qml4omics: A Quantum-Classical Machine Learning Benchmarking tool for multi-omics data

qml4omics

qm14omics: Data Complexities

Dimensional

- Intrinsic Dimension (Rank)
- Manifold (Fractal Dimension)
- Volume
- Effective rank
- Eigenspectra

Distributional

- Kurtosis & Skewness
- Mutual Information
- Sparsity
- Entropy
- Condition Number

Geometric

- Manifolds
- Clusters
- Density
- Topological Data Analysis
- Graph-based measures

Sampling

- Class imbalance ratio
- Class overlap measures
- Margin of separation between classes
- Sampling density variation

qm14omics: Embeddings

Non-negative Matrix Factorization (NMF)

Locally Linear

Embedding (LLE)

qml4omics: Models

- Logistic Regression
- Support Vector Classifiers
- Naïve Bayes
- Random Forest
- XGBoost
- Multi-layer Perceptron

- Quantum Kernel Estimation
- Projected Quantum Kernel
- Quantum Support Vector Classifiers
- Variational Quantum Classifier / Quantum Neural Networks

Artificial Data Generation

- To diversify datasets, we developed functions to generate artificial data based on user-defined combinations of data characteristic.
- These modules generate blobs, moons, circles, spheres, spirals.
- Located inside /data/artificial_datasets/make_X

How it works

Understanding the config.yaml

- It controls everything!
 - Parameters passed as arguments throughout the code base
- 1) Input data sets

config.yaml

```
# specify output directory where input datasets are located
folder_path: 'tutorial_test_data/lower_dim_datasets'
file_dataset: 'ALL'
# or use a list as below, to only select a few datasets
# file_dataset: ['file1', 'file2', 'file3', etc]
```

qml4omics-profiler.py (main function)

```
# Begin the main function and instatiate Hydra class
@hydra.main(config_path='./configs/', config_name='config.yaml', version_base='1.1')
def main(args):
    beg_time = time.time()
    log = logging.getLogger(__name__)
    log.info(f"Main program initiated")
    log.info(f"The number of ML methods being parallelized is {min(args['n_jobs'], len(args['model']))}")
    log.info(f"Chosen backend for quantum algorithms is: {args['backend']}")
   path to input = os.path.join(current_dir, 'data', args['folder_path'])
    if args['file dataset'] == 'ALL':
        input_files = [file for file in os.listdir(path_to_input) if file.endswith('csv')]
        input_files = [file for file in os.listdir(path_to_input) if file in args['file_dataset'] and file.endswith('csv')]
   # need to populate raw data evaluation for each file, so start an empty list
    appended_raw_data_eval = []
   # start looping over datasets
   file_count = 0
    for file in sorted(input files):
```

Understanding the config.yaml

2) Complexity evaluation (on raw and embedded data)

qml4omics/evaluation/dataset_evaluation.py

Understanding the config.yaml

3) Quantum backend

config.yaml

```
# choose a backend for the QML methods
# backend: 'ibm_cleveland'
# backend: 'ibm_least'
backend: 'simulator'

# IBM runtime credentials - they should be in
qiskit_json_path: '~/.qiskit/qiskit-ibm.json'
```

qml4omics/utils/qutils.py

What does config.yaml do?

4) Run models (with and without grid search/hyperparameter tuning)

Understanding the analyses

Hierarchical clustering heat maps

- What it's doing here:
 - Complexity measure range is normalized between 0 and 1.
 - Euclidean distance is calculated between columns and rows, clustering together those with the shortest distance → similar intensities for complexity measures.
 - The dendrogram branches create a pairing hierarchy.
 - Outlier has longest branch.
 - Helps answer:
 Is there some structure or pattern in my data?

Understanding the analyses

Spearman Rank Correlations

- What it's doing here:
 - Correlates data complexity measure to model performance (F1-score)
 - Red = positive correlated
 - Blue = anti-correlated
 - Size of sphere = magnitude of F1-score
 - Helps answer:
 What complexity measures influence your model score the most?

Understanding the analyses

Box-and-whisker plots

- What it's doing here:
 - Plots distribution of median F1-scores per datasets, across all splits of data, per model
 - Top and bottom of box = upper and lower quartiles (Q3 and Q1)
 - Whiskers denote range in F1- scores
 - Helps answer:
 What is the locality, spread, and skewness groups in my data (F1-scores) based on their quartiles?

Understanding QSage

So, what is the big picture?

What do we do with all this stuff?

- What if I were to tell you, what ML method to use, just by looking at your data?
- We trained a new model on all of these correlations --> QSage

Predicts F1, AUC, and accuracy beforehand --> no need to run all model!

Examples: geometric shapes

- Let's look at higher dimensional artificial, geometric data sets (3D and beyond).
- Task generate QML and CML models for these and compare performance.
- This data is periodic can QML do well with these

3 qubits/features

High dimension and # of samples

12 qubits/features

Examples: spheres and spirals

- Spirals seem QML friendly.
- SVC>QSVC with spheres, but it flips to QSVC>SVC with spirals
- RF improves with spheres, MLP is consistent across both

Examples: spheres and spirals

- Spheres: clear switch with Intrinsic dimension, Coeff of variance, and total correlations
- Spirals: correlation type switches (red vs blue) for Fischer Discrimination Ratio (measures imbalance) between CML and QSVC

Spheres

Spirals

Examples: spheres and spirals

- Remember: on average QSVC>SVC with spirals.
- So, what is it about the spirals?
- There is a rather obvious disparity in a few areas

Future Directions

Future Directions

Finalize current simulations and analyses and publish!

Develop open-source package distribution via pypi and miniforge.

Turn this into a Galaxy Tool! No coding, all done with UI.

Help you all get going with QML!

Help QSage learn more!

• Set up live server where you can upload results, and *continously train QSage with HCLS data*

Let's take it for a ride

So, let's try it out!

- 1) Go over the config. yaml file and learn how to change parameters
- 2) Activate your environment
 - o If you haven't done so, set up your environment now following the instructions in the README.md
- 3) Run the main code. In your terminal, type:

```
python qml4omics-profiler.py --config-name=config.yaml
```

- 4) Wait and watch the progress outputs being printed out.
- 5) We'll analyze the results and run your own data in the afternoon 😇 .