Ci-dessous quelques exercices supplémentaires sur les chapitres 2 et 3

Chapitre 2

Exercice 1

On considère u_n la suite dont le terme général est donné ci-dessous. Étudier la nature de la série $\sum u_n$ (convergente, divergente) dans chaque cas.

1.
$$u_n = \frac{7n^2 + 5}{n^3 + 2}, n \ge 0$$

$$2. \ u_n = \left(\frac{3}{n}\right)^n, n > 0$$

3.
$$u_n = \begin{cases} \frac{1}{3^k} & \text{si } n = 2k, \\ \frac{2}{3^{k+1}} & \text{si } n = 2k+1 \end{cases}$$

4.
$$u_n = \left(\frac{2n+1}{5n+4}\right)^n, n \ge 0$$

Chapitre 3

Exercice 2

Calculer les intégrales suivantes :

•
$$I = \int_{2}^{5} \frac{x}{(2x^2 - 3)^4} dx$$

•
$$J = \int_{2}^{4} (x^2 + x)e^{2x^3 + 3x^2 + 1} dx$$

Exercice 3

Calculer la valeur moyenne de la fonction $f(x) = (x-2)e^{x+1}$ pour x évoluant entre 3 et 7. On utilisera une intégration par parties.

Exercice 4

À l'aide d'une intégration par parties, calculer $\int_1^e \ln^2(x) dx$

Exercice 5

À l'aide du changement de variable $y=x^3$ calculer $I=\int_2^5 \frac{x^2}{x^3+4} dx.$

Remarque : il est possible de calculer I directement mais l'énoncé stipule d'utiliser un changement de variables