COSC175 (Systems I): Computer Organization & Design

Professor Lillian Pentecost Fall 2024

Warm-Up October 3

- Where we were
 - Introducing our first higher-level processor picture
 - More building blocks! MUXes and ALUs
- Where we are going
 - Activities based on observed questions + requests
- Logistics, Reminders
 - TA help 7-9PM on Sundays, Tuesdays, Thursdays in C107
 - LP Office hours M 9-10:30AM, Th 2:30-4PM
 - Weekly Exercises Due Friday 5PM (CYOA)
 - Midterm Exam Announcement: Tuesday EVENING on October 22
 - Pruyne Lecture hall, 2 hr exam, in the range of 6-9:30PM
 - Open notes/textbook, more details to be provided next week
 - NO lecture on October 22, no pre-lab for October 23
- Textbook Tags: 2.8, 5.2 (5.2.4), <u>DivelntoSystems 5.5</u>

Check-In Activity: based on lab + feedback questions!

- Start by assigning group roles!
 - Ambassador, Recorder, Sketcher, and Executive
- Parts do not need to be completed in order decide as a group which part sounds more interesting and useful to start with!
- Hand in recorder's notes at the end of class (either on paper or via email)

ALU: Arithmetic Logic Unit

ALUControl _{1:0}	Function
00	Add
01	Subtract
10	AND
11	OR

Example: Perform A + B

 $ALUControl_{1.0} = 00$

 $ALUControl_0 = 0$, so:

 C_{in} to adder = 0

2nd input to adder is B

Mux selects Sum as Result, so

Result = A + B

Memory Arrays

- Address N Array
- Efficiently store large amounts of data
- M-bit data value read/written at each unique N-bit address
- 3 common types:
 - Dynamic random access memory (DRAM)
 - Static random access memory (SRAM)
 - Read only memory (ROM)

Memory Arrays

- 2-dimensional array of bit cells
- Each bit cell stores one bit
- N address bits and M data bits:
 - -2^N rows and M columns
 - **Depth:** number of rows (number of words)
 - Width: number of columns (size of word)
 - Array size: depth \times width = $2^N \times M$

Memory Array Example

- **2**² × **3-bit** array
- Number of words: 4
- Word size: 3-bits
- For example, the 3-bit word stored at address 10 is 100

Wrap-Up October 3

- Coming up next!
 - Memory Arrays (one of our last building blocks!)
- Logistics, Reminders
 - Evening help sessions 7-9PM on Sundays, Tuesdays, Thursdays in C107
 - Weekly Exercises Due Friday 5PM
 - Lab 0, 1, Weekly Exercises 0 Feedback is posted via Moodle, reach out to me with questions
 - Lab 4 Report (First & Second Stage) due October 17
 - Complete First stage, Part 2 diagram as pre-lab for next Wednesday
 - Spend time now to get comfortable with testing!!
 - Midterm Exam Announcement: Tuesday EVENING on October 22
 - Pruyne Lecture hall, 2 hr exam, in the range of 6-9:30PM
 - Open notes/textbook, more details to be provided next week
 - NO lecture on October 22, no pre-lab for October 23
- FEEDBACK
 - https://forms.gle/5Aafcm3iJthX78jx6

