Responsable : Emeric Bouin

Année universitaire 2021-2022 Date : 10 janvier 2022

Durée : 3 heures

Examen final

Toutes les réponses doivent être soigneusement justifiées pour être considérées. Il est rappelé que la rédaction comptera de manière importante dans l'évaluation des copies. Le barême est donné à titre indicatif et pourra être modifié. Aucun document n'est autorisé, aucune calculatrice.

Exercice 1. (Cours et proche du cours - 20 points)

Répondre aux questions suivantes en justifiant tout intégralement mais de manière concise.

- 1. Pour chacune des assertions suivantes, dire si elles sont vraies ou fausses, en le justifiant. (Attention : malus pour réponse fausse ou non-réponse)
 - (a) (u_n) converge vers 0 implique que la série de terme général u_n converge.
 - (b) La série de terme général u_n converge implique que (u_n) converge vers 0.
 - (c) $u_n \sim v_n$ implique que les séries de terme général u_n et v_n ont même nature.
 - (d) La série de terme général u_n converge implique que la série de terme général $|u_n|$ converge.
- 2. Enoncer le théorème d'intégration des suites de fonctions.
- 3. Soit $f: \mathbb{R}^+ \to \mathbb{R}^+$ une fonction d'intégrale convergente sur \mathbb{R}^+ .
 - (a) Quelle est la limite de $\int_{\frac{x}{2}}^{x} f(t) dt$ lorsque x tend vers l'infini?
 - (b) Montrer que si de plus f est décroissante alors $\lim_{x\to+\infty} x f(x) = 0$.
- 4. Donner l'exemple d'une suite de fonctions continues f_n définies sur [0,1] telle que f_n converge simplement vers 0 mais $\int_0^1 f_n(t) dt$ ne tende pas vers 0.
- 5. Etudier l'absolue convergence, la semi-convergence des séries de terme général

$$u_n = \frac{(-1)^{n^2}}{\ln(n^2 + n)}, \qquad v_n = \left(\frac{1}{n} - \ln\left(1 + \sin\left(\frac{1}{n}\right)\right)\right)^{\alpha},$$

avec $\alpha \in \mathbb{R}$.

6. Donner la nature des intégrales suivantes

$$\int_0^{+\infty} x^2 \exp(-x^4) \, dx, \qquad \int_0^{+\infty} \frac{|x-1|^4 e^{-x}}{|\ln(1+x)|^{\frac{1}{4}}} \, dx, \qquad \int_0^{+\infty} \frac{\ln(x) e^{-x}}{|x-1|^{\frac{4}{3}}} \, dx.$$

- 7. Pour chacune des assertions suivantes, dire si elles sont vraies ou fausses, en le justifiant. On rappelle qu'une fonction est dite convexe si $f(tx + (1-t)y) \le tf(x) + (1-t)f(y)$, pour tous $t \in [0,1]$ et $x,y \in \mathbb{R}$.
 - (a) La limite simple d'une suite de fonctions convexes est convexe.
 - (b) La limite uniforme d'une suite de fonctions strictement convexes est strictement convexes.

Exercice 2. (Autour de la convergence radiale ... - 25 points)

On se donne $(a_n)_{n\in\mathbb{N}}$ une suite réelle telle que $\lim_{n\to\infty} na_n = 0$.

- 1. Montrer que le rayon de convergence de $\sum_{n=0}^{+\infty} a_n z^n$ est au moins égal à 1.
- 2. On suppose dans la suite que ce rayon est exactement 1 et on note f la somme de la série entière sur le disque de convergence. Finalement, on suppose que

$$\lim_{x \to 1, x < 1} \left(\sum_{n=0}^{+\infty} a_n x^n \right) = \ell \in \mathbb{R},$$

et on note $u_n = \ell - \sum_{k=0}^n a_k$.

(a) Montrer que

$$u_n = \ell - f(x) + \sum_{k=0}^{n} a_k (x^k - 1) + \sum_{k=n+1}^{+\infty} a_k x^k$$

- (b) i. Après avoir justifié son existence, donner la limite de la suite $M_n := \sup_{k > n+1} (|ka_k|)$.
 - ii. Montrer que lorsque |x| < 1, on a $\frac{1-x^k}{1-x} \le k$.
 - iii. Montrer que $\frac{1}{n} \sum_{k=0}^{n} k a_k$ tend vers 0.
- (c) Montrer que pour tout $n \in \mathbb{N}$ et pour tout $x \in]-1,1[$,

$$|u_n| \le |\ell - f(x)| + (1 - x) \sum_{k=0}^n k|a_k| + \frac{M_n}{n(1 - x)}.$$

- (d) Montrer que u_n tend vers 0 en utilisant les questions précédentes.
- (e) Conclure en énonçant clairement le résultat obtenu concernant la fonction f.
- 3. On considère l'équation différentielle

$$4x^{2}y''(x) + 4xy'(x) - y(x) = \frac{x}{1-x}.$$
 (E)

- (a) Trouver une solution développable en série entière de ??.
- (b) Quel est le rayon de convergence de la série entière obtenue?
- 4. Soit $\varphi: x \mapsto \sum_{k=0}^{+\infty} \frac{x^k}{4k^2-1}$.
 - (a) Montrer que, pour chaque $u \in]-1,1[,\sum_{k=0}^{+\infty} \frac{u^{2k+1}}{2k+1} = \frac{1}{2}\ln\left(\frac{1+u}{1-u}\right).$
 - (b) En déduire $\sum_{k=0}^{+\infty} \frac{x^k}{2k+1}$ pour chaque $x \in [0,1[$.
 - (c) Déduire des questions précédentes une expression simplifiée de φ (*i.e.* faisant intervenir des fonctions usuelles uniquement) pour chaque $x \in [0,1[$.
 - (d) Que vaut $\lim_{x\to 1,x<1} \varphi(x)$?
 - (e) Calculer $\sum_{k=0}^{+\infty} \frac{1}{4k^2-1}$.
 - (f) Retrouver cette valeur par un calcul direct. On montrera d'abord que $\sum_{k=1}^{n} \frac{1}{4k^2-1} = \frac{n}{2n+1}$.
- 5. Soit $(b_n)_{n\in\mathbb{N}}$ une suite de nombres réels tels que la série entière $\sum_{k=0}^{+\infty} b_k x^k$ ait pour rayon de convergence 1. On note h la somme de la série entière sur le disque de convergence. Finalement, on suppose que

$$\lim_{x \to 1, x < 1} h(x) = \ell' \in \mathbb{R},$$

- (a) La série de terme général b_n est-elle toujours convergente?
- (b) On suppose dans cette question que b_n est positive. Montrer alors que la série de terme général b_n est convergente et que $\sum_n b_n = \ell'$.
- (c) Dans le cas général, que pourrait-on supposer sur b_n pour que $\sum_n b_n$ converge?

Exercice 3. (Une série de fonctions ... - 10 points)

Pour x > 0, on pose

$$S(x) = \sum_{n=1}^{+\infty} \frac{1}{n + n^2 x}.$$

- 1. Montrer que S est bien définie et continue sur \mathbb{R}_{+}^{*} .
- 2. Montrer que S est dérivable sur \mathbb{R}_{+}^{*} .
- 3. Étudier la monotonie de S.
- 4. Déterminer la limite en $+\infty$ de S puis un équivalent de S en $+\infty$.
- 5. Déterminer un équivalent à S en 0.