SML (CSE342/ ECE356) Quiz 1

Each question carries 2 marks.

Duration: 1 hr

Q1. Perform hierarchical clustering on the given data:

Α	(1, 1)
В	(1.5, 1.5)
С	(5, 5)
D	(3, 4)
Е	(4,4)
F	(3, 3.5)

Use Manhattan distance as the distance metric. Draw the dendrogram.

Q2. Find out which of the two clustering results is better using Silhouette analysis

	Х	Cluster	Silhouette
	^	lds	Score
Α	(4, 4)	1	0.2701
В	(0, 6)	0	0.3591
С	(-2, 4)	0	0.1464
D	(2, 4)	1	0.1796
Е	(0, 2)	1	0.3095
F	(2, 6)	0	-0.04199

	Х	Cluster Ids	Silhouette Score
Α	(4, 4)	0	0.5154
В	(0, 6)	1	-0.0919
С	(-2, 4)	1	0.4137
D	(2, 4)	0	0.3787
E	(0, 2)	1	0.13
F	(2, 6)	0	0.3382

Avg: 0.20378

0.28068

Seconding clustering is better.

Q3. Perform Fuzzy c-means clustering on the following data:

Α	(4, 4)
В	(0, 6)
С	(-2, 4)
D	(2, 4)
Е	(0, 2)
F	(2, 6)

In the first iteration, assume fuzzy centroids are (-2,6) and (2,2). Compute fuzzy centroids and membership matrix in the third iteration. Assume m=2.

Iteration: 1

Cluster Centers: [[-2, 6], [2, 2]]

Membership Matrix: [[0.167, 0.833], [0.833, 0.167], [0.833, 0.167], [0.167, 0.833], [0.167, 0.833],

[0.5, 0.5]] **Iteration: 2**

Cluster Centers: [[-0.419, 5.064], [1.930, 3.651]]

 $Membership\ Matrix:\ [[0.176,\ 0.824],\ [0.898,\ 0.102],\ [0.811,\ 0.189],\ [0.018,\ 0.982],\ [0.403,\ 0.597],$

[0.451, 0.549]] **Iteration: 3**

Cluster Centers: [[-0.421, 4.910], [2.205, 3.962]]

Membership Matrix: [[0.137, 0.863], [0.869, 0.131], [0.842, 0.158], [0.006, 0.994], [0.502, 0.498],

[0.373, 0.627]]

Q4. Perform PCA on the following data.

X ₁	1	3	0
X_2	2	4	6

where X1 and X2 are features.

Standardize:

X1	X2
-0.2182	-1
1.0911	0
-0.8729	1

The covariance matrix:

1	-0.3273
-0.3273	1

Eigenvectors:

0.7071	0.7071
-0.7071	0.7071

Parameter	PC ₁	PC₂	
Eigenvalue	1.3273	0.6727	

Final projections:

PC ₁	PC ₂
0.5528	-0.8614
0.7715	0.7715
-1.3243	0.08989

Q5. Explain the following with a suitable diagram:

Supervised Learning

2. Unsupervised Learning

Refer to lecture slides.

AI

		4	В	2	D	E	F	
A		0	1	8	5	6	5.8	
B		1	0	7	4	5	3.5	
_		8	7	0	3	2	3.5	
D		5	4	3	0	1	0.5	
E		6	5	2	1	0	1.5	
F		5.8	3.0	3.5	(O.S)	1.5	0	
	Mury D, $F \Rightarrow 3, 3.78$ $d_{DF-a} = min (d_{a-1}, d_{E-a})$							
		4	В	2	0,6		2	
A		0	1	8	4.5	-	L	
В		1	0	7	3.8		5	
	_ 8		7	0	3		2	
0,6		4.8	3.5	3	0		1	
6		6	5	2	1		0	

Murge D, F &E, Mage AB.

Similarly, solving fourther we will get the following andogras.

AZ

	A	B	<u></u>		E	F
A	0	215	6	2	215	2/2
B	2/5	0	2/2	2/2	4	2
<u></u>	Б	2/2	0	4	2/2	25
D	2	252	4	0	2/2	2
E	2,5	9	2/2	252	0	2/5
F	252	2	25	2	25	0

a
$$(A)^{2}$$
 L $(d(A,D)+d(A,E))$
 2 $(2+2\sqrt{5})$
 $(2+2\sqrt{5})$
 $(2+2\sqrt{5})$
 $(2+2\sqrt{5})$

$$b(A) = \int_{3}^{2} \left(\frac{d(A,B) + id(A,C)}{d(A,F)} \right)$$

$$= \int_{3}^{2} \left(2 \int_{5}^{2} + 6 + 2 \int_{2}^{2} \right)$$

$$= \frac{2}{3} \left(\int_{5}^{2} + 3 + \int_{2}^{2} \right)$$

$$\approx \frac{4.43352}{3}$$

S(A) = b(A) - a(A) max(a(A), b(A))

≈ 0.2701

Similarly for other points