Az IEC 61131-3 szabvány programozási nyelvei Sorrendi folyamatábra

Programozható irányítóberendezések és szenzorrendszerek

> KOVÁCS Gábor gkovacs@iit.bme.hu

Áttekintés

Programszervezési egységek

POU típus és név

Deklarációs rész:

- Interfész változók
- Lokális változók
- Globális változók

POU törzs: programkód

- Ladder Diagram (LD)
- Instruction List (IL)
- Function Block Diagram (FBD)
- Structured Text (ST)
- Sequential Function Chart (SFC)

PROGRAM prog_name

PROGRAM ConveyorControl

FUNCTION_BLOCK fb_name

FUNCTION_BLOCK Pusher

FULL TION fun_name: DataTrue

OOL

Sorrendi folyamatábra (Sequential Function Chart, SFC)

- Az SFC a programfolyamot írja le
- Tárolnia kell az aktuális állapotot: függvény nem valósítható meg SFC-ben
- A kimeneti változók érvényessége sokszor nehezen értelmezhető: egyes fejlesztői környezetek FB megvalósítását sem engedik SFC-ben

Sorrendi folyamatábra

(Sequential Function Chart, SFC)

- Cél: komplex programok kisebb részekre bontása és az azok közötti programfolyam leírása
- Eredet
 - Folyamatábra
 - Petri-hálók
 - Grafcet

SFC elemek

- SFC: páros gráf
 - Csomópontok:
 - Lépések (step) ≈ állapotok
 - Átmenetek (transition): logikai értékre kiértékelődő kifejezések
 - Élek
- Lépésekhez rendelt akciók (action)

Lépés – Átmenet szekvenciák

- Egyszerű szekvencia
- Divergens utak (elágazás)
 - Szekvencia-hurok
 - Szekvencia átugrása
- Párhuzamos végrehajtás

- Amikor T1 igazra értékelődik ki
 - STA deaktiválódik
 - STB aktiválódik

- Egy lépés után több átmenet is következik
- Az első igazra kiértékelődő Ti átmenet deaktiválja
 STA-t és aktiválja STi-t
- Az ágak közül csak egy lesz aktív

Divergens utak átmeneteinek kiértékelése

- Szabvány szerint
 - Kiértékelés balról jobbra
 - Kiértékelés explicit prioritással
 - Kiértékelés felhasználói irányítással
- Általános gyakorlati megvalósítás: kiértékelés balról jobbra

Kiértékelés balról jobbra

- Amíg STA aktív, addig az átmeneteket folyamatosan kiértékeljük balról jobbra haladva
- Az első igazra kiértékelődő Ti átmenet deaktiválja STA-t és aktiválja STi-t

Kiértékelés felhasználó által megadott prioritással

- Az átmeneteket a megadott sorrendben értékeljük ki
- Az alacsonyabb érték jelzi a magasabb prioritást

Kiértékelés felhasználói irányítással

- Az átmenetek kiértékelésének sorrendje nem meghatározott
- A felhasználónak kell biztosítania, hogy a feltételek kölcsönösen kizáróak legyenek

Divergens utak - megjegyzés

 A legtöbb fejlesztői környezet csak a standard (balról jobbra haladó) kiértékelést támogatja

 Ebben az esetben a jelölésből kimarad a *

Divergens utak találkozása

- STA-t akkor aktiváljuk, ha STi aktív és Ti igazra értékelődik ki
- Ugyanekkor ST*i*-t deaktiváljuk

- Előd-lépéshez visszakanyarodó divergens út
- Tetszőleges prioritás-modell használható

Divergens utak – szekvencia átugrása

 Az STA lépést átugorjuk, ha T3 igazra értékelődik ki (miközben T1 hamis)

- Ha STA aktív és T
 igazra értékelődik ki,
 akkor STA-t
 deaktiváljuk és az
 összes ST*i*-t aktiváljuk
- A token "osztódik"

Párhuzamos szekvenciák találkozása

- STA-t akkor aktiváljuk, ha
 - T igazra értékelődik kiÉS
 - Az összes ST1...STn lépés aktív
- Ekkor az "osztódott" tokenek egyesülnek

S1 S2 S3 T2 **T4 S5 S4 T5**

Nem biztonságos hálózatok

- Ha egy hálózatban az állapotok aktiválása nem kontrollált módon történik (lehetséges több token jelenléte párhuzamos szekvenciákon kívül), akkor a hálózat nem biztonságos (unsafe)
- A nem biztonságos hálózatok fordításkor hibát okoznak

S2 S3 T2 **T4 S5 S4 T5**

- Ha egy hálózatban az állapotok aktiválása nem kontrollált módon történik (lehetséges több token jelenléte párhuzamos szekvenciákon kívül), akkor a hálózat nem biztonságos (unsafe)
- A nem biztonságos hálózatok fordításkor hibát okoznak

S1 S2 **S3** T2 **T4 S5 S4 T5**

- Ha egy hálózatban az állapotok aktiválása nem kontrollált módon történik (lehetséges több token jelenléte párhuzamos szekvenciákon kívül), akkor a hálózat nem biztonságos (unsafe)
- A nem biztonságos hálózatok fordításkor hibát okoznak

S1 S2 **S3** T2 **T4 S**5 **S4 T5**

- Ha egy hálózatban az állapotok aktiválása nem kontrollált módon történik (lehetséges több token jelenléte párhuzamos szekvenciákon kívül), akkor a hálózat nem biztonságos (unsafe)
- A nem biztonságos hálózatok fordításkor hibát okoznak

S2 **S3** T2 **T4 S5 S4 T5**

- Ha egy hálózatban az állapotok aktiválása nem kontrollált módon történik (lehetséges több token jelenléte párhuzamos szekvenciákon kívül), akkor a hálózat nem biztonságos (unsafe)
- A nem biztonságos hálózatok fordításkor hibát okoznak

S1 S3 T2 **T4 S5 S4 T5** T3

- Ha egy hálózatban az állapotok aktiválása nem kontrollált módon történik (lehetséges több token jelenléte párhuzamos szekvenciákon kívül), akkor a hálózat nem biztonságos (unsafe)
- A nem biztonságos hálózatok fordításkor hibát okoznak

- A holtpontot tartalmazó hálózatok nem elérhetők (unreachable)
- A nem elérhető hálózatok hibát okoznak fordítás során

S2 S3 T2 T4 **S5 S4 T3 S6**

- A holtpontot tartalmazó hálózatok nem elérhetők (unreachable)
- A nem elérhető hálózatok hibát okoznak fordítás során

- A holtpontot tartalmazó hálózatok nem elérhetők (unreachable)
- A nem elérhető hálózatok hibát okoznak fordítás során

- A holtpontot tartalmazó hálózatok nem elérhetők (unreachable)
- A nem elérhető hálózatok hibát okoznak fordítás során

S1 S2 **S3** T2 T4 S5_{__} **S4 T3 S6**

- A holtpontot tartalmazó hálózatok nem elérhetők (unreachable)
- A nem elérhető hálózatok hibát okoznak fordítás során

Lépések

• Téglalap és azonosító: StepName

- Lépés flag: StepName.X
 - Logikai változó, értéke igaz, ha az adott lépés aktív
- Lépésidő: StepName. T
 - Időtartam-változó, értéke a lépés aktiválása óta eltelt idő
 - Értéke a lépés deaktiválásakor befagyasztódik,
 aktiválásakor t#0s –ról indul újra
- A lépés-flag és a lépésidő csak olvashatók

Kezdeti lépés

- Jelölés: kettős körvonal
- Tetszőleges azonosító
- A hozzá tartozó lépés-flag kezdeti értéke TRUE
- Minden hálózat egy és csakis egy kezdeti lépést tartalmaz

Lépések szöveges megadása

Lépés

```
STEP StepName
(* step body *)
END_STEP
```

Kezdeti lépés

```
INITIAL_STEP StepName
    (* step body *)
END_STEP
```

 A szöveges megadás lehetősége a szabványban szerepel, de a fejlesztői környezetek általában nem támogatják

Átmenetek

- Vízszintes vonal a lépéseket összekötő függőleges élen
- Minden átmenethez egy és csakis egy feltétel tartozik
 - Logikai értékű kifejezés
 - Az átmenet akkor tüzel, ha igazra értékelődik ki
 - Feltétel nélküli átmenetek konstans
 TRUE (1) feltétellel valósíthatók meg

Átmenetek szöveges megadása

```
TRANSITION TranName FROM Step1 TO Step2
          (* body *)
END_TRANSITION
```

 A szabványban szerepel, de a fejlesztői környezetek általában nem támogatják

Átmenet-feltételek megadása

Közvetlen megadás ST nyelven

Átmenet-feltételek megadása

Közvetlen megadás LD vagy FBD nyelven

Az összekötők használata megengedett

Átmenet-feltételek megadása

Közvetett módon az átmenet nevével


```
TRANSITION TranName FROM STA TO STB: (* LD, IL, FB, ST *)
END TRANSITION
```

Átmenet-feltétel törzse

 ST: hozzárendelés egy kifejezéshez (bal oldalon hiányzik a változó)

```
:=Var1 & Var2;
```

 IL: A feltétel értéke az akkumulátor értéke az utolsó művelet után

LD Var1
AND Var2

LD

FBD

Akciók (actions)

- Minden lépéshez nulla vagy több akció rendelhető
- Logikai akció: logikai változó, amit az akció állít be
- Nem logikai akció:
 - IL utasítások
 - ST műveletek
 - LD hálózatok
 - FBD hálózatok
 - Egy másik SFC

Nem-logikai akciók deklarálása

- LD, FBD, SFC: grafikus deklaráció
 (implementációfüggő, általában a POU-kkal megegyező módon)
- ST, IL: ACTION kulcsszó

```
ACTION MyAction:
%Q0.1:=%IX0.0 & Step8.X;
END ACTION
```

Lépések és akciók hozzárendelése

 Grafikusan: a lépéshez kapcsolt akcióblokk(okk)al

Közvetlen akciódefiníció

- Logikai akció: ha létezik az akcióéval megegyező nevű VAR vagy VAR_OUT típusú változó, akkor az lesz a logikai akció
- Műveletek vagy hálózatok: az akció törzse az akcióblokkon belül is megadható (ekkor az akciónév más akcióblokkokban nem használható)

Lépések és akciók hozzárendelése

Szövegesen: a STEP blokkokban

- A fejlesztői környezettől függő módon
 - Általában akcióblokk
 - Az akció törzse külön ablakban szerkeszthető

Az akcióblokk szerkezete

Akció-Indikátor Akciónév minősítés változó Opcionális logikai változó, Megadja, hogyan hajtódik végre az amit az akció állít be, hogy sikeres befejezést, hibát stb.

adott akció a lépés aktiválása után (action qualifier)

jelezzen (a gyakorlatban nem használt, 2013 óta deprecated)

Azonosítja az akciót (logikai VAR vagy VAR_OUT változó, Action azonosító)

Akcióvezérlés

- A felhasználó elől rejtett blokk
- Az akcióminősítéstől függően állítja a flageket:
 - Akció-flag (Q) nem logikai akciók esetén ActionName.Q néven érhető el
 - Aktivitás-flag (A) csak nem logikai akciók esetén
- Logikai akció: a változót az akció-flag értékére állítjuk
- Nem logikai akció: ciklikusan fut, amíg az akció-flag TRUE értékű

Aktivitás-flag

- Az akció-flaggel együtt állítódik be, annak lefutó éle után még egy ciklus idejéig aktív
- Az akció adott végrehajtási ciklusa az utolsó, ha

```
(Action.Q = FALSE) & (Action.A = TRUE)
```


Aktivitás-flag

- A fejlesztői környezetek többségében nem érhető el közvetlenül
- Hasonló konstrukciók
 - Exit akció egyszer, a lépés deaktiválásakor fut le
 - Az akcióból elérhető Last Scan bit az utolsó végrehajtáskor aktív

Akcióminősítések

Minősítés	Értelmezés
None / N	Nem tárolt (Non-stored, null qualifier)
R	Reset (Overriding R eset, tárolt akcióra)
S	Tárolt (Set, Stored)
L	Időben korlátozott (Time L imited)
D	Időben késleltetett (Time D elayed)
P	Impulzus (Pulse)
SD	Tárolt és késleltetett (Stored and Delayed)
DS	Késleltetett és tárolt (Delayed and Stored)
SL	Tárolt és korlátozott (Stored and Limited)
P1	Felfutó él érzékeny (P ulse (rising edge)) Gyakorlatban
PO	Lefutó él érzékeny (P ulse (falling edge)) nem használt

Nem tárolt akció

A Q akció-flag a lépés-flag másolata

Tárolt akció

Időben korlátozott akció

- A Q akció-flag a lépés aktiválásával állítódik be
- Annak deaktiválásáig, de legfeljebb a megadott ideig aktív

Időben késleltetett akció

- A Q akció-flag a lépés aktiválása után megadott idővel állítódik be, ha a lépés akkor még aktív
- A lépés deaktiválásakor törlődik

Impulzus-akció

- Az akció-flag a lépés aktiválása után egyetlen ciklus idejéig aktív
- Egyes fejlesztői környezetekben külön Entry Action definiálható

A fejlesztői környezetek túlnyomó többségében nem érhető el.

Tárolt és késleltetett akció

- A Q akció-flag a lépés aktiválása után megadott idővel állítódik be, akkor is, ha a lépés már nem aktív
- Csak Reset-akció törli

Késleltetett és tárolt akció

- A Q akció-flag a lépés aktiválása után megadott idővel állítódik be, amennyiben a lépés még aktív
- Csak Reset-akció törli, az állapot deaktiválása nem

Tárolt és korlátozott akció

- A Q akció-flag a lépés aktiválásakor állítódik be
- A megadott idő után törlődik a lépés aktivitásától függetlenül

P1 és P0 impulzus-akciók

- A szabványban definiáltak, de a fejlesztői környezetek általában nem implementálják (helyettük más megoldások – lépéshez kapcsolt entry és exit action)
- A P1 és P0 akcióminősítések logikai akciókra nem értelmezettek (hatástalanok)
- Csak az aktivitás flaget állítják, az akció flaget nem

Időzített minősítések

 Egy akció ugyanazon lépésnél csak egy időzített minősítéshez kapcsolható

Példa

Egy keverővel is ellátott autokláv a következő üzemmódokban működik:

- Mosás: a tartályt megtöltjük vízzel, majd 10 percen át fűtjük. Ezután bekapcsoljuk a keverőt, és addig működtetjük, amíg a víz hőmérséklete 30 fok alá nem süllyed, majd kiszivattyúzzuk a vizet.
- Termelés: a tartályba a megadott mennyiségű hatóanyagot (7 egység) és oldószert (30 egység) szivattyúzzuk, majd az elegyet 10 percig fűtjük. Ezután bekapcsoljuk a keverőt, és addig működtetjük, amíg az oldat hőmérséklete 30 fok alá nem süllyed, majd kiszivattyúzzuk azt.

Bemenetek

Változó	Típus	Értelmezés
APulse	BOOL	Hatóanyag-átfolyásmérő: felfutó éle egy egység betárolását jelzi
SPulse	BOOL	Oldószer-átfolyásmérő: felfutó éle egy egység betárolását jelzi
High	BOOL	Szintérzékelő – teli szint (0: szint alatta, 1: szint felette)
Low	BOOL	Szintérzékelő – üres szint (0: szint alatta, 1: szint felette)
WashBtn	BOOL	Mosás üzemmódválasztó nyomógomb
ProdBtn	BOOL	Termelés üzemmódválasztó nyomógomb
Temp	USINT	Folyadék hőmérséklete [°C]

Kimenetek

Értelmezés
Mosóvíz szivattyú (0: ki, 1: be)
Oldószer szivattyú (0: ki, 1: be)
Hatóanyag szivattyú (0: ki, 1: be)
Kitároló szivattyú – ürítés (0: ki, 1: be)
Keverő (0: ki, 1: be)
Fűtés (0: ki, 1: be)

Betárolt mennyiség számlálása

- APulse és SPulse felfutó éleit számoljuk
- A betárolt mennyiséget az Aln és SIn változókba töltjük
- A számlálókat kitároláskor nullázzuk

```
ACTION CountAPulse:
        CntA(CU:=APulse, R:=NOT LOW, CV=>AIn);
END_ACTION

ACTION CountSPulse:
        CntS(CU:=SPulse, R:=NOT LOW, CV=>SIn);
END_ACTION
```

```
PROGRAM MAIN
VAR INPUT
                                    ACTION CountAPulse:
       APulse AT %IX0.0: BOOL;
                                        CntA( CU:=APulse,
       Spulse AT %IX0.1: BOOL;
                                                R:=NOT LOW,
       Low
              AT %IX0.2: BOOL;
                                                CV=>Ain
       High AT %IX0.3: BOOL;
                                         );
       WashBtn AT %IX0.4: BOOL;
                                    END ACTION
       ProdBtn AT %IX0.5: BOOL;
       Temp AT %IB0.0: USINT;
                                    ACTION CountSPulse:
END VAR
                                        CntS( CU:=SPulse,
VAR OUTPUT
                                                R:=NOT LOW,
                                                CV=>Sin
       APump AT %QX0.0: BOOL;
                                        );
       SPump AT %OX0.1: BOOL;
                                    END ACTION
       WPump AT %OX0.2: BOOL;
       OutPump AT %QX0.3: BOOL;
       Heater AT %OX0.4: BOOL;
       Mixer AT %QX0.5: BOOL;
END VAR
VAR
       Ain, Sin: INT;
       CntA, CntS: CTU;
END VAR
```


Példa- Akciók

Akció	Magyarázat
Wpump	A mosóvíz szivattyút működtető bit (logikai akció)
Spump	Az oldószer szivattyút működtető bit (logikai akció)
Apump	A hatóanyag-szivattyút működtető bit (logikai akció)
CountSPulse	Betárolt oldószer-mennyiség (SIn) mérése – átfolyásmérő impulzusait számláló akció (nem logikai)
CountAPulse	Betárolt hatóanyag-mennyiség (AIn) mérése – átfolyásmérő impulzusait számláló akció (nem logikai)
Heater	A fűtést működtető bit (logikai akció)
Mixer	A keverőt működtető bit (logikai akció)
OutPump	A kitároló szivattyút működtető bit (logikai akció)