Lab00-Proof

CS214-Algorithm and Complexity, Xiaofeng Gao, Spring 2021.

* If there is any problem, please contact TA Haolin Zhou. * Name:Yanjie Ze Student ID:519021910706 Email: zeyanjie@sjtu.edu.cn

1. Prove that for any integer n > 2, there is a prime p satisfying n . (Hint: consider a prime factor <math>p of n! - 1 and prove by contradiction)

Proof. Assume for any integer n > 2, there is no prime p satisfying n , which means:

$$\forall integer \ m \in (n, n!), its \ prime \ factor \in [2, n].$$

However, for the integer n! - 1, its prime factor $\notin [2, n]$ because the integer n!'s all prime factors $\in [2, n]$.

Therefore, n! - 1 has prime factors $\in (n, n!)$, which contradicts the assumption that there is no prime p satisfying n .

2. Use the minimal counterexample principle to prove that for any integer $n \geq 7$, there exists integers $i_n \geq 0$ and $j_n \geq 0$, such that $n = i_n \times 2 + j_n \times 3$.

Proof. If there exists a integer $n \ge 7$ which makes us unable to find $i_n \ge 0$ and $j_n \ge 0$ to satisfy $n = i_n \times 2 + j_n \times 3$, assume the minimal interger is n = k.

Since $n = 7 = 2 \times 2 + 1 \times 3$ and $n = 8 = 4 \times 2 + 0 \times 3$, $k \ge 9$.

Thus the number k-2 satisfies the equation:

$$k-2 = i_{k-2} \times 2 + j_{k-2} \times 3$$

Therefore:

$$k = (i_{k-2} + 1) \times 2 + j_{k-2} \times 3$$

which contradicts the assumption and allows us to conclude our original assumption is false.

3. Suppose the function f be defined on the natural numbers recursively as follows: f(0) = 0, f(1) = 1, and f(n) = 5f(n-1) - 6f(n-2), for $n \ge 2$. Use the strong principle of mathematical induction to prove that for all $n \in N$, $f(n) = 3^n - 2^n$.

Proof. Induction hypothesis. For $k \ge 2$ and $2 \le n \le k$, $f(n) = 3^n - 2^n$. **Proof of induction step.**

For n = k + 1:

$$f(k+1) = 5f(k) - 6f(k-1)$$

$$= 5 \times (3^{k} - 2^{k}) - 6 \times (3^{k-1} - 2^{k-1})$$

$$= 3^{k+1} - 2^{k+1}$$

Therefore, for all $n \in \mathbb{N}$, $f(n) = 3^n - 2^n$.

1

4. An *n*-team basketball tournament consists of some set of $n \geq 2$ teams. Team p beats team q iff q does not beat p, for all teams $p \neq q$. A sequence of distinct teams $p_1, p_2, ..., p_k$, such that team p_i beats team p_{i+1} for $1 \leq i < k$ is called a ranking of these teams. If also team p_k beats team p_1 , the ranking is called a k-cycle.

Prove by mathematical induction that in every tournament, either there is a "champion" team that beats every other team, or there is a 3-cycle.

Proof. Define P(n) be the statement that "or an n-team basketball tournament, either there is a 'champion' team that beats every other team, or there is a 3-cycle.

Basic step. For n = 2, given the team p_1 and the team p_2 , if p_1 beats p_2 then p_1 is the "champion". Otherwise, p_2 is the "champion". Therefore, P(2) is true.

Induction hypothesis. For n = k, P(k) is true, which means for teams $\{p_1, p_2, ..., p_n\}$, either there is a 'champion' team that beats every other team, or there is a 3-cycle.

Proof of induction step. For n = k + 1, there are k + 1 teams $\{p_1, p_2, ..., p_n, p_{n+1}\}$ in the tournament and there are generally 2 cases to be considered.

Case 1: there exists a 3-cycle in $\{p_1, p_2, ..., p_n\}$. In this case, the new team p_{n+1} will not change the 3-cycle.

Case 2: there exists a "champion" in $\{p_1, p_2, ..., p_n\}$. Assume the champion is p_1 . For p_{n+1} , it either beats the champion or gets defeated by the champion. There are 3 subcases.

Case 2.1: If p_{n+1} beats p_1 and gets defeated by another team, $p_j (1 < j \le n)$, then there would exist a 3-cycle: p_1, p_j, p_{n+1} .

Case 2.2: If p_{n+1} beats p_1 and all other teams, then p_{n+1} is the new champion.

Case 2.3: If p_{n+1} gets defeated by p_1 , then we can view the teams $\{p_2, p_3, ..., p_n, p_{n+1}\}$ as a whole, which corresponds P(n), and p_1 can be viewed as the new team. Therefore, we transform Case 2.3 into the cases discussed before (Case 1, 2.1, 2.2), which have been proved correct.

Thus, P(k+1) is true.

Remark: You need to include your .pdf and .tex files in your uploaded .rar or .zip file.