COMP 3270 Introduction to Algorithms

Homework 2

1. (20pts) Compare the following pairs of functions in terms of order of magnitude. In each case, say whether f(n) = O(g(n)), f(n) = O(g(n)), or f(n) = O(g(n)).

	f(n)	g(n)	
a.	100n + log n	$n + (\log n)^2$	
b.	log n	$log(n^2)$	
c.	$\frac{n^2}{\log n}$	$n(\log n)^2$	
d.	$n^{\frac{1}{2}}$	log n ⁵	
e.	$n2^n$	3^n	

2. (30 pts) Use the Master Method to solve the following three recurrence relations and state the complexity orders of the corresponding recursive algorithms.

(a)
$$T(n) = 2T(99n/100) + 100n$$

(b)
$$T(n) = 16T(n/2) + n^3 lgn$$

(c)
$$T(n) = 16T(n/4) + n^2$$

3. (50 pts) Use the Substitution Method to solve the following recurrence relation. Give an exact solution:

$$T(n) = T(n-1) + n/2$$