

- There are context-sensitive aspects of a program that cannot be represented/enforced by a context-free grammar definition.
- For example
 - correspondence between formal and actual parameters
 - type consistency between declaration and use.
 - scope and visibility issues with respect to identifiers in a program.

- To capture the context sensitive aspect, we need to understand
 - How to represent it (representation formalism)
 - How to implement it (implementation mechanism)
- As representation formalism we use *Syntax Directed Translations*
- Syntax Directed Translation relates an input sentence to its syntactic structure, i.e., to its Parse-Tree.
- We associate Attributes to the grammar symbols representing the language constructs.
- Values for attributes are computed by Semantic Rules associated with grammar productions.

- Evaluation of Semantic Rules is used to:
 - Generate Code;
 - Insert information into the Symbol Table;
 - Perform Semantic Check;
 - Issue error messages; etc.
- Two notations :
 - Syntax Directed Definitions. High-level specification hiding many implementation details (also called Attribute Grammars).
 - Translation Schemes. More implementation oriented: Indicate the order in which semantic rules are to be evaluated.

Syntax Directed Definitions

- Grammar symbols associated with attributes
- Productions are associated with Semantic Rules
- Generates Annotated Parse-Trees where each node is a record with a field for each attribute

Syntax Directed Definitions

- Attributes are of two types:
- **Synthesized Attributes.** They are computed from the values of the attributes of the children nodes.
- Inherited Attributes. They are computed from the values of the attributes of both the siblings and the parent nodes.

S-Attributed Definitions

An **S-Attributed Definition** is a Syntax Directed Definition that uses only synthesized attributes.

PRODUCTION	SEMANTIC RULE
L o En	$print(\boldsymbol{E.val})$
$E ightarrow E_1 + T$	$E.val := E_1.val + T.val$
E o T	E.val := T.val
$T o T_1 * F$	$T.val := T_1.val * F.val$
T o F	T.val := F.val
F o (E)	F.val := E.val
F o digit	F.val := digit.lexval

L-Attributed Definitions

A grammar is L-attributed if each attribute a j at X i of a grammar rule:

$$X_0 -> X_1 X_2 ... X_n$$

- 1) is either a synthesized attribute, or
- 2) the value of a i at X i only depends on attribute of the symbols
- X_0 , ... X_{i-1} , that occur to the left of X_i in the grammar rule, or
- 3) depends on the *inherited* attributes of X_0 .

L-Attributed Definitions

Example: real id1, id2, id3

L.in = real

PRODUCTION	SEMANTIC RULE	\nearrow^D
D o TL	L.in := T.type	$T.type = \overbrace{real}$ $L.ir$
$T o \mathrm{int}$	T.type := integer	rool Lin rool
T oreal	T.type := real	real $L.in = \frac{\text{real}}{ }$
$L ightarrow L_1,$ id	$L_1.in := L.in;$ addtype(id.entry, L.in)	$L.in = \frac{real}{r}$
L o id	addtype(id.entry, L.in)	id_1

Implementing Attribute Evaluation

- Evaluation of S-Attributed Definitions
- Using a bottom-up parser
- The parser keeps the values of the synthesized attributes in its stack.
- Whenever a reduction A -> α is made, the attribute for A is computed from the attributes of α which appear on the stack.

Extending a parser stack

state	val
\boldsymbol{Z}	Z.x
$oldsymbol{Y}$	Y.x
\boldsymbol{X}	X.x

PRODUCTION	CODE
L o En	$\mathit{print}(val[top-1])$
$E o E_1 + T$	val[ntop] := val[top] + val[top - 2]
E o T	
$T \to T_1 * F$	val[ntop] := val[top] * val[top - 2]
T o F	
F o (E)	val[ntop] := val[top-1]
F o digit	

INPUT	state	val	PR	ODU	UCTION USED
3*5+4 n	-	-			
*5+4n	3	3			2042
*5+4n	F	3	F	→	digit
*5+4n	T	3	T	→	F
5+4 n	T *	3 _			
+4 n	T * 5	3 _ 5			
+4 n	T * F	3 _ 5	F	→	digit
+4 n	T	15	T	→	T * F
+4 n	E	15	E	→	T
4 n	E +	15 _			
n	E + 4	15 _ 4			
n	E + F	15 _ 4	F	→	digit
n	E + T	15 _ 4	T	→	F
n	E	19	E	→	E + T
	E n	19 _			
	L	19	L	→	E n

Implementing Attribute Evaluation

Evaluation of L-Attributed Definitions

- Inherited attributes in L-Attributed Definitions can be computed by a PreOrder traversal of the parse-tree.
- L-Attributed Definitions can be evaluated by mixing PostOrder traversal for synthesized attributes and PreOrder traversal for inherited attributes.

- Definition. A Translation Scheme is a context-free grammar in which
- 1. Attributes are associated with grammar symbols;
- 2. Semantic Actions are enclosed between braces {} and are inserted within the right-hand side of productions.
- 3. Yacc uses Translation Schemes.

Rules

For S-attributed definitions – Put all semantic rules into braces at the right end of each production.

For L-attributed definitions —

- 1. An inherited attribute for a symbol on the right hand side of a production must be computed in an action before the symbol
- 2. An action must not refer to a synthesized attribute of a symbol that is to the right
- 3. A synthesized attribute for the non-terminals on the left hand side can only be computed after all attributes it references are already computed

Examples

Only synthesized attributes

$$S \rightarrow A1 A2 \{S.s = A1.s + A2.s\}$$

 $A \rightarrow a \{A.s = 1\}$

Synthesized and inherited attributes

$$S \rightarrow \{A1.in = 1; A2.in = 2\} A1 A2$$

A \rightarrow a \{A.s = 1\}

OR

$$S \rightarrow \{A1.in = 1\} A1 \{A2.in = 2\} A2$$

A \rightarrow a \{A.s = 1\}

Grammar:

 $S \rightarrow A A$

 $A \rightarrow a$

Figure 5.18: Postfix SDT implementing the desk calculator

```
D 
ightarrow T \; \{L.in := T.type\} \; L T 
ightarrow 	ext{int} \; \{T.type := integer\} T 
ightarrow 	ext{real} \; \{T.type := real\} L 
ightarrow \; \{L_1.in := L.in\} \; L_1, 	ext{id} \; \{addtype(	ext{id}.entry, L.in)\} L 
ightarrow 	ext{id} \; \{addtype(	ext{id}.entry, L.in)\}
```

Code generation for a "while"-statement using Translation Scheme

```
S.next: beginning of the next code
Grammar: S \rightarrow while (C) S
                                                 S.Code: code for S ends with a
                                                 jump to S.next
                    L2 = new();
                                                 C.true: beginning of the code to
                    S_1.next = L1;
                                                 be executed if C is true
                    C.false = S.next;
                                                 C.false: beginning of the code to
                    C.true = L2;
                                                 be executed if C is false
                    S.code = label \parallel L1 \parallel C.code \parallel label \parallel L2 \parallel S_1.code for C with a jump to
                                                 either C.true or C.false
```

Figure 5.27: SDD for while-statements

$$S \rightarrow \textbf{while} (C) S_1 \qquad L1 = new(); \\ L2 = new(); \\ S_1.next = L1; \\ C.false = S.next; \\ C.true = L2; \\ S.code = \textbf{label} \parallel L1 \parallel C.code$$

$$S \rightarrow \textbf{while} (\begin{cases} L1 = new(); L2 = new(); C.false = S.next; C.true = L2; \\ S_1.next = L1; \\ S_2 \qquad \{ S.code = \textbf{label} \parallel L1 \parallel C.code \parallel \textbf{label} \parallel L2 \parallel S_1.code; \} \end{cases}$$

$$S \rightarrow \textbf{while} (\begin{cases} L1 = new(); L2 = new(); C.false = S.next; C.true = L2; \\ S_1 \qquad \{ S.code = \textbf{label} \parallel L1 \parallel C.code \parallel \textbf{label} \parallel L2 \parallel S_1.code; \} \end{cases}$$

$$S \rightarrow \textbf{while} (\begin{cases} L1 = new(); L2 = new(); C.false = S.next; C.true = L2; \\ S_2 \qquad \{ S.code = \textbf{label} \parallel L1 \parallel C.code \parallel \textbf{label} \parallel L2 \parallel S_1.code; \} \end{cases}$$

$$S \rightarrow \textbf{while} (\begin{cases} L1 = new(); L2 = new(); C.false = S.next; C.true = L2; \\ S_1 \qquad \{ S.code = \textbf{label} \parallel L1 \parallel C.code \parallel \textbf{label} \parallel L2 \parallel S_1.code; \} \end{cases}$$

$$S \rightarrow \textbf{while} (\begin{cases} L1 = new(); L2 = new(); C.false = S.next; C.true = L2; \\ S_1 \qquad \{ S.code = \textbf{label} \parallel L1 \parallel C.code \parallel \textbf{label} \parallel L2 \parallel S_1.code; \} \}$$

$$S \rightarrow \textbf{while} (\begin{cases} L1 = new(); L2 = new(); C.false = S.next; C.true = L2; \\ S_1 \qquad \{ S.code = \textbf{label} \parallel L1 \parallel C.code \parallel \textbf{label} \parallel L2 \parallel S_1.code; \} \}$$

$$S \rightarrow \textbf{while} (\begin{cases} L1 = new(); L2 = new(); C.false = S.next; C.true = L2; \\ S_1 \qquad \{ S.code = \textbf{label} \parallel L1 \parallel C.code \parallel \textbf{label} \parallel L2 \parallel S_1.code; \} \}$$

$$S \rightarrow \textbf{while} (S \rightarrow \textbf{label} \parallel L1 \parallel C.code \parallel \textbf{label} \parallel L2 \parallel C.code \parallel C.code$$

Figure 5.27: SDD for while-statements

L1 labels the beginning of while statement and L2 labels the beginning of S1

Main Idea. Starting from a Translation Scheme (with embedded actions)

- introduce a transformation that makes all the actions occur at the right ends of their productions.
- For each embedded semantic action introduce a new Marker (i.e., a non terminal, say M) with an empty production (M \rightarrow ϵ).
- The semantic action is attached at the end of the production (M \rightarrow ϵ).

Production	Semantic Rules
S→ aAC	C.in = A.s
S→ bABC	C.in = A.s
$C \rightarrow c$	C.s = g(C.i)
•••••	

Production	Semantic Rules
S→ aAM1C	M1.in = A.s C.in = M1.s
S→ bABM2C	M2.in = A.s C.in = M2.s
$C \rightarrow c$	C.s = g(C.i)
M1 → ε	M1.s = M1.in
M2→ ε	M2.s = M2.in

- General rules to compute translations schemes during bottom-up parsing for an L-attributed grammar.
- For every production A \rightarrow X1 . . . Xn introduce n new markers M1, . . . , Mn and replace the production by A \rightarrow M1X1 . . . MnXn.
- Thus, the position of every synthesized and inherited attribute of Xj and A are known:
 - Xj.s is stored in the val entry in the parser stack associated with Xj;
 - Xj.i is stored in the val entry in the parser stack associated with Mj;
 - A.i is stored in the *val* entry in the parser stack immediately before the position storingM1

• Computing the inherited attribute Xj.i after reducing Mj \rightarrow ϵ

A.i is in val[top -2j + 2]

X1.i is in val[top -2j + 3]

X1.s is in val[top -2j + 4]

X2.i is in val[top -2j + 5]

And so on

Limitations of SDT

- Checking whether a variable is defined before its usage
- Checking the type and storage address of a variable
- Checking whether a variable is used or not

Need to use a symbol table : global data to show side effects of semantic actions.