CS 241 Homework 3

Christian Gutierrez Spring 2022

Theorem 1. Let A,B be sets. $A\triangle B=\phi$ iff A=B

Proof. The symmetric diffrence of A and B is

 $A\Delta B = (A \cup B) - (A \cap B)$

 $A\Delta B = (A - B) \cup (B - A)$

Suppose $A\Delta B = \text{EMPTY}$

Suppose x is some variable and that $x \in A$.

I claim that $x \in B$. To suppose a contradiction that $x \notin B$.

So that $x \in A \cup B$ but $x \notin A \cap B$

So $x \in A\Delta B$, which results in $x \in EMPTY$.

This results in a contradiction, so $x \in B$

So, $A \subseteq B$.

For the opposite direction:

Suppose $A\Delta B = \text{EMPTY}$

Suppose x is some variable and that $x \in B$.

I clain that $x \in A$. To suppose a contradiction that $x \notin A$.

So that $x \in B \cup A$ but $x \notin B \cap A$

So $x \in B\Delta A$, which results in $x \in EMPTY$.

This results in a contradiction, so $x \in A$

So, $B \subseteq A$.

Therefore: A = B. Q.E.D.

Theorem 2. Let $S_n = \{x \in \mathbb{R} | 0 \le x \le \frac{n-1}{n} \}$. Then

$$\bigcup_{n=1}^{\infty} S_n = [0, 1)$$

Proof. $\bigcup_{n=1}^{\infty} S_n = \{x : \exists n \in \mathbb{N} \text{ such that } x \in S_n\}$ Let $x \in \bigcup_{n=1}^{\infty} S_n$. Then for some $n, x \in \{x \in \mathbb{R} : 0 \le x \le \frac{n-1}{n}\}$. Then $0 \le x \le \frac{n-1}{n}$. But $\frac{n-1}{n} < 1$. So, $0 \le x < 1$. And $x \in [0, 1)$ This shows LHS $\subseteq RHS$.

Now suppose $x \in [0,1)$ Then $0 \le x < 1$ I claim that there exists n, such that $x \le \frac{n-1}{n}$. For $x \le 1 - \in$ for some $\in > 0$

Then $\frac{n-1}{n} > 1 - \in \le x$ for this n. So, $0 \le x > \frac{n-1}{n}$. Then $x \in \{x \in \mathbb{R} | 0 \le x \le \frac{n-1}{n}\}$. So $x \in \bigcup_{n=1}^{\infty} S_n = [0, 1)$

Q.E.D.