$$= x^{4}(x^{4n-2}+1) - (x^{2}+1)(x^{2}-1) = x^{4}(x^{2}+1)v_{n}(x) - (x^{2}+1)(x^{2}-1)$$
$$= (x^{2}+1)(x^{4}v_{n}(x) - x^{2}+1).$$

Ponieważ $x^4v_n(x)-x^2+1$ jest wielomianem, więc powyższa równość oznacza, że $w_{n+1}(x)$ dzieli się przez x^2+1 . To kończy dowód 2° .

Z wykazanej prawdziwości warunków 1° i 2° oraz z zasady indukcji matematycznej wynika, że T(n) jest prawdziwe dla każdej liczby naturalnej n.

Rozwiazanie zadania 3.8

Dziedziną nierówności jest **R**. Ponieważ $\sqrt{3}=\operatorname{tg}\frac{\pi}{3}$, więc ze wzoru na cosinus różnicy kątów mamy

$$\cos x + \sqrt{3}\sin x = \cos x + \operatorname{tg} \frac{\pi}{3}\sin x =$$

$$\frac{\cos x \cos \frac{\pi}{3} + \sin x \sin \frac{\pi}{3}}{\cos \frac{\pi}{3}} = 2\cos\left(x - \frac{\pi}{3}\right).$$

Nierówność przyjmuje zatem postać $\left|2\cos\left(x-\frac{\pi}{3}\right)\right| \leq \sqrt{2}$. Obie strony nierówności są nieujemne, więc po podniesieniu do kwadratu dostajemy nierówność równoważną $2\cos^2\left(x-\frac{\pi}{3}\right) \leq 1$. Stosujemy wzór $1+\cos 2\gamma = 2\cos^2\gamma$ i przekształcamy ją do prostszej postaci $\cos\left(2x-\frac{2\pi}{3}\right) \leq 0$. Wiemy, że cosinus jest ujemny w II i III ćwiartce, otrzymujemy więc $\frac{\pi}{2} + 2k\pi \leq 2x - \frac{2\pi}{3} \leq \frac{3\pi}{2} + 2k\pi$, czyli

$$\frac{7\pi}{12} + k\pi \le x \le \frac{13\pi}{12} + k\pi, \quad k \in \mathbf{Z}.$$
 (2)

Wyznaczamy część wspólną zbioru rozwiązań (2) i przedziału $[0, 3\pi]$, dostajemy (podstawiamy kolejno k = -1, 0, 1, 2) odpowiedź.

Odp.
$$x \in \left[0, \frac{\pi}{12}\right] \cup \left[\frac{7\pi}{12}, \frac{13\pi}{12}\right] \cup \left[\frac{19\pi}{12}, \frac{25\pi}{12}\right] \cup \left[\frac{31\pi}{12}, 3\pi\right].$$