VISVESVARAYA TECHNOLOGICAL UNIVERSITY

"JnanaSangama", Belgaum -590014, Karnataka.

LAB REPORT On COMPILER DESIGN

Submitted by SPOORTHI J(1BM21CS218)

Under the Guidance of LOHITH J J Assistant Professor, BMSCE

in partial fulfillment for the award of the degree of BACHELOR OF ENGINEERING
in
COMPUTER SCIENCE AND ENGINEERING

B.M.S. COLLEGE OF ENGINEERING
(Autonomous Institution under VTU)
BENGALURU-560019
Nov-2023 to Feb-2024

B. M. S. College of Engineering,

Bull Temple Road, Bangalore 560019

(Affiliated To Visvesvaraya Technological University, Belgaum)

Department of Computer Science and Engineering

CERTIFICATE

This is to certify that the lab work entitled "Compiler Design" carried out by Spoorthi J(1BM21CS218) who are bonafide students of **B. M. S. College of Engineering.** It is in partial fulfillment for the award of **Bachelor of Engineering in Computer Science and Engineering** of the Visveswaraiah Technological University, Belgaum during the year 2023-2024. The project report has been approved as it satisfies the academic requirements in respect of Compiler Design Lab (**22CS5PCCPD**) work prescribed for the said degree.

Signature of the Guide Lohith J J Assistant Professor, Dept. of CSE BMSCE, Bengaluru Signature of the HOD Dr. Jyothi S Nayak Prof.& Head, Dept. of CSE BMSCE, Bengaluru

INDEX

Sl.No	Program Title	Page No
1.	Week-01 Program1 Program2 Program3 Program4 Program5	6-11
2.	Week-02	12-18
	1. Write a lex program to check whether input is digit or not	
	2. Write a lex program to check whether the given number is even or odd.	
	3. Write a lex program to check whether a number is Prime or not.	
	4. Write a lex program to recognize a) identifiers	
	b) keyword-int and float c) anything else as invalid tokens	
	5. Write a lex program to identifya) identifiersb) keyword-int and float	
	c) anything else as invalid tokens Read these from a text file.	
3.	Week-03	19-24
	1.Lex program to count the number of comment lines (multi line comments or single line) in a program. Read the input from a file called input.txt and print the count in a file called output.txt	
	2. Write a program in LEX to recognize Floating Point Numbers. Check for all the following	
	3. Write a program to read and check if the user entered number is signed or unsigned using appropriate meta character	
	4. Write a program to check if the input sentence ends with any of the following punctuation marks (?, fullstop,!)	
4.	Week -04 1.Write a program in LEX to recognize different tokes:Keywords, Identifiers, Constants, Operators and Punctuations?	25-31

	 2.Write a LEX program to recognize the following tokens over the alphabets {0,1,,9} a) The set of all string ending in 00. b) The set of all strings with three consecutive 222's. c) The set of all string such that every block of five consecutive symbols contains atleast two 5's. d) The set of all strings beginning with a 1 which, interpreted as the binary representation of an integer, is congruent to zero modulo 5. e) The set of all strings such that the 10th symbol from the right end is 1. 	
5.	Week-05	32-34
	1.Write a Program to design Lexical Analyzer in C/C++/Java/python language(to recognize any five keywords,identifiers,numbers,operators and punctuation)	
	2. Write a Lex Program that copies a file, replacing each nonempty sequence of white spaces by a single blank.	
6.	Week-06	35-39
	1. Design a suitable grammar for evaluation of arithmetic expression having $+\ {\rm and}\ -$ operators.	
	 2. Design a suitable grammar for evaluation of arithmetic expression having + , - , * , / , %, ^ operators. ^ having highest priority and right associative % having second highest priority and left associative * , / have third highest priority and left associative + , - having least priority and left associative 	
7.	Week-07	40-49
	1.Program to recognize the grammar (anb, n>= 5). Hint :S → aaaaaEb E →a E €	
	2.Program to recognize strings 'aaab', 'abbb', 'ab' and 'a' using the grammar (anbn, n>= 0). Hint: S → aSb €	
	3. Write a YACC program to accept strings with exactly one a where $\Sigma = \{a,b\}$	
	4.Recursive Descent Parsing with back tracking (Brute Force Method).S->cAd,A->ab/a	
	5. Write a Yacc program to generate syntax tree for a given arithmetic expression	
8.	Week-08	50-53
	1.Use YACC to convert: Infix expression to Postfix expression.	

	2.Modify the program so as to include operators such as / , - , ^ as per their arithmetic associativity and precedence	
9.	Week-09	54-60
	1)Use YACC to implement, evaluator for arithmetic expressions (Desktop calculator). 2.YACC to generate 3-Adress code for given expression.	

WEEK-1

Program 1

```
%option noyywrap
% {
#include<stdio.h>
% }
%%
[0-9]+ {printf("number:%s\n",yytext);}
[+-] {printf("operator:%s\n",yytext);}
[ \t\n] {/*ignore whitespaces and newline*/}
[a-zA-Z]* {printf("invalid character:%s\n",yytext);}
%%
int main()
printf("Enter the input: ");
yylex();
return 0;
}
```

```
bmscecse@bmscecse-OptiPlex-3060:~/Documents/1BM21CS253$ lex prog1.l
bmscecse@bmscecse-OptiPlex-3060:~/Documents/1BM21CS253$ gcc lex.yy.c
bmscecse@bmscecse-OptiPlex-3060:~/Documents/1BM21CS253$ ./a.out
Enter the input: xyz
invalid character:xyz
```

```
Program 2
% {
#include<stdio.h>
int c=0;
% }
%%
[a-zA-Z0-9]+ \{c++;\}
\n {printf("The count is %d",c);}
%%
int yywrap()
int main()
printf("Enter the sentence : ");
yylex();
return 0;
}
```

```
bmscecse@bmscecse-OptiPlex-3060:~/Documents/1BM21CS253$ lex prog2.l
bmscecse@bmscecse-OptiPlex-3060:~/Documents/1BM21CS253$ gcc lex.yy.c
bmscecse@bmscecse-OptiPlex-3060:~/Documents/1BM21CS253$ ./a.out
Enter the sentence : Have a good day
The count is 4
```

```
Program 3
#include<stdio.h>
int vow_count=0;
int const_count=0;
% }
%%
[aeiouAEIOU] {vow_count++;}
[a-zA-Z] {const_count++;}
\n {printf("Vowels count is=%d, Consonants count is=%d",vow_count,const_count);}
%%
int yywrap()
int main()
printf("Enter the string of vowels and consonants: ");
```

```
yylex();
return 0;
}
```

```
bmscecse@bmscecse-OptiPlex-3060:~/Documents/1BM21CS253$ lex prog3.l
bmscecse@bmscecse-OptiPlex-3060:~/Documents/1BM21CS253$ gcc lex.yy.c
bmscecse@bmscecse-OptiPlex-3060:~/Documents/1BM21CS253$ ./a.out
Enter the string of vowels and consonants: Good Morning
Vowels count is=4, Consonants count is=7
```

Program 4

```
option noyywrap
% {
#include<stdio.h>
% }
%%
int|char|float {printf("\n%s->keyword",yytext);}
,|; {printf("\n %s->separator",yytext);}
[a-zA-Z0-9]* {printf("\n %s->identifier",yytext);}
%%
int wrap()
{
}
```

```
int main()
{
printf("Enter the input : ");
yylex();
return 0;
}
```

```
bmscecse@bmscecse-OptiPlex-3060:~/Documents/1BM21CS253$ lex prog4.l
bmscecse@bmscecse-OptiPlex-3060:~/Documents/1BM21CS253$ gcc lex.yy.c
bmscecse@bmscecse-OptiPlex-3060:~/Documents/1BM21CS253$ ./a.out
Enter the input : int,variable,float

int->keyword
,->separator
variable->identifier
,->separator
float->keyword
```

```
. ECHO;
%%
int yywrap(void)
```

int main(void)

Program 5

%%

{
yylex();
return 0;

```
bmscecse@bmscecse-OptiPlex-3060:~/Documents/1BM21CS253$ lex prog5.l
bmscecse@bmscecse-OptiPlex-3060:~/Documents/1BM21CS253$ gcc lex.yy.c
bmscecse@bmscecse-OptiPlex-3060:~/Documents/1BM21CS253$ ./a.out
Yashaswini G A
Yashaswini G A
```

WEEK 2

1. Write a lex program to check whether input is digit or not % { #include<stdio.h> #include<stdlib.h> %} %% ^[0-9]* printf("digit"); ^[^0-9]|[0-9]*[a-zA-Z] printf("not a digit"); .; %% int yywrap() int main() yylex(); return 0; **OUTPUT** bmscecse@bmscecse-OptiPlex-3060:-/Documents/18M21C5253\$ lex w2p1.l bmscecse@bmscecse-OptiPlex-3060:-/Documents/18M21C5253\$ gcc lex.yy.c bmscecse@bmscecse-OptiPlex-3060:-/Documents/18M21C5253\$./a.out 7a not a digit

2. Write a lex program to check whether the given number is even or odd.

```
% {
#include<stdio.h>
int i;
%}
%%
[0-9]+ {i=atoi(yytext);
      if(i%2==0)
         printf("Even");
      else
     printf("Odd");}
%%
int yywrap(){}
int main()
  yylex();
  return 0;
}
```

```
bmscecse@bmscecse-OptiPlex-3060:-/Documents/18M21C5253$ lex w2p2.l
bmscecse@bmscecse-OptiPlex-3060:-/Documents/18M21C5253$ gcc lex.yy.c
bmscecse@bmscecse-OptiPlex-3060:-/Documents/18M21C5253$ ./a.out
8
Even
31
Odd
```

3. Write a lex program to check whether a number is Prime or not.

```
% {
 #include<stdio.h>
 #include<stdlib.h>
 int flag,c,j;
%}
%%
[0-9]+ {c=atoi(yytext);
     if(c==2)
      printf("\n Prime number");
     else if(c==0 || c==1)
     {
      printf("\n Not a Prime number");
     }
     else
      for(j=2;j<c;j++)
     if(c%j==0)
      flag=1;
     if(flag==1)
      printf("\n Not a prime number");
```

```
else if(flag==0)
           printf("\n Prime number");
%%
int yywrap()
int main()
 yylex();
  return 0;
 }
OUTPUT
bmscecse@bmscecse-OptiPlex-3060:-/Documents/18M21C5253$ lex w2p3.l
bmscecse@bmscecse-OptiPlex-3060:-/Documents/18M21C5253$ gcc lex.yy.c
bmscecse@bmscecse-OptiPlex-3060:-/Documents/18M21C5253$ ./a.out
 Prime number
```

4. Write a lex program to recognize a) identifiers

- b) keyword-int and float
- c) anything else as invalid tokens.

```
% {

#include<stdio.h>
% }
```

Not a prime number

```
alpha[a-zA-Z]
digit[0-9]
%%

(float|int) {printf("\nkeyword");}
{alpha}({digit}|{alpha})* {printf("\nidentifier");}
{digit}({digit}|{alpha})* {printf("\ninvalid token");}
%%
int yywrap()
{
}
int main()
{
yylex();
return 0;
}
```

```
bmscecse@bmscecse-OptiPlex-3060:~/Documents/1BM21CS253$ lex w2p4.l
bmscecse@bmscecse-OptiPlex-3060:~/Documents/1BM21CS253$ gcc lex.yy.c
bmscecse@bmscecse-OptiPlex-3060:~/Documents/1BM21CS253$ ./a.out
int
keyword
var
identifier
8b
invalid token
```

- 5. Write a lex program to identify a) identifiers
 - b) keyword-int and float
 - c) anything else as invalid tokens

Read these from a text file.

```
% {
 #include<stdio.h>
 char fname[25];
%}
alpha[a-zA-Z]
digit[0-9]
%%
(float|int) {printf("\nkeyword");}
{alpha}({digit}|{alpha})* {printf("\nidentifier");}
{digit}({digit}|{alpha})* {printf("\ninvalid token");}
%%
int yywrap()
{
int main()
{
printf("enter filename");
scanf("%s",fname);
yyin=fopen(fname,"r");
yylex();
return 0;
```

```
fclose(yyin);
}
```

```
bmscecse@bmscecse-OptiPlex-3060:-/Documents/18H21CS253$ lex w2p5.l
bmscecse@bmscecse-OptiPlex-3060:-/Documents/18H21CS253$ gcc lex.yy.c
bmscecse@bmscecse-OptiPlex-3060:-/Documents/18H21CS253$ ./a.out
enter filenameInput.txt
keyword
identifier;
```

WEEK-3

1.Lex program to count the number of comment lines (multi line comments or single line) in a program. Read the input from a file called input.txt and print the count in a file called output.txt % { #include <stdio.h> int cc=0; % } %x CMNT %% "/*" {BEGIN CMNT;} <CMNT>.; <CMNT>"*/" {BEGIN 0; cc++;} %% int yywrap() { } int main(int argc, char *argv[]) if(argc!=3) { printf("Usage : %s <scr_file> <dest_file>\n",argv[0]); return 0; } yyin=fopen(argv[1],"r");

yyout=fopen(argv[2],"w");

```
yylex(); \\ printf("\nNumber of multiline comments = \%d\n",cc); \\ return 0; \\ \}
```

```
bmscecse@bmscecse-OptiPlex-3060:~/Documents/VAISHNAVI KAMATH$ lex w3p6.l
bmscecse@bmscecse-OptiPlex-3060:~/Documents/VAISHNAVI KAMATH$ gcc lex.yy.c
bmscecse@bmscecse-OptiPlex-3060:~/Documents/VAISHNAVI KAMATH$ ./a.out f1.txt f2.txt

Number of multiline comments = 2
```

2. Write a program in LEX to recognize Floating Point Numbers. Check for all the following

```
input cases
% {
#include<stdio.h>
int cnt=0;
% }
sign [+|-]
num [0-9]
dot [.]
%%
{sign}?{num}*{dot}{num}* {printf("Floating point no.");cnt=1;}
{sign}?{num}* {printf("Not Floating point no.");cnt=1;}
%%
int yywrap()
{
}
```

```
int main()
{
  yylex();
  if(cnt==0){
  printf("Not floating pnt no.");
  }
  return 0;
}
```

```
bmscecse@bmscecse-OptiPlex-3060:~/Documents/VAISHNAVI KAMATH$ lex w3p5.1
bmscecse@bmscecse-OptiPlex-3060:~/Documents/VAISHNAVI KAMATH$ gcc lex.yy.c
bmscecse@bmscecse-OptiPlex-3060:~/Documents/VAISHNAVI KAMATH$ ./a.out
-67.5
Floating point no.
-93
Not Floating point no.
```

3. Write a program to read and check if the user entered number is signed or unsigned using appropriate meta character

```
% {
#include<stdio.h>
int cnt=0;
% }
sign [+|-]
num [0-9]
dot [.]
% %
```

```
{sign}{num}*{dot}*{num}* {printf("Signed no.");cnt=1;}
{num}*{dot}*{num}* {printf("Unsigned no.");cnt=1;}
%%
int yywrap()
{
}
int main()
{
yylex();
if(cnt==0){
printf("Not floating pnt no.");
}
return 0;
}
```

```
bmscecse@bmscecse-OptiPlex-3060:~/Documents/VAISHNAVI KAMATH$ lex w3p4.1
bmscecse@bmscecse-OptiPlex-3060:~/Documents/VAISHNAVI KAMATH$ gcc lex.yy.c
bmscecse@bmscecse-OptiPlex-3060:~/Documents/VAISHNAVI KAMATH$ ./a.out
+67
Signed no.
89
Unsigned no.
```

4. Write a program to check if the input sentence ends with any of the following punctuation

```
marks ( ? , fullstop , ! )
% {
#include<stdio.h>
```

```
int cnt=0;
% }
punc [?|,|.|!]
chars [a-z|A-Z|0-9|""|\t]
%%
{chars}*{punc} {printf("Sentence ends with punc");}
{chars}* {printf("Sentence does not end with punc");}
%%
int yywrap()
int main()
yylex();
return 0;
}
OUTPUT
 bmscecse@bmscecse-OptiPlex-3060:~/Documents/VAISHNAVI KAMATH$ lex w3p3.lbmscecse@bmscecse-OptiPlex-3060:~/Documents/VAISHNAVI KAMATH$ gcc lex.yy.cbmscecse@bmscecse-OptiPlex-3060:~/Documents/VAISHNAVI KAMATH$ ./a.out
Sentence does not end with punc
Hello hi.
Sentence ends with punc
5.
% {
#include<stdio.h>
```

```
int cnt=0;
% }
chars [a-z|A-Z|0-9]
check [A|a|AN|An|THE|The]
%%
{check}+{chars}* {printf("Begins with %s",yytext);}{chars}* {printf("Invalid");}
%%
int yywrap()
{
}
int main()
{
yylex();
return 0;
```

}

WEEK-4

1. Write a program in LEX to recognize different tokes: Keywords, Identifiers, Constants, Operators and Punctuations?

```
% {
#include<stdio.h>
int cnt=0;
% }
letter [a-zA-Z]
digit [0-9]
punc [!|,|.]
oper [+|*|-|/|%]
boole [true|false]
%%
{digit}+|{digit}*.{digit}+ {printf("Constants");}
int|float {printf("Keyword");}
{letter}({digit}|{letter})* {printf("Identifiers");}
{oper} {printf("Operator");}
{punc} {printf("Punctuator");}
%%
int yywrap()
```

```
int main()
{
  yylex();
  return 0;
}
OUTPUT
```

```
a
Identifiers
25
Constants
int
Keyword
!
Punctuator
+
Operator
hello!
IdentifiersPunctuator
```

- 2. Write a LEX program to recognize the following tokens over the alphabets {0,1,..,9}
- a) The set of all string ending in 00.
- b) The set of all strings with three consecutive 222's.
- c) The set of all string such that every block of five consecutive symbols contains at least two 5's.

% {

#include<stdio.h>

```
int flag=0,i;
%}
letter [a-zA-Z]
digit [0-9]
A [0-9]
punc [!|,|.]
oper [+|*|-|/|%]
boole [true|false]
%%
{digit}*00 {printf("Ending with 00");}
{digit}*222{digit}* {printf("Consecutive 222");}
{A}{A}{A}{A}{A}{A}
flag=0;
for(i=0;i<yyleng;i++){
if(yytext[i]=='5'){
flag=flag+1;
}
if(flag>=2){
printf("Success");
else{
```

```
printf("Failure");
}
}
%%
int yywrap()
{
int main()
yylex();
return 0;
OUTPUT
Ending with 00
Consecutive 222
```

- d) The set of all strings beginning with a 1 which, interpreted as the binary representation of an integer, is congruent to zero modulo 5.
- e) The set of all strings such that the 10th symbol from the right end is 1.

```
d[0-9]
%{
/* d is for recognising digits */
int c1=0,c2=0,c3=0,c4=0,c5=0,c6=0,c7=0;
```

Success

```
/* c1 to c7 are counters for rules a1 to a7 */
% }
%%
(\{d\})*00 \{ c1++; printf("%s rule A\n",yytext); \}
({d})222({d}) {c2++; printf("%s rule B\n",yytext);}
(1(0)(11|01)(01*01|00*10(0)(11|1))0)(1|10(0)(11|01)(01*01|00*10(0)(11|1))*10) \ \{(1(0)(11|01)(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(11|1))(01*01|00*10(0)(01*01|00*10(00*10)(01*01|00*10(00*10)(01*01|00*10(00*10)(01*01|00*10(00*10)(01*01)(01*01|00*10(00*10)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(01*01)(
c4++;
printf("%s rule D \n",yytext);
}
({d})*1{d}{9} {
c5++; printf("%s rule E \setminus n",yytext);
 }
({d})* {
int i,c=0;
if(yyleng<5)
printf("%s doesn't match any rule\n",yytext);
 }
else
for(i=0;i<5;i++) \{ if(yytext[i]=='5') \{
c++; } }
if(c>=2)
```

```
for(;i<yyleng;i++)
{
if(yytext[i-5]=='5') {
c--; }
if(yytext[i]=='5') { c++;
}
if(c<2) { printf("%s doesn't match any rule\n",yytext);</pre>
break; }
}
if(yyleng==i)
{
printf("\%s \ ruleC \ n", yytext); \ c3++; \ \}
}
else
printf("%s doesn't match any rule\n",yytext);
}
%%
int yywrap()
```

```
int main()
{
printf("Enter text\n");
yylex();
printf("Total number of tokens matching rules are : \n");
printf("Rule A : %d \n",c1);
printf("Rule B : %d \n",c2);
printf("Rule C : %d \n",c3);
printf("Rule D : %d \n",c4);
printf("Rule E : %d \n",c5);
return 0;
}
OUTPUT:
```

```
Enter text
1000
1000 rule A

122200
122200 rule A

12223
12223 rule B

1253533535
1253533535 rule E

12535
```

WEEK-5

1. Write a Program to design Lexical Analyzer in C/C++/Java/python language(to recognize any five keywords,identifiers,numbers,operators and punctuation)

```
kwd=['int','float','char','if','else']
oper=['+','-','*','/','%']
punct=['.',',','!']
def func():
txt=input("Enter text")
txt=txt.split()
for token in txt:
 if token in kwd:
         print(token + "is keyword")
 elif (token in oper):
         print(token + "is operator")
  elif(token in punct):
         print(token + "is punctuator")
 elif(token.isnumeric()):
         print(token + "is number")
 elif(not token[0].isnumeric()):
         print(token + "is identifier")
  else:
         print(token + "is not valid identifier")
func()
```

```
Enter textHello int 123 . +
Hellois identifier
intis keyword
123is number
.is punctuator
+is operator
```

2. Write a Lex Program that copies a file,replacing each nonempty sequence of white spaces by a single blank.

```
% {
#include<stdio.h>
% }
%%

[\t""]+ fprintf(yyout,"");
.\\n fprintf(yyout,"%s",yytext);
%%

int yywrap()
{
return 1;
}
int main(void)
{
yyin=fopen("input1.txt","r");
```

```
yyout=fopen("output.txt","w");
yylex();
return 0;
}
```

Input.txt

```
w5p1.l ×

1 Good Morning. How are you. I am fine . Thank you.
```

Output.txt

```
w5p1.l

1 Good Morning. How are you. I am fine . Thank you.
```

WEEK-6

- 1. Design a suitable grammar for evaluation of arithmetic expression having + and operators.
- + has least priority and it is left associative
- has higher priority and is right associative

```
<u>lex</u>
```

%left '+'

```
% {
#include "y.tab.h"
% }
%%
[0-9]+ {yylval=atoi(yytext); return NUM;}
[\t]
       return 0;
\n
       return yytext[0];
%%
int yywrap()
{
}
<u>yacc</u>
% {
#include<stdio.h>
% }
%token NUM
```

```
%right '-'
%%
expr:e {printf("Valid Expression\n"); printf ("Result: %d\n",$$); return 0;}
e:e'+'e {$$=$1+$3;}
| e'-'e {$$=$1-$3;}
| NUM
               {$$=$1;}
%%
int main()
{
printf("\n Enter an arithmetic expression\n");
yyparse();
return 0;
}
int yyerror()
printf("\nInvalid expression\n");
return 0;
}
```

```
bmscecse@bmscecse-OptiPlex-3060:~/Documents/1BM21CS253$ ./a.out

Enter an arithmetic expression
2+3
Valid Expression
Result: 5
bmscecse@bmscecse-OptiPlex-3060:~/Documents/1BM21CS253$ ./a.out

Enter an arithmetic expression
5-2+3-6
Valid Expression
Result: 0
```

```
2. Design a suitable grammar for evaluation of arithmetic expression having +, -, *, /,
%, ^ operators.
^ having highest priority and right associative
% having second highest priority and left associative
*, / have third highest priority and left associative
+, - having least priority and left associative
% {
#include "y.tab.h"
%}
%%
[0-9]+ {yylval=atoi(yytext); return NUM;}
[\t]
\n
       return 0;
       return yytext[0];
%%
int yywrap()
{
```

```
}
% {
#include<stdio.h>
% }
%token NUM
%left '+' '-'
%left '*' '/' '%'
%right '^'
%%
expr: e { printf("Valid expression\n"); printf("Result: %d\n", $$); return 0; }
e: e '+' e
               \{\$\$ = \$1 + \$3;\}
| e' - ' e  {$$ = $1 - $3;}
|e'*'e {\$\$ = \$1 * \$3;}
| e'' e {\$\$ = \$1 / \$3;}
| e'\%' e  {$$ = $1 % $3;}
| e '^' e {
             int result = 1;
             for (int i = 0; i < \$3; i++) {
             result *= $1;
            }
              $$ = result;
           }
   | NUM
                 \{\$\$ = \$1;\}
```

```
;
%%
int main()
{
    printf("\nEnter an arithmetic expression:\n");
    yyparse();
    return 0;
}

int yyerror()
{
    printf("\nInvalid expression\n");
    return 0;
}
```

```
bmscecse@bmscecse-OptiPlex-3060:~/Documents/1BM21C5253$ ./a.out

Enter an arithmetic expression:
1+2*3%1^2
Valid expression
Result: 1
bmscecse@bmscecse-OptiPlex-3060:~/Documents/1BM21C5253$
```

WEEK-7

1. Program to recognize the grammar (anb, $n \ge 5$).

```
Hint :S → aaaaaEb
E →a E| €
p2.1
% { #include "y.tab.h" % }
%%
[aA] {return A;}
[bB] {return B;}
\n {return NL;}
. {return yytext[0];}
%%
int yywrap()
 return 1;
}
p2.y
% {
#include<stdio.h>
#include<stdlib.h>
%}
 %token A B NL
 %%
```

```
stmt: A A A A A S B NL {printf("valid string\n"); exit(0);}
;
S: S A
|;
%%
int yyerror(char *msg)
{
 printf("invalid string\n");
 exit(0);
}
main()
{
 printf("enter the string\n");
 yyparse();
```

```
C:\Users\Prameetha\Desktop\SS\ss>7a.exe
enter the string
aaab
invalid string

C:\Users\Prameetha\Desktop\SS\ss>7a.exe
enter the string
aaaaaab
valid string

C:\Users\Prameetha\Desktop\SS\ss>7a.exe
enter the string
aaaaaab
valid string

C:\Users\Prameetha\Desktop\SS\ss>7a.exe
enter the string
ababa
invalid string

C:\Users\Prameetha\Desktop\SS\ss>
```

```
2. Program to recognize strings 'aaab', 'abbb', 'ab' and 'a' using the grammar (anbn, n>=
   0).
    \mathsf{Hint}:\mathsf{S}\to\mathsf{aSb}\mid \mathsf{E}
   P3.1
   % { #include "y.tab.h" % }
    %%
   [aA] {return A;}
   [bB] {return B;}
   \n {return NL;}
    . {return yytext[0];}
    %%
     int yywrap() {
     return 1; }
   P3.y
    % {
   #include<stdio.h>
    #include<stdlib.h>
    % }
    %token A B NL
    %%
   stmt: S NL {printf("valid string\n"); exit(0);}
```

```
S: A S B
|;
%%
int yyerror(char *msg)
{
 printf("invalid string\n");
 exit(0);
}
main()
{
 printf("enter the string\n");
 yyparse();
}
OUTPUT:
enter the string
aabb
valid string
vaishnavi@vaishnavi-VirtualBox:~/Desktop/yaccprograms$ ./a.out
enter the string
abb
invalid string
3. Write a YACC program to accept strings with exactly one a where \Sigma = \{a,b\}
P4.1
% { #include "y.tab.h" % }
%%
[aA] {return A;}
[bB] {return B;}
\n {return NL;}
. {return yytext[0];}
%%
```

```
#include<stdlib.h>
%}
%token A B NL
%%
stmt: S NL {printf("valid string\n"); exit(0);}
S: BS
|AX;
X : B X \mid
%%
int yyerror(char *msg)
printf("invalid string\n");
exit(0);
main()
printf("enter the string\n");
yyparse();
OUTPUT:
vaishnavi@vaishnavi-VirtualBox:~/Desktop/yaccprograms$ ./a.out
enter the string
abbb
valid string
vaishnavi@vaishnavi-VirtualBox:~/Desktop/yaccprograms$ ./a.out
enter the string
aabb
invalid string
vaishnavi@vaishnavi-VirtualBox:~/Desktop/yaccprograms$
```

int yywrap() {
 return 1; }

#include<stdio.h>

P4.y

% {

4. Recursive Descent Parsing with back tracking (Brute Force Method).S->cAd,A->ab/a

```
#include <stdio.h>
int index = 0;
int parse_A(char input_str[]) {
  int current_index = index;
  if (input_str[index] == 'a') {
     index++;
    if (input_str[index] == 'b') {
       index++;
       return 1;
     } else {
       // Backtrack
       index = current_index;
       return 0;
  } else if (input_str[index] == 'a') {
    index++;
     return 1;
  return 0;
}
int parse_S(char input_str[]) {
  if (input_str[index] == 'c') {
```

```
index++;
     if (parse_A(input_str)) {
       if (input_str[index] == 'd') {
          index++;
          return 1;
       }
  return 0;
}
void recursive_descent_parser(char input_str[]) {
  index = 0;
  if (parse_S(input_str) && input_str[index] == '\0') {
    printf("Parsing successful.\n");
  } else {
     printf("Parsing failed.\n");
}
int main() {
  char input_string[] = "cabdc";
  recursive_descent_parser(input_string);
```

```
return 0;
```

OBJ

5. Write a Yacc program to generate syntax tree for a given arithmetic expression

p<u>1.l</u>

```
% {
#include "y.tab.h"
extern int yylval;
% }
%%
[0-9]+ { yylval=atoi(yytext); return digit;}
[\t];
[\n] return 0;
. return yytext[0];
%%
int yywrap()
{
}
```

p<u>1.y</u>

% { #include <math.h> #include<ctype.h>

```
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
struct tree_node
char val[10];
int lc;
int rc;
};
int ind;
struct tree_node syn_tree[100];
void my_print_tree(int cur_ind);
int mknode(int lc,int rc,char val[10]);
% }
%token digit
%%
S:E { my_print_tree($1); }
E:E'+T \{ \$= mknode(\$1,\$3,"+"); ; \}
|T { $$=$1; }
T:T'*'F { $$= mknode($1,$3,"*"); ; }
|F {$$=$1;}
F:'('E')' { $$=$2; }
|digit {char buf[10]; sprintf(buf,"%d", yylval); $$ = mknode(-1,-1,buf);}
%%
int main()
{
ind=0;
printf("Enter an expression\n");
yyparse();
return 0;
int yyerror()
printf("NITW Error\n");
int mknode(int lc,int rc,char val[10])
strcpy(syn_tree[ind].val,val);
syn_tree[ind].lc = lc;
syn_tree[ind].rc = rc;
ind++;
return ind-1;
}
```

```
/*my_print_tree function to print the syntax tree in DLR fashion*/
void my_print_tree(int cur_ind)
{
    if(cur_ind==-1) return;
    if(syn_tree[cur_ind].lc==-1&&syn_tree[cur_ind].rc==-1)
    printf("Digit Node -> Index : %d, Value :
    %s\n",cur_ind,syn_tree[cur_ind].val); else
    printf("Operator Node -> Index : %d, Value : %s, Left Child Index : %d,Right Child
    Index : %d \n",cur_ind,syn_tree[cur_ind].val,
    syn_tree[cur_ind].lc,syn_tree[cur_ind].rc); my_print_tree(syn_tree[cur_ind].lc);
    my_print_tree(syn_tree[cur_ind].rc);
}
```

```
root@DESKTOP-HUVA0GE:~# ./a.out
Enter an expression
2+3*5
Operator Node -> Index : 4, Value : +, Left Child Index : 0,Right Child Index : 3
Leaf Node -> Index : 0, Value : 2
Operator Node -> Index : 3, Value : *, Left Child Index : 1,Right Child Index : 2
Leaf Node -> Index : 3, Value : *, Left Child Index : 1,Right Child Index : 2
Leaf Node -> Index : 1, Value : 3
Leaf Node -> Index : 2, Value : 5
root@DESKTOP-HUVA@GE:~#
```

WEEK-8

1. Use YACC to convert: Infix expression to Postfix expression.

```
p4.1
% {
#include "y.tab.h"
extern int yylval;
%}
%%
[0-9]+ { yylval=atoi(yytext); return digit;}
[\t];
[\n] return 0;
. return yytext[0];
%%
int yywrap()
{
}
p4.y
% {
#include <ctype.h>
#include<stdio.h>
#include<stdlib.h>
% }
%token digit
%%
S: E {printf("\n');}
E: E '+' T { printf ("+");}
| T
T: T '*' F { printf("*");}
| F
F: '(' E ')'
```

```
| digit {printf("%d", $1);}
;
%%
int main()
{
  printf("Enter infix expression: ");
  yyparse();
}
  yyerror()
{
  printf("Error");
}
OUTPUT
```

2. Modify the program so as to include operators such as / , - , ^ as per their arithmetic associativity and precedence

```
% {
#include <ctype.h>
```

```
#include<stdio.h>
#include<stdlib.h>
% }
%token digit
%left '+' '-'
%left '*' '/'
%right '^'
%%
S: E {printf("\n\n");}
E: E '+' T { printf ("+");}
|E '-' T { printf ("-");}
| T
T: T '*' G { printf("*");}
|T '/' G{ printf("/");}
|G
G: G'^'F { printf("^");}
|F
F: '(' E ')'
| digit {printf("%d", $1);}
%%
int main()
printf("Enter infix expression: ");
yyparse();
yyerror()
printf("Error");
```

```
bmsce@bmsce-OptiPlex-3060:~/Desktop/1BM21CS205$ lex p4.l
bmsce@bmsce-OptiPlex-3060:~/Desktop/1BM21CS205$ yacc -d p4.y
bmsce@bmsce-OptiPlex-3060:~/Desktop/1BM21CS205$ gcc lex.yy.c y.tab.c
y.tab.c: In function 'yyparse':
y.tab.c:1223:16: warning: implicit declaration of function 'yylex' [-Wimplicit-f
unction-declaration]
1223
              yychar = yylex ();
y.tab.c:1392:7: warning: implicit declaration of function 'yyerror'; did you mea
n 'yyerrok'? [-Wimplicit-function-declaration]
              yyerror (YY_("syntax error"));
1392
              yyerrok
p4.y: At top level:
p4.y:30:1: warning: return type defaults to 'int' [-Wimplicit-int]
  30 | yyerror()
bmsce@bmsce-OptiPlex-3060:~/Desktop/1BM21CS205$ ./a.out
Enter infix expression: 2^3+4^5
23^45^+
```

WEEK 9

1)Use YACC to implement, evaluator for arithmetic expressions (Desktop calculator).

```
% {
 /* Definition section */
#include<stdio.h>
#include "y.tab.h"
extern int yylval;
% }
/* Rule Section */
%%
[0-9]+ {
       yylval=atoi(yytext);
       return NUMBER;
        }
[\t];
[\n] return 0;
. return yytext[0];
%%
```

```
int yywrap()
return 1;
}
token NUMBER
%left '+' '-'
%left '*' '/' '%'
%left '(' ')'
/* Rule Section */
%%
ArithmeticExpression: E{
       printf("\nResult=%d\n", $$);
```

```
return 0;
       };
E:E'+'E {$$=$1+$3;}
|E'-'E {$$=$1-$3;}
|E'*'E {$$=$1*$3;}
|E'/'E {$$=$1/$3;}
|E'%'E {$$=$1%$3;}
|'('E')' {$$=$2;}
| NUMBER {$$=$1;}
%%
//driver code
void main()
```

printf("\nEnter Any Arithmetic Expression which can have operations Addition, Subtraction, Multiplication, Division, Modulus and Round brackets:\n");

```
yyparse();
if(flag==0)
printf("\nEntered arithmetic expression is Valid\n\n");
}

void yyerror()
{
    printf("\nEntered arithmetic expression is Invalid\n\n");
    flag=1;
```

OUTPUT

Enter Any Arithmetic Expression which can have operations Addition, Subtraction, Multiplication, Division, Modulus and Round brackets: 1+2*3 Result=7 Entered arithmetic expression is Valid

```
2)YACC to generate 3-Adress code for given expression.
p.l
% {
#include<stdio.h>
#include<stdlib.h>
#include"y.tab.h"
extern int yylval;
extern char iden[20];
% }
d [0-9]+
a [a-zA-Z]+
%%
{d} { yylval=atoi(yytext); return digit; }
{a} { strcpy(iden,yytext); yylval=1; return id;}
[ \t] {;}
\n return 0;
. return yytext[0];
%%
int yywrap()
```

```
P.y
% {
#include <math.h>
#include<ctype.h>
#include<stdio.h>
int var_cnt=0;
char iden[20];
% }
%token id
%token digit
%%
S:id '=' E { printf("%s=t%d\n",iden,var_cnt-1); }
E:E '+' T { \$=var_cnt; var_cnt++; printf("t%d = t%d + t%d;\n", $$, $1, $3);
  }
|E'-T'| = \frac{1}{2} - \frac{1}{2} \frac{1}
 }
|T { $$=$1; }
T:T '*' F { $$=var_cnt; var_cnt++; printf("t%d = t%d * t%d;\n", $$, $1, $3 ); }
|T '/' F { \$=var\_cnt; var\_cnt++; printf("t%d = t%d / t%d;\n", \$\$, \$1, \$3 ); }
|F {$$=$1;}
F:P '^' F { \$=var_cnt; var_cnt++; printf("t%d = t%d ^ t%d;\n", $$, $1, $3 );}
```

```
| P { $$ = $1;}
P: '(' E ')' { $$=$2; }
|digit { \$=var_cnt; var_cnt++; printf("t%d = %d;\n",$$,$1); }
%%
int main()
var_cnt=0;
printf("Enter an expression : \n");
yyparse();
return 0;
yyerror()
printf("error");
```

```
bmscecse@bmscecse-OptiPlex-3060:~/Documents/1BM21CS253$ ./a.out
Enter an expression :
a=3*5+4
t0 = 3;
t1 = 5;
t2 = t0 * t1;
t3 = 4;
t4 = t2 + t3;
a=t4
```