AN EXPLORATORY ANALYSIS AND FORECAST ON ENERGY GENERATION

TEAM 6

ABHISHIEK KURRA

SATYAM SINGH

THANVI MALYALA

THANMAYEE AKKINENI

BHARATH KUMAR DINDIGALA

George MASON uNIVERSITY

AIT 614-DL2

Big Data Essentials

Dr. Duoduo Liao

MARCH 14, 2023

AN EXPLORATORY ANALYSIS AND FORECAST ON ENERGY GENERATION Abhishiek K, Satyam S, Thanvi M, Thanmayee A, Bharath K D

1

Index:

1.	Introduction	2
2.	Related Work:	2
	2.1. Global Electricity Generation	2
	2.2. Energy Production in the US	2
3.	Objectives	3
4.	Proposed Selected Dataset	3
5.	Methodology	5
6.	List of Tasks and Timeline	6
7.	Proposed Development Platforms:	7
	7.1. Databricks DBFS	7
	7.2. PySpark	7
	7.3. Spark MLlib	7
	7.4. Databricks	
7. I	References	8
8. Appendix		9

1. Introduction:

The universe is a collection of energy in numerous forms. Humans, as minuscule as they are, have created various ways to convert one form of energy into another so that it becomes easier to transport and use. The most used form of energy to date is Electrical energy. Most of the methods and techniques convert different forms of energy into electrical energy. This process is called power generation. Although it is called "generation", it doesn't mean that the energy is generated from nothing.

There are many 'plants' located across the globe that generate electricity. There are numerous types of such plants, each described by the original form of energy, also called **fuel** they are converted from. Some of them are:

- Thermal Energy Plant
- Nuclear Energy Plant
- Solar Energy Plant
- Hydro Energy Plant
- Wind Energy Plant

These can be classified into 2 types depending on their accessibility and resource availability. They are Renewable and Non-Renewable Energy Plants. Renewable for plants that have potentially unlimited access to its fuel within the lifetime of the plant, while non-renewable for plants that have limited access to fuels that are either perishable within the lifetime of the plant or are extinguishable.

Energy is at the epicenter of human evolution (Smil, 2018). As such, it is essential to understand and learn how much energy is being generated and used by the world. This project is an attempt to analyze the energy generated by the world and attempt to forecast future energy generation at high accuracy with the available information.

2. Related Work:

2.1. Global Electricity Generation

This paper gives us details of electricity generation across the world. It involves the energy sources used for generation, i.e. renewable or non-renewable. It contains research done on data from 1980 to 2021 in terawatt-hours. The paper also shares the distribution of energy sources and how each energy source contributes to the world's energy consumption for each particular year. It explores all countries and their consumption and capacity for different years. Lastly, it also compares the electricity prices in US dollars for each country.

Our paper would not only explore the consumption and capacity of energy generation for each country, but will also forecast future generation and consumption for specific countries. We can use machine learning models which will train on our huge dataset and, based on that, it will help us predict future requirements or trends.

2.2. Energy Production in the US

This paper presents graphs and figures for energy generation in the US. It focuses on energy production by different energy sources, like fossil fuels and renewable sources. The paper explains how each state in the US has different power consumption and shows an overall increasing trend in energy generation from 1980 to 2021. The paper digs deeper to explore the production of energy across renewable and non-renewable energy across all the years. Nonrenewable energy sources like mining of

coal, natural gas, and oil are explained via bar graphs. Then we also see the same for renewable energy sources like solar, wind, hydro, and others. Finally, we see the electricity generation in the US by each source of energy, either renewable or non-renewable. Also, the paper gives us a forecast of how energy consumption and generation would look through 2050 for the US.

We plan to find the distribution of energy consumption for the whole world. The paper does not forecast energy consumption across all countries. Using Machine learning models can help predict how energy generation and consumption can look over the years. This would help governments throughout the world to plan better for future requirements.

3. Objectives:

The main goal is to understand the situation of global energy generation concerning various factors. These include:

- Does the geolocation of a plant affect the type of power plant?
- Are there any countries inclined to a specific type of plant/plant?
- Is there any growth or decline in the energy generation rates?
- What proportions of the world's energy are each generated using each fuel type?
- Which type of plants tend to have higher plant capacities.
- Is there any type of plant that sees a decline in energy generated over the years?
- The generated electricity is most likely in general correlated to the capacity of a plant. If so, then by how much.

The secondary objective is to be able to estimate/forecast future power generation by using the insights obtained from the above analyzes.

4. Proposed Selected Dataset:

The Global Power Plant dataset is an open-source, open-access free-to-use database consisting of details of about 35,000 energy generation plants across the world. The data consists of 36 features/fields of data which include:

S.no	Field	ld Field Details			
			Type		
1	country	ISO 3166-1 alpha-3 standard of country codes	Text		
2	country_long	The longer form name of each country	Text		
3	name	Name of the plant	Text		
4	gppd_idnr	10 or 12-character identifier for the power	Numeric		
		plant			
5	capacity_mw	The total capacity of the plant in megawatts	Numeric		
6	latitude	geolocation in decimal degrees; WGS84 (EPSG:4326)	Numeric		
7	longitude	geolocation in decimal degrees; WGS84 (EPSG:4326)	Numeric		
8	primary_fuel	The primary fuel used for electricity generation	Text		
9	other_fuel1	Optional or secondary energy source	Text		

10	other fuel2	Optional or secondary energy source	Text
11	other_fuel3	Optional or secondary energy source	Text
12	commissioning year	year of plant operation	Numeric
13	owner	The majority shareholder of the power plant	Text
14	source	The data source for the plant	Text
15	geolocation_source	attribution for geolocation information	Text
16	url	Web document corresponding to 'source'	Text
17	wepp_id	a reference to a unique plant identifier in the widely-used PLATTS-WEPP database	Text
18	year_of_capacity_data	year the capacity information was reported	Numeric
19	generation_gwh_2013	Electricity generated in the year 2013 (gigawatt-hours)	Numeric
20	generation_gwh_2014	Electricity generated in the year 2014 (gigawatt-hours)	Numeric
21	generation_gwh_2015	Electricity generated in the year 2015 (gigawatt-hours)	Numeric
22	generation_gwh_2016	Electricity generated in the year 2016 (gigawatt-hours)	Numeric
23	generation_gwh_2017	Electricity generated in the year 2017 (gigawatt-hours)	Numeric
24	generation_gwh_2018	Electricity generated in the year 2018 (gigawatt-hours)	Numeric
25	generation_gwh_2019	Electricity generated in the year 2019 (gigawatt-hours)	Numeric
26	generation_data_source	attribution for the reported generation information	Text
27	estimated_generation_gwh_201	Estimated energy generation for the year 2013	Numeric
28	estimated_generation_gwh_201	Estimated energy generation for the year 2014	Numeric
29	estimated_generation_gwh_201	Estimated energy generation for the year 2015	Numeric
30	estimated_generation_gwh_201	Estimated energy generation for the year 2016	Numeric
31	estimated_generation_gwh_201	Estimated energy generation for the year 2017	Numeric
32	estimated_generation_note_201	Label for the model used to estimate energy generation in the year 2013	Text
33	estimated_generation_note_201 4	Label for the model used to estimate energy generation in the year 2014	Text
34	estimated_generation_note_201 5	Label for the model used to estimate energy generation in the year 2015	Text
35	estimated_generation_note_201 6	Label for the model used to estimate energy generation in the year 2016	Text
36	estimated_generation_note_201 7	Label for the model used to estimate energy generation in the year 2017	Text

Although the information provided by all the fields is important, some of the data is plain redundant for analysis and will be memory hogs due to the size of the data. Hence, it is important to remove such fields and then continue to further filter and clean data.

The potentially useful fields of data are 'country', 'name', 'gppd_idnt','capacity_mw', 'latitude', 'longitude', 'primary_fuel', all the 3 other_fuel_*, 'commissioning_year', all the generation_gwh_*year*'s for the year 2013 to 2017. However, the estimated values are skipped and filtered out as we create a new model to forecast energy generation.

5. Methodology:

Any data-driven analytics problem requires to be solved using a standardized methodology. Looking at the data we have, the potential methods that might solve the analytics problem here could be:

- a. Data filtering by removing unnecessary data.
- b. Eliminating missing values by either dropping the records with missing values or by using intuitive means of replacing missing values with aggregated or summarized values to prevent loss of data.
- c. Using summary statistics and visualizations to obtain clear insights.
- d. Making proper use of machine learning techniques to forecast worldwide electricity generation.

AN EXPLORATORY ANALYSIS AND FORECAST ON ENERGY GENERATION Abhishiek K, Satyam S, Thanvi M, Thanmayee A, Bharath K D

Image Generated Using Lucidchart

6

6. List of Tasks And Timeline:

Task	Assignment	Start Date	End Date
Select the data to be used	Abhishiek Kurra	3/19/23	3/21/23
Skim through documentation	Satyam Singh	3/21/23	3/24/23
Import into Databricks without data loss	Thanvi Malyala	3/22/23	3/24/23
Identify Redundant Columns	Thanmayee Akkineni	3/25/23	3/28/23
Filter Columns	Bharath Kumar Dindigalla	3/28/23	3/30/23
Detect rows with missing data	Abhishiek Kurra	3/29/23	4/2/23
Identify non normal quantitative data	Thanvi Malyala	4/4/23	4/6/23
Remove records with missing data that have least significance	Satyam Singh	4/6/23	4/9/23
Summarize for missing data that belong to significant records	Bharath Kumar Dindigalla	4/6/23	4/8/23
Normalize data	Thanmayee Akkineni	4/6/23	4/9/23
Basic individual feature analysis	Thanmayee Akkineni	3/30/23	4/2/23
Examining interrelations prior to data cleaning	Bharath Kumar Dindigalla	3/31/23	4/4/23
Examinimng Relations post data cleaning	Abhishiek Kurra	4/9/23	4/14/23
Framing Analysis questions	Thanvi Malyala	3/26/23	4/4/23
Answering analysis questions	Satyam Singh	4/9/23	4/13/23
Standardize all data for Machine Learning process	Satyam Singh	3/30/23	4/9/23
Prepare a basic forecasting model	Thanmayee Akkineni	4/6/23	4/9/23
Test Initaial Model	Thanvi Malyala	4/9/23	4/9/23
Use analysis results for simplifying model and improving Confidence Intervals	Bharath Kumar Dindigalla	4/14/23	4/21/23
Test and apply final model	Abhishiek Kurra	4/19/23	4/21/23

Table generated using a template for Gantt chart from Vortex42.com

7. Proposed Development Platforms

7.1. Databricks DBFS

Databricks Distributed File System is a file system mounted into AZURE data bricks workspace and available in the Databricks cluster. It allows you to interact and mount cloud object storage into the Databricks directory and workspace instead of using cloud-specific API commands. It simplifies object storage and allows virtual machines and volume storage to be safely deleted after cluster termination. It also provides a convenient location to store scripts, libraries, and configurations for each cluster. FileStore is a special folder within DBFS that helps you save files and access them locally with your web browser.

7.2. PySpark

Apache Spark is an open-source, distributed processing system for big data workloads written in Scala. PySpark is a python API for spark, which enables collaboration between python and spark. This helps in data-related tasks on a single node or multiple clusters. As python is an open-source language, it has benefits, such as multiple libraries, which boost data manipulation tasks. It also acts as an interface for Resilient Distributed Datasets by using the Py4j library.

7.3. Spark MLlib

MLlib is a library over PySpark and Spark, which enables us to apply machine learning models on huge datasets across all clusters. It uses data parallelism techniques to store and work with large amounts of data. It is scalable and consists of machine learning algorithms, such as classification, regression, clustering, filtering, dimensionality reduction, and many more. Spark MLlib can integrate with other spark libraries like SparkSQL, and Spark Streaming as per the user's requirements. It can help in preprocessing, training, and making predictions on the scale.

7.4. Databricks

The Databricks platform provides a combination of tools to build, train, share, deploy, and maintain big data solutions on a scale. Databricks platform can be used for many applications or to convert BI solutions to Machine Learning Solutions for different enterprises. Data bricks users can take full advantage of all the available resources provided by the platform, including interactive notebooks, SQL editor, pipelining, discovery, compute management, workflow scheduler, etc.

8. References:

- Smil, V. (2018). Energy and civilization: A history. The MIT Press.
- Jocelyn, V., & Biagi, L. (n.d.). *Energy production in the US* Statista. Retrieved March 16, 2023, from https://www.statista.com/study/48975/energy-production-in-the-united-states/?locale=en
- Jocelyn, V., & Biagi, L. (n.d.). *Global Electricity*. Statista. Retrieved March 16, 2023, from https://www.statista.com/study/74593/electricity-worldwide/
- What is the Databricks File System (DBFS)? What is the Databricks File System (DBFS)? | Databricks on AWS. (n.d.). Retrieved March 16, 2023, from https://docs.databricks.com/dbfs/index.html
- What is pyspark?: Domino data science dictionary. What is PySpark? | Domino Data Science Dictionary. (n.d.). Retrieved March 16, 2023, from https://www.dominodatalab.com/data-science-dictionary/pyspark
- What is Databricks? What is Databricks? | Databricks on AWS. (n.d.). Retrieved March 16, 2023, from https://docs.databricks.com/introduction/index.html
- Intelligent diagramming. Lucidchart. (n.d.). Retrieved March 16, 2023, from https://www.lucidchart.com/pages
- Simple gantt chart. Vertex42.com. (n.d.). Retrieved March 19, 2023, from https://www.vertex42.com/ExcelTemplates/simple-gantt-chart.html?
 https://www.vertex42.com/ExcelTemplates/simple-gantt-chart.html?
 https://www.vertex42.com/ExcelTemplates/simple-gantt-chart.html?
 https://www.vertex42.com/ExcelTemplates/simple-gantt-chart.html?
 https://www.vertex42.com/ExcelTemplates/simple-gantt-chart.html?
 https://www.vertex42.com/ExcelTemplates/simple-gantt-chart.html?
 https://www.vertex42.com/ExcelTemplates/simple-gantt-chart.html?
 https://www.vertex42.com/ExcelTemplates/simple-gantt-chart.html?

9. Appendix:

Reference Data Truncated to the first 25 records.

country	country_name gppd_idic	apacity, latitude	longitudi primary	_ other_fur other_fur other_fur commiss on	ner source url geolocati wepp_id	ear_of_i generatic generatic generatic genera	ic generatic generatic generatic generatic estim	nater es	timate(e:	stimate(e:	timate: e	stimate; estimate; estimate; estimate; estimate; estimate; estimated_generation	n_note_
AFG	Afghanis Kajaki Hy GECOBC		65.119 Hydro		GEODB http://glot.GEODB 1009793		12:	3.77	162.9	97.39	137.76	119.5 HYDRO- HYDRO- HYDRO- HYDRO- HYDRO- A	
AFG	Afghanis Kandaha WKS007		65.795 Solar		Wiki-Sol https://www.Wiki-Solar			8.43	17.48	18.25	17.7	18.29 SOLAR- SOLAR- SOLAR- SOLAR- VI-NO-AGE	
AFG	Afghanis Kandaha WKS007		65.792 Solar		Wiki-Sol https://w Wiki-Solar			8.64	17.58	19.1	17.62	18.72 SOLAR- SOLAR- SOLAR- SOLAR- SOLAR- 1-NO-AGE	£
AFG	Afghanis Mahipar GECOBC	66 34.556	69.4787 Hydro		GEODB http://glot/GEODB 1009795	2017	225	5.06	203.55	146.9	230.18	174.91 HYDRO- HYDRO- HYDRO- HYDRO- HYDRO-Y1	
AFG	Afghanis Naghlu E GECOBC	100 34.641	69.717 Hydro		GEODB http://glot/GEODB 1009797	2017	40	16.16	357.22	270.99	395.38	350.8 HYDRO- HYDRO- HYDRO- HYDRO-Y1	
AFG	Afghanis Nangarh GECOBC		70.3633 Hydro		GEODB http://glot.GEODB 1009787	2017	50	8.77	54.42	42.71	59.72	46.12 HYDRO- HYDRO- HYDRO- HYDRO- HYDRO-V1	
AFG	Afghanis Northwes GECIDEC		69.1134 Gas		GEODB http://glot.GEODB	2017						NO-EST NO-EST NO-EST NO-EST MATION	
AFG	Afghanis Pul-e-KH GEODB(68.71 Hydro		GEODB http://glot.GEODB	2017		21.99	21.19	18.4	25.34	19.74 HYDRO- HYDRO- HYDRO- HYDRO- HYDRO-	
AFG	Afghanis Sarobi D GEODB(69.7757 Hydro		GEODB http://glot.GEODB 1009799	2017		3.23	82.87	69.15	93.83	80 HYDRO-HYDRO-HYDRO-HYDRO-HYDRO-	
ALB	Albania Bistrica 1 WRI1002		20.1047 Hudro	1965	Energy (http://www.GECODB 1021225		10	35.17	75.26		105.45	88.45 HYDRO- HYDRO- HYDRO- HYDRO- HYDRO-	
ALB	Albania Fierza WR11002		20.0431 Hydro	1978	Energy (http://www.GECODB 1021231		197	76.01	1276.61	1503.72		1648.24 HYDRO- HYDRO- HYDRO- HYDRO- HYDRO-V1	
ALB	Albania Koman WRI1002		19.8224 Hydro	1985	Energy (http://www.GECOB 1021233					1905.63		1982.72 HYDRO- HYDRO- HYDRO- HYDRO- HYDRO-V1	
ALB	Albania Lanabre; WRI1002		19.8964 Hydro	1951	Energy (http://www.GECOB 1021236			0.37	12.89	14.64	20.04	15.23 HYDRO- HYDRO- HYDRO- HYDRO- HYDRO-V1	
ALB	Albania Shkopet WRI1002		19.8305 Hydro	1963	Energy (http://www.GECOB 1021238			3.52	69.86	77.51	96.2	83.57 HYDRO- HYDRO- HYDRO- HYDRO-V1	
ALB	Albania Ulez WFI1002		19.8936 Hydro	1958	Energy Chitp://www.GECOB 1021241			7.42	72.77	80.74	100.21	87.06 HYDRO- HYDRO- HYDRO- HYDRO-V1	
ALB	Albania Vau i Diji WFI1002		19.6359 Hydro	1971	Energy Chttp://www.GECOB 1021242		895	5.02	561.94	614.47	897.47	703.64 HYDRO- HYDRO- HYDRO- HYDRO-VI	
ALB	Albania Vlora WFI1002		19.434 Other		Energy Chitp://www.GECIDB 1021244							NO-EST NO-EST NO-EST NO-EST NO-ESTIMATION	
DZA	Algeria Adrar WKS006	20 27.908			Wiki-Sol https://www.Wiki-Solar				35.22	34.22	35.33	35.17 NO-EST SOLAR- SOLAR- SOLAR- SOLAR-VI-NO-AGE	
DZA	Algeria Ain Azel WKS006	20 35.88			Wiki-Sol https://www.Wiki-Solar				38.68	37.56	38.37	38.75 NO-EST SOLAR-' SOLAR-' SOLAR-' SOLAR-VI-NO-AGE	
DZA	Algeria Ain Dias WPI1023			Cil So	ciĀfĀ Arab Uni http://www.KTH 1069670							2171.28 NO-EST NO-EST NO-EST NO-EST CAPACITY-FACTO	
DZA	Algeria Ain Sekh WKS006	20 34.532			Wiki-Sol https://www.Wiki-Solar				34.85	33.67	34.54	35.46 NO-EST SOLAR-I SOLAR-I SOLAR-I SOLAR-VI-NO-AGE	
DZA	Algeria Ain el Ibi WKS006	20 34.346			Wiki-Sol https://www.Wiki-Solar				33.42	33.58	34.75	34.81 NO-EST SOLAR-/ SOLAR-/ SOLAR-V1-NO-AGE	
DZA	Algeria Ain el Ibi WKS007	53 34.342			Wiki-Sol https://www.Wiki-Solar				80.98	8184	85.66	85.55 NO-EST SOLAR- SOLAR- SOLAR- SOLAR-V1-NO-AGE	
DZA	Algeria Ain el Mr WKS006	20 34.861			Wiki-Sol https://www.Wiki-Solar				33.64	33.68	33.63	33.75 NO-EST SOLAR- SOLAR- SOLAR- SOLAR-VI-NO-AGE	
DZA	Algeria Algerie 5 WKS006	43.5 27.908	-0.317 Solar		Wiki-Sol https://www.Wiki-Solar				73.79	72.11	74.36	74.02 NO-EST SOLAR-1SOLAR-1SOLAR-1SOLAR-V1-NO-AGE	4