

JSS MAHAVIDYAPEETHA JSSACADEMYOFTECHNICALEDUCATION,NOIDA DEPARTMENTOF INFORMATION TECHNOLOGY

CIA-I[EvenSemester-(AY2024-25]

Course

: B.Tech(IT/CSDS)

Semester Subject

: Theory of Automata and Formal

a Differentiate Mealy and Moore machine in terms of input and

Languages

Attemptallthequestionsofthissection

Time

Q.No.

: 1 hrs=60min

Date

RollNo.

: 02/05/25

SubjectCode

: BCS 402

(1 X5=5)

BL/KC*

Max. Marks

: 20

Marks

 \mathbf{CO}

CO1	COURSEOUTCOMES Design deterministic and nondeterministic automata and regular expressions for specified regular Languages.	BL/KC*
CO2	Convert among various notations for a regular language, such as DFAs, NFAs, and regular expressions.	
CO3	Design grammar and PDA for CFL and state and prove their equivalence.	
CO4	Design TM to recognize language and compute functions.	
CO5	State and prove properties of regular, context free, recursive and recursive enumerable languages	
CO6	Explain the significance of the Universal Turing machine, Church-Turing thesis and concept of Undecidability.	

Section-A

Question

	a	Differentiate Mealy and Moore machine in towns of its to			DLITTE
		corresponding output length with example.	1	CO1	BL1
1.	1	Differentiate between Kleen's closure and positive closure over the alphabet.	1	CO1	BL2
		lengths?	1	CO1	BL1
. 1	d	What is the significance of epsilon transition in NFA?	1	CO2	DIO
	e	What are the applications of finite automata.	1		BL2
			, 1.1	CO2	BL2
tta	mn	Section-B			
XIIE.	шр	t all the questions of this section			(3X3=9)
2		Design a Finite Automata (FA) for the language:			(3/13-9)
2.		L={ $(01)^{i}1^{2j}$ where $i>=1,j>=1$ } OR	3	COI	
		Design a FA which accents set of at		COI	BL3
		Design a FA which accepts set of strings containing exactly four 1's in every string over alphabet $\Sigma = \{0,1\}$	·		
	(Convert the following epsilon NFA to DFA using the epsilon closure of state.			
3.	S	state. $\frac{\varepsilon}{\varepsilon}$			
	2	$\sum = \{a\}$	3	CO1	
	-	3			BL3
	D di	Oesign a DFA for following language over the set Σ = {Decimal number igits 0,1,,9} and L= { w w MOD 3>1}			
	E	xplain the Myhill-Nerode Theorem?			
4.		OP	2	- 1	BL2
	\cup	ifferentiate between DFA and NFA with diagram.	3	CO2	

Section-C

ruem	pt all the quest	ionsof this so	ection						(6X1=6
	Construct equi								
5.	Convert follow	ving Moore N		$\bigcap_{\alpha,b} \frac{q_s}{\text{OR}}$	Machine with m	inimized	6	CO1	BL3
	version								
	version	PS	NS x=0	x=1	z				
	version	A	x=0 D	Y C	/ o				
	version	A B	x=0 D F	C H	(o o				
	version	A B C	x=0 D F E	C H D	/0 0 1				
	version	А В С	x=0 D F E A	C H D E	/o o 1 o				
	version	A B C D E	x=0 D F E A	C H D E A	/o o 1 o				
	version	А В С	x=0 D F E A	C H D E	/o o 1 o				

W/

Curta