Anomaly Detection

Quiz, 5 questions

Congratulations! You passed!

Next Item

1/1 point

1

For which of the following problems would anomaly detection be a suitable algorithm?

1/1 point

2.

Suppose you have trained an anomaly detection system for fraud detection, and your system that flags anomalies when p(x) is less than ε , and you find on the cross-validation set that it mis-flagging far too many good transactions as fradulent. What should you do?

1/1 point

3.

Suppose you are developing an anomaly detection system to catch manufacturing defects in airplane engines. You model uses

$$p(x) = \prod_{j=1}^n p(x_j; \mu_j, \sigma_j^2).$$

You have two features x_1 = vibration intensity, and x_2 = heat generated. Both x_1 and x_2 take on values between 0 and 1 (and are strictly greater than 0), and for most "normal" engines you expect that $x_1 \approx x_2$. One of the suspected anomalies is that a flawed engine may vibrate very intensely even without generating much heat (large x_1 , small x_2), even though the particular values of x_1 and x_2 may not fall outside their typical ranges of values. What additional feature x_3 should you create to capture these types of anomalies:

0/1 point

4

Which of the following are true? Check all that apply. $Anomaly \ Detection$

Quiz, 5 questions

1/1 point

5.

You have a 1-D dataset $\{x^{(1)},\dots,x^{(m)}\}$ and you want to detect outliers in the dataset. You first plot the dataset and it looks like this:

Suppose you fit the gaussian distribution parameters μ_1 and σ_1^2 to this dataset. Which of the following values for μ_1 and σ_1^2 might you get?

