

Hash Table and Generic ADT

Project 3

Hash Table (1st week)

- After download and untar the file, change the directory to "strings"
- Create table.c to implement the set operations with hash table

```
SET *createSet(int maxElts);
void destroySet(SET *sp);
int numElements(SET *sp);
void addElement(SET *sp, char *elt);
void removeElement(SET *sp, char *elt);
char *findElement(SET *sp, char *elt);
char **getElements(SET *sp);
```


ADT

An additional array of flags (EMPTY, FILLED, DELETED)

```
struct set{
   int count;
   int length;
   char **data;
   int *flags;
};

struct set{
   int count;
   int length;
   char **data;
   int char *flags;
};
```


Hash Table (1st week)

Use the hash function from the lecture:

```
unsigned strhash(char *s)
{
   unsigned hash = 0;
   while (*s ≠ '\0')
       hash = 31 * hash + *s ++;
   return hash;
}
```

(Hash value may exceed the max length of the set)

addElement in sorted.c

What about removeElemnt?

Probing Logic and Search Function

- What happens when there is a conflict during insertion?
- What happens when we remove an element from the hash table?
- What do we return when the element is not found?
- 3 Cases:
 - FILLED
 - DELETED
 - EMPTY

A Simple Workflow

```
sp->data: E E E E E E E
```

- (index+hash)%length (assuming length = 7):
- [elt1,elt2,elt3,elt4,elt5] -> hash function -> [7, 8, 14, 15, 21]
- Activities:

Step 1: insert elt1

Step 2: insert elt2

Step 3: insert elt3

Step 4: insert elt4

Step 5: delete elt1

Step 6: delete elt3

Step 7: insert elt5

Step 8: get all elements

Workflow Beggin

Insert elt1 (hash value 7):

sp->data:	elt1						
sp->flag:	F	E	E	E	E	E	E

Insert elt2 (hash value 8):

sp->data:	elt1	elt2					
sp->flag:	F	F	Е	Е	Е	Е	Е

Insert elt3 (hash value 14):

```
      sp->data:
      elt1 elt2 elt3

      sp->flag:
      F
      F
      E
      E
      E
```

• Insert elt4 (hash value 15):

```
sp->data: elt1 elt2 elt3 elt4 sp->flag: F F F F E E E
```

(We insert right when we see a 'E'.)

Workflow Continue

Delete elt1 (hash value 7):

sp->data:	elt1	elt2	elt3	elt4				sp->data:		elt2	elt3	elt4			
sp->flag:	F	F	F	F	Е	Е	Е	sp->flag:	D	F	F	F	Е	E	E

- Delete elt3 (hash value 14):
 - Do we stop when we see a 'D'?

```
      sp->data:
      elt2 elt3 elt4
      sp->data:
      elt2 elt4

      sp->flag:
      D F F F E E E E

      sp->flag:
      D F D F E E E
```

- Insert elt5 (hash value 21):
 - Do we insert when we see a 'D'?
 - Where do we insert?

Workflow Finish

- Get all Elements:
 - Memcpy or copy every slot?
 - Two separate indexes

sp->data:	elt5	elt2		elt4			
sp->flag:	F	F	D	F	Е	Е	Е
index:	0	1	2	3	4	5	6
elts:	elt5	elt2	elt4				
index	0	1	2				

Test Cases

Same as Lab 2:

- ./unique /scratch/coen12/Macbeth.txt
- ./unique /scratch/coen12/Macbeth.txt /scratch/coen12/TreasureIsland.txt
- ./unique -l /scratch/coen12/Macbeth.txt /scratch/coen12/Bible.txt
- ./parity /scratch/coen12/Macbeth.txt

report.txt

 Copy the text file from project2 and add a new column for "hashing"

time ./unique /scratch/coen12/Macbeth.txt

unique			
	unsorted	sorted	hashing
GreenEggsAndHam.txt	????	????	????
Macbeth.txt	????	????	????
Genesis.txt	????	????	????
HoundOfTheBaskervilles.txt	????	????	????
TheWarOfTheWorlds.txt	????	????	????
TreasureIsland.txt	????	????	????
TheSecretGarden.txt	????	????	????
TwentyThousandLeagues.txt	????	????	????
TheCountOfMonteCristo.txt	????	????	????
Bible.txt	7777	????	????
parity			
process and the second			
- 100 AN	unsorted	sorted	hashing
GreenEggsAndHam.txt	????	????	????
Macbeth.txt	????	????	????
Genesis.txt	????	????	????
HoundOfTheBaskervilles.txt	????	????	????
TheWarOfTheWorlds.txt	????	????	????
TreasureIsland.txt	????	????	????
TheSecretGarden.txt	????	????	????
TwentyThousandLeagues.txt	????	????	????
TheCountOfMonteCristo.txt	????	????	????
Bible.txt	????	????	????