

Università di Pisa

Computer Engineering
Formal Methods for Secure Systems

Project Report

TEAM MEMBERS: Matteo Biondi Olgerti Xhanej

Academic Year: 2020/2021

Contents

1	Intr	oduzione 2				
	1.1	Descrizione del problema				
2	Scelte di Sviluppo					
	2.1	Modifica FMU				
	2.2	Scelta dei parametri				
3	Imp	plementation				
	3.1	VanillaCase				
	3.2	Attacco all'accelerazione				
	3.3	Attacco alla X				
	3.4	Configurazione in Comune				
	3.5	Comportamento degli Attacchi				
4	Ana	alisi dei Risultati				
	4.1	VanillaCase				
		4.1.1 Risultati Co-Simulazione				
	4.2	Attacco all'accelerazione				
		4.2.1 Risultati DSE				
		4.2.2 Risultati Co-Simulazione				
	4.3	Attacco alla X				
		4.3.1 Risultati Co-Simulazione				
		4.3.2 Risultati DSE				
5	Cor	nclusioni				
	5.1	VanillaCase				
	5.2	Attacco all'accelerazione				
	5.3	Attacco alla X				

1 — Introduzione

1.1 Descrizione del problema

Tramite il software Into-CPS viene richiesto di modellare degli scenari con una following car che insegue una leading Car ad una distanza desiderata di 15m.

L'obiettivo del progetto è il seguente: analizzare possibili attacchi al suddetto sistema che possono causare uno scontro tra i due veicoli.

2 — Scelte di Sviluppo

2.1 Modifica FMU

Gli attacchi verrano implementati utilizzando la tecnica del *Man-in-the-Middle*: verrà introdotta una FMU semplificata tra un punto di comunicazione di due FMU, questo consentirà di semplificare la modifica dell'implementazione dell'attacco in quanto non è necessario conoscere i dettagli implementativi delle FMU in gioco. Questo a patto di un maggior overhead del sistema per effettuare la comunicazione dei parametri tra le varie FMU.

2.2 Scelta dei parametri

- Step-size: 0.01s. E' un buon tradeoff tra un sensoring più preciso ed una durata di simulazione accetabile.
- Tempo di Simulazione: 100s

3 — Implementation

3.1 VanillaCase

Figure 1: Multi-Model schema del VanillaCase

3.2 Attacco all'accelerazione

Figure 2: Multi-Model schema dell'Attacco alla Accelerazione

3.3 Attacco alla X

Figure 3: Multi-Model schema dell'Attacco alla X

3.4 Configurazione in Comune

La configurazione dei seguenti FMU verrà applicata per tutte le simulazioni che verranno effettuate.

• LeadingCar:

Posizione iniziale x0: 50m
Velocità iniziale v0: 0m/s

• Following Algorithm:

- **c1**: 1

- **eps**: 0.5

- omega_n: 0.2

• FollowingCar:

Posizione iniziale x0: 0m
Velocità iniziale v0: 0m/s

3.5 Comportamento degli Attacchi

L'AttackFMU che verrà utilizzata negli attacchi presenterà due implementazioni diverse:

- Attacco Semplice: l'attacco consiste nel modificare l'output dell'AttacKFMU con il valore del parametro attack_value dall'istante temporale attack_time in poi.
- Attacco Multi-step: l'attacco consiste nel modificare l'output dell'AttackFMU per un tempo pari a attack_duration, ripetuto attack_occurrencies volte e separato nel tempo da attack_distance secondi. L'attacco inizierà dall'istance temporale attack_time.

4 - Analisi dei Risultati

4.1 VanillaCase

4.1.1 Risultati Co-Simulazione

E' stata effettuata una simulazione nel caso base per accertarsi che il comportamento del sistema conduce alla convergenza delle due macchine.

Figure 4: Posizione x della LeadingCar (verde) e FollowingCar (blu)

La distanze media tra le due auto è pari a 18.49m.

4.2 Attacco all'accelerazione

Attacco Semplice

Attacco Multiplo

4.2.1 Risultati DSE

4.2.2 Risultati Co-Simulazione

4.3 Attacco alla X

Attacco Semplice

4.3.1 Risultati Co-Simulazione

Per cercare di dare un'interpretazione ai risultati del successivo studio verrà prima analizzato un caso d'esempio con i seguenti parametri:

• attack_value: 200

• attack_time: 20s

Si ottiene il seguente plot:

Figure 5: Posizione x della LeadingCar (verde) e FollowingCar (blu)

Dal seguente risultato è possibile evincere tre differenti zone di comportamento della following car: nel **primo caso** nel quale l'attacco non viene ancora effettuato, la following car tende ad avvicinarsi alla leading car alla distanza configurata; nel **secondo caso**, dal un tempo di 20s ad uno di circa 40s, l'attacco inizierà ma la leading car non avrà superato ancora l'**attack_value** impostato, che rappresenta la (alterata) posizione della following car: quest'ultima penserà di trovarsi davanti e decelererà; il **terzo caso**, dopo 40s, nel quale la leading car ha superato l'attack value e perciò la following car inizierà a riavvicinarsi fino all'impatto tra le due auto. Per come è configurata la leading car, ovvero che tenderà sempre ad andare "in avanti" con qualche oscillazione nella velocità, è facile intuire che **un incidente con questo tipo di attacco per un tempo sufficiente avrà sempre luogo**, in quanto esisterà sempre un tempo nella quale la leading car supererà l'attack_value, per quanto elevato possa essere quest'ultimo.

4.3.2 Risultati DSE

E' stato studiato l'esito dell'attacco (INCIDENTE/NON INCIDENTE) andando a variare l'**attack_value** e l'**attack_time** con i seguenti parametri:

• Attack_value: [0 .. 200] con step a 1

• Simulation_time: [50s, 100s]

I risultati ottenuti possono essere riassunti nella seguente tabella

Tempo di Simulazione	Attack Value	Risultato
50s	[0, 149]	INCIDENTE
50S	[150, 199]	NO INCIDENTE
100g	[0, 199]	INCIDENTE
100s	-	NO INCIDENTE

Da come si può notare il tempo è una variabile importante per questo tipo di attacco, con un tempo sufficientemente alto l'attacco ha sempre luogo come detto in precedenza.

Attacco Multiplo Sono stati individuati quattro diverse configurazioni che portano luogo a quattro classi di risultati diversi:

• Attack_occurencies: 3

• Attack_duration: 2s

• Attack_time: [30s, 50s, 70s]

• Attack_value: 200

• Attack_distance: 5s

• **Step_size**: 0.01s

L'attacco pertanto avrà un pattern simile a livello temporale, la variabile è l'inizio dell'attacco stesso. I risultati degli esperimenti sono riassunti nella seguente tabella

Attack Time	Distanza Min-	Risultato
	ima	
30s	14.9368	NO INCIDENTE
50s	0.639284	NO INCIDENTE
70s	-20.38	INCIDENTE

Una semplice interpretazione di questi risultati si basa sul fatto che il following algorithm produce un'accelerazione maggiore in caso la distanza tra le due auto sia maggiore: considerato che la distanza della following car vista dal following è fissa (per via dell'attacco in corso), nel caso il tempo di inizio sia maggiore, maggiore sarà la posizione della leading car e perciò maggiore sarà l'accelerazione in input che porterà ad una collisione nel caso di Attack time pari a 70s.

5 — Conclusioni

- 5.1 VanillaCase
- 5.2 Attacco all'accelerazione
- 5.3 Attacco alla X