and we will name the new application "Expandable Pipe." If you have anything additional for EGT-2003-19 and EGT-2003-24, please give it to me ASAP. Thanks, Vikki

Vikki M. Meriwether
Senior Legal Assistant
ENVENTURE Global Technology
16200-A Park Row / Houston, TX 77084
direct: 281-492-5089
main: 281-492-5000 / fax: 281-492-5826
vikki.meriwether@enventureGT.com
www.enventureGT.com

Confidentiality Notice

This message is intended exclusively for the individual or entity to which it is addressed. This communication may contain information that is proprietary, privileged or confidential or otherwise legally exempt from disclosure. If you are not the named addressee, you are not authorized to read, print, retain, copy or disseminate this message or any part of it. If you have received this message in error, please notify the sender immediately by e-mail and delete all copies of the message.

Engineering Stress v.s. Strain Curve
Inconel C 276 material

Engineering Stress vs. Strain Curve
Incoloy 825 material

Engineering Stress vs. Strain Curve
LSX80 pipe material

Expansion Load Computer Modeling vs . Mechanical Expansion

Contact Stress Distribution during Expansion

Residual Hoop Stresses through Pipe Cross section

80 grade, friction 0.125

80 grade, friction 0.02

80 grade, friction 0.075

55 K steel, friction 0.02

Equivalent Residual Stresses through Pipe Cross section

80 grade, friction 0.125

80 grade, friction 0.02

80 grade, friction 0.075

55 grade, friction 0.02

Shrinkage and Wall Thickness as Functions of Cone angle and Friction Coefficient

Load Distribution during Expansion

Collapse Improvement Estimation

6"

	Friction	Expansion force	Wall thickness	D/t after	Collapse Ksi
Current 6" x .305 BSFL lube	0.125	145,900	0.305	24.8	2,379
Brighton lube Application	0.075	143,000	0.350	21.6	3,243
Best Brighton With grease	0.02	149,900	0.450	16.8	5,837
Best lube with 55 ksi steel	0.02	125,800	0.500	15.1	5,359
Best lube and steel with 55 ksi yield before and 100 ksi after pipe expansion	0.02	126,800	0.500	15.1	8,443

6" Expanded Pipe 80 ksi	Friction	Exp Force	Pre Wall t	Est Post t	Est Post ID	Post D/t	Collapse
Current 6" x 0.305" Wall	0.125	145.9 ksi	0.305	0.275	6.269	24.796	2,379
Brighton	0.075	143 ksi	0.350	0.316	6.188	21.579	3,243
Best Lube	0.02	149.9 ksi	0.450	0.406	6.008	16.796	5,837
Best Lube w/ 55 ksi material	0.02	126.8 ksi	0.500	0.451	5.917	15.120	5,359
Best Lube w/ 55 ksi material with 100 ksi Post Exp Yield	0.02	126.8	0.5	0.451	5.917	15.12	8,443
OD for All Cases =	6.819						

SET Design Sheet

Rev 1.2B 10/1/02 KKW

Base Casing	7.625
Base Casing OD	26.400

Project:	6" 15 % Expansion	Sales Rep.:	Mark Schuster
Date:	17/Jul/03	Engineer:	Ed Zwald

Pre-Expansion Dimensions

Drift ID for Base Casing	Nom. ID	Clearance	E t	wall t	Tube OD	Tube ID	Launcher OD	Wall t	AH/HJ OD	D/t
6.844	6.969	0.000	0.140	0.305	6.000	5.390	6.844	0.319	6.280	19.67

Pre-Expansion Pressure Ratings

Tube	Tube IY	Tube collapse***	Launcher Burst	Launcher IY	Launcher collapse*	Launcher collapse***	Machined	Machined	Machined	Pressed
9904	7117	5195	9043	6527	9838	9737	8698	7352	6200	2980

Expansion

Cone OD	% Exp.	Yield Body	Yield	Cone Angle	Friction	Base Pipe F	P	F _{max} thru elastomer	P	L1Y/EXP
6.201	15.0%	80000	80000	10.0	0.125	145,895	4831	204,253	6764	35.1%

Post Expansion

Tube OD	Tube ID	ID Drift	wall t	Burst	IY	collapse***	Clad % 1	Clad % 2	By pass AM	By pass AP
6.819	6.269	6.140	0.275	7778	5653	2384	0.368	0.119	1.36	1.62

* - "Roark" Short section supported

** - API Yield strength collapse

*** - API D/t collapse

123

SET Design Sheet

Rev 1.2B 10/10/02 KKW

Base Casing	7.625
Base Casing weight	26.400

Project:	6" 15 % Exp, $f = 0.075$	Sales Rep.:	Mark Schuster
Date:	17/Ju/03	Engineer:	Ed Zwald

Pre-Expansion Dimensions

Drift ID for Base Casing	Nom. ID	Clearance	E_t	wall t	Tube OD	Tube ID	Launcher OD	Wall t	AH/HJ OD	D/t
6.844	6.969	0.000	0.140	0.360	6.000	5.300	6.844	0.357	6.280	17.14

Pre-Expansion Pressure Ratings

Tube	Tube IY	Tube collapse***	Launcher	Launcher IY	Launcher collapse**	Launcher collapse***	Launcher collapse*	Launcher collapse*	Launcher collapse*	Launcher collapse*
11459	8167	7037	10163	7293	12979	9737	8698	10207	7062	4096

Expansion

Cone OD	% Exp.	Yield Body	Yield	Cone Angle	Friction	Base Pipe F	P	F_{max} thru elastomer	P	L/Y/EXP
6.126	15.6%	80000	80000	10.0	0.075	143,053	4853	200,274	6795	50.3%

Post Expansion

Tube OD	Tube ID	ID Drift	wall t	Burst	IY	collapse***	Clad % 1	Clad % 2	By pass AW	By pass AP
6.819	6.188	6.065	0.316	8972	6472	3276	0.366	0.118	1.36	1.62

* - "Roark" Short section supported

** - API Yield strength collapse

*** - API D/t collapse

SET Design Sheet

Rev 1.2B 10/1/02 KKW

Base Casing	7.625
Base Casing weight	26.400

Project:	6" 15 % Exp, $f = 0.02$	Sales Rep.:	Mark Schuster
Date:	18/Jul/03	Engineer:	Ed Zwald

Pre-Expansion Dimensions

Drift ID for Base Casing	Nom. ID	Clearance	E t	wall t	Tube OD	Tube ID	Launcher OD	Launcher Wall t	AH/HJ OD	D/t
6.844	6.969	0.000	0.140	0.450	6.000	5.100	6.844	0.446	6.280	13.33

Pre-Expansion Pressure Ratings

Tube Burst	Tube IY	Tube collapse***	Launcher Burst	Launcher IY	Launcher collapse**	Launcher collapse***	Launcher collapse*	Launcher collapse*	Launcher collapse*	Pressed
16013	10500	11100	12884	9113	22657	9737	8698	18861	8953	7342

Expansion

Cone OD	% Exp.	Yield Body	Yield	Cone Angle	Friction	Base Pipe F	P	F _{max} thru elastomer	P	L/Y/EXP
5.948	16.6%	80000	80000	10.0	0.02	149,872	5394	209,821	7551	69.0%

Post Expansion

Tube OD	Tube ID	ID Drift	wall t	Burst	IY	collapse***	Clad % 1	Clad % 2	By pass Am	By pass AP
6.819	6.008	5.887	0.406	11703	8330	5874	0.368	0.119	1.36	1.62

* - "Roark" Short section supported

** - API Yield strength collapse

*** - API D/t collapse

SET Design Sheet

Rev 1.2B 10/1/02 KKW

Base Casing	7.625
OD	7.625
Base Casing weight	26.400

Project: 6" 15 % Exp, f=0.02, Y=55 | Sales Rep.: Mark Schuster

Date: 17/Jul/03 Engineer: Ed Zwald

Pre-Expansion Dimensions

Drift ID for Base Casing	Nom. ID	Clearance	E t	wall t	Tube OD	Tube ID	Launcher OD	Launcher Wall t	AH/HJ OD	D/t
6.844	6.969	0.000	0.140	0.500	6.000	5.000	6.844	0.491	6.280	12.00

Pre-Expansion Pressure Ratings

Tube Burst	Tube IY	Tube collapse***	Launcher Burst	Launcher IY	Launcher collapse*	Launcher collapse***	Launcher collapse*	Launcher collapse***	Launcher collapse*	Launcher collapse***
11579	8021	8403	14292	10034	28819	9737	8698	24435	6792	6701

Expansion

Cone OD	% Exp.	Yield Body	Yield	Cone Angle	Friction	Base Pipe F	P	F _{max} thru elastomer	P	L/Y/Exp
5.858	17.2%	55000	80000	10.0	0.02	126.780	4704	177,493	6586	113.3%

Post Expansion

Tube OD	Tube ID	ID Drift	wall t	Burst	IY	collapse***	Clad % 1	Clad % 2	By pass AH	By pass AP
6.819	5.917	5.797	0.451	9007	6364	5361	0.365	0.116	1.36	1.63

* - "Roark" Short section supported

** - API Yield strength collapse

*** - API D/t collapse

Different Material n - Values (Strain-Hardening Exponent)

$$f = r \times n$$

	LIQUID pipe	VM50 (GFO)	"Honey" pipe	Dual phase steel	TRIP steel	Inconel, Incoloy materials
n	0.12	0.19	0.21	-0.30	-0.35	-0.41
Yield ratio	0.85	0.8	0.62	-0.58	-0.45	-0.43

Pipe design for expandable application: - selection of the composition and pre-expansion TMT to achieve maximum ductility before and maximum strength after expansion

Accelerated Testing Efficiency

Tested Materials	Tested Conditions
45 greases, 18 soft coatings, 21 hard tool films	Dry friction, Oil mud, Salt water (Brine solution), Special mud (Diesel-Oil-Abrasive)
More than 550 tests	Up to 400 F temperature
Coating test expenses	
• Pipe surface testing (Gasper) ... \$ 7000	
• Lab pipe expansion ... \$ 750/500	
• Lab accelerated testing ... \$ 75	

Collapse Improvement Estimation 6"

	Friction	Expansion force	Wall thickness	Outer dia	Collapse
Current 6" x .300 B3FL tube	0.125	143,000	0.305	24.8	2,379
Brighton tube Application	0.075	143,000	0.350	21.0	3,243
BEST Brighton with grease	0.02	143,000	0.450	18.8	5,837
BEST tube with 33 ksi yield steel	0.02	125,000	0.500	15.1	9,359
BEST tube and steel with 33 ksi yield stress and 100 ksi yield after pipe expansion	0.02	125,000	0.500	15.1	8,443

