

Data Collection and Preprocessing Phase

Date	6 August 2025
Team ID	SWUID20250185217
Project Name	Anemia Sense: Leveraging Machine Learning For Precise Anemia Recognitions
Maximum Marks	6 Marks

Data Exploration and Preprocessing Report

Dataset variables were statistically analyzed to identify patterns and outliers, with Python employed for preprocessing tasks like normalization and balancing. Data cleaning addressed missing values and ensured quality for subsequent analysis and modeling, forming a strong foundation for insights and predictions.

Section	Desc	Description							
		ension: rows × 6	columns						
		Gender	Hemoglobin	мсн	мснс	MCV	Result		
	0	1	14.9	22.7	29.1	83.7	0		
Oata Overview	1	0	15.9	25.4	28.3	72.0	0		
	2	0	9.0	21.5	29.6	71.2	1		
	3	0	14.9	16.0	31.4	87.5	0		
	4	1	14.7	22.0	28.2	99.5	0		

import pandas as pd

Data Preprocessing Code Screenshots

df = pd.read_csv('anemia.csv') df.head() Gender Hemoglobin MCH MCHC MCV Result 14.9 0 22.7 29.1 83.7 1 0 15.9 25.4 28.3 72.0 0 2 0 9.0 21.5 29.6 71.2 3 0 0 14.9 16.0 31.4 87.5 4 14.7 22.0 28.2 99.5

Loading Data


```
from sklearn.utils import resample
                               majorclass = df[df['Result'] == 0]
                               minorclass = df[df['Result'] == 1]
                               major_downsample = resample(
                                   majorclass,
Data Transformation &
                                   replace=False,
Balancing
                                   n_samples=len(minorclass),
                                   random_state=42
                               df = pd.concat([major_downsample, minorclass])
                               print(df['Result'].value_counts())
                               from sklearn.model_selection import train_test_split
                               x_train,x_test,y_train,y_test = train_test_split(X,Y,test_size=0.2,random_state=20)
Feature Engineering
                               print(x_train.shape)
                               print(x_test.shape)
                               print(y_train.shape)
                               print(y_test.shape)
```