Primer parcial

Tabla de contenidos

ab 1: Sumatorias, productorias y optimización	
Sumatorias y productorias	
Sumatorias	
Propiedades de la sumatoria	
Algunas identidades importantes	
Errores por evitar (sumatorias)	
Productorias	
Propiedades de la productoria	
Errores por evitar (productorias)	
Ejercicio	
Solución	
Optimización	
Optimización con restricción de igualdad	
Optimización con restricción de desigualdad	

Listado de Figuras

Listado de Tablas

Recomendaciones generales

- Comprender la intuición detrás de los cálculos, evitar resolver solo de manera mecánica.
- Realizar mucha práctica (exámenes viejos y folletos de ejercicios), es importante desarrollar una buena habilidad en la manipulación algebraica.
- No deje dudas sin aclarar, ya que el curso tiene un carácter acumulativo.

Lab 1: Sumatorias, productorias y optimización

Sumatorias y productorias

Considere una secuencia de objetos $\{x_i\}_{i=1}^n=\{x_1,x_2,\dots,x_n\}$ para los cuales están definidas la suma y la multiplicación.

Para trabajar con muchos términos se usan puntos suspensivos:

•
$$x_1 + x_2 + x_3 + \dots + x_{n-1} + x_n$$
,

•
$$x_1 \cdot x_2 \cdot x_3 \cdot \ldots \cdot x_{n-1} \cdot x_n$$
.

Cuando esta notación es poco conveniente, se usan las notaciones Σ (sumatoria) y Π (productoria).

Sumatorias

Sean $k, n \in \mathbb{N}$ tales que $k \leq n$. Definimos la notación Sigma (Σ) así:

$$\sum_{i=k}^{n} x_i = x_k + x_{k+1} + \dots + x_{n-1} + x_n.$$

i:Índice de la sumatoria k: Primer término

 x_i : Argumento de la sumatoria n: Último término

Propiedades de la sumatoria

Sean $\{x_i\}_{i=1}^n, \{y_i\}_{i=1}^n$ secuencias de objetos $j \in \mathbb{N}$ tal que $k \leq j \leq n$, y c una constante (cualquier objeto que no varíe conforme aumenta el contador).

1. Sumatoria de constantes

$$\sum_{i=k}^{n} c = \underbrace{c + c + \dots + c}_{n-k+1 \text{ veces}} = (n-k+1)c$$

2. Distributividad

$$\sum_{i=k}^n c\,x_i \;=\; c\sum_{i=k}^n x_i$$

3. Eliminación de términos

$$\sum_{\substack{i=k\\i\neq j}}^n x_i \ = \ \sum_{i=k}^n (x_i) - x_j$$

4. Cambio de índice

$$\sum_{i=k}^{n} x_i = \sum_{t=k}^{n} x_t$$

5. Asociatividad (linealidad en la suma)

$$\sum_{i=k}^{n} (x_i + y_i) = \sum_{i=k}^{n} (x_i) + \sum_{i=k}^{n} (y_i)$$

Algunas identidades importantes

1. Suma de Gauss

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

2. Suma de cuadrados

$$\sum_{i=1}^{n} i^2 \ = \ \frac{n(n+1)(2n+1)}{6}$$

3. Suma de cubos

$$\sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$$

3

Errores por evitar (sumatorias)

No sobredefinir índices:

$$\sum_{i=k}^{n} \left(\sum_{i=k}^{n} x_{i\ell} \right) \quad \text{(incorrecto)} \qquad \sum_{i=k}^{n} \left(\sum_{\ell=k}^{n} x_{i\ell} \right) \quad \text{(correcto)}$$

En general, las siguientes no son ciertas:

• Recíprocos

$$\sum_{i=k}^{n} \frac{1}{x_i} \neq \frac{1}{\sum_{i=k}^{n} x_i}$$

• Productos

$$\sum_{i=k}^{n} x_i y_i \neq \Big(\sum_{i=k}^{n} x_i\Big) \Big(\sum_{i=k}^{n} y_i\Big)$$

• Potencias

$$\sum_{i=k}^{n} x_i^c \neq \left(\sum_{i=k}^{n} x_i\right)^c$$

Productorias

Sean $k, n \in \mathbb{N}$ tales que $k \leq n$. Definimos la notación Pi (Π) así:

$$\prod_{i=k}^n x_i \ = \ x_k \cdot x_{k+1} \cdot \ldots \cdot x_{n-1} \cdot x_n.$$

i:Índice de la productoria k: Primer término

 x_i : Argumento de la productoria n: Último término

Propiedades de la productoria

Sean $\{x_i\}_{i=1}^n$, $\{y_i\}_{i=1}^n$ secuencias de objetos, $j \in \mathbb{N}$ tal que $k \leq j \leq n$, y c constante (cualquier objeto que no varie conforme aumenta el contador).

1. Productoria de constantes

$$\prod_{i=k}^{n} c = \underbrace{c \cdot c \cdots c}_{n-k+1 \text{ veces}} = c^{n-k+1}$$

2. Constante por término

$$\prod_{i=k}^{n} (c \, x_i) \; = \; c^{\, n-k+1} \prod_{i=k}^{n} x_i$$

3. Eliminación de un término

$$\prod_{\substack{i=k\\i\neq j}}^n x_i = \frac{\prod_{i=k}^n x_i}{x_j}$$

4. Cambio de índice

$$\prod_{i=k}^{n} x_i = \prod_{t=k}^{n} x_t$$

5. Conmutatividad (producto término a término)

$$\prod_{i=k}^n (x_i y_i) \ = \ \Big(\prod_{i=k}^n x_i\Big) \Big(\prod_{i=k}^n y_i\Big)$$

6. Cociente de productos (si $y_i \neq 0$ para todo i)

$$\prod_{i=k}^{n} \frac{x_i}{y_i} = \frac{\prod_{i=k}^{n} x_i}{\prod_{i=k}^{n} y_i}$$

7. Potencia de productoria

$$\prod_{i=k}^{n} x_i^c = \left(\prod_{i=k}^{n} x_i\right)^c$$

8. Base constante elevada a x_i

$$\prod_{i=k}^{n} c^{x_i} = c^{\sum_{i=k}^{n} x_i}$$

5

Errores por evitar (productorias)

No sobredefinir índices:

$$\prod_{i=k}^{n} \left(\prod_{i=k}^{n} x_{i\ell} \right) \quad \text{(incorrecto)} \qquad \prod_{i=k}^{n} \left(\prod_{\ell=k}^{n} x_{i\ell} \right) \quad \text{(correcto)}$$

En general, las siguientes no son ciertas:

$$\prod_{i=k}^{n}(x_{i}+y_{i}) \neq \prod_{i=k}^{n}(x_{i}) + \prod_{i=k}^{n}(y_{i})$$

$$\prod_{i=k}^{n}(x_{i}-y_{i}) \ \neq \ \prod_{i=k}^{n}(x_{i})-\prod_{i=k}^{n}(y_{i})$$

En caso de olvidar alguna propiedad, desarrolle la productoria o sumatoria para 2-3 elementos y observe si incumple alguna propiedad.

Ejercicio

Simplifique al máximo, usando las propiedades:

$$1. \ \frac{\prod_{\substack{i=1\\i\neq j}}^{n} x_i}{\prod_{\substack{i=1\\i\neq k}}^{n} x_i}$$

$$2. \sum_{i=1}^{n} \left[x_i \sum_{j=1}^{n} \left(\frac{1}{x_j} \right) \right]$$

3.
$$\sum_{i=1}^{n} \left[x_i \left(\frac{1}{\sum_{j=1}^{n} x_j} \right) \right]$$

$$4. x_j^2 \prod_{i=2}^n \frac{P_j x_j}{P_i}$$

5.
$$\prod_{j=2}^{n} \frac{P_j}{\prod_{i=1}^{n} P_i^{1/n}}$$

6.
$$\sum_{i=1}^{n} (i^2 + i + 1)$$

7.
$$\log \left(\prod_{i=1}^{n} x_i^{\alpha_i} \right)$$

Solución

1)

$$\frac{\prod_{\substack{i=1\\i\neq j}}^n x_i}{\prod_{\substack{i=1\\i\neq k}}^n x_i} = \frac{\frac{1}{x_j} \cdot \prod_{i=1}^n x_i}{\frac{1}{x_k} \cdot \prod_{i=1}^n x_i} \quad \text{(Propiedad 3)}$$

$$= \frac{\frac{1}{x_j}}{\frac{1}{x_k}}$$

$$= \frac{x_k}{x_j}$$

2)

$$\sum_{i=1}^{n} \left[x_i \sum_{j=1}^{n} \left(\frac{1}{x_j} \right) \right] = \left(\sum_{j=1}^{n} \frac{1}{x_j} \right) \cdot \left(\sum_{i=1}^{n} x_i \right) \quad \text{(Propiedad 2)}$$

Note que la sumatoria $\sum_{j=1}^{n} \frac{1}{x_j}$ no depende de i, por lo que se toma como una constante.

Precaución

Es importante mantener el orden al realizar ejercicios, por ejemplo, en este caso se podría confundir si no utiliza adecuadamente los paréntesis.

3)

$$\begin{split} \sum_{i=1}^n \left[x_i \left(\frac{1}{\sum_{j=1}^n x_j} \right) \right] &= \frac{1}{\sum_{j=1}^n x_j} \cdot \sum_{i=1}^n x_i \quad \text{(Propiedad 2)} \\ &= \frac{1}{\sum_{j=1}^n x_j} \cdot \sum_{j=1}^n x_j \quad \text{(Propiedad 4)} \\ &= 1 \end{split}$$

4)

$$\begin{split} x_{j}^{2} \prod_{\substack{i=2\\i\neq j}}^{n} \frac{P_{j} \, x_{j}}{P_{i}} &= x_{j}^{2} \cdot (P_{j} \, x_{j})^{n-2+1} \cdot \prod_{\substack{i=2\\i\neq j}}^{n} \frac{1}{P_{i}} \\ &= x_{j}^{n+1} P_{j}^{n-1} \cdot \prod_{\substack{i=2\\i\neq j}}^{n} \frac{1}{P_{i}} \quad \text{(Propiedad 3)} \\ &= x_{j}^{n+1} P_{j}^{n-1} P_{j} \cdot \prod_{\substack{i=2\\i\neq j}}^{n} \frac{1}{P_{i}} \\ &= x_{j}^{n+1} P_{j}^{n} \cdot \prod_{\substack{i=2\\i\neq j}}^{n} \frac{1}{P_{i}} \end{split}$$

5)

$$\begin{split} \prod_{j=2}^{n} \left[\frac{P_{j}}{\prod_{i=1}^{n} P_{i}^{\frac{1}{n}}} \right] &= \frac{\prod_{j=2}^{n} P_{j}}{\prod_{j=2}^{n} \left[\prod_{i=1}^{n} P_{i}^{\frac{1}{n}}\right]} \quad \text{(Propiedad 6)} \\ &= \frac{\prod_{j=2}^{n} P_{j}}{\left(\prod_{i=1}^{n} P_{i}^{\frac{1}{n}}\right)^{n-2+1}} \quad \text{(Propiedad 2)} \\ &= \frac{\prod_{j=2}^{n} P_{j}}{\prod_{i=1}^{n} P_{i}^{\frac{n-1}{n}}} \quad \text{(Propiedad 7)} \\ &= \frac{\prod_{j=2}^{n} P_{j}}{\prod_{i=1}^{n} (P_{i}) \cdot \prod_{i=1}^{n} (P_{i}^{-\frac{1}{n}})} \quad \text{(Propiedad 5)} \\ &= \underbrace{\prod_{i=1}^{n} (P_{i}^{-1})}_{\text{Se saca un producto}} \cdot \underbrace{\prod_{i=1}^{n} \left(P_{i}^{-\frac{1}{n}}\right) \cdot \prod_{j=2}^{n} \left(P_{j}\right)}_{\text{Jessengential}} \\ &= P_{1}^{-1} \cdot \prod_{i=2}^{n} (P_{i}^{-1}) \cdot \prod_{i=1}^{n} (P_{i}^{-\frac{1}{n}}) \cdot \prod_{j=2}^{n} (P_{j}) \quad \text{(Propiedades 4 y 5)} \\ &= P_{1}^{-1} \cdot \prod_{i=1}^{n} (P_{i}^{-\frac{1}{n}}) \cdot \prod_{i=2}^{n} (P_{i}^{-1} P_{i}) \\ &= P_{1}^{-1} \cdot \prod_{i=1}^{n} (P_{i}^{-\frac{1}{n}}) \cdot 1 \end{split}$$

6)

$$\sum_{i=1}^{n} (i^2 + i + 1) = \sum_{i=1}^{n} i^2 + \sum_{i=1}^{n} i + \sum_{i=1}^{n} 1 \quad \text{(Propiedad 5 e identidades)}$$
$$= \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} + n$$

7)

$$\log\left(\prod_{i=1}^n x_i^{\alpha_i}\right)$$

Nota: Recuerde la propiedad $\log(a \cdot b) = \log(a) + \log(b)$, en general $\log\left(\prod_{i=1}^n x_i\right) = \sum_{i=1}^n \log(x_i)$. Además, $\log(a^b) = b \log(a)$

$$\log \left(\prod_{i=1}^n x_i^{\alpha_i} \right) = \sum_{i=1}^n \log \left(x_i^{\alpha_i} \right) = \sum_{i=1}^n \alpha_i \cdot \log(x_i)$$

Optimización

Optimización con restricción de igualdad

Encuentre el máximo de $f: \mathbb{R} \times \mathbb{R}_{>0} \to \mathbb{R}$,

$$f(x_1, x_2) = x_1 + 3\ln(x_2)$$
 sujeto a $100 = 2x_1 + x_2$.

Optimización con restricción de desigualdad

Un consumidor obtiene utilidad de cerveza x_1 y limonada x_2 :

$$U(x_1, x_2) = x_1^{3/4} x_2^{1/4}.$$

Por recomendación médica, el individuo tiene estrictamente prohibido gastar más de una fracción $k \in [0,1]$ de su ingreso **en cervezas**. Encuentre el óptimo del consumidor y desarrolle los casos según el valor de k.

Lab 2