Flatland Space Stations

Flatland is a country with n cities, m of which have space stations. Each city, c_i , is numbered with a distinct index from 0 to n-1, and each city c_i is connected to city c_{i+1} by a bidirectional road that is $1 \ km$ in length.

For example, if n=5 and cities c_0 and c_4 have space stations, then Flatland looks like this:

For each city, determine its distance to the *nearest* space station and *print the maximum* of these distances.

Input Format

The first line consists of two space-separated integers, $m{n}$ and $m{m}$.

The second line contains m space-separated integers describing the respective indices of each city having a space-station. These values are unordered and unique.

Constraints

- $1 < n < 10^5$
- $1 \le m \le n$
- It is guaranteed that there will be at least 1 city with a space station, and no city has more than one.

Output Format

Print an integer denoting the maximum distance that an astronaut in a Flatland city would need to travel to reach the nearest space station.

Sample Input 0

5 2 0 4

Sample Output 0

2

Explanation 0

This sample corresponds to the example given in the problem statement above. The distance to the nearest space station for each city is listed below:

- c_0 has distance 0~km, as it contains a space station.
- c_1 has distance $1 \, km$ to the space station in c_0 .
- c_2 has distance $2 \ km$ to the space stations in c_0 and c_4 .
- c_3 has distance $1\ km$ to the space station in c_4 .

ullet c_4 has distance 0~km, as it contains a space station.

We then take $\mathit{max}(0,1,2,1,0) = 2$, and print 2 as our answer.

Sample Input 1

Sample Output 1

0

Explanation 1

In this sample, $\emph{n}=\emph{m}$ so every city has space station and we print 0 as our answer.