Bilgisayar Mimarisi

MC68000

Derste anlatılan konuları açıklamak için örnek olarak kullanılacaktır.

- · Veri Yolu 16 bit (Gerektiğinde 8 bit olarak kullanılabilir)
- 16/32 bit mikroişlemci
- 16 adet 32 bitlik veri ve adres saklayıcısı (Data and Address Registers)
- · Adres Yolu 24 bit: 16-MByte adresleme kapasitesi
- · Beş farklı veri üzerinde işlem yapabilir: Bit, sekizli (byte), 16 bit (word), 32 bit (long word), BCD
- Bellek haritalı G/Ç (Memory Mapped Input/Output -I/O)
- 14 adet adresleme kipi (Addressing Modes)
- İki çalışma konumu (modu)
 - Superviser (yönetici)
 - · User (kullanıcı)
 - o Bazı komutlar çalıştırılamaz
 - o Bellek kod çözücü uygun şekilde tasarlanarak bellek erişiminde kısıtlamalar getirilebilir.

Bilgisayar Mimarisi

Programlanabilir Saklayıcılar (User Programmer's Model)

Veri Saklayıcıları (Data Registers):

8 adet özdeş saklayıcı

8, 16, 32 bit olarak kullanılabilir

Bilgisayar Mimarisi				
•16 bit	layıcısı (<i>Satus Regis</i> lan oluşur: Yönetici v		onditon Code Register)	
	15 8 Sistem	7 CCR	0 Status Register	
	15 8 I ₂ I ₁ I ₀	7 4 X N Z V	0 C Status Register	
Overflow (V), Zero (Z), Negative (N), Carry (C), Extend (X).				
Interrupt mask ($I_0 I_1 I_2$)				
Trace (T) mode, Supervisor (S) state 5, 6, 7, 11, 12, 14 numaralı bitlerin anlamları tanımlanmamıştır. Bu alanlar sonraki işlemciler için ayrılmıştır.				
Program Sayacı (<i>Program Counter</i> - PC):				
•32 bit				
·Adres saklay	yıcısı olarak da kullar	nılır.		
31	l de la companya de	0		
			PC	
www.akademi.itu.edi	lu.tr/buzluca		© 2005-2010 Dr. Feza BUZLUCA 2.4	

Verilerin Bellekte Yerleşimi

Verilerin yüksek anlamlı kısımları bellekte küçük adresten başlayarak yer alırlar

Adresleme sekizli (*byte*) düzenine göre yapılır.

Word (16 bit) ve long word (32 bit) tipi veriler çift adreslerden başlar.

www.akademi.itu.edu.tr/buzluca www.buzluca.info

© 2005-2010 Dr. Feza BUZLUCA

25

Bilgisayar Mimarisi

Adresleme Kipleri

Altı temel kip vardır. Bunların türevleri ile birlikte 14 adresleme kipi oluşur.

- 1. Saklayıcı doğrudan (Register Direct)
- 2. İvedi (*Immediate*)
- 3. Mutlak (Absolute)
- 4. Saklayıcı dolaylı (Register Indirect)
- 5. Program Sayacı dolaylı, bağıl (Program Counter Relative)
- 6. Doğal (Implied)

1a. Veri Saklayıcısı Doğrudan Adresleme

İşleme giren veri bir veri saklayıcısındadır.

MOVE.W D_n , D_m

 $D_n \rightarrow D_m$

B: Byte, W: Word, L: Long

1b. Adres Saklayıcısı Doğrudan Adresleme

İşleme giren veri bir adres saklayıcısındadır. Eğer hedef adres saklayıcısı ise komut "A" ile biter.

MOVEA.W D1, A5 $D_1 \rightarrow A_5$ (Kaynak veri saklayıcısı, hedef ise adres saklayıcısıdır.) Sadece W: Word veya L: Long olabilir.

www.akademi.itu.edu.tr/buzluci

© 2005-2010 Dr. Feza BUZLUCA

2.6

Bilgisayar Mimarisi

2a. İvedi Adresleme

İşleme giren veri komutun içinde yer alır.

MOVE.L #\$4A7F0000, D0

2b. Hızlı İvedi Adresleme (Quick)

Sadece bazı komutlar ile birlikte kullanılır.

Komut daha az yer kaplar ve daha hızlı çalışır.

Örneğin MOVE komutunda 8 bitlik veriler için kullanılır.

MOVEQ #5, D0 D0'ın 32 bitlik kısmı etkilenir.

3a. Mutlak Adresleme (Kısa)

Verinin 16 bitlik adresi komutta yer alır. 16 bitlik adres işaret uzatılarak 24 bit yapılır.

MOVE.B D0, (\$58AA) \$0058AA adresine yazılır MOVE.B D0, (\$B51A) \$FFB51A adresine yazılır

3b. Mutlak Adresleme (Uzun)

24 bitlik adres komutta yer alır.

MOVE.W (\$45C720),D7 \$45C720 adresinden başlayan 16 bit D7'ye yazılır

www.akademi.itu.edu.tr/buzluca www.buzluca.info © 2005-2010 Dr. Feza BUZLUCA

2.7

Bilgisayar Mimarisi

4. Saklayıcı Dolaylı Adresleme

4a. Adres Saklayıcısı Dolaylı Adresleme

Bir adres saklayıcısı işleme girecek olan adresi taşır.

Örnek:

MOVE.L D0, (A0) D0'ın içeriği A0'ın gösterdiği adrese yazılır.

A0: 00001000, D0: 4350A7C8 Komut yürütüldükten sonra:

Belleğin durumu:

001000: 43 MOVE.W olsa sadece A7C8 aktarılacaktı.
001001: 50 MOVE.B olsa sadece C8 aktarılacaktı.

001002: A7 001003: C8

A0'ın içeriği değişmez.

Verinin yüksek anlamlı kısmı küçük adreslere yazılır.

www.akademi.itu.edu.tr/buzluc

© 2005-2010 Dr. Feza BUZLUCA

2.8

Bilgisayar Mimarisi				
Örneklerin devamı:				
CLR.L (A2)+	01000010 10 011 010	Adres saklayıcısı dolaylı sonradan arttırmalı		
	CLR L (An)+ 2			
CLR.B (\$3000)	01000010 00 111 000	Mutlak adresleme (kısa)		
	CLR B Mutlak kısa	a		
	0011 0000 0000 0000	Adres (\$3000) ikinci sözcükte yer alır.		
CLR.B \$4(A6)	01000010 00 101 110	Adr. Sakl. Dolaylı ötelemeli		
	CLR B d(An) 6			
	0000 0000 0000 0100	Öteleme (\$4) 16 bit olarak ikinci sözcükte		
CLR.B -7(A6)	01000010 00 101 110	Adr. Sakl. Dolaylı ötelemeli (öteleme negatif)		
	CLR B d(An) 6			
	1111 1111 1111 1001	Öteleme (-7) 16 bit olarak ikinci sözcükte		
www.akademi.itu.edu.ti www.buzluca.info	r/buzluca	© 2005-2010 Dr. Feza BUZLUCA 2.14		

Bilgisayar Mimarisi					
MC68000 Komutları					
Bu bölümde MC68000 mikroişlemcisinin bazı komutları tanıtılacaktır. Veri Aktarma Komutları:					
MOVEM	Move multiple r	Move multiple registers			
Belirtilen tüm saklayıcıları belli bir adresten itibaren belleğe yazar ya da, belirtilen bir bellek adresinden verileri okuyarak istenilen saklayıcılara yerleştirir.					
Kullanım şekli 1: MOVEM <register list="">,<ea> Kullanım şekli 2: MOVEM <ea>,<register list=""></register></ea></ea></register>					
Örnekler:	Örnekler: MOVEM.L D0-D7/A0-A6, \$1234				
		-D2/D5-D7/A0-A3/A6 7/A0-A6 , -(A7)			
		D-D5/D7/A0-A6			
Altprogramların başında ve sonunda saklayıcıları yığına yazmak/yığından okumak için kullanılabilir.					
MOVE	M.L D0-D5/A0-A3,-(A7)	Saklayıcılar yığına yazıldı			
Alt programın gövdesi					
MOVEM.L (A7)+,D0-D5/A0-A3 RTS		Saklayıcıların değerleri yığından geri alınıyor Çağıran programa dönüş			
www.akademi. www.buzluca.i	itu.edu.tr/buzluca nfo	© 2005-2010 Dr. Feza BUZLUCA 2.18			

ζ

LEA Load effective address [An] ← <ea>

Bir değişkenin adresini bir adres saklayıcısına almak için kullanılır.

Adres 32 bit olarak hesaplanır.

Örnekler: LEA Table, A0

LEA (Table,PC),A0 LEA (-6,A0,D0.L),A6 LEA (Table,PC,D0),A6

Örnek:

Bilgisayar Mimarisi

LEA DIZI , A0 Dizi adresi A0'a

MOVE.B (A0)+, D1 Dizinin ilk elemanı D1'e...

•••

DIZI DS.B 100 Define Storage (direktif)

vww.akademi.itu.edu.tr/buzluca vww.buzluca.info

© 2005-2010 Dr. Feza BUZLUCA

2 10

Bilgisayar Mimarisi

Akış Denetimi (Flow control) Komutları:

Bcc Branch on condition cc

cc koşulu belirtir.

If cc = 1 THEN [PC] \leftarrow [PC] + d

d: 8 ya da 16 bitlik işaretli bağıl adrestir.

Hatırlatma: Komut yürütülürken PC, Bcc'den sonraki komuta işaret eder.

Yazım: Bcc < label >

İstenirse bağıl adres boyutu verilebilir: BEQ.B ESIT ya da BNE.W FARKLI Boyut verilmezse derleyici etiketin uzaklığına göre uygun boyutta bağıl adresi hesaplar.

Koşullar (cc):

BCC branch on carry clear branch if C = 0BEQ branch on equal branch if Z=1

BGTbranch on greater thanbranch if $(Z + (N \oplus V)) = 0$ BHIbranch on higher thanbranch if (C + Z) = 0BGEbranch on greater than or equalbranch if $(N \oplus V) = 0$ BLTbranch on less thanbranch if $(N \oplus V) = 1$ BLSbranch on lower than or samebranch if (C + Z) = 1

www.akademi.itu.edu.tr/buzluca

© 2005-2010 Dr. Feza BUZLUCA

2.20

Bayrakların Oluşumu:

Taşma:

 $V = C_7 \oplus C_8$ C₈: Elde

C7: Bir önceki basamaktaki elde

Taşma diğer bir yolla da belirlenebilir: $poz + poz \rightarrow neg$ $poz - neg \rightarrow neg$ $\mathsf{neg} + \mathsf{neg} \ \to \mathsf{poz}$ $neg - poz \rightarrow poz$

Çıkarma ve karşılaştırma işlemlerinde C (elde) biti BORÇ bayrağı olarak görev yapar.

Hatırlatma:

Elde: İşaretsiz sayıların toplanmasında oluşabilir. Sonucun n bite sığmadığını (n+1). bitin gerekli olduğunu gösterir.

Borç: İşaretsiz sayıların çıkartılmasında oluşabilir. Birinci sayının ikinciden küçük olduğunu, sonucun negatif çıktığını gösterir.

2'ye tümleyen yöntemine göre yapılan çıkarmada n+1. bit oluşursa borç yoktur.

Taşma: Sadece <u>işaretli</u> sayılar üzerinde yapılan toplama ve çıkarma işlemlerinde oluşur. Sonucun, ayrılan bit sayısı ile ifade edilemediğini gösterir.

Bilgisayar Mimarisi

Test condition, decrement, and branch DBcc

Yazım: DBcc Dn, <etiket>

Burada etiket 16 bitlik bir bağıl adrestir. Dn'in 16 bitlik kısmı sayaç olarak kullanılır.

İşlem:

IF(condition cc false)

THEN [Dn] \leftarrow [Dn] - 1 (decrement loop counter)

IF [Dn] = -1 THEN DBcc'den sonraki komut (PC alma çevriminde 2 arttırılmıştır.)

Örnek: Döngü (10 defa)

MOVEQ #9, D0 Başlangıç değeri 9, çünkü -1'de çıkılıyor.

L1 Döngü içi

DBF D0,L1 Burada F: False koşul her zaman yanlış

Bilgisayar Mimarisi				
Örnek: İki Dizinin Karşılaştırılması (Tüm elemanlar eşit mi?) Birinci dizi DIZI1 adresinden, ikinci dizi ise DIZI2 adresinden başlıyor.				
Dizilerde 50 adet 8 bitlik eleman bulunuyor. Dizilerin içeriği program çalışmadan önce doldurulmuştur.				
	LEA LEA	DIZI1, A0 DIZI2, A1	Dizilerin başlangıç adresleri	
	MOVE.W	BOYUT, D0	Dizilerin boyu	
	SUBQ.W	#1, D0	DBcc'den -1'de çıkılır	
LOOP	CMPM.B DBNE	(A0)+, (A1)+ D0, LOOP	Dizi elemanları karşılaştırılıyor	
	TST.W	D0	Döngüden neden çıkıldı? (D0?)	
	BMI	ESIT	-1'de çıkıldıysa tüm elemanlar eşit	
FARKLI				
ESIT				
DIZII		F0	4 - 2 42 22 - 1 1 1 - 1 - 1 - 1 - 1 -	
DIZI1	DS.B	50	1nci dizinin elemanları için bellekte yer ayrılıyor 50B	
	DS.B	50	2nci dizinin elemanları için bellekte yer ayrılıyor 50B Dizilerde 50 tane eleman var	
BOYUT	DC.VV	50	Dizilerde 50 tane eleman var	
	www.akademi.itu.edu.tr/buzluca			