

OpenBlocks IoT Family Developer Guide

Version 3.3.0

Plat'Home Co., Ltd.

About trademarks

- Linux is a trademark or registered trademark of Linus Torvalds in the United States and/or other countries.
- NTT docomo is registered trademark of Nippon Telegraph and Telephone Corporation.
- The names and logos of SoftBank and SoftBank are registered trademarks or trademarks of SoftBank Group Corporation in Japan and other countries.
- au(KDDI) is registered trademarks or trademarks of KDDI Corporation.
- Company and product names mentioned in this Developer Guide may be trademarks or registered trademarks of their respective companies.
- Product names and other proper nouns in this Developer Guide are trademarks or registered trademarks of their respective companies.
- Docker and Docker logo are trademarks or registered trademarks of Docker, Inc. in the United States and/or other countries. Docker, Inc. and other parties may also have trademark rights in other terms used herein.

■ Before using this product

- No reproduction of this material is allowed without written permission of Plat'Home Co.,
 Ltd.
- Content and information contained within this material may be changed or updated without prior notice.
- We consistently aim to keep the content in this material as precise as possible. However, should any errors in descriptions, etc. be noticed, please contact Plat'Home Co., Ltd.
 The latest version of this material can be downloaded from our website.
- While using this product, please be aware that it is not designed or assumed for use in fields where there is a risk to life.
- Regardless of the aforementioned, in no event will Plat'Home be liable for any special, incidental, indirect or consequential damage arising out of use of this product, including but not limited to damage to profits or loss.

Table of contents

C	hapter 1 General	6
	1-1. Items included in package for VX1	6
	1-2. Names of parts (VX1 main body)	7
	1-3. Items included in package for VX2	9
	1-4. Names of parts (VX2 main body)	. 10
	1-5. Items included in package for BX1	. 13
	1-6. Names of parts (BX1 main body)	. 14
	1-7. Items included in package for BX3	. 15
	1-8. Names of parts (BX3 main body)	. 16
	1-9. Items included in package for EX1	. 17
	1-10. Names of parts (EX1 main body)	. 18
	1-11. Items included in package for BX0	. 21
	1-12. Names of parts (BX0 main body)	. 22
	1-13. Items included in package for BX5	. 23
	1-14. Names of parts (BX5 main body)	. 24
С	hapter 2 Before starting to use the OpenBlocks IoT Family	. 25
	2-1. Product overview	. 25
	2-2 Cautions about SSD-based system development	. 25
	2-3 About SIM cards	. 28
	2-4 eMMC storage partition information	. 28
	2-5 Storage mode	. 30
	2-6. Connecting PC to OpenBlocks IoT Family	. 31
	2-7. WEB UI	. 32
С	hapter 3 Using the OpenBlocks IoT Family	. 33
	3-1. Indication colors of status indicators	. 33
	3-2. Modem control for mobile networks	. 37
	3-3-1. On-demand connections	. 41
	3-3-2. User control of mobile network modem	. 43
	3-4. Backup	. 46
	3-5. Restoration	. 49
	3-6. Applications	. 50
	3-7. Recommended device fileme	. 51
	3-8. Factory Reset (Reset to condition at time of factory shipment)	. 52
	3-9. Recovery startup	. 53
	3-10. Ruild a development environment	54

	3-11. WEB UI extensions	55
	3-11-1. Install extension	55
	3-11-2. Script editing	55
	3-11-3. Command execution	56
	3-11-4. Special setting of WEB UI filter table	57
	3-11-5. Sending SMS messages	57
	3-11-6. Switching operations of LTE module for KDDI	58
	3-11-7. Automatic external storage mounting in WEB UI	58
	3-11-8. Switching boot modes	59
	3-11-9. About GPS information	59
	3-11-10. About Default gateway and DNS server in DHCP	60
	3-12. Docker	60
С	hapter 4 Product specifications	61
	4-1. Open Blocks IoT VX1 main unit specifications	61
	4-2. Open Blocks IoT VX2 main unit specifications	62
	4-3. Options for OpenBlocks IoT VX series	63
	4-3-1. LTE/3G module for SoftBank	63
	4-3-2. LTE module for KDDI	64
	4-3-3. LTE module for NTT docomo and KDDI	64
	4-3-4. BWA module	65
	4-3-5. EnOcean module	65
	4-3-6. Wi-SUNmodule	65
	4-3-7. LoRaWAN module	66
	4-4. Options for OpenBlocks IoT VX1	66
	4-4-1. LTE module for NTT docomo	66
	4-5. Options for OpenBlocks IoT VX2	66
	4-5-1. Built-in battery	66
	4-6. Open Blocks IoT BX1 main unit specifications	68
	4-7. Open Blocks IoT BX3 main unit specifications	70
	4-8. Open Blocks IoT EX1 main unit specifications	72
	4-9. Options for OpenBlocks IoT EX1	73
	4-9-1. 3G module for NTT docomo	73
	4-9-2. 3G module for SoftBank	73
	4-9-3. LTE/3G module for SoftBank	74
	4-9-4. LTE module for KDDI	74
	4-9-5. LTE module for NTT docomo	74

	4-9-6. LTE module for NTT docomo and KDDI	75
	4-9-7. BWA module	7 5
	4-9-8. EnOcean module	76
	4-9-9. Wi-SUNmodule	76
	4-9-10. Built-in battery	76
	4-10. Open Blocks IoT BX0 main unit specifications	78
	4-11. Open Blocks IoT BX1 main unit specifications	79
С	hapter 5 Cautions and supplementary information	81
	5-1. Countermeasures against delays due to script processing	81
	5-2. List of ports used	81

Chapter 1 General

This manual is a developer guide for the OpenBlocks IoT Family.

If a general user, please refer to the OpenBlocks IoT Family WEB UI Set-up Guide.

1-1. Items included in package for VX1

The standard configuration of OpenBlocks IoT VX1 is as follows:

1 x VX1 main body

1 x Start-up Guide

1 x Heat radiation and installation bracket

1 x USB Type-A Micro USB cable

1 x AC adapter

1-2. Names of parts (VX1 main body)

No.	Name	Remarks	
1	USB serial console port	Micro USB Micro-B	
2	2) Wide reason source constraints	6 to 48 VDC supported. (The Rev.1 board supports	
	Wide range power supply input	up to 12 V.)	
3	RS-485 (half duplex) connector		
4	Ethernet port	10BASE-T / 100BASE-TX / 1000BASE-T	
5	USB host mode port	A-Type/USB3.0	
6	AC Adapter input	5VDC	
		RJ-45.	
		The connector to connect the D-Sub9 pin is	
7	RS-232C port	optionally available.	
		A general straight network cable can be used for	
		connection.	
8	Status indicator	The LED lights up or flashes in seven colors.	

No.	Name	Remarks	
	Power switch	Power on and boot the OS.	
9	Power Switch	Shutdown the OS and power off, if during operation.	
10	FUNC switch	OS specified function will work	
10	FUNC SWILCH	See also section 7-2.	
		Slot which you insert the SIM into.	
11)	SIM slot	* The shape of the supported SIM is mini-SIM (2FF)	
		(standards generally called standard SIM).	
		Use the MMC for file exchange, log storage or other	
12	MMC slot	purpose because the MMC cannot ensure sufficient	
		reliability for system operation.	
13	RTC battery holder	Coin type lithium battery (CR2032) connected.	
		Expansion slot for mobile adaptor card for mobile line.	
14)	Expansion slot 1	Attach the mobile adaptor card that supports your carrier.	
		In principle, this is a factory option.	
15	Expansion slot 2	Expansion slot for EnOcean, Wi-SUN module and so on.	
16)	DIP switch	Normally, do not change these settings. They are	
16	DIF SWILCH	configured at the factory.	
17)	External antenna slot	Filled in the image.	
18	Bracket mounting slot		

^{*} To insert the SIM, reverse the VX1 main unit and insert the SIM until the end of the SIM slot. Likewise, reverse the VX1 main unit when removing the SIM.

Modem type identification

Modem type	SW1	SW2	SW3
3G module	ON	OFF	OFF
LTE module for SoftBank	ON	OFF	OFF
LTE module for KDDI	ON	ON	OFF
LTE modul for NTT docomo	ON	OFF	ON
LTE module for KDDI and NTT docomo	OFF	ON	ON
BWA module	OFF	ON	ON
Modem uninstalled	ON	ON	ON

^{*}SoftBank and KDDI and NTT docomo are domestic carrier in Japan

1-3. Items included in package for VX2

The standard configuration of OpenBlocks IoT VX2 is as follows:

1 x VX2 main body

1 x Start-up Guide

1 x Heat radiation and installation bracket

1 x USB Type-A Micro USB cable

1 x AC adapter

1-4. Names of parts (VX2 main body)

No.	Name	Remarks
1	USB serial console port	Micro USB Micro-B
2	Ethernet port 0	10BASE-T / 100BASE-TX / 1000BASE-T
3	Ethernet port 1	10BASE-T / 100BASE-TX / 1000BASE-T
	Power switch	Shuts down OS if in operation.
4	Power Switch	Starts up OS if not in operation.
5	FUNC switch	Enables allocated function.
6	Status indicator	LEDs illuminate or flash in seven colors.
7	RS-485 (half duplex) connector	
	Wide range power supply input	6 to 48 VDC supported. (The Rev.1 board supports
0		up to 12 V.)
9	AC Adapter input	5VDC
10	USB host mode port	A-Type/USB3.0
(1)	FUNC switch	Enables allocated function.

No.	Name	Remarks
12	Power switch	Shuts down OS if in operation.
		Starts up OS if not in operation.
13	Status indicator	LEDs illuminate or flash in seven colors.
14)	SIM slot	Slot to insert SIM card.
		*Supports mini-SIM card format (2FF) (standard SIM)
15	MMC slot	As MMC cards cannot secure sufficient reliability for
		system operations, use them for file exchanges and log
		storage only.
16	Expansion slot 2	Expansion slot for EnOcean, Wi-SUN and other
		modules.
17)	Expansion slot 1	Expansion slot of mobile adapter card for mobile
		networks.
		A mobile adapter card supporting carrier To be use is
		mounted. Essentially, this is a factory option.
18	DIP switch	As this switch is set before factory shipment, do not alter
		the settings.
		SW1-3: For modem identification
		SW4-5: Not used
		SW6: OFF=RS485 terminator ON (default)
19	External antenna slot	Holes are unopened in image.
20	Bracket mounting slot	

^{*}To insert a SIM card, turn the VX2 main body upside down and insert into the back of the slot. Similarly, to remove a SIM card, turn the VX2 main body upside down and extract the card.

Modem type identification

Modem type	SW1	SW2	SW3
3G module	ON	OFF	OFF
LTE module for SoftBank	ON	OFF	OFF
LTE module for KDDI	ON	ON	OFF
LTE modul for NTT docomo	ON	OFF	ON
LTE module for KDDI and NTT docomo	OFF	ON	ON
BWA module	OFF	ON	ON
Modem uninstalled	ON	ON	ON

^{*}SoftBank and KDDI and NTT docomo are domestic carrier in Japan

1-5. Items included in package for BX1

The standard configuration of OpenBlocks IoT BX1 is as follows:

BX1 main unit x 1

User's Guide x 1

USB power console cable x 1

1-6. Names of parts (BX1 main body)

No.	Name	Remarks
		Press this switch to halt the OS.
		(This is the same operation as when you hold down
1	Power switch	the FUNC switch for 4 or more seconds.)
		Hold down this switch for 8 or more seconds to
		forcibly turn off the power.
	FLINC quitab	Enables allocated function.
2	FUNC switch	Some units are printed with INIT.
3	Status indicator	The LED lights up or flashes in seven colors.
		Connector that supports a variety of IOs.
4	BX1 connector	The cable for each IO can be connected to this
		connector.
		Slot which you insert the SIM with the 3G line for NTT
6	CIM alat	docomo contract into.
5	SIM slot	*The shape of the supported SIM is mini-SIM (2FF)
		(standards generally called standard SIM).

^{*}Insert the SIM all the way using a coin or other tool with the connector side face upward. To remove the SIM, further push it to the end of the SIM slot using a coin. The SIM is unlocked and pops out.

^{*}NTT docomo is domestic carrier in Japan.

1-7. Items included in package for BX3

The standard configuration of OpenBlocks IoT BX3 is as follows:

BX3 main unit x 1

User's Guide x 1

USB power console cable x 1

1-8. Names of parts (BX3 main body)

No.	Name	Remarks
		Press this switch to halt the OS.
		(This is the same operation as when you hold down
1	Power switch	the FUNC switch for 4 or more seconds.)
		Hold down this switch for 8 or more seconds to
		forcibly turn off the power.
	FUNC quitch	Enables allocated function.
2	FUNC switch	Some units are printed with INIT.
3	Status indicator	The LED lights up or flashes in seven colors.
		Connector that supports a variety of IOs.
4	BX1 connector	The cable for each IO can be connected to this
		connector.
		Slot which you insert the SIM with the 3G line for
	OIM	SoftBank contract into.
5	SIM slot	*The shape of the supported SIM is mini-SIM (2FF)
		(standards generally called standard SIM).

^{*}Insert the SIM all the way using a coin or other tool with the connector side face upward. To remove the SIM, further push it to the end of the SIM slot using a coin. The SIM is unlocked and pops out.

^{*}SoftBank is domestic carrier in Japan.

1-9. Items included in package for EX1

The standard configuration of OpenBlocks IoT EX1 is as follows:

1 x EX1 main body

User's Guide x 1

1 x USB Type-A Micro USB cable

$1 \hbox{-} 10$. Names of parts (EX1 main body)

No.	Name	Remarks
①	LICE and a second	Micro USB Micro-B.
	USB serial console port	USB serial console port that supports bus power.
2	AC adapter input	5VDC
3	RS-485 (half duplex) connector	
4	Ethernet port	10BASE-T / 100BASE-TX
5	Status indicator 1	The LED lights up or flashes in seven colors.
		Press this switch to halt the OS.
		(This is the same operation as when you hold
6	Power switch 1	down the FUNC switch for 4 or more seconds.)
		Hold down this switch for 8 or more seconds to
		forcibly turn off the power.
(7)	FUNC switch 1	Enables allocated function.
	FUNC SWILCH I	Some units are printed with INIT.
8	USB host mode port	A-Type/USB2.0

No.	Name	Remarks
		RJ-45.
		The connector to connect the D-Sub9 pin is optionally
9	RS-232C port	available.
		A general straight network cable can be used for
		connection.
10	Status indicator 2	Same as Status indicator 1
11)	Power switch 2	Same as Power switch 1
12	FUNC switch 2	Same as FUNC switch 1
		Slot which you insert the SIM into.
13	SIM slot	* The shape of the supported SIM is mini-SIM (2FF)
		(standards generally called standard SIM).
		Use theMMC for file exchange, log storage or other
14)	MMC slot	purpose because the MMC cannot ensure sufficient
		reliability for system operation.
(15)	Expansion slot 1	Expansion slot for EnOcean, Wi-SUN module and so
	Expansion slot i	on.
		Expansion slot for mobile adaptor card for mobile line.
16	Expansion slot 1	Attach the mobile adaptor card that supports your
		carrier. In principle, this is a factory option.
		Normally, do not change these settings. They are
		configured at the factory.
		SW1: Always ON
		SW4: -
		SW6: OFF=RS485 terminator ON (default)
17)	DIP switch	Model number : OBSEX1
		SW2/SW3 : For modem type identification
		SW5: OFF=Use RS-232C (default),
		ON=Use RS-485
		Model number : OBSEX1G
		SW2/SW3/SW5 : For modem type identification
18	RTC battery holder	Coin type lithium battery (CR2032) connected.
19	External antenna slot	Filled in the image.
20	Wide range power supply	6 to 48 VDC supported. (The Rev.1 board supports up
	input	to 12 V.)

* To insert the SIM, reverse the VX1 main unit and insert the SIM until the end of the SIM slot. Likewise, reverse the VX1 main unit when removing the SIM.

Modem type identification

Model	Modem type	SW2	SW3	SW5
number				
	3G module	OFF	OFF	-
	LTE/3G module for SoftBank	OFF	OFF	-
OBSEX1	LTE module for KDDI	ON	OFF	-
	LTE module for NTT docomo	OFF	ON	-
	Modem uninstalled	ON	ON	-
	3G module	OFF	OFF	OFF
	LTE/3G module for SoftBank	OFF	OFF	OFF
	LTE module for KDDI	ON	OFF	OFF
OBSEX1G	LTE module for NTT docomo	OFF	ON	OFF
	LTE module for KDDI and NTT docomo	ON	OFF	ON
	BWA module	ON	OFF	ON
	Modem uninstalled	ON	ON	OFF

^{*}SoftBank and KDDI and NTT docomo are domestic carrier in Japan

1-11. Items included in package for BX0

The standard configuration of OpenBlocks IoT BX0 is as follows:

BX0 main unit x 1

User's Guide x 1

USB power console cable x 1

1-12. Names of parts (BX0 main body)

No.	Name	Remarks
		Press this switch to halt the OS.
		(This is the same operation as when you hold down
1	Power switch	the FUNC switch for 4 or more seconds.)
		Hold down this switch for 8 or more seconds to
		forcibly turn off the power.
(a)	FUNC switch	Enables allocated function.
2	2) FUNC SWITCH	Some units are printed with INIT.
3	Status indicator	The LED lights up or flashes in seven colors.
		Connector that supports a variety of IOs.
4	BX1 connector	The cable for each IO can be connected to this
		connector.

1-13. Items included in package for BX5

The standard configuration of OpenBlocks IoT BX5 is as follows:

BX5 main unit x 1

User's Guide x 1

USB power console cable x 1

1-14. Names of parts (BX5 main body)

No.	Name	Remarks
		Press this switch to halt the OS.
		(This is the same operation as when you hold down
1	Power switch	the FUNC switch for 4 or more seconds.)
		Hold down this switch for 8 or more seconds to
		forcibly turn off the power.
	FLINC quitab	Enables allocated function.
(2)	② FUNC switch	Some units are printed with INIT.
3	Status indicator	The LED lights up or flashes in seven colors.
		Connector that supports a variety of IOs.
4	BX1 connector	The cable for each IO can be connected to this
		connector.
		Slot which you insert the SIM with the LTE line for
	0114	KDDI or NTT docomo or BWA contract into.
5	SIM slot	*The shape of the supported SIM is mini-SIM (2FF)
		(standards generally called standard SIM).

^{*}Insert the SIM all the way using a coin or other tool with the connector side face upward. To remove the SIM, further push it to the end of the SIM slot using a coin. The SIM is unlocked and pops out.

^{*}KDDI and NTT docomo are domestic carrier in Japan

Chapter 2 Before starting to use the OpenBlocks IoT Family

2-1. Product overview

The OpenBlocks IoT Family is a general-purpose server product employing Debian GNU/Linux as an OS. Though customized to take advantage of hardware properties, it is possible to use the OpenBlocks IoT Family in a general operational method for Debian and other Linux products, apart from such customization.

2-2 Cautions about SSD-based system development

In recent times, cost reductions in flash memories have led to the employment of Solid State Drives ("SSD"), replacing conventional hard disk drives used in smartphones, laptop PCs and many other devices. This product uses embedded MMC (eMMC), which is a type of SSD.

With advantages such as high-speed random access performance and solid-state design, SSD has extremely high resistance against mechanical failures and environmental performance. However, compared to hard disk drives, the data writing limit is a lot less.

SSD can generally be divided into SLC and MLC. The SLC type with tens of thousands of counts of write performance was the mainstream in the capacity range of a few gigabytes, but the low-cost MLC with a write count of thousands has drastically increased capacity and is applied to smartphones and PCs. Currently, SLC SSDs are gradually being faded out. In actual fact, SLC products as options for our micro-servers only remain in the range of small capacity products.

Thus, the number of operations with micro-servers using MLC SSD is enormous.

Generally, MLC has a write capability of 3,000 times. Just beyond 3,000 times, it starts to cause bit errors, which can be recovered with ECC.

As soon as MLC exceeds the limit for an ECC recovery, read errors will be caused.

Therefore, consider system design to avoid MLC being in this condition.

Write count per cell and block size of flash memory

Despite a write capacity of 3,000 times per cell, just one byte of writing onto an SSD means one count.

To support large capacity with a small number of address lines, recent flash memory is read and written in a block as large as 512 KB.

In other words, writing one byte or 512 KB is counted once.

For this reason, in relation to writing on SSD, it is possible to minimize the number of write counts on SSD by writing in large data sizes through accumulating as much data as possible in a buffer, as opposed to writing in small data sizes with more counts.

Wear leveling function

As SSD can endure only a relatively small number of write cycles in a specific block, it will average the number of writes so that the writes do not concentrate on the same actual block address against actions to write onto the same block over and over.

This is achieved by virtualizing block addresses.

OS will notify used and unused blocks to SSD. In order to be ready for a next write to be performed, SSD will prepare a block with the smallest number of writes for a write.

By doing so, the number of writes to individual blocks are consequently averaged out.

Static wear leveling

In the case of conventional wear leveling, it is assumed that 50% of data is in a used domain and rarely rewritten. This means that since installation of OS, 50% of available blocks are written only once. While these blocks are virtually new, the remaining 50% are rewritten over and over. Compared to the case where rewriting is averaged, the end life for SSD comes twice as fast.

As a countermeasure to this, static wear leveling was devised. Data in rarely rewritten blocks are moved to frequently rewritten blocks, while applying blocks that are virtually new to a domain for reuse.

By doing so, even if 50% of blocks are rarely written, the life of SSD is almost fully exploited.

Assuming total write cycles of SSD

For example, supposing there is a 4-gigabyte SSD using 512 KB blocks and 3,000 write cycles per cell available. If writing data of 512 KB or less, we can assume that the total number of write cycles of SSD is as follows:

4,294,967,296 Bytes ÷ 524,288 Bytes = 8,192 (4 GB ÷ 512 KB)

Number of physical blocks is 8,192.

If each of them are rewritten 3,000 times:

 $8,192 \times 3,000 = 24,576,000 \text{ times}$

In other words, if writing one-byte data per time, the life will end when writing 18.4MB. (Actually, SSD promotes efficiency of such writes). Furthermore, if assuming that for writes of 512 KB in size, a block segment does not overlap the border of 512 KB, it will be one write, whereas in fact, file access by OS may start writing in the middle of the block, so even if a write of 512 KB or less is written twice with a 50% probability. i.e.

24,576,000 times x 75% = 18,432,000 times (Only 512 KB writes are assumed here).

Furthermore, with access from OS, one more write cycle is added.

This is due to the fact that updating a file control block in the file closing process will result in at least one rewrite.

Of course, SSD further reduces the number of write cycles by, for example, using cache, but basically, this is the mechanism for processing.

•Use an SSD that is as large as possible

For example, the above-mentioned 4-gigabyte SSD has 8,192 blocks, but if there is a 8-gigabyte SSD, it has 16,384 blocks, which is twice that of a 4-gigabyte SSD. Simply put, the number of write cycles is twice.

If SSDs have the same block size, the number of write cycles will simply increase in proportion to the size.

For this reason, by using an SSD as large in size as possible, it will resist against problems caused by an increasing number of writes.

Reducing the number of writes to SSD by using tmpfs

In a Linux system, system development without due consideration will assume that storage can be used as a device that can be used infinitely.

Even if no data storage is required, storage domain will be carelessly used as a buffer for operation.

To avoid reducing the life of SSD for such a reason, give due consideration to system design

so that the storage necessary for operation processes are stored in tmpfs as much as possible.

In addition, open source software frequently uses a storage domain secured for its use as a temporary storage area. In this case, and as a countermeasure, that file is linked to a domain in tmpfs.

Log

It is general practice with a Linux system to keep a log in storage for everything. However, if there is a process that records logs on a very frequent basis, contrivances such as writing in tmpfs first and then moving logs to SSD periodically are recommended.

Though such countermeasures cannot respond to a sudden blackout, due consideration should be given to whether one regards this as a trade-off or to send logs to a system log server equipped with UPS.

2-3 About SIM cards

SIM cards that can be mounted onto OpenBlocks IoT Family are in a mini-SIM (2FF) format. If there is a need to use micro-SIM or nano-SIM cards, use an adapter that can fix a SIM card with a fall-preventing film and adhesive tape. Please note that any damage to the SIM slot while a SIM adapter is used will be subject to repair on an at-cost basis.

2-4 eMMC storage partition information

Partition information of eMMC used for this product is as follows:

•In the OpenBlocks IoT VX1

Number	Format	Size	OBS application	Device name
1	fat16	1.5 GB	Boot filesystem	mmcblk0p1
2	ext4	6.5 GB	Primary filesystem	mmcblk0p2

•In the OpenBlocks IoT VX2

Number	Format	Size	OBS application	Device name
1	fat16	1.5 GB	Boot filesystem	mmcblk0p1
2	ext4	30.5 GB	Primary filesystem	mmcblk0p2

•In the OpenBlocks IoT BX and EX series

Number	Format	Size	OBS application	Device name
1	-	1MB	u-boot for normal boot	mmcblk0p1
2	-	2MB	u-boot for normal boot Environment variable	mmcblk0p2
3	-	1MB	u-boot for recovery boot	mmcblk0p3
4	-	2MB	u-boot for recovery boot Environment variable	mmcblk0p4
5	ext2	1MB	Serial number and MAC address, etc.	mmcblk0p5
6	-	1MB	For saving kernel panic messages	mmcblk0p6
7	fat16	210MB	Filesystem for normal boot mmcblk0p7	
8	ext4	105MB	Backup area mmcblk0p8	
9	fat16	210MB	Filesystem for recovery boot mmcblk0p9	
10	ext4	3351MB	Primary filesystem mmcblk0p10	

2-5 Storage mode

Operation is conducted by referring to basic user land data from eMMC. Should an unexpected power interruption occur, there is a risk of damage to files in physical storage, but for Docker and other applications, data in storage are referenced by unionfs, thereby securing normal operation. (Docker will not work on OpenBlocks IoT BX and EX series) Damage to files by a sudden power interruption mainly happen to files into which data is being written. For this reason, it is recommended that to reduce any influence on OS, files that are normally written should be limited to log files or such like.

*Execution results of mount command

root@obsiot:/var/webui/docroot# mount /dev/mmcblk0p2 on / type ext4 (rw,relatime,data=ordered) devtmpfs on /dev type devtmpfs (rw,relatime,size=956312k,nr_inodes=239078,mode=755) sysfs on /sys type sysfs (rw,nosuid,nodev,noexec,relatime) proc on /proc type proc (rw,nosuid,nodev,noexec,relatime) securityfs on /sys/kernel/security type securityfs (rw,nosuid,nodev,noexec,relatime) tmpfs on /dev/shm type tmpfs (rw,nosuid,nodev) devpts on /dev/pts type devpts (rw,nosuid,noexec,relatime,gid=5,mode=620,ptmxmode=000) tmpfs on /run type tmpfs (rw,nosuid,nodev,mode=755) tmpfs on /run/lock type tmpfs (rw,nosuid,nodev,noexec,relatime,size=5120k) tmpfs on /sys/fs/cgroup type tmpfs (ro,nosuid,nodev,noexec,mode=755) cgroup on /sys/fs/cgroup/systemd type cgroup (rw,nosuid,nodev,noexec,relatime,xattr,release_agent=/lib/systemd/systemd-cgroups-agent,name=systemd) cgroup on /sys/fs/cgroup/freezer type cgroup (rw,nosuid,nodev,noexec,relatime,freezer) cgroup on /sys/fs/cgroup/memory type cgroup (rw,nosuid,nodev,noexec,relatime,memory) cgroup on /sys/fs/cgroup/cpuset type cgroup (rw,nosuid,nodev,noexec,relatime,cpuset) cgroup on /sys/fs/cgroup/perf_event type cgroup (rw,nosuid,nodev,noexec,relatime,perf_event) cgroup on /sys/fs/cgroup/pids type cgroup (rw,nosuid,nodev,noexec,relatime,pids) cgroup on /sys/fs/cgroup/devices type cgroup (rw,nosuid,nodev,noexec,relatime,devices) cgroup on /sys/fs/cgroup/blkio type cgroup (rw,nosuid,nodev,noexec,relatime,blkio) cgroup on /sys/fs/cgroup/net_cls,net_prio type cgroup (rw,nosuid,nodev,noexec,relatime,net_cls,net_prio) cgroup on /sys/fs/cgroup/cpu,cpuacct type cgroup (rw,nosuid,nodev,noexec,relatime,cpu,cpuacct) cgroup on /sys/fs/cgroup/debug type cgroup (rw,nosuid,nodev,noexec,relatime,debug) systemd-1 on /proc/sys/fs/binfmt_misc type autofs (rw,relatime,fd=37,pgrp=1,timeout=0,minproto=5,maxproto=5,direct) mqueue on /dev/mqueue type mqueue (rw,relatime) debugfs on /sys/kernel/debug type debugfs (rw,relatime) tmpfs on /tmp type tmpfs (rw,relatime)

2-6. Connecting PC to OpenBlocks IoT Family

The OpenBlocks IoT Family and a PC are connected via an accessory USB cable.

The OpenBlocks IoT VX series must be supplied with power via an AC adapter or a wide-range power supply input.

In the case of a Windows PC, connection to a USB port will automatically install a USB serial driver (if Windows PC is connected to an Internet environment).

After completing installation of driver, it is possible to make serial port connections via terminal software such as TeraTerm and PuTTY.

Default communication parameters of serial port on OpenBlocks IoT Family are as follows:

Communication speed: 115,200 bps

Data length: 8-bit

Parity: None

Stop bit: 1-bit

When the startup process is completed after establishing communication, a login prompt will be displayed. With default root privileges, start the login process.

Login: root

Password: 0BSI0T

*The above password is a default password. If the password has been changed via WEB UI, please use password already set.

2-7. WEB UI

To enable basic system setup, this system is installed with WEB UI.

Use WEB UI to set up networks and control mobile networks.

In addition, WEB UI enables various functions to be added. Please refer to the WEB UI Set-up Guide for basic use, etc. For functions added, refer to corresponding manuals.

Chapter 3 Using the OpenBlocks IoT Family

The OpenBlocks IoT Family is a general-purpose server product employing Debian GNU/Linux.

The OpenBlocks IoT Family can be used in the same way as with a regular Debian product. This Chapter describes information that is particular to the OpenBlock IoT Family.

3-1. Indication colors of status indicators

The LEDs at the front of the OpenBlocks IoT Family product illuminate in seven colors with a combination of RGB colors. For each color, flashing, etc. is controlled by script.

When WEB UI is employed, the specifications for default LED illuminations are as follows:

Status	Color	Illumination	Remarks
		status	
			After completing startup of the main body and OS,
Main hady and OS in appration	Yellow	Illuminating	the unit will begin to check for signal reception in
Main body and OS in operation	reliow	illummating	the mobile network.
			*Flashes green if no SIM card is inserted.
			Normal operation without a SIM card or in a waiting
When the SIM slot is unused	Green	Flashing	status before changing over to waiting for signal
			reception
Mobile network signal: Strong	White	Flashing	Refer to "Details of signal status"
Makila naturali aimal Madirus	Light	Floobing	Refer to "Details of signal status"
Mobile network signal: Medium	blue	Flashing	
			Refer to "Details of signal status"
			*Communication at this field intensity may cause
Mobile network signal: Weak	Blue	Flashing	frequent retrials. Therefore, if a mobile network is
			used, use the unit with a medium field strength or
			better.
Mobile network signal: No signal	Purple	Flashing	Refer to "Details of signal status"
			Alternately flashes with the status indicator
When the function is enabled by FUNC button	Yellow	Flashing	displaying that the mobile network or SIM slot is not
			used.
Terminating OS	Yellow	Illuminated	

Status	Color	Illumination	Remarks
		status	
			This indication is shown when initial access to
Initial trial to access AirManage failed	Red	Illuminated	AirManage remote control server has failed. If no
			WEB UI is used, the OS will terminate in 5 minutes.
	Red	Illuminated	This will be displayed when the force SIM mode is
When failed to recognized			enabled on the modem installed model and the
modemo's device file or SIM			modem's device file does not exist or the SIM card
card in force SIM mode.			can not be recognized at startup. The OS restarts
			in 5 minutes.
OS shutdown due to failed to recognized SIM card or AirManage	Red	Illuminated	

*Details of signal status

HW / Modem type	Signal: Strong	Signal: Medium	Signal: Weak	Signal: No signal	
BX1	-87dBm or higher	-88 to -108dBm	-109 to -112dBm	-113dBm or lower	
BX3	-87dBm or higher	-88 to -108dBm	-109 to -112dBm	-113dBm or lower	
BX5 with 3G	3/3	2/3	1/3	0	
BX5 with LTE	-95dbm or higher	-95.1 to -105dBm	-105.1 to -120dBm	-120.1dBm or lower	
3G module	-87dBm or higher	-88 to -108dBm	-109 to -112dBm	-113dBm or lower	
for NTT docomo		-86 to -106dBill	-109 to -1120biii	-113dBill of lower	
3G module	-87dBm or higher	-88 to -108dBm	-109 to -112dBm	-113dBm or lower	
for SoftBank	-67dBill of fligher	-00 to -100dBill	-109 to -112abiii	-113dBill of lower	
LTE/3G module	-87dBm or higher	-88 to -108dBm	-109 to -112dBm	-113dBm or lower	
for SoftBank	-67dBill of fligher	-00 to -100dBill	-109 to -112abiii	-113dBill of lower	
LTE module	5/5	4/5 or 3/5	2/5 or 1/5	0	
for KDDI	3/3	4/3 01 3/3	2/3 01 1/3	O	
LTE module	3/3	2/3	1/3	0	
for NTT docomo	3/3	2/3	1/3	U	
LTE module					
for KDDI and NTT	3/3	2/3	1/3	0	
docomo with 3G					
LTE module					
for KDDI and NTT	-95dbm or higher	-95.1to -105dBm	-105.1 to -120dBm	-120.1dBm or lower	
docomo with LTE					
BWA module	-95dbm or higher	-95.1 to -105dBm	-105.1 to -120dBm	-120.1dBm or lower	

^{*}SoftBank and KDDI and NTT docomo are domestic carrier in Japan

*Method for decisioning radio wave condition

Modem type	Line	Method
BX1 (3G)	3G	Decision by RSSI
BX3 (3G))	3G	Decision by mapping value of RSCP
DVE (LTE/2C)	3G	Decision by ECIO and RSCP
BX5 (LTE/3G)	LTE	Decision by RSRP
3G module for NTT docomo	3G	Decision by mapping value of RSCP
3G module for SoftBank	3G	Decision by mapping value of RSCP
LTE/3G module for SoftBank	3G	Decision by mapping value of RSCP
ETE/3G Module for Softballk	LTE	Decision by mapping value of RSRP
LTE module for KDDI	LTE	Decision by modem module
LTE module for NTT docomo	LTE	Decision by modem module
LTE module for KDDI and NTT 3G		Decision by ECIO and RSCP
docomo	LTE	Decision by RSRP
BWA module	LTE	Decision by RSRP

^{*}SoftBank and KDDI and NTT docomo are domestic carrier in Japan

LED illumination control script when WEB UI is used /var/webui/bin/set_signal_value.sh /var/webui/scripts/led_updater.sh

LED control

To change indication colors and illumination statuses of LEDs, edit /tmp/.runled file.

Please note that when a SIM card is inserted while using WEB UI, it will work with the field strength, regularly updating this file. For this reason, to intentionally change this file, stop using WEB UI or terminate the script to control LED illumination.

Line	Setting description	Remarks
1st line	Illumination #1 hours (msec)	1 or more
2nd line	Illumination #2 hours (msec)	1 or more
3rd line	Illumination #1 color	Refer to table below.
4th line	Illumination #2 color	Refer to table below. (If omitted: 0)

Color #	Color
0	Not illuminated
1	Red
2	Green

Color #	Color
3	Yellow
4	Blue
5	Purple
6	Light blue
7	White
Out of range	Not illuminated

*Yellow flash every second

echo -e "1000\u00e4n1000\u00e4n3" > /tmp/.runled

*Yellow and green flash alternately every second

echo -e "1000\u00e4n1000\u00e4n3\u00e4n2" > /tmp/.runled

3-2. Modem control for mobile networks

A tool to check the power ON/OFF state of module installed in this unit and radio wave state is provided.

Command name: atcmd

Startup method 1: atcmd [Command]

Startup method 2: atcmd [Command 1] [Command 2] [Command 3]

Startup method 3: atcmd -d [Device file] [Command]

As shown in Startup method 2, it is possible to list commands and execute them in sequence.

As shown in Startup method 3, it is also possible to designate a device file to use and execute it.

Command	Function	Remarks
PON	Turn the modem ON	
POFF	Turn the modem OFF	
PRST	Modem reboot	Software reset
		(Partial hardware reset)
HRST	Modem reboot	Hardware reset
SMONI	Obtain radio wave strength	BX1 only
CSQ	Obtain radio wave strength	In the LTE module for NTT docomo and KDDI
		and the BWA module, it is impossible to obtain
		the correct radio field intensity.
SIND	Time acquisition from the base	BX1 only
	station	
CCLK	Time acquisition from the base	BX3 only
	station	
CCID	Obtain SIM number	
CTZU 1	Automatically obtain time zone	Only for models other than LTE module for NTT
		in BX 1 and EX, VX series
		*With a space
ATI	Obtain modem type number	
CGSN	Obtain modem serial number	

^{*}KDDI and NTT docomo are domestic carrier in Japan

Commands to be assigned as per the above content.

*Turn the modem ON, obtain SIM number, turn the modem OFF

```
# atcmd PON CCID POFF

Xxxxxxxxxxxxxx
```

*Turn the modem ON, obtain radio wave strength, turn the modem OFF

```
# atcmd PON CSQ POFF
-86
```

When constantly obtaining radio wave status, WEB UI will occupy the device file. For this command, designate a device file not used by WEB UI and execute it. In an environment or user control not using WEB UI, this restriction will not apply.

Please note that depending on module in use, the device files that can be used by atcmd will differ.

●BX1

Device file	Can atcmd be used?
/dev/ttyACM0	Yes
/dev/ttyACM1	No
/dev/ttyACM2	No
/dev/ttyACM3	Yes
/dev/ttyACM4	Yes
/dev/ttyACM5	No
/dev/ttyACM6	No

•BX3

Device file	Can atcmd be used?
/dev/ttyACM0	Yes
/dev/ttyACM1	Yes
/dev/ttyACM2	Yes
/dev/ttyACM3	No
/dev/ttyACM4	No
/dev/ttyACM5	No
/dev/ttyACM6	No

●BX5

Device file	Can atcmd be used?
/dev/ttyACM0	Yes
/dev/ttyACM1	No
/dev/ttyACM2	No
/dev/ttyACM3	Yes
/dev/ttyACM4	No

•LTE/3G module for SoftBank in EX and VX serise

Device file	Can atcmd be used?
/dev/ttyACM0	Yes
/dev/ttyACM1	Yes
/dev/ttyACM2	Yes
/dev/ttyACM3	No
/dev/ttyACM4	No
/dev/ttyACM5	No
/dev/ttyACM6	No

^{*}SoftBank is domestic carrier in Japan

•LTE module for KDDI in EX and VX serise

Device file	Can atcmd be used?
/dev/ttyACM0	Yes

^{*}KDDI is domestic carrier in Japan

•LTE module for NTT docomo in EX and VX serise

Device file	Can atcmd be used?
/dev/ttyACM0	Yes
/dev/ttyACM1	Yes

^{*}NTT docomo is domestic carrier in Japan

•LTE module for NTT docomo and KDDI in EX and VX serise

Device file	Can atcmd be used?
/dev/ttyACM0	Yes
/dev/ttyACM1	No
/dev/ttyACM2	No
/dev/ttyACM3	Yes
/dev/ttyACM4	No

^{*}NTT docomo and KDDI are domestic carrier in Japan

•BWA module in EX and VX serise

Device file	Can atcmd be used?
/dev/ttyACM0	Yes
/dev/ttyACM1	No
/dev/ttyACM2	No
/dev/ttyACM3	Yes
/dev/ttyACM4	No

3-3. Mobile network connection

It can control the mobile line's modem using the **Service network (Mobile line)** menu in the **[Network]-[Basic]** tab in WEB UI.

The OpenBlocks IoT Family supports a method to make a connection to mobile networks whenever necessary through control by WEB UI (On-demand connections), and a method to make a connection by the user fully excluding control by the modem.

3-3-1. On-demand connections

Press the [Network]-[Basic] tab and enter necessary information for mobile network connections.

Following information is required:

- APN (There is no item for LTE module for KDDI) .
- Username
- Password
- · Authentication method
- Automatic connection: Choose "Not automatic connection."
- Host for communication confirmation
- Periodic re-connection settings
- · Mobile network reconnection times
- SMS control(There is no item for LTE module for KDDI)

*Enable this item only when it is used.

Press the Save button and reboot the unit to reflect changes to mobile network modem.

To connect/disconnect to a mobile network at on-demand, use the following commands. The number "1" on the command line below assumes on-demand connection. When "0" is specified, it is always connected to hold connection.

Connection to a mobile network

```
# /var/webui/scripts/mobile_control.sh con 1
```

•Disconnection from a mobile network

```
# /var/webui/scripts/mobile_control.sh coff 1
```

Below is a sample of a combination of the above commands, meaning:

- 1. Connect to mobile network.
- 2. Execute ping command to DNS server.
- 3. Disconnect from mobile network.

```
#!/bin/bash
echo "#-----#"
echo "# Connect (`date`)"
echo "#------#"
/var/webui/scripts/mobile_control.sh con 1
sleep 2
echo ""
echo "#-----#"
echo "# Command Exec (`date`)"
echo "#-----#"
ping -c 3 8.8.8.8
echo ""
echo "#-----#"
echo "# Disconnect (`date`)"
echo "#------#"
/var/webui/scripts/mobile_control.sh coff 1
sleep 2
exit 0
```

3-3-2. User control of mobile network modem

Press the [Network]-[Basic] tab and set up necessary information for mobile network connections. Note that the LTE module does not support this function.

Information set up via WEB UI can be reflected upon modem using the following command:

Command to reflect modem settings

/var/webui/scripts/setapn.sh

Config. files used by command to reflect modem settings are as follows:

Config. files to reflect modem settings

/var/webui/config/ppp0_device.sh
/var/webui/upload_dir/modem.sh

If further changes have been made to setting information, it is possible to overwrite information by creating and setting the file below:

File to overwrite information

/var/webui/upload_dir/user_modem.sh

Description of variables

Variable	Description	Remarks
modem_ppp0_apn	APN	
modem_ppp0_user	Username	
modem_ppp0_pass	Password	
modem_ppp0_authtype	Authentication	PAP or CHAP
	method	
modem_ppp0_provier	Provider name	To be designated by
		PON/POFF command
DEVICE_CONNECT	Device file for mobile	Will be /dev/ttyACM[0-9]*.
	network connections	
DEVICE_SETTING	Device file for mobile	Will be /dev/ttyACM[0-9]*.
	network connections	

Sample settings

```
modem_ppp0_apn="iixxxx.jp"

modem_ppp0_user="test@iixxxx"

modem_ppp0_pass="xxxx"

modem_ppp0_authtype="PAP"

modem_ppp0_provier="usermobile"
```

With each of the following commands, can connect to or disconnect from mobile network.

Command for mobile network connection

pon <modem_ppp0_provier>

•Command for mobile network disconnection

poff <modem_ppp0_provier>

*<modem_ppp0_provier> is set up by a variable. If not changed by user_modem.sh, it will be "mobile."

•To obtain radio wave strength, etc., use atcmd. Cannot obtain information from a device file connected to the network.

•If default gateway has been set up before connection to a mobile network, it will not be reflected at the time of connection. For this reason, open the default gateway before making connection to mobile network.

After disconnecting from mobile network, the default gateway will remain open. For this reason, to separately access an Internet environment, etc. set up the default gateway.

3-4. Backup

When customizing the filesystem etc, It can back up the file system that will be booted as Normal boot mode, to TGZ format file in following.

◆For OpenBlocks IoT VX series

1. Rebooting the unit

```
# sync
# reboot
```

2. Startup in emergency boot mode

For the OpenBlocks IoT VX series, choose "Emergency boot" from the GRUB screen at the time of startup.

```
GNU GRUB version 0.97 (252K lower / 523264K upper memory)

| O OBS IoT VX - Normal boot | X OBS IoT VX - WebUI init boot | X OBS IoT VX - Factory Image | X
```

3. Deletion of unnecessary data and backup

```
obsiot login: root
Password: root

# mount /dev/mmcblk0p2 /mnt
    *Delete files particular to hardware, etc. below /mnt. BT information is deleted.

# rm -rf /mnt/var/lib/bluetooth/*

# cd /mnt

# tar --exclude=lost+found --exclude=<tgz filename> -cpzf <tgz filename> .
```

/mnt/<tgz filename> will be a backed up file.

Caution:

Under the /var/lib/bluetooth/ directory, information particular to hardware is included. It is recommended to delete intermediate files during programming.

◆For OpenBlocks IoT BX and EX series

1. Startup by recovery boot

On the OpenBlocks IoT BX and EX series, the u-boot prompt is displayed by key input during u-boot startup at startup. At the u-boot prompt, you can execute commands to start with the recovery filesystem and start up in the RAM disk mode.

```
*********
PSH KERNEL VERSION: b0182727
               WR: 20104000
SCU IPC: 0x800000d0 0xfffce92c
PSH miaHOB version: TNG.B0.VVBD.0000000c
microkernel built 23:15:13 Apr 24 2014
****** PSH loader ******
PCM page cache size = 192 KB
Cache Constraint = 0 Pages
Arming IPC driver ..
Adding page store pool ..
PagestoreAddr(IMR Start Address) = 0x04899000
pageStoreSize(IMR Size) = 0x00080000
*** Ready to receive application ***
U-Boot 2014.04 (Oct 14 2014 - 15:19:04)
      Watchdog enabled
DRAM: 980.6 MiB
MMC:
       tangier_sdhci: 0
```

```
In: serial
Out: serial
Err: serial
Hit any key to stop autoboot: 0 *key input here
boot > run bootRecovery
```

2. Deletion of unnecessary data and backup

```
obsiot login: root
Password:root

# mount /dev/mmcblk0p10 /mnt

*Delete hardware specific files etc. under the / mnt directory. In the following example,
BT information is deleted.

# rm -rf /mnt/var/lib/bluetooth/*

# cd /mnt

# tar --exclude=lost+found --exclude=<tgz filename> -cpzf <tgz filename> .
```

/mnt/<*tgz filename*> is the backed up file.

Caution:

Under the /var/lib/bluetooth/ directory, information particular to hardware is included. It is recommended to delete intermediate files during programming.

3-5. Restoration

Using emergency boot mode, It can restore file system using the shell scripts (init.sh and post-init.sh) described in Chapter 3-6 from the TGZ format backup file saved in external storage such as USB memory.

For details on how to make backup files, please refer to Chapter 3-4.

The external storage is one of ext2/ext3/vfat filesystem, and the volume label of **DB_CONFIG** needs to be set.

Caution:

- Before decompressing a backed up file, format the /dev/mmcblk0p2 for OpenBlocks IoT VX series, /dev/mmcblk0p10 for OpenBlocks IoT BX and EX series.
- Backed up file and kernel-image must be consistent. Separately check the kernel-image of the unit to be restored.

3-6. Applications

In emergency boot mode (or recovery boot mode), in addition to a backup file, it is possible to run a script, etc. by preparing a file with a designated name as a volume label in **DEB_CONFIG**. This will be effective only if a file actually exists.

init.sh (sh script; line feed code is LF only)

Execution before mounting overlayfs(or aufs) while KERNEL is starting up.

· post-init.sh (sh script; line feed code is LF only)

Execution after mounting overlayfs(or aufs) while KERNEL is starting up.

In emergency boot (or recovery boot mode), it starts up in RAMDISK mode. Therefore, we do not need to take special consideration on the above mounting work.

*This products employs systemd. For this reason, at the stage when KERNEL is starting up, systemd has not been started up, and soem commands (such as poweroff/reboot) cannot be used. To use such a command, execute commands to be used after starting up daemon and other programs that need to be started up in the background.

3-7. Recommended device fileme

The names of Linux device files are assigned in order of device recognition. Therefore, the name of the device file may change depending on the operating status of the device.

In order to suppress this issue as much as possible, OpenBlocks IoT Family automatically creates a symbolic link of device file for each model.

When accessing the device file, we recommend using the following device filename.

•For OpenBlocks IoT VX series

Recommended device filename	Device
/dev/ttyRS485	Device file for RS-485
/dov/th/EV1	Device file for extension slot 1 (LoRaWAN,
/dev/ttyEX1	etc.)
(1, //, 5)/0	Device file for extension slot 2 (EnOcean,
/dev/ttyEX2	etc.)
/dev/ttyS4	Device file for RS-232C
	(For VX1 only)

•For OpenBlocks IoT EX1

Recommended device filename	Device
/dov/thvEV1	Device file for extension slot 1 (LoRaWAN,
/dev/ttyEX1	etc.)
/dov/thvEV2	Device file for extension slot 2 (EnOcean,
/dev/ttyEX2	etc.)
/dev/ttyMFD1	Device file for RS-485 or RS-232C

•For OpenBlocks IoT EX1G

Recommended device filename	Device
/dev/ttyRS485	Device file for RS-485
/dev/ttyEX1	Device file for extension slot 1 (LoRaWAN, etc.)
/dev/ttyEX2	Device file for extension slot 2 (EnOcean, etc.)
/dev/ttyMFD1	Device file for RS-232C

3-8. Factory Reset (Reset to condition at time of factory shipment)

With the OpenBlocks IoT VX series, if a package has been added to the storage domain or if important data has been deleted and to reset the unit to the condition at the time of factory shipment, choose "Factory Image" in the GRUB menu to do so.

Please note that if resetting the unit to the condition at the time of factory shipment, data set up, etc. will be deleted.

```
GNU GRUB version 0.97 (252K lower / 523264K upper memory)

| O OBS IoT VX - Normal boot |
| X OBS IoT VX - WebUI init boot |
| X OBS IoT VX - Emergency boot |
| X OBS IoT VX - Emergency boot |
| X OBS IoT VX - Emergency boot |
| X OBS IoT VX - Emergency boot |
| X OBS IoT VX - Emergency boot |
| X OBS IoT VX - Emergency boot |
| X OBS IoT VX - Emergency boot |
| X OBS IoT VX - Emergency boot |
| X OBS IoT VX - Emergency boot |
| X OBS IoT VX - Emergency boot |
| X OBS IoT VX - WebUI init boot |
| X OBS IoT VX - WebUI init boot |
| X OBS IoT VX - WebUI init boot |
| X OBS IoT VX - WebUI init boot |
| X OBS IoT VX - WebUI init boot |
| X OBS IoT VX - WebUI init boot |
| X OBS IoT VX - WebUI init boot |
| X OBS IoT VX - WebUI init boot |
| X OBS IoT VX - WebUI init boot |
| X OBS IoT VX - WebUI init boot |
| X OBS IoT VX - WebUI init boot |
| X OBS IoT VX - WebUI init boot |
| X OBS IoT VX - WebUI init boot |
| X OBS IoT VX - WebUI init boot |
| X OBS IoT VX - WebUI init boot |
| X OBS IoT VX - WebUI init boot |
| X OBS IoT VX - WebUI init boot |
| X OBS IoT VX - WebUI init boot |
| X OBS IoT VX - WebUI init boot |
| X OBS IoT VX - WebUI init boot |
| X OBS IoT VX - WebUI init boot |
| X OBS IoT VX - WebUI init boot |
| X OBS IoT VX - WebUI init boot |
| X OBS IoT VX - WebUI init boot |
| X OBS IoT VX - WebUI init boot |
| X OBS IoT VX - WebUI init boot |
| X OBS IoT VX - WebUI init boot |
| X OBS IoT VX - WebUI init boot |
| X OBS IoT VX - WebUI init boot |
| X OBS IoT VX - WebUI init boot |
| X OBS IoT VX - WebUI init boot |
| X OBS IoT VX - WebUI init boot |
| X OBS IoT VX - WebUI init boot |
| X OBS IoT VX - WebUI init boot |
| X OBS IoT VX - WebUI init boot |
| X OBS IoT VX - WebUI init boot |
| X OBS IoT VX - WebUI init boot |
| X OBS IoT VX - WebUI init boot |
| X OBS IoT VX - WebUI init boot |
| X OBS IoT VX - WebUI init boot |
| X OBS IoT VX - WebUI init boot |
| X OBS IoT VX - WebUI init boot |
| X OBS IoT VX - WebUI init boot |
| X OBS IoT VX - WebUI init boot |
| X OBS IoT VX - WebUI init boot |
| X OB
```

For OpenBlocks IoT BX/EX series, please refer to **[Documents]-[Factory_Reset]** from the following URL.

http://www.plathome.com/services/

3-9. Recovery startup

A file system for recovery is prepared for the case where the file system used for normal startup is damaged and can not be started.

On the OpenBlocks IoT VX series, choose "Emergency boot" from the GRUB menu to start up the unit in the RAM disk mode.

Login account and password by the console in this startup mode is "root"/"root".

```
GNU GRUB version 0.97 (252K lower / 523264K upper memory)

o OBS IoT VX - Normal boot

x OBS IoT VX - WebUI init boot

x OBS IoT VX - Factory Image

**Board: Aptio CRB**

Platform: Intel Bay Trail-I

Hardware Secure Boot: Inactive

UEFI Secure Boot: Inactive

System Mode: Setup

UEFI Secure Boot Mode: Custom

GRUB Verified Boot: Unsupported

Boot Device: UEFI OS

Initial Root Device: (hd0,0)

Use the ^ and v keys to select which entry is highlighted.

Press enter to boot the selected OS, 'e' to edit the commands before booting, 'a' to modify the kernel arguments
```

On the OpenBlocks IoT BX and EX series, the uboot prompt is displayed by key input during uboot startup at startup. At the u-boot prompt, you can execute commands to start with the recovery filesystem and start up in the RAM disk mode.

Please reinstall the kernel - image data, restore the storage data, etc. after booting.

```
Adding page store pool ..
PagestoreAddr(IMR Start Address) = 0x04899000
pageStoreSize(IMR Size)
                                 = 0x00080000
*** Ready to receive application ***
U-Boot 2014.04 (Oct 14 2014 - 15:19:04)
       Watchdog enabled
DRAM: 980.6 MiB
MMC:
        tangier_sdhci: 0
In:
      serial
Out:
      serial
Err: serial
                                      *key input here
Hit any key to stop autoboot: 0
boot > run bootRecovery
```

If you are using WEB UI, you can invoke the recovery mode from next time by execute the following command on the command line at normal mode. Similarly, for the command that starts from the recovery mode the next time onwards as the normal mode, it is as follows.

*Command to switch from normal mode to recovery mode startup.

```
#/var/webui/bin/bxex_uboot_runrecovery.sh
```

*Command to switch from recovery mode to normal mode startup.

#/usr/sbin/fw_setenv bootcmd 'setenv firm_part 0:7;run bootDebian;'

Attension)

When executing the command to switch from the normal mode to the recovery mode, the next and subsequent startup will always be in recovery mode. Therefore, please do not execute in OpenBlocks in actual operation state.

3-10. Build a development environment

The method of creating firmware of OpenBlocks IoT Family is provided on the following URL. Please refer to when build a development environment.

https://github.com/plathome/debian_based_firmware

3-11. WEB UI extensions

Various extended functions are provided for WEB UI.

3-11-1. Install extension

In this enclosure in the state immediately after shipment, only software that sets network settings etc. is installed. You can extend the functions such as using as an IoT Gateway and installing Node-RED and etc.

This is described in the WEB UI Set-up Guide for the OpenBlocks IoT Family. Please refer to said document.

3-11-2. Script editing

Choose the **[Extension] –[Edit Scripts]** tab to create and edit the following scripts from WEB UI.

- · Startup scripts
- Exit scripts
- · User-defined scripts 1-5
- · User-defined scripts (Button)
- · Motion detection events

Please note that this function depends on what user has actually installed.

#	Script type	Execution timing	Remarks
1	Startup scripts	Executed after startup process of	
		WEB UI is completed at the time of	
		starting up the unit.	
2	Exit scripts	Executed immediately after	
		termination process of WEB UI has	
		started at the time of terminating the	
		unit.	

#	Script type	Execution timing	Remarks
3	User-defined scripts	Not executed in normal processes.	
		Executed when instruction is applied	
		using the SMS control function.	
4	User-defined scripts	If such scripts are set up using the	
	(Button)	FUNC function allocation, executed	
		when FUNC switch is pressed.	
5	Motion detection events	It is carried out when the event	
		trigger is enabled when saving the	
		moving image when detecting the	
		moving object in the camera function.	

3-11-3. Command execution

Use the **[Extension]-[Command exec.]** tab, can execute a command of one line or so.

When executing a command, response results will be displayed.

Please note that if executing a command that is permanently run in the foreground with this function, will not obtain web response.

3-11-4. Special setting of WEB UI filter table

If a /var/webui/local/bin/iptables-ext.sh file is present, the Edit extended filter configuration file item will be displayed in the **[System]-[Filter]** tab in WEB UI.

For this item, customization of filter setting by iptables and ip6tables commands is assumed.

Execution timing of iptables-ext.sh is at the time of startup and changing filter settings.

What is described in this section is a shell script.

Edit with iptables command as appropriate.

3-11-5. Sending SMS messages

If the unit uses WEB UI, is equipped with a modem module (other than an LTE module for KDDI) and is inserted with a SIM card that can send SMS messages, it is possible to send SMS messages from the command line.

Use the following command to use create a form of SMS data.

*After creating form, message will be automatically sent.

*KDDI is domestic carrier in Japan

/var/webui/bin/create_sms.py <recipient's telephone number> <body>

*Example of execution

/var/webui/bin/create_sms.py 09012345678 "TEST MESSAGE"

3-11-6. Switching operations of LTE module for KDDI

The LTE module for KDDI has a function to serve as a SIM card. With the commands below, can switch between internal SIM mode to turn the module into a SIM card and external SIM mode to refer to an inserted SIM card.

*KDDI is domestic carrier in Japan

Command to switch to internal SIM mode

/var/webui/scripts/kym_set_mode.sh in

Command to switch to external SIM mode

/var/webui/scripts/kym_set_mode.sh out

3-11-7. Automatic external storage mounting in WEB UI

If WEB UI finds storage devices with specific volume labels, they will be automatically mounted.

Please use this function to manage storage using WEB UI functions, etc.

Volume label	Mounting destination	Supplement
WEBUI_STORAGE	/var/tmp/storage	Use the NTFS file system.

3-11-8. Switching boot modes

◆For OpenBloks IoT VX series only

Can set up boot mode at the next startup using the [Maintenance]-[Boot switch] tab.

At the time of normal factory shipment, only one boot mode can be selected.

*By rewriting a part of /dev/mmcblk0p1/EFI/boot/bootx64.conf file, can show boot modes here. However, selectable boot modes mean a risk to actual operations, for example, restoring setting to factory condition.

For this reason, examine each boot mode to determine if it should be added for display.

3-11-9. About GPS information

When installing the LTE module for NTT and KDDI or the BWA module and enable the GPS in the Web UI, The position information at the time of the last acquisition is written in the following file in JSON format.

Please use this file when you want to utilize location information.

*NTT docomo and KDDI domestic carrier in Japan

•GPS information JSON file

/tmp/.gps_posi.json

Also, when acquiring GPS position information, write the above file contents to Node-RED 's Unix domain socket.

•GPS information writing Unix domain socket (Abstract socket)
@/tmp/node-red-gpsin.sock

For information on adding GPS information to JSON with Node-RED, please refer to "Nod-RED Starter Guide".

3-11-10. About Default gateway and DNS server in DHCP

When DHCP is set for IP address assignment of the network interface in WEB UI, the IP address of the default gateway and the DNS server is the value given from DHCP.

Although general DHCP assigns the IP address of the default gateway and DNS server, there are cases in which these are not granted from the viewpoint of security.

In such a case, you can specify the IP address of the default gateway and DNS server in the environment using DHCP by preparing the following file.

The above default gateway to be assigned when DHCP assigned an IP address. Also, the IP address of the DNS server is applied when the local network interface is up.

Configuration file

/var/webui/upload dir/force network.sh

Description of file

```
\label{lem:continuity} force\_network\_defaultroute = < IP\ address\ of\ defult\ gateway > \\ force\_network\_nameservers = "< IP\ address\ of\ DNS1 > < IP\ address\ of\ DNS2 > "
```

Description example

```
force_network_defaultroute=192.168.130.1
force_network_nameservers="127.0.0.1 192.168.130.1"
```

3-12. Docker

Docker can be operated with the OpenBlocks IoT VX series.

Docker can be installed by using the function to add extensions in the **[Maintenance]-[Enhancements]** tab in WEBUI.

Can also use the following commands to install Docker.

How to install Docker (Connection to an Internet environment required).

```
# apt-get update
# apt-get -y install docker-ce
```

At present, there is no function to control Docker containers from WEB UI. To control containers, use a command line. If using Docker after going live, refer to the official Docker site for commands, including container startup and stop.

Chapter 4 Product specifications

4-1. Open Blocks IoT VX1 main unit specifications

Model #		OBSVX1
	Model	Intel Atom E3805
CPU	Clock speed	1.3 GHz (dual core)
CPU	Built-in secondary	1024 kB/Core
	cache	
Main memory	On-board	1GB(64bit bus DDR3L)
Built-in storage		8GB(eMMC)
Additional storage		1 x MMC slot
Wireless interface		BT 4.0+2.1 EDR
wireless interrace		WLAN (IEEE802.11a/b/g/n/ac) *4
SIM interface		MiniSIM for communication (25 mm x 15 mm x
Silvi interiace		0.76 mm) card slot
	USB (HOST)	1 x USB 3.0 (type-A) *2
	USB (Console)	1 x Micro USB (type-B)
	Ethernet	2 x 10Base-T/100BASE-TX/1000BASE-T
Wired interface	RS-232C	1 x RJ45
		1 x half-duplex
	RS-485	(Applicable electric wire range: AWG28 to
		AWG22)
Case Size		91.9 mm (W) x 114.8 mm (D) x 25 mm (H)
Case Size		(Excluding protrusions)
Weight		160 g
Power supply		DC-Jack: 4.75 to 5.25VDC
Power supply		Wide DC: 10 to 48VDC*3
Power consumption	In an idle mode	5.1W
- ower consumption	At a high load	8.2W
MTBF		432,644h
EMC standard		VCCI class A
Energy consumption efficiency based		Classification: H
on the Energy Conservation Law. [Unit:		0.48
W/GTOPS] *1		

Natural environmental protection	Conforms to RoHS Directives
Certification	JATE/ TELEC
RTC backup time	10 years
OS at the time of shipment	Debian GNU/Linux

^{*1:} Energy Consumption Efficiency is measured power consumption (Measurement method defined by the Act Concerning the Rational Use of Energy) divided by composite theoretical performance, as defined by the Act Concerning the Rational Use of Energy.

4-2. Open Blocks IoT VX2 main unit specifications

Model #		OBSVX2
	Model	Intel Atom E3805
	Clock speed	1.3 GHz (dual core)
CPU	Built-in secondary	1024 kB/Core
	cache	
Main memory	On-board	2 GB (64 bit bus DDR3L)
Built-in storage		32 GB (eMMC)
Additional storage		1 x MMC slot
Wireless interface		BT 4.0+2.1 EDR
wheless interface		WLAN (IEEE802.11a/b/g/n/ac) *4
CIM interfere		MiniSIM for communication (25 mm x 15 mm x
SIM interface		0.76 mm) card slot
	USB (HOST)	1 x USB 3.0 (type-A) *2
	USB (Console)	1 x Micro USB (type-B)
Wired interface	Ethernet	2 x 10Base-T/100BASE-TX/1000BASE-T
when interface		1 x half-duplex
	RS-485	(Applicable electric wire range: AWG28 to
		AWG22)
Case Size		91.9 mm (W) x 114.8 mm (D) x 25 mm (H)
		(Excluding protrusions)
Weight		160 g
Power supply		DC-Jack: 4.75 to 5.25VDC

^{*2:} Supported cable length is less than 3 meters.

^{*3:} To use this function, it is necessary to connect an external nose filter (SNR-10-223-T (COSEL) or an equivalent).

^{*4:} Access point function of 802.11ac not supported.

		Wide DC: 10 to 48VDC*3
Dameraanamatian	In an idle mode	5.5 W
Power consumption	At a high load	9.0 W
MTBF		435,613 hours
EMC standard		VCCI class A
Energy consumption efficiency based		Classification: H
on the Energy Conservation Law. [Unit:		0.52
W/GTOPS] *1		
Natural environmental protection		Conforms to RoHS Directives
Certification		JATE/ TELEC
RTC backup time		10 years
OS at the time of shipment		Debian GNU/Linux

^{*1:} Energy Consumption Efficiency is measured power consumption (Measurement method defined by the Act Concerning the Rational Use of Energy) divided by composite theoretical performance, as defined by the Act Concerning the Rational Use of Energy.

4-3. Options for OpenBlocks IoT VX series

4-3-1. LTE/3G module for SoftBank

		GSM: 850/900/1800/1900MHz
		W-CDMA:
Supported frequencies	S	850/900/1900/2100MHz
		LTE:
		(1)/(3)/(5)/(7)/(8)/(20)
Data communication speed		Downstream: 150Mbps
Data communication s	speed	Upstream: 50Mbps *Theoretical values
Control method		AT command and Dedicated command
Certification		JATE/TELEC
Dower concumption	Idle	0.05W *Average power
Power consumption	At a high load	2.5W *Average power
MTBF		97,808h at 25°C

^{*1 : (}n) is a band

^{*2:} Supported cable length is less than 3 meters.

^{*3:} To use this function, it is necessary to connect an external nose filter (SNR-10-223-T (COSEL) or an equivalent).

^{*4:} Access point function of 802.11ac not supported.

*SoftBank is domestic carrier in Japan

4-3-2. LTE module for KDDI

Supported frequencies		RX: 860.0MHz to 875.0MHz
		TX: 815.0MHz to 830.0MHz
Data communication speed		Downstream: 75Mbps
		Upstream: 25Mbps *Theoretical values
Control method		AT command and Dedicated command
Certification		JATE/TELEC
Power consumption	Idle	0.16W *Average power
Fower consumption	At a high load	2.4W *Average power

^{*}KDDI is domestic carrier in Japan

4-3-3. LTE module for NTT docomo and KDDI

Supported frequencies		GSM: 900/1800MHz
		W-CDMA: 800(6)/900(8)/ 2100MHz(1)
		LTE: 800(18)/800(19)/900(8)/1800(3)/2100(1)/
		2600(41) MHz ^{*1 *2}
		GNSS: GPS/GLONASS
Data communication speed		Downstream: 75Mbps
		Upstream: 25Mbps *Theoretical values
Control method		AT command and Dedicated command
Certification		JATE[150051003] / TELEC[003-150053]
Danisa	Idle	0.02W *Average power
Power consumption	At a high load	2.9W *Average power
MTBF		500,000h at 25°C

^{*1 : (}n) is a band

^{*2:} Blue value is a band not used in Japan

^{*}NTT docomo and KDDI are domestic carrier in Japan

4-3-4. BWA module

Supported frequencies		GSM: 900/1800MHz
		W-CDMA: 800(6)/900(8)/ 2100MHz(1)
		LTE: 800(18)/800(19)/900(8)/1800(3)/2100(1)/
		2600(41) MHz*1 *2
		GNSS: GPS/GLONASS
		Downstream: 100Mbps
Data communication	speed	Upstream: 50Mbps *Theoretical values
Control method		AT command and Dedicated command
Certification		JATE[150051003] / TELEC[003-150053]
Idle		0.02W *Average power
Power consumption	At a high load	2.9W *Average power
MTBF		500,000h at 25°C

^{*1 : (}n) is a band

4-3-5. EnOcean module

Frequency		928.35MHz
Data communication speed		125kbps
HOST I/F		UART
Certification		TELEC
Power consumption	Idle	0.13W
Power consumption	At a high load	0.11W
MTBF		862,664h at 25°C

4-3-6. Wi-SUNmodule

Frequencies		922.5~927.9MHz(28ch)
Data communication speed		100kbps
HOST I/F		UART
Certification		TELEC
Dower concumption	Idle	0.1W
Power consumption At a high load		0.15W
MTBF		559,409h at 25°C

^{*2:} Blue value is a band not used in Japan

4-3-7. LoRaWAN module

Frequencies		920.6~928.0MHz
Data communication speed		11kbps
HOST I/F		UART
Certification		TELEC
Dower consumption	Idle	0.05W
Power consumption At a high load		0.12W
MTBF		4,076,190h at 25°C

4-4. Options for OpenBlocks IoT VX1

4-4-1. LTE module for NTT docomo

Supported frequencies		LTE: 2GHz/800MHz
Data communication speed		Downstream: 112.5Mbps
		Upstream: 37.5Mbps *Theoretical values
Control method		AT command and Dedicated command
Certification		JATE/TELEC
Power consumption -	Idle	0.03W *Average power
	At a high load	3.7W *Average power

^{*}NTT docomo and KDDI are domestic carrier in Japan

4-5. Options for OpenBlocks IoT VX2

4-5-1. Built-in battery

Item	Specification	Remarks
HOST I/F	I2C	Charge control and battery module voltage
HO31 I/F		detection
Nominal voltage	4.8VDC	
Rated capacity	500mAh	
Charging ourrent	Rapid charge : 150mA	
Charging current	Trickle charge : 20mA	
Charging time	Rapid charge : 2h	The backup function can be used after the
Charging time	Trickle charge: 13h	end of rapid charging
Discharge time	Depends on load	Rated capacity÷Quiescent current×0.5 [h]

End-of-discharge	4.0 to 4.4VDC	
voltage		
Operating	0 to +40°C /	
temperature and	45 to 85%	
humidity range		
Storage	-20 to +35°C /	Within 1 year
temperature and	45 to 85%	
humidity range		
Protective parts	Thermal protector	Built in battery pack
Lifetime (number	Depending on usage	500 times or 2 to 3 years
of charge and	conditions	
discharge)		

^{*} It is non factory shipping option.

^{*} Be sure to read "Before Using Battery Module for OpenBlocks IoT Family" before use.

4-6. Open Blocks IoT BX1 main unit specifications

Model #		OBSBX1
CPU	Model Clock speed	Intel® Atom™ processor
CPU		500MHz (dual core)
Main memory	On-board	1GB(LPDDR3)
FLASH ROM		4GB(eMMC)
Additional storage		-
		3G(W-CDMA)*1
Wireless interface		BT 4.0
		WLAN(IEEE802.11a/b/g/n)
CIM interfere		MiniSIM for communication (25 mm x 15 mm x
SIM interface		0.76 mm) card slot
\\/irad interfece		BX1 connecter
Wired interface		Supplied Accessory:USB2.0(Bus power/type-A)
Case Size		41.6mm(W) x 96mm (D) x 11.3mm(H) (Excluding
Case Size		protrusions)
Weight		45g
		4.75 to 48VDC
Power supply		* When power supplied by USB cable :
		4.75 to 5.25VDC
	In an idle mode	When active 3G module: 0.8W
Power consumption	in an idle mode	When inactive 3G module: 0.1W*2
	At a high load	4.6W
MTBF		445,951h
EMC standard		VCCI Class-B
Energy consumption efficiency based		Classification: H
on the Energy Conservation Law. [Unit:		0.17
W/GTOPS] *3		
Natural environmental protection		Conforms to RoHS Directive, PFOS regulation
Natural environmental protection		and Energy Conservation Law.
Certification		JATE/TELEC
RTC backup time		Up to about 10 minutes
OS at the time of shipment		Debian GNU/Linux

^{*1 :} Compatible with NTT docomo's FOMA communication network

^{*2:} It is a value when Power Save is set to "Auto".

*3: Energy Consumption Efficiency is measured power consumption (Measurement method defined by the Act Concerning the Rational Use of Energy) divided by composite theoretical performance, as defined by the Act Concerning the Rational Use of Energy.

*NTT docomo is domestic carrier in Japan

4-7. Open Blocks IoT BX3 main unit specifications

Model #		OBSBX3
CPU	Model	Intel® Atom™ processor
CFU	Clock speed	500MHz (dual core)
Main memory	On-board	1GB(LPDDR3)
FLASH ROM		4GB(eMMC)
Additional storage		-
		3G(W-CDMA) ^{*1}
Wireless interface		BT 4.0
		WLAN(IEEE802.11a/b/g/n)
SIM interface		MiniSIM for communication (25 mm x 15 mm x
Silvi interiace		0.76 mm) card slot
Wired interface		BX1 connecter
whed interface		Supplied Accessory:USB2.0(Bus power/type-A)
Case Size		41.6mm(W) x 96mm (D) x 11.3mm(H) (Excluding
Case Size		protrusions)
Weight		45g
		4.75 to 48VDC
Power supply		* When power supplied by USB cable :
		4.75 to 5.25VDC
Power consumption	In an idle mode	1.3W
1 ower consumption	At a high load	4.6W
MTBF		224,858h
EMC standard		VCCI Class-B
Energy consumption	efficiency based	Classification: H
on the Energy Conservation Law. [Unit:		0.17
W/GTOPS] *2		
Natural environmental protection		Conforms to RoHS Directive, PFOS regulation
ivaturai environinientai protection		and Energy Conservation Law.
Certification		JATE/TELEC
RTC backup time		Up to about 10 minutes
OS at the time of shipment		Debian GNU/Linux

^{*1 :} Compatible with SoftBank's 3G communication network

^{*2:} Energy Consumption Efficiency is measured power consumption (Measurement method defined by the Act Concerning the Rational Use of Energy) divided by composite theoretical

performance, as defined by the Act Concerning the Rational Use of Energy. *SoftBank is domestic carrier in Japan

$4\mbox{-}8.$ Open Blocks IoT EX1 main unit specifications

Model #		OBSEX1	OBSEX1G
CPU		Intel® Atom™ processor	
CPU	Clock speed	500MHz (dual core)	
Main memory	On-board	1GB(LPDDR3)	
FLASH ROM		4GB(eMMC)	
Additional storage		1 x MMC slot	
Wireless interface		BT 4.0	
Wheless interface		WLAN(IEEE802.11a/b/g/n)	
SIM interface		MiniSIM for communica	tion (25 mm x 15 mm x
Silvi interiace		0.76 mm) card slot	
	USB(HOST)	1 x USB 2.0 (type-A)	
	USB(Console)	1 x Micro USB(type-B)	
	OOD(Oorisole)	*Bu	s power supply available
Wired interface	Ethernet	10Base-T/100BASE-TX	x 1
		1 x RS-232C : RJ45 /	1 x RS-232C : RJ45 /
	RS-232C/RS-485	1 x RS-485:Terminal	1 x RS-485:Terminal
		Block (Exclusion)	Block
Case Size		91.9mm(W) x 114.8r	mm (D) x 25mm(H)
Oase Size		(Excluding protrusions)	
Weight		135g	
		DC-Jack:	DC-Jack:
		4.75 to 5.25VDC	4.75 to 5.25VDC
		When power supplied	When power supplied
Power supply		by USB cable :	by USB cable :
1 ower supply		4.75 to 5.25VDC	4.75 to 5.25VDC
			When power supplied
			by XA connecter:
			7 to 48VDC
Power consumption In an idle mode		1.8W	
1 Ower consumption	At a high load	3.3W	
MTBF		485,265h	468,231h
EMC standard		-	VCCI Class-B
Energy consumption efficiency based		Classification: H	

on the Energy Conservation Law. [Unit:	0.23	0.23
W/GTOPS] *1		
Natural environmental protection	Conforms to RoHS Directive, PFOS regulation	
Natural environmental protection	and Energy Conservation Law.	
Certification	TELEC	
RTC backup time	Up to 250 days	10 years
OS at the time of shipment	Debian GNU/Linux	

^{*1:} Energy Consumption Efficiency is measured power consumption (Measurement method defined by the Act Concerning the Rational Use of Energy) divided by composite theoretical performance, as defined by the Act Concerning the Rational Use of Energy.

4-9. Options for OpenBlocks IoT EX1

4-9-1. 3G module for NTT docomo

Commonted from some size		GSM/GPRS/EDGE:
		Quad band 850/900/1800/1900MHz
Supported frequencies	5	W-CDMA(UMTS/HSPA+):
		Five band 800/850/900/1900/2100MHz
Data communication speed		Downstream: 7.2Mbps
		Upstream: 5.7Mbps *Theoretical values
Control method		AT command
Certification		JATE/TELEC
Power-supply voltage		3.3 to 4.4VDC
Power consumption	Idle	0.01W *Average power
	At a high load	2.6W *Average power

^{*}NTT docomo is domestic carrier in Japan

4-9-2. 3G module for SoftBank

	GSM/GPRS/EDGE:
Supported frequencies	Quad band 850/900/1800/1900MHz
	W-CDMA(UMTS/HSPA+):
	Five band 800/850/900/1900/2100MHz
Data communication and	Downstream: 7.2Mbps
Data communication speed	Upstream: 5.7Mbps *Theoretical values
Control method	AT command

Certification		JATE/TELEC
Power-supply voltage		3.3 to 4.4VDC
Idle		0.01W *Average power
Power consumption	At a high load	2.6W *Average power

^{*}SoftBank is domestic carrier in Japan

4-9-3. LTE/3G module for SoftBank

Supported frequencies		GSM: 850/900/1800/1900MHz
		W-CDMA: 850/900/1900/2100MHz
		LTE:
		(1)/(3)/(5)/(7)/(8)/(20)
Data communication and d		Downstream: 150Mbps
Data communication s	speed	Upstream: 50Mbps *Theoretical values
Control method		AT command and Dedicated command
Certification		JATE/TELEC
Dameranantian	Idle	0.05W *Average power
Power consumption	At a high load	2.5W *Average power
MTBF		97,808h at 25°C

^{*1 : (}n) is a band

4-9-4. LTE module for KDDI

Supported frequencies		RX: 860.0MHz to 875.0MHz
		TX:815.0MHz to 830.0MHz
Data communication speed		Downstream: 75Mbps
		Upstream: 25Mbps *Theoretical values
Control method		AT command and Dedicated command
Certification		JATE/TELEC
Power consumption	Idle	0.16W *Average power
	At a high load	2.4W *Average power

^{*}KDDI is domestic carrier in Japan

4-9-5. LTE module for NTT docomo

Supported frequencies	LTE: 2GHz / 800MHz
Data communication speed	Downstream: 112.5Mbps

^{*}SoftBank is domestic carrier in Japan

		Upstream: 37.5Mbps *Theoretical values
Control method		AT command and Dedicated command
Certification		JATE/TELEC
Dower consumption	Idle	0.03W *Average power
Power consumption	At a high load	3.7W *Average power

^{*}NTT docomo is domestic carrier in Japan

4-9-6. LTE module for NTT docomo and KDDI

Supported frequencies		GSM: 900/1800MHz
		W-CDMA: 800(6)/900(8)/ 2100MHz(1)
		LTE: 800(18)/800(19)/900(8)/1800(3)/2100(1)/
		2600(41) MHz ^{*1 *2}
		GNSS: GPS/GLONASS
Data communication speed		Downstream: 75Mbps
		Upstream: 25Mbps *Theoretical values
Control method		AT command and Dedicated command
Certification		JATE[150051003] / TELEC[003-150053]
Idle		0.02W *Average power
Power consumption	At a high load	2.9W *Average power
MTBF		500,000h at 25°C

^{*1 : (}n) is a band

4-9-7. BWA module

		GSM: 900/1800MHz
		W-CDMA: 800(6)/900(8)/ 2100MHz(1)
Supported frequencie	s	LTE: 800(18)/800(19)/900(8)/1800(3)/2100(1)/
		2600(41) MHz*1 *2
		GNSS: GPS/GLONASS
Data communication speed		Downstream: 100Mbps
		Upstream: 50Mbps *Theoretical values
Control method		AT command and Dedicated command
Certification		JATE[150051003] / TELEC[003-150053]
Power consumption Idle		0.02W *Average power

^{*2:} Blue value is a band not used in Japan

^{*}NTT docomo and KDDI are domestic carrier in Japan

	At a high load	2.9W *Average power
MTBF		500,000h at 25°C

^{*1 : (}n) is a band

4-9-8. EnOcean module

Frequency		928.35MHz
Data communication speed		125kbps
HOST I/F		UART
Certification		TELEC
Dower consumption	Idle	0.13W
Power consumption At a high load		0.11W
MTBF		862,664h at 25°C

4-9-9. Wi-SUNmodule

Frequencies		922.5~927.9MHz(28ch)
Data communication speed		100kbps
HOST I/F		UART
Certification		TELEC
Power consumption	Idle	0.1W
At a high load		0.15W
MTBF		559,409h at 25°C

4-9-10. Built-in battery

Item	Specification	Remarks
HOST I/F	I2C	Charge control and battery module voltage
11031 1/1		detection
Nominal voltage	4.8V	
Rated capacity	500mAh	
Charging current	Rapid charge : 150mA	
	Trickle charge : 20mA	
Charging time	Rapid charge : 2h	The backup function can be used after the
Charging time	Trickle charge : 13h	end of rapid charging
Discharge time	Depends on load	Rated capacity÷Quiescent current×0.5 [h]
End-of-discharge	4.0 to 4.4V	

^{*2:} Blue value is a band not used in Japan

voltage		
Operating	0 to +40°C /	
temperature and	45 to 85%	
humidity range		
Storage	-20 to +35°C /	Within 1 year
temperature and	45 to 85%	
humidity range		
Protective parts	Thermal protector	Built in battery pack
Lifetime (number	Depending on usage	500 times or 2 to 3 years
of charge and	conditions	
discharge)		

^{*} It is non factory shipping option.

^{*} Be sure to read "Before Using Battery Module for OpenBlocks IoT Family" before use.

4-10. Open Blocks IoT BX0 main unit specifications

Model #		OBSBX0	
CPU	Model	Intel® Atom™ processor	
	Clock speed	500MHz (dual core)	
Main memory	On-board	1GB(LPDDR3)	
FLASH ROM		4GB(eMMC)	
Additional storage		-	
Wireless interface		BT 4.0	
		WLAN(IEEE802.11a/b/g/n)	
Wired interface		BX1 connecter	
		Supplied Accessory: USB2.0(Bus power/type-A	
		with Ether)	
Case Size		41.6mm(W) x 96mm (D) x 11.3mm(H) (Excluding	
		protrusions)	
Weight		45g	
Power supply		• 4.75 to 5.25VDC (USB)	
		· 48VDC PoE TypeA(1-2,3-6)	
Power consumption	In an idle mode	1.9W	
1 ower consumption	At a high load	2.4W	
MTBF		479,898h	
EMC standard		VCCI Class-B	
Energy consumption efficiency based		Classification: H	
on the Energy Conservation Law. [Unit:		0.24	
W/GTOPS] *1			
Natural environmental protection		Conforms to RoHS Directive, PFOS regulation	
		and Energy Conservation Law.	
Certification		JATE/TELEC	
RTC backup time		Up to about 16 years	
OS at the time of shipment		Debian GNU/Linux	

^{*1:} Energy Consumption Efficiency is measured power consumption (Measurement method defined by the Act Concerning the Rational Use of Energy) divided by composite theoretical performance, as defined by the Act Concerning the Rational Use of Energy.

4-11. Open Blocks IoT BX1 main unit specifications

Model #		OBSBX5	
CPU	Model	Intel® Atom™ processor	
	Clock speed	500MHz (dual core)	
Main memory	On-board	1GB(LPDDR3)	
FLASH ROM		4GB(eMMC)	
Additional storage		-	
Wireless interface		LTE(with W-CDMA)*1	
		BT 4.0	
		WLAN(IEEE802.11a/b/g/n)	
SIM interface		MiniSIM for communication (25 mm x 15 mm x	
		0.76 mm) card slot	
Wired interface		BX1 connecter	
wired interface		Supplied Accessory:USB2.0(Bus power/type-A)	
Case Size		41.6mm(W) x 96mm (D) x 11.3mm(H) (Excluding	
Case Size		protrusions)	
Weight		45g	
Power supply		DC 4.75 to 48V	
		* When power supplied by USB cable :	
		DC4.75 to 5.25V	
Power consumption	In an idle mode	1.4W	
1 ower consumption	At a high load	4.6W	
MTBF		273,475h	
EMC standard		VCCI Class-B	
Energy consumption	efficiency based	Classification: H	
on the Energy Conservation Law. [Unit:		0.18	
W/GTOPS] *2			
Natural environmental protection		Conforms to RoHS Directive, PFOS regulation	
		and Energy Conservation Law.	
Certification		JATE/TELEC	
RTC backup time		Up to about 10 minutes	
OS at the time of shipment		Debian GNU/Linux	

^{*1:}Compatible with LTE communication network of NTT docomo and KDDI, and BWA communication network.

*2: Energy Consumption Efficiency is measured power consumption (Measurement method defined by the Act Concerning the Rational Use of Energy) divided by composite theoretical performance, as defined by the Act Concerning the Rational Use of Energy.

*NTT docomo and KDDI are domestic carrier in Japan

Chapter 5 Cautions and supplementary information

5-1. Countermeasures against delays due to script processing

When writes to storage are made using init.sh and post-init.sh scripts in emergency boot mode, a next command process may be implemented before writing is complete. For this reason, expressly execute sleep and sync commands.

5-2. List of ports used

The OpenBlocks IoT Family with WEB UI uses or may use the following ports:

Service type	Port #	Supplementary information	
SSH	22	Port number can be changed	
DNS	53		
DHCP	67		
NetBIOS	137	When Samba is installed (UDP)	
NetBIOS	138		
NetBIOS	139	When Samba is installed	
Samba	445	when Samba is installed	
Modbus	502	When IoT data control is installed	
WEB UI (HTTP access)	880		
Node-RED	1880	When Node-RED is installed	
Node-RED	1000	(Port # can be changed)	
ECHONET(HVSMC)	3610	When IoT data control is installed	
Shell in a box (WEB SSH)	4200		
WEB UI (HTTPS access)	4430		
SSH	50022	Mhan ITE/20 madula far	
WEB UI(HTTP access)	50880	When LTE/3G module for	
WEB UI(HTTPS access)	54430	SoftBank is installed. WAN side	
Node-RED	51880	only.	

^{*}SoftBank is domestic carrier in Japan

OpenBlocks IoT Family Developer Guide Version 3.3.0 (Dec 7, 2018)

Plat'Home Co., Ltd.
NIHON BUILDING KUDANBEKKAN, 3F
4-2-3, Kudankita, Chiyoda-ku, TOKYO 102-0073, JAPAN