coursera

Search in course

Search

⊕ English ∨

< Previous Next >

≡ Hide menu

LSTMs and Named Entity Recognition

- ✔ Video: Week Introduction
- ✓ Video: RNNs and Vanishing Gradients
- Reading: RNNs and Vanishing Gradients 6 min
- Reading: (Optional) Intro to optimization in deep learning: Gradient Descent 10 min
- Lab: Vanishing Gradients 15 min
- 4 min
- Reading: Introduction to LSTMs 3 min
- ▶ Video: LSTM Architecture 3 min
- Reading: LSTM Architecture
- Video: Introduction to Named **Entity Recognition** 3 min
- Reading: Introduction to Named **Entity Recognition** 2 min
- ▶ Video: Training NERs: Data Processing 4 min
- Reading: Training NERs: Data Processing 5 min
- Reading: Long Short-Term Memory (Deep Learning Specialization C5) 10 min
- Reading: Computing Accuracy 2 min
- ▶ Video: Week Conclusion

Lecture Notes (Optional)

Practice Quiz

Assignment: Named Entity Recognition (NER)

RNNs and Vanishing Gradients

Advantages of RNNs

RNNs allow us to capture dependencies within a short range and they take up less RAM than other ngram models.

Disadvantages of RNNs

RNNs struggle with longer term dependencies and are very prone to vanishing or exploding gradients.

Note that as you are back-propagating through time, you end up getting the following:

Note that the *sigmoid* and *tanh* functions are bounded by 0 and 1 and -1 and 1 respectively. This eventually leads us to a problem. If you have many numbers that are less than |1|, then as you go through many layers, and you take the product of those numbers, you eventually end up getting a gradient that is very close to 0. This introduces the problem of vanishing gradients.

Solutions to Vanishing Gradient Problems

- Identity RNN with ReLU activation
- Gradient clipping 32 -- 25
- Skip connections F(x) + x

Mark as completed

