Von der Mathematischen Biologie zur Systembiologie (Vorlesung Prof. Dr. J. Timmer)

Aufgabenzettel Nr. 9

Aufgabe 13 (Übung): Kooperative positive Rückkopplung

Ein Protein A wird mit einer Rate k_1 , die proportional zu einem äußeren Stimulus S variiert wird, phosphoryliert und mit einer Rate k_{-1} dephosphoryliert. Eine positive Rückkopplung unterstützt die Phosphorylierung in kooperativer Weise mit einem Hill-Koeffizienten k=4.Das ergibt das folgende Modell

$$\frac{dA_*}{dt} = k_1 \cdot S \cdot A + k_2 \cdot A \cdot \frac{A_*^4}{K_m^4 + A_*^4} - k_{-1}A_*.$$

Mit der Bedingung $A_* + A = A_{\text{total}} = 1$ ergibt sich

$$\frac{\mathrm{d}A_*}{\mathrm{d}t} = \left(k_1 \cdot S + k_2 \cdot \frac{A_*^4}{K_m^4 + A_*^4}\right) \cdot (1 - A_*) - k_{-1}A_*.$$

Die Parameter sind nun $k_1 = 0.1$; $k_{-1} = 1$; $k_2 = 2$ und $K_m = 0.3$.

- i.) Simulieren Sie das System mit einem Stimulus S im Intervall I=[0,2] in Schritten von 0.01 sowohl auf- als auch absteigend. Erstellen Sie einen Graphen, der den stationären Wert in Abhängigkeit des Stimulus darstellt. Beginnen Sie mit dem Startwert $A_*(0)=0$ und bei jeder weiteren Integration mit dem stationären Wert der vorherigen Simulation.
- ii.) Wie nennt man das beobachtete Phänomen in der Physik, und welche Bedeutung hat es in der Biologie?
- iii.) Veranschaulichen Sie die Wirkungsweise des Mechanismus durch einen Rate Balance Plot. Tragen sie dazu für verschiedene Stimuli die Rate der Auf- und Abbaureaktion von A_* gegen A_* ab. Machen Sie sich klar, wie sich die qualitative Dynamik speziell die Stabilität der stationären Zustände aus diesem Plot erschließen läßt.
- iv.) Verringern Sie k_2 und entdecken Sie auf diese Weise zwei qualitativ verschiedene Verhaltensweisen des Systems.