- RNN ▼ Import stuff import numpy as np from scipy.special import softmax from math import tanh, sin, pi import matplotlib.pyplot as plt ▼ Create sin() dataset

rnn_from_scratch.ipynb - Colaboratory

0.75

0.50

0.25

0.00

-0.25

-0.50

01/10/2022 10:10 PM

#PARAMETERS: $data_0 = 0$ $data_m = 10 * pi$ data_points = 1000 def f_sin(x): return sin(x/20) $x_{sin} = np.empty(0)$ $y_{sin} = np_{empty}(0)$ for i in range(data_points): point = i #* (data_m - data_0)/data_points $x_{sin} = np.append(x_{sin}, point)$ y_sin = np.append(y_sin, f_sin(point)) plt.plot(x_sin, y_sin,'.') plt.plot(x_sin, y_sin) [<matplotlib.lines.Line2D at 0x11e2c3730>] 1.00

-0.75-1.00200 400 600 800 1000 ▼ Cell structure b_y W_{aa} $a^{< t-1>}$ W_{ax} b_a $x^{< t>}$ g_1 is tanh() function g_2 is f(x) = x function

Comparing to the DL book, the adopted notation corresponds as follows: (image | this code | book) $W_{aa} = W_{hh} = W$ (hidden-hidden) $W_{ax} = W_{ih} = U$ (input-hidden) $W_{ya} = W_{ho} = V$ (hidden-output) class RNN: def __init__(self, io_dim=1, h_dim=10, cells=10): self.io_dim = io_dim $self_h_dim = h_dim$ self.cells = cells self.Wih = np.random.uniform(0, 0.99, (h_dim, io_dim)) self.Who = np.random.uniform(0, 0.99, (io_dim, h_dim)) self.Whh = np.random.uniform(0, 0.99, (h_dim, h_dim)) def forward(self, X): h = np.zeros((self.cells + 1, self.h_dim, self.io_dim)) #Last h is h0 if self.h_dim == 1: h = h.reshape(self.cells) y = np.zeros((self.cells, self.io_dim)) if self.io_dim == 1: y = y.reshape(self.cells) for cell in range(1,self.cells+1): #h0 is zeros h[cell] = np.tanh(self.Whh.dot(h[cell-1]) + self.Wih.dot(X[cell-1])) y[cell-1] = self.Who.dot(h[cell]) return h, y def backward(self, X_train, Y_train, truncation_val=10): #dLdWho = np.zeros(self.Who.shape) #dLdWih = np.empty(self.Wih.shape) #dLdWhh = np.empty(self.Whh.shape) $T = len(X_train)$ h, y = self.forward(X_train) # Who (V) $dLdWho_T = np.dot((y[-1] - Y_train),h[-1])$ # Whh (W) $dLdyhat_T = np.dot((y[-1] - Y_train), h[-1])$ dyhatdh_T = 1 * self.Who #chain rule: summ = np.zeros(self.Whh.shape) for i in range(1,T+1): mul = np.ones(self.Whh.shape) for j in range(i,T-1): $mul = mul * (1 - (np.tanh(self.Whh.dot(h[j]) + self.Wih.dot(X_train[j+1])))**2)*self.Whh.dot(h[j]) + self.Wih.dot(h[j]) + se$ summ = summ + mul

dLdWhh_T = dyhatdh_T * dLdyhat_T * summ # Wih (U) #chain rule: summ = np.zeros(self.Wih.shape) for i in range(1,T+1): mul = np.ones(self.Wih.shape) for j in range(i,T-1): $mul = mul * (1 - (np.tanh(self.Whh.dot(h[j]) + self.Wih.dot(X_train[j+1])))**2)*self.Wih.dot(h[j]) + self.Wih.dot(X_train[j+1])))**2)*self.Wih.dot(h[j]) + self.Wih.dot(X_train[j+1])))**2)*self.Wih.dot(h[j]) + self.Wih.dot(X_train[j+1])))**2)*self.Wih.dot(h[j]) + self.Wih.dot(X_train[j+1])))**2)*self.Wih.dot(h[j]) + self.Wih.dot(X_train[j+1])))**2)*self.Wih.dot(h[j]) + self.Wih.dot(h[j]) + self.Wih.dot(h[j]))**2)*self.Wih.dot(h[j]) + self.Wih.dot(h[j]))**2)*self.Wih.dot(h[j]) + self.Wih.dot(h[j]) + self.Wih.dot(h[j]))**2)*self.Wih.dot(h[j]) + self.Wih.dot(h[j]) + self.$ summ = summ + muldLdWih = dLdyhat_T.T * dyhatdh_T * summ.T max_clip_value = 1 min_clip_value = -max_clip_value return dLdWhh_T, dLdWih, dLdWho_T ▼ Network structure This experimental network has 4 cells, organized as pictured: The architecture is many-to-one, the cells colored in teal only output the hidden state (h_t) , and the pink cell outputs (y), wich, in this example, corresponds to time t = 4cells = 4vectors_size = 50 sinRNN = RNN(1, vectors_size, cells)

#Training set x_train = np.zeros((int(data_points/4), cells)) y_train = np.zeros((int(data_points/4))) for i in range(3, int(data_points/4)): $x_{train}[i-3] = [y_{sin}[int(i-3)], y_{sin}[int(i-2)], y_{sin}[int(i-1)], y_{sin}[int(i)]]$ $y_{train}[i-3] = y_{sin}[i+1]$ #Sample for visualization

▼ Sets ▼ Training for i in range(1,int(data_points/20)): i = i * 5plt.plot(range(i,4+i), x_train[i], '.', color='blue') plt.plot(i+4, y_train[i],'o',color='red') plt.title('Train set') Text(0.5, 1.0, 'Train set') Train set 1.00 0.75 0.50

0.25 0.00 -0.25-0.50-0.75-1.0050 100 150 200 250 ▼ Validation #Validation set x_vali = np.zeros((int(data_points/4), cells))

 $x_{i} = [y_{sin}[int(i-3 + offset)], y_{sin}[int(i-2 + offset)], y_{sin}[int(i-1 + offset)], y_{sin}[int(i-3 + offset)]$

y_vali = np.zeros((int(data_points/4)))

for i in range(3, int(data_points/4)):

for i in range(1,int(data_points/20)):

Text(0.5, 1.0, 'Validation set')

 $y_vali[i-3] = y_sin[i + 1 + offset]$

plt.plot(i+4, y_vali[i],'o',color='red')

50

_, y = sinRNN.forward(x_train[val])

100

print(f'Training x: ${x_{rain[val]}}\t'; {y_{train[val]}}\t'y: {y[-1]}\n'$)

150

dWhh, dWih, dWho = sinRNN.backward(x_train[data], y_train[data])

200

250

plt.plot(range(i,4+i), x_vali[i], '.', color='blue')

Validation set

offset = 3*int(data_points/8)

#Sample for visualization

plt.title('Validation set')

i = i * 5

1.00

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

-1.00

def prev(val):

▼ Training

Losses

▼ BPTT

epochs = 500

70

60 -

50

40 ·

30

20 -

10 -

#Visualizing predictions

#Visualizing predictions

i = i * 5

i = i * 5

1.00

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

-1.00

1.00

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

-1.00

print(pato)

___(o)>

\ <_.)

plt.show()

learning_rate = 0.00005

for epoch in range(epochs):

return y[-1]

def get_loss(rnn:RNN, X, Y):

for i in range(len(Y)):

 $y_pred = y[-1]$

return loss/(2*len(Y))

print(f"Train loss: {train_loss}")

 $_{-}$, y = rnn.forward(X[i])

loss += $(Y[i] - y_pred) **2$

vali_loss = get_loss(sinRNN, x_vali, y_vali)

print(f"Validation loss: {vali_loss}")

Train loss: 260.99364730759453 Validation loss: 261.0355373880967

train_loss = get_loss(sinRNN, x_train, y_train)

for data in range(len(y_train)):

update

break

print(f'Final train loss: {train_loss}') print(f'Final validation loss: {vali_loss}')

Final train loss: 0.005210836495980754

100

plt.plot(i+4, y_vali[i],'o',color='green')

plt.title('Predictions (validation set) (in red)')

plt.plot(i+4, y_train[i],'o',color='green')

50

50

https://colab.research.google.com/drive/1S0DONiVpa5lgMk3YX6nl49yqAwRPeYrr#scrollTo=rj8R7iVrPEKg

100

100

Text(0.5, 1.0, 'Predictions (train set) (in red)')

150

150

Predictions (train set) (in red)

200

200

250

250

Produtos pagos do Colab - Cancelar contratos

×

Página 1 de 1

for i in range(1,int(data_points/20)):

_, y = sinRNN.forward(x_vali[i])

for i in range(1,int(data_points/20)):

_, $y = sinRNN.forward(x_train[i])$ plt.plot(i+4, y[-1],'o',color='red') plt.title('Predictions (train set) (in red)')

plt.plot(i+4, y[-1],'o',color='red')

200

300

Predictions (validation set) (in red)

400

500

Final validation loss: 0.005419061353456168

#print(dWhh, dWih, dWho)

sinRNN.Wih -= learning_rate * dWih.T sinRNN.Who -= learning_rate * dWho.T sinRNN.Whh -= learning_rate * dWhh.T

if vali_loss < get_loss(sinRNN, x_vali, y_vali):</pre>

train_loss = get_loss(sinRNN, x_train, y_train) vali_loss = get_loss(sinRNN, x_vali, y_vali)

plt.plot(epoch, train_loss, '.', color='blue') plt.plot(epoch, vali_loss, '.', color='orange')

loss = 0