Lecture 12

Planar graphs.
Graph colorings. Chromatic polynomials

January 11, 2016

Planar graphs Definition and examples

A graph G is planar if it can be drawn in the plane such that pairs of edges intersect only at vertices, if at all. Such a drawing is called planar representation of G.

Planar graphs Definition and examples

A graph G is planar if it can be drawn in the plane such that pairs of edges intersect only at vertices, if at all. Such a drawing is called planar representation of G.

Auxiliary notions

Region of a planar representation of a graph G: maximal section of the plane in which any two points can be joined by a curve that does not intersect any part of G.

Auxiliary notions

Region of a planar representation of a graph G: maximal section of the plane in which any two points can be joined by a curve that does not intersect any part of G.

Auxiliary notions

Region of a planar representation of a graph G: maximal section of the plane in which any two points can be joined by a curve that does not intersect any part of G.

- Every region is delimited by edges.
- An edge is in contact with one or two regions.
- An edge borders a region *R* if it is in contact with *R* and with another region.

Regions and bound degrees

 e_1 is in contact only with S_1 e_2 and e_3 are in contact only with S_2 S_1 is bordered by e_7, e_8, e_9 S_3 is bordered by e_4, e_5, e_6 S_2 is bordered by $e_4, e_5, e_6, e_7, e_8, e_9$

Regions and bound degrees

 e_1 is in contact only with S_1 e_2 and e_3 are in contact only with S_2 S_1 is bordered by e_7, e_8, e_9 S_3 is bordered by e_4, e_5, e_6 S_2 is bordered by $e_4, e_5, e_6, e_7, e_8, e_9$

The bound degree b(S) of a region S is the number of edges that border S.

$$b(S_1) = 3$$
, $b(S_2) = 6$, $b(S_3) = 3$

Properties

Let G be a connected graph with n nodes, q edges, and a planar representation of G with r regions.

$$n = 7$$

$$q = 9$$

$$r = 4$$

$$\begin{array}{c}
n = 5 \\
q = 7 \\
r = 4
\end{array}$$

$$n = 8$$

$$q = 12$$

$$r = 6$$

$$n = 10$$

$$q = 9$$

$$r = 1$$

Properties

Let G be a connected graph with n nodes, q edges, and a planar representation of G with r regions.

$$n = 7$$

$$q = 9$$

$$r = 4$$

$$n = 8$$

$$q = 12$$

$$r = 6$$

$$n = 10$$

$$q = 9$$

$$r = 1$$

$$n-q+r=2$$
 in all cases.

Properties of connected planar graphs

Theorem (Euler's Formula)

If G is a connected planar graph with n nodes, q edges and r regions then n - q + r = 2.

PROOF: Induction on *q*.

CASE 1:
$$q = 0 \Rightarrow G = K_1$$
 and $n = 1$, $q = 0$, $r = 1$, thus $n - q + r = 2$.

CASE 2: G is a tree
$$\Rightarrow q = n - 1$$
 and $r = 1$, thus

$$n-q+r=n-(n-1)+1=2.$$

CASE 3: G is a connected graph with at least one cycle. Let e be an edge of that cycle, and G' = G - e.

G' is connected with n nodes, q-1 edges, and r-1 regions \Rightarrow by Induction Hypothesis: n-(q-1)+(r-1)=2.

Thus n - q + r = 2 holds in this case too.

Corollary 1

 $K_{3,3}$ is not planar.

PROOF: $K_{3,3}$ has n=6 and q=9 \Rightarrow if it were planar, it would have r=q-n+2=5 regions R_i $(1 \le i \le 5)$. Let $C=\sum_{i=1}^5 b(R_i)$.

- Every edge is in contact with at most 2 regions $\Rightarrow C \le 2 q = 18$.
- $K_{3,3}$ is bipartite $\Rightarrow C_3$ is no subgraph of $K_{3,3}$, thus $b(S_i) \ge 4$ for all i, therefore $C \ge 4 \cdot 5 = 20$
- \Rightarrow contradiction, thus $K_{3,3}$ can not be planar.

Corollary 2

If G is a planar graph with $n \ge 3$ nodes and q edges then $q \le 3n - 6$. Moreover, if q = 3n - 6 then b(S) = 3 for every region S of G.

PROOF. Let R_1, \ldots, R_r be the regions of G and $C = \sum_{i=1}^r b(R_i)$. We know that $C \le 2q$ and $C \ge 3r$ (because $b(R_i) \ge 3$ for all i). Therefore $3r \le 2q \Rightarrow 3(2+q-n) \le 2q \Rightarrow q \le 3n-6$. If the equality holds, then $3r = 2q \Rightarrow C = \sum_{i=1}^r b(R_i) = 3r \Rightarrow b(R_i) = 3$ for all regions R_i .

Corollary 2

If G is a planar graph with $n \ge 3$ nodes and q edges then $q \le 3n - 6$. Moreover, if q = 3n - 6 then b(S) = 3 for every region S of G.

PROOF. Let R_1,\ldots,R_r be the regions of G and $C=\sum_{i=1}^r b(R_i)$. We know that $C\leq 2q$ and $C\geq 3r$ (because $b(R_i)\geq 3$ for all i). Therefore $3r\leq 2q\Rightarrow 3(2+q-n)\leq 2q\Rightarrow q\leq 3n-6$. If the equality holds, then $3r=2q\Rightarrow C=\sum_{i=1}^r b(R_i)=3r\Rightarrow b(R_i)=3$ for all regions R_i .

Corollary 3

K₅ is not planar.

PROOF: K_5 has n=5 nodes and q=10 edges $\Rightarrow 3 n-6=9 < 10=q$ $\Rightarrow K_5$ cannot be planar (Cf. Corollary 2).

Corollary 4

 $\delta(G) \leq 5$ for every planar graph G.

PROOF: Suppose G has n nodes and q edges.

Case 1: $n \le 6 \Rightarrow$ every node has degree $\le 5 \Rightarrow \delta(G) \le 5$.

Case 2: n > 6. Let $D = \sum_{v \in V} \deg(v)$. Then

$$D = 2 q$$
 (obvious)
 $\leq 2 (3 n - 6)$ (by Corollary 2)
 $= 6 n - 12$.

If
$$\delta(G) \ge 6$$
 then $D = \sum_{v \in V} \deg(v) \ge \sum_{v \in V} 6 = 6 n$, contradiction.

Thus $\delta(G) \leq 5$ holds.

Subdivisions

Let G = (V, E) be an undirected graph, and (x, y) an edge.

- A subdivision of (x, y) in G is a replacement of the edge (x, y) in G with a path from x to y through some new intermediate points.
- A graph H is a subdivision of a graph G if H can be produced from G through a finite sequence of edge divisions.

Example G: H:

Criteria to detect planar graphs

We say that a graph G contains a graph H if H can be produced by removing edges and nodes from G.

Remark

If H is a subgraph of G then G contains H. The converse is false: "G contains H" does not imply "H is a subgraph of G".

 H is a subgraph of G iff it can be produced from G by node removals.

Theorem (Kuratowski's Theorem)

G is planar if and only if it contains no subdivisions of $K_{3,3}$ and of K_5 .

Illustrated examples

Apply Kuratowski's Theorem to decide which of the following graphs are planar or not:

Illustrated examples

Apply Kuratowski's Theorem to decide which of the following graphs are planar or not:

No, because it contains a subdivision of $K_{3,3}$:

Illustrated examples

Apply Kuratowski's Theorem to decide which of the following graphs are planar or not:

No, because it contains a subdivision of $K_{3,3}$:

No, because it contains a subdivision of $K_{3,3}$:

Illustrated examples

Apply Kuratowski's Theorem to decide which of the following graphs are planar or not:

Illustrated examples

Apply Kuratowski's Theorem to decide which of the following graphs are planar or not:

No, because it contains a subdivision of K_5 :

Illustrated examples

Apply Kuratowski's Theorem to decide which of the following graphs are planar or not:

Motivating problem

Alan, Bob, Carl, Dan, Elvis, Ford, Greg and John are senators which comprise 7 committees:

```
C_1 = \{Alan, Bob, Carl\}, C_2 = \{Carl, Dan, Elvis\},

C_3 = \{Dan, Ford\}, C_4 = \{Adam, Greg\}, C_5 = \{Elvis, John\},

C_6 = \{Elvis, Bob, Greg\}, C_7 = \{John, Carl, Ford\}.
```

Every committee must fix a meeting time. Since each senator must be present at each of his or her committee meetings, the meeting times need to be scheduled carefully.

Question: What is the minimum number of meeting times?

Remarks:

- Two committees C_i and C_j cannot meet simultaneously if and only if they have a common member (i.e., $C_i \cap C_j = \emptyset$).
- \Rightarrow we can consider the undirected graph G with
 - nodes = the committees C_1 , C_2 , C_3 , C_4 , C_5 , C_6 , C_7
 - edges (C_i, C_j) if C_i and C_j share a member (i.e., $C_i \cap C_j = \emptyset$)
 - We color every node C_i with a color representing its meeting time C_i
 - ⇒ the problem is reduced to: what is the minimum number of colors that can be assigned to the nodes of G, such that no edge has endpoints with the same colors?

Definition (node coloring, chromatic number)

A k-coloring of the nodes of a graph G = (V, E) is a map $K : V \to \{1, \ldots, k\}$ such that $K(u) \neq K(v)$ if $(u, v) \in E$. The chromatic number $\chi(G)$ of a graph G is the minimum value of $k \in \mathbb{N}$ for which there exists a k-coloring of G.

$$K(C_1) = K(C_3) = K(C_5) = 1$$

$$K(C_2) = K(C_4) = 2$$

$$K(C_6) = K(C_7) = 3$$

Definition (node coloring, chromatic number)

A *k*-coloring of the nodes of a graph G = (V, E) is a map $K : V \to \{1, ..., k\}$ such that $K(u) \neq K(v)$ if $(u, v) \in E$.

The chromatic number $\chi(G)$ of a graph G is the minimum value of $k \in \mathbb{N}$ for which there exists a k-coloring of G.

$$K(C_1) = K(C_3) = K(C_5) = 1$$

$$K(C_2) = K(C_4) = 2$$

$$K(C_6) = K(C_7) = 3$$

⇒ the minimum number is 3. (we need 3 colors)

Definition (node coloring, chromatic number)

A *k*-coloring of the nodes of a graph G = (V, E) is a map $K : V \to \{1, ..., k\}$ such that $K(u) \neq K(v)$ if $(u, v) \in E$.

The chromatic number $\chi(G)$ of a graph G is the minimum value of $k \in \mathbb{N}$ for which there exists a k-coloring of G.

Chromatic polynomials

The computation of $\chi(G)$ is a hard problem (NP-complete).

- Birkhoff (\approx 1900) found a method to compute a polynomial $c_G(z)$ for any graph G, called the chromatic polynomial of G, such that
 - $c_G(k)$ = the number of k-colorings of the nodes of G
- $\Rightarrow \chi(G) = \text{minimum value of } k \text{ for which } c_G(k) > 0.$

Chromatic polynomials

The computation of $\chi(G)$ is a hard problem (NP-complete).

- Birkhoff (\approx 1900) found a method to compute a polynomial $c_G(z)$ for any graph G, called the chromatic polynomial of G, such that
 - $c_G(k)$ = the number of k-colorings of the nodes of G
- $\Rightarrow \chi(G) = \text{minimum value of } k \text{ for which } c_G(k) > 0.$

We will present

- **1** simple formulas of $c_G(z)$ for some special graphs G.
- 2 two recursive algorithms for the computation of $c_G(z)$ for any graph G.

• The empty graph E_n : v_2 v_2 v_n every node can be colored with any of the z available colors:

$$\Rightarrow c_{E_n}(z) = z^n \text{ and } \chi(E_n) = 1$$

- **1** The empty graph E_n : v_1 v_2 \cdots v_n every node can be colored with any of the z available colors: $\Rightarrow c_{E_n}(z) = z^n$ and $\chi(E_n) = 1$
- 2 Tree T_n with n nodes:
 - z alternatives to color the root node
 - any other node can be colored with any color different from the color of the parent node $\Rightarrow z-1$ alternatives to color it

$$\Rightarrow c_{\mathcal{T}_n}(z) = z \cdot (z-1)^{n-1} \text{ and } \chi(\mathcal{T}_n) = \begin{cases} 1 & \text{if } n = 1, \\ 2 & \text{if } n > 1. \end{cases}$$

- The empty graph E_n : v_1 v_2 v_n v_n every node can be colored with any of the z available colors: $z_n > c_{E_n}(z) = z^n$ and $z_n < z_n < z_n < z_n$
- 2 Tree T_n with n nodes:
 - z alternatives to color the root node
 - any other node can be colored with any color different from the color of the parent node $\Rightarrow z-1$ alternatives to color it

$$\Rightarrow c_{\mathcal{T}_n}(z) = z \cdot (z-1)^{n-1} \text{ and } \chi(\mathcal{T}_n) = \begin{cases} 1 & \text{if } n = 1, \\ 2 & \text{if } n > 1. \end{cases}$$

3 Special case: the graph P_n (path with n nodes) is a special tree with n nodes: $v_1 v_2 v_3 v_n$

$$\Rightarrow c_{P_n}(z) = z \cdot (z-1)^{n-1} \text{ and } \chi(P_n) = \begin{cases} 1 & \text{if } n = 1, \\ 2 & \text{if } n > 1. \end{cases}$$

- The empty graph E_n : v_1 v_2 v_n v_n every node can be colored with any of the z available colors: $z_n > c_{E_n}(z) = z^n$ and $z_n < z_n < z_n < z_n$
- 2 Tree T_n with n nodes:
 - z alternatives to color the root node
 - any other node can be colored with any color different from the color of the parent node $\Rightarrow z-1$ alternatives to color it

$$\Rightarrow c_{T_n}(z) = z \cdot (z-1)^{n-1} \text{ and } \chi(T_n) = \begin{cases} 1 & \text{if } n = 1, \\ 2 & \text{if } n > 1. \end{cases}$$

Special case: the graph P_n (path with n nodes) is a special tree with n nodes: $v_1 - v_2 - \cdots - v_n$

$$\Rightarrow c_{P_n}(z) = z \cdot (z-1)^{n-1} \text{ and } \chi(P_n) = \begin{cases} 1 & \text{if } n = 1, \\ 2 & \text{if } n > 1. \end{cases}$$

Omplete graph K_n : $c_{K_n}(z) = z \cdot (z-1) \cdot \ldots \cdot (z-n+1) \text{ and } \chi(K_n) = n.$

The computation of chromatic polynomials Special operations on graphs

Let G = (V, E) be an undirected graph, and e = (x, y) an edge from E

- ▶ G e is the graph produced from G by removing e
- ▶ G/e is the graph produced from G as follows:
 - Collapse x and y into one node, whose neighbors are the previous neighbors of x and y.

The computation of chromatic polynomials Recursive formulas

Note that for every $e \in E$: $c_G(z) = c_{G-e}(z) - c_{G/e}(z)$

- \Rightarrow two algorithms for the recursive computation of the chromatic polynomial:
 - **1** Reduce *G* by eliminating edges $e \in E$ one by one:

$$c_G(z) = c_{G-e}(z) - c_{G/e}(z)$$

until we reach special polynomials E_n or T_n :

- Base cases: $c_{E_n}(z) = z^n$ and $c_{T_n}(z) = z \cdot (z-1)^{n-1}$

$$c_G(z) = c_{\bar{G}}(z) + c_{\bar{G}/e}(z)$$

where e is an edge missing from G, and $\bar{G} = G + e$

• Base case:
$$c_{K_n}(z) = z \cdot (z-1) \cdot \ldots \cdot (z-n+1)$$

The computation of the chromatic polynomial by reduction Illustrated example

$$G:$$
 $c_{G}(z) = c_{G_1}(z) - c_{G_2}(z)$, where

$$c_G(z) = c_{G_1}(z) - c_{G_2}(z)$$
, where

$$G_1 = G - (a, b)$$
: $\begin{pmatrix} c \\ c \\ b \end{pmatrix}$

$$G_2 = G/(a,b)$$
: $e \downarrow c$

The computation of the chromatic polynomial by reduction Illustrated example

$$G: \bigoplus_{a = b}^{d} c \qquad c_{G}(z) = c_{G_{1}}(z) - c_{G_{2}}(z), \text{ where}$$

$$G_{1} = G - (a, b): \bigoplus_{a = b}^{d} c \qquad G_{2} = G/(a, b): \bigoplus_{a \& b}^{d} c$$

$$c_{G_{1}}(z) = c_{G_{11}}(z) - c_{G_{12}}(z) \text{ and } c_{G_{2}}(z) = c_{G_{21}}(z) - c_{G_{22}}(z), \text{ where}$$

$$G_{11}: \bigoplus_{a = b}^{d} c \qquad G_{12}: \bigoplus_{a \& b}^{d} c \qquad G_{22}: \bigoplus_{a \& b}^{d} c \qquad G_{22}: \bigoplus_{a \& b \& c}^{d} c$$

The following graphs are isomorphic: $G_{12} \equiv G_{21}$ and $G_{22} = K_3$, thus:

$$c_G(z) = c_{G_{11}}(z) - 2 \cdot c_{G_{12}}(z) + \underbrace{z(z-1)(z-2)}_{c_{K_3}(z)}$$

The computation of the chromatic polynomial by reduction Illustrated example (continued)

$$c_G(z) = c_{G_{11}}(z) - 2 \cdot c_{G_{12}}(z) + z(z-1)(z-2)$$

$$c_{G_{11}} \cdot \left(\begin{array}{ccc} c & & \\ c & & \\ a & & \\ \end{array} \right)$$

Note that

•
$$c_{G_{11}}(z) = c_{T_5}(z) - c_{T_4}(z) = z(z-1)^4 - z(z-1)^3$$

•
$$c_{G_{12}}(z) = c_{T_4}(z) - c_{T_3}(z) = z(z-1)^3 - z(z-1)^2$$

$$\Rightarrow c_G(z) = z(z-1)^4 - z(z-1)^3 - 2(z(z-1)^3 - z(z-1)^2) + z(z-1)(z-2) = z^5 - 7z^4 + 18z^3 - 20z^2 + 8z$$

The computation of the chromatic polynomial by extension Illustrated example

$$G: egin{aligned} & d & c & c_G(z) = c_{G_1}(z) + c_{G_2}(z), \text{ where} \\ & & G_1: egin{aligned} & d & c & c & c \\ & & & b & c & c \end{aligned}$$

$$c_{G_2}(z) = z(z-1)(z-2)(z-3) \text{ because } G_2 \equiv K_4, \text{ and}$$

$$c_{G_1}(z) = c_{G_{11}}(z) + c_{G_{12}}(z) \text{ where } G_{11} : e^{\int_{a-b}^{d} c} G_{12} : \int_{a-b\&e}^{d} c G_{13} : e^{\int_{a-b}^{d} c} G_{13} : e^$$

The computation of the chromatic polynomial by extension Illustrated example (continued)

$$c_G(z) = c_{G_1}(z) + c_{G_2}(z) = (c_{G_{11}}(z) + c_{G_{12}}(z)) + c_{K_4}(z)$$

= $c_{K_5}(z) + c_{K_4}(z) + c_{G_{12}}(z) + c_{K_4}(z)$

where
$$G_{12}$$
: $\begin{pmatrix} d \\ c \\ a - b\&e \end{pmatrix}$

The computation of the chromatic polynomial by extension Illustrated example (continued)

$$c_G(z) = c_{G_1}(z) + c_{G_2}(z) = (c_{G_{11}}(z) + c_{G_{12}}(z)) + c_{K_4}(z)$$

= $c_{K_5}(z) + c_{K_4}(z) + c_{G_{12}}(z) + c_{K_4}(z)$

where
$$G_{12}$$
 :
$$\begin{array}{c} d \\ c \\ a - b \& e \\ c_{G_{12}}(z) = c_{G_{121}}(z) + c_{G_{122}}(z) = c_{K_4}(z) + c_{K_3}(z) \end{array}$$
 where

The computation of the chromatic polynomial by extension Illustrated example (continued)

$$c_G(z) = c_{G_1}(z) + c_{G_2}(z) = (c_{G_{11}}(z) + c_{G_{12}}(z)) + c_{K_4}(z)$$

= $c_{K_5}(z) + c_{K_4}(z) + c_{G_{12}}(z) + c_{K_4}(z)$

where
$$G_{12}$$
: c $b \& e$ c $c_{G_{12}}(z) = c_{G_{121}}(z) + c_{G_{122}}(z) = c_{K_4}(z) + c_{K_3}(z)$ where

where
$$G_{121}$$
: $\begin{matrix} d \\ b \& e \end{matrix}$ where G_{122} : $\begin{matrix} d \\ b \& e \end{matrix}$ $\begin{matrix} d \\ a \& c - b \& e \end{matrix}$ $G_{121} \equiv K_4$

$$\Rightarrow c_G(z) = c_{K_5}(z) + 3c_{K_4}(z) + c_{K_3}(z) = z^5 - 7z^4 + 18z^3 - 20z^2 + 8z$$

Properties of the chromatic polynomial

If G = (V, E) is an undirected graph with n nodes and q edges then the chromatic polynomial $c_G(z)$ satisfies the following conditions:

- ▶ It has degree *n*.
- ▶ The coefficient of z^n is 1.
- ▶ Its coefficients have alternating signs.
- ▶ The constant term is 0.
- ▶ The coefficient of z^{n-1} is -q.

Example

$$G: \bigoplus_{a-b}^{d} G$$

Maps and planar graphs

- Every country from a planar map is represented by a node (a point inside it)
- Two nodes get connected if and only if their respective countries share a nontrivial border (mode than just a dot).
- \Rightarrow undirected graph G_H corresponding to a map H. For example:

REMARK: H is a planar map if and only if G_H is a planar graph.

4-colorings of a map

The countries of a planar map ${\cal H}$ can be colored with 4 colors, such that no two neighboring countries have the same color.

4-colorings of a map

The countries of a planar map H can be colored with 4 colors, such that no two neighboring countries have the same color.

Remarks

4-colorings of a map

The countries of a planar map H can be colored with 4 colors, such that no two neighboring countries have the same color.

Remarks

- This is one of the most famous problems from Graph Theory
 - Extremely long, tedious, and complex proof
 - The problem was proposed in 1858; first proof was given in 1976 (Appel & Haken)
 - The problem is equivalent with the statement that the planar graph G_H is 4-colorable.

4-colorings of a map

The countries of a planar map H can be colored with 4 colors, such that no two neighboring countries have the same color.

Remarks

- This is one of the most famous problems from Graph Theory
 - Extremely long, tedious, and complex proof
 - The problem was proposed in 1858; first proof was given in 1976 (Appel & Haken)
 - The problem is equivalent with the statement that the planar graph G_H is 4-colorable.
- This theorem is equivalent with the statement:

$$\chi(G) \leq 4$$
 for every planar graph G .

5-colorings of planar maps

The countries of a planar map H can be colored with 5 colors, such that no two neighboring countries have the same color. or, equivalently: $\chi(G) \leq 5$ for every planar graph G.

PROOF: Induction on n= the number of nodes of G. The statement is obvious for $n\geq 5$, thus we assume $n\geq 6$. $\delta(G)\leq 5$ by Corollary 4, thus G has a node v with $\deg(v)\leq 5$. Let G' be the graph produced by removing v from $G\Rightarrow G'$ has n-1 nodes, thus $\chi(G')\leq 5$ by Inductive Hypothesis. Therefore, we can assume G' has a 5-coloring with colors 1,2,3,4,5. Case 1: $\deg(G)=d\leq 4$. Let v_1,\ldots,v_d be the neighbors of v, with colors c_1,\ldots,c_d .

for v we can choose any colour $c \in \{1, 2, 3, 4, 5\} - \{c_1, \dots, c_d\}$ $\Rightarrow G$ is 5-colorable.

CASE 2: deg(v) = 5, thus v has 5 neighbors v_1, v_2, v_3, v_4, v_5 , which we assume to be colored with c_1, c_2, c_3, c_4, c_5 , respectively.

- If $\{c_1, c_2, c_3, c_4, c_5\} \neq \{1, 2, 3, 4, 5\}$, we can color v with any color $c \in \{1, 2, 3, 4, 5\} \{c_1, c_2, c_3, c_4, c_5\} \Rightarrow G$ is 5-colorable.
- ② If $\{c_1, c_2, c_3, c_4, c_5\} = \{1, 2, 3, 4, 5\}$, we can assume w.l.o.g. $c_1 = 1, c_2 = 2, c_3 = 3, c_4 = 4, c_5 = 5.$

Main idea: We will rearrange the colors of G' in order to make possible a coloring of v.

We consider all nodes of G' which are colored with 1 (red) and 3 (green). Case 2.1. G' has no path from v_1 to v_3 colored only with 1 and 3. Let H be the subgraph of G' made of all paths starting from v_1 which are colored only with 1 (red) and 3 (green).

We consider all nodes of G' which are colored with 1 (red) and 3 (green). Case 2.1. G' has no path from v_1 to v_3 colored only with 1 and 3. Let H be the subgraph of G' made of all paths starting from v_1 which are colored only with 1 (red) and 3 (green).

• $V[v_3] \cap V(H) = \emptyset$, that is, neither v_3 nor any of its neighbors is a node of H.

We consider all nodes of G' which are colored with 1 (red) and 3 (green). Case 2.1. G' has no path from v_1 to v_3 colored only with 1 and 3. Let H be the subgraph of G' made of all paths starting from v_1 which are colored only with 1 (red) and 3 (green).

- $V[v_3] \cap V(H) = \emptyset$, that is, neither v_3 nor any of its neighbors is a node of H.
- We can interchange colors 1 and 3 in H, and afterwards assign color 1 (red) to $v \Rightarrow G$ is 5-colorable.

We consider all nodes of G' which are colored with 1 (red) and 3 (green). Case 2.1. G' has no path from v_1 to v_3 colored only with 1 and 3. Let H be the subgraph of G' made of all paths starting from v_1 which are colored only with 1 (red) and 3 (green).

- $V[v_3] \cap V(H) = \emptyset$, that is, neither v_3 nor any of its neighbors is a node of H.
- We can interchange colors 1 and 3 in H, and afterwards assign color 1 (red) to $v \Rightarrow G$ is 5-colorable.

Case 2.2. G' has a path from v_1 to v_3 colored only with colors 1 and 3 \Rightarrow we are in one of the following two situations:

In both cases, there can be no path from v_2 to v_4 colored only with 2 and 4 \Rightarrow case 2.1 is applicable to nodes v_2 and $v_4 \Rightarrow G$ is 5-colorable in this case too.