CIS 635 Knowledge Discovery & Data Mining

Basic Data Types and Introduction to Data Encoding

Outline

- Basic Data Types
- A brief introduction to Image Data
- Data Encoding (categorical data)
- NumPy basics

Digital data

- In computing everything is digital and binary
- All data types we talked about
- Bit(0/1): Digital letter
- Byte (000 0011): Digital word
- Kilo (Byte), Mega(Byte), Giga (Byte): We are talking about Digital data and their sizes mainly

Data: Most data, at lower level, fall into two groups:

- Numerical, or
- Categorical

Data: Most data, at lower level, fall into two groups:

- Numerical. or
- Categorical

Numerical: Also known as "Quantitative data"

- **Measurements:** person's height, weight, or blood pressure; or
- Counts: such as number of stock shares a person wons, number of teeth a dog has, or the number of pages your favourite book contains

Data: Most data, at lower level, fall into two groups:

- Numerical, or
- Categorical

Numerical: Also known as "Quantitative data"

- Measurements: person's height, weight, or blood pressure; or
- Counts: such as number of stock shares a person wons, number of teeth a dog has, or the number of pages your favourite book contains

Numerical data can be further broken into two types: discrete and continuous

- **Discrete:** items that can be counted; they can take on possible values that can be listed out.
- Continuous: Usually represents measurements; their possible values cannot be counted such as: a person's height, weight, IQ, or blood pressure

Data: Most data, at lower level, fall into two groups:

- Numerical, or
- Categorical

Numerical: Also known as "Quantitative data"

- Measurements: person's height, weight, or blood pressure; or
- Counts: such as number of stock shares a person wons, number of teeth a dog has, or the number of pages your favourite book contains

Numerical data can be further broken into two types: discrete and continuous

- Discrete: items that can be counted; they can take or possible values that can be listed out.
- Continuous: Usually represents measurements; their possible values cannot be counted such as: a person's height, weight, TQ, or blood pressure

Categorical data: Categorical data represent characteristics such as a person's gender, marital status, country of birth, or the types of movies they like.

- Can be ordinal (say, student grades A, B, C; days of week, moths of week)
- Non ordinal data (person's gender, marital status, country of birth)

Image Data

Binary image

Binary image

B/W image

Binary image

B/W image

Color image

Value range: [0 - 255]

Question

- What will be the **vector** size of a 40x50 **RGB** color image?

Question

- What will be the **vector** size of a 40x50 **RGB** color image?
- Answer: **6000**

Data Encoding - Categorical Data

One hot encoding

- Only one bit is 1
- A vector representation of categorical values

One hot encoding (cont.)

Classification task:

- Binary example {Cat vs Dog}
- Set size is 2
 - o Cat (0, 1)
 - o Dog (1, 0)
 - o Or vice versa
- Same rule applies every categorical data

Numpy

Let's practice