Algorithm for clustering using customer pair wise fit function

Step 1: Input the number of customer to consider (i=1,2...N)

Step 2: Input the number of dimensions to consider (j=1,2,...M)

Step 3: Input tolerance value t_i for each dimension j

Step 4: Input measurement of each customer for each dimension

Step 5: Input number of clusters (C)to consider $\alpha = 1,2...C$

Step 6: Form the customer pair-wise matrix using ω_{ikj} as a binary state of fit between ideal customer 'i' and 'k' for dimension 'j'

$$\omega_{ikj} = \begin{cases} 1, if \left| x_{ij} - x_{kj} \right| \le t_j \\ 0, \quad Otherwise \end{cases}$$
 (1.0)

Where x_{ij} and x_{kj} are measurements of customers i and k for dimension j

Step 7: Let B_{ik} be expressed as its binary vector such that:

$$B_{ik} = \begin{bmatrix} \omega_{ik1} \\ \omega_{ik2} \\ \omega_{ik3} \\ \vdots \\ \vdots \\ \omega_{ikm} \end{bmatrix}$$
 (2.0)

The scalar expression of fit between any pair of customers 'i' and 'k' may be defined as

$$r_{ik} = \left[\frac{(B_{ik}^T)B_{ik}}{(B_{ii}^T)B_{ii}} \right] \tag{3.0}$$

 B_{ik}^{T} : is the transpose of B_{ik} and B_{ii} is theoretically the identity of a customer compared to himself.

Step 8: Determine relation index of $i: R_i = \sum_{k=1}^{N} r_{ik}$ for $i \neq k$ (4.0)

Step 9: Procedure for clustering: This solution procedure iterates on a set of customers denoted as set S. S. is initially set as a sorted list of customers in descending order of R_i . In the process of iteration, a customer is considered ideal if it has the maximum R_i in set S and not in any of the existing cluster α .

- (a) Update set S and set $\alpha = \alpha + 1$
- (b) Set customer i with maximum relation index R_i as ideal customer for cluster α . For two or more possible customers with equal maximum R_i , randomly select one.
- (c) For $i \neq k$, find maximum value of r_{ik} (say $r_{ik} = 1$), assign all customer k with max (r_{ik}) into cluster α

Compute percentage degree of fit for cluster α : $h_{\alpha} = \frac{\sum_{k=1}^{n_{\alpha}} 100 r_{ik}}{n_{\alpha}}$ while n_{α} is the number of customers assigned to cluster α

(d) Compute aggregate loss index of fit for cluster $\alpha + 1$: $Aggregate\ loss\ index = \sqrt{\frac{(\sum_{k=1}^{n_{\alpha}}\sum_{j=1}^{m}(x_{ij}-x_{kj})^{2})}{n_{\alpha}}} \text{ while } n_{\alpha} \text{ is the number of customers assigned}$ to cluster α

- (e) Eliminate i and k in α from set S.
- (f) If $\alpha = C 1$, assign all unassigned customers to cluster C and End, else go to step (9b)