Algorithmen für NP-harte Probleme

© M Tim Baumann, http://timbaumann.info/uni-spicker

Dies ist eine Zusammenfassung zur gleichnamigen Vorlesung von Professor Dr. Torben Hagerup im Sommersemester 2017.

Def. Ein Optimierungsproblem ist ein Tupel $(\mathcal{X}, \mathcal{F}, Z)$ wobei

- \mathcal{X} eine Menge von Instanzen,
- F eine Abbildung ist, welche jeder Instanz x eine Menge F(x) von möglichen Lösungen zuordnet und
- Z eine reellwertige Abbildung (die **Zielfunktion**) ist, die jedem $x \in \mathcal{X}$ und $y \in \mathcal{F}(x)$ einen Zielwert zuordnet.

Def. Eine **optimale Lösung** eines Optimierungsproblems $(\mathcal{X}, \mathcal{F}, Z)$ zu einer Instanz $x \in \mathcal{X}$ ist ein $y \in \mathcal{F}(x)$ mit

$$Z(x,y) = \min_{y \in \mathcal{F}(x)} Z(x,y) =: \mathrm{Opt}(x).$$

Def. Ein Algorithmus löst ein Optimierungsproblem $(\mathcal{X}, \mathcal{F}, Z)$, falls er für jedes $x \in \mathcal{X}$

- eine optimale Lösung $y \in \mathcal{F}(x)$ berechnet, falls solch eine existiert,
- "unmöglich" ausgibt, falls keine Lösung existiert oder
- "möglich, aber keine optimale Lösung" sonst.

Def. NPO ist die Klasse aller Optimierungsprobleme $(\mathcal{X}, \mathcal{F}, Z)$ mit

- X ∈ P
- Es gibt ein Polynom p, sodass für alle $x \in X$
- $-|y| \le p(|x|)$ für alle $y \in \mathcal{F}(x)$ und
- für alle Wörter w der Länge $|w| \le p(|x|)$ in polynomieller Zeit (in |x|) entscheidbar ist, ob $w \in \mathcal{F}(x)$.
- Die Funktion Z ist in polynomieller Zeit berechenbar.

Def. PO ⊆ NPO ist die Subklasse für die ein Lösungsalgorithmus existiert, der in Polynomialzeit läuft.

Beob.
$$PO = NPO \implies P = NP$$

Def. Sei $\mathcal{P} = (\mathcal{X}, \mathcal{F}, Z)$ ein Optimierungsproblem.

- Das zugeh. Auswertungsproblem \mathcal{P}_E ist: Gegeben $x \in \mathcal{X}$,
- berechne Opt(x), falls x eine optimale Lösung besitzt,
- berechne inf $\mathcal{F}(x) \in \mathbb{R} \cup \{-\infty\}$, falls es Lösungen gibt, aber keine optimale
- oder gib "unmöglich" aus, falls keine Lösung existiert.
- Das zugeh. Entscheidungsproblem \mathcal{P}_D ist: Gegeben $x \in \mathcal{X}$ und $k \in \mathbb{Q}$, gibt es eine Lösung $y \in \mathcal{F}(x)$ mit $Z(x,y) \leq k$?

Def.
$$\mathcal{P} \in \text{NPO} \implies \mathcal{P}_D \in \text{NP}$$

- **Def.** Ein Entscheidungsproblem \mathcal{P}_1 ist (in Polynomialzeit) auf ein Entscheidungsproblem \mathcal{P}_2 many-to-one-reduzierbar (notiert $\mathcal{P}_1 \leq_m \mathcal{P}_2$) falls eine (in Polynomialzeit) berechenbare Funktion $f:\{$ Instanzen von $\mathcal{P}_1\} \to \{$ Instanzen von $\mathcal{P}_2\}$ existiert, sodass die Antwort auf eine Instanz x von \mathcal{P}_1 gleich der Antwort auf die Instanz f(x) von \mathcal{P}_2 ist.
- Ein Problem \mathcal{P}_1 ist (in Polynomialzeit) auf ein Problem \mathcal{P}_2 **Turing-reduzierbar** (notiert $\mathcal{P}_1 \leq_T \mathcal{P}_2$) falls ein Algorithmus existiert, der unter Verwendung eines Orakels für \mathcal{P}_2 das Problem \mathcal{P}_1 (in Polynomialzeit) löst.

Beob. $\mathcal{P}_1 \leq_m \mathcal{P}_2 \implies \mathcal{P}_1 \leq_T \mathcal{P}_2$

Beob. Für $\mathcal{P} \in \text{NPO}$ gilt $\mathcal{P}_D <_T \mathcal{P}_E <_T \mathcal{P}$.

 ${\bf Satz.}\,$ Habe $\mathcal{P}=(\mathcal{X},\mathcal{F},Z)\in {\rm NPO}$ eine Zielfunktion mit Werten in den ganzen Zahlen.

- Es gilt $\mathcal{P}_D \equiv_T \mathcal{P}_E$.
- Angenommen, \mathcal{P}_D ist NP-vollständig. Dann gilt $\mathcal{P} \equiv_T \mathcal{P}_D$.

Def. Ein Optimierungsproblem \mathcal{P} heißt **NP-hart**, falls $\mathcal{P}' \leq_T \mathcal{P}$ für jedes Entscheidungsproblem \mathcal{P}' in NP.

Beob. $\mathcal{P} \in \text{NPO}$, \mathcal{P} NP-vollständig $\implies \mathcal{P}$ NP-hart

Die Gierige Strategie

Problem (Cabin Manager's Problem). MIS auf Intervallgraphen

Algorithmus (Greedy MIS für Intervallgraphen).

Beginne mit $C := \emptyset$, füge dann wiederholt gierig das vom aktuellen C unabhängige Intervall mit dem kleinsten Endpunkt zu C hinzu, bis es kein solches Intervall mehr gibt.

Satz. Dieser Algorithmus berechnet tatsächlich ein MIS.

Algorithmus (Greedy Minimum Makespan Scheduling). Gehe die Jobs in nach Dauer absteigender Reihenfolge durch, weise jeden Job dem Arbeiter zu, der bisher am wenigsten ausgelastet ist.

 ${\bf Satz.}\,$ Die Lösung, die der Algorithmus liefert, ist höchstens um den Faktor

$$\frac{4}{3} - \frac{1}{3p}$$

schlechter als eine optimale Lösung.

Beweisskizze. Sei t die Länge des letzten Jobs des am längsten beschäftigten Arbeiters und z^{\ast} die minimale Gesamtdauer.

- Falls $t>z^*/3,$ so hat der Algorithmus sogar eine optimale Lösung gefunden.
- Falls $t \leq z^*/3$, so folgt die Behauptung durch geeign. Abschätzen.

Algorithmus (Greedy Knapsack Packing). Gehe die Sachen absteigend nach ihrem Nutzen-Kosten-Verhältnis v_i/w_i durch und packe jede Sache ein, die noch in den Rucksack passt. Sei z der Gesamtnutzen des so zusammengestellten Sets. Falls eine Sache mit Nutzen $v_j > z$ (und $w_j \leq W$) nicht eingepackt wurde, so räume den Rucksack wieder aus und packe als einziges diese Sache ein.

Satz. Der Gesamtnutzen der durch den Algorithmus erhaltenen Lösung ist mindestens halb so groß wie der Gesamtnutzen einer optimalen Lösung.

Probleme

Problem (Maximum Independent Set, MIS). Geg. einen unger. Graphen G=(V,E), berechne eine unabhängige $Menge\ M\subset V$, d. h.

$$\forall v \in M : \forall w \in V : (v, w) \in E \implies w \notin M$$
.

die maximale Größe |M| unter allen unabhängigen Mengen besitzt.

Problem (Minimum Vertex Cover, MVC). Geg. einen unger. Graphen G = (V, E), berechne eine Knotenüberdeckung C, d. h.

$$\forall v, w \in V : (v, w) \in E \implies v \in C \lor w \in C,$$

die minimale Größe $\left|C\right|$ unter allen Knotenüberdeckungen besitzt.

Def. Ein Intervallmodell eines Graphen G = (V, E) ist eine Abbildung $\phi : E \to \{[a, b] \mid a, b \in \mathbb{Q}\}$, sodass

$$\forall v \neq w \in V : (v, w) \in E \iff \phi(v) \cap \phi(w) \neq \emptyset.$$

Ein Graph heißt Intervallgraph, falls er ein Intervallmodell besitzt.

Problem (Minimum Makespan Scheduling). Seien $p, n \in \mathbb{N}$ und $l_1, \ldots, l_n \in \mathbb{R}_{>0}$ gegeben. Für $f : \{1, \ldots, n\} \to \{1, \ldots, p\}$ setze

$$t(f) := \max_{1 \le i \le p} \sum_{j \in f^{-1}(i)l_j}$$
.

Berechne das f, für das t(f) minimal wird!

Interpretation. p ist die Anzahl von $Arbeitern, l_1, \ldots, l_n$ sind die Längen von zu erledigenden Jobs und t(f) ist die Gesamtdauer bei der durch f gegebenen Verteilung der Jobs auf die Arbeiter an.

 $Bem.\,$ MMS ist NP-hart, da das zugeh. Entscheidungsproblem Bin Packing bekannterweise NP-hart ist.

Problem (Maximum Knapsack). Seien $n \in \mathbb{N}$ und v_1, \ldots, v_n , $w_1, \ldots, w_n, W \in \mathbb{R}_{>0}$ gegeben. Die Menge der möglichen Lsgn sei

$$\mathcal{F} := \{ S \subseteq \{1, \dots, n\} \mid \sum_{i \in S} w_i \le W \}.$$

Gesucht: $\arg\max_{S\in\mathcal{F}}\sum_{i\in S}v_i$

Interpretation. Man wählt unter n Sachen mit jeweils einem Gewicht w_i und einem Nutzwert v_i diejenigen aus, die man in einen Rucksack packt, sodass das Gesamtgewicht eine festgelegte Grenze W nicht übersteigt und der Nutzen maximal wird.