

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Mid-Autumn Semester 2018-19

Date of Examination: 20/09/2018 Session (FN/AN) AN Duration 2 hrs Full Marks: 30

Subject No.: CH21103 Subject: CHEMICAL PROCESS CALCULATIONS

Department: CHEMICAL ENGINEERING

Specific charts, graph paper, log book etc., required: NO.

Special Instructions (if any): Answer all questions. Assume, if necessary, clearly stating

them. No queries will be entertained during the examination.

PART A

1. An equimolar liquid mixture of benzene and toluene is separated into two product streams by distillation. A process flowchart and a somewhat oversimplified description of what happens in the process are as follows:

Inside the column a liquid stream flows downward and a vapor stream rises. At each point in the column some of the liquid vaporizes and some of the vapor condenses. The vapor leaving the top of the column, which contains 97 mole% benzene, is completely condensed and split into two equal fractions: one is taken off as the overhead product stream, and the other (the **reflux**) is recycled to the top of the column. The overhead product stream contains 89.2% of the benzene fed to the column. The liquid leaving the bottom of the column is fed to a partial reboiler in which 45% of it is vaporized. The vapor generated in the reboiler (the **boilup**) is recycled to become the rising vapor stream in the column, and the residual reboiler liquid is taken off as the bottom product stream. The compositions of the streams leaving the reboiler are governed by the relation: $\frac{y_B/(1-y_B)}{x_B/(1-x_B)} = 2.25$ where y_B and x_B are the mole fractions of benzene in the vapor and liquid streams, respectively.

- (a) Take a basis of 100 mole fed to the column. Draw and completely label a flowchart, and for each of four systems (overall process, column, condenser, and reboiler), do the degree-of-freedom analysis and identify a system with which the process analysis might appropriately begin.
- (b) Write in order the equations you would solve to determine all unknown variables on the flowchart, circling the variable for which you would solve in each equation. Do not do the calculations in this part. (2)
- (c) Calculate the molar amounts of the overhead and bottoms products, the mole fraction of benzene in the bottoms product, and the percentage recovery of toluene in the bottoms product.

 (2)

- 2. An evaporation-crystallization process, consists of an evaporator and then a crystallization unit in series, is used to obtain solid K2SO4 from an aqueous solution of this salt. The fresh feed to the process contains 19.6 wt% K₂SO₄. The wet filter cake (product from crystallization unit) consists of solid K₂SO₄ crystals and a 40.0 wt% K_2SO_4 solution, in a ratio 10 kg crystals/kg solution. The filtrate (from crystallization unit), also a 40.0% solution, is recycled to join the fresh feed. Of the water fed to the evaporator, 45.0% is evaporated. The evaporator has a maximum capacity of 175 kg water evaporated/s.
 - (a) Assume the process is operating at maximum capacity. Draw and label a flowchart and do the degree-offreedom analysis for the overall system, the recycle-fresh feed mixing point, the evaporator, and the crystallizer. Then write in an efficient order the equations you would solve to determine all unknown stream variables. In each equation, circle the variable for which you would solve, but don't do the calculations.
 - (b) Calculate the maximum production rate of solid K₂SO₄, and the ratio kg recycle/kg fresh feed.
 - (c) Calculate the composition and feed rate of the stream entering the crystallizer if the process is scaled to 75% (2)

PART B

For answering Questions 3 and 4, use the Steam Table data given in Page 3 of the Question Paper. Please detach it from the question paper and attached to your answer script. Write your name and Roll Number

- 3. (a) Find the density of steam at 100°C which has quality Q = 60%. (b) Find the specific enthalpy of steam at 430°C temperature and 675 KPa pressure. (2) (2)
- 4. Initially, 3 Kg of steam is there in a tank at 600 Kpa pressure and 650°C temperature. The steam is cooled inside the tank to 120 °C. Using the attached steam table, please answer the following:
 - (a) The nature of the steam in its initial and final states.
 - (b) Calculate the heat transferred during the process.

(2+4=6)

- 5. (a) Why heat of vaporization is much higher that heat of fusion? (b) What is critical Temperature? Why a gas can never be liquefied by applying pressure above it's critical
 - (c) What is molar heat capacity of a substance (C)? From it's fundamental expression, Show that $\vec{C}_P = \vec{C}_V + R$ (1+1.5)

Steam Table related data (Detach this sheet and attach to answer script)
TABLE E.1 Setunted Water: Temperature Table

Please Markthe data
that you one

using.

T	P	4	€,	a ,	AAL	4,	£,	ملاء	Ĺ
℃	kPa, MPa	ad Mag	m ² Ag	H/kg	hijder.	iple	lij/leg	HAZ	ij/kg
50	12.350	0.001012	19.092	160.30	2234.9	2443.5	969.31	1362.7	9600.)
55	15.758	0.001015	9.008	230.19	2219.0	2450.1	220.20	2370.7	9800.9
60	19.941	0.001017	7.671	251.00	2305.5	9456.6	251.11	235B.5	2009.6
65	25.033	0.001020	6.197	171.60	2191.1	\$463.1	272.03	2346.2	2619.2
70	31.196	0.001023	5.042	202.03	21766	2460.5	202.06	2333.6	9695. 8
75	38.576	0.001026	4.131	313.57	2102.0	\$675.0	313.91	2321.4	2635.3
80	47.390	0.001029	3.407	234.84	2147A	3482.2	334.95	1308.8	2643.7
85	57.834	0.001032	2.528	355.82	2132.6	2458.4	355.98	2206.0	9651.0
90	70.120	0.001035	2.361	376.62	9117.7	2494.5	376.90	2263.2	2000.1
95	84.854	0.001040	1.982	397.86	2102.7	2000.6	207.04	2370.2	2008.1
100	0.10135	0.603044	1.6720	4891	2087.6	2506.5	410.02	2057.0	2676.0
105	0.19082	0.003947	1.4104	440.00	2072.3	2512.3	440.13	2243.7	20328
110	0.34398	0.6030692	1.2162	461.12	2057.0	2518.1	451.37	2210.2	2601.5
115	0.16986	0.003005	1.0396	452.26	2041.4	2323.7	492.46	22165	9600.0
190	0.19653	0.002000	0.9019	550.46	2025.8	2000.2	903,60	2202.6	2708.3
195	0.2321	0.000065	0.77050	554.72	2000.0	2534.6	394.96	91885	2713.5
130	0.2701	0.001070	0.69950	546.00	1003.0	2530.9	546.20	2174.2	2790.5
135	0.2130	0.002075	0.53217	567.34	2077.7	2565.0	867.67	1150.6	2727.2
140	0.2613	0.000000	0.30005	168.72	1961.3	2030.0	560.11	2144.8	2733.9
145	0.4154	0.001085	0.44632	610.16	1944.7	2054.0	610.61	2120.6	2740.2

TABLE 8.2 Saturated Water: Procesure Table

P MPa	T	÷ mMe	ć, m⁴⁄ky	4 UA	۵۵. انگلو	il.	£, Lÿky	∆Š _{te} kj∕kg	f., ifte
0.100	90.62	0.001043	1.6046	417.23	2006.7	2006.1	417.44	2256.0	2678.8
0.135	105.99	0.901045	1.3740	444.16	2050.3	5013.5	444.30	9341.1	2005.5
0.150	111.37	0.003003	1.1903	496.92	9002.7	2006	457.46	2296.5	2663.5
6175	116.06	0.901087	1.0006	461.78	2006.1	20240	496.57	321 3.6	1700.1
0.906	130.23	0.001063	0.8657	504.67	2005.0	2010.5	394.68	2202.0	27066
0.925	194.00	0.001064	0.7933	500.45	9012.1	2535.6	290,66	2191.3	2719.0
0.250	127.43	0.001067	0.7167	535.66	2003.1	2237.2	\$35.24	2181.5	2716.9
0.975	130.60	0.001070	0.6673	548.57	1603.0	2540.5	548.87	21724	2731.3
0.300	133.56	0.901073	0.0000	961.13	1002.4	2543.6	361.45	9143.0	2725.3
0.325	136.20	0.002076	0.5626	573.05	1973.5	2545.3	573.23	2155.8	2720.0
0.250	126.63	0.001079	0.5963	593.93	1985.0	2549.0	594.31	2146.1	2732.4
0.375	141.32	0.001081	0.4914	504.36	1986.0	2051.3	504.78	2140.8	2735.6
0.40	143.63	0.001004	0.4625	604.20	1040.3	2053.6	604.73	2123.6	2738.5
3.45	147.93	0.001098	0.4140	622.75	1004.0	9557.6	623.94	2120.7	2743.0
3.50	151.96	0.001003	0.3740	630.66	10216	2061.2	649.21	2106.5	2749.7
1.55	155.48	0.001497	0.3427	665.20	1900.1	2054.5	655.01	2007.0	2759.0
9.60	158.86	0.001101	0.3157	88.989	1907.5	2857A	670.54	2086.3	1756.8
),66	162.01	0.001104	0.2927	603.65	1096.5	9570.1	694.96	9076.0	2760.9
1.70	164.97	0.001168	0.2790	606.41	1076.1	9879.K	A07 96	9000	0702 K

TABLE B.A Superheated Vibtor Vapor

P == 500 kPa						P = 000 kPa					P = 690 kPa					
T	ô		3		T	6	a	,	2	T	ð	â	î.			
<u>-C</u>	#1/42	H/kg	44	idea K	<u>*C</u>	m/kg	il) in	ij/kg	iji K	•C	=*/hg	id/leg	lijilg	kidy K		
set	0.37480	25 61.2	2748.7	6.5212	==t	0.31567	2067.4	2756.8	6,7600	-	0.94043	2576.6	2780.1	6,6667		
500	0.45402	2642.0	295.4	7.0503	.200	0.35504	2628.9	2050,1	6.9665	200	0.96660	2620.6	2020.5	8.8150		
230	0.47436	2723.5	2960.7	7.5700	930	0.30303	2730.0	2057.9	7,1816	250	6.90314	2713.5	9000.0	7.0004		
200	9.5325 6	2502.9	2064.9	7.4506	300	0.43437	3001.0	306L6	7.3723	300	0.35411	2747.1	2056.4	7.9267		
250	0.57012	2982.A	3167.6	7,6308	350	0.47434	2001.1	3165.7	7.5463	250	0.35430	2578.2	3161.7	7.4008		
400	0.61728	2063.1	3371. 8	7.7937	400	0.51372	2062.0	3270.3	7.7078	400	9.38495	9959.7	2067.I	7.5715		
200	0.71003	3126.4	3463.6	8.0872	500	0.50100	3127.6	3462.7	0.0020	590	0.44331	2195.0	3400 G	7.8679		
606	0.00406	3200,6	3701.7	6.3521	600	6,66974	3200.1	3700.D	8.2673	600	0.50184	3297.9	3000.4	6.1332		
700	0.89801	3477.5	3926.0	6.5053	790	0.74720	3477.1	3625.4	8.5107	700	0.50007	3476.2	2094.3	B.\$770		
800	0.98959	3662.2	4157.0	8.6211	900	0.49450	3951.8	4156.5	8.7367	606	0.61813	3051.1	4155.7	8.6033		
200	1.09217	3653.6	4304.7	9.0350	900	0.90160	3053.2	4304.4	8.9465	900	0.67610	3632.6	4303.6	0.6153		
2000	1.17460	495L8	4635,1	9.2336	1000	0.9788A	4051.5	4038.8	9.1484	1000	0.73401	461.0	4636.2	9,6153		
1140	1.26718	4256.3	4909.0	9,4234	1100	1.00504	4256.1	A999.6	9.3351	1100	6.79198	4255.6	4000.1	9.2040		
1300	1.35964	4466.8	5146.6	9.6038	1906	I.13302	4466.5	5146.2	9.5185	1200	0.84974	4466.1	5145.8	9.3954		
1300	1.45210	4682.5	5466.6	9.7749	1300	1.21000	4662.3	5498.3	2.6206	1300	0.90758	4981.8	5407.9	9.5575		