Contents

0. Load dataset and library on workspace.

```
library(palmerpenguins) # for data
library(dplyr) # for data-handling
library(corrplot) # for correlation plot
library(GGally) # for parallel coordinate plot
library(e1071) # for svm
```

data(penguins) # load pre-processed penguins

palmerpenguins have 2 data penguins, penguins_raw, and as you can see from their name, penguins is pre-processed data.

1. See the summary and plot of Dataset

summary(penguins)
plot(penguins)

It seems ${\tt species}$, ${\tt island}$ and ${\tt sex}$ is categorical features. and remaining for numerical features.

2. Set the format of feature

penguins\$species <- as.factor(penguins\$species)
penguins\$island <- as.factor(penguins\$island)</pre>

```
penguins$sex <- as.factor(penguins$sex)
summary(penguins)
plot(penguins)</pre>
```

and see summary and plot again. note that result of plot is same.

```
culmen_length_mm culmen_depth_mm flipper_length_mm
Min. :32.10 Min. :13.10 Min. :172.0
     species
                         island
                                                                                                 body_mass
Adelie
          :152
                             :168
                                                                                                Min.
                                                                                                       :2700
                                                        1st Qu.:15.60
                                                                                                1st Qu.:3550
Chinstrap: 68
                             :124
                                     1st Qu.:39.23
                                                                           1st Qu.:190.0
                  Dream
                                     Median :44.45
                                                        Median :17.30
Gentoo
          :124
                  Torgersen: 52
                                                                           Median :197.0
                                                                                                Median :4050
                                                                :17.15
                                     Mean
                                             :43.92
                                                        Mean
                                                                           Mean
                                                                                   :200.9
                                                                                                Mean
                                                                                                       :4202
                                     3rd Qu.:48.50
                                                        3rd Qu.:18.70
                                                                           3rd Qu.:213.0
                                                                                                3rd Qu.:4750
                                     Max.
NA's
                                                                                                Max.
NA's
                                             :59.60
                                                        Max.
                                                                 :21.50
                                                                           Max.
                                                                                   :231.0
                                                                                                        :6300
                                                                           NA's
FEMALE: 165
MALE :168
      : 10
NA'S
```

There's unwanted NA and . values in some features.

3. Remove not necessary datas (in this tutorial, NA)

```
penguins <- penguins %>% filter(sex == 'MALE' | sex == 'FEMALE')
summary(penguins)
```

And here, I additionally defined color values for each penguins to see better plot result

```
# Green, Orange, Purple
pCol <- c('#057076', '#ff8301', '#bf5ccb')
names(pCol) <- c('Gentoo', 'Adelie', 'Chinstrap')
plot(penguins, col = pCol[penguins$species], pch = 19)</pre>
```


Now, plot results are much better to give insights.

Note that, other pre-process step may requires for different datasets.

4. See relation of categorical features

My first purpose of analysis this penguin is species
So, I will try to see relation between species and other categorical values

```
4-1. species, island
```

```
table(penguins$species, penguins$island)
chisq.test(table(penguins$species, penguins$island)) # meaningful difference
ggplot(penguins, aes(x = island, y = species, color = species)) +
   geom_jitter(size = 3) +
   scale_color_manual(values = pCol)
```

```
table(penguins$species, penguins$island)
            Biscoe Dream Torgersen
                      55
  Adelie
                44
                 0
                                  0
  Chinstrap
                      68
                                  0
  Gentoo
               119
                       0
  chisq.test(table(penguins$species, penguins$island)) # meaningful difference
        Pearson's Chi-squared test
       table(penguins$species, penguins$island)
X-squared = 284.59, df = 4, p-value < 2.2e-16
```


Wow, there's strong relationship between species and island

- Adelie lives in every island
- Gentoo lives in only Biscoe

4-2 & 4 3

However, species and sex or sex and island did not show any meaningful relation. You can try following codes.

```
# species vs sex
table(penguins$sex, penguins$species)
chisq.test(table(penguins$sex, penguins$species)[-1,]) # not meaningful
difference 0.916

# sex vs island
table(penguins$sex, penguins$island) # 0.9716
chisq.test(table(penguins$sex, penguins$island)[-1,]) # not meaningful
difference 0.9716
```

5. See with numerical features

I will select numerical features. and see correlation plot and parallel coordinate plots.

```
# Select numericals
penNumeric <- penguins %>% select(-species, -island, -sex)

# Cor-relation between numerics

corrplot(cor(penNumeric), type = 'lower', diag = FALSE)

# parallel coordinate plots

ggparcoord(penguins, columns = 3:6, groupColumn = 1, order = c(4,3,5,6)) + scale_color_manual(values = pCol)

plot(penNumeric, col = pCol[penguins$species], pch = 19)
```

and below are result of them.

lucky, every numeric features (even only 4) have meaningful correlation and there is trend with their combination for species (See parallel coordinate plot)

6. Give statistical work on dataset.

```
In this step, I usually do linear modeling or svm to predict
6.1 linear modeling
species is categorical value, so it needs to be change to numeric value
set.seed(1234)
idx <- sample(1:nrow(penguins), size = nrow(penguins)/2)</pre>
# as. numeric
speciesN <- as.numeric(penguins$species)</pre>
penguins$speciesN <- speciesN</pre>
train <- penguins[idx,]</pre>
test <- penguins[-idx,]</pre>
fm <- lm(speciesN ~ flipper length mm + culmen length mm + culmen depth mm +
body mass g, train)
summary(fm)
> summary(fm)
Call:
lm(formula = speciesN ~ flipper_length_mm + culmen_length_mm +
     culmen_depth_mm + body_mass_g, data = train)
Residuals:
      Min
                  1Q
                        Median
                                                  Max
-0.59953 -0.17149 0.00585 0.18868 0.70985
Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
                      -1.251e+00 6.097e-01 -2.051
(Intercept)
                                                             0.0419 *
flipper_length_mm 1.538e-02 3.475e-03 4.425 1.77e-05 *** culmen_length_mm 7.329e-02 5.116e-03 14.326 < 2e-16 ***
                                                           < 2e-16 ***
                      -2.012e-01 1.281e-02 -15.709
culmen_depth_mm
```

```
It shows that, body mass g is not meaningful feature as seen in plot above (it may explain gentoo, but
not other penguins )
```

7.626e-05 5.215e-05

Residual standard error: 0.2568 on 161 degrees of freedom

F-statistic: 464.6 on 4 and 161 DF, p-value: < 2.2e-16

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

body_mass_g

Multiple R-squared: 0.9203,

1.462

Adjusted R-squared: 0.9183

0.1456

To predict, I used this code. however, numeric predict generate **not complete value** (like 2.123 instead of 2) so I added rounding step.

```
predRes <- round(predict(fm, test))</pre>
predRes[which(predRes>3)] <- 3</pre>
predRes <- sort(names(pCol))[predRes]</pre>
test$predRes <- predRes</pre>
ggplot(test, aes(x = species, y = predRes, color = species)) +
```

```
geom_jitter(size = 3) +
scale_color_manual(values = pCol)
```

table(test\$predRes, test\$species)

> table(test\$predRes, test\$species) Adelie Chinstrap Gentoo Adelie 67 3 0 Chinstrap 6 33 0 Gentoo 0 0 58

Accuracy of basic linear modeling is 94.6%

6-2 svm

using svm is also easy step.

```
m <- svm(species ~., train)

predRes2 <- predict(m, test)

test$predRes2 <- predRes2

ggplot(test, aes(x = species, y = predRes2, color = species)) +
   geom_jitter(size = 3) +
   scale_color_manual(values = pCol)

table(test$species, test$predRes2)</pre>
```

and below are result of this code.

> table(test\$species, test\$predRes2) Adelie Chinstrap Gentoo Adelie 73 0 0 Chinstrap 0 36 0 Gentoo 0 0 58

Accuracy of svm is 100%. wow.