Assignments

This page will contain all the assignments you submit for the class.

Instructions for all assignments

I want you to submit your assignment as a PDF, so I can keep a record of what the code looked like that day. I also want you to include your answers on your personal GitHub website. This will be good practice for editing your website and it will help you produce something you can keep after the class is over.

- 1. Download the Assignment1.Rmd file from Canvas. You can use this as a template for writing your answers. It's the same as what you can see on my website in the Assignments tab. Once we're done with this I'll edit the text on the website to include the solutions.
- 2. On RStudio, open a new R script in RStudio (File > New File > R Script). This is where you can test out your R code. You'll write your R commands and draw plots here.
- 3. Once you have finalized your code, copy and paste your results into this template (Assignment 1.Rmd). For example, if you produced a plot as the solution to one of the problems, you can copy and paste the R code in R markdown by using the ``{r} ``` command. Answer the questions in full sentences and Save.
- 4. Produce a PDF file with your answers. To do this, knit to PDF (use Knit button at the top of RStudio), locate the PDF file in your docs folder (it's in the same folder as the Rproj), and submit that on on Canvas in Assignment 1.
- 5. Build Website, go to GitHub desktop, commit and push. Now your solutions should be on your website as well.

Assignment 1

Collaborators: Carmen Avery, Rachel Villari, and Halle Wasser.

This assignment is due on Canvas on Monday 9/20 before class, at 10:15 am. Include the name of anyone with whom you collaborated at the top of the assignment.

Problem 1

Install the datasets package on the console below using install.packages("datasets"). Now load the library.

datasets::USArrests

##	Murder	Assault	UrbanPop	Rape
## Alabama	13.2	236	58	21.2
## Alaska	10.0	263	48	44.5

## Ari	7070	8.1	294	80 31.0
	ansas	8.8	190	50 19.5
	ifornia	9.0	276	91 40.6
	orado	7.9	204	78 38.7
002	necticut	3.3	110	77 11.1
## Del		5.9	238	72 15.8
## Flo		15.4	335	80 31.9
## Geo		17.4	211	60 25.8
	vaii	5.3	46	83 20.2
## Ida		2.6	120	54 14.2
	inois	10.4	249	83 24.0
	liana	7.2	113	65 21.0
## Iov		2.2	56	57 11.3
## Kar		6.0	115	66 18.0
	itucky	9.7	109	52 16.3
	iisiana	15.4	249	66 22.2
## Mai		2.1	83	51 7.8
	yland	11.3	300	67 27.8
	sachusetts	4.4	149	85 16.3
	chigan	12.1	255	74 35.1
	inesota	2.7	72	66 14.9
## Mis	sissippi	16.1	259	44 17.1
	ssouri	9.0	178	70 28.2
## Mor	itana	6.0	109	53 16.4
## Neb	raska	4.3	102	62 16.5
## Nev	rada	12.2	252	81 46.0
## Nev	Hampshire	2.1	57	56 9.5
	Jersey	7.4	159	89 18.8
	Mexico	11.4	285	70 32.1
## Nev	York	11.1	254	86 26.1
## Nor	th Carolina	13.0	337	45 16.1
## Nor	th Dakota	0.8	45	44 7.3
## Ohi	.0	7.3	120	75 21.4
## Ok]	ahoma	6.6	151	68 20.0
## Ore	gon	4.9	159	67 29.3
## Per	nsylvania	6.3	106	72 14.9
## Rho	de Island	3.4	174	87 8.3
## Sou	th Carolina	14.4	279	48 22.5
## Sou	ıth Dakota	3.8	86	45 12.8
## Ter	nessee	13.2	188	59 26.9
## Tex	as	12.7	201	80 25.5
## Uta	ıh	3.2	120	80 22.9
## Ver		2.2	48	32 11.2
## Vir	•	8.5	156	63 20.7
	hington	4.0	145	73 26.2
## Wes	st Virginia	5.7	81	39 9.3
## Wis	consin	2.6	53	66 10.8
## Wyo	oming	6.8	161	60 15.6

install.packages("datasets")

Warning: package 'datasets' is in use and will not be installed

##		Murder	Assault	UrbanPop	Rape
##	Alabama	13.2	236	58	21.2
##	Alaska	10.0	263	48	44.5
##	Arizona	8.1	294	80	31.0
##	Arkansas	8.8	190	50	19.5
##	California	9.0	276	91	40.6
##	Colorado	7.9	204	78	38.7
##	Connecticut	3.3	110	77	11.1
##	Delaware	5.9	238	72	15.8
##	Florida	15.4	335	80	31.9
##	Georgia	17.4	211	60	25.8
##	Hawaii	5.3	46	83	20.2
##	Idaho	2.6	120	54	14.2
##	Illinois	10.4	249	83	24.0
##	Indiana	7.2	113	65	21.0
##	Iowa	2.2	56	57	11.3
##	Kansas	6.0	115	66	18.0
##	Kentucky	9.7	109	52	16.3
##	Louisiana	15.4	249	66	22.2
##	Maine	2.1	83	51	7.8
##	Maryland	11.3	300	67	
##	Massachusetts	4.4	149	85	16.3
##	Michigan	12.1	255	74	
##	Minnesota	2.7	72	66	14.9
##	Mississippi	16.1	259	44	17.1
##	Missouri	9.0	178	70	
##	Montana	6.0	109	53	16.4
##	Nebraska	4.3	102	62	16.5
##	Nevada	12.2	252	81	
##	New Hampshire	2.1	57	56	9.5
##	New Jersey	7.4	159	89	18.8
##	New Mexico	11.4	285	70	32.1
##	New York	11.1	254	86	26.1
##	North Carolina	13.0	337	45	16.1
##	North Dakota	0.8	45	44	7.3
##	Ohio	7.3	120	75	21.4
##	Oklahoma	6.6	151	68	
##	Oregon	4.9	159		29.3
##	Pennsylvania	6.3	106	72	14.9
	Rhode Island	3.4	174	87	8.3
##	South Carolina		279	48	
##	South Dakota	3.8	86	45	
##	Tennessee	13.2	188	59	
##	Texas	12.7	201	80	
##	Utah	3.2	120	80	
##	Vermont	2.2	48	32	
##	Virginia	8.5	156	63	
##	Washington	4.0	145	73	
##	West Virginia	5.7	81	39	9.3
##	Wisconsin	2.6	53	66	10.8

 ${\tt dat {-} USArrests} \ \textit{\# renames USArrests as dat} \\ {\tt dat}$

##		Murder	Assault	UrbanPop	Rape
##	Alabama	13.2	236	58	21.2
##	Alaska	10.0	263	48	44.5
##	Arizona	8.1	294	80	31.0
##	Arkansas	8.8	190	50	19.5
##	California	9.0	276	91	40.6
##	Colorado	7.9	204	78	38.7
##	Connecticut	3.3	110	77	11.1
##	Delaware	5.9	238	72	15.8
##	Florida	15.4	335	80	31.9
##	Georgia	17.4	211	60	25.8
##	Hawaii	5.3	46	83	20.2
##	Idaho	2.6	120	54	14.2
##	Illinois	10.4	249	83	24.0
##	Indiana	7.2	113	65	21.0
##	Iowa	2.2	56	57	11.3
##	Kansas	6.0	115	66	18.0
##	Kentucky	9.7	109	52	16.3
##	Louisiana	15.4	249	66	22.2
##	Maine	2.1	83	51	7.8
##	Maryland	11.3	300	67	27.8
##	Massachusetts	4.4	149	85	16.3
##	Michigan	12.1	255	74	35.1
##	Minnesota	2.7	72	66	14.9
##	Mississippi	16.1	259	44	17.1
##	Missouri	9.0	178	70	28.2
##	Montana	6.0	109	53	16.4
##	Nebraska	4.3	102	62	16.5
##	Nevada	12.2	252	81	46.0
##	New Hampshire	2.1	57	56	9.5
##	New Jersey	7.4	159	89	18.8
##	New Mexico	11.4	285	70	32.1
##	New York	11.1	254	86	26.1
##	North Carolina	13.0	337	45	16.1
##	North Dakota	0.8	45	44	7.3
##	Ohio	7.3	120	75	21.4
##	Oklahoma	6.6	151	68	20.0
##	Oregon	4.9	159	67	29.3
##	Pennsylvania	6.3	106	72	14.9
##	Rhode Island	3.4	174	87	8.3
##	South Carolina	14.4	279	48	22.5
##	South Dakota	3.8	86	45	
##	Tennessee	13.2	188	59	26.9
##	Texas	12.7	201	80	
##	Utah	3.2	120	80	
##	Vermont	2.2	48	32	11.2
##	Virginia	8.5	156	63	
##	Washington	4.0	145	73	
##	West Virginia	5.7	81	39	9.3

Wisconsin 2.6 53 66 10.8 ## Wyoming 6.8 161 60 15.6

Load the USArrests dataset and rename it dat. Note that this dataset comes with R, in the package datasets, so there's no need to load data from your computer. Why is it useful to rename the dataset?

Answer: It's useful to rename the dataset so that we know specifically which dataset we are working with. Additionally, when we edit the dataset it is helpful to have a differentiation (in name) from the original dataset. Additionally "dat" is shorter than the original dataset name.

Problem 2

Use this command to make the state names into a new variable called State.

```
dat$state <- tolower(rownames(USArrests))
names(dat)
# This line creates a new variable: states</pre>
```

This dataset has the state names as row names, so we just want to make them into a new variable. We also make them all lower case, because that will help us draw a map later - the map function requires the states to be lower case.

List the variables contained in the dataset USArrests. Answer: The variables are murder, assault, urbanpop, and rape.

Problem 3

What type of variable (from the DVB chapter) is Murder?

Answer: According to the DVB chapter, murder is a quantitative variable.

What R Type of variable is it?

Answer:In R, Murder is a character variable.

Problem 4

What information is contained in this dataset, in general? What do the numbers mean?

Answer: This dataset lists the average rate of arrests in each state for a specific type of crime. For example, in Iowa there has been an average of 2.2 arrests for murder. The fact that some of the data are listed as decimal numbers indicates that the dataset is reporting averages, as there cannot actually be 2.2 real arrests.

Problem 5

Draw a histogram of Murder with proper labels and title.

hist(dat\$Murder, main="US Arrests for Murder", xlab="Average Arrests", ylab="Frequency of Average Arrests", ylab="Frequenc

US Arrests for Murder

Problem 6

Please summarize Murder quantitatively. What are its mean and median? What is the difference between mean and median? What is a quartile, and why do you think R gives you the 1st Qu. and 3rd Qu.?

Answer: Murder's mean is 7.788. Its median is 7.25. The mean is the average of all values in the dataset, whereas the median is simply the middle value of those listed from smallest to largest. The median is also synonymous with the second quartile, Q2. A quartile is when the values of a dataset are divided into four groups. R gives the first and third quartiles because these are common values used in statistics, so it is helpful for R to calculate them automatically.

```
a<-c(13.2, 10.0, 8.1, 8.8, 9.0, 7.9, 3.3, 5.9, 15.4, 17.4, 5.3, 2.6, 10.4, 7.2, 2.2, 6.0, 9.7, 15.4, 2. mean(a) # This code calculates the mean of a.
```

[1] 7.788

median(a) # This code calculates the median of a.

[1] 7.25

Problem 7

Repeat the same steps you followed for Murder, for the variables Assault and Rape. Now plot all three histograms together. You can do this by using the command par(mfrow=c(3,1)) and then plotting each of the three.

```
b < -c(236, 263, 294, 190, 276, 204, 110, 238, 335, 211, 46, 120, 249, 113, 56, 115, 109, 249, 83, 300, 190 mean(b) # calculates the mean of Assault
```

[1] 170.76

median(b) # calculates the median of Assault

[1] 159

b<-c(236, 263, 294, 190, 276, 204, 110, 238, 335, 211, 46, 120, 249, 113, 56, 115, 109, 249, 83, 300, 1 mean(b) # calculates the mean of Rape

[1] 170.76

median(b) # calculates the median of Rape

[1] 159

hist(dat\$Assault, main="US Arrests for Assault", xlab="Average Arrests", ylab="Frequency of Average Arr

US Arrests for Assault

hist(dat\$Rape, main="US Arrests for Rape", xlab="Average Arrests", ylab="Frequency of Average Arrests")

US Arrests for Rape

par("mar")

[1] 5.1 4.1 4.1 2.1

par(mar=c(1,1,1,1)) # command to fix the parameters to fix the fact that the figure margins were too la par(mfrow=c(3,1)) # command to plot multiple histograms
hist(dat\$Murder, main="US Arrests for Murder", xlab="Average Arrests", ylab="Frequency of Average Arrests")

hist(dat\$Assault, main="US Arrests for Assault", xlab="Average Arrests", ylab="Frequency of Average Arrests") hist(dat\$Rape, main="US Arrests for Rape", xlab="Average Arrests", ylab="Frequency of Average Arrests")

Assault is 170.76 and the median is 159. The mean of Rape is 21.232 and the median is 20.1.

What does the command par do, in your own words (you can look this up by asking R ?par)?

Answer: The command par allows you to set parameters when graphing, or to simply look up certain graphical parameters.

What can you learn from plotting the histograms together?

Answer:By plotting the histograms together, it becomes easier to see how the rates of arrests compare for the type of crimes committed. For example, it is evident from looking at the histograms that the rate of arrests for assault is much higher than that of murder. It is a helpful way to learn how the different variables interact.

Problem 8

In the console below (not in text), type install.packages("maps") and press Enter, and then type install.packages("ggplot2") and press Enter. This will install the packages so you can load the libraries.

Run this code:

```
library('maps')
library('ggplot2')

ggplot(dat, aes(map_id=state, fill=Murder)) +
  geom_map(map=map_data("state")) +
  expand_limits(x=map_data("state")$long, y=map_data("state")$lat)
```

What does this code do? Explain what each line is doing.

Answer: This code creates a map of the US displaying the arrest rates for murder by state. Lines one and two access the maps and ggplot functions via the library. Line three commands that the dataset for Murder be used in the plot, such that each state be colored by its corresponding arrest rate for murder. Line four finds the geographical information for the map, making each state distinct. The last line sets the limits of the axes and makes the x-axis longitude and the y-axis latitude.

Assignment 2

(Coming soon)