1.1 Lebesgue 积分

1.1.1 Riemann 积分

Riemann 积分的定义如前不赘, 唯注意下例。

例 1.1.1. 对于 Dirichlet 函数

$$f(x) = \begin{cases} 1, & x \in \mathbb{Q}, \\ 0, & x \in [0, 1] - \mathbb{Q}. \end{cases}$$

虽可写为可数个简单函数之和,亦知其非 Riemann 可积。

1.1.2 有界函数在有限测度集上的 Lebesgue 积分

定义 1.1.1. 对于有限测度集 E 上的简单函数 ψ , 定义其积分如

$$\int_{E} \psi = \sum a_{i} \cdot m\left(E_{i}\right).$$

表达式中诸 a_i 不等。

引理 1.1.1. 纵表达式中 a_i 简并,亦无改其积分值。

命题 1.1.1 (积分的线性与单调性). 对于简单函数 φ 与 ψ , 有

$$\int (\alpha \varphi + \beta \psi) = \alpha \int \varphi + \beta \int \psi.$$

以及若 $\varphi < \psi$, 则

$$\int \varphi < \int \psi.$$

证明. 将 φ 与 ψ 共用一组 E_i 展开即可。

此时已足够推断阶梯函数的 Riemann 与 Lebesgue 积分相符。

定义 1.1.2. 对有限测度集上的有界函数 f, 定义其 Lebesgue 上积分为全体 $\varphi > f$ 之简单函数的 Lebesgue 积分的下界。相似定义 Lebesgue 下积分。

2

定义 1.1.3. 前开 f 若 Lebesgue 上下积分相等,则称之其 Lebesgue 积分。

定理 1.1.1. Lebesque 积分兼容 Riemann 积分。

证明. 注意到阶梯函数含于简单函数即可。

例 1.1.2. 注意 Dirichlet 函数 $f = \chi_{\mathbb{Q}}$, 故 $\int f = m(\mathbb{Q}) = 0$ 。

定理 1.1.2. 有限测度集上定义的有界函数可积。

证明. 注意其存在简单函数的上下逼近即可。

命题 1.1.2 (积分的线性与单调性). 对于有限测度集上的可测函数 f 与 g, 有

$$\int (\alpha f + \beta g) = \alpha \int f + \beta \int g.$$

以及若 f < g, 则

$$\int f < \int g.$$

证明. 只证 $\alpha=\beta=1$ 的情况,目标积分不超二 Lebesgue 上积分之和而不低于二 Legesgue 下积分之和,再注意上下积分之和即积分之和。

单调性考虑
$$\int (f-g)$$
 即可。

推论 1.1.1. 对无交可测集 A 与 B, 有

$$\int_{A \cup B} f = \int_{A} f + \int_{B} f.$$

推论 1.1.2. 对有限测度集上的有界函数 f, 有

$$\left| \int f \, \right| \le \int |f|.$$

证明. 注意 $-|f| \le f \le |f|$ 即可。

命题 1.1.3. 若有限测度集上的有界函数列 $\{f\}$ 一致收敛于 f, 则

$$\lim_{n \to \infty} \int f_n = \int \lim_{n \to \infty} f_n.$$

3

证明. 注意 $||f - f_n||$ 可以任意小,借助前开推论即可。

例 1.1.3. 考虑 f_n 定义为 f(0) = 0, f(1/n) = n, f(2/n) = 0 并线性连接,则其除逐点收敛于零外满足前开所有条件,而积分后序列非零。

定理 1.1.3 (有界收敛定理). 若有限测度集上的各点一致有界函数列 $\{f\}$ 逐点收敛于 f,则

$$\lim_{n \to \infty} \int f_n = \int \lim_{n \to \infty} f_n.$$

证明. 由 Egoroff 定理, f_n 在任意接近 E 的闭集上一致收敛。故定义域的残余部分的积分任意小。

1.1.3 非负函数的 Lebesgue 测度

定义 1.1.4. 定义 f 的支撑为使之非零的定义域部分 1 。

定义 1.1.5. 设 f 为 E 上的非负可测函数, 定义其积分

$$\int_{E} f = \sup \left\{ \int_{E} h \mid 0 \le h \le f \right\}.$$

其中 h 为有限测度集上定义的有界可测函数。

命题 1.1.4 (Chebychev 不等式). 设 f 非负可测,对 $\lambda > 0$,有

$$m(f \ge \lambda) \le \frac{1}{\lambda} \int_{E} f.$$

证明. 取 $g = \lambda \chi_{f > \lambda}$, 并注意 $0 \le g \le f$ 。

命题 1.1.5. 设 f 非负可测,则 $\int f = 0$ 当且仅当 f 几乎处处为零。

证明. 由前不等式,诸 $m(f \le 1/n) = 0$,并起即可。

命题 1.1.6 (积分的线性与单调性). 对于非负可测函数 f 与 g, 有

$$\int (\alpha f + \beta g) = \alpha \int f + \beta \int g.$$

以及若 f < g, 则

$$\int f < \int g.$$

¹ 这和拓扑学上定义为其闭包不同。

证明. 易证 $\int f + \int g \leq \int (f+g)$ 。 反向的不等式则注意取 $h = \min\{f, l\}$, k = l - h,则 h = f 有界可测且

$$\int l = \int (h+k) \le \int f + \int g.$$

左侧取上界即可。单调性亦左侧取上界可证。

定理 1.1.4 (积分区间的可加性). f 非负可测而 A 与 B 为无交可测集,则

$$\int_{A \cup B} f = \int_{A} f + \int_{B} f.$$

引理 1.1.2 (Fatou 引理). 非负可测函数列 $\{f_n\}$ 几乎处处逐点收敛于 f,则

$$\int_{E} f \le \liminf \int_{E} f_{n}.$$

证明. 除开一零测集,可设其处处收敛。对任意 h,设 $h_n=\min{\{h,f_n\}}$,故 $h_n\to h$ 且由有界收敛定理

$$\lim_{n \to \infty} \int_E h_n = \int_E h.$$

再注意 $h_n \leq f_n$, $\lim \int h_n \leq \lim \inf \int f_n$ 即可。

例 1.1.4. 令 E = [0,1) 且 $f_n = n\chi_{(0,1/n)}$,则 f_n 极限的积分与积分的极限分别为 0 和 1。再如 $\chi_{(n,n+1)}$ 逐点收敛至 0 但显然积分与极限不可互换。

定理 1.1.5 (单调收敛定理). 在 Fatou 引理的条件下, 若 $\{f_n\}$ 递增, 则

$$\lim_{n \to \infty} \int f_n = \int f.$$

证明. 由积分的单调性知

$$\limsup \int f_n \le \int f.$$

推论 1.1.3. 非负可测函数和 $\sum u_n$ 几乎处处逐点收敛于 f ,则

$$\int f = \sum \int u_n.$$

定义 1.1.6. 积分有限的可测函数称为可积函数。

命题 1.1.7. 可积函数几乎处处有限。

证明. 注意对任意 n, 有

$$m(f \ge n) \le \frac{1}{n} \int f.$$

5

引理 1.1.3 (Beppo Levi 引理). 非负可测函数列 $\{f_n\}$ 诸积分一致有界,则 f_n 逐点收敛于一几乎处处有界的可积函数。

证明. 递增数列收敛于一广义实数,故定义 $f(x) = \lim f_n(x)$,复用前开命题与有界收敛定理。

1.1.4 一般 Lebesgue 积分

注意 $f = f^+ - f^-$ 且 $|f| = f^+ + f^-$ 。

命题 1.1.8. 对可测函数 f, f^+ 与 f^- 可积当且仅当 |f| 可积。

定义 1.1.7. 若 |f| 可积则称可测函数 f 可积且定义

$$\int f = \int f^+ - \int f^-.$$

命题 1.1.9. 若 f 可积,则 |f| 几乎处处有限且对零测集 E_0 ,

$$\int_{E} f = \int_{E-E_0} f.$$

证明. 前开命题知几乎处处有限。再注意对非负函数有相同成立即可。 □

$$\left| \int f \right| \le \int |f|.$$

证明. 可积性易证。再由实数的三角不等式,

$$\left| \int f^+ - \int f^- \right| \le \int f^+ + \int f^- \le \int |f|.$$

注意由命题 1.1.9,两可积函数若某处值无限,则积分可径直挖去该点而无需定义在该点的值。

命题 1.1.11 (积分的线性与单调性). 对于可积函数 f 与 g, 有

$$\int (\alpha f + \beta g) = \alpha \int f + \beta \int g.$$

6

以及若 f < g, 则

$$\int f < \int g.$$

证明. 可积性由 $|f+g| \le |f| + |g|$ 得,其余易证。

推论 1.1.4. 对无交可测集 A 与 B, 有

$$\int_{A \cup B} f = \int_A f + \int_B f.$$

定理 1.1.6 (Lebesgue 控制收敛定理). 逐点收敛于 f 的可测函数列 $\{f_n\}$ 满足 $|f_n| \leq g$,则有 f 可积且

$$\lim_{n \to \infty} \int f_n = \int f.$$

证明. 注意到由 Fatou 引理,

$$\int (g+f) \le \liminf \int (g+f_n),$$

以及

$$\int (g-f) \le \liminf \int (g-f_n). \qquad \Box$$

定理 1.1.7 (一般的 Lebesgue 控制收敛定理). 逐点收敛于 f 的可测函数列 $\{f_n\}$ 满足 $|f_n| \leq g_n$,若 $\{g_n\}$ 几乎处处收敛于 g,且

$$\lim_{n \to \infty} \int g_n = \int g,$$

则有 f 可积且

$$\lim_{n \to \infty} \int f_n = \int f.$$

证明. 证法同上。

1.1.5 积分的可数可加性与连续性

定理 1.1.8 (积分的可数可加性). 设 f 可积而 $\{E_n\}$ 为无交可测集族,其并为 E,则

$$\int f = \sum \int_{n} f.$$

证明. 对 $f_n = f\chi_{E_1 \cap \cdots \cap E_n}$ 应用控制收敛定理。

定理 1.1.9 (积分的连续性). f 为 E 上的可积函数,则

(a) 若 $\{A_k\}$ 为升链,则

$$\int_{\cup A_n} f = \lim_{n \to \infty} \int_{A_n} f.$$

(b) 若 $\{B_k\}$ 为降链,则

$$\int_{\cap B_n} f = \lim_{n \to \infty} \int_{B_n} f.$$

1.1.6 一致可积性

引理 1.1.4. 有限测度集可以被划分为有限个测度小于 δ 的无交集。

证明. 注意 m(E-[-n,n]) 迟早小于 δ 后划分 [-n,n] 即可。

命题 1.1.12. f 在 E 上可积,则对于任意小的 ϵ ,存在 δ 使得对任意满足 $m(A) < \delta$ 的子集 A 有

$$\int_{\Lambda} |f| < \epsilon.$$

反之, 若 E 测度有限而对任意小的 ϵ , 存在上述的 δ , 则 f 可积。

证明. 仅考虑正的 f。正向结论可由定义以有界函数逼近 f 并注意有界性推得。反向结论则选取一对 ϵ 与 δ ,并由前引理将 E 写为有限个小集的并。 \square

定义 1.1.8. E 上的可测函数族称为一致可积,若对于任意小的 ϵ ,存在 δ 使得对任意 $m(A) < \delta$ 以及其中的 f,有

$$\int_{A} |f| < \epsilon.$$

例 1.1.5. 设 g 可积,所有满足 |f| < g 的可测函数为一致可积。

命题 1.1.13. 有限个可积函数构成的族是一致可积的。

命题 1.1.14. 若有限测度的 E 上一致可积的 $\{f_n\}$ 几乎处处逐点收敛于 f, 则 f 可积。

证明. 由命题 1.1.12, 诸 f_n 的积分一致有界, 由 Fatou 引理

$$\int |f| \le \liminf \int |f_n|.$$

定理 1.1.10 (Vitali 收敛定理). 若有限测度的 E 上一致可积的 $\{f_n\}$ 几乎处处逐点收敛于 f,则

 $\lim_{n \to \infty} \int f_n = \int f.$

证明. 由 Egoroff 定理, 选取任意逼近 E 的 A 使得 $\{f_n\}$ 一致收敛, 则

$$\left| \int_{E} f_{n} - \int_{E} f \right| \leq \int_{E-A} |f_{n} - f| + \int_{A} |f_{n}| + \int_{A} |f|.$$

第一项积分由一致收敛任意小,后二项由一致可积与 Fatou 引理任意小。□

定理 1.1.11. 有限测度集上几乎处处收敛于零的非负可测函数列 $\{h_n\}$, 当且仅当其一致可积时有

 $\lim_{n \to \infty} \int h_n = 0.$

证明. 只证极限为零推出一致可积。对任意 $\epsilon>0$,可以选取足够大的 N 使

$$\int h_{N:} < \epsilon,$$

再注意有限个 h:N 一致可积即可。

1.2 进一步的主题

1.2.1 一致可积性与测度紧密型

例 1.2.1. 对无限测度的 E, 考虑 $f = \chi_{[n,n+1]}$ 知 Vitali 定理不适用。

命题 1.2.1. 设 f 可积,则在一有限测度集 E_0 外其积分任意小。

证明. 有定义知存在有限测度上有界的函数其积分任意逼近 f。 \Box

定义 1.2.1. E 上的可测函数族 F 称为紧密的,如果存在一有限测度集 E_0 使其全体在其外的积分一致任意小。

定理 1.2.1 (Vitali 收敛定理). 若 E 上一致可积且紧密的 $\{f_n\}$ 几乎处处逐 点收敛于 f,则

$$\lim_{n \to \infty} \int f_n = \int f.$$

证明. 选取 E_0 使其外的积分任意小,其内的积分调用前开 Vitali 定理。 \square

推论 1.2.1. E 上几乎处处收敛于零的非负可测函数列 $\{h_n\}$, 当且仅当其一致可积且紧密时有

$$\lim_{n \to \infty} \int h_n = 0.$$

1.2.2 依测度收敛

定义 1.2.2. E 上几乎处处有限的可测函数列 $\{f_n\}$ 称为依测度收敛于可测的 f,如果对任意 η ,

$$\lim_{n \to \infty} m\{x \mid |f_n(x) - f(x)| > \eta\} = 0.$$

命题 1.2.2. 有限测度 E 上的逐点收敛是一致收敛。

证明. 由 Egoroff 定理选取逼近 E 的闭集上的一致收敛即可。

例 1.2.2. 考虑下述诸区间上的特征函数, 虽依测度收敛却非逐点收敛。

$$[0,1]$$
, $[0,1/2]$, $[1/2,1]$, $[0,1/3]$, $[1/3,2/3]$, $[2/3,1]$, $[0,1/4]$...

定理 1.2.2 (Riesz). 依测度收敛的函数列存在几乎处处逐点收敛的子列。

证明. 由依测度收敛知存在子列使 $m(|f_{n_k} - f| > 1/k) < 1/2^k$,再由 Borel-Cantelli 引理知几乎每个 x 都收敛于 f。

推论 1.2.2. 非负可积函数列 $\{f_n\}$ 满足

$$\lim_{n \to \infty} \int f = 0$$

当且仅当其依测度收敛于零且一致可积且紧密。

证明. 由前开推论与 Chebyshev 不等式知其依测度收敛。

反之,假设积分不收敛于零,则存在一子列之积分漂浮于一实数之上,此子列存在一几乎处处逐点收敛之子列,由 Vitali 定理知矛盾。

1.2.3 Riemann 与 Lebesgue 可积性的特征

引理 1.2.1. 设 $\{\varphi_n\}$ 与 $\{\psi_n\}$ 分别为可积函数的升列与降列且夹挤 f,若

$$\lim_{n \to \infty} \int \left[\psi_n - \varphi_n \right] = 0,$$

则 $\{\varphi_n\}$ 与 $\{\psi_n\}$ 几乎处处逐点收敛于 f 且 f 可积且三者积分相等。

证明. 由单调收敛定理, $\int (\psi - \varphi) \to 0$ 。由命题 1.1.5知其几乎处处为零,从 而几乎处处逐点收敛于 f,进而其可测。三积分相等易证。

定理 1.2.3. 有限测度集上的有界 f, 其可积当且仅当其可测。

证明. 若假设可测,由定理 1.1.2知可积。

若已知可积,则由定义知存在 f 的上下简单函数逼近且积分差为零,取诸 $\max \{\varphi_i\}$ 与 $\min \{\psi_i\}$ 可设其分别为升降列,再调用前开引理。

定理 1.2.4 (Lebesgue). 紧区间上的有界函数 f 为 Riemann 可积当且仅当 其非连续点为零测集。

证明. 假定 Riemann 可积,则存在一列加细的划分 $\{P_n\}$,对应上下逼近 $\{\varphi_n\}$ 与 $\{\psi_n\}$ 且由前开引理几乎处处收敛于 f。在除开 P_∞ 的点处,对 ϵ 取足够大的 N 即可使此处 $\psi_n - \varphi_n < \epsilon$,从而此点的 δ 邻域内变差任意小。

反之,假定 f 不连续点为零测集。对加细至稠密的划分列 P_n 以及 P_∞ 及不连续点以外的点,选取足够的大 n 使 P_n 的间隙小于 δ ,则 f 在诸间隙 内的变差小 ϵ ,故上下逼近可互相接近而积分相等。

1.3 微分与积分

1.3.1 单调函数的连续性

定理 1.3.1. 单调函数最多仅有可数个不连续点。

命题 1.3.1. 对开区间内的可数集,存在增函数仅在此可数集上不连续。

证明. 取 f 如下,在任意 E-C 的点有足够小的开区间不包含 q_1, \dots, q_n 。

$$f(x) = \sum_{q_n < x} 1/2^n.$$

1.3.2 单调函数的可微性

定义 1.3.1. 非退化紧区间集 $\mathscr F$ 称为 E 的 Vitali 覆盖,如果对于任意点 x 和 $\epsilon > 0$,存在长度小于 ϵ 的区间覆盖 x。

引理 1.3.1 (Vitali 覆盖引理). 设 E 为有限外测度集, \mathscr{F} 是其 Vitali 覆盖,则其无交有限子集任意可接近 E。

证明. 若存在有限子集覆盖之则证毕。反之,依"在剩余无交区间内选取区间长度过半者"之程式选取"下一区间"而得无交可数族,则任意有限子集外的区间与可数族内一区间有交。将后者扩大 5 倍即可覆盖之。故其有限子集外者扩大 5 倍后便可覆盖 E。

11

定义 1.3.2. 定义上导数

$$\overline{\mathbf{D}}f\left(x\right) = \lim_{h \to 0} \left[\sup_{0 < |t| \le h} \frac{f\left(x+t\right) - f\left(x\right)}{t} \right].$$

相似定义下导数。若二者相等则称可导。

引理 1.3.2. 设 f 为紧区间上的增函数,则对任意正数 α ,

$$m^*\left(\overline{\mathbf{D}}f \ge \alpha\right) \le \frac{1}{\alpha} \left[f\left(b\right) - f\left(a\right)\right].$$

特别地, $m^*(\overline{\mathbf{D}}f = \infty) = 0$ 。

证明. 注意诸 $\Delta f \geq \alpha^- (d-c)$ 的区间 [c,d] 构成其 Vitali 覆盖。

定理 1.3.2 (Lebesgue). 开区间上的单调函数几乎处处可导。

证明. 设 E 中上导数大于 α 而下导数小于 β , 则诸 $\Delta f \leq \beta (d-c)$ 的 [c,d] 构成 E 的 Vitali 覆盖。 $\sum^n \Delta f \leq \beta m^*(E)$ 。再由前开引理,

$$m^*(E) \le \frac{1}{\alpha} \sum_{i=1}^{n} \Delta f_i.$$

定义 1.3.3. 紧区间上的可积函数 f, 两侧水平延伸其值, 对正数 h 定义差分与平均分别为

$$\operatorname{Diff}_{h} f(x) = \frac{f(x+h) - f(h)}{h}, \quad \operatorname{Av}_{h} f(x) = \frac{1}{h} \int_{x}^{x+h} f(x) dx$$

推论 1.3.1. 紧区间上的增函数, 其导数可积且

$$\int f' \le f(b) - f(a).$$

证明. 由 Fatou 引理,

$$\int f' \le \liminf \int \operatorname{Diff} f. \qquad \Box$$

参考 Cantor-Lebesgue 函数知等号可严格成立。

1.3.3 有界变差函数: Jordan 定理

定义 1.3.4. 定义变差为

$$V(f,P) = \sum |\Delta f|,$$

全变差为 $TV = \sup V$ 。若全变差有界,则称之有界变差。

例 1.3.1. 增函数, Lipschitz-1 的函数是有界变差的。 $x\cos(\pi/2x)$ 则不是。

引理 1.3.3. 有界变差函数可以写为如下二增函数之差:

$$f(x) = [f(x) + TV(x)] - TV(x). \tag{1.1}$$

定理 1.3.3 (Jordan). 紧区间上的函数有界变差当且仅当其为增函数之差。

证明. f = g - h 称为其 Jordan 分解, 只需注意

$$V(f,P) = \sum |\Delta f| \le \sum |\Delta g| + \sum |\Delta h|. \qquad \Box$$

推论 1.3.2. 紧区间上的有界变差函数几乎处处可微且导数可积。

1.3.4 绝对连续函数

定义 1.3.5. 对任意 $\epsilon > 0$,存在 $\delta > 0$ 使 $\sum (b_k - a_k)$ 之一切区间族上 $\sum |\Delta f| < \epsilon$,则称 f 绝对连续。

例 1.3.2. Cantor-Lebesque 函数虽连续却非绝对连续。

命题 1.3.2. Lipschitz-1 的函数绝对连续。

定理 1.3.4. 紧区间上的绝对连续函数可写为绝对连续的增函数之差。

证明. 注意绝对连续的 f 的全变差为绝对连续即可。

定理 1.3.5. 紧区间上的连续函数绝对连续当且仅当 (0,1) 的差分一致可积。

证明. 设其差分一致可积, 注意 $\Delta Av_h f = \int Diff_h f$ 以及 $\lim Av_h f = f$.

反之只证 f 为非负绝对连续增函数的情形,注意只需证"任意小的区间集上的积分任意小"即可,再藉 $\int \mathrm{Diff}_h \, f = 1/h \cdot \int \left[f \, (u+t) - f \, (v+t) \right]$ 。 \square

可以发现如下的包含关系

$$\mathcal{F}_{Lip} \subset \mathcal{F}_{AC} \subset \mathcal{F}_{BV}$$
.

且各族内的函数都可以如(1.1)写成族内二增函数之差。

13

1.3.5 积分下的微分

定理 1.3.6. 紧区间上的绝对连续函数几乎处处可微且

$$\int_{a}^{b} f' = f(b) - f(a).$$

证明. 注意

$$\lim_{h \to 0} \int_{a}^{b} \operatorname{Diff}_{h} f = \lim_{h \to 0} \left[\operatorname{Av}_{h} f(b) - \operatorname{Av}_{h} f(a) \right].$$

右侧为所求,左侧由定理 1.3.5知一致可积后调用 Vitali 定理。 □

定理 1.3.7. 紧区间上的函数一致连续当且仅当其为一不定积分。

证明. 假设 $f = \int g$, 注意由命题 1.1.12, 小测度上 g 的积分可任意小。 \square

推论 1.3.3. 紧区间上单调的 f 为绝对连续当且仅当

$$\int_{a}^{b} f' = f(b) - f(a).$$

证明. 由推论 1.3.1,

$$\int_{a}^{x} f' \le f(x) - f(a), \quad \int_{x}^{b} f' \le f(b) - f(x).$$

故二者均为相等,从而 $f = \int f'$ 。

引理 1.3.4. 紧区间上的 f 几乎处处为零当且仅当任意区间上积分为零。

证明. 注意任意区间上积分为零得出任意 G_δ 型集上积分为零即可。 \square

定理 1.3.8. 紧区间上的可积函数几乎处处有

$$\mathbf{D} \int_{a}^{x} f = f(x).$$

证明. 借助前开命题,注意对任意 $[x_1,x_2]$,有

$$\int_{x_{1}}^{x_{2}} \left[F' - f \right] = F(x_{2}) - F(x_{1}) - \int_{x_{1}}^{x_{2}} f = 0.$$

并非所有函数解有定理 1.3.6的适用。借助前开命题,考虑下述的分解

$$f = \left(f - \int f'\right) + \int f',$$

前者导数几乎处处为零,后者为一绝对连续函数,此谓其 Lebesgue 分解。

14

1.3.6 凸函数

定义 1.3.6. 满足下式者谓凸函数, 其中 a+b=1。

$$\varphi\left(ax_1+bx_2\right) \leq a\varphi\left(x_1\right)+b\varphi\left(x_2\right).$$

在上式中令

$$a = \frac{x_2 - x}{x_2 - x_1}, \quad b = \frac{x - x_1}{x_2 - x_1},$$

可得对于任意 $x_1 < x < x_2$,

$$\frac{\varphi\left(x\right)-\varphi\left(x_{1}\right)}{x-x_{1}} \leq \frac{\varphi\left(x_{2}\right)-\varphi\left(x\right)}{x_{2}-x}.$$

命题 1.3.3. 若 φ 可微而 φ' 为增函数,则 φ 为凸函数。

引理 1.3.5 (弦斜率). 凸函数上顺次三点 p_1 , p, p_2 , 有 $k_{p_1p} < k_{p_1p_2} < k_{pp_2}$ 。

引理 1.3.6. 凸函数 φ 各点左右导数存在,且若 u < v 则

$$\varphi'\left(u^{-}\right) \leq \varphi'\left(u^{+}\right) \leq \frac{\varphi\left(v\right) - \varphi\left(u\right)}{v - u} \leq \varphi'\left(v^{-}\right) \leq \varphi'\left(u^{+}\right).$$

推论 1.3.4. 开区间上的凸函数是 Lipschitz 的, 在任意紧区间上绝对连续。

定理 1.3.9. 凸函数几乎处处可导且导函数为增函数。

定理 1.3.10 (Jensen 不等式). 对凸函数 φ 与可积函数 f,设 $\varphi \circ f$ 可积,有

$$\varphi\left(\int_{0}^{1} f\right) \leq \int_{0}^{1} \varphi \circ f.$$

证明. $\Diamond \alpha = \int f$, 则

$$\int_{0}^{1} \varphi \circ f \ge \int_{0}^{1} \left[m \left(f - \alpha \right) + \varphi \left(\alpha \right) \right] = \varphi \left(\alpha \right). \quad \Box$$

将上开不等式用于加和为 1 的诸 α_n ,

$$\sum \alpha_n \log x_n \le \log \sum \alpha_n x_n$$

可得算术-几何不等式。