IN THE CLAIMS:

RECEIVED CENTRAL FAX CENTER

SEP 1 7 2008

Please amend claims 1 and 2, cancel claims 4, 8-10 and 14-20, and add new claims 21-31 as follows:

- 1. (Currently Amended) A method for producing a superconducting inductive component having at least two plots, said component method including depositing a stack of alternately superconducting and insulating films comprising at least one line segment incorporating at least one plot of the component, said line segment constituting a conducting or superconducting layer within a stack of alternately superconducting and insulating films.
- 2. Currently Amended) The method according to claim 1, wherein depositing of each film constituting the stack is <u>realized so as for said film to be perfectly</u> crystallized.
- 3. (Previously Presented) The method according to one of claim 1 further including a prior step of depositing an insulating film on a substrate.
 - 4. (Canceled)
- 5. (Previously Presented) The method according to one of claim 1, further including a prior step of depositing a superconducting film on a substrate followed by the depositing of the stack.
- 6. (Previously Presented) The method according to one of claim 3, further including the following steps:
 - a deposit of the stack of alternately superconducting and insulating films,

an etching of the stack carried out in such a way that the latter only remains at the locations where an inductive component is to be implanted.

7. (Previously Presented) The method according to claim 5, further including the following steps:

an etching of the stack carried out in such a way that the latter only remains at the locations where an inductive component is to be implanted.

an etching of the superconducting film.

8.-10. (Canceled)

- 11. (Previously Presented) A system for producing a superconducting inductive component having at least two plots, said component comprising at least one line segment incorporating at least one plot of the component, this said line segment constituting a conducting or superconducting layer within a stack of alternately superconducting and insulating films, implementing the method according to claim 1.
- 12. (Previously Presented) The system according to claim 11, further including:

means for depositing a stack of alternately superconducting and insulating films, and

means for etching all of the deposited films, these said means being arranged in such a way that said deposited films remain only at the locations where an inductive component is to be implanted.

13. (Previously Presented) The system according to claim 11, further including:

means for depositing a superconducting film on a substrate,

means for depositing on the superconducting film a stack of alternately superconducting and insulating films, and

means for etching all of the deposited films, these means being arranged in such a way that the film remains only at the locations where a superconducting line is to be implanted and the stack remains only at the locations where an inductive component is to be implanted.

14-20. (Canceled)

- 21. (New) A superconducting inductive component having at least two plots, said component comprising at least one line segment incorporating at least one plot of the component, said line segment constituting a conducting or superconducting layer within a stack of alternately superconducting and insulating films.
- 22. (New) The component according to claim 21, wherein each film constituting the stack is perfectly crystallized.
- 23. (New) The component according to claim 21 wherein at least one of the superconducting films is produced from YB_{a2}Cu₃O_{7 5} compounds.
- 24. (New) The component according to claim 21, wherein at least one of the insulating films is made from LaA10₃ compounds.
- 25. (New) An antenna device comprising an electronic circuit including the superconducting inductive component of claim 21.

- 26. (New) The antenna device according to claim 25, wherein the antenna is produced from a superconducting thin film.
- 27. (New) A delay line device comprising an inductive component in series and a capacitive component in parallel downstream of said inductive component, wherein the inductive component is the superconducting inductive component of claim 21.
- 28. (New) A phase shift radar device comprising a plurality of antennas each comprising an electronic circuit including a delay line according to claim 27, said delay line being arranged such that each of said antennas transmits a signal whose phase is shifted with respect to that of the near antennas.
- 29. (New) An electronic frequency filtering device comprising an electronic circuit including the superconducting inductive component of claim 21.
- 30. (New) A high-pass filter device comprising an inductive component in parallel and a capacitive component in series downstream of said inductive component, wherein the inductive component is the superconducting inductive component of claim 21.
- 31. (New) A low-pass filter device comprising a capacitive component in parallel and an inductive component in series downstream of said capacitive component, wherein the inductive component is the superconducting inductive component of claim 21.