Daniele Cucurachi

Based in Cambridge, UK Nationality: Italian

[(+39) 3274742573 | ■ daniele.cucurachi@alumni.epfl.ch | Im linkedin.com/in/daniele-cucurachi

Summary

Computational physicist with experience in scientific software development and research. Graduated from EPFL, I am currently working with the Quantum Information Group (University of Cambridge) on the development of quantum-classical hybrid algorithms. References available upon request.

Education

University of Cambridge Cambridge, UK

Visiting student in the Physics Department

Sep 2022 - May 2023

• Master's thesis at Quantum Information Group

EPFL - École Polytechnique Fédérale de Lausanne

Lausanne, Switzerland

Master of Science (MSc) in Applied Physics

Sep 2020 - May 2023

• Average Grade: **5.63/6**, Median Grade: **5.75/6** (top 10%)

Politecnico di Torino Torino, Italy

Bachelor of Science (BSc) in Physics Engineering

Sep 2017 - Jul 2020

• Final Grade: **110/110 cum laude** (top 5%) Professional Experience

Research Assistant Cambridge, UK

University of Cambridge May 2023 - Present

· Developed a hybrid algorithm for optimizing parametrized proposal strategies in quantum-enhanced Monte Carlo Markov chains. A Python simulator (state vector method) will soon be available at https://qithub.com/DanieleCucurachi/QMCMC.qit (work in progress).

Quantum Software Engineer

Helsinki, Finland

IQM Quantum Computers

Feb 2022 - Aug 2022

- · Developed Python libraries for the design and simulation of superconducting quantum processors (QPUs):
 - · Conducted code reviews and code design for projects involving up to 15 contributors, ensuring code quality.
 - Collaborated closely with the IQM Fabrication Team to design photomasks' layouts and various components of quantum processors, submitting approximately 25 merge/pull requests within my first six months.
 - Developed a routing protocol for routing complex quantum processors which is currently used by the IQM Design & Simulations Team.
- Simulated and analyzed the electromagnetic performance of superconducting quantum circuits elements using ANSYS HFSS.

Research Projects

Hybrid Quantum Circuits Lab

Lausanne, Switzerland

Sep 2021 - Jan 2022

Designed coplanar waveguides for slow light applications in superconducting circuits. The project involved computer simulations (Sonnet and ANSYS HFSS) and the development of a Python library to optimize and speed up the design process of the devices.

Laboratory of Semiconductor Materials

Lausanne, Switzerland

Sep 2020 - Jan 2021

Characterized Ge-Si core-shell quantum dots through TEM and Raman spectroscopy in order to optimize the crystallization process (Rapid Thermal Annealing) and achieve the necessary crystal quality to utilize them as hole spins qubits.

Technical Skills

Programming Languages Python, C (basic)

Python Packages

Qiskit, PyTorch, Scikit-Learn, KQCircuits, Gdspy, QuTip, Numpy, Pandas, Scipy, Matplotlib

Software & Tools

GitLab and GitHub with Git for collaborative programming, ANSYS High Frequency Simulation Software (HFSS),

KLayout, Sonnet Software, LTspice (analog circuit simulations), LTFX

Experience with Algorithms, Simulations, Data Analysis and Visualization | **OS:** Windows, Linux

Associations

Vice President EPFL Quantum Computing Association Lausanne, Switzerland

• Secured sponsorship and event funding from the company Quantum Machines.

Feb 2021 - Sep 2022

· As team leader for a group of five, organized three successful association events and managed advertising campaigns to promote them.

· Last organized event "EPFL Quantum Hackathon": approximately 100 international participants, the event focused on chemistry simulations with quantum computers.

Languages

Italian Native Proficiency

English Full Professional Proficiency: Level C1 - C2

French Elementary Proficiency: Level A2

OCTOBER 30, 2023