MIMO physical layer security using multiple Reconfigurable Intelligent Surfaces

Marrocco Simone

Advisors: Segata Michele, Paolo Casari

20/03/2025

Background and motivation

https://businesstech.bus.umich.edu/uncategorized/tech-101-internet-of-things/

https://www.itf-oecd.org/co-operative-mobility-systems-automated-driving-roundtable

- Our lives depend more and more on various devices
- They need to communicate fast, reliably and securely with each other
- These requirements cannot be mutually exclusive anymore

Physical Layer Security

https://quantumai.google/discover/whatisqc

- With our lives depending more and more on technology, we need to be protected from malicious actors that may hear or disrupt our communications
- Quantum computing could break encryption
- We need new, low latency security schemes

Multiple Input Multiple Output (MIMO)

- We can use multiple antennas to communicate
- The signals from each transmitter antenna to each receiver antenna form a matrix of complex numbers, the channel gain matrix
- The received total signal at the receiver is the transmitter signal multiplied by the transmitted signal

Reconfigurable Intelligent Surfaces (RISs)

 $https://www.researchgate.net/figure/Comparison-between-the-existing-passive-RIS-a-and-the-proposed-active-RIS-b_fig1_350484632$

- RISs are a promising technology that can help us expand the signal reach
- We can modulate the reflection to better suit our needs
- They can be either passive or active

G. C. Trichopoulos et al., "Design and Evaluation of Reconfigurable Intelligent Surfaces in Real-World Environment,"

Using RISs for physical layer security

- Our objective is to find a way to hide our signal in NLoS scenarios, using the same RISs we use for actors to communicate
- This is crucial in crossroads used by cooperative autonomous vehicles

(b) Z-intersection scenario

Michele Segata, Paolo Casari, Marios Lestas, Alexandros Papadopoulos, Dimitrios Tyrovolas, Taqwa Saeed, George Karagiannidis, Christos Liaskos, CoopeRIS: A framework for the simulation of reconfigurable intelligent surfaces in cooperative driving environments,

Space Shift Keying (SSK) Modulation

$$j = \underset{j}{\operatorname{arg \, max}} \ p_{y}(y|x_{j}, \boldsymbol{B}) = \underset{j}{\operatorname{arg \, min}} \ ||y - b_{j}||^{2}$$

$$y = \boldsymbol{B}x = \begin{bmatrix} \beta_{11} & \beta_{12} & \cdots & \beta_{1K} \\ \beta_{21} & \beta_{22} & \cdots & \beta_{2K} \\ \vdots & \vdots & \ddots & \vdots \\ \beta_{K1} & \beta_{K2} & \cdots & \beta_{KK} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} \beta_{11} \\ \beta_{12} \\ \vdots \\ \beta_{1K} \end{bmatrix}$$

- Communicate using the antenna index
- Resistant to noise and signal variations
- More complex schemes exist to use multiple antennas at the same time

J. Jeganathan, A. Ghrayeb, L. Szczecinski and A. Ceron, "Space shift keying modulation for MIMO channels,"

Reference scenario

J. Luo, F. Wang, S. Wang, H. Wang and D. Wang,

"Reconfigurable Intelligent Surface: Reflection Design Against Passive Eavesdropping,"

RIS parametrization

$$||\mathbf{GPH} - [\mathbf{GPH}]_{diag}||^2 = 0$$

$$\boldsymbol{W} = \sum_{i,k=1,i\neq k}^{K} (g_k \odot h_i^T)^H (g_k \odot h_i^T)$$

$$\mathbf{W}p = 0$$

$$W = R\Sigma V^H$$

$$N(\mathbf{W}^{H}) = [r_{N-K(K-1)}, \cdots, r_{N}] = \mathbf{U}$$

$$p = \frac{\eta \boldsymbol{U}q}{\max\left(|\boldsymbol{U}q|\right)}$$

- The idea is finding a RIS vector to satisfy our condition
- By analyzing the null space of W, we have a family of solutions in the last N-K(K-1) columns of R
- We can multiply this matrix *U* by a random complex vector
 q to get the RIS configuration
- We are now able to communicate between two stationary antennas

J. Luo, F. Wang, S. Wang, H. Wang and D. Wang,

"Reconfigurable Intelligent Surface: Reflection Design Against Passive Eavesdropping,"

Contribution

- Can we send the message to multiple receivers at the same time?
- Can we concatenate multiple RIS together (in series)?
- Can we send the message through multiple paths (in parallel)?
- What are the performance of all these cases?
- Is our framework valid for realistic communications?

Multi-user and multi-RIS scenario

Multi-user and multi-RIS scenario

$$\forall j \in \{1, 2, \dots, J\} \rightarrow ||\boldsymbol{G}_{j}\boldsymbol{P}\boldsymbol{H} - [\boldsymbol{G}_{j}\boldsymbol{P}\boldsymbol{H}]_{diag}||^{2} = 0$$

$$\forall j \in \{1, 2, \dots, J\} \to \mathbf{W}_j = \sum_{i, k=1, i \neq k}^K (g_{j_{k,:}} \odot h_i^T)^H (g_{j_{k,:}} \odot h_i^T)$$

$$\forall j \in \{1, 2, \dots, J\} \rightarrow \mathbf{W}_j p = 0$$

$$egin{bmatrix} m{W}_1 \ m{W}_2 \ ... \ m{W}_J \end{bmatrix} p = 0$$

$$egin{bmatrix} oldsymbol{W}_1 \ oldsymbol{W}_2 \ ... \ oldsymbol{W}_I \end{bmatrix} = oldsymbol{W} \in \mathbb{C}^{JNxN}, oldsymbol{W} = oldsymbol{R} oldsymbol{\Sigma} oldsymbol{V}^H$$

- By having the condition of using multiple receivers, our matrix W is not square
- We cannot use *R* to find the null space of dimension N anymore
- We can however use the last N-K(K-1) rows of V^H

$$N(oldsymbol{W}) = egin{bmatrix} v_{N-K(K-1)}^H & \dots & \\ v_{N}^H & \end{bmatrix}^H = oldsymbol{U}$$

$$p = \frac{\eta \boldsymbol{U} q}{\max\left(|\boldsymbol{U}q|\right)}$$

Multi-user and multi-RIS scenario

RIS in parallel

$$\sum_{m=1}^{M} \mathbf{G}_{j} \mathbf{P}_{m} \mathbf{H}_{m} x = \left(\sum_{m=1}^{M} \mathbf{G}_{j} \mathbf{P}_{m} \mathbf{H}_{m}\right) x$$

 For RISs in parallel, the sum of multiple diagonal matrices is still a diagonal matrix

RIS in series

$$||GP_1C_1...P_MH - [GP_1C_1...P_MH]_{diag}||^2 = 0$$

 $\forall m \in [1, M-1] : p_m[i] = \eta r_i e^{j\theta_i}$
 $G' = GP_1C_1...P_{M-1}C_{M-1} \in \mathbb{C}^{K \times N}$
 $||G'P_MH - [G'P_MH]_{diag}||^2 = 0$

- For RISs in series, we can setup the first (or last) M-1 RISs randomly, and setup only the last one
- Complex configuration can also be set up

Performance evaluation

- We first make simulations correlating the Bit Error Rate (BER) to the Signal to Noise Ratio (SNR)
- The BER indicates the percentage of wrong bits in a message
- •The SNR indicates how strong the noise is in relation to the correct signal
- •We will show that for higher SNR, the receiver reception gets clearer, while the eavesdropper error rate remains constant due to the RIS noise
- We will then realistically model the channel gains and the path loss considering the distance between two points
- •We will create an heatmap showing for each point the received BER
- We will discuss how the type of the RIS influence the signal received by an eavesdropper

Bit Error Rate (BER) simulations

Bit Error Rate (BER) simulations

1-2 RIS, 2 users

2-4 RIS, 2 users

Realistic channel model

$$u^2 = \frac{\tau \xi}{1+\tau} \qquad \sigma^2 = \frac{\xi}{2(1+\tau)} \qquad \Xi \sim C(\frac{\nu}{\sqrt{2}}, \sigma)$$

$$e_r(\Omega) = \frac{1}{\sqrt{n_r}} \begin{bmatrix} 1\\ exp(-j2\pi\Delta\Omega)\\ exp(-j2\pi2\Delta\Omega)\\ \vdots\\ exp(-j2\pi(n_r-1)\Delta\Omega) \end{bmatrix}$$

$$\mathbf{H} = \mathbf{\Xi} \odot \sqrt{n_t n_r} exp(-j2\pi d/\lambda) e_r(\Omega_r) e_t(\Omega_t)^H$$

$$PL = ((4\pi/\lambda)^2 d^k)^{-\frac{1}{2}} \qquad y = PL_B \cdot \mathbf{B}x$$

David Tse, Pramod Viswanath, "Fundamentals of Wireless Communication" We generate the fading matrix from a complex distribution using the Shape and Scale parameters

- We calculate the channel gain matrix from the distance and the incidence angle between the antennas arrays
- We use the ideal Free Space path loss

BER Heatmaps - scenario 1

Passive RIS

$$y = PL_G \cdot PL_H \cdot \mathbf{GPH}x$$

Active RIS

$$y = PL_H \cdot \mathbf{GPH}x$$
.

BER Heatmaps - scenario 2

Passive RIS

$$y = PL_G \cdot PL_H \cdot \mathbf{GPH}x$$

Active RIS $y = PL_H \cdot \mathbf{GPH} x.$

Conclusions and future directions

- •We expanded on the work RECONFIGURABLE INTELLIGENT SURFACE: REFLECTION DESIGN AGAINST PASSIVE EAVESDROPPING
- We proved the correctness of our contribution
- We validated our solution in realistic scenarios
- •Still, the area when the message is received is limited in size

- •Future work should be studied in channel gain estimation for moving vehicles
- Low level language implementations should be made to calculate the latency of communication
- Complex schemes that expand on SSK modulation should be considered

Thank you

Questions?

Mean Antenna Strength

$$MAS_{H} = \sum_{x=1}^{X} ||h_{x}||^{2} / X$$

$$log MAS_{\boldsymbol{H}} = log_{10} MAS_{\boldsymbol{H}}$$

BER Heatmaps - scenario 1

Passive RIS

$$y = PL_G \cdot PL_H \cdot \mathbf{GPH}x$$

Active RIS

$$y = PL_H \cdot \mathbf{GPH}x$$
.

Channel Gain Estimation

- The transmitter communicates to the RIS controller a setup message x' that it will send to the receiver
- The RIS will set a random P'
- The receiver gets a signal y' (which will mean nothing), and sends it back to the RIS controller
- Based on x', y', P' the RIS controller estimates G, H and correctly sets up P
- The transmitter sends x, and the receiver gets y which it can correctly convert back
- If transmitter and receiver are moving, the procedure will start all over. Otherwise, G and H remain the same, and the RIS controller can just create a new P for the next messages

https://ieeexplore.ieee.org/document/8879620

Algorithm 1: JBF-MC algorithm

```
Input: Y, S, X, prior distributions p(G) and p(Z)
```

% sparse matrix factorization via BiG-AMP

```
    Initialization: ∀l, n, t: generate g<sub>l,n</sub> from p(g<sub>l,n</sub>), v<sup>g</sup><sub>l,n</sub>(1) = ν<sub>g</sub>

     \hat{z}_{n,t}(1) = \mathbb{E}(z_{n,t}), v_{n,t}^z(1) = \lambda \nu_z, \text{ and } \hat{u}_{l,t}(1) = 0
```

2: for $i = 1, ..., I_{\text{max}}$ % outer iteration

3: for $j = 1, ..., J_{\text{max}}$ % inner iteration

4:
$$\forall l, t : \bar{v}_{l,t}^p(i) = \sum_{n=1}^N |\hat{g}_{l,n}(i)|^2 v_{n,t}^z(i) + v_{l,n}^g(i) |\hat{z}_{n,t}(i)|^2$$

5: $\forall l, t : \bar{p}_{l,t}(i) = \sum_{n=1}^N \hat{g}_{l,n}(i) \hat{z}_{n,t}(i)$

6:
$$\forall l, t: v_{l,t}^p(i) = \overline{v_{l,t}^p(i)} + \sum_{n=1}^N v_{l,n}^g(i) v_{n,t}^z(i)$$

7:
$$\forall l, t: \hat{p}_{l,t}(i) = \bar{p}_{l,t}(i) - \hat{u}_{l,t}(i-1)\bar{v}_{l,t}^{p}(i)$$

8:
$$\forall l, t: v_{l,t}^b(i) = \sigma^2 v_{l,t}^p(i) / [v_{l,t}^p(i) + \sigma^2]$$

9:
$$\forall l, t: \hat{b}_{l,t}(i) = v_{l,t}^p(i)[y_{l,t} - \hat{p}_{l,t}(i)]/[v_{l,t}^p(i) + \sigma^2] + \hat{p}_{l,t}(i)$$

10:
$$\forall l, t: v_{l,t}^u(i) = \left[1 - v_{l,t}^z(l)/v_{l,t}^p(i)\right]/v_{l,t}^p(i)$$

11:
$$\forall l, t: \hat{u}_{l,t}(i) = [\hat{b}_{l,t}(i) - \hat{p}_{l,t}(i)]/v_{l,t}^p(i)$$

12:
$$\forall l, n: v_{l,n}^q(i) = \left[\sum_{t=1}^T |\hat{z}_{n,t}(i)|^2 v_{l,t}^u(i)\right]^{-1}$$

13:
$$\forall l, n: \hat{q}_{l,n}(i) = \hat{g}_{l,n}(i) \begin{bmatrix} 1 - v_{l,n}^q(i) \sum_{t=1}^T v_{n,t}^z(i) v_{l,t}^u(i) \end{bmatrix} + v_{l,n}^q(i) \sum_{t=1}^T \hat{z}_{n,t}^*(i) \hat{u}_{l,t}(i)$$

14:
$$\forall n, t: v_{n,t}^r(i) = \left[\sum_{l=1}^L |\hat{g}_{l,n}(i)|^2 v_{l,t}^u(i)\right]^{-1}$$

15:
$$\forall n, t: \hat{r}_{n,t}(i) = \hat{z}_{n,t}(i) \left(1 - v_{n,t}^r(i) \sum_{l=1}^L v_{l,n}^g(i) v_{l,t}^u(i)\right) + v_{n,t}^r(i) \sum_{l=1}^L \hat{g}_{l,n}^*(i) \hat{u}_{l,t}(i)$$

16:
$$\forall l, n: \hat{g}_{l,n}(i+1) = \mathbb{E}\{g_{l,n}|\hat{q}_{l,n}(i), v_{l,n}^q(i)\}$$

7:
$$\forall l, n: v_{l,n}^g(i+1) = Var\{g_{l,n}|\hat{q}_{l,n}(i), v_{l,n}^g(i)\}$$

18:
$$\forall n, t: \hat{z}_{n,t}(i+1) = \mathbb{E}\{z_{n,t}|\hat{r}_{n,t}(i), v_{n,t}^r(i)\}$$

19:
$$\forall n, t: v_{n,t}^z(i+1) = Var\{z_{n,t} | \hat{r}_{n,t}(i), v_{n,t}^r(i)\}$$

22:
$$\forall l, n, t, \hat{g}_{l,n}(i) = \hat{g}_{l,n}(i+1), \nu_{m,n}^g(i) = \nu_{l,n}^g(i+1),$$

 $\hat{z}_{n,t}(i) = \hat{z}_{n,t}(1), \nu_{n,t}^z(i) = v_{n,t}^z(1)$

24:
$$\hat{\boldsymbol{G}} \leftarrow \hat{\boldsymbol{G}}(i+1), \hat{\boldsymbol{Z}} \leftarrow \hat{\boldsymbol{Z}}(i+1)$$

% matrix completion via RGrad

25: Initialization:
$$\mathbf{A}(0) = \mathbf{0}$$

26: **for**
$$k = 1, ..., K_{\text{max}}$$

27:
$$Q(k) = S^* \odot (\hat{Z} - A(k))$$

28:
$$\alpha(k) = \frac{\|\mathcal{P}_{\mathcal{S}(k)}(\mathbf{Q}(k))\|_F^2}{\|\mathbf{S}^* \odot (\mathcal{P}_{\mathcal{S}(k)}(\mathbf{Q}(k)))\|_F^2}$$

29:
$$\mathbf{W}(k) = \mathbf{A}(k) + \alpha_k \mathcal{P}_{S(k)}(\mathbf{Q}(k))$$

30:
$$A(k+1) = \mathcal{H}_r(W(k))$$

33:
$$\hat{\boldsymbol{H}} \leftarrow \hat{\boldsymbol{A}} \boldsymbol{X}^{\dagger}$$
 with $\hat{\boldsymbol{A}} = \boldsymbol{A}(k+1)$

Output: \hat{G} and H

Channel Gain Estimation for Vehicles

a) Car with mounted metallic plane

b) Monopole antennas on the metallic plane

- I Current position of Predictor antenna
- Position of Predictor antenna during prediction
- Current position of antenna

Position of Predictor antenna during prediction

a) displacement $\delta \sim 0.8\lambda$

b) displacement $\delta \sim 3\lambda$

Generalized Space Shift Keying Modulation

TABLE I EXAMPLE OF THE GSSK MAPPER RULE.

RIS implementations

RIS

https://ieeexplore.ieee.org/document/9881509

