PROJECT ON SCIENTIFIC CALACULATOR BY USING C PROGRAMMING

DESCRIPTION:

- Caluculator is a machine which performs basic operations like addition, subtraction, multiplication, division etc.
- It is used to do mathematical operations.
- They are two types of caluculators:
 - i. Pocket Caluculator
 - ii. Scientific Caluculator

Pocket Caluculator:

It is a small caluculator in which we can perform only basic arthmetic operations like addition, subtraction, multiplication, division. It is small in size. Most of the pocket caluculators are solar based.

Scientific Caluculator:

It can do more operations than pocket caluculator like trignometric functions, square and cube of a numbers, factorials etc. We can use bigger numbers in this caluculator.

REQUIREMENTS:

High level requirements:

- We need two operands to perform operation.
- We need specific operation to perform between operands.
- We need another variable to store that result.

Low level requirements:

- First we have to know the what are the operartions there in scentific caluculator.
- We have to understand the logic to implement them in c programming language.
- We have to understand the mathematical operations.

5W AND 1H:

WHAT--

- Scientific Caluculator.
- It is a electronic machine.
- It performs specific operation given to it.

WHY--

- It saves time while doing mathematical operations.
- It helps in solving the complex problems easily.

WHEN--

- It used in maths exams.
- It used in tally accounts.

WHERE--

• It can be used in general stores, super markets, schools, colleges etc

WHO--

• This caluculators are used by students, shopkeepers to do caluculations.

HOW--

- By using c programming.
- Using softwares like visual studiocode, github etc
- It takes input from users and perform operations.

SWOT ANALYSIS:

STRENGTH

• Easy to use.

- Faster caluculations.
- Helps students and shopkeepers in mathematical operations.

WEAKNESS

- Solar based.
- No light facility.

OPPURTUNITIES

- Too many General stores, Medical shops, resturants, Hotels, Schools etc.
- Large number of students and shopkeepers.

THREAT

• More advanced mobile phones are used instead of caluculators

FLOWCHART:

CODING:

```
#include<stdio.h>
#include<conio.h>
#include<math.h>
int main()
{ int operation, j, x, y;
  float p, q, answer;
  printf("*****WELCOME TO SCIENTIFIC CALCULATOR*****");
  printf("\nSelect your operation from 1 to 18 given below:\n");
  printf("1. Addition\n2. Subtraction\n3. Multiplication\n4. Division\n");
  printf("5. Modulus\n6. Sin(P)\n7. Cos(P)\n8. Tan(P)\n");
  printf("9. Cosec(P)\n10. Cot(P)\n11. Sec(P)\n12. Square root\n");
```

```
printf("13. Cuberoot\n14. Power\n15. Squares of a numbers\n16. Cubes of a numbers\n");
printf("17. log10(P)\n18. Factorial\n ");
printf("Enter the operation number you want to perform:\n");
scanf("%d",&operation);
switch(operation){
       case 1:
        printf("Enter the value of P:");
        scanf("%f",&p);
        printf("Enter the value of Q:");
        scanf("%f",&q);
        answer = p+q;
        printf("\nAnswer:%.2f", answer);
       break;
        case 2:
        printf("Enter the value of P:");
       scanf("%f",&p);
        printf("Enter the value of Q:");
        scanf("%f",&q);
        answer = p-q;
        printf("\nAnswer:%.2f", answer);
        break;
        case 3:
        printf("Enter the value of P:");
       scanf("%f",&p);
        printf("Enter the value of Q:");
       scanf("%f",&q);
        answer = p*q;
        printf("\nAnswer:%.2f", answer);
        break;
        case 4:
        printf("Enter the value of P:");
        scanf("%f",&p);
        printf("Enter the value of Q:");
```

```
scanf("%f",&q);
answer= p/q;
printf("\nAnswer:%.2f", answer);
break;
case 5:
printf("Enter the value of X:");
scanf("%d",&x);
printf("Enter the value of Q:");
scanf("%d",&y);
answer = x%y;
printf("\nAnswer:%.2f", answer);
break;
case 6:
printf("Enter the value of P:");
scanf("%f",&p);
answer = sin(p*3.14159/180);
printf("\nAnswer:\%.2f", answer);\\
break;
case 7:
printf("Enter the value of P:");
scanf("%f",&p);
answer = cos(p*3.14159/180);
printf("\nAnswer:%.2f", answer);
break;
case 8:
printf("Enter the value of P:");
scanf("%f",&p);
if (p==90||p==270){
        printf("Answer is undefined");
}
else{
        answer = tan(p*3.14159/180);
printf("\nAnswer:%.2f", answer);}
```

```
break;
case 9:
printf("Enter the value of P:");
scanf("%f",&p);
if (p==0||p==180||p==360){
        printf("Answer is undefined");
}
else{
answer = 1/sin(p*3.14159/180);
printf("\nAnswer:%.2f", answer);}
break;
case 10:
printf("Enter the value of P:");
scanf("%f",&p);
if (p==0||p==180||p==360){
        printf("Answer is undefined");
}
else{
answer = 1/\tan(p*3.14159/180);
printf("\nAnswer:%.2f", answer);}
break;
case 11:
printf("Enter the value of P:");
scanf("%f",&p);
if (p==90||p==270){
        printf("Answer is undefined");
}
else{
answer = 1/\cos(p*3.14159/180);
printf("\nAnswer:%.2f", answer);}
break;
case 12:
printf("Enter the value of P:");
```

```
scanf("%f",&p);
answer = sqrt(p);
printf("\nAnswer:%.2f", answer);
break;
case 13:
printf("Enter the value of X:");
scanf("%d",&x);
answer = cbrt(x);
printf("\nAnswer:%.2f", answer);
break;
case 14:
printf("Enter the value of P:");
scanf("%f",&p);
printf("Enter the value of Q:");
scanf("%f",&q);
answer = pow(p,q);
printf("\nAnswer:%.2f", answer);
break;
case 15:
printf("Enter the value of P:");
scanf("%f",&p);
answer = pow(p,2);
printf("\nAnswer:%.2f", answer);
break;
case 16:
printf("Enter the value of P:");
scanf("%f",&p);
answer = pow(p,3);
printf("\nAnswer:%.2f", answer);
break;
case 17:
printf("Enter the value of P:");
scanf("%f",&p);
```

```
answer = log10(p);
printf("\nAnswer:%.2f", answer);
break;
case 18:
printf("Enter the number you want to find the factorial of X:");
scanf("%d",&x);
if (x<0)
{ printf("\n Please enter the positive number to find the factorial");
}
else{
int i, fact=1;
for(i=1;i<=x;i++){}
 fact= fact*i;
 }
printf("\n");
 printf("factorial of number is:%d\n", fact);}
break;
default:
printf("\nInvalid operation");
}
}
```

OUTPUT:

FOR ADDITION:

FOR SUBTRACTION:

FOR MULTIPLICATION:

FOR DIVISION:

FOR MODULUS:

