Corrigé exercice 62:

1. La fonction f est dérivable sur \mathbb{R} comme somme d'un produit de fonctions dérivables sur \mathbb{R} et d'une constante. On en déduit qu'elle est continue sur \mathbb{R} . Pour tout $x \in \mathbb{R}$, $f'(x) = 1 \times e^{-x} + x \times (-e^{-x}) = e^{-x}(1-x)$. La fonction exponentielle étant toujours positive, f' a le même signe que $x \mapsto 1-x$, d'où le tableau de variations suivant.

Sur $[1; +\infty[$, le minimum de f vaut 1 qui est strictement positif. L'équation f(x) = 0 n'admet donc pas de solution sur cet intervalle. Sur $]-\infty$; 1], la fonction est continue et strictement croissante. De plus, $\lim_{x\to-\infty} f(x) = -\infty$ et $f(1) = \mathrm{e}^{-1} + 1 > 0$. Comme $0 \in]-\infty$; $\mathrm{e}^{-1} + 1]$, d'après le théorème de la bijection, l'équation f(x) = 0 admet une unique solution sur $]-\infty$; 1] et donc une unique solution sur \mathbb{R} , notée α dans l'énoncé.

2. On obtient, à l'aide de la calculatrice par exemple, $-0.6 < \alpha < -0.5$.

Corrigé exercice 66:

Soit $g = f_1 - f_2$. Résoudre $f_1(x) = f_2(x)$ équivaut à résoudre g(x) = 0.

Comme $g(x) = e^x + x - 2$, la fonction g est dérivable sur \mathbb{R} comme somme de fonctions dérivables sur \mathbb{R} . Elle est donc continue sur \mathbb{R} .

Pour tout $x \in \mathbb{R}$, $g'(x) = e^x + 1$. La fonction exponentielle étant toujours positive, on a donc, pour tout réel x, g'(x) > 0. g est donc continue et strictement croissante sur \mathbb{R} .

De plus, g(0) = -1 et g(1) = e - 1 > 0. Comme $0 \in [-1; e - 1]$, d'après le théorème de la bijection, l'équation g(x) = 0 admet une unique solution $\alpha \in [0; 1]$.