Summary

1.

Product Rule

Given $f(x) \cdot g(x)$, the derivative is $f'(x) \cdot g(x) + f(x) \cdot g'(x)$.

Example 1. Find the derivative of each.

- (a) $3x^3(x^4+2)$
- (b) $(2x^2+4x+5)(5x-4)$
- (c) $\sqrt{x} (3x^3 4x^2 + 8x)$

Example 2. Extensive market research has determined that for the next 5 years the price of a certain mountain bike is predicted to vary according to $p(t) = 300 - 30x + 7.5t^2$, where t is time in years and p(t) is the price in dollars.

The number of mountain bikes sold each year is expected to follow $q(t) = 3000 + 90t - 15t^2$, where q(t) is the number sold and t is time in years.

- (a) Determine R(t) and R'(t)
- (b) Compute and interpret R'(1)
- (c) Compute and interpret R'(4)

Quotient Rule

Given $\frac{f(x)}{g(x)}$, the derivative is $\frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{(g(x))^2}$, where $g(x) \neq 0$.

Example 3. Find $\frac{dy}{dx}$ for each.

(a)
$$y = \frac{x+3}{x-2}$$

(b)
$$y = \frac{x^4 - 3x}{x^2 + 1}$$

(c)
$$y = \frac{5\sqrt{x} - 6}{x + 1}$$

Example 4. Researchers have determined through experimentation that the percent concentration of a certain medication can be approximated by

$$p(t) = \frac{200t}{2t+5} - 4 \quad [0.25, 20]$$

where t is the time in hours after administering the medication and p(t) is the percent concentration.

- (a) Evaluate and interpret p'(1)
- (b) Evaluate and interpret p'(6)