Amendments to the Claims:

Claim 1 (Currently amended) A computer system for calculating a pharmacokinetic behavior of a chemical substance in an insect, comprising:

a physiologically based pharmacokinetic simulation model (102) of said insect for predicting concentration/time profiles of the chemical substance in compartments of the insect, the simulation model having using at least one parameter which is dependent on the substance,

a prediction module (110) for predicting the at least one <u>substance-dependent</u> parameter on the basis of a physicochemical property of the substance,

an input/output module for input of the physicochemical property of a substance to be studied and for output of simulated concentration/time profiles for a user of said computer system.

Claim 2 (Original) Computer system according to Claim 1, wherein the at least one parameter is the product of the permeability for the substance and the effective surface area of the compartments.

Claim 3 (Original) Computer system according to Claim 1, wherein said at least one parameter is the rate coefficient for inter-compartmental mass transport ($\lambda_x = P A_x/V_x$), the volume of at least one of the organs of the insect being a function of time ($V_x = V_x(t)$).

Claim 4 (Original) Computer system according to Claim 1, wherein said at least one parameter is the equilibrium coefficient between an organ of the insect and the haemolymph $(K_x, x \in \{c, mu, fb, nc \text{ and } gw\})$, between the surface of the cuticle and the cuticle $(K_{c/cs})$, or between the gut wall and the gut content $(K_{gc/gw})$.

USSN: 10/714,791

Reply to Office Action of 10/31/2007

Claim 5 (Original) Computer system according to Claim 1, wherein said physicochemical property is the distribution coefficient between water and phospholipid membranes, the octanol/water distribution coefficient, the molecular weight, the solubility, and/or a combination of these parameters of the substance.

Claim 6 (Currently amended) Computer system according to Claim 1, wherein said physicochemical property is determined from the chemical structure of said chemical substance by means of comprising a QSAR model or a neural network for determining the physicochemical property from a descriptor of the chemical structure of the substance.

Claim 7 (Currently amended) Computer system according to Claim 1, wherein the prediction module is based on a database (108) which contains the physicochemical properties of test substances and corresponding substance-dependent parameters determined experimentally for the test substances are stored in a database and are used to obtain a calculation function for prediction of substance-dependent parameters for a new substance to be studied.

Claim 8 (Original) Computer system according to Claim 1, wherein the prediction module includes a calculation function for calculating said at least one parameter from the lipophilicity and/or the molecular weight of the substance.

Claim 9 (Original) Computer system according to Claim 8, wherein the calculation function is based on a linear regression of experimentally determined parameter values.

Claim 10 (Currently amended) Method for calculating a pharmacokinetic behavior of a chemical substance in insects, using a physiologically based pharmacokinetic simulation model of an insect for predicting concentration/time profiles of the chemical substance in compartments of the insect, the simulation model having at least one parameter which is

USSN: 10/714,791

Reply to Office Action of 10/31/2007

dependent on the substance, comprising the following steps:

a) input of a <u>at least one</u> physicochemical property properties such as lipophilicity and the molecular weight of the substance into a prediction module for predicting the at least one <u>substance-dependent</u> parameter <u>for the substance</u>,

b) carrying out a simulation with the simulation model for predicting concentration/time profiles of the chemical substance on the basis of the predicted at least one <u>substance-dependent</u> parameter;

c) outputting the predicted concentration/time profiles to a user.

Claim 11 (original) Method according to Claim 10, wherein said at least one parameter is the product of the permeability of the compartments of the insect to the substance and the effective surface area of the compartments.

Claim 12 (original) Method according to Claim 10, wherein the parameter is the rate coefficient for inter-compartmental mass transport ($\lambda_x = P_x A_x/V_x$), the volume of at least one of the organs of the insect being a function of time ($V_x = V_x(t)$).

Claim 13 (original) Method according to Claim 10, wherein the parameter is the equilibrium coefficient between an organ and the haemolymph $(K_x, x \in \{c, mu, fb, nc \text{ and gw}\})$, between the surface of the cuticle and the cuticle $(K_{c/cs})$, or between the gut wall and the gut content $(K_{gc/gw})$.

Claim 14 (original) Method according to Claims 10, wherein the physicochemical property is the distribution coefficient between water and phospholipid membranes, the octanol/water distribution coefficient, the molecular weight, the solubility, and/or a combination of these parameters of the substance.

Claim 15 (original) Method according to Claim 10, wherein the physicochemical

USSN: 10/714,791

Reply to Office Action of 10/31/2007

property is determined by a QSAR model or a neural network.

Claim 16 (original) Method according to Claim 10, wherein the prediction of the at least one parameter is based on physicochemical properties of test substances and parameter values determined experimentally for the test substances.

Claim 17 (original) Method according to Claim 10, wherein the prediction of the at least one parameter is carried out with a calculation function from the lipophilicity and/or the molecular weight of the substance.

Claim 18 (original) Method according to Claim 10, wherein the calculation function is based on a linear regression of experimentally determined parameter values.

Claim 19 (Currently amended) A <u>transportable</u> digital storage medium having stored thereon a program for calculating a pharmacokinetic behavior of a chemical substance in insects with a physiologically based pharmacokinetic simulation model of an insect for predicting concentration/time profiles of the chemical substance in compartments of the insect, the simulation model having at least one parameter which is dependent on the substance, with the following steps: the storage medium comprising

input mean for inputting of a physicochemical property of the substance into a prediction module for predicting the at least <u>substance-dependent</u> one parameter for the substance,

carrying out a <u>simulation means including a</u> with the aid of the simulation model for predicting concentration/time profiles of the chemical substance one the basis of the predicted at least one <u>substance-dependent</u> parameter[[.]],

outputting the predicted concentration/time profiles to a user.

Claim 20 (Currently amended) Digital storage medium according to Claim 10-19,

USSN: 10/714,791

Reply to Office Action of 10/31/2007

図0008/0016

04/30/2008 06:42 FAX 1 212 808 0844

wherein said at least one parameter is the product of the permeability for the substance and the effective surface area of the compartments.

Claim 21 (Original) Digital storage medium according to Claim 19, wherein said at least one parameter is the rate coefficient for inter-compartmental mass transport ($\lambda_x = P_x$ A_x/V_x), the volume (V_x) of at least one of the organs of the insect being a function of time ($V_x = V_x(t)$).

Claim 22 (Original) Digital storage medium according to Claim 19, wherein said at least one parameter is the equilibrium coefficient between an organ and the haemolymph $(K_x, x \in \{c, mu, fb, nc \text{ and } gw\})$, between the surface of the cuticle and the cuticle $(K_{c/cs})$, or between the gut wall and the gut content $(K_{gc/gw})$.

Claim 23 (Original) Digital storage medium according to Claim 19, wherein said physicochemical property is the distribution coefficient between water and phospholipid membranes, the octanol/water distribution coefficient, the molecular weight, the solubility, and/or a combination of these parameters of the substance.

Claim 24 (Original) Digital storage medium according to Claim 19, having further stored thereon, separately or as part of said program, a QSAR model or a neural network for determining said physicochemical property from a descriptor of the chemical structure of the substance.

Claim 25 (Original) Digital storage medium according to Claim 19, wherein said prediction module is based on a database (108) which contains the physicochemical properties of test substances and parameters determined experimentally for the test substances.

USSN: 10/714,791

Reply to Office Action of 10/31/2007