Cognoms i Nom:

Codi

Examen final - Primera part: CC i CA 20 de gener del 2021

Model A

Qüestions: 50% de l'examen

A cada questió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

T1) A la figura adjunta es representa la potència per cada valor d'una resistència variable, que es connecta entre dos terminals A i B, d'un determinat circuit de corrent continu. Els valors de la resistència i la fem de l'equivalent Thévenin entre A i B són:

a)
$$R_{Th} = 10 \Omega$$
, $\varepsilon_{Th} = 5 \text{ V}$ b) $R_{Th} = 10 \Omega$, $\varepsilon_{Th} = 20 \text{ V}$

- c) $R_{Th} = 10 \ \Omega, \ \varepsilon_{Th} = 10 \ V \ d) \ R_{Th} = 20 \ \Omega, \ \varepsilon_{Th} = 10 \ V$
- **T2)** En el circuit de la figura, quina es la intensitat que circula per la resistència de 3Ω entre els punts *A* i *B*?

b) 1.5A

c) 1A

d) 0.5A

T3) Quin tipus i de quin valor és l'element que connectat en paral·lel a un conjunt format per una resistència de 100Ω en sèrie amb una bobina amb el coeficient de inducció $100 \mathrm{mH}$ i un condensador de capacitat $5\mu F$, fa que el sistema tingui el factor de potència corregit per una frequència angular de 1000 rad/s.

a)
$$C = 10 \mu F$$

b)
$$C = 5\mu F$$
.

b)
$$C = 5\mu F.$$
 c) $L = 100 \text{mH}.$

d)
$$L = 200 \text{mH}.$$

- **T4)** En un aparell elèctric que té una impedància complexa \bar{Z} , podem corregir el seu factor de potència amb una reactància pura en sèrie de valor $X' = -34 \Omega$, o amb una reactància pura en paral·lel de valor $X'' = -58 \Omega$. Quin es el mòdul Z de l'impedància de l'aparell?
 - a) $44.41\,\Omega$
- b) $53.23\,\Omega$
- c) $4.89\,\Omega$
- d) $0.77\,\Omega$
- **T5)** Un circuit està compost per una resistència R = 300Ω connectada en sèrie amb un condensador de reactància $X_C = 200\Omega$ i una bobina de reactància de $X_L = 100\Omega$, connectats entre si en paral·lel. Tot el conjunt s'alimenta amb una font de tensió alterna $V(t) = 220V\sqrt{2}\cos(100\pi t)$. Trobeu l'equació de la intensitat instantània en la resistència R.

- a) $I_R(t) = 0.86A\cos(100\pi t + 0.588)$
- b) $I_R(t) = 0.86A\cos(100\pi t 0.588)$
- c) $I_R(t) = 1.037A\cos(100\pi t + 0.588)$
- d) $I_R(t) = 1.037A\cos(100\pi t 0.588)$

Examen final - Primera part: CC i CA

20 de gener del 2021

Problema: 50% de l'examen

Considereu el circuit de la figura. Si connectem en paral.
lel entre els punts A i B un condensador de capacita
t $C=27.36\mathrm{nF},$ observem que, en l'estat estacionari, es carrega amb una càrrega $Q=0.171\mu\mathrm{F}.$ Si en canvi connectem en paral.
lel una resistència de valor $R_0=12\Omega,$ per aquesta hi circula una intensitat de $I_0=0.228\mathrm{A}.$

- a) Calculeu els valors de la fem Thévenin ϵ_{Th} i la resistència R_{Th} de l'equivalent Thévenin del circuit de la figura entre els punts A i B. (2 p.)
- b) Calculeu el valor de R. (3 p.)
- c) Calculeu les intensitats I_1 , I_2 , I_3 , I_4 i I_5 que atravessen les resistències del circuit. (3 p.)
- d) Calculeu el valor de la fem ϵ . (2 p.)

RESOLEU EN AQUEST MATEIX FULL

Respostes correctes de les questions del Test

Qüestió	Model A	Model B
T1)	b	
T2)	c	
T3)	d	
T4)	a	
T5)	b	

Resolució del Model A

T1) Sabem que la potència dissipada a la resistència externa és màxima quan aquesta coincideix amb la de Thévenin.

Observant el dibuix es conclou que $R=R_{Th}=10~\Omega$. La intensitat que circula per la resistència és $I=\frac{\varepsilon_{Th}}{R+R_{Th}}=\frac{\varepsilon_{Th}}{2R_{Th}}$. La potència dissipada a la resistència és $P=RI^2=\frac{\varepsilon_{Th}^2}{4R_{Th}}$. Per tant, $\varepsilon_{Th}=\sqrt{4PR_{Th}}=20~\mathrm{V}$.

T2) Podem resoldre amb les lleis de Kirchhof, o més fàcilment, calculant l'equivalent Thévenin entre els punts A i B, donat per el següent circuit:

La intensitat que hi circula ve donada per I=(6-2)/(1+1+1+1)=1 A. La fem Thévenin es la diferència de potencial $\epsilon_{Th}=V_A-V_B=-I+6-I=4V$. La resistència

Thévenin es la resistència equivalent curtoircuitant les bateries, i vé donada per $1/R_{Th} = 1/(1+1) + 1/(1+1) = 1$; d'aqui $R_{Th} = 1\Omega$. En el circuit original, la resistència de 3Ω es comporta com en un circuit en sèrie amb una fem $\epsilon_{Th} = 4V$ i una resistència $R_{Th} = 1\Omega$. Llavors, l'intensitat que circula per ella es I = 4/(3+1) = 1A.

- T3) Per $\omega=1000\,rad/s$ trobem $X_L=L\omega=100\,\Omega$ i $X_C=1/(C\omega)=200\,\Omega$, resultant $\bar{Z}=(100-j100)\,\Omega$, un circuit capacitatiu. Per aixó cal corregir el factor de potència amb una bobina, de reactància $X_L'=-(R^2+X^2)/X=-(100^2+100^2)/(-100)=200\,\Omega$ i coeficient de inducció $L=X_L'/\omega=200\,\Omega/1000\,rad/s=200\,\mathrm{mH}$.
- T4) Sabem que la impendàcia és $\bar{Z}=R+jX$ amb $X=34\,\Omega$, ja que corregim el factor de potència amb una reactància en sèrie de valor $X'=-X=-34\,\Omega$. Igualment la dada sobre X'' ens diu que $X''=-58\,\Omega=-(R^2+X^2)/X=-Z^2/X$. Per tant veiem que $Z^2=-XX''=X'X''=34\times58=1972$, i $Z=\sqrt{1972}=44.41\,(\Omega)$.
- **T5)** La impedància del circuit és $\overline{Z} = R + \frac{(jX_L)(-jX_C)}{jX_L X_C} = (300 + j200)\Omega = 360.6\Omega | \underline{33.7^\circ} = 360.6\Omega | \underline{0.588}$. El fasor de la intensitat és $\overline{I} = \frac{\overline{V}}{\overline{Z}} = \frac{\overline{2}20\sqrt{2}|\underline{0}}{360.6\Omega | \underline{0.588}} = 0.86A | \underline{-0.588}$ i la intensitat instantània $I(t) = 0.86A \cos(100\pi t 0.588)$

Resolució del Problema

- a) Considerem el circuit equivalent Thévenin entre els punts A i B, donat per una fem ϵ_{Th} i una resistència R_{Th} . Connectar el condensador en paral·lel entre A i B es equivalent a connectar-lo en sèrie a l'equivalent Thévenin. Al condensador, en l'estat estacionari, no hi circula corrent, i es carrega amb una càrrega $Q = C\epsilon_{Th}$. Llavors tenim $\epsilon_{Th} = Q/C = 0.171 \, 10^{-6}/27.36 \, 10^{-9} = 6.25 \text{V}$.
 - Si connectem la resistència R_0 en paral·lel entre A o B, o el que es el mateix, en sèrie en el circuit equivalent Thévenin, per ella circularà una intensitat $I_0 = \epsilon_{T_h}/(R_0 + R_{Th})$. D'aquí trobem $R_{Th} = \epsilon_{Th}/I_0 R_0 = 6.25/0.228 12 = 15.41 \,\Omega$.
- b) La resistència Thévenin R_{Th} es igual a la resistència equivalent del circuit entre els punts A i B. Les dues resistències de l'esquerra del circuit es poden associar en paral.lel, per un equivalent R' = 1/(1/2R + 1/2R) = R. Aquesta s'associa en sèrie amb la resistència entre els punts E i C, per un equivalent R'' = R' + R = R + R = 2R. Aquesta, a la vegada, s'associa en paral.lel amb la resistència entre els punts C i D, amb un equivalent R''' = 1/(1/R'' + 1/R) = 1/(1/2R + 1/R) = 2R/3. Aquesta ve associada en sèrie amb la resistència entre els punts D i B, amb un valor $R^{iv} = R''' + R = 2R/3 + R = 5R/3$. Finalment, associem aquesta resistència en paral.lel amb la que es troba entre els punts A i B, per donar un equivalent final $R_{eq} = 1/(R^{iv} + 1/2R) = 1/(3/5R + 1/2R) = 10R/11$. Aquesta resistència equivalent es igual a la resistència R_{Th} , $R_{eq} = 10R/11 = R_{Th}$.

Per tant: $R = 11R_{Th}/10 = 16.95 \Omega$.

c) El valor de la fem Thévenin ϵ_{Th} es igual a la diferència de potencial entre els punts A i B, es a dir $V_{AB} = \epsilon_{Th} = 6.25 \text{V}$. Coneixent V_{AB} podem calcular immediatament $I_5 = V_{AB}/2R = 0.184 \text{ A}$.

Igualment veiem que $V_{CD} = I_5 \, 2R + I_5 \, R = 3I_5 R = 9.38 \, \text{V}$, i d'aquesta,

$$I_4 = V_{CD}/R = 0.553 \,\mathrm{A}, \,\mathrm{i}\ I_2 = I_4 + I_5 = 0.737 \,\mathrm{A}.$$

La diferència de potencial V_{EF} ve donada per $V_{EF} = I_2R + I_4R = R(I_2 + I_4) = 21.89 \text{ V}$. D'aquí trobem $I_3 = V_{EF}/(2R) = 0.646 \text{ A}$ i $I_1 = I_2 + I_3 = 1.383 \text{ A}$.

d) Calculant la diferència de potencial V_{EF} per la branca que atravessa la bateria veiem que $V_{EF} = \epsilon - I_1(2R)$, per tant: $\epsilon = V_{EF} + I_1 2R = 68.75$ V.

Examen final - Segona part: ELECTRÒNICA I ONES 20 de gener del 2021

Model A

Qüestions: 50% de l'examen

A cada questió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

$$(\varepsilon_0 = 8.854 \, 10^{-12} \, C \, V^{-1} m^{-1} \, , \, \mu_0 = 4\pi \, 10^{-7} \, T \, m/A \, , \, c = 3 \cdot 10^8 \, \, \text{m/s} \, , \, h = 6.625 \cdot 10^{-34} \, \, \text{Js} \,)$$

- T1) Volem utilitzar un transistor nMOS per implementar una resistència de 1000 Ω . Les seves dades característiques són $\beta = 0.5 \text{ mA/V}^2$, $V_T = 1 \text{ V}$. Quin dels següents parells de tensions correspon a un punt de treball tal que, aquest transistor efectivament es comporta com una resistència del valor desitjat?

- a) $V_{GS} = 3 \text{ V}, V_{DS} = 0.5 \text{ V}.$ b) $V_{GS} = 2 \text{ V}, V_{DS} = 2 \text{ V}.$ c) $V_{GS} = 2 \text{ V}, V_{DS} = 0.2 \text{ V}.$ d) $V_{GS} = 3 \text{ V}, V_{DS} = 4 \text{ V}.$
- **T2)** A la porta CMOS de la figura, si T_1 està en tall i T_2 en conducció, i $V_{DD} = 5 \text{ V}$, sabem que:

- b) $V_{out} = 5V, V_A = 5V, V_B = 0$
- c) $V_{out} = 0$, $V_A = 0$, $V_B = 5V$
- d) $V_{out} = 0$, $V_A = 5V$, $V_B = 0$

- T3) Una ona electromagnètica harmònica incideix normalment sobre una superfície de 1 cm², i s'absorbeix completament. Si l'energia absorvida en un interval de 1000 s val 1.3 J, l'amplitud el del camp magnètic val aproximadament
 - a) $0.33 \ \mu T$

b) $1.0 \cdot 10^{-8}$ T

c) $0.33 \cdot 10^{-10} \text{ T}$

- d) $1.0 \cdot 10^{-5}$ T
- T4) Una ona electromagnètica harmònica, plana i linealment polaritzada, de longitud d'ona 2 cm es propaga pel buit en el sentit positiu de l'eix de les y. El camp elèctric té direcció paral·lela a l'eix z i el seu valor màxim és 2 V/m. L'ona incideix sobre un polaritzador posat perpendicularment a l'eix u amb l'eix de polarització formant un angle de 45° amb l'eix z. El nombre de fotons que surt d'una superfície de 5 cm² del polaritzador, en un temps de 10 s, és aproximadament:
 - a) $1.3 \cdot 10^{18}$
- b) $1.3 \cdot 10^{20}$
- c) $5.1 \cdot 10^{18}$
- d) $5.1 \cdot 10^{20}$
- T5) Una estació de comunicacions emet ones electromagnètiques esfèriques amb una potència P=10 kW. Si disposem d'una antena amb prou sensibilitat per notar camps de com a mínim $E_0 = 0.020 \text{ V/m}$, a quina distància màxima de l'estació serem capaços de detectar aguests senyals? ($\mu_0 = 4\pi \cdot 10^{-7} \text{ Tm/A}$)
 - a) 38.7 Km
- b) 54.8 Km
- c) 27.4 Km
- d) 77.4 Km

Examen final - Segona part: ELECTRÒNICA I ONES 20 de gener del 2021

Problema: 50% de l'examen

En el circuit de la figura s'hi ha connectat un transistor NMOS de característiques $\beta=4\,\mathrm{mA/V^2}$ i $V_T=1\,\mathrm{V}$. Sabent que $R_2=2\,\mathrm{k}\Omega$ i $V_{DD}=12\,\mathrm{V}$:

- a) Per $V_0 = 2$ V i $R_1 = 0$, trobeu els valors de V_S , V_D , I_D i el règim de treball del transistor (5p).
- b) Per $V_0 = 2 \text{ V}$ i $R_1 = 1 \text{ k}\Omega$, trobeu els nous valors de V_S , V_D , I_D i el règim de treball del transistor en aquest cas (5p).

RESOLEU EN AQUEST MATEIX FULL

Respostes correctes de les questions del Test

Qüestió	Model A	Model B
T1)	a	
T2)	d	
T3)	a	
T4)	a	
T5)	a	

Resolució del Model A

- T1) Caldrà que treballi a la zona lineal de la regió òhmica, és a dir $0 < V_{DS} << V_{GT}$. En aquesta zona es verifica la relació $I_D = V_{DS}/r_{DS}$, on $r_{DS} = 1/\beta V_{GT}$. D'aquesta darrera relació obtenim $V_{GT} = 1/\beta r_{DS} = 1/(0.5 \cdot 10^{-3} \cdot 1000) = 2$ V, i per tant $V_{GS} = 2 + V_T = 3$ V. Donat que tenim dues respostes amb aquest valor, ens cal escollir aquella per la qual $V_{DS} << V_{GT}$, és a dir $V_{DS} = 0.5$ V, de forma que efectivament es trobi a la règim on valen les expressions utilitzades.
- **T2)** A la porta CMOS de la figura, T_3 està en tall quan $V_A = 0$ i T_4 està en conducció quan $V_B = 5$ V. Per aquests valors de les entrades T_1 està en conducció i T_2 està en tall; la xarxa pull-down permet el pas de corrent, mentre que la xarxa pull-up el talla. En aquestes condicions, $V_{out} = 0$.
- **T3**) L'energia absorbida serà $U = I \cdot S \cdot \Delta t$, per tant $I = U/(S \cdot \Delta t) = 13 W/m^2$. D'altra banda, la intensitat de l'ona és $I = cB_0^2/(2\mu_0)$, d'on resulta que $B_0 = 0.33\mu$ T.
- T4) El valor mig de la densitat d'energia incident serà: $u = \frac{1}{2}\epsilon_0 E_0^2 = 17.7 \cdot 10^{-12} \text{ J/m}^3$; això comporta una intensitat mitjana incident: $I_{in} = c \cdot u = 5.31 \cdot 10^{-3} \text{ W/m}^2$ La intensitat de sortida valdrà doncs: $I_{out} = I_{in} \cos^2 45^\circ = 2.66 \cdot 10^{-3} \text{ W/m}^2$. En general tenim que la potència total a través d'una superfície S val P= I·S, i l'energia corresponent en un temps t val E =P·t = I·S·t. Al mateix temps tenim que com l'energia d'un fotó és $E_1 = h \cdot f$, aquesta energia es pot expressat també com $E = N \cdot h \cdot f$. Igualant les dues expressions de l'energia tindrem $E = I \cdot S \cdot t = N \cdot h \cdot f$. El nombre de fotons serà doncs $N = (I \cdot S \cdot t)/(h \cdot f) = 1.3 \cdot 10^{18}$ fotons.
- **T5)** Per una banda $P = I 4\pi r^2$, i també $I = \frac{E_0^2}{2c\mu_0}$, de forma que $E_0 = \sqrt{\frac{Pc\mu_0}{2\pi r^2}} \ge 0.020 \Rightarrow r \le 38.7$ Km.

Resolució del Problema

a) Suposarem primer que el transistor treballa en saturació. En aquest cas s'obté

$$I_{DS} = \frac{1}{2}\beta(V_{GS} - V_T)^2 = \frac{1}{2}4 \cdot 10^{-3} (2 - 1)^2 = 2 \text{ mA}$$

i per tant

$$V_{DS} = V_D = 12 - R_1 I_{DS} = 12 - 2000 \, 2 \cdot 10^{-3} = 8 \,\mathrm{V}$$
.

La condició de saturació $V_{GS} - V_T < V_{DS}$ se satisfà, ja que 1 < 8

b) A partir de la llei d'Ohm aplicada a $R_1=1000\,\Omega$, tenim que $V_S=R_1\,I_D$. Sabem que $V_G=V_0=2\,\mathrm{V}$, per la qual cosa: $V_{GS}=V_G-V_S=2-1000\,I_D$ i per tant $V_{GS}-V_T=1-1000\,I_D$

És clar que el transistor no es troba en règim de tall ja que en absència de corrent I_D seria $V_S = 0 \text{ V}$, i per això $V_{GS} = 2 - 0 > V_T$. Així doncs el transistor treballa en règim òhmic o de saturació. Suposarem que el transistor treballa en règim de saturació. En tal cas, es satisfà que:

$$I_D = \frac{\beta}{2} (V_{GS} - V_T)^2 = \frac{\beta}{2} (1 - 1000 I_D)^2$$
.

Coneguts β i V_T , això és una equació de segon grau per I_D

$$2000 I_D^2 - 5 I_D + 0.002 = 0 ,$$

que té dues solucions

$$I_D = \frac{5 \pm 3}{4000} \rightarrow I_D^+ = 2 \,\text{mA} , I_D^- = 0.5 \,\text{mA} .$$

De la primera s'obté $V_{GS}=0$, la qual cosa no és possible en saturació, donat que llavors $V_T>V_{GS}$. De la segona s'obté $V_{GS}=1.5$ o, el que és equivalent, $V_{GT}=V_{GS}-V_T=0.5$ V.

Comprovació: fent servir l'equació que resulta d'aplicar la llei d'Ohm entre V_{DD} i el drenador del transistor

$$12 - V_D = 2000 I_D$$

tenim que $V_D = 11~{\rm V}$ i, com que $V_S = R_1\,I_D = 0.5~{\rm V}$, resulta $V_{DS} = 10.5\,{\rm V} > V_{GT}$, verificant-se que el transistor NMOS efectivament treballa en règim de saturació.