New blueprint test

Thomas Zhu

September 21, 2025

Input a definition (or theorem) defined in Lean:

Definition 1 (Natural numbers).

Input the contents (including definitions, theorems, and module docstrings) of an entire module:

0.1 Natural numbers

Definition 2 (Natural numbers).

0.1.1 Addition

Here we define addition of natural numbers.

Definition 3. Natural number addition.

Theorem 4. For any natural number a, 0 + a = a, where + is Def. 3.

Proof. The proof follows by induction.

Theorem 5. For any natural numbers a, b, (a + 1) + b = (a + b) + 1.

Proof. Proof by induction on b.

Theorem 6. For any natural numbers a, b, a + b = b + a.

Proof. The base case follows from 4.

The inductive case follows from 5.

0.1.2 Multiplication

Definition 7. Natural number multiplication.

Theorem 8. For any natural numbers a, b, a * b = b * a.

Proof.

0.1.3 Fermat's Last Theorem

Theorem 9 (Taylor–Wiles). Fermat's last theorem.

Proof. See [1, 2].

In the docstring, usual Markdown features and math mode are supported (by MD4Lean), with additional support for citations like [1] using [square brackets] and references to other nodes like 4 using inline `code`.

You can also directly input raw LaTeX, e.g. as follows:

Bibliography

- [1] Andrew Wiles (1995) Modular elliptic curves and Fermat's last theorem, Annals of Mathematics, 141(3), 443–551.
- [2] Richard Taylor and Andrew Wiles (1995) Ring-theoretic properties of certain Hecke algebras, Annals of Mathematics, 141(3), 553–572.