Санкт-Петербургский государственный университет

Математическое обеспечение и адмиистрирование информационных систем

Гусев Егор Игоревич Вычислительный практикум Отчет по заданию №3

Преподователь: Т.О. Евдокимова

Содержание

1.	Ссылка на код	3
2.	Постановка задачи	3
3.	Теория	3
4.	Численный эксперимент	3
	4.1. Описание	3
	4.2. Результаты	4

1. Ссылка на код

Код доступен по ссылке на github.

2. Постановка задачи

- 1. Решить СЛАУ с помощью метода вращения.
- 2. Реализовать метод регуляризации для нескольких плохо обусловленных матриц и понять, какое значение будет наилучшим для каждой матрицы.
- 3. Сравнить полученные результаты с результатами, полученными разложением методом квадратного корня.

3. Теория

При LU-разложении у матрицы могут увеличиться числа обусловленности, т к преобразования соответствуют умножению матрицы на некоторую матрицу P (совокупность элементарных преобразований). Для того, чтобы этого избежать, можем использовать унитарные матрицы (в вещественном случае - ортогональные). Получим разложение $A=QR,\ Q=\sum P_i^{-1}$. Здесь Q - ортогональная, а R - верхняя треугольная. Для QR разложения будем использовать метод вращения, заключающийся в повороте матрицы на определённый угол путём умножения её на матрицы $T_{12}\dots T_{1n}\dots T_{(n-1,n)}$, где T_{ij} - матрица, где на позициях іі, іј, јі, јі стоят соответственно соѕ, -sin, sin, соѕ, что приведёт к обнулению нижней части матрицы.

4. Численный эксперимент

4.1 Описание

Мы будем рассматривать данный метод на Гильбертовых матрицах размерностей 3x3, 5x5 и 7x7, как в задании 2.

- 1. Реализуем метод поворота (найдём матрицы Q, R)
- 2. Сравним величину погрешности и чисел обусловленности с методом квадратного корня

4.2 Результаты

```
Матрица Гильберта 3 порядка:

Метод вращений:

||x - x_rot|| = 1.1294947886988695e-12

Метод квадратного корня:

||x - x_sqrt|| = 9.534652216788915e-13
```

Рис. 1: Матрица Гильберта 3*3

```
Матрица Гильберта 5 порядка:

Метод вращений:

||x - x_rot|| = 2.137419809119381e-09

Метод квадратного корня:

||x - x_sqrt|| = 1.260076336595603e-09
```

Рис. 2: Матрица Гильберта 5*5

```
Матрица Гильберта 7 порядка:

Метод вращений:

||x - x_rot|| = 2.3491692014153707e-07

Метод квадратного корня:

||x - x_sqrt|| = 1.3747772130289027e-06
```

Рис. 3: Матрица Гильберта 7*7