

Faculty of Computing and Technology

Department of Computing

Bachelor of Science (Hons) in Computer Science & Software Engineering

End - Semester Examination

Year 2023, Semester 01 -Batch 01

CS/SE 1104- Computer Architecture and Organization

Duration: 02 Hours

Instructions to the candidates:

- 1. Answer the all the questions.
- 2. Clearly write the all the calculations where they needed.
- 3. The total number of marks allocated will be 100.

Question 1

Since humans use decimal notation and computers use binary notation, number conversion is of paramount importance to how computers represent numbers.

a) Using the following numbers (show all your working):

(06 Marks)

(06 Marks)

- I. 1356, show how a decimal number can be converted to binary.
- II. 1011100111, show how a different binary number can be converted to decimal.
- b) Using the following numbers (show all your working without going via decimal):

 1011111000, show how a binary number can be converted to octal.

II. 1110001111, show how a binary number can be converted to hexadecimal.

- c) Explain why it is important that, when using the methods described in part (b), the conversion starts at the least significant bit?
- d) Convert 192.168 to binary. (03 Marks)
- e) Draw a logic circuit for the following functions: (06 Marks)
 - I. F(X,Y,Z) = XY' + XZ' + YZ
 - II. F(X,Y,Z) = (X + Y')(X' + Z')(Y + Z)

[Total 25 Marks]

(04 Marks)

Question 02

- a) Explain and differentiate between physical, virtual, and logical (06 Marks) memory.
- b) Why is main memory not suitable for permanent program (03 Marks) storage or backup purposes?
- c) Combinational logic can be used to build several computer (06 Marks) circuits relating to maths.

A key device needed for computational functions is a full adder. Describe from first principles how to build a full adder which adds two-bits and a carry.

- d) Another useful circuit is a shift register. Using D-type flip flops show how to build a four-bit shift register and explain how it works. There is no need to show the individual gates inside the D-type flip flops.
- e) What do the terms "8-bit" microprocessor, or "32-bit" (04 Marks) microprocessor mean?

[Total 25 Marks]

Question 03

 a) With the aid of a diagram, explain the operation of a computer's CPU at the level of registers, functional units, and buses.

You must provide a diagram of the structure of a computer and explain how an instruction is executed in terms of the flow of information between registers and functional units.

(03 Marks)

b) Generate the function F for the following K-maps:

(10 Marks)

I.

	×Y	Z 00	01	11	10	
	WX	m0	ral		m2	-
	WXY 00	1	101	m3	1	
٧,	01	m4 1	m5	m7	m6 1	1
	11	m12 1	m13	m15	ml ⁴ 1	11
٧	10	m8 1	m9	mll	m10 1	1

П.

c) Simplify the following functions where D is a don't care function:

(12 Marks)

I.
$$F(X,Y,Z) = \sum (0,3,4)$$

 $D(X,Y,Z) = \sum (2,6)$

II.
$$F(W, X, Y, Z) = \sum (0,1,3,5,9,11)$$

 $D(W, X, Y, Z) = \sum (2,4,8,10)$

[Total 25 Marks]

Question 04

All digital systems are constructed from two types of components: combinational logic element (i.e. gates) and sequential elements (i.e. flip flops).

- a) Describe the fundamental difference between these TWO (05 Marks) circuit elements and explain why both types are needed to construct a digital computer.
- b) Explain the difference between the following flip-flops: (06 Marks)

- I. D flip-flop;
- II. JK flip-flop;
- c) Show how flip-flops can be used to construct EITHER:

(04 Marks)

- I. a shift right register; or
- II. a binary counter.

Construct only ONE of these circuits.

d) Complete the following table for T flip-flop.

(10 Marks)

T	Q(t) present output	Q(t+1) next output	
0	0		
0	1		
1	0		
1	1		

[Total 25 Marks]