Lab 7: Design of Multicycle MIPS ISA

Learning outcomes:

- Modeling MIPS Multi-cycle datapath in Verilog
- Implementation of FSM based controller

Various phases in multicycle design

Break instructions into the following potential execution steps – not all instructions require all the steps – each step takes one clock cycle

- 1. Instruction fetch and PC increment (IF)
- 2. Instruction decode and register fetch (ID)
- 3. Execution, memory address computation, or branch completion (EX)
- 4. Memory access or R-type instruction completion (MEM)
- 5. Memory write completion (WB)

Each MIPS instruction takes from 3 – 5 cycles (steps)

Multi-cycle Datapath Design

Moore Overlapping-1010

Control Signals In Multi-cycle datapath

Control logic implementation

The big-picture

Verilog code and references

- 1. Refer this for the MIPS multicycle control module.
- 2. Refer this video for general state-machine verilog practices.
 - a. Refer to this <u>sequence detector [1010- Moore based] code</u>
- 3. Refer this for the <u>memory module.</u>
- 4. Complete MIPS Multi-cycle