- Combination circuits:
- Sequential circuits:

Block schematic

- Procedure to design combination circuits:
- Identify the I/O and O/P.
- Truth Table.
- Logical expression.
- Minimize the logical expression if possible.
- Implement the logic circuit.

• HALF ADDER (HA):

• Truth Table:

x	У	С	5
0 0 1 1	0 1 0 1	0 0 0	0 1 1 0

- Logical Expression:
- SUM=X'Y+XY'
- CARRY= XY
- HA Circuit:

- Important points:
- Minimum No. of NAND Gates: 5
- Minimum No. of NOR Gates: 5
- Minimum No. of MUX: 3
- No. of decoder: 1

• FULL ADDER (FA):

Full Adder

To add three bits, i.e., including a carry

x	у	Z	c	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1
			1	

	уz			v ·
X	уг 00	01	11	10
0		1		1
$x \left\{ 1 \right\}$	1		J	

$$S = x'y'z + x'yz' + xy'z' + xyz$$

$$C = xy + xz + yz$$

Full Adder with two half-adders and an OR gate

Full Adder in SOP form

- Exercise:
- No. of HA and other combination circuit required to design the FA.
- Minimum No. of NAND Gates required to design the FA.
- Minimum No. of NOR Gates required to design the FA.

• Half Sub-tractor (HS):

Half-subtractor

x	у	В	D
0	0	0	0
0	1	1	1
1	0	0	1
1	ì	0	0
		1	

$$D = x'y + xy'$$
$$B = x'y$$

- Exercise:
- Minimum No. of NAND Gates required to design the HS.
- Minimum No. of NOR Gates required to design the HS.

Full-subtractor

<u>x</u>	у	Z	В	D
0	0	0	0	0
0.	0	1	1	1
0	1	0	1 -	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

$$D = x'y'z + x'yz' + xy'z' + xyz$$
$$B = x'y + x'z + yz$$

Please draw the logic diagram.

• Logic Diagram:??

- Adder Types:
- Parallel Adder
- Serial Adder
- Look ahead carry adder

- 4-bit parallel adder:
- 3 FA and 1 HA.
- or 4 FA are required.

	FA	FA	FA	НА
	1	1	0	1
	1	0	1	1
	1	1	1	
1	1	0	0	0

- Parallel adder is used to add groups of bits.
- To add two n-bit No. it requires the (N-1) FA and one HA or N FA.

Or

• (2N-1) HA and (N-1) OR Gates required.

4-bit binary adder

- PA is also known as ripple carry adder.
- Propagation delay from i/p carry to o/p carry.
- In PA each FA will provide 2 logic gate delay.
- The N-bit PA propagation delay.

$$T_{delay} = 2Nt_{pd}$$

- Look Ahead Carry Adder:
- Propagation delay in PA.
- No. of bits increases, speed of the circuit becomes slow.
- To avoid this look ahead carry generator is used.

$$G_i = A_i B_i$$
 Carry generate

 $P_i = A_i \oplus B_i$ Carry propagate

Carry outputs for each stage from the 4-bit adder

$$C_2 = G_1 + P_1 C_1$$

$$C_3 = G_2 + P_2 C_2 = G_2 + P_2 (G_1 + P_1 C_1) = G_2 + P_2 G_1 + P_2 P_1 C_1$$

$$C_4 = G_3 + P_3 C_3 = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 C_1$$

Carry Look-Ahead (CLA) generator

4-bit adder with CLA

Comparator:

Truth Table:

Х	Υ	Α	В	С	
0	0	0	1	0	
0	1	0	0	1	
1	0	1	0	0	
1	1	0	1	0	

Logic Expression:

$$A = XY'$$

$$B = X'Y' + XY$$

$$C = X'Y$$

- Exercise:
- Implement the comparator circuit using basic Gates.
- Implement the comparator circuit using NAND Gates only.