

Mock Paper Mark Scheme

Advanced Subsidiary/Advanced GCE

General Certificate of Education

Subject **MECHANICS**

Paper No. Mock M3

Question number	Scheme	M	Iarks
1.	$v \frac{\mathrm{d}v}{\mathrm{d}x} = 6 - 4x$	M1	
	$\int v dv = \int 6 - 4x \implies \frac{1}{2} v^2 = 6x - 2x^2 + c$	M1 A1	
	$x = 0, \ v = 4 \implies c = 8$	A1	
	$v = 0 \implies 8 + 6x - 2x^2 = 0$	M1	
	$4 + 3x - x^2 = 0$		
	(4-x)(1+x)=0		
	$(x > 0 \Rightarrow) x = 4$	A1	(6)
			(6 marks)
2.	$\frac{\lambda(100-l)}{l} = 0.3g$	M1 A1	
	$\frac{\lambda(110-l)}{l} = 0.5g$	A1	
	$\Rightarrow 5(100 - l) = 3(110 - l)$	M1	
	l = 85 cm	A1	(5)
	$\lambda = \frac{0.3g \times 85}{15} = 16.66 \mathrm{N}$	M1 A1	(2)
	15		(7 marks)

Question number	Scheme	Marks	
3.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	$OP = a\sqrt{8}$	B1	
	$R(\leftarrow): T \sin \theta = \frac{mv^2}{a\sqrt{8}}$	M1 A1	
	$T\frac{\sqrt{8}a}{3a} = \frac{m \times 4ga}{a\sqrt{8}} (\sin \theta)$	B1 f.t.	
	$\Rightarrow T = \frac{3mg}{2}$	M1 A1 ((6)
	$R(\uparrow): T\cos\theta + N = mg$	M1 A1	
	$\Rightarrow N = mg - \frac{3}{2}mg \times \frac{1}{3} = \frac{1}{2}mg$		(4)
		(10 marl	KS)
4. (a)	$x \longrightarrow \ddot{x} \qquad R(\to): 0.2 \ddot{x} = -5y$	$\cos \theta$ M1 A1	
	$\cos \theta = \frac{x}{y}$	M1	
	$d \qquad \Rightarrow \ddot{x} = -25x$	A1	
	⇒ SHM period =	$\frac{2\pi}{5}$ A1	(5)
(b)	$d = 2$; max speed = ' $d\omega$ ' = 2 × 5 = 10 m s ⁻¹	M1 A1 ((2)
(c)	$x = 2 \cos 5t$	M 1	
	Distance 3 m from start $\Rightarrow x = -1$	B1	
	$\cos 5t = -\frac{1}{2}$		
	$\Rightarrow 5t = \frac{2\pi}{3}, \ t = \frac{2\pi}{15} \text{ s}$	M1 A1 ((4)
	3 , 1 15	(11 marl	
		,	,

Question number	Scheme	Marks
5. (a)	Energy: $\frac{1}{2} \times 2 \times 10^2 = 2 \times 9.8 \times h + \frac{1}{2} \times \frac{120 \times h^2}{3}$	M1 A1 A1
	$20h^2 + 19.6h - 100 = 0$	M1
	$h = \frac{-19.6 \pm \sqrt{(19.6^2 + 4 \times 20 \times 100)}}{40}$	M1
	$= 1.7991 \approx 1.8 \text{ (or } 1.80) \text{ m}$	A1 (6)
(b)	$\frac{1}{2} \times 2 \times V^2 = 2 \times 9.8 \times 1.8 + \frac{1}{2} \times \frac{120 \times 2.3^2}{3} - \frac{1}{2} \times \frac{120 \times 0.5^2}{3}$	M1 A1 A1
	$V = 11.7 (3 \text{ s.f.}) \text{ or } 12 (2 \text{ s.f.}) \text{ m s}^{-1}$	M1 A1 (5)
		(11 marks)

Question number	Scheme	Marks
6. (a)	Radius of element = $\frac{x}{h}a$	B1
	Hence $\int_0^h \pi \frac{x^2 a^2}{h^2} x dx = \frac{1}{3} \pi a^2 h \times \overline{x}$	M1 A1
	$\frac{1}{3}\pi a^2 h \times \bar{x} = \frac{\pi a^2}{h^2} \left[\frac{x^4}{4} \right]_0^h$	M1
	$h = \frac{\pi a^2 h^2}{4}$	M1
	$\Rightarrow \bar{x} = \frac{3}{4}h$	A1 (6)
(b)	Volume of large cone = $\frac{1}{3}\pi a^2 h = V$	
	Volume of small cone = $\frac{1}{3}\pi \times \frac{4a^2}{9} \times \frac{h}{2} = \frac{2}{9}V$	
	Volume of $S = \frac{7}{9}V$	
	Volume V $\frac{2}{9}V$ $\frac{7}{9}V$	M1 A1
	Volume V $\frac{2}{9}V$ $\frac{7}{9}V$ CM from A $\frac{3}{4}h$ $\frac{h}{2} + \frac{3}{4}\left(\frac{h}{2}\right)$ \overline{x}	B1 B1
	$V \times \frac{3}{4}h - \frac{2}{9}V\left(\frac{7h}{8}\right) = \frac{7}{9}V \overline{x}$	M1 A1
	$\Rightarrow \ \overline{x} = \frac{5h}{7}$	A1 (7)
		(13 marks)

Question number	Scheme	Marks	
7. (a)	Energy $\frac{1}{2}mv^2 = \frac{1}{2}mu^2 + mga(1 - \cos\theta)$	M1 A1	
	$v = \frac{1}{2}ga + 2ga(1 - \cos \theta)$ $= \frac{1}{2}ga(5 - 4\cos \theta)$	A1	(3)
(<i>b</i>)	$R(\nearrow)$: $mg\cos\theta - R = \frac{mv^2}{a}$	M1 A1	
	so $R = mg \left(3 \cos \theta - \frac{5}{2}\right)$	A1	
	$\cos \theta = 0.9 \implies R = mg(2.7 - 2.5)$	M1	
	$= 0.2 mg > 0 \implies P \text{ still on hemisphere}$	A1	(5)
(c)	P leaves hemisphere when $R = 0 \Rightarrow 3 \cos \theta - \frac{5}{2} = 0 \Rightarrow \cos \theta = \frac{5}{6}$	M1 A1	(2)
(<i>d</i>)	$\cos \theta = \frac{5}{6} \implies v^2 = \frac{1}{2} ga(5 - 4 \times \frac{5}{6})$	M1	
	$= \frac{5ga}{6} , v = \sqrt{\frac{5ga}{6}}$	A1	(2)
(e) (f)	At B, speed v is given by $v^2 = u^2 + 2ga = \frac{5}{2}ga$, $v = \sqrt{\frac{5ga}{2}}$	M1 A1	(2)
	After leaving hemisphere, horizontal component of velocity remains constant = $\sqrt{\frac{5ga}{6}} \frac{5}{6}$	B1	
	$\cos \phi = \frac{\frac{5}{6}\sqrt{\frac{5ga}{6}}}{\sqrt{\frac{5ga}{2}}} = \frac{5}{6\sqrt{3}}$	M1	
	$\Rightarrow \phi = 61.2^{\circ} \text{ or } 61^{\circ} \text{ to horizontal}$	A1	(3)
		(17 ma	rks)

6 Turn Over