CS 198:205 Fall 2016

Homework 6 DUE: SUNDAY, November 6th, 2016 at 11:00am

A. Suppose you are given a set E. Here is a definition of $SEQ_{Rosen}(E)$ over E:

- 1. nil is in $SEQ_{Rosen}(E)$;
- 2. if $e \in E$ and $z \in SEQ_{Rosen}(E)$ then $[z, e] \in SEQ_{Rosen}(E)$
- 3. nothing else is in $SEQ_{Rosen}(E)$.

This definition is almost identical to SEQ(E) given in class, except that the recursion case reverses the order of the elements, adding V-elements to the right, not to the left. (It was inspired by the book's definition of strings.) So, for $E = \{a, b, c\}$, the following would be three elements of $SEQ_{Rosen}(E)$: nil_{sigma} , $[nil_{sigma}]$, $[[nil_{sigma}]$.

Please read the handout on sequences posted on the lecture notes web page. You are now going to repeat some of the things in the lecture, but with $SEQ_{Rosen}(\mathbf{E})$ instead of SEQ(E). You **must** work with the definition of sequences, not strings.

- (i) define concatenation Concat, and length Length over $SEQ_{Rosen}(E)$.
- (ii) prove the equivalent of Theorem 1 for your definitions: "For any E and any $w \in SEQ_{Rosen}(E)$, $y \in SEQ_{Rosen}(E)$, it is the case that Length(Concat(w, y)) = Length(w) + Length(y)".
- (iii) Do the equivalent of Exercise 1 in the handout, concerning CountBs, for $SEQ_{Rosen}(E)$. (Check the updated lecture notes for Sequences, to see Example 0 (in red), which gives you a hint on how to define CountBs.)
- B*. [Much more challenging the grading will not be detailed]

This question looks at yet another definition of what might be called strings. For this, you might first want to look at my notes on strings, which I have moved to sakai Resources.

Suppose you are given the following inductive definition of $\Sigma^{@}$, based alphabet Σ :

- BASIS 1: λ is in $\Sigma^{@}$;
- BASIS 2: σ is in $\Sigma^{@}$ for every element σ of Σ ;
- RECURSION: (x.y) is in $\Sigma^{@}$ whenever x and y are both in $\Sigma^{@}$;
- nothing else is in $\Sigma^{@}$.

So, for $\Sigma_3 = \{a, b, c\}$, the following would be some of the elements of $\Sigma_3^{@}$: λ , a, $(a.\lambda)$, (a.b), $(\lambda.\lambda)$, $(((a.\lambda).a).b)$, $(a.((\lambda.a).b)$. Note that the parentheses are needed because a.b.c is ambiguous, since it could be ((a.b).c) or (a.(b.c)). And we can no longer drop λ to abbreviate things.

The intuitive notion of equality we want for $\Sigma^{@}$ values v and w is that $\mathbf{v} = (((a.\lambda).a).b)$ and $\mathbf{w} = (a.((\lambda.a).b)$ are equal because the actual letters are the same in left-to-right order ("aab" in this case). Clearly, in $\Sigma^{@}$ one needs to work harder to get the notion of equality to correspond to our intuition Give a recursive definition of the function equals(v, w), which returns a boolean value indicating if v and w are equal in the above sense. (For example, all of the following $(b.\lambda)$, $(\lambda.b)$, $(b.(\lambda.\lambda),((\lambda.b).\lambda),((\lambda.\lambda).b)$,... should be equals to b).