

Apache Hadoop

 $\begin{array}{c} {\rm Hauptseminar~"Cloud\text{-}Plattformen~und~Big~Data"} \\ {\rm Dozent~Steffen~Rupp} \end{array}$

von

René Gentzen

rene.gentzen@mni.thm.de

im WS22/23

Inhaltsverzeichnis

1	Had	loop Fundamentals
	1.1	Anforderungen von Big Data
		1.1.1 Die Limits von Vertical Scalability
		1.1.2 Die Vorteile und Challenges von Horizontal Scalability
	1.2	Hadoop Historie
		1.2.1 GFS und MapReduce
	1.3	Hadoop 1.0 Aufbau
		1.3.1 HDFS in depth theoretisch
		1.3.2 MapReduce in depth theoretisch
	1.4	Hadoop 2.x mit YARN
		1.4.1 Neue Möglichkeiten mit YARN
		1.4.2 Neuer Aufbau, neue Verpflichtungen
		1.4.3 Code einer YARN Application
	1.5	Hadoop 3.x anreißen
		•
2	Das	Hadoop Ecosystem
	2.1	Storage
		2.1.1 HDFS
		2.1.2 HBase
	2.2	Management / Configuration
		2.2.1 YARN
		2.2.2 Oozie
		2.2.3 ZooKeper
		2.2.4 Ambari
	2.3	Datentransfer
		2.3.1 Sqoop
		2.3.2 Kafka
		2.3.3 AVRO
	2.4	Processing
		2.4.1 MapReduce
		2.4.2 Pig
		2.4.3 Hive
		2.4.4 Flume
		2.4.5 Mahout
		2.4.6 Spark
		2.4.7 Solr

3	Had	loop Or	perations	5
	3.1		p Setup	5
		3.1.1	Single Node Setup	5
		3.1.2	Pseudo-Distributed Setup	1
		3.1.3	Fully-distributed Cluster	
		3.1.4	Docker Images	5
		3.1.5	VM Distributionen	, L
		3.1.6	Hadoop in der Cloud	ر ا
	3.2	Praxis	•	5
	0.4	3.2.1	Start eines Single Node Clusters lokal	5
		3.2.1 $3.2.2$	Erste Übung zum Umgang mit dem HDFS	0 160
		$\frac{3.2.2}{3.2.3}$		ن
		3.4.3	MapReduce Workflow: Erstellung eines MapReduce Jobs, Kopieren	Į.
		2 2 4	auf den Name Node und Ausführung	
		3.2.4	YARN Application auf einem Cluster in der Cloud laufen lassen	5
4	ETL	. mit Pi	g	7
	4.1	Anwen	ndungsfälle	7
	4.2	Archit	ektur	7
	4.3	Pig La	.tin	7
	4.4			7
		4.4.1	Hinzufügen zum Cluster	7
		4.4.2	Anwendung auf dem Cluster	7
5	Date	a Ingoc	tion	9
3	5.1	a Inges		9
	$\frac{5.1}{5.2}$			g
	5.4	riume		5
6	Data	awareh	ousing mit Hive	11
	6.1	Anwen	ndungsfälle	11
		6.1.1	Unterschiede zu Pig	11
	6.2	Archit	ektur	11
	6.3	Interal	ktion	11
		6.3.1	HiveQL	11
		6.3.2		11
		6.3.3		11
	6.4	Praxis		11
		6.4.1		11
		6.4.2		11
		6.4.3	0	11
		6.4.4		11
		6.4.4		11
		U.¥.J	Appendent enter Query	11
7	Nos	QL mit	t HBase	13
	7.1	Anwen	ndungsfälle	13
		7 1 1	CAP Theorem	13

		7.1.2 ACID und BASE	3
	7.2	Architektur	3
	7.3	Interaktion	3
		7.3.1 HBase Shell	3
		7.3.2 Java API	3
	7.4	Praxis	3
		7.4.1 Hinzufügen zum Cluster	
		7.4.2 Einrichtung einer Datenbank	3
		7.4.3 Einlesen von Daten	
		7.4.4 Datenmigration aus einem RDBMS	
		7.4.5 Absetzen einer Query	
8	Stre	aming mit Kafka 19	5
	8.1	Anwendungsfälle	5
	8.2	Architektur	5
	8.3	Interaktion	5
		8.3.1 Who knows	5
	8.4	Praxis	5
		8.4.1 Hinzufügen zum Cluster	5
		8.4.2 Maybe, vielleicht kann man ja was zeigen	5
9	Had	oop heute 1	
	9.1	Aktuelle Anwendungsbeispiele zu Hadoop	7
		9.1.1 AirBnB	7
	9.2	Apache Spark als Gold Standard	7
		9.2.1 Kann eh alles besser	7

Abbildungsverzeichnis

Tabellenverzeichnis

Listings

1 Hadoop Fundamentals

- 1.1 Anforderungen von Big Data
- 1.1.1 Die Limits von Vertical Scalability
- 1.1.2 Die Vorteile und Challenges von Horizontal Scalability
- 1.2 Hadoop Historie
- 1.2.1 GFS und MapReduce
- 1.3 Hadoop 1.0 Aufbau
- 1.3.1 HDFS in depth theoretisch
- 1.3.2 MapReduce in depth theoretisch
- 1.4 Hadoop 2.x mit YARN
- 1.4.1 Neue Möglichkeiten mit YARN
- 1.4.2 Neuer Aufbau, neue Verpflichtungen
- 1.4.3 Code einer YARN Application
- 1.5 Hadoop 3.x anreißen

2 Das Hadoop Ecosystem

- 2.1 Storage
- 2.1.1 HDFS
- 2.1.2 HBase
- 2.2 Management / Configuration
- 2.2.1 YARN
- 2.2.2 Oozie
- 2.2.3 ZooKeper
- 2.2.4 Ambari
- 2.3 Datentransfer
- 2.3.1 Sqoop
- 2.3.2 Kafka
- 2.3.3 AVRO
- 2.4 Processing
- 2.4.1 MapReduce
- 2.4.2 Pig
- 2.4.3 Hive
- 2.4.4 Flume
- 2.4.5 **Mahout**
- 2.4.6 Spark
- 2.4.7 Solr

3 Hadoop Operations

- 3.1 Hadoop Setup
- 3.1.1 Single Node Setup
- 3.1.2 Pseudo-Distributed Setup
- 3.1.3 Fully-distributed Cluster
- 3.1.4 Docker Images
- 3.1.5 VM Distributionen
- 3.1.6 Hadoop in der Cloud

HDFS oder Cloud FS

3.2 Praxis

- 3.2.1 Start eines Single Node Clusters lokal
- 3.2.2 Erste Übung zum Umgang mit dem HDFS
- 3.2.3 MapReduce Workflow: Erstellung eines MapReduce Jobs, Kopieren auf den Name Node und Ausführung
- 3.2.4 YARN Application auf einem Cluster in der Cloud laufen lassen

4 ETL mit Pig

Auch wenn es vermehrt von Spark verdrängt wird

4.1 Anwendungsfälle

Welche neuen Dinge ermöglicht dieses Tool Eine Zeile Pig Latin entspricht vielen Zeilen MapReduce

- 4.2 Architektur
- 4.3 Pig Latin
- 4.4 Praxis
- 4.4.1 Hinzufügen zum Cluster
- 4.4.2 Anwendung auf dem Cluster

5 Data Ingestion

- 5.1 Sqoop
- 5.2 Flume

6 Datawarehousing mit Hive

6.1 Anwendungsfälle

Welche neuen Dinge ermöglicht dieses Tool

- 6.1.1 Unterschiede zu Pig
- 6.2 Architektur
- 6.3 Interaktion
- 6.3.1 HiveQL
- 6.3.2 CLI
- 6.3.3 Java API
- 6.4 Praxis
- 6.4.1 Hinzufügen zum Cluster
- 6.4.2 Einrichtung einer Datenbank
- 6.4.3 Einlesen von Daten im CLI
- 6.4.4 Einlesen von Daten mit Sqoop
- 6.4.5 Absetzen einer Query

7 NoSQL mit HBase

7.1 Anwendungsfälle

Welche neuen Dinge ermöglicht dieses Tool

- 7.1.1 CAP-Theorem
- 7.1.2 ACID und BASE
- 7.2 Architektur
- 7.3 Interaktion
- 7.3.1 HBase Shell
- 7.3.2 Java API
- 7.4 Praxis
- 7.4.1 Hinzufügen zum Cluster
- 7.4.2 Einrichtung einer Datenbank
- 7.4.3 Einlesen von Daten
- 7.4.4 Datenmigration aus einem RDBMS
- 7.4.5 Absetzen einer Query

8 Streaming mit Kafka

8.1 Anwendungsfälle

Welche neuen Dinge ermöglicht dieses Tool Ersetzt durch Spark Streaming

- 8.2 Architektur
- 8.3 Interaktion
- 8.3.1 Who knows
- 8.4 Praxis
- 8.4.1 Hinzufügen zum Cluster
- 8.4.2 Maybe, vielleicht kann man ja was zeigen

9 Hadoop heute

- 9.1 Aktuelle Anwendungsbeispiele zu Hadoop
- 9.1.1 AirBnB
- 9.2 Apache Spark als Gold Standard
- 9.2.1 Kann eh alles besser