Scatter Plot W7-8

The plot of sum of Rate for Year.

Bubble Chart

 $Population \ vs. \ Murder. \ Size shows \ Robbery \ as \ an \ attribute. \ The \ data \ is \ filtered \ on \ State, \ which \ has \ multiple \ members \ selected.$

Density Map

Map based on Longitude (generated) and Latitude (generated). Details are shown for Country. The data is filtered on Expectancy, which ranges from 42 to 83.

```
In [1]:
          import pandas as pd
          import numpy as np
          import matplotlib.pyplot as plt
In [13]:
          df=pd.read_csv("birth-rates-yearly.csv")
Out[13]:
                year
                       rate
             0 1960 36.400
             1
                1961 35.179
             2 1962 33.863
               1963 32.459
               1964 30.994
                 ...
          9865 2004 30.123
          9866 2005 30.067
          9867 2006 30.027
         9868 2007 29.987
          9869 2008 29.930
         9870 rows × 2 columns
In [19]:
          avg = df.groupby('year')[['rate']].mean().reset_index()
          avg
              year
                        rate
Out[19]:
           0 1960
                   38.143298
              1961
                   39.309189
             1962 38.139809
           3
             1963 38.983646
             1964
                  38.636152
             1965
                   36.927179
             1966
                  37.605933
             1967
                   36.212692
```

- 1968 36.880024
- 9 1969 36.501018
- 1970 34.828550
- 1971 35.851927
- 1972 34.412160
- 1973 35.090506
- 1974 34.718621
- 1975 33.149989
- 1976 33.832035
- 1977 32.632433
- 1978 33.209006
- 1979 32.968371
- 1980 31.671848
- 1981 32.008343
- 1982 31.340386
- 1983 31.559597
- 1984 31.313783
- 1985 30.332996
- 1986 30.669408
- 1987 29.801436
- 1988 29.589116
- 1989 29.018110
- 1990 28.397586
- 1991 27.972156
- 1992 27.289441
- 1993 26.961650
- 1994 26.417772
- 1995 25.679301
- 36 1996 25.302754
- 1997 24.793530
- 1998 24.327411

```
39
   1999 24.606884
40 2000 23.630850
    2001
         23.215782
   2002 22.885726
43 2003
         22.731459
44 2004
         22.513075
45 2005
         22.198215
46
  2006
         21.997903
   2007
          21.842214
48 2008
         21.722674
```

```
plt.figure(figsize=(12, 6))
    plt.scatter(avg['year'], avg['rate'])  # scatter plot showing actual
    plt.xlabel('Year')
    plt.ylabel('Birth Rate')
    plt.title('Yearly Birth Rate')
    plt.show()
```



```
In [31]: df1=pd.read_csv('crimerates-by-state-2005.csv')
    df1=df1.drop([0,9])
    df1
```

Out[31]: state murder forcible_rape robbery aggravated_assault burglary larceny_theft

1	Alabama	8.2	34.3	141.4	247.8	953.8	2650.0
2	Alaska	4.8	81.1	80.9	465.1	622.5	2599.1
3	Arizona	7.5	33.8	144.4	327.4	948.4	2965.2
4	Arkansas	6.7	42.9	91.1	386.8	1084.6	2711.2
5	California	6.9	26.0	176.1	317.3	693.3	1916.5
6	Colorado	3.7	43.4	84.6	264.7	744.8	2735.2
7	Connecticut	2.9	20.0	113.0	138.6	437.1	1824.1
8	Delaware	4.4	44.7	154.8	428.2	688.9	2144.0
10	Florida	5.0	37.1	169.4	496.6	926.3	2658.3
11	Georgia	6.2	23.6	154.8	264.3	931.0	2751.1
12	Hawaii	1.9	26.9	78.5	147.8	767.9	3308.4
13	Idaho	2.4	40.4	18.6	195.4	564.4	1931.7
14	Illinois	6.0	33.7	181.7	330.2	606.9	2164.8
15	Indiana	5.7	29.6	108.6	179.9	697.6	2412.0
16	Iowa	1.3	27.9	38.9	223.3	606.4	2042.7
17	Kansas	3.7	38.4	65.3	280.0	689.2	2758.1
18	Kentucky	4.6	34.0	88.4	139.8	634.0	1685.8
19	Louisiana	9.9	31.4	118.0	435.1	870.6	2494.5
20	Maine	1.4	24.7	24.4	61.7	478.5	1832.6
21	Maryland	9.9	22.6	256.7	413.8	641.4	2294.3
22	Massachusetts	2.7	27.1	119.0	308.1	541.1	1527.4
23	Michigan	6.1	51.3	131.8	362.9	696.8	1917.8
24	Minnesota	2.2	44.0	92.0	158.7	578.9	2226.9
25	Mississippi	7.3	39.3	82.3	149.4	919.7	2083.9
26	Missouri	6.9	28.0	124.1	366.4	738.3	2746.2
27	Montana	1.9	32.2	18.9	228.5	389.2	2543.0
28	Nebraska	2.5	32.9	59.1	192.5	532.4	2574.3
29	Nevada	8.5	42.1	194.7	361.5	972.4	2153.9
30	New Hampshire	1.4	30.9	27.4	72.3	317.0	1377.3
31	New Jersey	4.8	13.9	151.6	184.4	447.1	1568.4
32	New Mexico	7.4	54.1	98.7	541.9	1093.9	2639.9

33	New York	4.5	18.9	182.7	239.7	353.3	1569.6
34	North Carolina	6.7	26.5	145.5	289.4	1201.1	2546.2
35	North Dakota	1.1	24.2	7.4	65.5	311.9	1500.3
36	Ohio	5.1	39.8	163.1	143.4	872.8	2429.0
37	Oklahoma	5.3	41.7	91.0	370.5	1006.0	2644.2
38	Oregon	2.2	34.8	68.1	181.8	758.6	3112.2
39	Pennsylvania	6.1	28.9	154.6	235.0	451.6	1729.1
40	Rhode Island	3.2	29.8	72.1	146.1	494.2	1816.0
41	South Carolina	7.4	42.5	132.1	579.0	1000.9	2954.1
42	South Dakota	2.3	46.7	18.6	108.1	324.4	1343.7
43	Tennessee	7.2	36.4	167.3	541.9	1026.9	2828.1
44	Texas	6.2	37.2	156.6	329.8	961.6	2961.7
45	Utah	2.3	37.3	44.3	143.4	606.2	2918.8
46	Vermont	1.3	23.3	11.7	83.5	491.8	1686.1
47	Virginia	6.1	22.7	99.2	154.8	392.1	2035.0
48	Washington	3.3	44.7	92.1	205.8	959.7	3149.5
49	West Virginia	4.4	17.7	44.6	206.1	621.2	1794.0
50	Wisconsin	3.5	20.6	82.2	135.2	440.8	1992.8
51	Wyoming	2.7	24.0	15.3	188.1	476.3	2533.9

```
plt.figure(figsize=(12, 6))
    plt.scatter(df1['population'], df1['murder'], df1['robbery'], alpha=0.5)
    plt.xlabel('Population')
    plt.ylabel('Murder Rate')
    plt.title('Murder rate per population with robbery rates as bubble size')
    plt.show()
```


In []:

```
library(ggplot2)
getwd()
setwd("~/Documents/DSC 640")
library(readr)
df <- read_csv("birth-rates-yearly.csv")
df1 <-read_csv("crimerates-by-state-2005.csv")
View(df1)
View(df1)
library("dplyr")
avg <- df %>% group_by(year)%>% summarise(rate = sum(rate),.groups = 'drop')
View(avg)
year<-avg$year
rate<-avg$rate
ggplot(avg, aes(x=year, y=rate)) + geom_point()
df2<-df1[-c(1),]
View(df2)
df3<-df2[-c(9),]
View(df3)
pop<-df3$population
mrdr<-df3$murder
rob<- df3$robbery
ggplot(df3, aes(x=pop, y=mrdr, size = rob)) + geom_point(alpha=0.5)
d <- density(year)
plot(d)
```


density.default(x = year)

