Hochschule RheinMain

Fachbereich Design Informatik Medien Studiengang Angewandte Informatik / Informatik Technische Systeme Prof. Dr. Bernhard Geib

Security

Sommersemester 2021 (LV 4121 und 4241)

Einleitung

- 1. Einführung in die Informationssicherheit (64 Seiten)
 - 1.1 Begrifflichkeiten
 - 1.1.1 IT-Systeme
 - 1.1.2 Sicherheitsbegriffe
 - 1.1.3 Aktuelle Sicherheitslage
 - 1.2 Daten, Nachrichten und Informationen
 - 1.2.1 Terminologie
 - 1.2.2 Nachrichten- und Informationsmodelle
 - 1.2.3 Kryptosysteme
 - 1.3 Schutzziele der Datensicherheit
 - 1.3.1 Sicherheitsanforderungen und Sicherheitsziele
 - 1.3.2 Verschlüsselungsfunktionen und -algorithmen
 - 1.3.3 Kryptographische Hashfunktionen und digitale Signaturen
 - 1.4 Basismechanismen der Kryptologie
 - 1.4.1 Ver- und Entschlüsselung
 - 1.4.2 Hashes und Message Authentication Code
 - 1.4.3 Digitale Signatur und Authentizität
 - 1.5 Kryptanalyse
 - 1.5.1 Das Prinzip von Kerckhoffs
 - 1.5.2 Typen von Attacken
 - 1.5.3 Steganographie

Zusammenfassung

2. Algebraische Strukturen und elementare Zahlentheorie (100 Seiten)

- 2.1 Algebraische Strukturen und modulare Arithmetik
 - 2.1.1 Nomenklatur
 - 2.1.2 Algebraische Systeme
 - 2.1.3 Ganzzahlige Division mit Resten
 - 2.1.4 Kongruenzen und Teilbarkeit
 - 2.1.5 Euklidischer Algorithmus
 - 2.1.6 Sätze von Fermat und Euler
 - 2.1.7 Quadratische Reste und diskreter Logarithmus
 - 2.1.8 Einwegfunktionen
 - 2.1.9 Modulare Quadratwurzel
- 2.2 Zahlentheorie und kryptologische Anwendungen
 - 2.2.1 Erweiterter Euklidischer Algorithmus
 - 2.2.2 Lösung Diophantischer Gleichungen
 - 2.2.3 Modulare Inversion
 - 2.2.4 Eulersche Phi-Funktion
 - 2.2.5 Entwicklungssatz
 - 2.2.6 Modulare Exponentiation
 - 2.2.7 Lösung simultaner Kongruenzen
 - 2.2.8 Zufallszahlen und lineare Kongruenzgeneratoren
 - 2.2.9 Primzahlen und Fundamentalsatz der Arithmetik
 - 2.2.10 Primzahlentests
 - 2.2.11 Rückgekoppelte Schieberegister
 - 2.2.12 Bitstromverschlüsselung

Zusammenfassung

3. Monoalphabetische Chiffren und deren Analyse (24 Seiten)

- 3.1 Einteilung der Chiffrierverfahren
 - 3.1.1 Transpostionschiffren
 - 3.1.2 Substitutionschiffren
- 3.2 Einfache Chiffriermaschinen
 - 3.2.1 Skvtale
 - 3.2.2 Alberti-Scheibe
- 3.3 Komplexe Verschiebechiffren
 - 3.3.1 Multiplikative Chiffren
 - 3.3.2 Affine Tauschchiffren
- 3.4 Häufigkeitsanalyse
 - 3.4.1 Buchstabenverteilungen
 - 3.4.2 Bi- und Trigramme

Zusammenfassung

4. Moderne Blockchiffren und Schlüsselaustausch (84 Seiten)

- 4.1 Symmetrische Blockverschlüsselung
 - 4.1.1 Schlüsselgesteuerte Transformation
 - 4.1.2 Gegenüberstellung
 - 4.1.3 Data Encryption Standard **DES**

4.1.4 Advanced Encryption Standard **AES**

- 4.2 Betriebsmodi
 - 4.2.1 ECB
 - 4.2.2 CBC
 - 4.2.3 CFB
 - 4.2.4 OFB
- 4.3 Symmetrische Bitstromverschlüsselung
 - 4.3.1 XOR-Algorithmus
 - 4.3.2 One-Time-Pad und perfekte Sicherheit
- 4.4 Schlüsselmanagement
 - 4.4.1 Der Diffie-Hellman-Schlüsselaustausch DH
 - 4.4.2 Schlüsselhierarchie und Schlüsselklassen

Zusammenfassung

5. Einwegfunktionen (25 Seiten)

- 5.1 Einwegfunktionen und Hashfunktionen
 - 5.1.1 Integritätsschutz
 - 5.1.2 Hashfunktionen
- 5.2 Kryptographische Prüfsummen
 - 5.2.1 Message Digest (MD)
 - 5.2.2 Message Authentication Code (MAC)
- 5.3 Secure Hash Algorithm
 - 5.3.1 Beschreibung des Verfahrens
 - 5.3.2 Praktische Implementierung

Zusammenfassung

6. Asymmetrische Kryptosysteme (33 Seiten)

- 6.1 ElGamal-Verschlüsselungsverfahren
 - 6.1.1 Algorithmus
 - 6.1.2 Zahlenbeispiel
- 6.2 Digitale Signaturen
 - 6.2.1 Ablaufskizze
 - 6.2.2 RSA-Signaturen
 - 6.2.3 Angriff auf RSA-Signatursysteme
- 6.3 Das Rabin-Verschlüsselungsverfahren
 - 6.3.1 Rabin-Modul und quadratische Reste
 - 6.3.2 Ver- und Entschlüsselung
 - 6.3.3 Sicherheit des Verfahrens
- 6.4 Signaturen und Authentifizierung
 - 6.4.1 ElGamal-Signaturen über Zp*
 - 6.4.2 Das Drei-Wege-Protokoll nach X.509 Zusammenfassung

7. Schlüsselmittelherstellung (12 Seiten)

- 7.1 Erzeugen von Zufallszahlen
 - 7.1.1 Zufallszahlengeneratoren

- 7.1.2 Neumann-Filter
- 7.2 Pseudozufallszahlengeneratoren
 - 7.2.1 Lineare Schieberegister mit Rückkopplung
 - 7.2.2 Primzahlhäufigkeit und Primzahldichtefunktion

Zusammenfassung

8. Kryptographische Protokolle und Anwendungen (17 Seiten)

- 8.1 Authentifikation und digitale Signatur
 - 8.1.1 Digitale Signaturen in der Praxis
 - 8.1.2 Authentifikation mit digitaler Signatur
- 8.2 Public-Key-Infrastruktur
 - 8.2.1 Prüfung öffentlicher Schlüssel und Trustcenter
 - 8.2.2 Zertifikatshierarchie
- 8.3 Secret Sharing und Secret Splitting
 - 8.3.1 Secret Sharing
 - 8.3.2 Secret Splitting
- 8.4 Zero-Knowledge-Protokolle
 - 8.4.1 Challenge-and-Response-Verfahren
 - 8.4.2 Das **Fiat-Shamir**-Protokoll

Zusammenfassung

Stand: 12.03.2021