1 Basic Definition of Complexification

DEFINITION 1.1: Let V be a real vector space. We define $V_{\mathbb{C}}$ as follows:

- 1. Set: The underlying set is $V \times V$. (any vector in it can be writen as (v_1, v_2) for any $v_1, v_2 \in V$)
- **2. Addtion:** $(v_1, v_2) + (v'_1, v'_2) := (v_1 + v'_1, v_2 + v'_2)$
- **3. Scalar:** $(a+bi)(u_1,u_2) := (au_1 bu_2, bu_1 + au_2)$

Claim

This makes $V_{\mathbb{C}}$ into a complex vector space. (i.e., This definition of $V_{\mathbb{C}}$ satisfy the axiom of complex vector space)

Proof. The "HARD" part is: Let $\lambda_1, \lambda_2 \in \mathbb{C}, (v_1, v_2) \in V_{\mathbb{C}}$ Then, $\lambda_1(\lambda_2(v_1, v_2)) = (\lambda_1\lambda_2)(v_1, v_2)$

Now we have a natural injection $V \hookrightarrow V_{\mathbb{C}}$ such that $v \mapsto (V, 0)$ In this way, we can think of V as a subset of $V_{\mathbb{C}}$

Remark. (0, v) = i(v, 0) = ivi.e., $(v_1, v_2) = (v_1, 0) + (0, v_2) = v_1 + iv_2$ Tensor Product $V_{\mathbb{C}} = V \bigotimes_{\mathbb{R}} \mathbb{C}$

LEMMA 1.2: if $(e_1,...,e_n)$ is a basis for V, then it is also a basis for $V_{\mathbb{C}}$

Proof. Suppose we have $v_1 + iv_2 \in V_{\mathbb{C}}$, write $v_j = \sum a_j e_j, v_2 = \sum b_j e_j i$ where $a_j, b_j \in \mathbb{R}$

Then we have $v_1 + iv_2 = \sum (a_j + ib_j)e_j$. Since $(a_j, +ib_j) \in \mathbb{C}$, span $(e_1, ..., e_n) = V_{\mathbb{C}}$

Suppose $0 = \sum \lambda_j e_j = \sum a_j e_j + i b_j e_j$ Since $e_1, ..., e_n$ are linearly independent over \mathbb{R} , it follows that $a_j = b_j = 0$ Therefore, $\lambda_j = 0$. i.e., $(e_1, ..., e_n)$ linearly independent over $V_{\mathbb{C}}$

2 Linear Maps Over $V_{\mathbb{C}}$

Suppose V, W are real vector space and $T \in \mathcal{L}(V, W)$, we define $T_{\mathbb{C}} \in \mathcal{L}(V_{\mathbb{C}}, W_{\mathbb{C}})$ as follows:

$$T_{\mathbb{C}}(v_1 + iv_2) = Tv_1 + iTv_2$$

Claim Under the same basis in real vector space, the matrix of T and $T_{\mathbb{C}}$ are same. (Notice: we can not choose a basis in complex vector space for T)

Theorem 2.1 Let V be f.d.v.s. over \mathbb{R} , $T \in \mathcal{L}(V)$. Then there exists an invariant subspace U that has dimension 1 or 2. i.e.,

$$\exists U \subset V.(T(U) \subset U \land \dim U = 1 \text{ or } 2)$$

Proof. $T_{\mathbb{C}}$ has an eigenvector u+iv with eigenvalue $\lambda=a+bi\in\mathbb{C}$ $T_{\mathbb{C}}(u+iv)=Tu+iTv=(a+bi)(u+iv)$ implies $Tu=au-bv\wedge Tv=av+bu$ Therefore, $U=\mathrm{span}(u,v)$

Claim

There is a natural isomorphism between $V_{\mathbb{C}}$ and $\overline{V_{\mathbb{C}}}$. This is used below.

$$\overline{(a+ib)(v_1+iv_2)} = (a-ib)(v_1-iv_2)$$

Conside it as rotation, this isomorphism will become intuitively.

Theorem 2.2 Let V be 2-D i.p.v.s over \mathbb{R} , $T \in \mathcal{L}(V)$ is normal. Then in any orthonormal basis \vec{e} .

1. if T self-adjoint
$$(T = T^*)$$
, then $M(T, \vec{e}) = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$
2. if T is not self-adjoint $(T \neq T^*)$, then $M(T, \vec{e}) = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$

Proof. (1) is easy.

WTS (2), Assume $T \neq T^*$

Using complex spectral theorem, there exists an ONB such that $\vec{f} = (f_1, f_2)$ of eigenvectors for $T_{\mathbb{C}}$ with eigenvalue λ_1, λ_2 .

Since $T_{\mathbb{C}}$ is not self-adjoint, λ_1, λ_2 are not both in \mathbb{R}

WLOG (without loss of generality) $\lambda_1 \notin \mathbb{R}$,

we claim $\lambda_2 = \overline{\lambda_1}$ by change eigenvectors of λ_1 into conjugate vector space

Then we conclude that

$$\begin{split} M(T_{\mathbb{C}}, \vec{f}) &= \begin{bmatrix} \lambda_1 & 0 \\ 0 & \overline{\lambda_1} \end{bmatrix} \\ M(T_{\mathbb{C}} + T_{\mathbb{C}}^*, \vec{f}) &= \begin{bmatrix} 2\operatorname{Re}\lambda_1 & 0 \\ 0 & 2\operatorname{Re}\{\lambda_1\} \end{bmatrix} \end{split}$$

We conclude:

Let \vec{e} be any ONB for V and

$$M(T, \vec{e}) = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Then, we see that

$$M(T+T^*, \vec{e}) = \begin{bmatrix} 2a & b+c \\ b+c & 2d \end{bmatrix}$$

Therefore, b = -c and a = d.

Corollary 2.3 If further T is an isomertry, then $M(T, \vec{e}) = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$, where $\theta \in [0, 2\pi]$.

Theorem 2.4 Let T be an isometry on a real f.d.i.p.s. V, then there exists ONB \vec{e} such that

where $r_i = \pm 1, \theta \in [0, 2\pi]$ To understand this matrix, we see that $r_i = 1$ means do nothing, $r_i = -1$ means flipped and θ means rotation.

Proof. Prove by 6 steps

- STEP 1: By the theorem, there exists a subspace $W \subseteq V$ such that dim W = 1 or 2, $T(W) \subseteq W$.
- Step 2: T is normal, so W, W^{\perp} are invariant under T, T^*
- Step 3: $(T|_W)^* = T^*|_W, (T|_W^{\perp})^* = T^*|_W^{\perp}$
- STEP 4: Theorem true for W^{\perp} by induction hypothesis there exists an ONB $B_{W^{\perp}}$ satisfy the W^{\perp} .
- STEP 5: If dim W=1 then true for (W,T|W)If dim W=2
 - 1. $T|_W$ is self-adjoint, then there exists ONB B_W for operator that let the matrix diagonal. Since $T|_W$ is isometry, it follows that all eigenvalue are ± 1 .
 - 2. $T|_W$ is not self-adjoint, then we have already shown in above.
- Step 6: Set $\vec{B} = \vec{B}_{W^{\perp}} \cup \vec{B}_{W}$

Theorem 2.5 Let V be a f.d.v.s over \mathbb{R} , and $T \in \mathcal{L}(V)$. If dim V is odd, then T has an eigenvalue.

LEMMA 2.6: Let V be a f.d.v.s over \mathbb{R} , $T \in \mathcal{L}(V)$, then

T is invertiable $\iff T_{\mathbb{C}}$ is invertiable

LEMMA 2.7: Let (V,T) as above, $r \in \mathbb{R}$, then

LEMMA 2.8: r is an eigenvalue of $T \iff r$ is an eigenvalue of $T_{\mathbb{C}}$

LEMMA 2.9: Let (V,T) as above, $\lambda \in \mathbb{C}$, then

$$\dim E(\lambda, T_{\mathbb{C}}) = \dim E(\overline{\lambda}, T_{\mathbb{C}})$$

Proof. Let $v = v_1 + v_i 2i \in V \times V$, where $v_1, v_2 \in V$, then $\overline{v} = v_1 - v_2 i$. $T_C \overline{v} = TTv_1 - iTv_2 = \overline{Tv_1 + iTv_2} = \overline{T_C v} = \overline{\lambda} \overline{v}$

Remark.

$$v_1,...,v_m$$
 lin.ind. $\iff \overline{v_1},...,\overline{v_m}$ lin.ind.

The conjugate of a basis for $E(\lambda, T_c)$ is a basis for $E(\overline{\lambda}, T_c)$

LEMMA 2.10: $T \in \mathcal{L}(V), a \neq b$, then

$$\mathbf{null}((T - aI)(T - bI)) = \mathbf{null}(T - aI) \oplus \mathbf{null}(T - bI)$$

LEMMA 2.11: $S, T \in \mathcal{L}(V)$. Suppose ST = TS, then

$$\mathbf{null}(S), \mathbf{Range}(S)$$
 are preserved by T

Other things see in complexification2

3 Restriction of Scalars

DEFINITION 3.1: Suppose that V is a complex vector space. We denote the Restriction of Scalars , written ResV, to be the real vector space.

such that is same with complex vector space excepts we only scalar with real numbers.