Ordonnancement sur machines parallèles

SIO - Laboratoire 2

Nicolas Crausaz & Maxime Scharwath

Table des matières

10	odélisation mathématique	3
	Définition des variables de décision	3
	Définition de la fonction objectif	3
	Définition des contraintes	3
	On défini les contraintes suivantes	4
	On défini les variables binaires suivantes	4

Modélisation mathématique

Le contexte de ce travail est d'effectuer la modélisation d'un problème d'ordonnancement, consistant à trouver un plan d'ordonnancement permettant de répartir n tâches, devant toutes être réalisée, en disposant de m machines différentes (travail en parrallèle), cela en minimisant le retard moyen de l'éxécution des tâches.

Nous connaissons les constantes suivantes:

Pour chaque tâche i = 1, ..., n:

- Sa date de disponibilité (date de début au plus tôt, release date) r_i
- Sa date d'échéance (date de fin au plus tard, due date) d_i
- Son temps d'exécution (durée de réalisation, processing time) p_i

On supposera, sans perte de généralité, que la plus petite date de disponibilité est égale à 0 et que les données sont cohérentes et vérifient, en particulier, $r_i >= 0$ et $p_i >= 0$ pour chaque tâche i=1,..,n.

Définition des variables de décision

Nous définissons les variables de décision suivantes:

 X_i : date de début de l'execution de la tâche i, i = 1, ..., n.

 N_i : le numéro de la machine sur laquelle est executé la tâche i, i = 1, ..., n L'exécution de chaque tâche i ne peut commencer avant sa date de disponibilité r_i :

$$X_i >= r_i$$
, pour tout i

On defini le retard (tardiness) Ti de la tâche i par - $T_i = \max_{i=1,\dots,n} (0, x_i + p_i - d_i)$

Définition de la fonction objectif

$$Minimiser z = \frac{1}{n} \sum_{i=1}^{n} T_i$$

Définition des contraintes

1 tâche sur une seule machine

L'exécution de chaque tâche ne peut commencer avant sa date de disponibilité.

La tâche suivante doit être exécuté après la date de fin + le retard de la tâche précédente pour chaque paire {i, j} de tâches différentes, soit la tâche i termine son exécution avant que la tâche j ne débute la sienne soit c'est l'inverse. Toute solution admissible doit donc vérifier xi + pi <= xj ou xj + pj <= xi 1 <= i < j <= n (ajouter le retard)</p>

Non négativité de T_i , X_i

On défini les contraintes suivantes

On défini les variables binaires suivantes

− yij pour chaque paire {i,j} de tâche sur machine