Autum School 2025

Models for flight operations Examples of ML models and challenges Pilot3 and Dispatcher3 projects

Dr Luis Delgado
Centre for ATM Research
University of Westminster
27 Oct 2025

Transportation Research Laboratory

Quintin Hogg Trust

Pilot3

Pilot3

Optimisation of vertical profile (from triggering point to FL100)

Pilot3

Challenges

1. Need of distribution not only average expected value

Challenges

1. Need of distribution not only average expected value

Challenges

1. Need of distribution not only average expected value

Challenges

2. Prediction horizon

Challenges

2. Prediction horizon

Challenges

3. Multi-model approach

Transportation Research Laboratory

Clean Sky

Challenges

3. Multi-model approach

Specific

More advanced features

Ground-updated data

Which model to use for a given prediction: trade-off accuracy/uncertainty/ genericity

Generic Fewer features Air-available data

Transportation Research Laboratory

Challenges

3. Multi-model approach

Transportation Research Laboratory

Laboratory

Challenges

4. Visualisation – interpretability

Using predictions with uncertainties \rightarrow How to present the information to users?

Challenges

5. Data!

- Machine learning models in Pilot3
 - Used to compute cost function components
 - Used to estimate uncertainties that affect operations:
 - Distance at arrival (FL100-runway)
 - Taxi-in time
 - Reactionary delay
 - Block time
 - Rotation time
 - ATFM delay
- Challenges (most of them applicable to ATM in general)
 - 1. Need of distribution not only average expected value
 - Prediction-horizon
 - 3. Multi-model approach
 - 4. Visualisation interpretability
 - 5. Data!

Data infrastructure Dispatcher3 Transportation Research Historical Planned Data **Historical Actual Data Airline Policies** Laboratory **Predictive capabilities** Clean Sky **KPIs** Data acquisition and preparation module DISPATCHE **Predictive model module** Target (predicted) variables (KPI(s)) **Predictive model** Distance Fuel flown Delay **Advice capabilities** Advice generator module **Current Planned Data Current Planned Current Planned** Prospective model **Operational Data** Environment **Network Data Prediction** Request Schedule planner Dispatcher I 19 Pilot

Dispatcher3 – Data sources

#	Data source	Description	Used in
1	FDM provided by Vueling	Contains performance data and static data directly collected by the airlines	Fuel deviation (pre-departure)
2	ADS-B data by OpenSky	Radar data, contains trajectories	Holding scenarios (pre-departure)
3	METAR	Contains weather information at different European Airports	Pre-departure and pre-tactical scenarios
4	NOAA weather forecasts	GRIB file containing meteorological information in a 4D space (latitude, longitude, altitude and time)	Fuel deviation and runway in use (pre-departure)
5	ALLFT+	Network and flight plan and trajectories information from DDR2 by EUROCONTROL	Pre-departure and pre-tactical scenarios
6	ECTL R&D Archive	Network information and flight information provided by EUROCONTROL	Pre-departure scenarios
7	Vueling flight data and flight plans	Flight information and flight plans from Vueling flights.	Pre-departure and pre-tactical scenarios
8	Flight Plans by PREDICT	Simulated data using PREDICT software which estimates pre-tactical flight plans based on historical data (ALLFT+)	Pre-tactical scenarios

Dispatcher3

Dispatcher3

Predictive capabilities

Pre-departure models (using data available 3h prior SOBT)

- Holdings at arrival at EGLL
- Fuel usage
- Runway at arrival at LEIB

Planned models (using data available at D-1)

- Probability being regulated by ATFM
- Location of regulation if flight regulated (airspace/airport)
- Probability regulated flight has zero minutes of delay assigned
- Distribution of delay if delay assigned is greater than zero

Advice capabilities

- Rotation / reactionary delay propagation
- Integrated interactive flight plan visualisation

Dispatcher3

Transportation Research Laboratory

Static vs dynamic features

Static features

Operational time
Hour of departure
Day of the week
Month

Airport information					
Size departure airport					
Size arrival airport					
Departure hub airline					
Arrival hub airline					

Dynamic features

Airport demand		Weather			
Normalized num. departures Normalized num. arrival		ATMAP score		7	
		Temperature			
		Wind speed		■ METAR	
Network demand		Visibility			
Normalized OC		u/v wind			
Normalized EC		Geopotential			
		Relative humidity		NOAA	
		Ventilation rate			

Predictive capabilities

Pre-departure models (using data available 3h prior SOBT)

- Holdings at arrival at EGLL
- Fuel usage
- Runway at arrival at LEIB

DISPATCHER3

Transportation Research Laboratory

Planned models (using data available at D-1)

- Probability being regulated by ATFM
- Location of regulation if flight regulated (airspace/airport)
- Probability regulated flight has zero minutes of delay assigned
- Distribution of delay if delay assigned is greater than zero

Advice capabilities

Rotation / reactionary delay propagation Integrated interactive flight plan visualisation

Predictive capabilities

Pre-departure models (using data available 3h prior SOBT)

- Holdings at arrival at EGLL
- Fuel usage

Predicted label

Transportation

Transportation

Pilot3 and Dispatcher3 Data infrastructure **Predictive capabilities** Historical Planned Data Historical Actual Data Airline Policies

Transportation

Conclusions

Models are useful but not on their own

Consider data availability

Interpretability

Autum School 2025

Thank you!

Transportation Research Laboratory

Quintin Hogg Trust