

⊘ ¡Felicitaciones! ¡Aprobaste!

Calificación recibida $100\,\%$ Para Aprobar $80\,\%$ o más

5. Which output unit/loss function pair is usually used for regression tasks that use neural networks?

O Sigmoid output units with Mean Squared Error Loss

Ir al siguiente elemento

1/1 punto

Feed-Forward Neural Networks

Calificación de la entrega más reciente: 100 %

1.	A feedforward neural network has an input layer, 5 hidden layers and an output layer. What is the depth of this neural network?	1 / 1 punto
	6 ✓ Correcto	
2.	During training, the training data specifies the exact form of the hidden layers of a neural network. True False Correcto	1/1 punto
3.	Implement the ReLU activation function using numpy by replacing None in the code bellow.	2 / 2 puntos
	1 import numpy as np 2 3 def ReLU(x): 4 5 y = x*(x >=0) 6 7 return y Correcto Good job! jecutar Restablecer Restablec	
4.	The main building blocks of a machine learning system are: (Check all that apply.) Output Layers Hidden layers A loss function	1/1 punto
	 ✓ correcto Correct! ✓ A Model 	
	✓ An Optimization Procedure ✓ correcto Correct!	

	Linear output units with Mean Squared Error Loss	
	C Linear output units with Cross-Entropy Loss	
	Softmax output units with Cross-Entropy Loss	
	Correct!	
6.	The softmax output layer with cross-entropy loss is used to model the mean of a Gaussian distribution.	1/1 punto
	O True	
	False	
	Correct!	
7.	Which of the following might be used as a stopping condition for gradient descent. (Check all that apply.)	1/1 punto
	✓ The magnitude of the change in parameter values	
	Correcte	
	✓ The magnitude of change in loss function value	
	Correcte	
	✓ The number of iterations or epochs	
	Correcte Correct!	
	The value of the training loss	
8.	How are neural network bias parameters usually initialized at the beginning of training?	1/1 punto
	O Initialized to -1.	
	O Initialized to samples from a standard normal distribution.	
	O Initialized to samples from a standard uniform distribution.	
	Initialized to 0.	
9.	Using all samples to estimate the gradient of the loss function with respect to the parameter results in less than linear return in accuracy of this estimate.	1/1 punto
	● True	
	O False	
	Correct!	
10.	You are working on a self-driving car project and want to train a neural network to perform traffic sign classification. You collect images with corresponding traffic sign	1/1 punto
	labels, and want to determine the number of frames you will use for training. Given that you have around one million images with labels, what training/validation/testing data split would you use?	
	60% training, 20% validation, 20% testing.	
	96% training, 20% validation, 20% testing.	
	20% training, 40% validation, 40% testing.	
	① 100% training, 0% validation, 0% testing.	

⊘ Correcto			
Correct!			

11. You finish training your traffic sign classifier, and want to evaluate its performance. You compute the classification accuracy on the training, validation, and testing data splits and get the following results:

2/2 puntos

Data Split	Training	Validation	Testing
Accuracy	70%	68%	67%

	Accuracy	70%	68%	67%	
	You know that a human has an accuracy of ar all that apply.)	round 98% on the traffic sign classificatio	on task. What are things you might try to achiev	ve human level performance? (Check	
	▼ Train your neural network longer.				
	□ Add regularization to your neural networ □ Collect more training data.	k.			
	Add more layers to your neural network.				
12.	When a neural network overfits the training d	lata, the generalization gap is usually ver	ry small.		1 / 1 punt
	True				
	● False				
13.	Which of the following strategies are used for	regularization in neural networks? (Che	ck all that apply.)		1 / 1 punt
	✓ Norm Penalties				
	☐ Training the neural network longer				
	✓ Dropout				
	○ Correcto Correct!				
	☐ Increasing the number of parameters in t	the neural network architecture			
	✓ Early Stopping				
	○ Correcto Correct!				
14.	Dropout significantly limit the type of neural	network models that can be used, and h	ence is usually used for specific architectures.		1 / 1 punt
	O True				
	False				

15. The name convolutional neural networks comes from the fact that these neural networks use a convolution operation instead of general matrix multiplication.

✓ Irue⑥ False	
 16. The input to a pooling layer has a width, height and depth of <u>224x224x3</u> respectively. The pooling layer has the following properties: Kernel shape: 2x2 	2/2 puntos
Stride: 2 What is the width of the output of this pooling layer? 112	
 17. Using convolutions might reduce overfitting, as the number of parameters in convolutional layers is less than the number of parameters in fully connected layers. True False 	1/1 punto