

Aaron Quinlan
Departments of Human Genetics and Biomedical Informatics
USTAR Center for Genetic Discovery

University of Utah quinlanlab.org

Base calling: the conversion of signal to a nucleotide sequence

(Mostly) all technologies yield DNA sequences in FASTQ format

The FASTQ format. Welcome to a minor hell.

A "standard" format for storing and defining sequences from next-generation sequencing technologies.

```
Sequence ID @SEQ_ID

Sequence GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT

(separator) +

Quality scores !''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>CCCCCCCC65
```

http://en.wikipedia.org/wiki/FASTO_format

The FASTQ format's sequence identifier (first line of each record)

Old format

HWUSI-EAS100R:6:73:941:1973#0/1

HWUSI-EAS100R	the unique instrument name
6	flowcell lane
73	tile number within the flowcell lane
941	'x'-coordinate of the cluster within the tile
1973	'y'-coordinate of the cluster within the tile
#0	index number for a multiplexed sample (0 for no indexing)
/1	the member of a pair, /1 or /2 (paired-end or mate-pair reads only)

New format

@EAS139:136:FC706VJ:2:2104:15343:197393 1:Y:18:ATCACG

EAS139	the unique instrument name
136	the run id
FC706VJ	the flowcell id
2	flowcell lane
2104	tile number within the flowcell lane
15343	'x'-coordinate of the cluster within the tile
197393	y'-coordinate of the cluster within the tile
1	the member of a pair, 1 or 2 (paired-end or mate-pair reads only)
Y	Y if the read is filtered, N otherwise
18	0 when none of the control bits are on, otherwise it is an even number
ATCACG	index sequence

FASTQ quality scores: estimate of confidence in each base (sequencing technologies make errors!)

```
Sequence ID
Sequence

GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT

⟨separator⟩

Quality scores

↓ ' ' * ( ( ( ( * * * + ) ) % % * + + ) ( % % % ) . 1 * * * - + * ' ' ' ) ) * * 55CCF>>>>> CCCCCCC65
```

Qualities are based on the Phred scale and are encoded

Note: $Q = -10*log_{10}(Perr)$

The Ph in Phred comes from Phil Green, the inventor of the encoding http://www.gs.washington.edu/faculty/green.htm

Phred quality score calculation

$$Q = -10*log_{10}(Perr)$$

Error probability (P _{err})	log ₁₀ (P _{err})	Phred quality score
1	0	0
0.1	-1	10
0.01	-2	20
0.001	-3	30
0.0001	-4	40

A higher quality score is better (>=20 is considered "good")

Historically, FASTQ has had different encoding schemes for encoding PHRED quality scores. Ouch.

```
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^ `abcdefghijklmnopgrstuvwxyz{|}~
33
                                               104
                                                              126
                                                       Current encoding:
0.2.....41
                                                       ! = quality 0
         Phred+33, raw reads typically (0, 40)
S - Sanger
                                                        I = quality 41
X - Solexa
           Solexa+64, raw reads typically (-5, 40)
I - Illumina 1.3+ Phred+64, raw reads typically (0, 40)
J - Illumina 1.5+ Phred+64, raw reads typically (3, 40)
  with 0=unused, 1=unused, 2=Read Segment Quality Control Indicator (bold)
  (Note: See discussion above).
L - Illumina 1.8+ Phred+33, raw reads typically (0, 41)
```

Quality score encoding based on ASCII table. Geekery.

ASCII

Dec	Hex	Char	Dec	Нех	Char	Dec	Hex	Char	Dec	Hex	Char
0	00	Null	32	20	Space	64	40	0	96	60	*
1	01	Start of heading	33	21	į.	65	41	A	97	61	a
2	02	Start of text	34	22	"	66	42	В	98	62	b
3	03	End of text	35	23	#	67	43	С	99	63	c
4	04	End of transmit	36	24	Ş	68	44	D	100	64	d
5	05	Enquiry	37	25	*	69	45	E	101	65	e
6	06	Acknowledge	38	26	€	70	46	F	102	66	f
7	07	Audible bell	39	27	1	71	47	G	103	67	g
8	08	Backspace	40	28	(72	48	H	104	68	h
9	09	Horizontal tab	41	29)	73	49	I	105	69	i
10	OA	Line feed	42	2A	*	74	4A	J	106	6A	j
11	OB	Vertical tab	43	2B	+	75	4B	K	107	6B	k
12	oc	Form feed	44	2C	1	76	4C	L	108	6C	1
13	OD	Carriage return	45	2 D	t .= 2	77	4D	M	109	6D	m
14	OE	Shift out	46	2 E		78	4E	N	110	6E	n
15	OF	Shift in	47	2F	1	79	4F	0	111	6F	0
16	10	Data link escape	48	30	0	80	50	P	112	70	p
17	11	Device control 1	49	31	1	81	51	Q	113	71	a
18	12	Device control 2	50	32	2	82	52	R	114	72	r
19	13	Device control 3	51	33	3	83	53	s	115	73	s
20	14	Device control 4	52	34	4	84	54	Т	116	74	t
21	15	Neg. acknowledge	53	35	5	85	55	U	117	75	u
22	16	Synchronous idle	54	36	6	86	56	V	118	76	v
23	17	End trans, block	55	37	7	87	57	W	119	77	w
24	18	Cancel	56	38	8	88	58	X	120	78	x
25	19	End of medium	57	39	9	89	59	Y	121	79	У
26	1A	Substitution	58	ЗА	:	90	5A	Z	122	7A	z
27	1B	Escape	59	3 B	;	91	5B	[123	7B	{
28	1C	File separator	60	3 C	<	92	5C	١	124	7C	1
29	1D	Group separator	61	ЗD	-	93	5D]	125	7D	}
30	1E	Record separator	62	ЗE	>	94	5E	^	126	7E	~
31	1F	Unit separator	63	ЗF	2	95	5F	220	127	7F	

Formula for getting PHRED quality from encoded quality:

$$Q = ascii(char) - 33$$

Quality score encoding based on ASCII table. Geekery.

Q	P_error	ASC	ΙI	Q	P_error	ASCII	Q	P_error	ASCII	Q	P_error	ASCII
0	1.00000	33	!	11	0.07943	44 ,	22	0.00631	55 7	33	0.00050	66 B
1	0.79433	34	n	12	0.06310	45 -	23	0.00501	56 8	34	0.00040	67 C
2	0.63096	35	#	13	0.05012	46 .	24	0.00398	57 9	35	0.00032	68 D
3	0.50119	36	\$	14	0.03981	47 /	25	0.00316	58 :	36	0.00025	69 E
4	0.39811	37	%	15	0.03162	48 0	26	0.00251	59;	37	0.00020	70 F
5	0.31623	38	&	16	0.02512	49 1	27	0.00200	60 <	38	0.00016	71 G
6	0.25119	39	•	17	0.01995	50 2	28	0.00158	61 =	39	0.00013	72 H
7	0.19953	40	(18	0.01585	51 3	29	0.00126	62 >	40	0.00010	73 I
В	0.15849	41)	19	0.01259	52 4	30	0.00100	63 ?	41	0.00008	74 J
9	0.12589	42	*	20	0.01000	53 5	31	0.00079	64 @	42	0.00006	75 K
0	0.10000	43	+	21	0.00794	54 6	32	0.00063	65 A			

FASTQC: Is my sequence data any good?

seqtk: manipulating FASTQ and FASTA files

Introduction

Seqtk is a fast and lightweight tool for processing sequences in the FASTA or FASTQ format. It seamlessly parses both FASTA and FASTQ files which can also be optionally compressed by gzip. To install seqtk,

```
git clone https://github.com/lh3/seqtk.git;
cd seqtk; make
```

The only library dependency is zlib.

Seqtk Examples

· Convert FASTQ to FASTA:

```
seqtk seq -a in.fq.gz > out.fa
```

 Convert ILLUMINA 1.3+ FASTQ to FASTA and mask bases with quality lower than 20 to lowercases (the 1st command line) or to N (the 2nd):

```
seqtk seq -aQ64 -q20 in.fq > out.fa
seqtk seq -aQ64 -q20 -n N in.fq > out.fa
```

Fold long FASTA/Q lines and remove FASTA/Q comments:

```
seqtk seq -C160 in.fa > out.fa
```

Convert multi-line FASTQ to 4-line FASTQ:

```
seqtk seq -10 in.fq > out.fq
```

bioawk: awk that is enhanced for genomics formats.

Print tab separated sequence ID and sequence from a FASTQ file

\$ bioawk -c fastx '{print \$name"\t"\$seq}' test.fastq

SRR3750603.1 NTCGGAACATTTTTTCTTCAAAAATATGAAAAATCACCTAATTTATCTGAAAATGACATTTANNNCAGTNNNNNNNATTGGGAAAGTGCTCGATTTNCGGA
SRR3750603.2 TGTAATTTACTTTGTTCAGTTAGACTCTTAATTAGACTAAAAACGGTCTCAAAAAGTATAATTTCATAATGAGACACCTTTAAAAAATTCTACGTTTTTATG
SRR3750603.3 AGTTTTCTCAAACACAGAAAACATATGGGAGTTTCTCAAACAATGGACAATGAGTGATCACCGATATTTGATACAAATCGACCAACTCGGCTCATATTCTC