Hugo Marquerie 24/02/2025

Base de la topología de subespacio

Proposición 1. Sea \mathcal{B} una base de la topología \mathcal{T} de X y sea $A \subseteq X$

 $\implies \mathcal{B}_A := \{B \cap A : B \in \mathcal{B}\}\$ es una base de la topología del subespacio \mathcal{T}_A de A.

Demostración: Sea $V \in \mathcal{T}_A$, entonces por definción $\exists U \in \mathcal{T}$ tal que $V = U \cap A$. Como \mathcal{B} es una base de \mathcal{T} , $\exists \{B_{\alpha}\}_{\alpha \in I} \subset \mathcal{B}$ tal que $U = \bigcup_{\alpha \in I} B_{\alpha}$.

$$\implies V = U \cap A = \left(\bigcup_{\alpha \in I} B_{\alpha}\right) \cap A = \bigcup_{\alpha \in I} (B_{\alpha} \cap A).$$

Luego $\forall V \in \mathcal{T}_A : \exists \{B_\alpha \cap A\}_{\alpha \in I} : V = \bigcup_{\alpha \in I} (B_\alpha \cap A).$

Por tanto, $\mathcal{B}_A = \{B \cap A : B \in \mathcal{B}\}$ es una base de \mathcal{T}_A .

Referenciado en

• Herencia-segundo-numerable