16-720 Computer Vision: Homework 3

Xiang Zhi Tan

October 26, 2015

Q1.1

With the original equation, we do a first-order Taylor expension on it.

$$\sum_{(x,y)\in R_t} (I_{t+1}(x+u,y+u) + \nabla I_{t+1}(u,v) - I_t(x,y))^2$$

As we are trying to minimize this equation in terms of u and v. We then take the partial derivative in terms of (u, v). That gives us

$$2\sum_{(x,y)\in R_t} [(\nabla I_{t+1})^T (I_{t+1}(x+u,y+u) + \nabla I_{t+1}(u,v) - I_t(x,y))]$$

We ignore the leading 2 since we are minimizing the function by rearranging the function and setting it equal to 0, we will get

$$0 = \sum_{(x,y)\in R_t} (\nabla I_{t+1})^T \times I_{t+1}(x+u,y+u) + \sum_{(x,y)\in R_t} (\nabla I_{t+1})^T \times \nabla I_{t+1}(u,v) - \sum_{(x,y)\in R_t} (\nabla I_{t+1})^T \times I_t(x,y))$$

Let $\Delta P = (u, v)^T$ and move everything else to the other side

$$\sum_{(x,y)\in R_t} (\nabla I_{t+1})^T \times \nabla I_{t+1} \Delta p = \sum_{(x,y)\in R_t} (\nabla I_{t+1})^T \times I_t(x,y) - \sum_{(x,y)\in R_t} (\nabla I_{t+1})^T \times I_{t+1}(x+u,y+u).$$

Now we have the form $A\Delta P = b$. $A^T A = \sum_{(x,y)\in R_t} (\nabla I_{t+1})^T \times \nabla I_{t+1}$. $A^T A$ is called the **Hessian** in the Lucas Kanade algorithm and individually, A is called **steepest descent**.

For the algorithm to work. A^TA has to be invertible. This is because to calculate Δp , the Hessian has to be inverted and move to the other side of the equation. Following is the derivation of the Lucas Kanade algorithm after moving the Hessian

$$\Delta p = H^{-1} \left[\sum_{(x,y) \in R_t} (\nabla I_{t+1})^T \times I_t(x,y) \right] - \sum_{(x,y) \in R_t} (\nabla I_{t+1})^T \times I_{t+1}(x+u,y+u) .$$

Q1.3

Following is the result of my Lucas-Kanade tracker at different frame locations

Figure 1: The result of the tracking algorithm at frames 1,100,200,300,400

Q2.1

Firstly, we can express $\sum_{c=1}^{k} w_c B_c$ in terms of a matrix.

$$\begin{pmatrix} w_1 & w_2 & \dots & w_k \end{pmatrix} \begin{pmatrix} | & | & \dots & | \\ B_1 & B_2 & \dots & B_k \\ | & | & \dots & | \end{pmatrix}$$

Let's set them as WB. Now we rearrange the equation because B is invertible due to it's orthogonal properties.

$$W = B^{-1}(I_{t+1} - I_t)$$

Q2.2

Both my LucasKanadeBasis and LucasKanade have nearly identical performance on both the original and extended dataset. I was unable to distinguish which algorithm perform worse(they both were able to track the object around correctly with slight drift in the end) I included the recorded rects in the file sylvsequects.mat and sylvsequects.mat

Below are the images showing the result of the two algorithms. You can see that there was only a small difference at frame 1200 and 1100 where there is some slight green outline showing the original lucas kanade's rectangle.

Figure 2: The result of the LucasKanadeBasis on the original dataset at frames 1,200,300,350,400

Figure 3: The result of the tracking algorithm on the extended data set at frames 300,600,900,1100,1200. Note the slight green outline on frame 1100 and 1200

Q3.3

Following is the images showcasing the result of **LucasKanadeAffine** at different frames. The red fills on the image are locations where we detect motions.

Figure 4: The result of the tracking algorithm at frames 30,60,90,120(left to right).

All the masks are saved in the file ${\bf aerial seq masks.mat}$