- introduction : services de la couche liaison
- Adressage dans les réseaux locaux
- Ethernet
- Commutateurs Ethernet
- Spanning Trees
- VLANs

Couche liaison de données

Services de la couche liaison

- Pour rendre un service le protocole de la couche liaison
 - définition de la trame : encapsulation d'un datagramme dans une trame en ajoutant un entête et un enqueue

fanion contrôle datagramme CRC fanion

Le contrôle peut servir à :

• délimiter la trame (fanion/préambule, longueur)

• définir le type de données

• mettre en place la fiabilisation (CRC, n° de séquence, ACK)

• partager le canal (canal half/full-duplex, ID src/dest)

• contrôle de flux...

- canal partagé : nécessité de mettre en place une méthode d'accès
- canal dédié : possibilité de mettre en place un mode connecté

Où est implémentée la couche liaison?

- Dans chaque hôte (machine/routeur)
- implémentée dans un adaptateur réseau (Carte interface réseau /network interface card NIC) ou sur
 - carte Ethernet, Wi-Fi, ...
 - implémente la couche physique et liaison
- attachées au bus système des hôtes
- combinaison de matériel, logiciel, firmware

Couche liaison de données

Où est implémentée la couche liaison ?

Coté émetteur

- encapsulation des datagrammes dans des trames
- ajout de bits de redondance, contrôle de flux,....

Coté récepteur

- contrôle les bits de redondance, contrôle de flux,....
- extrait les datagrammes des trames

- introduction : services de la couche liaison
- Adressage dans les réseaux locaux
- Ethernet
- Commutateurs Ethernet
- Spanning Trees
- VLANs

Couche liaison de données

Adressage dans les LAN

- Adresses MAC (ou LAN ou physiques ou Ethernet/Bluetooth :
 - fonction: utilisée localement pour acheminer les trames d'une interface à une autre directement connectée sur le même support.
 - Sur la plupart des LAN (Ethernet/Wi-Fi)
 l'adresse MAC est codée sur 48 bits (6 octets) gravée en dur dans la ROM de la carte, parfois configurable logiciellement

1A-2F-BB-76-09-AD

Adressage dans les LAN

Chaque adaptateur possède une adresse unique

Couche liaison de données

Adressage dans les WLAN

Chaque adaptateur possède une adresse unique

- introduction : services de la couche liaison
- Adressage dans les réseaux locaux
- Ethernet
- Commutateurs Ethernet
- Spanning Trees
- VLANs

Couche liaison de données

Ethernet

La technologie « dominante » des réseaux LAN filaires

- débits multiples (e.g., Broadcom BCM5761)
- Première technologie LAN largement déployée
- simple, peu coûteuse
- fait évoluer ses débits : de 10 Mbit/s 10 Gbit/s

Ethernet

- Topologies physiques
 - bus : populaire dans les années 90
 Tous les noeuds sont dans le même domaine de collision
 - étoile :

Commutateur Ethernet (Ethernet switch) actif au centre. Chaque participant est indépendant des autres : pas de collisions

Couche liaison de données

Ethernet

Structure des trames

Encapsulation d'un datagramme IP dans une trame Ethernet

Plusieurs variantes: Ethernet II, IEEE 802.3, IEEE 802.3 SNAP, VLAN 802.3q...

préambule + SFD	@src	@dest sheet	données	FCS
8 octets	6 octets	6 octets 2 oct	ets (jusqu'à 1500 octets)	4 octets

préambule 1010... SDF 10101011

adresses: source et destination

type: souvent datagramme IP (IPX, Appletalk,...)

FCS: Frame Check Sequence <- CRC

Erreur détectée -> trame détruite!

Ethernet

Service

- Protocole non connecté: pas de négociation pour l'établissement d'une liaison avant envoi de données
- non fiable
 - La carte réseau n'envoie ni ACK, ni NACK (negative ACK)
 - Les données en erreur sont détruites
- Méthode d'accès : CSMA/CD avec algorithme de retrait binaire

Couche liaison de données

Ethernet

Beaucoup de standards Ethernet différents En commun : protocole MAC et format de trame

- Différents débits : 2 Mbit/s, 10 Mbit/s, 100 Mbit/s, 1Gbit/s, 10 Gbit/s, 40 Gbit/s
- Différents supports de transmission : fibre, câble

- introduction : services de la couche liaison
- Adressage dans les réseaux locaux
- Fthernet
- Commutateurs Ethernet
- Spanning Trees
- VLANs

Couche liaison de données

Commutateurs Ethernet

- équipements de la couche liaison : prennent un rôle actif
 - stockent, transmettent les trames Ethernet
 - examine les adresses MAC, transfèrent sélectivement les trames sur un-ou-plusieurs liens sortants quand la trame doit être envoyée sur un segment et utilise la méthode CSMA/CD
- transparent
 - Les hôtes ne sont pas conscients de la présence des commutateurs Ethernet
- plug-and-play, auto-apprentissage
 - commutateurs ne peuvent être reconfigurés

Commutateurs Ethernet

Multiples transmissions simultanées

- Les hôtes ont un lien dédié et une connexion directe vers le commutateur
- Les commutateurs mettent les paquets dans une file d'attente
- le protocole Ethernet est utilisé sur chaque lien entrant mais les collisions ne peuvent pas se produire (full duplex)
- Commutation : A-vers-A' et B-vers-B' peuvent transmettre sans collision simultanément

switch with six interfaces (1,2,3,4,5,6)

Couche liaison de données

Commutateurs Ethernet

Table de commutation

Q: Comment le commutateur sait-il si A' est accessible via l'interface 4, B' via l'interface 5 ?

R: chaque commutateur possède une table de commutation dont chaque entrée contient :

- @ MAC du hôte
- interface pour le joindre
- estampille

switch with six interfaces (1,2,3,4,5,6)

Commutateurs Ethernet

Auto apprentissage

Les commutateurs apprennent quels hôtes peuvent être atteints au travers des interfaces

- Sur réception des trames, le commutateur "mémorise" l'emplacement de l'émetteur
- enregistrement du doublet émetteur/ position dans une table du commutateur

@MAC	interface	TTL	
А	1	60	مائديائي مائديائي
		.aa. s	19

Couche liaison de données

Commutateurs Ethernet

Filtrage et transfert de trames

Quand un commutateur reçoit une trame T

- 1. Enregistrement : @MAC de l'hôte sur lien entrant
- 2. Recherche: @MAC de dest. dans la table
- 3. Si l'entrée est dans liste

Si la destination est sur le lien d'où provient la trame Destruction de la trame

Sinon

Transmission de T sur l'interface indiquée par l'entrée

Sinon

Diffusion de T sur toutes les interfaces sauf celle d'où arrive la trame (=inondation)

@МАС	interface	TTL
Α	1	60
A'	4	60

Interconnexion de commutateurs

Supposons que C envoie une trame vers I, I répond à C

Couche liaison de données

Interconnexion de commutateurs

les commutateurs auto-apprenant peuvent être connectés entre eux

Attention : l'inondation peut mener à des boucles Il faut s'assurer qu'il n'y a pas de cycles dans le graphe

Création d'un spanning tree

- introduction : services de la couche liaison
- Adressage dans les réseaux locaux
- Ethernet
- Commutateurs Ethernet
- Spanning Trees
- VLANs

Couche liaison de données

Spanning trees

Arbre couvrant : Graphe couvrant l'ensemble des sommets mais un sous-ensemble des arrêtes

Ne pas inonder sur les liens qui ne sont pas dans l'arbre couvrant

panne

Spanning trees

Construction: besoin d'un algorithme distribué

Les commutateurs coopèrent pour construire le
spanning tree... et s'adapte automatiquement après une

Points clés de l'algorithme :

- Les commutateurs élisent la racine (commutateur avec le plus petit id)
- Chaque commutateur identifie
 l'interface sur laquelle il est le plus
 proche de la racine, les autres sont
 exclues de l'arbre

(**Y**, d', **X**)

(Y, d, X)

Couche liaison de données

Spanning trees

Protocole

• Initialement, chaque commutateur pense être la racine
Un commutateur un message sur toutes ses interfaces... s'identifiant
comme la racine id_racine = id_commutateur avec une distance = 0

annonce (X, O, X)

Ex: commutateur X

• Les commutateurs mettent à jour leur point de vue de la racine À la réception d'un message (nouvel_id, distance, id_émetteur), vérification de l'id de la racine :

Si le nouvel_id < id_racine id_racine = nouvel_id

- Les commutateurs calculent leur distance à la racine
 - Ajouter 1 à la distance retenue par son voisin
 - Identifier les interfaces qui ne sont pas sur le plus court chemin vers la racine ... et les exclure du spanning tree

Spanning trees

• Commutateur 4 pense être la racine

envoi de

• Commutateur 4 reçoit le message de 2

reçoit

id_racine = 2 d_racine = 1

Couche liaison de données

Spanning trees

• Commutateur 2 reçoit le message de 1

reception

• Commutateur 4 reçoit le message de 2

reçoit

id_racine = 1 d_racine = 2

Spanning trees

- L'algorithme doit réagir rapidement aux pannes
 - panne de la racine : élection d'une nouvelle racine
 - Panne d'un noeud ou d'un lien : recalculé du spanning tree
- La racine continue à envoyer des messages
 - ré-annonces périodiques
 - les autres commutateurs continuent d'envoyer des messages
- Détection des pannes grâce au timeout
 - Attente de réception de messages des autres commutateurs
 - Après un timeout un noeud peut prétendre être la racine

LU3IN133 réseaux informatiques

Réseaux locaux

- introduction : services de la couche liaison
- Adressage dans les réseaux locaux
- Ethernet
- Commutateurs Ethernet
- Spanning Trees
- VLANs

VLANs: Motivation

Supposons:

- un utilisateur du laboratoire d'informatique se déplace vers le département de la licence informatique, mais veut rester connecté au commutateur de son laboratoire...
- un seul domaine de diffusion :
 - tous les trafics de diffusion de couche 2 doivent traverser tout le LAN
 - securité/vie privée, efficacité...

Couche liaison de données

VLANs

Virtual Local Area Network

Commutateurs incluant les fonctions VLAN peuvent être configurés pour définir plusieurs LANs virtuels sur une infrastructure LAN physique.

Les VLAN basés sur les ports : les ports du commutateurs sont groupés (par un logiciel de gestion) de telle sorte qu'un seul switch physique....

... opère comme des switch virtuels multiples.

VLANs

- isolation du trafic : trames de/vers les ports 1-8 peuvent seulement atteindre les ports 1-8
 - il est possible de définir le VLAN à partir des @ MAC plutôt que des ports
 - gestion dynamique : les ports peuvent être dynamiquement réalloués entre les VLANs

 transfert entre VLANs: opéré par le routage (couche supérieure)

Couche liaison de données

VLANs

- Le 'trunking ' achemine les trames entre des VLANs définis sur plusieurs commutateurs physiques
 - Les trames d'un même VLAN sont envoyées entre plusieurs commutateurs doit contenir l'identifiant du VLAN
 - Le protocole 802.1q ajoute/supprime des champs supplémentaires dans les champs d'entête des trames échangées sur les

VLANs

• Format des trames de VLANs 802.1Q

Tag Control Information (12 bit VLAN ID field, 3 bit priority field like IP TOS)