IN THE CLAIMS

Please amend the following claims which are pending in the present

application:

1. (Currently amended) A cooling device for removing heat from an

integrated circuit, said cooling device comprising:

a conduit;

a flexible channel to alternate between a compressed position and an

extended position and having a first open end and a second closed end, said first

open end coupled with said conduit, said open end having an internal width,

said flexible channel comprised of a resilient material having spring-like

characteristics, said material to provide a spring-like restoring force when

compressed, the second closed end comprising a thermally conductive material

attached to said flexible channel, said thermally conductive material having a

substantially planar surface to interface directly with said integrated circuit when

said flexible channel is extended and to detach from said integrated circuit in said

compressed position, said flexible channel being conformable with an non-planar

integrated circuit disposed at an angle relative to the first open end;

an interconnect mechanism between said conduit and said flexible channel

to allow a fluid introduced within said conduit to move between said conduit

and said flexible channel; and

Examiner: Michael V.Datskovskiy

Art Unit: 2835

a heat sink attached to an interior surface of said closed end to cause heat absorbed by said closed end to be conducted through said conduit and said flexible channel.

- 2. (Original) A cooling device as in Claim 1, wherein said interconnect mechanism is an opening in a surface of said conduit.
- 3. (Original) A cooling device as in Claim 1, wherein said opening has a width equal to said internal width of said open end.
- 4. (Original) A cooling device as in Claim 1, wherein said open end is coupled with said conduit by a technique selected from the group consisting of soldering, sautering, welding, and adhering.
- 5. (Previously presented) A cooling device as in Claim 4, wherein said flexible channel, including said closed end, is sealed, and further comprising:

a port for coupling to a pump coupled to said conduit configured to reduce a pressure in said conduit and said flexible channel to compress said flexible channel and to remove said conductive material from said integrated circuit.

Gary F. Feierbach Application No.: 10/020,384

3

Examiner: Michael V.Datskovskiy
Art Unit: 2835

- 3 -

- 6. (Canceled)
- 7. (Previously presented) A cooling device as in Claim 1, wherein said thermally conductive material is copper.
- 8. (Canceled)
- 9. (Previously presented) A cooling device as in Claim 1, wherein said resilient material comprises a material selected from the group of which phosphor bronze and beryllium copper are members.
- 10. (Original) A cooling device as in Claim 1, wherein said resilient material is pleated.
- 11. (Original) A cooling device as in Claim 1, wherein said flexible channel is in a compressed state.
- 12. (Original) A cooling device as in Claim 11, further comprising: a vacuum pressure within said conduit and said flexible channel.

Gary F. Feierbach Examiner: Michael V.Datskovskiy
Application No.: 10/020,384 - 4 - Art Unit: 2835

13. (Original) A cooling device as in Claim 11, wherein a pressure within said flexible channel is less than 1.0 atmosphere.

14. (Canceled)

15. (Previously Presented) A cooling device as in Claim 11, wherein said fluid is within said flexible channel.

16. (Original) A cooling device as in Claim 1, wherein said flexible channel is in an extended state.

17. (Original) A cooling device as in Claim 16, wherein a pressure within said extended flexible channel approximately equals 1.0 atmosphere.

18. (Original) A cooling device as in Claim 16, wherein a pressure within said extended flexible channel is not a vacuum pressure.

19. (Previously presented) A cooling device as in Claim 18, wherein said fluid is contained within said conduit and said flexible channel.

Gary F. Feierbach Application No.: 10/020,384 Examiner: Michael V.Datskovskiy
Art Unit: 2835

- 5 -

20. (Previously presented) A cooling device as in Claim 19, wherein said fluid

is heated.

(Previously presented) A cooling device as in Claim 19, wherein said fluid 21.

is cooled.

22. (Previously presented) A cooling device as in Claim 19, wherein said

closed end contacts said integrated circuit and wherein heat from said integrated

circuit is dissipated by said fluid contained within said conduit and said flexible

channel.

(Previously presented) A cooling device as in Claim 19, further 23.

comprising:

a plurality of flow diverters attached within said conduit to create

turbulence in said fluid.

(Canceled) 24.

Examiner: Michael V.Datskovskiy Art Unit: 2835

- 6 -

25. (Original) A cooling device as in Claim 1, wherein said flexible channel is compressed by creating a vacuum pressure within said flexible channel.

26. (Original) A cooling device as in Claim 1, wherein said flexible channel is compressed by creating a pressure of less than 1.0 atmosphere within said flexible channel.

27. (Original) A cooling device as in Claim 1, wherein said flexible channel is extended by equalizing a vacuum pressure within said flexible channel to approximately equal 1.0 atmosphere.

28. (Original) A cooling device as in Claim 1, wherein said flexible channel is extended by creating a pressure approximately equal to 1.0 atmosphere within said flexible channel.

29. (Previously presented) A cooling device as in Claim 1, wherein said heat sink extends into said conduit in said extended position.

30. (Canceled)

-7-

- 31. (Original) A cooling device as in Claim 29, wherein said heat sink comprises a plurality of spaced apart planar fins.
- 32. (Original) A cooling device as in Claim 1 wherein said conduit is a heat pipe.
- 33. (Previously presented) A cooling device as in Claim 32, further comprising:

wicking material contained within said heat pipe; and
a reservoir coupled with said heat pipe, said reservoir to contain said
fluid.

- 34. (Original) A cooling device as in Claim 33, wherein said fluid is contained within said heat pipe.
- 35. (Previously presented) A cooling device as in Claim 33, wherein a gas is contained within said heat pipe.
- 36 41. (Canceled)

-8-

42. (Currently amended) A cooling device for removing heat from an

electronic or electrical device, said cooling device comprising:

means for extending a flexible channel until a closed end of said flexible

channel contacts an electronic or electrical device, said closed end comprising a

thermally conductive material having a substantially planar surface to interface

directly with said electronic or electrical device when said flexible channel is in

an extended position and to detach from said electronic or electrical device in an

compressed position, and a heat sink attached to an interior surface of said closed

end to cause heat absorbed by said closed end to be conducted through a conduit

attached to said flexible channel and said flexible channel, said flexible channel

being conformable with an non-planar integrated circuit disposed at an angle

relative to an open end of the flexible channel; and

means for contracting said flexible channel to remove said closed end

from said electronic or electrical device.

43. (Previously presented) A cooling device as in Claim 42, wherein said

means for extending said flexible channel further comprises:

means for introducing a fluid within said conduit and said flexible

channel; and

Examiner: Michael V.Datskovskiy

- 9 **-**

Art Unit: 2835

means for creating a pressure within said flexible channel of approximately 1.0 atmosphere.

44. (Canceled)

45. (Previously presented) A cooling device as in claim 42, wherein said means for compressing said flexible channel further comprises:

means for creating a vacuum pressure within said flexible channel.

46. (Previously presented) A cooling device as in Claim 42, wherein said means for compressing said flexible channel further comprises:

means for creating a pressure of less than 1.0 atmosphere within said flexible channel.

Examiner: Michael V.Datskovskiy Art Unit: 2835

- 10 -