Chit Hindocha

assignment-2

```
import seaborn as sns
     import matplotlib.pyplot as plt
[2]: data = sns.load_dataset('car_crashes')
     data.head()
[2]:
        total
                          alcohol
                                    not_distracted no_previous
                                                                   ins_premium \
                speeding
         18.8
                   7.332
                             5.640
                                             18.048
                                                           15.040
                                                                         784.55
     1
         18.1
                   7.421
                             4.525
                                             16.290
                                                           17.014
                                                                        1053.48
     2
         18.6
                   6.510
                             5.208
                                                                         899.47
                                             15.624
                                                           17.856
     3
         22.4
                   4.032
                             5.824
                                             21.056
                                                           21.280
                                                                         827.34
         12.0
                   4.200
                             3.360
                                             10.920
                                                           10.680
                                                                         878.41
        ins_losses abbrev
     0
            145.08
                        AL
     1
            133.93
                        AK
     2
            110.35
                        ΑZ
     3
            142.39
                        AR
     4
            165.63
                        CA
    data.describe
[3]: <bound method NDFrame.describe of
                                              total
                                                     speeding alcohol not_distracted
     no_previous
                   ins_premium \
          18.8
                    7.332
     0
                              5.640
                                              18.048
                                                            15.040
                                                                          784.55
     1
          18.1
                    7.421
                              4.525
                                              16.290
                                                            17.014
                                                                         1053.48
     2
          18.6
                    6.510
                              5.208
                                              15.624
                                                            17.856
                                                                          899.47
     3
          22.4
                    4.032
                              5.824
                                              21.056
                                                            21.280
                                                                          827.34
     4
          12.0
                    4.200
                              3.360
                                              10.920
                                                            10.680
                                                                          878.41
     5
          13.6
                    5.032
                              3.808
                                              10.744
                                                            12.920
                                                                          835.50
     6
          10.8
                    4.968
                              3.888
                                               9.396
                                                             8.856
                                                                         1068.73
     7
          16.2
                    6.156
                              4.860
                                              14.094
                                                            16.038
                                                                         1137.87
     8
          5.9
                    2.006
                              1.593
                                               5.900
                                                             5.900
                                                                         1273.89
     9
          17.9
                    3.759
                              5.191
                                                                         1160.13
                                              16.468
                                                            16.826
     10
          15.6
                    2.964
                              3.900
                                              14.820
                                                            14.508
                                                                          913.15
     11
          17.5
                    9.450
                              7.175
                                              14.350
                                                            15.225
                                                                          861.18
     12
          15.3
                    5.508
                              4.437
                                              13.005
                                                            14.994
                                                                          641.96
```

13	12.8	4.608	4.352	12.032	12.288	803.11
14	14.5	3.625	4.205	13.775	13.775	710.46
15	15.7	2.669	3.925	15.229	13.659	649.06
16	17.8	4.806	4.272	13.706	15.130	780.45
17	21.4	4.066	4.922	16.692	16.264	872.51
18	20.5	7.175	6.765	14.965	20.090	1281.55
19	15.1	5.738	4.530	13.137	12.684	661.88
20	12.5	4.250	4.000	8.875	12.375	1048.78
21	8.2	1.886	2.870	7.134	6.560	1011.14
22	14.1	3.384	3.948	13.395	10.857	1110.61
23	9.6	2.208	2.784	8.448	8.448	777.18
24	17.6	2.640	5.456	1.760	17.600	896.07
25	16.1	6.923	5.474	14.812	13.524	790.32
26	21.4	8.346	9.416	17.976	18.190	816.21
27	14.9	1.937	5.215	13.857	13.410	732.28
28	14.7	5.439	4.704	13.965	14.553	1029.87
29	11.6	4.060	3.480	10.092	9.628	746.54
30	11.2	1.792	3.136	9.632	8.736	1301.52
31	18.4	3.496	4.968	12.328	18.032	869.85
32	12.3	3.936	3.567	10.824	9.840	1234.31
33	16.8	6.552	5.208	15.792	13.608	708.24
34	23.9	5.497	10.038	23.661	20.554	688.75
35	14.1	3.948	4.794	13.959	11.562	697.73
36	19.9	6.368	5.771	18.308	18.706	881.51
37	12.8	4.224	3.328	8.576	11.520	804.71
38	18.2	9.100	5.642	17.472	16.016	905.99
39	11.1	3.774	4.218	10.212	8.769	1148.99
40	23.9	9.082	9.799	22.944	19.359	858.97
41	19.4	6.014	6.402	19.012	16.684	669.31
42	19.5	4.095	5.655	15.990	15.795	767.91
43	19.4	7.760	7.372	17.654	16.878	1004.75
44	11.3	4.859	1.808	9.944	10.848	809.38
45	13.6	4.080	4.080	13.056	12.920	716.20
46	12.7	2.413	3.429	11.049	11.176	768.95
47	10.6	4.452	3.498	8.692	9.116	890.03
48	23.8	8.092	6.664	23.086	20.706	992.61
49	13.8	4.968	4.554	5.382	11.592	670.31
50	17.4	7.308	5.568	14.094	15.660	791.14
	ins_los	ses abbrev	J			

	ins_losses	abbrev
0	145.08	AL
1	133.93	AK
2	110.35	AZ
3	142.39	AR
4	165.63	CA
5	139.91	CO
6	167.02	CT

```
7
                       DE
          151.48
8
          136.05
                       DC
9
          144.18
                       FL
10
          142.80
                       \mathsf{G}\mathsf{A}
11
          120.92
                       {\tt HI}
12
           82.75
                       ID
13
          139.15
                       IL
14
          108.92
                       IN
15
          114.47
                       ΙA
16
          133.80
                       KS
17
                       ΚY
          137.13
18
          194.78
                       LA
19
                       ME
           96.57
20
          192.70
                       MD
21
          135.63
                       MA
22
          152.26
                       ΜI
23
                       MN
          133.35
24
          155.77
                       {\tt MS}
25
          144.45
                       MO
26
           85.15
                       MT
27
          114.82
                       NE
28
          138.71
                       NV
29
          120.21
                       NH
30
          159.85
                       NJ
31
          120.75
                       NM
32
          150.01
                       NY
33
                       NC
          127.82
34
          109.72
                       ND
35
                       \mathsf{OH}
          133.52
36
          178.86
                       OK
37
          104.61
                       OR
38
                       PA
          153.86
39
                       RI
          148.58
40
          116.29
                       \mathtt{SC}
41
                       SD
           96.87
42
          155.57
                       TN
43
          156.83
                       \mathsf{TX}
44
          109.48
                       UT
45
                       VT
          109.61
46
          153.72
                       VA
47
          111.62
                       WA
48
                       {\tt WV}
          152.56
49
          106.62
                       WI
50
          122.04
                       WY
                            >
```

[4]: data.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 51 entries, 0 to 50
Data columns (total 8 columns):
    Column
                    Non-Null Count
                                    Dtype
                    -----
    ----
                                    ----
 0
                    51 non-null
                                    float64
    total
                                    float64
 1
    speeding
                    51 non-null
                                    float64
 2
    alcohol
                    51 non-null
 3
    not_distracted 51 non-null
                                    float64
 4
    no_previous
                    51 non-null
                                    float64
                    51 non-null
 5
    ins_premium
                                    float64
 6
    ins_losses
                    51 non-null
                                    float64
```

51 non-null

dtypes: float64(7), object(1)

memory usage: 3.3+ KB

abbrev

7

0.1 Histogram of 'total' crashes

```
[5]: sns.histplot(data['total'], bins=15, kde=True)
   plt.xlabel('Total Crashes')
   plt.ylabel('Frequency')
   plt.title('Distribution of Total Crashes')
   plt.show()
```

object

Inference: The histogram displays the distribution of total crashes. It appears to be right-skewed, Indicating that most cities have a relatively low number of total crashes.

0.2 Scatterplot between 'speeding' and 'alcohol' involvement

```
[6]: sns.scatterplot(x='speeding', y='alcohol', data=data)
   plt.xlabel('Speeding Involved')
   plt.ylabel('Alcohol Involved')
   plt.title('Scatterplot between Speeding and Alcohol Involvement')
   plt.show()
```


Inference: The scatterplot illustrates the relationship between speeding and alcohol involvement. It seems that there is no strong linear relationship between these two variables.

0.3 Bar chart of 'abbrev' vs. 'total' crashes

```
[7]: plt.figure(figsize=(10, 6))
    sns.barplot(x='abbrev', y='total', data=data, palette='viridis')
    plt.xlabel('State Abbreviation')
    plt.ylabel('Total Crashes')
    plt.title('Total Crashes by State')
    plt.xticks(rotation=90)
    plt.show()
```


Inference: The bar chart displays the total crashes by state. For example, "SC" (South Carolina) Appears to have a relatively high number of total crashes compared to other states.

0.4 Countplot of 'ins_premium' bins

```
[8]: plt.figure(figsize=(10, 6))
    sns.countplot(x='ins_premium', data=data, palette='Set2')
    plt.xlabel('Insurance Premium Level')
    plt.ylabel('Count')
    plt.title('Distribution of Insurance Premium Levels')
    plt.xticks(rotation=90)
    plt.show()
```


Inference: The countplot visualizes the distribution of insurance premium levels. It helps to see how many cities fall into each premium level category.

[10]: sns.distplot(data['total'])

C:\Users\ASUS\AppData\Local\Temp\ipykernel_16716\3477427589.py:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(data['total'])

[10]: <Axes: xlabel='total', ylabel='Density'>


```
[11]: plt.subplots(figsize=(16,10))
sns.barplot(x='total',y= 'abbrev',data=data,orient='h')
```

[11]: <Axes: xlabel='total', ylabel='abbrev'>

[12]: sns.jointplot(x='total',y='alcohol',data=data)

[12]: <seaborn.axisgrid.JointGrid at 0x1cf68d294e0>

[13]: sns.pairplot(data)

[13]: <seaborn.axisgrid.PairGrid at 0x1cf6a52ce50>

0.5 Scatter Plot

```
[14]: sns.scatterplot(x="speeding", y="alcohol", data=data)
   plt.xlabel("Speeding")
   plt.ylabel("Alcohol Consumption")
   plt.title("Scatter Plot of Speeding vs. Alcohol Consumption")
   plt.show()
```


0.6 Histogram

[15]: sns.distplot(data['total'])

C:\Users\ASUS\AppData\Local\Temp\ipykernel_16716\3477427589.py:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(data['total'])

[15]: <Axes: xlabel='total', ylabel='Density'>

0.7 Bar Plots

```
[16]: plt.subplots(figsize=(10,10))
sns.barplot(x='total',y= 'abbrev',data=data,orient='h')
```

[16]: <Axes: xlabel='total', ylabel='abbrev'>


```
[17]: sns.boxplot(x="alcohol", data=data)
  plt.xlabel("Alcohol Consumption")
  plt.title("Box Plot of Alcohol Consumption")
  plt.show()
```


0.8 Heatmap

```
[18]: correlation_matrix = data.corr()
    sns.heatmap(correlation_matrix, annot=True, cmap="coolwarm")
    plt.title("Correlation Heatmap")
    plt.show()
```

```
File c:\Users\ASUS\anaconda3\envs\tf2\lib\site-packages\pandas\core\frame.py:
       →10054, in DataFrame.corr(self, method, min_periods, numeric_only)
       10052 cols = data.columns
       10053 idx = cols.copy()
     > 10054 mat = data.to numpy(dtype=float, na value=np.nan, copy=False)
       10056 if method == "pearson":
       10057
                  correl = libalgos.nancorr(mat, minp=min periods)
     File c:\Users\ASUS\anaconda3\envs\tf2\lib\site-packages\pandas\core\frame.py:
       →1838, in DataFrame.to_numpy(self, dtype, copy, na_value)
         1836 if dtype is not None:
                  dtype = np.dtype(dtype)
         1837
     -> 1838 result = self._mgr.as_array(dtype=dtype, copy=copy, na_value=na_value)
         1839 if result.dtype is not dtype:
                  result = np.array(result, dtype=dtype, copy=False)
         1840
     File c:
       →\Users\ASUS\anaconda3\envs\tf2\lib\site-packages\pandas\core\internals\managers.
       →py:1732, in BlockManager.as_array(self, dtype, copy, na_value)
         1730
                      arr.flags.writeable = False
         1731 else:
     -> 1732
                 arr = self._interleave(dtype=dtype, na_value=na_value)
                  # The underlying data was copied within _interleave, so no need
         1733
         1734
                  # to further copy if copy=True or setting na_value
         1736 if na_value is not lib.no_default:
     File c:
       →\Users\ASUS\anaconda3\envs\tf2\lib\site-packages\pandas\core\internals\managers.
       →py:1794, in BlockManager._interleave(self, dtype, na_value)
         1792
                  else:
         1793
                      arr = blk.get_values(dtype)
     -> 1794
                  result[rl.indexer] = arr
         1795
                  itemmask[rl.indexer] = 1
         1797 if not itemmask.all():
     ValueError: could not convert string to float: 'AL'
[]: state counts = data["abbrev"].value counts()
     plt.pie(state_counts, labels=state_counts.index, autopct='%1.1f%%')
     plt.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.
     plt.title("Distribution of Crashes by State")
     plt.show()
```



```
[]: data[["speeding", "alcohol"]].plot(kind="bar", stacked=True)
  plt.xlabel("State")
  plt.ylabel("Crash Percentage")
  plt.title("Stacked Bar Plot of Speeding and Alcohol Crashes by State")
  plt.show()
```

