HOLOGRAPHIC ENTANGLEMENT IN FREE FERMIONIC QUANTUM MATTER

ASPECTS OF HIERARCHY AND TOPOLOGY

ABHIRUP MUKHERJEE, SIDDHARTHA PATRA, SIDDHARTHA LAL J. Phys. A: Math. Theor. (2024)

DEPARTMENT OF PHYSICAL SCIENCES, IISER KOLKATA MOHANPUR

JUNE 17, 2024

INTRODUCTION

BROAD OVERVIEW OF RESULTS

- Entanglement scaling within a 2D system of Dirac electrons can be used to construct a holographic bulk dimension.
- A Fermi surface-changing transition of the electronic system corresponds to a "wormhole geometry" in the bulk.
- The topology of the Fermi surface is dictated by the entanglement structure.

PREREQUISITES

- The system: 2D Dirac electrons
- Entanglement of free fermions
- Reduction of a 2D system to sum of 1D systems
- Entanglement in topologically ordered phases
- The holographic principle

THE SYSTEM: 2D DIRAC ELECTRONS

Dispersion is **linear** in momentum space

- Describe the low-energy theory near gap-closing points
- Emerge at boundaries of topological insulators

THE SYSTEM: 2D DIRAC ELECTRONS

- Place on a torus (periodic boundary conditions)
- Insert a vector potential (flux-tuning)

$$H = v_F \vec{\alpha} \cdot (\vec{p} - e\vec{A}) + \beta m$$
vector
potential

mass
term

MEASURES OF ENTANGLEMENT

$$\rho = |\Psi\rangle\langle\Psi| \longrightarrow \text{density matrix}$$

 ρ_{Δ} = partial trace over system A \longrightarrow reduced DM

- $S(A) = -\text{Tr} \left[\rho_A \log \rho_A \right] \longrightarrow \text{entanglement entropy of A}$
- $I(A:B) = S(A) + S(B) S(A \cup B) \longrightarrow$ mutual information between A and B
- quantifies amount of information shared between subsystems

ENTANGLEMENT OF FREE FERMIONS

Diagonal in
$$k$$
-space : $H = i\overline{\psi} (\gamma_{\mu} \partial_{\mu} + m) \psi$

- Vanishing entanglement in momentum space
- \blacksquare Off-diagonal in r-space \longrightarrow Fluctuations exist in real space
- Leads to entanglement in real space

ENTANGLEMENT OF FREE FERMIONS

Some existing results on fermionic entanglement:

- massless fermions in d-dimensions: $l^{d-1} \log l$
- massive fermions in 1-dimension: $\frac{1}{3}\log(l/\epsilon) \frac{1}{6}(ml\log ml)^2$

(
$$\epsilon$$
 = short-distance cutoff, m = mass gap in the spectrum)

REDUCTION OF 2D SYSTEM INTO SUM OF 1D SYSTEMS

In presence of flux:
$$L = \int dx dy \, \overline{\Psi}(x) (i\gamma_{\mu} + eA_{\mu}) \partial_{\mu} \Psi(x)$$

- PBC along \vec{x} : $\Psi(x) = \sum_{n=-\infty}^{\infty} e^{ixk_x^n} \Psi(k_x^n)$, $k_x^n = \frac{2\pi n}{L_x}$, $n \in \mathbb{Z}$
- Lagrangian decouples: $L = \sum_{n} \int dy \, \overline{\Psi}_{n}(y) (i \gamma_{\mu} \partial_{\mu} M_{n}) \Psi_{n}(y)$
- Mass of each 1D mode: $M_n = \frac{2\pi}{L_v} |n + \phi|$

REDUCTION OF 2D SYSTEM INTO SUM OF 1D SYSTEMS

- $H = \sum_n H_n \implies \rho = \exp(-\beta H) = \bigotimes_n \rho_n \implies$ no entanglement in k_x -space
- Entanglement reduces to sum over 1D modes: $S([x_1, x_2]) = \sum_n S_n([x_1, x_2])$

$$S_n(\phi) = c \log(\alpha L_x) - c \log|n + \phi|, \quad \alpha \longrightarrow \text{cutoff dependent constant}$$

ENTANGLEMENT IN TOPOLOGICALLY ORDERED PHASES

These are gapped quantum liquids

- FQHE, Toric Code, Kitaev's honeycomb model, QSLs
- robust ground-state degeneracy on closed manifolds (for eg., torus),
- **long-ranged** entanglement: $S(L) = \alpha L \gamma + 1/L$.

N-partite information measure depends on γ and the Euler characteristic χ of the manifold: $|I_N| = \gamma \chi$.

WHAT ARE WE GOING AFTER?

- Distribution of entanglement across subsystems and scales
- Emergent space generated by this entanglement (holography)
- Curvature and related quantities of this emergent space

ENTANGLEMENT HIERARCHY IN

MIXED MOMENTUM AND REAL SPACE

CREATING SUBSYSTEMS

$$k_x^n = \frac{2\pi}{L_x} n$$
, $n \in \mathbb{Z}$; define **distance** = $\Delta n = 1$

Simplest choice: the entire set

distance = 1
$$\longrightarrow$$
 $n \in \{-N, -(N-1), -(N-2), ..., -1, 0, 1, ..., N-2, N-1, N\}$

Coarser choices: increase distance

distance = 2
$$\longrightarrow$$
 $n \in \{-N, -(N-2), -(N-4), ..., -2, 0, 2, ..., N-4, N-2, N\}$

distance =
$$4 \longrightarrow n \in \{-N, -(N-4), -(N-8), ..., -4, 0, 4, ..., N-8, N-4, N\}$$

SEQUENCE OF SUBSYSTEMS

Define **sequence** of subsystems

$$A_z(j): t_z(j) = 2^{j^z}$$

sequence index: j = 0, 1, 2, ...

strength of coarse/fine-graining: $z = \pm 1, \pm 2, \pm 3, ...$

THE SEQUENCE AS A RENORMALISATION GROUP FLOW

Sequence of Hamiltonians **renormalisation** group flow

RG - transformation of Hamiltonian via change of scale

Superset of all members:
$$A_z^{(0)} = \bigcup_j A_z(j)$$

"Super-Hamiltonian":
$$H^{(0)} = \sum_{k_x \in A_z^{(0)}} H(k_x)$$

RG equation:
$$H_z(j) = \underbrace{P_z(j)}_{\text{projector}} H^{(0)} P_z(j)$$

WHAT, EXACTLY, IS GETTING RENORMALISED?

Several ways to look at this

- renormalisation in **entanglement**: $\Delta \log S_z(j) \sim \Delta f_z(j)$
- renormalisation in 1-particle **spectral gap**: $M(n, \phi) \sim |n + \phi|$
- renormalisation in real space quantum fluctuation

FRACTION OF MAXIMUM STATES

 $f_{z}(j)$ = fraction of maximum states = $1/t_{z}(j)$

SEQUENCE OF SUBSYSTEMS

Simplest case: j = 0

- no coarse-graining or fine-graining
- $\blacksquare A_z(0) \longrightarrow$ short cylinder

In general:

$$\Delta n \sim \Delta k_x \sim 1/L_x$$
 \longrightarrow $z > 0$: decreasing system size $z < 0$: increasing system size

SUBSYSTEM ENTANGLEMENT ENTROPY

Modes are decoupled \longrightarrow entanglement is additive

$$S_{A_z(j)} = \sum_{n \in A_z(j)} S_n = f_z(j) c \alpha L_x - c \log \left| 2 \sin \left(\pi f_z(j) \phi \right) \right|$$

$$i < j, \quad S_{i \cup j} = \begin{cases} S_i, & z > 0 \\ S_i, & z < 0 \end{cases}$$

ENTANGLEMENT HIERARCHY

$$i < j, \quad S_{i \cup j} = \begin{cases} S_i, & z > 0 \\ S_j, & z < 0 \end{cases}$$

- presents a hierarchy of entanglement → EE distributed across RG steps:
 - RG transformation → reveals entanglement
- distribution of entanglement also present in multipartite entanglement:

HOLOGRAPHIC NATURE OF THE RG

FLOW

HOLOGRAPHIC PRINCIPLE

Conformal FT in d-dimensions \longleftrightarrow Anti-de-Sitter space-time in d + 1-dimensions

extra dimension in bulk corresponds to RG flow

MUTUAL INFORMATION = DISTANCE

Mutual information: $I^2(A:B) \equiv S(A) + S(B) - S(A \cup B)$ (non-negative)

information gained about B upon measuring A

define distance along the RG:
$$d_z(j) = \log I_{\text{max}}^2 - \log I_z^2(0:j) = \log t_z(j)$$

For z > 0:

- mut. info. is maximum for small i
- decreases for large i
- corresponds to increasing distance

RG EVOLUTION = EMERGENT DISTANCE

Define 2-dimensional x - y structure

Lee 2010; Lee 2014; Qi 2013; Lee et al. 2016; Mukherjee et al. 2020a; Mukherjee et al. 2020b; Ryu et al. 2006b; Ryu et al. 2006a; Nozaki et al. 2012.

RG EVOLUTION = EMERGENT DISTANCE

Define coupling that measures spectral

gap:
$$g_z(j) = \log \frac{M_{n+1}(\phi) - M_n(\phi)}{2\pi/L_x} = \log t_z(j)$$

RG beta function for its evolution:

$$\beta_z(j) = \Delta \log g_z(j) = z \log \left(1 + j^{-1}\right)$$

Lee 2010; Lee 2014; Qi 2013; Lee et al. 2016; Mukherjee et al. 2020a; Mukherjee et al. 2020b; Ryu et al. 2006b; Ryu et al. 2006a; Nozaki et al. 2012.

RG EVOLUTION = EMERGENT DISTANCE

RG beta function can be related to the x, y-distances

$$x_{z} = \left(e^{\frac{\beta_{z}}{z}} - 1\right)^{-z} \log 2$$

$$y_{z} = \begin{cases} x_{z}e^{\beta}, & z > 0\\ x_{z}\left(2 - e^{\frac{\beta}{z}}\right)^{z}, & z < 0 \end{cases}$$

explicit relation between the RG flow and the emergent geometry

CURVATURE OF THE EMERGENT SPACE

Define first and second derivatives in emergent space

$$v_{z}(j) = \frac{\Delta y_{z}(j)}{\Delta x_{z}(j)} = \begin{cases} \frac{(j+2)^{z} - (j+1)^{z}}{(j+1)^{z} - j^{z}}, & z > 0 \\ \frac{(j)^{z} - (j-1)^{z}}{(j+1)^{z} - j^{z}}, & z < 0 \end{cases}$$

$$v'_{z}(j) = \frac{v_{z}(j+1) - v_{z}(j)}{x_{z}(j+1) - x_{z}(j)}$$
Define curvature using them: $K_{z}(j) = \frac{v'_{z}(j)}{[1 + v_{z}(j)^{2}]^{\frac{3}{2}}}$

 \longrightarrow can be expressed in terms of $\beta_z(j)$

CURVATURE OF THE EMERGENT SPACE

- **p** positive curvature for z < 0
- \blacksquare zero curvature for z = 1
- negative curvature for z > 1
- **asymptotically flat** for large *j*, at all *z*

Question: Is there a name for such spaces?

$$\gamma_z(j) \equiv 1 - v_z(j+1)/v_z(j), \quad \alpha_z(j) = y_z(j+1) - y_z(j)$$

$$\kappa_{z}(j) = -\frac{\alpha_{z}(j) \gamma_{z}(j)}{\left(\Delta x_{z}(j)\right)^{2} \left[1 + v_{z}(j)^{2}\right]^{\frac{3}{2}}} \implies \operatorname{sign}\left[\kappa_{z}(j)\right] = -\operatorname{sign}\left[\alpha_{z}(j)\right] \operatorname{sign}\left[\gamma_{z}(j)\right]$$

$$\operatorname{sign}\left[\kappa_{z}\right] = \begin{cases} -1, & z \ge 1 \\ 1, & z \le -1 \end{cases} = \begin{cases} -\operatorname{sign}\left[\gamma_{z}(j)\right], & z \ge 1 \\ -\operatorname{sign}\left[\alpha_{z}(j)\right], & z \le -1 \end{cases}$$

- $\ln (\gamma \gamma^*)$ has branch point at γ^* , can be avoided for z = 1, **contour is** trivial
- cannot be avoided for $z \neq 1$ → presence of **singularity** → encoded through **winding number**

very similar thing holds for α_z

- singularity exists only for z < 0
- otherwise contour can be trivialised

Curvature can be written as the product of winding numbers:

$$sign\left[\kappa_{z}\right] = W_{z}\left(\gamma^{*}\right) \times \left[2W_{z}'\left(\alpha^{*}\right) - 1\right]$$

- winding numbers count singularities
- robust against deformations

Question: Does this say anything for the cosmological constant?

What does this change in topology really mean?

- \blacksquare z is the **anomalous dimension** of the spectral gap g_z in the effective field theory
- lacktriangleright sign of z reflects the RG relevance/irrelevance of g_z in the microscopic fermionic theory
- change in z can be interpreted as a change in the underlying interacting theory
- change in sign of z is hence a **phase transition** in the microscopic theory that changes the topology of the Fermi surface

EVOLUTION OF EXPANSION PARAMETER

- Define an expansion parameter
- lacksquare can be related to RG flow through eta_z
- \blacksquare related to change in area of flows of g_z

$$\theta_z(j) = \frac{1}{\sqrt{1 + v_z^{-2}}}$$

$$\theta_z \sim \frac{1}{\sqrt{\Delta x^2 + \Delta y^2}} \Delta g_z(j+1)$$

EVOLUTION OF EXPANSION PARAMETER

Expansion parameter satisfies "Raychaudhuri-like" equation

$$\frac{\mathrm{d}\theta_z}{\mathrm{d}x_z} = \kappa$$

■ No attractive θ^2 term: fixed points reached only at $j \to \infty$

■ hierarchy of entanglement, across scales as well as number of parties

$$S_{A \cup B} = S_{larger}$$

- hierarchy of entanglement, across scales as well as number of parties
- RG beta function gives rise to emergent distances

$$x_z(\beta), y_z(\beta)$$

- hierarchy of entanglement, across scales as well as number of parties
- RG beta function gives rise to emergent distances
- anomalous dimension z determines sign of curvature

$$\kappa \begin{cases} > 0 \text{ if } z < 0 \\ = 0 \text{ if } z = 1 \\ < 0 \text{ if } z > 1 \end{cases}$$

- hierarchy of entanglement, across scales as well as number of parties
- RG beta function gives rise to emergent distances
- \blacksquare anomalous dimension z determines sign of curvature
- sign of curvature is topological

$$sign\left[\kappa_{z}\right] = W_{z}\left(\gamma^{*}\right) \times \left[2W_{z}'\left(\alpha^{*}\right) - 1\right]$$

- hierarchy of entanglement, across scales as well as number of parties
- RG beta function gives rise to emergent distances
- anomalous dimension z determines sign of curvature
- sign of curvature is topological
- lacktriangle heta satisfies "Raychaudhuri-like" equation

$$\frac{\mathrm{d}\theta_z}{\mathrm{d}x_z} = 1$$

REFERENCES I

- ARIAS, RAÚL E, DAVID D BLANCO, AND HORACIO CASINI (2015). "ENTANGLEMENT ENTROPY AS A WITNESS OF THE AHARONOV-BOHM EFFECT IN QFT". In: Journal of Physics A: Mathematical and Theoretical 48.14, p. 145401.
- ► BALASUBRAMANIAN, VIJAY AND PER KRAUS (1999). "SPACETIME AND THE HOLOGRAPHIC RENORMALIZATION GROUP". In: Physical Review Letters 83.18, p. 3605.
- ► CALABRESE, PASQUALE AND JOHN CARDY (2004A). "ENTANGLEMENT ENTROPY AND QUANTUM FIELD THEORY". In: Journal of Statistical Mechanics: Theory and Experiment 2004.06, P06002.
- ► (2004B). **"ENTANGLEMENT ENTROPY AND QUANTUM FIELD THEORY".** In: Journal of Statistical Mechanics: Theory and Experiment 2004.06, P06002.
- ► CASINI, H, C D FOSCO, AND M HUERTA (2005). **"ENTANGLEMENT AND ALPHA ENTROPIES FOR A MASSIVE DIRAC FIELD IN TWO DIMENSIONS".** In: Journal of Statistical Mechanics: Theory and Experiment 2005.07, P07007–P07007.
- ► CASINI, H AND M HUERTA (2009). **"ENTANGLEMENT ENTROPY IN FREE QUANTUM FIELD THEORY".** In: Journal of Physics A: Mathematical and Theoretical 42.50, p. 504007.
- ► CHEN, XIAO ET AL. (2017). "TWO-CYLINDER ENTANGLEMENT ENTROPY UNDER A TWIST". In: Journal of Statistical Mechanics: Theory and Experiment 2017.4, p. 043104.

REFERENCES II

- ► CHUNG, MING-CHIANG AND INGO PESCHEL (2000). "DENSITY-MATRIX SPECTRA FOR TWO-DIMENSIONAL QUANTUM SYSTEMS". In: Phys. Rev. B 62 (7), pp. 4191–4193.
- GIOEV, DIMITRI AND ISRAEL KLICH (2006). "ENTANGLEMENT ENTROPY OF FERMIONS IN ANY DIMENSION AND THE WIDOM CONJECTURE". In: Physical review letters 96.10, p. 100503.
- ► KAR, SAYAN (2001). "GEOMETRY OF RENORMALIZATION GROUP FLOWS IN THEORY SPACE". In: *Phys. Rev. D* 64 (10), p. 105017.
- ► KAR, SAYAN AND SOUMITRA SENGUPTA (2007). "THE RAYCHAUDHURI EQUATIONS: A BRIEF REVIEW". In: Pramana 69.1, pp. 49–76.
- ► KITAEV, ALEXEI AND JOHN PRESKILL (2006). "TOPOLOGICAL ENTANGLEMENT ENTROPY". In: Physical review letters 96.11, p. 110404.
- ► LEE, CHING HUA AND XIAO-LIANG QI (2016). "EXACT HOLOGRAPHIC MAPPING IN FREE FERMION SYSTEMS". In: Physical Review B 93.3, p. 035112.
- ► LEE, SUNG-SIK (2010). "HOLOGRAPHIC DESCRIPTION OF QUANTUM FIELD THEORY". In: Nuclear Physics B 832.3, pp. 567–585.
- ► (2014). "Quantum renormalization group and holography". In: Journal of High Energy Physics 2014.1, p. 76.

REFERENCES III

- LI, WEIFEI ET AL. (2006). "SCALING BEHAVIOR OF ENTANGLEMENT IN TWO- AND THREE-DIMENSIONAL FREE-FERMION SYSTEMS". In: Phys. Rev. B 74 (7), p. 073103.
- ► MUKHERJEE, ANIRBAN AND SIDDHARTHA LAL (2020A). "UNITARY RENORMALISATION GROUP FOR CORRELATED ELECTRONS-I: A TENSOR NETWORK APPROACH". In: Nuclear Physics B 960, p. 115170.
- (2020B). "Unitary renormalisation group for correlated electrons-II: INSIGHTS ON FERMIONIC CRITICALITY". In: Nuclear Physics B 960, p. 115163.
- ► (2022). "SUPERCONDUCTIVITY FROM REPULSION IN THE DOPED 2D ELECTRONIC HUBBARD MODEL: AN ENTANGLEMENT PERSPECTIVE". In: Journal of Physics: Condensed Matter 34.27, p. 275601.
- Murciano, Sara, Paola Ruggiero, and Pasquale Calabrese (2020). "Symmetry resolved entanglement in two-dimensional systems via dimensional reduction". In: Journal of Statistical Mechanics: Theory and Experiment 2020.8, p. 083102.
- NOZAKI, MASAHIRO, SHINSEI RYU, AND TADASHI TAKAYANAGI (2012). "HOLOGRAPHIC GEOMETRY OF ENTANGLEMENT RENORMALIZATION IN QUANTUM FIELD THEORIES". In: Journal of High Energy Physics 2012.10, p. 193.

REFERENCES IV

- ► PATRA, SIDDHARTHA, SOMNATH BASU, AND SIDDHARTHA LAL (2022). "UNVEILING TOPOLOGICAL ORDER THROUGH MULTIPARTITE ENTANGLEMENT". In: Phys. Rev. A 105 (5), p. 052428.
- ► QI, XIAO-LIANG (2013). "EXACT HOLOGRAPHIC MAPPING AND EMERGENT SPACE-TIME GEOMETRY". In: arXiv preprint arXiv:1309.6282.
- RYU, SHINSEI AND TADASHI TAKAYANAGI (2006A). "ASPECTS OF HOLOGRAPHIC ENTANGLEMENT ENTROPY". In: Journal of High Energy Physics 2006.08, p. 045.
- ► (2006B). "HOLOGRAPHIC DERIVATION OF ENTANGLEMENT ENTROPY FROM THE ANTI-DE SITTER SPACE/CONFORMAL FIELD THEORY CORRESPONDENCE". In: Physical review letters 96.18, p. 181602.
- ► VAN RAAMSDONK, MARK (2010). "BUILDING UP SPACETIME WITH QUANTUM ENTANGLEMENT". In: General Relativity and Gravitation 42.10, pp. 2323–2329.
- ► WEN, X. G. (1989). "VACUUM DEGENERACY OF CHIRAL SPIN STATES IN COMPACTIFIED SPACE". In: Phys. Rev. B 40 (10), pp. 7387–7390.
- ► WOLF, MICHAEL M. (2006). "VIOLATION OF THE ENTROPIC AREA LAW FOR FERMIONS". In: Phys. Rev. Lett. 96 (1), p. 010404.

OTHER STUFF

Transformation to a different space

$$\tilde{\theta} = \frac{1}{1 - \sqrt{2}\theta}, \quad \frac{d\tilde{\theta}}{dx_z} = \sqrt{2}\tilde{\theta}^2\kappa$$

- Does generate θ^2 term
- Effective curvature is zero

