

Department of Physics and Technology

Master Thesis

Interface Design for the Gigabit Transceiver Common Readout Unit

Anders Østevik

June 2016

Overview

Introduction

LHC Upgrade Gigabit Transceiver System Primary Objectives

PCB Design

Design Discussion Transmission Lines

PCB Design LHC Upgrade

LHC Upgrade

- Large Hadron Collider (LHC)
 - Particle accelerator
 - 27 km circular tunnel
 - 13 TeV
- High-Lumiosity LHC
 - 10x beam lumiosity
 - Increase in radiation and amount of data
 - ullet ightarrow Gigabit Transceiver

Gigabit Transceiver System

- On-detector Custom ASICs
 - GBTx, GBT-SCA, VTTx/VTRx
 - E-links
- Off-detector Control room
 - CRU (FPGA)
 - \bullet > 4.8 Gbit/s transceivers
 - GBT-FPGA
- Optical communication
 - Timing and Trigger Control (TTC)
 - Data Acquisition (DAQ)
 - Slow Control (SC)

000000

Gigabit Transceiver System

- Encoding modes
 - GBT-Frame
 - 8B/10B
 - Wide-Bus

GBT-FPGA

- Firmware library for Altera/Xilinx FPGAs
- GBT Link
 - "Standard", "Latency-Optimized"
 - GBT Rx, GBT Tx, GBT MGT
- GBT-example Design

Versatile Link Demo Board

Primary Objective

- Software Design
 - Serial communication between PC and CRU
 - Interface allowing control over CRU
- PCB Design
 - Connection between CRU and VLDB

000000

PCB Design

Specifications:

- Connect to CRU using HSMC-connector
- ullet E-links ightarrow 320 $\mathrm{Mbit/s}$ detector data using HDMI-connector
- ullet Optical-Fiber ightarrow 4.8 $\mathrm{Gbit/s}$ GBT data using SFP fiber-module

000000

PCB Design

• 4.8 $\mathrm{Gbit/s} \rightarrow \mathsf{transmission}$ line if $\mathsf{trace} <~3.1~\mathrm{cm}$

GBT Control Software

- Send/receive control signal information

Blocks of Highlighted Text

Block 1

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer lectus nisl, ultricies in feugiat rutrum, porttitor sit amet augue. Aliquam ut tortor mauris. Sed volutpat ante purus, quis accumsan dolor.

Block 2

Pellentesque sed tellus purus. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Vestibulum quis magna at risus dictum tempor eu vitae velit.

Block 3

Suspendisse tincidunt sagittis gravida. Curabitur condimentum, enim sed venenatis rutrum, ipsum neque consectetur orci, sed blandit justo nisi ac lacus.

Multiple Columns

Heading

- 1. Statement
- Explanation
- 3. Example

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer lectus nisl, ultricies in feugiat rutrum, porttitor sit amet augue. Aliquam ut tortor mauris. Sed volutpat ante purus, quis accumsan dolor.

Table

Treatments	Response 1	Response 2
Treatment 1	0.0003262	0.562
Treatment 2	0.0015681	0.910
Treatment 3	0.0009271	0.296

Table: Table caption

Theorem

Theorem (Mass–energy equivalence) $E = mc^2$

Verbatim

Example (Theorem Slide Code)

```
\begin{frame}
\frametitle{Theorem}
\begin{theorem}[Mass--energy equivalence]
$E = mc^2$
\end{theorem}
\end{frame}
```


Figure

Uncomment the code on this slide to include your own image from the same directory as the template .TeX file.

Citation

An example of the \cite command to cite within the presentation:

This statement requires citation [Smith, 2012].

PCB Design

References

John Smith (2012)
Title of the publication

Journal Name 12(3), 45 – 678.

Thank you!

