UNIVERSIDADE FEDERAL DE SANTA CATARINA - UFSC CENTRO TECNOLÓGICO - CTC DEPARTAMENTO DE ENGENHARIA ELÉTRICA E ELETRÔNICA CURSO DE ENGENHARIA ELETRÔNICA EEL 7319 - CIRCUITOS RF

PATRIK LOFF PERES 20103830

Relatório 8 - AN11006

- 1. Importar os modelos SPICE e de parâmetros S para utilização no QuesStudio
- 2. Redesenhar o modelo do transistor para que o esquemático fique intuitivo (ver sugestão abaixo)

P_net1 net1 LC1 net13 RBC1 RBC2 LC2 net12 net11 net15 net28 CBC2 CBC1 RC2X LĊ2X net25 LB2X LB2 net22 CCE2 P_net2 CCE1 LB1. RB2X net33 net14 Q1 RCE2 net23 net24 CBE2 CBE1 RBE2 net33 LĖ1 net3

Figura 1 - Modelo do transistor BFU730F

3. Realizar a caracterização DC (reproduzir as Fig. 2 e 3 do datasheet)

Fazendo dois *parameter sweep* em uma simulação DC, de forma a variar valores de corrente de base (IB) para cada valor de tensão entre coletor e emissor (VCE) obtemos o seguinte resultado

Figura 2 - Caracterização da corrente de Coletor

Figura 3 - Corrente de coletor em função da tensão entre coletor e emissor

Percebe-se do gráfico da figura 3 que as curvas diferem do mostrado no datasheet do componente, tanto em forma, pela corrente de coletor aumenta indefinidamente com o

aumento de Vce, quanto e valores, pois era esperado que o valor máximo de corrente de coletor fosse aproximadamente o dobro do que foi obtido por simulação.

Para medir o hfe do transistor, foi aplicado uma tensão de 2V em Vce e diferentes correntes de base, que resultam em correntes de coletor entre 0 e 30mA, determinando o hfe como a razão entre corrente de coletor e corrente de base

250 200 150 100 50 0 0.005 0.01 0.015 0.02 0.025 Ic

Figura 4 - hfe em função da corrente de coletor

O valor de hfe simulado é bem menor do previsto no datasheet do componente.

4. Medir as demais figuras de mérito (AC e DC) do transistor, com o objetivo de comparar com a especificação fornecida pelo fabricante

5. Comparar a simulação de parâmetros S utilizando o modelo SPICE do transistor com os valores medidos fornecidos pelo fabricante nos arquivos Touchstone (s2p)

Comparando os valores de parâmetro S para o caso de Vce = 1.5V e Ic = 1mA

?

Figura 5 - Medição parâmetros S por arquivo s2p

Para obter os parâmetros S do modelo SPICE foram usados um par de *bias tee* para separar o circuito de RF e de polarização.

Figura 6 - Medição parâmetros S por arquivo SPICE

Desta forma obtemos os seguintes resultados para a faixa de frequência de 100MHz a 25GHz

Figura 7 - Ganho do transistor

Nota-se do gráfico da figura 7 que o ganho nos dois modelos são muito próximos e tem a mesma forma, de diminuir com a frequência. Também, destaca-se os pontos em 3,62GHz onde o ganho do modelo SPICE fica maior que o ganho do modelo s2p, de forma que em altas frequências o ganho do modelo SPICE é cerca de 6 dB maior que o ganho dos valores medidos pelo fabricante dos arquivos *touchstone*.

Figura 8 - Coeficiente de reflexão da entrada do transistor

Observando o gráfico da figura 8 vemos um comportamento similar ao da figura 7 no sentido de para frequências mais baixas o modelo SPICE coincide com os valores do arquivo s2p, mas a partir de 5GHz eles começam a divergir de tal forma que os valores medidos pelo fabricante do coeficiente de reflexão chegam a dar valores positivos (em dB) enquanto o modelo SPICE indica que o circuito atenua consistentemente o sinal refletido pela entrada (não por ser uma forte atenuação, mas por atenuar na faixa de frequência de 100MHz e 25GHz e aumentar a atenuação com o aumento da frequência, comportamento que poderia levar a conclusões precipitadas).

Figura 9 - Coeficiente de reflexão da saída do transistor

A partir do gráfico da figura 9 percebe-se que os dados fornecidos pelo fabricante são bem próximos do resultado da simulação com o modelo SPICE para frequências abaixo de 17,7 GHz, ponto onde as curvas divergem de forma brusca, em que os dados do fabricante indicam uma reflexão da saída pouco atenuada e a simulação SPICE indica forte atenuação da reflexão da saída, com um aumento gradativo com a frequência.

-10 -20 S[1,2] (dB) 30 frequency: 20.5GHz 40 SPICE: -15 s2p frequency: 20.5GHz -50 SPICE s2p: -15 -60 1.5e10 1e10 5e9 2e10 2.5e10 0 Frequência (Hz)

Figura 10 - Ganho da saída para a entrada

No caso do ganho da saída para a entrada, os resultados da simulação SPICE se mostraram bem coerentes com os dados do fabricante, indicando razoavelmente proximidade do modelo com o componente real em questão da atenuação do ganho reverso em toda a faixa testada.

6. Analisar o LNA do AN1106 (ponto de operação, identificar e analisar as redes de adaptação, calcular o ganho, etc.)

Realizando a análise do LNA AN1106 proposto pelo fabricante, usando o transistor BFU730F abaixo:

Figura 11 - AN1106

Figura 12 - Análise DC

Applies DC

$$V_{a} = V_{cc} + I_{c} + I_{b} = 0$$
 $V_{a} = V_{cc} + I_{c} + I_{b} = 0$
 $V_{a} = V_{cc} + I_{c} + I_{b} = 0$
 $V_{a} = V_{b} + I_{b} + I_{c} + I_{c} + I_{c} = 0$
 $V_{a} = V_{b} + I_{b} + I_{c} + I_{c} + I_{c} = 0$
 $V_{a} = V_{b} + I_{b} + I_{c} + I_{c} + I_{c} = 0$
 $V_{a} = V_{b} + I_{b} + I_{c} + I_{c} + I_{c} = 0$
 $V_{a} = V_{b} + I_{b} + I_{c} + I_{c} + I_{c} = 0$
 $V_{a} = V_{b} + I_{b} + I_{c} + I_{c} + I_{c} = 0$
 $V_{a} = V_{b} + I_{b} + I_{c} + I_{c} + I_{c} = 0$
 $V_{a} = V_{b} + I_{b} + I_{c} + I_{c} + I_{c} = 0$
 $V_{a} = V_{b} + I_{b} + I_{c} + I_{c} + I_{c} = 0$
 $V_{a} = V_{b} + I_{b} + I_{c} + I_{c} + I_{c} = 0$
 $V_{a} = V_{b} + I_{b} + I_{c} + I_{c} + I_{c} + I_{c} = 0$
 $V_{a} = V_{b} + I_{b} + I_{c} + I_{c} + I_{c} + I_{c} = 0$
 $V_{a} = V_{b} + I_{b} + I_{c} + I_{c} + I_{c} + I_{c} = 0$
 $V_{a} = V_{b} + I_{b} + I_{c} + I_{c} + I_{c} = 0$
 $V_{a} = V_{b} + I_{b} + I_{c} + I_{c} + I_{c} = 0$
 $V_{a} = V_{b} + I_{b} + I_{c} + I_{c} + I_{c} = 0$
 $V_{a} = V_{b} + I_{b} + I_{c} + I_{c} + I_{c} = 0$
 $V_{a} = V_{b} + I_{b} + I_{c} + I_{c} + I_{c} = 0$
 $V_{a} = V_{b} + I_{b} + I_{c} + I_{c} + I_{c} = 0$
 $V_{a} = V_{b} + I_{b} + I_{c} + I_{c} + I_{c} + I_{c} = 0$
 $V_{a} = V_{b} + I_{b} + I_{c} + I_{c} + I_{c} + I_{c} = 0$
 $V_{a} = V_{b} + I_{b} + I_{c} + I_{c} + I_{c} + I_{c} = 0$
 $V_{a} = V_{b} + I_{b} + I_{c} +$

Figura 13 - Simulação da análise DC

Resolvendo numericamente a equação da figura 12 com beta = 250 obteve-se Ic = 8.8mA que diverge levemente do simulado que foi Ic2 = 7.14mA.

Figura 14 - Análise AC

Assumindo Vt = 25 mV, a transcondutancia do transistor é aproximadamente gm = 352 mS. Considerando que a carga é uma resistência de 50Ω ,

Figura 15 - Rede de adaptação

Figura 16 - Resistência Rc equivalente

Temos que a resistência vista pelo coletor do transistor é aproximadamente $Rc = 36\Omega$ dentro da faixa de operação do LNA.

Portanto o ganho de tensão Av = 12,67 = 22dB

7. Desenhar o LNA do AN1106 em um esquemático no QuesStudio

Figura 17 - LNA AN1106

8. Fazer a caracterização completa do LNA

Figura 18 - Ganho do LNA

Pode-se notar que dentro da faixa de operação do amplificador o ganho fica em torno de 17,3dB, com certa consistência, valor próximo ao calculado anteriormente de forma teórica que foi 22dB.

Figura 19 - coeficientes de reflexão do amplificador

O gráfico da figura 19 mostra que ambos coeficientes de reflexão são negativos na faixa de operação, o que mostra baixa reflexão tanto na entrada quanto na saída do circuito, mas com uma certa variabilidade de 2 a 4 dB dentro da faixa de operação do amplificador, o que em

uma primeira análise não indica um problema pois no pior caso, no limite da faixa de operação em 2,3 GHz, o coeficiente de reflexão da entrada é de aproximadamente -6dB o que a princípio é uma atenuação considerável.

Utilizando o *testbench* desenvolvido no lab 2 para simular a figura de ruído de blocos quaisquer, foi obtido o seguinte resultado:

Figura 20 - TestBench

Pode-se concluir que o circuito gera consistentemente baixo ruído dentro da faixa de operação, com aproximadamente 1.08dB de figura de ruído.

9. Substituir os componentes passivos por modelos reais (procurar os modelos nos sites dos fabricantes)

Substituindo os componentes do circuito da figura 17 por modelos reais dos tipos e valores determinados no *application note* do AN11006 (com exceção do capacitor 68nF, que foi utilizado o tipo GRM033) obteve-se os seguintes resultados

Δfrequency: 4.02e+08 ΔdB(S[2,1]): 0.157

16.8

frequency: 2.5GHz dB(S[2,1]): 16.4

2e9 2.2e9 2.4e9 2.6e9 2.8e9 3e9

frequency

Figura 22 - Ganho do amplificador com modelos reais de componentes

Dentro da faixa de operação, o ganho do amplificador diminuiu levemente em relação ao simulado com componentes ideais, mas manteve-se na mesma ordem.

 Δ frequency: 4.02e+08 ΔdB(S[2,2]): 3.99 -6 frequency: 2.5GHz -8 dB(S[1,1]): -7.61 frequency: 2.5GHz -10 dB(S[2,2]): -9.69 -12 Δfrequency: 4.02e+08 ΔdB(S[1,1]): -2.83 -14 2.4e9 2.6e9 2e9 2.2e9 2.8e9 3e9

Figura 23 - Coeficientes de reflexão com modelos reais dos componentes

Da mesma forma que o ganho, os coeficientes de reflexão mantiveram aproximadamente iguais ao simulado com coeficientes ideais.

frequency

Figura 24 - Figura de ruído com modelos de componentes reais

Para a figura de ruído nota-se uma mudança significativa nos resultados, resultando em um pico de NF = 1,4 perto do limite de operação em 2,67 GHz além de um aumento geral na figura de ruído em toda a faixa de operação, o que pode indicar problemas na aplicação deste amplificador, que no caso é um LNA e espera-se que o ruído gerado seja extremamente baixo.