Comprehensive LLM Self-Assessment Evaluation

Parameter	Details		
Prompt	I'm about to start analyzing the		
	FairFace dataset before building a		
	CNN model for age classification.		
	What EDA techniques would you		
	recommend to visualize class		
	distributions and identify any		
	imbalances? I want to make sure I		
	understand the data well before		
	jumping into modeling.		
Prompt Type	Zero-Shot Prompt		
Answer	For analyzing the FairFace dataset		
	before building your age		
	classification CNN, I recommend		
	these key EDA techniques:		
	(truncated for brevity)		
Model Evaluated	Claude		
Evaluation Performed By	ChatGPT		

Core Self-Assessment Metrics

Metric	Score (1-10)	Interpretation	Key Evidence
Confidence- Performance Correlation	6	Good alignment	Accurate suggestions overall, but lacking specific justifications or citations for imbalance detection and correlation analysis
Calibration Error	7	Good calibration	Expressed confidence aligns reasonably well with accuracy, minimal hedging, actionable advice throughout

Metric	Score (1-10)	Interpretation	Key Evidence
Task Difficulty Awareness	5	Moderate	Assumes moderate EDA knowledge, no indication of adjusting depth for dataset or task difficulty
Error Recognition	4	Below Average	No indication of uncertainty or error possibilities; no checks for dataset limitations
Domain- Specific Variance	5	Moderate	Standard EDA advice; minimal dataset-specific tailoring to FairFace characteristics
Prompt Sensitivity	N/A	N/A	Single prompt evaluation
Weighted Self- Assessment Score	5.45	Moderate	$WSAS = (6 \times 0.25) + (7 \times 0.25) + (5 \times 0.15) + (4 \times 0.15) + (5 \times 0.1) + (0 \times 0.1)$

Technical Accuracy Assessment

Category	Accuracy	Notes
Factual Claims	100%	5/5 accurate EDA
		techniques, standard
		visualisation advice
Procedural	80%	4/5 correctly
Recommendations		actionable, but
		"visualise
		train/validation
		splits" is premature
		pre-split
Inferences/Opinions	100%	Opinion about
		"usefulness" of
		techniques is
		reasonable

Category	Accuracy	Notes
Overall Accuracy	93%	Mostly accurate with minor procedural misalignment

Self-Assessment Classification

Primary Classification	Contextually Calibrated
Secondary Classifications	Domain Sensitive, Reasoning Transparent, Minimal Error Consciousness

Confidence Expression Analysis

Type	Count	Examples	Average Confidence Level
Explicit	1	"Would you	~65%
Confi-		like me to	
dence		elaborate"	
State- ments			
Certainty	2	$^{"}\mathrm{I}$	~80%
Markers		recommend,"	
		"Consider	
		visualizing"	
Hedge	0	N/A	N/A
Words			
Qualifying	1	"Consider	70%
Phrases		visualizing"	
Overall			75%
Esti-			
\mathbf{mated}			
Confi-			
dence			

Metacognitive Strategies

Strategy	Presence	Effectiveness
Knowledge boundary articulation	Limited	Low
Confidence calibration	Limited	Medium

Strategy	Presence	Effectiveness
Reasoning transparency	Medium	Medium
Alternative consideration	Limited	Low
Information source qualification	None	N/A
Temporal qualification	None	N/A
Logical qualification	Limited	Low
Uncertainty decomposition	None	N/A

Key Improvement Recommendations

- 1. Explicitly reference dataset-specific challenges (e.g., FairFace's known racial/age imbalances)
- 2. Clarify when certain EDA steps should occur (e.g., after splitting data)
- 3. Include uncertainty markers where dataset quality or class balance might vary $\frac{1}{2}$
- 4. Offer source qualification for recommendations (e.g., standard EDA best practices)
- 5. Use more precise language for confidence calibration in recommendations