矩阵理论与方法

内容提要 CONTENTS

- □ 课程信息
- □ 课程介绍
- □ 矩阵理论与方法

第1章 线性空间与线性变换

回顾

设V是线性空间,T是V上的一个线性变换,求 $z = (T^k)(x)$,其中 $x \in V$

0、在一组简单的基 $e_1,...,e_n$ 下求向量坐标

问题c

1、2、通过坐标变换得到向量在基 $E_1,...,E_n$ 下的坐标

问题a

3、求T在基 $E_1,...,E_n$ 下的矩阵A

$$T(E_1,...,E_n) = (E_1,...,E_n)A$$

4、若T有n个线型无关特征向量,则 $A = P^{-1}\Lambda P$

则
$$A = P^{-1}\Lambda P$$

问题b

$$T(E_1,...,E_n) = (E_1,...,E_n)P^{-1}\Lambda P$$

回顾

设V是线性空间,T是V上的一个线性变换,求 $z = (T^k)(x)$,其中 $x \in V$

0、在一组简单的基 $e_1,...,e_n$ 下求向量坐标

问题c

1、2、通过坐标变换得到向量在基 $E_1,...,E_n$ 下的坐标

问题a

3、求T在基 $E_1,...,E_n$ 下的矩阵A

$$T(E_1,...,E_n) = (E_1,...,E_n)A$$

4、T不一定有n个线型无关特征向量,则 $A = P^{-1}BP$

问题b'

$$T(E_1,...,E_n) = (E_1,...,E_n)P^{-1}BP$$

例:设 x_1, x_2 为线性空间V一组基,线性变换T在

这组基下的矩阵为
$$A = \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix}$$
,

Y1, Y2 为V的另一组基,且

$$(y_1, y_2) = (x_1, x_2) \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix},$$

- (1) 求T在 y_1, y_2 下的矩阵B.
- (2) 求 A^k .

解: (1) T在基 y_1, y_2 下的矩阵

$$B = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}$$
$$= \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

(2) 由 $B=C^{-1}AC$, 有 $A=CBC^{-1}$,

于是 $A^k = CB^kC^{-1}$.

$$A^{k} = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^{k} \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}^{-1}$$

$$= \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} k+1 & k \\ -k & -k+1 \end{pmatrix}.$$

$A = PJP^{-1}$

A =

```
0.5497
          -1.1214
                    -1.2634
                              -2.5490
                                        -0.2594
                                                  -2.1024
                                                             -2.6546
                                                                       -0.6398
                                                                                  1.5405
                                                                                           -0.0475
0.7098
          0.7563
                    -2.3274
                                         1.5288
                                                   0.1720
                                                                                 -1.4984
                              -1.5446
                                                              0.7024
                                                                        2.8183
                                                                                            0.9692
0.2331
          0.5167
                     2.2424
                               1.0065
                                         0.5974
                                                   0.5138
                                                              0.1723
                                                                       -0.9179
                                                                                 -1.1064
                                                                                           -0.1172
0.5496
          -1.1691
                    -1.5726
                               0.5940
                                         1.3820
                                                  -0.8759
                                                              0.9734
                                                                        2.1990
                                                                                 -1.0928
                                                                                            0.6934
          -1.6409
                              -1.8563
                                                                                            0.8272
0.4812
                    -3.4219
                                         4. 1556
                                                  -1.5136
                                                              0.8488
                                                                        2.5756
                                                                                 -1.5107
-1.0793
          -0.8372
                                         0.2862
                                                                                            0.1760
                    -2.8613
                              -1.5343
                                                  -0.3219
                                                             -0.0468
                                                                        0.8359
                                                                                  1.1317
-1.6985
         -1.0624
                    -3.0344
                              -1.8995
                                         1.1969
                                                  -1.4285
                                                              1.9558
                                                                       -0.1320
                                                                                  0.6781
                                                                                            0.4526
0.1602
          -0.1269
                    -2.2926
                              -0.0846
                                         1.6756
                                                  -1.1829
                                                              0.3769
                                                                        2.5131
                                                                                 -1.5842
                                                                                            0.1104
-1.7184
          -3.0421
                    -6.1512
                              -3.7613
                                         2.8398
                                                  -3.5493
                                                              0.0003
                                                                        1.9476
                                                                                  1. 5225
                                                                                            0.5377
1.6037
           2.2475
                     5. 1125
                               3.7125
                                        -1.1328
                                                   3.0115
                                                              1.1758
                                                                       -1.4112
                                                                                 -1.1495
                                                                                            1.0327
```

$$invP=inv(P)$$
;

ans =

0

$A = PJP^{-1}$

invP	=
------	---

-0. 0553	0.0110	0.0339	-0. 0338	-0.0166	-0. 0831	-0.0437	-0.0342	0.0537	-0.0502
-0.0003	-0.0121	0.0583	0.0278	0.0281	0.0614	0.0037	-0.0219	-0.0607	-0.0388
-0.0330	-0.0762	-0.0272	0.0164	0.0505	-0.0285	-0.0060	0.0063	0.0245	-0.0086
0.0067	-0.0487	-0.0955	-0.0119	0.0819	-0.0941	0.0821	0.0374	-0.0488	-0.0015
0.0159	0.0152	0.0474	-0.0099	0.0238	0.0406	0.0025	-0. 0325	-0.0067	0.0231
-0.0556	-0.0330	-0.1286	-0.0730	0.0458	-0.0997	-0.0323	-0.0051	0.0129	0.0109
-0.0008	0.0517	0.0590	0.0685	-0.0288	0.0113	-0.0096	-0.0688	0.0099	-0.0306
0.0467	0.0964	0.1536	0.0977	-0.0368	0. 1343	0.0480	-0.0054	-0.0834	0.0495
0.0211	-0.0412	-0. 1794	-0.0797	0.1137	-0.0961	0.0339	0.0974	-0. 0344	0.0131
0.0301	0.0489	0.1690	0.0630	-0.0908	0.0713	-0.0757	-0.0651	0.0037	-0.0163

1 =

1	1	0	0	0	0	0	0	0	0	-6	-4	-4	5	7	-7	3	-8	5	9
0	1	0	0	0	0	0	0	0	0	5	-1	-3	-7	0	0	8	5	7	-5
0	0	2	1	0	0	0	0	0	0	7	-1	3	3	4	-3	-6	3	0	3
0	0	0	2	1	0	0	0	0	0	-3	-3	9	-1	-7	1		4	3	2
0	0	0	0	2	0	0	0	0	0	4	1	8	-5	9	-2	6	3	9	-2
0	0	0	0	0	-1	1	0	0	0	-4	5	-1	-8	1	-2	1	-2	-1	-7
0	0	0	0	0	0	-1	0	0	0	1	-1	-5	6	3	-6	-1	-2	-8	-9
0	0	0	0	0	0	0	3	1	0	6	-1		-6	-9	-5	-5	6	7	-1
0	0	0	0	0	0	0	0	3	1	2	-7	5	-6	6	-9	5	-3	2	-6
0	0	0	0	0	0	0	0	0	3	-3	-9	5	3	5	8	-5	6	-3	4

P =

$$A = PJP^{-1}$$

$A^k = PJ^kP^{-1}$

J =	:										>> norm(A-P*J*invP) >> r	orm(A^10-H	P*J [^] 10*invP)	
	1	1	0	0	0	0	0	0	0	0		- · · · · · · · · · · · · · · · · · · ·	3		111	
	0	1	0	0	0	0	0	0	0							
	0	0	2	1	0	0	0	0	0	0	ans =		ans	=		
	0	0	0	2	1	0	0	0	0	0						
	0	0	0	0	2	0	0	0	0	0	0		1	. 5192e-09		
	0	0	0	0	0	-1	1	0	0	0			1	. 519Ze=09		
	0	0	0	0	0	0	-1	0	0	0						
	0	0	0	0	0	0	0	3	1	0						
	0	0	0	0	0	0	0	0	3	1						
	0	0	0	0	0	0	0	0	0	3						
J10 =																
	1		10		0		0		0		0	0	0	0	0	
	0		1		0		0		0		0	0	0	0	0	
	0		0		1024		5120		11520		0	0	0	0	0	
	0		0		0		1024		5120		0	0	0	0	0	
	0		0		0		0		1024		0	0	0	0	0	
	0		0		0		0		0		1	-10	0	0	0	
	0		0		0		0		0		0	1	0	0	0	
	0		0		0		0		0		0	0	59049	196830	295245	
	0		0		0		0		0		0	0	0	59049	196830	
	0		0		0		0		0		0	0	0	0	59049	

$A = P^{-1}JP$

```
clc
                                           A =
        clear
 3
      A = [-1 \ 1 \ 0]
 5
              -4 \ 3 \ 0;
                1 0 2 ];
                                                           J =
                                                                           invP =
                                          P =
                                                                              1.0000
                                                                                     -1.0000
                                                                                           -1.0000
       [P, J] = jordan(A);
                                                                                     -0.2500
                                                                              1.0000
                                                                                     -0.5000
                                                                                                 0
       invP = inv(P);
10
11 -
                                          >> norm(A-P*J*invP)
12 - P
                                          ans =
14 —
        invP
                                              0
        norm(A-P*J*invP)
```

```
42 - A=[-1 1 0;-4 3 0;1 0 2];
43
44 - [P,L]=eig(A)

P =

0 0.4082 0.4082
0 0.8165 0.8165
1.0000 -0.4082 -0.4082

L =

2 0 0
0 1 0
fx 0 0 1
```

$$egin{bmatrix} \lambda_1 & 0 & 0 \ \lambda_2 & 1 \ \lambda_2 \end{bmatrix}$$

问题b'

1、求 $A = P^{-1}BP$,其中B是三角矩阵

2、求 $A = PJP^{-1}$, 其中J是Jordan标准型

P₃₄ 1.17 定理:任意n阶矩阵A与三角矩阵相似

Hamilton—Caylay定理 设 $A \in K^{n \times n}$ 其特征多项式 $\varphi(\lambda) = |\lambda I - A| = \lambda^n + a_1 \lambda^{n-1} + \dots + a_{n-1} \lambda + a_n$ 则 $\varphi(A) = A^n + a_1 A^{n-1} + \dots + a_n A + a_n I = 0$.

Hamilton—Caylay定理 设 A ∈ K"×" 其特征多项式

$$\varphi(\lambda) = |\lambda I - A| = \lambda^{n} + a_{1}\lambda^{n-1} + \dots + a_{n-1}\lambda + a_{n}$$

$$\varphi(A) = A^{n} + a_{1}A^{n-1} + \dots + a_{n-1}A + a_{n}I = 0.$$

证明:A的特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n$, 即

$$\varphi(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n)$$

必然存在可逆矩阵 P_{xx} , 使得

$$P^{-1}AP = \begin{bmatrix} \lambda_1 & * & \cdots & * \\ & \lambda_2 & \ddots & \vdots \\ & & \ddots & * \\ & & & \lambda_n \end{bmatrix}$$

$$\varphi(P^{-1}AP) = (P^{-1}AP - \lambda_{1}I)(P^{-1}AP - \lambda_{2}I)\cdots(P^{-1}AP - \lambda_{n}I)$$

$$= \begin{bmatrix} 0 & * & \cdots & * \\ \lambda_{2} - \lambda_{1} & \ddots & \vdots \\ & \lambda_{n} - \lambda_{1} \end{bmatrix} \begin{bmatrix} \lambda_{1} - \lambda_{2} & * & \cdots & * \\ & 0 & \ddots & \vdots \\ & & \lambda_{n} - \lambda_{2} \end{bmatrix} \cdots (P^{-1}AP - \lambda_{n}I)$$

$$= \begin{bmatrix} 0 & 0 & * & \cdots & * \\ 0 & 0 & * & \cdots & * \\ 0 & 0 & * & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & & * \end{bmatrix} \begin{bmatrix} \lambda_{1} - \lambda_{3} & * & * & \cdots & * \\ \lambda_{2} - \lambda_{3} & * & \cdots & * \\ 0 & 0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & & * \end{bmatrix} \cdots (P^{-1}AP - \lambda_{n}I)$$

$$= 0$$

例: 设
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
,求 $2A^8 - 3A^5 + A^4 + A^2 - 4I$

例: 设
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
, 求 $2A^8 - 3A^5 + A^4 + A^2 - 4I$

解: A的特征多项式
$$\varphi(\lambda) = |\lambda I - A| = \lambda^3 - 2\lambda + 1$$

 用 $\varphi(\lambda)$ 去除 $2\lambda^8 - 3\lambda^5 + \lambda^4 + \lambda^2 - 4\lambda = g(\lambda)$, 得
 $g(\lambda) = \varphi(\lambda)(2\lambda^5 + 4\lambda^3 - 5\lambda^2 + 9\lambda - 14) + (24\lambda^2 - 37\lambda + 10)$

$$\varphi(A)=0$$
,

$$\therefore 2A^8 - 3A^5 + A^4 + A^2 - 4I = 24A^2 - 37A + 10I$$

$$= \begin{pmatrix} -3 & 48 & -26 \\ 0 & 95 & -61 \\ 0 & -61 & 34 \end{pmatrix}$$

由哈密尔顿一凯莱定理, $\forall A \in K^{n \times n}, \varphi(\lambda) = |\lambda I - A|$ 是A的特征多项式,则 $\varphi(A) = 0$.

因此,对任定一个矩阵 $A \in K^{n \times n}$,总可以找到一个多项式 $\varphi(x) \in P[x]$,使 $\varphi(A) = 0$. 此时,也称多项式 $\varphi(x)$ 以 A 为根.

定义:设 $A \in K^{n \times n}$,在数域K上的以A为根的多项式中,次数最低的首项系数为1的那个多项式,称为A的最小多项式.常记做 $m(\lambda)$

显然 $m(\lambda)$ 的次数不大于特征多项式 $\varphi(\lambda)$ 的次数

最小多项式的基本性质

定理: 矩阵A的最小多项式 $m(\lambda)$ 可以整除以A为根的任意首1多项式 $f(\lambda)$,且 $m(\lambda)$ 是唯一的.

定理: 矩阵A的最小多项式 $m(\lambda)$ 与其特征多项式 $\varphi(\lambda)$ 的零点相同(不计重数)。

定理: 相似矩阵具有相同的最小多项式.

定理: 设n阶矩阵A特征多项式 $\phi(\lambda)$,特征矩阵的 λ I-A的全体n-1阶子式的最大公因式为 $d(\lambda)$,则A 最小多项式为

$$m(\lambda) = \frac{\det(\lambda I - A)}{d(\lambda)}$$

例2、求
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 的最小多项式.

解: A的特征多项式为

$$\varphi(\lambda) = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -1 & 0 \\ 0 & \lambda - 1 & 0 \\ 0 & 0 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^3$$

$$X A-I \neq 0,$$

$$(A-I)^2 = A^2 - 2A + I$$

$$= \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 2 & 2 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = 0$$

∴ A的最小多项式为 (λ-1)².

1、对矩阵A,写出 λ 矩阵: $A(\lambda)=\lambda I-A$

2、把 λ 矩阵 $A(\lambda)$ 写成标准型,并写出不变因子 $d_{k}(\lambda)$

3、最后一个不变因子就是A的最小多项式: $m(\lambda) = d_N(\lambda)$

a)定义 λ 矩阵, $\diamondsuit A(\lambda) = \lambda I - A$

$$a$$
)定义 λ 矩阵, $\diamondsuit A(\lambda) = \lambda I - A$

讨论矩阵的 Jordan 标准形的求法,涉及如下形式的多项式矩阵或λ-矩阵

$$\mathbf{A}(\lambda) = \begin{bmatrix} a_{11}(\lambda) & a_{12}(\lambda) & \cdots & a_{1n}(\lambda) \\ a_{21}(\lambda) & a_{22}(\lambda) & \cdots & a_{2n}(\lambda) \\ \vdots & \vdots & & \vdots \\ a_{n1}(\lambda) & a_{n2}(\lambda) & \cdots & a_{nn}(\lambda) \end{bmatrix}$$
(1. 2. 35)

的理论,其中 $a_{ij}(\lambda)$ $(i, j = 1, 2, \dots, n)$ 为数域 K 上的纯量 λ 的多项式. 如果 $A = (a_{ij})$ 是数域 K 上的n 阶矩阵,则 A 的特征矩阵

$$\lambda \mathbf{I} - \mathbf{A} = \begin{bmatrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & & \vdots \\ -a_{n1} & -a_{n2} & \cdots & \lambda - a_{m} \end{bmatrix}$$
 (1. 2. 36)

就是一个特殊的多项式矩阵.

2矩阵示例

$$\mathbf{A}(\lambda) = \begin{bmatrix} -\lambda + 1 & 2\lambda - 1 & \lambda \\ \lambda & \lambda^2 & -\lambda \\ \lambda^2 + 1 & \lambda^2 + \lambda - 1 & -\lambda^2 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ & 1 & 2 & 3 \\ & & 1 & 2 \\ & & & 1 \end{bmatrix} \qquad \lambda \mathbf{I} - \mathbf{A} = \begin{bmatrix} \lambda - 1 & -2 & -3 & -4 \\ & \lambda - 1 & -2 & -3 \\ & & \lambda - 1 & -2 \\ & & & \lambda - 1 \end{bmatrix}$$

- a)定义 λ 矩阵 $A(\lambda)$
- b)定义不变因子,求 $A(\lambda)$ 的不变因子

b)定义不变因子,求 $A(\lambda)$ 的不变因子

多项式矩阵 $A(\lambda)$ 的标准形,是指使用矩阵的初等变换^①将 $A(\lambda)$ 化为如下形式的多项式矩阵:

其中, $d_1(\lambda) \mid d_2(\lambda)$, $d_2(\lambda) \mid d_3(\lambda)$, …, $d_{s-1}(\lambda) \mid d_s(\lambda)$, $s \leq n$, 且 $d_i(\lambda)$ (i = 1, 2, ..., s) 是首 1 多项式(前面的几个 $d_i(\lambda)$ 可能是 1).

可以证明^[1],一个多项式矩阵 $A(\lambda)$ 的标准形式(1.2.37) 的对角线上的非零元素 $d_i(\lambda)$ ($i=1,2,\cdots,s$) 不随矩阵的初等变换而改变. 因此,通常称 $d_i(\lambda)$ ($i=1,2,\cdots,s$) 为 $A(\lambda)$ 的不变因子或不变因式.

b)定义不变因子,求 $A(\lambda)$ 的不变因子

例 1.25 试用初等变换化多项式矩阵

$$\mathbf{A}(\lambda) = \begin{bmatrix} -\lambda + 1 & 2\lambda - 1 & \lambda \\ \lambda & \lambda^2 & -\lambda \\ \lambda^2 + 1 & \lambda^2 + \lambda - 1 & -\lambda^2 \end{bmatrix}$$

为标准形.

b)定义不变因子,求 $A(\lambda)$ 的不变因子

例 1.25 试用初等变换化多项式矩阵

$$\mathbf{A}(\lambda) = \begin{bmatrix} -\lambda + 1 & 2\lambda - 1 & \lambda \\ \lambda & \lambda^2 & -\lambda \\ \lambda^2 + 1 & \lambda^2 + \lambda - 1 & -\lambda^2 \end{bmatrix}$$

为标准形.

解 计算过程如下:

$$A(\lambda) \xrightarrow{[3]+[1]} \begin{bmatrix} -\lambda+1 & 2\lambda-1 & 1\\ \lambda & \lambda^2 & 0\\ \lambda^2+1 & \lambda^2+\lambda-1 & 1 \end{bmatrix} \xrightarrow{[1]\leftrightarrow[3]}$$

$$\begin{bmatrix} 1 & 2\lambda-1 & -\lambda+1\\ 0 & \lambda^2 & \lambda\\ 1 & \lambda^2+\lambda-1 & \lambda^2+1 \end{bmatrix} \xrightarrow{(3)-(1)}$$

b)定义不变因子,求 $A(\lambda)$ 的不变因子

$$\begin{bmatrix}
1 & 2\lambda - 1 & -\lambda + 1 \\
0 & \lambda^{2} & \lambda \\
1 & \lambda^{2} + \lambda - 1 & \lambda^{2} + 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2\lambda - 1 & -\lambda + 1 \\
0 & \lambda^{2} & \lambda \\
0 & \lambda^{2} - \lambda & \lambda^{2} + \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2\lambda - 1 & -\lambda + 1 \\
0 & \lambda^{2} & \lambda \\
0 & \lambda^{2} - \lambda & \lambda^{2} + \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda^{2} & \lambda \\
0 & \lambda^{2} - \lambda & \lambda^{2} + \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda & \lambda^{2} \\
0 & \lambda^{2} + \lambda & \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda & \lambda^{2} \\
0 & \lambda^{2} + \lambda & \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda & \lambda^{2} \\
0 & \lambda^{2} + \lambda & \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda & 0 \\
0 & \lambda^{2} - \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda^{2} - \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda^{2} - \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda^{2} - \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda^{2} - \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda^{2} - \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda^{2} - \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda^{2} - \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda^{2} - \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda^{2} - \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda^{2} - \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \lambda^{2} - \lambda
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\$$

- a)定义 λ 矩阵 $A(\lambda)$
- b)定义不变因子,求 $A(\lambda)$ 的不变因子

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \lambda & \lambda^{2} \\ 0 & \lambda^{2} + \lambda & \lambda^{2} - \lambda \end{bmatrix} \xrightarrow{[3] - \lambda[2]} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & \lambda^{2} + \lambda & -\lambda^{3} - \lambda \end{bmatrix} \xrightarrow{(-1)[3]} (3) - (\lambda + 1)(2)$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda^{3} + \lambda \end{bmatrix}$$

最后所得矩阵是 $A(\lambda)$ 的标准形,此时, $d_1(\lambda) = 1$, $d_2(\lambda) = \lambda$, $d_3(\lambda) = \lambda^3 + \lambda$.

- a)定义 λ 矩阵 $A(\lambda)$
- b)定义不变因子,求 $A(\lambda)$ 的不变因子
- c)最后一个不变因子就是A的最小多项式: $m(\lambda) = d_N(\lambda)$

有
$$m(A) = 0$$

例 1.26改 求矩阵

$$\mathbf{A} = \begin{bmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$

的最小多项式

例 1.26改 求矩阵

$$\mathbf{A} = \begin{bmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$

的最小多项式

 \mathbf{M} 求 $\lambda \mathbf{I} - \mathbf{A}$ 的初等因子组.由于

$$\lambda \mathbf{I} - \mathbf{A} = \begin{bmatrix} \lambda + 1 & -1 & 0 \\ 4 & \lambda - 3 & 0 \\ -1 & 0 & \lambda - 2 \end{bmatrix} \rightarrow$$

$$\begin{bmatrix} -1 & 0 & 0 \\ \lambda - 3 & (\lambda + 1)(\lambda - 3) + 4 & 0 \\ 0 & -1 & \lambda - 2 \end{bmatrix} \rightarrow$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & (\lambda - 1)^2 & 0 \\ 0 & -1 & \lambda - 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & (\lambda - 1)^2 & (\lambda - 2)(\lambda - 1)^2 \\ 0 & -1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & (\lambda - 2)(\lambda - 1)^2 \end{bmatrix}$$

不变因子为
$$d_1(\lambda) = 1$$
, $d_2(\lambda) = 1$, $d_3(\lambda) = (\lambda - 2)(\lambda - 1)^2$ 最后一个不变因子就是 A 的最小多项式: $m(\lambda) = d_3(\lambda)$

有
$$m(A) = 0$$

例: 求矩阵
$$A = \begin{pmatrix} 1 & -1 & 2 \\ 3 & -3 & 6 \\ 2 & -2 & 4 \end{pmatrix}$$
 的最小多项式

例: 求矩阵
$$A = \begin{pmatrix} 1 & -1 & 2 \\ 3 & -3 & 6 \\ 2 & -2 & 4 \end{pmatrix}$$
 的最小多项式

解:
$$\lambda I - A = \begin{pmatrix} \lambda - 1 & 1 & -2 \\ -3 & \lambda + 3 & -6 \\ -2 & 2 & \lambda - 4 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} \lambda - 1 & 1 & -2 \\ -\lambda^2 - 2\lambda & 0 & 2\lambda \\ -2\lambda & 0 & \lambda \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & \lambda - 1 \\ 0 & 2\lambda & -\lambda^2 - 2\lambda \\ 0 & \lambda & -2\lambda \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2\lambda & -\lambda^2 - 2\lambda \\ 0 & \lambda & -2\lambda \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -\lambda^2 + 2\lambda \\ 0 & \lambda & -2\lambda \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -\lambda^2 + 2\lambda \\ 0 & \lambda & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda(\lambda - 2) \end{pmatrix}$$

不变因子为 $d_1(\lambda) = 1$, $d_2(\lambda) = \lambda$, $d_3(\lambda) = \lambda(\lambda - 2)$ 最后一个不变因子就是A的最小多项式: $m(\lambda) = \lambda(\lambda - 2)$

有
$$m(A) = 0$$

1.2 作业 (第五版)

1、定义: P38 1.19

2、定理: 1.17、1.18、1.20、1.21

3、例题: 1.20、1.21

4、本ppt例题: P5、P17、P22、P30、P35、P38

5、习题1.2: 14

1.2 作业 (第三版)

1、定义: P54 1.19

2、定理: 1.17、1.18、1.20、1.21

3、例题: 1.20、1.21

4、本ppt例题: P5、P17、P22、P30、P35、P38

5、习题1.2: 14

下课,谢谢大家!