Latent Variable Models

Volodymyr Kuleshov

Cornell Tech

Lecture 5

The Task of Generative Modeling

Suppose we are given a training set of examples, e.g., images of dogs

Our Goal: define a probability distribution p(x) over images x such that

- Generation: If we sample $x_{new} \sim p(x)$, x_{new} should look like a dog.
- Representation Learning: We should be able to learn what these images have in common, e.g., ears, tail, etc.
- **Density Estimation:** p(x) should be high if x looks like a dog, and low otherwise (anomaly detection)

Previously: Generation and density estimation. Today: Representation learning.

Recap of Previous Lectures

- Autoregressive models:
 - Probability distributions factorize into a product of factors:

$$p(\mathbf{x}) = \prod_{i=1}^n p(x_i \mid \mathbf{x}_{< i})$$

- We can efficiently represent p via conditional independence or via compact neural parameterizations $p_{\text{Neural}}(x_i \mid \mathbf{x}_{< i})$ of each factor.
- Pros of autoregressive models:
 - It is computationally tractable to evaluate likelihoods
 - It is tractable to train $p(\mathbf{x})$ via maximum likelihood & gradient descent
- Ons of autoregressive models:
 - They require choosing an ordering over variables
 - Generation is sequential (hence usually slow)
 - Cannot learn features in an unsupervised way

Lecture Outline

- Latent Variable Models
 - Motivation
 - Definition
- Examples of Shallow and Deep Latent Variable Models
 - Gaussian Mixture Models
 - Deep Latent Gaussian Models
- Approximating Marginal Likelihood Using Variational Inference
 - Challenges of Maximum Marginal Likelihood Learning
 - Evidence Lower Bound on the Marginal Likelihood
 - Variational Inference

Latent Variable Models: Motivation

Human faces \mathbf{x} can feature a lot of interesting characteristics: gender, age, hair color, eye color, pose, etc.

Challenge: How to automatically learn these characteristics from data?

- Unless the images are annotated, these factors of variation are not explicitly available (latent).
- **Idea**: Explicitly model these factors using latent variables **z** and learn them using unsupervised learning.

Latent Variable Models: Definition

A latent variable model defines a probability distribution

$$p(x,z)=p(x|z)p(z)$$

containing two sets of variables:

- Observed variables x that represent the high-dimensional objects we are trying to model and that are in our training set.
- 2 Latent variables z that are not in the dataset, but that are associated with x as specified by p(x, z). We will learn z and p(x, z) jointly.

Latent Variable Models: Example

Consider the following distribution $p(\mathbf{x}|\mathbf{z})p(\mathbf{z})$ over faces:

- The observed variables x are the images (their pixel values)
- The latent variables **z** are discrete features: gender, pose, etc.
 - Note that we can extract features via $p(\mathbf{z} \mid \mathbf{x})$, e.g., $p(Gender = F \mid \mathbf{x})$
- Challenges:
 - ① Very difficult to specify conditional $p(\mathbf{x}|\mathbf{z})$ by hand
 - Unsupervised learning in this model can be intractable

Continuous Latent Variable Representations

Our solution to Challenge #1 involves choosing a continuous ("distributed") representation for \mathbf{z} :

- **1** The variable $\mathbf{z} \in \mathbb{R}^p$ is a continuous real-valued vector
- ② The $\mathbf{z} \to \mathbf{x}$ mapping is specified by a neural net and learned from data

The z form a smooth parameterization of faces x. Similar faces (same age, gender) have similar z. We can map x to z, interpolate between z, generate faces from new z, etc.

Deep Latent Variable Models: Example

Here is an example of how a deep latent variable model with a continuous latent representation ${\bf z}$ might look like:

- The prior $p(\mathbf{z})$ is a p-dimensional Gaussian $\mathcal{N}(0, I_p)$
- ② $p(\mathbf{x} \mid \mathbf{z}) = \mathcal{N}(\mu_{\theta}(\mathbf{z}), \Sigma_{\theta}(\mathbf{z}))$ where $\mu_{\theta}, \Sigma_{\theta}$ are neural networks

Learning such models is still challenging.

Example: Unsupervised Learning Over Handwritten Digits

Unsupervised clustering of MNIST digits using deep latent variable models.

Example: Unsupervised Learning over Face Images

Benefits of the Latent Variable Approach

- Allows us to define complex models $p(\mathbf{x})$ in terms of simple building blocks $p(\mathbf{x} \mid \mathbf{z})$
- Natural for unsupervised learning tasks (clustering, unsupervised representation learning, etc.)
- No free lunch: much more difficult to learn compared to fully observed, autoregressive models

Lecture Outline

- Latent Variable Models
 - Motivation
 - Definition
- 2 Examples of Shallow and Deep Latent Variable Models
 - Gaussian Mixture Models
 - Deep Latent Gaussian Models
- Approximating Marginal Likelihood Using Variational Inference
 - Challenges of Maximum Marginal Likelihood Learning
 - Evidence Lower Bound on the Marginal Likelihood
 - Variational Inference

Shallow Latent-Variable Models: Gaussian Mixture Models

The classical latent variable model $p(\mathbf{x}, z)$ is the mixture of Gaussians:

- **1** The prior is $p(z) = \text{Categorical}(1, \dots, K)$
- ② The conditional is $p(\mathbf{x} \mid z = k) = \mathcal{N}(\mu_k, \Sigma_k)$

This assumes the data is a mixture of K unknown Gaussian clusters.

Representational Power of Mixture Models

Mixtures of Gaussians can represent distributions that single Gaussians cannot, e.g.: the two-component structure of this data:

Mixtures of Gaussians can be used for generative tasks:

- Generation: First sample z, then sample z-th Gaussian to get x
- Representation Learning: Learn cluster components from unlabeled data. The posterior $p(z \mid \mathbf{x})$ identifies the latent cluster.

Deep Latent Gaussian Models

We can extend GMMs to mixtures of an infinite # of Gaussians:

- **1** The prior is $p(\mathbf{z}) = \mathcal{N}(0, I)$
- ② $p(\mathbf{x} \mid \mathbf{z}) = \mathcal{N}(\mu_{\theta}(\mathbf{z}), \Sigma_{\theta}(\mathbf{z}))$ where $\mu_{\theta}, \Sigma_{\theta}$ are neural networks; e.g.:
 - $\mu_{\theta}(\mathbf{z}) = \sigma(A\mathbf{z} + c) = (\sigma(a_1\mathbf{z} + c_1), \sigma(a_2\mathbf{z} + c_2)) = (\mu_1(\mathbf{z}), \mu_2(\mathbf{z}))$
 - $\Sigma_{\theta}(\mathbf{z}) = diag(\exp(\sigma(B\mathbf{z} + d))) = \begin{pmatrix} \exp(\sigma(b_1\mathbf{z} + d_1)) & 0 \\ 0 & \exp(\sigma(b_2\mathbf{z} + d_2)) \end{pmatrix}$
 - $\bullet \ \theta = (A, B, c, d)$

Even though $p(\mathbf{x} \mid \mathbf{z})$ is simple, the marginal $p(\mathbf{x})$ is very complex/flexible

Maximum Marginal Likelihood for Latent Variable Models

We may learn latent variable models by choosing p that maximizes the marginal likelihood $p(\mathbf{x})$ averaged over \mathbf{x} . For Gaussian mixtures, we have:

$$p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}) = \sum_{\mathbf{z}} p(\mathbf{z}) p(\mathbf{x} \mid \mathbf{z}) = \sum_{k=1}^{K} p(\mathbf{z} = k) \underbrace{\mathcal{N}(\mathbf{x}; \mu_k, \Sigma_k)}_{k\text{-th component}}$$

These objectives are non-convex, and in the case of VAEs they're intractable to compute, which motivates approximations we will see next.

Lecture Outline

- Latent Variable Models
 - Motivation
 - Definition
- 2 Examples of Shallow and Deep Latent Variable Models
 - Gaussian Mixture Models
 - Deep Latent Gaussian Models
- Approximating Marginal Likelihood Using Variational Inference
 - Challenges of Maximum Marginal Likelihood Learning
 - Evidence Lower Bound on the Marginal Likelihood
 - Variational Inference

Running Example: A Generative Model for MNIST

Suppose we are given a dataset \mathcal{D} of handwritten digits (binarized MNIST)

- Each image has $n = 28 \times 28 = 784$ pixels. Each pixel can either be black (0) or white (1).
- Our Goal: Learn a probability distribution $p(x) = p(x_1, \dots, x_{784})$ over $x \in \{0, 1\}^{784}$ such that when $x \sim p(x)$, x looks like a digit.

Running Example: MNIST with Missing Values

One way to introduce latent variables into our running example is to assume that some pixels are missing at train time (e.g., top half):

- Let x denote the observed random variables, and z the unobserved ones (also called hidden or latent)
- Suppose we have a model (e.g., an autoregressive model) for the joint

$$p(\mathbf{x}, \mathbf{z}; \theta).$$

What is the marginal likelihood $p(\mathbf{x} = \bar{\mathbf{x}}; \theta)$ of a training data point $\bar{\mathbf{x}}$?

$$\sum_{\bar{\mathbf{z}}} p(\mathbf{x} = \bar{\mathbf{x}}, \mathbf{z} = \bar{\mathbf{z}}; \theta) = \sum_{\mathbf{z}} p(\bar{\mathbf{x}}, \bar{\mathbf{z}}; \theta)$$

This sums the probabilities of all possible completions of the image (green)

Challenges of Maximum Marginal Likelihood Learning

- Suppose we have a dataset \mathcal{D} , where for each datapoint the **x** variables are observed (e.g., pixel values) and the variables **z** are never observed (e.g., cluster or class id.). $\mathcal{D} = \{\mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(M)}\}.$
- Recall that maximum likelihood learning involves maximizing:

$$\log \prod_{\mathbf{x} \in \mathcal{D}} p(\mathbf{x}; \theta) = \sum_{\mathbf{x} \in \mathcal{D}} \log p(\mathbf{x}; \theta) = \sum_{\mathbf{x} \in \mathcal{D}} \log \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}; \theta)$$

- Evaluating $\log \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}; \theta)$ can be intractable. Suppose we have 30 binary latent features, $\mathbf{z} \in \{0,1\}^{30}$. Evaluating $\sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}; \theta)$ involves a sum with 2^{30} terms. For continuous variables, $\log \int_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}; \theta) d\mathbf{z}$ is often intractable. Gradients ∇_{θ} also hard to compute.
- Need **approximations**. One gradient evaluation per training data point $\mathbf{x} \in \mathcal{D}$, so approximation needs to be cheap.

Naive Approach: Naive Monte Carlo

The marginal likelihood $p_{\theta}(\mathbf{x})$ for partially observed data is:

$$p_{\theta}(\mathbf{x}) = \sum_{\text{All values of } \mathbf{z}} p_{\theta}(\mathbf{x}, \mathbf{z}) = |\mathcal{Z}| \sum_{\mathbf{z} \in \mathcal{Z}} \frac{1}{|\mathcal{Z}|} p_{\theta}(\mathbf{x}, \mathbf{z}) = |\mathcal{Z}| \mathbb{E}_{\mathbf{z} \sim \textit{Uniform}(\mathcal{Z})} \left[p_{\theta}(\mathbf{x}, \mathbf{z}) \right]$$

We can think of it as an (intractable) expectation. Monte Carlo to the rescue:

- **1** Sample $\mathbf{z}^{(1)}, \dots, \mathbf{z}^{(k)}$ uniformly at random
- 2 Approximate expectation with sample average

$$\sum_{\mathbf{z}}
ho_{ heta}(\mathbf{x}, \mathbf{z}) pprox |\mathcal{Z}| rac{1}{k} \sum_{j=1}^{k}
ho_{ heta}(\mathbf{x}, \mathbf{z}^{(j)})$$

Works in theory but not in practice. For most \mathbf{z} , $p_{\theta}(\mathbf{x}, \mathbf{z})$ is very low (most completions don't make sense). Some are very large but will never "hit" likely completions by uniform random sampling, hence we will mis-estimate our objective. We need a clever way to select $\mathbf{z}^{(j)}$.

Second Approach: Importance Sampling

Importance sampling is a clever way of applying Monte Carlo. First, we express $p_{\theta}(\mathbf{x})$ as a different kind of expectation:

$$p_{\theta}(\mathsf{x}) = \sum_{\mathsf{z} \in \mathcal{Z}} p_{\theta}(\mathsf{x}, \mathsf{z}) = \sum_{\mathsf{z} \in \mathcal{Z}} \frac{q(\mathsf{z})}{q(\mathsf{z})} p_{\theta}(\mathsf{x}, \mathsf{z}) = \mathbb{E}_{\mathsf{z} \sim q(\mathsf{z})} \left[\frac{p_{\theta}(\mathsf{x}, \mathsf{z})}{q(\mathsf{z})} \right]$$

where q can be any distribution over z. We then apply Monte Carlo:

- **1** Sample $\mathbf{z}^{(1)}, \dots, \mathbf{z}^{(k)}$ from $q(\mathbf{z})$ (instead of uniformly at random!)
- 2 Approximate expectation with sample average

$$p_{ heta}(\mathbf{x}) pprox rac{1}{k} \sum_{j=1}^{k} rac{p_{ heta}(\mathbf{x}, \mathbf{z}^{(j)})}{q(\mathbf{z}^{(j)})}$$

What is a good choice for $q(\mathbf{z})$? Intuitively, choose likely completions. When q(z) is "good", this approximation works very well! There are two challenges:

- **1** How to extend this to approximate the marginal log-likelihood log $p_{\theta}(x)$?
- 2 How to choose a good a?

Approximating the Marginal Log-Likelihood

We've seen a way to approximate marginal probabilities with importance sampling:

$$p_{ heta}(\mathbf{x}) = \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z})} \left[rac{p_{ heta}(\mathbf{x}, \mathbf{z})}{q(\mathbf{z})}
ight] pprox rac{1}{k} \sum_{i=1}^k rac{p_{ heta}(\mathbf{x}, \mathbf{z}^{(i)})}{q(\mathbf{z}^{(i)})}$$

Next, we will extend this approach to approximate the marginal log-likelihood:

$$\log \left(\sum_{\mathbf{z} \in \mathcal{Z}} p_{\theta}(\mathbf{x}, \mathbf{z}) \right) = \log \left(\sum_{\mathbf{z} \in \mathcal{Z}} \frac{q(\mathbf{z})}{q(\mathbf{z})} p_{\theta}(\mathbf{x}, \mathbf{z}) \right) = \log \left(\mathbb{E}_{\mathbf{z} \sim q(\mathbf{z})} \left[\frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q(\mathbf{z})} \right] \right)$$

It's clear that

$$\mathbb{E}_{\mathbf{z} \sim q(\mathbf{z})} \left[\log \left(\frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q(\mathbf{z})} \right) \right] \neq \log \left(\mathbb{E}_{\mathbf{z} \sim q(\mathbf{z})} \left[\frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q(\mathbf{z})} \right] \right)$$

Jensen's Inequality

We want to approximate the marginal log-likelihood:

$$\log \left(\sum_{\mathbf{z} \in \mathcal{Z}} p_{\theta}(\mathbf{x}, \mathbf{z}) \right) = \log \left(\sum_{\mathbf{z} \in \mathcal{Z}} \frac{q(\mathbf{z})}{q(\mathbf{z})} p_{\theta}(\mathbf{x}, \mathbf{z}) \right) = \log \left(\mathbb{E}_{\mathbf{z} \sim q(\mathbf{z})} \left[\frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q(\mathbf{z})} \right] \right)$$

- $\log()$ is a concave function. $\log(px + (1-p)x') \ge p\log(x) + (1-p)\log(x')$.
- Idea: use Jensen Inequality (for concave functions)

$$\log\left(\mathbb{E}_{\mathsf{z}\sim q(\mathsf{z})}\left[f(\mathsf{z})\right]\right) = \log\left(\sum_{\mathsf{z}} q(\mathsf{z})f(\mathsf{z})\right) \geq \sum_{\mathsf{z}} q(\mathsf{z})\log f(\mathsf{z})$$

Evidence Lower Bound via Jensen's Inequality

We want to approximate the marginal log-likelihood:

$$\log \left(\sum_{\mathbf{z} \in \mathcal{Z}} p_{\theta}(\mathbf{x}, \mathbf{z}) \right) = \log \left(\sum_{\mathbf{z} \in \mathcal{Z}} \frac{q(\mathbf{z})}{q(\mathbf{z})} p_{\theta}(\mathbf{x}, \mathbf{z}) \right) = \log \left(\mathbb{E}_{\mathbf{z} \sim q(\mathbf{z})} \left[\frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q(\mathbf{z})} \right] \right)$$

• We will use Jensen's Inequality (for concave functions)

$$\log\left(\mathbb{E}_{\mathbf{z} \sim q(\mathbf{z})}\left[f(\mathbf{z})\right]\right) = \log\left(\sum_{\mathbf{z}} q(\mathbf{z})f(\mathbf{z})\right) \geq \sum_{\mathbf{z}} q(\mathbf{z})\log f(\mathbf{z})$$

Choosing $f(\mathbf{z}) = \frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q(\mathbf{z})}$, we obtain:

$$\log \left(\mathbb{E}_{\mathbf{z} \sim q(\mathbf{z})} \left[\frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q(\mathbf{z})} \right] \right) \geq \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z})} \left[\log \left(\frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q(\mathbf{z})} \right) \right]$$

This is called the Evidence Lower Bound (ELBO).

The Evidence Lower Bound (ELBO)

The **evidence lower bound** (ELBO) holds for any q:

$$\log p(\mathbf{x}; \theta) \geq \sum_{\mathbf{z}} q(\mathbf{z}) \log \left(\frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q(\mathbf{z})} \right)$$

$$= \sum_{\mathbf{z}} q(\mathbf{z}) \log p_{\theta}(\mathbf{x}, \mathbf{z}) - \sum_{\mathbf{z}} q(\mathbf{z}) \log q(\mathbf{z})$$

$$= \sum_{\mathbf{z}} q(\mathbf{z}) \log p_{\theta}(\mathbf{x}, \mathbf{z}) + H(q)$$

Variational Inference: We will maximize the log-likelihood by maximizing the ELBO while automatically choosing a good q.

How to Choose a Good q?

Suppose $q(\mathbf{z})$ is **any** probability distribution over the hidden variables. A little bit of algebra reveals

$$D_{KL}(q(\mathbf{z}) || p(\mathbf{z} | \mathbf{x}; \theta)) = \log p(\mathbf{x}; \theta) - \sum_{\mathbf{z}} q(\mathbf{z}) \log p(\mathbf{z}, \mathbf{x}; \theta) - H(q)$$
-ELBO

Rearranging, we get that

$$\log p(\mathbf{x}; \theta) = \text{ELBO} + D_{KL}(q(\mathbf{z}) || p(\mathbf{z} | \mathbf{x}; \theta)).$$

- The closer q(z) is to $p(z|x;\theta)$, the closer the ELBO is to the true log-likelihood.
- Confirms our previous importance sampling intuition: we should choose likely completions.
- In practice, the posterior $p(\mathbf{z}|\mathbf{x};\theta)$ is intractable to compute.
- **Strategy**: Find an approximate q close to $p(\mathbf{z}|\mathbf{x};\theta)$ via optimization.

Variational Inference and Learning

We have shown that at any datapoint \mathbf{x} , we have

$$\log p(\mathbf{x}; \theta) = \text{ELBO}(\theta, q) + D_{KL}(q(\mathbf{z}) || p(\mathbf{z} | \mathbf{x}; \theta)) \ge \text{ELBO}(\theta, q)$$

Variational inference produces a tight approximation for log $p(\mathbf{x}; \theta)$ by finding a q that makes $\mathrm{ELBO}(q)$ tight:

- We choose $q(\mathbf{z}; \phi)$ to be a (tractable) probability distribution over \mathbf{z} parameterized by ϕ (variational parameters).
- ② We find a good ϕ^* by maximizing the ELBO and making it tight:

$$\log p(\mathbf{x}^{(i)}; \theta) \ge \max_{\phi} \text{ELBO}(\theta, \phi)$$

Once we have a good $ELBO(\theta, \phi^*)$ that is tight around $\log p(\mathbf{x}; \theta)$ we can do interesting things like optimize θ (next lecture!).

Example: Variational Inference Over Gaussians

Variational Inference: Optimize q to approximate the intractable $p(\mathbf{z}|\mathbf{x};\theta)$.

- Example: Suppose $q(\mathbf{z}; \phi)$ is a (tractable) probability distribution over the hidden variables parameterized by ϕ (variational parameters)
 - \bullet For example, a Gaussian with mean and covariance specified by ϕ

$$q(\mathbf{z};\phi) = \mathcal{N}(\phi_1,\phi_2)$$

• Variational inference: pick ϕ so that $q(\mathbf{z}; \phi)$ is as close as possible to $p(\mathbf{z}|\mathbf{x}; \theta)$. In the figure, the posterior $p(\mathbf{z}|\mathbf{x}; \theta)$ (blue) is better approximated by $\mathcal{N}(2,2)$ (orange) than $\mathcal{N}(-4,0.75)$ (green)

Example: Optimizing Likelihood with Missing Data

- Assume $p(\mathbf{x}^{top}, \mathbf{x}^{bottom}; \theta)$ assigns high probability to images that look like digits. In this example, we assume $\mathbf{z} = \mathbf{x}^{top}$ are unobserved (latent)
- Suppose $q(\mathbf{x}^{top}; \phi)$ is a (tractable) probability distribution over the hidden variables (missing pixels in this example) \mathbf{x}^{top} parameterized by ϕ (variational parameters)

$$q(\mathbf{x}^{top}; \phi) = \prod_{\text{unobserved variables } \mathbf{x}_i^{top}} (\phi_i)^{\mathbf{x}_i^{top}} (1 - \phi_i)^{(1 - \mathbf{x}_i^{top})}$$

- Is $\phi_i = 0.5 \ \forall i$ a good approximation to the posterior $p(\mathbf{x}^{top}|\mathbf{x}^{bottom};\theta)$? No
- Is $\phi_i = 1 \ \forall i$ a good approximation to the posterior $p(\mathbf{x}^{top}|\mathbf{x}^{bottom};\theta)$? No
- Is $\phi_i \approx 1$ for pixels i corresponding to the top part of digit **9** a good approximation? Yes

Summary

- Pros of Latent Variable Models:
 - Easy to build flexible models
 - Suitable for unsupervised learning
- Cons: Latent Variable Models:
 - Not tractable to evaluate likelihoods
 - Not tractable to train via maximum-likelihood
- Computing $p(\mathbf{x}; \theta)$ for arbitrary \mathbf{x} is hard in latent variable models
 - Variational inference produces a tight lower bound on $\log p(\mathbf{x}; \theta)$:

$$\log p(\mathbf{x}; \theta) \geq \sum_{\mathbf{z}} q(\mathbf{z}) \log p_{\theta}(\mathbf{x}, \mathbf{z}) + H(q)$$

for some good $q(\mathbf{z}) \approx p(\mathbf{z}|\mathbf{x})$ found by optimization

- Still, this is a complex approximation that only holds at one x.
- Next lecture, we will look at how to scale this procedure to large datasets of x.