EEEN 322 PS 4 QUESTIONS

Q1

4.3-2 Sketch the AM signal $[A+m(t)]\cos \omega_c t$ for the periodic triangle signal m(t) shown in Fig. P4.3-2 corresponding to the modulation index: (a) $\mu = 0.5$; (b) $\mu = 1$; (c) $\mu = 2$; (d) $\mu = \infty$. How do you interpret the case $\mu = \infty$?

Figure P4.3-2

Q₂

4.3-3 For the AM signal in Prob. 4.3-2 with $\mu = 0.8$:

- (a) Find the amplitude and power of the carrier.
- (b) Find the sideband power and the power efficiency η .

Q3

4.5-1 A modulating signal m(t) is given by:

- (a) $m(t) = \cos 100t$
- **(b)** $m(t) = \cos 100t + 2\cos 300t$
- (c) $m(t) = \cos 100t \cos 500t$

In each case:

- (i) Sketch the spectrum of m(t).
- (ii) Find and sketch the spectrum of the DSB-SC signal $2m(t) \cos 1000t$.
- (iii) From the spectrum obtained in (ii), suppress the LSB spectrum to obtain the USB spectrum
- (iv) Knowing the USB spectrum in (ii), write the expression $\varphi_{\text{USB}}(t)$ for the USB signal.
- (v) Repeat (iii) and (iv) to obtain the LSB signal $\varphi_{\rm LSB}(t)$.

O4

4.5-2 For the signals in Prob. 4.5-1, determine $\varphi_{LSB}(t)$ and $\varphi_{USB}(t)$ using Eq. (4.17) if the carrier frequency $\omega_c = 1000$. Hint: If m(t) is a sinusoid, its Hilbert transform $m_h(t)$ is the sinusoid m(t) phase-delayed by $\pi/2$ rad.

$$\varphi_{\text{USB}}(t) = m(t)\cos\omega_c t - m_h(t)\sin\omega_c t \tag{4.17a}$$

$$\varphi_{\text{LSB}}(t) = m(t)\cos\omega_c t + m_h(t)\sin\omega_c t \tag{4.17b}$$

$$\varphi_{\text{SSB}}(t) = m(t)\cos\omega_c t \mp m_h(t)\sin\omega_c t$$
 (4.17c)

Q5

4.5-6 An USB signal is generated by using the phase-shift method (Fig. 4.20). If the input to this system is $m_h(t)$ instead of m(t), what will be the output? Is this signal still an SSB signal with bandwidth equal to that of m(t)? Can this signal be demodulated [to get back m(t)]? If so, how?

Figure 4.20 SSB generation by phase-shift method.

EEEN 322 PS 4 SOLUTIONS

Q1

4.3-2

(a)
$$\mu = 0.5 = \frac{m_p}{A} = \frac{10}{A} \implies A = 20$$

(a)
$$\mu = 0.5 = \frac{m_p}{A} = \frac{10}{A} \implies A = 20$$

(b) $\mu = 1.0 = \frac{m_p}{A} = \frac{10}{A} \implies A = 10$
(c) $\mu = 2.0 = \frac{m_p}{A} = \frac{10}{A} \implies A = 5$
(d) $\mu = \infty = \frac{m_p}{A} = \frac{10}{A} \implies A = 0$

(c)
$$\mu = 2.0 = \frac{m_p}{A} = \frac{10}{A} \implies A = 5$$

(d)
$$\mu = \infty = \frac{m_p}{A} = \frac{10}{A} \implies A = 0$$

This means that $\mu=\infty$ represents the DSB-SC case. Figure S4.3-2 shows various waveforms.

Q₂

4.3-3 (a) According to Eq. (4.10a), the carrier amplitude is $A = m_p/\mu = 10/0.8 = 12.8$. The carrier power is $P_c = A^2/2 = 78.125$.

Fig. S4.3-3

(b) The sideband power is $m^2(t)/2$. Because of symmetry of amplitude values every quarter cycle, the power of m(t) may be computed by averaging the signal energy over a quarter cycle only. Over a quarter cycle m(t) can be represented as $m(t) = 40t/T_0$ (see Fig. S4.3-3). Hence,

$$m^2(t) = \frac{1}{T_0/4} \int_0^{T_0/4} \left[\frac{40t}{T_0} \right]^2 dt = 33.34$$

The sideband power is

$$P_* = \frac{m^2(t)}{2} = 16.67$$

The efficiency is

$$\eta = \frac{P_s}{P_c + P_s} = \frac{16.67}{78.125 + 16.67} \times 100 = 19.66\%$$

Q3

4.5-1 To generate a DSB-SC signal from m(t), we multiply m(t) with cos ω_ct. However, to generate the SSB signals of the same relative magnitude, it is convenient to multiply m(t) with 2 cos ω_ct. This also avoids the nuisance of the fractions 1/2, and yields the DSB-SC spectrum M(ω - ω_c) + M(ω + ω_c). We suppress the USB spectrum (above ω_c and below -ω_c) to obtain the LSB spectrum. Similarly, to obtain the USB spectrum, we suppress the LSB spectrum (between -ω_c and ω_c) from the DSB-SC spectrum. Figures S4.5-1 a, b and c show the three cases.

(a) From Fig. a. we can express $\varphi_{\text{LSB}}(t) = \cos 900t$ and $\varphi_{\text{USB}}(t) = \cos 1100t$.

(b) From Fig. b. we can express $\varphi_{LSB}(t) = 2\cos 700t + \cos 900t$ and $\varphi_{USB}(t) = \cos 1100t + 2\cos 1300t$

(c) From Fig. c. we can express $\varphi_{LSB}(t) = \frac{1}{2} [\cos 400t + \cos 600t]$ and $\varphi_{USB}(t) = \frac{1}{2} [\cos 1400t + \cos 1600t]$

04

$$\varphi_{\text{LSB}}(t) = m(t)\cos\omega_c t - m_h(t)\sin\omega_c t \quad \text{and} \quad \varphi_{\text{LSB}}(t) = m(t)\cos\omega_c t + m_h(t)\sin\omega_c t$$
(a) $m(t) = \cos 100t$ and $m_h(t) = \sin 100t$. Hence,
$$\varphi_{\text{LSB}}(t) = \cos 100t \cos 1000t + \sin 100t \sin 1000t = \cos(1000 - 100)t = \cos 900t$$

$$\varphi_{\text{LSB}}(t) = \cos 100t \cos 1000t - \sin 100t \sin 1000t = \cos(1000 + 100)t = \cos 1100t$$
(b) $m(t) = \cos 100t + 2\cos 300t$ and $m_h(t) = \sin 100t + 2\sin 300t$. Hence,
$$\varphi_{\text{LSB}}(t) = (\cos 100t + 2\cos 300t) \cos 1000t + (\sin 100t + 2\sin 300t) \sin 1000t = \cos 900t + 2\cos 700t$$

$$\varphi_{\text{LSB}}(t) = (\cos 100t + 2\cos 300t) \cos 1000t - (\sin 100t + 2\sin 300t) \sin 1000t = \cos 1100t + 2\cos 1300t$$
(c) $m(t) = \cos 100t \cos 500t = 0.5\cos 400t + 0.5\cos 600t$ and $m_h(t) = 0.5\sin 400t + 0.5\sin 600t$. Hence.
$$\varphi_{\text{LSB}}(t) = (0.5\cos 400t + 0.5\cos 600t) \cos 1000t + (0.5\sin 400t + 0.5\sin 600t) \sin 1000t = 0.5\cos 400t + 0.5\cos 600t$$

$$\varphi_{\text{LSB}}(t) = (0.5\cos 400t + 0.5\cos 600t) \cos 1000t - (0.5\sin 400t + 0.5\sin 600t) \sin 1000t = 0.5\cos 400t + 0.5\cos 600t$$

05

4.5-6 We showed in prob. 4.5-4 that the Hilbert transform of $m_h(t)$ is -m(t). Hence, if $m_h(t)$ [instead of m(t)] is applied at the input in Fig. 4.20. the USB output is

$$y(t) = m_h(t) \cos \omega_c t - m(t) \sin \omega_c t$$

= $m(t) \cos \left(\omega_c t + \frac{\pi}{2}\right) + m_h(t) \sin \left(\omega_c t + \frac{\pi}{2}\right)$

Thus, if we apply $m_h(t)$ at the input of the Fig. 4.20, the USB output is an LSB signal corresponding to m(t). The carrier also acquires a phase shift $\pi/2$. Similarly, we can show that if we apply $m_h(t)$ at the input of the Fig. 4.20, the LSB output would be an USB signal corresponding to m(t) (with a carrier phase shifted by $\pi/2$).