Seminarieuppgift 2 - Diofantiska Ekvationer

Emma Bastås

September 19, 2022

Uppgiften är att finna samtliga positiva lösningar till följande diofantiska ekvation:

$$29x + 43y = 4000. (*)$$

Referenser

Denna text använder sig av satser från som finnes i Algebra I, tionde tryckningen av Bøgvad, Xantcha och Granath.

Kompendiet finns som PDF på: kurser.math.su.se/pluginfile.php/143626/mod_resource/content/12/Algebra-i-tionde-tryckningen.pdf

Heltalslösningar

Enligt lemma 5.13 är SGD(29,43) | 4000 ett nödvändigt villkor för att ekv (\star) ska ha lösningar. Därför testar vi om detta villkor är uppfylt. Euklides algoritm (sats 5.10) används för att beräkna SGD(29,43) och alla steg i algoritmen skrivs ut då detta kommer visa sig vara av användning alldeles strax.

$$43 = 1 \cdot 29 + 14 \tag{1}$$

$$29 = 2 \cdot 14 + 1.$$
 (2)

Av detta följer att SGD(29,43)=1 vilket delar 4000 och vi
 kan således fortsätta sökandet efter lösningar.

Nu betraktar vi en ekvation som liknar ekv (\star) men med högerled 1 istället för 4000:

$$29x + 43y = 1. (H)$$

För att finna en partikulärlösning till denna ekvation så använder vi ekvationerna från tidigare beräkning av SGD(29,43) med Euklides algoritm, fast omskrivet så att resterna står ensamma i vänsterledet.

$$(1) \iff 14 = 43 - 29 \tag{1*}$$

$$(2) \iff 1 = 29 - 2 \cdot 14. \tag{2*}$$

Vi sätter in ekv (1^*) i ekv (2^*) och får:

$$1 = 29 - 2 \cdot (43 - 29),$$

vilket förenklas till:

$$29 \cdot 3 + 43 \cdot (-2) = 1. \tag{3}$$

Nu ser vi att x=3 och y=(-2) är en lösning till ekv (H). Vi multiplicerar båda led med 4000:

(3)
$$\iff$$
 $4000(29 \cdot 3 + 43 \cdot (-2)) = 4000$
 \iff $29 \cdot 12000 + 43 \cdot (-8000) = 4000$

och har en lösning till (\star); x = 12000 och y = -8000.

Sats 5.14 säger att vi givet vår diofantiska ekvationen där SGD(29, 43) = 1 och med en partikulärlösning får den allmäna lösningen:

$$\begin{cases} x = 12000 - 43n \\ y = -8000 + 29n \end{cases}$$

där n är ett godtyckligt heltal.

Positiva heltalslösningar

Att finna den allmäna lösningen till ekv (\star) var dock inte uppgiften, vi ska finna samtliga positiva lösningar, alltså de lösningar där x > 0 och y > 0.

Om vi löser dessa två olikheter för n så får vi:

För x > 0:

$$0 < 12000 - 43n$$

$$\iff 43n < 43 \cdot 279 + 3$$

$$\iff n < 279 + 3/43.$$
(XN)

För y > 0:

$$0 < (-8000) + 29n$$

$$\iff 29n > 29 \cdot 275 + 25$$

$$\iff n > 275 + 25/29.$$
(YN)

Vi är dock bara intresserade heltal n, så olikheterna (XN) och (YN) skriver vi om och kombinerar till:

$$276 \le n \le 279. \tag{N}$$

Nu är alltså påståendet att alla lösningar ska vara positiva ekvivalent med påstående (N).

Eftersom detta endast ger oss fyra värden på n-267, 277, 278 och 279 – som upfyller olikheten så kan vi utan störra besvär beräkna motsvarande x och y värden som löser ekvationen. Vi finner då att alla positiva heltalslösningar till ekv (\star) är:

x = 132	x = 89
y = 4	y = 33
x = 46	x = 3
y = 62	y = 91