

Lecture 18 — Sequential circuits 4

Dr. Aftab M. Hussain,
Assistant Professor, PATRIOT Lab, CVEST

Chapter 5

D Flip Flop

Transparent flip-flop

 The bit at D is transferred to Q at the edge of the clock

 The information is retained upto the next edge of the clock

JK Flip Flop

$$D = JQ' + K'Q$$

- When J = 1 and K = 0, D = Q' + Q = 1, so the next clock edge sets the output to 1
- When J = 0 and K = 1, D = 0, so the next clock edge resets the output to 0
- When both J = K = 1 and D = Q', the next clock edge complements the output
- When both J = K = 0 and D = Q, the clock edge leaves the output unchanged
- Because of their versatility, JK flip-flops are called universal flip-flops

JK Flip-Flop

J	K	Q(t + 1)	I)
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(t)	Complement

T Flip Flop

- The T (toggle) flip-flop is a complementing flip-flop and can be obtained from a JK flip-flop when inputs J and K are tied together
- When T = 0 (J = K = 0), a clock edge does not change the output
- When T = 1 (J = K = 1), a clock edge complements the output
- The complementing flip-flop is useful for designing binary counters

(a) From JK flip-flop

T Flip-Flop

T	Q(t + 1)	
0	Q(t)	No change
1	Q'(t)	Complement

T Flip Flop

- The T flip-flop can also be constructed using a D flip-flop
- The expression for the *D* input is: D = T'Q + TQ'
- When T = 0, D = Q and there is no change in the output
- When T = 1, D = Q' and the output complements
- The graphic symbol for this flip-flop has a T symbol in the input

T Flip-Flop

T	Q(t + 1)	
0	Q(t)	No change
1	Q'(t)	Complement

Asynchronous inputs

- Some flip-flops have asynchronous inputs that are used to force the flip-flop to a particular state independently of the clock
- The input that sets the flip-flop to 1 is called *preset* or *direct set*
- The input that clears the flip-flop to 0 is called clear or direct reset
- When power is turned on in a digital system, the state of the flip-flops is unknown
- The direct inputs are useful for bringing all flip-flops in the system to a known starting state prior to the clocked operation.
- When the reset input is 0, it forces output
 Q' to stay at 1, which, in turn, clears output
 Q to 0, thus resetting the flip-flop

Analysis

- Analysis describes what a given circuit will do under certain operating conditions
- The behavior of a clocked sequential circuit is determined from the inputs, the outputs, and the state of its flip-flops
- The outputs and the next state are both a function of the inputs and the present state
- The analysis of a sequential circuit consists of obtaining a table or a diagram for the time sequence of inputs, outputs, and internal states
- It is also possible to write Boolean expressions that describe the behavior of the sequential circuit
- These expressions must include the necessary time sequence, either directly or indirectly

Analysis

- Consider this sequential circuit
- It consists of two D flip-flops A and B, an input x and an output y
- Since the *D* input of a flip-flop determines the value of the next state (i.e., the state reached after the clock transition), it is possible to write a set of state equations for the circuit as:

$$A(t + 1) = A(t)x(t) + B(t)x(t)$$

$$B(t + 1) = A'(t)x(t)$$

State equations

- A state equation is an algebraic expression that specifies the condition for a flip-flop state transition
- The left side of the equation, with (t + 1), denotes the next state of the flip-flop one clock edge later
- The right side of the equation is a Boolean expression that specifies the present state and input conditions
- Since all the variables in the Boolean expressions are a function of the present state, we can omit the designation (t) after each variable for convenience and can express the state equations in the more compact form

$$A(t + 1) = Ax + Bx$$
$$B(t + 1) = A'x$$

State equations

- The Boolean expressions for the state equations can be derived directly from the gates that form the combinational circuit part of the sequential circuit, since the D values of the combinational circuit determine the next state
- Similarly, the present-state value of the output can be expressed algebraically as

$$y(t) = [A(t) + B(t)]x'(t)$$

• By removing the symbol (t) for the present state, we obtain the output Boolean equation:

$$y = (A + B)x'$$

State tables

- Similar to truth tables, the derivation of a state table requires listing all possible binary combinations of present states and inputs
- In this case, we have eight binary combinations from 000 to 111
- The next-state values are then determined from the logic diagram or from the state equations
- The next state of flip-flops must satisfy the state equations:

$$A(t + 1) = Ax + Bx$$
$$B(t + 1) = A'x$$

Output is derived from:

$$y = (A + B)x'$$

	sent ate	Input
A	В	X
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

State tables

- In general, a sequential circuit with m flipflops and n inputs needs 2^{m+n} rows in the state table
- The binary numbers from 0 through 2^{m+n} 1 are listed under the present-state and input columns
- The next-state section has *m* columns, one for each flip-flop
- The binary values for the next state are derived directly from the state equations
- The output section has as many columns as there are output variables
- Its binary value is derived from the circuit or from the Boolean function in the same manner as in a truth table

Present State A B		Input		ext ate	Output	
		X	A	В	y	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	0	1	
0	1	1	1	1	0	
1	0	0	0	0	1	
1	0	1	1	0	0	
1	1	0	0	0	1	
1	1	1	1	0	0	

State tables

- It is sometimes convenient to express the state table in a slightly different form having only three sections: present state, next state, and output
- The input conditions are enumerated under the next-state and output sections

Present State		N	Next State				Output	
		x = 0		x = 1		x = 0	<i>x</i> = 1	
Α	В	A	В	A	В	y	y	
0	0	0	0	0	1	0	0	
0	1	0	0	1	1	1	0	
1	0	0	0	1	0	1	0	
1	1	0	0	1	0	1	0	

Present State		Input		ext ate	Output	
A	В	X	A	В	y	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	0	1	
0	1	1	1	1	0	
1	0	0	0	0	1	
1	0	1	1	0	0	
1	1	0	0	0	1	
1	1	1	1	0	0	

State diagram

- The information available in a state table can be represented graphically in the form of a state diagram
- In this type of diagram, a state is represented by a circle, and the (clocktriggered) transitions between states are indicated by directed lines connecting the circles
- The binary number inside each circle identifies the state of the flip-flops
- The directed lines are labeled with two binary numbers separated by a slash
- The input value during the present state is labeled first, and the number after the slash gives the output during the present state with the given input

Present State		N	Next State				Output	
		x = 0		X =	= 1	x = 0	<i>x</i> = 1	
Α	В	A	В	A B		y	y	
0	0	0	0	0	1	0	0	
0	1	0	0	1	1	1	0	
1	0	0	0	1	0	1	0	
1	1	0	0	1	0	1	0	

State diagram

- For example, the directed line from state 00 to 01 is labeled 1/0, meaning that when the sequential circuit is in the present state 00 and the input is 1, the output is 0
- After the next clock cycle, the circuit goes to the next state, 01
- If the input changes to 0, then the output becomes 1, but if the input remains at 1, the output stays at 0
- This information is obtained from the state diagram along the two directed lines emanating from the circle with state 01
- A directed line connecting a circle with itself indicates that no change of state occurs

Lecture 16

Present State		Next State				Output	
		x = 0		X =	= 1	x = 0	<i>x</i> = 1
Α	В	A	В	A	В	y	y
0	0	0	0	0	1	0	0
0	1	0	0	1	1	1	0
1	0	0	0	1	0	1	0
1	1	0	0	1	0	1	0

05-01-2022