10.15 Exercice

 $x \mapsto x^{-1}$ est un morphisme de $G \Leftrightarrow \forall (x,y) \in G^2, (xy)^{-1} = x^{-1}y^{-1}$

Or:

$$(xy)^{-1} = y^{-1}x^{-1}$$

 $\Leftrightarrow x^{-1}y^{-1} = y^{-1}x^{-1}$

Donc G est commutatif.

11.1 Exercice

$$AB$$
 est symétrique $\Leftrightarrow AB = {}^t (AB)$
 $\Leftrightarrow AB = {}^t B \times {}^t A$
 $\Leftrightarrow AB = BA$

11.4 Exercice

Analyse:

On suppose que:

$$X + tr(X)A = B$$

$$\operatorname{Donc} X = B - tr(X)A$$

$$\operatorname{Donc} tr(X) = tr(B) - tr(X)tr(A)$$

$$\operatorname{Donc} tr(X) = \begin{cases} \frac{tr(B)}{1 + tr(A)} & \text{si } tr(A) \neq -1 \\ tr(X) + tr(B) & \text{si } tr(A) = -1 \end{cases}$$

$$\operatorname{Donc} X = B - \frac{tr(B)}{1 + tr(A)}A$$

Synthèse :

$$\overline{\text{On pose } X} = B - \frac{tr(B)}{1 + tr(A)}A$$

11.15 Exercice

$$MX = 0 \Leftrightarrow \exists (x, y, z) \in \mathbb{R}^3, \begin{pmatrix} 1 & -2 & 1 \\ 0 & 1 & 3 \\ -1 & 4 & 7 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 0 \\ y + 3z = 0 \\ -x + 4y + 7z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 0 \\ y + 3z = 0 \\ 2y + 8z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 0 \\ 2y + 3z = 0 \\ 2z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x = 0 \\ y = 0 \\ z = 0 \end{cases}$$

12.1 Exercice

On remarque que $2^{10} \equiv 1 \pmod{11}$ et que $3^5 \equiv 1 \pmod{11}$. Donc $2^{123} \equiv 2^3 \equiv 8 \pmod{11}$ et $3^{121} \equiv 3^1 \equiv 3 \pmod{11}$. Donc $\boxed{2^{123} + 3^{121} \equiv 0 \pmod{11}}$.

12.2 Exercice

On raisonne par disjonction de cas :

1 0			
$n \pmod{6}$	$n+2 \pmod{6}$	$7n-5 \pmod{6}$	$n(n+2)(7n-5) \pmod{6}$
0	2	1	0
1	3	2	0
2	4	3	0
3	5	4	0
4	0	5	0
5	1	0	0

Donc $\forall n \in \mathbb{Z}, n(n+2)(7n-5) \equiv 0 \pmod{6}$

12.3 Exercice

1. On cherche une puissance cyclique de 3 (mod 25).

$$3 \equiv 3 \pmod{25}$$

 $3^2 \equiv 9 \pmod{25}$
 $3^3 \equiv 2 \pmod{25}$
 $3^4 \equiv 6 \pmod{25}$
 $3^5 \equiv 18 \pmod{25}$
 $3^6 \equiv 4 \pmod{25}$
 $3^7 \equiv 12 \pmod{25}$
 $3^8 \equiv 11 \pmod{25}$
 $3^9 \equiv 8 \pmod{25}$
 $3^{10} \equiv 24 \equiv -1 \pmod{25}$

Donc
$$3^{2189} \equiv 3^{2180} \times 3^9 \equiv (3^{10})^{218} \times 3^9 \equiv (-1)^{218} \times 8 \equiv 8 \pmod{25}$$

2. On cherche une puissance cyclique de 55 (mod 8).

$$55 \equiv 7 \pmod{8}$$
$$55^2 \equiv 1 \pmod{8}$$

Donc
$$55^{970321} \equiv 55^1 \equiv 7 \pmod{8}$$

3. On cherche une puissance cyclique de $1234^{4312} \pmod{7}$ et de $4321^{1234} \pmod{7}$.

$$1234^1 \equiv 2 \pmod{7}$$
 et $4321^1 \equiv 2 \pmod{7}$
 $1234^2 \equiv 4 \pmod{7}$ et $4321^2 \equiv 4 \pmod{7}$
 $1234^3 \equiv 1 \pmod{7}$ et $4321^3 \equiv 1 \pmod{7}$

Donc
$$1234^{4312} \equiv 1234^{3\times 1437+1} \equiv 2 \pmod{7}$$
 et $4321^{1234} \equiv 4321^{3\times 411+1} \equiv 2 \pmod{7}$.
Donc $\boxed{1234^{4321} + 4321^{1234} \equiv 4 \pmod{7}}$.

12.4 Exercice

1. Soit $n \in \mathbb{N}$.

On remarque que 4|100, donc $\forall k \geq 2 \in \mathbb{N}, 4|a_k$.

$$4|n \Leftrightarrow k| \sum_{k=0}^{r} a_k \times 10^k$$
$$\Leftrightarrow k| \sum_{k=2}^{r} (a_k \times 10^k) + a_1 \times 10 + a_0$$

Or comme on sait que $k | \sum_{k=2}^{r} (a_k \times 10^k)$, nécessairement, $k | (a_0 + a_1 \times 10)$.

12.8 Exercice

1. Soit $a \ge 2$ et $n \ge 2$.

$$a^{n} - 1 = (a - 1) \sum_{k=0}^{n-1} a^{k}$$

On a donc:

$$a^{n} - 1 \in \mathbb{P} \text{ donc } (a - 1) \sum_{k=0}^{n-1} a^{k} \in \mathbb{P}$$

$$\text{donc } a - 1 = 1 \text{ et } \sum_{k=0}^{n-1} = a^{n} - 1 \text{ ou } a - 1 = a^{n} - 1 \text{ et } \sum_{k=0}^{n-1} a^{k} = 1$$

$$\text{donc } a - 1 = 1 \text{ et } \sum_{k=0}^{n-1} a^{n} - 1$$

$$\text{donc } a = 2$$

2. On raisonne par l'absurde : supposons que $n \notin \mathbb{P}$. Alors n = ab avec a > 1 et b > 1. Donc on a :

$$2^{n} - 1 \in \mathbb{P} \Leftrightarrow 2^{ab} - 1 \in \mathbb{P}$$
$$\Leftrightarrow (2^{a} - 1)(\sum_{k=0}^{b-1} 2^{ak}) \in \mathbb{P}$$

Absurde.

Donc, nécessairement, n est premier.

12.10 Exercice

1. (a) Soit $k \in \mathbb{N}$ tel que $k \equiv 3 \pmod{4}$. k est donc impair.

On note $(p_i)_{i\in\mathbb{N}}$ les diviseurs premiers de k.

Nécessairement, pour tout $i \in \mathbb{N}$ on a $p_i \equiv 1 \pmod{4}$ ou $p_i \equiv 3 \pmod{4}$ (k est impair, donc p_i est impair).

On raisonne par l'absurde : supposons que $\forall i \in \mathbb{N}, p_i \equiv 1 \pmod{4}$.

Alors
$$\prod_{i=0}^{n} p_i^{\alpha_i} \equiv 1 \pmod{4} \Leftrightarrow k \equiv 1 \pmod{4}$$
.

Absurde.

Donc tout entier naturel congru à 3 modulo 4 possède au moins un diviseur premier congru à 3 modulo 4.

(b) On raisonne par l'absurde : on suppose que l'ensemble des nombres premiers congrus à 3 modulo 4 est fini. On note cet ensemble \mathbb{P}_3 .

$$\mathbb{P}_3 = \{p_1, p_2, \dots, p_n | n \in \mathbb{N}\}\$$

Soit $n = |\mathbb{P}_3|$. On remarque que pour tout $k \in [1, n]$,

$$4 \times \prod_{k=1}^{n} p_k - 1 \equiv 3 \pmod{4}$$

n'est pas divisible par p_k et n'appartient pas à \mathbb{P}_3 .

Or cette quantité possède forcément au moins un diviseur premier congru à 3 modulo 4 (cf. (a)). Absurde.

Donc il existe une infinité de nombres premiers congrus à 3 modulo 4.

2. De la même manière, on montre que tout entier congru à 5 modulo 6 possède au moins un diviseur congru à 5 modulo 6.

De la même manière, on raisonne par l'absurde en supposant que l'ensemle des nombres premiers congrus à 5 modulo 6 noté \mathbb{P}_5 est fini.

On remarque qu'il existe un facteur premier $p \equiv 5 \pmod{6} \notin \mathbb{P}_5$ qui divise $6 \prod_{k=1}^{|\mathbb{P}_5|} p_k - 1$.

Donc il existe une infinité de nombres premiers congrus à 5 modulos 6.

12.11 Exercice

1. Soit $p \in \mathbb{P}, y \in [1, p-1]$.

$$\exists! x \in [1, p-1], xy \equiv 1 \pmod{p}$$

12.12Exercice

Soit $(a, b, c) \in \mathbb{N}^3$.

On suppose que $b \wedge c = 1$.

Donc:

$$\begin{split} \forall p \in \mathbb{P}, v_p(a \land (bc)) &= \min(v_p(a), v_p(bc)) \\ &= \min(v_p(a), v_p(b) + v_p(c)) \\ &= \min(v_p(a), v_p(b), v_p(c)) \text{ (car } b \text{ et } c \text{ sont premiers entre eux)} \\ &= v_p(a \land b, a \land c) \end{split}$$

Donc $a \wedge (bc) = a \wedge b, a \wedge c$.

12.13 Exercice

Soit $(a,b) \in (\mathbb{Z}^*)^2$. On suppose que $a^2|b^2$.

On a:

$$\forall p \in \mathbb{P}, v_p(a^2) \le v_p(b^2) \text{ donc } \forall p \in \mathbb{P}, 2v_p(a) \le 2v_p(b)$$
$$\text{donc } \forall p \in \mathbb{P}, v_p(a) \le v_p(b)$$
$$\text{donc } a|b$$

12.14Exercice

Soit $(a, b) \in (\mathbb{N}^*)^2$.

$$(a \wedge b)^n = a^n \wedge b^n \Leftrightarrow \forall p \in \mathbb{P}, v_p((a \wedge b)^n) = v_p(a^n \wedge b^n)$$

$$\Leftrightarrow \forall p \in \mathbb{P}, n \times v_p(a \wedge b) = \min(v_p(a)^n, v_p(b)^n)$$

$$\Leftrightarrow \forall p \in \mathbb{P}, n \times \min(v_p(a), v_p(b)) = \min(n \times v_p(a), n \times v_p(b))$$

12.15 Exercice

1. Soit $(a,b) \in (\mathbb{N}^*)^2$ et $k \geq 2$ entier. On suppose que $a \wedge b = 1$ et que $\exists \lambda \in \mathbb{N}, ab = \lambda^k$. On note λ l'entier tel que $ab = \lambda^k$.

$$ab = \lambda^k \Leftrightarrow v_{\lambda}(ab) = v_{\lambda}(\lambda^k)$$
$$\Leftrightarrow v_{\lambda}(a) + v_{\lambda}(b) = k$$

Or si $\lambda \neq 1$:

$$v_{\lambda}(a \wedge b) = 0 = \min(v_{\lambda}(a), v_{\lambda}(b))$$

Donc, par disjonction de cas :

- si $\lambda = 1$, alors $ab = 1^k$ et on a bien $a = 1^k$ et $b = 1^k$.
- si $\lambda \neq 1$, alors :

$$v_{\lambda}(a) + v_{\lambda}(b) = k \Leftrightarrow \max(v_{\lambda}(a), v_{\lambda}(b)) = k$$
$$\Leftrightarrow \max(a, b) = \lambda^{k} \text{ et } \min(a, b) = 1^{k} \ (\forall d \neq \lambda \in \mathbb{P}, d \not| \lambda, v_{d}(ab) = 0)$$

2. Le résultat ne persiste pas pour $(a,b) \in \mathbb{Z}^2$: On choisit a et b négatifs tels que $a \wedge b = 1$ et $ab = \lambda^k$. Ainsi, il n'existe pas de $n \in \mathbb{N}$ tel que $a = n^k$ (car a est négatif).

12.16 Exercice

1. Première méthode

Soit $p \in \mathbb{P}$ et $n \in \mathbb{N}$.

On note $A_k = \{q \in \llbracket 1, n \rrbracket, p^q | k\}$ et $a_k = |A_k|$.

On note $V_l = \{k \in [1, n], v_p(k) = l\}$ et on note $m_l = |V_l|$.

Lien entre V_k, A_k :

$$V_k = A_k \backslash A_{k+1}$$

Par ailleurs, $A_{k+1} \subset A_k$.

$$m_k = a_k - a_{k+1}$$

On a:

$$\begin{aligned} v_p(n!) &= \sum_{k=1}^n v_p(k) \\ &= \sum_{l \geq 0} l \times m_l \text{ (définition de } V_l) \\ &= \sum_{l \geq 0} l(a_l - a_{l+1}) \\ &= \sum_{l \geq 0} la_l - \sum_{l \geq 0} la_{l+1} \\ &= \sum_{l \geq 1} la_l - \sum_{l \geq 1} (l-1)a_l \\ &= \sum_{l \geq 1} a_l \end{aligned}$$

On explicite le cardinal de A_l .

Déterminer le nombre de $k, 1 \le kp^l \le n$.

Soit:

$$\frac{1}{p^l} \le k \le \frac{n}{p^l}$$

Soit:

$$1 \le k \le \frac{n}{p^l}$$

Il y en a $\lfloor \frac{n}{p^l} \rfloor$.

Deuxième méthode

On peut montrer que:

$$\left| \frac{\left\lfloor \frac{a}{b} \right\rfloor}{c} \right| = \left\lfloor \frac{a}{bc} \right\rfloor$$

En particulier:

$$\left| \frac{\left\lfloor \frac{n}{p^k} \right\rfloor}{p} \right| = \left\lfloor \frac{n}{p^{k+1}} \right\rfloor$$

On raisonne par récurrence forte.

 $\underline{\rm Initialisation:}$

On vérifie que ça fonctionne pour n=0.

Hérédité:

$$v_{p}((n+1)!) = v_{p}(n+1) + v_{p}(n!)$$

$$= v_{p}(n+1) + \sum_{k=1}^{+\infty} \left\lfloor \frac{n}{p^{k}} \right\rfloor$$

$$= \sum_{1 \leq i \leq n+1} v_{p}(i)$$

$$= \sum_{1 \leq i \leq n+1, p \mid i} v_{p}(i) \text{ (si } p \not\mid i, \text{ alors } v_{p}(i) = 0)$$

$$= \sum_{1 \leq k \leq n+1} v_{p}(p \times k)$$

$$= \sum_{1 \leq k \leq \frac{n+1}{p}} v_{p}(p \times k)$$

$$= \sum_{1 \leq k \leq \frac{n+1}{p}} (v_{p}(k) + 1)$$

$$= \left\lfloor \frac{n+1}{p} \right\rfloor + \sum_{1 \leq k \leq \frac{n+1}{p}} v_{p}(k)$$

$$= \left\lfloor \frac{n+1}{p} \right\rfloor + v_{p} \left(\left\lfloor \frac{n+1}{p} \right\rfloor \right)$$

$$= \left\lfloor \frac{n+1}{p} \right\rfloor + \sum_{k \geq 1} \left\lfloor \frac{\left\lfloor \frac{n}{p} \right\rfloor}{p^{k}} \right\rfloor$$

$$= \left\lfloor \frac{n+1}{p} \right\rfloor + \sum_{k \geq 1} \left\lfloor \frac{n+1}{p^{k+1}} \right\rfloor$$

$$= \sum_{k \geq 1} \left\lfloor \frac{n+1}{p^{k}} \right\rfloor$$

2.

$$v_{2}(100!) = \sum_{j \ge 1} \left\lfloor \frac{100}{2^{k}} \right\rfloor$$

$$= \left\lfloor \frac{100}{2} \right\rfloor + \left\lfloor \frac{100}{4} \right\rfloor + \left\lfloor \frac{100}{8} \right\rfloor + \left\lfloor \frac{100}{16} \right\rfloor + \left\lfloor \frac{100}{32} \right\rfloor + \left\lfloor \frac{100}{64} \right\rfloor$$

$$= 50 + 25 + 12 + 6 + 3 + 1$$

$$= 97$$

$$v_{5}(100)! = \left\lfloor \frac{100}{5} \right\rfloor + \left\lfloor \frac{100}{25} \right\rfloor$$

$$= 20 + 4$$

$$= 24$$

100! s'achève donc par $\min(v_2(100!), v_5(100!)) = 24$.

13.1 Exercice

Soit $P = \sum_{k=0}^{+\infty} a_k X^k$ un polynôme de $\mathbb{K}[X]$.

On suppose que P^{-1} existe. Alors :

$$PP^{-1}=1\Leftrightarrow \deg(PP^{-1})=0$$
 $\Leftrightarrow \deg P+\deg P^{-1}=0$ ($\mathbb K$ est un corps, donc est intègre) $\Leftrightarrow \deg P=0$

Ainsi, Comme \mathbb{K} est un corps, on a :

$$\forall P \neq 0 \in \mathbb{K}[X], \deg P = 0, P \in U(\mathbb{K}[X])$$

13.2 Exercice

$$P_n = (1 + X + X^2 + \dots + X^n)^2$$

$$= \left(\sum_{k=0}^n X^k\right)^2$$

$$= \left(\frac{1 - X^{n+1}}{1 - X}\right)^2$$

$$= \frac{X^{2(n+1)} - 2X^{n+1} + 1}{X^2 - 2X + 1}$$

$$Q_n = (1+X) \times (1+X^2) \times (1+X^4) \times \dots \times (1+X^{2^n})$$
$$= \prod_{k=0}^n (1+X^{2^k})$$

14.6 Exercice

1. Soit $n \in \mathbb{N}$. Lorsque a = 1, on a la relation $u_{n+1} = u_n + b$. Ainsi, (u_n) est une suite arithmétique d'expression :

$$u_n = u_0 + nb$$

2. (a) Pour $n \in \mathbb{N}$:

$$v_n = u_n + \lambda$$
donc $v_{n+1} = u_{n+1} + \lambda$

$$= au_n + b + \lambda$$

On remarque que pour $\lambda = \frac{b}{a-1}$ avec $a \neq 1$, on a :

$$v_{n+1} = au_n + b + \frac{b}{a-1}$$

$$= \frac{(a-1)(a)u_n + (a-1)b + b}{a-1}$$

$$= a \times \frac{(a-1)u_n + b}{a-1}$$

$$= a\left(u_n + \frac{b}{a-1}\right)$$

$$= av_n$$

Donc pour $\lambda = \frac{b}{a-1}$, (v_n) est géométrique.

(b)

$$v_n = u_n + \frac{b}{a-1}$$

$$\operatorname{donc} u_n = v_n - \frac{b}{a-1}$$

$$= \left(u_0 + \frac{b}{a-1}\right) \times a^n - \frac{b}{a-1}$$

$$= u_0 a^n + (a^n - 1) \frac{b}{a-1}$$

14.2 Exercice

1. Soit $k \geq 2 \in \mathbb{N}$.

$$\frac{1}{k^2} \le \frac{1}{k-1} - \frac{1}{k} \Leftrightarrow \frac{1}{k^2} \le \frac{1}{k(k-1)}$$

$$\Leftrightarrow \frac{1}{k} \le \frac{1}{k-1}$$

$$\Leftrightarrow k \ge k-1 \ (x \mapsto \frac{1}{x} \text{ est décroissante})$$

2. On suppose que S_n converge. Ainsi, pour $n \in \mathbb{N}$, on a d'une part :

$$\frac{1}{k^2} \le \frac{1}{k-1} - \frac{1}{k} \Leftrightarrow S_n \le 1 + \sum_{k=2}^n \left(\frac{1}{k-1} - \frac{1}{k} \right)$$

$$\Leftrightarrow S_n \le 1 + 1 - \frac{1}{n} \text{ (t\'elescopage)}$$

$$\Leftrightarrow \lim_{n \to +\infty} S_n \le \lim_{n \to +\infty} 2 + \frac{1}{n} \text{ (Hypoth\`ese)}$$

$$\Leftrightarrow \lim_{n \to +\infty} S_n \le 2$$

D'autre part, la suite est strictement croissante, donc d'après le théorème de la limite monotone, (u_n) converge.