NOMBRES COMPLEXES ET PROBABILITÉS

1) Les résultats (a;b) possibles et les valeurs de α correspondantes sont données dans le tableau I ci-dessous :

Tableau I

(a; b)	(1;2)	(1;3)	(2;1)	(2;3)	(3;1)	(3;2)
α	$\frac{1}{2}e^{i\frac{2\pi}{3}}$	$\frac{1}{2}e^{i\pi}$	$e^{i\frac{\pi}{3}}$	$\mathrm{e}^{\mathrm{i}\pi}$	$\frac{3}{2}e^{i\frac{\pi}{3}}$	$\frac{3}{2}e^{i\frac{2\pi}{3}}$
z_0	$2e^{i\frac{\pi}{6}}$					
$z'_0 = \alpha z_0$	$e^{i\frac{5\pi}{6}}$	$e^{i\frac{7\pi}{6}}$	$2e^{i\frac{\pi}{2}}$	$2e^{i\frac{7\pi}{6}}$	$3e^{i\frac{\pi}{2}}$	$3e^{i\frac{5\pi}{6}}$
$ z'_0 $	1	1	2	2	3	3
$arg(z'_0)$	$\frac{5\pi}{6}$	$\frac{7\pi}{6}$	$\frac{\pi}{2}$	$\frac{7\pi}{6}$	$\frac{\pi}{2}$	$\frac{5\pi}{6}$
X =	1	1	2	2	3	3
p(X)	$\frac{1}{3}$		$\frac{1}{3}$		$\frac{1}{3}$	

2) Soit A le point d'affixe $z_0 = \sqrt{3} + i$. Sous la forme exponentielle, z_0 s'écrit : $z_0 = re^{i\theta}$ avec : $r = |z_0| = \sqrt{(\sqrt{3})^2 + 1} = 2$

$$\cos(\theta) = \frac{\sqrt{3}}{2}$$
 et $\sin(\theta) = \frac{1}{2}$, soit $\arg(z_0) = \theta = \frac{\pi}{6}$ modulo (2π) .

D'où
$$z_0 = 2e^{i\frac{\pi}{6}}$$

Soit A' le point d'affixe $z'_0 = \alpha z_0$. Les notations exponentielles, les modules et les arguments de z'_0 suivant les valeurs de (a; b) sont donnés dans le Tableau I.

3) O, A et A' sont alignés si $arg(z_0) = arg(z'_0) + k\pi$ avec $k \in \mathbb{Z}$, soit :

$$arg(z'_0) = arg(z_0) + k\pi = \theta + k\pi = \frac{\pi}{6} + k\pi$$

Dans le Tableau I ceci se vérifie pour $\arg(z'_0) = \frac{7\pi}{6}$ (k = 1),

et correspond à deux événements possibles : (1; 3) et (2; 3).

On a donc
$$p(E_1) = \frac{2}{6} = \frac{1}{3}$$
.

 z'_0 est un imaginaire pur pour : $\arg(z'_0) = \frac{\pi}{2} + k\pi$ avec $k \in \mathbb{Z}$.

Dans le Tableau I ceci correspond à deux événements possibles : (2; 1) et (3; 1).

On a donc
$$p(E_2) = \frac{2}{6} = \frac{1}{3}$$
.

4) La loi de probabilité de X est donnée dans le Tableau I. Son espérance mathématique est 2.