#### TYPES OF INFERENCES

- 1. IPENTIFYING THE POPULATION MEAN
- 2. IPENTIFYINGTHE POPULATION %
- 3. VERIFYING WHETHER THE POPULATION MEAN IS EQUAL TO A CERTAIN VALUE
- 4. VERIFYING WHETHER THE POPULATION % IS EQUAL TO A CERTAIN VALUE
- 5. VERIFYING WHETHER 2 POPULATION MEANS ARE DIFFERENT
  - 6. VERIFYING WHETHER 2 POPULATION % ARE DIFFERENT

#### 1. IPENTIFYING THE POPULATION MEAN

### CASE STUDY: THE AVERAGE WEIGHT OF FOOTBALL PLAYERS

### A COLLEGE STUDENT HAS TO PERFORM A STATISTICAL STUDY

#### HE PECIPES TO FIND THE AVERAGE WEIGHT OF A FOOTBALL PLAYER



### THE POPULATION HERE IS EVERY FOOTBALL PLAYER IN THE WORLD (DEAD OR ALIVE)

#### STEP: 1

#### PICK A SAMPLE

### OUR GUY JUST MEASURES THE WEIGHTS OF HIS COLLEGE'S TEAM

## OUR GUY JUST MEASURES THE WEIGHTS OF HIS COLLEGE'S TEAM (IN lbs)

170 160 200 210 230 190 180 120 171 165 130 ... ... 179 203

#### THERE ARE 45 PLAYERS IN ALL

#### STEP: 2 CALCULATE THE SAMPLE STATISTICS

SAMPLE MEAN = MEAN OF WEIGHTS IN THE SAMPLE

= 173

## STEP: 2 CALCULATE THE SAMPLE STATISTICS SAMPLE MEAN = 173

SAMPLE SD=
$$\sqrt{\frac{\sum(x-\overline{x})^2}{n}}$$
= 15

#### STEP: 2 CALCULATE THE SAMPLE STATISTICS SAMPLE MEAN = 173

SAMPLE SD = 15

SAMPLE SD STANDARD ERROR = SQRT(45) SQRT(N)

= 2.23

STEP: 2 CALCULATE THE SAMPLE STATISTICS SAMPLE MEAN = 173 SAMPLE SD = 15 STANDARD ERROR= 2.23

#### STEP: 3

### ESTIMATE THE DIFFERENCE BETWEEN SAMPLE MEAN AND POPULATION MEAN



95% PROBABILITY THAT THE SAMPLE MEAN LIES HERE

# 95% PROBABILITY THAT SAMPLE MEAN LIES BETWEEN $\mu$ - 2 $\sigma$ , $\mu$ + 2 $\sigma$

# 95% PROBABILITY THAT 173 LIES BETWEEN $\mu$ - $2\sigma$ , $\mu$ + $2\sigma$

= STANDARD ERROR = 2.23

# 95% PROBABILITY THAT 173 LIES BETWEEN µ-4.46, µ+4.46

#### THE COLLEGE STUDENT REPORTS

"THE AVERAGE WEIGHT OF A FOOTBALL PLAYER IS BETWEEN 173 +/ 4.46 WITH 95% CONFIDENCE"

#### TYPES OF INFERENCES

- 1. IPENTIFYING THE POPULATION MEAN
- 2. IPENTIFYINGTHE POPULATION %
- 3. VERIFYING WHETHER THE POPULATION MEAN IS EQUAL TO A CERTAIN VALUE
- 4. VERIFYING WHETHER THE POPULATION % IS EQUAL TO A CERTAIN VALUE
- 5. VERIFYING WHETHER 2 POPULATION MEANS ARE DIFFERENT
  - 6. VERIFYING WHETHER 2 POPULATION % ARE DIFFERENT