Importing the libraries

```
In [1]: import os
   import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns

import warnings
warnings.filterwarnings('ignore')
```

Loading the dataset

```
In [2]: data = pd.read csv('Bank-data (4).csv')
In [3]: data.head()
Out[3]:
             Index interest_rate credit Gender previous duration Churn
                0
          0
                         1.334
                                                     0
                                                            117
                                                                    no
                1
                         0.767
                                    0
                                                     1
                                                            274
                                                                   yes
          2
                2
                         4.858
                                                     0
                                    0
                                                            167
                                                                    no
                                                     0
                3
                         4.120
                                                            686
                                                                   yes
                4
                         4.856
                                                     0
                                                            159
                                                                    no
```

Shape

```
In [4]: data.shape
Out[4]: (518, 7)
```

Columns

Basic Information

```
In [6]: data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 518 entries, 0 to 517
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype			
0	Index	518 non-null	int64			
1	interest_rate	518 non-null	float64			
2	credit	518 non-null	int64			
3	Gender	518 non-null	int64			
4	previous	518 non-null	int64			
5	duration	518 non-null	int64			
6	Churn	518 non-null	object			
dtypes: float64(1),		int64(5), object(1)				

memory usage: 28.5+ KB

Statistical summary

In [7]: data.describe()

Out[7]:

	Index	interest_rate	credit	Gender	previous	duration
count	518.000000	518.000000	518.000000	518.000000	518.000000	518.000000
mean	258.500000	2.903736	0.034749	0.268340	0.127413	384.252896
std	149.677988	1.878504	0.183321	0.443524	0.333758	343.622003
min	0.000000	0.635000	0.000000	0.000000	0.000000	9.000000
25%	129.250000	1.055500	0.000000	0.000000	0.000000	156.250000
50%	258.500000	1.706500	0.000000	0.000000	0.000000	268.500000
75%	387.750000	4.957000	0.000000	1.000000	0.000000	483.000000
max	517.000000	4.970000	1.000000	1.000000	1.000000	2653.000000

Check for the null values

In [8]: data.isnull().sum()/len(data)*100

Out[8]: Index 0.0 interest_rate 0.0 credit 0.0 Gender 0.0 previous 0.0 duration 0.0 Churn 0.0

dtype: float64

```
In [9]: data_dup = data.duplicated().any()
         print(data dup)
         False
In [10]: data['Churn'].value_counts()
Out[10]: no
                259
                259
         yes
         Name: Churn, dtype: int64
In [11]: data['Churn'] = data['Churn'].astype('category')
         data['Churn'] = data['Churn'].cat.codes
In [12]: data['Index'].plot(kind='hist',color='yellow')
```


In [13]: data['interest rate'].plot(kind='hist',color='indigo')

Out[13]: <Axes: ylabel='Frequency'>

In [14]: data['credit'].plot(kind='hist',color='orange')

Out[14]: <Axes: ylabel='Frequency'>

In [15]: data['Gender'].plot(kind='hist',color='red')

Out[15]: <Axes: ylabel='Frequency'>

In [16]: data['previous'].plot(kind='hist',color='violet')

Out[16]: <Axes: ylabel='Frequency'>

In [17]: data['duration'].plot(kind='hist',color='black')

Out[17]: <Axes: ylabel='Frequency'>

In [18]: data['Churn'].plot(kind='hist',color='blue')

Out[18]: <Axes: ylabel='Frequency'>

In [19]: data.hist(bins=60,figsize=(25,30),color='black')
plt.show()

In []:

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 2 1, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 4 0, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 5 9, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 7 8, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 9 7, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 1 13, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 12 8, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 15 9, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 19 0, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 22 1, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 25 2, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 28 3, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 31 4, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 34 5, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 37 6, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 40 7, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 43 8, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 46 9, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 50 0, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517}

{0.899, 1.334, 1.365, 1.244, 4.858, 4.12, 4.856, 4.962, 4.865, 4.965, 4.864, 4.86, 1.811, 4.964, 1.0, 1.25, 0.904, 0.683, 4.866, 0.898, 0.959, 0.677, 1.29 9, 1.799, 1.049, 0.982, 0.697, 0.851, 0.79, 1.04, 1.726, 1.354, 1.479, 1.415, 0.72, 4.592, 1.406, 4.857, 1.281, 4.97, 4.921, 4.153, 4.967, 1.531, 0.843, 0.714, 1.028, 1.4, 0.827, 1.327, 1.266, 1.016, 0.635, 0.885, 4.961, 1.26, 4.95 8, 1.757, 4.955, 0.879, 0.748, 0.873, 1.687, 1.498, 0.742, 0.896, 0.771, 0.64 6, 0.861, 4.794, 1.05, 1.614, 0.73, 1.483, 1.291, 1.041, 0.849, 1.602, 1.41, 0.878, 0.767, 0.715, 0.773, 0.854, 0.668, 0.652, 0.739, 0.723, 0.884, 0.682, 1.029, 4.968, 4.855, 4.959, 0.706, 0.645, 1.27, 1.392, 1.52, 0.735, 0.639, 0.889, 1.453, 1.264, 0.883, 1.072, 0.877, 4.191, 1.313, 1.252, 0.717, 0.81, 0.9, 0.74, 0.644, 0.859, 1.423, 1.048, 0.699, 0.728, 4.859, 1.039, 0.882, 0.72, 0.655, 0.716, 1.405, 1.344, 1.03, 0.87, 0.835, 0.649, 0.704, 4.966, 4.076, 4.963, 4.957, 4.021, 1.268, 4.96, 0.797, 0.721, 1.262, 1.259, 0.977, 0.881, 0.846}

(0, 1)		
**************************************	Gender *	******
<pre>(0, 1)</pre>		
**************************************	previous	******
<pre>(0, 1)</pre>		
**************************************	duration	******

{9, 10, 11, 16, 25, 35, 39, 40, 42, 49, 51, 56, 57, 58, 59, 63, 64, 68, 69, 7 0, 72, 73, 74, 76, 80, 81, 82, 83, 85, 86, 87, 88, 95, 96, 97, 98, 99, 101, 1 02, 104, 105, 107, 109, 111, 113, 114, 115, 116, 117, 119, 120, 123, 124, 12 5, 126, 127, 128, 129, 130, 132, 133, 135, 136, 141, 142, 143, 144, 145, 146, 147, 148, 149, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 163, 16 4, 166, 167, 169, 170, 171, 172, 173, 174, 175, 178, 179, 180, 181, 183, 184, 185, 187, 188, 191, 192, 193, 194, 195, 196, 198, 199, 201, 202, 203, 204, 20 5, 206, 207, 208, 209, 211, 212, 213, 216, 217, 218, 219, 222, 223, 224, 225, 227, 228, 229, 230, 232, 233, 238, 239, 241, 243, 244, 247, 248, 249, 250, 25 1, 252, 2301, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 26 6, 267, 268, 269, 270, 272, 273, 274, 275, 276, 279, 280, 281, 285, 286, 288, 289, 290, 292, 293, 294, 295, 298, 299, 300, 301, 308, 309, 310, 311, 314, 31 6, 317, 320, 322, 323, 326, 328, 330, 331, 334, 336, 337, 338, 340, 341, 342, 344, 345, 346, 353, 355, 357, 360, 361, 362, 363, 364, 365, 367, 374, 375, 37 9, 383, 384, 387, 388, 389, 391, 393, 394, 395, 396, 398, 401, 403, 404, 405, 406, 408, 412, 417, 418, 423, 424, 436, 446, 449, 450, 454, 455, 456, 458, 45 9, 460, 461, 463, 470, 473, 474, 475, 476, 477, 479, 482, 483, 491, 496, 498, 519, 523, 525, 530, 531, 537, 539, 544, 545, 546, 549, 553, 565, 568, 569, 57 1, 578, 582, 585, 587, 592, 600, 604, 2653, 608, 609, 617, 619, 621, 626, 62 8, 629, 632, 633, 634, 640, 645, 650, 653, 655, 662, 663, 673, 683, 686, 688, 689, 690, 693, 697, 698, 706, 711, 712, 716, 728, 738, 739, 742, 747, 760, 76 2, 767, 768, 771, 796, 805, 806, 809, 815, 829, 840, 846, 854, 873, 886, 895, 898, 941, 951, 955, 958, 980, 984, 988, 1009, 1011, 1013, 1019, 1062, 1068, 1 087, 1091, 1127, 1130, 1135, 1138, 1143, 1148, 1150, 1152, 1176, 1234, 1276, 1311, 1319, 1340, 1348, 1357, 1422, 1424, 1447, 1602, 1806, 1855, 1980}

{0, 1}

In []:

In [25]: plt.scatter(data['Gender'],data['duration'],color='black')

Out[25]: <matplotlib.collections.PathCollection at 0x25fba4baa40>


```
In [26]: plt.scatter(data['Gender'],data['interest rate'],color='black')
```

Out[26]: <matplotlib.collections.PathCollection at 0x25fba67de40>

scale the data

Use K Means Cluster

In [29]: from sklearn.cluster import KMeans

```
k means = KMeans(n clusters=3, random state=1)
In [30]:
         k means.fit(sc x)
Out[30]: KMeans(n_clusters=3, random_state=1)
         In a Jupyter environment, please rerun this cell to show the HTML representation or trust
         the notebook.
         On GitHub, the HTML representation is unable to render, please try loading this page with
         nbviewer.org.
In [31]: k_means.labels
Out[31]: array([1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0,
                0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 2, 0, 2, 1, 0, 1, 0, 0,
                1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1,
                0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1,
                1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 2, 0, 2, 0, 1, 1, 0, 1,
                                                  0, 1, 2, 1, 2, 1, 1,
                      1, 0, 1, 0, 0, 1, 1, 0, 1,
                1, 2, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 2, 1, 2,
                0, 1, 0, 2, 1, 2, 1, 1, 2, 0, 1,
                                                  0, 0, 1, 1, 0, 1, 1,
                            0, 1, 0, 2, 0, 0, 0,
                                                  0,
                                                    2, 1, 1, 1, 1, 1,
                1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 2, 1, 0, 1, 1, 0, 0, 1, 1, 1,
                         0, 1, 0, 0, 1, 2, 2, 0,
                                                  0, 0, 2, 0, 2, 1,
                0, 1, 2, 2, 1, 0, 2, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1,
                      1, 1, 0, 0, 1, 1, 0, 0,
                                               2,
                                                  1, 1, 1, 0, 1, 2,
                0, 2, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0,
                1, 1, 0, 1, 0, 1, 2, 1, 2, 1, 1,
                                                  0, 1, 0, 0, 0, 0, 1,
                2, 2, 2, 1, 0, 1, 1, 1, 1, 1, 0, 2, 0, 0, 1, 1, 2,
                0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 2, 0, 1, 0, 0, 2, 2, 1, 1,
                      0, 0, 1, 1, 1, 1, 0, 0, 1,
                                                  0, 1, 1, 0, 1, 0, 1,
                1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 2, 1, 2, 0, 1, 1, 0, 0, 1, 1, 0,
                0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 2, 0, 1, 1, 0, 0, 0, 0, 1, 0, 2,
                0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 2, 0, 1, 1, 0, 1,
                1, 0, 0, 0, 0, 2, 1, 1, 1, 0, 0, 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0,
                2, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0,
                1, 0, 2, 1, 1, 0, 1, 1, 1, 1, 1, 0])
```

Use Elbow method

```
In [32]: wcss = []
         k = list(range(1, 15))
         for i in k:
             kmeans = KMeans(n clusters = i)
             kmeans.fit(sc_x)
             wcss.append(kmeans.inertia_)
             print(f'For n clusters = {i}, the intertia is {kmeans.inertia }' )
         For n clusters = 1, the intertia is 1036.0
         For n_clusters = 2, the intertia is 530.2844942612068
         For n_clusters = 3, the intertia is 258.80051758779
         For n_clusters = 4, the intertia is 190.72628746155505
         For n_clusters = 5, the intertia is 125.10920333382882
         For n_clusters = 6, the intertia is 96.12221236262565
         For n_clusters = 7, the intertia is 72.00247982978159
         For n_clusters = 8, the intertia is 59.550255519346585
         For n_clusters = 9, the intertia is 48.214497939909464
         For n_clusters = 10, the intertia is 43.76816097195865
         For n clusters = 11, the intertia is 39.81177225457489
         For n_clusters = 12, the intertia is 36.60731705522372
         For n_clusters = 13, the intertia is 32.39815522108192
         For n_clusters = 14, the intertia is 29.306876754440772
In [33]: wcss
Out[33]: [1036.0,
          530.2844942612068,
          258.80051758779,
          190.72628746155505,
          125.10920333382882,
          96.12221236262565,
          72.00247982978159,
          59.550255519346585,
          48.214497939909464,
          43.76816097195865,
          39.81177225457489,
          36.60731705522372,
          32.39815522108192,
          29.306876754440772]
```


Basis the elbow method, we can say K = 3

```
k means = KMeans(n clusters=3, random state=1)
In [35]:
         k means.fit(sc x)
         labels = k_means.labels_
         labels
Out[35]: array([1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0,
                0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 2, 0, 2, 1, 0, 1, 0, 0,
                1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1,
                0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 2, 1, 1,
                1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 2, 0, 2, 0, 1, 1, 0, 1, 0, 1, 1, 0,
                1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 2, 1, 2, 1, 1, 1, 1,
                1, 2, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 2, 1, 2, 0, 2, 1,
                0, 1, 0, 2,
                           1, 2, 1, 1, 2, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0,
                1, 1, 1, 1, 0, 1, 0, 2, 0, 0, 0, 0, 2, 1, 1, 1, 1, 1, 1, 0, 1, 0,
                1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 2, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0,
                1, 1, 0, 0, 1, 0, 0, 1, 2, 2, 0, 0, 0, 2, 0, 2, 1, 1, 1, 1, 0, 1,
                0, 1, 2, 2, 1, 0, 2, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 2, 0,
                1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 1, 1, 1, 0, 1, 2, 1, 2, 2,
                0, 2, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 2,
                1, 1, 0, 1, 0, 1, 2, 1, 2, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1,
                2, 2, 2, 1, 0, 1, 1, 1, 1, 1, 0, 2, 0, 0, 1, 1, 2, 1, 0, 1, 1,
                0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 2, 0, 1, 0, 0, 2, 2, 1, 1,
                1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 2, 1,
                1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 2, 1, 2, 0, 1, 1, 0, 0, 1, 1, 0,
                0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 2, 0, 1, 1, 0, 0, 0, 0, 1, 0, 2,
                0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 2, 0, 1, 1, 0, 1,
                1, 0, 0, 0, 0, 2, 1, 1, 1, 0, 0, 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0,
                2, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0,
                1, 0, 2, 1, 1, 0, 1, 1, 1, 1, 1, 0])
In [36]: | y_kmeans = k_means.fit_predict(x)
        y kmeans
Out[36]: array([0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 2, 1, 0, 0, 0,
                0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
                0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 2, 0, 1, 0, 1, 0, 0, 0, 0, 0,
                0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0,
                0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 2, 0, 1, 1,
                                                                          2, 1,
                0, 0, 1, 2, 1, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
                0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 1, 0,
                1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0, 1, 1, 0,
                0, 1, 0, 0, 1, 0, 1, 0, 2, 2, 1, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0, 1,
                0, 0, 2, 2, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1,
                                                                          2, 0,
                0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 0, 1, 2, 0, 1,
                0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2,
                1, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,
                2, 1, 2, 0, 0, 0, 1, 0, 1, 1, 1, 0, 2, 0, 0, 0, 1, 2, 0, 0, 0, 1,
                0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 2, 2, 0, 0,
                0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0,
                0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0,
                1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1,
                0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 2, 1, 0, 0, 1,
                0, 0, 0, 0, 0, 2, 0, 0, 1, 1, 0, 2, 1, 0, 0, 0, 0, 1, 0, 0, 0,
                2, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1,
                0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0])
```

```
In [37]: # Evaluation for all 3 Cluster : find the silhouett score
          from sklearn.metrics import silhouette samples, silhouette score
In [38]: silhouette score(sc x, labels, random state=1)
Out[38]: 0.6415946769589214
In [39]: data.head()
Out[39]:
              Index interest rate credit Gender previous duration Churn
                 0
                                                     0
                                                            117
                                                                    0
           0
                          1.334
                                    0
                                            1
                 1
                          0.767
                                                            274
                                                                     1
                          4.858
           2
                 2
                                    0
                                            1
                                                     0
                                                            167
                                                                    0
           3
                 3
                          4.120
                                            0
                                                     0
                                                            686
                                                                     1
                 4
                          4.856
                                            1
                                                     0
                                                            159
                                                                    0
In [40]: data['Cluster_Kmeans_3'] = labels
          data.head()
Out[40]:
              Index interest_rate credit Gender previous duration Churn Cluster_Kmeans_3
           0
                 0
                          1.334
                                    0
                                            1
                                                     0
                                                            117
                                                                    0
                                                                                      1
                                            0
           1
                 1
                          0.767
                                    0
                                                     1
                                                            274
                                                                    1
                                                                                      1
                 2
                          4.858
                                                            167
           3
                 3
                          4.120
                                    0
                                            0
                                                     0
                                                            686
                                                                     1
                                                                                      0
                          4.856
                                                     0
                                                            159
                                                                    0
                                                                                      0
```

Visualization

```
In [41]: plt.scatter(x[y_kmeans==0,0], x[y_kmeans==0,1], s=100, c='purple',label='Clustongle', label='Clustongle', label=
```


In []:

K = 4

```
k means = KMeans(n clusters=4, random state=1)
In [42]:
         k means.fit(sc x)
         labels = k_means.labels_
         labels
Out[42]: array([0, 0, 1, 3, 1, 0, 1, 3, 3, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 3, 0, 1,
                1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 3, 0, 1, 1, 2, 1, 2, 0, 1, 0, 1, 1,
                0, 0, 1, 0, 0, 0, 3, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0,
                1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 3, 0, 0,
                         1, 0, 0, 0, 0, 0, 1, 3, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1,
                0, 1, 1,
                0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 1, 0,
                0, 3, 0, 1, 1, 0, 1, 1, 1, 1, 3, 0, 3, 0, 0, 1, 2, 0, 3, 3, 3, 0,
                         2, 0, 2, 0, 0, 3, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1,
                0, 0, 0, 0, 1, 0, 1, 3, 1, 1, 1, 1, 2, 0, 0, 0, 0, 0, 0, 1, 0, 1,
                0, 0, 1, 3, 0, 0, 1, 1, 0, 3, 1, 2, 0, 1, 0, 0, 1, 3, 0,
                0, 0, 1, 1, 0, 1, 3, 0, 2, 3, 1, 1, 1, 3, 3, 2, 0, 0, 0, 0, 1, 0,
                1, 0, 2, 2, 0, 1, 3, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1,
                                                                      0, 0, 2, 1,
                           3, 1, 0, 0, 3, 1, 2, 0, 0, 0, 1, 0, 3, 0, 3, 2,
                1, 3, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 3,
                0, 0, 1,
                         0, 1, 0, 3, 0, 3, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0,
                2, 3, 2, 0, 1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 1, 0, 0, 2, 0, 1, 0, 0,
                1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 3, 1, 0, 1, 1,
                                                                      2,
                0, 1, 1, 1, 0, 0, 0, 1, 3, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0,
                0, 1, 1, 3, 0, 0, 1, 0, 1, 1, 1, 2, 0, 3, 1, 0, 0, 1, 1, 0, 0, 1,
                3, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 3, 3, 0, 0, 1, 1, 1, 1, 0,
                1, 1, 1, 1, 0, 1, 0, 1, 3, 1, 3, 0, 0, 0, 1, 0, 2, 3, 0, 0, 1, 0,
                            1, 2, 0, 0, 0, 1, 1, 2, 0, 0, 0, 0, 1, 3, 1, 0, 1, 1,
                2, 0, 0, 3, 0, 1, 0, 3, 3, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 3,
                0, 1, 3, 0, 0, 1, 0, 0, 0, 0, 0, 1
In [43]: | y_kmeans = k_means.fit_predict(x)
         y kmeans
Out[43]: array([0, 0, 0, 3, 0, 0, 0, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3,
                0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0, 1, 0, 1, 3, 0, 0, 0, 0,
                0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0,
                0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 1, 0, 0,
                         0, 0, 0, 3, 3, 3, 0, 1, 0, 1, 0, 3, 0, 0, 0,
                0, 0, 0, 0, 3, 0, 0, 3, 3, 0, 0, 0, 0, 1, 0, 1, 0, 3, 0, 0, 0, 0,
                0, 3, 0, 3, 3, 0, 0, 0, 0, 0, 3, 0, 3, 3, 0, 0, 2, 0, 1, 3,
                0, 0, 3, 1, 3, 1, 0, 3, 1, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0,
                0, 0, 3, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 3, 0, 3, 0, 3, 0,
                3, 0, 0, 3, 0, 1, 0, 0, 0, 3, 0, 1, 0, 0, 1, 0, 0, 3, 3,
                3, 3, 0, 0, 3, 0, 3, 0, 1, 1, 3, 0, 0, 1, 3, 1, 0, 0, 0, 3, 0, 3,
                0, 0, 1, 1, 3, 0, 1, 3, 0, 3, 0, 0, 0, 3, 0, 0, 0, 3, 3, 3,
                0, 0, 0, 0, 3, 3, 3, 0, 3, 0, 1, 0, 3, 0, 0, 0, 3, 0, 1, 2, 0, 1,
                0, 1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 1,
                3, 0, 0, 0, 0, 0, 1, 0, 1, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
                1, 1, 1, 0, 0, 0, 3, 0, 3, 3, 3, 0, 1, 0, 0, 0, 3, 2, 0, 0, 3, 3,
                0, 3, 3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 3, 1, 0, 0, 3, 0, 2, 1, 0, 3,
                3, 0, 0, 0, 1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 3, 0, 0, 3, 0, 1, 0,
                0, 0, 3, 3, 0, 0, 3, 3, 0, 0, 0, 1, 0, 1, 3, 3, 3, 3, 0, 0, 3, 0,
```

```
In [44]:
          from sklearn.metrics import silhouette samples, silhouette score
In [45]: silhouette score(sc x, labels, random state=1)
Out[45]: 0.6498972328936907
In [46]: data.head()
Out[46]:
              Index interest rate credit Gender previous duration Churn Cluster Kmeans 3
                 0
           0
                          1.334
                                    0
                                                            117
                                                                    0
                                                                                      1
                 1
                          0.767
                                                     1
                                                           274
                                                                    1
                                                                                      1
           2
                 2
                          4.858
                                    0
                                            1
                                                    0
                                                           167
                                                                    0
                                                                                     0
           3
                 3
                          4.120
                                                    0
                                                           686
                                                                    1
                                                                                     0
                          4.856
                                                    0
                                                           159
                                                                    0
                                                                                     0
```

Visualization

```
In [47]: plt.scatter(x[y_kmeans==0,0], x[y_kmeans==0,1], s=100, c='red',label='Cluster1
plt.scatter(x[y_kmeans==1,0], x[y_kmeans==1,1], s=100, c='yellow',label='Cluste
plt.scatter(x[y_kmeans==2,0], x[y_kmeans==2,1], s=100, c='green',label='Cluste
plt.scatter(x[y_kmeans==3,0], x[y_kmeans==3,1], s=100, c='black',label='Cluste
plt.show()
```


K = 5

```
k means = KMeans(n clusters=5, random state=1)
In [48]:
         k means.fit(sc x)
         labels = k_means.labels_
         labels
Out[48]: array([0, 0, 1, 2, 1, 0, 1, 2, 2, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 2, 3, 1,
                1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 2, 0, 1, 1, 3, 1, 4, 0, 1, 0, 1, 1,
                0, 0, 1, 0, 0, 0, 2, 1, 1, 1, 1, 0, 1, 0, 3, 0, 1, 0, 3, 0, 1, 0,
                1, 1, 3, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 2, 0, 0,
                0, 1, 1, 1, 0, 0, 3, 3, 3, 1, 2, 1, 3, 1, 3, 0, 1, 0, 1, 0,
                0, 0, 0, 1, 3, 1, 1, 3, 0, 1, 0, 1, 0, 4, 0, 3, 0, 0, 0, 0, 1, 0,
                         1, 1, 0, 1, 1, 1, 1, 2, 0, 2, 0, 0, 1, 4, 0, 2,
                1, 0, 2, 3, 3, 3, 0, 0, 2, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 2,
                0, 0, 0, 0, 1, 0, 1, 2, 1, 1, 1, 1, 4, 0, 0, 0, 0, 0, 0, 1,
                0, 0, 1, 2, 0, 3, 1, 1, 0, 2, 1, 3, 0, 1, 3, 0, 1, 2, 3, 0, 0, 1,
                0, 3, 1, 1, 3, 1, 2, 0, 4, 2, 1, 1, 1, 2, 2, 3, 0, 0, 0, 0, 1, 3,
                1, 0, 3, 4, 0, 1, 2, 3, 1, 3, 0, 1, 1, 0, 0, 0, 0, 1, 0, 3,
                0, 1, 0, 0, 2, 1, 3, 0, 2, 1, 4, 0, 3, 0, 1, 0, 2, 0, 2, 4, 1, 2,
                         0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 3, 1, 0, 1, 1,
                3, 0, 1, 0, 1, 0, 2, 0, 2, 0, 3, 1, 0, 1, 1, 1, 1, 0, 0, 0, 4, 0,
                4, 2, 4,
                         0, 1, 0, 3, 0, 3, 0, 0, 1, 3, 1, 1, 0, 3, 4,
                                                                          1,
                            0, 0, 1, 0, 1, 1, 0, 0, 1, 2, 1, 0, 1, 1,
                1, 0, 3, 1,
                0, 1, 1, 1, 3, 0, 0, 0, 1, 2, 0, 1, 0, 0, 1, 0, 1, 0,
                0, 1, 1, 2, 0, 0, 1, 3, 1, 1, 1, 3, 0, 2, 1, 3, 3, 1, 1,
                2, 1, 3, 0, 1, 1, 0, 1, 0, 0, 0, 2, 2, 0, 0, 1, 1, 1, 1, 0, 1, 3,
                1, 1, 1, 1, 3, 1, 0, 1, 2, 1, 2, 3, 0, 3, 1, 0, 3, 2, 0, 0, 1, 3,
                0, 1, 1, 1, 1, 4, 0, 0, 0, 1, 1, 3, 0, 0, 0, 0, 1, 2, 1, 0, 1, 1,
                3, 3, 3, 2, 3, 1, 0, 2, 2, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2,
                0, 1, 2, 0, 0, 1, 0, 0, 3, 0, 0, 1
```

```
In [49]: y kmeans = k means.fit predict(x)
         y kmeans
Out[49]: array([4, 1, 4, 3, 4, 4, 1, 3, 3, 1, 1, 1, 1, 4, 1, 1, 4, 4, 1, 3, 3, 1,
                 1, 1, 1, 4, 1, 1, 1, 4, 4, 4, 3, 1, 4, 4, 0, 4, 0, 1, 4, 1, 4, 4,
                 4, 4, 4, 4, 4, 1, 3, 4, 4, 4, 4, 1, 4, 4, 3, 1, 4, 4, 3, 1, 1, 1,
                 4, 4, 3, 4, 4, 4, 1, 4, 1, 4, 1, 1, 4, 4, 4, 1, 4, 1, 1, 0, 4, 1,
                            4, 4, 3, 3, 3, 4, 0, 4, 3, 4, 3, 1, 1, 1,
                 1, 4, 4, 4, 3, 4, 4, 3, 1, 1, 4, 4, 1, 0, 1, 0, 4, 1, 4, 1, 4, 4,
                             1, 1, 1, 4, 4, 4, 3, 1, 3, 1, 4, 4, 2, 4, 0, 3, 0, 3,
                   4, 3, 0, 3, 0, 1, 1, 3, 1, 4, 1, 4, 4, 4, 1, 1, 1, 1, 1, 4, 4, 0,
                 4, 4, 1, 4, 1, 4, 1, 3, 4, 4, 4, 4, 2, 4, 4, 1, 4, 1, 4, 4, 1, 4,
                          3, 1, 3, 4, 1, 1, 3, 1, 0, 4, 1, 3, 1, 4, 3, 3, 4, 4, 4,
                 1, 3, 4, 4, 3, 4, 3, 4, 0, 0, 1, 4, 1, 3, 3, 0, 4, 4, 1, 1, 4, 3,
                 4, 4, 0, 0, 1, 4, 3, 3, 4, 3, 4, 4, 4, 1, 4, 4, 1, 1, 1, 3, 0, 1,
                 4, 4, 1, 4, 3, 1, 3, 1, 3, 4, 0, 1, 3, 4, 1, 4, 3, 4, 3, 2, 1, 0,
                 4, 0, 1, 4, 4, 1, 1, 4, 1, 4, 4, 4, 4, 3, 1, 4, 4, 1, 4, 4, 0,
                 3, 4, 4, 4, 4, 1, 0, 4, 0, 1, 3, 1, 4, 4, 4, 4, 4, 4, 1, 4, 0, 4,
                 0, 3, 0, 4, 4, 4, 3, 4, 3, 1, 1, 4, 0, 1, 4, 4, 3, 2, 4, 4, 1, 3,
                 4, 1, 3, 4, 1, 4, 4, 4, 4, 4, 4, 1, 0, 1, 1, 1, 4, 0, 0, 1, 1,
                 1, 4, 4, 4, 3, 1, 1, 4, 4, 3, 4, 4, 1, 4, 4, 1, 4, 4, 1, 4, 0, 4,
                 1, 4, 1, 3, 1, 4, 1, 3, 4, 4, 1, 0, 1, 3, 1, 3, 3, 1, 1, 1, 1, 4,
                 3, 1, 3, 1, 1, 4, 1, 1, 1, 4, 1, 3, 3, 4, 1, 1, 1, 4, 4, 1, 1, 3,
                 4, 4, 4, 4, 3, 1, 1, 1, 3, 4, 3, 3, 4, 3, 4, 4, 0, 3, 4, 4, 4, 3,
                 1, 4, 4, 4, 4, 2, 1, 4, 1, 1, 1, 0, 1, 4, 4, 1, 4, 3, 4, 1, 1, 4,
                 0, 3, 3, 3, 3, 1, 4, 3, 3, 1, 4, 4, 4, 4, 1, 4, 1, 4, 4, 4, 4, 1,
                 1, 4, 3, 1, 1, 1, 4, 4, 3, 1, 1, 4])
 In [ ]:
In [50]: # Evaluation for all 5 Cluster: find the silhouett score
         from sklearn.metrics import silhouette samples, silhouette score
In [51]: silhouette score(sc x, labels, random state=1)
Out[51]: 0.6307603699510385
 In [ ]:
In [52]: data['Cluster Kmeans 5'] = labels
         data.head()
Out[52]:
             Index interest rate credit Gender previous duration Churn Cluster Kmeans 3 Cluster Kn
          0
                0
                        1.334
                                                 0
                                                       117
                                                               0
                                                                               1
          1
                1
                        0.767
                                        0
                                                 1
                                                       274
                                                               1
                                                                               1
          2
                2
                        4.858
                                                 0
                                                       167
                                                                               0
                3
                        4.120
                                        0
                                                 0
                                                       686
                                                               1
                                                                               0
                        4.856
                                                       159
```

Visualization

```
In [53]: plt.scatter(x[y_kmeans==0,0], x[y_kmeans==0,1], s=100, c='blue',label='Cluster
plt.scatter(x[y_kmeans==1,0], x[y_kmeans==1,1], s=100, c='yellow',label='Cluster
plt.scatter(x[y_kmeans==2,0], x[y_kmeans==2,1], s=100, c='green',label='Cluster
plt.scatter(x[y_kmeans==3,0], x[y_kmeans==3,1], s=100, c='black',label='Cluster
plt.scatter(x[y_kmeans==4,0], x[y_kmeans==4,1], s=100, c='purple',label='Cluster
plt.show()
```

