Composing PRGs

Composing PRGs

- \square Let $G: \{0,1\}^{\ell} \Rightarrow \{0,1\}^{L}$ be a secure PRG
- \square Goal: to construct a new secure PRG by composing G
- $s \in_r \{0,1\}^{\ell} \qquad y = G(s)$

☐ Parallel composition of G

 $G_{\text{new}}: \{0, 1\}^{k\ell} \Rightarrow \{0, 1\}^{kL}$

 \square If G is a secure PRG, then so is G_{new} , provided k = Poly(n)

- \square If $G: \{0,1\}^{\ell} \Rightarrow \{0,1\}^{L}$ is a secure PRG, then so is $G_{\text{new}}: \{0,1\}^{k\ell} \Rightarrow \{0,1\}^{kL}$, provided K = Poly(n)
 - Proof via hybrid argument --- for demonstration, assume that the repetition factor k=2
- \Box Goal: no distinguisher can distinguish apart a randomly generated sample of G_{new} from a random bit string of length 2L bits, with a significant probability

$$y_{1} \in_{r} \{0,1\}^{L}$$

$$y_{2} \in_{r} \{0,1\}^{L}$$

$$b' \in \{0,1\}$$

$$b' \in \{0,1\}$$

$$y_{i} = G(s_{i})$$

$$y_{i} = G(s_{i})$$

$$y_{i} \in \{0,1\}$$

Experiment H_0

Experiment H_1

 $|\Pr[\mathcal{D} \text{ outputs } b'=1 \text{ in } H_0] - \Pr[\mathcal{D} \text{ outputs } b'=1 \text{ in } H_1| \leq \operatorname{negl}(n)$

- - Proof via hybrid argument --- for demonstration, assume that the repetition factor k=2
- \Box Goal: no distinguisher can distinguish apart a randomly generated sample of G_{new} from a random bit string of length 2L bits, with a significant probability

$$y_1 \in_r \{0, 1\}^L$$
 (y_1, y_2)
 $y_2 \in_r \{0, 1\}^L$ $b' \in \{0, 1\}$ \mathcal{D}

Experiment H_0

Experiment H_1

 \square To show that the experiments H_0 and H_1 are computationally indistinguishable for \mathcal{D} , we introduce an intermediate (hybrid) experiment H_{int}

- \square If $G: \{0,1\}^{\ell} \Rightarrow \{0,1\}^{L}$ is a secure PRG, then so is $G_{\text{new}}: \{0,1\}^{k\ell} \Rightarrow \{0,1\}^{kL}$, provided k = Poly(n)
 - Proof via hybrid argument --- for demonstration, assume that the repetition factor k=2
- \Box Goal: no distinguisher can distinguish apart a randomly generated sample of G_{new} from a random bit string of length 2L bits, with a significant probability

Experiment H_0

c ≈

Experiment H_1

```
| \Pr[\mathcal{D} \text{ outputs } b'=1 \text{ in } H_0]

- \Pr[\mathcal{D} \text{ outputs } b'=1 \text{ in } H_{int}]|

\leq \operatorname{negl}_1(n)
```

```
  \begin{array}{c}
    s_1 \in_r \{0,1\}^{\ell} \\
    y_1 = G(s_1) \\
    y_2 \in_r \{0,1\}^{L}
  \end{array}
  \qquad (y_1, y_2) \\
    b' \in \{0,1\}
  \qquad b' \in \{0,1\}
  \end{array}
```

Experiment H_{int}

| $Pr[\mathcal{D} \text{ outputs } b'=1 \text{ in } H_{int}]$ - $Pr[\mathcal{D} \text{ outputs } b'=1 \text{ in } H_1]$ | $\leq negl_2(n)$

- \square If $G: \{0,1\}^{\ell} \Rightarrow \{0,1\}^{L}$ is a secure PRG, then so is $G_{\text{new}}: \{0,1\}^{k\ell} \Rightarrow \{0,1\}^{kL}$, provided K = Poly(n)
 - Proof via hybrid argument --- for demonstration, assume that the repetition factor k=2
- \Box Goal: no distinguisher can distinguish apart a randomly generated sample of G_{new} from a random bit string of length 2L bits, with a significant probability

$$y_{1} \in_{r} \{0,1\}^{L}$$

$$y_{2} \in_{r} \{0,1\}^{L}$$

$$b' \in \{0,1\}$$

$$b' \in \{0,1\}$$

$$y_{i} = G(s_{i})$$

$$y_{i} = G(s_{i})$$

$$y_{i} \in \{0,1\}$$

Experiment H_0

Experiment H_1

 $|\Pr[\mathcal{D} \text{ outputs } b'=1 \text{ in } H_0] - \Pr[\mathcal{D} \text{ outputs } b'=1 \text{ in } H_1]| \leq \operatorname{negl}_1(n) + \operatorname{negl}_2(n)$

```
| Pr[\mathcal{D} \text{ outputs } b'=1 \text{ in } H_0]
     Pr[D \text{ outputs } b'=1 \text{ in } H_{int}]
```

Experiment H_{int}

| $Pr[\mathcal{D} \text{ outputs } b'=1 \text{ in } H_{int}]$ - $Pr[\mathcal{D} \text{ outputs } b'=1 \text{ in } H_1]$ $\leq \operatorname{negl}_2(n)$

Experiment H_0

Experiment H_{int}

- \blacksquare If G is a PRG, then $|\Pr[\mathcal{D} \text{ outputs } b'=1 \text{ in } H_0] \Pr[\mathcal{D} \text{ outputs } b'=1 \text{ in } H_{int}]| \leq \operatorname{negl}_1(n)$
 - If \mathcal{D} can significantly distinguish between H_0 and H_{int} , then it can be used to significantly distinguish a random y_1 from a pseudorandom y_1

 $Pr[\mathcal{A} \text{ outputs } b'=1 \mid b=0] = Pr[\mathcal{D} \text{ outputs } b'=1 \text{ in } H_0]$

 \clubsuit If b=0, then view of \mathcal{D} is the same as in H_0

c ≈

Experiment H_0

Experiment H_{int}

- \square If G is a PRG, then $|\Pr[\mathcal{D} \text{ outputs } b'=1 \text{ in } H_0] \Pr[\mathcal{D} \text{ outputs } b'=1 \text{ in } H_{int}]| \leq \operatorname{negl}_1(n)$
 - ❖ If \mathcal{D} can significantly distinguish between H_0 and H_{int} , then it can be used to significantly distinguish a random y_1 from a pseudorandom y_1

 $Pr[A \text{ outputs } b'=1 \mid b=1] = Pr[D \text{ outputs } b'=1 \text{ in } H_{int}]$

! If b=1, then view of \mathcal{D} is the same as in H_{int}

Experiment H_0

Experiment H_{int}

- \blacksquare If G is a PRG, then $|\Pr[\mathcal{D} \text{ outputs } b'=1 \text{ in } H_0] \Pr[\mathcal{D} \text{ outputs } b'=1 \text{ in } H_{int}]| \leq \operatorname{negl}_1(n)$
 - If \mathcal{D} can significantly distinguish between H_0 and H_{int} , then it can be used to significantly distinguish a random y_1 from a pseudorandom y_1

```
b \leftarrow \{0, 1\}
b = 0 : y_1 \in_r \{0, 1\}^L
b' \in \{0, 1\}
y_1 \qquad (y_1, y_2)
b' \in \{0, 1\}
y_2 \in_r \{0, 1\}^L
y_2 \in_r \{0, 1\}^L
```

 $| \Pr[\mathcal{A} \text{ outputs } b'=1 \mid b=0] - \Pr[\mathcal{A} \text{ outputs } b'=1 \mid b=1] \mid = | \Pr[\mathcal{D} \text{ outputs } b'=1 \text{ in } H_0] - \Pr[\mathcal{D} \text{ outputs } b'=1 \text{ in } H_{int}] \mid$

Experiment H_{int}

Experiment H_1

- If G is a PRG, then $|\Pr[\mathcal{D} \text{ outputs } b'=1 \text{ in } H_{int}] \Pr[\mathcal{D} \text{ outputs } b'=1 \text{ in } H_1]| \leq \operatorname{negl}_2(n)$
- (y_1, y_2) *b* ← {0, 1} (How it is generated?) A $b' \in \{0, 1\}$ $b = 0 : y_2 \in_r \{0, 1\}^L$ $s_1 \in_r \{0,1\}^{\ell}$ $y_1 = G(s_1)$

 $|\Pr[\mathcal{A} \text{ outputs } b'=1 \mid b=0] - \Pr[\mathcal{A} \text{ outputs } b'=1 \mid b=1]|$ = $|\Pr[\mathcal{D} \text{ outputs } b'=1 \text{ in } H_{int}] - \Pr[\mathcal{D} \text{ outputs } b'=1 \text{ in } H_1]|$

Experiment H_{int}

 \blacksquare If G is a PRG, then experiments H_0 and H_{int} are computationally indistinguishable

$$| \Pr[\mathcal{D} \text{ outputs } b'=1 \text{ in } H_0] - \Pr[\mathcal{D} \text{ outputs } b'=1 \text{ in } H_{int}] | \leq \operatorname{negl}_1(n)$$

lacktriangledown If G is a PRG, then experiments H_{int} and H_0 are computationally indistinguishable

$$|\Pr[\mathcal{D} \text{ outputs } b'=1 \text{ in } H_{int}] - \Pr[\mathcal{D} \text{ outputs } b'=1 \text{ in } H_1]| \leq \operatorname{negl}_2(n)$$

☐ It follows that

```
|\Pr[\mathcal{D} \text{ outputs } b'=1 \text{ in } H_0] - \Pr[\mathcal{D} \text{ outputs } b'=1 \text{ in } H_1]| \leq \operatorname{negl}_1(n) + \operatorname{negl}_2(n)
```


Experiment H_1

- \Box If G is a PRG, then experiments H_0 and H_{int} are computationally indistinguishable
 - $|\Pr[\mathcal{D} \text{ outputs } b'=1 \text{ in } H_0] \Pr[\mathcal{D} \text{ outputs } b'=1 \text{ in } H_{int}]| \leq \operatorname{negl}_1(n)$
- If G is a PRG, then experiments H_{int} and H_0 are computationally indistinguishable
 - $|\Pr[\mathcal{D} \text{ outputs } b'=1 \text{ in } H_{int}] \Pr[\mathcal{D} \text{ outputs } b'=1 \text{ in } H_1]| \leq \operatorname{negl}_2(n)$
- It follows that
 - $|\Pr[\mathcal{D} \text{ outputs } b'=1 \text{ in } H_0] \Pr[\mathcal{D} \text{ outputs } b'=1 \text{ in } H_1]| \leq \operatorname{negl}_1(n) + \operatorname{negl}_2(n) \leq \operatorname{negl}(n)$
- \square Algorithm $G_{\text{new}}: \{0, 1\}^{2\ell} \Rightarrow \{0, 1\}^{2L}$ is a PRG

Parallel Composition of PRGs: General Case

 \square If G is a PRG then G_{new} is also a PRG, provided k = Poly(n)

Experiment H_0

Experiment H....

Experiment $H_{i...t}$

Experiment H_1

Experiment H_{int}

PRG: An Example

- \square If G is a secure PRG then G' is also a secure PRG
 - An adversary who can significantly distinguish apart reverse(G(s)) from a random string, can significantly distinguish apart G(s) from a random string

- \square $\Pr[\mathcal{D}_G \text{ outputs } b' = 1 \mid b = 1] = \Pr[\mathcal{D}_G, \text{ outputs } B = 1 \mid Y \text{ is the output of } G']$
 - \clubsuit If y is the output of G then Y is the output of G'