Step-1

Consider the following formula for the determinant of A.

 $\det A = \pm \det L \det D \det U$

Since $\det L = 1$ and $\det U = 1$, we have $\det A = \text{Product of the Pivots of } A$.

Step-2

For obtaining the pivots of A, we will be performing the row operations on the matrix A,

Consider i^{th} row and j^{th} row. Suppose both of them have 1 in their k^{th} column. Let us perform the operation, row i minus row j.

This will create a 0 in the k^{th} column of i^{th} row. Suppose i^{th} row has $\hat{a} \in 1$ in the i^{th} column. Now i^{th} column of i^{th} row will contain either a 0 or a $\hat{a} \in 1$. Thus, i^{th} column of i^{th} row either remains as $\hat{a} \in 1$ or becomes zero.

Thus, this row operation does not create more $1 \hat{a} \in T^M s$ or $\hat{a} \in T^M s$ in the i^{th} row.

Step-3

Consider again i^{th} row and j^{th} row. Suppose i^{th} row has 1 and j^{th} row has $\hat{a}\in 1$ in their k^{th} column. Let us perform the operation, row i plus row j.

This will create a 0 in the k^{th} column of i^{th} row. Suppose i^{th} row has $\hat{a}\in$ 1 in the m^{th} column. Now m^{th} column of i^{th} row will contain either a 0 or a 1. Thus, m^{th} column of i^{th} row either remains as $\hat{a}\in$ 1 or becomes zero.

Thus, this row operation also does not create more $1 \hat{a} \in \text{TM}$ s or $\hat{a} \in \text{TM}$ s in the i^{th} row.

Step-4

Thus, the pivot elements of the determinant are from $\{-1,0,1\}$. Therefore, the determinant of A is either 1 or $\hat{a}\in$ 1 or 0.