## CS689: Machine Learning - Spring 2023

## Homework 1: Part 1 Solutions

**1.** (5 points) Consider the linear regression prediction function  $f_{\theta}(\mathbf{x}) = \mathbf{x}\mathbf{w} + b$  with  $\mathbf{x} \in \mathbb{R}^D$  and  $y \in \mathbb{R}$ . What is the computational complexity of computing the risk when the prediction loss function is the squared loss and the data set has N data cases? Explain your answer.

**Example Solution:** The risk for this problem is defined as  $R(f_{\theta}, \mathcal{D}) = \frac{1}{N} \sum_{n=1}^{N} (y_n - f_{\theta}(\mathbf{x}_n))^2$  where  $f_{\theta}(\mathbf{x}) = \mathbf{x}\mathbf{w} + b$ . We have  $\mathbf{x} \in \mathbb{R}^D$  and  $y \in \mathbb{R}$ . Computing the vector product  $\mathbf{x}_n\mathbf{w}$  takes O(D) time since  $\mathbf{x}_n$  and  $\mathbf{w}$  are D-dimensional vectors. Computing the addition for  $\mathbf{x}_n\mathbf{w} + b$  takes constant time since both  $\mathbf{x}_n\mathbf{w}$  and b are scalars. Computing the subtraction for  $y_n - (\mathbf{x}_n\mathbf{w} + b)$  takes constant time since both  $y_n$  and  $\mathbf{x}_n\mathbf{w} + b$  are scalars. Computing the square  $(y_n - (\mathbf{x}_n\mathbf{w} + b))^2$  takes constant time since  $y_n - (\mathbf{x}_n\mathbf{w} + b)$  is a scalar. Thus, the computation of the loss for each data case n takes O(D) time and the time to compute the loss for all N data cases is  $O(N \cdot D)$ . Averaging the loss values over the N data cases requires N additional operations, so the total computational complexity is  $O(N \cdot D)$ .

**2.** (5 points) Suppose we have a regression task where  $x \in \mathbb{R}$  and  $y \in \mathbb{R}$  and we expect that the optimal prediction function is a polynomial of order 3 or lower. Provide a definition for a prediction function model  $\mathcal{F}$  matching these assumptions. Explain your answer.

**Example Solution:**  $\mathcal{F}$  must be a set containing all polynomial functions  $f_{\theta}: \mathbb{R} \to \mathbb{R}$  of order at-most 3. We can write a polynomial of order three as  $ax^3 + bx^2 + cx + d$ . In general, the parameter values a, b, c, d can take any real values. We obtain polynomials of second degree by setting a=0, polynomials of first order by setting a=0 and b=0, and so on. The prediction function model expressing all polynomials of order up to three is thus:  $\mathcal{F} = \{f_{\theta}(x) = ax^3 + bx^2 + cx + d | \theta \in \mathbb{R}^4 \}$  where  $\theta = [a, b, c, d]$ .

**3.** (10 points) Suppose we have a regression task where  $\mathbf{x} \in \mathbb{R}^D$ . Suppose the true data generating distribution satisfies  $\mathbb{E}_{p_*(\mathbf{X}=\mathbf{x})}[\mathbf{x}] = \mu_*$  for some  $\mu_* \in \mathbb{R}^D$ . Prove that the statistic  $\hat{\mu} = \frac{1}{N} \sum_{n=1}^N \mathbf{x}_n$  is an unbiased estimator of  $\mu_*$  when the inputs  $\mathbf{x}_1, ..., \mathbf{x}_N$  are sampled from  $p_*$ .

**Example Solution:** We are given that  $\mathbb{E}_{p_*(\mathbf{X}=\mathbf{x})}[\mathbf{x}] = \mu_*$  where  $\mathbf{x}$  is a single data vector sampled from  $p_*$  and  $\mathbf{X}$  is the corresponding random variable. We will let  $\mathcal{D}_x = \{\mathbf{x}_1, ..., \mathbf{x}_N\}$ . Under the IID assumption, we have that  $p_*(\mathcal{D}_x) = \prod_{n=1}^N p_*(\mathbf{X}_n = \mathbf{x}_n)$ . We need to prove that  $\hat{\mu} = \frac{1}{N} \sum_{n=1}^N \mathbf{x}_n$  is an unbiased estimator of  $\mu_*$  under the assumption that  $\mathbb{E}_{p_*(\mathbf{X}=\mathbf{x})}[\mathbf{x}] = \mu_*$ . To prove that the estimator is unbiased assuming the data in  $\mathcal{D}_x$  are sampled IID from  $p_*$ , we need to show that  $\mathbb{E}_{p_*(\mathcal{D})}[\hat{\mu}] = \mu_*$ .

To begin, we will show that  $\mathbb{E}_{p_*(\mathcal{D}_x)}[\mathbf{x}_n] = \mu_*$  for all n. To do so, consider the data set  $\mathcal{D}_x^{-n}$  that contains all of the data cases except for  $\mathbf{x}_n$ . We note that:

$$p_*(\mathcal{D}_x^{-n}|\mathbf{x}_n) = p_*(\mathcal{D}_x)/p_*(\mathbf{X}_n = \mathbf{x}_n) = \prod_{n' \neq n} p_*(\mathbf{X}_{n'} = \mathbf{x}_{n'}) = p_*(\mathcal{D}_x^{-n})$$

Now consider the following decomposition of the joint expectation over the data set:

$$\mathbb{E}_{p_*(\mathcal{D}_x)}[\mathbf{x}_n] = \mathbb{E}_{p_*(\mathbf{x}_n)}[\mathbb{E}_{p_*(\mathcal{D}_x^{-n}|\mathbf{x}_n)}[\mathbf{x}_n]]$$
 (1)

$$= \mathbb{E}_{p_*(\mathbf{x}_n)}[\mathbb{E}_{n_*(\mathcal{D}_n^{-n})}[\mathbf{x}_n]] \tag{2}$$

Since  $\mathbf{x}_n$  is constant with respect to the variables in  $\mathcal{D}_x^{-n}$  (which does not contain  $\mathbf{x}_n$  by definition), we have that  $\mathbb{E}_{p_*(\mathcal{D}_x^{-n})}[\mathbf{x}_n] = \mathbf{x}_n$ . This means that  $\mathbb{E}_{p_*(\mathcal{D}_x)}[\mathbf{x}_n] = \mathbb{E}_{p_*(\mathbf{x}_n)}[\mathbf{x}_n]$ . By the expectation assumption stated in the question, we have  $\mathbb{E}_{p_*(\mathbf{x}_n)}[\mathbf{x}_n] = \mu_*$ . We use linearity of expectation combined with this result to complete the proof:

$$\mathbb{E}_{p_*(\mathcal{D})}[\hat{\mu}] = \mathbb{E}_{p_*(\mathcal{D}_x)} \left[ \frac{1}{N} \sum_{n=1}^N \mathbf{x}_n \right]$$
 (3)

$$= \frac{1}{N} \sum_{n=1}^{N} \mathbb{E}_{p_*(\mathcal{D}_x)} \left[ \mathbf{x}_n \right]$$
 (4)

$$= \frac{1}{N} \sum_{n=1}^{N} \mathbb{E}_{p_*(\mathbf{x}_n)} \left[ \mathbf{x}_n \right]$$
 (5)

$$=\frac{1}{N}\sum_{n=1}^{N}\mu_{*}=\mu_{*} \tag{6}$$

**4.** (10 points) Consider a regression task where  $\mathcal{X} = \mathbb{R}^D$ . Suppose that for all data cases, dimension j is a scaled copy of dimension i. In other words, for some  $a \neq 0$  and for all n, we have  $\mathbf{x}_{ni} = a \cdot \mathbf{x}_{nj}$ . Explain why the standard OLS estimator for the linear regression model  $\hat{\theta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$  can not be used to find the optimal parameters of the linear regression model under squared prediction loss in this case.

**Example Solution:** Consider the data matrix  $\mathbf{X}$  where each row is a data case with bias absorption applied as in the OLS estimator derivation. This matrix has size  $N \times (D+1)$ . Since there is a non-zero scalar a such that  $\forall n$  the condition  $\mathbf{x}_{ni} = a \cdot \mathbf{x}_{nj}$  holds, it will be the case that column j of  $\mathbf{X}$  is a scaled copy of column i. This means that there is at least one column of  $\mathbf{X}$  that is not linearly independent of the other columns in  $\mathbf{X}$  so the column rank of  $\mathbf{X}$  is at most D and thus the rank of  $\mathbf{X}$  is at most D.

Now consider the term  $\mathbf{X}^T\mathbf{X}$ . Using the result that the rank of a product of two matrices AB is less than or equal to the the minimum of the rank of A and the rank of B, we have that the rank of  $\mathbf{X}^T\mathbf{X}$  is at most D. Since  $\mathbf{X}^T\mathbf{X}$  is a  $(D+1)\times(D+1)$  matrix with rank at most D, by the invertible matrix theorem, the matrix  $\mathbf{X}^T\mathbf{X}$  is not invertible and thus the standard OLS formula can not be used to find the optimal model parameters.

**5.** (20 points) Consider the problem of building a regression model for periodic time series data. In this problem,  $y \in \mathbb{R}$  and  $x \in \mathbb{R}$ . One way to model such data is with a regression function built from a sum of K cosine-based components. Each component k has an amplitude  $w_k$ , a phase  $\phi_k$  and a period  $\rho_k$ . We also include a bias parameter b. The form of the prediction function is shown below:

$$f_{\theta}(x) = b + \sum_{k=1}^{K} w_k \cos\left(\frac{2\pi}{\rho_k}x - \phi_k\right)$$

In this prediction function, the parameters are  $\theta = [\mathbf{w}, \phi, b]$  where  $\mathbf{w} = [w_1, ..., w_K]$  and  $\phi = [\phi_1, ..., \phi_K]$ . The number of periodic components K and their periods  $\rho_k$  are fixed.

**a.** (5 pts) Consider the case where K=2,  $\rho=[50,25]$  and  $\theta=[0.5,0.75,-0.25,0.75,1.0]$ . Plot  $f_{\theta}(x)$  from 0 to 100 using these parameters.

## **Example Solution:**



**b.** (5 pts) Suppose we have a data set  $\mathcal{D}$  containing just two observations (20,0) and (40,2.5). Compute the empirical risk for this data set using K=2,  $\rho=[50,25]$  and  $\theta=[0.5,0.75,-0.25,0.75,1.0]$ .

**Example Solution:** The empirical risk for this data set using K=2,  $\rho=[50,25]$  and  $\theta=[0.5,0.75,-0.25,0.75,1.0]$  is 1.9765.

**c.** (5 pts) Derive the gradient of the empirical risk function for this model under the squared prediction loss and assuming K = 2. Clearly indicate the components that correspond to  $\mathbf{w}$ ,  $\phi$  and b. Show your work.

**Example Solution:** The empirical risk function under the squared prediction loss is  $R(f, \mathcal{D}) = \frac{1}{N} \sum_{n=1}^{N} (y_n - f_{\theta}(x_n))^2$ . We begin to find the gradient of the empirical risk function under the squared prediction loss as follows

$$\nabla R(f, \mathcal{D}) = \nabla \frac{1}{N} \sum_{n=1}^{N} (y_n - f_{\theta}(x_n))^2$$
(7)

$$= \frac{1}{N} \sum_{n=1}^{N} \nabla (y_n - f_{\theta}(x_n))^2$$
 (moving the gradient inside the summation) (8)

$$= \frac{1}{N} \sum_{n=1}^{N} 2(y_n - f_{\theta}(x_n))(-1)\nabla f_{\theta}(x_n)$$
 (using the chain rule) (9)

$$=2\frac{1}{N}\sum_{n=1}^{N}(f_{\theta}(x_n)-y_n)\nabla f_{\theta}(x_n)$$
 (simplifying) (10)

Now we would like to get the individual components of  $\nabla f_{\theta}(x_n)$  corresponding to  $\mathbf{w}$ ,  $\phi$ , and b to substitute into the expression above. We first find the partial derivative of  $f_{\theta}(x_n)$  with respect to  $w_i$ :

$$\frac{\partial}{\partial w_i} f_{\theta}(x_n) = \frac{\partial}{\partial w_i} \left( b + \sum_{k=1}^K w_k \cos\left(\frac{2\pi}{\rho_k} x - \phi_k\right) \right)$$
(11)

$$= \frac{\partial}{\partial w_i} \left( w_i \cos \left( \frac{2\pi}{\rho_i} x - \phi_i \right) \right) \tag{12}$$

$$= \cos\left(\frac{2\pi}{\rho_i}x - \phi_i\right) \tag{13}$$

Next, we find the partial derivative of  $f_{\theta}(x_n)$  with respect to  $\phi_i$ .

$$\frac{\partial}{\partial \phi_i} f_{\theta}(x_n) = \frac{\partial}{\partial \phi_i} \left( b + \sum_{k=1}^K w_k \cos\left(\frac{2\pi}{\rho_k} x - \phi_k\right) \right)$$
(14)

$$= \frac{\partial}{\partial \phi_i} \left( w_i \cos \left( \frac{2\pi}{\rho_i} x - \phi_i \right) \right) \tag{15}$$

$$= w_i(-1)\sin\left(\frac{2\pi}{\rho_i}x - \phi_i\right)(-1) \tag{16}$$

$$= w_i \sin\left(\frac{2\pi}{\rho_i}x - \phi_i\right) \tag{17}$$

Finally, we find the partial derivative of the gradient of  $f_{\theta}(x_n)$  with respect to b.

$$\frac{\partial}{\partial b} f_{\theta}(x_n) = \frac{\partial}{\partial b} \left( b + \sum_{k=1}^{K} w_k \cos\left(\frac{2\pi}{\rho_k} x - \phi_k\right) \right)$$
 (18)

$$=\frac{\partial}{\partial b}b=1\tag{19}$$

This yields a final gradient vector for the case of K components that is structured as follows:

$$\nabla R(f, \mathcal{D}) = \frac{2}{N} \sum_{n=1}^{N} (f_{\theta}(x_n) - y_n) \left[ \frac{\partial}{\partial w_1} f_{\theta}(x_n), ..., \frac{\partial}{\partial w_K} f_{\theta}(x_n), \frac{\partial}{\partial \phi_1} f_{\theta}(x_n), ..., \frac{\partial}{\partial \phi_1} f_{\theta}(x_n), 1 \right]^T$$

**d.** (5 pts) Suppose we have a data set  $\mathcal{D}$  containing just two observations (20,0) and (40,2.5). Compute the gradient of the empirical risk for this data set using K=2,  $\rho=[50,25]$  and  $\theta=[0.5,0.75,-0.25,0.75,1.0]$ . Clearly indicate the components that correspond to  $\mathbf{w}$ ,  $\phi$  and b.

**Example Solution:** The gradient of the empirical risk for this data set using K=2,  $\rho=[50,25]$  and  $\theta=[0.5,0.75,-0.25,0.75,1.0]$  is [-1.26009,1.86893,0.87534,-0.32878,-1.757] where [-1.26009,1.86893] corresponds to  $\mathbf{w}$ , [0.87534,-0.32878] corresponds to  $\phi$ , and -1.757 corresponds to b.