Vehicle Dataset

KATE expects your code to define variables with specific names that correspond to certain things we are interested in.

KATE will run your notebook from top to bottom and check the latest value of those variables, so make sure you don't overwrite them.

- Remember to uncomment the line assigning the variable to your answer and don't change the variable or function names.
- Use copies of the original or previous DataFrames to make sure you do not overwrite them by mistake.

You will find instructions below about how to define each variable.

Once you're happy with your code, upload your notebook to KATE to check your feedback.

```
In [1]: import pandas as pd
```

First, we will load the dataset from data/cars.csv into a DataFrame.

Out[2]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin	na
0	18.0	8	307.0	130.0	3504	12.0	70	usa	chevro chevo mal
1	15.0	8	350.0	165.0	3693	11.5	70	usa	bu skyl {
2	18.0	8	318.0	150.0	3436	11.0	70	usa	plymo satel
3	16.0	8	304.0	150.0	3433	12.0	70	usa	a rebel
4	17.0	8	302.0	140.0	3449	10.5	70	usa	f tor
4									•

Dataset stats

1. What's the mean of the values in the weight column?

Store the answer in a variable called mean_weight

```
In [3]: # Add your code below
mean_weight = df['weight'].mean()
mean_weight
```

Out[3]: 2973.946835443038

2. What's the maximum value in the horsepower column?

Store the answer in a variable called <code>max_horsepower</code>

```
In [4]: # Add your code below
max_horsepower = df['horsepower'].max()
max_horsepower
```

Out[4]: 230.0

3. How many cars have a weight of equal to or greater than 3500?

Store the answer in a variable called heavy_cars

```
In [5]: # Add your code below
df
weight_mask=df['weight']>=3500
heavy = df[weight_mask]
heavy_cars=len(heavy)
heavy_cars
```

Out[5]: 109

4. Create a new DataFrame with an additional column called ratio, which equals horsepower divided by weight

Call the new DataFrame df_ratio

```
In [6]: # We made a copy of df to start with, so you don't risk modifying the origin
    df_ratio = df.copy()
    # Add your code below
    df_ratio['ratio']=df['horsepower']/df['weight']
    df_ratio
```

Out[6]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin	
0	18.0	8	307.0	130.0	3504	12.0	70	usa	ı
1	15.0	8	350.0	165.0	3693	11.5	70	usa	
2	18.0	8	318.0	150.0	3436	11.0	70	usa	
3	16.0	8	304.0	150.0	3433	12.0	70	usa	
4	17.0	8	302.0	140.0	3449	10.5	70	usa	
									•

Dataset sorting and filtering

5. Create a new DataFrame containing only cars with an origin of 'usa'

We'll start with a copy of the original DataFrame to avoid modifying the original. Call the new DataFrame df_usa

```
In [7]: df_usa = df.copy()
    # Add your code below
    mask_usa=df_usa['origin']=='usa'
    df_usa = df_usa[mask_usa]
    df_usa
```

Out[7]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin	1			
0	18.0	8	307.0	130.0	3504	12.0	70	usa	che che n			
1	15.0	8	350.0	165.0	3693	11.5	70	usa	sl			
2	18.0	8	318.0	150.0	3436	11.0	70	usa	plyr sa			
3	16.0	8	304.0	150.0	3433	12.0	70	usa	reb			
4	17.0	8	302.0	140.0	3449	10.5	70	usa				
			•••				•••					
389	27.0	4	151.0	90.0	2950	17.3	82	usa	che ca			
390	27.0	4	140.0	86.0	2790	15.6	82	usa	mu			
392	32.0	4	135.0	84.0	2295	11.6	82	usa	ran			
393	28.0	4	120.0	79.0	2625	18.6	82	usa	r			
394	31.0	4	119.0	82.0	2720	19.4	82	usa	che			
246 r	246 rows × 9 columns											

6. What's the mean mpg of cars of origin usa?

Remember that we can use the df_usa DataFrame just created, which only contains these cars.

Store your answer in a variable called mean_mpg_usa

```
In [8]: # Add your code below
mean_mpg_usa=df_usa['mpg'].mean()
mean_mpg_usa
```

Out[8]: 20.04308943089431

7. How many cars of origin usa have 8 cylinders ?

Store your answer in a variable called eight_cyl_usa

```
In [9]: # Add your code below
    mask_cylinder=df_usa['cylinders']==8
    eight_cyl = df_usa[mask_cylinder]
    eight_cyl_usa=len(eight_cyl)
    eight_cyl_usa
Out[9]: 103
```

In [10]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 395 entries, 0 to 394
Data columns (total 9 columns):
```

```
#
    Column
            Non-Null Count Dtype
    -----
                -----
               395 non-null
                              float64
0
    mpg
    cylinders
               395 non-null int64
1
    displacement 395 non-null float64
2
3
    horsepower 390 non-null float64
                395 non-null
4
    weight
                              int64
5
    acceleration 395 non-null float64
6
    model_year 395 non-null int64
7
                395 non-null
                              object
    origin
8
    name
                395 non-null
                              object
dtypes: float64(4), int64(3), object(2)
memory usage: 27.9+ KB
```

We can see from df.info() that we have some missing values in the horsepower column.

8. create a new DataFrame (from the original df) which does not contain the rows with a missing value

Call the new DataFrame df_horsepower

```
In [11]: df_horsepower = df.copy()
    df_horsepower = df_horsepower.dropna(axis=0)
    df_horsepower
```

Out[11]:

шру	cylinaers	displacement	horsepower	weight	acceleration	model_year	origin
18.0	8	307.0	130.0	3504	12.0	70	usa
15.0	8	350.0	165.0	3693	11.5	70	usa
18.0	8	318.0	150.0	3436	11.0	70	usa
16.0	8	304.0	150.0	3433	12.0	70	usa
17.0	8	302.0	140.0	3449	10.5	70	usa
	18.0 15.0 18.0 16.0	18.0 8 15.0 8 18.0 8 16.0 8	18.0 8 307.0 15.0 8 350.0 18.0 8 318.0 16.0 8 304.0 17.0 8 302.0	18.0 8 307.0 130.0 15.0 8 350.0 165.0 18.0 8 318.0 150.0 16.0 8 304.0 150.0 17.0 8 302.0 140.0	18.0 8 307.0 130.0 3504 15.0 8 350.0 165.0 3693 18.0 8 318.0 150.0 3436 16.0 8 304.0 150.0 3433 17.0 8 302.0 140.0 3449	18.0 8 307.0 130.0 3504 12.0 15.0 8 350.0 165.0 3693 11.5 18.0 8 318.0 150.0 3436 11.0 16.0 8 304.0 150.0 3433 12.0 17.0 8 302.0 140.0 3449 10.5	15.0 8 350.0 165.0 3693 11.5 70 18.0 8 318.0 150.0 3436 11.0 70 16.0 8 304.0 150.0 3433 12.0 70 17.0 8 302.0 140.0 3449 10.5 70

9. What's the first (or only) mode value for horsepower in df_horsepower?

Store your answer in a variable called mode_hp

Hint: i.e. the value found using the .mode() method on the given column; note that because there may be more than one mode, the method returns an array. We can access the first value using [0], like we would with a list.

```
In [12]: # Add your code below
mode_hp = df_horsepower['horsepower'].mode()[0]
mode_hp
```

Out[12]: 150.0

10. Create a DataFrame containing only cars with a horsepower greater than or equal to mode_hp in df_horsepower

Call the new DataFrame df_high_hp

```
In [13]: df_high_hp = df_horsepower.copy()
# Add your code below
mask_high = df_high_hp['horsepower']>=mode_hp
df_high_hp = df_high_hp[mask_high]
df_high_hp
```

Out[13]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin	
1	15.0	8	350.0	165.0	3693	11.5	70	usa	sl
2	18.0	8	318.0	150.0	3436	11.0	70	usa	plyr sa
3	16.0	8	304.0	150.0	3433	12.0	70	usa	reb
5	15.0	8	429.0	198.0	4341	10.0	70	usa	gi
6	14.0	8	454.0	220.0	4354	9.0	70	usa	che ir
228	15.5	8	350.0	170.0	4165	11.4	77	usa	che r
229	15.5	8	400.0	190.0	4325	12.2	77	usa	ch co
261	17.7	6	231.0	165.0	3445	13.4	78	usa	((1
287	16.9	8	350.0	155.0	4360	14.9	79	usa	ę M
290	18.5	8	360.0	150.0	3940	13.0	79	usa	ch le to cc

67 rows × 9 columns

11. What percentage of the cars in df_high_hp have 8 cylinders?

Store your answer in a variable called percentage_eight_cyl

Your answer should be a float, and should be for example 56.0 rather than 0.56 for 56%.

```
In [14]: # Add your code below
  #df_high_hp
    mask_eight=df_high_hp['cylinders']==8
    eight_cylinder=df_high_hp[mask_eight]
    #eight_cylinder
    percentage_eight_cyl = (len(eight_cylinder)/len(df_high_hp))*100
    percentage_eight_cyl
```

Out[14]: 98.50746268656717

Dataset manipulation

We can see from the output below that some car names have more than one entry in the DataFrame:

```
In [15]: df['name'].value_counts()
Out[15]: toyota corolla
                                5
                                5
         amc matador
         ford maverick
                                5
         toyota corona
         chevrolet chevette
         chevrolet monza 2+2
                                1
         ford mustang ii
         pontiac astro
                                1
         amc pacer
                                1
         chevy s-10
         Name: name, Length: 306, dtype: int64
```

12. Add a column called <code>name_year</code> to a copy of <code>df</code> , with each entry containing a string in the following format:

```
name + ' - 19' + model_year
```

So for example, 'chevrolet chevelle malibu - 1970'

Call the new DataFrame df_name

Hint: you may find the .astype() method useful

```
In [16]: df_name = df.copy()
    df_name
    df_name['name_year']=df_name['name']+ ' - 19'+df_name['model_year'].astype(s
    df_name
```

Out[16]:

	m	pg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin	
	0 18	8.0	8	307.0	130.0	3504	12.0	70	usa	che ch
	1 1	5.0	8	350.0	165.0	3693	11.5	70	usa	٤
	2 18	8.0	8	318.0	150.0	3436	11.0	70	usa	ply s
	3 10	6.0	8	304.0	150.0	3433	12.0	70	usa	re
	4 17	7.0	8	302.0	140.0	3449	10.5	70	usa	
3	90 2	7.0	4	140.0	86.0	2790	15.6	82	usa	mι
3	91 4	4.0	4	97.0	52.0	2130	24.6	82	europe	
3	92 32	2.0	4	135.0	84.0	2295	11.6	82	usa	rar
3	93 28	8.0	4	120.0	79.0	2625	18.6	82	usa	
3	94 3	1.0	4	119.0	82.0	2720	19.4	82	usa	ch

395 rows × 10 columns

Looking at value_counts() on the _name_year column, we should now see that there are no duplicated entries:

```
In [17]: df_name['name_year'].value_counts()
Out[17]: chevrolet chevelle malibu - 1970
                                              1
         datsun 200-sx - 1978
                                              1
         plymouth sapporo - 1978
                                              1
         toyota celica gt liftback - 1978
                                              1
         dodge omni - 1978
         ford pinto - 1974
                                              1
         datsun b210 - 1974
                                              1
         chevrolet nova - 1974
                                              1
         amc hornet - 1974
                                              1
         chevy s-10 - 1982
         Name: name_year, Length: 395, dtype: int64
```

13. On a copy of the df_name DataFrame, set the index of the DataFrame as the name_year column

Call you new DataFrame df_car_index

Hint: if using the set_index method, either use inplace=True or assign the result to a variable, otherwise the new index won't be stored.

```
In [18]: # Add your code below
df_car = df_name.copy()
df_car_index = df_car.set_index('name_year')
df_car_index
```

Out[18]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	ori	
name_year									
chevrolet chevelle malibu - 1970	18.0	8	307.0	130.0	3504	12.0	70	ι	
buick skylark 320 - 1970	15.0	8	350.0	165.0	3693	11.5	70	ι	
plymouth satellite - 1970	18.0	8	318.0	150.0	3436	11.0	70	ι	
amc rebel sst - 1970	16.0	8	304.0	150.0	3433	12.0	70	ι	
ford torino - 1970	17.0	8	302.0	140.0	3449	10.5	70	ι	
ford mustang gl - 1982	27.0	4	140.0	86.0	2790	15.6	82	ι	
vw pickup - 1982	44.0	4	97.0	52.0	2130	24.6	82	eurc	
dodge rampage - 1982	32.0	4	135.0	84.0	2295	11.6	82	ι	
ford ranger - 1982	28.0	4	120.0	79.0	2625	18.6	82	ι	
chevy s-10 - 1982	31.0	4	119.0	82.0	2720	19.4	82	ι	
395 rows × 9 columns									

14. Create a function which takes <code>name_year</code> as the only parameter, and returns the acceleration for any car in <code>df_car_index</code>

You can test your function using the following cell:

```
In [20]: acceleration('ford torino - 1970')
Out[20]: 10.5
In [ ]:
```