Campo eléctrico y Corriente eléctrica

Ley de Coulomb

$$\vec{F} = k \frac{|q_1 q_2|}{r^2} [N] = k \frac{q_1 q_2}{r^2} (\vec{r_1} - \vec{r_2}) [N]$$

Variables y Unidades:

- \vec{F} : Fuerza eléctrica [N]
- q_1, q_2 : Cargas eléctricas [C]
- r: Distancia entre cargas [m]
- $\vec{r_1}$, $\vec{r_2}$: Vectores posición [m]

Potencial eléctrico

$$V = k \frac{q}{r}$$
 [V]

$$\vec{E} = -\nabla V$$

Variables y Unidades:

- V: Potencial eléctrico [V=J/C]
- q: Carga fuente [C]
- r: Distancia [m]
- \vec{E} : Campo eléctrico [N/C]

Ley de Gauss (eléctrico)

$$\oint \vec{E} \cdot d\vec{S} = \frac{Q_{\rm int}}{\epsilon_0}$$

Variables y Unidades:

- \vec{E} : Campo eléctrico [N/C]
- $d\vec{S}$: Elemento de superficie $[m^2]$
- Q_{int} : Carga interna [C]
- ϵ_0 : Permitividad del vacío [F/m]

Capacidad de un condensador plano

$$C = \frac{\epsilon_0 S}{d} \quad [F]$$

Variables y Unidades:

- C: Capacidad [F]
- ϵ_0 : Permitividad del vacío [F/m]
- S: Superficie de las placas $[m^2]$
- d: Distancia entre placas [m]

Campo eléctrico

$$\vec{E} = k \frac{q_0}{r^2} \vec{r} \quad [\frac{N}{C}]$$

Variables y Unidades:

- \vec{E} : Campo eléctrico [N/C]
- k: Constante de Coulomb $[N \cdot m^2/C^2]$
- q_0 : Carga fuente [C]
- r: Distancia [m]
- \vec{r} : Vector dirección

Energía potencial eléctrica

$$U = k \frac{q_1 q_2}{r} \quad [J]$$

Variables y Unidades:

- U: Energía potencial [J]
- q_1, q_2 : Cargas [C]
- r: Distancia [m]

Capacidad (general)

$$C = \frac{Q}{V} \quad [F]$$

Variables y Unidades:

- C: Capacidad [F]
- Q: Carga almacenada [C]
- V: Voltaje [V]

Energía almacenada en un condensador

$$U = \frac{1}{2}CV^2$$

Variables y Unidades:

- U: Energía [J]
- C: Capacidad [F]
- V: Voltaje [V]

Asociación de capacitores

Serie:

$$\frac{1}{C_{\rm eq}} = \sum_i \frac{1}{C_i}$$

Paralelo:

$$C_{\mathrm{eq}} = \sum_{i} C_{i}$$

Variables y Unidades:

- C_{eq} : Capacidad equivalente [F]
- C_i : Capacidades individuales [F]

Corriente eléctrica

$$I = \frac{Q}{t}$$
 [A]

Variables y Unidades:

- *I*: Corriente [*A*]
- Q: Carga [C]
- t: Tiempo [s]

Densidad de corriente

$$\vec{J} = \sigma \vec{E}$$

Variables y Unidades:

- \vec{J} : Densidad de corriente $[A/m^2]$
- σ : Conductividad [S/m]
- \vec{E} : Campo eléctrico [N/C]

Ley de Ohm (microscópica)

$$\vec{E} = \rho \vec{J}$$

$$V = IR$$

Variables y Unidades:

- \vec{E} : Campo eléctrico [N/C]
- ρ : Resistividad $[\Omega \cdot m]$
- \vec{J} : Densidad de corriente $[A/m^2]$
- V: Voltaje [V]
- *I*: Corriente [*A*]
- R: Resistencia $[\Omega]$

Resistencia

$$R = \rho \frac{L}{S}$$

Variables y Unidades:

- R: Resistencia $[\Omega]$
- ρ : Resistividad $[\Omega \cdot m]$
- L: Longitud [m]
- S: Superficie $[m^2]$

Potencia eléctrica

$$P = VI = I^2R = \frac{V^2}{R}$$

Variables y Unidades:

- P: Potencia [W]
- V: Voltaje [V]
- I: Corriente [A]
- R: Resistencia $[\Omega]$

Campo magnético

Campo magnético de un hilo recto

$$B = \frac{\mu_0 I}{2\pi r}$$

Variables y Unidades:

- B: Campo magnético [T]
- μ_0 : Permeabilidad $[4\pi \times 10^{-7} \, T \cdot m/A]$
- *I*: Corriente [*A*]
- r: Distancia [m]

Ley de Ampère

$$\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{\rm int}$$

Variables y Unidades:

- \vec{B} : Campo magnético [T]
- $d\vec{l}$: Elemento de longitud [m]
- μ_0 : Permeabilidad $[T \cdot m/A]$
- I_{int} : Corriente interna [A]

Fuerza sobre un conductor

$$\vec{F} = I\vec{L} \times \vec{B}$$

Variables y Unidades:

- \vec{F} : Fuerza [N]
- I: Corriente [A]
- \vec{L} : Vector longitud [m]
- \vec{B} : Campo magnético [T]

Campo magnético de un solenoide

$$B = \mu_0 nI$$

Variables y Unidades:

- B: Campo magnético [T]
- μ_0 : Permeabilidad $[T \cdot m/A]$
- n: Vueltas por unidad de longitud [1/m]
- *I*: Corriente [A]

Fuerza de Lorentz

$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$

Variables y Unidades:

- \vec{F} : Fuerza [N]
- q: Carga [C]
- \vec{E} : Campo eléctrico [N/C]
- \vec{v} : Velocidad [m/s]
- \vec{B} : Campo magnético [T]

\vec{F} Fuerza Campo magnéti $\vec{\phi}$ \vec{v} Velocidad

Ley de Gauss para el magnetismo

$$\oint \vec{B} \cdot d\vec{S} = 0$$

Variables y Unidades:

- \vec{B} : Campo magnético [T]
- $d\vec{S}$: Superficie $[m^2]$

Ley de Faraday

$$\mathcal{E} = -\frac{d\Phi_B}{dt}$$

$$\Phi_B = \int \vec{B} \cdot d\vec{S}$$

Variables y Unidades:

• \mathcal{E} : Fem inducida [V]

• Φ_B : Flujo magnético [Wb]

• \vec{B} : Campo magnético [T]

• $d\vec{S}$: Superficie $[m^2]$

Inductancia

$$\mathcal{E} = -L\frac{dI}{dt}$$

Variables y Unidades:

• \mathcal{E} : Fem inducida [V]

• L: Inductancia [H]

• *I*: Corriente [*A*]

Energía en campo magnético

$$U = \frac{1}{2}LI^2$$

Variables y Unidades:

• U: Energía [J]

• L: Inductancia [H]

• *I*: Corriente [A]