

Tuesday, September 1, 2020

2:32 PM

Use the definition of continuity and the properties of limits to show that the function is continuous at the given number a.

$$f(x) = \left(x + 3x^3\right)^5, \quad a = -1$$

$$\lim_{x \to -1} f(x) = \lim_{x \to -1} \left(x + 3x^3 \right)^5$$

$$= \left(\lim_{x \to -1} x + 3 \right)^5$$

$$= \left(-1 + 3 \left(-1 \right)^3 \right)^5$$

$$= \left(-1024 \right)$$

$$f(-1) = -1024$$

Thus, by the definition of continuity, f is continuous at a = -1.

Explain, using the theorems, why the function is continuous at every number in its domain.

$$F(x) = \frac{2x^2 - x - 9}{x^2 + 1}$$

- \bigcirc F(x) is a polynomial, so it is continuous at every number in its domain.
- \odot F(x) is a rational function, so it is continuous at every number in its domain.
- O F(x) is a composition of functions that are continuous for all real numbers, so it is continuous at every number in its domain.
- \bigcirc F(x) is not continuous at every number in its domain.
- O none of these

State the domain. (Enter your answer using interval notation.)

$$(-\infty,\infty)$$

Domain R

Theorem If f and g are continuous at a and c is a constant, then the following functions are also continuous at a:

1.
$$f + g$$

5.
$$\frac{f}{g}$$
 if $g(a) \neq 0$

Theorem

- (a) Any polynomial is continuous everywhere; that is, it is continuous on $\mathbb{R}=(-\infty,\infty).$
- (b) Any rational function is continuous wherever it is defined; that is, it is continuous on its domain.

 ${\bf Theorem}\ \ \, {\bf The}\ \, {\bf following}\ \, {\bf types}\ \, {\bf of}\ \, {\bf functions}\ \, {\bf are}\ \, {\bf continuous}\ \, {\bf at}\ \, {\bf every}\ \, {\bf number}\ \, {\bf in}$ their domains:

polynomials

rational functions

root functions

trigonometric functions

inverse trigonometric functions

exponential functions

logarithmic functions

Theorem If g is continuous at a and f is continuous at g(a), then the composite function $f \circ g$ given by $(f \circ g)(x) = f(g(x))$ is continuous at a.

Q9 Tuesday, September 1, 2020 2:57 PM	
Explain, using the theorems, why the function is continuous at $Q(x) = \frac{\sqrt[3]{x-9}}{x^3-9}$	t every number in its domain.
 Q(x) is a polynomial, so it is continuous at every number Q(x) is a rational function, so it is continuous at every number Q(x) is built up from functions that are continuous for all Q(x) is not continuous at every number in its domain. none of these 	
State the domain. (Enter your answer using interval notation. $\boxed{\left(-\infty,\sqrt[3]{9}\right)\cup\left(\sqrt[3]{9},\infty\right)}$	
$Q(\lambda)$ defined for \mathbb{R} , $\chi^3 - 2 \neq 0$	
$\chi^{3} - 9 = 0$ $\chi^{3} = 9$ $\chi = 3\sqrt{9}$	Theorem If f and g are continuous at a and c is a constant, then the following functions are also continuous at a : 1. $f+g$ 2. $f-g$ 3. cf 4. fg 5. $\frac{f}{g}$ if $g(a) \neq 0$ Theorem (a) Any polynomial is continuous everywhere; that is, it is continuous on $\mathbb{R} = (-\infty, \infty)$. (b) Any rational function is continuous wherever it is defined; that is, it is continuous on its domain. Theorem The following types of functions are continuous at every number in their domains: polynomials rational functions root functions trigonometric functions inverse trigonometric functions exponential functions logarithmic functions Theorem If g is continuous at a and f is continuous at $g(a)$, then the composite function $f \circ g$ given by $(f \circ g)(x) = f(g(x))$ is continuous at a .
	ite function $f \circ g$ given by $(f \circ g)(x) = f(g(x))$ is continuous at a .

Tuesday, September 1, 2020 4:02 PM

Explain, using the theorems, why the function is continuous at every number in its domain.

$$M(x) = \sqrt{1 + \frac{9}{x}}$$

- \bigcirc M(x) is a polynomial, so it is continuous at every number in its domain.
- \bigcirc M(x) is a rational function, so it is continuous at every number in its domain.
- \bullet M(x) is a composition of functions that are continuous, so it is continuous at every number in its domain.
- \bigcirc M(x) is not continuous at every number in its domain.
- O none of these

State the domain. (Enter your answer using interval notation.)

$$(-\infty,\,-\,9\,]\cup(0,\infty)$$

 $M(x) \int 1 + \frac{9}{x}$ = 1/1 +9 Defined when x+9 > 0 $\chi_{+} q \geq 0$, $\chi_{70} \rightarrow \chi_{70}$ x+950,260-7x51

M has Domoun

 $(-\infty - 9] \cup (0, \infty)$

Theorem If f and g are continuous at a and c is a constant, then the following

functions are also continuous at a: 1. f + g

5. $\frac{f}{a}$ if $g(a) \neq 0$

- (a) Any polynomial is continuous everywhere; that is, it is continuous on
- (b) Any rational function is continuous wherever it is defined; that is, it is continuous on its domain.

Theorem The following types of functions are continuous at every number in their domains:

> polynomials rational functions

root functions

trigonometric functions inverse trigonometric functions

exponential functions logarithmic functions

Theorem If g is continuous at a and f is continuous at g(a), then the composite function $f \circ g$ given by $(f \circ g)(x) = f(g(x))$ is continuous at a.

