B.TECH/EE/6TH SEM/ELEC 3202/2023

MICROPROCESSOR & MICROCONTROLLER (ELEC 3202)

Time Allotted: 3 hrs Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)							
Choos	e the correct alte	rnative for the fo	llowing:	$10 \times 1 = 10$			
(i)	(a) all flags will b	e affected	l by Intel 8085 mic (b) no flags will b (d) carry and zer	=			
(ii)		er" in 8085 microp (b) 16 bit registe	•	r (d) 4 bit register.			
(iii)	data in H-L regist	er pair?	s of the 8085 micro (c) LXI H, 9876 ^H	oprocessor will load 9876 ^H (d) LDA 9876 ^H .			
(iv)	Which one of the subroutines and it (a) Stack	•		cal pieces of data during (d) Data register.			
(v)	Which one of the (a) 003C ^H	following is the ca (b) 0036 ^H	ll location of RST6 (c) 0034 ^H	.5 interrupt? (d) 0024 ^H .			
(vi)	be the status of ca	arry flag (CY) and a		etruction CPI 82^{H} what will (d) CY=1 & Z=0.			
(vii)	The address rang (a) $00^{\rm H}$ - $77^{\rm H}$	ge of SFRs in 8051 i (b) 40 ^H -80 ^H		(d) 80 ^H -FF ^H .			
(viii)		de 0 in 8051 micro (b) FFFF ^H		w when the register reaches (d) $03FF^{H}$			
(ix)	Which of the follo (a) MOV R0, R7	owing instructions (b) MOV R0, A	is invalid for an 80 (c) MOV 2,7	051 microcontroller? (d) MOV A, @R0.			
(x)	Embedded ROM s (a) 2K bytes	size in 8051 micro (b) 4K bytes	controller is (c) 8K bytes	(d) 64K bytes.			

1.

Group-B

- 2. (a) Explain the timing diagram of the instruction IN 80H related to the 8085 microprocessor. [(CO1)(Understanding/LOCQ)]
 - (b) Sketch a neat diagram of bus structure of the 8085 microprocessor and explain it. [(CO1)(Apply/IOCQ)]
 - (c) Evaluate the time required by the 8085 microprocessor to execute the instruction OUT D8 H. Consider a crystal frequency of 6 MHz.

[(CO1)(Evaluate/HOCQ)]

4 + 5 + 3 = 12

- 3. (a) Define the following instructions related to 8085 microprocessor:
 - (i) PUSH B

(ii) RLC.

[(CO1)(Remember/LOCQ)]

(b) Identify the status of (i) Sign , (ii) Zero, (iii) Auxiliary Carry, (iv) Carry, (v) Parity flags and (vi) Accumulator contents after execution of the following program for 8085 microprocessor.

MVI A, $2E^H$

ADI 71^H

HLT.

[(CO1)(Apply/IOCQ)]

(c) Develop an Assembly Language Program for the 8085 microprocessor to multiply (by repeated addition method) two 8-bit numbers which are stored in memory locations F001 and F002, respectively. The result (which may be 16 bit or 8 bit) is to be stored in memory locations F100^H and F101^H.

[(CO1)(Create/HOCQ)]

4 + 4 + 4 = 12

Group - C

- 4. (a) Illustrate the accumulator bit pattern for execution of instruction RIM and explain the function of each bit. [(CO2)(Understand/LOCQ)]
 - (b) Interface a 16 KB EPROM IC with the 8085 microprocessor using a NAND gate address decoder such that the starting address assigned to the chip is C000^H.

[(CO2)(Apply/IOCQ)]

(c) Explain the software instructions EI.

[(CO2)(Evaluate/HOCQ)]

4 + 5 + 3 = 12

- 5. (a) What will be the control words for 8255A in BSR mode to set bit PC6 and bit PC7 and reset bit PC3? [(CO2)(Remembering/LOCQ)]
 - (b) Explain the control word format of 8255A for I/O mode.

[(CO2)(Evaluate/HOCQ)]

(c) Develop an assembly language program for Intel 8085 microprocessor to generate a triangular wave using 8255A. Assume the address of the control register is 83^H and the output device is connected with port B of 8255A and also assume the address of port B is 81^H. [(CO2)(Apply/IOCQ)]

3 + 4 + 5 = 12

Group - D

- 6. (a) Draw the bit pattern of the PSW register of the 8051 microcontroller and explain the function of each bit. [(CO3)(Understand/LOCQ)]
 - (b) Analyze the architecture of the internal RAM of the 8051 microcontroller.

[(CO3)(Analyze/IOCQ)]

(c) Develop an assembly language program to toggle all the bits of port 1 continuously after some delay. Assume a suitable delay subroutine.

[(CO3)(Create/HOCQ)]

4 + 5 + 3 = 12

- 7. (a) Explain the following 8051 microcontroller instructions:
 - (i) ADD A, 25^H
 - (ii) DIV AB
 - (iii) MOV A, # 2BH.

[(CO3)(Understand/LOCQ)]

(b) Construct an 8051 microcontroller based assembly language program to generate a square wave of 75% duty cycle of frequency 1 kHz through the pin P1.0 while considering the crystal frequency as 11.0592 MHz.

[(CO3)(Apply/IOCQ)]

(c) Conclude the status of CY, OV and AC flags of the 8051 microcontroller, after execution of the following set of instructions.

MOV R0, # 25H

MOV 25^H, # 0A5^H

MOV A, # 33H

ADD A, @ R0.

[(CO3)(Create/HOCQ)]

4 + 5 + 3 = 12

Group - E

- 8. (a) Determine the value to be loaded in the TH1 register of timer 1 to obtain a baud rate of (i) 9600 bps and (ii) 1200 bps. Assume crystal frequency to be 11.0592 MHz, SMOD = 0. [(CO4)(Understand/LOCQ)]
 - (b) Derive the BAUD rate equation for serial communication in context of mode 1 operation of UART and explain the role of SMOD bit. [(CO4)(Apply/IOCQ)]
 - (c) Develop an Assembly Language Program for the 8051 microcontroller to receive bytes of data serially and put them in port 1 using '9600, N, 8, 1' protocol. Consider a crystal frequency of 11.0592 MHz. [(CO4)(Create/HOCQ)]

4 + 5 + 3 = 12

9. (a) Design the interfacing connection of 8051 microcontroller with DAC0808.

[(CO4)(Create/HOCQ)]

- (b) Explain the above circuit in detail. [(CO4)(Understand/LOCQ)]
- (c) Develop an Assembly Language Program to generate a staircase waveform of 5 steps in the above circuit. [(CO4)(Apply/IOCQ)]

3 + 3 + 6 = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	31	42	27

Course Outcome (CO):

After the completion of the course students will be able to

- CO1: Explain the architecture of 8085 microprocessor and apply the concept of instruction sets to write assembly language program.
- CO2: Acquire knowledge of 8085 interrupt structure and interface read/write and read-only memories, input & output devices with microprocessor.
- CO3: Analyze the internal architecture of 8051 microcontroller and apply the concept of instruction sets to write assembly language program.
- CO4: Understand the interfacing of internal and external program and data memory, different peripheral devices with 8051 microcontroller.

*LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question.