A Hyperbolic approach for learning communities on graphs

Hatem Hajri, Thomas Gerald and Hadi Zaatiti

Tools

Poincaré Embedding [2]

The Poincaré embedding of a binary graph $\mathcal{G} = \{(U, V)\}$ maximises

$$\mathcal{L}(\Theta) = \sum_{(U,V)} \log \left(\frac{e^{-d(u,v)}}{\sum_{v' \in \mathcal{N}(u)} e^{-d(u,v')}} \right)$$

Riemannian Gaussian Distribution [3]

ullet The density of the Gaussian distribution on \mathbb{D} :

$$p(z|\bar{z},\sigma) = \frac{1}{\zeta(\sigma)} \exp\left[-\frac{d^2(z,\bar{z})}{2\sigma^2}\right]$$

Riemannian EM clustering [3]

Algorithm 1

- 1: Initialise Randomly
- 2: **for** iter **do**
- 3: $\hat{\varpi}_{\mu} \leftarrow N_{\mu}(\hat{\vartheta}) / N$
- 4: $\hat{z}_{\mu} \leftarrow \operatorname{argmin}_{z} \sum_{n=1}^{N} \omega_{\mu}(z_{n}, \hat{\vartheta}) d^{2}(z, z_{n}) >$ computed using Riemannian gradient descent
- 5: $\hat{\sigma}_{\mu} \leftarrow \Phi\left(N_{\mu}^{-1}(\hat{\vartheta}) \times \sum_{n=1}^{N} \omega_{\mu}(z_n, \hat{\vartheta}) d^2(\hat{z}_{\mu}, z_n)\right)$
- 6: end for
- 7: **return** $\{(\hat{\varpi}_{\mu}, \hat{Y}_{\mu}, \hat{\sigma}_{\mu})\}$

Euclidean and Hyperbolic approaches for learning communities on Large Graphs

Loss function sum of first, second-order proximities and community losses. :

$$L = \alpha.O_1 + \beta.O_2 + \gamma.O_3$$

		Precision			Conductance			NMI		
Dataset	m	H-KM	H-EM	ComE	H-KM	H-EM	ComE	H-KM	H-EM	$\overline{\text{ComE}}$
DBLP	2	78.5 ± 1.8	78.6 ± 4.8	60.4 ± 5.5	6.8 ± 4.2	6.7 ± 4.4	14.1 ± 15.8	66.1 ± 3.4	66.2 ± 5.8	50.5 ± 2.1
	5	79.6 ± 2.4	81.2 ± 2.1	78.0 ± 4.7	4.6 ± 3.4	4.8 ± 3.8	$7.4 {\pm} 4.3$	71.3 ± 2.4	69.7 ± 2.1	63.6 ± 4.4
	10	71.4 ± 13.1	81.5 ± 0.1	78.2 ± 1.2	6.0 ± 4.6	5.2 ± 4.0	$6.5 {\pm} 4.2$	65.4 ± 8.9	69.3 ± 0.6	62.5 ± 0.8
Wikipedia	2	8.6 ± 0.8	16.1 ±4.0	8.8 ± 0.2	96.6 ± 3.0	96.6 ± 5.1	94.9 ± 3.2	6.9 ± 0.8	5.5 ± 2.1	$6.5 \pm 0.$
	5	$9.7 {\pm} 0.4$	10.1 ± 0.7	10.1 ± 0.2	93.7 ± 3.4	93.8 ± 4.4	92.9 ± 3.7	8.8 ± 0.3	8.6 ± 0.3	10.1 ± 0.5
	10	9.3 ± 0.3	11.9 ± 1.1	12.1 ± 0.7	91 ± 4.1	90.5 ± 4.7	91.4 ± 4.3	8.6 ± 0.0	8.6 ± 0.1	9.3 ± 0.2
BlogCatalog	2	8.1 ± 0.2	9.8 ± 0.3	7.0 ± 0.1	92.5 ± 6.0	93.1±8.1	93.4 ± 4.3	4.4 ±0.0	4.1 ± 0.0	$3.3 \pm 0.$
	5	13.4 ± 0.3	12.6 ± 0.7	12.3 ± 0.3	88.4 ± 6.6	87.8 ± 7.5	87.9 ± 8.8	10.4 \pm 0.5	10.1 ± 0.5	10.5 ± 0.3
	10	18.9 ± 0.6	16.5 ± 0.8	15.9 ± 0.5	85.9 ± 7.5	84.7 ± 7.8	87.4 ± 8.6	14.6 \pm 0.2	14.0 ± 0.3	13.7 ± 0.1
Flickr	2	8.0 ± 0.2	12.9 ± 0.8	$6.2 \pm 0.$	93.5 ± 10.0	94.4 ± 13.0	96.4 ± 2.9	24.8 ±0.6	24.7 ± 0.5	$21.7 \pm 0.$
	5	13.0 ± 0.1	13.4 ± 0.1	10.2 ± 0.2	89.7 ± 12.8	89.7 ± 13.9	91.2 ± 10.6	31.8 ± 0.1	31.8 ± 0.1	29.6 ± 0.2
	10	13.8 ± 0.1	14.0 ± 0.2	$13.2 \pm 0.$	89.5 ± 12.1	88.2 ± 14.5	88.8 ± 11.8	32.7 ± 0.1	32.7 ± 0.1	$33.0\pm0.$

Table 1: Performances for learning communities with Hyperbolic K-means (H-KM) and EM (H-EM) in comparison with ComE in terms of Precision and NMI: measure the precisions of predictions (the higher the better), Conductance: measures the number of shared graph edges between clusters (the lower the better).

Visualisations of the Approach on Small Graph Datasets

Figure 1: Visualisations of the Hyperbolic approach to learn communities of the Football, Polbooks and Polblogs datasets.

References

- [1] Sandro Cavallari et al. Learning community embedding with community detection and node embedding on graphs. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, CIKM 2017.
- 2] Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical representations. In Advances in Neural Information Processing Systems 30, pages 6338–6347. Curran Associates, Inc., 2017.
- [3] Salem Said, Hatem Hajri, Lionel Bombrun, and Baba C. Vemuri. Gaussian distributions on Riemannian symmetric spaces: Statistical learning with structured covariance matrices. *IEEE Trans. Information Theory*, 64(2), 2018.