

Author index of Volume 116

Abgrall, R., An essentially non-oscillatory reconstruction procedure on finite-element type meshes: application to compressible flows	95-101
Bar-Yoseph, P., see Zrahia, U.	135-146
Belhachmi, Z. and C. Bernardi, Resolution of fourth-order problems by the mortar element method	53- 58
Ben Belgacem, F. and Y. Maday, A spectral element methodology tuned to parallel implementations	59- 67
Ben Belgacem, F., Polynomial extensions of compatible polynomial traces in three dimensions	235-241
Benocci, C., see Pinelli, A.	201-210
Berghezan, D., see Levieux, F.	165-174
Bernardi, C., see Belhachmi, Z.	53- 58
Bertoluzza, S., Y. Maday and J.C. Ravel, A dynamically adaptive wavelet method for solving partial differential equations	293-299
Boukir, K., Y. Maday and B. Métivet, A high order characteristics method for the incompressible Navier-Stokes equations	211-218
Boyd, J.P., Sum-accelerated pseudospectral methods: finite differences and sech-weighted differences	1- 11
Bungartz, H., M. Griebel and U. Rüde, Extrapolation, combination, and sparse grid techniques for elliptic boundary value problems	243-252
Canuto, C., Stabilization of spectral methods by finite element bubble functions	13- 26
Croce, L.D., see Scapolla, T.	185-192
Deville, M.O., E.H. Mund and V. Van Kemenade, Preconditioned Chebyshev collocation methods and triangular finite elements	193-200
Deville, M.O., see Schneidesch, C.R.	87- 94
Deville, M., see Pinelli, A.	201-210
Dupret, F., see Levieux, F.	165-174
Eckhoff, K.S., On discontinuous solutions of hyperbolic equations	103-112
Fischer, P.F. and E.M. Rønquist, Spectral element methods for large scale parallel Navier-Stokes calculations	69- 76
Funaro, D., A fast solver for elliptic boundary-value problems in the square	253-255
Giannakouras, J.G., D. Sidilkover and G.E. Karniadakis, Spectral element-FCT method for the one- and two-dimensional compressible Euler equations	113-121
Gottlieb, D. and C.-W. Shu, Resolution properties of the Fourier method for discontinuous waves	27- 37
Griebel, M., see Bungartz, H.	243-252

Guermond, J.-L., High order numerical quadratures for layer potentials over curved domains in \mathbb{R}^3	257–263
Jensen, S. and S. Zhang, The p and $h-p$ versions of some finite element methods for Stokes' problem	147–155
Joly, P., Y. Maday and V. Perrier, Towards a method for solving partial differential equations by using wavelet packet bases	301–307
Karniadakis, G.E., see Giannakouros, J.G.	113–121
Křížek, M., Superconvergence phenomena in the finite element method	157–163
Lazaar, S., Pj. Ponenti, J. Liandrat and Ph. Tchamitchian, Wavelet algorithms for numerical resolution of partial differential equations	309–314
Levieux, F., D. Berghezan and F. Dupret, Analysis of the interface singularity of a two-fluid flow by h and $h-p$ finite elements	165–174
Liandrat, J., see Lazaar, S.	309–314
Maday, Y., see Ben Belgacem, F.	59– 67
Maday, Y., see Joly, P.	301–307
Maday, Y., see Boukir, K.	211–218
Maday, Y., see Bertoluzza, S.	293–299
Mandel, J., An iterative solver for p -version finite elements in three dimensions	175–183
Mavriplis, C., Adaptive mesh strategies for the spectral element method	77– 86
Métivet, B., see Boukir, K.	211–218
Mund, E.H., see Deville, M.O.	193–200
Olsson, P., High order finite differences methods on non-smooth domains	265–272
Ould Kaber, S.M. and C. Rosier, Spectral methods for 2D Riemann problems	131–133
Ould Kaber, S.M., Filtering non-periodic functions	123–130
Pasquarelli, F. and A. Quarteroni, Effective spectral approximations of convection-diffusion equations	39– 51
Perrier, V., see Joly, P.	301–307
Pinelli, A., C. Benocci and M. Deville, A Chebyshev collocation algorithm for the solution of advection-diffusion equations	201–210
Ponenti, Pj., see Lazaar, S.	309–314
Quarteroni, A., see Pasquarelli, F.	39– 51
Ravel, J.C., see Bertoluzza, S.	293–299
Rønquist, E.M., see Fischer, P.F.	69– 76
Roos, H.-G., Higher order uniformly convergent methods for singular perturbation problems	273–280
Rosier, C., see Ould Kaber, S.M.	131–133
Rüde, U., see Bungartz, H.	243–252
Scapolla, T. and L.D. Croce, Combining hierachic high order and mixed-interpolated finite elements for Reissner–Mindlin plate problems	185–192
Schatzman, M., Higher order alternate directions methods	219–225
Schneidesch, C.R. and M.O. Deville, Multidomain decomposition of curved geometries in the Chebyshev collocation method for thermal problems	87– 94
Shu, C.-W., see Gottlieb, D.	27– 37
Sidilkover, D., see Giannakouros, J.G.	113–121

Tchamitchian, Ph., see Lazaar, S. 309–314

Van Kemenade, V., see Deville, M.O. 193–200

Ware, A., A spectral Lagrange–Galerkin method for convection-dominated diffusion problems 227–234

Welfert, B.D., On the eigenvalues of second-order pseudospectral differentiation operators 281–292

Zhang, S., see Jensen, S. 147–155

Zrahaia, U. and P. Bar-Yoseph, Space-time spectral element method for solution of second-order hyperbolic equations 135–146

