GATE 2013 XE(4-5)

EE24BTECH11030 - J.KEDARANANDA

1) C	onsider tl	he function	$f(z) = z^2 \overline{z}, z \in$	\mathbb{C} . At $z=0$.	the function	f
------	------------	-------------	----------------------------------	---------------------------	--------------	---

- a) does not satisfy the Cauchy-Riemann equations
- b) satisfies the Cauchy-Riemann equations but is not differentiable
- c) is differentiable but not analytic
- d) is analytic
- 2) The integral $\oint_C \frac{(z+4)}{(z+1)(z-2)^3} dz$ along the contour C: |z-(1+i)| = 2, oriented anticlockwise, is equal to
 - a) 0

- b) $\frac{2\pi i}{\alpha}$ c) $-\frac{2\pi i}{\alpha}$ d) $\frac{4\pi i}{\alpha}$

1

- 3) The integral $\int_0^1 \int_x^{x^2} \left(\frac{x}{y}\right) e^{-x^2/y} dy dx$ equals
 - a) $\frac{e-2}{a}$ b) $\frac{e-1}{2a}$ c) $\frac{e-1}{2}$

- 4) If the mean and variance of a binomial distribution are 6 and 2 respectively, then the probability of two failures is

 - a) $4\left(\frac{2}{3}\right)^7$ b) $4\left(\frac{22}{37}\right)$ c) $17\left(\frac{2}{3}\right)^7$ d) $17\left(\frac{22}{37}\right)$
- 5) For the matrix $M = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 1 & 1 & -2 \end{pmatrix}$, consider the following statements:
 - (P) The characteristic equation of M is $\lambda^3 \lambda = 0$.
- (Q) M^{-1} does not exist.
- (R) The matrix M is diagonalizable.

Which of the above statements are true?

a) P, Q and R

c) P and Q but not R

b) P and R but not Q

- d) Q and R but not P
- 6) The work done by the force $\mathbf{F} = (x + x^2)\hat{i} + (x^2 + y^3)\hat{j}$ in moving a particle once along the triangle with vertices (0,0),(1,0) and (0,1) in the anti-clockwise direction is

a) 0

b) $\frac{1}{6}$

c) $\frac{1}{3}$

d) $\frac{5}{3}$

7) The general solution of the differential equation

$$x^{3}\frac{d^{3}y}{dx^{3}} + x^{2}\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} - y = 0, \quad x > 0$$

is

a)
$$C_1 e^x + e^{x/2} \left\{ C_2 \cos \left(\frac{\sqrt{3}}{2} x \right) + C_3 \sin \left(\frac{\sqrt{3}}{2} x \right) \right\}$$

b)
$$C_1 x + x^{-1/2} \left\{ C_2 \cos \left(\frac{\sqrt{3}}{2} \log_e x \right) + C_3 \sin \left(\frac{\sqrt{3}}{2} \log_e x \right) \right\}$$

c)
$$C_1 e^x + e^{-x/2} \left\{ C_2 \cos\left(\frac{\sqrt{3}}{2}x\right) + C_3 \sin\left(\frac{\sqrt{3}}{2}x\right) \right\}$$

d)
$$C_1 x + x^{1/2} \left\{ C_2 \cos \left(\frac{\sqrt{3}}{2} \log_e x \right) + C_3 \sin \left(\frac{\sqrt{3}}{2} \log_e x \right) \right\}$$

8) Using Euler's method to solve the differential equation

$$\frac{dy}{dx} = 2\cos\left(\frac{4\pi x}{3}\right) - y, \quad y(0) = 1$$

with step-size h = 0.25, the value of y(0.5) is

- a) 1.3125
- b) 1.1875
- c) 1.125
- d) 1.0625
- 9) The gauge pressure inside a soap bubble of radius R, with σ denoting the surface tension between the soap solution and air, is:
 - a) $\frac{\sigma}{2\pi R}$
- b) $\frac{4\sigma}{R}$
- c) $\frac{2\sigma}{R}$
- d) $\frac{\sigma}{4\pi R}$
- 10) Let M, B, and G represent respectively the metacentre, centre of buoyancy, and the centre of mass of a floating buoy. Which of the following statements is correct?
 - a) M is above G; Buoy unstable
- c) M is above G; Buoy stable
- b) B is above G; Buoy stable
- d) B is above G; Buoy unstable
- 11) A reservoir connected to a pipeline is being filled with water, as shown in the Figure. At any time *t*, the free surface level in the reservoir is *h*. Find the time in seconds for the reservoir to get filled up to a height of 1 m, if the initial level is 0.2 m.

- 12) Bernoulli's equation is valid for the following type of flow:
 - a) Compressible, steady, inviscid
- c) Compressible, unsteady, viscous
- b) Incompressible, steady, viscous
- d) Incompressible, steady, inviscid
- 13) If A is the area of a circle of radius r enclosing a plane forced vortex flow, with origin at the centre of the vortex and if ω is the angular velocity, ζ is the vorticity, \mathbf{V} is the velocity vector, then the circulation around the contour of the circle is given by
 - a) $2\omega A$
- b) $2\zeta A$
- c) 2**V**A
- d) 0