

Universidade Federal do Piauí Laboratório de Inteligência Artificial - LINA

Introdução à Deep Learning

Bruno Vicente Alves de Lima

Link da Aula

●Aula Ministrada no dia 24/07/2020

■ Link da Aula

Apresentação do Curso

Curso destinado aos alunos do Laboratório de Inteligência Artificial (LINA) do Departamento de Computação da UFPI e agregados;

●Toda sexta-feira das 14 às 16 horas.

●De 24/07/2020 à 21/08/2020

Ministrante

- Bacharel em Ciência da Computação UFPI;
- Mestre em Ciência da Computação UFPI;
- Doutorando em Engenharia Elétrica e de Computação UFRN;
- Professor EBTT IFMA;
- Áreas de pesquisa: Aprendizado de Maquina com Ênfase em aprendizado semissupervisionado e Deep Learning;

Conteúdo do Curso

Conceitos de Aprendizado de Máquina e Redes Neurais;

- Redes Neurais Rasas;
 - ➤ Rede Perceptron
 - > Rede Perceptron Multicamadas
- Redes Neurais Convolucionais;

Deep Autoencoder.

Ferramentas Utilizadas no Curso

Bibliografia Sugerida

Por que aprender Deep Learning?

- DL é o estado da arte em aprendizado de máquina;
- Vem sendo usado em diversos segmentos: visão computacional e processamento de linguagem natural;
- Estamos na era dos dados Cientista de Dados;
- Trabalha melhor com uma grande quantidade de dados e de grande dimensionalidade.
- Deep Learning é legal!

Por que aprender Deep Learning?

Um grande volume de dados acumulado hoje, e continua crescendo.

Por que aprender Deep Learning?

Assistente Virtual

What can I help you with?

■ Reconhecimento Facial

Sistema de Recomendação

● Tradução Automática de Texto

Auxiliar no Diagnóstico de Doenças

Conceito de Deep Learning

Métodos de representação do aprendizado com múltiplos níveis de representação, obtidos por composição simples mas não linear que transformam a representação em um nível (começando com a entrada bruta)em um nível mais alto, um pouco mais abstrato. O aspecto principal do *Deep Learning* é que essas camadas não são projetadas por engenheiros humanos: elas são aprendidas com dados usando um procedimento de aprendizado de uso geral.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton, Nature 2015

Conceito de Deep Learning

Uma nova visão sobre representações de aprendizado a partir de dados que enfatiza o aprendizado de camadas sucessivas de representações cada vez mais significativas.

Conceito de Deep Learning

Deep Neural Network

Figure 12.2 Deep network architecture with multiple layers.

- Princípio: "Conheço um cara que conhece um cara que conhece um cara...";
- Cada camada emite resposta para a próxima camada;
- Cada camada responsável por extrair características relevantes.

Inteligência Artificial x Deep Learning

Aprendizado de Máquina (AM)

Definições de AM

"Campo de estudo que dá aos computadores a habilidade de aprender sem ser explicitamente programado"

Arthur Samuel (1959)

Definições AM

Problema de aprendizagem bem posicionado: é dito que um programa de computador aprende com a experiência E com relação a alguma tarefa T e alguma medida de desempenho P, se seu desempenho em T, medido por P, melhorar com a experiência E.

Tom Mitchell (1998)

Definições AM

Um processo automático que visa melhor representar os dados;

1: Raw data

2: Coordinate change

3: Better representation

Projeto de Aprendizado de Máquina

Tipos de Aprendizado

- ●Em relação à Supervisão
 - **>** Supervisionado
 - ➤ Não Supervisionado
 - **≻**Semissupervisionado
 - ➤ Aprendizado Por reforço

Aprendizado Supervisionado

Os dados de treinamento que você alimenta para o algoritmo incluem as soluções desejadas, chamadas de etiquetas;

● Tarefa de Classificação

Aprendizado Supervisionado

Outra tarefa de aprendizado supervisionado é a regressão, onde um modelo aprende um valor numérico dado um conjunto de características;

Aprendizado Supervisionado

Algoritmos

- K-Nearest Neighbors (KNN)
- ➤ Linear Regression
- Logistic Regression
- Support Vector Machines (SVM)
- Decision Trees and Random Forests

Exemplo Prático

- Criar um modelo de preço de casas na Califórnia usando o dados de censo;
- Base de Dados: California Housing Prices dataset (90s)
- https://www.kaggle.com/datasets

Aprendizado Não Supervisionado

No aprendizado não supervisionado, como você pode imaginar, os dados de treinamento não são rotulados. O sistema tenta aprender sem um professor.

Aprendizado Não Supervisionado

Aprendizado Não Supervisionado

Algoritmos

- > K-means
- Cobweb
- Expectation Maximization (EM)
- Principal Component Analysis (PCA)
- > Rede de Kohonen

Aprendizado Semissupervisionado

Os algoritmos de aprendizado semissupervisionados são treinados em uma combinação de dados rotulados e não rotulados.

Aprendizado por Reforço

- O sistema de aprendizagem, chamado agente neste contexto, pode:
 - Observar o Ambiente;
 - Selecionar e realizar ações;
 - Receber recompensas (negativas ou positivas)
 - Aprender por si mesmo qual é a melhor estratégia, chamada política

Insuficiente quantidade de dados de treinamento;

Os dados importam mais que o algoritmo em problemas complexos.

(Peter Norvig, 2009)

Researchers from Google and Carnegie Mellon (2017)

Dados de Treinamento não representativos;

- Dados de baixa qualidade
 - ➤ Erros;
 - **≻**Outliers;
 - ➤ Ruídos;
 - ➤ Dados faltosos.

Características Irrelevantes

- ▶Para um bom modelo de AM trabalhar, é necessário que os dados estejam bem representados em termos de características;
- Como selecionar tais características?

Underfitting

O modelo não aprenderá bem os dados de treinamento;

Overfitting

■Bom desempenho nos dados de treino e baixo nos dados de teste.

Underfitting x Overfitting

Universidade Federal do Piauí Laboratório de Inteligência Artificial - LINA

Introdução à Deep Learning

Bruno Vicente Alves de Lima