Министерство образования Республики Беларусь Учреждение образования «Гомельский государственный технический университет имени П.О.Сухого»

Кафедра «Нефтегазоразработка и гидропневмоавтоматика»

ОТЧЕТ по лабораторным работам

по курсу «Механика жидкости и газа»

Определение плотности и кинематической вязкости рабочей жидкости

Цель работы: изучить теоретическую информацию, ознакомиться с устройствами для определения плотности и вязкости жидкости, определить плотность и вязкость нескольких рабочих жидкостей и сравнить их со справочными величинами.

1.1 Общие сведения

К основным физическим свойствам жидкостей следует отнести те её свойства, которые определяют особенности поведения жидкости при её движении: характеризующие концентрацию жидкости в пространстве, определяющие процессы деформации жидкости и величину внутреннего трения в жидкости при её движении, поверхностные эффекты.

Плотность жидкости определяет её концентрацию в пространстве — это масса жидкости m, заключённая в единице объёма V

$$\rho = \frac{m}{V}$$
, $\kappa \Gamma / M^3$.

Плотность характеризует инерционные свойства сплошной среды и в общем случае зависит от координат точки и времени $\rho = f(x, y, z, t)$.

При движении реальной жидкости по внутренним каналам гидропривода расходуется часть энергии жидкости на работу против сил внутреннего трения. Эти безвозвратные потери механической энергии носят название диссипации энергии и представляют собой необратимый переход кинетической энергии потока в тепловую энергию молекулярного движения.

Величины плотности реальных капельных жидкостей в стандартных условиях изменяются в системе единиц СИ в широких пределах (таблица 1.1).

Таблица 1.1. Плотность некоторых жидкостей при температуре 20°C и атмосферном давлении 0,1 МПа

Жидкость	ρ, $κΓ/M3$	Жидкость	ρ, κΓ/m ³
Бензин	712 - 780	Масло минеральное	860 – 930
Спирт этиловый	789	Вода пресная	998,2
Керосин	790 – 860	Вода морская	1020 - 1030
Нефть	760 – 900	Глицерин безводный	1260
Топливо дизельное	831 – 861	Ртуть	13546

Вязкость — это свойство жидкости сопротивляться сдвигу её слоёв, которое проявляется в результате движения. Вязкость — это свойство противоположное текучести: более вязкие жидкости (глицерин, смазочные масла и т.д.) являются менее текучими, и наоборот.

При течении жидкости вдоль твёрдой стенки происходит торможение потока, из-за вязкости (рис. 1.1). Скорость слоев жидкости υ уменьшается при уменьшении расстояния y от стенки вплоть до $\upsilon=0$ при y=0. Между слоями жидкости происходит проскальзывание, и возникают напряжения трения.

Рисунок 1.1. – Действие сил внутреннего трения

Закон жидкого трения Ньютона: напряжения, возникающие при деформации потока жидкости, пропорциональны градиенту скорости в движущихся слоях жидкости

$$\tau = \mu \cdot \frac{dv}{dv}$$
, Πa

где μ - коэффициент пропорциональности — динамический коэффициент вязкости жидкости; $d\upsilon$ - изменение скорости, соответствующее изменению координаты dy.

Единицы измерения динамического коэффициента вязкости жидкости:

$$1 \Pi (\Pi ya3) = 0,1 \Pi a \cdot c = 0,0102 \text{ кгс} \cdot c/\text{м}^2.$$

Для практических расчетов установившегося движения жидкости используется кинематический коэффициент вязкости

$$v = \frac{\mu}{\rho}$$
.

Кинематическая вязкость жидкости имеет размерность Стокс:

$$1 \text{ CT} = 1 \text{ cm}^2/\text{c} = 10^{-4} \text{ m}^2/\text{c}.$$

Коэффициент вязкости является физической характеристикой сплошной среды и для нормальных жидкостей и всех газов не зависит от кинематических характеристик движения (т.е. от распределения скоростей).

Для минеральных масел, применяемых в гидроприводах, кинематический коэффициент вязкости v_T при любой температуре T °C можно определить по формуле

$$\mathbf{v}_T = \mathbf{v}_{50} \cdot \left[\frac{50}{T} \right]^n,$$

где v_{50} – кинематический коэффициент вязкости жидкости при температуре 50 °C (таблица 1.2);

n – показатель степени, зависящий от вязкости масла при 50 °C $\rm v_{50}$

$$n = \lg v_{50} + 2.7$$
.

Таблица 1.2. Значения n в зависимости от кинематического коэффициента вязкости жидкости при температуре 50 °C

ν ₅₀ , cCτ	n	ν ₅₀ , cCτ	n	ν ₅₀ , cCτ	n
2,8	1,39	21,2	1,99	52,9	2,42
6,25	1,59	29,3	2,13	60,6	2,49
9,0	1,72	37,3	2,24	68,4	2,52
11,8	1,79	45,1	2,32	80,0	2,546

Вязкость жидкости измеряют при помощи вискозиметров.

Наиболее распространенным является вискозиметр Энглера (рис.1.2), который представляет собой цилиндрический сосуд диаметром 106 мм, с короткой трубкой диаметром 2,8 мм, встроенной в дно. Время t истечения 200 см³ испытуемой жидкости из вискозиметра через эту трубку под действием силы тяжести, деленной на время $t_{\rm вод}$ истечения того же объема дистиллированной воды при 20 °C выражает вязкость в градусах Энглера

$$1^{\circ}E=t/t_{\text{вод}}$$
,

где $t_{вод} = 51,6$ с.

Формула для пересчёта градусов Энглера в стоксы для минеральных масел

$$v = 0.073$$
°E - $\frac{0.063}{^{\circ}F}$, Ct.

Рисунок 1.2 - Вискозиметр Энглера: 1 - сосуд с испытуемой жидкостью, 2 - водяная баня, 3 — нагревательный прибор; 4 - калиброванное отверстие; электрический прибор, 5 — игла запорная; 6 и 7 - термометры,

1.2 Оборудование и приборы

При определении кинематической вязкости жидкостей в лабораторных условиях применяется следующая аппаратура:

- 1) Наборы капиллярных стеклянных вискозиметров типа ВПЖ-2 (рис.
- 1.3, *a*). Внутренний диаметр капилляра: 0,99 мм и 0,73 мм.
- 2) Секундомер.

При определении плотности жидкостей применяется следующая аппаратура:

- 1) Набор денсиметров типа АОН (ареометры общего назначения) по ГОСТ 18481-81 с ценой деления $20 \div 0.5$ кг/м³ (рис. 1.3, δ).
- 2) Стеклянные цилиндры, заполненные испытуемой жидкостью.
- 3) Термометр для определения температуры жидкости.

Рисунок 1.3. - Приборы для измерения: а) вискозиметр стеклянный капиллярный типа ВПЖ-2; б) ареометр типа АОН

- 1.3 Порядок проведения работы
- 1.3.1 Определение вязкости жидкости
- 1) К концу трубки 1 лабораторного вискозиметра (рис. 1.3, a) присоединить резиновую трубку с грушей (или другим устройством) для создания разрежения.
- 2) Пропустить жидкость через прибор для получения смазывающего слоя на внутренней поверхности прибора, т.о. чтобы жидкость поднялась выше уровня M_1 (рис. 1.3, a).
- 3) Измерить температуру окружающей среды по термометру.
- 4) Установить уровень жидкости так чтобы мениск жидкости находился выше уровня M_1 , примерно до середины расширения 4 и отсоединить грушу. Определить время опускания мениска жидкости от метки M_1 до M_2 .
- 5) Произвести несколько измерений времени истечения жидкости (минимум три раза).

1.3.2 Измерение плотности жидкости

- 1) Ознакомиться с набором денсиметров (ареометров) и определить возможный диапазон измерения плотности.
- 2) Измерить температуру рабочей жидкости.
- 3) В стеклянный цилиндр, диаметр которого больше диаметра поплавка денсиметра не менее чем в два раза, налить испытуемую жидкость.
- 4) Чистый и сухой денсиметр осторожно поместить в цилиндр с жидкостью, удерживая прибор за верхний конец. Испытание следует начинать с самых легких денсиметров. После того, как прекратится колебания денсиметра, определить по его шкале показание плотности.
- 5) Вынуть денсиметр из цилиндра и удалить жидкость с его поверхности.
- 6) Произвести измерение плотности для нескольких жидкостей.

1.4 Обработка опытных данных

1) Определение вязкости жидкости

Вычислить среднее арифметическое значение времени течения жидкости в вискозиметре (с точностью до $0,1\,c)$

$$t_{\rm cp} = \frac{\sum t_i}{n} = \underline{\qquad}, c$$

где t_i – время течения жидкости в вискозиметре по опыту, с;

n — количество опытов.

Определить коэффициент кинематической вязкости испытуемой жидкости по формуле

$$v = C \cdot t_{cp} \cdot K =$$
 ______, cCT

где C = 1 – коэффициент, учитывающий изменение гидростатического напора жидкости в результате расширения её при нагревании.

K — постоянная вискозиметра, сСт/с (указана на приборе).

Результаты измерений и расчетов занести в таблицу 1.3 и определить вид рабочей жидкости.

Таблица 1.3 - Результаты измерений и расчетов вязкости жидкости

№	Время течения жидкости <i>t</i> ,с				Темпер атура	Кинематический коэффициент	Вид рабочей
п.п	t_1	<i>t</i> ₂	<i>t</i> ₃	tcp	T, °C	вязкости, у, сСт	жидкости

2) Измерение плотности жидкости	
Измерить температуру рабочей жилкости $T=$	°C

Определить плотность жидкости по денсиметру $\rho = ____, \ \kappa \Gamma/M^3$

Для получения сравнительных результатов, произвести перерасчет экспериментально полученных значений плотности по уравнению

$$ρ_0 = ρ + α_ρ \cdot ΔT =$$
 _______, κΓ/M³

где ρ_0 – плотность рабочей жидкости при температуре 20 °C, кг/м³;

 ΔT - разность температуры опыта и нормальной температуры в 20 °C;

 α_{ρ} - средняя температурная поправка плотности, кг/м³.°С(табл. 1.4).

Таблица 1.4. Значения средней температурной поправки $\alpha_{\rm o}$

Плотность	Поправка на 1°С	Плотность	Поправка на 1°С
ρ , $\kappa \Gamma / M^3$	α_{ρ} , kg/m ³ .°C	ρ , $\kappa\Gamma/M^3$	α_{ρ} , kg/m ³ .°C
700 ÷ 710	0,897	851 ÷ 860	0,699
$711 \div 720$	0,884	861 ÷ 870	0,686
$721 \div 730$	0,870	871 ÷ 880	0,672
731 ÷ 740	0,857	881 ÷ 890	0,660
741 ÷ 750	0,844	891 ÷ 900	0,647
$751 \div 760$	0,831	901 ÷ 910	0,633
761 ÷ 770	0,818	911 ÷ 920	0,620
$771 \div 780$	0,805	921 ÷ 930	0,607
781 ÷ 790	0,792	931 ÷ 940	0,594
$791 \div 800$	0,778	$941 \div 950$	0,581
801 ÷ 810	0,765	951 ÷ 960	0,567
811 ÷ 820	0,752	961 ÷ 970	0,554
821 ÷ 830	0,738	971 ÷ 980	0,541
831 ÷ 840	0,725	981 ÷ 990	0,578
840 ÷ 850	0,712	991 ÷ 1000	0,515

Результаты измерений и вычислений занести в таблицу 1.5.

Таблица 1.5 - Результаты измерений и расчетов плотности жидкости

Вид жидкости	Температура, <i>T</i> , °C	Плотность, р, кг/м ³	Температур- ная поправка плотности, α_{ρ} , кг/м ^{3.°} С	Плотность при $20~^{\circ}\text{C}, \rho_0, \text{кг/м}^3$	
				расчетная	спра- вочная

1.5 Контрольные вопросы

- 1) Какие свойства рабочих жидкостей относятся к основным? Что они характеризуют?
- 2) По какой формуле определяется плотность?
- 3) В каких единицах измеряется плотность?
- 4) Что такое плотность рабочей жидкости?
- 5) Что характеризует плотность и от чего зависит в общем случае?
- 6) Что определяет плотность жидкости?
- 7) Чему равна плотность наиболее распространенных жидкостей?
- 8) Что такое денсиметр и для чего он используется?
- 9) Как производится измерение плотности при проведении эксперимента?
- 10) По какой формуле производится пересчет плотности на температуру, соответствующую эксперименту?
- 11) Что такое вязкость жидкости?
- 12) Какими коэффициентами характеризуется вязкость?
- 13) Как вязкость связана с текучестью?
- 14) Почему вязкость называется важнейшим свойством рабочих жидкостей?
- 15) При каких условиях проявляется вязкость жидкости?
- 16) Сформулируйте закон жидкого трения Ньютона.
- 17) Как связаны между собой динамическая и кинематическая вязкость?
- 18) В каких единицах измеряется динамическая и кинематическая вязкость в системе СИ?
- 19) Какие единицы измерения вязкости наиболее часто используются в инженерных расчетах?
- 20) Как проявляется зависимость вязкости жидкости от температуры?
- 21) По какой формуле можно определить вязкость масла при любой рабочей температуре?
- 22) Какими приборами измеряется вязкость?
- 23) Как определяется вязкость при измерении вискозиметром Энглера?
- 24) По какой формуле производится пересчет градусов Энглера в Стоксы для минеральных масел?