電子學-共基極與共動極組態

National Taiwan Normal University

講師: 俞佩君

- 1) 共基極組態
- 2 共射極組態

○ 三種基本電路的放大型態定義

電晶體三個端點接線中任何一端為共用 (Common),其他兩端為輸入與輸出, 可產生三種基本的放大電路型態:

- (1)共基極(基極接地式,簡稱為CB)
- (2)共射極(射極接地式,簡稱為CE)
- (3)共集極(集極接地式,簡稱為CC)

右圖為為CB式基本電路

1.CB電路工作原理

2.由分析而知相位

--- 輸入與輸出信號為同相

共基極組態

○ 共基極的電流增益

基極式之輸出電流I_C與輸入電流I_E間之 比值,是為基極接地式電路的電流增益, 通常以α表示之。

特性曲線圖

PNP型

共基極組態

射極輸入特性曲線

特性曲線圖

PNP型

共基極組態

集極輸出特性曲線

❷ 特性曲線的三工作區

1.工作區(也稱作用區):

- ➤ EB面施以順向偏壓, CB面施以逆向偏壓
- 作用區內為導通,可用來做放大工作

2.截止區:

- ➤ EB與CB接面同樣施以逆向偏壓
- > 電晶體截止,相當於開路,可當開關

3.飽和區:

- ➤ EB與CB接面同樣施以順向偏壓
- ▶ 飽和區內相當於短路,可當開關

○ 電路特性

- 1.基極共用
- 2.輸入阻抗 R_i 小 $(20~200\Omega)$,輸出阻抗 R_o 大 $(100K~1M\Omega)$
- 3.電流增益α<1
- 4.電壓增益 $A_v = V_o/V_i = \alpha(R_o/R_i)$,仍大
- 5.功率增益A_{p=}A_v*A_i
- 6.輸入與輸出訊號同相位

○ 電路特性

7.有漏電流I_{CBO}

 $I_C = \alpha I_E + I_{CBO}$

定義為:

在基極放大電路中,射極開路(I_E=0)時, 流經CE接面間的少數載子。

CB為輸出迴路在CB端施加逆向偏壓 O為流經CB的微量電流

Q:

在如圖所示α值=0.99 的電晶體,射極電流 變化為2mA,V_{CB}為 固定,則集極電流為 多少?

ANS:

$$\alpha = I_C/I_E$$

$$I_C = \alpha I_E = 0.99 * 2mA$$

$$= 1.98mA$$

Q: 某一電晶體之射極電流由2mA改變為2.3mA時,集極電流由1.95mA改變為2.19mA,則此電晶體之α值為何?

(A)1.25 (B)1.00 (C)0.9 (D)0.8

ANS: $\alpha = \Delta I_C / \Delta I_E$ = (2.19-1.95)mA/(2.3-2)mA = 0.8

答:(D)

如圖所示之特性曲線圖代表的是?

- (A)共基極放大器之輸入特性曲線
- (B)共射極放大器之輸入特性曲線
- (C)共射極放大器之輸出 特性曲線
- (D)共集極放大器之輸出 特性曲線

(91年二技統測)

ANS:

共基極中

輸入特性:V_{EB}接面 I_E電流輸入

輸出特性:Ic電流輸出 在VCB接面

共射極中

輸入特性:VBE接面 IB電流輸入

輸出特性:Ic電流輸出 在VcF接面

(91年二技統測)

右圖為為CE式基本電路

- 1.CB電路工作原理
- 2.由分析而知相位
 - --- 輸入與輸出信號為 反相

○ 共射極的電流增益

在射極電路中,集極到射極電壓 V_{CE} 固定下, $I_B 對 @ I_C = 流變化的比值,通常稱為共射極 = 路的電流放大因數,以<math>\beta$ 表示(或 h_{fe})。

$$\beta_{ac} = h_{fe} = \frac{\triangle I_C}{\sqrt{A}}$$
 典型 β 值約在 20~600間

○ 共基極與共射極

1.共射極β與共基極α的關係性

$$\alpha = \beta / (\beta + 1)$$

 $\beta = \alpha / (1 - \alpha)$

2.共射極的漏電流I_{CEO}

$$I_{CEO} = (1+\beta)I_{CBO}$$

ο α與β的關係

○ I_{CEO}與I_{CBO}的關係

$$I_{CEO}$$
=(1+ β) I_{CBO}
CB放大器: I_{C} = αI_{E} + I_{CBO} (1)
CE放大器: I_{C} = βI_{B} + I_{CEO} (2)
由 I_{E} = I_{B} + I_{C} 代入CB放大器
 I_{C} = $\alpha (I_{B}$ + I_{C})+ I_{CBO}
即 (1- α) I_{C} = αI_{B} + I_{CBO}

$$I_{C} = [\alpha/(1-\alpha)]I_{B} + [1/(1-\alpha)]I_{CBO}$$
 $= \beta I_{B} + (1+\beta)I_{CBO}$ (3)
比較
 $(2)式 I_{C} = \beta I_{B} + I_{CEO}$
 $(3)式 I_{C} = \beta I_{B} + (1+\beta)I_{CBO}$
可得
 $I_{CEO} = (1+\beta)I_{CBO}$

崇射極特性曲線圖

PNP型

共射極組態

NPN型

基極輸入特性曲線

※PNP與NPN只差在方向(負號)

兴射極特性曲線圖

PNP型

NPN型

❷ 特性曲線的三工作區

1.工作區:

- 射極接合面施以順向偏壓,集極接合面施以逆向偏壓
- ➤ 作用區內可避免失真,在工作區不受V_{CF}影響

2.截止區:

- > 射極與集極接合面同樣施以逆向偏壓
- ▶ 此區於I_B下方,在I_B=0時,僅有一漏電流I_{CEO}

3.飽和區:

- > 射極與集極接合面同樣施以順向偏壓
- ightharpoonup 欲達飽和需要有足夠的 I_B 來推動,需使 $\beta I_B \geq I_C$

○ 電路特性

- 1.中等輸入輸出阻抗 (輸入約1~5k Ω ,輸出約50k Ω)
- 2.輸入與輸出訊號為反向位
- 3.電流增益β=I_C/I_B
- 4.電壓增益 $A_v = V_o/V_i = \beta (R_o/R_i)$
- 5.功率增益A_{p=}A_v*A_i
- 6.具有電流電壓的雙重增益, 應用於最為廣泛的放大器

ANS:
$$I_{CEO} = (1+\beta)I_{CBO} = (1+50) * 2\mu A$$

 $= 102\mu A$
 $I_{CEO} = \beta I_{CBO} = 50 * 2\mu A$
 $= 100\mu A$

Q: 某放大電路中,電晶體工作於作用區, 且α=0.98,基極電流I_B=0.04mA, 則射極電流為多少?

(95年統測)

ANS:
$$I_C = \beta I_B = \alpha/(1-\alpha)I_B$$

= 0.98/(1-0.98)*0.04mA
= 49*0.04mA
 $I_E = I_B + I_C = (1+\beta)I_B$
= (1+49)*0.04mA
= 2mA

(95年統測)

五、電晶體特性比較

電晶體接地方 式之特性比較	<u>共基極</u>	<u>共集極</u>	<u>共射極</u>
基本電路	IE ICRL		Is Rt.
功率增益	有	有	有(最高)
電壓增益	有	無(小於1)	有
電流增益	無(小於1)	有	有
輸入阻抗	最低(~50)	最高(~300)	中(~1k)
輸出阻抗	最高(~1M)	最低(~300)	中(~50k)
輸出入相位	同相	同相	反相
應用特長	常用在射頻電路 頻率特性良好	常用在阻抗匹配 頻率特性良好	使用最多的形式 頻率特性較差

五、電晶體特性比較

○ 電晶體三種基本組態的特性比較

	<u>CE組態</u>	CB組態	CC組態
電流增益	高(β)	低(~1)	高(β+1)
電壓增益	高	高	低(~1)
功率增益	高	中等	低(~β)
<u>功用</u>	因功率增益最 大,故應用較 為廣泛	用於極高 頻放大和 振盪	用作阻抗匹配

五、電晶體特性比較

○ 三種比較

EX1:

下列電晶體放大器中,具有最低輸出阻抗的為何者? (94年統測)

- (A)共集極放大器 (B)共射極放大器
- (C)共基極放大器 (D)多極共射極放大器

EX2:

下列有關雙極性電晶體三種基本放大器間比較之敘述¹ 何者不正確? (90統測→電子)

- (A)共集極之輸入阻抗最高 (B)共射極之功率增益最高
- (C)共基極之輸出阻抗最低 (D)共射極為反向放大