2 Page 22

- **2.1** Let $(x,y) = \{\{x\}, \{x,y\}\} \in R$, then $\{\{x\}, \{x,y\}\} \subseteq \bigcup R$, thus we have $\{x,y\} \in \bigcup R$ and we know that $x,y \in \{x,y\}$, so for some set $C \in \bigcup R$ we have $x,y \in C$, thus $x,y \in \bigcup \bigcup R$. because the property " $x \in dom\ R$ " implies that $(x,y) \in R$ for some y. and because $(x,y) \in R$ implies $x \in A$, the set $\{x \in A : x \in dom\ R\}$ exist. Repeat this argument for property " $x \in ran\ R$ ".
- **2.2** (a) by previous argument $ran\ R$ and $dom\ R$ exist, we know that $ran\ R \times dom\ R$ exist, call it A. by comprehension the subset $\{(y,x)\in A:(x,y)\in R\}$ also exist, this set is equal to R^{-1} . again by comprehension the set $\{(x,y)\in dom\ R\times ran\ S:for\ some\ z,\ (x,z)\in R\ and\ (z,y)\in S\}$, this set is equal to $S\circ R$.
- (b) Because $A \times B \times C = (A \times B) \times C \subseteq \mathcal{P}((A \times B) \cup C)$, comprehension implies that the set $\{x \in \mathcal{P}((A \times B) \cup C) : x = (y, z) \text{ for some } y \in A \times B \text{ and } z \in C\}$ exist.
- **2.3** (a) $y \in R[A \cup B]$ iff $(\exists x)(x \in A \cup B \land xRy)$ iff $(\exists x)((x \in A \lor x \in B) \land xRy)$ iff $(\exists x)((x \in A \land xRy) \lor (x \in B \land xRy))$ iff $(\exists x)(x \in A \land xRy) \lor (\exists x)(x \in B \land xRy)$ iff $y \in R[A] \lor y \in R[B]$ iff $y \in R[A] \cup R[B]$.
- (b) Let $y \in R[A \cap B]$, then for some $x \in A \cap B$ we have xRy which means that $x \in A$ such that xRy and $x \in B$ such that xRy, thus $x \in R[A] \cap R[B]$.
- (c) Suppose that $y \in R[A] R[B]$, it means there is some $x \in A$ such that xRy but there is no $z \in B$ such that zRy, because xRy holds for x, it can not be in B, thus $x \in A B$ and xRy which means that $y \in R[A B]$.
- (d) Let $R = \{(a, c), (b, c)\}$ and $A = \{a\}, B = \{b\}$ then $R[A] \cap R[B] = \{c\}$ while $R[A \cap B = \emptyset] = \emptyset$. also $R[A B] = R[\{a\}] = \{c\}$ but $R[A] R[B] = \{c\} \{c\} = \emptyset$, so this falsifies converse of both (b) and (c).
- (f) Fix $x \in A \cap dom\ R$, then because $x \in dom\ R$ there is some y such that xRy, because $x \in A$ we conclude that $y \in R[A]$, so there is some $y \in R[A]$ such that xRy or equivalently $yR^{-1}x$, thus $x \in R^{-1}[R[A]]$.

Fix $y \in B \cap ran\ R$, since $y \in ran\ R$ for some x we have xRy, but $y \in B$ implies that $x \in R^{-1}[B]$, thus for some $x \in R^{-1}[B]$ we have xRy, therefore

 $y \in R[R^{-1}[B]].$

Let $R = \{(a, c), (b, c), (e, f), (e, g)\}$ and $A = \{a\}$, then $A \cap dom \ R = \{a\}$ but $R[A] = \{c\}$, thus $R^{-1}[R[A]] = R^{-1}[\{c\}] = \{a, b\}$, but $\{a, b\} \not\subseteq \{a\}$.

Let R be as before and $B = \{g\}$, then $R^{-1}[B] = \{e\}$ and $R[R^{-1}[B]] = \{f, g\}$, but $B \cap ranR = \{g\}$.

2.4 $R[X] \subseteq ran \ R$ because for any $y \in R[X]$ we have some $x \in X$ such that xRy, thus $y \in ran \ R$. if $y \in ran \ R$, then for some $x \in dom \ R$ we have xRy, but $dom \ R \subseteq X$, thus $x \in X$, so we get for some $x \in X$, xRy, therefore $y \in R[X]$.

suppose $x \in dom\ R$ then there is some $y \in ran\ R$ such that xRy, but xRy iff $yR^{-1}x$ and $ranR \subseteq Y$, therefore there is some $y \in Y$ such that $yR^{-1}x$ which is equal to say that $x \in R^{-1}[Y]$, left to right is trivial.

(b) Assume $a \notin dom \ R$ but $R[\{a\}] \neq \emptyset$, so for some $y \in R[\{a\}]$ we have aRy which means that $a \in dom \ R$, this contradicts our assumption.

Assume $b \notin ran \ R$ and $R^{-1}[\{b\}] \neq \emptyset$, so there is some $x \in R^{-1}[\{b\}]$ such that $bR^{-1}x$ or equivalently xRb, it means that $b \in ran \ R$ which contradicts the assumption.

- (c) $x \in dom \ R$ iff for some y, xRy iff $yR^{-1}x$ iff $x \in ran \ R^{-1}$. $y \in ran \ R$ iff for some x, xRy iff $yR^{-1}x$ iff $y \in dom \ R^{-1}$.
- (d) $(x, y) \in R$ iff $(y, x) \in R^{-1}$ iff $(x, y) \in (R^{-1})^{-1}$.
- (e) if $(x,x) \in Id_{dom\ R}$ then $x \in domR$ which implies that for some y, $(x,y) \in R$, but $(x,y) \in R$ iff $(y,x) \in R^{-1}$, thus we can say that there is some y such that $(x,y) \in R$ and $(y,x) \in R^{-1}$ which is equal to $(x,x) \in R^{-1} \circ R$. the second part can be proved like this.
- **2.5** $\mathcal{P}(X) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}.$ $\in_Y = \{(\emptyset, \{\emptyset\}), (\emptyset, \{\emptyset, \{\emptyset\}\}), (\{\emptyset\}, \{\emptyset, \{\emptyset\}\}), (\{\emptyset\}, \{\{\emptyset\}\})\}.$ $Id_Y = \{(\emptyset, \emptyset), (\{\emptyset\}, \{\emptyset\}), (\{\{\emptyset\}\}, \{\{\emptyset\}\}), (\{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}\})\}.$ $ran(Id_Y) = dom(Id_Y) = fld(Id_Y) = \mathcal{P}(X).$ $dom(\in_Y) = \{\emptyset, \{\emptyset\}\}, ran(\in_Y) = \{\{\emptyset\}, \{\{\emptyset\}\}\}, \{\emptyset, \{\emptyset\}\}\}, fld(\in_Y) = \mathcal{P}(X).$
- **2.6** $(x,y) \in T \circ (S \circ R)$ iff $(\exists z)((x,z) \in (S \circ R) \land (z,y) \in T)$ iff $(\exists z)((\exists u)[(x,u) \in R \land (u,z) \in S] \land (z,y) \in T)$ iff $(\exists z)((\exists u)[(x,u) \in R \land (u,z) \in S \land (z,y) \in T])$ iff $(\exists z)(\exists u)((x,u) \in R \land (u,z) \in S \land (z,y) \in T)$ iff $(\exists u)((x,u) \in R \land (\exists z)[(u,z) \in S \land (z,y) \in T])$ iff $(\exists u)((x,u) \in R \land (u,y) \in T \circ S)$ iff $(x,y) \in T \circ S \circ R$.

- **2.7** Let $X = \{a\}$ and $Y = \{b, c\}, Z = \{d\}.$
 - (a) $(a, b) \in X \times Y$ but $(a, b) \notin Y \times X$.
 - (b) $(a, (b, d)) \in X \times (Y \times Z)$ but $(a, (b, d)) \notin (X \times Y) \times Z$.
 - (c) $((a, a), a) \in X^2 \times X$ but $((a, a), a) \notin X \times X^2$.
- **2.8** (a) Assume $A \neq \emptyset$ and $B \neq$, then there is some $a \in A$ and $b \in B$, but then $(a,b) \in A \times B$, so $A \times B \neq \emptyset$. Now assume $A \times B \neq \emptyset$, then there is some $x \in A \times B$ such that x = (a,b), but it means that $a \in A$ and $b \in B$, thus $A, B \neq \emptyset$.
- (b) $(a,b) \in (A_1 \cup A_2) \times B$ iff $(a \in A_1 \cup A_2) \wedge b \in B$ iff $(a \in A_1 \vee a \in A_2) \wedge b \in B$ iff $(a \in A_1 \wedge b \in B) \vee (a \in A_2 \wedge b \in B)$ iff $(a,b) \in (A_1 \times B) \vee (a,b) \in (A_2 \times B)$ iff $(a,b) \in (A_1 \times B) \cup (A_2 \times B)$.
- $(a,b) \in A \times (B_1 \cup B_2)$ iff $a \in A \wedge b \in (B_1 \cup B_2)$ iff $a \in A \wedge (b \in B_1 \vee b \in B_2)$ iff $(a \in A \wedge b \in B_1) \vee (a \in A \wedge b \in B_2)$ iff $(a,b) \in (A \times B_1) \vee (a,b) \in (A \times B_2)$ iff $(a,b) \in (A \times B_1) \cup (A \times B_2)$.