CHAPTER 4: PRODUCING AND ANALYZING SEQUENCE ALIGNMENTS

Dr. Garrett Dancik

Motivation

- You have recently sequenced a gene and its CDS begins with
 - GGCGGAGCCAGGCCGGCCTAGAGTCACTTCTCC
- You have isolated a protein and its amino acid sequence is
 - MGKEIPTDAPWEAQHADKWDKMTMKELIDKICWTKTA
- Questions:
 - What does this protein do?
 - What are the important functional regions?
 - Do other organisms have similar genes or proteins?
- To answer these questions we can find similar sequences, identified through sequence alignments, using tools such as BLAST

Sequence alignment

- Two sequences should be aligned in such a way that maximizes their similarity
 - If they derive from a common ancestor, characters (bases or amino acids) derived from the same ancestral base should be aligned
 - Shared domains in proteins (and important regions in nucleotide sequences) should align, even if the sequences are not similar overall
- Alignment should take into account biological mutations and other events
 - Point mutations
 - Insertions or deletions (indels)
 - Gene duplications and pseudogenes (a gene copy that does not produce a functional protein)
 - The human genome has up to 20,000 pseudogenes!

Sequence alignment example

 Consider the alignment of two hypothetical protein sequences:

THISSEQUENCE and THATSEQUENCE

Sequence alignment example (different lengths)

Now consider the alignment of two hypothetical protein sequences:

THATSEQUENCE and THISISASEQUENCE,

where the amino acids I, S, and A were inserted into one of the original sequences

- When aligning both sequences from the beginning
 - similarity which is obvious to us is lost
 - false matches are created because of differences in length

Sequence alignment example (different lengths)

 The solution is to introduce a gap, which corresponds to an insertion or a deletion and is usually indicated by a dash (-) in an alignment

- There are always multiple possible alignments, and the best alignment is not always obvious
- The alignment must be selected using a quantitative scoring measure

Sequence homology

- Similarity is a descriptive term indicating that two or more sequences have a certain degree of identity or likeness
- Homologous sequences (or homologues) are sequences that are descended from a common ancestor
- Homologous genes will accumulate different mutations (divergent evolution) during the course of evolution and their sequences are often not identical.
- Convergent evolution is when sequences with high similarity are not homologous
- Alignments cannot distinguish between homology and convergent evolution

Homology is more easily detected from protein sequences

- Number of possible characters in nucleotides vs. proteins?
- Matches in nucleotide sequences are more likely due to chance than matches in protein sequences
- The genetic code is redundant
 - Identical amino acid sequences can be encoded by different nucleotide sequences
 - Nucleotide sequences are more likely to change over time
- Structure and function of a protein is determined by its amino acid sequence (although this is determined by the nucleotide sequence)

Scoring alignments

- Since multiple alignments are always possible, the best possible alignment is determined based on an alignment score
 - The optimal alignment is the alignment with the best score (multiple optimal alignments are possible)
 - Suboptimal alignments have slightly less scores than the best one
- The **percentage** or **percent identity** of an alignment is equal to the number of identical matches in an alignment divided by the length of the alignment (including gaps)

• The above alignment is optimal and has a percent identity of 11/16 = 68.75%

Dot-plots

- A dot-plot is a display of the alignment of two sequences that visualizes sequence similarity graphically
- A dot indicates identity between characters of each sequence
- Interruptions along the diagonal indicate a gap
- In addition to visualizing overall similarity, dot-plots can indicate intrasequence repeats

Dot-plots and background noise

- A. Dot-plot of an SH2 domain with itself
- B. The same dot-plot but with background noise removed, based on a window of 10 residues and a minimum identity score within each window of 3

Dot-plots showing BRCA2 repeat domain

Background is removed using a window of 30 and a minimum score of 5

Similarity versus identity

- Genuine matches do not have to be identical
- Certain non-identical amino acids may have
 - Similar physical and chemical properties
 - May be more likely to be present at the same region than others in related sequences
- Percent similarity is calculated in the same way as percent identity but both identical and similar matches are considered

- Isoleucine (I) and alanine (A) are hydrophobic; serine (S) and threonine (T) are polar
- Percent similarity is 12/15 = 80%

Substitution matrices

- For protein sequences, the score for each aligned pair of amino acids is determined by a substitution matrix, which has values for all possible pairs of residues.
- Example using BLOSUM-62 matrix:

```
Seq1: T H I S S E Q U E N C E
Seq2: T H A T S E Q U E N C E
Score: 5 8 -1 1 4 5 5 0 5 6 9 5
```

This alignment has an overall score (S) of 52

Substitution matrices

BLOSUM matrices

- BLOck SUbstitution Matrix
- Based on local alignments to detect conserved short regions
- Sequences grouped based on percent identity, where the percent identify threshold for grouping determines the specific BLOSUM matrix
 - BLOSUM-62 is based on grouping aligned sequences with no more than 62% identity
- Substitution frequencies are then calculated
- Positive scores indicate conservative (more likely) substitutions
- Negative scores indicate non-conservative (less likely) substitutions
- All BLOSUM matrices are based on observed alignments

```
( \frown )
                                                     BLOSUM-62 matrix
C
     9
                  small and polar residues
S
    -1
        -1 - 1
                              small and nonpolar
G
                         6
N
                              6
                                         polar or acidic residues
                                  6
Ε
                                      5
                                  0
                                                        basic
H
                                 -1
                                              8
                                                                    large and
M
                                 -3
                                                                    hydrophobic
                                                                4
                                                                3
                                                                        4
                                                                                 aromatic
                                                                0
F
                                                                             6
                                                                             3
W
                                                                                   11
                                               H
                                                                                    W
                                                           M
```

Substitution matrices

- Point Accepted Mutation (PAM) matrices
 - Based on amino acid frequencies in alignment of similar and homologous protein sequences
 - Probabilities were calculated for whether a given amino acid mutates to any other over a given period of time
 - The logarithm of this probability gives the substitution score
 - Based on number of changes from each amino acid and total number of occurrences
 - There are multiple PAM matrices and the PAM # corresponds to the number of accepted point mutations per 100 residues.
 - All PAM matrices are based on PAM1; others are inferred.
 - For example, the PAM250 contains scores based on an expected evolutionary distance corresponding to 250 point accepted mutations for every 100 amino acid residues

PAM vs. BLOSUM Substitution matrices

- Choice depends on evolutionary distance
- For closely related sequences
 - Use higher BLOSUM number and lower PAM number

- For distantly related sequences
 - Use lower BLOSUM number or higher PAM number

Inserting Gaps

- A gap in a sequence alignment indicates an insertion or deletion in the sequence
- When a gap is introduced, a gap opening penalty is added to the score
 - Insertions and deletions are not likely to occur in regions of structural importance
- Insertions tend to be several residues long
 - A smaller gap extension penalty is added each time a gap is extended
- Gaps cannot be aligned with each other

Gap Penalties

- A "gap" (composed of a sequence of gap characters in the alignment, e.g.,
 -) has a penalty composed of a gap opening penalty for the initial character and a gap extension penalty for each subsequent character.
 Typically gaps are not penalized if they occur at the beginning or end of the alignment (this is known as a semi-global alignment)
- Here we use a gap opening penalty of 10 and a gap extension penalty of 1

This semi-global alignment has an overall score (S) of 14

Types of alignments

- A (semi) global alignment aligns two sequences across their entire lengths
 - Appropriate for homologous sequences
- A local alignment detects shared regions (e.g., domains) which may be missed in global alignments
- A pairwise alignment is the alignment of two sequences
- A multiple alignment is the simultaneous alignment of more than two sequences

Many proteins have multiple domains

(A) local

PI3-kinase DRHNSNIMVKDDGQLFHIDFG CAMP PK DLKPENLLIDQQGYIQVTDFG

Local and global alignments

global PI3-kinase HQLGNLR--LEECRI---MSSAKRPLWLNWENPDIMSELLFQNNEIIFKNGDDLRQDMLT cAMP PK GNAAAAKKGX<mark>E</mark>QESVKEFLAK<mark>AK</mark>EDFLKK<mark>WENP</mark>AQNTAH<mark>L</mark>DQFERIKTLGTGSFGRV<mark>ML</mark>-PI3-kinase LQIIRIME--NIWQNQGLDLRMLPYGCLSIGDCVGLIEVVRNSHTIMQ-IQCKGGLKGAL cAMP PK ---VKHMETGNHYAMKILDKQKVVK-----LKQIEHTLNEKRILQAVNFPFLVKLEF PI3-kinase QFNSHT-LHQWLKDKNKGEIYDAA--IDLFTRSCAGYCVATFILGIGDRHNSNIMVKD-D cAMP PK SFKDNSNLYMVMEYVPGGEMFSHLRRIGRFSEPHARFYAAQIVLTFEYLHSLDLIYRDLK PI3-kinase GQLFHIDFGHFLDHKKKKFGYKRERVP----FVLTQDFL---IVISKGAQECTKTREFE cAMP PK PENLLIDQQGYI--QVTDFGFAK-RVKGRTWXLCGTPEYLAPEIILSKGYNKAVDWWALG

Alignment algorithms (preview)

- Needleman-Wunsch (1970) and variations:
 - for aligning two sequences
 - uses dynamic programming to "consider" all possible alignments (10⁶⁰⁰ for two sequences of length 1000!)
- FASTA: uses a heuristic method for efficient searches (though not guaranteed to find the optimal solution)
 - Creates dictionary of k-tuples for the query sequence which is checked against sequences in the database
 - A local alignment algorithm is used to complete the alignment
- BLAST (Basic Local Alignment Search Tool): also fast and uses a heuristic
 - Finds short matches (which do not have to be exact)
 - Then uses local alignment to complete the alignment