The suppose U & a finite dimensional vis of V.

The V = U A U+

Pf We know that $U \cap U^{+} = \{0\}^{2}$, Hence it is enough to people that $V = U + U^{+}$.

Since $\cdot U$ and U^{+} are subspaces of V, $U^{+}U^{+} \subseteq V$.

We need to peove $V \subseteq U + U^{\perp}$

les v ∈ v. les & e, --, em 3 be an authonor basis of v.

Let $u = \langle v, q \rangle e_1 + \langle v, e_2 \rangle e_2 + \cdots - \langle v, e_m \rangle e_m$ and $w = \langle v - u \rangle = \langle v + w \rangle$

Clearly UE U., WE UI

Par l=1--, m, < w, ev) = < v- u, ev)

= 4 20-40, e,) e, - (V, em) em, ev)

 $= \langle v, e_i \rangle - \langle v, e_i \times \underline{e_i, e_i} \rangle$ $- \langle v, e_i \rangle \langle e_i, e_i \rangle$

··· - < ~, em < lm, en)

$$= \langle v, e_{i} \rangle - \langle v, e_{i} \rangle \cdot l = 0$$

$$\Rightarrow \quad w \in U^{\perp}$$
which proves to result.

Cox. \underline{r} dim $U^{\dagger} = \dim(V) - \dim(U)$ 2. Let A be an $m \times n$ matern. Then. $R^{n} = R(A) \oplus V(A)$ $R^{m} = C(A) \oplus N(A^{\dagger})$

Let Ax = b be system of Lineau eq. The given is mansistant if $b \notin C(A)$ But $b \in \mathbb{R}^m$. By previous them $b = be(A) + bN(A^T)$ The system is in ansistant if $b_{N(A^T)} \neq 0$

A x = b $= be(A) + b N (A^{T})$ $Multiply A^{T} con both sides$ $A^{T}Ax = A^{T}b$ $= A^{T}be(A) + A^{T}b N (A^{T})$ $= A^{T}b + A^{T}b$

$$= A^{T} A x = A^{T} b e(A)$$
This system
$$u \text{ ans is lent}$$

Get Les
$$V = \mathbb{R}^2$$
, $\langle x, y \rangle = [x, x_0] \begin{bmatrix} a & -1 \end{bmatrix} \begin{bmatrix} y \\ -1 & 1 \end{bmatrix} \begin{bmatrix} y \\ y \end{bmatrix}$
Les $V = \{\alpha, \alpha\} : \alpha \in \mathbb{R}^3$.

Find $V = \{\alpha, \alpha\} : \alpha \in \mathbb{R}^3$.

Let
$$B = \{(1, 1), (1, -1)\}^2$$
 be a basis $g V$.

$$w_{2} = (1, -1) - (1, -1), (1, 1), (1, 1)$$

$$= (1, -1) - [1 - 17 [2 - 1][-1] (1, 1)$$

$$= (1, -1) - [3 - 2][-1] (1, 1)$$

$$= (1, -1) - 5(1, 1) = (-4, -6)$$

$$11 w_2^{11} = \int -4 - 6 \int \int 2 - 1 \int 1 - 47$$

Let ueU, Tu,u>=0 & veut > U E (UL) L 2) N = (N1) T Now we need to beave $(O_{T})_{T} \subseteq O$ Les $v \in (U^{\perp})^{\perp}$, $v \in V$. a re = u+w, ue U, we U+ Sma uel and Ue (U1) I $= u \in (u^{\perp})^{\perp}$ → vo- u ∈ (U¹) 1 = $w \in (U^{\perp})^{\perp}$ $\Rightarrow \qquad \omega \in \cap (U^{\dagger})^{\perp} \cap U^{\perp}$ > 6 = 0 7 U-V=0 >) V = V >) ~ € U and hance (U) = U.

Oethogonal peojection.

We be a finite dimensional v.s.

and $U \subseteq V$. Then $P \subseteq U$, P = UPW, $P \subseteq U \subseteq U$, $P \subseteq U$, P

Pu(12) = 4, s called the osethogone Regertion of V. on U.

Remark Po & well defined.

Example Let V be a vector of an aul $x \in V$, Take v = 8 par $x \in V$.

Then $P_{U}(v) = \frac{\langle v, x \rangle x}{||x||^2}$

How we findfarecter v., u and w
St V= u ew, and u I w