第14章

无线局域网

14-1 IEEE 802.11

由IEEE定义的无线局域网规范称做IEEE 802.11,该规范涵盖了物理层和数据链路层。

本节重点讨论的话题:

体系结构 MAC子层 物理层

图14.1 基本服务集(BSS)

BSS: Basic service set

AP: Access point

不带AP的BSS称为ad hoc网络; 带AP的BSS称为基础网络。

图14.2 扩展服务集(ESS)

802.11对分布式系统并没有严格的限制,它可以是任何的 IEEE 局域网,如以太网。

站点类型

- 不迁移(no transition): 固定的或仅在BSS内部移动。
- BSS迁移(BSS transition):站点可以从一个BSS移动 到另外一个BSS,但仅限于一个ESS之内。
- ESS迁移(ESS transition): 站点可以从一个ESS移动 到另外一个ESS, 但802.11不保证通信在移动中是连续的。

图 14.3 IEEE 802.11标准中的MAC层

为什么不能使用CSMA/CD 协议

无线局域网不能简单地搬用CSMA/CD协议。

- CSMA/CD 协议要求一个站点在发送本站数据的同时还必须不间断地检测信道,但在无线局域网的设备中要实现这种功能就花费过大。
- 即使能够实现冲突检测的功能,并且在发送数据时检测到信道是空闲的,在接收端仍然有可能发生冲突,因为信号的衰减会使一端的站点无法侦听到另一端的冲突。
- 隐藏站和站点距离较大时可能无法检测冲突。

CSMA/CA 协议

■ 无线局域网使用改进的CSMA协议,为CSMA增加一个冲突避免(Collision Avoidance)的功能。

■ 在使用CSMA/CA的同时还增加使用确认机制。

图14.5 CSMA/CA和网络分配矢量 NAV

- 1.一个站点发送RTS帧时,它包含了需要占用信道的时间,则其他站建立NAV(Network Allocation Vector)定时器。
- 2.NAV定时器指出允许这些 站点检测信道是否空闲之 前还需要等待多长时间。
- 3.任何一个站在检查物理信 道是否空闲之前,需要检 查它的NAV是否过期。
- 4.当RTS或CTS正在发送时 (握手周期)产生冲突, 发送方通过未收到CTS判 断冲突,重新发送。

- 1. 发送方发送帧之前,通过检测载波频率的能量来侦听介质,在通道空闲之前,使用带有补偿的持续策略;
- 2. 发送方发现信道空闲之后,等待一个DIFS之后,发送RTS控制帧;
- 3. 接收方接收到RTS,等 待SIFS后发送CTS;
- 4. 等待一个SIFS之后, 发送方发送数据;
- 5. 接收方等待一个SIFS 后,发送ACK。

发送

RTS、CTS、数据帧以及ACK帧的传输时间关系

为什么信道空闲还要再等待?

■ 考虑到可能有其他站有高优先级的帧要发送。

■ 如有,就要让高优先级帧先发送。

图14.4 CSMA/CA流程图

点协调功能PCF

- PCF是一种在BSS中实现的可选访问方式。
- PCF在DCF的上层实现,主要用于时间敏感信息的传输。
- PCF是集中的、无竞争的轮询访问方式,AP对可以被轮询的站点进行轮询。
- PCF优先级高于DCF。

图14.6 重复间隔的例子

来解决只使用DCF的站点优先级的问题

由于PCF的优先级高于DCF,只使用DCF的站点可能得不到对介质的访问

图14.7 帧格式

2 bytes	2 bytes	6 bytes	6 bytes	6 k	oytes	2 byte	es 6	bytes	0	to 231	2 bytes	4 byt	es
FC	D	Address 1	Address 2	Add	lress 3	SC	Ad	dress 4		Frame	body	FCS	
Protoco version	I IVDA	Suk	otype	To DS	From DS	More flag	Retry	Pwr mgt	More data	WEP	Rsvd		
2 bits	2 bits	5 4	bits	1 bit	1 bit	1 bit	1 bit	1 bit	1 bit	1 bit	1 bit		

表14.1 FC字段中的子字段

Field	Explanation
Version	Current version is 0
Туре	Type of information: management (00), control (01), or data (10)
Subtype	Subtype of each type (see Table 14.2)
To DS	Defined later
From DS	Defined later
More flag	When set to 1, means more fragments
Retry	When set to 1, means retransmitted frame
Pwr mgt	When set to 1, means station is in power management mode
More data	When set to 1, means station has more data to send
WEP	Wired equivalent privacy (encryption implemented)
Rsvd	Reserved

帧类型

- 管理帧: 用于站点和接入点之间的初始化通信
- 控制帧: 用于访问通道和对帧的确认
- 数据帧: 携带数据与控制信息

图14.8 控制帧

表14.2 控制帧中子类型字段的值(类型字段是01)

Subtype	Meaning
1011	Request to send (RTS)
1100	Clear to send (CTS)
1101	Acknowledgment (ACK)

表14.3 地址

To DS	From DS	Address 1	Address 2	Address 3	Address 4
0	0	Destination	Source	BSS ID	N/A
0	1	Destination	Sending AP	Source	N/A
1	0	Receiving AP	Source	Destination	N/A
1	1	Receiving AP	Sending AP	Destination	Source

- 1. 表明该帧既不是发往一个分布式系统 (DS),也不是来自一个分布式系统,而是从同一个BSS中的一个站点到另外一个站点,不经过DS,需要给原始发送站回送ACK帧。
- 2. 表明该帧来自于分布式系统,从一个AP来,到一个站点去,ACK 帧将被回送给AP。
- 3. 该帧要发送给一个分布式系统,从一个站点发往AP,ACK帧将被 发送到原始站点。
- 4. 说明分布式系统也是无线的,从一个DS的AP发送到另外一个DS的AP。如果其中一个DS是一个有线局域网,则这里就不需要定义地址。因此这里需要4个地址。

14.19

图14.9 寻址机制

a. Case 1

b. Case 2

d. Case 4

未能检测出媒体上已存在的信号的问题叫做 隐蔽站问题(hidden station problem)。

当 B和 C 检测不到无线信号时,都以为 A 是空闲的, 因而都向 A 发送数据,结果发生冲突。

图14.10 隐藏站点问题

B and C are hidden from each other with respect to A.

未能检测出媒体上已存在的信号的问题叫做隐蔽站问题(hidden station problem)。当 B和 C 检测不到无线信号时,都以为 A 是空闲的,因而都向 A 发送数据,结果发生冲突。

注意

CSMA/CA握手中的CTS帧可以避免 来自隐藏站点的冲突。

图14.11 使用握手机制来避免隐藏站点问题

图14.12 暴露站点问题

C is exposed to transmission from A to B.

A向 B 发送数据并不影响 C 向 D 发送数据,这就是暴露站问题(exposed station problem)。A 向 B发送数据,而 C 又想和 D 通信。C 检测到媒体上有信号,于是就不敢向 D 发送数据。

其实 A向 B 发送数据并不影响 C 向 D 发送数据, 这就是暴露站问题(exposed station problem)。

A 向 B发送数据,而 C 又想和 D 通信。 C 检测到媒体上有信号,于是就不敢向 D 发送数据。

图14.13 暴露站点问题中握手的使用

表14.4 物理层

IEEE	Technique	Band	Modulation	Rate (Mbps)	
802.11	FHSS	2.4 GHz	FSK	1 and 2	
	DSSS	2.4 GHz	PSK	1 and 2	
		Infrared	PPM	1 and 2	
802.11a	OFDM	5.725 GHz	PSK or QAM	6 to 54	
802.11b	DSSS	2.4 GHz	PSK	5.5 and 11	
802.11g	OFDM	2.4 GHz	Different	22 and 54	

IEEE 802.11n, 更高传输速率的改善,基础速率提升到72.2Mbit/s,可以使用双倍带宽40MHz,此时速率提升到150Mbit/s。支持多输入多输出技术(Multi-Input Multi-Output, MIMO)。

802.11 WLAN Standards

	802.11b	802.11a	802.11g	802.11n
Standard Approved	Sept. 1999	Sept. 1999	June 2003	May 2009
Available Bandwidth	83.5 MHz 580 MHz		83.5 MHz	83.5/580 MHz
Frequency Band of Operation	2.4 GHz	5 GHz	2.4 GHz	2.4/5 GHz
# Non-Overlapping Channels (US)	3	24	3	3/24
Data Rate per Channel	1 – 11 Mbps	6 – 54 Mbps	1 – 54 Mbps	1 – 600 Mbps
Modulation Type	DSSS, CCK	OFDM	DSSS, CCK, OFDM	DSSS, CCK, OFDM, MIMO

802.11n与802.11ac比较

V		
技术规格	802.11n	802.11ac
频带	2.4G, 4.9,5GHz	5GHz
调制方案	OFDM	OFDM
信道带宽	20, 40MHz	20,40,80MHz (160MHz 可选)
单流额定数据传输率	可达150Mbps(1*1, 40MHz)	可达433Mbps(1*1,80MHz)可达867Mbps(1*1, 160MHz)
多流聚合额定数据传输率	可达600Mbps(4*4, 40MHz)	可达1.73Gbps(4*4,40MHz) 可达3.47Gbps(4*4,40MHz)
1.5小时高清视频流传输时间	约30分钟(4*4, 40MHz)	约 15 分钟 (4*4,80MHz)
频谱效率 /Gbps	400Mbps (4*4, 40MHz)	200Mbps (4*4, 80MHz)
EIRP	22-36dBm	22-29dBm
传输范围	12-70mi(室内)	12-35m(室内)
可穿墙	是	是
非视距	是	是
全球适用	是	中国受限

802.11n关键技术——MIMO

- ■利用多天线传输将串行映射为并行
- ■各天线独立处理自主运行
- ■各天线用各自的调制方式发送电波
- ■各天线用各自的解调方式接收电波

802.11n关键技术——MIMO

802.11n关键技术--OFDM(正交频分复用)技术

即正交频分复用技术

提高频谱利用率减少各子载波之间干扰

802.11n使用改进的OFDM

改进的OFDM使用: 更高的最大码率 略宽的带宽

将信道分成多个进行窄频调制和传输正交子信道,并使每个子信道上的信号 频宽小于信道的相关频宽。

把高速数据流进行串并变换,形成传输速率相对较低的若干个并行数据流,然后分别在不同的子信道中传输。

802.11n关键技术——MIMO-OFDM

图14.14 工业、科学和医学频带(ISM)

图 14.15 IEEE 802.11 FHSS的物理层

图14.16 IEEE 802.11 DSSS的物理层

图14.17 IEEE 802.11红外线的物理层

图14.18 IEEE 802.11b的物理层

14-2 蓝牙 (Bluetooth)

- 是一种无线局域网技术,被设计用来连接不同功能的设备。
- 所有的设备被叫做小设备(gadgets)。
- 形成的网络叫做微微网络(piconet)。
- 蓝牙开始于爱立信(Ericsson)公司的一个项目,最初的名字叫做Harald Blaatand。
- 由IEEE 802.15定义。

本节重点讨论的话题:

体系结构 蓝牙层 无线电层 基带层

Figure 14.19 微微网

Piconet

Figure 14.20 散射网络

Piconet

Figure 14.21 蓝牙层

Figure 14.22 单个从设备通信

Figure 14.23 多个从设备通信

Figure 14.24 帧格式类型

Figure 14.25 L2CAP 数据分组格式

2 bytes	2 bytes	0 to 65,535 bytes
Length	Channel ID	Data and control

作业

■ P295页 11,12