$X(t) = \sum_{i=1}^{\infty} X_i X_i e^{jn\omega t}$ $t_0 < t < t_0 + T_0$	
$X(t) = \sum_{n=-\infty}^{\infty} \chi_n x e^{jn\omega_t t}, t_0 \le t < t_0 + T_0$ $\chi_n = \frac{1}{T_0} x \int_{t_0}^{t_0 + T_0} \chi(t) x e^{-jn\omega_t t} dt$	
$\chi(t) = \chi_0 + \sum_{n=1}^{\infty} A_n \chi \cos(n\omega_t) + \sum_{n=1}^{\infty} B_n \chi \sin(n\omega_n t)$	
$A_{n} = \frac{2}{T_{0}} \times \int_{t_{0}}^{t_{0}+T_{0}} \times (t) \times \cos(n\omega t) dt$	
$B_{n} = \frac{2}{T_{0}} \times \int_{t_{0}}^{t_{0}+T_{0}} \times (t) \times \bar{sin}(nw_{0}t) dt$	
t = 0ns	
1.8V t = ons t = 1000 hs	
o V Sons	
$X = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$	
$X_{0} = \frac{1}{1000 \text{ NS}} \times \int_{\text{OnS}}^{1000 \text{ NS}} \times (t) dt = \frac{1}{1000 \text{ NS}} \times 950 \text{ NS} \times 1.8 \text{ V} = 1.71 \text{ V}$	
$A_{n} = \frac{2}{1000 \text{ ns}} \times \left\{ \int_{0 \text{ ns}}^{10 \text{ ns}} 1.8 \text{ V X cos(nwot)} dt + \int_{60 \text{ ns}}^{1000 \text{ ns}} 1.8 \text{ V X cos(nwot)} dt \right\}$	
$= \frac{2}{1000 \text{ns}} \times \left\{ 1.8 \text{V} X \frac{\sin(0.02 \text{n} \pi)}{\text{n} \text{Wo}} - 1.8 \text{V} X \frac{\sin(0.12 \text{n} \pi)}{\text{n} \text{Wo}} \right\}$	
$=\frac{18V}{n\pi}X\left[\hat{sin}(0.02n\pi)-\hat{sin}(0.12n\pi)\right]$	
2 6 V C IONS C IONS	
$B_{N} = \frac{3.6V}{10000 \text{ns}} \times \left\{ \int_{0 \text{ns}}^{10 \text{ns}} \sin(n w_{0} t) dt + \int_{60 \text{ns}}^{10000 \text{ns}} \sin(n w_{0} t) dt \right\}$	
$= \frac{18V}{n\pi} \times \left[\cos(0.12n\pi) - \cos(0.02n\pi) \right]$	