

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

Ciclo 2021-2

[Cod: CM4F1 Curso: Análisis y Modelamiento Numérico I]

Segunda Práctica Calificada

- 1. Justificando su respuesta, determine el valor de verdad de las siguientes proposiciones:
 - (a) [1 pto.] Si x_n no es $O(z_n)$, entonces x_n no es $O(y_n)$ o y_n no es $O(z_n)$.
 - (b) $[1\ pto.]$ Considerando la sucesión $x_0=2,\ x_1=1,\ x_{n+1}=\frac{5}{6}x_n-\frac{1}{6}x_{n-1},\ \forall n\geq 1.$ Si $\epsilon_0=\epsilon_1=\epsilon$ son las perturbaciones iniciales, entonces el algoritmo es inestable.
 - (c) $[1 \ pto.]$ Dada la matriz $A = \begin{bmatrix} \delta & 1 \\ 0 & \delta \end{bmatrix}$, entonces para todo $\delta > 0$ y usando la norma infinito $(\|\cdot\|_{\infty})$ la matriz A está bien condicionado.

Solución

(a) (Verdadero) Supongamos que x_n es $O(y_n)$ y y_n es $O(z_n)$, entonces existe c_1, c_2 y $n_1, n_2 \in \mathbb{N}$ tales que

$$|x_n| \le c_1 |y_n|$$
 y $|y_n| \le c_2 |z_n|$, $\forall n \ge n_1, n_2$

tomando $n_0 = \max\{n_1, n_2\}$ y $c = c_1 c_2$, obtenemos $|x_n| \le c |z_n|, \ \ \forall n \ge n_0$.

- (b) (Falso) De las condiciones se tiene que el error es dado $\epsilon_n = \epsilon \left(-\frac{1}{3^{n-1}} + \frac{1}{2^{n-2}} \right)$. Luego, para $n \to +\infty$ se tiene que $\epsilon_n \to 0$, lo cual implica la estabilidad del algoritmo.
- (c) (Falso) Tenemos que $k(A) = ||A||_{\infty} ||A^{-1}||_{\infty} = \left(1 + \frac{1}{\delta}\right)^2$ y tomando $\delta \to 0^+$ se obtiene un mal condicionamiento.
- 2. Al formarse una celda convectiva en la atmósfera, un rollo de aire que gira a medida que el aire caliente sube y el aire frío baja, el sentido de su giro X se puede representar por un valor comprendido entre 0 y 1, de modo que si X > 0.5 el giro se produce en sentido de las agujas del reloj y si X < 0.5 el giro se produce en sentido contrario a las agujas del reloj. Supongamos que si X_n representa el valor de giro durante la hora n, entonces el valor del giro X_{n+1} en la próximo hora n+1 está dado por la siguiente recurrencia:

$$X_{n+1} = 3.9X_n(1 - X_n).$$

(a) [1 pto.] Determine el fenómeno atmosférico para $X_0 = 0.5$.

- (b) [1 pto.] Determine el fenómeno atmosférico para $X_0=0.501.$
- (c) [1 pto.] Determine el fenómeno atmosférico para $X_0=0.51.$
- (d) $[1\,pto.]$ Qué puede decir de las soluciones encontradas.

Solución:

(a) Evaluando en $X_0 = 0.5$ tenemos:

\boldsymbol{n}	X_n	n	X_n	\boldsymbol{n}	X_n
0	0.5	7	0.1419727794	14	0.8799326468
1	0.975	8	0.4750843862	15	0.4120396173
2	0.0950625	9	0.9725789275	16	0.9448255872
3	0.3354999223	10	0.1040097133	17	0.2033077681
4	0.8694649253	11	0.363447602	18	0.6316975062
5	0.4426331091	12	0.9022784261	19	0.9073574907
6	0.9621652553	13	0.3438710647	20	0.3278335116

(b) Evaluando en $X_0=0.501$ tenemos:

n	X_n	n	X_n	n	X_n
0	0.501	7	0.14224535	14	0.8865910205
1	0.9749961	8	0.4758452807	15	0.3921347932
2	0.0950769494	9	0.9727245432	16	0.9296238789
3	0.3355455602	10	0.1034728745	17	0.2551509583
4	0.8695234752	11	0.361788331	18	0.7411908925
5	0.442464365	12	0.9005003847	19	0.7481251181
6	0.9620896378	13	0.3494378231	20	0.7348923105

(c) Evaluando en $X_0 = 0.51$ tenemos:

n	X_n	\boldsymbol{n}	X_n	\boldsymbol{n}	X_n
0	0.51	7	0.172617802	14	0.3671942873
1	0.97461	8	0.5570014961	15	0.9062143064
2	0.0965068568	9	0.9623282348	16	0.3314607553
3	0.3400538053	10	0.1413851528	17	0.8642186397
4	0.8752271377	11	0.4734420264	18	0.4576446517
5	0.4258979211	12	0.9722492287	19	0.9680034954
6	0.9535846394	13	0.1052245972	20	0.1207936402

(d) La propagación de errores se debe al multiplicar los errores se amplifican por los factores involucrados en el producto.

- 3. Se tiene tres lingotes compuestos del siguiente modo: El primero de 20 g de oro, 30 g de plata y 40 g de cobre, el segundo de 30 g de oro, 40 g de plata y 50 g de cobre y el tercero de 40 g de oro, 50 g de plata y 90 g de cobre. Se pide que peso habrá de tomarse de cada uno de los lingotes para formar un nuevo lingote de 34 g de oro, 46 g de plata y 67 g de cobre.
 - (a) [1 pto.] Indique las variables.
 - (b) [1 pto.] Modele el sistema.
 - (c) [1 pto.] Determine el número de condición.
 - (d) [1 pto.] Determine el vector error residual usando

$$\widetilde{x} = \left[egin{array}{c} 45 \ 48 \ 54 \end{array}
ight].$$

Solución:

(a) Las variables son:

x: Peso del 1er lingote.

y: Peso del 2do lingote.

z: Peso del 3er lingote.

(b) Analizando la ley del oro:

En el 1er lingote :
$$\frac{20}{90} = \frac{2}{9}$$
.

En el 2do lingote :
$$\frac{30}{120} = \frac{1}{4}$$
.

En el 3er lingote :
$$\frac{40}{180} = \frac{2}{9}$$
.

Luego

$$\frac{2}{9}x + \frac{1}{4}y + \frac{2}{9}z = 34.$$

Analizando la ley de la plata:

En el 1er lingote :
$$\frac{30}{90} = \frac{1}{3}$$
.

En el 2do lingote :
$$\frac{40}{120} = \frac{1}{3}$$
.

En el 3er lingote :
$$\frac{50}{180} = \frac{5}{18}$$
.

Luego

$$\frac{1}{3}x + \frac{1}{3}y + \frac{5}{18}z = 46.$$

Analizando la ley del cobre:

En el 1er lingote :
$$\frac{40}{90} = \frac{4}{9}$$
.

En el 2do lingote :
$$\frac{50}{120} = \frac{5}{12}$$
.

En el 3er lingote :
$$\frac{90}{180} = \frac{1}{2}$$
.

Luego

$$\frac{4}{9}x + \frac{5}{12}y + \frac{1}{2}z = 67.$$

(c) El número de condición es:

(d) El vector de error residual es:

$$R = A\widetilde{x} - b pprox \left[egin{array}{c} 0 \ 0 \ 0 \end{array}
ight]$$

4. Sea $A \in \mathbb{R}^{n \times n}$ un matriz singular y su perturbación $\delta A \in \mathbb{R}^{n \times n}$ tal que $||A^{-1}|| ||\delta A|| < 1$. Si $x \in \mathbb{R}^n$ es la solución de Ax = b con $b \in \mathbb{R}^n$ ($b \neq 0$) y su perturbación $\delta x \in \mathbb{R}^n$ satisface

$$(A + \delta A)(x + \delta x) = b + \delta b$$

para $\delta b \in \mathbb{R}^n$, pruebe que

- (a) $[1 pto.] (A^{-1}\delta A)^n$ converge a cero (considere $||AB|| \le ||A|| ||B||$).
- (b) $[1 pto.] I A^{-1} \delta A$ es invertible.

$$\text{(c) } \|[1 \ pto.] \ \|(I+A^{-1}\delta A)^{-1}\| \leq \frac{1}{1-\|A^{-1}\|\|\delta A\|}.$$

(d) $[2\,pts.]$ concluya que

$$\frac{\|\delta x\|}{\|x\|} \leq \frac{K(A)}{1-K(A)\frac{\|\delta A\|}{\|A\|}} \left(\frac{\|\delta b\|}{\|b\|} + \frac{\|\delta A\|}{\|A\|}\right).$$

Solución:

- (a) Desde que ||B|| < 1, tenemos que $||B||^n \to 0$ y como $||B^n|| \le ||B||^n$, se tiene que $B^n \to 0$ y de ello $(A^{-1}\delta)^n$ converge a cero.
- (b) Sabemos que $(I-B)(I+B+\cdots+B^{n-1})=I+B^n$, y si ||B||<1 se tiene que $(I-B)\sum_{k=1}^{\infty}B^k=I$, por lo tanto I-B es invertible lo que implica que $I+A^{-1}\delta A$ sea invertible.
- (c) De la condición anterior tenemos que

$$\|(I+A^{-1}\delta A)^{-1}\| = \|\sum_{k=1}^{\infty} (-A^{-1}\delta A)^k\| \le \sum_{k=1}^{\infty} \|A^{-1}\delta A\|^n = \frac{1}{1 - \|A^{-1}\delta A\|} \le \frac{1}{1 - \|A^{-1}\|\|\delta A\|}$$

(d) Por otro lado, de la condición

$$(A + \delta A)(x + \delta x) = b + \delta b$$

tenemos

$$\delta x = (I + A^{-1}\delta A)^{-1}A^{-1}(\delta b - \delta Ax),$$

Tomando norma y usando la condición anterior obtenemos

$$\|\delta x\| \leq rac{\|A^{-1}\|}{1-\|A^{-1}\|\|\delta A\|} (\|\delta b\|+\|\delta A\|\|x\|).$$

finalmente como $\|x\|\|A\| \geq \|b\|$ y dividiendo entre $\|x\|$ la expresión anterior tenemos lo pedido.

5. $[4\,pts.]$ Realizó la exposición en la práctica dirigida.

06 de Octubre del 2021