Fault Tolerance and High Availability

Paweł Kordek

DATA ENGINEER

@pawel_kordek https://kordek.github.io

Using a single broker means accepting:

- Message loss
- Downtime

Desired Properties

Fault Tolerance High Availability Consistency

ZooKeeper

Source of truth about cluster members

Point of contact for new brokers

Single ensemble can be shared with other applications

Message Persistence

"acks" = "none"

Producer Delivery Guarantees

```
Properties props = new Properties();
KafkaProducer<String, String> = new KafkaProducer<>(props);
ProducerRecord<String, String> r = new ProducerRecord("topic", "key", "value");
RecordMetadata rm = producer.send(r).get();
```

When it returns depends on 'acks' value

Only after a successful write, data is committed and made available to consumers.

Writing to Disk

Replication

Creating a New Topic

Creating a New Topic

Committed

Producer acks = '1'

Producer acks = '1'

Committed

Producer acks = 'all'

Producer acks = 'all'

Off for maintenance

Data Retention and Cluster Sizing

Data Retention

Think about possible log size when choosing the number of partitions for a topic

Data Retention

Iog.segment.bytes: 1GB
log.segment.ms: 604800000 (1 week)
log.retention.bytes: 2GB
Iog.retention.ms: 86400000 (1 day)

log.segment.bytes: 1GB

log.segment.ms: 604800000 (1 week)

log.retention.bytes: 2GB

log.retention.ms: 86400000 (1 day)

log.segment.bytes: 1GB

log.segment.ms: 604800000 (1 week)

log.retention.bytes: 2GB

log.retention.ms: 86400000 (1 day) ◆··

log.segment.ms: 604800000 (1 week) ◆

log.retention.bytes: 2GB

log.retention.ms: 86400000 (1 day)

Cluster Sizing

Usual bottlenecks:

- Disk size/throughput
- Network throughput

Always estimate the load before deploying a cluster

Summary

Why multiple brokers are needed

Reliability guarantees

Practical example

Basics of data retention and cluster sizing

