Data representation

College of Saint Benedict & Saint John's University

5		8		0		3		6	
50000	+	8000	+	0	+	30	+	6	

5		8		0		3		6
50000	+	8000	+	0	+	30	+	6
5 × 10000		8 > 1000		0 × 100		3 × 10		6 × 1

5		8		0		3		6
50000	+	8000	+	0	+	30	+	6
5 × 10000	+	8 × 1000	+	0 × 100	+	3 × 10	+	6 × 1
5 × 10 ⁴	+	8 × 10 ³	+	0 × 10 ²	+	3 × 10 ¹	+	6 × 10 ⁰

1	0	1	1	0
1×2^4	$+ 0 \times 2^{3}$	$+ 1 \times 2^{2}$	$+ 1 \times 2^{1}$	$+ 0 \times 2^{0}$
1 × 16	+ 0 × 8	+ 1 × 4	+ 1×2	+ 0 × 1

1	0	1	1	1	0
1 × 2 ⁴	$+$ 0 \times 2 ³	+ 1	1 × 2 ² +	1 × 2 ¹ +	0 × 2 ⁰
1 × 16	+ 0 × 8	+ 1	1 × 4 +	1 × 2 +	0 × 1
16	+ 0	+ 4	4 +	2 +	0

- this is the representation for unsigned binary integers
- so how to represent signed integers?
 - why not use the leftmost bit to store the sign?
 - what is the range of values if we choose this? 0 is represented twice, so our range has one less value — not the end of the world
 - \cdot what happens if we add to -5 to +5? the result is -10?

unsigned addition

$$0 + 0 = 0$$

$$0 + 1 = 1$$

$$1 + 0 = 1$$

$$1 + 1 = 10$$

unsigned addition

$$0 + 0 = 0$$
 $0 + 1 = 1$
 $1 + 0 = 1$
 $1 + 1 = 10$

$$(-0, 0, 0, 1, 0, 1, 0, -1, 0$$

 the hardware has a special bit known as the carry bit, denoted by C, which stores a 1 if the result of the addition was a carry, and 0 otherwise.

signed addition

$$0 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1 = +5$$

ADD 1 0 0 1 0 1 =
$$-$$

signed addition

ADD	1	0	0	1	0	1	= -5
C = 0	1	0	1	0	1	0	= -10

- · what is the problem
 - in this case, we had two additional symbols, + and -, and we were making some assumptions about their behavior.
 - For example, we know that 5ADD5 = 10, but what does +ADD—
 equal? we have no rule for that in our definition of decimal.
 - we are trying to apply the addition algorithm, when we should be applying a different algorithm, called subtraction
 - can we choose a different representation that we can directly use the addition algorithm with?

NOT 0 0 0 1 0 1

NOT	0	0	0	1	0	1	
	1	1	1	0	1	0	

NOT	0	0	С)	1	0	1
	1	1	1		0	1	0
	0	0	C)	1	0	1
ADD	1	1	1		0	1	0

• one's complement is known as logical not

- · one's complement is known as logical not
- adding the one's complement will always result in all 1s

	NOT	0	0	0	1	0	1
		1	1	1	0	1	0
		0	0	0	1	0	1
	ADD	1	1	1	0	1	0
	C = 0	1	1	1	1	1	1
	ADD	0	0	0	0	0	1

- · one's complement is known as logical not
- adding the one's complement will always result in all 1s

	NOT	0	0	0	1	0	1	
		1	1	1	0	1	0	
		0	0	0	1	0	1	
	ADD	1	1	1	0	1	0	
	C = 0	1	1	1	1	1	1	
_	ADD	0	0	0	0	0	1	
	C = 1	0	0	0	0	0	0	

- · one's complement is known as logical not
- adding the one's complement will always result in all 1s
- \cdot so two's complement is NOT + 1

except where otherwise noted, this worked is licensed under creative commons attribution-sharealike 4.0 international license