Análisis de Vibraciones en un Sistema de Dos Grados de Libertad

Problema

Un ingeniero estructural está analizando un sistema de dos grados de libertad que representa un modelo simplificado de un edificio de dos pisos. Cada piso tiene una masa m y está conectado a un sistema de resortes que representa la rigidez estructural entre los pisos y el suelo. El objetivo es determinar las **frecuencias naturales de vibración** y los **modos de vibración** del sistema para evaluar el comportamiento del edificio bajo vibraciones.

Características del Sistema

- Cada piso (1 y 2) tiene una masa m.
- La rigidez estructural (constante del resorte) entre el suelo y el primer piso es k_1 .
- La rigidez estructural entre el primer y el segundo piso es k_2 .
- Se supone que el sistema está sujeto a pequeñas oscilaciones alrededor de su posición de equilibrio.

Modelo Matemático

Para este sistema, las frecuencias naturales y los modos de vibración se pueden determinar a partir de la **matriz de rigidez** K y la **matriz de masas** M. Estas matrices están definidas como:

- La matriz de masas M es una matriz diagonal de tamaño 2×2 , dada por:

$$M = \begin{bmatrix} m & 0 \\ 0 & m \end{bmatrix} = mI$$

donde I es la matriz identidad.

- La matriz de rigidez K del sistema es:

$$K = \begin{bmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 \end{bmatrix}$$

Para encontrar las frecuencias naturales y los modos de vibración, debemos resolver el problema de autovalores asociado a estas matrices.

Objetivo

1. Determinar las **frecuencias naturales de vibración** del sistema, las cuales están relacionadas con los autovalores de la matriz de rigidez K en relación con la matriz de masas M. 2. Encontrar los **modos de vibración** del sistema, que indican cómo se mueven los pisos $(1 \ y \ 2)$ en cada frecuencia natural.

Procedimiento

1. Formulación del Problema de Autovalores: Planteamos el problema de autovalores con la siguiente ecuación:

$$\det(K - \lambda M) = 0$$

donde λ son los autovalores del sistema, relacionados con el **cuadrado de las frecuencias naturales**. Las frecuencias naturales ω_i del sistema se calculan como:

$$\omega_i = \sqrt{\lambda_i}$$

donde ω_i es la frecuencia natural correspondiente al autovalor λ_i .

- 2. Cálculo de Autovalores: Expanda y resuelva el determinante para encontrar los autovalores λ_1 y λ_2 .
- 3. Cálculo de Autovectores: Para cada autovalor λ_i , calcule el autovector correspondiente. Estos autovectores describen los **modos de vibración**, es decir, las proporciones relativas de desplazamiento entre los dos pisos en cada frecuencia natural.

Preguntas

- 1. (a) Escriba el problema de autovalores para el sistema, es decir, encuentre $\det(K \lambda M) = 0$.
- 2. (b) Calcule los autovalores λ_1 y λ_2 del sistema, y luego determine las **frecuencias naturales** ω_1 y ω_2 .
- 3. (c) Calcule los autovectores correspondientes a λ_1 y λ_2 . Estos autovectores representan los modos de vibración y muestran cómo se mueven los pisos en cada frecuencia natural.
- 4. (d) Interprete los modos de vibración:
 - ¿Cómo se desplaza el primer piso en comparación con el segundo en cada modo?
 - ¿En qué dirección se desplazan los pisos para cada frecuencia natural?
- 5. (e) Respuesta del sistema a una excitación externa: Si el sistema experimenta una excitación externa con una frecuencia cercana a ω_1 , ¿cómo responderá el sistema en términos de los modos de vibración?

Solución Analítica

1. Problema de Autovalores

La ecuación del problema de autovalores se obtiene planteando $\det(K - \lambda M) = 0$:

$$K - \lambda M = \begin{bmatrix} k_1 + k_2 - \lambda m & -k_2 \\ -k_2 & k_2 - \lambda m \end{bmatrix}$$

y resolvemos $\det(K - \lambda M) = 0$ para obtener los autovalores λ_1 y λ_2 .

2. Cálculo de las Frecuencias Naturales

Las frecuencias naturales del sistema se obtienen como:

$$\omega_1 = \sqrt{\lambda_1}, \quad \omega_2 = \sqrt{\lambda_2}$$

3. Cálculo de los Autovectores

Para cada autovalor λ_i , el autovector correspondiente describe el modo de vibración del sistema. Resolvemos $(K - \lambda_i M)\mathbf{v}_i = 0$ para encontrar el autovector \mathbf{v}_i , que representa las amplitudes relativas de desplazamiento entre los dos pisos en cada frecuencia natural.

4. Interpretación de los Modos de Vibración

Los autovectores \mathbf{v}_1 y \mathbf{v}_2 describen cómo se mueven los pisos en cada modo de vibración. Si ambos componentes del autovector tienen el mismo signo, los pisos se moverán en la misma dirección; si tienen signos opuestos, se moverán en direcciones opuestas.

5. Respuesta a una Excitación en la Frecuencia Natural

Si el sistema es sometido a una excitación externa con una frecuencia cercana a ω_1 , el sistema mostrará un fenómeno de **resonancia** en el modo de vibración correspondiente a λ_1 , y los pisos vibrarán de acuerdo con el autovector \mathbf{v}_1 .

Explicación del Problema

Este problema permite entender las **frecuencias naturales** y los **modos de vibración** de un sistema estructural simple usando autovalores y autovectores. Estos resultados son cruciales para diseñar estructuras seguras y evitar fenómenos de resonancia que puedan comprometer la integridad de la estructura.