h

Bayesian Networks and Inference

Today:

- Bayesian Networks
- How do we perform exact inference on Bayesian Networks?
- How do we reason about independence in Bayesian Networks?

Review

Marginal Distribution
$$P(X) P(Y)$$

Independence

$$P(X,Y) = P(X)P(Y)$$

 $X \perp Y \qquad P(X) = P(X|Y)$

Conditional Indep
$$P(X,Y|Z) = P(X|Z) P(Y|Z)$$

$$XLY|Z$$

$$P(X|Z) = P(X|Y,Z)$$

Binary Random Variables X_1 , X_2 , X_3 How many independent parameters to specify joint distribution?

Xı	Xz	X3	P(X,,X,X,3)
0	O	0	•
0	0	1	•
\bigcirc	l	(٠
			,
	,		
_			

Binary Random Variables X_1 , X_2 , X_3 How many independent parameters to specify joint distribution?

7

Binary Random Variables X_1 , X_2 , X_3

How many independent parameters to specify joint distribution?

For n binary R.V.s, $2^n - 1$ independent parameters specify the joint distribution.

Binary Random Variables X_1 , X_2 , X_3

How many independent parameters to specify joint distribution?

7

For n binary R.V.s, $2^n - 1$ independent parameters specify the joint distribution.

In general

$$\prod_{i=1}^n |\mathrm{support}(X_i)| - 1$$

Binary Random Variables X_1 , X_2 , X_3

How many independent parameters to specify joint distribution?

7

For n binary R.V.s, $2^n - 1$ independent parameters specify the joint distribution.

In general

$$\prod_{i=1}^n |\mathrm{support}(X_i)| - 1$$

Binary Random Variables X_1 , X_2 , X_3

How many independent parameters to specify joint distribution?

7

For n binary R.V.s, $2^n - 1$ independent parameters specify the joint distribution.

In general

$$\prod_{i=1}^n |\mathrm{support}(X_i)| - 1$$

Binary Random Variables X_1 , X_2 , X_3

How many independent parameters to specify joint distribution?

/

For n binary R.V.s, $2^n - 1$ independent parameters specify the joint distribution.

In general

$$\prod_{i=1}^n |\mathrm{support}(X_i)| - 1$$

Binary Random Variables X_1 , X_2 , X_3

How many independent parameters to specify joint distribution?

7

For n binary R.V.s, $2^n - 1$ independent parameters specify the joint distribution.

In general

$$\prod_{i=1}^n |\mathrm{support}(X_i)| - 1$$

- Node:
- Edges encode:

Binary Random Variables X_1 , X_2 , X_3

How many independent parameters to specify joint distribution?

7

For n binary R.V.s, $2^n - 1$ independent parameters specify the joint distribution.

In general

$$\prod_{i=1}^n |\mathrm{support}(X_i)| - 1$$

- Node: Random Variable
- Edges encode:

Binary Random Variables X_1 , X_2 , X_3

How many independent parameters to specify joint distribution?

For n binary R.V.s, $2^n - 1$ independent parameters specify the joint distribution.

In general

$$\prod_{i=1}^n |\mathrm{support}(X_i)| - 1$$

- Node: Random Variable

Correct BN • Edges encode: Chair for X, and X2 Causally influence
$$X_3$$
 • $P(X_{1:n}) = \prod_{i=1}^n P(X_i \mid \operatorname{pa}(X_i))$

Joint parents

Counting Parameters

For discrete R.V.s:

Counting Parameters

For discrete R.V.s:

$$\dim(heta_X) = (|\mathrm{support}(X)| - 1) \prod_{Y \in Pa(X)} |\mathrm{support}(Y)|$$

Inputs

Inputs

• Bayesian network structure

Inputs

- Bayesian network structure
- Bayesian network parameters

Inputs

- Bayesian network structure
- Bayesian network parameters
- Values of evidence variables

Inputs

- Bayesian network structure
- Bayesian network parameters
- Values of evidence variables

Outputs

Posterior distribution of query variables

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

Inputs

- Bayesian network structure
- Bayesian network parameters
- Values of evidence variables

Outputs

Posterior distribution of query variables

P(B) P(S) S E $P(E \mid B, S)$ C

 $P(C \mid E)$

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

 $P(D \mid E)$

Inference

Inputs

- Bayesian network structure
- Bayesian network parameters
- Values of evidence variables

Outputs

Posterior distribution of query variables

Given that you have detected a trajectory deviation, and the battery has not failed what is the probability of a solar panel failure?

P(B) P(S) E $P(E \mid B, S)$ $P(C \mid E)$

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

Inference

Inputs

- Bayesian network structure
- Bayesian network parameters
- Values of evidence variables

Outputs

Posterior distribution of query variables

Given that you have detected a trajectory deviation, and the battery has not failed what is the probability of a solar panel failure?

$$P(S = 1 \mid D = 1, B = 0)$$

P(B) P(S) E $P(E \mid B, S)$ $P(C \mid E)$

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

Inference

Inputs

- Bayesian network structure
- Bayesian network parameters
- Values of evidence variables

Outputs

Posterior distribution of query variables

Given that you have detected a trajectory deviation, and the battery has not failed what is the probability of a solar panel failure?

$$P(S = 1 \mid D = 1, B = 0)$$

Exact

P(B) P(S) E $P(E \mid B, S)$ $P(C \mid E)$

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

Inference

Inputs

- Bayesian network structure
- Bayesian network parameters
- Values of evidence variables

Outputs

Posterior distribution of query variables

Given that you have detected a trajectory deviation, and the battery has not failed what is the probability of a solar panel failure?

$$P(S = 1 \mid D = 1, B = 0)$$

Exact

Approximate

 ${\it B}$ battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

$$P(S=1 \mid D=1, B=0)$$

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

$$P(S=1 \mid D=1, B=0) = \frac{P(S=1, D=1, B=0)}{P(D=1, B=0)}$$

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

 $P(S=1 \mid D=1, B=0)$ P(S=1, D=1, B=0) P(D=1, B=0) P(S=1, D=1, B=0) $P(S=1, D=1, B=0) = \sum_{e,c} P(B=0, S=1, E=e, D=1, C=c)$

 ${\it B}$ battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

 $\phi_{3}(X,Y,Z) = \phi_{1}(X,Y)\phi_{2}(Y,Z)$ Product

Product

Condition

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

Product

Condition

Marginalize

Exact Inference

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

Product

Condition

Marginalize

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

 $P(B \mid d^1, c^1)$

Start with

 $\phi_1(B), \phi_2(S), \phi_3(E, B, S), \phi_4(D, E), \phi_5(C, E)$

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

 $P(B \mid d^1, c^1)$

Start with $\phi_1(B), \phi_2(S), \phi_3(E,B,S), \phi_4(D,E), \phi_5(C,E)$

Eliminate D and C (evidence) to get $\phi_6(E)$ and $\phi_7(E)$

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

 $P(B \mid d^1, c^1)$

Start with

$$\phi_1(B), \phi_2(S), \phi_3(E, B, S), \phi_4(D, E), \phi_5(C, E)$$

Eliminate D and C (evidence) to get $\phi_6(E)$ and $\phi_7(E)$

Eliminate *E*

$$\phi_8(B,S) = \sum_e \phi_3(e,B,S) \phi_6(e) \phi_7(e)$$

D trajectory deviation C communication loss

S solar panel failure

E electrical system failure

B battery failure

 $P(B \mid d^1, c^1)$

Start with

$$\phi_1(B), \phi_2(S), \phi_3(E, B, S), \phi_4(D, E), \phi_5(C, E)$$

Eliminate D and C (evidence) to get $\phi_6(E)$ and $\phi_7(E)$

Eliminate *E*

$$\phi_8(B,S) = \sum_e \phi_3(e,B,S)\phi_6(e)\phi_7(e)$$

Eliminate S

$$\phi_9(B) = \sum_s \phi_2(s) \phi_8(B, s)$$

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

C communication loss

$$P(B \mid d^1, c^1) \propto \phi_1(B) \sum_{s} \left(\phi_2(s) \sum_{e} \left(\phi_3(e \mid B, s) \phi_4(d^1 \mid e) \phi_5(c^1 \mid e) \right) \right)$$

VS

Naive
$$\longrightarrow$$
 $P(B \mid d^1, c^1) \propto \sum_s \sum_e \phi_1(B) \phi_2(s) \phi_3(e \mid B, s) \phi_4(d^1 \mid e) \phi_5(c^1 \mid e)$

 $P(B \mid d^1, c^1)$

Start with

$$\phi_1(B), \phi_2(S), \phi_3(E, B, S), \phi_4(D, E), \phi_5(C, E)$$

Eliminate D and C (evidence) to get $\phi_6(E)$ and $\phi_7(E)$

Eliminate *E*

$$\phi_8(B,S) = \sum_e \phi_3(e,B,S)\phi_6(e)\phi_7(e)$$

Eliminate S

$$\phi_9(B) = \sum_s \phi_2(s)\phi_8(B,s)$$

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

$$P(B \mid d^{1}, c^{1}) \propto \phi_{1}(B) \sum_{s} \left(\phi_{2}(s) \sum_{e} \left(\phi_{3}(e \mid B, s) \phi_{4}(d^{1} \mid e) \phi_{5}(c^{1} \mid e) \right) \right)$$

$$VS$$

$$P(B \mid d^1, c^1) \propto \sum_{s} \sum_{e} \phi_1(B) \phi_2(s) \phi_3(e \mid B, s) \phi_4(d^1 \mid e) \phi_5(c^1 \mid e)$$

Choosing optimal order is NP-hard

Break

 $X \perp Y \mid Z$

$$X \perp Y \mid Z \implies$$

 $X \perp Y \mid Z \implies \mathsf{All} \; \mathsf{of} \; X \mathsf{'s} \; \mathsf{influence} \; \mathsf{on} \; Y \; \mathsf{comes} \; \mathsf{through} \; Z$

$$P(X \mid Z) = P(X \mid Y, Z)$$

 $X \perp Y \mid Z \implies \mathsf{All} \; \mathsf{of} \; X$'s influence on Y comes through Z

$$P(X \mid Z) = P(X \mid Y, Z)$$

 $X \perp Y \mid Z \implies \mathsf{All} \; \mathsf{of} \; X$'s influence on Y comes through Z

$$P(X \mid Z) = P(X \mid Y, Z)$$

$$A \perp C \mid B$$
 ?

 $X \perp Y \mid Z \implies \text{All of } X \text{'s influence on } Y \text{ comes through } Z \qquad P(X \mid Z) = P(X \mid Y, Z)$

$$P(X \mid Z) = P(X \mid Y, Z)$$

$$A \perp C \mid B$$
 ? Yes

 $X \perp Y \mid Z \implies \mathsf{All} \; \mathsf{of} \; X \mathsf{'s} \; \mathsf{influence} \; \mathsf{on} \; Y \; \mathsf{comes} \; \mathsf{through} \; Z$

$$P(X \mid Z) = P(X \mid Y, Z)$$

 $X \perp Y \mid Z \implies \text{All of } X \text{'s influence on } Y \text{ comes through } Z \qquad P(X \mid Z) = P(X \mid Y, Z)$

$$P(X \mid Z) = P(X \mid Y, Z)$$

 $X \perp Y \mid Z \implies \text{All of } X \text{'s influence on } Y \text{ comes through } Z \qquad P(X \mid Z) = P(X \mid Y, Z)$

$$P(X \mid Z) = P(X \mid Y, Z)$$

 $X \perp Y \mid Z \implies \mathsf{All} \; \mathsf{of} \; X \mathsf{'s} \; \mathsf{influence} \; \mathsf{on} \; Y \; \mathsf{comes} \; \mathsf{through} \; Z$

$$P(X \mid Z) = P(X \mid Y, Z)$$

$$B \perp C \mid A$$
 ? Yes

 $X \perp Y \mid Z \implies \mathsf{All} \; \mathsf{of} \; X$'s influence on Y comes through Z

$$P(X \mid Z) = P(X \mid Y, Z)$$

$$B \perp C \mid A$$
 ? Yes

$$B \perp C \mid A$$
 ?

 $X \perp Y \mid Z \implies \mathsf{All} \; \mathsf{of} \; X \mathsf{'s} \; \mathsf{influence} \; \mathsf{on} \; Y \; \mathsf{comes} \; \mathsf{through} \; Z$

$$P(X \mid Z) = P(X \mid Y, Z)$$

 $A \perp C \mid B$? Yes

 $B \perp C \mid A$? Yes

 $B \perp C \mid A$? Inconclusive

 $X \perp Y \mid Z \implies \mathsf{All} \; \mathsf{of} \; X \mathsf{'s} \; \mathsf{influence} \; \mathsf{on} \; Y \; \mathsf{comes} \; \mathsf{through} \; Z$

$$P(X \mid Z) = P(X \mid Y, Z)$$

 $A \perp C \mid B$? Yes

 $B \perp C \mid A$? Yes

 $B \perp C \mid A$? Inconclusive

Mediator

 $X \perp Y \mid Z \implies \mathsf{All} \; \mathsf{of} \; X \mathsf{'s} \; \mathsf{influence} \; \mathsf{on} \; Y \; \mathsf{comes} \; \mathsf{through} \; Z$

$$P(X \mid Z) = P(X \mid Y, Z)$$

 $A \perp C \mid B$? Yes

Mediator

 $B \perp C \mid A$? Yes

 $B \perp C \mid A$? Inconclusive

Confounder

A Is a Child

C Diagnosed with Autism

 $X \perp Y \mid Z \implies \mathsf{All} \; \mathsf{of} \; X \mathsf{'s} \; \mathsf{influence} \; \mathsf{on} \; Y \; \mathsf{comes} \; \mathsf{through} \; Z$

$$P(X \mid Z) = P(X \mid Y, Z)$$

 $A \perp C \mid B$? Yes

Mediator

 $B \perp C \mid A$? Yes

Confounder

 $B \perp C \mid A$? Inconclusive

Collider

A Saw the Dietician

Is Overweight

C) Has Acne -

 $(B \perp D \mid A)$?

 $(B \perp D \mid A)$? Yes!

$$(B \perp D \mid A)$$
 ? Yes!

$$(B \perp D \mid E)$$
?

$$(B \perp D \mid A)$$
 ? Yes!

$$(B \perp D \mid E)$$
 ?

. Inconclusive

$$(B \perp D \mid A)$$
 ? Yes!

$$(B\perp D\mid E)$$
 ?

Why is this relevant?

d-Separation

d-Separation

Let \mathcal{C} be a set of random variables.

d-Separation

G

Let \mathcal{C} be a set of random variables.

A path between A and B is d-separated* by C if any of the following are true

Let \mathcal{C} be a set of random variables.

A path between A and B is d-separated* by C if any of the following are true

1. The path contains a *chain* X o Y o Z such that $Y \in \mathcal{C}$

Let \mathcal{C} be a set of random variables.

A path between A and B is d-separated* by C if any of the following are true

- 1. The path contains a *chain* $X \to Y \to Z$ such that $Y \in \mathcal{C}$
- 2. The path contains a *fork* $X \leftarrow Y \rightarrow Z$ such that $Y \in \mathcal{C}$

Let \mathcal{C} be a set of random variables.

A path between A and B is d-separated* by C if any of the following are true

- 1. The path contains a *chain* X o Y o Z such that $Y \in \mathcal{C}$
- 2. The path contains a *fork* $X \leftarrow Y \rightarrow Z$ such that $Y \in \mathcal{C}$
- 3. The path contains an *inverted fork* (v-structure) $X \to Y \leftarrow Z$ such that Y is *not* in \mathcal{C} and no descendant of Y is in \mathcal{C} .

path
$$A \rightarrow C \leftarrow B$$

not d-separated

Let \mathcal{C} be a set of random variables.

A path between A and B is d-separated* by C if any of the following are true

- 1. The path contains a *chain* $X \to Y \to Z$ such that $Y \in \mathcal{C}$
- 2. The path contains a *fork* $X \leftarrow Y \rightarrow Z$ such that $Y \in \mathcal{C}$
- 3. The path contains an *inverted fork* (v-structure) $X \to Y \leftarrow Z$ such that Y is *not* in C and no descendant of Y is in C.

We say that A and B are d-separated by C if all paths between A and B are d-separated by C.

Let \mathcal{C} be a set of random variables.

A path between A and B is d-separated* by C if any of the following are true

- 1. The path contains a *chain* X o Y o Z such that $Y \in \mathcal{C}$
- 2. The path contains a *fork* $X \leftarrow Y \rightarrow Z$ such that $Y \in \mathcal{C}$
- 3. The path contains an *inverted fork* (v-structure) $X \to Y \leftarrow Z$ such that Y is *not* in C and no descendant of Y is in C.

We say that A and B are d-separated by C if all paths between A and B are d-separated by C.

If A and B are d-separated by $\mathcal C$ then $A \perp B \mid \mathcal C$

- 1. The path contains a *chain* X o Y o Z such that $Y \in \mathcal{C}$
- 2. The path contains a *fork* $X \leftarrow Y \rightarrow Z$ such that $Y \in \mathcal{C}$
- 3. The path contains an *inverted fork* (v-structure) $X \to Y \leftarrow Z$ such that $Y \notin \mathcal{C}$ and no descendant of Y is in \mathcal{C} .

1. Enumerate all (non-cyclic) paths between nodes in question

- 1. The path contains a *chain* $X \to Y \to Z$ such that $Y \in \mathcal{C}$
- 2. The path contains a *fork* $X \leftarrow Y \rightarrow Z$ such that $Y \in \mathcal{C}$
- 3. The path contains an *inverted fork* (v-structure) $X \to Y \leftarrow Z$ such that $Y \notin \mathcal{C}$ and no descendant of Y is in \mathcal{C} .

- 1. Enumerate all (non-cyclic) paths between nodes in question
- 2. Check all paths for d-separation

- 1. The path contains a *chain* $X \to Y \to Z$ such that $Y \in \mathcal{C}$
- 2. The path contains a *fork* $X \leftarrow Y \rightarrow Z$ such that $Y \in \mathcal{C}$
- 3. The path contains an *inverted fork* (v-structure) $X \to Y \leftarrow Z$ such that $Y \notin \mathcal{C}$ and no descendant of Y is in \mathcal{C} .

- 1. Enumerate all (non-cyclic) paths between nodes in question
- 2. Check all paths for d-separation
- 3. If all paths d-separated, then CE

- 1. The path contains a *chain* $X \to Y \to Z$ such that $Y \in \mathcal{C}$
- 2. The path contains a *fork* $X \leftarrow Y \rightarrow Z$ such that $Y \in \mathcal{C}$
- 3. The path contains an *inverted fork* (v-structure) $X \to Y \leftarrow Z$ such that $Y \notin \mathcal{C}$ and no descendant of Y is in \mathcal{C} .

- 1. Enumerate all (non-cyclic) paths between nodes in question
- 2. Check all paths for d-separation
- 3. If all paths d-separated, then CE

- 1. The path contains a *chain* $X \to Y \to Z$ such that $Y \in \mathcal{C}$
- 2. The path contains a *fork* $X \leftarrow Y \rightarrow Z$ such that $Y \in \mathcal{C}$
- 3. The path contains an *inverted fork* (v-structure) $X \to Y \leftarrow Z$ such that $Y \notin \mathcal{C}$ and no descendant of Y is in \mathcal{C} .

- 1. Enumerate all (non-cyclic) paths between nodes in question
- 2. Check all paths for d-separation
 3. If all paths d-separated, then CE independence

G= {C, E}

Example:
$$(B \perp D \mid \widetilde{C,E})$$
 ?

- 1. The path contains a *chain* $X \to Y \to Z$ such that $Y \in \mathcal{C}$
- 2. The path contains a *fork* $X \leftarrow Y \rightarrow Z$ such that $Y \in \mathcal{C}$
- 3. The path contains an *inverted fork* (v-structure) $X \to Y \leftarrow Z$ such that $Y \notin \mathcal{C}$ and no descendant of Y is in \mathcal{C} .

- 1. The path contains a *chain* X o Y o Z such that $Y \in \mathcal{C}$
- 2. The path contains a *fork* $X \leftarrow Y \rightarrow Z$ such that $Y \in \mathcal{C}$
- 3. The path contains an *inverted fork* (v-structure) $X \to Y \leftarrow Z$ such that $Y \notin \mathcal{C}$ and no descendant of Y is in \mathcal{C} .

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

C communication loss

- 1. The path contains a *chain* X o Y o Z such that $Y \in \mathcal{C}$
- 2. The path contains a *fork* $X \leftarrow Y \rightarrow Z$ such that $Y \in \mathcal{C}$
- 3. The path contains an *inverted fork* (v-structure) $X \to Y \leftarrow Z$ such that $Y \notin \mathcal{C}$ and no descendant of Y is in \mathcal{C} .

$$D \perp C \mid B$$
 ?

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

C communication loss

- 1. The path contains a *chain* X o Y o Z such that $Y \in \mathcal{C}$
- 2. The path contains a *fork* $X \leftarrow Y \rightarrow Z$ such that $Y \in \mathcal{C}$
- 3. The path contains an *inverted fork* (v-structure) $X \to Y \leftarrow Z$ such that $Y \notin \mathcal{C}$ and no descendant of Y is in \mathcal{C} .

$$D \perp C \mid B$$
 ?

$$D\perp C\mid E$$
 ?

- B battery failure
- S solar panel failure
- E electrical system failure
- D trajectory deviation
- C communication loss

- 1. The path contains a *chain* $X \to Y \to Z$ such that $Y \in \mathcal{C}$
- 2. The path contains a *fork* $X \leftarrow Y \rightarrow Z$ such that $Y \in \mathcal{C}$
- 3. The path contains an *inverted fork* (v-structure) $X \to Y \leftarrow Z$ such that $Y \notin \mathcal{C}$ and no descendant of Y is in \mathcal{C} .

Recap