## Chocolate Game - Chomp

- First-Player Win
- quadratic board





- optimal strategy
  - \* take piece top right of the toxic piece
  - \* creates two independent fields
  - \* Tweedledum-Tweedledee-Principle
    - first player copies moves of second player
- rectangle board (of arbitrary size)
  - draws are not possible
    - \* must be a first or second player win
  - assuming A does not have a winning strategy
    - \* A can just take the top right piece
    - \* B makes a winning move
    - \* A could have just started with the move B just made
      - strategy stealing
    - \* contradiction
      - ◆ A must have a winning strategy for every possible game board size
      - ◆ First-Player Win
      - A's winning strategy exists but is unknown
        - for general board sizes

## Tic Tak Toe

- [[2 Player Combinatorial Game]]
- no winner if played optimally
- [[Min-Max Decision Tree]]

Storing a board:

2 bit per square:

 $2 \times 9 = 18$  bit, thus  $2^{18} = 262144$  possible boards.

3 possibilities per square:

 $_{-}$   $3^{9}=19683$  possible boards with  $\lceil \log_{2} 3^{9} \rceil=15$  bit.

| n half- | game-  | different |                                          |
|---------|--------|-----------|------------------------------------------|
| moves   | tree   | boards    |                                          |
| 0       | 1      | 1         | <ul> <li>986410 = game-tree</li> </ul>   |
| 1       | 9      | 3         | complexity                               |
| 2       | 72     | 12        | 202144 218                               |
| 3       | 504    | 38        | • $262144 = 2^{18}$                      |
| 4       | 3024   | 108       | • $19683 = 3^9$                          |
| 5       | 15120  | 174       | • 19065 = 5                              |
| 6       | 60480  | 228       | <ul> <li>850 different boards</li> </ul> |
| 7       | 181440 | 174       | = state space                            |
| 8       | 362880 | 89        | · ·                                      |
| 9       | 362880 | 23        | complexity                               |
| sum     | 986410 | 850       |                                          |
|         |        |           |                                          |

<sup>\*</sup> only 765 states when stopping after winning

## Nine Men's Morris - Mühle

- Nine Men's Morris TUG
- 3 phases
  - placing stones
  - moving stones
    - \* allowed along the lines
  - moving stones
    - \* jumping allowed
- 3 stones along a line
  - choose opponent's stone to remove
- draw if played optimally
- operations to combine equivalent game states

Pólya-Redfield Enumeration Theorem: 16 Operations:

$$R_0$$
: ID:  $r_0 = \binom{24}{2} \times 22 = 6072$ 

$$R_0$$
: ID:  $r_0 = \binom{24}{2} \times 22 = 6072$   
 $R_1$  Rotation  $90^{\circ}$  ( $R_3$  Rotation  $270^{\circ}$ ):  $r_1 = r_3 = 0$ 

$$R_2$$
 Rotation  $180^{\circ}$ :  $r_2 = 0$ 

$$R_4 \dots R_7$$
 Reflections:  $r_4 = \dots = r_7 = 6 \times (9 + {5 \choose 2}) = 114$ 

$$R_8$$
: In-Out Inversion:  $r_8 = 8 \times (8 + \binom{7}{2}) = 232$ 

$$R_9 \dots R_{15}$$
: In-Out-Inversion plus  $R_1 \dots R_7$ 

$$r_9 = r_{10} = r_{11} = 0$$
  $24 * 23 * 22 = 12144 \text{ games}$ 

$$r_{12} = \dots = r_{15} = 2 \times 11 = 22$$
  
Number of orbits= $\frac{6072+4\times114+232+4\times22}{16} = \frac{6848}{16} = \frac{428}{16}$ 

## Connect 4

• Connect 4 - TUG

- First-Player Win
- states (7x6 board)
  - 0 to 42 fields which have a
    - \* yellow token
    - \* red token
    - \* no token

For each column from above: write 0 for each empty field, then a 1 befor the first non-empty field. Starting from there write 0 for a yellow token, and 1 for a red token.

- 7 bit per column
  - \* 7\*7 = 49 bit require 6 byte + 1 bit
  - \* first 1 acts as separator
    - marks the first token
    - afterwards only the color is stored
  - \* last separator is not needed
    - number of half moves = total number of tokens
    - count tokens in first 6 columns
    - ♦ tokens in last column = total number of tokens tokens in first 6 columns
  - $\ast$  only store empty fields and colors without separator
    - saves 1 bit  $\Rightarrow$  exactly 6 byte required



7 bit per column

 $7 \times 7 = 49$  bit in total > 6 byte

Number of tokens: save 'stop' bit in last

column: 6 byte

- move generator
  - up to 7 successors
  - add a token to a non-full column
- identify final states
  - draw
    - \* 42 tokens placed and no win

- lose
  - \* check if previous player has won
- win
  - $\ast$  check 11 4-tuples which include just placed token
  - \* fields above just placed token not considered
- hybrid approach
  - store first 23 half moves in DB
  - compute remaining decision tree online
  - maximum remaining search depth 42 23 = 19

\* with  $\sim$ 5 possible moves on average

| half- | different | half- | different | half- | different   |
|-------|-----------|-------|-----------|-------|-------------|
| moves | boards    | moves | boards    | moves | boards      |
| 0     | 1         | 8     | 91295     | 16    | 177841160   |
| 1     | 4         | 9     | 269531    | 17    | 363798195   |
| 2     | 25        | 10    | 809464    | 18    | 767435580   |
| 3     | 121       | 11    | 2148087   | 19    | 1448894267  |
| 4     | 568       | 12    | 5832236   | 20    | 2818993420  |
| 5     | 2144      | 13    | 14105207  | 21    | 4907390200  |
| 6     | 8231      | 14    | 35045629  | 22    | 8788132016  |
| 7     | 27109     | 15    | 77785047  | 23    | 14066554884 |
|       |           |       |           | sum   | 33475164421 |

 $_{-}$  33475164421 states with 6 byte each: 200 GB + 34 GB