Arquitetura e Fluxo de Trabalho do Sistema Integrado de Manutenção Preditiva e Gestão do Conhecimento

1. Coleta de Dados (Inputs)

Fontes de Dados:

- Sensores de Máquinas: Dados de horímetros, temperatura, vibração, pressão, etc.
- **Histórico de Manutenção:** Registros de manutenção anteriores, tipos de falhas, peças substituídas, etc.
- Dados do Fabricante: Especificações técnicas das máquinas e peças, recomendações de manutenção, etc.
- Condições Ambientais: Dados meteorológicos, tipo de terreno, condições de uso, etc.
- Dados Operacionais: Horas de operação, carga de trabalho, padrões de uso, etc.
- **Feedback dos Usuários:** Informações sobre o desempenho das máquinas e a eficácia das manutenções realizadas.

2. Camada de Ingestão e Armazenamento de Dados

Tecnologias:

- IoT Gateways: Para coletar e transmitir dados dos sensores em tempo real.
- Data Lakes: Para armazenar grandes volumes de dados brutos.
- Bancos de Dados Relacionais/NoSQL: Para armazenar dados estruturados e semi-estruturados.
- **Armazenamento de Conhecimento:** Base de dados para armazenar e gerenciar informações de conhecimento e melhores práticas.

3. Camada de Tratamento e Processamento de Dados

Processos:

- ETL (Extract, Transform, Load):
 - o **Extração:** Coleta de dados das fontes.
 - o **Transformação:** Limpeza, normalização e integração dos dados.
 - Carregamento: Dados tratados são armazenados em repositórios apropriados.

Data Wrangling:

o Manipulação dos dados para prepará-los para análise.

Data Enrichment:

 Enriquecimento dos dados com informações adicionais relevantes (e.g., dados de benchmarks ou análises históricas).

4. Camada de Análise e Aprendizagem de Máquina

Tecnologias e Processos:

Data Engineering:

 Pipeline de Dados: Processamento e transformação de dados em tempo real.

Machine Learning:

- Modelos de Regressão: Para previsão de falhas e vida útil dos componentes.
- Modelos de Classificação: Para identificar tipos de falhas e categorizar problemas.
- Algoritmos de Clustering: Para identificar padrões e comportamentos similares.

Inteligência Artificial Generativa:

- Geração de Recomendações: Baseadas em dados históricos e análise preditiva para sugestões de manutenção e melhorias.
- Análise de Texto: Processamento de feedback dos usuários para aprimorar a gestão do conhecimento.

5. Camada de Cruzamento de Informações

Processos:

Feature Engineering:

 Criação de variáveis derivadas úteis (e.g., taxa de falha por hora de operação).

Análise de Correlação:

 Identificação de correlações entre variáveis (e.g., temperatura e falha da peça).

• Cruzamento de Dados:

- o Integração de diferentes fontes de dados para obter insights abrangentes.
- Análise de Causa Raiz: Identificação de causas subjacentes para problemas frequentes.

6. Camada de Output

Outputs:

• Predições de Falhas:

- o Previsão do tempo restante até a falha de componentes específicos.
- Recomendações de Manutenção:

 Ações de manutenção preventiva sugeridas com base nas predições e melhores práticas.

• Relatórios e Dashboards:

- o Visualizações de dados operacionais, relatórios de manutenção e KPIs.
- Relatórios de Conhecimento: Insights e melhores práticas extraídos dos dados e feedback dos usuários.

7. Interface da Solução (UX/UI)

Principais Funcionalidades:

• Painel de Controle Central:

 Visão geral do estado de todas as máquinas, com status de saúde em tempo real e indicadores de desempenho.

Notificações e Alertas:

 Alertas proativos sobre a necessidade de manutenção e possíveis falhas iminentes.

Histórico de Manutenção:

 Acesso fácil ao histórico de manutenção de cada máquina e peça, com filtros para análise.

Análise de Tendências:

o Visualização das tendências de falhas e manutenção ao longo do tempo.

• Detalhamento de Dados:

 Capacidade de detalhar dados específicos, como temperatura, vibração, etc., e acessar insights gerados.

Recomendações de Ação:

 Recomendações específicas de ações de manutenção para prevenir falhas, com base em análises e modelos preditivos.

Planejamento de Manutenção:

 Ferramentas para planejar e agendar manutenções preventivas e corretivas.

• Integração com Sistemas de Gestão de Manutenção:

 Integração com sistemas existentes para facilitar a execução de ordens de serviço e o gerenciamento de recursos.

8. Sequência Lógica de Funcionamento

1. Coleta de Dados:

 Sensores nas máquinas coletam dados continuamente e enviam para um gateway IoT.

2. Ingestão de Dados:

 Dados são transmitidos para um Data Lake, onde são armazenados em estado bruto.

3. Tratamento de Dados:

 Dados são extraídos do Data Lake, transformados e carregados em bancos de dados apropriados.

4. Processamento de Dados:

o Processos de ETL e Data Wrangling preparam os dados para análise.

5. Análise e Aprendizagem de Máquina:

 Modelos de Machine Learning e Inteligência Artificial Generativa são aplicados para prever falhas e gerar recomendações.

6. Cruzamento de Informações:

 Dados tratados são cruzados para identificar correlações e gerar insights mais abrangentes.

7. Output:

 Predições de falhas e recomendações de manutenção são geradas e enviadas para a interface do usuário.

8. Interface do Usuário:

 A interface apresenta um painel de controle com visualizações do estado das máquinas, alertas, histórico de manutenção e recomendações de ação.