Eis cosmography (statefinders table)

Alejandro Aviles (avilescervantes@gmail.com), Jaime Klapp (jaime.klapp@inin.gob.mx), and Orlando Luongo (luongo@na.infn.it)

TABLE I: Marginalized 1D for derived state finder parameters. Here we fit to the 100 dispersed simulated catalogues, as described in arXiv:1606.09195. The bias statistics $\Delta\chi^2$ and the FoM are calculated using the eis estimated parameters.

	E	71		1	Ξ_2		F	\mathbb{F}_3		Bias	
	Mean (σ)	0.68 c.l.	0.95 c.l.	Mean (σ)	0.68 c.l.	0.95 c.l.	Mean (σ)	0.68 c.l.	0.95 c.l.	$\Delta \chi^2$	FoM
SD_1:											
Eis	$-0.567 \ (0.082)$	+0.089 -0.073	$+0.150 \\ -0.173$	0.960 (0.446)	$^{+0.289}_{-0.517}$	$+0.906 \\ -0.773$	$-0.318 \; (0.597)$	+0.091 -0.498	$^{+1.134}_{-0.727}$	0.923	0.0107
SC	$-0.568 \; (0.122)$	$+0.124 \\ -0.124$	$^{+0.240}_{-0.241}$	1.161 (1.095)	$+1.025 \\ -1.169$	$^{+2.155}_{-2.086}$	2.147 (4.565)	$^{+1.820}_{-5.296}$	$+9.443 \\ -6.395$	0.920	0.1201
$\Lambda \mathrm{CDM}$	$-0.562 \ (0.017)$	$^{+0.017}_{-0.017}$	$^{+0.033}_{-0.033}$	1			$-0.313 \; (0.051)$	$+0.050 \\ -0.050$	$+0.098 \\ -0.098$	_	_
$hybrid_1$	$-0.545 \ (0.051)$	$^{+0.042}_{-0.056}$	$^{+0.104}_{-0.094}$	$0.875 \ (0.269)$	$^{+0.303}_{-0.258}$	$^{+0.481}_{-0.527}$	$-0.517 \; (0.358)$	$^{+0.340}_{-0.350}$	$^{+0.704}_{-0.709}$	0.908	0.0085
$hybrid_2$	$-0.543 \ (0.057)$	$^{+0.054}_{-0.054}$	$^{+0.115}_{-0.115}$	$0.835\ (0.315)$	$^{+0.307}_{-0.361}$	$^{+0.581}_{-0.560}$	$-0.684\ (1.432)$	$^{+1.465}_{-1.127}$	$^{+2.746}_{-3.194}$	0.179	0.0367
SD_2:											
Eis	-0.499 (0.080)	+0.086 -0.072	$^{+0.147}_{-0.168}$	0.873 (0.394)	$+0.255 \\ -0.459$	$^{+0.802}_{-0.675}$	-0.699 (0.407)	+0.133 -0.387	$+0.780 \\ -0.580$	2.923	0.0097
SC	$-0.506 \ (0.123)$	+0.122 -0.123	+0.235 -0.244	1.122 (1.057)	+0.936 -1.155	+2.110 -1.984	1.642 (4.080)	+1.347 -4.450	+8.553 -5.336	0.704	0.1194
$\Lambda \mathrm{CDM}$	$-0.502 \ (0.018)$	$+0.018 \\ -0.018$	+0.035 -0.034	1			$-0.493 \ (0.054)$	+0.054 -0.053	$^{+0.102}_{-0.104}$	_	_
$hybrid_1$	$-0.491 \ (0.054)$	$^{+0.039}_{-0.064}$	$^{+0.112}_{-0.094}$	0.886 (0.287)	$^{+0.324}_{-0.282}$	$^{+0.518}_{-0.534}$	$-0.804\ (0.321)$	$^{+0.298}_{-0.304}$	$^{+0.658}_{-0.611}$	2.964	0.0098
$hybrid_2$	$-0.492 \ (0.055)$	$^{+0.047}_{-0.057}$	$^{+0.122}_{-0.104}$	0.888 (0.307)	$^{+0.310}_{-0.342}$	$^{+0.564}_{-0.554}$	$-0.794\ (1.322)$	$^{+1.235}_{-1.171}$	$^{+2.656}_{-2.771}$	0.007	0.0398
SD_3:											
Eis	$-0.534 \ (0.082)$	$^{+0.088}_{-0.073}$	$^{+0.150}_{-0.171}$	0.922 (0.428)	$^{+0.283}_{-0.485}$	$^{+0.867}_{-0.739}$	-0.505 (0.522)	$^{+0.110}_{-0.435}$	$^{+0.930}_{-0.648}$	1.509	0.0112
SC	$-0.533 \ (0.128)$	$^{+0.139}_{-0.135}$	$^{+0.238}_{-0.245}$	1.108 (1.117)	$^{+0.971}_{-1.292}$	$^{+2.242}_{-1.999}$	1.897 (4.349)	$^{+1.355}_{-5.001}$	$^{+10.662}_{-5.685}$	0.841	0.1279
$\Lambda \mathrm{CDM}$	$-0.533 \ (0.017)$	$^{+0.017}_{-0.017}$	$^{+0.035}_{-0.033}$	1			$-0.402 \; (0.052)$	$^{+0.052}_{-0.052}$	$^{+0.100}_{-0.105}$	_	_
$hybrid_1$	$-0.519 \ (0.052)$	$+0.041 \\ -0.057$	$^{+0.107}_{-0.096}$	0.880 (0.284)	$+0.324 \\ -0.265$	$+0.509 \\ -0.542$	$-0.653 \ (0.341)$	+0.324 -0.330	$^{+0.691}_{-0.658}$	1.423	0.0105
$hybrid_2$	$-0.516 \ (0.056)$	$^{+0.049}_{-0.055}$	$^{+0.116}_{-0.109}$	0.861 (0.311)	$^{+0.300}_{-0.356}$	$^{+0.580}_{-0.557}$	$-0.693 \ (1.368)$	$^{+1.293}_{-1.203}$	$^{+2.667}_{-2.846}$	0.105	0.0370
SD_4:											
Eis	$-0.540 \ (0.082)$	$^{+0.089}_{-0.073}$	$^{+0.156}_{-0.164}$	0.937 (0.431)	$^{+0.275}_{-0.498}$	$^{+0.873}_{-0.738}$	$-0.480 \; (0.531)$	$+0.107 \\ -0.446$	$^{+0.955}_{-0.659}$	1.480	0.0105
SC	$-0.538 \; (0.125)$	$^{+0.126}_{-0.126}$	$+0.242 \\ -0.246$	1.131 (1.092)	+0.979 -1.196	$+2.308 \\ -1.980$	1.926 (4.372)	$+1.542 \\ -4.893$	$+9.353 \\ -5.838$	0.858	0.1213
$\Lambda \mathrm{CDM}$	$-0.536 \ (0.018)$	$^{+0.018}_{-0.017}$	+0.035 -0.034	1			$-0.392 \ (0.053)$	$+0.052 \\ -0.053$	$^{+0.103}_{-0.104}$	_	_
$hybrid_1$	$-0.522 \ (0.052)$	$+0.041 \\ -0.059$	+0.109 -0.096	0.886 (0.287)	$^{+0.318}_{-0.277}$	+0.523 -0.543	$-0.636 \; (0.337)$	+0.324 -0.329	$^{+0.670}_{-0.655}$	1.548	0.0097
$hybrid_2$	$-0.520 \ (0.056)$	$^{+0.051}_{-0.053}$	$^{+0.119}_{-0.112}$	0.862 (0.308)	$^{+0.312}_{-0.348}$	$^{+0.564}_{-0.546}$	$-0.705 \ (1.392)$	$^{+1.292}_{-1.220}$	$+2.703 \\ -3.065$	0.169	0.0367
SD_5:											
Eis	$-0.556 \ (0.084)$	$^{+0.091}_{-0.074}$	$+0.159 \\ -0.168$	0.955 (0.452)	$+0.283 \\ -0.524$	$+0.920 \\ -0.772$	-0.369 (0.605)	+0.091 -0.495	$^{+1.109}_{-0.716}$	1.052	0.0115
SC	$-0.560 \ (0.123)$	+0.123	+0.236 -0.243	1.194 (1.096)	+0.976	+2.182 -2.054	2.223 (4.592)	$+1.625 \\ -5.261$	+9.634 -6.228	0.863	0.1184
$\Lambda \mathrm{CDM}$	$-0.551 \ (0.017)$		+0.034 -0.032	1			$-0.346 \; (0.052)$	+0.050 -0.049	+0.097 -0.102	_	_
$hybrid_1$	-0.537 (0.052)	+0.047 -0.056	$+0.106 \\ -0.094$	0.860 (0.289)	$^{+0.327}_{-0.283}$	$^{+0.502}_{-0.544}$	$-0.613 \ (0.348)$	$+0.326 \\ -0.360$	$+0.718 \\ -0.667$	1.056	0.0097
$hybrid_2$	-0.534 (0.056)		+0.117 -0.112	0.847 (0.307)			-0.690 (1.375)	$+1.380 \\ -1.125$	$+2.641 \\ -3.027$	0.174	0.0363
<i>SD_6:</i>											
Eis	$-0.639 \; (0.085)$	+0.094 -0.075	$^{+0.156}_{-0.179}$	1.068 (0.518)	+0.323 -0.608	$^{+1.078}_{-0.880}$	0.169 (0.928)	+0.064 -0.801	$+1.982 \\ -1.025$	0.237	0.0126
SC	$-0.620 \ (0.127)$	+0.143 -0.123	+0.233 -0.243	1.149 (1.158)	+1.109 -1.223	+2.282 -2.113	2.552 (5.090)	+3.183 -6.121	+10.690 -7.018	1.106	0.1226
$\Lambda \mathrm{CDM}$	$-0.623 \ (0.016)$	+0.016 -0.016	+0.031 -0.030	1	229		-0.131 (0.047)	+0.047 -0.048	+0.091 -0.093	_	_
$hybrid_{-}1$	-0.604 (0.050)	+0.052	+0.100	0.861 (0.266)	+0.292	+0.482	-0.274 (0.435)	+0.406	+0.842	0.124	0.0086

$hybrid_2$	-0.599 (0.058)	$^{+0.060}_{-0.051}$	$^{+0.109}_{-0.123}$	0.777 (0.345)	$^{+0.325}_{-0.391}$	$^{+0.662}_{-0.623}$	$-0.722 \ (1.546)$	$+1.498 \\ -1.169$	$^{+2.872}_{-3.676}$	0.141	0.0362
SD_7:											
Eis	-0.450 (0.080)	+0.086	+0.154	0.846 (0.369)	+0.237	+0.743	-0.938 (0.405)	+0.153	+0.795	5.002	0.0097
SC	-0.455 (0.124)	-0.070 +0.126	-0.161 +0.240	1.054 (1.037)	-0.417 +0.941	-0.638 +2.163	1.107 (3.589)	-0.410 +1.020	-0.594 +7.542	0.520	0.1179
$\Lambda \mathrm{CDM}$	-0.455 (0.019)	-0.127 +0.019	$-0.244 \\ +0.037$	1.001 (1.001)	-1.131	-1.909	-0.636 (0.056)	-3.849 +0.056 -0.056	-4.532 +0.108	-	-
hybrid_1	-0.449 (0.055)	-0.019 +0.038	-0.036 +0.114	0.908 (0.294)	+0.325	+0.538	-1.044 (0.337)	+0.243	-0.111 +0.633	5.125	0.0101
$hybrid_{-}2$	-0.454 (0.055)	-0.064 +0.042	-0.096 +0.124	0.929 (0.328)	-0.309 +0.336	-0.552 +0.619	-0.885 (1.184)	-0.331 +1.124	-0.625 +2.496	0.592	0.0463
ngor ta_z	0.404 (0.000)	-0.057	-0.101	0.525 (0.526)	-0.350	-0.600	0.000 (1.104)	-1.137	-2.429	0.032	0.0403
<i>SD_8</i> :											
Eis	$-0.486 \ (0.077)$	$^{+0.083}_{-0.070}$	$^{+0.142}_{-0.161}$	$0.868 \; (0.372)$	$^{+0.259}_{-0.429}$	$^{+0.763}_{-0.654}$	$-0.788 \; (0.367)$	$^{+0.144}_{-0.362}$	$^{+0.706}_{-0.550}$	4.263	0.0090
SC	$-0.492 \ (0.120)$	$^{+0.123}_{-0.120}$	$^{+0.232}_{-0.242}$	1.114 (1.021)	$^{+0.922}_{-1.110}$	$+2.008 \\ -1.930$	1.487 (3.847)	$^{+1.216}_{-4.272}$	$^{+7.971}_{-4.954}$	0.689	0.1135
$\Lambda \mathrm{CDM}$	$-0.489 \ (0.018)$	$^{+0.018}_{-0.018}$	$^{+0.036}_{-0.035}$	1			$-0.533 \ (0.055)$	$+0.053 \\ -0.054$	$^{+0.104}_{-0.108}$	_	_
$hybrid_1$	$-0.480 \ (0.053)$	$^{+0.040}_{-0.061}$	$^{+0.109}_{-0.094}$	0.903 (0.291)	$^{+0.318}_{-0.307}$	$+0.531 \\ -0.539$	$-0.866 \ (0.320)$	$^{+0.273}_{-0.314}$	$^{+0.666}_{-0.594}$	3.288	0.0101
$hybrid_2$	$-0.481 \; (0.056)$	$^{+0.043}_{-0.057}$	$^{+0.129}_{-0.106}$	$0.921\ (0.314)$	$^{+0.327}_{-0.336}$	$^{+0.590}_{-0.573}$	$-0.741\ (1.281)$	$^{+1.235}_{-1.216}$	$^{+2.582}_{-2.550}$	0.048	0.0397
GD 0											
<u>SD_9:</u>		+0.086	+0.146		+0.275	+0.824		+0.138	+0.815		
Eis	-0.515 (0.080)	-0.073 +0.128	-0.167 +0.253	0.893 (0.400)	-0.462 + 1.004	-0.707 +2.268	-0.617 (0.410)	-0.392 $+1.418$	-0.591 +8.981	2.584	0.0095
SC	$-0.520 \ (0.127)$	-0.127 +0.018	-0.247 +0.037	1.135 (1.097)	-1.162	-2.056	1.855 (4.226)	-4.744 +0.050	-5.647 +0.104	0.656	0.1381
ΛCDM	-0.517 (0.022)	-0.013 -0.017 +0.039	-0.035	1	10.220	+0.500	-0.448 (0.065)	-0.055	-0.110 $+0.656$	_	_
$hybrid_1$	-0.505 (0.052)	-0.060	+0.107 -0.093	0.885 (0.285)	$^{+0.329}_{-0.263}$ $^{+0.301}$	-0.565 +0.557	$-0.725 \ (0.317)$	+0.301 -0.303	-0.601 +2.599	2.396	0.0096
$hybrid_2$	-0.505 (0.055)	$^{+0.050}_{-0.052}$	$^{+0.117}_{-0.108}$	0.884 (0.301)	-0.343	-0.539	$-0.740 \ (1.324)$	$^{+1.261}_{-1.212}$	-2.766	0.030	0.0351
SD_10:											
Eis	-0.601 (0.084)	$^{+0.091}_{-0.077}$	$+0.152 \\ -0.169$	0.998 (0.475)	$+0.329 \\ -0.568$	+0.952 -0.820	-0.106 (0.691)	+0.095 -0.606	$^{+1.403}_{-0.821}$	0.496	0.0115
SC	-0.603 (0.130)	+0.128 -0.131	+0.255 -0.256	1.228 (1.197)	+1.061 -1.302	+2.557 -2.226	2.752 (5.300)	+1.905 -6.123	+11.322 -7.315	0.705	0.1513
$\Lambda \mathrm{CDM}$	-0.593 (0.017)	+0.017 -0.017	+0.033 -0.032	1	-1.502	-2.220	-0.220 (0.052)	+0.050 -0.051	+0.095 -0.098	_	_
$hybrid_1$	-0.571 (0.053)	+0.052 -0.055	+0.102 -0.102	0.841 (0.284)	$^{+0.326}_{-0.287}$	+0.502 -0.507	-0.406 (0.381)	+0.367 -0.372	+0.783 -0.713	0.494	0.0100
$hybrid_2$	-0.562 (0.060)	+0.059 -0.057	+0.102 $+0.119$ -0.125	0.761 (0.324)	+0.266 -0.405	+0.625 -0.557	-0.683 (1.299)	+1.103 -0.940	+2.639 -2.976	0.221	0.0334
		-0.007	-0.120		-0.400	-0.001		-0.540	-2.310		
<i>SD_11:</i>											
Eis	$-0.609 \ (0.083)$	$^{+0.091}_{-0.075}$	$^{+0.152}_{-0.173}$	1.012 (0.478)	$^{+0.314}_{-0.561}$	-0.821	$-0.050 \ (0.743)$	$^{+0.079}_{-0.636}$	$^{+1.517}_{-0.845}$	0.425	0.0113
SC	$-0.605 \ (0.126)$	$^{+0.127}_{-0.129}$	$^{+0.248}_{-0.237}$	1.182 (1.156)	$+1.065 \\ -1.249$	$^{+2.391}_{-2.121}$	$2.526 \ (5.028)$	$^{+2.042}_{-5.896}$	-7.048	0.897	0.1295
$\Lambda \mathrm{CDM}$	$-0.600 \ (0.016)$	$^{+0.016}_{-0.016}$	$^{+0.031}_{-0.030}$	1			$-0.199 \ (0.049)$	$+0.048 \\ -0.048$	$+0.091 \\ -0.094$	_	_
$hybrid_1$	$-0.586 \ (0.050)$	-0.054	-0.092	$0.886 \; (0.268)$	-0.251	$+0.475 \\ -0.536$	$-0.361 \ (0.411)$	$+0.409 \\ -0.386$	$+0.793 \\ -0.832$	0.320	0.0090
$hybrid_2$	$-0.578 \ (0.058)$	$+0.056 \\ -0.055$	$^{+0.110}_{-0.120}$	$0.807 \; (0.321)$	$^{+0.299}_{-0.376}$	$^{+0.604}_{-0.568}$	-0.665 (1.407)	$+1.399 \\ -1.106$	$^{+2.636}_{-3.213}$	0.185	0.0346
SD_12:											
Eis	-0.471 (0.080)	+0.086	+0.145	0.854 (0.378)	+0.259	+0.759	-0.841 (0.393)	+0.149	+0.750	4.177	0.0101
SC	-0.471 (0.000) $-0.479 (0.122)$	-0.072 +0.123	-0.163 +0.230	1.103 (1.037)		-0.654 +2.061	1.385 (3.815)	-0.386 +1.189	-0.571 + 7.897	0.621	0.1168
$\Lambda \mathrm{CDM}$	-0.476 (0.122) $-0.476 (0.019)$	-0.125 +0.018	-0.239 +0.037	1.103 (1.037)	-1.139	-1.951	-0.573 (0.056)	-4.167 $+0.055$ -0.055	-4.920 +0.107	0.021	-
hybrid_1	-0.470 (0.019) $-0.469 (0.052)$	-0.018 +0.039	-0.036 +0.108	0.907 (0.298)	$^{+0.322}_{-0.311}$	+0.529	-0.935 (0.304)	+0.281	-0.110 +0.602	4.059	0.0105
	` ′	-0.061 +0.040	-0.094 +0.128		+0.329	-0.566 +0.591		-0.296	-0.605 +2.550		0.0405
$hybrid_2$	$-0.471 \ (0.056)$	-0.057	-0.107	0.937 (0.321)	-0.352	-0.583	$-0.761 \ (1.281)$	$+1.235 \\ -1.219$	-2.559	0.072	0.0403
<u>SD_13:</u>											
Eis	$-0.501\ (0.083)$	$^{+0.090}_{-0.070}$	$+0.158 \\ -0.169$	0.899 (0.419)	$^{+0.262}_{-0.479}$	$^{+0.851}_{-0.716}$	$-0.688 \; (0.470)$	$^{+0.114}_{-0.416}$	$^{+0.865}_{-0.622}$	2.448	0.0112
SC	$-0.500 \; (0.125)$	$^{+0.125}_{-0.125}$	$^{+0.248}_{-0.244}$	1.088 (1.071)	$^{+0.967}_{-1.156}$	$^{+2.242}_{-1.976}$	1.545 (3.997)	$^{+1.207}_{-4.396}$	$^{+8.513}_{-5.193}$	0.629	0.1256
$\Lambda \mathrm{CDM}$	$-0.500 \; (0.018)$	$^{+0.018}_{-0.018}$	$^{+0.036}_{-0.035}$	1			$-0.501 \; (0.054)$	$^{+0.053}_{-0.053}$	$^{+0.105}_{-0.108}$	_	_
$hybrid_1$	$-0.489 \; (0.051)$	$^{+0.043}_{-0.059}$	$^{+0.111}_{-0.091}$	0.868 (0.298)	$^{+0.324}_{-0.314}$	$^{+0.531}_{-0.555}$	$-0.844 \ (0.299)$	$^{+0.272}_{-0.310}$	$^{+0.618}_{-0.553}$	3.122	0.0102
$hybrid_2$	$-0.491 \; (0.055)$	$^{+0.046}_{-0.057}$		0.907 (0.314)		$+0.585 \\ -0.558$	-0.747 (1.334)	$^{+1.265}_{-1.215}$	$^{+2.630}_{-2.755}$	0.005	0.0393

SD_14:											
Eis	-0.503 (0.082)	+0.090	+0.155	0.898 (0.420)	+0.246	+0.832	-0.668 (0.520)	+0.115	+0.797	2.041	0.0115
SC	-0.505 (0.129)	-0.068 +0.126	-0.167 +0.254	1.110 (1.091)	-0.472 $+1.011$	-0.700 +2.233	1.683 (4.079)	-0.412 $+1.377$	-0.613 +8.651	0.588	0.1364
$\Lambda \mathrm{CDM}$	-0.503 (0.018)	-0.131 +0.018	-0.243 +0.036	1	-1.161	-2.049	-0.492 (0.055)	-4.549 +0.053	-5.366 +0.103	_	_
$hybrid_{-}1$	-0.491 (0.053)	-0.018 +0.042	-0.034 +0.113	0.886 (0.296)	+0.325	+0.531	-0.793 (0.309)	-0.054 +0.292	-0.107 +0.620	2.800	0.0102
$hybrid_2$	-0.493 (0.055)	-0.062 +0.044		0.897 (0.314)	-0.318 $+0.324$	-0.563 +0.568	-0.748 (1.327)	-0.301 $+1.283$	-0.604 +2.763	0.034	0.0426
ngor ta_2	0.155 (0.055)	-0.055	-0.105	0.007 (0.011)	-0.342	-0.577	0.110 (1.021)	-1.245	-2.641	0.001	0.0120
<u>SD_15:</u>											
Eis	$-0.578 \; (0.085)$	$^{+0.092}_{-0.074}$	$^{+0.160}_{-0.172}$	$0.987\ (0.475)$	$^{+0.291}_{-0.545}$	$^{+0.975}_{-0.806}$	$-0.230 \ (0.712)$	$^{+0.069}_{-0.559}$	$^{+1.351}_{-0.792}$	0.656	0.0124
SC	$-0.579 \ (0.124)$	$^{+0.133}_{-0.120}$	$^{+0.235}_{-0.250}$	1.204 (1.124)	$^{+0.967}_{-1.272}$	$^{+2.268}_{-2.054}$	$2.417 \ (4.877)$	$^{+1.726}_{-5.578}$	$^{+10.513}_{-6.631}$	1.003	0.1187
$\Lambda \mathrm{CDM}$	$-0.570 \ (0.017)$	$^{+0.017}_{-0.017}$	$^{+0.033}_{-0.032}$	1			$-0.290 \ (0.051)$	$^{+0.051}_{-0.051}$	$^{+0.096}_{-0.100}$	_	_
$hybrid_1$	$-0.554 \ (0.051)$	$^{+0.043}_{-0.056}$	$^{+0.106}_{-0.093}$	$0.874\ (0.275)$	$^{+0.300}_{-0.293}$	$^{+0.494}_{-0.528}$	$-0.495 \ (0.367)$	$^{+0.365}_{-0.360}$	$^{+0.727}_{-0.724}$	0.653	0.0090
$hybrid_2$	$-0.550 \ (0.056)$	$^{+0.053}_{-0.054}$	$^{+0.114}_{-0.114}$	$0.825\ (0.310)$	$^{+0.306}_{-0.353}$	$^{+0.573}_{-0.553}$	$-0.710 \ (1.416)$	$^{+1.432}_{-1.118}$	$^{+2.678}_{-3.176}$	0.160	0.0353
SD_16:											
	0.612 (0.095)	+0.097	+0.153	1 012 (0 501)	+0.302	+1.044	0.015 (0.704)	+0.059	+1.710	0.255	0.0124
Eis SC	-0.612 (0.085)	-0.072 +0.130	-0.181 +0.241	1.013 (0.501)	-0.601 +1.001	-0.835 +2.345	-0.015 (0.794)	-0.692 +1.964	-0.894 +10.775	0.355 0.996	0.0124
	-0.612 (0.123)	-0.121 $+0.016$ -0.016	-0.244 +0.031	1.213 (1.124)	-1.236	-2.089	2.597 (4.978)	-5.916	-7.082 +0.093		0.1176
ACDM	-0.603 (0.016)	-0.016 +0.054	-0.031 +0.103	0.927 (0.296)	+0.310	+0.502	-0.192 (0.049)	+0.048 -0.049 $+0.400$	-0.094 +0.774	0.207	0.0001
hybrid_1	-0.580 (0.052)	-0.053 +0.055	-0.102 +0.113	0.837 (0.286)	-0.319 $+0.313$	-0.510 +0.604	-0.372 (0.397)	-0.371 + 1.472	-0.763 +2.803	0.307	0.0091
$hybrid_2$	-0.577 (0.058)	-0.053	-0.120	0.794 (0.325)	-0.375	-0.578	$-0.656 \ (1.476)$	-1.152	-3.378	0.159	0.0367
<u>SD_17:</u>											
Eis	$-0.596 \ (0.088)$	$^{+0.097}_{-0.075}$	$^{+0.166}_{-0.179}$	1.000 (0.517)	$^{+0.317}_{-0.589}$	$^{+1.053}_{-0.877}$	$-0.085 \; (0.850)$	$^{+0.032}_{-0.640}$	$^{+1.586}_{-0.889}$	0.399	0.0146
SC	$-0.590 \ (0.118)$	$^{+0.131}_{-0.108}$	$^{+0.214}_{-0.236}$	1.142 (1.070)	$^{+0.950}_{-1.146}$	$^{+2.291}_{-1.860}$	$2.173\ (4.691)$	$^{+1.574}_{-5.502}$	$^{+10.887}_{-6.317}$	1.152	0.1023
$\Lambda \mathrm{CDM}$	$-0.588 \; (0.016)$	$^{+0.016}_{-0.016}$	$^{+0.032}_{-0.030}$	1			$-0.237 \; (0.049)$	$^{+0.049}_{-0.048}$	$^{+0.091}_{-0.096}$	_	_
$hybrid_1$	$-0.572 \ (0.049)$	$^{+0.046}_{-0.051}$	$^{+0.096}_{-0.092}$	0.871 (0.266)	$^{+0.297}_{-0.259}$	$^{+0.473}_{-0.508}$	$-0.440 \ (0.375)$	$^{+0.365}_{-0.375}$	$^{+0.740}_{-0.738}$	0.544	0.0085
$hybrid_2$	$-0.562 \ (0.059)$		$^{+0.110}_{-0.125}$	$0.797 \ (0.331)$	$^{+0.305}_{-0.393}$	$^{+0.621}_{-0.577}$	$-0.667 \ (1.407)$	$+1.362 \\ -1.009$	$^{+2.803}_{-3.238}$	0.277	0.0375
SD_18:											
	0.500 (0.000)	+0.091	+0.155	0.007 (0.400)	+0.264	+0.838	0.640 (0.400)	+0.133	+0.837	2.605	0.0100
Eis	-0.506 (0.082)	-0.071 +0.130	-0.166 +0.232	0.887 (0.409)	-0.474 +0.905	-0.705 +2.115	-0.649 (0.432)	-0.407 +1.281	-0.614 +8.657	2.605	0.0102
SC	-0.509 (0.125)	-0.129	-0.242 +0.035	1.111 (1.062) 1	-1.212	-1.953	1.663 (4.120)	-4.527	-5.417 +0.102	0.716	0.1241
ACDM	-0.508 (0.018)	+0.018 -0.017 $+0.043$	-0.034 +0.110	0.884 (0.293)	+0.314	+0.538	-0.475 (0.053)	+0.052 -0.053 $+0.295$	-0.105 +0.604	2.766	0.0103
$hybrid_1$ $hybrid_2$	-0.496 (0.053)	-0.062 +0.047	-0.091 +0.129		-0.306 +0.351	-0.548 +0.582	-0.775 (0.315)	-0.297 +1.240	-0.643 +2.595		0.0103
11y011a_2	$-0.495 \ (0.057)$	-0.059	-0.106	0.879 (0.318)	-0.323	-0.620	-0.716 (1.306)	-1.154	-2.704	0.052	0.0429
<u>SD_19:</u>											
Eis	$-0.521\ (0.083)$	$^{+0.092}_{-0.069}$	$^{+0.156}_{-0.170}$	$0.918\ (0.433)$	$^{+0.259}_{-0.494}$	$^{+0.889}_{-0.733}$	$-0.570 \ (0.523)$	$^{+0.107}_{-0.433}$	$^{+0.918}_{-0.659}$	1.817	0.0114
SC	$-0.523 \ (0.123)$	$^{+0.126}_{-0.126}$	$^{+0.237}_{-0.239}$	1.131 (1.070)	$^{+0.977}_{-1.190}$	$^{+2.182}_{-1.947}$	$1.796 \ (4.143)$	$^{+1.450}_{-4.726}$	$+8.897 \\ -5.516$	0.848	0.1164
$\Lambda \mathrm{CDM}$	$-0.520 \ (0.018)$	$^{+0.017}_{-0.017}$	$^{+0.034}_{-0.034}$	1			$-0.440 \ (0.054)$	$^{+0.052}_{-0.052}$	$^{+0.103}_{-0.102}$	_	_
$hybrid_1$	$-0.509 \; (0.050)$	$^{+0.043}_{-0.056}$	$^{+0.103}_{-0.093}$	$0.889\ (0.288)$	$^{+0.321}_{-0.283}$	$^{+0.519}_{-0.539}$	$-0.731 \ (0.313)$	$^{+0.293}_{-0.293}$	$^{+0.630}_{-0.617}$	2.029	0.0097
$hybrid_2$	$-0.504 \ (0.058)$	$^{+0.052}_{-0.054}$	$^{+0.122}_{-0.116}$	$0.876\ (0.315)$	$^{+0.312}_{-0.357}$	$^{+0.581}_{-0.557}$	$-0.672 \ (1.272)$	$^{+1.260}_{-1.160}$	$^{+2.526}_{-2.685}$	0.176	0.0397
SD_20:											
Eis	-0.480 (0.079)	+0.085	+0.146	0.864 (0.373)	+0.252	+0.766	-0.801 (0.373)	$^{+0.148}_{-0.379}$	+0.747	4.270	0.0090
SC	-0.486 (0.125)	-0.071 $+0.125$	-0.165 +0.245	1.092 (1.058)	-0.433 +0.973 -1.145	-0.653 +2.204	1.447 (3.829)	-0.379 +1.275 -4.245	-0.569 $+8.171$	0.610	0.1249
$\Lambda \mathrm{CDM}$	-0.483 (0.019)		-0.242 $+0.037$	1	-1.145	-1.917	-0.550 (0.056)	+0.054	-5.030 $+0.106$	-	-
$hybrid_{-}1$	-0.476 (0.053)	-0.018 +0.041	-0.035 +0.109	0.896 (0.288)	+0.315	+0.520	-0.900 (0.302)	-0.054 +0.283	-0.112 $+0.632$	3.758	0.0094
$hybrid_2$	-0.477 (0.055)	-0.061 +0.043	-0.094 +0.119	0.914 (0.314)	-0.311 $+0.313$	-0.530 +0.583	-0.780 (1.272)	-0.295 $+1.217$	-0.571 +2.538	0.023	0.0398
	(0.000)	-0.056	-0.107	(5.611)	-0.354	-0.569	(1.212)	-1.185	-2.537	0.020	2.0300
SD_21:											

Eis	$-0.442 \ (0.079)$	$^{+0.084}_{-0.071}$	$^{+0.146}_{-0.163}$	$0.833 \ (0.354)$	$^{+0.244}_{-0.408}$	$^{+0.713}_{-0.622}$	-0.978 ((0.373)	$^{+0.162}_{-0.404}$	$^{+0.773}_{-0.585}$	6.603	0.0092
SC	$-0.447 \ (0.122)$	$^{+0.122}_{-0.125}$	$+0.242 \\ -0.239$	$1.054\ (1.012)$	$+0.918 \\ -1.080$	$^{+2.054}_{-1.927}$	1.039 ((3.455)	$+0.984 \\ -3.656$	$^{+7.219}_{-4.367}$	0.444	0.1205
$\Lambda \mathrm{CDM}$	$-0.449 \ (0.019)$	$^{+0.019}_{-0.019}$	$+0.038 \\ -0.037$	1			-0.654 (0.058)	$+0.058 \\ -0.057$	$^{+0.111}_{-0.113}$	_	_
$hybrid_1$	$-0.444 \ (0.055)$	$^{+0.038}_{-0.066}$	+0.114 -0.094	0.914 (0.293)	$^{+0.320}_{-0.310}$	$^{+0.534}_{-0.541}$	-1.079 ((0.326)	$+0.238 \\ -0.329$	$^{+0.625}_{-0.619}$	5.909	0.0096
$hybrid_2$	$-0.450 \ (0.056)$	+0.037 -0.059	$+0.132 \\ -0.102$	0.964 (0.326)	$+0.339 \\ -0.350$	$+0.609 \\ -0.595$	-0.856 (1.222)	$+1.090 \\ -1.215$	$^{+2.553}_{-2.387}$	0.575	0.0410
SD_22:												
Eis	$-0.584 \ (0.082)$	$^{+0.091}_{-0.071}$	$^{+0.148}_{-0.171}$	$0.979 \; (0.456)$	$^{+0.292}_{-0.536}$	$^{+0.947}_{-0.779}$	-0.223 ((0.630)	$^{+0.083}_{-0.542}$	$^{+1.325}_{-0.758}$	0.694	0.0106
SC	$-0.586 \; (0.122)$	$+0.122 \\ -0.123$	$+0.235 \\ -0.240$	1.197 (1.108)	$+1.006 \\ -1.207$	$^{+2.291}_{-2.018}$	2.378 (4.722)	$+1.866 \\ -5.565$	$+9.980 \\ -6.605$	0.913	0.1209
$\Lambda \mathrm{CDM}$	-0.577 (0.017)	$^{+0.017}_{-0.016}$	+0.032 -0.034	1			-0.270 (0.051)	$+0.048 \\ -0.050$	$+0.101 \\ -0.096$	_	_
$hybrid_1$	-0.561 (0.053)	$^{+0.046}_{-0.057}$	$^{+0.112}_{-0.098}$	0.882 (0.275)	$^{+0.307}_{-0.271}$	$^{+0.496}_{-0.517}$	-0.452 (0.379)	$^{+0.372}_{-0.365}$	$^{+0.730}_{-0.766}$	0.761	0.0095
$hybrid_2$	-0.553 (0.057)	+0.055 -0.053	+0.115 -0.121	0.814 (0.316)	+0.313 -0.356		-0.668 (1.401)	$+1.451 \\ -1.041$	$+2.641 \\ -3.219$	0.183	0.0358
	,	-0.033	-0.121	` ,	-0.330	-0.500	`	,	-1.041	-3.219		
SD_23:												
Eis	$-0.603 \; (0.084)$	$+0.094 \\ -0.075$	$+0.155 \\ -0.167$	0.987 (0.487)	$+0.330 \\ -0.579$	$^{+0.980}_{-0.837}$	-0.071 (0.716)	$+0.088 \\ -0.624$	$^{+1.474}_{-0.840}$	0.436	0.0114
SC	$-0.606 \ (0.126)$	$^{+0.130}_{-0.123}$	$^{+0.246}_{-0.255}$	1.206 (1.151)	$^{+1.012}_{-1.263}$	$+2.490 \\ -2.099$	2.601 (5.148)	$^{+1.993}_{-5.881}$	$^{+12.002}_{-7.147}$	0.998	0.1270
$\Lambda \mathrm{CDM}$	-0.598 (0.016)	$^{+0.016}_{-0.016}$	$^{+0.031}_{-0.032}$	1			-0.206 (0.049)	$^{+0.049}_{-0.048}$	$^{+0.095}_{-0.093}$	_	_
$hybrid_{-}1$	-0.579 (0.052)	+0.047	+0.111	0.858 (0.281)	+0.320	+0.504	-0.380 (0.400)	+0.386 -0.409	+0.793	0.431	0.0092
$hybrid_2$	-0.573 (0.058)	-0.055 +0.057	-0.098 +0.113	0.785 (0.323)	-0.267 +0.303	-0.533 +0.614	-0.710 (1.482)	-0.409 $+1.590$ -1.010	-0.769 +2.717	0.289	0.0356
11g 0 7 ta=2	0.010 (0.000)	-0.055	-0.119	0.100 (0.020)	-0.375	-0.572	01110 (11.102)	-1.010	-3.359	0.200	0.0000
SD_24:												
Eis	-0.577 (0.086)	$^{+0.093}_{-0.074}$	$^{+0.163}_{-0.172}$	0.990 (0.490)	$^{+0.300}_{-0.548}$	$+0.975 \\ -0.833$	-0.226 (0.778)	$+0.059 \\ -0.573$	$^{+1.306}_{-0.799}$	0.605	0.0135
SC	-0.568 (0.123)	$^{+0.124}_{-0.127}$	$^{+0.237}_{-0.237}$	1.125 (1.097)	$+1.046 \\ -1.162$	$+2.251 \\ -1.981$	2.071 (4.454)		$^{+10.077}_{-6.192}$	0.936	0.1234
$\Lambda \mathrm{CDM}$	-0.569(0.017)	+0.017 -0.018	+0.034 -0.033	1	-1.102	-1.501	-0.294 (0.052)	+0.053 -0.052	+0.098 -0.101	_	_
$hybrid_1$	-0.553 (0.052)	+0.048	+0.103	0.866 (0.291)	+0.339	+0.513	-0.512 (· /	+0.353	+0.706	0.679	0.0098
$hybrid_2$	-0.551 (0.056)	-0.058 +0.054	-0.096 +0.110	0.830 (0.310)	-0.272 +0.296	-0.547 +0.577	-0.731 (-0.379 +1.421	-0.700 +2.664	0.202	0.0347
	(0.002)	-0.052	-0.118	(0.010)	-0.361	-0.547	0.7.02 (/	-1.108	-3.192	0.202	0.00
<u>SD_25:</u>												
Eis	$-0.534 \ (0.080)$	$^{+0.087}_{-0.073}$	$^{+0.147}_{-0.167}$	$0.922\ (0.415)$	$+0.283 \\ -0.476$	$^{+0.841}_{-0.725}$	-0.518 ((0.472)	+0.119 -0.416	$+0.863 \\ -0.633$	1.934	0.0101
SC	$-0.532 \ (0.121)$	+0.127 -0.126	+0.226 -0.234	1.110 (1.059)	+0.962 -1.186	$+2.077 \\ -1.945$	1.778 (4.158)	$+1.500 \\ -4.847$	$+8.755 \\ -5.632$	1.041	0.1089
$\Lambda \mathrm{CDM}$	$-0.533 \ (0.017)$	$^{+0.017}_{-0.017}$	+0.035 -0.033	1			-0.402 ((0.052)	$+0.051 \\ -0.052$	$+0.098 \\ -0.104$	_	_
$hybrid_1$	-0.520 (0.051)	$+0.042 \\ -0.056$	$+0.105 \\ -0.096$	0.889 (0.277)	$+0.298 \\ -0.298$	$+0.501 \\ -0.524$	-0.658 (0.340)	+0.317 -0.333	$^{+0.681}_{-0.663}$	1.596	0.0094
$hybrid_2$	-0.514 (0.056)	+0.053 -0.054	+0.117 -0.111	0.848 (0.304)	+0.300 -0.350	+0.571 -0.530	-0.698 (1.296)	$+1.220 \\ -1.124$	+2.592 -2.909	0.075	0.0358
	,	-0.034	-0.111	` ,	-0.330	-0.530	`	,	-1.124	-2.909		
<u>SD_26:</u>												
Eis	$-0.535 \ (0.083)$	$^{+0.090}_{-0.072}$	$^{+0.156}_{-0.165}$	$0.935\ (0.435)$	$^{+0.272}_{-0.499}$	$^{+0.871}_{-0.741}$	-0.499 ((0.556)	$^{+0.103}_{-0.443}$	$+0.928 \\ -0.663$	1.472	0.0112
SC	$-0.539 \ (0.126)$	$^{+0.124}_{-0.126}$	$+0.248 \\ -0.254$	1.171 (1.105)	$^{+0.977}_{-1.200}$		2.068 (4.501)	$^{+1.467}_{-4.996}$	$+9.443 \\ -5.962$	0.709	0.1298
$\Lambda \mathrm{CDM}$	$-0.532 \ (0.017)$	$^{+0.017}_{-0.017}$	$^{+0.034}_{-0.033}$	1			-0.403 ((0.052)	$^{+0.050}_{-0.050}$	$^{+0.100}_{-0.102}$	_	_
$hybrid_1$	-0.518 (0.052)	$^{+0.043}_{-0.058}$	$^{+0.112}_{-0.092}$	0.880 (0.286)	$^{+0.323}_{-0.277}$	$^{+0.516}_{-0.539}$	-0.659 ((0.335)	$^{+0.321}_{-0.312}$	$^{+0.655}_{-0.647}$	1.711	0.0096
$hybrid_2$	-0.518 (0.054)	+0.049 -0.052	+0.113 -0.109	0.881 (0.301)	+0.308 -0.338	+0.547 -0.534	-0.664 (1.347)	+1.283 -1.217	$+2.730 \\ -2.809$	0.074	0.0349
		-0.032	-0.109		-0.338	-0.554			-1.217	-2.809		
<u>SD_27:</u>												
Eis	$-0.601 \; (0.089)$	$^{+0.102}_{-0.074}$	$^{+0.163}_{-0.179}$	$0.992\ (0.526)$	$^{+0.312}_{-0.619}$	$^{+1.078}_{-0.877}$	-0.057 ((0.853)	$^{+0.070}_{-0.657}$	$^{+1.815}_{-1.031}$	0.334	0.0145
SC	$-0.605 \ (0.127)$	$^{+0.136}_{-0.124}$	$^{+0.240}_{-0.244}$	$1.242\ (1.173)$	$^{+1.036}_{-1.329}$	$^{+2.433}_{-2.090}$	2.758 (5.243)	$^{+1.931}_{-6.218}$	$^{+11.294}_{-7.182}$	0.936	0.1286
$\Lambda \mathrm{CDM}$	$-0.594 \ (0.017)$	$^{+0.016}_{-0.016}$	+0.033 -0.032	1			-0.219 ((0.050)	+0.049 -0.049	+0.095 -0.098	_	_
$hybrid_1$	-0.575 (0.051)	+0.048 -0.054	+0.104 -0.096	0.866 (0.277)	$^{+0.311}_{-0.264}$	$+0.500 \\ -0.528$	-0.407 (0.393)	+0.381 -0.396	+0.757 -0.779	0.345	0.0091
$hybrid_2$	-0.569 (0.056)	+0.054 -0.053		0.797 (0.318)		+0.582	-0.680 (1.456)	+1.455 -1.145	+2.794 -3.310	0.218	0.0340
	, ,	0.003	U.11U	` '	5.511	5.501	`	,	1.140	5.510		
SD_28:												
Eis	$-0.513 \ (0.083)$	$^{+0.090}_{-0.070}$	$^{+0.157}_{-0.167}$	$0.910\ (0.425)$	$^{+0.254}_{-0.481}$	$^{+0.849}_{-0.715}$	-0.612 ((0.527)	$^{+0.114}_{-0.424}$	$^{+0.855}_{-0.641}$	1.947	0.0113

SC $-0.519 \ (0.126) \ \frac{+0.127}{-0.129} \ \frac{+0.244}{-0.246}$ $1.158 \ (1.092) \ \frac{+0.939}{-1.2905} \ \frac{+2.205}{-1.2905}$ $1.888 \ (4.261) \ \frac{+1.495}{-4.787} \ \frac{+9.003}{-5.601}$ 0.732 ACDM $-0.511 \ (0.018) \ \frac{+0.018}{-0.017} \ \frac{+0.035}{-0.035}$ 1 $-0.466 \ (0.054) \ \frac{+0.052}{-0.053} \ \frac{+0.104}{-0.053} \ -0.105$ -0.105 $-$	0.1260 - 0.0101
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.0101
$hybrid_2 -0.501 \; (0.054) \; \begin{array}{c} -0.045 \; +0.119 \\ -0.053 \; -0.105 \end{array} 0.894 \; (0.306) \; \begin{array}{c} +0.309 \; +0.570 \\ -0.345 \; -0.558 \end{array} -0.718 \; (1.328) \; \begin{array}{c} +1.281 \; +2.628 \\ -1.222 \; -2.799 \end{array} 0.014$	010-0-
- 0.040 - 0.000 - 0.100	0.0365
<u>SD-29:</u>	0.0000
$Eis \qquad \qquad -0.594 \; (0.085) \; {}^{+0.093}_{-0.075} \; {}^{+0.163}_{-0.170} \qquad 1.009 \; (0.488) \; {}^{+0.297}_{-0.563} \; {}^{+0.983}_{-0.831} \qquad -0.131 \; (0.782) \; {}^{+0.059}_{-0.611} \; {}^{+1.469}_{-0.847} \qquad 0.515$	0.0127
SC $ -0.592 \ (0.128) \ \begin{array}{c} +0.130 \\ -0.132 \ -0.248 \end{array} 1.200 \ (1.161) \ \begin{array}{c} +1.085 \\ -1.256 \ -2.127 \end{array} 2.536 \ (4.994) \ \begin{array}{c} +1.947 \\ -5.859 \ -6.838 \end{array} 0.869 $	0.1344
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_
$hybrid_1 \qquad -0.566 \; (0.051) \; \substack{+0.046 \\ -0.054} \; \substack{+0.100 \\ -0.097} \qquad 0.868 \; (0.268) \; \substack{+0.298 \\ -0.261} \; \substack{+0.488 \\ -0.261} \qquad -0.436 \; (0.377) \; \substack{+0.385 \\ -0.372} \; \substack{+0.730 \\ -0.372} \qquad 0.501 \; \substack{-0.501 \\ -0.729} \qquad 0.501 \; \substack{-0.046 \\ -0.0729} \; \substack{-0.046 \\ -0.0729} \; \substack{-0.048 \\ -0.0489} \; -0.048$	0.0087
$hybrid_2 \qquad -0.556 \; (0.057) \; \substack{+0.054 \\ -0.057} \; \substack{+0.114 \\ -0.057} \; \substack{-0.115} \qquad 0.779 \; (0.307) \; \substack{+0.293 \\ -0.362} \; \substack{+0.568 \\ -0.536} \qquad -0.705 \; (1.412) \; \substack{+1.459 \\ -1.087} \; \substack{+2.679 \\ -3.151} \qquad 0.301 \; \substack{-0.301 \\ -0.301} \; \substack{-0.302 \\ -0.536} \; \substack{-0.536 \\ -0.536} \; \substack{-0.705 \\ -0.536} \; \substack{-0.705 \\ -0.302} \; \substack{-0.705 \\ -0.702} \; $	0.0352
CD 20.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0098
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1221
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_
$hybrid_1 -0.477 \; (0.052) \; ^{+0.041}_{-0.060} \; \; ^{+0.109}_{-0.095} 0.909 \; (0.288) \; ^{+0.315}_{-0.307} \; ^{+0.515}_{-0.541} -0.900 \; (0.304) \; ^{+0.286}_{-0.290} \; ^{+0.617}_{-0.572} 3.753$	0.0094
$hybrid_2 \qquad -0.473 \; (0.059) \; ^{+0.043}_{-0.064} \; ^{+0.133}_{-0.108} \qquad 0.903 \; (0.323) \; ^{+0.357}_{-0.339} \; ^{+0.585}_{-0.580} \qquad -0.788 \; (1.252) \; ^{+1.188}_{-1.164} \; ^{+2.459}_{-2.531} \qquad 0.079$	0.0424
SD_31:	
Fic = -0.413 (0.076) +0.083 +0.139 = 0.804 (0.326) +0.235 +0.662 = -1.007 (0.374) +0.191 +0.783 = 10.425	0.0085
-0.421 (0.123) +0.126 +0.237 +0.042 (1.001) +0.902 +1.990 +0.840 (3.277) +0.820 +6.947 +0.328	0.1174
ACDM = 0.424 (0.022) +0.020 +0.037 1 = 0.728 (0.066) +0.056 +0.114	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0117
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0480
$\frac{1}{10000000000000000000000000000000000$	0.0100
<u>SD_32:</u>	
$Eis \qquad \qquad -0.439\; (0.077) \; {}^{+0.082}_{-0.071} \; {}^{+0.145}_{-0.159} \qquad 0.822\; (0.341) \; {}^{+0.247}_{-0.392} \; {}^{+0.697}_{-0.609} \qquad -0.987\; (0.359) \; {}^{+0.169}_{-0.399} \; {}^{+0.764}_{-0.575} \qquad 7.980$	0.0085
SC $ -0.446 \ (0.125) \ \begin{array}{c} +0.125 \ -0.248 \end{array} 1.046 \ (1.028) \ \begin{array}{c} +0.915 \ -1.112 \ -1.872 \end{array} 1.049 \ (3.520) \ \begin{array}{c} +0.956 \ +7.502 \\ -3.707 \ -4.386 \end{array} 0.422 $	0.1253
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_
$hybrid_1 \qquad -0.446 \ (0.054) \ \ ^{+0.044}_{-0.062} \ \ ^{+0.012}_{-0.097} \qquad 0.903 \ (0.311) \ \ ^{+0.351}_{-0.304} \ \ ^{+0.553}_{-0.583} \qquad -1.081 \ (0.318) \ \ ^{+0.251}_{-0.320} \ \ ^{+0.617}_{-0.616} \qquad 5.163$	0.0124
$hybrid_2 \qquad -0.446 \; (0.057) \; \substack{+0.038 \\ -0.062} \; \substack{+0.131 \\ -0.103} \qquad 0.945 \; (0.331) \; \substack{+0.364 \\ -0.339} \; \substack{+0.591 \\ -0.619} \qquad -0.832 \; (1.186) \; \substack{+1.112 \\ -1.127} \; \substack{+2.491 \\ -2.314} \qquad 0.546 \; \substack{-1.127 \\ -2.314} \qquad 0.546 \; -1.127 \\ -2.$	0.0466
an ee.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0117
-0.004 (0.124) -0.124 -0.246 1.169 (1.110) -1.192 -2.021 2.209 (4.026) -5.303 -6.414 0.006	0.1285
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0097
$hybrid_2 \qquad -0.533 \; (0.056) \; ^{+0.051}_{-0.054} \; ^{+0.119}_{-0.109} \qquad 0.824 \; (0.313) \; ^{+0.320}_{-0.344} \; ^{+0.574}_{-0.563} \qquad -0.702 \; (1.427) \; ^{+1.413}_{-1.084} \; ^{+2.749}_{-3.260} \qquad 0.181$	0.0385
SD_34:	
Eis $-0.646 (0.087) ^{+0.096}_{-0.075} ^{+0.164}_{-0.177} $	0.0142
SC = 0.636 (0.128) +0.127 +0.251	0.1406
ACDM = 0.628 (0.016) +0.016 +0.031 1 = 0.115 (0.040) +0.047 +0.088	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0087
hibrid 9 0.605 (0.050) +0.059 +0.116 0.769 (0.257) +0.327 +0.700 0.910 (1.564) +1.599 +2.727 0.269	0.0370
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$SD_{-}35$:	
	0.0154
$Eis \qquad -0.610 \; (0.086) \; {}^{+0.097}_{-0.073} \; {}^{+0.159}_{-0.173} \qquad 1.017 \; (0.522) \; {}^{+0.298}_{-0.597} \; {}^{+1.036}_{-0.840} \qquad -0.005 \; (0.971) \; {}^{+0.038}_{-0.694} \; {}^{+1.653}_{-0.922} \qquad 0.277$	0.0154

$\Lambda \mathrm{CDM}$	-0.600 (0.016)	$^{+0.016}_{-0.016}$	$^{+0.031}_{-0.031}$	1			-0.199	(0.048)	$^{+0.048}_{-0.049}$	+0.092 -0.093	_	_
$hybrid_{-}1$	-0.585 (0.052)	+0.044	+0.110	0.886 (0.264)	+0.298	+0.471		(0.410)	+0.399 -0.394	+0.795 -0.833	0.471	0.0088
$hybrid_2$	-0.577 (0.055)	-0.054 +0.056	-0.097 $+0.105$	0.793 (0.317)	-0.253 +0.302 -0.364	-0.520 $+0.597$	-0.709	(1.458)	-0.394 $+1.465$ -1.104	+2.728	0.273	0.0325
v	,	-0.050	-0.113	,	-0.304	-0.567		,	-1.104	-3.361		
SD_36:												
Eis	$-0.623 \ (0.085)$	$^{+0.096}_{-0.073}$	$^{+0.151}_{-0.181}$	$1.032\ (0.512)$	-0.605	$^{+1.075}_{-0.855}$	0.069	(0.871)	$+0.050 \\ -0.729$	$^{+1.868}_{-0.957}$	0.293	0.0127
SC	$-0.626 \ (0.126)$	$^{+0.127}_{-0.130}$	$^{+0.243}_{-0.246}$	$1.253\ (1.180)$	$^{+1.071}_{-1.308}$	$+2.447 \\ -2.177$	2.898	(5.381)	$+2.133 \\ -6.442$	$+11.565 \\ -7.601$	0.953	0.1292
$\Lambda \mathrm{CDM}$	$-0.614 \ (0.016)$	$^{+0.015}_{-0.015}$	$^{+0.031}_{-0.031}$	1			-0.158	(0.047)	$+0.046 \\ -0.045$	$^{+0.092}_{-0.092}$	_	-
$hybrid_1$	$-0.597 \ (0.050)$	$^{+0.045}_{-0.053}$	$+0.101 \\ -0.092$	$0.875 \ (0.260)$	$^{+0.289}_{-0.251}$	$^{+0.471}_{-0.516}$	-0.324	(0.412)	$^{+0.416}_{-0.398}$	$^{+0.790}_{-0.831}$	0.275	0.0082
$hybrid_2$	$-0.589 \ (0.057)$	$+0.058 \\ -0.051$	$+0.109 \\ -0.120$	0.783 (0.330)	$^{+0.322}_{-0.364}$	$+0.636 \\ -0.590$	-0.696	(1.531)	$^{+1.519}_{-1.071}$	$+2.858 \\ -3.608$	0.169	0.0346
SD_37:												
Eis	-0.495 (0.081)	+0.086 -0.072	$+0.155 \\ -0.162$	0.887 (0.397)	$+0.257 \\ -0.452$	$+0.799 \\ -0.687$	-0.723	(0.435)	+0.136 -0.395	$+0.784 \\ -0.599$	2.871	0.0102
SC	$-0.500 \ (0.125)$	+0.126 -0.128	+0.233 -0.248	1.119 (1.077)	+0.935 -1.210	+2.173 -1.983	1.643	(4.116)	$+1.234 \\ -4.497$	$+8.932 \\ -5.349$	0.702	0.1275
$\Lambda \mathrm{CDM}$	-0.496 (0.018)	$^{+0.018}_{-0.018}$	+0.035 -0.034	1			-0.511	(0.055)	+0.054 -0.055	$+0.103 \\ -0.106$	_	_
$hybrid_1$	-0.485 (0.053)	$^{+0.042}_{-0.060}$	$^{+0.109}_{-0.095}$	0.879 (0.293)	$^{+0.318}_{-0.320}$	$^{+0.527}_{-0.535}$	-0.829	(0.312)	$^{+0.269}_{-0.314}$	$^{+0.661}_{-0.585}$	2.928	0.0101
$hybrid_2$	$-0.488 \; (0.055)$	$^{+0.044}_{-0.055}$	$^{+0.121}_{-0.108}$	0.910 (0.307)	$^{+0.309}_{-0.346}$	$^{+0.569}_{-0.551}$	-0.745	(1.325)	$^{+1.261}_{-1.202}$	$^{+2.617}_{-2.818}$	0.016	0.0400
SD_38:												
Eis	-0.478 (0.081)	+0.087	+0.146	0.869 (0.392)	+0.253	+0.787	-0.806	(0.420)	+0.144	+0.763	3.518	0.0105
SC	-0.486 (0.122)	-0.071 +0.125	-0.170 +0.232	1.129 (1.043)	-0.445 $+0.887$	-0.676 +2.098		(3.967)	-0.394 $+1.144$ -4.250	$-0.590 \\ +8.339$	0.643	0.1147
ΛCDM	-0.481 (0.018)	-0.122 +0.018	-0.236 +0.036	1.125 (1.015)	-1.172	-1.935		(0.055)	+0.053	-5.004 +0.105	-	-
hybrid_1	-0.473 (0.054)	-0.018 +0.041	-0.035 +0.109	0.894 (0.296)	+0.337	+0.521		(0.313)	-0.053 +0.268	-0.108 +0.601	3.659	0.0105
hybrid_2	-0.475 (0.057)	-0.062 +0.043	-0.096 +0.126	0.919 (0.323)	-0.293 +0.349	-0.557 +0.588		(1.282)	-0.314 $+1.188$ -1.184	-0.614 +2.611	0.028	0.0451
10907100=2	0.110 (0.001)	-0.060	-0.105	0.010 (0.020)	-0.336	-0.616	002	(1.202)	-1.184	-2.663	0.020	0.0101
SD_39:												
Eis	$-0.512 \ (0.082)$	$^{+0.088}_{-0.072}$	$^{+0.155}_{-0.165}$	0.903 (0.414)	$^{+0.266}_{-0.476}$	$^{+0.842}_{-0.721}$	-0.624	(0.463)	$^{+0.121}_{-0.411}$	$^{+0.832}_{-0.621}$	2.244	0.0104
SC	$-0.517 \ (0.125)$	$+0.127 \\ -0.126$	$^{+0.241}_{-0.244}$	$1.132\ (1.084)$	$+0.980 \\ -1.177$	$+2.256 \\ -1.978$	1.779	(4.195)	$+1.387 \\ -4.695$	$+8.816 \\ -5.528$	0.712	0.1268
$\Lambda \mathrm{CDM}$	$-0.512 \ (0.018)$	$^{+0.018}_{-0.018}$	$^{+0.035}_{-0.036}$	1			-0.464	(0.054)	$+0.054 \\ -0.053$	$+0.107 \\ -0.106$	-	-
$hybrid_1$	$-0.500 \ (0.053)$	$^{+0.044}_{-0.060}$	$+0.109 \\ -0.092$	$0.870 \ (0.294)$	$+0.328 \\ -0.296$	$+0.528 \\ -0.551$	-0.748	(0.317)	$+0.305 \\ -0.298$	$+0.639 \\ -0.603$	2.309	0.0101
$hybrid_2$	$-0.502 \ (0.055)$	$^{+0.048}_{-0.051}$	$^{+0.117}_{-0.109}$	$0.894\ (0.301)$	$^{+0.295}_{-0.346}$	$^{+0.560}_{-0.526}$	-0.725	(1.294)	$+1.240 \\ -1.183$	$^{+2.561}_{-2.677}$	0.092	0.0364
SD_40:												
Eis	$-0.456 \ (0.081)$	+0.087 -0.072	$+0.155 \\ -0.162$	0.850 (0.372)	$+0.245 \\ -0.428$	$+0.753 \\ -0.645$	-0.909	(0.390)	$+0.150 \\ -0.408$	$^{+0.787}_{-0.585}$	5.031	0.0099
SC	$-0.463 \ (0.122)$	+0.123 -0.123	+0.237 -0.244	1.092 (1.026)	+0.913	+2.038 -1.931	1.236	(3.658)	$+1.051 \\ -3.938$	$+7.724 \\ -4.604$	0.554	0.1153
$\Lambda \mathrm{CDM}$	$-0.461\ (0.020)$	$+0.020 \\ -0.019$	+0.037 -0.035	1			-0.618	(0.059)	+0.057 -0.059	$^{+0.104}_{-0.110}$	_	_
$hybrid_1$	$-0.454 \ (0.055)$	+0.039 -0.064	+0.112 -0.096	0.907 (0.292)	$^{+0.318}_{-0.311}$	$+0.525 \\ -0.548$	-1.009	(0.322)	$+0.251 \\ -0.326$	$^{+0.632}_{-0.619}$	5.241	0.0098
$hybrid_2$	$-0.458 \; (0.055)$	$^{+0.039}_{-0.057}$	$^{+0.131}_{-0.101}$	$0.955 \ (0.334)$	$^{+0.323}_{-0.371}$	$^{+0.635}_{-0.624}$	-0.819	(1.297)	$^{+1.134}_{-1.259}$	$^{+2.724}_{-2.559}$	0.402	0.0440
SD_41:												
Eis	-0.509(0.077)	+0.083 -0.073	$+0.144 \\ -0.158$	0.876 (0.387)	$+0.305 \\ -0.447$	+0.779 -0.689	-0.665	(0.352)	+0.156 -0.369	$+0.735 \\ -0.563$	3.439	0.0098
SC	-0.505 (0.123)	+0.131 -0.116		1.020 (1.051)	+0.955	-0.089 $+2.248$ -1.868		(3.961)		-0.565 +10.575 -5.149	0.783	0.1255
$\Lambda \mathrm{CDM}$	-0.512 (0.018)	+0.018 -0.018	+0.035	1	-1.101	-1.808	-0.464	(0.055)	+0.054 -0.055	+0.104	_	_
$hybrid_{-}1$	-0.500 (0.053)	+0.041	-0.035 $+0.112$	0.891 (0.284)	+0.307 -0.303	+0.514		(0.324)	+0.296 -0.321	-0.106 $+0.661$ -0.624	2.367	0.0097
$hybrid_2$	-0.497 (0.056)	-0.061 $+0.050$ -0.056	-0.096 +0.119 -0.108	0.867 (0.314)	+0.313	-0.542 $+0.594$ -0.568		(1.352)	-0.321 $+1.269$ -1.192	-0.624 $+2.677$ -2.769	0.056	0.0411
SD_42:	, ,	0.000	0.100	` '	0.002	0.000		ĺ	1.102	2.103		
	0.570 (0.004)	+0.091	+0.152	0.071 (0.400)	+0.292	+0.942	0.000	(0.630)	+0.087	+1.225	0.000	0.0115
Eis	-0.570 (0.084)	-0.074 +0.126	-0.177 +0.245	0.971 (0.460)	-0.534	-0.792 +2.263		(0.632)	-0.526 +1.690	-0.753 +9.842	0.863	0.0115
SC	-0.569 (0.126)	-0.127	-0.253 +0.033	1.166 (1.132)	-1.228	-2.150		(4.744)	-5.433 +0.050	-6.453 +0.098	0.808	0.1313
ΛCDM	$-0.563 \ (0.017)$	-0.017	-0.033	1			-0.310	(0.050)	-0.050	-0.099	_	_

$hybrid_1$	-0.545 (0.051)	+0.043	+0.106	0.864 (0.283)	+0.328	+0.496	-0.512 (0.352)	+0.332	+0.717	0.972	0.0091
$hybrid_{-2}$	-0.545 (0.055)	-0.057 $+0.055$	-0.092 $+0.109$	0.839 (0.306)	-0.271 $+0.291$	-0.529 +0.566	-0.681 (1.420)	-0.363 $+1.398$	-0.676 $+2.751$	0.134	0.0350
	(,	-0.049	-0.115	(,	-0.361	-0.533		-1.197	-3.136		
SD_43:											
Eis	$-0.468 \; (0.079)$	$^{+0.086}_{-0.070}$	$^{+0.146}_{-0.163}$	$0.841\ (0.374)$	$^{+0.270}_{-0.432}$	$^{+0.775}_{-0.662}$	$-0.859 \ (0.347)$	$^{+0.175}_{-0.373}$	$^{+0.718}_{-0.570}$	5.220	0.0109
SC	$-0.469 \ (0.124)$	$+0.124 \\ -0.123$	$^{+0.242}_{-0.249}$	1.060 (1.041)	$+0.913 \\ -1.129$	$+2.077 \\ -1.992$	$1.250 \ (3.764)$	$+1.073 \\ -3.978$	$+7.911 \\ -4.759$	0.553	0.1224
$\Lambda \mathrm{CDM}$	$-0.473 \ (0.025)$	$^{+0.020}_{-0.018}$	$^{+0.037}_{-0.036}$	1			$-0.581 \ (0.074)$	$+0.055 \\ -0.059$	$^{+0.107}_{-0.112}$	-	_
$hybrid_1$	$-0.465 \ (0.056)$	$^{+0.040}_{-0.064}$	$^{+0.115}_{-0.098}$	$0.904\ (0.296)$	$^{+0.327}_{-0.295}$	$+0.536 \\ -0.549$	$-0.944 \ (0.331)$	$^{+0.268}_{-0.326}$	$^{+0.622}_{-0.639}$	4.570	0.0102
$hybrid_2$	$-0.470 \ (0.056)$	$+0.042 \\ -0.055$	$^{+0.132}_{-0.105}$	$0.940\ (0.321)$	$^{+0.346}_{-0.336}$	$+0.585 \\ -0.628$	$-0.790 \ (1.242)$	$^{+1.154}_{-1.167}$	$^{+2.471}_{-2.458}$	0.104	0.0441
SD_44:											
-	0.545 (0.000)	+0.090	+0.151	0.040 (0.495)	+0.273	+0.896	0.449 (0.540)	+0.101	+1.023	1.950	0.0100
Eis	-0.545 (0.083)	-0.073	-0.175 +0.235	0.940 (0.435)	-0.505	-0.748 + 2.179	-0.442 (0.540)	-0.461 +1.639	-0.683 +9.300	1.356	0.0106
SC	-0.549 (0.122)	-0.126 +0.016	-0.236	1.174 (1.077)	-1.210	-1.934	2.088 (4.347)	-5.054 +0.051	-5.913 +0.098	0.924	0.1139
ΛCDM	-0.543 (0.017)	-0.017 +0.044	-0.033	1	+0.321	+0.494	-0.372 (0.051)	-0.049 +0.325	-0.102 +0.643	1 100	-
hybrid_1	-0.528 (0.052)	-0.057	-0.096	0.883 (0.282)	-0.274	-0.538 +0.561	-0.607 (0.334)	-0.315	-0.661 +2.517	1.466	0.0089
$hybrid_2$	$-0.524 \ (0.055)$	$+0.053 \\ -0.054$	-0.108	0.845 (0.301)	$^{+0.303}_{-0.340}$	-0.524	-0.694 (1.316)	$^{+1.331}_{-1.061}$	-2.873	0.200	0.0354
SD_45:											
Eis	-0.583 (0.084)	+0.093 -0.072	$^{+0.157}_{-0.169}$	0.986 (0.476)	$+0.294 \\ -0.551$	$+0.949 \\ -0.802$	-0.214 (0.724)	$^{+0.070}_{-0.558}$	$^{+1.330}_{-0.783}$	0.612	0.0124
SC	-0.582 (0.123)	+0.131 -0.119	+0.226 -0.244	1.186 (1.130)	+1.008 -1.257	+2.254 -2.099	2.360 (4.887)		+10.263 -6.714	0.968	0.1204
$\Lambda \mathrm{CDM}$	-0.575 (0.017)	+0.017 -0.017	+0.032 -0.031	1	1.201	2.000	-0.276 (0.050)	+0.050 -0.050	+0.094 -0.097	_	_
$hybrid_1$	-0.557 (0.051)	+0.046 -0.055	+0.101 -0.092	0.848 (0.277)	$^{+0.302}_{-0.298}$	$^{+0.507}_{-0.530}$	-0.482 (0.371)	+0.366 -0.351	+0.728 -0.749	0.780	0.0094
$hybrid_2$	-0.550 (0.059)	+0.056 -0.055		0.802 (0.313)			-0.684 (1.403)	+1.372 -1.135	+2.673 -3.126	0.130	0.0367
		-0.000	-0.120		-0.555	-0.040		-1.100	-3.120		
SD_46:											
Eis	$-0.490 \ (0.080)$	$^{+0.087}_{-0.073}$	$^{+0.150}_{-0.164}$	0.873 (0.386)	$^{+0.260}_{-0.451}$	$^{+0.780}_{-0.670}$	$-0.743 \ (0.396)$	$^{+0.145}_{-0.392}$	$^{+0.768}_{-0.581}$	3.576	0.0095
SC	$-0.496 \ (0.124)$	$^{+0.125}_{-0.125}$	-0.242	1.102 (1.060)	$+0.948 \\ -1.161$	$^{+2.186}_{-1.964}$	$1.524 \ (3.954)$	$^{+1.218}_{-4.359}$	$+8.451 \\ -5.140$	0.651	0.1200
$\Lambda \mathrm{CDM}$	$-0.494 \ (0.020)$	$^{+0.018}_{-0.017}$	+0.035 -0.034	1			$-0.519 \ (0.061)$	$+0.051 \\ -0.054$	$^{+0.103}_{-0.104}$	_	_
$hybrid_1$	$-0.483 \ (0.053)$	$+0.042 \\ -0.062$	$^{+0.111}_{-0.097}$	$0.873\ (0.308)$	$+0.356 \\ -0.283$	$+0.546 \\ -0.589$	$-0.841 \ (0.314)$	$+0.285 \\ -0.322$	$+0.653 \\ -0.596$	3.288	0.0118
$hybrid_2$	$-0.486 \; (0.054)$	$^{+0.044}_{-0.053}$	$^{+0.118}_{-0.105}$	$0.926 \ (0.309)$	$^{+0.306}_{-0.351}$	$^{+0.579}_{-0.550}$	$-0.737 \ (1.300)$	$^{+1.239}_{-1.202}$	$^{+2.638}_{-2.653}$	0.016	0.0368
SD_47:											
Eis	-0.599 (0.085)	+0.095	+0.160	1.012 (0.494)		+1.013	-0.095 (0.801)	+0.050	+1.560	0.464	0.0126
SC	-0.699 (0.083) $-0.602 (0.124)$	-0.073 +0.124	-0.173	1.262 (1.139)	-0.574 +1.039	-0.832	2.759 (5.070)	-0.629 +2.035	-0.857 +10.652	0.404	0.0120
$\Lambda \mathrm{CDM}$	-0.589 (0.016)	-0.127 +0.016	-0.245 +0.032	1.202 (1.133)	-1.257	-2.078	-0.233 (0.049)	-6.005 +0.049	-7.137 +0.094	0.371	-
$hybrid_{-}1$	-0.573 (0.010) -0.573 (0.050)	-0.016 +0.044	-0.031 +0.103	0.880 (0.276)	+0.320	+0.488	-0.293 (0.049) $-0.401 (0.384)$	-0.049 +0.380	-0.096 +0.771	0.384	0.0088
$hybrid_2$	-0.561 (0.057)	-0.054 +0.055	-0.094 +0.111	0.798 (0.312)	-0.255 +0.297	-0.531 +0.589	-0.603 (1.422)	-0.375 +1.481	-0.740 + 2.739	0.295	0.0347
ngoria_2	-0.301 (0.031)	-0.055	-0.115	0.798 (0.312)	-0.366	-0.534	-0.003 (1.422)	-1.070	-3.187	0.233	0.0347
<u>SD_48:</u>											
Eis	$-0.522\ (0.081)$	$^{+0.088}_{-0.070}$	$^{+0.155}_{-0.165}$	0.903 (0.419)	$^{+0.263}_{-0.480}$	$^{+0.849}_{-0.716}$	$-0.566 \ (0.482)$	$^{+0.113}_{-0.411}$	$+0.874 \\ -0.628$	2.003	0.0104
SC	$-0.528 \; (0.127)$	$^{+0.127}_{-0.131}$	$^{+0.243}_{-0.246}$	1.147 (1.099)	$^{+1.017}_{-1.191}$	$+2.235 \\ -2.030$	1.938 (4.336)	$^{+1.420}_{-4.933}$	$+9.045 \\ -5.647$	0.763	0.1276
$\Lambda \mathrm{CDM}$	$-0.523 \ (0.018)$	$^{+0.017}_{-0.017}$	$^{+0.034}_{-0.033}$	1			$-0.431 \ (0.053)$	$^{+0.050}_{-0.051}$	$^{+0.100}_{-0.101}$	_	_
$hybrid_1$	$-0.509 \ (0.053)$	$^{+0.042}_{-0.059}$	$^{+0.105}_{-0.096}$	0.881 (0.293)	$^{+0.336}_{-0.274}$	$^{+0.524}_{-0.562}$	$-0.688 \; (0.326)$	$^{+0.286}_{-0.329}$	$^{+0.656}_{-0.610}$	2.084	0.0100
$hybrid_2$	$-0.512 \; (0.056)$	$^{+0.050}_{-0.053}$		0.882 (0.301)	$^{+0.301}_{-0.339}$	$^{+0.561}_{-0.537}$	$-0.722 \ (1.344)$	$^{+1.270}_{-1.178}$	$^{+2.611}_{-2.785}$	0.034	0.0372
an in											
SD_49:		100==	10.450		100=:			10.55	10.71-		
Eis	$-0.682 \ (0.087)$	+0.096 -0.078	-0.181	1.140 (0.562)	+0.354 -0.666		0.511 (1.181)	+0.096 -1.054	$+2.513 \\ -1.274$	0.143	0.0141
SC	$-0.669 \ (0.126)$	-0.128	+0.250 -0.241	1.224 (1.196)	$^{+1.130}_{-1.255}$	$^{+2.402}_{-2.294}$	2.994 (5.536)	-6.752	+11.564 -8.214	0.803	0.1396
$\Lambda \mathrm{CDM}$	$-0.660 \ (0.015)$	+0.015 -0.016	+0.033 -0.029	1	10.005	10.422	$-0.020 \ (0.046)$	+0.047 -0.044	+0.087 -0.099	_	_
$hybrid_1$	$-0.642 \ (0.052)$	$+0.053 \\ -0.051$	+0.099 -0.104	$0.854 \ (0.276)$	+0.323 -0.262	$^{+0.486}_{-0.516}$	$-0.166 \ (0.498)$	$+0.451 \\ -0.511$	$^{+0.994}_{-0.993}$	0.082	0.0088

$hybrid_2$	-0.633 (0.056)	$+0.058 \\ -0.048$	$^{+0.106}_{-0.122}$	0.707 (0.379)	$^{+0.348}_{-0.432}$	$^{+0.757}_{-0.671}$	-0.944 (1.674)	$^{+1.742}_{-0.972}$	$+2.708 \\ -4.065$	0.204	0.0365
		-0.040	-0.122		-0.402	-0.071		-0.312	-4.000		
<u>SD_50:</u>											
Eis	$-0.486 \ (0.080)$	+0.085 -0.072	+0.146 -0.164	0.868 (0.383)	+0.258 -0.438	+0.764 -0.661	$-0.769 \ (0.412)$	+0.143 -0.385	+0.738 -0.571	3.390	0.0099
SC	$-0.493 \ (0.126)$	+0.127 -0.127	+0.243 -0.246	1.113 (1.069)	$^{+0.963}_{-1.170}$	$^{+2.201}_{-1.951}$	1.567 (3.984)	+1.217 -4.390	$+8.380 \\ -5.142$	0.636	0.1244
ΛCDM	$-0.490 \ (0.019)$	+0.018 -0.018	+0.035 -0.036	1			$-0.530 \ (0.056)$	+0.055 -0.055	+0.108 -0.106	_	_
$hybrid_1$	$-0.479 \ (0.053)$	$+0.044 \\ -0.060$	+0.108 -0.097	$0.881 \ (0.293)$	+0.312 -0.307	+0.530 -0.573	$-0.872 \ (0.308)$	+0.279 -0.291	+0.637 -0.603	3.404	0.0106
$hybrid_2$	$-0.482 \ (0.054)$	$^{+0.044}_{-0.054}$	$^{+0.118}_{-0.102}$	0.918 (0.308)	$+0.296 \\ -0.356$	$+0.573 \\ -0.542$	$-0.771 \ (1.295)$	$+1.214 \\ -1.202$	$^{+2.652}_{-2.576}$	0.057	0.0380
SD_51:											
Eis	-0.650 (0.087)	+0.096 -0.075	$^{+0.162}_{-0.175}$	1.093 (0.544)	+0.320 -0.640	$+1.122 \\ -0.908$	0.274 (1.063)	$+0.044 \\ -0.887$	+2.215 -1.117	0.200	0.0139
SC	-0.638 (0.121)	+0.120 -0.122	+0.238 -0.236	1.190 (1.123)	+1.045 -1.191	+2.324 -2.106	2.630 (5.095)	+2.072 -6.147	+10.998 -7.378	1.039	0.1129
$\Lambda \mathrm{CDM}$	-0.633 (0.016)	+0.015 -0.016	+0.030 -0.029	1	1.101	2.100	-0.102 (0.047)	+0.047 -0.045	+0.087 -0.090	_	_
$hybrid_1$	-0.612 (0.051)	+0.050 -0.052	+0.100 -0.098	0.848 (0.275)	$+0.309 \\ -0.265$	$^{+0.480}_{-0.527}$	-0.259 (0.426)	+0.408 -0.427	+0.815 -0.840	0.142	0.0083
$hybrid_2$	-0.605 (0.057)	+0.059 -0.050	+0.107 -0.119	0.763 (0.344)	+0.308 -0.404	+0.664 -0.608	-0.711 (1.478)	+1.553 -0.992	+2.639 -3.525	0.240	0.0328
			0.220		0			*****	******		
<u>SD_52:</u>		10.086	10.159		10.974	10.812		+0.124	+0.813		
Eis	$-0.503 \ (0.082)$	-0.086 -0.073 $+0.124$	+0.152 -0.171 $+0.240$	0.886 (0.410)	+0.274 -0.467 $+0.962$	+0.813 -0.712 $+2.250$	$-0.673 \ (0.455)$	+0.124 -0.403 $+1.287$	-0.608	2.436	0.0111
SC	-0.507 (0.124)	-0.124 -0.126 $+0.018$	-0.247 +0.036	1.115 (1.074)	-1.174	-1.951	1.664 (4.093)	-4.545 +0.055	+8.783 -5.336 $+0.104$	0.712	0.1216
ΛCDM	-0.504 (0.018)	-0.018	-0.035 +0.106	1	10.205	+0.520	-0.488 (0.055)	-0.055	-0.104 -0.109 $+0.648$	_	_
$hybrid_1$	-0.493 (0.052)	$^{+0.040}_{-0.059}$ $^{+0.047}$	-0.093 +0.121	0.891 (0.284)	$^{+0.305}_{-0.299}$ $^{+0.308}$	-0.548 +0.579	-0.795 (0.315)	+0.293 -0.312	+0.648 -0.601 $+2.488$	2.812	0.0094
$hybrid_2$	$-0.490 \ (0.057)$	-0.060	-0.121	0.872 (0.309)	-0.354	-0.545	$-0.728 \ (1.245)$	$+1.185 \\ -1.115$	-2.637	0.011	0.0368
SD_53:											
Eis	$-0.560 \ (0.084)$	$+0.090 \\ -0.075$	$^{+0.153}_{-0.174}$	0.963 (0.454)	$+0.293 \\ -0.521$	$^{+0.910}_{-0.780}$	$-0.353 \ (0.621)$	$+0.090 \\ -0.504$	$^{+1.116}_{-0.723}$	0.964	0.0116
SC	$-0.564 \ (0.127)$	$^{+0.130}_{-0.132}$	$^{+0.245}_{-0.253}$	1.202 (1.133)	$^{+1.022}_{-1.270}$	$^{+2.361}_{-2.054}$	2.340 (4.763)	$^{+1.695}_{-5.513}$	$^{+10.018}_{-6.432}$	0.903	0.1274
$\Lambda \mathrm{CDM}$	$-0.554 \ (0.017)$	$^{+0.017}_{-0.017}$	$^{+0.033}_{-0.033}$	1			$-0.339 \; (0.051)$	$^{+0.050}_{-0.051}$	$^{+0.098}_{-0.099}$	_	_
$hybrid_1$	$-0.540 \ (0.051)$	$^{+0.043}_{-0.055}$	$^{+0.111}_{-0.091}$	0.881 (0.273)	$^{+0.302}_{-0.270}$	$^{+0.487}_{-0.529}$	$-0.569 \ (0.358)$	$^{+0.350}_{-0.352}$	$+0.688 \\ -0.690$	0.964	0.0094
$hybrid_2$	$-0.534 \ (0.057)$	$^{+0.053}_{-0.054}$	$^{+0.118}_{-0.115}$	0.839 (0.310)	$^{+0.306}_{-0.351}$	$^{+0.594}_{-0.546}$	$-0.661\ (1.397)$	$^{+1.415}_{-1.119}$	$^{+2.873}_{-2.891}$	0.172	0.0370
SD_54:											
Eis	-0.474 (0.079)	+0.087	+0.148	0.846 (0.388)	+0.234	+0.770	-0.808 (0.423)	+0.138	+0.732	3.615	0.0113
SC	-0.481 (0.126)	-0.064 +0.126	-0.160 +0.241	1.095 (1.069)	-0.438 +0.948	-0.649 +2.144	1.455 (3.953)	-0.382 +1.136	-0.570 +8.279	0.561	0.1286
ΛCDM	-0.480 (0.019)	-0.127 +0.019	-0.251 +0.037	1.030 (1.003)	-1.169	-2.018	-0.560 (0.057)	-4.229 +0.057	-4.955 +0.109	0.501	0.1200
hybrid_1	-0.473 (0.052)		-0.036 +0.105	0.884 (0.296)	+0.332	+0.535	-0.918 (0.299)	-0.056 +0.276	-0.110 +0.596	4.036	0.0102
$hybrid_2$	-0.473 (0.052) $-0.473 (0.055)$	-0.061 +0.040	-0.093 +0.126	0.919 (0.315)	-0.293 +0.325	-0.574 +0.575	-0.808 (1.265)	-0.294 +1.149	-0.585 +2.550	0.074	0.0391
ngor ta_2	0.110 (0.000)	-0.058	-0.102	0.010 (0.010)	-0.344	-0.576	0.000 (1.200)	-1.232	-2.481	0.011	0.0001
SD_55:											
Eis	$-0.593 \ (0.085)$	$+0.093 \\ -0.075$	$^{+0.157}_{-0.181}$	$1.007 \ (0.488)$	$+0.309 \\ -0.563$	$+1.006 \\ -0.837$	$-0.136 \ (0.756)$	$+0.066 \\ -0.612$	$^{+1.600}_{-0.839}$	0.548	0.0124
SC	$-0.587 \ (0.129)$	$+0.128 \\ -0.131$	+0.259 -0.248	1.170 (1.160)	$^{+1.095}_{-1.227}$	$^{+2.369}_{-2.186}$	$2.427 \ (4.881)$	-5.732	$^{+10.215}_{-6.775}$	0.835	0.1389
$\Lambda \mathrm{CDM}$	$-0.583 \ (0.016)$	-0.015	$^{+0.031}_{-0.032}$	1			$-0.250 \ (0.048)$	$^{+0.046}_{-0.047}$	$^{+0.097}_{-0.094}$	_	_
$hybrid_1$	$-0.566 \ (0.050)$	$+0.045 \\ -0.054$	$^{+0.101}_{-0.093}$	$0.879 \ (0.274)$	-0.267	$^{+0.492}_{-0.532}$	$-0.440 \ (0.382)$	$+0.380 \\ -0.363$	$+0.745 \\ -0.757$	0.759	0.0088
$hybrid_2$	$-0.557 \ (0.055)$	$+0.054 \\ -0.052$	$^{+0.108}_{-0.115}$	0.800 (0.308)	$^{+0.285}_{-0.362}$	$+0.593 \\ -0.527$	-0.657 (1.455)	$^{+1.471}_{-1.112}$	$^{+2.849}_{-3.253}$	0.285	0.0348
SD_56:											
Eis	$-0.563 \ (0.087)$	+0.095 -0.073	$^{+0.163}_{-0.175}$	0.982 (0.485)	$^{+0.276}_{-0.554}$	+0.985 -0.801	-0.307 (0.751)	+0.064 -0.545	$^{+1.408}_{-0.786}$	0.767	0.0135
sc	-0.557 (0.125)	+0.125 -0.125	+0.249 -0.242	1.139 (1.108)	+1.034 -1.178	+2.267 -2.075	2.069 (4.494)	+1.644 -5.193	$+9.370 \\ -6.138$	0.843	0.1260
$\Lambda \mathrm{CDM}$	-0.554 (0.017)	+0.018 -0.018	+0.034 -0.032	1			-0.338 (0.051)	+0.053 -0.053	+0.095 -0.102	_	_
$hybrid_1$	-0.535 (0.053)	+0.049 -0.058	+0.106 -0.096	0.843 (0.299)	$^{+0.364}_{-0.266}$	$+0.523 \\ -0.555$	-0.565 (0.342)	+0.335 -0.305	+0.691 -0.689	1.315	0.0103
$hybrid_2$	$-0.535 \ (0.056)$	+0.053 -0.053	+0.110 -0.115	0.847 (0.306)	+0.289 -0.366	+0.559 -0.529	-0.629 (1.343)	+1.350 -1.125	+2.647 -2.880	0.205	0.0356
			-					-			

SD_57:											
Eis	-0.548 (0.081)		+0.147	0.944 (0.426)	+0.285	+0.873	-0.439 (0.509)	+0.112	+1.003	1.410	0.0099
SC	-0.551 (0.126)	+0.128	-0.169 +0.241	1.165 (1.111)	-0.494 $+1.022$	-0.742 +2.292	2.120 (4.526)	-0.449 $+1.617$	-0.674 +9.517	0.833	0.1255
$\Lambda \mathrm{CDM}$	-0.545 (0.018)	+0.016	-0.251 +0.034	1	-1.207	-2.029	-0.364 (0.054)	-5.215 $+0.049$ -0.049	-6.121 $+0.095$	_	_
$hybrid_1$	-0.528 (0.051)	+0.045	-0.032 $+0.103$	0.864 (0.284)	+0.311	+0.514	-0.614 (0.337)	+0.296	-0.103 $+0.662$	1.390	0.0092
$hybrid_2$	-0.526 (0.056)	+0.050	-0.091 $+0.114$	0.862 (0.304)	-0.308 $+0.308$	-0.523 +0.563	-0.613 (1.351)	-0.345 $+1.275$	-0.637 $+2.622$	0.150	0.0359
	(,	-0.052	-0.112	(, ,	-0.342	-0.536	,	-1.187	-2.933		
<u>SD_58:</u>											
Eis	$-0.506 \ (0.079)$		$^{+0.145}_{-0.161}$	$0.859\ (0.402)$	$^{+0.268}_{-0.468}$	$^{+0.819}_{-0.700}$	$-0.657 \ (0.401)$	$^{+0.146}_{-0.378}$	$^{+0.772}_{-0.589}$	2.740	0.0105
SC	$-0.522 \ (0.116)$	-0.113	$+0.215 \\ -0.227$	$1.176 \ (0.997)$	$+0.872 \\ -1.148$	$+1.982 \\ -1.804$	1.776 (3.917)	$^{+1.496}_{-4.568}$	$+8.102 \\ -5.332$	1.017	0.0954
$\Lambda \mathrm{CDM}$	$-0.513 \ (0.018)$	-0.017	$+0.034 \\ -0.034$	1			$-0.462 \ (0.053)$	$+0.052 \\ -0.051$	$^{+0.101}_{-0.101}$	_	_
$hybrid_1$	$-0.500 \ (0.052)$	$^{+0.041}_{-0.059}$	$+0.110 \\ -0.092$	$0.887\ (0.288)$	$^{+0.322}_{-0.282}$	$+0.516 \\ -0.554$	$-0.750 \ (0.315)$	$^{+0.297}_{-0.304}$	$^{+0.642}_{-0.610}$	2.299	0.0099
$hybrid_2$	$-0.501 \; (0.055)$	$^{+0.049}_{-0.051}$	$^{+0.118}_{-0.106}$	0.889 (0.303)	$+0.298 \\ -0.343$	$^{+0.569}_{-0.543}$	$-0.743\ (1.311)$	$^{+1.281}_{-1.208}$	$^{+2.595}_{-2.721}$	0.032	0.0370
SD_59:											
Eis	-0.524 (0.080)	+0.088	+0.146	0.923 (0.416)	+0.270	+0.838	-0.578 (0.480)	+0.124	+0.860	1.974	0.0102
SC	-0.524 (0.000) -0.527 (0.125)	+0.126	-0.169 +0.237	1.155 (1.091)	-0.482 +0.956	-0.716 +2.312	1.924 (4.357)	-0.414 +1.385	-0.627 +9.336	0.731	0.1257
$\Lambda \mathrm{CDM}$	-0.527 (0.128) $-0.522 (0.018)$	+0.017	-0.249 +0.035	1.100 (1.001)	-1.201	-1.966	-0.435 (0.055)	-4.823 $+0.052$ -0.050	-5.744 +0.101	0.751	-
hybrid_1	-0.522 (0.010) $-0.507 (0.052)$	+0.042	-0.034 +0.111	0.880 (0.287)	+0.326	+0.511	-0.705 (0.317)	+0.299	-0.104 +0.628	1.995	0.0095
$hybrid_2$	-0.508 (0.052)	+0.048	-0.090 +0.115	0.877 (0.300)	-0.278 +0.291	-0.558 +0.566	-0.736 (1.318)	-0.304 +1.281	-0.630 +2.551	0.146	0.0353
ngoria_z	0.000 (0.000)	-0.055	-0.110	0.077 (0.500)	-0.348	-0.524	0.750 (1.510)	-1.220	-2.748	0.140	0.0505
SD_60:											
Eis	$-0.525 \ (0.084)$	-0.072	$^{+0.159}_{-0.169}$	$0.922\ (0.436)$	$^{+0.269}_{-0.493}$	$^{+0.885}_{-0.741}$	$-0.546 \ (0.550)$	$^{+0.104}_{-0.434}$	$^{+0.938}_{-0.661}$	1.652	0.0117
SC	$-0.525 \ (0.125)$	-0.125	$^{+0.241}_{-0.249}$	$1.138\ (1.073)$	$^{+0.961}_{-1.183}$	$^{+2.123}_{-2.014}$	$1.858 \ (4.245)$	$^{+1.470}_{-4.710}$	$+8.835 \\ -5.642$	0.828	0.1230
$\Lambda \mathrm{CDM}$	$-0.522 \ (0.018)$	-0.017	$+0.034 \\ -0.033$	1			$-0.433 \; (0.053)$	$^{+0.052}_{-0.053}$	$^{+0.100}_{-0.102}$	_	-
$hybrid_1$	$-0.510 \ (0.052)$		$+0.111 \\ -0.093$	$0.890\ (0.289)$	$^{+0.319}_{-0.283}$	$^{+0.516}_{-0.572}$	$-0.704\ (0.324)$	$^{+0.306}_{-0.306}$	$^{+0.662}_{-0.627}$	2.202	0.0099
$hybrid_2$	$-0.509 \ (0.056)$		$^{+0.120}_{-0.107}$	$0.880 \ (0.302)$	$^{+0.300}_{-0.346}$	$+0.556 \\ -0.537$	$-0.704\ (1.357)$	$+1.288 \\ -1.229$	$^{+2.643}_{-2.852}$	0.084	0.0361
SD_61:											
Eis	-0.569 (0.085)	+0.093	+0.163	0.981 (0.476)	+0.281	+0.957	-0.282 (0.716)	+0.071	+1.264	0.770	0.0127
SC	-0.570 (0.125)	+0.125	-0.171 +0.244	1.198 (1.124)	-0.545 +1.031	-0.802 +2.317	2.343 (4.740)	-0.545 +1.801	-0.775 +9.737	0.866	0.1280
$\Lambda \mathrm{CDM}$	-0.561 (0.017)	+0.018	-0.246 +0.032	1	-1.228	-2.045	-0.317 (0.051)	-5.506 $+0.054$ -0.053	-6.499 +0.098	_	_
$hybrid_{-}1$	-0.547 (0.051)	+0.045	-0.033 +0.105	0.875 (0.276)	+0.313	+0.490	-0.539 (0.342)	+0.332	-0.096 +0.680	1.034	0.0088
$hybrid_2$	-0.542 (0.056)	+0.053	-0.093 +0.113	0.834 (0.304)	-0.267 $+0.329$	-0.535 +0.556 -0.545	-0.644 (1.341)	-0.344 $+1.340$ -1.049	-0.676 +2.589	0.232	0.0354
J	,	-0.054	-0.113	,	-0.327	-0.343	,	-1.049	-2.978		
<u>SD_62:</u>											
Eis	$-0.555 \ (0.082)$		-0.165	0.942 (0.439)	-0.511	+0.901 -0.751	$-0.387 \ (0.559)$	+0.097 -0.466	$^{+1.077}_{-0.698}$	1.104	0.0106
SC	$-0.563 \ (0.124)$		-0.245	1.210 (1.112)	+0.991 -1.223	$^{+2.241}_{-2.085}$	2.319 (4.694)	$^{+1.713}_{-5.361}$	$+9.812 \\ -6.392$	0.872	0.1243
$\Lambda \mathrm{CDM}$	$-0.552 \ (0.017)$	-0.017	$^{+0.034}_{-0.034}$	1			$-0.344 \ (0.052)$	$^{+0.051}_{-0.051}$	$+0.102 \\ -0.103$	_	_
$hybrid_1$	$-0.538 \ (0.051)$	-0.056	+0.109 -0.093	0.884 (0.282)	$^{+0.319}_{-0.272}$	$+0.502 \\ -0.557$	$-0.561 \ (0.349)$	$^{+0.344}_{-0.337}$	$^{+0.684}_{-0.689}$	1.033	0.0094
$hybrid_2$	$-0.531 \ (0.057)$	$+0.055 \\ -0.055$	$^{+0.112}_{-0.115}$	0.834 (0.309)	$+0.299 \\ -0.361$	$+0.569 \\ -0.535$	$-0.666 \ (1.373)$	$+1.349 \\ -1.124$	$+2.717 \\ -2.975$	0.149	0.0366
SD_63:											
Eis	-0.595 (0.085)	$^{+0.097}_{-0.071}$	+0.149 -0.184	0.972 (0.495)	$^{+0.297}_{-0.597}$	$^{+1.032}_{-0.818}$	$-0.126 \ (0.743)$	+0.059 -0.626	$^{+1.530}_{-0.832}$	0.472	0.0123
SC	-0.599 (0.123)	+0.125	+0.234 -0.241	1.207 (1.114)	+1.001 -1.226	+2.295 -2.031	2.514 (4.851)	+1.887 -5.790	+9.915 -6.833	1.039	0.1181
$\Lambda \mathrm{CDM}$	-0.590 (0.016)	+0.016	+0.032 -0.032	1	220		-0.229 (0.049)	+0.048 -0.048	+0.095 -0.096	_	_
$hybrid_1$	$-0.574 \ (0.051)$	+0.045	+0.106 -0.094	0.884 (0.270)	$^{+0.310}_{-0.256}$	$+0.482 \\ -0.513$	$-0.389 \; (0.377)$	+0.368 -0.371	+0.726 -0.743	0.454	0.0086
$hybrid_2$	-0.568 (0.057)	+0.059	+0.107 -0.118	0.808 (0.318)	+0.296 -0.372	+0.603 -0.559	-0.679 (1.429)	+1.412 -1.129	+2.695 -3.230	0.272	0.0343
an or						,		20	2.200		
SD_64:											

Eis	$-0.508 \; (0.083)$	$^{+0.089}_{-0.074}$	$^{+0.152}_{-0.175}$	$0.900 \; (0.415)$	$^{+0.270}_{-0.474}$	$^{+0.853}_{-0.715}$	-0.637 (0.459)	$^{+0.124}_{-0.418}$	$^{+0.870}_{-0.619}$	2.331	0.0106
SC	$-0.505 \ (0.121)$	$^{+0.131}_{-0.117}$	$^{+0.231}_{-0.238}$	$1.068\ (1.022)$	$^{+0.870}_{-1.133}$	$+2.046 \\ -1.935$	1.469 (3.879	$+1.162 \\ -4.273$	$+8.143 \\ -5.159$	0.886	0.1094
$\Lambda \mathrm{CDM}$	$-0.508 \; (0.018)$	$^{+0.017}_{-0.017}$	$^{+0.035}_{-0.034}$	1			-0.475 (0.054)	+0.052 -0.052	+0.103 -0.106	_	_
$hybrid_1$	$-0.494 \ (0.053)$	$+0.041 \\ -0.063$	+0.107 -0.092	0.870 (0.299)	$^{+0.341}_{-0.288}$	$+0.531 \\ -0.568$	-0.768 (0.32)	+0.303 -0.312	$+0.635 \\ -0.607$	2.386	0.0106
$hybrid_2$	-0.499 (0.053)	+0.047 -0.050	$+0.114 \\ -0.104$	0.900 (0.299)	$+0.291 \\ -0.344$	+0.559 -0.524	-0.725 (1.306	. 11 240	+2.595	0.014	0.0347
		-0.000	-0.104		-0.544	-0.024		7 -1.150	-2.001		
<i>SD_65:</i>											
Eis	$-0.520 \ (0.085)$	$^{+0.093}_{-0.072}$	$^{+0.160}_{-0.172}$	0.912 (0.444)	$^{+0.262}_{-0.501}$	$+0.889 \\ -0.734$	-0.550 (0.593)	$^{+0.106}_{-0.450}$	+0.928 -0.669	1.464	0.0129
SC	$-0.531 \ (0.125)$	$+0.128 \\ -0.128$	$+0.234 \\ -0.249$	1.192 (1.087)	+0.964 -1.225	$+2.163 \\ -1.989$	2.046 (4.388	$^{+1.530}_{-4.965}$	$+9.474 \\ -5.843$	0.894	0.1161
$\Lambda \mathrm{CDM}$	-0.521 (0.018)	$^{+0.017}_{-0.018}$	+0.037 -0.035	1			-0.438 (0.05	. 10.055	+0.106	_	_
$hybrid_1$	-0.509(0.053)	$+0.043 \\ -0.058$	$+0.110 \\ -0.095$	0.890 (0.283)	$^{+0.305}_{-0.299}$	$^{+0.518}_{-0.535}$	-0.705 (0.324)		+0.649	2.193	0.0098
$hybrid_2$	-0.507 (0.056)	+0.050	+0.117	0.885 (0.308)	+0.308	+0.568	-0.693 (1.313	. 11 200		0.031	0.0375
	(,	-0.052	-0.110	(,	-0.351	-0.548		7 -1.217	-2.692		
<i>SD_66</i> :											
Eis	$-0.540 \ (0.080)$	+0.085 -0.074	$+0.148 \\ -0.165$	0.916 (0.410)	$+0.285 \\ -0.478$	+0.824 -0.720	-0.487 (0.458)	$^{+0.128}_{-0.415}$	+0.869 -0.632	1.783	0.0095
SC	-0.546 (0.113)	$^{+0.121}_{-0.111}$	$^{+0.209}_{-0.223}$	1.146 (0.997)	$^{+0.913}_{-1.114}$	$^{+1.966}_{-1.818}$	1.812 (4.008	$^{+1.663}_{-4.786}$	+8.478	1.315	0.0917
$\Lambda \mathrm{CDM}$	-0.540 (0.019)	+0.018 -0.017	+0.034 -0.034	1		1.010	-0.379 (0.050	10.050	+0.102 -0.103	_	_
$hybrid_{-}1$	-0.525 (0.050)	+0.043	+0.101	0.873 (0.289)	+0.327	+0.519	-0.632 (0.339	+0.311	+0.686	1.540	0.0098
$hybrid_2$	-0.524 (0.056)	-0.056 +0.051	-0.094 +0.118	0.863 (0.305)	-0.276 +0.302	-0.545 + 0.563	-0.687 (1.378	+1.284	-0.651 +2.739	0.131	0.0359
ngoria_z	0.024 (0.000)	-0.054	-0.111	0.003 (0.505)	-0.350	-0.544	0.007 (1.370	9) -1.217	-2.946	0.101	0.0000
SD_67:											
Eis	$-0.442 \ (0.077)$	$^{+0.080}_{-0.071}$	$^{+0.145}_{-0.158}$	0.815 (0.342)	$^{+0.258}_{-0.384}$	$^{+0.680}_{-0.621}$	-0.965 (0.364	+0.165 -0.400	$^{+0.769}_{-0.574}$	7.232	0.0088
SC	-0.446 (0.128)	+0.126 -0.129	$+0.256 \\ -0.249$	1.021 (1.055)	+1.003 -1.096	+2.154 -1.980	1.058 (3.518	072	+7.246	0.414	0.1347
$\Lambda \mathrm{CDM}$	-0.451 (0.019)	+0.019 -0.019	+0.037 -0.036	1	1.000	1.000	-0.646 (0.05)	. ±0.056	+0.109 -0.112	_	_
$hybrid_1$	-0.445 (0.055)	+0.039	+0.113	0.900 (0.305)	+0.332	+0.555	-1.057 (0.319	+0.258	+0.621	5.745	0.0103
$hybrid_2$	-0.450 (0.056)	-0.066 +0.040	-0.094 +0.131	0.953 (0.336)	-0.321 +0.343	-0.567 +0.632	-0.829 (1.22)	+1.100	-0.615 +2.609	0.564	0.0474
	0.200 (0.000)	-0.060	-0.103	(0.000)	-0.364	-0.615	0.000 (0.000)	-1.203	-2.431	0.00	0.0-1
SD_68:											
Eis	$-0.511 \ (0.081)$	$+0.088 \\ -0.072$	$^{+0.149}_{-0.172}$	0.901 (0.407)	$+0.265 \\ -0.476$	+0.829 -0.702	-0.638 (0.435)	(5) $^{+0.130}_{-0.407}$	$+0.842 \\ -0.610$	2.441	0.0100
SC	-0.516 (0.119)	$+0.122 \\ -0.122$	$+0.227 \\ -0.232$	1.142 (1.031)	$+0.926 \\ -1.147$	$+2.133 \\ -1.865$	1.705 (3.986	$^{+1.422}_{-4.524}$	$+8.530 \\ -5.335$	0.936	0.1043
$\Lambda \mathrm{CDM}$	-0.511 (0.019)	$+0.018 \\ -0.018$	+0.037 -0.035	1			-0.468 (0.05)	+0.053 -0.054	$+0.104 \\ -0.111$	_	_
$hybrid_1$	-0.501 (0.051)	$+0.041 \\ -0.057$	$+0.108 \\ -0.090$	0.893 (0.285)	+0.304 -0.297	$+0.526 \\ -0.536$	-0.765 (0.31)	. 10 202	$+0.601 \\ -0.620$	2.574	0.0093
$hybrid_2$	-0.500 (0.056)	$^{+0.048}_{-0.054}$	$^{+0.120}_{-0.110}$	0.877 (0.304)	$^{+0.308}_{-0.341}$	+0.559 -0.546	-0.813 (1.27)		+2.490	0.026	0.0374
		0.001	0.110		0.011	0.010		1.100	2.000		
<i>SD_69</i> :											
Eis	$-0.489 \ (0.078)$	$^{+0.086}_{-0.069}$	$^{+0.143}_{-0.163}$	$0.870\ (0.374)$	$^{+0.254}_{-0.439}$	$^{+0.770}_{-0.650}$	-0.769 (0.35)	$^{+0.152}_{-0.359}$	+0.729 -0.556	4.097	0.0086
SC	$-0.490 \ (0.125)$	$^{+0.126}_{-0.127}$	$^{+0.243}_{-0.240}$	$1.054\ (1.059)$	$^{+0.956}_{-1.166}$	$^{+2.175}_{-1.918}$	1.362 (3.79)	$^{+1.231}_{-4.247}$	$+8.286 \\ -4.996$	0.640	0.1251
$\Lambda \mathrm{CDM}$	$-0.491\ (0.018)$	$^{+0.018}_{-0.018}$	$^{+0.036}_{-0.035}$	1			-0.527 (0.058)	$^{+0.053}_{-0.054}$	$^{+0.106}_{-0.108}$	_	_
$hybrid_1$	$-0.480 \ (0.055)$	$^{+0.041}_{-0.064}$	$^{+0.116}_{-0.098}$	0.890 (0.291)	$^{+0.328}_{-0.285}$	$^{+0.528}_{-0.549}$	-0.847 (0.320)	. 10.272	$^{+0.633}_{-0.633}$	3.199	0.0104
$hybrid_2$	-0.484 (0.054)	$+0.045 \\ -0.053$	$+0.120 \\ -0.106$	0.927 (0.311)	$+0.312 \\ -0.354$	+0.572 -0.550	-0.742 (1.30)	. 11.015	+2.623	0.014	0.0381
		0.000	0.100		0.001	0.000		1.200	2.000		
SD_70:											
Eis	$-0.612 \ (0.084)$	$^{+0.095}_{-0.074}$	$^{+0.156}_{-0.169}$	$1.004\ (0.496)$	$^{+0.309}_{-0.588}$	$^{+1.008}_{-0.839}$	-0.016 (0.799)	-0.070		0.339	0.0125
SC	$-0.613 \ (0.125)$	$^{+0.128}_{-0.127}$	$^{+0.241}_{-0.243}$	$1.206\ (1.159)$	$^{+1.032}_{-1.259}$	$^{+2.311}_{-2.209}$	2.645 (5.23)	$^{+1.771}_{-6.247}$	$^{+11.128}_{-7.330}$	0.997	0.1245
$\Lambda \mathrm{CDM}$	$-0.606 \ (0.016)$	$^{+0.016}_{-0.016}$	$^{+0.031}_{-0.030}$	1			-0.182 (0.048)	$^{+0.048}_{-0.047}$	$^{+0.091}_{-0.093}$	_	_
$hybrid_1$	$-0.587 \; (0.051)$	$^{+0.046}_{-0.054}$	$^{+0.105}_{-0.096}$	$0.865 \; (0.265)$	$^{+0.291}_{-0.261}$	$^{+0.483}_{-0.532}$	-0.346 (0.410)	$^{+0.412}_{-0.391}$	$^{+0.797}_{-0.819}$	0.368	0.0086
$hybrid_2$	$-0.580 \ (0.057)$	$^{+0.059}_{-0.051}$	$^{+0.107}_{-0.120}$	$0.779\ (0.324)$	$^{+0.300}_{-0.375}$	$^{+0.612}_{-0.580}$	-0.707 (1.488)	$^{+1.544}_{-1.044}$	$^{+2.755}_{-3.493}$	0.244	0.0344
an ~											
SD_71:		1.6.5	10.45		10 5=-	100					
Eis	$-0.563 \ (0.084)$	+0.091 -0.071	$^{+0.158}_{-0.170}$	$0.962 \; (0.460)$	$^{+0.279}_{-0.523}$	+0.931 -0.774	-0.325 (0.680)	$)$ $^{+0.077}_{-0.511}$	$+1.177 \\ -0.745$	0.817	0.0122

SC	-0.565 (0.125)	$^{+0.126}_{-0.126}$	$^{+0.242}_{-0.247}$	1.187 (1.114)	+0.994 -1.221	$+2.240 \\ -2.093$	2.275 (4.686)	$^{+1.689}_{-5.352}$	+9.797 -6.340	0.860	0.1260
$\Lambda \mathrm{CDM}$	-0.558 (0.017)	-0.126 $+0.017$ -0.017	-0.247 $+0.034$ -0.033	1	-1.221	-2.093	-0.327 (0.051)	-3.332 $+0.051$ -0.051	+0.099 -0.102	_	_
$hybrid_{-}1$	-0.545 (0.050)	+0.043 -0.055	+0.105 -0.091	0.893 (0.273)	$+0.304 \\ -0.272$	+0.484 -0.519	-0.544 (0.354)	+0.352 -0.338	+0.687 -0.710	0.963	0.0088
$hybrid_2$	-0.537 (0.057)	+0.053 -0.053	+0.115 -0.115	0.835 (0.308)	+0.300 -0.349	+0.587 -0.541	-0.642 (1.381)	11 202	+2.635 -2.984	0.215	0.0372
Ü	, ,	-0.033	-0.113	, ,	-0.349	-0.541	, ,	-1.102	-2.564		
SD_72:											
Eis	$-0.577 \ (0.084)$	$^{+0.092}_{-0.072}$	$+0.158 \\ -0.169$	$0.983\ (0.465)$	$^{+0.281}_{-0.544}$	$+0.958 \\ -0.787$	$-0.246 \ (0.669)$	$^{+0.075}_{-0.548}$	$^{+1.319}_{-0.781}$	0.761	0.0115
SC	$-0.574 \ (0.122)$	$^{+0.124}_{-0.122}$	$^{+0.237}_{-0.240}$	$1.157\ (1.099)$	$^{+1.022}_{-1.175}$	$+2.155 \\ -2.096$	$2.186 \ (4.644)$	$^{+1.843}_{-5.367}$	$+9.500 \\ -6.495$	0.966	0.1190
$\Lambda { m CDM}$	$-0.570 \ (0.017)$	$^{+0.017}_{-0.017}$	$+0.033 \\ -0.032$	1			$-0.291 \ (0.051)$	$^{+0.050}_{-0.050}$	$+0.097 \\ -0.098$	_	_
$hybrid_1$	$-0.550 \ (0.051)$	$+0.047 \\ -0.055$	$^{+0.099}_{-0.093}$	$0.838\ (0.295)$	$+0.368 \\ -0.252$	$+0.510 \\ -0.563$	$-0.512 \ (0.340)$	$+0.326 \\ -0.330$	$^{+0.682}_{-0.662}$	0.698	0.0095
$hybrid_2$	$-0.550 \ (0.056)$	$^{+0.053}_{-0.052}$	$^{+0.108}_{-0.116}$	$0.829\ (0.314)$	$^{+0.303}_{-0.362}$	$^{+0.581}_{-0.554}$	$-0.683 \ (1.454)$	$+1.432 \\ -1.142$	$^{+2.730}_{-3.313}$	0.211	0.0357
SD_73:											
Eis	-0.419 (0.074)	+0.080	+0.139	0.805 (0.325)	+0.236	+0.653	-1.097 (0.359)	+0.183	+0.767	9.837	0.0093
SC	-0.416 (0.074) $-0.416 (0.126)$	-0.068 +0.128	-0.153 +0.251	0.957 (1.012)	-0.372 +0.914	-0.575 +2.143	0.673 (3.180)	-0.406 +0.742	-0.583 + 7.241	0.339	0.1253
$\Lambda \mathrm{CDM}$	-0.410 (0.120) $-0.427 (0.020)$	-0.126 $+0.020$ -0.019	-0.252 +0.040	0.937 (1.012)	-1.095	-1.867	-0.718 (0.060)	-3.290 $+0.057$ -0.059	-3.913 +0.115	0.555	0.1255
hybrid_1	-0.427 (0.020) $-0.425 (0.057)$	+0.040	-0.038 +0.117	0.897 (0.312)	+0.341	+0.569	-1.177 (0.355)	+0.221	-0.119 +0.682	6.901	0.0125
hybrid_2	-0.434 (0.056)	-0.068 +0.036	-0.097 +0.131	0.999 (0.347)	-0.326 +0.358	-0.598 +0.646	-0.885 (1.201)	-0.356 +1.144	-0.619 +2.513	0.532	0.0460
ngoria_z	0.454 (0.000)	-0.060	-0.099	0.555 (0.541)	-0.375	-0.639	0.000 (1.201)	-1.145	-2.294	0.002	0.0400
SD_74:											
Eis	$-0.540 \ (0.084)$	$^{+0.097}_{-0.068}$	$^{+0.152}_{-0.172}$	0.913 (0.461)	$^{+0.287}_{-0.539}$	$^{+0.939}_{-0.773}$	$-0.449 \ (0.567)$	$^{+0.081}_{-0.451}$	$^{+1.059}_{-0.676}$	1.351	0.0126
SC	$-0.541 \ (0.124)$	$^{+0.131}_{-0.128}$	$^{+0.234}_{-0.242}$	1.130 (1.098)	$^{+0.974}_{-1.226}$	$^{+2.307}_{-1.992}$	1.966 (4.391)	$^{+1.595}_{-5.000}$	$^{+10.144}_{-5.899}$	0.956	0.1197
$\Lambda \mathrm{CDM}$	$-0.540 \ (0.017)$	$^{+0.017}_{-0.017}$	$^{+0.035}_{-0.033}$	1			$-0.380 \ (0.052)$	$^{+0.051}_{-0.052}$	$^{+0.100}_{-0.104}$	_	-
$hybrid_1$	$-0.527 \ (0.051)$	$^{+0.041}_{-0.057}$	$^{+0.109}_{-0.089}$	$0.898\ (0.275)$	$^{+0.304}_{-0.273}$	$^{+0.495}_{-0.535}$	$-0.615 \ (0.342)$	$+0.330 \\ -0.329$	$^{+0.680}_{-0.685}$	1.470	0.0089
$hybrid_2$	$-0.523 \ (0.055)$	$^{+0.050}_{-0.052}$	$^{+0.112}_{-0.109}$	$0.863\ (0.304)$	$^{+0.302}_{-0.346}$	$^{+0.565}_{-0.527}$	$-0.654 \ (1.398)$	$^{+1.318}_{-1.221}$	$^{+2.704}_{-3.013}$	0.144	0.0361
SD_75:											
Eis	-0.543 (0.083)	+0.092	+0.156	0.934 (0.446)	+0.274	+0.898	-0.446 (0.593)	+0.096	+0.987	1.195	0.0120
SC	-0.545 (0.128)	-0.071 +0.128	-0.167 +0.253	1.154 (1.127)	-0.515 +1.028	-0.752 +2.296	2.102 (4.560)	-0.467 +1.565	-0.680 +9.533	0.824	0.1322
$\Lambda \mathrm{CDM}$	-0.542 (0.018)	-0.131 +0.017	-0.245 +0.034	1	-1.238	-2.071	-0.373 (0.053)	-5.176 +0.051	-6.078 +0.106	-	-
$hybrid_{-}1$	-0.527 (0.051)	-0.017 +0.042	-0.035 +0.105	0.884 (0.274)	+0.305	+0.491	-0.624 (0.334)	-0.050 +0.314	-0.103 +0.669	1.516	0.0093
hybrid_2	-0.523 (0.056)	-0.057 $+0.051$	-0.095 $+0.118$	0.847 (0.303)	-0.271 +0.286	-0.527 $+0.572$	-0.719 (1.349)	-0.338 $+1.376$ -1.114	-0.641 $+2.543$	0.175	0.0367
	()	-0.052	-0.114	()	-0.361	-0.523	()	-1.114	-2.985		
<u>SD_76:</u>											
Eis	$-0.514 \ (0.081)$	+0.087 -0.072	$^{+0.155}_{-0.161}$	$0.903\ (0.405)$	$+0.268 \\ -0.466$	+0.819 -0.707	$-0.626 \ (0.441)$	$+0.128 \\ -0.403$	$+0.826 \\ -0.615$	2.427	0.0097
SC	$-0.517 \ (0.126)$	$^{+0.133}_{-0.120}$	$^{+0.236}_{-0.250}$	1.131 (1.087)	$+0.950 \\ -1.211$	$+2.274 \\ -1.940$	1.801 (4.238)	$^{+1.364}_{-4.703}$	$^{+9.106}_{-5.546}$	0.651	0.1267
$\Lambda \mathrm{CDM}$	$-0.514 \ (0.018)$	$^{+0.018}_{-0.018}$	$+0.035 \\ -0.034$	1			$-0.459 \ (0.054)$	$+0.054 \\ -0.054$	$+0.102 \\ -0.106$	_	-
$hybrid_1$	$-0.502 \ (0.051)$	$^{+0.043}_{-0.058}$	$^{+0.104}_{-0.093}$	0.883 (0.280)	$^{+0.304}_{-0.301}$	$^{+0.508}_{-0.538}$	$-0.754 \ (0.311)$	$^{+0.300}_{-0.296}$	$^{+0.634}_{-0.611}$	2.573	0.0091
$hybrid_2$	$-0.503 \ (0.053)$	$^{+0.047}_{-0.050}$	$^{+0.113}_{-0.102}$	$0.888 \; (0.296)$	$^{+0.297}_{-0.335}$	$^{+0.547}_{-0.524}$	-0.746 (1.320)	$^{+1.259}_{-1.198}$	$^{+2.601}_{-2.822}$	0.024	0.0352
SD_77:											
Eis	-0.445 (0.079)	+0.087 -0.065	+0.141	0.836 (0.363)	+0.224 -0.418	+0.752	-0.966 (0.377)	+0.164 -0.392	+0.740	5.823	0.0094
SC	-0.447 (0.121)	+0.123 -0.122	-0.170 +0.235 -0.241	1.030 (1.007)	-0.418 $+0.889$ -1.108	-0.617 $+2.023$ -1.889	0.966 (3.439)	-0.392 $+1.002$ -3.629	-0.583 +7.317 -4.416	0.486	0.1154
$\Lambda \mathrm{CDM}$	-0.451 (0.019)	-0.122 $+0.019$ -0.019	-0.241 $+0.038$ -0.037	1	-1.108	-1.009	-0.647 (0.058)	-3.629 $+0.057$ -0.057	-4.416 $+0.112$ -0.114	_	_
$hybrid_1$	-0.441 (0.055)	+0.019 $+0.053$ -0.060	-0.037 $+0.106$ -0.101	0.831 (0.322)	$^{+0.312}_{-0.370}$	$+0.602 \\ -0.564$	-1.060 (0.310)	-0.057 $+0.250$ -0.309	-0.114 $+0.607$ -0.595	5.005	0.0132
$hybrid_2$	-0.453 (0.056)	+0.038	-0.101 $+0.133$ -0.103	0.963 (0.329)	+0.356	+0.603	-0.879 (1.233)	-0.309 $+1.124$ -1.240	+2.584	0.572	0.0454
	(*)	-0.059	-0.103	(- 2)	-0.335	-0.634	(39)	-1.240	-2.383		
SD_78:											
Eis	$-0.511 \ (0.084)$	$^{+0.091}_{-0.074}$	$^{+0.158}_{-0.170}$	0.904 (0.424)	$^{+0.270}_{-0.488}$	$+0.867 \\ -0.734$	$-0.616 \ (0.475)$	$^{+0.124}_{-0.424}$	$+0.879 \\ -0.635$	2.175	0.0111
SC	$-0.516 \ (0.125)$	+0.127 -0.127	$+0.245 \\ -0.242$	1.131 (1.075)	+0.994 -1.178	+2.131 -2.008	1.763 (4.115)	$+1.444 \\ -4.652$	$+8.733 \\ -5.451$	0.768	0.1208

$\Lambda \mathrm{CDM}$	-0.511 (0.021)	+0.017	+0.036	1			-0.466 (0.064)	+0.052	+0.102	_	_
$hybrid_1$	-0.500 (0.052)	-0.017 +0.042	-0.034 +0.106	0.883 (0.297)	+0.341	+0.521	-0.748 (0.307)	+0.292	-0.109 +0.605	2.214	0.0105
hybrid_2	-0.499 (0.056)	-0.060 +0.047	-0.095 +0.124	0.894 (0.313)	-0.283 +0.321	-0.579 +0.575	-0.687 (1.323)	+1.206	-0.600 +2.618	0.035	0.0394
	0.200 (0.000)	-0.056	-0.110	0.001 (0.010)	-0.345	-0.580	0.001 (0.020)	-1.242	-2.685		0.000
SD_79:											
Eis	$-0.666 \ (0.084)$	$^{+0.093}_{-0.078}$	$^{+0.154}_{-0.168}$	$1.073\ (0.523)$	$^{+0.354}_{-0.633}$	$^{+1.074}_{-0.891}$	0.339 (0.954)	$^{+0.128}_{-0.915}$	$^{+2.080}_{-1.134}$	0.208	0.0120
SC	$-0.664 \ (0.124)$	$^{+0.126}_{-0.128}$	$^{+0.243}_{-0.236}$	$1.247\ (1.175)$	$^{+1.127}_{-1.261}$	$^{+2.364}_{-2.203}$	3.019 (5.457)	$^{+2.586}_{-6.709}$	$^{+11.365}_{-8.149}$	0.940	0.1243
$\Lambda \mathrm{CDM}$	$-0.654 \ (0.015)$	$^{+0.015}_{-0.015}$	$^{+0.029}_{-0.029}$	1			$-0.039 \ (0.046)$	$^{+0.044}_{-0.045}$	$+0.088 \\ -0.086$	_	_
$hybrid_1$	$-0.636 \ (0.051)$	$^{+0.052}_{-0.051}$	$^{+0.102}_{-0.098}$	$0.861\ (0.266)$	$^{+0.304}_{-0.254}$	$^{+0.480}_{-0.507}$	$-0.184 \ (0.482)$	$^{+0.476}_{-0.477}$	$+0.952 \\ -0.905$	0.174	0.0085
$hybrid_2$	$-0.627 \ (0.058)$	$^{+0.059}_{-0.049}$	$^{+0.109}_{-0.128}$	$0.731\ (0.376)$	$^{+0.345}_{-0.421}$	$^{+0.753}_{-0.676}$	-0.866 (1.639)	$^{+1.682}_{-0.991}$	$^{+2.711}_{-4.088}$	0.144	0.0375
SD_80:											
	0.567 (0.096)	+0.095	+0.161	0.081 (0.470)	+0.283	+0.963	0.201 (0.722)	+0.063	+1.273	0.701	0.0121
Eis	-0.567 (0.086)	-0.073 +0.130	-0.173 +0.253	0.981 (0.479)	$-0.549 \\ +1.071$	-0.800 +2.352	-0.291 (0.722)	-0.545 +1.819	-0.765 +9.963	0.721	0.0131
SC	-0.561 (0.129)	-0.129 +0.017	-0.245 +0.032	1.142 (1.146)	-1.227	-2.163	2.188 (4.627)	-5.320	-6.383 +0.096	0.752	0.1412
ACDM	-0.559 (0.017)	-0.017	-0.032 +0.104	0 000 (0 202)	+0.317	+0.511	-0.324 (0.051)	-0.052	-0.097 +0.701	0.022	- 0.000
hybrid_1	-0.544 (0.052)	+0.042 -0.058 $+0.053$	-0.094 +0.111	0.880 (0.282)	-0.264 +0.291	-0.543 +0.575	-0.533 (0.356)	11 222	-0.700 +2.727	0.932	0.0092
$hybrid_2$	$-0.539 \ (0.056)$	-0.053	-0.115	0.837 (0.306)	-0.361	-0.518	-0.657 (1.415)	-1.255	-3.022	0.195	0.0352
SD_81:											
Eis	$-0.632 \ (0.086)$	+0.095 -0.076	$^{+0.161}_{-0.173}$	1.056 (0.523)	$+0.320 \\ -0.614$	$+1.095 \\ -0.881$	0.133 (0.931)	$+0.041 \\ -0.778$	$+1.955 \\ -1.000$	0.264	0.0131
SC	$-0.611 \ (0.123)$	$^{+0.131}_{-0.118}$	$^{+0.231}_{-0.241}$	1.074 (1.121)	$^{+1.018}_{-1.210}$	$^{+2.308}_{-2.060}$	2.122 (4.848)	11.000	$^{+11.154}_{-6.794}$	1.128	0.1167
$\Lambda \mathrm{CDM}$	$-0.618 \; (0.016)$	$^{+0.016}_{-0.016}$	$^{+0.032}_{-0.030}$	1			-0.145 (0.048)	10.049	$^{+0.091}_{-0.096}$	_	_
$hybrid_1$	$-0.602 \ (0.051)$	+0.047 -0.055	$+0.105 \\ -0.096$	0.880 (0.267)	$^{+0.301}_{-0.258}$	$+0.479 \\ -0.507$	-0.285 (0.422)	$+0.420 \\ -0.402$	$+0.818 \\ -0.841$	0.305	0.0083
$hybrid_2$	$-0.593 \ (0.058)$	$+0.060 \\ -0.050$	$^{+0.110}_{-0.125}$	0.772 (0.338)	$+0.302 \\ -0.397$	$+0.653 \\ -0.594$	-0.725 (1.504)	11.441	$+2.811 \\ -3.553$	0.181	0.0351
an aa											
SD_82:		10.083	+0.147		10.240	+0.701		10.150	+0.784		
Eis	$-0.441 \ (0.079)$	+0.083 -0.072	-0.163	0.836 (0.353)	+0.240 -0.402	-0.617	$-0.984 \ (0.383)$	-0.407	-0.584	6.377	0.0088
SC	$-0.439 \ (0.130)$	+0.124 -0.127	+0.263 -0.260	1.001 (1.048)	+0.895 -1.122	$+2.268 \\ -1.955$	0.990 (3.588)	- 5.005	+8.921 -4.373	0.351	0.1502
ΛCDM	$-0.448 \ (0.019)$	+0.019 -0.019	+0.036 -0.038	1	10.226	10 569	-0.657 (0.058)	+0.056 -0.058	+0.115	_	-
$hybrid_1$	$-0.446 \ (0.054)$	+0.042 -0.062 $+0.039$	+0.116 -0.090 $+0.124$	0.912 (0.308)	+0.336 -0.324 $+0.321$	+0.563 -0.577 $+0.642$	-1.093 (0.306)	-0.320	+0.594 -0.575 $+2.547$	5.576	0.0114
$hybrid_2$	$-0.449 \ (0.054)$	-0.058	-0.124	0.958 (0.327)	-0.366	-0.594	-0.875 (1.218)	$^{+1.097}_{-1.204}$	-2.393	0.525	0.0433
SD_83:											
Eis	-0.610 (0.082)	$+0.090 \\ -0.077$		0.971 (0.470)	+0.327 -0.564	$+0.948 \\ -0.812$	-0.057 (0.662)	+0.111 -0.596	$^{+1.409}_{-0.826}$	0.395	0.0108
SC	-0.616 (0.128)	+0.128 -0.130	-0.167 $+0.251$ -0.254	1.204 (1.192)	+1.099 -1.270	+2.517 -2.241	2.699 (5.322)		+11.206 -7.518	0.840	0.1406
$\Lambda \mathrm{CDM}$	-0.608 (0.017)	+0.016 -0.016	+0.032 -0.031	1	-1.270	-2.241	-0.175 (0.050)	10.049	+0.093 -0.095	_	_
$hybrid_1$	-0.591 (0.049)	+0.049 -0.049	+0.099 -0.094	0.871 (0.267)	$+0.298 \\ -0.264$	$+0.482 \\ -0.500$	-0.333 (0.409)	10.400	+0.776 -0.799	0.415	0.0083
$hybrid_2$	$-0.584 \ (0.058)$	+0.057 -0.053	+0.110 -0.122	0.786 (0.334)	+0.316 -0.378	$+0.630 \\ -0.607$	$-0.714\ (1.529)$	1.1.5.45		0.249	0.0357
		0.000	0.122		0.010	0.001		1.112	0.001		
<i>SD_84:</i>											
Eis	$-0.647 \ (0.088)$	-0.076	$+0.164 \\ -0.178$	1.090 (0.547)	-0.641	$+1.133 \\ -0.930$	0.258 (1.048)	0.002	-1.112	0.177	0.0140
SC	$-0.645 \ (0.120)$	$+0.122 \\ -0.124$	-0.233	1.279 (1.137)	+1.055 -1.237	$+2.289 \\ -2.126$	2.984 (5.282)		$^{+10.955}_{-7.661}$	1.090	0.1154
$\Lambda \mathrm{CDM}$	$-0.629 \ (0.016)$	+0.016 -0.015	+0.030 -0.031	1			$-0.113 \ (0.047)$	0.041	+0.092 -0.091	_	-
$hybrid_1$	-0.609 (0.050)	$^{+0.049}_{-0.050}$	$+0.096 \\ -0.099$	$0.847 \; (0.266)$	$^{+0.269}_{-0.297}$	$^{+0.505}_{-0.479}$	$-0.284 \ (0.444)$	-0.472	$^{+0.876}_{-0.845}$	0.214	0.0088
$hybrid_2$	$-0.606 \ (0.057)$	+0.059 -0.050	$+0.112 \\ -0.119$	$0.769 \ (0.349)$	$+0.324 \\ -0.401$	$+0.672 \\ -0.628$	-0.775 (1.523)	$^{+1.624}_{-0.986}$	$+2.660 \\ -3.551$	0.302	0.0352
SD_85:											
Eis	-0.571 (0.083)	+0.093	$^{+0.149}_{-0.174}$	0.945 (0.459)	+0.289	+0.949	-0.276 (0.596)	+0.089	+1.297	0.863	0.0112
SC	-0.574 (0.122)	-0.074 +0.122	+0.243	1.164 (1.093)	-0.553 $+1.016$	-0.773 +2.275 -0.76	2.219 (4.534)	+1.697	-0.725 $+10.976$	0.973	0.1178
$\Lambda \mathrm{CDM}$	-0.569 (0.018)	-0.126 $+0.017$	-0.237 $+0.035$	1	-1.166	-2.076	-0.292 (0.053)	+0.053	-6.307 $+0.100$	-	-
-	()	-0.018	-0.033	-			. (0.000)	-0.051	-0.106		

$hybrid_1$	-0.555 (0.052)	$^{+0.048}_{-0.055}$	$^{+0.105}_{-0.096}$	$0.867 \ (0.279)$	$^{+0.305}_{-0.302}$	$^{+0.497}_{-0.522}$	-0.507 (0.37)	$(1) \begin{array}{c} +0.352 \\ -0.375 \end{array}$	$^{+0.734}_{-0.713}$	0.893	0.0099
$hybrid_2$	$-0.546 \ (0.056)$	$+0.054 \\ -0.052$	$^{+0.111}_{-0.118}$	$0.819\ (0.307)$	$^{+0.306}_{-0.346}$	$+0.568 \\ -0.549$	-0.631 (1.40)	(5) $^{+1.397}_{-1.124}$	$+2.696 \\ -3.054$	0.153	0.0362
SD_86:											
Eis	$-0.558 \ (0.083)$	$^{+0.091}_{-0.073}$	$^{+0.157}_{-0.168}$	$0.957 \; (0.455)$	$^{+0.287}_{-0.521}$	$^{+0.920}_{-0.774}$	-0.356 (0.62)	$^{+0.090}_{-0.494}$	$^{+1.112}_{-0.718}$	1.011	0.0116
SC	$-0.554 \ (0.124)$	$^{+0.128}_{-0.122}$	$+0.239 \\ -0.246$	1.132 (1.106)	$^{+0.989}_{-1.217}$	$+2.313 \\ -1.991$	2.036 (4.53)	$(1) \begin{array}{c} +1.579 \\ -5.141 \end{array}$	$+9.545 \\ -6.139$	0.845	0.1232
$\Lambda \mathrm{CDM}$	$-0.553 \ (0.017)$	$^{+0.017}_{-0.017}$	$+0.033 \\ -0.032$	1			-0.341 (0.05)	+0.050 -0.052	$+0.096 \\ -0.099$	_	_
$hybrid_1$	$-0.534 \ (0.052)$	$+0.048 \\ -0.058$	$^{+0.100}_{-0.094}$	0.842 (0.292)	$+0.352 \\ -0.279$	+0.506 -0.529	-0.585 (0.33)	10.222	+0.649	1.046	0.0091
$hybrid_2$	-0.535 (0.056)	+0.051 -0.054	+0.119 -0.113	0.846 (0.309)	+0.304 -0.352		-0.663 (1.369	. 11 279	+2.760	0.177	0.0359
0	,	-0.034	-0.113	,	-0.332	-0.546	`	7 -1.198	-2.994		
<i>SD_87:</i>											
Eis	$-0.521\ (0.082)$	+0.087 -0.073	$^{+0.150}_{-0.170}$	0.908 (0.414)	$^{+0.274}_{-0.480}$	+0.837 -0.715	-0.580 (0.46)	$^{+0.118}_{-0.418}$	$+0.849 \\ -0.615$	2.077	0.0106
SC	-0.524 (0.129)	$+0.130 \\ -0.131$	$+0.250 \\ -0.253$	1.130 (1.118)	$+1.016 \\ -1.207$	$+2.330 \\ -2.065$	1.902 (4.38	(5) $^{+1.482}_{-4.882}$		0.722	0.1356
$\Lambda \mathrm{CDM}$	-0.522 (0.020)	+0.018 -0.017	+0.035 -0.035	1	1.201	2.000	-0.434 (0.05	. 10.050	+0.105	_	_
$hybrid_1$	-0.509 (0.051)	+0.041	+0.103	0.880 (0.293)	+0.340	+0.514	-0.717 (0.31)	+0.294	+0.613	1.958	0.0104
hybrid_2	-0.506 (0.060)	-0.059 +0.050	-0.091 +0.130	0.853 (0.316)	-0.272 +0.324	-0.577 +0.585	-0.792 (1.27)	3) +1.201	+2.566	0.058	0.0393
ngoria_≈	0.500 (0.000)	-0.062	-0.112	0.005 (0.010)	-0.346	-0.575	0.732 (1.27)	·) -1.148	-2.717	0.000	0.0555
SD_88:											
Eis	-0.681 (0.085)	+0.095	$^{+0.154}_{-0.176}$	1.130 (0.547)	+0.351	$+1.139 \\ -0.928$	0.473 (1.11)	$^{+0.115}_{-1.031}$	$^{+2.421}_{-1.235}$	0.173	0.0129
SC	-0.671 (0.121)	-0.076 +0.124	+0.233	1.253 (1.158)	-0.654 +1.057	+2.371	3.051 (5.53)	+2.512	+11.487	1.001	0.1149
$\Lambda \mathrm{CDM}$	-0.660 (0.015)	-0.125 +0.015	-0.236 +0.030	1	-1.286	-2.090	-0.019 (0.04)	+0.045	+0.087	_	_
		-0.015 +0.054	-0.029 +0.101		+0.331	+0.499		7 -0.045	-0.090		0.0001
hybrid_1	-0.643 (0.053)	-0.053 +0.063	-0.102 +0.111	0.854 (0.280)	-0.254 +0.329	-0.534 +0.737	-0.182 (0.49)	ツ =0.509	-1.016	0.148	0.0091
$hybrid_2$	$-0.629 \ (0.058)$	-0.048	-0.121	0.707 (0.365)	-0.410	-0.637	-0.845 (1.52)	-0.790	-3.880	0.108	0.0329
SD_89:											
Eis	-0.651 (0.085)	+0.094	+0.156	1.077 (0.521)	+0.332	+1.078	0.243 (0.96	$(1) \begin{array}{c} +0.071 \\ -0.852 \end{array}$	+2.054	0.204	0.0122
	` ,	-0.075 +0.127	-0.170 +0.247		-0.619 +1.102	-0.889 +2.467		. 19.941			
SC	$-0.647 \ (0.125)$	-0.127 +0.015	-0.247 +0.030	1.260 (1.184)	-1.266	-2.261	3.028 (5.47)	-6.736	-8.078	0.884	0.1312
Λ CDM	$-0.634 \ (0.016)$	-0.015	-0.030	1	10.000	10.400	-0.097 (0.04)	-0.046	-0.091	_	_
$hybrid_1$	$-0.616 \ (0.049)$	$+0.049 \\ -0.049$	$+0.096 \\ -0.095$	$0.866 \ (0.260)$	$+0.286 \\ -0.264$	$+0.468 \\ -0.491$	-0.241 (0.43)	0.442	-0.852	0.151	0.0079
$hybrid_2$	$-0.610 \ (0.057)$	$^{+0.055}_{-0.053}$	$^{+0.115}_{-0.112}$	$0.754 \ (0.350)$	$^{+0.343}_{-0.386}$	$+0.662 \\ -0.621$	-0.814 (1.593)	$\begin{array}{c} +1.615 \\ -1.011 \end{array}$	$+2.761 \\ -3.864$	0.215	0.0350
SD_90:											
	()	+0.088	+0.152		+0.271	+0.846		+0.122	+0.901		
Eis	$-0.526 \ (0.081)$	-0.071	-0.163	0.926 (0.413)	-0.479	-0.714	-0.575 (0.46	-0.412	-0.625	2.032	0.0099
SC	$-0.525 \ (0.125)$	-0.129	+0.251 -0.235	1.123 (1.073)	$+1.008 \\ -1.176$	+2.134 -1.999	1.799 (4.099	1.720	-5.514	0.890	0.1149
ΛCDM	$-0.522 \ (0.018)$	$^{+0.017}_{-0.018}$	-0.034	1			-0.434 (0.05)	0.002	-0.104	_	_
$hybrid_1$	$-0.509 \ (0.052)$	$^{+0.043}_{-0.058}$	$+0.108 \\ -0.093$	$0.885 \ (0.280)$	$+0.301 \\ -0.295$	$^{+0.517}_{-0.524}$	-0.715 (0.320)	$(1) \begin{array}{c} +0.307 \\ -0.310 \end{array}$	$+0.633 \\ -0.642$	2.068	0.0093
$hybrid_2$	$-0.510 \ (0.056)$	$+0.050 \\ -0.053$	+0.118 -0.110	$0.883\ (0.305)$	$^{+0.311}_{-0.343}$	$^{+0.557}_{-0.534}$	-0.709 (1.363)	$^{+1.300}_{-1.232}$	$+2.694 \\ -2.917$	0.030	0.0377
GD 04											
<i>SD_91:</i>											
Eis	$-0.587 \ (0.085)$	-0.073	$^{+0.159}_{-0.170}$	$0.994 \; (0.488)$	-0.559	-0.821	-0.164 (0.77)	0.001	-0.809	0.524	0.0129
SC	$-0.586 \ (0.124)$	$^{+0.127}_{-0.126}$	$^{+0.237}_{-0.243}$	1.182 (1.120)	$+1.036 \\ -1.223$	+2.327 -2.036	2.365 (4.78)	$^{+1.861}_{-5.629}$	$^{+10.022}_{-6.651}$	0.997	0.1190
$\Lambda \mathrm{CDM}$	$-0.579 \ (0.017)$	$^{+0.016}_{-0.017}$	$+0.033 \\ -0.032$	1			-0.262 (0.05)	(0) $^{+0.050}_{-0.049}$	+0.095 -0.099	_	_
$hybrid_1$	$-0.567 \; (0.048)$	$^{+0.044}_{-0.052}$	$^{+0.101}_{-0.089}$	0.892 (0.263)	$^{+0.296}_{-0.250}$	$^{+0.471}_{-0.524}$	-0.459 (0.374)	1) $^{+0.362}_{-0.376}$	$^{+0.729}_{-0.732}$	0.549	0.0082
$hybrid_2$	$-0.557 \ (0.057)$	$^{+0.054}_{-0.054}$		0.810 (0.314)	$^{+0.295}_{-0.368}$		-0.696 (1.436	1.1.410		0.177	0.0347
			~ - -		2.000		•	1.000	00		
<u>SD_92:</u>											
Eis	$-0.524 \ (0.084)$	$^{+0.091}_{-0.073}$	$^{+0.160}_{-0.168}$	$0.920\ (0.434)$	$^{+0.268}_{-0.497}$	$^{+0.867}_{-0.739}$	-0.546 (0.53)	7) $^{+0.111}_{-0.440}$	$^{+0.924}_{-0.662}$	1.646	0.0115
SC	$-0.517 \; (0.120)$	$^{+0.129}_{-0.115}$	$^{+0.220}_{-0.246}$	1.068 (1.025)	$^{+0.851}_{-1.132}$	$^{+2.067}_{-1.843}$	1.551 (4.00	$^{+1.230}_{-4.414}$	$+8.543 \\ -5.184$	0.892	0.1161
$\Lambda \mathrm{CDM}$	$-0.524 \ (0.018)$	$^{+0.018}_{-0.018}$	$^{+0.036}_{-0.034}$	1			-0.429 (0.05)	10.055		_	_
$hybrid_1$	-0.511 (0.052)	+0.041	+0.106	0.891 (0.279)	+0.297	+0.507	-0.707 (0.33	. 10.212		2.112	0.0093
J	(0.002)	-0.059	-0.094	(3.=.3)	-0.298	-0.519	(3.30)	-0.314	-0.645		

$hybrid_2$	$-0.508 \; (0.056)$	$+0.048 \\ -0.058$	$^{+0.117}_{-0.110}$	0.866 (0.309)	$^{+0.307}_{-0.351}$	$^{+0.570}_{-0.548}$	-0.743 (1.3	$(22) \begin{array}{c} +1.24 \\ -1.17 \end{array}$	$6 + 2.545 \\ 2 - 2.838$	0.084	0.0380
SD_93:											
Eis	-0.549 (0.084)	+0.096	+0.147	0.931 (0.455)	+0.286	+0.931	0.407 (0.5	50) +0.08	8 +1.110	1.274	0.0116
SC SC	-0.549 (0.084) $-0.543 (0.122)$	-0.070 +0.121	-0.179 +0.252	1.083 (1.072)	-0.546 +1.040	-0.770 +2.191	-0.407 (0.5	64) $-0.47+1.48$	0 -0.666 0 +8.776	0.972	0.0116
ΛCDM	-0.543 (0.122) $-0.547 (0.017)$	-0.124 +0.017	-0.231 +0.034	1.003 (1.072)	-1.076	-2.013	1.782 (4.1 -0.359 (0.0	51) -4.8351) $+0.05$	9 -5.567 0 +0.098	0.972	0.1145
hybrid_1	-0.531 (0.053)	-0.017 +0.043	-0.033 +0.111	0.880 (0.283)	+0.302	+0.519	-0.573 (0.3	-0.05 -0.34	0 -0.103 2 +0.682	1.249	0.0098
hybrid_2	-0.528 (0.057)	-0.058 +0.054	-0.093 +0.115	0.847 (0.311)	-0.300 +0.305	-0.537 +0.583	-0.665 (1.4)	-0.33 11) +1.30	5 -0.693 5 +2.824	0.072	0.0385
ngorta_z	0.020 (0.001)	-0.054	-0.112	0.047 (0.011)	-0.352	-0.556	0.000 (1.4	-1.22	3 -2.930	0.012	0.0000
SD_94:											
Eis	$-0.488 \; (0.077)$	$^{+0.084}_{-0.071}$	$^{+0.140}_{-0.159}$	$0.868 \; (0.369)$	$^{+0.257}_{-0.436}$	$^{+0.748}_{-0.644}$	-0.776 (0.3)	-0.30	1 - 0.543	4.447	0.0087
SC	$-0.489 \ (0.124)$	$^{+0.126}_{-0.128}$	$^{+0.246}_{-0.239}$	$1.061\ (1.053)$	$+0.998 \\ -1.123$	$^{+2.167}_{-1.994}$	1.390 (3.7		8 - 5.015	0.687	0.1211
$\Lambda \mathrm{CDM}$	$-0.492 \ (0.019)$	$^{+0.018}_{-0.019}$	$^{+0.037}_{-0.036}$	1			-0.525 (0.0	, -0.00	4 - 0.110	_	-
$hybrid_1$	$-0.482 \ (0.054)$	$^{+0.043}_{-0.060}$	$^{+0.107}_{-0.098}$	$0.881\ (0.290)$	$^{+0.316}_{-0.302}$	$+0.536 \\ -0.538$	-0.852 (0.3)	$^{+0.28}_{-0.30}$	$7 + 0.607 \\ 7 - 0.644$	3.028	0.0105
$hybrid_2$	$-0.485 \ (0.054)$	$+0.045 \\ -0.054$	$^{+0.118}_{-0.105}$	$0.913 \ (0.308)$	$+0.308 \\ -0.349$	$+0.579 \\ -0.542$	-0.794 (1.3)	(24) $^{+1.26}_{-1.19}$	5 + 2.593 6 - 2.795	0.021	0.0386
SD_95:											
Eis	-0.496 (0.079)	+0.085	+0.148	0.871 (0.382)	+0.282	+0.779	-0.721 (0.3	72) +0.15		3.636	0.0094
SC	-0.502 (0.125)	-0.074 +0.126	-0.160 +0.240	1.113 (1.077)	-0.440 +0.932	-0.682 $+2.341$	1.631 (4.1	30) +1.19	8 +8.869	0.643	0.1270
$\Lambda \mathrm{CDM}$	-0.500 (0.018)	-0.127 $+0.017$	-0.252 $+0.037$	1	-1.185	-1.979	-0.501 (0.0	, -4.47 (EE) +0.05	1 +0.102	_	_
$hybrid_1$	-0.487 (0.054)	-0.017 $+0.041$	-0.034 +0.111	0.869 (0.299)	+0.342	+0.521	-0.817 (0.3	- 0.00	+0.626	2.948	0.0113
$hybrid_2$	-0.492 (0.054)	-0.062 $+0.048$ -0.051	-0.095 +0.120 -0.105	0.916 (0.309)	-0.279 $+0.336$ -0.327	-0.582 $+0.559$ -0.587	-0.713 (1.2	-> 11.17	2 + 2.630	0.009	0.0398
an aa		0.001	0.100		0.021	0.001		1.20	2.010		
<u>SD_96:</u>		10.005	10.146		10.000	10.504		10.14			
Eis	-0.489 (0.079)	+0.085 -0.072	+0.146 -0.163 $+0.240$	0.872 (0.382)	+0.262 -0.440	+0.764 -0.664	-0.756 (0.3)	, -0.51	3 - 0.570	3.752	0.0096
SC	-0.492 (0.129)	$^{+0.138}_{-0.116}$ $^{+0.019}$	-0.275 +0.037	1.080 (1.094)	-1.161	$^{+2.251}_{-2.101}$	1.523 (4.2	10.05	1 -5.338	0.571	0.1434
ΛCDM	-0.492 (0.020)	-0.019 +0.041	-0.037 -0.113	1	+0.335	+0.531	-0.524 (0.0	-0.05	8 - 0.112	_	_
hybrid_1	$-0.482 \ (0.055)$	-0.062 $+0.043$	-0.113 -0.100 $+0.127$	0.892 (0.295)	-0.284 +0.324	-0.557 +0.586	-0.847 (0.3)	-0.32	6 - 0.654	3.153	0.0111
$hybrid_2$	$-0.483 \ (0.056)$	-0.057	-0.106	0.912 (0.312)	-0.334	-0.568	-0.733 (1.3)	$16) \begin{array}{c} +1.21 \\ -1.27 \end{array}$	2 -2.593	0.025	0.0401
SD_97:											
Eis	$-0.624\ (0.087)$	$^{+0.098}_{-0.074}$	$^{+0.161}_{-0.178}$	1.051 (0.531)	$^{+0.314}_{-0.615}$	$^{+1.089}_{-0.889}$	0.091 (0.9	$60) \begin{array}{c} +0.02 \\ -0.76 \end{array}$	6 + 2.089 6 - 0.995	0.318	0.0138
SC	$-0.620 \ (0.127)$	$^{+0.128}_{-0.133}$	$^{+0.254}_{-0.246}$	1.229 (1.176)	$^{+1.070}_{-1.288}$	$^{+2.461}_{-2.178}$	2.802 (5.3	$05) \begin{array}{c} +1.87 \\ -6.35 \end{array}$	7 + 11.035 7 - 7.279	0.910	0.1316
$\Lambda \mathrm{CDM}$	$-0.610 \ (0.016)$	$^{+0.016}_{-0.015}$	$^{+0.031}_{-0.031}$	1			-0.169 (0.0	48) $^{+0.04}_{-0.04}$		_	-
$hybrid_1$	$-0.592 \ (0.052)$	$^{+0.047}_{-0.055}$	$^{+0.107}_{-0.096}$	$0.867\ (0.266)$	$^{+0.295}_{-0.263}$	$^{+0.476}_{-0.508}$	-0.311 (0.4	15) $^{+0.41}_{-0.39}$	$ \begin{array}{ccc} 8 & +0.814 \\ 8 & -0.822 \end{array} $	0.224	0.0087
$hybrid_2$	$-0.584 \ (0.058)$	$^{+0.055}_{-0.053}$	$^{+0.113}_{-0.121}$	$0.778 \; (0.332)$	$^{+0.312}_{-0.381}$	$^{+0.634}_{-0.592}$	-0.703 (1.5)	$07) \begin{array}{c} +1.54 \\ -1.10 \end{array}$	$5 +3.003 \\ 0 -3.173$	0.248	0.0356
SD_98:											
Eis	-0.529 (0.081)	+0.088	+0.153	0.926 (0.424)	+0.284	+0.850	-0.545 (0.5	00) +0.11	5 +0.873	1.800	0.0111
SC	-0.533 (0.127)	-0.072 +0.128	-0.161 +0.247	1.166 (1.115)		-0.735 +2.237	2.029 (4.5	16) +1.46	2 +9.521	0.685	0.1311
$\Lambda \mathrm{CDM}$	-0.526 (0.018)	-0.129 +0.017	-0.251 $+0.035$	1	-1.220	-2.101	-0.423 (0.0	54) +0.05	4 +0.105	_	_
$hybrid_1$	-0.512 (0.052)	-0.018 $+0.042$ -0.059	-0.035 $+0.104$	0.877 (0.295)	+0.335	+0.520	-0.681 (0.3	. 10.00	6 +0.657	1.994	0.0104
$hybrid_2$	-0.513 (0.055)	+0.059 $+0.050$ -0.051	-0.091 $+0.115$ -0.113	0.881 (0.302)	-0.275 $+0.304$ -0.343	-0.584 +0.551 -0.530	-0.709 (1.3	. 11.30	5 +2.610	0.039	0.0350
-	, ,	-0.031	-0.113	` '	-0.343	-0.000	`	1.23	_2.609		
SD_99:		10.080	10.146		10.286	10.001		10.12	1 10.062		
Eis	-0.531 (0.081)	+0.089 -0.073	+0.146 -0.170	0.917 (0.421)	-0.494	-0.735	-0.531 (0.4	, -0.42	2 -0.637	1.910	0.0101
SC	-0.534 (0.126)	$^{+0.126}_{-0.126}$	+0.250 -0.242 $+0.035$	1.146 (1.103)	$^{+1.017}_{-1.185}$	$^{+2.263}_{-2.041}$	1.961 (4.3	. 10.05		0.747	0.1303
ΛCDM	-0.529 (0.018)	$^{+0.017}_{-0.017}$ $^{+0.043}$	+0.035 -0.034	1	+0.307	+0.513	-0.413 (0.0	, -0.00	2 - 0.106	-	_
hybrid_1	-0.515 (0.051)	-0.058	+0.110 -0.091 $+0.122$	0.882 (0.285)	+0.307 -0.296 $+0.307$	-0.556	-0.651 (0.3	, -0.52		2.107	0.0092
$hybrid_2$	$-0.515 \ (0.056)$	$+0.050 \\ -0.053$	-0.122 -0.107	0.868 (0.307)	+0.307 -0.348	$+0.574 \\ -0.549$	-0.747 (1.3)	76) $^{+1.36}_{-1.15}$	$ \begin{array}{rrr} 3 & +2.634 \\ 8 & -2.972 \end{array} $	0.067	0.0381

SD_100:										
Eis	$-0.516 \ (0.078)$	$\begin{array}{rrrr} +0.084 & +0.143 \\ -0.072 & -0.158 \end{array}$	0.881 (0.391)	$^{+0.269}_{-0.463}$	$^{+0.802}_{-0.674}$	$-0.619 \ (0.384)$	$^{+0.146}_{-0.378}$	$^{+0.765}_{-0.580}$	2.661	0.0092
SC	$-0.524 \ (0.129)$	$+0.135 +0.243 \\ -0.126 -0.253$		$^{+1.016}_{-1.250}$	$^{+2.370}_{-2.049}$	1.960 (4.480)	$^{+1.393}_{-4.991}$	$+9.627 \\ -5.809$	0.690	0.1338
$\Lambda \mathrm{CDM}$	$-0.520 \ (0.017)$	+0.017 +0.034 $-0.016 -0.034$				$-0.440 \ (0.052)$	$^{+0.049}_{-0.051}$	$^{+0.102}_{-0.103}$	_	_
$hybrid_1$	$-0.506 \ (0.053)$	+0.042 +0.108 $-0.061 -0.096$		$^{+0.305}_{-0.300}$	$^{+0.500}_{-0.523}$	$-0.722 \ (0.335)$	$^{+0.312}_{-0.319}$	$+0.685 \\ -0.639$	2.223	0.0096
$hybrid_2$	$-0.505 \ (0.056)$	$ \begin{array}{rrrr} +0.048 & +0.120 \\ -0.055 & -0.107 \end{array} $		$^{+0.313}_{-0.350}$	$^{+0.582}_{-0.547}$	$-0.677 \ (1.365)$	$^{+1.276}_{-1.193}$	$^{+2.711}_{-2.783}$	0.095	0.0394