第十五屆盛群盃HOLTEK MCU創意大賽複賽報告 音果關係

參賽編號: D-37

參賽隊員:蘇俊維¹、魏毓延²、勞婕羚³、劉又任⁴

E-mail¹ Address: s16113213@stu.edu.tw E-mail² Address: s16113115@stu.edu.tw E-mail³ Address: s18113142@stu.edu.tw E-mail⁴ Address: s18313111@stu.edu.tw 日期:2020 年 10 月 28 日

摘要

本作品目的是開發一套具有水果軟硬度檢測、重量檢測和甜度檢測的非破壞檢測裝置。使用盛群 HT32F52352 微控制器為核心,讀取重量感測模組數據,當水果放置在平台上時,利用水果向下的壓力改 變應變片的數值,經由重量感測模組取得水果的重量。創新設計的軟硬度檢測機構,利用馬達驅動機構輕 微擠壓水果,再經由電流感測器感測馬達電流增加的過程,再經過機率的方式辜測出該水果的軟硬程度。 甜度檢測功能則是透過光譜感測器,檢測經由水果反射所量出的光譜數值,來計算水果的甜度數據。本作 品檢測時,可讓水果以非破壞的方式進行檢測,可以應用於果農採收時品質檢測,確保每一顆水果的品 質。應於商場時也能讓消費者有一個更客觀且準確的評估標準。

關鍵字: 水果軟硬度檢測、水果甜度檢測、非破壞水果檢測。

1. 前言

目前市面上看到的水果甜度、硬度檢測儀器, 大部分都是以破壞性或人工的方式檢測,例如,以 按壓、刺入等檢測方式,這些方法不僅耗時又費力, 且可能使該水果最後也因表面有受損,導致賣相 佳,而使用人工進行甜度、硬度檢測可能與現實 里有落差。使消費者對於該水果商所提供的水果 訊失去信心。然而水果商可能為了省事,只對 該股水果進行抽樣檢測,即對該批水果定義甜度、 為了使水果商省時省力,且售出之水果品質保證, 本作品使用盛群微控制器 HT32F52352 做為控制 核心,設計了一台將重量檢測、甜度檢測、軟硬度 檢測,三大檢測功能結合唯一之水果檢測裝置。

2. 工作原理

本作品用盛群 HT32F52352 晶片為核心,使用重量感測器、光譜感測器以及減速馬達以及電流感測器,做出一套非破壞性水果品質檢測裝置,檢測內容包含水果重量檢測、甜度檢測以及軟硬度檢測,最後透過微控制器將結果顯示於 LCD 液晶屏模塊告知使用者。

2.1 重量感測

當水果放置在檢測位置上,水果的重量會讓下方稱重感測器內的應變片彎曲使阻值改變,將電壓差經過類比數位轉換放大傳輸給微控制器,以轉換成重量單位。

圖1. 重量感測示意圖

2.2 甜度感測

將光譜感測器貼近水果開始光譜量測,透過反 射取得近紅外線數據,將這些數據取出且分析,因 近紅外線的數值會因水果內部化學成分與物理結 構等等產生差異,最後將得出的數據透過機率密度 演算法計算判定甜度差異。

圖2. 甜度感測示意圖

圖3. 近紅外線數據示意圖

2.3 軟硬度測量

利用馬達透過拉繩將不鏽鋼桿向下拉動,讓爪子抓緊水果,直到馬達拉到極限時,馬達會增加扭力,因而增加電流,此時使用電流感測器讀取數值,將讀取到的數值透過機率演算法計算出水果軟硬度。

圖4. 軟硬度測量示意圖

0.4

0.35

0.3

0.25

0.1

0.15

0.1

0.05

0 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

圖5. 電流數據示意圖

2.4 機率密度函數演算法

假設目前光譜儀量測出的數據值x(正數)介於a與b兩點論域之間.

$$P(a < x < b) = \int_{a}^{b} p(x) dx$$

依照機率定義,此區間內的機率值總和為1。

$$\int_{-\infty}^{\infty} p(x) dx = 1$$

本作品所採用為高斯機率分布 (Gaussian distribution),可表示如下:

$$p(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp(-\frac{(x-c)^2}{2\sigma^2})$$

其中 C 為平均值, σ^2 為變異數, σ 為標準差。

因此,當甜度為 *i* ,其對應的數據值*x*_i與目前取得數據值*x*以下列公式計算後,則可以判斷水果的甜度。

$$p(x_i) = \sum_{i=1}^n \frac{1}{\sqrt{2\pi\sigma}} exp(-\frac{(x_i - x)^2}{2\sigma^2})$$

以上公式軟硬度檢測也可以代入,將目前量測到 的電流值與硬度對應的電流值以公式運算就可以 判斷水果的軟硬度。

3. 作品結構

3.1 系統架構圖

本作品以盛群 HT32F52352 晶片做為主控制器,結合了多項創新軟硬體功能,其系統架構圖如圖 6 所示:

圖6. 系統架構圖

3.2 系統流程圖

圖 7 為本作品系統流程圖,一開始會檢測是否 有水果已放置,當水果放置檢測位置上之後,並開 始進行重量檢測以及甜度檢測,在數秒後,檢測裝 置會開始轉動馬達,將不鏽鋼桿向下拉動,同時開 始進行軟硬度檢測,檢測結束後,並將結果顯示。

圖7. 系統流程圖

3.3 盛群微控制器 HT32F52352

此盛群晶片為本作品的控制核心,負責接收三 大功能的感測數據,使用 AD 轉換與 I2C 讀取重量 感測器、光譜感測器以及電流感測器的數據,並加 以計算以及整理,而將結果顯示。

圖8. 盛群微控制器 HT32F52352

3.4 電流感測器模組 ACS712

此模組可測量正負 20 安培電流,對應模擬量 輸出 100mV/A。可使用於馬達將不鏽鋼桿下拉時 ,因阻力增大,使馬達產生更大的電流,此時可用 電流感測器去感測電流大小,再去比較水果之間的 差異,以得知水果的軟硬度。

圖9. 電流感測器模組

3.5 XFW-HX711 秤重傳感器

XFW-HX711 晶片將惠斯登電橋捕捉電子訊號 的電壓差進行 A/D 轉換並放大,將秤重傳感器上 的應變片阻值,轉換成真實公克數。

圖10.XFW-HX711 秤重傳感器

3.6 11 通道光譜感測器 AS7341

本作品使用了 AS7341 的近紅外線通道,當待 測物放上固定座,將 AS7341 貼近待測物,藉由水 果的糖分多寡,與反射回來的光進行計算,因此可 將此通道拿來檢測水果的甜度,也是一個以非破壞 性的方式進行甜度檢測。

圖11.11 通道光譜感測器

3.7 液晶屏模塊

將重量檢測、甜度檢測以及軟硬度檢測的檢測 結果顯示於此塊 LCD 模塊。

圖12.LCD 模塊

3.8 減速馬達

本作品將減速馬達運用在水果軟硬度檢測中, 將水果放置好檢測位置後,使用馬達將不鏽鋼桿向 下拉動,讓爪子抓緊水果,而使用馬達扭力加強, 致使電流提升,測得水果之間的軟硬。

圖13.減速馬達

3.9 MINI L298N

MINI L298N 具有兩個使能控制端,負責控制 减速馬達順時針將上方固定座拉緊或逆時針將放

圖 14. MINI L298N

4.测試方法

4.1 作品結構

本作品只需將水果放置於檢測位置即可自動 夾固,結合重量感測、甜度檢測、軟硬度檢測多項 量測功能,配合輕便的機構設計可適用於各種不同 的情況。

水果放置檢測位置

機構自動夾固

圖15. 夾固機構

4.2 重量檢測

本作品於底座設有應變規,藉由應變規受力時 所產生的電子阻抗並配合 HX711 模組將電壓差進 行 A/D 轉換並放大訊號,以得知該水果重量。

圖16.重量測試示意圖

4.3 甜度檢測

本甜度檢測功能利用近紅外光照射水果表皮面,可測得不同甜度水果反射、吸收或穿透所反饋的光學頻譜,再透過機率演算法預測該水果甜度。

圖17. 甜度檢測示意圖

4.4 軟硬度檢測

本作品使用直流馬達拉動上方夾具,當拉至極限值時透過電流感測器讀取當時的電流,即可以電流大小判斷水果的軟硬度。

圖18.軟硬度測試示意圖

圖19.軟硬度測試示意圖

4. 參考文獻

- [1] 以 SOPC 為基礎的近紅外線光譜儀用於小番 茄糖度檢測,碩士論文,楊尚銘,彰化師範 大學,電子工程研究所,2011。
- [2] 自製近紅外光譜儀應用於水果糖度之非破壞 性檢測。