

Lecture 10

Thermal Design

Thermal Conduction & Thermal Resistance

Reminders and Announcements

Homework #2 due Wednesday, Feb. 26th, by 11:59pm

Homework #3 will be assigned on Thursday, Feb. 27th

Office Hours: Wednesday, 3:00pm-4:30pm

What Generates Heat Within a Package?

- Semiconductor/die/chip
 - On-resistance
 - Switching losses

- Interconnects
 - Resistance

- Terminals
 - Resistance

Impacts of High Temperatures

Lower efficiency

Reduced reliability

Potentially catastrophic failure

Reliability

- The probability that the system will meet the required specifications for a given period of time
- A rise in temperature results in an increase in failure rate
- For many package types, temperature is the strongest contributor to the loss of reliability
- Thermal management is critical to the success of the system

Heat Removal

- Without cooling, the temperature of the heat-generating components would rise at a constant rate until it reaches a value at which the electronic operation of the device ceases, or the component loses its physical integrity
- By placing the device in contact with a lower-temperature solid or fluid, heat flow away from the component is facilitated
- With this cooling, the temperature rise is moderated as it asymptotically approaches a steady-state value
- At steady-state, the heat generated by the component(s) is transferred to the surrounding structure and/or fluid

Thermal Management

- Heat transfer mechanisms: conduction, convection, and radiation, as well as phase change
- Successful thermal management relies on a careful combination of materials and heat transfer mechanisms
- The enhanced reliability of the components due to the lower temperature T should be sufficient to compensate for the additional life-cycle cost and inherent failure rate of fans, pumps, and special interface materials
- Increase in reliability due to lower T should be > decrease in reliability due to adding a fan or other cooling components

Modes of Thermal Transport

$$T = \frac{kA_c \Delta T}{L}$$

Conduction

- Flow of heat from a region of higher temperature to a region of lower temperature within a solid, stationary liquid, or static gaseous medium
- Direct energy exchange among molecules

Convection

 $q = hA_S\Delta T$

- Transfer of heat from a solid to a *fluid in motion*
- Mechanisms:
 - Exchange among nearly-stationary molecules adjacent to the solid surface (as in conduction)
 - Transport of heat away from the solid surfaces by the bulk motion of the fluid

Radiation

$$Q = \varepsilon \sigma F_{12} A_{\mathcal{S}} (T_1^4 - T_2^4)$$

- Heat transfer is a result of the emission and absorption of the energy contained in the electromagnetic waves or photons
- Can occur across a vacuum or any medium that is transparent to infrared wavelengths
- Not linearly dependent on the temperature difference

Modes of Thermal Transport

Thermal Management Levels & Technologies

Heat Spreader

Heat Transfer through the Bottom

Heat Conduction

$$q = \frac{kA_c \Delta T}{L}$$

q = heat(W)

k = thermal conductivity (W/(m-K))

 A_c = area that q flows through (m²)

L = length q flows through (m)

R	+ ŀ)
	LI	Z.

L/kA

•~	~~~	√ •
T _	$\stackrel{q}{\longrightarrow}$	qL
11	$-T_2 =$	$\overline{kA_c}$

Material	Density (kg/m³)	Specific Heat (J/kg K)	Thermal Conductivity (W/mK)	Ratio
Air	1.16	1005	0.024	1
Epoxy (dielectric)	1500	1000	0.23	9.6
Epoxy (conductive)	10500	1195	0.35	14.6
Polyimide	1413	1100	0.33	13.8
FR4	1500	1000	0.30	12.5
Water	1000	4200	0.59	24.6
Thermal grease	_	_	1.10	46
Alumina	3864	834	22.0	916
Aluminum	2700	900	150	6250
Silicon	2330	770	120	5000
Copper	8800	380	390	16,250
Gold	19300	129	300	12,500
Diamond	3500	51	2000	83,330

$$ightarrow T_1 - T_2 = qR_{th}$$
 , where $R_{th} = \frac{L}{kA_c}$

Thermal Resistance R_{th}

- Fourier's Law is analogous to Ohm's Law:
 - Heat $q \rightarrow \text{current } I$
 - Temperature drop $\Delta T \rightarrow \text{voltage drop } \Delta V$
 - Thermal resistance $R_{th} \rightarrow$ electrical resistance R

Thermal:

$$\Delta T = qR_{th} \to R_{th} = \frac{\Delta T}{q} \begin{bmatrix} \mathbf{K} \\ \mathbf{W} \end{bmatrix}$$

Electrical:

$$\Delta V = IR \to R = \frac{\Delta V}{I} \quad [\Omega]$$

Thermal and Electrical Conduction

Thermal Conduction

Electrical Conduction

$$q = \frac{kA_c \Delta T}{L} \quad [W]$$

$$I = \frac{\sigma A_c \Delta V}{L} \quad [A]$$

k is a material property

 σ is a material property

$$R_{th} = \frac{L}{kA_c} \quad [K/W]$$

$$R = \frac{L}{\sigma A_c} \quad [\Omega]$$

Depends on:

Material (k)

Length (L)

Cross-sectional Area (A_c)

Depends on: Material (σ)

Length (L)

Cross-sectional Area (A_c)

Series: algebraic sum

Parallel: sum of inverses

Series: algebraic sum

Parallel: sum of inverses

Example: Heat Conduction

Calculate the temperature difference across a 1-mm-thick layer of thermal grease with k = 1 W/(m-K). Assume a 1 W heat source spread *uniformly* over a 1 cm² area.

•
$$q = 1 \text{ W}$$

•
$$L = t_{TG} = 1 \text{ mm} = 0.001 \text{ m}$$

•
$$k_{TG} = 1 \text{ W/(m-K)}$$

•
$$A_c = 1 \text{ cm}^2 = 1 \text{ x } 10^{-4} \text{ m}^2$$

•
$$T_1 - T_2 = \frac{qL}{kA_c} = \frac{(1 \text{ W})(0.001\text{m})}{(1\frac{\text{W}}{\text{m}\cdot\text{K}})(1\times10^{-4}\text{m}^2)} = 10^{\circ}\text{C}$$

 \succ T_2 is 10°C lower than T_1 due to the high R_{th} of the thermal grease

$$T_1 - T_2 = \frac{qL}{kA_c}$$

Package Heat Flow

Package Thermal Resistance

• Packages are characterized by an overall junction-to-ambient thermal resistance, $R_{th,ja}$ or θ_{ja}

$$\theta_{ja} = \frac{T_j - T_a}{q}$$

- T_i = junction temperature (°C)
- T_a = ambient temperature (°C)
- q = power dissipation (W)
- "*j*" = junction
- "a" = ambient
- "c" = case

Package Thermal Resistance

- θ_{ia} can be separated into two parts:
 - Junction-to-case, θ_{jc}
 - Case-to-ambient, θ_{ca}

$$\theta_{ja} = \theta_{jc} + \theta_{ca}$$

- Junction-to-case, θ_{jc}
 - Depends on the internal construction of the package
 - Depends on length, cross-sectional area, and k
- Case-to-ambient, θ_{ca}
 - Depends on the mounting and cooling techniques
 - Depends on wetted surface area and h

Example: Package Thermal Resistance

Find the junction temperature, T_j , of the die if it dissipates 1 W of heat and has the below specifications.

- $T_c = 50 \, ^{\circ}\text{C}$
- $A_c = 10 \times 10 \text{ mm}^2$ (for all components)
- Solder die attach: $k_1 = 50 \text{ W/(m-K)}$, $L_1 = 0.1 \text{ mm}$
- Cu lead frame: $k_2 = 390 \text{ W/(m-K)}$, $L_2 = 1 \text{ mm}$
- EMC: $k_3 = 0.23$ W/(m·K), $L_3 = 1$ mm
- Assume other sides are thermally insulated, that the die is at a uniform temperature, and neglect heat spreading.

Example: Package Thermal Resistance

$$R_{th,cond} = \frac{L}{kA}$$

- $\bullet T_j T_c = qR_{th,j-c}$
- $R_{th,j-c} = R_1 + R_2 + R_3$
- $R_1 = \frac{L_1}{k_1 A} = \frac{100 \times 10^{-6} \text{m}}{\left(50 \frac{\text{W}}{\text{mK}}\right) (1 \times 10^{-4} \text{m}^2)} = 0.02 \text{ K/W}$
- $R_2 = \frac{L_2}{k_2 A} = \frac{1 \times 10^{-3} \text{m}}{(390 \frac{\text{W}}{\text{mK}})(1 \times 10^{-4} \text{m}^2)} = 0.03 \text{ K/W}$
- $R_3 = \frac{L_3}{k_3 A} = \frac{1 \times 10^{-3} \text{m}}{\left(0.23 \frac{\text{W}}{\text{m/K}}\right) (1 \times 10^{-4} \text{m}^2)} = 43 \text{ K/W}$

Example: Package Thermal Resistance

- Find T_j
- $R_{th,i-c} = R_1 + R_2 + R_3$
- $R_{th,j-c} = 0.02 \text{ K/W} + 0.03 \text{ K/W}$

$$+43\frac{K}{W} = 43.05 \text{ K/W}$$

- $T_j = qR_{th,j-c} + T_c$
- $T_j = (1W) \left(43 \frac{^{\circ}C}{W}\right) + 50 ^{\circ}C = 93 ^{\circ}C$
- \succ Conduction through the EMC is the greatest contributor to the $R_{th,j-c}$

Thermal Resistances in Series and Parallel

$$R_{th,1-2} = R_1 + R_2 + R_3 + R_4$$

Thermal Resistances in Series and Parallel

Thermal Resistances in Series and Parallel

Total junction-to-ambient thermal resistance:

$$\theta_{ja} = \frac{\theta_{ja1}\theta_{ja2}}{\theta_{ja1} + \theta_{ja2}} = \frac{(\theta_{jc1} + \theta_{ca1})(\theta_{jc2} + \theta_{ca2})}{(\theta_{jc1} + \theta_{ca1}) + (\theta_{jc2} + \theta_{ca2})}$$

Contact Resistance

- Contact resistance is the thermal resistance that occurs between two adjacent solid bodies as a result of surface imperfections and nonuniformities.
- Thermal interface materials (TIM) are used to fill the interface between mating surfaces to decrease contact resistance.
 - Higher thermal conductivity than air
 - Examples of interfaces include:
 between the chip and package
 lid/heat spreader, or between the
 heat spreader and the heat sink

24

Surface Roughness and Flatness

Interface Thermal Resistance

Consider a lightly loaded, 10 cm² alumina-to-silicon interface with an actual contact percentage of 0.5 % and δ = 25 μ m.

Consider a lightly loaded, 10 cm² alumina-to-silicon interface with an actual contact percentage of 0.5 % and δ = 25 μ m.

 $A = \text{Total area of interface} = 10 \text{ cm}^2$

 A_c = Contact area between solid 1 and solid 2

$$= 0.005 \cdot A = 0.05 \text{ cm}^2$$

 A_v = Void area between solid 1 and solid 2

$$= A - 0.005 \cdot A = 10 \text{ cm}^2 - 0.05 \text{ cm}^2 = 9.95 \text{ cm}^2$$

Consider a lightly loaded, 10 cm² alumina-to-silicon interface with an actual contact percentage of 0.5 % and δ = 25 μ m.

$$R_{1} = \frac{L}{k_{1}A_{c}} = \frac{\delta}{2k_{1}A_{c}}$$

$$R_{2} = \frac{L}{k_{2}A_{c}} = \frac{\delta}{2k_{2}A_{c}}$$

$$R_{v} = \frac{L}{k_{f}A_{v}} = \frac{\delta}{k_{f}A_{v}}$$

 k_1 = thermal conductivity of solid 1

 k_2 = thermal conductivity of solid 2

 k_f = thermal conductivity of fluid in void

 A_c = contact area between solid 1 and 2

 A_v = area of void

 δ = length of interface

Tummala, 5.3.4

Example: Interface Thermal Resistance

Consider a lightly loaded, 10 cm² alumina-to-silicon interface with an actual contact percentage of 0.5 % and δ = 25 μ m.

If the interfacial gaps are filled with air, calculate the heat flow for a 5 °C temperature difference across the interface.

• $R = \frac{L}{kA}$

•
$$q = \left(\frac{kA}{L}\right) \Delta T = \left(\frac{1}{R}\right) \Delta T$$

•
$$q = \left(\frac{1}{R_{int}}\right) \Delta T = \Delta T \left(\frac{1}{R_1 + R_2} + \frac{1}{R_v}\right) = \Delta T \left(\frac{1}{\frac{\delta}{2k_1 A_c} + \frac{\delta}{2k_2 A_c}} + \frac{1}{\frac{\delta}{k_f A_v}}\right)$$

Consider a lightly loaded, 10 cm² alumina-to-silicon interface with an actual contact percentage of 0.5 % and δ = 25 μ m.

If the interfacial gaps are filled with air, calculate the heat flow for a 5 °C temperature difference across the interface.

$$q = \frac{T_1 - T_2}{\delta/(2k_1A_c) + \delta/(2k_2A_c)} + \frac{T_1 - T_2}{\delta/(k_fA_v)}$$

$$q = \frac{5}{[25 \times 10^{-6}/(2 \times 22 \times 0.05 \times 10^{-4})] + [25 \times 10^{-6}/(2 \times 120 \times 0.05 \times 10^{-4})]} + \frac{5}{[25 \times 10^{-6}/(0.0261 \times 9.95 \times 10^{-4})]} \qquad A_c = (0.005)A$$

$$= \frac{5}{0.116 + 0.021} + \frac{5}{0.963} \qquad \mathbf{A_v} = \mathbf{A} - \mathbf{A_c}$$

$$A_c = (0.005)A$$

$$k_1 = k_{Al2O3} = 22 \text{ W/mK}$$

 $k_2 = k_{Si} = 120 \text{ W/mK}$

$$k_f = k_{air} = 0.026 \text{ W/mK}$$

= 42.4 W

Thermal Interface Materials

	Thermal Conductivity	
Material	(W/mK)	Ratio
Air	0.024	1
Epoxy (dielectric)	0.23	9.6
Epoxy (conductive)	0.35	14.6
Polyimide	0.33	13.8
FR4	0.30	12.5
Water	0.59	24.6
Thermal grease	1.10	46
Alumina	22.0	916
Aluminum	150	6250
Silicon	120	5000
Copper	390	16,250
Gold	300	12,500
Diamond	2000	83,330

Electrically NON-Isolating

Thermal Greases

Sil-Free™ Ther-O-Link Ultrastick Thermalcote™

Double Sided Tapes

Ther-A-Grip 1070/T405R Ther-A-Grip 1090/T412 T410R/T411

Thin Films

Kon Dux Grafoil™

Electrically Isolating

Gap Fillers A-Pli™

Double Sided Tapes

Ther-A-Grip 1050 T404

Pads

In-Sil-8 T-gard™500 Thermalsil™ III

Insulating Films

Thermalfilm™ Thermalfilm™MT

Thermal Adhesives

Ther-O-Bond 1500 Ther-O-Bond 1600 Ther-O-Bond 2000 Thermalbond™

https://www.boydcorp.com/thermal/thermal-interface-materials.html