Отчёт по лабораторной работе №4.2.1 Кольца Ньютона.

Плюскова Н.А. Б04-004

17 января 2024 г.

Описание работы

Цель работы: познакомиться с явлением интерференции в тонких плёнках (полосы равной толщины) на примере колец Ньютона и с методикой интерференционных измерений кривизны стеклянной поверхности.

В работе используются: измерительный микроскоп с опак-иллюминатором, плосковыпуклая линза; пластинка из чёрного стекла, ртутная лампа типа ДРШ, щель, линзы, призма прямого зрения, объектная шкала.

Аннотация

В работе предлагается, измерив диаметры колец Ньютона, определить радиус кривизны линзы; исследовать картину биений и рассчитать разность длин волн между желтой и зеленой спектральными линиями ртути.

Теоретические сведения

Рис. 1: Экспериментальная установка

Этот классический опыт используется для определения радиуса кривизны сферических поверхностей линз. В этом опыте наблюдается интерференция волн, отражённых от границ тонкой воздушной прослойки, образованной сферической поверхностью линзы и плоской стеклянной пластиной. При нормальном падении света (рис. 1) интерференционные полосы локализованы на сферической поверхности и являются полосами равной толщины.

Геометрическая разность хода между интерферирующими лучами равна удвоенной толщине воздушного зазора 2d в данном месте. Для точки на сферической поверхности, находящейся на расстоянии r от оси системы, имеем $r^2 = R^2 - (R-d)^2 = 2Rd - d^2$, где R — радиус кривизны сферической поверхности (рис. 1).

При $R\gg d$ получим $d=r^2/2R$. С учётом изменения фазы на π при отражении волны от оптически более плотной среды (на границе воздух-стекло) получим оптическую разность хода интерферирующих лучей:

$$\Delta = \frac{\lambda}{2} + 2d = \frac{r^2}{2R} + \frac{\lambda}{2} \tag{1}$$

Из условия интерференционного минимума $\Delta=\frac{(2m+1)\lambda}{2},\ m=0,1,2..$ получим радиусы темных колец r_m , а из аналогичного условия максимума $\Delta=m\lambda$ радиусы светлых r'_m :

$$r_m = \sqrt{m\lambda R}, \qquad r'_m = \sqrt{\frac{(2m-1)m\lambda R}{2}}$$
 (2)

Экспериментальная установка

Схема экспериментальной установки приведена на рис. 2. Опыт выполняется с помощью измерительного микроскопа. На столик микроскопа помещается держатель с полированной пластинкой из чёрного стекла. На пластинке лежит исследуемая линза.

Источником света служит ртутная лампа, находящаяся в защитном кожухе. Для
получения монохроматического света применяется призменный монохроматор, состоящий из конденсора , коллиматора
(щель S и объектив) и призмы прямого
зрения . Эти устройства с помощью рейтеров располагаются на оптической скамье.
Свет от монохроматора попадает на расположенный между объективом и окуляром
микроскопа опак-иллюминатор (ОИ) специальное устройство, служащее для освещения объекта при работе в отражённом

Рис. 2: Экспериментальная установка

свете. Внутри опак-иллюминатора находится полупрозрачная стеклянная пластинка P, наклоненная под углом 45° к оптической оси микроскопа. Свет частично отражается от этой пластинки, проходит через объектив микроскопа и попадает на исследуемый объект. Пластинка может поворачиваться вокруг горизонтальной оси X, опак-иллюминатор вокруг вертикальной оси.

Столик микроскопа может перемещаться в двух взаимно перпендикулярных направлениях помощью винтов препаратоводителя. Отсчетный крест окулярной шкалы перемещается перпендикулярно оптической оси с помощью микрометрического винта .

Оптическая схема монохроматора позволяет получить в плоскости входного окна опакиллюминатора достаточно хорошо разделённые линии спектра ртутной лампы. Изображение щели S фокусируется на поверхность линзы объективом микроскопа, т.е. точка источника и точка наблюдения спектра совпадают. Интерференционная картина не зависит от показателя преломления линзы и определяется величиной зазора между линзой и пластинкой (кольца равной толщины).

Сначала микроскоп настраивается на кольца Ньютона в белом свете (свете ртутной лампы), затем при помощи монохроматора выделить из спектра яркую зелёную линию и провести измерения диаметров колец в монохроматическом свете.

Выполнение работы

І. Калибровка окулярной шкалы

Определим цену деления окулярной шкалы: 4.43 деления окулярной шкалы 0.4 мм. Следовательно, цена деления окулярной шкалы: $\Delta x = (91 \pm 2) * 10^{(} - 6)$ м.

II. Измерение диаметров колец

После настройки микроскопа проведем измерения диаметров колец Ньютона. Измерения будем проводить в безразмерных единицах окулярной шкалы, переведённых затем в реальную величину с помощью калиброванной объектной шкалы.

Оценим систематическую погрешность измерения величин на окуляре как $\sigma = 0.01$

С помощью светофильтра получим желтый цвет ($\lambda=576$ нм), в котором и будет производить замеры диаметров колец Ньютона.

Перемещая перекрестие, последовательно устанавливаем его на середины темных колец и записываем соответствующие показания x_1 окулярной шкалы и микрометра. После прохождения через центральное пятно продолжаем измерения, записывая возрастающие номера колец и координаты x_2 их диаметров. Для устранения ошибок, возникающих из-за люфта в винте, перекрестие всегда следует подводить к кольцу с одной стороны.

m	Темные кольца			Светлые кольца		
	x_1 , усл.ед	x_2 , усл.ед	r_m , усл.ед	x_1 , усл.ед	x_2 , усл.ед	r_m , усл.ед
1	2,5	4,12	1,62	2,42	3,71	1,29
2	1,77	4,51	2,74	1,98	4,33	2,35
3	1,51	4,79	3,28	1,63	4,63	3
4	1,23	5,7	4,47	1,39	4,98	3,59
5	0,87	5,31	4,44	1,91	5,18	3,27
6	0,64	5,48	4,84	0,73	5,39	4,66
7	0,51	5,67	5,16	0,57	5,56	4,99
8	0,35	5,83	5,48	0,43	5,76	5,33
9	0,21	6,01	5,8	0,29	5,94	5,65
10	0,13	6,16	6,03	0,14	6,1	5,96

Таблица 1: Измерение диаметров колец Ньютона

Рис. 3: График зависимости радиусов колец от их номера. Значения коэффициентов наклона: $k_{max}=3.18\cdot 10^{-9} \mathrm{m};\ k_{min}=3.04\cdot 10^{-9} \mathrm{m}.$

Найдем коэффициент наклона касательной:

$$k = \sqrt{\frac{\langle xy \rangle - \langle x \rangle \cdot \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle}}$$

$$\sigma_k = \sqrt{\frac{1}{n-1} (\frac{\langle y^2 \rangle}{\langle x^2 \rangle} - k^2)}$$

$$k_{max} = (7.95 \pm 0.09) \cdot 10^{-9} \text{M}$$

$$k_{min} = (7.61 \pm 0.1) \cdot 10^{-9} \text{M}$$

Из формул $r_m = \sqrt{m\lambda R}$ и $r_m' = \sqrt{(2m-1)m\lambda R/2}$ найдем значения радиуса кривизны линзы:

$$R_{max} = \frac{k_{max}}{\lambda} = \frac{7.95 \cdot 10^{-9}}{579 \cdot 10^{-9}} = 13.73 \pm 0.16 \text{ mm}$$

$$R_{min} = \frac{k_{min}}{\lambda} = \frac{7.61 \cdot 10^{-9}}{579 \cdot 10^{-9}} = 13.14 \pm 0.15 \text{ MM}$$

III. "Наблюдение биений"

Убрав светофильтр, в опак-иллюминатор поступает свет от ртутной лампы, в спектре которой преобладают желтый и зеленый цвета. Из-за того, что волны желтого и зеленого лучей имеют разную длину волны, мы видим картину биений - череду четких и нечетких систем колец.

Посчитаем количество темных полос между соседними четкими системами: $\delta m=16$. Зная длину волны желтого света λ_y , мы можем определить длину волны зеленого свет λ_g а и разность длин волн желтого и зеленого света ртутной лампы.

$$\lambda_y m = \lambda_g(m+1) \to m+1 = \frac{\lambda_y}{\Delta \lambda}$$

$$\Delta \lambda = \frac{\lambda_y}{m+1} = \frac{574~\mathrm{HM}}{17} pprox 34~\mathrm{HM}$$

Вывод

В данной работе было изучено явление интерференции в тонких пленках - кольца Ньютона, получено значение радиуса кривизны линзы:

$$< R > = 13.43 \pm 0.16 \; \mathrm{mm}$$

Определили из экспериментального периода биений разницу длин волн зеленого и желтого света ртутной лампы ($\Delta\lambda\approx34$ нм), которое практически совпадает с табличным значением - 33 нм.