

SpaceX Falcon 9 First Stage Landing Prediction

Igor Yurov 11-03-2022

OUTLINE

- Executive Summary
- Introduction
- Data Collection and Data Wrangling Methodology
- EDA and Interactive visual Analytics Methodology
- Predictive Analysis Methodology
- EDA with Visualization Results
- **EDA with SQL Results**
- Interactive Map with Folium Results
- Plotly Dash Dashboard Results
- Predictive Analysis (Classification) Results
- Conclusion

EXECUTIVE SUMMARY

- The purpose if this project is to predict if the Falcon 9 first stage will land successfully
- Predictive analysis can be applied to predict if the Falcon 9 first stage will land successfully
- Best machine learning prediction model is **Decision** tree classifier with accuracy of 0.8892
- Success rate is significantly improved since 2017
- Success rate is higher for heavy payloads

INTRODUCTION

- SpaceX advertises Falcon 9 rocket launches with a cost of 62 million dollars. Other providers cost upward of 165 million dollars each. Much of the savings is because SpaceX can reuse the first stage.
- The purpose if this project is to predict if the Falcon 9 first stage will land successfully and therefore determine the cost of a launch.
- This information can be used if an alternate company wants to bid against SpaceX for a rocket launch.

Data Collection and Data Wrangling Methodology

- Request and parse the SpaceX launch data using the GET request
- Clean the requested data
 - Filter the dataframe to only include Falcon 9 launches
 - **Deal with Missing Values**
 - Create a landing outcome label from Outcome column

EDA and Interactive Visual Analytics Methodology

- Exploratory data analysis (EDA) is used to analyze and investigate data sets and summarize their main characteristics, often employing data visualization methods.
- It helps determine how best to manipulate data sources to get the answers needed, making it easier to discover patterns, spot anomalies, test a hypothesis, or check assumptions.

Predictive Analysis Methodology

- Predictive analysis a branch of advanced analytics that makes predictions about future outcomes using historical data combined with statistical modeling, data mining techniques and machine learning.
- Companies employ predictive analytics to find patterns in this data to identify risks and opportunities.

EDA with Visualization Results - 1

Visualize the relationship between Flight Number and Launch Site

Visualize the relationship between Payload and Launch Site

EDA with Visualization Results - 2

Visualize the relationship between success rate of each orbit type

Visualize the relationship between FlightNumber and Orbit type

EDA with Visualization Results - 3

Visualize the relationship between Payload and Orbit type

Visualize the relationship between FlightNumber and Orbit type

• Display the names of the unique launch sites in the space mission

launch_site CCAFS LC-40 CCAFS SLC-40 KSC LC-39A VAFB SLC-4E

Display 5 records where launch sites begin with the string 'CCA'

	DATE	timeutc_	booster_version	launch_site	payload	payload_masskg_	orbit	customer	mission_outcome	landingoutcome
2010-0	06-04	18:45:00	F9 v1.0 B0003	CCAFS LC-40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
2010-	12-08	15:43:00	F9 v1.0 B0004	CCAFS LC-40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2012-0	05-22	07:44:00	F9 v1.0 B0005	CCAFS LC-40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
2012-	10-08	00:35:00	F9 v1.0 B0006	CCAFS LC-40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
2013-	03-01	15:10:00	F9 v1.0 B0007	CCAFS LC-40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Display the total payload mass carried by boosters launched by NASA (CRS)

Total Payload Mass

45596

Display average payload mass carried by booster version F9 v1.1

Average Payload

2928

• List the date when the first successful landing outcome in ground pad was achieved.

1

2015-12-22

• List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000

booster_version

F9 FT B1021.2

F9 FT B1031.2

F9 FT B1022

F9 FT B1026

• List the failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015

landingoutcome	booster_version	launch_site
Failure (drone ship)	F9 v1.1 B1012	CCAFS LC-40
Failure (drone ship)	F9 v1.1 B1015	CCAFS LC-40

• Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

landing_outcome	count
No attempt	10
Failure (drone ship)	5
Success (drone ship)	5
Controlled (ocean)	3
Success (ground pad)	3
Failure (parachute)	2
Uncontrolled (ocean)	2
Precluded (drone ship)	1

Interactive Map with Folium Results - 1

Mark all launch sites on a map

Interactive Map with Folium Results - 2

Mark the success/failed launches for each site on the map

Interactive Map with Folium Results - 3

Calculate the distances between a launch site to its proximities

Dropdown list to enable Launch Site selection

SpaceX Launch Records Dashboard

- Pie chart to show the total successful launches count for all sites
- If a specific launch site was selected, show the Success vs. Failed counts for the site

IBM Developer

• Slider to select payload range

Scatter chart to show the correlation between payload and launch success

Predictive Analysis (Classification) Results

- Logistic regression model:
 - tuned hyperparameters: (best parameters) {'C': 0.01, 'penalty': 'I2', 'solver': 'lbfgs'}
 - accuracy: 0.8464285714285713

Predictive Analysis (Classification) Results - 2

- Support vector machine model:
 - tuned hyperparameters: (best parameters) {'C': 1.0, 'gamma': 0.03162277660168379, 'kernel': 'sigmoid'}
 - accuracy: 0.8482142857142856

Predictive Analysis (Classification) Results - 3

- Decision tree classifier model:
 - tuned hyperparameters :(best parameters) {'criterion': 'gini', 'max_depth': 14, 'max_features': 'auto', 'min_samples_leaf': 1, 'min_samples_split': 10, 'splitter': 'random'}
 - accuracy: 0.8892857142857142

Predictive Analysis (Classification) Results

- K nearest neighbors model:
 - tuned hyperparameters :(best parameters) {'algorithm': 'auto', 'n_neighbors': 10, 'p': 1}
 - accuracy: 0.8482142857142858

CONCLUSION

- Predictive analysis can be applied to predict if the Falcon 9 first stage will land successfully
- Best machine learning prediction model is **Decision** tree classifier with accuracy of 0.8892
- Success rate is significantly improved since 2017
- Success rate is higher for heavy payloads