Pauta Certamen Nº 1 de Arquitecturas de Computadores

26 de octubre de 2018 Prof. Javier Cañas Ayudantes: Bruno Benkel, Vicente Saona Materia: CH1, CH2, CH3 hasta PPT 22

1) Respuestas Cortas y Fundamentadas (30 Puntos)

a) Un computador utiliza aritmética en C-2 (complemento dos) de 8 bits. Indicar el menor número, que al restar a 0xA7, genera overflow. Exprese su respuesta en hexadecimal.

Sol.

El número negativo más grande es $-2^{n-1}= 2^7= 128_{10}=0x80$ $0xA7 = -89_{10}$.

Entonces -89 -x=-128. Entonces x= -39 es el número mas grande que no genera OF. El número menor que genera OF es entonces x=-40₁₀ y en hexadecimal **0xD8**.

b) Manteniendo la lógica, transformar el circuito usando el mínimo número de compuertas NOR.

Sol.

La lógica NAND es F = AB + CD. Usando M-K se obtiene la lógica mínima NOR (agrupando ceros). F = (A+C)(A+D)(B+C)(B+D)

c) Dado el circuito, encontrar F(A,B,C)

Sol.

$$F = \overline{A}B + AC$$

2) Mapas de Karnaught. (30 Puntos)

Minimizar la función:
$$F(A,B,C,D,E) = \sum (4,8,12,13,14,20,28,29,31) + \sum_{\phi} (0,1,6,11,17,22,26)$$

Sol.

ABC/DE	000	001	011	010	110	111	101	100
00	0	4	12	8	24	28	20	16
01	1	5	13	9	25	29	21	17
11	3	7	15	11	27	31	23	19
10	2	6	14	10	26	30	22	18

ABC/DE	000	001	011	010	110	111	101	100
00	Х	1	1	1		1	1	
01	Х		1			1		X
11				X		1		
10		Х	1		Х		Х	

$$F(A, B, C, D, E) = \overline{A}C\overline{E} + C\overline{D}\overline{E} + BC\overline{D} + \overline{A}\overline{D}\overline{E} + ABCE$$

3) Diseño Combinacional: (20 Puntos)

a) La figura muestra un DEMUX:

Sal

$$Y_3 = ES_1S_0$$
 $Y_2 = ES_1\overline{S_0}$ $Y_1 = E\overline{S_1}S_0$ $Y_0 = E\overline{S_0}\overline{S_1}$

b) La figura muestra un CODIFICADOR:

Un CODER es el inverso de un DECODER En todo momento solo una entrada tiene un valor 1.

if $(I_i==1)$

Y=

Determinar las ecuaciones lógicas de Y_1 e Y_0 en función las entradas

Sol.

$$Y_1 = I_2 + I_3$$
 $Y_0 = I_1 + I_3$

4) Flip Flops: Un FF JK se construye con un FF D, tal como se muestra en la figura:

- a) Completar la Tabla: (10 Puntos)
- b) Si inicialmente Q=0, dibujar la salida Q. (10 Puntos)

J	K	Qn+1
0	0	
0	1	
1	0	
1	1	

Sol

a)

J	K	Qn+1
0	0	Q^n
0	1	0
1	0	1
1	1	$\overline{Q^n}$

