MATH 503: Mathematical Statistics Dr. Kimberly F. Sellers, Instructor Homework 4

1. Let X_1, X_2, \ldots, X_n represent a random sample from the discrete distribution having the pmf

$$f(x;\theta) = \begin{cases} \theta^x (1-\theta)^{1-x} & x = 0, 1; 0 < \theta < 1 \\ 0 & \text{elsewhere} \end{cases}$$

Show that $Y_1 = \sum_{i=1}^n X_i$ is a complete sufficient statistic for θ . Find the unique function of Y_1 that is the UMVUE of θ .

- 2. Show that the first order statistic $X_{(1)}$ of a random sample of size n from the distribution having pdf $f(x;\theta) = e^{-(x-\theta)}, \ \theta < x < \infty, \ -\infty < \theta < \infty$, zero elsewhere, is a complete sufficient statistic for θ . Find the unique function of this statistic which is the UMVUE of θ .
- 3. Let X_1, X_2, \ldots, X_n denote a random sample of size n from a distribution with pdf $f(x; \theta) = \theta x^{\theta-1}$, 0 < x < 1, zero elsewhere, and $\theta > 0$.
 - (a) Show that the geometric mean, $(X_1X_2\cdots X_n)^{1/n}$ of the sample is a complete sufficient statistic for θ .
 - (b) Find the MLE of θ . Note that it is a function of this geometric mean.
- 4. Let $X_1, X_2, \ldots, X_n, n > 2$, be a random sample from a binomial distribution $b(1, \theta)$.
 - (a) Show that $Y_1 = X_1 + X_2 + \ldots + X_n$ is a complete sufficient statistic for θ .
 - (b) Find the function $\phi(Y_1)$ which is the UMVUE of θ .
- 5. Let X_1, X_2, \ldots, X_n denote a random sample from a distribution that is $N(0, \sigma^2 = \theta)$.
 - (a) Show that $Y = \sum_{i=1}^{n} X_i^2$ is a complete sufficient statistic for θ .
 - (b) Find the UMVUE of θ^2 .
- 6. Let X_1, \ldots, X_n are iid $N(\mu, 1)$ random variables. Find the MVUE of $\theta = \mu^2$.