Công thức tính cường độ điện trường

1. Định nghĩa

- **Cường độ điện trường** tại một điểm là đại lượng đặc trưng cho tác dụng lực của điện trường tại điểm đó. Nó được xác định bằng thương số của độ lớn lực điện F tác dụng lên một điện tích thử q (dương) đặt tại điểm đó và độ lớn của q.
- Cường độ điện trường được biểu diễn bằng một vecto gọi là vecto cường độ điện trường.

$$\vec{E} = \frac{\vec{F}}{q}$$

Vector cường độ điện trường \overrightarrow{E} có:

+ Phương và chiều trùng với phương và chiều của lực điện tác dụng lên điện tích thử q dương.

$$q > 0$$
 \vec{E}_M

$$Q < 0$$
 \overline{E}_M

+ Chiều dài biểu diễn độ lớn của cường độ điện trường theo một tỉ lệ xích nào đó.

2. Công thức

Công thức tính cường độ điện trường tại một điện tích điểm Q:

$$E = \frac{F}{q} = k. \frac{|Q|}{\epsilon . r^2} (V/m)$$

Trong đó: E là cường độ điện trường (V)

F là lực điện trường (N)

q là điện tích thử (C)

Q là điện tích điểm (C)

r là khoảng cách từ Q đến q

ε là hằng số điện môi

Từ công thức
$$E = \frac{F}{q} \Rightarrow F = q.E$$
 hoặc $q = \frac{F}{E}$

3. Ví dụ minh họa

Ví dụ 1: Xác định vectơ cường độ điện trường tại điểm M trong không khí cách điện tích điểm $Q = 2.10^{-8}$ C một khoảng là 3 cm.

Hướng dẫn giải:

$$\bigoplus_{\substack{Q>0}} \Gamma \qquad \qquad \overrightarrow{\vec{E}_{M}}$$

Q>0 nên $\stackrel{\rightharpoonup}{E}$ có gốc đặt tại M, chiều đi ra xa điện tích Q Độ lớn:

$$E_{\rm M} = k \frac{|Q|}{\epsilon . r_{\rm M}^2} = 9.10^9 . \frac{2.10^{-8}}{1.0,03^2} = 2.10^5 ({\rm V/m}).$$

Ví dụ 2: Một điện tích q trong nước ($\varepsilon = 81$) gây ra tại điểm M cách điện tích một khoảng r = 26 cm một điện trường $E_{\rm M} = 1,5.10^4$ V/m. Hỏi tại điểm N cách điện tích q một khoảng r = 17 cm có cường độ điện trường bằng bao nhiều?

Hướng dẫn giải:

Do
$$E \sim \frac{1}{r^2}$$
 nên $\frac{E_M}{E_N} = \left(\frac{r_N}{r_M}\right)^2 \Rightarrow \frac{1.5}{E_N} = \left(\frac{17}{26}\right)^2$

$$\Rightarrow$$
 E_N $\approx 3,5.10^4$ V / m.