Biomimicry of Bacterial Foraging for Distributed Optimization and Control

Kevin M. Passino¹ Presented by: Alexander Van de Kleut²

> ¹The Ohio State University Electrical and Computer Engineering

²University of Waterloo Centre for Theoretical Neuroscience

IEEE Control Systems Magazine, 2002

Table of Contents

About the Author

2 Foraging

3 Biological and Computational Model

About the Author

About the Author

Fuzzy control KM Passino, S Yurkovich, M Reinfrank Addison-wesley 42, 15-21, 1998	3599
Biomimicry of bacterial foraging for distributed optimization and control KM Passino IEEE control systems magazine 22 (3), 52-67, 2002	3023
Stability analysis of swarms V Gazi, KM Passino IEEE transactions on automatic control 48 (4), 692-697, 2003	1125
Stable adaptive control using fuzzy systems and neural networks JT Spooner, KM Passino IEEE Transactions on Fuzzy Systems 4 (3), 339-359, 1996	728
Stability analysis of social foraging swarms V Gazi, KM Passino IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 34, 2004	710

Foraging

Foraging

- searching for nutrients
- avoiding noxious stimuli (toxins, predators, etc)

Social Foraging

- increases likelihood of finding nutrients
- better detection and protection from noxious stimuli
- gains can offset cost of food competition

How can we view foraging as an Optimization Process?

• We have some parameters θ and a loss function $J(\theta)$ that we want to minimize

How can we view foraging as an Optimization Process?

- We have some parameters θ and a loss function $J(\theta)$ that we want to minimize
- \bullet θ can represent the position of an organism in its environment

How can we view foraging as an Optimization Process?

- We have some parameters θ and a loss function $J(\theta)$ that we want to minimize
- \bullet θ can represent the position of an organism in its environment
- J can represent the concentration of nutrients and noxious stimuli
 - \triangleright smaller values of J= more nutrients, less noxious stimuli
 - \blacktriangleright higher values of J= more noxious stimuli, less nutrients

How can we view foraging as an Optimization Process?

- We have some parameters θ and a loss function $J(\theta)$ that we want to minimize
- \bullet d can represent the position of an organism in its environment
- J can represent the concentration of nutrients and noxious stimuli
 - \triangleright smaller values of J= more nutrients, less noxious stimuli
 - \blacktriangleright higher values of J= more noxious stimuli, less nutrients
- In general, J and θ can be arbitrary
 - \bullet $\theta \in \mathbb{R}^p$
 - $J: \mathbb{R}^p \to \mathbb{R}$

E. coli

- Model organism
 - ► Highly studied
 - ▶ Well-characterized foraging behaviour
 - Probably won't feel bad about simplifying its behaviour

E. coli

- Model organism
 - ► Highly studied
 - Well-characterized foraging behaviour
 - Probably won't feel bad about simplifying its behaviour
- Social organism
 - Secretes signals to attract others nearby
 - ► Encourages "swarming" or "clumping"

E. coli Behaviour

- Swims using left-handed helical flagella ("propellers")
 - ► Tumble: flagella all rotate clockwise → pull on cell in all directions → random movement
 - Run: flagella all rotate counterclockwise → flagella form a bundle
 → push on cell in one direction → directed movement

E. coli Behaviour

- If during a tumble *E. coli* swims down a nutrient concentration gradient:
 - ▶ Prolongs time spent on a run
 - ▶ Continues moving in the same direction
- Otherwise:
 - ► Tends to switch to a tumble (search for more)
 - Moves randomly which searching for more nutrient gradients to exploit
- Call a tumble followed by a run a "chemotaxis step"

Algorithm for a Single Bacterium

- 1: **for** $j \leftarrow 1 \dots N_c$ **do**: 2: $\phi \sim S^p$ 3: $\theta \leftarrow \theta + c\phi$ 4: **while** $J(\theta + c\phi) < J(\theta)$ **do**: 5: $\theta \leftarrow \theta + c\phi$
 - θ : p-dimensional vector (randomly initialized)
 - N_c : number of chemotaxis steps
 - $\phi \sim S^p$: a random p-dimensional unit vector
 - c: a step-size

Loss Function to Optimize

$$J(\theta) = An + \sum_{i=1}^{n} \left(x_i^2 - A\cos(2\pi x_i) \right)$$

Results of Single Bacterium

• Relatively inconsistent performance for a highly nonconvex function.

Algorithm for a Colony

```
1: for j \leftarrow 1 \dots N_c do:

2: for i \leftarrow 1 \dots S do:

3: \phi \sim S^p

4: \theta_i \leftarrow \theta_i + c_i \phi

5: while J(\theta_i + c_i \phi) + J_{cc}(\theta_i + c_i \phi) < J(\theta_i) + J_{cc}(\theta_i) do:

6: \theta_i \leftarrow \theta_i + c_i \phi
```

- θ_i : ith p-dimensional vector (randomly initialized)
- S: number of bacteria in the colony
- c_i : a step-size for bacterium i
- J_cc : cell-to-cell interactions

Passino; Van de Kleut (OST; UW)

J_{cc} and swarming behaviour

- E. coli do social foraging
- Secrete a substance to indicate to attract nearby *E. coli* and encourage swarming and biofilm formation
- Strength of signal diffuses over space
- Also want to avoid crowding
- Use sum of two Gaussian functions to model this

$$J_{cc}(\theta) = \sum_{i=1}^{S} -d_{\text{attract}} \exp\left(-w_{\text{attract}}(\theta - \theta_i)^T (\theta - \theta_i)\right) + h_{\text{repellant}} \exp\left(-w_{\text{repellant}}(\theta - \theta_i)^T (\theta - \theta_i)\right)$$

J_{cc} and swarming behaviour

Results of Colony with Swarming

- Still relatively inconsistent performance for a highly nonconvex function.
- But wait... What if the problem is just the hyperparameters?

Results of Colony with Swarming

- By trying out different combinations of hyperparameters we can improve overall performance.
- Here we increased the depth and width of attraction as well as the depth and width of repellance to increase "global" behaviour.

Results of Colony with Swarming

- By trying out different combinations of hyperparameters we can improve overall performance.
- Here we increased the depth and width of attraction as well as the depth and width of repellance to increase "global" behaviour.
- Important to know scale of J relative to scale of J_{cc} for tradeoff.
 - Can think of this like hyperparameters for PSO

Comparing J_{cc}

E. coli reproduction

- E. coli "reproduce" via
 - **1** Binary fission: essentially creating a clone
 - **②** Horizontal Translation: merging genetic material with others

E. coli reproduction

- E. coli "reproduce" via
 - **1 Binary fission**: essentially creating a clone
 - **4** Horizontal Translation: merging genetic material with others
- Algorithm designed to mimic binary fission
 - More fit individuals more likely to survive
 - ▶ Less fit individuals more likely to die

E. coli reproduction

- E. coli "reproduce" via
 - **1 Binary fission**: essentially creating a clone
 - **4** Horizontal Translation: merging genetic material with others
- Algorithm designed to mimic binary fission
 - ▶ More fit individuals more likely to survive
 - ▶ Less fit individuals more likely to die
- Horizontal translation could be incorporated (like a genetic algorithm)

Algorithm for a Reproducing Colony

```
1: for k \leftarrow 1 \dots N_{re} do:

2: for j \leftarrow 1 \dots N_c do:

3: for i \leftarrow 1 \dots S do:

4: \phi \sim S^p

5: \theta_i \leftarrow \theta_i + c_i \phi

6: while J(\theta_i + c_i \phi) + J_{cc}(\theta_i + c_i \phi) < J(\theta_i) + J_{cc}(\theta_i) do:

7: \theta_i \leftarrow \theta_i + c_i \phi

8: delete worst S/2 and reproduce best S/2
```

• N_{re} : number of reproduction steps

• Individuals with higher values of J killed off

- Individuals with higher values of J killed off
- Individuals with lower values of J duplicated
 - ► Ideally move away due to repellance

- Individuals with higher values of *J* killed off
- Individuals with lower values of J duplicated
 - ► Ideally move away due to repellance
- Idea is to encourage searching in space nearby "best" individuals

- Individuals with higher values of *J* killed off
- Individuals with lower values of *J* duplicated
 - ► Ideally move away due to repellance
- Idea is to encourage searching in space nearby "best" individuals
- If repellance isn't high enough then repeated iterations of evolution can concentrate colony in local minimum

Does Reproduction Help?

Elimination-Dispersal Events

- Over time, random events disperse populations of *E. coli*
 - ► Water, animal activity, human intervention

Elimination-Dispersal Events

- Over time, random events disperse populations of *E. coli*
 - Water, animal activity, human intervention
- May destroy chemotactic progress
 - ▶ But may also bring *E. coli* to good food sources

Elimination-Dispersal Events

- Over time, random events disperse populations of *E. coli*
 - Water, animal activity, human intervention
- May destroy chemotactic progress
 - ▶ But may also bring *E. coli* to good food sources
- For optimization, this is a method to prevent stagnation and move out from local minima

Algorithm for a Dispersing Colony

```
1: for l \leftarrow 1 \dots N_{ed} do:
           for k \leftarrow 1 \dots N_{re} do:
 2:
                 for i \leftarrow 1 \dots N_c do:
 3:
                       for i \leftarrow 1 \dots S do:
 4:
                             \phi \sim S^p
 5:
                             \theta_i \leftarrow \theta_i + c_i \phi
 6:
                             while J(\theta_i + c_i\phi) + J_{cc}(\theta_i + c_i\phi) < J(\theta_i) + J_{cc}(\theta_i) do:
 7:
                                   \theta_i \leftarrow \theta_i + c_i \phi
 8:
                 delete worst S/2 and reproduce best S/2
 9:
            for i \leftarrow 1 \dots S do:
10:
                 if \epsilon \sim \mathcal{U}(0,1) < p_{ed} then:
11:
                       \theta_i \sim d(\theta)
```

- N_{ed} : number of elimination-dispersal events
- p_{ed} : probabilty of a single elimination-dispersal event
- $d(\theta)$: initial distribution of θ

12: