Laboratorium 6 Kwadratury

Mateusz Król

25/04/2024 r.

Zadanie 1.

 $\mathbf{Wiadomo},\,\mathbf{\dot{z}e}$

$$\int_0^1 \frac{4}{1+x^2} \, dx = \pi.$$

Powyższą równość można wykorzystać do obliczenia przybliżonej wartości π poprzez całkowanie numeryczne.

Oblicz wartość powyższej całki, korzystając ze złożonych kwadratur otwartej prostokątów (ang. mid-point rule), trapezów i Simpsona.

Wykres błędów względnych w zależności od liczby ewaluacji funkcji podcałkowej dla kwadratury prostokątów, kwadratury trapezów, kwadratury Simpson'a:

Wykres błędów względnych dla kwadratury trapezów i kwadratury $\mathit{Simpson'}$ a pokrywa się.

Z wykresu można odczytać, że kwadratura Simpson'a w tym przypadku gwarantuje najmniejszą wartość błędu względnego. Ponadto, zniżanie kroku poniżej $h\approx 10^{-7}$, nie zmniejsza już błędu kwadratury prostokątów. Ten wynik zgadza się z wynikiem z Laboratorium~1, w którym wyznaczone h_{min} wyniosło 10^{-6} , 10^{-8} .

Wartości empirycznych rządów zbieżniości dla każdej z użytych metod:

Method	Empirical order of convergence
rectangle	≈ 2.00
${ m trap}{ m ezoid}$	≈ 2.00
$_{ m simpson}$	≈ 6.21

Wartości empirycznych rządów zbieżniości zgadzają się z wartościami przewidywanymi przez teorię dla metody prostokątów oraz dla metody trapezów wynoszącą ≈ 2.00

Wartość dla metody Simpsona nie zgadza się z wartością teoretyczną równą 4.

Zadanie 2.

Oblicz wartość całki

$$\int_0^1 \frac{4}{1+x^2} \, dx$$

metodą Gaussa-Legendre'a. Narysuj wykres wartości bezwzględnej błędu względnego w zależności od liczby ewaluacji funkcji podcałkowej, n+1.

Wykres przedstawiający porównanie wszystkich metod:

Wnioski

Metodą, która w testowanym przypadku potrzebowała najmniejszej liczby ewaluacji funkcji podcałkowej w celu uzyskania zadowalającej wartości błędu względnego ($\approx 10^{-15}$), była metoda Gaussa-Legendre'a.