Exercise 11.2

Question 1:

Find the area of each of the following parallelograms:

Answer 1:

We know that the area of parallelogram = base x height

- (a) Here base = 7 cm and height = 4 cm
 - \therefore Area of parallelogram = 7 x 4 = 28 cm²
- (b) Here base = 5 cm and height = 3 cm
 - \therefore Area of parallelogram = 5 x 3 = 15 cm²
- (c) Here base = 2.5 cm and height = 3.5 cm
 - \therefore Area of parallelogram = 2.5 x 3.5 = 8.75 cm²
- (d) Here base = 5 cm and height = 4.8 cm
 - \therefore Area of parallelogram = 5 x 4.8 = 24 cm²
- (e) Here base = 2 cm and height = 4.4 cm
 - \therefore Area of parallelogram = 2 x 4.4 = 8.8 cm²

Question 2:

Find the area of each of the following triangles:

Answer 2:

We know that the area of triangle = $\frac{1}{2}$ x base x height

(a) Here, base = 4 cm and height = 3 cm

$$\therefore$$
 Area of triangle = $\frac{1}{2}$ x 4 x 3 = 6 cm²

(b) Here, base = 5 cm and height = 3.2 cm

$$\therefore$$
 Area of triangle = $\frac{1}{2} \times 5 \times 3.2 = 8 \text{ cm}^2$

(c) Here, base = 3 cm and height = 4 cm

$$\therefore$$
 Area of triangle = $\frac{1}{2}$ x 3 x 4 = 6 cm²

(d) Here, base = 3 cm and height = 2 cm

$$\therefore$$
 Area of triangle = $\frac{1}{2}$ x 3 x 2 = 3 cm²

Question 3:

Find the missing values:

S. No.	Base	Height	Area of the parallelogram
a.	20 cm		246 cm ²
b.		15 cm	154.5 cm ²
C.		84 cm	48.72 cm ²
d.	15.6 cm		16.38 cm ²

Answer 3:

We know that the area of parallelogram = base x height

- (a) Here, base = 20 cm and area = 246 cm^2
 - ∴ Area of parallelogram = base x height
 - \Rightarrow 246 = 20 x height
 - \Rightarrow height = $\frac{246}{20}$ = 12.3 cm
- (b) Here, height = 15 cm and area = 154.5 cm^2
 - ∴ Area of parallelogram = base x height
 - \Rightarrow 154.5 = base x 15
 - \Rightarrow base = $\frac{154.5}{15}$ = 10.3 cm
- (c) Here, height = 8.4 cm and area = 48.72 cm^2
 - ∴ Area of parallelogram = base x height
 - \Rightarrow 48.72 = base x 8.4
 - \Rightarrow base = $\frac{48.72}{8.4}$ = 5.8 cm
- (d) Here, base = 15.6 cm and area = 16.38 cm^2
 - ∴ Area of parallelogram = base x height
 - \Rightarrow 16.38 = 15.6 x height
 - \Rightarrow height = $\frac{16.38}{15.6}$ = 1.05 cm

Thus, the missing values are:

S. No.	Base	Height	Area of the parallelogram
a.	20 cm	12.3 cm	246 cm ²
b.	10.3 cm	15 cm	154.5 cm ²
C.	5.8 cm	84 cm	48.72 cm ²
d.	15.6 cm	1.05	16.38 cm ²

Question 4:

Find the missing values:

Base	Height	Area of triangle
15 cm		87 cm ²
	31.4 mm	1256 mm ²
22 cm		170.5 cm ²

Answer 4:

We know that the area of triangle = $\frac{1}{2}$ x base x height

In first row, base = 15 cm and area = 87 cm^2

∴
$$87 = \frac{1}{2} \times 15 \times \text{height}$$

$$\Rightarrow$$
 height = $\frac{87 \times 2}{15}$ 11.6 cm

In second row, height = 31.4 mm and area = 1256 mm²

$$\therefore$$
 1256 = $\frac{1}{2}$ x base x 31.4

$$\Rightarrow \text{ base} = \frac{1256 \times 2}{31.4} 80 \text{ mm}$$

In third row, base = 22 cm and area = 170.5 cm^2

$$\therefore$$
 170.5 = $\frac{1}{2}$ x 22 x height

$$\Rightarrow$$
 height = $\frac{170.5 \times 2}{22}$ 15.5 cm

Thus, the missing values are:

Base	Height	Area of triangle
15 cm	11.6 cm	87 cm ²
80 mm	31.4 mm	1256 mm ²
22 cm	15.5 cm	170.5 cm ²

Question 5:

PQRS is a parallelogram (Fig 11.23). QM is the height from Q to SR and QN is the height from Q to PS. If SR = 12 cm and QM = 7.6 cm. Find:

- (a) the area of the parallelogram PRS
- (b) QN, if PS = 8 cm

Answer 5:

Given: SR = 12 cm, QM = 7.6 cm, PS = 8 cm.

(a) Area of parallelogram = base x height

$$= 12 \times 7.6 = 91.2 \text{ cm}^2$$

(b) Area of parallelogram = base x height

 \Rightarrow 91.2 = 8 x QN

 \Rightarrow QN = $\frac{91.2}{8}$ = 11.4 cm

Question 6:

DL and BM are the heights on sides AB and AD respectively of parallelogram ABCD (Fig 11.24). If the area of the parallelogram is 1470 cm^2 , AB = 35 cm and AD = 49 cm, find the length of BM and DL.

Answer 6:

Fig 11.24

Given: Area of parallelogram = 1470 cm^2 Base (AB) = 35 cm and base (AD) = 49 cm

Since Area of parallelogram = base x height

 \Rightarrow 1470 = 35 x DL

$$\Rightarrow DL = \frac{1470}{35}$$

$$\Rightarrow$$
 DL = 42 cm

Again, Area of parallelogram = base x height

$$\Rightarrow$$
 1470 = 49 x BM

$$\Rightarrow$$
 BM = $\frac{1470}{49}$

$$\Rightarrow$$
 BM = 30 cm

Thus, the lengths of DL and BM are 42 cm and 30 cm respectively.

Question 7:

 \triangle ABC is right angled at A (Fig 11.25). AD is perpendicular to BC. If AB = 5 cm, BC = 13 cm and AC = 12 cm, find the area of \triangle ABC. Also, find the length of AD.

Fig 11.25

Answer 7:

In right angles triangle BAC, AB = 5 cm and AC = 12 cm

Area of triangle =
$$\frac{1}{2}$$
 x base x height = $\frac{1}{2}$ x AB x AC
= $\frac{1}{2}$ x 5 x 12 = 30 cm²

Now, in \triangle ABC,

Area of triangle ABC = $\frac{1}{2}$ x BC x AD

$$\Rightarrow 30 = \frac{1}{2} \times 13 \times AD$$

$$\Rightarrow \qquad AD = \frac{30 \times 2}{13} = \frac{60}{13} \text{ cm}$$

Question 8:

 \triangle ABC is isosceles with AB = AC = 7.5 cm and BC = 9 cm (Fig 11.26). The height AD from A to BC, is 6 cm. Find the area of \triangle ABC. What will be the height from C to AB i.e., CE?

Answer 8:

In
$$\triangle$$
 ABC, AD = 6 cm and BC = 9 cm

Area of triangle =
$$\frac{1}{2}$$
 x base x height = $\frac{1}{2}$ x BC x AD
= $\frac{1}{2}$ x 9 x 6 = 27 cm²

Again, Area of triangle =
$$\frac{1}{2}$$
 x base x height = $\frac{1}{2}$ x AB x CE

$$\Rightarrow 27 = \frac{1}{2} \times 7.5 \times CE$$

$$\Rightarrow \qquad \text{CE} = \frac{27 \times 2}{7.5}$$

$$\Rightarrow$$
 CE = 7.2 cm

Thus, height from C to AB i.e., CE is 7.2 cm.