

# Agenda

- Intro to dataset
- Dataset Problems
- Fixing the Data Noise
- Unnecessary Columns
- Categorical Variables
- Missing Values
- Outliers and Noise
- Skewness



### Intro to dataset

#### **Overview**

| Dataset Statistics         |                 | Dataset Insights                                       |         |  |
|----------------------------|-----------------|--------------------------------------------------------|---------|--|
| Number of Variables        | 28              | Name has 9985 (9.98%) missing values                   | Missing |  |
| Number of Rows             | 100000          | Monthly_Inhand_Salary has 15002 (15.0%) missing values | Missing |  |
| Missing Cells              | 60071           | Type_of_Loan has 11408 (11.41%) missing values         | Missing |  |
| Missing Cells (%)          | 2.1%            | Num_of_Delayed_Payment has 7002 (7.0%) missing         | -       |  |
| Duplicate Rows             | 0               | values                                                 | Missing |  |
| Duplicate Rows (%)         | 0.0%            | Num_Credit_Inquiries has 1965 (1.96%) missing values   | Missing |  |
| Total Size in Memory       | 135.5 MB        | Credit_History_Age has 9030 (9.03%) missing values     | Missing |  |
| Average Row Size in Memory | 1.4 KB          | Amount_invested_monthly has 4479 (4.48%) missing       | Vicein  |  |
| Variable Types             | Categorical: 20 | values                                                 | Missing |  |
|                            | Numerical: 8    | Monthly_Balance has 1200 (1.2%) missing values         | Missing |  |
|                            |                 | Num_Bank_Accounts is skewed                            | Skewed  |  |
|                            |                 | Num_Credit_Card is skewed                              | Skewed  |  |
|                            |                 | 1 2 3                                                  |         |  |

| Dataset Insights  Type_of_Loan has a high cardinality: 6260 distinct values | High<br>Cardinality | Dataset Insights  Interest_Rate is skewed                     | Skewed              |
|-----------------------------------------------------------------------------|---------------------|---------------------------------------------------------------|---------------------|
| Num_of_Delayed_Payment has a high cardinality: 749 distinct values          | High<br>Cardinality | Num_Credit_Inquiries is skewed  Total_EMI_per_month is skewed | Skewed              |
| Changed_Credit_Limit has a high cardinality: 4384 distinct values           | High<br>Cardinality | ID has a high cardinality: 100000 distinct values             | High<br>Cardinality |
| Outstanding_Debt has a high cardinality: 13178 distinct values              | High<br>Cardinality | Customer_ID has a high cardinality: 12500 distinct values     | High<br>Cardinality |
| Credit_History_Age has a high cardinality: 404 distinct values              | High<br>Cardinality | Name has a high cardinality: 10139 distinct values            | High<br>Cardinality |
| Amount_invested_monthly has a high cardinality: 91049 distinct values       | High<br>Cardinality | Age has a high cardinality: 1788 distinct values              | High<br>Cardinality |
| Monthly_Balance has a high cardinality: 98792 distinct values               | High<br>Cardinality | SSN has a high cardinality: 12501 distinct values             | High<br>Cardinality |
| ID has all distinct values                                                  | Unique              | Annual_Income has a high cardinality: 18940                   | High                |
| Num_Credit_Inquiries has 6972 (6.97%) zeros Zeros                           |                     | distinct values                                               | Cardinality         |
| Total_EMI_per_month has 10613 (10.61%) zeros                                | Zeros               | Num_of_Loan has a high cardinality: 434 distinct values       | High<br>Cardinality |



# **Dataset Problems**

- Some columns such as Age and number of bank account have negative values which could be considered as data noise.
- Some columns has extreme values, such as the Age column, which has customers aging around 8600 years old.
- Some columns are skewed.
- Some columns has values that does not have meaning such as the "NM" value in the Payment\_of\_min\_amount column.



# Handling dataset problems column by column





# ID, Name, and SSN columns

• These are unnecessary columns which has no correlation with our dataset target, so they were dropped.





# Categorical Columns handled by Label Encoder

- Customer\_ID, Month
- Occupation
- Credit\_Mix
- Payment\_of\_min\_amount
- Credit\_Score
- Payment\_Behaviour and columns





# Numerical columns classified as Objects, handled by the reges function

- Age
- Annual\_income
- Num\_of\_loan
- Num\_of\_delayed\_payment
- Changed\_credit\_limit
- Outstanding\_debtCredit\_Mix
- Payment\_of\_min\_amount
- Amount\_invested\_monthly
- Monthly \_BalanceC





# Outliers has been handled by the IQR of each column

# Example: Age column

#### Noise

Age column has negative values such as -500

#### **Outliers**

 Age column has extreme values with max of 8698 years old.



• We have put a lower bound = 14 years old, and upper Bound of 85 years old and replaced the outliers





#### **Customer ID Column**

#### Noise

• The column is a categorical column, thus, we deleted the characters of each row, so that the column is transformed into numerical value.

#### **Analysis**

- The column divides the dataset into 12500 customer, each Customer\_ID maps and strongly relates to some other features.
  - Thus, The missing values of the dataset will be imputed relative to this column.

# Missing Values

- As every column in the dataset is related to the Customer ID column, we conclude that each customer has 8 rows in the dataset.
- Thus, using KNN Imputer with 5 neighbors would give the best predictions for filling the missing values.



| TD                                 |       | Customer ID              | a  |
|------------------------------------|-------|--------------------------|----|
| ID<br>Customer ID                  | 0     | Customer_ID              | 0  |
| Customer_ID Month                  | 0     | Month                    | 0  |
| Name                               | 9985  | Age                      | 0  |
| Age                                | 9903  | Occupation               | 0  |
| SSN                                | a     | Annual_Income            | 0  |
| Occupation                         | ø     | Monthly_Inhand_Salary    | 0  |
| Annual_Income                      | ø     | Num_Bank_Accounts        | 0  |
| Monthly_Inhand_Salary              | 15002 | Num_Credit_Card          | 0  |
| Num_Bank_Accounts                  | 0     | Interest_Rate            | Ő. |
| Num_Credit_Card                    | 0     | Num_of_Loan              | ø  |
| Interest_Rate                      | 0     |                          | 0  |
| Num_of_Loan                        | 0     | Delay_from_due_date      |    |
| Type_of_Loan                       | 11408 | Num_of_Delayed_Payment   | 0  |
| Delay_from_due_date                | 7000  | Changed_Credit_Limit     | 0  |
| Num_of_Delayed_Payment             | 7002  | Num_Credit_Inquiries     | 0  |
| Changed_Credit_Limit               | 1965  | Credit_Mix               | 0  |
| Num_Credit_Inquiries<br>Credit_Mix | 1902  | Outstanding_Debt         | 0  |
| Outstanding_Debt                   | 0     | Credit_Utilization_Ratio | 0  |
| Credit_Utilization_Ratio           | ø     | Credit_History_Age       | 0  |
| Credit_History_Age                 | 9030  | Payment_of_Min_Amount    | 0  |
| Payment_of_Min_Amount              | 0     | Total_EMI_per_month      | ø. |
| Total_EMI_per_month                | 0     | Amount_invested_monthly  | ø  |
| Amount_invested_monthly            | 4479  |                          | ø  |
| Payment_Behaviour                  | 0     | Payment_Behaviour        |    |
| Monthly_Balance                    | 1200  | Monthly_Balance          | 0  |
| Credit_Score                       | 0     | Credit_Score             | 0  |
| dtype: int64                       |       | dtype: int64             |    |
|                                    |       |                          |    |



#### **Robust Scaler**

We used Robust Scaler to rescale the dataset.

# Modelling

Models Applied: Best Model:

Logistic Classifier KNN

**KNN** 

**GaussianNB** 

**SVC** 

**Random Forest** 

**XGBOOST** 

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0.0          | 0.85      | 0.84   | 0.85     | 3636    |
| 1.0          | 0.83      | 0.86   | 0.84     | 4028    |
| 2.0          | 0.79      | 0.77   | 0.78     | 4902    |
| accuracy     |           |        | 0.82     | 12566   |
| macro avg    | 0.82      | 0.82   | 0.82     | 12566   |
| weighted avg | 0.82      | 0.82   | 0.82     | 12566   |

the score on train dataset is 0.9043412518403565

Test Accuracy: 0.8187171733248448





# **Model Deployment**

We applied Gradio API as it gives a good quality user experince





# Thank You!



