Algebra und Zahlentheorie SS 2019

Dozent: Prof. Dr. Arno Fehm

6. April 2019

In halts verzeichnis

Ι	Körper		
	1	Körpererweiterungen	3
	2	Algebraische Körpererweiterungen	6

Vorwort

Kapitel I

Körper

1. Körpererweiterungen

Sei K, L, M Körper.

▶ Bemerkung 1.1

In diesem Kapitel bedeutet "Ring" <u>immer</u> kommutativer Ring mit Einselement, und ein Ringhomomorphismus bildet stets das Einselement auf das Einselement ab. Insbesondere gibt es für jeden Ring einen eindeutig bestimmten Ringhomomorphismus : $\mathbb{Z} \to R$.

▶ Bemerkung 1.2

- (a) Ein Körper ist ein Ring R, in dem eine der folgenden äquivalenten bedingungen gilt:
 - 1) $0 \neq 1$ und jedes $0 \neq x \in R$ ist invertierbar
 - $2) \ R^{\times} = R \setminus \{0\}$
 - 3) R hat genau zwei Hauptideale (nämlich (0) und (1))
 - 4) (0) ist ein maximales Ideal von R
 - 5) (0) ist das einzige echte Ideal von R
 - 6) (0) ist das einzigste Primideal von R
- (b) Insbesondere sind Körper nullteilerfrei, weshalb $\operatorname{Ker}(\mathbb{Z} \to K)$ prim ist.
- (c) Aus (5) folgt: Jeder Ringhomomorphismus $K \to L$ ist injektiv
- (d) Der Durchschnitt einer Familie von Teilkörpern von K ist wieder ein Teilkörper von K.

Definition 1.3 (Charakteristik)

Die Charakteristik von K, char(K), ist das $p \in \{0, 2, 3, 5, 7, \ldots\}$ mit $\operatorname{Ker}(\mathbb{Z} \to K) = (p)$.

■ Beispiel 1.4

- 1. $\mathrm{char}(\mathbb{Q})=0$ und $\mathrm{char}(\mathbb{F}_p)=(p)$ $(p=\mathrm{Primzahl}),$ wobei $\mathbb{F}_p=\mathbb{Z}/p\mathbb{Z}$
- 2. Ist $K_0 \subseteq K$ Teilkörper, so ist $char(K_0) = char(K)$.

Definition 1.5 (Primkörper)

Der Primkörper von K ist der kleinste Teilkörper von K. (existiert nach Bemerkung 1.2(d))

Satz 1.6

Sei \mathbb{F} der Primkörper von K.

- (a) $char(K) = 0 \Leftrightarrow \mathbb{F} \cong \mathbb{Q}$
- (b) $\operatorname{char}(K) = p > 0 \Leftrightarrow \mathbb{F} \cong \mathbb{F}_p$

Beweis. "⇐": Beispiel 1.4

"
$$\Rightarrow$$
": $\operatorname{Im}(\mathbb{Z} \to K) \subseteq \mathbb{F}$ und $\operatorname{Im}(\mathbb{Z} \to K) \cong \mathbb{Z}/\operatorname{Ker}(\mathbb{Z} \to K)$

- (a) $\operatorname{Im}(\mathbb{Z} \to K) \cong \mathbb{Z}/(0) \cong \mathbb{Z} \Rightarrow \mathbb{F} = \operatorname{Quot}(\operatorname{Im}(\mathbb{Z} \to K)) \cong \operatorname{Quot}(\mathbb{Z}) \cong \mathbb{Q}$
- (b) $\operatorname{Im}(\mathbb{Z} \to K) \cong \mathbb{Z}/(p) \cong \mathbb{F}_p$ ist Teilkörper von $K \Rightarrow \mathbb{F} = \operatorname{Im}(\mathbb{Z} \to K) \cong \mathbb{F}_p$

Definition 1.7 (Körpererweiterung)

Ist K ein Teilkörper von L, so nennt man L eine Köpererweiterung von K, auch geschrieben L|K.

Definition 1.8 (K-Homomorphismus)

Seien $L_1|K$ und $L_2|K$ Körpererweiterungen.

- 1. Ein Ringhomomorphismus $\varphi\colon L_1\to L_2$ ist ein K-Homomorphismus, wenn $\varphi|_K=\mathrm{id}_K$ (i.Z. $\varphi\colon L_1\to L_2$)
- 2. $\operatorname{Hom}_K(L_1, L_2) = \{ \varphi \mid \varphi : L_1 \to L_2 \text{ ist } K\text{-Homomorphismus} \}$
- 3. L_1 und L_2 sind K-isomorph (i.Z. $L_1 \cong L_2$), wenn es einen Isomorphismus: $\varphi \in \text{Hom}_K(L_1, L_2)$ gibt.

▶ Bemerkung 1.9

L|K eine Körpererweiterung, so wird L durch Einschränkung der Multiplikation zu einem K-Vektorraum.

Definition 1.10 (Körpergrad)

 $[L:K]:=\dim_k(L)\in\mathbb{N}\cup\{\infty\}$, der Körpergrad der Körpererweiterungen L|K.

■ Beispiel 1.11

- (a) [K:K] = 1
- (b) $[\mathbb{C}:\mathbb{R}] = 2$ (Basis (1,i)) (aber $(\mathbb{C}:\mathbb{R}) = \infty$)
- (c) $[\mathbb{R} : \mathbb{Q}] = \infty$ (mit Abzählarbarkeitsargument oder siehe §2)
- (d) $[K(x):K] = \infty$ (K(x) = Quot(K[x]) (vgl. GEO II.8)

Satz 1.12

Für
$$K \subseteq L \subseteq M$$
 Körper ist $[M:K] = [M:L] \cdot [L:K]$ ("Körpergrad ist multiplikativ")

Beweis. Behauptung: Sei $x_1, \ldots, x_n \in L$ K-linear unabhängig und $y_1, \ldots, y_m \in M$ L-linear unabhängig $\Rightarrow x_i y_j, i \in \{1, \ldots, n\}, j \in \{1, \ldots, m\}$ K-linear unabhängig.

$$\Rightarrow \sum_{j} \underbrace{\left(\sum_{i} \lambda_{ij} x_{i}\right)}_{\in L} y_{j} = 0 \xrightarrow{y_{j} L\text{-l.u.}} \sum_{i} \lambda_{ij} x_{i} = 0 \quad \forall j \xrightarrow{y_{j} K\text{-l.u.}} \lambda_{ij} = 0 \quad \forall i, \forall j$$

- $[L:K] = \infty$ oder $[M:L] = \infty \Rightarrow [M:K] = \infty$
- $[L:K]=n, [M:L]=m<\infty$ (x_1,\ldots,x_n) Basis des K-Vektorraum L und (y_1,\ldots,y_m) Basis des L-Vektorraums M $\Rightarrow \{x_iy_j\colon i=1,\ldots,n; j=1,\ldots,m\}$ K-linear unabhängig und $\sum_{i,j}Kx_iy_j=\sum_j\left(\sum_i\lambda_{ij}x_i\right)y_j=M,$ also ist $\{x_iy_j\colon i=1,\ldots,n; j=1,\ldots,m\}$ Basis von M

Definition 1.13 (Körpergrad endlich)

 $L|K \text{ endlich } :\Leftrightarrow [L:K] < \infty.$

Definition 1.14 (Unterring, Teilkörper)

Sei L|K eine Körpererweiterung $a_1, a_2, \ldots, a_n \in L$.

- 1. $K[a_1,\ldots,a_n]$ ist kleinster <u>Unterring</u> von L, der $K\cup\{a_1,\ldots,a_n\}$ enthält (" a_1,\ldots,a_n über K erzeugt")
- 2. $K[a_1,\ldots,a_n]$ ist kleinster <u>Teilkörper</u> von L, der $K \cup \{a_1,\ldots,a_n\}$ enthält ("von " a_1,\ldots,a_n " über K erzeugte", " a_1,\ldots,a_n " zu K adjungieren)
- 3. L|K ist endlich erzeugt $\Leftrightarrow a_1,\ldots,a_n \in L: L=K(a_1,\ldots,a_n)$
- 4. L|K ist einfach : \Leftrightarrow existiert $a \in L : L = K(a)$

▶ Bemerkung 1.15

- (a) L|K endlich $\Rightarrow L|K$ endlich erzeugt.
- (b) $K[a_1, \ldots, a_n]$ ist das Bild des Homomorphismus

$$\begin{cases} K[x_1, \dots, x_n] & \to L \\ f & \mapsto f(a_1, \dots, a_n) \end{cases}$$

und $K(a_1, \ldots, a_n) = \{\alpha\beta : \alpha, \beta \in K[a_1, \ldots, a_n], \beta \neq 0\} \cong \text{Quot}(K[a_1, \ldots, a_n])$

2. Algebraische Körpererweiterungen

Sei L|K eine Körpererweiterung.

Definition 2.1 (algebraisch, transzendent)

Sei $\alpha \in L$. Gibt es ein $0 \neq f \in K$ mit $f(\alpha) = 0$, so heißt α <u>algebraisch</u> über K, andernfalls transzendent über K.

■ Beispiel 2.2

- (a) $\alpha \in K \Rightarrow \alpha$ ist algebraisch über K (denn $f(\alpha) = 0$ für $f = X \alpha \in K)$
- (b) $\sqrt{-1} \in \mathbb{Q}(\sqrt{-1})$ ist algebraisch über \mathbb{Q} (denn $f(\sqrt{-1}) = 0$ für $f = X^2 + 1 \in \mathbb{Q}$) $\sqrt{-1} \in \mathbb{C}$ ist algebraisch über \mathbb{R}

▶ Bemerkung 2.3

Sind $K \subseteq L \subseteq M$ Körper und $\alpha \in M$ algebraisch über K, so auch über L.

Lemma 2.4

Genau dann ist $\alpha \in L$ algebraisch über K, wenn $1, \alpha, \alpha^2, \ldots K$ -linear abhängig sind.

Beweis. Für $\lambda_0, \lambda_1, \dots \in K$, fast alle gleich Null, so ist

$$\sum_{i=0}^{\infty} \lambda_i \alpha^i : \Leftrightarrow f(\alpha) = 0 \text{ für } f = \sum_{i=0}^{\infty} \lambda_i X^i \in K$$

Lemma 2.5

Betrachte den Epimorphismus

$$\varphi_{\alpha}: \begin{cases} K[x] & \to K[\alpha] \\ f & \mapsto f(\alpha). \end{cases}$$

Genau dann ist α algebraisch über K, wenn $\operatorname{Ker}(\varphi_{\alpha}) \neq (0)$. In diesem Fall ist $\operatorname{Ker}(\varphi_{\alpha}) = (f_{\alpha})$ mit einem eindeutig bestimmten irreduziblen, normierten $f_{\alpha} \in K$.

Beweis. K Hauptidealring \Rightarrow Ker $(\varphi_{\alpha}) = (f_{\alpha}), f_{\alpha} \in K$, o.E. sei f_{α} normiert. Aus $K[\alpha] \subseteq L$ nullteilerfrei folgt, dass Ker (φ_{α}) prim ist. Somit ist f_{α} prim und im Hauptidealring also auch irreduzibel.

Definition 2.6 (Monimalpolynom, Grad)

Sei $\alpha \in L$ algebraisch über K, $\operatorname{Ker}(\varphi_{\alpha}) = (f_{\alpha})$ mit $f_{\alpha} \in K$ normiert und irreduzibel.

- 1. Min Pol($\alpha|K$) f_{α} , das <u>Minimal
polynom</u> von α über K.
- 2. $\deg(\alpha|K) : \Leftrightarrow \deg(f_{\alpha})$, der Grad von α über K.

Satz 2.7

Sei $\alpha \in L$.

- 1. α transzendent über K $\Rightarrow K[\alpha] \cong K, K(\alpha) \cong_K K(X), [K(\alpha) : K] = \infty.$
- 2. α algebraisch über K $\Rightarrow K[\alpha] = K(\alpha) \cong K/\operatorname{MinPol} \alpha K$, $[K(\alpha) \colon K)] = \deg(\alpha | K) < \infty$ und $1, \alpha, \dots, \alpha^{\deg(\alpha | K) - 1}$ ist K-Basis von $K(\alpha)$.

$$\begin{array}{ll} Beweis. & \text{(a) } \operatorname{Ker}(\varphi_{\alpha}) = (0) \Rightarrow \varphi_{\alpha} \text{ ist Isomorphismus (da zusätzlich injektiv)} \\ \Rightarrow K(\alpha) \cong_{K} \operatorname{Quot}(K[\alpha]) \cong_{K} \operatorname{Quot}(K) = K(X) \\ \Rightarrow [K(\alpha) \colon K] = [K(x) \colon K] = \infty \end{array}$$

- (b) Sei $f = f_{\alpha} = \text{MinPol}(\alpha | K), n = \deg(\alpha | K) = \deg(f).$
 - f irreduzibel \Rightarrow $(f) \neq$ (0) prim $\xrightarrow{\text{GEO II.4.7}} (f)$ ist maximal \Rightarrow $K[\alpha] \cong K/(f)$ ist Körper \Rightarrow $K[\alpha] = K(\alpha)$
 - $1, \alpha, \dots, \alpha^{n-1}$ sind K-linear unabhängig:

$$\sum_{i=0}^{n-1} \lambda_i \alpha^i = 0 \Rightarrow \sum_{i=0}^{n-1} \lambda_i X^i \in (f) \quad \stackrel{\deg f = n}{\Longrightarrow} \quad \lambda_i = 0 \ \forall i$$

 $1, \alpha, \dots, \alpha^{n-1}$ ist Erzeugendensystem: Für $g \in K$ ist

$$g = qf + r \text{ mit } q, r \in K \text{ und } \deg(r) < \deg(f) = n$$

und

$$g(\alpha) = q(\alpha)\underbrace{f(\alpha)}_{=0} + r(\alpha) = r(\alpha)$$

somit
$$K = \operatorname{Im}(\varphi_{\alpha}) = \{g(\alpha) : g \in K\} = \{r(\alpha) : r \in K, \deg(r) < n\} = \sum_{i=0}^{n-1} K \cdot \alpha^{i}$$

■ Beispiel 2.8

- (a) $p \in \mathbb{Z}$ prim $\Rightarrow \sqrt{p} \in \mathbb{C}$ ist algebraisch über \mathbb{Q} . Da $f(X) = X^2 - p$ irreduzibel in \mathbb{Q} ist (GEO II.7.3), ist MinPol $(\sqrt{p} : \mathbb{Q}) = X^2 - p$, $[\mathbb{Q}(\sqrt{p}) : \mathbb{Q}] = 2$.
- (b) Sei $\zeta_p = e^{\frac{2\pi i}{p}} \in \mathbb{C}$ $(p \in \mathbb{N} \text{ prim})$. Da $\Phi_p = \frac{X^p 1}{X 1} = X^{p-1} + X^{p-2} + \dots + X + 1 \in \mathbb{Q}$ irreduzibel in \mathbb{Q} ist (GEO II.7.9), ist MinPol $(\zeta_p | \mathbb{Q}) = \Phi_p$, $[\mathbb{Q}(\zeta_p) : \mathbb{Q}] = p 1$. Daraus folgt schließlich $[\mathbb{C} : \mathbb{Q} \geq [\mathbb{Q}(\zeta_p) : \mathbb{Q}] = p 1 \ \forall p \Rightarrow [\mathbb{C} : \mathbb{Q}] = \infty \Rightarrow [R : \mathbb{Q}] = \infty$.
- (c) $e \in \mathbb{R}$ ist transzendent über \mathbb{Q} (Hermite 1873), $\pi \in \mathbb{R}$ ist transendent über \mathbb{Q} (LINDEMANN 1882).

Daraus folgt: $[R:\mathbb{Q}] \geq [\mathbb{Q}(\pi):\mathbb{Q}] = \infty$. Jedoch ist unbekannt, ob z.B. $\pi + e$ transzendent ist.

Definition 2.9

L|K ist algebraisch : \Leftrightarrow jedes $\alpha \in L$ ist algebraisch über K.

Satz 2.10

L|K endlich $\Rightarrow L|K$ algebraisch.

Beweis. $\alpha \in L$, $[L:K] = n \Rightarrow 1, \alpha, \dots, \alpha^n$ K-linear abhängig $\stackrel{2.4}{\Longrightarrow} \alpha$ algebraisch über K.

Folgerung 2.11

Ist $L = K(\alpha_1, \dots, \alpha_n)$ mit $\alpha_1, \dots, \alpha_n$ algebraisch über K, so ist L|K endlich, insbesondere algebraisch.

Beweis. Induktion nach n:

- n=0: \checkmark
- n > 0: $K_1 := K(\alpha_1, \dots, \alpha_{n-1})$ $\Rightarrow L = K_1(\alpha_n), \ \alpha_n \text{ algebraisch ""uber } K_1 \text{ (Bemerkung 2.3)}$ $\Rightarrow [L:K] = \underbrace{[K_1(\alpha_n):K_1]}_{<\infty \text{ nach Satz 2.7}} \cdot \underbrace{[K_1:K]}_{<\infty \text{ nach IH}}$

Folgerung 2.12

Es sind äquivalent:

- 1. L|K ist endlich.
- 2. L|K ist endlich erzeugt und algebraisch.
- 3. $L = K(\alpha_1, \ldots, \alpha_n)$ mit $\alpha_1, \ldots, \alpha_n$ algebraisch über K.

Beweis. • $(1) \Rightarrow (2)$: Bemerkung 1.15 und Satz 2.10

- $(2) \Rightarrow (3)$: trivial
- $(3) \Rightarrow (1)$: Folgerung 2.11

▶ Bemerkung 2.13

Nach Satz 2.7 ist

$$\alpha$$
 algebraisch über $K : \Leftrightarrow K[\alpha] = K(\alpha)$

Direkter Beweis für (\Rightarrow) :

Sei $0 \neq \beta \in K[\alpha]$. Daraus folgt, dass $f(\beta) = 0$ für ein irreduzibles $0 \neq f = \sum_{i=0}^{n} a_i X^i \in K$. Durch Einsetzen von β und Division durch β erhält man (auch wegen der aus der Irreduzibilität

$$\stackrel{\underline{a_0 \neq 0}}{\Longrightarrow} \beta^{-1} = -a_0^{-1}(a_1 + a_2\beta + \dots + a_n\beta^{n-1}) \in K[\beta] \subseteq K[\alpha]$$

