Docs » 損失関数

損失関数の利用方法

損失関数(損失関数や最適スコア関数)はモデルをコンパイルする際に必要なパラメータの 1つです:

```
model.compile(loss='mean_squared_error', optimizer='sgd')
```

```
from keras import losses
```

model.compile(loss=losses.mean_squared_error, optimizer='sgd')

既存の損失関数の名前を引数に与えるか、各データ点に対してスカラを返し、以下の2つの引数を取るTensorFlow/Theanoのシンボリック関数を与えることができます:

- y_true: 正解ラベル. TensorFlow/Theano テンソル
- y_pred: 予測値. y_trueと同じshapeのTensorFlow/Theano テンソル

実際に最適化される目的関数値は全データ点における出力の平均です.

このような関数の実装例に関しては、losses sourceを参照してください.

利用可能な損失関数

mean_squared_error

```
mean_squared_error(y_true, y_pred)
```

mean_absolute_error

```
mean_absolute_error(y_true, y_pred)
```

$mean_absolute_percentage_error$

```
mean_absolute_percentage_error(y_true, y_pred)
```

mean_squared_logarithmic_error

```
mean squared logarithmic error(y true, y pred)
```

https://keras.io/ja/losses/ 1/3

squared_hinge(y_true, y_pred)

hinge

hinge(y_true, y_pred)

categorical_hinge

categorical_hinge(y_true, y_pred)

logcosh

logcosh(y_true, y_pred)

予測誤差のハイパボリックコサインの対数.

 $\log(\cosh(x))$ は x が小さければ (x ** 2) / 2 とほぼ等しくなり, x が大きければ $abs(x) - \log(2)$ とほぼ等しくなります. つまり' $\log\cosh$ 'は平均二乗誤差とほぼ同じように働きます. しかし, 時折ある乱雑な誤った予測にそれほど強く影響されません.

categorical_crossentropy

categorical_crossentropy(y_true, y_pred)

sparse_categorical_crossentropy

sparse_categorical_crossentropy(y_true, y_pred)

binary_crossentropy

binary_crossentropy(y_true, y_pred)

$kullback_leibler_divergence$

kullback_leibler_divergence(y_true, y_pred)

poisson

poisson(y_true, y_pred)

cosine_proximity

cosine_proximity(y_true, y_pred)

NOTE: categorical_crossentropy を使う場合,目的値はカテゴリカルにしなければいけません. (例.もし10クラスなら,サンプルに対する目的値は,サンプルのクラスに対応する次元の値が1,それ以外が0の10次元のベクトルです). 整数の目的値からカテゴリカルな目的値に変換するためには,Keras utilityの to_categorical を使えます.

```
from keras.utils.np_utils import to_categorical
categorical_labels = to_categorical(int_labels, num_classes=None)
```