산업·사회 문제 해결을 위한 서울 지역사회 경험학습 공모전 사회문제- 사이버범죄 및 폭력

큐싱범죄차단을위한 AI 기반 QR 코드 URL 분석 및 실시간 경고시스템 제안

박세연 석사과정 황성아 석사과정 허수정 석사과정 박창릉 KIST

비즈니스 AI 빅데이터 분석 전공

비즈니스 AI 빅데이터 분석 전공

비즈니스 AI 빅데이터 분석 전공

연구원

목차

Part 1	배경	Part 3	결론
1-1	제안 배경	3-1	시스템
1-2	필요성	2-2	기대효과
1-3	프로젝트 개요		

Part 2	분석
2-1	데이터 및 전처리
2-2	EDA
2-3	모델링

제안배경

큐싱(Qshing) 이란?

- **Q**R + Phishing
- **악성 코드**나 **불법 웹사이트**로 유도하는 QR 코드를 통해 **개인정보를 탈취**하거나 **금전적 피해**를 입히는 범죄

'큐싱' 주의보…공유자전거 QR 찍었다가 통장 털려

진영화 기자 cinema@mk.co.kr

입력: 2024-06-17 17:49:57 수정: 2024-06-17 19:49:50

자영업자 박 모씨는 최근 소상공인을 상대로 낮은 이자로 대출해주겠다는 이메일을 받았다. 마침 대출을 알아보고 있던 그는 "자세한 내용을 확인하려면 QR코드 촬영 후 전자금융사기 예방 서비스 앱을 설치하라"는 문구를 보고 의심 없이 카메라 앱으로 QR코드를 비춰 애플리케이션(앱)을 다운받았다. 하지만 해당 앱은 개인정보를 빼내가는 해킹 앱이었고 박씨가 입력한 공인인증서 비밀번호 등 금융정보가 고스란히 해커의 손으로 넘어갔다. 며칠 뒤 박씨의 통장에서는 1000만원이 빠져나갔다.

출처: 매일경제(24.06.17) https://www.mk.co.kr/news/society/11043900

큐싱 범죄의 증가

QR 코드가 간편 결제, 인증 등 다양한 분야에서 널리 활용되고 있어 더욱 확산

(소비자유의사항) 출처가 불분명한 QR코드*는 스캔하지 않도록 유의

* 웹 주소와 달리 악성 QR코드를 시각적으로 구별하는 것은 거의 불가능

이미 QR코드를 스캔한 경우 접속되는 웹 주소를 한번 더 확인하고, 의심스러운 앱 설치 또는 개인·금융정보를 입력하지 않도록 유의

출처: 금융감독원, QR코드 이용 금융사기(큐싱) 관련 대응 (24.06.18)

악성 QR 코드 식별의 어려움

일반 사용자가 악성 QR 코드를 사전에 식별하기가 매우 어려움

Part 1-2

필요성

피해 예방

- 일반 사용자의 악성 URL 사전 식별 불가능
- 금전적 손실과 함께 개인 정보 유출의 2차 피해 가능성

기존 보안 솔루션의 한계

- QR 코드 스캔 후 웹사이트 접속 시 실시간 URL 분석 기능이 없어 즉각적 경고 및 차단 불가능
- 실시간 URL 분석 및 악성 여부 판단 시스템 필요

AI 활용 필요성

- 범죄 패턴의 다양화로, 기존 정적 보안 기술로 탐지 불가능
- URL 이상 패턴 학습 및 새로운 악성 URL 실시간 탐지를 위한 AI 활용 필요

프로젝트 개요

분석 프로세스

주요 기여점

- QR 코드 URL 악성 탐지: QR 코드로 직접 확인할 수 없는 악성 URL을 탐지할 수 있는 모델 개발
- 다양한 파생 변수 생성: URL을 분석하여 악성 URL을 식별하기 위한 다양한 파생 변수 생성
- URL 특징 분석: 악성 URL과 정상 URL의 특징들을 시각화를 통해 확인
- 시스템 UI 제공: 구축한 모델을 실질적으로 활용할 수 있는 시스템 UI 제공

시스템 프로세스

데이터 및 전처리-

데이터 소개

Phishing Websites Dataset

Published: 17 November 2021 | Version 1 | DOI: 10.17632/n96ncsr5g4.1 Contributors: Subhash Ariyadasa, Shantha Fernando, Subha Fernando

피싱 웹사이트 탐지를 위한 URL 정보와 특징을 포함한 데이터셋

Ariyadasa, Sub hash: Fernando, Shantha: Fernando, Subha (2021), "Phishing Websites Dataset", Mendeley Data, V1, doi: 10.17632/n96ncsr5g4.1

데이터 구조

red_id 레코드 번호

url 웹페이지의 URL

website HTML 페이지 파일명

result URL의 피싱 여부 (0:합법적, 1: 피싱

created_date 다운로드한 날짜

수집 기간

2020-2021년

수집 경로

합법 사이트: Google 검색, Ebbu2017 Phishing Dataset

불법 사이트: PhishTank, OpenPhish, PhishRepo

데이터 형식 변환

SQL형식 to CSV 파일

INSERT INTO `index` (`rec_id`, `url`, `website`, `result`, `created_date`

VALUES (1, 'http://intego3.info/EXEL/index.php', '1613573972338075.html', 1, '2021-02-17 20:29:32'), ...

	А	В	С	D	E
1	rec_id	url	website	result	created_date
2	1	http://intego3.info/	1613573972	1	2021.2.17 20:29
3	2	https://www.matho	1635698138	0	2021.10.31 16:35
4	3	https://www.compu	16356992288	0	2021.10.31 16:53
5	4	https://www.investo	1635750062	0	2021.11.1 12:31

데이터 불균형 해결

Random Undersampling

데이터 및 전처리

파생변수 생성

피싱 여부에 영향이 큰 URL 특징을 토대로 각 파생변수를 생성하고 값을 부여

**여부에 관한 변수인 경우 0이 아니오, 1이 예를 의미함

데이터 및 전처리

파생변수 생성

피싱 여부에 영향이 큰 URL 특징을 토대로 각 파생변수를 생성하고 값을 부여

URL

https://sndc-card.com.od200z.cn/smbc/smbcupdatebill.php

num_subdomains 서브 도메인 개수

2

has_prefix_suffix 하이픈 존재 여부

*e.g.

is_shortened

단축 서비스 여부

1

https://forbusiness.snapchat.com/

0

special_char_sum 특수문자 개수

10

*특수문자:

'.', '-', '@', '?', '&', '=', '_', '~', '%', '/', '*', ':', ',', ';', '\$', '+', '#', '(', ')', '[', ']'

phish_word 피싱 단어 포함 개수

1

*특수문자:

'login', 'secure', 'bank', 'verify', 'free', 'account', 'update', 'validate', 'authenticate', 'password', 'signin', 'signup'

abnormal_subdomain 비정상 서브 도메인

*e.g.

https://v123.example.com

brand_in_domain 브랜드명 포함 개수

0

0

abnormal_tld_in_path 비정상 TLD 위치

0

*TLD(Top-Level Domain): 도메인의 최상위 레벨을 나타내며, URL의 도메인 끝에 위치

*브랜드명:

'google', 'paypal', 'amazon', 'facebook', 'microsoft', 'apple', 'netflix', 'linkedin', 'twitter', 'instagram', 'youtube'

result 피싱여부

-

EDA

30일은 월말 청구서나 급여와 같은 민감한 주제를 악용한 피싱 시도가 많을 것으로 예상

피싱 URL은 주로 20시 이후에 생성

사용자 활동이 감소하고 경계심이 낮아지는 야간 시간대를 타겟으로 삼는 경향이 높음

피싱 URL은 더 긴 길이와 호스트 이름을 가짐

길이가 긴 URL로 악성 코드를 포함한 복잡한 경로를 감추려는 시도

피싱 URL은 공통 용어 사용 빈도가 낮음

혼란을 주기 위해 의도적으로 비정상적이고 독특한 단어를 포함할 가능성이 높음

피싱 URL은 숫자 비율 높음

숫자는 직관적으로 이해하기 어렵기 때문에 숫자를 활용해 정교한 속임수 사용

EDA

피싱 URL 중 약 85%가 비정상적인 서브도메인 및 prefix-suffix 구조 포함 피싱 URL은 비정상적인 서브도메인 혹은 '-' 같은 구분자를 활용하여 정상처럼 보이도록 위장

피싱 URL의 96.4%가 경로에 비정상적인 TLD(최상위 도메인)를 포함 경로 내 비정상 TLD를 포함하여 사용자 혼란을 유도

피싱 URL의 57.4%가 서브도메인에 브랜드명을 포함 유명 브랜드를 서브도메인에 포함하여 사용자가 신뢰하도록 유도

피싱 URL의 80.1%가 의심스러운 텍스트와 1개 이상의 피싱 관련 단어 포함 피싱 URL은 특정 키워드를 활용하여 사용자 행동을 유도

피싱 URL은 정상 URL에 비해 서브 도메인 수가 더 많음 피싱 URL은 서브도메인을 복잡하게 만들어 사용자를 혼란스럽게 함

모델링

모델소개

Machine Learning

Gradient Boosting

약한 학습기를 순차적으로 학습해 오류 를 보완하며, 높은 예측 성능을 보이는 앙상블 기법

Random Forest

여러 결정 트리의 결과를 앙상 블하여 안정적이고 과적합에 강한 모델

Extra Trees

결정 트리 분할을 무작위로 선택해 더 빠르고 다양성을 높 인앙상블 모델

Decision Tree

데이터를 조건에 따라 반복적 으로 분리해 예측을 수행하는 단순한 트리 모델

Deep Learning

FT-Transformer

정형 데이터를 처리하기 위해 Transformer 구조를 활용한 딥러닝 모델

모델링

모델링 결과

Model	Accuracy	Recall	Precision	F1-Score	하이퍼파라미터 튜닝	Accuracy	Recall	Precision	F1-Score		
Gradient Boosting	0.9017	0.9026	0.8948	0.9106		0.9908	0.9931	0.9885	0.9908		
Random Forest	0.9845	0.9845	0.9832	0.9858		max_dep	max depth : 47				
Decision Tree	0.9844	0.9844	0.9849	0.9838		max_feat	max_features : 0.8578 min_samples_leaf : 1				
Extra Trees	0.9846	0.9846	0.9840	0.9852		_	min_samples_split : 2 n_estimators : 300				
FT- Transformer	0.9774	0.9787	0.9760	0.9774		nax_depth: 트리의 최대 깊이 nax_features: 각 분할에서 고려할 특성의 최대 수 nin_samples_leaf: 리프 노드에 있어야 하는 최소 샘플 수 nin_samples_split: 노드를 분할하기 위해 필요한 최소 샘플 수 n_estimators: 생성할 결정 트리의 수					

시스템

간단하게
QR 코드 이미지
업로드만으로
위험 QR을 식별

위험한 QR인 경우 알림이 뜨며 신고 가능

시스템

URL 또한 CTRL+C,V만으로 안전 여부를 식별

안전한 URL이면 3초 뒤 사이트로 리디렉 션

기대효과

재산과 일상의 보호

간단한 스캐닝으로 악성 QR 코드로 인한 피싱 공격과 악성 소프트웨어 설치를 사전에 차단

불안감 해소 및 QR 제공자에 대한 신뢰도 향상

QR과 링크된 URL 주소를 눈으로 확인 할 수 없던 불안감 해소

악성 여부를 판단함으로써 안전한 QR 제공자에 대한 신뢰도 향상

새로운 피싱 기법 탐지 및 공공 안전 강화

서비스 내 새로운 QR 코드 데이터를 지속적으로 분석해 새로운 피싱 기 부탁게관 및 보안업계와 공유함으로 써 공공 안전을 강화