PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISI	HED U	UNDER THE PATENT COOPERATION TREATY (PCT)
(51) International Patent Classification ⁶ :		(11) International Publication Number: WO 98/27198
C12N 9/02 // (C12N 9/02, C12R 1:645)	A1	(43) International Publication Date: 25 June 1998 (25.06.98)
(21) International Application Number: PCT/DK (22) International Filing Date: 16 December 1997 ((30) Priority Data: 1449/96 19 December 1996 (19.12.9 8 September 1997 (08.09.97) (71) Applicant: NOVO NORDISK A/S [DK/DK]; No DK-2880 Bagsvaerd (DK). (72) Inventors: PEDERSEN, Anders, Hjelholt; Nybro V. DK-2800 Lyngby (DK). SVENDSEN, Allan; B 28, DK-3460 Birkerød (DK). SCHNEIDER, P dtoften 43, DK-2750 Ballerup (DK). RASN Grethe; Brudedalen 1, DK-3520 Farum (DK). Gol, R.; C.V.E. Knuthsvej 9, DK-2100 Hellerup (74) Common Representative: NOVO NORDISK A/S; Patents, Novo Allé, DK-2880 Bagsværd (DK).	(16.12.9 (16.12	BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TI, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG). Published With international search report.
(54) Title: LACCASE MUTANTS		
(57) Abstract		
The present invention relates to a method of designing the hitherto unknown three-dimensional structure of Copy	ing lacc rinus cir	ase mutants with improved stability properties, which method is based or nereus laccase.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

1

LACCASE MUTANTS

FIELD OF THE INVENTION

The present invention relates to a method of designing laccase mutants with improved stability properties, which method is based on the hitherto unknown three-dimensional structure of laccases.

10 BACKGROUND OF THE INVENTION

Laccase is a polyphenol oxidase (EC 1.10.3.2) which catalyses the oxidation of a variety of inorganic and aromatic compounds, particularly phenols, with the concomitant reduction of molecular 15 oxygen to water.

Laccase belongs to a family of blue copper-containing oxidases which includes ascorbate oxidase and the mammalian plasma protein ceruloplasmin. All these enzymes are multi-coppercontaining proteins.

Because laccases are able to catalyze the oxidation of a variety of inorganic and aromatic compounds, laccases have been suggested in many potential industrial applications such as lignin modification, paper strengthening, dye transfer inhibition in detergents, phenol polymerization, hair colouring, and waste 25 water treatment. A major problem with the use of laccases are their poor storage stability at temperatures room temperature, especially at 40°C.

In Example 1 of the present application we have tested the stability of various laccases at 40°C, and it can be seen that 30 after 2 weeks of storage the laccase activity is down to less than 50% of the initial value, and at low pH the laccase activity after 2 weeks is zero. For many purposes such a decrease is unacceptable, so it is the purpose of the present invention to create laccase variants with improved stability by using the 35 information of a three-dimensional structure of a Coprinus cinereus laccase. No three-dimensional structural information has been available for a laccase before.

BRIEF DISCLOSURE OF THE INVENTION

The three-dimensional structure of a laccase has now been elucidated. On the basis of an analysis of said structure it is 5 possible to identify structural parts or specific amino acid residues which from structural or functional considerations appear to be important for the stability of a laccase.

Furthermore, when comparing the three-dimensional structure of the *Coprinus* laccase structure with known amino acid sequences 10 of various laccases, it has been found that some similarities exist between the sequences. The present invention is based on these findings.

Accordingly, in a first aspect the invention relates to a method of constructing a variant of a parent *Coprinus* laccase, 15 which variant has laccase activity and improved stability as compared to said parent laccase, which method comprises

i) analysing the three-dimensional structure of the parent Coprinus laccase to identify at least one amino acid residue or
 20 at least one structural part of the Coprinus laccase structure, which amino acid residue or structural part is believed to be of relevance for altering the stability of the parent Coprinus laccase (as evaluated on the basis of structural or functional considerations),

25

ii) constructing a *Coprinus* laccase variant, which as compared to the parent *Coprinus* laccase, has been modified in the amino acid residue or structural part identified in i) so as to alter the stability, and, optionally,

30

iii) testing the resulting *Coprinus* laccase variant with respect to stability.

In a second aspect the present invention relates to a method of constructing a variant of a parent Coprinus-like laccase,

- 35 which variant has laccase activity and improved stability as compared to said parent laccase, which method comprises
 - i) comparing the three-dimensional amino acid structure of the

Coprinus laccase with an amino acid sequence of a Coprinus-like laccase,

- ii) identifying a part of the *Coprinus*-like laccase amino acid sequence which is different from the *Coprinus* laccase amino acid sequence and which from structural or functional considerations is contemplated to be responsible for differences in the stability of the *Coprinus* and *Coprinus*-like laccase,
- 10 iii) modifying the part of the *Coprinus*-like laccase identified in ii) whereby a *Coprinus*-like laccase variant is obtained, which has an improved stability as compared to the parent *Coprinus*-like laccase, and optionally,
- 15 iv) testing the resulting *Coprinus*-like laccase variant with respect to stability.

In still further aspects the invention relates to variants of a *Coprinus* laccase and of *Coprinus*-like laccases, DNA encoding 20 such variants and methods of preparing the variants. Finally, the invention relates to the use of the variants for various industrial purposes.

DETAILED DISCLOSURE OF THE INVENTION

25

The Coprinus-like laccases

A number of laccases produced by different fungi are homologous on the amino acid level. For instance, when using the homology percent obtained from UWGCG program using the GAP 30 program with the default parameters (penalties: gap weight=3.0, length weight=0.1; WISCONSIN PACKAGE Version 8.1-UNIX, August 1995, Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711) the following homology was found: Coprinus cinereus laccase comprising the amino acid sequence 35 shown in SEQ ID No. 1: 100%; Polyporus pinsitus (I) laccase comprising the amino acid sequence

PCT/DK97/00571 WO 98/27198

4

shown in SEQ ID No. 2: 74.4%;

Polyporus pinsitus (II) laccase comprising the amino sequence shown in SEQ ID No. 3: 73.8%;

Phlebia radiata laccase comprising the amino acid sequence shown

5 in SEQ ID No. 4: 69.9%;

Rhizoctonia solani (I) laccase comprising the amino acid sequence shown in SEO ID No. 5: 64.8%;

Rhizoctonia solani (II) laccase comprising the amino acid sequence shown in SEQ ID No. 6: 63.0%;

10 Rhizoctonia solani (III) laccase comprising the amino acid sequence shown in SEQ ID No. 7: 61.0%;

Rhizoctonia solani (IV) laccase comprising the amino acid sequence shown in SEQ ID No. 8: 59.7%;

Scytalidium thermophilum laccase comprising the amino acid

15 sequence shown in SEQ ID No. 9: 57.4%;

Myceliophthora thermophila laccase comprising the amino acid sequence shown in SEQ ID No. 10: 56.5%.

Because of the homology found between the above mentioned 20 laccases, they are considered to belong to the same class of laccases, namely the class of "Coprinus-like laccases".

Accordingly, in the present context, the term "Coprinus-like laccase" is intended to indicate a laccase which, on the amino acid level, displays a homology of at least 50% and less than 25 100% to the Coprinus cinereus laccase SEQ ID NO 1, or at least 55% and less than 100% to the Coprinus cinereus laccase SEQ ID NO 1, or at least 60% and less than 100% to the Coprinus cinereus laccase SEQ ID NO 1, or at least 65% and less than 100% to the Coprinus cinereus laccase SEQ ID NO 1, or at least 70% and less 30 than 100% to the Coprinus cinereus laccase SEQ ID NO 1, or at least 75% and less than 100% to the Coprinus cinereus laccase SEQ ID NO 1, or at least 80% and less than 100% to the Coprinus cinereus laccase SEQ ID NO 1, or at least 85% and less than 100% to the Coprinus cinereus laccase SEQ ID NO 1, or at least 90% and 35 less than 100% to the Coprinus cinereus laccase SEQ ID NO 1, or

at least 95% and less than 100% to the Coprinus cinereus laccase SEO ID NO 1.

In the present context, "derived from" is intended not only to indicate a laccase produced or producible by a strain of the 5 organism in question, but also a laccase encoded by a DNA sequence isolated from such strain and produced in a host organism containing said DNA sequence. Finally, the term is intended to indicate a laccase which is encoded by a DNA sequence of synthetic and/or cDNA origin and which has the identifying 10 characteristics of the laccase in question.

The three-dimensional Coprinus laccase structure

The Coprinus laccase which was used to elucidate the threedimensional structure forming the basis for the present invention 15 consists of the 539 amino acids derived from Coprinus cinereus laccase IFO 8371 as disclosed in sequence ID No. 1.

The obtained three-dimensional structure is believed to be representative for the structure of any Coprinus-like laccase.

The structure of the laccase was solved in accordance with 20 the principle for X-ray crystallographic methods given in "X-Ray Structure Determination", Stout, G.K. and Jensen, L.H., Wiley & Sons, inc. NY, 1989. The structural coordinates for the solved crystal structure of the laccase at 2.2 Å resolution using the isomorphous replacement method are given in a standard PDB 25 format (Brookhaven Protein Data Base) in Appendix 1. It is to be understood that Appendix 1 forms part of the present application.

In Appendix 1 the amino acid residues of the enzyme are identified by three-letter amino acid code (capitalized letters).

The laccase structure is made up of three plastocyanin-like 30 domains. These three domains all have a similar beta-barrel fold.

copper atoms were observed in the three-dimensional structure:

The so-called type 1 copper ion is coordinated by two histidines and one cysteine.

The so-called type 2 copper of the trinuclear centre is missing in the structure disclosed in the present application.

The so-called type 3 copper consists of two type 3 copper

atoms (pair of copper atoms) bound to a total of 6 histidine ligands.

When comparing the amino acid sequence of the crystallized three-dimensional structure with Coprinus cinereus amino acid 5 sequence ID No. 1 the following four differences are observed:

- amino acids are missing from the N-terminal of the crystallized protein;
- the C-terminal of the from amino acids are missing crystallized protein;
- 10 Q19 in sequence ID No. 1 is an A1 in the crystallized protein; and
 - Q243 in sequence ID No. 1 is an E225 in the crystallized protein.

Generality of structure

Because of the homology between the Coprinus laccase and the 15 various Coprinus-like laccases, the solved structure defined by the coordinates of Appendix 1 is believed to be representative for the structure of all Coprinus-like laccases. structure of Coprinus-like laccases may be built on the basis of. 20 the coordinates given in Appendix 1 adapted to the laccase in question by use of an alignment between the respective amino acid sequences.

The above identified structurally characteristic parts of the Coprinus laccase structure may be identified in other Coprinus-25 like laccases on the basis of a model (or solved) structure of the relevant Coprinus-like laccase or simply on the basis of an alignment between the amino acid sequence of the Coprinus-like laccase in question with that of the Coprinus laccase used herein for identifying the amino acid residues of the respective 30 structural elements.

Furthermore, in connection with Coprinus laccase variants of the invention, which are defined by modification of specific amino acid residues of the parent Coprinus laccase, it will be understood that variants of Coprinus-like laccases modified in an 35 equivalent position (as determined from the best possible amino acid sequence alignment between the respective sequences) are

intended to be covered as well.

Methods of the invention for design of novel laccase variants

The analysis or comparison performed in step i) of the 5 methods of the invention may be performed by use of any suitable computer programme capable of analysing and/or comparing amino acid sequences.

The structural part which is identified in step i) of the methods of the invention may be composed of one amino acid 10 residue. However, normally the structural part comprises more than one amino acid residue, typically constituting one of the above mentioned parts of the Coprinus structure such as one of the copper centres.

According to the invention useful laccase variants may be 15 modified in one or more amino acid residues present within 15 Å from any copper ion, preferably variants which are modified within 10 Å from any copper ion, in particular variants which are modified within 5 Å from any copper ion.

Determination of residues within 5Å, 10Å and 15Å from the 20 copper ions in the three-dimensional structure: The coordinates from the appendix are read into INSIGHT program provided by BIOSYM technologies. The spatial coordinates are presented showing the bonds between the atoms. The copper atoms are presented as well as the water atoms. The program package 25 contains a part which can be used for creating subsets. This part is used for creating a 5Å, 10Å and 15Å subset around all Cu-ions present in the structure (the command ZONE is used). The found subsets contain all residues having an atom within 5, 10 and 15Å from any of the Cu-ions present in the structure. All 30 residues having an atom within this subset are compiled and written out by the LIST MOLECULE command.

The amino acid residues found in this way within a distance of 15 Å from a copper ion in the *Coprinus cinereus* laccase are the following (SEQ ID No 1 numbering):

35 M27, V46, G51, P52, I54, L64, L76, T79, S80, I81, H82, W83, H84, G85, L86, F87, Q88, R89, T91, N92, W93, A94, D95, G96, A97, D98, G99, V100, N101, Q102, C103, P104, Y113, F115, H120, G122, T123, F124, W125, Y126, H127, S128, H129, F130, G131, T132, Q133, Y134,

8

C135, D136, G137, L138, R139, G140, P141, M142, V143, I144, I164, T165, L166, A167, D168, H170, G179, A180, A181, Q182, P183, L217, I218, S219, L220, S221, C222, D223, P224, N225, W226, E239, V240, D241, G242, Q243, Q254, I255, F256, T257, G258, Q259, R260, Y261, 5 N281, K282, F349, Q350, L351, G352, F353, S354, G356, R357, F358, T359, I360, N361, T363, A364, Y365, E366, S367, P368, P371, T372, L373, P388, S391, V392, L403, V404, V405, P406, A407, G408, V409, L410, G411, G412, P413, H414, P415, F416, H417, L418, H419, G420, H421, A422, F423, A429, K441, R442, D443, V444, V445, S446, L447, 10 G448, V449, T450, D452, V454, I456, F458, N462, G464, P465, W466, F467, F468, H469, C470, H471, I472, E473, F474, H475, L476, M477, N478, G479, L480, A481, I482, V483, F484, A485, E486.

The amino acid residues found within a distance of 10 Å from a copper ion in the Coprinus cinereus laccase (SEQ ID No 1) are 15 the following:

S80, I81, H82, W83, H84, G85, L86, D95, G96, A97, D98, V100, N101, F124, W125, Y126, H127, S128, H129, F130, G131, Y134, L138, R139, G140,, I218, S219, L220, S221, C222, D223, P224, D241, F256, T257, G258, Q259, R260, K282, L351, G352, F353, F358, T359, 20 V405, V409, L410, G411, G412, P413, H414, P415, F416, H417, L418, H419, G420, D443, V444, V445, S446, L447, G448, V454, I456, F458, W466, F467, F468, H469, C470, H471, I472, E473, F474, H475, L476, M477, N478, G479, L480, A481, I482.

The amino acid residues found within a distance of 5 Å from a 25 copper ion in the Coprinus cinereus laccase (SEQ ID No 1) are the following:

H82, H84, W125, H127, H129, G411, H414, P415, H417, H419, F467, H469, C470, H471, I472, H475, L480.

The $15\text{\AA}/10\text{\AA}/5\text{\AA}$ regions can be found in other laccases by 30 comparison of the modelled structures or by taking the sequence homology numbers.

Modifications

The modification of an amino acid residue or structural part 35 is typically accomplished by suitable modifications of a DNA sequence encoding the parent enzyme in question. The term "modified" as used in the methods according to the invention is intended to have the following meaning: When used in relation to an amino acid residue the term is intended to mean replacement of the amino acid residue in question with another amino acid residue. When used in relation to a structural part, the term is intended to mean: replacement of one or more amino acid residues of said structural part with other amino acid residues, or addition of one or more amino acid residues to said part, or deletion of one or more amino acid residues of said structural part.

The construction of the variant of interest is accomplished 10 by cultivating a microorganism comprising a DNA sequence encoding the variant under conditions which are conducive for producing the variant, and optionally subsequently recovering the variant from the resulting culture broth. This is described in detail further below.

15

Variants with altered stability

M313 -

It is contemplated that it is possible to improve the stability of a parent Coprinus laccase or a parent Coprinus-like laccase, wherein said variant is the result of a mutation, i.e. 20 one or more amino acid residues having been deleted from, replaced or added to the parent laccase, the stability test performed as described below.

Preferred positions for mutations are the following:

25	MtL:	StL:	CcL:	PpL1:	PpL2:	PrL:	RsL4: F	RsL1: R	sL2: R	sL3:
	M433	M483	-	-	-	_	-	-	-	-
	W37 3	W422	-	-	-	-	W411	W411	W439	-
	W136	W181	W125	W107	W107	W128	W125	W125	W125	W126
	Y145	Y190	Y134	Y116	Y116	Y137	Y134	Y134	Y134	Y135
30	M480	M530	-	-	-	-	-	-	-	-
	Y137	Y182	Y126	Y108	Y108	Y129	9 Y126	Y126	Y126	Y127
	Y176	Y221	Y170	Y152	Y152	Y137	7 Y170	Y169	Y170	Y171
	M254	M300	-	-	-	-	-	-	-	-
	-	-	M7 5	M57	M57	M78	M75	M75	M75	M76
35	-	-	M477	-						
				M328						

PCT/DK97/00571 WO 98/27198 10

W507,

wherein

CcL: Coprinus cinereus laccase comprising the amino acid sequence shown in SEQ ID No. 1;

5 PpL1: Polyporus pinsitus (I) laccase comprising the amino acid sequence shown in SEQ ID No. 2;

PpL2: Polyporus pinsitus (II) laccase comprising the amino acid sequence shown in SEQ ID No. 3;

PrL: Phlebia radiata laccase comprising the amino acid sequence 10 shown in SEQ ID No. 4;

RsL3: Rhizoctonia solani (I) laccase comprising the amino acid sequence shown in SEQ ID No. 5;

RsL2: Rhizoctonia solani (II) laccase comprising the amino acid sequence shown in SEQ ID No. 6;

15 RsL4: Rhizoctonia solani (III) laccase comprising the amino acid sequence shown in SEQ ID No. 7;

RsL1: Rhizoctonia solani (IV) laccase comprising the amino acid sequence shown in SEQ ID No. 8;

StL: Scytalidium thermophilum laccase comprising the amino acid 20 sequence shown in SEQ ID No. 9; and

MtL: Myceliophthora thermophila laccase comprising the amino acid sequence shown in SEQ ID No. 10.

The above shown rows have homologous positions. (-) or () = 25 not present in this laccase.

The following variants are preferred:

A variant of a parent Coprinus laccase, which comprises one 30 or more of the following substitutions in SEQ ID No. 1:

W125 A, V, L, I, P, F, M, G, S, T, C, Y, N, Q, D, E, K, R, H;

Y134 A, V, L, I, P, F, W, G, S, T, C, M, N, Q, D, E, K, R, H;

Y126 A, V, L, I, P, F, W, G, S, T, C, M, N, Q, D, E, K, R, H;

Y170 A, V, L, I, P, F, W, G, S, T, C, M, N, Q, D, E, K, R, H;

35 M75 A, V, L, I, P, F, W, G, S, T, C, Y, N, Q, D, E, K, R, H;

M477 A, V, L, I, P, F, W, G, S, T, C, Y, N, Q, D, E, K, R, H.

In particular a variant of a parent *Coprinus* laccase, which comprises one or more of the following substitutions in SEQ ID No. 1:

```
5 W125 F, H;

Y134 F;

Y126 F;

Y170 F;

M75 F, V, I, L, Q;

10 M477 F, V, I, L, Q.
```

A variant of a parent *Polyporus pinsitus (I)* laccase, which comprises a mutation in a position corresponding to at least one of the following positions in SEQ ID No. 2:

```
15 W107 A, V, L, I, P, F, M, G, S, T, C, Y, N, Q, D, E, K, R, H; Y116 A, V, L, I, P, F, W, G, S, T, C, M, N, Q, D, E, K, R, H; Y108 A, V, L, I, P, F, W, G, S, T, C, M, N, Q, D, E, K, R, H; Y152 A, V, L, I, P, F, W, G, S, T, C, M, N, Q, D, E, K, R, H; M57 A, V, L, I, P, F, W, G, S, T, C, Y, N, Q, D, E, K, R, H; 20 M328 A, V, L, I, P, F, W, G, S, T, C, Y, N, Q, D, E, K, R, H.
```

In particular a variant of a parent *Polyporus pinsitus (I)* laccase, which comprises a mutation in a position corresponding to at least one of the following positions in SEQ ID No. 2:

```
25 W107 F, H;

Y116 F;

Y108 F;

Y152 F;

M57 F, V, I, L, Q;

30 M328 F, V, I, L, Q.
```

A variant of a parent *Polyporus pinsitus (II)* laccase, which comprises a mutation in a position corresponding to at least one of the following positions in SEQ ID No. 3:

```
35 W107 A, V, L, I, P, F, M, G, S, T, C, Y, N, Q, D, E, K, R, H; Y116 A, V, L, I, P, F, W, G, S, T, C, M, N, Q, D, E, K, R, H; Y108 A, V, L, I, P, F, W, G, S, T, C, M, N, Q, D, E, K, R, H;
```

WO 98/27198 PCT/DK97/00571

12

Y152 A, V, L, I, P, F, W, G, S, T, C, M, N, Q, D, E, K, R, H; M57 A, V, L, I, P, F, W, G, S, T, C, Y, N, Q, D, E, K, R, H.

In particular a variant of a parent Polyporus pinsitus (II) 5 laccase, which comprises a mutation in a position corresponding to at least one of the following positions in SEQ ID No. 3:

W107 F, H; Y116 F;

Y108 F;

10 Y152 F;

M57 F, V, I, L, Q.

A variant of a parent Phlebia radiata laccase, which comprises a mutation in a position corresponding to at least one 15 of the following positions in SEQ ID No. 4:

W128 A, V, L, I, P, F, M, G, S, T, C, Y, N, Q, D, E, K, R, H;

Y137 A, V, L, I, P, F, W, G, S, T, C, M, N, Q, D, E, K, R, H;

Y129 A, V, L, I, P, F, W, G, S, T, C, M, N, Q, D, E, K, R, H;

Y137 A, V, L, I, P, F, W, G, S, T, C, M, N, Q, D, E, K, R, H;

20 M78 A, V, L, I, P, F, W, G, S, T, C, Y, N, Q, D, E, K, R, H.

In particular a variant of a parent Phlebia radiata laccase, which comprises a mutation in a position corresponding to at least one of the following positions in SEQ ID No. 4:

25 W128 F, H;

Y137 F;

Y129 F;

Y137 F;

M78 F, V, I, L, Q.

30

A variant of a parent Rhizoctonia solani (I) laccase, which comprises a mutation in a position corresponding to at least one of the following positions in SEQ ID No. 5:

W126 A, V, L, I, P, F, M, G, S, T, C, Y, N, Q, D, E, K, R, H;

35 Y135 A, V, L, I, P, F, W, G, S, T, C, M, N, Q, D, E, K, R, H;

Y127 A, V, L, I, P, F, W, G, S, T, C, M, N, Q, D, E, K, R, H;

Y171 A, V, L, I, P, F, W, G, S, T, C, M, N, Q, D, E, K, R, H;

M76 A, V, L, I, P, F, W, G, S, T, C, Y, N, Q, D, E, K, R, H.

In particular a variant of a parent *Rhizoctonia solani (I)* laccase, which comprises a mutation in a position corresponding 5 to at least one of the following positions in SEQ ID No. 5:

W126 F, H; Y135 F; Y127 F; Y171 F; 10 M76 F, V, I, L, Q.

A variant of a parent *Rhizoctonia solani (II)* laccase, which comprises a mutation in a position corresponding to at least one of the following positions in SEQ ID No. 6:

15 W439 A, V, L, I, P, F, M, G, S, T, C, Y, N, Q, D, E, K, R, H; W125 A, V, L, I, P, F, M, G, S, T, C, Y, N, Q, D, E, K, R, H; Y134 A, V, L, I, P, F, W, G, S, T, C, M, N, Q, D, E, K, R, H; Y126 A, V, L, I, P, F, W, G, S, T, C, M, N, Q, D, E, K, R, H; Y170 A, V, L, I, P, F, W, G, S, T, C, M, N, Q, D, E, K, R, H; 20 M75 A, V, L, I, P, F, W, G, S, T, C, Y, N, Q, D, E, K, R, H.

In particular a variant of a parent Rhizoctonia solani (II) laccase, which comprises a mutation in a position corresponding to at least one of the following positions in SEQ ID No. 6:

25 W439 F, H; W125 F, H; Y134 F; Y126 F; Y170 F;

A variant of a parent *Rhizoctonia solani (III)* laccase, which comprises a mutation in a position corresponding to at least one of the following positions in SEQ ID No. 7:

35 W411 A, V, L, I, P, F, M, G, S, T, C, Y, N, Q, D, E, K, R, H; W125 A, V, L, I, P, F, M, G, S, T, C, Y, N, Q, D, E, K, R, H; Y134 A, V, L, I, P, F, W, G, S, T, C, M, N, Q, D, E, K, R, H;

14

```
Y126 A, V, L, I, P, F, W, G, S, T, C, M, N, Q, D, E, K, R, H;
Y170 A, V, L, I, P, F, W, G, S, T, C, M, N, Q, D, E, K, R, H;
M75 A, V, L, I, P, F, W, G, S, T, C, Y, N, Q, D, E, K, R, H.
```

In particular a variant of a parent Rhizoctonia solani (III) laccase, which comprises a mutation in a position corresponding to at least one of the following positions in SEQ ID No. 7:

W411 F, H; W125 F, H; 10 Y134 F; Y126 F; Y170 F;

M75 F, V, I, L, Q.

15 A variant of a parent Rhizoctonia solani (IV) laccase, which comprises a mutation in a position corresponding to at least one of the following positions in SEQ ID No. 8:

W411 A, V, L, I, P, F, M, G, S, T, C, Y, N, Q, D, E, K, R, H; W125 A, V, L, I, P, F, M, G, S, T, C, Y, N, Q, D, E, K, R, H; 20 Y134 A, V, L, I, P, F, W, G, S, T, C, M, N, Q, D, E, K, R, H; Y126 A, V, L, I, P, F, W, G, S, T, C, M, N, Q, D, E, K, R, H; Y170 A, V, L, I, P, F, W, G, S, T, C, M, N, Q, D, E, K, R, H; M75 A, V, L, I, P, F, W, G, S, T, C, Y, N, Q, D, E, K, R, H.

In particular a variant of a parent Rhizoctonia solani (IV) laccase, which comprises a mutation in a position corresponding to at least one of the following positions in SEQ ID No. 8:

W411 F, H; W125 F, H; 30 Y134 F; Y126 F; Y170 F; M75 F, V, I, L, Q.

A variant of a parent Scytalidium thermophilum laccase, which comprises a mutation in a position corresponding to at least one of the following positions in SEQ ID No. 9:

```
15
```

```
M483 A, V, L, I, P, F, W, G, S, T, C, Y, N, Q, D, E, K, R, H;
 W422 A, V, L, I, P, F, M, G, S, T, C, Y, N, Q, D, E, K, R, H;
 W181 A, V, L, I, P, F, M, G, S, T, C, Y, N, Q, D, E, K, R, H;
 Y190 A, V, L, I, P, F, W, G, S, T, C, M, N, Q, D, E, K, R, H;
5 M530 A, V, L, I, P, F, W, G, S, T, C, Y, N, Q, D, E, K, R, H;
 Y182 A, V, L, I, P, F, W, G, S, T, C, M, N, Q, D, E, K, R, H;
 Y221 A, V, L, I, P, F, W, G, S, T, C, M, N, Q, D, E, K, R, H;
 M300 A, V, L, I, P, F, W, G, S, T, C, Y, N, Q, D, E, K, R, H;
 M313 A, V, L, I, P, F, W, G, S, T, C, Y, N, Q, D, E, K, R, H.
10
```

In particular a variant of a parent Scytalidium thermophilum laccase, which comprises a mutation in a position corresponding to at least one of the following positions in SEQ ID No. 9:

M483 F, V, I, L, Q; 15 W422 F, H; W181 F, H;

Y190 F;

M530 F, V, I, L, Q;

Y182 F;

20 Y221 F;

M300 F, V, I, L, Q;

M313 F, V, I, L, Q.

A variant of a parent Myceliophthora thermophila laccase, 25 which comprises a mutation in a position corresponding to at least one of the following positions in SEQ ID No. 10: M433 A, V, L, I, P, F, W, G, S, T, C, Y, N, Q, D, E, K, R, H; W373 A, V, L, I, P, F, M, G, S, T, C, Y, N, Q, D, E, K, R, H; W136 A, V, L, I, P, F, M, G, S, T, C, Y, N, Q, D, E, K, R, H; 30 Y145 A, V, L, I, P, F, W, G, S, T, C, M, N, Q, D, E, K, R, H; M480 A, V, L, I, P, F, W, G, S, T, C, Y, N, Q, D, E, K, R, H; Y137 A, V, L, I, P, F, W, G, S, T, C, M, N, Q, D, E, K, R, H; Y176 A, V, L, I, P, F, W, G, S, T, C, M, N, Q, D, E, K, R, H;

M254 A, V, L, I, P, F, W, G, S, T, C, Y, N, Q, D, E, K, R, H.

35

In particular a variant of a parent Myceliophthora thermophila laccase, which comprises a mutation in a position corresponding to at least one of the following positions in SEQ
ID No. 10:
 M433 F, V, I, L, Q;
 W373 F, H;
5 W136 F, H;
 Y145 F;
 M480 F, V, I, L, Q;
 Y137 F;
 Y176 F;
10 M254 F, V, I, L, Q.

Methods of preparing laccase variants

Several methods for introducing mutations into genes are known in the art. After a brief discussion of the cloning of 15 laccase-encoding DNA sequences, methods for generating mutations at specific sites within the laccase-encoding sequence will be discussed.

Cloning a DNA sequence encoding a laccase

The DNA sequence encoding a parent laccase may be isolated 20 from any cell or microorganism producing the laccase in question, using various methods well known in the art. First, a genomic DNA and/or cDNA library should be constructed using chromosomal DNA or messenger RNA from the organism that produces the laccase to be studied. Then, if the amino acid sequence of the laccase is 25 known, homologous, labelled oligonucleotide probes may be synthesized and used to identify laccase-encoding clones from a genomic library prepared from the organism in question. Alternatively, a labelled oligonucleotide probe containing sequences homologous to a known laccase gene could be used as a probe to 30 identify laccase-encoding clones, using hybridization and washing conditions of lower stringency.

A method for identifying laccase-encoding clones involves inserting cDNA into an expression vector, such as a plasmid, transforming laccase-negative fungi with the resulting cDNA 35 library, and then plating the transformed fungi onto agar containing a substrate for laccase, thereby allowing clones expressing the laccase to be identified.

Alternatively, the DNA sequence encoding the enzyme may be

prepared synthetically by established standard methods, e.g. the phosphoroamidite method. In the phosphoroamidite method, oligonucleotides are synthesized, e.g. in an automatic DNA synthesizer, purified, annealed, ligated and cloned in appropriate vectors.

Finally, the DNA sequence may be of mixed genomic and synthetic origin, mixed synthetic and cDNA origin or mixed genomic and cDNA origin, prepared by ligating fragments of synthetic, genomic or cDNA origin (as appropriate, the fragments corresponding to various parts of the entire DNA sequence), in accordance with 10 standard techniques. The DNA sequence may also be prepared by polymerase chain reaction (PCR) using specific primers.

Site-directed mutagenesis

Once a laccase-encoding DNA sequence has been isolated, and 15 desirable sites for mutation identified, mutations may be introduced using synthetic oligonucleotides. These oligonucleotides contain nucleotide sequences flanking the desired mutation sites; mutant nucleotides are inserted during oligonucleotide synthesis. In a specific method, a single-stranded gap of DNA, bridging the 20 laccase-encoding sequence, is created in a vector carrying the laccase gene. Then the synthetic nucleotide, bearing the desired mutation, is annealed to a homologous portion of the singlestranded DNA. The remaining gap is then filled in with T7 DNA polymerase and the construct is ligated using T4 ligase. A 25 specific example of this method is described in Morinaga et al. (1984). US 4,760,025 discloses the introduction of oligonucleotides encoding multiple mutations by performing minor alterations of the cassette. However, an even greater variety of mutations can be introduced at any one time by the Morinaga method, because 30 a multitude of oligonucleotides, of various lengths, can be introduced.

Another method of introducing mutations into laccase-encoding DNA sequences is described in Nelson and Long (1989). It involves the 3-step generation of a PCR fragment containing the desired 35 mutation introduced by using a chemically synthesized DNA strand as one of the primers in the PCR reactions. From the PCR-generated fragment, a DNA fragment carrying the mutation may be isolated by cleavage with restriction endonucleases and

reinserted into an expression plasmid.

Random mutagenesis

The random mutagenesis of a DNA sequence encoding a parent 5 laccase may conveniently be performed by use of any method known in the art.

For instance, the random mutagenesis may be performed by use of a suitable physical or chemical mutagenizing agent, by use of a suitable oligonucleotide, or by subjecting the DNA sequence to 10 PCR generated mutagenesis. Furthermore, the random mutagenesis may be performed by use of any combination of these mutagenizing agents.

The mutagenizing agent may, e.g., be one which induces transitions, transversions, inversions, scrambling, deletions, and/or insertions.

Examples of a physical or chemical mutagenizing agent suitable for the present purpose include ultraviolet (UV) irradiation, hydroxylamine, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), O-methyl hydroxylamine, nitrous acid, ethyl methane 20 sulphonate (EMS), sodium bisulphite, formic acid, and nucleotide analogues.

When such agents are used, the mutagenesis is typically performed by incubating the DNA sequence encoding the parent enzyme to be mutagenized in the presence of the mutagenizing agent of 25 choice under suitable conditions for the mutagenesis to take place, and selecting for mutated DNA having the desired properties.

When the mutagenesis is performed by the use of an oligonucleotide, the oligonucleotide may be doped or spiked with the 30 three non-parent nucleotides during the synthesis of the oligonucleotide at the positions which are to be changed. The doping or spiking may be done so that codons for unwanted amino acids are avoided. The doped or spiked oligonucleotide can be incorporated into the DNA encoding the laccase enzyme by any 35 published technique, using e.g. PCR, LCR or any DNA polymerase and ligase.

When PCR-generated mutagenesis is used, either a chemically treated or non-treated gene encoding a parent laccase enzyme is

subjected to PCR under conditions that increase the misincorporation of nucleotides (Deshler 1992; Leung et al., Technique, Vol.1, 1989, pp. 11-15).

A mutator strain of *E. coli* (Fowler et al., Molec. Gen. 5 Genet., 133, 1974, pp. 179-191), *S. cereviseae* or any other microbial organism may be used for the random mutagenesis of the DNA encoding the laccase enzyme by e.g. transforming a plasmid containing the parent enzyme into the mutator strain, growing the mutator strain with the plasmid and isolating the mutated plasmid 10 from the mutator strain. The mutated plasmid may subsequently be transformed into the expression organism.

The DNA sequence to be mutagenized may conveniently be present in a genomic or cDNA library prepared from an organism expressing the parent laccase enzyme. Alternatively, the DNA se- 15 quence may be present on a suitable vector such as a plasmid or a bacteriophage, which as such may be incubated with or otherwise exposed to the mutagenizing agent. The DNA to be mutagenized may also be present in a host cell either by being integrated in the genome of said cell or by being present on a vector harboured in 20 the cell. Finally, the DNA to be mutagenized may be in isolated form. It will be understood that the DNA sequence to be subjected to random mutagenesis is preferably a cDNA or a genomic DNA sequence.

In some cases it may be convenient to amplify the mutated DNA 25 sequence prior to the expression step or the screening step being performed. Such amplification may be performed in accordance with methods known in the art, the presently preferred method being PCR-generated amplification using oligonucleotide primers prepared on the basis of the DNA or amino acid sequence of the 30 parent enzyme.

Subsequent to the incubation with or exposure to the mutagenizing agent, the mutated DNA is expressed by culturing a
suitable host cell carrying the DNA sequence under conditions
allowing expression to take place. The host cell used for this
purpose may be one which has been transformed with the mutated
DNA sequence, optionally present on a vector, or one which was
carried the DNA sequence encoding the parent enzyme during the
mutagenesis treatment. Examples of suitable host cells are fungal

hosts such as Aspergillus niger or Aspergillus oryzae.

The mutated DNA sequence may further comprise a DNA sequence encoding functions permitting expression of the mutated DNA 5 sequence.

Localized random mutagenesis

The random mutagenesis may advantageously be localized to a part of the parent laccase in question. This may, e.g., be 10 advantageous when certain regions of the enzyme have been identified to be of particular importance for a given property of the enzyme, and when modified are expected to result in a variant having improved properties. Such regions may normally be identified when the tertiary structure of the parent enzyme has 15 been elucidated and related to the function of the enzyme.

The localized random mutagenesis is conveniently performed by use of PCR-generated mutagenesis techniques as described above or any other suitable technique known in the art.

Alternatively, the DNA sequence encoding the part of the DNA 20 sequence to be modified may be isolated, e.g. by being inserted into a suitable vector, and said part may subsequently be subjected to mutagenesis by use of any of the mutagenesis methods discussed above.

With respect to the screening step in the above-mentioned 25 method of the invention, this may conveniently be performed by use of aa filter assay based on the following principle:

A microorganism capable of expressing the mutated laccase enzyme of interest is incubated on a suitable medium and under suitable conditions for the enzyme to be secreted, the medium 30 being provided with a double filter comprising a first protein-binding filter and on top of that a second filter exhibiting a low protein binding capability. The microorganism is located on the second filter. Subsequent to the incubation, the first filter comprising enzymes secreted from the microorganisms is separated 35 from the second filter comprising the microorganisms. The first filter is subjected to screening for the desired enzymatic activity and the corresponding microbial colonies present on the second filter are identified.

PCT/DK97/00571

The filter used for binding the enzymatic activity may be any protein binding filter e.g. nylon or nitrocellulose. The top filter carrying the colonies of the expression organism may be any filter that has no or low affinity for binding proteins e.g. 5 cellulose acetate or Durapore™. The filter may be pretreated with any of the conditions to be used for screening or may be treated during the detection of enzymatic activity.

The enzymatic activity may be detected by a dye, fluorescence, precipitation, pH indicator, IR-absorbance or any 10 other known technique for detection of enzymatic activity.

The detecting compound may be immobilized by any immobilizing agent, e.g., agarose, agar, gelatine, polyacrylamide, starch, filter paper, cloth; or any combination of immobilizing agents.

15 Testing of variants of the invention

The storage stability of *Coprinus* variants or *Coprinus*-like variants should be investigated at 40°C for 2 weeks at pH 5, 8 and 9.3, respectively. The stability of the parent laccase and the variants may be tested both in a liquid buffer formulation 20 and in a lyophilized form.

According to the invention the residual activity of the variants following two weeks of incubation are then compared to the residual activity of the parent laccase, and variants with an improved stability at either pH 5, 8 or 9.3 are selected.

25

Laccase activity

In the context of this invention, the laccase activity was measured using 10-(2-hydroxyethyl)-phenoxazine (HEPO) as substrate for the various laccases. HEPO was synthesized using 30 the same procedure as described for 10-(2-hydroxyethyl)-phenothiazine, (G. Cauquil in Bulletin de la Society Chemique de France, 1960, p. 1049). In the presence of oxygen laccases (E.C. 1.10.3.2) oxidize HEPO to a HEPO radical that can be monitored photometrically at 528 nm.

The Coprinus cinereus laccase was measured using 0.4 mM HEPO in 50 mM sodium acetate, pH 5.0, 0.05% TWEEN-20 at 30°C. The absorbance at 528 nm was followed for 200 s and the rate calculated from the linear part of the progress curve.

The Myceliophthora thermophila laccase was measured using 0.4 mM HEPO in 25 mM Tris-HCl, pH 7.5, 0.05% Tween-20 at 30 °C. The absorbance at 528 nm was followed for 200 s and the rate calculated from the linear part of the progress curve.

The Polyporus pinsitus laccase was measured using 0.4 mM HEPO in 50 mM MES-NaOH, pH 5.5. The absorbance at 528 nm was followed for 200 s and the rate calculated from the linear part of the progress curve.

10 Expression of laccase variants

According to the invention, a DNA sequence encoding the variant produced by methods described above, or by any alternative methods known in the art, can be expressed, in enzyme form, using an expression vector which typically includes control sequences encoding a promoter, operator, ribosome binding site, translation initiation signal, and, optionally, a repressor gene or various activator genes.

The recombinant expression vector carrying the DNA sequence encoding a laccase variant of the invention may be any vector which may conveniently be subjected to recombinant DNA procedures, and the choice of vector will often depend on the host cell into which it is to be introduced. Thus, the vector may be an autonomously replicating vector, i.e. a vector which exists as an extrachromosomal entity, the replication of which is independent of chromosomal replication, e.g. a plasmid, a bacteriophage or an extrachromosomal element, minichromosome or an artificial chromosome. Alternatively, the vector may be one which, when introduced into a host cell, is integrated into the host cell genome and replicated together with the chromosome(s) into which it has been integrated.

In the vector, the DNA sequence should be operably connected to a suitable promoter sequence. The promoter may be any DNA sequence which shows transcriptional activity in the host cell of choice and may be derived from genes encoding proteins either 35 homologous or heterologous to the host cell. Examples of suitable promoters for directing the transcription of the DNA sequence encoding a laccase variant of the invention, especially in a fungal host, are those derived from the gene encoding A. oryzae

TAKA amylase, Rhizomucor miehei aspartic proteinase, A. niger neutral α -amylase, A. niger acid stable α -amylase, A. niger glucoamylase, Rhizomucor miehei lipase, A. oryzae alkaline protease, A. oryzae triose phosphate isomerase or A. nidulans acetamidase.

The expression vector of the invention may also comprise a suitable transcription terminator and, in eukaryotes, polyadenylation sequences operably connected to the DNA sequence encoding the laccase variant of the invention. Termination and polyadenylation sequences may suitably be derived from the same 10 sources as the promoter.

The vector may further comprise a DNA sequence enabling the vector to replicate in the host cell in question. Examples of such sequences are the origins of replication of plasmids pUC19, pACYC177, pUB110, pE194, pAMB1 and pIJ702.

The vector may also comprise a selectable marker, e.g. a gene, the product of which complements a defect in the host cell, such as one which confers antibiotic resistance such as ampicillin, kanamycin, chloramphenicol or tetracyclin resistance. Furthermore, the vector may comprise Aspergillus selection markers 20 such as amdS, argB, niaD and sC, a marker giving rise to hygromycin resistance, or the selection may be accomplished by co-transformation, e.g. as described in WO 91/17243.

The procedures used to ligate the DNA construct of the invention encoding a laccase variant, the promoter, terminator and 25 other elements, respectively, and to insert them into suitable vectors containing the information necessary for replication, are well known to persons skilled in the art (cf., for instance, Sambrook et al. (1989)).

The cell of the invention, either comprising a DNA construct 30 or an expression vector of the invention as defined above, is advantageously used as a host cell in the recombinant production of a laccase variant of the invention. The cell may transformed with the DNA construct of the invention encoding the variant, conveniently by integrating the DNA construct (in one or 35 more copies) in the host chromosome. This integration is generally considered to be an advantage as the DNA sequence is more likely to be stably maintained in the cell. Integration of WO 98/27198 PCT/DK97/00571

24

the DNA constructs into the host chromosome may be performed according to conventional methods, e.g. by homologous or heterologous recombination. Alternatively, the cell may be transformed with an expression vector as described above in 5 connection with the different types of host cells.

The cell of the invention may be a cell of a higher organism such as a mammal or an insect, but is preferably a microbial cell, e.g. a fungal cell.

The filamentous fungus may advantageously belong to a species 10 of Aspergillus, e.g. Aspergillus oryzae or Aspergillus niger. Fungal cells may be transformed by a process involving protoplast formation and transformation of the protoplasts followed by regeneration of the cell wall in a manner known per se. A suitable procedure for transformation of Aspergillus host cells 15 is described in EP 238 023.

In a yet further aspect, the present invention relates to a method of producing a laccase variant of the invention, which method comprises cultivating a host cell as described above under conditions conducive to the production of the variant and 20 recovering the variant from the cells and/or culture medium.

The medium used to cultivate the cells may be any conventional medium suitable for growing the host cell in question and obtaining expression of the laccase variant of the invention. Suitable media are available from commercial suppliers or may be 25 prepared according to published recipes (e.g. as described in catalogues of the American Type Culture Collection).

The laccase variant secreted from the host cells may conveniently be recovered from the culture medium by well-known procedures, including separating the cells from the medium by 30 centrifugation or filtration, and precipitating proteinaceous components of the medium by means of a salt such as ammonium sulphate, followed by the use of chromatographic procedures such as ion exchange chromatography, affinity chromatography, or the like.

35

Industrial Applications

The laccase variants of this invention possesses valuable properties allowing for various industrial applications, in

particular lignin modification, paper strengthening, dye transfer inhibition in detergents, phenol polymerization, hair dyeing, bleaching of textiles (in particular bleaching of denim as described in WO 96/12845 and WO 96/12846) and waste water 5 treatment. Any detergent composition normally used for enzymes may be used, e.g., the detergent compositions disclosed in WO 95/01426.

The invention is further illustrated in the following examples, which are not intended to be in any way limiting to the 10 scope of the invention as claimed.

EXAMPLE 1

Storage stability of the wild type Myceliophthora thermophila 15 and the Polyporus pinsitus laccases.

The storage stability of the Myceliophthora thermophila and the Polyporus pinsitus laccases was tested for 2 weeks at 40°C at pH 5, 8 and 9.3, respectively.

The laccase (1 mg/ml) was dialyzed against 0.1 M sodium 20 acetate, pH 5, or 0.1 M Tris-maleate, pH 8, or 0.1 M Trismaleate, pH 9.3. Following dialysis the different preparations were poured into two sets of glass vials with screw caps: one for the liquid formulation and the other one for the lyophilized form. After two weeks of incubation the enzyme activity was 25 measured as described above and the residual activity enzymes was calculated in percentage using a preparation of Myceliophthora thermophila and Polyporus pinsitus kept at 4°C as references. The results are given below in Table 1 and 2.

30 Table 1 Storage stability of Myceliophthora thermophila

рН	Liquid formu	ulation	Lyophilized	form
	Residual	activity	Residual	activity
	(%)		(왕)	
5.0	<5		<5	
8.0	<5		<5	
9.3	35		30	

Table	2	Storage	stability	of	Polyporus	pinsitus
-------	---	---------	-----------	----	-----------	----------

рН	Liquid for	mulation	Lyophilized	form
	Residual	activity	Residual	activity
	(%)		(%)	
5.0	<5		n.d.	
8.0	35		n.d.	
9.3	n.d*		n.d.	

^{*} not determined

5 EXAMPLE 2

Homology building of the Polyporus pinsitus 3D-structure

Using sequence homology of Coprinus cinereus (CcL) to other sequences, e.g., Polyporus pinsitus, Coprinus-like 3 D-structures 10 can be found.

Coprinus cinereus, comparison with the elucidating the structure, Polyporus pinsitus differs in a number of residues. The model may be built using the HOMOLOGY program from BIOSYM. The program substitutes the amino acids in the 15 Coprinus cinereus with amino acids from Polyporus pinsitus in the homologous positions defined in the program as structurally conserved regions (SCR). The residues in between are built using the LOOP option with GENERATE. Using these steps a crude model may be obtained which gives information of spatial interactions.

The structure can be refined using the method described in the HOMOLOGY package.

EXAMPLE 3

25 Storage stability of Myceliophthora thermophila variants

Laccase activity:

In this Example the Myceliophthora thermophila laccase variants were measured using 0.4 mM HEPO in 0.1 M Tris-maleate, 30 pH 7.5, 0.05% TWEEN-20 at 30°C. The absorbance at 528 nm was followed for 200 s and the rate calculated from the linear part of the progress curve.

The storage stability of the Myceliophthora thermophila variants were tested for 4 weeks at 40°C at pH 5, 7, and 9.3, respectively. The laccase (1 mg/ml) was dialyzed against 0.1 M 5 Tris-maleate, pH 5 or 0.1 M Tris-maleate, pH 7 or 0.1 M Tris-maleate, pH 9.3. Following dialysis the different preparations were poured into two set of glass vials with screw caps: one for the liquid formulation and the other set of glasses for lyophilization. Following two and four weeks of incubation the 10 enzyme activity was measured as described above and the residual activity of the variants were calculated in percentage using a preparation kept at 4°C as reference.

Table 3. Storage stability of *Myceliophthora thermophila* 15 variants, lyophilized formulation

	Residual activity, pH 5		Residual activity, pH 7		Residual activity, pH 9.2	
	2	4	2	4	2	4
	weeks	weeks	weeks	weeks	weeks	weeks
wt	18	18	55	36	59	38
W136F	<5	<5	76	64	88	77
Y137F	12	<5	58	41	64	4 9
Y145F	<5	<5	53	20	45	51
W373F	14	14	33	19	51	36
M433I	7	<5	57	43	74	35
M480L	33	18	65	32	72	52
W507F	18	<5	72	51	68	71

In lyophilized form none of the tested variants have improved 20 stability at pH 5. At pH 7 and pH 9.2 both W136F and W507F have increased stability. At pH 9.2 M48CL is also better than wt.

Table 4. Storage stability of Myceliophthora thermophila variants, liquid formulation

	Residual activity, pH	Residual activity,	Residual activity,
	5, 2 weeks	pH 7, 2 weeks	рн 9.2, 2 weeks
wt	<5	5	20
W136F	5	28	55
Y137F	<5	<5	<5
Y145F	<5	<5	<5
W373F	<5	40	<5
M433I	8	40	65
M480L	<5	<5	15
W507F	<5	<5	22

Also in the liquid formulation none of the tested variants have improved stability at pH 5. At pH 7 and pH 9.2 both W136F and M433I has increased stability. At pH7 W373F has better stability than wt but the variant looses the stability completely at pH 9.2.

10 Of the tested variants only W136F has increased stability in both formulations.

Appendix 1:

- SEQRES 1 A 504 GLN ILE VAL ASN SER VAL ASP THR MET THR LEU THR ASN
- SEQRES 2 A 504 ALA ASN VAL SER PRO ASP GLY PHE THR ARG ALA GLY ILE
- 5 SEQRES 3 A 504 LEU VAL ASN GLY VAL HIS GLY PRO LEU ILE ARG GLY GLY
 - SEQRES 4 A 504 LYS ASN ASP ASN PHE GLU LEU ASN VAL VAL ASN ASP LEU
 - SEQRES 5 A 504 ASP ASN PRO THR MET LEU ARG PRO THR SER ILE HIS TRP
 - SEQRES 6 A 504 HIS GLY LEU PHE GLN ARG GLY THR ASN TRP ALA ASN GLY
 - SEQRES 7 A 504 ALA ASP GLY VAL ASN GLN CYS PRO ILE SER PRO GLY HIS
- 10 SEQRES 8 A 504 ALA PHE LEU TYR LYS PHE THR PRO ALA GLY HIS ALA GLY
 - SEQRES 9 A 504 THR PHE TRP TYR HIS SER HIS PHE GLY THR GLN TYR CYS
 - SEQRES 10 A 504 ASP GLY LEU ARG GLY PRO MET VAL ILE TYR ASP ASP ASN
 - SEQRES 11 A 504 ASP PRO HIS ALA ALA LEU TYR ASP GLU ASP ASP GLU ASN
 - SEQRES 12 A 504 THR ILE ILE THR LEU ALA ASP TRP TYR HIS ILE PRO ALA
- 15 SEQRES 13 A 504 PRO SER ILE GLN GLY ALA ALA GLN PRO ASP ALA THR LEU SEQRES 14 A 504 ILE ASN GLY LYS GLY ARG TYR VAL GLY GLY PRO ALA ALA
 - SEQRES 15 A 504 GLU LEU SER ILE VAL ASN VAL GLU GLN GLY LYS LYS TYR
 - SEQRES 16 A 504 ARG MET ARG LEU ILE SER LEU SER CYS ASP PRO ASN TRP
 - SEQRES 17 A 504 GLN PHE SER ILE ASP GLY HIS GLU LEU THR ILE ILE GLU
- 20 SEQRES 18 A 504 VAL ASP GLY ASN LEU THR GLU PRO HIS THR VAL ASP ARG
 - SEORES 19 A 504 LEU GLN ILE PHE THR GLY GLN ARG TYR SER PHE VAL LEU
 - SEQRES 20 A 504 ASP ALA ASN GLN PRO VAL ASP ASN TYR TRP ILE ARG ALA
 - SEORES 21 A 504 GLN PRO ASN LYS GLY ARG ASN GLY LEU ALA GLY THR PHE
 - SEORES 22 A 504 ALA ASN GLY VAL ASN SER ALA ILE LEU ARG TYR ALA GLY
- 25 SEQRES 23 A 504 ALA ALA ASN ALA ASP PRO THR THR SER ALA ASN PRO ASN
 - SEQRES 24 A 504 PRO ALA GLN LEU ASN GLU ALA ASP LEU HIS ALA LEU ILE
 - SEQRES 25 A 504 ASP PRO ALA ALA PRO GLY ILE PRO THR PRO GLY ALA ALA
 - SEQRES 26 A 504 ASN VAL ASN LEU ARG PHE GLN LEU GLY PHE SER GLY GLY
 - SEQRES 27 A 504 ARG PHE THR ILE ASN GLY THR ALA TYR GLU SER PRO SER
- 30 SEQRES 28 A 504 VAL PRO THR LEU LEU GLN ILE MET SER GLY ALA GLN SER
 - SEQRES 29 A 504 ALA ASN ASP LEU LEU PRO ALA GLY SER VAL TYR GLU LEU
 - SEQRES 30 A 504 PRO ARG ASN GLN VAL VAL GLU LEU VAL VAL PRO ALA GLY
 - SEQRES 31 A 504 VAL LEU GLY GLY PRO HIS PRO PHE HIS LEU HIS GLY HIS
 - SEQRES 32 A 504 ALA PHE SER VAL VAL ARG SER ALA GLY SER SER THR TYR
- 35 SEQRES 33 A 504 ASN PHE VAL ASN PRO VAL LYS ARG ASP VAL VAL SER LEU
 - SEQRES 34 A 504 GLY VAL THR GLY ASP GLU VAL THR ILE ARG PHE VAL THR
 - SEQRES 35 A 504 ASP ASN PRO GLY PRO TRP PHE HIS CYS HIS ILE GLU
 - SEORES 36 A 504 PHE HIS LEU MET ASN GLY LEU ALA ILE VAL PHE ALA GLU

SEQRES 37 A 504 ASP MET ALA ASN THR VAL ASP ALA ASN ASN PRO PRO VAL SEQRES 38 A 504 GLU TRP ALA GLN LEU CYS GLU ILE TYR ASP ASP LEU PRO SEQRES 39 A 504 PRO GLU ALA THR SER ILE GLN THR VAL VAL

SSBOND 1 CYS 85 CYS 487

5 SSBOND 2 CYS 117 CYS 204

CRYST 45.390 85.720 143.070 90.00 90.00 90.00 P212121

SCALE1 0.02203 0.00000 0.00000 0.00000

SCALE2 0.00000 0.01167 0.00000 0.00000

SCALE3 0.00000 0.00000 0.00699 0.00000

10 ATOM 1 N ALA A 1 0 18.748 34.495 5.326 1.00 36.36

ATOM 2 CA ALA A 1 0 19.554 35.757 5.185 1.00 35.87

ATOM 3 C ALA A 1 0 19.785 36.380 6.558 1.00 34.53

ATOM 4 O ALA A 1 0 19.248 35.884 7.577 1.00 35.40

ATOM 5 CB ALA A 1 0 19.050 36.675 4.107 1.00 36.65

15 ATOM 6 N ILE A 2 0 20.844 37.201 6.659 1.00 31.00

ATOM 7 CA ILE A 2 0 21.310 37.654 7.963 1.00 27.71

ATOM 8 C ILE A 2 0 21.368 39.165 8.117 1.00 25.19

ATOM 9 O ILE A 2 0 21.789 39.861 7.192 1.00 23.77

ATOM 10 CB ILE A 2 0 22.744 37.107 8.206 1.00 28.28

20 ATOM 11 CG1 ILE A 2 0 22.790 35.590 8.022 1.00 28.54

ATOM 12 CG2 ILE A 2 0 23.285 37.557 9.554 1.00 27.91

ATOM 13 CD1 ILE A 2 0 23.334 34.738 9.130 1.00 29.32

ATOM 14 N VAL A 3 0 20.986 39.659 9.283 1.00 22.31

ATOM 15 CA VAL A 3 0 21.093 41.092 9.540 1.00 22.78

25 ATOM 16 C VAL A 3 0 22.246 41.297 10.524 1.00 22.62

ATOM 17 O VAL A 3 0 22.460 40.556 11.467 1.00 21.74

ATOM 18 CB VAL A 3 0 19.801 41.849 9.799 1.00 23.54

ATOM 19 CG1 VAL A 3 0 18.537 40.985 9.684 1.00 21.30

ATOM 20 CG2 VAL A 3 0 19.760 42.709 11.055 1.00 21.32

30 ATOM 21 N ASN A 4 0 23.122 42.261 10.209 1.00 23.39

ATOM 22 CA ASN A 4 0 24.303 42.520 11.021 1.00 23.45

ATOM 23 C ASN A 4 0 24.002 43.517 12.126 1.00 24.44

ATOM 24 O ASN A 4 0 22.928 44.122 12.160 1.00 23.05

ATOM 25 CB ASN A 4 0 25.477 42.965 10.149 1.00 24.77

35 ATOM 26 CG ASN A 4 0 25.726 41.991 9.021 1.00 26.62

ATOM 27 OD1 ASN A 4 0 25.668 42.388 7.849 1.00 30.29

ATOM 28 ND2 ASN A 4 0 25.923 40.719 9.324 1.00 27.59

ATOM 29 N SER A 5 0 24.960 43.707 13.040 1.00 24.28

ATOM 30 CA SER A 5 0 24.702 44.636 14.143 1.00 25.77 31 C SER A 5 0 24.595 46.090 13.701 1.00 24.41 **ATOM** 32 O SER A 5 0 23.973 46.862 14.452 1.00 23.55 **ATOM** 33 CB SER A 5 0 25.741 44.405 15.240 1.00 26.18 **ATOM** 34 OG SER A 5 0 26.976 44.750 14.641 1.00 27.89 5 ATOM 35 N VALA 6 0 25.104 46.517 12.539 1.00 24.01 **ATOM** 36 CA VAL A 6 0 24.770 47.863 12.096 1.00 25.06 **ATOM** 37 C VALA 6 0 24.131 47.617 10.731 1.00 25.57 **ATOM** 38 O VALA 6 0 24.778 47.030 9.874 1.00 28.07 **ATOM** 10 ATOM 39 CB VAL A 6 0 25.722 49.032 12.155 1.00 26.65 40 CG1 VAL A 6 0 26.937 48.759 13.025 1.00 26.73 **ATOM ATOM** 41 CG2 VAL A 6 0 26.098 49.614 10.801 1.00 25.50 42 N ASP A 7 0 22.848 47.952 10.605 1.00 23.82 **ATOM** 43 CA ASP A 7 0 22.173 47.543 9.369 1.00 24.07 **ATOM** 44 C ASP A 7 0 20.794 48.170 9.276 1.00 23.66 15 ATOM 45 O ASP A 7 0 20.342 48.845 10.204 1.00 23.47 **ATOM ATOM** 46 CB ASP A 7 0 21.996 46.012 9.444 1.00 23.43 47 CG ASP A 7 0 22.017 45.317 8.111 1.00 23.78 **ATOM** 48 OD1 ASP A 7 0 21.805 45.937 7.055 1.00 23.74 **ATOM** 20 ATOM 49 OD2 ASP A 7 0 22.255 44.089 8.099 1.00 24.62 **ATOM** 50 N THR A 8 0 20.155 47.881 8.158 1.00 23.88 51 CA THR A 8 0 18.799 48.359 7.928 1.00 24.45 ATOM 52 C THR A 8 0 17.813 47.189 7.950 1.00 22.49 **ATOM** 53 O THR A 8 0 18.143 46.142 7.377 1.00 22.56 **ATOM** 25 ATOM 54 CB THR A 8 0 18.694 49.108 6.579 1.00 25.75 **ATOM** 55 OG1 THR A 8 0 19.573 50.242 6.719 1.00 28.53 56 CG2 THR A 8 0 17.295 49.656 6.339 1.00 25.55 **ATOM ATOM** 57 N MET A 9 0 16.677 47.364 8.602 1.00 19.10 **ATOM** 58 CA MET A 9 0 15.650 46.311 8.616 1.00 20.47 59 C MET A 9 0 14.392 46.863 7.925 1.00 21.97 30 ATOM 60 O MET A 9 0 13.638 47.638 8.544 1.00 19.49 **ATOM ATOM** 61 CB MET A 9 0 15.308 45.871 10.022 1.00 20.49 62 CG MET A 9 0 16.351 44.982 10.682 1.00 22.11 ATOM 63 SD MET A 9 0 16.192 44.917 12.482 1.00 24.71 **ATOM** 35 ATOM 64 CE MET A 9 0 14.640 44.024 12.635 1.00 22.61 **ATOM** 65 N THR A 10 0 14.246 46.516 6.641 1.00 21.81 66 CA THR A 10 0 13.073 47.064 5.926 1.00 23.43 **ATOM** 67 C THR A 10 0 11.912 46.081 6.046 1.00 22.90 ATOM

ATOM	68 O THR A 10 0 12.056 44.890 5.719 1.00 23.55
ATOM	69 CB THR A 10 0 13.390 47.384 4.459 1.00 24.69
ATOM	70 OG1 THR A 10 0 14.533 48.261 4.456 1.00 26.08
ATOM	71 CG2 THR A 10 0 12.216 48.028 3.742 1.00 23.95
5 ATOM	72 N LEU A 11 0 10.820 46.600 6.583 1.00 21.13
ATOM	73 CA LEU A 11 0 9.615 45.836 6.846 1.00 21.10
ATOM	74 C LEU A 11 0 8.607 45.957 5.709 1.00 24.58
ATOM	75 O LEU A 11 0 8.124 47.056 5.358 1.00 23.89
ATOM	76 CB LEU A 11 0 9.045 46.411 8.129 1.00 21.29
10 ATOM	77 CG LEU A 11 0 9.474 45.955 9.508 1.00 22.26
ATOM	78 CD1 LEU A 11 0 10.952 45.742 9.692 1.00 22.42
ATOM	79 CD2 LEU A 11 0 8.978 46.931 10.583 1.00 22.75
ATOM	80 N THR A 12 0 8.272 44.836 5.057 1.00 24.01
ATOM	81 CA THR A 12 0 7.302 44.851 3.980 1.00 24.33
15 ATOM	82 C THR A 12 0 6.322 43.677 4.123 1.00 25.34
ATOM	83 O THR A 12 O 6.480 42.740 4.913 1.00 25.62
ATOM	84 CB THR A 12 0 7.882 44.776 2.560 1.00 25.12
ATOM	85 OG1 THR A 12 0 8.575 43.548 2.377 1.00 24.05
ATOM	86 CG2 THR A 12 0 8.847 45.905 2.217 1.00 25.26
20 ATOM	87 N ASN A 13 0 5.261 43.760 3.335 1.00 24.09
ATOM	88 CA ASN A 13 0 4.232 42.722 3.299 1.00 22.87
ATOM	89 C ASN A 13 0 4.422 41.954 1.989 1.00 22.13
ATOM	90 O ASN A 13 0 4.809 42.600 1.023 1.00 22.32
ATOM	91 CB ASN A 13 0 2.852 43.355 3.311 1.00 21.58
25 ATOM	92 CG ASN A 13 0 2.526 44.060 4.607 1.00 22.50
ATOM	93 OD1 ASN A 13 0 2.187 45.245 4.648 1.00 22.20
ATOM	94 ND2 ASN A 13 0 2.615 43.306 5.705 1.00 21.81
ATOM	95 N ALA A 14 0 4.218 40.655 1.985 1.00 21.00
ATOM	96 CA ALA A 14 0 4.270 39.869 0.762 1.00 21.93
30 ATOM	97 C ALA A 14 0 3.571 38.533 1.078 1.00 20.77
ATOM	98 O ALA A 14 0 3.292 38.309 2.259 1.00 20.45
ATOM	99 CB ALA A 14 0 5.676 39.618 0.248 1.00 23.72
ATOM	100 N ASN A 15 0 3.366 37.695 0.072 1.00 18.88
ATOM	101 CA ASN A 15 0 2.748 36.412 0.337 1.00 19.67
35 ATOM	102 C ASN A 15 0 3.798 35.457 0.873 1.00 19.19
ATOM	103 O ASN A 15 0 4.891 35.474 0.338 1.00 19.57
ATOM	104 CB ASN A 15 0 2.114 35.721 -0.875 1.00 21.13
ATOM	105 CG ASN A 15 0 0.839 36.457 -1.284 1.00 21.15

	АТОМ	106 OD1 ASN A 15 0 0.343 37.207 -0.472 1.00 20.87
	ATOM	107 ND2 ASN A 15 0 0.379 36.284 -2.501 1.00 20.00
	ATOM	108 N VAL A 16 0 3.358 34.614 1.772 1.00 19.11
	ATOM	109 CA VAL A 16 0 4.322 33.628 2.342 1.00 18.90
5	ATOM	110 C VAL A 16 0 3.626 32.293 2.345 1.00 19.25
,	ATOM	111 O VAL A 16 0 2.386 32.281 2.406 1.00 16.71
	ATOM	112 CB VAL A 16 0 4.612 34.317 3.691 1.00 19.95
	ATOM	113 CG1 VAL A 16 0 3.990 33.749 4.937 1.00 18.58
	ATOM	114 CG2 VAL A 16 0 6.091 34.603 3.814 1.00 21.38
10	ATOM	115 N SER A 17 0 4.312 31.157 2.303 1.00 18.57
	ATOM	116 CA SER A 17 0 3.678 29.869 2.410 1.00 20.90
	АТОМ	117 C SER A 17 0 4.608 28.866 3.065 1.00 21.12
	ATOM	118 O SER A 17 0 5.106 27.939 2.448 1.00 21.24
	АТОМ	119 CB SER A 17 0 3.186 29.285 1.080 1.00 23.95
15	ATOM	120 OG SER A 17 0 4.204 29.399 0.125 1.00 26.79
	ATOM	121 N PRO A 18 0 4.834 29.051 4.358 1.00 20.78
	ATOM	122 CA PRO A 18 0 5.703 28.216 5.141 1.00 20.02
	ATOM	123 C PRO A 18 0 5.197 26.793 5.376 1.00 19.74
	ATOM	124 O PRO A 18 0 5.978 25.920 5.753 1.00 17.97
20	ATOM	125 CB PRO A 18 0 5.889 28.954 6.481 1.00 19.27
	ATOM	126 CG PRO A 18 0 4.701 29.832 6.536 1.00 21.41
	ATOM	127 CD PRO A 18 0 4.249 30.153 5.128 1.00 20.70
	ATOM	128 N ASP A 19 0 3.899 26.534 5.241 1.00 18.82
	ATOM	129 CA ASP A 19 0 3.323 25.227 5.475 1.00 16.87
25	ATOM	130 C ASP A 19 0 2.548 24.823 4.237 1.00 17.28
	ATOM	131 O ASP A 19 0 1.713 23.929 4.337 1.00 17.84
	ATOM	132 CB ASP A 19 0 2.419 25.207 6.701 1.00 16.54
	ATOM	133 CG ASP A 19 0 1.192 26.120 6.596 1.00 16.67
	ATOM	134 OD1 ASP A 19 0 1.032 26.935 5.654 1.00 14.17
30	ATOM	135 OD2 ASP A 19 0 0.360 26.045 7.529 1.00 14.56
		136 N GLY A 20 0 2.782 25.469 3.100 1.00 17.87
	ATOM	137 CA GLY A 20 0 2.079 25.091 1.890 1.00 19.40
	ATOM	138 C GLY A 20 0 0.732 25.789 1.699 1.00 22.52
	ATOM	139 O GLY A 20 0 0.158 25.619 0.628 1.00 22.87
35	ATOM	
	ATOM	
	ATOM	
	ATOM	143 O PHE A 21 0 0.475 29.316 3.122 1.00 21.26

ATOM	144 CB PHE A 21 0 -1.742 27.472 3.814 1.00 20.80
ATOM	02 111211 21 0 11112 21112
ATOM	145 CG PHE A 21 0 -3.059 28.180 3.695 1.00 21.91
ATOM	146 CD1 PHE A 21 0 -3.171 29.527 3.963 1.00 22.49
ATOM	147 CD2 PHE A 21 0 -4.207 27.470 3.327 1.00 22.51
5 ATOM	148 CE1 PHE A 21 0 -4.370 30.207 3.845 1.00 22.27
ATOM	149 CE2 PHE A 21 0 -5.419 28.128 3.203 1.00 22.79
ATOM	150 CZ PHE A 21 0 -5.498 29.497 3.474 1.00 23.34
ATOM	151 N THR A 22 0 -0.638 29.514 1.225 1.00 20.20
ATOM	152 CA THR A 22 0 -0.143 30.850 0.977 1.00 21.36
10 ATOM	153 C THR A 22 0 -1.083 31.939 1.488 1.00 21.79
ATOM	154 O THR A 22 0 -2.271 31.952 1.162 1.00 21.19
ATOM	155 CB THR A 22 0 0.045 31.012 -0.553 1.00 21.46
ATOM	156 OG1 THR A 22 0 0.838 29.881 -0.934 1.00 20.09
ATOM	157 CG2 THR A 22 0 0.693 32.353 -0.891 1.00 20.94
15 ATOM	158 N ARG A 23 0 -0.562 32.871 2.257 1.00 20.80
ATOM	159 CA ARG A 23 0 -1.230 34.008 2.844 1.00 20.78
ATOM	160 C ARG A 23 0 -0.257 35.189 2.960 1.00 21.15
ATOM	161 O ARG A 23 0 0.954 35.018 2.740 1.00 20.42
ATOM	162 CB ARG A 23 0 -1.874 33.685 4.172 1.00 20.47
20 ATOM	163 CG ARG A 23 0 -0.964 33.152 5.295 1.00 21.52
ATOM	164 CD ARG A 23 0 -0.552 34.357 6.113 1.00 22.75
ATOM	165 NE ARG A 23 0 -0.905 34.419 7.477 1.00 21.60
ATOM	166 CZ ARG A 23 0 -0.870 35.283 8.464 1.00 19.89
ATOM	167 NH1 ARG A 23 0 -0.526 36.565 8.453 1.00 20.19
25 ATOM	168 NH2 ARG A 23 0 -1.249 34.744 9.610 1.00 18.64
ATOM	169 N ALA A 24 0 -0.784 36.389 3.199 1.00 20.05
ATOM	170 CA ALA A 24 0 0.140 37.541 3.243 1.00 22.03
ATOM	171 C ALA A 24 0 0.786 37.561 4.635 1.00 21.09
ATOM	172 O ALA A 24 0 0.200 37.124 5.637 1.00 21.16
30 ATOM	173 CB ALA A 24 0 -0.578 38.836 2.902 1.00 22.98
ATOM	174 N GLY A 25 0 2.042 37.984 4.683 1.00 20.28
ATOM	175 CA GLY A 25 0 2.786 37.993 5.950 1.00 20.29
ATOM	176 C GLY A 25 0 3.649 39.254 5.979 1.00 21.38
ATOM	177 O GLY A 25 0 3.465 40.229 5.238 1.00 21.06
35 ATOM	178 N ILE A 26 0 4.604 39.221 6.897 1.00 20.33
ATOM	179 CA ILE A 26 0 5.475 40.365 7.145 1.00 20.64
АТОМ	180 C ILE A 26 0 6.903 39.886 6.932 1.00 20.00
ATOM	181 O ILE A 26 0 7.247 38.851 7.485 1.00 21.34

	ATOM	182 CB ILE A 26 0 5.278 40.933 8.564 1.00 20.38
	ATOM	183 CG1 ILE A 26 0 3.883 41.536 8.667 1.00 20.72
	ATOM	184 CG2 ILE A 26 0 6.333 42.007 8.821 1.00 22.34
	ATOM	185 CD1 ILE A 26 0 3.310 41.822 10.024 1.00 20.76
5	ATOM	186 N LEU A 27 0 7.644 40.551 6.079 1.00 19.10
	ATOM	187 CA LEU A 27 0 9.005 40.168 5.739 1.00 19.67
	ATOM	188 C LEU A 27 0 9.964 41.226 6.280 1.00 19.85
	ATOM	189 O LEUA 27 0 9.591 42.407 6.356 1.00 19.19
	ATOM	190 CB LEU A 27 0 9.138 40.172 4.219 1.00 20.26
10	ATOM	191 CG LEU A 27 0 9.046 38.883 3.415 1.00 22.65
	ATOM	192 CD1 LEU A 27 0 8.127 37.835 3.989 1.00 21.10
	ATOM	193 CD2 LEU A 27 0 8.738 39.198 1.963 1.00 22.01
	ATOM	194 N VAL A 28 0 11.162 40.804 6.630 1.00 18.03
	ATOM	195 CA VAL A 28 0 12.199 41.723 7.088 1.00 17.24
15	ATOM	196 C VAL A 28 0 13.289 41.573 6.040 1.00 18.99
	ATOM	197 O VAL A 28 0 13.791 40.453 5.863 1.00 20.36
	ATOM	198 CB VAL A 28 0 12.762 41.415 8.491 1.00 16.50
	ATOM	199 CG1 VAL A 28 0 13.899 42.361 8.845 1.00 15.41
	ATOM	200 CG2 VAL A 28 0 11.681 41.517 9.558 1.00 15.42
20	ATOM	201 N ASN A 29 0 13.575 42.601 5.256 1.00 20.78
	ATOM	202 CA ASN A 29 0 14.567 42.579 4.198 1.00 20.46
	ATOM	203 C ASN A 29 0 14.316 41.435 3.226 1.00 23.05
	ATOM	204 O ASN A 29 0 15.247 40.675 2.880 1.00 23.62
	ATOM	205 CB ASN A 29 0 15.982 42.446 4.764 1.00 21.06
25	ATOM	206 CG ASN A 29 0 16.475 43.654 5.522 1.00 22.44
	ATOM	207 OD1 ASN A 29 0 15.870 44.722 5.434 1.00 23.47
	ATOM	208 ND2 ASN A 29 0 17.560 43.507 6.288 1.00 22.23
	ATOM	209 N GLY A 30 0 13.053 41.215 2.878 1.00 23.18
	ATOM	210 CA GLY A 30 0 12.662 40.181 1.922 1.00 23.36
30	ATOM	211 C GLY A 30 0 12.723 38.757 2.436 1.00 23.85
	ATOM	212 O GLY A 30 0 12.707 37.814 1.633 1.00 25.17
	ATOM	213 N VAL A 31 0 12.832 38.585 3.755 1.00 21.85
	ATOM	214 CA VAL A 31 0 12.999 37.276 4.352 1.00 20.55
	ATOM	215 C VAL A 31 0 12.031 37.190 5.548 1.00 19.91
35	ATOM	216 O VAL A 31 0 11.796 38.172 6.269 1.00 17.50
	ATOM	217 CB VAL A 31 0 14.436 37.020 4.856 1.00 21.36
	ATOM	218 CG1 VAL A 31 0 14.556 35.709 5.626 1.00 20.79
	ATOM	219 CG2 VAL A 31 0 15.495 37.005 3.757 1.00 21.84

220 N HIS A 32 0 11.489 35.984 5.698 1.00 17.05 **ATOM** 221 CA HIS A 32 0 10.592 35.729 6.797 1.00 18.61 **ATOM** 222 C HIS A 32 0 11.417 35.499 8.050 1.00 17.67 **ATOM ATOM** 223 O HIS A 32 O 11.873 34.385 8.216 1.00 18.72 224 CB HIS A 32 0 9.676 34.543 6.493 1.00 21.00 5 ATOM 225 CG HIS A 32 0 8.639 34.208 7.517 1.00 23.80 **ATOM** 226 ND1 HIS A 32 0 7.744 33.174 7.332 1.00 25.14 **ATOM** 227 CD2 HIS A 32 0 8.331 34.720 8.735 1.00 25.32 **ATOM** 228 CE1 HIS A 32 0 6.942 33.061 8.385 1.00 25.36 10 ATOM 229 NE2 HIS A 32 0 7.271 33.986 9.260 1.00 26.23 230 N GLY A 33 0 11.522 36.446 8.960 1.00 16.23 ATOM ATOM 231 CA GLY A 33 0 12.276 36.252 10.198 1.00 16.97 232 C GLY A 33 0 13.740 35.869 10.083 1.00 15.54 **ATOM** 233 O GLY A 33 0 14.228 34.885 10.609 1.00 15.13 **ATOM** 234 N PRO A 34 0 14.555 36.734 9.475 1.00 15.75 15 ATOM 235 CA PRO A 34 0 16.012 36.561 9.359 1.00 14.70 ATOM ATOM 236 C PRO A 34 0 16.734 36.660 10.701 1.00 14.02 ATOM 237 O PRO A 34 0 16.241 37.252 11.673 1.00 10.44 238 CB PRO A 34 0 16.491 37.699 8.435 1.00 14.40 ATOM 20 ATOM 239 CG PRO A 34 0 15.441 38.742 8.783 1.00 15.11 **ATOM** 240 CD PRO A 34 0 14.113 38.005 8.905 1.00 13.69 **ATOM** 241 N LEU A 35 0 17.925 36.049 10.767 1.00 13.60 242 CA LEU A 35 0 18.748 36.022 11.963 1.00 14.35 **ATOM ATOM** 243 C LEU A 35 0 19.462 37.359 12.161 1.00 16.25 244 O LEU A 35 0 20.015 37.902 11.210 1.00 14.10 25 ATOM ATOM 245 CB LEU A 35 0 19.834 34.916 11.862 1.00 15.33 **ATOM** 246 CG LEU A 35 0 20.958 34.943 12.911 1.00 17.74 **ATOM** 247 CD1 LEU A 35 0 20.486 34.698 14.348 1.00 16.30 **ATOM** 248 CD2 LEU A 35 0 22.052 33.934 12.575 1.00 16.60 249 N ILE A 36 0 19.471 37.855 13.384 1.00 16.71 30 ATOM 250 CA ILE A 36 0 20.265 39.027 13.738 1.00 16.66 **ATOM ATOM** 251 C ILE A 36 0 21.403 38.487 14.620 1.00 17.92 **ATOM** 252 O ILE A 36 0 21.183 37.732 15.573 1.00 17.20 **ATOM** 253 CB ILE A 36 0 19.560 40.129 14.533 1.00 16.60 35 ATOM 254 CG1 ILE A 36 0 18.389 40.771 13.771 1.00 16.09 ATOM 255 CG2 ILE A 36 0 20.565 41.226 14.917 1.00 17.67 256 CD1 ILE A 36 0 17.590 41.754 14.629 1.00 15.88 ATOM ATOM 257 N ARG A 37 0 22.647 38.829 14.288 1.00 18.72

ATOM	258 CA ARG A 37 0 23.754 38.315 15.091 1.00 19.94
ATOM	259 C ARG A 37 0 24.839 39.369 15.280 1.00 20.08
ATOM	260 O ARG A 37 0 24.979 40.249 14.450 1.00 20.52
ATOM	261 CB ARG A 37 0 24.395 37.077 14.465 1.00 21.72
5 ATOM	262 CG ARG A 37 0 25.102 37.393 13.171 1.00 24.46
ATOM	263 CD ARG A 37 0 26.113 36.339 12.762 1.00 26.90
ATOM	264 NE ARG A 37 0 26.584 36.571 11.381 1.00 29.30
ATOM	265 CZ ARG A 37 0 26.838 35.571 10.528 1.00 31.29
ATOM	266 NH1 ARG A 37 0 26.711 34.283 10.851 1.00 31.37
10 ATOM	267 NH2 ARG A 37 0 27.252 35.827 9.291 1.00 31.66
ATOM	268 N GLY A 38 0 25.587 39.223 16.361 1.00 20.22
ATOM	269 CA GLY A 38 0 26.716 40.121 16.611 1.00 18.98
ATOM	270 C GLY A 38 0 27.533 39.545 17.765 1.00 18.08
ATOM	271 O GLY A 38 0 27.259 38.421 18.225 1.00 15.92
15 ATOM	272 N GLY A 39 0 28.436 40.412 18.238 1.00 17.65
ATOM	273 CA GLY A 39 0 29.322 40.026 19.351 1.00 16.23
ATOM	274 C GLY A 39 0 28.861 40.774 20.592 1.00 17.21
ATOM	275 O GLY A 39 O 28.157 41.784 20.489 1.00 17.27
ATOM	276 N LYS A 40 0 29.276 40.328 21.764 1.00 16.58
20 ATOM	277 CA LYS A 40 0 28.839 40.805 23.057 1.00 18.03
ATOM	278 C LYS A 40 0 29.185 42.267 23.348 1.00 20.44
ATOM	279 O LYS A 40 0 28.562 42.878 24.221 1.00 19.42
ATOM	280 CB LYS A 40 0 29.394 39.933 24.185 1.00 16.74
ATOM	281 CG LYS A 40 0 30.892 39.997 24.370 1.00 17.98
25 ATOM	282 CD LYS A 40 0 31.333 39.170 25.569 1.00 20.66
ATOM	283 CE LYS A 40 0 32.809 38.768 25.493 1.00 21.70
ATOM	284 NZ LYS A 40 0 33.227 38.111 26.757 1.00 23.11
ATOM	285 N ASN A 41 0 30.181 42.780 22.645 1.00 21.43
ATOM	286 CA ASN A 41 0 30.536 44.171 22.840 1.00 25.14
30 ATOM	287 C ASN A 41 0 30.092 44.976 21.644 1.00 24.05
ATOM	288 O ASN A 41 0 30.409 46.161 21.655 1.00 25.66
ATOM	289 CB ASN A 41 0 32.052 44.326 23.111 1.00 27.02
ATOM	290 CG ASN A 41 0 32.434 43.606 24.404 1.00 29.76
ATOM	291 OD1 ASN A 41 0 33.398 42.832 24.431 1.00 31.54
35 ATOM	292 ND2 ASN A 41 0 31.663 43.825 25.473 1.00 30.13
ATOM	293 N ASP A 42 0 29.424 44.447 20.631 1.00 23.80
ATOM	294 CA ASP A 42 0 29.073 45.325 19.506 1.00 24.12
ATOM	295 C ASPA 42 0 28.169 46.484 19.891 1.00 24.24

296 O ASP A 42 0 27.420 46.428 20.872 1.00 22.42 **ATOM** 297 CB ASP A 42 0 28.388 44.528 18.392 1.00 26.65 **ATOM** 298 CG ASP A 42 0 29.404 43.599 17.773 1.00 28.94 **ATOM** 299 OD1 ASP A 42 0 30.603 43.754 18.056 1.00 31.45 **ATOM** 5 ATOM 300 OD2 ASP A 42 0 29.026 42.708 17.009 1.00 31.69 301 N ASN A 43 0 28.258 47.547 19.090 1.00 24.72 **ATOM** 302 CA ASN A 43 0 27.316 48.660 19.255 1.00 26.50 **ATOM ATOM** 303 C ASN A 43 0 26.293 48.430 18.128 1.00 26.23 304 O ASN A 43 0 26.723 48.420 16.979 1.00 25.02 **ATOM** 305 CB ASN A 43 0 27.934 50.047 19.128 1.00 28.45 10 ATOM ATOM 306 CG ASN A 43 0 28.858 50,244 20,323 1.00 31.09 **ATOM** 307 ODI ASN A 43 0 30.041 50.502 20.106 1.00 33.11 **ATOM** 308 ND2 ASN A 43 0 28.364 50.055 21.531 1.00 31.18 **ATOM** 309 N PHE A 44 0 25.039 48.155 18.468 1.00 24.63 15 ATOM 310 CA PHE A 44 0 24.083 47.897 17.393 1.00 23.28 311 C PHE A 44 0 23.450 49.191 16.916 1.00 22.36 ATOM **ATOM** 312 O PHE A 44 0 23.024 50.008 17.735 1.00 21.07 313 CB PHE A 44 0 22.959 46.965 17.853 1.00 22.04 **ATOM ATOM** 314 CG PHE A 44 0 23.376 45.525 17.955 1.00 22.96 20 ATOM 315 CD1 PHE A 44 0 22.779 44.562 17.153 1.00 23.91 ATOM 316 CD2 PHE A 44 0 24.330 45.120 18.869 1.00 22.03 **ATOM** 317 CE1 PHE A 44 0 23.131 43.230 17.253 1.00 24.42 **ATOM** 318 CE2 PHE A 44 0 24.689 43.797 18.974 1.00 23.25 **ATOM** 319 CZ PHE A 44 0 24.095 42.837 18.168 1.00 24.02 25 ATOM 320 N GLU A 45 0 23.350 49.343 15.604 1.00 22.78 **ATOM** 321 CA GLU A 45 0 22.611 50.482 15.054 1.00 24.47 322 C GLU A 45 0 21.619 49.884 14.055 1.00 23.79 ATOM 323 O GLU A 45 0 22.017 49.587 12.924 1.00 24.40 **ATOM ATOM** 324 CB GLU A 45 0 23.543 51.473 14.368 1.00 27.07 325 CG GLU A 45 0 24.474 52.130 15.374 1.00 31.60 30 ATOM 326 CD GLU A 45 0 25.380 53.179 14.772 1.00 33.90 **ATOM** 327 OE1 GLU A 45 0 25.354 53.438 13.559 1.00 35.62 **ATOM** 328 OE2 GLU A 45 0 26.155 53.748 15.565 1.00 36.42 **ATOM** 329 N LEU A 46 0 20.369 49.684 14.465 1.00 22.18 330 CA LEU A 46 0 19.419 49.044 13.556 1.00 21.22 35 ATOM 331 C LEU A 46 0 18.348 50.001 13.077 1.00 21.27 **ATOM** 332 O LEU A 46 0 17.464 50.429 13.812 1.00 21.60 ATOM 333 CB LEU A 46 0 18.837 47.811 14.262 1.00 20.72 ATOM

ATOM	334 CG LEU A 46 0 19.827 46.658 14.403 1.00 21.28
ATOM	335 CD1 LEU A 46 0 19.334 45.621 15.397 1.00 20.83
ATOM	336 CD2 LEU A 46 0 20.148 46.034 13.052 1.00 18.33
ATOM	337 N ASN A 47 0 18.438 50.403 11.823 1.00 21.09
5 ATOM	338 CA ASN A 47 0 17.498 51.344 11.252 1.00 22.37
ATOM	339 C ASN A 47 0 16.273 50.558 10.803 1.00 22.18
ATOM	340 O ASN A 47 0 16.390 49.810 9.847 1.00 23.41
ATOM	341 CB ASN A 47 0 18.131 52.104 10.066 1.00 24.01
ATOM	342 CG ASN A 47 0 17.226 53.243 9.615 1.00 25.54
10 ATOM	343 OD1 ASN A 47 0 16.443 53.772 10.413 1.00 26.53
ATOM	344 ND2 ASN A 47 0 17.332 53.612 8.346 1.00 26.01
ATOM	345 N VALA 48 0 15.147 50.692 11.475 1.00 22.04
ATOM	346 CA VAL A 48 0 13.918 49.995 11.140 1.00 21.99
ATOM	347 C VAL A 48 0 13.026 50.879 10.269 1.00 21.82
15 ATOM	348 O VALA 48 0 12.532 51.910 10.699 1.00 20.61
ATOM	349 CB VAL A 48 0 13.176 49.579 12.430 1.00 22.64
ATOM	350 CG1 VAL A 48 0 11.819 48.931 12.148 1.00 21.99
ATOM	351 CG2 VAL A 48 0 14.098 48.631 13.216 1.00 21.68
ATOM	352 N VAL A 49 0 12.931 50.512 9.009 1.00 21.79
20 ATOM	353 CA VAL A 49 0 12.164 51.167 7.966 1.00 21.34
ATOM	354 C VAL A 49 0 10.816 50.460 7.795 1.00 21.12
ATOM	355 O VAL A 49 0 10.703 49.308 7.365 1.00 19.76
ATOM	356 CB VAL A 49 0 12.983 51.189 6.665 1.00 22.02
ATOM	357 CG1 VAL A 49 0 12.267 51.913 5.519 1.00 21.70
25 ATOM	358 CG2 VAL A 49 0 14.312 51.933 6.906 1.00 21.47
ATOM	359 N ASN A 50 0 9.767 51.112 8.257 1.00 20.26
ATOM	360 CA ASN A 50 0 8.424 50.611 8.215 1.00 22.70
ATOM	361 C ASN A 50 0 7.751 50.899 6.869 1.00 25.99
ATOM	362 O ASN A 50 0 7.043 51.925 6.735 1.00 27.06
30 ATOM	363 CB ASN A 50 0 7.549 51.230 9.318 1.00 21.92
ATOM	364 CG ASN A 50 0 6.198 50.569 9.471 1.00 22.44
ATOM	365 OD1 ASN A 50 0 5.818 49.801 8.572 1.00 24.19
ATOM	366 ND2 ASN A 50 0 5.435 50.833 10.526 1.00 20.19
ATOM	367 N ASP A 51 0 7.915 49.959 5.926 1.00 26.42
35 ATOM	368 CA ASP A 51 0 7.208 50.071 4.641 1.00 26.35
ATOM	369 C ASP A 51 0 5.951 49.200 4.600 1.00 24.86
ATOM	370 O ASP A 51 0 5.542 48.810 3.511 1.00 25.19
ATOM	371 CB ASP A 51 0 8.126 49.698 3.481 1.00 26.75

372 CG ASP A 51 0 9.152 50.761 3.158 1.00 29.77 **ATOM** 373 OD1 ASP A 51 0 8.944 51.904 3.617 1.00 31.03 **ATOM** 374 OD2 ASP A 51 0 10.166 50.509 2.465 1.00 30.42 **ATOM ATOM** 375 N LEU A 52 0 5.332 48.801 5.700 1.00 25.05 5 ATOM 376 CA LEU A 52 0 4.172 47.911 5.640 1.00 25.44 **ATOM** 377 C LEU A 52 0 2.934 48.624 5.094 1.00 26.65 ATOM 378 O LEU A 52 0 2.553 49.696 5.586 1.00 24.56 **ATOM** 379 CB LEU A 52 0 3.837 47.374 7.029 1.00 24.19 **ATOM** 380 CG LEU A 52 0 4.896 46.503 7.699 1.00 24.60 381 CD1 LEU A 52 0 4.611 46.424 9.196 1.00 24.05 10 ATOM 382 CD2 LEU A 52 0 4.891 45.119 7.061 1.00 23.49 **ATOM ATOM** 383 N ASP A 53 0 2.242 47.980 4.169 1.00 28.79 ATOM 384 CA ASP A 53 0 1.049 48.602 3.581 1.00 29.91 **ATOM** 385 C ASP A 53 0 -0.135 47.658 3.492 1.00 29.90 386 O ASP A 53 0 -1.152 48.082 2.951 1.00 30.40 15 ATOM 387 CB ASP A 53 0 1.367 49.190 2.197 1.00 29.26 **ATOM** ATOM 388 CG ASP A 53 0 1.838 48.140 1.218 1.00 31.28 **ATOM** 389 OD1 ASP A 53 0 1.865 46.926 1.540 1.00 31.64 390 OD2 ASP A 53 0 2.233 48.474 0.074 1.00 32.42 **ATOM** 20 ATOM 391 N ASN A 54 0 -0.060 46.437 4.014 1.00 29.44 ATOM 392 CA ASN A 54 0 -1.237 45.554 3.983 1.00 26.89 393 C ASN A 54 0 -2.089 45.832 5.192 1.00 27.37 **ATOM** 394 O ASN A 54 0 -1.772 45.528 6.350 1.00 27.99 **ATOM** 395 CB ASN A 54 0 -0.831 44.095 3.913 1.00 25.11 **ATOM** 25 ATOM 396 CG ASN A 54 0 -1.978 43.141 3.690 1.00 24.20 **ATOM** 397 OD1 ASN A 54 0 -1.874 42.344 2.746 1.00 25.13 **ATOM** 398 ND2 ASN A 54 0 -3.030 43.182 4.481 1.00 23.26 399 N PRO A 55 0 -3.337 46.256 4.961 1.00 28.44 **ATOM** 400 CA PRO A 55 0 -4.286 46.589 6.014 1.00 26.57 **ATOM** 401 C PRO A 55 0 -4.909 45.414 6.723 1.00 27.10 30 ATOM 402 O PRO A 55 0 -5.671 45.624 7.687 1.00 26.05 **ATOM ATOM** 403 CB PRO A 55 0 -5.368 47.465 5.334 1.00 28.18 **ATOM** 404 CG PRO A 55 0 -5.249 47.049 3.899 1.00 27.50 405 CD PRO A 55 0 -3.844 46.564 3.625 1.00 27.56 **ATOM** 35 ATOM 406 N THR A 56 0 -4.603 44.160 6.345 1.00 25.55 407 CA THR A 56 0 -5.214 43.024 7.065 1.00 25.52 **ATOM ATOM** 408 C THR A 56 0 -4.446 42.647 8.326 1.00 24.87 409 O THR A 56 0 -4.766 41.764 9.115 1.00 23.97

ATOM	410 CB THR A 56 0 -5.393 41.807 6.154 1.00 25.10
ATOM	411 OG1 THR A 56 0 -4.100 41.345 5.763 1.00 24.26
ATOM	412 CG2 THR A 56 0 -6.178 42.123 4.861 1.00 25.63
ATOM	413 N MET A 57 0 -3.317 43.311 8.558 1.00 26.01
5 ATOM	414 CA MET A 57 0 -2.553 43.099 9.801 1.00 26.57
ATOM	415 C MET A 57 0 -2.026 44.475 10.201 1.00 25.88
ATOM	416 O MET A 57 0 -2.026 45.416 9.397 1.00 25.18
ATOM	417 CB MET A 57 0 -1.561 41.939 9.698 1.00 25.42
ATOM	418 CG MET A 57 0 -0.639 41.868 8.554 1.00 24.37
10 ATOM	419 SD MET A 57 0 -0.034 40.288 7.916 1.00 22.34
ATOM	420 CE MET A 57 0 -0.275 40.640 6.167 1.00 19.23
ATOM	421 N LEU A 58 0 -1.694 44.601 11.476 1.00 25.98
ATOM	422 CA LEU A 58 0 -1.180 45.850 12.036 1.00 25.57
ATOM	423 C LEU A 58 0 -0.053 46.425 11.195 1.00 24.52
15 ATOM	424 O LEU A 58 0 0.824 45.739 10.638 1.00 23.63
ATOM	425 CB LEU A 58 0 -0.757 45.535 13.463 1.00 26.67
ATOM	426 CG LEU A 58 0 -1.628 45.817 14.657 1.00 28.97
ATOM	427 CD1 LEU A 58 0 -3.107 45.995 14.312 1.00 30.99
ATOM	428 CD2 LEU A 58 0 -1.488 44.756 15.736 1.00 28.36
20 ATOM	· 429 N ARG A 59 0 -0.078 47.741 11.030 1.00 24.96
ATOM	430 CA ARG A 59 0 0.918 48.434 10.231 1.00 26.92
ATOM	431 C ARG A 59 0 1.932 49.229 11.014 1.00 26.31
ATOM	432 O ARG A 59 0 3.120 49.198 10.699 1.00 28.82
ATOM	433 CB ARG A 59 0 0.260 49.277 9.132 1.00 28.35
25 ATOM	434 CG ARG A 59 0 -0.252 48.385 7.986 1.00 29.50
ATOM	435 CD ARG A 59 0 -0.986 49.274 6.996 1.00 30.33
ATOM	436 NE ARG A 59 0 -2.333 49.604 7.459 1.00 32.26
ATOM	437 CZ ARG A 59 0 -3.121 50.525 6.883 1.00 33.24
ATOM	438 NH1 ARG A 59 0 -2.679 51.233 5.845 1.00 32.27
30 ATOM	439 NH2 ARG A 59 0 -4.340 50.712 7.389 1.00 32.65
ATOM	440 N PRO A 60 0 1.542 49.961 12.020 1.00 26.30
ATOM	441 CA PRO A 60 0 2.460 50.669 12.916 1.00 26.19
ATOM	442 C PRO A 60 0 3.312 49.591 13.595 1.00 25.29
ATOM	443 O PRO A 60 0 2.879 48.432 13.668 1.00 24.63
35 ATOM	444 CB PRO A 60 0 1.623 51.464 13.925 1.00 25.93
ATOM	445 CG PRO A 60 0 0.235 51.357 13.325 1.00 26.19
ATOM	446 CD PRO A 60 0 0.165 50.073 12.508 1.00 26.23
ATOM	447 N THR A 61 0 4.544 49.932 13.976 1.00 24.60

ATOM	448 CA THR A 61 0 5.365 48.871 14.587 1.00 23.49
ATOM	449 C THR A 61 0 6.204 49.400 15.743 1.00 22.83
ATOM	450 O THR A 61 0 6.390 50.601 15.921 1.00 20.77
ATOM	451 CB THR A 61 0 6.245 48.170 13.535 1.00 22.69
5 ATOM	452 OG1 THR A 61 0 6.668 46.918 14.096 1.00 23.55
ATOM	453 CG2 THR A 61 0 7.444 48.976 13.119 1.00 20.92
ATOM	454 N SER A 62 0 6.702 48.449 16.507 1.00 22.38
ATOM	455 CA SER A 62 0 7.599 48.672 17.633 1.00 22.47
АТОМ	456 C SER A 62 0 8.381 47.380 17.893 1.00 22.12
10 ATOM	457 O SER A 62 0 7.763 46.331 18.124 1.00 20.53
ATOM	458 CB SER A 62 0 6.784 49.033 18.882 1.00 22.02
ATOM	459 OG SER A 62 0 7.666 49.570 19.832 1.00 21.19
ATOM	460 N ILE A 63 0 9.716 47.451 17.806 1.00 21.17
ATOM	461 CA ILE A 63 0 10.513 46.240 17.960 1.00 18.32
15 ATOM	462 C ILE A 63 0 11.095 46.034 19.354 1.00 18.28
ATOM	463 O ILE A 63 0 11.832 46.909 19.826 1.00 19.63
ATOM	464 CB ILE A 63 0 11.642 46.234 16.924 1.00 16.68
ATOM	465 CG1 ILE A 63 0 11.166 46.509 15.508 1.00 18.51
ATOM	466 CG2 ILE A 63 0 12.319 44.848 16.906 1.00 16.78
20 ATOM	467 CD1 ILE A 63 0 10.055 45.625 14.994 1.00 18.25
ATOM	468 N HIS A 64 0 10.880 44.890 19.985 1.00 15.18
ATOM	469 CA HIS A 64 0 11.478 44.539 21.261 1.00 15.51
ATOM	470 C HIS A 64 0 12.648 43.559 21.029 1.00 16.73
ATOM	471 O HIS A 64 0 12.491 42.591 20.279 1.00 16.85
25 ATOM	472 CB HIS A 64 0 10.512 43.912 22.239 1.00 14.37
ATOM	473 CG HIS A 64 0 11.033 43.420 23.546 1.00 14.47
ATOM	474 ND1 HIS A 64 0 11.763 44.191 24.410 1.00 12.89
ATOM	475 CD2 HIS A 64 0 10.883 42.223 24.193 1.00 14.85
ATOM	476 CE1 HIS A 64 0 12.067 43.518 25.498 1.00 11.53
30 ATOM	477 NE2 HIS A 64 0 11.547 42.325 25.423 1.00 13.63
ATOM	478 N TRP A 65 0 13.761 43.781 21.723 1.00 14.37
ATOM	479 CA TRP A 65 0 14.966 42.926 21.577 1.00 13.92
ATOM	480 C TRP A 65 0 14.987 42.084 22.840 1.00 13.50
ATOM	481 O TRP A 65 0 15.482 42.538 23.901 1.00 12.84
35 ATOM	482 CB TRP A 65 0 16.189 43.825 21.371 1.00 13.50
ATOM	483 CG TRP A 65 0 15.890 45.020 20.492 1.00 13.19
ATOM	484 CD1 TRP A 65 0 15.453 46.247 20.913 1.00 12.42
ATOM	485 CD2 TRP A 65 0 15.908 45.087 19.068 1.00 13.61

ATOM 486 NEI TRP A 65 0 15.234 47.067 19.862 1.00 11.49	
ATOM 487 CE2 TRP A 65 0 15.511 46.390 18.710 1.00 13.77	
ATOM 488 CE3 TRP A 65 0 16.251 44.174 18.061 1.00 14.35	
ATOM 489 CZ2 TRP A 65 0 15.439 46.815 17.378 1.00 14.99	
5 ATOM 490 CZ3 TRP A 65 0 16.169 44.572 16.735 1.00 13.99	
ATOM 491 CH2 TRP A 65 0 15.756 45.869 16.411 1.00 15.82	
ATOM 492 N HIS A 66 0 14.295 40.941 22.747 1.00 10.39	
ATOM 493 CA HIS A 66 0 13.939 40.200 23.966 1.00 12.00	
ATOM 494 C HIS A 66 0 15.158 39.653 24.698 1.00 11.34	
10 ATOM 495 O HIS A 66 0 15.889 38.859 24.130 1.00 11.51	
ATOM 496 CB HIS A 66 0 12.923 39.069 23.629 1.00 10.76	
ATOM 497 CG HIS A 66 0 12.418 38.308 24.808 1.00 11.26	
ATOM 498 ND1 HIS A 66 0 11.106 38.085 25.092 1.00 13.10	
ATOM 499 CD2 HIS A 66 0 13.050 37.676 25.824 1.00 13.49	
15 ATOM 500 CE1 HIS A 66 0 10.919 37.407 26.191 1.00 12.50	
ATOM 501 NE2 HIS A 66 0 12.116 37.146 26.683 1.00 13.71	
ATOM 502 N GLY A 67 0 15.345 39.971 25.948 1.00 12.84	
ATOM 503 CA GLY A 67 0 16.492 39.469 26.719 1.00 13.36	
ATOM 504 C GLY A 67 0 17.596 40.500 26.914 1.00 13.11	
20 ATOM 505 O GLY A 67 0 18.435 40.289 27.788 1.00 13.36	
ATOM 506 N LEU A 68 0 17.641 41.558 26.131 1.00 12.89	
ATOM 507 CA LEU A 68 0 18.659 42.598 26.300 1.00 15.22	
ATOM 508 C LEU A 68 0 18.235 43.501 27.448 1.00 16.14	
ATOM 509 O LEU A 68 0 17.029 43.842 27.505 1.00 16.50	
25 ATOM 510 CB LEU A 68 0 18.929 43.320 24.988 1.00 15.98	
ATOM 511 CG LEU A 68 0 20.002 42.638 24.114 1.00 19.57	
ATOM 512 CD1 LEU A 68 0 19.719 41.185 23.809 1.00 20.39	
ATOM 513 CD2 LEU A 68 0 20.188 43.316 22.758 1.00 19.59	
ATOM 514 N PHE A 69 0 19.125 43.848 28.386 1.00 13.24	
30 ATOM 515 CA PHE A 69 0 18.700 44.657 29.526 1.00 13.85	
ATOM 516 C PHE A 69 0 18.499 46.128 29.205 1.00 14.34	
ATOM 517 O PHE A 69 0 17.806 46.879 29.895 1.00 15.02	
ATOM 518 CB PHE A 69 0 19.770 44.579 30.637 1.00 16.02	
ATOM 519 CG PHE A 69 0 20.112 43.187 31.072 1.00 16.45	
35 ATOM 520 CD1 PHE A 69 0 19.172 42.162 31.026 1.00 16.68	
ATOM 521 CD2 PHE A 69 0 21.381 42.927 31.578 1.00 16.78	
ATOM 522 CE1 PHE A 69 0 19.504 40.883 31.448 1.00 18.86	
ATOM 523 CE2 PHE A 69 0 21.717 41.652 32.001 1.00 17.34	

	АТОМ	524 CZ PHE A 69 0 20.782 40.628 31.932 1.00 18.09
	АТОМ	525 N GLN A 70 0 19.081 46.611 28.130 1.00 12.22
	ATOM	526 CA GLN A 70 0 18.919 47.990 27.708 1.00 15.20
	ATOM	527 C GLN A 70 0 19.242 49.004 28.799 1.00 16.76
5	АТОМ	528 O GLN A 70 0 18.555 50.016 28.919 1.00 16.08
	ATOM	529 CB GLN A 70 0 17.488 48.115 27.232 1.00 15.52
	ATOM	530 CG GLN A 70 0 17.168 47.303 26.003 1.00 17.37
	ATOM	531 CD GLN A 70 0 17.781 47.744 24.709 1.00 17.70
	ATOM	532 OE1 GLN A 70 0 17.557 47.090 23.676 1.00 21.63
10	ATOM	533 NE2 GLN A 70 0 18.549 48.805 24.620 1.00 16.79
	ATOM	534 N ARG A 71 0 20.338 48.804 29.518 1.00 16.49
	ATOM	535 CA ARG A 71 0 20.765 49.712 30.588 1.00 18.41
	АТОМ	536 C ARG A 71 0 21.239 51.011 29.970 1.00 16.23
	ATOM	537 O ARG A 71 0 22.059 50.998 29.027 1.00 14.48
15	ATOM	538 CB ARG A 71 0 21.827 48.942 31.382 1.00 22.65
	ATOM	539 CG ARG A 71 0 22.273 49.589 32.671 1.00 29.50
	ATOM	540 CD ARG A 71 0 23.286 48.756 33.457 1.00 32.92
	ATOM	541 NE ARG A 71 0 22.712 47.550 34.035 1.00 38.11
	ATOM	542 CZ ARG A 71 0 22.551 46.358 33.452 1.00 40.14
20	ATOM	543 NH1 ARG A 71 0 22.939 46.138 32.190 1.00 41.23
	ATOM	544 NH2 ARG A 71 0 22.022 45.333 34.130 1.00 40.89
	ATOM	545 N GLY A 72 0 20.613 52.145 30.311 1.00 14.82
	ATOM	546 CA GLY A 72 0 20.981 53.414 29.676 1.00 14.51
	ATOM	547 C GLY A 72 0 20.268 53.606 28.338 1.00 15.55
25	ATOM	548 O GLY A 72 0 20.401 54.706 27.777 1.00 16.32
	ATOM	549 N THR A 73 0 19.503 52.651 27.804 1.00 12.12
	ATOM	550 CA THR A 73 0 18.857 52.781 26.516 1.00 12.50
	ATOM	551 C THR A 73 0 17.418 52.252 26.621 1.00 13.98
	ATOM	552 O THR A 73 0 16.890 51.534 25.776 1.00 13.81
30	ATOM	553 CB THR A 73 0 19.577 52.086 25.346 1.00 12.21
	ATOM	554 OG1 THR A 73 0 19.854 50.711 25.666 1.00 12.83
	ATOM	555 CG2 THR A 73 0 20.944 52.711 25.000 1.00 9.81
	ATOM	556 N ASN A 74 0 16.744 52.617 27.708 1.00 12.97
	ATOM	557 CA ASN A 74 0 15.354 52.273 27.951 1.00 14.93
35	ATOM	558 C ASN A 74 0 14.469 52.718 26.784 1.00 15.92
	ATOM	559 O ASN A 74 0 13.501 52.030 26.455 1.00 16.56
	ATOM	560 CB ASN A 74 0 14.851 52.821 29.271 1.00 13.06
	ATOM	561 CG ASN A 74 0 13.385 52.519 29.556 1.00 15.47

	АТОМ	562 OD1 ASN A 74 0 12.557 53.250 29.021 1.00 13.99
	ATOM	563 ND2 ASN A 74 0 13.063 51.500 30.367 1.00 13.91
	АТОМ	564 N TRP A 75 0 14.806 53.765 26.041 1.00 16.16
	АТОМ	565 CA TRP A 75 0 14.036 54.262 24.917 1.00 16.49
5	АТОМ	566 C TRP A 75 0 14.050 53.345 23.701 1.00 17.29
	ATOM	567 O TRP A 75 0 13.235 53.529 22.776 1.00 16.34
	ATOM	568 CB TRP A 75 0 14.516 55.657 24.509 1.00 15.90
	ATOM	569 CG TRP A 75 0 15.990 55.705 24.207 1.00 16.04
	ATOM	570 CD1 TRP A 75 0 17.011 55.972 25.072 1.00 14.90
10	ATOM	571 CD2 TRP A 75 0 16.584 55.475 22.916 1.00 15.94
	ATOM	572 NE1 TRP A 75 0 18.210 55.917 24.384 1.00 15.89
	ATOM	573 CE2 TRP A 75 0 17.977 55.624 23.076 1.00 15.80
	ATOM	574 CE3 TRP A 75 0 16.060 55.171 21.656 1.00 14.88
	ATOM	575 CZ2 TRP A 75 0 18.867 55.459 22.016 1.00 17.60
15	ATOM	576 CZ3 TRP A 75 0 16.928 55.025 20.603 1.00 16.64
	ATOM	577 CH2 TRP A 75 0 18.321 55.153 20.785 1.00 18.16
	ATOM	578 N ALA A 76 0 14.962 52.372 23.675 1.00 15.12
	ATOM	579 CA ALA A 76 0 15.075 51.430 22.578 1.00 14.61
	ATOM	580 C ALA A 76 0 14.569 50.047 22.971 1.00 13.98
20	ATOM	581 O ALA A 76 0 14.617 49.132 22.159 1.00 14.20
	ATOM	582 CB ALA A 76 0 16.554 51.354 22.157 1.00 13.68
	ATOM	583 N ASP A 77 0 13.941 49.885 24.121 1.00 14.47
	ATOM	584 CA ASP A 77 0 13.409 48.605 24.586 1.00 14.23
	ATOM	585 C ASP A 77 0 12.198 48.167 23.762 1.00 15.04
25	ATOM	586 O ASP A 77 0 11.982 46.946 23.638 1.00 13.78
	ATOM	587 CB ASP A 77 0 13.112 48.567 26.072 1.00 13.41
	ATOM	588 CG ASP A 77 0 12.945 47.155 26.612 1.00 14.93
	ATOM	589 OD1 ASP A 77 0 11.943 46.986 27.345 1.00 15.07
	ATOM	590 OD2 ASP A 77 0 13.744 46.217 26.334 1.00 13.73
30	ATOM	591 N GLY A 78 0 11.458 49.095 23.160 1.00 13.63
	ATOM	592 CA GLY A 78 0 10.442 48.686 22.210 1.00 14.96
	ATOM	593 C GLY A 78 0 9.040 48.309 22.631 1.00 16.75
	ATOM	594 O GLY A 78 0 8.276 47.865 21.755 1.00 16.49
	ATOM	595 N ALA A 79 0 8.631 48.436 23.886 1.00 15.34
3:	5 ATOM	596 CA ALA A 79 0 7.252 48.176 24.270 1.00 14.70
	ATOM	597 C ALA A 79 0 6.490 49.495 24.084 1.00 17.51
	ATOM	598 O ALA A 79 0 6.690 50.486 24.807 1.00 17.05
	ATOM	599 CB ALA A 79 0 7.145 47.701 25.708 1.00 14.78

ATOM	600 N ASP A 80 0 5.641 49.536 23.053 1.00 18.56
ATOM	601 CA ASP A 80 0 4.859 50.741 22.798 1.00 19.52
ATOM	602 C ASP A 80 0 3.959 50.963 24.010 1.00 17.61
ATOM	603 O ASP A 80 0 3.530 49.999 24.664 1.00 16.72
5 ATOM	604 CB ASP A 80 0 4.044 50.714 21.510 1.00 24.02
ATOM	605 CG ASP A 80 0 3.003 49.607 21.549 1.00 28.13
ATOM	606 OD1 ASP A 80 0 3.410 48.417 21.541 1.00 30.66
ATOM	607 OD2 ASP A 80 0 1.803 49.959 21.603 1.00 30.61
ATOM	608 N GLY A 81 0 3.776 52.242 24.337 1.00 15.85
10 ATOM	609 CA GLY A 81 0 2.991 52.566 25.532 1.00 16.27
ATOM	610 C GLY A 81 0 3.846 52.615 26.784 1.00 18.72
ATOM	611 O GLY A 81 0 3.405 52.983 27.890 1.00 20.61
ATOM	612 N VAL A 82 0 5.108 52.173 26.725 1.00 19.11
ATOM	613 CA VAL A 82 0 5.978 52.119 27.890 1.00 19.14
15 ATOM	614 C VAL A 82 0 7.288 52.851 27.590 1.00 18.41
ATOM	615 O VAL A 82 0 7.594 53.839 28.242 1.00 16.79
ATOM	616 CB VAL A 82 0 6.266 50.697 28.390 1.00 19.82
ATOM	617 CG1 VAL A 82 0 7.059 50.741 29.710 1.00 21.37
ATOM	618 CG2 VAL A 82 0 4.995 49.894 28.640 1.00 19.27
20 ATOM	619 N ASN A 83 0 7.982 52.408 26.551 1.00 17.90
ATOM	620 CA ASN A 83 0 9.271 52.926 26.147 1.00 16.94
ATOM	621 C ASN A 83 0 9.226 53.778 24.886 1.00 18.32
ATOM	622 O ASN A 83 0 10.175 54.551 24.634 1.00 20.58
ATOM	623 CB ASN A 83 0 10.249 51.747 25.937 1.00 15.23
25 ATOM	624 CG ASN A 83 0 10.112 50.745 27.063 1.00 16.00
ATOM	625 OD1 ASN A 83 0 9.493 49.676 26.879 1.00 14.98
ATOM	626 ND2 ASN A 83 0 10.583 51.131 28.249 1.00 13.17
ATOM	627 N GLN A 84 0 8.183 53.668 24.066 1.00 16.40
ATOM	628 CA GLN A 84 0 8.080 54.464 22.867 1.00 16.34
30 ATOM	629 C GLN A 84 0 6.658 54.465 22.309 1.00 17.95
ATOM	630 O GLN A 84 0 5.816 53.679 22.728 1.00 17.69
ATOM	631 CB GLN A 84 0 8.995 53.953 21.754 1.00 17.98
ATOM	632 CG GLN A 84 0 8.456 52.654 21.127 1.00 16.63
ATOM	633 CD GLN A 84 0 9.272 52.225 19.938 1.00 18.17
35 ATOM	634 OE1 GLN A 84 0 8.994 52.601 18.792 1.00 20.91
ATOM	635 NE2 GLN A 84 0 10.279 51.385 20.096 1.00 18.70
ATOM	636 N CYS A 85 0 6.419 55.350 21.365 1.00 18.60
ATOM	637 CA CYS A 85 0 5.140 55.344 20.622 1.00 20.25

ATOM	638 C CYS A 85 0 5.512 54.555 19.375 1.00 19.55
ATOM	639 O CYS A 85 0 6.690 54.546 18.995 1.00 18.92
ATOM	640 CB CYS A 85 0 4.772 56.786 20.228 1.00 22.20
ATOM	641 SG CYS A 85 0 3.899 57.783 21.481 1.00 24.65
5 ATOM	642 N PRO A 86 0 4.589 53.951 18.674 1.00 21.19
ATOM	643 CA PRO A 86 0 4.869 53.152 17.498 1.00 20.78
ATOM	644 C PRO A 86 0 5.560 53.930 16.394 1.00 21.46
ATOM	645 O PRO A 86 0 5.453 55.137 16.298 1.00 23.08
ATOM	646 CB PRO A 86 0 3.530 52.555 17.028 1.00 19.94
10 ATOM	647 CG PRO A 86 0 2.667 52.720 18.252 1.00 19.59
ATOM	648 CD PRO A 86 0 3.174 53.872 19.062 1.00 20.46
ATOM	649 N ILE A 87 0 6.318 53.259 15.550 1.00 20.95
ATOM	650 CA ILE A 87 0 6.907 53.773 14.337 1.00 22.43
ATOM	651 C ILE A 87 0 5.768 53.641 13.292 1.00 22.80
15 ATOM	652 O ILE A 87 0 5.148 52.562 13.228 1.00 21.61
ATOM	653 CB ILE A 87 0 8.105 52.954 13.844 1.00 21.99
ATOM	654 CG1 ILE A 87 0 9.130 52.696 14.944 1.00 24.18
ATOM	655 CG2 ILE A 87 0 8.773 53.656 12.674 1.00 22.91
ATOM	656 CD1 ILE A 87 0 10.256 51.776 14.514 1.00 23.87
20 ATOM	657 N SER A 88 0 5.464 54.702 12.570 1.00 22.64
ATOM	658 CA SER A 88 0 4.338 54.709 11.647 1.00 22.85
ATOM	659 C SER A 88 0 4.751 54.268 10.249 1.00 23.35
ATOM	660 O SER A 88 0 5.870 54.489 9.764 1.00 23.30
ATOM	661 CB SER A 88 0 3.767 56.137 11.518 1.00 24.00
25 ATOM	662 OG SER A 88 0 3.379 56.770 12.720 1.00 23.93
ATOM	663 N PRO A 89 0 3.778 53.752 9.514 1.00 23.60
ATOM	664 CA PRO A 89 0 3.955 53.382 8.116 1.00 25.19
ATOM	665 C PRO A 89 0 4.579 54.556 7.361 1.00 26.58
ATOM	666 O PRO A 89 0 4.177 55.699 7.585 1.00 26.66
30 ATOM	667 CB PRO A 89 0 2.566 53.065 7.555 1.00 23.59
ATOM	668 CG PRO A 89 0 1.740 52.856 8.798 1.00 22.37
ATOM	669 CD PRO A 89 0 2.415 53.513 9.970 1.00 23.25
ATOM	670 N GLY A 90 0 5.588 54.311 6.550 1.00 27.73
ATOM	671 CA GLY A 90 0 6.223 55.338 5.748 1.00 30.55
35 ATOM	672 C GLY A 90 0 7.384 56.032 6.438 1.00 32.38
ATOM	673 O GLY A 90 0 8.050 56.894 5.879 1.00 32.53
ATOM	674 N HIS A 91 0 7.639 55.693 7.702 1.00 32.77
ATOM	675 CA HIS A 91 0 8.691 56.283 8.494 1.00 32.55

PCT/DK97/00571

676 C HIS A 91 0 9.649 55.179 8.982 1.00 32.36 ATOM 677 O HIS A 91 0 9.381 53.972 8.961 1.00 31.30 **ATOM** 678 CB HIS A 91 0 8.118 57.016 9.722 1.00 33.75 **ATOM** 679 CG HIS A 91 0 7.147 58.073 9.295 1.00 34.64 **ATOM** 5 ATOM 680 ND1 HIS A 91 0 7.519 59.381 9.072 1.00 34.41 681 CD2 HIS A 91 0 5.822 57.977 9.002 1.00 34.89 **ATOM** 682 CE1 HIS A 91 0 6.450 60.050 8.679 1.00 34.87 **ATOM ATOM** 683 NE2 HIS A 91 0 5.410 59.233 8.628 1.00 35.14 684 N ALA A 92 0 10.786 55.668 9.437 1.00 29.57 **ATOM** 10 ATOM 685 CA ALA A 92 0 11.895 54.898 9.937 1.00 27.71 **ATOM** 686 C ALA A 92 0 12.316 55.347 11.337 1.00 27.41 **ATOM** 687 O ALA A 92 0 12.076 56.484 11.741 1.00 26.12 **ATOM** 688 CB ALA A 92 0 13.051 55.057 8.967 1.00 25.23 689 N PHE A 93 0 12.931 54.418 12.081 1.00 26.87 **ATOM** 15 ATOM 690 CA PHE A 93 0 13.441 54.760 13.405 1.00 25.87 691 C PHE A 93 0 14.746 54.008 13.632 1.00 25.21 ATOM ATOM 692 O PHE A 93 0 14.797 52.810 13.347 1.00 25.80 693 CB PHE A 93 0 12.457 54.456 14.526 1.00 25.30 ATOM ATOM 694 CG PHE A 93 0 12.964 54.955 15.847 1.00 25.41 20 ATOM 695 CD1 PHE A 93 0 13.154 56.309 16.061 1.00 25.36 ATOM 696 CD2 PHE A 93 0 13.276 54.057 16.853 1.00 25.31 **ATOM** 697 CE1 PHE A 93 0 13.637 56.753 17.285 1.00 26.54 **ATOM** 698 CE2 PHE A 93 0 13.754 54.503 18.078 1.00 25.39 MOTA 699 CZ PHE A 93 0 13.935 55.857 18.302 1.00 25.01 25 ATOM 700 N LEU A 94 0 15.756 54.699 14.136 1.00 23.39 **ATOM** 701 CA LEU A 94 0 17.046 54.058 14.361 1.00 23.35 702 C LEU A 94 0 17.191 53.611 15.804 1.00 23.22 **ATOM** 703 O LEUA 94 0 17.261 54.431 16.714 1.00 23.47 **ATOM ATOM** 704 CB LEU A 94 0 18.186 54.994 13.943 1.00 24.96 705 CG LEU A 94 0 19.630 54.555 14.170 1.00 26.28 30 ATOM 706 CD1 LEU A 94 0 19.979 53.313 13.352 1.00 25.99 **ATOM** 707 CD2 LEU A 94 0 20.627 55.678 13.887 1.00 26.06 **ATOM** 708 N TYR A 95 0 17.261 52.293 16.023 1.00 21.81 **ATOM** 709 CA TYR A 95 0 17.481 51.780 17.379 1.00 19.72 **ATOM** 710 C TYR A 95 0 18.991 51.663 17.585 1.00 20.90 35 ATOM 711 O TYR A 95 0 19.690 51.248 16.656 1.00 20.74 **ATOM** 712 CB TYR A 95 0 16.831 50.448 17.609 1.00 17.86 **ATOM** ATOM 713 CG TYR A 95 0 15.329 50.411 17.691 1.00 16.35

	ATOM	714 CD1 TYR A 95 0 14.541 50.288 16.535 1.00 16.89
	ATOM	715 CD2 TYR A 95 0 14.701 50.442 18.911 1.00 15.71
	ATOM	716 CE1 TYR A 95 0 13.157 50.205 16.621 1.00 17.21
	ATOM	717 CE2 TYR A 95 0 13.325 50.362 19.033 1.00 16.25
5	ATOM	718 CZ TYR A 95 0 12.568 50.266 17.874 1.00 17.97
	ATOM	719 OH TYR A 95 0 11.205 50.189 18.001 1.00 18.61
	ATOM	720 N LYS A 96 0 19.475 52.105 18.752 1.00 20.56
	ATOM	721 CA LYS A 96 0 20.917 52.058 18.975 1.00 21.77
	ATOM	722 C LYS A 96 0 21.139 51.519 20.386 1.00 20.91
10	ATOM	723 O LYS A 96 0 20.558 52.122 21.286 1.00 21.98
	ATOM	724 CB LYS A 96 0 21.565 53.427 18.960 1.00 22.89
	ATOM	725 CG LYS A 96 0 21.857 54.046 17.609 1.00 26.39
	ATOM	726 CD LYS A 96 0 22.749 55.251 17.923 1.00 30.80
	ATOM	727 CE LYS A 96 0 22.732 56.348 16.884 1.00 32.90
15	ATOM	728 NZ LYS A 96 0 23.767 57.378 17.277 1.00 36.06
	ATOM	729 N PHE A 97 0 21.871 50.437 20.520 1.00 18.14
	ATOM	730 CA PHE A 97 0 22.062 49.863 21.854 1.00 18.19
	ATOM	731 C PHE A 97 0 23.276 48.928 21.805 1.00 16.76
	ATOM	732 O PHE A 97 0 23.870 48.700 20.747 1.00 14.19
20	ATOM	733 CB PHE A 97 0 20.816 49.067 22.307 1.00 17.34
	ATOM	734 CG PHE A 97 0 20.379 48.026 21.304 1.00 17.56
	ATOM	735 CD1 PHE A 97 0 20.873 46.732 21.348 1.00 16.27
	ATOM	736 CD2 PHE A 97 0 19.451 48.343 20.326 1.00 18.65
	ATOM	737 CE1 PHE A 97 0 20.476 45.801 20.398 1.00 17.76
25	ATOM	738 CE2 PHE A 97 0 19.026 47.408 19.386 1.00 18.64
	ATOM	739 CZ PHE A 97 0 19.546 46.120 19.416 1.00 17.55
	ATOM	740 N THR A 98 0 23.552 48.348 22.971 1.00 17.45
	ATOM	741 CA THR A 98 0 24.644 47.359 22.992 1.00 17.00
	ATOM	742 C THR A 98 0 24.304 46.333 24.042 1.00 16.63
30	ATOM	743 O THR A 98 0 23.725 46.631 25.090 1.00 15.86
	ATOM	744 CB THR A 98 0 26.028 47.990 23.256 1.00 17.53
	ATOM	745 OG1 THR A 98 0 27.017 46.924 23.372 1.00 19.01
	ATOM	746 CG2 THR A 98 0 26.088 48.807 24.525 1.00 14.85
	ATOM	747 N PRO A 99 0 24.740 45.097 23.831 1.00 15.98
35	ATOM	748 CA PRO A 99 0 24.601 44.019 24.787 1.00 15.11
	ATOM	749 C PRO A 99 0 25.445 44.270 26.020 1.00 15.99
	ATOM	750 O PRO A 99 0 25.260 43.633 27.064 1.00 15.94
	ATOM	751 CB PRO A 99 0 25.025 42.717 24.098 1.00 15.83

ATOM	752 CG PRO A 99 0 25.042 43.140 22.644 1.00 17.12
ATOM	753 CD PRO A 99 0 25.362 44.627 22.601 1.00 15.68
ATOM	754 N ALA A 100 0 26.452 45.149 25.932 1.00 17.29
ATOM	755 CA ALA A 100 0 27.316 45.501 27.050 1.00 16.88
5 ATOM	756 C ALA A 100 0 27.919 44.293 27.754 1.00 16.16
ATOM	757 O ALA A 100 0 27.779 44.187 28.977 1.00 18.13
ATOM	758 CB ALA A 100 0 26.498 46.292 28.084 1.00 14.96
ATOM	759 N GLY A 101 0 28.474 43.360 27.033 1.00 16.41
ATOM	760 CA GLY A 101 0 29.063 42.172 27.599 1.00 17.49
10 ATOM	761 C GLY A 101 0 28.130 40.994 27.769 1.00 16.15
ATOM	762 O GLY A 101 O 28.593 39.930 28.137 1.00 16.57
ATOM	763 N HIS A 102 0 26.838 41.120 27.521 1.00 17.58
ATOM	764 CA HIS A 102 0 25.858 40.058 27.804 1.00 15.77
ATOM	765 C HIS A 102 0 25.707 39.165 26.600 1.00 15.28
15 ATOM	766 O HIS A 102 0 25.087 39.641 25.662 1.00 17.64
ATOM	767 CB HIS A 102 0 24.498 40.666 28.186 1.00 17.95
ATOM	768 CG HIS A 102 0 23.432 39.661 28.493 1.00 20.00
ATOM	769 ND1 HIS A 102 0 22.099 40.005 28.547 1.00 20.59
ATOM	770 CD2 HIS A 102 0 23.475 38.323 28.772 1.00 20.09
20 ATOM	771 CE1 HIS A 102 0 21.398 38.937 28.866 1.00 20.77
ATOM	772 NE2 HIS A 102 0 22.201 37.896 29.016 1.00 20.56
ATOM	773 N ALA A 103 0 26.277 37.958 26.584 1.00 13.32
ATOM	774 CA ALA A 103 0 26.141 37.127 25.415 1.00 13.99
ATOM	775 C ALA A 103 0 24.974 36.156 25.649 1.00 13.43
25 ATOM	776 O ALA A 103 0 24.571 35.905 26.784 1.00 11.81
ATOM	777 CB ALA A 103 0 27.418 36.329 25.151 1.00 16.36
ATOM	778 N GLY A 104 0 24.459 35.610 24.554 1.00 12.38
ATOM	779 CA GLY A 104 0 23.381 34.632 24.778 1.00 12.85
ATOM	780 C GLY A 104 0 22.480 34.451 23.581 1.00 11.06
30 ATOM	781 O GLY A 104 0 22.674 35.057 22.515 1.00 10.91
ATOM	782 N THR A 105 0 21.442 33.650 23.794 1.00 10.14
ATOM	783 CA THR A 105 0 20.490 33.394 22.704 1.00 10.04
ATOM	784 C THR A 105 0 19.238 34.236 22.989 1.00 9.52
ATOM	785 O THR A 105 0 18.738 34.194 24.125 1.00 7.52
35 ATOM	786 CB THR A 105 0 20.114 31.913 22.665 1.00 12.67
ATOM	787 OG1 THR A 105 0 21.273 31.075 22.593 1.00 13.47
ATOM	788 CG2 THR A 105 0 19.187 31.684 21.468 1.00 12.75
ATOM	789 N PHE A 106 0 18.842 35.065 22.044 1.00 7.76

790 CA PHE A 106 0 17.731 35.992 22.243 1.00 10.15 **ATOM** 791 C PHE A 106 0 16.756 35.910 21.068 1.00 8.42 **ATOM ATOM** 792 O PHE A 106 0 16.941 35.083 20.166 1.00 8.33 **ATOM** 793 CB PHE A 106 0 18.283 37.460 22.369 1.00 10.19 5 ATOM 794 CG PHE A 106 0 19.291 37.577 23.506 1.00 12.95 ATOM 795 CD1 PHE A 106 0 18.905 37,443 24,815 1.00 11,44 796 CD2 PHE A 106 0 20.654 37.775 23.230 1.00 12.37 ATOM 797 CE1 PHE A 106 0 19.855 37.531 25.822 1.00 14.20 **ATOM** 798 CE2 PHE A 106 0 21.574 37.857 24.273 1.00 11.56 **ATOM** 799 CZ PHE A 106 0 21.202 37.733 25.599 1.00 9.45 10 ATOM ATOM 800 N TRP A 107 0 15.869 36.887 20.917 1.00 6.61 801 CA TRP A 107 0 15.062 36.977 19.713 1.00 10.20 **ATOM** 802 C TRP A 107 0 14.511 38.398 19.625 1.00 10.63 **ATOM** 803 O TRP A 107 0 14.463 39.036 20.657 1.00 13.71 ATOM 804 CB TRP A 107 0 13.928 35.966 19.636 1.00 7.49 15 ATOM 805 CG TRP A 107 0 12.945 35.916 20.755 1.00 9.41 ATOM 806 CD1 TRP A 107 0 13.136 35.804 22.106 1.00 10.53 ATOM 807 CD2 TRP A 107 0 11.509 36.004 20.581 1.00 9.17 **ATOM** 808 NE1 TRP A 107 0 11.929 35.784 22.768 1.00 10.63 ATOM 20 ATOM 809 CE2 TRP A 107 0 10.924 35.926 21.842 1.00 9.90 810 CE3 TRP A 107 0 10.698 36.144 19.444 1.00 8.77 ATOM 811 CZ2 TRP A 107 0 9.538 35.947 22.025 1.00 10.01 ATOM 812 CZ3 TRP A 107 0 9.336 36.167 19.613 1.00 8.60 ATOM ATOM 813 CH2 TRP A 107 0 8.774 36.061 20.890 1.00 10.09 814 N TYR A 108 0 14.117 38.847 18.464 1.00 10.72 25 ATOM 815 CA TYR A 108 0 13.498 40.148 18.302 1.00 12.19 **ATOM** 816 C TYR A 108 0 12.030 39.869 17.875 1.00 13.62 **ATOM ATOM** 817 O TYR A 108 0 11.752 38.837 17.245 1.00 13.85 ATOM 818 CB TYR A 108 0 14.182 40.994 17.259 1.00 11.05 30 ATOM 819 CG TYR A 108 0 14.176 40.413 15.857 1.00 13.89 ATOM 820 CD1 TYR A 108 0 15.087 39.464 15.423 1.00 12.99 **ATOM** 821 CD2 TYR A 108 0 13.257 40.897 14.920 1.00 14.94 **ATOM** 822 CE1 TYR A 108 0 15.064 38.979 14.130 1.00 13.64 **ATOM** 823 CE2 TYR A 108 0 13.216 40.409 13.624 1.00 15.34 35 ATOM 824 CZ TYR A 108 0 14.123 39.443 13.236 1.00 14.99 ATOM 825 OH TYR A 108 0 14.063 38.960 11.946 1.00 16.68 ATOM 826 N HIS A 109 0 11.123 40.752 18.254 1.00 12.81 ATOM 827 CA HIS A 109 0 9.735 40.630 17.826 1.00 14.92

	ATOM	828 C HIS A 109 0 9.057 41.988 17.991 1.00 15.96
	ATOM	829 O HIS A 109 0 9.392 42.800 18.875 1.00 15.67
	ATOM	830 CB HIS A 109 0 8.903 39.566 18.550 1.00 12.30
	ATOM	831 CG HIS A 109 0 8.804 39.727 20.036 1.00 12.30
5	ATOM	832 ND1 HIS A 109 0 7.788 40.429 20.666 1.00 9.89
	ATOM	833 CD2 HIS A 109 0 9.614 39.264 21.034 1.00 10.76
	ATOM	834 CE1 HIS A 109 0 7.982 40.379 21.971 1.00 8.49
	ATOM	835 NE2 HIS A 109 0 9.086 39.679 22.224 1.00 7.92
	ATOM	836 N SER A 110 0 8.070 42.203 17.122 1.00 16.26
10	ATOM	837 CA SER A 110 0 7.244 43.404 17.300 1.00 14.55
	ATOM	838 C SER A 110 0 6.548 43.283 18.646 1.00 13.56
	ATOM	839 O SER A 110 0 6.219 42.191 19.140 1.00 13.54
	ATOM	840 CB SER A 110 0 6.219 43.543 16.159 1.00 16.69
	ATOM	841 OG SER A 110 0 5.212 44.481 16.508 1.00 15.32
15	ATOM	842 N HIS A 111 0 6.396 44.395 19.359 1.00 14.60
	ATOM	843 CA HIS A 111 0 5.724 44.397 20.645 1.00 16.23
	ATOM	844 C HIS A 111 0 4.349 45.070 20.478 1.00 18.61
	ATOM	845 O HIS A 111 O 3.713 45.391 21.473 1.00 21.72
	ATOM	846 CB HIS A 111 0 6.478 45.166 21.721 1.00 14.37
20	ATOM	847 CG HIS A 111 0 6.392 44.519 23.077 1.00 15.33
	ATOM	848 ND1 HIS A 111 0 5.341 44.660 23.947 1.00 14.55
	ATOM	849 CD2 HIS A 111 0 7.265 43.676 23.680 1.00 14.72
	ATOM	850 CE1 HIS A 111 0 5.589 43.936 25.040 1.00 16.29
	ATOM	851 NE2 HIS A 111 0 6.773 43.326 24.920 1.00 15.35
25	ATOM	852 N PHE A 112 0 3.950 45.382 19.258 1.00 18.67
	ATOM	853 CA PHE A 112 0 2.725 46.139 19.037 1.00 19.61
	ATOM	854 C PHE A 112 0 1.540 45.219 18.777 1.00 19.06
	ATOM	855 O PHE A 112 0 1.521 44.630 17.707 1.00 17.50
	ATOM	856 CB PHE A 112 0 2.971 47.113 17.875 1.00 21.16
30	ATOM	857 CG PHE A 112 0 1.798 48.019 17.611 1.00 23.12
	ATOM	858 CD1 PHE A 112 0 1.456 49.007 18.509 1.00 24.59
	ATOM	859 CD2 PHE A 112 0 1.034 47.886 16.466 1.00 24.82
	ATOM	860 CE1 PHE A 112 0 0.387 49.852 18.312 1.00 24.29
	ATOM	861 CE2 PHE A 112 0 -0.063 48.714 16.243 1.00 25.87
35	ATOM	862 CZ PHE A 112 0 -0.378 49.698 17.161 1.00 25.17
	ATOM	863 N GLY A 113 0 0.599 45.092 19.707 1.00 18.05
	АТОМ	864 CA GLY A 113 0 -0.554 44.236 19.433 1.00 19.69
	АТОМ	865 C GLY A 113 0 -0.085 42.819 19.096 1.00 22.25

	ATOM	866 O GLY A 113 0 0	.937 42.333 19.593 1.00 20.55
	ATOM	867 N THR A 114 0 -0	.817 42.173 18.186 1.00 20.91
	ATOM	868 CA THR A 114 0 -0	0.493 40.816 17.749 1.00 20.85
	ATOM	869 C THR A 114 0 0.	296 40.774 16.471 1.00 18.04
5	ATOM	870 O THR A 114 0 0	.243 39.783 15.743 1.00 18.26
	ATOM	871 CB THR A 114 0 -1	1.847 40.095 17.487 1.00 23.93
	ATOM	872 OG1 THR A 114 0 -	2.609 40.910 16.554 1.00 25.68
	ATOM	873 CG2 THR A 114 0 -	2.571 39.928 18.792 1.00 23.72
	ATOM	874 N GLN A 115 0 1	.023 41.819 16.095 1.00 17.04
10	ATOM	875 CA GLN A 115 0	1.792 41.842 14.853 1.00 16.88
	ATOM	876 C GLN A 115 0 2	.881 40.775 14.744 1.00 17.94
	ATOM	877 O GLN A 115 0 3	.203 40.263 13.649 1.00 17.18
	ATOM	878 CB GLN A 115 0 2	2.391 43.244 14.757 1.00 17.55
	ATOM	879 CG GLN A 115 0	3.026 43.601 13.418 1.00 17.65
15	ATOM	880 CD GLN A 115 0	3.558 45.024 13.418 1.00 17.73
	ATOM	881 OE1 GLN A 115 0	3.257 45.782 12.482 1.00 19.19
	ATOM	882 NE2 GLN A 115 0	4.334 45.421 14.422 1.00 14.70
	ATOM	883 N TYR A 116 0 3	.515 40.416 15.881 1.00 16.32
	ATOM	884 CA TYR A 116 0	4.561 39.386 15.859 1.00 15.92
20	ATOM	885 C TYR A 116 0 3.	.935 38.042 15.479 1.00 17.17
	ATOM	886 O TYR A 116 0 4	.584 37.258 14.786 1.00 16.70
	ATOM	887 CB TYR A 116 0 5	5.411 39.312 17.096 1.00 13.45
	ATOM	888 CG TYR A 116 0	5.209 38.487 18.314 1.00 10.97
	ATOM	889 CD1 TYR A 116 0	5.581 37.146 18.394 1.00 11.02
25	ATOM	890 CD2 TYR A 116 0	4.665 39.052 19.460 1.00 12.18
	ATOM	891 CEI TYR A 116 0	5.364 36.399 19.532 1.00 10.02
	ATOM	892 CE2 TYR A 116 0	4.491 38.345 20.642 1.00 12.25
	ATOM	893 CZ TYR A 116 0 4	4.838 36.996 20.649 1.00 11.73
	ATOM	894 OH TYR A 116 0	4.642 36.295 21.821 1.00 12.72
30	ATOM	895 N CYS A 117 0 2	.654 37.829 15.842 1.00 17.70
	ATOM	896 CA CYS A 117 0	1.965 36.617 15.424 1.00 18.01
	ATOM	897 C CYS A 117 0 1.	.883 36.496 13.911 1.00 17.55
	ATOM	898 O CYS A 117 0 1	.796 35.352 13.450 1.00 17.50
	ATOM	899 CB CYS A 117 0	0.565 36.528 16.042 1.00 17.90
35	ATOM	900 SG CYS A 117 0 0	0.463 36.895 17.810 1.00 19.72
	ATOM	901 N ASP A 118 0 2.	.001 37.568 13.136 1.00 15.51
	ATOM	902 CA ASP A 118 0	1.953 37.509 11.696 1.00 17.74
	ATOM	903 C ASP A 118 0 3.	341 37.445 11.061 1.00 18.72

ATOM	904 O ASP A 118 0 3.494 37.770 9.865 1.00 17.47
ATOM	905 CB ASP A 118 0 1.142 38.696 11.131 1.00 18.61
ATOM	906 CG ASP A 118 0 -0.356 38.448 11.378 1.00 21.44
ATOM	907 OD1 ASP A 118 0 -0.826 37.331 11.082 1.00 21.55
5 ATOM	908 OD2 ASP A 118 0 -1.064 39.333 11.885 1.00 21.54
	909 N GLY A 119 0 4.355 37.095 11.882 1.00 18.19
ATOM ATOM	910 CA GLY A 119 0 5.671 36.889 11.313 1.00 19.00
ATOM	911 C GLY A 119 0 6.751 37.898 11.590 1.00 19.79 912 O GLY A 119 0 7.909 37.640 11.213 1.00 19.97
ATOM	
10 ATOM	913 N LEU A 120 0 6.445 39.011 12.280 1.00 18.24
ATOM	914 CA LEU A 120 0 7.484 39.991 12.569 1.00 16.08
ATOM	915 C LEU A 120 0 8.210 39.565 13.848 1.00 16.53
ATOM	916 O LEU A 120 0 7.933 40.051 14.939 1.00 15.31
ATOM	917 CB LEU A 120 0 6.918 41.389 12.654 1.00 16.22
15 ATOM	918 CG LEU A 120 0 7.916 42.540 12.830 1.00 17.73
ATOM	919 CD1 LEU A 120 0 9.188 42.293 12.043 1.00 17.73
ATOM	920 CD2 LEU A 120 0 7.302 43.880 12.448 1.00 16.66
ATOM	921 N ARG A 121 0 9.144 38.622 13.682 1.00 14.23
ATOM	922 CA ARG A 121 0 9.859 37.985 14.773 1.00 14.19
20 ATOM	923 C ARG A 121 0 11.007 37.152 14.159 1.00 14.09
ATOM	924 O ARG A 121 O 10.936 36.787 12.978 1.00 13.72
ATOM	925 CB ARG A 121 0 8.934 37.061 15.581 1.00 12.30
ATOM	926 CG ARG A 121 0 8.253 35.999 14.728 1.00 12.44
ATOM	927 CD ARG A 121 0 7.303 35.098 15.518 1.00 11.94
25 ATOM	928 NE ARG A 121 0 6.507 34.269 14.604 1.00 12.92
ATOM	929 CZ ARG A 121 0 5.413 33.570 14.933 1.00 10.55
ATOM	930 NH1 ARG A 121 0 4.897 33.483 16.137 1.00 8.12
ATOM	931 NH2 ARG A 121 0 4.803 32.946 13.930 1.00 10.40
ATOM	932 N GLY A 122 0 12.045 36.848 14.937 1.00 12.29
30 ATOM	933 CA GLY A 122 0 13.162 36.078 14.364 1.00 11.42
ATOM	934 C GLY A 122 0 14.185 35.918 15.486 1.00 12.42
ATOM	935 O GLY A 122 0 14.095 36.604 16.509 1.00 11.47
ATOM	936 N PRO A 123 0 15.164 35.075 15.246 1.00 11.82
ATOM	937 CA PRO A 123 0 16.226 34.778 16.190 1.00 12.81
35 ATOM	938 C PRO A 123 0 17.288 35.857 16.258 1.00 12.41
ATOM	939 O PRO A 123 0 17.565 36.580 15.302 1.00 12.03
ATOM	940 CB PRO A 123 0 16.833 33.416 15.713 1.00 12.34
ATOM	941 CG PRO A 123 0 16.567 33.494 14.223 1.00 12.19

ATOM	942 CD PRO A 123 0 15.283 34.289 14.021 1.00 11.35
ATOM	943 N MET A 124 0 17.903 36.027 17.431 1.00 14.30
ATOM	944 CA MET A 124 0 18.959 37.024 17.628 1.00 14.19
ATOM	945 C MET A 124 0 20.040 36.414 18.528 1.00 15.37
5 ATOM	946 O MET A 124 0 19.788 36.067 19.690 1.00 15.41
ATOM	947 CB MET A 124 0 18.411 38.290 18.242 1.00 15.94
ATOM	948 CG MET A 124 0 19.464 39.345 18.604 1.00 19.30
ATOM	949 SD MET A 124 0 18.646 40.875 19.164 1.00 21.94
ATOM	950 CE MET A 124 0 19.918 42.061 18.729 1.00 23.64
10 ATOM	951 N VAL A 125 0 21.212 36.178 17.939 1.00 13.74
ATOM	952 CA VAL A 125 0 22.282 35.479 18.658 1.00 13.87
ATOM	953 C VAL A 125 0 23.478 36.390 18.872 1.00 13.68
ATOM	954 O VAL A 125 0 24.004 36.976 17.945 1.00 14.01
ATOM	955 CB VAL A 125 0 22.672 34.139 18.005 1.00 12.58
15 ATOM	956 CG1 VAL A 125 0 23.787 33.383 18.749 1.00 11.23
ATOM	957 CG2 VAL A 125 0 21.448 33.212 18.033 1.00 12.14
ATOM	958 N ILE A 126 0 23.860 36.535 20.135 1.00 14.48
ATOM	959 CA ILE A 126 0 25.016 37.295 20.557 1.00 14.53
ATOM	960 C ILE A 126 0 26.131 36.348 21.054 1.00 13.58
20 ATOM	961 O ILE A 126 0 26.061 35.791 22.154 1.00 12.93
ATOM	962 CB ILE A 126 0 24.649 38.295 21.662 1.00 14.95
ATOM	963 CG1 ILE A 126 0 23.563 39.302 21.254 1.00 15.29
ATOM	964 CG2 ILE A 126 0 25.901 39.014 22.174 1.00 14.24
ATOM	965 CD1 ILE A 126 0 23.703 39.905 19.896 1.00 15.84
25 ATOM	966 N TYR A 127 0 27.142 36.146 20.236 1.00 13.66
ATOM	967 CA TYR A 127 0 28.278 35.258 20.529 1.00 14.62
ATOM	968 C TYR A 127 0 29.328 35.778 21.507 1.00 15.97
ATOM	969 O TYR A 127 0 29.626 36.977 21.669 1.00 15.27
ATOM	970 CB TYR A 127 0 28.965 34.939 19.176 1.00 14.97
30 ATOM	971 CG TYR A 127 0 28.057 34.136 18.272 1.00 16.10
ATOM	972 CD1 TYR A 127 0 27.823 32.782 18.496 1.00 14.96
ATOM	
ATOM	
ATOM	
35 ATOM	
ATOM	
ATOM	
ATOM	979 CA ASP A 128 0 30.825 35.269 23.365 1.00 16.80

ATOM	980 C ASP A 128 0 32.222 34.863 22.939 1.00 20.11
ATOM	981 O ASP A 128 0 32.508 33.656 22.777 1.00 21.41
ATOM	982 CB ASP A 128 0 30.398 34.568 24.649 1.00 16.65
ATOM	983 CG ASP A 128 0 31.136 35.055 25.874 1.00 18.36
5 ATOM	984 OD1 ASP A 128 0 32.194 35.708 25.750 1.00 18.72
ATOM	985 OD2 ASP A 128 0 30.710 34.819 27.024 1.00 20.03
ATOM	986 N ASP A 129 0 33.148 35.798 22.771 1.00 22.30
ATOM	987 CA ASP A 129 0 34.511 35.389 22.377 1.00 24.39
ATOM	988 C ASP A 129 0 35.282 34.740 23.509 1.00 22.47
10 ATOM	989 O ASP A 129 0 36.275 34.096 23.209 1.00 23.18
ATOM	990 CB ASP A 129 0 35.298 36.490 21.707 1.00 28.46
ATOM	991 CG ASP A 129 0 35.372 37.764 22.516 1.00 31.10
ATOM	992 OD1 ASP A 129 0 35.254 37.652 23.747 1.00 32.87
ATOM	993 OD2 ASP A 129 0 35.553 38.824 21.891 1.00 34.70
15 ATOM	994 N ASN A 130 0 34.829 34.684 24.736 1.00 21.92
ATOM	995 CA ASN A 130 0 35.368 34.015 25.874 1.00 23.74
ATOM	996 C ASN A 130 0 34.382 32.976 26.417 1.00 23.02
ATOM	997 O ASN A 130 0 34.352 32.684 27.616 1.00 20.14
ATOM	998 CB ASN A 130 0 35.686 35.002 27.028 1.00 26.41
20 ATOM	999 CG ASN A 130 0 36.583 36.127 26.550 1.00 30.99
ATOM	1000 OD1 ASN A 130 0 36.187 37.309 26.486 1.00 33.20
ATOM	1001 ND2 ASN A 130 0 37.818 35.769 26.175 1.00 30.96
ATOM	1002 N ASP A 131 0 33.533 32.401 25.561 1.00 23.32
ATOM	1003 CA ASP A 131 0 32.476 31.543 26.127 1.00 21.63
25 ATOM	1004 C ASP A 131 0 33.010 30.514 27.103 1.00 19.56
ATOM	1005 O ASP A 131 0 33.704 29.569 26.766 1.00 19.71
ATOM	1006 CB ASP A 131 0 31.594 30.877 25.063 1.00 22.97
ATOM	1007 CG ASP A 131 0 30.220 30.487 25.591 1.00 24.48
	1008 OD1 ASP A 131 0 30.181 29.525 26.397 1.00 26.42
30 ATOM	1009 OD2 ASP A 131 0 29.166 31.051 25.212 1.00 22.66
ATOM	
ATOM	
ATOM	1012 C PRO A 132 0 32.523 28.141 29.031 1.00 20.89
ATOM	
35 ATOM	
ATOM	
	1016 CD PRO A 132 0 31.645 31.673 28.778 1.00 16.73
ATOM	1017 N HIS A 133 0 31.668 27.836 28.063 1.00 19.47

ATOM 1018 CA HIS A 133 0 31.331 26.465 27.700 1.00 18.79 ATOM 1019 C HIS A 133 0 31.887 26.014 26.372 1.00 19.35 ATOM 1020 O HIS A 133 0 31.503 24.954 25.826 1.00 18.60 ATOM 1021 CB HIS A 133 0 29.789 26.428 27.536 1.00 18.91 5 ATOM 1022 CG HIS A 133 0 29.065 26.242 28.815 1.00 18.13 ATOM 1023 ND1 HIS A 133 0 29.566 25.551 29.877 1.00 19.52 ATOM 1024 CD2 HIS A 133 0 27.817 26.625 29.183 1.00 19.38 ATOM 1025 CE1 HIS A 133 0 28.679 25.530 30.855 1.00 20.08 ATOM 1026 NE2 HIS A 133 0 27.587 26.180 30.457 1.00 19.60 10 ATOM 1027 N ALA A 134 0 32.840 26.801 25.852 1.00 19.40 ATOM 1028 CA ALA A 134 0 33.413 26.465 24.552 1.00 21.88 ATOM 1029 C ALA A 134 0 34.080 25.107 24.525 1.00 21.69 ATOM 1030 O ALA A 134 0 34.120 24.514 23.439 1.00 21.61 ATOM 1031 CB ALA A 134 0 34.418 27.548 24.128 1.00 22.55 15 ATOM 1032 N ALA A 135 0 34.582 24.527 25.622 1.00 21.96 ATOM 1033 CA ALA A 135 0 35.178 23.192 25.483 1.00 23.53 ATOM 1034 C ALA A 135 0 34.144 22.096 25.232 1.00 24.47 ATOM 1035 O ALA A 135 0 34.488 20.936 24.989 1.00 24.77 ATOM 1036 CB ALA A 135 0 35.910 22.820 26.776 1.00 21.92 20 ATOM 1037 N LEU A 136 0 32.862 22.375 25.457 1.00 24.95 ATOM 1038 CA LEU A 136 0 31.800 21.376 25.404 1.00 23.15 ATOM 1039 C LEU A 136 0 31.284 21.076 24.016 1.00 20.31 ATOM 1040 O LEU A 136 0 30.609 20.054 23.924 1.00 19.62 ATOM 1041 CB LEU A 136 0 30.665 21.845 26.318 1.00 24.43 25 ATOM 1042 CG LEU A 136 0 30.501 21.211 27.686 1.00 27.55 ATOM 1043 CD1 LEU A 136 0 31.803 20.721 28.285 1.00 25.75 ATOM 1044 CD2 LEU A 136 0 29.747 22.129 28.644 1.00 26.92 ATOM 1045 N TYR A 137 0 31.565 21.888 22.998 1.00 17.05 ATOM 1046 CA TYR A 137 0 31.085 21.612 21.662 1.00 16.65 30 ATOM 1047 C TYR A 137 0 32.076 22.054 20.599 1.00 17.99 ATOM 1048 O TYR A 137 0 32.965 22.891 20.794 1.00 18.69 ATOM 1049 CB TYR A 137 0 29.724 22.319 21.402 1.00 16.73 ATOM 1050 CG TYR A 137 0 29.711 23.760 21.857 1.00 16.24 ATOM 1051 CD1 TYR A 137 0 29.302 24.108 23.150 1.00 16.00 35 ATOM 1052 CD2 TYR A 137 0 30.159 24.754 21.001 1.00 14.76 ATOM 1053 CE1 TYR A 137 0 29.355 25.448 23.551 1.00 15.32 ATOM 1054 CE2 TYR A 137 0 30.165 26.081 21.396 1.00 15.52 ATOM 1055 CZ TYR A 137 0 29.759 26.410 22.675 1.00 15.61

ATOM 1056 OH TYR A 137 0 29.782 27.731 23.055 1.00 17.56 ATOM 1057 N ASP A 138 0 31,903 21,549 19,393 1.00 19.04 ATOM 1058 CA ASP A 138 0 32.733 21.859 18.253 1.00 20.02 ATOM 1059 C ASP A 138 0 32.139 22.933 17.364 1.00 21.05 5 ATOM 1060 O ASP A 138 0 32.911 23.553 16.631 1.00 21.98 ATOM 1061 CB ASP A 138 0 32.836 20.628 17.315 1.00 20.66 ATOM 1062 CG ASP A 138 0 33.355 19.455 18.089 1.00 22.79 ATOM 1063 OD1 ASP A 138 0 32.744 18.404 18.318 1.00 24.88 ATOM 1064 OD2 ASP A 138 0 34.481 19.675 18.581 1.00 25.34 10 ATOM 1065 N GLU A 139 0 30.825 22.957 17.184 1.00 19.73 ATOM 1066 CA GLU A 139 0 30.223 23.865 16.213 1.00 21.27 ATOM 1067 C GLU A 139 0 29.086 24.668 16.825 1.00 18.97 ATOM 1068 O GLU A 139 0 28.306 24.143 17.608 1.00 16.95 ATOM 1069 CB GLU A 139 0 29.617 23.164 15.000 1.00 24.71 15 ATOM 1070 CG GLU A 139 0 30.509 22.149 14.311 1.00 30.89 ATOM 1071 CD GLU A 139 0 31.633 22.868 13.587 1.00 34.42 ATOM 1072 OE1 GLU A 139 0 31.340 23.869 12.898 1.00 36.87 ATOM 1073 OE2 GLU A 139 0 32.794 22.457 13.705 1.00 37.60 ATOM 1074 N ASP A 140 0 29.057 25.933 16.408 1.00 19.38 20 ATOM 1075 CA ASP A 140 0 28.026 26.847 16.912 1.00 17.89 ATOM 1076 C ASP A 140 0 27.858 27.901 15.837 1.00 18.87 ATOM 1077 O ASP A 140 0 28.705 28.780 15.768 1.00 21.31 ATOM 1078 CB ASP A 140 0 28.438 27.399 18.268 1.00 16.26 ATOM 1079 CG ASP A 140 0 27.445 28.399 18.858 1.00 16.73 25 ATOM 1080 OD1 ASP A 140 0 27.854 29.143 19.781 1.00 14.86 ATOM 1081 OD2 ASP A 140 0 26.287 28.446 18.401 1.00 13.82 ATOM 1082 N ASP A 141 0 26.862 27.844 14.972 1.00 17.34 ATOM 1083 CA ASP A 141 0 26.750 28.859 13.937 1.00 19.52 ATOM 1084 C ASP A 141 0 25.301 29.031 13.520 1.00 19.33 30 ATOM 1085 O ASP A 141 0 24.342 28.513 14.115 1.00 17.91 ATOM 1086 CB ASP A 141 0 27.681 28.509 12.772 1.00 21.66 ATOM 1087 CG ASP A 141 0 27.384 27.151 12.193 1.00 24.87 ATOM 1088 OD1 ASP A 141 0 28.280 26.521 11.567 1.00 28.90 ATOM 1089 OD2 ASP A 141 0 26.271 26.604 12.302 1.00 25.89 35 ATOM 1090 N GLU A 142 0 25.102 29.688 12.387 1.00 19.21 ATOM 1091 CA GLU A 142 0 23.775 29.945 11.880 1.00 20.84 ATOM 1092 C GLU A 142 0 23.052 28.636 11.592 1.00 19.95 ATOM 1093 O GLU A 142 0 21.844 28.656 11.665 1.00 18.73

ATOM 1094 CB GLU A 142 0 23.771 30.894 10.699 1.00 23.40 ATOM 1095 CG GLU A 142 0 24.295 30.301 9.407 1.00 27.22 ATOM 1096 CD GLU A 142 0 25.718 30.826 9.221 1.00 32.36 ATOM 1097 OE1 GLU A 142 0 26.513 30.920 10.206 1.00 31.87 5 ATOM 1098 OE2 GLU A 142 0 25.968 31.136 8.023 1.00 35.76 ATOM 1099 N ASN A 143 0 23.723 27.508 11.378 1.00 20.40 ATOM 1100 CA ASN A 143 0 23.105 26.227 11.151 1.00 19.61 ATOM 1101 C ASN A 143 0 22.785 25.468 12.421 1.00 18.35 ATOM 1102 O ASN A 143 0 22.317 24.337 12.325 1.00 15.65 10 ATOM 1103 CB ASN A 143 0 24.024 25.401 10.229 1.00 23.57 ATOM 1104 CG ASN A 143 0 24.133 26.067 8.857 1.00 26.63 ATOM 1105 OD1 ASN A 143 0 25.220 26.376 8.356 1.00 29.89 ATOM 1106 ND2 ASN A 143 0 23.049 26.342 8.175 1.00 25.46 ATOM 1107 N THR A 144 0 23.067 25.974 13.632 1.00 16.76 15 ATOM 1108 CA THR A 144 0 22.678 25.257 14.825 1.00 15.40 ATOM 1109 C THR A 144 0 21.556 25.976 15.577 1.00 15.58 ATOM 1110 O THR A 144 0 21.361 25.776 16.789 1.00 17.88 ATOM 1111 CB THR A 144 0 23.848 25.018 15.785 1.00 16.43 ATOM 1112 OG1 THR A 144 0 24.296 26.270 16.297 1.00 14.82 20 ATOM 1113 CG2 THR A 144 0 24.935 24.215 15.104 1.00 15.98 ATOM 1114 N ILE A 145 0 20.821 26.834 14.898 1.00 13.92 ATOM 1115 CA ILE A 145 0 19.697 27.550 15.500 1.00 14.31 ATOM 1116 C ILE A 145 0 18.392 26.835 15.139 1.00 13.84 ATOM 1117 O ILE A 145 0 18.127 26.478 13.996 1.00 12.32 25 ATOM 1118 CB ILE A 145 0 19.641 29.016 15.011 1.00 15.15 ATOM 1119 CG1 ILE A 145 0 20.881 29.726 15.608 1.00 16.27 ATOM 1120 CG2 ILE A 145 0 18.346 29.736 15.375 1.00 13.14 ATOM 1121 CD1 ILE A 145 0 21.256 31.006 14.892 1.00 16.72 ATOM 1122 N ILE A 146 0 17.550 26.644 16.141 1.00 13.54 30 ATOM 1123 CA ILE A 146 0 16.263 25.983 15.926 1.00 13.70 ATOM 1124 C ILE A 146 0 15.167 26.899 16.494 1.00 12.67 ATOM 1125 O ILE A 146 0 15.155 27.082 17.714 1.00 10.09 ATOM 1126 CB ILE A 146 0 16.183 24.580 16.553 1.00 15.97 ATOM 1127 CG1 ILE A 146 0 17.280 23.621 16.012 1.00 17.29 35 ATOM 1128 CG2 ILE A 146 0 14.831 23.937 16.207 1.00 14.52 ATOM 1129 CD1 ILE A 146 0 17.359 22.340 16.832 1.00 18.45 ATOM 1130 N THR A 147 0 14.360 27.507 15.610 1.00 10.81 ATOM 1131 CA THR A 147 0 13.240 28.310 16.102 1.00 12.54

ATOM 1132 C THR A 147 0 11.912 27.526 15.988 1.00 13.55 ATOM 1133 O THR A 147 0 11.655 26.724 15.076 1.00 12.65 ATOM 1134 CB THR A 147 0 13.078 29.642 15.351 1.00 12.37 ATOM 1135 OG1 THR A 147 0 12.728 29.311 14.005 1.00 10.17 5 ATOM 1136 CG2 THR A 147 0 14.381 30.479 15.402 1.00 11.93 ATOM 1137 N LEU A 148 0 11.062 27.715 16.972 1.00 12.48 ATOM 1138 CA LEU A 148 0 9.719 27.171 17.039 1.00 13.90 ATOM 1139 C LEU A 148 0 8.719 28.350 16.916 1.00 15.44 ATOM 1140 O LEU A 148 0 8.860 29.383 17.579 1.00 15.28 10 ATOM 1141 CB LEU A 148 0 9.501 26.419 18.340 1.00 12.83 ATOM 1142 CG LEU A 148 0 10.502 25.293 18.669 1.00 12.45 ATOM 1143 CD1 LEU A 148 0 10.154 24.669 19.997 1.00 11.49 ATOM 1144 CD2 LEU A 148 0 10.552 24.203 17.597 1.00 11.82 ATOM 1145 N ALA A 149 0 7.726 28.241 16.053 1.00 14.08 15 ATOM 1146 CA ALA A 149 0 6.725 29.256 15.825 1.00 15.37 ATOM 1147 C ALA A 149 0 5.336 28.658 15.521 1.00 16.78 ATOM 1148 O ALA A 149 0 5.198 27.637 14.841 1.00 15.78 ATOM 1149 CB ALA A 149 0 7.068 30.127 14.628 1.00 13.22 ATOM 1150 N ASP A 150 0 4.337 29.344 16.065 1.00 16.39 20 ATOM 1151 CA ASP A 150 0 2.941 28.995 15.864 1.00 15.96 ATOM 1152 C ASP A 150 0 2.515 29.758 14.624 1.00 16.53 ATOM 1153 O ASP A 150 0 2.960 30.905 14.483 1.00 18.17 ATOM 1154 CB ASP A 150 0 2.066 29.440 17.027 1.00 16.78 ATOM 1155 CG ASP A 150 0 2.345 30.836 17.561 1.00 18.15 25 ATOM 1156 OD1 ASP A 150 0 3.410 31.472 17.347 1.00 16.29 ATOM 1157 OD2 ASP A 150 0 1.414 31.311 18.264 1.00 17.83 ATOM 1158 N TRP A 151 0 1.776 29.157 13.726 1.00 15.62 ATOM 1159 CA TRP A 151 0 1.366 29.828 12.499 1.00 14.37 ATOM 1160 C TRP A 151 0 -0.140 29.688 12.226 1.00 14.78 30 ATOM 1161 O TRP A 151 0 -0.679 28.607 12.425 1.00 13.41 ATOM 1162 CB TRP A 151 0 2.229 29.239 11.373 1.00 13.56 ATOM 1163 CG TRP A 151 0 2.046 30.004 10.097 1.00 13.31 ATOM 1164 CD1 TRP A 151 0 1.385 29.545 8.991 1.00 13.60 ATOM 1165 CD2 TRP A 151 0 2.484 31.316 9.806 1.00 15.46 35 ATOM 1166 NEI TRP A 151 0 1.412 30.497 8.017 1.00 14.49 ATOM 1167 CE2 TRP A 151 0 2.061 31.605 8.473 1.00 15.53 ATOM 1168 CE3 TRP A 151 0 3.189 32.294 10.522 1.00 16.28 ATOM 1169 CZ2 TRP A 151 0 2.306 32.822 7.846 1.00 16.57

ATOM 1170 CZ3 TRP A 151 0 3.436 33.505 9.881 1.00 18.22 ATOM 1171 CH2 TRP A 151 0 3.003 33.766 8.560 1.00 18.00 ATOM 1172 N TYR A 152 0 -0.818 30.745 11.812 1.00 15.59 ATOM 1173 CA TYR A 152 0 -2.266 30.813 11.614 1.00 17.47 5 ATOM 1174 C TYR A 152 0 -2.556 31.086 10.149 1.00 18.79 ATOM 1175 O TYR A 152 0 -1.830 31.856 9.521 1.00 19.15 ATOM 1176 CB TYR A 152 0 -2.981 31.930 12.434 1.00 16.37 ATOM 1177 CG TYR A 152 0 -2.539 31.776 13.887 1.00 16.24 ATOM 1178 CD1 TYR A 152 0 -1.313 32.303 14.318 1.00 15.22 10 ATOM 1179 CD2 TYR A 152 0 -3.267 30.998 14.767 1.00 15.29 ATOM 1180 CE1 TYR A 152 0 -0.889 32.135 15.626 1.00 14.67 ATOM 1181 CE2 TYR A 152 0 -2.831 30.799 16.054 1.00 16.52 ATOM 1182 CZ TYR A 152 0 -1.632 31.369 16.474 1.00 16.12 ATOM 1183 OH TYR A 152 0 -1.219 31.139 17.771 1.00 16.36 15 ATOM 1184 N HIS A 153 0 -3.590 30.445 9.599 1.00 20.39 ATOM 1185 CA HIS A 153 0 -3.899 30.683 8.181 1.00 21.90 ATOM 1186 C HIS A 153 0 -4.642 31.988 7.952 1.00 21.94 ATOM 1187 O HIS A 153 0 -4.750 32.386 6.784 1.00 22.32 ATOM 1188 CB HIS A 153 0 -4.592 29.483 7.549 1.00 22.29 20 ATOM: 1189 CG HIS A 153 0 -3.651 28.319 7.385 1.00 24.52 ATOM 1190 ND1 HIS A 153 0 -4.071 27.022 7.258 1.00 24.25 ATOM 1191 CD2 HIS A 153 0 -2.286 28.274 7.338 1.00 23.32 ATOM 1192 CE1 HIS A 153 0 -3.034 26.220 7.124 1.00 24.15 ATOM 1193 NE2 HIS A 153 0 -1.956 26.965 7.178 1.00 24.30 25 ATOM 1194 N ILE A 154 0 -5.084 32.718 8.972 1.00 21.86 ATOM 1195 CA ILE A 154 0 -5.611 34.046 8.686 1.00 24.39 ATOM 1196 C ILE A 154 0 -4.904 35.051 9.597 1.00 22.15 ATOM 1197 O ILE A 154 0 -4.517 34.732 10.698 1.00 20.15 ATOM 1198 CB ILE A 154 0 -7.120 34.281 8.693 1.00 26.43 30 ATOM 1199 CG1 ILE A 154 0 -7.682 34.498 10.099 1.00 27.66 ATOM 1200 CG2 ILE A 154 0 -7.947 33.251 7.928 1.00 26.60 ATOM 1201 CD1 ILE A 154 0 -7.312 33.468 11.125 1.00 28.86 ATOM 1202 N PRO A 155 0 -4.723 36.255 9.105 1.00 23.79 ATOM 1203 CA PRO A 155 0 -4.108 37.361 9.816 1.00 23.66 35 ATOM 1204 C PRO A 155 0 -4.604 37.435 11.252 1.00 24.59 ATOM 1205 O PRO A 155 0 -5.814 37.317 11.539 1.00 24.53 ATOM 1206 CB PRO A 155 0 -4.546 38.634 9.077 1.00 24.20 ATOM 1207 CG PRO A 155 0 -4.990 38.162 7.733 1.00 23.40

ATOM 1208 CD PRO A 155 0 -5.207 36.672 7.776 1.00 23.41 ATOM 1209 N ALA A 156 0 -3.704 37.776 12.178 1.00 24.03 ATOM 1210 CA ALA A 156 0 -4.066 37.806 13.588 1.00 25.45 ATOM 1211 C ALA A 156 0 -5.262 38.667 13.992 1.00 24.85 5 ATOM 1212 O ALA A 156 0 -6.083 38.217 14.798 1.00 22.79 ATOM 1213 CB ALA A 156 0 -2.866 38.045 14.492 1.00 24.30 ATOM 1214 N PRO A 157 0 -5.393 39.873 13.518 1.00 25.98 ATOM 1215 CA PRO A 157 0 -6.521 40.741 13.807 1.00 28.77 ATOM 1216 C PRO A 157 0 -7.840 40.092 13.406 1.00 30.78 10 ATOM 1217 O PRO A 157 0 -8.798 40.416 14.105 1.00 34.62 ATOM 1218 CB PRO A 157 0 -6.324 42.071 13.068 1.00 26.56 ATOM 1219 CG PRO A 157 0 -4.859 42.013 12.762 1.00 25.98 ATOM 1220 CD PRO A 157 0 -4.480 40.547 12.585 1.00 25.96 ATOM 1221 N SER A 158 0 -7.950 39.207 12.430 1.00 30.95 15 ATOM 1222 CA SER A 158 0 -9.174 38.549 12.047 1.00 31.32 ATOM 1223 C SER A 158 0 -9.450 37.288 12.851 1.00 33.61 ATOM 1224 O SER A 158 0 -10.472 36.633 12.575 1.00 34.71 ATOM 1225 CB SER A 158 0 -9.176 38.118 10.577 1.00 30.14 ATOM 1226 OG SER A 158 0 -8.942 39.187 9.665 1.00 31.20 20 ATOM 1227 N ILE A 159 0 -8.588 36.875 13.773 1.00 34.23 ATOM 1228 CA ILE A 159 0 -8.918 35.642 14.491 1.00 36.40 ATOM 1229 C ILE A 159 0 -10.189 35.896 15.309 1.00 39.20 ATOM 1230 O ILE A 159 0 -10.294 36.875 16.046 1.00 39.00 ATOM 1231 CB ILE A 159 0 -7.769 35.121 15.360 1.00 35.56 25 ATOM 1232 CG1 ILE A 159 0 -6.713 34.408 14.485 1.00 35.58 ATOM 1233 CG2 ILE A 159 0 -8.262 34.184 16.452 1.00 34.97 ATOM 1234 CD1 ILE A 159 0 -5.388 34.268 15.212 1.00 34.91 ATOM 1235 N GLN A 160 0 -11.137 34.969 15.196 1.00 41.53 ATOM 1236 CA GLN A 160 0 -12.398 35.056 15.946 1.00 42.57 30 ATOM 1237 C GLN A 160 0 -12.466 33.914 16.949 1.00 40.51 ATOM 1238 O GLN A 160 0 -12.308 32.741 16.585 1.00 41.96 ATOM 1239 CB GLN A 160 0 -13.542 35.062 14.937 1.00 45.52 ATOM 1240 CG GLN A 160 0 -14.814 34.319 15.267 1.00 48.48 ATOM 1241 CD GLN A 160 0 -15.570 33.799 14.055 1.00 50.12 35 ATOM 1242 OE1 GLN A 160 0 -16.204 32.737 14.118 1.00 50.77 ATOM 1243 NE2 GLN A 160 0 -15.504 34.520 12.940 1.00 51.22 ATOM 1244 N GLY A 161 0 -12.667 34.191 18.225 1.00 37.10 ATOM 1245 CA GLY A 161 0 -12.722 33.112 19.208 1.00 34.91

ATOM 1246 C GLY A 161 0 -11.305 32.826 19.696 1.00 34.13 ATOM 1247 O GLY A 161 0 -10.412 33.648 19.451 1.00 32.40 ATOM 1248 N ALA A 162 0 -11.158 31.738 20.433 1.00 33.01 ATOM 1249 CA ALA A 162 0 -9.864 31.355 20.988 1.00 32.39 5 ATOM 1250 C ALA A 162 0 -8.927 30.902 19.880 1.00 31.53 ATOM 1251 O ALA A 162 0 -9.285 30.132 19.013 1.00 30.73 ATOM 1252 CB ALA A 162 0 -10.058 30.263 22.010 1.00 34.12 ATOM 1253 N ALA A 163 0 -7.731 31.475 19.851 1.00 32.06 ATOM 1254 CA ALA A 163 0 -6.740 31.202 18.814 1.00 30.85 10 ATOM 1255 C ALA A 163 0 -6.219 29.774 18.897 1.00 29.40 ATOM 1256 O ALA A 163 0 -5.967 29.223 19.965 1.00 30.49 ATOM 1257 CB ALA A 163 0 -5.607 32.217 18.911 1.00 30.29 ATOM 1258 N GLN A 164 0 -6.101 29.130 17.754 1.00 28.69 ATOM 1259 CA GLN A 164 0 -5.616 27.769 17.612 1.00 28.24 15 ATOM 1260 C GLN A 164 0 -4.720 27.744 16.370 1.00 25.02 ATOM 1261 O GLN A 164 0 -5.157 28.046 15.260 1.00 23.64 ATOM 1262 CB GLN A 164 0 -6.732 26.756 17.361 1.00 31.99 ATOM 1263 CG GLN A 164 0 -7.885 26.640 18.319 1.00 36.24 ATOM 1264 CD GLN A 164 0 -7.535 25.809 19.540 1.00 40.95 20 ATOM 1265 OE1 GLN A 164 0 -7.863 26.166 20.684 1.00 43.34 ATOM 1266 NE2 GLN A 164 0 -6.864 24.672 19.328 1.00 41.86 ATOM 1267 N PRO A 165 0 -3.446 27.406 16.549 1.00 22.68 ATOM 1268 CA PRO A 165 0 -2.501 27.360 15.463 1.00 20.43 ATOM 1269 C PRO A 165 0 -2.856 26.294 14.429 1.00 18.89 25 ATOM 1270 O PRO A 165 0 -3.286 25.176 14.715 1.00 18.00 ATOM 1271 CB PRO A 165 0 -1.126 27.075 16.088 1.00 20.83 ATOM 1272 CG PRO A 165 0 -1.476 26.651 17.479 1.00 22.05 ATOM 1273 CD PRO A 165 0 -2.873 27.081 17.851 1.00 21.57 ATOM 1274 N ASP A 166 0 -2.667 26.608 13.169 1.00 17.50 30 ATOM 1275 CA ASP A 166 0 -2.829 25.677 12.059 1.00 19.82 ATOM 1276 C ASP A 166 0 -1.591 24.788 11.930 1.00 19.47 ATOM 1277 O ASP A 166 0 -1.692 23.649 11.506 1.00 19.38 ATOM 1278 CB ASP A 166 0 -3.005 26.413 10.727 1.00 19.75 ATOM 1279 CG ASP A 166 0 -4.347 27.162 10.728 1.00 21.69 35 ATOM 1280 OD1 ASP A 166 0 -5.376 26.480 10.593 1.00 22.24 ATOM 1281 OD2 ASP A 166 0 -4.384 28.392 10.885 1.00 22.13 ATOM 1282 N ALA A 167 0 -0.435 25.386 12.231 1.00 18.54 ATOM 1283 CA ALA A 167 0 0.806 24.614 12.142 1.00 18.74

ATOM 1284 C ALA A 167 0 1.867 25.056 13.148 1.00 17.69 ATOM 1285 O ALA A 167 0 1.874 26.147 13.715 1.00 15.83 ATOM 1286 CB ALA A 167 0 1.387 24.767 10.735 1.00 17.32 ATOM 1287 N THR A 168 0 2.826 24.166 13.335 1.00 18.40 5 ATOM 1288 CA THR A 168 0 4.087 24.402 14.027 1.00 14.85 ATOM 1289 C THR A 168 0 5.180 24.553 12.955 1.00 15.24 ATOM 1290 O THR A 168 0 5.402 23.737 12.071 1.00 12.99 ATOM 1291 CB THR A 168 0 4.530 23.235 14.900 1.00 14.31 ATOM 1292 OG1 THR A 168 0 3.558 23.068 15.920 1.00 12.30 10 ATOM 1293 CG2 THR A 168 0 5.921 23.516 15.524 1.00 13.60 ATOM 1294 N LEU A 169 0 5.867 25.686 12.973 1.00 16.69 ATOM 1295 CA LEU A 169 0 6.976 26.002 12.071 1.00 14.74 ATOM 1296 C LEU A 169 0 8.285 25.747 12.833 1.00 14.34 ATOM 1297 O LEU A 169 0 8.497 26.259 13.942 1.00 12.34 15 ATOM 1298 CB LEU A 169 0 6.890 27.471 11.652 1.00 14.90 ATOM 1299 CG LEU A 169 0 6.071 27.845 10.428 1.00 17.83 ATOM 1300 CD1 LEU A 169 0 4.978 26.825 10.133 1.00 15.89 ATOM 1301 CD2 LEU A 169 0 5.500 29.254 10.443 1.00 16.43 ATOM 1302 N ILE A 170 0 9.141 24.923 12.255 1.00 14.06 20 ATOM 1303 CA ILE A 170 0 10.472 24.659 12.819 1.00 14.01 ATOM 1304 C ILE A 170 0 11.397 25.312 11.784 1.00 15.19 ATOM 1305 O ILE A 170 0 11.307 25.009 10.585 1.00 14.73 ATOM 1306 CB ILE A 170 0 10.807 23.179 13.025 1.00 14.75 ATOM 1307 CG1 ILE A 170 0 9.849 22.605 14.069 1.00 13.74 25 ATOM 1308 CG2 ILE A 170 0 12.268 22.983 13.468 1.00 13.47 ATOM 1309 CD1 ILE A 170 0 9.915 21.134 14.385 1.00 15.26 ATOM 1310 N ASN A 171 0 12.166 26.317 12.208 1.00 13.13 ATOM 1311 CA ASN A 171 0 12.992 27.042 11.250 1.00 13.74 ATOM 1312 C ASN A 171 0 12.163 27.517 10.083 1.00 13.71 30 ATOM 1313 O ASN A 171 0 12.562 27.381 8.921 1.00 13.20 ATOM 1314 CB ASN A 171 0 14.220 26.209 10.793 1.00 14.42 ATOM 1315 CG ASN A 171 0 15.236 26.157 11.940 1.00 16.29 ATOM 1316 OD1 ASN A 171 0 15.123 26.983 12.875 1.00 16.78 ATOM 1317 ND2 ASN A 171 0 16.203 25.259 11.964 1.00 14.32 35 ATOM 1318 N GLY A 172 0 10.967 28.074 10.337 1.00 14.17 ATOM 1319 CA GLY A 172 0 10.157 28.619 9.270 1.00 11.74 ATOM 1320 C GLY A 172 0 9.387 27.636 8.433 1.00 14.40 ATOM 1321 O GLY A 172 0 8.783 28.064 7.441 1.00 15.60

ATOM 1322 N LYS A 173 0 9.430 26.319 8.669 1.00 13.84 ATOM 1323 CA LYS A 173 0 8.777 25.363 7.794 1.00 13.67 ATOM 1324 C LYS A 173 0 8.038 24.303 8.589 1.00 13.59 ATOM 1325 O LYS A 173 0 8.445 24.027 9.723 1.00 11.70 5 ATOM 1326 CB LYS A 173 0 9.775 24.645 6.875 1.00 17.03 ATOM 1327 CG LYS A 173 0 10.704 25.577 6.118 1.00 17.63 ATOM 1328 CD LYS A 173 0 11.508 24.796 5.094 1.00 20.84 ATOM 1329 CE LYS A 173 0 12.213 25.821 4.198 1.00 22.63 ATOM 1330 NZ LYS A 173 0 13.304 25.087 3.499 1.00 28.08 10 ATOM 1331 N GLY A 174 0 6.922 23.821 8.014 1.00 12.28 ATOM 1332 CA GLY A 174 0 6.178 22.768 8.753 1.00 11.45 ATOM 1333 C GLY A 174 0 4.958 22.409 7.896 1.00 13.55 ATOM 1334 O GLY A 174 0 4.823 22.877 6.760 1.00 13.37 ATOM 1335 N ARG A 175 0 4.042 21.619 8.432 1.00 14.54 15 ATOM 1336 CA ARG A 175 0 2.859 21.201 7.687 1.00 16.62 ATOM 1337 C ARG A 175 0 1.598 21.336 8.541 1.00 17.67 ATOM 1338 O ARG A 175 0 1.727 21.264 9.769 1.00 18.41 ATOM 1339 CB ARG A 175 0 2.985 19.718 7.292 1.00 16.05 ATOM 1340 CG ARG A 175 0 3.894 19.472 6.116 1.00 16.55 20 ATOM 1341 CD ARG A 175 0 4.358 18.009 6.108 1.00 17.70 ATOM 1342 NE ARG A 175 0 5.421 17.861 5.097 1.00 17.74 ATOM 1343 CZ ARG A 175 0 5.971 16.667 4.792 1.00 17.63 ATOM 1344 NH1 ARG A 175 0 6.918 16.665 3.866 1.00 17.25 ATOM 1345 NH2 ARG A 175 0 5.594 15.538 5.375 1.00 14.80 25 ATOM 1346 N TYR A 176 0 0.429 21.438 7.908 1.00 18.08 ATOM 1347 CA TYR A 176 0 -0.800 21.481 8.746 1.00 18.67 ATOM 1348 C TYR A 176 0 -1.613 20.200 8.509 1.00 18.24 ATOM 1349 O TYR A 176 0 -1.417 19.534 7.483 1.00 17.67 ATOM 1350 CB TYR A 176 0 -1.635 22.709 8.462 1.00 17.21 30 ATOM 1351 CG TYR A 176 0 -2.102 22.931 7.053 1.00 16.36 ATOM 1352 CD1 TYR A 176 0 -1.246 23.433 6.089 1.00 14.84 ATOM 1353 CD2 TYR A 176 0 -3.441 22.676 6.677 1.00 17.26 ATOM 1354 CE1 TYR A 176 0 -1.640 23.686 4.796 1.00 16.01 ATOM 1355 CE2 TYR A 176 0 -3.862 22.908 5.361 1.00 16.65 35 ATOM 1356 CZ TYR A 176 0 -2.967 23.407 4.432 1.00 17.65 ATOM 1357 OH TYR A 176 0 -3.347 23.678 3.131 1.00 17.81 ATOM 1358 N VAL A 177 0 -2.427 19.815 9.464 1.00 18.46 ATOM 1359 CA VAL A 177 0 -3.200 18.571 9.303 1.00 21.18

```
ATOM 1360 C VAL A 177 0 -4.090 18.639 8.073 1.00 21.50
  ATOM 1361 O VAL A 177 0 -4.788 19.620 7.858 1.00 21.85
  ATOM 1362 CB VAL A 177 0 -4.072 18.306 10.532 1.00 22.29
  ATOM 1363 CG1 VAL A 177 0 -4.802 16.974 10.370 1.00 21.70
5 ATOM 1364 CG2 VAL A 177 0 -3.205 18.289 11.784 1.00 22.43
  ATOM 1365 N GLY A 178 0 -3.989 17.707 7.142 1.00 21.84
  ATOM 1366 CA GLY A 178 0 -4.761 17.742 5.918 1.00 20.35
  ATOM 1367 C GLY A 178 0 -4.047 18.602 4.900 1.00 22.84
  ATOM 1368 O GLY A 178 0 -4.576 18.673 3.774 1.00 23.86
10 ATOM 1369 N GLY A 179 0 -2.887 19.220 5.210 1.00 21.49
  ATOM 1370 CA GLY A 179 0 -2.291 20.060 4.149 1.00 19.94
  ATOM 1371 C GLY A 179 0 -1.389 19.250 3.242 1.00 18.86
  ATOM 1372 O GLY A 179 0 -1.192 18.052 3.399 1.00 19.35
  ATOM 1373 N PRO A 180 0 -0.800 19.905 2.268 1.00 19.42
15 ATOM 1374 CA PRO A 180 0 0.150 19.328 1.335 1.00 19.92
  ATOM 1375 C PRO A 180 0 1.430 18.922 2.041 1.00 20.56
  ATOM 1376 O PRO A 180 0 1.731 19.399 3.145 1.00 20.66
  ATOM 1377 CB PRO A 180 0 0.503 20.399 0.298 1.00 19.52
  ATOM 1378 CG PRO A 180 0 -0.144 21.639 0.829 1.00 19.70
20 ATOM 1379 CD PRO A 180 0 -0.930 21.356 2.081 1.00 19.79
  ATOM 1380 N ALA A 181 0 2.213 18.059 1.403 1.00 21.19
  ATOM 1381 CA ALA A 181 0 3.489 17.644 2.007 1.00 23.04
  ATOM 1382 C ALA A 181 0 4.548 18.723 1.772 1.00 21.24
  ATOM 1383 O ALA A 181 0 5.465 18.522 0.986 1.00 23.93
25 ATOM 1384 CB ALA A 181 0 3.928 16.305 1.435 1.00 21.73
  ATOM 1385 N ALA A 182 0 4.398 19.905 2.315 1.00 19.30
  ATOM 1386 CA ALA A 182 0 5.357 20.987 2.183 1.00 18.39
  ATOM 1387 C ALA A 182 0 6.706 20.549 2.791 1.00 17.36
  ATOM 1388 O ALA A 182 O 6.858 19.712 3.701 1.00 16.16
30 ATOM 1389 CB ALA A 182 0 4.826 22.209 2.932 1.00 17.68
  ATOM 1390 N GLU A 183 0 7.739 21.103 2.210 1.00 18.23
  ATOM 1391 CA GLU A 183 0 9.134 20.882 2.599 1.00 20.90
  ATOM 1392 C GLU A 183 0 9.381 21.078 4.093 1.00 18.87
  ATOM 1393 O GLU A 183 0 8.976 22.073 4.699 1.00 17.80
35 ATOM 1394 CB GLU A 183 0 9.990 21.875 1.820 1.00 25.16
  ATOM 1395 CG GLU A 183 0 11.508 21.760 1.962 1.00 31.31
  ATOM 1396 CD GLU A 183 0 12.075 22.803 0.998 1.00 34.38
  ATOM 1397 OE1 GLU A 183 0 11.901 22.609 -0.229 1.00 36.88
```

ATOM 1398 OE2 GLU A 183 0 12.619 23.809 1.484 1.00 36.18 ATOM 1399 N LEU A 184 0 10.010 20.093 4.691 1.00 17.33 ATOM 1400 CA LEU A 184 0 10.388 20.155 6.098 1.00 18.77 ATOM 1401 C LEU A 184 0 11.780 20.743 6.255 1.00 19.44 5 ATOM 1402 O LEU A 184 0 12.582 20.687 5.314 1.00 20.95 ATOM 1403 CB LEU A 184 0 10.331 18.735 6.673 1.00 18.11 1404 CG LEU A 184 0 8.915 18.125 6.577 1.00 19.10 **ATOM** ATOM 1405 CD1 LEU A 184 0 8.887 16.734 7.178 1.00 18.87 ATOM 1406 CD2 LEU A 184 0 7.868 19.026 7.229 1.00 18.69 10 ATOM 1407 N SER A 185 0 12.054 21.342 7.398 1.00 18.46 ATOM 1408 CA SER A 185 0 13.366 21.883 7.699 1.00 17.73 ATOM 1409 C SER A 185 0 14.298 20.699 8.018 1.00 16.95 ATOM 1410 O SER A 185 0 13.883 19.710 8.629 1.00 15.84 ATOM 1411 CB SER A 185 0 13.303 22.786 8.934 1.00 17.34 15 ATOM 1412 OG SER A 185 0 12.846 24.073 8.560 1.00 18.09 ATOM 1413 N ILE A 186 0 15.533 20.845 7.587 1.00 16.43 ATOM 1414 CA ILE A 186 0 16.595 19.858 7.821 1.00 16.85 ATOM 1415 C ILE A 186 0 17.725 20.491 8.626 1.00 15.86 ATOM 1416 O ILE A 186 0 18.178 21.605 8.387 1.00 11.67 20 ATOM 1417 CB ILE A 186 0 17.193 19.390 6.471 1.00 18.77 ATOM 1418 CG1 ILE A 186 0 16.048 18.895 5.557 1.00 19.78 ATOM 1419 CG2 ILE A 186 0 18.167 18.241 6.697 1.00 18.53 ATOM 1420 CD1 ILE A 186 0 16.464 18.731 4.110 1.00 22.35 ATOM 1421 N VAL A 187 0 18.114 19.840 9.703 1.00 16.18 25 ATOM 1422 CA VAL A 187 0 19.243 20.287 10.505 1.00 16.63 ATOM 1423 C VAL A 187 0 20.362 19.239 10.231 1.00 17.36 ATOM 1424 O VAL A 187 0 20.158 18.046 10.505 1.00 15.19 ATOM 1425 CB VAL A 187 0 18.928 20.323 11.984 1.00 16.68 ATOM 1426 CG1 VAL A 187 0 20.198 20.622 12.796 1.00 16.82 30 ATOM 1427 CG2 VAL A 187 0 17.874 21.375 12.275 1.00 17.07 ATOM 1428 N ASN A 188 0 21.449 19.695 9.634 1.00 16.45 ATOM 1429 CA ASN A 188 0 22.528 18.766 9.272 1.00 19.84 ATOM 1430 C ASN A 188 0 23.598 18.597 10.349 1.00 19.41 ATOM 1431 O ASN A 188 0 24.051 19.618 10.862 1.00 21.31 35 ATOM 1432 CB ASN A 188 0 23.209 19.246 7.976 1.00 18.78 ATOM 1433 CG ASN A 188 0 22.249 19.186 6.797 1.00 20.77 ATOM 1434 OD1 ASN A 188 0 21.734 20.201 6.305 1.00 21.70 ATOM 1435 ND2 ASN A 188 0 21.995 17.985 6.286 1.00 20.52

ATOM 1436 N VAL A 189 0 24.024 17.389 10.681 1.00 17.35 ATOM 1437 CA VAL A 189 0 25.098 17.164 11.617 1.00 17.93 ATOM 1438 C VAL A 189 0 26.091 16.135 11.046 1.00 19.82 ATOM 1439 O VAL A 189 0 25.773 15.392 10.109 1.00 18.90 5 ATOM 1440 CB VAL A 189 0 24.660 16.684 13.009 1.00 18.43 ATOM 1441 CG1 VAL A 189 0 23.931 17.796 13.766 1.00 18.89 ATOM 1442 CG2 VAL A 189 0 23.760 15.449 12.965 1.00 15.94 ATOM 1443 N GLU A 190 0 27.242 15.993 11.688 1.00 21.48 ATOM 1444 CA GLU A 190 0 28.220 14.972 11.274 1.00 24.63 10 ATOM 1445 C GLU A 190 0 28.514 14.065 12.469 1.00 23.06 ATOM 1446 O GLU A 190 0 28.797 14.650 13.522 1.00 21.04 ATOM 1447 CB GLU A 190 0 29.569 15.551 10.860 1.00 26.79 ATOM 1448 CG GLU A 190 0 29.571 16.355 9.567 1.00 32.24 ATOM 1449 CD GLU A 190 0 30.951 16.990 9.351 1.00 34.67 15 ATOM 1450 OE1 GLU A 190 0 31.927 16.199 9.305 1.00 35.41 ATOM 1451 OE2 GLU A 190 0 30.999 18.236 9.264 1.00 35.78 ATOM 1452 N GLN A 191 0 28.490 12.752 12.256 1.00 21.94 ATOM 1453 CA GLN A 191 0 28.768 11.824 13.357 1.00 21.92 ATOM 1454 C GLN A 191 0 30.121 12.151 13.984 1.00 22.68 20 ATOM 1455 O GLN A 191 0 31.052 12.516 13.251 1.00 23.08 ATOM 1456 CB GLN A 191 0 28.797 10.400 12.820 1.00 22.01 ATOM 1457 CG GLN A 191 0 28.795 9.347 13.917 1.00 23.87 ATOM 1458 CD GLN A 191 0 28.846 7.966 13.259 1.00 26.64 ATOM 1459 OE1 GLN A 191 0 29.745 7.761 12.427 1.00 28.86 25 ATOM 1460 NE2 GLN A 191 0 27.909 7.080 13.563 1.00 26.40 ATOM 1461 N GLY A 192 0 30.224 12.119 15.290 1.00 21.84 ATOM 1462 CA GLY A 192 0 31.418 12.469 15.996 1.00 22.91 ATOM 1463 C GLY A 192 0 31.564 13.910 16.446 1.00 23.87 ATOM 1464 O GLY A 192 0 32.394 14.174 17.322 1.00 25.80 30 ATOM 1465 N LYS A 193 0 30.839 14.867 15.922 1.00 23.54 ATOM 1466 CA LYS A 193 0 30.899 16.259 16.362 1.00 22.84 ATOM 1467 C LYS A 193 0 29.840 16.584 17.404 1.00 21.67 ATOM 1468 O LYS A 193 0 28.826 15.882 17.538 1.00 20.99 ATOM 1469 CB LYS A 193 0 30.682 17.155 15.143 1.00 24.53 35 ATOM 1470 CG LYS A 193 0 31.900 17.149 14.217 1.00 27.82 ATOM 1471 CD LYS A 193 0 31.739 18.261 13.199 1.00 30.02 ATOM 1472 CE LYS A 193 0 33.060 19.001 12.990 1.00 31.93 ATOM 1473 NZ LYS A 193 0 33.392 18.906 11.540 1.00 33.14

ATOM 1474 N LYS A 194 0 30.067 17.626 18.169 1.00 19.25 ATOM 1475 CA LYS A 194 0 29.168 18.115 19.187 1.00 19.49 ATOM 1476 C LYS A 194 0 28.722 19.523 18.780 1.00 19.40 ATOM 1477 O LYS A 194 0 29.512 20.285 18.235 1.00 19.29 5 ATOM 1478 CB LYS A 194 0 29.771 18.115 20.576 1.00 21.88 ATOM 1479 CG LYS A 194 0 30.338 16.748 20.999 1.00 25.59 1480 CD LYS A 194 0 31.054 16.902 22.331 1.00 29.48 1481 CE LYS A 194 0 31.455 15.582 22.970 1.00 33.58 ATOM 1482 NZ LYS A 194 0 30.363 15.049 23.868 1.00 35.93 10 ATOM 1483 N TYR A 195 0 27.418 19.818 18.910 1.00 16.92 1484 CA TYR A 195 0 26.858 21.068 18.431 1.00 15.60 ATOM 1485 C TYR A 195 0 26.143 21.838 19.530 1.00 14.20 1486 O TYR A 195 O 25.394 21.232 20.295 1.00 13.75 1487 CB TYR A 195 0 25.814 20.880 17.300 1.00 16.13 15 ATOM 1488 CG TYR A 195 0 26.424 20.225 16.066 1.00 15.41 ATOM 1489 CD1 TYR A 195 0 26.663 18.851 16.091 1.00 15.91 ATOM 1490 CD2 TYR A 195 0 26.786 20.942 14.945 1.00 14.73 ATOM 1491 CE1 TYR A 195 0 27.244 18.204 15.010 1.00 16.55 ATOM 1492 CE2 TYR A 195 0 27.331 20.312 13.839 1.00 15.60 20 ATOM 1493 CZ TYR A 195 0 27.570 18.947 13.888 1.00 16.18 1494 OH TYR A 195 0 28.144 18.287 12.831 1.00 15.64 1495 N ARG A 196 0 26.366 23.136 19.561 1.00 12.74 1496 CA ARG A 196 0 25.619 23.980 20.482 1.00 13.63 ATOM 1497 C ARG A 196 0 24.343 24.369 19.711 1.00 13.86 25 ATOM 1498 O ARG A 196 0 24.343 25.218 18.802 1.00 13.81 ATOM 1499 CB ARG A 196 0 26.379 25.187 20.991 1.00 13.96 1500 CG ARG A 196 0 25.520 26.162 21.796 1.00 14.22 ATOM 1501 CD ARG A 196 0 26.337 27.238 22.438 1.00 15.27 ATOM 1502 NE ARG A 196 0 25.649 28.138 23.319 1.00 17.38 30 ATOM 1503 CZ ARG A 196 0 26.203 29.034 24.140 1.00 18.86 ATOM 1504 NH1 ARG A 196 0 27.540 29.141 24.217 1.00 16.30 ATOM 1505 NH2 ARG A 196 0 25.377 29.788 24.869 1.00 16.73 ATOM 1506 N MET A 197 0 23.266 23.624 20.002 1.00 13.86 1507 CA MET A 197 0 21.980 23.932 19.340 1.00 12.98 35 ATOM 1508 C MET A 197 0 21.293 25.055 20.127 1.00 12.50 ATOM 1509 O MET A 197 0 21.285 24.997 21.359 1.00 13.93 ATOM 1510 CB MET A 197 0 21.118 22.693 19.266 1.00 12.50 ATOM 1511 CG MET A 197 0 21.762 21.567 18.447 1.00 13.94

ATOM 1512 SD MET A 197 0 21.860 22.033 16.735 1.00 16.62 ATOM 1513 CE MET A 197 0 22.157 20.467 15.927 1.00 16.37 ATOM 1514 N ARG A 198 0 20.768 26.064 19.450 1.00 11.00 ATOM 1515 CA ARG A 198 0 20.131 27.191 20.137 1.00 11.83 5 ATOM 1516 C ARG A 198 0 18.624 27.130 19.868 1.00 12.36 ATOM 1517 O ARG A 198 0 18.145 27.304 18.731 1.00 10.03 ATOM 1518 CB ARG A 198 0 20.804 28.460 19.629 1.00 13.98 ATOM 1519 CG ARG A 198 0 22.282 28.567 20.065 1.00 16.25 ATOM 1520 CD ARG A 198 0 22.932 29.863 19.626 1.00 16.68 10 ATOM 1521 NE ARG A 198 0 24.350 29.957 20.042 1.00 16.91 ATOM 1522 CZ ARG A 198 0 24.812 30.691 21.055 1.00 15.76 ATOM 1523 NH1 ARG A 198 0 24.031 31.456 21.820 1.00 13.44 ATOM 1524 NH2 ARG A 198 0 26.123 30.721 21.316 1.00 15.41 ATOM 1525 N LEU A 199 0 17.871 26.807 20.908 1.00 10.44 15 ATOM 1526 CA LEU A 199 0 16.426 26.568 20.708 1.00 10.69 ATOM 1527 C LEU A 199 0 15.598 27.772 21.169 1.00 10.07 ATOM 1528 O LEU A 199 0 15.682 28.216 22.317 1.00 10.07 ATOM 1529 CB LEU A 199 0 16.003 25.317 21.491 1.00 8.67 ATOM 1530 CG LEU A 199 0 14.499 24.942 21.391 1.00 10.33 20 ATOM 1531 CD1 LEU A 199 0 14.193 24.333 20.023 1.00 8.13 ATOM 1532 CD2 LEU A 199 0 14.170 23.907 22.485 1.00 9.10 ATOM 1533 N ILE A 200 0 14.857 28.370 20.242 1.00 10.46 ATOM 1534 CA ILE A 200 0 14.104 29.572 20.585 1.00 11.72 ATOM 1535 C ILE A 200 0 12.627 29.428 20.310 1.00 13.84 25 ATOM 1536 O ILE A 200 0 12.254 29.059 19.192 1.00 13.22 ATOM 1537 CB ILE A 200 0 14.628 30.755 19.735 1.00 12.89 ATOM 1538 CG1 ILE A 200 0 16.165 30.899 19.824 1.00 12.38 ATOM 1539 CG2 ILE A 200 0 13.998 32.091 20.065 1.00 13.13 ATOM 1540 CD1 ILE A 200 0 16.811 31.634 18.671 1.00 12.54 30 ATOM 1541 N SER A 201 0 11.829 29.825 21.312 1.00 14.64 ATOM 1542 CA SER A 201 0 10.379 29.849 21.023 1.00 13.89 ATOM 1543 C SER A 201 0 10.018 31.280 20.608 1.00 11.10 ATOM 1544 O SER A 201 0 10.250 32.261 21.320 1.00 8.85 ATOM 1545 CB SER A 201 0 9.539 29.367 22.202 1.00 13.01 35 ATOM 1546 OG SER A 201 0 8.313 30.047 22.207 1.00 12.19 ATOM 1547 N LEU A 202 0 9.428 31.376 19.438 1.00 9.64 ATOM 1548 CA LEU A 202 0 8.959 32.637 18.881 1.00 9.06 ATOM 1549 C LEU A 202 0 7.415 32.740 19.046 1.00 10.40

ATOM 1550 O LEU A 202 0 6.802 33.528 18.351 1.00 9.36 ATOM 1551 CB LEU A 202 0 9.239 32.618 17.379 1.00 9.09 ATOM 1552 CG LEU A 202 0 10.691 32.451 16.888 1.00 10.90 ATOM 1553 CD1 LEU A 202 0 10.637 32.470 15.367 1.00 10.05 5 ATOM 1554 CD2 LEU A 202 0 11.617 33.559 17.414 1.00 8.56 ATOM 1555 N SER A 203 0 6.821 31.942 19.892 1.00 9.59 ATOM 1556 CA SER A 203 0 5.414 31.756 20.017 1.00 15.31 ATOM 1557 C SER A 203 0 4.624 32.960 20.544 1.00 16.67 ATOM 1558 O SER A 203 0 4.964 33.676 21.483 1.00 16.42 10 ATOM 1559 CB SER A 203 0 5.130 30.505 20.867 1.00 15.21 ATOM 1560 OG SER A 203 0 3.742 30.240 21.004 1.00 17.14 ATOM 1561 N CYS A 204 0 3.428 33.051 19.984 1.00 17.18 ATOM 1562 CA CYS A 204 0 2.442 34.018 20.470 1.00 18.43 ATOM 1563 C CYS A 204 0 1.599 33,316 21.522 1.00 17.02 15 ATOM 1564 O CYS A 204 0 0.867 34.039 22.200 1.00 17.27 ATOM 1565 CB CYS A 204 0 1.524 34.508 19.334 1.00 18.60 ATOM 1566 SG CYS A 204 0 2.135 36.038 18.612 1.00 20.23 ATOM 1567 N ASP A 205 0 1.687 31.989 21.665 1.00 16.38 ATOM 1568 CA ASP A 205 0 0.776 31.392 22.683 1.00 12.26 20 ATOM 1569 C ASP A 205 0 1.123 30.002 23.087 1.00 11.34 ATOM 1570 O ASP A 205 0 1.432 29.687 24.255 1.00 11.40 ATOM 1571 CB ASP A 205 0 -0.622 31.516 22.076 1.00 14.87 ATOM 1572 CG ASP A 205 0 -1.729 30.881 22.892 1.00 16.61 ATOM 1573 OD1 ASP A 205 0 -2.884 30.999 22.433 1.00 18.48 25 ATOM 1574 OD2 ASP A 205 0 -1.534 30.263 23.966 1.00 17.48 ATOM 1575 N PRO A 206 0 1.036 29.030 22.205 1.00 11.79 ATOM 1576 CA PRO A 206 0 1.313 27.639 22.542 1.00 11.91 ATOM 1577 C PRO A 206 0 2,739 27,411 23,045 1,00 14,01 ATOM 1578 O PRO A 206 0 3.676 28.135 22.661 1.00 14.38 30 ATOM 1579 CB PRO A 206 0 1.124 26.816 21.262 1.00 11.87 ATOM 1580 CG PRO A 206 0 1.112 27.893 20.191 1.00 12.83 ATOM 1581 CD PRO A 206 0 0.749 29.241 20.766 1.00 11.09 ATOM 1582 N ASN A 207 0 2.888 26.439 23.911 1.00 13.06 ATOM 1583 CA ASN A 207 0 4.128 25.919 24.429 1.00 15.01 35 ATOM 1584 C ASN A 207 0 4.332 24.591 23.677 1.00 15.84 ATOM 1585 O ASN A 207 0 3.376 24.095 23.038 1.00 16.22 ATOM 1586 CB ASN A 207 0 4.144 25.682 25.933 1.00 15.12 ATOM 1587 CG ASN A 207 0 3.054 24.708 26.395 1.00 19.36

ATOM	1588 OD1 ASN A 207 0 2.062 25.161 27.014 1.00 19.36
ATOM	1589 ND2 ASN A 207 0 3.174 23.408 26.203 1.00 16.49
ATOM	1590 N TRP A 208 0 5.557 24.077 23.634 1.00 14.46
ATOM	1591 CA TRP A 208 0 5.827 22.865 22.892 1.00 12.04
5 ATOM	1592 C TRP A 208 0 6.638 21.921 23.783 1.00 13.85
ATOM	1593 O TRP A 208 0 7.482 22.385 24.558 1.00 13.02
ATOM	1594 CB TRP A 208 0 6.654 23.136 21.628 1.00 11.91
ATOM	1595 CG TRP A 208 0 5.951 23.769 20.465 1.00 11.27
ATOM	1596 CD1 TRP A 208 0 5.149 23.164 19.561 1.00 10.33
10 ATOM	1597 CD2 TRP A 208 0 5.988 25.158 20.092 1.00 10.29
ATOM	1598 NE1 TRP A 208 0 4.698 24.078 18.625 1.00 10.91
ATOM	1599 CE2 TRP A 208 0 5.201 25.313 18.954 1.00 9.64
ATOM	1600 CE3 TRP A 208 0 6.634 26.294 20.625 1.00 10.25
ATOM	1601 CZ2 TRP A 208 0 5.011 26.553 18.344 1.00 8.53
15 ATOM	1602 CZ3 TRP A 208 0 6.494 27.514 20.019 1.00 10.02
ATOM	1603 CH2 TRP A 208 0 5.668 27.633 18.881 1.00 11.79
ATOM	1604 N GLN A 209 0 6.420 20.620 23.580 1.00 13.82
ATOM	1605 CA GLN A 209 0 7.240 19.588 24.192 1.00 13.83
ATOM	1606 C GLN A 209 0 8.251 19.281 23.075 1.00 13.07
20 ATOM	1607 O GLN A 209 0 7.848 18.968 21.948 1.00 14.18
ATOM	1608 CB GLN A 209 0 6.441 18.319 24.487 1.00 15.65
ATOM	1609 CG GLN A 209 0 5.449 18.481 25.649 1.00 17.26
ATOM	1610 CD GLN A 209 0 6.177 18.514 26.975 1.00 18.17
ATOM	1611 OEI GLN A 209 0 7.414 18.471 27.002 1.00 20.00
25 ATOM	1612 NE2 GLN A 209 0 5.462 18.570 28.085 1.00 16.89
ATOM	1613 N PHE A 210 0 9.538 19.461 23.351 1.00 11.26
ATOM	1614 CA PHE A 210 0 10.526 19.329 22.287 1.00 10.01
ATOM	1615 C PHE A 210 0 11.457 18.153 22.585 1.00 9.18
ATOM	1616 O PHE A 210 0 11.894 17.999 23.732 1.00 10.07
30 ATOM	1617 CB PHE A 210 0 11.370 20.629 22.292 1.00 10.86
ATOM	1618 CG PHE A 210 0 12.489 20.581 21.292 1.00 9.63
ATOM	1619 CD1 PHE A 210 0 13.760 20.179 21.674 1.00 9.95
ATOM	1620 CD2 PHE A 210 0 12.251 20.922 19.984 1.00 8.54
ATOM	1621 CEI PHE A 210 0 14.778 20.150 20.738 1.00 9.23
35 ATOM	1622 CE2 PHE A 210 0 13.243 20.862 19.023 1.00 7.93
ATOM	
ATOM	1624 N SER A 211 0 11.741 17.384 21.545 1.00 8.62
ATOM	1625 CA SER A 211 0 12.645 16.255 21.716 1.00 10.71

ATOM	1626 C SER A 211 0 13.142 15.844 20.347 1.00 11.36
ATOM	1627 O SER A 211 0 12.661 16.323 19.315 1.00 9.99
ATOM	1628 CB SER A 211 0 11.970 15.070 22.427 1.00 10.56
ATOM	1629 OG SER A 211 0 10.899 14.731 21.513 1.00 12.92
5 ATOM	1630 N ILE A 212 0 14.268 15.122 20.390 1.00 13.67
ATOM	1631 CA ILE A 212 0 14.883 14.680 19.131 1.00 14.79
ATOM	1632 C ILE A 212 0 15.013 13.166 19.220 1.00 15.44
ATOM	1633 O ILE A 212 O 15.624 12.689 20.177 1.00 15.98
ATOM	1634 CB ILE A 212 0 16.255 15.341 18.887 1.00 17.04
10 ATOM	1635 CG1 ILE A 212 0 16.082 16.859 18.756 1.00 15.64
ATOM	1636 CG2 ILE A 212 0 16.935 14.722 17.648 1.00 15.24
ATOM	1637 CD1 ILE A 212 0 17.352 17.648 18.553 1.00 16.57
ATOM	1638 N ASP A 213 0 14.453 12.418 18.281 1.00 15.53
ATOM	1639 CA ASP A 213 0 14.549 10.952 18.401 1.00 16.50
15 ATOM	1640 C ASP A 213 0 16.004 10.469 18.541 1.00 16.69
ATOM	1641 O ASP A 213 0 16.948 10.902 17.851 1.00 14.36
ATOM	1642 CB ASP A 213 0 13.884 10.359 17.173 1.00 17.15
ATOM	1643 CG ASP A 213 0 12.369 10.467 17.144 1.00 18.12
ATOM	1644 OD1 ASP A 213 0 11.751 10.995 18.092 1.00 16.90
20 ATOM	1645 OD2 ASP A 213 0 11.801 9.990 16.129 1.00 17.35
ATOM	1646 N GLY A 214 0 16.198 9.559 19.477 1.00 15.76
ATOM	1647 CA GLY A 214 0 17.457 8.900 19.747 1.00 17.22
ATOM	1648 C GLY A 214 0 18.548 9.757 20.368 1.00 18.54
ATOM	1649 O GLY A 214 0 19.680 9.277 20.404 1.00 18.20
25 ATOM	1650 N HIS A 215 0 18.341 11.024 20.738 1.00 18.17
ATOM	1651 CA HIS A 215 0 19.422 11.880 21.229 1.00 17.59
ATOM	1652 C HIS A 215 0 19.096 12.505 22.577 1.00 17.92
ATOM	1653 O HIS A 215 0 17.917 12.696 22.898 1.00 20.45
ATOM	1654 CB HIS A 215 0 19.705 13.008 20.221 1.00 15.73
30 ATOM	1655 CG HIS A 215 0 20.309 12.543 18.936 1.00 16.90
ATOM	1656 ND1 HIS A 215 0 19.589 11.864 17.963 1.00 17.35
ATOM	1657 CD2 HIS A 215 0 21.574 12.658 18.444 1.00 16.15
ATOM	1658 CE1 HIS A 215 0 20.376 11.576 16.933 1.00 17.63
ATOM	1659 NE2 HIS A 215 0 21.599 12.046 17.216 1.00 17.73
35 ATOM	
ATOM	1661 CA GLU A 216 0 19.876 13.479 24.665 1.00 15.86
ATOM	1662 C GLU A 216 0 20.070 14.976 24.456 1.00 15.61
ATOM	1663 O GLU A 216 0 20.684 15.386 23.453 1.00 14.96

ATOM 1664 CB GLU A 216 0 20.817 12.901 25.694 1.00 15.38 ATOM 1665 CG GLU A 216 0 20.440 11.520 26.166 1.00 16.53 ATOM 1666 CD GLU A 216 0 21.242 11.058 27.357 1.00 17.23 ATOM 1667 OE1 GLU A 216 0 22.378 10.619 27.129 1.00 20.31 5 ATOM 1668 OE2 GLU A 216 0 20.813 11.119 28.519 1.00 16.06 ATOM 1669 N LEU A 217 0 19.623 15.792 25.394 1.00 14.64 ATOM 1670 CA LEU A 217 0 19.738 17.243 25.251 1.00 14.91 ATOM 1671 C LEU A 217 0 20.512 17.792 26.446 1.00 14.71 ATOM 1672 O LEU A 217 0 19.950 17.734 27.539 1.00 15.67 10 ATOM 1673 CB LEU A 217 0 18.362 17.931 25.229 1.00 14.75 ATOM 1674 CG LEU A 217 0 17.276 17.349 24.306 1.00 15.40 ATOM 1675 CD1 LEU A 217 0 15.939 18.075 24.505 1.00 15.08 ATOM 1676 CD2 LEU A 217 0 17.723 17.453 22.849 1.00 15.22 ATOM 1677 N THR A 218 0 21.732 18.278 26.229 1.00 13.65 15 ATOM 1678 CA THR A 218 0 22.507 18.714 27.402 1.00 13.26 ATOM 1679 C THR A 218 0 22.427 20.232 27.505 1.00 13.27 ATOM 1680 O THR A 218 0 23.142 20.955 26.805 1.00 12.91 ATOM 1681 CB THR A 218 0 23.955 18.216 27.304 1.00 12.08 ATOM 1682 OG1 THR A 218 0 23.935 16.782 27.331 1.00 15.48 20 ATOM 1683 CG2 THR A 218 0 24.767 18.721 28.470 1.00 11.46 ATOM 1684 N ILE A 219 0 21.522 20.649 28.385 1.00 13.30 ATOM 1685 CA ILE A 219 0 21.259 22.068 28.547 1.00 14.53 ATOM 1686 C ILE A 219 0 22.420 22.818 29.180 1.00 12.72 ATOM 1687 O ILE A 219 0 22.795 22.492 30.292 1.00 13.08 25 ATOM 1688 CB ILE A 219 0 19.930 22.268 29.323 1.00 14.74 ATOM 1689 CG1 ILE A 219 0 18.761 21.699 28.441 1.00 17.33 ATOM 1690 CG2 ILE A 219 0 19.666 23.717 29.656 1.00 13.40 ATOM 1691 CD1 ILE A 219 0 17.597 21.481 29.412 1.00 19.42 ATOM 1692 N ILE A 220 0 22.898 23.869 28.510 1.00 12.55 30 ATOM 1693 CA ILE A 220 0 23.994 24.696 29.019 1.00 13.25 ATOM 1694 C ILE A 220 0 23.686 26.193 29.085 1.00 15.11 ATOM 1695 O ILE A 220 0 24.477 27.001 29.618 1.00 14.73 ATOM 1696 CB ILE A 220 0 25.239 24.507 28.125 1.00 11.80 ATOM 1697 CG1 ILE A 220 0 24.954 24.871 26.671 1.00 10.93 35 ATOM 1698 CG2 ILE A 220 0 25.770 23.072 28.291 1.00 9.59 ATOM 1699 CD1 ILE A 220 0 26.249 25.231 25.928 1.00 12.07 ATOM 1700 N GLU A 221 0 22.490 26.573 28.597 1.00 13.30 ATOM 1701 CA GLU A 221 0 22.048 27.951 28.624 1.00 12.96

ATOM 1702 C GLU A 221 0 20.522 28.066 28.727 1.00 13.77 ATOM 1703 O GLU A 221 0 19.799 27.301 28.068 1.00 14.06 ATOM 1704 CB GLU A 221 0 22.436 28.666 27.318 1.00 12.73 ATOM 1705 CG GLU A 221 0 22.280 30,178 27.325 1.00 12.94 5 ATOM 1706 CD GLU A 221 0 22.018 30.783 25.969 1.00 13.84 ATOM 1707 OEI GLU A 221 0 22.345 30.269 24.887 1.00 12.66 ATOM 1708 OE2 GLU A 221 0 21.386 31.862 25.936 1.00 14.80 ATOM 1709 N VAL A 222 0 20.062 29.091 29.434 1.00 13.89 ATOM 1710 CA VAL A 222 0 18.632 29.350 29.534 1.00 14.13 10 ATOM 1711 C VAL A 222 0 18.409 30.853 29.493 1.00 13.87 ATOM 1712 O VAL A 222 0 18.900 31.657 30.300 1.00 11.55 ATOM 1713 CB VAL A 222 0 18.003 28.649 30.737 1.00 16.86 ATOM 1714 CG1 VAL A 222 0 18.730 28.941 32.017 1.00 19.16 ATOM 1715 CG2 VAL A 222 0 16.575 29.120 31.033 1.00 18.45 15 ATOM 1716 N ASP A 223 0 17.631 31.267 28.481 1.00 11.69 ATOM 1717 CA ASP A 223 0 17.245 32.673 28.386 1.00 13.60 ATOM 1718 C ASP A 223 0 18.472 33.598 28.548 1.00 14.44 ATOM 1719 O ASP A 223 0 18.423 34.552 29.336 1.00 12.75 ATOM 1720 CB ASP A 223 0 16.161 33.033 29.417 1.00 12.59 20 ATOM 1721 CG ASP A 223 0 14.845 32.279 29.364 1.00 14.64 ATOM 1722 OD1 ASP A 223 0 14.697 31.397 28.493 1.00 13.34 ATOM 1723 OD2 ASP A 223 0 13.858 32.463 30.156 1.00 13.85 ATOM 1724 N GLY A 224 0 19.544 33.372 27.767 1.00 13.49 ATOM 1725 CA GLY A 224 0 20.728 34.213 27.770 1.00 12.85 25 ATOM 1726 C GLY A 224 0 21.562 34.112 29.049 1.00 13.00 ATOM 1727 O GLY A 224 0 22.326 35.040 29.317 1.00 13.97 ATOM 1728 N GLU A 225 0 21.370 33.105 29.875 1.00 11.78 ATOM 1729 CA GLU A 225 0 22.068 32.888 31.114 1.00 14.97 ATOM 1730 C GLU A 225 0 22.609 31.447 31.106 1.00 16.73 30 ATOM 1731 O GLU A 225 0 21.858 30.498 30.849 1.00 15.88 ATOM 1732 CB GLU A 225 0 21.174 33.062 32.358 1.00 16.54 ATOM 1733 CG GLU A 225 0 20.509 34.424 32.534 1.00 16.30 ATOM 1734 CD GLU A 225 0 21.492 35.546 32.823 1.00 17.57 ATOM 1735 OE1 GLU A 225 0 22.450 35.254 33.561 1.00 18.76 35 ATOM 1736 OE2 GLU A 225 0 21.360 36.711 32.360 1.00 17.77 ATOM 1737 N LEU A 226 0 23.922 31.285 31.324 1.00 16.90 ATOM 1738 CA LEU A 226 0 24.526 29.955 31.318 1.00 15.50 ATOM 1739 C LEU A 226 0 24.183 29.127 32.540 1.00 15.04

ATOM 1740 O LEU A 226 0 24.002 29.648 33.652 1.00 15.17 ATOM 1741 CB LEU A 226 0 26.062 30.008 31.216 1.00 15.36 ATOM 1742 CG LEU A 226 0 26.567 30.741 29.958 1.00 17.95 ATOM 1743 CD1 LEU A 226 0 28.076 30.876 29.979 1.00 18.77 5 ATOM 1744 CD2 LEU A 226 0 26.111 30.029 28.687 1.00 17.36 ATOM 1745 N THR A 227 0 24.119 27.799 32.332 1.00 13.62 ATOM 1746 CA THR A 227 0 23.848 26.930 33.479 1.00 13.72 ATOM 1747 C THR A 227 0 24.936 25.851 33.528 1.00 14.30 ATOM 1748 O THR A 227 0 25.732 25.629 32.592 1.00 14.28 10 ATOM 1749 CB THR A 227 0 22.478 26.217 33.352 1.00 14.35 ATOM 1750 OG1 THR A 227 0 22.506 25.385 32.178 1.00 13.68 ATOM 1751 CG2 THR A 227 0 21.284 27.161 33.180 1.00 12.29 ATOM 1752 N GLU A 228 0 24.960 25.136 34.625 1.00 14.73 ATOM 1753 CA GLU A 228 0 25.765 23.907 34.714 1.00 17.32 15 ATOM 1754 C GLU A 228 0 25.110 22.971 33.680 1.00 17.30 ATOM 1755 O GLU A 228 0 23.917 23.035 33.472 1.00 16.97 ATOM 1756 CB GLU A 228 0 25.617 23.315 36.114 1.00 16.58 ATOM 1757 CG GLU A 228 0 26.493 23.979 37.186 1.00 18.10 ATOM 1758 CD GLU A 228 0 26.236 23.458 38.575 1.00 20.92 20 ATOM 1759 OE1 GLU A 228 0 25.469 22.470 38.755 1.00 23.38 ATOM 1760 OE2 GLU A 228 0 26.769 23.997 39.564 1.00 21.26 ATOM 1761 N PRO A 229 0 25.867 22.158 32.984 1.00 16.91 ATOM 1762 CA PRO A 229 0 25.369 21.207 31.992 1.00 16.37 ATOM 1763 C PRO A 229 0 24.351 20.275 32.599 1.00 16.24 25 ATOM 1764 O PRO A 229 0 24.624 19.652 33.619 1.00 15.76 ATOM 1765 CB PRO A 229 0 26.612 20.469 31.419 1.00 15.97 ATOM 1766 CG PRO A 229 0 27.701 21.509 31.741 1.00 15.92 ATOM 1767 CD PRO A 229 0 27.337 22.141 33.083 1.00 14.86 ATOM 1768 N HIS A 230 0 23.140 20.164 32.038 1.00 15.58 30 ATOM 1769 CA HIS A 230 0 22.090 19.325 32.618 1.00 15.01 ATOM 1770 C HIS A 230 0 21.354 18.610 31.488 1.00 13.55 ATOM 1771 O HIS A 230 0 20.756 19.192 30.590 1.00 13.47 ATOM 1772 CB HIS A 230 0 21.172 20.164 33.510 1.00 15.89 ATOM 1773 CG HIS A 230 0 20,045 19,341 34,064 1.00 18.32 35 ATOM 1774 ND1 HIS A 230 0 20.252 18.347 35.004 1.00 18.14 ATOM 1775 CD2 HIS A 230 0 18.713 19.328 33.791 1.00 17.75 ATOM 1776 CE1 HIS A 230 0 19.121 17.768 35.310 1.00 16.33 ATOM 1777 NE2 HIS A 230 0 18.173 18.344 34.609 1.00 17.85

ATOM 1778 N THR A 231 0 21.496 17.304 31.458 1.00 12.94 ATOM 1779 CA THR A 231 0 20.995 16.474 30.346 1.00 14.15 ATOM 1780 C THR A 231 0 19.620 15.890 30.547 1.00 13.41 ATOM 1781 O THR A 231 O 19.293 15.401 31.616 1.00 14.89 5 ATOM 1782 CB THR A 231 0 22.040 15.364 30.060 1.00 13.73 ATOM 1783 OG1 THR A 231 0 23.314 16.023 29.852 1.00 14.77 ATOM 1784 CG2 THR A 231 0 21.655 14.600 28.818 1.00 13.06 ATOM 1785 N VAL A 232 0 18.776 15.954 29.549 1.00 12.86 ATOM 1786 CA VAL A 232 0 17.374 15.505 29.665 1.00 13.44 10 ATOM 1787 C VAL A 232 0 16.999 14,966 28.319 1.00 14.96 ATOM 1788 O VAL A 232 0 17.790 15.258 27.390 1.00 14.12 ATOM 1789 CB VAL A 232 0 16.771 16.910 30.000 1.00 17.41 ATOM 1790 CG1 VAL A 232 0 16.075 17.587 28.856 1.00 14.66 ATOM 1791 CG2 VAL A 232 0 16.158 16.935 31.371 1.00 15.66 15 ATOM 1792 N ASP A 233 0 15.874 14.277 28.153 1.00 14.01 ATOM 1793 CA ASP A 233 0 15.405 13.803 26.874 1.00 14.73 ATOM 1794 C ASP A 233 0 14.353 14.718 26.245 1.00 14.74 ATOM 1795 O ASP A 233 0 14.187 14.731 25.027 1.00 13.41 ATOM 1796 CB ASP A 233 0 14.640 12.465 27.046 1.00 16.54 20 ATOM 1797 CG ASP A 233 0 15.637 11.417 27.536 1.00 19.27 ATOM 1798 OD1 ASP A 233 0 16.543 11.145 26.732 1.00 20.98 ATOM 1799 OD2 ASP A 233 0 15.536 10.945 28.667 1.00 19.27 ATOM 1800 N ARG A 234 0 13.595 15.386 27.122 1.00 13.79 ATOM 1801 CA ARG A 234 0 12.514 16.199 26.598 1.00 16.36 25 ATOM 1802 C ARG A 234 0 12.258 17.426 27.472 1.00 15.17 ATOM 1803 O ARG A 234 0 12.418 17.390 28.686 1.00 13.96 ATOM 1804 CB ARG A 234 0 11.265 15.330 26.482 1.00 19.23 ATOM 1805 CG ARG A 234 0 10.104 16.036 25.788 1.00 22.25 ATOM 1806 CD ARG A 234 0 8.981 15.023 25.506 1.00 24.68 30 ATOM 1807 NE ARG A 234 0 8.157 14.983 26.705 1.00 28.27 ATOM 1808 CZ ARG A 234 0 6.845 14.828 26.719 1.00 28.66 ATOM 1809 NH1 ARG A 234 0 6.291 14.833 27.909 1.00 30.08 ATOM 1810 NH2 ARG A 234 0 6.191 14.662 25.587 1.00 30.24 ATOM 1811 N LEU A 235 0 11.874 18.524 26.816 1.00 13.90 35 ATOM 1812 CA LEU A 235 0 11.619 19.742 27.607 1.00 13.15 ATOM 1813 C LEU A 235 0 10.390 20.430 27.041 1.00 11.49 ATOM 1814 O LEU A 235 0 10.025 20.304 25.873 1.00 11.08 ATOM 1815 CB LEU A 235 0 12.825 20.630 27.695 1.00 14.39

	ATOM	1816 CG LEU A 235 0 13.459 21.645 26.801 1.00 17.19
	ATOM	1817 CD1 LEU A 235 0 14.795 21.218 26.197 1.00 16.98
	ATOM	1818 CD2 LEU A 235 0 12.586 22.219 25.685 1.00 18.24
	ATOM	1819 N GLN A 236 0 9.769 21.152 27.949 1.00 12.74
5	ATOM	1820 CA GLN A 236 0 8.576 21.944 27.616 1.00 13.45
	ATOM	1821 C GLN A 236 0 9.005 23.390 27.459 1.00 12.21
	ATOM	1822 O GLN A 236 0 9.606 23.939 28.406 1.00 13.90
	ATOM	1823 CB GLN A 236 0 7.525 21.770 28.741 1.00 12.06
	ATOM	1824 CG GLN A 236 0 6.197 22.276 28.238 1.00 14.12
10	ATOM	1825 CD GLN A 236 0 5.025 22.108 29.205 1.00 13.35
	ATOM	1826 OE1 GLN A 236 0 3.893 22.215 28.721 1.00 15.61
	ATOM	1827 NE2 GLN A 236 0 5.226 21.912 30.463 1.00 12.00
	ATOM	1828 N ILE A 237 0 8.748 24.011 26.311 1.00 12.17
	ATOM	1829 CA ILE A 237 0 9.213 25.390 26.156 1.00 12.41
15	ATOM	1830 C ILE A 237 0 8.061 26.376 25.953 1.00 13.14
	ATOM	1831 O ILE A 237 0 7.283 26.310 24.990 1.00 13.64
	ATOM	1832 CB ILE A 237 0 10.255 25.437 25.022 1.00 11.03
	ATOM	1833 CG1 ILE A 237 0 10.947 26.793 24.960 1.00 11.84
	ATOM	1834 CG2 ILE A 237 0 9.615 25.086 23.662 1.00 10.02
20	ATOM	1835 CD1 ILE A 237 0 12.041 26.953 23.902 1.00 11.23
	ATOM	1836 N PHE A 238 0 8.037 27.414 26.765 1.00 12.83
	ATOM	1837 CA PHE A 238 0 6.979 28.431 26.714 1.00 13.23
	ATOM	1838 C PHE A 238 0 7.382 29.683 25.957 1.00 13.99
	ATOM	1839 O PHE A 238 0 8.530 29.848 25.545 1.00 13.87
25	ATOM	1840 CB PHE A 238 0 6.592 28.848 28.145 1.00 12.72
	ATOM	1841 CG PHE A 238 0 6.176 27.691 28.993 1.00 14.51
	ATOM	1842 CD1 PHE A 238 0 7.098 26.957 29.710 1.00 14.84
	ATOM	1843 CD2 PHE A 238 0 4.836 27.314 29.078 1.00 15.50
	ATOM	1844 CE1 PHE A 238 0 6.748 25.882 30.497 1.00 13.87
30	ATOM	1845 CE2 PHE A 238 0 4.468 26.236 29.862 1.00 14.62
	ATOM	1846 CZ PHE A 238 0 5.423 25.528 30.568 1.00 15.15
	ATOM	1847 N THR A 239 O 6.388 30.494 25.604 1.00 14.16
	ATOM	1848 CA THR A 239 0 6.543 31.678 24.806 1.00 13.44
	ATOM	1849 C THR A 239 0 7.832 32.453 25.106 1.00 11.74
35	ATOM	1850 O THR A 239 0 8.012 32.950 26.218 1.00 10.47
	ATOM	1851 CB THR A 239 0 5.381 32.695 24.978 1.00 15.55
	ATOM	1852 OG1 THR A 239 0 5.258 33.008 26.359 1.00 17.88
	ATOM	1853 CG2 THR A 239 0 4.055 32.131 24.478 1.00 16.75

ATOM	1854 N GLY A 240 0 8.672 32.593 24.078 1.00 7.94
ATOM	1855 CA GLY A 240 0 9.877 33.348 24.193 1.00 10.08
ATOM	1856 C GLY A 240 0 11.039 32.865 25.041 1.00 11.34
ATOM	1857 O GLY A 240 0 11.977 33.650 25.216 1.00 11.02
5 ATOM	1858 N GLN A 241 0 10.990 31.646 25.592 1.00 9.73
ATOM	1859 CA GLN A 241 0 12.067 31.090 26.364 1.00 9.59
ATOM	1860 C GLN A 241 0 13.114 30.587 25.342 1.00 10.56
ATOM	1861 O GLN A 241 0 12.823 30.467 24.126 1.00 8.44
ATOM	1862 CB GLN A 241 0 11.604 29.965 27.285 1.00 10.57
10 ATOM	1863 CG GLN A 241 0 10.820 30.363 28.523 1.00 10.54
ATOM	1864 CD GLN A 241 0 10.341 29.190 29.341 1.00 12.22
ATOM	1865 OE1 GLN A 241 0 10.118 28.077 28.815 1.00 13.21
ATOM	1866 NE2 GLN A 241 0 10.220 29.466 30.639 1.00 11.74
ATOM	1867 N ARG A 242 0 14.372 30.492 25.774 1.00 9.00
15 ATOM	1868 CA ARG A 242 0 15.388 29.992 24.834 1.00 11.01
ATOM	1869 C ARG A 242 0 16.210 28.966 25.609 1.00 11.30
ATOM	1870 O ARG A 242 0 16.292 29.133 26.816 1.00 9.51
ATOM	1871 CB ARG A 242 0 16.324 31.043 24.265 1.00 12.77
ATOM	1872 CG ARG A 242 0 15.694 32.128 23.364 1.00 12.52
20 ATOM	1873 CD ARG A 242 0 15.066 33.249 24.138 1.00 10.81
ATOM	1874 NE ARG A 242 0 15.957 34.126 24.892 1.00 10.80
ATOM	1875 CZ ARG A 242 0 15.630 34.761 26.002 1.00 11.36
ATOM	1876 NH1 ARG A 242 0 16.486 35.548 26.648 1.00 7.98
ATOM	1877 NH2 ARG A 242 0 14.365 34.589 26.489 1.00 12.78
25 ATOM	1878 N TYR A 243 0 16.717 27.934 24.942 1.00 11.61
ATOM	1879 CA TYR A 243 0 17.631 27.009 25.610 1.00 12.54
ATOM	1880 C TYR A 243 0 18.819 26.762 24.650 1.00 14.46
ATOM	
ATOM	1882 CB TYR A 243 0 17.015 25.638 25.934 1.00 11.09
30 ATOM	
ATOM	
ATOM	
ATOM	1886 CE1 TYR A 243 0 13.748 25.869 27.915 1.00 12.71
ATOM	
35 ATOM	1888 CZ TYR A 243 0 14.205 25.738 29.188 1.00 12.29
ATOM	1889 OH TYR A 243 0 13.379 25.789 30.286 1.00 13.65
ATOM	1890 N SER A 244 0 20.059 26.734 25.144 1.00 12.78
ATOM	1891 CA SER A 244 0 21.117 26.212 24.268 1.00 13.22

WO 98/27198 PCT/DK97/00571

ATOM 1892 C SER A 244 0 21.333 24.779 24.814 1.00 11.06 ATOM 1893 O SER A 244 0 21.377 24.604 26.018 1.00 11.27 ATOM 1894 CB SER A 244 0 22.485 26.907 24.308 1.00 14.46 ATOM 1895 OG SER A 244 0 22.551 28.029 23.463 1.00 13.59 5 ATOM 1896 N PHE A 245 0 21.484 23.780 23.983 1.00 11.89 ATOM 1897 CA PHE A 245 0 21.772 22.437 24.452 1.00 13.14 ATOM 1898 C PHE A 245 0 22.867 21.857 23.546 1.00 12.32 ATOM 1899 O PHE A 245 0 22.890 22.128 22.354 1.00 11.11 ATOM 1900 CB PHE A 245 0 20.554 21.495 24.526 1.00 11.40 10 ATOM 1901 CG PHE A 245 0 19.915 21.236 23.195 1.00 11.98 ATOM 1902 CD1 PHE A 245 0 18.815 21.993 22.813 1.00 13.38 ATOM 1903 CD2 PHE A 245 0 20.349 20.236 22.351 1.00 11.45 ATOM 1904 CE1 PHE A 245 0 18.216 21.773 21.588 1.00 12.84 ATOM 1905 CE2 PHE A 245 0 19.759 20.000 21.129 1.00 11.48 15 ATOM 1906 CZ PHE A 245 0 18.705 20.796 20.743 1.00 12.65 ATOM 1907 N VAL A 246 0 23.742 21.073 24.169 1.00 13.51 ATOM 1908 CA VAL A 246 0 24.775 20.427 23.341 1.00 13.37 ATOM 1909 C VAL A 246 0 24.096 19.177 22.783 1.00 12.47 ATOM 1910 O VAL A 246 0 23.505 18.425 23.540 1.00 11.41 20 ATOM 1911 CB VAL A 246 0 25.990 19.984 24.190 1.00 14.96 ATOM 1912 CG1 VAL A 246 0 26.995 19.186 23.364 1.00 13.75 ATOM 1913 CG2 VAL A 246 0 26.681 21.165 24.841 1.00 15.92 ATOM 1914 N LEU A 247 0 24.160 18.996 21.490 1.00 12.97 ATOM 1915 CA LEU A 247 0 23.766 17.833 20.785 1.00 14.32 25 ATOM 1916 C LEU A 247 0 25.071 17.077 20.395 1.00 14.22 ATOM 1917 O LEU A 247 0 25.954 17.529 19.664 1.00 12.45 ATOM 1918 CB LEU A 247 0 22.980 18.109 19.505 1.00 16.00 ATOM 1919 CG LEU A 247 0 22.514 16.786 18.835 1.00 16.80 ATOM 1920 CD1 LEU A 247 0 21.266 16.306 19.513 1.00 18.30 30 ATOM 1921 CD2 LEU A 247 0 22.207 16.988 17.373 1.00 18.70 ATOM 1922 N ASP A 248 0 25.144 15.886 20.926 1.00 13.56 ATOM 1923 CA ASP A 248 0 26.278 14.980 20.727 1.00 16.65 ATOM 1924 C ASP A 248 0 25.916 14.072 19.581 1.00 16.18 ATOM 1925 O ASP A 248 0 25.095 13.166 19.813 1.00 17.60 35 ATOM 1926 CB ASP A 248 0 26.536 14.229 22.036 1.00 17.83 ATOM 1927 CG ASP A 248 0 27.798 13.359 22.024 1.00 21.77 ATOM 1928 OD1 ASP A 248 0 28.231 12.967 23.140 1.00 24.11 ATOM 1929 OD2 ASP A 248 0 28.345 13.060 20.950 1.00 21.25

ATOM 1930 N ALA A 249 0 26.414 14.277 18.369 1.00 15.85 ATOM 1931 CA ALA A 249 0 25.982 13.416 17.255 1.00 17.99 1932 C ALA A 249 0 26.698 12.049 17.306 1.00 20.21 ATOM ATOM 1933 O ALA A 249 0 27.569 11.766 16.485 1.00 19.11 5 ATOM 1934 CB ALA A 249 0 26.165 14.126 15.930 1.00 14.57 ATOM 1935 N ASN A 250 0 26.273 11.223 18.253 1.00 21.66 1936 CA ASN A 250 0 26.861 9.961 18.581 1.00 25.53 ATOM ATOM 1937 C ASN A 250 0 26.061 8.721 18.202 1.00 27.30 ATOM 1938 O ASN A 250 0 26.344 7.645 18.756 1.00 29.42 10 ATOM 1939 CB ASN A 250 0 27.108 9.912 20.104 1.00 25.83 ATOM 1940 CG ASN A 250 0 25.888 9.968 20.978 1.00 28.76 ATOM 1941 OD1 ASN A 250 0 24.757 10.156 20.527 1.00 29.90 ATOM 1942 ND2 ASN A 250 0 26.042 9.826 22.306 1.00 29.52 ATOM 1943 N GLN A 251 0 25.089 8.841 17.302 1.00 26.74 15 ATOM 1944 CA GLN A 251 0 24.239 7.712 16.934 1.00 23.48 ATOM 1945 C GLN A 251 0 24.583 7.311 15.510 1.00 21.73 ATOM 1946 O GLN A 251 0 25.333 8.009 14.843 1.00 19.39 ATOM 1947 CB GLN A 251 0 22.757 8.104 17.022 1.00 24.79 ATOM 1948 CG GLN A 251 0 22.333 8.701 18.360 1.00 25.14 20 ATOM 1949 CD GLN A 251 0 22.430 7.693 19.480 1.00 26.76 ATOM 1950 OE1 GLN A 251 0 21.762 6.654 19.405 1.00 28.78 ATOM 1951 NE2 GLN A 251 0 23.202 7.986 20.514 1.00 26.02 ATOM 1952 N PRO A 252 0 24.058 6.177 15.076 1.00 20.53 ATOM 1953 CA PRO A 252 0 24.293 5.637 13.755 1.00 20.06 25 ATOM 1954 C PRO A 252 0 23.940 6.671 12.702 1.00 21.83 ATOM 1955 O PRO A 252 0 22.973 7.424 12.940 1.00 22.51 ATOM 1956 CB PRO A 252 0 23.417 4.367 13.647 1.00 19.98 ATOM 1957 CG PRO A 252 0 23.288 3.997 15.096 1.00 19.94 ATOM 1958 CD PRO A 252 0 23.223 5.289 15.902 1.00 19.68 1959 N VAL A 253 0 24.663 6.728 11.584 1.00 20.85 1960 CA VAL A 253 0 24.302 7.741 10.604 1.00 22.29 1961 C VAL A 253 0 22.897 7.414 10.108 1.00 23.02 ATOM 1962 O VAL A 253 0 22.593 6.289 9.753 1.00 21.37 ATOM ATOM 1963 CB VAL A 253 0 25.298 8.065 9.494 1.00 23.22 1964 CG1 VAL A 253 0 26.696 7.582 9.827 1.00 22.25 35 ATOM ATOM 1965 CG2 VAL A 253 0 24.859 7.680 8.101 1.00 22.26 ATOM 1966 N ASP A 254 0 22.012 8.422 10.159 1.00 24.32 ATOM 1967 CA ASP A 254 0 20.613 8.176 9.786 1.00 22.09

ATOM 1968 C ASP A 254 0 19.782 9.448 9.821 1.00 20.71 ATOM 1969 O ASP A 254 0 20.365 10.481 10.099 1.00 18.92 ATOM 1970 CB ASP A 254 0 20.048 7.211 10.830 1.00 23.39 ATOM 1971 CG ASP A 254 0 18.964 6.331 10.251 1.00 24.43 5 ATOM 1972 OD1 ASP A 254 0 18.355 6.663 9.239 1.00 23.21 ATOM 1973 OD2 ASP A 254 0 18.736 5.244 10.816 1.00 28.26 ATOM 1974 N ASN A 255 0 18.485 9.338 9.496 1.00 18.97 ATOM 1975 CA ASN A 255 0 17.583 10.479 9.599 1.00 17.69 ATOM 1976 C ASN A 255 0 16.785 10.335 10.889 1.00 17.64 10 ATOM 1977 O ASN A 255 0 16.390 9.204 11.249 1.00 17.75 ATOM 1978 CB ASN A 255 0 16,663 10,554 8,386 1,00 17,19 ATOM 1979 CG ASN A 255 0 17.467 10.882 7.143 1.00 17.33 ATOM 1980 OD1 ASN A 255 0 17.891 12.023 6.932 1.00 18.05 ATOM 1981 ND2 ASN A 255 0 17.649 9.913 6.263 1.00 15.98 15 ATOM 1982 N TYR A 256 0 16.657 11.403 11.684 1.00 14.89 ATOM 1983 CA TYR A 256 0 15.983 11.364 12.961 1.00 12.56 ATOM 1984 C TYR A 256 0 14.966 12.520 12.991 1.00 15.02 ATOM 1985 O TYR A 256 0 15.208 13.637 12.509 1.00 14.49 ATOM 1986 CB TYR A 256 0 16.867 11.479 14.216 1.00 14.85 20 ATOM 1987 CG TYR A 256 0 17.883 10.349 14.316 1.00 13.96 ATOM 1988 CD1 TYR A 256 0 19,030 10,427 13,529 1,00 13,97 ATOM 1989 CD2 TYR A 256 0 17.712 9.245 15.129 1.00 14.62 ATOM 1990 CE1 TYR A 256 0 19.986 9.422 13.534 1.00 13.83 ATOM 1991 CE2 TYR A 256 0 18.667 8.224 15.170 1.00 15.31 25 ATOM 1992 CZ TYR A 256 0 19.795 8,336 14,346 1.00 15.90 ATOM 1993 OH TYR A 256 0 20.763 7.341 14.337 1.00 17.15 ATOM 1994 N TRP A 257 0 13.801 12.198 13.564 1.00 13.58 ATOM 1995 CA TRP A 257 0 12.742 13.196 13.657 1.00 14.21 ATOM 1996 C TRP A 257 0 13.041 14.198 14.769 1.00 12.04 30 ATOM 1997 O TRP A 257 0 13.382 13.811 15.878 1.00 10.46 ATOM 1998 CB TRP A 257 0 11.363 12.592 13.988 1.00 12.49 ATOM 1999 CG TRP A 257 0 10.648 11.906 12.865 1.00 13.06 ATOM 2000 CD1 TRP A 257 0 10.315 10.568 12.879 1.00 12.86 ATOM 2001 CD2 TRP A 257 0 10.161 12.437 11.633 1.00 12.33 35 ATOM 2002 NE1 TRP A 257 0 9.640 10.267 11.720 1.00 13.75 ATOM 2003 CE2 TRP A 257 0 9.530 11.388 10.940 1.00 13.78 ATOM 2004 CE3 TRP A 257 0 10.173 13.691 11.035 1.00 14.13 ATOM 2005 CZ2 TRP A 257 0 8.940 11.538 9.681 1.00 13.24

```
ATOM 2006 CZ3 TRP A 257 0 9.590 13.868 9.786 1.00 14.34
   ATOM
          2007 CH2 TRP A 257 0 8.963 12.789 9.127 1.00 13.64
          2008 N ILE A 258 0 12.790 15.463 14.454 1.00 12.29
          2009 CA ILE A 258 0 12.886 16.498 15.508 1.00 12.44
          2010 C ILE A 258 0 11.391 16.840 15.769 1.00 12.40
          2011 O ILE A 258 0 10.629 17.039 14.812 1.00 12.43
          2012 CB ILE A 258 0 13.617 17.777 15.048 1.00 13.32
          2013 CG1 ILE A 258 0 15.107 17.477 14.854 1.00 14.52
   ATOM 2014 CG2 ILE A 258 0 13.365 18.888 16.052 1.00 12.32
10 ATOM 2015 CD1 ILE A 258 0 15.839 18.474 13.994 1.00 14.35
   ATOM 2016 N ARG A 259 0 11.017 16.764 17.013 1.00 11.51
   ATOM 2017 CA ARG A 259 0 9.610 16.832 17.407 1.00 13.43
   ATOM
         2018 C ARG A 259 0 9.254 18.019 18.274 1.00 12.74
   ATOM 2019 O ARG A 259 0 9.931 18.246 19.280 1.00 12.62
15 ATOM 2020 CB ARG A 259 0 9.326 15.567 18.253 1.00 12.43
   ATOM 2021 CG ARG A 259 0 9.308 14.290 17.414 1.00 15.81
         2022 CD ARG A 259 0 8.910 13.054 18.244 1.00 16.58
   ATOM
         2023 NE ARG A 259 0 9.204 11.818 17.528 1.00 16.91
   ATOM
   ATOM 2024 CZ ARG A 259 0 8.475 11.187 16.616 1.00 18.43
         2025 NH1 ARG A 259 0 7.285 11.657 16.239 1.00 19.39
         2026 NH2 ARG A 259 0 8.907 10.070 16.045 1.00 17.95
   ATOM 2027 N ALA A 260 0 8.226 18.764 17.884 1.00 13.12
   ATOM 2028 CA ALA A 260 0 7.768 19.882 18.727 1.00 12.65
   ATOM 2029 C ALA A 260 0 6.237 19.763 18.802 1.00 14.47
25 ATOM 2030 O ALA A 260 0 5.545 20.140 17.868 1.00 14.73
   ATOM 2031 CB ALA A 260 0 8.281 21.188 18.165 1.00 9.58
   ATOM 2032 N GLN A 261 0 5.690 19.225 19.870 1.00 14.78
   ATOM 2033 CA GLN A 261 0 4.272 19.004 20.060 1.00 16.99
   ATOM 2034 C GLN A 261 0 3.606 20.154 20.803 1.00 15.01
30 ATOM 2035 O GLN A 261 0 3.914 20.389 21.961 1.00 13.86
   ATOM 2036 CB GLN A 261 0 4.118 17.747 20.924 1.00 20.94
   ATOM 2037 CG GLN A 261 0 2.717 17.131 20.940 1.00 27.53
         2038 CD GLN A 261 0 2.721 15.991 21.947 1.00 29.63
   ATOM 2039 OE1 GLN A 261 0 3.152 14.887 21.682 1.00 31.60
35 ATOM 2040 NE2 GLN A 261 0 2.331 16.255 23.188 1.00 34.91
   ATOM 2041 N PRO A 262 0 2.663 20,820 20.167 1.00 14.60
   ATOM 2042 CA PRO A 262 0 1.974 21.969 20.739 1.00 15.72
   ATOM 2043 C PRO A 262 0 0.921 21.568 21.757 1.00 16.25
```

	2044 C DDC 4 262 C C C C C C C C C C C C C C C C C C
ATOM	
ATOM	2045 CB PRO A 262 0 1.401 22.752 19.539 1.00 13.88
ATOM	11100 211000 10100 10100
ATOM	
5 ATOM	2048 N ASN A 263 0 0.570 22.481 22.665 1.00 17.25
ATOM	
ATOM	2050 C ASN A 263 0 -1.834 22.460 22.981 1.00 18.43
ATOM	2051 O ASN A 263 0 -2.810 22.121 23.608 1.00 19.35
ATOM	2052 CB ASN A 263 0 -0.422 22.990 24.954 1.00 16.12
10 ATOM	2053 CG ASN A 263 0 -0.333 24.493 24.728 1.00 16.97
ATOM	2054 OD1 ASN A 263 0 0.236 25.002 23.751 1.00 15.54
ATOM	2055 ND2 ASN A 263 0 -0.905 25.269 25.653 1.00 16.31
ATOM	2056 N LYS A 264 0 -1.947 23.055 21.818 1.00 20.51
ATOM	2057 CA LYS A 264 0 -3.256 23.208 21.180 1.00 24.76
15 ATOM	2058 C LYS A 264 0 -3.055 23.395 19.683 1.00 23.64
ATOM	2059 O LYS A 264 0 -1.909 23.572 19.267 1.00 24.23
ATOM	2060 CB LYS A 264 0 -4.038 24.393 21.775 1.00 25.87
ATOM	2061 CG LYS A 264 0 -3.266 25.702 21.602 1.00 28.62
ATOM	2062 CD LYS A 264 0 -3.579 26.624 22.772 1.00 30.65
20 ATOM	2063 CE LYS A 264 0 -4.114 27.960 22.283 1.00 32.62
ATOM	2064 NZ LYS A 264 0 -4.593 28.753 23.459 1.00 34.39
ATOM	2065 N GLY A 265 0 -4.112 23.386 18.892 1.00 22.60
ATOM	2066 CA GLY A 265 0 -3.959 23.591 17.452 1.00 22.98
ATOM	2067 C GLY A 265 0 -5.190 23.002 16.758 1.00 23.95
25 ATOM	2068 O GLY A 265 0 -5.904 22.202 17.362 1.00 22.64
ATOM	2069 N ARG A 266 0 -5.398 23.434 15.537 1.00 24.60
ATOM	2070 CA ARG A 266 0 -6.527 23.051 14.734 1.00 26.24
ATOM	2071 C ARG A 266 0 -6.412 21.605 14.272 1.00 27.29
ATOM	2072 O ARG A 266 0 -5.329 21.074 14.015 1.00 25.41
30 ATOM	2073 CB ARG A 266 0 -6.628 23.903 13.469 1.00 30.71
ATOM	2074 CG ARG A 266 0 -7.065 25.334 13.563 1.00 35.66
ATOM	2075 CD ARG A 266 0 -8.161 25.673 12.539 1.00 40.48
ATOM	2076 NE ARG A 266 0 -9.379 25.957 13.286 1.00 45.08
ATOM	2077 CZ ARG A 266 0 -10.551 25.334 13.319 1.00 47.09
35 ATOM	2078 NH1 ARG A 266 0 -10.921 24.294 12.577 1.00 48.10
ATOM	2079 NH2 ARG A 266 0 -11.452 25.828 14.165 1.00 47.80
ATOM	
ATOM	2081 CA ASN A 267 0 -7.727 19.669 13.602 1.00 23.96

ATOM	2082 C ASN A 267 0 -6.859 18.625 14.244 1.00 22.35
ATOM	2083 O ASN A 267 0 -6.306 17.864 13.448 1.00 23.57
ATOM	2084 CB ASN A 267 0 -7.390 19.695 12.098 1.00 26.46
ATOM	2085 CG ASN A 267 0 -8.461 20.426 11.309 1.00 29.21
5 ATOM	2086 OD1 ASN A 267 0 -8.190 21.226 10.405 1.00 30.18
ATOM	2087 ND2 ASN A 267 0 -9.681 20.075 11.701 1.00 28.77
ATOM	2088 N GLY A 268 0 -6.706 18.594 15.550 1.00 21.85
ATOM	2089 CA GLY A 268 0 -5.890 17.533 16.121 1.00 22.47
ATOM	2090 C GLY A 268 0 -4.383 17.760 16.118 1.00 23.29
10 ATOM	2091 O GLY A 268 0 -3.652 16.898 16.632 1.00 23.28
ATOM	2092 N LEU A 269 0 -3.880 18.901 15.676 1.00 22.69
ATOM	2093 CA LEU A 269 0 -2.454 19.222 15.684 1.00 22.62
ATOM	2094 C LEU A 269 0 -1.753 18.890 16.990 1.00 23.26
ATOM	2095 O LEU A 269 0 -0.650 18.335 17.035 1.00 23.42
15 ATOM	2096 CB LEU A 269 0 -2.311 20.713 15.472 1.00 22.28
ATOM	2097 CG LEU A 269 0 -1.183 21.414 14.745 1.00 23.42
ATOM	2098 CD1 LEU A 269 0 -0.508 22.380 15.682 1.00 19.64
ATOM	2099 CD2 LEU A 269 0 -0.213 20.492 14.009 1.00 21.26
ATOM	2100 N ALA A 270 0 -2.371 19.199 18.135 1.00 21.51
20 ATOM	2101 CA ALA A 270 0 -1.784 18.899 19.419 1.00 22.26
ATOM	2102 C ALA A 270 0 -1.612 17.415 19.680 1.00 23.22
ATOM	2103 O ALA A 270 0 -0.898 17.077 20.637 1.00 21.81
ATOM	2104 CB ALA A 270 0 -2.632 19.518 20.542 1.00 21.06
ATOM	2105 N GLY A 271 0 -2.337 16.521 18.996 1.00 23.75
25 ATOM	2106 CA GLY A 271 0 -2.190 15.125 19.372 1.00 24.98
ATOM	2107 C GLY A 271 0 -1.507 14.267 18.328 1.00 26.07
ATOM	2108 O GLY A 271 0 -1.501 13.045 18.523 1.00 26.26
ATOM	2109 N THR A 272 0 -0.906 14.825 17.278 1.00 26.48
ATOM	2110 CA THR A 272 0 -0.327 13.901 16.294 1.00 25.27
30 ATOM	2111 C THR A 272 0 0.986 14.362 15.701 1.00 25.58
ATOM	2112 O THR A 272 0 1.216 15.567 15.701 1.00 24.46
ATOM	2113 CB THR A 272 0 -1.380 13.759 15.164 1.00 24.40
ATOM	2114 OG1 THR A 272 0 -0.931 12.737 14.275 1.00 26.32
ATOM	2115 CG2 THR A 272 0 -1.575 15.022 14.347 1.00 22.50
35 ATOM	2116 N PHE A 273 0 1.714 13.443 15.062 1.00 24.01
ATOM	2117 CA PHE A 273 0 2.897 13.755 14.271 1.00 23.99
ATOM	2118 C PHE A 273 0 2.663 13.201 12.858 1.00 24.84
ATOM	2119 O PHE A 273 O 3.534 13.207 11.987 1.00 24.73

ATOM	2120 CB PHE A 273 0 4.175 13.094 14.812 1.00 22.16
ATOM	2121 CG PHE A 273 0 4.550 13.676 16.153 1.00 21.84
ATOM	2122 CD1 PHE A 273 0 4.190 13.037 17.327 1.00 20.67
ATOM	2123 CD2 PHE A 273 0 5.221 14.881 16.216 1.00 20.98
5 ATOM	2124 CE1 PHE A 273 0 4.538 13.574 18.554 1.00 21.75
ATOM	2125 CE2 PHE A 273 0 5.559 15.428 17.440 1.00 21.65
ATOM	2126 CZ PHE A 273 0 5.216 14.787 18.616 1.00 22.38
ATOM	2127 N ALA A 274 0 1.440 12.718 12.647 1.00 24.38
ATOM	2128 CA ALA A 274 0 1.094 12.053 11.397 1.00 24.29
10 ATOM	2129 C ALA A 274 0 1.399 12.920 10.194 1.00 24.15
ATOM	2130 O ALA A 274 0 0.990 14.078 10.161 1.00 23.07
ATOM	2131 CB ALA A 274 0 -0.385 11.681 11.387 1.00 23.53
ATOM	2132 N ASN A 275 0 2.075 12.355 9.204 1.00 23.41
ATOM	2133 CA ASN A 275 0 2.389 13.068 7.987 1.00 24.88
15 ATOM	2134 C ASN A 275 0 3.498 14.093 8.191 1.00 22.73
ATOM	2135 O ASN A 275 0 3.708 14.947 7.337 1.00 21.57
ATOM	2136 CB ASN A 275 0 1.138 13.806 7.516 1.00 30.04
АТОМ	2137 CG ASN A 275 0 0.194 13.070 6.633 1.00 35.28
ATOM	2138 OD1 ASN A 275 0 -0.458 12.071 6.985 1.00 36.92
20 ATOM	2139 ND2 ASN A 275 0 0.156 13.655 5.427 1.00 37.87
ATOM	2140 N GLY A 276 0 4.185 14.083 9.322 1.00 22.10
ATOM	2141 CA GLY A 276 0 5.278 15.025 9.503 1.00 20.95
ATOM	2142 C GLY A 276 0 4.801 16.392 9.962 1.00 19.61
ATOM	2143 O GLY A 276 0 5.587 17.325 9.816 1.00 19.96
25 ATOM	2144 N VAL A 277 0 3.600 16.504 10.540 1.00 16.82
ATOM	2145 CA VALA 277 0 3.207 17.796 11.107 1.00 15.06
ATOM	2146 C VAL A 277 0 4.033 17.942 12.379 1.00 13.80
ATOM	2147 O VAL A 277 0 4.454 16.912 12.926 1.00 13.80
ATOM	2148 CB VAL A 277 0 1.676 17.849 11.397 1.00 14.37
30 ATOM	2149 CG1 VAL A 277 0 0.882 17.824 10.099 1.00 13.37
ATOM	2150 CG2 VAL A 277 0 1.213 16.763 12.330 1.00 11.77
ATOM	1 2151 N ASN A 278 0 4.307 19.100 12.936 1.00 14.25
ATOM	1 2152 CA ASN A 278 0 5.026 19.262 14.209 1.00 13.80
ATOM	I 2153 C ASN A 278 0 6.443 18.640 14.208 1.00 13.80
35 ATOM	I 2154 O ASN A 278 0 7.020 18.228 15.229 1.00 11.81
ATOM	1 2155 CB ASN A 278 0 4.216 18.607 15.312 1.00 14.24
ATOM	1 2156 CG ASN A 278 0 2.890 19.288 15.659 1.00 15.35
ATOM	1 2157 OD1 ASN A 278 0 1.952 18.531 16.009 1.00 14.81

ATOM	2158 ND2 ASN A 278 0 2.821 20.591 15.593 1.00 10.69
ATOM	2159 N SER A 279 0 7.044 18.595 13.025 1.00 12.68
ATOM	2160 CA SER A 279 0 8.296 17.892 12.860 1.00 15.48
ATOM	2161 C SER A 279 0 9.323 18.571 11.964 1.00 15.07
5 ATOM	2162 O SER A 279 0 8.995 19.309 11.044 1.00 12.20
ATOM	2163 CB SER A 279 0 7.976 16.549 12.122 1.00 14.76
ATOM	2164 OG SER A 279 0 7.268 15.722 13.054 1.00 19.57
ATOM	2165 N ALA A 280 0 10.570 18.152 12.229 1.00 15.67
ATOM	2166 CA ALA A 280 0 11.664 18.548 11.327 1.00 16.75
10 ATOM	2167 C ALA A 280 0 12.620 17.341 11.287 1.00 15.83
ATOM	2168 O ALA A 280 0 12.438 16.346 11.997 1.00 15.55
ATOM	2169 CB ALA A 280 0 12.363 19.828 11.745 1.00 16.40
ATOM	2170 N ILE A 281 0 13.669 17.478 10.485 1.00 14.79
ATOM	2171 CA ILE A 281 0 14.569 16.346 10.257 1.00 15.55
15 ATOM	2172 C ILE A 281 0 16.002 16.610 10.699 1.00 15.92
ATOM	2173 O ILE A 281 0 16.649 17.577 10.284 1.00 14.96
ATOM	2174 CB ILE A 281 0 14.557 16.013 8.735 1.00 16.44
ATOM	2175 CG1 ILE A 281 0 13.147 15.573 8.275 1.00 16.42
ATOM	2176 CG2 ILE A 281 0 15.615 14.959 8.421 1.00 15.71
20 ATOM	2177 CD1 ILE A 281 0 12.981 15.376 6.771 1.00 14.22
ATOM	2178 N LEU A 282 0 16.505 15.698 11.515 1.00 16.76
ATOM	2179 CA LEU A 282 0 17.920 15.736 11.912 1.00 15.82
ATOM	2180 C LEU A 282 0 18.655 14.747 10.990 1.00 16.16
ATOM	2181 O LEU A 282 0 18.409 13.530 11.034 1.00 16.41
25 ATOM	2182 CB LEU A 282 0 18.129 15.400 13.379 1.00 14.54
ATOM	2183 CG LEU A 282 0 19.632 15.346 13.773 1.00 16.00
ATOM	2184 CD1 LEU A 282 0 20.100 16.767 14.052 1.00 16.10
ATOM	2185 CD2 LEU A 282 0 19.865 14.469 14.970 1.00 13.21
ATOM	2186 N ARG A 283 0 19.490 15.254 10.100 1.00 15.20
30 ATOM	2187 CA ARG A 283 0 20.160 14.377 9.141 1.00 16.98
ATOM	2188 C ARG A 283 0 21.683 14.326 9.279 1.00 17.31
ATOM	2189 O ARG A 283 0 22.398 15.330 9.203 1.00 17.82
ATOM	2190 CB ARG A 283 0 19.844 14.861 7.736 1.00 17.30
ATOM	2191 CG ARG A 283 0 20.417 13.978 6.641 1.00 19.94
35 ATOM	2192 CD ARG A 283 0 19.860 14.446 5.301 1.00 20.04
ATOM	2193 NE ARG A 283 0 18.474 14.010 5.208 1.00 21.56
ATOM	2194 CZ ARG A 283 0 17.479 14.530 4.505 1.00 21.81
ATOM	2195 NH1 ARG A 283 0 16.287 13.922 4.564 1.00 21.52

ATOM 2196 NH2 ARG A 283 0 17.653 15.634 3.797 1.00 21.84 ATOM 2197 N TYR A 284 0 22.163 13.136 9.567 1.00 16.79 ATOM 2198 CA TYR A 284 0 23.581 12.821 9.620 1.00 16.35 ATOM 2199 C TYR A 284 0 24,155 12,787 8,198 1.00 16.52 5 ATOM 2200 O TYR A 284 0 23.556 12.226 7.271 1.00 16.33 ATOM 2201 CB TYR A 284 0 23.730 11.444 10.252 1.00 16.51 ATOM 2202 CG TYR A 284 0 23.727 11.460 11.755 1.00 17.09 ATOM 2203 CD1 TYR A 284 0 24.910 11.178 12.437 1.00 17.37 ATOM 2204 CD2 TYR A 284 0 22.601 11.753 12.504 1.00 17.15 10 ATOM 2205 CE1 TYR A 284 0 24.937 11.163 13.817 1.00 17.64 ATOM 2206 CE2 TYR A 284 0 22.623 11.770 13.892 1.00 15.66 ATOM 2207 CZ TYR A 284 0 23.796 11.476 14.542 1.00 15.99 ATOM 2208 OH TYR A 284 0 23.873 11.448 15.919 1.00 14.03 ATOM 2209 N ALA A 285 0 25.276 13.463 7.992 1.00 17.42 15 ATOM 2210 CA ALA A 285 0 25.950 13.461 6.692 1.00 19.35 ATOM 2211 C ALA A 285 0 26.186 11.994 6.328 1.00 19.20 ATOM 2212 O ALA A 285 0 26.692 11.237 7.146 1.00 17.18 ATOM 2213 CB ALA A 285 0 27.293 14.194 6.770 1.00 19.86 ATOM 2214 N GLY A 286 0 25.724 11.614 5.153 1.00 20.01 20 ATOM 2215 CA GLY A 286 0 25.851 10.224 4.747 1.00 21.88 ATOM 2216 C GLY A 286 0 24.507 9.510 4.754 1.00 22.87 ATOM 2217 O GLY A 286 0 24.406 8.418 4.197 1.00 23.06 ATOM 2218 N ALA A 287 0 23.504 10.076 5.423 1.00 22.81 ATOM 2219 CA ALA A 287 0 22.176 9.449 5.364 1.00 21.50 25 ATOM 2220 C ALA A 287 0 21.482 9.880 4.079 1.00 20.58 ATOM 2221 O ALA A 287 0 21.647 11.032 3.629 1.00 19.44 ATOM 2222 CB ALA A 287 0 21.340 9.890 6.562 1.00 21.34 ATOM 2223 N ALA A 288 0 20.632 9.041 3.523 1.00 21.20 ATOM 2224 CA ALA A 288 0 19.899 9.450 2.310 1.00 23.46 30 ATOM 2225 C ALA A 288 0 18.965 10.629 2.513 1.00 24.70 ATOM 2226 O ALA A 288 0 18.494 10.929 3.621 1.00 25.30 ATOM 2227 CB ALA A 288 0 19.012 8.298 1.827 1.00 24.84 ATOM 2228 N ASN A 289 0 18.638 11.300 1.411 1.00 25.98 ATOM 2229 CA ASN A 289 0 17.674 12.398 1.439 1.00 27.16 35 ATOM 2230 C ASN A 289 0 16.303 11.707 1.505 1.00 27.36 ATOM 2231 O ASN A 289 0 15.761 11.330 0.477 1.00 27.56 ATOM 2232 CB ASN A 289 0 17.784 13.250 0.189 1.00 29.01 ATOM 2233 CG ASN A 289 0 18.808 14.364 0.299 1.00 30.44

ATOM 2234 OD1 ASN A 289 0 20.005 14.168 0.545 1.00 30.40 ATOM 2235 ND2 ASN A 289 0 18.340 15.591 0.121 1.00 31.98 ATOM 2236 N ALA A 290 0 15.837 11.426 2.703 1.00 25.22 ATOM 2237 CA ALA A 290 0 14.600 10.727 2.955 1.00 25.09 5 ATOM 2238 C ALA A 290 0 14.087 11.057 4.363 1.00 22.98 ATOM 2239 O ALA A 290 0 14.830 11.555 5.205 1.00 22.02 ATOM 2240 CB ALA A 290 0 14.764 9.210 2.823 1.00 24.89 ATOM 2241 N ASP A 291 0 12.822 10.718 4.597 1.00 21.88 ATOM 2242 CA ASP A 291 0 12.223 10.985 5.907 1.00 21.71 10 ATOM 2243 C ASP A 291 0 12.724 9.965 6.916 1.00 18.93 ATOM 2244 O ASP A 291 0 12.911 8.814 6.596 1.00 19.66 ATOM 2245 CB ASP A 291 0 10.695 10.862 5.834 1.00 22.63 ATOM 2246 CG ASP A 291 0 10.088 12.005 5.076 1.00 25.41 ATOM 2247 OD1 ASP A 291 0 10.781 12.988 4.735 1.00 27.11 15 ATOM 2248 OD2 ASP A 291 0 8.885 11.932 4.812 1.00 27.47 ATOM 2249 N PRO A 292 0 12.863 10.362 8.164 1.00 16.14 ATOM 2250 CA PRO A 292 0 13.229 9.473 9.230 1.00 15.27 ATOM 2251 C PRO A 292 0 12.087 8.484 9.389 1.00 19.40 ATOM 2252 O PRO A 292 0 10.925 8.785 9.063 1.00 20.36 20 ATOM 2253 CB PRO A 292 0 13.257 10.335 10.511 1.00 14.68 ATOM 2254 CG PRO A 292 0 13.291 11.739 9.941 1.00 14.39 ATOM 2255 CD PRO A 292 0 12.606 11.735 8.593 1.00 14.02 ATOM 2256 N THR A 293 0 12.357 7.361 10.024 1.00 19.91 ATOM 2257 CA THR A 293 0 11.360 6.379 10.373 1.00 20.62 25 ATOM 2258 C THR A 293 0 11.589 6.055 11.847 1.00 20.83 ATOM 2259 O THR A 293 0 11.323 4.943 12.287 1.00 23.91 ATOM 2260 CB THR A 293 0 11.556 5.088 9.557 1.00 23.41 ATOM 2261 OG1 THR A 293 0 12.874 4.577 9.836 1.00 24.50 ATOM 2262 CG2 THR A 293 0 11.438 5.341 8.058 1.00 23.72 30 ATOM 2263 N THR A 294 0 12.172 6.958 12.624 1.00 19.30 ATOM 2264 CA THR A 294 0 12.440 6.634 14.017 1.00 19.42 ATOM 2265 C THR A 294 0 11.214 6.896 14.878 1.00 20.66 ATOM 2266 O THR A 294 O 10.240 7.485 14.411 1.00 19.89 ATOM 2267 CB THR A 294 0 13.565 7.548 14.553 1.00 19.28 35 ATOM 2268 OG1 THR A 294 0 13.174 8.889 14.251 1.00 17.55 ATOM 2269 CG2 THR A 294 0 14.860 7.214 13.822 1.00 19.27 ATOM 2270 N SER A 295 0 11.359 6.576 16.159 1.00 23.85 ATOM 2271 CA SER A 295 0 10.274 6.851 17.095 1.00 27.18

	ATOM	2272 C SER A 295 0 10.781 7.484 18.375 1.00 27.92
	ATOM	2273 O SER A 295 0 11.900 7.292 18.844 1.00 27.09
	ATOM	2274 CB SER A 295 0 9.513 5.546 17.367 1.00 28.92
	ATOM	2275 OG SER A 295 0 10.389 4.761 18.160 1.00 33.04
5	ATOM	2276 N ALA A 296 0 9.930 8.331 18.965 1.00 30.04
	ATOM	2277 CA ALA A 296 0 10.295 9.003 20.207 1.00 29.82
	ATOM	2278 C ALA A 296 0 10.552 8.011 21.327 1.00 30.83
	ATOM	2279 O ALA A 296 0 10.114 6.861 21.328 1.00 30.67
	ATOM	2280 CB ALA A 296 0 9.187 9.968 20.599 1.00 30.16
10	ATOM	2281 N ASN A 297 0 11.286 8.489 22.328 1.00 31.65
	ATOM	2282 CA ASN A 297 0 11.543 7.750 23.549 1.00 32.16
	ATOM	2283 C ASN A 297 0 10.200 7.650 24.285 1.00 32.80
	ATOM	2284 O ASN A 297 0 9.492 8.616 24.565 1.00 31.30
	ATOM	2285 CB ASN A 297 0 12.522 8.497 24.443 1.00 33.07
15	ATOM	2286 CG ASN A 297 0 12.869 7.742 25.706 1.00 35.21
	ATOM	2287 OD1 ASN A 297 0 12.116 6.965 26.284 1.00 35.45
	ATOM	2288 ND2 ASN A 297 0 14.106 7.982 26.162 1.00 37.10
	ATOM	2289 N PRO A 298 0 9.865 6.430 24.647 1.00 33.40
	ATOM	2290 CA PRO A 298 0 8.626 6.116 25.331 1.00 33.89
20	ATOM	2291 C PRO A 298 0 8.580 6.690 26.732 1.00 32.60
	ATOM	2292 O PRO A 298 0 7.522 7.155 27.173 1.00 32.72
	ATOM	2293 CB PRO A 298 0 8.505 4.576 25.358 1.00 35.13
	ATOM	2294 CG PRO A 298 0 9.932 4.147 25.128 1.00 34.52
	ATOM	2295 CD PRO A 298 0 10.630 5.222 24.323 1.00 34.10
25	ATOM	2296 N ASN A 299 0 9.689 6.721 27.461 1.00 29.60
	ATOM	2297 CA ASN A 299 0 9.701 7.229 28.834 1.00 28.47
	ATOM	2298 C ASN A 299 0 10.818 8.251 29.006 1.00 27.18
	ATOM	2299 O ASN A 299 0 11.906 7.967 29.528 1.00 25.69
	ATOM	2300 CB ASN A 299 0 9.964 6.017 29.747 1.00 29.50
30) ATOM	2301 CG ASN A 299 0 8.907 4.935 29.673 1.00 32.34
	ATOM	2302 OD1 ASN A 299 0 9.090 3.873 29.075 1.00 33.50
	ATOM	2303 ND2 ASN A 299 0 7.735 5.182 30.251 1.00 33.04
	ATOM	2304 N PRO A 300 0 10.629 9.450 28.498 1.00 26.02
	ATOM	2305 CA PRO A 300 0 11.668 10.486 28.498 1.00 23.99
3	5 ATOM	2306 C PRO A 300 0 11.987 11.054 29.860 1.00 21.16
	ATOM	2307 O PRO A 300 0 11.051 11.174 30.649 1.00 20.81
	ATOM	2308 CB PRO A 300 0 11.137 11.623 27.594 1.00 23.33
	ATOM	2309 CG PRO A 300 0 9.645 11.422 27.729 1.00 24.68

	ATOM	2310 CD PRO A 300 0 9.387 9.918 27.882 1.00 25.22
	ATOM	2311 N ALA A 301 0 13.242 11.361 30.179 1.00 19.17
	ATOM	2312 CA ALA A 301 0 13.538 12.139 31.410 1.00 17.57
	ATOM	2313 C ALA A 301 0 13.159 13.588 31.084 1.00 16.53
5	ATOM	2314 O ALA A 301 0 13.613 14.235 30.131 1.00 16.24
	ATOM	2315 CB ALA A 301 0 15.006 11.982 31.774 1.00 17.17
	ATOM	2316 N GLN A 302 0 12.139 14.131 31.723 1.00 18.15
	ATOM	2317 CA GLN A 302 0 11.580 15.446 31.441 1.00 19.34
	ATOM	2318 C GLN A 302 0 12.335 16.580 32.124 1.00 19.16
0	ATOM	2319 O GLN A 302 0 12.577 16.444 33.324 1.00 19.07
	ATOM	2320 CB GLN A 302 0 10.122 15.483 31.937 1.00 19.10
	ATOM	2321 CG GLN A 302 0 9.304 16.666 31.478 1.00 20.55
	ATOM	2322 CD GLN A 302 0 8.960 16.738 30.009 1.00 20.18
	ATOM	2323 OE1 GLN A 302 0 8.843 15.721 29.331 1.00 22.29
15	ATOM	2324 NE2 GLN A 302 0 8.813 17.936 29.436 1.00 18.46
	ATOM	2325 N LEU A 303 0 12.629 17.681 31.444 1.00 17.92
	ATOM	2326 CA LEU A 303 0 13.241 18.824 32.139 1.00 17.32
	ATOM	2327 C LEU A 303 0 12.316 19.357 33.232 1.00 17.65
	ATOM	2328 O LEU A 303 0 11.140 19.664 33.021 1.00 17.55
20	ATOM	2329 CB LEU A 303 0 13.489 19.988 31.168 1.00 15.14
	ATOM	2330 CG LEU A 303 0 13.919 21.317 31.797 1.00 16.94
	ATOM	2331 CD1 LEU A 303 0 15.262 21.146 32.504 1.00 17.30
	ATOM	2332 CD2 LEU A 303 0 13.988 22.432 30.764 1.00 12.82
	ATOM	2333 N ASN A 304 0 12.868 19.580 34.399 1.00 17.34
25	ATOM	2334 CA ASN A 304 0 12.199 20.212 35.531 1.00 19.12
	ATOM	2335 C ASN A 304 0 13.071 21.435 35.833 1.00 19.06
	ATOM	2336 O ASN A 304 0 14.265 21.349 36.122 1.00 20.37
	ATOM	2337 CB ASN A 304 0 12.073 19.244 36.704 1.00 22.16
	ATOM	2338 CG ASN A 304 0 11.748 19.900 38.024 1.00 25.02
30	ATOM	2339 OD1 ASN A 304 0 11.506 21.111 38.146 1.00 26.72
	ATOM	2340 ND2 ASN A 304 0 11.766 19.133 39.114 1.00 25.99
	ATOM	2341 N GLU A 305 0 12.541 22.629 35.662 1.00 17.64
	ATOM	2342 CA GLU A 305 0 13.204 23.890 35.840 1.00 16.64
	ATOM	2343 C GLU A 305 0 13.884 23.977 37.194 1.00 16.06
35	ATOM	2344 O GLU A 305 0 14.965 24.564 37.208 1.00 14.78
	ATOM	2345 CB GLU A 305 0 12.286 25.085 35.567 1.00 15.91
	ATOM	2346 CG GLU A 305 0 12.898 26.484 35.831 1.00 14.81
	ATOM	2347 CD GLU A 305 0 11.794 27.546 35.666 1.00 15.72

ATOM 2348 OE1 GLU A 305 0 11.584 28.026 34.527 1.00 14.63
ATOM 2349 OE2 GLU A 305 0 11.154 27.861 36.685 1.00 13.05
ATOM 2350 N ALA A 306 0 13.416 23.432 38.298 1.00 15.83
ATOM 2351 CA ALA A 306 0 14.131 23.509 39.565 1.00 17.92
5 ATOM 2352 C ALA A 306 0 15.437 22.682 39.532 1.00 18.62
ATOM 2353 O ALA A 306 0 16.213 22.867 40.464 1.00 18.37
ATOM 2354 CB ALA A 306 0 13.283 22.993 40.711 1.00 16.23
ATOM 2355 N ASP A 307 0 15.721 21.860 38.523 1.00 18.04
ATOM 2366 O LEU A 308 0 18.784 25.320 38.380 1.00 17.28 20 ATOM 2367 CB LEU A 308 0 17.925 24.775 35.257 1.00 12.52
ATOM 2368 CG LEU A 308 0 17.436 23.936 34.073 1.00 12.15
ATOM 2369 CD1 LEU A 308 0 16.692 24.834 33.101 1.00 11.67
ATOM 2370 CD2 LEU A 308 0 18.547 23.186 33.341 1.00 12.23
ATOM 2371 N HIS A 309 0 20.640 24.968 37.243 1.00 18.01
25 ATOM 2372 CA HIS A 309 0 21.430 25.802 38.158 1.00 18.47
ATOM 2373 C HIS A 309 0 22.328 26.770 37.394 1.00 17.36
ATOM 2374 O HIS A 309 0 23.015 26.378 36.459 1.00 17.82
ATOM 2375 CB HIS A 309 0 22.267 24.997 39.140 1.00 18.51
ATOM 2376 CG HIS A 309 0 21.470 24.052 39.965 1.00 20.71
30 ATOM 2377 ND1 HIS A 309 0 21.526 22.684 39.790 1.00 21.77
ATOM 2378 CD2 HIS A 309 0 20.578 24.285 40.956 1.00 22.07
ATOM 2379 CE1 HIS A 309 0 20.701 22.115 40.657 1.00 22.85
ATOM 2380 NE2 HIS A 309 0 20.120 23.059 41.377 1.00 22.67
ATOM 2381 N ALA A 310 0 22.352 28.005 37.837 1.00 17.27
35 ATOM 2382 CA ALA A 310 0 23.173 29.068 37.228 1.00 17.74
ATOM 2383 C ALA A 310 0 24.663 28.775 37.342 1.00 18.13
ATOM 2384 O ALA A 310 0 25.103 28.233 38.369 1.00 19.61
ATOM 2385 CB ALA A 310 0 22.869 30.356 37.985 1.00 16.92

ATOM 2386 N LEU A 311 0 25,427 29,021 36,304 1,00 19,30 ATOM 2387 CA LEU A 311 0 26.856 28.762 36.277 1.00 20.71 ATOM 2388 C LEU A 311 0 27.655 29.922 36.881 1.00 22.67 ATOM 2389 O LEU A 311 0 28.581 29.788 37.682 1.00 23.06 5 ATOM 2390 CB LEU A 311 0 27.305 28.591 34.817 1.00 20.57 ATOM 2391 CG LEU A 311 0 28.796 28.196 34.684 1.00 21.52 ATOM 2392 CD1 LEU A 311 0 28.993 26.783 35.229 1.00 20.80 ATOM 2393 CD2 LEU A 311 0 29.319 28.282 33.254 1.00 20.17 ATOM 2394 N ILE A 312 0 27.333 31.142 36.449 1.00 23.42 10 ATOM 2395 CA ILE A 312 0 28.092 32.311 36.899 1.00 24.86 ATOM 2396 C ILE A 312 0 27.337 33.157 37.914 1.00 26.54 ATOM 2397 O ILE A 312 0 26.154 33.467 37.739 1.00 25.31 ATOM 2398 CB ILE A 312 0 28.397 33.179 35.670 1.00 24.45 ATOM 2399 CG1 ILE A 312 0 28,998 32,330 34,576 1.00 25.60 15 ATOM 2400 CG2 ILE A 312 0 29.261 34.373 36.075 1.00 26.44 ATOM 2401 CD1 ILE A 312 0 30.462 32.026 34.512 1.00 24.51 ATOM 2402 N ASP A 313 0 28.008 33.523 39.003 1.00 28.70 ATOM 2403 CA ASP A 313 0 27.432 34.339 40.071 1.00 30.99 ATOM 2404 C ASP A 313 0 26.065 33.763 40.417 1.00 29.83 20 ATOM 2405 O ASP A 313 0 25.024 34.385 40.235 1.00 28.51 ATOM 2406 CB ASP A 313 0 27,266 35,777 39,576 1.00 35.88 ATOM 2407 CG ASP A 313 0 28.532 36.505 39.187 1.00 40.21 ATOM 2408 OD1 ASP A 313 0 29.577 36.243 39.847 1.00 42.99 ATOM 2409 OD2 ASP A 313 0 28.525 37.346 38.252 1.00 40.95 25 ATOM 2410 N PRO A 314 0 26.041 32.517 40.863 1.00 28.77 ATOM 2411 CA PRO A 314 0 24.841 31.743 41.074 1.00 27.80 ATOM 2412 C PRO A 314 0 23.865 32.198 42.137 1.00 26.49 ATOM 2413 O PRO A 314 0 22.671 31.857 42.032 1.00 27.17 ATOM 2414 CB PRO A 314 0 25.297 30.311 41.479 1.00 27.61 30 ATOM 2415 CG PRO A 314 0 26.711 30.573 41.929 1.00 29.37 ATOM 2416 CD PRO A 314 0 27.248 31.726 41.111 1.00 28.10 ATOM 2417 N ALA A 315 0 24.364 32.818 43.206 1.00 23.45 ATOM 2418 CA ALA A 315 0 23.505 33.092 44.336 1.00 22.34 ATOM 2419 C ALA A 315 0 22.414 34.111 44.008 1.00 22.46 35 ATOM 2420 O ALA A 315 0 22.678 35.127 43.370 1.00 22.52 ATOM 2421 CB ALA A 315 0 24.294 33.617 45.532 1.00 21.68 ATOM 2422 N ALA A 316 0 21.226 33.838 44.534 1.00 20.85 ATOM 2423 CA ALA A 316 0 20.133 34,805 44,422 1.00 20.78

ATOM 2424 C ALA A 316 0 20.547 36.010 45.271 1.00 20.55 ATOM 2425 O ALA A 316 0 21.143 35.846 46.333 1.00 21.47 ATOM 2426 CB ALA A 316 0 18.897 34.166 45.043 1.00 18.32 ATOM 2427 N PRO A 317 0 20.237 37,212 44.864 1.00 20.84 5 ATOM 2428 CA PRO A 317 0 20.539 38.410 45.634 1.00 20.82 ATOM 2429 C PRO A 317 0 19.766 38.449 46.945 1.00 20.96 ATOM 2430 O PRO A 317 0 18.668 37.885 47.030 1.00 21.42 ATOM 2431 CB PRO A 317 0 20.064 39.590 44.758 1.00 21.64 ATOM 2432 CG PRO A 317 0 19.178 38.938 43.746 1.00 21.69 10 ATOM 2433 CD PRO A 317 0 19.517 37.466 43.619 1.00 20.10 ATOM 2434 N GLY A 318 0 20.269 39.080 47.988 1.00 20.69 ATOM 2435 CA GLY A 318 0 19.533 39.282 49.225 1.00 21.68 ATOM 2436 C GLY A 318 0 19.631 38.218 50.283 1.00 22.93 ATOM 2437 O GLY A 318 0 20.344 37.221 50.101 1.00 23.87 15 ATOM 2438 N ILE A 319 0 18.895 38.398 51.368 1.00 22.20 ATOM 2439 CA ILE A 319 0 18.879 37,432 52,454 1,00 24.16 ATOM 2440 C ILE A 319 0 18.169 36.189 51.956 1.00 25.28 ATOM 2441 O ILE A 319 0 17.071 36.271 51.405 1.00 26.26 ATOM 2442 CB ILE A 319 0 18.208 38.030 53.704 1.00 24.54 20 ATOM 2443 CG1 ILE A 319 0 19.075 39.176 54.213 1.00 25.08 ATOM 2444 CG2 ILE A 319 0 17.944 37.012 54.793 1.00 24.03 ATOM 2445 CD1 ILE A 319 0 18.262 40.183 55.006 1.00 27.56 ATOM 2446 N PRO A 320 0 18.762 35.030 52.159 1.00 26.23 ATOM 2447 CA PRO A 320 0 18.273 33.748 51.684 1.00 26.64 25 ATOM 2448 C PRO A 320 0 17.105 33.172 52.453 1.00 26.74 ATOM 2449 O PRO A 320 0 17.140 32.025 52.896 1.00 27.54 ATOM 2450 CB PRO A 320 0 19.501 32.801 51.772 1.00 27.16 ATOM 2451 CG PRO A 320 0 20.216 33.388 52.985 1.00 25.20 ATOM 2452 CD PRO A 320 0 20.061 34.891 52.837 1.00 25.62 30 ATOM 2453 N THR A 321 0 16.022 33.909 52.611 1.00 27.35 ATOM 2454 CA THR A 321 0 14.820 33.550 53.329 1.00 28.07 ATOM 2455 C THR A 321 0 13.632 34.190 52.603 1.00 27.48 ATOM 2456 O THR A 321 0 13.597 35.383 52.302 1.00 27.13 ATOM 2457 CB THR A 321 0 14.824 34.085 54.780 1.00 29.87 35 ATOM 2458 OG1 THR A 321 0 15.957 33.582 55.511 1.00 31.85 ATOM 2459 CG2 THR A 321 0 13.548 33.687 55.507 1.00 31.06 ATOM 2460 N PRO A 322 0 12.630 33.378 52.326 1.00 26.63 ATOM 2461 CA PRO A 322 0 11.428 33.824 51.637 1.00 25.91

	1		2500 CB ASN A 328 0 8.223 41.603 50.121 1.00 23.09
	4	ATOM	2501 CG ASN A 328 0 9.569 41.204 50.693 1.00 24.61
		ATOM	2502 OD1 ASN A 328 0 10.181 40.188 50.295 1.00 25.87
		ATOM	2503 ND2 ASN A 328 0 10.017 42.029 51.617 1.00 21.47
	5	ATOM	2504 N LEU A 329 0 6.776 42.000 46.923 1.00 23.14
		ATOM	2505 CA LEU A 329 0 5.497 42.179 46.268 1.00 24.23
		ATOM	2506 C LEU A 329 0 4.859 40.822 45.953 1.00 25.21
		ATOM	2507 O LEU A 329 0 5.489 39.876 45.469 1.00 24.20
		ATOM	2508 CB LEU A 329 0 5.622 42.963 44.948 1.00 24.33
1	10	ATOM	2509 CG LEU A 329 0 6.369 44.279 45.082 1.00 26.30
		ATOM	2510 CD1 LEU A 329 0 6.778 44.884 43.757 1.00 26.24
		ATOM	2511 CD2 LEU A 329 0 5.550 45.249 45.913 1.00 27.07
		ATOM	2512 N ARG A 330 0 3.562 40.806 46.204 1.00 25.13
		ATOM	2513 CA ARG A 330 0 2.740 39.641 45.899 1.00 27.48
	15	ATOM	2514 C ARG A 330 0 1.628 40.116 44.965 1.00 27.52
		ATOM	2515 O ARG A 330 0 0.988 41.132 45.257 1.00 27.17
		ATOM	2516 CB ARG A 330 0 2.200 39.017 47.166 1.00 29.82
		ATOM	2517 CG ARG A 330 0 1.351 37.794 46.932 1.00 33.18
		ATOM	2518 CD ARG A 330 0 0.880 37.251 48.284 1.00 37.06
• • • •	20	ATOM	2519 NE ARG A 330 0 0.305 35.914 48.038 1.00 40.34
		ATOM	2520 CZ ARG A 330 0 1.009 34.803 48.298 1.00 40.82
		ATOM	2521 NH1 ARG A 330 0 2.229 34.903 48.812 1.00 40.36
		ATOM	2522 NH2 ARG A 330 0 0.415 33.642 48.040 1.00 41.33
		ATOM	2523 N PHE A 331 0 1.507 39.481 43.795 1.00 25.88
	25	ATOM	2524 CA PHE A 331 0 0.475 39.937 42.855 1.00 25.87
		ATOM	2525 C PHE A 331 0 -0.657 38.919 42.779 1.00 25.94
		ATOM	2526 O PHE A 331 0 -0.441 37.697 42.824 1.00 24.61
		ATOM	2527 CB PHE A 331 0 1.102 40.269 41.511 1.00 25.94
		ATOM	2528 CG PHE A 331 0 1.884 41.565 41.496 1.00 28.66
	30	ATOM	2529 CD1 PHE A 331 0 1.282 42.782 41.759 1.00 28.04
		ATOM	2530 CD2 PHE A 331 0 3.246 41.569 41.214 1.00 29.71
		ATOM	2531 CE1 PHE A 331 0 1.988 43.963 41.744 1.00 29.21
		ATOM	2532 CE2 PHE A 331 0 3.975 42.753 41.181 1.00 30.61
		АТОМ	2533 CZ PHE A 331 0 3.348 43.965 41.453 1.00 30.66
	35	ATOM	2534 N GLN A 332 0 -1.873 39.446 42.676 1.00 25.58
		ATOM	2535 CA GLN A 332 0 -3.085 38.628 42.608 1.00 26.60
		ATOM	2536 C GLN A 332 0 -3.672 38.698 41.203 1.00 23.61
			2537 O GLN A 332 0 -4.136 39.739 40.755 1.00 21.73

ATOM	2538 CB GLN A 332 0 -4.110 39.094 43.630 1.00 30.32
ATOM	2539 CG GLN A 332 0 -5.412 38.299 43.642 1.00 35.72
ATOM	2540 CD GLN A 332 0 -5.199 36.961 44.325 1.00 39.98
ATOM	2541 OE1 GLN A 332 0 -5.859 35.961 44.007 1.00 42.32
5 ATOM	2542 NE2 GLN A 332 0 -4.257 36.915 45.270 1.00 42.27
ATOM	2543 N LEU A 333 0 -3.612 37.576 40.504 1.00 23.60
ATOM	2544 CA LEU A 333 0 -4.105 37.565 39.118 1.00 26.25
ATOM	2545 C LEU A 333 0 -5.627 37.373 39.123 1.00 26.55
ATOM	2546 O LEU A 333 0 -6.107 36.655 39.998 1.00 25.70
10 ATOM	2547 CB LEU A 333 0 -3.424 36.465 38.304 1.00 25.25
ATOM	2548 CG LEU A 333 0 -1.919 36.608 38.052 1.00 25.72
ATOM	2549 CD1 LEU A 333 0 -1.431 35.565 37.067 1.00 23.66
ATOM	2550 CD2 LEU A 333 0 -1.551 38.000 37.558 1.00 25.25
ATOM	2551 N GLY A 334 0 -6.327 37.976 38.188 1.00 27.85
15 ATOM	2552 CA GLY A 334 0 -7.770 37.782 38.118 1.00 29.96
ATOM	2553 C GLY A 334 0 -8.253 37.802 36.672 1.00 32.36
ATOM	2554 O GLY A 334 0 -7.559 38.175 35.719 1.00 30.74
ATOM	2555 N PHE A 335 0 -9.502 37.377 36.544 1.00 34.76
ATOM	2556 CA PHE A 335 0 -10.181 37.360 35.260 1.00 38.54
20 ATOM	2557 C PHE A 335 0 -11.625 37.806 35.514 1.00 41.05
ATOM	2558 O PHE A 335 0 -12.443 37.028 36.021 1.00 41.53
ATOM	2559 CB PHE A 335 0 -10.183 36.003 34.586 1.00 39.00
ATOM	2560 CG PHE A 335 0 -10.772 36.105 33.197 1.00 40.61
ATOM	2561 CD1 PHE A 335 0 -10.052 36.686 32.175 1.00 40.45
25 ATOM	2562 CD2 PHE A 335 0 -12.045 35.614 32.942 1.00 41.39
ATOM	2563 CE1 PHE A 335 0 -10.580 36.778 30.901 1.00 40.81
ATOM	2564 CE2 PHE A 335 0 -12.588 35.697 31.671 1.00 41.51
ATOM	2565 CZ PHE A 335 0 -11.849 36.281 30.652 1.00 41.87
	2566 N SER A 336 0 -11.861 39.075 35.193 1.00 42.39
30 ATOM	2567 CA SER A 336 0 -13.203 39.582 35.445 1.00 44.12
ATOM	2568 C SER A 336 0 -13.704 40.525 34.370 1.00 44.31
ATOM	
ATOM	2570 CB SER A 336 0 -13.214 40.206 36.842 1.00 45.46
ATOM	2571 OG SER A 336 0 -13.727 39.233 37.758 1.00 47.11
35 ATOM	
ATOM	
ATOM	
ATOM	2575 O GLY A 337 0 -14.712 41.891 30.888 1.00 41.35

ATOM 2576 N GLY A 338 0 -14.583 39.699 31.263 1.00 39.12 ATOM 2577 CA GLY A 338 0 -13.899 39.364 30.034 1.00 36.11 ATOM 2578 C GLY A 338 0 -12.503 39.970 29.929 1.00 34.97 ATOM 2579 O GLY A 338 0 -12.005 40.116 28.806 1.00 33.64 5 ATOM 2580 N ARG A 339 0 -11.885 40.355 31.048 1.00 33.21 ATOM 2581 CA ARG A 339 0 -10.538 40.916 30.982 1.00 32.04 ATOM 2582 C ARG A 339 0 -9.724 40.397 32.164 1.00 29.23 2583 O ARG A 339 0 -10.260 40.053 33.210 1.00 26.38 ATOM 2584 CB ARG A 339 0 -10.495 42.419 30.845 1.00 36.52 10 ATOM 2585 CG ARG A 339 0 -11.291 43.281 31.790 1.00 42.08 ATOM 2586 CD ARG A 339 0 -11.895 44,502 31.127 1.00 45.03 ATOM 2587 NE ARG A 339 0 -11.046 45.380 30.351 1.00 47.77 ATOM 2588 CZ ARG A 339 0 -10.635 46.616 30.664 1.00 49.55 ATOM 2589 NH1 ARG A 339 0 -10.935 47.242 31.799 1.00 49.60 15 ATOM 2590 NH2 ARG A 339 0 -9.862 47,295 29.805 1.00 49.96 ATOM 2591 N PHE A 340 0 -8.425 40.181 31.900 1.00 25.50 ATOM 2592 CA PHE A 340 0 -7.526 39.713 32.938 1.00 22.68 ATOM 2593 C PHE A 340 0 -7.171 40.945 33.774 1.00 22.15 ATOM 2594 O PHE A 340 0 -7.069 42.069 33.266 1.00 21.26 20 ATOM 2595 CB PHE A 340 0 -6.210 39.135 32.397 1.00 22.39 ATOM 2596 CG PHE A 340 0 -6.333 37.792 31.736 1.00 20.74 ATOM 2597 CD1 PHE A 340 0 -6.338 37.710 30.357 1.00 20.97 ATOM 2598 CD2 PHE A 340 0 -6.448 36.644 32.468 1.00 21.19 ATOM 2599 CE1 PHE A 340 0 -6.449 36.488 29.721 1.00 21.61 25 ATOM 2600 CE2 PHE A 340 0 -6.585 35.408 31.826 1.00 22.99 ATOM 2601 CZ PHE A 340 0 -6.578 35.334 30.444 1.00 19.90 ATOM 2602 N THR A 341 0 -7.000 40.736 35.069 1.00 20.76 ATOM 2603 CA THR A 341 0 -6.605 41.879 35.889 1.00 21.55 ATOM 2604 C THR A 341 0 -5.400 41.509 36.759 1.00 21.00 30 ATOM 2605 O THR A 341 O -5.236 40.329 37.089 1.00 20.70 ATOM 2606 CB THR A 341 0 -7.757 42.255 36.853 1.00 21.12 ATOM 2607 OG1 THR A 341 0 -8.014 41.102 37.668 1.00 21.26 ATOM 2608 CG2 THR A 341 0 -9.050 42.630 36.150 1.00 21.74 ATOM 2609 N ILE A 342 0 -4.750 42.529 37.308 1.00 20.28 35 ATOM 2610 CA ILE A 342 0 -3.739 42.273 38.333 1.00 20.34 ATOM 2611 C ILE A 342 0 -4.026 43.212 39.496 1.00 18.92 ATOM 2612 O ILE A 342 0 -4.004 44.437 39.327 1.00 16.42 ATOM 2613 CB ILE A 342 0 -2.306 42.439 37.820 1.00 21.04

ATOM	2614 CG1 ILE A 342 0 -1.337 42.721 38.988 1.00 21.39
ATOM	2615 CG2 ILE A 342 0 -2.250 43.540 36.800 1.00 24.57
ATOM	2616 CD1 ILE A 342 0 -0.260 41.661 38.949 1.00 24.53
ATOM ATOM	2617 N ASN A 343 0 -4.282 42.601 40.650 1.00 17.77
	2618 CA ASN A 343 0 -4.702 43.413 41.782 1.00 21.51
5 ATOM	2619 C ASN A 343 0 -5.881 44.287 41.394 1.00 21.43
ATOM	2620 O ASN A 343 0 -5.903 45.495 41.598 1.00 20.26
ATOM	
ATOM	
ATOM	2622 CG ASN A 343 0 -2.685 43.190 43.073 1.00 25.38
10 ATOM	2623 OD1 ASN A 343 0 -2.075 42.218 42.598 1.00 26.90
ATOM	2624 ND2 ASN A 343 0 -2.652 43.238 44.425 1.00 25.34
ATOM	2625 N GLY A 344 0 -6.875 43.703 40.730 1.00 23.77
ATOM	2626 CA GLY A 344 0 -8.078 44.406 40.324 1.00 25.28
ATOM	2627 C GLY A 344 0 -7.954 45.280 39.111 1.00 26.82
15 ATOM	2628 O GLY A 344 0 -9.029 45.728 38.672 1.00 29.56
ATOM	2629 N THR A 345 0 -6.798 45.561 38.527 1.00 26.28
ATOM	2630 CA THR A 345 0 -6.766 46.440 37.366 1.00 25.48
ATOM	2631 C THR A 345 0 -6.343 45.703 36.109 1.00 26.49
ATOM	2632 O THR A 345 0 -5.385 44.925 36.122 1.00 28.22
20 ATOM	2633 CB THR A 345 0 -5.829 47.648 37.589 1.00 26.17
ATOM	2634 OG1 THR A 345 0 -6.191 48.334 38.788 1.00 25.32
ATOM	2635 CG2 THR A 345 0 -5.867 48.677 36.462 1.00 24.83
ATOM	2636 N ALA A 346 0 -7.017 46.012 35.008 1.00 24.80
ATOM	2637 CA ALA A 346 0 -6.768 45.491 33.688 1.00 23.82
25 ATOM	2638 C ALA A 346 0 -5.862 46.511 32.997 1.00 23.77
ATOM	2639 O ALA A 346 O -6.098 47.711 33.088 1.00 22.93
ATOM	2640 CB ALA A 346 0 -8.031 45.353 32.841 1.00 24.13
ATOM	2641 N TYR A 347 0 -4.793 46.023 32.392 1.00 22.69
ATOM	2642 CA TYR A 347 0 -3.862 46.949 31.792 1.00 22.75
30 ATOM	2643 C TYR A 347 0 -4.483 47.532 30.527 1.00 23.42
ATOM	2644 O TYR A 347 O -4.954 46.753 29.709 1.00 22.19
ATOM	2645 CB TYR A 347 0 -2.521 46.274 31.455 1.00 21.25
ATOM	2646 CG TYR A 347 0 -1.584 47.221 30.732 1.00 18.93
ATOM	2647 CD1 TYR A 347 0 -0.819 48.137 31.442 1.00 18.17
35 ATOM	2648 CD2 TYR A 347 0 -1.473 47.176 29.353 1.00 19.30
	2649 CE1 TYR A 347 0 0.034 49.003 30.763 1.00 18.37
	2650 CE2 TYR A 347 0 -0.650 48.063 28.664 1.00 18.40
	2651 CZ TYR A 347 0 0.102 48.962 29.394 1.00 18.99
ATOM	EGG. GE TIMETON O GITOM TOLDON ENTERNAMENT

ATOM 2652 OH TYR A 347 0 0.947 49.802 28.706 1.00 19.65
ATOM 2653 N GLU A 348 0 -4.378 48.833 30.359 1.00 25.22
ATOM 2654 CA GLU A 348 0 -4.769 49.453 29.098 1.00 28.77
ATOM 2655 C GLU A 348 0 -3.659 50.470 28.805 1.00 27.38
5 ATOM 2656 O GLU A 348 0 -3.297 51.229 29.704 1.00 28.49
ATOM 2657 CB GLU A 348 0 -6.114 50.134 29.110 1.00 32.95
ATOM 2658 CG GLU A 348 0 -7.391 49.302 29.072 1.00 39.29
ATOM 2659 CD GLU A 348 0 -8.562 50.170 29.559 1.00 43.20
ATOM 2660 OE1 GLU A 348 0 -8.825 51.211 28.900 1.00 45.31
10 ATOM 2661 OE2 GLU A 348 0 -9.175 49.855 30.601 1.00 44.11
ATOM 2662 N SER A 349 0 -3.168 50.541 27.621 1.00 25.73
ATOM 2663 CA SER A 349 0 -2.080 51.410 27.201 1.00 28.25
ATOM 2664 C SER A 349 0 -2.401 52.887 27.194 1.00 28.71
ATOM 2665 O SER A 349 0 -3.279 53.399 26.526 1.00 29.13
15 ATOM 2666 CB SER A 349 0 -1.743 50.818 25.838 1.00 28.54
ATOM 2667 OG SER A 349 0 -0.850 51.499 25.026 1.00 33.31
ATOM 2668 N PRO A 350 0 -1.623 53.700 27.898 1.00 29.56
ATOM 2669 CA PRO A 350 0 -1.770 55.145 27.997 1.00 28.53
ATOM 2670 C PRO A 350 0 -1.480 55.825 26.679 1.00 28.01
20 ATOM 2671 O PRO A 350 0 -0.787 55.217 25.856 1.00 26.93
ATOM 2672 CB PRO A 350 0 -0.752 55.632 29.063 1.00 27.91
ATOM 2673 CG PRO A 350 0 0.309 54.560 28.863 1.00 28.03
ATOM 2674 CD PRO A 350 0 -0.461 53.245 28.688 1.00 28.76
ATOM 2675 N SER A 351 0 -1.951 57.066 26.485 1.00 28.89
25 ATOM 2676 CA SER A 351 0 -1.630 57.718 25.206 1.00 29.67
ATOM 2677 C SER A 351 0 -0.213 58.287 25.257 1.00 27.67
ATOM 2678 O SER A 351 0 0.320 58.524 24.177 1.00 28.18
ATOM 2679 CB SER A 351 0 -2.566 58.860 24.790 1.00 31.71
ATOM 2680 OG SER A 351 0 -2.793 59.679 25.938 1.00 34.19
30 ATOM 2681 N VAL A 352 0 0.316 58.529 26.449 1.00 25.32
ATOM 2682 CA VAL A 352 0 1.703 58.997 26.534 1.00 25.27
ATOM 2683 C VAL A 352 0 2.503 57.872 27.211 1.00 23.63
ATOM 2684 O VAL A 352 0 2.181 57.493 28.323 1.00 23.26
ATOM 2685 CB VAL A 352 0 1.934 60.300 27.303 1.00 24.91
35 ATOM 2686 CG1 VAL A 352 0 1.129 61.436 26.658 1.00 24.41
ATOM 2687 CG2 VAL A 352 0 3.424 60.635 27.281 1.00 23.35
ATOM 2688 N PRO A 353 0 3.498 57.375 26.510 1.00 22.39
ATOM 2689 CA PRO A 353 0 4.342 56.300 26.983 1.00 21.86

ATOM 2690 C PRO A 353 0 4.978 56.699 28.300 1.00 20.91
ATOM 2691 O PRO A 353 0 5.393 57.852 28.483 1.00 21.91
ATOM 2692 CB PRO A 353 0 5.417 56.054 25.916 1.00 23.95
ATOM 2693 CG PRO A 353 0 5.181 57.123 24.878 1.00 23.79
5 ATOM 2694 CD PRO A 353 0 3.882 57.848 25.180 1.00 23.03
ATOM 2695 N THR A 354 0 5.043 55.778 29.234 1.00 18.66
ATOM 2696 CA THR A 354 0 5.646 56.015 30.530 1.00 18.05
ATOM 2697 C THR A 354 0 6.981 56.739 30.478 1.00 18.33
ATOM 2698 O THR A 354 0 7.168 57.630 31.319 1.00 19.46
10 ATOM 2699 CB THR A 354 0 5.871 54.661 31.242 1.00 17.10
ATOM 2700 OG1 THR A 354 0 4.903 53.710 30.797 1.00 17.24
ATOM 2701 CG2 THR A 354 0 5.772 54.852 32.741 1.00 16.43
ATOM 2702 N LEU A 355 0 7.940 56.380 29.618 1.00 17.49
ATOM 2703 CA LEU A 355 0 9.215 57.076 29.604 1.00 18.84
15 ATOM 2704 C LEU A 355 0 9.013 58.579 29.284 1.00 19.80
ATOM 2705 O LEU A 355 0 9.722 59.417 29.849 1.00 17.13
ATOM 2706 CB LEU A 355 0 10.200 56.498 28.622 1.00 17.89
ATOM 2707 CG LEU A 355 0 11.703 56.488 28.819 1.00 18.66
ATOM 2708 CD1 LEU A 355 0 12.436 56.851 27.547 1.00 18.37
20 ATOM 2709 CD2 LEU A 355 0 12.199 57.204 30.056 1.00 16.79
ATOM 2710 N LEU A 356 0 8.134 58.883 28.328 1.00 20.48
ATOM 2711 CA LEU A 356 0 7.812 60.274 27.993 1.00 21.62
ATOM 2712 C LEU A 356 0 7.085 60.932 29.163 1.00 21.28
ATOM 2713 O LEU A 356 0 7.497 62.042 29.506 1.00 22.01
25 ATOM 2714 CB LEU A 356 0 7.028 60.474 26.700 1.00 22.08
ATOM 2715 CG LEU A 356 0 6.850 61.939 26.239 1.00 23.98
ATOM 2716 CD1 LEU A 356 0 8.157 62.709 26.207 1.00 23.11
ATOM 2717 CD2 LEU A 356 0 6.191 61.985 24.864 1.00 24.74
ATOM 2718 N GLN A 357 0 6.219 60.267 29.922 1.00 21.37
30 ATOM 2719 CA GLN A 357 0 5.669 60.893 31.120 1.00 21.87
ATOM 2720 C GLN A 357 0 6.759 61.254 32.128 1.00 24.12
ATOM 2721 O GLN A 357 0 6.674 62.277 32.811 1.00 24.92
ATOM 2722 CB GLN A 357 0 4.636 60.015 31.822 1.00 20.63
ATOM 2723 CG GLN A 357 0 3.447 59.674 30.906 1.00 19.17
35 ATOM 2724 CD GLN A 357 0 2.547 58.643 31.540 1.00 18.85
ATOM 2725 OE1 GLN A 357 0 2.162 58.748 32.713 1.00 19.06
ATOM 2726 NE2 GLN A 357 0 2.262 57.600 30.742 1.00 18.49
ATOM 2727 N ILE A 358 0 7.735 60.371 32.346 1.00 25.66

ATOM 2728 CA ILE A 358 0 8.822 60.651 33.263 1.00 26.19
ATOM 2729 C ILE A 358 0 9.699 61.800 32.762 1.00 27.66
ATOM 2730 O ILE A 358 0 9.940 62.725 33.551 1.00 26.65
ATOM 2731 CB ILE A 358 0 9.692 59.420 33.578 1.00 24.79
5 ATOM 2732 CG1 ILE A 358 0 8.807 58.395 34.304 1.00 24.09
ATOM 2733 CG2 ILE A 358 0 10.865 59.841 34.451 1.00 23.78
ATOM 2734 CDI ILE A 358 0 9.251 56.954 34.234 1.00 23.34
ATOM 2735 N MET A 359 0 10.054 61.844 31.486 1.00 29.63
ATOM 2736 CA MET A 359 0 10.893 62.910 30.965 1.00 33.02
10 ATOM 2737 C MET A 359 0 10.174 64.260 31.027 1.00 34.46
ATOM 2738 O MET A 359 0 10.801 65.324 31.026 1.00 33.77
ATOM 2739 CB MET A 359 0 11.346 62.664 29.537 1.00 35.67
ATOM 2740 CG MET A 359 0 12.065 61.403 29.138 1.00 40.75
ATOM 2741 SD MET A 359 0 13.764 61.153 29.671 1.00 44.90
15 ATOM 2742 CE MET A 359 0 14.594 62.592 29.007 1.00 44.24
ATOM 2743 N SER A 360 0 8.835 64.238 31.070 1.00 33.43
ATOM 2744 CA SER A 360 0 8.024 65.430 31.088 1.00 32.92
ATOM 2745 C SER A 360 0 7.761 65.995 32.474 1.00 33.24
ATOM 2746 O SER A 360 0 6.989 66.966 32.556 1.00 34.08
20 ATOM 2747 CB SER A 360 0 6.678 65.134 30.393 1.00 31.34
ATOM 2748 OG SER A 360 0 6.928 65.109 28.996 1.00 31.06
ATOM 2749 N GLY A 361 0 8.288 65.360 33.517 1.00 32.06
ATOM 2750 CA GLY A 361 0 8.072 65.868 34.847 1.00 31.80
ATOM 2751 C GLY A 361 0 7.487 64.955 35.880 1.00 32.48
25 ATOM 2752 O GLY A 361 0 7.420 65.377 37.043 1.00 33.20
ATOM 2753 N ALA A 362 0 6.991 63.769 35.535 1.00 33.69
ATOM 2754 CA ALA A 362 0 6.406 62.926 36.601 1.00 35.10
ATOM 2755 C ALA A 362 0 7.475 62.615 37.650 1.00 34.45
ATOM 2756 O ALA A 362 0 8.598 62.306 37.286 1.00 33.60
30 ATOM 2757 CB ALA A 362 0 5.789 61.658 36.043 1.00 34.88
ATOM 2758 N GLN A 363 0 7.146 62.676 38.920 1.00 36.22
ATOM 2759 CA GLN A 363 0 8.083 62.458 40.007 1.00 37.87
ATOM 2760 C GLN A 363 0 7.776 61.189 40.787 1.00 37.20
ATOM 2761 O GLN A 363 0 8.620 60.777 41.587 1.00 36.79
35 ATOM 2762 CB GLN A 363 0 8.012 63.619 41.022 1.00 40.41
ATOM 2763 CG GLN A 363 0 8.986 64.740 40.721 1.00 44.07
ATOM 2764 CD GLN A 363 0 8.586 66.154 41.092 1.00 45.77
ATOM 2765 OE1 GLN A 363 0 7.697 66.473 41.901 1.00 46.53

ATOM 2766 NE2 GLN A 363 0 9.294 67.089 40.435 1.00 46.12
ATOM 2767 N SER A 364 0 6.579 60.632 40.610 1.00 35.74
ATOM 2768 CA SER A 364 0 6.249 59.434 41.381 1.00 34.54
ATOM 2769 C SER A 364 0 5.225 58.588 40.653 1.00 34.32
5 ATOM 2770 O SER A 364 0 4.605 59.037 39.692 1.00 33.71
ATOM 2771 CB SER A 364 0 5.774 59.835 42.769 1.00 35.68
ATOM 2772 OG SER A 364 0 4.396 60.095 42.928 1.00 35.86
ATOM 2773 N ALA A 365 0 5.015 57.372 41.146 1.00 33.95
ATOM 2774 CA ALA A 365 0 4.017 56.486 40.564 1.00 34.62
10 ATOM 2775 C ALA A 365 0 2.637 57.148 40.560 1.00 34.46
ATOM 2776 O ALA A 365 0 1.906 56.995 39.582 1.00 34.37
ATOM 2777 CB ALA A 365 0 3.963 55.155 41.301 1.00 33.51
ATOM 2778 N ASN A 366 0 2.261 57.916 41.571 1.00 34.45
ATOM 2779 CA ASN A 366 0 1.003 58.619 41.632 1.00 36.37
15 ATOM 2780 C ASN A 366 0 0.708 59.524 40.447 1.00 35.60
ATOM 2781 O ASN A 366 0 -0.462 59.719 40.131 1.00 36.50
ATOM 2782 CB ASN A 366 0 0.904 59.464 42.918 1.00 38.72
ATOM 2783 CG ASN A 366 0 0.794 58.558 44.126 1.00 41.08
ATOM 2784 OD1 ASN A 366 0 0.863 58.966 45.284 1.00 43.39
20 ATOM 2785 ND2 ASN A 366 0 0.646 57.256 43.914 1.00 42.72
ATOM 2786 N ASP A 367 0 1.694 60.046 39.752 1.00 34.06
ATOM 2787 CA ASP A 367 0 1.571 60.899 38.610 1.00 33.37
ATOM 2788 C ASP A 367 0 1.566 60.122 37.293 1.00 32.09
ATOM 2789 O ASP A 367 0 1.430 60.762 36.247 1.00 31.74
25 ATOM 2790 CB ASP A 367 0 2.768 61.841 38.483 1.00 35.96
ATOM 2791 CG ASP A 367 0 3.048 62.818 39.602 1.00 37.69
ATOM 2792 OD1 ASP A 367 0 2.123 63.209 40.336 1.00 37.23
ATOM 2793 OD2 ASP A 367 0 4.258 63.194 39.705 1.00 39.62
ATOM 2794 N LEU A 368 0 1.791 58.814 37.371 1.00 30.39
30 ATOM 2795 CA LEU A 368 0 1.897 58.055 36.123 1.00 28.74
ATOM 2796 C LEU A 368 0 0.586 57.386 35.745 1.00 28.85
ATOM 2797 O LEU A 368 0 -0.214 56.947 36.555 1.00 28.17
ATOM 2798 CB LEU A 368 0 3.043 57.046 36.194 1.00 26.94
ATOM 2799 CG LEU A 368 0 4.436 57.668 36.422 1.00 27.05
35 ATOM 2800 CD1 LEU A 368 0 5.455 56.581 36.765 1.00 25.41
ATOM 2801 CD2 LEU A 368 0 4.882 58.499 35.236 1.00 24.44
ATOM 2802 N LEU A 369 0 0.392 57.332 34.446 1.00 28.81
ATOM 2803 CA LEU A 369 0 -0.753 56.671 33.834 1.00 29.65

ATOM 2804 C LEU A 369 0 -0.238 55.398 33.162 1.00 28.29
ATOM 2805 O LEU A 369 0 0.875 55.356 32.660 1.00 25.59
ATOM 2806 CB LEU A 369 0 -1.333 57.668 32.821 1.00 30.27
ATOM 2807 CG LEU A 369 0 -1.800 58.998 33.456 1.00 32.06
5 ATOM 2808 CD1 LEU A 369 0 -2.220 59.979 32.370 1.00 31.87
ATOM 2809 CD2 LEU A 369 0 -2.932 58.787 34.455 1.00 30.89
ATOM 2810 N PRO A 370 0 -1.054 54.361 33.157 1.00 27.87
ATOM 2811 CA PRO A 370 0 -2.396 54.379 33.688 1.00 26.71
ATOM 2812 C PRO A 370 0 -2.513 54.112 35.169 1.00 26.73
10 ATOM 2813 O PRO A 370 0 -1.872 53.184 35.668 1.00 26.55
ATOM 2814 CB PRO A 370 0 -3.126 53.222 32.958 1.00 27.28
ATOM 2815 CG PRO A 370 0 -2.003 52.317 32.557 1.00 27.38
ATOM 2816 CD PRO A 370 0 -0.720 53.102 32.482 1.00 27.24
ATOM 2817 N ALA A 371 0 -3.414 54.810 35.870 1.00 26.16
15 ATOM 2818 CA ALA A 371 0 -3.581 54.556 37.302 1.00 25.73
ATOM 2819 C ALA A 371 0 -3.892 53.103 37.616 1.00 24.59
ATOM 2820 O ALA A 371 0 -4.758 52.533 36.946 1.00 25.05
ATOM 2821 CB ALA A 371 0 -4.718 55.394 37.903 1.00 26.42
ATOM 2822 N GLY A 372 0 -3.261 52.524 38.625 1.00 22.47
20 ATOM 2823 CA GLY A 372 0 -3.519 51.187 39.087 1.00 21.06
ATOM 2824 C GLY A 372 0 -2.691 50.096 38.427 1.00 23.01
ATOM 2825 O GLY A 372 0 -2.758 48.928 38.831 1.00 23.85
ATOM 2826 N SER A 373 0 -1.910 50.428 37.421 1.00 23.30
ATOM 2827 CA SER A 373 0 -1.054 49.459 36.736 1.00 24.36
25 ATOM 2828 C SER A 373 0 0.429 49.746 36.919 1.00 24.76
ATOM 2829 O SER A 373 0 1.257 49.103 36.270 1.00 25.75
ATOM 2830 CB SER A 373 0 -1.371 49.584 35.233 1.00 23.25
ATOM 2831 OG SER A 373 0 -2.638 49.014 34.952 1.00 23.80
ATOM 2832 N VAL A 374 0 0.779 50.799 37.657 1.00 23.87
30 ATOM 2833 CA VAL A 374 0 2.176 51.255 37.706 1.00 22.95
ATOM 2834 C VAL A 374 0 2.739 51.109 39.105 1.00 21.72
ATOM 2835 O VAL A 374 0 2.093 51.518 40.059 1.00 21.03
ATOM 2836 CB VAL A 374 0 2.317 52.687 37.169 1.00 23.05
ATOM 2837 CG1 VAL A 374 0 3.720 53.273 37.323 1.00 24.13
35 ATOM 2838 CG2 VAL A 374 0 1.945 52.771 35.698 1.00 21.58
ATOM 2839 N TYR A 375 0 3.862 50.402 39.246 1.00 20.52
ATOM 2840 CA TYR A 375 0 4.445 50.184 40.573 1.00 22.02
ATOM 2841 C TYR A 375 0 5.873 50.743 40.549 1.00 22.56

ATOM 2842 O TYR A 375 0 6.665 50.524 39.639 1.00 21.82
ATOM 2843 CB TYR A 375 0 4.467 48.729 41.067 1.00 21.98
ATOM 2844 CG TYR A 375 0 3.042 48.217 41.226 1.00 24.04
ATOM 2845 CD1 TYR A 375 0 2.398 48.261 42.445 1.00 23.57
5 ATOM 2846 CD2 TYR A 375 0 2.339 47.760 40.115 1.00 24.92
ATOM 2847 CE1 TYR A 375 0 1.100 47.831 42.575 1.00 25.65
ATOM 2848 CE2 TYR A 375 0 1.034 47.327 40.220 1.00 25.89
ATOM 2849 CZ TYR A 375 0 0.429 47.352 41.464 1.00 26.65
ATOM 2850 OH TYR A 375 0 -0.869 46.916 41.593 1.00 27.26
10 ATOM 2851 N GLU A 376 0 6.130 51.563 41.546 1.00 22.36
ATOM 2852 CA GLU A 376 0 7.403 52.214 41.718 1.00 23.62
ATOM 2853 C GLU A 376 0 8.411 51.289 42.387 1.00 22.40
ATOM 2854 O GLU A 376 0 8.062 50.578 43.324 1.00 21.88
ATOM 2855 CB GLU A 376 0 7.211 53.465 42.614 1.00 25.13
15 ATOM 2856 CG GLU A 376 0 8.500 54.255 42.720 1.00 27.91
ATOM 2857 CD GLU A 376 0 8.376 55.725 43.046 1.00 29.20
ATOM 2858 OE1 GLU A 376 0 7.247 56.268 43.109 1.00 30.01
ATOM 2859 OE2 GLU A 376 0 9.458 56.336 43.219 1.00 28.05
ATOM 2860 N LEU A 377 0 9.669 51.353 41.954 1.00 21.23
20 ATOM 2861 CA LEU A 377 0 10.705 50.535 42.626 1.00 19.95
ATOM 2862 C LEU A 377 0 11.838 51.478 42.982 1.00 20.30
ATOM 2863 O LEU A 377 0 12.220 52.350 42.197 1.00 20.12
ATOM 2864 CB LEU A 377 0 11.129 49.419 41.692 1.00 20.77
ATOM 2865 CG LEU A 377 0 10.668 47.964 41.818 1.00 20.49
25 ATOM 2866 CD1 LEU A 377 0 9.439 47.739 42.629 1.00 17.77
ATOM 2867 CD2 LEU A 377 0 10.617 47.242 40.483 1.00 19.28
ATOM 2868 N PRO A 378 0 12.407 51.334 44.162 1.00 19.69
ATOM 2869 CA PRO A 378 0 13.523 52.117 44.631 1.00 19.91
ATOM 2870 C PRO A 378 0 14.797 51.650 43.937 1.00 19.81
30 ATOM 2871 O PRO A 378 0 14.795 50.645 43.241 1.00 17.74
ATOM 2872 CB PRO A 378 0 13.611 51.893 46.157 1.00 20.21
ATOM 2873 CG PRO A 378 0 12.957 50.546 46.291 1.00 20.73
ATOM 2874 CD PRO A 378 0 12.050 50.292 45.114 1.00 19.74
ATOM 2875 N ARG A 379 0 15.877 52.410 44.059 1.00 19.68
35 ATOM 2876 CA ARG A 379 0 17.172 52.135 43.449 1.00 18.58
ATOM 2877 C ARG A 379 0 18.027 51.129 44.193 1.00 18.68
ATOM 2878 O ARG A 379 0 18.151 51.126 45.432 1.00 17.60
ATOM 2879 CB ARG A 379 0 17.946 53.487 43.431 1.00 18.33

	ATOM		CG ARG A 379 0 19.406 53.348 43.030 1.00 19.33
	ATOM		CD ARG A 379 0 20.026 54.710 42.729 1.00 19.06
	ATOM		NE ARG A 379 0 21.413 54.561 42.295 1.00 16.65
	ATOM		CZ ARG A 379 0 21.794 54.681 41.031 1.00 15.60
5	ATOM	2884	NH1 ARG A 379 0 20.964 54.904 40.038 1.00 14.29
	ATOM	2885	NH2 ARG A 379 0 23.096 54.505 40.783 1.00 17.29
	ATOM	2886	N ASN A 380 0 18.701 50.263 43.441 1.00 20.11
	ATOM	2887	CA ASN A 380 0 19.658 49.328 44.011 1.00 21.97
	ATOM	2888	C ASN A 380 0 19.129 48.604 45.227 1.00 22.44
10	ATOM	2889	O ASN A 380 0 19.712 48.630 46.317 1.00 22.53
	ATOM	2890	CB ASN A 380 0 20.995 50.045 44.345 1.00 23.30
	ATOM	2891	CG ASN A 380 0 21.860 50.231 43.107 1.00 25.83
	ATOM	2892	OD1 ASN A 380 0 22.636 51.186 42.877 1.00 27.14
	ATOM	2893	ND2 ASN A 380 0 21.767 49.271 42.185 1.00 24.91
15	ATOM	2894	N GLN A 381 0 17.974 47.936 45.097 1.00 21.39
	ATOM	2895	CA GLN A 381 0 17.468 47.162 46.220 1.00 20.88
	ATOM	2896	C GLN A 381 0 17.169 45.760 45.679 1.00 19.96
	ATOM	2897	O GLN A 381 0 17.000 45.635 44.471 1.00 19.90
	ATOM	2898	CB GLN A 381 0 16.219 47.722 46.871 1.00 22.84
20	ATOM	2899	CG GLN A 381 0 16.326 49.172 47.318 1.00 27.28
	ATOM	2900	CD GLN A 381 0 16.065 49.297 48.792 1.00 30.24
	ATOM	2901	OE1 GLN A 381 0 15.067 49.917 49.171 1.00 34.48
	ATOM	2902	NE2 GLN A 381 0 16.929 48.742 49.611 1.00 30.80
	ATOM	2903	N VAL A 382 0 17.046 44.825 46.594 1.00 18.67
25	ATOM	2904	CA VAL A 382 0 16.665 43.472 46.248 1.00 18.98
	ATOM	2905	C VAL A 382 0 15.139 43.327 46.212 1.00 19.75
	ATOM	2906	O VAL A 382 0 14.443 43.550 47.225 1.00 18.76
	ATOM	2907	CB VAL A 382 0 17.252 42.491 47.278 1.00 19.03
	ATOM	2908	CG1 VAL A 382 0 16.811 41.065 46.960 1.00 18.87
30	ATOM	2909	CG2 VAL A 382 0 18.779 42.637 47.344 1.00 17.54
	ATOM	2910	N VAL A 383 0 14.601 42.954 45.046 1.00 17.58
	ATOM	2911	CA VAL A 383 0 13.151 42.715 45.037 1.00 17.76
	ATOM	2912	C VAL A 383 0 12.777 41.254 44.883 1.00 17.50
	ATOM	2913	O VAL A 383 0 13.348 40.472 44.153 1.00 16.42
35	ATOM	2914	CB VAL A 383 0 12.306 43.626 44.145 1.00 17.69
	ATOM	2915	CG1 VAL A 383 0 13.111 44.759 43.585 1.00 15.33
	ATOM	2916	CG2 VAL A 383 0 11.400 43.009 43.126 1.00 17.79
	ATOM	2917	N GLU A 384 0 11.743 40.861 45.638 1.00 18.47

ATOM 2	918 CA GLU A 384 0 11.173 39.529 45.542 1.00 18.27
ATOM 2	919 C GLU A 384 0 9.711 39.683 45.096 1.00 18.94
ATOM 2	920 O GLU A 384 0 8.956 40.311 45.816 1.00 19.06
ATOM 2	921 CB GLU A 384 0 11.253 38.764 46.852 1.00 17.12
5 ATOM 2	922 CG GLU A 384 0 10.717 37.345 46.738 1.00 17.52
ATOM 2	923 CD GLU A 384 0 10.979 36.551 47.998 1.00 19.10
ATOM 2	924 OE1 GLU A 384 0 12.101 36.050 48.218 1.00 20.69
ATOM 2	925 OE2 GLU A 384 0 10.018 36.405 48.773 1.00 21.22
ATOM 2	926 N LEU A 385 0 9.326 39.182 43.948 1.00 19.78
10 ATOM 2	2927 CA LEU A 385 0 7.966 39.153 43.463 1.00 21.07
ATOM 2	2928 C LEU A 385 0 7.391 37.738 43.591 1.00 20.91
ATOM 2	2929 O LEU A 385 0 8.043 36.790 43.113 1.00 21.40
ATOM 2	2930 CB LEU A 385 0 7.881 39.466 41.959 1.00 20.92
ATOM 2	2931 CG LEU A 385 0 8.393 40.795 41.457 1.00 23.75
15 ATOM 2	2932 CD1 LEU A 385 0 8.118 40.984 39.962 1.00 23.01
ATOM 2	2933 CD2 LEU A 385 0 7.827 41.977 42.244 1.00 22.40
ATOM 2	2934 N VAL A 386 0 6.182 37.574 44.099 1.00 20.91
ATOM 2	2935 CA VAL A 386 0 5.510 36.274 44.189 1.00 19.03
ATOM 2	2936 C VAL A 386 0 4.228 36.334 43.356 1.00 21.11
20 ATOM 2	2937 O VAL A 386 0 3.465 37.326 43.516 1.00 20.56
ATOM 2	2938 CB VAL A 386 0 5.159 35.967 45.654 1.00 20.91
ATOM 2	2939 CG1 VAL A 386 0 4.518 34.575 45.739 1.00 20.40
ATOM 2	2940 CG2 VAL A 386 0 6.321 36.044 46.625 1.00 19.89
ATOM 2	2941 N VAL A 387 0 4.011 35.469 42.358 1.00 20.02
25 ATOM	2942 CA VAL A 387 0 2.817 35.515 41.491 1.00 20.83
	2943 C VAL A 387 0 2.119 34.152 41.385 1.00 21.15
ATOM :	2944 O VAL A 387 0 2.369 33.285 40.528 1.00 19.97
	2945 CB VAL A 387 0 3.163 36.076 40.104 1.00 20.91
	2946 CG1 VAL A 387 0 1.917 36.472 39.297 1.00 22.49
	2947 CG2 VAL A 387 0 3.959 37.393 40.171 1.00 22.24
	2948 N PRO A 388 0 1.262 33.832 42.358 1.00 20.55
ATOM	2949 CA PRO A 388 0 0.570 32.548 42.483 1.00 20.93
ATOM	2950 C PRO A 388 0 -0.271 32.226 41.264 1.00 20.76
ATOM	2951 O PRO A 388 0 -0.928 33.118 40.715 1.00 19.53
-	2952 CB PRO A 388 0 -0.310 32.559 43.757 1.00 20.54
ATOM	2953 CG PRO A 388 0 0.280 33.766 44.482 1.00 21.86
ATOM	2954 CD PRO A 388 0 0.841 34.707 43.438 1.00 20.83
ATOM	2955 N ALA A 389 0 -0.160 30.986 40.807 1.00 21.68

ATOM 2956 CA ALA A 389 0 -0.983 30.617 39.640 1.00 24.20
ATOM 2957 C ALA A 389 0 -2.394 30.320 40.148 1.00 25.02
ATOM 2958 O ALA A 389 0 -2.619 30.162 41.350 1.00 24.19
ATOM 2959 CB ALA A 389 0 -0.383 29.403 38.968 1.00 23.67
5 ATOM 2960 N GLY A 390 0 -3.309 30.143 39.222 1.00 28.43
ATOM 2961 CA GLY A 390 0 -4.713 29.811 39.539 1.00 28.47
ATOM 2962 C GLY A 390 0 -5.624 30.325 38.431 1.00 28.63
ATOM 2963 O GLY A 390 0 -6.512 29.630 37.937 1.00 31.26
ATOM 2964 N VAL A 391 0 -5.402 31.531 37.961 1.00 27.11
10 ATOM 2965 CA VAL A 391 0 -6.234 32.164 36.962 1.00 26.51
ATOM 2966 C VAL A 391 0 -6.246 31.377 35.666 1.00 29.59
ATOM 2967 O VAL A 391 0 -5.274 30.775 35.181 1.00 30.61
ATOM 2968 CB VAL A 391 0 -5.835 33.634 36.788 1.00 25.83
ATOM 2969 CG1 VAL A 391 0 -4.584 33.787 35.937 1.00 24.18
15 ATOM 2970 CG2 VAL A 391 0 -7.017 34.419 36.219 1.00 24.11
ATOM 2971 N LEU A 392 0 -7.439 31.392 35.058 1.00 30.83
ATOM 2972 CA LEU A 392 0 -7.705 30.604 33.867 1.00 30.29
ATOM 2973 C LEU A 392 0 -6.809 31.004 32.710 1.00 27.38
ATOM 2974 O LEU A 392 0 -6.316 32.113 32.665 1.00 24.62
20 ATOM 2975 CB LEU A 392 0 -9.173 30.726 33.436 1.00 32.58
ATOM 2976 CG LEU A 392 0 -9.711 32.126 33.189 1.00 33.97
ATOM 2977 CD1 LEU A 392 0 -9.411 32.626 31.786 1.00 34.78
ATOM 2978 CD2 LEU A 392 0 -11.225 32.122 33.463 1.00 36.03
ATOM 2979 N GLY A 393 0 -6.725 30.074 31.754 1.00 26.24
25 ATOM 2980 CA GLY A 393 0 -5.936 30.302 30.554 1.00 25.54
ATOM 2981 C GLY A 393 0 -4.458 29.994 30.710 1.00 25.81
ATOM 2982 O GLY A 393 0 -3.686 30.361 29.820 1.00 26.67
ATOM 2983 N GLY A 394 0 -4.033 29.379 31.803 1.00 25.84
ATOM 2984 CA GLY A 394 0 -2.615 29.112 32.035 1.00 25.94
30 ATOM 2985 C GLY A 394 0 -2.140 27.844 31.348 1.00 26.00
ATOM 2986 O GLY A 394 0 -2.884 27.193 30.625 1.00 25.18
ATOM 2987 N PRO A 395 0 -0.860 27.527 31.517 1.00 24.26
ATOM 2988 CA PRO A 395 0 0.051 28.258 32.364 1.00 21.79
ATOM 2989 C PRO A 395 0 0.517 29.518 31.660 1.00 19.29
35 ATOM 2990 O PRO A 395 0 0.704 29.597 30.445 1.00 17.41
ATOM 2991 CB PRO A 395 0 1.159 27.279 32.794 1.00 22.52
ATOM 2992 CG PRO A 395 0 1.062 26.223 31.758 1.00 24.35
ATOM 2993 CD PRO A 395 0 -0.241 26.312 30.973 1.00 24.87

1 TO 1 COOL N. 1 HIS A 200 O. D. 500 20 501 22 451 1 00 16 07
ATOM 2994 N HIS A 396 0 0.586 30.591 32.451 1.00 16.97
ATOM 2995 CA HIS A 396 0 0.970 31.917 31.980 1.00 15.05
ATOM 2996 C HIS A 396 0 2.477 32.137 32.186 1.00 15.41
ATOM 2997 O HIS A 396 0 3.039 32.025 33.275 1.00 14.21
5 ATOM 2998 CB HIS A 396 0 0.288 32.989 32.842 1.00 15.40
ATOM 2999 CG HIS A 396 0 -1.224 32.924 32.737 1.00 18.23
ATOM 3000 ND1 HIS A 396 0 -1.942 33.504 31.702 1.00 16.23
ATOM 3001 CD2 HIS A 396 0 -2.109 32.319 33.557 1.00 17.00
ATOM 3002 CE1 HIS A 396 0 -3.218 33.262 31.906 1.00 18.22
10 ATOM 3003 NE2 HIS A 396 0 -3.343 32.526 33.014 1.00 19.08
ATOM 3004 N PRO A 397 0 3.143 32.403 31.090 1.00 14.69
ATOM 3005 CA PRO A 397 0 4.593 32.617 31.080 1.00 16.91
ATOM 3006 C PRO A 397 0 4.818 34.129 31.202 1.00 17.59
ATOM 3007 O PRO A 397 0 4.524 34.843 30.235 1.00 17.59
15 ATOM 3008 CB PRO A 397 0 5.076 32.040 29.757 1.00 16.63
ATOM 3009 CG PRO A 397 0 3.785 31.844 28.978 1.00 17.83
ATOM 3010 CD PRO A 397 0 2.620 32.464 29.736 1.00 14.36
ATOM 3011 N PHE A 398 0 5.242 34.590 32.377 1.00 16.39
ATOM 3012 CA PHE A 398 0 5.462 36.019 32.529 1.00 15.95
20 ATOM 3013 C PHE A 398 0 6.906 36.365 32.168 1.00 15.74
ATOM 3014 O PHE A 398 0 7.846 35.619 32.444 1.00 15.78
ATOM 3015 CB PHE A 398 0 5.173 36.455 33.963 1.00 17.20
ATOM 3016 CG PHE A 398 0 3.817 37.073 34.169 1.00 19.23
ATOM 3017 CD1 PHE A 398 0 2.673 36.299 34.005 1.00 19.58
25 ATOM 3018 CD2 PHE A 398 0 3.688 38.403 34.537 1.00 19.42
ATOM 3019 CE1 PHE A 398 0 1.409 36.832 34.198 1.00 19.83
ATOM 3020 CE2 PHE A 398 0 2.405 38.933 34.709 1.00 21.46
ATOM 3021 CZ PHE A 398 0 1.260 38.162 34.539 1.00 19.65
ATOM 3022 N HIS A 399 0 7.080 37.562 31.640 1.00 14.77
30 ATOM 3023 CA HIS A 399 0 8.374 38.089 31.333 1.00 14.75
ATOM 3024 C HIS A 399 0 8.580 39.496 31.872 1.00 17.67
ATOM 3025 O HIS A 399 0 7.635 40.308 31.925 1.00 18.29
ATOM 3026 CB HIS A 399 0 8.582 37.968 29.861 1.00 14.01
ATOM 3027 CG HIS A 399 0 8.747 39.105 28.962 1.00 16.26
35 ATOM 3028 ND1 HIS A 399 0 9.957 39.511 28.446 1.00 15.35
ATOM 3029 CD2 HIS A 399 0 7.788 39.903 28.386 1.00 17.58
ATOM 3030 CE1 HIS A 399 0 9.764 40.507 27.593 1.00 15.61
ATOM 3031 NE2 HIS A 399 0 8.457 40.770 27.548 1.00 17.52

ATOM 3032 N LEU A 400 0 9.837 39.771 32.201 1.00 15.57
777077
ATOM 5055 CI. 220 II II I I I I I I I I I I I I I I I
200 200 200 200 200 200 200 200 200 200
ATOM 3035 O LEU A 400 0 12.268 41.175 31.510 1.00 15.77
5 ATOM 3036 CB LEU A 400 0 10.913 40.825 34.084 1.00 18.17
ATOM 3037 CG LEU A 400 0 10.877 41.741 35.288 1.00 21.27
ATOM 3038 CD1 LEU A 400 0 12.130 41.638 36.151 1.00 19.27
ATOM 3039 CD2 LEU A 400 0 10.536 43.166 34.926 1.00 19.86
ATOM 3040 N HIS A 401 0 10.945 42.916 31.321 1.00 14.34
10 ATOM 3041 CA HIS A 401 0 11.830 43.707 30.508 1.00 16.06
ATOM 3042 C HIS A 401 0 12.924 44.300 31.428 1.00 16.15
ATOM 3043 O HIS A 401 0 12.644 44.543 32.600 1.00 13.61
ATOM 3044 CB HIS A 401 0 11.105 44.884 29.843 1.00 13.27
ATOM 3045 CG HIS A 401 0 10.184 44.441 28.751 1.00 14.50
15 ATOM 3046 ND1 HIS A 401 0 10.201 44.973 27.479 1.00 14.96
ATOM 3047 CD2 HIS A 401 0 9.202 43.492 28.750 1.00 12.35
ATOM 3048 CE1 HIS A 401 0 9.263 44.387 26.725 1.00 12.61
ATOM 3049 NE2 HIS A 401 0 8.677 43.507 27.492 1.00 12.41
ATOM 3050 N GLY A 402 0 14.103 44.549 30.855 1.00 15.59
20 ATOM 3051 CA GLY A 402 0 15.152 45.209 31.598 1.00 15.18
ATOM 3052 C GLY A 402 0 16.009 44.351 32.510 1.00 15.96
ATOM 3053 O GLY A 402 0 16.927 44.898 33.170 1.00 16.30
ATOM 3054 N HIS A 403 0 15.618 43.147 32.893 1.00 12.96
ATOM 3055 CA HIS A 403 0 16.282 42.337 33.873 1.00 15.00
25 ATOM 3056 C HIS A 403 0 16.226 40.839 33.586 1.00 15.22
ATOM 3057 O HIS A 403 0 15.253 40.381 32.971 1.00 16.16
ATOM 3058 CB HIS A 403 0 15.525 42.478 35.227 1.00 14.13
ATOM 3059 CG HIS A 403 0 15.571 43.829 35.827 1.00 16.69
ATOM 3060 ND1 HIS A 403 0 16.604 44.253 36.649 1.00 16.13
30 ATOM 3061 CD2 HIS A 403 0 14.744 44.911 35.659 1.00 15.50
ATOM 3062 CE1 HIS A 403 0 16.425 45.520 37.002 1.00 15.02
ATOM 3063 NE2 HIS A 403 0 15.285 45.905 36.430 1.00 16.15
ATOM 3064 N ALA A 404 0 17.138 40.054 34.113 1.00 13.71
ATOM 3065 CA ALA A 404 0 17.039 38.607 34.158 1.00 12.60
35 ATOM 3066 C ALA A 404 0 16.771 38.370 35.649 1.00 12.31
ATOM 3067 O ALA A 404 0 17.156 39.291 36.373 1.00 13.94
ATOM 3068 CB ALA A 404 0 18.249 37.819 33.721 1.00 13.84
ATOM 3069 N PHE A 405 0 16.085 37.356 36.126 1.00 12.21

ATOM	
ATOM	3071 C PHE A 405 0 16.177 35.821 38.008 1.00 12.55
ATOM	3072 O PHE A 405 0 16.196 34.883 37.201 1.00 12.23
ATOM	3073 CB PHE A 405 0 14.325 37.487 37.907 1.00 11.82
5 ATOM	3074 CG PHE A 405 0 13.382 36.893 36.879 1.00 11.75
ATOM	3075 CD1 PHE A 405 0 13.030 35.557 36.933 1.00 10.76
ATOM	3076 CD2 PHE A 405 0 12.917 37.663 35.824 1.00 11.55
ATOM	3077 CE1 PHE A 405 0 12.189 35.002 35.978 1.00 11.52
ATOM	3078 CE2 PHE A 405 0 12.087 37.112 34.862 1.00 13.32
10 ATOM	3079 CZ PHE A 405 0 11.692 35.767 34.946 1.00 11.45
ATOM	3080 N SER A 406 0 16.414 35.625 39.288 1.00 12.86
ATOM	3081 CA SER A 406 0 16.660 34.286 39.796 1.00 13.43
ATOM	3082 C SER A 406 0 15.276 33.712 40.130 1.00 13.49
ATOM	3083 O SER A 406 0 14.518 34.375 40.847 1.00 10.13
15 ATOM	3084 CB SER A 406 0 17.433 34.290 41.123 1.00 13.78
ATOM	3085 OG SER A 406 0 18.708 34.834 40.938 1.00 16.72
ATOM	3086 N VAL A 407 0 15.100 32.453 39.741 1.00 14.53
ATOM	3087 CA VAL A 407 0 13.853 31.777 40.093 1.00 13.90
ATOM	3088 C VAL A 407 0 14.160 30.943 41.325 1.00 14.53
20 ATOM	3089 O VAL A 407 0 14.513 29.753 41.262 1.00 14.62
ATOM	3090 CB VAL A 407 0 13.333 30.903 38.941 1.00 16.43
ATOM	3091 CG1 VAL A 407 0 11.969 30.317 39.341 1.00 16.69
ATOM	3092 CG2 VAL A 407 0 13.272 31.682 37.626 1.00 14.90
ATOM	3093 N VAL A 408 0 13.971 31.544 42.485 1.00 14.32
25 ATOM	3094 CA VAL A 408 0 14.173 30.947 43.780 1.00 15.47
ATOM	3095 C VAL A 408 0 13.115 29.870 44.049 1.00 16.51
ATOM	3096 O VAL A 408 0 13.387 28.927 44.812 1.00 17.39
ATOM	3097 CB VAL A 408 0 14.280 31.967 44.932 1.00 15.75
ATOM	I 3098 CG1 VAL A 408 0 15.345 33.015 44.600 1.00 14.81
30 ATOM	I 3099 CG2 VAL A 408 0 12.952 32.693 45.189 1.00 15.99
ATOM	1 3100 N ARG A 409 0 11.972 29.940 43.387 1.00 16.28
ATOM	1 3101 CA ARG A 409 0 10.960 28.900 43.570 1.00 17.67
ATOM	1 3102 C ARG A 409 0 10.217 28.757 42.236 1.00 17.09
ATOM	1 3103 O ARG A 409 0 9.585 29.698 41.763 1.00 15.25
35 ATOM	1 3104 CB ARG A 409 0 9.993 29.143 44.718 1.00 17.87
ATOM	1 3105 CG ARG A 409 0 8.796 28.188 44.663 1.00 21.12
ATOM	1 3106 CD ARG A 409 0 8.008 28.181 45.945 1.00 22.10
ATOM	1 3107 NE ARG A 409 0 6.801 27.370 45.955 1.00 24.80

4.TO) (3108 CZ ARG A 409 0 5.918 27.361 46.961 1.00 25.93
ATOM	3109 NH1 ARG A 409 0 4.859 26.569 46.877 1.00 27.14
ATOM	
ATOM	3110 NH2 ARG A 409 0 6.068 28.117 48.046 1.00 25.44
ATOM	3111 N SER A 410 0 10.366 27.576 41.668 1.00 16.33
5 ATOM	3112 CA SER A 410 0 9.802 27.245 40.373 1.00 18.33
ATOM	3113 C SER A 410 0 8.406 26.612 40.492 1.00 18.60
ATOM	3114 O SER A 410 0 7.941 26.223 41.566 1.00 16.94
ATOM	3115 CB SER A 410 0 10.724 26.199 39.705 1.00 19.51
ATOM	3116 OG SER A 410 0 11.718 26.865 38.933 1.00 20.28
10 ATOM	3117 N ALA A 411 0 7.754 26.551 39.343 1.00 18.19
ATOM	3118 CA ALA A 411 0 6.458 25.899 39.231 1.00 19.76
ATOM	3119 C ALA A 411 0 6.667 24.406 39.474 1.00 22.62
ATOM	3120 O ALA A 411 0 7.636 23.759 39.067 1.00 20.97
ATOM	3121 CB ALA A 411 0 5.873 26.075 37.841 1.00 17.13
15 ATOM	3122 N GLY A 412 0 5.710 23.856 40.229 1.00 26.30
ATOM	3123 CA GLY A 412 0 5.714 22.442 40.558 1.00 27.05
ATOM	3124 C GLY A 412 0 6.692 22.150 41.677 1.00 29.22
ATOM	3125 O GLY A 412 0 6.917 20.959 41.944 1.00 32.10
ATOM	3126 N SER A 413 0 7.293 23.139 42.322 1.00 28.66
20 ATOM	3127 CA SER A 413 0 8.223 22.871 43.400 1.00 28.58
ATOM	3128 C SER A 413 0 7.757 23.600 44.642 1.00 29.64
ATOM	3129 O SER A 413 0 7.279 24.735 44.524 1.00 30.66
ATOM	3130 CB SER A 413 0 9.610 23.407 43.015 1.00 30.12
ATOM	3131 OG SER A 413 0 10.484 23.233 44.127 1.00 31.74
25 ATOM	3132 N SER A 414 0 7.902 23.031 45.819 1.00 29.19
ATOM	3133 CA SER A 414 0 7.523 23.753 47.033 1.00 30.71
ATOM	3134 C SER A 414 0 8.762 24.124 47.834 1.00 30.51
ATOM	3135 O SER A 414 0 8.746 24.453 49.017 1.00 31.90
ATOM	3136 CB SER A 414 0 6.612 22.832 47.853 1.00 31.10
30 ATOM	3137 OG SER A 414 0 7.438 21.764 48.299 1.00 34.24
ATOM	3138 N THR A 415 0 9.919 24.063 47.194 1.00 30.60
ATOM	3139 CA THR A 415 0 11.194 24.336 47.860 1.00 30.60
ATOM	3140 C THR A 415 0 11.819 25.614 47.291 1.00 27.71
ATOM	3141 O THR A 415 0 11.582 25.998 46.137 1.00 27.49
35 ATOM	3142 CB THR A 415 0 12.089 23.095 47.747 1.00 32.16
ATOM	1 3143 OG1 THR A 415 0 13.411 23.441 47.285 1.00 35.60
ATOM	1 3144 CG2 THR A 415 0 11.599 22.103 46.710 1.00 34.11
ATOM	1 3145 N TYR A 416 0 12.662 26.268 48.053 1.00 24.34

ATOM 3146 CA TYR A 416 0 13.288 27.513 47.621 1.00 25.69
THE THE PARTY OF THE PROPERTY
ATOM 3148 O TYR A 416 0 15.364 26.603 48.211 1.00 25.96
ATOM 3149 CB TYR A 416 0 13.129 28.633 48.659 1.00 23.79
5 ATOM 3150 CG TYR A 416 0 11.690 29.091 48.794 1.00 24.53
ATOM 3151 CD1 TYR A 416 0 10.789 28.387 49.596 1.00 24.14
ATOM 3152 CD2 TYR A 416 0 11.230 30.219 48.131 1.00 23.99
ATOM 3153 CE1 TYR A 416 0 9.474 28.799 49.713 1.00 23.70
ATOM 3154 CE2 TYR A 416 0 9.922 30.641 48.248 1.00 23.96
10 ATOM 3155 CZ TYR A 416 0 9.050 29.929 49.054 1.00 23.73
ATOM 3156 OH TYR A 416 0 7.744 30.337 49.152 1.00 23.53
ATOM 3157 N ASN A 417 0 15.360 27.867 46.353 1.00 22.34
ATOM 3158 CA ASN A 417 0 16.810 27.702 46.223 1.00 20.83
ATOM 3159 C ASN A 417 0 17.425 29.089 46.092 1.00 20.43
15 ATOM 3160 O ASN A 417 0 17.247 29.761 45.082 1.00 20.00
ATOM 3161 CB ASN A 417 0 17.179 26.763 45.086 1.00 19.72
ATOM 3162 CG ASN A 417 0 18.660 26.716 44.758 1.00 19.50
ATOM 3163 OD1 ASN A 417 0 19.485 27.313 45.465 1.00 20.18
ATOM 3164 ND2 ASN A 417 0 18.981 26.043 43.660 1.00 17.21
20 ATOM 3165 N PHE A 418 0 18.153 29.508 47.119 1.00 20.79
ATOM 3166 CA PHE A 418 0 18.831 30.797 47.049 1.00 20.77
ATOM 3167 C PHE A 418 0 20.314 30.613 46.725 1.00 20.47
ATOM 3168 O PHE A 418 0 20.973 31.618 46.517 1.00 19.47
ATOM 3169 CB PHE A 418 0 18.764 31.542 48.384 1.00 20.52
25 ATOM 3170 CG PHE A 418 0 17.332 31.821 48.753 1.00 22.19
ATOM 3171 CD1 PHE A 418 0 16.644 30.947 49.578 1.00 21.36
ATOM 3172 CD2 PHE A 418 0 16.697 32.951 48.244 1.00 21.95
ATOM 3173 CE1 PHE A 418 0 15.320 31.208 49.919 1.00 21.64
ATOM 3174 CE2 PHE A 418 0 15.386 33.198 48.599 1.00 22.81
30 ATOM 3175 CZ PHE A 418 0 14.694 32.325 49.419 1.00 22.57
ATOM 3176 N VAL A 419 0 20.816 29.380 46.732 1.00 19.72
ATOM 3177 CA VAL A 419 0 22.272 29.235 46.564 1.00 19.96
ATOM 3178 C VAL A 419 0 22.682 29.261 45.114 1.00 20.65
ATOM 3179 O VAL A 419 0 23.634 29.875 44.671 1.00 21.02
35 ATOM 3180 CB VAL A 419 0 22.708 27.888 47.200 1.00 21.81
ATOM 3181 CG1 VAL A 419 0 23.954 27.291 46.588 1.00 21.97
ATOM 3182 CG2 VAL A 419 0 22.885 28.098 48.713 1.00 21.55
ATOM 3183 N ASN A 420 0 21.867 28.585 44.327 1.00 19.77

ATOM 3184 CA ASN A 420 0 22.076 28.232 42.967 1.00 21.81 ATOM 3185 C ASN A 420 0 21.028 28.263 41.891 1.00 20.21 ATOM 3186 O ASN A 420 0 21.046 27.407 41.004 1.00 20.13 ATOM 3187 CB ASN A 420 0 22.166 26.587 43.207 1.00 21.91 5 ATOM 3188 CG ASN A 420 0 23.441 26.231 42.529 1.00 24.12 ATOM 3189 OD1 ASN A 420 0 23.933 25.113 42.403 1.00 26.75 ATOM 3190 ND2 ASN A 420 0 24.051 27.318 42.027 1.00 25.42 ATOM 3191 N PRO A 421 0 19.987 29.034 42.038 1.00 20.27 ATOM 3192 CA PRO A 421 0 18.808 28.951 41.183 1.00 17.57 10 ATOM 3193 C PRO A 421 0 19.100 29.369 39.778 1.00 15.76 ATOM 3194 O PRO A 421 0 19.907 30.281 39.586 1.00 15.13 ATOM 3195 CB PRO A 421 0 17.769 29.850 41.894 1.00 19.52 ATOM 3196 CG PRO A 421 0 18.674 30.863 42.589 1.00 19.88 ATOM 3197 CD PRO A 421 0 19.847 30.057 43.095 1.00 20.45 15 ATOM 3198 N VAL A 422 0 18.385 28.803 38.820 1.00 15.28 ATOM 3199 CA VAL A 422 0 18.502 29.239 37.420 1.00 13.48 ATOM 3200 C VAL A 422 0 18.157 30.721 37.397 1.00 14.53 ATOM 3201 O VAL A 422 0 17.340 31.208 38.183 1.00 14.44 ATOM 3202 CB VAL A 422 0 17.498 28.435 36.585 1.00 15.23 20 ATOM 3203 CG1 VAL A 422 0 16.032 28.747 36.937 1.00 13.85 ATOM 3204 CG2 VAL A 422 0 17.681 28.514 35.089 1.00 13.26 ATOM 3205 N LYS A 423 0 18.691 31.447 36.451 1.00 15.35 ATOM 3206 CA LYS A 423 0 18.366 32.831 36.189 1.00 17.23 ATOM 3207 C LYS A 423 0 17.759 32.891 34.784 1.00 16.55 25 ATOM 3208 O LYS A 423 O 18.284 32.189 33.909 1.00 16.92 ATOM 3209 CB LYS A 423 0 19.627 33.681 36.174 1.00 19.33 ATOM 3210 CG LYS A 423 0 20.118 33.985 37.565 1.00 24.09 ATOM 3211 CD LYS A 423 0 21.065 35.206 37.466 1.00 27.32 ATOM 3212 CE LYS A 423 0 22.470 34.596 37.263 1.00 28.78 30 ATOM 3213 NZ LYS A 423 0 23.128 34.482 38.595 1.00 29.50 ATOM 3214 N ARG A 424 0 16.630 33.570 34.617 1.00 15.85 ATOM 3215 CA ARG A 424 0 16.016 33.592 33.294 1.00 16.20 ATOM 3216 C ARG A 424 0 15.235 34.890 33.105 1.00 14.86 ATOM 3217 O ARG A 424 0 15.354 35.771 33.959 1.00 14.64 35 ATOM 3218 CB ARG A 424 0 15.158 32.367 32.994 1.00 16.11 ATOM 3219 CG ARG A 424 0 14.036 31.864 33.849 1.00 14.06 ATOM 3220 CD ARG A 424 0 13.447 30.506 33.427 1.00 11.65 ATOM 3221 NE ARG A 424 0 13.422 30.395 31.961 1.00 9.03

ATOM 3222 CZ ARG A 424 0 13.312 29.234 31.319 1.00 10.63 ATOM 3223 NH1 ARG A 424 0 13.185 28.133 32.082 1.00 11.02 ATOM 3224 NH2 ARG A 424 0 13.403 29.213 29.988 1.00 8.52 ATOM 3225 N ASP A 425 0 14.519 34.975 31.995 1.00 13.83 5 ATOM 3226 CA ASP A 425 0 13.751 36.209 31.752 1.00 15.00 ATOM 3227 C ASP A 425 0 12.298 35.929 31.359 1.00 15.65 ATOM 3228 O ASP A 425 0 11.474 36.850 31.271 1.00 15.11 ATOM 3229 CB ASP A 425 0 14.499 37.130 30.797 1.00 12.96 ATOM 3230 CG ASP A 425 0 14.609 36.652 29.371 1.00 14.32 10 ATOM 3231 OD1 ASP A 425 0 13.697 35.957 28.818 1.00 13.30 ATOM 3232 OD2 ASP A 425 0 15.632 37.003 28.729 1.00 13.76 ATOM 3233 N VAL A 426 0 11.883 34.675 31.206 1.00 15.21 ATOM 3234 CA VAL A 426 0 10.530 34.229 30.984 1.00 13.92 ATOM 3235 C VAL A 426 0 10.247 33.000 31.865 1.00 13.98 15 ATOM 3236 O VAL A 426 0 10.891 31.965 31.696 1.00 15.56 ATOM 3237 CB VAL A 426 0 10.128 33.807 29.567 1.00 12.49 ATOM 3238 CG1 VAL A 426 0 8.629 33.473 29.531 1.00 13.99 ATOM 3239 CG2 VAL A 426 0 10.390 34.874 28.536 1.00 12.37 ATOM 3240 N VAL A 427 0 9.274 33.090 32.766 1.00 12.82 20 ATOM 3241 CA VAL A 427 0 8.979 31.969 33.639 1.00 12.27 ATOM 3242 C VAL A 427 0 7.495 31.589 33.651 1.00 14.14 ATOM 3243 O VAL A 427 O 6.594 32.426 33.682 1.00 14.10 ATOM 3244 CB VAL A 427 0 9.458 32.315 35.056 1.00 11.46 ATOM 3245 CG1 VAL A 427 0 8.732 33.549 35.594 1.00 9.39 25 ATOM 3246 CG2 VAL A 427 0 9.353 31.116 35.982 1.00 10.53 ATOM 3247 N SER A 428 0 7.229 30.282 33.622 1.00 13.74 ATOM 3248 CA SER A 428 0 5.889 29.766 33.721 1.00 15.16 ATOM 3249 C SER A 428 0 5.445 29.878 35.171 1.00 15.48 ATOM 3250 O SER A 428 0 6.186 29.505 36.087 1.00 15.38 30 ATOM 3251 CB SER A 428 0 5.776 28.323 33.206 1.00 16.37 ATOM 3252 OG SER A 428 0 4.464 27.821 33.484 1.00 17.00 ATOM 3253 N LEU A 429 0 4.246 30.376 35.399 1.00 15.74 ATOM 3254 CA LEU A 429 0 3.686 30.489 36.744 1.00 15.73 ATOM 3255 C LEU A 429 0 3.035 29.184 37.198 1.00 16.41 35 ATOM 3256 O LEU A 429 0 2.741 29.041 38.390 1.00 15.74 ATOM 3257 CB LEU A 429 0 2.669 31.627 36.886 1.00 14.99 ATOM 3258 CG LEU A 429 0 3.155 33.027 36.540 1.00 16.60 ATOM 3259 CD1 LEU A 429 0 2.043 34.042 36.862 1.00 17.78

ATOM 32	60 CD2 LEU A 429 0 4.438 33.386 37.281 1.00 16.26
	61 N GLY A 430 0 2.913 28.218 36.295 1.00 17.70
·	62 CA GLY A 430 0 2.419 26.904 36.701 1.00 19.84
	163 C GLY A 430 0 0.894 26.836 36.778 1.00 20.72
	164 O GLY A 430 0 0.178 27.498 36.029 1.00 20.89
•	1.65 N VAL A 431 0 0.428 26.056 37.729 1.00 22.04
	266 CA VAL A 431 0 -0.956 25.713 37.966 1.00 22.61
	267 C VALA 431 0 -1.337 26.028 39.409 1.00 23.06
	268 O VAL A 431 0 -0.476 26.392 40.218 1.00 22.42 269 CB VAL A 431 0 -1.245 24.193 37.768 1.00 23.03
	270 CG1 VAL A 431 0 -0.795 23.672 36.416 1.00 22.74
	271 CG2 VAL A 431 0 -0.574 23.315 38.820 1.00 22.77
	272 N THR A 432 0 -2.615 25.835 39.704 1.00 23.88
	273 CA THR A 432 0 -3.168 26.067 41.041 1.00 24.18
	274 C THR A 432 0 -2.324 25.401 42.092 1.00 23.94
	275 O THR A 432 0 -1.915 24.249 41.909 1.00 24.69
	276 CB THR A 432 0 -4.625 25.565 41.069 1.00 25.75
	277 OG1 THR A 432 0 -5.336 26.344 40.087 1.00 25.87
	278 CG2 THR A 432 0 -5.319 25.800 42.398 1.00 26.65
	279 N GLY A 433 0 -1.924 26.136 43.124 1.00 24.45
	280 CA GLY A 433 0 -1.035 25.589 44.159 1.00 22.27
	281 C GLY A 433 0 0.394 26.120 43.983 1.00 23.26
ATOM 32	282 O GLY A 433 0 1.103 26.212 45.000 1.00 23.30
-	283 N ASP A 434 0 0.833 26.481 42.776 1.00 21.12
25 ATOM 3	284 CA ASP A 434 0 2.192 26.986 42.586 1.00 20.62
ATOM 3	285 C ASP A 434 0 2.360 28.408 43.126 1.00 22.36
	286 O ASP A 434 0 1.425 29.225 43.076 1.00 21.24
ATOM 3	287 CB ASP A 434 0 2.548 27.024 41.087 1.00 18.78
	288 CG ASP A 434 0 2.827 25.616 40.597 1.00 19.71
30 ATOM 3	289 OD1 ASP A 434 0 3.304 24.828 41.409 1.00 20.43
ATOM 3	290 OD2 ASP A 434 0 2.596 25.242 39.432 1.00 21.58
ATOM 3	291 N GLU A 435 0 3.585 28.721 43.562 1.00 22.08
ATOM 3	292 CA GLU A 435 0 3.853 30.077 44.068 1.00 23.24
ATOM 3	293 C GLU A 435 0 5.244 30.512 43.612 1.00 20.24
35 ATOM 3	294 O GLUA 435 0 6.201 30.611 44.372 1.00 19.50
ATOM 3	3295 CB GLU A 435 0 3.659 30.068 45.572 1.00 25.56
ATOM 3	3296 CG GLU A 435 0 3.739 31.409 46.258 1.00 30.52
ATOM 3	3297 CD GLU A 435 0 3.107 31.350 47.657 1.00 35.00

ATOM	3298 OE1 GLU A 435 0 2.093 30.603 47.760 1.00 35.71
ATOM	3299 OE2 GLU A 435 0 3.658 32.020 48.579 1.00 35.91
ATOM	3300 N VAL A 436 0 5.344 30.690 42.297 1.00 17.80
ATOM	3301 CA VAL A 436 0 6.564 31.083 41.640 1.00 15.30
5 ATOM	3302 C VAL A 436 0 7.049 32.416 42.221 1.00 17.15
ATOM	3303 O VAL A 436 0 6.326 33.402 42.275 1.00 17.48
ATOM	3304 CB VAL A 436 0 6.360 31.219 40.129 1.00 14.63
ATOM	3305 CG1 VAL A 436 0 7.463 32.009 39.454 1.00 10.79
ATOM	3306 CG2 VAL A 436 0 6.238 29.806 39.536 1.00 14.13
10 ATOM	3307 N THR A 437 0 8.290 32.391 42.691 1.00 16.51
ATOM	3308 CA THR A 437 0 8.940 33.505 43.364 1.00 16.19
ATOM	3309 C THR A 437 0 10.254 33.817 42.668 1.00 15.24
ATOM	3310 O THR A 437 0 11.100 32.940 42.419 1.00 15.47
ATOM	3311 CB THR A 437 0 9.190 33.067 44.827 1.00 14.95
15 ATOM	3312 OG1 THR A 437 0 7.969 32.499 45.308 1.00 13.50
ATOM	3313 CG2 THR A 437 0 9.599 34.232 45.697 1.00 13.41
ATOM	3314 N ILE A 438 0 10.413 35.059 42.251 1.00 13.38
ATOM	3315 CA ILE A 438 0 11.597 35.471 41.510 1.00 15.78
ATOM	3316 C ILE A 438 0 12.292 36.590 42.264 1.00 15.86
20 ATOM	3317 O ILE A 438 0 11.617 37.270 43.048 1.00 17.32
ATOM	3318 CB ILE A 438 0 11.249 35.848 40.053 1.00 15.40
ATOM	3319 CG1 ILE A 438 0 10.340 37.055 39.985 1.00 15.85
ATOM	3320 CG2 ILE A 438 0 10.602 34.653 39.346 1.00 17.11
ATOM	3321 CD1 ILE A 438 0 9.971 37.607 38.632 1.00 17.49
25 ATOM	3322 N ARG A 439 0 13.599 36.789 42.055 1.00 16.02
ATOM	3323 CA ARG A 439 0 14.315 37.896 42.671 1.00 13.90
ATOM	3324 C ARG A 439 0 15.181 38.645 41.676 1.00 13.52
ATOM	3325 O ARG A 439 0 15.748 38.056 40.762 1.00 14.74
ATOM	3326 CB ARG A 439 0 15.193 37.501 43.850 1.00 15.15
30 ATOM	3327 CG ARG A 439 0 14.457 37.235 45.147 1.00 14.83
ATOM	3328 CD ARG A 439 0 15.367 37.337 46.355 1.00 14.08
ATOM	3329 NE ARG A 439 0 14.613 37.000 47.566 1.00 17.06
ATOM	3330 CZ ARG A 439 0 15.192 36.922 48.767 1.00 18.01
ATOM	3331 NH1 ARG A 439 0 16.487 37.176 48.908 1.00 17.76
35 ATOM	3332 NH2 ARG A 439 0 14.459 36.604 49.818 1.00 18.55
ATOM	3333 N PHE A 440 0 15.314 39.957 41.853 1.00 14.44
ATOM	3334 CA PHE A 440 0 16.204 40.737 40.993 1.00 15.97
ATOM	3335 C PHE A 440 0 16.645 41.986 41.761 1.00 15.86

ATOM 3336 O PHE A 440 0 16.113 42.313 42.801 1.00 15.79
ATOM 3337 CB PHE A 440 0 15.638 41.081 39.620 1.00 15.17
ATOM 3338 CG PHE A 440 0 14.416 41.948 39.647 1.00 16.95
ATOM 3339 CD1 PHE A 440 0 14.525 43.333 39.528 1.00 17.23
5 ATOM 3340 CD2 PHE A 440 0 13.158 41.377 39.798 1.00 16.35
ATOM 3341 CE1 PHE A 440 0 13.397 44.152 39.566 1.00 17.07
ATOM 3342 CE2 PHE A 440 0 12.026 42.180 39.841 1.00 17.12
ATOM 3343 CZ PHE A 440 0 12.144 43.575 39.719 1.00 18.30
ATOM 3344 N VAL A 441 0 17.676 42.648 41.268 1.00 16.10
10 ATOM 3345 CA VAL A 441 0 18.172 43.874 41.879 1.00 16.29
ATOM 3346 C VAL A 441 0 17.776 45.035 40.972 1.00 14.00
ATOM 3347 O VAL A 441 0 17.866 44.924 39.736 1.00 12.72
ATOM 3348 CB VAL A 441 0 19.675 43.769 42.144 1.00 18.13
ATOM 3349 CG1 VAL A 441 0 20.195 45.040 42.794 1.00 18.53
15 ATOM 3350 CG2 VAL A 441 0 19.969 42.583 43.065 1.00 18.55
ATOM 3351 N THR A 442 0 17.328 46.125 41.579 1.00 11.73
ATOM 3352 CA THR A 442 0 16.905 47.291 40.800 1.00 13.02
ATOM 3353 C THR A 442 0 18.055 48.208 40.432 1.00 14.83
ATOM 3354 O THR A 442 0 18.218 49.323 40.947 1.00 15.17
20 ATOM 3355 CB THR A 442 0 15.840 48.127 41.558 1.00 14.62
ATOM 3356 OG1 THR A 442 0 16.314 48.463 42.864 1.00 14.34
ATOM 3357 CG2 THR A 442 0 14.552 47.299 41.727 1.00 13.82
ATOM 3358 N ASP A 443 0 18.818 47.764 39.437 1.00 15.48
ATOM 3359 CA ASP A 443 0 20.004 48.449 38.964 1.00 16.57
25 ATOM 3360 C ASP A 443 0 19.807 49.010 37.569 1.00 15.38
ATOM 3361 O ASP A 443 0 20.788 49.208 36.858 1.00 15.57
ATOM 3362 CB ASP A 443 0 21.133 47.391 38.962 1.00 19.75
ATOM 3363 CG ASP A 443 0 20.877 46.264 37.990 1.00 22.78
ATOM 3364 OD1 ASP A 443 0 21.711 45.353 37.789 1.00 25.70
30 ATOM 3365 OD2 ASP A 443 0 19.836 46.161 37.313 1.00 23.88
ATOM 3366 N ASN A 444 0 18.593 49.278 37.144 1.00 13.71
ATOM 3367 CA ASN A 444 0 18.388 49.721 35.752 1.00 15.87
ATOM 3368 C ASN A 444 0 17.245 50.728 35.702 1.00 17.00
ATOM 3369 O ASN A 444 0 16.052 50.419 35.614 1.00 16.83
35 ATOM 3370 CB ASN A 444 0 18.198 48.453 34.930 1.00 15.78
ATOM 3371 CG ASN A 444 0 18.225 48.675 33.442 1.00 18.49
ATOM 3372 OD1 ASN A 444 0 18.505 49.809 33.047 1.00 19.42
ATOM 3373 ND2 ASN A 444 0 17.925 47.689 32.588 1.00 15.91

	ATOM	3374 N PRO A 445 0 17.598 52.003 35.890 1.00 17.59
	ATOM	3375 CA PRO A 445 0 16.683 53.137 35.938 1.00 16.56
	ATOM	3376 C PRO A 445 0 15.788 53.217 34.721 1.00 16.99
	АТОМ	3377 O PRO A 445 0 16.293 53.246 33.594 1.00 17.02
5	ATOM	3378 CB PRO A 445 0 17.552 54.418 35.951 1.00 18.28
	ATOM	3379 CG PRO A 445 0 18.870 53.871 36.474 1.00 18.09
	ATOM	3380 CD PRO A 445 0 19.002 52.409 36.084 1.00 16.05
	ATOM	3381 N GLY A 446 0 14.462 53.194 34.918 1.00 17.16
	ATOM	3382 CA GLY A 446 0 13.560 53.281 33.743 1.00 15.84
10	ATOM	3383 C GLY A 446 0 12.297 52.453 33.984 1.00 14.24
	ATOM	3384 O GLY A 446 0 12.192 51.797 35.005 1.00 12.22
	ATOM	3385 N PRO A 447 0 11.285 52.697 33.181 1.00 15.53
	ATOM	3386 CA PRO A 447 0 9.999 52.048 33.195 1.00 15.24
	ATOM	3387 C PRO A 447 0 10.101 50.737 32.401 1.00 13.82
15	ATOM	3388 O PRO A 447 0 10.514 50.733 31.240 1.00 13.85
	ATOM	3389 CB PRO A 447 0 9.013 52.976 32.473 1.00 16.21
	ATOM	3390 CG PRO A 447 0 9.933 53.729 31.554 1.00 16.19
	ATOM	3391 CD PRO A 447 0 11.347 53.707 32.096 1.00 17.15
	ATOM	3392 N TRP A 448 0 9.787 49.623 33.021 1.00 11.83
· 20	ATOM	3393 CA TRP A 448 0 9.898 48.317 32.371 1.00 14.30
	ATOM	3394 C TRP A 448 0 8.610 47.493 32.427 1.00 13.12
	ATOM	3395 O TRP A 448 O 8.013 47.355 33.502 1.00 11.63
	ATOM	3396 CB TRP A 448 0 10.985 47.483 33.095 1.00 13.17
	ATOM	3397 CG TRP A 448 0 12.321 48.160 33.124 1.00 14.54
25	ATOM	3398 CD1 TRP A 448 0 12.897 48.728 34.239 1.00 14.19
	ATOM	3399 CD2 TRP A 448 0 13.211 48.382 32.029 1.00 14.38
	ATOM	3400 NE1 TRP A 448 0 14.083 49.290 33.873 1.00 15.02
	ATOM	
		3402 CE3 TRP A 448 0 13.193 48.053 30.672 1.00 15.39
30		3403 CZ2 TRP A 448 0 15.388 49.467 31.729 1.00 14.57
		3404 CZ3 TRP A 448 0 14.250 48.446 29.867 1.00 14.92
		3405 CH2 TRP A 448 0 15.355 49.135 30.399 1.00 14.93
		3406 N PHE A 449 0 8.231 46.884 31.315 1.00 14.03
		3407 CA PHE A 449 0 7.023 46.039 31.297 1.00 13.60
3:	5 ATOM	3408 C PHE A 449 0 7.231 44.712 32.016 1.00 15.32
	ATOM	
		3410 CB PHE A 449 0 6.627 45.773 29.845 1.00 16.19
	ATOM	3411 CG PHE A 449 0 5.221 46.033 29.380 1.00 18.26

ATOM	3412 CD1 PHE A 449 0 4.165 46.288 30.226 1.00 17.95
ATOM	3413 CD2 PHE A 449 0 4.962 46.027 28.011 1.00 20.73
ATOM	3414 CE1 PHE A 449 0 2.899 46.565 29.745 1.00 18.55
ATOM	3415 CE2 PHE A 449 0 3.701 46.293 27.503 1.00 20.13
5 ATOM	3416 CZ PHE A 449 0 2.664 46.543 28.387 1.00 18.59
ATOM	3417 N PHE A 450 0 6.195 44.245 32.715 1.00 12.79
ATOM	3418 CA PHE A 450 0 6.119 42.963 33.359 1.00 14.38
ATOM	3419 C PHE A 450 0 4.775 42.323 32.952 1.00 15.45
ATOM	3420 O PHE A 450 0 3.743 42.812 33.423 1.00 15.30
10 ATOM	3421 CB PHE A 450 0 6.186 43.041 34.879 1.00 15.06
ATOM	3422 CG PHE A 450 0 6.210 41.693 35.555 1.00 15.95
ATOM	3423 CD1 PHE A 450 0 7.157 40.734 35.204 1.00 16.36
ATOM	3424 CD2 PHE A 450 0 5.325 41.398 36.570 1.00 15.45
ATOM	3425 CE1 PHE A 450 0 7.222 39.518 35.855 1.00 13.87
15 ATOM	3426 CE2 PHE A 450 0 5.386 40.187 37.224 1.00 16.10
ATOM	3427 CZ PHE A 450 0 6.317 39.236 36.854 1.00 15.90
ATOM	3428 N HIS A 451 0 4.737 41.301 32.122 1.00 15.54
ATOM	3429 CA HIS A 451 0 3.443 40.841 31.610 1.00 16.24
ATOM	3430 C HIS A 451 0 3.461 39.426 31.073 1.00 16.95
20 ATOM	3431 O HIS A 451 0 4.526 38.860 30.812 1.00 17.42
ATOM	3432 CB HIS A 451 0 2.996 41.743 30.435 1.00 14.01
ATOM	3433 CG HIS A 451 0 3.921 41.696 29.281 1.00 16.98
ATOM	3434 ND1 HIS A 451 0 3.791 40.844 28.201 1.00 18.14
ATOM	3435 CD2 HIS A 451 0 5.058 42.435 29.046 1.00 17.88
25 ATOM	3436 CE1 HIS A 451 0 4.759 41.060 27.337 1.00 17.83
ATOM	3437 NE2 HIS A 451 0 5.554 42.011 27.842 1.00 18.98
ATOM	3438 N CYS A 452 0 2.261 38.863 30.951 1.00 16.78
ATOM	3439 CA CYS A 452 0 2.167 37.537 30.388 1.00 16.34
ATOM	3440 C CYS A 452 0 2.604 37.623 28.924 1.00 14.77
30 ATOM	3441 O CYS A 452 0 2.167 38.514 28.188 1.00 13.61
ATOM	I 3442 CB CYS A 452 0 0.727 36.983 30.451 1.00 18.22
ATOM	3443 SG CYS A 452 0 0.701 35.325 29.692 1.00 19.80
ATOM	I 3444 N HIS A 453 0 3.388 36.640 28.474 1.00 13.29
ATOM	1 3445 CA HIS A 453 0 3.867 36.716 27.100 1.00 13.19
35 ATOM	1 3446 C HIS A 453 0 2.983 35.987 26.099 1.00 13.47
ATOM	1 3447 O HIS A 453 O 3.296 35.974 24.906 1.00 11.93
ATOM	1 3448 CB HIS A 453 0 5.314 36.251 27.033 1.00 13.98
ATON	1 3449 CG HIS A 453 0 6.124 36.860 25.945 1.00 11.89

ATOM 3450 ND1 HIS A 453 0 5.835 36.763 24.612 1.00 10.68
71.6 5.55 1.21 1.55 1.
ATOM 3451 CD2 HIS A 453 0 7.270 37.594 26.072 1.00 12.71
ATOM 3452 CE1 HIS A 453 0 6.776 37.418 23.923 1.00 12.37
ATOM 3453 NE2 HIS A 453 0 7.663 37.930 24.793 1.00 13.20
5 ATOM 3454 N ILE A 454 0 1.860 35.429 26.549 1.00 15.35
ATOM 3455 CA ILE A 454 0 0.849 34.937 25.600 1.00 15.85
ATOM 3456 C ILE A 454 0 0.214 36.238 25.089 1.00 18.65
ATOM 3457 O ILE A 454 0 -0.452 36.997 25.824 1.00 17.92
ATOM 3458 CB ILE A 454 0 -0.156 34.001 26.280 1.00 16.46
10 ATOM 3459 CG1 ILE A 454 0 0.456 32.598 26.512 1.00 15.26
ATOM 3460 CG2 ILE A 454 0 -1.402 33.898 25.419 1.00 14.21
ATOM 3461 CD1 ILE A 454 0 -0.249 31.804 27.592 1.00 16.26
ATOM 3462 N GLU A 455 0 0.448 36.607 23.832 1.00 21.02
ATOM 3463 CA GLU A 455 0 -0.024 37.856 23.289 1.00 23.78
15 ATOM 3464 C GLU A 455 0 -1.526 38.042 23.422 1.00 24.40
ATOM 3465 O GLU A 455 0 -1.953 39.161 23.700 1.00 24.30
ATOM 3466 CB GLU A 455 0 0.399 38.090 21.830 1.00 27.20
ATOM 3467 CG GLU A 455 0 0.602 39.599 21.595 1.00 33.86
ATOM 3468 CD GLU A 455 0 1.783 40.205 22.309 1.00 37.49
20 ATOM 3469 OE1 GLU A 455 0 2.311 39.657 23.320 1.00 41.51
ATOM 3470 OE2 GLU A 455 0 2.303 41.284 21.907 1.00 41.22
ATOM 3471 N PHE A 456 0 -2.347 37.005 23.334 1.00 23.97
ATOM 3472 CA PHE A 456 0 -3.775 37.163 23.516 1.00 24.68
ATOM 3473 C PHE A 456 0 -4.084 37.533 24.959 1.00 25.11
25 ATOM 3474 O PHE A 456 0 -5.181 38.092 25.170 1.00 27.37
ATOM 3475 CB PHE A 456 0 -4.552 35.919 23.023 1.00 24.76
ATOM 3476 CG PHE A 456 0 -4.098 35.614 21.606 1.00 24.98
ATOM 3477 CD1 PHE A 456 0 -4.392 36.500 20.590 1.00 24.98
ATOM 3478 CD2 PHE A 456 0 -3.331 34.506 21.320 1.00 24.42
30 ATOM 3479 CE1 PHE A 456 0 -3.988 36.292 19.291 1.00 25.44
ATOM 3480 CE2 PHE A 456 0 -2.913 34.293 20.015 1.00 26.40
ATOM 3481 CZ PHE A 456 0 -3.226 35.171 18.997 1.00 25.10
ATOM 3482 N HIS A 457 0 -3.205 37.294 25.922 1.00 22.35
ATOM 3483 CA HIS A 457 0 -3.508 37.682 27.291 1.00 22.55
35 ATOM 3484 C HIS A 457 0 -3.053 39.121 27.561 1.00 23.81
ATOM 3485 O HIS A 457 0 -3.756 39.832 28.262 1.00 21.33
ATOM 3486 CB HIS A 457 0 -2.912 36.766 28.336 1.00 20.96
ATOM 3487 CG HIS A 457 0 -3.345 35.346 28.201 1.00 22.51
ALON SIGN CO THOSE OF SIGN SOLD OF BUILDING BUILDING

WO 98/27198 PCT/DK97/00571

	ATOM	3488 ND1 HIS A 457 0 -2.745 34.329 28.905 1.00 21.40
	ATOM	3489 CD2 HIS A 457 0 -4.291 34.771 27.404 1.00 22.50
	ATOM	3490 CE1 HIS A 457 0 -3.320 33.184 28.575 1.00 22.51
	ATOM	3491 NE2 HIS A 457 0 -4.237 33.428 27.666 1.00 23.19
5	ATOM	3492 N LEU A 458 0 -1.876 39.481 27.028 1.00 23.74
	ATOM	3493 CA LEU A 458 0 -1.357 40.817 27.125 1.00 24.76
	ATOM	3494 C LEU A 458 0 -2.411 41.828 26.616 1.00 26.52
	ATOM	3495 O LEU A 458 0 -2.757 42.751 27.351 1.00 25.18
	ATOM	3496 CB LEU A 458 0 -0.108 40.986 26.252 1.00 23.81
10	ATOM	3497 CG LEU A 458 0 0.898 42.062 26.624 1.00 24.09
	ATOM	3498 CD1 LEU A 458 0 1.619 42.606 25.390 1.00 24.28
	ATOM	3499 CD2 LEU A 458 0 0.351 43.195 27.462 1.00 23.72
	ATOM	3500 N MET A 459 0 -2.896 41.611 25.388 1.00 28.19
	ATOM	3501 CA MET A 459 0 -3.914 42.458 24.785 1.00 31.98
15	ATOM	3502 C MET A 459 0 -5.207 42.436 25.603 1.00 29.95
	ATOM	3503 O MET A 459 0 -5.886 43.439 25.520 1.00 29.10
	ATOM	3504 CB MET A 459 0 -4.148 42.226 23.284 1.00 35.99
	ATOM	3505 CG MET A 459 0 -5.056 41.103 22.852 1.00 42.66
	ATOM	3506 SD MET A 459 0 -5.296 40.817 21.069 1.00 49.28
20	ATOM	3507 CE MET A 459 0 -6.238 39.291 21.119 1.00 47.39
	ATOM	3508 N ASN A 460 0 -5.523 41.486 26.464 1.00 29.07
	ATOM	3509 CA ASN A 460 0 -6.706 41.539 27.296 1.00 29.41
	ATOM	3510 C ASN A 460 0 -6.407 41.908 28.746 1.00 28.46
	ATOM	3511 O ASN A 460 0 -7.183 41.577 29.645 1.00 26.89
25	ATOM	3512 CB ASN A 460 0 -7.537 40.253 27.210 1.00 31.34
	ATOM	3513 CG ASN A 460 0 -8.325 40.243 25.900 1.00 33.82
	ATOM	3514 OD1 ASN A 460 0 -7.909 39.609 24.926 1.00 34.29
	ATOM	3515 ND2 ASN A 460 0 -9.437 40.971 25.861 1.00 34.55
	ATOM	3516 N GLY A 461 0 -5.320 42.655 28.981 1.00 26.30
30	ATOM	3517 CA GLY A 461 0 -5.020 43.198 30.268 1.00 24.99
	ATOM	3518 C GLY A 461 0 -4.043 42.601 31.235 1.00 24.75
	ATOM	3519 O GLY A 461 0 -3.879 43.228 32.304 1.00 22.69
	ATOM	3520 N LEU A 462 0 -3.375 41.478 30.914 1.00 22.85
	ATOM	3521 CA LEU A 462 0 -2.478 40.872 31.913 1.00 22.10
35	ATOM	3522 C LEU A 462 0 -1.071 41.485 31.890 1.00 21.56
	ATOM	3523 O LEU A 462 0 -0.116 40.876 31.415 1.00 20.28
	ATOM	3524 CB LEU A 462 0 -2.477 39.376 31.669 1.00 20.03
	ATOM	3525 CG LEU A 462 0 -2.010 38.393 32.720 1.00 20.40

ATOM 3526 CD1 LEU A 462 0 -2.603 38.608 34.093 1.00 20.35
ATOM 3527 CD2 LEU A 462 0 -2.385 36.983 32.229 1.00 21.01
ATOM 3528 N ALA A 463 0 -0.908 42.695 32.408 1.00 20.00
ATOM 3529 CA ALA A 463 0 0.350 43.432 32.381 1.00 20.74
711071 3001 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
110 M 500 1 W 7 M 6 M 6 M 60 M 60 M 60 M 60 M 60 M 60
10 ATOM 3535 C ILE A 464 0 3.180 46.579 34.434 1.00 19.41
ATOM 3536 O ILE A 464 0 3.938 46.003 33.660 1.00 18.24
ATOM 3537 CB ILE A 464 0 1.910 45.678 36.347 1.00 19.13
ATOM 3538 CG1 ILE A 464 0 2.867 44.546 36.697 1.00 19.39
ATOM 3539 CG2 ILE A 464 0 0.520 45.455 36.924 1.00 18.48
15 ATOM 3540 CD1 ILE A 464 0 3.205 44.549 38.179 1.00 21.00
ATOM 3541 N VAL A 465 0 3.380 47.791 34.924 1.00 18.95
ATOM 3542 CA VAL A 465 0 4.579 48.570 34.637 1.00 18.36
ATOM 3543 C VAL A 465 0 5.327 48.928 35.931 1.00 18.07
ATOM 3544 O VAL A 465 0 4.787 49.424 36.931 1.00 15.19
20 ATOM 3545 CB VAL A 465 0 4.329 49.913 33.918 1.00 19.73
ATOM 3546 CG1 VAL A 465 0 5.659 50.605 33.602 1.00 18.34
ATOM 3547 CG2 VAL A 465 0 3.522 49.766 32.629 1.00 18.74
ATOM 3548 N PHE A 466 0 6.649 48.655 35.879 1.00 17.55
ATOM 3549 CA PHE A 466 0 7.499 49.051 37.013 1.00 14.72
25 ATOM 3550 C PHE A 466 0 8.251 50.344 36.653 1.00 12.68
ATOM 3551 O PHE A 466 0 9.007 50.420 35.679 1.00 12.23
ATOM 3552 CB PHE A 466 0 8.484 47.978 37.381 1.00 15.19
ATOM 3553 CG PHE A 466 0 7.962 46.770 38.080 1.00 15.90
ATOM 3554 CD1 PHE A 466 0 7.328 46.856 39.299 1.00 16.23
30 ATOM 3555 CD2 PHE A 466 0 8.153 45.533 37.492 1.00 16.23
ATOM 3556 CE1 PHE A 466 0 6.861 45.720 39.936 1.00 15.97
ATOM 3557 CE2 PHE A 466 0 7.665 44.389 38.133 1.00 18.27
ATOM 3558 CZ PHE A 466 0 7.018 44.480 39.352 1.00 16.74
ATOM 3559 N ALA A 467 0 8.045 51.361 37.443 1.00 10.60
35 ATOM 3560 CA ALA A 467 0 8.788 52.648 37.194 1.00 12.27
ATOM 3561 C ALA A 467 0 10.007 52.526 38.111 1.00 12.02
ATOM 3562 O ALA A 467 0 9.905 52.728 39.325 1.00 12.43
ATOM 3563 CB ALA A 467 0 7.845 53.790 37.501 1.00 10.50

	ATOM	3564 N GLU A 468 0 11.126 51.989 37.625 1.00 12.62
	ATOM	3565 CA GLU A 468 0 12.263 51.683 38.515 1.00 14.63
	ATOM	3566 C GLU A 468 0 13.195 52.883 38.685 1.00 13.91
	ATOM	3567 O GLU A 468 0 13.631 53.369 37.651 1.00 13.05
5	ATOM	3568 CB GLU A 468 0 13.049 50.546 37.843 1.00 14.51
	ATOM	3569 CG GLU A 468 0 14.256 50.035 38.629 1.00 16.84
	ATOM	3570 CD GLU A 468 0 14.805 48.779 37.975 1.00 17.96
	ATOM	3571 OE1 GLU A 468 0 15.985 48.479 38.124 1.00 16.98
	ATOM	3572 OE2 GLU A 468 0 14.086 48.043 37.260 1.00 18.42
10	ATOM	3573 N ASP A 469 0 13.546 53.286 39.886 1.00 15.17
	ATOM	3574 CA ASP A 469 0 14.491 54.371 40.116 1.00 16.85
	ATOM	3575 C ASP A 469 0 14.134 55.630 39.333 1.00 16.33
	ATOM	3576 O ASP A 469 0 14.851 56.046 38.437 1.00 16.59
	ATOM	3577 CB ASP A 469 0 15.899 53.920 39.748 1.00 19.86
15	ATOM	3578 CG ASP A 469 0 17.040 54.766 40.289 1.00 21.40
	ATOM	3579 OD1 ASP A 469 0 16.811 55.793 40.943 1.00 22.21
	ATOM	3580 OD2 ASP A 469 0 18.216 54.403 40.069 1.00 22.21
	ATOM	3581 N MET A 470 0 13.007 56.246 39.635 1.00 16.12
	ATOM	3582 CA MET A 470 0 12.522 57.373 38.853 1.00 18.77
20	ATOM	3583 C MET A 470 0 13.451 58.576 38.950 1.00 16.31
	ATOM	3584 O MET A 470 0 13.591 59.208 37.925 1.00 13.55
	ATOM	3585 CB MET A 470 0 11.116 57.847 39.302 1.00 20.06
	ATOM	3586 CG MET A 470 0 10.041 56.941 38.684 1.00 23.99
	ATOM	3587 SD MET A 470 0 8.375 57.337 39.283 1.00 26.08
25	ATOM	3588 CE MET A 470 0 8.030 58.581 38.020 1.00 24.40
	ATOM	3589 N ALA A 471 0 14.046 58.793 40.117 1.00 14.69
	ATOM	3590 CA ALA A 471 0 14.953 59.906 40.287 1.00 16.97
	ATOM	3591 C ALA A 471 0 16.141 59.864 39.335 1.00 18.79
	ATOM	3592 O ALA A 471 0 16.602 60.956 38.945 1.00 21.08
30	ATOM	3593 CB ALA A 471 0 15.471 59.927 41.728 1.00 17.62
	ATOM	3594 N ASN A 472 0 16.623 58.695 38.912 1.00 17.28
	ATOM	3595 CA ASN A 472 0 17.788 58.675 38.015 1.00 16.56
	ATOM	3596 C ASN A 472 0 17.457 58.355 36.572 1.00 16.99
	ATOM	3597 O ASN A 472 0 18.407 58.143 35.795 1.00 18.74
35	ATOM	3598 CB ASN A 472 0 18.811 57.645 38.548 1.00 14.60
	ATOM	3599 CG ASN A 472 0 19.417 58.132 39.887 1.00 14.00
	ATOM	3600 OD1 ASN A 472 0 18.895 57.830 40.967 1.00 12.71
	ATOM	3601 ND2 ASN A 472 0 20.468 58.916 39.775 1.00 10.80

ATOM 3602 N THR A 473 0 16.174 58.284 36.239 1.00 14.26 3603 CA THR A 473 0 15.789 57.885 34.882 1.00 15.82 3604 C THR A 473 0 16.150 58.891 33.812 1.00 16.81 3605 O THR A 473 O 16.599 58.455 32.746 1.00 15.89 3606 CB THR A 473 0 14.267 57.576 34.826 1.00 16.10 5 ATOM ATOM 3607 OG1 THR A 473 0 14.001 56.416 35.609 1.00 15.41 3608 CG2 THR A 473 0 13.750 57.337 33.427 1.00 15.24 3609 N VALA 474 0 16.000 60.195 34.081 1.00 18.57 3610 CA VAL A 474 0 16.355 61.192 33.050 1.00 21.06 3611 C VAL A 474 0 17.859 61.209 32.817 1.00 19.12 3612 O VAL A 474 0 18.339 61.234 31.688 1.00 19.95 ATOM 3613 CB VAL A 474 0 15.860 62.616 33.424 1.00 22.91 ATOM 3614 CG1 VAL A 474 0 16.467 63.702 32.538 1.00 23.06 ATOM 3615 CG2 VAL A 474 0 14.346 62.721 33.334 1.00 23.04 3616 N ASP A 475 0 18.647 61.175 33.886 1.00 19.20 ATOM 3617 CA ASP A 475 0 20.109 61.168 33.741 1.00 18.98 ATOM 3618 C ASP A 475 0 20.578 59.899 33.047 1.00 17.52 ATOM 3619 O ASP A 475 0 21.386 60.028 32.130 1.00 18.31 3620 CB ASP A 475 0 20.780 61.273 35.119 1.00 20.27 3621 CG ASP A 475 0 22.283 61.075 35.107 1.00 20.18 3622 OD1 ASP A 475 0 22.950 61.889 34.431 1.00 21.73 3623 OD2 ASP A 475 0 22.798 60.139 35.750 1.00 18.03 3624 N ALA A 476 0 20.062 58.725 33.392 1.00 18.26 ATOM 3625 CA ALA A 476 0 20.539 57.486 32.793 1.00 18.93 3626 C ALA A 476 0 20.165 57.269 31.343 1.00 20.62 ATOM 3627 O ALA A 476 0 20.845 56.502 30.661 1.00 22.64 ATOM 3628 CB ALA A 476 0 19.966 56.298 33.551 1.00 18.48 ATOM 3629 N ASN A 477 0 19.047 57.787 30.858 1.00 22.66 ATOM 3630 CA ASN A 477 0 18.605 57.512 29.491 1.00 25.22 30 ATOM 3631 C ASN A 477 0 18.578 58.782 28.683 1.00 28.55 ATOM 3632 O ASN A 477 0 17.969 59.755 29.143 1.00 30.20 ATOM 3633 CB ASN A 477 0 17.172 56.948 29.560 1.00 24.22 ATOM 3634 CG ASN A 477 0 17.114 55.666 30.380 1.00 23.73 ATOM 3635 OD1 ASN A 477 0 16.747 55.672 31.570 1.00 21.33 35 ATOM 3636 ND2 ASN A 477 0 17.512 54.575 29.736 1.00 20.87 ATOM 3637 N ASN A 478 0 19.208 58.878 27.514 1.00 31.69 ATOM 3638 CA ASN A 478 0 19.036 60.131 26.776 1.00 33.61 ATOM 3639 C ASN A 478 0 18.758 59.770 25.331 1.00 32.22

ATOM 3640 O ASN A 478 0 19.602 59.478 24.508 1.00 32.16 ATOM 3641 CB ASN A 478 0 20.086 61.194 27.017 1.00 38.57 ATOM 3642 CG ASN A 478 0 21.426 60.602 27.370 1.00 40.94 ATOM 3643 OD1 ASN A 478 0 21.928 59.903 26.484 1.00 44.60 5 ATOM 3644 ND2 ASN A 478 0 21.866 60.861 28.578 1.00 41.32 ATOM 3645 N PRO A 479 0 17.461 59.733 25.075 1.00 32.37 ATOM 3646 CA PRO A 479 0 16.890 59.381 23.790 1.00 31.84 ATOM 3647 C PRO A 479 0 17.268 60.448 22.776 1.00 32.35 ATOM 3648 O PRO A 479 0 17.422 61.609 23.136 1.00 32.66 10 ATOM 3649 CB PRO A 479 0 15.364 59.385 23.931 1.00 31.68 ATOM 3650 CG PRO A 479 0 15.126 59.724 25.373 1.00 31.69 ATOM 3651 CD PRO A 479 0 16.416 60.071 26.064 1.00 32.23 ATOM 3652 N PRO A 480 0 17.399 60.036 21.537 1.00 31.62 ATOM 3653 CA PRO A 480 0 17.670 60.939 20.422 1.00 30.72 15 ATOM 3654 C PRO A 480 0 16.452 61.827 20.225 1.00 30.37 ATOM 3655 O PRO A 480 0 15.362 61.525 20.733 1.00 29.47 ATOM 3656 CB PRO A 480 0 17.935 60.035 19.203 1.00 29.87 ATOM 3657 CG PRO A 480 0 17.111 58.811 19.590 1.00 30.44 ATOM 3658 CD PRO A 480 0 17.161 58.657 21.093 1.00 30.35 20 ATOM 3659 N VAL A 481 0 16.559 62.906 19.458 1.00 31.72 ATOM 3660 CA VALA 481 0 15.398 63.788 19.268 1.00 30.68 ATOM 3661 C VAL A 481 0 14.335 63.090 18.446 1.00 29.51 ATOM 3662 O VAL A 481 0 13.134 63.284 18.648 1.00 27.97 ATOM 3663 CB VAL A 481 0 15.818 65.132 18.648 1.00 33.04 25 ATOM 3664 CG1 VAL A 481 0 16.126 65.010 17.161 1.00 31.91 ATOM 3665 CG2 VAL A 481 0 14.717 66.171 18.907 1.00 33.32 ATOM 3666 N GLU A 482 0 14.746 62.167 17.562 1.00 28.90 ATOM 3667 CA GLU A 482 0 13.755 61.402 16.803 1.00 29.62 ATOM 3668 C GLU A 482 0 12.839 60.565 17.691 1.00 28.33 30 ATOM 3669 O GLU A 482 0 11.704 60.287 17.280 1.00 28.36 ATOM 3670 CB GLU A 482 0 14.449 60.498 15.788 1.00 30.63 ATOM 3671 CG GLU A 482 0 15.143 61.256 14.666 1.00 32.78 ATOM 3672 CD GLU A 482 0 16.522 61.784 14.990 1.00 34.96 ATOM 3673 OEI GLU A 482 0 17.021 61.746 16.141 1.00 34.62 35 ATOM 3674 OE2 GLU A 482 0 17.170 62.297 14.033 1.00 37.13 ATOM 3675 N TRP A 483 0 13.311 60.124 18.857 1.00 25.91 ATOM 3676 CA TRP A 483 0 12.496 59.280 19.711 1.00 25.49 ATOM 3677 C TRP A 483 0 11.224 60.011 20.125 1.00 26.47

ATOM 3678 O TRP A 483 0 10.155 59.405 20.116 1.00 26.95
ATOM 3679 CB TRP A 483 0 13.216 58.807 20.974 1.00 21.98
ATOM 3680 CG TRP A 483 0 12.376 58.144 22.013 1.00 21.49
ATOM 3681 CD1 TRP A 483 0 11.960 56.827 22.003 1.00 20.81
5 ATOM 3682 CD2 TRP A 483 0 11.818 58.730 23.194 1.00 20.14
ATOM 3683 NE1 TRP A 483 0 11.187 56.575 23.143 1.00 20.29
ATOM 3684 CE2 TRP A 483 0 11.097 57.736 23.868 1.00 20.29
ATOM 3685 CE3 TRP A 483 0 11.875 60.006 23.754 1.00 21.32
ATOM 3686 CZ2 TRP A 483 0 10.422 57.973 25.062 1.00 20.89
10 ATOM 3687 CZ3 TRP A 483 0 11.217 60.248 24.946 1.00 20.78
ATOM 3688 CH2 TRP A 483 0 10.495 59.227 25.596 1.00 21.44
ATOM 3689 N ALA A 484 0 11.342 61.261 20.560 1.00 28.59
ATOM 3690 CA ALA A 484 0 10.165 62.003 21.029 1.00 30.73
ATOM 3691 C ALA A 484 0 9.226 62.350 19.869 1.00 30.42
15 ATOM 3692 O ALA A 484 O 8.024 62.337 20.071 1.00 31.34
ATOM 3693 CB ALA A 484 0 10.583 63.244 21.806 1.00 31.05
ATOM 3694 N GLN A 485 0 9.702 62.488 18.653 1.00 30.79
ATOM 3695 CA GLN A 485 0 8.927 62.742 17.466 1.00 33.16
ATOM 3696 C GLN A 485 0 8.026 61.608 17.017 1.00 32.81
20 ATOM 3697 O GLN A 485 0 7.044 61.847 16.302 1.00 32.74
ATOM 3698 CB GLN A 485 0 9.859 63.113 16.290 1.00 34.56
ATOM 3699 CG GLN A 485 0 10.631 64.361 16.686 1.00 39.67
ATOM 3700 CD GLN A 485 0 11.559 64.919 15.640 1.00 42.86
ATOM 3701 OE1 GLN A 485 0 11.528 66.145 15.434 1.00 45.48
25 ATOM 3702 NE2 GLN A 485 0 12.375 64.103 14.982 1.00 44.07
ATOM 3703 N LEU A 486 0 8.328 60.380 17.443 1.00 30.46
ATOM 3704 CA LEU A 486 0 7.500 59.231 17.095 1.00 27.76
ATOM 3705 C LEU A 486 0 6.051 59.510 17.509 1.00 28.23
ATOM 3706 O LEU A 486 0 5.100 59.331 16.752 1.00 26.71
30 ATOM 3707 CB LEU A 486 0 8.043 58.034 17.838 1.00 25.03
ATOM 3708 CG LEU A 486 0 8.988 57.012 17.226 1.00 24.18
ATOM 3709 CD1 LEU A 486 0 9.780 57.416 16.011 1.00 21.41
ATOM 3710 CD2 LEU A 486 0 9.864 56.464 18.342 1.00 23.28
ATOM 3711 N CYS A 487 0 5.870 59.974 18.739 1.00 28.05
35 ATOM 3712 CA CYS A 487 0 4.560 60.263 19.279 1.00 30.77
ATOM 3713 C CYS A 487 0 3.823 61.350 18.499 1.00 33.19
ATOM 3714 O CYS A 487 0 2.627 61.170 18.263 1.00 33.69
ATOM 3715 CB CYS A 487 0 4.643 60.637 20.752 1.00 27.94

ATOM	3716 SG CYS A 487 0 5.214 59.280 21.781 1.00 27.23
ATOM	3717 N GLU A 488 0 4.543 62.373 18.064 1.00 35.80
ATOM	3718 CA GLU A 488 0 3.871 63.458 17.334 1.00 39.12
ATOM	3719 C GLU A 488 0 3.384 62.928 15.995 1.00 37.78
5 ATOM	3720 O GLU A 488 0 2.186 63.025 15.711 1.00 37.61
ATOM	3721 CB GLU A 488 0 4.737 64.697 17.257 1.00 42.04
ATOM	3722 CG GLU A 488 0 5.667 64.822 16.064 1.00 47.75
ATOM	3723 CD GLU A 488 0 5.634 66.239 15.500 1.00 51.36
ATOM	3724 OE1 GLU A 488 0 5.501 66.422 14.266 1.00 52.66
10 ATOM	3725 OE2 GLU A 488 0 5.743 67.154 16.358 1.00 53.40
ATOM	3726 N ILE A 489 0 4.263 62.253 15.267 1.00 36.63
ATOM	3727 CA ILE A 489 0 3.906 61.647 14.004 1.00 36.74
ATOM	3728 C ILE A 489 0 2.754 60.662 14.113 1.00 36.98
ATOM	3729 O ILE A 489 0 1.847 60.664 13.276 1.00 38.60
15 ATOM	3730 CB ILE A 489 0 5.089 60.903 13.361 1.00 36.57
ATOM	3731 CG1 ILE A 489 0 6.267 61.853 13.148 1.00 36.46
ATOM	3732 CG2 ILE A 489 0 4.651 60.305 12.030 1.00 36.90
ATOM	3733 CD1 ILE A 489 0 7.535 61.194 12.654 1.00 35.62
ATOM	3734 N TYR A 490 0 2.758 59.808 15.105 1.00 36.22
20 ATOM	3735 CA TYR A 490 0 1.771 58.765 15.298 1.00 35.95
ATOM	3736 C TYR A 490 0 0.413 59.314 15.692 1.00 37.83
ATOM	3737 O TYR A 490 0 -0.581 58.816 15.165 1.00 39.24
ATOM	3738 CB TYR A 490 0 2.206 57.817 16.409 1.00 32.47
ATOM	3739 CG TYR A 490 0 1.314 56.641 16.663 1.00 30.55
25 ATOM	3740 CD1 TYR A 490 0 1.176 55.623 15.726 1.00 29.96
ATOM	3741 CD2 TYR A 490 0 0.610 56.536 17.849 1.00 29.79
ATOM	3742 CE1 TYR A 490 0 0.378 54.528 15.975 1.00 29.51
ATOM	3743 CE2 TYR A 490 0 -0.192 55.441 18.114 1.00 29.64
ATOM	3744 CZ TYR A 490 0 -0.288 54.445 17.171 1.00 29.51
30 ATOM	3745 OH TYR A 490 0 -1.101 53.363 17.437 1.00 32.06
	3746 N ASP A 491 0 0.369 60.302 16.564 1.00 40.86
ATOM	3747 CA ASP A 491 0 -0.909 60.887 16.963 1.00 43.97
ATOM	3748 C ASP A 491 0 -1.586 61.633 15.811 1.00 45.30
	3749 O ASP A 491 0 -2.809 61.752 15.820 1.00 45.60
	3750 CB ASP A 491 0 -0.764 61.800 18.170 1.00 44.67
	3751 CG ASP A 491 0 -0.441 61.101 19.475 1.00 45.90
	3752 OD1 ASP A 491 0 0.149 61.761 20.364 1.00 46.32
ATOM	3753 OD2 ASP A 491 0 -0.763 59.911 19.669 1.00 46.04

ATOM 3754 N ASP A 492 0 -0.871 62.107 14.817 1.00 46.75
ATOM 3755 CA ASP A 492 0 -1.323 62.804 13.653 1.00 48.98
ATOM 3756 C ASP A 492 0 -1.702 61.936 12.460 1.00 49.48
ATOM 3757 O ASP A 492 0 -2.002 62.458 11.378 1.00 50.24
5 ATOM 3758 CB ASP A 492 0 -0.155 63.649 13.107 1.00 51.54
ATOM 3759 CG ASP A 492 0 -0.168 65.081 13.587 1.00 53.57
ATOM 3760 OD1 ASP A 492 0 -0.886 65.375 14.570 1.00 54.07
ATOM 3761 OD2 ASP A 492 0 0.576 65.857 12.939 1.00 55.04
ATOM 3762 N LEU A 493 0 -1.554 60.630 12.584 1.00 49.01
10 ATOM 3763 CA LEU A 493 0 -1.896 59.732 11.483 1.00 47.63
ATOM 3764 C LEU A 493 0 -3.377 59.872 11.137 1.00 47.61
ATOM 3765 O LEU A 493 0 -4.209 60.018 12.027 1.00 47.02
ATOM 3766 CB LEU A 493 0 -1.661 58.296 11.940 1.00 46.08
ATOM 3767 CG LEU A 493 0 -0.485 57.463 11.464 1.00 45.24
15 ATOM 3768 CD1 LEU A 493 0 0.616 58.224 10.756 1.00 43.57
ATOM 3769 CD2 LEU A 493 0 0.075 56.710 12.669 1.00 44.62
ATOM 3770 N PRO A 494 0 -3.694 59.763 9.866 1.00 48.01
ATOM 3771 CA PRO A 494 0 -5.049 59.734 9.353 1.00 49.11
ATOM 3772 C PRO A 494 0 -5.617 58.339 9.570 1.00 51.21
20 ATOM 3773 O PRO A 494 0 -4.919 57.325 9.495 1.00 50.61
ATOM 3774 CB PRO A 494 0 -4.938 59.995 7.843 1.00 48.94
ATOM 3775 CG PRO A 494 0 -3.559 59.463 7.544 1.00 48.47
ATOM 3776 CD PRO A 494 0 -2.714 59.538 8.797 1.00 48.22
ATOM 3777 N PRO A 495 0 -6.915 58.238 9.796 1.00 53.24
25 ATOM 3778 CA PRO A 495 0 -7.630 57.006 10.055 1.00 53.93
ATOM 3779 C PRO A 495 0 -7.404 55.890 9.058 1.00 54.84
ATOM 3780 O PRO A 495 0 -7.348 54.705 9.423 1.00 55.08
ATOM 3781 CB PRO A 495 0 -9.126 57.362 10.146 1.00 54.40
ATOM 3782 CG PRO A 495 0 -9.090 58.848 10.391 1.00 54.17
30 ATOM 3783 CD PRO A 495 0 -7.787 59.420 9.895 1.00 53.58
ATOM 3784 N GLU A 496 0 -7.190 56.198 7.784 1.00 55.36
ATOM 3785 CA GLU A 496 0 -6.936 55.187 6.763 1.00 55.83
ATOM 3786 C GLU A 496 0 -5.582 54.521 6.971 1.00 54.09
ATOM 3787 O GLU A 496 0 -5.345 53.406 6.505 1.00 53.29
35 ATOM 3788 CB GLU A 496 0 -7.091 55.805 5.378 1.00 57.96
ATOM 3789 CG GLU A 496 0 -6.030 55.604 4.339 1.00 61.30
ATOM 3790 CD GLU A 496 0 -6.448 54.984 3.025 1.00 63.68
ATOM 3791 OE1 GLU A 496 0 -7.449 55.411 2.388 1.00 65.15

ATOM 3792 OE2 GLU A 496 0 -5.747 54.034 2.586 1.00 64.91
ATOM 3792 OE2 GLU A 496 0 -5.747 54.034 2.386 1.00 64.91 ATOM 3793 N ALA A 497 0 -4.665 55.217 7.630 1.00 52.35
ATOM 3794 CA ALA A 497 0 -3.326 54.738 7.886 1.00 50.83
ATOM 3795 C ALA A 497 0 -3.245 53.626 8.924 1.00 49.08
7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7
ATOM 3803 OG1 THR A 498 0 -5.315 53.816 12.752 1.00 47.95
ATOM 3804 CG2 THR A 498 0 -2.919 54.223 12.514 1.00 48.94
ATOM 3805 N SER A 499 0 -6.101 51.756 9.911 1.00 49.78
15 ATOM 3806 CA SER A 499 0 -7.307 50.933 9.814 1.00 51.20
ATOM 3807 C SER A 499 0 -7.048 49.470 9.494 1.00 49.98
ATOM 3808 O SER A 499 0 -6.257 49.143 8.617 1.00 48.80
ATOM 3809 CB SER A 499 0 -8.223 51.606 8.800 1.00 52.62
ATOM 3810 OG SER A 499 0 -8.428 50.827 7.596 1.00 55.22
20 ATOM 3811 N ILE A 500 0 -7.706 48.585 10.230 1.00 50.08
ATOM 3812 CA ILE A 500 0 -7.563 47.151 10.077 1.00 51.25
ATOM 3813 C ILE A 500 0 -8.642 46.518 9.207 1.00 53.08
ATOM 3814 O ILE A 500 0 -9.785 46.351 9.639 1.00 54.00
ATOM 3815 CB ILE A 500 0 -7.631 46.428 11.436 1.00 50.61
25 ATOM 3816 CG1 ILE A 500 0 -6.475 46.866 12.336 1.00 50.22
ATOM 3817 CG2 ILE A 500 0 -7.619 44.907 11.302 1.00 50.34
ATOM 3818 CD1 ILE A 500 0 -6.806 46.617 13.800 1.00 50.52
ATOM 3819 N GLN A 501 0 -8.263 46.074 8.024 1.00 54.35
ATOM 3820 CA GLN A 501 0 -9.177 45.360 7.129 1.00 55.14
30 ATOM 3821 C GLN A 501 0 -9.298 43.904 7.564 1.00 55.85
ATOM 3822 O GLN A 501 0 -8.335 43.130 7.556 1.00 55.59
ATOM 3823 CB GLN A 501 0 -8.594 45.485 5.732 1.00 55.56
ATOM 3824 CG GLN A 501 0 -9.262 44.736 4.604 1.00 56.32
ATOM 3825 CD GLN A 501 0 -8.874 45.369 3.271 1.00 57.46
35 ATOM 3826 OE1 GLN A 501 0 -8.480 44.667 2.336 1.00 57.35
ATOM 3827 NE2 GLN A 501 0 -8.998 46.697 3.219 1.00 57.61
ATOM 3828 N THR A 502 0 -10.493 43.506 7.968 1.00 57.08
ATOM 3829 CA THR A 502 0 -10.788 42.146 8.401 1.00 58.28

ATOM 3830 C THR A 502 0 -10.966 41.205 7.216 1.00 58.80
777 - 7
TO 10 10 10 10 10 10 10 10 10 10 10 10 10
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
20.00.00
ATOM 3837 C VAL A 503 0 -11.687 37.736 7.119 1.00 61.11
ATOM 3838 O VAL A 503 0 -11.606 37.563 8.341 1.00 61.03
10 ATOM 3839 CB VAL A 503 0 -9.589 38.430 5.823 1.00 59.97
ATOM 3840 CG1 VAL A 503 0 -8.337 38.964 6.507 1.00 59.65
ATOM 3841 CG2 VAL A 503 0 -9.467 36.914 5.722 1.00 59.97
ATOM 3842 N VAL A 504 0 -12.478 37.002 6.341 1.00 61.77
ATOM 3843 CA VALA 504 0 -13.203 35.863 6.911 1.00 62.40
15 ATOM 3844 C VAL A 504 0 -12.673 34.579 6.259 1.00 62.99
ATOM 3845 O VAL A 504 0 -11.811 33.894 6.803 1.00 63.13
ATOM 3846 CB VAL A 504 0 -14.730 35.882 6.756 1.00 62.39
ATOM 3847 CG1 VAL A 504 0 -15.392 36.931 7.635 1.00 61.89
ATOM 3848 CG2 VAL A 504 0 -15.127 36.068 5.297 1.00 62.17
20 ATOM 3849 C1 NAG A 800 0 -2.401 42.835 45.802 1.00 30.44
ATOM 3850 C2 NAG A 800 0 -1.327 43.232 46.780 1.00 31.80
ATOM 3851 N2 NAG A 800 0 -0.119 43.561 45.983 1.00 31.37
ATOM 3852 C7 NAG A 800 0 0.179 44.844 45.683 1.00 32.37
ATOM 3853 O7 NAG A 800 0 -0.549 45.688 45.982 1.00 34.61
25 ATOM 3854 C8 NAG A 800 0 1.457 45.094 44.983 1.00 31.67
ATOM 3855 C3 NAG A 800 0 -1.015 42.187 47.801 1.00 32.94
ATOM 3856 O3 NAG A 800 0 -0.264 42.838 48.796 1.00 34.46
ATOM 3857 C4 NAG A 800 0 -2.351 41.662 48.377 1.00 34.05
ATOM 3858 O4 NAG A 800 0 -2.097 40.644 49.344 1.00 35.62
30 ATOM 3859 C5 NAG A 800 0 -3.128 41.025 47.202 1.00 35.11
ATOM 3860 O5 NAG A 800 0 -3.466 42.046 46.295 1.00 33.06
ATOM 3861 C6 NAG A 800 0 -4.444 40.420 47.673 1.00 36.66
ATOM 3862 O6 NAG A 800 0 -5.199 41.411 48.288 1.00 39.73
ATOM 3863 C1 GLC A 900 0 -8.957 50.280 6.333 1.00 58.53
35 ATOM 3864 C2 GLC A 900 0 -8.500 49.605 5.037 1.00 59.25
ATOM 3865 C3 GLC A 900 0 -7.806 50.686 4.219 1.00 59.71
ATOM 3866 C4 GLC A 900 0 -8.691 51.905 3.987 1.00 60.13
ATOM 3867 C5 GLC A 900 0 -9.595 52.289 5.142 1.00 59.22

	ATOM	3868	O5 C	GLC A	900	0 0	- 1	0.004 5	1.177 5	.937 1.0	00 59.71
	ATOM	3869	CU I	UM E	3 1	0	- 1	.332 34	.401 30.	132 1.0	0 29.47
	ATOM	3870	CU I	UM E	3 2	0	7	.297 42	.245 26.	618 1.0	0 27.01
	ATOM	3871	CU I	UM E	3	0	9	.569 38	.786 23.	923 1.0	0 21.38
5	ATOM	3872	O II	J M B	5	0	7.	445 40.7	703 25.1	.62 1.00	26.99
	ATOM	3873	OW0	WAT	w	1	0	19.509	36.893	30.054	1.00 13.07
	ATOM	3874	OW0	WAT	W	2	0	24.726	29.672	16.651	1.00 7.67
	ATOM	3875	OW0	WAT	W	3	0	15.295	17.988	35.061	1.00 8.65
	ATOM	3876	owo	WAT	W	4	0	6.481	28.311	23.427	1.00 8.00
10	ATOM	3877	OW0	WAT	W	5	0	14.921	45.178	24.306	1.00 17.04
	ATOM	3878	OW0	WAT	W	6	0	14.413	44.401	28.162	1.00 10.12
	ATOM	3879	OW0	WAT	w	7	0	9.967	21.576	9.620 1	.00 11.43
	ATOM	3880	OW0	WAT	w	8	0	10.088	28.675	13.038	1.00 9.27
	ATOM	3881	OW0	WAT	w	9	0	9.808	47.902	28.959	1.00 12.71
15	ATOM	3882	OW0	WAT	W	10	0	21.976	23.052	35.604	1.00 11.72
	ATOM	3883	OW0	WAT	W	11	0	10.862	25.744	29.928	1.00 10.21
	ATOM	3884	OW0	WAI	W	12	0	26.087	32.996	23.097	1.00 14.21
	ATOM	3885	OW0	WAI	W	13	0	22.256	58.745	37.931	1.00 17.85
	ATOM	3886	OWO	WAT	W	14	0	-0.104	29.831	35.249	1.00 16.36
20	ATOM	3887	owo	WA7	W	15	0	18.153	61.857	36.641	1.00 14.38
	ATOM	3888	owo	WA7	W	16	0	9.426	38.431	9.161	1.00 15.35
	ATOM	3889	owo	WA7	W	17	0	7.639	24.371	3.713	1.00 22.18
	ATOM	3890	owo	WA1	W	18	0	27.977	11.643	9.481	1.00 19.22
	ATOM	3891	owo	WA7	r w	19	0	3.140	21.028	24.695	1.00 11.12
25	ATOM	3892	OWO	WA7	r w	20	0	9.847	20.701	30.902	1.00 16.16
	ATOM	3893	OWO) WA	r w	21	0	-1.517	29.009	43.180	1.00 27.18
	ATOM	3894	owo) WA	r W	22	0	3.497	29.138	26.088	1.00 17.22
	ATOM	3895	OWO) WA	ΓW	23	0	20.614	32.765	40.433	1.00 17.63
	ATOM	3896	owo) WA	ΓW	24	0	19.098	51.778	39.452	1.00 22.33
30	ATOM	3897	OWO) WA	ΓW	25	0	0.977	21.396	5.064	1.00 18.54
	ATOM	3898	OWO) WA	r w	26	0	8.546	16.150	21.761	1.00 16.40
	ATOM	3899	OWO) WA	ΓW	27	0	6.102	19.858	10.350	1.00 17.79
	ATOM	3900	OWO) WA	ΓW	28	0	11.702	2 55.189	41.955	1.00 18.92
	ATOM	3901	OW) WA	ΓW	29) (3.360	42.251	18.209	1.00 16.26
35	ATOM	3902	owo) WA	ΓW	30) (6.232	14.672	22.473	1.00 24.49
	ATOM	3903	OW) WA	ΤW	/ 31	C	16.729	26.542	39.731	1.00 15.28
	ATOM	3904	OW) WA	T W	/ 32	2 (2.834	30.640	40.601	1.00 18.11
	ATOM	3905	OW	0 W A	T W	7 33	3 (21.893	3 42.837	27.884	1.00 15.08

	ATOM	3906	owo v	WAT V	V :	34	0	1.581	28.193	27.914	1.00 17.77
	ATOM	3907	owo v	WAT V	V	35	0	-3.503	21.749	11.578	1.00 15.32
	ATOM	3908	owo v	WAT V	V	36	0	7.131	33.344	11.786	1.00 18.18
	ATOM	3909	owo v	WAT V	V	37	0	17.312	38.603	29.961	1.00 14.75
5	ATOM	3910	owo v	WAT V	V	38	0	-6.705	40.723	39.909	1.00 23.49
	ATOM	3911	owo v	WAT V	V	39	0	9.010	31.121	11.736	1.00 19.99
	ATOM	3912	owo v	WAT V	V	40	0	9.376	28.353	33.076	1.00 16.22
	ATOM	3913	owo v	WAT V	V	41	0	30.104	29.895	20.857	1.00 25.77
	ATOM	3914	owo v	WAT V	V	42	0	-6.950	33.663	21.335	1.00 26.62
10	ATOM	3915	owo v	WAT V	N	43	0	8.541	27.867	36.827	1.00 12.80
	ATOM	3916	owo v	WAT V	V	44	0	3.590	21.651	11.893	1.00 14.46
	ATOM	3917	owo v	WAT V	N	45	0	23.290	21.665	37.787	1.00 28.75
	ATOM	3918	owo v	WAT V	N	46	0	22.724	11.873	22.270	1.00 23.07
	ATOM	3919	owo y	WAT V	N	47	0	-1.090	42.001	12.877	1.00 19.33
15	ATOM	3920	owo '	WAT V	V	48	0	14.091	27.298	40.583	1.00 18.51
	ATOM	3921	owo '	WAT V	V	49	0	2.336	52.026	29.983	1.00 25.66
	ATOM	3922	owo	WAT \	W	5 0	0	15.475	14.450	22.853	1.00 20.37
	ATOM	3923	OW0	WAT V	W	51	0	25.945	26.568	40.287	1.00 24.49
	ATOM	3924	OWO	WAT V	W	52	0	19.545	41.598	35.087	1.00 20.70
20	ATOM	3925	owo	WAT V	W	53	0	-3.802	47.942	9.638	1.00 29.98
	ATOM	3926	owo	WAT V	W	54	0	-7.478	41.160	9.585	1.00 24.26
	ATOM	3927	OW0	WAT V	W	55	0	-2.938	29.733	36.048	1.00 22.93
	ATOM	3928	owo	WAT	W	56	0	29.051	32.114	22.680	1.00 22.50
	ATOM	3929	OW0	WAT '	W	57	0	0.360	29.505	5.595	1.00 17.78
25	ATOM	3930	OW0	WAT Y	W	58	0	8.583	57.422	21.440	1.00 21.90
	ATOM	3931	OW0	WAT Y	W	59	0	25.151	31.947	34.812	1.00 22.13
	ATOM	3932	OW0	WAT '	W	60	0	25.133	62.204	32.968	1.00 25.75
	ATOM	3933	OW0	WAT '	W	61	0	14.909	40.770	30.294	1.00 17.25
	ATOM	3934	OW0	WAT '	W	62	0	20.825	30.520	34.676	1.00 16.18
30	ATOM	3935	OW0	WAT '	W	63	0	5.509	26.744	43.167	1.00 30.12
	ATOM	3936	OW0	WAT	W	64	0	5.280	57.279	14.627	1.00 22.66
	ATOM	3937	OW0	WAT	W	65	0	2.944	53.436	32.359	1.00 22.97
	ATOM	3938	ow0	WAT	W	66	0	11.266	5 43.508	3.407	1.00 20.01
	ATOM	3939	owo	WAT	W	67	0	21.535	5 45.549	26.563	1.00 24.47
35	АТОМ	3940	ow0	WAT	W	68	0	0.412	33.358	11.837	1.00 19.89
	ATOM	3941	OW0	WAT	W	69	0	26.466	5 32.30	5 25.785	1.00 20.19
	ATOM	3942	owo	WAT	W	70	0	0.910	45.068	7.829	1.00 22.05
	ATOM	3943	owo	WAT	w	71	0	-2.060	46.506	39.381	1.00 23.49

	ATOM	3944	owo	WAT	W	72	0	20.236	56.718	25.851	1.00 23.74
	ATOM	3945	owo	WAT	W	73	0	3.253	23.017	38.254	1.00 24.83
	ATOM	3946	OW0	WAT	W	74	0	9.653	22.835	35.143	1.00 25.79
	ATOM	3947	owo	WAT	W	75	0	16.877	52.904	47.331	1.00 24.42
5	ATOM	3948	owo	WAT	W	76	0	14.293	22.021	3.993	1.00 32.28
	ATOM	3949	OW0	WAT	W	77	0	-5.287	19.835	18.528	1.00 24.65
	ATOM	3950	owo	WAT	W	78	0	8.414	38.317	49.069	1.00 28.77
	ATOM	3951	owo	WAT	W	79	0	7.070	32.466	47.926	1.00 21.83
	ATOM	3952	owo	WAT	W	80	0	-0.452	28.307	25.779	1.00 16.58
10	ATOM	3953	owo	WAT	W	81	0	14.774	15.006	34.455	1.00 25.63
	ATOM	3954	owo	WAT	W	82	0	11.515	54.942	35.962	1.00 14.20
	ATOM	3955	owo	WAT	W	83	0	25.643	33.451	32.105	1.00 30.31
	ATOM	3956	owo	WAT	W	84	0	11.869	12.221	20.394	1.00 31.37
	ATOM	3957	owo	WAT	W	85	0	11.653	51.587	22.411	1.00 16.48
15	ATOM	3958	owo	WAT	W	86	0	17.334	40.837	51.079	1.00 30.26
	ATOM	3959	owo	WAT	w	87	0	4.355	25.208	34.030	1.00 32.26
	ATOM	3960	owo	WAT	W	88	0	18.816	52.360	32.512	1.00 21.19
	ATOM	3961	owo	WAT	W	89	0	-2.704	46.518	35.364	1.00 21.99
	ATOM	3962	owo	WAT	W	90	0	18.793	27.893	49.481	1.00 24.52
20	ATOM	3963	OW0	WAT	W	91	0	22.459	46.584	28.898	1.00 18.99
	ATOM	3964	OW0	WAT	W	92	0	7.958	34.422	49.370	1.00 26.14
	ATOM	3965	OW0	WAT	W	93	0	23.972	16.246	6.806	1.00 24.35
	ATOM	3966	OW0	WAT	W	94	0	1.340	49.185	26.307	1.00 31.64
	ATOM	3967	OW0	WAT	W	95	0	-1.830	35.291	12.266	1.00 27.28
25	ATOM	3968	OW0	WAT	W	96	0	20.460	17.486	3.589	1.00 33.51
	ATOM	3969	OW0	WAT	W	97	0	15.177	6.964	9.868	1.00 24.40
	ATOM	3970	OW0	WAT	W	98	0	18.616	57.927	43.922	1.00 30.76
	ATOM	3971	OW0	WAT	W	99	0	10.562	32.112	9.972	1.00 28.90
	ATOM	3972	OW0	WAT	W	100	0	1.630	61.363	10.878	1.00 33.92
30	ATOM	3973	OW0	WAT	W	101	0	-4.939	49.989	33.211	1.00 29.73
	ATOM	3974	OW0	WAT	W	102	0	19.385	44.813	34.546	1.00 23.52
	ATOM	3975	OW0	WAT	W	103	0	19.055	43.063	37.581	1.00 30.59
	ATOM	3976	OW0	WAT	W	105	0	28.703	33.55	27.406	1.00 32.92
	ATOM	3977	owo	WAT	w	106	0	28.835	19.64	5 10.759	1.00 40.44
35	ATOM	3978	OW0	WAT	w	107	0	22.047	22.46	9.758	1.00 29.98
	ATOM	3979	OW0	WAT	w	108	0	14.689	61.03	2 36.346	1.00 30.63
	ATOM	3980	OW0	WAT	w	109	0	16.998	3 24.04	2 9.318	1.00 23.90
	ATOM	3981	OW0	WAT	w	110	0	13.472	2 30.53	3 11.848	1.00 34.83

	АТОМ	3982	OW0 WAT W	111	0	-2.175	35.601	41.496	1.00 28.55
	ATOM		OW0 WAT W				17.373		1.00 38.21
	ATOM	3984	OW0 WAT W	113	0	-2.856	29.748	19.681	1.00 30.55
	ATOM	3985	OW0 WAT W	114	0	2.377	42.810	47.971	1.00 26.87
5	ATOM	3986	OW0 WAT W	115	0	10.947	12.820	33.745	1.00 31.60
	ATOM	3987	OW0 WAT W	116	0	9.807	58.194	12.442	1.00 29.63
	ATOM	3988	OW0 WAT W	117	0	18.488	62.559	29.470	1.00 45.83
	ATOM	3989	OW0 WAT W	118	0	11.708	61.566	40.940	1.00 37.19
	ATOM	3990	OW0 WAT W	119	0	-10.101	22.257	15.091	1.00 30.48
10	ATOM	3991	OW0 WAT W	120	0	-1.930	15.913	7.386	1.00 36.63
	ATOM	3992	OW0 WAT W	121	0	23.988	43.686	29.319	1.00 32.15
	ATOM	3993	OW0 WAT W	122	0	7.354	57.153	12.809	1.00 28.10
	ATOM	3994	OW0 WAT W	123	0	24.207	22.101	11.958	1.00 32.83
	ATOM	3995	OW0 WAT W	124	0	-1.268	15.083	9.738	1.00 32.53
15	ATOM	3996	OW0 WAT W	125	0	19.363	5.047	13.812	1.00 34.57
	ATOM	3997	OW0 WAT W	126	0	4.799	41.145	23.688	1.00 28.33
	ATOM	3998	OW0 WAT W	127	0	15.975	23.287	5.889	1.00 30.95
	ATOM	3999	OW0 WAT W	128	0	3.698	38.582	-2.369	1.00 36.84
	ATOM	4000	OW0 WAT W	129	0	-2.601	49.124	11.710	1.00 28.91
20	ATOM	4001	OW0 WAT W	130	0	15.779	56.598	43.285	1.00 27.76
	ATOM	4002	OW0 WAT W	131	0	26.306	32.724	13.233	1.00 37.94
	ATOM	4003	OW0 WAT W	132	0	3.610	46.947	23.991	1.00 35.49
	ATOM	4004	OW0 WAT W	133	0	18.354	11.929	29.348	1.00 33.88
	ATOM	4005	OW0 WAT W	134	0	13.966	41.517	27.765	1.00 18.02
25	ATOM	4006	OW0 WAT W	135	0	23.545	49.080	27.785	1.00 25.21
	ATOM	4007	OW0 WAT W	136	0	16.876	25.082	41.791	1.00 28.71
	ATOM	4008	OW0 WAT W	137	0	15.439	54.809	45.527	1.00 35.30
	ATOM	4009	OW0 WAT W	/ 138	0	11.733	25.676	43.264	1.00 38.24
	ATOM	4010	OW0 WAT W	/ 139	0	9.795	34.460	11.898	1.00 31.61
30	ATOM	4011	OW0 WAT W	/ 140	0	13.328	57.569	42.356	1.00 30.66
	ATOM	4012	OW0 WAT W	/ 141	0	14.146	7.869	20.604	1.00 35.72
	ATOM	4013	OW0 WAT W	/ 142	0	23.330	12.948	3.922	1.00 29.83
	ATOM	4014	OW0 WAT W	/ 143	0	16.607	10.575	24.347	1.00 36.47
	ATOM	4015	OW0 WAT W	/ 144	0	8.509	25.546	35.012	1.00 35.43
35	ATOM	4016	OW0 WAT W	/ 145	0	12.597	44.457	1.450	1.00 39.54
	ATOM	4017	OW0 WAT W	V 146	0	21.680	51.509	39.154	1.00 40.08
	ATOM	4018	OW0 WAT W	V 147	0	-0.702	52.593	39.700	1.00 29.62
	ATOM	4019	OW0 WAT W	V 148	0	23.269	14.719	22.589	1.00 30.24

	ATOM	4020	owo v	WAT '	W	149	0	27.149	22.972	41.846	1.00 35.00
	ATOM	4021	owo v	WAT '	W	150	0	2.854	9.792	8.923 1	.00 46.35
	ATOM	4022	owo v	WAT	W	151	0	24.831	15.672	24.889	1.00 29.22
	ATOM	4023	owo v	WAT	W	152	0	24.965	51.606	19.113	1.00 32.19
5	ATOM	4024	owo y	WAT	W	153	0	-4.611	25.034	37.817	1.00 46.51
	ATOM	4025	owo '	WAT	W	154	0	12.225	39.382	28.864	1.00 25.42
	ATOM	4026	owo '	WAT	W	155	0	18.332	22.341	43.180	1.00 36.18
	ATOM	4027	owo '	WAT	W	156	0	36.467	20.701	17.144	1.00 44.13
	ATOM	4028	owo '	WAT	W	157	0	-4.903	47.901	40.886	1.00 33.97
10	ATOM	4029	owo '	WAT	W	158	0	12.979	13.955	3.208	1.00 33.60
	ATOM	4030	owo	WAT	W	159	0	32.383	12.693	24.743	1.00 30.25
	ATOM	4031	owo	WAT	W	160	0	30.796	26.296	14.368	1.00 44.37
	ATOM	4032	owo	WAT	W	161	0	19.332	37.280	40.057	1.00 31.54
	ATOM	4033	OW0	WAT	W	162	0	17.625	20.028	41.642	1.00 45.88
15	ATOM	4034	OW0	WAT	W	163	0	19.917	56.115	46.103	1.00 40.37
	ATOM	4035	OW0	WAT	W	164	0	-4.743	14.204	16.748	1.00 40.86
	ATOM	4036	OW0	WAT	W	165	0	0.738	46.912	21.790	1.00 38.56
	ATOM	4037	owo	WAT	W	166	0	22.648	62.277	30.976	1.00 24.37
	ATOM	4038	OW0	WAT	W	167	0	-4.322	45.754	26.894	1.00 48.97
20	ATOM	4039	OW0	WAT	W	168	0	-2.386	24.601	0.665	1.00 32.57
	ATOM	4 040	OW0	WAT	W	169	0	-0.459	41.618	35.838	1.00 35.25
	ATOM	4041	OW0	WAT	W	170	0	26.659	4.722	11.434	1.00 41.25
	ATOM	4042	OW0	WAT	W	171	0	13.720	11.379	22.121	1.00 39.59
	ATOM	4043	OW0	WAT	W	172	0	15.266	7.451	6.576	1.00 41.71
25	ATOM	4044	OW0	WAT	W	173	0	0.134	17.450	6.165	1.00 42.12
	ATOM	4045	owo	WAT	W	174	0	38.646	32.884	25.247	1.00 41.80
	ATOM	4046	owo	WAT	W	175	0	10.591	17.398	3.251	1.00 29.37
	ATOM	4047	OW0	WAT	W	176	0	22.444	49.424	25.264	1.00 19.51
	ATOM	4048	OW0	WAT	W	177	0	0.429	23.224	28.598	1.00 33.54
30	ATOM	4049	OW0	WAT	W	178	0	-2.302	27.278	34.780	1.00 44.76
	ATOM	4050	OW0	WAT	W	179	0	2.054	25.866	16.462	1.00 34.29
	ATOM	4051	OW0	WAT	W	180	0	30.277	18.006	25.789	1.00 42.28
	ATOM	4052	OW0	WAT	W	181	0	2.316	18.424	27.884	1.00 47.39
	ATOM	4053	owo	WAT	W	182	0	19.401	41.164	39.560	1.00 39.68
35	ATOM	4054	OW0	WAT	W	183	0	23.742	10.982	24.879	1.00 43.32
	ATOM	4055	OW0	WAT	W	184	0	3.926	24.450	44.251	1.00 48.95
	ATOM	4056	OW0	WAT	W	185	0	25.186	21.211	40.951	1.00 39.05
	ATOM	4057	OW0	WAT	W	186	0	20.353	34.816	48.799	1.00 34.08

	ATOM	4058	owo	WAT	W	187	0	35.782	22.476	21.693	1.00 40.04
	ATOM	4059	ow0	WAT	W	188	0	27.256	23.617	12.235	1.00 40.85
	ATOM	4060	ow0	WAT	w	189	0	6.777	12.502	12.641	1.00 53.37
	ATOM	4061	ow0	WAT	W	190	0	-4.663	38.998	4.159	.00 39.85
5	ATOM	4062	owo	WAT	W	191	0	24.398	52.064	24.607	1.00 45.51
	ATOM	4063	OW0	WAT	W	192	0	1.808	15.541	4.832	.00 41.06
	ATOM	4064	owo	WAT	w	193	0	5.341	36.359	7.569	1.00 39.36
	ATOM	4065	ow0	WAT	w	194	0	32.192	38.650	21.799	1.00 37.18
	ATOM	4066	owo	WAT	W	195	0	-10.782	36.616	38.705	1.00 50.35
10	ATOM	4067	OW0	WAT	W	196	0	4.119	64.116	32.946	1.00 34.51
	ATOM	4068	owo	WAT	W	197	0	19.427	22.772	5.898	1.00 37.94
	ATOM	4069	OW0	WAT	W	198	0	-4.671	33.476	1.652	1.00 43.38
	ATOM	4070	owo	WAT	w	199	0	-8.983	23.757	17.693	1.00 57.10
	ATOM	4071	OW0	WAT	w	200	0	-6.735	22.473	20.432	1.00 38.49
15	ATOM	4072	OW0	WAT	w	201	0	-6.954	26.746	37.309	1.00 55.48
	ATOM	4073	OW0	WAT	W	202	0	23.418	38.662	33.700	1.00 42.20
	ATOM	4074	OW0	WAT	W	203	0	9.004	24.070	36.971	1.00 40.06
	ATOM	4075	OW0	WA1	W	204	0	18.890	42.920	51.502	1.00 46.29
	ATOM	4076	owo	WA7	W	205	0	13.301	18.514	3.624	1.00 42.17
20	ATOM	4077	OW0	WA7	r W	206	0	31.189	12.995	19.645	1.00 51.92
	ATOM	4078	owo	WA7	r W	207	0	15.589	57.456	13.738	1.00 38.96
	ATOM	4079	owo) WAT	r w	208	0	-3.389	12.961	12.738	1.00 46.99
	ATOM	4080) OW) WA?	ΓW	209	0	9.321	30.475	6.320	1.00 49.75
	ATOM	4081	owo) WA	ΓW	210	0	1.680	61.379	33.738	1.00 37.48
25	ATOM	4082	owo) WA	ΓW	211	0	-3.811	36.417	3.807	1.00 46.01
	ATOM	4083	owo) WA	ΓW	/ 212	0	17.087	46.902	3.830	1.00 45.12
	ATOM	4084	OWO) WA	ΓW	/ 213	0	23.702	22.325	43.022	1.00 36.14
	ATOM	4085	ow() WA	r w	/ 214	0	10.849	60.003	14.389	1.00 32.05
	ATOM	4086	ow() WA	T W	V 215	5 0	34.001	25.493	20.855	1.00 40.75
30) ATOM	4087	7 OW) WA	TΨ	V 216	5 0	27.422	37.093	28.951	1.00 42.33
	ATOM	4088	8 OW	WA	TΨ	V 217	7 0	2.471	63.256	35.173	1.00 48.36
	ATOM	4089	9 OW	0 W A	TΨ	V 218	3 0	-0.973	59.086	28.720	1.00 53.14
	ATOM	4090	o ow	0 W A	Т۷	V 219	9 0	28.841	9.287	6.463	1.00 39.02
	ATOM	409	1 OW	0 WA	Tν	V 220	0 0	-5.593	21.802	9.619	1.00 44.21
35	5 ATOM	409	2 OW	0 WA	τV	V 22	1 0	22.109	15.52	1.696	1.00 38.33
	ATOM	409	3 OW	0 WA	ΤV	V 22	2 0	13.029	32.860	12.233	3 1.00 37.63
	ATOM	409	4 OW	0 WA	ΤV	V 22	3 0	11.840	33.823	3.800	1.00 42.20
	ATOM	409	5 OW	0 WA	ΤV	N 22	4 C	8.476	42.976	-0.104	1.00 40.23

```
ATOM 4096 OW0 WAT W 225 0 6.607 9.754 13.906 1.00 41.30
  ATOM 4097 OW0 WAT W 226 0 22.513 32.613 49.067 1.00 47.26
  ATOM 4098 OW0 WAT W 227 0 13.790 4.924 16.718 1.00 38.05
  ATOM 4099 OW0 WAT W 228 0 4.578 46.381 2.146 1.00 38.90
5 ATOM 4100 OW0 WAT W 229 0 -0.178 18.054 23.533 1.00 43.42
  ATOM 4101 OW0 WAT W 230 0 -5.146 34.010 4.766 1.00 38.90
  ATOM 4102 OW0 WAT W 231 0 20.232 28.890 51.507 1.00 44.95
  ATOM 4103 OW0 WAT W 232 0 16.083 32.879 10.309 1.00 45.29
  ATOM 4104 OW0 WAT W 233 0 22.111 51.333 10.599 1.00 34.03
10 ATOM 4105 OW0 WAT W 234 0 3.247 15.790 28.046 1.00 50.25
  ATOM 4106 OW0 WAT W 235 0 5.547 11.598 9.674 1.00 56.39
  ATOM 4107 OW0 WAT W 236 0 -1.085 18.297 -2.265 1.00 45.26
  ATOM 4108 OW0 WAT W 237 0 30.994 12.013 22.690 1.00 50.37
  ATOM 4109 OW0 WAT W 238 0 24.691 33.260 27.819 1.00 37.65
15 ATOM 4110 OW0 WAT W 239 0 18.911 40.770 5.815 1.00 44.15
  ATOM 4111 OW0 WAT W 240 0 21.532 53.033 33.280 1.00 31.23
  ATOM 4112 OW0 WAT W 241 0 19.745 46.029 4.364 1.00 46.38
  ATOM 4113 OW0 WAT W 242 0 27.516 16.526 25.474 1.00 51.75
  ATOM 4114 OW0 WAT W 243 0 34.171 19.604 8.423 1.00 55.79
20 ATOM 4115 OW0 WAT W 244 0 23.870 53.512 11.474 1.00 42.01
  ATOM 4116 OW0 WAT W 245 0 14.492 23.842 44.882 1.00 52.25
  ATOM 4117 OW0 WAT W 246 0 -3.070 63.260 33.189 1.00 40.77
  ATOM 4118 OW0 WAT W 247 0 22.185 55.701 37.353 1.00 39.52
  ATOM 4119 OW0 WAT W 248 0 14.144 26.239 42.825 1.00 42.50
25 ATOM 4120 OW0 WAT W 249 0 25.026 36.545 35.213 1.00 58.19
   ATOM 4121 OW0 WAT W 250 0 27.072 34.293 43.895 1.00 46.58
   ATOM 4122 OW0 WAT W 251 0 11.742 7.192 4.856 1.00 42.78
   ATOM 4123 OW0 WAT W 252 0 0.730 46.405 24.947 1.00 39.31
   ATOM 4124 OW0 WAT W 253 0 28.346 34.036 30.808 1.00 43.10
30 ATOM 4125 OW0 WAT W 254 0 -3.838 40.281 1.903 1.00 38.67
   ATOM 4126 OW0 WAT W 255 0 6.837 35.163 51.935 1.00 58.57
   ATOM 4127 OW0 WAT W 256 0 19.740 62.853 17.880 1.00 52.39
   ATOM 4128 OW0 WAT W 258 0 -0.994 41.755 22.088 0.00 69.57
   ATOM 4129 OW0 WAT W 259 0 1.221 10.473 15.458 1.00 54.80
35 ATOM 4130 OW0 WAT W 260 0 23.445 55.367 31.430 1.00 48.90
   ATOM 4131 OW0 WAT W 261 0 23.757 57.854 34.657 1.00 37.69
   ATOM 4132 OW0 WAT W 262 0 8.508 19.111 34.572 1.00 55.52
   ATOM 4133 OW0 WAT W 263 0 22.806 22.381 3.611 1.00 64.20
```

	ATOM	4134	owo	WAT	W	264	0	0.398	22.602	42.625	1.00 58.86
	ATOM	4135	owo	WAT	W	265	0	4.195	52.287	43.465	1.00 36.84
	ATOM	4136	OW0	WAT	W	266	0	20.211	6.536	4.911 1	.00 39.34
	ATOM	4137	OW0	WAT	W	267	0	14.680	16.117	2.803	1.00 45.76
5	ATOM	4138	owo	WAT	W	268	0	14.938	25.582	6.850	1.00 41.01
	ATOM	4139	owo	WAT	W	269	0	7.763	7.940	31.891	0.00 71.30
	ATOM	4140	owo	WAT	W	270	0	-3.459	33.491	39.400	1.00 40.80
	ATOM	4141	owo	WAT	W	271	0	23.154	22.897	6.985	1.00 48.25
	ATOM	4142	owo	WAT	W	272	0	34.916	25.555	28.092	1.00 52.63
10	ATOM	4143	ow0	WAT	W	273	0	8.332	45.481	50.776	1.00 47.23
	ATOM	4144	OW0	WAT	W	274	0	-3.441	57.643	28.775	1.00 49.70
	MOTA	4145	OW0	WAT	W	275	0	23.213	40.573	47.561	1.00 56.02
	ATOM	4146	owo	WAT	W	276	0	5.421	55.179	45.172	1.00 52.70
	ATOM	4147	OW0	WAT	W	277	0	-3.012	21.908	40.933	1.00 41.69
15	ATOM	4148	OW0	WAT	W	278	0	26.328	53.637	17.905	1.00 37.80
	ATOM	-	OW0								1.00 52.06
	ATOM	4150	owo	WAT	W	280	0				1.00 41.55
	ATOM	4151	OW0	WAT	W	281	0				1.00 58.65
	ATOM	4152	owo	WAT	W	282	0				1.00 44.76
20	ATOM	4153	OW0	WAT	W	283	0				1.00 52.40
	ATOM		OW0								1.00 54.58
	ATOM		OW0								1.00 43.62
	ATOM		OW0								1.00 52.20
	ATOM		OW0								1.00 56.81
25	ATOM		OW0				_				1.00 56.22
	ATOM										1.00 47.21
	ATOM		OW0								1.00 44.50
	ATOM										1.00 83.62
	ATOM		OWO								1.00 50.61
30	ATOM		OWO								1.00 78.48
	ATOM		OWO								1.00 61.15
	ATOM		OWO								1.00 53.17
	ATOM		ow(31.202		1.00 38.86
	ATOM		7 OW(53.886		1.00 41.62
35	ATOM		8 OW								1.00 49.64
	ATOM		9 OW(1.00 42.28
	ATOM	417	OWO) WA	ſν	V 300	0 (15.85	4 56.73	1 10.934	1.00 44.02

SEQUENCE LISTING

Ala Asp Gly Val Asn Gln Cys Pro Ile Ser Pro Gly His Ala P	
(B) STREET: Novo Alle (C) CITY: Bagsvaerd (E) COUNTRY: Denmark (F) POSTAL CODE (ZIP): DK-2800 (G) TELEPHONE: +45 44 44 88 88 (H) TELEFAX: +45 44 49 05 55 15 (ii) TITLE OF INVENTION: LACCASE MUTANTS (iii) NUMBER OF SEQUENCES: 10 (iv) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (I 25 (2) INFORMATION FOR SEQ ID NO: 1: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 539 amino acids (B) TYPE: amino acid (C) STRANDENNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein 35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1: 40 Met Phe Lys Asn Leu Leu Ser Phe Ala Leu Leu Ala Ile Ser V. 1 Sequence Description: Seq ID No: 1: 40 Met Phe Lys Asn Leu Leu Ser Phe Ala Leu Leu Ala Ile Ser V. 1 Sequence Description: Seq ID No: 1: 40 Asn Ala Gln Ile Val Asn Ser Val Asp Thr Met Thr Leu Thr A 20 30 45 Asn Val Ser Pro Asp Gly Phe Thr Arg Ala Gly Ile Leu Val A 35 40 46 Val His Gly Pro Leu Ile Arg Gly Gly Lys Asn Asp Asn Phe G 50 50 Asn Val Val Asn Asp Leu Asp Asn Pro Thr Met Leu Arg Pro T 65 10 Asn Val Val Asn Asp Leu Asp Asn Pro Thr Met Leu Arg Pro T 65 11 Ala Asp Gly Val Asn Gln Cys Pro Ile Ser Pro Gly His Ala P	
(iii) NUMBER OF SEQUENCES: 10 (iv) COMPUTER READABLE FORM: (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (I) 25 (2) INFORMATION FOR SEQ ID NO: 1: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 539 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein 35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1: Met Phe Lys Asn Leu Leu Ser Phe Ala Leu Leu Ala Ile Ser V. 1	
(iv) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (F) 25 (2) INFORMATION FOR SEQ ID NO: 1: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 539 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein 35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1: Met Phe Lys Asn Leu Leu Ser Phe Ala Leu Leu Ala Ile Ser V. 1 Asn Ala Gln Ile Val Asn Ser Val Asp Thr Met Thr Leu Thr A 20 45 Asn Val Ser Pro Asp Gly Phe Thr Arg Ala Gly Ile Leu Val A 35 Val His Gly Pro Leu Ile Arg Gly Gly Lys Asn Asp Asn Phe G 50 Asn Val Val Asn Asp Leu Asp Asn Pro Thr Met Leu Arg Pro T 75 Ile His Trp His Gly Leu Phe Gln Arg Gly Thr Asn Trp Ala A 85 Ala Asp Gly Val Asn Gln Cys Pro Ile Ser Pro Gly His Ala P	
20 (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (I 25 (2) INFORMATION FOR SEQ ID NO: 1: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 539 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein 35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1: Met Phe Lys Asn Leu Leu Ser Phe Ala Leu Leu Ala Ile Ser V. 1	
(2) INFORMATION FOR SEQ ID NO: 1: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 539 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1: Met Phe Lys Asn Leu Leu Ser Phe Ala Leu Leu Ala Ile Ser V. 10 Asn Ala Gln Ile Val Asn Ser Val Asp Thr Met Thr Leu Thr A 20 45 Asn Val Ser Pro Asp Gly Phe Thr Arg Ala Gly Ile Leu Val A 35 Val His Gly Pro Leu Ile Arg Gly Gly Lys Asn Asp Asn Phe G 50 Asn Val Val Asn Asp Leu Asp Asn Pro Thr Met Leu Arg Pro T 65 11e His Trp His Gly Leu Phe Gln Arg Gly Thr Asn Trp Ala A 85 15e R5 90 Ala Asp Gly Val Asn Gln Cys Pro Ile Ser Pro Gly His Ala P	EPO)
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 539 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID No: 1: Met Phe Lys Asn Leu Leu Ser Phe Ala Leu Leu Ala Ile Ser V. 10 Asn Ala Gln Ile Val Asn Ser Val Asp Thr Met Thr Leu Thr A 20 45 Asn Val Ser Pro Asp Gly Phe Thr Arg Ala Gly Ile Leu Val A 35 Val His Gly Pro Leu Ile Arg Gly Gly Lys Asn Asp Asn Phe G 50 Asn Val Val Asn Asp Leu Asp Asn Pro Thr Met Leu Arg Pro T 65 Ala Asp Gly Val Asn Gln Cys Pro Ile Ser Pro Gly His Ala P	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1: Met Phe Lys Asn Leu Leu Ser Phe Ala Leu Leu Ala Ile Ser V. 1 Asn Ala Gln Ile Val Asn Ser Val Asp Thr Met Thr Leu Thr A 30 45 Asn Val Ser Pro Asp Gly Phe Thr Arg Ala Gly Ile Leu Val A 45 Val His Gly Pro Leu Ile Arg Gly Gly Lys Asn Asp Asn Phe G 50 Asn Val Val Asn Asp Leu Asp Asn Pro Thr Met Leu Arg Pro T 75 Ile His Trp His Gly Leu Phe Gln Arg Gly Thr Asn Trp Ala A 85 Ala Asp Gly Val Asn Gln Cys Pro Ile Ser Pro Gly His Ala P	
40 Met Phe Lys Asn Leu Leu Ser Phe Ala Leu Leu Ala Ile Ser Vinder Asn Ala Gln Ile Val Asn Ser Val Asp Thr Met Thr Leu Thr Ago Asn Val Ser Pro Asp Gly Phe Thr Arg Ala Gly Ile Leu Val Ash Val His Gly Pro Leu Ile Arg Gly Gly Lys Asn Asp Asn Phe Go Asn Val Val Asn Asp Leu Asp Asn Pro Thr Met Leu Arg Pro Thr Met Leu Arg Pro Thr Met Leu Arg Pro Thr Met Ash Asp Gly Pro Ile Asp Gly Pro Ile Ser Pro Gly His Ala Pro Thr Met Asp Gly His Ala Pro Thr Met Asp Trp Ala Asp Gly Val Ash Gln Cys Pro Ile Ser Pro Gly His Ala Pro Thr Met Asp Gly Wal Asp Gly Cys Pro Ile Ser Pro Gly His Ala Pro Thr Met Asp Gly His Ala Pro Thr Met Asp Gly Wal Asp Gly Cys Pro Ile Ser Pro Gly His Ala Pro Thr Met Asp Gly Wal Asp Gly Pro Ile Ser Pro Gly His Ala Pro Thr Met Asp Gly Wal Asp Gly Pro Ile Ser Pro Gly His Ala Pro Thr Met Asp Gly Wal Asp Gly Pro Ile Ser Pro Gly His Ala Pro Thr Met Met Asp Gly Wal Asp Gly Pro Ile Ser Pro Gly His Ala Pro Thr Met Met Asp Gly Wal Asp Gly Pro Ile Ser Pro Gly His Ala Pro Thr Met Met Thr Leu Thr Met Met Met Thr Leu Thr Met	
40 1 5 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
20 25 30 45 Asn Val Ser Pro Asp Gly Phe Thr Arg Ala Gly Ile Leu Val A Ash Sol Val Bis Gly Pro Leu Ile Arg Gly Gly Lys Asn Asp Asn Phe Glo Asn Val Val Asn Asp Leu Asp Asn Pro Thr Met Leu Arg Pro Thr Asn Trp Ala Ash Asp Gly Val Asn Gln Cys Pro Ile Ser Pro Gly His Ala Pro Pro Sol Val Asn Gln Cys Pro Ile Ser Pro Gly His Ala Pro Pro Sol Val Asn Gln Cys Pro Ile Ser Pro Gly His Ala Pro Sol Val Asn Gln Cys Pro Ile Ser Pro Gly His Ala Pro Sol Val Asn Gln Cys Pro Ile Ser Pro Gly His Ala Pro Sol Val Asn Gln Cys Pro Ile Ser Pro Gly His Ala Pro Sol Val Asn Gln Cys Pro Ile Ser Pro Gly His Ala Pro Sol Val Asn Gln Cys Pro Ile Ser Pro Gly His Ala Pro Sol Val Asn Gln Cys Pro Ile Ser Pro Gly His Ala Pro Sol Val Asn Gln Cys Pro Ile Ser Pro Gly His Ala Pro Sol Val Asn Gln Cys Pro Ile Ser Pro Gly His Ala Pro Sol Val Asn Gln Cys Pro Ile Ser Pro Gly His Ala Pro Sol Val Val Asn Gln Cys Pro Ile Ser Pro Gly His Ala Pro Sol Val Val Asn Gln Cys Pro Ile Ser Pro Gly His Ala Pro Sol Val Val Asn Gln Cys Pro Ile Ser Pro Gly His Ala Pro Sol Val Val Val Val Val Val Val Val Val Va	
35 40 45 Val His Gly Pro Leu Ile Arg Gly Gly Lys Asn Asp Asn Phe G 50 Asn Val Val Asn Asp Leu Asp Asn Pro Thr Met Leu Arg Pro T 65 Ile His Trp His Gly Leu Phe Gln Arg Gly Thr Asn Trp Ala A 85 Ala Asp Gly Val Asn Gln Cys Pro Ile Ser Pro Gly His Ala P	sn Ala
50 Asn Val Val Asn Asp Leu Asp Asn Pro Thr Met Leu Arg Pro T 75 Ile His Trp His Gly Leu Phe Gln Arg Gly Thr Asn Trp Ala Asp 85 Ala Asp Gly Val Asn Gln Cys Pro Ile Ser Pro Gly His Ala P	sn Gly
Asn Val Val Asn Asp Leu Asp Asn Pro Thr Met Leu Arg Pro T 75 Ile His Trp His Gly Leu Phe Gln Arg Gly Thr Asn Trp Ala A 85 85 Ala Asp Gly Val Asn Gln Cys Pro Ile Ser Pro Gly His Ala P	lu Leu
Ala Asp Gly Val Asn Gln Cys Pro Ile Ser Pro Gly His Ala P	hr Ser 80
	sp Gly 5
100 105 110	he Leu
Tyr Lys Phe Thr Pro Ala Gly His Ala Gly Thr Phe Trp Tyr H	is Ser
His Phe Gly Thr Gln Tyr Cys Asp Gly Leu Arg Gly Pro Met V 130 135 140	
Tyr Asp Asp Asn Asp Pro His Ala Ala Leu Tyr Asp Glu Asp A 145 150 155 Asn Thr Ile Ile Thr Leu Ala Asp Trp Tyr His Ile Pro Ala F	

					165					170					175	
	Ile	Gln	Gly	Ala 180	Ala	Gln	Pro	Asp	Ala 185	Thr	Leu	Ile	Asn	Gly 190	Lys	Gly
5	Arg	Tyr	Val 195	Gly	Gly	Pro	Ala	Ala 200	Glu	Leu	Ser	Ile	Val 205	Asn	Val	Glu
10	Gln	Gly 210	Lys	Lys	Tyr	Arg	Met 215	Arg	Leu	Ile	Ser	Leu 220	Ser	Cys	Asp	Pro
	Asn 225	Trp	Gln	Phe	Ser	Ile 230	Asp	Gly	His	Glu	Leu 235	Thr	Ile	Ile	Glu	Val 240
15	Asp	Gly	Gln	Leu	Thr 245	Glu	Pro	His	Thr	Val 250	Asp	Arg	Leu	Gln	Ile 255	Phe
20	Thr	Gly	Gln	Arg 260	Tyr	Ser	Phe	Val	Leu 265	Asp	Ala	Asn	Gln	Pro 270	Val	Asp
20	Asn	Tyr	Trp 275	Ile	Arg	Ala	Gln	Pro 280	Asn	Lys	Gly	Arg	Asn 285	Gly	Leu	Ala
25	Gly	Thr 290	Phe	Ala	Asn	Gly	Val 295	Asn	Ser	Ala	Ile	Leu 300	Arg	Tyr	Ala	Gly
	Ala 305	Ala	Asn	Ala	Asp	Pro 310	Thr	Thr	Ser	Ala	Asn 315	Pro	Asn	Pro	Ala	Gln 320
30	Leu	Asn	Glu	Ala	Asp 325	Leu	His	Ala	Leu	Ile 330	Asp	Pro	Ala	Ala	Pro 335	Gly
35	Ile	Pro	Thr	Pro 340	Gly	Ala	Ala	Asp	Val 345	Asn	Leu	Arg	Phe	Gln 350	Leu	Gly
	Phe	Ser	Gly 355	Gly	Arg	Phe	Thr	Ile 360	Asn	Gly	Thr	Ala	Tyr 365	Glu	Ser	Pro
40	Ser	Val 370	Pro	Thr	Leu	Leu	Gln 375	Ile	Met	Ser	Gly	Ala 380	Gln	Ser	Ala	Asn
	Asp 385	Leu	Leu	Pro	Ala	Gly 390		Val	Tyr	Glu	Leu 395	Pro	Arg	Asn	Gln	Val 400
45	Val	Glu	Leu	Val	Val 405	Pro	Ala	Gly	Val	Leu 410		Gly	Pro	His	Pro 415	
50	His	Leu	His	Gly 420		Ala	Phe	Ser	Val 425		Arg	Ser	Ala	Gly 430		Ser
	Thr	Tyr	Asn 435		Val	Asn	Pro	Val 440	Lys	Arg	Asp	Val	Val 445	Ser	Leu	Gly
55	Val	Thr 450		Asp	Glu	Val	Thr 455		Arg	Phe	Val	Thr 460		Asn	Pro	Gly
	Pro 465	Trp	Phe	Phe	His	Cys 470		Ile	Glu	Phe	His 475		Met	. Asn	Gly	Leu 480
60	Ala	lle	Val	Phe	Ala 485		ı Asp	Met	Ala	490		Val	. Asp	Ala	Asn 495	Asn
65	Pro	Pro	Val	. Glu 500		Ala	. Gln	Leu	Cys 505		ılle	туг	Asp	Asp 510		Pro
UJ.	Pro	o Glu	Ala 519		Ser	: Ile	e Glr	Th:		. Val	. Arg	j Arg	3 Ala 525		ı Pro	Thr

Gly	Phe	Ser	Ala	Lys	Phe	Arg	Arg	Glu	Gly	Leu
	530					535				

5 (2) INFORMATION FOR SEQ ID NO: 2: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 499 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein	a Ala Val Ser
(A) LENGTH: 499 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein	a Ala Val Ser
•	a Ala Val Ser
	a Ala Val Ser
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:	a Ala Val Ser
Gly Ile Gly Pro Val Ala Asp Leu Thr Ile Thr Asn Al 1 5 10	15
Pro Asp Gly Phe Ser Arg Gln Ala Val Val Asn Gl 20 25	y Gly Thr Pro 30
Gly Pro Leu Ile Thr Gly Asn Met Gly Asp Arg Phe Gl 35 40 45	
Ile Asp Asn Leu Thr Asn His Thr Met Leu Lys Ser Th 50 55 60	r Ser Ile His
Trp His Gly Phe Phe Gln Lys Gly Thr Asn Trp Ala As 65 70 75	ep Gly Pro Ala 80
Phe Ile Asn Gln Cys Pro Ile Ser Ser Gly His Ser Ph 85 90	ne Leu Tyr Asp 95
Phe Gln Val Pro Asp Gln Ala Gly Thr Phe Trp Tyr Hi	ls Ser His Leu 110
Ser Thr Gln Tyr Cys Asp Gly Leu Arg Gly Pro Phe Va 40 115 120 12	
Pro Asn Asp Pro Ala Ala Asp Leu Tyr Asp Val Asp As 130 135 140	n Asp Asp Thr
Val Ile Thr Leu Val Asp Trp Tyr His Val Ala Ala Ly 145 150 155	ys Leu Gly Pro 160
Ala Phe Pro Leu Gly Ala Asp Ala Thr Leu Ile Asn Gl	ly Lys Gly Arg 175
Ser Pro Ser Thr Thr Thr Ala Asp Leu Ser Val Ile Se	er Val Thr Pro 190
Gly Lys Arg Tyr Arg Phe Arg Leu Val Ser Leu Ser Cy 55 200 20	ys Asp Pro Asn 05
Tyr Thr Phe Ser Ile Asp Gly His Asn Met Thr Ile I 210 215 220	le Glu Thr Asp
60 Ser Ile Asn Thr Ala Pro Leu Val Val Asp Ser Ile G 225 230 235	ln Ile Phe Ala 240
Ala Gln Arg Tyr Ser Phe Val Leu Glu Ala Asn Gln A 245 250	la Val Asp Asn 255
65 Tyr Trp Ile Arg Ala Asn Pro Asn Phe Gly Asn Val G 260 265	ly Phe Thr Gly 270

	Gly	Ile	Asn 275	Ser	Ala	Ile	Leu	Arg 280	Tyr	Asp	Gly	Ala	Ala 285	Ala	Val	Glu
5	Pro	Thr 290	Thr	Thr	Gln	Thr	Thr 295	Ser	Thr	Ala	Pro	Leu 300	Asn	Glu	Val	Asn
	Leu 305	His	Pro	Leu	Val	Thr 310	Thr	Ala	Val	Pro	Gly 315	Ser	Pro	Val	Ala	Gly 320
10	Gly	Val	Asp	Leu	Ala 325	Ile	Asn	Met	Ala	Phe 330	Asn	Phe	Asn	Gly	Thr 335	Asn
15	Phe	Phe	Ile	Asn 340	Gly	Ala	Ser	Phe	Thr 345	Pro	Pro	Thr	Val	Pro 350	Val	Leu
15	Leu	Gln	Ile 355	Ile	Ser	Gly	Ala	Gln 360	Asn	Ala	Gln	Asp	Leu 365	Leu	Pro	Ser
20	Gly	Ser 370	Val	Tyr	Ser	Leu	Pro 375	Ser	Asn	Ala	Asp	Ile 380	Glu	Ile	Ser	Phe
	Pro 385	Ala	Thr	Ala	Ala	Ala 390	Pro	Gly	Ala	Pro	His 395	Pro	Phe	His	Leu	His 400
25	Gly	His	Ala	Phe	Ala 405	Val	Val	Arg	Ser	Ala 410	Gly	Ser	Thr	Val	Tyr 415	Asn
30	Tyr	Asp	Asn	Pro 420	Ile	Phe	Arg	Asp	Val 425	Val	Ser	Thr	Gly	Thr 430	Pro	Ala
30	Ala	Gly	Asp 435	Asn	Val	Thr	Ile	Arg 440	Phe	Arg	Thr	Asp	Asn 445	Pro	Gly	Pro
35	Trp	Phe 450		His	Cys	His	Ile 455	Asp	Phe	His	Leu	Glu 460	Ala	Gly	Phe	Ala
	Val 465		Phe	Ala	Glu	Asp 470		Pro	Asp	Val	Ala 475	Ser	Ala	Asn	Pro	Val 480
40	Pro	Gln	Ala	Trp	Ser 485	Asp	Leu	СЛа	Pro	Thr 490		Asp	Ala	Leu	Asp 495	
	Ser	Asp	Gln													
45 (2)	INFO	RMAT	NOI	FOR	SEQ	ID N	O: 3	:								
50	(i)	(A (B (C	UENC) LE) TY) ST	NGTH PE: RAND	: 49 amin EDNE	9 am o ac SS:	ino id sing	acid	s							
55	(ii)	MOL	ECUL	E TY	PE:	prot	ein									
	(xi)	SEC	OUENC	E DE	SCRI	PTIC	N: S	EQ I	D NC): 3:						
60	Ala 1	ı Ile	e Gly	Pro	Val 5	Ala	Ser	Leu	\Va]	. Val	Ala	Asr	n Alá	a Pro	Va]	. Ser
	Pro	Asp	o Gly	Phe 20	. Lev	a Arg	J Asp	Ala	11e 25	e Val	l Val	. Asr	ı Gly	y Val 30	. Val	l Pro
65	Sei	r Pro	Lev 35	ı Ile	thr	Gly	/ Lys	40	s Gly	y Ası	Arg	Phe	e Gl: 45	n Lev	ı Ası	n Val
	Val	l Asp	o Thi	Lei	ı Thi	. Ası	n His	s Sei	Me1	t Le	u Lys	s Se	r Th	r Sei	: Ile	e His

		50					55					60				
	Trn		G] v	Phe	Phe	Gln		Glv	Thr	Asn	Trp		Glu	Glv	Pro	Ala
5	65		017			70		,			75			- 3		80
	Phe	Val	Asn	Gln	Cys 85	Pro	Ile	Ala	Ser	Gly 90	His	Ser	Phe	Leu	Tyr 95	Asp
10	Phe	His	Val	Pro 100	Asp	Gln	Ala	Gly	Thr 105	Phe	Trp	Tyr	His	Ser 110	His	Leu
	Ser	Thr	Gln 115	Tyr	Сув	Asp	Gly	Leu 120	Arg	Gly	Pro	Phe	Val 125	Val	Tyr	Asp
15	Pro	Lys 130	qaA	Pro	His	Ala	Ser 135	Arg	Tyr	Asp	Val	Asp 140	Asn	Glu	Ser	Thr
20	Val 145	Ile	Thr	Leu	Thr	Asp 150	Trp	Tyr	His	Thr	Ala 155	Ala	Arg	Leu	Gly	Pro 160
20	Lys	Phe	Pro	Leu	Gly 165	Ala	Asp	Ala	Thr	Leu 170	Ile	Asn	Gly	Leu	Gly 175	Arg
25	Ser	Ala	Ser	Thr 180	Pro	Thr	Ala	Ala	Leu 185	Ala	Val	Ile	Asn	Val 190	Gln	His
	Gly	Lys	Arg 195	Tyr	Arg	Phe	Arg	Leu 200	Val	Ser	Ile	Ser	Сув 205	Asp	Pro	Asn
30	Tyr	Thr 210	Phe	Ser	Ile	Asp	Gly 215	His	Asn	Leu	Thr	Val 220	Ile	Glu	Val	Asp
35	Gly 225	Ile	Asn	Ser	Gln	Pro 230	Leu	Leu	Val	Asp	Ser 235	Ile	Gln	Ile	Phe	Ala 240
33	Ala	Gln	Arg	Tyr	Ser 245	Phe	Val	Leu	Asn	Ala 250	Asn	Gln	Thr	Val	Gly 255	Asn
40	Tyr	Trp	Val	Arg 260	Ala	Asn	Pro	Asn	Phe 265	Gly	Thr	Val	Gly	Phe 270	Ala	Gly
	Gly	Ile	Asn 275	Ser	Ala	Ile	Leu	Arg 280	Tyr	Gln	Gly	Ala	Pro 285	Val	Ala	Glu
45	Pro	Thr 290	Thr	Thr	Gln	Thr	Pro 295	Ser	Val	Ile	Pro	Leu 300	Ile	Glu	Thr	Asn
50	Leu 305		Pro	Leu		Arg 310		Pro		Pro	_		Pro	Thr	Pro	Gly 320
30	Gly	Val	Asp	Lys	Ala 325	Leu	Asn	Leu	Ala	Phe 330		Phe	Asn	Gly	Thr 335	Asn
55	Phe	Phe	Ile	Asn 340	Asn	Ala	Thr	Phe	Thr 345		Pro	Thr	Val	Pro 350		Leu
	Leu	Gln	Ile 355		Ser	Gly	Ala	Gln 360		Ala	Gln	Asp	Leu 365		Pro	Ala
60	Gly	Ser 370		Tyr	Pro	Leu	Pro 375		His	s Ser	Thr	380		Ile	Thr	Leu
65	Pro 385		Thr	Ala	Leu	Ala 390		Gly	Ala	Pro	His 395		Phe	His	Leu	His 400
	Gly	' His	Ala	Phe	Ala 405		. Val	Arg	Ser	Ala 410		/ Ser	Thr	Thr	Tyr 415	Asn

		Tyr	Asn	Asp	Pro 420	Ile	Phe	Arg	Asp	Val 425	Val	Ser	Thr	Gly	Thr 430	Pro	Ala
5		Ala	Gly	Asp 435	Asn	Val	Thr	Ile	Arg 440	Phe	Gln	Thr	Asp	Asn 445	Pro	Gly	Pro
10		Trp	Phe 450	Leu	His	Cys	His	Ile 455	Asp	Phe	His	Leu	Asp 460	Ala	Gly	Phe	Ala
10		Ile 465	Val	Phe	Ala	Glu	Asp 470	Val	Ala	Asp	Val	Lys 475	Ala	Ala	Asn	Pro	Val 480
15		Pro	Lys	Ala	Trp	Ser 485	Asp	Leu	Cys	Pro	Ile 490	Tyr	Asp	Gly	Leu	Ser 495	Glu
		Ala	Asn	Gln													
20	(2)	INFO	RMATI	ON E	FOR S	SEQ 1	D NO): 4:	:								
25		(i)	(A) (B)	JENCE LEN TYI STF	NGTH:	548 amino EDNES	3 am: 5 ac: 55: 8	ino a id sing]	acida	5							
•		(ii)	MOL	ECULI	TYI	PE: p	prote	ein									
30		(xi)	SEQ	JENCI	E DES	SCRII	PTIO	N: SI	EQ II	ONO	: 4:						
35		Met 1	His	Thr	Phe	Leu 5	Arg	Ser	Thr	Ala	Leu 10	Val	Val	Ala	Gly	Leu 15	Ser
,,,		Ala	Arg	Ala	Leu 20	Ala	Ser	Ile	Gly	Pro 25	Val	Thr	Asp	Phe	His 30	Ile	Val
40		Asn	Ala	Ala 35	Val	Ser	Pro	Asp	Gly 40	Phe	Ser	Arg	Gln	Ala 45	Val	Leu	Ala
		Glu	Gly 50	Val	Phe	Pro	Gly	Pro 55	Leu	Ile	Ala	Gly	Asn 60	Lys	Gly	Asp	Asn
45		Phe 65	Gln	Ile	Asn	Val	Ile 70	Asp	Glu	Leu	Thr	Asn 75	Ala	Thr	Met	Leu	Lys 80
50		Thr	Thr	Thr	Ile	His 85	Trp	His	Gly	Phe	Phe 90	Gln	His	Gly	Thr	Asn 95	Trp
50		Ala	Asp	Gly	Pro 100	Ala	Phe	Ile	Asn	Gln 105		Pro	Ile	Ala	Ser 110	Gly	Asp
55		Ser	Phe	Leu 115	Tyr	Asn	Phe	Gln	Val 120	Pro	Asp	Gln	Ala	Gly 125		Phe	Trp
		Tyr	His 130	Ser	His	Leu	Ser	Thr 135		Tyr	Cys	Asp	Gly 140		Arg	Gly	Pro
60		Phe 145	Val	Val	Tyr	Asp	Pro 150		Asp	Pro	Tyr	Leu 155		Gln	Tyr	Asp	Val 160
<i>(=</i>		Asp	Asp	Asp	Ser	Thr 165		Ile	Thr	Leu	Ala 170		Trp	Tyr	His	Thr 175	
65		Ala	Arg	Leu	Gly 180		Pro	Phe	Pro	Ala 185		Asp	Thr	Thr	Leu 190	Ile	. Asn

	Gly	Leu	Gly 195	Arg	Cys	Gly	Glu	Ala 200	Gly	Сув	Pro	Val	Ser 205	Asp	Leu	Ala
5	Val	Ile 210	Ser	Val	Thr	Lys	Gly 215	Lys	Arg	Tyr	Arg	Phe 220	Arg	Leu	Val	Ser
	Ile 225	Ser	Cys	Asp	Ser	Phe 230	Phe	Thr	Phe	Ser	Ile 235	Asp	Gly	His	Ser	Leu 240
10	Asn	Val	Ile	Glu	Val 245	Asp	Ala	Thr	Asn	His 250	Gln	Pro	Leu	Thr	Val 255	Asp
16	Glu	Leu	Thr	Ile 260	Tyr	Ala	Gly	Gln	Arg 265	Tyr	Ser	Phe	Ile	Leu 270	Thr	Ala
15	Asp	Gln	Asp 275	Val	Asp	Asn	Tyr	Trp 280	Ile	Arg	Ala	Asn	Pro 285	Gly	Ile	Gly
20	Ile	Thr 290	Thr	Gly	Phe	Ala	Gly 295	Gly	Ile	Asn	Ser	Ala 300	Ile	Leu	Arg	Tyr
	Asp 305	Gly	Ala	Asp	Val	Val 310	Glu	Pro	Thr	Thr	Thr 315	Gln	Ala	Thr	Ser	Pro 320
25	Val	Val	Leu	Ser	Glu 325	Ser	Asn	Leu	Ala	Pro 330	Leu	Thr	Asn	Ala	Ala 335	Ala
30	Pro	Gly	Leu	Pro 340	Glu	Val	Gly	Gly	Val 345	Asp	Leu	Ala	Leu	Asn 350	Phe	Asn
50	Leu	Thr	Phe 355	Asp	Gly	Pro	Ser	Leu 360	Lys	Phe	Gln	Ile	Asn 365	Gly	Val	Thr
35	Phe	Val 370	Pro	Pro	Thr	Val	Pro 375	Val	Leu	Leu	Gln	Ile 380	Leu	Ser	Gly	Ala
	Gln 385	Ser	Ala	Ala	Asp	Leu 390	Leu	Pro	Ser	Gly	Ser 395	Val	Tyr	Ala	Leu	Pro 400
40	Ser	Asn	Ala	Thr	Ile 405	Glu	Leu	Ser	Leu	Pro 410	Ala	Gly	Ala	Leu	Gly 4 15	Gly
45	Pro	His	Pro	Phe 420	His	Leu	His	Gly	His 425	Thr	Phe	Ser	Val	Val 430	Arg	Pro
-13	Ala	Gly	Ser 435	Thr	Thr	Tyr	Asn	Tyr 440	Val	Asn	Pro	Val	Gln 445	Arg	Asp	Val
50	Val	Ser 450	Ile	Gly	Asn	Thr	Gly 4 55	Asp	Asn	Val	Thr	Ile 460	Arg	Phe	Asp	Thr
	Asn 465	Asn	Pro	Gly	Pro	Trp 470	Phe	Leu	His	Cys	His 475	Ile	Asp	Trp	His	Leu 480
55	Glu	Ala	Ala	Leu	Pro 485	Leu	Ser	Ser	Leu	Arg 490		Ser	Leu	Thr	Leu 495	Arg
60	Pro	Leu	Thr	Leu 500	Ser	Pro	Arg	Thr	Gly 505		Thr	Cys	Ala	Leu 510	Ser	Thr
	Thr	Leu	Trp 515	Thr	His	Leu	Ile	Thr 520	Ser	Gly	Phe	Ala	Ser 525		Ile	Glr
65	Trp	Met 530	Met	Gly	Gly	Asn	Gly 535		Phe	Ala	Pro	His 540		Leu	Ser	Phe
	Leu	Glv	Ser	Gln												

	(2)	INFO	RMATI	ON F	FOR S	SEQ I	D NC): 5:									
5		(i)	(B)	LEN TYI STF	IGTH: PE: & RANDE	529 mino EDNES	TERIS ami aci SS: s	no a ld singl	cids	i							
10		(ii)															
15		(xi)	SEQU	JENCE	E DES	CRI	OIT	l: SE	II QE	NO:	5:						
		Met 1	Leu	Ser	Ser	Ile 5	Thr	Leu	Leu	Pro	Leu 10	Leu	Ala	Ala	Val	Ser 15	Thr
20		Pro	Ala	Phe	Ala 20	Ala	Val	Arg	Asn	Tyr 25	Lys	Phe	Asp	Ile	Lys 30	Asn	Val
		Asn	Val	Ala 35	Pro	Asp	Gly	Phe	Gln 40	Arg	Ser	Ile	Val	Ser 45	Val	Asn	Gly
25		Leu	Val 50	Pro	Gly	Thr	Leu	Ile 55	Thr	Ala	Asn	Lys	Gly 60	Asp	Thr	Leu	Arg
30		Ile 65	Asn	Val	Thr	Asn	Gln 70	Leu	Thr	Asp	Pro	Ser 75	Met	Arg	Arg	Ala	Thr 80
30		Thr	Ile	His	Trp	His 85	Gly	Leu	Phe	Gln	Ala 90	Thr	Thr	Ala	Asp	Glu 95	Asp
35		Gly	Pro	Ala	Phe 100	Val	Thr	Gln	Cys	Pro 105	Ile	Ala	Gln	Asn	Leu 110	Ser	Tyr
		Thr	Tyr	Glu 115	Ile	Pro	Leu	Arg	Gly 120	Gln	Thr	Gly	Thr	Met 125	Trp	Tyr	His
40		Ala	His 130	Leu	Ala	Ser	Gln	Tyr 135	Val	Asp	Gly	Leu	Arg 140	Gly	Pro	Leu	Val
15		Ile 145	Tyr	Asp	Pro	Asn	Asp 150	Pro	His	Lys	Ser	Arg 155	Tyr	Asp	Val	Asp	Asp 160
45		Ala	Ser	Thr	Val	Val 165	Met	Leu	Glu	Asp	Trp 170	Tyr	His	Thr	Pro	Ala 175	Pro
50		Val	Leu	Glu	Lys 180	Gln	Met	Phe	Ser	Thr 185	Asn	Asn	Thr	Ala	Leu 190	Leu	Ser
		Pro	Val	Pro 195	Asp	Ser	Gly	Leu	Ile 200	Asn	Gly	Lys	Gly	Arg 205	Tyr	Val	Gly
55		Gly	Pro 210	Ala	Val	Pro	Arg	Ser 215	Val	Ile	Asn	Val	Lys 220	Arg	Gly	Lys	Arg
		Tyr 225	Arg	Leu	Arg	Val	Ile 230	Asn	Ala	Ser	Ala	Ile 235	Gly	Ser	Phe	Thr	Phe 240
60		Ser	Ile	Glu	Gly	His 245	Ser	Leu	Thr	Val	Ile 250	Glu	Ala	Asp	Gly	Ile 255	Leu
65		His	Gln	Pro	Leu 260	Ala	Val	Asp	Ser	Phe 265	Gln	Ile	Tyr	Ala	Gly 270	Gln	Arg
		Tyr	Ser	Val 275	Ile	Val	Glu	Ala	Asn 280	Gln	Thr	Ala	Ala	Asn 285	Tyr	Trp	Ile

148

Arg Ala Pro Met Thr Val Ala Gly Ala Gly Thr Asn Ala Asn Leu Asp Pro Thr Asn Val Phe Ala Val Leu His Tyr Glu Gly Ala Pro Asn Ala 5 Glu Pro Thr Thr Glu Gln Gly Ser Ala Ile Gly Thr Ala Leu Val Glu 10 Glu Asn Leu His Ala Leu Ile Asn Pro Gly Ala Pro Gly Gly Ser Ala Pro Ala Asp Val Ser Leu Asn Leu Ala Ile Gly Arg Ser Thr Val Asp 15 360 Gly Ile Leu Arg Phe Thr Phe Asn Asn Ile Lys Tyr Glu Ala Pro Ser 20 Leu Pro Thr Leu Leu Lys Ile Leu Ala Asn Asn Ala Ser Asn Asp Ala Asp Phe Thr Pro Asn Glu His Thr Ile Val Leu Pro His Asn Lys Val 25 Ile Glu Leu Asn Ile Thr Gly Gly Ala Asp His Pro Ile His Leu His Gly His Val Phe Asp Ile Val Lys Ser Leu Gly Gly Thr Pro Asn Tyr 30 Val Asn Pro Pro Arg Arg Asp Val Val Arg Val Gly Gly Thr Gly Val 35 Val Leu Arg Phe Lys Thr Asp Asn Pro Gly Pro Trp Phe Val His Cys His Ile Asp Trp His Leu Glu Ala Gly Leu Ala Leu Val Phe Ala Glu 40 Ala Pro Ser Gln Ile Arg Gln Gly Val Gln Ser Val Gln Pro Asn Asn Ala Trp Asn Gln Leu Cys Pro Lys Tyr Ala Ala Leu Pro Pro Asp Leu 45 Gln 50 (2) INFORMATION FOR SEQ ID NO: 6: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 599 amino acids (B) TYPE: amino acid 55 (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein 60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6: Met Ala Arg Ser Thr Thr Ser Leu Phe Ala Leu Ser Leu Val Ala Ser Ala Phe Ala Arg Val Val Asp Tyr Gly Phe Asp Val Ala Asn Gly Ala 65 Val Ala Pro Asp Gly Val Thr Arg Asn Ala Val Leu Val Asn Gly Arg

			35					40					45			
_	Phe	Pro 50	Gly	Pro	Leu	Ile	Thr 55	Ala	Asn	Lys	Gly	Asp 60	Thr	Leu	Lys	Ile
5	Thr 65	Val	Arg	Asn		Leu 70	Ser	Asp	Pro	Thr	Met 75	Arg	Arg	Ser	Thr	Thr 80
10	Ile	His	Trp	His	Gly 85	Leu	Leu	Gln	His	Arg 90	Thr	Ala	Glu	Glu	Asp 95	Gly
	Pro	Ala	Phe	Val 100	Thr	Gln	Cys	Pro	Ile 105	Pro	Pro	Gln	Glu	Ser 110	Tyr	Thr
15	Tyr	Thr	Met 115	Pro	Leu	Gly	Glu	Gln 120	Thr	Gly	Thr	Tyr	Trp 125	Tyr	His	Ser
20	His	Leu 130	Ser	Ser	Gln	Tyr	Val 135	Asp	Gly	Leu	Arg	Gly 140	Pro	Ile	Val	Ile
20	Tyr 145	Asp	Pro	His	Asp	Pro 150	Tyr	Arg	Asn	Tyr	T yr 155	Asp	Val	Asp	Asp	Glu 160
25	Arg	Thr	Val	Phe	Thr 165	Leu	Ala	Asp	Trp	Tyr 170	His	Thr	Pro	Ser	Glu 175	Ala
	Ile	Ile	Ala	Thr 180	His	Asp	Val	Leu	Lys 185	Thr	Ile	Pro	Asp	Ser 190	Gly	Thr
30	Ile	Asn	Gly 195	Lys	Gly	Lys	Tyr	Asp 200	Pro	Ala	Ser	Ala	Asn 205	Thr	Asn	Asn
35	Thr	Thr 210		Glu	Asn	Leu	Tyr 215	Thr	Leu	Lys	Val	Lys 220	Arg	Gly	Lys	Arg
33	Tyr 225	Arg	Leu	Arg	Ile	Ile 230		Ala	Ser	Ala	Ile 235	Ala	Ser	Phe	Arg	Phe 240
40	Gly	Val	Gln	Gly	His 245	Lys	Cys	Thr	Ile	Ile 250	Glu	Ala	Asp	Gly	Val 255	Leu
	Thr	Lys	Pro	1le 260		Val	Asp	Ala	Phe 265	Asp	Ile	Leu	Ala	Gly 270	Gln	Arg
45	Tyr	Ser	Cys 275		Leu	Lys	Ala	Asp 280		Asp	Pro	Asp	Ser 285	Tyr	Trp	Ile
50	Asn	Ala 290		Ile	. Thr	Asn	Val 295		Asn	Thr	Asn	1 Val 300	Glr	ı Ala	Leu	Leu
50	Val 305		Glu	ı Asp	Asp	310	Arg	Pro	Thr	His	Туг 315	Pro	Trp	Lys	Pro	9he 320
55	Leu	Thr	Trp) Lys	325		Asn	Glu	Ile	330	Glr	туг	r Trp	Glr	His 335	Lys
	His	Gly	y Sei	r His		/ His	s Lys	Gly	Lys 345	s Gly	His	s His	s His	350	val	. Arg
60	Ala	a Ile	e Gly 35	y Gly	y Val	L Ser	c Gly	/ Let	seı	Ser	Arg	y Val	l Lys 36	s Ser		g Ala
	Sei	370		u Sei	r Lys	s Lys	s Ala 375		L Gl	ı Lev	ı Ala	a Ala 38	a Ala	a Lei	ı Val	L Ala
65	Gl ₃		u Ala	a Glı	u Lei	1 As 1 3 9		s Arg	g Gli	n Asr	1 Gl	u Asj	p As:	n Sei	r Thi	40
	Va:	l Le	u As	p Gl	u Th:	r Ly:	s Lei	ı Ile	e Pr	o Lei	ı Va	l Gl	n Pr	o Gl	y Ala	a Pr

WO 98/27198 PCT/DK97/00571

	Gly	Gly	Ser	Arg 420	Pro	Ala	Asp	Val	Val 425	Val	Pro	Leu	Asp	Phe 430	Gly	Leu
5	Asn	Phe	Ala 435	Asn	Gly	Leu	Trp	Thr 440	Ile	Asn	Asn	Val	Ser 445	Tyr	Ser	Pro
10	Pro	Asp 450	Val	Pro	Thr	Leu	Leu 455	Lys	Ile	Leu	Thr	Asp 460	Lys	Asp	Lys	Val
	Asp 465	Ala	Ser	Asp	Phe	Thr 470	Ala	Asp	Glu	His	Thr 475	Tyr	Ile	Leu	Pro	Lys 480
15	Asn	Gln	Val	Val	Glu 485	Leu	His	Ile	Lys	Gly 490	Gln	Ala	Leu	Gly	Ile 495	Val
	His	Pro	Leu	His 500	Leu	His	Gly	His	Ala 505	Phe	Asp	Val	Val	Gln 510	Phe	Gly
20	Asp	Asn	Ala 515	Pro	Asn	Tyr	Val	Asn 520	Pro	Pro	Arg	Arg	Asp 525	Val	Val	Gly
25	Val	Thr 530	Asp	Ala	Gly	Val	Arg 535	Ile	Gln	Phe	Arg	Thr 540	Asp	Asn	Pro	Gly
	Pro 545	Trp	Phe	Leu	His	Cys 550		Ile	Asp	Trp	His 555	Leu	Glu	Glu	Gly	Phe 560
30	Ala	Met	Val	Phe	Ala 565	Glu	Ala	Pro	Glu	Asp 570		Lys	Lys	Gly	Ser 575	Gln
35	Ser	Val	Lys	Pro 580	Asp	Gly	Gln	Trp	Lys 585		Leu	Cys	Glu	Lys 590	Tyr	Glu
33	Lys	Leu	Pro 595		Ala	Leu	Gln									
40 (2)		RMAT														
45	(1)	(B	LE TY	NGTH PE:	: 57 amin EDNE	2 am lo ac ISS:	nino cid sing	acid	ls							
.5	(ii)	MOL														
50	(xi)	SEC	UENC	E DE	SCRI	PTIC	ON: S	SEQ I	D NO): 7:	:					
	Met 1	. Ala	Arg	Thr	Thi 5	Phe	e Lev	ı Val	l Sei	r Val	l Sei	r Let	ı Phe	e Val	l Sei 15	Ala
55	Va]	l Lev	ı Ala	Arg 20	g Thi	r Va	l Glu	туі	25	n Lei	ı Ly:	s Ile	e Se:	r Ası 30	n Gly	y Lys
	Ile	e Ala	a Pro	a Ası	Gl;	y Va	l Gli	u Arg 40	g Ası	p Ala	a Th	r Le	u Va 45	l Ası	n Gl	y Gly
60	Ту	r Pro	o Gl	y Pro	o Le	u Il	e Ph	e Ala	a As	n Ly	s Gl	y As 60	p Th	r Le	u Ly	s Val
65	Ly:		l Gl	n Asi	n Ly	s Le 70	u Th	r As	n Pr	o As	р Ме 75	t Ty	r Ar	g Th	r Th	r Ser 80
	Il	e Hi	s Tr	p Hi	s Gl 85		u Le	u Gl	n Hi	s Ar 90	g As	n Al	a As	p As	p As 95	p Gly

	Pro	Ala	Phe	Val 100	Thr	Gln	Cys	Pro	Ile 105	Val	Pro	Gln	Ala	Ser 110	Tyr	Thr
5	Tyr	Thr	Met 115	Pro	Leu	Gly	Asp	Gln 120	Thr	Gly	Thr	Tyr	Trp 125	Tyr	His	Ser
10	His	Leu 130	Ser	Ser	Gln	Tyr	Val 135	Asp	Gly	Leu	Arg	Gly 140	Pro	Leu	Val	Ile
10	Tyr 145	Asp	Pro	Lys	Asp	Pro 150	His	Arg	Arg	Leu	Tyr 155	Asp	Ile	Asp	Asp	Glu 160
15	Lys	Thr	Val	Leu	Ile 165	Ile	Gly	Asp	Trp	Tyr 170	His	Thr	Ser	Ser	Lys 175	Ala
	Ile	Leu	Ala	Thr 180	Gly	Asn	Ile	Thr	Leu 185	Gln	Gln	Pro	Asp	Ser 190	Ala	Thr
20	Ile	Asn	Gly 195	Lys	Gly	Arg	Phe	Asp 200	Pro	Asp	Asn	Thr	Pro 205	Ala	Asn	Pro
25	Asn	Thr 210	Leu	Tyr	Thr	Leu	Lys 215	Val	Lys	Arg	Gly	Lys 220	Arg	Tyr	Arg	Leu
	Arg 225	Val	Ile	Asn	Ser	Ser 230	Ala	Ile	Ala	Ser	Phe 235	Arg	Met	Ser	Ile	Gln 240
30	Gly	His	Lys	Met	Thr 245	Val	Ile	Ala	Ala	Asp 250	Gly	Val	Ser	Thr	Lys 255	Pro
				260			Asp		265					270		
35			275				Glu	280					285			
40		290					Lys 295					300				
	305					310	His				315					320
45					325		Ile			330					335	
				340					345					350		Gly
50			355					360					365			Glu
55	Thr	Thr 370		Val	Val	Met	Asp 375		Thr	Lys	Leu	. Val 380		Leu	Glu	His
	Pro 385	_	Ala	Ala	Cys	Gly 390		Lys	Pro	Ala	Asp 395		Val	Ile	Asp	Leu 400
60	Thr	Phe	Gly	val	Asn 405		. Thr	Thr	Gly	His		Met	Ile	. Asn	Gly 415	Ile
	Pro	His	Lys	Ser 420) Asp	Met	Pro	Thr		Lev	Lys	Ile	Leu 430		Asp
65	Thr	Asp	Gly 435		Thr	Glu	ı Ser	Asp 440		Thr	Glr	Pro	Glu 445		Thr	lle

Ile Leu Pro Lys Asn Lys Cys Val Glu Phe Asn Ile Lys Gly Asn Ser

			450					455					460				
5		Gly 465	Leu	Gly	Ile	Val	His 470	Pro	Ile	His	Leu	His 475	Gly	His	Thr	Phe	Asp 480
		Val	Val	Gln	Phe	Gly 485	Asn	Asn	Pro	Pro	Asn 490	Tyr	Val	Asn	Pro	Pro 495	Arg
10		Arg	Asp	Val	Val 500	Gly	Ala	Thr	Asp	Glu 505	Gly	Val	Arg	Phe	Gln 510	Phe	Lys
15		Thr	Asp	Asn 515	Pro	Gly	Pro	Trp	Phe 520	Leu	His	Cys	His	Ile 525	Asp	Trp	His
		Leu	Glu 530	Glu	Gly	Phe	Ala	Met 535	Val	Phe	Ala	Glu	Ala 540	Pro	Glu	Ala	Ile
20		Lys 545	Gly	Gly	Pro	Lys	Ser 550	Val	Pro	Val	Asp	Arg 555	Gln	Trp	Lys	Asp	Leu 560
		Cys	Arg	Lys	Tyr	Gly 565	Ser	Leu	Pro	Ala	Gly 570	Phe	Leu				
25	(2)	INFO	TAMS	I NOI	FOR S	SEQ 1	D NO	D: 8:	:								
30		(i)	(B)	LEI TYI	NGTH: PE: & RANDI	575 mino EDNES	am: ac: SS: s	ino a id singl	cids	5							
35		(ii)	MOLE	ECULI	E TYI	PE: p	prote	ein									
		(xi)	SEQ	JENCI	E DES	SCRI	PTIO	7: SI	EQ II	ОИ	: 8:						
40		Met 1	Ala	Arg	Thr	Thr 5	Phe	Leu	Val	Ser	Val 10	Ser	Leu	Phe	Val	Ser 15	Ala
		Val	Leu	Ala	Arg 20	Thr	Val	Glu	Tyr	Gly 25	Leu	Lys	Ile	Ser	Asp 30	Gly	Glu
45		Ile	Ala	Pro 35	Asp	Gly	Val	Lys	Arg 40	Asn	Ala	Thr	Leu	Val 45	Asn	Gly	Gly
		Tyr	Pro 50	Gly	Pro	Leu	Ile	Phe 55	Ala	Asn	Lys	Gly	Asp 60	Thr	Leu	Lys	Val
50		Lys 65	Val	Gln	Asn	Lys	Leu 70	Thr	Asn	Pro	Glu	Met 75	Tyr	Arg	Thr	Thr	Ser 80
55		Ile	His	Trp	His	Gly 85	Leu	Leu	Gln	His	Arg 90	Asn	Ala	Asp	Asp	Asp 95	Gly
		Pro	Ser	Phe	Val 100	Thr	Gln	Cys	Pro	Ile 105	Val	Pro	Arg	Glu	Ser 110	Tyr	Thr
60		Tyr	Thr	Ile 115	Pro	Leu	Asp	Asp	Gln 120	Thr	Gly	Thr	Tyr	Trp 125	_	His	Ser
		His	Leu 130	Ser	Ser	Gln	Tyr	Val 135	Asp	Gly	Leu	Arg	Gly 140		Leu	Val	Ile
65		Tyr 145	Pro	Lys	Asp	Pro	His 150	Arg	Arg	Leu	Tyr	Asp 155	Val	Asp	Asp	Glu	Lys 160
		Thr	Val	Leu	Ile	Ile	Gly	Asp	Trp	Tyr	His	Glu	Ser	Ser	Lys	Ala	Ile

					165					170					175	
	Leu	Ala	Ser	Gly 180	Asn	Ile	Thr	Arg	Gln 185	Arg	Pro	Val	Ser	Ala 190	Thr	Ile
5	Asn	Gly	Lys 195	Gly	Arg	Phe	Asp	Pro 200	Asp	Asn	Thr	Pro	Ala 205	Asn	Pro	Asp
10	Thr	Leu 210	туг	Thr	Leu	Lys	Val 215	Lys	Arg	Gly	Lys	Arg 220	Tyr	Arg	Leu	Arg
	Val 225	Ile	Asn	Ser	Ser	Glu 230	Ile	Ala	Ser	Phe	Arg 235	Phe	Ser	Val	Glu	Gly 240
15	His	Lys	Val	Thr	Val 245	Ile	Ala	Ala	Asp	Gly 250	Val	Ser	Thr	Lys	Pro 255	Tyr
20				260			Ile		265					270		
			275				Pro	280					285			
25		290					Thr 295					300				
	305					310	Pro				315					320
30					325		Lys			330					335	
35		_		340			His		345					350		
			355				Ser	360					365			
40		370					Asp 375					380				
	385					390					395					400
45					405		Ala			410					415	
50				420			Ile		425	i				430		
	GIU	a Asp	435		Inr	GIL	ı Ser	440		: 1111	цув	GIO.	445	1115	1111	vui
55	Ile	Leu 450		Lys	Asn	Lys	Cys 455		: Glu	ı Phe	Asr	11e	Lys	Gly	Asn	Ser
40	Gly 465	_	Pro	Ile	. Thr	His 470	Pro	Val	His	s Lev	475	Gly	/ His	Thr	Trp	480
60	Va]	l Val	Glr	n Phe	e Gly 485		n Asn	n Pro	Pro	490	туг)	r Val	Asr	n Pro	495	Arg
65	Arg	g Asp	val	Val 500		/ Se	r Thi	Asp	50!		/ Val	l Arg	g Ile	Glr 510	Phe	Lys
	Th	r Asp	51!		o Gly	y Pro	o Trp	9 Phe 520		u His	s Cy:	s His	5 Ile 525	e Asp	Trp	His

	Leu	Glu 530	Glu	Gly	Phe	Ala	Met 535	Val	Phe	Ala	Glu	Ala 540	Pro	Glu	Ala	Val
5	Lys 545	Gly	Gly	Pro	Lys	Ser 550	Val	Ala	Val	Asp	Ser 555	Gln	Trp	Glu	Gly	Leu 560
	Cys	Gly	Lys	Tyr	Asp 565	Asn	Trp	Leu	Lys	Ser 570	Asn	Pro	Gly	Gln	Leu 575	
10 (2)	INFOR	ITAM	ON F	OR S	EQ I	D NO	D: 9:									
15	(i)	(A) (B) (C)	LEN TYP	GTH: E: a ANDE	616 mino DNES	ami ac: SS: s	singl	cids	i							
20	(ii)	MOLE	CULE	TYI	PE: p	rote	ein									
	(xi)	SEQU	JENCE	DES	CRI	PTIO	N: SI	EQ II	ONO	: 9:						
25	Met 1	Lys	Arg	Phe	Phe 5	Ile	Asn	Ser	Leu	Leu 10	Leu	Leu	Ala	Gly	Leu 15	Leu
	Asn	Ser	Gly	Ala 20	Leu	Ala	Ala	Pro	Ser 25	Thr	His	Pro	Arg	Ser 30	Asn	Pro
30	Asp	Ile	Leu 35	Leu	Glu	Arg	Asp	Asp 40	His	Ser	Leu	Thr	Ser 45	Arg	Gln	Gly
	Ser	Cys 50	His	Ser	Pro	Ser	Asn 55	Arg	Ala	Cys	Trp	Cys 60	Ser	Gly	Phe	Asp
35	Ile 65	Asn	Thr	Asp	Tyr	Glu 70	Thr	Lys	Thr	Pro	Asn 75	Thr	Gly	Val	Val	Arg 80
40	Arg	Tyr	Thr	Phe	Asp 85	Ile	Thr	Glu	Val	Asp 90	Asn	Arg	Pro	Gly	Pro 95	Asp
	Gly	Val	Ile	Lys 100	Glu	Lys	Leu	Met	Leu 105		Asn	Asp	Lys	Leu 110	Leu	Gly
45	Pro	Thr	Val 115	Phe	Ala	Asn	Trp	Gly 120		Thr	Ile	Glu	Val 125	Thr	Val	Asn
50	Asn	His 130	Leu	Arg	Thr	Asn	Gly 135		Ser	Ile	His	Trp 140		Gly	Leu	His
50	Gln 145	Lys	Gly	Thr	Asn	Tyr 150		Asp	Gly	Ala	Asn 155		Val	Thr	Glu	Cys 160
55	Pro	Ile	Pro	Pro	Gly 165		Ser	Arg	Val	Tyr 170		Phe	Arg	Ala	Arg 175	Gln
	Tyr	Gly	Thr	Ser 180		Tyr	His	Ser	His 185		Ser	Ala	Gln	Tyr 190		Asn
60	Gly	Val	Ser 195		Ala	Ile	e Gln	1le 200		ı Gly	Pro	Ala	Ser 205		Pro	Tyr
C.	Asp	11e 210	_	Leu	. Gly	' Val	Leu 215		Lei	ı Xaa	Asp	220		Туг	Lys	Ser
65	Ala 225	Asp	Gln	Leu	Val	Ile 230		ı Thr	Lev	ı Xaa	Lys 235		/ Asr	n Ala	a Pro	Phe 240

	Ser	Asp	Asn	Val	Leu 245	Ile	Asn	Gly	Thr	Ala 250	Lys	His	Pro	Thr	Thr 255	Gly
5	Glu	Gly	Glu	Tyr 260	Ala	Ile	Val	Lys	Leu 265	Thr	Pro	Asp	Lys	Arg 270	His	Arg
	Leu	Arg	Leu 275	Ile	Asn	Met	Ser	Val 280	Glu	Asn	His	Phe	Gln 285	Val	Ser	Leu
10	Ala	Lys 290	His	Thr	Met	Thr	Val 295	Ile	Ala	Ala	Asp	Met 300	Val	Pro	Val	Asn
15	Ala 305	Met	Thr	Val	Asp	Ser 310	Leu	Phe	Met	Ala	Val 315	Gly	Gln	Arg	Tyr	Asp 320
13	Val	Thr	Ile	Asp	Ala 325	Ser	Gln	Ala	Val	Gly 330	Asn	Tyr	Trp	Phe	Asn 335	Ile
20	Thr	Phe	Gly	Gly 340	Gln	Gln	Lys	Сув	Gly 3 4 5	Phe	Ser	His	Asn	Pro 350	Ala	Pro
	Ala	Ala	Ile 355	Phe	Arg	Tyr	Glu	Gly 360	Ala	Pro	Asp	Ala	Leu 365	Pro	Thr	Asp
25	Pro	Gly 370	Ala	Ala	Pro	Lys	Asp 375	His	Gln	CAa	Leu	Asp 380	Thr	Leu	Asp	Leu
30	Ser 385	Pro	Val	Val	Gln	Lys 390	Asn	Val	Pro	Val	Asp 395	Gly	Phe	Val	Lys	Glu 400
30	Pro	Gly	Asn	Thr	Leu 405	Pro	Val	Thr	Leu	His 410	Val	Asp	Gln	Ala	Ala 415	Ala
35	Pro	His	Val	Phe 420	Thr	Trp	Lys	Ile	Asn 425	Gly	Ser	Ala	Ala	Asp 430	Val	Asp
	Trp	Asp	Arg 435	Pro	Val	Leu	Glu	Tyr 440	Val	Met	Asn	Asn	Asp 445	Leu	Ser	Ser
40	Ile	Pro 450	Val	Lys	Asn	Asn	Ile 455	Val	Arg	Val	Asp	Gly 460	Val	Asn	Glu	Trp
45	Thr 465	Tyr	Trp	Leu	Val	Glu 470	Asn	Asp	Pro	Glu	Gly 475	Arg	Leu	Ser	Leu	Pro 480
43	His	Pro	Met	His	Leu 485	His	Gly	His	Asp	Phe 490	Phe	Val	Leu	Gly	Arg 495	Ser
50	Pro	Asp	Val	Ser 500	Pro	Asp	Ser		Thr 505		Phe	Val	Phe	Asp 510	Pro	Ala
	Val	Asp	Leu 515	Pro	Arg	Leu	Arg	Gly 520	His	Asn	Pro	Val	Arg 525		Asp	Val
55	Thr	Met 530	Leu	Pro	Ala	Arg	Gly 535		Leu	Leu	Leu	Ala 540		Arg	Thr	Asp
60	Asn 545		Gly	Ala	Trp	Leu 550		His	Cys	His	Ile 555		Xaa	His	Val	Ser 560
	Gly	Gly	Leu	Ser	Val 565		Phe	Leu	Glu	Arg 570		Asp	Glu	Leu	Arg 575	Gly
65	Gln	Leu	Thr	Gly 580		Ser	Lys	Ala	Glu 585		Glu	Arg	Val	Cys 590		Glu
	Trp	Lys	Asp	Trp	Glu	Ala	Lys	Ser	Pro	His	Gly	. Lys	: Ile	. Asp	Ser	Gly

600 605 595 Leu Lys Gln Arg Arg Trp Asp Ala (2) INFORMATION FOR SEQ ID NO: 10: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 573 amino acids 10 (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10: Gln Gln Ser Cys Asn Thr Pro Ser Asn Arg Ala Cys Trp Thr Asp Gly 20 Tyr Asp Ile Asn Thr Asp Tyr Glu Val Asp Ser Pro Asp Thr Gly Val Val Arg Pro Tyr Thr Leu Thr Leu Thr Glu Val Asp Asn Trp Thr Gly 25 Pro Asp Gly Val Val Lys Glu Lys Val Met Leu Val Asn Asn Ser Ile 30 Ile Gly Pro Thr Ile Phe Ala Asp Trp Gly Asp Thr Ile Gln Val Thr Val Ile Asn Asn Leu Glu Thr Asn Gly Thr Ser Ile His Trp His Gly 35 Leu His Gln Lys Gly Thr Asn Leu His Asp Gly Ala Asn Gly Ile Thr 105 40 Glu Cys Pro Ile Pro Pro Lys Gly Gly Arg Lys Val Tyr Arg Phe Lys Ala Gln Gln Tyr Gly Thr Ser Trp Tyr His Ser His Phe Ser Ala Gln 45 Tyr Gly Asn Gly Val Val Gly Ala Ile Gln Ile Asn Gly Pro Ala Ser Leu Pro Tyr Asp Thr Asp Leu Gly Val Phe Pro Ile Ser Asp Tyr Tyr 50 Tyr Ser Ser Ala Asp Glu Leu Val Glu Leu Thr Lys Asn Ser Gly Ala Pro Phe Ser Asp Asn Val Leu Phe Asn Gly Thr Ala Lys His Pro Glu 55 Thr Gly Glu Gly Glu Tyr Ala Asn Val Thr Leu Thr Pro Gly Arg Arg 60 His Arg Leu Arg Leu Ile Asn Thr Ser Val Glu Asn His Phe Gln Val Ser Leu Val Asn His Thr Met Cys Ile Ile Ala Ala Asp Met Val Pro 65 Val Asn Ala Met Thr Val Asp Ser Leu Phe Leu Gly Val Gly Gln Arg 265

	Tyr	Asp	Val 275	Val	Ile	Glu	Ala	Asn 280	Arg	Thr	Pro	Gly	Asn 285	Tyr	Trp	Phe
5	Asn	Val 290	Thr	Phe	Gly	Gly	Gly 295	Leu	Leu	Cys	Gly	Gly 300	Ser	Arg	Asn	Pro
10	Tyr 305	Pro	Ala	Ala	Ile	Phe 310	His	Tyr	Ala	Gly	Ala 315	Pro	Gly	Gly	Pro	Pro 320
10	Thr	Asp	Glu	Gly	Lys 325	Ala	Pro	Val	Asp	His 330	Asn	Cys	Leu	Asp	Leu 335	Pro
15	Asn	Leu	Lys	Pro 340	Val	Val	Ala	Arg	Asp 345	Val	Pro	Leu	Ser	Gly 350	Phe	Ala
	Lys	Arg	Ala 355	Asp	Asn	Thr	Leu	Asp 360	Val	Thr	Leu	Asp	Thr 365	Thr	Gly	Thr
20	Pro	Leu 370	Phe	Val	Trp	Lys	Val 375	Asn	Gly	Ser	Ala	Ile 380	Asn	Ile	Asp	Trp
25	Gly 385	Arg	Ala	Val	Val	Asp 390	Tyr	Val	Leu	Thr	Gln 395	Asn	Thr	Ser	Phe	Pro 400
23	Pro	Gly	Tyr	Asn	11e 405	Val	Glu	Val	Asn	Gly 410	Ala	Asp	Gln	Trp	Ser 415	Tyr
30	Trp	Leu	Ile	Glu 420	Asn	Asp	Pro	Gly	Ala 425	Pro	Phe	Thr	Leu	Pro 430	His	Pro
	Met	His	Leu 435	His	Gly	His	Asp	Phe 440	Tyr	Val	Leu	Gly	Arg 445	Ser	Pro	Asp
35	Glu	Ser 450	Pro	Ala	Ser	Asn	Glu 455	Arg	His	Val	Phe	Asp 460	Pro	Ala	Arg	Asp
40	Ala 465	-	Leu	Leu	Ser	Gly 470		Asn	Pro	Val	Arg 475	Arg	Asp	Val	Ser	Met 480
40	Leu	Pro	Ala	Phe	Gly 485	Trp	Val	Val	Leu	Ser 490	Phe	Arg	Ala	Asp	Asn 495	Pro
45	Gly	Ala	Trp	Leu 500	Phe	His	Суз	His	11e 505		Trp	His	Val	Ser 510	Gly	Gly
	Leu	Gly	Val 515		Tyr	Leu	Glu	Arg 520	Ala	Asp	Asp	Leu	Arg 525	Gly	Ala	Val
50	Ser	Asp 530		Asp	Ala	Asp	Asp 535		Asp	Arg	Leu	Cys 540		Asp	Trp	Arg
55	Arg 545		Trp	Pro	Thr	Asn 550		Tyr	Pro	Lys	Ser 555	Asp	Ser	Gly	Leu	Lys 560
	His	Arg	Trp	Val	Glu 565		Gly	Glu	Trp	Leu 570	Val	Lys	Ala	l		

CLAIMS

- A method of constructing a variant of a parent Coprinus laccase, which variant has laccase activity and improved stability as compared to said parent laccase, which method comprises
- i) analysing the structure of the parent Coprinus laccase to identify at least one amino acid residue or at least one 10 structural part of the Coprinus laccase structure, which amino acid residue or structural part is believed to be of relevance for altering the stability of the parent Coprinus laccase (as evaluated on the basis of structural or functional considerations),

15

ii) constructing a *Coprinus* laccase variant, which as compared to the parent *Coprinus* laccase, has been modified in the amino acid residue or structural part identified in i) so as to alter the stability, and, optionally,

20

- iii) testing the resulting *Coprinus* laccase variant with respect to stability.
- 2. The method according to claim 1, wherein the structural part 25 to be modified is at the type I Cu site or at the type III Cu site.
- 3. A variant of a parent *Coprinus* laccase, which comprises a mutation in a position corresponding to at least one of the 30 following positions in SEQ ID No. 1:

W125,

Y134,

Y126,

Y170,

35 M75, and/or

M477.

4. A method of constructing a variant of a parent Coprinus-like

- laccase, which variant has laccase activity and improved stability as compared to said parent laccase, which method comprises
- i) comparing the three-dimensional structure of the Coprinus 5 laccase with the structure of a Coprinus-like laccase,
- ii) identifying a part of the Coprinus-like laccase structure which is different from the Coprinus laccase structure and functional considerations or structural contemplated to be responsible for differences in the stability 10 of the Coprinus and Coprinus-like laccase,
 - iii) modifying the part of the Coprinus-like laccase identified in ii) whereby a Coprinus-like laccase variant is obtained, which has an improved stability compared to the parent Coprinus-like laccase, and optionally,
- 15 iv) testing the resulting Coprinus-like laccase variant with respect to stability.
- 5. The method according to claim 4, wherein, in step iii), the part of the Coprinus-like laccase is modified so as to resemble 20 the corresponding part of the Coprinus laccase.
- 6. The method according to claim 4 or 5, wherein, in step iii), the modification is accomplished by deleting one or more amino acid residues of the part of the Coprinus-like laccase to be 25 modified; or the modification is accomplished by replacing one or more amino acid residues of the part of the Coprinus-like laccase to be modified with the amino acid residues occupying corresponding positions in the Coprinus laccase; modification is accomplished by insertion of one or more amino laccase into a Coprinus 30 acid residues present in the corresponding position in the Coprinus-like laccase.
- 7. The method according to any of claims 4-6, wherein the Coprinus-like laccase is selected from the group consisting of Phlebia radiata laccase, 35 Polyporus pinsitus Rhizoctonia solani laccase, Scytalidium thermophilum laccase

WO 98/27198

and Myceliophthora thermophila laccase.

- 8. The method according to claim 1 or 4, wherein the parent Coprinus laccase is derived from a strain of Coprinus cinereus.
- 9. The method according to claim 8, wherein the parent Coprinus laccase is derived from Coprinus cinereus IFO 8371.
- 10. A variant of a parent *Polyporus pinsitus (I)* laccase, which 10 comprises a mutation in a position corresponding to at least one of the following positions in SEQ ID No. 2:

W107,

Y116,

Y108,

15 Y152,

M57, and/or

M328.

11. A variant of a parent *Polyporus pinsitus (II)* laccase, 20 which comprises a mutation in a position corresponding to at least one of the following positions in SEQ ID No. 3:

W107,

Y116,

Y108,

25 Y152, and/or

M57.

12. A variant of a parent *Phlebia radiata* laccase, which comprises a mutation in a position corresponding to at least 30 one of the following positions in SEQ ID No. 4:

W128,

Y137,

Y129,

Y137, and/or

35 M78.

13. A variant of a parent Rhizoctonia solani (I) laccase, which

```
comprises a mutation in a position corresponding to at least
 one of the following positions in SEQ ID No. 5:
 W126,
 Y135,
5 Y127,
 Y171, and/or
 M76.
 14. A variant of a parent Rhizoctonia solani (II) laccase,
10 which comprises a mutation in a position corresponding to at
  least one of the following positions in SEQ ID No. 6:
 W439,
 W125,
 Y134,
15 Y126,
 Y170, and/or
 M75.
  15. A variant of a parent Rhizoctonia solani (III) laccase,
20 which comprises a mutation in a position corresponding to at
  least one of the following positions in SEQ ID No. 7:
  W411,
  W125,
  Y134,
25 Y126,
  Y170, and/or
  M75.
  16. A variant of a parent Rhizoctonia solani (IV) laccase,
30 which comprises a mutation in a position corresponding to at
  least one of the following positions in SEQ ID No. 8:
  W411,
  W125,
  Y134,
35 Y126,
  Y170, and/or
  M75.
```

17. A variant of a parent Scytalidium thermophilum laccase, which comprises a mutation in a position corresponding to at least one of the following positions in SEQ ID No. 9:

5 M483,

W422,

W181,

Y190,

M530,

10 Y182,

Y221,

M300, and/or

M313.

15 18. A variant of a parent Myceliophthora thermophila laccase, which comprises a mutation in a position corresponding to at least one of the following positions in SEQ ID No. 10:

W507,

M433,

20 W373,

W136,

Y145,

M480,

Y137,

25 Y176, and/or

M254.

19. A DNA construct comprising a DNA sequence encoding a laccase variant according to claim 3 or claims 10-18.

- 20. A recombinant expression vector which carries a DNA construct according to claim 19.
- 21. A cell which is transformed with a DNA construct according 35 to claim 19 or a vector according to claim 20.
 - 22. A cell according to claim 21, which is a microorganism.

- 23. A cell according to claim 22, which is a bacterium or a fungus.
- 5 24. A cell according to claim 23, which is an Aspergillus niger or an Aspergillus oryzae cell.
 - 25. Use of a laccase variant according to claim 3 or claims 10-18 for oxidizing a substrate.

- 26. Use of a laccase variant according to claim 25 for dye transfer inhibition.
- 27. Use of a laccase variant according to claim 25 for 15 bleaching textiles, in particular for bleaching denim.
 - 28. A detergent additive comprising a laccase variant according to claim 3 or claims 10-18 in the form of a non-dusting granulate, a stabilised liquid or a protected enzyme.

- 29. A detergent additive according to claim 28, which additionally comprises one or more other enzyme such as a protease, a lipase, an amylase, and/or a cellulase.
- 25 30. A detergent composition comprising a laccase variant according to claim 3 or claims 10-18 and a surfactant.
- 31. A detergent composition according to claim 30 which additionally comprises one or more other enzymes such as a 30 protease, a lipase, an amylase and/or a cellulase.

INTERNATIONAL SEARCH REPORT

International application No. PCT/DK 97/00571

"A" document defining the general state of the art which is not considered to be of particular relevance ertier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search Date of the actual completion of the international search Name and mailing address of the ISA/ Swedish Patent Office Box 5055, S-102 42 STOCKHOLM Authorized officer date and not in conflict with the application but cited to understand the principle or theory underlying the invention cannot be considered novel or cannot be considered novel or cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance: the claimed invention cannot be	A. CLASS	IFICATION OF SUBJECT MATTER		
Minimum occumentation searched (classification system followed by classification symbols) IPC6: C12N Documentation arached other than minimum documentation to the extent that such documents are included in the fields searched SE, DK, FI, NO classes as above Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X W0 9606930 A1 (NOVO NORDISK A/S), 7 March 1996 1-31 X W0 9600290 A1 (NOVO NORDISK BIOTECH, INC.), 3,10-31 X W0 9600290 A1 (NOVO NORDISK BIOTECH, INC.), 3,10-31 X W0 9507988 A1 (NOVO NORDISK BIOTECH, INC.), 3,10-31 X W0 9533837 A1 (NOVO NORDISK BIOTECH, INC.), 3,10-31 X W0 9533837 A1 (NOVO NORDISK BIOTECH, INC.), 3,10-31 X Further documents are listed in the continuation of Box C. Special categories of cited documents: ** Special categories are called and to absorber a value of the called and the documents: ** Special categories of cited do	IPC6: C	12N 9/02 // (C12N 9/02, C12R 1:645) International Patent Classification (IPC) or to both nati	onal classification and IPC	
Documentation exactled other than minimum documentation to the extent that such documents are included in the fields searched SE,DK,FI,NO classes as above Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages X W0 9606930 A1 (NOVO NORDISK A/S), 7 March 1996 1–31 X W0 960930 A1 (NOVO NORDISK BIOTECH, INC.), 4 January 1996 (04.01.96) X W0 9507988 A1 (NOVO NORDISK A/S), 23 March 1995 X W0 953837 A1 (NOVO NORDISK BIOTECH, INC.), 14 December 1995 (14.12.95) X W0 9538387 A1 (NOVO NORDISK BIOTECH, INC.), 14 December 1995 (14.12.95) X Further documents are listed in the continuation of Box C. X See patent family annex. Secured areapone of clast documents:				
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched SE,DK,FI,NO classes as above Bectronic data base consulted during the international search (name of data base and, where practicable, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X W0 9606930 A1 (NOVO NORDISK A/S), 7 March 1996 1–31 X W0 9600290 A1 (NOVO NORDISK BIOTECH, INC.), 3,10–31 X W0 9507988 A1 (NOVO NORDISK BIOTECH, INC.), 3,10–31 X W0 9507988 A1 (NOVO NORDISK BIOTECH, INC.), 3,10–31 X W0 9533837 A1 (NOVO NORDISK BIOTECH, INC.), 3,10–31 X Further documents are listed in the continuation of Box C. X See patent family annex. **Y **Occument editing the general trace of the art which is not considered to explain the problem of the class of particular relevance **Cit document both published on or after the international filing date **Cit document of particular relevance the claimed invention cannot be considered to document of particular relevance the claimed invention cannot be represented that published prior to the international filing date to insert the promoty date of particular relevance the claimed invention cannot be represented to published prior to the international filing date but later than the prior to the international filing date but later than the prior to the international filing date but later than the prior to the international filing date but later than the prior to the international filing date but later than the prior to the international filing date but later than the prior to the international filing date but later than the prior to the international filing date but later than the prior to the international filing date but later than the prior to the international filing date but later than the prior to the international filing date but later than the prior to the document published prior to the international filing da	Minimum do	ocumentation searched (classification system followed by a	classification symbols)	
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X				
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X			extent that such documents are included in	n the fields searched
C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X W0 9606930 A1 (NOVO NORDISK A/S), 7 March 1996 1-31 X W0 9600290 A1 (NOVO NORDISK BIOTECH, INC.), 4 January 1996 (04.01.96) X W0 9507988 A1 (NOVO NORDISK A/S), 23 March 1995 (23.03.95) X W0 9533837 A1 (NOVO NORDISK BIOTECH, INC.), 14 December 1995 (14.12.95) X W0 9533837 A1 (NOVO NORDISK BIOTECH, INC.), 3,10-31 X Further document sare listed in the continuation of Box C. X Special categories of cited documents X Special categories of cited documents X Securated defining the special state of the art which is not considered to be of particular relevance to the cited to set of particular relevance to the cited to set of particular relevance to the continuation cannot be considered to the continuation of the continuation cannot be considered to the continuation of the continuation cannot be considered to involve an investive step when the document in taken alone the protocyty date chained and the protocyty date chained a				
Category* Citation of document, with indication, where appropriate, of the relevant passages X	Electronic da	ata base consulted during the international search (name of	of data base and, where practicable, search	n terms used)
Category* Citation of document, with indication, where appropriate, of the relevant passages X				
Category* Citation of document, with indication, where appropriate, of the relevant passages X	0.000	MENTE CONSIDERED TO BE SELECTIVE		
X W0 9606930 A1 (NOVO NORDISK A/S), 7 March 1996 X W0 9600290 A1 (NOVO NORDISK BIOTECH, INC.), 4 January 1996 (04.01.96) X W0 9507988 A1 (NOVO NORDISK A/S), 23 March 1995 3,10-31 X W0 9507988 A1 (NOVO NORDISK A/S), 23 March 1995 3,10-31 X W0 9533837 A1 (NOVO NORDISK BIOTECH, INC.), 14 December 1995 (14.12.95) X W0 9533837 A1 (NOVO NORDISK BIOTECH, INC.), 3,10-31 X Further documents are listed in the continuation of Box C. X See patent family annex. X Special categories of cited documents: X Special categories of cited documents: X See patent family annex. X See patent family annex.				T
X W0 9600290 A1 (NOVO NORDISK BIOTECH, INC.), 3,10-31	Category*	Glation of document, with indication, where app	ropriate, of the relevant passages	Relevant to claim No.
X W0 9507988 A1 (NOVO NORDISK A/S), 23 March 1995 X W0 9533837 A1 (NOVO NORDISK BIOTECH, INC.), 14 December 1995 (14.12.95) Special categories of cited documents: A document defining the general state of the art which is not considered to be of patietuse relevance Cite occument which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other means Producement published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search Date of the actual completion of the international search Authorized officer Authorized officer Authorized officer Authorized officer Authorized officer Authorized officer Patrick Andersson	X	WO 9606930 A1 (NOVO NORDISK A/S) (07.03.96)	, 7 March 1996	1-31
X W0 9507988 A1 (NOVO NORDISK A/S), 23 March 1995 X W0 9533837 A1 (NOVO NORDISK BIOTECH, INC.), 14 December 1995 (14.12.95) Special categories of cited documents: A document defining the general state of the art which is not considered to be of patietuse relevance Cite occument which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other means Producement published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search Date of the actual completion of the international search Authorized officer Authorized officer Authorized officer Authorized officer Authorized officer Authorized officer Patrick Andersson				
X WO 9533837 A1 (NOVO NORDISK BIOTECH, INC.), 14 December 1995 (14.12.95) * Special categories of cited documents: A document defining the general state of the art which is not considered to be of particular relevance to be of particular relevance retire document but published on or after the international filling date to establish the publication date of another citation or other special reason (as specified) O document referring to an oral disclosure, use, exhibition or other means P document published prior to the international filling date but later than the priority date claimed Date of the actual completion of the international search Date of the actual completion of the international search Name and mailing address of the ISA/ Swedish Patent Office Box 5055, S-102 42 STOCKHOLM See patent family annex. T later document published after the international filling date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention cannot be considered above or cannot be considered to involve an unventive step when the document is represented to provide an invention cannot be considered to involve an inventive step when the document is combined with or more other such documents provided in the art document member of the same patent family Date of the actual completion of the international search O 1 -04- 1998 Authorized officer Patrick Andersson	х		ECH, INC.),	3,10-31
X WO 9533837 A1 (NOVO NORDISK BIOTECH, INC.), 14 December 1995 (14.12.95) * Special categories of cited documents: A document defining the general state of the art which is not considered to be of particular relevance to be of particular relevance retire document but published on or after the international filling date to establish the publication date of another citation or other special reason (as specified) O document referring to an oral disclosure, use, exhibition or other means P document published prior to the international filling date but later than the priority date claimed Date of the actual completion of the international search Date of the actual completion of the international search Name and mailing address of the ISA/ Swedish Patent Office Box 5055, S-102 42 STOCKHOLM See patent family annex. T later document published after the international filling date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention cannot be considered above or cannot be considered to involve an unventive step when the document is represented to provide an invention cannot be considered to involve an inventive step when the document is combined with or more other such documents provided in the art document member of the same patent family Date of the actual completion of the international search O 1 -04- 1998 Authorized officer Patrick Andersson				
Further documents are listed in the continuation of Box C. ** Special categories of cited documents: *A* document defining the general state of the art which is not considered to be of particular relevance *B* ertier document but published on or after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention *X* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) *O* document referring to an oral disclosure, use, exhibition or other means *P* document published prior to the international filing date but later than the priority date claimed *Date of the actual completion of the international search Date of the actual completion of the international search *A* document member of the same patent family Date of mailing address of the ISA/ Swedish Patent Office Box 5055, S-102 42 STOCKHOLM **See patent family annex. *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention cannot be considered novel or cannot be considered novel or cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone *Y* **Comment of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is considered to involve an inventive step when the document is considered to involve an inventive step when the document is considered to involve an inventive step when the document is considered to involve an inventive step when the document is taken alone *Y* **Comment of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is taken alone **Comment of particular relevance: the claimed to international filing date or priorit	x		, 23 March 1995	3,10-31
Further documents are listed in the continuation of Box C. ** Special categories of cited documents: *A* document defining the general state of the art which is not considered to be of particular relevance *B* ertier document but published on or after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention *X* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) *O* document referring to an oral disclosure, use, exhibition or other means *P* document published prior to the international filing date but later than the priority date claimed *Date of the actual completion of the international search Date of the actual completion of the international search *A* document member of the same patent family Date of mailing address of the ISA/ Swedish Patent Office Box 5055, S-102 42 STOCKHOLM **See patent family annex. *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention cannot be considered novel or cannot be considered novel or cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone *Y* **Comment of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is considered to involve an inventive step when the document is considered to involve an inventive step when the document is considered to involve an inventive step when the document is considered to involve an inventive step when the document is taken alone *Y* **Comment of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is taken alone **Comment of particular relevance: the claimed to international filing date or priorit				
**Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "B" ertier document but published on or after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search Date of mailing of the international search report O 1 -04- 1998 Name and mailing address of the ISA/ Swedish Patent Office Box 5055, S-102 42 STOCKHOLM Authorized officer Patrick Andersson	x		ECH, INC.),	3,10-31
**Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "B" ertier document but published on or after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search Date of mailing of the international search report O 1 -04- 1998 Name and mailing address of the ISA/ Swedish Patent Office Box 5055, S-102 42 STOCKHOLM Authorized officer Patrick Andersson				
**Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "B" ertier document but published on or after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search Date of mailing of the international search report O 1 -04- 1998 Name and mailing address of the ISA/ Swedish Patent Office Box 5055, S-102 42 STOCKHOLM Authorized officer Patrick Andersson				
Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" ertier document but published on or after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed "Date of the actual completion of the international search Date of mailing of the international search report 0 1 -04- 1998 Name and mailing address of the ISA/ Swedish Patent Office Box 5055, S-102 42 STOCKHOLM "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document or particular relevance: the claim	E. salb	er documents are listed in the continuation of Poy	C V See natent family some	
"A" document defining the general state of the art which is not considered to be of particular relevance "B" erlier document but published on or after the international filing date cited to establish the publication date of another citation or other special reason (as specified) "O" document published prior to the international filing date but later than the priority date claimed "P" document published prior to the international filing date but later than the priority date claimed "Date of the actual completion of the international search "A" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance: the claimed invention and the priority document of particular relevance. "Y" document of particular relevance: the claimed invention and the priority document of particular relevance.				
"E" erlier document but published on or after the international filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search Date of the actual completion of the international search Name and mailing address of the ISA/ Swedish Patent Office Box 5055, S-102 42 STOCKHOLM "X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is combined with one or more other such document, such combination being obvious to a person skilled in the art "&" document member of the same patent family Date of mailing of the international search report 0 1 -04- 1998 Authorized officer Patrick Andersson	"A" docum	ent defining the general state of the art which is not considered	date and not in conflict with the app	lication but cited to understand
cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search Date of the actual completion of the international search Name and mailing address of the ISA/ Swedish Patent Office Box 5055, S-102 42 STOCKHOLM step when the document is taken alone "V" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is town inventive step when the document is town inventive step when the document is taken alone "V" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is taken alone "V" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is taken alone "V" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is taken alone "V" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is taken alone "V" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is taken alone "V" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is taken alone "V" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is taken alone "V" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is taken alone "V" document of particular relevance: the claimed invention alone "V" document of particular relevance: the claimed invention alone "V" d	"E" erlier d	ocument but published on or after the international filing date	"X" document of particular relevance: the	claimed invention cannot be
"O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search 31 March 1998 Name and mailing address of the ISA/ Swedish Patent Office Box 5055, S-102 42 STOCKHOLM Considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family Date of mailing of the international search report 0 1 -04- 1998 Authorized officer Patrick Andersson	cited to	establish the publication date of another citation or other	step when the document is taken alor	ne .
*P" document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search 31 March 1998 Name and mailing address of the ISA/ Swedish Patent Office Box 5055, S-102 42 STOCKHOLM being obvious to a person skilled in the art document member of the same patent family Date of mailing of the international search report 0 1 -04- 1998 Authorized officer Patrick Andersson	"O" docum		considered to involve an inventive st	ep when the document is
Date of the actual completion of the international search O 1 -04- 1998 31 March 1998 Name and mailing address of the ISA/ Swedish Patent Office Box 5055, S-102 42 STOCKHOLM Date of mailing of the international search report O 1 -04- 1998 Authorized officer Patrick Andersson	"P" docum		being obvious to a person skilled in	the art
31 March 1998 Name and mailing address of the ISA/ Swedish Patent Office Box 5055, S-102 42 STOCKHOLM Patrick Andersson	<u> </u>			
Name and mailing address of the ISA/ Swedish Patent Office Box 5055, S-102 42 STOCKHOLM Patrick Andersson		ļ	0 1 - 04-	1998
Swedish Patent Office Box 5055, S-102 42 STOCKHOLM Patrick Andersson			Authorized officer	
Box 5055, S-102 42 STOCKHOLM Patrick Andersson	1	-	Audiorized officer	
I Facsimile No. + 46 8 666 02 86 I Telephone No. + 46 8 782 25 00	Box 5055	, S-102 42 STOCKHOLM	Patrick Andersson Telephone No. + 46 8 782 25 00	

INTERNATIONAL SEARCH REPORT

International application No.
PCT/DK 97/00571

		PC1/DK 3//0	
C (Continu	ation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the rele	vant passages	Relevant to claim No.
х	WO 9533836 A1 (NOVO NORDISK BIOTECH, INC.), 14 December 1995 (14.12.95)		3,10-31
A	WO 9623874 A1 (NOVO NORDISK A/S), 8 August 19 (08.08.96), see claims and the whole docu		1-2,4-9
A	Biochimica et Biophysica Acta, Volume 1292, 1 Feng Xu et al, "A study of a series of re fungal leaccases and bilirubin oxidase th exhibit significant differences in redox substrate specificity, and stability", page 303 - page 311, page 310	at	1-2,4-9
A	FEMS Microbiology Letters, Volume 132, 1995, Soon-ja Kim et al, "Characteristics of a over-secreting mutant of Coprinus congreg page 177 - page 179	laccase atus"	1-18

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Information on patent family members

02/03/98

International application No.
PCT/DK 97/00571

	itent document in search repor	ι	Publication date		Patent family member(s)		Publication date
0	9606930	A1	07/03/96	AU	3253695	A	22/03/96
 0	9600290	A1	04/01/96	AU	28 2 7895		19/01/96
				CA	2193070	A	04/01/96
				EP	0767836	Α	16/04/97
				FI	965201	A	21/02/97
				US	5667531	A	16/09/97
 0	9507988	A1	23/03/95	AU	78 33694		03/04/95
_			44, 44, 44	BR	9407511	Α	07/01/97
				CA	2171288	Α	23/03/95
				CN	1133067	A	09/10/96
				EP	0719337	Α	03/07/96
				FI	961250	Α	18/03/96
				JP	9 503126	T	31/03/97
				US	5480801	A	02/01/96
0	9533837	A1	14/12/95	AU	2656695	Α	04/01/96
-				EP	0763115	A	19/03/97
0	9533836	A1	14/12/95	AU	2656595	A	04/01/96
•	200000		,, - 3	CA	2191718	Ä	14/12/95
				EP	0765394	Α	02/04/97
				FI	964808	A	02/12/96
0	9623874	A1	08/08/96	AU	4483496	A	21/08/96
-				CA	2211316		08/08/96
				EP	0808363	A	26/11/97

SCHEDULE A

PRODUCTS PRODUCED BY EB:

 Blend glucoamylase and liter
 \$ 3.90
 \$ 3.90
 \$ 3.75
 \$ 4.08
 \$ 4.07
 Bulk for Argo & Winston

 Pullulanase
 Concentrated Ultradex
 liter
 \$ 4.99
 Winston
 Port Comment \$ 114 Bulk for Argo & \$ 5.00 \$ 5.00 \$ 5.00 \$ 5.60 \$ 5.06 \$ 5.06 \$ 5.05 At 300 Units/g Winston
 Argo
 Stockton
 Winston
 San Juan
 Cardinal
 London

 \$ 1.05
 \$ 1.10
 \$ 1.05
 \$ 1.12
 \$ 1.15
 \$ 1.13
 Unit ۵ ₽ Schedule A - EB Enzyme Prices
Prices are Prices to Arancia include duty Description Low pH, low calcium Immobilized glucose alpha amylase isomerase Ultradex 990-CP Ultradex 990 HC UltrapHLo II or G-Zyme IMGI Prices are delivered alternative Enzyme

PRODUCTS PRODUCED BY GENENCOR:

	Delivered Prices in US \$7kg	US \$/kg	
Product	Package	US & Canada Locations	Mexico
Liquefaction Enzymes			
SPEZYME® FRED	Tankers	\$1.75	
	Drum or Tote	\$1.92	\$2.12
SPEZYME® FRED L	Tankers	\$1.55	
	Drum or Tote	\$1.72	\$1.92
Saccharification Fuzymes			
OPTIMAX® 4060 VHP	Tankers	\$3.79	
	Drum or Tote	\$3.96	\$4.16
GC137	Tankers	\$2.64	
	Drum or Tote	\$2.81	\$3.01
OPTIMAX® 7525 HP	Tankers	\$3.19	
	Drum or Tote	\$3.36	\$3.56

OPTIDEX® 1,400 Glucoamylase	Tankers	\$3.04	
	Drum or Tote	\$3.21	13.58
OPTIMAX® L 1000 Debrancher	Drum or Tote	\$7.60	08'2\$
Glucose Isomerase			
GENSWEET® IGI SA	Notes 1 &, 2	\$17.50	\$17.70
GENSWEET® IGI HF	Notes 1 & 2	\$25.00	\$25.20
GENSWEET® IGI VHF	Notes 1 & 2	\$29.17	\$29.37

Notes

- 350 for IGI VHF. The ship price shall be adjusted to reflect the release activity of the particular production lots -- for example, a shipment of product at The prices on immobilized glucose isomerase are based on activity. The prices above are calculated at 210 GIGIC/g for IGLSA, 300 for IGI HF and 270 GIGIC/g would invoice at (270/300) x \$25.00 or \$22.50 per kg. The availability of a complete range of activities allows plant flow rates to be accurately customized.
- 1. The immobilized products are available in 500 kg bulk bags, and 25 kg fiber drums.
- All products are food grade and kosher.
- 1. Shipment of drums or totes is in full truck loads. Freight assumes 16 totes containing 1200 kg each will fit into a truck.
- All Products to be invoiced and paid in U.S. Dollars.
- Invoices for products shipped to Mexico shall be net 45 days.
- Invoices for products shipped to the U.S. and Canada shall be due net thirty (30) days, with an additional fifteen (15) day grace period. No interest shall interest shall be charged at 1% per month, unless prohibited by law. No interest shall be charged on any amount regarding which Buyer has raised a be charged until after expiration of such grace period, and in the event that Supplier elects to charge interest on any past due amount thereafter, that good faith dispute. Payments shall be made by electronic transfer.
- Supplier after the Effective Date hereof because of the sale or shipment of products, will be added to or subtracted from the price herein specified. Any price herein specified. Price adjustments for freight rates in any twelve month period shall be limited to +/- 10% of the freight component of the price increase or decrease in freight rates paid by Supplier on shipments to Mexico after the Effective Date hereof will be added to or subtracted from the existing prior to the adjustment. Supplier recognizes that any additions may trigger Production Cost review by Buyer. There shall be no increase or For shipments to Mexico, any actual increase or decrease in tax, duty or governmental charge becoming effective and payable or recognized by the decrease in prices for shipments in the U.S. and Canada. 4

SCHEDULE B

PRODUCTS PRODUCED BY EB:

Schedule B - EB Enzyme Prices	Se							
Prices to Arancia include	nde							
	Unit	Argo	Unit Argo Stockton Winston	Winston	San Cardinal London Juan	London		Port Comment
	ڡ				\$ 1.50		\$ 1.49	
Alpha amylase for	₽				\$ 2.35			
Alpha amylase for	Q	lb \$ 2.35						
Alpha amylase for	q	lb \$ 3.25						
Alpha amylase to	മ					\$ 5.43		
reduce traces of								
-								
	liter				\$ 3.13			
	liter	liter \$ 2.20						

FOR PLANTS THAT ARE NOT CURRENTLY USING THESE ENZYMES THE PRICES ON THE ABOVE TABLE WILL BE ADJUSTED BY DIFFERENTIAL FREIGHT COST BETWEEN BELOIT AND THE PLANT

PRODUCTS PRODUCED BY GENENCOR:

	Delivered Prices in US \$/kg	US \$/kg	
Product	Package	US & Canada Locations	Mexico
Other Enzymes			
Clarase I. Fungal Alpha	Drum or Tote	\$11.50	\$11.70
Amylase			
OPTIMALT BBA Barley	Drum or Tote	\$10.75	\$10.95
Beta Amylase			

SPEZYME DBA Diastatic	Drum or Tote	\$10.75	\$10.95
Beta Amylase		,	
SPEZYMELT 75 Low	Drum or Tote	\$2.45	\$2.65
Temp. AA			
OPTIDEX L-300	Drum or Tote	\$2.95	\$3.15
Glucoamylase			

Notes

- 350 for IGI VHF. The ship price shall be adjusted to reflect the release activity of the particular production lots -- for example, a shipment of product at The prices on immobilized glucose isomerase are based on activity. The prices above are calculated at 210 GIGIC/g for IGI SA, 300 for IGI HF and 270 GIGIC/g would invoice at (270/300) x \$25.00 or \$22.50 per kg. The availability of a complete range of activities allows plant flow rates to be accurately customized.
- 2. The immobilized products are available in 500 kg bulk bags, and 25 kg fiber drums.
- . All products are food grade and kosher.
- 4. Shipment of drums or totes is in full truck loads. Freight assumes 16 totes containing 1200 kg each will fit into a truck.
- 5. All Products to be invoiced and paid in U.S. Dollars.
- 6. Invoices for products shipped to Mexico shall be net 45 days.
- Invoices for products shipped to the U.S. and Canada shall be due net thirty (30) days, with an additional fifteen (15) day grace period. No interest shall interest shall be charged at 1% per month, unless prohibited by law. No interest shall be charged on any amount regarding which Buyer has raised a be charged until after expiration of such grace period, and in the event that Supplier elects to charge interest on any past due amount thereafter, that good faith dispute. Payments shall be made by electronic transfer. ζ.
- Supplier after the Effective Date hereof because of the sale or shipment of products, will be added to or subtracted from the price herein specified. Any price herein specified. Price adjustments for freight rates in any twelve month period shall be limited to 4/- 10% of the freight component of the price existing prior to the adjustment. Supplier recognizes that any additions may trigger Production Cost review by Buyer. There shall be no increase or increase or decrease in freight rates paid by Supplier on shipments to Mexico after the Effective Date hereof will be added to or subtracted from the For shipments to Mexico, any actual increase or decrease in tax, duty or governmental charge becoming effective and payable or recognized by the decrease in prices for shipments in the U.S. and Canada. œ