

Global United Technology Services Co., Ltd.

Report No.: GTS201704000014F02

FCC REPORT

Shenzhen LiYi99 Network Technology Co., Ltd. **Applicant:**

Address of Applicant: 402, No.91, Changchun, North Road, Gongming Town,

Guangming New District, Shenzhen, Guangdong, China

Equipment Under Test (EUT)

Product Name: Ophanie bluetooth Beige polar bear rechargable stuffed animal

Model No.: M01

Trade Mark: Ophanie

FCC ID: 2ALR8-M01

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.249:2016

Date of sample receipt: April 01, 2017

Date of Test: April 01-06, 2017

April 06, 2017 Date of report issued:

Test Result: PASS *

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Lo **Laboratory Manager**

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description
00	April 06, 2017	Original

Prepared By:	Bill. yuan	Date:	April 06, 2017
	Project Engineer		
Check By:	Andy wa	Date:	April 06, 2017
	Poviower		

3 Contents

		Page
1	COVER PAGE	1
2	VERSION	2
3		
3	CONTENTS	3
4	TEST SUMMARY	4
	4.1 MEASUREMENT UNCERTAINTY	4
5	GENERAL INFORMATION	5
	5.1 GENERAL DESCRIPTION OF EUT	
	5.2 TEST MODE	
	5.4 TEST FACILITY	
	5.5 TEST LOCATION	
_	5.6 OTHER INFORMATION REQUESTED BY THE CUSTOMER	
6	TEST INSTRUMENTS LIST	8
7	TEST RESULTS AND MEASUREMENT DATA	9
	7.1 ANTENNA REQUIREMENT	
	7.2 CONDUCTED EMISSIONS	
	7.3 RADIATED EMISSION METHOD	
	7.3.1 Field Strength of The Fundamental Signal	
	7.3.2 Spurious emissions	
	7.3.3 Bandedge emissions	
8	TEST SETUP PHOTO	23
9	EUT CONSTRUCTIONAL DETAILS	24

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	Pass
AC Power Line Conducted Emission	15.207	Pass
Field strength of the fundamental signal	15.249 (a)	Pass
Spurious emissions	15.249 (a) (d)/15.209	Pass
Band edge	15.249 (d)/15.205	Pass
20dB Occupied Bandwidth	15.215 (c)	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.10: 2013 and ANSI C63.4: 2014.

4.1 Measurement Uncertainty

Test Item	Frequency Range Measurement Uncertainty		Notes
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)
Radiated Emission	1GHz ~ 26.5GHz ± 4.68dB		(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of 9	95%.

5 General Information

5.1 General Description of EUT

Product Name:	Ophanie bluetooth Beige polar bear rechargable stuffed animal toy
Model No.:	M01
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	40
Channel separation:	2MHz
Modulation type:	GFSK
Antenna Type:	PCB antenna
Antenna gain:	0dBi (Declared by Applicant)
Power supply:	DC 3.7V 1.85Wh Li-ion Battery
	Or
	DC 5V USB Charger

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
• !	. !	•	. !	•	• !		. !
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the dutycycle >98%, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

Per-test mode.

We have verified the construction and function in typical operation, The EUT was placed on three different polar directions; i.e. X axis, Y axis, Z axis. which was shown in this test report and defined as follows:

Axis	Χ	Υ	Z
Field Strength(dBuV/m)	91.16	92.40	90.58

5.3 Description of Support Units

Manufacturer	Description	Model	Serial Number
Emerson Network Power	USB Charger	A1299	N/A

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 22, 2016.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.6 Other Information Requested by the Customer

None.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6 Test Instruments list

Rad	Radiated Emission:							
Item	n Test Equipment Manufacturer		Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July 03 2015	July 02 2020		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June 29 2016	June 28 2017		
4	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June 29 2016	June 28 2017		
5	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June 29 2016	June 28 2017		
6	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	June 29 2016	June 28 2017		
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	June 29 2016	June 28 2017		
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
9	Coaxial Cable	GTS	N/A	GTS213	June 29 2016	June 28 2017		
10	Coaxial Cable	GTS	N/A	GTS211	June 29 2016	June 28 2017		
11	Coaxial cable	GTS	N/A	GTS210	June 29 2016	June 28 2017		
12	Coaxial Cable	GTS	N/A	GTS212	June 29 2016	June 28 2017		
13	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June 29 2016	June 28 2017		
14	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	June 29 2016	June 28 2017		
15	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 29 2016	June 28 2017		
16	Band filter	Amindeon	82346	GTS219	June 29 2016	June 28 2017		
17	Power Meter	Anritsu	ML2495A	GTS540	June 29 2016	June 28 2017		
18	Power Sensor	Anritsu	MA2411B	GTS541	June 29 2016	June 28 2017		

Conduc	Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.16 2014	May.15 2019		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 29 2016	June. 28 2017		
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 29 2016	June. 28 2017		
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June. 29 2016	June. 28 2017		
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A		
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
7	Thermo meter	KTJ	TA328	GTS233	June. 29 2016	June. 28 2017		

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is PCB antenna, the best case gain of the antenna is 0dBi

7.2 Conducted Emissions

Test Method: ANSI C63.10:2013 Test Frequency Range: 150KHz to 30MHz Class / Severity: Class B Receiver setup: RBW=9KHz, VBW=30KHz, Sweep time=auto Limit: Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 * Decreases with the logarithm of the frequency. Test setup: Reference Plane LISN AUX EQUIT Fest LiSN Line Impedence Stabilization Network Test table height=0 bim 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through through a line impedance of the measuring equipment.	Test Requirement:	FCC Part15 C Section 15.207								
Test Frequency Range: Class / Severity: Class B Receiver setup: RBW=9KHz, VBW=30KHz, Sweep time=auto Limit: Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 * Decreases with the logarithm of the frequency. Test setup: Reference Plane LISN Ac power LISN Limit: Fedulpment Lisn Receiver Test table/Insulation plane Test procedure: Test procedure: 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a 1. The peripheral devices are also connected to the main power through a 1. The peripheral devices are also connected to the main power through a 1. The peripheral devices are also connected to the main power through a 1. The peripheral devices are also connected to the main power through a 1. The peripheral devices are also connected to the main power through a 1. The peripheral devices are also connected to the main power through a 1. The peripheral devices are also connected to the main power through a 1. The peripheral devices are also connected to the main power through a 1. The peripheral devices are also connected to the main power through a 1. The peripheral devices are also connected to the main power through a 1. The peripheral devices are also connected to the main power through a 1. The peripheral devices are also connected to the main power through a 1. The peripheral devices are also connected to the main power through a 1. The peripheral devices are also connected to the main power through a 1. The peripheral devices are also connected to the main power through a 1. The peripheral devices are also connected to the main power through a 1. The peripheral devices are also connected to the main power through a 1. The peripheral devices are also connected to the main power through a 1. The peripheral devices are also connected to the										
Class / Severity: Receiver setup: RBW=9KHz, VBW=30KHz, Sweep time=auto Limit: Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 * Decreases with the logarithm of the frequency. Reference Plane LISN AUX Requipment Under Test LISN Filter AC power Remark E.U.T Equipment Under Test LISN In impedence Stabilization Network Test table leght-0.5m 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through										
Receiver setup: RBW=9KHz, VBW=30KHz, Sweep time=auto	. , , ,									
Limit: Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 5-30 * Decreases with the logarithm of the frequency. Reference Plane LISN AUX EQUIT Equipment LISN AUX EQUIT Equipment Under Test LISN Line Impedence Stabilization Network Test procedure: 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through	,									
Test setup: Causi-peak Average	Receiver setup:	RBW=9KHz, VBW=30KHz, Sv								
O.15-0.5 66 to 56* 56 to 46* O.5-5 56 46 Solution of the frequency. Test setup: Reference Plane LISN AC power Reference Plane LISN AC power Reference Plane LISN Receiver Test table/Insulation plane Test procedure: 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through	Limit:	Frequency range (MHz)		· · · · · · · · · · · · · · · · · · ·						
Test setup: Reference Plane LISN AUX Equipment Under Test LISN LISN Inselingedence Stabilization Network Test table height=0.8m Test procedure: 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through		, , ,								
Test setup: Reference Plane LISN AUX Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN. Line Impedence Stabilization Network Test table height=0.8m Test procedure: 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through										
* Decreases with the logarithm of the frequency. Reference Plane LISN AUX Equipment Test table/Insulation plane Remark E U T Equipment Under Test LISN Line impedence Stabilization Network Test table height=0.8m Test procedure: 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through										
Test setup: Reference Plane LISN 40cm 80cm Filter AC power Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m Test procedure: 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through				00						
Test procedure: 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through	Test setup:									
line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through	T	AUX Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network								
termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative	Test procedure:	 line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed 								
Test Instruments: Refer to section 6.0 for details	Test Instruments:	Refer to section 6.0 for details								
Test mode: Refer to section 5.2 for details	Test mode:	Refer to section 5.2 for details								
Test results: Pass	Test results:	Pass								

Measurement data:

Line:

Freq MHz	Reading level dBuV	1ISN/ISN factor dB	Cable loss dB	 level dBuV	Limit level dBuV	Over limit dB	Remark
0.320	43.97	0.44	0.10	44.51	59.71	-15.20	QP
0.320	33.89	0.44	0.10	34.43	49.71	-15.28	Average
0.402	43.50	0.42	0.11	44.03	57.81	-13.78	QP
0.402	33.95	0.42	0.11	34.48	47.81	-13.33	Average
0.481	45.59	0.39	0.11	46.09	56.32	-10.23	QP
0.481	36.11	0.39	0.11	36.61	46.32	-9.71	Average
0.564	45.27	0.33	0.12	45.72	56.00	-10.28	QP
0.564	35.74	0.33	0.12	36.19	46.00	-9.81	Average
0.724	48.74	0.28	0.13	49.15	56.00	-6.85	QP
0.724	40.66	0.28	0.13	41.07	46.00	-4.93	Average
1.949	39.28	0.20	0.14	39.62	56.00	-16.38	QP
1.949	28.99	0.20	0.14	29.33	46.00	-16.67	Average

Neutral:

Freq MHz	Reading level dBuV	1ISN/ISN factor dB	Cable loss dB		zel BuV	Limit level dBuV	Over limit dB	Remark
0.323	44.14	0.41	0.10	44.		59.62		QP
0.323	33.25	0.41	0.10		. 76	49.62		Average
0.400	43.49	0.39	0.11	43.		57.86		QP
0.400	33.48	0.39	0.11	33.	. 98	47.86	-13.88	Average
0.484	45.78	0.36	0.11	46.	. 25	56.27	-10.02	QP
0.484	35.91	0.36	0.11	36.	. 38	46.27	-9.89	Average
0.558	46.79	0.30	0.12	47.	. 21	56.00	-8.79	QP
0.558	36.80	0.30	0.12	37.	. 22	46.00	-8.78	Average
0.727	50.53	0.24	0.13	50.	90	56.00	-5.10	QP
0.727	41.71	0.24	0.13	42.	. 08	46.00	-3.92	Average
2.133	38.97	0.20	0.15		32	56.00		QP
2, 133	31.59	0.20	0.15		94	46.00	-14.06	Äverage

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.3 Radiated Emission Method

.3 Radiated Emission Method									
FCC Part15 C S	Section 15.20	9							
ANSI C63.10:20	013								
30MHz to 25GH	łz								
Measurement D	Distance: 3m								
Frequency	Detector		RBW	VBW	Remark				
30MHz- 1GHz	Quasi-peal	k	120KHz	300KHz	Quasi-peak Value				
Above 1CHz	Peak		1MHz	3MHz	Peak Value				
Above IGHZ	Peak		1MHz	10Hz	Average Value				
Freque	ency	Lin	nit (dBuV/	m @3m)	Remark				
2400MHz-24	483.5MHz		94.0	0	Average Value				
		Lin	•		Remark				
					Quasi-peak Value				
					Quasi-peak Value Quasi-peak Value				
					Quasi-peak Value				
Above 1GHz 54.00 Average Value									
Above 1GHz 74.00 Peak Value									
harmonics, sha fundamental or	II be attenuate to the genera	ed by al rad	at least 5 liated emis	0 dB belov	v the level of the				
whichever is the lesser attenuation. Below 1GHz Test Antenna Test Antenna Tum Table Receiver Preamplifier									
	ANSI C63.10:20 30MHz to 25GH Measurement E Frequency 30MHz- 1GHz Above 1GHz Freque 2400MHz-24 2400MHz-24 Above 2 16MHz-9 960MHz-9 960MHz-9 4bove 2 Emissions radia harmonics, sha fundamental or whichever is the Below 1GHz	ANSI C63.10:2013 30MHz to 25GHz Measurement Distance: 3m Frequency Detector Quasi-pea Peak Peak Frequency 2400MHz-2483.5MHz Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz Emissions radiated outside of harmonics, shall be attenuat fundamental or to the general whichever is the lesser attention. Below 1GHz	Measurement Distance: 3m Frequency Detector 30MHz- Quasi-peak 1GHz Above 1GHz Peak Frequency Lir 2400MHz-2483.5MHz Frequency Lir 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz Emissions radiated outside of the harmonics, shall be attenuated by fundamental or to the general rad whichever is the lesser attenuation Below 1GHz	ANSI C63.10:2013 30MHz to 25GHz Measurement Distance: 3m Frequency Detector RBW 30MHz- Quasi-peak 120KHz 1GHz Above 1GHz Peak 1MHz Peak 1MHz Peak 1MHz Frequency Limit (dBuV/2400MHz-2483.5MHz 94.0 Frequency Limit (dBuV/30MHz-88MHz 40.0 88MHz-216MHz 43.5 216MHz-960MHz 46.0 960MHz-1GHz 54.0 Above 1GHz 74.0 Emissions radiated outside of the specified harmonics, shall be attenuated by at least 5 fundamental or to the general radiated emiswhichever is the lesser attenuation. Below 1GHz Test	ANSI C63.10:2013 30MHz to 25GHz Measurement Distance: 3m Frequency Detector RBW VBW 30MHz- Quasi-peak 120KHz 300KHz 1GHz Peak 1MHz 3MHz Above 1GHz Peak 1MHz 10Hz Frequency Limit (dBuV/m @3m) 2400MHz-2483.5MHz 94.00 Frequency Limit (dBuV/m @3m) 30MHz-88MHz 40.00 88MHz-216MHz 43.50 216MHz-960MHz 46.00 960MHz-1GHz 54.00 Above 1GHz 54.00 Above 1GHz 74.00 Emissions radiated outside of the specified frequency harmonics, shall be attenuated by at least 50 dB below fundamental or to the general radiated emission limits whichever is the lesser attenuation. Below 1GHz Frequency Limit (dBuV/m @3m) 30MHz-88MHz 40.00 54.00 74.00 Emissions radiated outside of the specified frequency harmonics, shall be attenuated by at least 50 dB below fundamental or to the general radiated emission limits whichever is the lesser attenuation. Below 1GHz				

	Tum Table (150cm > 4) Receiver Preamplifier
Test Procedure:	The EUT was placed on the top of a rotating table (0.8m for below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement data:

7.3.1 Field Strength of The Fundamental Signal

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2402.00	88.44	27.58	5.39	30.18	91.23	114.00	-22.77	Vertical
2402.00	86.48	27.58	5.39	30.18	89.27	114.00	-24.73	Horizontal
2440.00	87.09	27.55	5.43	30.06	90.01	114.00	-23.99	Vertical
2440.00	85.56	27.55	5.43	30.06	88.48	114.00	-25.52	Horizontal
2480.00	89.34	27.52	5.47	29.93	92.40	114.00	-21.60	Vertical
2480.00	86.67	27.52	5.47	29.93	89.73	114.00	-24.27	Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2402.00	76.65	27.58	5.39	30.18	79.44	94.00	-14.56	Vertical
2402.00	74.87	27.58	5.39	30.18	77.66	94.00	-16.34	Horizontal
2440.00	75.19	27.55	5.43	30.06	78.11	94.00	-15.89	Vertical
2440.00	72.50	27.55	5.43	30.06	75.42	94.00	-18.58	Horizontal
2480.00	77.32	27.52	5.47	29.93	80.38	94.00	-13.62	Vertical
2480.00	74.95	27.52	5.47	29.93	78.01	94.00	-15.99	Horizontal

Note: RBW 3MHz VBW 3MHz Peak detector is for PK value, RMS detector is for AV value

7.3.2 Spurious emissions

■ Below 1GHz

- DCIOW IV								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
37.42	49.55	11.20	0.64	30.06	31.33	40.00	-8.67	Vertical
47.16	48.35	12.23	0.74	30.01	31.31	40.00	-8.69	Vertical
101.29	29.17	12.10	1.20	29.69	12.78	43.50	-30.72	Vertical
167.82	33.89	8.33	1.67	29.33	14.56	43.50	-28.94	Vertical
321.06	28.08	13.91	2.47	29.88	14.58	46.00	-31.42	Vertical
468.88	33.44	16.89	3.18	29.36	24.15	46.00	-21.85	Vertical
41.71	34.54	12.27	0.68	30.04	17.45	40.00	-22.55	Horizontal
82.36	37.43	8.40	1.05	29.78	17.10	40.00	-22.90	Horizontal
204.24	31.94	10.39	1.86	29.25	14.94	43.50	-28.56	Horizontal
257.42	34.91	12.14	2.16	29.70	19.51	46.00	-26.49	Horizontal
287.99	34.13	13.11	2.31	29.92	19.63	46.00	-26.37	Horizontal
375.94	38.99	14.97	2.75	29.61	27.10	46.00	-18.90	Horizontal

■ Above 1GHz

Test channel:	Lowest channel
1 Cot onarrior.	LOWCSI GHAINCI

Peak value:

reak value.								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	35.65	31.78	8.60	32.09	43.94	74.00	-30.06	Vertical
7206.00	30.74	36.15	11.65	32.00	46.54	74.00	-27.46	Vertical
9608.00	30.49	37.95	14.14	31.62	50.96	74.00	-23.04	Vertical
12010.00	*					74.00		Vertical
14412.00	*					74.00		Vertical
4804.00	39.60	31.78	8.60	32.09	47.89	74.00	-26.11	Horizontal
7206.00	32.35	36.15	11.65	32.00	48.15	74.00	-25.85	Horizontal
9608.00	29.76	37.95	14.14	31.62	50.23	74.00	-23.77	Horizontal
12010.00	*					74.00		Horizontal
14412.00	*					74.00		Horizontal

Average value:

Average var	ue.							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	24.78	31.78	8.60	32.09	33.07	54.00	-20.93	Vertical
7206.00	19.61	36.15	11.65	32.00	35.41	54.00	-18.59	Vertical
9608.00	18.79	37.95	14.14	31.62	39.26	54.00	-14.74	Vertical
12010.00	*					54.00		Vertical
14412.00	*					54.00		Vertical
4804.00	28.83	31.78	8.60	32.09	37.12	54.00	-16.88	Horizontal
7206.00	21.67	36.15	11.65	32.00	37.47	54.00	-16.53	Horizontal
9608.00	18.38	37.95	14.14	31.62	38.85	54.00	-15.15	Horizontal
12010.00	*					54.00		Horizontal
14412.00	*					54.00		Horizontal

Remark

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test channel	:			Mic	ldle			
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4880.00	36.14	31.85	8.67	32.12	44.54	74.00	-29.46	Vertical
7320.00	31.06	36.37	11.72	31.89	47.26	74.00	-26.74	Vertical
9760.00	30.78	38.35	14.25	31.62	51.76	74.00	-22.24	Vertical
12200.00	*					74.00		Vertical
14640.00	*					74.00		Vertical
4880.00	40.19	31.85	8.67	32.12	48.59	74.00	-25.41	Horizontal
7320.00	32.71	36.37	11.72	31.89	48.91	74.00	-25.09	Horizontal
9760.00	30.09	38.35	14.25	31.62	51.07	74.00	-22.93	Horizontal
12200.00	*					74.00		Horizontal
14640.00	*					74.00		Horizontal
Average val								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4880.00	25.18	31.85	8.67	32.12	33.58	54.00	-20.42	Vertical
7320.00	19.88	36.37	11.72	31.89	36.08	54.00	-17.92	Vertical
9760.00	19.03	38.35	14.25	31.62	40.01	54.00	-13.99	Vertical
12200.00	*					54.00		Vertical
14640.00	*					54.00		Vertical
4880.00	29.28	31.85	8.67	32.12	37.68	54.00	-16.32	Horizontal
7320.00	21.98	36.37	11.72	31.89	38.18	54.00	-15.82	Horizontal
9760.00	18.66	38.35	14.25	31.62	39.64	54.00	-14.36	Horizontal
12200.00	*					54.00		Horizontal
14640.00	*					54.00		Horizontal

Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
 "*", means this data is the too weak instrument of signal is unable to test.

Test channel	el: Highest							
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	36.34	31.93	8.73	32.16	44.84	74.00	-29.16	Vertical
7440.00	31.19	36.59	11.79	31.78	47.79	74.00	-26.21	Vertical
9920.00	30.90	38.81	14.38	31.88	52.21	74.00	-21.79	Vertical
12400.00	*					74.00		Vertical
14880.00	*					74.00		Vertical
4960.00	40.42	31.93	8.73	32.16	48.92	74.00	-25.08	Horizontal
7440.00	32.86	36.59	11.79	31.78	49.46	74.00	-24.54	Horizontal
9920.00	30.23	38.81	14.38	31.88	51.54	74.00	-22.46	Horizontal
12400.00	*					74.00		Horizontal
14880.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	25.39	31.93	8.73	32.16	33.89	54.00	-20.11	Vertical
7440.00	20.02	36.59	11.79	31.78	36.62	54.00	-17.38	Vertical
9920.00	19.16	38.81	14.38	31.88	40.47	54.00	-13.53	Vertical
12400.00	*					54.00		Vertical
14880.00	*					54.00		Vertical
4960.00	29.52	31.93	8.73	32.16	38.02	54.00	-15.98	Horizontal
7440.00	22.14	36.59	11.79	31.78	38.74	54.00	-15.26	Horizontal
9920.00	18.81	38.81	14.38	31.88	40.12	54.00	-13.88	Horizontal
12400.00	*					54.00		Horizontal
14880.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.3.3 Bandedge emissions

All of the restriction bands were tested, and only the data of worst case was exhibited.

Test channe	Test channel: Lowest channel								
Peak value:	Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
2390.00	39.85	27.59	5.38	30.18	42.64	74.00	-31.36	Horizontal	
2400.00	56.20	27.58	5.39	30.18	58.99	74.00	-15.01	Horizontal	
2390.00	40.11	27.59	5.38	30.18	42.90	74.00	-31.10	Vertical	
2400.00	57.92	27.58	5.39	30.18	60.71	74.00	-13.29	Vertical	
Average va	Average value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	

2390.00	31.08	27.59	5.38	30.18	33.87	54.00	-20.13	Horizontal
2400.00	42.14	27.58	5.39	30.18	44.93	54.00	-9.07	Horizontal
2390.00	30.81	27.59	5.38	30.18	33.60	54.00	-20.40	Vertical
2400.00	43.50	27.58	5.39	30.18	46.29	54.00	-7.71	Vertical
<u>, </u>	•	•		•	•	•	•	•

Test channel:	Highest channel
---------------	-----------------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	41.59	27.53	5.47	29.93	44.66	74.00	-29.34	Horizontal
2500.00	41.34	27.55	5.49	29.93	44.45	74.00	-29.55	Horizontal
2483.50	41.93	27.53	5.47	29.93	45.00	74.00	-29.00	Vertical
2500.00	42.05	27.55	5.49	29.93	45.16	74.00	-28.84	Vertical

Average value:

								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	33.88	27.53	5.47	29.93	36.95	54.00	-17.05	Horizontal
2500.00	32.31	27.55	5.49	29.93	35.42	54.00	-18.58	Horizontal
2483.50	34.83	27.53	5.47	29.93	37.90	54.00	-16.10	Vertical
2500.00	31.98	27.55	5.49	29.93	35.09	54.00	-18.91	Vertical

Remark:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

7.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.249/15.215					
Test Method:	ANSI C63.10:2013					
Limit:	Operation Frequency range 2400MHz~2483.5MHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

Measurement Data

Test channel	20dB bandwidth(MHz)	Result
Lowest	1.199	Pass
Middle	1.189	Pass
Highest	1.200	Pass

Test plot as follows:

Lowest channel

Middle channel

Highest channel

8 Test Setup Photo

Radiated Emission

Conducted Emission

9 EUT Constructional Details

Reference to the test report No. GTS201704000014F01

----- End -----