E-COMMERCE DATA SET

liz lyon

VISUALIZE DATA

VISUALIZE DATA

VISUALIZE DATA

Question 1

Which variables have the strongest impact on a successful customer transaction (Revenue column)?

Question 2

Are there any definitive clusters between the ExitRate and BounceRate columns? If so, are there any outliers?

Question 3

Are there any methods to reduce the dimensionality of the continuous variables in your data set? If so, which method, how can you tell, and how many variables do you need to retain 80% of the original variance?

Which variables have the strongest impact on a successful customer transaction (Revenue column)?

Methods:

- Separated X & Y
- · TTS
- Z-scored
- Logistic Regression Model
- Predicted Vals
- Accuracy Score
- Confusion Matrix
- Coefs in Odds

Q1) Findings

Accuracy score: 0.8860502838605029

Confusion matrix:

Coefs:

	Coefs	Names	Odds Coefs
0	0.019275	Administrative	1.019461
1	-0.050981	Administrative_Duration	0.950296
2	0.038008	Informational	1.038740
3	0.005686	Informational_Duration	1.005702
4	0.155905	ProductRelated	1.168715
5	0.114954	ProductRelated_Duration	1.121822
6	-0.166766	BounceRates	0.846397
7	-0.798695	ExitRates	0.449916
8	1.535403	PageValues	4.643196
9	-2.184701	intercept	0.112511

Q1) GGPlot

Q1) GGPlot

Are there any definitive clusters between the ExitRate and BounceRate columns? If so, are there any outliers?

Methods:

- Create DF
- Z-scored
- Mins & Eps using Elbow Method
- DBSCAN
- Silhouette Score

Q2) GGPlot

eps = 0.50, min_samples = 150

Q2) GGPlot & Findings

Cluster: 0.36037680940793443

Overall: 0.3542671334119401

TOWAL PROJECT

Are there any methods to reduce the dimensionality of the continuous variables in your data set? If so, which method, how can you tell, and how many variables do you need to retain 80% of the original variance?

Methods:

- Selected predictor columns
- Z-scored
- · PCA
- DF of PC's
- Scree & 80% Variance Plot
- Logistic Regression
- PC score

Q3) GGPlot

Q3) GGPlot & Findings

All data: 0.884022708840227 6 PCs: 0.8816707218167072 4 PCs: 0.8814274128142742

THE END THANKYOU