Note del corso di Geometria 1

Gabriel Antonio Videtta

17 e 19 aprile 2023

Prodotti hermitiani e teorema spettrale

Nota. Nel corso del documento, per V si intenderà uno spazio vettoriale di dimensione finita n e per φ un suo prodotto, hermitiano o scalare dipendentemente dal contesto.

Definizione. (prodotto hermitiano) Sia $\mathbb{K}=\mathbb{C}$. Una mappa $\varphi:V\times V\to\mathbb{C}$ si dice **prodotto hermitiano** se:

- (i) φ è \mathbb{C} -lineare nel secondo argomento, ossia se $\varphi(\underline{v}, \underline{u} + \underline{w}) = \varphi(\underline{v}, \underline{u}) +$ $\varphi(\underline{v},\underline{w}) \in \varphi(\underline{v},a\underline{w}) = a \varphi(\underline{v},\underline{w}),$
- (ii) $\varphi(\underline{u},\underline{w}) = \overline{\varphi(\underline{w},\underline{u})}$.

Definizione. (prodotto hermitiano canonico in \mathbb{C}^n) Si definisce **prodotto** hermitiano canonico di \mathbb{C}^n il prodotto $\varphi : \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}$ tale per cui, detti $\underline{v} = (z_1 \cdots z_n)^{\top} e \underline{w} = (w_1 \cdots w_n)^{\top}, \ \varphi(\underline{v}, \underline{w}) = \sum_{i=1}^n \overline{z_i} w_i.$

Osservazione.

- $\varphi(w,v) + \varphi(u,v)$, ossia φ è additiva anche nel primo argomento.

- $\begin{array}{l} \bullet \quad \varphi(\underline{v},\underline{v}) = \overline{\varphi(\underline{v},\underline{v})}, \ \text{e quindi} \ \varphi(\underline{v},\underline{v}) \in \mathbb{R}. \\ \bullet \quad \text{Sia} \ \underline{v} = \sum_{i=1}^n x_i \underline{v_i} \ \text{e sia} \ \underline{w} = \sum_{i=1}^n y_i \underline{v_i}, \ \text{allora} \ \varphi(\underline{v},\underline{w}) = \\ \sum_{i=1}^n \sum_{j=1}^n \overline{x_i} y_i \varphi(\underline{v_i},\underline{v_j}). \\ \bullet \quad \varphi(\underline{v},\underline{w}) = 0 \iff \overline{\varphi}(\underline{w},\underline{v}) = 0. \end{array}$

Proposizione. Data la forma quadratica $q:V\to\mathbb{R}$ del prodotto hermitiano φ tale che $q(\underline{v}) = \varphi(\underline{v},\underline{v}) \in \mathbb{R}$, tale forma quadratica individua univocamente il prodotto hermitiano φ .

Dimostrazione. Innanzitutto si osserva che:

$$\varphi(\underline{v},\underline{w}) = \frac{\varphi(\underline{v},\underline{w}) + \overline{\varphi(\underline{v},\underline{w})}}{2} + \frac{\varphi(\underline{v},\underline{w}).\overline{\varphi(\underline{v},\underline{w})}}{2}.$$

Si considerano allora le due identità:

$$q(v+w) - q(v) - q(w) = \varphi(v,w) + \overline{\varphi(w,v)} = 2\Re(\varphi(v,w)),$$

$$q(i\underline{v} + \underline{w}) - q(\underline{v}) - q(\underline{w}) = -i(\varphi(\underline{v}, \underline{w}) - \overline{\varphi(\underline{v}, \underline{w})}) = 2\Im(\varphi(\underline{v}, \underline{w})),$$

da cui si conclude che il prodotto φ è univocamente determinato dalla sua forma quadratica.

Definizione. Si definisce **matrice aggiunta** di $A \in M(n, \mathbb{K})$ la matrice coniugata della trasposta di A, ossia:

$$A^* = \overline{A^{\top}} = \overline{A}^{\top}.$$

Osservazione. Per quanto riguarda la matrice aggiunta valgono le principali proprietà della matrice trasposta:

- $(A+B)^* = A^* + B^*$,
- $(AB)^* = B^*A^*$.

Definizione. (matrice associata del prodotto hermitiano) Analogamente al caso del prodotto scalare, data una base $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ si definisce come **matrice associata del prodotto hermitiano** φ la matrice $M_{\mathcal{B}}(\varphi) = (\varphi(\underline{v_i}, \underline{v_j}))_{i,j=1\dots n}$.

Osservazione. Si osserva che, analogamente al caso del prodotto scalare, vale la seguente identità:

$$\varphi(\underline{v},\underline{w}) = [\underline{v}]_{\mathcal{B}}^* M_{\mathcal{B}}(\varphi) [\underline{w}]_{\mathcal{B}}.$$

Proposizione. (formula del cambiamento di base per i prodotto hermitiani) Siano \mathcal{B} , \mathcal{B}' due basi di V. Allora vale la seguente identità:

$$M_{\mathcal{B}'} = M_{\mathcal{B}}^{\mathcal{B}'}(Id_V)^* M_{\mathcal{B}}(\varphi) M_{\mathcal{B}}^{\mathcal{B}'}(Id_V).$$

Dimostrazione. Siano $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ e $\mathcal{B}' = \{\underline{w_1}, \dots, \underline{w_n}\}$. Allora $\varphi(\underline{w_i}, \underline{w_j}) = [\underline{w_i}]_{\mathcal{B}}^* M_{\mathcal{B}}(\varphi) [\underline{w_j}]_{\mathcal{B}} = (M_{\mathcal{B}}^{\mathcal{B}'}(Id_V)^i)^* M_{\mathcal{B}}(\varphi) M_{\mathcal{B}}^{\mathcal{B}'}(Id_V)^j = (M_{\mathcal{B}}^{\mathcal{B}'}(Id_V))^* M_{\mathcal{B}}(\varphi) M_{\mathcal{B}}^{\mathcal{B}'}(Id_V)^j$, da cui si ricava l'identità desiderata. \square

Definizione. (radicale di un prodotto hermitiano) Analogamente al caso del prodotto scalare, si definisce il **radicale** del prodotto φ come il seguente sottospazio:

$$V^{\perp} = \{ \underline{v} \in V \mid \varphi(\underline{v}, \underline{w}) = 0 \ \forall \underline{w} \in V \}.$$

Proposizione. Sia \mathcal{B} una base di V e φ un prodotto hermitiano. Allora $V^{\perp} = [\cdot]_{\mathcal{B}}^{-1}(\operatorname{Ker} M_{\mathcal{B}}(\varphi))^{1}$.

Dimostrazione. Sia $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ e sia $\underline{v} \in V^{\perp}$. Siano $a_1, \dots, a_n \in \mathbb{K}$ tali che $\underline{v} = a_1\underline{v_1} + \dots + a_n\underline{v_n}$. Allora, poiché $\underline{v} \in V$, $0 = \varphi(\underline{v_i}, \underline{v}) == a_1\varphi(\underline{v_i}, \underline{v_1}) + \dots + a_n\varphi(\underline{v_i}, \underline{v_n}) = M_i[\underline{v}]_{\mathcal{B}}$, da cui si ricava che $[\underline{v}]_{\mathcal{B}} \in \operatorname{Ker} M_{\mathcal{B}}(\varphi)$, e quindi che $V^{\perp} \subseteq [\cdot]_{\mathcal{B}}^{-1}(\operatorname{Ker} M_{\mathcal{B}}(\varphi))$.

Sia ora $\underline{v} \in V$ tale che $[\underline{v}]_{\mathcal{B}} \in \operatorname{Ker} M_{\mathcal{B}}(\varphi)$. Allora, per ogni $\underline{w} \in V$, $\varphi(\underline{w},\underline{v}) = [\underline{w}]_{\mathcal{B}}^* M_{\mathcal{B}}(\varphi)[\underline{v}]_{\mathcal{B}} = [\underline{w}]_{\mathcal{B}}^* 0 = 0$, da cui si conclude che $\underline{v} \in V^{\perp}$, e quindi che $V^{\perp} \supseteq [\cdot]_{\mathcal{B}}^{-1}(\operatorname{Ker} M_{\mathcal{B}}(\varphi))$, ossia la tesi. \square

Osservazione. Come conseguenza della proposizione appena dimostrata, valgono le principali proprietà già viste per il prodotto scalare.

- $ightharpoonup \det(M_{\mathcal{B}}(\varphi)) = 0 \iff V^{\perp} \neq \{\underline{0}\} \iff \varphi \text{ è degenere},$
- \blacktriangleright Vale il teorema di Lagrange, e quindi quello di Sylvester, benché con alcune accortezze: si introduce, come nel caso di \mathbb{R} , il concetto di segnatura, che diventa l'invariante completo della nuova congruenza hermitiana, che ancora una volta si dimostra essere una relazione di equivalenza.

Definizione. (restrizione ai reali di uno spazio) Sia V uno spazio vettoriale su \mathbb{C} con base \mathcal{B} . Si definisce allora lo spazio $V_{\mathbb{R}}$, detto **spazio di restrizione** su \mathbb{R} di V, come uno spazio su \mathbb{R} generato da $\mathcal{B}_{\mathbb{R}} = \mathcal{B} \cup i\mathcal{B}$.

Esempio. Si consideri $V = \mathbb{C}^3$. Una base di \mathbb{C}^3 è chiaramente $\{\underline{e_1}, \underline{e_2}, \underline{e_3}\}$. Allora $V_{\mathbb{R}}$ sarà uno spazio vettoriale su \mathbb{R} generato dai vettori $\{\underline{e_1}, \underline{e_2}, \underline{e_3}, i\underline{e_1}, i\underline{e_2}, i\underline{e_3}\}$.

Stavolta non è sufficiente considerare la mappa $f: V \to V^*$ tale che $f(\underline{v}) = [\underline{w} \mapsto \varphi(\underline{v}, \underline{w})]$, dal momento che f non è lineare, bensì antilineare, ossia $f(a\underline{v}) = \overline{a}f(\underline{v})$.

Osservazione. Si osserva che lo spazio di restrizione su \mathbb{R} e lo spazio di partenza condividono lo stesso insieme di vettori. Infatti, $\operatorname{Span}_{\mathbb{C}}(\mathcal{B}) = \operatorname{Span}_{\mathbb{R}}(\mathcal{B} \cup i\mathcal{B})$. Ciononostante, dim $V_{\mathbb{R}} = 2 \dim V$, se dim $V \in \mathbb{N}$.

Definizione. (complessificazione di uno spazio) Sia V uno spazio vettoriale su \mathbb{R} . Si definisce allora lo **spazio complessificato** $V_{\mathbb{C}} = V \times V$ su \mathbb{C} con le seguenti operazioni:

- $(\underline{v},\underline{w}) + (\underline{v}',\underline{w}') = (\underline{v} + \underline{v}',\underline{w} + \underline{w}'),$
- $(a+bi)(\underline{v},\underline{w}) = (a\underline{v} b\underline{w}, a\underline{w} + b\underline{v}).$

Osservazione. La costruzione dello spazio complessificato emula in realtà la costruzione di $\mathbb C$ come spazio $\mathbb R \times \mathbb R$. Infatti se z=(c,d), vale che (a+bi)(c,d)=(ac-bd,ad+bc), mentre si mantiene l'usuale operazione di addizione. In particolare si può identificare l'insieme $iV:=V\times\{0\}$ come V, mentre $\{0\}\times V$ viene identificato come l'insieme degli immaginari di $V_{\mathbb C}$. Infine, moltiplicare per uno scalare reale un elemento di $V\times\{0\}$ equivale a moltiplicare la sola prima componente con l'usuale operazione di moltiplicazione di V. Allora, come accade per $\mathbb C$, si può sostituire la notazione $(\underline{v},\underline{w})$ con la più comoda notazione $\underline{v}+i\underline{w}$.

Osservazione. Sia $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ una base di V. Innanzitutto si osserva che $(a+bi)(\underline{v},\underline{0}) = (a\underline{v},b\underline{v})$. Pertanto si può concludere che $\mathcal{B} \times \{\underline{0}\}$ è una base dello spazio complessificato $V_{\mathbb{C}}$ su \mathbb{C} .

Infatti, se $(a_1+b_1i)(\underline{v_1},\underline{0})+\ldots+(a_n+b_ni)(\underline{v_n},\underline{0})=(\underline{0},\underline{0})$, allora $(a_1\underline{v_1}+\ldots+a_n\underline{v_n},b_1\underline{v_1}+\ldots+b_n\underline{v_n})=(\underline{0},\underline{0})$. Poiché però \mathcal{B} è linearmente indipendente per ipotesi, l'ultima identità implica che $a_1=\cdots=a_n=b_1=\cdots=b_n=0$, e quindi che $\mathcal{B}\times\{\underline{0}\}$ è linearmente indipendente.

Inoltre $\mathcal{B} \times \{\underline{0}\}$ genera $V_{\mathbb{C}}$. Se infatti $\underline{v} = (\underline{u}, \underline{w})$, e vale che:

$$\underline{u} = a_1 \underline{v_1} + \ldots + a_n \underline{v_n}, \quad \underline{w} = b_1 \underline{v_1} + \ldots + b_n \underline{v_n},$$

allora $\underline{v} = (a_1 + b_1 i)(v_1, \underline{0}) + \ldots + (a_n + b_n i)(v_n, \underline{0})$. Quindi dim $V_{\mathbb{C}} = \dim V$.

Definizione. Sia f un'applicazione \mathbb{C} -lineare di V spazio vettoriale su \mathbb{C} . Allora si definisce la **restrizione su** \mathbb{R} di f, detta $f_{\mathbb{R}}: V_{\mathbb{R}} \to V_{\mathbb{R}}$, in modo tale che $f_{\mathbb{R}}(\underline{v}) = f(\underline{v})$.

Osservazione. Sia $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ una base di V su \mathbb{C} . Sia $A = M_{\mathcal{B}}(f)$. Si osserva allora che, se $\mathcal{B}' = \mathcal{B} \cup i\mathcal{B}$ e A = A' + iA'' con A', $A'' \in M(n, \mathbb{R})$, vale la seguente identità:

$$M_{\mathcal{B}'}(f_{\mathbb{R}}) = \left(\begin{array}{c|c} A' & -A'' \\ \hline A'' & A' \end{array}\right).$$

Infatti, se $f(\underline{v_i}) = (a_1 + b_1 i)\underline{v_1} + \ldots + (a_n + b_n i)\underline{v_n}$, vale che $f_{\mathbb{R}}(\underline{v_i}) = a_1\underline{v_1} + \ldots + a_n\underline{v_n} + b_1(i\underline{v_1}) + \ldots + b_n(i\underline{v_n})$, mentre $f_{\mathbb{R}}(i\underline{v_i}) = if(\underline{v_i}) = -b_1\underline{v_1} + \ldots - b_nv_n + a_1(iv_1) + \ldots + a_n(iv_n)$.

Teorema. (di rappresentazione di Riesz per il prodotto scalare) Sia V uno spazio vettoriale e sia φ un suo prodotto scalare non degenere. Allora per ogni $f \in V^*$ esiste un unico $\underline{v} \in V$ tale che $f(\underline{w}) = \varphi(\underline{v}, \underline{w}) \ \forall \underline{w} \in V$.

Dimostrazione. Si consideri l'applicazione a_{φ} . Poiché φ non è degenere, Ker $a_{\varphi} = V^{\perp} = \{\underline{0}\}$, da cui si deduce che a_{φ} è un isomorfismo. Quindi $\forall f \in V^*$ esiste un unico $\underline{v} \in V$ tale per cui $a_{\varphi}(\underline{v}) = f$, e dunque tale per cui $\varphi(\underline{v},\underline{w}) = a_{\varphi}(\underline{v})(\underline{w}) = f(\underline{w}) \ \forall \underline{w} \in V$.

Dimostrazione costruttiva. Sia $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ una base ortogonale di V per φ . Allora \mathcal{B}^* è una base di V^* . In particolare $f = f(\underline{v_1})\underline{v_1^*} + \dots + f(\underline{v_n})\underline{v_n^*}$. Sia $\underline{v} = \frac{f(\underline{v_1})}{\varphi(\underline{v_1},\underline{v_1})}\underline{v_1} + \dots + \frac{f(\underline{v_n})}{\varphi(\underline{v_n},\underline{v_n})}$. Detto $\underline{w} = a_1\underline{v_1} + \dots + a_n\underline{v_n}$, si deduce che $\varphi(\underline{v},\underline{w}) = a_1f(\underline{v_1}) + \dots + a_nf(\underline{v_n}) = f(\underline{w})$. Se esistesse $\underline{v}' \in V$ con la stessa proprietà di \underline{v} , $\varphi(\underline{v},\underline{w}) = \varphi(\underline{v}',\underline{w}) \implies \varphi(\underline{v} - \underline{v}',\underline{w}) \ \forall \underline{w} \in V$. Si deduce dunque che $\underline{v} - \underline{v}' \in V^{\perp}$, contenente solo $\underline{0}$ dacché φ è non degenere; e quindi si conclude che $\underline{v} = \underline{v}'$, ossia che esiste solo un vettore con la stessa proprietà di \underline{v} .

Teorema. (di rappresentazione di Riesz per il prodotto hermitiano) Sia V uno spazio vettoriale su $\mathbb C$ e sia φ un suo prodotto hermitiano non degenere. Allora per ogni $f \in V^*$ esiste un unico $\underline{v} \in V$ tale che $f(\underline{w}) = \varphi(\underline{v},\underline{w}) \forall w \in V$.

Dimostrazione. Sia $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ una base ortogonale di V per φ . Allora \mathcal{B}^* è una base di V^* . In particolare $f = f(\underline{v_1})\underline{v_1^*} + \dots + f(\underline{v_n})\underline{v_n^*}$. Sia $\underline{v} = \frac{\overline{f(v_1)}}{\varphi(v_1,v_1)}\underline{v_1} + \dots + \frac{\overline{f(v_n)}}{\varphi(v_n,v_n)}$. Detto $\underline{w} = a_1\underline{v_1} + \dots + a_n\underline{v_n}$, si deduce che $\varphi(\underline{v},\underline{w}) = a_1f(\underline{v_1}) + \dots + a_nf(\underline{v_n}) = f(\underline{w})$. Se esistesse $\underline{v}' \in V$ con la stessa proprietà di $\underline{v}, \varphi(\underline{v},\underline{w}) = \varphi(\underline{v}',\underline{w}) \implies \varphi(\underline{v} - \underline{v}',\underline{w}) \ \forall \underline{w} \in V$. Si deduce dunque che $\underline{v} - \underline{v}' \in V^{\perp}$, contenente solo $\underline{0}$ dacché φ è non degenere; e quindi

si conclude che $\underline{v} = \underline{v}'$, ossia che esiste solo un vettore con la stessa proprietà di \underline{v} .

Proposizione. Sia V uno spazio vettoriale con prodotto scalare φ non degenere. Sia $f \in \operatorname{End}(V)$. Allora esiste un unico endomorfismo $g: V \to V$, detto il **trasposto di** f e indicato con f^{\top} in assenza di ambiguità², tale che:

$$a_{\varphi} \circ g = f^{\top} \circ a_{\varphi},$$

ossia che:

$$\varphi(\underline{v}, f(\underline{w})) = \varphi(g(\underline{v}), \underline{w}) \ \forall \underline{v}, \underline{w} \in V.$$

Dimostrazione. Si consideri $(f^{\top} \circ a_{\varphi})(\underline{v}) \in V^*$. Per il teorema di rappresentazione di Riesz per il prodotto scalare, esiste un unico \underline{v}' tale che $(f^{\top} \circ a_{\varphi})(\underline{v})(\underline{w}) = \varphi(\underline{v}',\underline{w}) \implies \varphi(\underline{v},f(\underline{w})) = \varphi(\underline{v}',\underline{w}) \ \forall \underline{w} \in V$. Si costruisce allora una mappa $g: V \to V$ che associa a \underline{v} tale \underline{v}' . Si dimostra che g è un'applicazione lineare, e che dunque è un endomorfismo:

(i) Siano $\underline{v_1}, \underline{v_2} \in V$. Si deve dimostrare innanzitutto che $g(\underline{v_1} + \underline{v_2}) = g(\underline{v_1}) + g(\underline{v_2})$, ossia che $\varphi(g(\underline{v_1}) + g(\underline{v_2}), \underline{w}) = \varphi(\underline{v_1} + \underline{v_2}, f(\underline{w})) \ \forall \underline{w} \in V$.

Si osservano le seguenti identità:

$$\varphi(\underline{v_1} + \underline{v_2}, f(\underline{w})) = \varphi(\underline{v_1}, f(\underline{w})) + \varphi(\underline{v_2}, f(\underline{w})) = (*),$$

$$\varphi(g(\underline{v_1}) + g(\underline{v_2}), \underline{w}) = \varphi(g(\underline{v_1}), \underline{w}) + \varphi(g(\underline{v_2}), \underline{w}) = (*),$$

da cui si deduce l'uguaglianza desiderata, essendo $g(\underline{v_1} + \underline{v_2})$ l'unico vettore di V con la proprietà enunciata dal teorema di rappresentazione di Riesz.

(ii) Sia $\underline{v} \in V$. Si deve dimostrare che $g(a\underline{v}) = ag(\underline{v})$, ossia che $\varphi(ag(\underline{v}),\underline{w}) = \varphi(a\underline{v},f(\underline{w})) \ \forall a \in \mathbb{K}, \ \underline{w} \in V$. Se a=0, l'uguaglianza è ovvia; altrimenti è sufficiente moltiplicare per a l'identità $\varphi(g(\underline{v}),\underline{w}) = \varphi(\underline{v},f(\underline{w}))$. Analogamente a prima, si deduce che $g(a\underline{v}) = ag(\underline{v})$, essendo $g(a\underline{v})$ l'unico vettore di V con la proprietà enunciata dal teorema di rappresentazione di Riesz.

²Si tenga infatti in conto della differenza tra $f^{\top}: V \to V$, di cui si discute nell'enunciato, e $f^{\top}: V^* \to V^*$ che invece è tale che $f^top(g) = g \circ f$.

Infine si dimostra che g è unico. Sia infatti g' un endomorfismo di V che condivide la stessa proprietà di g. Allora $\varphi(g(\underline{v}),\underline{w}) = \varphi(\underline{v},f(\underline{w})) = \varphi(g'(\underline{v}),\underline{w})$ $\forall \underline{v}, \underline{w} \in V$, da cui si deduce che $\varphi(g(\underline{v}) - g'(\underline{v}),\underline{w}) = 0 \ \forall \underline{v}, \underline{w} \in V$, ossia che $g(\underline{v}) - g'(\underline{v}) \in V^{\perp} \ \forall \underline{v} \in V$. Tuttavia φ è non degenere, e quindi $V^{\perp} = \{\underline{0}\}$, da cui si deduce che deve valere l'identità $g(\underline{v}) = g'(\underline{v}) \ \forall \underline{v} \in V$, ossia g = g'.

Proposizione. Sia V uno spazio vettoriale su \mathbb{C} e sia φ un suo prodotto hermitiano. Allora esiste un'unica mappa³ $f^*: V \to V$, detta **aggiunto di** f, tale che $\varphi(v, f(w)) = \varphi(f^*(v), w) \ \forall v, w \in V$.

Dimostrazione. Sia $\underline{v} \in V$. Si consideri il funzionale σ tale che $\sigma(\underline{w}) = \varphi(\underline{v}, f(\underline{w}))$. Per il teorema di rappresentazione di Riesz per il prodotto scalare esiste un unico $\underline{v}' \in V$ tale per cui $\varphi(\underline{v}, f(\underline{w})) = \sigma(\underline{w}) = \varphi(\underline{v}', \underline{w})$. Si costruisce allora una mappa f^* che associa \underline{v} a tale \underline{v}' .

Si dimostra infine che la mappa f^* è unica. Sia infatti $\mu: V \to V$ che condivide la stessa proprietà di f^* . Allora $\varphi(f^*(\underline{v}), \underline{w}) = \varphi(\underline{v}, f(\underline{w})) = \varphi(\underline{u}, \underline{v})$ $\forall \underline{v}, \underline{w} \in V$, da cui si deduce che $\varphi(f^*(\underline{v}) - \mu(\underline{v}), \underline{w}) = 0 \ \forall \underline{v}, \underline{w} \in V$, ossia che $f^*(\underline{v}) - \mu(\underline{v}) \in V^{\perp} \ \forall \underline{v} \in V$. Tuttavia φ è non degenere, e quindi $V^{\perp} = \{\underline{0}\}$, da cui si deduce che deve valere l'identità $f^*(\underline{v}) = \mu(\underline{v}) \ \forall \underline{v} \in V$, ossia $f^* = \mu$.

Osservazione. L'operazione di trasposizione di un endomorfismo sul prodotto scalare non degenere φ è un'involuzione. Infatti valgono le seguenti identità $\forall \, \underline{v}, \, \underline{w} \in V$:

$$\begin{cases} \varphi(\underline{w}, f^{\top}(\underline{v})) = \varphi(f^{\top}(\underline{v}), \underline{w}) = \varphi(\underline{v}, f(\underline{w})), \\ \varphi(\underline{w}, f^{\top}(\underline{v})) = \varphi((f^{\top})^{\top}(\underline{w}), \underline{v}) = \varphi(\underline{v}, (f^{\top})^{\top}(\underline{w})). \end{cases}$$

Si conclude allora, poiché φ è non degenere, che $f(\underline{w}) = (f^{\top})^{\top}(\underline{w}) \ \forall \underline{w} \in V$, ossia che $f = (f^{\top})^{\top}$.

Osservazione. Analogamente si può dire per l'operazione di aggiunta per un prodotto hermitiano φ non degenere. Valgono infatti le seguenti identità $\forall\,\underline{v},\,\underline{w}\in V$:

$$\begin{cases} \overline{\varphi(\underline{w},f^*(\underline{v}))} = \varphi(f^*(\underline{v}),\underline{w}) = \varphi(\underline{v},f(\underline{w})), \\ \overline{\varphi(\underline{w},f^*(\underline{v}))} = \overline{\varphi((f^*)^*(\underline{w}),\underline{v})} = \varphi(\underline{v},(f^*)^*(\underline{w})), \end{cases}$$

da cui si deduce, come prima, che $f = (f^*)^*$.

³Si osservi che f^* non è un'applicazione lineare, benché sia invece antilineare.

Nota. D'ora in poi, nel corso del documento, s'intenderà per φ un prodotto scalare (o eventualmente hermitiano) di V.

Definizione. Sia $f \in \text{End}(V)$. Si dice allora che f è simmetrico se $f = f^{\top}$.

Definizione. Sia $f \in \text{End}(V)$. Si dice allora che f è **ortogonale** se $\varphi(\underline{v},\underline{w}) = \varphi(f(\underline{v}), f(\underline{w}))$.

Definizione. Sia $f \in \text{End}(V)$ e si consideri il prodotto hermitiano φ . Si dice allora che f è **hermitiano** se $f = f^*$.

Definizione. Sia $f \in \text{End}(V)$ e si consideri il prodotto hermitiano φ . Si dice allora che f è **unitario** se $\varphi(\underline{v},\underline{w}) = \varphi(f(\underline{v}),f(\underline{w}))$.

Definizione. (spazio euclideo reale) Si definisce **spazio euclideo reale** uno spazio vettoriale V su \mathbb{R} dotato del prodotto scalare standard $\varphi = \langle \cdot, \cdot \rangle$.

Definizione. (spazio euclideo complesso) Si definisce **spazio euclideo complesso** uno spazio vettoriale V su $\mathbb C$ dotato del prodotto scalare standard $\varphi = \langle \cdot, \cdot \rangle$.

Definizione. (base ortonormale) Si definisce **base ortonormale** di uno spazio vettoriale V su un suo prodotto φ una base ortogonale $\mathcal{B} = \{v_1, \ldots, v_n\}$ tale che $\varphi(v_i, v_j) = \delta_{ij}$.

Proposizione. Sia (V, φ) uno spazio euclideo reale e sia \mathcal{B} una base ortonormale di V. Allora $f \in \operatorname{End}(V)$ è simmetrico $\iff M_{\mathcal{B}}(f) = M_{\mathcal{B}}(f)^{\top}$.

Dimostrazione. Si osserva che $M_{\mathcal{B}}(\varphi) = I_n$. Sia $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$. Se f è simmetrico, allora $[\underline{v}]_{\mathcal{B}}^{\top} M_{\mathcal{B}}(f)[\underline{w}]_{\mathcal{B}} = [\underline{v}]_{\mathcal{B}}^{\top} M_{\mathcal{B}}(\varphi)(M_{\mathcal{B}}(f)[\underline{w}]_{\mathcal{B}}) = \varphi(\underline{v}, f(\underline{w})) = \varphi(f(\underline{v}), \underline{w}) = (M_{\mathcal{B}}(f)[\underline{v}]_{\mathcal{B}})^{\top} M_{\mathcal{B}}(\varphi)[\underline{w}]_{\mathcal{B}} = [\underline{v}]_{\mathcal{B}}^{\top} M_{\mathcal{B}}(f)^{\top}[\underline{w}]_{\mathcal{B}}.$ In particolare, $M_{\mathcal{B}}(f)_{ij}^{\top} = [\underline{v_i}]_{\mathcal{B}}^{\top} M_{\mathcal{B}}(f)^{\top}[\underline{v_j}]_{\mathcal{B}} = [\underline{v_i}]_{\mathcal{B}}^{\top} M_{\mathcal{B}}(f)[\underline{v_j}]_{\mathcal{B}} = M_{\mathcal{B}}(f)_{ij},$ e quindi $M_{\mathcal{B}}(f)^{\top} = M_{\mathcal{B}}(f)$.

Se invece
$$M_{\mathcal{B}}(f)^{\top} = M_{\mathcal{B}}(f), \ \varphi(\underline{v}, f(\underline{w})) = [\underline{v}]_{\mathcal{B}}^{\top} M_{\mathcal{B}}(\varphi) (M_{\mathcal{B}}(f)[\underline{w}]_{\mathcal{B}})$$

 $= [\underline{v}]_{\mathcal{B}}^{\top} M_{\mathcal{B}}(f)[\underline{w}]_{\mathcal{B}} = [\underline{v}]_{\mathcal{B}}^{\top} M_{\mathcal{B}}(f)^{\top} [\underline{w}]_{\mathcal{B}} = (M_{\mathcal{B}}(f)[\underline{v}]_{\mathcal{B}})^{\top} [\underline{w}]_{\mathcal{B}} = (M_{\mathcal{B}}(f)[\underline{v}]_{\mathcal{B}})^{\top} M_{\mathcal{B}}(\varphi)[\underline{w}]_{\mathcal{B}} = \varphi(f(\underline{v}),\underline{w}), \text{ e quindi } f \text{ è simmetrico.}$

Proposizione. Sia \mathcal{B} una base di V. Allora $f \in \text{End}(V)$ è simmetrico $\iff M_{\mathcal{B}}(f)$ è una matrice simmetrica.

Dimostrazione. Si dimostrano le due implicazioni separatamente.

$$(\Longrightarrow)$$
 Se f è simmetrico, $\varphi(v, f(w)) = \varphi(f(v), w)$. Quindi $[v]_{\mathcal{B}}M_{\mathcal{B}}(\varphi)$

Proposizione. Se $V = \mathbb{R}^n$ con prodotto canonico $\varphi(\underline{x}, \underline{y}) = \underline{x}^\top \underline{y}$. Sono allora equivalenti i seguenti fatti:

- (i) $A \in O_n$,
- (ii) $f_A: V \to V$ con $f_A(\underline{x}) = A\underline{x}$ è ortogonale,
- (iii) Le colonne (e le righe) di A formano una base ortonormale di V.

Dimostrazione. (1 - 2) ovvio (2 - 3) f_A manda basi ortonormali in basi ortonormali, e quindi così sono ortonormali le colonne di A. Analogamente per le righe considerando $A^{\top}A = I$. (3 - 1) $A^{\top}A = I$.

Proposizione. Se $V=\mathbb{C}^n$ con prodotto canonico hermitiano, sono equivalenti i seguenti fatti:

- (i) $A \in U_n$,
- (ii) $f_A: V \to V$ con $f_A(\underline{x}) = A\underline{x}$ è unitaria,
- (iii) Le colonne (e le righe) di A formano una base ortonormale di V.

Dimostrazione. Come prima.