Model Building

Team ID	PNT2022TMID10679
Project Name	AI-powered Nutrition Analyzer for FitnessEnthusiasts

Dataset:

In our dataset we have collected images of the five variety of fruits.

- Apple
- Orange
- Pineapple
- Watermelon
- Banana

Image Pre-processing:

Import The ImageDataGenerator Library
Configure ImageDataGenerator Class
Apply Image DataGenerator Functionality To Trainset And Testset

Model Building:

Importing The Model Building Libraries
Initializing The Model
Adding CNN Layers
Adding Dense Layers
Configure The Learning Process
Train the model
Save the model
Test the model

Data Collection

ginflating:

Unzipping the dataset !unzip '/content/Dataset.zip' inflating: Dataset/TRAIN SET/WATERMELON/r 288 100.jp ginflating: Dataset/TRAIN SET/WATERMELON/r 289 100.jp ginflating: Dataset/TRAIN SET/WATERMELON/r 28 100.jpg inflating: Dataset/TRAIN SET/WATERMELON/r 290 100.jp ginflating: Dataset/TRAIN SET/WATERMELON/r_291_100.jp ginflating: Dataset/TRAIN SET/WATERMELON/r 292 100.jp ginflating: Dataset/TRAIN SET/WATERMELON/r_293_100.jp ginflating: Dataset/TRAIN SET/WATERMELON/r 294 100.jp ginflating: Dataset/TRAIN SET/WATERMELON/r_295_100.jp ginflating: Dataset/TRAIN SET/WATERMELON/r 296 100.jp ginflating: Dataset/TRAIN SET/WATERMELON/r 297 100.jp ginflating: Dataset/TRAIN SET/WATERMELON/r 298 100.jp ginflating: Dataset/TRAIN SET/WATERMELON/r 299 100.jp ginflating: Dataset/TRAIN SET/WATERMELON/r 29 100.jpg inflating: Dataset/TRAIN SET/WATERMELON/r 2 100.jpg inflating: Dataset/TRAIN SET/WATERMELON/r 300 100.jp ginflating: Dataset/TRAIN SET/WATERMELON/r 301 100.jp ginflating: Dataset/TRAIN SET/WATERMELON/r 302 100.jp ginflating: Dataset/TRAIN SET/WATERMELON/r 303 100.jp

Dataset/TRAIN SET/WATERMELON/r 304 100.jp

ginflating:

Dataset/TRAIN_SET/WATERMELON/r_305_100.jp ginflating:

Dataset/TRAIN_SET/WATERMELON/r_306_100.jp ginflating:

Dataset/TRAIN_SET/WATERMELON/r_307_100.jp ginflating:

Dataset/TRAIN_SET/WATERMELON/r_308_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_309_100.jp ginflating:

Dataset/TRAIN_SET/WATERMELON/r_30_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_310_100.jp ginflating:

Dataset/TRAIN_SET/WATERMELON/r_311_100.jp ginflating:

Dataset/TRAIN_SET/WATERMELON/r_312_100.jp ginflating:

Dataset/TRAIN_SET/WATERMELON/r_313_100.jp ginflating:

Dataset/TRAIN_SET/WATERMELON/r_314_100.jp ginflating:

Dataset/TRAIN_SET/WATERMELON/r_315_100.jp ginflating:

Dataset/TRAIN_SET/WATERMELON/r_31_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_32_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_33_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_34_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_35_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_36_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_37_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_38_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_39_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_3_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_40_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_41_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_42_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_43_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_44_100.jpg inflating:

Dataset/TRAIN SET/WATERMELON/r 45 100.jpg

inflating:

Dataset/TRAIN_SET/WATERMELON/r_46_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_4_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_50_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_57_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_5_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_6_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_7_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_81_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_8_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_9_100.jpg

Image Preprocessing

#Importing The ImageDataGenerator Library from keras.preprocessing.image import ImageDataGenerator

Image Data Augmentation

```
#Configure ImageDataGenerator Class
train_datagen =
ImageDataGenerator(rescale=1./255,shear_range=0.2,zoom_range=0.2,horizonta
test_datagen=ImageDataGenerator(rescale=1./255)
```

Applying Image DataGenerator Functionality To TrainsetAnd Testset

```
#Applying Image DataGenerator Functionality To Trainset And Testset
x_train = train_datagen.flow_from_directory(
    r'/content/Dataset/TRAIN_SET',
    target_size=(64, 64),batch_size=5,color_mode='rgb',class_mode='sparse')
#Applying Image DataGenerator Functionality To Testset
x_test =
    test_datagen.flow_from_directory(r'/content/Dataset/TES)
```

```
T_SET',
target_size=(64, 64),batch_size=5,color_mode='rgb',class_mode='sparse')

Found 4118 images belonging to 5 classes.
Found 929 images belonging to 5 classes.

#checking the number of classes
print(x_train.class_indices)

{'APPLES': 0, 'BANANA': 1, 'ORANGE': 2, 'PINEAPPLE': 3, 'WATERMELON': 4}

#checking the number of classes
print(x_test.class_indices)
```

```
from collections import Counter as c c(x train .labels)
```

```
Counter({0: 995, 1: 1354, 2: 1019, 3: 275, 4: 475})
```

Model Building

1. Importing The Model Building Libraries

```
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras import layers
from tensorflow.keras.layers import Dense,Flatten
from tensorflow.keras.layers import Conv2D,MaxPooling2D,Dropout
```

2. Initializing The Model

```
model = Sequential()
```

3. Adding CNN Layers

```
# Initializing the CNN
classifier = Sequential()

# First convolution layer and pooling
classifier.add(Conv2D(32, (3, 3), input_shape=(64, 64, 3), activation='relu'))
classifier.add(MaxPooling2D(pool_size=(2, 2)))

# Second convolution layer and pooling
classifier.add(Conv2D(32, (3, 3), activation='relu'))

# input_shape is going to be the pooled feature maps from the previous convolution layer
classifier.add(MaxPooling2D(pool_size=(2, 2)))
```

Flattening the layers classifier.add(Flatten())

4. Adding Dense Layers

classifier.add(Dense(units=128, activation='relu'))

classifier.add(Dense(units=5, activation='softmax'))

#summary of our model classifier.summary()

Model: "sequential_1"

Layer (type)	Output Shape	Param #
=== conv2d (Conv2D)	(None, 62, 62, 32)	896
max_pooling2d (MaxPooling2D)	(None, 31, 31, 32)	0
conv2d_1 (Conv2D)	(None, 29, 29, 32)	9248
max_pooling2d_1 (MaxPooling2D)	(None, 14, 14, 32)	0
flatten (Flatten)	(None, 6272)	0
dense (Dense)	(None, 128)	802944
dense_1 (Dense)	(None, 5)	645

Total params: 813,733 Trainable params: 813,733 Non-trainable params: 0

5. Configure The Learning Process

Compiling the CNN

categorical_crossentropy for more than 2 classifier.compile(optimizer='adam', loss='sparse categorical crossentropy', metrics=['acc

6. Train The Model

#Fitting the model classifier.fit generator=x train,steps per epoch = len(x train),epochs=20, valid

Epoch 1/20

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: UserWarning: `Model.

824/824	- 21s 16ms/ste - loss:	0.617 - accuracy:
<u></u>	p	2
Epoch 2/20 824/824 [====================================	- 13s 15ms/ste - loss:	0.411 - accuracy: 5
Epoch 3/20 824/824		
[======================================	- 13s 16ms/ste - loss:	0.376 - accuracy:
Epoch 4/20 824/824 [====================================	- 13s 16ms/ste - loss:	0.348 - accuracy:
==] Epoch 5/20		

824/824 [====================================	- 13s	16ms/ste - loss:	0.324 - accuracy:		
Epoch 6/20 824/824 [====================================	- 13s	16ms/ste - loss:	0.324 - accuracy:		
Epoch 7/20 824/824 [====================================	- 13s	16ms/ste - loss:	0.288 - accuracy: 7		
Epoch 8/20 824/824 [====================================	- 13s	16ms/ste - loss:	0.272 - accuracy:		
Epoch 9/20 824/824 [====================================	- 13s	16ms/ste - loss:	0.271 - accuracy:		
== Epoch 10/20 824/824 [====================================	- 14s	p 17ms/ste - loss:	0.236 - accuracy:		
E=0 Epoch 11/20 824/824 [====================================	- 13s	•	0.230 - accuracy:		
Epoch 12/20 824/824	- 13s	p 15ms/ste - loss:	1 0.208 - accuracy:		
Epoch 13/20 824/824		p 15ms/ste - loss:	3		
[=====================================	100	p	9		
[=====================================	- 12s	15ms/ste - loss:	0.193 - accuracy: 0		
824/824 [====================================	- 13s	15ms/ste - loss:	0.180 - accuracy: 7		
824/824 [====================================	- 13s	15ms/ste - loss:	0.171 - accuracy: 2		
Epoch 17/20 824/824 [====================================	- 13s	15ms/ste - loss:	0.159 - accuracy:		
E=0 Epoch 18/20 824/824 [====================================	- 13s		0.161 - accuracy:		
Epoch 19/20 824/824 [====================================	- 13s		0.150 - accuracy:		
==] Epoch 20/20 824/824 [====================================	- 12s	p 15ms/ste - loss: p	5 0.121 - accuracy:		
<pre><keras.callbacks.history 0x7fd655833d90="" at=""></keras.callbacks.history></pre>					

7. Saving The Model

classifier.save('nutrition.h5')

8. Testing The Model

```
#Predict the results
from tensorflow.keras.models import load_model
from keras.preprocessing import image
model = load_model("nutrition.h5")

from tensorflow.keras.utils import img_to_array
#loading of the image
img = load_img(r'/content/Sample_Images/Test_Image1.jpg',grayscale=False,target_size=
(64,#image to array
x =
img_to_array(img)
#changing the shape
x = np.expand dims(x,axis = 0)
```

```
predict_x=model.predict(x)
classes_x=np.argmax(predict_x,axis=-
1)classes_x

1/1[======]-0s 18ms/step
array([0])
```

index=['APPLES', 'BANANA', 'ORANGE', 'PINEAPPLE', 'WATERMELON']
result=str(index[classes_x[0]])
result

'APPLES'