微课: 期望

定义1

设离散型随机变量 χ的分布律为

$$P(X = x_i) = p_i, \quad i = 1, 2, \dots$$

当级数 $\sum x_i p_i$ 绝对收敛 时,称 $\sum x$ 为随机变量 的数学期望

(或期望、均值),记作 E(X), $\sum_{i} |x_{i}| p_{i}$ 收敛

注:

为保证无穷级数 $\sum_{i} x_{i} p_{i}$ 的值不因改变求和次序而变,要求级数绝对收敛, E(X)才有定义。

- 2 当 x 服从某个分布时,也称 E(x 是 这个分布的期望。期望刻画随机变量取值的平均,有直观含义。
- 3 物理含义:单位质量的细棒, 重心坐标 $\sum_{i} x_{i} m_{i}$

期望

000 设离散型随机变量 x的分布律如下,计算 E(X)

X	-2	1
P_r	0.2	0.8

解

$$E(X) = \sum_{i} x_{i} p_{i} = -2 \times 0.2 + 1 \times 0.8 = 0.4$$

定义2

设连续型随机变量 x的密度函数为 f(x) 当积分

$$\int_{-\infty}^{+\infty} x f(x) dx$$
绝对收敛时, 称
$$\int_{-\infty}^{+\infty} x f(x)$$
随机

变量 x 的数学期望,记作 E(X) 即 $\int_{-\infty}^{+\infty} |x| f(x) dx$ 收敛

$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx.$$

物理含义 密度函数为 f(单位质量细棒 重心坐标

期望

<mark>例2</mark> 设连续型随机变量 x 的密度函数如下, 计算 E(X)

$$f(x) = \begin{cases} 2x, & 0 < x < 1 \\ 0, & \ddagger x \end{cases}$$

解

$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx$$

$$=\int_0^1 x \cdot 2 x dx = \frac{2}{3}$$

期望

设离散型随机变量 x 的分布律为

$$P\left(X = (-1)^{i} \frac{2^{i}}{i}\right) = \frac{1}{2^{i}}, i = 1, 2, \cdots$$

x 的数学期望存在吗?

解 因为
$$\sum_{i=1}^{\infty} |x_i| p_i = \sum_{i=1}^{\infty} |(-1)^i \frac{2^i}{i}| \cdot \frac{1}{2^i} =$$
数,

所以 x 的数学期望不存在。

微课: 期望