

MA2011 MECHATRONICS SYSTEMS INTERFACING

Tutorial 4
Prof. Cai Yiyu

College of Engineering
School of Mechanical and Aerospace Engineering

Sampling

Shannon-Nyquist Theorem

- We need to sample a digital signal at a rate more than two times the maximum frequency component in the signal to retain all frequency components.
- In other words, to faithfully represent the analog signal, the digital samples must be taken at a frequency f_s , such that

$$f_s > 2f_{max}$$

 f_s is called sampling rate, and f_{max} is called Nyquist frequency

Sampling

$$F(t) = C_0 + \sum_{n=1}^{\infty} A_n \cos(n\omega_0 t) + \sum_{n=1}^{\infty} B_n \sin(n\omega_0 t)$$

$$F(t) \simeq C_0 + \sum_{n=1}^{N} A_n \cos(n\omega_0 t) + \sum_{n=1}^{N} B_n \sin(n\omega_0 t)$$

• If we approximate a signal by a truncated Fourier series, the maximum frequency component is the highest harmonic frequency. Then the time interval between the digital samples is

$$\Delta t = 1/f_s$$

ALIASING

If sampling rate is too low, we obtain wrong digital signal. This is called alaising.

Example: 12 equally spaced samples are taken over 10 cycles of an analog signal, so $f_s = 1.2f_0$ with f_0 frequency of the analog signal. Since $f_s < 2f_0$, digitized signal does not describe the original signal accurately.

DISCUSSION Q1

DISCUSSION Q1(A)

POOR SAMPLING


```
Sampling time interval \Delta s = ?
```

Sampling rate $f_s = ?$

Wave Period Δ_0 =? Nyquist Frequency f_{max} = Wave Frequency f_0 = ?

Sampling rate > 2 * Nyquist Frequency ?

DISCUSSION Q1(A)

POOR SAMPLING

Sampling time interval $\Delta s = 2s/2 = 1s$

Sampling rate f_s =1/ Δ s=1Hz

 Δ_0 =2s, Nyquist Frequency f_{max} =Wave Frequency f_0 =1/ Δ_0 =1/2Hz

Sampling rate (1 Hz) = 2 * Nyquist Frequency (1 Hz)

DISCUSSION Q1(B)

POOR SAMPLING

Sampling time interval $\Delta s = ?$

Sampling rate f_s=?

 Δ_0 =? Nyquist Frequency f_{max} = Wave Frequency f_0 =?

Sampling rate > 2*Nyquist Frequency?

ANSWER TO Q1(B)

POOR SAMPLING

Sampling time interval $\Delta s = 6/4s = 1.5s$

Sampling rate f_s =1/ Δ s=2/3 Hz

 Δ_0 =2s , Nyquist Frequency f_{max} = Wave Frequency f_0 =1/ Δ_0 = 1/2Hz

Sampling rate (2/3 Hz) < 2 * Nyquist Frequency (1 Hz)

DISCUSSION Q1(C)

HIGHER SAMPLING FREQUENCY

Sampling time interval $\Delta s = ?$

Sampling rate f_s=?

 Δ_0 =? Nyquist Frequency f_{max} = Wave Frequency f_0 =?

Sampling rate > 2*Nyquist Frequency?

DISCUSSION Q1(C)

HIGHER SAMPLING FREQUENCY

Sampling time interval $\Delta s = 6/8s$

Sampling rate f_s =1/ Δ s=4/3 Hz

 Δ_0 =2s , Nyquist Frequency f_{o} = 1/2Hz

Sampling rate (4/3 Hz)= 8/3 * Nyquist Frequency > 2 * Nyquist Frequency

DISCUSSION Q1(D)

GETTING BETTER

Sampling time interval $\Delta s = ?$

Sampling rate $f_s = ?$

 Δ_0 =? Nyquist Frequency f_{max} = Wave Frequency f_0 = ?

Sampling rate > 2* Nyquist Frequency ?

DISCUSSION Q1(D)

GETTING BETTER

Sampling time interval $\Delta s = 2/4s$

Sampling rate f_s =1/ Δt =2 Hz

 Δ_0 =2s , Nyquist Frequency f_{max} =Wave Frequency f_0 =1/ Δ_0 = 1/2Hz

Sampling rate (2 Hz) = 4 * Nyquist Frequency

DISCUSSION Q1(E)

GOOD SAMPLING

Sampling time interval $\Delta s = ?$

Sampling rate $f_s = ?$

 $\Delta_0 = ?$ Nyquist Frequency $f_{max} =$ Wave Frequency $f_0 = ?$

Sampling rate > 2* Nyquist Frequency?

DISCUSSION Q1(E)

GOOD SAMPLING

Sampling time interval $\Delta s = 2/8 = 0.25s$

Sampling rate $f_s=1/\Delta s=4$ Hz

 Δ_0 =2s, Nyquist Frequency f_{max} =Wave Frequency f_0 =1/ Δ_0 = 1/2Hz

Sampling rate (4 Hz)= 8 * Nyquist Frequency

DISCUSSION Q1

5)	1.5 1 - 0.5 - 0 0 -0.5 -		6	B	1/0	12
	-1.5					

	1	2	3	4	5
Δs	1 s	1.5s	0.667s	0.5s	0.25s
$\Delta_0/2$	2/2s	2/2s	2/2s	2/2s	2/2s

Sampling interval < Wave period/2?

RECOMMENDED SAMPLING

Sampling rate = 10 * Nyquist Frequency

$$F(t) = C_0 + \sum_{n=1}^{\infty} A_n \cos(n\omega_0 t) + \sum_{n=1}^{\infty} B_n \sin(n\omega_0 t)$$

$$\mathbf{n}\omega_0$$

Consider the continuous signal:

$$\sum_{n} \frac{4}{(2n-1)\pi} \sin \left[\frac{2\pi(2n-1)t}{10} \right]$$

$$\frac{2n-1}{10} 2\pi$$

- 1) What would be an appropriate sampling rate to use in sampling this signal if is to filtered at and above 2 Hz before sampling?
- What are the alias frequencies of the filtered signal at this sampling rate?

 $(f_k > 4 \text{ Hz}; \text{ many possible solutions})$

$$\omega_{\rm n} = 2\pi \frac{2n-1}{10}, f_{\rm n} = \frac{2n-1}{10}$$

The nth term of the series has a frequency $f_n = (2n - 1)/10$.

The fundamental frequency (n = 1) is $f_1 = f_0 = 0.1$ Hz.

n	0	1	2	3	4	5	6	7	8	9	10
$f_n = \frac{2n-1}{10}$	1/10	1/10	3/10	5/10	7/10	9/10	11/10	13/10	15/10	17/10	19/10
Amplitude 4 (2n–1)π	$\frac{4}{\pi}$	$\frac{4}{\pi}$	$\frac{4}{3\pi}$	$\frac{4}{5\pi}$	$\frac{4}{7\pi}$	$\frac{4}{9\pi}$	$\frac{4}{11\pi}$	$\frac{4}{13\pi}$	$\frac{4}{15\pi}$	$\frac{4}{17\pi}$	$\frac{4}{19\pi}$
~	1.27	1.27	0.43	0.25	0.18	0.14	0.12	0.10	0.09	0.08	0.07

1) What would be an appropriate sampling rate to use in sampling this signal if is to filtered at and above 2 Hz before sampling?

SOLUTION:

This signal has a frequency spectrum as shown:

Filtering the signal at and above 2 Hz limits this series representation of y(t) to 10 terms.

2) What are the alias frequencies of the filtered signal at this sampling rate?

According to Shannon-Nyquist Theorem:

Nyquist Frequency $f_{max} = 2$ Hz, need to set sampling rate $f_s > 4$ Hz.

The alias frequencies of the filtered signal depend on the sampling rate. Let us say we select $f_s = 5$ Hz.

$$f_a = \pm f_n \pm i f_z$$
 for $i = 1$ to ∞
e.g. $f_a = -0.1 + 5 = 4.9$ $f_a = 0.1 + 5 = 5.1$

n	fn	i=1	i=2	i=3	i=4	
1	0.1	4.9, 5.1	9.9, 10.1	24.9, 15.1	19.9, 20.1	Etc.
2	0.3	4.7, 5.3	9.7, 10.3	14.7, 15.3	19.7, 20.3	Etc.
3	0.5	4.5, 5.5	9.5, 10.5	14.5, 15.5	19.5, 20.5	Etc.
4	0.7	4.3, 5.7	9.3, 10.7	Etc.		
5	0.9	4.1, 5.9	9.1, 10.9	Etc.		
6	1.1	3.9, 6.1	8.9, 11.1	Etc.		
7	1.3	3.7, 6.3	8.7, 11.3	Etc.		
8	1.5	3.5, 6.5	Etc.			
9	1.7	3.3, 6.7	Etc.			
10	1.9	3.1, 6.9	Etc.			

Objective function: |i*fs - fn| with variable $i=1, 2, 3 \dots$

Shaparenko, B. and Cimbala, J. M., Int. J. Mech. Engr Education, Vol. 39, No. 3, pp. 195-199, 2012

ALIAS FREQUENCIES

$f_a = \pm f_n + i * f_s, for i = 1, 2, 3 ...$? (Proof)

Given two signals x(t) and y(t):

$$x(t) = A\cos(2\pi f_n t)$$

$$y(t) = A\cos(2\pi f_a t)$$

We sample these two signals at sampling rate of f_s :

$$x[n] = A\cos(2\pi f_n \frac{n}{f_s})$$

$$y[n] = A\cos(2\pi f_a \frac{n}{f_s})$$

In the next few steps, we prove that y[n] = x[n], in the case of $f_a = i * f_s - f_n$. $y[n] = A\cos\left[2\pi(i * f_s - f_n)\frac{n}{f_s}\right]$

$$= A\cos\left[2\pi i * f_s * \frac{n}{f_s} - 2\pi f_n \frac{n}{f_s}\right]$$

$$= A\cos[2\pi i * n - 2\pi f_n \frac{n}{f_s}]$$

$$= A\cos(-2\pi f_n \frac{n}{f_c})$$

$$= A\cos(2\pi f_n \frac{n}{f_s})$$

$$=x[n]$$

Same for the case of $f_a = i * f_s + f_n$. Proof is done.

a) How many bits are needed to represent the number 756?
 Without using a calculator, convert 756 to binary

(10 bits; 10 1111 0100)

b) An 8-bit digital-to-analog converter has an output range of 0 to 5V. What is its resolution? Estimate the voltage output if the input code has the decimal value of 32.

(0.0195V; 0.625V)

ANSWER TO Q3(A)

SOLUTION:

$$2^n \ge 756$$

$$n \ge \frac{\log_{10} 756}{\log_{10} 2} = \frac{2.878}{0.301}$$

$$=9.56 \rightarrow 10$$

Thus 10 bits are required.

$$756/2 = 378$$
 remainder 0

$$378/2 = 189 \text{ remainder } 0$$

$$189/2 = 94 \text{ remainder } 1$$

$$94/2 = 47$$
 remainder 0

$$47/2 = 23$$
 remainder 1

$$23/2 = 11 \text{ remainder } 1$$

$$11/2 = 5$$
 remainder 1

$$5/2 = 2$$
 remainder 1

$$2/2 = 1$$
 remainder 0

$$1/2 = 0$$
 remainder 1

Thus
$$756_{10} = 10\ 1111\ 0100_2$$

a) How many bits are needed to represent the number 756?
 Without using a calculator, convert 756 to binary

(10 bits; 10 1111 0100)

ANSWER TO Q3(B)

b) An 8-bit digital-to-analog converter has an output range of 0 to 5V. What is its resolution? Estimate the voltage output if the input code has the decimal value of 32.

(0.0195V; 0.625V)

SOLUTION:

Resolution Q =
$$\frac{(V_{\text{max}} - V_{\text{min}})}{2^n} = \frac{5}{2^8} = 0.01953125V$$

An input of 32 will then give an output of

$$V_{out} = 32 \times 0.01953 = 0.625V$$

COMMENT: Maximum input code is 1111 1111 = 255. Therefore the maximum $V_{out} = 255 \times 0.01953125 = 4.980V$, not 5V!

Error =
$$5V - 4.98V \sim 0.01953125V$$

Note: $Q=(Vmax-Vmin)/(2^n-1)$ when 2^n is fairly large the difference for the results can be ignored both in terms of resolution and output.

