⑲ 日本国特許庁(JP)

① 特許出願公開

⑫公開特許公報(A)

平2-242807 四公開 平成2年(1990)9月27日

Sint. Cl. 3	識別記号	庁内整理番号
C 08 F 220/12 2/26 6/22	MMB MBU MFR	8620-4 J 7107-4 J 6779-4 J
C 08 J 3/16 # C 08 F 220/06	MLV	8115-4F 8620-4 J

審査請求 未請求 請求項の数 1 (全6頁)

アクリル樹脂の製造方法 50発明の名称

> 顧 平1-62107 20特

顧 平1(1989)3月16日 ❷出

大 坂 @発明 者

愛知県名古屋市東区砂田橋 4 丁目 1 番60号 三菱レイヨン

株式会社内

三菱レイヨン株式会社 切出 願 人

東京都中央区京橋2丁目3番19号

弁理士 田村 武敏

1、 発明の名称

アクリル樹脂の製造方法

- 2. 特許請求の範囲
 - (a) 炭素数1~18のアルキル基を有するアル キルメタアクリレート0.1~99.9重量部
 - (b) 炭素数1~18のアルキル基を有するアル キルアクリレート0~99.8重量部
 - (c) α , β 不飽和カルボン酸モノマー 0.1 ~ 50重量節
 - (d) 上記モノマーと共重合可能なモノマー 0~ 20重量部

とからなるモノマー混合物を、その合針置100 重量部に対し、アニオン系乳化剤 0.1~10重 量部を用いて乳化重合し、重合体ラテックスを 得たのち、塩析して酸価15g/KON 以上、ガ ラス転移温度25℃でかつ、重量平均分子量が 1万以上の重合体の粉体集合体であり、該粉体 集合体中における粉体粒子径500~20mの ものの含有率が80%以上であり、見かけの嵩 比重が0.3~0.6g/ Wであることを特徴とす る粒子状アクリル樹脂の製造方法。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は、産業上有用な高酸価、高ガラス転 移温度を有し、特定の粉体特性を備えたアクリ ル系重合体の製造方法に関する。アクリル系重 合体は、カルポキシル基や水酸基、アミド基等 の各種官能差の導入が比較的容易になし得るこ とから、いわゆる機能性重合体として特に、塗 料、接着剤、シール材、裏面処理剤、レジスト 材料等種々の分野で広く応用されている。

〔従来の技術〕

高酸価アクリル系重合体の製造は、溶液重合 法、境状重合法、懸濁重合法、乳化重合法等の 一般的な重合方法で行なうといわれている。

溶液重合法、塊状重合法、懸濁重合法等によ って得られるアクリル系重合体の重量平均分子 量は通常「万以下であり、粘着性が強く、その 取扱い性が悪いため、その輸送保存は溶液系と するか、粘性物として取扱うしかない現状にあ る。一方、重量平均分子量が数万以上の重合体 を得ようとすると重合系の粘度が異常に高くな り重合系の撹拌が不可能となったり、重合系が ゲル化する等の不都合な現象がおき、目的とす る重合体を得ることは難しい。特にガラス転移 温度(以下Taという)が25℃以上の重合体を 得ようとするとこの現象は顕著となり、1万以 上の分子量の重合体を得るのは、工業的には難 しかった。

また、懸濁重合法、乳化重合法といった水を 重合媒体とする重合法で高酸価のアクリル樹脂 を得るためにはアクリル酸やメタアクリル酸等 の水溶性の酸性モノマーを多量に用いる必要が あり、他の疎水性モノマーとより形成される重 合体の水層とモノマー層とのバランスがとれず 重合中に重合体粒子が凝集したり組成分布の均 一な重合体を得ることは難しい。更に、このよ うな難点のない重合体を得るため、水溶性酸モ ノマーを重合系に均一に安定に分散させる乳化 (発明が解決しようとする課題)

はできなかった。

本発明者等は、上記のごとき欠点のない高Tg、 高酸価でかつ高分子量のアクリル系樹脂を製造 する方法を見出すべく鋭意検討した結果、重合 安定性がよくしかも取扱い性良好な粉体状質合 体を容易に得ることのできる製造方法を見出し、 本発明に到達した。

削を使用して重合し、ラチックス状態の重合体

を得ることはできるが、ラテックスから有用な

乳化剤残留物の少ない重合体をとりだすことが

難しく最終製品として、熱安定性をはじめとす

る各種物性の良好な粉体状の重合体を得ること

(課題を解決するための手段)

即ち本発明の襲旨とするところは

- (a) 炭素数1~18のアルキル基を有するアル キルメタアクリレート0.1~99.9重量部
- (b) 炭素数 I ~ 1 8 のアルキル基を有するアル キルアクリレートロ~9988重量部
- (c) α , β 不飽和カルボン酸モノマー 0.1 ~

5 0 重量部

(d) 上記モノマーと共重合可能なモノマー 0~ 20重量部

とからなるモノマー混合物をその合計量100 重量部に対し、アニオン系乳化剤 0.1~10重 量都なる割合で用い乳化重合し、重合体ラテッ クスを得たのち、塩析して酸価15g/KOR以 上、Tg 2 5 ℃以上、分子量 1 万以上の重合体よ りなる粉体集合体であり、抜粉集合体中に含ま れる500~20㎞の粉体の含有率が80%以 上で、かつ、見かけの嵩比重が0.3~0.6g/ **业であるアクリル系樹脂粉体集合物の製法にあ**

本発明を実施するに際して用いられるCi~i® のアルキル基を有するアルキルメタアクリレー ト及びアルキルアクリレートはアルキル基がメ チル基、エチル基、プロピル基、イソプロピル 益、ブチル基、イソブチル基、t ープチル基、 ヘキシル基、ペンチル基、ユキシル基、2-エ チルーヘキシル基、シクロヘキシル基、ドデシ ル基、ノニル基、ステアリル基等である通常市 腹されているモノマー類を用いることができる。 α , β - 不飽和カルボン酸としては例えば、 アクリル酸、メタアクリル酸、イタコン酸、マ レイン酸、フタル酸やイタコン酸、マレイン酸、 フタル酸のモノアルキルエステル等が用いられ

共重合可能なモノマーとしては、スチレン、 α-メチルスチレン等の芳香族ピニル化合物、 酢酸ビニル、プロピオン酸ピニル等のピニルエ ステル鎖、アクリロニトリル、メタクリロニト リル等のニトリル基を含むモノマー、ヒドロキ シアルキル (メタ) アクリレート頻、アクリル アミド、メタクリルアミド類、これらアミド類 のメチロール化物類、これらアミド類のアルコ キシアルキル化物類、ペンジル(メタ)アクリ レート等、通常用いられるモノマー類を挙げる ことができる。

本発明によりTgが25℃以上のアクリル系重 合体を効率よく得るには炭素数1~18個のア

ルキル基を有するアルキルメタアクリレート類 0.1~99.9重量部と炭素数1~18個のアルキルアクリレート類を99.8重量部以下、α,8-不飽和カルボン酸 0.1~50重量部及び他の共重合可能な不飽和モノマー20重量部以下なる割合で組合せて用いることが必要である。

 α , B - 不飽和カルボン酸の使用量が 0.1 重量部未満の場合は酸価が 1.5 mg / KOH 未満の重合体しか得られず、本発明の目的とするものが得られない。

一方、α、βー不飽和カルボン酸の使用量が 50重量部を越えて多いモノマー系を乳化蛋合 すると重合系に生ずるカレット量が多くなり均 ーな特性を備えた重合体を得ることができない。

Taが25 で以上とくに50 で以上のアクリル系重合体を効率よく作るにはアルキルメタアクリレート、アルキルアクリレート及び他の共重合可能なモノマーを20 重量部以下なる割合とすることが必要である。他の共重合可能なモノマーの使用量を20 重量部以上としたモノマー

これらの乳化剤を用いることにより、本発明の重合体を得る工程での重合安定性がよく、しかも、重合体を重合系より粉末として容易に得るという相反する目的を達成することができる。 特に脂肪酸石鹼に代表されるカルボン酸塩とア

系は乳化重合系を均一なものとしにくくなる傾 向があり好しくない。

本発明の重合体は酸価が15g/KON 以上、 好しくは40g/KOH で、ゲルパーミエーショ ンクロマトグラフィで測定した分子量が 1 万以 上という極めて特徴のある重合体である。この ような特性を備えたアクリル系重合体は優れた 接着性、タフネスを有し接着剤や新規なコーテ ィング剤、他樹脂の特性改質材などとして有用 であると考えられていたのであるが、従来の官 能基合有アクリル系重合体の製法である溶液重 合法や塊状重合法では得ることが難しかったの であるが、本発明の方法により初めて得ること に成功したものである。また本発明のアクリル 系樹脂は酸価が高いにもかかわらずアルカリ水 溶液、例えば 0.1 % Na : CO : 水溶液又は 0.1 % NaOH水溶液に対して24時間以上溶解しないと いう、従来開発されてきた高酸価樹脂とは異っ た特性を有している。

本発明に用いられるアニオン系乳化剤として

ルキルスルホコハク酸塩が好しい。

本発明の重合体を得るに際して用いる重合開始剤としては、通常公知の重合開始剤例えば、パーオキサイド、パーエステル、ハイドロパーオキサイド、パーアシッド塩等が用いられる。 またこれら重合開始剤の重合開始安定性を高め るため、レトックス触媒として各種金属塩や選 元剤を併用してもよい。重合開始剤の添加量は モノマー100重量部に対し0.1~5重量部と するのがよい。

本発明で用いる乳化重合を行なうにあたっては、モノマー100重量部に対し水50~1000重量部の範囲とするのがよい。水の使用量が50重量部より少ないときは、重合系は著しく不安定になり目的とする重合体が得られず、一方水の使用量が1000重量部より多いときは、得られる重合体の量が全反応系の量に比較して少ないため、重合体の製法として工業的に不利となる。

次に、本発明で用いる乳化重合を行なうに際してのモノマー添加方法としては、重合系に一括添加する方法、摘下法、重合工程中に順次滴下する方法、数回に分けて分割添加する方法あるいはこれらの組み合わせを用いることができるが乳化重合時の操作性、得られる重合体の組成の均一性の制御等の点から分割添加法、或い

良好であり、その混線性も極めて良好である。

更に、粉体特性がこの範囲にあれば、輸送時のプロッキングも少なく、工業的に有利である。 また、使用時の粉立ちも少なく、作業性がよく、 作業環境にも悪影響を与えない。

本発明の重合体は特に、酸価 4 0 mg KO / g 以上、ガラス転移温度 5 0 で以上の樹脂を得るために好適である。

これらの高酸価、高T&、高分子量のアクリル 系重合体は、従来比較的低いの高酸価でいたの高酸価では、低T&を在いのである。 低分子量のアクリル系樹脂が用いられていた分野で用いることができる。本発明の高酸樹脂を用いることにより、得られる樹脂度、タフルは高酸性等が向上する。 がで発明の高酸性等が向上する。 対域を発明の高酸性等が向上する。 大ば、本発明の高酸樹脂とメラを混練した。 がでする。本発明の高酸樹脂とメラスには が向上する。 がである。 がでる。 がである。 がでな。 がである。 がである。 がでな。 がでしる。 がでな。 がでしる。 がでしる。 がでしる。 がでしる。 がでしる。 がでる。 がでしる。 がでしる。

は滴下法が好ましい。

この重合系中には、本発明の目的を損なわない範囲で、PH調整利重合度調整剤、可塑剤、乳化安定剤等を加えることができる。

上記した如き乳化重合法により得たラテックスは通常公知の塩、酸等の塩折剤を加え塩折され、重合体粉体として取出す。かくの如くして得た粉体は従来得られていたラテックスや溶剤型合体とすることができ、铵粉体は取扱い易いため、その加工性、配合の容易性が得られ各種用途に中広く使用することができる。

本発明の樹脂粉末は、粒子径が500~200mの粉末が80%以上含まれる粒度分布であり、かつ、みかけ常比重は0.3~0.6の範囲にある。このような粉体特性を備えた本発明の粉末集合体は溶剤で溶解したり、アルカリ溶液で中和したりすることが容易であり、粉末状のためを取扱い、輸送が極めて容易である。また重合体粉末を溶液媒体中に分散せしめる際の分散性が

のしかも均一性が高い。更に、エチレン一酢ビ 樹脂を混練しつつ発泡剤とブロックイソシアネ ートを加えてシートとし、ガラスクロス等のク ロス材で裏打ちし、発泡シートを作っても、シ ート強度発泡倍率の点での特性の向上が認めら れる。

このように、本発明によって得られた粉末集 合体は多方面の用途に使用しやすい形態のもの である。

以下に実施例を示す。なお実施例中の部、%はそれぞれ重量部、重量%を示す。

1 ℓ セパラブルフラスコ中に、水300 部、 半硬化牛脂石鹼(KSソープ花王株式会社製) 2.0 部、アルキルアリルスルホコハク酸ソーダ (エレミノールJS三洋化成株式会社製)2.0 部、 過硫酸カリウム1.0 部を加え80℃に加温し、 窒素気流下に、メチルメタアクリレート70部、 ブチルアクリレート10部、メタクリル酸20 部のモノマー混合物を2時間かけてフラスコ中 に滴下した後3時間90℃にて撹拌しつづけた 後冷却した。重合率は99%であった。

得られたラテックスに塩酸3部、塩化アルミニウム2水塩5部を加えて塩折し、脱水、乾燥して白色のアクリル系重合体(A) を得た。

粒度は32m~500m中に80%以上が存在し、常比重は0.35ml/gであった。この粉末重合体を1ヶ月放置したあと、エチルセロソルプ中に溶解したが、分散性良好で溶解も早かった。またGPCによる分子量は3万であり、0.1%Na_xCO_x水溶液中に24時間浸漬しても溶解しなかった。

実施例 2

1 2 セパラブルフラスコ中に、水300部アルキルベンゼンスルホン酸ソーダ(ネオペレックス No.5 花王舞製)3.0部、ロンガリット2.5部を加え60℃に加温し、窒素気流下、メチルメタアクリレート30部、ブチルメタアクリレート20部、ブチルアクリレート30部、アクリル酸10部、スチレン10部、クメンハイド

2.0部の混合物を120分間かけて満下した。その後、180分間60でに保持し乳化し、重合を終了させた。重合転化率は98.5%であった。得られたラテックスに硫酸パンド20%水溶液100部を投入して塩析し、脱水乾燥(C) は 500~50μμの粒径の粒子合有率が80%以上であり、CPCによる分子量は約4万で高密密をよる。39ml/8であり、1ケ月貯蔵后も良好な粉体特性を保持していた。またNazCO2の0.1%水溶液に24時間浸漬しても溶解することはなかった。

宝施例 4

1 & セパラブルフラスコ中に、水200部、オレイン酸ソーダ石鹼20部、ロンガリット 3.0部を入れ、撹拌しつつ70℃にて、窒素気 流下、メチルメタクリレート50部、エチルア クリレート20部、プチルアクリレート20部、 メタアクリル酸10部、ジオクチルスルホコハ ロパーオキサイド2.0 部の混合物を4等分し30分間隔で加えた後120分間70℃にたもち重合反応を終了させた。反応液を冷却後、塩化カルシウム2水塩20部を加えて塩析し、脱水乾燥して白色のアクリル系重合体(B)を得た。重合率は99.5%であった。得られた重合体粉末は粒径500~40㎞の範囲に80%以上にあり満比重0.41㎡/8であり、0.1%NaOH水溶液に24時間浸漬しても溶解しなかった。GPCによる分子量は約3.5万であった。

実施例3

1 ℓ セパラブルフラスコ中に、水300部付加型乳化剤(ラテムル180A花王蝌製)3.0 部、炭酸ソーダ1.0部、ホウ酸0.1部、硫酸第1鉄0.001部、デキストローズ3.0部、BDTA4Na塩0.01部を加え撹拌しつつ60℃に昇温した。窒素ガス気流下、メチルメタクリレート70部、メタクリル酸20部、ブチルメタクリレート10部、チオグリコール酸メチル1.0部、ターシャリーブチルハイドロパーオキサイド

ク酸ソーダ(ベレックスOTP 花王蝌製)2.0 部、クメンハイドロパーオキサイド2.0 部の混合物を130分かけて滴下し、その後270分間同温度に保持した。重合転化率は98%であった。得られたラテックスに硝酸カルシウム4水塩10部を加えて脱水、乾燥して白色の重合体(D)を得た。得られた重合体粉末は500~35 mを存む。得られた重合体粉末は500~35 mを20粒径が80%以上のものであり、分子量は約3.8万であり、常比重は0.41 ml/gであった。また0.1%Na₂CO₂水溶液中に24時間浸漬しても不溶であった。

比較例 1

1 & セパラブルフラスコ中に、エチルセロソルプ200部、イソプロピルアルコール180部、酢酸エチル20部を入れ、80℃に加温し窒素気流下、メチルメタクリレート70部、ブチルアクリレート10部、メタクリル酸20部、アゾピスイソブチロニトリル3.0部の混合物を2時間かけて滴下し、更に5時間80℃にて撹拌した後冷却し、樹脂溶液(0)を得た。重合転

特開平2-242807(6)

化率は98%GPCによる重量平均分子量は5000であった。この溶液を n-ヘキサン4000部中に投入して塊状の重合体を固収したが、回収率は70%であった。また0.1%NaOH水溶液中に24時間放置したところ完全に溶解した。 比較例2

乳化剤を、ポリオキシエチレンノニルフェニルエーテル(ノニオン系)2.0部、ポリオキシエチレンフェニルスルホン酸ナトリウム(レベノールWZ花王朗製)2.0部とする以外は、実施例1と同様にして重合転化率98%のラテックスを得た。

このラテックスを実施例 I と同様に塩酸3 部、塩化アルミニウム2 水塩5 部にて塩析したが、重合体の5 0 %相当量しか回収できなかった。次に、このラテックスを塩酸1 0 部、塩化アルミニウム2 水塩8 0 部で塩析し、重合体の9 5 %相当量の重合体を得、脱水乾燥して、白色の重合体(E) を得た。

粉末粒子は20 皿以下の微粉末が20%以上

含まれており、常比重は 0.25 と低く、粉末の 飛散 (粉立ち) がひどかった。また、重合体 (E) を 220 でギヤオーブン中にて 4 時間知熱した が、黄褐色に変色していた。重合体 (A) を同様 に処理したが、変色せず白色のままであった。

> 特許出願人 三菱レイヨン株式会社 代 理 人 弁理士 田 村 武 敏

【公報種別】特許法第17条の2の規定による補正の掲載 【部門区分】第3部門第3区分

【発行日】平成9年(1997)2月4日

【公開番号】特開平2-242807

【公開日】平成2年(1990)9月27日

[年通号数]公開特許公報2-2429

【出願番号】特願平1-62107

【国際特許分類第6版】

CO8F 220/12 MBU 2/26 6/22 MFR CO8J 3/16 // CO8F 220/06 MLV

[FI]

C08F 220/06

MMB 8619-4J CO8F 220/12 MBU 9362-4J 2/26 6/22 MFR 7442-43 9268-4F CO8J 3/16

手統補正書

MLV 8619-4J

平成8年2月22日

特許庁長官 清川 佑二 股

]. 事件の表示

平成1年特許頻繁82107号

2. 無明の名称

アクリル樹脂の製造方法

3.補正をする者

事件との関係 特許出席人 東京都中央区京観二丁目3番19号 (803) 三菱レイヨン株式会社

取締役社長 田口 栄一

東京都地は此ノ門二丁目8番1号 成ノ門電気ビル 電話 (03) 3503-3504 (代)

(6653) #曜士 田 村 武 報記員

5. 瀬正命令の日付 自発補正

日、補正の対象

明細書の特許請求の範囲の親及び発明の詳細な説明の概

7. 神正の内容

友式(

- (1) 特許職状の発用を関係の通り補正する。
- (2) 明細書第2頁下から2行目の「通常数1万以下」を「通常数万以下」に 神正する。
- 神正する。 (3) 明加書第3頁第8行目~第10行目の「特に……工機的には難しかっ

- (4) 切無者第7以第16行目~第17行目の「アルキルメタアクリレート、 アルキルアクリレート及び」を削除する。
- (5) 明加音第12页第15行目の「 0.3~0.6 」を「 0.3~0.6 g/mlj に
- (8) 明細管第13頁第6行目の「輩節40mgKO/g」を「離価40mz/KOH
- (7) 明細者第15頁第7行首の「mi/ g」を「g/mi」に補正する。
- (B) 明細書第16頁第8行目の「ml/g」を「g/ml」に補正する。
- (8) 明細智第17頁第9行目~第10行目の「嵩密度は0.39ml/さ」を「嵩 比重は0.39g/ml」に第正する。
- (10)明経省第18刊第9行官の「ml/g」を「g/ml」に補正する。
- (11)明確省第20資第1行目の「嵩比重は0.25」を「嵩比重は0.25g/ml」 に補正する。

2. 特許請求の範囲

方柱。

- (a) 炭紫数1~18のアルキル基を有するアルキルメタアクリレート 0.1~99.9歳量部
- (b) 炭素数 1~18のアルキル薬を有するアルキルアクリレート 0~99.8重量器
- (c) α, β-不協和カルボン酸モノマー 0.1~50重量額
- (d) 上記モノマーと共豊合可能なモノマー0〜20重量部とからなるモノマー低合物を、その合計量 100重量部に対し、アニオン系乳化剤 0.1〜10重重部を用いて乳化能合し、更合体ラテックスを得たのち、施行して酸低 1.5 mm/ 20H 以上、ガラス転移温度2.5 で以上でかつ、施量平均分子量が1.万以上の更合体の砂体集合体であり、積粉体集合体中における粉体粒子係5.0 0.2〜2.0 μmのものの含有率が8.0 %以上であり、見かけの高比重が 0.3〜0.6 ェ/町であることを特徴とする粒子伏アクリル制脈の制造

For information purposes only

- (19) Japanese Patent Office (JP)
- (12) Laid Open Patent Application Gazette (A)
- (11) Unexamined Patent Application Laid Open H2-242807
- (51) Int. Cl. ⁵ Recognition Office Handling

Code Number 5 8620-4J C 08 F 220/12 MMB 7107-4J 2/26 MBU 6/22 6779-4J MFR 8115-4F C 08 J 3/16 //C 08 F 220/06 8620-4J MLV 10

(43) Published 27th September 1990

Request for Examination: Not yet requested

Number of Claims: One

25

Number of Pages in the Japanese Text: Six

- 15 (54) Title of the Invention: A method for the production of acrylic resins
 - (21) Application Number: H1-62107
 - (22) Date of Application: 16th March 1989
 - (72) Inventor: Yoshihisa OSAKA
- c/o Mitsubishi Rayon K.K., 1-60 Sunadabashi-4-chome, Higashi-ku, Nagoyashi, Aichi-Ken, Japan
 - (71) Applicant: Mitsubishi- Rayon K.K.

 3-19 Kyobashi-2-chome, Chuo-ku, Tokyoto, Japan
 - (74) Agent: Patent Attorney Taketoshi TAMURA

Specification

Title of the Invention

5

1.0

15

20

25

30

35

A method for the production of acrylic resins Scope of the Patent Claim

A method for the production of particulate acrylic characterized in that a monomer mixture resins, comprising (a) from 0.1 to 99.9 parts by weight of alkyl methacrylate of which the alkyl group has from 1 to 18 carbon atoms, (b) from 0 to 99.8 parts by weight of alkyl acrylate of which the alkyl group has from 1 to 18 carbon atoms, (c) from 0.1 to 50 parts by weight of α, β -unsaturated carboxylic acid monomer and (d) from parts by weight of monomer which 20 copolymerizable with the abovementioned monomers is emulsion-polymerized using from 0.1 to 10 parts by weight of anionic emulsifying agent per 100 parts by weight in total of the monomer mixture and a polymer latex is obtained, and then this is salted out and polymer powder aggregates of acid value at 15 mgKOH/g, glass transition temperature at least 25°C and weight average molecular weight at least 10,000 are obtained, and the proportion of powder particles of diameter from 500 to 20 μm in said powder aggregates is at least 80% and the apparent bulk density is from 0.3 to 0.6 g/ml.

3. Detailed Description of the Invention

Industrial Field of Application

The present invention concerns a method for the production of acrylic polymers which have a high acid value and a high glass transition temperature and which have specified powder characteristics which are useful industrially. Acrylic polymers are such that various types of functional group such as carboxyl groups and hydroxyl groups, amide groups and the like can be introduced comparatively easily and so they are widely used as so-called functional polymers in various fields, and particularly in paints, adhesives, sealing materials, surface treatment agents, resist materials and the like.

Prior Art

The production of high acid value acrylic polymers is carried out using the general methods of polymerization such as solution polymerization, bulk polymerization, suspension polymerization, emulsion polymerization and the like.

10

15

20

25

30

35

The weight average molecular weight of acrylic means of the solution polymers obtained by and bulk polymerization suspension polymerization, polymerization methods is generally less than a few tens of thousands, and the polymers are very sticky and difficult to handle and so they are transported and stored in the form of a solution or they are handled only as viscous materials. On the other hand, the viscosity of a polymerization system in which a polymer of weight average molecular weight greater than a few tens of thousands is being obtained is abnormally high and stirring of the polymerization system may become impossible or phenomena such as gelling οf polymerization system may occur and it is difficult to These problems obtain the intended polymer. especially pronounced when obtaining polymers of which glass transition temperature (referred hereinafter as Tq) is above 25°C and industrially it is difficult to obtain polymers of molecular weight above 10,000.

Furthermore, in order to obtain high acid value acrylic polymers with the methods of polymerization polymerization and emulsion suspension polymerization which is in water used the polymerization medium, it is necessary to use a large amount of water-soluble acid monomer such as acrylic acid or methacrylic acid and a balance between the aqueous layer of polymer which has been formed from the other hydrophobic monomers and the monomer layer is not achieved, polymer particles condense in the polymer and it is difficult to obtain a polymer which has a uniform Moreover, distribution. latex-like composition polymers can be obtained by polymerization after

dispersing the water-soluble monomer uniformly in the polymerization system in a stable manner using an emulsifying agent in order to obtain polymers without difficulties of this type, but it is difficult to recover a polymer in which little of emulsifying agent which has been used remains from the latex and a powder-like polymer which has good characteristics starting with thermal stability cannot be obtained as the final product.

5

10

15

20

25

30

35

Problems to be Resolved by the Invention

As a result of a thorough investigation carried out with a view to discovering a method whereby acrylic resins which have a high Tg, a high acid value and a high molecular weight can be produced without the problems outlined above, the inventor has discovered a method of production whereby powder-like polymers which have good handling properties can be obtained easily with good polymerization stability, and the invention is based upon this discovery.

Means of Resolving These Problems

That is to say, in essence, the present invention is a method for the production of acrylic resin powder aggregates in which a monomer mixture comprising (a) from 0.1 to 99.9 parts by weight of alkyl methacrylate of which the alkyl group has from 1 to 18 carbon atoms, (b) from 0 to 99.8 parts by weight of alkyl acrylate of which the alkyl group has from 1 to 18 carbon atoms, (c) from 0.1 to 50 parts by weight of α,β -unsaturated carboxylic acid monomer and (d) from 0 to 20 parts by weight of monomer which is copolymerizable with the abovementioned monomers is emulsion-polymerized using from 0.1 to 10 parts by weight of anionic emulsifying agent per 100 parts by weight in total of the monomer mixture and a polymer latex is obtained, and then this is salted out and polymer powder aggregates comprising polymer of acid value at least 15 mgKOH/g, transition temperature 25°C or above and weight average molecular weight at least 10,000 are obtained, and the proportion of powder particles of diameter from 500 to 20 μm included in said powder aggregates is at least 80% and the apparent bulk density is from 0.3 to 0.6 g/ml.

The alkyl methacrylates and alkyl acrylates with C_{1-18} alkyl groups which are used when carrying out the present invention are monomers which can generally be obtained commercially where the alkyl group is a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a t-butyl group, a hexyl group, a pentyl group, a 2-ethylhexyl group, a cyclohexyl group, a dodecyl group, a nonyl group, a stearyl group or such like group.

10

15

20

25

30

35

Acrylic acid, methacrylic acid, itaconic acid, maleic acid, phthalic acid and the mono-alkyl esters of itaconic acid, maleic acid and phthalic acid, for example, can be used for the α,β -unsaturated carboxylic acid.

The monomers which are generally used, including aromatic vinyl compounds such as styrene methylstyrene, vinyl esters such as vinyl acetate and vinyl propionate, monomers which have a nitrile group and methacrylonitrile, as acrylonitrile hydroxyalkyl (meth)acrylates, acrylamide, crylamide, the methylolated forms of these amides, the alkoxyalkylated forms of these amides, (meth) acrylate and the like can be cited as examples of the copolymerizable monomers.

It is necessary to use a combination of from 0.1 to 99.9 parts by weight of alkyl methacrylate of which the alkyl group has from 1 to 18 carbon atoms, not more than 99.8 parts by weight of alkyl acrylate of which the alkyl group has from 1 to 18 carbon atoms, from 0.1 to 50 parts by weight of α,β -unsaturated carboxylic acid and not more than 20 parts by weight of other copolymerizable monomers in order to obtain an acrylic polymer of Tg at least 25°C with good efficiency by means of this invention.

In those cases where the amount of α,β -unsaturated carboxylic acid used is less than 0.1 part by weight

only polymers which have an acid value less than 15 mgKOH/g are obtained, and the purpose of the invention is not fulfilled.

if other hand, the amount of the unsaturated carboxylic acid used exceeds 50 parts by weight then the amount of cullet which is formed in the polymerization system where a large amount of monomer is being emulsion-polymerized increases and it is not obtain a polymer which has uniform possible to characteristics.

5

10

15

20

25

30

35

In order to produce an acrylic polymer of Tg at least 25°C, and especially a polymer of Tg at least 50°C, the proportion of the other copolymerizable monomer, alkyl methacrylate and alkyl acrylate must be not more than 20 parts by weight. It tends to be difficult to produce a uniform emulsion polymerization system with a monomer system in which the amount of other copolymerizable monomer which is being used is more than 20 parts by weight and this is undesirable.

A polymer of the present invention has special characteristics in that the acid value is at least and preferably 40 mgKOH/g, and 15 mgKOH/g, permeation molecular weight measured using gel chromatography is at least 10,000. It is thought that acrylic polymers which have such characteristics could be used as adhesives which have excellent adhesion properties and toughness, as novel coating agents and as materials for modifying the characteristics of other it has been difficult to obtain these resins, but materials with the solution polymerization method and the bulk polymerization method with which functional group-containing acrylic polymers have been produced conventionally, and such polymers have been obtained satisfactorily for the first time with the method of The acrylic resins of this the present invention. invention have characteristics which are different from those of the high acid value resins developed in the past in that, even though they have a high acid value, they do not dissolve in aqueous alkali solutions, for example in 0.1% Na_2CO_3 aqueous solution or 0.1% NaOH aqueous solution, even in 24 hours are more.

5

10

15

20

25

30

35

anionic emulsifying agent in invention is the salt of a weak acid and a strong base, such as a fatty acid soap or rosin acid soap, or an amide group-containing carboxylic acid salt, aromaticcontaining carboxylic acid salt, high molecular weight salt, polyoxyethylene polycarboxylic acid phosphate ester salt, alkyl phosphate or the like, and actual examples include alkylbenzenesulphonates, alkyl metharylsulphonates, alkyl sulphuric acid ester salts, alkylarylsulphosuccinates, alkylsulphosuccinates, alkyldiphenyl ether disulphonates, polyoxyethylenealkyl salts alkylaryl sulphuric acid ester naphthalenesulphonic acid/formalin condensates, and one of these emulsifying agents can be used alone or two or more types can be used conjointly.

By using these emulsifying agents it is possible to realize the conflicting aims of good polymerization stability in the process in which a polymer of this invention is being obtained and recovering the polymer from the polymerization system easily as a powder. The carboxylic acid salts typified by the fatty acid soaps and the alkylsulphosuccinates are preferred.

In use these emulsifying agents can be used in a form where they have been pre-dissolved in the aqueous phase which forms the polymerization medium or they may be added to the monomer system. The amount of the said emulsifying agent used is best within the range from 0.1 to 10 parts by weight per 100 parts by weight of stabilizing the emulsion polymerization monomer for powder-like polymer system and obtaining the If the amount used is less than 0.1 part efficiently. by weight then it is difficult to achieve stability in the polymerization system and it is difficult to obtain the intended polymer powder aggregates. On the other hand, in systems where more than 10 parts by weight are being used the polymerization system is stabilized but undesirable effects arise in that the amount

salting-out agent which is used when recovering the polymer from the reaction mixture is much increased and the salting-out agent remains in the recovered polymer and this has an adverse effect on the characteristics of the final product.

5

10

15

20

25

30

35

generally known polymerization initiators, such as peroxides, per-esters, hydroperoxides and perexample, can be used for polymerization initiator when obtaining a polymer of Various types of metal salt this invention. reducing agent can also be used conjointly as redox catalysts for raising the polymerization initiation stability of these polymerization initiators. amount of polymerization initiator added is best at from 0.1 to 5 parts by weight per 100 parts by weight of monomer.

When carrying out emulsion polymerization in accordance with the present invention it is best that the amount of water should be in the range from 50 to 1,000 parts by weight per 100 parts by weight of monomer. If the amount of water used is less than 50 parts by weight then the polymerization system becomes remarkably unstable and the intended polymer is not obtained while if, on the other hand, the amount of water used exceeds 1,000 parts by weight then the amount of polymer obtained is comparatively small when compared with the size of the polymerization system overall and so this is industrially inconvenient as a method for the production of a polymer.

Next, methods where the monomer is added to the polymerization system in one shot, drip-feed methods, methods in which the monomer is gradually drip-fed during the polymerization process, methods in which the monomer is divided up and an addition is made on a number of occasions or a combination of such methods can be used for adding the monomer when carrying out emulsion polymerization using the present invention, but the method involving divided addition or the drip-feed method is preferred from the viewpoints of the

operability during emulsion polymerization and controlling the uniformity of the composition of the polymer which is obtained.

Within ranges such that the purpose of the invention is not lost, pH control agents, degree of polymerization control agents, plasticizers, emulsification stabilizers and the like can be added to the polymerization system.

10

15

20

25

30

35

The latex which has been obtained with an emulsion polymerization method as outlined above is salted out by adding a generally known salting-out agent such as a salt or acid for example and recovered as a polymer powder. The powder obtained in this way may be a high polymer of molecular weight more than 10,000 of the type which could not be obtained with a latex obtained in the conventional manner or a solvent-type resin solution, and since the said powder is easily handled it has good processability and it can be compounded easily and it can be widely used in various applications.

A resin powder of this invention has a particle distribution such that 80% or more of the particles are of particle size from 500 to 20 µm and the apparent bulk density is within the range from 0.3 to 0.6. Powder aggregates of this invention where the powder has such characteristics may be dissolved in solvents and neutralized with alkali solutions easily, and since they are powders they can be handled and transported very easily. Furthermore, when the polymer powder is to be dispersed in a solution medium, the dispersion properties are good and the milling properties are also very good.

Moreover, provided that the powder characteristics are within this range, there is little blocking during transportation and this is convenient industrially. Furthermore, the particles at the time of use are small, the operability is good and there is no adverse effect on the operating environment.

The polymers of this invention are ideal for obtaining resins of acid value 40 mgKOH/g or above and glass transition temperatures above 50°C.

These high acid value, high Tg, high molecular weight acrylic polymers can be used in fields where low 5 weight acrylic resins which molecular comparatively low acid values and Tg values have been used in the past. The strength, toughness and heat resistance of the resin products obtained are improved by using a high acid value acrylic resin of this 10 invention. For example, when melamine and a tackifier are milled with a high acid value resin of this invention and coated onto a film to produce a sticky film, the strength of adhesion is greatly improved. Furthermore, when a foaming agent and melamine or the 15 like are milled with a vinyl chloride/acetate resin and extruded and foamed, the uniformity remains high even though the foaming rate has been increased by a factor five or more. Moreover, when milled with ethylene-vinyl acetate resin, blocked isocyanate 20 added as a foaming agent and a sheet is formed and this is backed with a cloth material such as glass cloth for example and a foamed sheet is produced, an improvement characteristics such as the sheet strength and foaming rate are observed. 25

In this way the powder aggregates obtained by means of the present invention have a form which can be used easily in many applications.

Illustrative examples of the invention are outlined below. In these illustrative examples the terms "parts" and "%" signify "parts by weight" and "wt%" respectively.

Example 1

30

35

Water (300 parts), 2.0 parts of semi-hardened beef-tallow soap (KS soap, produced by the Kao Co.), 2.0 parts of sodium alkylarylsulphosuccinate (Ereminol JS, produced by the Sanyo Kasei Co.) and 1.0 part of potassium persulphate were introduced into a separable flask of capacity 1 litre and heated to 80°C and then a

monomer mixture of 70 parts methyl methacrylate, 10 parts butyl acrylate and 20 parts methacrylic acid was added dropwise into the flask under a current of nitrogen over a period of 2 hours and then the mixture was stirred for 3 hours at 90°C and finally cooled. The polymerization rate was 99%.

Hydrochloric acid (3 parts) and 5 parts of aluminium chloride di-hydrate were added to the latex and the latex was salted out, the water was removed and the material was dried and the white acrylic polymer (A) was obtained.

The particle size was such that more than 80% of the particles were within the range from 32 μm to 500 μm and the bulk density was 0.35 ml/g. This powder polymer was left to stand for 1 month and dissolved in ethylcellosolve and the dispersibility was good and it dissolved rapidly. Furthermore, the molecular weight according to GPC was 30,000 and it did not dissolve even on being immersed for 24 hours in 0.1% Na_2CO_3 aqueous solution.

Example 2

10

15

20

25

30

35

parts), 3.0 parts of (300 alkylarylsulphosuccinate (Neoplex No.5, produced by the Kao Co.) and 2.5 parts of rongalite were introduced into a separable flask of capacity 1 litre and heated 60°C and then a mixture of 30 parts methacrylate, 20 parts butyl methacrylate, 30 parts butyl acrylate, 10 parts acrylic acid, 10 parts styrene and 2.0 parts cumene hydroperoxide was divided into four equal parts which were added under a current of nitrogen at 30 minute intervals and then the mixture maintained at 70°C for 120 minutes and polymerization reaction was completed. After cooling the reaction liquid, 20 parts of calcium chloride dihydrate were added and the latex was salted out, the water was removed and the material was dried and the white acrylic polymer (B) was obtained. The degree of polymerization was 99.5%. The particle size of the polymer powder obtained was such that more than 80% of the particles were within the range from 500 μm to 40 μm and the bulk density was 0.41 ml/g, and it did not dissolve even on being immersed for 24 hours in 0.1% Na_2CO_3 aqueous solution. The molecular weight according to GPC was about 35,000.

Example 3

10

15

20

25

30

35

Water (300 parts), 3.0 parts of an addition type emulsifying agent (Latemul 180A No.5, produced by the Kao Co.), 1.0 part of sodium carbonate, 0.1 part of boric acid, 0.001 part of ferric sulphate, 3.0 parts of dextrose and 0.01 part of EDTA tetra-Na salt were introduced into a separable flask of capacity 1 litre A mixture of 70 parts methyl and heated to 60°C. methacrylate, 20 parts methacrylic acid, 10 parts butyl methacrylate, 1.0 part methyl thioglycolate and 2.0 parts tert-butyl hydroperoxide was added dropwise under a current of nitrogen over a period of 120 minutes. Subsequently the mixture was maintained at 60°C for 180 minutes and emulsified and the polymerization The polymer conversion was reaction was completed. A 20% aluminium sulphate aqueous solution (100 parts) was added and the latex obtained and the latex was salted out, the water was removed and the (C) material was dried and the white polymer obtained. The particle size of the polymer (C) powder obtained was such that more than 80% of the particles were within the range from 500 µm to 50 µm and the molecular weight according to GPC was about 40,000. The bulk density of the acrylic polymer powder obtained was 0.39 ml/q and even after being stored for 1 month it retained good powder characteristics. Furthermore, it did not dissolve even on being immersed for 24 hours in 0.1% Na₂CO₃ aqueous solution.

Example 4

Water (200 parts), 2.0 parts of sodium oleate soap and 3.0 parts of rongalite were introduced into a separable flask of capacity 1 litre and heated to 70°C and then a mixture of 50 parts methyl methacrylate, 20 parts ethyl acrylate, 20 parts

methacrylic acid, 2.0 parts sodium dioctylsulphosuccinate (Pelex OTP, produced by the Kao Co.) and 2.0 parts of cumene hydroperoxide was added dropwise of nitrogen over a period under a current 130 minutes and then the mixture was maintained at the minutes. temperature for 270 The polymer same Calcium nitrate tetra-hydrate conversion was 98%. (10 parts) was added to the latex obtained, the water was removed and the material was dried and the white polymer (D) was obtained. The polymer powder obtained was such that the particle size was such that more than 80% of the particles were within the range from 500 μm to 35 μ m, the molecular weight was about 38,000 and the Furthermore, bulk density was 0.41 ml/g. it insoluble even on being immersed for 24 hours in 0.1% Na₂CO₃ aqueous solution.

Comparative Example 1

10

15

20

25

30

35

Ethylcellosolve (200 parts), 180 parts isopropyl alcohol and 20 parts of ethyl acetate were introduced into a separable flask of capacity 1 litre and heated to 80°C and a mixture of 70 parts methyl butyl acrylate, methacrylate, 10 parts methacrylic acid and 3.0 parts azobisisobutyronitrile was added dropwise into under a current of nitrogen over a period of 2 hours and then the mixture was stirred 5 hours at 80°C and then cooled and the resin solution (D) was obtained. The polymer conversion was 98% and the weight average molecular weight according to GPC was 5,000. The solution was introduced into 4,000 parts of n-hexane and the bulk polymer was recovered but the recovery was 70%. Furthermore, on being left to stand for 24 hours in 0.1% NaOH aqueous solution it dissolved completely.

Comparative Example 2

A latex was obtained with a 98% polymer conversion in the same way as in Example 1 except that 2.0 parts of polyoxyethylene nonylphenyl ether (non-ionic system) and sodium polyoxyethylenephenylsulphonate (Levenol WZ,

produced by the Kao Co.) were used for the emulsifying agent.

This latex was salted out with 3 parts of hydrochloric acid and 5 parts of aluminium chloride dihydrate in the same way as in Example 1 but only about 50% of the polymer could be recovered. Then, the latex was salted out with 10 parts of hydrochloric acid and 80 parts of aluminium chloride di-hydrate and 95% of the polymer was obtained and this was de-watered and dried and the white polymer (E) was obtained.

The polymer particles were such that the polymer powder included more than 20% with a particle size below 20 µm, the bulk density was low at 0.25 and the powder was liable to scattering (giving rise to dust Furthermore, the polymer (E) was heated to clouds). 220°C for 4 hours in a Gear oven and it changed to a (A) yellow colour. When the polymer was light there subjected the same treatment to was no discolouration and the product remained white.

20

10

15

Applicant: Mitsubishi Rayon K.K.

Agent: Patent Attorney Taketoshi TAMURA