None of the problems on this assignment are graded. Instead, after completing it, please fill out the associated Google form. That form is the only graded component.

Math Background

Exercise 1. Evaluate the following matrix products:

- $\bullet \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix}$
- $\bullet \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix}$

Exercise 2. Invert the following matrices

- $\bullet \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$
- $\bullet \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix}$

Cryptography

Exercise 3. Consider the following matrix key with 3 known entries.

$$\bullet \ \begin{bmatrix} 1 & x \\ 1 & 2 \end{bmatrix}$$

How many values of x produce unique keys. Remember, x can take on unique values from 0 through 25. The determinant cannot be 0, divisible by 2, or divisible by 13.

Exercise 4. Write a message in plaintext, select a 2×2 matrix as a key (make sure it is invertible modulo 26) and encrypt your message. Pass the message and the key to a friend and have them decrypt it (as always be civil!).

Hint: There is a google colab notebook linked on the google classroom. This is not necessary to complete, but may make encryption and decryption easier if you complete it.

Bonus

Matrices are from a field of math called linear algebra. It is a super important and useful field of math. If you are curious about this field of math, feel free to read this or watch the corresponding videos. 3 blue 1 brown is an excellent resource for mathematics explanation and this is a good series.