## Al Model Efficiency Toolkit (AIMET)

Chirag Patel
Principal Eng./Mgr.
Qualcomm Al Research



## Leading machine learning research for edge Al

across the entire spectrum of topics



#### Model quantization

Invented the best techniques for fast deployment of 8-bit quantization



Best power-efficiency toolkit in the industry

#### On-device learning

Invented continuous learning techniques for SOTA on-device voice-UI



First demonstration of 30% improvement to keyword spotting

#### Federated learning

Invented methods for combining differential privacy and compression



First end-to-end research software framework deployable on mobile

#### Video semantic segmentation

Top the Cityscape leaderboard with loss function innovation for boundary-awareness



First real-time SS at FHD on mobile



## Al Firsts

Brought to you by Qualcomm
Al Research

#### Group equivariant CNN

Pioneer for rotational equivariance; best paper at ICLR'18



First G-CNN segmentation for health on mobile

#### Al for wireless

Invented neural augmentation to enhance physical layer algorithms



First weakly supervised method for real-world passive RF sensing

#### Video super resolution

Full stack optimization for visual quality improvement at 4K resolution



First 4K SR at 100+ FPS on mobile

#### Neural video compression

Invented instanceadaptive for SOTA performance & new deployment scenarios



First real-time HD decoding on mobile

#### Quantization

Learning to reduce bit-precision while keeping desired accuracy

# Holistic model efficiency research

Multiple axes to shrink Al models and efficiently run them on hardware

#### Compilation

Learning to compile
Al models for efficient
hardware execution

## Conditional compute

Learning to execute only parts of a large inference model based on the input

## Neural architecture search

Learning to design smaller neural networks that are on par or outperform hand-designed architectures on real hardware



### Driving the industry toward integer inference and power-efficient Al

Leading model efficiency research and fast commercialization

#### AIMET makes AI models small

State-of-the-art quantization and compression techniques from Qualcomm AI Research



Github: <a href="https://github.com/quic/aimet">https://github.com/quic/aimet</a>

### AIMET

Providing advanced model efficiency features and benefits

#### Benefits



Lower power



Lower memory bandwidth



Maintains model accuracy



Lower storage



Higher performance



Simple ease of use

#### **Features**

#### Quantization

State-of-the-art INT8 and INT4 performance

Quantization simulation

Post-training quantization (PTQ) methods:

- Data-Free Quantization
- · Adaptive Rounding (AdaRound),
- Automatic Mixed Precision (AMP)
- AutoQuant

Quantization-aware training (QAT)

#### Compression

Efficient tensor decomposition and removal of redundant channels in convolution layers

Spatial singular value decomposition (SVD)
Channel pruning

#### Visualization

Analysis tools for drawing insights for quantization and compression

Weight ranges

Per-layer compression sensitivity

## AdaRound: Adaptive Rounding for Better Quantization ICML'20 paper

#### Rounding-to-the-nearest is not optimal

#### **Object Detection**

Semantic Seg. (Deeplabv3)



| Configuration                                       | mAP   |
|-----------------------------------------------------|-------|
| Floating point                                      | 82.20 |
| Nearest Rounding - 8-bit weights, 8-bit activations | 49.85 |
| AdaRound - 8-bit weights, 8-bit activations         | 81.21 |

mAP: Mean Average Precision

| Configuration                                        | mIOU  |
|------------------------------------------------------|-------|
| Floating point                                       | 72.94 |
| Nearest Rounding -  4-bit weights, 8-bit activations | 6.09  |
| AdaRound - 4-bit weights, 8-bit activations          | 70.86 |

mIOU: Mean Intersection Over Union

AdaRound optimizes the network weights without model fine-tuning

$$\underset{\mathbf{V}}{\operatorname{arg\,min}} \quad \left\| \mathbf{W}\mathbf{x} - \widetilde{\mathbf{W}}\mathbf{x} \right\|_{F}^{2} + \lambda f_{reg}\left(\mathbf{V}\right)$$

### AdaRound Results

- Poor baseline INT8 quantization performance
- AdaRound performance within 1% of FP32

INT8, Baseline



INT8, AdaRound



# AutoQuant simplifies post-training quantization

- Analyzes the model
- Applies the best sequence of already existing post-training quantization (PTQ) features
- Returns the best accuracy model with analysis report
- A simple, blackbox, pushbutton solution



## AIMET Quantization Aware Training

Simulate quantization noise in the forward pass and fine-tune for improved robustness

Provides accurate prediction of on-target performance by HW/run-time awareness

INT8 performance typically within 0.5-1% of FP32 performance













#### AIMET Model Zoo includes popular quantized AI models

Accuracy is maintained for INT8 and INT4 models – less than 1% loss\*

#### **Transformer Quantization**

| Model                    | FP32            | INT8  |
|--------------------------|-----------------|-------|
| BERT-base-uncased        | 82.73<br>(GLUE) | 82.53 |
| DistilBERT-base-uncased  | 80.35<br>(GLUE) | 79.81 |
| mobileBERT               | 81.24<br>(GLUE) | 81.27 |
| VIT (vision transformer) | 81.30           | 81.50 |

## AIMET quantizes transformers with high accuracy, comparable to FP32

### AIMET enables accurate INT4 (4-bit weights, 8-bit activations) for wide range of use cases

| Task             | Model                 | FP32     | INT W4A8   |
|------------------|-----------------------|----------|------------|
| Classification   | ResNet50              | 76.10%   | 75.4%      |
|                  | ResNet18              | 69.75%   | 68.96%     |
|                  | EfficientNet-Lite     | 75.31%   | 74.33%     |
|                  | Regnext               | 78.30%   | 77.20%     |
| Segmentation     | Deeplabv3<br>(RN-50)  | 76.07%   | 75.91%     |
| Super-resolution | ABPN                  | 31.97 dB | 31.67 (dB) |
| Pose detection   | PoseNet<br>(HRNet-32) | 0.765    | 0.763      |



With better
PTQ and QAT
techniques,
more models
will achieve better
power efficiency

#### **AIMET**

State-of-the-art quantization and compression techniques



github.com/quic/aimet

#### **AIMET Model Zoo**

Accurate pre-trained 8-bit quantized models



github.com/quic/aimet-model-zoo

## **Quantization** whitepaper



arxiv.org/abs/2201.08442

Explore our open-source projects and tools



Qualcomm Al Stack

Tools:

Qualcomm Al **Model Studio** 

**AIMET** 

**AIMET** Model Zoo

NAS

Model analyzers

Infrastructure:



Prometheus







9

AI Frameworks



**AI Runtimes** 

Qualcomm<sup>®</sup> Neural Processing SDK



TF Lite Micro

Direct ML TF Lite

Qualcomm® AI Engine Direct (QNN)

**Math Libraries** 

Compilers

Virtual platforms

Profilers & Debuggers

**Programming Languages** 

**Core Libraries** 

System Interface

SoC, accelerator drivers

**Emulation Support** 



































Cloud

#### Snapdragon® 8 Gen 2 Mobile Platform Qualcomm<sup>®</sup> Al Engine







More Hardware Acceleration

2X Tensor Accelerator Performance



60%

More power efficient











Qualcomm Al Stack

Performance **Improvements** 

**INT4 Support** 









Follow us on: **f** 🏏 **in** 🗿 🕟









For more information, visit us at: qualcomm.com & qualcomm.com/blog Nothing in these materials is an offer to sell any of the components or devices referenced herein.

©2018-2022 Qualcomm Technologies, Inc. and/or its affiliated companies. All Rights Reserved.

Qualcomm, Snapdragon, Hexagon, Adreno, and Kryo are trademarks are trademarks or registered trademarks of Qualcomm Incorporated. Other products and brand names may be trademarks or registered trademarks of their respective owners.

References in this presentation to "Qualcomm" may mean Qualcomm Incorporated, Qualcomm Technologies, Inc., and/or other subsidiaries or business units within the Qualcomm corporate structure, as applicable. Qualcomm Incorporated includes our licensing business, QTL, and the vast majority of our patent portfolio. Qualcomm Technologies, Inc., a subsidiary of Qualcomm Incorporated, operates, along with its subsidiaries, substantially all of our engineering, research and development functions, and substantially all of our products and services businesses, including our QCT semiconductor business.