פתרונות לממ"ן 13 - 2020א - 20425

- א. למספר המכוניות שמגיעות לצומת בין השעות 16:00 ל-19:00 יש התפלגות פואסונית עם הפרמטר א. למספר המכוניות שמגיעות לצומת בין השעות מכיוון שהצבע של כל מכונית שמגיעה לצומת הוא ירוק בהסתברות 0.02, מקבלים כי למספר המכוניות הירוקות המגיעות לצומת במרווח-הזמן הנתון יש התפלגות פואסונית עם הפרמטר $P\{X=40\}=e^{-30}\,\frac{30^{40}}{40!}=0.0139$ נסמן ב-X את המשתנה המקרי הזה, ונקבל: $1,500\cdot0.02=30$
- ב. נסמן ב- X_1 את מספר המכוניות שמגיעות לצומת בין 16:00 ל-17:00 וב- X_2 את מספר המכוניות שמגיעות לצומת בין 17:00 ל-19:00. ההתפלגות של X_1 היא פואסונית עם הפרמטר 17:00 ל-19:00 ההתפלגות של X_1 ושני המשתנים המקריים הללו בלתי-תלויים, מכיוון X_2 היא פואסונית עם הפרמטר X_2 ושני המשתנים המקריים הללו בלתי-תלויים, מכיוון שהם מוגדרים על מרווחי-זמן לא-חופפים.

כעת, לפי דוגמה 4ב במדריך הלמידה (עמוד 145), ההתפלגות המותנית של בהינתן בהינתן עם במדריך הלמידה X_1 היא התפלגות בינומית עם הפרמטרים 1,400 ו- $\frac{500}{500+1,000} = \frac{1}{3}$. לפיכך, השונות המבוקשת היא :

$$Var(X_1 | X_1 + X_2 = 1,400) = 1,400 \cdot \frac{1}{3} \cdot \frac{2}{3} = 311.11$$

ג. נפריד את המאורע שהמכונית הירוקה השנייה מגיעה לצומת בין 16:15 ל-17:00 לשני מקרים: ייתכן שאף מכונית ירוקה לא מגיעה לצומת בין 16:00 ל-16:15 ואילו בין 16:15 ל-17:00 מגיעות לפחות 2 מכוניות ירוקה אחת ואילו בין 16:05 מגיעה לצומת מכונית ירוקה אחת ואילו בין 16:15 ל-17:00 מגיעה לפחות מכונית ירוקה אחת. סכום ההסתברויות של שני מקרים אלו מניב את ההסתברות המבוקשת.

נסמן ב- Y_1 את מספר המכוניות הירוקות שמגיעות לצומת בין 16:00 ל-16:15 וב- Y_2 את מספר המכוניות הירוקות שמגיעות לצומת בין 16:15 ל-17:00. למשתנה המקרי Y_1 יש התפלגות פואסונית עם הפרמטר $0.75\cdot500\cdot0.02=7.5$, למשתנה המקרי Y_2 יש התפלגות פואסונית עם הפרמטר $0.75\cdot500\cdot0.02=7.5$, למשתנה המקרים זה בזה (מכיוון שהם מוגדרים על מרווחי-זמן שאינם חופפים). לפיכך, מקבלים:

$$P\{Y_1 = 0, Y_2 \ge 2\} + P\{Y_1 = 1, Y_2 \ge 1\} = P\{Y_1 = 0\} P\{Y_2 \ge 2\} + P\{Y_1 = 1\} P\{Y_2 \ge 1\}$$

$$= e^{-2.5} (1 - e^{-7.5} - 7.5e^{-7.5}) + 2.5e^{-2.5} (1 - e^{-7.5})$$

$$= \underbrace{e^{-2.5} (1 - 8.5e^{-7.5})}_{=0.0817} + \underbrace{2.5e^{-2.5} (1 - e^{-7.5})}_{=0.2051} = 0.2868$$

$$P\{X+Y=n\} = \sum_{i=1}^{n-1} P\{X=i \ , Y=n-i\}$$
 : מתקיים: $n=2,3,...$ $n=2,3,..$

$$\begin{split} P\{X=Y\} &= \sum_{i=1}^{\infty} P\{X=i \ , Y=i\} \\ &= \sum_{i=1}^{\infty} P\{X=i\} P\{Y=i\} \\ &= \sum_{i=1}^{\infty} 0.2 \cdot 0.8^{i-1} \cdot 0.5^{i} = 0.2 \cdot 0.5 \cdot \sum_{i=1}^{\infty} (0.8 \cdot 0.5)^{i-1} = 0.1 \cdot \frac{1}{1-0.4} = 0.1667 \end{split}$$

א. ראשית, נמצא את ההתפלגויות השוליות.

הסיכוי של מתמודדים בלתי-תלויים אחד . $0.6^2=0.36$. הסיכוי של מתמודדים בלתי-תלויים אחד . $X\sim B(2,0.36)$

: מכאן נקבל

.3

$$P(X = 0) = 0.4096$$
 $P(X = 1) = 0.4608$ $P(X = 2) = 0.1296$

: Y ההתפלגות השולית של

$$P(Y=1) = 0.4$$
 $P(Y=2) = 0.6 \cdot 0.4 = 0.24$
 $P(Y=3) = 0.6^2 \cdot 0.4 = 0.144$ $P(Y=4) = 0.6^3 = 0.216$

. 0 נמלא את ההסתברויות השוליות ואת ההסתברויות המשותפות שהינן

		X			$P_{\scriptscriptstyle Y}$
		0	1	2	I
Y	1			0	0.4
	2			0	0.24
	3	0			0.144
	4	0			0.216
P_X		0.4096	0.4608	0.1296	

: נחשב הסתברויות המשותפות הבאות

המאורע את שלושת הראשונים בהסתברות למכשול הרביעי, כלומר הצליח הראשונים בהסתברות - X=2,Y=4 המאורע אלכס הגיע למכשול השלישי, כלומר הצליח את שני הראשונים בהסתברות 0.6^2 ולכן ולכן . 0.6^3

$$P(X = 4, Y = 2) = 0.6^3 \cdot 0.6^2 = 0.07776$$

המאורע X=0,Y=1 . אלכס אהגיע ונכשל במכשול הראשון בהסתברות X=0,Y=1 . אלכס אהגיע למכשול המאורע באחד משני הראשונים בהסתברות $X=0.4+0.6\cdot 0.4$. לכן :

$$P(X = 0, Y = 1) = 0.4(0.4 + 0.6 \cdot 0.4) = 0.256$$

את שאר ההסתברויות ניתן לחשב בעזרת השלמה להסתברויות השוליות.

			$P_{_{Y}}$		
		0	1	2	Y
Y	1	0.256	0.144	0	0.4
	2	0.1536	0.0864	0	0.24
	3	0	0.09216	0.05184	0.144
	4	0	0.13824	0.07776	0.216
P_X		0.4096	0.4608	0.1296	

. $E\left[X\mid Y=3\right]$ את ומבקשים את נכשל נתון אז נתון אז נתון השלישי את יפתח נכשל במכשול השלישי אז נתון א

$$P\{X = 1 | Y = 3\} = \frac{P\{X = 1 \cap Y = 3\}}{P\{Y = 3\}} = \frac{0.09216}{0.144} = 0.64$$
$$\Rightarrow P\{X = 2 | Y = 3\} = 1 - 0.64 = 0.36 \Rightarrow$$
$$E[X | Y = 3] = 1 \cdot 0.64 + 2 \cdot 0.36 = \boxed{1.36}$$

. $otag p = \left(\frac{1}{6}, \frac{1}{6}, \frac{4}{6}\right)$ ו otag n = 40 ו- otag n = 40 ו-

$$\frac{40!}{4!5!31!} \cdot \left(\frac{1}{6}\right)^4 \left(\frac{1}{6}\right)^5 \left(\frac{4}{6}\right)^{31} = 0.0119$$

: ומכאן, שההסתברות המבוקשת היא

.6 - 1 הטרכים השלמים בין א הם ארכים השלמים בין 1 ל- 6.

לצורך חישוב ההסתברויות, נניח שאין תלות בין הטלות שונות של הקובייה.

$$P\{Y>i\}=\left(rac{6-i}{6}
ight)^4$$
 [i - מתקיים : בכל ההטלות התוצאה חייבת להיות התוצאה , $i=0,\dots,6$

$$P\{Y \le i\} = 1 - P\{Y > i\} = 1 - \left(\frac{6-i}{6}\right)^4$$
 , $i = 0,1,...,6$

$$F_Y(y) = P\{Y \leq y\} = \begin{cases} 0 & , & y < 1 \\ \frac{671}{1,296} & , & 1 \leq y < 2 \\ \frac{1,040}{1,296} & , & 2 \leq y < 3 \\ \frac{1,215}{1,296} & , & 3 \leq y < 4 \\ \frac{1,280}{1,296} & , & 4 \leq y < 5 \\ \frac{1,295}{1,296} & , & 5 \leq y < 6 \\ 1 & , & y \geq 6 \end{cases}$$

2. מהסעיף הקודם נקבל כי:

$$\begin{split} P\{Y=1\} &= P\{Y \le 1\} = \frac{671}{1,296} \\ P\{Y=2\} &= P\{Y \le 2\} - P\{Y \le 1\} = \frac{1,040}{1,296} - \frac{671}{1,296} = \frac{369}{1,296} \\ P\{Y=3\} &= P\{Y \le 3\} - P\{Y \le 2\} = \frac{1,215}{1,296} - \frac{1,040}{1,296} = \frac{175}{1,296} \\ P\{Y=4\} &= P\{Y \le 4\} - P\{Y \le 3\} = \frac{1,280}{1,296} - \frac{1,215}{1,296} = \frac{65}{1,296} \\ P\{Y=5\} &= P\{Y \le 5\} - P\{Y \le 4\} = \frac{1,295}{1,296} - \frac{1,280}{1,296} = \frac{15}{1,296} \\ P\{Y=6\} &= P\{Y \le 6\} - P\{Y \le 5\} = 1 - \frac{1,295}{1,296} = \frac{1}{1,296} \end{split}$$

ובכל מקרה אחר, פונקציית ההסתברות שווה לאפס.

- סתקבל בהסתברות מהם מתקבל המi=1,...,10וכל אחד מהם מתקבל בהסתברות , הערכים האפשריים של X_i הם האפשריים של i=1,...,10
 - $P\biggl\{\min_{i=1,\dots,10}X_i\leq 2\biggr\}=1-P\biggl\{\min_{i=1,\dots,10}X_i>2\biggr\}=1-P\{X_1>2,X_2>2,\dots,X_{10}>2\}$.1 ... $: \text{ ביוון שהמשתנים הם בלתי תלויים זה בזה מתקיים ש$

$$1 - P\{X_1 > 2, X_2 > 2, \dots, X_{10} > 2\} = 1 - P\{X_1 > 2\} \cdot P\{X_2 > 2\} \cdot \dots \cdot P\{X_{10} > 2\}$$

: כיוון שהמשתנים כולם מתפלגים אחיד בין 0 ל-10 , מתקיים ש

: ולכן
$$P\{X_i > 2\} = \frac{8}{11} \forall i = 1, 2, ..., 10$$

$$1 - P\{X_1 > 2\} \cdot P\{X_2 > 2\} \cdot \dots \cdot P\{X_{10} > 2\} = 1 - \left(\frac{8}{11}\right)^{10} = \boxed{0.9586}$$

ב. נשתמש בפונקציית ההסתברות המולטינומית, כדי לקבל את ההסתברות המבוקשת:

$$\frac{10!}{5!3!2!} \cdot \left(\frac{5}{11}\right)^5 \cdot \left(\frac{4}{11}\right)^3 \cdot \left(\frac{2}{11}\right)^2 = \boxed{0.0777}$$