ENGG5781 Matrix Analysis and Computations Lecture 1: Basic Concepts

Wing-Kin (Ken) Ma

2018-2019 Term 1

Department of Electronic Engineering The Chinese University of Hong Kong

Lecture 1: Basic Concepts

- notation and conventions
- subspace, linear independence, basis, dimension
- rank, determinant, invertible matrices
- vector norms, inner product
- projections onto subspaces, orthogonal complements
- orthonormal basis, Gram Schmidt
- matrix multiplications and representations, block matrix manipulations
- complexity, floating point operations (flops)

 \mathbb{R} the set of real numbers, or real space

 \mathbb{C} the set of complex numbers, or complex space

 \mathbb{R}^n *n*-dimensional real space

 \mathbb{C}^n n-dimensional complex space

 $\mathbb{R}^{m \times n}$ set of all $m \times n$ real-valued matrices

 $\mathbb{C}^{m \times n}$ set of all $m \times n$ complex-valued matrices

x column vector

 $x_i, [\mathbf{x}]_i$ ith entry of \mathbf{x}

A matrix

 $a_{ij}, [\mathbf{A}]_{ij}$ (i, j)th entry of \mathbf{A}

 \mathbb{S}^n set of all $n \times n$ real symmetric matrices; i.e, $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $a_{ij} = a_{ji}$

for all i, j

 \mathbb{H}^n set of all $n \times n$ complex Hermitian matrices; i.e, $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $a_{ij} = a_{ji}^*$

for all i, j

• vector: $\mathbf{x} \in \mathbb{R}^n$ means that \mathbf{x} is a real-valued n-dimensional column vector; i.e.,

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \qquad x_i \in \mathbb{R} \text{ for all } i.$$

Similarly, $\mathbf{x} \in \mathbb{C}^n$ means that \mathbf{x} is a complex-valued n-dimensional column vector.

ullet transpose: let $\mathbf{x} \in \mathbb{R}^n$. The notation \mathbf{x}^T means that

$$\mathbf{x}^T = \begin{bmatrix} x_1, & x_2, & \dots, & x_n \end{bmatrix}.$$

• Hermitian transpose: let $\mathbf{x} \in \mathbb{C}^n$. The notation \mathbf{x}^H means that

$$\mathbf{x}^H = \begin{bmatrix} x_1^*, & x_2^*, & \dots, & x_n^* \end{bmatrix},$$

where the superscript * denotes the complex conjugate.

• matrix: $\mathbf{A} \in \mathbb{R}^{m \times n}$ means that \mathbf{A} is real-valued $m \times n$ matrix

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, \qquad a_{ij} \in \mathbb{R} \text{ for all } i, j.$$

Similarly, $\mathbf{A} \in \mathbb{C}^{m \times n}$ means that \mathbf{A} is a complex-valued $m \times n$ matrix.

• unless specified, we denote the *i*th column of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ as $\mathbf{a}_i \in \mathbb{R}^m$; i.e.,

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_1, & \mathbf{a}_2, & \dots, & \mathbf{a}_n \end{bmatrix}.$$

The same notation applies to $\mathbf{A} \in \mathbb{C}^{m \times n}$.

• transpose: let $\mathbf{A} \in \mathbb{R}^{m \times n}$. The notation \mathbf{A}^T means that

$$\mathbf{A}^{T} = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \vdots & & & \vdots \\ a_{1n} & a_{m2} & \dots & a_{mn} \end{bmatrix} \in \mathbb{R}^{n \times m}.$$

- or, we have $\mathbf{B} = \mathbf{A}^T \iff b_{ij} = a_{ji}$ for all i, j.
- properties:

$$* (\mathbf{A}\mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T$$

$$* (\mathbf{A}^T)^T = \mathbf{A}$$

$$* (\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T$$

• Hermitian transpose: let $\mathbf{A} \in \mathbb{C}^{m \times n}$. The notation \mathbf{A}^H means that

$$\mathbf{A}^{H} = \begin{bmatrix} a_{11}^{*} & a_{21}^{*} & \dots & a_{m1}^{*} \\ a_{12}^{*} & a_{22}^{*} & \dots & a_{m2}^{*} \\ \vdots & & & \vdots \\ a_{1n}^{*} & a_{m2}^{*} & \dots & a_{mn}^{*} \end{bmatrix} \in \mathbb{C}^{n \times m}.$$

- or, we have $\mathbf{B} = \mathbf{A}^T \iff b_{ij} = a_{ji}^*$ for all i, j.
- properties (same as transpose):

$$* (\mathbf{A}\mathbf{B})^{H} = \mathbf{B}^{H}\mathbf{A}^{H}$$

$$* (\mathbf{A}^{H})^{H} = \mathbf{A}$$

$$* (\mathbf{A} + \mathbf{B})^{H} = \mathbf{A}^{H} + \mathbf{B}^{H}$$

• trace: let $\mathbf{A} \in \mathbb{R}^{n \times n}$. The trace of \mathbf{A} is

$$\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} a_{ii}.$$

– properties:

- $$\begin{split} * & \operatorname{tr}(\mathbf{A}^T) = \operatorname{tr}(\mathbf{A}) \\ * & \operatorname{tr}(\mathbf{A} + \mathbf{B}) = \operatorname{tr}(\mathbf{A}) + \operatorname{tr}(\mathbf{B}) \\ * & \operatorname{tr}(\mathbf{A}\mathbf{B}) = \operatorname{tr}(\mathbf{B}\mathbf{A}) \text{ for } \mathbf{A}, \mathbf{B} \text{ of appropriate sizes} \end{split}$$
- matrix power: let $\mathbf{A} \in \mathbb{R}^{n \times n}$. The notation \mathbf{A}^2 means $\mathbf{A}^2 = \mathbf{A}\mathbf{A}$, and \mathbf{A}^k means

$$\mathbf{A}^k = \underbrace{\mathbf{A}\mathbf{A}\cdots\mathbf{A}}_{k \mathbf{A}'\mathsf{s}}.$$

• all-one vectors: we use the notation

$$\mathbf{1} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$

to denote a vector of all 1's.

- zero vectors or matrices: we use the notation **0** to denote either a vector of all zeros, or a matrix of all zeros.
- unit vectors: unit vectors are vectors that have only one nonzero element and the nonzero element is 1. We use the notation

$$\mathbf{e}_i = \begin{bmatrix} 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \end{bmatrix}^T$$

to denote a unit vector with the nonzero element at the ith entry.

• identity matrix:

$$\mathbf{I} = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{bmatrix},$$

where, as a convention, the empty entries are assumed to be zero.

• diagonal matrices: we use the notation

$$Diag(a_1, \dots, a_n) = \begin{bmatrix} a_1 & & \\ & \ddots & \\ & & a_n \end{bmatrix}$$

to denote a diagonal matrix with diagonals a_1, \ldots, a_n . We also use the shorthand notation $\text{Diag}(\mathbf{a}) = \text{Diag}(a_1, \ldots, a_n)$.

- A matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is said to be
 - square if m = n;
 - tall if m > n;
 - fat if m < n.
- A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is said to be
 - upper triangular if $a_{ij} = 0$ for all i > j;
 - lower triangular if $a_{ij} = 0$ for all i < j.

Examples:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}, \quad \mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 2 & 0 \\ \frac{1}{8} & 3 & 0 \end{bmatrix}.$$

Subspace

A subset \mathcal{S} of \mathbb{R}^m is said to be a subspace if

$$\mathbf{x}, \mathbf{y} \in \mathcal{S}, \\ \alpha, \beta \in \mathbb{R} \implies \alpha \mathbf{x} + \beta \mathbf{y} \in \mathcal{S}.$$

- if S is a subspace and $\mathbf{a}_1, \ldots, \mathbf{a}_n \in S$, any linear combination of $\mathbf{a}_1, \ldots, \mathbf{a}_n$, i.e., $\sum_{i=1}^n \alpha_i \mathbf{a}_i$ for some $\alpha \in \mathbb{R}^n$, lies in S.
- ullet some quick facts: let $\mathcal{S}_1, \mathcal{S}_2$ be subspaces of \mathbb{R}^m .
 - $S_1 + S_2$ is a subspace ¹
 - $\mathcal{S}_1 \cap \mathcal{S}_2$ is a subspace

¹note the notation $\mathcal{X} + \mathcal{Y} = \{\mathbf{x} + \mathbf{y} \mid \mathbf{x} \in \mathcal{X}, \mathbf{y} \in \mathcal{Y}\}.$

Span

The span of a collection of vectors $\mathbf{a}_1,\ldots,\mathbf{a}_n\in\mathbb{R}^m$ is defined as

$$\operatorname{span}\{\mathbf{a}_1,\ldots,\mathbf{a}_n\} = \left\{\mathbf{y} \in \mathbb{R}^m \mid \mathbf{y} = \sum_{i=1}^n \alpha_i \mathbf{a}_i, \ \boldsymbol{\alpha} \in \mathbb{R}^n \right\}.$$

- the set of all linear combinations of $\mathbf{a}_1, \dots, \mathbf{a}_n$
- a subspace
- Question: any span is a subspace. But can any subspace be written as a span?

Theorem 1.1. Let S be a subspace of \mathbb{R}^m . There exists a positive integer n and a collection of vectors $\mathbf{a}_1, \dots, \mathbf{a}_n \in S$ such that $S = \operatorname{span}\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$.

Implication: we can always represent a subspace by a span

Range Space and Nullspace

The range space of $\mathbf{A} \in \mathbb{R}^{m \times n}$ is defined as

$$\mathcal{R}(\mathbf{A}) = \{ \mathbf{y} \in \mathbb{R}^m \mid \mathbf{y} = \mathbf{A}\mathbf{x}, \ \mathbf{x} \in \mathbb{R}^n \}.$$

essentially the same as span

The nullspace of $\mathbf{A} \in \mathbb{R}^{m \times n}$ is defined as

$$\mathcal{N}(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} = \mathbf{0} \}.$$

- a nullspace is a subspace (verify as a mini exercise)
- by Theorem 1.1, we can represent a nullspace by $\mathcal{N}(\mathbf{A}) = \mathcal{R}(\mathbf{B})$ for some $\mathbf{B} \in \mathbb{R}^{n \times r}$ and positive integer r.

A collection of vectors $\mathbf{a}_1,\ldots,\mathbf{a}_n\in\mathbb{R}^m$ is said to be linearly independent if

$$\sum_{i=1}^{n} \alpha_{i} \mathbf{a}_{i} \neq \mathbf{0}, \quad \text{for all } \boldsymbol{\alpha} \in \mathbb{R}^{n} \text{ with } \boldsymbol{\alpha} \neq \mathbf{0};$$

and linearly dependent otherwise.

• an equivalent way of defining linear dependence: $\{\mathbf{a}_1,\ldots,\mathbf{a}_n\}\subset\mathbb{R}^m$ is a linearly dependent vector set if there exists $\alpha\in\mathbb{R}^m$, $\alpha\neq\mathbf{0}$, such that

$$\sum_{i=1}^{n} \alpha_i \mathbf{a}_i = \mathbf{0}.$$

Some known facts (some easy to show, some not):

- if $\{a_1, \dots a_n\} \subset \mathbb{R}^m$ is linearly independent, then any a_j cannot be a linear combination of the other a_i 's; i.e., $a_j \neq \sum_{i \neq j} \alpha_i a_i$ for any α_i 's.
- if $\{a_1, \dots a_n\} \subset \mathbb{R}^m$ is linearly dependent, then *there exists* an a_j such that a_j is a linear combination of the other a_i 's; i.e., $a_j = \sum_{i \neq j} \alpha_i a_i$ for some α_i 's.
- if $\{a_1, \dots a_n\} \subset \mathbb{R}^m$ is linearly independent, then $n \leq m$ must hold.
- let $\{a_1, \ldots, a_m\} \subset \mathbb{R}^m$ be a linearly independent vector set. Suppose $\mathbf{y} \in \operatorname{span}\{a_1, \ldots, a_m\}$. Then the coefficient α for the representation

$$\mathbf{y} = \sum_{i=1}^{n} \alpha_i \mathbf{a}_i$$

is unique; i.e., there does *not* exist a $\beta \in \mathbb{R}^n$, $\beta \neq \alpha$, such that $\mathbf{y} = \sum_{i=1}^n \beta_i \mathbf{a}_i$.

Let $\{\mathbf{a}_1, \dots \mathbf{a}_n\} \subset \mathbb{R}^m$, and denote $\{i_1, \dots, i_k\} \subseteq \{1, \dots, n\}$ as an index subset with $k \leq n$ and $i_j \neq i_l$ for all $j \neq l$.

A vector subset $\{a_{i_1},\ldots,a_{i_k}\}$ is called a maximal linearly independent subset of $\{a_1,\ldots a_n\}$ if

- 1. $\{\mathbf{a}_{i_1},\ldots,\mathbf{a}_{i_k}\}$ is linearly independent;
- 2. $\{\mathbf{a}_{i_1}, \dots, \mathbf{a}_{i_k}\}$ is not contained by any other linearly independent subset of $\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$.
- ullet physical meaning: find a set of non-redundant vectors from $\{{f a}_1,\dots{f a}_n\}$

• example:

$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{a}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{a}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{a}_4 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}.$$

The linearly independent subets of $\{a_1, a_2, a_3, a_4\}$ are

$$\{\mathbf{a}_1\}, \{\mathbf{a}_2\}, \{\mathbf{a}_3\}, \{\mathbf{a}_4\},$$
 $\{\mathbf{a}_1, \mathbf{a}_2\}, \{\mathbf{a}_1, \mathbf{a}_3\}, \{\mathbf{a}_1, \mathbf{a}_4\}, \{\mathbf{a}_2, \mathbf{a}_3\}, \{\mathbf{a}_2, \mathbf{a}_4\}, \{\mathbf{a}_3, \mathbf{a}_4\},$
 $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}, \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_4\}, \{\mathbf{a}_1, \mathbf{a}_3, \mathbf{a}_4\}.$

But the maximal linearly independent subsets are

$$\{a_1, a_2, a_3\}, \{a_1, a_2, a_4\}, \{a_1, a_3, a_4\}.$$

Facts:

- $\{\mathbf{a}_{i_1},\ldots,\mathbf{a}_{i_k}\}$ is a maximal linearly independent subset of $\{\mathbf{a}_1,\ldots,\mathbf{a}_n\}$ if and only if $\{\mathbf{a}_{i_1},\ldots,\mathbf{a}_{i_k},\mathbf{a}_j\}$ is linearly dependent for any $j\in\{1,\ldots,n\}\setminus\{i_1,\ldots,i_k\}$
- ullet if $\{{f a}_{i_1},\ldots,{f a}_{i_k}\}$ is a maximal linearly independent subset of $\{{f a}_1,\ldots{f a}_n\}$, then

$$\operatorname{span}\{\mathbf{a}_{i_1},\ldots,\mathbf{a}_{i_k}\}=\operatorname{span}\{\mathbf{a}_1,\ldots\mathbf{a}_n\}.$$

Basis

Let $S \subseteq \mathbb{R}^m$ be a subspace with $S \neq \{0\}$.

A vector set $\{\mathbf{b}_1,\ldots,\mathbf{b}_k\}\subset\mathbb{R}^m$ is called a basis for \mathcal{S} if $\{\mathbf{b}_1,\ldots,\mathbf{b}_k\}$ is linearly independent and

$$\mathcal{S} = \operatorname{span}\{\mathbf{b}_1, \dots, \mathbf{b}_k\}.$$

• examples: let $\{a_{i_1}, \ldots, a_{i_k}\}$ be a maximal linearly independent vector subset of $\{a_1, \ldots, a_n\}$. Then, $\{a_{i_1}, \ldots, a_{i_k}\}$ is a basis for $\mathrm{span}\{a_1, \ldots, a_n\}$.

Some facts:

- ullet we may have more than one basis for ${\mathcal S}$
- all bases for S have the same number of elements; i.e., if $\{\mathbf{b}_1,\ldots,\mathbf{b}_k\}$ and $\{\mathbf{c}_1,\ldots,\mathbf{c}_l\}$ are bases for S, then k=l

Dimension of a Subspace

The dimension of a subspace S, with $S \neq \{0\}$, is defined as the number of elements of a basis for S. The dimension of $\{0\}$ is defined as 0.

- ullet dim ${\mathcal S}$ will be used as the notation for denoting the dimension of ${\mathcal S}$
- physical meaning: effective degrees of freedom of the subspace
- examples:
 - $-\dim \mathbb{R}^m = m$
 - if k is the number of maximal linearly independent vectors of $\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$, then $\dim \operatorname{span}\{\mathbf{a}_1, \dots, \mathbf{a}_n\} = k$.

Dimension of a Subspace

Properties:

- let $S_1, S_2 \subseteq \mathbb{R}^m$ be subspaces. If $S_1 \subseteq S_2$, then $\dim S_1 \leq \dim S_2$.
- let $S_1, S_2 \subseteq \mathbb{R}^m$ be subspaces. If $S_1 \subseteq S_2$ and $\dim S_1 = \dim S_2$, then $S_1 = S_2$.
- let $S \subseteq \mathbb{R}^m$ be a subspace. Then $\dim S = m \iff S = \mathbb{R}^m$.
- let $S_1, S_2 \subseteq \mathbb{R}^m$ be subspaces. We have $\dim(S_1 + S_2) \leq \dim S_1 + \dim S_2$.
 - as a more advanced result, we also have

$$\dim(\mathcal{S}_1 + \mathcal{S}_2) = \dim \mathcal{S}_1 + \dim \mathcal{S}_2 - \dim(\mathcal{S}_1 \cap \mathcal{S}_2).$$

(I want to see if there is a simple proof to the above equality; I haven't seen one.)

Rank

The rank of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, denoted by $\operatorname{rank}(\mathbf{A})$, is defined as the number of elements of a maximal linearly independent subset of $\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$.

- ullet or, $\mathrm{rank}(\mathbf{A})$ is the maximum number of linearly independent columns of \mathbf{A}
- $\dim \mathcal{R}(\mathbf{A}) = \operatorname{rank}(\mathbf{A})$ by definition

Facts:

- $rank(\mathbf{A}) = rank(\mathbf{A}^T)$, i.e., the rank of \mathbf{A} is also the maximum number of linearly independent rows of \mathbf{A}
- $rank(\mathbf{A} + \mathbf{B}) \le rank(\mathbf{A}) + rank(\mathbf{B})$
- $rank(\mathbf{AB}) \leq min\{rank(\mathbf{A}), rank(\mathbf{B})\}$. Also, the equality above holds if the columns of \mathbf{A} are linearly independent and the rows of \mathbf{B} are linearly independent.

Rank

- A is said to have
 - full column rank if the columns of A are linearly independent (more precisely, the collection of all columns of A is linearly independent)
 - * $\mathbf{A} \in \mathbb{R}^{m \times n}$ being of full-column rank $\iff m \ge n, \operatorname{rank}(\mathbf{A}) = n$
 - full row rank if the rows of A are linearly independent
 - * $\mathbf{A} \in \mathbb{R}^{m \times n}$ being of full-row rank $\iff m \leq n, \operatorname{rank}(\mathbf{A}) = m$
 - full rank if $rank(\mathbf{A}) = min\{m, n\}$; i.e., it has either full column rank or full row rank
 - rank deficient if $rank(\mathbf{A}) < min\{m, n\}$

Invertible Matrices

A square matrix A is said to be nonsingular or invertible if the columns of A are linearly independent, and singular otherwise.

ullet alternatively, we say ${f A}$ is singular if ${f A}{f x}={f 0}$ for some ${f x}
eq {f 0}$.

The inverse of an invertible A, denoted by A^{-1} , is a square matrix that satisfies

$$\mathbf{A}^{-1}\mathbf{A} = \mathbf{I}.$$

Invertible Matrices

Facts (for a nonsingular A):

- A^{-1} always exists and is unique (or there are no two inverses of A)
- A^{-1} is nonsingular
- $\bullet \mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$
- $\bullet (\mathbf{A}^{-1})^{-1} = \mathbf{A}$
- \bullet $({f A}{f B})^{-1}={f B}^{-1}{f A}^{-1}$, where ${f A},{f B}$ are square and nonsingular
- $(\mathbf{A}^T)^{-1} = (\mathbf{A}^{-1})^T$
 - as a shorthand notation, we will denote $\mathbf{A}^{-T} = (\mathbf{A}^T)^{-1}$

Let $\mathbf{A} \in \mathbb{R}^{m \times m}$. The determinant of \mathbf{A} , denoted by $\det(\mathbf{A})$, is defined inductively.

- if m = 1, $\det(\mathbf{A}) = a_{11}$.
- if $m \ge 2$, we have the following:
 - let $\mathbf{A}_{ij} \in \mathbb{R}^{(m-1)\times (m-1)}$ be a submatrix of \mathbf{A} obtained by deleting the ith row and jth column of \mathbf{A} . Let $c_{ij} = (-1)^{i+j} \det(\mathbf{A}_{ij})$.
 - cofactor expansion:

$$\det(\mathbf{A}) = \sum_{j=1}^{m} a_{ij}c_{ij}, \text{ for any } i = 1, \dots, m$$

$$\det(\mathbf{A}) = \sum_{i=1}^{m} a_{ij} c_{ij}, \text{ for any } j = 1, \dots, m$$

– remark: c_{ij} 's are called the cofactors, $\det(\mathbf{A}_{ij})$'s are called the minors

Some interpretations of determinant:

- (important) Ax = 0 for some $x \neq 0$ if and only if det(A) = 0
- $|\det(\mathbf{A})|$ is the volume of the parallelepiped $\mathcal{P} = \{\mathbf{y} = \sum_{i=1}^{m} \alpha_i \mathbf{a}_i \mid \alpha_i \in [0,1] \ \forall i\}$

Source: Wiki. r_1, r_2, r_3 are $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ on \mathbb{R}^3 .

Properties:

- $det(\mathbf{AB}) = det(\mathbf{A}) det(\mathbf{B})$ for any $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times m}$
- $\det(\mathbf{A}) = \det(\mathbf{A}^T)$
- $\det(\alpha \mathbf{A}) = \alpha^m \det(\mathbf{A})$ for any $\alpha \in \mathbb{R}, \mathbf{A} \in \mathbb{R}^{m \times m}$
- $det(\mathbf{A}^{-1}) = 1/det(\mathbf{A})$ for any nonsingular \mathbf{A}
- $det(\mathbf{B}^{-1}\mathbf{A}\mathbf{B}) = det(\mathbf{A})$ for any nonsingular \mathbf{B}
- $\mathbf{A}^{-1} = \frac{1}{\det(\mathbf{A})}\tilde{\mathbf{A}}$, where $\tilde{a}_{ij} = c_{ji}$ (the cofactor) for all i, j (\mathbf{A} is nonsingular)
 - remark: $\tilde{\mathbf{A}}$ is called the adjoint of \mathbf{A}

More properties:

• if $\mathbf{A} \in \mathbb{R}^{m \times m}$ is triangular, either upper or lower,

$$\det(\mathbf{A}) = \prod_{i=1}^{m} a_{ii}$$

- proof: apply cofactor expansion inductively
- ullet if $\mathbf{A} \in \mathbb{R}^{m imes m}$ takes a block upper triangular form

$$\mathbf{A} = egin{bmatrix} \mathbf{B} & \mathbf{C} \\ \mathbf{0} & \mathbf{D} \end{bmatrix},$$

where B and D are square (and can be of different sizes), then

$$\det(\mathbf{A}) = \det(\mathbf{B}) \det(\mathbf{D}).$$

The same result also holds when A takes a block lower triangular form.

Vector Norms

A function $f:\mathbb{R}^n \to \mathbb{R}$ is called a vector norm if

- 1. $f(\mathbf{x}) \geq 0$ for any $\mathbf{x} \in \mathbb{R}^n$
- 2. $f(\mathbf{x}) = 0$ if and only if $\mathbf{x} = \mathbf{0}$
- 3. $f(\mathbf{x} + \mathbf{y}) \le f(\mathbf{x}) + f(\mathbf{y})$ for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$
- 4. $f(\alpha \mathbf{x}) = |\alpha| f(\mathbf{x})$ for any $\alpha \in \mathbb{R}$, $\mathbf{x} \in \mathbb{R}^n$
- used to measure the length of a vector
- ullet we usually use the notation $\|\cdot\|$ to denote a norm
- ullet also used to measure the distance of two vectors, specifically, via $\|\mathbf{x}-\mathbf{y}\|$ where \mathbf{x},\mathbf{y} are the two vectors

Vector Norm

Examples of norm:

- 2-norm or Euclidean norm: $\|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^n |x_i|^2 = (\mathbf{x}^T\mathbf{x})^{1/2}}$
- 1-norm or Manhattan norm: $\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|$
- ∞ -norm: $\|\mathbf{x}\|_{\infty} = \max_{i=1,\dots,n} |x_i|$
- p-norm, $p \ge 1$: $\|\mathbf{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$

ℓ_p Function

Let

$$f_p(\mathbf{x}) = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}, \quad p > 0.$$

- f_p is not a norm for 0
- when $p \to 0$, f_p is like the cardinality function $\operatorname{card}(\mathbf{x}) = \sum_{i=1}^n \mathbb{1}\{x_i \neq 0\}$, where $\mathbb{1}\{x \neq 0\} = 1$ if $x \neq 0$ and $\mathbb{1}\{x \neq 0\} = 0$ if x = 0.

Inner Product and Angle

The inner product of two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ is defined as

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} y_i x_i = \mathbf{y}^T \mathbf{x}.$$

- \mathbf{x}, \mathbf{y} are said to be orthogonal to each other if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$
- \mathbf{x}, \mathbf{y} are said to be parallel if $\mathbf{x} = \alpha \mathbf{y}$ for some α
 - for parallel \mathbf{x}, \mathbf{y} we have $\langle \mathbf{x}, \mathbf{y} \rangle = \pm \|\mathbf{x}\|_2 \|\mathbf{y}\|_2$

The angle between two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ is defined as

$$\theta = \cos^{-1}\left(\frac{\mathbf{y}^T\mathbf{x}}{\|\mathbf{x}\|_2\|\mathbf{y}\|_2}\right).$$

- \mathbf{x}, \mathbf{y} are orthogonal if $\theta = \pm \pi/2$
- \mathbf{x}, \mathbf{y} are parallel if $\theta = 0$ or $\theta = \pm \pi$

Important Inequalities for Inner Product

Cauchy-Schwartz inequality:

$$|\mathbf{x}^T \mathbf{y}| \le ||\mathbf{x}||_2 ||\mathbf{y}||_2.$$

Also, the above equality holds if and only if $\mathbf{x} = \alpha \mathbf{y}$ for some $\alpha \in \mathbb{R}$.

• proof: suppose $y \neq 0$; the case of y = 0 is trivial. For any $\alpha \in \mathbb{R}$,

$$0 \le \|\mathbf{x} - \alpha \mathbf{y}\|_2^2 = (\mathbf{x} - \alpha \mathbf{y})^T (\mathbf{x} - \alpha \mathbf{y}) = \|\mathbf{x}\|_2^2 - 2\alpha \mathbf{x}^T \mathbf{y} + \alpha^2 \|\mathbf{y}\|_2^2. \tag{*}$$

Also, the equality above holds if and only if $\mathbf{x} = \beta \mathbf{y}$ for some β . Let

$$f(\alpha) = \|\mathbf{x}\|_2^2 - 2\alpha \mathbf{x}^T \mathbf{y} + \alpha^2 \|\mathbf{y}\|_2^2.$$

The function f is minimized when $\alpha = (\mathbf{x}^T \mathbf{y})/\|\mathbf{y}\|_2^2$. Plugging this α back to (*) leads to the desired result.

Important Inequalities for Inner Product

Hölder inequality:

$$|\mathbf{x}^T \mathbf{y}| \le ||\mathbf{x}||_p ||\mathbf{y}||_q,$$

for any p, q such that 1/p + 1/q = 1, $p \ge 1$.

- examples:
 - (p,q) = (2,2): Cauchy-Schwartz inequality
 - $-(p,q)=(1,\infty)$: $|\mathbf{x}^T\mathbf{y}| \leq ||\mathbf{x}||_1||\mathbf{y}||_{\infty}$. This can be easily verified to be true:

$$|\mathbf{x}^T \mathbf{y}| \le \sum_{i=1}^n |x_i y_i| \le \max_j |y_j| \left(\sum_{i=1}^n |x_i|\right) = \|\mathbf{x}\|_1 \|\mathbf{y}\|_{\infty}.$$

Projections on Subspaces

Let $S \subseteq \mathbb{R}^m$ be a nonempty closed set (not necessarily a subspace).

Let $\mathbf{y} \in \mathbb{R}^m$ be given.

A projection of y onto S is any solution to

$$\min_{\mathbf{z} \in \mathcal{S}} \|\mathbf{z} - \mathbf{y}\|_2^2$$

- ullet a projection of ${f y}$ onto ${\cal S}$ is any point that is closest to ${f y}$ and lies in ${\cal S}$
- notation: if, for every $y \in \mathbb{R}^m$, there is always *only one* projection of y onto S, then we denote

$$\Pi_{\mathcal{S}}(\mathbf{y}) = \arg\min_{\mathbf{z} \in \mathcal{S}} \|\mathbf{z} - \mathbf{y}\|_2^2$$

and $\Pi_{\mathcal{S}}$ is called *the* projection (or projection operator) of y onto \mathcal{S} .

Projections onto Subspaces

Theorem 1.2 (Projection Theorem). Let S be a subspace of \mathbb{R}^m .

- 1. for every $\mathbf{y} \in \mathbb{R}^m$, there exists a unique vector $\mathbf{y}_s \in \mathcal{S}$ that minimizes $\|\mathbf{z} \mathbf{y}\|_2^2$ over $\mathbf{z} \in \mathcal{S}$. Thus, we can use the notation $\Pi_{\mathcal{S}}(\mathbf{y}) = \arg\min_{\mathbf{z} \in \mathcal{S}} \|\mathbf{z} \mathbf{y}\|_2^2$.
- 2. given $\mathbf{y} \in \mathbb{R}^m$, we have the equivalence

$$\mathbf{y}_s = \Pi_{\mathcal{S}}(\mathbf{y}) \iff \mathbf{y}_s \in \mathcal{S}, \quad \mathbf{z}^T(\mathbf{y}_s - \mathbf{y}) = 0 \text{ for all } \mathbf{z} \in \mathcal{S}.$$

- a special case of the projection theorem for convex sets
 - the latter plays a key role in convex optimization
- the subspace projection theorem above is very useful, as we will see

Projections onto Subspaces

Orthogonal Complements

Let $S \subseteq \mathbb{R}^m$ be a nonempty closed set.

The orthogonal complement of ${\mathcal S}$ is defined as

$$\mathcal{S}^{\perp} = \{ \mathbf{y} \in \mathbb{R}^m \mid \mathbf{z}^T \mathbf{y} = 0 \text{ for all } \mathbf{z} \in \mathcal{S} \}.$$

- S^{\perp} is a subspace (easy to verify)
- ullet any $\mathbf{z} \in \mathcal{S}, \mathbf{y} \in \mathcal{S}^{\perp}$ are orthogonal
- ullet either $\mathcal{S}\cap\mathcal{S}^\perp=\{\mathbf{0}\}$ or $\mathcal{S}\cap\mathcal{S}^\perp=\emptyset$
- some facts for subspaces:
 - $\mathcal{R}(\mathbf{A})^{\perp} = \mathcal{N}(\mathbf{A}^T)$ (also easy to verify)
 - $\mathcal{N}(\mathbf{A}) = \mathcal{R}(\mathbf{A}^T)^{\perp}$

Orthogonal Complements

What happens to the orthogonal complement if S is a subspace?

Theorem 1.3. Let $S \subseteq \mathbb{R}^m$ be a subspace.

1. for every $\mathbf{y} \in \mathbb{R}^m$, there exists a unique $(\mathbf{y}_s, \mathbf{y}_c) \in \mathcal{S} \times \mathcal{S}^{\perp}$ such that

$$\mathbf{y} = \mathbf{y}_s + \mathbf{y}_c$$
.

Also, such a $(\mathbf{y}_s, \mathbf{y}_c)$ is $\mathbf{y}_s = \Pi_{\mathcal{S}}(\mathbf{y}), \mathbf{y}_c = \mathbf{y} - \Pi_{\mathcal{S}}(\mathbf{y}).$

- 2. the projection of \mathbf{y} onto \mathcal{S}^{\perp} can be determined by $\Pi_{\mathcal{S}^{\perp}}(\mathbf{y}) = \mathbf{y} \Pi_{\mathcal{S}}(\mathbf{y})$.
- proof sketch: by the projection theorem. We can rephrase the projection theorem as

$$\mathbf{y}_s \in \mathcal{S}, \ \mathbf{y} - \mathbf{y}_s \in \mathcal{S}^{\perp} \quad \Longleftrightarrow \quad \mathbf{y}_s \in \Pi_{\mathcal{S}}(\mathbf{y}).$$

This leads us to Statement 1 of Theorem 1.3.

Orthogonal Complements

Consequences of Theorem 1.3:

Property 1.1. Let $S \subseteq \mathbb{R}^m$ be a subspace.

- 1. $S + S^{\perp} = \mathbb{R}^m$;
- 2. $\dim \mathcal{S} + \dim \mathcal{S}^{\perp} = m$;
- 3. $(S^{\perp})^{\perp} = S$.
- examples: let $\mathbf{A} \in \mathbb{R}^{m \times n}$.
 - $-\dim \mathcal{R}(\mathbf{A}) + \dim \mathcal{R}(\mathbf{A})^{\perp} = m$
 - and then $\dim \mathcal{R}(\mathbf{A}) + \dim \mathcal{N}(\mathbf{A}^T) = m$
 - and then $\dim \mathcal{N}(\mathbf{A}) = n \dim \mathcal{R}(\mathbf{A}^T) = n \operatorname{rank}(\mathbf{A}) \ge n \min\{m, n\}$
 - * implication: if **A** is fat, the dim. of $\mathcal{N}(\mathbf{A})$ is at least n-m

A collection of vectors $\mathbf{a}_1,\ldots,\mathbf{a}_n\in\mathbb{R}^m$ is said to be

- orthogonal if $\mathbf{a}_i^T \mathbf{a}_j = 0$ for all i, j with $i \neq j$
- orthonormal if $\|\mathbf{a}_i\|_2 = 1$ for all i and $\mathbf{a}_i^T \mathbf{a}_j = 0$ for all i, j with $i \neq j$.

The same definition applies to complex a_i 's, but we need to replace "T" with "H".

Examples:

- ullet $\{{f e}_1,\ldots,{f e}_m\}\subset \mathbb{R}^m$ is orthonormal; in fact, it's an orthonormal basis for \mathbb{R}^m
- ullet any subset of $\{{f e}_1,\ldots,{f e}_m\}$ is orthornormal
- (to be learnt) discrete Fourier transform (DFT), Haar transform, etc., form orthonormal bases

Some immediate facts:

- an orthonormal set of vectors is also linearly independent.
- let $\{a_1, \ldots, a_n\} \subset \mathbb{R}^m$ be an orthonormal set of vectors. Suppose $\mathbf{y} \in \operatorname{span}\{a_1, \ldots, a_n\}$. Then the coefficient α for the representation

$$\mathbf{y} = \sum_{i=1}^{n} \alpha_i \mathbf{a}_i$$

is uniquely given by $\alpha_i = \mathbf{a}_i^T \mathbf{y}$, $i = 1, \dots, n$.

A not so immediate fact:

- (important) every subspace S with $S \neq \{0\}$ has an orthonormal basis.
 - this will be clear when we consider Gram-Schmidt

A real matrix Q is said to be

- orthogonal if it is square and its columns are orthonormal (why we call it an orthogonal matrix, but not an orthonormal matrix?)
- semi-orthogonal if its columns are orthonormal
 - a semi-orthogonal Q must be tall or square

A complex matrix \mathbf{Q} is said to be unitary if it is square and its columns are orthonormal, and semi-unitary if its columns are orthonormal.

Example: consider a transformation y = Qx, where

$$\mathbf{Q} = egin{bmatrix} \cos(heta) & \sin(heta) \ -\sin(heta) & \cos(heta) \end{bmatrix},$$

where $\theta \in [0, 2\pi)$. This **Q** is orthogonal. Also, it performs rotation and reflection.

Facts:

- ullet $\mathbf{Q}^T\mathbf{Q} = \mathbf{I}$ and $\mathbf{Q}\mathbf{Q}^T = \mathbf{I}$ for orthogonal \mathbf{Q}
- ullet $\mathbf{Q}^T\mathbf{Q}=\mathbf{I}$ (but *not* necessarily $\mathbf{Q}\mathbf{Q}^T=\mathbf{I}$) for semi-orthogonal \mathbf{Q}
- $\|\mathbf{Q}\mathbf{x}\|_2 = \|\mathbf{x}\|_2$ for orthogonal \mathbf{Q}
 - physical meaning: rotation and reflection do not affect the vector length
- for every tall and semi-orthogonal matrix $\mathbf{Q}_1 \in \mathbb{R}^{n \times k}$, there exists a matrix $\mathbf{Q}_2 \in \mathbb{R}^{n \times (n-k)}$ such that $[\mathbf{Q}_1 \ \mathbf{Q}_2]$ is orthogonal

Question: given a subspace S, how do we know that it has an orthonormal basis?

- we know that every subspace has a basis, c.f. Theorem 1.1
- but the theorem doesn't say if that basis is orthonormal
- we can construct an orthonormal basis from a basis—and one way to do it is the Gram-Schmidt procedure

Algorithm: Gram-Schmidt

input: a collection of vectors $\mathbf{a}_1, \dots, \mathbf{a}_n$, presumably linearly independent

$$egin{aligned} ilde{\mathbf{q}}_1 &= \mathbf{a}_1, \ \mathbf{q}_1 &= ilde{\mathbf{q}}_1/\| ilde{\mathbf{q}}_1\|_2 \ ext{for } i &= 2, \dots, n \ ilde{\mathbf{q}}_i &= \mathbf{a}_i - \sum_{j=1}^{i-1} (\mathbf{q}_j^T \mathbf{a}_i) \mathbf{q}_j \ ext{q}_i &= ilde{\mathbf{q}}_i/\| ilde{\mathbf{q}}_i\|_2 \end{aligned}$$

end

output: $\mathbf{q}_1, \dots, \mathbf{q}_n$

• Fact: Suppose that $\mathbf{a}_1, \dots, \mathbf{a}_n$ are linearly independent. The collection of vectors $\mathbf{q}_1, \dots, \mathbf{q}_n$ produced by the Gram-Schmidt procedure is orthonormal and satisfies

$$\operatorname{span}\{\mathbf{a}_1,\ldots,\mathbf{a}_n\}=\operatorname{span}\{\mathbf{q}_1,\ldots,\mathbf{q}_n\}.$$

• here we use Gram-Schmidt to identify the existence of an orthonormal basis for a subspace, but it is a numerical algorithm

Proof of the fact on the last page:

- ullet assume linearly independent ${f a}_1,\ldots,{f a}_n$
- \bullet consider i=2.
 - $-\tilde{\mathbf{q}}_2$ is a linear combination of $\mathbf{a}_1, \mathbf{a}_2$ and is nonzero:

$$\tilde{\mathbf{q}}_2 = \mathbf{a}_2 - (\mathbf{q}_1^T \mathbf{a}_2) \mathbf{q}_1 = \mathbf{a}_2 - (\mathbf{q}_1^T \mathbf{a}_2 / \|\mathbf{a}_1\|_2) \mathbf{a}_1;$$
 (†)

the linear independence of $\mathbf{a}_1, \mathbf{a}_2$ implies $\tilde{\mathbf{q}}_2 \neq \mathbf{0}$.

- ${f a}_2$ is a linear combination of ${f q}_1,{f q}_2$: seen from (†)
- consequence: $\operatorname{span}\{\mathbf{a}_1,\mathbf{a}_2\} = \operatorname{span}\{\mathbf{q}_1,\mathbf{q}_2\}$ (why?)
- $-\tilde{\mathbf{q}}_2$ is orthogonal to \mathbf{q}_1 :

$$\mathbf{q}_1^T \tilde{\mathbf{q}}_2 = \mathbf{q}_1^T (\mathbf{a}_2 - (\mathbf{q}_1^T \mathbf{a}_2) \mathbf{q}_1) = \mathbf{q}_1^T \mathbf{a}_2 - \mathbf{q}_1^T \mathbf{a}_2 = 0.$$

- consider $i \geq 2$.
 - $\tilde{\mathbf{q}}_i$ is a linear combination of $\mathbf{a}_1, \dots, \mathbf{a}_{i-1}$ and is nonzero: by induction, $\mathbf{q}_1, \dots, \mathbf{q}_{i-1}$ are linear combinations of $\mathbf{a}_1, \dots, \mathbf{a}_{i-1}$. So,

$$\tilde{\mathbf{q}}_i = \mathbf{a}_i - \sum_{j=1}^{i-1} (\mathbf{q}_j^T \mathbf{a}_i) \mathbf{q}_j$$
 (‡)

is a linear combination of $\mathbf{a}_1, \dots, \mathbf{a}_i$. The linear independence of $\mathbf{a}_1, \dots, \mathbf{a}_i$ implies $\tilde{\mathbf{q}}_i \neq \mathbf{0}$.

- \mathbf{a}_i is a linear combination of $\mathbf{q}_1, \dots, \mathbf{q}_i$: seen from (\ddagger)
- consequence: $\operatorname{span}\{\mathbf{a}_1,\ldots,\mathbf{a}_i\}=\operatorname{span}\{\mathbf{q}_1,\ldots,\mathbf{q}_i\}$
- $\tilde{\mathbf{q}}_i$ is orthogonal to $\mathbf{q}_1,\ldots,\mathbf{q}_{i-1}$: by induction, $\mathbf{q}_1,\ldots,\mathbf{q}_{i-1}$ are orthonormal. For any $k\in\{1,\ldots,i-1\}$,

$$\mathbf{q}_k^T \tilde{\mathbf{q}}_i = \mathbf{q}_k^T (\mathbf{a}_i - \sum_{j=1}^{i-1} (\mathbf{q}_j^T \mathbf{a}_i) \mathbf{q}_j) = \mathbf{q}_k^T \mathbf{a}_i - \mathbf{q}_k^T \mathbf{a}_i = 0.$$

More comments:

the step

$$ilde{\mathbf{q}}_i = \mathbf{a}_i - \sum_{j=1}^{i-1} (\mathbf{q}_j^T \mathbf{a}_i) \mathbf{q}_j$$

can be shown to be equivalent to

$$\tilde{\mathbf{q}}_i = \Pi_{\operatorname{span}\{\mathbf{q}_1, \dots, \mathbf{q}_{i-1}\}^{\perp}}(\mathbf{a}_i) = \Pi_{\operatorname{span}\{\mathbf{a}_1, \dots, \mathbf{a}_{i-1}\}^{\perp}}(\mathbf{a}_i);$$

this will be seen in the LS lecture.

- the Gram-Schmidt procedure can be modified in various ways
 - e.g., it can be modified to do linear independence test, or to find a maximal linearly independent vector subset

Matrix Product Representations

Let $\mathbf{A} \in \mathbb{R}^{m \times k}$, $\mathbf{B} \in \mathbb{R}^{k \times n}$, and consider

$$C = AB$$
.

• column representation:

$$\mathbf{c}_i = \mathbf{A}\mathbf{b}_i, \quad i = 1, \dots, n$$

(I didn't say anything so I assume you know that c_i and b_i are the *i*th column of C and B, resp.)

• inner-product representation: redefine $\mathbf{a}_i \in \mathbb{R}^k$ as the ith row of \mathbf{A} .

$$\mathbf{A}\mathbf{B} = egin{bmatrix} \mathbf{a}_1^T \ dots \ \mathbf{a}_m^T \end{bmatrix} egin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_n \end{bmatrix} = egin{bmatrix} \mathbf{a}_1^T \mathbf{b}_1 & \cdots & \mathbf{a}_1^T \mathbf{b}_n \ dots & & dots \ \mathbf{a}_m^T \mathbf{b}_1 & \cdots & \mathbf{b}_m^T \mathbf{b}_n \end{bmatrix}$$

Thus,

$$c_{ij} = \mathbf{a}_i^T \mathbf{b}_j$$
, for any i, j .

Matrix Product Representations

• outer-product representation: redefine $\mathbf{b}_i \in \mathbb{R}^k$ as the ith row of \mathbf{B} .

$$\mathbf{C} = \mathbf{A}(\mathbf{I})\mathbf{B} = \mathbf{A}\left(\sum_{i=1}^k \mathbf{e}_i \mathbf{e}_i^T\right)\mathbf{B} = \sum_{i=1}^k \mathbf{A}\mathbf{e}_i \mathbf{e}_i^T\mathbf{B}$$

Thus,

$$\mathbf{C} = \sum_{i=1}^k \mathbf{a}_i \mathbf{b}_i^T$$

Matrix Product Representations

- a matrix of the form $\mathbf{X} = \mathbf{ab}^T$ for some \mathbf{a}, \mathbf{b} is called a rank-one outer product. It can be verified that $\operatorname{rank}(\mathbf{X}) \leq 1$, and $\operatorname{rank}(\mathbf{X}) = 1$ if $\mathbf{a} \neq \mathbf{0}, \mathbf{b} \neq \mathbf{0}$.
- the outer-product representation $\mathbf{C} = \sum_{i=1}^k \mathbf{a}_i \mathbf{b}_i^T$ is a sum of k rank-one outer products
- does it mean that $rank(\mathbf{C}) = k$?
 - $-\operatorname{rank}(\mathbf{C}) \leq \sum_{i=1}^{k} \operatorname{rank}(\mathbf{a}_i \mathbf{b}_i^T) \leq k$ is true ²
 - but the above equality is generally not attained; e.g., k=2, ${\bf a}_1={\bf a}_2$, ${\bf b}_1=-{\bf b}_2$ leads to ${\bf C}={\bf 0}$
 - $-\operatorname{rank}(\mathbf{C})=k$ only when \mathbf{A} has full-column rank and \mathbf{B} has full-row rank (requires a proof)

²use the rank inequality $rank(\mathbf{A} + \mathbf{B}) \leq rank(\mathbf{A}) + rank(\mathbf{B})$.

Block Matrix Manipulations

Sometimes it may be useful to manipulate matrices in a block form.

• let $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{x} \in \mathbb{R}^n$. By partitioning

$$\mathbf{A} = egin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 \end{bmatrix}, \quad \mathbf{x} = egin{bmatrix} \mathbf{x}_1 \ \mathbf{x}_2 \end{bmatrix}$$

where $\mathbf{A}_1 \in \mathbb{R}^{m \times n_1}$, $\mathbf{A}_2 \in \mathbb{R}^{m \times n_2}$, $\mathbf{x}_1 \in \mathbb{R}^{n_1}$, $\mathbf{x}_2 \in \mathbb{R}^{n_2}$, with $n_1 + n_2 = n$, we can write

$$\mathbf{A}\mathbf{x} = \mathbf{A}_1\mathbf{x}_1 + \mathbf{A}_2\mathbf{x}_2$$

• similarly, by partitioning

$$\mathbf{A} = egin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix}, \quad \mathbf{x} = egin{bmatrix} \mathbf{x}_1 \ \mathbf{x}_2 \end{bmatrix},$$

we can write

$$\mathbf{A}\mathbf{x} = egin{bmatrix} \mathbf{A}_{11}\mathbf{x}_1 + \mathbf{A}_{12}\mathbf{x}_2 \ \mathbf{A}_{21}\mathbf{x}_1 + \mathbf{A}_{22}\mathbf{x}_2 \end{bmatrix}$$

Block Matrix Manipulations

consider AB. By an appropriate partitioning,

$$\mathbf{A}\mathbf{B} = egin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 \end{bmatrix} egin{bmatrix} \mathbf{B}_1 \ \mathbf{B}_2 \end{bmatrix} = \mathbf{A}_1\mathbf{B}_1 + \mathbf{A}_2\mathbf{B}_2$$

similarly, by an appropriate partitioning,

$$\mathbf{A}\mathbf{B} = egin{bmatrix} \mathbf{A}_1 \ \mathbf{A}_2 \end{bmatrix} egin{bmatrix} \mathbf{B}_1 & \mathbf{B}_2 \end{bmatrix} = egin{bmatrix} \mathbf{A}_1\mathbf{B}_1 & \mathbf{A}_1\mathbf{B}_2 \ \mathbf{A}_2\mathbf{B}_1 & \mathbf{A}_2\mathbf{B}_2 \end{bmatrix}$$

 we showcase two-block partitioning only, but the same manipulations apply to multi-block partitioning like

$$\mathbf{A} = egin{bmatrix} \mathbf{A}_{11} & \cdots & \mathbf{A}_{1q} \ dots & & dots \ \mathbf{A}_{p1} & \cdots & \mathbf{A}_{pq} \end{bmatrix}$$

Extension to \mathbb{C}^n

- all the concepts described above apply to the complex case
- ullet we only need to replace every " \mathbb{R} " with " \mathbb{C} ", and every "T" with "H"; e.g.,

span
$$\{\mathbf{a}_1,\ldots,\mathbf{a}_n\} = \{\mathbf{y} \in \mathbb{C}^m \mid \mathbf{y} = \sum_{i=1}^n \alpha_i \mathbf{a}_i, \ \boldsymbol{\alpha} \in \mathbb{C}^n\},$$

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{y}^H \mathbf{x}$$
, $\|\mathbf{x}\|_2 = \sqrt{\mathbf{x}^H \mathbf{x}}$, and so forth.

Extension to $\mathbb{R}^{m \times n}$

- the concepts also apply to the matrix case
 - e.g., we may write

span
$$\{\mathbf{A}_1, \dots, \mathbf{A}_k\} = \{\mathbf{Y} \in \mathbb{R}^{m \times n} \mid \mathbf{Y} = \sum_{i=1}^k \alpha_i \mathbf{A}_i, \ \boldsymbol{\alpha} \in \mathbb{R}^k\}.$$

- sometimes it is more convenient to *vectorize* X as a vector $x \in \mathbb{R}^{mn}$, and use the same treatment as in the \mathbb{R}^n case
- inner product for $\mathbb{R}^{m \times n}$:

$$\langle \mathbf{X}, \mathbf{Y} \rangle = \sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij} y_{ij} = \operatorname{tr}(\mathbf{Y}^T \mathbf{X}),$$

- the matrix version of the Euclidean norm is called the Frobenius norm:

$$\|\mathbf{X}\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |x_{ij}|^2} = \sqrt{\text{tr}(\mathbf{X}^T \mathbf{X})}$$

ullet extension to $\mathbb{C}^{m \times n}$ is just as straightforward as in that to \mathbb{C}^n

- every vector/matrix operation such as $\mathbf{x} + \mathbf{y}$, $\mathbf{y}^T \mathbf{x}$, $\mathbf{A} \mathbf{x}$, ... incurs computational costs, and they cost more as the vector and matrix sizes get bigger
- we typically look at floating point arithmetic operations, such as add, subtract, multiply, and divide

- flops: one flop means one floating point arithmetic operation.
- flop counts of some standard vector/matrix operations:

for
$$\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$$
, $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{B} \in \mathbb{R}^{n \times p}$,

- $-\mathbf{x} + \mathbf{y}$: n adds, so n flops
- $\mathbf{y}^T\mathbf{x}$: n multiplies and n-1 adds, so 2n-1 flops
- $\mathbf{A}\mathbf{x}$: m inner products, so m(2n-1) flops
- \mathbf{AB} : do " \mathbf{Ax} " above p times, so pm(2n-1) flops

- we are often interested in the *order* of the complexity
- ullet big O notation: given two functions f(n),g(n), the notation

$$f(n) = \mathcal{O}(g(n))$$

means that there exists a constant C>0 and n_0 such that $|f(n)| \leq C|g(n)|$ for all $n\geq n_0$.

- big O complexities of standard vector/matrix operations:
 - $\mathbf{x} + \mathbf{y}$: $\mathcal{O}(n)$ flops
 - $\mathbf{y}^T \mathbf{x}$: $\mathcal{O}(n)$ flops
 - $\mathbf{A}\mathbf{x}$: $\mathcal{O}(mn)$ flops
 - \mathbf{AB} : $\mathcal{O}(mnp)$ flops
 - (we'll learn it later) solve $\mathbf{y} = \mathbf{A}\mathbf{x}$ for \mathbf{x} , with $\mathbf{A} \in \mathbb{R}^{n \times n}$: $\mathcal{O}(n^3)$ flops

- big O complexities are commonly used, although we should be careful sometimes
- example: suppose you have an algorithm whose exact flop count is

$$f(n) = 3n^3 + 8n^2 + 2n + 1234.$$

- $\mathcal{O}(n^3)$ flops
- big O makes sense for large n; n^3 dominates as n is large
- but be careful: for small n, it's 1234 that consumes more
- example: suppose you have two algorithms for the same problem. Their exact flop counts are

$$f_1(n) = n^3, \quad f_2(n) = \frac{1}{2}n^3.$$

- their big O complexities are the same: $\mathcal{O}(n^3)$
- but two times faster is two times faster!

- example: suppose our algorithm deals with complex vector and matrix operations. Define one flop as one real flop.
 - one complex add = 2 real adds = 2 flops
 - one complex multiply = 4 real multiplies + 2 real adds = 6 flops

When we report big O complexity, the scaling factors above are not seen

Exercise: Count the Complexity of Gram Schmidt

recall the Gram-Schmidt procedure recursively computes

$$\tilde{\mathbf{q}}_i = \mathbf{a}_i - \sum_{j=1}^{i-1} (\mathbf{q}_j^T \mathbf{a}_i) \mathbf{q}_j, \quad \mathbf{q}_i = \tilde{\mathbf{q}}_i / \|\tilde{\mathbf{q}}_i\|_2, \quad i = 1, \dots, n.$$

- consider iteration *i*.
 - every $\mathbf{q}_j^T \mathbf{a}_i$, $j = 1, \dots, i = 1$, takes $\mathcal{O}(m)$
 - then, computing $\tilde{\mathbf{q}}_i = \mathbf{a}_i \sum_{j=1}^{i-1} (\mathbf{q}_j^T \mathbf{a}_i) \mathbf{q}_j$ is almost the same as the operation " $\mathbf{A}\mathbf{x}$ "; it takes $\mathcal{O}(mi)$
 - $-\tilde{\mathbf{q}}_i = \tilde{\mathbf{q}}_i/\|\tilde{\mathbf{q}}_i\|_2$ requires $\mathcal{O}(m)$ (one divide, one $\sqrt{\cdot}$, one inner product $\tilde{\mathbf{q}}_i^T \tilde{\mathbf{q}}_i$)
 - total complexity for iteration i: $(i-1) \times \mathcal{O}(m) + \mathcal{O}(mi) + \mathcal{O}(mi) = \mathcal{O}(mi)$
- total complexity of the whole algorithm:

$$\mathcal{O}(m\sum_{i=1}^{n}i) = \mathcal{O}(m\frac{n(n+1)}{2}) = \mathcal{O}(mn^2)$$

- Discussion: flop counts do not always translate into the actual efficiency of the execution of an algorithm, say, in terms of actual running time.
- things like pipelining, FPGA, parallel computing (multiple GPUs, multiple servers, cloud computing), etc., can make the story different.
- flop counts also ignore memory usage and other overheads...
- that said, we need at least a crude measure of how computationally costly an algorithm would be, and counting the flops serves that purpose.

- computational complexities depend much on how we design and write an algorithm
- generally, it is about
 - top-down, analysis-guided, designs: often seen in class, often look elegant
 - street-smart, possibly bottom-up, tricks: usually not taught much in class, also not commonplace in papers (unless you download and read somebody's code), subtly depends on your problem at hand, but a bunch of small differences can make a big difference, say in actual running time
- here we give several, but by no means all, tips for saving computations

- apply matrix operations wisely
- example: try this on MATLAB

- let us analyze the complexities in the last example
 - $-\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{B} \in \mathbb{R}^{n \times p}, \mathbf{C} \in \mathbb{R}^{p \times p}$, with $n \ll \min\{m, p\}$. We want to compute $\mathbf{D} = \mathbf{ABC}$.
 - if we compute \mathbf{AB} first, and then $\mathbf{D} = (\mathbf{AB})\mathbf{C}$, the flop count will be

$$\mathcal{O}(mnp) + \mathcal{O}(mp^2) = \mathcal{O}(m(n+p)p) \approx \mathcal{O}(mp^2)$$

- if we compute \mathbf{BC} first, and then $\mathbf{D} = \mathbf{A}(\mathbf{BC})$, the flop count will be

$$\mathcal{O}(np^2) + \mathcal{O}(mnp) = \mathcal{O}((m+p)np).$$

- the 2nd option is preferable if n is much smaller than m, p

- use structures, if available
- ullet example: let $\mathbf{A} \in \mathbb{R}^{n \times n}$ and suppose that

$$a_{ij} = 0$$
 for all i, j such that $|i - j| > p$,

for some integer p > 0.

- such a structured A is called band diagonal
- if we don't use structures, computing $\mathbf{A}\mathbf{x}$ requires $\mathcal{O}(n^2)$

– if we use the band diagonal structures, we can compute $\mathbf{A}\mathbf{x}$ with $\mathcal{O}(pn)$

- use sparsity, if available
- a vector or matrix is said to be sparse if it contains many zero elements
 - we assume unstructured sparsity

- ullet let $nnz(\mathbf{x})$ denote the number of nonzero elements of a vector \mathbf{x} ; the same notation applies to matrices
- flop counts: for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{B} \in \mathbb{R}^{n \times p}$,
 - $-\mathbf{x} + \mathbf{y}$: from 0 and $\min\{\max(\mathbf{x}), \max(\mathbf{y})\}\$ flops $\Longrightarrow \mathcal{O}(\min\{\max(\mathbf{x}), \max(\mathbf{y})\})$
 - $\mathbf{y}^T \mathbf{x}$: from 0 to $2 \min\{ \max(\mathbf{x}), \max(\mathbf{y}) \}$ flops $\Longrightarrow \mathcal{O}(\min\{ \max(\mathbf{x}), \max(\mathbf{y}) \})$
 - $\mathbf{A}\mathbf{x}$, \mathbf{x} being dense: from $\mathrm{nnz}(\mathbf{A})$ to $2\mathrm{nnz}(\mathbf{A})$ flops $\Longrightarrow \mathcal{O}(\mathrm{nnz}(\mathbf{A}))$
 - \mathbf{AB} : no simple expression for the flops, but at most $2\min\{\max(\mathbf{A})p, \max(\mathbf{B})m\}$ flops $\Longrightarrow \mathcal{O}(\min\{\max(\mathbf{A})p, \max(\mathbf{B})m\})$
- reference: S. Boyd and L. Vandenberghe, *Introduction to Applied Linear Algebra Vectors, Matrices, and Least Squares,* 2018. Available online at https://web.stanford.edu/~boyd/vmls/vmls.pdf.