Metaheuristics

Fares BOUGOURZI, Ph.D.

Associate professor

DSLS Team, H&E Dept., JUNIA ISEN Lille

CNRS UMR-8520 IEMN

Tél.: 33 (0)3 20 30 40 27

fares.bougourzi@junia.com

faresbougourzi@gmail.com

2.3 S-metaheuristics Tabu Search (TS)

- Diversification (long term memory)
 - Forcing search in unexplored regions
 - Frequency memory technic (problem dependent)
 - Focus search on less changed components in the search history
 - Example for TSP (Travelling Salesman problem)
 - Create a matrix F where f(i,j) corresponding to number of iterations where city i is positioned at j from the starting of algorithm
 - Diversification
 - Start search from a new initial solution S generated as follow
 - Use smallest values of F to replace components of S
 - Pursue search

Diversification (Frequency memory – TSP 5

cities)

- Diversification
 - Start search from a new initial solution S generated as follow
 - Use smallest values of F to replace components of S
 - Pursue search

New solution S

1 2 3 4 5

After a given number of iterations, start diversification

POSITIONS

Diversification (Frequency memory – TSP 5

cities)

- Diversification
 - Start search from a new initial solution S generated as follow
 - Use smallest values of F to replace components of S
 - Pursue search

New solution S

1 2 3 4 5 5 | | | |

After a given number of iterations, start diversification

POSITIONS

Diversification (Frequency memory – TSP 5

cities)

- Diversification
 - Start search from a new initial solution S generated as follow
 - Use smallest values of F to replace components of S
 - Pursue search

New solution S

1 2 3 4 5

After a given number of iterations, start diversification

POSITIONS

F MATRIX

Diversification (Frequency memory – TSP 5

cities)

- Diversification
 - Start search from a new initial solution S generated as follow
 - Use smallest values of F to replace components of S
 - Pursue search

New solution S

 1
 2
 3
 4
 5

 5
 1

After a given number of iterations, start diversification

POSITIONS

Diversification (Frequency memory – TSP 5

cities)

- Diversification
 - Start search from a new initial solution S generated as follow
 - Use smallest values of F to replace components of S
 - Pursue search

New solution S

1 2 3 4 5 5 1 | | |

After a given number of iterations, start diversification

Diversification (Frequency memory – TSP 5

cities)

- Diversification
 - Start search from a new initial solution S generated as follow
 - Use smallest values of F to replace components of S
 - Pursue search

New solution S

 1
 2
 3
 4
 5

 5
 1
 3
 4

After a given number of iterations, start diversification

Diversification (Frequency memory – TSP 5

cities)

- Diversification
 - Start search from a new initial solution S generated as follow
 - Use smallest values of F to replace components of S
 - Pursue search

New solution S

 1
 2
 3
 4
 5

 5
 1
 3
 4

F MATRIX

Diversification (Frequency memory – TSP 5

cities)

- Diversification
 - Start search from a new initial solution S generated as follow
 - Use smallest values of F to replace components of S
 - Pursue search

New solution S

 1
 2
 3
 4
 5

 5
 1
 3
 4

F MATRIX

Diversification (Frequency memory – TSP 5

cities)

- Diversification
 - Start search from a new initial solution S generated as follow
 - Use smallest values of F to replace components of S
 - Pursue search

New solution S

 1
 2
 3
 4
 5

 5
 1
 3
 4

F MATRIX

Diversification (Frequency memory – TSP 5

cities)

- Diversification
 - Start search from a new initial solution S generated as follow
 - Use smallest values of F to replace components of S
 - Pursue search

New solution S

 1
 2
 3
 4
 5

 5
 1
 3
 4
 2

F MATRIX

1	2	3	4	5
5	1	3	4	2

```
Template of tabu search algorithm.
                -s = s_0; /* Initial solution */
    Save S as
  best solution
                 Initialize the tabu list, medium-term and long-term memories;
                                                                                        Improve 5
                 Repeat
                   Find best admissible neighbor s'; /* non tabu or aspiration criterion holds */
Compare S with the
                   s=s':
best solution and
update if necessary
                   Update tabu list, aspiration conditions, medium and long term memories;
                   If intensification_criterion holds Then intensification :
                   If diversification_criterion holds Then diversification;
                 Until Stopping criteria satisfied
                 Output: Best solution found.
```

S-metaheuristics – Algorithms review

Local search

- Selection strategies of the best neighbor
 - Best improvement (steepest descent)
 - First improvement
 - Random improvement

High probability to fall into local optima

Simulated annealing

- Accepting the degradation of a solution under some conditions
 - High temperatures promote accepting bad solutions
 - Static temperatures prevent accepting very bad solutions

Tabu search

- Accepting the degradation of a solution if and only if
 - Non tabu solution
- Memory usage to optimize the search process
 - Short term → tabu list
 - Medium term → recency for intensification
 - Long term → frequency for diversification

Strategies to escape from local optima

Lab session – first part

Implement your third and last S-metaheuristic algorithm - the Tabu Search algorithm (TS) -

- Version 1, only Tabu list (recommended before next session)
- Version 2, add intensification process
- Version 3, add diversification process

Apply the 2 versions to

- The TSP problem Data available on the campus
- Show the best solution and associated trajectory curve for each version