ANOVA ANalysis Of VAriance

ANOVA

The purpose of ANOVA (Analysis of Variance) is to test for significant differences between means of different groups.

Consider 3 empty decks and 3 cards are placed into the each deck with their values. It is understand if the differences are due to within group differences or between group differences.

Group 1	Group 2	Group 3
6	10	6
4	6	8
2	8	4
$\bar{X}_1 = 4$	$\bar{X}_2 = 8$	$\bar{X}_3 = 6$

$$\bar{X} = \frac{6+4+2+10+6+8+6+8+4}{9} = 6$$

Total sum of square, SST

$$= (6-4)^2 + (4-4)^2 + (2-4)^2 + (10-8)^2 + (6-8)^2 + (8-8)^2 + (6-6)^2 + (8-6)^2 + (8-6)^2$$

$$= 24$$

When there are m deckss and n cards in each group, the degrees of freedom are mn
1, since we can calculate one member knowing the overall mean.

How much of this variation is coming from within the groups and how much from between the groups?

Group 1	Group 2	Group 3
6	10	6
4	6	8
2	8	4
$\bar{X}_1 = 4$	$\bar{X}_2 = 8$	$\bar{X}_3 = 6$

$$\bar{X} = \frac{6+4+2+10+6+8+6+8+4}{9} = 6$$

Total sum of square Within, SSW
$$= (6-4)^{2} + (4-4)^{2} + (2-4)^{2} + (10-8)^{2} + (6-8)^{2} + (8-8)^{2} + (6-6)^{2} + (8-6)^{2}$$

$$+ (8-6)^{2} + (8-6)^{2}$$

When there are m decks and n cards in each group, the degrees of freedom are m(n-1), since we can calculate one card knowing the deck mean.

Total sum of square between, SSB = $3(4-6)^2 + 3(8-6)^2 + 3(6-6)^2 = 24$

When there are m groups, the degrees of freedom are m-1.

- SST = SSW + SSB
- Also, for degrees of freedom, mn 1 = mn 1 + (m 1)

Group 1	Group 2	Group 3
6	10	6
4	6	8
2	8	4
$\bar{X}_1 = 4$	$\bar{X}_2 = 8$	$\bar{X}_3 = 6$

$$\bar{X} = \frac{6+4+2+10+6+8+6+8+4}{9} = 6$$

Given that mean of deck 2 is highest and that of deck 1 lowest, can we conclude that the cards placed in deck 2 had a larger impact or is it just variation within the deck?

Let us have a null hypothesis that the population means of the 3 decks from which the samples were taken have the same mean, i.e., the cards do not have an impact on the performance in the game. $\mu 1 = \mu 2 = \mu 3$. Let us also have a significance level, $\alpha = 0.10$.

- What is the alternate hypothesis?
- The cards have an impact on performance.

Group 1	Group 2	Group 3
6	10	6
4	6	8
2	8	4
$\bar{X}_1 = 4$	$\bar{X}_2 = 8$	$\bar{X}_3 = 6$

$$\bar{X} = \frac{6+4+2+10+6+8+6+8+4}{9} = 6$$

The test statistic used is E-statistic.

$$F - statistic = \frac{\frac{SSB}{df_{SSb}}}{\frac{SSW}{df_{SSW}}} = \frac{\frac{24}{2}}{\frac{24}{6}} = 3$$

If numerator is much bigger than the denominator, it means variation between means has bigger impact than variation within, thus rejecting the null hypothesis.

Λ	df ₁ =1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60
df ₂ =1	39.86346	49.50000	53.59324	55.83296	57.24008	58.20442	58.90595	59.43898	59.85759	60.19498	60.70521	61.22034	61.74029	62.00205	62.26497	62.52905	62.79428
2	8.52632	9.00000	9.16179	9.24342	9.29263	9.32553	9.34908	9.36677	9.38054	9.39157	9.40813	9.42471	9.44131	9.44962	9.45793	9.46624	9.47456
3	5.53832	5.46238	5.39077	5.34264	5.30916	5.28473	5.26619	5.25167	5.24000	5.23041	5.21562	5.20031	5.18448	5.17636	5.16811	5.15972	5.15119
4	4.54477	4.32456	4.19086	4.10725	4.05058	4.00975	3.97897	3.95494	3.93567	3.91988	3.89553	3.87036	3.84434	3.83099	3.81742	3.80361	3.78957
5	4.06042	3.77972	3.61948	3.52020	3.45298	3.40451	3.36790	3.33928	3.31628	3.29740	3.26824	3.23801	3.20665	3.19052	3.17408	3.15732	3.14023
																	-
6	3.77595	3.46330	3.28876	3.18076	3.10751	3.05455	3.01446	2.98304	2.95774	2.93693	2.90472	2.87122	2.83634	2.81834	2.79996	2.78117	2.76195
7	3.58943	3.25744	3.07407	2.96053	2.88334	2.82739	2.78493	2.75158	2.72468	2.70251	2.66811	2.63223	2.59473	2.57533	2.55546	2.53510	2.51422

The df are 2 for numerator and 6 for denominator.

F_c, the critical F-statistic, therefore, is 3.46330. 12 is way higher than this and hence we reject the null hypothesis. That means the pills do have an impact on the performance.

ANOTHER EXAMPLE

A IOT device developer is testing 3 different designs of Lift Alarms. He picks 3 different locations in a building to install each device. The maximum load (KG) is measured for 9 consecutive days in each location.

We want to understand if the differences are due to within-group differences or between-group differences.

	Model 1			Model 2		Model 3			
253	254	253	253	255	257	255	255	255	
252	255	255	256	257	256	256	255	257	
254	253	253	254	254	258	257	256	256	
$\bar{X}_1 = 253.56 MW$			$\overline{X_2}$ =	= 255.56 <i>N</i>	ИW	$\overline{X_3} = 255.78 MW$			

$$\bar{X} = \frac{134}{27} = 254.96 \, KG$$

Total Sum of Squares, SST = 62.93

Total Sum of Squares Within, SSW = 36.00

Total Sum of Squares Between, SSB = 26.93

What is the null hypothesis?

All 3 locations from which the samples were taken have the same population-mean, i.e., the devices does not have any impact with the power consumption. That is

$$\mu_1 = \mu_2 = \mu_3$$

Let us also specify a significance level, $\alpha = 0.10$.

What is the alternate hypothesis?
The lifts does impact the power output.

Compute the statistics

$$F - statistic = \frac{\frac{SSB}{df_{SSB}}}{\frac{SSW}{df_{SSW}}} = \frac{\frac{26.93}{2}}{\frac{36}{24}} = 8.97$$

If numerator is much bigger than the denominator, it means variation between means has bigger impact than variation within, thus rejecting the null hypothesis.

F Table for $\alpha = 0.10$

N.	df _i =1	2	3	4	5	6	7	8	9	10	12	
df ₂ =1	39.86346	49.50000	53.59324	55.83296	57.24008	58.20442	58.90595	59.43898	59.85759	60.19498	60.70521	61
2	8.52632	9.00000	9.16179	9.24342	9.29263	9.32553	9.34908	9.36677	9.38054	9.39157	9.40813	9
3	5.53832	5.46238	5.39077	5.34264	5.30916	5.28473	5.26619	5.25167	5.24000	5.23041	5.21562	5
4	4.54477	4.32456	4.19086	4.10725	4.05058	4.00975	3.97897	3.95494	3.93567	3.91988	3.89553	3
5	4.06042	3.77972	3.61948	3.52020	3.45298	3.40451	3.36790	3.33928	3.31628	3.29740	3.26824	3
6	3.77595	3,46330	3.28876	3.18076	3.10751	3.05455	3.01446	2.98304	2.95774	2.93693	2.90472	2
7	3_58943	3.25744	3.07407	2.96053	2.88334	2.82739	2.78493	2.75158	2.72468	2.70251	2.66811	2
8	3.45792	3.11312	2.92380	2.80643	2.72645	2.66833	2.62413	2.58935	2.56124	2.53804	2,50196	2
9	3.36030	3.00645	2.81286	2.69268	2.61061	2.55086	2.50531	2.46941	2.44034	2,41632	2.37888	2
10	3.28502	2.92447	2.72767	2.60534	2.52164	2.46058	2.41397	2.37715	2.34731	2,32260	2.28405	3
											₩	100
11	3.22520	2.85951	2.66023	2.53619	2.45118	2.38907	2.34157	2.30400	2.27350	2.24823	2.20873	2
12	3.17655	2.80680	2.60552	2.48010	2.39402	2.33102	2.28278	2.24457	2.21352	2.18776	2.14744	2
13	3.13621	2.76317	2.56027	2.43371	2.34672	2.28298	2.23410	2.19535	2.16382	2.13763	2.09659	2
14	3.10221	2.72647	2.52222	2.39469	2.30694	2.24256	2.19313	2.15390	2.12195	2.09540	2.05371	2
15	3.07319	2.69517	2.48979	2.36143	2.27302	2.20808	2.15818	2.11853	2.08621	2.05932	2.01707	1
16	3.04811	2.66817	2.46181	2.33274	2.24376	2.17833	2.12800	2.08798	2.05533	2.02815	1.98539	1
17	3.02623	2.64464	2.43743	2.30775	2.21825	2.15239	2.10169	2.06134	2.02839	2.00094	1.95772	1
18	3.00698	2.62395	2.41601	2.28577	2.19583	2.12958	2.07854	2.03789	2.00467	1.97698	1.93334	1
19	2.98990	2.60561	2.39702	2.26630	2.17596	2.10936	2.05802	2.01710	1.98364	1.95573	1.91170	1
20	2.97465	2.58925	2.38009	2.24893	2.15823	2.09132	2.03970	1.99853	1.96485	1.93674	1.89236	1
21	2.96096	2.57457	2.36489	2.23334	2.14231	2.07512	2.02325	1.98186	1.94797	1.91967	1.87497	1
22	2.94858	2.56131	2.35117	2.21927	2.12794	2.06050	2.00840	1.96680	1.93273	1.90425	1.85925	1
23	2.93736	2.54929	2.33873	2.20651	2.11491	2.04723	1.99492	1.95312	1.91888	1.89025	1.84497	1
24	2.92712	2.53833	2.32739	2.19488	2.10303	2.03513	1.98263	1.94066	1.90625	1.87748	1.83194	1
25	2.91774	2.52831	2.31702	2.18424	2.09216	2.02406	1.97138	1.92925	1.89469	1.86578	1.82000	1

The *df are 2 for numerator and 24 for* denominator.

Fc, the critical F-statistic, therefore, is 2.53833.

Our F=8.97 is way higher than this and hence we reject the null hypothesis.

That means the IOT device does have an impact on the power production.

Anova: Single Factor						
SUMMARY						
Groups	Count	Sum	Average	Variance		
Group1	9	2282	253.5556	1.027778		
Group2	9	2300	255.5556	2.777778		
Group3	9	2302	255.7778	0.694444		
		This.				
304-9- is 300, in acres.						
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	26.93	2	13.4815	8.987654	0.0012	2.5383
Within Groups	36	24	1.5			
Total	62.93	26				

Reference

Head First Statistics

