

Collaborate · Innovate · Impact

Interpreting Deep Neural Networks for Single-Lead ECG Arrhythmia Classification

Sricharan Vijayarangan, Balamurali Murugesan, Vignesh R, Preejith SP

Jayaraj Joseph and Mohansankar Sivaprakasam

Motivation

* Deep Learning methods for arrhythmia detection

- Scales automated systems
- Removes requirement for expert rules
- Augments doctor's ability

* Limitations

- Black box
- Unreliable

* Requirement

- Correlation b/w model outputs and ECG input samples
- Comparing visualizations with medical literature

Contribution

* Novel adaptation of CNN saliency visualization to 1D ECG signals

* Extension of the LSTM visualization procedure for ECG signals

Rigorous analysis of the saliency maps

Draw comparisons to traditional diagnosis as highlighted in medical literature

Problem formulation

$$\text{Dataset} \rightarrow \ \{(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),....,(x^{(m)},y^{(m)})\}$$

Input ECG Signal
$$ightarrow x^{(i)}$$

Labels
$$\to y^{(i)} \in \{0, 1, ... 7\}$$

$$FC \rightarrow z_3^{(i)} = F_3(z_1^{(i)}||z_2^{(i)};\theta_3)$$

Softmax
$$\rightarrow p(z_3^{(i)})$$

Rationale behind Architecture Choice

Three popular DL architectures in literature were compared for this specific 8 class classification problem.

Model	Precision	Recall	F1-Score	Accuracy
Hannun et al. [2]	0.93	0.93	0.93	0.93
Zihlmann et al. [3]	0.94	0.94	0.94	0.94
Murugesan et al. [4]	0.98	0.97	0.97	0.97

Murugesan *et al.*'s model is clearly the best for this classification task. Thus, it was chosen for the interpretability task.

CONT.

Architecture Design

Dataset Description

Rhythm Types	MITDB	LTAFDB	LTDB	Total
N	75013	10756	517402	603171
PVC	7121	1318	5137	13576
PAC	2542	14914	-	17456
AFIB	102	7241	()	7343
SVTA	22	3265	-	3287
SBR	-	11323		11323
LBBB	6580	-	-	6580
RBBB	5400		-	5400

Visualization of CNN

Activation of unit $k \to f_k(x)$

Weight for class C corresponding to Unit 'k' $ightarrow w_k^c$

$$\text{I/p to Softmax} \rightarrow \sum\nolimits_k w_k^c \sum\nolimits_x f_k \! \left(x \right) \quad \text{CAM} \rightarrow M_c(x) = \sum\nolimits_k w_k^c f_k(x)$$

- CAM of vector length 48 is obtained.
- Upsampled to 720

LSTM Visualization

LSTM visualization (ψ) network Input ECG signal $(\mathbf{x}_{1:T})$ Mask $(\mathbf{m}_{1:T})$ Weights of the saliency term λ_1 Weights of the smoothing term λ_2

$$J = \underset{m_{1:T}}{argmin} \ \lambda_1 || \mathbf{1} - \mathbf{m}_{1:T} ||_1 + \lambda_2 \sum_{t=1}^{T-1} |\mathbf{m}_{t+1} - \mathbf{m}_t| + s_c(\psi(\phi(\mathbf{x}_{1:T}; \mathbf{m}_{1:T})))$$

$$\phi(\mathbf{x}_{1:T}; \mathbf{m}_{1:T}) = \mathbf{m}_{1:T} \odot \mathbf{x}_{1:T} + k(\mathbf{1} - \mathbf{m}_{1:T})$$

CONT

- Initially, $m_{1:T} = 0$
- λ_1 , λ_2 and learning rate are set to 1, 0.001 and 0.001 respectively.
- Gradient update is done for 500 iterations.

ECG Visualization

CONT.

Iterations = 500Iterations = 1000 Iterations = 1500 0.2 0.4 0.6 0.8

Confusion Matrix of Predictions

Interpretability w.r.t epochs no

Conclusion and Future scope

- A novel adaptation of visualization techniques of CNN and LSTM for ECG signals was proposed.
- Visualizations were observed to line up with the clinical literature in ECG interpretation
- Extension to other arrhythmia classes
- Extension to entire arrhythmia records
- Exploring Explainability

Collaborate · Innovate · Impact

Thank you

Contact _sricharanv@htic.iitm.ac.in