2425-MA140 Engineering Calculus

Week 04, Lecture 3 The Chain Rule

Dr Niall Madden

School of Maths, University of Galway

Thursday, 10 October, 2024

Calcalas			Calculus
Diorthaigh			Derivatives
f(x)	f'(x)		
x" ln x ex	nx^{n-1} $\frac{1}{x}$ e^x	Riail an toraidh $\Rightarrow \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{dv}{dt}$	Product rule
e ^{ax} a ^x cos x sin x	ae^{ax} $a^x \ln a$ $-\sin x$ $\cos x$	Riail an lin $y = \frac{u}{v}$ $\Rightarrow \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$	Quotient rule
$\cos^{-1}\frac{x}{a}$ $\sin^{-1}\frac{x}{a}$	$-\frac{\sec^2 x}{\sqrt{a^2 - x^2}}$ $\frac{1}{\sqrt{a^2 - x^2}}$	Cuingriail $f(x) = u(v(x))$ $\Rightarrow f'(x) = \frac{du}{dv} \frac{dv}{dx}$	Chain rule
$\tan^{-1}\frac{x}{a}$	$\frac{\sqrt{a^2 - x^2}}{\frac{a}{a^2 + x^2}}$		

- 25 -

Assignments, etc

Assignments

- ► Assignment 2 is open. See
 https://universityofgalway.instructure.com/
 courses/35693/assignments/96620.
 Deadline is 5pm, Friday, 11 October.
- ► The associated tutorial sheet is at https://universityofgalway.instructure.com/ courses/35693/files/2065926
- Assignment 3 opens tomorrow morning.

In today's class...

- 1 Chain Rule
 - Repeated application
- 2 Inverse functions

- Inverse Rule
- 3 Implicit differentiation
- 4 Exercises

See also:

- Sections 3.6 (The Chain Rule) of Calculus by Strang & Herman: https://math.libretexts.org/Bookshelves/Calculus/Calculus_ (OpenStax)
- ► Section 8.3 of *Modern Engineering Mathematics*: https://search.library.nuigalway.ie/permalink/f/3b1kce/TN_cdi_askewsholts_vlebooks_9780273742517

Of all the differentiation rules, the **chain rule** is the most important: most other rules are actually just special cases of it. It applies to a "function of a function"

The Chain Rule

If u(x) and v(x) are differentiable, and f is the composite function f(x) = u(v(x)), then

$$\frac{df}{dx} = \frac{du}{dv}\frac{dv}{dx}.$$

Example: What is the derivative of $f(x) = \cos(x^2)$?

First note that this is a composite function...

The Chain Rule

If f(x) = u(v(x)), then

$$\frac{df}{dx} = \frac{du}{dv}\frac{dv}{dx}.$$

Example: What is the derivative of $f(x) = \cos(x^2)$?

Example

Find
$$\frac{dy}{dx}$$
 if $y = (x^3 + 4x^4 + 7)^{12}$.

Example: Let
$$u(v) = v^{12}$$
 and $v(x) = x^3 + 4x^4 + 7$, then y is $y = u(v(x))$.

Note that

$$\frac{du}{dv} = 12v^{11} \quad \text{and } \frac{dv}{dx} = 3x^2 + 16x^3.$$

By the Chain Rule we have

$$\frac{dy}{dx} = \frac{du}{dy}\frac{dv}{dx} = 12v^{11}(3x^2 + 16x^3),$$

and therefore

$$\frac{dy}{dx} = 12(x^3 + 4x^4 + 7)^{11}(3x^2 + 16x^3).$$

Example (Skimmed this in class)

Find
$$\frac{dy}{dx}$$
 if $y = \frac{1}{(x^4 + 2x^2 + 8)^{40}}$.

We have $y = (x^4 + 2x^2 + 8)^{-40}$. We can write y as y(x) = u(v(x)) with

•
$$u(v) = v^{-40}$$
 and so $\frac{du}{dv} = -40u^{-41}$; and

$$v(x) = x^4 + 2x^2 + 8$$
, so $\frac{dv}{dx} = 4x^3 + 4x$.

Applying the Chain Rule: $\frac{dy}{dx} = \frac{du}{dv} \frac{dv}{dx}$ we get

$$\frac{dy}{dx} = -40u^{-41}(4x^3 + 4x) = \frac{-40(4x^3 + 4x)}{(x^4 + 2x^2 + 8)^{41}}$$

Often we apply the **Chain Rule** to "functions of functions of functions": if y(x) = t(u(v(x))), then

$$\frac{dy}{dx} = \frac{dt}{du} \frac{du}{dv} \frac{dv}{dx}$$

Example

Find $\frac{dy}{dx}$ when $y = \sin^4(x^5 + 7)$.

le Repeated application

Example

Find the derivative of $y = x^2 e^{\sin(x)}$

Inverse functions

Suppose that y = f(x). That is, f maps x to y.

Then the **inverse** of f is the function, f^{-1} , that maps y back to x.

Example

- The inverse of $f(x) = \frac{1}{2}x$ is $f^{-1}(x) = 2x$.
- ► The inverse of $f(x) = \sqrt{x}$ is $f^{-1}(x) = x^2$.

Warning: $f^{-1}(x)$ is not the same as $\frac{1}{f(x)}$.

It is often useful to be able to express the derivative (assuming there is one) of an inverse function $f^{-1}(x)$ in terms of the derivative of f(x).

To do this, we use the following rule:

Inverse-Function Rule

If $y = f^{-1}(x)$, then x = f(y) and also

$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{f'(y)}.$$

Alternatively: If f and f^{-1} are inverse and differentiable, then

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}.$$

Example

If $y = x^{1/3}$, use the Inverse Rule to find $\frac{dy}{dx}$.

Note: We can solve this just using the Power Rule:

 $\frac{dy}{dx} = \frac{1}{3}x^{-\frac{2}{3}}$. So we are just doing this because it is *instructive* If $y = x^{\frac{1}{3}}$, then $y^3 = x$, or $x = y^3$, so

$$\frac{dx}{dy} = 3y^2.$$

By the inverse rule, $\frac{dy}{dx} = \frac{1}{\frac{dx}{dx}} = \frac{1}{3y^2}$.

As $y = x^{\frac{1}{3}}$ we have

$$\frac{dy}{dx} = \frac{1}{3(x^{\frac{1}{3}})^2} = \frac{1}{3}x^{-\frac{2}{3}}.$$

Example

Find the derivative of $\sin^{-1}(x)$

Let
$$y = \sin^{-1}(x)$$
, then $x = \sin(y)$ (*), so

$$\frac{dx}{dy} = \cos(y) \,. \qquad (\star\star)$$

From $\sin^2(y) + \cos^2(y) = 1$, we find $\cos(y) = \sqrt{1 - \sin^2(y)}$ (choosing the positive square root as $\cos(y)$ is positive for y here). Using (\star) :

$$\cos y = \sqrt{1 - x^2} \,.$$

Now using the inverse rule and (**), we have

$$\frac{dy}{dx} = \frac{1}{\cos(y)} = \frac{1}{\sqrt{1-x^2}}.$$

When y = f(x), we say that y is explicitly defined. E.g., $y = \sqrt{1 - x^2}$.

Often times, however, we are given an equation involving x and y where these two terms are not "separated" entirely; e.g, $x^2 + y^2 = 1$. Here y is **implicitly** defined.

The tool of **implicit differentiation** allows us to, say, find tangents to these curves.

Method:

- 1. Differentiate both size of the equation, wrt x. keeping in mind that y is a function of x, using the Chain Rule where needed.
- 2. Solve for dy/dx.

If y is defined by $x^2 + y^2 = 1$, find $\frac{dy}{dx}$.

Find the tangent to the curve $x^2+y^2=25$, at the point (3,-4).

Find the tangent to the curve $y^3 + x^3 - 3xy = 0$, at the point (3/2, 3/2).