

Adventures in Bayesian Structural Time Series Part 3: Structural Time Series in Bayesian Context Andrew Bates, Josh Gloyd, Tyler Tucker

- Without Regression:
 - Prior
 - Posterior
- With Regression:
 - Prior
 - Posterior

Without Regression

- Prior
 - Specify distribution on parameters (variances)
- Posterior
 - Kalman filter and Kalman smoother
 - Markov Chain Monte Carlo

- © Consider regression coefficients fixed through time
 - If not, include as state variables
- Spike: prior for probability of regression coefficients being zero
- Slab: prior on nonzero regression coefficients and variance

Spike

- $\ \ \ \ \gamma_k = 1 \ \text{if} \ \beta_k \neq 0. \ \gamma_k = 0 \ \text{if} \ \beta_k = 0$
- $\otimes \beta_{\gamma}$: subset of β s with $\beta_k \neq 0$

$$\gamma \sim \prod_{i=1}^K \pi_k^{\gamma_k} (1 - \pi_k)^{1 - \gamma_k}$$

Slab

- $\otimes \Omega^{-1}$: symmetric matrix
 - Φ Ω_{γ}^{-1} : submatrix corresponding to $\gamma_k = 1$
- © Conjugate prior:

$$eta_{\gamma} ig| \sigma_{arepsilon}^2, \gamma \sim \mathit{N}(\mathit{b}_{\gamma}, \sigma_{arepsilon}^2 \Omega_{\gamma}) \qquad rac{1}{\sigma_{arepsilon}^2} ig| \gamma \sim \mathrm{Gamma}\left(rac{\mathit{v}}{2}, rac{\mathit{ss}}{2}
ight)$$

Full Prior

$$p(\beta, \gamma, \sigma_{\varepsilon}^{2}) = p(\beta_{\gamma}|\gamma, \sigma_{\varepsilon}^{2})p(\sigma_{\varepsilon}^{2}|\gamma)p(\gamma)$$

Specifying Spike and Slab Prid San Diego State University

- ss, v: prior sum of squares and prior sample size
 - \triangle Expected R^2 , expected model size
- $\otimes \pi_k$: inclusion probability for regression coefficients
- $\otimes \Omega^{-1}$: based on design matrix X

Spike and Slab Posterior

Posterior of β and σ_{ε}^2 given γ, y^*

$$\otimes$$
 Z_t^* : observation matrix Z_t with $\beta^T x_t = 0$

$$\emptyset \ y^* = (y_1^*, y_2^*, \dots, y_n^*)^T$$

 \otimes

$$\beta_{\gamma} | \sigma_{\varepsilon}, \gamma, y^* \sim N(\tilde{\beta}_{\gamma}, \sigma_{\varepsilon}^2 V_{\gamma}) \quad \frac{1}{\sigma_{\varepsilon}^2} | \gamma, y^* \sim \operatorname{Gamma}\left(\frac{N}{2}, \frac{SS_{\gamma}}{2}\right)$$

$$\nabla_{\gamma}^{-1} = (X^T X)_{\gamma} + \Omega_{\gamma}^{-1}$$

$$\otimes N = v + n$$

Posterior of γ given y^* :

$$\gamma | y^* \sim C(y^*) \frac{|\Omega_{\gamma}^{-1}|^{1/2}}{|V_{\gamma}^{-1}|^{1/2}} \frac{p(\gamma)}{SS_{\gamma}^{N/2-1}}$$

Posterior Sampling

- Combination of:
 - stochastic Kalman smoother
 - - stochastic search variable selection
 - Gibbs sampler