

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.

This Page Blank (uspto)

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁷ : C12N 15/16, C07K 14/72		A2	(11) International Publication Number: WO 00/22131
			(43) International Publication Date: 20 April 2000 (20.04.00)
(21) International Application Number:	PCT/US99/24065		(72) Inventors; and
(22) International Filing Date:	13 October 1999 (13.10.99)		(75) Inventors/Applicants (for US only): BEHAN, Dominic, P. [GB/US]; 11472 Roxboro Court, San Diego, CA 92131 (US). LEHMANN-BRUIINSMA, Karin [DE/US]; 12565 Pathos Lane, San Diego, CA 92129 (US). CHALMERS, Derek, T. [GB/US]; 347 Longden Lane, Solana Beach, CA 92150 (US). CHEN, Ruoping [CN/US]; 5296 Timber Branch Way, San Diego, CA 92130 (US). DANG, Huong, T. [US/US]; 5352 Oak Park Drive, San Diego, CA 92105 (US). GORE, Martin [GB/US]; 6868 Estrella Avenue, San Diego, CA 92120 (US). LIAW, Chen, W. [US/US]; 7668 Salix Place, San Diego, CA 92129 (US). LIN, I-Lin [-/US]; 8291-7 Gold Coast Drive, San Diego, CA 92126 (US). LOWITZ, Kevin [US/US]; Apartment C, 8031 Caminito de Pizza, San Diego, CA 92108 (US). WHITE, Carol [US/US]; 4260 Cleveland Avenue, San Diego, CA 92103 (US).
(30) Priority Data:			(74) Agents: MILLER, Suzanne, E. et al.; Woodcock Washburn Kurtz Mackiewicz & Norris LLP, 46th floor, One Liberty Place, Philadelphia, PA 19103 (US).
09/170,496	13 October 1998 (13.10.98)	US	(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
60/108,029	12 November 1998 (12.11.98)	US	
60/109,213	20 November 1998 (20.11.98)	US	
60/110,060	27 November 1998 (27.11.98)	US	
60/120,416	16 February 1999 (16.02.99)	US	
60/121,852	26 February 1999 (26.02.99)	US	
60/123,944	12 March 1999 (12.03.99)	US	
60/123,945	12 March 1999 (12.03.99)	US	
60/123,948	12 March 1999 (12.03.99)	US	
60/123,946	12 March 1999 (12.03.99)	US	
60/123,949	12 March 1999 (12.03.99)	US	
60/123,951	12 March 1999 (12.03.99)	US	
60/136,436	28 May 1999 (28.05.99)	US	
60/136,437	28 May 1999 (28.05.99)	US	
60/136,439	28 May 1999 (28.05.99)	US	
60/137,567	28 May 1999 (28.05.99)	US	
60/137,127	28 May 1999 (28.05.99)	US	
60/137,131	28 May 1999 (28.05.99)	US	
60/141,448	30 June 1999 (30.06.99)	US	
60/151,114	27 August 1999 (27.08.99)	US	
60/152,524	3 September 1999 (03.09.99)	US	
Not furnished	9 September 1999 (09.09.99)	US	
60/156,633	29 September 1999 (29.09.99)	US	
60/156,555	29 September 1999 (29.09.99)	US	
60/156,634	29 September 1999 (29.09.99)	US	
Not furnished	1 October 1999 (01.10.99)	US	
Not furnished	1 October 1999 (01.10.99)	US	
Not furnished	1 October 1999 (01.10.99)	US	
Not furnished	1 October 1999 (01.10.99)	US	
Not furnished	12 October 1999 (12.10.99)	US	
Not furnished	12 October 1999 (12.10.99)	US	
(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Application			Published
US	09/170,496 (CIP)		Without international search report and to be republished upon receipt of that report.
Filed on	13 October 1998 (13.10.98)		

(54) Title: NON-ENDOGENOUS, CONSTITUTIVELY ACTIVATED HUMAN G PROTEIN-COUPLED RECEPTORS

(57) Abstract

The invention disclosed in this patent document relates to transmembrane receptors, more particularly to a human G protein-coupled receptor for which the endogenous ligand is unknown ("orphan GPCR receptors"), and most particularly to mutated (non-endogenous) versions of the human GPCRs for evidence of constitutive activity.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

NON-ENDOGENOUS, CONSTITUTIVELY ACTIVATED HUMAN G PROTEIN-COUPLED RECEPTORS

This patent application is a continuation-in-part of, and claims priority from, U.S.

Serial Number 09/170,496, filed with the United States Patent and Trademark Office on

- 2 -

60/141,448, filed June 29, 1999 claiming benefit of U.S. Provisional Number 60/136,437, filed May 28, 1999; U.S. Provisional Number 60/156,633, filed September 29, 1999; U.S. Provisional Number 60/156,555, filed September 29, 1999; U.S. Provisional Number 60/156,634, filed September 29, 1999; U.S. Provisional Number ____ (Arena Pharmaceuticals, Inc. docket number: CHN10-1), filed September 29, 1999; U.S. Provisional Number ____ (Arena Pharmaceuticals, Inc. docket number: RUP6-1), filed October 1, 1999; U.S. Provisional Number ____ (Arena Pharmaceuticals, Inc. docket number: RUP7-1), filed October 1, 1999; U.S. Provisional Number ____ (Arena Pharmaceuticals, Inc. docket number: CHN6-1), filed October 1, 1999; U.S. Provisional Number ____ (Arena Pharmaceuticals, Inc. docket number: RUP5-1), filed October 1, 1999; and U.S. Provisional Number ____ (Arena Pharmaceuticals, Inc. docket number: CHN9-1), filed October 1, 1999. This application is also related to co-pending U.S. Serial Number ____ (Woodcock, Washburn, Kurtz, Makiewicz & Norris, LLP docket number AREN-0050), filed on October 12, 1999 (via U.S. Express Mail) and U.S. Serial Number 09/364,425, filed on July 30, 1999, both incorporated herein by reference. This application also claims priority to U.S. Serial Number ____ (Woodcock, Washburn, Kurtz, Makiewicz & Norris, LLP docket number AREN-0054), filed on October 12, 1999 (via U.S. Express Mail), incorporated by reference herein in its entirety. Each of the foregoing applications are incorporated by reference herein in their entirety.

FIELD OF THE INVENTION

The invention disclosed in this patent document relates to transmembrane receptors, and more particularly to human G protein-coupled receptors, and specifically to

- 3 -

GPCRs that have been altered to establish or enhance constitutive activity of the receptor. Preferably, the altered GPCRs are used for the direct identification of candidate compounds as receptor agonists, inverse agonists or partial agonists having potential applicability as therapeutic agents.

5

BACKGROUND OF THE INVENTION

Although a number of receptor classes exist in humans, by far the most abundant and therapeutically relevant is represented by the G protein-coupled receptor (GPCR or GPCRs) class. It is estimated that there are some 100,000 genes within the human genome, and of these, approximately 2%, or 2,000 genes, are estimated to code for GPCRs. Receptors, 10 including GPCRs, for which the endogenous ligand has been identified are referred to as "known" receptors, while receptors for which the endogenous ligand has not been identified are referred to as "orphan" receptors. GPCRs represent an important area for the development of pharmaceutical products: from approximately 20 of the 100 known GPCRs, 60% of all prescription pharmaceuticals have been developed.

15

GPCRs share a common structural motif. All these receptors have seven sequences of between 22 to 24 hydrophobic amino acids that form seven alpha helices, each of which spans the membrane (each span is identified by number, *i.e.*, transmembrane-1 (TM-1), transmebrane-2 (TM-2), etc.). The transmembrane helices are joined by strands of amino acids between transmembrane-2 and transmembrane-3, transmembrane-4 and transmembrane-20 5, and transmembrane-6 and transmembrane-7 on the exterior, or "extracellular" side, of the cell membrane (these are referred to as "extracellular" regions 1, 2 and 3 (EC-1, EC-2 and EC-3), respectively). The transmembrane helices are also joined by strands of amino acids between transmembrane-1 and transmembrane-2, transmembrane-3 and transmembrane-4, and

- 4 -

transmembrane-5 and transmembrane-6 on the interior, or "intracellular" side, of the cell membrane (these are referred to as "intracellular" regions 1, 2 and 3 (IC-1, IC-2 and IC-3), respectively). The "carboxy" ("C") terminus of the receptor lies in the intracellular space within the cell, and the "amino" ("N") terminus of the receptor lies in the extracellular space

5 outside of the cell.

Generally, when an endogenous ligand binds with the receptor (often referred to as "activation" of the receptor), there is a change in the conformation of the intracellular region that allows for coupling between the intracellular region and an intracellular "G-protein." It has been reported that GPCRs are "promiscuous" with respect to G proteins, *i.e.*,

10 that a GPCR can interact with more than one G protein. *See*, Kenakin, T., 43 *Life Sciences* 1095 (1988). Although other G proteins exist, currently, Gq, Gs, Gi, Gz and Go are G proteins that have been identified. Endogenous ligand-activated GPCR coupling with the G-protein begins a signaling cascade process (referred to as "signal transduction"). Under normal conditions, signal transduction ultimately results in cellular activation or cellular inhibition.

15 It is thought that the IC-3 loop as well as the carboxy terminus of the receptor interact with the G protein.

Under physiological conditions, GPCRs exist in the cell membrane in equilibrium between two different conformations: an "inactive" state and an "active" state. A receptor in an inactive state is unable to link to the intracellular signaling transduction

20 pathway to produce a biological response. Changing the receptor conformation to the active state allows linkage to the transduction pathway (via the G-protein) and produces a biological response.

A receptor may be stabilized in an active state by an endogenous ligand or a

- 5 -

compound such as a drug. Recent discoveries, including but not exclusively limited to modifications to the amino acid sequence of the receptor, provide means other than endogenous ligands or drugs to promote and stabilize the receptor in the active state conformation. These means effectively stabilize the receptor in an active state by

5 simulating the effect of an endogenous ligand binding to the receptor. Stabilization by such ligand-independent means is termed "constitutive receptor activation."

SUMMARY OF THE INVENTION

Disclosed herein are non-endogenous versions of endogenous, human GPCRs and uses thereof.

10

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a representation of 8XCRE-Luc reporter plasmid (*see, Example 4(c)3.)*

Figures 2A and 2B are graphic representations of the results of ATP and ADP binding to endogenous TDAG8 (2A) and comparisons in serum and serum free media (2B).

15

Figure 3 is a graphic representation of the comparative signaling results of CMV versus the GPCR Fusion Protein H9(F236K):Gsa.

DETAILED DESCRIPTION

The scientific literature that has evolved around receptors has adopted a number of terms to refer to ligands having various effects on receptors. For clarity and consistency, the following definitions will be used throughout this patent document. To the extent that these definitions conflict with other definitions for these terms, the following definitions shall control:

AGONISTS shall mean materials (*e.g.,* ligands, candidate compounds) that

- 6 -

activate the intracellular response when they bind to the receptor, or enhance GTP binding to membranes.

AMINO ACID ABBREVIATIONS used herein are set out in Table A:

TABLE A

5	ALANINE	ALA	A
	ARGININE	ARG	R
	ASPARAGINE	ASN	N
	ASPARTIC ACID	ASP	D
	CYSTEINE	CYS	C
10	GLUTAMIC ACID	GLU	E
	GLUTAMINE	GLN	Q
	GLYCINE	GLY	G
	HISTIDINE	HIS	H
	ISOLEUCINE	ILE	I
15	LEUCINE	LEU	L
	LYSINE	LYS	K
	METHIONINE	MET	M
	PHENYLALANINE	PHE	F
	PROLINE	PRO	P
20	SERINE	SER	S
	THREONINE	THR	T
	TRYPTOPHAN	TRP	W
	TYROSINE	TYR	Y
	VALINE	VAL	V

25 **PARTIAL AGONISTS** shall mean materials (*e.g.*, ligands, candidate compounds) that activate the intracellular response when they bind to the receptor to a lesser degree/extent than do agonists, or enhance GTP binding to membranes to a lesser degree/extent than do agonists.

ANTAGONIST shall mean materials (*e.g.*, ligands, candidate compounds) that 30 competitively bind to the receptor at the same site as the agonists but which do not activate the intracellular response initiated by the active form of the receptor, and can thereby inhibit the intracellular responses by agonists or partial agonists. ANTAGONISTS do not diminish the baseline intracellular response in the absence of an agonist or partial agonist.

CANDIDATE COMPOUND shall mean a molecule (for example, and not limitation,

- 7 -

a chemical compound) that is amenable to a screening technique. Preferably, the phrase "candidate compound" does not include compounds which were publicly known to be compounds selected from the group consisting of inverse agonist, agonist or antagonist to a receptor, as previously determined by an indirect identification process ("indirectly identified compound"); more preferably, not including an indirectly identified compound which has previously been determined to have therapeutic efficacy in at least one mammal; and, most preferably, not including an indirectly identified compound which has previously been determined to have therapeutic utility in humans.

COMPOSITION means a material comprising at least one component; a 10 "pharmaceutical composition" is an example of a composition.

COMPOUND EFFICACY shall mean a measurement of the ability of a compound to inhibit or stimulate receptor functionality, as opposed to receptor binding affinity. Exemplary means of detecting compound efficacy are disclosed in the Example section of this patent document.

15 **CODON** shall mean a grouping of three nucleotides (or equivalents to nucleotides) which generally comprise a nucleoside (adenosine (A), guanosine (G), cytidine (C), uridine (U) and thymidine (T)) coupled to a phosphate group and which, when translated, encodes an amino acid.

CONSTITUTIVELY ACTIVATED RECEPTOR shall mean a receptor subject to 20 constitutive receptor activation. A constitutively activated receptor can be endogenous or non-endogenous.

CONSTITUTIVE RECEPTOR ACTIVATION shall mean stabilization of a receptor in the active state by means other than binding of the receptor with its endogenous

- 8 -

ligand or a chemical equivalent thereof.

CONTACT or **CONTACTING** shall mean bringing at least two moieties together, whether in an in vitro system or an in vivo system.

DIRECTLY IDENTIFYING or **DIRECTLY IDENTIFIED**, in relationship to the

5 phrase "candidate compound", shall mean the screening of a candidate compound against a constitutively activated receptor, preferably a constitutively activated orphan receptor, and most preferably against a constitutively activated G protein-coupled cell surface orphan receptor, and assessing the compound efficacy of such compound. This phrase is, under no circumstances, to be interpreted or understood to be encompassed by or to encompass the

10 phrase "indirectly identifying" or "indirectly identified."

ENDOGENOUS shall mean a material that a mammal naturally produces.

ENDOGENOUS in reference to, for example and not limitation, the term "receptor," shall mean that which is naturally produced by a mammal (for example, and not limitation, a human) or a virus. By contrast, the term **NON-ENDOGENOUS** in this context shall mean

15 that which is not naturally produced by a mammal (for example, and not limitation, a human) or a virus. For example, and not limitation, a receptor which is not constitutively active in its endogenous form, but when manipulated becomes constitutively active, is most preferably referred to herein as a "non-endogenous, constitutively activated receptor." Both terms can be utilized to describe both "in vivo" and "in vitro" systems. For example, and not limitation,

20 in a screening approach, the endogenous or non-endogenous receptor may be in reference to an in vitro screening system. As a further example and not limitation, where the genome of a mammal has been manipulated to include a non-endogenous constitutively activated receptor, screening of a candidate compound by means of an in vivo system is viable.

- 9 -

G PROTEIN COUPLED RECEPTOR FUSION PROTEIN and GPCR FUSION

PROTEIN, in the context of the invention disclosed herein, each mean a non-endogenous protein comprising an endogenous, constitutively activate GPCR or a non-endogenous, constitutively activated GPCR fused to at least one G protein, most preferably the alpha (α) 5 subunit of such G protein (this being the subunit that binds GTP), with the G protein preferably being of the same type as the G protein that naturally couples with endogenous orphan GPCR. For example, and not limitation, in an endogenous state, if the G protein "G α s" is the predominate G protein that couples with the GPCR, a GPCR Fusion Protein based upon the specific GPCR would be a non-endogenous protein comprising the GPCR 10 fused to G α s; in some circumstances, as will be set forth below, a non-predominant G protein can be fused to the GPCR. The G protein can be fused directly to the c-terminus of the constitutively active GPCR or there may be spacers between the two.

HOST CELL shall mean a cell capable of having a Plasmid and/or Vector incorporated therein. In the case of a prokaryotic Host Cell, a Plasmid is typically replicated 15 as a autonomous molecule as the Host Cell replicates (generally, the Plasmid is thereafter isolated for introduction into a eukaryotic Host Cell); in the case of a eukaryotic Host Cell, a Plasmid is integrated into the cellular DNA of the Host Cell such that when the eukaryotic Host Cell replicates, the Plasmid replicates. Preferably, for the purposes of the invention disclosed herein, the Host Cell is eukaryotic, more preferably, mammalian, and most 20 preferably selected from the group consisting of 293, 293T and COS-7 cells.

INDIRECTLY IDENTIFYING or **INDIRECTLY IDENTIFIED** means the traditional approach to the drug discovery process involving identification of an endogenous ligand specific for an endogenous receptor, screening of candidate compounds against the

- 10 -

receptor for determination of those which interfere and/or compete with the ligand-receptor interaction, and assessing the efficacy of the compound for affecting at least one second messenger pathway associated with the activated receptor.

INHIBIT or **INHIBITING**, in relationship to the term "response" shall mean that a 5 response is decreased or prevented in the presence of a compound as opposed to in the absence of the compound.

INVERSE AGONISTS shall mean materials (e.g., ligand, candidate compound) which bind to either the endogenous form of the receptor or to the constitutively activated form of the receptor, and which inhibit the baseline intracellular response initiated by the 10 active form of the receptor below the normal base level of activity which is observed in the absence of agonists or partial agonists, or decrease GTP binding to membranes. Preferably, the baseline intracellular response is inhibited in the presence of the inverse agonist by at least 30%, more preferably by at least 50%, and most preferably by at least 75%, as compared with the baseline response in the absence of the inverse agonist.

15 **KNOWN RECEPTOR** shall mean an endogenous receptor for which the endogenous ligand specific for that receptor has been identified.

LIGAND shall mean an endogenous, naturally occurring molecule specific for an endogenous, naturally occurring receptor.

MUTANT or **MUTATION** in reference to an endogenous receptor's nucleic acid 20 and/or amino acid sequence shall mean a specified change or changes to such endogenous sequences such that a mutated form of an endogenous, non-constitutively activated receptor evidences constitutive activation of the receptor. In terms of equivalents to specific sequences, a subsequent mutated form of a human receptor is considered to be equivalent to

- 11 -

a first mutation of the human receptor if (a) the level of constitutive activation of the subsequent mutated form of a human receptor is substantially the same as that evidenced by the first mutation of the receptor; and (b) the percent sequence (amino acid and/or nucleic acid) homology between the subsequent mutated form of the receptor and the first mutation

5 of the receptor is at least about 80%, more preferably at least about 90% and most preferably at least 95%. Ideally, and owing to the fact that the most preferred cassettes disclosed herein for achieving constitutive activation includes a single amino acid and/or codon change between the endogenous and the non-endogenous forms of the GPCR, the percent sequence homology should be at least 98%.

10 **NON-ORPHAN RECEPTOR** shall mean an endogenous naturally occurring molecule specific for an endogenous naturally occurring ligand wherein the binding of a ligand to a receptor activates an intracellular signaling pathway.

ORPHAN RECEPTOR shall mean an endogenous receptor for which the endogenous ligand specific for that receptor has not been identified or is not known.

15 **PHARMACEUTICAL COMPOSITION** shall mean a composition comprising at least one active ingredient, whereby the composition is amenable to investigation for a specified, efficacious outcome in a mammal (for example, and not limitation, a human). Those of ordinary skill in the art will understand and appreciate the techniques appropriate for determining whether an active ingredient has a desired efficacious outcome based upon the

20 needs of the artisan.

PLASMID shall mean the combination of a Vector and cDNA. Generally, a Plasmid is introduced into a Host Cell for the purposes of replication and/or expression of the cDNA as a protein.

- 12 -

STIMULATE or STIMULATING, in relationship to the term "response" shall mean that a response is increased in the presence of a compound as opposed to in the absence of the compound.

VECTOR in reference to cDNA shall mean a circular DNA capable of incorporating 5 at least one cDNA and capable of incorporation into a Host Cell.

The order of the following sections is set forth for presentational efficiency and is not intended, nor should be construed, as a limitation on the disclosure or the claims to follow.

A. Introduction

The traditional study of receptors has always proceeded from the a priori assumption 10 (historically based) that the endogenous ligand must first be identified before discovery could proceed to find antagonists and other molecules that could affect the receptor. Even in cases where an antagonist might have been known first, the search immediately extended to looking for the endogenous ligand. This mode of thinking has persisted in receptor research even after 15 the discovery of constitutively activated receptors. What has not been heretofore recognized is that it is the active state of the receptor that is most useful for discovering agonists, partial agonists, and inverse agonists of the receptor. For those diseases which result from an overly active receptor or an under-active receptor, what is desired in a therapeutic drug is a compound which acts to diminish the active state of a receptor or enhance the activity of the receptor, respectively, not necessarily a drug which is an antagonist to the endogenous ligand. 20 This is because a compound that reduces or enhances the activity of the active receptor state need not bind at the same site as the endogenous ligand. Thus, as taught by a method of this invention, any search for therapeutic compounds should start by screening compounds against the ligand-independent active state.

- 13 -

B. Identification of Human GPCRs

The efforts of the Human Genome project has led to the identification of a plethora of information regarding nucleic acid sequences located within the human genome; it has been the case in this endeavor that genetic sequence information has been made available without

5 an understanding or recognition as to whether or not any particular genomic sequence does or may contain open-reading frame information that translate human proteins. Several methods of identifying nucleic acid sequences within the human genome are within the purview of those having ordinary skill in the art. For example, and not limitation, a variety

10 of human GPCRs, disclosed herein, were discovered by reviewing the GenBank™ database,

15 while other GPCRs were discovered by utilizing a nucleic acid sequence of a GPCR, previously sequenced, to conduct a BLAST™ search of the EST database. Table B, below, lists several endogenous GPCRs that we have discovered, along with a GPCR's respective homologous receptor.

TABLE B

	Disclosed Human Orphan GPCRs	Accession Number Identified	Open Reading Frame (Base Pairs)	Per Cent Homology To Designated GPCR	Reference To Homologous GPCR (Accession No.)
20	hARE-3	AL033379	1,260 bp	52.3% LPA-R	U92642
	hARE-4	AC006087	1,119 bp	36% P2Y5	AF000546
	hARE-5	AC006255	1,104 bp	32% <i>Oryzias latipes</i>	D43633
	hGPR27	AA775870	1,128 bp		
25	hARE-1	AI090920	999 bp	43%	D13626
	hARE-2	AA359504	1,122 bp	KIAA0001	
	hPPR1	H67224	1,053 bp	53% GPR27	L31581
	hG2A	AA754702	1,113 bp	39% EB11	L36148

- 14 -

	hRUP3	AL035423	1,005 bp	30% <i>Drosophila melanogaster</i>	2133653
	hRUP4	AI307658	1,296 bp	32% pNPGPR 28% and 29 % <i>Zebra fish</i> Ya and Yb, respectively	NP_004876 AAC41276 and AAB94616
	hRUP5	AC005849	1,413 bp	25% DEZ 23% FMLPR	Q99788 P21462
5	hRUP6	AC005871	1,245 bp	48% GPR66	NP_006047
	hRUP7	AC007922	1,173 bp	43% H3R	AF140538
	hCHN3	EST 36581	1,113 bp	53% GPR27	
	hCHN4	AA804531	1,077 bp	32% thrombin	4503637
	hCHN6	EST 2134670	1,503 bp	36% edg-1	NP_001391
	hCHN8	EST 764455	1,029 bp	47% KIAA0001	D13626
10	hCHN9	EST 1541536	1,077 bp	41% LTB4R	NM_000752
	hCHN10	EST 1365839	1,055 bp	35% P2Y	NM_002563

Receptor homology is useful in terms of gaining an appreciation of a role of the receptors within the human body. As the patent document progresses, we will disclose techniques for mutating these receptors to establish non-endogenous, constitutively activated versions of these receptors.

The techniques disclosed herein have also been applied to other human, orphan GPCRs known to the art, as will be apparent as the patent document progresses.

C. Receptor Screening

Screening candidate compounds against a non-endogenous, constitutively activated version of the human GPCRs disclosed herein allows for the direct identification of candidate compounds which act at this cell surface receptor, without requiring use of the receptor's endogenous ligand. By determining areas within the body where the endogenous version of human GPCRs disclosed herein is expressed and/or over-expressed, it is possible to determine related disease/disorder states which are associated with the expression and/or over-expression

- 15 -

of the receptor; such an approach is disclosed in this patent document.

With respect to creation of a mutation that may evidence constitutive activation of the human GPCR disclosed herein is based upon the distance from the proline residue at which is presumed to be located within TM6 of the GPCR; this algorithmic technique is disclosed

5 in co-pending and commonly assigned patent document U.S. Serial Number 09/170,496, incorporated herein by reference. The algorithmic technique is not predicated upon traditional sequence "alignment" but rather a specified distance from the aforementioned TM6 proline residue. By mutating the amino acid residue located 16 amino acid residues from this residue (presumably located in the IC3 region of the receptor) to, most preferably, a lysine residue,

10 such activation may be obtained. Other amino acid residues may be useful in the mutation at this position to achieve this objective.

D. Disease/Disorder Identification and/or Selection

As will be set forth in greater detail below, most preferably inverse agonists to the non-endogenous, constitutively activated GPCR can be identified by the methodologies of this

15 invention. Such inverse agonists are ideal candidates as lead compounds in drug discovery programs for treating diseases related to this receptor. Because of the ability to directly identify inverse agonists to the GPCR, thereby allowing for the development of pharmaceutical compositions, a search for diseases and disorders associated with the GPCR is relevant. For example, scanning both diseased and normal tissue samples for the presence

20 of the GPCR now becomes more than an academic exercise or one which might be pursued along the path of identifying an endogenous ligand to the specific GPCR. Tissue scans can be conducted across a broad range of healthy and diseased tissues. Such tissue scans provide a preferred first step in associating a specific receptor with a disease and/or disorder. *See, for*

- 16 -

example, co-pending application (docket number ARE-0050) for exemplary dot-blot and RT-PCR results of several of the GPCRs disclosed herein.

Preferably, the DNA sequence of the human GPCR is used to make a probe for (a) dot-blot analysis against tissue-mRNA, and/or (b) RT-PCR identification of the expression 5 of the receptor in tissue samples. The presence of a receptor in a tissue source, or a diseased tissue, or the presence of the receptor at elevated concentrations in diseased tissue compared to a normal tissue, can be preferably utilized to identify a correlation with a treatment regimen, including but not limited to, a disease associated with that disease. Receptors can equally well be localized to regions of organs by this technique. Based on 10 the known functions of the specific tissues to which the receptor is localized, the putative functional role of the receptor can be deduced.

E. Screening of Candidate Compounds

1. Generic GPCR screening assay techniques

When a G protein receptor becomes constitutively active, it binds to a G protein (*e.g.*, 15 G_q, G_s, G_i, G_z, G_o) and stimulates the binding of GTP to the G protein. The G protein then acts as a GTPase and slowly hydrolyzes the GTP to GDP, whereby the receptor, under normal conditions, becomes deactivated. However, constitutively activated receptors continue to exchange GDP to GTP. A non-hydrolyzable analog of GTP, [³⁵S]GTPγS, can be used to monitor enhanced binding to membranes which express constitutively activated receptors. 20 It is reported that [³⁵S]GTPγS can be used to monitor G protein coupling to membranes in the absence and presence of ligand. An example of this monitoring, among other examples well-known and available to those in the art, was reported by Traynor and Nahorski in 1995. The preferred use of this assay system is for initial screening of candidate compounds because the

- 17 -

system is generically applicable to all G protein-coupled receptors regardless of the particular G protein that interacts with the intracellular domain of the receptor.

2. Specific GPCR screening assay techniques

Once candidate compounds are identified using the "generic" G protein-coupled receptor assay (*i.e.*, an assay to select compounds that are agonists, partial agonists, or inverse agonists), further screening to confirm that the compounds have interacted at the receptor site is preferred. For example, a compound identified by the "generic" assay may not bind to the receptor, but may instead merely "uncouple" the G protein from the intracellular domain.

a. *Gs, Gz and Gi.*

10 *Gs* stimulates the enzyme adenylyl cyclase. *Gi* (and *Gz* and *Go*), on the other hand, inhibit this enzyme. Adenylyl cyclase catalyzes the conversion of ATP to cAMP; thus, constitutively activated GPCRs that couple the *Gs* protein are associated with increased cellular levels of cAMP. On the other hand, constitutively activated GPCRs that couple *Gi* (or *Gz*, *Go*) protein are associated with decreased cellular levels of cAMP. *See, generally,*

15 "Indirect Mechanisms of Synaptic Transmission," Chpt. 8, From Neuron To Brain (3rd Ed.) Nichols, J.G. et al eds. Sinauer Associates, Inc. (1992). Thus, assays that detect cAMP can be utilized to determine if a candidate compound is, *e.g.*, an inverse agonist to the receptor (*i.e.*, such a compound would decrease the levels of cAMP). A variety of approaches known in the art for measuring cAMP can be utilized; a most preferred approach relies upon the use

20 of anti-cAMP antibodies in an ELISA-based format. Another type of assay that can be utilized is a whole cell second messenger reporter system assay. Promoters on genes drive the expression of the proteins that a particular gene encodes. Cyclic AMP drives gene expression by promoting the binding of a cAMP-responsive DNA binding protein or

- 18 -

transcription factor (CREB) that then binds to the promoter at specific sites called cAMP response elements and drives the expression of the gene. Reporter systems can be constructed which have a promoter containing multiple cAMP response elements before the reporter gene, e.g., β -galactosidase or luciferase. Thus, a constitutively activated Gs-linked receptor causes 5 the accumulation of cAMP that then activates the gene and expression of the reporter protein. The reporter protein such as β -galactosidase or luciferase can then be detected using standard biochemical assays (Chen et al. 1995).

b. Go and Gq.

10 Gq and Go are associated with activation of the enzyme phospholipase C, which in turn hydrolyzes the phospholipid PIP₂, releasing two intracellular messengers: diacycloglycerol (DAG) and inistol 1,4,5-triphosphate (IP₃). Increased accumulation of IP₃ is associated with activation of Gq- and Go-associated receptors. *See, generally, "Indirect Mechanisms of Synaptic Transmission," Chpt. 8, From Neuron To Brain (3rd Ed.) Nichols, 15 J.G. et al eds. Sinauer Associates, Inc. (1992). Assays that detect IP₃ accumulation can be utilized to determine if a candidate compound is, e.g., an inverse agonist to a Gq- or Go-associated receptor (*i.e.*, such a compound would decrease the levels of IP₃). Gq-associated receptors can also been examined using an AP1 reporter assay in that Gq-dependent phospholipase C causes activation of genes containing AP1 elements; thus, activated Gq- 20 associated receptors will evidence an increase in the expression of such genes, whereby inverse agonists thereto will evidence a decrease in such expression, and agonists will evidence an increase in such expression. Commercially available assays for such detection are available.*

- 19 -

3. GPCR Fusion Protein

The use of an endogenous, constitutively activate orphan GPCR or a non-endogenous, constitutively activated orphan GPCR, for use in screening of candidate compounds for the direct identification of inverse agonists, agonists and partial agonists provide an interesting screening challenge in that, by definition, the receptor is active even in the absence of an endogenous ligand bound thereto. Thus, in order to differentiate between, e.g., the non-endogenous receptor in the presence of a candidate compound and the non-endogenous receptor in the absence of that compound, with an aim of such a differentiation to allow for an understanding as to whether such compound may be an inverse agonist, agonist, partial agonist or have no affect on such a receptor, it is preferred that an approach be utilized that can enhance such differentiation. A preferred approach is the use of a GPCR Fusion Protein.

Generally, once it is determined that a non-endogenous orphan GPCR has been constitutively activated using the assay techniques set forth above (as well as others), it is possible to determine the predominant G protein that couples with the endogenous GPCR. Coupling of the G protein to the GPCR provides a signaling pathway that can be assessed. Because it is most preferred that screening take place by use of a mammalian expression system, such a system will be expected to have endogenous G protein therein. Thus, by definition, in such a system, the non-endogenous, constitutively activated orphan GPCR will continuously signal. In this regard, it is preferred that this signal be enhanced such that in the presence of, e.g., an inverse agonist to the receptor, it is more likely that it will be able to more readily differentiate, particularly in the context of screening, between the receptor when it is contacted with the inverse agonist.

The GPCR Fusion Protein is intended to enhance the efficacy of G protein coupling

with the non-endogenous GPCR. The GPCR Fusion Protein is preferred for screening with a non-endogenous, constitutively activated GPCR because such an approach increases the signal that is most preferably utilized in such screening techniques. This is important in facilitating a significant "signal to noise" ratio; such a significant ratio is import preferred for
5 the screening of candidate compounds as disclosed herein.

The construction of a construct useful for expression of a GPCR Fusion Protein is within the purview of those having ordinary skill in the art. Commercially available expression vectors and systems offer a variety of approaches that can fit the particular needs of an investigator. The criteria of importance for such a GPCR Fusion Protein construct is
10 that the endogenous GPCR sequence and the G protein sequence both be in-frame (preferably, the sequence for the endogenous GPCR is upstream of the G protein sequence) and that the "stop" codon of the GPCR must be deleted or replaced such that upon expression of the GPCR, the G protein can also be expressed. The GPCR can be linked directly to the G protein, or there can be spacer residues between the two (preferably, no more than about 12,
15 although this number can be readily ascertained by one of ordinary skill in the art). We have a preference (based upon convenience) of use of a spacer in that some restriction sites that are not used will, effectively, upon expression, become a spacer. Most preferably, the G protein that couples to the non-endogenous GPCR will have been identified prior to the creation of the GPCR Fusion Protein construct. Because there are only a few G proteins that have been
20 identified, it is preferred that a construct comprising the sequence of the G protein (*i.e.*, a universal G protein construct) be available for insertion of an endogenous GPCR sequence therein; this provides for efficiency in the context of large-scale screening of a variety of different endogenous GPCRs having different sequences.

As noted above, constitutively activated GPCRs that couple to Gi, Gz and Go are expected to inhibit the formation of cAMP making assays based upon these types of GPCRs challenging (*i.e.*, the cAMP signal decreases upon activation thus making the direct identification of, *e.g.*, inverse agonists (which would further decrease this signal), interesting).

- 5 As will be disclosed herein, we have ascertained that for these types of receptors, it is possible to create a GPCR Fusion Protein that is not based upon the endogenous GPCR's endogenous G protein, in an effort to establish a viable cyclase-based assay. Thus, for example, a Gz coupled receptor such as H9, a GPCR Fusion Protein can be established that utilizes a Gs fusion protein – we believe that such a fusion construct, upon expression, "drives" or "forces" 10 the non-endogenous GPCR to couple with, *e.g.*, Gs rather than the "natural" Gz protein, such that a cyclase-based assay can be established. Thus, for Gi, Gz and Go coupled receptors, we prefer that that when a GPCR Fusion Protein is used and the assay is based upon detection of adenyl cyclase activity, that the fusion construct be established with Gs (or an equivalent G protein that stimulates the formation of the enzyme adenylyl cyclase).

15 **F. Medicinal Chemistry**

Generally, but not always, direct identification of candidate compounds is preferably conducted in conjunction with compounds generated via combinatorial chemistry techniques, whereby thousands of compounds are randomly prepared for such analysis. Generally, the results of such screening will be compounds having unique core structures; thereafter, these 20 compounds are preferably subjected to additional chemical modification around a preferred core structure(s) to further enhance the medicinal properties thereof. Such techniques are known to those in the art and will not be addressed in detail in this patent document.

G. Pharmaceutical compositions

Candidate compounds selected for further development can be formulated into pharmaceutical compositions using techniques well known to those in the art. Suitable pharmaceutically-acceptable carriers are available to those in the art; for example, see 5 Remington's Pharmaceutical Sciences, 16th Edition, 1980, Mack Publishing Co., (Oslo et al., eds.)

H. Other Utility

Although a preferred use of the non-endogenous versions the human GPCRs disclosed herein may be for the direct identification of candidate compounds as inverse agonists, 10 agonists or partial agonists (preferably for use as pharmaceutical agents), these versions of human GPCRs can also be utilized in research settings. For example, *in vitro* and *in vivo* systems incorporating GPCRs can be utilized to further elucidate and understand the roles these receptors play in the human condition, both normal and diseased, as well as understanding the role of constitutive activation as it applies to understanding the signaling 15 cascade. The value in non-endogenous human GPCRs is that their utility as a research tool is enhanced in that, because of their unique features, non-endogenous human GPCRs can be used to understand the role of these receptors in the human body before the endogenous ligand therefor is identified. Other uses of the disclosed receptors will become apparent to those in the art based upon, *inter alia*, a review of this patent document.

EXAMPLES

The following examples are presented for purposes of elucidation, and not limitation, of the present invention. While specific nucleic acid and amino acid sequences are disclosed herein, those of ordinary skill in the art are credited with the ability to make minor

- 23 -

modifications to these sequences while achieving the same or substantially similar results reported below. The traditional approach to application or understanding of sequence cassettes from one sequence to another (e.g. from rat receptor to human receptor or from human receptor A to human receptor B) is generally predicated upon sequence alignment 5 techniques whereby the sequences are aligned in an effort to determine areas of commonality. The mutational approach disclosed herein does not rely upon this approach but is instead based upon an algorithmic approach and a positional distance from a conserved proline residue located within the TM6 region of human GPCRs. Once this approach is secured, those in the art are credited with the ability to make minor modifications thereto to achieve 10 substantially the same results (*i.e.*, constitutive activation) disclosed herein. Such modified approaches are considered within the purview of this disclosure

Example 1
ENDOGENOUS HUMAN GPCRS

1. Identification of Human GPCRs

15 Certain of the disclosed endogenous human GPCRs were identified based upon a review of the GenBank™ database information. While searching the database, the following cDNA clones were identified as evidenced below (Table C).

TABLE C

	Disclosed Human Orphan GPCRs	Accession Number	Complete DNA Sequence (Base Pairs)	Open Reading Frame (Base Pairs)	Nucleic Acid SEQ.ID. NO.	Amino Acid SEQ.ID. NO.
20	hARE-3	AL033379	111,389 bp	1,260 bp	1	2
	hARE-4	AC006087	226,925 bp	1,119 bp	3	4
25	hARE-5	AC006255	127,605 bp	1,104 bp	5	6
	hRUP3	AL035423	140,094 bp	1,005 bp	7	8

- 24 -

hRUP5	AC005849	169,144 bp	1,413 bp	9	10
hRUP6	AC005871	218,807 bp	1,245 bp	11	12
hRUP7	AC007922	158,858 bp	1,173 bp	13	14

Other disclosed endogenous human GPCRs were identified by conducting a BLAST™ search of EST database (dbest) using the following EST clones as query sequences. The following EST clones identified were then used as a probe to screen a human genomic library (Table D).

TABLE D

	Disclosed Human Orphan GPCRs	Query (Sequence)	EST Clone/Accession No. Identified	Open Reading Frame (Base Pairs)	Nucleic Acid SEQ.ID.NO.	Amino Acid SEQ.ID.NO.
10	hGPCR27	Mouse GPCR27	AA775870	1,125 bp	17	18
	hARE-1	TDAG	1689643 AI090920	999 bp	19	20
15	hARE-2	GPCR27	68530 AA359504	1,122 bp	21	22
	hPPR1	Bovine PPR1	238667 H67224	1,053 bp	23	24
	hG2A	Mouse 1179426	<i>See Example 2(a), below</i>	1,113 bp	25	26
	hCHN3	N.A.	EST 36581 (full length)	1,113 bp	27	28
	hCHN4	TDAG	1184934 AA804531	1,077 bp	29	30
20	hCHN6	N.A.	EST 2134670 (full length)	1,503 bp	31	32
	hCHN8	KIAA0001	EST 764455	1,029 bp	33	34
	hCHN 9	1365839	EST 1541536	1,077 bp	35	36
	hCHN10	Mouse EST 1365839	Human 1365839	1,005 bp	37	38
	hRUP4	N.A.	AI307658	1,296 bp	39	40
25	<i>N.A. = "not applicable".</i>					

2. Full Length Cloning

a. Human G2A

Mouse EST clone 1179426 was used to obtain a human genomic clone containing all

but three amino acid G2A coding sequences. The 5' of this coding sequence was obtained by using 5'RACE, and the template for PCR was Clontech's Human Spleen Marathon-Ready™ cDNA. The disclosed human G2A was amplified by PCR using the G2A cDNA specific primers for the first and second round PCR as shown in SEQ.ID.NO.: 41 and SEQ.ID.NO.:42
5 as follows:

5'-CTGTGTACAGCAGTCGCAGAGTG-3' (SEQ.ID.NO.: 41; 1st round PCR)

5'-GAGTGCCAGGCAGAGCAGGTAGAC-3' (SEQ.ID.NO.: 42; second round PCR).

PCR was performed using Advantage GC Polymerase Kit (Clontech; manufacturing instructions will be followed), at 94°C for 30 sec followed by 5 cycles of 94°C for 5 sec and
10 72°C for 4 min; and 30 cycles of 94° for 5 sec and 70° for 4 min. An approximate 1.3 Kb
PCR fragment was purified from agarose gel, digested with Hind III and Xba I and cloned into
the expression vector pRC/CMV2 (Invitrogen). The cloned-insert was sequenced using the
T7 Sequenase™ kit (USB Amersham; manufacturer instructions followed) and the sequence
was compared with the presented sequence. Expression of the human G2A was detected by
15 probing an RNA dot blot (Clontech; manufacturer instructions followed) with the P³²-labeled
fragment.

b. CHN9

Sequencing of the EST clone 1541536 showed CHN9 to be a partial cDNA clone
having only an initiation codon; *i.e.*, the termination codon was missing. When CHN9
20 was used to blast against data base (nr), the 3' sequence of CHN9 was 100% homologous
to the 5' untranslated region of the leukotriene B4 receptor cDNA, which contained a
termination codon in the frame with CHN9 coding sequence. To determine whether the 5'
untranslated region of LTB4R cDNA was the 3' sequence of CHN9, PCR was performed
using primers based upon the 5' sequence flanking the initiation codon found in CHN9 and

the 3' sequence around the termination codon found in the LTB4R 5' untranslated region.

The 5' primer sequence utilized was as follows:

5'-CCCGAATTCTGCTTGCTCCCAGCTTGGCCC-3' (SEQ.ID.NO.: 43; sense) and

5'-TGTGGATCCTGCTGTCAAAGGTCCCATTCCGG-3' (SEQ.ID.NO.: 44; antisense).

5 PCR was performed using thymus cDNA as a template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 uM of each primer, and 0.2 mM of each 4 nucleotides. The cycle condition was 30 cycles of 94°C for 1 min, 65°C for 1min and 72 °C for 1 min and 10 sec. A 1.1kb fragment consistent with the predicted size was obtained from PCR. This PCR fragment was subcloned into pCMV (*see* below) and

10 sequenced (*see*, SEQ.ID.NO.: 35).

c. RUP 4

The full length RUP4 was cloned by RT-PCR with human brain cDNA (Clontech) as templates:

5'-TCACAATGCTAGGTGTGGTC-3' (SEQ.ID.NO.: 45; sense) and

15 5'-TGCATAGACAATGGGATTACAG-3' (SEQ.ID.NO.: 46; antisense).

PCR was performed using TaqPlus Precision™ polymerase (Stratagene; manufacturing instructions followed) by the following cycles: 94°C for 2 min; 94°C 30 sec; 55°C for 30 sec, 72°C for 45 sec, and 72°C for 10 min. Cycles 2 through 4 were repeated 30 times.

The PCR products were separated on a 1% agarose gel and a 500 bp PCR fragment

20 was isolated and cloned into the pCRII-TOPO™ vector (Invitrogen) and sequenced using the T7 DNA Sequenase™ kit (Amsham) and the SP6/T7 primers (Stratagene). Sequence analysis revealed that the PCR fragment was indeed an alternatively spliced form of AI307658 having a continuous open reading frame with similarity to other GPCRs. The completed sequence of this PCR fragment was as follows:

5'-TCACAATGCTAGGTGGTCTGGCTGGCAGTCATCGTAGGATACCCATGTGGCAC
GTGCAACAACCTGAGATCAAATATGACTTCCTATATGAAAAGGAACACATCTGCTGCTTAAGA
GTGGACCAGCCCTGTGCACCAGAAGATCTACACCACCTCATCCTGTATCCTCTCCTGC
CTCTTATGGTGATGCTTATTCTGTACGTAAAATTGGTTATGAACCTTGGATAAAGAAAAGAGTT
5 GGGGATGGTTCAGTGCCTCGAACTATTATGGAAAAGAAATGTCCAAATAGCCAGGAAGAAG
AACGAGCTGTCATTATGATGGTGACAGTGGTGGCTCTTGTGTGCTGGGCACCATC
ATGTTGTCCATATGATGATTGAATACAGTAATTGGAAAAGGAATATGATGATGTACAATCAA
GATGATTTGCTATCGTCAAATTATTGGATTTCCAACCTCCATCTGTAATCCCATTGTCTATGCA-
3' (SEQ.ID.NO.: 47)

10 Based on the above sequence, two sense oligonucleotide primer sets:

5'-CTGCTTAGAAGAGTGGACCAG-3' (SEQ.ID.NO.: 48; oligo 1),

5'-CTGTGCACCAGAAGATCTACAC-3' (SEQ.ID.NO.: 49; oligo 2) and

two antisense oligonucleotide primer sets:

5'-CAAGGATGAAGGTGGTGTAGA-3' (SEQ.ID.NO.: 50; oligo 3)

15 5'-GTGTAGATCTTCTGGTGCACAGG-3' (SEQ.ID.NO.: 51; oligo 4)

were used for 3'- and 5'-RACE PCR with a human brain Marathon-Ready™ cDNA (Clontech, Cat# 7400-1) as template, according to manufacturer's instructions. DNA fragments generated by the RACE PCR were cloned into the pCRII-TOPO™ vector (Invitrogen) and sequenced using the SP6/T7 primers (Stratagene) and some internal primers.

20 The 3' RACE product contained a poly(A) tail and a completed open reading frame ending at a TAA stop codon. The 5' RACE product contained an incomplete 5' end; *i.e.*, the ATG initiation codon was not present.

Based on the new 5' sequence, oligo 3 and the following primer:

5'-GCAATGCAGGTCAAGTGAGC-3' (SEQ.ID.NO.: 52; oligo 5)

25 were used for the second round of 5' race PCR and the PCR products were analyzed as above.

A third round of 5' race PCR was carried out utilizing antisense primers:

5'-TGGAGCATGGTGACGGGAATGCAGAAG-3' (SEQ.ID.NO.: 53; oligo 6) and

5'-GTGATGAGCAGGTCACTGAGCGCCAAG-3' (SEQ.ID.NO.: 54; oligo 7).

The sequence of the 5' RACE PCR products revealed the presence of the initiation codon

- 28 -

ATG, and further round of 5' race PCR did not generate any more 5' sequence. The completed 5' sequence was confirmed by RT-PCR using sense primer

5'-GCAATGCAGCGCTAACATTAC-3' (SEQ.ID.NO.: 55; oligo 8)

and oligo 4 as primers and sequence analysis of the 650 bp PCR product generated from

5 human brain and heart cDNA templates (Clontech, Cat# 7404-1). The completed 3' sequence

was confirmed by RT-PCR using oligo 2 and the following antisense primer:

5'-TTGGGTTACAATCTGAAGGGCA-3' (SEQ.ID.NO.:56; oligo 9)

and sequence analysis of the 670 bp PCR product generated from human brain and heart

cDNA templates. (Clontech, Cat# 7404-1).

10

d. RUP5

The full length RUP5 was cloned by RT-PCR using a sense primer upstream from ATG, the initiation codon (SEQ.ID.NO.:57), and an antisense primer containing TCA as the stop codon (SEQ.ID.NO.:58), which had the following sequences:

5'-ACTCCGTGTCCAGCAGGACTCTG-3' (SEQ.ID.NO.: 57)

15 5'-TGCCTGTTCTGGACCCTCACGTG-3' (SEQ.ID.NO.: 58)

and human peripheral leukocyte cDNA (Clontech) as a template. AdvantageTM cDNA polymerase (Clontech) was used for the amplification in a 50ul reaction by the following cycle with step 2 through step 4 repeated 30 times: 94°C for 30 sec; 94° for 15 sec; 69° for 40 sec; 72°C for 3 min; and 72°C fro 6 min. A 1.4kb PCR fragment was isolated and cloned with 20 the pCRII-TOPOTM vector (Invitrogen) and completely sequenced using the T7 DNA SequenaseTM kit (Amsham). *See*, SEQ.ID.NO.: 9.

e. RUP6

The full length RUP6 was cloned by RT-PCR using primers:

5'-CAGGCCTTGGATTTAATGTCAGGGATGG-3' (SEQ.ID.NO.: 59) and

5'-GGAGAGTCAGCTCTGAAAGAATTCAAGG-3' (SEQ.ID.NO.: 60); and human thymus Marathon-Ready™ cDNA (Clontech) as a template. Advantage cDNA polymerase (Clontech, according to manufacturer's instructions) was used for the amplification in a 50ul reaction by the following cycle: 94 °C for 30sec; 94 °C for 5 sec; 66 °C for 40sec; 72 °C for 2.5 sec and 72 °C for 7 min. Cycles 2 through 4 were repeated 30 times. A 1.3 Kb PCR fragment was isolated and cloned into the pCRII-TOPO™ vector (Invitrogen) and completely sequenced (*see*, SEQ.ID.NO.: 11) using the ABI Big Dye Terminator™ kit (P.E. Biosystem).

f. RUP7

10 The full length RUP7 was cloned by RT-PCR using primers:

5'-TGATGTGATGCCAGATACTAATAGCAC-3' (SEQ.ID.NO.: 61; sense) and
5'-CCTGATTCAATTAGGTGAGATTGAGAC-3' (SEQ.ID.NO.: 62; antisense)
and human peripheral leukocyte cDNA (Clontech) as a template. Advantage™ cDNA polymerase (Clontech) was used for the amplification in a 50 ul reaction by the following 15 cycle with step 2 to step 4 repeated 30 times: 94 °C for 2 minutes; 94 °C for 15 seconds; 60 °C for 20 seconds; 72 °C for 2 minutes; 72 °C for 10 minutes. A 1.25 Kb PCR fragment was isolated and cloned into the pCRII-TOPO™ vector (Invitrogen) and completely sequenced using the ABI Big Dye Terminator™ kit (P.E. Biosystem). *See*, SEQ.ID.NO.: 13.

3. Angiotensin II Type 1 Receptor ("AT1")

20 The endogenous human angiotensin II type 1 receptor ("AT1") was obtained by PCR using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 0.2 mM of each 4 nucleotides. The cycle condition was 30 cycles of 94°C for 1 min, 55°C for 1min and 72 °C for 1.5 min. The 5' PCR primer contains a HindIII site with the sequence:

- 30 -

5'-CCCAAGCTTCCCCAGGTGTATTTGAT-3' (SEQ.ID.NO.: 63)

and the 3' primer contains a BamHI site with the following sequence:

5'-GTTGGATCCACATAATGCATTTCTC-3' (SEQ.ID.NO.: 64).

The resulting 1.3 kb PCR fragment was digested with HindIII and BamHI and cloned into

5 HindIII-BamHI site of pCMV expression vector. The cDNA clone was fully sequenced.
Nucleic acid (SEQ.ID.NO.: 65) and amino acid (SEQ.ID.NO.: 66) sequences for human AT1
were thereafter determined and verified.

4. GPR38

To obtain GPR38, PCR was performed by combining two PCR fragments, using
10 human genomic cDNA as template and rTth polymerase (Perkin Elmer) with the buffer system
provided by the manufacturer, 0.25uM of each primer, and 0.2 mM of each 4 nucleotides.
The cycle condition for each PCR reaction was 30 cycles of 94°C for 1 min, 62°C for 1min
and 72°C for 2 min.

15 The first fragment was amplified with the 5' PCR primer that contained an end site
with the following sequence:

5'-ACCATGGGCAGCCCCTGGAACGGCAGC-3' (SEQ.ID.NO.:67)

and a 3' primer having the following sequence:

5'-AGAACCAACCACCAAGCAGGACGCGGACGGTCTGCCGGTGG-3' (SEQ.ID.NO.:68).

15 The second PCR fragment was amplified with a 5' primer having the following sequence:
20 5'-GTCCGGCGTCCTGCTGGTGGTCTGGCATTATAATT-3' (SEQ.ID.NO.: 69)

and a 3' primer that contained a BamHI site and having the following sequence:

5'-CCTGGATCCTTATCCCATCGTCTCACGTTAGC-3' (SEQ.ID.NO.: 70).

The two fragments were used as templates to amplify GPR38, using SEQ.ID.NO.: 67 and
SEQ.ID.NO.: 70 as primers (using the above-noted cycle conditions). The resulting 1.44kb

- 31 -

PCR fragment was digested with BamHI and cloned into Blunt-BamHI site of pCMV expression vector.

5. MC4

To obtain MC4, PCR was performed using human genomic cDNA as template and 5 rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25uM of each primer, and 0.2 mM of each 4 nucleotides. The cycle condition for each PCR reaction was 30 cycles of 94°C for 1 min, 54°C for 1min and 72°C for 1.5 min.

The 5' PCR contained an EcoRI site with the sequence:

5'-CTGGAATTCTCCTGCCAGCATGGTGA-3' (SEQ.ID.NO.: 71)

10 and the 3' primer contained a BamHI site with the sequence:

5'-GCAGGATCCTATA TTGCGTGCTCTGTCCCC-3' (SEQ.ID.NO.: 72).

The 1.0 kb PCR fragment was digest with EcoRI and BamHI and cloned into EcoRI-BamHI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 73) and amino acid (SEQ.ID.NO.: 74) sequences for human MC4 were thereafter determined.

15 6. CCKB

To obtain CCKB, PCR was performed using human stomach cDNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25uM of each primer, and 0.2 mM of each 4 nucleotides. The cycle condition for each PCR reaction was 30 cycles of 94°C for 1 min, 65°C for 1min and 72°C for 1 min and 30 sec.

20 The 5' PCR contained a HindIII site with the sequence:

5'-CCGAAGCTTCGAGCTGAGTAAGGCGGCGGGCT-3' (SEQ.ID.NO.: 75)

and the 3' primer contained an EcoRI site with the sequence:

5'-GTGGAATTCA TTGCCCCTGCCCTCAACCCCCA-3' (SEQ.ID.NO.: 76).

The resulting 1.44 kb PCR fragment was digest with HindIII and EcoRI and cloned into

HindIII-EcoRI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 77) and amino acid (SEQ.ID.NO.: 78) sequences for human CCKB were thereafter determined.

7. TDAG8

To obtain TDAG8, PCR was performed using genomic DNA as template and rTth 5 polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 μM of each primer, and 0.2 mM of each 4 nucleotides. The cycle condition was 30 cycles of 94°C for 1 min, 56°C for 1 min and 72 °C for 1 min and 20 sec. The 5' PCR primer contained a HindIII site with the following sequence:

5'-TGCAAGCTTAAAAAGGAAAAATGAACAGC-3' (SEQ.ID.NO.: 79)

10 and the 3' primer contained a BamHI site with the following sequence:

5'-TAAGGATCCCTTCCCTTCAAAACATCCTTG -3' (SEQ.ID.NO.: 80).

The resulting 1.1 kb PCR fragment was digested with HindIII and BamHI and cloned into HindIII-BamHI site of pCMV expression vector. Three resulting clones sequenced contained three potential polymorphisms involving changes of amino acid 43 from Pro to Ala, amino acid 97 from Lys to Asn and amino acid 130 from Ile to Phe. Nucleic acid (SEQ.ID.NO.: 81) 15 and amino acid (SEQ.ID.NO.: 82) sequences for human TDAG8 were thereafter determined.

8. H9

To obtain H9, PCR was performed using pituitary cDNA as template and rTth 20 polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 μM of each primer, and 0.2 mM of each 4 nucleotides. The cycle condition was 30 cycles of 94°C for 1 min, 62°C for 1 min and 72°C for 2 min. The 5' PCR primer contained a HindIII site with the following sequence:

5'-GGAAAGCTAACGATCCCCAGGAGAACAT-3' (SEQ.ID.NO.:15)

and the 3' primer contained a BamHI site with the following sequence:

5'-CTGGGATCCTACGAGAGCATTTTCACACAG-3' (SEQ.ID.NO.:16).

The resulting 1.9 kb PCR fragment was digested with HindIII and BamHI and cloned into HindIII-BamHI site of pCMV expression vector. H9 contained three potential polymorphisms involving changes of amino acid P320S, S493N and amino acid G448A. Nucleic acid 5 (SEQ.ID.NO.: 139) and amino acid (SEQ.ID.NO.: 140) sequences for human H9 were thereafter determined and verified.

Example 2

PREPARATION OF NON-ENDOGENOUS, CONSTITUTIVELY ACTIVATED GPCRS

Those skilled in the art are credited with the ability to select techniques for 10 mutation of a nucleic acid sequence. Presented below are approaches utilized to create non-endogenous versions of several of the human GPCRs disclosed above. The mutations disclosed below are based upon an algorithmic approach whereby the 16th amino acid (located in the IC3 region of the GPCR) from a conserved proline residue (located in the TM6 region of the GPCR, near the TM6/IC3 interface) is mutated, most preferably to a 15 lysine amino acid residue.

1. Transformer Site-Directed™ Mutagenesis

Preparation of non-endogenous human GPCRs may be accomplished on human GPCRs using Transformer Site-Directed™ Mutagenesis Kit (Clontech) according to the manufacturer instructions. Two mutagenesis primers are utilized, most preferably a lysine 20 mutagenesis oligonucleotide that creates the lysine mutation, and a selection marker oligonucleotide. For convenience, the codon mutation to be incorporated into the human GPCR is also noted, in standard form (Table E):

- 34 -

TABLE E

	Receptor Identifier	Codon Mutation
5	hARE-3	F313K
	hARE-4	V233K
	hARE-5	A240K
	hGPCR14	L257K
	hGPCR27	C283K
	hARE-1	E232K
10	hARE-2	G285K
	hPPR1	L239K
	hG2A	K232A
	hRUP3	L224K
	hRUP5	A236K
	hRUP6	N267K
15	hRUP7	A302K
	hCHN4	V236K
	hMC4	A244K
	hCHN3	S284K
	hCHN6	L352K
	hCHN8	N235K
20	hCHN9	G223K
	hCHN10	L231K
	hH9	F236K

The following GPCRs were mutated according with the above method using the
 25 designated sequence primers (Table F).

TABLE F

Rec ptor Identifier	Codon Mutation	Lysine Mutagenesis (SEQ.ID.NO.) 5'-3' orientation, mutation sequence underlined	Selection Marker (SEQ.ID.NO.) 5'-3' orientation
5	hRUP4	V272K	CAGGAAGAAG <u>AAAC</u> GAGC TGTCATTATGATGGTGACA GTG (83)
	hAT1	<i>see below</i>	alternative approach; <i>see below</i>
	hGPR38	V297K	GGCCACC <u>GGC</u> CAG <u>ACCA</u> AAC GCGTCCTGCTG (85)
	hCCKB	V332K	alternative approach; <i>see below</i>
	hTDAG8	I225K	GGAAAAGAAGAGAATCAA <u>AAA</u> ACTACTTGTCA <u>GCATC</u> (87)
	hH9	F236K	GCTGAGGTTCGCA <u>ATAA</u> AC TAACC <u>ATGTTG</u> TG (143)
10	hMC4	A244K	GCCAATATGA <u>AGGG</u> <u>AAA</u> ATTAC <u>CTTG</u> ACC <u>ATC</u> (137)
			CTCCTTCGGTCC <u>CTC</u> TATC GTTGTCAGAAGT (144)
			CTCCTTCGGTCC <u>CTC</u> TATC GTTGTCAGAAGT (138)

The non-endogenous human GPCRs were then sequenced and the derived and verified nucleic acid and amino acid sequences are listed in the accompanying "Sequence Listing" appendix to this patent document, as summarized in Table G below:

TABLE G

15	Non Endogenous Human GPCR	Nucleic Acid Sequence Listing	Amino Acid Sequence Listing
	hRUP4 (V272K)	SEQ.ID.NO.: 127	SEQ.ID.NO.: 128
20	hAT1 (<i>see alternative approaches below</i>)	(<i>see alternative approaches below</i>)	(<i>see alternative approaches below</i>)
	hGPR38 (V297K)	SEQ.ID.NO.: 129	SEQ.ID.NO.: 130
25	hCCKB (V332K)	SEQ.ID.NO.: 131	SEQ.ID.NO.: 132
	HTDAG8 (I225K)	SEQ.ID.NO.: 133	SEQ.ID.NO.: 134
	hH9 (F236K)	SEQ.ID.NO.: 141	SEQ.ID.NO.: 142
30	hMC4 (A244K)	SEQ.ID.NO.: 135	SEQ.ID.NO.: 136

2. Alternative Approaches For Creation of Non-Endogenous Human GPCRs

a. AT1

5

1. F239K Mutation

Preparation of a non-endogenous, constitutively activated human AT1 receptor was accomplished by creating an F239K mutation (see, SEQ.ID.NO.: 89 for nucleic acid sequence, and SEQ.ID.NO.: 90 for amino acid sequence). Mutagenesis was performed using Transformer Site-Directed Mutagenesis™ Kit (Clontech) according to the manufacturer's instructions. The two mutagenesis primers were used, a lysine mutagenesis oligonucleotide (SEQ.ID.NO.: 91) and a selection marker oligonucleotide (SEQ.ID.NO.: 92), which had the following sequences:

10 5'-CCAAGAAATGATGATATTAAAAAGATAATTATGGC-3' (SEQ.ID.NO.: 91)
15 5'-CTCCTTCGGTCCTCTATCGTTGTCAAGT-3' (SEQ.ID.NO.: 92),
respectively.

2. N111A Mutation

Preparation of a non-endogenous human AT1 receptor was also accomplished by creating an N111A mutation (see, SEQ.ID.NO.: 93 for nucleic acid sequence, and SEQ.ID.NO.: 94 for amino acid sequence). Two PCR reactions were performed using pfu polymerase (Stratagene) with the buffer system provided by the manufacturer, supplemented with 10% DMSO, 0.25 µM of each primer, and 0.5 mM of each 4 nucleotides. The 5' PCR sense primer used had the following sequence:

20 5'-CCCAAGCTTCCCCAGGTGTATTTGAT-3' (SEQ.ID.NO.: 95)
25 and the antisense primer had the following sequence:

5'-CCTGCAGGCAGAACTGACTCTGGCTGAAG-3' (SEQ.ID.NO.: 96).

The resulting 400 bp PCR fragment was digested with HindIII site and subcloned into HindIII-SmaI site of pCMV vector (5' construct). The 3' PCR sense primer used had the following sequence:

5 5'-CTGTACGCTAGTGTGTTCTACTCACGTGTCTCAGCATTGAT-3' (SEQ.ID.NO.: 97)

and the antisense primer had the following sequence:

5'-GTTGGATCCACATAATGCATTTCTC-3' (SEQ.ID.NO.: 98)

The resulting 880 bp PCR fragment was digested with BamHI and inserted into Pst (blunted by T4 polymerase) and BamHI site of 5' construct to generated the full length
10 N111A construct. The cycle condition was 25 cycles of 94°C for 1 min, 60°C for 1min
and 72 °C for 1 min (5' PCR) or 1.5 min (3' PCR).

3. AT2K255IC3 Mutation

Preparation of a non-endogenous, constitutively activated human AT1 was accomplished by creating an AT2K255IC3 "domain swap" mutation (see, SEQ.ID.NO.:99
15 for nucleic acid sequence, and SEQ.ID.NO.: 100 for amino acid sequence). Restriction sites flanking IC3 of AT1 were generated to facilitate replacement of the IC3 with corresponding IC3 from angiotensin II type 2 receptor (AT2). This was accomplished by performing two PCR reactions. A 5' PCR fragment (Fragment A) encoded from the 5'
untranslated region to the beginning of IC3 was generated by utilizing SEQ.ID.NO.: 63 as
20 sense primer and the following sequence:

5'-TCCGAATTCCAAAATAACTTGTAAGAATGATCAGAAA-3' (SEQ.ID.NO.: 101)

as antisense primer. A 3' PCR fragment (Fragment B) encoding from the end of IC3 to the 3' untranslated region was generated by using the following sequence:

5'-AGATCTTAAGAAGATAATTATGGCAATTGTGCT-3' (SEQ.ID.NO.: 102)

as sense primer and SEQ.ID.NO.: 64 as antisense primer. The PCR condition was 30 cycles of 94°C for 1 min, 55°C for 1min and 72 °C for 1.5 min using endogenous AT1 cDNA clone as template and pfu polymerase (Stratagene), with the buffer systems provided by the manufacturer, supplemented with 10% DMSO, 0.25 µM of each primer, 5 and 0.5 mM of each 4 nucleotides. Fragment A (720 bp) was digested with HindIII and EcoRI and subcloned. Fragment B was digested with BamHI and subcloned into pCMV vector with an EcoRI site 5' to the cloned PCR fragment.

The DNA fragment (Fragment C) encoding IC3 of AT2 with a L255K mutation and containing an EcoRI cohesive end at 5' and a AflII cohesive end at 3', was generated 10 by annealing 2 synthetic oligonucleotides having the following sequences:

5'AATTCGAAAACACTTACTGAAGACGAATAGCTATGGGAAGAACAGGATAACCCGTGACCAA
G-3' (sense; SEQ.ID.NO.: 103)

5'TTAACTTGGTCACGGGTTATCCTGTTCTCCCAGCTATTCTCGTCTTCAGT
15 AAGTGTTTCG-3' (antisense; SEQ.ID.NO.: 104).

Fragment C was inserted in front of Fragment B through EcoRI and AflII site. The resulting clone was then ligated with the Fragment A through the EcoRI site to generate AT1 with AT2K255IC3.

4. A243+ Mutation

20 Preparation of a non-endogenous human AT1 receptor was also accomplished by creating an A243+ mutation (see, SEQ.ID.NO.: 105 for nucleic acid sequence, and SEQ.ID.NO.: 106 for amino acid sequence). An A243+ mutation was constructed using the following PCR based strategy: Two PCR reactions was performed using pfu polymerase (Stratagene) with the buffer system provided by the manufacturer supplemented with 10% 25 DMSO, 0.25 µM of each primer, and 0.5 mM of each 4 nucleotides. The 5' PCR sense primer

utilized had the following sequence:

5'-CCCAAGCTTCCCCAGGTGTATTTGAT-3' (SEQ.ID.NO.: 107)

and the antisense primer had the following sequence:

5'-AAGCACAAATTGCTGCATAATTATCTTAAAAATATCATC-3' (SEQ.ID.NO.: 108).

5 The 3' PCR sense primer utilized had the following sequence:

5'-AAGATAATTATGGCAGCAATTGTGCTTTCTTTCTT-3' (SEQ.ID.NO.: 109)

containing the Ala insertion and antisense primer:

5'-GTTGGATCCACATAATGCATTTCTC-3'(SEQ.ID.NO.: 110).

The cycle condition was 25 cycles of 94°C for 1 min, 54°C for 1min and 72 °C for 1.5 min.

10 An aliquot of the 5' and 3' PCR were then used as co-template to perform secondary PCR using the 5' PCR sense primer and 3' PCR antisense primer. The PCR condition was the same as primary PCR except the extention time was 2.5 min. The resulting PCR fragment was digested with HindIII and BamHI and subcloned into pCMV vector. (*See*, SEQ.ID.NO.: 105)

15 **4. CCKB**

Preparation of the non-endogenous, constitutively activated human CCKB receptor was accomplished by creating a V322K mutation (see, SEQ.ID.NO.: 111 for nucleic acid sequence and SEQ.ID.NO.: 112 for amino acid sequence). Mutagenesis was performed by PCR via amplification using the wildtype CCKB from Example 1.

20 The first PCR fragment (1kb) was amplified by using SEQ.ID.NO.: 75 and an antisense primer comprising a V322K mutation:

5'-CAGCAGCATGCGCTTCACGCGCTTAGCCCAG-3' (SEQ.ID.NO.: 113).

The second PCR fragment (0.44kb) was amplified by using a sense primer comprising the V322K mutation:

- 40 -

5'-AGAAGCGCGTGAAGCGCATGCTGCTGGTATCGTT-3' (SEQ.ID.NO.: 114) and SEQ.ID.NO.:

76.

The two resulting PCR fragments were then used as template for amplifying CCKB comprising V332K, using SEQ.ID.NO.: 75 and SEQ.ID.NO.: 76 and the above-noted
5 system and conditions. The resulting 1.44kb PCR fragment containing the V332K mutation was digested with HindIII and EcoRI and cloned into HindIII-EcoRI site of pCMV expression vector. (See, SEQ.ID.NO.: 111).

3. QuikChange™ Site-Directed™ Mutagenesis

Preparation of non-endogenous human GPCRs can also be accomplished by using
10 QuikChange™ Site-Directed™ Mutagenesis Kit (Stratagene, according to manufacturer's instructions). Endogenous GPCR is preferably used as a template and two mutagenesis primers utilized, as well as, most preferably, a lysine mutagenesis oligonucleotide and a selection marker oligonucleotide (included in kit). For convenience, the codon mutation incorporated into the human GPCR and the respective oligonucleotides are noted, in standard
15 form (Table H):

TABLE H

Receptor Identifier	Codon Mutation	Lysine Mutagenesis (SEQ.ID.NO.) 5'-3' orientation, mutation <u>underlined</u>	Selection Marker (SEQ.ID.NO.) 5'-3' orientation
5	hCHN3	S284K ATGGAGAAAAGAAT <u>CAAA</u> AGAA TGTTC <u>TATATA</u> (115)	TATATAGAACATTCTTT GATTCTTTCTCCAT (116)
	hCHN6	L352K CGCTCTCTGGCCTTG <u>AAGCGCAC</u> GCTCAGC (117)	GCTGAGCGTGC <u>GCTTCA</u> AGGCCAGAGAGCG (118)
	hCHN8	N235K CCCAGGAAAA <u>AGGTGA</u> AGTCA AAGTTTTC (119)	GAAA <u>ACTTGA</u> CTTCA CTTTTC <u>CTGGG</u> (120)
	hCHN9	G223K GGGGCG <u>GGGTGA</u> ACGGCTGG TGAGC (121)	GCTCAC <u>CCAGCC</u> GTTC CCC <u>GCGCCCC</u> (122)
	hCHN10	L231K CCC <u>CTGA</u> AA <u>AGC</u> CTAAGAAC <u>TT</u> GGTCATC (123)	GATGAC <u>CCAAG</u> TTCTTAG GCTTT <u>CAAGGGG</u> (124)

Example 3 RECEPTOR EXPRESSION

10 Although a variety of cells are available to the art for the expression of proteins, it is
most preferred that mammalian cells be utilized. The primary reason for this is predicated
upon practicalities, *i.e.*, utilization of, *e.g.*, yeast cells for the expression of a GPCR, while
possible, introduces into the protocol a non-mammalian cell which may not (indeed, in the
case of yeast, does not) include the receptor-coupling, genetic-mechanism and secretary
15 pathways that have evolved for mammalian systems – thus, results obtained in non-
mammalian cells, while of potential use, are not as preferred as that obtained from mammalian
cells. Of the mammalian cells, COS-7, 293 and 293T cells are particularly preferred, although
the specific mammalian cell utilized can be predicated upon the particular needs of the artisan.

On day one, 1×10^7 293T cells per 150mm plate were plated out. On day two, two reaction tubes were prepared (the proportions to follow for each tube are per plate): tube A was prepared by mixing 20 μ g DNA (e.g., pCMV vector; pCMV vector with receptor cDNA, etc.) in 1.2ml serum free DMEM (Irvine Scientific, Irvine, CA); tube B was

- 42 -

prepared by mixing 120 μ l lipofectamine (Gibco BRL) in 1.2ml serum free DMEM. Tubes A and B were admixed by inversions (several times), followed by incubation at room temperature for 30-45min. The admixture is referred to as the "transfection mixture". Plated 293T cells were washed with 1XPBS, followed by addition of 10ml serum free DMEM. 2.4ml of the transfection mixture were added to the cells, followed by incubation for 4hrs at 37°C/5% CO₂. The transfection mixture was removed by aspiration, followed by the addition of 25ml of DMEM/10% Fetal Bovine Serum. Cells were incubated at 37°C/5% CO₂. After 72hr incubation, cells were harvested and utilized for analysis.

Example 4
10 **ASSAYS FOR DETERMINATION OF CONSTITUTIVE ACTIVITY
OF NON-ENDOGENOUS GPCRs**

A variety of approaches are available for assessment of constitutive activity of the non-endogenous human GPCRs. The following are illustrative; those of ordinary skill in the art are credited with the ability to determine those techniques that are preferentially beneficial for the needs of the artisan.

15 **1. Membrane Binding Assays: [³⁵S]GTP γ S Assay**

When a G protein-coupled receptor is in its active state, either as a result of ligand binding or constitutive activation, the receptor couples to a G protein and stimulates the release of GDP and subsequent binding of GTP to the G protein. The alpha subunit of the G protein-receptor complex acts as a GTPase and slowly hydrolyzes the GTP to GDP, at which point the receptor normally is deactivated. Constitutively activated receptors continue to exchange GDP for GTP. The non-hydrolyzable GTP analog, [³⁵S]GTP γ S, can be utilized to demonstrate enhanced binding of [³⁵S]GTP γ S to membranes expressing constitutively activated receptors. The advantage of using [³⁵S]GTP γ S binding to measure constitutive

activation is that: (a) it is generically applicable to all G protein-coupled receptors; (b) it is proximal at the membrane surface making it less likely to pick-up molecules which affect the intracellular cascade.

The assay utilizes the ability of G protein coupled receptors to stimulate [³⁵S]GTPγS binding to membranes expressing the relevant receptors. The assay can, therefore, be used in the direct identification method to screen candidate compounds to known, orphan and constitutively activated G protein-coupled receptors. The assay is generic and has application to drug discovery at all G protein-coupled receptors.

The [³⁵S]GTPγS assay can be incubated in 20 mM HEPES and between 1 and about 10 20mM MgCl₂ (this amount can be adjusted for optimization of results, although 20mM is preferred) pH 7.4, binding buffer with between about 0.3 and about 1.2 nM [³⁵S]GTPγS (this amount can be adjusted for optimization of results, although 1.2 is preferred) and 12.5 to 75 µg membrane protein (e.g. COS-7 cells expressing the receptor; this amount can be adjusted for optimization, although 75µg is preferred) and 1 µM GDP (this amount can be changed for 15 optimization) for 1 hour. Wheatgerm agglutinin beads (25 µl; Amersham) should then be added and the mixture incubated for another 30 minutes at room temperature. The tubes are then centrifuged at 1500 x g for 5 minutes at room temperature and then counted in a scintillation counter.

A less costly but equally applicable alternative has been identified which also meets 20 the needs of large scale screening. Flash plates™ and Wallac™ scintistrips may be utilized to format a high throughput [³⁵S]GTPγS binding assay. Furthermore, using this technique, the assay can be utilized for known GPCRs to simultaneously monitor tritiated ligand binding to the receptor at the same time as monitoring the efficacy via [³⁵S]GTPγS binding. This is

possible because the Wallac beta counter can switch energy windows to look at both tritium and ^{35}S -labeled probes. This assay may also be used to detect other types of membrane activation events resulting in receptor activation. For example, the assay may be used to monitor ^{32}P phosphorylation of a variety of receptors (both G protein coupled and tyrosine kinase receptors). When the membranes are centrifuged to the bottom of the well, the bound $[^{35}\text{S}]G\text{TP}\gamma\text{S}$ or the ^{32}P -phosphorylated receptor will activate the scintillant which is coated of the wells. Scinti[®] strips (Wallac) have been used to demonstrate this principle. In addition, the assay also has utility for measuring ligand binding to receptors using radioactively labeled ligands. In a similar manner, when the radiolabeled bound ligand is centrifuged to the bottom of the well, the scintistrip label comes into proximity with the radiolabeled ligand resulting in activation and detection.

2. Adenylyl Cyclase

A Flash Plate[™] Adenylyl Cyclase kit (New England Nuclear; Cat. No. SMP004A) designed for cell-based assays can be modified for use with crude plasma membranes. The Flash Plate wells contain a scintillant coating which also contains a specific antibody recognizing cAMP. The cAMP generated in the wells was quantitated by a direct competition for binding of radioactive cAMP tracer to the cAMP antibody. The following serves as a brief protocol for the measurement of changes in cAMP levels in membranes that express the receptors.

Transfected cells are harvested approximately three days after transfection. Membranes were prepared by homogenization of suspended cells in buffer containing 20mM HEPES, pH 7.4 and 10mM MgCl₂. Homogenization is performed on ice using a Brinkman Polytron[™] for approximately 10 seconds. The resulting homogenate is centrifuged at 49,000

- 45 -

X g for 15 minutes at 4°C. The resulting pellet is then resuspended in buffer containing 20mM HEPES, pH 7.4 and 0.1 mM EDTA, homogenized for 10 seconds, followed by centrifugation at 49,000 X g for 15 minutes at 4°C. The resulting pellet can be stored at -80°C until utilized. On the day of measurement, the membrane pellet is slowly thawed at room temperature, resuspended in buffer containing 20mM HEPES, pH 7.4 and 10mM MgCl₂ (these amounts can be optimized, although the values listed herein are preferred), to yield a final protein concentration of 0.60mg/ml (the resuspended membranes were placed on ice until use).

cAMP standards and Detection Buffer (comprising 2 μ Ci of tracer [¹²⁵I] cAMP (100 μ l] to 11 ml Detection Buffer) are prepared and maintained in accordance with the manufacturer's instructions. Assay Buffer is prepared fresh for screening and contained 20mM HEPES, pH 7.4, 10mM MgCl₂, 20mM (Sigma), 0.1 units/ml creatine phosphokinase (Sigma), 50 μ M GTP (Sigma), and 0.2 mM ATP (Sigma); Assay Buffer can be stored on ice until utilized. The assay is initiated by addition of 50ul of assay buffer followed by addition of 50ul of membrane suspension to the NEN Flash Plate. The resultant assay mixture is incubated for 60 minutes at room temperature followed by addition of 100ul of detection buffer. Plates are then incubated an additional 2-4 hours followed by counting in a Wallac MicroBeta™ scintillation counter. Values of cAMP/well are extrapolated from a standard cAMP curve that is contained within each assay plate.

20 C. **Reporter-Based Assays**

1. **CREB Reporter Assay (Gs-associated receptors)**

A method to detect Gs stimulation depends on the known property of the transcription factor CREB, which is activated in a cAMP-dependent manner. A PathDetect™ CREB trans-

Reporting System (Stratagene, Catalogue # 219010) can utilized to assay for Gs coupled activity in 293 or 293T cells. Cells are transfected with the plasmids components of this above system and the indicated expression plasmid encoding endogenous or mutant receptor using a Mammalian Transfection Kit (Stratagene, Catalogue #200285) according to the
5 manufacturer's instructions. Briefly, 400 ng pFR-Luc (luciferase reporter plasmid containing Gal4 recognition sequences), 40 ng pFA2-CREB (Gal4-CREB fusion protein containing the Gal4 DNA-binding domain), 80 ng pCMV-receptor expression plasmid (comprising the receptor) and 20 ng CMV-SEAP (secreted alkaline phosphatase expression plasmid; alkaline phosphatase activity is measured in the media of transfected cells to control for variations in
10 transfection efficiency between samples) are combined in a calcium phosphate precipitate as per the Kit's instructions. Half of the precipitate is equally distributed over 3 wells in a 96-well plate, kept on the cells overnight, and replaced with fresh medium the following morning. Forty-eight (48) hr after the start of the transfection, cells are treated and assayed for, e.g., luciferase activity
15

2. AP1 reporter assay (Gq-associated receptors)

A method to detect Gq stimulation depends on the known property of Gq-dependent phospholipase C to cause the activation of genes containing AP1 elements in their promoter. A Pathdetect™ AP-1 cis-Reporting System (Stratagene, Catalogue # 219073) can be utilized following the protocol set forth above with respect to the CREB reporter assay, except that
20 the components of the calcium phosphate precipitate were 410 ng pAP1-Luc, 80 ng pCMV-receptor expression plasmid, and 20 ng CMV-SEAP.

3. CRE-LUC Reporter Assay

293 and 293T cells are plated-out on 96 well plates at a density of 2×10^4 cells per

well and were transfected using Lipofectamine Reagent (BRL) the following day according to manufacturer instructions. A DNA/lipid mixture is prepared for each 6-well transfection as follows: 260ng of plasmid DNA in 100 μ l of DMEM were gently mixed with 2 μ l of lipid in 100 μ l of DMEM (the 260ng of plasmid DNA consisted of 200ng of a 8xCRE-Luc reporter plasmid (*see* below and Figure 1 for a representation of a portion of the plasmid), 50ng of pCMV comprising endogenous receptor or non-endogenous receptor or pCMV alone, and 10ng of a GPRS expression plasmid (GPRS in pcDNA3 (Invitrogen)). The 8XCRE-Luc reporter plasmid was prepared as follows: vector SRIF- β -gal was obtained by cloning the rat somatostatin promoter (-71/+51) at BglV-HindIII site in the p β gal-Basic Vector (Clontech).

5 Eight (8) copies of cAMP response element were obtained by PCR from an adenovirus template AdpCF126CCRE8 (*see*, 7 Human Gene Therapy 1883 (1996)) and cloned into the SRIF- β -gal vector at the Kpn-BglV site, resulting in the 8xCRE- β -gal reporter vector. The 8xCRE-Luc reporter plasmid was generated by replacing the beta-galactosidase gene in the 8xCRE- β -gal reporter vector with the luciferase gene obtained from the pGL3-basic vector

10 (Promega) at the HindIII-BamHI site. Following 30 min. incubation at room temperature, the DNA/lipid mixture was diluted with 400 μ l of DMEM and 100 μ l of the diluted mixture was added to each well. 100 μ l of DMEM with 10% FCS were added to each well after a 4hr incubation in a cell culture incubator. The following day the transfected cells were changed with 200 μ l/well of DMEM with 10% FCS. Eight (8) hours later, the wells were changed to

15 200 μ l/well of DMEM without phenol red, after one wash with PBS. Luciferase activity were measured the next day using the LucLite™ reporter gene assay kit (Packard) following manufacturer instructions and read on a 1450 MicroBeta™ scintillation and luminescence counter (Wallac).

4. SRF-LUC Reporter Assay

One method to detect Gq stimulation depends on the known property of Gq-dependent phospholipase C to cause the activation of genes containing serum response factors in their promoter. A Pathdetect™ SRF-Luc-Reporting System (Stratagene) can be utilized to assay

5 for Gq coupled activity in, e.g., COS7 cells. Cells are transfected with the plasmid components of the system and the indicated expression plasmid encoding endogenous or non-endogenous GPCR using a Mammalian Transfection™ Kit (Stratagene, Catalogue #200285) according to the manufacturer's instructions. Briefly, 410 ng SRF-Luc, 80 ng pCMV-receptor expression plasmid and 20 ng CMV-SEAP (secreted alkaline phosphatase expression plasmid;

10 alkaline phosphatase activity is measured in the media of transfected cells to control for variations in transfection efficiency between samples) are combined in a calcium phosphate precipitate as per the manufacturer's instructions. Half of the precipitate is equally distributed over 3 wells in a 96-well plate, kept on the cells in a serum free media for 24 hours. The last

15 5 hours the cells are incubated with 1μM Angiotensin, where indicated. Cells are then lysed and assayed for luciferase activity using a Luclite™ Kit (Packard, Cat. # 6016911) and "Trilux

1450 Microbeta" liquid scintillation and luminescence counter (Wallac) as per the manufacturer's instructions. The data can be analyzed using GraphPad Prism™ 2.0a (GraphPad Software Inc.).

5. Intracellular IP, Accumulation Assay

20 On day 1, cells comprising the receptors (endogenous and/or non-endogenous) can be plated onto 24 well plates, usually 1x10⁵ cells/well (although his umber can be optimized. On day 2 cells can be transfected by firstly mixing 0.25ug DNA in 50 ul serum free DMEM/well and 2 ul lipofectamine in 50 μl serumfree DMEM/well. The solutions

- 49 -

are gently mixed and incubated for 15-30 min at room temperature. Cells are washed with 0.5 ml PBS and 400 μ l of serum free media is mixed with the transfection media and added to the cells. The cells are then incubated for 3-4 hrs at 37°C/5%CO₂ and then the transfection media is removed and replaced with 1ml/well of regular growth media.

5 On day 3 the cells are labeled with ³H-myo-inositol. Briefly, the media is removed and the cells are washed with 0.5 ml PBS. Then 0.5 ml inositol-free/serum free media (GIBCO BRL) is added/well with 0.25 μ Ci of ³H-myo-inositol / well and the cells are incubated for 16-18 hrs o/n at 37°C/5%CO₂. On Day 4 the cells are washed with 0.5 ml PBS and 0.45 ml of assay medium is added containing inositol-free/serum free media 10 μ M pargyline

10 10 mM lithium chloride or 0.4 ml of assay medium and 50 μ l of 10x ketanserin (ket) to final concentration of 10 μ M. The cells are then incubated for 30 min at 37°C. The cells are then washed with 0.5 ml PBS and 200 μ l of fresh/icecold stop solution (1M KOH; 18 mM Na-borate; 3.8 mM EDTA) is added/well. The solution is kept on ice for 5-10 min or until cells were lysed and then neutralized by 200 μ l of fresh/ice cold neutralization sol.

15 (7.5 % HCL). The lysate is then transferred into 1.5 ml eppendorf tubes and 1 ml of chloroform/methanol (1:2) is added/tube. The solution is vortexed for 15 sec and the upper phase is applied to a Biorad AG1-X8™ anion exchange resin (100-200 mesh). Firstly, the resin is washed with water at 1:1.25 W/V and 0.9 ml of upper phase is loaded onto the column. The column is washed with 10 mls of 5 mM myo-inositol and 10 ml of 5

20 mM Na-borate/60mM Na-formate. The inositol tris phosphates are eluted into scintillation vials containing 10 ml of scintillation cocktail with 2 ml of 0.1 M formic acid/ 1 M ammonium formate. The columns are regenerated by washing with 10 ml of 0.1 M formic acid/3M ammonium formate and rinsed twice with dd H₂O and stored at 4°C in water.

- 50 -

Exemplary results are presented below in Table I:

TABLE I

Receptor	Mutation	Assay Utilized	Signal Generated: Endogenous Version (Relative Light Units)	Signal Generated: Non-Endogenous Version (Relative Light Units)	Percent Difference
hAT1	F239K	SRF-LUC	34	137	75%†
	AT2K255IC3	SRF-LUC	34	127	73%†
5 hTDAG8	I225K	CRE-LUC (293 cells)	2,715	14,440	81%†
	I225K	CRE-LUC (293T cells)	65,681	185,636	65%†
hH9 hCCKB	F236K V332K	CRE-LUC CRE-LUC	1,887 785	6,096 3,223	69%† 76%†

C. CELL-BASED DETECTION ASSAY (EXAMPLE -TDAG8)

10 293 cells were plated-out on 150mm plates at a density of 1.3×10^7 cells per plate, and were transfected using 12ug of the respective DNA and 60ul of Lipofectamine Reagent (BRL) per plate. The transfected cells were grown in media containing serum for an assay performed 24 hours post-transfection. For detection assay performed 48 hours post-transfection (assay comparing serum and serum-free media; see Figure 3), the initial media 15 was changed to either serum or serum-free media. The serum-free media was comprised solely of Dulbecco's Modified Eagle's (DME) High Glucose Medium (Irvine Scientific #9024). In addition to the above DME Medium, the media with serum contained the following: 10% Fetal Bovine Serum (Hyclone #SH30071.03), 1% of 100mM Sodium Pyruvate (Irvine Scientific #9334), 1% of 20mM L-Glutamine (Irvine Scientific #9317), and 1% of Penicillin-

Streptomycin solution (Irvine Scientific #9366).

A 96-well Adenylyl Cyclase Activation Flashplate™ was used (NEN: #SMP004A).

First, 50ul of the standards for the assay were added to the plate, in duplicate, ranging from concentrations of 50pmol to zero pmol cAMP per well. The standard cAMP (NEN:

5 #SMP004A) was reconstituted in water, and serial dilutions were made using 1xPBS (Irvine Scientific: #9240). Next, 50ul of the stimulation buffer (NEN: #SMP004A) was added to all wells. In the case of using compounds to measure activation or inactivation of cAMP, 10ul of each compound, diluted in water, was added to its respective well, in triplicate. Various final concentrations used range from 1uM up to 1mM. Adenosine 5'-triphosphate, ATP, (Research Biochemicals International: #A-141) and Adenosine 5'-diphosphate, ADP, (Sigma: #A2754) were used in the assay. Next, the 293 cells transfected with the respective cDNA (CMV or TDAG8) were harvested 24 (assay detection in serum media) or 48 hours post-transfection (assay detection comparing serum and serum-free media). The media was aspirated and the cells washed once with 1xPBS. Then 5ml of 1xPBS was added to the cells
10 along with 3ml of cell dissociation buffer (Sigma: #C-1544). The detached cells were transferred to a centrifuge tube and centrifuged at room temperature for five minutes. The supernatant was removed and the cell pellet was resuspended in an appropriate amount of 1xPBS to obtain a final concentration of 2×10^6 cells per milliliter. To the wells containing the compound, 50ul of the cells in 1xPBS (1×10^5 cells/well) were added. The plate was incubated
15 on a shaker for 15 minutes at room temperature. The detection buffer containing the tracer cAMP was prepared. In 11ml of detection buffer (NEN: #SMP004A), 50ul (equal to 1uCi) of [^{125}I]cAMP (NEN: #SMP004A) was added. Following incubation, 50ul of this detection buffer containing tracer cAMP was added to each well. The plate was placed on a shaker and

- 52 -

incubated at room temperature for two hours. Finally, the solution from the wells of the plate were aspirated and the flashplate was counted using the Wallac MicroBeta™ scintillation counter.

In Figure 2A, ATP and ADP bind to endogenous TDAG8 resulting in an increase
5 of cAMP of about 59% and about 55% respectively. Figure 2B evidences ATP and ADP binding to endogenous TDAG8 where endogenous TDAG8 was transfected and grown in serum and serum-free medium. ATP binding to endogenous TDAG8 grown in serum media evidences an increase in cAMP of about 65%, compared to the endogenous TDAG8 with no compounds; in serum-free media there was an increase of about 68%. ADP
10 binding to endogenous TDAG8 in serum evidences about a 61% increase, while in serum-free ADP binding evidences an increase of about 62% increase. ATP and ADP bind to endogenous TDAG8 with an EC₅₀ value of 139.8uM and 120.5uM, respectively (data not shown).

Although the results presented in Figure 2B indicate substantially the same results
15 when serum and serum-free media were compared, our choice is to use a serum based media, although a serum-free media can also be utilized.

Example 6
GPCR FUSION PROTEIN PREPARATION

The design of the constitutively activated GPCR-G protein fusion construct was
20 accomplished as follows: both the 5' and 3' ends of the rat G protein G_α (long form; Itoh, H. et al., 83 PNAS 3776 (1986)) were engineered to include a HindIII (5'-AAGCTT-3') sequence thereon. Following confirmation of the correct sequence (including the flanking HindIII sequences), the entire sequence was shuttled into pcDNA3.1(-) (Invitrogen, cat. no. V795-20) by subcloning using the HindIII restriction site of that vector. The correct

- 53 -

orientation for the G α sequence was determined after subcloning into pcDNA3.1(-). The modified pcDNA3.1(-) containing the rat G α gene at HindIII sequence was then verified; this vector was now available as a "universal" G α protein vector. The pcDNA3.1(-) vector contains a variety of well-known restriction sites upstream of the HindIII site, thus 5 beneficially providing the ability to insert, upstream of the Gs protein, the coding sequence of an endogenous, constitutively active GPCR. This same approach can be utilized to create other "universal" G protein vectors, and, of course, other commercially available or proprietary vectors known to the artisan can be utilized – the important criteria is that the sequence for the GPCR be upstream and in-frame with that of the G protein.

10 TDAG8 couples via Gs, while H9 couples via Gz. For the following exemplary GPCR Fusion Proteins, fusion to G α was accomplished.

A TDAG8(I225K)-G α Fusion Protein construct was made as follows: primers were designed as follows:

5'-gatcTCTAGAACAGCACATGTATTGAAG-3' (SEQ.ID.NO.: 125; sense)

15 5'-ctagGGTACCCGCTCAAGGACCTCTAATTCCATAG-3' (SEQ.ID.NO.: 126; antisense).

Nucleotides in lower caps are included as spacers in the restriction sites between the G protein and TDAG8. The sense and anti-sense primers included the restriction sites for XbaI and KpnI, respectively.

20 PCR was then utilized to secure the respective receptor sequences for fusion within the G α universal vector disclosed above, using the following protocol for each: 100ng cDNA for TDAG8 was added to separate tubes containing 2uL of each primer (sense and anti-sense), 3uL of 10mM dNTPs, 10uL of 10XTaqPlusTM Precision buffer, 1uL of TaqPlusTM Precision polymerase (Stratagene: #600211), and 80uL of water. Reaction temperatures and cycle times for TDAG8 were as follows: the initial denaturing step was done it 94 °C for five minutes, and

a cycle of 94°C for 30 seconds; 55°C for 30 seconds; 72°C for two minutes. A final extension time was done at 72°C for ten minutes. PCR product for was run on a 1% agarose gel and then purified (data not shown). The purified product was digested with XbaI and KpnI (New England Biolabs) and the desired inserts purified and ligated into the Gs universal vector at the respective restriction site. The positive clones was isolated following transformation and determined by restriction enzyme digest; expression using 293 cells was accomplished following the protocol set forth *infra*. Each positive clone for TDAG8:Gs - Fusion Protein was sequenced to verify correctness.

5 GPCR Fusion Proteins comprising non-endogenous, constitutively activated TDAG8(I225K) were analyzed as above and verified for constitutive activation.

10 An H9(F236K)-G α Fusion Protein construct was made as follows: primers were designed as follows:

5'-TTAgatatacGGGGCCCACCCCTAGCGGT-3' (SEQ.ID.NO.: 145; sense)

5'-ggtaccCCCACAGCCATTTCATCAGGATC-3' (SEQ.ID.NO.: 146; antisense).

15 Nucleotides in lower caps are included as spacers in the restriction sites between the G protein and H9. The sense and anti-sense primers included the restriction sites for EcoRV and KpnI, respectively such that spacers (attributed to the restriction sites) exists between the G protein and H9.

PCR was then utilized to secure the respective receptor sequences for fusion within the G α universal vector disclosed above, using the following protocol for each: 80ng cDNA for H9 was added to separate tubes containing 100ng of each primer (sense and anti-sense), and 45uL of PCR Supermix™ (Gibco-Brl, LifeTech) (50ul total reaction volume). Reaction temperatures and cycle times for H9 were as follows: the initial denaturing step was done it 94°C for one, and a cycle of 94°C for 30 seconds; 55°C for 30 seconds; 72°C for two

- 55 -

minutes. A final extension time was done at 72 °C for seven minutes. PCR product for was run on a 1% agarose gel and then purified (data not shown). The purified product was cloned into pCRII-TOPO™ System followed by identification of positive clones. Positive clones were isolated, digested with EcoRV and KpnI (New England Biolabs) and the desired inserts 5 were isolated, purified and ligated into the Gs universal vector at the respective restriction site. The positive clones was isolated following transformation and determined by restriction enzyme digest; expression using 293 cells was accomplished following the protocol set forth *infra*. Each positive clone for H9(F236K):Gs – Fusion Protein was sequenced to verify correctness. Membranes were frozen (-80 °C) until utilized.

10 To ascertain the ability of measuring a cAMP response mediated by the Gs protein (even though H9 couples with Gz), the following cAMP membrane assay was utilized, based upon an NEN Adenyl Cyclase Activation Flahplate™ Assay kit (96 well format). "Binding Buffer" consisted of 10mM HEPES, 100mM NaCl and 10mM MgCl (ph 7.4). "Regeneration Buffer" was prepared in Binding Buffer and consisted of 20mM phosphocreatine, 20U 15 creatine phosphokinase, 20uM GTP, 0.2mM ATP, and 0.6mM IBMX. "cAMP Standards" were prepared in Binding Buffer as follows:

	cAMP Stock (5,000 pmol/ml in 2ml H ₂ O) in ul	Added to indicated amount of Binding Buffer	Final Assay Concentration (50ul into 100ul) to achieve indicated pmol/well
20	A 250	1ml	50
	B 500 of A	500ul	25
	C 500 of B	500ul	12.5
	D 500 of C	750ul	5.0
	E 500 of D	500ul	2.5
	F 500 of E	500ul	1.25
25	G 500 of F	750ul	0.5

Frozen membranes (both pCMV as control and the non-endogenous H(-Gs Fusion Protein) were thawed (on ice at room temperature until in solution). Membranes were

homogenized with a polytron until in suspension (2 x 15 seconds). Membrane protein concentration was determined using the Bradford Assay Protocol (*see infra*). Membrane concentration was diluted to 0.5mg/ml in Regeneration Buffer (final assay concentration – 25ug/well). Thereafter, 50ul of Binding Buffer was added to each well. For control, 50ul/well
5 of cAMP standard was added to wells 11 and 12 A-G, with Binding Buffer alone to 12H (on the 96-well format). Thereafter, 50ul/well of protein was added to the wells and incubated at room temperature (on shaker) for 60min. 100ul [¹²⁵I]cAMP in Detection Buffer (*see infra*) was added to each well (final – 50ul [¹²⁵I]cAMP into 1ml Detection Buffer). These were
incubated for 2hrs at room temperature. Plates were aspirated with an 8 channel manifold and
10 sealed with plate covers. Results (pmoles cAMP bound) were read in a Wallac™ 1450 on "prot #15). Results are presented in Figure 3.

The results presented in Figure 3 indicate that the Gs coupled fusion was able to "drive" the cyclase reaction such that measurement of the constitutive activation of H9(F236K) was viable. Based upon these results, the direct identification of candidate compounds that
15 are inverse agonists, agonists and partial agonists is possible using a cyclase-based assay.

Example 6

Protocol: Direct Identification of Inverse Agonists and Agonists Using [³⁵S]GTP γ S

Although we have utilized endogenous, constitutively active GPCRs for the direct identification of candidate compounds as, e.g., inverse agonists, for reasons that are not
20 altogether understood, intra-assay variation can become exacerbated. Preferably, then, a GPCR Fusion Protein, as disclosed above, is also utilized with a non-endogenous, constitutively activated GPCR. We have determined that when such a protein is used, intra-assay variation appears to be substantially stabilized, whereby an effective signal-to-noise ratio is obtained. This has the beneficial result of allowing for a more robust identification

- 57 -

of candidate compounds. Thus, it is preferred that for direct identification, a GPCR Fusion Protein be used and that when utilized, the following assay protocols be utilized.

Membrane Preparation

Membranes comprising the non-endogenous, constitutively active orphan GPCR

5 Fusion Protein of interest and for use in the direct identification of candidate compounds as inverse agonists, agonists or partial agonists are preferably prepared as follows:

a. Materials

"Membrane Scrape Buffer" is comprised of 20mM HEPES and 10mM EDTA, pH 7.4;

"Membrane Wash Buffer" is comprised of 20 mM HEPES and 0.1 mM EDTA, pH 7.4;

10 "Binding Buffer" is comprised of 20mM HEPES, 100 mM NaCl, and 10 mM MgCl₂, pH 7.4

b. Procedure

All materials are kept on ice throughout the procedure. Firstly, the media is aspirated from a confluent monolayer of cells, followed by rinse with 10ml cold PBS, followed by aspiration. Thereafter, 5ml of Membrane Scrape Buffer is added to scrape cells; this is followed by transfer of cellular extract into 50ml centrifuge tubes (centrifuged at 20,000 rpm for 17 minutes at 4 °C). Thereafter, the supernatant is aspirated and the pellet is resuspended in 30ml Membrane Wash Buffer followed by centrifuge at 20,000 rpm for 17 minutes at 4 °C. The supernatant is then aspirated and the pellet resuspended in Binding Buffer. This is then homogenized using a Brinkman polytron™ homogenizer (15-20 second bursts until the all material is in suspension). This is referred to herein as "Membrane Protein".

Bradford Protein Assay

Following the homogenization, protein concentration of the membranes is determined using the Bradford Protein Assay (protein can be diluted to about 1.5mg/ml, aliquoted and

- 58 -

frozen (-80°C) for later use; when frozen, protocol for use is as follows: on the day of the assay, frozen Membrane Protein is thawed at room temperature, followed by vortex and then homogenized with a polytron at about 12 x 1,000 rpm for about 5-10 seconds; it is noted that for multiple preparations, the homogenizer should be thoroughly cleaned between
5 homogenization of different preparations).

a. Materials

Binding Buffer (as per above); Bradford Dye Reagent; Bradford Protein Standard are utilized, following manufacturer instructions (Biorad, cat. no. 500-0006).

b. Procedure

10 Duplicate tubes are prepared, one including the membrane, and one as a control "blank". Each contained 800ul Binding Buffer. Thereafter, 10ul of Bradford Protein Standard (1mg/ml) is added to each tube, and 10ul of membrane Protein is then added to just one tube (not the blank). Thereafter, 200ul of Bradford Dye Reagent is added to each tube, followed by vortex of each. After five (5) minutes, the tubes were re-vortexed and the material therein
15 is transferred to cuvettes. The cuvettes are then read using a CECIL 3041 spectrophotometer, at wavelength 595.

Direct Identification Assay

a. Materials

GDP Buffer consists of 37.5 ml Binding Buffer and 2mg GDP (Sigma, cat. no. G-
20 7127), followed by a series of dilutions in Binding Buffer to obtain 0.2 uM GDP (final concentration of GDP in each well was 0.1 uM GDP); each well comprising a candidate compound, has a final volume of 200ul consisting of 100ul GDP Buffer (final concentration, 0.1uM GDP), 50ul Membrane Protein in Binding Buffer, and 50ul [³⁵S]GTPγS (0.6 nM) in

Binding Buffer (2.5 ul [35 S]GTP γ S per 10ml Binding Buffer).

b. Procedure

Candidate compounds are preferably screened using a 96-well plate format (these can be frozen at -80°C). Membrane Protein (or membranes with expression vector excluding the GPCR Fusion Protein, as control), are homogenized briefly until in suspension. Protein concentration is then determined using the Bradford Protein Assay set forth above. Membrane Protein (and control) is then diluted to 0.25mg/ml in Binding Buffer (final assay concentration, 12.5ug/well). Thereafter, 100 ul GDP Buffer is added to each well of a Wallac Scintistrip™ (Wallac). A 5ul pin-tool is then used to transfer 5 ul of a candidate compound into such well (*i.e.*, 5ul in total assay volume of 200 ul is a 1:40 ratio such that the final screening concentration of the candidate compound is 10uM). Again, to avoid contamination, after each transfer step the pin tool should be rinsed in three reservoirs comprising water (1X), ethanol (1X) and water (2X) – excess liquid should be shaken from the tool after each rinse and dried with paper and kimwipes. Thereafter, 50 ul of Membrane Protein is added to each well (a control well comprising membranes without the GPCR Fusion Protein is also utilized), and pre-incubated for 5-10 minutes at room temperature. Thereafter, 50 ul of [35 S]GTP γ S (0.6 nM) in Binding Buffer is added to each well, followed by incubation on a shaker for 60 minutes at room temperature (again, in this example, plates were covered with foil). The assay is then stopped by spinning of the plates at 4000 RPM for 15 minutes at 22°C. The plates are then aspirated with an 8 channel manifold and sealed with plate covers. The plates are then read on a Wallacc 1450 using setting "Prot. #37" (as per manufacturer instructions).

Example 7

Protocol: Confirmation Assay

Using an independent assay approach to provide confirmation of a directly identified

- 60 -

candidate compound as set forth above, it is preferred that a confirmation assay then be utilized. In this case, the preferred confirmation assay is a cyclase-based assay.

A modified Flash Plate™ Adenylyl Cyclase kit (New England Nuclear; Cat. No. SMP004A) is preferably utilized for confirmation of candidate compounds directly identified 5 as inverse agonists and agonists to non-endogenous, constitutively activated orphan GPCRs in accordance with the following protocol.

Transfected cells are harvested approximately three days after transfection. Membranes are prepared by homogenization of suspended cells in buffer containing 20mM HEPES, pH 7.4 and 10mM MgCl₂. Homogenization is performed on ice using a Brinkman 10 Polytron™ for approximately 10 seconds. The resulting homogenate is centrifuged at 49,000 X g for 15 minutes at 4°C. The resulting pellet is then resuspended in buffer containing 20mM HEPES, pH 7.4 and 0.1 mM EDTA, homogenized for 10 seconds, followed by centrifugation at 49,000 X g for 15 minutes at 4°C. The resulting pellet can be stored at - 80°C until utilized. On the day of direct identification screening, the membrane pellet is 15 slowly thawed at room temperature, resuspended in buffer containing 20mM HEPES, pH 7.4 and 10mM MgCL2, to yield a final protein concentration of 0.60mg/ml (the resuspended membranes are placed on ice until use).

cAMP standards and Detection Buffer (comprising 2 µCi of tracer [¹²⁵I] cAMP (100 µl) to 11 ml Detection Buffer) are prepared and maintained in accordance with the 20 manufacturer's instructions. Assay Buffer is prepared fresh for screening and contained 20mM HEPES, pH 7.4, 10mM MgCl₂, 20mM phosphocreatine (Sigma), 0.1 units/ml creatine phosphokinase (Sigma), 50 µM GTP (Sigma), and 0.2 mM ATP (Sigma); Assay Buffer can be stored on ice until utilized.

- 61 -

Candidate compounds identified as per above (if frozen, thawed at room temperature) are added, preferably, to 96-well plate wells ($3\mu\text{l}/\text{well}$; $12\mu\text{M}$ final assay concentration); together with $40\mu\text{l}$ Membrane Protein ($30\mu\text{g}/\text{well}$) and $50\mu\text{l}$ of Assay Buffer. This admixture is then incubated for 30 minutes at room temperature, with gentle shaking.

5 Following the incubation, $100\mu\text{l}$ of Detection Buffer is added to each well, followed by incubation for 2-24 hours. Plates are then counted in a Wallac MicroBeta™ plate reader using "Prot. #31" (as per manufacturer instructions).

It is intended that each of the patents, applications, and printed publications mentioned in this patent document be hereby incorporated by reference in their entirety.

10 As those skilled in the art will appreciate, numerous changes and modifications may be made to the preferred embodiments of the invention without departing from the spirit of the invention. It is intended that all such variations fall within the scope of the invention.

Although a variety of expression vectors are available to those in the art, for purposes of utilization for both the endogenous and non-endogenous human GPCRs, it is
15 most preferred that the vector utilized be pCMV. This vector was deposited with the American Type Culture Collection (ATCC) on October 13, 1998 (10801 University Blvd., Manassas, VA 20110-2209 USA) under the provisions of the Budapest Treaty for the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure. The DNA was tested by the ATCC and determined to be. The ATCC has
20 assigned the following deposit number to pCMV: ATCC #203351.

CLAIMS

What is claimed is:

1. A cDNA encoding a non-endogenous, constitutively activated version of a human G protein-coupled receptor comprising hARE-3(F313K).
- 5 2. A non-endogenous version of a human G protein-coupled receptor encoded by the cDNA of claim 1.
3. A Plasmid comprising a Vector and the cDNA of claim 1.
4. A Host Cell comprising the Plasmid of claim 3.
5. A cDNA encoding a non-endogenous, constitutively activated version of a human G protein-coupled receptor comprising hARE-4(V233K)
- 10 6. A non-endogenous version of a human G protein-coupled receptor encoded by the cDNA of claim 5.
7. A Plasmid comprising a Vector and the cDNA of claim 5.
8. A Host Cell comprising the Plasmid of claim 7.
- 15 9. A cDNA encoding a non-endogenous, constitutively activated version of a human G protein-coupled receptor comprising hARE-5(A240K).
10. A non-endogenous version of a human G protein-coupled receptor encoded by the cDNA of claim 9.
11. A Plasmid comprising a Vector and the cDNA of claim 5.
- 20 12. A Host Cell comprising the Plasmid of claim 11.
13. A cDNA encoding a non-endogenous, constitutively activated version of a human G protein-coupled receptor comprising hGPCR14(L257K).

14. A non-endogenous version of a human G protein-coupled receptor encoded by the cDNA of claim 13.
15. A Plasmid comprising a Vector and the cDNA of claim 13.
- 5 16. A Host Cell comprising the Plasmid of claim 15.
17. A cDNA encoding a non-endogenous, constitutively activated version of a human G protein-coupled receptor comprising hGPCR27(C283K).
18. A non-endogenous version of a human G protein-coupled receptor encoded by the cDNA of claim 17.
- 10 19. A Plasmid comprising a Vector and the cDNA of claim 17.
20. A Host Cell comprising the Plasmid of claim 19.
21. A cDNA encoding a non-endogenous, constitutively activated version of a human G protein-coupled receptor comprising hARE-1(E232K).
22. A non-endogenous version of a human G protein-coupled receptor encoded by the cDNA of claim 21.
- 15 23. A Plasmid comprising a Vector and the cDNA of claim 21.
24. A Host Cell comprising the Plasmid of claim 23.
25. A cDNA encoding a non-endogenous, constitutively activated version of a human G protein-coupled receptor comprising hARE-2(G285K).
- 20 26. A non-endogenous version of a human G protein-coupled receptor encoded by the cDNA of claim 25.
27. A Plasmid comprising a Vector and the cDNA of claim 25.
28. A Host Cell comprising the Plasmid of claim 27.

- 64 -

29. A cDNA encoding a non-endogenous, constitutively activated version of a human G protein-coupled receptor comprising hPPR1(L239K).
30. A non-endogenous version of a human G protein-coupled receptor encoded by the cDNA of claim 29.
- 5 31. A Plasmid comprising a Vector and the cDNA of claim 29.
32. A Host Cell comprising the Plasmid of claim 31.
33. A cDNA encoding a non-endogenous, constitutively activated version of a human G protein-coupled receptor comprising hG2A(K232A).
34. A non-endogenous version of a human G protein-coupled receptor encoded by the cDNA of claim 33.
- 10 35. A Plasmid comprising a Vector and the cDNA of claim 33.
36. A Host Cell comprising the Plasmid of claim 35.
37. A cDNA encoding a non-endogenous, constitutively activated version of a human G protein-coupled receptor comprising hRUP3(L224K).
- 15 38. A non-endogenous version of a human G protein-coupled receptor encoded by the cDNA of claim 37.
39. A Plasmid comprising a Vector and the cDNA of claim 37.
40. A Host Cell comprising the Plasmid of claim 39.
41. A cDNA encoding a non-endogenous, constitutively activated version of a human G protein-coupled receptor comprising hRUP5(A236K).
- 20 42. A non-endogenous version of a human G protein-coupled receptor encoded by the cDNA of claim 41.
43. A Plasmid comprising a Vector and the cDNA of claim 41.

- 65 -

44. A Host Cell comprising the Plasmid of claim 42.
45. A cDNA encoding a non-endogenous, constitutively activated version of a human G protein-coupled receptor comprising hRUP6(N267K)
46. A non-endogenous version of a human G protein-coupled receptor encoded by the
5 cDNA of claim 45.
47. A Plasmid comprising a Vector and the cDNA of claim 45.
48. A Host Cell comprising the Plasmid of claim 47.
49. A cDNA encoding a non-endogenous, constitutively activated version of a human G protein-coupled receptor comprising hRUP7(A302K).
- 10 50. A non-endogenous version of a human G protein-coupled receptor encoded by the cDNA of claim 49.
51. A Plasmid comprising a Vector and the cDNA of claim 49.
52. A Host Cell comprising the Plasmid of claim 51.
53. A cDNA encoding a non-endogenous, constitutively activated version of a human
15 G protein-coupled receptor comprising hCHN4(V236K).
54. A non-endogenous version of a human G protein-coupled receptor encoded by the cDNA of claim 53.
55. A Plasmid comprising a Vector and the cDNA of claim 53.
56. A Host Cell comprising the Plasmid of claim 55.
- 20 57. A cDNA encoding a non-endogenous, constitutively activated version of a human G protein-coupled receptor comprising hMC4(A244K).
58. A non-endogenous version of a human G protein-coupled receptor encoded by the
cDNA of claim 57.

- 66 -

59. A Plasmid comprising a Vector and the cDNA of claim 57.
60. A Host Cell comprising the Plasmid of claim 60.
61. A cDNA encoding a non-endogenous, constitutively activated version of a human G protein-coupled receptor comprising hCHN3(S284K).
- 5 62. A non-endogenous version of a human G protein-coupled receptor encoded by the cDNA of claim 61.
63. A Plasmid comprising a Vector and the cDNA of claim 61.
64. A Host Cell comprising the Plasmid of claim 63.
65. A cDNA encoding a non-endogenous, constitutively activated version of a human G protein-coupled receptor comprising hCHN6(L352K).
- 10 66. A non-endogenous version of a human G protein-coupled receptor encoded by the cDNA of claim 65.
67. A Plasmid comprising a Vector and the cDNA of claim 65.
68. A Host Cell comprising the Plasmid of claim 67.
- 15 69. A cDNA encoding a non-endogenous, constitutively activated version of a human G protein-coupled receptor comprising hCHN8(N235K).
70. A non-endogenous version of a human G protein-coupled receptor encoded by the cDNA of claim 69.
71. A Plasmid comprising a Vector and the cDNA of claim 69.
- 20 72. A Host Cell comprising the Plasmid of claim 71.
73. A cDNA encoding a non-endogenous, constitutively activated version of a human G protein-coupled receptor comprising hH9(F236K).
74. A non-endogenous version of a human G protein-coupled receptor encoded by the

- 67 -

cDNA of claim 73.

75. A Plasmid comprising a Vector and the cDNA of claim 73.

76. A Host Cell comprising the Plasmid of claim 74.

77. A cDNA encoding a non-endogenous, constitutively activated version of a human

5 G protein-coupled AT1 receptor selected from the group consisting of:

hAT1(F239K); hAT1(N111A); hAT1(AT2K255IC3); and hAT1(A243+).

78. A non-endogenous version of a human G protein-coupled receptor encoded by a
cDNA of claim 77.

79. A Plasmid comprising a Vector and the cDNA of claim 77.

10 80. A Host Cell comprising the Plasmid of claim 79.

1/2

FIG. 1

2/2

*FIG. 2A**FIG. 2B**FIG. 3*

- 1 -

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: Behan, Dominic P.
5 Lehmann-Bruinsma, Karin
Chalmers, Derek T.
Lowitz, Kevin P.
Lin, I-Lin
Dang, Huong T.
10 Chen, Ruoping
Liaw, Chen W.
Gore, Martin J.
White, Carol

(ii) TITLE OF INVENTION: Non-Endogenous, Constitutively Activated Human G
15 Protein-Coupled Receptors

(iii) NUMBER OF SEQUENCES: 146

(iv) CORRESPONDENCE ADDRESS:

20 (A) ADDRESSEE: Arena Pharmaceuticals, Inc.
(B) STREET: 6166 Nancy Ridge Drive
(C) CITY: San Diego
(D) STATE: CA
(E) COUNTRY: USA
(F) ZIP: 92121

25 (v) COMPUTER READABLE FORM:

(A) MEDIUM TYPE: Floppy disk
(B) COMPUTER: IBM PC compatible
(C) OPERATING SYSTEM: PC-DOS/MS-DOS
(D) SOFTWARE: PatentIn Release #1.0, Version #1.30

30 (vi) CURRENT APPLICATION DATA:

(A) APPLICATION NUMBER: US
(B) FILING DATE:
(C) CLASSIFICATION:

(viii) ATTORNEY/AGENT INFORMATION:

35 (A) NAME: Burgoon, Richard P.
(B) REGISTRATION NUMBER: 34,787

(ix) TELECOMMUNICATION INFORMATION:

(A) TELEPHONE: (858) 453-7200
(B) TELEFAX: (858) 453-7210

40 (2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1260 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single

- 2 -

(D) TOPOLOGY: linear

(i) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

	ATGGTCTTCT CGGCAGTGTT GACTGCGTTC CATACCGGGA CATCCAACAC AACATTTGTC	60
5	GTGTATGAAA ACACCTACAT GAATATTACA CTCCCTCCAC CATTCCAGCA TCCTGACCTC	120
	AGTCCATTGC TTAGATATAG TTTTGAAACC ATGGCTCCC CTGGTTGAG TTCTTGACC	180
	GTAATAGTA CAGCTGTGCC CACAACACCA GCAGCATTAA AGAGCCTAAA CTTGCCTCTT	240
	CAGATCACCC TTTCTGCTAT AATGATATTTC ATTCTGTTG TGTCTTTCT TGGGAACTTG	300
	GTTGTTGCC TCATGGTTTA CCAAAAAGCT GCCATGAGGT CTGCAATTAA CATCCTCCTT	360
10	GCCAGCCTAG CTTTGCGAGA CATGTTGCTT GCAGTGCTGA ACATGCCCTT TGCCCTGGTA	420
	ACTATTCTTA CTACCCGATG GATTTTGAG AAATTCTTCT GTAGGGTATC TGCTATGTTT	480
	TTCTGGTTAT TTGTGATAGA AGGAGTAGCC ATCCTGCTCA TCATTAGCAT AGATAGGTT	540
	CTTATTATAG TCCAGAGGCA GGATAAGCTA AACCCATATA GAGCTAAGGT TCTGATTGCA	600
	GTTCCTTGGG CAACCTCCTT TTGTGAGCT TTTCCTTTAG CCGTAGGAAA CCCGACCTG	660
15	CAGATACCTT CCCGAGCTCC CCAGTGTGTG TTTGGGTACA CAACCAATCC AGGCTACCAG	720
	GCTTATGTGA TTTGATTTC TCTCATTCT TTCTTCATAC CCTTCCTGGT AATACTGTAC	780
	TCATTTATGG GCATACTCAA CACCCCTCGG CACAATGCCT TGAGGATCCA TAGCTACCCT	840
	GAAGGTATAT GCCTCAGCCA GGCCAGCTAA CTGGGTCTCA TGAGTCTGCA GAGACCTTC	900
	CAGATGAGCA TTGACATGGG CTTTAAACCA CGTGCCTTCA CCACTATTT GATTCTCTT	960
20	GCTGTCTTCA TTGTCTGCTG GGCCCCATTC ACCACTTACA GCCTTGTGGC AACATTCACT	1020
	AAGCACTTTT ACTATCAGCA CAACTTTTT GAGATTAGCA CCTGGCTACT GTGGCTCTGC	1080
	TACCTCAAGT CTGCATTGAA TCCGCTGATC TACTACTGGA GGATTAAGAA ATTCCATGAT	1140
	GCTTGCTGG ACATGATGCC TAAGTCCTTC AAGTTTTGC CGCAGCTCCC TGGTCACACA	1200
	AAGCGACGGA TACGTCTAG TGCTGTCTAT GTGTGTGGGG AACATCGGAC GGTGGTGTGA	1260

25 (3) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 419 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

- 3 -

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

	Met Val Phe Ser Ala Val Leu Thr Ala Phe His Thr Gly Thr Ser Asn	
1	5	10
	15	
5	Thr Thr Phe Val Val Tyr Glu Asn Thr Tyr Met Asn Ile Thr Leu Pro	
	20	25
	30	
	Pro Pro Phe Gln His Pro Asp Leu Ser Pro Leu Leu Arg Tyr Ser Phe	
	35	40
	45	
10	Glu Thr Met Ala Pro Thr Gly Leu Ser Ser Leu Thr Val Asn Ser Thr	
	50	55
	60	
	Ala Val Pro Thr Thr Pro Ala Ala Phe Lys Ser Leu Asn Leu Pro Leu	
65	70	75
	80	
	Gln Ile Thr Leu Ser Ala Ile Met Ile Phe Ile Leu Phe Val Ser Phe	
	85	90
	95	
15	Leu Gly Asn Leu Val Val Cys Leu Met Val Tyr Gln Lys Ala Ala Met	
	100	105
	110	
	Arg Ser Ala Ile Asn Ile Leu Leu Ala Ser Leu Ala Phe Ala Asp Met	
115	120	125
20	Leu Leu Ala Val Leu Asn Met Pro Phe Ala Leu Val Thr Ile Leu Thr	
	130	135
	140	
	Thr Arg Trp Ile Phe Gly Lys Phe Phe Cys Arg Val Ser Ala Met Phe	
145	150	155
	160	
	Phe Trp Leu Phe Val Ile Glu Gly Val Ala Ile Leu Leu Ile Ile Ser	
	165	170
	175	
25	Ile Asp Arg Phe Leu Ile Ile Val Gln Arg Gln Asp Lys Leu Asn Pro	
	180	185
	190	
	Tyr Arg Ala Lys Val Leu Ile Ala Val Ser Trp Ala Thr Ser Phe Cys	
195	200	205
30	Val Ala Phe Pro Leu Ala Val Gly Asn Pro Asp Leu Gln Ile Pro Ser	
	210	215
	220	
	Arg Ala Pro Gln Cys Val Phe Gly Tyr Thr Thr Asn Pro Gly Tyr Gln	
225	230	235
	240	
	Ala Tyr Val Ile Leu Ile Ser Leu Ile Ser Phe Phe Ile Pro Phe Leu	
	245	250
	255	
35	Val Ile Leu Tyr Ser Phe Met Gly Ile Leu Asn Thr Leu Arg His Asn	
	260	265
	270	

- 4 -

	Ala Leu Arg Ile His Ser Tyr Pro Glu Gly Ile Cys Leu Ser Gln Ala	
	275	280
	Ser Lys Leu Gly Leu Met Ser Leu Gln Arg Pro Phe Gln Met Ser Ile	
	290	295
5	Asp Met Gly Phe Lys Thr Arg Ala Phe Thr Thr Ile Leu Ile Leu Phe	
	305	310
	Ala Val Phe Ile Val Cys Trp Ala Pro Phe Thr Thr Tyr Ser Leu Val	
	325	330
	Ala Thr Phe Ser Lys His Phe Tyr Tyr Gln His Asn Phe Phe Glu Ile	
10	340	345
	Ser Thr Trp Leu Leu Trp Leu Cys Tyr Leu Lys Ser Ala Leu Asn Pro	
	355	360
	Leu Ile Tyr Tyr Trp Arg Ile Lys Lys Phe His Asp Ala Cys Leu Asp	
	370	375
15	Met Met Pro Lys Ser Phe Lys Phe Leu Pro Gln Leu Pro Gly His Thr	
	385	390
	Lys Arg Arg Ile Arg Pro Ser Ala Val Tyr Val Cys Gly Glu His Arg	
	405	410
	Thr Val Val	
20		

(4) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1119 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

	ATGTTAGCCA ACAGCTCCTC AACCAACAGT TCTGTTCTCC CGTGTCTGA CTACCGACCT	60
30	ACCCACCGCC TGCACTTGGT GGTCTACAGC TTGGTGCTGG CTGCCGGGCT CCCCCCTAAC	120
	GCGCTAGCCC TCTGGGTCTT CCTGCGCGCG CTGCGCGTGC ACTCGGTGGT GAGCGTGTAC	180
	ATGTGTAACC TGGCGGCCAG CGACCTGCTC TTCACCCCTCT CGCTGCCCGT TCGTCTCTCC	240
	TACTACGCAC TGCACCACTG GCCCTTCCCC GACCTCCTGT GCCAGACGAC GGGCGCCATC	300
	TTCCAGATGA ACATGTACGG CAGCTGCATC TTCCCTGATGC TCATCAACGT GGACCGCTAC	360

- 5 -

	GCCGCCATCG	TGCACCCGCT	GCGACTGCGC	CACCTGCGC	GGCCCCGCGT	GGCGCGGCTG	420
	CTCTGCCTGG	GCGTGTGGC	GCTCATCCTG	GTGTTGCCG	TGCCC GCCGC	CCGCGTGAC	480
	AGGCCCTCGC	GTTGCCGCTA	CCGGGACCTC	GAGGTGCGCC	TATGCTTCGA	GAGCTTCAGC	540
	GACGAGCTGT	GGAAAGGCAG	GCTGCTGCC	CTCGTGCTGC	TGGCCGAGGC	GCTGGGCTTC	600
5	CTGCTGCC	TGGCGCGGT	GGTCTACTCG	TCGGGCCGAG	TCTTCTGGAC	GCTGGCGCGC	660
	CCCGACGCCA	CGCAGAGCCA	GCGCGGCCG	AAGACCGTGC	GCCTCCTGCT	GGCTAACCTC	720
	GTCATCTTCC	TGCTGTGCTT	CGTGCCCTAC	AACAGCACGC	TGGCGGTCTA	CGGGCTGCTG	780
	CGGAGCAAGC	TGGTGGCGGC	CAGCGTGCCT	GCCCCGCGATC	GCGTGCGCGG	GGTGCTGATG	840
	GTGATGGTGC	TGCTGGCCGG	CGCCAACUGC	GTGCTGGACC	CGCTGGTGTA	CTACTTTAGC	900
10	GCCGAGGGCT	TCCGCAACAC	CCTGCGCGC	CTGGGCACTC	CGCACCGGGC	CAGGACCTCG	960
	GCCACCAACG	GGACGCGGGC	GGCGCTCGCG	CAATCCGAAA	GGTCCGCCGT	CACCACCGAC	1020
	GCCACCAGGC	CGGATGCCGC	CAGTCAGGGG	CTGCTCCGAC	CCTCCGACTC	CCACTCTCTG	1080
	TCTTCCTTCA	CACAGTGTCC	CCAGGATTCC	GCCCTCTGA			1119

(5) INFORMATION FOR SEQ ID NO:4:

15 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 372 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS:
 (D) TOPOLOGY: not relevant

20 (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

	Met	Leu	Ala	Asn	Ser	Ser	Ser	Thr	Asn	Ser	Ser	Val	Leu	Pro	Cys	Pro
	1															15
	Asp	Tyr	Arg	Pro	Thr	His	Arg	Leu	His	Leu	Val	Val	Tyr	Ser	Leu	Val
25								20		25			30			
	Leu	Ala	Ala	Gly	Leu	Pro	Leu	Asn	Ala	Leu	Ala	Leu	Trp	Val	Phe	Leu
								35		40			45			
	Arg	Ala	Leu	Arg	Val	His	Ser	Val	Val	Ser	Val	Tyr	Met	Cys	Asn	Leu
30								50		55			60			
	Ala	Ala	Ser	Asp	Leu	Leu	Phe	Thr	Leu	Ser	Leu	Pro	Val	Arg	Leu	Ser
								65		70			75			80
	Tyr	Tyr	Ala	Leu	His	His	Trp	Pro	Phe	Pro	Asp	Leu	Leu	Cys	Gln	Thr

- 6 -

	85	90	95
	Thr Gly Ala Ile Phe Gln Met Asn Met Tyr Gly Ser Cys Ile Phe Leu		
	100	105	110
5	Met Leu Ile Asn Val Asp Arg Tyr Ala Ala Ile Val His Pro Leu Arg		
	115	120	125
	Leu Arg His Leu Arg Arg Pro Arg Val Ala Arg Leu Leu Cys Leu Gly		
	130	135	140
	Val Trp Ala Leu Ile Leu Val Phe Ala Val Pro Ala Ala Arg Val His		
	145	150	155
10	Arg Pro Ser Arg Cys Arg Tyr Arg Asp Leu Glu Val Arg Leu Cys Phe		
	165	170	175
	Glu Ser Phe Ser Asp Glu Leu Trp Lys Gly Arg Leu Leu Pro Leu Val		
	180	185	190
15	Leu Leu Ala Glu Ala Leu Gly Phe Leu Leu Pro Leu Ala Ala Val Val		
	195	200	205
	Tyr Ser Ser Gly Arg Val Phe Trp Thr Leu Ala Arg Pro Asp Ala Thr		
	210	215	220
	Gln Ser Gln Arg Arg Lys Thr Val Arg Leu Leu Leu Ala Asn Leu		
	225	230	235
20	Val Ile Phe Leu Leu Cys Phe Val Pro Tyr Asn Ser Thr Leu Ala Val		
	245	250	255
	Tyr Gly Leu Leu Arg Ser Lys Leu Val Ala Ala Ser Val Pro Ala Arg		
	260	265	270
25	Asp Arg Val Arg Gly Val Leu Met Val Met Val Leu Leu Ala Gly Ala		
	275	280	285
	Asn Cys Val Leu Asp Pro Leu Val Tyr Tyr Phe Ser Ala Glu Gly Phe		
	290	295	300
	Arg Asn Thr Leu Arg Gly Leu Gly Thr Pro His Arg Ala Arg Thr Ser		
	305	310	315
30	Ala Thr Asn Gly Thr Arg Ala Ala Leu Ala Gln Ser Glu Arg Ser Ala		
	325	330	335
	Val Thr Thr Asp Ala Thr Arg Pro Asp Ala Ala Ser Gln Gly Leu Leu		
	340	345	350
35	Arg Pro Ser Asp Ser His Ser Leu Ser Ser Phe Thr Gln Cys Pro Gln		
	355	360	365
	Asp Ser Ala Leu		
	370		

- 7 -

(6) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1107 base pairs
- (B) TYPE: nucleic acid
- 5 (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

ATGGCCA	ACT CCACAGGGCT	GAACGCC	TCA GAAGTCG	CAG GCTCGTTGGG	GTTGATCC	60
10 GCAGCTGTC	G TGAGGTGGG	GC ACTGCTG	GGCAACGGCG	CGCTGCTGGT	CGTGGTGCTG	120
	CGCACGCCG	GACTGCGCA	CGCGCTCTAC	CTGGCGCACC	TGTGCGTCGT	180
	GC GGCCGC	CCATCATGCC	GCTGGGCCTG	CTGGCCGCAC	CGCCGCCCGG	240
	GTGCGCCTG	GCCCCGCGCC	ATGCCGCGCC	GCTCGCTTCC	TCTCCGCCGC	300
	GCCTGCACG	C TGGGGTGGC	CGCACTTGGC	CTGGCACGCT	ACCGCCTCAT	360
15 CTGCGGCCA	G GCTCGCGGCC	GCCGCC	CTCGTGC	TCA CCGCCGTGTG	GGCCGCGGCG	420
	GGACTGCTG	GCGCGCTCTC	CCTGCTCGC	CCGCCGCCCG	CACCGCCCC	480
	CGCTGCTCG	T CCTGGCTGG	GGGCCTCGG	CCCTCCGGC	CGCTCTGGC	540
	TTCGCGCTG	C CGCCCTCCT	GCTGCTCGC	GCCTACGGCG	GCATCTTCGT	600
	CGCGCTGCC	T GAGGCC	ACGGCCGGCG	CGCGGGTCCC	GACTCCGCTC	660
20 GATAGCCG	CC TTTCCATCTT	GCCGCCG	CTCGCCTCG	TGCCCGGGGG	CAAGGCCGCC	720
	CTGGCCCCA	G GCGCTGGCGT	GGGCCAATT	GCAGCCTGCT	GGCTGCC	780
	TGCCTGGCG	C CGCAGCGCG	GGCCGCGGAA	GCCGAAGCGG	CTGTCACCTG	840
	TCGGCCTTC	C GGCTCACCC	CTTCCTGTAC	GGGCTGCTGC	AGCGCCCCGT	900
	CTGGGCCGCC	T CTCTCGCCG	TGCAC	GGACCTGTGC	GGGCCTGCAC	960
25 TGGCACCCG	GGGCACTCTT	GCAATGCC	CAGAGACCCC	CAGAGGGCCC	TGCCGTAGGC	1020
	CCTTCTGAGG	CTCCAGAAC	GA	GGCCAGGAG	GGCGGAGCCC	1080
	GGGCCACCTG	AGAGTTCTCT	CTCCTGA			1107

(7) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

30 (A) LENGTH: 368 amino acids

- 8 -

- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:		
	Met Ala Asn Ser Thr Gly Leu Asn Ala Ser Glu Val Ala Gly Ser Leu		
	1	5	10
	Gly Leu Ile Leu Ala Ala Val Val Glu Val Gly Ala Leu Leu Gly Asn		
	20	25	30
10	Gly Ala Leu Leu Val Val Val Leu Arg Thr Pro Gly Leu Arg Asp Ala		
	35	40	45
	Leu Tyr Leu Ala His Leu Cys Val Val Asp Leu Leu Ala Ala Ala Ser		
	50	55	60
15	Ile Met Pro Leu Gly Leu Leu Ala Ala Pro Pro Pro Gly Leu Gly Arg		
	65	70	75
	Val Arg Leu Gly Pro Ala Pro Cys Arg Ala Ala Arg Phe Leu Ser Ala		
	85	90	95
	Ala Leu Leu Pro Ala Cys Thr Leu Gly Val Ala Ala Leu Gly Leu Ala		
	100	105	110
20	Arg Tyr Arg Leu Ile Val His Pro Leu Arg Pro Gly Ser Arg Pro Pro		
	115	120	125
	Pro Val Leu Val Leu Thr Ala Val Trp Ala Ala Ala Gly Leu Leu Gly		
	130	135	140
25	Ala Leu Ser Leu Leu Gly Pro Pro Pro Ala Pro Pro Pro Ala Pro Ala		
	145	150	155
	Arg Cys Ser Val Leu Ala Gly Gly Leu Gly Pro Phe Arg Pro Leu Trp		
	165	170	175
	Ala Leu Leu Ala Phe Ala Leu Pro Ala Leu Leu Leu Gly Ala Tyr		
	180	185	190
30	Gly Gly Ile Phe Val Val Ala Arg Arg Ala Ala Leu Arg Pro Pro Arg		
	195	200	205
	Pro Ala Arg Gly Ser Arg Leu Arg Ser Asp Ser Leu Asp Ser Arg Leu		
	210	215	220
35	Ser Ile Leu Pro Pro Leu Arg Pro Arg Leu Pro Gly Gly Lys Ala Ala		
	225	230	235
	Leu Ala Pro Ala Leu Ala Val Gly Gln Phe Ala Ala Cys Trp Leu Pro		

- 9 -

	245	250	255
	Tyr Gly Cys Ala Cys Leu Ala Pro Ala Ala Arg Ala Ala Glu Ala Glu		
	260	265	270
5	Ala Ala Val Thr Trp Val Ala Tyr Ser Ala Phe Ala Ala His Pro Phe		
	275	280	285
	Leu Tyr Gly Leu Leu Gln Arg Pro Val Arg Leu Ala Leu Gly Arg Leu		
	290	295	300
	Ser Arg Arg Ala Leu Pro Gly Pro Val Arg Ala Cys Thr Pro Gln Ala		
	305	310	315
10	320		
	Trp His Pro Arg Ala Leu Leu Gln Cys Leu Gln Arg Pro Pro Glu Gly		
	325	330	335
	Pro Ala Val Gly Pro Ser Glu Ala Pro Glu Gln Thr Pro Glu Leu Ala		
	340	345	350
15	Gly Gly Arg Ser Pro Ala Tyr Gln Gly Pro Pro Glu Ser Ser Leu Ser		
	355	360	365

(8) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1008 base pairs
- (B) TYPE: nucleic acid
- 20 (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

ATGGAATCAT CTTTCTCATT TGGAGTGATC CTTGCTGTCC TGGCCTCCCT CATCATTGCT	60
25 ACTAACACAC TAGTGGCTGT GGCTGTGCTG CTGTTGATCC ACAAGAATGA TGGTGTCACT	120
CTCTGCTTCA CCTTGAAATCT GGCTGTGGCT GACACCTTGA TTGGTGTGGC CATCTCTGGC	180
CTACTCACAG ACCAGCTCTC CAGCCCTTCT CGGCCACAC AGAAGACCCT GTGCAGCCTG	240
CGGATGGCAT TTGTCACTTC CTCCGCAGCT GCCTCTGTCC TCACGGTCAT GCTGATCACC	300
TTTGACAGGT ACCTTGCCAT CAAGCAGCCC TTCCGCTACT TGAAGATCAT GAGTGGGTTTC	360
30 GTGGCCGGGG CCTGCATTGC CGGGCTGTGG TTAGTGTCTT ACCTCATTGG CTTCCCTCCCA	420
CTCGGAATCC CCATGTTCCA GCAGACTGCC TACAAAGGGC AGTGCAGCTT CTTTGCTGTA	480
TTTCACCCCTC ACTTCGTGCT GACCCTCTCC TGCCTTGCT TCTTCCCAGC CATGCTCCTC	540
TTTGTCTTCT TCTACTGCGA CATGCTCAAG ATTGCCTCCA TGCACAGCCA GCAGATTGCA	600

- 10 -

AAGATGGAAC ATGCAGGAGC CATGGCTGGA GGTTATCGAT CCCCACGGAC TCCCAGCGAC	660
TTCAAAGCTC TCCGTACTGT GTCTGTTCTC ATTGGGAGCT TTGCTCTATC CTGGACCCCC	720
TTCCTTATCA CTGGCATTGT GCAGGTGGCC TGCCAGGAGT GTCACCTCTA CCTAGTGCTG	780
GAACGGTACC TGTGGCTGCT CGGCGTGGGC AACTCCCTGC TCAACCCACT CATCTATGCC	840
5 TATTGGCAGA AGGAGGTGCG ACTGCAGCTC TACCACATGG CCCTAGGAGT GAAGAAGGTG	900
CTCACCTCAT TCCTCCTCTT TCTCTCGGCC AGGAATTGTG GCCCAGAGAG GCCCAGGGAA	960
AGTTCCCTGTC ACATCGTCAC TATCTCCAGC TCAGAGTTG ATGGCTAA	1008

(9) INFORMATION FOR SEQ ID NO:8:

10 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 335 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Met Glu Ser Ser Phe Ser Phe Gly Val Ile Leu Ala Val Leu Ala Ser			
1	5	10	15
Leu Ile Ile Ala Thr Asn Thr Leu Val Ala Val Ala Val Leu Leu Leu			
20	25	30	
20 Ile His Lys Asn Asp Gly Val Ser Leu Cys Phe Thr Leu Asn Leu Ala			
35	40	45	
Val Ala Asp Thr Leu Ile Gly Val Ala Ile Ser Gly Leu Leu Thr Asp			
50	55	60	
25 Gln Leu Ser Ser Pro Ser Arg Pro Thr Gln Lys Thr Leu Cys Ser Leu			
65	70	75	80
Arg Met Ala Phe Val Thr Ser Ser Ala Ala Ala Ser Val Leu Thr Val			
85	90	95	
Met Leu Ile Thr Phe Asp Arg Tyr Leu Ala Ile Lys Gln Pro Phe Arg			
100	105	110	
30 Tyr Leu Lys Ile Met Ser Gly Phe Val Ala Gly Ala Cys Ile Ala Gly			
115	120	125	
Leu Trp Leu Val Ser Tyr Leu Ile Gly Phe Leu Pro Leu Gly Ile Pro			
130	135	140	
Met Phe Gln Gln Thr Ala Tyr Lys Gly Gln Cys Ser Phe Phe Ala Val			

- 11 -

	145	150	155	160
	Phe His Pro His Phe Val Leu Thr Leu Ser Cys Val Gly Phe Phe Pro			
	165	170	175	
5	Ala Met Leu Leu Phe Val Phe Phe Tyr Cys Asp Met Leu Lys Ile Ala			
	180	185	190	
	Ser Met His Ser Gln Gln Ile Arg Lys Met Glu His Ala Gly Ala Met			
	195	200	205	
	Ala Gly Gly Tyr Arg Ser Pro Arg Thr Pro Ser Asp Phe Lys Ala Leu			
	210	215	220	
10	Arg Thr Val Ser Val Leu Ile Gly Ser Phe Ala Leu Ser Trp Thr Pro			
	225	230	235	240
	Phe Leu Ile Thr Gly Ile Val Gln Val Ala Cys Gln Glu Cys His Leu			
	245	250	255	
15	Tyr Leu Val Leu Glu Arg Tyr Leu Trp Leu Leu Gly Val Gly Asn Ser			
	260	265	270	
	Leu Leu Asn Pro Leu Ile Tyr Ala Tyr Trp Gln Lys Glu Val Arg Leu			
	275	280	285	
	Gln Leu Tyr His Met Ala Leu Gly Val Lys Lys Val Leu Thr Ser Phe			
	290	295	300	
20	Leu Leu Phe Leu Ser Ala Arg Asn Cys Gly Pro Glu Arg Pro Arg Glu			
	305	310	315	320
	Ser Ser Cys His Ile Val Thr Ile Ser Ser Ser Glu Phe Asp Gly			
	325	330	335	

(10) INFORMATION FOR SEQ ID NO:9:

25 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1413 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

30 (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

ATGGACACTA CCATGGAAGC TGACCTGGGT GCCACTGGCC ACAGGCCCG CACAGAGCTT	60
GATGATGAGG ACTCCTACCC CCAAGGTGGC TGGGACACGG TCTTCCTGGT GGCCCTGCTG	120
CTCCTTGGGC TGCCAGCAA TGGGTTGATG GC GTGGCTGG CCGGCTCCCA GGCCCGGCAT	180
35 GGAGCTGGCA CGCGTCTGGC GCTGCTCCTG CTCAGCCTGG CCCTCTCTGA CTTCTTGTTC	240

- 12 -

	CTGGCAGCAG CGGCCTTCCA GATCCTAGAG ATCCGGCATG GGGGACACTG GCCGCTGGGG	300
	ACAGCTGCCT GCCGCTTCTA CTACTTCCTA TGGGGCGTGT CCTACTCCTC CGGCCTCTTC	360
	CTGCTGGCCG CCCTCAGCCT CGACCGCTGC CTGCTGGCGC TGTGCCACA CTGGTACCCCT	420
	GGGCACCGCC CAGTCCGCCT GCCCCCTCTGG GTCTGCGCCG GTGTCTGGGT GCTGGCCACA	480
5	CTCTTCAGCG TGCCCTGGCT GGTCTTCCCC GAGGCTGCCG TCTGGTGGTA CGACCTGGTC	540
	ATCTGCCTGG ACTTCTGGGA CAGCGAGGAG CTGTCGCTGA GGATGCTGGA GGTCTGGGG	600
	GGCTTCCTGC CTTCCTCCT GCTGTCGTC TGCCACGTGC TCACCCAGGC CACAGCCTGT	660
	CGCACCTGCC ACCGCCAACAA GCAGCCCGCA GCCTGCCGGG GCTTCGCCCG TGTGGCCAGG	720
	ACCATTCTGT CAGCCTATGT GGTCCCTGAGG CTGCCCTACC AGCTGGCCA GCTGCTCTAC	780
10	CTGGCCTTCC TGTGGGACGT CTACTCTGGC TACCTGCTCT GGGAGGCCCT GGTCTACTCC	840
	GACTACCTGA TCCTACTCAA CAGCTGCCTC AGCCCCTTCC TCTGCCTCAT GGCCAGTGCC	900
	GACCTCCGGA CCCTGCTGCG CTCCGTGTC TCGTCCTTCG CGGCAGCTCT CTGCGAGGAG	960
	CGGCCGGGCA GCTTCACGCC CACTGAGCCA CAGACCCAGC TAGATTCTGA GGGTCCAACCT	1020
	CTGCCAGAGC CGATGGCAGA GGCCCAGTCA CAGATGGATC CTGTGGCCA GCCTCAGGTG	1080
15	AACCCCACAC TCCAGCCACG ATCGGATCCC ACAGCTCAGC CACAGCTGAA CCCTACGGCC	1140
	CAGCCACAGT CGGATCCCAC AGCCCAGCCA CAGCTGAACC TCATGGCCA GCCACAGTCA	1200
	GATTCTGTGG CCCAGCCACA GGCAAGACACT AACGTCCAGA CCCCTGCACC TGCTGCCAGT	1260
	TCTGTGCCCA GTCCCTGTGA TGAAGCTTCC CCAACCCAT CCTCGCATCC TACCCCAGGG	1320
	GCCCTTGAGG ACCCAGCCAC ACCTCCTGCC TCTGAAGGAG AAAGCCCCAG CAGCACCCCG	1380
20	CCAGAGGGGG CCCCGGGCGC AGGCCCCACG TGA	1413

(11) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 468 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

30	Met Asp Thr Thr Met Glu Ala Asp Leu Gly Ala Thr Gly His Arg Pro			
	1	5	10	15

- 13 -

	Arg Thr Glu Leu Asp Asp Glu Asp Ser Tyr Pro Gln Gly Gly Trp Asp			
	20	25	30	
	Thr Val Phe Leu Val Ala Leu Leu Leu Gly Leu Pro Ala Asn Gly			
	35	40	45	
5	Leu Met Ala Trp Leu Ala Gly Ser Gln Ala Arg His Gly Ala Gly Thr			
	50	55	60	
	Arg Leu Ala Leu Leu Leu Ser Leu Ala Leu Ser Asp Phe Leu Phe			
	65	70	75	80
10	Leu Ala Ala Ala Ala Phe Gln Ile Leu Glu Ile Arg His Gly Gly His			
	85	90	95	
	Trp Pro Leu Gly Thr Ala Ala Cys Arg Phe Tyr Tyr Phe Leu Trp Gly			
	100	105	110	
	Val Ser Tyr Ser Ser Gly Leu Phe Leu Leu Ala Ala Leu Ser Leu Asp			
	115	120	125	
15	Arg Cys Leu Leu Ala Leu Cys Pro His Trp Tyr Pro Gly His Arg Pro			
	130	135	140	
	Val Arg Leu Pro Leu Trp Val Cys Ala Gly Val Trp Val Leu Ala Thr			
	145	150	155	160
20	Leu Phe Ser Val Pro Trp Leu Val Phe Pro Glu Ala Ala Val Trp Trp			
	165	170	175	
	Tyr Asp Leu Val Ile Cys Leu Asp Phe Trp Asp Ser Glu Glu Leu Ser			
	180	185	190	
	Leu Arg Met Leu Glu Val Leu Gly Gly Phe Leu Pro Phe Leu Leu Leu			
	195	200	205	
25	Leu Val Cys His Val Leu Thr Gln Ala Thr Arg Thr Cys His Arg Gln			
	210	215	220	
	Gln Gln Pro Ala Ala Cys Arg Gly Phe Ala Arg Val Ala Arg Thr Ile			
	225	230	235	240
30	Leu Ser Ala Tyr Val Val Leu Arg Leu Pro Tyr Gln Leu Ala Gln Leu			
	245	250	255	
	Leu Tyr Leu Ala Phe Leu Trp Asp Val Tyr Ser Gly Tyr Leu Leu Trp			
	260	265	270	
	Glu Ala Leu Val Tyr Ser Asp Tyr Leu Ile Leu Leu Asn Ser Cys Leu			
	275	280	285	
35	Ser Pro Phe Leu Cys Leu Met Ala Ser Ala Asp Leu Arg Thr Leu Leu			
	290	295	300	
	Arg Ser Val Leu Ser Ser Phe Ala Ala Leu Cys Glu Glu Arg Pro			

- 14 -

	305	310	315	320
	Gly Ser Phe Thr Pro Thr Glu Pro Gln Thr Gln Leu Asp Ser Glu Gly			
	325	330	335	
5	Pro Thr Leu Pro Glu Pro Met Ala Glu Ala Gln Ser Gln Met Asp Pro			
	340	345	350	
	Val Ala Gln Pro Gln Val Asn Pro Thr Leu Gln Pro Arg Ser Asp Pro			
	355	360	365	
	Thr Ala Gln Pro Gln Leu Asn Pro Thr Ala Gln Pro Gln Ser Asp Pro			
	370	375	380	
10	Thr Ala Gln Pro Gln Leu Asn Leu Met Ala Gln Pro Gln Ser Asp Ser			
	385	390	395	400
	Val Ala Gln Pro Gln Ala Asp Thr Asn Val Gln Thr Pro Ala Pro Ala			
	405	410	415	
15	Ala Ser Ser Val Pro Ser Pro Cys Asp Glu Ala Ser Pro Thr Pro Ser			
	420	425	430	
	Ser His Pro Thr Pro Gly Ala Leu Glu Asp Pro Ala Thr Pro Pro Ala			
	435	440	445	
	Ser Glu Gly Glu Ser Pro Ser Ser Thr Pro Pro Glu Ala Ala Pro Gly			
	450	455	460	
20	Ala Gly Pro Thr			
	465			

(12) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1248 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

30	ATGTCAGGGA TGGAAAAACT TCAGAATGCT TCCTGGATCT ACCAGCAGAA ACTAGAAGAT	60
	CCATTCCAGA AACACCTGAA CAGCACCGAG GAGTATCTGG CCTTCCTCTG CGGACCTCGG	120
	CGCAGCCACT TCTTCCTCCC CGTGTCTGTG GTGTATGTGC CAATTTTGTC GGTGGGGGTC	180
	ATTGGCAATG TCCTGGTGTG CCTGGTGATT CTGCAGCACC AGGCTATGAA GACGCCACC	240
	AACTACTACC TCTTCAGCCT GGCGGTCTCT GACCTCCTGG TCCTGCTCCT TGGAATGCC	300

- 15 -

	CTGGAGGTCT ATGAGATGTG GCGCAACTAC CCTTTCTTGT TCGGGCCCGT GGGCTGCTAC	360
	TTCAAGACGG CCCTCTTG AACC GTGTGC TTGCCTCCA TCCTCAGCAT CACCACCGTC	420
	AGCGTGGAGC GCTACGTGGC CATCCTACAC CCGTTCCGCG CCAAAC TGCA GAGCACCCGG	480
	CGCCGGGCC TCAGGATCCT CGGCATCGTC TGGGGCTTCT CCGTGCTCTT CTCCCTGCC	540
5	AACACCAGCA TCCATGGCAT CAAGTTCCAC TACTTCCCCA ATGGGTCCCT GGTCCCAGGT	600
	TCGGCCACCT GTACGGTCAT CAAGCCCAGT TGGATCTACA ATTCATCAT CCAGGTCACC	660
	TCCTTCCTAT TCTACCTCCT CCCCATGACT GTCATCAGTG TCCTCTACTA CCTCATGGCA	720
	CTCAGACTAA AGAAAGACAA ATCTCTTGAG GCAGATGAAG GGAATGCAA TATTCAAAGA	780
	CCCTGCAGAA AATCAGTCAA CAAGATGCTG TTTGTCTTGG TCTTAGTGTT TGCTATCTGT	840
10	TGGGCCCCGT TCCACATTGA CCGACTCTTC TTCAGCTTG TGGAGGAGTG GAGTGAATCC	900
	CTGGCTGCTG TGTTCAACCT CGTCCATGTG GTGTCAGGTG TCTTCTTCTA CCTGAGCTCA	960
	GCTGTCAACC CCATTATCTA TAACCTACTG TCTCGCCGCT TCCAGGCAGC ATTCCAGAAT	1020
	GTGATCTCTT CTTTCCACAA ACAGTGGCAC TCCCAGCATG ACCCACAGTT GCCACCTGCC	1080
	CAGCGGAACA TCTTCCTGAC AGAATGCCAC TTTGTGGAGC TGACCGAAGA TATAGGTCCC	1140
15	CAATTCCCAT GTCAGTCATC CATGCACAAAC TCTCACCTCC CAACAGCCCT CTCTAGTGAA	1200
	CAGATGTCAA GAACAAACTA TCAAAGCTTC CACTTTAACAA AACACTGA	1248

(13) INFORMATION FOR SEQ ID NO:12:

	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 415 amino acids
20	(B) TYPE: amino acid
	(C) STRANDEDNESS:
	(D) TOPOLOGY: not relevant
	(ii) MOLECULE TYPE: protein
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:
25	Met Ser Gly Met Glu Lys Leu Gln Asn Ala Ser Trp Ile Tyr Gln Gln 1 5 10 15
	Lys Leu Glu Asp Pro Phe Gln Lys His Leu Asn Ser Thr Glu Glu Tyr 20 25 30
30	Leu Ala Phe Leu Cys Gly Pro Arg Arg Ser His Phe Phe Leu Pro Val 35 40 45
	Ser Val Val Tyr Val Pro Ile Phe Val Val Gly Val Ile Gly Asn Val

- 16 -

	50	55	60	
	Leu Val Cys Leu Val Ile Leu Gln His Gln Ala Met Lys Thr Pro Thr			
	65	70	75	80
5	Asn Tyr Tyr Leu Phe Ser Leu Ala Val Ser Asp Leu Leu Val Leu Leu			
	85	90	95	
	Leu Gly Met Pro Leu Glu Val Tyr Glu Met Trp Arg Asn Tyr Pro Phe			
	100	105	110	
	Leu Phe Gly Pro Val Gly Cys Tyr Phe Lys Thr Ala Leu Phe Glu Thr			
	115	120	125	
10	Val Cys Phe Ala Ser Ile Leu Ser Ile Thr Thr Val Ser Val Glu Arg			
	130	135	140	
	Tyr Val Ala Ile Leu His Pro Phe Arg Ala Lys Leu Gln Ser Thr Arg			
	145	150	155	160
15	Arg Arg Ala Leu Arg Ile Leu Gly Ile Val Trp Gly Phe Ser Val Leu			
	165	170	175	
	Phe Ser Leu Pro Asn Thr Ser Ile His Gly Ile Lys Phe His Tyr Phe			
	180	185	190	
	Pro Asn Gly Ser Leu Val Pro Gly Ser Ala Thr Cys Thr Val Ile Lys			
	195	200	205	
20	Pro Met Trp Ile Tyr Asn Phe Ile Ile Gln Val Thr Ser Phe Leu Phe			
	210	215	220	
	Tyr Leu Leu Pro Met Thr Val Ile Ser Val Leu Tyr Tyr Leu Met Ala			
	225	230	235	240
25	Leu Arg Leu Lys Lys Asp Lys Ser Leu Glu Ala Asp Glu Gly Asn Ala			
	245	250	255	
	Asn Ile Gln Arg Pro Cys Arg Lys Ser Val Asn Lys Met Leu Phe Val			
	260	265	270	
	Leu Val Leu Val Phe Ala Ile Cys Trp Ala Pro Phe His Ile Asp Arg			
	275	280	285	
30	Leu Phe Phe Ser Phe Val Glu Glu Trp Ser Glu Ser Leu Ala Ala Val			
	290	295	300	
	Phe Asn Leu Val His Val Val Ser Gly Val Phe Phe Tyr Leu Ser Ser			
	305	310	315	320
35	Ala Val Asn Pro Ile Ile Tyr Asn Leu Leu Ser Arg Arg Phe Gln Ala			
	325	330	335	
	Ala Phe Gln Asn Val Ile Ser Ser Phe His Lys Gln Trp His Ser Gln			
	340	345	350	

- 17 -

	His	Asp	Pro	Gln	Leu	Pro	Pro	Ala	Gln	Arg	Asn	Ile	Phe	Leu	Thr	Glu
		355														360
																365
	Cys	His	Phe	Val	Glu	Leu	Thr	Glu	Asp	Ile	Gly	Pro	Gln	Phe	Pro	Cys
5		370														375
																380
	Gln	Ser	Ser	Met	His	Asn	Ser	His	Leu	Pro	Thr	Ala	Leu	Ser	Ser	Glu
		385														390
																395
	Gln	Met	Ser	Arg	Thr	Asn	Tyr	Gln	Ser	Phe	His	Phe	Asn	Lys	Thr	
																405
																410
																415

(14) INFORMATION FOR SEQ ID NO:13:

10 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1173 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

15 (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

	ATGCCAGATA CTAATAGCAC AATCAATTAA TCACTAAGCA CTCGTGTTAC TTTAGCATT	60
	TTTATGTCT TAGTAGCTTT TGCTATAATG CTAGGAAATG CTTTGGTCAT TTTAGCTTTT	120
	GTGGTGGACA AAAACCTTAG ACATCGAAGT AGTTATTTTT TTCTTAACCT GGCCATCTCT	180
20	GACTTCTTG TGGGTGTGAT CTCCATTCTT TTGTACATCC CTCACACGCT GTTCGAATGG	240
	GATTTTGGAA AGGAAATCTG TGTATTTGG CTCACTACTG ACTATCTGTT ATGTACAGCA	300
	TCTGTATATA ACATTGTCCT CATCAGCTAT GATCGATACC TGTCAGTCTC AAATGCTGTG	360
	TCTTATAGAA CTCAACATAC TGGGGTCTTG AAGATTGTTA CTCTGATGGT GGCGTTTGG	420
	GTGCTGGCCT TCTTAGTGAA TGGGCCAATG ATTCTAGTTT CAGAGTCTTG GAAGGATGAA	480
25	GGTAGTGAAT GTGAACCTGG ATTTTTTCG GAATGGTACA TCCTTGCCT CACATCATTC	540
	TTGGAATTCTG TGATCCCAGT CATCTTAGTC GCTTATTTCA ACATGAATAT TTATTGGAGC	600
	CTGTGGAAGC GTGATCATCT CAGTAGGTGC CAAAGCCATC CTGGACTGAC TGCTGTCTCT	660
	TCCAACATCT GTGGACACTC ATTCAAGAGGT AGACTATCTT CAAGGAGATC TCTTCTGCA	720
	TCGACAGAACG TTCCTGCATC CTTTCATTCA GAGAGACAGA GGAGAAAGAG TAGTCTCATG	780
30	TTTCCTCAA GAACCAAGAT GAATAGCAAT ACAATTGCTT CCAAAATGGG TTCCTTCTCC	840
	CAATCAGATT CTGTAGCTCT TCACCAAAGG AACATGTTG AACTGCTTAG AGCCAGGAGA	900

- 18 -

TTAGCCAAGT CACTGGCCAT TCTCTTAGGG GTTTTGCTG TTTGCTGGC TCCATATTCT	960
CTGTTCACAA TTGTCCTTTC ATTTTATTCC TCAGCAACAG GTCCTAAATC AGTTTGGTAT	1020
AGAATTGCAT TTTGGCTTCA GTGGTTCAAT TCCTTGTCA ATCCTCTTT GTATCCATTG	1080
TGTCACAAGC GCTTCAAAAA GGCTTCTTG AAAATTTT GTATAAAAAA GCAACCTCTA	1140
5 CCATCACAAAC ACAGTCGGTC AGTATCTTCT TAA	1173

(15) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 390 amino acids
 - (B) TYPE: amino acid
 - 10 (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

15	Met Pro Asp Thr Asn Ser Thr Ile Asn Leu Ser Leu Ser Thr Arg Val			
	1	5	10	15
	Thr Leu Ala Phe Phe Met Ser Leu Val Ala Phe Ala Ile Met Leu Gly			
	20	25	30	
	Asn Ala Leu Val Ile Leu Ala Phe Val Val Asp Lys Asn Leu Arg His			
	35	40	45	
20	Arg Ser Ser Tyr Phe Phe Leu Asn Leu Ala Ile Ser Asp Phe Phe Val			
	50	55	60	
	Gly Val Ile Ser Ile Pro Leu Tyr Ile Pro His Thr Leu Phe Glu Trp			
	65	70	75	80
25	Asp Phe Gly Lys Glu Ile Cys Val Phe Trp Leu Thr Thr Asp Tyr Leu			
	85	90	95	
	Leu Cys Thr Ala Ser Val Tyr Asn Ile Val Leu Ile Ser Tyr Asp Arg			
	100	105	110	
	Tyr Leu Ser Val Ser Asn Ala Val Ser Tyr Arg Thr Gln His Thr Gly			
	115	120	125	
30	Val Leu Lys Ile Val Thr Leu Met Val Ala Val Trp Val Leu Ala Phe			
	130	135	140	
	Leu Val Asn Gly Pro Met Ile Leu Val Ser Glu Ser Trp Lys Asp Glu			
	145	150	155	160
35	Gly Ser Glu Cys Glu Pro Gly Phe Phe Ser Glu Trp Tyr Ile Leu Ala			
	165	170	175	

- 19 -

	Ile Thr Ser Phe Leu Glu Phe Val Ile Pro Val Ile Leu Val Ala Tyr			
	180	185	190	
	Phe Asn Met Asn Ile Tyr Trp Ser Leu Trp Lys Arg Asp His Leu Ser			
	195	200	205	
5	Arg Cys Gln Ser His Pro Gly Leu Thr Ala Val Ser Ser Asn Ile Cys			
	210	215	220	
	Gly His Ser Phe Arg Gly Arg Leu Ser Ser Arg Arg Ser Leu Ser Ala			
	225	230	235	240
10	Ser Thr Glu Val Pro Ala Ser Phe His Ser Glu Arg Gln Arg Arg Lys			
	245	250	255	
	Ser Ser Leu Met Phe Ser Ser Arg Thr Lys Met Asn Ser Asn Thr Ile			
	260	265	270	
	Ala Ser Lys Met Gly Ser Phe Ser Gln Ser Asp Ser Val Ala Leu His			
	275	280	285	
15	Gln Arg Glu His Val Glu Leu Leu Arg Ala Arg Arg Leu Ala Lys Ser			
	290	295	300	
	Leu Ala Ile Leu Leu Gly Val Phe Ala Val Cys Trp Ala Pro Tyr Ser			
	305	310	315	320
20	Leu Phe Thr Ile Val Leu Ser Phe Tyr Ser Ser Ala Thr Gly Pro Lys			
	325	330	335	
	Ser Val Trp Tyr Arg Ile Ala Phe Trp Leu Gln Trp Phe Asn Ser Phe			
	340	345	350	
	Val Asn Pro Leu Leu Tyr Pro Leu Cys His Lys Arg Phe Gln Lys Ala			
	355	360	365	
25	Phe Leu Lys Ile Phe Cys Ile Lys Lys Gln Pro Leu Pro Ser Gln His			
	370	375	380	
	Ser Arg Ser Val Ser Ser			
	385	390		
	(16) INFORMATION FOR SEQ ID NO:15:			
30	(i) SEQUENCE CHARACTERISTICS:			
	(A) LENGTH: 30 base pairs			
	(B) TYPE: nucleic acid			
	(C) STRANDEDNESS: single			
	(D) TOPOLOGY: linear			
35	(ii) MOLECULE TYPE: DNA (genomic)			
	(iv) ANTI-SENSE: NO			
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:			

- 20 -

GGAAAGCTTA ACGATCCCCA GGAGCAACAT

30

(17) INFORMATION FOR SEQ ID NO:16:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 31 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(iv) ANTI-SENSE: YES

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

CTGGGATCCT ACGAGAGCAT TTTTCACACA G
31

(18) INFORMATION FOR SEQ ID NO:17:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1128 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

ATGGCGAACG CGAGCGAGCC GGGTGGCAGC GGCGGCAGCG AGGCAGGCCGC CCTGGGCCTC	60
AAGCTGGCCA CGCTCAGCCT GCTGCTGTGC GTGAGCCTAG CGGGCAACGT GCTGTTCGCG	120
CTGCTGATCG TGCGGGAGCG CAGCCTGCAC CGCGCCCCGT ACTACCTGCT GCTCGACCTG	180
TGCCTGGCCG ACGGGCTGCG CGCGCTCGCC TGCCTCCCGG CCGTCATGCT GGCGGCGCGG	240
25 CGTGCGGCGG CCGCGGCGGG GGCGCCGCCG GGCGCGCTGG GCTGCAAGCT GCTCGCCTTC	300
CTGGCCGCGC TCTTCTGCTT CCACGCCGCC TTCCCTGCTGC TGGGCGTGGG CGTCACCCGC	360
TACCTGGCCA TCGCGCACCA CCGCTTCTAT GCAGAGCGCC TGGCCGGCTG GCCGTGCGCC	420
GCCATGCTGG TGTGCGCCGC CTGGGGCTG GCGCTGGCGG CGGCCTTCCC GCCAGTGCTG	480
GACGGCGGTG GCGACGACGA GGACGCGCCG TGCGCCCTGG AGCAGCGGCC CGACGGCGCC	540
30 CCCGGCGCGC TGGGCTTCCT GCTGCTGCTG GCCGTGGTGG TGGGCGCCAC GCACCTCGTC	600
TACCTCCGCC TGCTCTTCTT CATCCACGAC CGCCGCAAGA TGCGGCCCCGC GCGCCTGGTG	660

- 21 -

CCCGCCGTCA	GCCACGACTG	GACCTTCCAC	GGCCCGGGCG	CCACCGGCCA	GGCGGCCGCC	720
AACTGGACGG	CAGGGCTTCGG	CCGCAGGGCCC	ACGCCGCCCC	CGCTTGCTGG	CATCCGGCCC	780
GCAGGGCCGG	GCCGCGGCGC	GCGCCGCCTC	CTCGTGCTGG	AAGAATTCAA	GACGGAGAAG	840
AGGCTGTGCA	AGATGTTCTA	CGCCGTCACG	CTGCTCTTCC	TGCTCCTCTG	GGGGCCCTAC	900
5 GTCGTGGCCA	GCTACCTGCG	GGTCCTGGTG	CGGCCCGGCG	CCGTCCCCCA	GGCCTACCTG	960
ACGGCCTCCG	TGTGGCTGAC	CTTCGCGCAG	GCCGGCATCA	ACCCCGTCGT	GTGCTTCCTC	1020
TTCAACAGGG	AGCTGAGGG	CTGCTTCAGG	GCCCAGTTCC	CCTGCTGCCA	GAGCCCCCGG	1080
ACCACCCAGG	CGACCCATCC	CTGCGACCTG	AAAGGCATTG	GT	TTTATGA	1128

(19) INFORMATION FOR SEQ ID NO:18:

10 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 375 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS:
 (D) TOPOLOGY: not relevant

15 (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

Met Ala Asn Ala Ser Glu Pro Gly Gly Ser Gly Gly Gly Glu Ala Ala						
1	5	10	15			
Ala Leu Gly Leu Lys Leu Ala Thr Leu Ser Leu Leu Leu Cys Val Ser						
20	20	25	30			
Leu Ala Gly Asn Val Leu Phe Ala Leu Leu Ile Val Arg Glu Arg Ser						
35	40	45				
Leu His Arg Ala Pro Tyr Tyr Leu Leu Leu Asp Leu Cys Leu Ala Asp						
50	55	60				
25 Gly Leu Arg Ala Leu Ala Cys Leu Pro Ala Val Met Leu Ala Ala Arg						
65	70	75	80			
Arg Ala Ala Ala Ala Gly Ala Pro Pro Gly Ala Leu Gly Cys Lys						
85	90	95				
30 Leu Leu Ala Phe Leu Ala Ala Leu Phe Cys Phe His Ala Ala Phe Leu						
100	105	110				
Leu Leu Gly Val Gly Val Thr Arg Tyr Leu Ala Ile Ala His His Arg						
115	120	125				
Phe Tyr Ala Glu Arg Leu Ala Gly Trp Pro Cys Ala Ala Met Leu Val						
130	135	140				

- 22 -

	Cys Ala Ala Trp Ala Leu Ala Leu Ala Ala Phe Pro Pro Val Leu	
	145 150 155 160	
	Asp Gly Gly Gly Asp Asp Glu Asp Ala Pro Cys Ala Leu Glu Gln Arg	
	165 170 175	
5	Pro Asp Gly Ala Pro Gly Ala Leu Gly Phe Leu Leu Leu Leu Ala Val	
	180 185 190	
	Val Val Gly Ala Thr His Leu Val Tyr Leu Arg Leu Leu Phe Phe Ile	
	195 200 205	
10	His Asp Arg Arg Lys Met Arg Pro Ala Arg Leu Val Pro Ala Val Ser	
	210 215 220	
	His Asp Trp Thr Phe His Gly Pro Gly Ala Thr Gly Gln Ala Ala Ala	
	225 230 235 240	
	Asn Trp Thr Ala Gly Phe Gly Arg Gly Pro Thr Pro Pro Ala Leu Val	
	245 250 255	
15	Gly Ile Arg Pro Ala Gly Pro Gly Arg Gly Ala Arg Arg Leu Leu Val	
	260 265 270	
	Leu Glu Glu Phe Lys Thr Glu Lys Arg Leu Cys Lys Met Phe Tyr Ala	
	275 280 285	
20	Val Thr Leu Leu Phe Leu Leu Leu Trp Gly Pro Tyr Val Val Ala Ser	
	290 295 300	
	Tyr Leu Arg Val Leu Val Arg Pro Gly Ala Val Pro Gln Ala Tyr Leu	
	305 310 315 320	
	Thr Ala Ser Val Trp Leu Thr Phe Ala Gln Ala Gly Ile Asn Pro Val	
	325 330 335	
25	Val Cys Phe Leu Phe Asn Arg Glu Leu Arg Asp Cys Phe Arg Ala Gln	
	340 345 350	
	Phe Pro Cys Cys Gln Ser Pro Arg Thr Thr Gln Ala Thr His Pro Cys	
	355 360 365	
30	Asp Leu Lys Gly Ile Gly Leu	
	370 375	

(20) INFORMATION FOR SEQ ID NO:19:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1002 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: DNA (genomic)

- 23 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

ATGAACACCA CAGTGATGCA AGGCTTCAAC AGATCTGAGC GGTGCCAG AGACACTCGG	60
ATAGTACAGC TGGTATTCCC AGCCCTCTAC ACAGTGGTTT TCTTGACCGG CATCCTGCTG	120
AATACTTGG CTCTGTGGGT GTTGTTCAC ATCCCCAGCT CCTCCACCTT CATCATCTAC	180
5 CTCAAAAACA CTTGGTGGC CGACTTGATA ATGACACTCA TGCTTCCTT CAAAATCCTC	240
TCTGACTCAC ACCTGGCACC CTGGCAGCTC AGAGCTTTG TGTGTCGTTT TTCTTCGGTG	300
ATATTTATG AGACCATGTA TGTGGGCATC GTGCTGTTAG GGCTCATAGC CTTTGACAGA	360
TTCCTCAAGA TCATCAGACC TTTGAGAAAT ATTTTCTAA AAAAACCTGT TTTTGCAAAA	420
ACGGTCTCAA TCTTCATCTG GTTCTTTTG TTCTTCATCT CCCTGCCAAA TACGATCTTG	480
10 AGCAACAAGG AAGCAACACC ATCGTCTGTG AAAAAGTGTG CTTCTTAAA GGGGCCTCTG	540
GGGCTGAAAT GGCATCAAAT GGTAAATAAC ATATGCCAGT TTATTTCTG GACTGTTTT	600
ATCCTAATGC TTGTGTTTA TGTGGTTATT GCAAAAAAAG TATATGATTC TTATAGAAAG	660
TCCAAAAGTA AGGACAGAAA AAACAACAAA AAGCTGGAAG GCAAAGTATT TGTTGTCGTG	720
GCTGTCTTCT TTGTGTTTT TGCTCCATT CATTGGCCA GAGTTCCATA TACTCACAGT	780
15 CAAACCAACA ATAAGACTGA CTGTAGACTG CAAAATCAAC TGTATTGC TAAAGAAACA	840
ACTCTCTTT TGGCAGCAAC TAACATTGT ATGGATCCCT TAATATACAT ATTCTTATGT	900
AAAAAATTCA CAGAAAAGCT ACCATGTATG CAAGGGAGAA AGACCACAGC ATCAAGCCAA	960
GAAAATCATA GCAGTCAGAC AGACAACATA ACCTTAGGCT GA	1002

(21) INFORMATION FOR SEQ ID NO:20:

20 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 333 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant

25 (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

Met Asn Thr Thr Val Met Gln Gly Phe Asn Arg Ser Glu Arg Cys Pro			
1	5	10	15
Arg Asp Thr Arg Ile Val Gln Leu Val Phe Pro Ala Leu Tyr Thr Val			
30	20	25	30

- 24 -

	Val Phe Leu Thr Gly Ile Leu Leu Asn Thr Leu Ala Leu Trp Val Phe			
	35	40	45	
	Val His Ile Pro Ser Ser Ser Thr Phe Ile Ile Tyr Leu Lys Asn Thr			
	50	55	60	
5	Leu Val Ala Asp Leu Ile Met Thr Leu Met Leu Pro Phe Lys Ile Leu			
	65	70	75	80
	Ser Asp Ser His Leu Ala Pro Trp Gln Leu Arg Ala Phe Val Cys Arg			
	85	90	95	
10	Phe Ser Ser Val Ile Phe Tyr Glu Thr Met Tyr Val Gly Ile Val Leu			
	100	105	110	
	Leu Gly Leu Ile Ala Phe Asp Arg Phe Leu Lys Ile Ile Arg Pro Leu			
	115	120	125	
	Arg Asn Ile Phe Leu Lys Lys Pro Val Phe Ala Lys Thr Val Ser Ile			
	130	135	140	
15	Phe Ile Trp Phe Phe Leu Phe Ile Ser Leu Pro Asn Thr Ile Leu			
	145	150	155	160
	Ser Asn Lys Glu Ala Thr Pro Ser Ser Val Lys Lys Cys Ala Ser Leu			
	165	170	175	
20	Lys Gly Pro Leu Gly Leu Lys Trp His Gln Met Val Asn Asn Ile Cys			
	180	185	190	
	Gln Phe Ile Phe Trp Thr Val Phe Ile Leu Met Leu Val Phe Tyr Val			
	195	200	205	
	Val Ile Ala Lys Lys Val Tyr Asp Ser Tyr Arg Lys Ser Lys Ser Lys			
	210	215	220	
25	Asp Arg Lys Asn Asn Lys Lys Leu Glu Gly Lys Val Phe Val Val Val			
	225	230	235	240
	Ala Val Phe Phe Val Cys Phe Ala Pro Phe His Phe Ala Arg Val Pro			
	245	250	255	
30	Tyr Thr His Ser Gln Thr Asn Asn Lys Thr Asp Cys Arg Leu Gln Asn			
	260	265	270	
	Gln Leu Phe Ile Ala Lys Glu Thr Thr Leu Phe Leu Ala Ala Thr Asn			
	275	280	285	
	Ile Cys Met Asp Pro Leu Ile Tyr Ile Phe Leu Cys Lys Lys Phe Thr			
	290	295	300	
35	Glu Lys Leu Pro Cys Met Gln Gly Arg Lys Thr Thr Ala Ser Ser Gln			
	305	310	315	320
	Glu Asn His Ser Ser Gln Thr Asp Asn Ile Thr Leu Gly			

- 25 -

325

330

(22) INFORMATION FOR SEQ ID NO:21:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1122 base pairs
- 5 (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

10	ATGGCCAACA CTACCGGAGA GCCTGAGGAG GTGAGCGGCG CTCTGTCCCC ACCGTCCGCA	60
	TCAGCTTATG TGAAGCTGGT ACTGCTGGG A CTGATTATGT GCGTGAGCCT GGCAGGGTAAC	120
	GCCATCTTGT CCCTGCTGGT GCTCAAGGAG CGTGCCCTGC ACAAGGCTCC TTACTACTTC	180
	CTGCTGGACC TGTGCCTGGC CGATGGCATA CGCTCTGCCG TCTGCTTCCC CTTTGTGCTG	240
	GCTTCTGTGC GCCACGGCTC TTCATGGACC TTCAGTGCAC TCAGCTGCAA GATTGTGGCC	300
15	TTTATGGCCG TGCTCTTTG CTTCCATGCG GCCTTCATGC TGTTCTGCAT CAGCGTCACC	360
	CGCTACATGG CCATCGCCCA CCACCGCTTC TACGCCAAGC GCATGACACT CTGGACATGC	420
	GCGGCTGTCA TCTGCATGGC CTGGACCTG TCTGTGGCCA TGGCCTTCCC ACCTGTCTT	480
	GACGTGGGCA CCTACAAGTT TATTCGGGAG GAGGACCAAGT GCATCTTGA GCATCGCTAC	540
	TTCAAGGCCA ATGACACGCT GGGCTTCATG CTTATGTTGG CTGTGCTCAT GGCAGCTACC	600
20	CATGCTGTCT ACGGCAAGCT GCTCCTCTTC GAGTATCGTC ACCGCAAGAT GAAGCCAGTG	660
	CAGATGGTGC CAGCCATCAG CCAGAACTGG ACATTCCATG GTCCCGGGGC CACCGGCCAG	720
	GCTGCTGCCA ACTGGATCGC CGGCTTGGC CGTGGGCCA TGCCACCAAC CCTGCTGGGT	780
	ATCCGGCAGA ATGGGCATGC AGCCAGCCGG CGGCTACTGG GCATGGACGA GGTCAAGGGT	840
	GAAAAGCAGC TGGGCCGCAT GTTCTACGCG ATCACACTGC TCTTTCTGCT CCTCTGGTCA	900
25	CCCTACATCG TGGCCTGCTA CTGGCGAGTG TTTGTGAAAG CCTGTGCTGT GCCCCACCGC	960
	TACCTGGCCA CTGCTGTTTG GATGAGCTTC GCCCAGGCTG CCGTCAACCC AATTGTCTGC	1020
	TTCCTGCTCA ACAAGGACCT CAAGAAGTGC CTGACCACTC ACGCCCCCTG CTGGGGCACA	1080
	GGAGGTGCCG CGGCTCCAG AGAACCTAC TGTGTCATGT GA	1122

(23) INFORMATION FOR SEQ ID NO:22:

- 26 -

5

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 373 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

Met Ala Asn Thr Thr Gly Glu Pro Glu Glu Val Ser Gly Ala Leu Ser
1 5 10 15

Pro Pro Ser Ala Ser Ala Tyr Val Lys Leu Val Leu Leu Gly Leu Ile
20 25 30

Met Cys Val Ser Leu Ala Gly Asn Ala Ile Leu Ser Leu Leu Val Leu
35 40 45

Lys Glu Arg Ala Leu His Lys Ala Pro Tyr Tyr Phe Leu Leu Asp Leu
50 55 60

Cys Leu Ala Asp Gly Ile Arg Ser Ala Val Cys Phe Pro Phe Val Leu
65 70 75 80

Ala Ser Val Arg His Gly Ser Ser Trp Thr Phe Ser Ala Leu Ser Cys
85 90 95

Lys Ile Val Ala Phe Met Ala Val Leu Phe Cys Phe His Ala Ala Phe
100 105 110

Met Leu Phe Cys Ile Ser Val Thr Arg Tyr Met Ala Ile Ala His His
115 120 125

Arg Phe Tyr Ala Lys Arg Met Thr Leu Trp Thr Cys Ala Ala Val Ile
130 135 140

Cys Met Ala Trp Thr Leu Ser Val Ala Met Ala Phe Pro Pro Val Phe
145 150 155 160

Asp Val Gly Thr Tyr Lys Phe Ile Arg Glu Glu Asp Gln Cys Ile Phe
165 170 175

Glu His Arg Tyr Phe Lys Ala Asn Asp Thr Leu Gly Phe Met Leu Met
180 185 190

Leu Ala Val Leu Met Ala Ala Thr His Ala Val Tyr Gly Lys Leu Leu
195 200 205

Leu Phe Glu Tyr Arg His Arg Lys Met Lys Pro Val Gln Met Val Pro
210 215 220

Ala Ile Ser Gln Asn Trp Thr Phe His Gly Pro Gly Ala Thr Gly Gln
225 230 235

240

- 27 -

	Ala Ala Ala Asn Trp Ile Ala Gly Phe Gly Arg Gly Pro Met Pro Pro			
	245	250	255	
	Thr Leu Leu Gly Ile Arg Gln Asn Gly His Ala Ala Ser Arg Arg Leu			
	260	265	270	
5	Leu Gly Met Asp Glu Val Lys Gly Glu Lys Gln Leu Gly Arg Met Phe			
	275	280	285	
	Tyr Ala Ile Thr Leu Leu Phe Leu Leu Leu Trp Ser Pro Tyr Ile Val			
	290	295	300	
10	Ala Cys Tyr Trp Arg Val Phe Val Lys Ala Cys Ala Val Pro His Arg			
	305	310	315	320
	Tyr Leu Ala Thr Ala Val Trp Met Ser Phe Ala Gln Ala Ala Val Asn			
	325	330	335	
	Pro Ile Val Cys Phe Leu Leu Asn Lys Asp Leu Lys Lys Cys Leu Thr			
	340	345	350	
15	Thr His Ala Pro Cys Trp Gly Thr Gly Gly Ala Pro Ala Pro Arg Glu			
	355	360	365	
	Pro Tyr Cys Val Met			
	370			

(24) INFORMATION FOR SEQ ID NO:23:

20 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1053 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

25 (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

	ATGGCTTTGG AACAGAACCA GTCAACAGAT TATTATTATG AGGAAAATGA AATGAATGGC	60
	ACTTATGACT ACAGTCATAA TGAATTGATC TGTATCAAAG AAGATGTCAG AGAATTGCA	120
	AAAGTTTCC TCCCTGTATT CCTCACAAATA GCTTCGTCA TTGGACTTGC AGGCAATTCC	180
30	ATGGTAGTGG CAATTTATGC CTATTACAAG AAACAGAGAA CCAAAACAGA TGTGTACATC	240
	CTGAATTGCGA TTTACTCCTT CTATTCACTC TGCCTTTTG GGCTGTTAAT	300
	GCAGTTCATG GGTGGGTTTT AGGGAAAATA ATGTGAAAAA TAACTTCAGC CTTGTACACA	360
	CTAAACTTG TCTCTGGAAT GCAGTTCTG GCTTGCATCA GCATAGACAG ATATGTGGCA	420
	GTAACATAATG TCCCCAGCCA ATCAGGAGTG GGAAAACCAT GCTGGATCAT CTGTTCTGT	480

- 28 -

	GTCTGGATGG CTGCCATCTT GCTGAGCATA CCCCCAGCTGG TTTTTTATAC AGTAAATGAC	540
	AATGCTAGGT GCATTCCCAT TTTCCCCCGC TACCTAGGAA CATCAATGAA AGCATTGATT	600
	CAAATGCTAG AGATCTGCAT TGGATTTGTA GTACCCTTTC TTATTATGGG GGTGTGCTAC	660
	TTTATCACGG CAAGGACACT CATGAAGATG CCAAACATTA AAATATCTCG ACCCCTAAAAA	720
5	GTTCTGCTCA CAGTCGTTAT AGTTTCATT GTCACTAAC TGCCCTTATAA CATTGTCAAG	780
	TTCTGCCGAG CCATAGACAT CATCTACTCC CTGATCACCA GCTGCAACAT GAGCAAACGC	840
	ATGGACATCG CCATCCAAGT CACAGAAAGC ATTGCACCTCT TTCACAGCTG CCTCAACCCA	900
	ATCCTTTATG TTTTTATGGG AGCATCTTTC AAAAACTACG TTATGAAAGT GGCCAAGAAA	960
	TATGGGTCCCT GGAGAAGACA GAGACAAAGT GTGGAGGAGT TTCCTTTGA TTCTGAGGGT	1020
10	CCTACAGAGC CAACCAGTAC TTTTAGCATT TAA	1053

(25) INFORMATION FOR SEQ ID NO:24:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 350 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

- 29 -

	115	120	125
	Phe Leu Ala Cys Ile Ser Ile Asp Arg Tyr Val Ala Val Thr Asn Val		
	130	135	140
	Pro Ser Gln Ser Gly Val Gly Lys Pro Cys Trp Ile Ile Cys Phe Cys		
5	145	150	155
	Val Trp Met Ala Ala Ile Leu Leu Ser Ile Pro Gln Leu Val Phe Tyr		
	165	170	175
	Thr Val Asn Asp Asn Ala Arg Cys Ile Pro Ile Phe Pro Arg Tyr Leu		
	180	185	190
10	Gly Thr Ser Met Lys Ala Leu Ile Gln Met Leu Glu Ile Cys Ile Gly		
	195	200	205
	Phe Val Val Pro Phe Leu Ile Met Gly Val Cys Tyr Phe Ile Thr Ala		
	210	215	220
15	Arg Thr Leu Met Lys Met Pro Asn Ile Lys Ile Ser Arg Pro Leu Lys		
	225	230	235
	Val Leu Leu Thr Val Val Ile Val Phe Ile Val Thr Gln Leu Pro Tyr		
	245	250	255
	Asn Ile Val Lys Phe Cys Arg Ala Ile Asp Ile Ile Tyr Ser Leu Ile		
	260	265	270
20	Thr Ser Cys Asn Met Ser Lys Arg Met Asp Ile Ala Ile Gln Val Thr		
	275	280	285
	Glu Ser Ile Ala Leu Phe His Ser Cys Leu Asn Pro Ile Leu Tyr Val		
	290	295	300
25	Phe Met Gly Ala Ser Phe Lys Asn Tyr Val Met Lys Val Ala Lys Lys		
	305	310	315
	Tyr Gly Ser Trp Arg Arg Gln Arg Gln Ser Val Glu Glu Phe Pro Phe		
	325	330	335
	Asp Ser Glu Gly Pro Thr Glu Pro Thr Ser Thr Phe Ser Ile		
	340	345	350
30	(26) INFORMATION FOR SEQ ID NO:25:		

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1116 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: DNA (genomic)

- 30 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

ATGCCAGGAA	ACGCCACCCC	AGTGACCACC	ACTGCCCGT	GGGCCTCCCT	GGGCCTCTCC	60	
GCCAAGACCT	GCAACAACGT	GTCCTTCGAA	GAGAGCAGGA	TAGTCCTGGT	CGTGGTGTAC	120	
AGCGCGGTGT	GCACGCTGGG	GGTGCCGCC	AACTGCCTGA	CTGCGTGGCT	GGCGCTGCTG	180	
5	CAGGTACTGC	AGGGCAACGT	GCTGGCCGTC	TACCTGCTCT	GCCTGGCACT	CTGCGAACTG	240
	CTGTACACAG	GCACGCTGCC	ACTCTGGTC	ATCTATATCC	GCAACCAGCA	CCGCTGGACC	300
	CTAGGCCTGC	TGGCCTCGAA	GGTGACCGCC	TACATCTTCT	TCTGCAACAT	CTACGTCAGC	360
	ATCCTCTTCC	TGTGCTGCAT	CTCCTGCGAC	CGCTTCGTGG	CCGTGGTGT	CGCGCTGGAG	420
	AGTCGGGGCC	GCCGCCGCCG	GAGGACCGCC	ATCCTCATCT	CCGCCTGCAT	CTTCATCCTC	480
10	GTCGGGATCG	TTCACTACCC	GGTGTTCCAG	ACGGAAGACA	AGGAGACCTG	CTTTGACATG	540
	CTGCAGATGG	ACAGCAGGAT	TGCCGGGTAC	TACTACGCCA	GGTCACCGT	TGGCTTGCC	600
	ATCCCTCTCT	CCATCATCGC	CTTCACCAAC	CACCGGATT	TCAGGAGCAT	CAAGCAGAGC	660
	ATGGGCTTAA	GCGCTGCCCA	GAAGGCCAAG	GTGAAGCACT	CGGCCATCGC	GGTGGTTGTC	720
	ATCTTCCTAG	TCTGCTTCGC	CCCGTACACAC	CTGGTTCTCC	TCGTCAAAGC	CGCTGCCTTT	780
15	TCCTACTACA	GAGGAGACAG	GAACGCCATG	TGCGGCTTGG	AGGAAAGGCT	GTACACAGCC	840
	TCTGTGGTGT	TTCTGTGCCT	GTCCACGGTG	AACGGCGTGG	CTGACCCCCAT	TATCTACGTG	900
	CTGGCCACGG	ACCATTCCCG	CCAAGAAGTG	TCCAGAATCC	ATAAGGGGTG	GAAAGAGTGG	960
	TCCATGAAGA	CAGACGTCAC	CAGGCTCACC	CACAGCAGGG	ACACCGAGGA	GCTGCAGTCG	1020
	CCCGTGGCCC	TTGCAGACCA	CTACACCTTC	TCCAGGCCCG	TGCACCCACC	AGGGTCACCA	1080
20	TGCCCTGCAA	AGAGGCTGAT	TGAGGAGTCC	TGCTGA			1116

(28) INFORMATION FOR SEQ ID NO:26:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 371 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

Met	Pro	Gly	Asn	Ala	Thr	Pro	Val	Thr	Thr	Thr	Ala	Pro	Trp	Ala	Ser
30	1				5					10				15	

- 31 -

	Leu	Gly	Leu	Ser	Ala	Lys	Thr	Cys	Asn	Asn	Val	Ser	Phe	Glu	Glu	Ser
							20				25				30	
	Arg	Ile	Val	Leu	Val	Val	Val	Tyr	Ser	Ala	Val	Cys	Thr	Leu	Gly	Val
							35				40				45	
5	Pro	Ala	Asn	Cys	Leu	Thr	Ala	Trp	Leu	Ala	Leu	Leu	Gln	Val	Leu	Gln
							50				55				60	
	Gly	Asn	Val	Leu	Ala	Val	Tyr	Leu	Leu	Cys	Leu	Ala	Leu	Cys	Glu	Leu
							65				70				75	
10	Leu	Tyr	Thr	Gly	Thr	Leu	Pro	Leu	Trp	Val	Ile	Tyr	Ile	Arg	Asn	Gln
							85				90				95	
	His	Arg	Trp	Thr	Leu	Gly	Leu	Leu	Ala	Ser	Lys	Val	Thr	Ala	Tyr	Ile
							100				105				110	
	Phe	Phe	Cys	Asn	Ile	Tyr	Val	Ser	Ile	Leu	Phe	Leu	Cys	Cys	Ile	Ser
							115				120				125	
15	Cys	Asp	Arg	Phe	Val	Ala	Val	Val	Tyr	Ala	Leu	Glu	Ser	Arg	Gly	Arg
							130				135				140	
	Arg	Arg	Arg	Arg	Thr	Ala	Ile	Leu	Ile	Ser	Ala	Cys	Ile	Phe	Ile	Leu
							145				150				155	
20	Val	Gly	Ile	Val	His	Tyr	Pro	Val	Phe	Gln	Thr	Glu	Asp	Lys	Glu	Thr
							165				170				175	
	Cys	Phe	Asp	Met	Leu	Gln	Met	Asp	Ser	Arg	Ile	Ala	Gly	Tyr	Tyr	Tyr
							180				185				190	
	Ala	Arg	Phe	Thr	Val	Gly	Phe	Ala	Ile	Pro	Leu	Ser	Ile	Ile	Ala	Phe
							195				200				205	
25	Thr	Asn	His	Arg	Ile	Phe	Arg	Ser	Ile	Lys	Gln	Ser	Met	Gly	Leu	Ser
							210				215				220	
	Ala	Ala	Gln	Ala	Lys	Val	Lys	His	Ser	Ala	Ile	Ala	Val	Val	Val	Val
							225				230				235	
30	Ile	Phe	Leu	Val	Cys	Phe	Ala	Pro	Tyr	His	Leu	Val	Leu	Val	Val	Lys
							245				250				255	
	Ala	Ala	Ala	Phe	Ser	Tyr	Tyr	Arg	Gly	Asp	Arg	Asn	Ala	Met	Cys	Gly
							260				265				270	
	Leu	Glu	Glu	Arg	Leu	Tyr	Thr	Ala	Ser	Val	Val	Phe	Leu	Cys	Leu	Ser
							275				280				285	
35	Thr	Val	Asn	Gly	Val	Ala	Asp	Pro	Ile	Ile	Tyr	Val	Leu	Ala	Thr	Asp
							290				295				300	

- 32 -

	His Ser Arg Gln Glu Val Ser Arg Ile His Lys Gly Trp Lys Glu Trp		
305	310	315	320
	Ser Met Lys Thr Asp Val Thr Arg Leu Thr His Ser Arg Asp Thr Glu		
	325	330	335
5	Glu Leu Gln Ser Pro Val Ala Leu Ala Asp His Tyr Thr Phe Ser Arg		
	340	345	350
	Pro Val His Pro Pro Gly Ser Pro Cys Pro Ala Lys Arg Leu Ile Glu		
	355	360	365
10	Glu Ser Cys		
	370		

(28) INFORMATION FOR SEQ ID NO:27:

15 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1113 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

 (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

	ATGGCGAACT ATAGCCATGC AGCTGACAAC ATTTTGCAAA ATCTCTGCC TCTAACAGCC	60
20	TTTCTGAAAC TGACTTCCTT GGGTTTCATA ATAGGAGTCA GCGTGGTGGG CAAACCTCCTG	120
	ATCTCCATTG TGCTAGTGAA AGATAAGACC TTGCATAGAG CACCTTACTA CTTCCCTGTTG	180
	GATCTTGCT GTTCAGATAT CCTCAGATCT GCAATTGTT TCCCATTGT GTTCAACTCT	240
	GTCAAAAATG GCTCTACCTG GACTTATGGG ACTCTGACTT GCAAAGTGAT TGCCTTCTG	300
	GGGGTTTGT CCTGTTCCA CACTGCTTC ATGCTCTTCT GCATCAGTGT CACCAGATAC	360
25	TTAGCTATCG CCCATCACCG CTTCTATACA AAGAGGCTGA CCTTTGGAC GTGTCTGGCT	420
	GTGATCTGTA TGGTGTGGAC TCTGTCTGTG GCCATGGCAT TTCCCCGGT TTTAGACGTG	480
	GGCACTTACT CATTCAATTAG GGAGGAAGAT CAATGCACCT TCCAACACCG CTCCCTCAGG	540
	GCTAATGATT CCTTAGGATT TATGCTGCTT CTTGCTCTCA TCCTCCTAGC CACACAGCTT	600
	GTCTACCTCA AGCTGATATT TTTCGTCCAC GATCGAAGAA AAATGAAGCC AGTCCAGTTT	660
30	GTAGCAGCAG TCAGCCAGAA CTGGACTTT CATGGTCCTG GAGCCAGTGG CCAGGCAGCT	720
	GCCAATTGGC TAGCAGGATT TGGAAGGGT CCCACACCAC CCACCTTGCT GGGCATCAGG	780
	CAAATGCAG ACACCACAGG CAGAAGAAGG CTATTGGTCT TAGACGAGTT CAAATGGAG	840

- 33 -

	AAAAGAACCA GCAGAACATGTT CTATATAATG ACTTTTCTGT TTCTAACCTT GTGGGGCCCC	900
	TACCTGGTGG CCTGTTATTG GAGAGTTTT GCAAGAGGGC CTGTAGTACC AGGGGGATTT	960
	CTAACAGCTG CTGTCTGGAT GAGTTTGCC CAAGCAGGAA TCAATCCTTT TGTCTGCATT	1020
	TTCTCAAACA GGGAGCTGAG GCGCTGTTTC AGCACAAACCC TTCTTTACTG CAGAAAATCC	1080
5	AGGTTACCAA GGGAACCTTA CTGTGTTATA TGA	1113

(29) INFORMATION FOR SEQ ID NO:28:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 370 amino acids
 - (B) TYPE: amino acid
 - 10 (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

15	Met Ala Asn Tyr Ser His Ala Ala Asp Asn Ile Leu Gln Asn Leu Ser 1 5 10 15
	Pro Leu Thr Ala Phe Leu Lys Leu Thr Ser Leu Gly Phe Ile Ile Gly 20 25 30
	Val Ser Val Val Gly Asn Leu Leu Ile Ser Ile Leu Leu Val Lys Asp 35 40 45
20	Lys Thr Leu His Arg Ala Pro Tyr Tyr Phe Leu Leu Asp Leu Cys Cys 50 55 60
	Ser Asp Ile Leu Arg Ser Ala Ile Cys Phe Pro Phe Val Phe Asn Ser 65 70 75 80
25	Val Lys Asn Gly Ser Thr Trp Thr Tyr Gly Thr Leu Thr Cys Lys Val 85 90 95
	Ile Ala Phe Leu Gly Val Leu Ser Cys Phe His Thr Ala Phe Met Leu 100 105 110
	Phe Cys Ile Ser Val Thr Arg Tyr Leu Ala Ile Ala His His Arg Phe 115 120 125
30	Tyr Thr Lys Arg Leu Thr Phe Trp Thr Cys Leu Ala Val Ile Cys Met 130 135 140
	Val Trp Thr Leu Ser Val Ala Met Ala Phe Pro Pro Val Leu Asp Val 145 150 155 160
	Gly Thr Tyr Ser Phe Ile Arg Glu Glu Asp Gln Cys Thr Phe Gln His

- 34 -

	165	170	175
	Arg Ser Phe Arg Ala Asn Asp Ser Leu Gly Phe Met Leu Leu Ala		
	180	185	190
	Leu Ile Leu Leu Ala Thr Gln Leu Val Tyr Leu Lys Leu Ile Phe Phe		
5	195	200	205
	Val His Asp Arg Arg Lys Met Lys Pro Val Gln Phe Val Ala Ala Val		
	210	215	220
	Ser Gln Asn Trp Thr Phe His Gly Pro Gly Ala Ser Gly Gln Ala Ala		
	225	230	235
	240		
10	Ala Asn Trp Leu Ala Gly Phe Gly Arg Gly Pro Thr Pro Pro Thr Leu		
	245	250	255
	Leu Gly Ile Arg Gln Asn Ala Asn Thr Thr Gly Arg Arg Arg Leu Leu		
	260	265	270
15	Val Leu Asp Glu Phe Lys Met Glu Lys Arg Ile Ser Arg Met Phe Tyr		
	275	280	285
	Ile Met Thr Phe Leu Phe Leu Thr Leu Trp Gly Pro Tyr Leu Val Ala		
	290	295	300
	Cys Tyr Trp Arg Val Phe Ala Arg Gly Pro Val Val Pro Gly Gly Phe		
	305	310	315
	320		
20	Leu Thr Ala Ala Val Trp Met Ser Phe Ala Gln Ala Gly Ile Asn Pro		
	325	330	335
	Phe Val Cys Ile Phe Ser Asn Arg Glu Leu Arg Arg Cys Phe Ser Thr		
	340	345	350
25	Thr Leu Leu Tyr Cys Arg Lys Ser Arg Leu Pro Arg Glu Pro Tyr Cys		
	355	360	365
	Val Ile		
	370		

(30) INFORMATION FOR SEQ ID NO:29:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1080 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

ATGCAGGTCC CGAACAGCAC CGGCCGGAC AACGCGACGC TGCAGATGCT GCGGAACCCG

- 35 -

	GCGATCGCGG TGGCCCTGCC CGTGGTGTAC TCGCTGGTGG CGGCAGTCAG CATCCCAGGC	120
	AACCTCTTCT CTCTGTGGGT GCTGTGCCGG CGCATGGGC CCAGATCCCC GTCGGTCATC	180
	TTCATGATCA ACCTGAGCGT CACGGACCTG ATGCTGCCA GCGTGTGTTGCC TTTCAAATC	240
	TACTACCATT GCAACCGCCA CCACGGGTAA TTCGGGGTGC TGCTTGCAA CGTGGTGACC	300
5	GTGGCCTTT ACGCAAACAT GTATTCCAGC ATCCTCACCA TGACCTGTAT CAGCGTGGAG	360
	CGCTTCCTGG GGGTCCTGTA CCCGCTCAGC TCCAAGCGCT GGCGCCGCCG TCGTTACGCG	420
	GTGGCCGCGT GTGCAGGGAC CTGGCTGCTG CTCCTGACCG CCCTGTGCCG GCTGGCGCGC	480
	ACCGATCTCA CCTACCCGGT GCACGCCCTG GGCATCATCA CCTGCTTCGA CGTCCTCAAG	540
	TGGACGATGC TCCCCAGCGT GGCCATGTGG GCCGTGTTCC TCTTCACCAT CTTCATCCTG	600
10	CTGTTCCCTCA TCCCCTTCGT GATCACCGTG GCTTGTACA CGGCCACCAT CCTCAAGCTG	660
	TTGCGCACGG AGGAGGCGCA CGGCCGGGAG CAGCGGAGGC GCGCGGTGGG CCTGGCCGCG	720
	GTGGTCTTGC TGGCCTTGT CACCTGCTTC GCCCCAACAA ACTTCGTGCT CCTGGCGCAC	780
	ATCGTGAGCC GCCTGTTCTA CGGCAAGAGC TACTACCACG TGTACAAGCT CACGCTGTGT	840
	CTCAGCTGCC TCAACAACTG TCTGGACCCG TTTGTTTATT ACTTTGCGTC CCGGGAATTG	900
15	CAGCTGCGCC TGCAGGGATA TTTGGGCTGC CGCCGGGTGC CCAGAGACAC CCTGGACACG	960
	CGCCGCGAGA GCCTCTTCTC CGCCAGGACC ACGTCCGTGC GCTCCGAGGC CGGTGCGCAC	1020
	CCTGAAGGGGA TGGAGGGAGC CACCAGGCC GGCTCCAGA GGCAGGGAGAG TGTGTTCTGA	1080

(31) INFORMATION FOR SEQ ID NO:30:

(i) SEQUENCE CHARACTERISTICS:

20 (A) LENGTH: 359 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS:
(D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

Leu Arg Asn Pro Ala Ile Ala Val Ala Leu Pro Val Val Tyr Ser Leu
20 25 30

30 Val Ala Ala Val Ser Ile Pro Gly Asn Leu Phe Ser Leu Trp Val Leu

- 36 -

	35	40	45
	Cys Arg Arg Met Gly Pro Arg Ser Pro Ser Val Ile Phe Met Ile Asn		
	50	55	60
	Leu Ser Val Thr Asp Leu Met Leu Ala Ser Val Leu Pro Phe Gln Ile		
5	65	70	75
	Tyr Tyr His Cys Asn Arg His His Trp Val Phe Gly Val Leu Leu Cys		
	85	90	95
	Asn Val Val Thr Val Ala Phe Tyr Ala Asn Met Tyr Ser Ser Ile Leu		
	100	105	110
10	Thr Met Thr Cys Ile Ser Val Glu Arg Phe Leu Gly Val Leu Tyr Pro		
	115	120	125
	Leu Ser Ser Lys Arg Trp Arg Arg Arg Tyr Ala Val Ala Ala Cys		
	130	135	140
	Ala Gly Thr Trp Leu Leu Leu Thr Ala Leu Cys Pro Leu Ala Arg		
15	145	150	155
	160		
	Thr Asp Leu Thr Tyr Pro Val His Ala Leu Gly Ile Ile Thr Cys Phe		
	165	170	175
	Asp Val Leu Lys Trp Thr Met Leu Pro Ser Val Ala Met Trp Ala Val		
	180	185	190
20	Phe Leu Phe Thr Ile Phe Ile Leu Leu Phe Leu Ile Pro Phe Val Ile		
	195	200	205
	Thr Val Ala Cys Tyr Thr Ala Thr Ile Leu Lys Leu Leu Arg Thr Glu		
	210	215	220
	Glu Ala His Gly Arg Glu Gln Arg Arg Arg Ala Val Gly Leu Ala Ala		
25	225	230	235
	240		
	Val Val Leu Leu Ala Phe Val Thr Cys Phe Ala Pro Asn Asn Phe Val		
	245	250	255
	Leu Leu Ala His Ile Val Ser Arg Leu Phe Tyr Gly Lys Ser Tyr Tyr		
	260	265	270
30	His Val Tyr Lys Leu Thr Leu Cys Leu Ser Cys Leu Asn Asn Cys Leu		
	275	280	285
	Asp Pro Phe Val Tyr Tyr Phe Ala Ser Arg Glu Phe Gln Leu Arg Leu		
	290	295	300
	Arg Glu Tyr Leu Gly Cys Arg Arg Val Pro Arg Asp Thr Leu Asp Thr		
35	305	310	315
	320		
	Arg Arg Glu Ser Leu Phe Ser Ala Arg Thr Thr Ser Val Arg Ser Glu		
	325	330	335

- 37 -

Ala Gly Ala His Pro Glu Gly Met Glu Gly Ala Thr Arg Pro Gly Leu
 340 345 350

Gln Arg Gln Glu Ser Val Phe
355

5 (32) INFORMATION FOR SEQ ID NO:31:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1503 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

	ATGGAGCGTC CCTGGGAGGA CAGCCCAGGC CCGGAGGGGG CAGCTGAGGG CTCGCCCTGTG	60
	CCAGTCGCCG CGGGGGCGCG CTCCGGTGCC GCGGCCAGTG GCACAGGCTG GCAGCCATGG	120
15	GCTGAGTGCC CGGGACCAA GGGGAGGGGG CAACTGCTGG CGACCGCCGG CCCTTGCCT CGCTGGCCCG CCCCCTCGCC TGCCAGCTCC AGCCCCGCC CGGGAGCGGC GTCCGCTCAC TCGGTTCAAG GCAGCGCGAC TGCAGGTGGC GCACGACCAG GGCGCAGACC TTGGGGCGCG	180 240 300
	CGGCCCATGG AGTCGGGCT GCTGCAGCG GCGCCGGTGA GCGAGGTCAT CGTCCTGCAT	360
	TACAACATACA CCGGCAAGCT CCGCGGTGCG AGCTACCAGC CGGGTGCCGG CCTGCGCGCC	420
20	GACGCCGTGG TGTGCCTGGC GGTGTGCAGCC TTCATCGTGC TAGAGAATCT AGCCGTGTTG TTGGTGCTCG GACGCCACCC GCGCTTCCAC GCTCCCATGT TCCTGCTCCT GGGCAGCCTC	480 540
	ACGTTGTCGG ATCTGCTGGC AGGCGCCGCC TACGCCGCC ACATCCTACT GTCGGGGCCG	600
	CTCACGCTGA AACTGTCCCC CGCGCTCTGG TTCGCACGGG AGGGAGGCCT CTTCGTGGCA	660
	CTCACTGCGT CCGTGCTGAG CCTCCTGGC ATCGCGCTGG AGCGCAGCCT CACCATGGCG	720
25	CGCAGGGGGC CCGCGCCCGT CTCCAGTCGG GGGCGCACGC TGGCGATGGC AGCCGCGGCC TGGGGCGTGT CGCTGCTCCT CGGGCTCCTG CCAGCGCTGG GCTGGAATTG CCTGGGTGCG	780 840
	CTGGACGCTT GCTCCACTGT CTTGCCGCTC TACGCCAAGG CCTACGTGCT CTTCTGCGTG	900
	CTCGCCTTCG TGGGCATCCT GGCGCGATC TGTGCACTCT ACAGCGCGCAT CTACTGCCAG	960
	GTACGCGCCA ACGCGCGGCG CCTGCCGGCA CGGCCCGGGA CTGCGGGGAC CACCTCGACC	1020
30	CGGGCGCGTC GCAAGCCGCG CTCTCTGGCC TTGCTGCGCA CGCTCAGCGT GGTGCTCCTG	1080

- 38 -

	GCCTTTGTGG CATGTTGGGG CCCCCCTCTTC CTGCTGCTGT TGCTCGACGT GGCGTGCCCG	1140
	GCGCGCACCT GTCCTGTACT CCTGCAGGCC GATCCCTTCC TGGGACTGGC CATGGCCAAC	1200
	TCACCTCTGA ACCCCCATCAT CTACACGCTC ACCAACCGCG ACCTGCGCCA CGCGCTCCTG	1260
	CGCCTGGTCT GCTGC GGACG CCACT CCTGC GGCAGAGACC CGAGTGGCTC CCAGCAGTCG	1320
5	GCGAGCGCGG CTGAGGCTTC CGGGGGCCTG CGCCGCTGCC TGCCCCCGGG CCTTGATGGG	1380
	AGCTTCAGCG GCTCGGAGCG CTCATCGCCC CAGCGCGACG GGCTGGACAC CAGCGGCTCC	1440
	ACAGGCAGCC CCGGTGCACC CACAGCCGCC CGGACTCTGG TATCAGAACCGGCTGCAGAC	1500
	TGA	1503

(33) INFORMATION FOR SEO ID NO:32:

10 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 500 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS:
 (D) TOPOLOGY: not relevant

15 (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

	Met	Glu	Arg	Pro	Trp	Glu	Asp	Ser	Pro	Gly	Pro	Glu	Gly	Ala	Ala	Glu
1					5					10					15	
	Gly	Ser	Pro	Val	Pro	Val	Ala	Ala	Gly	Ala	Arg	Ser	Gly	Ala	Ala	Ala
20					20				25					30		
	Ser	Gly	Thr	Gly	Trp	Gln	Pro	Trp	Ala	Glu	Cys	Pro	Gly	Pro	Lys	Gly
					35				40				45			
	Arg	Gly	Gln	Leu	Leu	Ala	Thr	Ala	Gly	Pro	Leu	Arg	Arg	Trp	Pro	Ala
					50				55				60			
25	Pro	Ser	Pro	Ala	Ser	Ser	Ser	Pro	Ala	Pro	Gly	Ala	Ala	Ser	Ala	His
					65				70			75			80	
	Ser	Val	Gln	Gly	Ser	Ala	Thr	Ala	Gly	Gly	Ala	Arg	Pro	Gly	Arg	Arg
					85				90				95			
30	Pro	Trp	Gly	Ala	Arg	Pro	Met	Glu	Ser	Gly	Leu	Leu	Arg	Pro	Ala	Pro
					100				105				110			
	Val	Ser	Glu	Val	Ile	Val	Leu	His	Tyr	Asn	Tyr	Thr	Gly	Lys	Leu	Arg
					115				120				125			
	Gly	Ala	Ser	Tyr	Gln	Pro	Gly	Ala	Gly	Leu	Arg	Ala	Asp	Ala	Val	Val
					130				135				140			

- 39 -

	Cys Leu Ala Val Cys Ala Phe Ile Val Leu Glu Asn Leu Ala Val Leu			
	145	150	155	160
	Leu Val Leu Gly Arg His Pro Arg Phe His Ala Pro Met Phe Leu Leu			
	165	170	175	
5	Leu Gly Ser Leu Thr Leu Ser Asp Leu Leu Ala Gly Ala Ala Tyr Ala			
	180	185	190	
	Ala Asn Ile Leu Leu Ser Gly Pro Leu Thr Leu Lys Leu Ser Pro Ala			
	195	200	205	
10	Leu Trp Phe Ala Arg Glu Gly Gly Val Phe Val Ala Leu Thr Ala Ser			
	210	215	220	
	Val Leu Ser Leu Leu Ala Ile Ala Leu Glu Arg Ser Leu Thr Met Ala			
	225	230	235	240
	Arg Arg Gly Pro Ala Pro Val Ser Ser Arg Gly Arg Thr Leu Ala Met			
	245	250	255	
15	Ala Ala Ala Ala Trp Gly Val Ser Leu Leu Leu Gly Leu Leu Pro Ala			
	260	265	270	
	Leu Gly Trp Asn Cys Leu Gly Arg Leu Asp Ala Cys Ser Thr Val Leu			
	275	280	285	
20	Pro Leu Tyr Ala Lys Ala Tyr Val Leu Phe Cys Val Leu Ala Phe Val			
	290	295	300	
	Gly Ile Leu Ala Ala Ile Cys Ala Leu Tyr Ala Arg Ile Tyr Cys Gln			
	305	310	315	320
	Val Arg Ala Asn Ala Arg Arg Leu Pro Ala Arg Pro Gly Thr Ala Gly			
	325	330	335	
25	Thr Thr Ser Thr Arg Ala Arg Arg Lys Pro Arg Ser Leu Ala Leu Leu			
	340	345	350	
	Arg Thr Leu Ser Val Val Leu Leu Ala Phe Val Ala Cys Trp Gly Pro			
	355	360	365	
30	Leu Phe Leu Leu Leu Leu Asp Val Ala Cys Pro Ala Arg Thr Cys			
	370	375	380	
	Pro Val Leu Leu Gln Ala Asp Pro Phe Leu Gly Leu Ala Met Ala Asn			
	385	390	395	400
	Ser Leu Leu Asn Pro Ile Ile Tyr Thr Leu Thr Asn Arg Asp Leu Arg			
	405	410	415	
35	His Ala Leu Leu Arg Leu Val Cys Cys Gly Arg His Ser Cys Gly Arg			
	420	425	430	
	Asp Pro Ser Gly Ser Gln Gln Ser Ala Ser Ala Ala Glu Ala Ser Gly			

- 40 -

435	440	445
Gly Leu Arg Arg Cys Leu Pro Pro Gly Leu Asp Gly Ser Phe Ser Gly		
450	455	460
Ser Glu Arg Ser Ser Pro Gln Arg Asp Gly Leu Asp Thr Ser Gly Ser		
5 465	470	475
Thr Gly Ser Pro Gly Ala Pro Thr Ala Ala Arg Thr Leu Val Ser Glu		
485 490 495		
Pro Ala Ala Asp		
500		

10 (34) INFORMATION FOR SEQ ID NO:33:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1029 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: DNA (genomic)

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

ATGCAAGCCG TCGACAATCT CACCTCTGCG CCTGGGAACA CCAGTCTGTG CACCAGAGAC	60
TACAAAATCA CCCAGGTCT CTCTCCCCTG CTCTACACTG TCCTGTTTT TGTTGGACTT	120
20 ATCACAAATG GCCTGGCGAT GAGGATTTC TTTCAAATCC GGAGTAAATC AAACTTTATT	180
ATTTTTCTTA AGAACACAGT CATTCTGAT CTCTCATGA TTCTGACTTT TCCATTCAAA	240
ATTCTTAGTG ATGCCAAACT GGGAACAGGA CCACTGAGAA CTTTTGTGTG TCAAGTTACC	300
TCCGTCATAT TTTATTCAC AATGTATATC AGTATTCAT TCCTGGACT GATAACTATC	360
GATCGCTACC AGAAGACCAC CAGGCCATT AAAACATCCA ACCCCAAAAA TCTCTGGGG	420
25 GCTAAGATTC TCTCTGTTGT CATCTGGCA TTCATGTTCT TACTCTCTT GCCTAACATG	480
ATTCTGACCA ACAGGCAGCC GAGAGACAAG AATGTGAAGA AATGCTCTT CCTTAAATCA	540
GAGTCGGTC TAGTCTGGCA TGAAATAGTA AATTACATCT GTCAAGTCAT TTTCTGGATT	600
AATTTCTTAA TTGTTATTGT ATGTTATACA CTCATTACAA AAGAACTGTA CCGGTCATAC	660
GTAAGAACGA GGGGTGTAAG TAAAGTCCCC AGGAAAAAGG TGAACGTCAA AGTTTCATT	720
30 ATCATTGCTG TATTCTTTAT TTGTTTGTT CCTTTCCATT TTGCCCGAAT TCCTTACACC	780
CTGAGCCAAA CCCGGGATGT CTTTGACTGC ACTGCTGAAA ATACTCTGTT CTATGTGAAA	840

- 41 -

GAGAGCACTC TGTGGTTAAC TTCCCTTAAAT GCATGCCTGG ATCCGTTCAT CTATTTTTTC	900
CTTTGCAAGT CCTTCAGAAA TTCCCTTGATA AGTATGCTGA AGTCCCCAA TTCTGCAACA	960
TCTCTGTCCC AGGACAATAG GAAAAAAGAA CAGGATGGTG GTGACCCAAA TGAAGAGACT	1020
CCAATGTAA	1029

5 (35) INFORMATION FOR SEQ ID NO:34:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 342 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant

10 (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

Met Gln Ala Val Asp Asn Leu Thr Ser Ala Pro Gly Asn Thr Ser Leu			
1	5	10	15
Cys Thr Arg Asp Tyr Lys Ile Thr Gln Val Leu Phe Pro Leu Leu Tyr			
15	20	25	30
Thr Val Leu Phe Phe Val Gly Leu Ile Thr Asn Gly Leu Ala Met Arg			
35	40	45	
Ile Phe Phe Gln Ile Arg Ser Lys Ser Asn Phe Ile Ile Phe Leu Lys			
20	50	55	60
Asn Thr Val Ile Ser Asp Leu Leu Met Ile Leu Thr Phe Pro Phe Lys			
65	70	75	80
Ile Leu Ser Asp Ala Lys Leu Gly Thr Gly Pro Leu Arg Thr Phe Val			
85	90	95	
Cys Gln Val Thr Ser Val Ile Phe Tyr Phe Thr Met Tyr Ile Ser Ile			
25	100	105	110
Ser Phe Leu Gly Leu Ile Thr Ile Asp Arg Tyr Gln Lys Thr Thr Arg			
115	120	125	
Pro Phe Lys Thr Ser Asn Pro Lys Asn Leu Leu Gly Ala Lys Ile Leu			
30	130	135	140
Ser Val Val Ile Trp Ala Phe Met Phe Leu Leu Ser Leu Pro Asn Met			
145	150	155	160
Ile Leu Thr Asn Arg Gln Pro Arg Asp Lys Asn Val Lys Lys Cys Ser			
165	170	175	
35 Phe Leu Lys Ser Glu Phe Gly Leu Val Trp His Glu Ile Val Asn Tyr			

- 42 -

	180	185	190
	Ile Cys Gln Val Ile Phe Trp Ile Asn Phe Leu Ile Val Ile Val Cys		
	195	200	205
	Tyr Thr Leu Ile Thr Lys Glu Leu Tyr Arg Ser Tyr Val Arg Thr Arg		
5	210	215	220
	Gly Val Gly Lys Val Pro Arg Lys Lys Val Asn Val Lys Val Phe Ile		
	225	230	235
	Ile Ile Ala Val Phe Phe Ile Cys Phe Val Pro Phe His Phe Ala Arg		
	245	250	255
10	Ile Pro Tyr Thr Leu Ser Gln Thr Arg Asp Val Phe Asp Cys Thr Ala		
	260	265	270
	Glu Asn Thr Leu Phe Tyr Val Lys Glu Ser Thr Leu Trp Leu Thr Ser		
	275	280	285
15	Leu Asn Ala Cys Leu Asp Pro Phe Ile Tyr Phe Phe Leu Cys Lys Ser		
	290	295	300
	Phe Arg Asn Ser Leu Ile Ser Met Leu Lys Cys Pro Asn Ser Ala Thr		
	305	310	315
	Ser Leu Ser Gln Asp Asn Arg Lys Lys Glu Gln Asp Gly Gly Asp Pro		
	325	330	335
20	Asn Glu Glu Thr Pro Met		
	340		

(36) INFORMATION FOR SEQ ID NO:35:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1077 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

30	ATGTCGGTCT GCTACCGTCC CCCAGGGAAC GAGACACTGC TGAGCTGGAA GACTTCGCGG	60
	GCCACAGGCA CAGCCTTCCT GCTGCTGGCG GCGCTGCTGG GGCTGCCTGG CAACGGCTTC	120
	GTGGTGTGGA GCTTGGCGGG CTGGCGGCCT GCACGGGGGC GACCGCTGGC GGCCACGCTT	180
	GTGCTGCACC TGGCGCTGGC CGACGGCGCG GTGCTGCTGC TCACGCCGCT CTTTGTGGCC	240
	TTCCTGACCC GGCAGGCCTG GCCGCTGGC CAGGCAGGGCT GCAAGGCGGT GTACTACGTG	300

- 43 -

	TGCGCGCTCA	GCATGTACGC	CAGCGTGCTG	CTCACCGGCC	TGCTCAGCCT	GCAGCGCTGC	360
	CTCGCAGTCA	CCCGCCCCTT	CCTGGCGCCT	CGGCTGCGCA	GCCC GGCCCT	GGCCCGCCGC	420
	CTGCTGCTGG	CGGTCTGGCT	GGCCGCCCTG	TTGCTCGCCG	TCCC GGCCGC	CGTCTACCGC	480
	CACCTGTGGA	GGGACCGCGT	ATGCCAGCTG	TGCCACCCGT	CGCCGGTCCA	CGCCGCGGCC	540
5	CACCTGAGCC	TGGAGACTCT	GACC GCTTTC	GTGCTTCCTT	TCGGGCTGAT	GCTCGGCTGC	600
	TACAGCGTGA	CGCTGGCACG	GCTGC GGGGC	GCCC GCTGGG	GCTCC GGGCG	GCACGGGGCG	660
	CGGGTGGGCC	GGCTGGTGAG	CGCCATCGTG	CTTGCCTTCG	GCTTGCTCTG	GGCCCCCTAC	720
	CACGCAGTCA	ACCTTCTGCA	GGCGGT CGCA	GCGCTGGCTC	CACCGGAAGG	GGCCTTGGCG	780
	AAGCTGGCG	GAGCGGGCCA	GGCGGCGCGA	GCGGGAACTA	CGGCCTTGGC	CTTCTTCAGT	840
10	TCTAGCGTCA	ACCCGGTGCT	CTACGTCTTC	ACCGCTGGAG	ATCTGCTGCC	CCGGGCAGGT	900
	CCCCGTTCC	TCACGCGGCT	CTTCGAAGGC	TCTGGGGAGG	CCCGAGGGGG	CGGGCGCTCT	960
	AGGGAAGGGA	CCATGGAGCT	CCGA ACTACC	CCTCAGCTGA	AAGTGGTGGG	GCAGGGCCGC	1020
	GGCAATGGAG	ACCCGGGGGG	TGGGATGGAG	AAGGACGGTC	CGGAATGGGA	CCTTTGA	1077

(37) INFORMATION FOR SEQ ID NO:36:

15 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 358 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS:
 (D) TOPOLOGY: not relevant

20 (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

	Met	Ser	Val	Cys	Tyr	Arg	Pro	Pro	Gly	Asn	Glu	Thr	Leu	Leu	Ser	Trp
	1				5					10					15	
	Lys	Thr	Ser	Arg	Ala	Thr	Gly	Thr	Ala	Phe	Leu	Leu	Leu	Ala	Ala	Leu
25					20				25					30		
	Leu	Gly	Leu	Pro	Gly	Asn	Gly	Phe	Val	Val	Trp	Ser	Leu	Ala	Gly	Trp
					35				40				45			
	Arg	Pro	Ala	Arg	Gly	Arg	Pro	Leu	Ala	Ala	Thr	Leu	Val	Leu	His	Leu
						50			55				60			
30	Ala	Leu	Ala	Asp	Gly	Ala	Val	Leu	Leu	Leu	Thr	Pro	Leu	Phe	Val	Ala
						65			70				75		80	
	Phe	Leu	Thr	Arg	Gln	Ala	Trp	Pro	Leu	Gly	Gln	Ala	Gly	Cys	Lys	Ala

- 44 -

	85	90	95
	Val Tyr Tyr Val Cys Ala Leu Ser Met Tyr Ala Ser Val Leu Leu Thr		
	100	105	110
	Gly Leu Leu Ser Leu Gln Arg Cys Leu Ala Val Thr Arg Pro Phe Leu		
5	115	120	125
	Ala Pro Arg Leu Arg Ser Pro Ala Leu Ala Arg Arg Leu Leu Leu Ala		
	130	135	140
	Val Trp Leu Ala Ala Leu Leu Ala Val Pro Ala Ala Val Tyr Arg		
	145	150	155
	10 His Leu Trp Arg Asp Arg Val Cys Gln Leu Cys His Pro Ser Pro Val		
	165	170	175
	His Ala Ala Ala His Leu Ser Leu Glu Thr Leu Thr Ala Phe Val Leu		
	180	185	190
	Pro Phe Gly Leu Met Leu Gly Cys Tyr Ser Val Thr Leu Ala Arg Leu		
15	195	200	205
	Arg Gly Ala Arg Trp Gly Ser Gly Arg His Gly Ala Arg Val Gly Arg		
	210	215	220
	Leu Val Ser Ala Ile Val Leu Ala Phe Gly Leu Leu Trp Ala Pro Tyr		
	225	230	235
	20 His Ala Val Asn Leu Leu Gln Ala Val Ala Ala Leu Ala Pro Pro Glu		
	245	250	255
	Gly Ala Leu Ala Lys Leu Gly Gly Ala Gly Gln Ala Ala Arg Ala Gly		
	260	265	270
	Thr Thr Ala Leu Ala Phe Phe Ser Ser Ser Val Asn Pro Val Leu Tyr		
25	275	280	285
	Val Phe Thr Ala Gly Asp Leu Leu Pro Arg Ala Gly Pro Arg Phe Leu		
	290	295	300
	Thr Arg Leu Phe Glu Gly Ser Gly Glu Ala Arg Gly Gly Arg Ser		
	305	310	315
	30 Arg Glu Gly Thr Met Glu Leu Arg Thr Thr Pro Gln Leu Lys Val Val		
	325	330	335
	Gly Gln Gly Arg Gly Asn Gly Asp Pro Gly Gly Gly Met Glu Lys Asp		
	340	345	350
	Gly Pro Glu Trp Asp Leu		
35	355		

- 45 -

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1005 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- 5 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

ATGCTGGGGA TCATGGCATG GAATGCAACT TGCAAAAACT GGCTGGCAGC AGAGGCTGCC	60
CTGGAAAAAGT ACTACCTTTC CATTTTTAT GGGATTGAGT TCGTTGTGGG AGTCCTTGGA	120
10 AATACCATTG TTGTTTACGG CTACATCTTC TCTCTGAAGA ACTGGAACAG CAGTAATATT	180
TATCTCTTA ACCTCTCTGT CTCTGACTTA GCTTTCTGT GCACCCTCCC CATGCTGATA	240
AGGAGTTATG CCAATGGAAA CTGGATATAT GGAGACGTGC TCTGCATAAG CAACCGATAT	300
GTGCTTCATG CCAACCTCTA TACCAGCATT CTCTTCTCA CTTTTATCAG CATAGATCGA	360
TACTTGATAA TTAAGTATCC TTTCCGAGAA CACCTTCTGC AAAAGAAAGA GTTGCTATT	420
15 TTAATCTCCT TGGCCATTTG GGTTTAGTA ACCTTAGAGT TACTACCCAT ACTTCCCCTT	480
ATAAAATCCTG TTATAACTGA CAATGGCACC ACCTGTAATG ATTTGCAAG TTCTGGAGAC	540
CCCAACTACA ACCTCATTG CAGCATGTGT CTAACACTGT TGGGTTCCCT TATTCCCTTT	600
TTTGTGATGT GTTTCTTTA TTACAAGATT GCTCTCTTCC TAAAGCAGAG GAATAGGCAG	660
GTTGCTACTG CTCTGCCCT TGAAAAGCCT CTCAACTTGG TCATCATGGC AGTGGTAATC	720
20 TTCTCTGTGC TTTTACACC CTATCACGTC ATGCGGAATG TGAGGATCGC TTCACGCCTG	780
GGGAGTTGGA AGCACTATCA GTGCACTCAG GTCGTCATCA ACTCCTTTA CATTGTGACA	840
CGGCCTTGG CCTTTCTGAA CAGTGTATC AACCCGTCT TCTATTCTTCT TTTGGGAGAT	900
CACTTCAGGG ACATGCTGAT GAATCAACTG AGACACAAC TCAAATCCCT TACATCCTTT	960
AGCAGATGGG CTCATGAACT CCTACTTCA TTCAGAGAAA AGTGA	1005

25 (39) INFORMATION FOR SEQ ID NO:38:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 334 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:

30 (D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

- 46 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

	Met Leu Gly Ile Met Ala Trp Asn Ala Thr Cys Lys Asn Trp Leu Ala				
1	5	10	15		
5	Ala Glu Ala Ala Leu Glu Lys Tyr Tyr Leu Ser Ile Phe Tyr Gly Ile	20	25	30	
	Glu Phe Val Val Gly Val Leu Gly Asn Thr Ile Val Val Tyr Gly Tyr	35	40	45	
	Ile Phe Ser Leu Lys Asn Trp Asn Ser Ser Asn Ile Tyr Leu Phe Asn	50	55	60	
10	Leu Ser Val Ser Asp Leu Ala Phe Leu Cys Thr Leu Pro Met Leu Ile	65	70	75	80
	Arg Ser Tyr Ala Asn Gly Asn Trp Ile Tyr Gly Asp Val Leu Cys Ile	85	90	95	
15	Ser Asn Arg Tyr Val Leu His Ala Asn Leu Tyr Thr Ser Ile Leu Phe	100	105	110	
	Leu Thr Phe Ile Ser Ile Asp Arg Tyr Leu Ile Ile Lys Tyr Pro Phe	115	120	125	
	Arg Glu His Leu Leu Gln Lys Lys Glu Phe Ala Ile Leu Ile Ser Leu	130	135	140	
20	Ala Ile Trp Val Leu Val Thr Leu Glu Leu Leu Pro Ile Leu Pro Leu	145	150	155	160
	Ile Asn Pro Val Ile Thr Asp Asn Gly Thr Thr Cys Asn Asp Phe Ala	165	170	175	
25	Ser Ser Gly Asp Pro Asn Tyr Asn Leu Ile Tyr Ser Met Cys Leu Thr	180	185	190	
	Leu Leu Gly Phe Leu Ile Pro Leu Phe Val Met Cys Phe Phe Tyr Tyr	195	200	205	
	Lys Ile Ala Leu Phe Leu Lys Gln Arg Asn Arg Gln Val Ala Thr Ala	210	215	220	
30	Leu Pro Leu Glu Lys Pro Leu Asn Leu Val Ile Met Ala Val Val Ile	225	230	235	240
	Phe Ser Val Leu Phe Thr Pro Tyr His Val Met Arg Asn Val Arg Ile	245	250	255	
35	Ala Ser Arg Leu Gly Ser Trp Lys Gln Tyr Gln Cys Thr Gln Val Val	260	265	270	
	Ile Asn Ser Phe Tyr Ile Val Thr Arg Pro Leu Ala Phe Leu Asn Ser				

- 47 -

275

280

285

Val	Ile	Asn	Pro	Val	Phe	Tyr	Phe	Leu	Leu	Gly	Asp	His	Phe	Arg	Asp
290							295				300				

Met	Leu	Met	Asn	Gln	Leu	Arg	His	Asn	Phe	Lys	Ser	Leu	Thr	Ser	Phe
305							310				315				320

Ser	Arg	Trp	Ala	His	Glu	Leu	Leu	Leu	Ser	Phe	Arg	Glu	Lys	
						325				330				

(40) INFORMATION FOR SEQ ID NO:39:

10 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1296 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

15 (ii) MOLECULE TYPE: DNA (genomic)

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

ATGCAGGCGC TTAACATTAC CCCGGAGCAG TTCTCTCGGC TGCTGCGGGA CCACAACCTG	60
ACGCGGGAGC AGTTCATCGC TCTGTACCGG CTGCGACCGC TCGTCTACAC CCCAGAGCTG	120
CCGGGACGCG CCAAGCTGGC CCTCGTGCTC ACCGGCGTGC TCATCTTCGC CCTGGCGCTC	180
TTTGGCAATG CTCTGGTGTGTT CTACGTGGTG ACCCGCAGCA AGGCCATGCG CACCGTCACC	240
20 AACATCTTTA TCTGCTCCTT GGCGCTCAGT GACCTGCTCA TCACCTTCTT CTGCATTCCC	300
GTCACCATGC TCCAGAACAT TTCCGACAAC TGGCTGGGG GTGCTTCAT TTGCAAGATG	360
GTGCCATTG TCCAGTCTAC CGCTGTTGTG ACAGAAATGC TCACTATGAC CTGCATTGCT	420
GTGGAAAGGC ACCAGGGACT TGTGCATCCT TTTAAAATGA AGTGGCAATA CACCAACCGA	480
AGGGCTTTCA CAATGCTAGG TGTGGTCTGG CTGGTGGCAG TCATCGTAGG ATCACCCATG	540
25 TGGCACGTGC AACAACTTGA GATCAAATAT GACTTCCTAT ATGAAAAGGA ACACATCTGC	600
TGCTTAGAACAG AGTGGACCAG CCCTGTGCAC CAGAAGATCT ACACCACCTT CATCCTTGTC	660
ATCCTCTTCC TCCTGCCTCT TATGGTGATG CTTATTCTGT ACAGTAAAAT TGGTTATGAA	720
CTTTGGATAA AGAAAAGAGT TGGGGATGGT TCAGTGCTTC GAACTATTCA TGAAAAGAA	780
ATGTCCAAAA TAGCCAGGAA GAAGAACGA GCTGTCATTA TGATGGTGAC AGTGGTGGCT	840
30 CTCTTTGCTG TGTGCTGGGC ACCATTCCAT GTTGTCCATA TGATGATTGA ATACAGTAAT	900
TTTGAAAAGG AATATGATGA TGTCACAATC AAGATGATTT TTGCTATCGT GCAAATTATT	960

- 48 -

GGATTTCCA	ACTCCATCTG	TAATCCCATT	GTCTATGCAT	TTATGAATGA	AAACTTCAAA	1020	
AAAAATGTTT	TGTCTGCAGT	TTGTTATTGC	ATAGTAAATA	AAACCTTCTC	TCCAGCACAA	1080	
AGGCATGGAA	ATTCAGGAAT	TACAATGATG	CGGAAGAAAG	CAAAGTTTC	CCTCAGAGAG	1140	
AATCCAGTGG	AGGAAACCAA	AGGAGAAGCA	TTCAGTGATG	GCAACATTGA	AGTCAAATTG	1200	
5	TGTGAACAGA	CAGAGGAGAA	GAAAAAGCTC	AAACGACATC	TTGCTCTCTT	TAGGTCTGAA	1260
	CTGGCTGAGA	ATTCTCCTTT	AGACAGTGGG	CATTAA		1296	

(41) INFORMATION FOR SEQ ID NO:40:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 431 amino acids
- 10 (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

15	Met Gln Ala Leu Asn Ile Thr Pro Glu Gln Phe Ser Arg Leu Leu Arg	1	5	10	15
	Asp His Asn Leu Thr Arg Glu Gln Phe Ile Ala Leu Tyr Arg Leu Arg	20	25	30	
20	Pro Leu Val Tyr Thr Pro Glu Leu Pro Gly Arg Ala Lys Leu Ala Leu	35	40	45	
	Val Leu Thr Gly Val Leu Ile Phe Ala Leu Ala Leu Phe Gly Asn Ala	50	55	60	
	Leu Val Phe Tyr Val Val Thr Arg Ser Lys Ala Met Arg Thr Val Thr	65	70	75	80
25	Asn Ile Phe Ile Cys Ser Leu Ala Leu Ser Asp Leu Leu Ile Thr Phe	85	90	95	
	Phe Cys Ile Pro Val Thr Met Leu Gln Asn Ile Ser Asp Asn Trp Leu	100	105	110	
30	Gly Gly Ala Phe Ile Cys Lys Met Val Pro Phe Val Gln Ser Thr Ala	115	120	125	
	Val Val Thr Glu Met Leu Thr Met Thr Cys Ile Ala Val Glu Arg His	130	135	140	
	Gln Gly Leu Val His Pro Phe Lys Met Lys Trp Gln Tyr Thr Asn Arg	145	150	155	160

- 49 -

	Arg Ala Phe Thr Met Leu Gly Val Val Trp Leu Val Ala Val Ile Val			
	165	170	175	
	Gly Ser Pro Met Trp His Val Gln Gln Leu Glu Ile Lys Tyr Asp Phe			
	180	185	190	
5	Leu Tyr Glu Lys Glu His Ile Cys Cys Leu Glu Glu Trp Thr Ser Pro			
	195	200	205	
	Val His Gln Lys Ile Tyr Thr Phe Ile Leu Val Ile Leu Phe Leu			
	210	215	220	
10	Leu Pro Leu Met Val Met Leu Ile Leu Tyr Ser Lys Ile Gly Tyr Glu			
	225	230	235	240
	Leu Trp Ile Lys Lys Arg Val Gly Asp Gly Ser Val Leu Arg Thr Ile			
	245	250	255	
	His Gly Lys Glu Met Ser Lys Ile Ala Arg Lys Lys Arg Ala Val			
	260	265	270	
15	Ile Met Met Val Thr Val Val Ala Leu Phe Ala Val Cys Trp Ala Pro			
	275	280	285	
	Phe His Val Val His Met Met Ile Glu Tyr Ser Asn Phe Glu Lys Glu			
	290	295	300	
20	Tyr Asp Asp Val Thr Ile Lys Met Ile Phe Ala Ile Val Gln Ile Ile			
	305	310	315	320
	Gly Phe Ser Asn Ser Ile Cys Asn Pro Ile Val Tyr Ala Phe Met Asn			
	325	330	335	
	Glu Asn Phe Lys Lys Asn Val Leu Ser Ala Val Cys Tyr Cys Ile Val			
	340	345	350	
25	Asn Lys Thr Phe Ser Pro Ala Gln Arg His Gly Asn Ser Gly Ile Thr			
	355	360	365	
	Met Met Arg Lys Lys Ala Lys Phe Ser Leu Arg Glu Asn Pro Val Glu			
	370	375	380	
30	Glu Thr Lys Gly Glu Ala Phe Ser Asp Gly Asn Ile Glu Val Lys Leu			
	385	390	395	400
	Cys Glu Gln Thr Glu Glu Lys Lys Leu Lys Arg His Leu Ala Leu			
	405	410	415	
	Phe Arg Ser Glu Leu Ala Glu Asn Ser Pro Leu Asp Ser Gly His			
	420	425	430	

35 (42) INFORMATION FOR SEQ ID NO:41:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 base pairs

- 50 -

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

CTGTGTACAG CAGTCGCAG AGTG

24

(43) INFORMATION FOR SEQ ID NO:42:

10 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 24 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

15 GAGTGCCAGG CAGAGCAGGT AGAC

24

(44) INFORMATION FOR SEQ ID NO:43:

20 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 31 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

25 CCCGAATTCC TGCTTGCTCC CAGCTTGGCC C

31

(45) INFORMATION FOR SEQ ID NO:44:

30 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 32 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: YES

- 51 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

TGTGGATCCT GCTGTCAAAG GTCCCATTCC GG

32

(46) INFORMATION FOR SEQ ID NO:45:

(i) SEQUENCE CHARACTERISTICS:

5 (A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

10 (iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

TCACAATGCT AGGTGTGGTC

20

(47) INFORMATION FOR SEQ ID NO:46:

(i) SEQUENCE CHARACTERISTICS:

15 (A) LENGTH: 22 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

20 (iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

TGCATAGACA ATGGGATTAC AG

22

(48) INFORMATION FOR SEQ ID NO:47:

(i) SEQUENCE CHARACTERISTICS:

25 (A) LENGTH: 511 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:

TCACAATGCT AGGTGTGGTC TGGCTGGTGG CAGTCATCGT AGGATCACCC ATGTGGCACG

60

TGCAACAACT TGAGATCAAATATGACTTCC TATATGAAAAA GGAACACATC TGCTGCTTAG

120

- 52 -

AAGAGTGGAC CAGCCCTGTG CACCAGAAGA TCTACACCAC CTTCATCCTT GTCATCCTCT	180
TCCTCCTGCC TCTTATGGTG ATGCTTATTG TGACGTAAA ATTGGTTATG AACTTTGGAT	240
AAAGAAAAAGA GTTGGGGATG GTTCAGTGCT TCGAACTATT CATGGAAAAG AAATGTCCAA	300
AATAGCCAGG AAGAAGAAC GAGCTGTCAT TATGATGGTG ACAGTGGTGG CTCTCTTGC	360
5 TGTGTGCTGG GCACCATTCC ATGTTGTCCA TATGATGATT GAATACAGTA ATTTTGAAAAA	420
GGAATATGAT GATGTCACAA TCAAGATGAT TTTTGCTATC GTGCAAATTA TTGGATTTTC	480
CAACTCCATC TGTAATCCCA TTGTCTATGC A	511

(49) INFORMATION FOR SEQ ID NO:48:

- (i) SEQUENCE CHARACTERISTICS:
 - 10 (A) LENGTH: 21 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

15 (iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:

CTGCTTAGAA GAGTGGACCA G

21

(50) INFORMATION FOR SEQ ID NO:49:

- (i) SEQUENCE CHARACTERISTICS:
 - 20 (A) LENGTH: 22 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

25 (iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:

CTGTGCACCA GAAGATCTAC AC

22

(51) INFORMATION FOR SEQ ID NO:50:

- (i) SEQUENCE CHARACTERISTICS:
 - 30 (A) LENGTH: 21 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- 53 -

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:

CAAGGATGAA GGTGGTGTAG A

21

5 (52) INFORMATION FOR SEQ ID NO:51:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 23 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

10

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

GTGTAGATCT TCTGGTGCAC AGG

23

15 (53) INFORMATION FOR SEQ ID NO:52:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 21 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

20

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:

GCAATGCAGG TCATAGTGAG C

21

(54) INFORMATION FOR SEQ ID NO:53:

25 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 27 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

30

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: YES

(iv) ANTI-SENSE: YES

- 54 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:

TGGAGCATGG TGACGGGAAT GCAGAAG

27

(55) INFORMATION FOR SEQ ID NO:54:

(i) SEQUENCE CHARACTERISTICS:

5 (A) LENGTH: 27 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

10 (iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:

GTGATGAGCA GGTCACTGAG CGCCAAG

27

(56) INFORMATION FOR SEQ ID NO:55:

(i) SEQUENCE CHARACTERISTICS:

15 (A) LENGTH: 23 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

20 (iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:

GCAATGCAGG CGCTTAACAT TAC

23

(57) INFORMATION FOR SEQ ID NO:56:

(i) SEQUENCE CHARACTERISTICS:

25 (A) LENGTH: 22 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

30 (iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:

TTGGGTTACA ATCTGAAGGG CA

22

- 55 -

(58) INFORMATION FOR SEQ ID NO:57:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 23 base pairs
- (B) TYPE: nucleic acid
- 5 (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:

10 ACTCCGTGTC CAGCAGGACT CTG

23

(58) INFORMATION FOR SEQ ID NO:58:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 24 base pairs
- (B) TYPE: nucleic acid
- 15 (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:

20 TGC GTGTTCC TGG ACCCTCA CGTG

24

(58) INFORMATION FOR SEQ ID NO:59:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 29 base pairs
- (B) TYPE: nucleic acid
- 25 (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:

30 CAGGCCTTGG ATTTAATGT CAGGGATGG

29

(61) INFORMATION FOR SEQ ID NO:60:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 27 base pairs

- 56 -

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

5 (iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:

GGAGAGTCAG CTCTGAAAGA ATTCAAGG

27

(62) INFORMATION FOR SEQ ID NO:61:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

15 (iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:

TGATGTGATG CCAGATACTA ATAGCAC

27

(63) INFORMATION FOR SEQ ID NO:62:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

25 (iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:

CCTGATTCCAT TTAGGTGAGA TTGAGAC

27

(64) INFORMATION FOR SEQ ID NO:63:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 26 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- 57 -

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:

CCCAAGCTTC CCCAGGTGTA TTTGAT

26

(3) INFORMATION FOR SEQ ID NO:63:

5 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 26 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

10 (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:

GTTGGATCCA CATAATGCAT TTTCTC

26

(66) INFORMATION FOR SEQ ID NO:65:

15 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1080 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:

ATGATTCTCA ACTCTTCTAC TGAAGATGGT ATTAAAAGAA TCCAAGATGA TTGTCCAAA 60

GCTGGAAGGC ATAATTACAT ATTTGTCATG ATTCCTACTT TATACAGTAT CATCTTG TG 120

GTGGGAATAT TTGGAACACAG CTTGGTGGTG ATAGTCATTT ACTTTATAT GAAGCTGAAG 180

ACTGTGGCCA GTGTTTTCT TTTGAATTAA GCACTGGCTG ACTTATGCTT TTACTGACT 240

25 TTGCCACTAT GGGCTGTCTA CACAGCTATG GAATACCGCT GGCCCTTGG CAATTACCTA 300

TGTAAGATTG CTTCAGCCAG CGTCAGTTTC AACCTGTACG CTAGTGTGTT TCTACTCACG 360

TGTCTCAGCA TTGATCGATA CCTGGCTATT GTTCACCCAA TGAAGTCCCG CCTTCGACGC 420

ACAATGCTTG TAGCCAAAGT CACCTGCATC ATCATTGGC TGCTGGCAGG CTTGGCCAGT 480

TGCCAGCTA TAATCCATCG AAATGTATTT TTCATTGAGA ACACCAATAT TACAGTTG 540

30 GCTTTCCATT ATGAGTCCCA AAATTCAACC CTTCCGATAG GGCTGGGCCT GACCAAAAT 600

- 58 -

ATACTGGGTT	TCCTGTTCC	TTTTCTGATC	ATTCTTACAA	GTTATACTCT	TATTTGGAAG	660	
GCCCTAAAGA	AGGCTTATGA	AATTCAGAAG	AACAAACCAA	GAAATGATGA	TATTTTTAAG	720	
ATAATTATGG	CAATTGTGCT	TTTCTTTTC	TTTCCTGGA	TTCCCCACCA	AATATTCACT	780	
TTTCTGGATG	TATTGATTCA	ACTAGGCATC	ATACGTGACT	GTAGAATTGC	AGATATTGTG	840	
5	GACACGGCCA	TGCCTATCAC	CATTTGTATA	GCTTATTTA	ACAATTGCCT	GAATCCTCTT	900
TTTTATGGCT	TTCTGGGAA	AAAATTAAA	AGATATTTTC	TCCAGCTTCT	AAAATATATT	960	
CCCCCAAAAG	CCAAATCCC	CTCAAACCTT	TCAACAAAAA	TGAGCACGCT	TTCCCTACCGC	1020	
CCCTCAGATA	ATGTAAGCTC	ATCCACCAAG	AAGCCTGCAC	CATGTTTGA	GGTTGAGTGA	1080	

(67) INFORMATION FOR SEQ ID NO:66:

10 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 359 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS:
 (D) TOPOLOGY: not relevant

15 (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:

Met	Ile	Leu	Asn	Ser	Ser	Thr	Glu	Asp	Gly	Ile	Lys	Arg	Ile	Gln	Asp		
1																15	
Asp	Cys	Pro	Lys	Ala	Gly	Arg	His	Asn	Tyr	Ile	Phe	Val	Met	Ile	Pro		
20																30	
Thr	Leu	Tyr	Ser	Ile	Ile	Phe	Val	Val	Gly	Ile	Phe	Gly	Asn	Ser	Leu		
35																45	
Val	Val	Ile	Val	Ile	Tyr	Phe	Tyr	Met	Lys	Leu	Lys	Thr	Val	Ala	Ser		
50																60	
25	Val	Phe	Leu	Leu	Asn	Leu	Ala	Leu	Ala	Asp	Leu	Cys	Phe	Leu	Leu	Thr	
65																80	
	Leu	Pro	Leu	Trp	Ala	Val	Tyr	Thr	Ala	Met	Glu	Tyr	Arg	Trp	Pro	Phe	
85																95	
30	Gly	Asn	Tyr	Leu	Cys	Lys	Ile	Ala	Ser	Ala	Ser	Val	Ser	Phe	Asn	Leu	
	100															110	
	Tyr	Ala	Ser	Val	Phe	Leu	Leu	Thr	Cys	Leu	Ser	Ile	Asp	Arg	Tyr	Leu	
115																125	
	Ala	Ile	Val	His	Pro	Met	Lys	Ser	Arg	Leu	Arg	Arg	Thr	Met	Leu	Val	

- 59 -

	130	135	140	
	Ala Lys Val Thr Cys Ile Ile Trp Leu Leu Ala Gly Leu Ala Ser			
	145	150	155	160
	Leu Pro Ala Ile Ile His Arg Asn Val Phe Phe Ile Glu Asn Thr Asn			
5	165	170	175	
	Ile Thr Val Cys Ala Phe His Tyr Glu Ser Gln Asn Ser Thr Leu Pro			
	180	185	190	
	Ile Gly Leu Gly Leu Thr Lys Asn Ile Leu Gly Phe Leu Phe Pro Phe			
	195	200	205	
10	Leu Ile Ile Leu Thr Ser Tyr Thr Leu Ile Trp Lys Ala Leu Lys Lys			
	210	215	220	
	Ala Tyr Glu Ile Gln Lys Asn Lys Pro Arg Asn Asp Asp Ile Phe Lys			
	225	230	235	240
	Ile Ile Met Ala Ile Val Leu Phe Phe Phe Ser Trp Ile Pro His			
15	245	250	255	
	Gln Ile Phe Thr Phe Leu Asp Val Leu Ile Gln Leu Gly Ile Ile Arg			
	260	265	270	
	Asp Cys Arg Ile Ala Asp Ile Val Asp Thr Ala Met Pro Ile Thr Ile			
	275	280	285	
20	Cys Ile Ala Tyr Phe Asn Asn Cys Leu Asn Pro Leu Phe Tyr Gly Phe			
	290	295	300	
	Leu Gly Lys Lys Phe Lys Arg Tyr Phe Leu Gln Leu Leu Lys Tyr Ile			
	305	310	315	320
	Pro Pro Lys Ala Lys Ser His Ser Asn Leu Ser Thr Lys Met Ser Thr			
25	325	330	335	
	Leu Ser Tyr Arg Pro Ser Asp Asn Val Ser Ser Ser Thr Lys Lys Pro			
	340	345	350	
	Ala Pro Cys Phe Glu Val Glu			
	355			
30	(68) INFORMATION FOR SEQ ID NO:67:			

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 27 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

- 60 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:67:

ACCATGGGCA GCCCCTGGAA CGGCAGC

27

(69) INFORMATION FOR SEQ ID NO:68:

(i) SEQUENCE CHARACTERISTICS:

5 (A) LENGTH: 39 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:

AGAACCCACCA CCAGCAGGAC GCGGACGGTC TGCCGGTGG

39

(70) INFORMATION FOR SEQ ID NO:69:

(i) SEQUENCE CHARACTERISTICS:

15 (A) LENGTH: 39 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:

20 GTCCGCGTCC TGCTGGTGGT GGTTCTGGCA TTTATAATT

39

(71) INFORMATION FOR SEQ ID NO:70:

(i) SEQUENCE CHARACTERISTICS:

25 (A) LENGTH: 33 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:70:

CCTGGATCCT TATCCCACCG TCTTCACGTT AGC

33

30 (72) INFORMATION FOR SEQ ID NO:71:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 26 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single

- 61 -

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:

5 CTGGAATTCT CCTGCCAGCA TGGTGA

26

(73) INFORMATION FOR SEQ ID NO:72:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 30 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: YES

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:

GCAGGATCCT ATATTGCGTG CTCTGTCCCC

30

(74) INFORMATION FOR SEQ ID NO:73:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 999 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:

ATGGTGAAC	CCACCCACCG	TGGGATGCAC	ACTTCTCTGC	ACCTCTGGAA	CCGCAGCAGT	60
-----------	------------	------------	------------	------------	------------	----

TACAGACTGC	ACAGCAATGC	CAGTGAGTCC	CTTGGAAAAG	GCTACTCTGA	TGGAGGGTGC	120
------------	------------	------------	------------	------------	------------	-----

TACGAGCAAC	TTTTGTCTC	TCCTGAGGTG	TTTGTGACTC	TGGGTGTCAT	CAGCTTGTG	180
------------	-----------	------------	------------	------------	-----------	-----

GAGAATATCT	TAGTGATTGT	GGCAATAGCC	AAGAACAAAGA	ATCTGCATTC	ACCCATGTAC	240
------------	------------	------------	-------------	------------	------------	-----

30 TTTTCATCT	GCAGCTTGGC	TGTGGCTGAT	ATGCTGGTGA	GCGTTCAA	TGGATCAGAA	300
--------------	------------	------------	------------	----------	------------	-----

ACCATTATCA	TCACCCATT	AAACAGTACA	GATA CGGATG	CACAGAGTTT	CACAGTGAAT	360
------------	-----------	------------	-------------	------------	------------	-----

ATTGATAATG	TCATTGACTC	GGTGATCTGT	AGCTCCTTGC	TTGCATCCAT	TTGCAGCCTG	420
------------	------------	------------	------------	------------	------------	-----

- 62 -

	CTTTCAATTG CAGTGGACAG GTACTTTACT ATCTTCTATG CTCTCCAGTA CCATAACATT	480
	ATGACAGTTA AGCGGGTTGG GATCAGCATA AGTTGTATCT GGGCAGCTTG CACGGTTCA	540
	GGCATTGGT TCATCATTAA CTCAGATAGT AGTGCTGTCA TCATCTGCCT CATCACCATG	600
	TTCTTCACCA TGCTGGCTCT CATGGCTTCT CTCTATGTCC ACATGTTCC GATGGCCAGG	660
5	CTTCACATTA AGAGGATTGC TGTCCCTCCCC GGCACTGGTG CCATCCGCCA AGGTGCCAAT	720
	ATGAAGGGAG CGATTACCTT GACCATCCTG ATTGGCGTCT TTGTTGTCTG CTGGGCCCA	780
	TTCTTCCTCC ACTTAATATT CTACATCTCT TGTCCCTCAGA ATCCATATTG TGTGTGCTTC	840
	ATGTCTCACT TTAACTTGTA TCTCATACTG ATCATGTGTA ATTCAATCAT CGATCCTCTG	900
	ATTATGCAC TCCGGAGTCA AGAACTGAGG AAAACCTTCA AAGAGATCAT CTGTTGCTAT	960
10	CCCCTGGGAG GCCTTTGTGA CTTGTCTAGC AGATATTAA	999

(75) INFORMATION FOR SEQ ID NO:74:

	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 332 amino acids
	(B) TYPE: amino acid
15	(C) STRANDEDNESS:
	(D) TOPOLOGY: not relevant
	(ii) MOLECULE TYPE: protein
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:
20	Met Val Asn Ser Thr His Arg Gly Met His Thr Ser Leu His Leu Trp 1 5 10 15
	Asn Arg Ser Ser Tyr Arg Leu His Ser Asn Ala Ser Glu Ser Leu Gly 20 25 30
	Lys Gly Tyr Ser Asp Gly Gly Cys Tyr Glu Gln Leu Phe Val Ser Pro 35 40 45
25	Glu Val Phe Val Thr Leu Gly Val Ile Ser Leu Leu Glu Asn Ile Leu 50 55 60
	Val Ile Val Ala Ile Ala Lys Asn Lys Asn Leu His Ser Pro Met Tyr 65 70 75 80
30	Phe Phe Ile Cys Ser Leu Ala Val Ala Asp Met Leu Val Ser Val Ser 85 90 95
	Asn Gly Ser Glu Thr Ile Ile Thr Leu Leu Asn Ser Thr Asp Thr 100 105 110
	Asp Ala Gln Ser Phe Thr Val Asn Ile Asp Asn Val Ile Asp Ser Val

- 63 -

	115	120	125
	Ile Cys Ser Ser Leu Leu Ala Ser Ile Cys Ser Leu Leu Ser Ile Ala		
	130	135	140
5	Val Asp Arg Tyr Phe Thr Ile Phe Tyr Ala Leu Gln Tyr His Asn Ile		
	145	150	155
	Met Thr Val Lys Arg Val Gly Ile Ser Ile Ser Cys Ile Trp Ala Ala		
	165	170	175
	Cys Thr Val Ser Gly Ile Leu Phe Ile Ile Tyr Ser Asp Ser Ser Ala		
	180	185	190
10	Val Ile Ile Cys Leu Ile Thr Met Phe Phe Thr Met Leu Ala Leu Met		
	195	200	205
	Ala Ser Leu Tyr Val His Met Phe Leu Met Ala Arg Leu His Ile Lys		
	210	215	220
15	Arg Ile Ala Val Leu Pro Gly Thr Gly Ala Ile Arg Gln Gly Ala Asn		
	225	230	235
	Met Lys Gly Ala Ile Thr Leu Thr Ile Leu Ile Gly Val Phe Val Val		
	245	250	255
	Cys Trp Ala Pro Phe Phe Leu His Leu Ile Phe Tyr Ile Ser Cys Pro		
	260	265	270
20	Gln Asn Pro Tyr Cys Val Cys Phe Met Ser His Phe Asn Leu Tyr Leu		
	275	280	285
	Ile Leu Ile Met Cys Asn Ser Ile Ile Asp Pro Leu Ile Tyr Ala Leu		
	290	295	300
25	Arg Ser Gln Glu Leu Arg Lys Thr Phe Lys Glu Ile Ile Cys Cys Tyr		
	305	310	315
	Pro Leu Gly Gly Leu Cys Asp Leu Ser Ser Arg Tyr		
	325	330	

(76) INFORMATION FOR SEQ ID NO:75:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 32 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:75:

CCGAAGCTTC GAGCTGAGTA AGGCAGCGGG CT

- 64 -

(77) INFORMATION FOR SEQ ID NO:76:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 31 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

5 (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:76:

GTGGAATTCA TTTGCCCTGC CTCAACCCCC A

31

10 (78) INFORMATION FOR SEQ ID NO:77:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1344 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

15 (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:

ATGGAGCTGC TAAAGCTGAA CCGGAGCGTG CAGGGAACCG GACCCGGGCC GGGGGCTTCC

60

CTGTGCCGCC CGGGGGCGCC TCTCCTCAAC AGCAGCAGTG TGGCAACCT CAGCTGCGAG

120

20 CCCCCTCGCA TTCGCGGAGC CGGGACACGA GAATTGGAGC TGGCCATTAG AATCACTCTT

180

TACGCAGTGA TCTTCCTGAT GAGCGTTGGA GGAAATATGC TCATCATCGT GGTCTGGGA

240

CTGAGCCGCC GCCTGAGGAC TGTCACCAAT GCCTTCCTCC TCTCACTGGC AGTCAGCGAC

300

CTCCTGCTGG CTGTGGCTTG CATGCCCTTC ACCCTCCTGC CCAATCTCAT GGGCACATTG

360

ATCTTGGA CCGTCATCTG CAAGGCGGTT TCCTACCTCA TGGGGGTGTC TGTGAGTGTG

420

25 TCCACGCTAA GCCTCGTGGC CATCGCACTG GAGCGATATA GCGCCATCTG CCGACCACTG

480

CAGGCACGAG TGTGGCAGAC GCGCTCCAC GCGGCTCGCG TGATTGTAGC CACGTGGCTG

540

CTGTCCGGAC TACTCATGGT GCCCTACCCC GTGTACACTG TCGTGCAACC AGTGGGGCCT

600

CGTGTGCTGC AGTGCCTGCA TCGCTGGCCC AGTGCCTGGG TCCGCCAGAC CTGGTCCGTA

660

CTGCTGCTTC TGCTCTTGTGTT CTTCATCCCA GGTGTGGTTA TGGCCGTGGC CTACGGGCTT

720

30 ATCTCTCGCG AGCTCTACTT AGGGCTTCGC TTTGACGGCG ACAGTGACAG CGACAGCAA

780

AGCAGGGTCC GAAACCAAGG CGGGCTGCCA GGGGCTGTTC ACCAGAACGG GCGTTGCCGG

840

- 65 -

CCTGAGACTG	GCGCGGTTGG	CAAAGACAGC	GATGGCTGCT	ACGTGCAACT	TCCACGTTCC	900	
CGGCCTGCC	TGGAGCTGAC	GGCGCTGACG	GCTCCTGGGC	CGGGATCCGG	CTCCCGGCC	960	
ACCCAGGCCA	AGCTGCTGGC	TAAGAAGCGC	GTGGTGCAGA	TGTTGCTGGT	GATCGTTGTG	1020	
CTTTTTTTTC	TGTGTTGGTT	GCCAGTTAT	AGTGCCAAACA	CGTGGCGCGC	CTTTGATGGC	1080	
5	CGGGGTGCAC	ACCGAGCACT	CTCGGGTGCT	CCTATCTCCT	TCATTCACTT	GCTGAGCTAC	1140
	GCCTCGGCCT	GTGTCAACCC	CCTGGTCTAC	TGCTTCATGC	ACCGTCGCTT	TCGCCAGGCC	1200
	TGCCTGGAAA	CTTGCCTCG	CTGCTGCC	CGGCCTCCAC	GAGCTGCC	CAGGGCTCTT	1260
	CCCGATGAGG	ACCCTCCCAC	TCCCTCCATT	GCTTCGCTGT	CCAGGCTTAG	CTACACCACC	1320
	ATCAGCACAC	TGGGCCCTGG	CTGA				1344

10 (79) INFORMATION FOR SEQ ID NO:78:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 447 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:

15 (D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:

Met	Glu	Leu	Leu	Lys	Leu	Asn	Arg	Ser	Val	Gln	Gly	Thr	Gly	Pro	Gly	
1					5					10				15		
20	Pro	Gly	Ala	Ser	Leu	Cys	Arg	Pro	Gly	Ala	Pro	Leu	Leu	Asn	Ser	Ser
					20				25				30			
	Ser	Val	Gly	Asn	Leu	Ser	Cys	Glu	Pro	Pro	Arg	Ile	Arg	Gly	Ala	Gly
					35			40				45				
25	Thr	Arg	Glu	Leu	Glu	Leu	Ala	Ile	Arg	Ile	Thr	Leu	Tyr	Ala	Val	Ile
					50			55				60				
	Phe	Leu	Met	Ser	Val	Gly	Gly	Asn	Met	Leu	Ile	Ile	Val	Val	Leu	Gly
					65			70			75			80		
	Leu	Ser	Arg	Arg	Leu	Arg	Thr	Val	Thr	Asn	Ala	Phe	Leu	Leu	Ser	Leu
					85			90			95					
30	Ala	Val	Ser	Asp	Leu	Leu	Ala	Val	Ala	Cys	Met	Pro	Phe	Thr	Leu	
					100			105			110					
	Leu	Pro	Asn	Leu	Met	Gly	Thr	Phe	Ile	Phe	Gly	Thr	Val	Ile	Cys	Lys
					115			120			125					

- 66 -

	Ala Val Ser Tyr Leu Met Gly Val Ser Val Ser Val Ser Thr Leu Ser			
	130	135	140	
	Leu Val Ala Ile Ala Leu Glu Arg Tyr Ser Ala Ile Cys Arg Pro Leu			
	145	150	155	160
5	Gln Ala Arg Val Trp Gln Thr Arg Ser His Ala Ala Arg Val Ile Val			
	165	170	175	
	Ala Thr Trp Leu Leu Ser Gly Leu Leu Met Val Pro Tyr Pro Val Tyr			
	180	185	190	
10	Thr Val Val Gln Pro Val Gly Pro Arg Val Leu Gln Cys Val His Arg			
	195	200	205	
	Trp Pro Ser Ala Arg Val Arg Gln Thr Trp Ser Val Leu Leu Leu Leu			
	210	215	220	
	Leu Leu Phe Phe Ile Pro Gly Val Val Met Ala Val Ala Tyr Gly Leu			
	225	230	235	240
15	Ile Ser Arg Glu Leu Tyr Leu Gly Leu Arg Phe Asp Gly Asp Ser Asp			
	245	250	255	
	Ser Asp Ser Gln Ser Arg Val Arg Asn Gln Gly Gly Leu Pro Gly Ala			
	260	265	270	
20	Val His Gln Asn Gly Arg Cys Arg Pro Glu Thr Gly Ala Val Gly Lys			
	275	280	285	
	Asp Ser Asp Gly Cys Tyr Val Gln Leu Pro Arg Ser Arg Pro Ala Leu			
	290	295	300	
	Glu Leu Thr Ala Leu Thr Ala Pro Gly Pro Gly Ser Gly Ser Arg Pro			
	305	310	315	320
25	Thr Gln Ala Lys Leu Leu Ala Lys Lys Arg Val Val Arg Met Leu Leu			
	325	330	335	
	Val Ile Val Val Leu Phe Leu Cys Trp Leu Pro Val Tyr Ser Ala			
	340	345	350	
30	Asn Thr Trp Arg Ala Phe Asp Gly Pro Gly Ala His Arg Ala Leu Ser			
	355	360	365	
	Val Ala Pro Ile Ser Phe Ile His Leu Leu Ser Tyr Ala Ser Ala Cys			
	370	375	380	
	Val Asn Pro Leu Val Tyr Cys Phe Met His Arg Arg Phe Arg Gln Ala			
	385	390	395	400
35	Cys Leu Glu Thr Cys Ala Arg Cys Cys Pro Arg Pro Pro Arg Ala Arg			
	405	410	415	
	Pro Arg Ala Leu Pro Asp Glu Asp Pro Pro Thr Pro Ser Ile Ala Ser			

- 67 -

420

425

430

Leu	Ser	Arg	Leu	Ser	Tyr	Thr	Thr	Ile	Ser	Thr	Leu	Gly	Pro	Gly
435								440					445	

(80) INFORMATION FOR SEQ ID NO:79:

5 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 30 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

10 (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:79:

TGCAAGCTTA AAAAGGAAAA AATGAACAGC

30

(81) INFORMATION FOR SEQ ID NO:80:

15 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 30 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:80:

TAAGGATCCC TTCCCTTCAA AACATCCTTG

30

(82) INFORMATION FOR SEQ ID NO:81:

25 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1014 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:81:

30 ATGAACAGCA CATGTATTGA AGAACAGCAT GACCTGGATC ACTATTGTT TCCCATTGTT	60
TACATCTTTG TGATTATAAGT CAGCATTCCA GCCAATATTG GATCTCTGTG TGTGTCTTTC	120
CTGCAACCCA AGAAGGAAAG TGAACTAGGA ATTACCTCT TCAGTTGTC ACTATCAGAT	180
TTACTCTATG CATTAACCTCT CCCTTTATGG ATTGATTATA CTTGGAATAA AGACAACCTGG	240

- 68 -

ACTTTCTCTC	CTGCCTTGTG	CAAAGGGAGT	GCTTTCTCA	TGTACATGAA	GTTTTACAGC	300	
AGCACAGCAT	TCCTCACCTG	CATTGCCGT	GATCGGTATT	TGGCTGTGT	CTACCCTTTG	360	
AAGTTTTTTT	TCCTAAGGAC	AAGAAGAATT	GCACTCATGG	TCAGCCTGTC	CATCTGGATA	420	
TTGGAAACCA	TCTTCAATGC	TGTCATGTTG	TGGGAAGATG	AAACAGTTGT	TGAATATTGC	480	
5	GATGCCGAAA	AGTCTAATTT	TACTTTATGC	TATGACAAAT	ACCCTTTAGA	GAAATGGCAA	540
ATCAACCTCA	ACTTGTTCAG	GACGTGTACA	GGCTATGCAA	TACCTTTGGT	CACCATCCTG	600	
ATCTGTAACC	GGAAAGTCTA	CCAAGCTGTG	CGGCACAATA	AAGCCACGGA	AAACAAGGAA	660	
AAGAAGAGAA	TCATAAAACT	ACTTGTCAAGC	ATCACAGTTA	CTTTTGTCTT	ATGCTTTACT	720	
CCCTTTCATG	TGATGTTGCT	GATTGCGCTGC	ATTTTAGAGC	ATGCTGTGAA	CTTCGAAGAC	780	
10	CACAGCAATT	CTGGGAAGCG	AACTTACACA	ATGTATAGAA	TCACGGTTGC	ATTAACAAGT	840
TTAAATTGTG	TTGCTGATCC	AATTCTGTAC	TGTTTGTTA	CCGAAACAGG	AAGATATGAT	900	
ATGTGGAATA	TATTAAAATT	CTGCACTGGG	AGGTGTAATA	CATCACAAAG	ACAAAGAAAA	960	
CGCATACTTT	CTGTGTCTAC	AAAAGATACT	ATGGAATTAG	AGGTCCCTTGA	GTAG	1014	

(83) INFORMATION FOR SEQ ID NO:82:

15 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 337 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant

20 (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:82:

Met	Asn	Ser	Thr	Cys	Ile	Glu	Glu	Gln	His	Asp	Leu	Asp	His	Tyr	Leu	
1					5				10					15		
25	Phe	Pro	Ile	Val	Tyr	Ile	Phe	Val	Ile	Ile	Val	Ser	Ile	Pro	Ala	Asn
					20			25					30			
	Ile	Gly	Ser	Leu	Cys	Val	Ser	Phe	Leu	Gln	Pro	Lys	Lys	Glu	Ser	Glu
					35			40				45				
	Leu	Gly	Ile	Tyr	Leu	Phe	Ser	Leu	Ser	Leu	Ser	Asp	Leu	Tyr	Ala	
					50			55				60				
30	Leu	Thr	Leu	Pro	Leu	Trp	Ile	Asp	Tyr	Thr	Trp	Asn	Lys	Asp	Asn	Trp
					65			70			75		80			
	Thr	Phe	Ser	Pro	Ala	Leu	Cys	Lys	Gly	Ser	Ala	Phe	Leu	Met	Tyr	Met

- 69 -

	85	90	95
	Lys Phe Tyr Ser Ser Thr Ala Phe Leu Thr Cys Ile Ala Val Asp Arg		
	100	105	110
5	Tyr Leu Ala Val Val Tyr Pro Leu Lys Phe Phe Phe Leu Arg Thr Arg		
	115	120	125
	Arg Ile Ala Leu Met Val Ser Leu Ser Ile Trp Ile Leu Glu Thr Ile		
	130	135	140
	Phe Asn Ala Val Met Leu Trp Glu Asp Glu Thr Val Val Glu Tyr Cys		
	145	150	155
10	Asp Ala Glu Lys Ser Asn Phe Thr Leu Cys Tyr Asp Lys Tyr Pro Leu		
	165	170	175
	Glu Lys Trp Gln Ile Asn Leu Asn Leu Phe Arg Thr Cys Thr Gly Tyr		
	180	185	190
15	Ala Ile Pro Leu Val Thr Ile Leu Ile Cys Asn Arg Lys Val Tyr Gln		
	195	200	205
	Ala Val Arg His Asn Lys Ala Thr Glu Asn Lys Glu Lys Lys Arg Ile		
	210	215	220
	Ile Lys Leu Leu Val Ser Ile Thr Val Thr Phe Val Leu Cys Phe Thr		
	225	230	235
20	Pro Phe His Val Met Leu Leu Ile Arg Cys Ile Leu Glu His Ala Val		
	245	250	255
	Asn Phe Glu Asp His Ser Asn Ser Gly Lys Arg Thr Tyr Thr Met Tyr		
	260	265	270
25	Arg Ile Thr Val Ala Leu Thr Ser Leu Asn Cys Val Ala Asp Pro Ile		
	275	280	285
	Leu Tyr Cys Phe Val Thr Glu Thr Gly Arg Tyr Asp Met Trp Asn Ile		
	290	295	300
	Leu Lys Phe Cys Thr Gly Arg Cys Asn Thr Ser Gln Arg Gln Arg Lys		
	305	310	315
30	Arg Ile Leu Ser Val Ser Thr Lys Asp Thr Met Glu Leu Glu Val Leu		
	325	330	335
	Glu		

(84) INFORMATION FOR SEQ ID NO:83:

35 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 40 base pairs
- (B) TYPE: nucleic acid

- 70 -

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:83:

5 CAGGAAGAAG AAACCGAGCTG TCATTATGAT GGTGACAGTG
40

(85) INFORMATION FOR SEQ ID NO:84:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 40 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:84:

15 CACTGTCACC ATCATAATGA CAGCTCGTTT CTTCTTCCTG
40

(86) INFORMATION FOR SEQ ID NO:85:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:85:

25 GCCCACCGGC AGACCAAACG CGTCCTGCTG
30

(87) INFORMATION FOR SEQ ID NO:86:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 31 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:86:

- 71 -

CTCCTTCGGT CCTCCTATCG TTGTCAGAAG T
31

(88) INFORMATION FOR SEQ ID NO:87:

5 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 37 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:87:

GGAAAAGAAG AGAACAAAAA AACTACTTGT CAGCATC

37

(89) INFORMATION FOR SEQ ID NO:88:

15 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 31 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:88:

20 CTCCTTCGGT CCTCCTATCG TTGTCAGAAG T

31

(90) INFORMATION FOR SEQ ID NO:89:

25 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1080 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:89:

ATGATTCTCA ACTCTTCTAC TGAAGATGGT ATTAAAAGAA TCCAAGATGA TTGTCCAAA 60

30 GCTGGAAGGC ATAATTACAT ATTTGTCATG ATTCCTACTT TATACAGTAT CATCTTG TG 120

GTGGGAATAT TTGGAAACAG CTTGGTGGTG ATAGTCATT ACTTTATAT GAAGCTGAAG 180

ACTGTGGCCA GTGTTTTCT TTTGAATTAA GCACTGGCTG ACTTATGCTT TTTACTGACT 240

TTGCCACTAT GGGCTGTCTA CACAGCTATG GAATACCGCT GGCCCTTG GG CAATTACCTA 300

- 72 -

TGTAAGATTG	CTTCAGCCAG	CGTCAGTTTC	AACCTGTACG	CTAGTGTGTT	TCTACTCACG	360	
TGTCTCAGCA	TTGATCGATA	CCTGGCTATT	GTTCACCCAA	TGAAGTCCCG	CCTTCGACGC	420	
ACAATGCTTG	TAGCCAAAGT	CACCTGCATC	ATCATTGGC	TGCTGGCAGG	CTTGGCCAGT	480	
TTGCCAGCTA	TAATCCATCG	AAATGTATTT	TTCATTGAGA	ACACCAATAT	TACAGTTTGT	540	
5	GCTTCCATT	ATGAGTCCA	AAATTCAACC	CTTCCGATAG	GGCTGGGCCT	GACCAAAAAT	600
	ATACTGGGTT	TCCTGTTCC	TTTCTGATC	ATTCTTACAA	GTTATACTCT	TATTTGGAAG	660
	GCCCTAAAGA	AGGCTTATGA	AATTCAAG	AACAAACCAA	GAAATGATGA	TATTAAGAAG	720
	ATAATTATGG	CAATTGTGCT	TTTCTTTTC	TTTCCTGGA	TTCCCCACCA	AATATTCACT	780
	TTTCTGGATG	TATTGATTCA	ACTAGGCATC	ATACGTGACT	GTAGAATTGC	AGATATTGTG	840
10	GACACGGCCA	TGCCTATCAC	CATTTGTATA	GCTTATTTTA	ACAATTGCCT	GAATCCTCTT	900
	TTTTATGGCT	TTCTGGGAA	AAAATTAAA	AGATATTTTC	TCCAGCTTCT	AAAATATATT	960
	CCCCCAAAAG	CCAAATCCA	CTCAAACCTT	TCAACAAAAA	TGAGCACGCT	TTCCCTACCGC	1020
	CCCTCAGATA	ATGTAAGCTC	ATCCACCAAG	AAGCCTGCAC	CATGTTTGA	GGTTGAGTGA	1080

(91) INFORMATION FOR SEQ ID NO:90:

15 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 359 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant

20 (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:90:

Met	Ile	Leu	Asn	Ser	Ser	Thr	Glu	Asp	Gly	Ile	Lys	Arg	Ile	Gln	Asp	
1										10					15	
	Asp	Cys	Pro	Lys	Ala	Gly	Arg	His	Asn	Tyr	Ile	Phe	Val	Met	Ile	Pro
25											20	25		30		
	Thr	Leu	Tyr	Ser	Ile	Ile	Phe	Val	Val	Gly	Ile	Phe	Gly	Asn	Ser	Leu
										35	40		45			
	Val	Val	Ile	Val	Ile	Tyr	Phe	Tyr	Met	Lys	Leu	Lys	Thr	Val	Ala	Ser
30										50	55		60			
	Val	Phe	Leu	Leu	Asn	Leu	Ala	Leu	Ala	Asp	Leu	Cys	Phe	Leu	Leu	Thr
65										70		75		80		
	Leu	Pro	Leu	Trp	Ala	Val	Tyr	Thr	Ala	Met	Glu	Tyr	Arg	Trp	Pro	Phe

- 73 -

	85	90	95
	Gly Asn Tyr Leu Cys Lys Ile Ala Ser Ala Ser Val Ser Phe Asn Leu		
	100	105	110
	Tyr Ala Ser Val Phe Leu Leu Thr Cys Leu Ser Ile Asp Arg Tyr Leu		
5	115	120	125
	Ala Ile Val His Pro Met Lys Ser Arg Leu Arg Arg Thr Met Leu Val		
	130	135	140
	Ala Lys Val Thr Cys Ile Ile Trp Leu Leu Ala Gly Leu Ala Ser		
	145	150	155
	Leu Pro Ala Ile Ile His Arg Asn Val Phe Phe Ile Glu Asn Thr Asn		
10	165	170	175
	Ile Thr Val Cys Ala Phe His Tyr Glu Ser Gln Asn Ser Thr Leu Pro		
	180	185	190
	Ile Gly Leu Gly Leu Thr Lys Asn Ile Leu Gly Phe Leu Phe Pro Phe		
15	195	200	205
	Leu Ile Ile Leu Thr Ser Tyr Thr Leu Ile Trp Lys Ala Leu Lys Lys		
	210	215	220
	Ala Tyr Glu Ile Gln Lys Asn Lys Pro Arg Asn Asp Asp Ile Lys Lys		
	225	230	235
	Ile Ile Met Ala Ile Val Leu Phe Phe Phe Ser Trp Ile Pro His		
20	245	250	255
	Gln Ile Phe Thr Phe Leu Asp Val Leu Ile Gln Leu Gly Ile Ile Arg		
	260	265	270
	Asp Cys Arg Ile Ala Asp Ile Val Asp Thr Ala Met Pro Ile Thr Ile		
25	275	280	285
	Cys Ile Ala Tyr Phe Asn Asn Cys Leu Asn Pro Leu Phe Tyr Gly Phe		
	290	295	300
	Leu Gly Lys Lys Phe Lys Arg Tyr Phe Leu Gln Leu Leu Lys Tyr Ile		
	305	310	315
	Pro Pro Lys Ala Lys Ser His Ser Asn Leu Ser Thr Lys Met Ser Thr		
30	325	330	335
	Leu Ser Tyr Arg Pro Ser Asp Asn Val Ser Ser Ser Thr Lys Lys Pro		
	340	345	350
	Ala Pro Cys Phe Glu Val Glu		
35	355		

- 74 -

5 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 35 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:91:

CCAAGAAATG ATGATATTAA AAAGATAATT ATGGC

35

(93) INFORMATION FOR SEQ ID NO:92:

10 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 31 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

15 (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:92:

CTCCTTCGGT CCTCCTATCG TTGTCAGAAG T

31

(94) INFORMATION FOR SEQ ID NO:93:

20 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1080 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:93:

ATGATTCTCA ACTCTTCTAC TGAAGATGGT ATTAAAAGAA TCCAAGATGA TTGTCCAAA

60

GCTGGAAGGC ATAATTACAT ATTTGTCATG ATTCTACTT TATACAGTAT CATCTTG TG

120

GTGGGAATAT TTGGAACAG CTTGGTGGTG ATAGTCATTT ACTTTATAT GAAGCTGAAG

180

ACTGTGGCCA GTGTTTTCT TTTGAATTAA GCACTGGCTG ACTTATGCTT TTTACTGACT

240

30 TTGCCACTAT GGGCTGTCTA CACAGCTATG GAATACCGCT GGCCCTTG CAATTACCTA

300

TGTAAGATG CTTCAGCCAG CGTCAGTTTC GCCCTGTACG CTAGTGTGTT TCTACTCACG

360

TGTCTCAGCA TTGATCGATA CCTGGCTATT GTTCACCCAA TGAAGTCCCG CCTTCGACGC

420

- 75 -

ACAATGCTTG	TAGCCAAAGT	CACCTGCATC	ATCATTGGC	TGCTGGCAGG	CTTGGCCAGT	480	
TTGCCAGCTA	TAATCCATCG	AAATGTATT	TTCAATTGAGA	ACACCAATAT	TACAGTTGT	540	
GCTTTCCATT	ATGAGTCCC	AAATTCAACC	CTTCGATAG	GGCTGGGCCT	GACCAAAAAT	600	
ATACTGGTT	TCCTGTTCC	TTTCTGATC	ATTCTTACAA	GTTATACTCT	TATTGGAAG	660	
5	GCCCTAAAGA	AGGCTTATGA	AATTAGAAG	AACAAACCAA	GAAATGATGA	TATTTTAAG	720
ATAATTATGG	CAATTGTGCT	TTTCTTTTC	TTTCCTGGA	TTCCCCACCA	AATATTCACT	780	
TTTCTGGATG	TATTGATTCA	ACTAGGCATC	ATACGTGACT	GTAGAATTGC	AGATATTGTG	840	
GACACGGCCA	TGCCTATCAC	CATTTGTATA	GCTTATTTA	ACAATTGCCT	GAATCCTCTT	900	
TTTTATGGCT	TTCTGGGAA	AAAATTAAA	AGATATTTTC	TCCAGCTTCT	AAAATATATT	960	
10	CCCCCAAAG	CCAAATCCC	CTCAAACCTT	TCAACAAAAA	TGAGCACGCT	TTCCCTACCGC	1020
	CCCTCAGATA	ATGTAAGCTC	ATCCACCAAG	AAGCCTGCAC	CATGTTTGA	GGTTGAGTGA	1080

(95) INFORMATION FOR SEQ ID NO:94:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 359 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:94:

20	Met Ile Leu Asn Ser Ser Thr Glu Asp Gly Ile Lys Arg Ile Gln Asp					
	1	5	10	15		
	Asp Cys Pro Lys Ala Gly Arg His Asn Tyr Ile Phe Val Met Ile Pro					
	20	25	30			
25	Thr Leu Tyr Ser Ile Ile Phe Val Val Gly Ile Phe Gly Asn Ser Leu					
	35	40	45			
	Val Val Ile Val Ile Tyr Phe Tyr Met Lys Leu Lys Thr Val Ala Ser					
	50	55	60			
	Val Phe Leu Leu Asn Leu Ala Leu Ala Asp Leu Cys Phe Leu Leu Thr					
	65	70	75	80		
30	Leu Pro Leu Trp Ala Val Tyr Thr Ala Met Glu Tyr Arg Trp Pro Phe					
	85	90	95			
	Gly Asn Tyr Leu Cys Lys Ile Ala Ser Ala Ser Val Ser Phe Ala Leu					

- 76 -

	100	105	110
	Tyr Ala Ser Val Phe Leu Leu Thr Cys Leu Ser Ile Asp Arg Tyr Leu		
	115	120	125
	Ala Ile Val His Pro Met Lys Ser Arg Leu Arg Arg Thr Met Leu Val		
5	130	135	140
	Ala Lys Val Thr Cys Ile Ile Trp Leu Leu Ala Gly Leu Ala Ser		
	145	150	155
	Leu Pro Ala Ile Ile His Arg Asn Val Phe Phe Ile Glu Asn Thr Asn		
	165	170	175
10	Ile Thr Val Cys Ala Phe His Tyr Glu Ser Gln Asn Ser Thr Leu Pro		
	180	185	190
	Ile Gly Leu Gly Leu Thr Lys Asn Ile Leu Gly Phe Leu Phe Pro Phe		
	195	200	205
15	Leu Ile Ile Leu Thr Ser Tyr Thr Leu Ile Trp Lys Ala Leu Lys Lys		
	210	215	220
	Ala Tyr Glu Ile Gln Lys Asn Lys Pro Arg Asn Asp Asp Ile Phe Lys		
	225	230	235
	Ile Ile Met Ala Ile Val Leu Phe Phe Phe Ser Trp Ile Pro His		
	245	250	255
20	Gln Ile Phe Thr Phe Leu Asp Val Leu Ile Gln Leu Gly Ile Ile Arg		
	260	265	270
	Asp Cys Arg Ile Ala Asp Ile Val Asp Thr Ala Met Pro Ile Thr Ile		
	275	280	285
25	Cys Ile Ala Tyr Phe Asn Asn Cys Leu Asn Pro Leu Phe Tyr Gly Phe		
	290	295	300
	Leu Gly Lys Lys Phe Lys Arg Tyr Phe Leu Gln Leu Leu Lys Tyr Ile		
	305	310	315
	Pro Pro Lys Ala Lys Ser His Ser Asn Leu Ser Thr Lys Met Ser Thr		
	325	330	335
30	Leu Ser Tyr Arg Pro Ser Asp Asn Val Ser Ser Ser Thr Lys Lys Pro		
	340	345	350
	Ala Pro Cys Phe Glu Val Glu		
	355		

(97) INFORMATION FOR SEQ ID NO:95:

35 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 26 base pairs
 (B) TYPE: nucleic acid

- 77 -

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: NO

5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:95:

CCCAAGCTTC CCCAGGTGTA TTTGAT

26

(97) INFORMATION FOR SEQ ID NO:96:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 29 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: YES

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:96:

CCTGCAGGGCG AAACTGACTC TGGCTGAAG

29

(98) INFORMATION FOR SEQ ID NO:97:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 42 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: NO

25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:97:

CTGTACGCTA GTGTGTTCT ACTCACGTGT CTCAGCATTG AT

42

(99) INFORMATION FOR SEQ ID NO:98:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 26 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

- 78 -

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:98:

GTTGGATCCA CATAATGCAT TTTCTC

26

(100) INFORMATION FOR SEQ ID NO:99:

5 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1080 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

10 (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:99:

ATGATTCTCA ACTCTTCTAC TGAAGATGGT ATTAAAAGAA TCCAAGATGA TTGTCCCAA	60
GCTGGAAGGC ATAATTACAT ATTTGTCATG ATTCCTACTT TATACAGTAT CATCTTGTG	120
GTGGGAATAT TTGGAACAG CTTGGTGGTG ATAGTCATT ACTTTATAT GAAGCTGAAG	180
15 ACTGTGGCCA GTGTTTTCT TTTGAATTAA GCACTGGCTG ACTTATGCTT TTTACTGACT	240
TTGCCACTAT GGGCTGTCTA CACAGCTATG GAATACCGCT GGCCCTTGG CAATTACCTA	300
TGTAAGATTG CTTCAGCCAG CGTCAGTTTC AACCTGTACG CTAGTGTGTT TCTACTCACG	360
TGTCTCAGCA TTGATCGATA CCTGGCTATT GTTCACCCAA TGAAGTCCCG CCTTCGACGC	420
ACAATGCTTG TAGCCAAAGT CACCTGCATC ATCATTGGC TGCTGGCAGG CTTGCCAGT	480
20 TTGCCAGCTA TAATCCATCG AAATGTATT TTCATTGAGA ACACCAATAT TACAGTTGT	540
GCTTCCATT ATGAGTCCC AAATTCAACC CTTCCGATAG GGCTGGCCT GACCAAAAT	600
ATACTGGTT TCCTGTTCC TTTCTGATC ATTCTTACAA GTTATTTGG AATTCGAAAA	660
CACTTACTGA AGACGAATAG CTATGGAAG AACAGGATAA CCCGTGACCA AGTTAAGAAG	720
ATAATTATGG CAATTGTGCT TTTCTTTTC TTTCTGATC TTCCCCACCA AATATTCACT	780
25 TTTCTGGATG TATTGATTCA ACTAGGCATC ATACGTGACT GTAGAATTGC AGATATTGTG	840
GACACGGCCA TGCCTATCAC CATTGTATA GCTTATTAA ACAATTGCCT GAATCCTCTT	900
TTTTATGGCT TTCTGGGGAA AAAATTAAA AGATATTTC TCCAGCTTCT AAAATATATT	960
CCCCCAAAAG CCAAATCCA CTCAAACCTT TCAACAAAAA TGAGCACGCT TTCCTACCGC	1020
CCCTCAGATA ATGTAAGCTC ATCCACCAAG AAGCCTGCAC CATGTTTGA GGTTGAGTGA	1080

- 79 -

(101) INFORMATION FOR SEQ ID NO:100:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 359 amino acids
(B) TYPE: amino acid
5 (C) STRANDEDNESS:
(D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:100:

Met Ile Leu Asn Ser Ser Thr Glu Asp Gly Ile Lys Arg Ile Gln Asp
10 1 5 10 15

Asp Cys Pro Lys Ala Gly Arg His Asn Tyr Ile Phe Val Met Ile Pro
20 20 25 30

Thr Leu Tyr Ser Ile Ile Phe Val Val Gly Ile Phe Gly Asn Ser Leu
35 35 40 45

Val Val Ile Val Ile Tyr Phe Tyr Met Lys Leu Lys Thr Val Ala Ser
15 50 55 60

Val Phe Leu Leu Asn Leu Ala Asp Leu Cys Phe Leu Leu Thr
65 65 70 75 80

Leu Pro Leu Trp Ala Val Tyr Thr Ala Met Glu Tyr Arg Trp Pro Phe
20 85 90 95

Gly Asn Tyr Leu Cys Lys Ile Ala Ser Ala Ser Val Ser Phe Asn Leu
100 100 105 110

Tyr Ala Ser Val Phe Leu Leu Thr Cys Leu Ser Ile Asp Arg Tyr Leu
115 115 120 125

Ala Ile Val His Pro Met Lys Ser Arg Leu Arg Arg Thr Met Leu Val
25 130 135 140

Ala Lys Val Thr Cys Ile Ile Trp Leu Leu Ala Gly Leu Ala Ser
145 145 150 155 160

Leu Pro Ala Ile Ile His Arg Asn Val Phe Phe Ile Glu Asn Thr Asn
30 165 170 175

Ile Thr Val Cys Ala Phe His Tyr Glu Ser Gln Asn Ser Thr Leu Pro
180 180 185 190

Ile Gly Leu Gly Leu Thr Lys Asn Ile Leu Gly Phe Leu Phe Pro Phe
195 195 200 205

Leu Ile Ile Leu Thr Ser Tyr Phe Gly Ile Arg Lys His Leu Leu Lys
35 210 215 220

- 80 -

	Thr Asn Ser Tyr Gly Lys Asn Arg Ile Thr Arg Asp Gln Val Lys Lys			
225	230	235	240	
	Ile Ile Met Ala Ile Val Leu Phe Phe Phe Ser Trp Ile Pro His			
	245	250	255	
5	Gln Ile Phe Thr Phe Leu Asp Val Leu Ile Gln Leu Gly Ile Ile Arg			
	260	265	270	
	Asp Cys Arg Ile Ala Asp Ile Val Asp Thr Ala Met Pro Ile Thr Ile			
	275	280	285	
10	Cys Ile Ala Tyr Phe Asn Asn Cys Leu Asn Pro Leu Phe Tyr Gly Phe			
	290	295	300	
	Leu Gly Lys Lys Phe Lys Arg Tyr Phe Leu Gln Leu Leu Lys Tyr Ile			
	305	310	315	320
	Pro Pro Lys Ala Lys Ser His Ser Asn Leu Ser Thr Lys Met Ser Thr			
	325	330	335	
15	Leu Ser Tyr Arg Pro Ser Asp Asn Val Ser Ser Ser Thr Lys Lys Pro			
	340	345	350	
	Ala Pro Cys Phe Glu Val Glu			
	355			

(102) INFORMATION FOR SEQ ID NO:101:

20 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 37 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

25 (ii) MOLECULE TYPE: DNA (genomic)

 (iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:101:

TCCGAATTCC AAAATAACTT GTAAGAATGA TCAGAAA

37

(103) INFORMATION FOR SEQ ID NO:102:

30 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 33 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

35 (ii) MOLECULE TYPE: DNA (genomic)

 (iv) ANTI-SENSE: NO

- 81 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:102:

AGATCTTAAG AAGATAATTAA TGGCAATTGT GCT

33

(104) INFORMATION FOR SEQ ID NO:103:

(i) SEQUENCE CHARACTERISTICS:

5 (A) LENGTH: 62 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

10 (iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:103:

AATTCGAAAA CACTTACTGA AGACGAATAG CTATGGGAAG AACAGGATAA CCCGTGACCA

60

AG

62

(105) INFORMATION FOR SEQ ID NO:104:

15 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 62 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

20 (ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:104:

TTAACCTTGGT CACGGGTTAT CCTGTTCTTC CCATAGCTAT TCGTCTTCAG TAAGTGTGTTT

60

CG

62

25 (106) INFORMATION FOR SEQ ID NO:105:

(i) SEQUENCE CHARACTERISTICS:

30 (A) LENGTH: 1083 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:105:

- 82 -

ATGATTCTCA ACTCTTCTAC TGAAGATGGT ATTAAAAGAA TCCAAGATGA TTGTCCCAA	60
GCTGGAAGGC ATAATTACAT ATTTGTCATG ATTCCTACTT TATAACAGTAT CATCTTG	120
GTGGGAATAT TTGGAACACAG CTTGGTGGTG ATAGTCATT ACTTTTATAT GAAGCTGAAG	180
ACTGTGGCCA GTGTTTTCT TTTGAATTAA GCACTGGCTG ACTTATGCTT TTTACTGACT	240
5 TTGCCACTAT GGGCTGTCTA CACAGCTATG GAATACCGCT GGCCCTTGG CAATTACCTA	300
TGTAAGATTG CTTCAGCCAG CGTCAGTTTC AACCTGTACG CTAGTGTGTT TCTACTCACG	360
TGTCTCAGCA TTGATCGATA CCTGGCTATT GTTCACCCAA TGAAGTCCCG CCTTCGACGC	420
ACAATGCTTG TAGCCAAAGT CACCTGCATC ATCATTGGC TGCTGGCAGG CTTGGCCAGT	480
TTGCCAGCTA TAATCCATCG AAATGTATTT TTCATTGAGA ACACCAATAT TACAGTTGT	540
10 GCTTTCCATT ATGAGTCCC AAATTCAACC CTTCCGATAG GGCTGGGCCT GACCAAAAT	600
ATACTGGGTT TCCTGTTCC TTTCTGATC ATTCTTACAA GTTATACTCT TATTGGAAG	660
GCCCTAAAGA AGGCTTATGA AATTAGAAG AACAAACCAA GAAATGATGA TATTTTTAAG	720
ATAATTATGG CAGCAATTGT GCTTTCTTT TTCTTTCCCT GGATTCCCCA CCAAATATT	780
ACTTTTCTGG ATGTATTGAT TCAACTAGGC ATCATACTG ACTGTAGAAT TGCAGATATT	840
15 GTGGACACGG CCATGCCTAT CACCATTGT ATAGCTTATT TTAACAATTG CCTGAATCCT	900
CTTTTTATG GCTTCTGGG GAAAAAATT AAAAGATATT TTCTCCAGCT TCTAAAATAT	960
ATTCCCCCAA AAGCCAAATC CCACTCAAAC CTTCAACAA AAATGAGCAC GCTTCCTAC	1020
CGCCCCCTCAG ATAATGTAAG CTCATCCACC AAGAAGCCTG CACCATGTT TGAGGTTGAG	1080
TGA	1083

20 (107) INFORMATION FOR SEQ ID NO:106:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 360 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant

25 (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:106:

Met	Ile	Leu	Asn	Ser	Ser	Thr	Glu	Asp	Gly	Ile	Lys	Arg	Ile	Gln	Asp
1															

1	5	10	15
---	---	----	----

30 Asp Cys Pro Lys Ala Gly Arg His Asn Tyr Ile Phe Val Met Ile Pro

- 83 -

	20	25	30
	Thr Leu Tyr Ser Ile Ile Phe Val Val Gly Ile Phe Gly Asn Ser Leu		
	35	40	45
5	Val Val Ile Val Ile Tyr Phe Tyr Met Lys Leu Lys Thr Val Ala Ser		
	50	55	60
	Val Phe Leu Leu Asn Leu Ala Ala Asp Leu Cys Phe Leu Leu Thr		
	65	70	75
	Leu Pro Leu Trp Ala Val Tyr Thr Ala Met Glu Tyr Arg Trp Pro Phe		
	85	90	95
10	Gly Asn Tyr Leu Cys Lys Ile Ala Ser Ala Ser Val Ser Phe Asn Leu		
	100	105	110
	Tyr Ala Ser Val Phe Leu Leu Thr Cys Leu Ser Ile Asp Arg Tyr Leu		
	115	120	125
15	Ala Ile Val His Pro Met Lys Ser Arg Leu Arg Arg Thr Met Leu Val		
	130	135	140
	Ala Lys Val Thr Cys Ile Ile Trp Leu Leu Ala Gly Leu Ala Ser		
	145	150	155
	Leu Pro Ala Ile Ile His Arg Asn Val Phe Phe Ile Glu Asn Thr Asn		
	165	170	175
20	Ile Thr Val Cys Ala Phe His Tyr Glu Ser Gln Asn Ser Thr Leu Pro		
	180	185	190
	Ile Gly Leu Gly Leu Thr Lys Asn Ile Leu Gly Phe Leu Phe Pro Phe		
	195	200	205
25	Leu Ile Ile Leu Thr Ser Tyr Thr Leu Ile Trp Lys Ala Leu Lys Lys		
	210	215	220
	Ala Tyr Glu Ile Gln Lys Asn Lys Pro Arg Asn Asp Asp Ile Phe Lys		
	225	230	235
	240		
	Ile Ile Met Ala Ala Ile Val Leu Phe Phe Phe Ser Trp Ile Pro		
	245	250	255
30	His Gln Ile Phe Thr Phe Leu Asp Val Leu Ile Gln Leu Gly Ile Ile		
	260	265	270
	Arg Asp Cys Arg Ile Ala Asp Ile Val Asp Thr Ala Met Pro Ile Thr		
	275	280	285
35	Ile Cys Ile Ala Tyr Phe Asn Asn Cys Leu Asn Pro Leu Phe Tyr Gly		
	290	295	300
	Phe Leu Gly Lys Lys Phe Lys Arg Tyr Phe Leu Gln Leu Leu Lys Tyr		
	305	310	315
	320		

- 84 -

Ile Pro Pro Lys Ala Lys Ser His Ser Asn Leu Ser Thr Lys Met Ser
325 330 335

Thr Leu Ser Tyr Arg Pro Ser Asp Asn Val Ser Ser Ser Thr Lys Lys
340 345 350

5 Pro Ala Pro Cys Phe Glu Val Glu
355 360

(108) INFORMATION FOR SEQ ID NO:107:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 26 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: NO

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:107:

CCCAAGCTTC CCCAGGTGTA TTTGAT

26

(109) INFORMATION FOR SEQ ID NO:108:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 38 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: YES

25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:108:

AAGCACAAATT GCTGCATAAT TATCTAAAAA ATATCATC

38

(110) INFORMATION FOR SEQ ID NO:109:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 39 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: NO

- 85 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:109:

AAGATAATTA TGGCAGCAAT TGTGCTTTTC TTTTTCTTT

39

(111) INFORMATION FOR SEQ ID NO:110:

(i) SEQUENCE CHARACTERISTICS:

- 5 (A) LENGTH: 26 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

10 (iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:110:

GTTGGATCCA CATAATGCAT TTTCTC

26

(112) INFORMATION FOR SEQ ID NO:111:

(i) SEQUENCE CHARACTERISTICS:

- 15 (A) LENGTH: 1344 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:111:

ATGGAGCTGC TAAAGCTGAA CCGGAGCGTG CAGGGAACCG GACCCGGGCC GGGGGCTTCC

60

CTGTGCCGCC CGGGGGCGCC TCTCCTCAAC AGCAGCAGTG TGGGCAACCT CAGCTGCGAG

120

CCCCCTCGCA TTCGCGGAGC CGGGACACGA GAATTGGAGC TGGCCATTAG AATCACTCTT

180

TACGCAGTGA TCTTCCTGAT GAGCGTTGGA GGAAATATGC TCATCATCGT GGTCTGGGA

240

25 CTGAGCCGCC GCCTGAGGAC TGTCACCAAT GCCTTCCTCC TCTCACTGGC AGTCAGCGAC

300

CTCCTGCTGG CTGTGGCTTG CATGCCCTTC ACCCTCCTGC CCAATCTCAT GGGCACATTG

360

ATCTTTGGCA CCGTCATCTG CAAGGGGTT TCCTACCTCA TGGGGGTGTC TGTGAGTGTG

420

TCCACGCTAA GCCTCGTGGC CATCGCACTG GAGCGATATA GCGCCATCTG CCGACCACGT

480

CAGGCACGAG TGTGGCAGAC GCGCTCCCAC GCGGCTCGCG TGATTGTAGC CACGTGGCTG

540

30 CTGTCCGGAC TACTCATGGT GCCCTACCCC GTGTACACTG TCGTGCACC AGTGGGGCCT

600

CGTGTGCTGC AGTGCAGAC TCGCTGGCCC AGTGCAGAC TCCGCCAGAC CTGGTCCGTA

660

- 86 -

	CTGCTGCTTC	TGCTCTTGT	TTCCATCCA	GGTGTGGTTA	TGGCCGTGGC	CTACGGGCTT	720
	ATCTCTCGCG	AGCTCTACTT	AGGGCTTCGC	TTTGACGGCG	ACAGTGACAG	CGACAGCCAA	780
	AGCAGGGTCC	GAAACCAAGG	CGGGCTGCCA	GGGGCTGTTC	ACCAGAACGG	GCGTTGCCGG	840
	CCTGAGACTG	GCGCGGTTGG	CAAAGACAGC	GATGGCTGCT	ACGTGCAACT	TCCACGTTCC	900
5	CGGCCTGCC	TGGAGCTGAC	GGCGCTGACG	GCTCCTGGC	CGGGATCCGG	CTCCCGGCC	960
	ACCCAGGCCA	AGCTGCTGGC	TAAGAAGCGC	GTGAAACGAA	TGTTGCTGGT	GATCGTTGTG	1020
	CTTTTTTTTC	TGTGTTGGTT	GCCAGTTAT	AGTGCCAAC	CGTGGCGCGC	CTTGATGGC	1080
	CCGGGTGCAC	ACCGAGCACT	CTCGGGTGCT	CCTATCTCCT	TCATTCACTT	GCTGAGCTAC	1140
	GCCTCGGCCT	GTGTCAACCC	CCTGGTCTAC	TGCTTCATGC	ACCGTCGCTT	TCGCCAGGCC	1200
10	TGCCTGGAAA	CTTGCCTCG	CTGCTGCC	CGGCCTCCAC	GAGCTGCC	CAGGGCTCTT	1260
	CCCGATGAGG	ACCCTCCCAC	TCCCTCCATT	GCTTCGCTGT	CCAGGCTTAG	CTACACCACC	1320
	ATCAGCACAC	TGGGCCCTGG	CTGA				1344

(113) INFORMATION FOR SEQ ID NO:112:

(i) SEQUENCE CHARACTERISTICS:

15 (A) LENGTH: 447 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS:
 (D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:112:

Met Glu Leu Leu Lys Leu Asn Arg Ser Val Gln Gly Thr Gly Pro Gly
1 5 10 15

Pro Gly Ala Ser Leu Cys Arg Pro Gly Ala Pro Leu Leu Asn Ser Ser
20 25 30

25 Ser Val Gly Asn Leu Ser Cys Glu Pro Pro Arg Ile Arg Gly Ala Gly
35 40 45

Thr Arg Glu Leu Glu Leu Ala Ile Arg Ile Thr Leu Tyr Ala Val Ile
50 55 60

30 Phe Leu Met Ser Val Gly Gly Asn Met Leu Ile Ile Val Val Leu Gly
65 70 75 80

Leu Ser Arg Arg Leu Arg Thr Val Thr Asn Ala Phe Leu Leu Ser Leu
85 86 87 88 89 90 91 92 93 94 95

- 87 -

	Ala Val Ser Asp Leu Leu Leu Ala Val Ala Cys Met Pro Phe Thr Leu			
	100	105	110	
	Leu Pro Asn Leu Met Gly Thr Phe Ile Phe Gly Thr Val Ile Cys Lys			
	115	120	125	
5	Ala Val Ser Tyr Leu Met Gly Val Ser Val Ser Val Ser Thr Leu Ser			
	130	135	140	
	Leu Val Ala Ile Ala Leu Glu Arg Tyr Ser Ala Ile Cys Arg Pro Leu			
	145	150	155	160
10	Gln Ala Arg Val Trp Gln Thr Arg Ser His Ala Ala Arg Val Ile Val			
	165	170	175	
	Ala Thr Trp Leu Leu Ser Gly Leu Leu Met Val Pro Tyr Pro Val Tyr			
	180	185	190	
	Thr Val Val Gln Pro Val Gly Pro Arg Val Leu Gln Cys Val His Arg			
	195	200	205	
15	Trp Pro Ser Ala Arg Val Arg Gln Thr Trp Ser Val Leu Leu Leu			
	210	215	220	
	Leu Leu Phe Phe Ile Pro Gly Val Val Met Ala Val Ala Tyr Gly Leu			
	225	230	235	240
20	Ile Ser Arg Glu Leu Tyr Leu Gly Leu Arg Phe Asp Gly Asp Ser Asp			
	245	250	255	
	Ser Asp Ser Gln Ser Arg Val Arg Asn Gln Gly Gly Leu Pro Gly Ala			
	260	265	270	
	Val His Gln Asn Gly Arg Cys Arg Pro Glu Thr Gly Ala Val Gly Lys			
	275	280	285	
25	Asp Ser Asp Gly Cys Tyr Val Gln Leu Pro Arg Ser Arg Pro Ala Leu			
	290	295	300	
	Glu Leu Thr Ala Leu Thr Ala Pro Gly Pro Gly Ser Gly Ser Arg Pro			
	305	310	315	320
30	Thr Gln Ala Lys Leu Leu Ala Lys Lys Arg Val Lys Arg Met Leu Leu			
	325	330	335	
	Val Ile Val Val Leu Phe Phe Leu Cys Trp Leu Pro Val Tyr Ser Ala			
	340	345	350	
	Asn Thr Trp Arg Ala Phe Asp Gly Pro Gly Ala His Arg Ala Leu Ser			
	355	360	365	
35	Val Ala Pro Ile Ser Phe Ile His Leu Leu Ser Tyr Ala Ser Ala Cys			
	370	375	380	
	Val Asn Pro Leu Val Tyr Cys Phe Met His Arg Arg Phe Arg Gln Ala			

- 88 -

385	390	395	400
Cys Leu Glu Thr Cys Ala Arg Cys Cys Pro Arg Pro Pro Arg Ala Arg			
	405	410	415
Pro Arg Ala Leu Pro Asp Glu Asp Pro Pro Thr Pro Ser Ile Ala Ser			
5	420	425	430
Leu Ser Arg Leu Ser Tyr Thr Thr Ile Ser Thr Leu Gly Pro Gly			
	435	440	445

(114) INFORMATION FOR SEQ ID NO:113:

10 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 34 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:113:

CAGCAGCATG CGCTTCACGC GCTTCTTAGC CCAG

34

(115) INFORMATION FOR SEQ ID NO:114:

20 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 33 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:114:

25 AGAACGCGGT GAAGCGCATG CTGCTGGTGA TCGTT

35

(116) INFORMATION FOR SEQ ID NO:115:

30 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 33 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:115:

- 89 -

ATGGAGAAAA GAATCAAAAG AATGTTCTAT ATA

33

(117) INFORMATION FOR SEQ ID NO:116:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 33 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: YES

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:116:

TATATAGAAC ATTCTTTGA TTCTTTCTC CAT

33

(118) INFORMATION FOR SEQ ID NO:117:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 30 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: NO

20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:117:

CGCTCTCTGG CCTTGAAGCG CACGCTCAGC

30

(119) INFORMATION FOR SEQ ID NO:118:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 30 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: YES

30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:118:

GCTGAGCGTG CGCTTCAAGG CCAGAGAGCG

30

(120) INFORMATION FOR SEQ ID NO:119:

- 90 -

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
5 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:119:

CCCAGGAAAA AGGTGAAAGT CAAAGTTTC

10 (121) INFORMATION FOR SEQ ID NO:120:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
15 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:120:

GAAAACTTTG ACTTTCACCT TTTTCCTGGG

20 (122) INFORMATION FOR SEQ ID NO:121:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 27 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
25 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:121:

GGGGCGCGGG TGAAACGGCT GGTGAGC

30 (123) INFORMATION FOR SEQ ID NO:122:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 27 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single

30

30

27

- 91 -

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:122:

5 GCTCACCAAGC CGTTTCACCC GCGCCCC

27

(124) INFORMATION FOR SEQ ID NO:123:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 30 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:123:

15 CCCCTTGAAA AGCCTAAGAA CTTGGTCATC

30

(125) INFORMATION FOR SEQ ID NO:124:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 30 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:124:

25 GATGACCAAG TTCTTAGGCT TTTCAAGGGG

30

(126) INFORMATION FOR SEQ ID NO:125:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 32 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

- 92 -

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:125:

GATCTCTAGA ATGAACAGCA CATGTATTGA AG

32

(127) INFORMATION FOR SEQ ID NO:126:

5 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 35 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

10 (ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:126:

CTAGGGTACC CGCTCAAGGA CCTCTAACATC CATAG

35

(128) INFORMATION FOR SEQ ID NO:127:

15 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1296 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

20 (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:127:

ATGCAGGCGC TTAACATTAC CCCGGAGCAG TTCTCTCGGC TGCTGCGGGA CCACAACCTG	60
ACGCAGGGAGC AGTCATCGC TCTGTACCGG CTGCGACCGC TCGTCTACAC CCCAGAGCTG	120
CCGGGACGCG CCAAGCTGGC CCTCGTGCTC ACCGGCGTGC TCATCTTCGC CCTGGCGCTC	180
25 TTTGGCAATG CTCTGGTGTG CTACGTGGTG ACCCGCAGCA AGGCCATGCG CACCGTCACC	240
AACATCTTA TCTGCTCCTT GGCGCTCAGT GACCTGCTCA TCACCTTCTT CTGCATTCCC	300
GTCACCATGC TCCAGAACAT TTCCGACAAC TGGCTGGGG GTGCTTCAT TTGCAAGATG	360
GTGCCATTG TCCAGTCTAC CGCTGTTGTG ACAGAAATGC TCACTATGAC CTGCATTGCT	420
GTGGAAAGGC ACCAGGGACT TGTGCATCCT TTTAAAATGA AGTGGCAATA CACCAACCGA	480

- 93 -

	AGGGCTTC CAATGCTAGG TGTGGTCTGG CTGGTGGCAG TCATCGTAGG ATCACCCATG	540
	TGGCACGTGC AACAACTTGA GATCAAATAT GACTTCCTAT ATGAAAAGGA ACACATCTGC	600
	TGCTTAGAAG AGTGGACCAG CCCTGTGCAC CAGAAGATCT ACACCACCTT CATCCTTGTC	660
	ATCCTCTTCC TCCTGCCTCT TATGGTGATG CTTATTCTGT ACAGTAAAAT TGGTTATGAA	720
5	CTTTGGATAA AGAAAAGAGT TGGGGATGGT TCAGTGCTTC GAACTATTCA TGGAAAAGAA	780
	ATGTCCAAA TAGCCAGGAA GAAGAACGA GCTAAGATTA TGATGGTGAC AGTGGTGGCT	840
	CTCTTGCTG TGTGCTGGC ACCATTCCAT GTTGTCCATA TGATGATTGA ATACAGTAAT	900
	TTTGAAAAGG AATATGATGA TGTACAATC AAGATGATT TTGCTATCGT GCAAATTATT	960
	GGATTTCCA ACTCCATCTG TAATCCCATT GTCTATGCAT TTATGAATGA AAACATTCAA	1020
10	AAAAATGTTT TGTCTGCAGT TTGTTATTGC ATAGTAAATA AAACCTTCTC TCCAGCACAA	1080
	AGGCATGGAA ATTCAAGGAAT TACAATGATG CGGAAGAAAG CAAAGTTTC CCTCAGAGAG	1140
	AATCCAGTGG AGGAAACCAA AGGAGAAGCA TTCAGTGATG GCAACATTGA AGTCAAATTG	1200
	TGTGAACAGA CAGAGGAGAA GAAAAAGCTC AAACGACATC TTGCTCTCTT TAGGTCTGAA	1260
	CTGGCTGAGA ATTCTCCTTT AGACAGTGGG CATTAA	1296

15 (129) INFORMATION FOR SEQ ID NO:128:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 431 amino acids
 (B) TYPE: amino acid

(C) STRANDEDNESS:

20 (D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:128:

	Met Gln Ala Leu Asn Ile Thr Pro Glu Gln Phe Ser Arg Leu Leu Arg	
	1 5 10 15	
25	Asp His Asn Leu Thr Arg Glu Gln Phe Ile Ala Leu Tyr Arg Leu Arg	
	20 25 30	
	Pro Leu Val Tyr Thr Pro Glu Leu Pro Gly Arg Ala Lys Leu Ala Leu	
	35 40 45	
30	Val Leu Thr Gly Val Leu Ile Phe Ala Leu Ala Leu Phe Gly Asn Ala	
	50 55 60	
	Leu Val Phe Tyr Val Val Thr Arg Ser Lys Ala Met Arg Thr Val Thr	
	65 70 75 80	

- 94 -

	Asn Ile Phe Ile Cys Ser Leu Ala Leu Ser Asp Leu Leu Ile Thr Phe			
	85	90	95	
	Phe Cys Ile Pro Val Thr Met Leu Gln Asn Ile Ser Asp Asn Trp Leu			
	100	105	110	
5	Gly Gly Ala Phe Ile Cys Lys Met Val Pro Phe Val Gln Ser Thr Ala			
	115	120	125	
	Val Val Thr Glu Met Leu Thr Met Thr Cys Ile Ala Val Glu Arg His			
	130	135	140	
10	Gln Gly Leu Val His Pro Phe Lys Met Lys Trp Gln Tyr Thr Asn Arg			
	145	150	155	160
	Arg Ala Phe Thr Met Leu Gly Val Val Trp Leu Val Ala Val Ile Val			
	165	170	175	
	Gly Ser Pro Met Trp His Val Gln Gln Leu Glu Ile Lys Tyr Asp Phe			
	180	185	190	
15	Leu Tyr Glu Lys Glu His Ile Cys Cys Leu Glu Glu Trp Thr Ser Pro			
	195	200	205	
	Val His Gln Lys Ile Tyr Thr Thr Phe Ile Leu Val Ile Leu Phe Leu			
	210	215	220	
20	Leu Pro Leu Met Val Met Leu Ile Leu Tyr Ser Lys Ile Gly Tyr Glu			
	225	230	235	240
	Leu Trp Ile Lys Lys Arg Val Gly Asp Gly Ser Val Leu Arg Thr Ile			
	245	250	255	
	His Gly Lys Glu Met Ser Lys Ile Ala Arg Lys Lys Arg Ala Lys			
	260	265	270	
25	Ile Met Met Val Thr Val Val Ala Leu Phe Ala Val Cys Trp Ala Pro			
	275	280	285	
	Phe His Val Val His Met Met Ile Glu Tyr Ser Asn Phe Glu Lys Glu			
	290	295	300	
30	Tyr Asp Asp Val Thr Ile Lys Met Ile Phe Ala Ile Val Gln Ile Ile			
	305	310	315	320
	Gly Phe Ser Asn Ser Ile Cys Asn Pro Ile Val Tyr Ala Phe Met Asn			
	325	330	335	
	Glu Asn Phe Lys Lys Asn Val Leu Ser Ala Val Cys Tyr Cys Ile Val			
	340	345	350	
35	Asn Lys Thr Phe Ser Pro Ala Gln Arg His Gly Asn Ser Gly Ile Thr			
	355	360	365	
	Met Met Arg Lys Lys Ala Lys Phe Ser Leu Arg Glu Asn Pro Val Glu			

- 95 -

370	375	380
-----	-----	-----

Glu	Thr	Lys	Gly	Glu	Ala	Phe	Ser	Asp	Gly	Asn	Ile	Glu	Val	Lys	Leu	
385	390	395														400

Cys	Glu	Gln	Thr	Glu	Glu	Lys	Lys	Lys	Leu	Lys	Arg	His	Leu	Ala	Leu
5						405			410						415

Phe	Arg	Ser	Glu	Leu	Ala	Glu	Asn	Ser	Pro	Leu	Asp	Ser	Gly	His	
420						425									430

(130) INFORMATION FOR SEQ ID NO:129:

- 10 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2040 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: DNA (genomic)

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:129:

ATGGGCAGCC CCTGGAACGG CAGCGACGGC CCCGAGGGGG CGCGGGAGCC GCCGTGGCCC
60

CGCGCTGCCGC CTTGCGACGA GCGCCGCTGC TCGCCCTTTC CCCTGGGGGC GCTGGTGCCG
120

20 GTGACCGCTG TGTGCCTGTG CCTGTTCGTC GTCGGGGTGA GCGGCAACGT GGTGACCGTG
180

ATGCTGATCG GGCCTACCG GGACATGCGG ACCACCACCA ACTTGTACCT GGGCAGCATG
240

GCCGTGTCCG ACCTACTCAT CCTGCTCGGG CTGCCGTTCG ACCTGTACCG CCTCTGGCGC
25 300

TCGCGGCCCT GGGTGGTCGG GCCGCTGCTC TGCCGCCTGT CCCTCTACGT GGGCGAGGGC
360

TGCACCTACG CCACGCTGCT GCACATGACC GCGCTCAGCG TCGAGCGCTA CCTGGCCATC
30 420

TGCCGCCCGC TCCGCGCCCG CGTCTTGGTC ACCCGGCGCC GCGTCCGCGC GCTCATCGCT
480

GTGCTCTGGG CCGTGGCGCT GCTCTCTGCC GGTCCCTTCT TGTTCCTGGT GGGCGTCGAG
35 540

CAGGACCCCG GCATCTCCGT AGTCCCGGGC CTCAAATGGCA CCGCGCGGAT CGCCTCCTCG
600

40 CCTCTGGCCT CGTCGCCGCC TCTCTGGCTC TCGCGGGCGC CACCGCCGTC CCCGCCGTCG

- 96 -

660
GGGCCCGAGA CCGCGGAGGC CGCGCGCCTG TTCAGCCGCG AATGCCGCC GAGCCCCGCG
720
5 CAGCTGGCG CGCTGCGTGT CATGCTGTGG GTCACCACCG CCTACTTCTT CCTGCCCTTT
780
CTGTGCCTCA GCATCCTCTA CGGGCTCATC GGGCGGGAGC TGTGGAGCAG CGGGCGGCCG
10 840
CTGCGAGGCC CGGCCGCCTC GGGGCGGGAG AGAGGCCACC GGCAGACCAA ACGCGTCCTG
900
15 CGTAAGTGGA GCCGCCGTGG TTCCAAAGAC GCCTGCCTGC AGTCCGCCCC GCCGGGGACC
960
GCGAAACGC TGGGTCCCCT TCCCCTGCTC GCCCAGCTCT GGGCGCCGCT TCCAGCTCCC
1020
20 TTTCCTATTT CGATTCCAGC CTCCACCCGC CGGTACTTCC CATCCCCGA GAAAACCATG
1080
TCCTGTCCCC CAGGAGCTCT GGGGGACCCC AGGGCGCTTT GAGGGTGGGA TCCCCGGATC
25 1140
CGATTCAGTA ACCAGCAGTG CTTTCCAGA GCCTCTGAGA CCAGAAAGGA GAGTTGGTAA
1200
30 TTCTTAATCC AACCACCTGT TAGATGCCAC AAATGAGGAG TCCTCACAGT GCTCTTGAGA
1260
AGACGAGGGA GATTCATTA AGCTAAAATT TTTTATTTAA TGTAAAGTGA TGCTGAAGGC
1320
35 TAAAGTAAAC CTTGCTCGTA TCAAAAAGTA AAGATTGTGC AGACCTGTTG TAGAATTCTT
1380
TTCAACAGAG AACAGAAAAC TTGTCTCCGA AGTGGGTTTG TGGAAGGAAG CCTGCCAAGG
40 1440
CGGCTTGTTC AGAGAAATTG CTCCCTCTGG TTTATGTCCA GCCTTGATAA CACATATGGG
1500
45 AGCCTACTAT GCAGTTTAA AGCAAGTATC CATGCAGCCT GCAGCCTGGT CATTTCCTTCT
1560
GGGGTGAGGA TCTGCCTAGG TAGAAGTTTT CTCTAATTAA TTTTGCTGTT ACTTGTTATT
1620
50 GCAGATGGTT CCTTGTGGG GTGGGGGGTT TATTTGCTTC CCAATGCTTT TGTAAATCCC
1680
GGTGCTGTGT CTTATGTTGC AGTGGTGGTG GTTCTGGCAT TTATAATTG CTGGTTGCC
55 1740

- 97 -

TTCCACGTTG GCAGAACAT TTACATAAAC ACGGAAGATT CGCGGATGAT GTACTTCTCT
1800

5 CAGTACTTTA ACATCGTCGC TCTGCAACTT TTCTATCTGA GCGCATCTAT CAACCCAATC
1860

CTCTACAACC TCATTTCAAA GAAGTACAGA GCGGCGGCCT TTAAACTGCT GCTCGCAAGG
1920

10 AAGTCCAGGC CGAGAGGCTT CCACAGAAGC AGGGACACTG CGGGGGAAGT TGCAGGGGAC
1980

ACTGGAGGGAG ACACGGTGGG CTACACCGAG ACAAGCGCTA ACGTGAAGAC GATGGGATAA
15 2040

(131) INFORMATION FOR SEQ ID NO:130:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 412 amino acids
- (B) TYPE: amino acid
- 20 (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:130:

25	Met	Gly	Ser	Pro	Trp	Asn	Gly	Ser	Asp	Gly	Pro	Glu	Gly	Ala	Arg	Glu
	1											10			15	
	Pro	Pro	Trp	Pro	Ala	Leu	Pro	Pro	Cys	Asp	Glu	Arg	Arg	Cys	Ser	Pro
												25			30	
	Phe	Pro	Leu	Gly	Ala	Leu	Val	Pro	Val	Thr	Ala	Val	Cys	Leu	Cys	Leu
												35			45	
30	Phe	Val	Val	Gly	Val	Ser	Gly	Asn	Val	Val	Thr	Val	Met	Leu	Ile	Gly
												50		55	60	
	Arg	Tyr	Arg	Asp	Met	Arg	Thr	Thr	Thr	Asn	Leu	Tyr	Leu	Gly	Ser	Met
												65		70	75	80
35	Ala	Val	Ser	Asp	Leu	Leu	Ile	Leu	Leu	Gly	Leu	Pro	Phe	Asp	Leu	Tyr
												85		90	95	
	Arg	Leu	Trp	Arg	Ser	Arg	Pro	Trp	Val	Phe	Gly	Pro	Leu	Leu	Cys	Arg
												100		105	110	
	Leu	Ser	Leu	Tyr	Val	Gly	Glu	Gly	Cys	Thr	Tyr	Ala	Thr	Leu	Leu	His
												115		120	125	
40	Met	Thr	Ala	Leu	Ser	Val	Glu	Arg	Tyr	Leu	Ala	Ile	Cys	Arg	Pro	Leu
												130		135	140	

- 98 -

	Arg Ala Arg Val Leu Val Thr Arg Arg Arg Val Arg Ala Leu Ile Ala		
145	150	155	160
	Val Leu Trp Ala Val Ala Leu Leu Ser Ala Gly Pro Phe Leu Phe Leu		
	165	170	175
5	Val Gly Val Glu Gln Asp Pro Gly Ile Ser Val Val Pro Gly Leu Asn		
	180	185	190
	Gly Thr Ala Arg Ile Ala Ser Ser Pro Leu Ala Ser Ser Pro Pro Leu		
	195	200	205
10	Trp Leu Ser Arg Ala Pro Pro Pro Ser Pro Pro Ser Gly Pro Glu Thr		
	210	215	220
	Ala Glu Ala Ala Ala Leu Phe Ser Arg Glu Cys Arg Pro Ser Pro Ala		
225	230	235	240
	Gln Leu Gly Ala Leu Arg Val Met Leu Trp Val Thr Thr Ala Tyr Phe		
	245	250	255
15	Phe Leu Pro Phe Leu Cys Leu Ser Ile Leu Tyr Gly Leu Ile Gly Arg		
	260	265	270
	Glu Leu Trp Ser Ser Arg Arg Pro Leu Arg Gly Pro Ala Ala Ser Gly		
	275	280	285
20	Arg Glu Arg Gly His Arg Gln Thr Lys Arg Val Leu Leu Val Val Val		
	290	295	300
	Leu Ala Phe Ile Ile Cys Trp Leu Pro Phe His Val Gly Arg Ile Ile		
305	310	315	320
	Tyr Ile Asn Thr Glu Asp Ser Arg Met Met Tyr Phe Ser Gln Tyr Phe		
	325	330	335
25	Asn Ile Val Ala Leu Gln Leu Phe Tyr Leu Ser Ala Ser Ile Asn Pro		
	340	345	350
	Ile Leu Tyr Asn Leu Ile Ser Lys Lys Tyr Arg Ala Ala Phe Lys		
	355	360	365
30	Leu Leu Leu Ala Arg Lys Ser Arg Pro Arg Gly Phe His Arg Ser Arg		
	370	375	380
	Asp Thr Ala Gly Glu Val Ala Gly Asp Thr Gly Gly Asp Thr Val Gly		
385	390	395	400
	Tyr Thr Glu Thr Ser Ala Asn Val Lys Thr Met Gly		
	405	410	
35	(132) INFORMATION FOR SEQ ID NO:131:		
	(i) SEQUENCE CHARACTERISTICS:		
	(A) LENGTH: 1344 base pairs		

- 99 -

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:131:

ATGGAGCTGC TAAAGCTGAA CGGGAGCGTG CAGGGAACCG GACCCGGGCC GGGGGCTTCC
60

CTGTGCCGCC CGGGGGCGCC TCTCCTCAAC AGCAGCAGTG TGGGCAACCT CAGCTGCGAG
120

10 CCCCCTCGCA TTTCGCGGAGC CGGGACACGA GAATTGGAGC TGGCCATTAG AATCACTCTT
180

TACGCAGTGA TCTTCCTGAT GAGCGTTGGA GGAAATATGC TCATCATCGT GGTCTGGGA
240

15 CTGAGCCGCC GCCTGAGGAC TGTCACCAAT GCCTTCCTCC TCTCACTGGC AGTCAGCGAC
300

CTCCTGCTGG CTGTGGCTTG CATGCCCTTC ACCCTCCTGC CCAATCTCAT GGGCACATTG
360

ATCTTTGGCA CCGTCATCTG CAAGGCGTT TCCTACCTCA TGGGGGTGTC TGTGAGTGTG
420

20 TCCACGCTAA GCCTCGTGGC CATCGCACTG GAGCGATATA GCGCCATCTG CCGACCACGT
480

CAGGCACGAG TGTGGCAGAC GCGCTCCCAC GCGGCTCGCG TGATTGTAGC CACGTGGCTG
540

25 CTGTCCGGAC TACTCATGGT GCCCTACCCC GTGTACACTG TCGTGCAACC AGTGGGGCCT
600

CGTGTGCTGC AGTGCCTGCA TCGCTGGCCC AGTGCCTGGG TCCGCCAGAC CTGGTCCGTA
660

CTGCTGCTTC TGCTCTTGTGTT CTTCATCCCA GGTGTGGTTA TGGCCGTGGC CTACGGGCTT
720

30 ATCTCTCGCG AGCTCTACTT AGGGCTTCGC TTTGACGGCG ACAGTGACAG CGACAGCAA
780

AGCAGGGTCC GAAACCAAGG CGGGCTGCCA GGGGCTGTTC ACCAGAACGG GCGTTGCCGG
840

35 CCTGAGACTG GCGCGGTTGG CAAAGACAGC GATGGCTGCT ACGTGCAACT TCCACGTTCC
900

CGGCCTGCCCT TGGAGCTGAC GGCGCTGACG GCTCCTGGGC CGGGATCCGG CTCCCGGCC

- 100 -

960

ACCCAGGCCA AGCTGCTGGC TAAGAACGCG GTGAAACGAA TGTTGCTGGT GATCGTTGTG
1020

CTTTTTTTTC TGTGTTGGTT GCCAGTTAT AGTGCCAACA CGTGGCGCGC CTTTGATGGC
5 1080

CCGGGTGCAC ACCGAGCACT CTCGGGTGCT CCTATCTCCT TCATTCACTT GCTGAGCTAC
1140

GCCTCGGCCT GTGTCAACCC CCTGGTCTAC TGCTTCATGC ACCGTCGCTT TCGCCAGGCC
1200

10 TGCCTGGAAA CTTGCGCTCG CTGCTGCCCC CGGCCTCCAC GAGCTGCCCG CAGGGCTCTT
1260

CCCGATGAGG ACCCTCCCAC TCCCTCCATT GCTTCGCTGT CCAGGCTTAG CTACACCACC
1320

15 ATCAGCACAC TGGGCCCTGG CTGA
1344

(133) INFORMATION FOR SEQ ID NO:132:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 447 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:132:

25 Met Glu Leu Leu Lys Leu Asn Arg Ser Val Gln Gly Thr Gly Pro Gly
1 5 10 15

Pro Gly Ala Ser Leu Cys Arg Pro Gly Ala Pro Leu Leu Asn Ser Ser
20 25 30

Ser Val Gly Asn Leu Ser Cys Glu Pro Pro Arg Ile Arg Gly Ala Gly
35 40 45

30 Thr Arg Glu Leu Glu Leu Ala Ile Arg Ile Thr Leu Tyr Ala Val Ile
50 55 60

Phe Leu Met Ser Val Gly Gly Asn Met Leu Ile Ile Val Val Leu Gly
65 70 75 80

35 Leu Ser Arg Arg Leu Arg Thr Val Thr Asn Ala Phe Leu Leu Ser Leu
85 90 95

Ala Val Ser Asp Leu Leu Ala Val Ala Cys Met Pro Phe Thr Leu

- 101 -

	100	105	110
	Leu Pro Asn Leu Met Gly Thr Phe Ile Phe Gly Thr Val Ile Cys Lys		
	115	120	125
5	Ala Val Ser Tyr Leu Met Gly Val Ser Val Ser Thr Leu Ser		
	130	135	140
	Leu Val Ala Ile Ala Leu Glu Arg Tyr Ser Ala Ile Cys Arg Pro Leu		
	145	150	155
	Gln Ala Arg Val Trp Gln Thr Arg Ser His Ala Ala Arg Val Ile Val		
	165	170	175
10	Ala Thr Trp Leu Leu Ser Gly Leu Leu Met Val Pro Tyr Pro Val Tyr		
	180	185	190
	Thr Val Val Gln Pro Val Gly Pro Arg Val Leu Gln Cys Val His Arg		
	195	200	205
15	Trp Pro Ser Ala Arg Val Arg Gln Thr Trp Ser Val Leu Leu Leu		
	210	215	220
	Leu Leu Phe Phe Ile Pro Gly Val Val Met Ala Val Ala Tyr Gly Leu		
	225	230	235
	Ile Ser Arg Glu Leu Tyr Leu Gly Leu Arg Phe Asp Gly Asp Ser Asp		
	245	250	255
20	Ser Asp Ser Gln Ser Arg Val Arg Asn Gln Gly Gly Leu Pro Gly Ala		
	260	265	270
	Val His Gln Asn Gly Arg Cys Arg Pro Glu Thr Gly Ala Val Gly Lys		
	275	280	285
25	Asp Ser Asp Gly Cys Tyr Val Gln Leu Pro Arg Ser Arg Pro Ala Leu		
	290	295	300
	Glu Leu Thr Ala Leu Thr Ala Pro Gly Pro Gly Ser Gly Ser Arg Pro		
	305	310	315
	320		
	Thr Gln Ala Lys Leu Leu Ala Lys Lys Arg Val Lys Arg Met Leu Leu		
	325	330	335
30	Val Ile Val Val Leu Phe Phe Leu Cys Trp Leu Pro Val Tyr Ser Ala		
	340	345	350
	Asn Thr Trp Arg Ala Phe Asp Gly Pro Gly Ala His Arg Ala Leu Ser		
	355	360	365
35	Val Ala Pro Ile Ser Phe Ile His Leu Leu Ser Tyr Ala Ser Ala Cys		
	370	375	380
	Val Asn Pro Leu Val Tyr Cys Phe Met His Arg Arg Phe Arg Gln Ala		
	385	390	395
	400		

- 102 -

Cys Leu Glu Thr Cys Ala Arg Cys Cys Pro Arg Pro Pro Arg Ala Arg 405 410 415	
Pro Arg Ala Leu Pro Asp Glu Asp Pro Pro Thr Pro Ser Ile Ala Ser 420 425 430	
5 Leu Ser Arg Leu Ser Tyr Thr Thr Ile Ser Thr Leu Gly Pro Gly 435 440 445	

(134) INFORMATION FOR SEQ ID NO:133:

(i) SEQUENCE CHARACTERISTICS:

- 10 (A) LENGTH: 1014 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:133:

15 ATGAACAGCA CATGTATTGA AGAACAGCAT GACCTGGATC ACTATTTGTT TCCCATTGTT 60	
TACATCTTG TGATTATAGT CAGCATTCCA GCCAATATTG GATCTCTGTG TGTGTCTTC 120	
CTGCAAGCAA AGAAGGAAAG TGAACCTAGGA ATTTACCTCT TCAGTTGTC ACTATCAGAT 180	
TTACTCTATG CATTAACTCT CCCTTTATGG ATTGATTATA CTTGGAATAA AGACAACCTGG 240	
ACTTTCTCTC CTGCCTTG TGAAAGGGAGT GCTTTCTCA TGTACATGAA TTTTTACAGC 300	
20 AGCACAGCAT TCCTCACCTG CATTGCCGTT GATCGGTATT TGGCTGTTGT CTACCCTTG 360	
AAGTTTTTT TCCTAAGGAC AAGAAGATTT GCACTCATGG TCAGCCTGTC CATCTGGATA 420	
TTGGAAACCA TCTTCAATGC TGTCATGTTG TGGGAAGATG AAACAGTTGT TGAATATTGC 480	
GATGCCGAAA AGTCTAATTT TACTTTATGC TATGACAAAT ACCCTTTAGA GAAATGGCAA 540	
ATCAACCTCA ACTTGTTCA GACGTGTACA GGCTATGCAA TACCTTGTT CACCATCCTG 600	
25 ATCTGTAACC GGAAAGTCTA CCAAGCTGTG CGGCACAATA AAGCCACGGA AAACAAGGAA 660	
AAGAAGAGAA TCAAAAAACT ACTTGTCAAGC ATCACAGTTA CTTTTGTCTT ATGCTTTACT 720	
CCCTTTCATG TGATGTTGCT GATTGCTGC ATTTTAGAGC ATGCTGTGAA CTTCGAAGAC 780	
CACAGCAATT CTGGGAAGCG AACTTACACA ATGTATAGAA TCACGGTTGC ATTAACAAGT 840	
TTAAATTGTG TTGCTGATCC AATTCTGTAC TGTTTGTTA CCGAAACAGG AAGATATGAT 900	
30 ATGTGGAATA TATTAATT CTGCACTGGG AGGTGTAATA CATCACAAAG ACAAAAGAAAA 960	
CGCATACTTT CTGTGTCTAC AAAAGATACT ATGGAATTAG AGGTCCCTGA GTAG 1014	

- 103 -

(135) INFORMATION FOR SEQ ID NO:134:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 337 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:134:

	Met Asn Ser Thr Cys Ile Glu Glu Gln His Asp Leu Asp His Tyr Leu			
10	1	5	10	15
	Phe Pro Ile Val Tyr Ile Phe Val Ile Ile Val Ser Ile Pro Ala Asn			
	20	25		30
	Ile Gly Ser Leu Cys Val Ser Phe Leu Gln Ala Lys Lys Glu Ser Glu			
	35	40		45
15	Leu Gly Ile Tyr Leu Phe Ser Leu Ser Asp Leu Leu Tyr Ala			
	50	55	60	
	Leu Thr Leu Pro Leu Trp Ile Asp Tyr Thr Trp Asn Lys Asp Asn Trp			
	65	70	75	80
20	Thr Phe Ser Pro Ala Leu Cys Lys Gly Ser Ala Phe Leu Met Tyr Met			
	85	90		95
	Asn Phe Tyr Ser Ser Thr Ala Phe Leu Thr Cys Ile Ala Val Asp Arg			
	100	105		110
	Tyr Leu Ala Val Val Tyr Pro Leu Lys Phe Phe Phe Leu Arg Thr Arg			
	115	120		125
25	Arg Phe Ala Leu Met Val Ser Leu Ser Ile Trp Ile Leu Glu Thr Ile			
	130	135	140	
	Phe Asn Ala Val Met Leu Trp Glu Asp Glu Thr Val Val Glu Tyr Cys			
	145	150	155	160
30	Asp Ala Glu Lys Ser Asn Phe Thr Leu Cys Tyr Asp Lys Tyr Pro Leu			
	165	170		175
	Glu Lys Trp Gln Ile Asn Leu Asn Leu Phe Arg Thr Cys Thr Gly Tyr			
	180	185		190
	Ala Ile Pro Leu Val Thr Ile Leu Ile Cys Asn Arg Lys Val Tyr Gln			
	195	200		205
35	Ala Val Arg His Asn Lys Ala Thr Glu Asn Lys Glu Lys Lys Arg Ile			
	210	215	220	

- 104 -

	Lys Lys Leu Leu Val Ser Ile Thr Val Thr Phe Val Leu Cys Phe Thr			
	225	230	235	240
	Pro Phe His Val Met Leu Leu Ile Arg Cys Ile Leu Glu His Ala Val			
	245	250	255	
5	Asn Phe Glu Asp His Ser Asn Ser Gly Lys Arg Thr Tyr Thr Met Tyr			
	260	265	270	
	Arg Ile Thr Val Ala Leu Thr Ser Leu Asn Cys Val Ala Asp Pro Ile			
	275	280	285	
10	Leu Tyr Cys Phe Val Thr Glu Thr Gly Arg Tyr Asp Met Trp Asn Ile			
	290	295	300	
	Leu Lys Phe Cys Thr Gly Arg Cys Asn Thr Ser Gln Arg Gln Arg Lys			
	305	310	315	320
	Arg Ile Leu Ser Val Ser Thr Lys Asp Thr Met Glu Leu Glu Val Leu			
	325	330	335	
15	Glu			

(136) INFORMATION FOR SEQ ID NO:135:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 999 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:135:

25	ATGGTGAAC CCACCCACCG TGGGATGCAC ACTTCTCTGC ACCTCTGGAA CCGCAGCAGT		
	60		
	TACAGACTGC ACAGCAATGC CAGTGAGTCC CTTGGAAAAG GCTACTCTGA TGGAGGGTGC		
	120		
30	TACGAGAAC TTTTGTCCTC TCCTGAGGTG TTTGTGACTC TGGGTGTCAT CAGCTTGTG		
	180		
	GAGAATATCT TAGTGATTGT GGCAATAGCC AAGAACAAAGA ATCTGCATTC ACCCATGTAC		
	240		
	TTTTTCATCT GCAGCTTGGC TGTGGCTGAT ATGCTGGTGA GCGTTCAAA TGGATCAGAA		
	300		
35	ACCATTATCA TCACCCATT AAACAGTACA GATACGGATG CACAGAGTTT CACAGTGAAT		
	360		

- 105 -

ATTGATAATG TCATTGACTC GGTGATCTGT AGCTCCTTGC TTGCATCCAT TTGCAGCCTG
420

CTTTCAATTG CAGTGGACAG GTACTTACT ATCTTCTATG CTCTCCAGTA CCATAACATT
480

5 ATGACAGTTA AGCGGGTTGG GATCAGCATA AGTTGTATCT GGGCAGCTTG CACGGTTCA
540

GGCATTGTGTCATCATTAA CTCAGATAGT AGTGCTGTCA TCATCTGCCT CATCACCATG
600

TTCTTCACCA TGCTGGCTCT CATGGCTTCT CTCTATGTCC ACATGTTCCCT GATGGCCAGG
10 660

CTTCACATTA AGAGGATTGC TGTCCTCCCC GGCACGGTG CCATCCGCCA AGGTGCCAAT
720

ATGAAGGGAA AAATTACCTT GACCATCCTG ATTGGCGTCT TTGTTGTCTG CTGGGCCCA
780

15 TTCTTCCTCC ACTTAATATT CTACATCTCT TGTCTCAGA ATCCATATTG TGTGTGCTTC
840

ATGTCTCACT TTAACTTGTA TCTCATACTG ATCATGTGTA ATTCAATCAT CGATCCTCTG
900

20 ATTTATGCAC TCCGGAGTCA AGAACTGAGG AAAACCTTCA AAGAGATCAT CTGTTGCTAT
960

CCCCTGGGAG GCCTTTGTGA CTTGTCTAGC AGATATTAA
999

(137) INFORMATION FOR SEQ ID NO:136:

(i) SEQUENCE CHARACTERISTICS:

25 (A) LENGTH: 332 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS:
 (D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:136:

Met	Val	Asn	Ser	Thr	His	Arg	Gly	Met	His	Thr	Ser	Leu	His	Leu	Trp
1								5						10	15

Asn	Arg	Ser	Ser	Tyr	Arg	Leu	His	Ser	Asn	Ala	Ser	Glu	Ser	Leu	Gly
20									25					30	

35 Lys Gly Tyr Ser Asp Gly Gly Cys Tyr Glu Gln Leu Phe Val Ser Pro
 35 40 45

- 106 -

	Glu Val Phe Val Thr Leu Gly Val Ile Ser Leu Leu Glu Asn Ile Leu			
	50	55	60	
	Val Ile Val Ala Ile Ala Lys Asn Lys Asn Leu His Ser Pro Met Tyr			
	65	70	75	80
5	Phe Phe Ile Cys Ser Leu Ala Val Ala Asp Met Leu Val Ser Val Ser			
	85	90	95	
	Asn Gly Ser Glu Thr Ile Ile Thr Leu Leu Asn Ser Thr Asp Thr			
	100	105	110	
10	Asp Ala Gln Ser Phe Thr Val Asn Ile Asp Asn Val Ile Asp Ser Val			
	115	120	125	
	Ile Cys Ser Ser Leu Leu Ala Ser Ile Cys Ser Leu Leu Ser Ile Ala			
	130	135	140	
	Val Asp Arg Tyr Phe Thr Ile Phe Tyr Ala Leu Gln Tyr His Asn Ile			
	145	150	155	160
15	Met Thr Val Lys Arg Val Gly Ile Ser Ile Ser Cys Ile Trp Ala Ala			
	165	170	175	
	Cys Thr Val Ser Gly Ile Leu Phe Ile Ile Tyr Ser Asp Ser Ser Ala			
	180	185	190	
20	Val Ile Ile Cys Leu Ile Thr Met Phe Phe Thr Met Leu Ala Leu Met			
	195	200	205	
	Ala Ser Leu Tyr Val His Met Phe Leu Met Ala Arg Leu His Ile Lys			
	210	215	220	
	Arg Ile Ala Val Leu Pro Gly Thr Gly Ala Ile Arg Gln Gly Ala Asn			
	225	230	235	240
25	Met Lys Gly Lys Ile Thr Leu Thr Ile Leu Ile Gly Val Phe Val Val			
	245	250	255	
	Cys Trp Ala Pro Phe Phe Leu His Leu Ile Phe Tyr Ile Ser Cys Pro			
	260	265	270	
30	Gln Asn Pro Tyr Cys Val Cys Phe Met Ser His Phe Asn Leu Tyr Leu			
	275	280	285	
	Ile Leu Ile Met Cys Asn Ser Ile Ile Asp Pro Leu Ile Tyr Ala Leu			
	290	295	300	
	Arg Ser Gln Glu Leu Arg Lys Thr Phe Lys Glu Ile Ile Cys Cys Tyr			
	305	310	315	320
35	Pro Leu Gly Gly Leu Cys Asp Leu Ser Ser Arg Tyr			
	325	330		

- 107 -

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 33 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

5

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:137:

GCCAATATGA AGGGAAAAAT TACCTTGACC ATC
33

10 (137) INFORMATION FOR SEQ ID NO:138:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 31 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

15

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:138:

CTCCTTCGGT CCTCCTATCG TTGTCAGAAG T
31

20 (140) INFORMATION FOR SEQ ID NO:139:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1842 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

25

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:139:

ATGGGGCCCA CCCTAGCGGT TCCCACCCCC TATGGCTGTA TTGGCTGTAA GCTACCCCAG	60
CCAGAACATT CACCGGCTCT AATCATCTTT ATGTTCTGCC CGATGGTTAT CACCATCGTT	120
30 GTAGACCTAA TCGGCAACTC CATGGTCATT TTGGCTGTGA CGAAGAACAA GAAGCTCCGG	180
AATTCTGGCA ACATCTTCGT GGTCAGTCTC TCTGTGGCCG ATATGCTGGT GGCCATCTAC	240
CCATACCCCT TGATGCTGCA TGCCATGTCC ATTGGGGGCT GGGATCTGAG CCAGTTACAG	300
TGCCAGATGG TCGGGTTCAT CACAGGGCTG AGTGTGGTCG GCTCCATCTT CAACATCGTG	360

- 108 -

	GCAATCGCTA TCAACCGTTA CTGCTACATC TGCCACAGCC TCCAGTACGA ACGGATCTTC	420
	AGTGTGCGCA ATACCTGCAT CTACCTGGTC ATCACCTGGA TCATGACCGT CCTGGCTGTC	480
	CTGCCAACAA TGTACATTGG CACCATCGAG TACGATCCTC GCACCTACAC CTGCATCTTC	540
	AACTATCTGA ACAACCCCTGT CTTCACTGTT ACCATCGTCT GCATCCACTT CGTCCTCCCT	600
5	CTCCTCATCG TGGGTTTCTG CTACGTGAGG ATCTGGACCA AAGTGTGGC GGCCC GTGAC	660
	CCTGCAGGGC AGAAC CCTGA CAACCAACTT GCTGAGGTTG GCAATT TTCT AACCATGTTT	720
	GTGATCTTCC TCCTCTTGCG AGTGTGCTGG TGCCCTATCA ACGTGCTCAC TGTCTTGGTG	780
	GCTGTCAGTC CGAAGGAGAT GGCAGGCAAG ATCCCCA ACT GGCTTATCT TGCAGCCTAC	840
	TTCATAGCCT ACTTCAACAG CTGCCTCAAC GCTGTGATCT ACGGGCTCCT CAATGAGAAT	900
10	TTCCGAAGAG AATACTGGAC CATCTTCCAT GCTATGCGGC ACCCTATCAT ATTCTTCCCT	960
	GGCCTCATCA GTGATATTG TGAGATGCAG GAGGCCCGTA CCCTGGCCCG CGCCC GTGCC	1020
	CATGCTCGCG ACCAAGCTCG TGAACAAGAC CGTGCCCATG CCTGT CCTGC TGTGGAGGAA	1080
	ACCCCGATGA ATGTCCGGAA TGTTCCATTA CCTGGTGATG CTGCAGCTGG CCACCCCGAC	1140
	CGTGCCTCTG GCCACCC TAA GCCCCATTCC AGATCCTCCT CTGCCTATCG CAAATCTGCC	1200
15	TCTACCCACC ACAAGTCTGT CTTTAGCCAC TCCAAGGCTG CCTCTGGTCA CCTCAAGCCT	1260
	GTCTCTGGCC ACTCCAAGCC TGCCTCTGGT CACCCCAAGT CTGCCACTGT CTACCC TAAG	1320
	CCTGCCTCTG TCCATTCAA GGGTGACTCT GTCCATTCA AGGGTGACTC TGTCCATTTC	1380
	AAGCCTGACT CTGTTCAATT CAAGCCTGCT TCCAGCAACC CCAAGCCCAT CACTGCCAC	1440
	CATGTCTCTG CTGGCAGCCA CTCCAAGTCT GCCTTCAGTG CTGCCACCAAG CCACCC TAA	1500
20	CCCATCAAGC CAGCTACCAAG CCATGCTGAG CCCACCACTG CTGACTATCC CAAGCCTGCC	1560
	ACTACCAGCC ACCCTAAGCC CGCTGCTGCT GACAACCCCTG AGCTCTCTGC CTCCCATTGC	1620
	CCCGAGATCC CTGCCATTGC CCACCC TGTGACGACA GTGACCTCCC TGAGTCGGCC	1680
	TCTAGCCCTG CCGCTGGGCC CACCAAGCCT GCTGCCAGCC AGCTGGAGTC TGACACCATC	1740
	GCTGACCTTC CTGACCC TAC TGTAGTCACT ACCAGTACCA ATGATTACCA TGATGTCGTG	1800
25	GTTGTTGATG TTGAAGATGA TCCTGATGAA ATGGCTGTGT GA	1842

(141) INFORMATION FOR SEQ ID NO:140:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 613 amino acids
- (B) TYPE: amino acid

- 109 -

(C) STRANDEDNESS:
(D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:140:

5	Met Gly Pro Thr Leu Ala Val Pro Thr Pro Tyr Gly Cys Ile Gly Cys 1 5 10 15
	Lys Leu Pro Gln Pro Glu Tyr Pro Pro Ala Leu Ile Ile Phe Met Phe 20 25 30
10	Cys Ala Met Val Ile Thr Ile Val Val Asp Leu Ile Gly Asn Ser Met 35 40 45
	Val Ile Leu Ala Val Thr Lys Asn Lys Lys Leu Arg Asn Ser Gly Asn 50 55 60
	Ile Phe Val Val Ser Leu Ser Val Ala Asp Met Leu Val Ala Ile Tyr 65 70 75 80
15	Pro Tyr Pro Leu Met Leu His Ala Met Ser Ile Gly Gly Trp Asp Leu 85 90 95
	Ser Gln Leu Gln Cys Gln Met Val Gly Phe Ile Thr Gly Leu Ser Val 100 105 110
20	Val Gly Ser Ile Phe Asn Ile Val Ala Ile Ala Ile Asn Arg Tyr Cys 115 120 125
	Tyr Ile Cys His Ser Leu Gln Tyr Glu Arg Ile Phe Ser Val Arg Asn 130 135 140
	Thr Cys Ile Tyr Leu Val Ile Thr Trp Ile Met Thr Val Leu Ala Val 145 150 155 160
25	Leu Pro Asn Met Tyr Ile Gly Thr Ile Glu Tyr Asp Pro Arg Thr Tyr 165 170 175
	Thr Cys Ile Phe Asn Tyr Leu Asn Asn Pro Val Phe Thr Val Thr Ile 180 185 190
30	Val Cys Ile His Phe Val Leu Pro Leu Leu Ile Val Gly Phe Cys Tyr 195 200 205
	Val Arg Ile Trp Thr Lys Val Leu Ala Ala Arg Asp Pro Ala Gly Gln 210 215 220
	Asn Pro Asp Asn Gln Leu Ala Glu Val Arg Asn Phe Leu Thr Met Phe 225 230 235 240
35	Val Ile Phe Leu Leu Phe Ala Val Cys Trp Cys Pro Ile Asn Val Leu 245 250 255

- 110 -

	Thr Val Leu Val Ala Val Ser Pro Lys Glu Met Ala Gly Lys Ile Pro			
	260	265	270	
	Asn Trp Leu Tyr Leu Ala Ala Tyr Phe Ile Ala Tyr Phe Asn Ser Cys			
	275	280	285	
5	Leu Asn Ala Val Ile Tyr Gly Leu Leu Asn Glu Asn Phe Arg Arg Glu			
	290	295	300	
	Tyr Trp Thr Ile Phe His Ala Met Arg His Pro Ile Ile Phe Phe Pro			
	305	310	315	320
10	Gly Leu Ile Ser Asp Ile Arg Glu Met Gln Glu Ala Arg Thr Leu Ala			
	325	330	335	
	Arg Ala Arg Ala His Ala Arg Asp Gln Ala Arg Glu Gln Asp Arg Ala			
	340	345	350	
	His Ala Cys Pro Ala Val Glu Glu Thr Pro Met Asn Val Arg Asn Val			
	355	360	365	
15	Pro Leu Pro Gly Asp Ala Ala Gly His Pro Asp Arg Ala Ser Gly			
	370	375	380	
	His Pro Lys Pro His Ser Arg Ser Ser Ser Ala Tyr Arg Lys Ser Ala			
	385	390	395	400
20	Ser Thr His His Lys Ser Val Phe Ser His Ser Lys Ala Ala Ser Gly			
	405	410	415	
	His Leu Lys Pro Val Ser Gly His Ser Lys Pro Ala Ser Gly His Pro			
	420	425	430	
	Lys Ser Ala Thr Val Tyr Pro Lys Pro Ala Ser Val His Phe Lys Gly			
	435	440	445	
25	Asp Ser Val His Phe Lys Gly Asp Ser Val His Phe Lys Pro Asp Ser			
	450	455	460	
	Val His Phe Lys Pro Ala Ser Ser Asn Pro Lys Pro Ile Thr Gly His			
	465	470	475	480
30	His Val Ser Ala Gly Ser His Ser Lys Ser Ala Phe Ser Ala Ala Thr			
	485	490	495	
	Ser His Pro Lys Pro Ile Lys Pro Ala Thr Ser His Ala Glu Pro Thr			
	500	505	510	
	Thr Ala Asp Tyr Pro Lys Pro Ala Thr Thr Ser His Pro Lys Pro Ala			
	515	520	525	
35	Ala Ala Asp Asn Pro Glu Leu Ser Ala Ser His Cys Pro Glu Ile Pro			
	530	535	540	
	Ala Ile Ala His Pro Val Ser Asp Asp Ser Asp Leu Pro Glu Ser Ala			

- 111 -

545	550	555	560
Ser Ser Pro Ala Ala Gly Pro Thr Lys Pro Ala Ala Ser Gln Leu Glu			
	565	570	575
5 Ser Asp Thr Ile Ala Asp Leu Pro Asp Pro Thr Val Val Thr Thr Ser			
	580	585	590
Thr Asn Asp Tyr His Asp Val Val Val Val Asp Val Glu Asp Asp Pro			
	595	600	605
Asp Glu Met Ala Val			
	610		

10 (142) INFORMATION FOR SEQ ID NO:141:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1842 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

15 (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:141:

ATGGGGCCCA CCCTAGCGGT TCCCACCCCC TATGGCTGTA TTGGCTGTAA GCTACCCAG	60
CCAGAACATACC CACCGGCTCT AATCATCTTT ATGTTCTGCG CGATGGTTAT CACCATCGTT	120
20 GTAGACCTAA TCGGCAACTC CATGGTCATT TTGGCTGTGA CGAAGAACAA GAAGCTCCGG	180
AATTCTGGCA ACATCTTCGT GGTCAGTCTC TCTGTGGCCG ATATGCTGGT GGCCATCTAC	240
CCATACCCCTT TGATGCTGCA TGCCATGTCC ATTGGGGGCT GGGATCTGAG CCAGTTACAG	300
TGCCAGATGG TCGGGTTCAT CACAGGGCTG AGTGTGGTCG GCTCCATCTT CAACATCGTG	360
GCAATCGCTA TCAACCGTTA CTGCTACATC TGCCACAGCC TCCAGTACGA ACGGATCTTC	420
25 AGTGTGCGCA ATACCTGCAT CTACCTGGTC ATCACCTGGA TCATGACCGT CCTGGCTGTC	480
CTGCCCAACA TGTACATTGG CACCATCGAG TACGATCCTC GCACCTACAC CTGCATCTTC	540
AACTATCTGA ACAACCCTGT CTTCACTGTT ACCATCGTCT GCATCCACTT CGTCCTCCCT	600
CTCCTCATCG TGGGTTCTG CTACGTGAGG ATCTGGACCA AAGTGCTGGC GGCCCGTGAC	660
CCTGCAGGGC AGAACCTGA CAACCAAATT GCTGAGGTTG GCAATAAACT AACCATGTTT	720
30 GTGATCTTCC TCCTCTTGCA AGTGTGCTGG TGCCCTATCA ACGTGCTCAC TGTCTTGGTG	780
GCTGTCAGTC CGAAGGAGAT GGCAGGCAAG ATCCCCAACT GGCTTTATCT TGCAGCCTAC	840

- 112 -

	TTCATAGCCT ACTTCAACAG CTGCCTAAC GCTGTGATCT ACGGGCTCCT CAATGAGAAT	900
	TTCCGAAGAG AATACTGGAC CATCTTCCAT GCTATGCGGC ACCCTATCAT ATTCTTCTCT	960
	GGCCTCATCA GTGATATTG TGAGATGCAG GAGGCCCGTA CCCTGGCCCG CGCCCGTGCC	1020
	CATGCTCGCG ACCAAGCTCG TGAACAAGAC CGTGCCCATG CCTGTCTGC TGTGGAGGAA	1080
5	ACCCCGATGA ATGTCCGGAA TGTTCCATT CCTGGTGATG CTGCAGCTGG CCACCCCGAC	1140
	CGTGCCTCTG GCCACCCCAA GCCCCATTCC AGATCCTCCT CTGCCTATCG CAAATCTGCC	1200
	TCTACCCACC ACAAGTCTGT CTTTAGCCAC TCCAAGGCTG CCTCTGGTCA CCTCAAGCCT	1260
	GTCTCTGGCC ACTCCAAGCC TGCCTCTGGT CACCCCAAGT CTGCCACTGT CTACCCCTAAG	1320
	CCTGCCTCTG TCCATTCAA GGCTGACTCT GTCCATTCA AGGGTGACTC TGTCCATTTC	1380
10	AAGCCTGACT CTGTTCATTT CAAGCCTGCT TCCAGCAACC CCAAGCCCAT CACTGGCCAC	1440
	CATGTCTCTG CTGGCAGCCA CTCCAAGTCT GCCTTCAATG CTGCCACCAG CCACCCCTAAA	1500
	CCCATCAAGC CAGCTACCAAG CCATGCTGAG CCCACCACTG CTGACTATCC CAAGCCTGCC	1560
	ACTACCAAGCC ACCCTAAAGCC CGCTGCTGCT GACAACCCCTG AGCTCTCTGC CTCCCATTGC	1620
	CCCGAGATCC CTGCCATTGC CCACCCCTGTG TCTGACGACA GTGACCTCCC TGAGTCGGCC	1680
15	TCTAGCCCTG CCGCTGGGCC CACCAAGCCT GCTGCCAGCC AGCTGGAGTC TGACACCATC	1740
	GCTGACCTTC CTGACCCCTAC TGTAGTCACT ACCAGTACCA ATGATTACCA TGATGTCGTG	1800
	GTTGTTGATG TTGAAGATGA TCCTGATGAA ATGGCTGTGT GA	1842

(143) INFORMATION FOR SEQ ID NO:142:

20 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 613 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS:
 (D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:142:

```

Met Gly Pro Thr Leu Ala Val Pro Thr Pro Tyr Gly Cys Ile Gly Cys
1          5           10          15

```

Lys Leu Pro Gln Pro Glu Tyr Pro Pro Ala Leu Ile Ile Phe Met Phe
20 25 30

30 Cys Ala Met Val Ile Thr Ile Val Val Asp Leu Ile Gly Asn Ser Met
35 40 45

- 113 -

	Val Ile Leu Ala Val Thr Lys Asn Lys Lys Leu Arg Asn Ser Gly Asn			
	50	55	60	
	Ile Phe Val Val Ser Leu Ser Val Ala Asp Met Leu Val Ala Ile Tyr			
	65	70	75	80
5	Pro Tyr Pro Leu Met Leu His Ala Met Ser Ile Gly Gly Trp Asp Leu			
	85	90	95	
	Ser Gln Leu Gln Cys Gln Met Val Gly Phe Ile Thr Gly Leu Ser Val			
	100	105	110	
10	Val Gly Ser Ile Phe Asn Ile Val Ala Ile Ala Ile Asn Arg Tyr Cys			
	115	120	125	
	Tyr Ile Cys His Ser Leu Gln Tyr Glu Arg Ile Phe Ser Val Arg Asn			
	130	135	140	
	Thr Cys Ile Tyr Leu Val Ile Thr Trp Ile Met Thr Val Leu Ala Val			
	145	150	155	160
15	Leu Pro Asn Met Tyr Ile Gly Thr Ile Glu Tyr Asp Pro Arg Thr Tyr			
	165	170	175	
	Thr Cys Ile Phe Asn Tyr Leu Asn Asn Pro Val Phe Thr Val Thr Ile			
	180	185	190	
20	Val Cys Ile His Phe Val Leu Pro Leu Leu Ile Val Gly Phe Cys Tyr			
	195	200	205	
	Val Arg Ile Trp Thr Lys Val Leu Ala Ala Arg Asp Pro Ala Gly Gln			
	210	215	220	
	Asn Pro Asp Asn Gln Leu Ala Glu Val Arg Asn Lys Leu Thr Met Phe			
	225	230	235	240
25	Val Ile Phe Leu Leu Phe Ala Val Cys Trp Cys Pro Ile Asn Val Leu			
	245	250	255	
	Thr Val Leu Val Ala Val Ser Pro Lys Glu Met Ala Gly Lys Ile Pro			
	260	265	270	
30	Asn Trp Leu Tyr Leu Ala Ala Tyr Phe Ile Ala Tyr Phe Asn Ser Cys			
	275	280	285	
	Leu Asn Ala Val Ile Tyr Gly Leu Leu Asn Glu Asn Phe Arg Arg Glu			
	290	295	300	
	Tyr Trp Thr Ile Phe His Ala Met Arg His Pro Ile Ile Phe Phe Ser			
	305	310	315	320
35	Gly Leu Ile Ser Asp Ile Arg Glu Met Gln Glu Ala Arg Thr Leu Ala			
	325	330	335	
	Arg Ala Arg Ala His Ala Arg Asp Gln Ala Arg Glu Gln Asp Arg Ala			

- 114 -

	340	345	350
	His Ala Cys Pro Ala Val Glu Glu Thr Pro Met Asn Val Arg Asn Val		
	355	360	365
	Pro Leu Pro Gly Asp Ala Ala Ala Gly His Pro Asp Arg Ala Ser Gly		
5	370	375	380
	His Pro Lys Pro His Ser Arg Ser Ser Ser Ala Tyr Arg Lys Ser Ala		
	385	390	395
	Ser Thr His His Lys Ser Val Phe Ser His Ser Lys Ala Ala Ser Gly		
	405	410	415
10	His Leu Lys Pro Val Ser Gly His Ser Lys Pro Ala Ser Gly His Pro		
	420	425	430
	Lys Ser Ala Thr Val Tyr Pro Lys Pro Ala Ser Val His Phe Lys Ala		
	435	440	445
15	Asp Ser Val His Phe Lys Gly Asp Ser Val His Phe Lys Pro Asp Ser		
	450	455	460
	Val His Phe Lys Pro Ala Ser Ser Asn Pro Lys Pro Ile Thr Gly His		
	465	470	475
	His Val Ser Ala Gly Ser His Ser Lys Ser Ala Phe Asn Ala Ala Thr		
	485	490	495
20	Ser His Pro Lys Pro Ile Lys Pro Ala Thr Ser His Ala Glu Pro Thr		
	500	505	510
	Thr Ala Asp Tyr Pro Lys Pro Ala Thr Thr Ser His Pro Lys Pro Ala		
	515	520	525
25	Ala Ala Asp Asn Pro Glu Leu Ser Ala Ser His Cys Pro Glu Ile Pro		
	530	535	540
	Ala Ile Ala His Pro Val Ser Asp Asp Ser Asp Leu Pro Glu Ser Ala		
	545	550	555
	Ser Ser Pro Ala Ala Gly Pro Thr Lys Pro Ala Ala Ser Gln Leu Glu		
	565	570	575
30	Ser Asp Thr Ile Ala Asp Leu Pro Asp Pro Thr Val Val Thr Thr Ser		
	580	585	590
	Thr Asn Asp Tyr His Asp Val Val Val Asp Val Glu Asp Asp Pro		
	595	600	605
35	Asp Glu Met Ala Val		
	610		

- 115 -

5 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 33 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:143:

GCTGAGGTTTC GCAATAAACT AACCATGTTT GTG

33

(145) INFORMATION FOR SEQ ID NO:144:

10 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

15 (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:144:

CTCCTTCGGT CCTCCTATCG TTGTCAGAAG T

31

(146) INFORMATION FOR SEQ ID NO:145:

20 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 27 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

25 (iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:145:

TTAGATATCG GGGCCCACCC TAGCGGT

33

(147) INFORMATION FOR SEQ ID NO:146:

30 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 29 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

- 116 -

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:146:

GGTACCCCCA CAGCCATTTC ATCAGGATC

33

This Page Blank (uspto)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
20 April 2000 (20.04.2000)

PCT

(10) International Publication Number
WO 00/22131 A3

(51) International Patent Classification⁷: C12N 15/16, C07K 14/72

(21) International Application Number: PCT/US99/24065

(22) International Filing Date: 13 October 1999 (13.10.1999)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

09/170,496	13 October 1998 (13.10.1998)	US
60/108,029	12 November 1998 (12.11.1998)	US
60/109,213	20 November 1998 (20.11.1998)	US
60/110,060	27 November 1998 (27.11.1998)	US
60/120,416	16 February 1999 (16.02.1999)	US
60/121,852	26 February 1999 (26.02.1999)	US
60/123,944	12 March 1999 (12.03.1999)	US
60/123,945	12 March 1999 (12.03.1999)	US
60/123,948	12 March 1999 (12.03.1999)	US
60/123,946	12 March 1999 (12.03.1999)	US
60/123,949	12 March 1999 (12.03.1999)	US
60/123,951	12 March 1999 (12.03.1999)	US
60/136,436	28 May 1999 (28.05.1999)	US
60/136,437	28 May 1999 (28.05.1999)	US
60/136,439	28 May 1999 (28.05.1999)	US
60/136,567	28 May 1999 (28.05.1999)	US
60/137,127	28 May 1999 (28.05.1999)	US
60/137,131	28 May 1999 (28.05.1999)	US
60/141,448	30 June 1999 (30.06.1999)	US
60/151,114	27 August 1999 (27.08.1999)	US
60/152,524	3 September 1999 (03.09.1999)	US
60/156,653	29 September 1999 (29.09.1999)	US
60/156,633	29 September 1999 (29.09.1999)	US
60/156,555	29 September 1999 (29.09.1999)	US
60/156,634	29 September 1999 (29.09.1999)	US
60/157,280	1 October 1999 (01.10.1999)	US
60/157,294	1 October 1999 (01.10.1999)	US
60/157,281	1 October 1999 (01.10.1999)	US
60/157,293	1 October 1999 (01.10.1999)	US
60/157,282	1 October 1999 (01.10.1999)	US
09/417,044	12 October 1999 (12.10.1999)	US
09/416,760	12 October 1999 (12.10.1999)	US

(71) Applicant (*for all designated States except US*): ARENA PHARMACEUTICALS, INC. [US/US]; 6166 Nancy Ridge Drive, San Diego, CA 92121 (US).

(72) Inventors; and

(75) Inventors/Applicants (*for US only*): BEHAN, Dominic, P. [GB/US]; 11472 Roxboro Court, San Diego, CA 92131 (US). LEHMANN-BRUINSMA, Karin [DE/US]; 12565 Pathos Lane, San Diego, CA 92129 (US). CHALMERS, Derek, T. [GB/US]; 347 Longden Lane, Solana Beach, CA 92150 (US). CHEN, Ruoping [CN/US]; 5296 Timber Branch Way, San Diego, CA 92130 (US). DANG, Huong, T. [US/US]; 5352 Oak Park Drive, San Diego, CA 92105 (US). GORE, Martin [GB/US]; 6868 Estrella Avenue, San Diego, CA 92120 (US). LIAW, Chen, W. [US/US]; 7668 Salix Place, San Diego, CA 92129 (US). LIN, I-Lin [—/US]; 8291-7 Gold Coast Drive, San Diego, CA 92126 (US). LOWITZ, Kevin [US/US]; Apartment C, 8031 Caminito de Pizza, San Diego, CA 92108 (US). WHITE, Carol [US/US]; 4260 Cleveland Avenue, San Diego, CA 92103 (US).

(74) Agents: MILLER, Suzanne, E. et al.; Woodcock Washburn Kurtz Mackiewicz & Norris LLP, 46th floor, One Liberty Place, Philadelphia, PA 19103 (US).

(81) Designated States (*national*): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

— With international search report.

(88) Date of publication of the international search report:
22 February 2001

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application:

US 09/170,496 (CIP)
Filed on 13 October 1998 (13.10.1998)

(54) Title: NON-ENDOGENOUS, CONSTITUTIVELY ACTIVATED HUMAN G PROTEIN-COUPLED RECEPTORS

(57) Abstract: The invention disclosed in this patent document relates to transmembrane receptors, more particularly to a human G protein-coupled receptor for which the endogenous ligand is unknown ("orphan GPCR receptors"), and most particularly to mutated (non-endogenous) versions of the human GPCRs for evidence of constitutive activity

WO 00/22131 A3

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 99/24065

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C12N15/16 C07K14/72

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C12N C07K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 97 21731 A (NEW ENGLAND MEDICAL CENTER INC) 19 June 1997 (1997-06-19) page 18, line 16 - line 26 figures 2,3 ---	1-4
A	SCHEER A. ET AL.: "CONSTITUTIVELY ACTIVE G PROTEIN-COUPLED RECEPTORS: POTENTIAL MECHANISMS OF RECEPTOR ACTIVATION" JOURNAL OF RECEPTOR AND SIGNAL TRANSDUCTION RESEARCH, vol. 17, no. 1/03, 1997, pages 57-73, XP000867531 ISSN: 1079-9893 the whole document ---	1-4 -/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority, claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

2 March 2000

Date of mailing of the international search report

14.06.2000

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax. (+31-70) 340-2040

Authorized officer

INTERNATIONAL SEARCH REPORT

Intern. Application No
PCT/US 99/24065

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 98 38217 A (HERRICK DAVIS KATHARINE ;TEITLER MILT (US); EGAN CHRISTINA C (US)) 3 September 1998 (1998-09-03) figure 4 ---	1-4
A	KJELSBERG M. A. ET AL.: "CONSTITUTIVE ACTIVATION OF THE ALPHA1B-ADRENERGIC RECEPTOR BY ALL AMINO ACID SUBSTITUTIONS AT A SINGLE SITE" JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 267, no. 3, 25 January 1992 (1992-01-25), pages 1430-1433, XP002911764 ISSN: 0021-9258 the whole document ---	1-4
P,A	PAUWELS P. J. ET AL.: "REVIEW:AMINO ACID DOMAINS INVOLVED IN CONSTITUTIVE ACTIVATION OF G-PROTEIN-COUPLED RECEPTORS" MOLECULAR NEUROBIOLOGY, vol. 17, no. 1/03, 1998, pages 109-135, XP000866477 ISSN: 0893-7648 the whole document ---	1-4
P,A	WO 99 24569 A (ONO PHARMACEUTICAL CO ;HAGA HISANORI (JP); NAKADE SHINJI (JP); FUK) 20 May 1999 (1999-05-20) SEQ.IDs. 1-3 -----	1-4

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 99/24065

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

1-4

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

1. Claims: 1-4

A cDNA encoding a non-endogenous, constitutively activated version of a human G-protein-coupled receptor comprising hARE-3(F313K); the receptor encoded by said cDNA; a plasmid comprising said cDNA; and a host cell comprising said plasmid.

2. Claims: 5-8

A cDNA encoding a non-endogenous, constitutively activated version of a human G-protein-coupled receptor comprising hARE-4(V233K); the receptor encoded by said cDNA; a plasmid comprising said cDNA; and a host cell comprising said plasmid.

3. Claims: 9-12

A cDNA encoding a non-endogenous, constitutively activated version of a human G-protein-coupled receptor comprising hARE-5(A240K); the receptor encoded by said cDNA; a plasmid comprising said cDNA; and a host cell comprising said plasmid.

4. Claims: 13-16

A cDNA encoding a non-endogenous, constitutively activated version of a human G-protein-coupled receptor comprising hGPCR14(L257K); the receptor encoded by said cDNA; a plasmid comprising said cDNA; and a host cell comprising said plasmid.

5. Claims: 17-20

A cDNA encoding a non-endogenous, constitutively activated version of a human G-protein-coupled receptor comprising hGPCR27(C283K); the receptor encoded by said cDNA; a plasmid comprising said cDNA; and a host cell comprising said plasmid.

6. Claims: 21-24

A cDNA encoding a non-endogenous, constitutively activated version of a human G-protein-coupled receptor comprising hARE-1(E232K); the receptor encoded by said cDNA; a plasmid comprising said cDNA; and a host cell comprising said plasmid.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

A cDNA encoding a non-endogenous, constitutively activated version of a human G-protein-coupled receptor comprising hARE-2(G285K); the receptor encoded by said cDNA; a plasmid comprising said cDNA; and a host cell comprising said plasmid.

8. Claims: 29-32

A cDNA encoding a non-endogenous, constitutively activated version of a human G-protein-coupled receptor comprising hPPR1(L239K); the receptor encoded by said cDNA; a plasmid comprising said cDNA; and a host cell comprising said plasmid.

9. Claims: 33-36

A cDNA encoding a non-endogenous, constitutively activated version of a human G-protein-coupled receptor comprising hG2A(K232A); the receptor encoded by said cDNA; a plasmid comprising said cDNA; and a host cell comprising said plasmid.

10. Claims: 37-40

A cDNA encoding a non-endogenous, constitutively activated version of a human G-protein-coupled receptor comprising hRUP3(L224K); the receptor encoded by said cDNA; a plasmid comprising said cDNA; and a host cell comprising said plasmid.

11. Claims: 41-44

A cDNA encoding a non-endogenous, constitutively activated version of a human G-protein-coupled receptor comprising hRUP5(A236K); the receptor encoded by said cDNA; a plasmid comprising said cDNA; and a host cell comprising said plasmid.

12. Claims: 45-48

A cDNA encoding a non-endogenous, constitutively activated version of a human G-protein-coupled receptor comprising hRUP6(N267K); the receptor encoded by said cDNA; a plasmid comprising said cDNA; and a host cell comprising said plasmid.

13. Claims: 49-52

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

A cDNA encoding a non-endogenous, constitutively activated version of a human G-protein-coupled receptor comprising hRUP7(A302K); the receptor encoded by said cDNA; a plasmid comprising said cDNA; and a host cell comprising said plasmid.

14. Claims: 53-56

A cDNA encoding a non-endogenous, constitutively activated version of a human G-protein-coupled receptor comprising hCHN4(V236K); the receptor encoded by said cDNA; a plasmid comprising said cDNA; and a host cell comprising said plasmid.

15. Claims: 57-60

A cDNA encoding a non-endogenous, constitutively activated version of a human G-protein-coupled receptor comprising hMC4(A244K); the receptor encoded by said cDNA; a plasmid comprising said cDNA; and a host cell comprising said plasmid.

16. Claims: 61-64

A cDNA encoding a non-endogenous, constitutively activated version of a human G-protein-coupled receptor comprising hCHN3(S284K); the receptor encoded by said cDNA; a plasmid comprising said cDNA; and a host cell comprising said plasmid.

17. Claims: 65-68.

A cDNA encoding a non-endogenous, constitutively activated version of a human G-protein-coupled receptor comprising hCHN6(L352K); the receptor encoded by said cDNA; a plasmid comprising said cDNA; and a host cell comprising said plasmid.

18. Claims: 69-72

A cDNA encoding a non-endogenous, constitutively activated version of a human G-protein-coupled receptor comprising hCHN8(N235K); the receptor encoded by said cDNA; a plasmid comprising said cDNA; and a host cell comprising said plasmid.

19. Claims: 73-76

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

version of a human G-protein-coupled receptor comprising hH9(F236K); the receptor encoded by said cDNA; a plasmid comprising said cDNA; and a host cell comprising said plasmid.

20. Claims: 77-80

A cDNA encoding a non-endogenous, constitutively activated version of a human G-protein-coupled AT1 receptor selected from the group consisting of hAT1(F239K), hAT1(N111A), hAT1(AT2K255IC3) and hAT1 (A243+); the receptor encoded by said cDNA; a plasmid comprising said cDNA; and a host cell comprising said plasmid.

INTERNATIONAL SEARCH REPORT

Information on patent family members

Intern	nal Application No
PCT/US 99/24065	

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9721731	A 19-06-1997	US 5750353 A		12-05-1998
		AU 715611 B		03-02-2000
		AU 1334397 A		03-07-1997
		CA 2239293 A		19-06-1997
		EP 0869975 A		14-10-1998
-----	-----	-----	-----	-----
WO 9838217	A 03-09-1998	AU 6343998 A		18-09-1998
-----	-----	-----	-----	-----
WO 9924569	A 20-05-1999	NONE		
-----	-----	-----	-----	-----

This Page Blank (uspto)