The safe use of LLMs for screening in systematic reviews

The promise of LLMs

LLMs have appeared useful for various tasks, but how can we **safely** use them to save work while screening?

They are temperamental, and they return text, not probabilites

Next token probabilities

LLMs are **probabilistic models**, which calculate the **probable next token** given a **prompt**.

Wang et al. (2024) showed that we can ask a yes/no question and get a probability-like score by subtracting the probability that the next token is no, from the probability it is yes.

$$S(d,t) = P(yes|d,t) - P(no|d,t)$$

But the paper did not contain a way to use these scores to save work in a way that would reliably satisfy our need in systematic reviews for high recall

Prioritised screening

However, if we have probabistic scores for documents, then we can simply do prioritised screening with a reliable **stopping criteria** (Callaghan and Müller-Hansen, 2020)

Bibliography

Callaghan, M. and Müller-Hansen, F. (2020). Statistical Stopping Criteria for Automated Screening in Systematic Reviews. *Systematic Reviews*.

De Bruin, J., Ma, Y., Ferdinands, G., Teijema, J., and Van de Schoot, R. (2023). SYNERGY - Open machine learning dataset on study selection in systematic reviews.

Wang, S., Scells, H., Zhuang, S., Potthast, M., Koopman, B., and Zuccon, G. (2024). Zero-shot Generative Large Language Models for Systematic Review Screening Automation.

Results

Using the synergy dataset (De Bruin et al., 2023), we compared rankings from LLM screening with rankings generated in a traditional "active learning" pipeline with SVMs

Brouwer_2019 (N=38114, p=0.2%)

Psychological theories of depressive relapse and recurrence: A systematic review and meta-analysis of prospective studies

Jeyaraman_2020 (N=1175, p=8.2%)
Does the Source of Mesenchymal Stem Cell Have an Effect in the Management of Osteoarthritis of the Knee? Meta-Analysis of Randomized Controlled Trials

The best models mostly, but not always, outperform the baseline

Results

Llama 3.1 works better than 2 Wang et al. (2024), and larger models work better than smaller

Conclusion

Performance with 0 human input is impressive. Combining approaches, or using human labels to provide in-context learning could be promising.