An Example: Delivery Time Data [Montgomery et al., 2012]

Suppose that an industrial engineer was employed to analyze the product delivery and service operations for vending machines.

- He/She suspects that the time required by a delivery person to load and service a machine is related to the number of cases of product delivered.
- ► The engineer visits 25 randomly chosen vending machines, and noted the in-outlet delivery time (in minutes) and the volume of product delivered (in cases).
- ► The question he/she is trying to answer: how much time is needed for the given number of cases?

An Example: Delivery Time Data

Table: Time Delivery Data

Obs.	Del. Time	Cases	Obs.	Del. Time	Cases
1.	16.68	7	14.	19.75	6
2.	11.5	3	15.	24	9
3.	12.03	3	16.	29	10
4.	14.88	4	17.	15.35	6
5.	13.75	6	18.	19	7
6.	18.11	7	19.	9.5	3
7.	8	2	20.	35.1	17
8.	17.83	7	21.	17.9	10
9.	79.24	30	22.	52.32	26
10.	21.5	5	23.	18.75	9
11.	40.33	16	24.	19.83	8
12.	21	10	25.	10.75	4
13.	13.5	4			

Scatter Plot of Delivery Time Data

Delivery Time Data: Scatter Plot

Least Squares Estimation

- Consider a data set consists of n points (x_i, y_i) i = 1, ..., n. Here, x_i is an independent variable and y_i is a dependent variable.
- ► The model function $f(\mathbf{x}, \boldsymbol{\beta})$ depends on $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_p)$ (p-regressors) and m unknown parameters $\boldsymbol{\beta} = (\beta_1, \dots, \beta_m)$.
- ► The goal is to find the parameter values for the model that "best"fits the data.

Least Squares Estimation

➤ The goodness of model fit is measured by its residual, defined as the difference between the actual value of the dependent variable and the value predicted by the model

$$e_i = y_i - f(x_i, \boldsymbol{\beta}).$$

► The least-squares method finds the optimal parameter values by minimizing the sum of squared residuals

$$S(\beta) = \sum_{i=1}^{n} e_i^2.$$

Linear Least Squares

▶ Suppose we wish to fit a straight line. Let β_0 and β_1 denote the intercept and the slope, respectively. The model function takes the form

$$f(x,\beta) = \beta_0 + \beta_1 x$$

▶ Optimal values of β_0 and β_1 are found by minimizing

$$S(\beta) = \sum_{i=1}^{n} \{y_i - (\beta_0 + \beta_1 x_i)\}^2.$$

Ordinary Least Squares

Note: The figure is taken from https://medium.com/analytics-vidhya

Definitions

Let A be a $n \times n$ symmetric matrix, then A is:

- **positive definite** if x'Ax > 0 for all $x \neq 0$ in \mathbb{R}^n .
- ▶ negative definite if x'Ax < 0 for all $x \neq 0$ in \mathbb{R}^n .
- **positive semidefinite** if $x'Ax \ge 0$ for all $x \ne 0$ in \mathbb{R}^n .
- ▶ negative semidefinite if $x'Ax \le 0$ for all $x \ne 0$ in \mathbb{R}^n .
- ▶ indefinite if $\mathbf{x}' \mathbf{A} \mathbf{x} > 0$ for some \mathbf{x} in \mathbb{R}^n and $\mathbf{x}' \mathbf{A} \mathbf{x} < 0$ for some other \mathbf{x} in \mathbb{R}^n .

Maxima/Minima

```
Given a multivariable function f(\mathbf{x}) (where \mathbf{x} = (x_1, \dots, x_n)') defined as f: D(\subset \mathbb{R}^n) onto \mathbb{R}, we aim to find
```

$$\min_{\mathbf{x} \in D} f(\mathbf{x})$$

or

$$\max_{\mathbf{x} \in D} f(\mathbf{x}).$$

Definitions

A point x^* is:

- ▶ a max of f in D if $f(x^*) \ge f(x)$ for all $x \in D$;
- ▶ a strict max of f in D if it is a max and $f(\mathbf{x}^*) > f(\mathbf{x})$ for all $\mathbf{x} \neq \mathbf{x}^*$;
- ▶ a local max of f if there is a neighborhood of \mathbf{x}^* , $B_r(\mathbf{x}^*)$ such that $f(\mathbf{x}^*) \geq f(\mathbf{x})$ for all $\mathbf{x} \in B_r(\mathbf{x}^* \cap D)$;
- ▶ a strict local max of f if there is a neighborhood of \mathbf{x}^* , $B_r(\mathbf{x}^*)$ such that $f(\mathbf{x}^*) > f(\mathbf{x})$ for all $\mathbf{x} \in B_r(\mathbf{x}^* \cap D)$.

Definitions

A point x^* is:

- ▶ a min of f in D if $f(x^*) \le f(x)$ for all $x \in D$;
- ▶ a strict min of f in D if it is a max and $f(\mathbf{x}^*) < f(\mathbf{x})$ for all $\mathbf{x} \neq \mathbf{x}^*$;
- ▶ a local min of f if there is a neighborhood of \mathbf{x}^* , $B_r(\mathbf{x}^*)$ such that $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all $\mathbf{x} \in B_r(\mathbf{x}^* \cap D)$;
- ▶ a strict local min of f if there is a neighborhood of \mathbf{x}^* , $B_r(\mathbf{x}^*)$ such that $f(\mathbf{x}^*) < f(\mathbf{x})$ for all $\mathbf{x} \in B_r(\mathbf{x}^* \cap D)$.

First order condition

Let $f: D \subset \mathbb{R}^n \to \mathbb{R}$ be a real-valued function of n variables. If a point \mathbf{x}^* is a local max or min of f in D and if \mathbf{x}^* is an interior point of D, then

$$\frac{\partial f}{\partial x_i} = 0 \text{ for, } i = 1, \dots, n$$

in other words the gradient vanishes at x^* .

First order condition

Definition 1

A point x^* is a **critical point** of a function $f(x_1, ..., x_n)$ if it satisfies

$$\frac{\partial f}{\partial x_i} = 0 \text{ for, } i = 1, \dots, n$$

Remark 0.1 (Hessian Matrix)

In case of more than two variables, local minima/maxima is decided using Hessian matrix. The (i,j) entry of a typical Hessian matrix is

$$(H_f)_{i,j} = \frac{\partial^2 f(x_1,\ldots,x_n)}{\partial x_i \partial x_j}.$$

Let x_0 be a critical point of f.

- 1. If Hessian matrix is positive definite at $(x_1, \ldots, x_n) = \mathbf{x} = \mathbf{x}_0$ then f attains a strict local minima at \mathbf{x}_0 .
- 2. If Hessian matrix is negative definite at $\mathbf{x} = \mathbf{x}_0$ then f attains a strict local maxima at \mathbf{x}_0 .
- 3. Otherwise x_0 is a saddle point.

Remark 0.2 (Sylvester's criterion)

The real-symmetric matrix H is positive definite if and only if all the leading principal minors of H are positive.

In other words all the following matrices have a positive determinant:

- 1. The upper left 1×1 corner of H,
- 2. The upper left 2×2 corner of H,
- -
- n. H itself.

Linear Least Squares Estimators (LSEs)

Let us go back to our least squares problem.

$$\frac{\partial S(\beta)}{\partial \beta_0} = -2\sum_{i=1}^n \{y_i - (\beta_0 + \beta_1 x_i)\} = 0$$
 (1)

$$\frac{\partial S(\beta)}{\partial \beta_1} = -2\sum_{i=1}^n \{y_i - (\beta_0 + \beta_1 x_i)\} x_i = 0$$
 (2)

Solving (1) and (2) for β_0 and β_1 , we get the LSEs of (β_0, β_1) as

$$\widehat{\beta}_1 = \frac{S_{xy}}{S_{xx}} \text{ and } \widehat{\beta}_0 = \overline{y} - \widehat{\beta}_1 \overline{x},$$
 (3)

where
$$\overline{y} = \sum_{i=1}^n y_i/n$$
, $\overline{x} = \sum_{i=1}^n x_i/n$, $S_{xy} = \sum_{i=1}^n y_i(x_i - \overline{x})$ and $S_{xx} = \sum_{i=1}^n (x_i - \overline{x})^2$.

Linear Least Squares Estimators (LSEs)

Second derivative test:

$$\frac{\partial^2 S(\beta)}{\partial \beta_0^2} = 2n, \ \frac{\partial^2 S(\beta)}{\partial \beta_1^2} = 2\sum_{i=1} x_i^2 \text{ and } \frac{\partial^2 S(\beta)}{\partial \beta_0 \partial \beta_1} = 2\sum_{i=1} x_i.$$

$$\frac{\partial^2 S(\beta)}{\partial \beta_0^2} \frac{\partial^2 S(\beta)}{\partial \beta_1^2} - \left[\frac{\partial^2 S(\beta)}{\partial \beta_0 \beta_1} \right]^2 = 4n \sum_{i=1}^n (x_i - \overline{x})^2 > 0 \quad (4)$$

and

$$\frac{\partial^2 S(\beta)}{\partial \beta_0^2} = 2n > 0. \tag{5}$$

From (4) and (5) it is concluded that $(\widehat{\beta}_0, \widehat{\beta}_1)$ given in (3) minimized the objective function.

References

