Pomocí digitálního konduktometru byla změřena měrná elektrická vodivost destilované vody při teplotě 21 °C

$$\sigma_{H_2O} = (1.05 \pm 0.01) \,\mu\text{S cm}^{-1}.$$

Chyba hodnoty byla určena podle chyby přístroje na 0,5 % z naměřené hodnoty.

Pomocí pipety byly připraveny vodní roztoky kyseliny chlorovodíkové, sloužící jako silný elektrolyt, a octové jakožto slabý elektrolyt o celkových objemech 100 ml. Pomocí konduktometru byla čtyřikrát změřena hodnota měrné vodivosti roztoku HCl, výsledek je uveden v tabulce ??. Pomocí vzorce (??) byla spočítaná statistická chyba měření $s_{\sigma} = 0.97 \,\mu\text{S cm}^{-1} \doteq 1 \,\mu\text{S cm}^{-1}$. S touto zaokrouhlenou hodnotou je dále nakládáno jako s statistickou chybou měření všech dalších hodnot. Chyba pipety je považována za součást této chyby, chybu konduktometru je především u koncentrovanějších roztoků HCl přičíst podle (??).

měření	1	2	3	4
$\frac{\sigma_{HCl}^{2 \mathrm{ml}} [\mu \mathrm{S cm^{-1}}]}{t [^{\circ}\mathrm{C}]}$	109,9 $20,5$	111,8 $20,2$	$112 \\ 20,3$	110,8 $20,7$

Tabulka 1: Čtyři měření měrné vodivosti roztoku $2\,\mathrm{ml}\ HCl$

Následující tabulka shrnuje naměřené hodnoty měrných vodivostí roztoků kyseliny chlorovodíkové a octové spolu s přepočtem objemových zlomků rozpuštěných látek na molární koncentrace.

$V_0 [\mathrm{ml}]$	1	2	4	6	8	10
$c_{M_{CH_3COOH}} [\mathrm{mol m^{-2}}]$ $\sigma_{CH_3COOH} [\mu \mathrm{S cm^{-1}}]$ $s_{\sigma_{CH_3COOH}} [\mu \mathrm{S cm^{-1}}]$	0,1 38,5 1,0	0,2 53,3 1,0	0,4 77,9 1,1	0,6 97,9 1,1	0.8 112.5 1.1	$1 \\ 126,2 \\ 1,2$
$c_{M_{HCl}} [\mathrm{mol} \mathrm{m}^{-2}] \ \sigma_{HCl} [\mu \mathrm{S} \mathrm{cm}^{-1}] \ s_{\sigma_{HCl}} [\mu \mathrm{S} \mathrm{cm}^{-1}]$	0,5 54,1 1	1 109,9 1,1	2 216 1,4	3 332 1,9	4 436 2,3	5 549 2,9

Tabulka 2: Tabulka