October 3 2018

STUDENT: YOUR NAME

Key-Exchange Protocol

- 1 Consider the following key-exchange protocol:
 - 1. Alice chooses uniform $k, r \in \{0, 1\}^n$ and sends $s = k \oplus r$ to Bob.
 - 2. Bob chooses uniform $t \in \{0,1\}^n$ and sends $u = s \oplus t$ to Alice.
 - 3. Alice computes $w = u \oplus r$ and sends w to Bob.
 - 4. Alice outputs k and Bob outputs $w \oplus t$.

Show that Alice and Bob output the same key. Analyze the security of the scheme (i.e., either prove its security or show a concrete attack)

CPA-security of a Public-Key Encryption Scheme

- **2** Consider the following public-key encryption scheme for messages of a single bit. The public key is (\mathbb{G}, q, g, h) and the private key is x, generated exactly as in the ElGamal encryption scheme. In order to encrypt a **bit** $b \in \{0, 1\}$, the sender does the following:
 - 1. If b=0 then sample a random $y \leftarrow \mathbb{Z}_q$ and compute $c_1=g^y$ and $c_2=h^y$. The ciphertext is (c_1,c_2) .
 - 2. If b=1 then choose independent random $y,z \leftarrow \mathbb{Z}_q$, compute $c_1=g^y$ and $c_2=g^z$, and set the ciphertext as (c_1,c_2) .

Show that we can efficiently decrypt the ciphertext given the private key x. Analyze the security of this scheme: If it is secure, give a formal proof of its security (i.e., proving this scheme is CPA-secure if the decisional Diffie-Hellman assumption is hard); if it is insecure, provide a concrete attack.

RSA

- **3** Suppose we have an adversary that wishes to decrypt a particular message $c = m^e \mod n$, intended for Alice. Assume that the adversary can query Alice with arbitrary ciphertexts (except c) and receive the corresponding plaintexts. Describe how Alice can decrypt the ciphertext c to get the corresponding m.
- **4** Bob decides to use RSA with p = 11, q = 23 and e = 7. Bob publishes n = pq = 253 and e as his public key.
 - 1. Can you find Bob's private key d? (Hint: Use extended Euclidean algorithm)
 - 2. Alice wants to send the message 44 to Bob. What is the encrypted message that Alice sends.
 - 3. Suppose Bob receives from Alice the ciphertext 103. What was the original message that Alice sent.

ElGamal Encryption

- 5 Suppose Bob receives two ElGamal ciphertexts from Alice (B_1, C_1) , (B_2, C_2) . These are ciphertexts to two unknown messages M_1 and M_2 . Bob knows Alice's public key A and the cyclic group generator g. What information can Bob infer about M_1 and M_2 if:
 - 1. $B_1 = B_2$
 - 2. $B_1 = g \cdot B_2$
 - 3. $B_1 = (B_2)^2$