ILC Exam Report Implementation of f-ILC

Lorenzo Paiola — lorenzo.paiola@iit.it

Outline

- 1. Overview
- 2. What is Iterative Learning Control?
- 3. What is missing?
- 4. Functional ILC
- 5. What is functional ILC?
- 6. What is ILC?
- 7. Bibliography

Overview

- Implementation of "Iterative Learning in Functional Space for Non-Square Linear Systems" by *C. Della Santina* and *F. Angelini*¹.
- Julia² Code found at https://github.com/PaioPaio/ILC_exam

What is Iterative Learning Control?

Iterative Learning Control³ (ILC) generally concerns the control of a repeated task. It does so by:

- Closing the loop in the **Iteration Domain** rather than directly time
- Learning just the Feed-Forward Input

Remark

ILC assumes that only the initial state is the same at each iteration, no assumptions are made about the terminal state.

What is missing?

• No treatment of the case in which **#inputs**<**#outputs**

•

System Set up

LTI Continuous Time System
$$\dot{x}_j=Ax_j+Bu_j,\quad y_j=Cx_j\qquad \text{with }x_j\in\mathbb{R}^n,u_j\in\mathbb{R}^l,y_j\in\mathbb{R}^m$$

This system is:

- **Iterated** and *j* indicates the repetition index
- Usually **non-square**, i.e. $l \neq m$, more interesting is the case where the system is underactuated l < m
- Sampled only at a finite number of time instants $\{T^1, ..., T^o\}$

Functional ILC

fILC Structure

- $\begin{bmatrix} \alpha_j^1 \\ \vdots \\ \alpha_j^{mo} \end{bmatrix}$ vector of weights updated at each iteration j
- ullet l basis functions for each weight
- Reference given at discrete set of sampled times $\{T^1,...,T^o\}$, $(T^0=0)$
- $L \in \mathbb{R}^{mo \times mo}$ learning matrix s.t. $\rho(I-LH) < 1$

What is functional ILC?

fILC Structure

- $\begin{bmatrix} \alpha_j^1 \\ \vdots \\ \alpha_j^{mo} \end{bmatrix}$ vector of weights updated at each iteration j
- ullet l basis functions for each weight
- Reference given only at discrete set of sampled times
- $L \in \mathbb{R}^{mo \times mo}$ learning matrix s.t. $\rho(I-LH) < 1$

What is ILC?

Bibliography

- 1. Della Santina, C. & Angelini, F. Iterative Learning in Functional Space for Non-Square Linear Systems. in *2021 60th IEEE Conference on Decision and Control (CDC)* 5858–5863 (IEEE, Austin, TX, USA, 2021). doi:10.1109/CDC45484.2021.9683673
- 2. Bezanson, J., Edelman, A., Karpinski, S. & Shah, V. B. Julia: A Fresh Approach to Numerical Computing. *SIAM Review* **59**, 65–98 (2017)
- 3. Bristow, D., Tharayil, M. & Alleyne, A. A Survey of Iterative Learning Control. *IEEE Control Systems* **26,** 96–114 (2006)