L-trominoes can be used to tile a "punctured" 2ⁿ×2ⁿ grid (punctured = one cell removed), for all positive integers n

L-trominoes can be used to tile a "punctured" 2ⁿ×2ⁿ grid (punctured = one cell removed), for all positive integers n

L-trominoes can be used to tile a "punctured" 2ⁿ×2ⁿ grid (punctured = one cell removed), for all positive integers n

L-trominoes can be used to tile a "punctured" 2ⁿ×2ⁿ grid (punctured = one cell removed), for all positive integers n

Base case: n=1

L-trominoes can be used to tile a "punctured" $2^n \times 2^n$ grid (punctured = one cell removed), for all positive integers n

Base case: n=1

L-trominoes can be used to tile a "punctured" 2ⁿ×2ⁿ grid (punctured = one cell removed), for all positive integers n

Base case: n=1

L-trominoes can be used to tile a "punctured" 2ⁿ×2ⁿ grid (punctured = one cell removed), for all positive integers n

- Base case: n=1
- Inductive step: For all integers k≥1:

Hypothesis: true for n=k

L-trominoes can be used to tile a "punctured" 2ⁿ×2ⁿ grid (punctured = one cell removed), for all positive integers n

- Base case: n=1
- Inductive step: For all integers k≥1:
 Hypothesis: true for n=k

To prove: true for n=k+1

Idea: can partition the 2^{k+1}×2^{k+1} punctured grid into four 2^k×2^k punctured grids, plus a tromino. Each of these can be tiled using trominoes (by inductive hypothesis).

- Base case: n=1
- Inductive step: For all integers k≥1:
 Hypothesis: true for n=k
 To prove: true for n=k+1
 - Idea: can partition the 2^{k+1}×2^{k+1} punctured grid into four 2^k×2^k punctured grids, plus a tromino. Each of these can be tiled using trominoes (by inductive hypothesis).
- Actually gives a (recursive) algorithm for tiling

- Base case: n=1
- Inductive step: For all integers k≥1:
 Hypothesis: true for n=k
 To prove: true for n=k+1

- Idea: can partition the $2^{k+1} \times 2^{k+1}$ punctured grid into four $2^k \times 2^k$ punctured grids, plus a tromino. Each of these can be tiled using trominoes (by inductive hypothesis).
- Actually gives a (recursive) algorithm for tiling

- Base case: n=1
- Inductive step: For all integers k≥1:
 Hypothesis: true for n=k
 To prove: true for n=k+1

- Idea: can partition the 2^{k+1}×2^{k+1} punctured grid into four 2^k×2^k punctured grids, plus a tromino. Each of these can be tiled using trominoes (by inductive hypothesis).
- Actually gives a (recursive) algorithm for tiling

L-trominoes can be used to tile a "punctured" 2ⁿ×2ⁿ grid (punctured = one cell removed), for all positive integers n

- Base case: n=1
- Inductive step: For all integers k≥1:
 Hypothesis: true for n=k
 To prove: true for n=k+1

- Idea: can partition the 2^{k+1}×2^{k+1} punctured grid into four 2^k×2^k punctured grids, plus a tromino. Each of these can be tiled using trominoes (by inductive hypothesis).
- Actually gives a (recursive) algorithm for tiling

L-trominoes can be used to tile a "punctured" $2^n \times 2^n$ grid (punctured = one cell removed), for all positive integers n

- Base case: n=1
- Inductive step: For all integers k≥1:
 Hypothesis: true for n=k

- Idea: can partition the 2^{k+1}×2^{k+1} punctured grid into four 2^k×2^k punctured grids, plus a tromino. Each of these can be tiled using trominoes (by inductive hypothesis).
- Actually gives a (recursive) algorithm for tiling

- Base case: n=1
- Inductive step: For all integers k≥1:
 Hypothesis: true for n=k
 To prove: true for n=k+1

- Idea: can partition the $2^{k+1} \times 2^{k+1}$ punctured grid into four $2^k \times 2^k$ punctured grids, plus a tromino. Each of these can be tiled using trominoes (by inductive hypothesis).
- Actually gives a (recursive) algorithm for tiling

L-trominoes can be used to tile a "punctured" 2ⁿ×2ⁿ grid (punctured = one cell removed), for all positive integers n

Base case: n=1

Hypothesis: true for n=k

- Idea: can partition the 2^{k+1}×2^{k+1} punctured grid into four 2^k×2^k punctured grids, plus a tromino. Each of these can be tiled using trominoes (by inductive hypothesis).
- Actually gives a (recursive) algorithm for tiling

L-trominoes can be used to tile a "punctured" 2ⁿ×2ⁿ grid (punctured = one cell removed), for all positive integers n

Base case: n=1

Hypothesis: true for n=k

- Idea: can partition the 2^{k+1}×2^{k+1} punctured grid into four 2^k×2^k punctured grids, plus a tromino. Each of these can be tiled using trominoes (by inductive hypothesis).
- Actually gives a (recursive) algorithm for tiling

L-trominoes can be used to tile a "punctured" 2ⁿ×2ⁿ grid (punctured = one cell removed), for all positive integers n

Base case: n=1

Inductive step: For all integers k≥1:

Hypothesis: true for n=k

- Idea: can partition the 2^{k+1}×2^{k+1} punctured grid into four 2^k×2^k punctured grids, plus a tromino. Each of these can be tiled using trominoes (by inductive hypothesis).
- Actually gives a (recursive) algorithm for tiling

L-trominoes can be used to tile a "punctured" 2ⁿ×2ⁿ grid (punctured = one cell removed), for all positive integers n

Base case: n=1

Hypothesis: true for n=k

- Idea: can partition the 2^{k+1}×2^{k+1} punctured grid into four 2^k×2^k punctured grids, plus a tromino. Each of these can be tiled using trominoes (by inductive hypothesis).
- Actually gives a (recursive) algorithm for tiling

L-trominoes can be used to tile a "punctured" 2ⁿ×2ⁿ grid (punctured = one cell removed), for all positive integers n

Base case: n=1

Inductive step: For all integers k≥1:

Hypothesis: true for n=k

- Idea: can partition the 2^{k+1}×2^{k+1} punctured grid into four 2^k×2^k punctured grids, plus a tromino. Each of these can be tiled using trominoes (by inductive hypothesis).
- Actually gives a (recursive) algorithm for tiling

 \circ L-trominoes can be used to tile a "punctured" $2^n \times 2^n$ grid (punctured = one cell removed), for all positive integers n

Base case: n=1

Hypothesis: true for n=k

To prove: true for n=k+1

Idea: can partition the 2^{k+1}×2^{k+1} punctured grid into four 2^k×2^k punctured grids, plus a tromino. Each of these can be tiled using trominoes (by inductive hypothesis).

 \circ L-trominoes can be used to tile a "punctured" $2^n \times 2^n$ grid (punctured = one cell removed), for all positive integers n

Base case: n=1

Hypothesis: true for n=k

To prove: true for n=k+1

Idea: can partition the 2^{k+1}×2^{k+1} punctured grid into four 2^k×2^k punctured grids, plus a tromino. Each of these can be tiled using trominoes (by inductive hypothesis).

 \circ L-trominoes can be used to tile a "punctured" $2^n \times 2^n$ grid (punctured = one cell removed), for all positive integers n

Base case: n=1

Hypothesis: true for n=k

To prove: true for n=k+1

Idea: can partition the 2^{k+1}×2^{k+1} punctured grid into four 2^k×2^k punctured grids, plus a tromino. Each of these can be tiled using trominoes (by inductive hypothesis).

L-trominoes can be used to tile a "punctured" 2ⁿ×2ⁿ grid (punctured = one cell removed), for all positive integers n

Base case: n=1

Inductive step: For all integers k≥1:

Hypothesis: true for n=k

To prove: true for n=k+1

Idea: can partition the 2^{k+1}×2^{k+1} punctured grid into four 2^k×2^k punctured grids, plus a tromino. Each of these can be tiled using trominoes (by inductive hypothesis).

L-trominoes can be used to tile a "punctured" 2ⁿ×2ⁿ grid (punctured = one cell removed), for all positive integers n

Base case: n=1

Inductive step: For all integers k≥1:

Hypothesis: true for n=k

To prove: true for n=k+1

Idea: can partition the 2^{k+1}×2^{k+1} punctured grid into four 2^k×2^k punctured grids, plus a tromino. Each of these can be tiled using trominoes (by inductive hypothesis).

