线	教师填写	课程名称:		2023 学年度第_ 高等数学 A (其 2022 年 11 月 ((期中)	学期 	数学科试卷类	开课学院 数学科学学院 试卷类别 (A, B) [A] 共 4 页	
	考 生 填 写									
	题	号分		<u> </u>	三	四	五.	六	总分	
		別人								
Ľ	一、单选题 (共4小题,每小题4分,共16分) 答题须知:本题答案必须写在如下表格中,否则不给分. 小题 1 2 3 4									
	答案 1. 设函数 $f(x)$ 在 $x = 0$ 处连续,下列命题错误的是 (A) 若 $\lim_{x \to 0} \frac{f(x)}{x}$ 存在,则 $f(0) = 0$ (B) 若 $\lim_{x \to 0} \frac{f(x) + f(-x)}{x}$ 存在,则 $f(0) = 0$ (C) 若 $\lim_{x \to 0} \frac{f(x)}{x}$ 存在,则 $f'(0)$ 存在 (D) 若 $\lim_{x \to 0} \frac{f(x) - f(-x)}{x}$ 存在,则 $f'(0)$ 存在									
1	2. 若当 $x \to 0$ 时, $(1-\cos x)\ln(1+x^2)$ 是比 $x \cdot \sin x^n$ 高阶的无穷小,而 $x \cdot \sin x^n$ 是比 $e^{x^2}-1$ 高阶的无穷小,则正整数 n 等于······(B) (A) 1 (B) 2 (C) 3 (D) 4									
滐	(A	$\lim_{h\to 0} \frac{1}{h}$	$=0$,则 $f(x)$ $f(1-\cosh)$ 存在 $f(h-\sinh)$ 存在	在	处可导的疗	(B) $\lim_{h\to \infty}$	要条件为······(B) $\lim_{h\to 0} \frac{f(1-e^h)}{h}$ 存在 (D) $\lim_{h\to 0} \frac{f(2h)-f(h)}{h}$ 存在			
	4. 函数 $f(u)$ 可导,若 $y = f(x^2)$ 当自变量 x 在 $x_0 = -1$ 处取得增量 $\Delta x = -0.1$ 时,相应的函数增量 Δy 的线性主部为 0.1 ,则 $f'(1) = \cdots (D)$ $(A) -1$ (B) 0.1 (C) 1 (D) 0.5									

二、填空题(共4小题,每小题4分,共16分)

1. 函数 $y = [\ln(x \cdot \sec x)]^2$ 的微分 $dy = 2\ln(x \cdot \sec x) \cdot (\frac{1}{x} + \tan x) dx$

3. 已知函数
$$f(x) = \begin{cases} \frac{1 - e^{\tan x}}{\arcsin \frac{x}{2}}, x > 0 \\ a e^x, x \le 0 \end{cases}$$
 在 $x = 0$ 处连续,则 $a = \underline{\qquad \qquad -2}$.

4. 写出方程 $\sin x + x - 2 = 0$ 至少有一个根的区间 (长度尽量小) (1, $\frac{\pi}{2}$)

三、计算题(共6小题,每小题6分,共36分)

1. 求极限: $\lim_{x\to 0} \frac{\sqrt[3]{1+x} - \sqrt[4]{1+2x}}{\arctan x}$.

解. 原式 =
$$\lim_{x \to 0} \frac{\sqrt[3]{1+x} - \sqrt[4]{1+2x}}{x}$$

= $\lim_{x \to 0} \frac{\sqrt[3]{1+x} - 1}{x} - \lim_{x \to 0} \frac{\sqrt[4]{1+2x} - 1}{x}$ 2分
= $\lim_{x \to 0} \frac{\frac{1}{3}x}{x} - \lim_{x \to 0} \frac{\frac{2}{4}x}{x}$ 4分
= $-\frac{1}{6}$ 6分

2. 已知 $\lim_{x\to 0} \frac{\ln\left(1 + \frac{f(x)}{\sin x}\right)}{2^x - 1} = 3$,试求: $\lim_{x\to 0} \frac{f(x)}{x^2}$

解. 由题设知
$$\lim_{x\to 0} \ln\left(1 + \frac{f(x)}{\sin x}\right) = 0$$
,从而 $\lim_{x\to 0} \frac{f(x)}{\sin x} = 0$, ……2分

3. 求极限: $\lim_{n\to\infty}\sin^2(\pi\sqrt{n^2+n})$

解. 因为 $\sin^2 x$ 是周期为 π 的周期函数,于是有

$$\lim_{n \to \infty} \sin^2(\pi \sqrt{n^2 + n})$$

$$= \lim_{n \to \infty} \sin^2(\pi \sqrt{n^2 + n} - n\pi)$$
.....2 \(\frac{\frac{1}{2}}{2}\)

$$=\lim_{n\to\infty}\sin^2\left(\pi\frac{n}{\sqrt{n^2+n}+n}\right)$$
4 $\cancel{\uparrow}$

$$=\sin^2\frac{\pi}{2}=1$$
 \therefore \therefore \frac{\psi}{2}

解.
$$y = \frac{b^a}{a^b} \left(\frac{a}{b}\right)^x x^{b-a}$$
2 分

$$y' = \frac{b^a}{a^b} \left[\left(\frac{a}{b} \right)^x \ln\left(\frac{a}{b} \right) x^{b-a} + \left(\frac{a}{b} \right)^x (b-a) x^{b-a-1} \right]$$
$$= \frac{b^a}{a^b} \left(\frac{a}{b} \right)^x x^{b-a-1} \left(\ln\left(\frac{a}{b} \right) \cdot x + (b-a) \right) \qquad \dots 6$$

线

5. 已知星形线方程: $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$,问:该曲线上哪点的切线与直线 x + y = 2 平行,并求出其切线方程。

解. 对 $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ 两边同时关于 x 求导,得

$$\frac{2}{3}x^{-\frac{1}{3}} + \frac{2}{3}y^{-\frac{1}{3}}y' = 0, \quad \mathbb{P} y' = -\left(\frac{x}{y}\right)^{-\frac{1}{3}} \qquad \dots 2$$

要使星形线的切线与直线 x+y=2 平行, 切点需满足方程

$$y' = -\left(\frac{x}{y}\right)^{-\frac{1}{3}} = -1, \quad x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$$

解得切点坐标为
$$\left(\frac{\sqrt{2}}{4}a, \frac{\sqrt{2}}{4}a\right)$$
或 $\left(-\frac{\sqrt{2}}{4}a, -\frac{\sqrt{2}}{4}a\right)$,4分

因此切线的方程为
$$x + y = \frac{\sqrt{2}}{2}a$$
 或 $x + y = -\frac{\sqrt{2}}{2}a$ 。6分

6. 设 f(u) 为可导函数, $y = f(\sin e^{3x}) - 3^{\cos f(x)}$, 求 y'。

Proof:
$$y' = f'(\sin e^{3x})\cos e^{3x} \cdot e^{3x} \cdot 3 - 3^{\cos f(x)}\ln 3 \cdot (-\sin f(x)) \cdot f'(x)$$
4 $\%$
= $3e^{3x}\cos e^{3x}f'(\sin e^{3x}) + \ln 3 \cdot \sin f(x) \cdot f'(x)3^{\cos f(x)}$ 6 $\%$

四、大题(共4小题,每小题8分,共32分)

1. 设 $f(x) = \frac{\left(e^{\frac{1}{x}} + e\right)\tan x}{x\left(e^{\frac{1}{x}} - e\right)}$, 求 f(x) 的间断点,并指明类型。

装

由
$$\lim_{x\to 0^+} f(x) = 1$$
, $\lim_{x\to 0^-} f(x) = -1$ 知 $x = 0$ 为跳跃间断点;4 分

由
$$\lim_{x \to 1} f(x) = \infty$$
 知 $x = 1$ 为无穷间断点;6分

由
$$\lim_{x \to \frac{\pi}{2} + k\pi} f(x) = \infty$$
 知 $x = \frac{\pi}{2} + k\pi$ $(k \in \mathbb{Z})$ 为无穷间断点。8分

- **2.** 设数列 $\{a_n\}$ 满足 $a_1 = \sqrt{2}$, $a_{n+1} = \sqrt{3+2a_n}$. 证明数列 $\{a_n\}$ 收敛,并求出极限.
- 证. (1) 事实上,由于 $a_1 < 3$,且 $a_k < 3$ 时

$$a_{k+1} = \sqrt{3+2a_k} < \sqrt{3+6} = 3$$

由数学归纳法知对所有n都有 $a_n < 3$,即数列有上界.又由于

$$\frac{a_{n+1}}{a_n} = \sqrt{\frac{3}{a_n^2} + \frac{2}{a_n}} > \sqrt{\frac{3}{3^2} + \frac{2}{3}} = 1,$$

所以数列单调增加. 由单调收敛准则知, 数列必定收敛.

(2) 设 $\lim_{n \to A} a_n = A$,对递推式两边同时取极限得

$$A = \sqrt{3 + 2A}$$
.

.....8分 解得 A=3,即 $\lim_{n\to\infty} a_n=3$.

Proof.
$$y' = \frac{2x}{1+x^2}, y'(0) = 0$$

$$[(1+x^2)y']' = 2xy' + (1+x^2)y'' = 2 \Rightarrow y''(0) = 2 \qquad \cdots 2$$

当
$$n \ge 2$$
 时, $[(1+x^2)y']^{(n)} = (2x)^{(n)} = 0$

$$\mathbb{E}[y^{(n+1)} \cdot (1+x^2) + y^{(n)}C_n^1 2x + y^{(n-1)}C_n^2 \cdot 2 = 0]$$

注意到
$$\frac{y^{(n+1)}(0)}{n!} + \frac{y^{(n-1)}(0)}{(n-2)!} = 0$$
,因此 $\frac{y^{(100)}(0)}{99!} = (-1)^{49} \frac{y''(0)}{1!} = -2$,

从而
$$v^{(100)}(0) = -2 \times 99!$$
 ······8 分

此题利用泰勒展开更简单,直接有 $\frac{y^{(100)}(0)}{100!} = -\frac{1}{50}$ 。

4. 设函数 $f(x) = \lim_{n \to \infty} \frac{x^2 e^{n(x-1)} + ax}{e^{n(x-1)} + 1}$, 试确定常数 a 的取值,使 f(x) 处处连续,并 讨论 f(x) 在 x=1 处的可导性。

解. 当
$$x > 1$$
 时, $f(x) = \lim_{n \to \infty} \frac{x^2 e^{n(x-1)} + ax}{e^{n(x-1)} + 1} = x^2$;

$$rightharpoonup x = 1$$
 时, $f(x) = \lim_{n \to \infty} \frac{x^2 e^{n(x-1)} + ax}{e^{n(x-1)} + 1} = \frac{a+1}{2}$

解. 当
$$x > 1$$
 时, $f(x) = \lim_{n \to \infty} \frac{x^2 e^{n(x-1)} + ax}{e^{n(x-1)} + 1} = x^2$;
当 $x = 1$ 时, $f(x) = \lim_{n \to \infty} \frac{x^2 e^{n(x-1)} + ax}{e^{n(x-1)} + 1} = \frac{a+1}{2}$;
当 $x < 1$ 时, $f(x) = \lim_{n \to \infty} \frac{x^2 e^{n(x-1)} + ax}{e^{n(x-1)} + 1} = ax$ 。4分

要使 f(x) 处处连续, 只需验证 f(x) 在 x=1 处的连续性,