Plant and Animal Genome Conference Aquaculture Workshop January 14, 2023

Triploid Pacific oysters exhibit stress response dysregulation and elevated mortality following marine heatwaves

Matthew George, Ph.D.

mngeorge@uw.edu

School of Aquatic & Fishery Sciences University of Washington

Pacific Oysters – tolerance is

survival

Introduction

Reproductive control in Pacific oysters

- Various methods used to induce triploidy (tetraploid cross, heat-shock, pressure, etc.) developed in the late 1970's.
- 2. Triploid oysters have an extra chromosome set (3n).
- 3. Triploidy significantly reduces energetic investment in gonad production.
- 4. Triploid oysters have superior growth rates.
- 5. Harvesting triploids in the summer avoids the *unpleasant* taste of 'spawny' oysters.

Introduction

Diploid vs. Triploid mortality in the field

Introduction

Triploid morality is associated with environmental variability

Marine Heatwaves

Introduction

Crushing heat wave in Pacific Northwest and Canada cooked shellfish alive by the millions

Partners:

Point Whitney Shellfish Hatchery

Experimental Design

Reproductive Condition

Mortality

Metabolic Rate

UNIVERSITY of WASHINGTON

Experimental Design

30°C seawater temperature

Experimental Design

Desiccation

Measurements

Destructively sampled

- 1. Metabolic Enzyme Activity (NKA, CS)
- 2. Gene Expression (Tag-seq)

Results

Mortality

Results

Metabolic Enzyme Activity

Na+/K+ ATPase (NKA)

Citrate Synthase (CS)

NKA is essential for maintenance of **ionic and osmotic balance**

CS catalyzes is a proxy for mitochondrial activity and respiration rate

Gene Expression

Gene expression profiles of diploid and triploid oysters **diverged** as additional **stressors** were applied

Diploid

🛕 Triploid

up

down

Gene Expression

down

up

Gene Expression

Gene Ontology (GO) Terms

Triploids exhibited

dysregulated expression of stress-related genes following multiple stress exposure, including:

Heat Tolerance:

- Heat Shock Proteins
- 2. Molecular Chaperones

Antiapoptotic proteins:

- Inhibitor of apoptosis (IAP) proteins
- 2. E3 ubiquitin-protein ligases

<u>Mitochondrial genes :</u>

- 1. rRNA methyltransferases
- NADH-ubiquinone oxidoreductase

Conclusions

- Elevates seawater temperature alone did not result in differences in mortality across ploidy.
- Triploids exhibited metabolic depression, reduced NKA activity, and a 2.5-fold greater mortality rate than diploids (36.4% vs. 14.8%) following multiple stressors.
- 3. The expression of genes associated with **metabolism**, **stress tolerance**, and **immune function** were overrepresented within triploids.
- Evidence of dysregulated expression of molecular chaperones, antiapoptotic proteins, and mitochondrial regulatory genes within triploids following multiple stressor exposure.

Partners
& Funding Sources

