Fine Grained Complexity

30 октября 2021 г.

Содержание

1. Базовые определения и SETH

1

1. Базовые определения и SETH

2 сентября

1.1 Введение

Тут были рассуждения на тему, что такое и зачем нужно Fine-grained complexity. Мораль: мы отвратительны в доказательстве нижних оценок. Поэтому мы делаем следующее: берём задачу, которую очень долго не могут решить, рассматриваем её как гипотезу и в этом предположении строим условные нижние оценки.

3адача. (k-SAT)

Дана формула на n логических переменных в КНФ, такая что размер каждого клоза не больше k. Проверить, существует ли означивание переменных, выполняющее формулу.

 Γ ипотеза. (ETH) [Impagliazzo and Paturi, 2001] 3-SAT не решается за время $2^{o(n)}$.

 Γ ипотеза. (SETH) [Impagliazzo and Paturi, 2001] Для $\forall \epsilon > 0$ найдётся k > 0, такое что k-SAT не решается за время $2^{(1-\epsilon)n}$.

Утверждение. SETH \Rightarrow ETH.

Доказательство. Сведём k-SAT \rightarrow 3-SAT, добавлением (k-3)m новых переменных. Чтобы получить линейное разрастание числа переменных, воспользуемся Sparsification леммой (**TODO**: ссылка на лемму).

Замечание. Это единственные именно *гипотезы*, все остальные будут *conjecture*. Причина того, что эти ребята гипотезы (по словам Ивана) в том, что авторы не сильно в них верили.

Замечание. Если мы сломаем 3-SUM-conjecture, то просто получим более быстрый алгоритм для 3-SUM. Если сломаем ЕТН, то перевернём мир схемной сложности (${\bf TODO}$: ссылка на теорему про ЕТН и E^{NP}).

Определение. (Fine-grained сведение)

Будем говорить, что задача $P(\mathbf{T_1}, \mathbf{T_2})$ fine-grained сводится к задаче Q (пишем $P \xrightarrow{T_1, T_2} Q$), если существует такой алгоритм A, который решает P с оракульным доступом к Q так что:

- Сложность A на входе размера n составляет $\mathcal{O}(T_1(n)^{1-\alpha})$ для $\alpha>0$
- Для $\forall \delta>0$ найдётся $\varepsilon>0$, так что для любого входа размера nоракульные запуски $S_1,\dots S_k$ удовлетворяют следующему условию: $\sum\limits_{i=1}^k T_2(S_i)^{1-\delta}\leqslant T_1(n)^{1-\varepsilon}$

1.2 Нижние оценки на основе SETH

Вместо прям оценок будем писать только сведения.

Задача. (ORTHOGONAL VECTORS (OV)) Дано 2 набора A и B из n векторов из $\{0,1\}^d$, где d=o(n). Нужно узнать существуют ли $a\in A, b\in B$, такие что: $\sum_{i=1}^d a_i b_i = 0$.

Сведение. (k-SAT $\xrightarrow{2^n,n^2}$ ORTHOGONAL VECTORS)

Построим наборы размера $2^{n/2}$ и размерности m. В первом наборе на i-ой позиции поставим 0, если

данное означивание первых n/2 переменных выполняет i-ый клоз. Во втором аналогично. Теперь скалярное произведение двух наборов будет равно $0 \Leftrightarrow$ данное означивание выполняет все клозы.

3адача. (d-HITTING-SET)

Дан универс \mathcal{U} , $|\mathcal{U}| = n$ и набор \mathcal{S} подмножеств U мощности не более d. Проверить, существует ли $X \subseteq \mathcal{U}$, $|X| \leqslant k$, такой что $\forall i, S_i \cap X \neq \emptyset$.

Сведение. (k-SAT $\xrightarrow{2^n,2^{n/2}} d$ -HITTING SET)

Возьмём в качестве универса литералы (переменные и их отрицания), в качестве множеств из S: $\{x_i, \overline{x_i}\}$ (чтобы выбрать означивание) и $\{x_{i,1}, \dots x_{i,k}\}$ (литералы, выполняющие i-ый клоз), получаем $d \leq max(2,k)$.

Сведение. (k-SAT $\xrightarrow{2^n,2^n}$ d-HITTING SET) [Cygan et al., 2016] тык

Создадим универс из n' (определим позднее) элементов, которые разобьём на группы по p, где $2 \nmid p, p \mid n'$. Заставим брать в Hitting set ровно $\lfloor p/2 \rfloor$ элементов из каждого блока: тогда каждый блок закодирует

 $\binom{p}{\lfloor p/2 \rfloor}$ вариантов — означивание для $\alpha_p = \lfloor \log \binom{p}{\lfloor p/2 \rfloor} \rfloor$ переменных. $\frac{\alpha_p}{p} = \frac{\lfloor \log \binom{p}{\lfloor p/2 \rfloor} \rfloor}{p} \sim \frac{\log (\frac{2^p}{\sqrt{p}})}{p} \xrightarrow{p \to \infty} 1$, так что размер универса будет $n' = \frac{n}{\alpha_p} p \sim n$.

Чтобы в каждом блоке бралось хотя бы по $\lfloor p/2 \rfloor$ элементов, положим все подмножества из $\lceil p/2 \rceil$ элементов в \mathcal{S} (теперь, если мы взяли меньше $\lfloor p/2 \rfloor$, то дополнение этих элементов не похичено). Также докинем в \mathcal{S} все дополнения подмножеств размера $\lfloor p/2 \rfloor$, которые не соответствуют означиваниям (такие могли появиться из-за округлений). Так как p — константа, всех этим множеств будет какое-то линейное от n число.

Чтобы в каждом блоке бралось не более $\lfloor p/2 \rfloor$ элементов положим $|X| = k = \frac{n}{\alpha_n} \lfloor p/2 \rfloor$.

Осталось заставить это всё выполнять клозы. Пусть клоз c_i содержит литералы $x_{i_1},\ldots,x_{i_{k_i}}$ из блоков $b_{i_1},\ldots,b_{i_{k_i}}$. Тогда переберём все означивания переменных в этих блоках, не выполняющие клоз c_i и положим объединение дополнения соответствующих им подмножеств размера $\lfloor p/2 \rfloor$ в \mathcal{U} . Так как p — константа, получаем линейное от m число множеств.

Можем ещё оценить d как $\max(\lceil p/2 \rceil, k \cdot \lfloor p/2 \rfloor)$

1.3 Семинар

Упражнение. Построить $(2^n, n^t)$ fg-сведение $k ext{-SAT} o t ext{-Dominating Set}$

Упражнение. Построить $(2^n, n^{t-1})$ fg-сведение $k\text{-SAT} \to t\text{-SPARSE}$ DOMINATING SET $(\frac{|E(G)|}{|V(G)|} = n^{o(1)})$

Задача. (*k*-SUM)

Дано k массивов A_1, \ldots, A_k длины n, состоящие из целых чисел из $\{-M..M\}$, где $M=n^{\mathcal{O}(1)}$. Существуют ли индексы $j_1, \ldots j_k$ такие что: $\sum_{i=1}^k A_{i,j_i}=0$.

Упражнение. Покажите нижнюю оценку $n^{\Omega(k)}$ для k-SUM, построив цепочку fg-сведений 3-SAT \to 1-IN-3-SAT $\to k$ -SUM (в 1-IN-3-SAT хотим выполнить клоз ровно одной переменной)

Список литературы

[Cygan et al., 2016] Cygan, M., Dell, H., Lokshtanov, D., Marx, D., Nederlof, J., Okamoto, Y., Paturi, R., Saurabh, S., and Wahlström, M. (2016). On problems as hard as cnf-sat. *ACM Trans. Algorithms*, 12(3).

[Impagliazzo and Paturi, 2001] Impagliazzo, R. and Paturi, R. (2001). On the complexity of k-sat. *Journal of Computer and System Sciences*, 62(2):367–375.