hyperparameters

Sunday, September 30, 2018 11:27 AM

Model	Parameters to optimize	Good range of values
Linear Regression	fit_intercept normalize	True / False True / False
Ridge	alpha Fit_intercept Normalize	0.01, 0.1, 1.0, 10, 100 True/False True/False
k-neighbors	N_neighbors p	• 2, 4, 8, 16 • 2, 3
SVM	C Gamma class_weight	0.001, 0.01 10 1000 'Auto', RS* 'Balanced', None
Logistic Regression	Penalty C	L1 or I2 0.001, 0.0110100
Naive Bayes (all variations)	NONE	NONE
Lasso	Alpha Normalize	0.1, 1.0, 10 True/False
Random Forest	N_estimators Max_depth Min_samples_split Min_samples_leaf Max_deatures	120, 300, 500, 800, 1200 5, 8, 15, 25, 30, None 1, 2, 5, 10, 15, 100 1, 2, 5, 10 Log2, sqrt, None

3, 5, 7, 9, 12, 15, 17, 25
1, 3, 5, 7 0.6, 0.7, 0.8, 0.9, 1.0
0.6, 0.7, 0.8, 0.9, 1.0 0.01-0.1, 1.0 , RS*

XG boost hyperparameters

Depth of tree:—imp as it results in complexity. 5 is better not more

Learning rate:--shrinkage parameter..learning the right weights

Max_delta_step:(xg boost handles one vs all which is beneficial, max_delta_step

helps in imbalanced data sets)

No of estimators:- no of boosting rounds)

Booster--mostly tree based used

Base score:--> not needed in parameterization

Ramdom_state ==>

Missing (specify if missing denotes some value)

Sample size
No of columns
Regularization params:lamda (L2 regularizn)
Alpha L1 regularizn
Gamma L0 regularizn
Gamma L0

Min_child weight :--bases on which a tree can be made

Random Forest

Leads weights

 n_{estiom} ators = number of trees in the foreset

- max_features = max number of features considered for splitting a node
- max_depth = max number of levels in each decision tree
- min_samples_split = min number of data points placed in a node before the node is split
- min_samples_leaf = min number of data points allowed in a leaf node
- bootstrap = method for sampling data points (with or without replacement)

 $From < \frac{https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-python-using-scikit-learn-28d2aa77dd74>$