Exercise Section: A Gem5-Integrated Rapid Prototyping for Resource Contention Measurement and Control

Yuying Lai
Guotong Miao
Shorouk Abdelhalim
Mohamed Hossam
Yazi Chen
Rodolfo Pellizzoni
Mohamed Hassan

- Modern memory systems are complex
 - Tens of features/optimizations
 - Several resources with parallelism and reorderings
- Resource arbitration is done using local information only with no request "global" view/semantics

Coordinating Memory Resources

- Modern memory systems are complex
 - Tens of features/optimizations
 - Several resources with parallelism and reorderings
- Resource arbitration is done using local information only with no request "global" view/semantics
- Predictable resource arbitration and then sum things up is unsafe

Memory System of a Multi-Core Platform

WCL of the oldest requests (Discrete-RR)

Each arbiter deploys a separate Round-Robin arbitration

Coordinating Memory Resources

- Modern memory systems are complex
 - Tens of features/optimizations
 - Several resources with parallelism and reorderings
- Resource arbitration is done using local information only with no request "global" view/semantics
- Predictable resource arbitration and then sum things up is unsafe
 - Solution for this unsafety is drastically pessimistic

Memory System of a Multi-Core Platform

WCL of the oldest requests (**Discrete-RR**)

Each arbiter deploys a separate Round-Robin arbitration

Coordinating Memory Re

Coordinating Memory Resources

Evaluation

Per-Task WCL (SPEC BMs)

GRROF

Discrete RR

Coordinating Memory Res

WCET (y-axis) is in logarithmic scale

- Extensibility
- Cycle-Accuracy
- Predictability/QoS Considerations

Category	Supported Features
Coherence Protocols	MSI, MESI, MOESI; FSM-based with stable & transient states
Interconnects	Point-to-Point, Bus, Split Bus, Mesh, NoC; configurable controllers
Cache Hierarchy	Arbitrary levels; private/shared; multi-bank; MSHRs, write buffers, optimizations
Replacement Policies	LRU, FIFO, Random; extensible
Arbiters	FCFS, FR-FCFS, RR, Weighted RR, Harmonic RR, TDM, GRROF
Integration Modes	Standalone (trace-based) and full-system (gem5, MacSim, MCSim)
Monitoring Tools	Per-request latency tracking; CSV debug logs
Configurability	CSV/XML + CLI-based hierarchical configuration
Extensibility	Modular OO design; plug-in protocols/components
Real-Time Support	Set/bank partitioning; predictable coherence: PMSI, PISCOT, PCC, DUPECO, etc.

Category	Supported Features
Operation Modes	Trace-based or full-system integration (gem5, Octopus, MacSim)
Requestor Support	Per-requestor queues; criticality-aware scheduling
Memory Standards	DRAM standards via Ramulator; configurable DRAM hierarchy
Extensibility	New controllers added with ~133 LOC
Queue Configurability	Fully customizable request/command queues
Validation	Validated via MCXplore and simulator comparison
Implemented Controllers	High-Perf: FCFS, FR-FCFS, BLISS, PAR-BS; Predictable: REQBundle, ORP, PMC, etc.
Open Source	https://github.com/uwuser/MCsim

MCSim

- We extended Octopus to enable gem5 full system simulation using ARM cores.
- We also implement additional machinery and tracking to fully support LL/SC instructions and the atomic memory operations (AMOs).

- + Integrated into gem5

- OV2SLAM:
 - Cores 0-2: OV2SLAM fast setting with 3 threads
 - Input images from the EuRoC dataset
 - The Machine Hall 01 scenario
 - The data has a frequency of 20Hz
- Rosbag:
 - Core 3
 - feeds images to OV2SLAM using
- GPU/DPU Interfering tasks:
 - Modeled using ARM's AMBA ATP

Industrial Challenge Use-case

- Gem5 full system mode configured with Arm VExpress GEM5 V1
 - 4-cores O3CPU processor model.
- Modeled After Xavier platform:
 - Private 4-way 64KB L1 Split instruction and data caches
 - 16 MSHRs
 - Shared Cache Coherent 16-way 4MB L2 cache with 8 banks.
 - DDR4 2400U 8Gb x8 memory device.
- Operating System:
 - Ubuntu 18.04, Linux kernel 4.14, and ROS Melodic.
- We only monitor performance monitor and report statistics for the execution of OV2SLAM (region of interest) and not the Linux booting process.
- 6 Different setups:
 - Set, Bank, and no Partitioning (between interfering tasks and OV2SLAM)
 - COTS vs GRROF

Evaluation Setup

Per-Request WCL

Core's and System BW

- Octopuses have both short-term and longterm memory powered by half a billion neurons (Different Parallel Complex Memory Resources)
- They can even enhance their short-term memory during times of stress when they need to learn quickly to survive. (Real-Time)
- Each of their eight legs has its own memory, giving them better reaction time to their surroundings. (Agility, and Modularity)

https://www.scientificamerican.com/article/the-mind-of-an-octopus/

