

Output summary of the CUED program

The CUED program is developed and maintained by:

Chair of Computational Condensed Matter Theory
Institute of Theoretical Physics
University of Regensburg
Universitätsstraße 31
D - 93053 Regensburg
Germany

Date of execution: February 21, 2021 Run time: 71.1 s

Responsible scientists:

Jan Wilhelm Ferdinand Evers

Contributors (in alphabetic order):

Jack Crewse
Patrick Grössing
Adrian Seith

Contents

1	Electric-field pulse	1
2	Brillouin zone and <i>k</i> -point grid	1
3	Hamiltonian, bandstructure and dipoles	2
4	Time evolution of the density matrix	3
5	Time-dependent current	3
6	Frequency-resolved emission spectrum	4
7	References	5

1 Electric-field pulse

The following electric driving field is employed in the simulation:

$$\mathbf{E}(t) = E(t)\,\hat{e}_{\phi}\,\,,\qquad E(t) = E_0\,\sin\left(2\pi f_0\,(1 + f_{\rm chirp}t)\,t + \varphi\right)e^{-t^2/(2\alpha)^2}\,\,.\tag{1}$$

The pulse is sketched in Fig. 1. The following parameters are used in the simulation:

- Γ-M direction
- Pulse frequency: $f_0 = 25.0 \,\text{THz}$
- Chirp: $f_{\text{chirp}} = 0.0 \,\text{THz}$
- Carrier-envelope phase: $\phi = 0.0$
- $\alpha = 25.0$ fs, full width at half maximum (FWHM) of the Gaussian envelope = 83.255 fs

The gauge field $\mathbf{A}(t) = A(t) \,\hat{e}_{\phi}$ follows from $\dot{\mathbf{A}}(t) = -\mathbf{E}(t)$. We compute A(t) for the sketch in Fig. 1 as

$$\dot{A}(t) = -E(t)$$
 \Rightarrow $A(t) = -\int_{-\infty}^{t} E(t') dt'$. (2)

Figure 1: Left: Electric driving field E(t) from Eq. (1), right: Gauge field A(t) from Eq. (2).

2 Brillouin zone and k-point grid

You are using a hexagon as Brillouin zone (BZ) with a mesh size of 42×12 . The BZ and a 24×6 k-point mesh is sketched in Fig. 2. Please note that in the params.py file, the BZ size (in case of a rectangular BZ) and the lattice parameter a (in case of a hexagonal BZ) are both given in atomic units, while the output here is in 1/Å (note: 1 atomic length unit = $1a_0 = 0.529 \,\text{Å}$, a_0 : Bohr radius, 1 atomic inverse length unit = $1/(0.529 \,\text{Å}) = 1.890 \,\text{Å}^{-1}$).

Figure 2: Brillouin zone (BZ) and 24×6 k-point mesh. The BZ is indicated by the black hexagon. Gray points indicate k-points, colored lines indicate k-points that are coupled via the term $\mathbf{E}(t) \cdot \nabla_{\mathbf{k}}$. The green and red line at the top left corner sketch $\mathbf{A}_{\max} := \hat{e}_{\phi} \max(-qA(t)/\hbar)$ and $\mathbf{A}_{\min} := \hat{e}_{\phi} \min(-qA(t)/\hbar)$ indicating the extremal excursion of electrons in the BZ.

3 Hamiltonian, bandstructure and dipoles

This still needs to be filled; Gauge; how to print the Hamiltonian properly? (e.g. Dirac or Bi_2Te_3 ?) Printing of band structure for rectangle along k_x , $k_y = 0$, k_y , $k_x = 0$, for hexagon along K- Γ -M. Plotting of dipoles

as in Patricks plot with 4 diagrams (dvv, dcc, Re(dvc), Im(dvc)), additionally along K-Γ-M (also absolute value of dvc).

4 Time evolution of the density matrix

In case you choose the length gauge (gauge = 'length', that is also the default), we solve semiconductor Bloch equations in the length gauge, Eq. (50) in Ref. [1]:

$$\left[\frac{\partial}{\partial t} + q\mathbf{E}(t)\frac{\partial}{\partial \mathbf{k}}\right]\rho_{nn'}(\mathbf{k},t) = \left[i(\epsilon_{n'}(\mathbf{k}) - \epsilon_{n}(\mathbf{k})) - 1/T_{2}\right]\rho_{nn'}(\mathbf{k},t) - i\mathbf{E}(t)\sum_{\underline{n}}(\rho_{n\underline{n}}(\mathbf{k};t)\mathbf{d}_{\underline{n}n'}(\mathbf{k}) - \mathbf{d}_{n\underline{n}}(\mathbf{k})\rho_{\underline{n}n'}(\mathbf{k};t)\right)$$
(3)

with a dephasing time $T_2 = 1$ fs. TODO: Plots of initial vv and cc density matrix elements, plot of time evolution at a k-point, snapshot of density matrix at 3 time points for whole BZ.

5 Time-dependent current

In case you choose the length gauge (gauge = 'length', that is also the default), the current is computed from Eq. (67) in Ref. [1] as

$$\mathbf{j}(t) = q \sum_{nn'} \int_{\mathbf{R}Z} \frac{d\mathbf{k}}{(2\pi)^2} \left\langle u_{n\mathbf{k}} \middle| \frac{\partial h(\mathbf{k})}{\partial \mathbf{k}} \middle| u_{n'\mathbf{k}} \right\rangle \rho_{n'n}(\mathbf{k}, t) . \tag{4}$$

The matrix element $\langle u_{n\mathbf{k}}|(\partial_{\mathbf{k}}h(\mathbf{k}))|u_{n'\mathbf{k}}\rangle$ can be computed from Eq. (68) in Ref. [1] as

$$\langle u_{n\mathbf{k}}|\frac{\partial h(\mathbf{k})}{\partial \mathbf{k}}|u_{n'\mathbf{k}}\rangle = \delta_{nn'}\partial_{\mathbf{k}}\epsilon_{n}(\mathbf{k}) + \frac{i}{q}\mathbf{d}_{nn'}(\mathbf{k})\left(\epsilon_{n}(\mathbf{k}) - \epsilon_{n'}(\mathbf{k})\right). \tag{5}$$

In our case, the current is a two-dimensional vector. For generating meaningful plots, we project the current onto the axis \hat{e}_{ϕ} of the incoming E-field and its orthogonal direction $\hat{e}_{\phi+\pi/2}$:

$$j_{\parallel}(t) = \hat{e}_{\phi} \mathbf{j}(t) , \qquad j_{\perp}(t) = \hat{e}_{\phi+\pi/2} \mathbf{j}(t) ,$$
 (6)

and we recover

$$\mathbf{j}(t) = \hat{e}_{\phi} \ j_{\parallel}(t) + \hat{e}_{\phi + \pi/2} \ j_{\perp}(t) \ . \tag{7}$$

Figure 3: Components of the time-dependent current $\mathbf{j}(t)$: left: parallel to the driving field, right: orthogonal to the driving field, see Eq. (6).

6 Frequency-resolved emission spectrum

Experiments measure the frequency resolved emission intensity *I*, which is computed by Eq. (53) in Ref. [1]

$$I(\omega) = \frac{\omega^2}{3c^3} |\mathbf{j}(\omega)|^2 , \qquad (8)$$

Figure 4: Emission intensity from the irradiated material computed from Eqs. (8) and (10). The frequency is given by $f = \omega/(2\pi)$.

7 References 5

where $\mathbf{j}(\omega)$ is the Fourier transform of $\mathbf{j}(t)$ and c is the speed of light. The emission is sketched in Fig. 4. When inserting Eq. (7) in the frequency domain, we have

$$I(\omega) = \frac{\omega^2}{3c^3} \left(|\mathbf{j}_{\parallel}(\omega)|^2 + |\mathbf{j}_{\perp}(\omega)|^2 \right), \tag{9}$$

that motivates the definitions

$$I_{\parallel}(\omega) = \frac{\omega^2}{3c^3} |\mathbf{j}_{\parallel}(\omega)|^2 , \qquad I_{\perp}(\omega) = \frac{\omega^2}{3c^3} |\mathbf{j}_{\perp}(\omega)|^2 . \tag{10}$$

We recover $I(\omega) = I_{\parallel}(\omega) + I_{\perp}(\omega)$.

7 References

When using the CUED software package, please reference to CUED by citing the following publication:

[1] J. Wilhelm, P. Grössing, A. Seith, J. Crewse, M. Nitsch, L. Weigl, C. Schmid, and F. Evers, *Semi-conductor-Bloch Formalism: Derivation and Application to High-Harmonic Generation from Dirac Fermions*, Phys. Rev. B x, y (2021).