Lab6

1. Inne metody filtrowania obrazów, filtry konwolucyjne

Ogólna zasada: oglądamy obraz przez okno określonego wymiaru (kwadratowe o nieparzystej długości boku). Na postawie wartości pikseli widocznych przez okno (i ewentualnie innych podanych wartości) wyznaczamy wartość piksela środkowego.

Ważne! Całe okno musi mieścić się w obrazie, więc punkty na brzegu obrazu nie "dostaną" nowych wartości.

Kwadratowe otoczenie K punktu (m,n) o boku k można wyznaczyć jak na ćwiczeniach 7.

Filtry Minimum, Maximum, Mediany, Średniej: Niech K oznacza otoczenie danego punktu (m,n). Wtedy punktowi (m,n) dajemy wartość p'(m,n), odpowiednio.

$$p'(m,n) \leftarrow \min \{p(i,j): (i,j) \in K\}$$

 $p'(m,n) \leftarrow \max \{p(i,j): (i,j) \in K\}$
 $p'(m,n) \leftarrow \text{median } \{p(i,j): (i,j) \in K\}$
 $p'(m,n) \leftarrow \text{mean } \{p(i,j): (i,j) \in K\}$

Filtry konwolucyjne

Do wyznaczenia filtru opartego na sumie ważonej, wagi przechowujemy w tablicy (lub innej strukturze danych) **H** o wymiarach takich jak okno i wykonujemy mnożenie odpowiednich wartości, sumujemy i ewentualnie dzielimy przez stałą (scale). Ten sposób nazywa się metodą konwolucji (ang. Convolution), a tablica z wagami nazwana jest jądrem (ang. Kernel)

Dla okna wymiaru k mamy:

$$p'(m,n) \leftarrow \sum_{a=0}^{k-1} \sum_{b=0}^{k-1} p(m-d+a,n-d+b) \cdot H(a,b)$$
, gdzie $d = int(k/2)$

Przykłady:

Moduł ImageFilter

Filtry ze stałymi ustawieniami (1.-10) oraz z parametrami (11-18)

	· · · · · · · · · · · · · · · · · · ·	
1.	BLUR	10.EMBOSS
2.	DETAIL	11.BoxBlur
3.	EDGE_ENHANCE	12. Gaussian Blur
4.	EDGE_ENHANCE_MORE	13.UnsharpMask
5.	FIND_EDGES	14.Kernel
6.	SHARPEN	15.RankFilter
7.	SMOOTH	16.MedianFilter
8.	SMOOTH_MORE	17.MinFilter
9.	CONTOUR	18. Max Filter

2. Filtrowanie przez wyrównanie histogramu

Histogram w trybie 'L': każdej wartości z zakresu od 0 do 255 przyporządkowana jest liczba pikseli o tej wartości.

Wyrównanie histogramu (dla obrazów w trybie 'L'):

- 1. Pobranie histogramu obrazu lista hist długości 256
- Normalizacja, tzn. każdy element histogramu dzielimy przez liczbę wszystkich pikseli w obrazie – lista hist_norm długości 256
- 3. Kumulacja, tzn. tworzymy z histogramu znormalizowanego histogram skumulowany lista hist_kumul długości 256 taka, że hist_kumul[i] jest sumą wszystkich elementów hist_norm o indeksach mniejszych równych i
- 4. Filtr obrazu przez wyrównanie histogramu, tzn. wartość p każdego piksela obrazu zamieniamy na int(255*hist_kumul[p])

3. Resize, rotate, transform

Filters comparison table

Filter	Downscaling quality	Upscaling quality	Performance
NEAREST			***
BOX	☆		☆☆☆☆
BILINEAR	☆	☆	☆☆☆
HAMMING	☆ ☆		☆☆☆
BICUBIC	☆☆☆	***	☆ ☆
LANCZOS	***	☆☆☆☆	☆

Zadania

- 1. Wczytaj swój obraz w trybie RGB.
 - a. Zastosuj filtr BLUR do swojego obrazu.
 - b. Pobierz informacje o filtrze BLUR, wstaw je jako parametry filtru kernel. Zastosuj do obrazu.
 - c. Na diagramie plt (fig1.png) umieść obraz wejściowy, obrazy otrzymane w pkt. a. i b. oraz wynik ich porównania.
- 2. SOBEL, podobnie jak Emboss, wyróżnia krawędzie. Przekonwertuj swój obraz na tryb 'L' (obraz.convert('L')). Na tym obrazie:
 - a. Zastosuj filtr EMBOSS
 - b. Pobierz informacje o filtrze EMBOSS a następnie zmień argumenty tego filtru tak, żeby zastosować dwa poniższe filtry.
 - i. SOBEL1: (-1, 0, 1, -2, 0, 2, -1, 0, 1). Zastosuj filtr
 - ii. SOBEL2: (-1, -2, -1, 0, 0, 0, 1, 2, 1). Zastosuj filtr
 - c. Na diagramie plt (fig2.png) umieść obraz otrzymany po konwersji na L oraz obrazy z punktów a. i b. Napisz jakie widzisz różnice między powyższymi obrazami.
- 3. Na diagramie plt (fig3.png) umieść obrazy powstałe z obrazu po zastosowaniu filtrów 2,4,6,8 (w kolumnie, nad każdym obrazem w tytule powinna pojawić się nazwa filtru) i obok każdego wynik porównania obrazu oryginalnego z obrazem przefiltrowanym.
- 4. Wyszukaj w dokumentacji Pillow jakie parametry stosuje się w przypadku filtrów 11.-18. Na diagramie plt (fig4.png) umieść obrazy powstałe z obrazu po zastosowaniu filtrów 12,13,16,17,18 z własnymi wartościami parametrów (w kolumnie, nad każdym obrazem w tytule powinna pojawić
- 5. Wczytaj obraz: zeby.png. Sprawdź tryb i przekonwertuj do trybu 'L'. Zastosuj do obrazu ImageOps.equalize. Otrzymany obraz zapisz jako equalized.png
- 6. Zastosuj do obrazu zeby.png filtry DETAIL, SHARPEN i CONTOUR.
 - a. Przedstaw obraz wejściowy, obrazy po zastosowaniu filtrów i obraz equalized.png na jednym diagramie plt (nad każdym z

- obrazów umieść tytuł z nazwą zastosowanego filtru) i zapisz jako filtry.png. Który z tych filtrów działa najlepiej według ciebie?
- b. Przedstaw histogramy obrazów z pkt.6a. na jednym diagramie plt (nad każdym umieść tytuł z nazwą zastosowanego filtru) i zapisz jako histogramy.png. Napisz jakie widzisz różnice w stosunku do histogramu obrazu wejściowego.
- 7. Zastosuj metode resize do obrazu wybranego w zad.1 Utwórz 6 obrazów przyjmując skalę dla szerokości s_w = 0.15, skalę dla wysokości s_h = 0.27 oraz kolejno metody resamplingu 'NEAREST','LANCZOS','BILINEAR','BICUBIC','BOX','HAMMING' Przedstaw na jednym diagramie plt (fig5.png) obrazy po przeskalowaniu i ich różnice w stosunku do NEAREST. Pobierz statystyki różnic i skomentuj.
- 8. Wybierz z zad 7 jeden z obrazów a następnie stosując resize tą samą metodą wróć do rozmiaru obrazu wejściowego. Omów różnice między obrazem otrzymanym w ten sposób a obrazem wejściowym. Przedstaw te obrazy na jednym diagramie plt (fig6.png)
- 9. Obróć obraz
 - a. o 60 stopni w lewo dobierając argumenty metody rotate tak, żeby widoczny był cały obraz, a nadmiarowy fragment był w kolorze czerwonym
 - b. o 60 stopni w lewo dobierając argumenty metody rotate tak, żeby rozmiar obrazu się nie zmienił, a nadmiarowy fragment był w kolorze czerwonym
 - c. o 300 stopni w prawo dobierając argumenty metody rotate tak, żeby widoczny był cały obraz, a nadmiarowy fragment był w kolorze zielonym
 - d. o 300 stopni w prawo dobierając argumenty metody rotate tak, żeby rozmiar obrazu się nie zmienił, a nadmiarowy fragment był w kolorze zielonym
 - e. Przedstaw otrzymane obrazy na jednym diagramie plt (fig6.png)
- 10. Czy przekształcenia Image.TRANSPOSE i Image.TRANSVERSE można otrzymać wykonując obroty i Image.FLIP_LEFT_RIGHT? Jeśli tak napisz, jak to zrobić.

Raport, plik z kodem oraz obrazy zaznaczone na zielono wstawić na Moodle