Deep Learning Cheat Sheet

Evaluation Metrics

$$\begin{aligned} &\operatorname{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN} \\ &\operatorname{Error\ Rate} = 1 - accuracy \\ &\operatorname{Precision} = \frac{TP}{TP + FP} \\ &\operatorname{TPR} = \frac{TP}{TP + FN} & \operatorname{FPR} = \frac{FP}{FP + TN} \\ &\operatorname{TNR} = \frac{TN}{TN + FP} & \operatorname{FNR} = \frac{FN}{FN + TP} \\ &\operatorname{F1-score} = \frac{2 \cdot Precision \cdot TPR}{Precision + TPR} \\ &\operatorname{Specificity} = \frac{TP}{TN + FP} \\ &\operatorname{AUC} = \int_0^1 TPR \cdot dFPR \\ &\operatorname{Macro\ Average} = \frac{1}{n} \sum_{i=1}^n avg_i \\ &\operatorname{Micro\ Average} = \frac{\sum_{i=1}^n TP_i}{\sum_{i=1}^n TP_i} \end{aligned}$$

Bias & Variance

 $\mathbf{Bias}(h_{\theta}) = \mathbb{E}[h_{\theta}, D] - f$ $\mathbf{Var}(h_{\theta}) = \mathbb{E}[(h_{\theta}, D - \mathbb{E}[h_{\theta}, D])^2]$ $\mathbf{MSE} = \mathrm{Bias}(h_{\theta})^2 + \mathrm{Var}(h_{\theta}) + \sigma^2$ Underfitting Overfitting

high bias, low variance

low bias, high variance

Data Preparation

Min-max [0,1]:
$$x' = \frac{(x - x_{min})}{(x_{max} - x_{min})}$$

Min-max [-1,1]: $x' = 2 \cdot min \ max(x) - 1$ min-max doesn't handle outliers.

Z-norm: $x' = \frac{(x-\mu)}{}$

Scaling & Centering

Scaling improves the numerical stability, the convergence speed and accuracy of the learning algorithms. Centering improves the robustness of the learning algorithms

Activation Functions

Sigmoid -

 $\sigma(z) = \frac{1}{1+e^{-z}}$ — Smooth and differentiable. Used in output layers for binary classifica-

— Hyperbolic Tangent (tanh) —

 $f(z) = \tanh(z)$ — Smooth, differentiable, output centered around 0. Used in LSTM.

Rectified Linear Unit (ReLU)

 $f(z) = \max(0, z)$ — Non-linear, used as a standard, but has dying units problem for z < 0.

Leaky ReLU — where :

 $f(z) = \begin{cases} z & \text{if } z \ge 0 \\ \alpha z & \text{if } z < 0 \end{cases}$ — Addresses dying — $\hat{y}(i) = h_{\theta}(x(i))$ is the prediction of the model, units problem with a small α (typical $\alpha = 0.01$).

—— Exponential Linear Unit (ELU) —

$$f(z) = \begin{cases} z & \text{if } z \ge 0 \\ \alpha(e^z - 1) & \text{if } z < 0 \end{cases}$$
 — Similar to Leaky ReLU but more computationally expensive.

 $f(z_i) = \frac{e^{z_i}}{\sum_{j=0}^{K-1} e^{z_j}}$ — Used in the last layer for multi-class classification, outputs a probability distribution.

Universal Approximation Theorem

A feedforward network with a linear output layer and at least one hidden layer with a non-linear activation function (e.g. sigmoid) can approximate a large class of functions $f: \mathbb{R}^n \to \mathbb{R}^m$ with arbitrary accuracy, provided that the network is given enough hidden units.

Curse of Dimensionality

when the dimensionality increases, the volume of the space increases so fast that the available data become sparse. This sparsity is problematic for any method that requires statistical significance. In order to obtain a statistically sound and reliable result, the amount of data needed to support the reamount of data needed to support the result often grows exponentially with the dimensionality $\nabla_w J_{CE}(w,b) = \frac{1}{m} \sum_{i=1}^m (\hat{y}(i) - y(i)) \cdot x(i)$ $\nabla_b J_{CE}(w,b) = \frac{1}{m} \sum_{i=1}^m (\hat{y}(i) - y(i))$

Gradient Descent

- 1: Initialize parameter vector θ_0
- 2: repeat
- Compute the gradient of the cost function at current position $\theta_t : \nabla_{\theta} J(\theta_t)$
- Update the parameter vector by moving against the gradient : $\theta_{t+1} = \theta_t$ - $\alpha \cdot \nabla_{\theta} J(\theta_t)$
- where α is the learning rate.
- 6: **until** change in θ is small

—— MSE –

$$J_{MSE}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}(i) - y(i))^2$$

- -y(i) is the true outcome,
- m is the number of training examples.

$$\nabla_w J_{MSE}(w,b) =$$

$$\frac{1}{m} \sum_{i=1}^{m} \hat{y}(i) \cdot (1 - \hat{y}(i)) \cdot (\hat{y}(i) - y(i)) \cdot x(i)$$

$$\nabla_b J_{MSE}(w,b) =$$

$$\frac{1}{m} \sum_{i=1}^{m} \hat{y}(i) \cdot (1 - \hat{y}(i)) \cdot (\hat{y}(i) - y(i))$$

- Cross Entropy -

$$J_{CE}(\theta) = -\sum_{i=1}^{m} y(i) \cdot \log h_{\theta}(x(i)) + (1 - y(i)) \cdot \log(1 - h_{\theta}(x(i)))$$

where:

- $p_{\theta}(y(i) \mid x(i))$ is the probability model parameterized by $\bar{\theta}$, predicting the $\mathbf{a}^{[l]} = \sigma^{[l]}(\mathbf{z}^{[l]})$ probability of the true class y(i) given $\mathbf{z}^{[l]} = \mathbf{W}^{[l]} \cdot \mathbf{a}^{[l-1]} + \mathbf{b}^{[l]}$ with $\mathbf{a}^{[0]} = \mathbf{x}$ the input x(i).
- m is the number of observations or data points in the dataset.

$$\nabla_{w} J_{CE}(w,b) = \frac{1}{m} \sum_{i=1}^{m} (\hat{y}(i) - y(i)) \cdot x(i)$$
$$\nabla_{b} J_{CE}(w,b) = \frac{1}{m} \sum_{i=1}^{m} (\hat{y}(i) - y(i))$$

Gradient Descent Variants

-BGD

Smooth, not wiggling, strictly decreasing cost, many epochs needed, choose larger learning rate, no out-of-core support all data in RAM (m), easy to parallelise.

— SGD —

Wiggling, needs smoothing, wiggles around minimum, not necessarily decreasing cost, few epochs needed, choose smaller learning rate, out-of-core support - not all data to be kept in RAM of a single machine, not easy to parallelise.

- MBGD -

Slightly wiggling, wiggles around minimum. typically decreasing cost, less epochs than BGD, more than SGD needed, choose medium learning rate (dependent on model), out-of-core support - not all data to be kept in RAM of a single machine, easy to parallelise.

Compute Graph

$$\mathbf{W}^{[l]} = \begin{pmatrix} w_{11} & \cdots & w_{1n^{[l-1]}} \\ \vdots & \ddots & \vdots \\ w_{n^{[l]}1} & \cdots & w_{n^{[l]}n^{[l-1]}} \end{pmatrix}$$

$$\mathbf{a}^{[l]} = \begin{pmatrix} a_1 \\ \vdots \\ a_{n^{[l]}} \end{pmatrix}$$

$$\mathbf{b}^{[l]} = \begin{pmatrix} b_1 \\ \vdots \\ b_{n^{[l]}} \end{pmatrix}$$

$$\mathbf{a}^{[l]} = \sigma^{[l]}(\mathbf{z}^{[l]})$$

$$\mathbf{z}^{[l]} = \mathbf{W}^{[l]} \cdot \mathbf{a}^{[l-1]} + \mathbf{b}^{[l]} \quad \text{with } \mathbf{a}^{[0]} = \mathbf{x}$$

Backpropagation

- Matrix Notation

$$\begin{split} \frac{\partial L}{\partial \mathbf{z}^{[l]}} &= \frac{\partial L}{\partial \mathbf{a}^{[l]}} * \frac{d\sigma^{[l]}(\mathbf{z}^{[l]})}{dz} \\ \frac{\partial L}{\partial \mathbf{W}^{[l]}} &= \frac{\partial L}{\partial \mathbf{z}^{[l]}} \cdot \left(\mathbf{a}^{[l-1]}\right)^{T} \\ \frac{\partial L}{\partial \mathbf{b}^{[l]}} &= \frac{\partial L}{\partial \mathbf{z}^{[l]}} \\ \frac{\partial L}{\partial \mathbf{a}^{[l-1]}} &= \left(\mathbf{W}^{[l]}\right)^{T} \cdot \frac{\partial L}{\partial \mathbf{z}^{[l]}} \end{split}$$

Full Batch -

$$\begin{split} \frac{\partial L}{\partial \mathbf{Z}^{[l]}} &= \frac{\partial L}{\partial \mathbf{A}^{[l]}} * \frac{d\sigma^{[l]}(\mathbf{Z}^{[l]})}{dz} \\ \frac{\partial L}{\partial \mathbf{W}^{[l]}} &= \frac{\partial L}{\partial \mathbf{Z}^{[l]}} \cdot \left(\mathbf{A}^{[l-1]}\right)^T \\ \frac{\partial L}{\partial \mathbf{b}^{[l]}} &= \frac{1}{m} \cdot \frac{\partial L}{\partial \mathbf{Z}^{[l]}} \cdot \begin{pmatrix} \vdots \\ \vdots \\ \vdots \end{pmatrix} \\ \frac{\partial L}{\partial \mathbf{A}^{[l-1]}} &= \left(\mathbf{W}^{[l]}\right)^T \cdot \frac{\partial L}{\partial \mathbf{Z}^{[l]}} \end{split}$$

- Batch Normalization •

$$\begin{split} \frac{\partial L}{\partial \gamma} &= \frac{1}{m} \cdot \sum_{i=1}^{m} \frac{\partial L}{\partial \hat{a}^{(i)}} \cdot \frac{\partial \hat{a}^{(i)}}{\partial \gamma} \\ &= \frac{1}{m} \cdot \sum_{i=1}^{m} \frac{\partial L}{\partial \hat{a}^{(i)}} \cdot \hat{a}^{(i)} \\ \frac{\partial L}{\partial \beta} &= \sum_{i=1}^{m} \frac{\partial L}{\partial \hat{a}^{(i)}} \cdot \frac{\partial \hat{a}^{(i)}}{\partial \beta} \\ &= \sum_{i=1}^{m} \frac{\partial L}{\partial \hat{a}^{(i)}} \end{split}$$

Vanishing Exploding Gradient

Saturation Variance Change Xavier & Heu Initialization Batch Normalization Non Saturating Activation Function Gradient Clipping

Optimizers

Momentum AdaGrad RMS Prop Adam Scheduler

Regularization

Weight Penalty Dropout Early Stopping

CNN

Convolutional Layer Pooling Layer

Unbalanced Dataset

Bayesian Approach Discrete Continuous Medical Test

DeepCNN

Conf2D Params
MaxPooling
LeNet5
AlexNet
VGGnet
GoogleNet
ResNet
Pattern

Feature Visualization

Data Preparation Network Compile Evaluate Activation Map

Data Augmentation

Principle Types Strategies Keras

Functional API

Sequential vs Functionals Architecture 1 Architecture 2 Architecture 3

Transfer Learning

Principle Keras Code MobileNet Strategies

RNN-

Use Case Model Category Recurrence Net Single Layer Many to Many Un exemple par catégorie Stacked RNN

LSTM

Long Term Memory Unit Cell Gates Backprop Keras GRE

Word Embedding

Word Training

Sentiment Classification

Strategy Architecture

- Autoencoder

Definition Use Case

GenRNN

Many to Many Many to One

Attention

Sequence to Sequence Attention

Transformer

High-Level Architecture Self-Attention Full Architecture