Pattern avoidance An explanation and proof

Yajit Jain, Deepak Narayanan and Leon Zhang

November 14, 2014

Plan of action

- 1 Definition, Introduction and Motivation
- **2** Avoidance in S_n
- **3** Avoidance in T_n

Definition, Introduction and Motivation

Lemma

The permutations of $\{1, 2, ..., k, k+1\}$ ending in i that avoid the pattern 312 are precisely those of the form,

$$\pi_1\pi_2i$$

the concatenation of π_1, π_2 , and i, where π_1 is a permutation of $\{1, 2, \ldots, i-1\}$ that avoids the pattern 312 and π_2 is a permutation of $\{i+1, \ldots, k+1\}$ that avoids the pattern 312.

Proof.

For the sake of contradiction, assume that there exists some permutation π of $\{1, 2, ..., k, k + 1\}$ that avoids 312, ending with value i such that some integer x < i is to the right of some integer y > i. Clearly, π does not avoid 312. (why?) It follows that for any permutation $\pi \in S_{k+1}$ avoiding 312 and ending in i, all x < i must be to the left of all y > i. Hence, π can be written as $\pi_1\pi_2i$ where π_1 is a permutation of $\{1,2,\ldots,i-1\}$ and π_2 is a permutation of $\{i+1, i+2, \ldots, k+1\}$. Furthermore, it is clear that any subsequences of the permutation π must avoid 312 if the entire permutation π is to avoid 312 as well; this implies that the permutations π_1 and π_2 must avoid 312 as well.

Definition

The Catalan numbers are the sequence of positive integers C_i defined as follows,

$$C_0 = 1, \ C_{n+1} = \sum_{i=1}^n C_i C_{n-i} \text{ for } n \ge 0$$

Theorem

 $s_n(312), s_n(132), s_n(213)$, and $s_n(231)$ are equal to C_n , the n^{th} Catalan number.

Proof.

Assume that for all i from 1 to k, the number of permutations of $\{1,2,...,i\}$ that avoid the order 312 as a subsequence is C_i . Want to prove that the number of permutations of $\{1,2,...,k,k+1\}$ that avoid the order 312 as a subsequence is C_{k+1} .

The number of permutations of $\{1, 2, ..., k, k+1\}$ that avoid 312 can be counted by enumerating through all possible values of the last term of a valid permutation.

From the above lemma, all permutations of $\{1, 2, ..., k, k + 1\}$ ending in i that avoid 312 are precisely those of the form

$$\pi = \pi_1 \pi_2 i$$

where π_1 is a permutation of $\{1, 2, ..., i-1\}$ that avoids 312 and π_2 is a permutation of $\{i+1, i+2, ..., k+1\}$ that avoids 312.

Proof (contd.)

It follows that the total number of permutations π avoiding 312 and ending in i is

$$C_{i-1} \cdot C_{k-i+1}$$

(by our induction hypothesis)

Now, summing over all possible values of i, the total number of permutations of $\{1, 2, ..., k + 1\}$ that avoid 312 is equal to,

$$\sum_{i=1}^{k+1} C_{i-1} \cdot C_{k-i+1} = \sum_{i=0}^{k} C_i \cdot C_{k-i}$$

which equals C_{k+1}

By the flipping lemma and reversing lemma, $s_n(132)$, $s_n(213)$ and $s_n(231)$ are the sequence of Catalan numbers as well.

Avoidance in T_n