98
$$f'(x) = \frac{2}{x} (1 - \ln x).$$
 $x = 0$
 $f'(x) = 0$
 $f'(x) = 0$
 $f'(x) = 0$
100 1. $f'(x) = 2e^{2x} - 7e^x + 5 = (e^x - 1)(2e^x - 5).$

$$f'(x) + f(x)$$

$$f(x) = \begin{cases} f(x) & \text{if } f'(x) > 0 \text{ if } f'(x) = 0 \end{cases}$$

102 1. $f'(x) = 3x^2 + 2$.

D'où $\alpha \approx 0.45$ (par défaut).

 $f(2) = -2 \ln 2$; $f(2) \approx -1.4$ $f(20) = 18 - 2 \ln 20$; $f(20) \approx 12$.

2.
$$f(0) < 2 < f(1)$$
 et $f'(x) > 0$; l'équation $f(x) = 2$ admet une solution unique α sur $[0; 1]$.

3. On obtient $0.45 < \alpha < 0.46$.

103 1.
$$f'(x) = \frac{x-2}{x}$$
.

 $x = 2$
 $f'(x) = 0$
 $f(2)$

2.
$$f(20) = 18 - 2 \text{ in } 20$$
; $f(20) \approx 12$.
2. $f(2) < 0$ et $f(20) > 0$ donc l'équation $f(x) = 0$ admet une solution unique α sur [2; 20].

3. a) On obtient l'écran suivant :

106
$$f(x) = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + x^2 \varepsilon(x)$$
 avec $\lim_{x \to 0} \varepsilon(x) = 0$.
Au point $A(0; 1)$, la courbe $\mathscr C$ admet pour tangente la

droite T d'équation $y = 1 + \frac{1}{2}x$. Au voisinage de A la position de \mathscr{C} par rapport à T est donnée par le signe, au voisinage de zéro, de $-\frac{1}{2}x^2$.

$$ae - \frac{1}{8}x^2 < 0$$
, % est « **au-dessous** » de T.

107
$$f(x) = 2 + x + \frac{x^3}{6} + x^3 \varepsilon(x)$$
 avec $\lim_{x \to 0} \varepsilon(x) = 0$. Équation de la tangente en $A(0; 2) : y = 2 + x$.

Au voisinage de A : pour x > 0, % est « au-dessus » de T; pour x < 0, \mathscr{C} est « au-dessous » de T.

