Matemática Discreta

Elementos de Teoria dos Grafos

Universidade de Aveiro 2017/2018

http://moodle.ua.pt

Matemática Discreta

Grafos e subgrafos particulares

Problemas de caminho mais curto em grafos

Algoritmo de Dijkstra

Grafos completos e grafos nulos

Definição (de grafo completo e grafo nulo)

Seja G um grafo simples de ordem n > 0. Diz-se que G é um grafo completo e denota-se por K_n quando todos os pares de vértices são adjacentes. Por sua vez, diz-se que G é um grafo nulo quando não tem arestas, ou seja, $E(G) = \emptyset$.

• Exemplos: grafos completos K_1, \ldots, K_5 :

Grafos regulares

Observação 1: A menos de isomorfismos, existe um único grafo completo de ordem n, K_n .

Observação 2: Todo o grafo nulo é o complementar de um grafo completo. Podemos denotar o grafo nulo de ordem n por \mathcal{K}_n^c .

Definição (de grafo regular)

Um grafo diz-se *k*-regular se todos os seus vértices têm grau *k* e diz-se regular se é *k*-regular para algum *k*. Os grafos 3-regulares designam-se por grafos cúbicos.

Exemplos: o grafo K_n é (n-1)-regular e o grafo nulo é 0-regular.

Grafos bipartidos

Definição (de bipartido)

Um grafo G diz-se bipartido se existe uma partição do seu conjunto de vértices em X e Y tal que não existem arestas entre qualquer par de vértices de X nem entre qualquer par de vértices de Y (ou seja, cada aresta de G tem um extremo em X e outro em Y). Esta partição (X, Y) do conjunto dos vértices de G designa-se por bipartição dos vértices e, neste caso, G denota-se pelo terno (X, Y, E) onde E = E(G).

Teorema

Um grafo G é bipartido se e só se não tem circuitos de comprimento ímpar.

• Exercício: provar o teorema anterior.

Grafos com custos não negativos nas arestas

- Um grafo simples com custos nas arestas representa-se pelo terno G = (V, E, W), onde $W = (w_{ij})$ denota a matriz de custos.
- w_{ij} representa o custo associado à aresta ij, se uma tal aresta existe, ou $w_{ij} = \infty$ se $ij \notin E(G)$.
- Assume-se $w_{ii} = 0$ para cada i.
- Note-se que o custo de um caminho no grafo (digrafo) G é igual à soma dos custos ou pesos das suas arestas (dos seus arcos).

Notação

- Marca[v] comprimento do caminho mais curto entre s e v de entre os caminhos já determinados;
- Antecessor[v] antecessor do vértice v no caminho mais curto entre s e v de entre os já determinados;
- Temporarios conjunto dos vértices com marca temporária;
- z vértice com menor marca temporária corrente, a qual vai passar a marca permanente.

Algoritmo de Dijkstra

- ► Entrada: Grafo G, vértices s e t;
- ► Saída: Marca.
- **1.** Para todo $v \in V$ **faz** $Marca(v) \leftarrow \infty$; $Antecessor(v) \leftarrow 0$; $Marca(s) \leftarrow 0$; $Temporários \leftarrow V \setminus \{s\}$; $z \leftarrow s$;
- 2. Repetir
 - **2.1** $M \leftarrow \infty$;
 - **2.2** Para todo $u \in Tempor lpha rios$ fazer Se $Marca(u) > Marca(z) + w_{z,u}$ então $\begin{cases} Marca(u) \leftarrow Marca(z) + w_{z,u}; \\ Antecessor(u) \leftarrow z; \end{cases}$ Se Marca(u) < M então $x \leftarrow u$; $M \leftarrow Marca(u)$;
 - **2.3** Temporários \leftarrow Temporários $\setminus \{x\}; z \leftarrow x;$

até x = t; devolver Marca[t]

Exemplo

Utilizando algoritmo de Dijkstra, vamos determinar um caminho mais curto (e a respectiva distância) entre os vértices v_5 e v_8 do grafo.

Resolução

• A Tabela a seguir apresenta os valores obtidos em cada passo da a aplicação do algoritmo de Dijkstra.

V 5	<i>V</i> ₁	<i>V</i> ₂	<i>V</i> ₃	<i>V</i> ₄	<i>V</i> ₆	V 7	<i>V</i> ₈
(0, -)	$(\infty, -)$	$(\infty, -)$	$(\infty, -)$				
	$(12, v_5)$	$(12, v_5)$	$(\infty, -)$	$(\infty, -)$	$(15, v_5)$	$(\infty, -)$	$(\infty, -)$
		$(12, v_5)$	$(\infty, -)$	$(\infty, -)$	$(15, v_5)$	$(\infty, -)$	$(\infty, -)$
			$(25, v_2)$	$(\infty, -)$	$(15, v_5)$	$(27, v_2)$	$(\infty, -)$
			$(25, v_2)$	$(\infty, -)$		$(27, v_2)$	$(\infty, -)$
				$(38, v_3)$		$(27, v_2)$	$(40, v_3)$
				$(38, v_3)$			$(39, v_7)$
				(/			$(39, v_7)$

• Note-se que nesta tabela, para cada vértice v, em cada passo determinamos um par (Marca[v], Antecessor[v]), onde Marca[v] corresponde à distância corrente ao vértice inicial que aparece a negrito quando passa a permanente.