Documento de Especificaciones y Requisitos de Producto [DEP] para el desarrollo de productos mecatrónicos

Proyecto: KiSS Revisión 1.0

[Mes de año]

Instrucciones para el uso de este formato

Este formato es una plantilla tipo para documentos de requisitos de producto para su desarrollo.

Está basado y es conforme con el estándar IEEE Std 830-1998 y ha sido modificada para su suso en un ambiente de desarrollo mecatrónico simplificado.

El uso de este documento permite capturar la información relevante para desarrollar un producto o algunas de sus partes, sean electrónicas, mecánicas, de software y funcionales.

Las secciones que no se consideren aplicables al sistema descrito podrán de forma justificada indicarse como no aplicables (NA).

Notas:

Los textos en color azul son indicaciones que deben eliminarse y, en su caso, sustituirse por los contenidos descritos en cada apartado.

Los textos entre corchetes del tipo "[Inserte aquí el texto]" permiten la inclusión directa de texto con el color y estilo adecuado a la sección, al pulsar sobre ellos con el puntero del ratón.

Los títulos y subtítulos de cada apartado están definidos como estilos de MS Word, de forma que su numeración consecutiva se genera automáticamente según se trate de estilos "Titulo1, Titulo2 y Titulo3".

La sangría de los textos dentro de cada apartado se genera automáticamente al pulsar Intro al final de la línea de título. (Estilos Normal indentado1, Normal indentado 2 y Normal indentado 3).

El índice del documento es una tabla de contenido que MS Word actualiza tomando como criterio los títulos del documento.

Una vez terminada su redacción debe indicarse a Word que actualice todo su contenido para reflejar el contenido definitivo.

Ficha del documento

Fecha	Revisión	Autor	Verificado dep. calidad.
20/5/2025		Wenerr V. Pacheco T. Estudiante de mecatrónica del Instituto Tecnológico de las Américas	Wenerr V. Pacheco T.

Documento validado por las partes en fecha: [Fecha]

Por el cliente	Por la empresa suministradora
Carlos Antonio Pichardo Viuque	
Fdo. D./ Dña [Nombre]	Fdo. D./Dña [Nombre]

Rev. [99.99] Pág. 5

Contenido

FICHA DEL DOCUMENTO		
CONTENIDO	5	
1 INTRODUCCIÓN	7	
1.1 Propósito	7	
1.2 Alcance	7	
1.3 Personal involucrado	8	
1.4 Definiciones, acrónimos y abreviaturas	8	
1.5 Referencias	9	
1.6 Resumen	9	
2 DESCRIPCIÓN GENERAL	10	
2.1 Perspectiva del producto	10	
2.2 Funcionalidad del producto	10	
2.3 Características de los usuarios	10	
2.4 Restricciones	11	
2.5 Suposiciones y dependencias	11	
2.6 Evolución previsible del sistema	11	
3 REQUISITOS ESPECÍFICOS	11	
 3.1 Requisitos comunes de los interfaces 3.1.1 Interfaces de usuario 3.1.2 Interfaces de hardware 3.1.3 Interfaces de software 3.1.4 Interfaces de comunicación 	11 11 12 12 12	
3.2.1 Requisitos funcionales 3.2.1 Requisito funcional 1 3.2.2 Requisito funcional 2 3.2.3 Requisito funcional 3 3.2.4 Requisito funcional n	12 12 12 13 13	
3.3 Requisitos no funcionales3.3.1 Requisitos de rendimiento3.3.2 Seguridad	14 14 14	

Rev.	[99.9]	9]
	Pág.	6

V	WATCH	
3.3.3	Fiabilidad	14
3.3.4	Disponibilidad	15
3.3.5	Mantenibilidad	15
3.3.6	Portabilidad	15
3.4 C	Otros requisitos	15
I API	ÉNDICES	15

Rev. [99.99] Pág. 7

1 Introducción

Este documento presenta la **Especificación de Requisitos del Producto (DEP)** para el desarrollo de un sistema inteligente de dispensación de medicamentos, orientado al monitoreo y asistencia médica personalizada. El objetivo principal es establecer los lineamientos técnicos y funcionales que regirán el diseño, implementación y validación de un **dispensador automatizado de medicamentos**, que combina tecnologías de conectividad, monitoreo biométrico y experiencia de usuario intuitiva.

El sistema propuesto está compuesto por varios módulos interconectados: un dispensador físico basado en un ESP32, encargado de la administración y liberación de medicamentos sólidos y líquidos; una aplicación móvil desde donde el usuario o cuidador puede programar horarios de medicación y visualizar el historial de tomas; una pantalla táctil Nextion, que facilita la interacción directa con el dispositivo, mostrando información como alertas, errores y códigos QR de emparejamiento; y un smartwatch vinculado, que cumple la función de notificar al paciente, así como de recolectar datos fisiológicos como frecuencia cardíaca, ECG, saturación de oxígeno y geolocalización, enviándolos al dispensador. La comunicación entre el smartphone y el dispensador se realiza inicialmente mediante Bluetooth Low Energy (BLE), lo que permite enviar credenciales de red de manera segura. Posteriormente, el sistema cambia automáticamente a Wi-Fi, habilitando la transmisión de datos a servidores remotos y la interacción en tiempo real. Este documento está dirigido tanto al equipo de desarrollo como a los interesados en la validación del producto, y pretende establecer un marco común de entendimiento sobre los requisitos del sistema, su arquitectura y sus funcionalidades esperadas.

1.1 Propósito

El propósito de este documento es definir de manera detallada los requisitos funcionales y no funcionales del sistema de dispensación inteligente de medicamentos, diseñado para asistir en el control, seguimiento y administración de tratamientos médicos tanto sólidos (pastillas) como líquidos. El sistema integra un dispensador físico basado en un ESP32, una aplicación móvil para la programación de horarios y visualización de datos, así como un smartwatch para la supervisión remota de parámetros vitales del paciente. Esta especificación busca servir como referencia para el diseño, implementación, pruebas y mantenimiento del producto final.

1.2 Alcance

Este proyecto teórico-práctico propone un sistema completo de apoyo al tratamiento médico, centrado en la automatización del proceso de dispensación de medicamentos y la vigilancia de la salud del paciente. El sistema incluye:

- Dispensador automático físico para medicamentos sólidos y líquidos, controlado por un microcontrolador ESP32.
- **Aplicación móvil** para configurar horarios, recibir alertas, visualizar resúmenes de consumo y enviar credenciales Wi-Fi al dispositivo vía BLE.
- Pantalla táctil Nextion integrada en el dispensador para mostrar información relevante (alertas, errores, QR de conexión, descripción de medicamentos).
- Conectividad BLE/Wi-Fi para la sincronización inicial y posterior transmisión de datos en tiempo real.
- Integración con smartwatch, utilizado como herramienta de monitoreo y notificación al paciente, con capacidad de medir ritmo cardíaco, ECG, saturación de oxígeno y ubicación.

Rev. [99.99] Pág. 8

Este documento no contempla el desarrollo físico de hardware externo como el smartwatch, sino que asume su existencia e interoperabilidad con el sistema propuesto.

1.3 Personal involucrado

Nombre	Wenerr V. Pacheco T.
Rol	Gerente de operaciones
Categoría profesional	Técnico Superior en Mecatrónica
Responsabilidades	Encargado de la supervisión y gestión de las operaciones
Información de contacto	Wenerr142003@gmail.com
Aprobación	8

Nombre	Isai Mojica
Rol	Implementación y dirección de funcionamiento.
Categoría profesional	Tecnico en Mecatrónica
Responsabilidades	Direccion del proyecto y impremantacion final del mismos.
Información de contacto	849-353-0000
Aprobación	8

Nombre	Yeiob German
Rol	Diseño y programación electrónico
Categoría profesional	Tecnico en Mecatronica
	Encargado del diseño de los modelos electrónicos y programación.
Información de contacto	809-961-0000
Aprobación	8

Nombre	Eric Chia
Rol	Ensamble e investigación.
Categoría profesional	Tecnico en Mecatrónica.
Responsabilidades	Ensamble del proyecto y investigación del mismo.
Información de contacto	809-961-0000
Aprobación	6

Nombre	Pavel de la Rosa
Rol	Ensamble, Materiales e investigación.
Categoría profesional	Tecnico en Mecatrónica
	Ensamble del proyecto, obtención de materiales y investigación del mismo proyecto.
Información de contacto	809-886-0000
Aprobación	10

1.4 Definiciones, acrónimos y abreviaturas

- **ESP32**: Microcontrolador con capacidades de conectividad Wi-Fi y Bluetooth, núcleo del dispensador.
- **BLE**: *Bluetooth Low Energy*, tecnología de bajo consumo utilizada para la configuración inicial del dispositivo.

- Rev. [99.99] Pág. 9
- Wi-Fi: Conexión inalámbrica usada para la transmisión de datos a la nube y sincronización con la app.
- Nextion: Pantalla HMI táctil utilizada para la interfaz local del dispensador.
- ECG: Electrocardiograma, medición de la actividad eléctrica del corazón.
- **Smartwatch**: Reloj inteligente con sensores biométricos integrado al sistema como interfaz de usuario y monitor de signos vitales.
- App: Aplicación móvil para Android/iOS que interactúa con el dispensador.
- **DEP**: Documento de Especificación del Producto.

1.5 Referencias

Referencia	Titulo	Ruta	Fecha	Autor
Espressif	ESP-IDF	https://idf.espressif.com/	18/1/2023	Espressif
Nextion.TECH	Nextion Display	https://nextion.tech/	18/1/2024	Nextion.TECH
Android	Android Studio	https://developer.android.com/studio	18/1/2025	Google
EasyEda	EasyEda	https://easyeda.com/	18/1/2024	EasyEda
VisualStudio	Microsoft	https://code.visualstudio.com/	18/1/2025	Microsoft
SolidWorks	Dassault Systèmes	https://www.solidworks.com/	18/1/2012	SolidWorks Corporation

1.6 Resumen

Este documento se estructura en distintas secciones que abarcan todos los aspectos necesarios para comprender el alcance y desarrollo del proyecto. A continuación, se describe el contenido general del resto del documento y la lógica detrás de su organización:

- Sección 2 Descripción General del Producto: Ofrece una visión funcional del sistema, incluyendo sus principales características, usuarios, restricciones y dependencias tecnológicas.
- Sección 3 Requisitos Específicos: Detalla los requisitos funcionales y no funcionales, organizados por módulos del sistema, incluyendo el dispensador, la app móvil, la pantalla Nextion y el smartwatch.
- Sección 4 Interfaces y Diseño del Sistema: Describe las interfaces entre módulos, protocolos de comunicación, y presenta diagramas arquitectónicos y de casos de uso.
- Sección 5 Seguridad y Privacidad: Enfocada en los mecanismos de protección de datos sensibles del usuario y la seguridad de las comunicaciones.
- Anexos: Se incluyen esquemas eléctricos, cronograma de desarrollo, glosario técnico, y referencias externas que respaldan el diseño.

La organización del documento sigue una estructura lógica que va desde lo general a lo particular, iniciando con una visión amplia del sistema, pasando por la definición de requerimientos específicos, y concluyendo con aspectos técnicos más detallados. Esto

Rev. [99.99] Pág. 10

permite que diferentes perfiles (técnicos, administrativos, médicos o de validación) puedan comprender y navegar el documento de manera eficaz según sus necesidades.

2 Descripción general

2.1 Perspectiva del producto

El sistema de dispensación inteligente de medicamentos constituye un **subsistema dentro de un ecosistema mayor de asistencia médica remota**. Este ecosistema integra tecnologías de Internet de las Cosas (IoT), monitoreo biomédico, y aplicaciones móviles orientadas a la adherencia terapéutica.

El producto no funciona de forma completamente autónoma, ya que **requiere conexión con un smartphone mediante BLE para su configuración inicial**, así como interacción continua con una red Wi-Fi y un smartwatch para el monitoreo de signos vitales y notificación al paciente. A su vez, está diseñado para integrarse eventualmente a plataformas de telemedicina o bases de datos clínicas mediante servicios en la nube.

2.2 Funcionalidad del producto

El sistema contempla las siguientes funcionalidades principales:

- **Dispensación automática de medicamentos sólidos y líquidos**, de acuerdo a un calendario preprogramado.
- Notificación al usuario a través del smartwatch sobre la toma de medicación, o en caso de alerta médica.
- Visualización de información en pantalla Nextion, como códigos QR para sincronización, alertas, errores y descripciones básicas de medicamentos.
- Sincronización con la app móvil, permitiendo al usuario:
 - o Programar horarios de medicación.
 - Consultar el historial de tomas.
 - Enviar credenciales Wi-Fi al ESP32 vía BLE.
- Cambio automático de BLE a Wi-Fi tras la configuración inicial, habilitando la conexión permanente.
- Monitoreo de signos vitales (frecuencia cardíaca, ECG, oxígeno en sangre y ubicación) a través del smartwatch, con alertas en caso de arritmias o parámetros críticos.
- Almacenamiento local y remoto de datos para análisis y seguimiento clínico posterior.

Estas funcionalidades están orientadas a mejorar la adherencia al tratamiento médico y permitir un monitoreo continuo del paciente, tanto por él mismo como por sus cuidadores o profesionales médicos.

2.3 Características de los usuarios

Tipo de usuario	Paciente
Formación Nivel básico/intermedio	
Habilidades	Uso de apps móviles, lectura básica de pantalla táctil
Actividades	Recibe notificaciones, consulta la pantalla, toma el
	medicamento según indicación

Tipo de usuario	Cuidador/Familiar
Formación	Media o superior
Habilidades	Configuración de dispositivos, uso de app móvil
Actividades	Programa horarios, sincroniza el dispensador con la app

Rev. [99.99] Pág. 11

2.4 Restricciones

- El sistema debe desarrollarse con ESP32, utilizando el entorno de desarrollo ESP-IDF.
- La comunicación inicial con la app debe realizarse exclusivamente mediante Bluetooth Low Energy (BLE).
- El smartwatch debe contar con sensores integrados y conectividad compatible con el sistema (BLE).
- El sistema debe estar optimizado para operar en un entorno **doméstico** con alimentación eléctrica constante.
- La interfaz de usuario en la pantalla Nextion debe mantenerse **intuitiva** y en un máximo de dos niveles de navegación.

2.5 Suposiciones y dependencias

Se asume que el **smartphone del usuario tiene Bluetooth BLE y acceso a Wi-Fi**. Se considera disponible una **red Wi-Fi doméstica con acceso a internet** para subir datos y recibir actualizaciones.

Se da por sentado que el **smartwatch está debidamente sincronizado y configurado** para el monitoreo de signos vitales.

La app móvil estará disponible para dispositivos Android.

Cambios en los **sistemas operativos móviles**, versiones de firmware del smartwatch o actualizaciones de seguridad pueden requerir ajustes en el sistema.

2.6 Evolución previsible del sistema

- Integración con sistemas de salud públicos o privados, para permitir el envío automático de informes médicos.
- Inclusión de reconocimiento facial o identificación biométrica en el dispensador para validar la toma del medicamento.
- Compatibilidad con otros wearables o sensores de terceros.
- Incorporación de una base de datos de medicamentos con alertas de interacción o vencimiento.
- Posibilidad de control por voz local o remoto mediante asistentes virtuales (Alexa, Google Assistant).

3 Requisitos específicos

3.1 Requisitos comunes de las interfaces

3.1.1 Interfaces de usuario

El sistema deberá incluir una pantalla táctil Nextion, donde se presentará:

- Código QR para sincronización con app móvil
- Mensajes de error y confirmaciones
- Recordatorios visuales de toma de medicamentos
- Botón de configuración para reiniciar parámetros de red y hora
 La interfaz debe tener una estética clara, sin sobrecarga visual, usando contrastes
 definidos y tipografía legible. El fondo debe ser blanco o gris claro y los colores de
 alerta deben ser rojo (error) y verde (confirmación).

Rev. [99.99] Pág. 12

3.1.2 Interfaces de hardware

El sistema estará basado en ESP32 y contará con los siguientes interfaces:

- Módulo BLE interno para sincronización inicial
- Módulo Wi-Fi interno para comunicación en la nube
- Relés o servomotores para dispensación de medicamento sólido/líquido
- Comunicación UART con pantalla Nextion
- Comunicación I2C o UART con smartwatch (según modelo)

3.1.3 Interfaces de software

- App móvil (Android): permitirá la configuración del sistema y el envío de credenciales Wi-Fi mediante BLE.
- Servidor en la nube (Firebase): para almacenamiento de datos clínicos y sincronización remota.
- **Firmware del smartwatch:** deberá tener una API o puerto de comunicación que permita enviar valores como pulso, ECG o geolocalización.

3.1.4 Interfaces de comunicación

- BLE: solo para la primera configuración y envío de credenciales desde el smartphone.
- Wi-Fi: para actualización de datos, envío de alertas y sincronización con la nube.
- UART: para la pantalla Nextion
- I2C/UART/SPI (según modelo de smartwatch): para lectura de signos vitales.

3.2 Requisitos funcionales

3.2.1 Requisito funcional 1

Número de requisito	RF 01	
Nombre de requisito	Dispensación automática de medicamentos	
Tipo	Requisito Restricción	
Fuente del requisito	Requisito del sistema	
Prioridad del requisito	Alta/Esencial Media/Deseado Baja/ Opcional	

Descripción: El sistema debe dispensar medicamentos sólidos o líquidos automáticamente según un calendario preconfigurado. Esta acción debe activarse mediante reloj interno del ESP32 y no depender de la app una vez configurada.

3.2.2 Requisito funcional 2

Número de requisito	RF 02	
Nombre de requisito	Notificación al paciente	
Tipo	Requisito Restricción	
Fuente del requisito	Requisito del sistema	
Prioridad del requisito	Alta/Esencial Media/Deseado Baja/ Opcional	

Descripción: El sistema debe enviar una notificación al smartwatch vinculado cuando sea el momento de tomar un medicamento o se presente un error en la dispensación.

Rev. [99.99] Pág. 13

3.2.3 Requisito funcional 3

Número de requisito	RF 03	
Nombre de requisito	Configuración mediante app móvil	
Tipo	Requisito Restricción	
Fuente del requisito	Cliente / Usuario final	
Prioridad del requisito	Alta/Esencial Media/Deseado Baja/ Opcional	

Descripción: La configuración inicial (fecha, hora, horarios de toma, tipo de medicamento y credenciales Wi-Fi) debe realizarse desde la app móvil vía BLE.

3.2.4 Requisito funcional 4

Número de requisito	RF 04	
Nombre de requisito	Visualización en pantalla táctil	
Tipo	Requisito Restricción	
Fuente del requisito	Usuario final	
Prioridad del requisito	Alta/Esencial Media/Deseado Baja/ Opcional	

Descripción: La pantalla debe mostrar información de estado, alertas de error, y permitir una interfaz básica de consulta de horarios de toma y mensajes QR para sincronización.

3.2.1 Requisito funcional 5

Número de requisito	RF 05	
Nombre de requisito	Monitoreo de signos vitales	
Tipo	Requisito Restricción	
Fuente del requisito	Propuesta del desarrollador	
Prioridad del requisito	Alta/Esencial Media/Deseado Baja/ Opcional	

Descripción: El sistema debe recibir, procesar y almacenar los datos de signos vitales (ECG, frecuencia cardíaca, SpO2, ubicación) desde el smartwatch.

3.2.1 Requisito funcional 6

Número de requisito	RF 06	
Nombre de requisito	Almacenamiento local y en la nube	
Tipo	Requisito Restricción	
Fuente del requisito	Cliente	
Prioridad del requisito	☐ Alta/Esencial ☐ Media/Deseado ☐ Baja/ Opcional	

Descripción: Todos los eventos importantes (toma de medicamentos, errores, alertas médicas, parámetros biomédicos) deben almacenarse en la memoria local del ESP32 y sincronizarse con una base de datos en la nube.

Rev. [99.99] Pág. 14

3.2.1 Requisito funcional 7

Número de requisito	RF 07
Nombre de requisito	Cambio de interfaz BLE a Wi-Fi
Tipo	Requisito Restricción
Fuente del requisito	Diseño del sistema
Prioridad del requisito	☐ Alta/Esencial ☐ Media/Deseado ☐ Baja/ Opcional

Descripción: Una vez finalizada la configuración inicial mediante BLE, el ESP32 debe desconectar automáticamente el módulo BLE y activar Wi-Fi para el resto de la operación del sistema.

3.3 Requisitos no funcionales

3.3.1 Requisitos de rendimiento

El sistema debe ser capaz de manejar una carga considerable de usuarios y transacciones sin comprometer la eficiencia. Los siguientes requisitos de rendimiento son esenciales:

- **Número de usuarios simultáneos**: El sistema debe soportar hasta 100 usuarios simultáneamente sin degradación del rendimiento.
- Transacciones por segundo: El sistema debe ser capaz de manejar al menos 50 transacciones por segundo sin tiempos de espera perceptibles.
- **Tiempo de respuesta**: El 95% de las interacciones del usuario (como la conexión y la recepción de datos) deben completarse en menos de 1 segundo.

3.3.2 Seguridad

El sistema debe garantizar la seguridad de los datos personales del usuario y los datos de salud, así como la protección de la infraestructura contra accesos maliciosos. Los requisitos de seguridad incluyen:

- Cifrado: Todos los datos sensibles transmitidos entre el dispensador y los dispositivos móviles o servidores deben ser cifrados utilizando técnicas criptográficas modernas (por ejemplo, AES-256).
- Autenticación y autorización: Se debe implementar autenticación de usuarios mediante un sistema seguro, como autenticación de dos factores (2FA) o autenticación basada en tokens.
- **Registro de actividad**: Todos los accesos y cambios relevantes deben quedar registrados en un archivo de log, accesible solo por personal autorizado.
- **Control de acceso**: Funcionalidades críticas deben estar restringidas a determinados módulos del sistema, según el perfil del usuario.
- Integridad de la información: El sistema debe comprobar la integridad de la información sensible a través de métodos de validación.

3.3.3 Fiabilidad

El sistema debe funcionar de manera continua y sin fallos durante su operación. Los requisitos de fiabilidad incluyen:

- Tiempo entre fallos: El tiempo medio entre fallos del sistema debe ser superior a 1000 horas.
- Recuperación de errores: El sistema debe ser capaz de recuperarse de errores críticos en menos de 5 minutos, garantizando que los usuarios puedan continuar con su interacción sin pérdida de datos importantes.

Rev. [99.99] Pág. 15

3.3.4 Disponibilidad

El sistema debe estar disponible y operativo la mayor parte del tiempo, con los siguientes requisitos:

- Disponibilidad: El sistema debe estar disponible el 99.5% del tiempo en un periodo de 30 días.
- **Tiempos de inactividad permitidos**: Las ventanas de mantenimiento programado no deben exceder las 4 horas mensuales.

3.3.5 Mantenibilidad

El sistema debe ser fácil de mantener y actualizar, garantizando que los desarrolladores y administradores puedan realizar tareas de mantenimiento sin interrumpir la operación del sistema:

- **Actualizaciones**: El sistema debe permitir actualizaciones automáticas de software sin requerir intervención manual para asegurar la seguridad y la corrección de errores.
- **Diagnóstico de fallos**: Los administradores del sistema deben tener herramientas para diagnosticar problemas y monitorizar el estado del sistema en tiempo real.
- Mantenimiento preventivo: El sistema debe generar automáticamente informes de actividad y rendimiento cada mes para ayudar a prevenir posibles fallos.

3.3.6 Portabilidad

El sistema debe ser portátil y capaz de adaptarse a diferentes plataformas. Los requisitos de portabilidad incluyen:

- Compatibilidad con plataformas móviles: El sistema debe ser compatible con dispositivos que ejecuten Android, utilizando Android Studio con Java para garantizar un desarrollo eficiente y fluido. Dado que se busca una aplicación con funcionalidades específicas, se optó por esta plataforma en lugar de tecnologías como Flutter debido a la limitada disponibilidad de información oficial y ejemplos aplicables al tipo de aplicación que se desea desarrollar.
- Independencia de la infraestructura: El sistema debe estar diseñado para ser independiente de la infraestructura específica del servidor, lo que permitirá su fácil adaptación a diferentes entornos de servidor o servicios en la nube.
- Uso de tecnologías estándar: El sistema debe usar tecnologías estándar y de código abierto siempre que sea posible para maximizar su compatibilidad con diferentes entornos de ejecución.

3.4 Otros requisitos

3.4.1 Requisitos legales

El sistema debe cumplir con las normativas y leyes aplicables relacionadas con la protección de datos personales, especialmente en el ámbito de la salud. Esto incluye cumplir con la legislación vigente sobre privacidad, como el GDPR en Europa, y las regulaciones locales relacionadas con la seguridad de los dispositivos médicos. Además, el sistema debe garantizar la confidencialidad y protección de los datos del usuario, especialmente la información relacionada con su salud, en todo momento.

3.4.2 Requisitos culturales

El sistema debe permitir la personalización del idioma para usuarios de diferentes regiones, ofreciendo soporte multilingüe. Además, debe tener en cuenta las costumbres y sensibilidades culturales relacionadas con el acceso y uso de la información médica. Esto incluye el formato de presentación de las alertas de medicación, adaptaciones en los mensaies de notificación y la interfaz de usuario.

Rev. [99.99] Pág. 16

3.4.3 Otros requisitos

El dispositivo y la aplicación móvil deben ser fáciles de usar para personas con habilidades tecnológicas limitadas, garantizando accesibilidad, especialmente para personas mayores o con discapacidades. El sistema debe ser eficiente en cuanto a consumo energético y tener opciones de mantenimiento sencillo, de modo que los usuarios puedan recibir asistencia rápida en caso de mal funcionamiento. Además, se debe permitir la actualización remota del software del dispositivo.

4 Apéndices

Esquemas de conexión del sistema: Diagramas que ilustran cómo el dispensador de medicamentos se conecta con el ESP32, la aplicación móvil y otros dispositivos (smartwatch, sensores, etc.).

Rev. [99.99] Pág. 17

Rev. [99.99] Pág. 18

Rev. [99.99] Pág. 19

Lista de componentes de hardware

UNIDAD DE CONTROL

Componente	Especificaciones
ESP32	 Procesador: Xtensa Dual-Core 32-bit LX6 (hasta 240 MHz) Memoria: 520 KB SRAM Conectividad: Wi-Fi 802.11 b/g/n y Bluetooth 4.2 Interfaces: SPI, I2C, UART, PWM, ADC, DAC Temperatura operativa: -40°C a +85°C Consumo energético: 80mA promedio (modo activo)

INTERFAZ DE USUARIO

Componente	Especificaciones
Pantalla	• Tamaño: 4.8"
Nextion	 Resolución: 240x320 Interfaz: UART Memoria flash integrada para GUI Controlador táctil integrado Voltaje de operación: 5V DC

SENSORES

Componente	Especificaciones
Sensores	Acelerómetro: 3 ejes
Biométricos	Giroscopio: 3 ejes
(Bangle.js 2)	Monitor de ritmo cardíaco: PPG
	Conectividad: Bluetooth LE
	 Pantalla: LCD 1.3" (176x176 píxeles)
	Batería: 200mAh (hasta 7 días en uso normal)
Sensores	Modelo: HC-SR04
Ultrasónicos	Rango de detección: 2cm - 400cm
	Precisión: 3mm
	 Ángulo de medición: 15°
	Voltaje de operación: 5V DC
	• Señal de salida: 10µs - 38ms pulso TTL

ACTUADORES

Componente	Especificaciones
Servomotores	Tipo: Micro servo
	• Torque: 1.8kg·cm @ 4.8V
	 Velocidad: 0.10 sec/60° @ 4.8V
	• Ángulo de rotación: 180°
	 Voltaje de operación: 4.8V - 6V DC
	Consumo en reposo: <10mA
	Consumo en operación: 100-250mA

SISTEMA DE ALIMENTACIÓN

Componente	Especificaciones	
Fuente de	• Entrada: 100-240V AC, 50/60Hz	
alimentación	Salida: 12V DC, 5A	
	Protección contra sobrecarga y cortocircuito	
Batería de	Capacidad: 2000mAh	
respaldo	Tipo: Li-ion recargable	
-	Autonomía: 6 horas (uso completo del sistema)	

Rev. [99.99] Pág. 20

CONDICIONES DE OPERACIÓN

Parámetro	Especificación
Temperatura de funcionamiento	5°C a 40°C
Humedad relativa	10% a 80% (sin condensación)
Dimensiones del sistema	24x24x24 cm
Peso total	2.3 Lb.

Protocolos de comunicación: Especificación de los protocolos de comunicación utilizados entre los diferentes componentes del sistema.

Componente 1	Componente 2	Protocolo de Comunicación	Descripción
Aplicación	ESP32	BLE	La aplicación Android se conecta al
Android			ESP32 inicialmente por Bluetooth Low
			Energy (BLE) para recibir las credenciales
			WiFi.
Aplicación	ESP32	WiFi	Después de recibir las credenciales WiFi,
Android			la aplicación cambia a WiFi para la
			comunicación continua.
Aplicación	Smartwatch Bangle	BLE	El smartwatch utiliza BLE para conectarse
Android	JS 2		directamente a la aplicación Android,
			enviando datos vitales del usuario.
Aplicación	ESP32	MQTT	La aplicación Android redistribuye los
Android			datos recopilados del smartwatch al
			ESP32 a través de MQTT.
ESP32	Servidor NTP	NTP (Network Time	El ESP32 se conecta a un servidor NTP
		Protocol)	para sincronizar la hora del sistema.
ESP32	Smartwatch Bangle	No se conecta	El smartwatch no se conecta al ESP32; se
	JS 2	directamente	conecta solo a la aplicación Android a
			través de BLE.