Decision Trees on MapReduce

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
http://cs246.stanford.edu

Decision Trees

Input features:

- N features: X_1 , X_2 , ... X_N
- Each X_j has domain D_j
 - Categorical: D_j = {red, blue}
 - Numerical: $D_j = (0, 10)$
- Y is output variable with domain D_{γ} :
 - Categorical: Classification
 - Numerical: Regression

Task:

 Given input data vector x_i predict y_i

Decision Trees (1)

Decision trees:

- Split the data at each internal node
- Each leaf node makes a prediction

Lecture today:

- Binary splits: X_i<v</p>
- Numerical attrs.
- Regression

How to make predictions?

Input: Example x_i

Output: Predicted y_i'

- "Drop" x_i down the tree until it hits a leaf node
- Predict the value stored in the leaf that x_i hits

Training dataset D*, |D*|=100 examples

- Imagine we are currently at some node G
 - Let D_G be the data reaches G
- There is a decision we have to make:

Do we continue building the tree?

- If so, which variable and which value do we use for a split?
- If not, how do we make a prediction?
 - We need to build a "predictor node"

Alternative view:


```
Algorithm 1 InMemoryBuildNode
Require: Node n, Data D \subseteq D^*
 1: (n \to \text{split}, D_L, D_R) = \text{FindBestSplit}(D)
 2: if StoppingCriteria(D_L) then
 3: n \rightarrow \text{left\_prediction} = \text{FindPrediction}(D_L)
 4: else
       \underline{\text{InMemoryBuildNode}(n \rightarrow \text{left}, D_L)}
 6: if StoppingCriteria(D_R) then
     n \rightarrow \text{right\_prediction} = \text{FindPrediction}(D_R)
 8: else
       InMemoryBuildNode(n \rightarrow right, D_R)
```

Requires at least a single pass over the data!

- How to split? Pick attribute & value that optimizes some criterion
- Classification:
 Information Gain
 - IG(Y|X) = H(Y) H(Y|X)
 - Entropy: $H(Z) = -\sum_{j=1}^{m} p_j \log p_j$
 - Conditional entropy: $H(W|Z) = -\sum_{j=1}^{m} P(Z = v_j) H(W|Z = v_j)$
 - Suppose Z takes m values (v₁ ... v_m)
 - H(W|Z=v) ... Entropy of W among the records in which Z has value v

 How to split? Pick attribute & value that optimizes some criterion

Regression:

• Find split (X_i, v) that creates D, D_L, D_R: parent, (X_i, v) left, right child datasets and maximizes:

$$|D| \cdot Var(D) - (|D_L| \cdot Var(D_L) + |D_R| \cdot Var(D_R))$$

- For ordered domains sort X_i and consider a split between each pair of adjacent values
- For categorical X_i find best split based on subsets (Breiman's algorithm)

- When to stop?
 - 1) When the leaf is "pure"
 - E.g., $Var(y_i) < \varepsilon$
 - 2) When # of examples in the leaf is too small
 - E.g., |D|≤10
- How to predict?
 - Predictor:
 - **Regression:** Avg. y_i of the examples in the leaf
 - Classification: Most common y_i in the leaf

Building a tree using MapReduce

Problem: Building a tree

- Given a large dataset with hundreds of attributes
- Build a decision tree!
- General considerations:
 - Tree is small (can keep it memory):
 - Shallow (~10 levels)
 - Dataset too large to keep in memory
 - Dataset too big to scan over on a single machine
 - MapReduce to the rescue!

Algorithm 1 FindBestSplit Require: Node n, Data $D \subseteq D^*$ 1: $(n \to \text{split}, D_L, D_R) = \text{FindBestSplit}(D)$ 2: if StoppingCriteria (D_L) then 3: $n \to \text{left_prediction} = \text{FindPrediction}(D_L)$ 4: else 5: FindBestSplit $(n \to \text{left}, D_L)$ 6: if StoppingCriteria (D_R) then 7: $n \to \text{right_prediction} = \text{FindPrediction}(D_R)$

FindBestSplit($n \rightarrow \text{right}, D_R$)

8: else

MapReduce

Today's Lecture: PLANET

- Parallel Learner for Assembling Numerous Ensemble Trees [Panda et al., VLDB '09]
- A sequence of MapReduce jobs that build a decision tree
- Setting:
 - Hundreds of numerical (discrete & continuous) attributes
 - Target (class) is numerical: Regression
 - Splits are binary: X_i < v</p>
 - Decision tree is small enough for each Mapper to keep it in memory
 - Data too large to keep in memory

PLANET Architecture

PLANET Overview

- Mapper loads the model and info about which attribute splits to consider
- Each mapper sees a subset of the data D*
- Mapper "drops" each datapoint to find the appropriate leaf node L
- For each leaf node L it keeps statistics about
 - 1) the data reaching L
 - 2) the data in left/right subtree under split S
- Reducer aggregates the statistics (1) and (2)
 and determines the best split for each node

PLANET: Components

- Master
 - Monitors everything (runs multiple MapReduce jobs)
- MapReduce <u>Initialization</u>
 - For each attribute identify values to be considered for splits
- MapReduce <u>FindBestSplit</u>
 - MapReduce job to find best split when there is too much data to fit in memory
- MapReduce <u>InMemoryBuild</u>
 - Similar to FindBestSplit (but for small data)
 - Grows an entire sub-tree once the data fits in memory
- Model file
 - A file describing the state of the model

```
Algorithm 1 FindBestSplit

Require: Node n, Data D \subseteq D^*

1: (n \to \text{split}, D_L, D_R) FindBestSplit(D)

2: if StoppingCriteria(D_L) then

3: n \to \text{left\_prediction} = \text{FindPrediction}(D_L)

4: else

5: FindBestSplit(n \to \text{left}, D_L)

6: if StoppingCriteria(D_R) then

7: n \to \text{right\_prediction} = \text{FindPrediction}(D_R)

8: else

9: FindBestSplit(n \to \text{right}, D_R)
```

Hardest part

Initialization: Attribute metadata

- Identifies all the attribute values which need to be considered for splits
- Splits for numerical attributes:

- Would like to consider very possible value $v \in D$
- Compute an approximate equi-depth histogram on D*
 - Idea: Select buckets such that counts per bucket are equal

- Use boundary points of histogram as potential splits
- Generates an "attribute metadata" to be loaded in memory by other tasks

Side note: Computing Equi-Depth

Goal:

- Equal number of elements per bucket (B buckets total)
- Construct by first sorting and then taking
 B-1 equally-spaced splits

Faster construction:

Sample & take equally-spaced splits in the sample

Nearly equal buckets

PLANET: Master

- Controls the entire process
- Determines the state of the tree and grows it:
 - Decides if nodes should be split
 - If there is little data entering a node, runs an <u>InMemory-Build</u> MapReduce job to grow the entire subtree
 - For larger nodes, launches MapReduce <u>FindBestSplit</u>
 to find candidates for best split
 - Collects results from MapReduce jobs and chooses the best split for a node
 - Updates model

PLANET: Master

- Master keeps two node queues:
 - MapReduceQueue (MRQ)
 - Nodes for which D is too large to fit in memory

- Nodes for which the data D in the node fits in memory
- The tree will be built in levels
 - Epoch by epoch

PLANET: Master

Two MapReduce jobs:

FindBestSplit: Processes nodes from the MRQ

- For a given set of nodes S, computes a candidate of good split predicate for each node in S
- InMemoryBuild: Processes nodes from the InMemQ
 - For a given set of nodes S, completes tree induction at nodes in S using the InMemoryBuild algorithm
- Start by executing FindBestSplit on full data
 D*

FindBestSplit

- MapReduce job to find best split when there is too much data to fit in memory
- Goal: For a particular split node find attribute X_i and value v that maximize:

$$|D| \times Var(D) - (|D_L| \times Var(D_L) + |D_R| \times Var(D_R))$$

- D ... training data (x_i, y_i) reaching the node
- D_L ... training data x_i , where $x_{i,j} < v$
- D_R ... training data x_i , where $x_{i,i} \ge v$
- $Var(D) = 1/(n-1) \Sigma_i y_i^2 (\Sigma_i y_i)^2/n$

Note: Can be computed from sufficient statistics: Σy_i , Σy_i^2

FindBestSplit: Map

Mapper:

- Initialize by loading from Initialization task
 - Current Model (to find which node each x_i ends up)
 - Attribute metadata (all split points for each attribute)
- For each record run the Map algorithm
- For each node store statistics and at the end emit (to all reducers):
 - <Node.Id, $\{ \Sigma y, \Sigma y^2, \Sigma 1 \} >$
- For each split store statistics and at the end emit:
 - <Split.Id, { Σy , Σy^2 , $\Sigma 1$ } >
 - Split.Id = (node, feature, split value)

FindBestSplit: Map

Requires: Split node set S,
 Model file M, Training record (x_i,y_i)

```
Node n = TraverseTree(M, x_i) if n \in S:
```

```
Update T_n \leftarrow y_i //stores {\Sigma y, \Sigma y_2, \Sigma 1} for each node for j = 1 \dots N: // N... number of features v = value of feature X_j of example <math>x_i for each split point s of feature X_j, s.t. s < v:
```

Update $T_{n,j}[s] \leftarrow y_i$ //stores $\{\Sigma y, \Sigma, y_2, \Sigma 1\}$ for each (node, feature, split)

MapFinalize: Emit

- <Node.Id, $\{\Sigma y, \Sigma y^2, \Sigma 1\}$ > // sufficient statistics (so we can later
- **Split.Id,** $\{\Sigma y, \Sigma y^2, \Sigma 1\} > // \text{ compute variance reduction}\}$

FindBestSplit: Reducer

Reducer:

- 1) Load all the <Node_Id, List $\{\Sigma y, \Sigma y^2, \Sigma 1\}$ pairs and **aggregate** the per node statistics
- 2) For all the <Split_Id, List $\{Σy, Σy^2, Σ1\}>$ aggregate and run the reduce algorithm
- For each Node_Id, output the best split found:

Reduce(Split_Id, values):

```
split = NewSplit(Split_Id)
best = BestSplitSoFar(split.node.id)
for stats in values
    split.stats.AddStats(stats)
left = GetImpurity(split.stats)
right = GetImpurity(split.node.stats—split.stats)
split.impurity = left + right
if split.impurity < best.impurity:
    UpdateBestSplit(Split.Node.Id, split)</pre>
```

Back to the Master

- Collects outputs from FindBestSplit reducers
 - <Split.Node.Id, feature, value, impurity>
- For each node decides the best split
 - If data in D_L/D_R is small enough put the nodes in the InMemoryQueue
 - to later run InMemoryBuild on the node
 - Else put the nodes into MapReduceQueue

InMemoryBuild: Map and Reduce

- Task: Grow an entire subtree once the data fits in memory
- Mapper:
 - Initialize by loading current model file
 - For each record identify the node it falls under and if that node is to be grown, output <Node_Id, Record>

Reducer:

- Initialize by loading attribute file from Initialization task
- For each <Node_Id, List{Record}> run the basic tree growing algorithm on the records
- Output the best splits for each node in the subtree

${\bf Algorithm~1~In} {\bf MemoryBuildNode}$

Require: Node n, Data $D \subseteq D^*$

- 1: $(n \to \text{split}, D_L, D_R) = \text{FindBestSplit}(D)$
- 2: if StoppingCriteria(D_L) then
- 3: $n \rightarrow \text{left_prediction} = \text{FindPrediction}(D_L)$
- 4: else
- 5: InMemoryBuildNode($n \rightarrow left, D_L$)
- 6: if StoppingCriteria(D_R) then
- 7: $n \rightarrow \text{right_prediction} = \text{FindPrediction}(D_R)$
- 8: else
- 9: InMemoryBuildNode($n \rightarrow \text{right}, D_R$)

Overall system architecture

- Need to split nodes F, G, H, I
- D₁, D₄ small, run InMemoryGrow
- \bullet D_2 , D_3 too big, run FindBestSplit({G, H}):

- Load the current model M
- Drop every example x_i down the tree
- If it hits *G* or *H*, update in-memory hash tables:
 - For each node: T_n : (node) $\rightarrow \{\Sigma y, \Sigma y^2, \Sigma 1\}$
 - For each split,node: $T_{n,j,s}$: (node, attribute, split_value) \rightarrow {Σy, Σy², Σ1}
- Map::Finalize: output the key-value pairs from above hashtables
- FindBestSplit::Reduce (each reducer)
 - Collect:
 - T1:<node, List{Σy, Σy², Σ1} > \rightarrow <node, {Σ Σy, Σ Σy², Σ Σ1} >
 - T2:<(node, attr. split), List{Σy, Σy², Σ1}> → <(node, attr. split), {ΣΣy, ΣΣy², ΣΣ1}>
 - Compute impurity for each node using T1, T2
 - Return best split to Master (that decides on the globally best spit)

Practical considerations

- We need one pass over the data to construct one level of the tree!
- Set up and tear down
 - Per-MapReduce overhead is significant
 - Starting/ending MapReduce job costs time
 - Reduce tear-down cost by polling for output instead of waiting for a task to return
 - Reduce start-up cost through forward scheduling
 - Maintain a set of live MapReduce jobs and assign them tasks instead of starting new jobs from scratch

Practical considerations

Very high dimensional data

- If the number of splits is too large the Mapper might run out of memory
- Instead of defining split tasks as a set of nodes to grow, define them as a set of nodes to grow and a set of attributes to explore
 - This way each mapper explores a smaller number of splits (needs less memory)

Learning Ensembles

- Learn multiple trees and combine their predictions
 - Gives better performance in practice
- Bagging:
 - Learns multiple trees over independent samples of the training data
 - Predictions from each tree are averaged to compute the final model prediction

Bagged Decision Trees

Model construction for bagging in PLANET

- When tree induction begins at the root, nodes of all trees in the bagged model are pushed onto the MRQ queue
- Controller does tree induction over dataset samples
 - Queues will contain nodes belonging to many different trees instead of a single tree

How to create random samples of D*?

- Compute a hash of a training record's id and tree id
- Use records that hash into a particular range to learn a tree
- This way the same sample is used for all nodes in a tree
- Note: This is sampling D* without replacement (but samples of D* should be created with replacement)

SVM vs. DT

SVM

- Classification
- Real valued features (no categorical ones)
- Tens/hundreds of thousands of features
- Very sparse features
- Simple decision boundary
 - No issues with overfitting
- Example applications
 - Text classification
 - Spam detection
 - Computer vision

Decision trees

- Classification
- Real valued and categorical features
- Few (hundreds) of features
- Usually dense features
- Complicated decision boundaries
 - Overfitting!
- Example applications
 - User profile classification
 - Landing page bounce prediction

Experiments: Bounce Rate Prediction

- Google: Bounce rate of ad = fraction of users who bounced from ad landing page
 - Clicked on ad and quickly moved on to other tasks
 - Bounce rate high --> users not satisfied
- Prediction goal:
 - Given an new add and a query
 - Predict bounce rate using query/ad features
- Feature sources:
 - Query
 - Ad keyword
 - Ad creative
 - Ad landing page

Experimental Setup

- MapReduce Cluster
 - 200 machines
 - 768MB RAM, 1GB Disk per machine
 - 3 MapReduce jobs forward-scheduled
- Full Dataset: 314 million records
 - 6 categorical features, cardinality varying from 2-500
 - 4 numeric features
- Compare performance of PLANET on whole data with R on sampled data
 - R model trains on 10 million records (~ 2GB)
 - Single machine: 8GB, 10 trees, each of depth 1-10
 - Peak RAM utilization: 6GB

Results: Scalability

Results: Prediction accuracy

 Prediction accuracy (RMSE) of PLANET on full data better than R on sampled data

Reference

- B. Panda, J. S. Herbach, S. Basu, and R. J. Bayardo. PLANET: Massively parallel learning of tree ensembles with MapReduce. *VLDB* 2009.
- J. Ye, J.-H. Chow, J. Chen, Z. Zheng. Stochastic Gradient Boosted Distributed Decision Trees. CIKM 2009.