TUTORIAL QUESTIONS

Matrices, Determinants and Special Matrices

1. E, F and G are three 3×3 matrices such that EF = G, where $E = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}$,

$$G = \begin{bmatrix} \cos 0 & -\sin 0 & 0\\ \sin 0 & \cos 0 & 0\\ 0 & 0 & 1 \end{bmatrix}, \text{ then } F =$$

- $(2) \begin{bmatrix} \cos x & \sin x & 0 \\ -\sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}$
- (3) $\begin{bmatrix} \sin x & -\cos x & 0 \\ \cos x & \sin x & 0 \\ 0 & 0 & 1 \\ \sin x & \cos x & 0 \end{bmatrix}$
- $\begin{bmatrix}
 \sin x & \cos x & 0 \\
 -\cos x & \sin x & 0 \\
 0 & 0 & 1
 \end{bmatrix}$
- 2. Let A be a 3×3 and x be 3×1 real matrices. Consider the system of equations: $Ax = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$, then
 - (1) if the system is consistent, then it has a unique solution
 - (2) if A is singular, then the system has infinitely many solutions
 - (3) if the system is consistent, then |A| is non-zero
 - (4) if the system has a unique solution, then A is non-singular
- 3. Let P be an n \times n idempotent matrix, that is $P^2 = P$. Which of the following is/are false?
 - (1) P^t is idempotent
 - (2) The possible eigen values of P can be zero
 - (3) The non-diagonal entries of P can be zero
 - (4) There are infinite number of $n \times n$ non-singular matrices that are idempotent
- 4. Let $A = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$. Then
 - (1) A is idempotent
 - (2) A is orthogonal
 - (3) $A^{-1} = A^t$
 - $(4) A^6 = I$
- 5. The columns of an orthogonal matrix form
 - (1) an orthogonal set of vectors
 - (2) an orthonormal set of vectors
 - (3) a linearly independent set
 - (4) all the above
- 6. If $A = \begin{bmatrix} -5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1 \end{bmatrix}$, then A^2 is:
 - (1) idempotent

- (2) nilpotent
- (3) involutary
- (4) periodic
- $\begin{bmatrix} 0 & c & 0 \\ 0 & c & 0 \\ d & 0 & e \end{bmatrix}$, which of the following 7. Let a,b,c,d and e be real and non-zero. For the given matrix A=is/are true?
 - (1) A is non-singular for all distinct a, b, c, d and e
 - (2) the minor of every element of A is equal to the cofactor of the corresponding element
 - (3) the number of non-zero elements of the matrix $\frac{(A-A^T)}{2}$ is 5
- (4) The matrix $\frac{(A-A^T)}{2}$ is symmetric 8. If A, B and (A+B) are $n \times n$ non-singular real matrices, then $[B(A+B)^{-1}A]^{-1} =$
 - (1) A + B
 - (2) $A^{-1} + B^{-1}$
 - (3) $A^{-1} + B^{-1} + I$
 - (4) AB
- 9. Let $A_{n \times n} = (a_i j), n \ge 3$, where $a_{ij} = (b_i^2 b_j^2), i, j$ $=1,2,\ldots,n$ for some distinct real numbers b_1, b_2, \ldots, b_n . Then det(A) is: [D-2013]
 - (1) $\prod_{i < j} (b_i b_j)$ (2) $\prod_{i < j} (b_i + b_j)$

 - (3) 0
 - (4) 1
- 10. Let $f_1(x)$, $f_2(x)$, $g_1(x)$, $g_2(x)$ be differentiable functions on R. Let $F(x) = \begin{vmatrix} f_1(x) & f_2(x) \\ g_1(x) & g_2(x) \end{vmatrix}$ be the $\begin{bmatrix} f_1(x) \\ g_1(x) \end{bmatrix}$ determinant if the matrix . Then F'(x) is equal to
 - $f_1(x)$ $g'_1(x)$ $f_1'(x) \cdot f_2'(x)$ (1) $g_1(x)$ $g_2(x)$ $f_2'(x)$ $g_2(x)$
 - $f_1'(x) \quad f_2'(x)$ $f_1(x)$ $g_1'(x)$ (2) $g_1(x)$ $g_2(x)$ $g_2'(x)$ $f_2(x)$
 - $f_1'(x) \quad f_2'(x)$ $f_1(x)$ $g_1'(x)$ $g_1(x)$ $g_2(x)$ $|f_2(x)|$
 - $g_1'(x)$ $g_2'(x)$