CMP3020 VLSI Lab3-4-5: FloorPlanning Place & Route

Agenda

1. Review on Last Lab

2. FloorPlanning

3. Placement

4. Routing

5. Post-Routing Simulation

Export Verilog & SDF

Oasys-RTL + Modelsim

Nitro-SoC

Nitro-SoC

Nitro-SoC

Modelsim (Questasim)

Nitro-SoC

1.Review: ASIC Flow

1.Review: Oasys-RTL Flow Required Files

- RTL (Verilog or VHDL) design by YOU
 - Librety Files (.lib) →

describe electrical constraints and timing for each cell (Capacitance, resistances, ..etc)

Physical libraries (.lef) →

describe the cell as shapes (width, height and antennas effect as well, vias places and metals, ...etc)

- Timing constraints (.sdc)
- Floorplans (.def) → floor planning defination
 - Power intent (.upf) → power information
- Process technology (.ptf) → interconnect information
 - Design for Testability DFT (.ctl)
- Switching activity Interchange Format (SAIF)

1.Review: Oasys-RTL Flow Used

Scripts

→ Make sure to set All the parameters in this file correctly

- O_init_design.tcl
 1_read_design.tcl
 2_synthesize_optimize.tcl
 3_export_design.tcl
 4_clear_designs.tcl
 run.tcl
 > it calls script from 0 till 3

2.Post-synthesize Simulation

This step is to guarantee that the output netlist does the same functionality as the input, with no timing consideration yet.

Steps:

- Synthesize
- Get output synthesized Verilog File from Oasys
- Get Library Verilog File (NangateOpenCellLibrary.v)
- Compile them together
- Simulate

3. Nitro: Setup...Folder Structure

Folder Structure

- Constraints & lib_data → are same as Lab2
- Work → empty folder to start our Nitro from
- Clean_nitro.sh → our cleanup script
- variables → Contains the main script files that we will change with our data.

3. Nitro: Setup... variables Folder

- variables Folder contains the following files:
- → You need to modify with your source, library and import_variables.tcl constraints paths.
- → set power planning to floorplan_variables.tcl → parameters need to be set for floorplanning.

false

flow_variables.tcl

→ variables required for the rest of the flow.

3. Nitro: Run ... Floorplan & Placement

- Add your synthesized verilog and constraints files in place
- Update scripts in variables folder

source clean_nitro.sh

Clean and setup work environments

cd work

3. Nitro: Run ... Floorplan & Placement

Go to work Directory, Open Nitro

nitro -log LOGs/nitro.log -journal LOGs/nitro.jou

Run setup

setup_nrf

Run Import Script

source flow_scripts/0_import.tcl

3. Nitro: Run ... GUI... Check & Save

• Open GUI

start

Check_design

check_design (press F2 to open results in separate window)

Save design

write_db -file ../db/import.db

3. Nitro: Run ... GUI... Power Planning

Create Power/Ground Rails

Floorplan Menu → Power → Create P/G rails

Create Power/Ground strips

Floorplan Menu → Create P/G strips

Create Power/Ground rings

Floorplan Menu → Create P/G rings

Create Power Rails

- 1. choose metal layer you want (usually metal1 or metal2)
- 2. choose auto to preview the placement on the chip
- 3. export to save tcl command to script (to reuse it later)
- 4. Apply or OK to apply (not both)

Create Power Strips

9

Stripe parameters

-Layer:

Create P/G Stripes

Direction: Preferred (V)

Right:

Objects

Domains Regions ☐ Keep pattern

Ignore blockages

Top:

- 2. choose auto to preview the placement on the chip
- 3. set offset from sides to leave space for pads
- 4. add both VDD and VSS strips
- 5. use this to remove the added VDD/VSS in case of mistakes

olor Opacity 80

| Net | Width (a) | Spacing (a) | | VDD | 1400 | 1400 | 2 | VS | 1400 | 1400 |

✓ Placement

☐ All None

☐ Preroute

☐ Route

- 6. change step to introduce more space between strips (watch density changes)
- 7. export/ Apply / OK (same as previous)

Create Power Rings

- choose metal layer you want (usually HIGHER than strip)
- 2. choose auto to preview the placement on the chip
- 3. set offset from sides to leave space for pads
- 4. add both VDD and VSS strips
- 5. use this to remove the added VDD/VSS in case of mistakes
- 6. change step to introduce more space between strips (watch density changes)

3. Nitro: Run ... GUI... Check & Save

insert P/G Vias

insert_pg_vias -partitions [get_top_partition]

Trim P/G excess routes

trim_pg_route

Save design

write_db -file db/pg.db

3. Nitro: Run ...Route & Errors

• Open GUI

source flow_scripts/3_route.tcl > LOGs/route.log

• Run design check

Check → check_design → run

View errors

Press F2 to view errors

3. Nitro: Save..

Save Design

write_db -file ../db/final.db

Saving timing annotation file

write_sdf -file multiplier.sdf -corner corner_0_0 -mode new_mode -skip_backslash true

Saving Verilog file

write_verilog -file multiplier.route.v

3. Nitro ... Tips

- All steps made through UI are written in the transcript, you might consider saving it
- Repeating the commands doesn't always guarantee generating same results, Saving design is essential.
- Port Editor has a bug and sometimes doesn't show all Ports
- Always use check_design to make sure you didn't mess up something
- Always read error and warnings, they are reported for a reason
- Some errors and warnings can be ignored safely
- Always direct the ouput of scripts to a file to help you in later tracing

4. Modelsim: Post-synthesis simulation

- Create project, and add file to it
- Add adder.route.v and NangateOpenCellLibrary.v to project
- Add sdf file to project
- Compile Files
- run simulation using sdf file

vsim <toplevelModuleName> -t ps -sdfmax <path2sdfFile>

vsim multiplier.route.v -t ps -sdfmax /somepath/multiplier.sdf

4. Next Time and Additions

- Nitro-SoC
- Prioritize Clock and use Clock Tree Synthesize
- Get Statistics out of NitroExport GDSII File to perform physical verification.
 - Calibre
- Extras If We have time
- Nitro-Soc
- Manual Floor PlanningAdding Ready Made components and using Def files
 - Oasys-RTL:
- Design Space Exploration
- Scan ChainsSeveral libraries optimization

Export GDSI

(preferably only the gds you need not the whole library) Configure the tool to read library GDS ۲i

report_stream_lib

<u>ш</u>; This command will display the used cells and whether the source is just LEF

ripple_adder

config_stream_lib -common { path2file/AND2_X1.gds path2file/INV_X1.gds } This command will read in the gds files needed <u>.</u>

report_stream_lib ن

	Full Hierarchy Report
Cell	Source
ripple_adder	
AND2_X1	AND2_X1 /home/vlsi/Desktop/Lab2/lib_data/NangateOpenCellLibrary_PDKvl_3_v2010_12/Back_End/gds/AND2_X1.gds
INV_X1	INV_X1 /home/vlsi/Desktop/Lab2/lib_data/NangateOpenCellLibrary_PDKvl_3_v2010_12/Back_End/gds/INV_X1.gds

Export GDSII

2. Add Layer Mapping

- report_stream_layer_map blockage
 This command will display the mapping of the layers, at the peginning you will mid the whole table empty
 - This command will map metals and vias to Layer numbers that GDSII can understand. source pathto/LayerMapping.tcl <u>.</u>
- Now the tables have some

c. report_stream_layer_map numbers

GDS/OASIS layer mapping of metal layers and metal fill for table default	layer m	apping	of meta	ıl layer	pue s	netal f	ill for	table	default	
	metall	metal2	metal3	metal4	metal5	metal6	metal7	metal8	metal9	metall metal2 metal3 metal4 metal5 metal6 metal7 metal8 metal9 metal10
text	31:99	31:99 32:99 33:99 34:99 35:99 36:99 37:99 38:99 39:99 40:99	33:99	34:99	35:99	36:98	37:99	38:99	39:99	40:99
top_port						-	-	-	-	
blockage	31:10	31:10 32:10 33:10 34:10 35:10 36:10 37:10 38:10 39:10 40:10	33:10	34:10	35:10	36:10	37:10	38:10	39:10	40:10

9	3DS/OASIS layer mapping of via layers for table default	layer	mapping	of via	a layers	for t	able de	efault		
	9	vial	via2	via3	via3 via4 via5	via5	via6	via6 via7 via8	via8	via9
text	40:99	41:99	40:99 41:99 42:99 43:99 44:99 45:99 46:99 47:99 48:99 49:99	43:99	44:99	45:99	46:99	47:99	48:99	49:99
								-		

Export GDSII

- 2. Write GDSII file
- a. write_stream -file pathto/output.gds

now your design is exported as a GDS in the folder you specified into "pathto" with the name "output.gds" please do change the names for your convenience

