Quality Control

Requirements

Before diving into this slide deck, we recommend you to have a look at:

• Galaxy introduction

? Questions

- How to control quality of NGS data?
- What are the quality parameters to check for each dataset?
- How to improve the quality of a sequence dataset?

Objectives

- Manipulate FastQ files
- Control quality from a FastQ file
- Use FastQC tool
- Understand FastQC output
- Use tools for quality correction

Why Quality Control?

Where is my data coming from?

Ecker et al, Nature, 2012

From experiments to data

Quality control = First step of the bioinformatics analyses

My sequences? Fasta

Measure of the quality of the identification of the nucleobases generated by automated DNA sequencing

Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%
40	1 in 10,000	99.99%
50	1 in 100,000	99.999%
60	1 in 1,000,000	99.9999%

Quality score encoding

My sequences?

FastQ

How to check the quality of my sequences?

Per-base sequence quality

▲ Good quality score

Quality Score Per-base sequence quality

Bad quality score

Per-base sequence quality

 ★ ¶ Intermediate quality score

Per-sequence quality scores

Per-tile sequence quality

Also to check: Sequence content

Per-base sequence content

Also to check: Sequence content

Per-sequence GC content

Also to check: Sequence content

Per-base N content

Also to check: Sequence length Sequence length distribution

Also to check: Duplicated sequences

Also to check: Tag sequences

Adapter contamination

Also to check: Tag sequences

K-mer content

How to improve the quality of my sequences?

Sequence quality improvements

- Filtering of sequences
 - with small mean quality score
 - too small
 - with too many N bases
 - based on their GC content
 - o ...
- Cutting/Trimming sequences
 - from low quality score parts
 - tails
 - o ...

Key points

- Run quality control on every dataset before running any other bioinformatics analysis
- Take care of the parameters used to improve the sequence quality
- Re-run FastQC to check the impact of the quality control

Thank you!

This material is the result of a collaborative work. Thanks the Galaxy Training Network and all the contributors (Bérénice Batut)!

Found a typo? Something is wrong in this tutorial? Edit it on GitHub

