MAT3400/4400 - H13 - Solution outline

Problem 1

1a) Obviously, since we are considering the σ -algebra $\mathcal{P}(X)$, every function from X into \mathbb{K} is measurable, sowe don't have to bother about measurability.

Let $f \in \ell^{\infty}(X)$. Since $|f| \leq ||f||_u 1_X$ where 1_X denote the function on X constantly equal to 1, using monotonicity and linearity of the integral w.r.t. a measure, we get

$$\int |f| \, d\mu \, \leq \, \int ||f||_u \, 1_X \, d\mu = ||f||_u \, \int 1_X \, d\mu = \mu(X) \cdot ||f||_u \, < \infty \, .$$

Hence, f is integrable w.r.t. μ . Moreover, this gives that

$$|I_{\mu}(f)| \leq \int |f| d\mu \leq \mu(X) \cdot ||f||_{u}$$

for every $f \in \ell^{\infty}(X)$, so I_{μ} is bounded, with $||I_{\mu}|| \leq \mu(X)$. As $||1_X||_u = 1$ and $I_{\mu}(1_X) = \mu(X)$, we also have $||I_{\mu}|| \geq \mu(X)$. Hence, $||I_{\mu}|| = \mu(X)$.

1b)

- i) $\nu(\emptyset) = I(\chi_{\emptyset}) = I(\mathcal{O}) = 0$ (since I is linear).
- ii) Let $n \in \mathbb{N}$ and $A_1, \ldots, A_n \subset X$ be (pairwise) disjoint. Set $A = \bigcup_{j=1}^n A_j$.

Then $\chi_A = \sum_{i=1}^n \chi_{A_i}$, so, using the linearity of I, we get

$$\nu(A) = I(\chi_A) = I(\sum_{j=1}^n \chi_{A_j}) = \sum_{j=1}^n I(\chi_{A_j}) = \sum_{j=1}^n \nu(A_j).$$

iii) Since I is bounded, $\nu(X) = I(\chi_X) = I(1_X) = |I(1_X)| \le ||I|| \, ||1_X||_u = ||I|| < \infty$.

A suitable additional condition is as follows.

Assume that I also satisfies that $I(f_n) \to I(f)$ as $n \to \infty$ whenever $\{f_n\}$ is a nondecreasing sequence of nonnegative functions in $\ell^{\infty}(X)$ converging pointwise to some $f \in \ell^{\infty}(X)$.

Then ν becomes a measure on $\mathcal{P}(X)$ such that $I = I_{\nu}$.

[For interested readers, we sketch a proof. First, one checks that ν becomes a measure on $\mathcal{P}(X)$ such that $I(f) = \int f \, d\nu$ for all $f \in \ell^{\infty}(X)$ such that $f \geq 0$: this may be proven essentially in the same way as Exercise 1 in the compulsory assignment. By writing a given $f \in \ell^{\infty}(X)$ as $f = f_1^+ - f_1^- + i (f_2^+ - f_2^-)$ where $f_1 = \text{Re}(f)$, $f_2 = \text{Im}(f)$, and using that both I and the integral are linear, one gets that $I(f) = \int f \, d\nu$. Hence, $I = I_{\nu}$.]

1c)

Consider g as in the hint. Then we have $||g||_u = \max\{|\lambda_1|, \ldots, |\lambda_n|\}$. Moreover, $X = \bigcup_{j=1}^n A_j$ (disjoint union), by definition of the standard representation of g, so $\nu(X) = \sum_{j=1}^n \nu(A_j)$. Thus, using the triangle inequality, we get

$$|I_0(g)| \le \sum_{j=1}^n |\lambda_j| \nu(A_j) \le ||g||_u \sum_{j=1}^n \nu(A_j) = ||g||_u \nu(X).$$

This shows that I_0 is bounded, with $||I_0|| \le \nu(X)$. As $||1_X||_u = 1$ and $|I_0(1_X)| = \nu(X)$, we also have $||I_0|| \ge \nu(X)$, so $||I_0|| = \nu(X)$.

Now, we know that \mathcal{E} is dense in $\ell^{\infty}(X)$ (since $\ell^{\infty}(X) = \mathcal{L}^{\infty}(X, \mathcal{P}(X), \mu_c)$, where μ_c denotes the counting measure on $\mathcal{P}(X)$, and $\|g\|_u = \|g\|_{\infty}$ for $g \in \ell^{\infty}(X)$). Since \mathbb{K} is a Banach space, we may extend I_0 (in a unique way) to a linear, bounded map $I : \ell^{\infty}(X) \to \mathbb{K}$, satisfying $\|I\| = \|I_0\|$. Hence, we have $\|I\| = \|I_0\| = \nu(X)$. Moreover,

$$I(\chi_A) = I_0(\chi_A) = I_0(1 \cdot \chi_A + 0 \cdot \chi_{A^c}) = \nu(A) + 0 \cdot \nu(A^c) = \nu(A)$$

for every $A \subset X$, as desired.

Problem 2

2a) For each $n \in \mathbb{N}$, set $g_n = \sum_{j=1}^n |h_n|$. Then $\{g_n\}_{n \in \mathbb{N}}$ is a nondecreasing sequence in $\overline{\mathcal{M}}^+$ converging pointwise to g. Hence the MCT, combined with linearity of the integral, gives that

$$\int |g| d\mu = \int g d\mu = \lim_{n \to \infty} \int g_n d\mu = \lim_{n \to \infty} \sum_{j=1}^n \left(\int |h_j| d\mu \right) = \sum_{j=1}^\infty \left(\int |h_j| d\mu \right) < \infty.$$

2b) For each $n \in \mathbb{N}$, set $f_n = \sum_{j=1}^n h_j$, which belongs to \mathcal{L}^1 since each h_j belongs to \mathcal{L}^1 and \mathcal{L}^1 is closed under addition. By the triangle inequality, we have $|f_n| \leq \sum_{j=1}^n |h_j| \leq g$ for every n. Moreover, i) says that $\lim_{n\to\infty} f_n = f$ (pointwise) μ -a.e., and we have seen in a) that g is integrable. Hence, it follows from the LDCT that f is integrable and

$$\int f \ d\mu = \lim_{n \to \infty} \int f_n \ d\mu = \lim_{n \to \infty} \sum_{j=1}^n \left(\int h_j \ d\mu \right) = \sum_{j=1}^\infty \left(\int h_j \ d\mu \right).$$

2c) For each $k \in \mathbb{N}$, define $h_k : [-1,1] \to \mathbb{R}$ by $h_k(x) = \frac{1}{k} x^k$. As each h_k is continuous, each h_k is (Riemann-integrable and) Lebesgue-integrable on [-1,1]. As $f(x) = \sum_{k=1}^{\infty} h_k(x)$ for all $x \in [-1,1)$, by definition of f, and $\mu(\{1\}) = 0$, we see that property i) is satisfied.

Moreover, we have

$$\int_{[-1,1]} |h_k| \ d\mu = \int_{-1}^1 \frac{1}{k} |x|^k \ dx = \frac{2}{k} \int_0^1 x^k \ dx = \frac{2}{k(k+1)}.$$

Hence,

$$\sum_{k=1}^{\infty} \left(\int_{[-1,1]} |h_k| \ d\mu \right) = \sum_{k=1}^{\infty} \frac{2}{k \left(k+1 \right)} \ \leq \ 2 \, \sum_{k=1}^{\infty} \frac{1}{k^{\, 2}} \ < \infty \, .$$

Hence, property ii) is also satisfied and we can conclude from b) that $f \in \mathcal{L}^1$.

Using the last assertion in b), we get

$$\int_{[-1,1]} f \ d\mu = \sum_{k=1}^{\infty} \left(\int_{[-1,1]} \frac{1}{k} x^k \ d\mu \right) = \sum_{m=1}^{\infty} \frac{1}{m (2m+1)}$$

since

$$\int_{[-1,1]} \frac{1}{k} \, x^k \, d\mu = \frac{1}{k} \, \int_{-1}^1 \, x^k \, dx = \frac{1}{k} \left[\frac{x^{k+1}}{k+1} \right]_{x=-1}^{x=1} = \left\{ \begin{array}{cc} 0 & \text{if k is odd} \\ \\ \frac{2}{k(k+1)} & \text{if k is even} \end{array} \right..$$

Remark for interested readers: we know from elementary calculus that $f(x) = -\ln(1-x)$ when $x \in [-1, 1)$. One can show that

$$\int_{[-1,1]} f \ d\mu = -\int_{-1}^{1^{-}} \ln(1-x) \ dx$$

and this improper Riemann integral is easily evaluated to be equal to $2(1 - \ln 2)$. It follows that $\sum_{m=1}^{\infty} \frac{1}{m(2m+1)} = 2(1 - \ln 2)$.

Problem 3

3a) Assume first that M is invariant under T. Let $v \in M^{\perp}$. For all $u \in M$, we have $T(u) \in M$, so

$$\langle u, T^*(v) \rangle = \langle T(u), v \rangle = 0.$$

This shows that $T^*(v) \in M^{\perp}$. Hence, M^{\perp} is invariant under T^* .

Conversely, assume that M^{\perp} is invariant under T^* . Using what we just have shown, we get that $(M^{\perp})^{\perp} = M$ is invariant under $(T^*)^* = T$.

Finally, let $v \in E_{\lambda}^{T}$. Since TS = ST, we have

$$T(S(v)) = S(T(v)) = S(\lambda v) = \lambda S(v)$$

This shows that $S(v) \in E_{\lambda}^{T}$. Hence, E_{λ}^{T} is invariant under S.

3b) Set $H' = E_{\lambda}^T$. Then H' is finite-dimensional and non-zero (since λ is an eigenvalue for T). As H' is invariant under S (see a)), we may restrict S to H'; letting $S': H' \to H'$ being

defined by S'(v) = S(v), we get a map $S' \in B(H')$, which is self-adjoint since S is self-adjoint: indeed, we have

$$\langle S'(u), v \rangle = \langle S(u), v \rangle = \langle u, S(v) \rangle = \langle u, S'(v) \rangle$$

for all $u, v \in H'$.

Moreover, S' is compact (since dim $H' < \infty$). So the spectral theorem tells us that H' has an orthonormal basis consisting of eigenvectors for S'. All vectors in this basis are then eigenvectors for S, and also for T (since $H' = E_{\lambda}^{T}$).

3c) Since $(ST)^* = T^*S^* = TS = ST$, ST is self-adjoint. As T is compact, ST is also compact. Hence, the first assertion follows from the spectral theorem for compact, self-adjoint operators on a separable Hilbert space.

Assume now that T is also one-to-one, i.e. $Ker(T) = \{0\}$. As T is compact and self-adjoint, we then know that $H = \overline{Im(T)}$ has an o.n.b., say \mathcal{B}' , consisting of eigenvectors for T. Moreover, T has only non-zero eigenvalues, and the associated eigenspaces are finite-dimensional and orthogonal to each other.

Let $\{\alpha_k\}_{k\in K}$ be a countable list of all the *different* eigenvalues of T, and set $E_k = E_{\alpha_k}^T$ for each $k \in K$. Applying b) to each E_k , we get that for each $k \in K$, there exists an o.n.b. \mathcal{B}_k for E_k that consists of vectors that are also eigenvectors for S. Then $\mathcal{B} = \bigcup_{k \in K} \mathcal{B}_k$ is clearly orthonormal and consists of vectors that are eigenvectors for both S and T (and therefore also eigenvectors for ST).

Since each $b' \in \mathcal{B}'$ lies in one of the E_k 's, we have $\mathcal{B}' \subset \operatorname{Span} \cup_{k \in K} \mathcal{B}_k = \operatorname{Span} \mathcal{B}$.

Hence, Span $\mathcal{B}' \subset \operatorname{Span} \mathcal{B}$, so $H = \overline{\operatorname{Span} \mathcal{B}'} \subset \overline{\operatorname{Span} \mathcal{B}} \subset H$. Thus, $H = \overline{\operatorname{Span} \mathcal{B}}$.

This shows that \mathcal{B} is an o.n.b. for H, so the final assertion is proved.