Question	Answer		Mark
Number			
4(a)(i)	 Max 2 from Inconsistent d.p. in r No repeat readings (for r) All values (of h and r) should be to the nearest mm Or all values (of h and r) should be to 3 d.p. 	(1) (1)	2
4(a)(ii)	 Labels axes with quantities and units Sensible scales Plotting Line of best fit 	(1) (1) (2) (1)	5
	0.24 0.22 0.2 0.2 0.2 0.18 0.18 0.16 0.14 0.12 0.10 0.20 0.11 0.20 0.11 0.25 0.137 0.30 0.16 0.35 0.19 0.40 0.217 0.45 0.45 0.45 0.45 0.45		
4(b)(i)	• $mgh = \frac{1}{2}mv^2$ • Algebra steps shown leading to $u = \sqrt{2gh}$ Do not accept use of $v^2 = u^2 + 2as$	(1) (1)	2
4(b)(ii)	• See $v=\sqrt{2gr}$ • Shows that $e=\frac{\sqrt{r}}{\sqrt{h}}$ • Gradient = $\frac{\Delta r}{\Delta h}$ therefore gradient = e^2 Accept substitution of $u=\sqrt{2gh}$ and $v=\sqrt{2gr}$ into $e=v/u$ and re-	(1) (1) (1)	3
4(c)	 arrangement into y = mx format for MP2 and 3 Calculates gradient using large triangle (allow use of e² = r/h) Gradient / e² value between 0.51 and 0.56 Or e value between 0.71 and 0.75 Correct choice of metal for value of e calculated 	(1) (1) (1)	3
	Example of Calculation $e^2 = (0.22 - 0.12)/(0.41 - 0.22)$		

	Total for question 4		17
	[dependent on MP1]		
	• (The gradient and) the value obtained for <i>e</i> would be smaller	(1)	2
	h)		
	Or friction would dissipate energy, so <i>r</i> would be lower (for a given	(1)	
	Or friction would reduce velocity, so r would be lower (for a given h)		
	(for a given <i>h</i>)		
4(d)	• Acceleration along the ramp would be smaller, so <i>r</i> would be lower		
	e = 0.73 so stainless steel		
	$e^2 = 0.53$		
	$a^2 - 0.52$		