ETR0360-002

300mA High Speed LDO Regulator with ON/OFF Switch

GENERAL DESCRIPTION

The XC6228 series is a high speed LDO regulator that features high accurate, low noise, high ripple rejection, low dropout and low power consumption. The series consists of a voltage reference, an error amplifier, a driver transistor, a current limiter, a phase compensation circuit.

The CE function enables the circuit to be in stand-by mode by inputting low level signal. In the stand-by mode, the series enables the electric charge at the output capacitor CL to be discharged via the internal switch, and as a result the VOUT pin quickly returns to the Vss level. The output stabilization capacitor CL is also compatible with low ESR ceramic capacitors.

The output voltage is selectable from 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.1V, 3.3V which fixed by laser trimming technologies. The over current protection circuit is built-in. This protection circuit will operate when the output current reaches current limit level.

APPLICATIONS

- Mobile devices
- Wireless communications
- Modules
- Mobile phones

FEATURES

Maximum Output Current : 300mA Input Voltage Range : 1.6~5.5V

Output Voltages : 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.1V, 3.3V

Dropout Voltage : 200mV@I_{OUT}=300mA (V_{OUT}=3.0V)

Low Power Consumption : $100 \,\mu$ A **Stand-by Current** $: 0.1 \mu A$: 80dB@f=1kHz **High Ripple Rejection**

Protection Circuits

: Current Limit (400mA) **Short Circuit Protection**

Low ESR Capacitors : $C_{IN}=1 \mu F$, $C_{L}=1 \mu F$

CE Function : Active High, C_L High Speed Discharge

Small Package : SOT-25J

●Load Transient Response

2.20

Environmentally Friendly : EU RoHS Compliant, Pb Free

TYPICAL APPLICATION CIRCUIT

TYPICAL PERFORMANCE CHARACTERISTICS

XC6228D25 tr = tf = 0.5μ s, Ta = 25° C, $I_{OUT} = 1 \Leftrightarrow 150$ mA V_{IN} = 3.5V, C_{IN} = 1 μ F (ceramic), C_L = 1 μ F (ceramic) 2.60 400 2.55 350 Output Voltage: V_{OUT} [V] Current Iout[mA] 2.50 Output Voltage 2.45 250 2.40 200 2.35 150 Output Output Current 100 2.30 2.25 50

Time [20 μ s/div]

0

BLOCK DIAGRAMS

^{*} Diodes inside the circuits are ESD protection diodes and parasitic diodes.

PRODUCT CLASSIFICATION

Ordering Information

XC6228	_	(*1)
AU0220	_	. ,

XC6228	_ (' ' '		
DESIGNATOR	ITEM	SYMBOL	DESCRIPTION
1	Regulator Type	D	CE Active High, CE pin Pull-down resistor, C _L discharge
			1.2V
		15	1.5V
		18	1.8V
23	Output Voltage	25	2.5V
23		28	2.8V
			30
		31	3.1V
	33	3.3V	
4	Output Voltage Accuracy	2	±2%
5 6-7 (*1)	Package	VR-G	SOT-25J (3,000/Reel)

^(*1) The "-G" suffix indicates that the products are Halogen and Antimony free as well as being fully RoHS compliant.

PIN CONFIGURATION

SOT-25J (TOP VIEW)

PIN ASSIGNMENT

PIN NUMBER	PIN NAME	FUNCTIONS
1	V _{IN}	Power Input
5	V_{OUT}	Output
2	V_{SS}	Ground
3	CE	ON/OFF Control
4	NC	No Connection

PIN FUNCTION ASSIGNMENT

CE INPUT SIGNAL	IC OPERATION STATE
Н	ON
L	OFF (Stand-by)
OPEN	OFF (Stand-by) *

 $[\]ensuremath{^{\star}}$ An internal pull-down resister maintains the CE pin voltage to be low.

ABSOLUTE MAXIMUM RATINGS

PARAMETER	₹	SYMBOL	RATINGS	UNITS
Input Voltage	;	V _{IN}	V _{SS} -0.3~V _{SS} +7.0	V
Output Currer	nt	I _{OUT}	500 ^(*1)	mA
Output Voltag	е	V _{OUT}	V _{SS} -0.3~V _{IN} +0.3	V
CE Input Volta	ge	V _{CE}	V _{SS} -0.3~V _{SS} +7.0	V
Power Dissipation	SOT-25J	Pd -	200	mW
Power Dissipation	301-253	Fu	500 (PCB mounted) (*2)	IIIVV
Operating Temperature Range		Topr	-40~+85	°C
Storage Temperature	Range	Tstg	-55 ∼ +125	°C

^(*1) IOUT Pd / (VIN-VOUT)

^(*2) This is a reference data taken by using the test board.

ELECTRICAL CHARACTERISTICS

XC6228D Series Ta=25°C

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUITS
Output Voltage	V _{OUT(E)} (*1)	V _{CE} =V _{IN} , I _{OUT} =10mA	V _{OUT(T)} ×0.98 (*2)	V _{OUT(T)} (*2)	V _{OUT(T)} ×1.02 (*2)	V	1
Maximum Output Current	I _{OUTMAX}	$V_{CE}=V_{IN}$	300	-	-	mA	1
Load Regulation	ΔV_{OUT}	$V_{CE}=V_{IN}$, $0.1mA \le I_{OUT} \le 300mA$	-	25	45	mV	1
Dropout Voltage	Vdif ^(*3)	$V_{CE}=V_{IN}$, $I_{OUT}=300$ mA	-		E-1	mV	1
Supply Current	I _{SS}	$V_{CE}=V_{IN}$	-	100	220	μΑ	2
Stand-by Current	I _{STB}	V _{CE} =V _{SS}	-	0.01	0.4	μΑ	2
Line Regulation	$\Delta V_{OUT}/$ $(\Delta V_{IN} \cdot V_{OUT})$	$V_{OUT(T)}$ +0.5 $V \le V_{IN} \le$ 5.5 V V_{CE} = V_{IN} , I_{OUT} =50mA	-	0.01	0.1	%/V	1
Input Voltage	V_{IN}	-	1.6	-	5.5	V	1
Output Voltage Temperature Characteristics	ΔV _{OUT} / (ΔTopr•V _{OUT})	V _{CE} =V _{IN} , I _{OUT} =10mA -40°C≦Ta≦85°C	-	±100	-	ppm/°C	1
Ripple Rejection Rate	PSRR	$\begin{split} &V_{\text{OUT(T)}}{<}2.5V\\ &V_{\text{IN}}{=}3.0V_{\text{DC}}{+}0.5Vp{-}p_{\text{AC}}\\ &V_{\text{CE}}{=}V_{\text{OUT(T)}}{+}1.0V\\ &I_{\text{OUT}}{=}30\text{mA, f}{=}1\text{kHz}\\ &V_{\text{OUT(T)}}{\ge}2.5V\\ &V_{\text{IN}}{=}\{V_{\text{OUT(T)}}{+}1.0\}V_{\text{DC}}{+}0.5Vp{-}p_{\text{AC}}\\ &V_{\text{CE}}{=}V_{\text{OUT(T)}}{+}1.0V\\ &I_{\text{OUT}}{=}30\text{mA, f}{=}1\text{kHz} \end{split}$	-	80	-	dB	3
Current Limit	I _{LIM}	$V_{CE}=V_{IN}$	310	400	-	mA	1
Short Current	I _{SHORT}	V _{CE} =V _{IN} , V _{OUT} =V _{SS}	-	50	-	mA	1
CE High Level Voltage	V _{CEH}	-	1.0	-	5.5	V	4
CE Low Level Voltage	V _{CEL}	-	0	-	0.3	V	
CE High Level Current	I _{CEH}	$V_{CE}=V_{IN}=5.5V$	3.0	5.5	9.0	μΑ	4
CE High Level Current	I _{CEL}	$V_{CE}=V_{SS}$	-0.1	-	0.1	μΑ	4
CL Discharge Resistance	R _{DCHG}	V _{IN} =5.5V, V _{OUT} =2.0V, V _{CE} =V _{SS}	-	300	-	Ω	1

NOTE:

Unless otherwise stated regarding input voltage conditions, V_{IN} = $V_{OUT(T)}$ +1.0V.

 $(*1)V_{\text{OUT(E)}}$: Effective output voltage

(i.e. the output voltage when " $V_{OUT(T)}$ +1.0V" is provided at the V_{IN} pin while maintaining a certain I_{OUT} value.)

 $({}^{\star}2)\,V_{\text{OUT}(T)}$: Nominal output voltage

(*3) $Vdif = V_{IN1} - V_{OUT1} (V_{IN1} \ge 1.6V)$

 V_{IN1} =The input voltage when V_{OUT1} appears as input voltage is gradually decreased.

 V_{OUT1} =A voltage equal to 98% of the output voltage whenever an amply stabilized $V_{\text{OUT}(T)}$ +1.0V is input for every I_{OUT} .

OUTPUT VOLTAGE CHART

Voltage Chart 1

NOMINAL OUTPUT VOLTAGE (V)	OUTPUT VOLTAGE (V)		DROPOUT (m E-	V)	
V	V _{OUT(E)}		Vo	dif	
$V_{OUT(T)}$	MIN.	MAX.	TYP.	MAX.	
1.20	1.176	1.224	480	630	
1.50	1.470	1.530	420	460	
1.80	1.764	1.836	300	410	
2.50	2.450	2.550	240	250	
2.80	2.744	2.856	240	350	
3.00	2.940	3.060			
3.10	3.038	3.162	200	305	
3.30	3.234	3.366			

OPERATIONAL EXPLANATION

The voltage divided by resistors R1 & R2 is compared with the internal reference voltage by the error amplifier. The P-channel MOSFET which is connected to the V_{OUT} pin is then driven by the subsequent output signal. The output voltage at the V_{OUT} pin is controlled and stabilized by a system of negative feedback. The current limit circuit and short circuit protection operate in relation to the level of output current and heat dissipation. Further, the IC's internal circuitry can be shutdown via the CE pin signal.

<Low ESR Capacitor>

The XC6228 series needs an output capacitor C_L for phase compensation. Please place an output capacitor (C_L) at the output pin (V_{OUT}) and the ground pin (V_{SS}) as close as possible. Please use the output capacitor (C_L) is $1.0 \,\mu$ F or larger. For a stable power input, please connect an input capacitor (C_{IN}) of $1.0 \,\mu$ F between the V_{IN} pin and the V_{SS} pin.

<Current Limiter, Short-Circuit Protection>

The XC6228 has current limiter and droop shape of fold-back circuit. When the load current reaches the current limit, the droop current limiter circuit operates and the output voltage drops. When the output voltage dropped, the fold-back circuit operates and the output current goes to decrease. The output current finally falls at the level of 50mA when the output pin is short-circuited.

<CE Pin>

The IC's internal circuitry can be shutdown via the signal from the CE pin. In shutdown mode, the XC6228 series enables the electric charge at the output capacitor (C_L) to be discharged via the internal switch located between the V_{OUT} and V_{SS} pins, and as a result the V_{OUT} pin quickly returns to the V_{SS} level. The XC6228 series has a pull-down resistor at the CE pin inside, so that the CE pin input current flows.

NOTES ON USE

- For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be exceeded.
- 2 . Where wiring impedance is high, operations may become unstable due to the noise and/or phase lag depending on output current. Please strengthen V_{IN} and V_{SS} wiring in particular.
- 3. The input capacitor CIN and the output capacitor CL should be placed to the as close as possible with a shorter wiring.
- 4. Torex places an importance on improving our products and its reliability.
 However, by any possibility, we would request user fail-safe design and post-aging treatment on system or equipment.

TEST CIRCUITS

Circuit

Circuit

Circuit

Circuit

TYPICAL PERFORMANCE CHARACTERISTICS

(1) Output Voltage vs. Output Current

XC6228D12

XC6228D18

XC6228D18

XC6228D25

XC6228D25

(2) Output Voltage vs. Input Voltage

(3) Dropout Voltage vs. Output Current

XC6228D25

(4) Supply Current vs. Input Voltage

XC6228D12

XC6228D18

(4) Supply Current vs. Input Voltage (Continued)

XC6228D25

(5) Output Voltage vs. Ambient Temperature

XC6228D12

 $\label{eq:Vin} V_{\rm IN}$ = 2.2V $\label{eq:Vin} C_{\rm IN}$ = 1 μ F (ceramic), $C_{\rm L}$ = 1 μ F (ceramic)

XC6228D18

 $\label{eq:VIN} {\rm V_{IN}} = 2.8 {\rm V}$ ${\rm C_{IN}}$ = 1 μ F (ceramic), ${\rm C_L}$ = 1 μ F (ceramic)

XC6228D25

 ${\rm V_{IN}} = 3.5 {\rm V}$ ${\rm C_{IN}}$ = 1 μ F (ceramic), ${\rm C_L}$ = 1 μ F (ceramic)

(6) Rising Response Time

XC6228D18

XC6228D25

 ${\rm tr}=5~\mu~{\rm s,~Ta}=25^{\circ}{\rm C,V_{IN}}=0{\longrightarrow}3.5{\rm V}$ ${\rm C_{IN}}=0.1~\mu~{\rm F}$ (ceramic), ${\rm C_L}=1~\mu~{\rm F}$ (ceramic)

(7) Input Transient Response

XC6228D12

$$\label{eq:transformation} \begin{split} \text{tr} = \text{tf} = 5\,\mu\,\text{s, Ta} = 25^{\circ}\text{C, V}_{\text{IN}} = 2.2\text{V} \Leftrightarrow 3.2\text{V} \\ \text{C}_{\text{IN}} = 0.1\,\mu\,\text{F (ceramic), C}_{\text{L}} = 1.0\,\mu\,\text{F (ceramic)} \end{split}$$

XC6228D18

tr = tf = $5 \,\mu$ s, Ta = 25° C, $V_{\rm IN}$ = $2.8V \Leftrightarrow 3.8V$ C_{IN} = $0.1 \,\mu$ F (ceramic), C_L = $1.0 \,\mu$ F (ceramic)

(7) Input Transient Response (Continued)

XC6228D25

(8) Load Transient Response (tr=tf=0.5 μ s)

XC6228D12 tr = tf = 0.5 μ s, Ta = 25°C, I_{OUT} = 1 ⇔150mA V_{IN} = 2.2V, O_{IN} = 1 μ F (ceramic), O_{L} = 1 μ F (ceramic)

XC6228D12 tr = tf = 0.5 μ s, Ta = 25°C, I_{OUT} = 50 ⇔ 100mA V_{IN} = 2.2V, C_{IN} = 1 μ F (ceramic), C_{L} = 1 μ F (ceramic)

(8) Load Transient Response (tr=tf=0.5 μ s) (Continued)

(9) Load Transient Response (tr=tf=5 μ s)

(9) Load Transient Response (tr=tf=5 μ s) (Continued)

(10) CE Rising Response Time

(11) Ripple Rejection Rate

XC6228D12

 ${\rm Ta=25^{\circ}C,~V_{IN}=3.0VDC+0.5Vp-pAC}$ ${\rm C_{IN}=0.1~\mu~F~(ceramic),~C_{L}=1~\mu~F~(ceramic)}$

XC6228D18

 ${\rm Ta=25^{\circ}C,~V_{IN}=3.0VDC+0.5Vp-pAC}$ ${\rm C_{IN}=0.1~\mu~F~(ceramic),~C_{L}=1~\mu~F~(ceramic)}$

XC6228D25

 ${\rm Ta=25^{\circ}C,~V_{\rm IN}=3.5VDC+0.5Vp-pAC}$ ${\rm C_{\rm IN}=0.1~\mu~F~(ceramic),~C_{\rm L}=1~\mu~F~(ceramic)}$

XC6228D33

 $\label{eq:Ta} \begin{aligned} \text{Ta} &= 25^{\circ}\text{C}, \ \text{V}_{\text{IN}} = 4.3 \text{VDC+0.5Vp-pAC} \\ \text{C}_{\text{IN}} &= 0.1 \ \mu \ \text{F} \ \text{(ceramic)}, \ \text{C}_{\text{L}} = 1 \ \mu \ \text{F} \ \text{(ceramic)} \end{aligned}$

PACKAGING INFORMATION

●SOT-25J

PACKAGING INFORMATION (Continued)

●SOT-25J Power Dissipation

Power dissipation data for the SOT-25J is shown in this page.

The value of power dissipation varies with the mount board conditions.

Please use this data as one of reference data taken in the described condition.

1. Measurement Condition (Reference data)

Condition: Mount on a board

Ambient: Natural convection

Soldering: Lead (Pb) free

Board: Dimensions 40 x 40 mm (1600 mm² in one side)

Copper (Cu) traces occupy 50% of the board area

In top and back faces

Package heat-sink is tied to the copper traces

(Board of SOT-26 is used.)

Material: Glass Epoxy (FR-4)

Thickness: 1.6 mm

Through-hole: 4 x 0.8 Diameter

Evaluation Board (Unit: mm)

2. Power Dissipation vs. Ambient temperature

Board Mount (Tj max = 125)

Ambient Temperature (°C)	Power Dissipation Pd (mW)	Thermal Resistance (°C/W)
25	500	200.00
85	200	200.00

MARKING RULE

●SOT-25J

represents product series.

MARK	PRODUCT SERIES
9	XC6228*****-G

represents type of regulator and combination of output voltage.

MARK	PRODUCT SERIES
Р	XC6228D****-G

(TOP VIEW)

3 represents output voltage.

MARK	OUTPUT VOLTAGE (V)	PRODUCT SERIES
2	1.2	XC6228*12***-G
5	1.5	XC6228*15***-G
8	1.8	XC6228*18***-G
F	2.5	XC6228*25***-G
L	2.8	XC6228*28***-G
N	3.0	XC6228*30***-G
P	3.1	XC6228*31***-G
S	3.3	XC6228*33***-G

45 represents production lot number.

01 to 09, 0A to 0Z, 11 to 9Z, A1 to A9, AA to Z9, ZA to ZZ in order. (G, I, J, O, Q, W excepted)

^{*}No character inversion used.

- 1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date.
- 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this datasheet.
- 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this datasheet.
- 4. The products in this datasheet are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user.
 - (e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.)
- Please use the products listed in this datasheet within the specified ranges.
 Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives.
- 6. We assume no responsibility for damage or loss due to abnormal use.
- 7. All rights reserved. No part of this datasheet may be copied or reproduced without the prior permission of TOREX SEMICONDUCTOR LTD.

TOREX SEMICONDUCTOR LTD.