CHAPTER 3 DETERMINANTS

- 3.1 The Determinant of a Matrix
- 3.2 Determinant and Elementary Operations
- 3.3 Properties of Determinants
- 3.4 Application of Determinants

3.3 Properties of Determinants

■ Thm 3.5: (Determinant of a matrix product)

$$det(AB) = det(A) det(B)$$

Notes:

(1)
$$\det(EA) = \det(E) \det(A)$$

(2)
$$\det(A+B) \neq \det(A) + \det(B)$$

(3)

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} + b_{21} & a_{22} + b_{22} & a_{23} + b_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ b_{21} & b_{22} & b_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$|AB| = |E_k \cdots E_2 E_1 B|$$

$$= |E_k| \cdots |E_1| |B|$$

$$= |E_k \cdots E_1| |B|$$

$$= |A| |B|$$

• Ex 1: (The determinant of a matrix product)

$$A = \begin{bmatrix} 1 & -2 & 2 \\ 0 & 3 & 2 \\ 1 & 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 & 2 \\ 0 & 3 & 2 \\ 1 & 0 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 2 & 0 & 1 \\ 0 & -1 & -2 \\ 3 & 1 & -2 \end{bmatrix}$$

Find |A|, |B|, and |AB|

Sol:

$$|A| = \begin{vmatrix} 1 & -2 & 2 \\ 0 & 3 & 2 \\ 1 & 0 & 1 \end{vmatrix} = -7 \qquad |B| = \begin{vmatrix} 2 & 0 & 1 \\ 0 & -1 & -2 \\ 3 & 1 & -2 \end{vmatrix} = 11$$

$$AB = \begin{bmatrix} 1 & -2 & 2 \\ 0 & 3 & 2 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 1 \\ 0 & -1 & -2 \\ 3 & 1 & -2 \end{bmatrix} = \begin{bmatrix} 8 & 4 & 1 \\ 6 & -1 & -10 \\ 5 & 1 & -1 \end{bmatrix}$$

$$\Rightarrow |AB| = \begin{vmatrix} 8 & 4 & 1 \\ 6 & -1 & -10 \\ 5 & 1 & -1 \end{vmatrix} = -77$$

Check:

$$|AB| = |A| |B|$$

■ Thm 3.6: (Determinant of a scalar multiple of a matrix)

If A is an $n \times n$ matrix and c is a scalar, then

$$\det(cA) = c^n \det(A)$$

Proof: From Property 3 of Theorem 3.3.

• Ex 2:

$$A = \begin{bmatrix} 10 & -20 & 40 \\ 30 & 0 & 50 \\ -20 & -30 & 10 \end{bmatrix}, \quad \begin{vmatrix} 1 & -2 & 4 \\ 3 & 0 & 5 \\ -2 & -3 & 1 \end{vmatrix} = 5$$

Find |A|.

Sol:

$$A = 10 \begin{vmatrix} 1 & -2 & 4 \\ 3 & 0 & 5 \\ -2 & -3 & 1 \end{vmatrix} \Rightarrow |A| = 10^{3} \begin{vmatrix} 1 & -2 & 4 \\ 3 & 0 & 5 \\ -2 & -3 & 1 \end{vmatrix} = (1000)(5) = 5000$$

■ Thm 3.7: (Determinant of an invertible matrix)

A square matrix A is invertible (nonsingular) if and only if $det(A) \neq 0$

■ Ex 3: (Classifying square matrices as singular or nonsingular)

$$A = \begin{bmatrix} 0 & 2 & -1 \\ 3 & -2 & 1 \\ 3 & 2 & -1 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 2 & -1 \\ 3 & -2 & 1 \\ 3 & 2 & 1 \end{bmatrix}$$

Sol:

$$|A| = 0$$
 \Rightarrow A has no inverse (it is singular).

$$|B| = -12 \neq 0$$
 \implies B has an inverse (it is nonsingular).

Proof of Theorem 3.7

- Assume A is invertible. We have $AA^{-1} = I$ and $|A||A^{-1}| = 1$. Neither determinant on the left is zero. Thus, $|A| \neq 0$.
- Assume $|A| \neq 0$.
- Using Gaussian-Jordan elimination, find a matrix B, in reduced row-echelon form, that is row-equivalent to A.
- B must be the identity matrix or it must have at least one row that consists entirely of zeros.
- If B has a row of all zeros, |B| = 0, which implies that |A| = 0.
- Since $|A| \neq 0$ is assumed, B = I. A is row-equivalent to the identity matrix, and by Theorem 2.15, A is invertible.

■ Thm 3.8: (Determinant of an inverse matrix)

If A is invertible then
$$det(A^{-1}) = \frac{1}{det(A)}$$
.

■ Thm 3.9: (Determinant of a transpose)

If A is a square matrix, then $det(A^T) = det(A)$.

$$A = \begin{bmatrix} 1 & 0 & 3 \\ 0 & -1 & 2 \\ 2 & 1 & 0 \end{bmatrix}$$

Proof of Theorem 3.8, 3.9

- A is invertible. $|A||A^{-1}| = 1$
- Calculating |A| by expanding along the first row is equivalent to calculating $|A^T|$ by expanding along the first column.
- Because the determinant of a matrix can be found by expanding any row or column.
- Thus, $|A| = |A^T|$.

Equivalent conditions for a nonsingular matrix:

If A is an $n \times n$ matrix, then the following statements are equivalent.

- (1) A is invertible.
- (2) $A\mathbf{x} = \mathbf{b}$ has a unique solution for every $n \times 1$ matrix \mathbf{b} .
- (3) Ax = 0 has only the trivial solution.
- (4) A is row-equivalent to I_n
- (5) A can be written as the product of elementary matrices.
- (6) $\det(A) \neq 0$

• Ex 5: Which of the following system has a unique solution?

(a)
$$2x_2 - x_3 = -1$$

 $3x_1 - 2x_2 + x_3 = 4$
 $3x_1 + 2x_2 - x_3 = -4$
(b) $2x_2 - x_3 = -1$
 $3x_1 - 2x_2 + x_3 = 4$
 $3x_1 + 2x_2 + x_3 = -4$

Sol:

- (a) $A\mathbf{x} = \mathbf{b}$
 - |A| = 0
 - :. This system does not have a unique solution.
- (b) $B\mathbf{x} = \mathbf{b}$
 - $\therefore |B| = -12 \neq 0$
 - :. This system has a unique solution.

Key Learning in Section 3.3

- Determine whether two matrices are equal.
- Add and subtract matrices and multiply a matrix by a scalar.
- Multiply two matrices.
- Use matrices to solve a system of linear equations.
- Partition a matrix and write a linear combination of column vectors.

Keywords in Section 3.3

- determinant: 行列式
- matrix multiplication: 矩陣相乘
- scalar multiplication: 純量積
- invertible matrix: 可逆矩陣
- inverse matrix: 反矩陣
- nonsingular matrix: 非奇異矩陣
- transpose matrix: 轉置矩陣

3.4 Applications of Determinants

Matrix of cofactors of A:

$$\begin{bmatrix} C_{1i} & C_{12} & \cdots & C_{1n} \\ C_{21} & C_{22} & \cdots & C_{2n} \\ \vdots & \vdots & & \vdots \\ C_{n1} & C_{n2} & \cdots & C_{nn} \end{bmatrix}$$

$$C_{ij} = (-1)^{i+j} M_{ij}$$

$$C_{ij} = (-1)^{l+j} M_{ij}$$

伴隨矩陣

• Adjoint matrix of A:

$$adj(A) = \begin{bmatrix} C_{11} & C_{21} & \cdots & C_{n1} \\ C_{12} & C_{22} & \cdots & C_{n2} \\ \vdots & \vdots & & \vdots \\ C_{1n} & C_{2n} & \cdots & C_{nn} \end{bmatrix}$$

■ Thm 3.10: (The inverse of a matrix given by its adjoint)

If A is an $n \times n$ invertible matrix, then

$$A^{-1} = \frac{1}{\det(A)} adj(A)$$

• Ex:

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$\Rightarrow \det(A) = ad - bc \qquad \Rightarrow A^{-1} = \frac{1}{\det(A)} adj(A)$$

$$adj(A) = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \qquad = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Proof of Theorem 3.10

Consider the product

$$A[adj(A)] = \begin{bmatrix} a_{i1} & \cdots & a_{in} \end{bmatrix} \begin{bmatrix} C_{j1} \\ \vdots \\ C_{jn} \end{bmatrix}$$

• The entry in the ith row and jth column of this product is

$$a_{i1}C_{j1} + a_{i2}C_{j2} + \dots + a_{in}C_{jn}$$

• If i = j, this sum is simply the determinant of A; otherwise, the sum is zero.

$$A[adj(A)] = \begin{bmatrix} \det(A) & 0 \\ & \ddots & \\ 0 & \det(A) \end{bmatrix} = \det(A) I$$

$$\frac{1}{\det(A)} A[adj(A)] = I$$

$$A^{-1} = \frac{1}{\det(A)} adj(A)$$

• Ex 1 & Ex 2:

$$A = \begin{bmatrix} -1 & 3 & 2 \\ 0 & -2 & 1 \\ 1 & 0 & -2 \end{bmatrix}$$
 (a) Find the adjoint of A.
(b) Use the adjoint of A to find A^{-1}

Sol:
$$C_{ij} = (-1)^{i+j} M_{ij}$$

$$\Rightarrow C_{11} = + \begin{vmatrix} -2 & 1 \\ 0 & -2 \end{vmatrix} = 4, \ C_{12} = - \begin{vmatrix} 0 & 1 \\ 1 & -2 \end{vmatrix} = 1, \ C_{13} = + \begin{vmatrix} 0 & -2 \\ 1 & 0 \end{vmatrix} = 2$$

$$C_{21} = -\begin{vmatrix} 3 & 2 \\ 0 & 2 \end{vmatrix} = 6,$$
 $C_{22} = +\begin{vmatrix} -1 & 2 \\ 1 & 2 \end{vmatrix} = 0,$ $C_{23} = -\begin{vmatrix} -1 & 3 \\ 1 & 0 \end{vmatrix} = 3$

$$C_{31} = + \begin{vmatrix} 3 & 2 \\ -2 & 1 \end{vmatrix} = 7, \quad C_{32} = - \begin{vmatrix} -1 & 2 \\ 0 & 1 \end{vmatrix} = 1, \quad C_{33} = + \begin{vmatrix} -1 & 3 \\ 0 & -2 \end{vmatrix} = 2$$

 \Rightarrow cofactor matrix of $A \Rightarrow$ adjoint matrix of A

$$\begin{bmatrix} C_{ij} \end{bmatrix} = \begin{bmatrix} 4 & 1 & 2 \\ 6 & 0 & 3 \\ 7 & 1 & 2 \end{bmatrix} \qquad adj(A) = \begin{bmatrix} C_{ij} \end{bmatrix}^T = \begin{bmatrix} 4 & 6 & 7 \\ 1 & 0 & 1 \\ 2 & 3 & 2 \end{bmatrix}$$

 \therefore det(A)=3

 \Rightarrow inverse matrix of A

$$A^{-1} = \frac{1}{\det(A)} adj(A)$$

$$= \frac{1}{3} \begin{bmatrix} 4 & 6 & 7 \\ 1 & 0 & 1 \\ 2 & 3 & 2 \end{bmatrix} = \begin{bmatrix} \frac{4}{3} & 2 & \frac{7}{3} \\ \frac{1}{3} & 0 & \frac{1}{3} \\ \frac{2}{3} & 1 & \frac{2}{3} \end{bmatrix}$$

• Check: $AA^{-1} = I$

• Thm 3.11: (Cramer's Rule)

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$$

$$A\mathbf{x} = \mathbf{b}$$
 $A = [a_{ij}]_{n \times n} = [A^{(1)}, A^{(2)}, \dots, A^{(n)}]$

$$a_{n1}x_{1} + a_{n2}x_{2} + \dots + a_{nn}x_{n} = b_{n}$$

$$A\mathbf{x} = \mathbf{b} \qquad A = \begin{bmatrix} a_{ij} \end{bmatrix}_{n \times n} = \begin{bmatrix} A^{(1)}, A^{(2)}, \dots, A^{(n)} \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{n} \end{bmatrix}$$

$$\det(A) = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} \neq 0$$
(this system has a unique solution)

$$\mathbf{d} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

$$A_{j} = \begin{bmatrix} A^{(1)}, A^{(2)}, \cdots, A^{(j-1)}, b, A^{(j+1)}, \cdots, A^{(n)} \end{bmatrix}$$

$$= \begin{bmatrix} a_{11} & \cdots & a_{1(j-1)} & b_{1} & a_{1(j+1)} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2(j-1)} & b_{2} & a_{2(j+1)} & \cdots & a_{2n} \\ \vdots & & \ddots & & \vdots \\ a_{n1} & \cdots & a_{n(j-1)} & b_{n} & a_{n(j+1)} & \cdots & a_{nn} \end{bmatrix}$$

$$\text{(i.e. } \det(A_{j}) = b_{1}C_{1j} + b_{2}C_{2j} + \cdots + b_{n}C_{nj} \text{)}$$

$$\Rightarrow x_{j} = \frac{\det(A_{j})}{\det(A)}, \qquad j = 1, 2, \cdots, n$$

• Pf:

$$A \mathbf{x} = \mathbf{b}, \quad \det(A) \neq 0$$

$$\Rightarrow \mathbf{x} = A^{-1}\mathbf{b} = \frac{1}{\det(A)} adj(A)\mathbf{b}$$

$$= \frac{1}{\det(A)} \begin{bmatrix} C_{11} & C_{21} & \cdots & C_{n1} \\ C_{12} & C_{22} & \cdots & C_{n2} \\ \vdots & \vdots & & \vdots \\ C_{1n} & C_{2n} & \cdots & C_{nn} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

$$= \frac{1}{\det(A)} \begin{bmatrix} b_1 C_{11} + b_2 C_{21} + \cdots + b_n C_{n1} \\ b_1 C_{12} + b_2 C_{22} + \cdots + b_n C_{n2} \\ \vdots & \vdots \\ b_1 C_{1n} + b_2 C_{2n} + \cdots + b_n C_{nn} \end{bmatrix}$$

$$\Rightarrow x_{j} = \frac{1}{\det(A)} (b_{1}C_{1j} + b_{2}C_{2j} + \dots + b_{n}C_{nj})$$
$$= \frac{\det(A_{j})}{\det(A)} \qquad j = 1, 2, \dots, n$$

• Ex 4: Use Cramer's rule to solve the system of linear equations.

Sol:

$$\det(A) = \begin{vmatrix} -1 & 2 & -3 \\ 2 & 0 & 1 \\ 3 & -4 & 4 \end{vmatrix} = 10 \quad \det(A_1) = \begin{vmatrix} 1 & 2 & -3 \\ 0 & 0 & 1 \\ 2 & -4 & 4 \end{vmatrix} = 8$$

$$\begin{vmatrix} -1 & 1 & -3 \\ 0 & 1 & 2 \end{vmatrix} = 10$$

$$\begin{vmatrix} -1 & 1 & -3 \\ 0 & 1 & 2 \end{vmatrix} = 10$$

$$\det(A_2) = \begin{vmatrix} -1 & 1 & -3 \\ 2 & 0 & 1 \\ 3 & 2 & 4 \end{vmatrix} = -15, \quad \det(A_3) = \begin{vmatrix} -1 & 2 & 1 \\ 2 & 0 & 0 \\ 3 & -4 & 2 \end{vmatrix} = -16$$

$$x = \frac{\det(A_1)}{\det(A)} = \frac{4}{5}$$
 $y = \frac{\det(A_2)}{\det(A)} = \frac{-3}{2}$ $z = \frac{\det(A_3)}{\det(A)} = \frac{-8}{5}$

Keywords in Section 3.4

- matrix of cofactors: 餘因子矩陣
- adjoint matrix:伴隨矩陣
- Cramer's rule: Cramer 法則

3.1 Linear Algebra Applied

Volume of a Solid

If x, y and z are continuous functions of u, v, and w with continuous first partial derivatives, then the **Jacobians** J(u, v) and J(u, v, w) are defined as the determinants

determinants
$$J(u,v) = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} \text{ and } J(u,v,w) = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix}.$$

And one practical use of Jacobians is in finding the volume of a solid region. In Section 3.4, you will study a formula, which also uses determinants, for finding the volume of a tetrahedron. In the Chapter 3 Review, you are asked to find the Jacobian of a given set of functions. (See Review Exercises 49–52.)

3.2 Linear Algebra Applied

Sudoku

In the number-placement puzzle Sudoku, the object is to fill out a partially completed 9×9 grid of boxes with numbers from 1 to 9 so that each column, row, and 3×3 sub-grid contains each of these numbers without repetition. For a completed Sudoku grid to be valid, no two rows (or columns) will have the numbers in the same order. If this should happen in a row or column, then the determinant of the matrix formed by the numbers in the grid will be zero. This is a direct result of condition 2 of Theorem 3.4.

3.3 Linear Algebra Applied

Engineering and Control

Systems of linear differential equations often arise in engineering and control theory. For a function f(t) that is defined for all positive values of t the **Laplace** transform of f(t) is given by

$$F(s) = \int_0^\infty e^{-st} f(t) dt.$$

Laplace transforms and Cramer's Rule, which uses determinants to solve a system of linear equations, can often be used to solve a system of differential equations. You will study Cramer's Rule in the next section.

3.4 Linear Algebra Applied

Planetary Orbits

According to Kepler's First Law of Planetary Motion, the orbits of the planets are ellipses, with the sun at one focus of the ellipse. The general equation of a conic section (such as an ellipse) is

$$ax^2 + bxy + cy^2 + dx + ey + f = 0.$$

To determine the equation of the orbit of a planet, an astronomer can find the coordinates of the planet along its orbit at five different points (x_i, y_i) where i = 1, 2, 3, 4, and 5, and then use the determinant

$$\begin{vmatrix} x^2 & xy & y^2 & x & y & 1 \\ x_1^2 & x_1y_1 & y_1^2 & x_1 & y_1 & 1 \\ x_2^2 & x_2y_2 & y_2^2 & x_2 & y_2 & 1 \\ x_3^2 & x_3y_3 & y_3^2 & x_3 & y_3 & 1 \\ x_4^2 & x_4y_4 & y_4^2 & x_4 & y_4 & 1 \\ x_5^2 & x_5y_5 & y_5^2 & x_5 & y_5 & 1 \end{vmatrix}$$

Review exercises

26. Find $|A^T|$, $|A^3|$, $|A^TA|$, and |5A|.

$$A = \begin{bmatrix} 3 & 0 & 1 \\ -1 & 0 & 0 \\ 2 & 1 & 2 \end{bmatrix}$$

Review exercises

- 34. Solve the system of linear equations by each of the following methods.
- (a) Gaussian elimination with back-substitution
- (b) Gauss-Jordan elimination
- (c) Cramer's Rule

$$2x_1 + x_2 + 2x_3 = 6$$
$$-x_1 + 2x_2 - 3x_3 = 0$$
$$3x_1 + 2x_2 - x_3 = 6$$