

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁵ : A61K 39/395, 39/02 // (A61K 39/395 A61K 37:02)		(11) International Publication Number:	WO 93/06866
		(43) International Publication Date:	15 April 1993 (15.04.93)
(21) International Application Number: PCT/U (22) International Filing Date: 6 October 1992		BE, CH, DE, DK, ES, FR, G	KR, European patent (AT, B, GR, IE, IT, LU, MC,
(30) Priority data: 770,969 7 October 1991 (07.10.9 862,022 2 April 1992 (02.04.92)		Published Without international search report.	port and to be republished
(71) Applicant: BIOGEN, INC. [US/US]; 14 Camb ter, Cambridge, MA 02142 (US).	oridge C	en-	
(72) Inventors: WALLNER, Barbara, P.; 7 Centre S bridge, MA 02139 (US). COOPER, Kevin, Windemere Drive, Ann Arbor, MI 48105 (US)	D.; 3	m- 15	
(74) Agents: McDONNELL, John, J. et al.; Allegr coff, Ltd., Ten South Wacker Drive, Chicago (US).	retti & V o, IL 60	7it- 06	
			•

(54) Title: METHOD OF PROPHYLAXIS OR TREATMENT OF ANTIGEN PRESENTING CELL DRIVEN SKIN CONDITIONS USING INHIBITORS OF THE CD2/LFA-3 INTERACTION

(57) Abstract

Methods of using inhibitors of the CD2/LFA-3 interaction in treating skin conditions characterized by increased T cell activation and abnormal antigen presentation in the dermis and epidermis in mammals, including humans. Such conditions include psoriasis, UV damage, atopic dermatitis, cutaneous T cell lymphoma such as mycosis fungoides, allergic and irritant contact dermatitis, lichen planus, alopecia areata, pyoderma gangrenosum, vitiligo, ocular cicatricial pemphigoid, and urticaria.

·

ATTORNEY DOCKET NUMBER: 10271-116-999

-SERIAL NUMBER: 10/657,006

REFERENCE: B50

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	MR	Mauritania
	Australia	GA	Gabon	MW	Malawi
AU		GB-	United Kingdom	NL	Netherlands
B8	Barbados	GN	Guinea	NO	Norway
BE	Belgium_			NZ	New Zealand
BF	Burkina Faso	GR	Greece	PL.	Poland
BG	Bulgaria	HV	Hungary	PT	Portugal
BJ	Benin	ΙE	Ireland		Romania
BR	Brazil	IT	ltaly	RO	
CA	Canada	JP	Japan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CC C	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SK	Slovak Republic
	Côte d'Ivoire	LI	Liechtenstein	SN	Senegal
CI		LK	Sri Lanka	SU	Soviet Union
СМ	Cameroon		Luxembourg	TD	Chad
cs	Czechoslovakia	LU	•	TG	Tugo
CZ	Czech Republic	MC	Monaco	ÜĀ	Ukraine
DE	Germany	MG	Madagascar	US	United States of America
DK	Denmark	MŁ	Mali		Viet Nam
ES	Spain	MN	Mongolia	VN	AICC CATIN
Ct	Finland				

WO 93/06866 PCT/US92/08755

METHOD OF PROPHYLAXIS OR TREATMENT OF ANTIGEN
PRESENTING CELL DRIVEN SKIN CONDITIONS USING INHIBITORS
OF THE CD2/LFA-3 INTERACTION

This application is a continuation-in-part of application Serial No. 07/770,969, now pending.

5

TECHNICAL FIELD OF THE INVENTION

This invention relates to methods of using inhibitors of the CD2/LFA-3 interaction in treating skin conditions characterized by increased T cell activation and abnormal antigen presentation in the dermis and epidermis in mammals, including humans. Such conditions include psoriasis, UV damage, atopic dermatitis, cutaneous T cell lymphoma such as mycosis fungoides, allergic and irritant contact dermatitis, lichen planus, alopecia areata, pyoderma gangrenosum, vitiligo, ocular cicatricial pemphigoid, and urticaria.

BACKGROUND OF THE INVENTION

There are numerous skin conditions

20 characterized by increased T cell activation and abnormal antigen presentation in the dermis and epidermis. The pathophysiologic mechanisms involved in the evolution of such inflammatory processes are poorly understood. However, it has become apparent that skin cells are important in the generation of a cutaneous inflammatory response (Kupper, "Immune and Inflammatory

20

Processes in Cutaneous Tissues", J. Clin. Invest., 86, pp. 1783-89 (1990)).

The normal adult epidermal population contains 1-2% Langerhans' cells and about 98% 5 keratinocytes. Keratinocytes and other nonhematopoietically-derived cells resident in skin contribute to immune homeostasis and can produce various cytokines which influence migration of T cells and expression of adhesion molecules.

As antigen presenting cells, Langerhans' cells express a high density of Class II major histocompatibility complex (MHC) antigen on the cell surface. MHC Class II molecules bind peptides derived from endocytosed antigen and are recognized primarily 15 by helper T lymphocytes. The T cell receptor on T cells recognizes antigen as a peptide fragment bound to the cell-surface molecules encoded by the MHC (Springer, "Adhesion Receptors of the Immune System", Nature, 346, pp. 425-27 (1990)).

There are many interactions between molecules expressed on the surface of Langerhans' cells and the surface of T cells, in addition to the T cell receptor/MHC interaction. These surface molecules, often referred to as adhesion molecules, participate in a number of functions including cellular adhesion, 25 antigen recognition, co-stimulatory signalling in T cell activation and stimulation of effectors of T cell cytotoxicity ("Adhesion Molecules in Diagnosis and Treatment of Inflammatory Diseases", The Lancet, 30 336, pp. 1351-52 (1990)). Such cell adhesion appears to be involved in activation of T cell proliferation in the generation of an immune response (Hughes et al., "The Endothelial Cell as a Regulator of T-cell Function", <u>Immunol. Rev.</u>, 117, pp. 85-102 (1990)).

Various skin conditions are characterized by increased T cell activation and abnormal antigen presentation in the dermis and epidermis (Cooper, "Immunoregulation in the Skin", in Cutaneous Lymphoma, 5 Curr. Probl. Dermatol., eds. van Vloten et al., 19, pp. 69-80 at pp. 73, 74, 76 (1990)). For example, in contact allergic dermatitis, activation of -intracutaneous T cells is observed. It is known that skin from patients exhibiting atopic dermatitis 10 contains an increased number of Langerhans' cells (Cooper, "Immunoregulation in the Skin", in Cutaneous Lymphoma, Curr. Probl. Dermatol., eds. van Vloten et al., 19, at p. 74 (1990)). In psoriatic skin, there is an increased number of antigen presenting cells, 15 composed of both Langerhans' cells and non-Langerhans' cell Class II MHC-bearing antigen presenting cells (Cooper, "Immunoregulation in the Skin", in <u>Cutaneous</u> Lymphoma, Curr. Probl. Dermatol., eds. van Vloten et al., 19, at p. 75 (1990)).

20 UV exposed skin is characterized by an overall depletion of Langerhans' cells and migration of a non-Langerhans' cell antigen-presenting cell population into the epidermis, which activates autologous T cells to proliferate (Cooper, 25 "Immunoregulation in the Skin" in Cutaneous Lymphoma, Curr. Probl. Dermatol., eds. van Vloten et al., 19, at pp. 75-76 (1990)). In human skin after 4 minimal erythemal doses of UV B, Langerhans' cells (the constitutive antigen presenting cell population) are 30 inactivated for approximately 3 days (Cooper et al., "Effects Of Ultraviolet Radiation On Human Epidermal Cell Alloantigen Presentation: Initial Depression Of Langerhans Cell-Dependent Function Is Followed By Appearance Of T6-DR+ Cells That Enhance Epidermal 35 Alloantigen Presentation", <u>J. Immunol.</u>, 134, pp. 129-37

(1985)). In this type of UV damaged skin, the CD1aDR+
macrophage population (a population of antigen
presenting cells) increases from 0% (normal skin) to
approximately 2-10% of the entire epidermal cell
population and is the cell population entirely
responsible for the induction of T cell proliferation
to alloantigen. (Cooper et al., J. Immunol., supra
(1985); Baadsgaard et al., "In Vivo Ultraviolet-Exposed
Human Epidermal Cells Activate T Suppressor Cell
Pathways That Involve CD4+ CD45RA+ Suppressor-Inducer
T cells", J. Immunol., 145, pp. 2854-61 (1990)).

Cutaneous T cell lymphoma is characterized by the expansion of a malignant clonal population of T cells in the dermis and epidermis. Lesional epidermal cells contain increased numbers of CD1⁺ DR⁺ antigen presenting cells (Cooper, "Immunoregulation in the Skin" in <u>Cutaneous Lymphoma</u>, <u>Curr. Probl.</u>

<u>Dermatol.</u>, eds. van Vloten et al., 19, at pp. 76-77 (1990)).

presently known therapies for the above mentioned skin diseases are inadequate. Steroids or cyclosporin A are commonly used in the treatment of psoriasis, lichen planus, urticaria, atopic dermatitis, UV damage, pyoderma gangrenosum, vitiligo, ocular cicatricial pemphigoid, alopecia areata, allergic and irritant contact dermatitis and cutaneous T cell lymphoma. In addition, for some of these skin conditions, various therapies include retinoids, PUVA, nitrogen mustard, interferon, chemotherapy,

methotrexate, UV light, antibiotics and antihistamines. See generally Fitzpatrick, Dermatology in General Medicine, 3rd Ed., McGraw Hill (1987).

Side effects to these therapies are known.

Most commonly encountered drawbacks for cyclosporin A

include toxicity due to immunosuppression and renal and

PCT/US92/08755

15

20

neural toxicity. Steroids have well known side effects including induction of Cushing Syndrome. Side effects of certain of the other aforementioned therapies include skin cancer, bone marrow and constitutional 5 toxicities, ligament calcification, liver fibrosis and other disorders.

T cells play a major role in the immune response by interacting with target and antigen presenting cells. For example, T cell-mediated killing 10 of target cells is a multi-step process involving, initially, adhesion of cytolytic T cells (the effector cells) to target cells. Also, helper T cells help initiate the immune response by adhesion to antigen presenting cells.

These interactions of T cells with target and antigen presenting cells are highly specific and depend on the recognition of an antigen on the surface of a target or antigen presenting cell by one of the many specific antigen receptors on the surface of T cells.

The receptor-antigen interaction of T cells and other cells is also facilitated by various T cell surface proteins, e.g., the antigen-receptor complex CD3 and accessory adhesion molecules such as CD4, LFA-1, CD8, and CD2. It is also facilitated by accessory adhesion molecules, such as LFA-3, ICAM-1 and MHC, that are expressed on the surface of the target or antigen presenting cells. For example, LFA-1 and its counter receptor ICAM-1 or ICAM-2, as well as CD2 and its counter receptor LFA-3 have been implicated in 30 cellular adhesion and T cell activation. It is known that the LFA-1/ICAM and CD2/LFA-3 interactions are independent.

A number of other molecules present on resting T cells have also been implicated in T cell adhesion, including E2 (MIC2), VLA-4 (CD49d), CD44

(Hermes, Pgp-1, ECMRIII), and H19 (N4) (see Makgoba et al., "The CD2-LFA-3 and LFA-1-ICAM Pathways: Relevance to T-cell Recognition", Immunol. Today, 10, pp. 417-22 (1989)).

One way in which T cells are activated is by binding of their antigen specific T cell receptors to peptide-MHC complexes on the surface of antigen presenting cells such as macrophages. T cell activation stimulates proliferation and differentiation 10 of two types of functional T cells: helper cells, which promote the proliferation and maturation of antibody-producing B lymphocytes, and killer cells, which lyse target cells (Bierer et al., "A Monoclonal Antibody to LFA-3, the CD2 Ligand, Specifically 15 Immobilizes Major Histocompatibility Complex Proteins", Eur. J. Immunol. 19, pp. 661-65 (1989); Springer "Adhesion Receptors of the Immune System", Nature, 346, pp. 425-34 (1990)).

The interaction between CD2 and LFA-3 remains 20 poorly understood with respect to activation of T cell activity. Recent studies have suggested that there is a specific interaction between CD2 (a T cell adhesion molecule) and LFA-3 (a target cell and antigen presenting cell adhesion molecule) which mediates 25 T cell adhesion to the target or antigen presenting This cell-cell adhesion has been implicated in the initiation of T cell functional responses (Dustin et al., "Purified Lymphocyte Function Associated Antigen 3 Binds to CD2 and Mediates T Lymphocyte 30 Adhesion, " J. Exp. Med., 165, pp. 677-92 (1987); Springer et al., "The Lymphocyte Function-associated LFA-1, CD2, and LFA-3 Molecules: Cell Adhesion Receptors of the Immune System", Ann. Rev. Immunol., 5, pp. 223-52 (1987)).

LFA-3, which is found on the surface of a wide variety of cells, including human erythrocytes, has become the subject of a considerable amount of study to further elucidate its role in various T cell 5 interactions (see, e.g., Krensky et al., "The Functional Significance, Distribution, and Structure of LFA-1, LFA-2, and LFA-3: Cell Surface Antigen Associated with CTL-Target Interactions", J. Immunol., 131(2), pp. 611-16 (1983); Shaw et al., "Two Antigen-10 Independent Adhesion Pathways Used by Human Cytotoxic T-cell Clones", Nature, 323, pp. 262-64 (1986)). natural forms of LFA-3 have been identified. One form of LFA-3 ("transmembrane LFA-3") is anchored in the cell membrane by a transmembrane hydrophobic domain. 15 cDNA encoding this form of LFA-3 has been cloned and sequenced (see, e.g., Wallner et al., "Primary Structure of Lymphocyte Function-Associated Antigen-3 (LFA-3)", <u>J. Exp. Med.</u>, 166, pp. 923-32 (1987)). Another form of LFA-3 is anchored to the cell membrane 20 via a covalent linkage to phosphatidylinositol ("PI")containing glycolipid. This latter form has been designated "PI-linked LFA-3", and cDNA encoding this form of LFA-3 has also been cloned and sequenced (Wallner et al., PCT publn. WO 90/02181).

The human CD2 (T11) molecule is a 50 kD surface glycoprotein expressed on >95% of thymocytes and virtually all peripheral T lymphocytes. Biochemical analyses using specific monoclonal antibodies have suggested that CD2 is T lineage-30 specific and exists on the cell surface in several differentially glycosylated forms (Howard et al., "A Human T Lymphocyte Differentiation Marker Defined by Monoclonal Antibodies that Block E-Rosette Formation", J. Immunol., 126, pp. 2117-22 (1981); Brown et al., in Leukocyte Typing III, ed. McMichael, Oxford University

Press, pp. 110-12 (1987); Sayre et al., "Molecular Cloning and Expression of T11 cDNAs Reveals a Receptor-Like Structure on Human T Lymphocytes", Proc. Natl. Acad. Sci. USA, 84, pp. 2941-45 (1987)).

The sequence of a human CD2 gene has been 5 reported (Seed and Aruffo, "Molecular Cloning of the CD2 Antigen, the T-cell Erythrocyte Receptor, by a Rapid Immunoselection Procedure", Proc. Natl. Acad. Sci. USA, 84, pp. 3365-69 (1987); Sayre et al., 10 "Molecular Cloning and Expression of T11 cDNAs Reveal a Receptor-like Structure on Human T Lymphocytes", Proc. Natl. Acad. Sci. USA, 84, pp. 2941-45 (1987)). CD2 cDNA clones predict a cleaved signal peptide of 24 amino acid residues, an extracellular segment of 185 15 residues, a transmembrane domain of 25 residues and a cytoplasmic region of 117 residues (Sayre et al., supra (1987); Sewell et al., "Molecular Cloning of the Human T-Lymphocyte Surface CD2 (T11) Antigen", Proc. Natl. Acad. Sci. USA, 83, pp. 8718-22 (1986); Seed and 20 Aruffo, supra (1987); Clayton et al., Eur. J. Immunol.,

17, pp. 1367-70 (1987)). Soluble CD2 polypeptides having an LFA-3 binding domain have been reported (PCT publ. WO 90/08187).

Monoclonal antibodies to CD2, for example TS2/18, $T11_1$, $T11_2$, $T11_3$, and to LFA-3, for example TS2/9, have also been reported (see, e.g., Hughes et al., "The Endothelial Cell as a Regulator of T-Cell Function", <u>Immunol. Reviews</u>, 117, pp. 85-102 (1990); 30 Meuer, "An Alternative Pathway of T-Cell Activation: A Functional Role for the 50 kd T11 Sheep Erythrocyte Receptor Protein", Cell, 36, pp. 897-906 (1984)).

The need still exists for improved methods of preventing and treating skin conditions exhibiting

WO 93/06866 PCT/US92/08755

- 9 -

increased T cell activation and abnormal antigen presentation.

SUMMARY OF THE INVENTION

The present invention generally solves many
of the problems referred to above. It for the first
time provides a method of preventing or treating skin
conditions, characterized by increased T cell
activation and abnormal antigen presentation in the
dermis and epidermis, in a mammal, whereby an inhibitor
of the CD2/LFA-3 interaction is administered to the
mammal. The methods of this invention are superior to
previously available therapies for these skin
conditions for many reasons, including less
immunosuppression than pre-existing therapies and more
specific therapy with less general toxicity.

The method of the present invention preferably will be used in the treatment or prophylaxis of skin conditions selected from psoriasis, UV damage, atopic dermatitis, cutaneous T cell lymphoma such as mycosis fungoides, allergic and irritant contact dermatitis, lichen planus, alopecia areata, pyoderma gangrenosum, vitiligo, ocular cicatricial pemphigoid, and urticaria, preferably psoriasis or UV damage.

Inhibitors that can be used in accordance
25 with the method of the present invention include any
molecule that inhibits the CD2/LFA-3 interaction.
Preferably, the inhibitor is selected from the group
consisting of anti-LFA-3 antibody homologs, anti-CD2
antibody homologs, soluble LFA-3 polypeptides, soluble
30 CD2 polypeptides, CD2 or LFA-3 mimetic agents and
derivatives thereof.

- 10 -

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates the percent inhibition caused by an anti-LFA-3 monoclonal antibody (7A6) or an anti-CD2 monoclonal antibody (TS2/18) as compared to a 5 non-specific control IgG_1 antibody (MOPC21) of autologous T cell activation by psoriatic epidermal cells in 4 patients.

Figure 2 illustrates the inhibition of allogeneic T cell activation by UV damaged epidermal 10 cells ([3H]TdR incorporation) caused by an anti-LFA-3 monoclonal antibody (1E6) or an anti-CD2 monoclonal antibody (TS2/18) as compared to a non-specific IgG_1 antibody (MOPC21).

DETAILED DESCRIPTION OF THE INVENTION

15 Definitions

25

As used herein, "CD2" means a CD2 polypeptide that binds to a naturally occurring LFA-3 polypeptide and which is encoded by (a) a naturally occurring mammalian CD2 DNA sequence (e.g., SEQ ID NO:5); (b) a 20 DNA sequence degenerate to a naturally occurring CD2 DNA sequence; or (c) a DNA sequence that hybridizes to one of the foregoing DNA sequences under conditions equivalent to about 20°C to 27°C below ${
m T}_{
m m}$ and 1 M sodium chloride.

As used herein, "LFA-3" means an LFA-3 polypeptide that binds to a naturally occurring CD2 polypeptide and which is encoded by (a) a naturally occurring mammalian LFA-3 DNA sequence (e.g., SEQ ID NO:1 or SEQ ID NO:3); (b) a DNA sequence degenerate to 30 a naturally occurring LFA-3 DNA sequence; or (c) a DNA sequence that hybridizes to one of the foregoing DNA

sequences under conditions to about 20°C to 27°C below $T_{\rm m}$ and 1 M sodium chloride.

As used herein, a "soluble LFA-3 polypeptide" or a "soluble CD2 polypeptide" is an LFA-3 or CD2

5 polypeptide incapable of anchoring itself in a membrane. Such soluble polypeptides include, for example, CD2 and LFA-3 polypeptides that lack a sufficient portion of their membrane spanning domain to anchor the polypeptide or are modified such that the membrane spanning domain is non-functional. As used herein soluble LFA-3 polypeptides include full-length or truncated (e.g., with internal deletions) PI-linked LFA-3.

As used herein, an "antibody homolog" is a 15 protein comprising one or more polypeptides selected from immunoglobulin light chains, immunoglobulin heavy chains and antigen-binding fragments thereof which are capable of binding to one or more antigens. The component polypeptides of an antibody homolog composed 20 of more than one polypeptide may optionally be disulfide-bound or otherwise covalently crosslinked. Accordingly, antibody homologs include intact immunoglobulins of types IgA, IgG, IgE, IgD, IgM (as well as subtypes thereof), wherein the light chains of 25 the immunoglobulin may be of types kappa or lambda. Antibody homologs also include portions of intact immunoglobulins that retain antigen-binding specificity, for example, Fab fragments, Fab' fragments, $F(ab')_2$ fragments, F(v) fragments, heavy 30 chain monomers or dimers, light chain monomers or dimers, dimers consisting of one heavy and one light chain, and the like.

As used herein, a "humanized recombinant antibody homolog" is an antibody homolog, produced by recombinant DNA technology, in which some or all of the

WO 93/06866 PCT/US92/08755

- 12 -

amino acids of a human immunoglobulin light or heavy chain that are not required for antigen binding have been substituted for the corresponding amino acids from a nonhuman mammalian immunoglobulin light or heavy 5 chain.

As used herein, a "chimeric recombinant antibody homolog" is an antibody homolog, produced by recombinant DNA technology, in which all or part of the hinge and constant regions of an immunoglobulin light chain, heavy chain, or both, have been substituted for the corresponding regions from another immunoglobulin light chain or heavy chain.

Skin Conditions

The methods of this invention are useful to 15 prevent or treat mammalian, including human, skin conditions characterized by increased T cell activation and abnormal antigen presentation in the dermis and epidermis, by administering inhibitors of the CD2/LFA-3 interaction. Such conditions include psoriasis, UV 20 damage, atopic dermatitis, cutaneous T cell lymphoma such as mycosis fungoides, allergic and irritant contact dermatitis, lichen planus, alopecia areata, pyoderma gangrenosum, vitiligo, ocular cicatricial pemphigoid, and urticaria. It is to be understood that 25 methods of treatment and prophylaxis of skin conditions such as pyoderma gangrenosum and urticaria are included within the scope of the present invention. These latter skin conditions are also cyclosporin A sensitive dermatoses and therefore involve T cell activation. 30 Preferably, the methods of the invention are used in the prophylaxis or treatment of psoriasis or UV damage. The methods of the invention may be practiced on any mammal, preferably on humans.

While not wishing to be bound by theory, applicants believe that inhibitors of the CD2/LFA-3 interaction used in accordance with the methods of this invention are prophylactic and therapeutic for the 5 treatment of the aforementioned skin conditions because they inhibit the interaction between T cells and antigen presenting cells, resulting in, among other things, an inhibition of T cell proliferation and activation. Applicants believe that adverse effects of 10 skin conditions of the type discussed herein are due to such T cell proliferation and activation. Applicants believe that the methods of the present invention are superior to previously available therapies for these skin conditions for a number of reasons, including, inhibition of antigen specific interactions for all 15 antigens present, inhibition of T cell activation without depletion of T cells, no general immunosuppression and, possibly, induction of tolerance.

In particular, applicants believe that use of the methods of this invention will result in more specific targeting of therapy to T cells actually in the initiating stage of the lesion with no effect on polymorphonuclear leukocytes or macrophage mediated 25 effector mechanisms. Accordingly, the patient will be less susceptible to infections than with steroids or other general immunosuppressants. Thus, methods of inhibiting T cell activation, as provided herein, are prophylactic and therapeutic for such skin conditions.

Inhibitors Of The CD2/LFA-3 Interaction 30

Any inhibitor of the CD2/LFA-3 interaction is useful in the methods of this invention. Such inhibitors include anti-LFA-3 antibody homologs, anti-CD2 antibody homologs, soluble LFA-3 polypeptides,

30

soluble CD2 polypeptides, LFA-3 and CD2 mimetic agents and derivatives thereof. Preferred inhibitors are soluble LFA-3 polypeptides and anti-LFA-3 antibody homologs.

The utility in the methods of this invention of specific soluble CD2 polypeptides, soluble LFA-3 polypeptides, anti-LFA-3 antibody homologs, anti-CD2 antibody homologs or CD2 and LFA-3 mimetic agents may easily be determined by assaying their ability to 10 inhibit the LFA-3/CD2 interaction. This ability may be assayed, for example, using a simple cell binding assay that permits visual (under magnification) evaluation of the ability of the putative inhibitor to inhibit the interaction between LFA-3 and CD2 on cells bearing 15 these molecules. Jurkat cells are preferred as the CD2+ substrate and sheep red blood cells or human JY cells are preferred as the LFA-3+ substrate. binding characteristics of soluble polypeptides, antibody homologs and mimetic agents useful in this 20 invention may be assayed in several known ways, such as by radiolabeling the antibody homolog, polypeptide or agent (e.g., 35 S or 125 I) and then contacting the labeled polypeptide, mimetic agent or antibody homolog with CD2+ of LFA-3+ cells, as appropriate. Binding 25 characteristics may also be assayed using an appropriate enzymatically labelled secondary antibody. Rosetting competition assays such as those described by Seed et al. (Proc. Natl. Acad. Sci. USA, 84, pp. 3365-69 (1987)) may also be used.

Anti-LFA-3 And Anti-CD2 Antibody Homologs A.

Many types of anti-LFA-3 or anti-CD2 antibody homologs are useful in the methods of this invention. These include monoclonal antibodies, recombinant antibodies, chimeric recombinant antibodies, humanized

recombinant antibodies, as well as antigen-binding portions of the foregoing.

Among the anti-LFA-3 antibody homologs, it is preferable to use monoclonal anti-LFA-3 antibodies. 5 is more preferable to use a monoclonal anti-LFA-3 antibody produced by a hybridoma selected from the group of hybridomas having accession numbers ATCC HB 10693 (1E6), ATCC HB 10694 (HC-1B11), ATCC HB 10695 (7A6), and ATCC HB 10696 (8B8), or the monoclonal 10 antibody known as TS2/9 (Sanchez-Madrid et al., "Three Distinct Antigens Associated with Human T-Lymphocyte-Mediated Cytolysis: LFA-1, LFA-2 and LFA-3", Proc. Natl. Acad. Sci. USA, 79, pp. 7489-93 (1982)). Most preferably, the monoclonal anti-LFA-3 antibody is 15 produced by a hybridoma selected from the group of hybridomas having accession numbers ATCC HB 10695 (7A6) and ATCC HB 10693 (1E6).

Among the anti-CD2 antibody homologs, it is preferable to use monoclonal anti-CD2 antibodies, such 20 as the anti-CD2 monoclonal antibodies known as the T111 epitope antibodies, including TS2/18 (Sanchez-Madrid et al., "Three Distinct Antigens Associated with Human T-Lymphocyte-Mediated Cytolysis: LFA-1, LFA-2 and LFA-3", Proc. Natl. Acad. Sci. USA, 79, pp. 7489-93 (1982)).

The technology for producing monoclonal antibodies is well known. Briefly, an immortal cell line (typically myeloma cells) is fused to lymphocytes (typically splenocytes) from a mammal immunized with 30 preparation comprising a given antigen, and the culture supernatants of the resulting hybridoma cells are screened for antibodies against the antigen. generally, Kohler et al., Nature, "Continuous Cultures of Fused Cells Secreting Antibody of Predefined 35 Specificity", 256, pp. 495-97 (1975). Useful

immunogens for the purpose of this invention include CD2- or LFA-3-bearing cells, as well as cell free preparations containing LFA-3, CD2 or counter receptor-binding fragments thereof (e.g., CD2 fragments that bind to LFA-3 or LFA-3 fragments that bind to CD2).

Immunization may be accomplished using standard procedures. The unit dose and immunization regimen depend on the species of mammal immunized, its immune status, the body weight of the mammal, etc. 10 Typically, the immunized mammals are bled and the serum from each blood sample is assayed for particular antibodies using appropriate screening assays. For example, useful anti-LFA-3 or anti-CD2 antibodies may be identified by testing the ability of the immune serum to block sheep red blood cell rosetting of Jurkat cells, which results from the presence of LFA-3 and CD2 on the respective surfaces of these cells. The lymphocytes used in the production of hybridoma cells typically are isolated from immunized mammals whose 20 sera have already tested positive for the presence of the desired antibodies using such screening assays.

Typically, the immortal cell line (e.g., a myeloma cell line) is derived from the same mammalian species as the lymphocytes. Preferred immortal cell lines are mouse myeloma cell lines that are sensitive to culture medium containing hypoxanthine, aminopterin and thymidine ("HAT medium").

Typically, HAT-sensitive mouse myeloma cells are fused to mouse splenocytes using polyethylene
30 glycol ("PEG") 3350. Hybridoma cells resulting from the fusion are then selected using HAT medium, which kills unfused and unproductively fused myeloma cells (unfused splenocytes die after several days because they are not transformed). Hybridomas producing a
35 desired antibody are detected by screening the

WO 93/06866 PCT/US92/08755

hybridoma culture supernatants, for example, for the ability to bind to their respective counter receptor, or for their ability to block Jurkat cell adhesion to sheep red blood cells. Subcloning of the hybridoma cultures by limiting dilution is typically performed to ensure monoclonality.

To produce anti-LFA-3 or anti-CD2 monoclonal antibodies, hybridoma cells that tested positive in such screening assays are cultured in a nutrient medium under conditions and for a time sufficient to allow the hybridoma cells to secrete the monoclonal antibodies into the culture medium. Tissue culture techniques and culture media suitable for hybridoma cells are well known. The conditioned hybridoma culture supernatant may be collected and the desired antibodies optionally further purified by well-known methods.

Alternatively, the desired antibody may be produced by injecting the hybridoma cells into the peritoneal cavity of a pristane-primed mouse. The hybridoma cells proliferate in the peritoneal cavity, secreting the antibody, which accumulates as ascites fluid. The antibody may be harvested by withdrawing the ascites fluid from the peritoneal cavity with a syringe.

25 Anti-CD2 and anti-LFA-3 antibody homologs useful in the present invention may also be recombinant antibodies produced by host cells transformed with DNA encoding immunoglobulin light and heavy chains of a desired antibody. Recombinant antibodies may be produced by well known genetic engineering techniques. See, e.g., United States patent 4,816,397, which is incorporated herein by reference.

For example, recombinant antibodies may be produced by cloning cDNA or genomic DNA encoding the immunoglobulin light and heavy chains of the desired

PCT/US92/08755

- 18 -

antibody from a hybridoma cell that produces an antibody homolog useful in this invention. The cDNA or genomic DNA encoding those polypeptides is then inserted into expression vectors so that both genes are 5 operatively linked to their own transcriptional and translational expression control sequences. expression vector and expression control sequences are chosen to be compatible with the expression host cell Typically, both genes are inserted into the same 10 expression vector.

Prokaryotic or eukaryotic host cells may be used. Expression in eukaryotic host cells is preferred because such cells are more likely than prokaryotic cells to assemble and secrete a properly folded and 15 immunologically active antibody. However, any antibody produced that is inactive due to improper folding may be renaturable according to well known methods (Kim and Baldwin, "Specific Intermediates in the Folding Reactions of Small Proteins and the Mechanism of 20 Protein Folding", Ann. Rev. Biochem., 51, pp. 459-89 (1982)). It is possible that the host cells will produce portions of intact antibodies, such as light chain dimers or heavy chain dimers, which also are antibody homologs according to the present invention.

It will be understood that variations on the above procedure are useful in the present invention. For example, it may be desired to transform a host cell with DNA encoding either the light chain or the heavy chain (but not both) of an antibody homolog.

25

30 Recombinant DNA technology may also be used to remove some or all of the DNA encoding either or both of the light and heavy chains that is not necessary for CD2 or LFA-3 counter receptor binding. The molecules expressed from such truncated DNA molecules are useful in the methods of this invention. In addition,

PCT/US92/08755

25

bifunctional antibodies may be produced in which one heavy and one light chain are anti-CD2 or anti-LFA-3 antibody homologs and the other heavy and light chain are specific for an antigen other than CD2 or LFA-3, or another epitope of CD2 or LFA-3.

Chimeric recombinant anti-LFA-3 or anti-CD2 antibody homologs may be produced by transforming a host cell with a suitable expression vector comprising DNA encoding the desired immunoglobulin light and heavy 10 chains in which all or some of the DNA encoding the hinge and constant regions of the heavy and/or the light chain have been substituted with DNA from the corresponding region of an immunoglobulin light or heavy chain of a different species. When the original 15 recombinant antibody is nonhuman, and the inhibitor is to be administered to a human, substitution of corresponding human sequences is preferred. An exemplary chimeric recombinant antibody has mouse variable regions and human hinge and constant regions. See generally, United States patent 4,816,397 and 20 Morrison et al., "Chimeric Human Antibody Molecules: Mouse Antigen-Binding Domains With Human Constant Region Domains", Proc. Natl. Acad. Sci. USA, 81, pp. 6851-55 (1984).

Humanized recombinant anti-LFA-3 or anti-CD2 antibodies may be produced by transforming a host cell with a suitable expression vector comprising DNA encoding the desired nonhuman immunoglobulin light and heavy chains in which all or some of the DNA encoding amino acids not involved in antigen binding have been substituted with DNA from the corresponding region of a desired human immunoglobulin light or heavy chain. See generally, Jones et al., "Replacing the Complementarity-Determining Regions in a Human Antibody

with Those from a Mouse", <u>Nature</u>, 321, pp. 522-25 (1986).

that are not intact antibodies are also useful in this invention. Such homologs may be derived from any of the antibody homologs described above. For example, antigen-binding fragments, as well as full-length monomeric, dimeric or trimeric polypeptides derived from the above-described antibodies are themselves useful. Useful antibody homologs of this type include Fab fragments, Fab' fragments, F(ab')₂ fragments, F(v) fragments, heavy chain monomers or dimers, light chain monomers or dimers, dimers consisting of one heavy and one light chain, and the like. Anti-LFA-3 heavy chains are preferred anti-LFA-3 antibody fragments.

Antibody fragments may also be produced by chemical methods, e.g., by cleaving an intact antibody with a protease, such as pepsin or papain, and optionally treating the cleaved product with a reducing 20 agent. Alternatively, useful fragments may be produced by using host cells transformed with truncated heavy and/or light chain genes. Heavy and light chain monomers may be produced by treating an intact antibody with a reducing agent, such as dithiothreitol, followed 25 by purification to separate the chains. Heavy and light chain monomers may also be produced by host cells transformed with DNA encoding either the desired heavy chain or light chain, but not both. See, e.g., Ward et al., "Binding Activities of a Repertoire of Single 30 Immunoglobulin Variable Domains Secreted from Escherichia coli", Nature, 341, pp. 544-46 (1989); Sastry et al., "Cloning of the Immunological Repertoire in Escherichia coli for Generation of Monoclonal Catalytic Antibodies: Construction of a Heavy Chain

Variable Region-Specific cDNA Library", <u>Proc. Natl.</u> Acad. Sci. USA, 86, pp. 5728-32 (1989).

B. Soluble CD2 and LFA-3 Polypeptides

Soluble LFA-3 polypeptides or soluble CD2

5 polypeptides that inhibit the interaction of LFA-3 and CD2 are useful in the methods of the present invention. Soluble LFA-3 polypeptides are preferred.

from the transmembrane form of LFA-3, particularly the
extracellular domain (e.g., AA₁-AA₁₈₇ of SEQ ID NO:2).
Such polypeptides are described in United States patent
4,956,281 and co-pending United States patent
application 07/667,971 (which shares a common assignee
with the present application), which are herein
incorporated by reference. Preferred soluble LFA-3
polypeptides include polypeptides consisting of AA₁-AA₉₂
of SEQ ID NO:2, AA₁-AA₈₀ of SEQ ID NO:2, AA₅₀-AA₆₅ of SEQ
ID NO:2 and AA₂₀-AA₈₀ of SEQ ID NO:2. A vector
comprising a DNA sequence encoding SEQ ID NO:2 (i.e.,
SEQ ID NO:1) is deposited with the American Type
Culture Collection, Rockville, MD under accession
number 75107.

Soluble LFA-3 polypeptides may also be derived from the PI-linked form of LFA-3, such as those described in PCT patent application WO 90/02181. A vector comprising a DNA sequence encoding PI-linked LFA-3 (i.e., SEQ ID NO:3) is deposited with the American Type Culture Collection, Rockville, MD under accession number 68788. It is to be understood that the PI-linked form of LFA-3 and the transmembrane form of LFA-3 have identical amino acid sequences through the entire extracellular domain. Accordingly, the preferred PI-linked LFA-3 polypeptides are the same as for the transmembrane form of LFA-3.

÷

Soluble CD2 polypeptides may be derived from full length CD2, particularly the extracellular domain (e.g., AA₁-AA₁₈₅ of SEQ ID NO:6). Such polypeptides may comprise all or part of the extracellular domain of CD2. Exemplary soluble CD2 polypeptides are described in PCT WO 90/08187, which is herein incorporated by reference.

The production of the soluble polypeptides useful in this invention may be achieved by a variety 10 of methods known in the art. For example, the polypeptides may be derived from intact transmembrane LFA-3 or CD2 molecules or an intact PI-linked LFA-3 molecule by proteolysis using specific endopeptidases in combination with exopeptidases, Edman degradation, 15 or both. The intact LFA-3 molecule or the intact CD2 molecule, in turn, may be purified from its natural source using conventional methods. Alternatively, the intact LFA-3 or CD2 may be produced by known recombinant DNA techniques using cDNAs (see, e.g., U.S. 20 Patent 4,956,281 to Wallner et al.; Aruffo and Seed, Proc. Natl. Acad. Sci., 84, pp. 2941-45 (1987); Sayre et al., Proc. Natl. Acad. Sci. USA, 84, pp. 2941-45 (1987)).

in the present invention are produced directly, thus eliminating the need for an entire LFA-3 molecule or an entire CD2 molecule as a starting material. This may be achieved by conventional chemical synthesis techniques or by well-known recombinant DNA techniques wherein only those DNA sequences which encode the desired peptides are expressed in transformed hosts. For example, a gene which encodes the desired soluble LFA-3 polypeptide or soluble CD2 polypeptide may be synthesized by chemical means using an oligonucleotide synthesizer. Such oligonucleotides are designed based

on the amino acid sequence of the desired soluble LFA-3 polypeptide or soluble CD2 polypeptide. Specific DNA sequences coding for the desired peptide also can be derived from the full length DNA sequence by isolation of specific restriction endonuclease fragments or by PCR synthesis of the specified region.

Standard methods may be applied to synthesize a gene encoding a soluble LFA-3 polypeptide or a soluble CD2 polypeptide that is useful in this 10 invention. For example, the complete amino acid sequence may be used to construct a back-translated gene. A DNA oligomer containing a nucleotide sequence coding for a soluble LFA-3 polypeptide or a soluble CD2 polypeptide useful in this invention may be synthesized 15 in a single step. Alternatively, several smaller oligonucleotides coding for portions of the desired polypeptide may be synthesized and then ligated. Preferably, a soluble LFA-3 polypeptide or a soluble CD2 polypeptide useful in this invention will be 20 synthesized as several separate oligonucleotides which are subsequently linked together. The individual oligonucleotides typically contain 5' or 3' overhangs for complementary assembly.

Once assembled, preferred genes will be

25 characterized by sequences that are recognized by
restriction endonucleases (including unique restriction
sites for direct assembly into a cloning or an
expression vector), preferred codons taking into
consideration the host expression system to be used,

30 and a sequence which, when transcribed, produces a
stable, efficiently translated mRNA. Proper assembly
may be confirmed by nucleotide sequencing, restriction
mapping, and expression of a biologically active
polypeptide in a suitable host.

PCT/US92/08755

WO 93/06866

- 24 -

It will be appreciated by those of skill in the art that, due to the degeneracy of the genetic code, DNA molecules comprising many other nucleotide sequences will also be capable of encoding the soluble 5 LFA-3 and CD2 polypeptides encoded by the specific DNA sequences described above. These degenerate sequences also code for polypeptides that are useful in this invention.

The DNA sequences may be expressed in 10 unicellular hosts. As is well known in the art, in order to obtain high expression levels of a transfected gene in a host, the gene must be operatively linked to transcriptional and translational expression control sequences that are functional in the chosen expression 15 host. Preferably, the expression control sequences, and the gene of interest, will be contained in an expression vector that further comprises a bacterial selection marker and origin of replication. If the expression host is a eukaryotic cell, the expression 20 vector should further comprise an additional expression marker useful in the expression host.

The DNA sequences encoding the desired soluble polypeptides may or may not encode a signal sequence. If the expression host is prokaryotic, it 25 generally is preferred that the DNA sequence not encode a signal sequence. If the expression host is eukaryotic, it generally is preferred that a signal sequence be encoded.

An amino terminal methionine may or may not 30 be present on the expressed product. If the terminal methionine is not cleaved by the expression host, it may, if desired, be chemically removed by standard techniques.

A wide variety of expression host/vector 35 combinations may be employed. Useful expression

vectors for eukaryotic hosts, include, for example, vectors comprising expression control sequences from SV40, bovine papilloma virus, adenovirus and cytomegalovirus. Useful expression vectors for bacterial hosts include known bacterial plasmids, such as plasmids from E.coli, including col E1, pCR1, pBR322, pMB9 and their derivatives, wider host range plasmids, such as RP4, phage DNAs, e.g., the numerous derivatives of phage lambda, e.g., NM989, and other DNA phages, such as M13 and filamentous single stranded DNA phages. Useful expression vectors for yeast cells include the 2μ plasmid and derivatives thereof. Useful vectors for insect cells include pVL 941.

In addition, any of a wide variety of 15 expression control sequences may be used in these vectors. Such useful expression control sequences include the expression control sequences associated with structural genes of the foregoing expression vectors. Examples of useful expression control 20 sequences include, for example, the early and late promoters of SV40 or adenovirus, the lac system, the trp system, the TAC or TRC system, the major operator and promoter regions of phage lambda, the control regions of fd coat protein, the promoter for 3-25 phosphoglycerate kinase or other glycolytic enzymes, the promoters of acid phosphatase, e.g., Pho5, the promoters of the yeast α -mating system and other sequences known to control the expression of genes of prokaryotic or eukaryotic cells or their viruses, and 30 various combinations thereof.

A wide variety of unicellular host cells are useful. These hosts may include well known eukaryotic and prokaryotic hosts, such as strains of <u>E.coli</u>, <u>Pseudomonas</u>, <u>Bacillus</u>, <u>Streptomyces</u>, fungi, yeast, insect cells such as <u>Spodoptera frugiperda</u> (SF9),

PCT/US92/08755

animal cells such as CHO and mouse cells, African green monkey cells such as COS 1, COS 7, BSC 1, BSC 40, and BMT 10, and human cells, as well as plant cells in tissue culture. For animal cell expression, we prefer CHO cells and COS 7 cells.

all vectors and expression control sequences will function equally well to express the DNA sequences described herein. Neither will all hosts function equally well with the same expression system. However, one of skill in the art may make a selection among these vectors, expression control sequences and hosts without undue experimentation. For example, in selecting a vector, the host must be considered because the vector must replicate in it. The vector's copy number, the ability to control that copy number, and the expression of any other proteins encoded by the vector, such as antibiotic markers, should also be considered.

In selecting an expression control sequence, a variety of factors should also be considered. These include, for example, the relative strength of the sequence, its controllability, and its compatibility with the DNA sequences discussed herein, particularly as regards potential secondary structures. Unicellular hosts should be selected by consideration of their compatibility with the chosen vector, the toxicity of the product coded for by the DNA sequences, their secretion characteristics, their ability to fold the soluble polypeptides correctly, their fermentation or culture requirements, and the ease of purification of the products coded for by the DNA sequences.

Within these parameters, one of skill in the art may select various vector/expression control

sequence/host combinations that will express the

desired DNA sequences on fermentation or in large scale animal culture, for example with CHO cells or COS 7 cells.

The soluble LFA-3 and CD2 polypeptides may be isolated from the fermentation or cell culture and purified using any of a variety of conventional methods. One of skill in the art may select the most appropriate isolation and purification techniques.

While recombinant DNA techniques are the
preferred method of producing useful soluble CD2
polypeptides or soluble LFA-3 polypeptides having a
sequence of more than 20 amino acids, shorter CD2 or
LFA-3 polypeptides having less than about 20 amino
acids are preferably produced by conventional chemical
synthesis techniques. Synthetically produced
polypeptides useful in this invention can
advantageously be produced in extremely high yields and
can be easily purified.

Preferably, such soluble CD2 polypeptides or soluble LFA-3 polypeptides are synthesized by solution phase or solid phase polypeptide synthesis and, optionally, digested with carboxypeptidase (to remove C-terminal amino acids) or degraded by manual Edman degradation (to remove N-terminal amino acids). Proper 25 folding of the polypeptides may be achieved under oxidative conditions which favor disulfide bridge formation as described by Kent, "Chemical Synthesis of Polypeptides and Proteins", Ann. Rev. Biochem., 57, pp. 957-89 (1988). Polypeptides produced in this way may then be purified by separation techniques widely known in the art, preferably utilizing reverse phase HPLC. The use of solution phase synthesis advantageously allows for the direct addition of certain derivatized amino acids to the growing 35 polypeptide chain, such as the O-sulfate ester of

25

tyrosine. This obviates the need for a subsequent derivatization step to modify any residue of the polypeptides useful in this invention.

LFA-3 And CD2 Mimetic Agents C.

Also useful in the methods of this invention are LFA-3 and CD2 mimetic agents. These agents which may be peptides, semi-peptidic compounds or nonpeptidic compounds, are inhibitors of the CD2/LFA-3 interaction. The most preferred CD2 and LFA-3 mimetic 10 agents will inhibit the CD2/LFA-3 interaction at least as well as anti-LFA-3 monoclonal antibody 7A6 or anti-CD2 monoclonal antibody TS2/18 (described supra).

Such mimetic agents may be produced by synthesizing a plurality of peptides (e.g., 5-20 amino 15 acids in length), semi-peptidic compounds or nonpeptidic, organic compounds, and then screening those compounds for their ability to inhibit the CD2/LFA-3 interaction. See generally United States patent 4,833,092, Scott and Smith, "Searching for Peptide 20 Ligands with an Epitope Library", Science, 249, pp. 386-90 (1990), and Devlin et al., "Random Peptide Libraries: A Source of Specific Protein Binding Molecules", Science, 249, pp. 404-07 (1990), which are herein incorporated by reference.

Derivatized Inhibitors D.

Also useful in the methods of this invention are derivatized inhibitors of the CD2/LFA-3 interaction in which, for example, any of the antibody homologs, soluble CD2 and LFA-3 polypeptides, or CD2 and LFA-3 30 mimetic agents described herein are functionally linked (by chemical coupling, genetic fusion or otherwise) to one or more members independently selected from the group consisting of anti-LFA-3 and anti-CD2 antibody

PCT/US92/08755

25

homologs, soluble LFA-3 and CD2 polypeptides, CD2 and LFA-3 mimetic agents, cytotoxic agents and pharmaceutical agents.

One type of derivatized inhibitor is produced 5 by crosslinking two or more inhibitors (of the same type or of different types). Suitable crosslinkers include those that are heterobifunctional, having two distinctly reactive groups separated by an appropriate spacer (e.g., m-maleimidobenzoyl-N-hydroxysuccinimide 10 ester) or homobifunctional (e.g., disuccinimidyl suberate). Such linkers are available from Pierce Chemical Company, Rockford, IL.

Another possibility for cross-linking takes advantage of the PI linkage signal sequence in PI-15 linked LFA-3, or fragments thereof. Specifically, DNA encoding the PI-linkage signal sequence (e.g., AA162-AA212 of SEQ ID NO:4) is ligated downstream of DNA encoding a desired polypeptide, preferably a soluble LFA-3 polypeptide. If this construct is expressed in 20 an appropriate eukaryotic cell, the cell will recognize the PI linkage signal sequence and will covalently link PI to the polypeptide. The hydrophobic property of the PI may then be exploited to form micellar aggregates of the polypeptides.

Also useful are inhibitors linked to one or more cytotoxic or pharmaceutical agents. Useful pharmaceutical agents include biologically active peptides, polypeptides and proteins, such as antibody homologs specific for a human polypeptide other than 30 CD2 or LFA-3, or portions thereof. Useful pharmaceutical agents and cytotoxic agents also include cyclosporin A, prednisone, FK506, methotrexate, steroids, retinoids, interferon, and nitrogen mustard.

Preferred inhibitors derivatized with a pharmaceutical agent include recombinantly-produced

polypeptides in which a soluble LFA-3 polypeptide, soluble CD2 polypeptide, or a peptidyl CD2 or peptidyl LFA-3 mimetic agent is fused to all or part of an immunoglobulin heavy chain hinge region and all or part 5 of a heavy chain constant region. Preferred polypeptides for preparing such fusion proteins are soluble LFA-3 polypeptides. Most preferred are fusion proteins containing AA1-AA92 of LFA-3 (e.g., SEQ ID NO:2) fused to a portion of a human IgG_1 hinge region 10 (including the C-terminal ten amino acids of the hinge region containing two cysteine residues thought to participate in inter-chain disulfide bonding) and the CH2 and CH3 regions of an IgG1 heavy chain constant domain. Such fusion proteins are expected to exhibit 15 prolonged serum half-lives and enable inhibitor dimerization.

Pharmaceutical Compositions And Methods According To This Invention

This invention provides a method for

20 preventing or treating the above-mentioned skin
conditions in a mammal by administering to the mammal
one or more inhibitors of the CD2/LFA-3 interaction, or
derivatized form(s) thereof.

Preferably, an effective amount of the
inhibitor or derivatized form thereof is administered.
By "effective amount" is meant an amount capable of
lessening the spread or severity of the skin conditions
described herein.

It will be apparent to those of skill in the
art that the effective amount of inhibitor will depend,
inter alia, upon the administration schedule, the unit
dose administered, whether the inhibitor is
administered in combination with other therapeutic
agents, the immune status and health of the patient,

WO 93/06866 PCT/US92/08755

- 31 -

the therapeutic or prophylactic activity of the particular inhibitor administered and the serum half-life.

Preferably, the inhibitor is administered at a dose between about 0.001 and about 50 mg inhibitor per kg body weight, more preferably, between about 0.01 and about 10 mg inhibitor per kg body weight, most preferably between about 0.1 and about 4 mg inhibitor per kg body weight.

Unit doses should be administered until an effect is observed. The effect may be measured by a variety of methods, including, in vitro T cell activity assays and clearing of affected skin areas.

Preferably, the unit dose is administered about one to three times per week or one to three times per day.

More preferably, it is administered about one to three times per day for between about 3 and 7 days, or about one to three times per day for between about 3 and 7 days on a monthly basis. It will be recognized,

however, that lower or higher dosages and other administrations schedules may be employed.

The inhibitor(s) or derivatized form(s)
thereof are also preferably administered in a
composition including a pharmaceutically acceptable
carrier. By "pharmaceutically acceptable carrier" is
meant a carrier that does not cause an allergic
reaction or other untoward effect in patients to whom
it is administered.

Suitable pharmaceutically acceptable carriers
include, for example, one or more of water, saline,
phosphate buffered saline, dextrose, glycerol, ethanol
and the like, as well as combinations thereof.
Pharmaceutically acceptable carriers may further
comprise minor amounts of auxiliary substances such as
wetting or emulsifying agents, preservatives or

buffers, which enhance the shelf life or effectiveness of the inhibitor.

The pharmaceutical composition or inhibitor may be administered in conjunction with other

therapeutic or prophylactic agents. These include, for example, cyclosporin A, steroids, retinoids, nitrogen mustard, interferon, methotrexate, antibiotics and antihistamines.

These agents may be administered in single

dosage form with the inhibitor (i.e., as part of the
same pharmaceutical composition), a multiple dosage
form separately from the inhibitor, but concurrently,
or a multiple dosage form wherein the two components
are administered separately but sequentially.

Alternatively, the inhibitor and the other active agent
may be in the form of a single conjugated molecule.
Conjugation of the two components may be achieved by
standard cross-linking techniques well known in the
art. A single molecule may also take the form of a
recombinant fusion protein. In addition, the
inhibitors, or pharmaceutical compositions, useful in
the present invention may be used in combination with

light. Such combination therapies may advantageously utilize lower dosages of the therapeutic or prophylactic agents.

other therapies such as PUVA, chemotherapy and UV

The inhibitor, or pharmaceutical composition, may be in a variety of forms. These include, for example, solid, semi-solid and liquid dosage forms, such as tablets, pills, powders, liquid solutions, dispersions or suspensions, liposomes, suppositories, injectable infusible, and topical preparations. The preferred form depends on the intended mode of administration and therapeutic application. The preferred forms are injectable or infusible solutions.

WO 93/06866 PCT/US92/08755

- 33 -

The inhibitor or pharmaceutical composition may be administered intravenously, intramuscularly, subcutaneously, intra-articularly, intrathecally, periostally, intratumorally, intralesionally, perilesionally by infusion, orally, topically or by inhalation. Preferably it is administered subcutaneously, intramuscularly or intravenously. Most preferably, it is administered subcutaneously.

In order that this invention may be better understood, the following examples are set forth.

These examples are for purposes of illustration only, and are not to be construed as limiting the scope of the invention in any manner.

EXAMPLE 1

15 Subjects

Six adult patients participated in the investigation. Informed consent was obtained after Internal Review Board approval of the protocol. All patients satisfied the major diagnostic criteria for psoriasis, namely chronic papulosquamous plaques of characteristic morphology and distribution. The intermittent use of topical corticosteroids was common among these patients but was discontinued 2 weeks prior to entry into the study. A group of healthy volunteers with no history of psoriasis or other skin disease was utilized as the normal control group.

Preparation of Epidermal Cell Suspensions

Skin biopsy specimens were obtained from both normal and lesional skin by using a keratome. The specimens were submerged in Dulbecco's phosphate buffered saline ("PBS") (Gibco Labs, Grand Island, NY) containing 50 units/ml dispase (Collaborative Research, Bedford, MA). The specimens were then incubated at 4°C

for 18 hours and the epidermis removed from the remaining dermis.

Epidermal sheets were removed from the dermis, submerged in Dulbecco's PBS containing 0.5% trypsin (Sigma Chemical Co., St. Louis, MO), and incubated at 37°C for 30 minutes.

Trypsinized epidermal sheets were transferred to 0.05% DNase (Sigma) in Dulbecco's PBS where they were teased into a cell suspension. Fetal bovine serum ("FBS") (Hyclone, Logan, UT) was added to inactivate residual trypsin and the epidermal cell suspension then passed through a 112 μm nylon filter (Tetko, Elmsford, NY). After washing the predominantly single cell suspension three times in Dulbecco's PBS with 1% FBS, cells were resuspended in culture media which consisted of RPMI 1640 (Whittaker MA Bioproducts, Wakerfield, MD) containing 1% penicillin and streptomycin, 1% glutamine (Gibco), and 10% human AB serum (Sigma).

Isolation and Depletion of T cells

peripheral blood mononuclear cells ("MNC")

were isolated from heparinized blood using Ficoll

Hypaque (Pharmacia) density gradient centrifugation
according to manufacturer's suggested protocol.

Macrophages were removed by plastic adherence at 37°C

for 1 hour. The nonadherent, macrophage-depleted MNC
were washed, and then depleted of CD8⁺ T lymphocytes,
activated T cells, B cells, antigen presenting cells
and NK cells by incubation with monoclonal antibodies
to CD8 (ATCC CRL 8014), HLA-DR (ATCC CRL H355), and

CD11b (ATCC CRL 8026). These antibodies were used as
dilutions in PBS (1:200) of ascites fluid from
pristane-primed mice.

The antibody treated MNC were incubated at 4°C with 4.5 nm magnetic particles coated with goat

anti-mouse IgG (Dynabeads M-450, Dynal, Oslo, Norway) at a ratio of 3 beads per cell. Antigen positive cells were depleted by being drawn by a magnet (Advanced Magnetics, Cambridge, MA) against the side of the tube allowing the remaining cells in suspension to be decanted. The decanted cell suspension was again exposed to a magnet and cells remaining in suspension collected. Fresh goat anti-mouse IgG beads were again added to the collected cells in suspension in order to deplete any remaining antigen positive cells, and the magnetic removal process repeated. Cells were washed in PBS and resuspended in culture media prior to use. This treatment results in a preparation of resting CD4⁺ T lymphocytes enriched to 99% purity and devoid of intrinsic antigen presenting activity.

Proliferative Response of T Lymphocytes to Autologous Psoriatic Cells

One hundred thousand CD4 T lymphocytes were added to round bottom microtiter wells (Costar, 20 Cambridge, MA) with eighty thousand psoriatic epidermal cells in 0.2 ml of RPMI containing 10% human AB serum (Sigma, St. Louis, MO). This number of psoriatic epidermal cells per well was chosen because previous experiments demonstrated that this number is sufficient 25 to induce autoreactive T cell responses. After incubation at 37°C in 5% $CO_2/95$ % air for 6 days, 1 μ Ci. of [3H]TdR (ICN Radiochemicals, Irvine, CA) was added per well and the cells harvested 18 hours later on a PHD cell harvester (Cambridge Technology Inc., 30 Cambridge, MA). The [3H]TdR incorporation was measured on a Packard scintillation counter (Packard Instrument Co., Downers Grover, IL). [3H]TdR incorporation is a measure of T cell proliferation.

Appropriate controls for T cells ("TC") alone or epidermal cells ("EC") alone were carried out using the above protocol. No [3H]TdR incorporation was observed in these assays (data not shown). Brisk proliferation of autologous T cells in response to psoriatic skin cells was observed (data not shown).

In addition, to test the allogeneic response to normal skin, the above protocol was carried out using one hundred thousand allogeneic T cells and eighty thousand normal skin cells. Under these conditions, a brisk proliferation of allogeneic T cells was observed (data not shown).

Blocking of Psoriatic Epidermal Cells' Ability To Stimulate Autologous T Lymphocyte Proliferation

The effect on [3H]TdR incorporation (i.e.,

T cell proliferation) of an anti-CD2 monoclonal
antibody (TS2/18) (Sanchez-Madrid et al., "Three
Distinct Antigens Associated with Human T-lymphocytemediated Cytolysis: LFA-1, LFA-2, and LFA-3", Proc.

Natl. Acad. Sci. USA, 79, pp. 7489-93 (1982)), an antiLFA-3 monoclonal antibody (7A6) (ATCC HB 10695), or an
isotype-matched, control monoclonal antibody of
irrelevant specificity (MOPC21, Sigma Chemical Co.,
St. Louis, MO) was measured using the protocol outlined
above in the presence of 50 μg/ml of the respective
antibodies.

Figure 1 demonstrates that addition of anti-CD2 or anti-LFA-3 resulted in a consistent (n=4) and substantial (approximately 60%) inhibition of autologous T cell proliferation in response to lesional psoriatic epidermis, as compared to proliferation in the presence of the isotype-matched control antibody.

Figure 1 displays data for four patients only. These four patients demonstrated autoreactivity

WO 93/06866 PCT/US92/08755

- 37 -

of blood CD4⁺ T cells to their own lesional epidermis, despite the fact that no antigen was added to the system. This is an abnormal finding; normal individuals' cocultures of autologous blood T cells and epidermal cells do not react. Such a reaction is considered to be an in vitro model of autoimmune reactions occurring in the skin. EC preparations from two additional patients were not informative. One EC preparation was bacterially contaminated; the other contained antigen presenting cells that did not induce autoreactive T cell responses.

Addition of 50 μ g per ml of the anti-CD2 or anti-LFA-3 antibodies to the allogeneic normal skin assay described above also resulted in an inhibition of allogeneic T cell activation. The degree of inhibition was not as substantial (approximately 40%) as that observed for autologous antigen presenting cell activity when using lesional psoriatic epidermis (data not shown).

20 Addition of the isotype-matched control antibody (specific for an irrelevant antigen) did not significantly alter the level of T cell proliferation of autologous T cells induced by lesional psoriatic epidermis (data not shown).

EXAMPLE 2

Subject

25

One adult subject participated in this investigation. Informed consent was obtained after Internal Review Board approval of the protocol. The 30 minimal dose of UV B from a bank of fluorescent bulbs (FS 40) required to induce skin erythema in the subject was determined prior to the study. A moderate sunburn (4 miminal erythemal doses) was then administered to the left buttock, which 3 days later was the source of

UV damaged skin. Skin from the right buttock, which was unburned, was utilized for the control.

Preparation of Epidermal Cell Suspensions

Skin biopsy specimens were obtained from both normal and sunburned skin by using a keratome.

Epidermal cell suspensions were prepared from these specimens using substantially the same protocol as in Example 1.

Isolation and Depletion of T cells

Peripheral blood mononuclear cells ("MNC")
were isolated from heparinized blood of another person,
using Ficoll Hypaque (Pharmacia) density gradient
centrifugation according to manufacturer's suggested
protocol. CD4⁺ T lymphocytes were then prepared
substantially as outlined in Example 1.

Proliferative Response Of T Lymphocytes To Allogeneic UV Damaged Epidermal Cells

One hundred thousand CD4⁺ T lymphocytes from another individual were added to round bottom

20 microtiter wells (Costar, Cambridge, MA) with UV damaged epidermal cells from the subject, incubated in the presence of [³H]TdR, harvested and [³H]TdR incorporation was measured substantially as outlined in Example 1. This example differs from Example 1 in that the antigenic stimulus is alloantigen, rather than autoantigens that are stimulatory in psoriasis. Thus, allogeneic T cells were used, rather than autologous T cells.

Figure 2 shows a brisk proliferation of allogeneic T cells (as measured by [3H]TdR incorporation) when incubated with UV damaged epidermal cells ("EC+TC").

Blocking Of UV Damaged Epidermal Cells' Ability To Stimulate Allogeneic T Lymphocyte Proliferation

The effect on [3H]TdR incorporation (i.e.,

- 5 T cell proliferation) of an anti-LFA-3 monoclonal antibody (1E6) (ATCC HB 10693), an anti-CD2 monoclonal antibody (TS2/18) (Sanchez-Madrid et al., "Three Distinct Antigens Associated With Human T-lymphocyte-Mediated Cytolysis: LFA-1, LFA-2, and LFA-3", Proc.
- Natl. Acad. Sci USA, 79, pp. 7489-93 (1982)), and an isotype-matched, control monoclonal antibody of irrelevant specificity (MOPC21, Sigma Chemical Co.), was measured using the protocol outlined above in the presence of 50 μg/ml of the respective antibodies.
- 15 Figure 2 shows that in the presence of a monoclonal antibody of irrelevant specificity (MOPC21, Sigma Chemical Co.), [3H]TdR incorporation was somewhat reduced. However, the addition of anti-LFA-3 monoclonal antibody 1E6 or anti-CD2 monoclonal antibody 20 TS2/18 resulted in a substantial inhibition of T cell proliferation compared to proliferation in the presence of the control antibody.

Deposits

Murine hybridoma cells and anti-LFA-3
25 antibodies useful in the present invention are
exemplified by cultures deposited under the Budapest
Treaty with American Type Culture Collection,
Rockville, Maryland, U.S.A., on March 5, 1991, and
identified as:

30	<u>Designation</u>	ATCC Accession No.
	1E6	HB 10693
•	HC-1B11	HB 10694
	7A6	HB 10695
	8B8	HB 10696

PCT/US92/08755

10

- 40 -

A bacteriophage carrying a plasmid encoding transmembrane LFA-3 was deposited under the Budapest Treaty with In Vitro International, Inc., Linthicum, Maryland, U.S.A., on May 28, 1987 under accession 5 number IVI-10133. This deposit was transferred to American Type Culture Collection on June 20, 1991 and identified as:

Designation

ATCC Accession No.

AHT16[Agt10/LFA-3]

75107

E. coli transformed with a plasmid encoding PI-linked LFA-3 was deposited under the Budapest Treaty with In Vitro International, Inc. on July 22, 1988 under accession number IVI-10180. This deposit was transferred to American Type Culture Collection on 15 June 20, 1991 and identified as:

Designation

ATCC Accession No.

p24

68788

Sequences

The following is a summary of the sequences 20 set forth in the Sequence Listing:

SEQ ID NO:1 DNA sequence of transmembrane LFA-3

SEQ ID NO:2 Amino acid sequence of transmembrane LFA-3

SEQ ID NO:3 DNA sequence of PI-linked LFA-3

SEQ ID NO:4 Amino acid sequence of PI-linked LFA-3

25 SEQ ID NO:5 DNA sequence of CD2

SEQ ID NO:6 Amino acid sequence of CD2

While we have hereinbefore described a number of embodiments of this invention, it is apparent that our basic embodiments can be altered to provide other 30 embodiments that utilize the processes of this invention. Therefore, it will be appreciated that the scope of this invention includes all alternative embodiments and variations which are defined in the foregoing specification and by the claims appended

- 41 -

hereto; and the invention is not to be limited by the specific embodiments that have been presented herein by way of example.

-42-

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: WALLNER, Barbara P. COOPER, Kevin D.
 - (ii) TITLE OF INVENTION: METHOD OF PROPHYLAXIS OR TREATMENT OF ANTIGEN PRESENTING CELL DRIVEN SKIN CONDITIONS USING INHIBITORS OF THE CD2/LFA-3 INTERACTION
 - (iii) NUMBER OF SEQUENCES: 6
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: c\o FISH & NEAVE
 - (B) STREET: 875 Third Avenue
 - (C) CITY: New York
 - (D) STATE: New York
 - (E) COUNTRY: U.S.A.
 - (F) ZIP: 10022
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Haley Jr., James F.
 - (B) REGISTRATION NUMBER: 27,794
 - (C) REFERENCE/DOCKET NUMBER: B167CIP
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (212) 715-0600
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 753 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..750

-43-

	(ix)) FEA	ATUR	E:									•				
	` .	(/	A) N	AME/I DCAT:				tide					-		٠		
	(ix)	(4		E: AME/I OCATI				tide									-
	(ix)	(<i>I</i>	B) L	AME/I	ON:	1	750			"Hur	nan 1	trans	smeml	orane	e LFA	√ -3"	
	(ix)	(<i>I</i>	3) L(AME/I	ON:	646	714	4		"Tra	ansme	embra	ane (domai	in"		
	(xi)	SEC	QUEN	CE DI	ESCR	[PTI	ON: S	SEQ :	D NO	0:1:							
ATG Met -28	GTT Val	GCT Ala	GGG Gly -25	AGC Ser	GAC Asp	GCG Ala	GGG Gly	CGG Arg -20	GCC Ala	CTG Leu	GGG Gly	GTC Val	CTC Leu -15	AGC Ser	GTG Val		48
GTC Val	TGC Cys	CTG Leu -10	CTG Leu	CAC His	TGC Cys	TTT Phe	GGT Gly -5	TTC Phe	ATC Ile	AGC Ser	TGT Cys	TTT Phe 1	TCC Ser	CAA Gln	CAA Gln		96
ATA Ile 5	TAT Tyr	GGT Gly	GTT Val	GTG Val	TAT Tyr 10	GGG Gly	AAT Asn	GTA Val	ACT Thr	TTC Phe 15	CAT His	GTA Val	CCA Pro	AGC Ser	AAT Asn 20		144
														GTT Val 35	GCA Ala		192
GAA Glu	CTG Leu	GAA Glu	AAT Asn 40	TCT Ser	GAA Glu	TTC Phe	AGA Arg	GCT Ala 45	TTC Phe	TCA Ser	TCT Ser	TTT Phe	AAA Lys 50	AAT Asn	AGG Arg		240
GTT Val	TAT Tyr	TTA Leu 55	GAC Asp	ACT Thr	GTG Val	TCA Ser	GGT Gly 60	AGC Ser	CTC Leu	ACT Thr	ATC Ile	TAC Tyr 65	AAC Asn	TTA Leu	ACA Thr		288
TCA Ser	TCA Ser 70	GAT Asp	GAA Glu	GAT Asp	GAG Glu	TAT Tyr 75	GAA Glu	ATG Met	GAA Glu	TCG Ser	CCA Pro 80	AAT Asn	ATT Ile	ACT Thr	GAT Asp		336
ACC Thr 85	ATG Met	AAG Lys	TTC Phe	TTT Phe	CTT Leu 90	TAT Tyr	GTG Val	CTT Leu	GAG Glu	TCT Ser 95	CTT Leu	CCA Pro	TCT Ser	CCC Pro	ACA Thr 100		384

-44-

CTA Leu	ACT Thr	TGT Cys	GCA Ala	TTG Leu 105	ACT Thr	AAT Asn	GGA Gly	AGC Ser	ATT Ile 110	GAA Glu	GTC Val	CAA Gln	TGC Cys	ATG Met 115	ATA Ile	432
CCA Pro	GAG Glu	CAT His	TAC Tyr 120	AAC Asn	AGC Ser	CAT His	CGA Arg	GGA Gly 125	CTT Leu	ATA Ile	ATG Met	TAC Tyr	TCA Ser 130	TGG Trp	GAT Asp	480
TGT Cys	CCT Pro	ATG Met 135	GAG Glu	CAA Gln	TGT Cys	AAA Lys	CGT Arg 140	AAC Asn	TCA Ser	ACC Thr	AGT Ser	ATA Ile 145	TAT Tyr	TTT Phe	AAG Lys	528
ATG Met	GAA Glu 150	AAT Asn	GAT Asp	CTT Leu	CCA Pro	CAA Gln 155	AAA Lys	ATA Ile	CAG Gln	TGT Cys	ACT Thr 160	CTT Leu	AGC Ser	AAT Asn	CCA Pro	576
TTA Leu 165	TTT Phe	AAT Asn	ACA Thr	ACA Thr	TCA Ser 170	TCA Ser	ATC Ile	ATT Ile	TTG Leu	ACA Thr 175	ACC Thr	TGT Cys	ATC Ile	CCA Pro	AGC Ser 180	624
AGC Ser	GGT Gly	CAT His	TCA Ser	AGA Arg 185	CAC His	AGA Arg	TAT Tyr	GCA Ala	CTT Leu 190	ATA Ile	CCC Pro	ATA Ile	CCA Pro	TTA Leu 195	GCA Ala	672
GTA Val	ATT Ile	ACA Thr	ACA Thr 200	TGT Cys	ATT Ile	GTG Val	CTG Leu	TAT Tyr 205	ATG Met	AAT Asn	GGT Gly	ATT Ile	CTG Leu 210	AAA Lys	TGT Cys	720
GAC Asp	AGA Arg	AAA Lys 215	CCA Pro	GAC Asp	AGA Arg	ACC Thr	AAC Asn 220	TCC Ser	AAT Asn	TGA						753
(2)	INFO	RMAT	CION	FOR	SEQ	ID N	10:2:									
	((i) S	(B)	LEN	IGTH: PE: a	ACTE 250 mino Y: 1	ami aci	no é	cids					•		
	(i	i) M	OLEC	ULE	TYPE	: pr	otei	.n								
	(x	i) S	EQUE	NCE	DESC	RIPT	ION:	SEC	[D	NO:2	! :					•
Met -28	Val	Ala	Gly -25	Ser	Asp	Ala	Gly	Arg -20	Ala	Leu	Gly	Val	Leu -15	Ser	Val	
Val	Cys	Leu -10	Leu	His	Cys	Phe	Gly -5	Phe	Ile	Ser	Cys	Phe 1	Ser	Gln	Gln	
Ile 5	Tyr	Gly	Val	Val	Tyr 10	Gly	Asn	Val	Thr	Phe 15	His	Val	Pro	Ser	Asn 20	

Val Pro Leu Lys Glu Val Leu Trp Lys Lys Gln Lys Asp Lys Val Ala 25 30 35

Glu Leu Glu Asn Ser Glu Phe Arg Ala Phe Ser Ser Phe Lys Asn Arg
40 45 50

Val Tyr Leu Asp Thr Val Ser Gly Ser Leu Thr Ile Tyr Asn Leu Thr
55 60 65

Ser Ser Asp Glu Asp Glu Tyr Glu Met Glu Ser Pro Asn Ile Thr Asp 70 75 80

Thr Met Lys Phe Phe Leu Tyr Val Leu Glu Ser Leu Pro Ser Pro Thr 85 90 95 100

Leu Thr Cys Ala Leu Thr Asn Gly Ser Ile Glu Val Gln Cys Met Ile 105 110 115

Pro Glu His Tyr Asn Ser His Arg Gly Leu Ile Met Tyr Ser Trp Asp 120 125 130

Cys Pro Met Glu Gln Cys Lys Arg Asn Ser Thr Ser Ile Tyr Phe Lys 135 140 145

Met Glu Asn Asp Leu Pro Gln Lys Ile Gln Cys Thr Leu Ser Asn Pro 150 155 160

Leu Phe Asn Thr Thr Ser Ser Ile Ile Leu Thr Thr Cys Ile Pro Ser 165 170 175 180

Ser Gly His Ser Arg His Arg Tyr Ala Leu Ile Pro Ile Pro Leu Ala 185 190 195

Val Ile Thr Thr Cys Ile Val Leu Tyr Met Asn Gly Ile Leu Lys Cys 200 205 210

Asp Arg Lys Pro Asp Arg Thr Asn Ser Asn 215 220

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 723 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 1..720

(ix) FEATURE:

-46-

	(111	(A) N B) L	AME/	KEY: ION:	sig 1	_pep 84	tide								
	(ix	(,	ATUR A) N B) L	AME/I	KEY: ION:	mat 85.	_pep .720	tide								
	(ix)	(R) T	AME/I	KEY: ION: INFO	1	720			"Hu	nan i	PI — 1:	inke	d LF	A-3"	
	(ix)	. (<i>i</i>	R) IJ	ame/i ocat: ther	KEY: ION: INFO -linl	568 CRMA	720 CION	0		"Si	gnal	sequ	ience	e fo	r	
	(xi)) SE	QUEN	CE DI	ESCRI	[PTI	ON:	SEQ :	ED NO	0:3:						
ATG Met -28	GTT Val	GCT Ala	GGG Gly -25	AGC Ser	GAC Asp	GCG Ala	GGG Gly	CGG Arg -20	GCC Ala	CTG Leu	GGG Gly	GTC Val	CTC Leu -15	AGC Ser	GTG Val	48
GTC Val	TGC Cys	CTG Leu -10	CTG Leu	CAC His	TGC Cys	TTT Phe	GGT Gly -5	TTC Phe	ATC Ile	AGC Ser	TGT Cys	TTT Phe 1	TCC Ser	CAA Gln	CAA Gln	96
ATA Ile 5	TAT Tyr	GGT Gly	GTT Val	GTG Val	TAT Tyr 10	GGG Gly	AAT Asn	GTA Val	ACT Thr	TTC Phe 15	CAT His	GTA Val	CCA Pro	AGC Ser	AAT Asn 20	144
GTG Val	CCT Pro	TTA Leu	AAA Lys	GAG Glu 25	GTC Val	CTA Leu	TGG Trp	AAA Lys	AAA Lys 30	CAA Gln	AAG Lys	GAT Asp	AAA Lys	GTT Val 35	GCA Ala	192
GAA Glu	CTG Leu	GAA Glu	AAT Asn 40	TCT Ser	GAA Glu	TTC Phe	AGA Arg	GCT Ala 45	TTC Phe	TCA Ser	TCT Ser	TTT Phe	AAA Lys 50	AAT Asn	AGG Arg	240
GTT Val	TAT Tyr	TTA Leu 55	GAC Asp	ACT Thr	GTG Val	TCA Ser	GGT Gly 60	AGC Ser	CTC Leu	ACT Thr	ATC Ile	TAC Tyr 65	AAC Asn	TTA Leu	ACA Thr	288
rca Ser	TCA Ser 70	GAT Asp	GAA Glu	GAT Asp	GAG Glu	TAT Tyr 75	GAA Glu	ATG Met	GAA Glu	TCG Ser	CCA Pro 80	AAT Asn	ATT Ile	ACT Thr	GAT Asp	336

-47-

ACC Thr 85	ATG Met	AAG Lys	TTC Phe	TTT Phe	CTT Leu 90	TAT Tyr	GTG Val	CTT Leu	GAG Glu	TCT Ser 95	CTT Leu	CCA Pro	TCT Ser	Pro	AGA Thr 100	384
CTA Leu	ACT Thr	TGT Cys	GCA Ala	TTG Leu 105	ACT Thr	AAT Asn	GGA Gly	AGC Ser	ATT Ile 110	GAA Glu	GTC Val	CAA Gln	TGC Cys	ATĠ Met 115	ATA Ile	432
CCA Pro	GAG Glu	CAT His	TAC Tyr 120	AAC Asn	AGC Ser	CAT His	CGA Arg	GGA Gly 125	CTT Leu	ATA Ile	ATG Met	TAC Tyr	TCA Ser 130	TGG Trp	GAT Asp	480
TGT Cys	CCT Pro	ATG Met 135	GAG Glu	CAA Gln	TGT Cys	AAA Lys	CGT Arg 140	AAC Asn	TCA Ser	ACC Thr	AGT Ser	ATA Ile 145	TAT Tyr	TTT Phe	ÁAG Lys	5,28
						CAA Gln 155										576
TTA Leu 165	TTT Phe	AAT Asn	ACA Thr	ACA Thr	TCA Ser 170	TCA Ser	ATC Ile	ATT Ile	TTG Leu	ACA Thr 175	ACC Thr	TGT Cys	ATC Ile	CCA Pro	AGC Ser 180	624
AGC Ser	GGT Gly	CAT His	TCA Ser	AGA Arg 185	CAC His	AGA Arg	TAT Tyr	GCA Ala	CTT Leu 190	ATA Ile	CCC Pro	ATA Ile	CCA Pro	TTA Leu 195	GCA Ala	672
						GTG Val										720
TAA																723

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 240 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Val Ala Gly Ser Asp Ala Gly Arg Ala Leu Gly Val Leu Ser Val -28 -25 -20 -15

Val Cys Leu Leu His Cys Phe Gly Phe Ile Ser Cys Phe Ser Gln Gln -10 -5 1

-48-

Ile 5	Tyr	Gly	Val	Val	Tyr 10	Gly	Asn	Val	Thr	Phe 15	His	Val	Pro	Ser	Asn 20
Val	Pro	Leu	Lys	Glu 25	Val	Leu	Trp	Lys	Lys 30	Gln	Lys	Asp	Lys	Val 35	Ala
Glu	Leu	Glu	Asn 40	Ser	Glu	Phe	Arg	Ala 45	Phe	Ser	Ser	Phe	Lys 50	Asn	Arg
Val	Tyr	Leu 55	Asp	Thr	Val	Ser	Gly 60	Ser	Leu	Thr	Ile	Tyr 65	Asn	Leu	Thr
Ser	Ser 70	Asp	Glu	Asp	Glu	Tyr 75	Glu	Met	Glu	Ser	Pro 80	Asn	Ile	Thr	Asp
Thr 85	Met	Lys	Phe	Phe	Leu 90	Tyr	Val	Leu	Glu	Ser 95	Leu	Pro	Ser	Pro	Thr 100
Leu	Thr	Cys	Ala	Leu 105	Thr	Asn	Gly	Ser	Ile 110	Glu	Val	Gln	Cys	Met 115	Ile
Pro	Glu	His	Tyr 120	Asn	Ser	His	Arg	Gly 125	Leu	Ile	Met	Tyr	Ser 130	Trp	Asp
Cys	Pro	Met 135	Glu	Gln	Cys	Lys	Arg 140	Asn	Ser	Thr	Ser	Ile 145	Tyr	Phe	Lys
Met	Glu 150	Asn	Asp	Leu	Pro	Gln 155	Lys	Ile	Gln	Cys	Thr 160	Leu	Ser	Asn	Pro
Leu 165	Phe	Asn	Thr	Thr	Ser 170	Ser	Ile	Ile	Leu	Thr 175	Thr	Cys	Ile	Pro	Ser 180
Ser	Gly	His	Ser	Arg 185	His	Arg	Tyr	Ala	Leu 190	Ile	Pro	Ile	Pro	Leu 195	Ala
Val	Ile	Thr	Thr	Cys	Ile	Val	Leu	Tyr 205	Met	Asn	Gly	Met	Tyr 210	Ala	Phe

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1056 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ix) FEATURE:

(A) NAME/KEY: CDS
(B) LOCATION: 1..1053

-49-

	(ix	(.		E: AME/ OCAT				tide									
٠	(ix	(,		E: AME/I OCAT									•				
	(ix)	() ()	B) L	E: AME/I OCAT: THER	ION:	1	1053			"Hu	man (CD2"					
	(ix)	() ()	B) L	E: AME/I OCAT: THER	ION:	628	70	2		"Tr	ansmo	embra	ane (doma:	in"		
	(xi)	SE	QUEN	CE D	ESCR:	IPTI(ON:	SEQ :	ID N	0:5:							
				TGT Cys -20													48
				GGT Gly									Ala		GAA Glu	. !	96
				TTG Leu												14	44
				GAT Asp													92
				GCA Ala 45												24	40
				AAG Lys										Lys			88
				GAT Asp												3:	36
				GTG Val												38	84

-50-

AGG Arg 105	Val	TCA Ser	AAA Lys	CCA Pro	AAG Lys 110	ATC Ile	TCC Ser	TGG Trp	ACT Thr	TGT Cys 115	Ile	AAC Asn	ACA Thr	ACC Thr	CTG Leu 120		432
ACC Thr	TGT Cys	GAG Glu	GTA Val	ATG Met 125	AAT Asn	GGA Gly	ACT Thr	GAC Asp	CCC Pro 130	GAA Glu	TTA Leu	AAC Asn	CTG Leu	TAT Tyr 135	CAA Gln		480
GAT Asp	GGG Gl y	AAA Lys	CAT His 140	CTA Leu	AAA Lŷs	CTT Leu	TCT Ser	CAG Gln 145	AGG Arg	GTC Val	ATC Ile	ACA Thr	CAC His 150	AAG Lys	TGG Trp		528
ACC Thr	ACC Thr	AGC Ser 155	CTG Leu	AGT Ser	GCA Ala	AAA Lys	TTC Phe 160	AAG Lys	TGC Cys	ACA Thr	GCA Ala	GGG Gly 165	AAC Asn	AAA Lys	GTC Val		576
AGC Ser	AAG Lys 170	GAA Glu	TCC Ser	AGT Ser	GTC Val	GAG Glu 175	CCT Pro	GTC Val	AGC Ser	TGT Cys	CCA Pro 180	GAG Glu	AAA Lys	GGT Gly	CTG Leu		624
GAC Asp 185	ATC Ile	TAT Tyr	CTC Leu	ATC Ile	ATT Ile 190	GGC Gly	ATA Ile	TGT Cys	GGA Gly	GGA Gly 195	GGC Gly	AGC Ser	CTC Leu	TTG Leu	ATG Met 200		672
GTC Val	TTT Phe	GTG Val	GCA Ala	CTG Leu 205	CTC Leu	GTT Val	TTC Phe	TAT Tyr	ATC Ile 210	ACC Thr	AAA Lys	AGG Arg	AAA Lys	AAA Lys 215	CAG Gln		720
AGG Arg	AGT Ser	CGG Arg	AGA Arg 220	AAT Asn	GAT Asp	GAG Glu	GAG Glu	CTG Leu 225	GAG Glu	ACA Thr	AGA Arg	GCC Ala	CAC His 230	AGA Arg	GTA Val		768
GCT Ala	ACT Thr	GAA Glu 235	GAA Glu	AGG Arg	GGC Gly	CGG Arg	AAG Lys 240	CCC Pro	CAC His	CAA Gln	ATT Ile	CCA Pro 245	GCT Ala	TCA Ser	ACC Thr		816
CCT Pro	CAG Gln 250	AAT Asn	CCA Pro	GCA Ala	ACT Thr	TCC Ser 255	CAA Gln	CAT His	CCT Pro	CCT Pro	CCA Pro 260	CCA Pro	CCT Pro	GGT Gly	CAT His	•	864
CGT Arg 265	TCC Ser	CAG Gln	GCA Ala	CCT Pro	AGT Ser 270	CAT His	CGT Arg	CCC Pro	CCG Pro	CCT Pro 275	CCT Pro	GGA Gly	CAC His	CGT Arg	GTT Val 280	,	912
CAG Gln	CAC His	CAG Gln	CCT Pro	CAG Gln 285	AAG Lys	AGG Arg	CCT Pro	CCT Pro	GCT Ala 290	CCG Pro	TCG Ser	GGC Gly	ACA Thr	CAA Gln 295	GTT Val	!	960
CAC His	CAG Gln	CAG Gln	AAA Lys 300	GGC Gly	CCG Pro	CCC Pro	Leu	CCC Pro 305	AGA Arg	CCT Pro	CGA Arg	GTT Val	CAG Gln 310	CCA Pro	AAA Lys	1	800

1053

1056

-51-

CCT Pro	CCC Pro	CAT His 315	GGG Gly	GCA Ala	GCA Ala	GAA Glu	AAC Asn 320	TCA Ser	TTG Leu	TCC Ser	CCT Pro	TCC Ser 325	TCT	AAT Asn	
TAA					-										•
(2)	INFO	ORMA'	rion	FOR	SEQ	ID 1	10:6	•							
	. ((i) :	(B)	LEN TYI	CHAF NGTH: PE: 4	351 mino	l ami	ino a Ld		6					
	(i	li) l	MOLE	CULE	TYPE	E: p1	rote	in							
	(2	ci) S	SEQUI	ENCE	DESC	CRIPT	CION	SEC) ID	NO:6	5:				
Met -24	Ser	Phie	Pro	Cys -20	Lys	Phe	Val	Ala	Ser -15	Phe	Leu	Leu	Ile	Phe -10	Asn
Val	Ser	Ser	Lys -5	Gly	Ala	Val	Ser	Lys 1	Glu	Ile	Thr	Asn 5	Ala	Leu	Glu
Thr	Trp 10	Gly	Ala	Leu	Gly	Gln 15	Asp	Ile	Asn	Leu	Asp 20	Ile	Pro	Ser.	Phe
Gln 25	Met	Ser	Asp	Asp	Ile 30	Asp	Asp	Ile	Lys	Trp 35	Glu	Lys	Thr	Ser	Asp 40
Lys	Lys	Lys	Ile	Ala 45	Gln	Phe	Arg	Lys	G1u 50	Lys	Glu	Thr	Phe	Lys 55	Glu
Lys	Asp	Thr	Tyr 60	Lys	Leu	Phe	Lys	Asn 65	Gly	Thr	Leu	Lys	Ile 70	Lys	His
Leu	Lys	Thr 75	Asp	Asp	Gln	Asp	Ile 80	Tyr	Lys	Val	Ser	Ile 85	Tyr	Asp	Thr
Lys	Gly 90	Lys	Asn	Val	Leu	Glu 95	Lys	Ile	Phe	Asp	Leu 100	Lys	Ile	Gln	Glu ·
Arg 105	Val	Ser	Lys	Pro	Lys 110	Ile	Ser	Trp	Thr	Cys 115	Ile	Asn	Thr	Thr	Leu 120
Thr	Cys	Glu	Val	Met 125	Asn	Gly	Thr	Asp	Pro 130	Glu	Leu	Asn	Leu	Tyr 135	Gln
Asp	Gly	Lys	His 140	Leu	Lys	Leu	Ser	Gln 145	Arg	Val	Ile	Thr	His 150	Lys	Trp

Thr	Thr	Ser 155	Leu	Ser	Ala	Lys	Phe 160	Lys	Cys	Thr	Ala	Gly 165	Asn	Lys	Va.
Ser	Lys 170	Glu	Ser	Ser	Val	Glu 175	Pro	Val	Ser	Cys	Pro 180	Glu	Lys	Gly	Let
Asp 185	Ile	Tyr	Leu	Ile	Ile 190	Gly	Ile	Cys	Gly	Gly 195	Gly	Ser	Leu	Leu	Me1 200
Val	Phe	Val	Ala	Leu 205	Leu	Val	Phe	Tyr	Ile 210	Thr	Lys	Arg	Lys	Lys 215	Glı
Arg	Ser	Arg	Arg 220	Asn	Asp	Glu	Glu	Leu 225	Glu	Thr	Arg	Ala	His 230	Arg	Va]
Ala	Thr	Glu 235	Glu	Arg	Gly	Arg	Lys 240	Pro	His	Gln	Ile	Pro 245	Ala	Ser	Thi
Pro	Gln 250	Asn	Pro	Ala	Thr	Ser 255	G1n	His	Pro	Pro	Pro 260	Pro	Pro	Gly	His
Arg 265	Ser	Gln	Ala	Pro	Ser 270	His	Arg	Pro	Pro	Pro 275	Pro	Gly	His	Arg	Va] 280
Gln	His	Gln	Pro	Gln 285	Lys	Arg	Pro	Pro	Ala 290	Pro	Ser	Gly	Thr	Gln 295	Va]
His	Gln	Gln	Lys 300	Gly	Pro	Pro	Leu	Pro 305	Arg	Pro	Arg	Val	Gln 310	Pro	Lys
Pro	Pro	His 315	Gly	Ala	Ala	Glu	Asn 320	Ser	Leu	Ser	Pro	Ser 325	Ser	Asn	

We claim:

- 1. A method of preventing or treating skin conditions characterized by increased T cell activation and abnormal antigen presentation in the dermis and epidermis comprising the step of administering to a mammal, including a human, an inhibitor of the CD2/LFA-3 interaction.
- 2. The method according to claim 1, wherein the condition is selected from the group consisting of atopic dermatitis, cutaneous T cell lymphoma such as mycosis fungoides, allergic and irritant contact dermatitis, lichen planus, alopecia areata, pyoderma gangrenosum, vitiligo, ocular cicatricial pemphigoid, and urticaria.
- 3. The method according to claim 1, wherein the condition is psoriasis.
- 4. The method according to claim 1, wherein the inhibitor is selected from the group consisting of anti-LFA-3 antibody homologs, anti-CD2 antibody homologs, soluble LFA-3 polypeptides and soluble CD2 polypeptides.
- 5. The method according to claim 4, wherein the inhibitor is an anti-LFA-3 antibody homolog or an anti-CD2 antibody homolog.
- 6. The method according to claim 5, wherein the inhibitor is a monoclonal anti-LFA-3 antibody or a monoclonal anti-CD2 antibody.
- 7. The method according to claim 6, wherein the inhibitor is a monoclonal anti-LFA-3 antibody

produced by a hybridoma selected from the group of hybridomas having accession numbers ATCC HB 10693 (1E6), ATCC HB 10694 (HC-1B11), ATCC HB 19695 (7A6), and ATCC HB 10696 (8B8) or is monoclonal antibody TS2/9.

- 8. The method according to claim 7, wherein the monoclonal anti-LFA-3 antibody is produced by a hybridoma selected from the group of hybridomas having accession numbers ATCC HB 10695 (7A6) and ATCC HB 10693 (1E6).
- 9. The method according to claim 5, wherein the inhibitor is a chimeric recombinant anti-LFA-3 antibody homolog or a chimeric recombinant anti-CD2 antibody homolog.
- 10. The method according to claim 5, wherein the inhibitor is a humanized recombinant anti-LFA-3 antibody homolog or a humanized recombinant anti-CD2 antibody homolog.
- 11. The method according to claim 5, wherein the inhibitor is selected from the group consisting of Fab fragments, Fab' fragments, F(ab')₂ fragments, F(v) fragments and intact immunoglobulin heavy chains of an anti-LFA-3 antibody homolog or an anti-CD2 antibody homolog.
- 12. The method according to claim 4, wherein the inhibitor is a soluble CD2 polypeptide or a soluble LFA-3 polypeptide.
- 13. The method according to claim 12, wherein the inhibitor is a soluble LFA-3-polypeptide

selected from the group of polypeptides consisting of AA_1-AA_{92} of SEQ ID NO:2, AA_1-AA_{80} of SEQ ID NO:2, $AA_{50}-AA_{65}$ of SEQ ID NO:2, and $AA_{20}-AA_{80}$ of SEQ ID NO:2.

- 14. The method according to claim 1, wherein the mammal is a human.
- 15. The method according to claim 1, wherein the inhibitor is administered at a dose between about 0.001 and about 50 mg inhibitor per kg body weight.
- 16. The method according to claim 15, wherein the inhibitor is administered at a dose between about 0.01 and about 10 mg inhibitor per kg body weight.
- 17. The method according to claim 15, wherein the inhibitor is administered at a dose between about 0.1 and about 4 mg inhibitor per kg body weight.
- 18. The method according to claim 15, wherein the dose is administered once to three times per week.
- 19. The method according to claim 15, wherein the dose is administered once to three times per day.
- 20. The method according to claim 19, wherein the dose is administered about one to three times daily for between 3 and 7 days.
- 21. The method according to claim 20, wherein the dose is administered about one to three

times daily for between 3 and 7 days on a monthly basis.

- 22. The method according to claim 1, wherein the inhibitor is administered intravenously, intramuscularly, subcutaneously, intra-articularly, intrathecally, periostally, intratumorally, intralesionally, perilesionally by infusion, orally, topically or by inhalation.
- 23. The method according to claim 22, wherein the inhibitor is administered intramuscularly, intravenously or subcutaneously.
- 24. The method according to claim 4, wherein the inhibitor is linked to one or more members independently selected from the group consisting of anti-LFA-3 antibody homologs, anti-CD2 antibody homologs, soluble LFA-3 polypeptides, soluble CD2 polypeptides, cytotoxic agents and pharmaceutical agents.
- 25. The method according to claim 24, wherein the inhibitor is a polypeptide consisting of a soluble LFA-3 polypeptide linked to an immunoglobulin hinge and heavy chain constant region or portions thereof.
- 26. The method according to claim 1, wherein the condition is UV damage.

1/2

FIG. 1

AUTOLOGOUS T CELL ACTIVATION
BY PSORIATIC EPIDERMAL CELLS

FIG. 2

ALLOGENEIC T CELL ACTIVATION BY UV DAMAGED EPIDERMAL CELLS

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: WO 93/06866 (11) International Publication Number: A61K 39/395, 37/02 // (A61K 39/395 (43) International Publication Date: 15 April 1993 (15.04.93) A61K 37:02) PCT/US92/08755 (81) Designated States: AU, CA, JP, KR, European patent (AT, (21) International Application Number: BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, (22) International Filing Date: 6 October 1992 (06.10.92) Published (30) Priority data: 770,969 7 October 1991 (07.10.91) With international search report 862,022 2 April 1992 (02.04.92) US Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments. (71) Applicant: BIOGEN, INC. [US/US]; 14 Cambridge Center, Cambridge, MA 02142 (US). (88) Date of publication of the international search report: 5 August 1993 (05.08.93) (72) Inventors: WALLNER, Barbara, P.; 7 Centre Street, Cambridge, MA 02139 (US). COOPER, Kevin, D.; 3815 Windemere Drive, Ann Arbor, MI 48105 (US). (74) Agents: McDONNELL, John, J. et al.; Allegretti & Witcoff, Ltd., Ten South Wacker Drive, Chicago, IL 60606 (US).

(\$4) Title: METHOD OF PROPHYLAXIS OR TREATMENT OF ANTIGEN PRESENTING CELL DRIVEN SKIN CONDITIONS USING INHIBITORS OF THE CD2/LFA-3 INTERACTION

(57) Abstract

Methods of using inhibitors of the CD2/LFA-3 interaction in treating skin conditions characterized by increased T cell activation and abnormal antigen presentation in the dermis and epidermis in mammals, including humans. Such conditions include psoriasis, UV damage, atopic dermatitis, cutaneous T cell lymphoma such as mycosis fungoides, allergic and irritant contact dermatitis, lichen planus, alopecia areata, pyoderma gangrenosum, vitiligo, ocular cicatricial pemphigoid, and urticaria.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT .	Austria	FR	France	MR	Mauritania
AU	Australia	GA	Gabon	MW	Malawi
88	Barhados	CB	United Kingdom	NL	Netherlands
BE	Belgium	GN	Guinea	NO	Norway
BF	Burkina Faso	GR	Greece	NZ	New Zealand
BC	Bulgaria	HU	Hungary	PL	Poland
BJ	Benin	ΙE	Ireland	PT	Portugat
BR	Brazil	IT	Italy	RO	Romania
CA	Canada	JP	Japan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CC	Congo	•	of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SK	Slovak Republic
CI	Côte d'Ivoire	KZ	Kazakhstan	SN	Senegal
CM	Cameroon	L.J	Liechtenstein	SU	Soviet Union
CS	Czechoslovakia	LK	Sri Lanka	TD	Chad .
CZ	Czech Republic	1.0	Luxembourg	TG	Togo
DE	Ciermany	MC	Monaco	UA	Ukraine
DK	Denmark	MG	Madagascar	US	United States of America
ES	Spain	MI	Mali	VN	Vict Nam
FI	Finland	MN	Mongolia		

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 92/08755

I. CLASSIFICATION OF SUBJE	CT MATTER (if several classification	symbols apply, indicate all) ⁶	
According to International Patent Int. Cl.5 A 61 K 37:02)	Classification (IPC) or to both National	Classification and IPC 61 K 37/02 //(A 61 K 39.	/395
II. FIELDS SEARCHED			
	Minimum Docum	nentation Searched? Classification Symbols	
Classification System		Classification Symbols	
Int.C1.5	C 07 K	A 61 K	
	Documentation Searched other to the Extent that such Document	er than Minimum Documentation s are Included in the Fields Searched ⁸	
III. DOCUMENTS CONSIDERE	D TO BE RELEVANT ⁹ ocument, ¹¹ with Indication, where approp	of the relevant recognition	Relevant to Claim No. ¹³
Category O Citation of D	ocument, 1) with indication, where approp	oriate, of the relevant passages	Reevant to Ciana 110.
BALTIM AL. 'A	LANTATION vol. 51, no. ORE MD, US pages 219 - onti-CD2 monoclonal and dediated immunity in vistract see page 224, 8	- 225 J. BROMBERG ET tibodies alter ivo.'	1,4-11,
Septem ABRAHA surfac	TIS AND RHEUMATISM voluber 1991, NEW YORK, US M ET AL. 'Expression a me antigens on scleroda me whole document 	S pages 1164 - 1172 D. and function of	1,4-11,
"E" earlier document but pub filing date "L" document which may the which is cited to establist citation or other special "O" document referring to an other means "P" document published prior later than the priority da	eneral state of the art which is not cular relevance collished on or after the international collished on or after the international collished on priority claim(s) or in the publication date of another reason (as specified) a oral disclosure, use, exhibition or in the international filling date but	"I" later document published after the intern or priority date and not in conflict with a cited to understand the principle or theor invention "X" document of particular relevance, the cia cannot be considered novel or cannot be involve an inventive step "V" document of particular relevance, the cia cannot be considered to involve an inventive step cannot be considered to involve an inventive document is combined with one or more ments, such combination being obvious to in the art. "A" document member of the same patent fa	he application but ry underlying the imed invention considered to imed invention tive step when the other such docu- o a person skilled
IV. CERTIFICATION		Date of Mailing of this International Sec	arch Report
Date of the Actual Completion of		0 8 -07- 19	
International Searching Authority	EAN PATENT OFFICE	Signature of Authorized Officer F. NOOIJ	,

International Application No Page 2 PCT/US 92/08755

II. DOCUMEN	DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)		
ategory o	Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No	
A	EXPERIMENTAL CELL RESEARCH vol. 190, no. 1, September 1990, NEW YORK, US pages 118 - 126 D. ABRAHAM ET AL. 'Interactions between lymphocytes and dermal fibroblasts: An in vitro model of cutaneous lymphocyte trafficking.' see page 124, right column, line 27 - page 125, left column, line 6 see page 125, right column, line 1 - line 5 see abstract	1,4-11,	
, x	CLINICAL RESEARCH vol. 40, no. 2, 1992, THOROFARE NJ, US page 500A A. GONZALES-RAMOS ET AL. 'APC-targeted immunointervention in psoriasis: Blockade of LFA3-CD2 and ICAM1-LFA1 ligand pairing blocks autoreactivity to lesional epidermis.' see abstract	1,3-11,	

Inconational application No.

INTERNATIONAL SEARCH REPORT

PCT/US 92/08755

Box 1	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This into	ernational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be earned out, specifically:
3.	Claims Nos because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This In	cenational Searching Authority found multiple inventions in this international application, as follows:
	See PCT/ISA/206 mailed on 26/02/93
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.	As all scarchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
a. X	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remar	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.