Ch2

Q1

A.

Х	У	x-x ⁻	(x-x ⁻) ²	у-у-	(x-x ⁻)(y-y ⁻)
3	4	3 - 1 = 2	2 ² =4	4 - 2 = 2	2×2=4
2	2	2 - 1 = 1	1 ² =1	2 - 2 = 0	1×0=0
1	3	1 - 1 = 0	0	3 - 2 = 1	0×1=0
-1	1	-1 - 1 = -2	(-2) ² =4	1 - 2 = -1	-2×-1=2
0	0	0 - 1 = -1	(-1) ² =1	0 - 2 = -2	-1×-2=2
Σ	Σ	0	10	0	8

Sample mean of x = 1

Sample mean of y=2

В.

C.

$$\Sigma$$
 (x_i^2) = 9+4+1+1+0 = 15

$$\Sigma(x_i * y_i) = 3*4+2*2+3-1 = 18$$

$$\Sigma(x_i - \bar{x})^2 = 10 = \Sigma(x_i^2) - N * \bar{x}^2$$

$$\Sigma(x_i - \bar{x})(y_i - \bar{y}) = 8 = \Sigma(x_i * y_i) - N * \bar{x} * \bar{y}$$

D.

х	У	yhat	е	e_sq	x_e
3	4	3.6	0.4	0.16	1.2
2	2	2.8	-0.8	0.64	-1.6
1	3	2.0	1.0	1.00	1.0
-1	1	0.4	0.6	0.36	-0.6
0	0	1.2	-1.2	1.44	0
Σ	Σ	10	0	3.6	0

Median of x = 1

E.

F.

最小二乘回歸線會通過這個點

G.H

Y = 1.2+0.8 = 2

Yhat = (3.6+2.8+2+0.4+1.2)/5 = 2

兩者相等

١.

σ^2 = 1.2

J.

 $var^{(b2|x)} = 0.12$

se(b2) = 0.3464102

Q14

A.

將 sample mean of wage 帶入回歸式 Y 得出 EDUC = 13.677

彈性 = 1.80×13.6777/19.74 = 1.2477

В.

WAGE = -10.76+2.46*13.68 = 22.8928

SE(E) = 0.16*13.68/22.89 = 0.09562

C.

12年:

Urban: -10.76+2.46*12 =18.76

Rural: -4.88+1.8*12 = 16.72

16年

Urban: -10.76+2.46*16=28.6

Rural: -4.88+1.8*16=23.92

Q16

A. 上述 CAPM 模型符合簡單回歸模型主要是**單一自變數**只包含一個解釋變數 $(r_m - r_f)$,符合簡單回歸的特徵。另外也符合**線性關係**符合標準線性回歸形式 $Y = \beta 0 + \beta 1X + \epsilon$ 。以及**隨機誤差項** e_i 表示未解釋的部分。

B. 跑完線性回歸結果如下:

Firm	Beta	Alpha
GE	1.1479521	-0.0009586682
IBM	0.9768898	0.0060525497
FORD	1.6620307	0.0037789112
Microsoft	1.2018398	0.0032496009
Disney	1.0115207	0.0010469237
Exxon	0.4565208	0.0052835329

Ford Beta 值 1.66 最高,是最激進的公司。Exxon Beta 值 0.45 最低,是最保守公司

C. 要看 Alpha p 值是否小於 0.05 顯著,如果小於則拒絕 H0 假設,然而從結果上來看 6 家公司 p 值都大於 0.05 不顯著,因此不拒絕 H0。

Firm	Alpha p 值
GE	0.8287072
IBM	0.2122303
FORD	0.7121467
Microsoft	0.5909844

Disney	0.8231091
Exxon	0.1368343

CAPM for Microsoft

D. $Alpha ~ heta ~ 0 ~ heta ~ (R_i - R_f) = β(R_m - R_f) ~ . ~ 以下為結果$

Firm	無截距 beta 值	Beta 變化
GE	1.1467633	-0.0012

IBM	0.9843954	0.0075
FORD	1.6667168	0.0047
Microsoft	1.2058695	0.0041
Disney	1.0128190	0.0013
Exxon	0.4630727	0.0066

IBM 的 beta 變動最大,GE 則最小