

TMA4190 Introduction to Topology Spring 2018

Norwegian University of Science and Technology Deptartment of Mathematical Sciences

Exercise set 11

 $\boxed{1}$ Show that there exists a complex number z such that

$$z^7 + \cos(|z|^2)(1 + 93z^4) = 0.$$

- a) Assume dim $X \geq 1$: Show hat if $f: X \to Y$ is homotopic to a constant map, then $I_2(f, Z) = 0$ for all complementary dimensional closed Z in Y. (Hint: Show that if dim $Z < \dim Y$, then f is homotopic to a constant $X \to \{y\}$, where $y \notin Z$.
 - **b)** For dim X = 0, show that this assertion is wrong. (If X is one point, for which Z will $I_2(f, Z) \neq 0$?)
 - c) Show that S^1 is not simply-connected. (Recall that we call a manifold X simply-connected if it is connected and if every map of the circle S^1 into X is homotopic to a constant map.)

(Hint: Consider the identity map.)

- a) Show that intersection theory is trivial in contractible boundaryless manifolds: if Y is boundaryless and contractible (i.e. its identity map is homotopic to a constant map) and $\dim Y > 0$, then $I_2(f, Z) = 0$ for every $f: X \to Y$, X compact and Z closed, $\dim X + \dim Z = \dim Y$. In particular, intersection theory is trivial in Euclidean space.
 - **b)** Prove that no compact boundaryless manifold other than the one-point space is contractible.

(Hint: Apply the previous point to the identity map.)

a) Let $f: X \to S^k$ be a smooth map with X compact and $0 < \dim X < k$. Show that, for all closed submanifolds $Z \subset S^k$ of dimension complementary to X, $I_2(f,Z) = 0$.

(Hint: Use Sard's Theorem to show that there exists a $p \notin f(X) \cap Z$. Now use stereographic projection and the previous exercises.)

- b) Show that S^2 and the torus $T = S^1 \times S^1$ are not diffeomorphic.
- a) Two compact manifolds X and Z of the same dimension in Y are called **cobordant** in Y if there exists a compact manifold with boundary $W \subset Y \times [0,1]$

such that

$$\partial W = X \times \{0\} \cup Z \times \{1\}.$$

The manifold W is also called a **cobordism** between X and Z.

Show that if we can deform X into Z, i.e. if there is a smooth homotopy from the embedding $i_0: X \hookrightarrow Y$ of X in Y to an embedding $i_1: X \hookrightarrow Y$ with $i_1(X) = Z$ such that each i_t is an embedding, then X and Z are cobordant.

Note that the standard image of a cobordism, a pair of pants, illustrates that the converse is false: X and Z are cobordant, but we cannot deform X into Z, since X has one connected component whereas Z has two.

b) Show that if X and Z are cobordant in Y, then for every compact submanifold C in Y with dimension complementary to X and Z, i.e. $\dim X + \dim C = \dim Z + \dim C = \dim Y$ (where $\dim X = \dim Z$ because they are cobordant), we have

$$I_2(C, X) = I_2(C, Z).$$

(Hint: Let f be the restriction to W of the projection map $Y \times [0,1] \to Y$, and use the Boundary Theorem.)

Let p_1, \ldots, p_n be real polynomials in n+1 variables. Assume each p_i is homogeneous of odd order, i.e. there is an odd number m_i such that $p_i(\lambda x) = \lambda^{m_i} p_i(x)$ for all $\lambda \in \mathbb{R}$. We consider each p_i also as a smooth function $\mathbb{R}^{n+1} \to \mathbb{R}$ by sending x to $p_i(x)$.

Show that there is a line through the origin in \mathbb{R}^{n+1} on which all the p_i 's simultaneously vanish.

(Hint: Read Lecture 21 carefully.)