Transfer Learning and Data augmentation

Deep Learning summary

Marco Teran

Noviembre 2020- Bogotá

¿Por qué usar redes neuronales?

- Disponibilidad de datos para entrenar redes.
- Capacidad computacional a menor costo y con mayor disponibilidad.
- Mejores algoritmos de entrenamiento.
- Gran comunidad que constantemente comparte desarrollos, nuevas arquitecturas o nuevas aplicaciones.
- APIs flexibles, simples y gratuitos.

Frameworks de Deep Learning

Frameworks de Bajo Nivel

Frameworks de Alto Nivel

Keras API

Keras

Comparativo Frameworks

Framework/ Initial Release	Creadores	Escrito en qué Lenguaje?	Open Source	Soporta CUDA?	Desarrollo activo?	Modelos Preentrenados?
TensorFlow/2015	Google Brain	C++, Python	Si	Si	Si	Si
Keras / 2015	Francois Chollet	Python	Si	Si	Si	Si
PyTorch / 2016	Facebook	Python, C	Si	Si	Si	Si
Caffe / 2016	Berkeley Al Research	C++	Si	Si	Si	Si
Theano/2007	Université de Montréal	C++/Open CL	Si	Si	No	No
MATLAB+ Deep Learning Toolbox / 2016	MathWorks	MATLAB	No	Si	Si	Si

The Sequential API

```
import keras
from keras import layers

model = keras.Sequential()
model.add(layers.Dense(20, activation='relu', input_shape=(10,)))
model.add(layers.Dense(20, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))

model.fit(x, y, epochs=10, batch_size=32)
```

Estructura de redes neuronales

Perceptrón

Multi-Layer Perceptron

Comparación de funciones de pérdidas

Función de Pérdidas	Operación Residual	Robusto frente a Outliers	
MAE (Mean Absolute Error)	Valor Absoluto	Si	
MSE (Mean Squared Error)	Cuadrado	No	
MAPE (Mean Absolute Percentage Error)	Valor Absoluto	Si	

Gradiente descendiente

CNN

RNN

GAN

Ajuste de redes neuronales: hiper parámetros

Número Capas y Neuronas por Capa

Épocas e Inicializadores

Tasa de Aprendizaje

Función de activación y pérdidas

Tipo de Problema	Tipo de salida	Función de activación final	Función de pérdidas	
Regresión	Valor Numérico	Linear	Mean Squared Error (MSE)	
Clasificación	Salida Binaria	Sigmoid	Binary Cross Entropy	
Clasificación	Única etiqueta, multiples clases	Softmax	Cross Entropy	
Clasificación Multiples etiquetas, multiples clases		Sigmoid	Binary Cross Entropy	

Transferencia de aprendizaje y aumentación de datos

Aumentación de datos

Transferencia de aprendizaje

