Examen final H2003

Problème no. 1 (20 points)

Soit un transformateur monophasé 20 kVA, 60 Hz, 2400 V / 240 V. Les paramètres du transformateur sont:

Résistance du primaire R_1 = 2.70 Ω Réactance de fuite du primaire X_1 = 5 Ω

Résistance "Pertes Fer" R_c = 38.4 $k\Omega$

Résistance du secondaire R_2 = 0.027 Ω Réactance de fuite du secondaire X_2 = 0.05 Ω

Réactance magnétisante $X_m = 27 \text{ k}\Omega$

a) Une charge inductive $Z_2 = (R + jX) \Omega$ est connectée au secondaire.

Au primaire, on mesure:

- . tension primaire $V_1 = 2400 \text{ V}$,
- . courant primaire $I_1 = 8.333 A$,
- . puissance active $P_1 = 16.93 \text{ kW}$.

Déterminer la tension V₂ (valeur efficace) au secondaire.

Déterminer le rendement du transformateur pour ce cas.

b) Un condensateur C est connecté en parallèle avec \mathbb{Z}_2 pour amener le facteur de puissance de la charge à 1.0.

Calculer les nouvelles valeurs de la tension V₂ et du courant I₂ au secondaire.

Déterminer le rendement du transformateur pour ce cas.

Problème no. 2 (20 points)

Soit un transformateur triphasé 60 Hz, 50 kVA, 2400V/600V.

Pour déterminer les paramètres du transformateur, on effectue les essais suivants.

Essai à vide:

Le primaire est en circuit ouvert. Le secondaire est alimenté à sa tension nominale.

On mesure au secondaire:

Tension ligne-ligne = 600 V Courant de ligne = 2.8 A Puissance active absorbée = 0.90 kW

Essai en court-circuit:

Le secondaire est en court-circuit. Le primaire est alimenté à une tension réduite.

On mesure au primaire:

Tension ligne-ligne = 104.45 V Courant de ligne = 12.028 A Puissance active absorbée = 1.485 kW

- a) À partir des résultats de ces deux essais, déterminer les paramètres du transformateur T_1 (valeurs ramenées au primaire).
- b) Le primaire du transformateur T_1 est relié à une source triphasée 60 Hz, 2400 V (ligneligne). Le secondaire alimente une charge équilibrée (inductive) composée de trois impédances $Z = (R + jX) \Omega$ connectées en Δ .

On connecte un ampèremètre et un wattmètre au système comme montré dans la figure suivante.

L'ampèremètre indique 10 A et le wattmètre indique 23500 W.

Déterminer l'impédance Z.

<u>Note:</u> Pour la partie b, on suppose que les paramètres R_{eq} et X_{eq} (par phase Y - ramené au primaire) du transformateur triphasé sont:

$$R_{eq} = 4 \Omega$$
 $X_{eq} = 10 \Omega$

Problème no. 3 (20 points)

Soit le convertisseur à thyristors monophasé suivant:

L'angle d'allumage α est fixé à 50 degrés.

a) Tracer en fonction du temps la tension v_{cc} , les tensions v_{T1} et v_{T3} , les courants i_{T1} et i_{T3} , et le courant i_s au secondaire du transformateur.

Remarque: On néglige la chute de tension en conduction (V_F) des thyristors.

<u>Remarque</u>: Utiliser la feuille graphique ci-jointe pour tracer les formes d'ondes Les formes d'onde doivent être faites avec soins Les valeurs particulières d'amplitude et du temps doivent être bien indiquées

- b) Calculer la valeur moyenne de v_{cc} , la valeur moyenne de i_{cc} et la puissance moyenne P_{cc} dissipée dans la charge.
- c) On a relevé la tension v_s au secondaire du transformateur:

Donner des explications sur les creux de tension sur la forme d'onde de v_s ? Déterminer l'angle de commutation μ (en degré). Déduire la valeur de l'inductance de fuite L_s du transformateur.

Problème no. 4 (20 points)

On utilise un hacheur survolteur pour produire une tension continue de 12 V à partir d'une source continue de 5 V.

LIGBT est supposé idéal (les temps de commutation sont négligeables). La chute de tension en conduction de lIGBT est de $1.8~V~(V_{FT}=1.8~V)$. La diode est considérée idéale (les temps de commutation sont négligeables) avec une chute de tension en conduction de $0.5~V~(V_{FD}=0.5~V)$.

La fréquence de hachage est de 25 kHz. La puissance dans la charge est de 60 W.

- a) Tracer en fonction du temps la tension v_L aux bornes de l'inductance et le courant i_L Tracer en fonction du temps le courant i_T et la tension v_T aux bornes de l'IGBT. Tracer en fonction du temps le courant i_D et la tension v_D aux bornes de la diode D.
- b) Déterminer la valeur moyenne de i_L . On désire une ondulation ΔI du courant i_L de 10%. Déterminer la valeur de L.
- c) Tracer en fonction du temps le courant i_C et la tension v_C aux bornes du condensateur C. On désire une ondulation ΔV de la tension v_C de 1%. Déterminer la valeur de C.

Remarque: Utiliser la feuille graphique ci-jointe pour tracer les formes d'ondes Les formes d'onde doivent être faites avec soins Les valeurs particulières d'amplitude et du temps doivent être bien indiquées