CS541 Artificial Intelligence Guest Lecture on Mean Estimation

Lecturer: Shiwei Zeng

Szeng 4 @ stevens. edu

Estimating Average Height

• Assume D = N(60,1)

• Assume E[D] = 60, Var[D] = 1

• Estimator
$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 $\lesssim \sim \mathcal{D}^{m}$

$$S \sim D^{m}$$

$$E[\hat{M}] = E_{S \sim D^m} [\frac{1}{n} \sum_{i=1}^{n} X_i]$$

=
$$\frac{1}{N}\sum_{i=1}^{n} E[X_i] = 60 = ground truth.$$

ME in Higher Dimension

When Data is Noisy

Adversaty. Corrupt. &- fraction, &- &- Total variation distance D.

0(2)

Total variation distance D. Dz

$$\frac{1}{2} \int |\phi_i - \phi_2| dx = \frac{\varepsilon}{1-\varepsilon}$$

• 1-dimensional: (a lower bound)

$$\Phi_{1} = N(M_{1}, 1) \qquad D_{2} = N(M_{2}, 1)^{T} \qquad |M_{1} - M_{2}| \geq \Omega(S)$$

$$\Phi_{1}, \Phi_{2} = (1 - E)D_{1} + E \cdot \Phi_{1} = (1 - E)D_{2} + E \Phi_{2}$$

$$Q_1 = \frac{1-\xi}{\xi} \left(\phi_2 - \phi_1 \right) \cdot \Delta_{\phi_2 \eta \phi_1}$$

$$Q_2 = \frac{1-\xi}{\xi} \left(\phi_1 - \phi_2 \right) \cdot \Delta_{\phi_1 \eta \phi_2}$$

$$Q_2 = (1-2)\phi_2 + 2 \frac{1-2}{2}(\phi_1 - \phi_2)$$
= $\frac{1}{2}$

Robust Mean Estimation

$$E[D] = ?$$

Natural approaches

Learn each coordinate separately

$$|\hat{M} - M| > \mathcal{N}(\xi)$$

in n-dimension. $||\hat{M} - M||_2^2 = \sum_{i=1}^n ||\hat{M}_i - W_i||^2 > n \cdot \mathcal{N}(\xi)^2 > \mathcal{N}(n\xi^2)$

$$\frac{\mathcal{N}(\sqrt{n} \cdot \xi)}{\delta}$$

Natural approaches

Maximum Likelihood Estimator

Negative Log likelihond = NLL

min NLL
$$(F, x_1, \dots, x_m) = -\sum_{i=1}^{m} \log F(x_i)$$
 $F(x_i) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1|x_i-x_i||_2^2}{2}}$
 $Vay = 1$

min $-\sum_{i=1}^{m} \log \left(\frac{1}{\sqrt{2\pi}} e^{-\frac{1|x_i-x_i||_2^2}{2}}\right)$
 $\lim_{x \to \infty} -\sum_{i=1}^{m} \left(\log \left(\frac{1}{\sqrt{2\pi}}\right) - \frac{1|x_i-x_i||_2^2}{2}\right)$
 $\lim_{x \to \infty} \int_{1}^{\infty} \left(\log \left(\frac{1}{\sqrt{2\pi}}\right) - \frac{1|x_i-x_i||_2^2}{2}\right)$
 $\lim_{x \to \infty} \int_{1}^{\infty} \left(\log \left(\frac{1}{\sqrt{2\pi}}\right) - \frac{1|x_i-x_i||_2^2}{2}\right)$

Can be quite bad.

Alg is not robust.

~ 7:30

Efficient Algorithm – Convex Programming

Weight vector
$$[\widehat{W}] = (W_1, W_2, \dots, W_m)$$

Goal: Output \widehat{w} , $\sum_{i=1}^{m} \widehat{w_i} \cdot X_i = \widehat{u} \longrightarrow M$.
min empirical variance.
Sit. $\widehat{w} \in W \longrightarrow O(n^6)$

P(x)= X.07*

Efficient Robust Mean Estimation - Filter

- 1. Compute empirical mean and covariance μ_T , Σ_T \mathcal{T} : corrupted data set.
- 2. Compute largest eigenvalue λ^* of $\Sigma_T I$, and eigenvector ν^*
- 3. If λ^* is small, return μ_T $\lambda^* \Sigma = \nu^* 1$

$$\lambda^* \Sigma = v^* -$$

$$\Pr_{X \in T}[|v^* \cdot (X - \mu_T)| > t] > C_2 e^{-t^2/2} + \frac{C_3 \varepsilon}{t^2 \log(n \log \frac{n}{\varepsilon \tau})}$$

5. Remove X such that $|v^* \cdot (X - \mu_T)| > t$, go back to step 1

$$O(\xi)$$

X*: eigenvalue ____ variance

$$\begin{array}{l}
\lambda^* v^* = v^* \Sigma_T \\
Var \left[x \cdot v^* \right] = E \left[(x \cdot v^*)^2 \right] \\
\chi \sim N(0, \Sigma) \\
= E \left[(v^* : \chi) (x \cdot v^*) \right] \\
= v^* \cdot E \left[\chi x^T \right] v^* \\
= v^* \cdot \Sigma_T \cdot v^* \\
= \chi^* v^* \cdot v^* \\
= \lambda^*
\end{array}$$

$$2 > \frac{1}{2} \qquad \forall = 1 - 2$$

List-decodable Mean Estimation

Mean Estimation

D

$$E[D] = ?$$

Gaussian Annulus Theorem.

Algorithm: Multi-filtering

• A tree of subsets T_i 's, O Clustering

- (1) Create a leaf node, an estimate $\hat{\mu}_i$
- (2) Create child nodes, subsets T_i 's
 - a. One node, cleaner set ←
 - b. Two nodes, overlapping subsets \angle
- (3) Delete if it can't be α -good.

• No more filtering, then return all $\hat{\mu}_i$'s

) dENT, d. degree of polynomial

Ti: XTi -> good samples