Seat No.:	Enrolment No.
3Cat 110	Lindincht 110.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III (New) EXAMINATION - WINTER 2019

Total Marks: 70

Subject Code: 3130702 Date: 28/11/2019

Subject Name: Data Structures

Time: 02:30 PM TO 05:00 PM

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

			Marks
Q.1	(a)	Discuss various types of data structures with example.	03
	(b)	What is hash function used for? Give one example	04
		of a hash function.	. –
	(c)	What is time and space analysis? State and explain time analysis for linear search and binary search method.	07
Q.2	(a)	Compare Array and Link list.	03
Q. -2	(b)	State disadvantages of simple queue. How to overcome it?	04
	(c)	Write an algorithm for INSERT, DELETE and DISPLAY function of Circular Queue. OR	07
	(c)	Write an algorithm for INSERT operation to insert	07
	(0)	a node at a given position in a Link list.	0,
Q.3	(a)	Discuss height balance tree.	03
	(b)	Discuss Minimal Spanning Tree.	04
	(c)	Write a recursive function to compute factorial of a number. Show usage of STACK in recursion for this function.	07
		OR	
Q.3	(a)	Write an algorithm to find length of a simple link list.	03
	(b)	Write an algorithm to insert a node in a Circular Link List at the FIRST position.	04
	(c)	Write an algorithm for DELETE operation in a Binary search tree.	07
Q.4	(a)	Discuss Threaded Binary Tree.	03
	(b)	Write an algorithm for a non recursive (Iterative) pre order traversal of Binary search tree.	04
	(c)	Create an AVL tree for the following sequence of	07
		numbers. Also mention name of action taken. 200, 400, 800, 900, 850, 700, 950, 100, 150 OR	
Q.4	(a)	Define following with respect to Tree:	03
		i) M-ary tree ii) Out Degree iii) Leaf	
	(b)	State at least one efficient representation of a sparse matrix.	04

	(c)	Discuss algorithm of Breadth First Search (BFS)	07
		traversal for a Graph. Explain with an example.	
Q.5	(a)	Write algorithm for Bubble sort method.	03
	(b)	Write algorithm for Merge sort method.	04
	(c)	Explain Sequential Files and Indexed Sequential	07
		Files Structures	
		OR	
Q.5	(a)	Create 2-3 Tree for the following sequence:	03
		50, 100, 150, 200	
	(b)	Represent following in form of an expression tree:	04
		A+B*(C+D)	
	(c)	State and explain collision resolution techniques in	07
		hashing.	
