다중 및 가중 회귀모형

Park Beomjin¹

¹ University of Seoul

1 예제1 : 주택 판매가격 데이터

- 주택 판매가격 데이터(houseprice.csv)는 주택 판매가격(price; 천만원)과 이에 영향을 미칠 것으로 판단되는 4가지 설명변수인 세금(tax; 만원), 대지평수(ground; 평), 건물층수(floor; 층), 그리고 주택 나이(year; 년)를 27가구에 대해 조사한 데이터이다.
- 이에 대한 회귀모형을 $Y = \beta_0 + \beta_1 x_{\text{tax}} + \beta_2 x_{\text{ground}} + \beta_3 x_{\text{floor}} + \beta_3 x_{\text{year}} + \epsilon$ 로 설정하였을 때, 다음과 같은 가설에 대한 검정을 시행하여라.

$$H_{01}: \beta_{\text{tax}} = \beta_{\text{floor}} = 0$$

$$H_{02}: \beta_{\text{year}} = \beta_{\text{ground}} = 0$$

$$H_{03}: \beta_{\text{tax}} = 2\beta_{\text{ground}}$$
(1)

```
PROC REG data = reg.houseprice;

model price = tax -- year;

H1 : test tax = year = 0;

H2 : test year = ground = 0;

H3 : test tax = 2 * ground;

RUN; QUIT;
```

2 예제2 : Wine 데이터

- Wine 데이터는 포르투갈의 북부에 있는 reg wine과 white wine 샘플 데이터이다.
- 데이터는 와인의 품질(quality) 변수와 11개의 화학 측정 결과를 나타내는 변수를 가지고 있다.
- 목표는 화학 측정 결과를 기반으로 와인 품질을 예측하는 모형을 모델링 하는 것이다.
- Q1 : red wine 데이터와 white wine 데이터를 결합하고 type이라는 새로운 변수를 생성하여 reg wine의 데이터인 경우 "red", white wine 데이터인 경우 "white" 값을 갖도록 하여라.

```
DATA reg.wine;
set reg.redwine reg.whitewine(in = x);
length type \$ 5;
if x = 0 then type = "red";
else type = "white";
RUN; QUIT;
```

	fixed_acidity	volatile_acidity	citric_acid	residual_sugar	chlorides	free_sulfur_dioxide	total_sulfur_dioxide	density	pH	sulphates	alcohol	quality	type
1590	6,6	0, 725	0,2	7,8	0,073	29	79	0,9977	3,29	0,54	9,2		5 red
1591	6,3	0,55	0,15	1,8	0,077	26	35	0,99314	3,32	0,82	11,6		6 red
1592	5,4	0,74	0,09	1,7	0,089	16	26	0,99402	3,67	0,56	11,6		6 red
1593	6,3	0,51	0,13	2,3	0,076	29	40	0,99574	3,42	0,75	11		6 red
1594	6,8	0,62	0,08	1,9	0,068	28	38	0,99651	3,42	0,82	9,5		6 red
1595	6,2	0,6	0,08	2	0,09	32	44	0,9949	3,45	0,58	10,5		5 red
1596	5,9	0,55	0, 1	2,2	0,062	39	51	0,99512	3,52	0,76	11,2		6 red
1597	6,3	0,51	0,13	2,3	0,076	29	40	0,99574	3,42	0,75	11		6 red
1598	5,9	0,645	0,12	2	0,075	32	44	0,99547	3,57	0,71	10,2		5 red
1599	6	0,31	0,47	3,6	0,067	18	42	0,99549	3,39	0,66	11		6 red
1600	7	0,27	0,36	20,7	0,045	45	170	1,001	3	0,45	8,8		6 white
1601	6,3	0,3	0,34	1,6	0,049	14	132	0,994	3,3	0,49	9,5		6 white
1602	8,1	0,28	0,4	6,9	0,05	30	97	0,9951	3,26	0,44	10,1		6 white
1603	7,2	0,23	0,32	8,5	0,058	47	186	0,9956	3,19	0,4	9,9		6 white
1604	7,2	0,23	0,32	8,5	0,058	47	186	0,9956	3,19	0,4	9,9		6 white
1605	8,1	0,28	0,4	6,9	0,05	30	97	0,9951	3,26	0,44	10,1		6 white
1606	6,2	0,32	0,16	7	0,045	30	136	0,9949	3,18	0,47	9,6		6 white
1607	7	0,27	0,36	20,7	0,045	45	170	1,001	3	0,45	8,8		6 white
1608	6,3	0,3	0,34	1,6	0,049	14	132	0,994	3,3	0,49	9,5		6 white
1609	8,1	0,22	0,43	1,5	0,044	28	129	0,9938	3,22	0,45	11		6 white
1610	8,1	0,27	0,41	1,45	0,033	11	63	0,9908	2,99	0,56	12		5 white
1611	8,6	0,23	0,4	4.2	0,035	17	109	0,9947	3,14	0,53	9,7		5 white
1612	7,9	0,18	0,37	1,2	0,04	16		0,992	3,18	0,63	10,8		5 white
1613	6,6	0,16	0.4	1,5	0,044	48	143	0,9912	3,54	0,52	12,4		7 white
1614	8,3	0,42	0,62	19,25	0,04	41	172	1,0002	2,98	0,67	9,7		5 white
1615	6,6	0,17	0,38	1,5	0,032	28	112	0,9914	3,25	0,55	11,4		7 white

• Q2: wine 전체 데이터와 reg 그리고 white wine에 대해 quality 변수를 반응변수로 하고 화학 측정 결과를 나타내는 11개 변수를 설명변수로 하는 회귀모형을 각각 적합하고 변수들의 다중공선성을 확인하여라.

```
PROC REG data = reg.wine;
model quality = fixed_acidity -- alcohol / vif;
ods select ParameterEstimates;
RUN; QUIT;
PROC REG data = reg.wine (where = (type = "red"));
model quality = fixed_acidity -- alcohol / vif;
ods select ParameterEstimates:
RUN; QUIT;
PROC REG data = reg.wine (where = (type = "white"));
model quality = fixed_acidity -- alcohol / vif;
ods select ParameterEstimates;
RUN; QUIT;
PROC GLM data = reg.wine;
class type;
model quality = fixed_acidity -- alcohol type / tolerance solution;
RUN; QUIT;
```

• Q3 : vif가 10 이상인 변수를 제외한 후 회귀모형을 다시 적합하고 결과를 해석하여라.

$$\hat{V}(\hat{\beta}_j) = \frac{s^2}{(n-1)\hat{V}(X_j)} \frac{1}{1 - R_j^2}$$
(2)

```
PROC REG data = reg.wine (where = (type = "white"));
model quality = fixed_acidity -- alcohol / vif;
delete density;
RUN; QUIT;

/* Variance proportion */
PROC REG data = reg.wine (where = (type = "white"));
model quality = fixed_acidity -- alcohol / vif collin;
RUN; QUIT;
```


Root MSE				75604	R-Square Adj R-Sq		0.2727			
Dependent Me			Mean 5.				0.	2713		
C	Coeff Var	Var		86235						
		Paran	nete	r Esti	mates	3				
Variable		Parameter Estimate		Standard Error		t Value		Pr > t		Variance Inflation
Intercept		2.06364		0.34823		5.93		<.0001		0
fixed_acidity	1	-0.05	032	0.	01491	-3.	38	0.0007		1.35613
volatile_acidity	1	-1.95	834	0.	0.11386		-17.20		0001	1.12830
citric_acid	1	-0.02	895	0.	09615	-0.30		0.7634		1.15988
residual_sugar	1	0.02564		0.	00255	10.05		<.0001		1.43521
chlorides	1	-0.95253		0.54252		-1.76		0.0792		1.20365
free_sulfur_diox	ide 1	0.00	477	0.00083907		5.68		<.0001		1.74463
total_sulfur_dio	kide 1	-0.00086970		0.00037303		-2.33		0.0198		2.15317
рН	1	0.16	517	0.	08254	2.0		0.0454		1.33091
sulphates	1	0.41	934	0.	09731	4.31		۲.	0001	1.05664
alcohol	1	0.3626		0.01127		32.19		<.0001		1.64712

3 예제3: 탑승객 데이터

• 탑승객 데이터(airline_passengers.csv)는 1949년 1월부터 1960년 12월까지의 어느 공항의 탑승객 수에 대한 데이터이다.

```
PROC IMPORT datafile = "data folder path\airline_passengers.csv"
dbms = csv replace out = reg.passengers;
getnames = yes;
RUN;

DATA reg.passengers2;
set reg.passengers;
ind = _n_;
RUN;
```

• Q1 : 연도를 X(설명변수) 탑승객 수를 Y(반응변수)로 하는 회귀모형을 적합 및 분산의 동질성(homogeneity of variance)에 대해 검정하고 적합된 모형에 대해 논의하여라.

```
/* SAS CODE for Q1 */
PROC REG data = reg.passengers2;
model passengers = ind / spec r;
output out = reg.passenger_out p = pred r = resid;
RUN; QUIT;
```

• Q2 : 데이터를 이용하여 이분산성을 해결할 수 있는 가중치를 산출하는 방법을 생각 해보고 가중치를 산출하여라.

```
/* SAS CODE for Q2 */
DATA reg.abs_resid;
set reg.passenger_out;
abs_resid = abs(resid);
RUN; QUIT;

PROC REG data = reg.abs_resid NOPRINT;
model abs_resid = ind;
output out = reg.passenger_abs_resid p = pred;
RUN; QUIT;
```

• Q3 : 계산한 가중치를 이용하여 가중 최소제곱법(weighted least square)을 통해 회귀 모형을 적합 및 분산의 동질성 검정을 하여라.

```
/* SAS CODE for Q3*/
DATA reg.weight_dat;
set reg.passenger_abs_resid;
w = 1 / (pred**2);
PROC REG data = reg.weight_dat;
model passengers = ind / spec r;
weight w;
output out = reg.fpassenger p = wp student = wr r = wr0;
RUN; QUIT;
```