

# 학습내용

- 1 가설검정
- ② 귀무가설과 대립가설 이해
- ③ 가설검정 절차
- 4 귀무가설과 대립가설 세우기
- ⑤ 모평균에 대한 가설검정 : T-검정



# ◎◀가설검정

• 통계에서는 알려져 있지 않은 참값, 모수가 있다고 가정함

#### 가설검정

모집단의 모수에 대한 가설에 대해 표본이 가지고 있는 정보를 이용해 가설의 진위 여부를 판단하는 통계적 추론 방식





### 통계적 가설 (hypothesis)

모집단의 모수 혹은 특성에 대한 추측이나 가정

- 귀무가설 (null hypothesis), H<sub>0</sub>
  : 그에 반하는 충분한 근거가 나올 때까지 잠정적으로 참이라고 가정하는 가설
- 대립가설 (alternative hypothesis),  $H_1$ :  $\mathbf{M}$  :  $\mathbf{M}$  로운 주장이고 실제로 입증하기를 원하는 가설



# []< 통계적 가설

- 형사재판에서의 무죄추정 원칙과 연관지어 가설 검정을 이해해볼 수 있음
  - ▶ 귀무가설은 피고가 무죄, 대립가설은 피고가 유죄임
  - ▶ 데이터로부터 충분한 증거가 나오면 피고인은 유죄 판결을 받음
  - ▶ 결백하다는 판결을 받기 위한 재판은 없는 것과 마찬가지로 귀무가설은 증명할 수 있는 것이 아님
  - ▶ 귀무가설은 반하는 증거가 충분히 나오기 전까지 잠정적으로 가정하는 것



## ◎ 가설검정 절차

- 1 가설(귀무/대립가설) 설정
- 2 검정통계량 계산
  - ▶ 가설에 따라 쓸 수 있는 검정통계량들 중에서 선택함
  - ▶ 검정통계량은 통계 이론을 바탕으로 수식으로 정해져 있음



# ◎ 가설검정 절차

- 3
- 검정통계량을 바탕으로 귀무가설 기각 여부 결정
- ▶ 귀무가설을 기각한다는 것은 대립가설에서 입증하고자 하는 것을 수용한다는 의미임
  - 기각역(rejection region)을 설정하고 검정통계량의 포함 여부를 보거나
  - ullet 유의확률(p-value)를 계산하여 유의수준(lpha)와 비교함



# ◎ 가설 설정

- 일반적으로 검정하고자 하는 사람이 사실이라고 가정하고,
  사실임을 입증하고자 하는 것을 대립가설로 설정함
- 가설 설정 시 등호는 귀무가설 부분으로 포함됨

#### 가설 예시1

한 회사에서 모델을 교체하고 광고 효과를 따져보기로 했다. 광고비를 포함한 다른 영향을 줄 수 있는 요인은 동일하다고 가정하였을 때 50개 지역의 월 매출 평균이 차이가 나는지 보고자 한다.

- ▶ 평균의 차이가 나는지가 관심이므로 대립가설로 설정함
- > 평균 차이 =  $\mu_{after-before}$
- $> H_0 : \mu_{after-before} = 0, H_1 : \mu_{after-before} \neq 0$  (양측검정)



# ◎< 가설 설정

#### 가설 예시2

한 회사에서 모델을 교체하고 광고 효과를 따져보기로 했다. 광고비를 포함한 다른 영향을 줄 수 있는 요인은 동일하다고 가정하였을 때 50개 지역의 월 매출 평균이 증가했는지 확인하고자 한다.

- ▶ 평균이 증가했는지가 입증하고자 하는 대상이므로 대립가설로 설정함
- $H_0: \mu_{after-before} = 0,$  $H_1: \mu_{after-before} > 0$  (단측검정)
- > 동일하게  $H_0$ :  $\mu_{before-after}=0$ ,  $H_1$ :  $\mu_{before-after}<0$  이라고도 세울 수 있음



# ◎ 가설 설정

#### 가설 예시3

제약회사가 개발된 신약을 출시하기 위해 기존 약품으로 치료받는 환자들의 치료율( $p_1$ )에 비해 신약으로 치료받는 환자들의 치료율( $p_2$ )이 높다는 것을 검정하고 싶다고 한다.

- > 기존 약품으로 치료받는 환자들의 치료율( $p_1$ )에 비해 신약으로 치료받는 환자들의 치료율( $p_2$ )이 높다는 것을 검정하고자 하므로 대립가설로 설정함
- $> H_0: p_1 = p_2, H_1: p_1 < p_2$ (단측검정)



## ◎ 기설검정에서의 오류, 유의수준

- 통계적 가설검정은 알지 못하는 모수에 대한 검정이므로 오류가 발생할 수 있음
- 가설검정에서 발생할 수 있는 두 가지의 오류
  - ightharpoonup 1종 오류(Type I error) :  $H_0$ 가 참인데  $H_0$ 를 기각하고  $H_1$ 을 지지하는 오류
    - (비유)무죄인 사람에게 잘못된 유죄판결을 내리는 것
  - ightharpoonup 2종 오류(Type II error) :  $H_1$ 가 참인데  $H_0$ 를 기각하지 않는 오류
    - (비유)범죄를 저지른 사람에게 유죄가 아니라고 판결을 내리는 것



## ☞ 가설검정에서의 오류, 유의수준

- 1종 오류와 2종 오류 모두 작아지도록 검정을 하는 것이 바람직하나 두 오류는 하나가 작아지면 다른 하나가 커지는 관계에 있음
- 가설검정에서는 일반적으로 1종 오류의 최대값을 미리 고정시키고 검정력( $1 \beta$ )이 큰 검정법을 택함
- 1종 오류의 최대값을 유의수준(α)이라고 함
- 일반적으로  $\alpha = 0.05$ 를 활용함



## [○ 모평균에 대한 가설 검정 : T-test

#### **T-test**

모집단의 정규성을 가정할 수 있거나 표본의 크기가 충분히 큰 경우 모평균에 대한 가설검정으로 활용할 수 있음

- 모평균에 대한 가설의 종류
  - ▶ 가설 1:  $H_0$ :  $\mu = \mu_0$ ,  $H_1$ :  $\mu > \mu_0$
  - ▶ 가설 2:  $H_0$ :  $\mu = \mu_0$ ,  $H_1$ :  $\mu < \mu_0$
  - **>** 가설 3:  $H_0$ :  $μ = μ_0$ ,  $H_1$ :  $μ ≠ μ_0$
- 세 가지 경우 검정통계량은 동일하지만, 귀무가설의 기각 여부를 결정하는 방법에서 차이가 있음
  - ▶ 미리 정해진 유의수준과 대립가설의 방향에 따라 임계값을 계산하고, 임계값을 기준으로 더 극단적인 방향으로 설정됨



• 검정통계량

$$T = \frac{\bar{X} - \mu_0}{S/\sqrt{n}} \sim t_{n-1}$$

- $\blacktriangleright \bar{X}$ : 표본평균, S: 표본표준편차, n: 표본의 크기
- ▶ 한 집단(one sample) 또는 쌍체표본(paired sample)에서 활용함
- ▶ 단순히 표본에서 계산된 평균이 아닌 표본의 산포도, 크기에 대한 정보가 반영된 값
- ightharpoonup (다른 값들이 동일하다고 가정) 표본의 크기가 클수록 검정통계량의 절대값이 커지고, 표본표준편차가 작을수록 검정통계량의 절대값이 커짐 → 모수인  $\mu$  와  $\mu_0$ 의 거리가 멀다는 결론으로 가는 방향



## ● 모평균에 대한 가설 검정 : T-test

- 두 집단의 평균 비교인 경우 T-test 검정통계량 공식은
  조금 더 복잡해지지만 동일한 구조임
- 세 개 이상의 집단의 평균 비교는 분산분석(ANOVA)



## ◎<모평균에 대한 가설 검정 : T-test

$$H_0: \mu = \mu_0, H_1: \mu > \mu_0$$

- 기각역:  $T > t_{\alpha,n-1}$ 
  - ightharpoonup 기각역의 경계값인  $t_{\alpha,n-1}$  를 임계값(critical value)이라 함
- 귀무가설 기각 여부 결정
  - ightharpoonup계산된 검정통계량 값  $T^*$  가 기각역에 포함되면, 즉 검정통계량 > 임계값이면  $H_0$ 를 기각하고  $H_1$ 을 채택함

계산된 검정통계량 값 T\* 가 기각역에 포함되지 않으면, 즉 검정통계량 < 임계값이면 H₀를 기각하지 못함</li>
 이 경우 "귀무가설을 채택한다 (accept H₀)"라는 표현은 어색함 : 대립가설을 채택할 근거가 부족한 것이지 평균이 μ₀과 동일하다는 의미는 아님





## []◀모평균에 대한 가설 검정 : T-test

$$H_0: \mu = \mu_0, H_1: \mu < \mu_0$$

- 기각역:  $T < -t_{\alpha,n-1}$ 
  - ightharpoonup 기각역의 경계값인  $-t_{\alpha,n-1}$  를 임계값(critical value)이라 함
- 귀무가설 기각 여부 결정
  - ightharpoonup계산된 검정통계량 값  $T^*$  가 기각역에 포함되면, 즉 검정통계량 < 임계값이면  $H_0$ 를 기각하고  $H_1$ 을 채택함
  - ightharpoonup 계산된 검정통계량 값  $T^*$  가 기각역에 포함되지 않으면, 즉 검정통계량 > 임계값이면  $H_0$ 를 기각하지 못함
    - 이 경우 "귀무가설을 채택한다 (accept  $H_0$ )"라는 표현은 어색함 : 대립가설을 채택할 근거가 부족한 것이지  $\mu_0$ 과 동일하다는 의미는 아님





## []◀모평균에 대한 가설 검정 : T-test

$$H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$$

- 기각역:  $T > t_{\alpha/2,n-1}$  or  $T < -t_{\alpha/2,n-1}$ 
  - $\blacktriangleright$  기각역의 경계값인  $-t_{lpha/2,n-1}$  ,  $t_{lpha/2,n-1}$ 를 임계값(critical value)이라 함
- 귀무가설 기각 여부 결정
  - ightharpoonup 계산된 검정통계량 값  $T^*$  가 두 기각역 중 하나에 포함되면,  $H_0$ 를 기각하고  $H_1$ 을 채택함
  - ightharpoonup 계산된 검정통계량 값  $T^*$  가 두 기각역 어디에도 포함되지 않으면,  $H_0$ 를 기각하지 못함
    - 이 경우 "귀무가설을 채택한다  $(accept H_0)$ "라는 표현은 어색함 : 대립가설을 채택할 근거가 부족한 것이지  $\mu_0$ 과 동일하다는 의미는 아님





# ● 학습정리

- <mark>가설검정</mark>은 모집단의 <mark>모수에 대한 가설</mark>에 대해 표본이 가지고 있는 정보를 이용해 가설의 진위 여부를 판단하는 <mark>통계적 추론</mark> 방식
- 통계적 가설은 귀무가설과 대립가설이 있음
  - <mark>귀무가설(null hypothesis)</mark>은 그에 반하는 충분한 근거가 나올 때까지 <mark>잠정적</mark>으로 <mark>참이라고 가정</mark>하는 가설
  - <mark>대립가설(alternative hypothesis)</mark>은 새로운 주장이고 실제로 입증하기를 원하는 가설
- 가설검정 절차는 <mark>가설(귀무/대립가설) 설정</mark>, 선택된 검정통계량 계산, 검정통계량을 바탕으로 <mark>귀무가설 기각 여부</mark> 결정의 순서로 진행됨
- <mark>모집단의 정규성</mark>을 가정할 수 있거나 <mark>표본의 크기가 충분히</mark> 큰 경우 모평균에 대한 가설검정으로 T-test를 활용할 수 있음

