# Supplemental Material for: Extreme purifying selection against point mutations in the human genome

Noah Dukler<sup>1,a</sup>, Mehreen R. Mughal<sup>1,a</sup>, Ritika Ramani<sup>1</sup>, Yi-Fei Huang<sup>2</sup>, and Adam Siepel<sup>1,\*</sup>

<sup>1</sup>Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

<sup>2</sup>Department of Biology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA

<sup>a</sup>These authors contributed equally to this work.

\*Corresponding author

#### **Supplemental Text**

## Approximation of the expected number of generations until extinction as a fraction of the neutral expectation

By Kimura and Ohta's formulas [1], the expected number of generations until a new mutant (at initial frequency  $\frac{1}{2N}$ ) is lost from a finite population, as a function of the current population size N and the scaled selection coefficient  $S=2N_e s$ , where  $N_e$  is the effective population size, is approximately given by,

$$t(S) = \frac{2N_e}{N} \left[ \ln \left( \frac{N}{S} \right) + 1 - \gamma \right], \qquad \gamma = 0.577...,$$
 (1)

in the case of a semidominant deleterious mutation (with  $h=\frac{1}{2}$ ), and by,

$$t(0) = \frac{2N_e}{N}\ln(2N) \tag{2}$$

in the case of a neutral mutation. In the regime of interest,  $\ln(N/S) \gg 1$ , so the ratio of these quantities can be roughly approximated as,

$$\frac{t(S)}{t(0)} \approx \frac{\ln(N) - \ln(S)}{\ln(2N)} = \frac{\ln(N) - \ln(S)}{\ln(N) + \ln 2}.$$
 (3)

As discussed in the text, we estimate that ultraselected sites have values of  $s_{\rm het}=\frac{1}{2}s$  of about 0.03. Assuming the typical value of  $N_e=10^4$  for human populations,  $S=2N_es=4N_es_{\rm het}=1200$ , meaning that  $\ln(S)\approx 7.1$ . It is more difficult to know what N should be in this setting, but Weghorn et al. [2] have argued for a plausible range of  $0.5-8.0\times10^6$  based on current demographic models for human populations. Thus,  $\ln(N)$  ranges from about 13.1 to 15.9, and we obtain values for  $\frac{t(S)}{t(0)}$  ranging from 0.43 to 0.53.

### References

- [1] Kimura M, Ohta T. The average number of generations until extinction of an individual mutant gene in a finite population. Genetics. 1969;63(3):701–9.
- [2] Weghorn D, Balick DJ, Cassa C, Kosmicki JA, Daly MJ, Beier DR, et al. Applicability of the Mutation-Selection Balance Model to Population Genetics of Heterozygous Protein-Truncating Variants in Humans. Mol Biol Evol. 2019;36(8):1701–1710.
- [3] Yang RY, Quan J, Sodaei R, Aguet F, Segrè AV, Allen JA, et al. A systematic survey of human tissue-specific gene expression and splicing reveals new opportunities for therapeutic target identification and evaluation. bioRxiv. 2018;doi:10.1101/311563.
- [4] Kim BY, Huber CD, Lohmueller KE. Inference of the Distribution of Selection Coefficients for New Nonsynonymous Mutations Using Large Samples. Genetics. 2017;206(1):345–361.

Table S1: Ultraselection across the human genome (less conservative estimates)

| Feature                           | $\lambda_s$ | $\pm$ (stderr) | no. sites (M) | prop. sites | $\exp$ no. $(M)^a$ | exp. prop. $^b$ | fold enrich. | $\exp$ . lethal <sup>c</sup> | Shet |
|-----------------------------------|-------------|----------------|---------------|-------------|--------------------|-----------------|--------------|------------------------------|------|
| CDS                               | 0.149       | 0.002          | 33.8          | 1.18%       | 4.9                | 31.6%           | 26.8         | 0.12                         | ı    |
| 5' UTR                            | -0.158      | 0.002          | 8.2           | 0.29%       | 0.0                | 0.0%            | 0.0          | 0.00                         | ı    |
| 3' UTR                            | 0.023       | 0.002          | 36.1          | 1.26%       | 0.7                | 4.6%            | 3.6          | 0.02                         | ı    |
| splice                            | 0.464       | 0.002          | 0.8           | 0.03%       | 0.4                | 2.3%            | 85.0         | 0.01                         | 2.0% |
| nonconserved IncRNA <sup>d</sup>  | 0.008       | 0.002          | 453.6         | 15.78%      | 1.8                | 11.8%           | 0.7          | 0.04                         | 1    |
| conserved IncRNA <sup>e</sup>     | 0.055       | 0.002          | 23.3          | 0.81%       | 1.2                | 7.7%            | 9.5          | 0.03                         | ı    |
| nonconserved intron <sup>d</sup>  | 0.008       | 0.002          | 972.6         | 33.83%      | 4.2                | 26.8%           | 0.8          | 0.10                         | 1    |
| conserved intron <sup>e</sup>     | 0.057       | 0.002          | 44.3          | 1.54%       | 2.4                | 15.3%           | 6.6          | 0.06                         | 1    |
| nonconserved intergenic $^d$      | 0.003       | 0.002          | 1255.5        | 43.67%      | 0.0                | 0.0%            | 0.0          | 0.00                         | 1    |
| conserved intergenic <sup>e</sup> | 0.051       | 0.002          | 46.9          | 1.63%       | 2.2                | 14.2%           | 8.7          | 0.05                         | 1    |
| Total                             |             |                | 2875.1        | 100.00%     | 15.6               | 100.0%          |              | 0.43                         |      |

"Expected number of ultraselected sites after adjusting for background. In this case, the estimate for nonconserved intergenic regions (0.003) was subtracted from each estimate of  $\lambda_s$  (see **Table 1** for a more conservative correction).

 $<sup>^</sup>b$ Expected proportion of ultraselected sites after adjusting for background.  $^c$ Expected number of new lethal or near-lethal mutations per diploid individual, assuming a mutation rate of  $1.2 \times 10^{-8}$  per generation per site.

<sup>&</sup>lt;sup>d</sup>Sites not classified as conserved by phastCons.

<sup>&</sup>lt;sup>e</sup>Sites classified as conserved by phastCons.

| Distribution | $\alpha^a$ | $\theta^a$ | $\pi_0{}^b$ | $\operatorname{mean} g(x)$ | mean $f(x)$ | mean $h(x)$ | $\lambda_s$ | estimated $s_{\text{het}}$ |
|--------------|------------|------------|-------------|----------------------------|-------------|-------------|-------------|----------------------------|
| Kim et al.,  | 0.1930     | 0.0168     | 3.1%        | 0.0023                     | 0.0032      | 0.0303      | 0.0416      | -                          |
| 0d CDS       | 0.8678     | 0.0168     | 3.1%        | 0.0101                     | 0.0141      | 0.0275      | 0.2340      | 0.0242                     |
| miRNA        | 1.0700     | 0.0168     | 0.0%        | 0.0137                     | 0.0189      | 0.0312      | 0.3396      | 0.0316                     |
| TFBS         | 0.5500     | 0.0168     | 70.0%       | 0.0017                     | 0.0028      | 0.0277      | 0.0275      | -                          |

<sup>&</sup>lt;sup>a</sup>Parameters of assumed Gamma distribution, where  $\alpha$  is the shape parameter and  $\theta$  is the scale parameter <sup>b</sup>Weight of point mass at zero.

Table S2: Means of full simulated DFE (f(x)), DFE associated with remaining rare variants (g(x)), and DFE inferred to be associated with the "missing" rare variants (h(x)) by mixture decomposition (see **Methods**). Also shown are the estimated values of  $\lambda_s$  from simulated data, as well as the corresponding value of  $s_{\text{het}}$  (for  $\lambda_s > 0.18$ ).

### **Supplemental Figures**



Figure S1: Predicted vs. observed rates of rare variants in designated neutral regions. Each point represents a single 50kb bin. Along the x-axis are the average values of  $P_i$  across that bin, as predicted by our mutation model, and along the y axis are the observed rates at which rare variants occur within that bin. The plot shows that the mutation model is well calibrated genome-wide for neutral sites.



Figure S2: Theoretical relationship between  $\lambda_s$  and the selection coefficient against heterozygous mutations,  $s_{\text{het}}$ . Curve represents equation 2 with N=71,702 and  $c=1.35\times 10^7$  based on our real data set (see **Methods**). The dark shaded region ( $\lambda_s<0.18,\,s_{\text{het}}<0.013$ ) indicates the approximate regime where the relationship no longer yields an accurate estimator for  $s_{\text{het}}$  with our data, and the lighter shaded region ( $0.18<\lambda_s<0.65,\,0.013< s_{\text{het}}<0.03$ ) indicates the regime where the estimator is slightly inflated but still useful as a guide (see **Supplemental Fig. S3**).



Figure S3: True vs. predicted values of  $s_{\text{het}}$  in simulation. Data sets of 71,702 diploid individuals and 100,000 sites were simulated using software from ref. [2] with mean  $s_{\text{het}}$  ranging from 0.0001 to 0.5 ( $x_{\text{axis}}$ ). In one version, all sites were assigned the same "true" value of  $s_{\text{het}}$  ("constant"; black points) and, in another, sitewise values of  $s_{\text{het}}$  were drawn from an exponential distribution with the given mean value ("exp. distribution"; orange points). ExtRaINSIGHT was applied to each simulated data set, and then the estimated value of  $\lambda_s$  was converted to a predicted  $s_{\text{het}}$  ( $y_{\text{axis}}$ ) using equation 2. All simulations assumed a European demographic history (see **Methods**). As in **Supplemental Fig. S2**, the dark and light gray regions respectively indicate the regimes in which the estimator for  $s_{\text{het}}$  is no longer useful, and is inflated but still approximately useful.



Figure S4: Measures of purifying selection in protein-coding genes exhibiting tissue-specific gene expression. Tissue-specific genes were obtained from ref. [3] as detailed in the Methods section. An estimate for each tissue is shown for both ExtRaINSIGHT ( $\lambda_s$ ) and INSIGHT ( $\rho$ ). Error bars indicate one standard error (see Methods).



Figure S5: Comparison of DFEs for all sites, rare variants that remain, and "missing" rare variants in simulations. Simulated DFEs (f(x); pink), DFEs for rare variants that remain in the data (g(x); blue), and DFEs inferred by mixture decomposition for the rare variants that are missing (h(x); green). Results are shown for four distinct DFEs: (A) a DFE published by Kim et al. [4] consisting of a mixture of a point-mass at zero (with weight 0.031) and a Gamma distribution with  $\alpha$ =0.1930 and  $\theta$ =0.0168. (B) a modified DFE designed to approximately match our observations at 0d sites in coding regions, consisting of a mixture of a point-mass at zero (weight 0.031) and a Gamma distribution with  $\alpha$ =0.8687 and  $\theta$ =0.0168. (C) a modified DFE designed to approximately match our observations at evolutionarily ancient miRNAs, equal to a Gamma distribution with  $\alpha$ =1.07 and  $\theta$ =0.0168. (D) a modified DFE designed to approximately match our observations at TFBS, consisting of a mixture of a point-mass at zero (with weight 70%) and a Gamma distribution with  $\alpha$ =0.55 and  $\theta$ =0.0168. Means of these distributions along with our  $\lambda_s$  and  $s_{het}$  estimates are shown in Supplemental Table S2.