UCL Institute of Health Informatics

Generalized Linear Models

Session 1 – Introduction

Rachel Pearson

January 2020

Today's objectives

This session will introduce you to generalised linear models (GLMs). By the end of the morning you will be able to:

- \bullet Define the components of a GLM $\,$
- \bullet Identify when to use a GLM to model an outcome
- Fit GLMs in Stata for normal, poisson and binomial outcomes
- Interpret output from a GLM in Stata

MODEL

Given a large, random sample of n of a population where a proportion (π) have some event – the proportion of the sample with the event, K, will follow an Bin(n, π) distribution.

1

stical inference – linear regression – GLM theory – GLM examples	
Standard Errors: • measure of the precision with which the sample statistics approximates the true population	
There are different standard error formulae for different statistical measures (means, percentages, ORs)	
95% Confidence Intervals: The interval (sample statistic +/- 1.96 SE) will contain the 'true value' for 95% of random samples	
,	
cal inference – linear regression – GLM theory – GLM examples	
2	
0	
tal inference – linear regression – GLM theory – GLM examples	
$y_i = lpha + eta x_i + arepsilon_i$	
2	
0	

	≜UCI

$$y_i = \alpha + \beta_1 x_{1i} + \cdots + \beta_n x_{ni} + \varepsilon_i$$

|--|--|--|

≜UCL

$bmi_i = \alpha + \beta_1 age_i + \beta_2 sex_i + \varepsilon_i$

. reg bml age i.sex

Source	SS	df	MS	Numb	er of obs	-	2,014
Model Residual	7460.15291 27029.9391	2,011	3730.0764 13.441043	5 Prob	2011) > F guared	3	277.51 0.0000 0.2163
Total	34490.092	2,013	17.133677		R-squared MSE	-	0.2155 3.6662
bmi	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
age 1.sex	150729 3156341	.0064041	-23.54 -1.93	0.000	163288 636825	3	1381697 .0055571
_cons	28.87251	.3851415	74.97	0.000	28.1171	9	29.62783

 $bmi_i = \alpha + \beta_1 age_i + \beta_2 sex_i + \varepsilon_i$

Holding sex constant, a unit increase in age (i.e. a year) is associated with a 0.15 kg/m^2 decrease in BMI (95% CI: -0.16 to -0.14).

bmi	Coef.	Std. Err.	ŧ	P> t	[95% Conf.	Interval]
age	150729	.0064041	-23.54	0.000	1632882	1381697
1.sex	3156341	.1637774	-1.93	0.054	6368253	.0055571
_cons	28.87251	.3851415	74.97	0.000	28.11719	29.62783

 $bmi_i = \alpha + \beta_1 age_i + \beta_2 sex_i + \varepsilon_i$

Holding age constant, there is weak evidence that being female is associated with a 0.32 kg/m^2 lower BMI (95% CI: -0.64 to 0.01).

bmi	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
age	150729	.0064041	-23.54	0.000	1632882	1381697
1.sex	3156341	.1637774	-1.93	0.054	6368253	.0055571
_cons	28.87251	.3851415	74.97	0.000	28.11719	29.62783

5

Statistical inference – linear regression – GLM theory – GLM example

≜UCL

 $bmi_i = \alpha + \beta_1 age_i + \beta_2 sex_i + \varepsilon_i$

reg	bm1	age	1.sex

	Source	SS	df	MS	Number of obs	-	2,014
					F(2, 2011)	-	277.51
	Model	7460.15291		3730.07645	Prob > F	-	0.0000
	Residual	27029.9391	2,011	13.4410438	R-squared	-	0.2163
-						-	0.2155
	Total	34490.092	2,013	17.1336771	Root MSE		3.6662

Age and Sex explain an estimated 22% of the variability in BMI

statistical inference – linear regression – GLIVI theory – GLIVI examples

≜UCL

Assumptions of linear regression:

- $Y|x \sim N(\alpha + \beta x, \sigma^2)$
- The relationship between Y and the X's is linear
- The residuals (error terms) are normally distributed i.e. $e_i \sim N(0, \sigma^2)$
- · The residuals are independent one of another
- The variance of the residuals is constant, independent of x's
- For many health-related outcomes, these assumptions will not be appropriate
- For example, number of days spent in hospital or whether a patient has diabetes or not

Statistical inference – linear regression – **GLM theory** – GLM example

Generalized linear models *generalize* linear modelling and allow us to model a wider variety of outcome types.

The **Exponential Family** of distributions

$$ln\{f(y)\} = \frac{y\theta - b(\theta)}{\varphi} - c(y, \varphi)$$

6

Statistical inference – linear regression – **GLM theory** – GLM example

≜UCL

 $ln\{f(y)\} = \frac{y\theta - b(\theta)}{\varphi} - c(y, \varphi)$

$$f(y) = \sqrt{\frac{1}{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2}(y-\mu)^2\right\}$$

$$ln(f(y)) = ln\left(\sqrt{\frac{1}{2\pi\sigma^2}}\exp\left\{-\frac{1}{2\sigma^2}(y-\mu)^2\right\}\right)$$

Statistical inference – linear regression – **GLM theory** – GLM examples

≜UCL

$$ln\{f(y)\} = \frac{y\theta - b(\theta)}{\varphi} - c(y, \varphi)$$

$$ln(f(y)) = ln\left(\sqrt{\frac{1}{2\pi\sigma^2}}\right) - \frac{1}{2\sigma^2}(y-\mu)^2$$

$$ln(f(y)) = -\frac{1}{2}ln(2\pi\sigma^2) - \frac{1}{2\sigma^2}(y^2 - 2y\mu + \mu^2)$$

$$ln(f(y)) = \frac{y\mu}{\sigma^2} - \frac{\mu^2}{2\sigma^2} - \left(\frac{y^2}{2\sigma^2} + \frac{1}{2}ln(2\pi\sigma^2)\right)$$

tatistical inference – linear regression – GLM theory – GLM example

≜UCL

$$ln\{f(y)\} = \frac{y\theta - b(\theta)}{\varphi} - c(y, \varphi)$$

Distributions that can be written in this form belong to the exponential distribution of families

$$\theta = \mu, \quad b(\theta) = \frac{\mu^2}{2}, \quad \varphi = \sigma^2,$$

$$c(y, \varphi) = \left(\frac{y^2}{2\sigma^2} + \frac{1}{2}ln(2\pi\sigma^2)\right)$$

Statistical inference – linear regression – **GLM theory** – GLM example

≜UCL

$$ln\{f(y)\} = \frac{y\theta - b(\theta)}{\omega} - c(y, \varphi)$$

The Poisson distribution:

$$f(y) = Pr(Y = y) = \frac{\mu^y e^{-\mu}}{y!}, y = 0,1,2,3 ...$$

$$\ln(f(y)) = y\ln(\mu) - \mu - \ln(y!)$$

$$\theta = \ln(\mu), \quad b(\theta) = \mu, \quad \varphi = 1, \quad c(y, \varphi) = \ln(y!)$$

Statistical inference – linear regression – GLM theory – GLM examples

≜UCI

$$ln\{f(y)\} = \frac{y\theta - b(\theta)}{\varphi} - c(y, \varphi)$$

The Binomial distribution:

$$f(y) = \Pr(Y = y) = \binom{n}{y} \pi^{y} (1 - \pi)^{n - y}, y = 0, 1, ..., n$$

$$\ln(f(y)) = y\ln\left(\frac{\pi}{1-\pi}\right) + n\ln(1-\pi) + \ln\left\{\binom{n}{y}\right\}$$

$$\begin{split} & \theta = \ln \left(\frac{\pi}{1-\pi} \right), \quad b(\theta) = - \ln \left(1-\pi \right), \qquad \frac{\varphi}{\varphi} = 1, \\ & c(y,\varphi) = - \ln \left\{ \binom{n}{y} \right\} \end{split}$$

Statistical inference – linear regression – GLM theory – GLM eyamples

≐UCL

Three GLM components:

- Response distribution $\text{The } Y_i's \ i=1,\dots,n \text{ are assumed to be } \\ \text{independent and arising from an } \\ \text{exponential family. } E\left(Y_i\right)=\mu_i$
- Linear predictor $n_i = \, \alpha + \beta_1 x_{1i} + \cdots + \beta_n x_{ni}$
- Link function $g(\mu_i) = n_i$

										±	UC
Source Source Nodel Residual	33 7460.15291 27029.9391		3730.07645 13.4410438	glm bmi age Eteration 0: Generalized 1:	log	likelih	y(gaussian) ood = -5472		No. o	of ohe =	2.014
Total	34490.092 Coef.	2,013 Std. Err.	17.1336771 t 1	Optimization Deviance		ML 27029.			Resid Scale (1/df	ual df = parameter = Deviance =	2,011 13.44104 13.44104
1.sex _oons	150729 3156341 28.87251	.0064041 .1637774 .3851415	-23.54 (-1.93 (74.97 (Variance function	ion:		1		[Gans	sian]	13.44104
				Log likelihoo	1 -	-5472.7	42277		BIC	Ξ	5.437679 11730.5
				bmi		Coef.	OIM Std. Err.	z	P> z	[95% Conf.	Interval]
				age 1.sex _cons	3	150729 156341 .87251	.0064041 .1637774 .3851415	-23.54 -1.93 74.97	0.000 0.054 0.000	1632807 636632 28.11765	1381772 .0053637 29.62738

Summary

- We have recapped some of the key definitions underpinning statistical inference
- We have recapped linear regression modelling
- We have learnt about the exponential family of distributions and its properties
- We have learnt about GLMS and its three key components
- We have learnt how to use GLMs to model binary and count outcomes
- We have learnt how to interpret parameter estimates in GLMs

References	≐UCL	
 Nelder, J., & Wedderburn, R. (1972). Generalized Linear Mode the Royal Statistical Society. Series A (General),135(3), 370-38 doi:10.2307/2344614 	els. Journal of 4.	
Dobson AJ. An Introduction to Generalized Linear Models. Cha	oman &	
Hall/CRC: Boca Raton, FL, 1990.	r · · ·	
	34	
Generalized Linear Models	≜UCL	
Fitting GLMs in Stata:		
glm <response variable=""> <explanatory td="" variables<=""><td></td><td></td></explanatory></response>		
<pre>predictor>, family (<name distribution="" of="">) link(< function>).</name></pre>	TIINK	
	35	