Estruturas de Dados e Algoritmos – Ciência da Computação

Prof. Daniel Saad Nogueira Nunes

IFB – Instituto Federal de Brasília, Campus Taguatinga

Sumário

- Introdução
- 2 Implementação
- Considerações

Sumário

Introdução

- As árvores AVL foram as primeiras BST balanceadas da literatura.
- Nomeada de acordo com os seus desenvolvedores: Georgy
 Adelson-Velsky e Evgenii Landis.
- ullet Possuem tempo de consulta/inserção/remoção limitado a $\Theta(\lg n)$.
- São estruturas que são auto-balanceáveis, tentando deixar as alturas dos nós de cada nível próximas.

 Antes de expor os algoritmos que atuam sobre esta estrutura de dados, é necessário formalizar alguns conceitos.

Sumário

- Introdução
 - Conceitos preliminares
 - Operações em árvores AVL

Definição (h(x))

- Seja T uma árvore binária com raiz no nó x e seja uma função ht(v) que nos dá a altura de um nó $v \in T$.
- A função h(T) corresponde à seguinte definição:

$$h(T) = \left\{ \begin{array}{l} 0, \quad \text{se } T \text{ \'e uma \'arvore vazia} \\ ht(x) + 1, \text{ caso contr\'ario} \end{array} \right.$$

Definição (Fator de Equilíbrio)

Sejam T_1 e T_2 as subárvores da esquerda e da direita de uma árvore com raiz no nó x.

O fator de equilíbrio (balance factor) de x é dado como:

$$bf(x) := h(T_1) - h(T_2)$$

Definição (Árvore AVL)

Seja T uma árvore binária de pesquisa. T também é uma árvore AVL se e somente se:

- T é vazia; ou
- $\bullet \ -1 \le bf(x) \le 1, \forall x \in T$

figuras/AVL-tree.pdf

Fator de Equilíbrio

- Em árvores AVL, o fator de equilíbrio de cada nó está limitado a três possíveis valores: $\{-1,0,1\}$.
- Esta restrição que possibilita operações de inserção/remoção/busca serem efetuadas em tempo $\Theta(\lg n)$.

figuras/AVL-tree.pdf

Sumário

- Introdução
 - Conceitos preliminares
 - Operações em árvores AVL

Operações em Árvores AVL

- Como árvores AVL são especializações de BST, os procedimentos de inserção, remoção e busca são bem parecidos.
- A diferença é que, após uma inserção e remoção, a árvore pode ficar desbalanceada, isto é, o fator de equilíbrio de algum nó está fora do intervalo $\{-1,0,1\}$.
- Assim, é necessário rebalancear a árvore.

- O rebalanceamento é feito através de rotações, que podem ser:
 - Rotações para a esquerda.
 - Rotações para a direita.
- Uma rotação não interfere na propriedade de BST, isto é, a subárvore da esquerda continua os elementos com chaves menores do que a nova raiz e a subárvore da direita continua com os elementos com chaves maiores que a da nova raiz.

Rotações

Rotações

▶ Tree Rotation

- Ao final de cada inserção/remoção, a árvore deve ser atualizada.
- Para cada nó ao longo do caminho percorrido, deve-se computar:
 - A nova altura.
 - O novo fator de equilíbrio.
- Rotações para a esquerda/direita são feitas de movo a preservar os fatores de balanceamento no intervalo $\{-1,0,1\}$.
- Elas aumentam a altura de algumas subárvores enquanto diminuem a de outras.

- O balanceamento das árvores AVL concentram-se em 4 casos:
 - Rotação para esquerda (L).
 - Rotação para direita (R).
 - Rotação para esquerda seguida de rotação para direita (LR).
 - ▶ Rotação para direita seguida de rotação para esquerda (RL).

Caso 1 (L)

• Se a raiz da árvore tem fator de equilíbrio -2 e seu filho da direita possui fator de equilíbrio ≤ 0 , uma rotação à esquerda é suficiente para balancear a árvore.

Caso 2 (R)

Caso 3 (LR)

Caso 3 (LR)

Caso 3 (LR)

Caso 3 (LR)

Caso 3 (LR)

Caso 4 (RL)

► AVL Applet

Sumário

2 Implementação

Sumário

- Definição
- Inicialização
- Funções auxiliares
- Busca
- Inserção
- Remoção
- Limpeza
- Análise

Definição

```
typedef struct avl_node_t {
    int data;
    size_t height;
    struct avl_node_t *left;
    struct avl_node_t *right;
} avl_node_t;
```


Definição

```
typedef struct avl_tree_t {
    struct avl_node_t *root;
    size_t size;
} avl_tree_t;
```


- Definição
- Inicialização
- Funções auxiliares
- Busca
- Inserção
- Remoção
- Limpeza
- Análise

Inicialização

- Definição
- Inicialização
- Funções auxiliares
- Busca
- Inserção
- Remoção
- Limpeza
- Análise

Devolve o tamanho (número de nós) em uma árvore AVL.

Cria um novo nó.

Deleta um nó.

Retorna a altura de uma árvore com raiz em v.

Calcula a altura de uma árvore com raiz em \boldsymbol{v} a partir dos seus filhos.

Obtém o fator de equilíbrio da árvore com raiz em v.

Realiza a rotação para a esquerda da árvore com raiz em \boldsymbol{x} e devolve a nova raiz.

Realiza a rotação para a direita da árvore com raiz em y e devolve a nova raiz.

Balanceia uma árvore com raiz em v.

- Definição
- Inicialização
- Funções auxiliares
- Busca
- Inserção
- Remoção
- Limpeza
- Análise

Busca

Busca

- Definição
- Inicialização
- Funções auxiliares
- Busca
- Inserção
- Remoção
- Limpeza
- Análise

Inserção

Insere o dado estipulado na árvore. Premissa: o dado não existe como chave na árvore.

Inserção

Insere o dado estipulado na árvore. Premissa: o dado não existe como chave na árvore.

- Definição
- Inicialização
- Funções auxiliares
- Busca
- Inserção
- Remoção
- Limpeza
- Análise

Remoção

Remove o dado estipulado da árvore. Premissa: o dado existe como chave na árvore.

Remoção

Remove o dado estipulado da árvore. Premissa: o dado existe como chave na árvore.

Remoção

Remove o dado estipulado da árvore. Premissa: o dado existe como chave na árvore.

- Definição
- Inicialização
- Funções auxiliares
- Busca
- Inserção
- Remoção
- Limpeza
- Análise

Limpeza

Deleta a árvore.

Limpeza

Deleta a árvore.

- Definição
- Inicialização
- Funções auxiliares
- Busca
- Inserção
- Remoção
- Limpeza
- Análise

Análise

	Busca	Inserção	Remoção
BST	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$
AVL	$\Theta(\lg n)$	$\Theta(\lg n)$	$\Theta(\lg n)$

3 Considerações

Considerações

- A árvore AVL aumenta a BST ao incluir uma estratégia de balanceamento por altura.
- Para alcançar esse objetivo, utiliza de rotações à esquerda e à direita, que conservam a propriedade de BST.
- ullet Com esta estratégia, a altura máxima da árvore é $\Theta(\lg n)$.
- Implementá-la é um pouco mais complicado que implementar uma BST, mas o esforço vale a pena a longo prazo.