```
In [13]: import pandas as pd

df = pd.read_csv("robot_inverse_kinematics_dataset.csv")
    print("The Dataset is: ")
    df
```

The Dataset is:

Out[13]:

	q1	q2	q3	q4	q5	q6	x	У	z
0	-1.510	-0.763	1.85	-0.817	0.9120	2.320	-0.0947	0.15000	0.301
1	-2.840	0.520	1.58	-1.270	-1.3900	0.617	0.1420	-0.10000	0.225
2	-1.230	0.695	1.22	-1.130	0.0343	6.270	-0.0833	0.22300	0.206
3	-1.990	1.060	1.74	-1.760	-1.2400	4.760	0.1350	-0.03140	0.370
4	1.050	0.836	1.34	-1.890	0.4840	4.380	-0.0560	-0.22900	0.260
14995	0.314	-0.534	1.76	1.970	-0.6990	3.870	-0.1130	-0.12800	0.257
14996	2.450	1.360	1.55	2.780	-0.3210	5.310	0.0633	-0.03160	0.450
14997	2.620	1.410	1.56	2.540	1.0600	5.870	0.1310	-0.16000	0.362
14998	-1.890	1.850	1.51	1.090	0.6970	4.070	0.0829	-0.01600	0.441
14999	2.680	-1.790	1.79	2.620	1.5900	2.640	-0.1570	-0.00369	0.254

15000 rows × 9 columns

```
In [14]:
         from sklearn.tree import DecisionTreeRegressor
         from sklearn.ensemble import RandomForestRegressor
         from sklearn.svm import SVR
         from sklearn.metrics import r2 score
         from sklearn.inspection import permutation importance
         import pandas as pd
         df = pd.read_csv("robot_inverse kinematics_dataset.csv")
         features = ["x" , "y" , "z"]
         X = df[features]
         y = [df['q1'], df['q2'], df['q3'], df['q4'], df['q5'], df['q6']]
         def DT(X , y , testData):
             output = []
             reg = DecisionTreeRegressor(random_state=0)
             reg.fit(X.values , y.values)
             predictedValue = reg.predict(testData)
             output.append(predictedValue[0])
             r2 = r2_score(y , reg.predict(X.values))
             output.append(r2)
             importance = reg.feature_importances_
             for i in range(3):
                 output.append(importance[i])
             return output
         def RF(X , y , testData):
             output = []
             reg = RandomForestRegressor(random state=0 , n estimators=100)
             reg.fit(X.values , y.values)
             predictedValue = reg.predict(testData)
             output.append(predictedValue[0])
             r2 = r2 score(y , reg.predict(X.values))
             output.append(r2)
             importance = reg.feature_importances_
             for i in range(3):
                 output.append(importance[i])
             return output
```

```
In [24]: from IPython.display import display
          test = [[-0.0947, 0.15000, 0.301]]
          result = pd.DataFrame({"Predicted \theta 1 (rad)" : [DT(X , y[0] , test)[0] , RF(
                                   "Predicted \theta 2 (rad)" : [DT(X , y[1] , test)[0] , RF(
                                   "Predicted \theta3 (rad)" : [DT(X , y[2] , test)[0] , RF(
                                   "Predicted \theta 4 (rad)" : [DT(X , y[3] , test)[0] , RF(
                                   "Predicted \theta 5 (rad)": [DT(X , y[4] , test)[0] , RF(
                                   "Predicted \theta 6 \text{ (rad)}": [DT(X , y[5] , test)[0] , RF(
          df1 = pd.DataFrame({"Real \theta1 (rad)" : [y[0][0]] , "Real \theta2 (rad)" : [y[1][0]
                             "Real \theta 4 (rad)" : [y[3][0]] , "Real \theta 5 (rad)" : [y[4][0]]
          df2 = pd.DataFrame({"Decision tree coefficient of determination (R squared)
                               "Random forest coefficient of determination (R squared)"
          result.index = ["Decision Tree" , "Random Forest"]
          df1.index = ["Value"]
          df2.index = ["For \theta1 prediction" , "For \theta2 prediction" , "For \theta3 prediction
                        "For \theta5 prediction", "For \theta6 prediction"]
          display(df1)
          print("-" * 100)
          display(result)
          print("-" * 100)
          display(df2)
```

	Real θ1 (rad)	Real θ2 (rad)	Real θ3 (rad)	Real 04 (rad)	Real θ5 (rad)	Real 06 (rad)
Value	-1.51	-0.763	1.85	-0.817	0.912	2.32

	Predicted θ1 (rad)	Predicted θ2 (rad)	Predicted θ3 (rad)	Predicted θ4 (rad)	Predicted 05 (rad)	Predicted θ6 (rad)
Decision Tree	-1.51000	-0.763000	1.8500	-0.81700	0.912000	2.320000
Random Forest	-1.38802	-0.505554	1.8213	-0.71344	0.660144	2.833229

	Decision tree coefficient of determination (R squared)	Random forest coefficient of determination (R squared)
For 01 prediction	1.0	0.865935
For 02 prediction	1.0	0.907527
For 03 prediction	1.0	0.920667
For 04 prediction	1.0	0.845902
For 05 prediction	1.0	0.848114
For θ6 prediction	1.0	0.845358

In []: