Transformer

อ. ปรัชญ์ ปิยะวงศ์วิศาล

Pratch Piyawongwisal

Transformer Model

- Original paper:
 - "Attention is All You Need" by Vaswani et al., NEURIPS, 2017
 - based on "Attention" idea from Bahdanau et al., ICLR, 2015
 - "Self-Attention" mechanism

- Why Transformer?
 - Big improvement from RNN, LSTM
 - Recent NLP models are transformer-based
 - BERT >> ALBERT, RoBERTA, WangchanBERTa >> GPT
 - Also applicable to vision tasks (ViT)

Main Contributions of Transformer Paper

- More parallelizable than RNN
- Much fewer # of operations than CNN-based solutions
- SOTA machine translation
 - Fast training time
 - SOTA BLEU scores on Eng-Ger, Eng-Fr

Background Concepts

- RNN, LSTM
- Encoder-Decoder Model
 - Sequence to Sequence Learning with Neural Networks (Cho et al., 2014)
 - https://arxiv.org/abs/1409.3215
 - Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation (Sutskever et al., 2014)
 - https://arxiv.org/abs/1406.1078
- Attention Mechanism
 - Neural Machine Translation by Jointly Learning to Align and Translate (Bahdanau et al., 2015)
 - https://arxiv.org/abs/1409.0473

Quick Recap

RNN

 $a^{<0>} \longrightarrow \bigcup_{i=1}^{\tilde{y}^{<1>}} a^{<2>} \bigcup_{i=1}^{\tilde{y}^{<1>}} a^{<2>} \bigcup_{i=1}^{\tilde{y}^{<1>}} a^{<1>} \bigcup_{i=1}^{\tilde{y}^{<1>}} a^{<2>} \bigcup_{i=1}^{\tilde{y}^{<1>}} a^{<1>} \bigcup_{i=1}^{\tilde{y}^{<1>}} a^{<1>} \bigcup_{i=1}^{\tilde{y}^{<1>}} a^{<1>} \bigcup_{i=1}^{\tilde{y}^{<1>}} a^{<1>} \bigcup_{i=1}^{\tilde{y}^{<1>}} a^{<1>} \bigcup_{i=1}^{\tilde{y}^{<1>}} a^{<1>} \bigcup_{i=1}^{\tilde{y}^{<1}} a^{<1}} \bigcup_{i=1}^{\tilde{y}^{<1}} a^{<1>} \bigcup_{i=1}^{\tilde{y}^{<1}} a^{<1}} \bigcup_{i=1}^$

LSTM

Encoder-Decoder Architecture

context vector (computed from hidden state of RNN)

- "seq2seq" model
- Encoder
 - Encodes the entire input sequence into "context vector" (representation of input sequence)
- Decoder
 - Generates output based on the context vector

• Train both parts at once (End-to-End)

Attention

- Limitation of Encoder-Decoder
 - Context vector C is fixed-length
 - Does not work well with long input sentences
 - Alignment problem in MT:
 - Which parts of input sentence should the decoder concentrates on?
- Attention (Bahdanau et al., 2015)
 - Use weighted/combined context vectors from many timesteps of the encoder
 - Weight = attention given to that input word

https://github.com/google/seq2seq

https://zhuanlan.zhihu.com/p/37290775

How to compute attention? (Bahdanau, 2015)

- ทบทวน:
 - $a^{< t>}$ คือ activation (= hidden state $h^{< t>}$) ของ LSTM, GRU
- Encoder-decoder notations:
 - ในส่วน encoder ใช้ Bidirectional RNN
 - ซึ่งในแต่ละ step t' มี forward $\vec{h}^{< t'>}$ และ backward $\vec{h}^{< t'>}$
 - ในส่วน decoder ใช้ RNN
 - ซึ่งในแต่ละ step t จะ generate คำตอบ $y^{< t>}$ โดยนำ context vector $c^{< t>}$ จาก encoder มาร่วมคิดด้วย

LSTM cell

How to compute attention?

(Bahdanau, 2015)

Attention Mechanism

- การคำนวณ context vector $c^{< t>}$
 - $c^{<t>} = \sum_{t'=1}^{T_x} \alpha^{<t,t'>} [\vec{h}^{<t'>}, \vec{h}^{<t'>}]$
 - เป็นการสกัดข้อมูลที่เกี่ยวข้องมาจาก $\vec{h}^{< t'>}$, $\vec{h}^{< t'>}$ ของทั้ง encoder sequence

- โดยที่ $lpha^{< t,t'>}$ คือ attention score (decoder step t ควรให้ความสนใจกับ encoder step t' มาก/น้อย?)
 - $\alpha^{< t,t'>} = \operatorname{softmax}(e^{< t,t'>})$ เพื่อ normalize ค่าให้อยู่ในช่วง 0-1
 - $e^{< t,t'>} = \tanh(W_e[s^{< t-1>}, h^{< t>}])$ = 1-layer NN (สามารถมองเป็นการคำนวณ similarity score ระหว่าง $s^{< t-1>}$, $h^{< t>}$)

Transformer Model

- No recurrence/convolution
- Self-Attention
- Multi-Head Attention
- Positional Encoding
 - To maintain word ordering information
- Residual Connections

Output from ALL previous steps of decoder?

<u>and-values-in-attention-mechanisms?rq=1</u>

Multi-Head Attention

Concept from Retrieval System

- Q (Query)
- K (Key)
- V (Value)
- QK^T (attention filter):
 - look up keys that are closest to query
- times *V*:
 - get V that corresponds to that key

Attention Filter

7 x 7

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

3 x 7

Scaled Dot-Product Attention

Multi-Head =>

กอกออก การสมบังนาม เมื่อของคริสาล Raich head detects different feature of the language

Self-Attention

Self-Attention: representation of input sequence that captures relation among input words

https://www.youtube.com/watch?v=mMa2PmYJlCo

Masked to prevent leftward info flow to preserve auto-regressive property (aka. disallow using future time decoder output?)

Example with 2 Encoder/Decoder Layers

Confusing Part

Why do we need K & V Not just K?

To read:

https://stats.stackexchange.com/questions/ 421935/what-exactly-are-keys-queries-andvalues-in-attention-mechanisms?rq=1

https://medium.com/@b.terryjack/deep-learning-the-transformer-9ae5e9c5a190

