

Universidad de Sonora

División de Ciencias Exactas y Naturales Departamento de Física

FÍSICA COMPUTACIONAL I ACTIVIDAD 4 VISUALIZANDO DATOS CON PANDAS Y MATPLOTLIB

ALUMNA: Cabrera Valenzuela Ingrid Zabylel

> DOCENTE: LIZÁRRAGA CELAYA CARLOS

30 de septiembre de 2016

Resumen

En esta actividad se representaron visualmente datos de radiosondeo de un lanzamiento. Se descargaron los datos correspondientes a la estación de chihuahua a las 12Z del 21 de septiembre de 2016, y con esos datos se trabajó.

1. Introducción

Matplotlib es una biblioteca para la generación de gráficos a partir de datos contenidos en listas o arrays en el lenguaje de programación Python y su extensión matemática NumPy. Proporciona una API, pylab, diseñada para recordar a la de MATLAB.

2. Desarrollo

2.1. Archivo de radiosondeo

Primero, se descargó un archivo de radiosondeo de un lanzamiento de las 12Z del 21 de septiembre de 2016. Una vez descargado, y limpiado, quedó un archivo con una tabla:

PRES	HGHT	TEMP	DWPT	RELH	MI	XR	DRCT	SKNT	THT	Α '	THTE '	THTV
863.	0 137	2 21.4	12.	4	56	10.59	270)	3 3	07.2	339.5	309.2
860.	0 140	2 22.8	3 10.	8	47	9.54	247	7	4 3	0.00	338.4	310.8
850.	0 150	2 23.0	10.	0	44	9.15	170)	9 3	10.2	338.6	311.9
846.	0 154	3 22.	79.	9	44	9.13	170) 1	0 3	10.4	338.7	312.1
833.	0 167	6 21.9	9.	6	45	9.07	159	5 1	3 3	10.9	339.1	312.6
822.	0 179	0 21.5	2 9.	3	47	9.03	179	5 1	4 3	11.3	339.4	312.9
727.	0 284	5 14.4	16.	8	60	8.58	190) 1	0 3	15.0	342.1	316.6
714.	0 300	0 13.4	1 6.	4	63	8.51	176	3	9 3	15.5	342.5	317.1
700.	0 316	7 12.0	5.	0	62	7.87	160)	7 3	15.7	340.8	317.2
687.	0 332	3 10.	5 5.	5	71	8.33	150)	4 3	15.8	342.2	317.4

2.2. Visualizando gráficas

Con ayuda de python y matplotlib, se leyó el archivo y se produjeron algunas gráficas. El código utilizado fue el siguiente:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
```

df = pd.read_csv("/home/izcabrera/Escritorio/Computacional1/Actividad4/data.dat",sep='\s

df.columns

```
df[u'PRES']

df.head()

plt.title('Presion vs. Altura')
plt.xlabel('Altura(m)')
plt.ylabel('Presion(hPa)')
plt.plot(df.PRES,df.HGHT)
```

Lo que nos dio como resultado la siguiente gráfica:

Figura 1

Para la Temperatura conrtra la altura, queda:

```
plt.title('Temperatura vs. Altura')
plt.xlabel('Altura (m)')
plt.ylabel('Temperatura(c)')
plt.plot(df.TEMP,df.HGHT)
```


Figura 2

Para la temperatura de rocío contra altura:

```
plt.title('Temperatura de rocio vs. Altura')
plt.xlabel('Altura (m)')
plt.ylabel('Temperatura(c)')
plt.plot(df.DWPT,df.HGHT)
```


Figura 3

Para la temperatura contra la temperatura de rocío:

```
plt.title('Temperatura vs. Temperatura de rocio')
plt.xlabel('Temperatura de rocio (c)')
plt.ylabel('')
plt.plot(df.TEMP,df.DWPT)
```


Figura 4

 ${\bf Y}$ para poner dos gráficas juntas, temperatura contra altura y temperatura de rocío contra altura, queda:

plt.plot(df.TEMP, df.HGHT)
plt.plot(df.DWPT,df.HGHT)

Figura 5

3. Bibliografía

 $\blacksquare \ \, \text{Matplotlib. En Wikipedia. Recuperado el 30 de septiembre de 2016 de: https://es.wikipedia.org/wiki/Normaliset (1998) \, \ \, \text{Matplotlib. En Wikipedia. Recuperado el 30 de septiembre de 2016 de: https://es.wikipedia.org/wiki/Normaliset (1998) \, \ \, \text{Matplotlib. En Wikipedia. Recuperado el 30 de septiembre de 2016 de: https://es.wikipedia.org/wiki/Normaliset (1998) \, \ \, \text{Matplotlib. En Wikipedia.}$