# Assignment 04

**Forecast Sales** 

### **Correlation Graph**



Tier 1: Customers, Open, Promo

Tier 2: SchoolHoliday, StateHoliday, DayOfWeek

#### Customer



High correlation

Observable data

Select

#### Open



Binary data

Clear relationship

Reasonable correlation

Outliner is too lot

Select without transform

#### Promo



Binary data

Prominent correlation

Observable gap

Standard deviation is too high

Discard

#### DayOfWeek





Categorical data

Low correlation

Barely see difference in overall

Clear gap between 7 and others

Select with transform

#### SchoolHoliday



Binary data

Low correlation

Barely see difference in overall

Discard

#### StateHoliday





Categorical data

Low correlation

Barely see difference in overall Low correlation after transform

Discard

#### Preparing data

```
discards = ['SchoolHoliday', 'StateHoliday', 'Promo', 'Store']
selects = ['Date', 'Customers', 'Open', 'DayOfWeek']
train = train.drop(discards, axis = 1)

newDay = train['DayOfWeek'] != 7
newDay = newDay.astype(int)
train = train.drop(['DayOfWeek'], axis = 1)
train = pd.concat((train, newDay), axis = 1)

condTrain = (train['Date'] < '2015-01-01')
Xtrain = train[condTrain][selects].drop(['Date'], axis = 1)
ytrain = train[condTrain]['Sales']
Xtest = train[condTrain != True]['Sales']</pre>
```

Transforming data

Split data into 4 pieces

2013 – 2014 / 2015

Xtrain, ytrain, Xtest, ytest

#### **Evaluating variables through Cross Validation**

#### Logistic Regression

KFold StratifiedKFold

```
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import KFold, StratifiedKFold, GroupKFold
from sklearn.model_selection import cross_val_score as cvs

C_s = np.logspace(-10, 0, 10)

logistic = LogisticRegression()

skf = StratifiedKFold(n_splits = 5, shuffle = True, random_state = 100)

kf = KFold(n_splits = 3, shuffle = True, random_state = 100)

Xtest.loc[0:236380, :]
ytest.loc[0:236380]

score = cvs(logistic, Xtrain, ytrain, cv = kf)

accs = []
for in C_s:
    logistic.c = ...
    temp = []
    print("C(t)")
    logistic.fit(Xtest.col[Ptrain, :], ytest.col[Ptest])
    temp.append(logistic.score(Xtest.col[Ptrain, :], ytest.col[Ptest]))
    print("Append'lom")
    accs.append(temp)

accs = np.array(accs)
```

Choose Logistic Regression KFold, StratifiedKFold



Find better variable sets

## **Linear Regression**

# Actual data

**KNeighbors Regression** 







Scatter plot with regression line for each Sales ~ Dates







Scatter plot with regression line for each Sales ~ Customers



Regression lines for each Sales ~ DayOfWeek (Binary)

R^2: 0.82970197

R^2: 0.80344976