

DE0 Installation

- Step 1: Install the Altera Design Software on the host computer.
 - Download the software: http://www.altera.com/download
 - Quartus II: the primary FPGA development tool
 - Nios II: soft-core embedded processor

 - ModelSim-Altera: Simulation tool

Windows Software Downloads	Download	File Size
Quartus® II Web Edition Software v9.1 Service Pack 1 (Now with the MegaCore® IP Library, which includes the Nios® II Processor) Windows Vista (32 bits) and Windows XP (32 bits)	Download ► No license required	1.5 GB
Nios II Embedded Design Suite (1) Windows Vista (32 bits) and Windows XP (32 bits)	Download ▶ Download Service Pack No license required	563 MB 13 MB
ModelSim®-Altera® Starter Edition v6.5b for Quartus II Software v9.1 Windows Vista (32 bits) and Windows XP (32 bits)	Download ▶ Download Service Pack No license required	573 MB 574 MB

DE0 Installation (Cont.)

- Step 2: Install the USB Blaster
 - Plug in the power cable.
 - Use the USB cable to connect the USB connector on the DE0 board to a USB port on a computer.
 - 1. Recognize the new hardware connected.
 - 2. Specify the path for the USB Blaster driver.
 - 3. Select appropriate driver. (C:\altera\91\quartus\drivers\usb-blaster)
 - 4. Install USB Blast driver. (C:\altera\91\quartus\drivers\usb-blaster\x32)

Power-Up the DE0 Board

- The DE0 board comes with a preloaded configuration bit stream to demonstrate some feature of the board.
 - All user LEDs are flashing.
 - All 7-segment displays are cycling through 0 to F.
 - The VGA monitor displays the image as shown in the right-hand side:

DE0 Control Panel

- The DE0 board comes with a Control Panel facility. (Start the executable *DE0_ControlPanel.exe*)
 - Allow users to access various components on the board from a host computer.
 - Connect the host computer with the DE0 board through a USB connection.
 - Verify the functionality of components on the board.

Configuring the Cyclone III FPGA

- The DE0 board contains a serial EEPROM chip (i.e., the EPCS4 device) that stores configuration data for the Cyclone III FPGA.
 - The configuration data is automatically loaded from the EEPROM chip into the FPGA once the power is applied to the board.
 - With Quartus II, it is possible to reprogram the FPGA and to change the non-volatile data in the EEPROM chip.
 - JTAG (Joint Test Action Group) programming: Download the configuration to FPGA directly, but the configuration is lost when the power is off.
 - AS (Active Serial) programming: Download the configuration into the EEPROM chip, and the configuration is retained when the power is off. When the power is on, data is loaded from the EEPROM.

Schematic Design with Quartus II (Cont.)

- Step 2: Design entry using the graphic editor
 - Select File → New → Block Diagram/Schematic File (.bdf)
 - Save as "Class01.bdf" (check "Add file to current project")
 - Select "primitives" of "Symbol Tool" to add
 - Three input pins A, B, and C, two output pins X and Y
 - One AND gate, one OR gate, two tri-state buffers, and one NOT gate.
 - Select "Orthogonal Node Tool" to connect the nodes. ☐
 - Select "Start Compilation" to compile the circuit

Lab 01

- Part 1 Simulation
 - Use the block editor (Block Diagram/Schematic File: .bdf) to design a NAND gate with one output pin F and two input pin A and B. Then use Vector Waveform File (.vwf) to simulate the results.
 - A: count value, binary, start value 0, simulation period=4us, start time: 0, advanced by 1 every 100ns
 - B: count value, binary, start value 0, simulation period=4us, start time: 0, advanced by 1 every 200ns
 - Map A to SW0, B to SW1, and F to LED0 of DE0, and program it.

- Part 2 Transferring the following Design to the Target FPGA
 - Use two slides (SW1-SW0) as the binary input value.
 - The corresponding LED (LEDG0-3) is on when it is selected by the binary input. Other LEDs are off. E.g., 10 (SW1-SW0) lights LEDG2.

