Teoria dei Modelli - Secondo foglio di esercizi

Esercizio 1

Fissiamo un insieme di formule Δ e sia $\{\forall\}\Delta$ la chiusura di Δ per quantificazione universale. Sia $h:M\to N$ un Δ -morfismo. Si dimostri che se è suriettivo, allora è anche un $\{\forall\}\Delta$ -morfismo.

Soluzione Osserviamo che per ipotesi vale $\forall c \in N \exists b \in M(c = h(b))$. Allora, per ogni formula $\varphi(x, y)$ in Δ e ogni tupla $a \in (\text{dom } h)^{|x|}$ abbiamo:

$$M \vDash \forall y \varphi(a, y) \Rightarrow M \vDash \varphi(a, b)$$
 per ogni tupla $b \in M^{|y|}$
 $\Rightarrow M \vDash \varphi(a, b)$ per ogni tupla $b \in (\operatorname{dom} h)^{|y|}$
 $\Rightarrow M \vDash \varphi(ha, hb)$ per ogni tupla $b \in (\operatorname{dom} h)^{|y|}$
 $\Rightarrow M \vDash \varphi(ha, c)$ per ogni tupla $c \in N^{|y|}$
 $\Rightarrow N \vDash \forall y \varphi(ha, y)$

Esercizio 2

Si dimostri che per ogni tipo $p \subseteq \Delta$ le seguenti affermazioni sono equivalenti

- 1. p è principale;
- 2. $\varphi \vdash p$ dove φ è congiunzione di formule in p;
- 3. $\varphi \vdash p \vdash \varphi$ per qualche formula φ .

Soluzione Sia q il filtro generato da p in $\mathbb{P}(\Delta)$.

- 1. \Rightarrow 2. Poiché p è principale, si ha che $q = \{\psi \in \mathbb{P}(\Delta) : \varphi' \vdash \psi\}$ per qualche $\varphi' \in \mathbb{P}(\Delta)$. Per il lemma 5.11, $q = \{\psi \in \mathbb{P}(\Delta) : p \vdash \psi\}$. Ovviamente $p \vdash p$, quindi $\varphi' \vdash p$. Inoltre $\varphi' \vdash \varphi'$, quindi $p \vdash \varphi'$. Per compattezza, esiste $p' \subseteq p$ finito tale che $p' \vdash \varphi'$. Sia $\varphi := \wedge p'$. Si ha che $\varphi \vdash \varphi' \vdash p$.
- $2. \Rightarrow 3.$ Ovvio.
- 3. \Rightarrow 1. Poiché $p \vdash \varphi$, per compattezza esiste $p' \subseteq p$ finito tale che $p' \vdash \varphi$. Sia $\psi := \land p'$. Si ha che $p \vdash \psi \vdash \varphi \vdash p$, ovvero $q = \uparrow \psi$.

Esercizio 3

Usando il lemma 5.16 si dia una dimostrazione concisa del corollario 5.15.

Soluzione L'implicazione $1. \Rightarrow 2$. è ovvia per il lemma 5.11. Per l'implicazione $2. \Rightarrow 1$., vogliamo mostrare che $A := p \cup \{ \neg \varphi : \varphi \in \Delta \text{ e } p \not\vdash \varphi \}$ è consistente.

Dimostriamo il contrappositivo. Supponiamo allora $A \vdash \psi$ e $\forall \vdash \neg \psi$. Allora per compattezza esiste $B \subseteq A$ finito tale che $B \vdash \psi$ e $B \vdash \neg \psi$.

Se p è inconsistente, allora la tesi è banalmente vera. Supponiamo allora p consistente. Allora $B \cap \{ \neg \varphi : \varphi \in \Delta \text{ e } p \not\vdash \varphi \} = \{ \neg \varphi_1, ..., \neg \varphi_n \}$ per qualche n > 0. Quindi $p \cup \{ \neg \varphi_1, ..., \neg \varphi_n \} \vdash \bot$. Questo significa $p \vdash \neg (\neg \varphi_1 \land ... \land \neg \varphi_n) \vdash \varphi_1 \lor ... \lor \varphi_n$. Ma ogni φ_i sta in Δ ed è tale che $p \not\vdash \varphi_i$, e per il lemma 5.16 abbiamo finito.

 $^{^1 {\}rm In}$ realtà gli insiemi per ψ e $\neg \psi$ sarebbero diversi, ma basta prendere l'unione.