COGNOMS:	NOM:
2on Control Arquitectura de Computadors	Curs 2014-2015 Q2
• Temps: 13:30 a 15:30	
• Poseu clarament amb LLETRES MAJÚSCULES	a cada full els cognoms i el nom
Problema 1. (3 puntos)	
Se quiere diseñar la memoria cache de datos de primer nivel para u alternativas:	n procesador de tipo Load/Store. Se barajan dos
(1) write through y write NO allocate.(2) copy back y write allocate	
Se han obtenido por simulación las siguientes medidas para un dete	erminado programa:
• porcentaje de escrituras (sobre el total de accesos): 15%	
porcentaje de bloques modificados: 10%	
 tasa de aciertos caso (1): 0,9 tasa de aciertos caso (2): 0,8 	
En ambos casos, la memoria cache es de mapeo directo y se leen e lectura, el bloque de MP se escribe en la MC y posteriormente el d acceso (Tsa) a memoria cache (MC) es de 10 ns tanto para lectura principal (MP) para escribir una palabra es de 90 ns. Para leer o escribir una palabra es de 90 ns. Para leer o escribir una palabra es de 90 ns. Para leer o escribir una palabra es de 90 ns. Para leer o escribir una palabra es de 90 ns. Para leer o escribir una palabra es de 90 ns. Para leer o escribir una palabra es de 90 ns. Para leer o escribir una palabra es de 90 ns. Para leer o escribir una palabra es de 90 ns. Para leer o escribir una palabra es de 90 ns. Para leer o escribir una palabra es de 90 ns. Para leer o escribir una palabra es de 90 ns. Para leer o escribir una palabra es de 90 ns. Para leer o escribir una palabra es de 90 ns. Para leer o escribir una palabra es de 90 ns.	ato se envía a la CPU desde la MC. El tiempo de como escritura. El tiempo de acceso a memoria ribir un bloque en la MP se emplean 130 ns.

	Calcula el tiempo empleado en realizar 1000 accesos consecutivos en el caso (2)
Ĭ	
qu	a cache del caso (2) le hemos añadido las siguientes mejoras: continuación anticipada (early restart) y lectura antes e escritura. Además sabemos que la latencia del siguiente nivel de memoria es de 3 ciclos, que el tamaño de oque es de 64 bytes y el bus transfiere 8 bytes/ciclo.
c)	Dibuja un diagrama de tiempos de las acciones a realizar para el siguiente acceso a memoria (indicando claramente el tiempo de servicio en caso de fallo y el tiempo total):
•	Lectura de un byte
•	Fallo con reemplazo de bloque con el Dirty Bit=1
•	Fallo en el byte 30 del bloque
	· · · · · · · · · · · · · · · · · · ·

2on Control Arquitectura de Computadors	Curs 2014-2015 Q2
COGNOMS:	NOM:

Problema 2. (3 puntos)

Dado el siguiente código escrito en ensamblador del x86:

```
movl $0, %ebx
movl $0, %esi

for:
    cmpl $512*1000, %esi
    jge end

(a) movl (%ebx, %esi, 4), %eax
(b) addl 2*8*1024(%ebx, %esi, 4), %eax
(c) movl %eax, 4*8*1024(%ebx, %esi, 4)

    incl %esi
    jmp for
end:
```

Sabemos que se ejecuta en un sistema con memoria cache y memoria virtual. La memoria virtual utiliza páginas de tamaño 8KB y disponemos de un TLB de 4 entradas (reemplazo LRU). La memoria cache de datos (únicos accesos a memoria que contemplaremos en este problema) es Write Through + Write No Allocate, de 2 vías (reemplazo LRU), con 32 conjuntos y 8 bytes por bloque. Responde a las siguientes preguntas:

a) **Calcula** para cada uno de los accesos (etiquetas a, b, c) el conjunto de la memoria cache al que se accede en cada una de las 9 primeras iteraciones del bucle

iteración	0	1	2	3	4	5	6	7	8
а									
b									
С									

b)	Calcula la cantidad de aciertos y de fallos de cache, en todo el código.

c) Para cada uno de los accesos indicados (etiquetas a, b, c), **indica** a qué página de la memoria virtual se accede en cada una de las siguientes iteraciones del bucle (recuerda que los accesos son a 4 bytes).

iteración	0	1*512	2*512	3*512	4*512	5*512	6*512	7*512	8*512	9*512
а										
b										
С										

d)	Calcula la cantidad de aciertos y de fallos de TLB, en todo el código.
Sa	pemos que todas las direcciones de memoria son de 32 bits (tanto en las direcciones lógicas como en las físicas).
e)	Calcula el tamaño en bits de la memoria de datos de la cache, el de la memoria de etiquetas de la cache y también el de todo el TLB (en todos los casos podéis prescindir de los bits de estado).

COGNOMS:	. NOM:
2on Control Arquitectura de Computadors	Curs 2014-2015 Q2

Problema 3. (4 puntos)

En un procesador Q1 con direcciones de 32 bits, el camino crítico, y por tanto el tiempo de ciclo, está limitado por la memoria cache de datos. El tiempo (en caso de que se use) y la energía según el uso de los componentes de la memoria cache de datos se desglosa de la siguiente forma:

Componente	Tiempo	Energía
Memoria de etiquetas	0,30 ns	4 nJ/acceso
Comparación de etiquetas y (en caso necesario) selección de vía	0,20 ns	0,50 nJ/acceso
Memoria de datos y selección de byte de la linea	0,50 ns	24 nJ/acceso
Mux de vía de datos: selecciona el dato de la vía correspondiente (cuando sea necesario)	0,10 ns	1 nJ/acceso
Registro de desacoplo (cuando sea necesario)	0,05 ns	0,05 nJ/acceso

Queremos analizar 4 configuraciones para la cache de datos, todas ellas con 16KB de capacidad y lineas de 8 bytes:

- C1: Cache de mapeo directo con acceso PARALELO a etiquetas y datos.
- C2: Cache asociativa por conjuntos de dos vías con acceso PARALELO a etiquetas y datos.
- C3: Cache asociativa por conjuntos de dos vías con acceso SECUENCIAL a etiquetas y datos.
- CA: Cache asociativa por conjuntos de dos vías SEGMENTADA en 2 etapas (el tiempo de acceso a la cache son

•	2 ciclos de procesador).
a)	Calcula el tiempo de ciclo de la cache de datos y el tiempo total de un acceso para las diferentes versiones del procesador Q1 con las caches C1, C2, C3 y C4, usando la distribución más adecuada de los componentes por etapas.
b)	Calcula la frecuencia de reloj para las diferentes versiones del procesador Q1 con las caches C1, C2, C3 y C4.
<u> </u>	current to treedening de religipant has differentes versiones del processado. Q2 con has edenies 62, 62, 65 ; 6 in

Un programa P que ejecuta 2.5×10^9 instrucciones tiene un 50% de instrucciones aritméticas, un 20% de instrucciones de salto y un 30% de instrucciones de acceso a memoria (Load/Store). Las instrucciones aritméticas tardan 4 ciclos, las de salto 3 y las de memoria 5 ciclos + los ciclos del acceso a la cache.

c)	Calcula el CPI del programa P para los procesadores con C1 y C4 suponiendo que nunca hay fallos en la cache de datos.
	emos que el programa P tiene un 10% de fallos con la cache de datos C1 y un 6% con la C2. Además, el tiempo de alización medio por fallo en ambos casos es de 60 ciclos.
d)	¿Que porcentaje de fallos en la cache de datos tendrá el programa P para el procesador Q1 con la cache C3? ¿y para la C4? (razona adecuadamente la respuesta)
e)	Calcula el speedup en tiempo de ejecución de C4 sobre C1 en % teniendo en cuenta la jerarquía de memoria completa.
	·
	nace una implementación multibanco (con 8 bancos) de la cache C4 para reducir el consumo de un acceso que
	naremos C4.b. Para ello dividimos la memoria de etiquetas en 8 subarrays donde cada uno consume 0,5nJ por eso y la memoria de datos en 8 subarrays donde cada uno consume 3nJ por acceso.
f)	Indica cómo se desglosarían los bits de una dirección entre bits de Etiqueta, selección de Conjunto, Banco y Byte
g)	Calcula la energía (dinámica) consumida por un acceso a la cache C4.b (con la implementación multibanco).