

(12) NACH DEM VERtrag UBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VEROFFENTLICHTE INTERNATIONALE ANMELDUNG

533 664

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
21. Mai 2004 (21.05.2004)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2004/042968 A1

(51) Internationale Patentklassifikation⁷: H04B 10/158,
10/148

(74) Gemeinsamer Vertreter: SIEMENS AKTIENGESELLSCHAFT; Postfach 22 16 34, 80506 München (DE).

(21) Internationales Aktenzeichen: PCT/DE2003/003385

(81) Bestimmungsstaaten (national): CN, US.

(22) Internationales Anmelde datum:
13. Oktober 2003 (13.10.2003)

(84) Bestimmungsstaaten (regional): europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

(25) Einreichungssprache: Deutsch

Veröffentlicht:

(26) Veröffentlichungssprache: Deutsch

- mit internationalem Recherchenbericht
- vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

(30) Angaben zur Priorität:
102 51 889.0 7. November 2002 (07.11.2002) DE

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): SIEMENS AKTIENGESELLSCHAFT [DE/DE]; Wittelsbacherplatz 2, 80333 München (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): ROHDE, Harald [DE/DE]; Welfenstr. 35, 81541 München (DE).

(54) Title: RECEIVER FOR ANGLE-MODULATED OPTICAL SIGNALS

(54) Bezeichnung: EMPFÄNGER FÜR WINKELMODULIERTE OPTISCHE SIGNALE

(57) **Abstract:** The invention relates to a receiver for an angle-modulated optical signal, whereby the angle-modulated optical signal is injected into an optical resonator. Reflected light escapes from the optical resonator on a phase or frequency change of the angle-modulated optical signal. An optical decoupling device is arranged before the optical resonator, using an opto-electrical converter for determining an angular change in the reflected light from the optical resonator. Various forms of decoupling devices for recovery of the reflected light are described.

WO 2004/042968 A1

(57) **Zusammenfassung:** Die Erfindung betrifft einen Empfänger für ein winkelmoduliertes optisches Signal, bei dem das winkelmodulierte optische Signal in einem optischen Resonator eingespeist wird. Bei Phasen- oder Frequenzwechsel des winkelmodulierten optischen Signals tritt reflektiertes Licht aus dem optischen Resonator auf. Mittels eines optisch-elektrischen Wandlers zur Ermittlung einer Winkeländerung aus dem an dem optischen Resonator reflektiertem Licht ist eine optische Auskoppeleinrichtung dem optischen Resonator vorgeschaltet. Unterschiedliche Variante von optischen Auskoppeleinrichtungen zur Rückgewinnung des reflektierten Lichtes sind beschrieben.

Beschreibung

Empfänger für winkelmodulierte optische Signale

- 5 Die Erfindung betrifft einen Empfänger für winkelmodulierte optische Signale nach dem Oberbegriff des Patenanspruches 1.

Bisherige optische Übertragungssysteme modulieren die zu übertragende Information auf die Intensität des zur Übertragung benutzen Lichtes auf. In einem Empfangssystem wandelt eine Photodiode die optischen amplitudenmodulierten Signale in elektrische Signale um. In bestimmten Konfigurationen oder Parameterbereichen eines optischen Übertragungssystems kann es sich als vorteilhaft erweisen, die Information auf 10 die Phase oder der Frequenz des zu übertragenden Lichtes zu modulieren. In diesem Fall ist eine einfache Photodiode nicht mehr ausreichend, um die Information aus den phasen- oder frequenzmodulierten Signalen zu extrahieren.

20 Bisher existieren zwei grundsätzliche Konzepte zur Phasendetektion optischer Lichtfelder. Beide Konzepte weisen eine Reihe von Vor- und Nachteilen auf und werden in einigen Variationen benutzt.

25 Der erste Konzept basiert auf einem Homodynempefang. Das einfallende Lichtfeld des phasenmodulierten optischen Signals wird mit einem zweiten Lichtfeld gleicher Frequenz und mit definierter Phase überlagert (hier wird auf Phasenmodulation aus Klarheitsgründen eingeschränkt). Dieses zweite Lichtfeld kann entweder von einem externen Laser als „Lokaloszillator“ 30 erzeugt werden oder auch ein - um eine Bitdauer - zeitverzögerter Teil des übertragenen Lichtes sein, was unter der Bezeichnung „Selbst-Homodynempefang“ bekannt ist. Die beiden optischen Felder interferieren auf einer Photodiode je nach 35 Phasenlage der Felder konstruktiv oder destruktiv und die Photodiode gibt einen zum Quadrat des Cosinus der relativen Phasenlage der Felder proportionalen Strom aus.

Der zweite Konzept basiert auf einem Heterodynempfang. Das einfallende Lichtfeld des phasenmodulierten optischen Signals wird mit einem zweiten Lichtfeld mit verschiedener Frequenz überlagert. Beide optische Felder interferieren auf einer 5 Photodiode. Die Photodiode liefert einen Wechselstrom, dessen Frequenz der Differenzfrequenz der beiden optischen Felder entspricht und dessen Phase durch die Phase des übertragenen optischen Feldes gegeben ist. Ein elektrischer Phasendetektor erzeugt aus diesem Wechselstromsignal einen amplitudenmodu-10 lierten Strom.

In beiden Fällen wird als zweites Lichtfeld entweder ein externer Laser oder ein (i. A. um einer Bitdauer) zeitverzögelter Anteil des übertragenen Lichtfeldes benutzt.

15 Ein externer Laser weist Vorteile bezüglich der Empfängerempfindlichkeit auf, andererseits sind entweder die Anforderungen an die Laserstabilität erheblich („Homodynendetektion“) oder es muss eine weitere elektrische Zwischenstufe eingefügt 20 werden („Heterodynendetektion“).

Überlagerung des empfangenen Lichtfeldes mit einem zeitverzögerten Anteil des gleichen Feldes („Selbst-Homodynempfang“) ist technologisch am einfachsten zu realisieren, allerdings 25 ist die Empfängerempfindlichkeit i. A. um einen Faktor 4 geringer als bei der Detektion mit Hilfe einer externen Lichtquelle.

Aufgabe der Erfindung ist es, einen einfachen und empfindlichen 30 Empfänger für die Ermittlung der Phaseninformation aus dem übertragenen Licht eines winkelmodulierten optischen Signals anzugeben und weiterhin diese Phaseninformation in ein amplitudenmoduliertes elektrisches Signal umzuwandeln.

35 Eine Lösung der Aufgabe erfolgt hinsichtlich ihres Vorrichtungsaspekts durch einen Empfänger mit den Merkmalen des Patentanspruchs 1.

Der erfindungsgemäße Empfänger weist einen optischen Resonator zur Speicherung des optischen Feldes des winkelmodulierten optischen Signals auf. Als optischer Resonator kann ein aus „Laserspektroskopie, Grundlagen und Techniken“, W. Demtröder, Springer, 2000“ bekannter Fabry-Perot-Resonator verwendet werden. Der optische Resonator ist so dimensioniert, dass die Speicherzeit des optischen Feldes etwa eine halbe Bitdauer beträgt. Die Transmissionsfrequenz des optischen Resonators ist auf die Lichtfrequenz abgestimmt. Bei bestimmten Parametern ist die Halbwertsbreite der Transmission im Bereich weniger GHz, so daß die Abstimmung der Resonatorfrequenz nicht allzu kritisch ist.

In einem verlustfreien optischen Fabry-Perot-Resonator, in den Licht mit der Resonanzfrequenz eingekoppelt wird, entsteht ein stark überhöhtes stehendes Lichtfeld. Dieses Lichtfeld dringt durch die teildurchlässigen Spiegel des Resonators nach Außen. An der Seite des Resonators, an dem das Licht aus dem winkelmodulierten optischen Signal eingekoppelt wird, hat das austretende Feld die umgekehrte Phase des eintretenden Feldes, so dass es mit dem eintretenden Feld destruktiv interferiert und kein Licht in den Eingangskanal zurückreflektiert wird. Das aus der Ausgangsseite des Resonators austretende Licht erfährt keine Interferenz durch ein externes weiteres Lichtfeld. Der Resonator erscheint bei einem konstanten Lichtfeld mit der Resonanzfrequenz transparent.

Ändert sich die Phase des einfallenden Lichtfeldes um den Wert π , wird sich aus der destruktiven Interferenz am Resonatoreingang konstruktive Interferenz bilden und daher wird Licht zurückreflektiert. Dafür wird auf „Optical decay from a Fabry-Perot cavity faster than the decay time“, H. Rohde, J. Eschner, F. Schmidt-Kaler, R. Blatt, J. Opt. Soc. Am. B 19, 35 1425-1429, 2002 hingewiesen.

Der Empfänger eignet sich ebenfalls für ein frequenz- wie ein phasenmoduliertes Signal. Deshalb kann der Empfänger allgemein als Empfänger für ein winkelmoduliertes Signal, d. h. mit der Phase oder mit der Frequenz verwendet werden. Im folgenden wird aus Klarheitsgründen auf einem Empfänger für ein phasenmoduliertes Signal hingewiesen.

Das rückreflektierte Licht wird vom Eingangslicht mittels einer optischen Auskoppeleinrichtung wie einem Zirkulator oder eine Kombination aus einem Polarisationsstrahlteiler und einer Wellenplatte getrennt und mittels eines optisch-elektrischen Wandlers wie eine Photodiode detektiert. Der Photodiodenstrom stellt somit ein Maß für die Ermittlung einer Phasenänderung bzw. -wechsel des einfallenden Lichtes dar.

Wesentliche Vorteile des erfindungsgemäßen Empfängers sind darin zu sehen, dass die Empfindlichkeit gegenüber dem Selbst-Homodynempfang um einen Faktor von bis zu 2 gesteigert ist, und dass er dabei nur wenig komplexer als selbiger und deutlich einfacher als Lösungen mit einem zusätzlichen Laser zu realisieren ist.

Vorteilhafte Weiterbildungen der Erfindung sind in den Unter-ansprüchen angegeben.

Ein Ausführungsbeispiel der Erfindung wird im folgenden an-hand der Zeichnung näher erläutert.

Dabei zeigen:

- Fig. 1: den Verbesserungsfaktor der Signal-Rauschabstände zwischen einem Homodynempfang und dem erfindungsgemäßen Empfänger,
- Fig. 2: einen ersten erfindungsgemäßen Empfänger,
- Fig. 3: einen zweiten erfindungsgemäßen Empfänger.

In Fig. 1 ist der Wert eines Verbesserungsfaktors α der Signal-Rauschabstände zwischen einem herkömmlichen Homodynempfänger und dem erfindungsgemäßen Empfänger als Funktion der Signal-Rauschabstände des Eingangslichtes $\text{SNR}_{\text{In}} = \frac{E_s^2}{E_N^2}$ dar-

gestellt. E_s bezeichnet das Signalfeld und E_N das Rauschfeld des Eingangssignals am optischen Resonator.

Zur Klarstellung der Erfindung im Bezug auf dem optischen Resonator werden im folgenden wichtige Resonatorparameter erläutert.

Die Eigenschaften eines optischen Fabry-Perot-Resonators, bestehend aus zwei Spiegeln mit der Reflektivität R im Abstand L werden (vereinfacht) durch folgende Parameter bestimmt:

1. Ein freier Spektralbereich FSR gibt den Frequenzabstand der Resonatormoden an.

$$\text{FSR} = \frac{c}{2L}$$

wobei c die Lichtgeschwindigkeit bezeichnet.

2. Eine Halbwertsbreite $\Delta\nu$ der Resonanz ist durch

$$\Delta\nu = \frac{c}{2L} * \frac{1 - R}{\pi\sqrt{R}}$$

gegeben.

3. Daraus ergibt sich die Finesse F als Quotient aus dem freiem Spektralbereich FSR und der Halbwertsbreite $\Delta\nu$ zu:

$$F = \frac{\text{FSR}}{\Delta\nu} = \frac{\pi\sqrt{R}}{1 - R} \approx \frac{\pi}{1 - R} \quad \text{für } R \approx 1.$$

4. Eine Speicherzeit τ eines optischen Fabry-Perot-Resonators als Zeit, nach der nach Abschalten des Eingangsfeldes die

Intensität des im Resonator gespeicherten Feldes um den Faktor $1/e$ abgefallen ist, beträgt:

$$\tau = \frac{F * L}{\pi c}.$$

5

Mit einer Resonatorlänge von $L=1$ mm und einer Speicherzeit von $\tau = 50$ ps (halbe Bitdauer bei 10 Gbit/s) ergibt sich eine Finesse von $F \approx 50$ und daraus eine Spiegelreflektivität R von ca. 0,94%. Der freie Spektralbereich FSR beträgt 150 GHz
10 und die Halbwertsbreite $\Delta\nu = 3$ GHz.

Im Folgenden wird die verbesserte Empfangsempfindlichkeit des erfindungsgemäßen Empfängers gegenüber eines Selbst-

Homodynempfangs dargestellt.

15 Das optische Eingangsfeld wird als Summe aus dem Signalfeld E_s und dem Rauschfeld E_N dargestellt: $E_{in} = E_s + E_N$.

Bei einem Selbst-Homodynempfang spaltet ein Strahlteiler das Feld in zwei Teilfelder E_1 , E_2 auf:

20

$$E_1 = \frac{1}{\sqrt{2}} E_{in} = \frac{1}{\sqrt{2}} (E_s + E_N)$$

$$E_2 = \frac{1}{\sqrt{2}} E_{in} = \frac{1}{\sqrt{2}} (E_s + E_N)$$

25 Nach Zeitverzögerung eines Feldes um eine Bitdauer werden beide Felder wieder mit einem weiteren Strahlteiler addiert und einer der Ausgänge des Strahlteilers mit einer Photodiode detektiert. Es wird angenommen, dass sich die Phasenlage nicht geändert hat und daher die Zeitverzögerung nicht explizit in die Formel hereingeschrieben werden muss.
30 Das Feld E_{PD} am Ort der Photodiode ist:

$$E_{PD} = \frac{1}{\sqrt{2}} E_1 + \frac{1}{\sqrt{2}} E_2.$$

Daraus ergibt sich die optische Leistung P_{PD} am Ort der Photodiode zu:

$$P_{PD} \propto E_{PD}^2 = E_s^2 + E_N^2 + 2E_s E_N$$

5

Die Signal-Rauschabstände $SNR_{Ho\ mod\ yn}$ des Selbst-Homodynempfangs sind folglich:

$$SNR_{Ho\ mod\ yn} = \frac{E_s^2}{E_N^2 + 2 * E_s E_N}.$$

10

Bei dem erfindungsgemäßen Empfänger ist im eingeschwungenen Zustand im Inneren des Resonators die Feldstärke des kohärenten Eingangsfeldes E_s um den Faktor $\frac{F}{\Pi}$ überhöht, während das Rauschfeld nur um den Faktor $1 - R$ abgeschwächt in den Resonator eindringt, da die Überhöhung nicht kohärent erfolgt. Das Feld E_{Res} im Inneren des Resonators ist also:

$$E_{Res} = \frac{F}{\Pi} * E_s + (1 - R) * E_N.$$

20 Das Feld E_{Res} im Inneren des Resonators dringt durch die teildurchlässigen Resonatorspiegel mit einer Abschwächung um den Faktor $(1-R)$ nach Aussen. Tritt ein Phasenwechsel des eingestrahlten Feldes auf, so interferiert das aus dem Resonator austretende Licht nicht mehr destruktiv mit dem einfallenden Feld und Licht verlässt den optischen Resonator in Gegenrichtung zum einfallenden Licht.

25 Das sich in Gegenrichtung zum einfallenden Licht ausbreitende Feld $E_{Reflektiert}$ besteht aus dem am Resonatorspiegel reflektierten Anteil des Eingangslichtfeldes E_{IN} und dem durch den halbdurchlässigen Resonatorspiegel austretenden Anteil des im Resonator gespeicherten Lichtfeldes E_{Res} .

$$E_{Reflektiert} = R * E_{IN} + (1 - R) * E_{Res}$$

$$E_{Reflektiert} = R * (E_s + E_N) + (1 - R) * (\frac{F}{\Pi} E_s + (1 - R) * E_N)$$

Mit $F \approx \frac{\pi}{1 - R}$ und $R \geq 1$ und daher $(1 - R) * (1 - R) \geq 0$ ergibt sich:

$$E_{\text{Reflektiert}} = 2 * E_s + E_N.$$

5

Die Leistung P_{PD} an der Photodiode ist:

$$P_{PD} = E_{\text{Reflektiert}}^2 = 4 * E_s^2 + E_N^2 + 4 * E_s E_N.$$

10 Die Signal-Rauschabstände SNR_{NEW} des erfindungsgemäßen Empfängers sind folglich:

$$\text{SNR}_{\text{NEW}} = \frac{4 * E_s^2}{E_N^2 + 4 * E_s E_N}.$$

15 Damit kann der Verbesserungsfaktor α der Signal-Rauschabstände zwischen einem herkömmlichen Homodynempfänger und dem erfindungsgemäßen Empfänger berechnet werden:

$$\frac{\text{SNR}_{\text{NEW}}}{\text{SNR}_{\text{Homodyn}}} = 4 * \frac{E_N^2 + 2 * E_N E_s}{E_N^2 + 4 * E_N E_s} = \alpha$$

20

Der Wert des Verbesserungsfaktors α hängt vom Signal-Rauschverhältnis $\text{SNR}_{In} = \frac{E_s^2}{E_N^2}$ des Eingangslichtes ab. Die Figur 1 stellt der Verbesserungsfaktor α in Abhängigkeit vom SNR_{In} dar.

25

Der Wert für den Verbesserungsfaktor α gilt für den Zeitpunkt des Phasenwechsels, danach nimmt das Signal exponentiell ab. Unter der Annahme, dass die Photodiode und die Auswerteelektronik nicht schnell genug sind, um nur den Spitzenwert zu detektieren, sondern über eine Bitdauer integrieren, muss der Verbesserung gegenüber dem Selbst-Homodynempfang um den Faktor $\frac{1}{2} - \frac{1}{2} * e^{-2} = 0,43$ reduziert werden.

- In Figur 2 ist ein erster erfindungsgemäßer Empfänger für ein phasenmoduliertes optisches Signal S dargestellt. Einem optischen Resonator FPR wird das phasenmodulierte optische Signal S eingespeist. An einem optisch-elektrischen Wandler OEW1 zur Ermittlung einer Phasenänderung des phasenmodulierten optischen Signals S aus an dem optischen Resonator FPR reflektiertem Licht RL ist eine optische Auskoppeleinrichtung OU dem optischen Resonator FPR vorgeschaltet.
- Optional kann ein zweiter optisch-elektrischer Wandler OEW2 als z. B. eine Photodiode dem optischen Resonator FPR nachgeschaltet werden, um durch eine Differenzbildung des Signales bzw. eine Mittelung des Rauschens am ersten optisch-elektrischen Wandler OEW1 die Empfindlichkeit zu steigern.
- Für ein frequenzmoduliertes Signal mit einem definierten Frequenzhub kann man theoretisch beide folgende Fälle unterscheiden: bei einem Empfänger mit Frequenzmodulation, wobei der Frequenzhub kleiner als die Bandbreite des optischen Resonators FPR ist, kann die Frequenzmodulation in ähnlicher Weise wie die Phasenmodulation betrachtet werden; bei einem Empfänger mit Frequenzmodulation, wobei der Frequenzhub größer als die Bandbreite des optischen Resonators FPR ist, wird der optische Resonator FPR als frequenzselektiver Spiegel wirken, d. h. eine Frequenz wird durchgelassen, wenn sie mit der Resonanzfrequenz des optischen Resonators FPR übereinstimmt und die andere wird reflektiert. Auf beiden Photodioden OEW1, OEW2 würden zwei komplementäre Binärsignale zur Detektion eines Frequenzsprunges im ursprünglichem frequenzmodulierten Signals aufgenommen werden. In beiden Fällen eignet sich der erfindungsgemäße Empfänger gut.
- Der optische Resonator FPR ist hier ein herkömmlicher Fabry-Perot-Resonator. Die optische Auskoppeleinrichtung OU weist einen Zirkulator ZIRK auf, der dem optischen Resonator FPR vorgeschaltet ist und dessen Ausgang an dem optisch-elektrischen Wandler OEW1 angeschlossen ist.

10

In **Figur 3** ist ein zweiter erfindungsgemäßer Empfänger gemäß Figur 2 dargestellt, wobei eine andere Art von optischer Auskoppeleinrichtung OU verwendet ist. Die optische Auskoppel-einrichtung OU weist einen Polarisationsstrahlteiler PST mit einer nachgeschalteten Polarisationsplatte PP auf, so dass das phasenmodulierte optische Signal S und das reflektierte Licht RL zur Ermittlung eines Phasenwechsels unterschiedliche durch den Polarisationsstrahlteiler trennbare Polarisationen aufweisen.

10

Weitere Varianten von optischen Auskoppeleinrichtungen OU sind realisierbar. Wichtig ist die Rückgewinnung des reflek-tierten Lichtes RL am Eingang des optischen Resonators FPR, das die Information eines Phasenwechsels des phasenmodulier-15 ten Signals S liefert. Andere Lichtanteile müssen unterdrückt werden.

Patentansprüche

1. Empfänger für ein winkelmoduliertes optisches Signal (S),
dadurch gekennzeichnet,

5 dass einem optischen Resonator (FPR) das winkelmodulierte optische Signal (S) eingespeist wird,
dass dem optischen Resonator (FPR) eine optische Auskoppel-
einrichtung (OU) für ein vom optischen Resonator (FPR) re-
flektiertes Licht (RL) vorgeschaltet ist.

10

2. Empfänger nach Anspruch 1,
dadurch gekennzeichnet,
dass der optischen Auskoppeleinrichtung (OU) ein optisch-
elektrischer Wandler (OEW1) nachgeschaltet ist.

15

3. Empfänger nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
dass der optische Resonator (FPR) ein Fabry-Perot-Resonator
ist.

20

4. Empfänger nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet,
dass die optische Auskoppeleinrichtung (OU) einen Zirkulator
(ZIRK) aufweist, der dem optischen Resonator (FPR) vorge-
schaltet ist und dessen Ausgang an dem optisch-elektrischen
Wandler (OEW1) angeschlossen ist.

25

5. Empfänger nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet,
30 dass die optische Auskoppeleinrichtung (OU) einen Polarisati-
onsstrahlteiler (PST) mit einer nachgeschalteten Polarisati-
onssplatte (PP) aufweist, so dass das winkelmodulierte opti-
sche Signal (S) und das reflektierte Licht (RL) unterschied-
liche durch den Polarisationsstrahlteiler trennbare Polarisa-
tionen aufweisen.

35

6. Empfänger nach einem der vorhergehenden Ansprüche,

12

dadurch gekennzeichnet,
dass zur Steigerung der Empfindlichkeit ein zweiter optisch-elektrischer Wandler (OEW2) dem optischen Resonator (FPR) nachgeschaltet ist.

5

7. Empfänger nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass eine Kodierung einer Zuordnung der Phasenänderung mit-tels des durch den optischen Resonator (FPR) reflektierten
10 und gegebenenfalls transmittierten Lichtes vorgesehen ist.
Zusammenfassung

1/2

FIG 1

2/2

FIG 2 $\lambda/4$ **FIG 3**

INTERNATIONAL SEARCH REPORT

International Application No

DE 03/03385

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 H04B10/158 H04B10/148

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 7 H04B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 00 44074 A (ILCHENKO VLADIMIR ;MALEKI LUTE (US); YAO X STEVE (US); CALIFORNIA) 27 July 2000 (2000-07-27) page 6, line 17 -page 7, line 4 page 10, line 8 -page 11, line 10 page 20, line 20 -page 21, line 12 page 22, line 7 - line 21 page 24, line 1 - line 21	1-4,6,7
Y	US 5 742 418 A (OUCHI TOSHIHIKO ET AL) 21 April 1998 (1998-04-21) abstract column 12, line 40 -column 13, line 6 column 13, line 27 - line 60 figures 13,14A	5
	---	5
	-/-	

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the international search

9 March 2004

Date of mailing of the international search report

23/03/2004

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Hadziefendic, I

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US03/03385

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 5 027 435 A (IANNONE PATRICK P ET AL) 25 June 1991 (1991-06-25) column 2, line 39 - line 43 column 3, line 10 - line 27 column 4, line 29 - line 34 -----	1-3

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/ [REDACTED] 03/03385

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
WO 0044074	A	27-07-2000	AU	3855300 A	07-08-2000
			CA	2361527 A1	27-07-2000
			CN	1338135 T	27-02-2002
			EP	1155479 A1	21-11-2001
			JP	2002535853 T	22-10-2002
			WO	0044074 A1	27-07-2000
			US	2003160148 A1	28-08-2003
			US	6567436 B1	20-05-2003
US 5742418	A	21-04-1998	JP	3303515 B2	22-07-2002
			JP	7264138 A	13-10-1995
			EP	0673127 A1	20-09-1995
US 5027435	A	25-06-1991	US	4861136 A	29-08-1989
			CA	2006125 A1	27-07-1990
			EP	0381341 A2	08-08-1990
			JP	2234525 A	17-09-1990
			CA	1292282 C	19-11-1991
			DE	3885024 D1	25-11-1993
			DE	3885024 T2	10-02-1994
			EP	0300640 A2	25-01-1989
			JP	1046720 A	21-02-1989
			JP	2710955 B2	10-02-1998

INTERNATIONALER RECHERCHENBERICHT

Internationaler Aktenzeichen
PCT/EP 03/03385

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 H04B10/158 H04B10/148

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 H04B

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie ^a	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	WO 00 44074 A (ILCHENKO VLADIMIR ;MALEKI LUTE (US); YAO X STEVE (US); CALIFORNIA) 27. Juli 2000 (2000-07-27)	1-4,6,7
Y	Seite 6, Zeile 17 -Seite 7, Zeile 4 Seite 10, Zeile 8 -Seite 11, Zeile 10 Seite 20, Zeile 20 -Seite 21, Zeile 12 Seite 22, Zeile 7 - Zeile 21 Seite 24, Zeile 1 - Zeile 21 ----	5
Y	US 5 742 418 A (OUCHI TOSHIHIKO ET AL) 21. April 1998 (1998-04-21) Zusammenfassung Spalte 12, Zeile 40 -Spalte 13, Zeile 6 Spalte 13, Zeile 27 - Zeile 60 Abbildungen 13,14A ----	5
	-/-	

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *E* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- *P* Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

- *T* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden
- *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche

Absendedatum des internationalen Recherchenberichts

9. März 2004

23/03/2004

Name und Postanschrift der Internationalen Recherchenbehörde

Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Hadziefendic, I

INTERNATIONALER RECHERCHENBERICHT

Internationaler Aktenzeichen

PCT/DE 03/03385

C.(Fortsetzung) ALS WESENTLICH ANGEBEHENE UNTERLAGEN

Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	US 5 027 435 A (IANNONE PATRICK P ET AL) 25. Juni 1991 (1991-06-25) Spalte 2, Zeile 39 - Zeile 43 Spalte 3, Zeile 10 - Zeile 27 Spalte 4, Zeile 29 - Zeile 34 -----	1-3

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationale Aktenzeichen

DE 03/03385

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
WO 0044074	A	27-07-2000	AU CA CN EP JP WO US US	3855300 A 2361527 A1 1338135 T 1155479 A1 2002535853 T 0044074 A1 2003160148 A1 6567436 B1		07-08-2000 27-07-2000 27-02-2002 21-11-2001 22-10-2002 27-07-2000 28-08-2003 20-05-2003
US 5742418	A	21-04-1998	JP JP EP	3303515 B2 7264138 A 0673127 A1		22-07-2002 13-10-1995 20-09-1995
US 5027435	A	25-06-1991	US CA EP JP CA DE DE EP JP JP	4861136 A 2006125 A1 0381341 A2 2234525 A 1292282 C 3885024 D1 3885024 T2 0300640 A2 1046720 A 2710955 B2		29-08-1989 27-07-1990 08-08-1990 17-09-1990 19-11-1991 25-11-1993 10-02-1994 25-01-1989 21-02-1989 10-02-1998

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.