Matemática Discreta – Turma B – 2019

<u>Funções</u>

1) Sejam A = $\{1,2,3,4,5,6\}$ e B = $\{1,2,3,4,5\}$. O conjunto de pares ordenados a seguir define uma função de A em B? Justifique.

$$f = \{(1,3), (2,1), (2,4), (3,2), (4,4), (5,5)\}$$

- 2) Sejam A = $\{1,2,3\}$ e B = $\{4,5\}$. Quantas funções f: A \rightarrow B existem? No caso de |A| = m e |B| = n, qual é o número de funções de A em B?
- 3) Seja $X = \{0,1,2\}$ e as funções $f: X \to X$ e $g: X \to X$ a seguir:

$$f(x)=(x^2+x+1) \mod 3$$

 $g(x)=(x+2)^2 \mod 3$

Pergunta-se: f(x) = g(x)?

- 4) Encontre os valores:

- b) [1.1] c) |-0.9| d) [0.9] e) [2.99] f) [-2.99]
- g) $\left|\frac{1}{2} + \left[\frac{1}{2}\right]\right|$ h) $\left|\left|\frac{1}{2}\right| + \left[\frac{1}{2}\right] + \frac{1}{2}\right|$ i) $\left|\frac{3}{4}\right|$ j) $\left|\frac{7}{8}\right|$ k) $\left[-\frac{3}{4}\right]$

l)
$$\left[-\frac{7}{8}\right]$$

a) |1.1|

- l) $\left| -\frac{7}{8} \right|$ m) $\left| \frac{1}{2} + \left[\frac{3}{2} \right] \right|$
- n) $\left| \frac{1}{2} \times \left| \frac{5}{2} \right| \right|$
- 5) Prove que para todo n inteiro $n = \left| \frac{n}{2} \right| + \left| \frac{n}{2} \right|$.
- 6) O que é uma função injetora?
- 7) Quais das funções a seguir definidas de $X = \{a,b,c,d\}$ em X são injetoras? Justifique.
- a) $f = \{(a,b), (b,a), (c,c), (d,d)\}$
- b) $g = \{(a,b), (b,b), (c,d), (d,c)\}$
- c) $h = \{(a,d), (b,b), (c,c), (d,d)\}$
- 8) Determine se cada uma das funções de Z em Z a seguir é injetora, justificando sua resposta.
- a) f(n) = 5n + 7
- b) $g(n) = n^2 + 1$
- c) $h(n) = n^3$
- 9) O que é uma função sobrejetora?
- 10) Seja f: $R \rightarrow R$ dada por f(x) = 2x + 5. Prove que f(x) é sobrejetora.

- 11) Sejam $A = \{1,2,3\}$ e $B = \{4,5\}$. Escreva todas as funções $f: A \rightarrow B$. Indique quais são injetoras e quais são sobrejetoras.
- 12) Sejam $A = \{1,2,3,4\}$ e $B = \{5,6,7\}$. Seja f o conjunto de pares ordenados a seguir:

$$f = \{(1,5), (2,5), (3,6), (?,?)\}$$

Complete f de modo que:

- a) f não seja uma função.
- b) f seja função mas não seja sobrejetora.
- c) f seja função e seja sobrejetora.
- 13) Sejam os conjuntos $A \in B \in f$: $A \to B$. Prove que f^{-1} é a função inversa de B para A se e somente se f é injetora e sobrejetora.
- 14) Classifique cada uma das correspondências a seguir:

- 15) Elabore uma fórmula para contar o número de funções injetoras de A para B, sabendo que |A| = $m \le |B| = n$. Explique seu raciocínio. Se m = 9 e n = 5, quantas funções injetoras existem de A para B?
- 16) Desenvolva uma fórmula para contar quantas funções sobrejetoras existem de A para B, sabendo que |A| = m e |B| = n, com $m \ge n$. Explique seu raciocínio. Se m = 5 e n = 3, quantas funções sobrejetoras existem de A para B?
- 17) Seja f: $Z \rightarrow Z$ dada por $f(x) = 2x^2 + 3$ e g: $Z \rightarrow Z$ dada por g(x) = 3x + 1.
- a) Calcule $g \circ f$. Quanto vale $g \circ f(2)$?
- b) Calcule $f \circ g$. Quanto vale $f \circ g(2)$?
- c) A afirmação a seguir é verdadeira ou falsa: Não existem funções f e g tais que $g \circ f = f \circ g$. Justifique sua resposta.
- 18) Sejam os conjuntos A, B, C e D e sejam $f: A \to B, g: B \to C$ e h: $C \to D$. Mostre que:

$$h \circ (g \circ f) = (h \circ g) \circ f$$

- 19) Suponha g: $A \rightarrow B$ e f: $B \rightarrow C$.
- a) Mostre que se ambas f e g são injetoras, então $f \circ q$ é injetora.
- b) Mostre que se ambas f e g são sobrejetoras, então $f \circ g$ é sobrejetora.
- 20) Sejam conjuntos A e B e seja f: A \rightarrow B. Prove que $f \circ I_A = I_B \circ f = f$, em que $I_A(a) = a$, $\forall a \in A$ e $I_B(b) = b$, $\forall b \in B$ são as funções identidades.

- 21) Sejam A e B conjuntos e seja f: A \rightarrow B bijetora. Mostre que $f \circ f^{-1} = I_B$ e $f^{-1} \circ f = I_A$.
- 22) Sejam f: $R \rightarrow R$ e g: $R \rightarrow R$ dadas por:

$$f(x)=3x-2$$

$$g(x) = \frac{1}{3}x + 6$$

Encontre:

- a) $f^{-1}(x)$
- b) $q^{-1}(x)$
- c) $(f \circ g)^{-1}(x)$
- d) $(q^{-1} \circ f^{-1})(x)$
- 23) Sejam f: A → B e g: A → B. Prove que $(f \circ g)^{-1}(x) = (g^{-1} \circ f^{-1})(x)$.
- 24) Seja $f^{(n)}$ a composição de ordem n de f consigo mesma, ou seja:

$$f^{(n)} = f \circ f \circ f \circ \dots \circ f$$
n vezes

Prove ou refute, explicando seu raciocínio:

- a) $(g \circ f)^{(2)} = g^{(2)} \circ f^{(2)}$ b) $(f^{-1})^{(n)} = (f^{(n)})^{-1}$
- 25) A melhor maneira de responder a essa questão é com o auxílio de um computador. Responda:
- a) f: R \rightarrow R definida por f(x)=2.8x(1-x) . Considere a sequência f(0.5) , $f^{(2)}(0.5)$, $f^{(3)}(0.5)$, $f^{(4)}(0.5)$, ... Descreva o comportamento a longo prazo desses números.
- b) f: R \rightarrow R definida por f(x)=3.1x(1-x). Considere a sequência f(0.5), $f^{(2)}(0.5)$,
- $f^{(3)}(0.5)$, $f^{(4)}(0.5)$, ... Descreva o comportamento a longo prazo desses números.
- c) f: R \rightarrow R definida por f(x)=3.9x(1-x). Considere a sequência f(0.5), $f^{(2)}(0.5)$, $f^{(3)}(0.5)$, $f^{(4)}(0.5)$, ... Descreva o comportamento a longo prazo desses números.