Heat Transfer Application of Dimensional Analysis

Prof. Dr.-Ing. Reinhold Kneer Dr.-Ing. Dr. rer. pol. Wilko Rohlfs Prof. Dr. ir. Kees Venner

Learning Goals

Dimensional Analysis in Heat and Mass Transfer

- Basic understanding of Dimensional Analysis.
- Understand the physical meanings of relevant dimensionless numbers that can describe a convection problem.
- Nu = Nu(Re, Gr, Pr)

Ability to distinguish different convective heat transfer problems in terms of flow and boundary conditions.

Dimensional Analysis

UNIVERSITY

OF TWENTE.

Dimensional Analysis

Dimensional Analysis

Which physical quantities are decisive?

Substance properties:

- Viscosity
- Density

Flow Conditions:

Velocity

Geometry:

- Nozzle diameter
- Distance of impact plate

Are experiments with oil and water comparable?

When all ratios between "forces" (terms in the equations) are identical: yes

Which forces play a role: Conservation Equations considerations

Continuity equation

Mass Flows

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

Momentum equation

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = -\frac{1}{\rho}\frac{\partial p}{\partial x} + v\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right)$$

$$u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} = -\frac{1}{\rho}\frac{\partial p}{\partial y} + v\left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}\right)$$

Which forces play a role: Conservation Equations considerations

Continuity equation

Mass Flows

$$\frac{\partial u^*}{\partial x^*} + \frac{\partial v^*}{\partial y^*} = 0$$

De-scaling

$$x^* = \frac{x}{L}, \ y^* = \frac{y}{L}, u^* = \frac{u}{u_{\infty}}, v^* = \frac{v}{u_{\infty}}, p^* = \frac{p}{\rho u_{\infty}^2}$$

Momentum Flows

Pressure Shear stresses

Momentum equation

$$u^* \frac{\partial u^*}{\partial x^*} + v^* \frac{\partial u^*}{\partial y^*} = -\frac{\partial p^*}{\partial x^*} + \frac{1}{Re} \left(\frac{\partial^2 u^*}{\partial x^{*2}} + \frac{\partial^2 u^*}{\partial y^{*2}} \right)$$

$$u^* \frac{\partial v^*}{\partial x^*} + v^* \frac{\partial v^*}{\partial y^*} = -\frac{\partial p^*}{\partial y^*} + \frac{1}{Re} \left(\frac{\partial^2 v^*}{\partial x^{*2}} + \frac{\partial^2 v^*}{\partial y^{*2}} \right)$$

The Reynolds number is the relevant Dimensionless number

Crucial to this problem is the ratio between viscous forces and inertial forces

Attention: Often further effects come into play due to the boundary conditions

Examples of convective heat transport configurations

External Flow Internal Flow **Plates** Smooth pipe Cylinder bundle etc. ... (axial / radial) Pipe Forced Convection Übergangsgebiet turbulent T_{∞} $\rightarrow u_{\infty}$ T_W **Natural** Convection

UNIVERSITY OF TWENTE.

Examples of convective heat transport configurations

Review: Forced Convection

Continuity equation

Mass Flows

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

Momentum equation

Momentum Flows Pressure Shear stresses

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = -\frac{1}{\rho}\frac{\partial p}{\partial x} + v\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right)$$

$$u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} = -\frac{1}{\rho}\frac{\partial p}{\partial y} + v\left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}\right)$$

Energy equation

Enthalpy Flows

$$u\frac{\partial T}{\partial x} + v\frac{\partial T}{\partial y} =$$

Heat Conduction

$$\frac{v}{Pr} \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right)$$

Review: Forced Convection

Continuity equation

Mass Flows

$$\frac{\partial u^*}{\partial x^*} + \frac{\partial v^*}{\partial y^*} = 0$$

De-scaling

$$x^* = \frac{x}{L}, \ y^* = \frac{y}{L}, u^* = \frac{u}{u_{\infty}}, v^* = \frac{v}{u_{\infty}}, p^* = \frac{p}{\rho u_{\infty}^2}, \Theta^* = \frac{T - T_{\infty}}{T_W - T_{\infty}}$$

Momentum Flows

Pressure

Shear stresses

Momentum equation

$$u^* \frac{\partial u^*}{\partial x^*} + v^* \frac{\partial u^*}{\partial y^*} = -\frac{\partial p^*}{\partial x^*} + \frac{1}{Re} \left(\frac{\partial^2 u^*}{\partial x^{*2}} + \frac{\partial^2 u^*}{\partial y^{*2}} \right)$$

$$u^* \frac{\partial v^*}{\partial x^*} + v^* \frac{\partial v^*}{\partial y^*} = -\frac{\partial p^*}{\partial y^*} + \frac{1}{Re} \left(\frac{\partial^2 v^*}{\partial x^{*2}} + \frac{\partial^2 v^*}{\partial y^{*2}} \right)$$

Enthalpy Flows

Heat Conduction

Energy equation

$$u^* \frac{\partial \Theta^*}{\partial x^*} + v^* \frac{\partial \Theta^*}{\partial v^*} =$$

$$\underbrace{\frac{1}{RePr} \left(\frac{\partial^2 \Theta^*}{\partial x^{*2}} + \frac{\partial^2 \Theta^*}{\partial y^{*2}} \right)}_{Pe} \quad Nu = Nu(Re, Pr)$$

UNIVERSITY OF TWENTE

Review: Natural Convection

Continuity equation

Mass Flows

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

Momentum equation

Momentum Flows Pressure Shear stresses

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = -\frac{1}{\rho}\frac{\partial p}{\partial x} + v\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) + \beta g(T - T_{\infty})$$

$$u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} = -\frac{1}{\rho}\frac{\partial p}{\partial y} + v\left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}\right)$$

Energy equation

$$u\frac{\partial T}{\partial x} + v\frac{\partial T}{\partial y} =$$

Enthalpy Flows

Heat Conduction

$$\frac{v}{Pr} \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right)$$

Gravity

Review: Natural Convection

Continuity equation

Mass Flows

$$\frac{\partial u^*}{\partial x^*} + \frac{\partial v^*}{\partial y^*} = 0$$

De-scaling

$$x^* = \frac{x}{L}, \ y^* = \frac{y}{L}, u^* = \frac{u}{u_{\infty}}, v^* = \frac{v}{u_{\infty}}, p^* = \frac{p}{\rho u_{\infty}^2}, \Theta^* = \frac{T - T_{\infty}}{T_W - T_{\infty}}$$

Momentum Flows

Pressure Shear stresses

Momentum equation

$$u^* \frac{\partial u^*}{\partial x^*} + v^* \frac{\partial u^*}{\partial y^*} = -\frac{\partial p^*}{\partial x^*} + \frac{1}{Re} \left(\frac{\partial^2 u^*}{\partial x^{*2}} + \frac{\partial^2 u^*}{\partial y^{*2}} \right) + \underbrace{Gr \cdot \left(\frac{1}{Re} \right)^2}_{Ar} \Theta^*$$

$$u^* \frac{\partial v^*}{\partial x^*} + v^* \frac{\partial v^*}{\partial y^*} = -\frac{\partial p^*}{\partial y^*} + \frac{1}{Re} \left(\frac{\partial^2 v^*}{\partial x^{*2}} + \frac{\partial^2 v^*}{\partial y^{*2}} \right)$$

$$+\underbrace{Gr\cdot\left(\frac{1}{Re}\right)^2}_{Ar}\Theta^*$$

Enthalpy Flows

$$u^* \frac{\partial \Theta^*}{\partial x^*} + v^* \frac{\partial \Theta^*}{\partial y^*} =$$

Heat Conduction

$$\frac{1}{\underbrace{RePr}_{Re}} \left(\frac{\partial^2 \Theta^*}{\partial x^{*2}} + \frac{\partial^2 \Theta^*}{\partial y^{*2}} \right) \quad Nu = Nu(Re, Pr, Gr)$$

Energy equation

Summary: Dimensionless numbers

General form of the heat transfer coefficient a

$$Nu \equiv \frac{\alpha L}{\lambda}$$
 = Dimensionless heat transfer coefficient
= $C \cdot Re^m \cdot Pr^n \cdot Gr^p$

with

$$Re \equiv \frac{\rho u_{\infty}L}{\eta} = \frac{\text{Inertial Forces}}{\text{Viscosity Forces}}$$

$$Pr \equiv \frac{\eta c_p}{\lambda} = \frac{\nu}{a} = \frac{\text{Diffusive Momentum transport}}{\text{Diffusive Heat transport}}$$

$$Gr \equiv \frac{\beta g \rho^2 (T_W - T_\infty) L^3}{\eta^2} = \frac{\text{Buoyancy Forces}}{\text{Viscosity Forces}}$$

$$Pe \equiv Re \cdot Pr = \frac{\text{Advective Heat Flow}}{\text{Diffusive Heat Flow}}$$

$$Ar \equiv \frac{Gr}{Re^2} = \frac{\text{Buoyancy Forces}}{\text{Friction Forces}}$$

Comprehension Questions

What does the Dimensional Analysis say and what must be taken into account so that the solutions of two different problems are identical?

Which Dimensionless numbers are essential for the empirically found heat transfer laws?

