- 1. Dadas las sucesiones (a_n) de números reales, halle la expresión de a_n para un n arbitrario:
 - a) $a_1=2 \qquad a_{n+1}=a_n+4 \quad \text{($n\in N$)}$
 - b) $a_1 = 3$ $a_n = a_{n-1} + 3^n$ (n > 1)

Sugerencia: utilizar convenientemente el ejercicio 1) g) de este TP

- c) $a_1 = 0$ $a_n a_{n-1} = 2n+1$ (n > 1)
- d) $a_1 = -3$ $a_{n-1} + 2a_n = 0$ $(n \ge 2)$
- 2. Resuelva las siguientes ecuaciones en recurrencia homogéneas:
 - a) $a_0 = 2$, $a_1 = 1$ $a_n 7a_{n-1} + 10a_{n-2} = 0$ $(n \ge 2)$
 - b) $a_0 = 6$, $a_1 = 8$ $a_n = 4a_{n-1} 4a_{n-2}$ (n > 1)
 - c) $a_1 = 6$, $a_2 = 0$ $a_n 5a_{n-1} + 6a_{n-2} = 0$ $(n \ge 3)$
 - d) $a_0 = 2$, $a_1 = 8$ $a_{n+2} = -4a_{n+1} + 5a_n$ $(n \ge 0)$
 - e) $a_0 = a_1 = 1$ $a_{n+2} = 5a_{n+1} 4a_n$ $(n \ge 0)$
- **3.** Hallar el valor de $k \in R$ de modo tal que 5^n sea solución de la ecuación $a_{n+2} 3a_{n+1} = k \ a_n \ (n \ge 0)$. Para el valor de k hallado, resolver la ecuación de recurrencia si $a_0 = 1$, $a_1 = 0$

Algunos ejercicios resueltos

<u>Ejercicio 3</u>: Hallar el valor de $k \in R$ de modo tal que 5^n sea solución de la ecuación $a_{n+2} - 3a_{n+1} = k$ $a_n (n \ge 0)$. Para el valor de k hallado, resolver la ecuación de recurrencia si $a_0 = 1$, $a_1 = 0$

La ecuación dada en el enunciado la podemos escribir como $a_{n+2} - 3a_{n+1} - k a_n = 0$. Como sabemos que 5^n es solución de la ecuación, esta sucesión verifica la igualdad. Es decir:

$$a_{n\,+\,2}\,-\,3\,a_{n\,+\,1}\,\,-\,k\,\,a_{n}\,\,=0$$

$$5^{n+2} - 3.5^{n+1} - k 5^n = 0$$

$$5^n$$
. $5^2 - 3$. 5^n . $5 - k$. $5^n = 0$ sacando 5^n como factor común:

$$5^{n}. (25 - 15 - k) = 0$$
 dado que $5^{n} \neq 0$:
 $10 - k = 0 \rightarrow k = 10$

Reemplazamos de k hallado en la ecuación: $a_{n+2} - 3a_{n+1} - 10 \ a_n = 0$. Para buscar la otra solución de la ecuación (una ya la conocemos, es $a_n = 5^n$) planteamos el polinomio característico:

 $r^2-3r-10=0$. Aplicando la fórmula resolvente, obtenemos que r=5 o r=-2. Luego, la solución general de nuestra ecuación es $a_n=A$. 5^n+B . $(-2)^n$

Falta halar los valores de A y B de modo tal que se verifiquen las condiciones iniciales: $a_0\,=\,1$, $\,a_1\,=\,0$

$$a_0 = A. 5^0 + B. (-2)^0 \rightarrow A + B = 1$$

 $a_1 = A. 5^1 + B. (-2)^1 \rightarrow 5A - 2B = 0$

Resolviendo el sistema $\begin{cases} A+B=1\\ 5A-2B=0 \end{cases}$ (utilizar el método más conveniente) obtenemos que $A=\frac{2}{7}$ y $B=\frac{5}{7}$.

Por lo tanto, la solución de la ecuación es $a_n = \frac{2}{7}.5^n + \frac{5}{7}.(-2)^n$