UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CÂMPUS CORNÉLIO PROCÓPIO DIRETORIA DE GRADUAÇÃO E EDUCAÇÃO PROFISSIONAL DEPARTAMENTO ACADÊMICO DE ELÉTRICA ENGENHARIA DE CONTROLE E AUTOMAÇÃO

GABRIEL TEIXEIRA GRAZIANO DE OLIVEIRA

SISTEMA DE MONITORAMENTO DE VARIAÇÕES DE TENSÃO DE CURTA DURAÇÃO EM REDES DE DISTRIBUIÇÃO DE ENERGIA

TRABALHO DE CONCLUSÃO DE CURSO

CORNÉLIO PROCÓPIO

2018

GABRIEL TEIXEIRA GRAZIANO DE OLIVEIRA

SISTEMA DE MONITORAMENTO DE VARIAÇÕES DE TENSÃO DE CURTA DURAÇÃO EM REDES DE DISTRIBUIÇÃO DE ENERGIA

Trabalho de Conclusão de Curso de graduação do curso de Engenharia de Controle e Automação da Universidade Tecnológica Federal do Paraná - UTFPR, como requisito parcial para obtenção do grau de Engenheiro de Controle e Automação.

Orientador: Prof^o. Dr. André Sanches Fonseca

Sobrinho

CORNÉLIO PROCÓPIO

Ministério da Educação Universidade Tecnológica Federal do Paraná Câmpus Cornélio Procópio Diretoria de Graduação e Educação Profissional Programa de Graduação em Engenharia Elétrica Engenharia de Controle e Automação

TERMO DE APROVAÇÃO

Sistema de monitoramento de variações de tensão de curta duração em redes de distribuição de energia

por

Gabriel Teixeira Graziano de Oliveira

Este Trabalho de Conclusão de Curso foi julgado adequado para obtenção do Título de "Bacharel em Engenharia de Controle e Automação" e aprovado em sua forma final pelo Programa de Graduação em Engenharia Elétrica da Universidade Tecnológica Federal do Paraná.

Prof^o.Dr André Sanches Fonseca Sobrinho
Universidade Tecnológica Federal do Paraná

Prof^a.Dr^a Gabriela Shiguemoto
Universidade Tecnológica Federal do Paraná

Prof^o.Dr Luís Fernando Caparroz Duarte
Universidade Tecnológica Federal do Paraná

RESUMO

OLIVEIRA, G. T. G. Sistema de monitoramento de variações de tensão de curta duração em redes de distribuição de energia. 32 f. Trabalho de Conclusão de Curso – Engenharia de Controle e Automação, Universidade Tecnológica Federal do Paraná. Cornélio Procópio, 2018.

O nível elevado de automação dos equipamentos elétricos modernos, com controle baseado em microprocessadores, fez com que estes se tornassem muito mais sensíveis à variações na tensão distribuída pela rede elétrica. Problemas dessa natureza têm consequências que vão de defeitos simples em eletrodomésticos até a interrupção completa de máquinas industriais, ocasionando enormes prejuízos. Entre os principais tipos de ocorrências estão as variações de tensão de curta duração, caracterizadas por sua duração e amplitude, e que podem ser interrupções completas, afuntamentos ou elevações da tensão nominal da rede. Com isso, este trabalho tem como objetivo propor o desenvolvimento de um sistema robusto, de baixo custo, que possibilite a detecção das variações de tensão de curta duração. Além disso, as informações referentes a cada ocorrência serão salvas e disponibilizadas online para consulta pelas concessionárias de energia. Todos os materias a serem utilizados, assim como a metodologia que será empregada, estão detalhados nesta proposta.

Palavras-chave: Variações de tensão de curta duração. Qualidade de energia elétrica. Sistemas Embarcados

ABSTRACT

OLIVEIRA, G. T. G. . 32 f. Trabalho de Conclusão de Curso – Engenharia de Controle e Automação, Universidade Tecnológica Federal do Paraná. Cornélio Procópio, 2018.

The high level of automation in the modern electric equipment, with microprocessor-based control, made them more sensitive to fluctuations in the supply voltage. This type of problem can have consequences ranging from simple failures in home appliances to the complete interruption of a production line, causing a significant economic impact. Among the most common types of voltage fluctuations are the Short-Duration Voltage Variations, defined by its magnitude (interruption, sag or swell) and duration (instantaneous, momentary or temporary). Thus, the objective of this paper is to propose the development of a robust, low-cost system, that performs the detection of the Shor-Duration Voltage Variations. In addition, all the information about the voltage variation events is going to be saved and released online for consultation by the energy providers. All the materials that are going to be used, as well as the methodology applied, are explained in this proposal.

Keywords: Short-Duration Voltage Variation. Power Quality. Embedded Systems.

LISTA DE FIGURAS

FIGURA 1	_	Interrupção momentânea de tensão	13
FIGURA 2	_	Afundamento instantâneo de tensão	14
FIGURA 3	_	Elevação instantânea de tensão	15
FIGURA 4	_	Estrutura do equipamento	17
FIGURA 5	_	Variador de Tensão Monofásico TDGC2-0,5	19
FIGURA 6	_	Ligação do dispositivo para realização dos testes de variação de tensão .	19
FIGURA 7	_	Configuração de pinos do ADE7758	20
FIGURA 8	_	Placa para aquisição dos sinais de tensão	21
FIGURA 9	_	Placa de desenvolvimento Cerebot MX7cK	22
FIGURA 10	_	Diagrama do circuito da placa Cerebot MX7cK	22
FIGURA 11	_	Estrutura de comunicação do protocolo SPI	23
FIGURA 12	_	Funcionamento básico da primeira abordagem proposta	27

LISTA DE TABELAS

TABELA 1	_	Variações de Tensão de Curta Duração	12
TABELA 2	_	Características elétricas e físicas	18
TABELA 3	_	Especificação Técnica - Variador de Tensão Monofásico TDGC2-0,5	18

SUMÁRIO

1 INTRODUÇÃO	8
•	
1.1 PROBLEMA	9
	10
J	10
J	10
5	10
	10
3	11
	12
2.1.1 Interrupção de Tensão (Interruption)	12
2.1.2 Afundamento de Tensão (<i>Voltage Sag</i>)	13
5	14
3 O SISTEMA DE MONITORAMENTO DE VARIAÇÕES DE TENSÃO DE CURTA	
DURAÇÃO	16
3.1 PROPOSTA DO TRABALHO	16
	16
	18
3.3 PLACA DE MEDIÇÃO TRIFÁSICA	20
,	21
	23
3	25
	25
	25
	25
\mathcal{E}	26
1 ,	27
3	28
3 C	29
	3 0
•	31

1 INTRODUÇÃO

Amplamente debatido nas últimas décadas, o tema da qualidade de energia tem ganho ainda mais importância nos dias atuais. Com processos industriais cada vez mais automatizados, a operação e o controle eficiente das máquinas se torna gradativamente mais suscetível a falhas na energia distribuída pela rede elétrica.

O conceito de qualidade de energia pode ter diferentes definições. Uma concessionária define qualidade como o grau de confiança em seu sistema de distribuição, enquanto fabricantes de equipamentos de carga definem qualidade como as características da energia fornecida pela rede que permitem o funcionamento correto de seus produtos. Quando considera-se o ponto de vista do consumidor, qualidade pode ser qualquer problema manifestado em desvios na corrente, tensão ou frequência que resultem em falha ou mau funcionamento dos equipamentos do cliente (DUGAN et al., 2002).

Dentre as razões pelas quais o interesse nesse tema tem aumentado, algumas podem ser destacadas como principais. Equipamentos eletrônicos, com controle baseado em microprocessadores, se tornaram muito mais sensíveis à distúrbios de tensão do que eram há dez, vinte anos. Além disso, os dispositivos atuais são quase totalmente conectados em redes. Uma falha em um único componente pode gerar graves consequências para todo o sistema (DUGAN et al., 2002; BOLLEN, 2002).

Para que seja possível fazer uma análise mais técnica do assunto, muitas vezes o conceito de qualidade de energia é demasiadamente vago. A taxa de energia fornecida pela rede (potência) é proporcional ao produto da corrente pela tensão. Como uma concessionária de energia tem controle apenas sobre a tensão que é fornecida, o conceito de qualidade de tensão se faz mais apropriado e é comumente utilizado para definir os parâmetros de qualidade no fornecimento de energia elétrica (DUGAN et al., 2002).

Desta maneira, o desenvolvimento de um equipamento de baixo custo, que possibilite a medição da qualidade da energia elétrica através do controle da qualidade da tensão fornecida pelas concessionárias de energia, seria de interesse não só do consumidor, mas também de

indústrias e das próprias empresas distribuidoras, podendo gerar uma economia significativa e uma melhora geral do serviço.

1.1 PROBLEMA

Devido à grande importância do tema da qualidade da energia elétrica e do impacto causado por variações de tensão, diversos trabalhos abordam esse assunto. Ramasamy et al. (2005) descreve um dispositivo para compensação de afundamentos de tensão chamado Restaurador Dinâmico de Tensão (do inglês *Dynamic Voltage Restorer - DVR*). Esse dispositivo atua injetando uma tensão trifásica em série e em sincronia com a tensão da rede de distribuição, atenuando os efeitos de afundamentos de tensão em equipamentos e cargas mais sensíveis.

Fitzer (2002) descreve uma técnica de detecção de afundamentos de tensão para um Restaurador Dinâmico de Tensão utilizando um método de matriz de espaço de estados, mais rápido que alguns métodos mais antigos, como transformada de fourier e PLL.

Fonseca (1999) propõe um método para o cálculo de afundamento de tensão pela análise da amplitude e do tempo de duração dos afundamentos em função da posição de falta nas linhas de transmissão, subtransmissão e distribuição. Além disso, descreve a execução de um processo de estimativa de afundamentos através de um método estatístico estocástico.

Ferreira et al. (2009) apresenta um sistema de detecção e classificação de distúrbios de qualidade de energia elétrica através da decomposição do sinal da tensão. São utilizadas ferramentas de estatística para a classificação dos diferentes tipos de ocorrências e uma rede neural artificial para a implementação do algoritmo. O sistema é capaz de detectar distúrbios como elevações de tensão, afundamentos de tensão, harmônicos, entre outros.

Através das referências bibliográficas apresentadas nesta seção, e de outros trabalhos presentes na literatura, percebe-se a existência de diversas técnicas para a detecção e correção de distúrbios que afetam a qualidade da energia elétrica. Este trabalho busca contribuir para o tema com o desenvolvimento de um sistema eficiente e de baixo custo para detecção de variações de tensão de curta duração.

Como diferencial, a detecção será feita com um microcontrolador PIC e um circuito integrado ADE7758. Além disso, as informações completas sobre o tipo e data das ocorrências estarão disponíveis online para consulta pelas concessionárias de energia.

1.2 OBJETIVOS

1.2.1 OBJETIVO GERAL

O objetivo deste trabalho é o desenvolvimento de um sistema de detecção de variações de tensão de curta duração em redes de distribuição de energia elétrica, mantendo as informações relativas a cada ocorrência disponíveis para consulta online por concessionárias de energia e demais usuários da rede.

1.2.2 OBJETIVOS ESOECÍFICOS

Definido o objetivo geral do trabalho, pode-se destacar os seguintes pontos como objetivos específicos:

- Programar o circuito integrado ADE7758 para realizar o monitoramento constante da tensão da rede elétrica;
- Configurar uma interface de comunicação serial SPI entre o microcontrolador PIC32MX795F512L
 e o circuito integrado ADE7758;
- Configurar o microcontrolador PIC32MX795F512L para identificar a ocorrência de eventos de VTCD e salvar informações relativas à data, hora e intensidade de cada evento;
- Configurar o microcontrolador PIC32MX795F512L para funcionar como um servidor TCP/IP, disponibilizando as informações salvas para consulta pelo usuário através de uma rede Ethernet.

1.3 CONTRIBUIÇÕES DO TRABALHO

1.4 ORGANIZAÇÃO DO TRABALHO

2 VARIAÇÕES DE TENSÃO DE CURTA DURAÇÃO

Variações de tensão de curta duração (VTCD) são desvios significativos no valor eficaz da tensão em curtos intervalos de tempo. Essas variações podem ser momentâneas ou temporárias, tendo como principais causas condições de falta, energização de grandes cargas que demandam correntes altas de partida e conexões frouxas intermitentes nos cabos de energia (ANEEL, 2011; MACHADO et al., 2006).

Usualmente as VTCD referem-se à tensão fase-neutro, podendo ser descritas monofasicamente por dois parâmetros: amplitude e duração. A amplitude é definida pelo valor extremo do valor eficaz da tensão (também chamado de tensão remanescente) em relação à tensão nominal, no ponto de observação e enquanto durar o evento. Esse valor pode ser expresso em porcentagem ou em valor por unidade (pu) (REDE, 2011).

A duração das VTCD é caracterizada pelo tempo percorrido entre o momento em que o valor eficaz da tensão ultrapassa um determinado limiar e o momento em que volta a cruzar esse ponto, podendo ser expresso em segundos ou ciclos (REDE, 2011).

Na tabela ?? é mostrada uma classificação geral dos tipos de variações de tensão de curta duração e na tabela 1 são apresentados os critérios detalhados para a definição de cada tipo de variação de acordo com a norma vigente da ONS (REDE, 2011).

Tabela 1: Variações de Tensão de Curta Duração

Tabela 1: Variações de Tensão de Curta Duração					
Classificação	Denominação	Duração da	Amplitude da		
		Variação	tensão		
	Interrupção Momentânea de Tensão	Inferior ou igual a	Inferior a 0,1 p.u		
		três segundos			
	Afundamento Momentânea de Tensão	Superior ou igual	Superior ou igual		
Variação Momentânea de Tensão		a um ciclo e infe-	a 0,1 e inferior a		
variação Momentanea de Tensão		rior ou igual a três	0,9 p.u		
		segundos			
	Elevação Momentânea de Tensão	Superior ou igual	Superior a 1,1 p.u		
		a um ciclo e infe-			
		rior ou igual a três			
		segundos			
	Interrupção Temporária de Tensão	Superior a três se-	Inferior a 0,1 p.u		
		gundos e inferior	r		
		a um minuto			
Variação Tamporário do Tonção	Afundamento Temporário de Tensão	Superior a três se-	Superior ou igual		
Variação Temporária de Tensão		gundos e inferior	a 0,1 e inferior a		
		a um minuto	0,9 p.u		
	Elevação Temporária de Tensão	Superior a três se-	- Superior a 1,1 p.u		
		gundos e inferior			
		a um minuto			

Fonte: Aneel (2011)

Na definição da amplitude das variações de tensão é utilizado o valor eficaz (RMS, da sigla em inglês *root mean square*), também chamado de valor quadrático médio, que é uma medida estatística da magnitude de uma quantidade variável.

O valor eficaz da tensão (Vref) é representado pela equação 1, sendo x(t) o sinal variável no tempo e T seu período.

$$Vref = \sqrt{\frac{1}{T} \int_0^T [x(t)]^2 dt}$$
 (1)

2.1 TIPOS DE EVENTOS

2.1.1 INTERRUPÇÃO DE TENSÃO (INTERRUPTION)

A interrupção ocorre quando a amplitude da tensão descresce para um valor menor que 0,1 pu, em um período de até 1 minuto. Algumas de suas principais causas são condições

de falhas no equipamento, falhas no sistema de energia e mau funcionamento de controladores (ASSOCIATION et al., 2009).

A figura 1 ilustra a ocorrência de uma interrupção momentânea, com a tensão caindo para 0 por aproximadamente 2 segundos. O primeiro gráfico apresenta a variação da tensão eficaz (RMS) durante todo o evento, mostrando a queda da tensão para 0 e o reestabelecimento do valor normal após cerca de dois segundos.

O segundo apresenta a variação do valor instantâneo da tensão durante os dois primeiros segundos do evento. É importante notar que os gráficos da figura 1 apresentam escalas diferentes para uma melhor visualização.

Figura 1: Interrupção momentânea de tensão

Fonte: Adaptado de Association et al. (2009)

2.1.2 AFUNDAMENTO DE TENSÃO (VOLTAGE SAG)

O afundamento ocorre quando a tensão decai para um valor entre 0,1 e 0,9 pu (tensão remanescente). Esse evento é geralmente associado a condições de defeito no sistema, comutação de grandes blocos de carga e acionamento de grandes motores (ASSOCIATION et al., 2009).

A figura 2 ilustra um afundamento instantâneo com tensão remanescente de aproximadamente 0,2 pu. No primeiro gráfico, o afundamento é mostrado pela variação da tensão eficaz, com uma escala em segundos. No gráfico abaixo, a forma de onda completa da tensão (com escala em milisegundos) mostra uma oscilação maior do valor durante a duração do evento.

Figura 2: Afundamento instantâneo de tensão

Fonte: Adaptado de Association et al. (2009)

2.1.3 ELEVAÇÃO DE TENSÃO (VOLTAGE SWELL)

A elevação de tensão é definida por um aumento na tensão eficaz acima de 1,1 pu, com duração descrita na tabela 1. Assim como no afundamento, sua ocorrência está associada à condições de falhas no sistema, desligamento de grandes cargas ou bancos de capacitores (ASSOCIATION et al., 2009).

A figura 11 ilustra uma condição de elevação instantânea de tensão. No gráfico de cima é mostrada a variação da tensão RMS com tensão remanescente de aproximadamente 1,15 pu. O segundo gráfico ilustra a variação no valor instântaneo da tensão.

120 115 110 Tensão (%) 105 100 95 90 0.15 0.05 0.1 0.2 0.25 0.3 0.35 Tempo (seg) 150 100 50 Tensão 0 (%) -50 -100 -150 0 25 50 75 100 125 150 175 200 Tempo (mseg)

Figura 3: Elevação instantânea de tensão

Fonte: Adaptado de Association el al. (2009)

3 O SISTEMA DE MONITORAMENTO DE VARIAÇÕES DE TENSÃO DE CURTA DURAÇÃO

3.1 PROPOSTA DO TRABALHO

O Sistema de Monitoramento de Variações de Tensão de Curta Duração proposto tem como objetivo fornecer uma ferramenta robusta e de baixo custo, que permita a medição da qualidade da energia elétrica fornecida pelas redes de distribuição através da detecção da ocorrência de eventos de variação de tensão de curta duração. O sistema faz a coleta da informação diretamente na rede de Baixa Tensão (BT), podendo ser tanto 127V quanto 220V.

3.2 FUNCIONAMENTO DO PROTÓTIPO

O equipamento utilizado neste trabalho foi desenvolvido pelo Prof. Dr. André Sanches Fonseca Sobrinho, para sua tese de doutorado, e foi inicialmente projetado para funcionar como uma Unidade de Medição Fasorial Otimizada para Sistemas de Distribuição (SOBRINHO, 2016).

Para este projeto, o protótipo foi programado para funcionar na detecção dos eventos de variações de tensão de curta duração, classificando-os e disponibilizando-os online para consulta pelo usuário. Para isso, o dispositivo realiza as seguintes atividades:

- Configuração do relógio em tempo real do microcontrolador PIC32MX795F512L através de dados fornecidos pelo usuário;
- Coleta dos valores de tensão nas três fases da rede de baixa tensão através da placa de medição trifásica;
- Cálculo da frequência e do valor RMS da tensão em cada fase através do circuito integrado ADE7758;
- Classificação, no caso de ocorrência, dos eventos de VTCD através dos Timers e demais funcionalidades do microcontrolador PIC32MX795F512L. As informações de data e hora

da ocorrência de cada eventos são salvas, juntamente com o tipo do evento, na memória flash do microcontrolador.

- Disponibilização das informações salvas pelo sistema em um buffer rotativo para consulta pelo usuário através da interface de comunicação Ethernet.

Fonte: Autoria Própria

Na Figura 4 pode-se identificar os componentes que integram o protótipo. É possível observar a placa de desenvolvimento Cerebot MX7cK, que conta com um microcontrolador PIC32MX795F512L e uma entrada para conexão Ethernet, as entradas e saídas das três fases de tensão, o neutro e a placa de medição trifásica, que será descrita mais adiante neste capítulo.

A caixa plástica que serve de proteção para o equipamento foi testada em laboratórios certificados, levando-se em conta diversas condições climáticas, penetração de água e névoa salina. Os resultados apresentandos foram satisfatórios, mostrando que o dispositivo pode ser instalado em áreas externas (SOBRINHO, 2016). A tabela 2 apresenta as principais especificações do dispositivo, tanto da parte elétrica como da parte mecânica.

Tabela 2: Características elétricas e físicas

Tabela 2. Caracteristicas eletricas e fisicas			
Valor			
141,42 A			
275 V			
3,8 VA			
-40 °C a 85 °C			
55 (contra poeira e jatos d'água)			
412 mm x 230 mm x 100 mm			

Fonte: Sobrinho (2016)

3.2.1 VARIADOR DE TENSÃO MONOFÁSICO

Este trabalho foi desenvolvido de maneira remota, na cidade de São José dos Campos, paralelamente à realização do estágio curricular obrigatório, não sendo possível o acesso aos laboratórios da Universidade. Desta maneira, para realizar os testes de variações de tensão necessários, foi utilizado um variador de tensão monofásico, da marca JNG, modelo TDGC2-0,5 e capacidade de 0,5 kVA.

Tabela 3: Especificação Técnica - Variador de Tensão Monofásico TDGC2-0,5

Modelo	Tensão Nominal Entrada	Potencia Nominal	Tensão de Saída	Corrente Nominal de Saída
TDGC2-0,5	127V ca	0,25kVA	$0 \sim 140 V ca$	2 A
TDGC2-0,5	220V ca	0,5kVA	$0 \sim 250 V ca$	2 A

Fonte: JNG (2017)

Figura 5: Variador de Tensão Monofásico TDGC2-0,5

Fonte: Autoria Própria

Os terminais de entrada do variador de tensão foram conectados à rede doméstica de 220V, e os terminais de saída foram conectados ao neutro e à entrada da fase A do protótipo. Para que fosse possível realizar testes em todas as fases, as conexões foram curto-circuitadas, recebendo todas o mesmo valor de tensão. A imagem 6 ilustra como foram feitas as ligações para a realização do trabalho.

Figura 6: Ligação do dispositivo para realização dos testes de variação de tensão

Fonte: Autoria Própria

3.3 PLACA DE MEDIÇÃO TRIFÁSICA

O ADE7758, circuito integrado fabricado pela empresa *Analog Devices*, é um medidor de energia elétrica trifásica, de alta precisão, com interface serial e alimentação de 5V. Esse circuito conta com seis entradas analógicas, divididas em dois canais de tensão e corrente, e o canal de tensão conta com três entradas (VAP, VBP e VCP) (ANALOG DEVICES, 2011).

24 DOUT DGND 2 23 SCLK DVDD 3 22 DIN AVDD 4 21 CS **ADE7758** 20 CLKOUT 19 CLKIN 18 IRQ 17 VARCF 16 VAP 15 VBP 14 VCP REFIN/OUT 12 VN

Figura 7: Configuração de pinos do ADE7758

Fonte: Adaptado de Analog Devices (2011)

Esse circuito integrado é responsável pela conversão analógico-digital dos sinais lidos pelos três canais de tensão , disponibilizando então o valor RMS da tensão da rede para o microcontrolador.

O desenvolvimento da placa de medição trifásica, utilizada neste trabalho para a aquisição dos sinais de tensão, é descrito em Sobrinho (2016). Como é possível observar na Figura 8, esse dispositivo conta com conexões para as três fases de tensão, interface lógica com a placa do microcontrolador, fonte AC/DC e conexão com o neuto da rede.

Através da utilização de divisores resistivos é possível atenuar a tensão de entrada para os limites adequados ao conversor A/D do circuito integrado ADE7758 (SOBRINHO, 2016). A Equação (2) expressa essa relação, onde V_N é a tensão em um dos canais do ADE7758, e V_{IN} é a tensão proveniente de uma das fases da rede trifásica.

$$V_N = \frac{1k\Omega}{1k\Omega + 1M\Omega} V_{IN} = 9,99 \cdot 10^{-4} V_{IN}$$
 (2)

De acordo com o datasheet do CI ADE7758, a faixa aceitável para as entradas analógicas é de $\pm 500mV$ (ANALOG DEVICES, 2011). Desta maneira, a partir da Equação (2) é possível

determinar um valor máximo de 500,5V nas entradas de tensão da placa, o que resultará no valor de 500mV na entrada do conversor A/D. Isso permite que tanto tensões com valor RMS de 127 V e 220 V sejam amostradas.

Interface lógica com a placa do microcontrolador Fonte AC/DC 2 Conexão Conexão da fase de do neutro Conexão Conexão Conexão Conexão da fase de do neutro da fase de do neutro tensão C tensão B tensão A Sensor de Sensor de Sensor de corrente C corrente B corrente A

Figura 8: Placa para aquisição dos sinais de tensão

Fonte: Sobrinho (2016)

3.4 MICROCONTROLADOR PIC32MX795F512L

Para este trabalho foi utilizado o microcontrolador PIC32MX795F512L, fabricado pela empresa *Microchip Technology Incorporated*, que possui unidade de processamento de 32 bits, 512 kB de memória Flash, 128 kB de memória RAM, frequência de operação de 80 MHz e faixa de operação de tensão de 2,3 V a 3,6 V (MICROCHIP TECHNOLOGY INCORPORATED, 2011).

O PIC32MX795F512L conta com 5 Timers de 16 bits, que podem ser combinados em pares para formar Timers de 32 bits. Além disso, o microcontrolador conta com a presença de uma interface para Controle de Acesso Ethernet (MAC) de 10/100 Mbps, que permite uma conexão física Ethernet (MICROCHIP TECHNOLOGY INCORPORATED, 2011).

O periférico de calendário e relógio em tempo real, também presente no microcontrolador, permite a contagem do tempo em horas, minutos e segundos, a consulta por dia da semana, dia, mês e ano, além de otimização para uso contínuo da bateria e correção de ano bissexto. O erro apresentado é de aproximadamente \pm 0,66 segundos por mês (MICROCHIP

TECHNOLOGY INCORPORATED, 2011).

Charact Charact Character Character

Figura 9: Placa de desenvolvimento Cerebot MX7cK

Fonte: Diligent Incorporated (2013)

O microcontrolador PIC32MX795F512L foi utilizado através da placa de desenvolvimento Cerebot MX7cK, que é fabricada pela empresa *Digilent Incorporated*. Essa placa possui 52 pinos de entrada e saída, interface Ethernet 10/100, 5 entradas de interrupção externa e diversos outros periféricos, podendo ser alimentada via USB ou fonte AC-DC externa. (DILIGENT INCORPORATED, 2013).

Um diagrama com os principais periféricos da Cerebot MX7cK é apresentado na figura 10:

Figura 10: Diagrama do circuito da placa Cerebot MX7cK

Fonte: Diligent Incorporated (2013)

3.4.1 INTERFACE DE COMUNICAÇÃO

A comunicação entre o microcontrolador e o circuito integrado ADE7758 foi feita através do protocolo SPI (*Serial Peripheral Interface*), um protocolo de comunicação serial síncrona, desenvolvido pela *Motorola* nos anos de 1980, que permite a troca de informações entre microcontroladores e outros periféricos (LEENS, 2009).

O protocolo SPI usa uma topologia mestre-escravo, sempre com um único mestre. A comunicação se dá em quatro linhas de sinal:

- Um sinal de clock (SCLK), enviando pelo dispositivo mestre para um ou mais dispositivos escravos, definindo a síncronização de toda a comunicação entre os dispositivos.
- Uma linha para troca de dados do mestre para o(s) escravo(s), MOSI (Master Out-Slave In).
- Uma linha para troca de dados do(s) escravo(s) para o mestre, MISO (Master In-Slave Out).
- Um sinal de seleção de escravo (SSn), único para cada dispositivo escravo, que é usado para selecionar com qual dispositivo escravo o mestre irá se comunicar.

Figura 11: Estrutura de comunicação do protocolo SPI

Fonte: Adaptado de Association el al. (2009)

O microcontrolador PIC32MX795F512L possui quatro interfaces de SPI, e a utilizada para este trabalho foi a SPI canal 1. O microcontrolador foi configurado como um dispositivo mestre, enquanto o circuito integrado atua como escravo.

4 METODOLOGIA

Como mencionado na seção 1.2, o objetivo deste trabalho é o desenvolvimento de um sistema de detecção de variações de tensão de curta duração. Esse sistema deverá analisar o sinal de onda da tensão proveniente da rede de distribuição de energia elétrica, detectar a ocorrência de variações, classificar cada ocorrência de acordo com as normas vigentes, salvar essa informação (incluindo data e hora) e disponibilizá-la online para consulta.

4.1 ETAPAS DO TRABALHO

O trabalho de conclusão de curso será organizado de acordo com as seguintes etapas:

- Revisão bibliográfica
- Definição e estudo das tecnologias
- Aplicação dos conceitos teóricos
- Análise e validação dos resultados
- Elaboração da monografia

4.1.1 REVISÃO BIBLIOGRÁFICA

A primeira etapa será dedicada à busca por referências bibliográficas que tenham relação com o estudo de variações de tensão de curta duração. O objetivo aqui é estudar trabalhos existentes na área, assim como as principais técnicas existes para a detecção desse tipo de evento e como este trabalho poderá contribuir com o assunto.

4.1.2 DEFINIÇÃO E ESTUDO DAS TECNOLOGIAS

Nesta etapa, o objetivo é o estudo prático do funcionamento dos materias que serão utilizados no trabalho, descritos no capítulo 2. Serão feitos testes com o microcontrolador

PIC32MX795F512L (através da placa de desenvolvimento Cerebot MX7cK) e com o circuito integrado ADE7758, visando conhecer melhor suas características, funcionamento e métodos de comunicação entre os dois dispositivos.

Além disso, será feito um estudo quanto a configuração do microcontrolador PIC32MX795F512L como um servidor TCP/IP, com a realização de testes para sua correta operação.

4.1.3 APLICAÇÃO DOS CONCEITOS TEÓRICOS

Após o estudo dos materiais que serão utilizados no projeto, a etapa de aplicação dos conceitos teóricos terá como objetivo o desenvolvimento do *firmware* do sistema. Para isso, todas as normas e restrições descritas no capítulo 2 deverão ser levadas em conta para a correta detecção dos eventos de VTCD.

Duas abordagens diferentes serão testadas no projeto. A primeira proposta envolve a utilização das funções de detecção de afundamento e de sobretensão do circuito integrado ADE7758, descritas nas seções ?? e ??, além dos timers e demais periféricos do microcontrolador PIC32MX795F512L.

Para a detecção da ocorrência de afundamento de tensão, o registrador SAGLVL deverá ser configurado de acordo com os valores da tabela 1, ativando a interrupção quando o valor da tensão ficar abaixo de 0,9 pu por um período maior que um ciclo. Caso o valor da tensão remanescente seja igual ou menor que 0,1 pu, o evento deve ser tratado como uma interrupção de tensão.

Essa interrupção irá ativar o timer presente no microcontrolador PIC32MX795F512L, que irá permanecer ativo durante a duração do evento. De acordo com o valor final da contagem, o evento de afundamento será enquadrado em uma das categorias de VTCD, também seguindo as normas presentes na tabela 1.

No caso da elevação de tensão, a detecção será feita através da configuração do limite superior no registrador VPINTLVL. Caso a tensão proveninente da rede elétrica ultrapasse esse valor, o Bit 14 do registrador de interrupção é acionado para registrar a ocorrência da sobretensão. O timer do microcontrolador também será acionado, calculando o tempo total do evento e enquadrando-o em uma das categorias de VTCD.

Em ambos os casos, a função de medição de frequência do ADE7758, descrita na seção ??, será utilizada em conjunto com o timer para que seja feita a medição da quantidade de ciclos da rede, permitindo a caracterização completa de todos os eventos possíveis de VTCD.

Figura 12: Funcionamento básico da primeira abordagem proposta

Fonte: Autoria própria

A segunda abordagem proposta para o desenvolvimento do sistema é a utilização da medição da tensão eficaz, função do ADE7758 descrita na seção ??. A tensão proveniente da rede elétrica terá seu valor RMS constantemente monitorado pelo circuito integrado. O resultado dessa medição deve ser comparado com limites pré-configurados, de acordo com a tabela 1, enquadrando a ocorrência de variação da tensão como interrupção, afundamento ou elevação.

O timer presente no microcontrolador PIC32MX795F512L será acionado em conjunto com a função de medição de frequência do ADE7758, no início do evento. De acordo com a duração total e com o número de ciclos da rede, o evento de VTCD será enquadrado como instântaneo, momentâneo ou temporário.

4.1.4 ANÁLISE E VALIDAÇÃO DOS RESULTADOS

Após o desenvolvimento do hardware e da programação do sistema, levando em conta as duas abordagens propostas anteriormente, a etapa de análise e validação dos resultados terá como objetivo principal testar cada um dos métodos e analisar qual deles será o mais eficiente para a solução do problema.

Utilizando os laboratórios da UTFPR e um Variac, serão realizados ensaios simulando os diversos tipos de variações de tensão de curta duração na rede elétrica. Cada um dos métodos será testado e analisado de acordo com tempo de resposta, gasto de energia e eficiência na

detecção dos eventos.

4.1.5 ELABORAÇÃO DA MONOGRAFIA

A última etapada do trabalho consiste na elaboração do trabalho de conclusão de curso, de acordo com as normas para elaboração de trabalhos acadêmicos da UTFPR. Serão apresentados todos os passos do desenvolvimento do projeto, assim como uma análise completa dos resultados.

5 RESULTADOS

6 CONCLUSãO

REFERÊNCIAS

ANALOG DEVICES. Poly Phase Multifunction Energy Metering IC with Per Phase Information - ADE7758 Datasheet. United States of America, 2011. Rev. E.

ANEEL. Procedimentos de Distribuição de Energia Elétrica no Sistema Elétrico Nacional (PRODIST) - Módulo 8 - Qualidade de Energia. Brasília, 2011.

ASSOCIATION, I. S. et al. 1159-2009. IEEE Recommended Practice for Monitoring Electric Power Quality Industrial and Commercial Applications. New York: IEEE Press, 2009.

BOLLEN, M. H. J. Understanding Power Quality Problems - Voltage Sags and Interruptions. United States of America: John Wiley and Sons, 2002. ISBN 0-7803-4713-7.

DILIGENT INCORPORATED. Cerebot MX7cK Board Reference Manual. United States of America, 2013. Rev B.

DUGAN, R. C. et al. **Electrical power systems quality**. United States of America: McGraw-Hill, 2002.

FERREIRA, D. D. et al. Sistema automático de detecção e classificação de distúrbios elétricos em qualidade da energia elétrica. **Sba: Controle & Automação Sociedade Brasileira de Automatica**, SciELO Brasil, v. 20, n. 1, p. 53–62, 2009.

FITZER, C.; BARNES, M.; GREEN, P. Voltage sag detection technique for a dynamic voltage restorer. In: IEEE. **Industry Applications Conference**, **2002. 37th IAS Annual Meeting. Conference Record of the**. United States of America, 2002. v. 2, p. 917–924.

FONSECA, V. R. d. C. Cálculo estocástico do afundamento de tensão. **PPGEE-11199. PUC-MG**, Belo Horizonte, 1999.

JNG. VARIADOR DE TENSÃO - Modelos: TDGC/TSCG. São Paulo - SP, 2017.

LEENS, F. An introduction to i 2 c and spi protocols. **IEEE Instrumentation & Measurement Magazine**, IEEE, v. 12, n. 1, p. 8–13, 2009.

MACHADO, R. N. d. M. et al. Detecção, classificação e quantificação automática de variações de tensão de curta duração para aplicação em análise de pós-operação em sistemas de energia elétrica. Universidade Federal do Pará, 2006.

MICROCHIP TECHNOLOGY INCORPORATED. PIC32MX5XX/6XX/7XX Family Data Sheet - High-Performance, USB, CAN and Ethernet 32-bit Flash Microcontrollers. United States of America, 2011. Rev. E.

RAMASAMY, A. K. et al. Dynamic voltage restorer for voltage sag compensation. In: IEEE. **Power Electronics and Drives Systems, 2005. PEDS 2005. International Conference on.** United States of America, 2005. v. 2, p. 1289–1294.

REDE, P. de. Gerenciamento dos indicadores de qualidade da energia elétrica da rede básica. **ONS**, Submódulo 2.8, Brasil, 2011.

SOBRINHO, A. S. F. **Desenvolvimento de uma unidade de medição fasorial otimizada para sistemas de distribuição**. Tese (Doutorado) — Universidade de São Paulo, 2016.