EXERCICE 2.

On considère dans tout cet exercice les deux fonctions F et G définies sur \mathbb{R}_+^* par :

$$F(x) = \frac{\sin(x)}{x} \qquad G(x) = \frac{1 - \cos(x)}{x}$$

Etudes de deux fonctions

- 1. (a) Montrer que les fonctions F et G sont continues sur \mathbb{R}_+^* .
 - (b) Montrer que F et G sont prolongeables par continuité en 0. On notera encore F et G ces prolongements.
- 2. (a) Montrer que les fonctions F et G sont dérivables sur \mathbb{R}_+^* et calculer leurs dérivées.
 - (b) Démontrer, à l'aide de développements limités, que les fonctions F et G sont dérivables en 0. Préciser les valeurs de F'(0) et G'(0).
- 3. (a) Montrer que les réels strictement positifs tels que F(x) = 0 constituent une suite $(a_k)_{k \in \mathbb{N}^*}$ strictement croissante. On donnera explicitement la valeur de a_k .
 - (b) Montrer que les réels strictement positifs tels que G(x) = 0 constituent une suite $(b_k)_{k \in \mathbb{N}^*}$ strictement croissante. Y a-t-il un lien entre les suites $(a_k)_{k \in \mathbb{N}^*}$ et $(b_k)_{k \in \mathbb{N}^*}$?
- 4. (a) Soit $k \in \mathbb{N}^*$. Montrer **sans calcul** qu'il existe un réel $x_k \in J$ a_k, a_{k+1} [tel que $F'(x_k) = 0$.
 - (b) Montrer que la fonction F' est de même signe que $h: x \mapsto x \cos(x) \sin(x) \sin(x)$.
 - (c) Démontrer que pour tout $k \in \mathbb{N}^*$, la fonction h est strictement monotone sur $[a_k, a_{k+1}]$.
 - (d) En déduire l'unicité du réel x_k défini dans la question 4.(a).
 - (e) Etablir que: $\forall k \in \mathbb{N}^*$, $x_k \in \left] a_k, a_k + \frac{\pi}{2} \right[$.
 - (f) Calculer $\lim_{k\to +\infty} x_k$ puis déterminer un équivalent simple de la suite $(x_k)_{k\in \mathbb{N}^*}$.