

Why

1

Definition

A sequence of functions (g_1, \ldots, g_ℓ) is *composable* if g_i is composible with g_{i-1} for $i = 2, \ldots, \ell$. In this case we write $g_\ell \circ g_{\ell-1} \circ \cdots \circ g_2 \circ g_1$. For example, we write $g_3 \circ g_2 \circ g_1$ for (g_1, g_2, g_3) .

A neural network (or feedforward neural network) from \mathbb{R}^n to \mathbb{R}^m is a sequence of composable functions (g_1, \ldots, g_ℓ) , dom $g_1 = \mathbb{R}^n$, ran $g_\ell \subset \mathbb{R}^m$, satisfying

$$g_i(\xi) = h_i(A_i\xi + b_i)$$

for some conforming matrices A_i , vectors b_i and functions h_i .

The *i*th layer of the neural network is the *i*th function g_i . The *i*th activation of the neural network is the function h_i . A neural network is called deep if its number of layers is larger than 3.

We call the composition of the layers of the neural network the network predictor (or just predictor). We also call it the function of the network.²

A multi-layer perceptron (MLP) is a neural network with 2 layers $(1 \ hidden \ layer)$ and for which A_i and b_i have unrestricted nonzero entries.

¹Future editions will include. Future editions may change the name of this sheet to *computation networks*, or may add prerequisite sheet on computation graphs.

²Many authorities refer to a neural network as a function. Strictly speaking that is true for us, as well, since a sequence is a function. But the meaning of the common use is in reference to the *network predictor*.

