# Análisis Matemático I



#### **Trabajo Practico N° 6**

- Ing. Roberto Lamas
- Prof. Adjunto Análisis Matemático I

Definición de derivada. Derivada de funciones elementales. Reglas de derivación: suma, resta, producto, cociente, regla de la cadena. Derivada de función inversa.

# El problema de la recta tangente

El cálculo surge de cuatro importantes problemas sobre los que trabajaron los matemáticos europeos del siglo XVII.

- 1.- El problema de la recta tangente.
- 2.- El problema de la velocidad y la aceleración.
- 3.- El problema del mínimo y del máximo.
- 4.- El problema del área.

# Interpretación grafica de la derivada.



Incremento de la variable independiente:

$$\Delta x = x_f - x_o = x_0 + h - x_0 = h$$
  
con h \leq 0

Incremento de la variable dependiente:

$$\Delta y = y_f - y_o = f(x_0 + h) - f(x_0)$$

Variación de y para una variación de x.

$$\frac{f(x_0 + h) - f(x_0)}{h} = \frac{\Delta y}{\Delta x}$$

$$\frac{\Delta y}{\Delta x} = \frac{Variación \ de \ y}{Variación \ de \ x}$$

Representa un promedio de variación de y con respecto a x, cuando x varia en un  $\Delta x$ .

Si  $h \to 0$ ,  $\Delta x \to 0$  entonces  $x_0 + h \to x_0$  entonces  $f(x_0 + h) \to f(x_0)$  en consecuencia  $f'(x_0)$  representa la variación **puntual** de y con respecto a x. Indica como varia y respecto a x en ese punto  $x_0$ .







$$m = \lim_{h \to 0} \frac{\Delta y}{\Delta x} = \lim_{h \to 0} \frac{\Delta y}{h} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

<u>Definición</u>: La derivada de la función f en el punto  $x_0 \in Dom(f)$  se la define como  $f'(x_0) = \lim_{h \to 0} \frac{f(x_0+h)-f(x_0)}{h}$ 

Notación: 
$$f'(x_0)$$
;  $y'(x_0)$ ;  $\frac{dy}{dx}\Big|_{x=x_0}$ ;  $\frac{d(f(x))}{dx}\Big|_{x=x_0}$ ;  $D_{x_0}f$ 

Nota 1: El limite siempre es indeterminado, de la forma 0/0Nota 2: Si el limite existe y es finito entonces f es derivable en  $x_0$ .

Si el limite finito no existe entonces la función no es derivable en  $x_0$ .

Otra forma de escribir la derivada.

Si 
$$x = x_0 + h$$

Si h 
$$\rightarrow 0$$
 entonces  $\Rightarrow x \rightarrow x_0$  por lo tanto 
$$\lim_{x \rightarrow x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Ejemplo1: Si f / f(x) = x², calcular f '(1)  
f'(1) = 
$$\lim_{h \to 0} \frac{f(1+h)-f(1)}{h} = \lim_{h \to 0} \frac{(1+h)^2-1}{h} = \lim_{h \to 0} \frac{(1+2h+h^2)-1}{h} = \lim_{h \to 0} \frac{2h+h^2}{h} = \lim_{h \to 0} (2+h) = 2$$

Ejemplo2: Si f / f(x) = 
$$\sqrt{x}$$
, calcular f'(4)  
f'(4) =  $\lim_{h \to 0} \frac{f(4+h)-f(4)}{h} = \lim_{h \to 0} \frac{\sqrt{4+h}-\sqrt{4}}{h} = \lim_{h \to 0} \frac{\sqrt{4+h}-2}{h} = \lim_{h \to 0} \frac{(\sqrt{4+h}-2)(\sqrt{4+h}+2)}{h(\sqrt{4+h}+2)} = \lim_{h \to 0} \frac{(\sqrt{4+h}-2)(\sqrt{4+h}+2)}{h(\sqrt{4$ 

$$\lim_{h \to 0} \frac{(4+h-4)}{h(\sqrt{4+h}+2)} = \lim_{h \to 0} \frac{h}{h(\sqrt{4+h}+2)} = \frac{1}{4}$$

Ejemplo3: Si f/f(x) = |x-2| Calcular f'(2)

$$f'(2) = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0} \frac{|2+h-2| - 0}{h} = \lim_{h \to 0} \frac{|h|}{h} = \begin{cases} 1 & \text{si } h \to 0^+ \\ -1 & \text{si } h \to 0^- \end{cases}$$

Entonces  $\nexists \lim_{h\to 0} \frac{|h|}{h}$  por lo tanto no es derivable en x = 2.

Relación entre derivada y derivadas laterales.

$$\exists f'(x_0) = A \iff \exists f_+'(x_0) = f_-'(x_0) = A$$

Def 1: f es derivable en (a, b) si f es derivable  $\forall x \in (a, b)$ 

Definicion2: f es derivable en [ a, b], si f es derivable  $\forall x \in (a, b) \land \exists f_+'(a) \land \exists f_-'(b)$ 

Ejemplo:

Dada f / 
$$f(x) = \begin{cases} 3x & si \ x < 5 \\ 2x + 5 & si \ 5 \le x \end{cases}$$
 Calcular f '(5)

$$f_{+}'(5) = \lim_{x \to 5^{+}} \frac{2x + 5 - 15}{x - 5} = \lim_{x \to 5^{+}} \frac{2(x - 5)}{x - 5} = 2$$

$$f_{-}'(5) = \lim_{x \to 5^{-}} \frac{3x - 15}{x - 5} = \lim_{x \to 5^{+}} \frac{3(x - 5)}{x - 5} = 3$$

$$f_{+}'(5) = 2 \neq f_{-}'(5) = 3 : \nexists f'(5)$$

# Relación entre continuidad y derivabilidad.

Teorema: Si f es derivable en  $x_0 \Rightarrow$  f es continua en  $x_0$ .

La hipótesis dice que la función es derivable por lo tanto podemos decir que

Existe f'(
$$x_0$$
) = A =  $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ 

La tesis seria : 
$$\lim_{x \to x_0} f(x) = f(x_0)$$

Partimos de f(x) = f(x)Sumamos y restamos  $f(x_0)$ , por lo tanto  $f(x) = f(x) - f(x_0) + f(x_0)$ .

Al termino  $f(x) - f(x_0)$  lo multiplicamos y dividimos por  $x - x_0$ . Nos quedará:

$$f(x) = \frac{(f(x) - f(x_0))}{(x - x_0)}(x - x_0) + f(x_0)$$

Aplicamos limite miembro a miembro.

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} \frac{\left(f(x) - f(x_0)\right)}{(x - x_0)} \lim_{x \to x_0} (x - x_0) + \lim_{x \to x_0} f(x_0)$$

Por lo tanto 
$$\lim_{x \to x_0} f(x) = A * 0 + f(x_0)$$
  
Entonces  $\lim_{x \to x_0} f(x) = f(x_0)$ 

Contrarecíproca: Si f no es continua en  $x_0$  entonces f no es derivable en  $x_0$ .

Ejemplo f / 
$$f(x) = \begin{cases} 3 & si \ x \le 0 \\ 5 & si \ 0 < x \end{cases} \not\equiv f'(0)$$
 pues f no es continua.

La reciproca no es cierta, si f es continua en  $x_0$  entonces f es derivable en  $x_0$ .

Ejemplo f / f(x) = |x - 2|, f es continua en x = 2, sin embargo se demostró que no existe la derivada en x = 2.

#### Función derivada

Dada  $f: A \to B / y = f(x)$  se define la función derivada f' como  $f': A - \{x / \not\exists f'(x)\} \to R$ 

$$f'(x) = \lim_{h \to 0} \frac{\left(f(x+h) - f(x)\right)}{h}$$

Ejemplo1: Obtener f'(x) si  $f(x) = \sqrt{x}$ 

Aplico la definición de derivada:

$$f'(x) = \lim_{h \to 0} \frac{(f(x+h) - f(x))}{h} = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} =$$

$$\lim_{h \to 0} \frac{\left(\sqrt{x+h} - \sqrt{x}\right)}{h} \frac{\left(\sqrt{x+h} + \sqrt{x}\right)}{\left(\sqrt{x+h} + \sqrt{x}\right)} = \lim_{h \to 0} \frac{x+h-x}{h\left(\sqrt{x+h} + \sqrt{x}\right)}$$

=

$$\lim_{h \to 0} \frac{h}{h\left(\sqrt{x+h} + \sqrt{x}\right)} = \lim_{h \to 0} \frac{1}{\left(\sqrt{x+h} + \sqrt{x}\right)} = \frac{1}{2\sqrt{x}}$$

Entonces dada f / f(x) =  $\sqrt{x}$  su derivada será  $f'(x) = \frac{1}{2\sqrt{x}}$ 

Entonces f '( 4 ) = 
$$\frac{1}{2\sqrt{4}} = \frac{1}{4}$$

Ejemplo2: Obtener f'(x) si f(x) = x

$$f'(x) = \lim_{h \to 0} \frac{x + h - x}{h} = \lim_{h \to 0} \frac{h}{h} = 1$$

Ejemplo3: Obtener f'(x) si f(x) = C

$$f'(x) = \lim_{h \to 0} \frac{C - C}{h} = \lim_{h \to 0} 0 = 0$$

# Reglas de la derivación

Sean f y g funciones derivables en x entonces:

a) 
$$\exists (f \pm g)'(x) = f'(x) + g'(x)$$

b) 
$$\exists (f * g)'(x) = f'(x) * g(x) + f(x) * g'(x)$$

b) 
$$\exists (f * g)'(x) = f'(x) * g(x) + f(x) * g'(x)$$
  
c)  $\exists (f/g)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$  si  $g(x) \neq 0$ 

Consecuencias:

Si 
$$\exists$$
 f'(x)  $\Rightarrow$  ( C \*f )'(x) = C \* f'(x)

$$Idem\left(\frac{f}{C}\right)' = \frac{f'(x)}{C}$$

| Derivada de funciones elementales |             |            |                         |  |  |  |  |
|-----------------------------------|-------------|------------|-------------------------|--|--|--|--|
| f(x)                              | f'(x        | f(x)       | f'(x                    |  |  |  |  |
| С                                 | 0           | ch(x)      | sh(x)                   |  |  |  |  |
| X                                 | 1           | ln(x)      | 1/x                     |  |  |  |  |
| $x^r$ $r \in R$                   | $r x^{r-1}$ | $e^x$      | $e^x$                   |  |  |  |  |
| sen(x)                            | cos(x)      | $\log_a x$ | 1                       |  |  |  |  |
| cos(x)                            | - sen(x)    | $a^{x}$    | $x \ln(a)$ $a^x \ln(a)$ |  |  |  |  |
| COS(A)                            |             | u          | a $m(a)$                |  |  |  |  |

| tg(x)    | $sec^2(x)$          | arc sen(x) | 1                         |
|----------|---------------------|------------|---------------------------|
|          |                     |            | $\overline{\sqrt{1-x^2}}$ |
| cotg(x)  | $-\cos ec^2(x)$     | arc cos(x) | _ 1                       |
|          |                     |            | $-\sqrt{1-x^2}$           |
| sec(x)   | sec(x) tg(x)        | arc tg(x)  | 1                         |
|          |                     |            | $\overline{1+x^2}$        |
| cosec(x) | $-\csc(x)\cot g(x)$ | arg sh(x)  | 1                         |
|          |                     |            | $\sqrt{x^2+1}$            |
| sh(x)    | ch(x)               | arg ch(x)  | 1                         |
|          |                     |            | $\sqrt{x^2-1}$            |

## Regla de la derivada de la función inversa.

Sea f / y = f(x) una función que posee función inversa x = f<sup>-1</sup> (y) y f '(x)  $\neq$  0  $\Rightarrow$   $\exists [f^{-1}(y)]' = \frac{1}{f'(x)}$ 

Otras notaciones:

$$\frac{dx}{dy} = \frac{1}{\frac{dy}{dx}} \qquad x'(y) = \frac{1}{y'(x)}$$

#### Ejemplo:

y = arc cos(x)  $\Leftrightarrow$  x = cos (y) En que condiciones? [-1,1] $\rightarrow$ [0, $\pi$ ]

$$y'(x) = \frac{1}{x'(y)} = -\frac{1}{sen(y)} =$$

 $sen^2(y) + cos^2(y) = 1$   $sen(y) = \pm \sqrt{1 - cos^2(y)}$ Pero  $y \in [0, \pi] \Rightarrow sen(y) \ge 0$ 

$$= -\frac{1}{\sqrt{1 - \cos^2(y)}} = -\frac{1}{\sqrt{1 - x^2}}$$

### Derivada de funciones compuestas. (Regla de la cadena)

Sea y = g(u) donde u = f(x) y además 
$$\exists g'(u) = \frac{dy}{du}$$
 y  $\exists f'(x) = \frac{du}{dx}$  
$$\exists \frac{dy}{dx} = g'(u)u'(x) = g'(f(x))f'(x) = (gof)'(x) = (g(f(x))'$$

Notación: 
$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$$
  $(g(f(x))' = g'(f(x))f'(x)$ 

Ejemplo: 
$$y = (x^2 - \sqrt{x})^{120}$$
 Calcular y'(x)  
 $u = f(x) = x^2 - \sqrt{x}$   $y = u^{120} = g(u)$   
 $y'(x) = 120 u^{119} \left(2x - \frac{1}{2}x^{-1/2}\right) =$   
 $= 120 (x^2 - \sqrt{x})^{119} \left(2x - \frac{1}{2\sqrt{x}}\right)$ 

Ejercicios: Derive las siguientes funciones elementales.

a) 
$$y = 3x^7 - \frac{1}{\sqrt[3]{x}} + 7x^{\frac{4}{5}} * x - 8$$

b) 
$$y = 2 \ln p + \frac{5^p}{3} - sen(p) + x^2$$

c) 
$$r = (arctg(u))(u^{3/2} + 5) - 8$$

d) 
$$x = \frac{\log_2 t + 7}{\cos(t) + 2^t}$$

a) 
$$y = 3x^7 - \frac{1}{\sqrt[3]{x}} + 7x^{\frac{4}{5}} * x - 8$$

b) 
$$y = 2 \ln p + \frac{5^p}{3} - sen(p) + x^2$$

c) 
$$r = (arctg(u))(u^{3/2} + 5) - 8$$

$$d) x = \frac{\log_2 t + 7}{\cos(t) + 2^t}$$

#### Ejemplo:

Hallar la derivada solicitada en cada caso:

a) 
$$y'(x)$$
 si  $y = \ln(3x^3 + 5)$ 

b) 
$$\frac{dr}{dp}$$
  $si \ r = tg \ (sen(p) + 5p) + e^{-7p}$ 

c) 
$$t'(x)$$
  $si \ t = sen^3(x^2 + \sqrt{x})^4$ 

d) 
$$m'(t)$$
  $si m = \left(\frac{6^{t^2+4}}{3} + (t^5 - 8t)^4\right)^{5/2}$ 

a) 
$$y'(x)$$
 si  $y = \ln(3x^3 + 5)$ 

b) 
$$\frac{dr}{dp}$$
  $si \ r = tg \ (sen(p) + 5p) + e^{-7p}$ 

c) 
$$t'(x)$$
  $si \ t = sen^3(x^2 + \sqrt{x})^4$ 

d) 
$$m'(t)$$
  $si m = \left(\frac{6^{t^2+4}}{3} + (t^5 - 8t)^4\right)^{5/2}$