МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

Кафедра математической кибернетики и компьютерных наук

ИССЛЕДОВАНИЕ ПАРАМЕТРОВ ГЕНЕТИЧЕСКОГО АЛГОРИТМА ДЛЯ ПОИСКА ЦЕНТРАЛЬНЫХ ВЕРШИН В ГРАФАХ

БАКАЛАВРСКАЯ РАБОТА

студента 4 курса 411 группы	
направления 02.03.02 — Фундаментальная информ	иатика и информационные
технологии	
факультета КНиИТ	
Власова Андрея Александровича	
Научный руководитель	
к. фм. н.	С.В.Миронов
Заведующий кафедрой	
к. фм. н., доцент	А. С. Иванов
T : T :	110011100

СОДЕРЖАНИЕ

BB	ВЕДЕІ	НИЕ	3
1	Опис	сание задачи	4
2	Гене	тические алгоритмы	5
	2.1	Представление решения и начальная популяция	6
	2.2	Оператор скрещивания	6
	2.3	Оператор мутации	7
	2.4	Оператор естественного отбора	7
3	Гене	тический алгоритм для поиска центральных вершин	8
3A	КЛЮ	<u>ЧЕНИЕ</u>	9
СГ	ІИСО	К ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	0

введение

Введение

1 Описание задачи

Для описания задачи сначала необходимо дать формальное определение понятию граф. Граф — это упорядоченная пара множеств (V, E), где V — множество вершин графа, а E — множество упорядоченных и неупорядоченных пар вершин — дуг или ребер. В случае, когда вершины в парах упорядочены, говорят, что граф является ориентированным, иначе — неориентированным.

В случает неориентированного графа также используется понятие связности графа — граф является связным, если между любой парой вершин существует по крайней мере один путь. Кроме этого графы можно разделить на взвешенные или невзвешенные — в случае взвешенного графа каждое ребро имеет некоторый вес — положительное или отрицательное число, в случае невзвешенного графа каждое ребро имеет вес равный единице.

В данной работе предлагается и исследуется задача поиска центральных вершин в графах, поэтому далее приводится формальное описание задачи. Для начала можно дать определение эксцентриситета вершины в графе. Эксцентриситетом е вершины называется максимальное из расстояний от этой вершины до всех остальных вершин в графе. С использованием этого определения можно сказать, что центральными вершинами в графе называются вершины с минимальным значением эксцентриситета, при чем само значение этого минимального эксцентриситета представляет собой радиус графа.

2 Генетические алгоритмы

Под генетическими алгоритмами принято подразумевать вероятностноэвристические алгоритмы, которые применяются для решения задач оптимизации. Сфера применения генетических алгоритмов достаточно широка, с одной
стороны данные алгоритмы могут быть применены при решении задач оптимизации, в которых недостаточно накопленных математических и алгоритмических знаний ввиду уникальности задачи или ее мало изученности. Кроме
этого генетические алгоритмы могут быть применены при решении задач, для
которых не существует эффективных алгоритмов решения—задачи из NPкласса, а также подобные алгоритмы могут найти применение при попытках
уменьшить временные затраты на решение хорошо изученной задачи.

В основе любого генетического алгоритма лежит моделирование эволюционного развития живых организмов за счет таких факторов, как естественный отбор, мутации и скрещивание. Процесс скрещивания или кроссинговера впервые начал изучался в XIX веке ученым-ботаником Г. Менделем. В результате его исследований было установлено, что в набор генов живых организмов передаются гены его родителей причем в скомбинированном виде. Этот факт во многом объясняет с одной стороны все многообразие живых существ, а с другой явление передачи полезных свойств через поколения.

В дальнейшем с развитием науки были сделаны ряд открытий, связанных с таким явлением, как мутация генов. Под мутацией понимается изменение генетических участков организма. Чаще всего эти изменения происходят под воздействием внешних факторов или внутренних. Такие мутации чаще всего приводят к негативным последствиям, но вместе с там у живого организма появляется небольшая возможность получить новые внешние свойства, которые будут выгодно выделять его среди других организмов и переведут на новый виток эволюции.

Вместе с тем элементом, который отвечает за селекцию и определение какие особи являются наиболее приспособленными к окружающей действительности, выступает естественный отбор. Отмеченный в работах Ч. Дарвина как один из ключевых процессов, который обеспечивает эволюционное развитие, естественный отбор сохраняет организмы с наиболее высоким уровнем приспособленности к окружающей среде и удаляет особи из низким уровнем приспособленности.

При рассмотрении природы, которая окружает организм, как некоторой сложно организованной системы легко заметить, что в процессе эволюции популяции живые существа под воздействием описанных факторов способны с легкостью решать некоторую оптимизационную задачу, находя в окружающих условиях оптимальные положения и состояния. В связи с этим была предложена идея генетических алгоритмов — смоделировать описанные три процесса и на их основе запустить оптимизационный поиск. Главный толчок для развития генетических алгоритмов был дан в работе Дж. Г. Холланда [1].

Каждый генетический алгоритм представляет собой итерационное применение операторов мутации, скрещивания и естественного отбора. При этом все эти операторы применяются к основной единице эволюции — популяции. В ходе такого итерационного применения этих операторов популяция должна найти некоторое оптимальное решение, при этом отнюдь не гарантируется, что это решение будет верным или же найденный оптимум будет являться глобальным.

2.1 Представление решения и начальная популяция

Первым этапом в реализации генетического алгоритма является выбор способа кодирования решения. Закодированные возможные решения будут представлять собой особи в популяции. Способ должен быть выбран таким образом, чтобы у операторов мутации и скрещивания была возможность с легкостью изменять каждую особь. Чаще всего при поиске оптимума некоторой вещественной функции каждая особь — это набор битов, которые кодируют вещественное число. Но данный подход не всегда может быть применен, поэтому способ кодирования решения выбирается чаще всего из постановки решаемой задачи. Одним из параметров генетического алгоритма является размер популяции N.

2.2 Оператор скрещивания

Данный оператор занимается выбором особей для скрещивания и самим процессом скрещивания. Задача этого оператора скомбинировать гены двух особей и создать на их основе новую особь для перехода в следующее поколение. При этом с этим процесс скрещивания происходит не всегда, а с вероятностью заданной в виде параметра p_c .

2.3 Оператор мутации

Оператор просматривает каждую особь в популяции и некоторым образом ее изменяет, при этом работает так же с некоторой вероятностью заданной через параметр p_m .

2.4 Оператор естественного отбора

При естественном отборе важна функция для оценки приспособленности каждой особи в популяции. Чаще всего в качестве такой функции выступает функция, оптимальное значение которой ищется. Для начала оператор вычисляет приспособленность каждого организма в популяции после чего формируется для каждой особи вероятность ее попадания в следующее поколение. Эта вероятность выше, чем наиболее оптимальное решение представляет собой рассматриваемый элемент. Выбор элементов популяции осуществляется при помощи так называемого колеса рулетки — каждой особи ставится в соответствие сектор в зависимости от уровня вероятности, после чего происходит генерация псевдослучайного числа, и в зависимости от того в какой сектор попало число, тот элемент и переходит в следующее поколение. Очевидно, что в результате окажется большинство особей с высоким уровнем приспособленности.

Среди недостатков, которыми обладает данный подход, можно выделить неуниверсальность генетических алгоритмов. Каждая задача требует уникальной разработки и адаптации всех описанных этапов под решаемую задачу. Кроме этого успешность работы алгоритма зависит от значений параметров p_c , p_m и N.

Таким образом основными вопросами, которые стоят перед разработчиком, является реализация процессов скрещивания, мутации, естественного отбора и выбор критерия остановки алгоритма. Кроме этого необходимо исследовать параметры p_c , p_m и N, которые существенным образом влияют на работу генетического алгоритма.

Генетический алгоритм для поиска центральных вершин АЛГОРИТМ

ЗАКЛЮЧЕНИЕ

Заключение

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

Holland, J. Adaption in Natural and Artificial Systems Adaption in Natural and Artificial Systems / J. Holland. — University of Michigan Press, 1975.