Survey data quality in different countries

Daniel Oberski

Faculty of Social and Behavioural Sciences
Tilburg University

Survey Research Centre ESADE, Barcelona Universitat Ramon Llull

Overview

- 1 Multitrait-multimethod experiments
 - An example experiment
 - Models
- 2 What has been done before
 - The international research project 1984–1996
 - Experiments in the European Social Survey
- 3 Why are there differences between countries?
 - Categorisation errors in the efficacy experiment
 - Meta analysis of the 4 different experiments
- 4 Conclusion

 f_1, f_2 = variables of interest

v_{ij} = validity coefficient for variable i

 M_j = method factor for both variables

m_{ij} = method effect on variable i

t_{ij} = true score for y_{ij}

 r_{ij} = reliability coefficient

 y_{ij} = the observed variable

e_{ij} = the random error in variable y_{ij}

- The quality coefficient *q* is the product of the reliability and validity coefficients:
- q = vr
- The square q^2 is called the 'total quality' of a measure.
- It is the percentage of variance in the observed variable that can be explained by the latent variable of interest.

- The quality coefficient q is the product of the reliability and validity coefficients:
- q = vr
- The square q^2 is called the 'total quality' of a measure.
- It is the percentage of variance in the observed variable that can be explained by the latent variable of interest.

- The quality coefficient q is the product of the reliability and validity coefficients:
- q = vr
- The square q^2 is called the 'total quality' of a measure.
- It is the percentage of variance in the observed variable that can be explained by the latent variable of interest.

- The quality coefficient q is the product of the reliability and validity coefficients:
- q = vr
- The square q^2 is called the 'total quality' of a measure.
- It is the percentage of variance in the observed variable that can be explained by the latent variable of interest.

An example experiment

First trait measured with three methods

CARD 73 Using this card, please tell me how true each of the following statements is about your

correni	ob.	Not at	A little	Quite true	Very true	(Don't know)
G64	There is a lot of variety in my	1	2	3	4	8

is19 The next 3 questions are about your current job. Please choose one of the following to describe how varied your work is.

Please tick one box.

i532 Please indicate, on a scale of 0 to 10, how varied your work is, where 0 is not at all varied and 10 is very varied.

Please tick the box that is closest to your opinion

Not at all varied

varied

Three traits measured with first method

CARD 73 Using this card, please tell me how true each of the following statements is about your current job.

G64	There is a lot of variety in my work.	Not at all true	A little true 2	Quite true	Very true	(Don't know) 8
 G66	My job is secure	1	2	3	4	8
 G70	My health or safety is at risk	1	2	3	4	8

Three traits measured with second method

iS19	The next 3 questions are about your current job. Please choose one of the following to describe how varied your work is. Please tick one box. Not at all varied 1 A little varied 2 Quite varied 3 Very varied 14
i\$20	Please choose one of the following to describe how secure your job is. Please tick one box. Not at all secure 1 A little secure 2 Quite secure 3 Very secure 4
i521	Please choose one of the following to say how much, if at all, your work puts your health and safety at risk. Please tick one box. Not at all at risk 1 A little at risk 2 Quite a lot at risk 3

Three traits measured with third method

Skip details of the model

- Classic MTMM model
- Correlated uniqueness (Kenny & Judd)
- Direct product (Browne)
- True score model
- MTM-1 (Eid 2000)

- Classic MTMM model
- Correlated uniqueness (Kenny & Judd)
- Direct product (Browne)
- True score model
- MTM-1 (Eid 2000)

- Classic MTMM model
- Correlated uniqueness (Kenny & Judd)
- Direct product (Browne)
- True score model
- MTM-1 (Eid 2000)

- Classic MTMM model
- Correlated uniqueness (Kenny & Judd)
- Direct product (Browne)
- True score model
- MTM-1 (Eid 2000)

- Classic MTMM model
- Correlated uniqueness (Kenny & Judd)
- Direct product (Browne)
- True score model
- MTM-1 (Eid 2000)

- We use the true score model
- Equivalent to the classic MTMM model
- Sometimes necessary to remove one method factor
- In that case our model is the equivalent to Eid's MTM-1 model.

- We use the true score model
- Equivalent to the classic MTMM model
- Sometimes necessary to remove one method factor
- In that case our model is the equivalent to Eid's MTM-1 model.

- We use the true score model
- Equivalent to the classic MTMM model
- Sometimes necessary to remove one method factor
- In that case our model is the equivalent to Eid's MTM-1 model.

- We use the true score model
- Equivalent to the classic MTMM model
- Sometimes necessary to remove one method factor
- In that case our model is the equivalent to Eid's MTM-1 model.

True score model

Survey data quality in different countries

Multitrait-multimethod experiments

Models

- No correlations among methods
- No correlations between traits and methods
- Equal method effects
- Linear and additive effects
- Normal errors, independent of all unobserved variables
- All variables are continuous

- No correlations among methods
- No correlations between traits and methods
- Equal method effects
- Linear and additive effects
- Normal errors, independent of all unobserved variables
- All variables are continuous

- No correlations among methods
- No correlations between traits and methods
- Equal method effects
- Linear and additive effects
- Normal errors, independent of all unobserved variables
- All variables are continuous

- No correlations among methods
- No correlations between traits and methods
- Equal method effects
- Linear and additive effects
- Normal errors, independent of all unobserved variables
- All variables are continuous

- No correlations among methods
- No correlations between traits and methods
- Equal method effects
- Linear and additive effects
- Normal errors, independent of all unobserved variables
- All variables are continuous

- No correlations among methods
- No correlations between traits and methods
- Equal method effects
- Linear and additive effects
- Normal errors, independent of all unobserved variables
- All variables are continuous

Countries in the international survey project 1984–1996 that have been included in SQP

- 1 Austria
- 2 Belgium: Flanders
- 3 Netherlands
- 4 United States: Michigan

The European Social Survey (ESS)

- Three rounds, 4th coming up
- Six experiment in each round
- □ http://www.europeansocialsurvey.org

Countries in round 1 of the ESS – 2002

- 1 Austria
- 2 Belgium
- 3 Czech Republic
- 4 Denmark
- 5 Finland
- 6 France
- 7 Germany
- 8 Greece9 Hungary
- 10 Ireland
- 11 Israel
- 12 Italy

- 13. Luxembourg
- 14. Netherlands
- 15. Norway
- 16. Poland
- 17. Portugal
- 18. Slovenia
- 19. Spain
- 20. Sweden
- 21. Switzerland
- 22. United Kingdom

Countries in round 2 of the ESS - 2004

- 1 Austria
- 2 Belgium3 Czech
 - Republic Denmark
- 5 Estonia
- 6 Finland
- 7 France
- 8 Germany
- 9 Greece
- 10 Hungary
- 11 Iceland
- 12 Ireland
- 13 Italy

- 14. Luxembourg
- 15. Netherlands
- 16. Norway
- 17. Poland
- 18. Portugal
- 19. Slovakia20. Slovenia
- 21. Spain
- 22. Sweden
- 23. Switzerland
- 24. Turkey
- 25. Ukraine
- 26. United Kingdom

Countries in round 3 of the ESS - 2006

- 1 Austria
- 2 Belgium3 Bulgaria
- 4 Cyprus
- 4 Cyprus5 Denmark
- 6 Estonia
- 7 Finland
- 8 France
- 9 Germany
- 10 Hungary
- 11 Ireland
- 12 Latvia

- 13. Netherlands
- 14. Norway
- 15. Poland
- 16. Portugal17. Romania
- 18. Russian Federation
- 19. Slovakia
- 20. Slovenia
- 21. Spain
- 22. Sweden
- 23. Switzerland
- 24. Ukraine
- 25. United Kingdom

Some results from rounds 1 and 2

Country	Mean	Median	Minimum	Maximum
Portugal	0.79	0.81	0.63	0.91
Switzerland	0.79	0.84	0.56	0.90
Greece	0.78	0.79	0.64	0.90
Estonia	0.78	0.85	0.58	0.90
Poland	0.73	0.85	0.51	0.90
Luxembourg	0.72	0.73	0.53	0.88
United Kingdom	0.70	0.71	0.56	0.82
Denmark	0.70	0.70	0.52	0.80
Belgium	0.70	0.73	0.46	0.90
Germany	0.69	0.70	0.53	0.83
Spain	0.69	0.64	0.54	0.90
Austria	0.68	0.68	0.51	0.85
Czech Republic	0.65	0.60	0.52	0.87
Slovenia	0.63	0.60	0.46	0.82
Norway	0.59	0.59	0.35	0.83
Sweden	0.58	0.58	0.43	0.68
Finland	0.57	0.54	0.42	0.78

Differences between countries?

What we studied already:

- Differences in complexity of language?
- Artifacts due to sending in the questionnaire later?
- Artifacts due to mistakes in translation?

- Differences in complexity of language?
 - Not found
- Artifacts due to sending in the questionnaire later?
- Artifacts due to mistakes in translation?

- Differences in complexity of language?
 - Not found
- Artifacts due to sending in the questionnaire later?
- Artifacts due to mistakes in translation?

- Differences in complexity of language?
 - Not found
- Artifacts due to sending in the questionnaire later?
 - Only Sweden, Norway, Finland
- Artifacts due to mistakes in translation?

- Differences in complexity of language?
 - Not found
- Artifacts due to sending in the questionnaire later?
 - Only Sweden, Norway, Finland
- Artifacts due to mistakes in translation?

- Differences in complexity of language?
 - Not found
- Artifacts due to sending in the questionnaire later?
 - Only Sweden, Norway, Finland
- Artifacts due to mistakes in translation?
 - Two cases found for two experiments

- Differences in complexity of language?
 - Not found
- Artifacts due to sending in the questionnaire later?
 - Only Sweden, Norway, Finland
- Artifacts due to mistakes in translation?
 - Two cases found for two experiments
- None of these findings suffice to explain the large differences we found!

- Differences in complexity of language?
 - Not found
- Artifacts due to sending in the questionnaire later?
 - Only Sweden, Norway, Finland
- Artifacts due to mistakes in translation?
 - Two cases found for two experiments
- None of these findings suffice to explain the large differences we found!
- Differences in use of the scale?

Categorisation of continuous variables

Our model assumes that there are *unobserved* continuous latent response variables (LRV) that have been categorised into the *observed* categorical variables.

Categorisation of continuous variables

Our model assumes that there are *unobserved* continuous latent response variables (LRV) that have been categorised into the *observed* categorical variables.

Categorisation of continuous variables

Our model assumes that there are *unobserved* continuous latent response variables (LRV) that have been categorised into the *observed* categorical variables.

- These continuous latent response variables are related to each other according to the MTMM model.
- Method effects, quality coefficients, and thresholds can be estimated.
- Equivalent to a 2 parameter graded response model in IRT (Muthén & Asparouhov 2002).
- We call the ratio of the quality coefficient q = v.r from the categorical model to the same coefficient from the continuous model the 'categorisation factor'.

Consequences of categorisation for the correlations between observed variables

- The fewer categories, the smaller the Pearson correlation
- The more skew in observed variables, the smaller the Pearson correlation
- The corrected ('polychoric') correlations are always higher than the Pearson correlations, but not necessarily equally so for all variables.

Consequences of categorisation for the correlations between observed variables

- The fewer categories, the smaller the Pearson correlation
- The more skew in observed variables, the smaller the Pearson correlation
- The corrected ('polychoric') correlations are always higher than the Pearson correlations, but not necessarily equally so for all variables.

Consequences of categorisation for the correlations between observed variables

- The fewer categories, the smaller the Pearson correlation
- The more skew in observed variables, the smaller the Pearson correlation
- The corrected ('polychoric') correlations are always higher than the Pearson correlations, but not necessarily equally so for all variables.

Therefore,

- If the skewness of observed variables is higher for variables measured by one particular method, then the corrected correlations between those variables will go up more than the others, and the method effects in the categorical model will be higher.
- Higher estimated method effects can lower the estimate of quality in the categorical model.
- If this differs across countries, the process can possibly explain differences in the quality.

Therefore,

- If the skewness of observed variables is higher for variables measured by one particular method, then the corrected correlations between those variables will go up more than the others, and the method effects in the categorical model will be higher.
- Higher estimated method effects can lower the estimate of quality in the categorical model.
- If this differs across countries, the process can possibly explain differences in the quality.

Therefore,

- If the skewness of observed variables is higher for variables measured by one particular method, then the corrected correlations between those variables will go up more than the others, and the method effects in the categorical model will be higher.
- Higher estimated method effects can lower the estimate of quality in the categorical model.
- If this differs across countries, the process can possibly explain differences in the quality.

Analysis of the experiments

- We analysed the 4 experiments from the ESS which involved variables with 5 categories or less
- The topics: role of women, GP's, political efficacy, job.

 Compare the country with the highest quality to the country with the lowest quality for that experiment

Analysis of the experiments

- We analysed the 4 experiments from the ESS which involved variables with 5 categories or less
- The topics: role of women, GP's, political efficacy, job.

 Compare the country with the highest quality to the country with the lowest quality for that experiment

Analysis of the experiments

- We analysed the 4 experiments from the ESS which involved variables with 5 categories or less
- The topics: role of women, GP's, political efficacy, job.

Compare the country with the highest quality to the country with the lowest quality for that experiment

Quality (q^2) and method effects (m) in the efficacy experiment

Continuous MTMM model, main questionnaire (first method)

			'Efficacy'	
		Complex	Active	Mind
${q^2}$	Denmark	0.77	0.83	0.79
	Switzerland	0.49	0.81	0.50
m	Denmark	0.00	0.00	0.00
	Switzerland	0.00	0.00	0.00

Categorisation errors in the efficacy experiment

Efficacy experiment: Denmark

Polychoric correlations

		Method 1			Method 2		
			$\overline{}$	$\overline{}$		$\overline{}$	
Method 1	Complex	1.00					
	Active	-0.44	1.00				
	Mind	-0.51	0.47	1.00			
Method 2	Complex	0.66	-0.45	-0.51	1.00		
	Active	-0.44	0.74	0.46	-0.51	1.00	
	Mind	-0.52	0.51	0.67	-0.56	0.56	1.00

Pearson correlations

		4	Method 1		1	Method 2	2
Method 1	Complex	1.00					
	Active	-0.40	1.00				
	Mind	-0.47	0.37	1.00			
Method 2	Complex	0.60	-0.37	-0.44	1.00		
	Active	-0.39	0.67	0.40	-0.43	1.00	
	Mind	-0.46	0.43	0.62	-0.49	0.48	1.00

Efficacy experiment: Switzerland

Polychoric correlations

		Method 1		Method 2			
				$\overline{}$			
Method 1	Complex	1.00					
	Active	-0.37	1.00				
	Mind	-0.46	0.42	1.00			
Method 2	Complex	0.57	-0.36	-0.46	1.00		
	Active	-0.32	0.83	0.36	-0.39	1.00	
	Mind	-0.36	0.44	0.69	-0.49	0.43	1.00

Pearson correlations

		Method 1			Method 2	2	
				$\overline{}$			
Method 1	Complex	1.00					
	Active	-0.33	1.00				
	Mind	-0.34	0.36	1.00			
Method 2	Complex	0.55	-0.35	-0.45	1.00		
	Active	-0.30	0.82	0.33	-0.34	1.00	
	Mind	-0.35	0.41	0.62	-0.48	0.39	1.00

% Increase in the correlations after correction for categorisation

Efficacy experiment: Denmark

, ,		Method 1			Meth	Method 2		
				_		<u> </u>		
Method 1	Complex							
	Active	8%						
	Mind	8%	29%					
Method 2	Complex	10%	22%	16%				
			10%		19%			
	Mind	13%	19%	10%	15%	16%		

Mean percentage increase of the polychoric correlations: 11%

% Increase in the correlations after correction for categorisation

Efficacy experiment: Switzerland

		N	Nethod 1	1	Meth	od 2
Method 1	Complex					
		1%				
	Mind	36%	17 %			
Method 2	Complex	3%	3%	2%		
	Active .	5%	1%	9%	17 %	
	Mind	1%	6%	13%	3%	11%

Mean percentage increase of the polychoric correlations: 6.5%

Quality (q^2) and method effects (m) according to the continuous and categorical models, with categorisation factors

			'Efficacy'	
		Complex	Active	Mind
Continuous analysis				
q^2	Denmark	0.77	0.83	0.79
	Switzerland	0.49	0.81	0.50
m	Denmark	0.00	0.00	0.00
	Switzerland	0.00	0.00	0.00
Categorical analysis				
q^2	Denmark	0.63	0.70	0.63
· ·	Switzerland	0.62	0.94	0.62
m	Denmark	0.11	0.08	0.11
	Switzerland	0.00	0.00	0.00
Categorisation factor				
	Denmark	1.23	1.18	1.25
	Switzerland	0.79	0.86	0.81

Consequences of correction for categorisation: conclusions

- The monomethod correlations for the second method increase more than those of the first method
- The method effects

Does categorisation explain differences across countries

The categorisation factor, q_{cat}/q_{cont} :

A meta-analysis of the categorisation error studies

			95%	6 C.I
	Estimate	S.E.	lower	upper
(Intercept)	1.04	0.36	0.31	1.77
Торіс				
Doctors	(reference category)			
Efficacy	0.06	0.10	-0.14	0.27
Job	0.04	0.40	-0.71	0.78
Women	0.38	0.26	-0.14	0.90
Scale				
Direct	(reference category)			
Agree-disagree	-0.11	0.35	-0.81	0.59
True-false	0.17	0.32	-0.48	0.81
Negative	-0.50	0.23	-0.96	-0.02
Main questionnaire	-0.30	0.29	-0.88	0.29
Highest quality	-0.19	0.09	-0.3 <i>7</i>	-0.01
Highest quality × main	0.66	0.15	0.35	0.96

Multiple R-Squared: 0.45; Adjusted R-squared: 0.35

Conclusions

- Differences in data quality between countries are reduced after the categorisation is taken into account.
- Differences in use of the scale seems to play a large role in causing differences between countries.

Conclusions

- Differences in data quality between countries are reduced after the categorisation is taken into account.
- Differences in use of the scale seems to play a large role in causing differences between countries.

Recommendations

- One way to prevent categorisation errors is to use continuous or near-continuous scales;
- Don't use categories which are difficult to choose in some countries but not in others (e.g. disagree that ŚMen should take as much responsibility as women for the home and children.Š in Slovenia vs. Greece.)
- High-quality questions may not be as affected by categorisation errors as low-quality ones!

Recommendations

- One way to prevent categorisation errors is to use continuous or near-continuous scales;
- Don't use categories which are difficult to choose in some countries but not in others (e.g. disagree that ŚMen should take as much responsibility as women for the home and children.Š in Slovenia vs. Greece.)
- High-quality questions may not be as affected by categorisation errors as low-quality ones!

Recommendations

- One way to prevent categorisation errors is to use continuous or near-continuous scales;
- Don't use categories which are difficult to choose in some countries but not in others (e.g. disagree that ŚMen should take as much responsibility as women for the home and children.Š in Slovenia vs. Greece.)
- High-quality questions may not be as affected by categorisation errors as low-quality ones!

Further study, problems

- Investigate normality assumption, linearity;
- Unobserved heterogeneity;
- Prediction of the data quality based on characteristics of the question.

Further study, problems

- Investigate normality assumption, linearity;
- Unobserved heterogeneity;
- Prediction of the data quality based on characteristics of the question.

Further study, problems

- Investigate normality assumption, linearity;
- Unobserved heterogeneity;
- Prediction of the data quality based on characteristics of the question.

That's it for now. Moltes gràcies per a la seva atenció!

