## Integral Indefinida

Irineu Lopes Palhares Junior

IMD/UFRN, irineu.palhares@imd.ufrn.br



### Conteúdos

Informações sobre os conteúdos de Integral Indefinida

1 Relação entre funções com derivadas iguais

2 Primitiva de uma função

## Relação entre funções com derivadas iguais

Já sabemos que a derivada de uma função constante é zero. Entretanto, uma função pode ter derivada zero em todos os pontos de seu domínio e não ser constante; por exemplo

$$f(x) = \begin{cases} 1 & \text{se } x > 0 \\ -1 & \text{se } x < 0 \end{cases} \tag{1}$$

é tal que f'(x) = 0 em todo x no seu domínio, mas f não é constante. O próximo teorema, que é uma consequência do TVM, conta-nos que se f tiver derivada zero em todos os pontos de um intervalo, então f será constante neste intervalo.

#### **Teorema**

#### **Theorem**

Seja f contínua no intervalo I. Se f'(x) = 0 em todo x interior a I, então existirá uma constante  $\kappa$  tal que  $f(x) = \kappa$  para todo x em I.

Como consequência deste teorema, provaremos que se duas funções tiverem derivadas iguais num intervalo, então, neste intervalo, elas diferirão por uma constante.

### Corolário

### Corollary

Sejam f e g contínuas no intervalo I. Se f'(x) = g'(x) em todo x interior a I, então existirá uma constante  $\kappa$  tal que

$$g(x) = f(x) + \kappa \tag{2}$$

para todo x em 1.

Observamos que se f e g satisfizerem as hipóteses do corolário e se  $f(x_0) = g(x_0)$  para algum  $x_0 \in I$ , então f(x) = g(x) para todo  $x \in I$ . De fato, pelo corolário, existe  $\kappa$  tal que

$$g(x) = f(x) + \kappa \tag{3}$$

para todo  $x \in I$ . Em particular,  $g(x_0) = f(x_0) + \kappa$ , logo  $\kappa = 0$ . Portanto, g(x) = f(x) em I.

Já vimos que se  $f(x)=e^x$ ,  $x\in\mathbb{R}$ , então,  $f'(x)=e^x$ , ou seja, a função  $f(x)=e^x$  goza da seguinte propriedade: a sua derivada é ela própria. O próximo exemplo nos mostra que as únicas funções que gozam desta propriedade são as funções da forma  $f(x)=\kappa e^x$ , em que  $\kappa$  é uma constante.

### Example

Seja f definida e derivável em I e tal que, para todo x, f'(x) = f(x). Prove que existe uma constante  $\kappa$  tal que, para todo x, tem-se  $f(x) = \kappa e^x$ .

O exemplo acima nos diz que as soluções da equação diferencial  $\frac{dy}{dx}=y$  são funções da forma  $y=\kappa e^x$ ,  $\kappa$  constante, isto é,

$$\frac{dy}{dx} = y \Longleftrightarrow y = \kappa e^x. \tag{4}$$

Observe que y = f(x) é solução da equação diferencial  $\frac{dy}{dx} = y$  se, e somente se, a derivada de f for ela própria.

### Example

Determine y = f(x),  $x \in \mathbb{R}$ , tal que

$$\frac{dy}{dx} = y e f(0) = 2. ag{5}$$

Consideremos, agora, a função  $f(x)=e^{\alpha x}$ ,  $\alpha$  constante. Temos  $f'(x)=\alpha e^{\alpha x}$ , ou seja,  $f'(x)=\alpha f(x)$ . As únicas funções que satisfazem a equação  $f'(x)=\alpha f(x)$ ,  $x\in\mathbb{R}$  e  $\alpha$  constante, são as funções da forma  $f(x)=\kappa e^{\alpha}x$ ,  $\kappa$  constante. Ou seja, sendo  $\alpha$  constante, tem-se

$$\frac{dy}{dx} = \alpha x \iff y = \kappa e^{\alpha x}, \ \kappa \text{ constante}$$
 (6)

ou

$$f'(x) = \alpha f(x) \iff f(x) = \kappa e^{\alpha x}, \ \kappa \text{ constante.}$$
 (7)

#### Example

Determine a função  $y=y(x), x \in \mathbb{R}$ , que satisfaz as condições

$$\frac{dy}{dx} = 3y \, e \, y(0) = -1.$$
 (8)

### Example

Determine uma função y = f(x), definida num intervalo aberto I, com  $1 \in I$ , tal que f(1) = 1 e, para todo x em I,

$$\frac{dy}{dx} = xy. (9)$$

### Example

Determine uma função y = f(x), definida num intervalo aberto I, com  $1 \in I$ , tal que f(1) = -1 e, para todo x em I,

$$\frac{dy}{dx} = 2y^2. ag{10}$$

## Primitiva de uma função

Seja f uma função derinida num intervalo I. Uma primitiva de f em I é uma função F definida em I, tal que

$$F'(x) = f(x), \tag{11}$$

para todo x em I.

### Example

 $F(x) = \frac{1}{3}x^3$  é uma primitiva de  $f(x) = x^2$  em  $\mathbb{R}$ , pois, para todo x em  $\mathbb{R}$ ,

$$F'(x) = \left[\frac{1}{3}x^3\right]' = x^2. \tag{12}$$

Observe que, para toda constante  $\kappa$ ,  $G(x) = \frac{1}{3}x^3 + \kappa$  é, também, prmitiva de  $f(x) = x^2$ .

### Example

Para toda constante  $\kappa$ ,  $F(x) = 2x + \kappa$  é primitiva, em  $\mathbb{R}$ , de f(x) = 2, pois,

$$F'(x) = (2x + \kappa)' = 2 \tag{13}$$

para todo x.

### **Primitivas**

Sendo F uma primitiva de f em I, então, para toda constante  $\kappa$ ,  $F(x) + \kappa$  é, também, primitiva de f. Por outro lado, como vimos anteriormente, se duas funções têm derivadas iguais num intervalo, elas diferem, neste intervalo, por uma constante. Segue as primitivas de f em I são funções da forma  $F(x) + \kappa$ , com  $\kappa$  constante. Diremos, então, que

$$y = F(x) + \kappa$$
,  $\kappa$  constante (14)

é a família das primitivas de f em I. A notação  $\int f(x)dx$  será usada para representar a família das primitivas de f:

$$\int f(x)dx = F(x) + \kappa. \tag{15}$$

Na notação  $\int f(x)dx$ , a função f denomina-se integrando. Uma primitiva de f será, também, denominada uma integral indefinida de f. É comum referir-se a  $\int f(x)dx$  como a integral indefinida de f.

# Observação

O domínio da função f que ocorre em  $\int f(x)dx$  deverá ser sempre um intervalo; nos casos em que o domínio não for mencionado, ficará implícito que se trata de um intervalo.

## Example

Calcule.

- a)  $\int x^2 dx$ .
- b)  $\int dx$ .

### Example

Calcule  $\int x^{\alpha} dx$ , em que  $\alpha \neq -1$  é um real fixo.

### Example

Calcule

- a)  $\int x^3 dx$
- b)  $\int \frac{1}{x^2} dx$ .

### Example

Calcule  $\int \sqrt[3]{x^2} dx$ 

## Example

Calcule  $\int \left(x^5 + \frac{1}{x^3} + 4\right) dx$ .

## Example

Calcule  $\int \frac{1}{x} dx$ , x > 0.

## Resultado principal

Seja  $\alpha$  um real fixo. Dos exemplos visto anteriormente, resulta

$$\int x^{\alpha} dx = \begin{cases} \frac{x^{\alpha+1}}{\alpha+1} + \kappa \text{ se } \alpha \neq -1\\ \ln x + \kappa \text{ se } \alpha = -1 \ (x > 0). \end{cases}$$
 (16)

### Example

Calcule  $\int \left(\frac{1}{x} + \sqrt{x}\right) dx$ .

### Example

Seja  $\alpha$  um real fixo,  $\alpha \neq 0$ . Calcule  $\int e^{\alpha x} dx$ .

### Example

Calcule.

- a)  $\int e^x dx$
- b)  $\int e^{2x} dx$ .

### Example

Determine y = y(x),  $x \in \mathbb{R}$ , tal que

$$\frac{dy}{dx} = x^2. ag{17}$$

### Example

Determine a única função y = y(x), definida em  $\mathbb{R}$ , tal que

$$\begin{cases} \frac{dy}{dx} = x^2\\ y(0) = 2. \end{cases} \tag{18}$$

#### Example

Determine a função  $y=y(x), x \in \mathbb{R}$ , tal que

$$\frac{d^2y}{dx^2} = x + 1, \ y(0) = 1 \ e \ y'(0) = 0.$$
 (19)

### Example

Uma partícula desloca-se sobre o eixo x e sabe-se que no instante t,  $t \geq 0$ , a velocidade é v(t) = 2t + 1. Sabe-se, ainda, que no instante t = 0 a partícula encontra-se na posição x = 1. Determine a posição x = x(t) da partícula no instante t.