

Schletter, Inc.		25° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-10	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 25°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load, $P_g =$	30.00 psf	
Sloped Roof Snow Load, $P_s =$	18.56 psf	(ASCE 7-10, Eq. 7.4-1)
I _s =	1.00	
$C_s =$	0.82	
C. =	0.90	

1.20

2.3 Wind Loads

Design Wind Speed, V =	115 mph	Exposure Category = C
Heiaht <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 20.76$ psf Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Ct+ _{TOP}	=	1.100	
Cf+ BOTTOM	=	1.100 1.700 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.500	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.900 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	applied and from the canade.

2.4 Seismic Loads

S _S =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	1.67	$C_S = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
$T_a =$	0.06	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.0W + 0.5S 0.9D + 1.0W M 1.54D + 1.3E + 0.2S R $0.56D + 1.3E^{R}$ 1.54D + 1.25E + 0.2S $^{\circ}$

1.2D + 1.6S + 0.5W

(ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2)

0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S1.0D + 0.6W1.0D + 0.75L + 0.45W + 0.75S $0.6D + 0.6W^{M}$ (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E O 1.1785D + 0.65625E + 0.75S $^{\circ}$ 0.362D + 0.875E O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

[™] Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

^o Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>466.32</u>	<u>4823.75</u>	k
Compressive Load =	3865.38	4375.31	k
Lateral Load =	<u>375.13</u>	<u>2619.84</u>	k
Moment (Weak Axis) =	0.74	0.34	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 = 116873.0 \text{ in-lbs}$ Resisting Force Required = 1770.80 lbs A minimum 132in long x 25in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 2951.34 lbs to resist overturning. Minimum Width = Weight Provided = 4984.38 lbs Sliding 604.03 lbs Force = Use a 132in long x 25in wide x 18in tall Friction = 0.4 Weight Required = 1510.07 lbs ballast foundation to resist sliding. Resisting Weight = 4984.38 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 604.03 lbs Cohesion = 130 psf Use a 132in long x 25in wide x 18in tall 22.92 ft² Area = ballast foundation. Cohesion is OK. Resisting = 2492.19 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

		Ballast	Width	
	25 in	26 in	27 in	28 in
$P_{ftg} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(2.08 \text{ ft}) =$	4984 lbs	5184 lbs	5383 lbs	5583 lbs

ASD LC	1.0D + 1.0S				1.0D + 0.6W			1.0D + 0.75L + 0.45W + 0.75S			0.6D + 0.6W					
Width	25 in	26 in	27 in	28 in	25 in	26 in	27 in	28 in	25 in	26 in	27 in	28 in	25 in	26 in	27 in	28 in
FA	1455 lbs	1455 lbs	1455 lbs	1455 lbs	1176 lbs	1176 lbs	1176 lbs	1176 lbs	1838 lbs	1838 lbs	1838 lbs	1838 lbs	-205 lbs	-205 lbs	-205 lbs	-205 lbs
FB	1446 lbs	1446 lbs	1446 lbs	1446 lbs	1656 lbs	1656 lbs	1656 lbs	1656 lbs	2193 lbs	2193 lbs	2193 lbs	2193 lbs	-2216 lbs	-2216 lbs	-2216 lbs	-2216 lbs
F _V	198 lbs	198 lbs	198 lbs	198 lbs	1102 lbs	1102 lbs	1102 lbs	1102 lbs	958 lbs	958 lbs	958 lbs	958 lbs	-1208 lbs	-1208 lbs	-1208 lbs	-1208 lbs
P _{total}	7885 lbs	8085 lbs	8284 lbs	8483 lbs	7816 lbs	8016 lbs	8215 lbs	8414 lbs	9015 lbs	9215 lbs	9414 lbs	9614 lbs	569 lbs	689 lbs	809 lbs	928 lbs
M	3859 lbs-ft	3859 lbs-ft	3859 lbs-ft	3859 lbs-ft	3360 lbs-ft	3360 lbs-ft	3360 lbs-ft	3360 lbs-ft	5057 lbs-ft	5057 lbs-ft	5057 lbs-ft	5057 lbs-ft	2537 lbs-ft	2537 lbs-ft	2537 lbs-ft	2537 lbs-ft
е	0.49 ft	0.48 ft	0.47 ft	0.45 ft	0.43 ft	0.42 ft	0.41 ft	0.40 ft	0.56 ft	0.55 ft	0.54 ft	0.53 ft	4.46 ft	3.68 ft	3.14 ft	2.73 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft							
f _{min}	252.2 psf	250.9 psf	249.7 psf	248.5 psf	261.1 psf	259.4 psf	257.9 psf	256.4 psf	273.0 psf	270.9 psf	268.9 psf	267.1 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	435.9 psf	427.5 psf	419.8 psf	412.5 psf	421.0 psf	413.2 psf	406.0 psf	399.2 psf	513.8 psf	502.4 psf	491.8 psf	482.0 psf	174.6 psf	116.7 psf	101.4 psf	95.9 psf

Maximum Bearing Pressure = 514 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 25in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Seismic Design

Overturning Check

 $M_0 = 1850.6 \text{ ft-lbs}$

Resisting Force Required = 1776.58 lbs S.F. = 1.67

Weight Required = 2960.97 lbs Minimum Width = 25 in in Weight Provided = 4984.38 lbs A minimum 132in long x 25in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785	D + 0.65625E	+ 0.75S	0.362D + 0.875E			
Width		25 in			25 in		25 in			
Support	Outer	Inner	Outer	Outer	Outer Inner Outer		Outer	Inner	Outer	
F _Y	289 lbs	665 lbs	220 lbs	860 lbs	2406 lbs	807 lbs	109 lbs	194 lbs	40 lbs	
F _V	222 lbs	217 lbs	225 lbs	163 lbs	159 lbs	175 lbs	222 lbs	219 lbs	223 lbs	
P _{total}	6460 lbs	6836 lbs	6391 lbs	6734 lbs	8280 lbs	6681 lbs	1913 lbs	1999 lbs	1845 lbs	
М	877 lbs-ft	867 lbs-ft	887 lbs-ft	656 lbs-ft	656 lbs-ft	696 lbs-ft	875 lbs-ft	864 lbs-ft	878 lbs-ft	
е	0.14 ft	0.13 ft	0.14 ft	0.10 ft	0.08 ft	0.10 ft	0.46 ft	0.43 ft	0.48 ft	
L/6	0.35 ft	0.35 ft	0.35 ft	0.35 ft	0.35 ft	0.35 ft	0.35 ft	0.35 ft	0.35 ft	
f _{min}	171.6 psf	189.3 psf	167.4 psf	211.5 psf	278.9 psf	204.0 psf	0.0 psf	0.0 psf	0.0 psf	
f _{max}	392.1 psf	407.2 psf	390.3 psf	376.3 psf	443.7 psf	379.0 psf	198.5 psf	198.8 psf	197.6 psf	

Maximum Bearing Pressure = 444 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 25in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 25in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	2.973 k	Maximum Axial Load =	3.260
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity =	12.808
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity =	7.421
Utilization =	<u>40%</u>	Utilization =	<u>44%</u>
Diagonal Strut			
Maximum Axial Load =	1.747 k		

M12 Bolt Shear Capacity = 12.808 k
Strut Bearing Capacity = 7.421 k
Utilization = 24%

Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

k k k

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & 46.89 \text{ in} \\ \text{Allowable Story Drift for All Other} \\ \text{Structures, } \Delta = \{ & 0.020 h_{\text{sx}} \\ 0.938 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.653 \text{ in} \\ & 0.653 \leq 0.938, \text{ OK.} \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 126 \text{ in}$$

$$J = 0.432$$

$$348.575$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$S1 = \left(\frac{Bc - \frac{c}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(JyJ)/2)}}]$$

3.4.14

$$\begin{array}{lll} L_b & & 126 \\ J = & 0.432 \\ & & 221.673 \\ S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 = & 0.51461 \\ S2 = \left(\frac{C_c}{1.6}\right)^2 \\ S2 = & 1701.56 \\ \phi F_L = & \phi b [Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)})}] \\ \phi F_L = & 28.5 \end{array}$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

 $\phi F_1 = 27.2 \text{ ksi}$

3.4.16

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$φF_L$$
= 1.17 $φyFcy$

$$φF_L$$
= 38.9 ksi

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr - mDbr^*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

25.1 ksi

2.155 in⁴

41.015 mm

1.335 in³

2.788 k-ft

 $lx = 897074 \text{ mm}^4$

N/A for Weak Direction

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr - mDbr^* h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

3.4.18
$$h/t = 32.195$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$ly = 446476 \text{ mm}^4$$

$$1.073 \text{ in}^4$$

Sy=

 $M_{max}Wk =$

45.5 mm

0.599 in³

1.152 k-ft

 $M_{max}St =$

Sx =

 $\phi F_L St =$

Compression

3.4.9

$$\begin{array}{lll} b/t = & 32.195 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 25.1 \text{ ksi} \\ \\ b/t = & 37.0588 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & (\phi ck2^*\sqrt{(BpE))}/(1.6b/t) \end{array}$$

3.4.10

Rb/t = 0.0
$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{\text{max}} = 41.32 \text{ kips}$$

 $\phi F_L = 21.9 \text{ ksi}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: 3.4.14

$$L_b = 88.9 \text{ in}$$
 $J = 1.08$
 152.913

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 29.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 88.9$$
 $J = 1.08$
 161.829

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$$

 $φF_L = 29.2$

3.4.16

$$b/t = 16.2$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$φF_L = φb[Bp-1.6Dp^*]$$
 $φF_L = 31.6 \text{ ksi}$

3.4.16

b/t = 7.4

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi \varphi Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used
Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dt}\right)^{2}$$

$$S1 = 1.1$$

$$S2 = C_{t}$$

$$S2 = 141.0$$

$$\varphi F_{L} = \varphi b [Bt-Dt^{*}\sqrt{(Rb/t)}]$$

31.1 ksi

3.4.16.1

N/A for Weak Direction

 $\phi F_L =$

h/t = 7.4

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

3.4.18

$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 29.4 \text{ ksi} \\ Ix = & 984962 \text{ mm}^4 \\ & 2.366 \text{ in}^4 \\ y = & 43.717 \text{ mm} \\ Sx = & 1.375 \text{ in}^3 \\ M_{max} St = & 3.363 \text{ k-ft} \end{array}$$

$$\begin{array}{ccc} \phi F_L W k = & 33.3 \text{ ksi} \\ ly = & 923544 \text{ mm}^4 \\ & 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ Sy = & 1.409 \text{ in}^3 \\ M_{max} W k = & 3.904 \text{ k-ft} \end{array}$$

Compression

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\phi F_L =$ 33.3 ksi

3.4.10

Rb/t = 18.1
$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
$$\phi F_L = \phi c [Bt - Dt^* \sqrt{(Rb/t)}]$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

1.88 in² 58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_{b} = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

Weak Axis:

3.4.14

$$\begin{split} L_b &= & 24.8 \\ J &= & 0.942 \\ & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= & 1701.56 \\ \phi F_L &= & \phi b[Bc-1.6Dc*\sqrt{((LbSc)/(Cb*\sqrt{(lyJ)/2)})}] \\ \phi F_L &= & 31.4 \end{split}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = \frac{12.2}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = \frac{46.7}{1.6Dp}$$

$$\varphi F_L = \frac{12.2}{1.6Dp}$$

$$\varphi F_L = \frac{12.2}{1.6Dp}$$

 $\phi F_L = 31.4 \text{ ksi}$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$y = 27.5 \text{ mm}$$

$$Sx = 0.621 \text{ in}^3$$

3.4.18

h/t =

S1 = 36.9
m = 0.65

$$C_0$$
 = 27.5
 C_0 = 27.3
 C_0 = 77.3
 C_0 = 1.3 C_0 yFcy
 C_0 = 43.2 ksi
 C_0 = 279836 mm⁴
 C_0 0.672 in⁴
 C_0 = 27.5 mm
 C_0 = 0.621 in³

 $M_{max}Wk = 1.460 \text{ k-ft}$

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{1.3Fcy}$ mDbr

24.5

 $M_{max}St = 1.460 \text{ k-ft}$

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

 $S1 = 6.87$
 $S2 = 131.3$
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 28.03 \text{ ksi}$
 $\phi F_L = 663.99 \text{ mm}^2$
 $\phi F_L = 1.03 \text{ in}^2$

28.85 kips

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

$Strut = \underline{55x55}$

 $P_{max} =$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 86.60 in 86.6 0.942 0.942 J= J = 135.148 135.148 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L =$ 29.6 ksi $\phi F_1 =$ 29.6

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_{\perp} = 1.17 \varphi y Fcy$$

Rb/t =

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y F cy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$1x = 279836 \text{ mm}^4$$

 0.672 in^4
 $y = 27.5 \text{ mm}$
 $5x = 0.621 \text{ in}^3$

$$M_{max}St = 1.460 \text{ k-ft}$$

Compression

3.4.7

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.86047$$

$$\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$$

$$\varphi F_L = 7.50396 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

Solution h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$\phi F_l Wk =$ 28.2 ksi

$$ly = 279836 \text{ mm}^4$$

0.672 in⁴

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}Wk = 1.460 \text{ k-ft}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = 12.21$$

 $S2 = 32.70$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 63.42 \text{ in}$$
 $J = 0.942$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}}]$$

$$\phi F_L = 30.2 \text{ ksi}$$

Weak Axis:

$$L_b = 63.42$$

 $J = 0.942$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{16Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 30.2$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 1.6Dp$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

3.4.18

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

$$\begin{array}{cccc} \phi F_L W k = & 28.2 \text{ ksi} \\ y = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ \text{Sy} = & 0.621 \text{ in}^3 \\ M_{\text{max}} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.46712 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.7854 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 12.7711 \text{ ksi} \end{array}$$

3.4.9

$$\begin{array}{lll} \textbf{.9} \\ \textbf{b/t} = & 24.5 \\ \textbf{S1} = & 12.21 \text{ (See 3.4.16 above for formula)} \\ \textbf{S2} = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \textbf{\phiF}_L = & \textbf{\phic}[\textbf{Bp-1.6Dp*b/t}] \\ \textbf{\phiF}_L = & 28.2 \text{ ksi} \\ \\ \textbf{b/t} = & 24.5 \\ \textbf{S1} = & 12.21 \\ \textbf{S2} = & 32.70 \\ \textbf{\phiF}_L = & \textbf{\phic}[\textbf{Bp-1.6Dp*b/t}] \\ \textbf{\phiF}_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF}_L \text{ψF}_L \text{ψF}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(MeS	Surface(
1	Dead Load, Max	DĽ	_	-1	,			4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-46.9	-46.9	0	0
2	M14	Υ	-46.9	-46.9	0	0
3	M15	Υ	-46.9	-46.9	0	0
4	M16	Υ	-46.9	-46.9	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-63.697	-63.697	0	0
2	M14	V	-63.697	-63.697	0	0
3	M15	V	-98.441	-98.441	0	0
4	M16	V	-98.441	-98.441	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	144.766	144.766	0	0
2	M14	V	110.022	110.022	0	0
3	M15	V	57.906	57.906	0	0
4	M16	y	57.906	57.906	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	6.693	6.693	0	0
2	M14	Ζ	6.693	6.693	0	0
3	M15	Z	6.693	6.693	0	0
4	M16	Ζ	6.693	6.693	0	0
5	M13	Ζ	0	0	0	0
6	M14	Ζ	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Company Designer Job Number Model Name : Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:___

Load Combinations

	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	<u>Fa</u>	
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	5.	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E				1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	487.955	2	982.147	1	.806	1	.004	1	0	1	0	1
2		min	-636.772	3	-1129.308	3	-49.125	5	256	4	0	1	0	1
3	N7	max	.041	9	1112.124	1	573	12	001	12	0	1	0	1
4		min	107	2	-83.933	3	-288.558	4	571	4	0	1	0	1
5	N15	max	.03	9	2973.373	1	0	10	0	10	0	1	0	1
6		min	-1.329	2	-358.708	3	-275.759	4	554	4	0	1	0	1
7	N16	max	1903.577	2	3365.62	1	0	10	0	2	0	1	0	1
8		min	-2015.265	3	-3710.574	3	-48.858	5	258	4	0	1	0	1
9	N23	max	.043	14	1112.124	1	11.799	1	.024	1	0	1	0	1
10		min	107	2	-83.933	3	-280.266	4	557	4	0	1	0	1
11	N24	max	487.955	2	982.147	1	046	12	0	12	0	1	0	1
12		min	-636.772	3	-1129.308	3	-49.759	5	258	4	0	1	0	1
13	Totals:	max	2877.944	2	10527.535	1	0	10						
14		min	-3289.069	3	-6495.763	3	-986.54	4						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	120.333	1	431.335	1	-8.09	12	0	3	.287	1	0	4
2			min	5.9	12	-551.157	3	-185.56	1	011	1	.014	12	0	3
3		2	max	120.333	1	302.31	1	-6.328	12	0	3	.118	4	.548	3
4			min	5.9	12	-387.929	3	-142.721	1	011	1	.006	12	428	1
5		3	max	120.333	1	173.286	1	-4.567	12	0	3	.061	5	.905	3
6			min	5.9	12	-224.701	3	-99.882	1	011	1	046	1	705	1
7		4	max	120.333	1	44.262	1	-2.805	12	0	3	.031	5	1.072	3
8			min	5.9	12	-61.474	3	-57.044	1	011	1	137	1	832	1
9		5	max	120.333	1	101.754	3	-1.044	12	0	3	.005	5	1.049	3
10			min	5.9	12	-84.763	1	-25.232	4	011	1	179	1	809	1
11		6	max	120.333	1	264.981	3	28.634	1	0	3	007	12	.835	3
12			min	3.544	15	-213.787	1	-18.908	5	011	1	17	1	635	1
13		7	max	120.333	1	428.209	3	71.472	1	0	3	006	12	.43	3
14			min	-6.388	5	-342.811	1	-16.183	5	011	1	112	1	31	1
15		8	max	120.333	1	591.436	3	114.311	1	0	3	0	10	.165	1
16			min	-18.364	5	-471.836	1	-13.458	5	011	1	059	4	164	3
17		9	max	120.333	1	754.664	3	157.15	1	0	3	.155	1	.791	1
18			min	-30.34	5	-600.86	1	-10.733	5	011	1	071	5	95	3

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC		LC		LC	Torque[k-ft]	LC		LC	z-z Mome	LC
19		10	max	120.333	1	917.892	3	199.988	1	.005	9	.363	1	1.567	1
20			min	5.9	12	-729.884	1	-118.505	14	011	1	.012	12	-1.925	3
21		11	max	120.333	1	600.86	1	-6.002	12	.011	1	.155	1	.791	1
22			min	5.9	12	-754.664	3	-157.15	1	0	3	.004	12	95	3
23		12	max	120.333	1	471.836	1	-4.24	12	.011	1	.056	4	.165	1
24			min	5.9	12	-591.436	3	-114.311	1	0	3	003	1	164	3
25		13	max	120.333	1	342.811	1	-2.479	12	.011	1	.025	5	.43	3
26			min	5.9	12	-428.209	3	-71.472	1	0	3	112	1	31	1
27		14	max	120.333	1	213.787	1	717	12	.011	1	001	15	.835	3
28			min	5.9	12	-264.981	3	-29.155	4	0	3	17	1	635	1
29		15	max	120.333	1	84.763	1	14.205	1	.011	1	007	12	1.049	3
30		10	min	-2.32	5	-101.754	3	-19.791	5	0	3	179	1	809	1
31		16	max	120.333	1	61.474	3	57.044	1	.011	1	005	12	1.072	3
32		10	min	-14.296	5	-44.262	1	-17.065	5	0	3	137	1	832	1
33		17		120.333	1	224.701	3	99.882	1	.011	1	0	12	.905	3
34		17	max min	-26.272	5	-173.286	1	-14.34	5	0	3	078	4		1
		10					_							705	3
35		18	max	120.333	1	387.929	3	142.721	1	.011	1	.096	1	.548	
36		40	min	-38.248	5	-302.31	1	-11.615	5	0	3	082	5	428	1
37		19	max		1	551.157	3	185.56	1	.011	1	.287	1_	0	1
38	244		min	-50.224	5	-431.335	1	-8.89	5	0	3	094	5_	0	3
39	M14	1_	max	62.661	4	453.55	1	-8.309	12	.006	3	.326	1_	0	1
40			min	2.502	12	-424.583	3	-191.084	1_	009	1	.016	12	0	3
41		2	max	54.232	1	324.526	1	-6.548	12	.006	3	.166	4	.424	3
42			min	2.502	12	-301.89	3	-148.245		009	1	.007	12	454	1
43		3	max	54.232	1_	195.501	1_	-4.787	12	.006	3	.09	_5_	.704	3
44			min	2.502	12	-179.197	3	-105.406		009	1	02	1_	757	1
45		4	max	54.232	1	66.477	1	-3.025	12	.006	3	.048	5_	.842	3
46			min	2.502	12	-56.504	3	-62.568	1	009	1	118	1	91	1
47		5	max	54.232	1	66.189	3	-1.264	12	.006	3	.009	5	.836	3
48			min	1.841	15	-62.547	1	-37.134	4	009	1	166	1	912	1
49		6	max	54.232	1	188.882	3	23.11	1	.006	3	007	12	.687	3
50			min	-9.176	5	-191.572	1	-29.375	5	009	1	164	1	764	1
51		7	max	54.232	1	311.575	3	65.948	1	.006	3	005	12	.396	3
52			min	-21.152	5	-320.596	1	-26.65	5	009	1	112	1	465	1
53		8	max	54.232	1	434.268	3	108.787	1	.006	3	0	10	0	15
54			min	-33.128	5	-449.62	1	-23.925	5	009	1	094	4	04	3
55		9	max	54.232	1	556.96	3	151.626	1	.006	3	.142	1	.584	1
56			min	-45.104	5	-578.645	1	-21.2	5	009	1	116	5	618	3
57		10	max	75.563	4	679.653	3	194.464	1	.009	1	.344	1	1.334	1
58			min	2.502	12	-707.669	1	-120.873		006	3	.012	12	-1.339	3
59		11	max		4	578.645	1	-5.782	12		1	.167	4	.584	1
60			min	2.502	12	-556.96	3	-151.626		006	3	.004	12	618	3
61		12	max	54.232	1	449.62	1	-4.021	12	.009	1	.088	5	0	15
62		12	min	2.502	12	-434.268		-108.787		006	3	01	1	04	3
63		13			1	320.596	1	-2.259	12	.009	1	.046	5	.396	3
64		13	min	2.502	12	-311.575		-65.948	1	006	3	112	1	465	1
65		14	max		1	191.572	1	498	12	.009	1	.006	5	.687	3
66		14	min	2.502	12	-188.882	3	-37.931	4	006	3	164	1	764	1
67		15			1	62.547	1	19.729	1	.009	1	007	12	.836	3
		10		2.459		-66.189	3	-29.555	5		3		1		1
68		16	min		15					006		166	_	912	
69		16	max		1	56.504	3	62.568	1	.009	1	004	12	.842	3
70		47	min	-8.253	5	-66.477	1	-26.83	5	006	3	118	1_	91 04	1
71		17	max	54.232	1	179.197	3	105.406	1	.009	1	0	3	.704	3
72		4.0	min	-20.229	5	-195.501	1	-24.105	5	006	3	098	4_	757	1
73		18			1	301.89	3	148.245	1	.009	1	.128	_1_	.424	3
74			min		5	-324.526		-21.379	5	006	3	119	5	454	1
75		19	max	54.232	1	424.583	3	191.084	1	.009	1	.326	<u>1</u>	0	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC				LC		LC	z-z Mome	
76			min	-44.181	5	-453.55	1	-18.654	5	006	3	142	5	0	3
77	M15	1	max	87.03	5	530.548	2	-8.274	12	.01	1	.326	1	0	2
78			min	-57.162	1	-219.53	3	-191.052	1	005	3	.016	12	0	12
79		2	max	75.054	5	378.382	2	-6.512	12	.01	1	.204	4	.22	3
80			min	-57.162	1	-157.64	3	-148.213	1	005	3	.007	12	53	2
81		3	max	63.078	5	226.215	2	-4.751	12	.01	1	.117	5	.368	3
82			min	-57.162	1	-95.749	3	-105.374	1	005	3	02	1	883	2
83		4	max	51.102	5	74.049	1	-2.99	12	.01	1	.064	5	.443	3
84		_	min	-57.162	1	-33.858	3	-62.536	1	005	3	118	1	-1.058	2
85		5	max	39.126	5	28.033	3	-1.228	12	.01	1	.015	5	.447	3
86		5		-57.162	1	-78.118	2	-46.116	4	005	3	166	1	-1.056	2
		_	min										_		
87		6	max	27.15	5_	89.924	3_	23.141	1	.01	1	007	12	.378	3
88		<u> </u>	min	-57.162	_1_	-230.284	2	-38.331	5	005	3	164	1	876	2
89		7	max	15.174	5	151.815	3	65.98	1	.01	1	005	12	.237	3
90			min	-57.162	<u> 1</u>	-382.451	2	-35.606	5	005	3	112	1	518	1
91		8	max	3.198	5	213.706	3	108.819	1_	.01	1	0	10	.024	3
92			min	-57.162	1	-534.617	2	-32.88	5	005	3	119	4	003	9
93		9	max	-2.861	12	275.597	3	151.657	1	.01	1	.142	1	.729	2
94			min	-57.162	1	-686.784	2	-30.155	5	005	3	152	5	262	3
95		10	max	-2.861	12	337.488	3	194.496	1	.01	1	.344	1	1.619	2
96			min	-57.162	1	-838.95	2	-125.458	14	005	3	.012	12	619	3
97		11	max	1.096	5	686.784	2	-5.818	12	.005	3	.203	4	.729	2
98			min	-57.162	1	-275.597	3	-151.657	1	01	1	.004	12	262	3
99		12	max	-2.861	12	534.617	2	-4.056	12	.005	3	.113	5	.024	3
100		12	min	-57.162	1	-213.706	3	-108.819	1	01	1	01	1	003	9
101		13	max	-2.861	12	382.451	2	-2.295	12	.005	3	.061	5	.237	3
		13		-57.162									_		
102		4.4	min		1_	-151.815	3	-65.98	1	01	1	112	1	<u>518</u>	1
103		14	max	-2.861	12	230.284	2	533	12	.005	3	.011	5	.378	3
104		4.5	min	-57.162	1_	-89.924	3	-46.938	4	01	1	164	1	876	2
105		15	max	-2.861	12	78.118	2	19.697	1	.005	3	007	12	.447	3
106			min	-60.07	4	-28.033	3	-38.514	5	01	1	166	1	-1.056	2
107		16	max	-2.861	12	33.858	3_	62.536	1	.005	3	004	12	.443	3
108			min	-72.046	4	-74.049	_1_	-35.789	5	01	1	118	1	-1.058	2
109		17	max	-2.861	12	95.749	3	105.374	1	.005	3	0	3	.368	3
110			min	-84.022	4	-226.215	2	-33.064	5	01	1	125	4	883	2
111		18	max	-2.861	12	157.64	3	148.213	1	.005	3	.128	1	.22	3
112			min	-95.998	4	-378.382	2	-30.338	5	01	1	156	5	53	2
113		19	max	-2.861	12	219.53	3	191.052	1	.005	3	.326	1	0	2
114				-107.974	4	-530.548	2	-27.613	5	01	1	19	5	0	5
115	M16	1	max	85.352	5	510.141	2	-7.975	12	.01	1	.289	1	0	2
116	10110			-128.396			3	-185.785		008	3	.014	12	0	3
117		2		73.376	5	357.975	2	-6.214	12	.01	1	.155	4	.204	3
118				-128.396	1	-144.019		-142.946		008	3	.005	12	506	2
		3						-4.452				.003			
119		3	max	61.4	_5_	205.809	2		12	.01	1		5	.336	3
120		_		-128.396	1_	-82.128	3	-100.108	1	008	3	045	1	835	2
121		4	max		_5_	53.642	2	-2.691	12	.01	1	.048	5	.396	3
122				-128.396	_1_	-20.237	3	-57.269	1	008	3	136	1	<u>987</u>	2
123		5	max		_5_	41.654	3	929	12	.01	1_	.011	5	.383	3
124			min	-128.396	1	-98.524	2	-33.964	4	008	3	178	1	96	2
125		6	max		5	103.544	3	28.408	1	.01	1	007	12	.299	3
126			min	-128.396	1	-250.691	2	-27.52	5	008	3	17	1	757	2
127		7	max	13.496	5	165.435	3	71.247	1	.01	1	005	12	.142	3
128			min	-128.396	1	-402.857	2	-24.795	5	008	3	112	1	375	2
129		8	max	1.52	5	227.326	3	114.086	1	.01	1	0	10	.185	1
130				-128.396	1	-555.024	2	-22.069	5	008	3	083	4	087	3
131		9	max		12	289.217	3	156.924	1	.01	1	.154	1	.92	2
132		Ť		-128.396	1	-707.19	2	-19.344	5	008	3	105	5	389	3
102			1111111	120.000		101.10		10.044	J	.000	J	. 100	U	.000	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]			LC				LC	z-z Mome	
133		10	max	-6.069	12	351.108	3	199.763	1	.008	3	.362	1	1.833	2
134			min	-128.396	1_	-859.357	2	-122.844		01	1	.013	12	762	3
135		11	max	-3.714	15	707.19	2	-6.116	12	.008	3	.16	4	.92	2
136			min	-128.396	_1_	-289.217	3	-156.924	1	01	1	.005	12	389	3
137		12	max	-6.069	<u>12</u>	555.024	2	-4.355	12	.008	3	.08	4	.185	1
138			min	-128.396	1_	-227.326	3	-114.086	1	01	1	004	1	087	3
139		13	max	-6.069	12	402.857	2	-2.593	12	.008	3	.039	5	.142	3
140		4.4	min	-128.396	1_	-165.435	3	-71.247	1	01	1	112	1	375	2
141		14	max	-6.069	12	250.691	2	832	12	.008	3	.001	5	.299	3
142		4.5	min	-128.396	1_	-103.544	3	-37.797	4	01	1	17	1	757	2
143		15	max	-6.069	12	98.524	2	14.43	1	.008	3	007	12	.383	3
144		4.0	min	-128.396	1_	-41.654	3	-28.386	5	01	1	178	1	96	2
145		16	max	-6.069	12	20.237	3	57.269	1	.008	3	005	12	.396	3
146		4-	min	-128.396	1_	-53.642	2	-25.661	5	01	1	<u>136</u>	1	987	2
147		17	max	-6.069	12	82.128	3	100.108	1	.008	3	0	12	.336	3
148		40	min	-128.396	1_	-205.809	2	-22.936	5	01	1	105	4	835	2
149		18	max	-6.069	12	144.019	3	142.946	1	.008	3	.097	1	.204	3
150		40	min	-128.396	1_	-357.975	2	-20.211	5	01	1	<u>119</u>	5	506	2
151		19	max	-6.069	12	205.91	3	185.785	1	.008	3	.289	1	0	2
152	140	4	min	-130.97	4_	-510.141	2	-17.485	5	01	1	<u>141</u>	5	0	5
153	M2	1	max	966.965	1_	1.957	4	.775	1	0	12	0	3	0	1
154			min	-992.307	3	.476	15	-47.342	4	0	4	0	1	0	1
155		2	max		1_	1.9	4	.775	1	0	12	0	1	0	15
156			min	-991.985	3	.463	15	<u>-47.715</u>	4	0	4	014	4	0	4
157		3	max	967.822	1_	1.843	4	.775	1	0	12	0	1	0	15
158			min	-991.664	3	.45	15	-48.089	4	0	4	028	4	001	4
159		4	max	968.25	1_	1.786	4	.775	1	0	12	0	1	0	15
160		_	min	-991.342	3	.436	15	-48.462	4	0	4	042	4	002	4
161		5	max		1_	1.73	4	.775	1	0	12	0	1	0	15
162		_	min	-991.021	3	.423	15	-48.835	4	0	4	056	4	002	4
163		6	max	969.107	1	1.673	4	.775	1	0	12	.001	1	0	15
164		7	min	-990.7	3	.41	15	-49.209	4	0	4	07	4	003	4
165		7	max		1_	1.616	4	.775	1	0	12	.001	1	0	15
166		_	min	-990.378	3	.396	15	-49.582	4	0	4	084	4	003	4
167		8	max	969.964	1	1.559	4	.775	1	0	12	.002	1	0	15
168		_	min	-990.057	3	.383	15	-49.955	4	0	4	099	4	004	4
169		9	max		1	1.503	4	.775	1	0	12	.002	1	0	15
170		40	min	-989.736	3_	.37	15	-50.329	4	0	4	113	4	004	4
171		10	max		1	1.446	4	.775	1	0	12	.002	1	001	15
172		11	min	<u>-989.414</u>	<u>3</u> 1	.356	15	-50.702	1	0	12	128	1	004	15
173		11		971.25		1.389	4	.775		0		.002		001	
174		10		-989.093	3	.343	15		4	0	4	<u>143</u>	4	005	4
175		12		971.678	1	1.332	4 1E	.775	1	0	12	.002	1	001	15
176		12		<u>-988.771</u> 972.107	3	.329	15		4	0	4	1 <u>58</u>	4	005	4
177 178		13		-988.45	1	1.275 .316	4 15	.775 -51.822	1	0	12	.003 173	1	001	15
179		1.1	min	972.535	3				4	0	4		4	006	4
		14			1	1.219	4 1E	.775	1	0	12	.003	1	001	15
180		4.5			3_	.303	15	-52.195	4	0	4	188	4	006	4
181		15		972.964	1	1.162	4	.775 -52.569	1	0	12	.003	1	002	15
182		16	min	-987.807	3	.287	12		4	0	4	203	4	006	4
183		10		973.392	1	1.105	4	.775	1	0	12	.003	1	002	15
184		47		-987.486	3	.264	12	-52.942	4	0	4	218 004	4	007	15
185		17		973.821	1	1.048	4	.775	1	0	12	.004	1	002	15
186		4.0		-987.165	3	.242	12	-53.315	4	0	4	234	4	007	4
187		18		974.249	1	.991	4	.775	1	0	12	.004	1	002	15
188		40		-986.843	3	.22	12	-53.689	4	0	4	249	4	007	4
189		19	ттах	974.678	1	.935	4	.775	1	0	12	.004	1	002	15

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC		LC	z-z Mome	<u>. LC</u>
190			min	-986.522	3	.198	12	-54.062	4	0	4	265	4	008	4
191	M3	1	max	415.793	2	7.907	4	3.668	4	0	12	0	1	.008	4
192			min	-555.622	3	1.87	15	.008	12	0	4	028	4	.002	15
193		2	max	415.623	2	7.14	4	4.206	4	0	12	0	1	.004	4
194			min	-555.75	3	1.69	15	.008	12	0	4	027	4	0	12
195		3	max		2	6.372	4	4.745	4	0	12	0	1	.002	2
196			min	-555.878	3	1.509	15	.008	12	0	4	025	4	0	3
197		4	max		2	5.605	4	5.284	4	0	12	0	1	0	2
198			min	-556.006	3	1.329	15	.008	12	0	4	023	4	002	3
199		5	max	415.112	2	4.838	4	5.823	4	0	12	0	1	0	15
200		1 5		-556.133	3	1.149	15	.008	12	0	4	02	4	003	6
		_	min												
201		6	max		2	4.071	4	6.361	4	0	12	0	1	001	15
202			min	-556.261	3	.968	15	.008	12	0	4	018	4	005	6
203		7	max	414.771	2	3.304	4	6.9	4	0	12	0	1	001	15
204			min	-556.389	3	.788	15	.008	12	0	4	015	5	007	6
205		8	max	414.601	2	2.536	4	7.439	4	0	12	0	1	002	15
206			min	-556.517	3	.607	15	.008	12	0	4	012	5	008	6
207		9	max	414.43	2	1.769	4	7.978	4	0	12	.001	1	002	15
208			min	-556.644	3	.427	15	.008	12	0	4	009	5	009	6
209		10	max	414.26	2	1.002	4	8.516	4	0	12	.001	1	002	15
210			min	-556.772	3	.247	15	.008	12	0	4	006	5	009	6
211		11	max	414.09	2	.292	2	9.055	4	0	12	.001	1	002	15
212			min	-556.9	3	053	3	.008	12	0	4	002	5	01	6
213		12	max	413.919	2	114	15	9.594	4	0	12	.002	4	002	15
214		12	min	-557.028	3	534	9 6	.008	12	0	4	0	12	009	6
215		13			2	294	15	10.133	4	0	12	.006	4	002	15
216		13	max	-557.156					12						
		4.4	min		3	-1.301	6	.008		0	4	0	12	<u>009</u>	6
217		14	max		2	475	15	10.671	4	0	12	.011	4	002	15
218		4.5	min	-557.283	3	-2.068	6	.008	12	0	4	0	12	008	6
219		15	max	413.408	2	655	15	11.21	4	0	12	.015	4	002	15
220			min	-557.411	3	-2.835	6	.008	12	0	4	0	12	007	6
221		16	max		2	835	15	11.749	4	0	12	.02	4	001	15
222			min	-557.539	3	-3.602	6	.008	12	0	4	0	12	006	6
223		17	max	413.068	2	-1.016	15	12.288	4	0	12	.025	4	001	15
224			min	-557.667	3	-4.37	6	.008	12	0	4	0	12	004	6
225		18	max	412.897	2	-1.196	15	12.826	4	0	12	.03	4	0	15
226			min	-557.794	3	-5.137	6	.008	12	0	4	0	12	002	6
227		19	max	412.727	2	-1.376	15	13.365	4	0	12	.036	4	0	1
228			min	-557.922	3	-5.904	6	.008	12	0	4	0	12	0	1
229	M4	1		1109.058	1	0	1	572	12	0	1	.026	4	0	1
230				-86.233	3	0		-287.488		0	1	0	12	0	1
231		2		1109.228	1	0	1	572	12	0	1	0	3	0	1
232			min		3	0	1	-287.636		0	1	007	4	0	1
233		3		1109.398	1	0	1	572	12	0	1	0	12	0	1
234			min	-85.977	3	0	1	-287.783		0	1	04	4	0	1
235		4		1109.569	1	0	1	572	12	0	1	04 0	12	0	1
		4													
236		-	min		3	0	1	-287.931	4	0	1	073	4	0	1
237		5		1109.739	1	0	1	572	12	0	1	0	12	0	1
238			min	-85.721	3	0	1_	-288.079		0	1	106	4	0	1
239		6		1109.909	1	0	1	572	12	0	1	0	12	0	1
240			min	-85.594	3	0	1	-288.226		0	1	139	4	0	1
241		7	max	1110.08	1	0	1	572	12	0	1	0	12	0	1
242			min	-85.466	3	0	1	-288.374	4	0	1	172	4	0	1
243		8	max	1110.25	1	0	1	572	12	0	1	0	12	0	1
244			min	-85.338	3	0	1	-288.522	4	0	1	206	4	0	1
245		9	max		1	0	1	572	12	0	1	0	12	0	1
246			min	-85.21	3	0	1	-288.669		0	1	239	4	0	1
					_					•					

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec	T	Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
247		10	max	1110.591	_1_	0	1	572	12	0	1	0	12	0	1
248			min	-85.083	3	0	1	-288.817	4	0	1	272	4	0	1
249		11	max	1110.761	1	0	1	572	12	0	1	0	12	0	1
250			min	-84.955	3	0	1	-288.964	4	0	1	305	4	0	1
251		12	max	1110.931	1	0	1	572	12	0	1	0	12	0	1
252			min	-84.827	3	0	1	-289.112	4	0	1	338	4	0	1
253		13	max	1111.102	1	0	1	572	12	0	1	0	12	0	1
254			min	-84.699	3	0	1	-289.26	4	0	1	371	4	0	1
255		14	max	1111.272	1	0	1	572	12	0	1	0	12	0	1
256			min	-84.572	3	0	1	-289.407	4	0	1	405	4	0	1
257		15		1111.443	1	0	1	572	12	Ö	1	0	12	0	1
258		1	min	-84.444	3	0	1	-289.555	4	0	1	438	4	0	1
259		16		1111.613	1	0	1	572	12	0	1	0	12	0	1
260		10	min	-84.316	3	0	1	-289.703	4	0	1	471	4	0	1
261		17		1111.783		0	1	572	12	0	1	0	12	0	1
262		17	min	-84.188	3	0	1	-289.85	4	0	1	504	4	0	1
263		18		1111.954	1	0	1	572	12	0	1	001	12	0	1
264		10	min	-84.061	3	0	1	-289.998	4	0	1	538	4	0	1
		10		1112.124	<u> </u>		1		12		1		12		1
265		19				0		572		0		001		0	
266	MC	4	min	-83.933	3	0	1	-290.146	4	0	1	571	4	0	1
267	M6	1		3119.372	1_	2.189	2	0	1	0	1	0	4	0	1
268			min	-3259.5	3	.258	12	-47.832	4	0	4	0	1_	0	1
269		2		3119.801	1_	2.144	2	0	1	0	1	0	1	0	12
270			min	-3259.179	3	.236	12	-48.205	4	0	4	014	4	0	2
271		3		3120.229	1_	2.1	2	0	1	0	1	0	1	0	12
272			min	-3258.858	3_	.214	12	-48.579	4	0	4	028	4	001	2
273		4		3120.658	_1_	2.056	2	0	1	0	1	0	1	0	12
274			min	-3258.536	3	.192	12	-48.952	4	0	4	042	4	002	2
275		5		3121.086	1_	2.012	2	0	1	0	1	0	1	0	12
276			min	-3258.215	3_	.169	12	-49.325	4	0	4	056	4	002	2
277		6		3121.515	_1_	1.967	2	0	1	0	1	0	1	0	12
278			min	-3257.893	3	.138	3	-49.699	4	0	4	071	4	003	2
279		7		3121.943	1_	1.923	2	0	1	0	1	0	1	0	12
280		_	min	-3257.572	3	.105	3	-50.072	4	0	4	085	4	004	2
281		8		3122.371	1_	1.879	2	0	1	0	1	0	1	0	12
282			min	-3257.251	3	.071	3	-50.445	4	0	4	1	4	004	2
283		9	max	3122.8	_1_	1.835	2	0	1	0	1	0	1_	0	12
284			min	-3256.929	3	.038	3	-50.819	4	0	4	115	4	005	2
285		10		3123.228	_1_	1.79	2	0	1	0	1	0	1	0	3
286			min	-3256.608	3	.005	3	-51.192	4	0	4	129	4	005	2
287		11	max	3123.657	1_	1.746	2	0	1	0	1	0	1	0	3
288			min	-3256.287	3	028	3	-51.565	4	0	4	144	4	006	2
289		12		3124.085	1_	1.702	2	0	1	0	1	0	1	0	3
290			min	-3255.965	3	061	3	-51.939	4	0	4	159	4	006	2
291		13	max	3124.514	_1_	1.658	2	0	1	0	1	0	1	0	3
292			min	-3255.644	3	094	3	-52.312	4	0	4	174	4	007	2
293		14	max	3124.942	1	1.613	2	0	1	0	1	0	1	0	3
294			min	-3255.323	3	128	3	-52.685	4	0	4	19	4	007	2
295		15	max	3125.371	1	1.569	2	0	1	0	1	0	1	0	3
296			min		3	161	3	-53.059	4	0	4	205	4	008	2
297		16		3125.799	1	1.525	2	0	1	0	1	0	1	0	3
298				-3254.68	3	194	3	-53.432	4	0	4	221	4	008	2
299		17		3126.228	1	1.481	2	0	1	0	1	0	1	0	3
300				-3254.358	3	227	3	-53.805	4	0	4	236	4	009	2
301		18		3126.656	1	1.436	2	0	1	0	1	0	1	0	3
302			min		3	26	3	-54.179	4	0	4	252	4	009	2
303		19		3127.085	1	1.392	2	0	1	0	1	0	1	0	3
											<u> </u>				

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]				z-z Mome	LC.
304			min	-3253.716	3	294	3	<u>-54.552</u>	4	0	4	268	4	009	2
305	M7	1	max		2	7.919	6	3.447	4	0	1	0	1	.009	2
306			min	-1745.026	3	1.859	15	0	1	0	4	029	4	0	3
307		2		1684.456	2	7.152	6	3.985	4	0	1	0	1	.007	2
308			min	-1745.154	3	1.678	15	0	1	0	4	027	4	002	3
309		3	max		2	6.385	6	4.524	4	0	1	0	1	.004	2
310		-	min	-1745.281	3	1.498	15	0	1	0	4	025	4	003	3
311		4	max		2	5.618	6	5.063	4	0	1	0	1	.002	2
312		-	min	-1745.409	3	1.318	15	0	1	0	4	023	4	004	3
313		5		1683.944	2	4.85	6	5.602	4	0	1	0	1	0	2
314			min	-1745.537	3	1.137	15	0	1	0	4	021	4	005	3
315		6		1683.774	2	4.083	6	6.14	4	0	1	0	1	001	15
316		-	min	-1745.665	3	.957	15	0	1	0	4	019	4	006	3
317		7		1683.604	2	3.316	6	6.679	4	0	1	0	1	002	15
318			min	-1745.793	3	.777	15	0	1	0	4	016	4	007	3
319		8		1683.433	2	2.549	6	7.218	4	0	1	0	1	002	15
320			min	-1745.92	3	.596	15	0	1	0	4	013	4	008	4
321		9	max		2	1.839	2	7.757	4	0	1	0	1	002	15
322			min	-1746.048	3_	.34	12	0	1	0	4	01	4	009	4
323		10		1683.093	2	1.241	2	8.295	4	0	1	0	1	002	15
324			min	-1746.176	3	.004	3	0	1	0	4	006	4	009	4
325		11		1682.922	2	.643	2	8.834	4	0	1	0	1_	002	15
326			min	-1746.304	3_	445	3	0	1	0	4	003	5	009	4
327		12		1682.752	2	.045	2	9.373	4	0	1	0	4	002	15
328			min	-1746.431	3_	893	3	0	1	0	4	0	1_	009	4
329		13		1682.582	2	305	15	9.912	4	0	1	.005	4	002	15
330			min	-1746.559	3_	-1.342	3	0	1	0	4	0	1_	009	4
331		14	max		2	486	15	10.45	4	0	1	.009	4	002	15
332			min	-1746.687	3	-2.055	4	0	1	0	4	0	1	008	4
333		15		1682.241	2	666	15	10.989	4	0	1	.014	4	002	15
334			min	-1746.815	3_	-2.822	4_	0	1	0	4	0	1_	007	4
335		16		1682.071	2	846	15	11.528	4	0	1	.018	4	001	15
336			min	-1746.942	3_	-3.589	4	0	1	0	4	0	1_	006	4
337		17	max		2	-1.027	15	12.066	4	0	1	.023	4	001	15
338		1.0	min	-1747.07	3	-4.356	4_	0	1	0	4	0	1	004	4
339		18	max		2	-1.207	15	12.605	4	0	1	.029	4	0	15
340		1.0	min	-1747.198	3	-5.123	4	0	1	0	4	0	1	002	4
341		19	max	1681.56	2	-1.387	15	13.144	4	0	1	.034	4	0	1
342	140		min	-1747.326	3_	-5.891	4	0	1	0	4	0	1	0	1
343	<u>M8</u>	1		2970.307	1_	0	1	0	1	0	1	.025	4	0	1
344				-361.008		0	1_	-278.455		0	1_	0	1_	0	1
345		2		2970.477	1_	0	1	0	1	0	1	0	1	0	1
346			min		3_	0	1_	-278.603		0	1_	007	4	0	1
347		3		2970.647	1_	0	1	0	1	0	1	0	1	0	1
348		1		-360.752	3	0	1_	-278.75	4	0	1_	039	4	0	1
349		4		2970.818	1_	0	1	0	1	0	1	0	1	0	1
350		-		-360.624		0	1	-278.898		0	1	071	4	0	1
351		5		2970.988	1_	0	1	0	1	0	1	0	1	0	1
352				-360.497	3	0	1	-279.046		0	1	103	4	0	1
353		6		2971.158	1_	0	1	0	1	0	1	0	1	0	1
354				-360.369		0	1_	-279.193		0	1_	136	4	0	1
355		7		2971.329	1_	0	1	0	1	0	1	0	1	0	1
356			min		3_	0	1_	-279.341		0	1_	168	4	0	1
357		8		2971.499	1_	0	1	0	1	0	1	0	1	0	1
358			min			0	1	-279.488		0	1	2	4	0	1
359		9		2971.67	1_	0	1	0	1	0	1	0	1	0	1
360			min	-359.986	3	0	1	-279.636	4	0	1	232	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
361		10	max	2971.84	1	0	1	0	1	0	1	0	1	0	1
362			min	-359.858	3	0	1	-279.784	4	0	1	264	4	0	1
363		11	max	2972.01	1	0	1	0	1	0	1	0	1	0	1
364			min	-359.73	3	0	1	-279.931	4	0	1	296	4	0	1
365		12	max	2972.181	1	0	1	0	1	0	1	0	1	0	1
366			min	-359.602	3	0	1	-280.079	4	0	1	328	4	0	1
367		13	max	2972.351	1	0	1	0	1	0	1	0	1	0	1
368			min	-359.475	3	0	1	-280.227	4	0	1	36	4	0	1
369		14	max	2972.521	1	0	1	0	1	0	1	0	1	0	1
370			min	-359.347	3	0	1	-280.374	4	0	1	393	4	0	1
371		15		2972.692	1	0	1	0	1	0	1	0	1	0	1
372			min	-359.219	3	0	1	-280.522	4	0	1	425	4	0	1
373		16		2972.862	1	0	1	0	1	0	1	0	1	0	1
374		1.0	min		3	0	1	-280.67	4	0	1	457	4	0	1
375		17		2973.032	1	0	1	0	1	0	1	0	1	0	1
376		 ''	min		3	0	1	-280.817	4	0	1	489	4	0	1
377		18		2973.203	1	0	1	0	1	0	1	0	1	0	1
378		10	min	-358.836	3	0	1	-280.965	4	0	1	521	4	0	1
379		19		2973.373	1	0	1	0	1	0	1	0	1	0	1
380		19		-358.708	3	0	1	-281.112	4	0	1	554	4	0	1
381	M10	1	min		1	1.885	6	035	12	0	1	0	1	0	1
	IVITO		max	-992.307	3	.428	15	-47.782	4	0	5	0	3	0	1
382		2	min		1	1.829		035	12		1	0			15
383			max				6			0	_		10	0	
384			min	-991.985	3	.415	15	-48.155	4	0	5	014	4	0	6
385		3	max		1	1.772	6	035	12	0	1	0	12	0	15
386		1	min	-991.664	3	.402	15	-48.528	4	0	5	028	4	001	6
387		4	max	968.25	1	1.715	6	035	12	0	1	0	12	0	15
388		-	min	-991.342	3	.388	15	-48.902	4	0	5	042	4	002	6
389		5	max		1	1.658	6	035	12	0	1	0	12	0	15
390			min	-991.021	3	.375	15	-49.275	4	0	5	056	4	002	6
391		6	max		1	1.601	6	035	12	0	1	0	12	0	15
392		<u> </u>	min	-990.7	3	.361	15	-49.648	4	0	5	071	4	003	6
393		7	max		1	1.545	6	035	12	0	1	0	12	0	15
394		_	min	-990.378	3	.348	15	-50.022	4	0	5	085	4	003	6
395		8	max		1	1.488	6	035	12	0	1	0	12	0	15
396			min	-990.057	3	.335	15	-50.395	4	0	5	1	4	003	6
397		9	max		1_	1.431	6	035	12	0	1	0	12	0	15
398			min	-989.736	3	.321	15	-50.768	4	0	5	114	4	004	6
399		10	max		1_	1.374	6	035	12	0	1	0	12	0	15
400			min	-989.414	3	.308	15	-51.142	4	0	5	129	4	004	6
401		11	max	971.25	_1_	1.317	6	035	12	0	_1_	0	12	001	15
402			min		3	.295	15	-51.515	4	0	5	144	4	005	6
403		12	max		1	1.261	6	035	12	0	1	0	12	001	15
404				-988.771	3	.281	15	-51.888	4	0	5	159	4	005	6
405		13	max	972.107	1	1.204	6	035	12	0	1	0	12	001	15
406			min	-988.45	3	.268	15	-52.262	4	0	5	174	4	005	6
407		14	max	972.535	1	1.147	6	035	12	0	1	0	12	001	15
408			min	-988.129	3	.255	15	-52.635	4	0	5	19	4	006	6
409		15		972.964	1	1.09	6	035	12	0	1	0	12	001	15
410			min		3	.241	15	-53.008	4	0	5	205	4	006	6
411		16		973.392	1	1.033	6	035	12	0	1	0	12	001	15
412			min		3	.228	15	-53.382	4	0	5	22	4	006	6
413		17	+	973.821	1	.977	6	035	12	0	1	0	12	001	15
414				-987.165	3	.215	15	-53.755	4	0	5	236	4	007	6
415		18		974.249	1	.93	2	035	12	0	1	0	12	002	15
416		10	min			.201	15	-54.128	4	0	5	252	4	007	6
417		19		974.678	1	.885	2	035	12	0	1	0	12	007	15
-T 1 /		10	IIIIav	U1 T.U1U		.000			14				14		

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC				LC	Torque[k-ft]	LC		LC	z-z Mome	
418			min	-986.522	3	.188	15	-54.502	4	0	5	267	4	007	6
419	M11	1	max	415.793	2	7.857	6	3.57	4	0	1	0	12	.007	6
420			min	-555.622	3	1.837	15	173	1	0	4	029	4	.002	15
421		2	max	415.623	2	7.09	6	4.109	4	0	1	0	12	.004	2
422			min	-555.75	3	1.656	15	173	1	0	4	027	4	0	15
423		3	max		2	6.323	6	4.647	4	0	1	0	12	.002	2
424			min	-555.878	3	1.476	15	173	1	0	4	025	4	0	3
425		4	max		2	5.556	6	5.186	4	0	1	0	12	0	2
426		1	min	-556.006	3	1.296	15	173	1	0	4	023	4	002	3
427		5	max		2	4.788	2 6	5.725	4	0	1	0	12	0	15
428		5		-556.133	3	1.115	15	173	1	0	4	021	4	003	4
		-	min										_		
429		6	max		2	4.021	6	6.264	4	0	1	0	12	001	15
430		_	min	-556.261	3	.935	15	173	1	0	4	018	4	005	4
431		7	max		2	3.254	6	6.802	4	0	1	0	12	002	15
432			min	-556.389	3	.755	15	173	1	0	4	016	4	007	4
433		8	max	414.601	2	2.487	6	7.341	4	0	_1_	0	12	002	15
434			min	-556.517	3	.574	15	173	1	0	4	013	4	008	4
435		9	max		2	1.72	6	7.88	4	0	1	0	12	002	15
436			min	-556.644	3	.394	15	173	1	0	4	009	4	009	4
437		10	max	414.26	2	.952	6	8.419	4	0	1	0	12	002	15
438			min	-556.772	3	.213	15	173	1	0	4	006	4	009	4
439		11	max		2	.292	2	8.957	4	0	1	0	12	002	15
440			min	-556.9	3	053	3	173	1	0	4	002	4	01	4
441		12	max		2	147	15	9.496	4	0	1	.002	5	002	15
442		12	min	-557.028	3	583	4	173	1	0	4	001	1	01	4
443		13			2	328	15	10.035	4	0	1	.006	5	002	15
		13	max	-557.156											
444		4.4	min		3	-1.35	4	173	1	0	4	001	1	009	4
445		14	max		2	508	15	10.574	4	0	1	.01	5	002	15
446		4.5	min	-557.283	3	-2.118	4	173	1	0	4	001	1	008	4
447		15	max		2	688	15	11.112	4	0	1	.015	5	002	15
448			min	-557.411	3	-2.885	4	173	1	0	4	001	1	007	4
449		16	max		2	869	15	11.651	4	0	1	.019	5	001	15
450			min		3	-3.652	4	173	1	0	4	002	1	006	4
451		17	max	413.068	2	-1.049	15	12.19	4	0	1	.024	5	001	15
452			min	-557.667	3	-4.419	4	173	1	0	4	002	1	004	4
453		18	max	412.897	2	-1.229	15	12.729	4	0	1	.03	4	0	15
454			min	-557.794	3	-5.186	4	173	1	0	4	002	1	002	4
455		19	max	412.727	2	-1.41	15	13.267	4	0	1	.035	4	0	1
456			min	-557.922	3	-5.954	4	173	1	0	4	002	1	0	1
457	M12	1		1109.058	1	0	1	12.195	1	0	1	.025	4	0	1
458				-86.233	3	0	1	-280.546		Ö	1	001	1	0	1
459		2		1109.228	1	0	1	12.195	1	0	1	0	1	0	1
460			min		3	0	1	-280.693		0	1	007	4	0	1
461		3		1109.398	1	0	1	12.195	1	0	1	.002	1	0	1
462		3		-85.977		0	1			0	1			0	1
		4	min		3			-280.841	4			039	4		
463		4		1109.569	1	0	1	12.195	1	0	1	.003	1	0	1
464		_	min		3	0	1_	-280.988		0	1_	071	4	0	1
465		5		1109.739		0	1	12.195	1	0	1	.004	1	0	1
466			min	-85.721	3	0	1	-281.136		0	1	104	4	0	1
467		6		1109.909	1_	0	1_	12.195	1	0	_1_	.006	1	0	1
468			min	-85.594	3	0	1	-281.284	4	0	1	136	4	0	1
469		7	max	1110.08	1	0	1	12.195	1	0	1	.007	1	0	1
470			min	-85.466	3	0	1	-281.431	4	0	1	168	4	0	1
471		8	max		1	0	1	12.195	1	0	1	.009	1	0	1
472			min	-85.338	3	0	1	-281.579	4	0	1	201	4	0	1
473		9	max		1	0	1	12.195	1	0	1	.01	1	0	1
474			min	-85.21	3	0	1	-281.727	4	0	1	233	4	0	1
.,,				00121				2011121		•		00			

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

		Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1478			10					-								_
478											0	_				1
489			11					_								
ABNO						3		1		4	0	1		4	0	1
481			12									_		_		
482						3	0	1		4	0	1		4	0	1
483			13	max	1111.102	1	0	1		_	0	1		_1_	0	1
Max min 84.6572 3						3	0	1		4	0	1		4	0	1
486	483		14	max	1111.272	1	0	1	12.195	1	0	1	.017	1	0	1
486	484			min	-84.572	3	0	1	-282.465	4	0	1	395	4	0	1
488	485		15	max	1111.443	1	0	1	12.195	1	0	1	.018	1	0	1
488	486			min	-84.444	3	0	1	-282.612	4	0	1	427	4	0	1
488	487		16	max	1111.613	1	0	1	12.195	1	0	1	.02	1	0	1
488	488			min	-84.316	3	0	1		4	0	1	46	4	0	1
490			17					1				1				1
491						3		1		4		1		4	0	1
492			18	max			0	1		1	0	1		1	0	1
493								1		4		1		4		1
May			19			_		1			-	1			1	1
496 M1 1 max 185.565 1 551.139 3 50.196 5 0 1 .287 1 0 3 .094 5 .011 1 497 2 max 186.17 1 550.165 3 51.438 5 0 1 .224 1 .216 1 1 498 min -8.607 5 .431.282 1 -120.177 1 0 3 .067 5 .221 3 500 min -203.282 2 -389.716 3 -119.666 1 0 1 .04 5 .569 3 501 4 max 339.03 3 477.754 1 7.734 5 0 3 .037 1 18 1 502 min -202.677 2 -391.663 3 -119.666 1 0 1 .037 5 .363 3 1 19.666 <td></td> <td></td> <td>1.0</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			1.0					-								
May May		M1	1					_				_		_	_	_
497 2 max 186.17 1 550.165 3 51.438 5 0 1 .224 1 .216 1 498 min -8.607 5 -431.282 1 -120.177 1 0 3 -067 5 -291 3 499 3 max 338.576 3 479.052 1 6.493 5 0 3 .161 1 .433 1 500 min -203.282 2 -389.716 3 -119.666 1 0 1 -037 5 -569 3 501 4 max 339.084 3 476.456 1 8.975 5 0 3 .034 1 -003 15 504 4 min -202.071 2 -391.633 3 -119.666 1 0 1 -032 5 -157 3 505 6 max 339.93		1411										_				
198			2							_						_
1																
500			3													
501			-													_
502			1													
503 5 max 339.484 3 476.456 1 8.975 5 0 3 .034 1 003 15 504 min -202.071 2 -391.663 3 -119.666 1 0 1 032 5 157 3 505 6 max 339.938 3 475.158 1 10.217 5 0 3 001 12 .05 3 506 min -201.466 2 -392.637 3 -119.666 1 0 1 034 4 323 1 507 7 max 340.922 3 3.61 11.458 5 0 3 004 12 .257 3 508 min -200.255 2 -393.61 3 -119.666 1 0 1 092 1 573 1 510 min -200.255 2 -394.584			4													
504 min -202.071 2 -391.663 3 -119.666 1 0 1 032 5 157 3 505 6 max 339.938 3 475.158 1 10.217 5 0 3 001 12 .05 3 506 min -201.466 2 -392.637 3 -119.666 1 0 1 034 4 -323 1 507 7 max 340.992 3 473.859 1 11.458 5 0 3 004 12 .257 3 508 min -200.861 2 -393.61 3 -119.666 1 0 1 092 1 573 1 509 8 max 340.848 3 472.561 1 12.7 5 0 3 008 1 553 1 510 min -22.476 2			-								-				1	
505 6 max 339.938 3 475.158 1 10.217 5 0 3 001 12 .05 3 506 min -201.466 2 -392.637 3 -119.666 1 0 1 034 4 323 1 508 min -200.661 2 -393.61 3 -119.666 1 0 1 092 1 573 1 509 8 max 340.846 3 472.561 1 12.7 5 0 3 008 12 .465 3 510 min -200.255 2 -394.584 3 -119.666 1 0 1 -155 1 .823 1 511 min -122.476 2 .392 15 -173.93 1 0 3 -136 5 -938 1 513 10 max 354.291 3			5													
Decoration			6							•		_				
507 7 max 340.392 3 473.859 1 11.458 5 0 3 004 12 .257 3 508 min -200.861 2 -393.61 3 -119.666 1 0 1 092 1 573 1 509 8 max 340.846 3 472.561 1 12.7 5 0 3 008 12 .465 3 510 min -200.255 2 -394.584 3 -119.666 1 0 1 155 1 823 1 511 9 max 353.837 3 34.922 2 58.023 5 0 9 .091 1 .545 3 512 min -122.476 2 .392 15 -173.93 1 0 3 -136 5 -938 1 513 11 max 354.745			-													
508 min -200.861 2 -393.61 3 -119.666 1 0 1 092 1 573 1 509 8 max 340.846 3 472.561 1 12.7 5 0 3 008 12 .465 3 510 min -200.255 2 -394.584 3 -119.666 1 0 1 -155 1 -823 1 511 9 max 353.837 3 34.922 2 58.023 5 0 9 .091 1 .545 3 512 min -122.476 2 .392 15 -173.93 1 0 3 136 5 938 1 513 10 max 354.745 3 323.252 2 50.264 5 0 9 0 12 .514 3 516 min -121.265 2 <t< td=""><td></td><td></td><td>7</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td></t<>			7													_
509 8 max 340.846 3 472.561 1 12.7 5 0 3 008 12 .465 3 510 min -200.255 2 -394.584 3 -119.666 1 0 1 -155 1 823 1 511 9 max 353.837 3 34.922 2 58.023 5 0 9 .091 1 545 3 512 min -122.476 2 .392 15 -173.93 1 0 3 136 5 938 1 513 10 max 354.291 3 33.623 2 59.264 5 0 9 0 12 .529 3 514 min -121.87 2 0 5 -173.93 1 0 3 106 4 947 1 515 11 max 364.745 3 <td></td> <td></td> <td>-</td> <td></td>			-													
510 min -200.255 2 -394.584 3 -119.666 1 0 1 155 1 823 1 511 9 max 353.837 3 34.922 2 58.023 5 0 9 .091 1 .545 3 512 min -122.476 2 .392 15 -173.93 1 0 3 -136 5 938 1 513 10 max 354.291 3 33.623 2 59.264 5 0 9 0 12 .529 3 514 min -121.87 2 0 5 -173.93 1 0 3 106 4 947 1 515 11 max 354.745 3 32.325 2 60.506 5 0 9 005 12 .514 3 516 min -121.265 2 -1.6																_
511 9 max 353.837 3 34.922 2 58.023 5 0 9 .091 1 .545 3 512 min -122.476 2 .392 15 -173.93 1 0 3 136 5 938 1 513 10 max 354.291 3 33.623 2 59.264 5 0 9 0 12 .529 3 514 min -121.87 2 0 5 -773.93 1 0 3 106 4 947 1 515 11 max 354.745 3 32.325 2 60.506 5 0 9 005 12 .514 3 516 min -12.265 2 -1.608 4 -173.93 1 0 3 094 4 956 1 517 12 max 367.677 3			8													
512 min -122.476 2 .392 15 -173.93 1 0 3 136 5 938 1 513 10 max 354.291 3 33.623 2 59.264 5 0 9 0 12 .529 3 514 min -121.87 2 0 5 -173.93 1 0 3 106 4 947 1 515 11 max 354.745 3 32.325 2 60.506 5 0 9 005 12 .514 3 516 min -121.265 2 -1.608 4 -173.93 1 0 3 094 4 956 1 517 12 max 367.677 3 248.888 3 156.249 5 0 2 .153 1 .447 3 518 min -70.649 10 -50																_
513 10 max 354.291 3 33.623 2 59.264 5 0 9 0 12 .529 3 514 min -121.87 2 0 5 -173.93 1 0 3 -,106 4 -,947 1 515 11 max 354.745 3 32.325 2 60.506 5 0 9 -,005 12 .514 3 516 min -121.265 2 -1.608 4 -173.93 1 0 3 -,094 4 -,956 1 517 12 max 367.677 3 248.888 3 156.249 5 0 2 .153 1 .447 3 518 min -70.649 10 -509.321 1 -116.844 1 0 3 -,212 5 -,845 1 519 3 13 3 247.915			9_													
514 min -121.87 2 0 5 -173.93 1 0 3 106 4 947 1 515 11 max 354.745 3 32.325 2 60.506 5 0 9 005 12 .514 3 516 min -121.265 2 -1.608 4 -173.93 1 0 3 094 4 956 1 517 12 max 367.677 3 248.888 3 156.249 5 0 2 .153 1 .447 3 518 min -70.649 10 -509.321 1 -116.844 1 0 3 -212 5 845 1 519 13 max 368.131 3 247.915 3 157.49 5 0 2 .091 1 .316 3 520 min -70.145 10 <			1.0													
515 11 max 354.745 3 32.325 2 60.506 5 0 9 005 12 .514 3 516 min -121.265 2 -1.608 4 -173.93 1 0 3 094 4 956 1 517 12 max 367.677 3 248.888 3 156.249 5 0 2 .153 1 .447 3 518 min -70.649 10 -509.321 1 -116.844 1 0 3 -212 5 845 1 519 13 max 368.131 3 247.915 3 157.49 5 0 2 .091 1 .316 3 520 min -70.145 10 -510.619 1 -116.844 1 0 3 129 5 575 1 521 14 max 368.585			10													
516 min -121.265 2 -1.608 4 -173.93 1 0 3 094 4 956 1 517 12 max 367.677 3 248.888 3 156.249 5 0 2 .153 1 .447 3 518 min -70.649 10 -509.321 1 -116.844 1 0 3 212 5 845 1 519 13 max 368.131 3 247.915 3 157.49 5 0 2 .091 1 .316 3 520 min -70.145 10 -510.619 1 -116.844 1 0 3 129 5 575 1 521 14 max 368.585 3 246.941 3 158.732 5 0 2 .03 1 .186 3 522 min -69.64 10										-		_		_		
517 12 max 367.677 3 248.888 3 156.249 5 0 2 .153 1 .447 3 518 min -70.649 10 -509.321 1 -116.844 1 0 3 212 5 845 1 519 13 max 368.131 3 247.915 3 157.49 5 0 2 .091 1 .316 3 520 min -70.145 10 -510.619 1 -116.844 1 0 3 129 5 575 1 521 14 max 368.585 3 246.941 3 158.732 5 0 2 .03 1 .186 3 522 min -69.64 10 -511.917 1 -116.844 1 0 3 045 5 306 1 523 15 max 369.039 3 245.967 3 159.973 5 0 2 .039 5			11													
518 min -70.649 10 -509.321 1 -116.844 1 0 3 212 5 845 1 519 13 max 368.131 3 247.915 3 157.49 5 0 2 .091 1 .316 3 520 min -70.145 10 -510.619 1 -116.844 1 0 3 129 5 575 1 521 14 max 368.585 3 246.941 3 158.732 5 0 2 .03 1 .186 3 522 min -69.64 10 -511.917 1 -116.844 1 0 3 045 5 306 1 523 15 max 369.039 3 245.967 3 159.973 5 0 2 .039 5 .055 3 524 min -69.136 10 <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						_				_						
519 13 max 368.131 3 247.915 3 157.49 5 0 2 .091 1 .316 3 520 min -70.145 10 -510.619 1 -116.844 1 0 3 129 5 575 1 521 14 max 368.585 3 246.941 3 158.732 5 0 2 .03 1 .186 3 522 min -69.64 10 -511.917 1 -116.844 1 0 3 045 5 306 1 523 15 max 369.039 3 245.967 3 159.973 5 0 2 .039 5 .055 3 524 min -69.136 10 -513.216 1 -116.844 1 0 3 032 1 035 1 525 16 max 369.493 <td></td> <td></td> <td>12</td> <td></td>			12													
520 min -70.145 10 -510.619 1 -116.844 1 0 3 129 5 575 1 521 14 max 368.585 3 246.941 3 158.732 5 0 2 .03 1 .186 3 522 min -69.64 10 -511.917 1 -116.844 1 0 3 045 5 306 1 523 15 max 369.039 3 245.967 3 159.973 5 0 2 .039 5 .055 3 524 min -69.136 10 -513.216 1 -116.844 1 0 3 032 1 035 1 525 16 max 369.493 3 244.994 3 161.214 5 0 2 .123 5 .253 2 526 min -68.631 10 <td></td> <td>_</td>																_
521 14 max 368.585 3 246.941 3 158.732 5 0 2 .03 1 .186 3 522 min -69.64 10 -511.917 1 -116.844 1 0 3 045 5 306 1 523 15 max 369.039 3 245.967 3 159.973 5 0 2 .039 5 .055 3 524 min -69.136 10 -513.216 1 -116.844 1 0 3 032 1 035 1 525 16 max 369.493 3 244.994 3 161.214 5 0 2 .123 5 .253 2 526 min -68.631 10 -514.514 1 -116.844 1 0 3 094 1 074 3 527 17 max 369.947 3 244.02 3			13													
522 min -69.64 10 -511.917 1 -116.844 1 0 3 045 5 306 1 523 15 max 369.039 3 245.967 3 159.973 5 0 2 .039 5 .055 3 524 min -69.136 10 -513.216 1 -116.844 1 0 3 032 1 035 1 525 16 max 369.493 3 244.994 3 161.214 5 0 2 .123 5 .253 2 526 min -68.631 10 -514.514 1 -116.844 1 0 3 094 1 074 3 527 17 max 369.947 3 244.02 3 162.456 5 0 2 .209 5 .519 2 528 min -68.127 10 <td></td> <td></td> <td></td> <td>min</td> <td></td> <td>10</td> <td></td> <td>1</td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td>5</td> <td></td> <td>_</td>				min		10		1			0			5		_
523 15 max 369.039 3 245.967 3 159.973 5 0 2 .039 5 .055 3 524 min -69.136 10 -513.216 1 -116.844 1 0 3 032 1 035 1 525 16 max 369.493 3 244.994 3 161.214 5 0 2 .123 5 .253 2 526 min -68.631 10 -514.514 1 -116.844 1 0 3 094 1 074 3 527 17 max 369.947 3 244.02 3 162.456 5 0 2 .209 5 .519 2 528 min -68.127 10 -515.812 1 -116.844 1 0 3 155 1 203 3 529 18 max 17.203 5 511.908 2 -6.069 12 0 5 .195 5 .261 2			14	max		3		3		5	0	2		_1_		3
524 min -69.136 10 -513.216 1 -116.844 1 0 3 032 1 035 1 525 16 max 369.493 3 244.994 3 161.214 5 0 2 .123 5 .253 2 526 min -68.631 10 -514.514 1 -116.844 1 0 3 094 1 074 3 527 17 max 369.947 3 244.02 3 162.456 5 0 2 .209 5 .519 2 528 min -68.127 10 -515.812 1 -116.844 1 0 3 155 1 203 3 529 18 max 17.203 5 511.908 2 -6.069 12 0 5 .195 5 .261 2 530 min -186.386 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td>10</td> <td></td> <td>1</td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td>5</td> <td></td> <td></td>						10		1			0			5		
524 min -69.136 10 -513.216 1 -116.844 1 0 3 032 1 035 1 525 16 max 369.493 3 244.994 3 161.214 5 0 2 .123 5 .253 2 526 min -68.631 10 -514.514 1 -116.844 1 0 3 094 1 074 3 527 17 max 369.947 3 244.02 3 162.456 5 0 2 .209 5 .519 2 528 min -68.127 10 -515.812 1 -116.844 1 0 3 155 1 203 3 529 18 max 17.203 5 511.908 2 -6.069 12 0 5 .195 5 .261 2 530 min -186.386 1 <td></td> <td></td> <td>15</td> <td>max</td> <td>369.039</td> <td>3</td> <td></td> <td>3</td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td>5</td> <td>.055</td> <td>3</td>			15	max	369.039	3		3			0			5	.055	3
525 16 max 369.493 3 244.994 3 161.214 5 0 2 .123 5 .253 2 526 min -68.631 10 -514.514 1 -116.844 1 0 3 094 1 074 3 527 17 max 369.947 3 244.02 3 162.456 5 0 2 .209 5 .519 2 528 min -68.127 10 -515.812 1 -116.844 1 0 3 155 1 203 3 529 18 max 17.203 5 511.908 2 -6.069 12 0 5 .195 5 .261 2 530 min -186.386 1 -204.985 3 -132.327 4 0 2 221 1 101 3	524			min	-69.136	10	-513.216	1	-116.844	1	0	3	032	1	035	
526 min -68.631 10 -514.514 1 -116.844 1 0 3 094 1 074 3 527 17 max 369.947 3 244.02 3 162.456 5 0 2 .209 5 .519 2 528 min -68.127 10 -515.812 1 -116.844 1 0 3 155 1 203 3 529 18 max 17.203 5 511.908 2 -6.069 12 0 5 .195 5 .261 2 530 min -186.386 1 -204.985 3 -132.327 4 0 2 221 1 101 3			16			3		3				2		5		2
527 17 max 369.947 3 244.02 3 162.456 5 0 2 .209 5 .519 2 528 min -68.127 10 -515.812 1 -116.844 1 0 3 155 1 203 3 529 18 max 17.203 5 511.908 2 -6.069 12 0 5 .195 5 .261 2 530 min -186.386 1 -204.985 3 -132.327 4 0 2 221 1 101 3						10										
528 min -68.127 10 -515.812 1 -116.844 1 0 3 155 1 203 3 529 18 max 17.203 5 511.908 2 -6.069 12 0 5 .195 5 .261 2 530 min -186.386 1 -204.985 3 -132.327 4 0 2 221 1 101 3			17	max		3		3						5		
529 18 max 17.203 5 511.908 2 -6.069 12 0 5 .195 5 .261 2 530 min -186.386 1 -204.985 3 -132.327 4 0 2 221 1 101 3																
530 min -186.386 1 -204.985 3 -132.327 4 0 2221 1101 3			18					2						5		
																3
	531		19			5	510.609	2	-6.069	12	0	5	.141	5	.008	3

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]				Torque[k-ft]	LC		LC	z-z Mome	LC
532			min	-185.781	1	-205.959	3	-131.085	4	0	2	289	1	01	1
533	M5	1	max	399.966	1	1835.721	3	99.951	5	0	1	0	1	.023	1
534			min	15.527	12	-1451.675	1	0	1	0	4	214	4	0	3
535		2	max	400.571	1	1834.747	3	101.192	5	0	1	0	1	.789	1
536			min	15.83	12	-1452.973	1	0	1	0	4	161	4	968	3
537		3		1089.801	3	1470.892	1	59.816	4	0	4	0	1	1.521	1
538			min		2	-1260.853	3	0	1	0	1	108	4	-1.899	3
539		4		1090.255		1469.594	1	61.057	4	0	4	0	1	.745	1
540			min	-738.09	2	-1261.827	3	0	1	0	1	076	4	-1.234	3
541		5		1090.709	3	1468.295	1	62.298	4	0	4	0	1	.006	9
542			min	-737.485	2	-1262.8	3	02.230	1	0	1	044	4	568	3
543		6				1466.997		63.54	4		4	0	1	.099	3
		- 6		726.970			1		1	0					
544		-	min		2	-1263.774	3	0		0	1_	011	5	804	1
545		7		1091.617	3	1465.699	1	64.781	4	0	4_	.023	4	.766	3
546			min	-736.274	2	-1264.748	3	0	1	0	1_	0	1	-1.578	1
547		8		1092.071	3	1464.401	1	66.023	4	0	_4_	.058	4	1.434	3
548			min			-1265.722	3	0	1	0	_1_	0	1	-2.351	1
549		9		1115.01	3	115.731	2	188.408	4	0	_1_	0	1	1.654	3
550			min	-576.176	2	.393	15	0	1	0	1_	197	4	-2.66	1
551		10	max	1115.464	3	114.433	2	189.649	4	0	_1_	0	1	1.598	3
552			min	-575.571	2	.002	15	0	1	0	1_	097	4	-2.693	1
553		11	max	1115.918	3	113.135	2	190.891	4	0	1	.003	4	1.543	3
554			min	-574.965	2	-1.422	6	0	1	0	1	0	1	-2.725	1
555		12		1138.974	3	795.005	3	225.424	4	0	1	0	1	1.353	3
556			min	-415.491	2	-1588.571	1	0	1	0	4	31	4	-2.429	1
557		13		1139.428		794.031	3	226.665	4	0	1	0	1	.934	3
558			min			-1589.87	1	0	1	0	4	19	4	-1.59	1
559		14		1139.882	3	793.057	3	227.907	4	0	1	0	1	.515	3
560		17	min	-414.28	2	-1591.168	1	0	1	0	4	07	4	751	1
561		15		1140.336	3	792.084	3	229.148	4	0	1	.05	4	.148	2
562		13	min	-413.675	2	-1592.466	1	0	1	0	4	0	1	004	13
563		16	max		3	791.11	3	230.39	4	0	1	.171	4	.972	2
		10				-1593.764	1		1				1		3
564		47	min		2			0	-	0	4_	0		321	
565		17		1141.244	3	790.136	3	231.631	4	0	1_	.293	4	1.796	2
566		40	min	-412.464	2	-1595.063	1	0	1	0	4_	0	1	738	3
567		18	max		12	1722.74	2	0	1	0	4_	.317	4	.926	2
568		10	min	-400.139	1	-701.551	3	-29.832	5	0	1_	0	1	386	3
569		19	max		12	1721.442	2	0	1_	0	_4_	.303	4	.02	1
570			min	-399.534	1	-702.525	3	-28.59	5	0	1_	0	1	016	3
571	<u>M9</u>	1	max		1	551.139	3	120.177	1_	0	3	014	12	0	3
572			min	8.089	12			5.9	12	0	4	287	1	011	1
573		2	max		1	550.165	3	120.177	1	0	3_	011	12	.216	1
574			min	8.392	12	-431.282	1	5.9	12	0	4	224	1	291	3
575		3	max		3	479.052	1	119.666	1	0	1	008	12	.433	1
576			min	-203.282	2	-389.716	3	5.864	12	0	3	161	1	569	3
577		4	max	339.03	3	477.754	1	119.666	1	0	1	005	12	.18	1
578			min	-202.677	2	-390.689	3	5.864	12	0	3	097	1	363	3
579		5	max	339.484	3	476.456	1	119.666	1	0	1	002	12	003	15
580			min	-202.071	2	-391.663	3	5.864	12	0	3	045	4	157	3
581		6		339.938	3	475.158	1	119.666	1	0	1	.029	1	.05	3
582		Ĭ	min	-201.466	2	-392.637	3	5.864	12	0	3	024	5	323	1
583		7		340.392	3	473.859	1	119.666	1	0	1	.092	1	.257	3
584			min		2	-393.61	3	5.864	12	0	3	01	5	573	1
585		8	max		3	472.561	1	119.666	1	0	<u> </u>	.155	1	.465	3
586		0	min	-200.255	2	-394.584	3	5.864	12	0	3	.003	15	823	1
587		9			3	34.922	2	173.93	1		3	004	12	<u>623</u> .545	3
		9	max							0					
588			Triin	-122.476	2	.399	15	8.363	12	0	9	169	4	938	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	354.291	3	33.623	2	173.93	1	0	3	.001	1	.529	3
590			min	-121.87	2	.007	15	8.363	12	0	9	106	4	947	1
591		11	max	354.745	3	32.325	2	173.93	1	0	3	.093	1	.514	3
592			min	-121.265	2	-1.558	6	8.363	12	0	9	062	5	956	1
593		12	max	367.677	3	248.888	3	199.341	4	0	3	007	12	.447	3
594			min	-70.649	10	-509.321	1	5.506	12	0	2	268	4	845	1
595		13	max	368.131	3	247.915	3	200.582	4	0	3	004	12	.316	3
596			min	-70.145	10	-510.619	1	5.506	12	0	2	162	4	575	1
597		14	max	368.585	3	246.941	3	201.824	4	0	3	001	12	.186	3
598			min	-69.64	10	-511.917	1	5.506	12	0	2	056	4	306	1
599		15	max	369.039	3	245.967	3	203.065	4	0	3	.051	4	.055	3
600			min	-69.136	10	-513.216	1	5.506	12	0	2	.001	12	035	1
601		16	max	369.493	3	244.994	3	204.306	4	0	3	.158	4	.253	2
602			min	-68.631	10	-514.514	1	5.506	12	0	2	.004	12	074	3
603		17	max	369.947	3	244.02	3	205.548	4	0	3	.266	4	.519	2
604			min	-68.127	10	-515.812	1	5.506	12	0	2	.007	12	203	3
605		18	max	-8.278	12	511.908	2	128.547	1	0	2	.275	4	.261	2
606			min	-186.386	1	-204.985	3	-86.782	5	0	3	.01	12	101	3
607	·	19	max	-7.975	12	510.609	2	128.547	1	0	2	.289	1	.008	3
608			min	-185.781	1	-205.959	3	-85.54	5	0	3	.014	12	01	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	.001	1	.094	1	.006	3	7.556e-3	1	NC	1	NC	1
2			min	679	4	009	3	003	2	-8.747e-4	3	NC	1	NC	1
3		2	max	.001	1	.293	3	.049	1	8.732e-3	1	NC	5	NC	2
4			min	679	4	123	1	023	5	-8.801e-4	3	833.167	3	5329.631	1
5		3	max	0	1	.538	3	.118	1	9.908e-3	1	NC	5	NC	3
6			min	679	4	296	1	028	5	-8.855e-4	3	460.301	3	2166.908	1
7		4	max	0	1	.687	3	.178	1	1.108e-2	1	NC	5	NC	3
8			min	679	4	393	1	019	5	-8.909e-4	3	361.849	3	1429.201	1
9		5	max	0	1	.722	3	.21	1	1.226e-2	1	NC	5	NC	3
10			min	679	4	402	1	003	5	-8.963e-4	3	344.594	3	1214.467	1
11		6	max	0	1	.646	3	.203	1	1.344e-2	1	NC	5	NC	3
12			min	679	4	325	1	.009	15	-9.017e-4	3	384.955	3	1254.958	1
13		7	max	0	1	.48	3	.16	1	1.461e-2	1	NC	5	NC	3
14			min	679	4	18	1	.012	10	-9.071e-4	3	514.8	3	1594.293	1
15		8	max	0	1	.271	3	.094	1	1.579e-2	1	NC	4	NC	3
16			min	679	4	01	9	.004	10	-9.125e-4	3	901.175	3	2740.534	1
17		9	max	0	1	.156	2	.032	4	1.696e-2	1	NC	4	NC	2
18			min	679	4	.005	15	004	10	-9.179e-4	3	2823.844	3	7947.731	4
19		10	max	0	1	.224	1	.019	3	1.814e-2	1	NC	3	NC	1
20			min	679	4	006	3	012	2	-9.233e-4	3	1934.873	1	NC	1
21		11	max	0	12	.156	2	.028	1	1.696e-2	1	NC	4	NC	2
22			min	679	4	.005	15	019	5	-9.179e-4	3	2823.844	3	9695.748	1
23		12	max	0	12	.271	3	.094	1	1.579e-2	1	NC	4	NC	3
24			min	679	4	01	9	019	5	-9.125e-4	3	901.175	3	2740.534	1
25		13	max	0	12	.48	3	.16	1	1.461e-2	1	NC	5	NC	3
26			min	679	4	18	1	006	5	-9.071e-4	3	514.8	3	1594.293	1
27		14	max	0	12	.646	3	.203	1	1.344e-2	1	NC	5	NC	3
28			min	679	4	325	1	.008	15	-9.017e-4	3	384.955	3	1254.958	1
29		15	max	0	12	.722	3	.21	1	1.226e-2	1	NC	5	NC	3
30			min	679	4	402	1	.016	12	-8.963e-4	3	344.594	3	1214.467	1
31		16	max	0	12	.687	3	.178	1	1.108e-2	1	NC	5	NC	3
32			min	679	4	393	1	.013	12	-8.909e-4	3	361.849	3	1429.201	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC			(n) L/z Ratio	
33		17	max	0	12	.538	3	.118	1	9.908e-3	1_	NC	5	NC	3
34			min	679	4	296	1	.01	12	-8.855e-4	3	460.301	3	2166.908	1
35		18	max	0	12	.293	3	.049	1	8.732e-3	1	NC	5	NC	2
36			min	679	4	123	1	.003	10	-8.801e-4	3	833.167	3	5329.631	1
37		19	max	0	12	.094	1	.006	3	7.556e-3	1	NC	1	NC	1
38			min	679	4	009	3	003	2	-8.747e-4	3	NC	1	NC	1
39	M14	1	max	0	1	.161	3	.005	3	4.723e-3	1	NC	1	NC	1
40	IVIT		min	509	4	308	1	002	2	-2.905e-3		NC	1	NC	1
41		2	max	<u>.505</u> 0	1	<u></u>	3	.035	1	5.687e-3	1	NC	5	NC	2
42				509	4	638	1	034	5	-3.554e-3	3	763.547	1	7118.956	5
		3	min				_				-		_		
43		3	max	0	1	.676	3	.096	1	6.651e-3	1_	NC	<u>15</u>	NC	3
44			min	509	4	92	1	04	5	-4.203e-3	3_	411.49	1_	2688.902	1
45		4	max	0	1	.836	3	.154	1	7.615e-3	1_	NC	15	NC	3
46			min	509	4	-1.122	1	027	5	-4.852e-3	3	309.451	1_	1663.069	1
47		5	max	0	1	.907	3	.187	1	8.579e-3	<u>1</u>	9593.466	<u>15</u>	NC	3
48			min	509	4	-1.227	1	003	5	-5.501e-3	3	274.109	1	1364.629	1
49		6	max	0	1	.889	3	.185	1	9.543e-3	1	9557.662	15	NC	3
50			min	509	4	-1.235	1	.015	12	-6.15e-3	3	271.8	1	1379.195	1
51		7	max	0	1	.798	3	.148	1	1.051e-2	1	NC	15	NC	3
52			min	509	4	-1.162	1	.011	10	-6.799e-3	3	295.155	1	1724.794	1
53		8	max	0	1	.665	3	.088	1	1.147e-2	1	NC	15	NC	3
54			min	509	4	-1.04	1	.004	10	-7.448e-3	3	344.49	1	2926.578	1
55		9	max	<u>509</u>	1	.538	3	.046	4	1.243e-2	1	NC	15	NC	1
		- 9			4		1	004		-8.097e-3		413.884	1	5497.954	4
56		40	min	509		<u>917</u>			10		3		•		
57		10	max	0	1	.479	3	.017	3	1.34e-2	1_	NC 457,004	5_	NC	1
58			min	509	4	<u>859</u>	1	011	2	-8.746e-3	3	457.661	1_	NC	1
59		11	max	0	12	.538	3	.027	1	1.243e-2	1	NC	<u>15</u>	NC	1
60			min	509	4	917	1	033	5	-8.097e-3	3_	413.884	<u>1</u>	7517.72	5
61		12	max	0	12	.665	3	.088	1	1.147e-2	_1_	NC	15	NC	3
62			min	509	4	-1.04	1	038	5	-7.448e-3	3	344.49	1_	2926.578	1
63		13	max	0	12	.798	3	.148	1	1.051e-2	1_	NC	15	NC	3
64			min	509	4	-1.162	1	023	5	-6.799e-3	3	295.155	1	1724.794	1
65		14	max	0	12	.889	3	.185	1	9.543e-3	1	9557.294	15	NC	3
66			min	509	4	-1.235	1	0	15	-6.15e-3	3	271.8	1	1379.195	1
67		15	max	0	12	.907	3	.187	1	8.579e-3	1	9593.002	15	NC	3
68		1.0	min	509	4	-1.227	1	.014	12	-5.501e-3	3	274.109	1	1364.629	1
69		16	max	0	12	.836	3	.154	1	7.615e-3	1	NC	15	NC	3
70		10	min	51	4	-1.122	1	.011	12	-4.852e-3		309.451	1	1663.069	1
71		17		51	12	.676	3	.096	1	6.651e-3	<u> </u>	NC	15	NC	3
		17	max				1					411.49			1
72		40	min	<u>51</u>	4	92		.008	12	-4.203e-3	3		1_	2688.902	
73		18	max		12	.441	3	.048	4	5.687e-3	1	NC	5	NC	2
74		10	min	<u>51</u>	4	638	1	.002		-3.554e-3		763.547	_1_	5290.627	4
75		19	max	0	12	.161	3	.005	3	4.723e-3	_1_	NC	1_	NC	1
76			min	51	4	308	1	002	2	-2.905e-3	3	NC	1_	NC	1
77	<u>M15</u>	1	max	0	12	.165	3	.005	3	2.443e-3	3_	NC	_1_	NC	1
78			min	416	4	307	1	002	2	-4.842e-3	1_	NC	1_	NC	1
79		2	max	0	12	.333	3	.035	1	2.993e-3	3	NC	5	NC	2
80			min	416	4	675	1	045	5	-5.838e-3	1	686.117	1	5413.907	5
81		3	max	0	12	.478	3	.096	1	3.544e-3	3	NC	15	NC	3
82			min	416	4	987	1	054	5	-6.833e-3	1	370.711	1	2681.615	1
83		4	max	0	12	.584	3	.154	1	4.094e-3	3	NC	15	NC	3
84			min	416	4	-1.207	1	038	5	-7.828e-3	1	280.025	1	1659.585	
85		5	max	0	12	.643	3	.187	1	4.645e-3	3	9606.711	15	NC	3
86			min	416	4	-1.316	1	008	5	-8.823e-3	1	249.756	1	1362.049	
		6			12		-								
87		6	max	0		.654	3	.185	1	5.195e-3	3_	9573.472	<u>15</u>		3
88		-	min	416	4	-1.314	1	.014	12	-9.818e-3	1_	250.238	1_	1376.501	1
89		7	max	0	12	.626	3	.149	1	5.745e-3	3_	NC	15	NC	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio	LC		LC
90			min	416	4	-1.22	1	.011	10	-1.081e-2	1_	276.02	1_	1720.677	1
91		8	max	0	12	.572	3	.089	1	6.296e-3	3	NC	<u>15</u>	NC	3
92			min	416	4	-1.072	1	.004	10	-1.181e-2	1	329.628	1	2915.272	1
93		9	max	0	12	.516	3	.056	4	6.846e-3	3	NC	15	NC	1
94			min	416	4	925	1	003	10	-1.28e-2	1	407.692	1	4514.975	4
95		10	max	0	1	.489	3	.016	3	7.397e-3	3	NC	5	NC	1
96			min	416	4	857	1	011	2	-1.38e-2	1	458.892	1	NC	1
97		11	max	0	1	.516	3	.027	1	6.846e-3	3	NC	15	NC	1
98			min	416	4	925	1	043	5	-1.28e-2	1	407.692	1	5789.341	5
99		12	max	0	1	.572	3	.089	1	6.296e-3	3	NC	15	NC	3
100			min	416	4	-1.072	1	05	5	-1.181e-2	1	329.628	1	2915.272	1
101		13	max	0	1	.626	3	.149	1	5.745e-3	3	NC	15	NC	3
102			min	416	4	-1.22	1	032	5	-1.081e-2	1	276.02	1	1720.677	1
103		14	max	0	1	.654	3	.185	1	5.195e-3	3	9573.191	15	NC	3
104		17	min	416	4	-1.314	1	001	5	-9.818e-3	1	250.238	1	1376.501	1
105		15	max	0	1	.643	3	.187	1	4.645e-3	3	9606.359	15	NC	3
106		10	min	415	4	-1.316	1	.013	12	-8.823e-3	1	249.756	1	1362.049	1
107		16	max	0	1	.584	3	.154	1	4.094e-3	3	NC	15	NC	3
108		10	min	415	4	-1.207	1	.011	12	-7.828e-3	1	280.025	1	1659.585	
109		17		415 0	1	.478	3	.096	1	3.544e-3	3	NC	15	NC	3
110		17	max min	415	4	987	1	.008	12	-6.833e-3	1	370.711	1	2681.615	
111		18		_	1	.333	3	.059	4	2.993e-3	3	NC	5	NC	2
112		10	max	0 415	4	675	1	.002	10	-5.838e-3	1	686.117	1	4278.043	
113		19	min	415 0	1	.165	3	.002	3	2.443e-3	3	NC	1	NC	1
		19	max		4		1		2	-4.842e-3	1	NC NC	1	NC NC	1
114	MAG	1	min	415		307		002		4.313e-3	_		1		
115	M16	1	max	0	12	.092	1	.004	3		3	NC NC		NC NC	1
116			min	15	4	054	3	002	2	-7.046e-3	1	NC NC	<u>1</u>	NC NC	1
117		2	max	0	12	.045	3	.049	1	5.123e-3	3_	NC 057.004	5	NC 5000,000	2
118			min	15	4	182	2	035	5	-8.096e-3	1_	957.004	2	5366.209	
119		3	max	0	12	.123	3	.118	1	5.932e-3	3	NC F00.455	5_	NC 0474.055	3
120		1	min	15	4	392	2	043	5	-9.147e-3	1	532.155	2	2174.255	
121		4	max	0	12	.165	3	.178	1	6.742e-3	3	NC 400,400	5_	NC	3
122		-	min	15	4	<u>514</u>	2	031	5	-1.02e-2	1_	423.422	2	1431.385	
123		5	max	0	12	.165	3	.209	1	7.552e-3	3	NC	5	NC 1011511	3
124			min	15	4	53	2	<u>01</u>	5	-1.125e-2	1_	411.907	2	1214.511	1
125		6	max	0	12	.124	3	.203	1	8.361e-3	3	NC	5_	NC 1050.070	3
126		-	min	15	4	<u>445</u>	2	.01	15	-1.23e-2	1	478.825	2	1252.872	1
127		7	max	0	12	.052	3	<u>.161</u>	1	9.171e-3	3	NC	5	NC	3
128			min	15	4	279	2	.013	10	-1.335e-2	1	698.736	2	1587.265	
129		8	max	0	12	.001	13	.095	1	9.98e-3	3	NC	3_	NC	3
130			min	15	4	074	2	.005	10		_1_	1614.802		2710.129	
131		9	max	0	12	.137	1	.041	4	1.079e-2	3	NC	4_	NC	2
132			min	15	4	112	3	003	10	-1.545e-2	_1_	4299.317	3	6198.523	
133		10	max	0	1	.218	1	.014	3	1.16e-2	3	NC	5_	NC	1
134			min	15	4	147	3	01	2	-1.65e-2	1_	1987.07	<u>1</u>	NC	1
135		11	max	0	1	137	1	.029	1_	1.079e-2	3	NC	_4_	NC	2
136			min	15	4	112	3	028	5	-1.545e-2	_1_	4299.317	3	8960.178	
137		12	max	0	1	.001	13	.095	1	9.98e-3	3	NC	3	NC	3
138			min	15	4	074	2	029	5	-1.44e-2	1	1614.802	2	2710.129	
139		13	max	0	1	.052	3	.161	1	9.171e-3	3	NC	5	NC	3
140			min	15	4	279	2	013	5	-1.335e-2	1	698.736	2	1587.265	1
141		14	max	0	1	.124	3	.203	1	8.361e-3	3	NC	5	NC	3
142			min	15	4	445	2	.008	15	-1.23e-2	1	478.825	2	1252.872	
143		15	max	0	1	.165	3	.209	1	7.552e-3	3	NC	5	NC	3
144			min	15	4	53	2	.014	12	-1.125e-2	1	411.907	2	1214.511	1
145		16	max	0	1	.165	3	.178	1	6.742e-3	3	NC	5	NC	3
146			min	15	4	514	2	.012	12	-1.02e-2	1	423.422	2	1431.385	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r					
147		17	max	0	1	.123	3	.118	1	5.932e-3	3_	NC	5	NC	3
148			min	15	4	392	2	.008	12	-9.147e-3	1_	532.155	2	2174.255	
149		18	max	.001	1	.045	3	.053	4	5.123e-3	3_	NC	5	NC	2
150			min	15	4	182	2	.003	10	-8.096e-3	1_	957.004	2	4729.561	4
151		19	max	.001	1	.092	1	.004	3	4.313e-3	3_	NC	_1_	NC	1
152			min	15	4	054	3	002	2	-7.046e-3	1_	NC	1_	NC	1
153	<u>M2</u>	1	max	.006	1	.005	2	.009	1	1.513e-3	5_	NC	1_	NC	2
154			min	006	3	009	3	636	4	-2.581e-4	1_	NC	_1_	98.563	4
155		2	max	.006	1	.004	2	.009	1	1.617e-3	_5_	NC	_1_	NC	2
156			min	006	3	008	3	585	4	-2.421e-4	_1_	NC	1_	107.307	4
157		3	max	.005	1	.003	2	.008	1	1.721e-3	_5_	NC	_1_	NC	2
158		-	min	005	3	008	3	533	4	-2.261e-4	1_	NC	1_	117.687	4
159		4	max	.005	1	.002	2	.007	1	1.825e-3	_5_	NC	1_	NC	2
160		_	min	005	3	008	3	482	4	-2.101e-4	1_	NC	1_	130.13	4
161		5_	max	.005	1	.002	2	.006	1	1.93e-3	_5_	NC	_1_	NC 4.45.040	1
162			min	005	3	008	3	432	4	-1.941e-4	1_	NC	1_	145.212	4
163		6	max	.004	1	.001	2	.006	1	2.034e-3	5_	NC NC	1	NC 400 700	1
164		-	min	004	3	007	3	383	4	-1.781e-4	1_	NC	1_	163.733	4
165		7	max	.004	1	0	2	.005	1	2.138e-3	_5_	NC		NC 400,005	1
166		_	min	004	3	007	3	336	4	-1.621e-4	1_	NC NC	1_	186.825	4
167		8	max	.004	1	0	2	.004	1	2.242e-3	5_	NC NC	1_	NC 040.407	1
168			min	004	3	007	3	29	4	-1.461e-4	1_	NC NC	1_	216.137	4
169		9	max	.003	1	0	15	.003	1	2.346e-3	4	NC NC	1_	NC OF 4.440	1
170		10	min	003	3	006	3	247	4	-1.301e-4	1_	NC NC	1_	254.148	4
171		10	max	.003	1	0	15	.003	1	2.456e-3	4	NC NC	1	NC 204 704	1
172		4.4	min	003	3	006	3	206	4	-1.141e-4	1_	NC NC	1_	304.721	4
173		11	max	.003	3	0	15	.002	1	2.566e-3	4	NC NC	1_1	NC 274.4C2	1
174		40	min	003		005	3	168	4	-9.808e-5	1_	NC NC	1_	374.163	4
175		12	max	.002	3	0	15	.002	1	2.676e-3	4	NC NC	<u>1</u> 1	NC	1
176 177		13	min	002 .002	1	<u>005</u> 0	3 15	133 .001	1	-8.208e-5 2.786e-3	<u>1</u> 4	NC NC	1	473.343 NC	1
178		13	max	002	3	004	3	101	4	-6.608e-5	1	NC NC	1	622.357	4
179		14	min	.002	1	004 0	15	<u>101</u> 0	1	2.896e-3	4	NC NC	1	NC	1
180		14	max min	002	3	004	3	073	4	-5.008e-5	4	NC NC	1	861.871	4
181		15		.002	1	004 0	15	<u>073</u> 0	1	3.006e-3	4	NC	1	NC	1
182		15	max min	001	3	003	3	049	4	-3.408e-5	1	NC	1	1284.969	_
183		16	max	0	1	0	15	043	1	3.116e-3	4	NC	1	NC	1
184		10	min	0	3	002	3	029	4	-1.808e-5	1	NC	1	2146.354	
185		17	max	0	1	<u>002</u> 0	15	<u>029</u> 0	1	3.226e-3	4	NC	1	NC	1
186		17	min	0	3	002	6	014	4	-2.083e-6	1	NC	1	4375.27	4
187		18	max	0	1	0	15	0	1	3.336e-3		NC	1	NC	1
188		10	min	0	3	0	6	004	4	4.923e-7	12	NC	1	NC	1
189		19	max	0	1	0	1	<u>.00-</u>	1	3.446e-3	4	NC	1	NC	1
190		10	min	0	1	0	1	0	1	1.292e-6	12	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	-4.339e-7	12	NC	1	NC	1
192	1010	•	min	0	1	0	1	0	1	-8.423e-4	4	NC	1	NC	1
193		2	max	0	3	0	15	.016	4	1.699e-5	1	NC	1	NC	1
194			min	0	2	002	6	0	12	-1.394e-4	5	NC	1	NC	1
195		3	max	0	3	0	15	.031	4	5.681e-4	4	NC	1	NC	1
196		Ĭ	min	0	2	003	6	0	12	2.046e-6	12	NC	1	NC	1
197		4	max	0	3	001	15	.045	4	1.273e-3	4	NC	1	NC	1
198			min	0	2	005	6	0	12	3.286e-6	12	NC	1	8671.54	5
199		5	max	.001	3	002	15	.059	4	1.979e-3	4	NC	1	NC	1
200			min	0	2	007	6	0	12	4.526e-6	12	NC	1	7680.739	
201		6	max	.001	3	002	15	.071	4	2.684e-3	4	NC	1	NC	1
202			min	001	2	009	6	0	12	5.765e-6	12	NC	1	7404.035	_
203		7	max	.002	3	002	15	.082	4	3.389e-3	4	NC	1	NC	1
		•		_		_			-			_		_	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
204			min	001	2	01	6	0	12	7.005e-6		8740.622	6	7625.001	
205		8	max	.002	3	003	15	.093	4	4.094e-3	4	NC	1_	NC	1
206			min	001	2	012	6	0	12	8.245e-6		7838.552	6	8347.493	5
207		9	max	.002	3	003	15	.103	4	4.799e-3	4	NC 7004 470	2	NC 0750 C54	1
208		40	min	002	2	<u>013</u>	6	0	12	9.485e-6	12	7304.179	6	9759.654	
209		10	max	.002	3	003	15	.112	4	5.504e-3	4	NC 7044 455	3	NC NC	1
210		11	min	002	3	013	6	<u>0</u> .122	12	1.072e-5	12	7044.155 NC	6	NC NC	1
211			max	.003	2	003	15		12	6.21e-3	<u>4</u> 12	7020.084	<u>3</u>		1
212		12	min	002	3	013	6	0		1.196e-5		NC		NC NC	1
213 214		12	max min	.003 002	2	003 013	15	<u>.131</u>	12	6.915e-3 1.32e-5	<u>4</u> 12	7233.792	<u>3</u>	NC NC	1
215		13		.002	3	013	15	.141	4	7.62e-3	4	NC	1	NC NC	1
216		13	max	003	2	003 012	6	0	12	1.444e-5	12	7729.903	6	NC NC	1
217		14		.002	3	012 002	15	.15	4	8.325e-3	4	NC	1	NC NC	1
218		14	max min	003	2	002 011	6	15 0	12	1.568e-5	12	8619.072	6	NC NC	1
219		15	max	.004	3	002	15	.161	4	9.03e-3	4	NC	1	NC	1
220		13	min	003	2	002	6	0	12	1.692e-5	12	NC	1	NC	1
221		16	max	.004	3	00 3	15	.172	4	9.736e-3	4	NC	1	NC	1
222		10	min	003	2	008	1	0	12	1.816e-5	12	NC	1	NC	1
223		17	max	.004	3	008	15	.184	4	1.044e-2	4	NC	1	NC	1
224		11/	min	003	2	006	1	0	12	1.94e-5	12	NC	1	NC	1
225		18	max	.005	3	0	15	.196	4	1.115e-2	4	NC	1	NC	1
226		10	min	003	2	004	1	0	12	2.064e-5	12	NC	1	NC	1
227		19	max	.005	3	<u>.00+</u>	5	.211	4	1.185e-2	4	NC	1	NC	1
228		13	min	004	2	003	1	0	12	2.188e-5	12	NC	1	NC	1
229	M4	1	max	.003	1	.003	2	0	12	6.44e-5	1	NC	1	NC	3
230			min	0	3	005	3	211	4	-3.637e-4	5	NC	1	117.635	4
231		2	max	.003	1	.003	2	0	12	6.44e-5	1	NC	1	NC	3
232			min	0	3	005	3	194	4	-3.637e-4	5	NC	1	127.93	4
233		3	max	.002	1	.003	2	0	12	6.44e-5	1	NC	1	NC	3
234			min	0	3	004	3	177	4	-3.637e-4	5	NC	1	140.182	4
235		4	max	.002	1	.003	2	0	12	6.44e-5	1	NC	1	NC	3
236			min	0	3	004	3	16	4	-3.637e-4	5	NC	1	154.898	4
237		5	max	.002	1	.002	2	0	12	6.44e-5	1	NC	1	NC	2
238			min	0	3	004	3	144	4	-3.637e-4	5	NC	1	172.769	4
239		6	max	.002	1	.002	2	0	12	6.44e-5	1	NC	1	NC	2
240			min	0	3	004	3	127	4	-3.637e-4	5	NC	1	194.752	4
241		7	max	.002	1	.002	2	0	12	6.44e-5	1	NC	1	NC	2
242			min	0	3	003	3	112	4	-3.637e-4	5	NC	1	222.209	4
243		8	max	.002	1	.002	2	0	12	6.44e-5	1	NC	1	NC	2
244			min	0	3	003	3	096	4	-3.637e-4	5	NC	1	257.121	4
245		9	max	.001	1	.002	2	0	12	6.44e-5	1	NC	1_	NC	2
246			min	0	3	003	3	082	4	-3.637e-4	5	NC	1	302.475	4
247		10	max	.001	1	.002	2	0	12	6.44e-5	1	NC	1	NC	2
248			min	0	3	002	3	068	4	-3.637e-4	5	NC	1	362.935	4
249		11	max	.001	1	.001	2	0	12	6.44e-5	1_	NC	1_	NC	1
250			min	0	3	002	3	056	4	-3.637e-4	5	NC	1	446.137	4
251		12	max	.001	1	.001	2	0	12	6.44e-5	1	NC	1	NC	1
252			min	0	3	002	3	044	4	-3.637e-4	5	NC	1	565.285	4
253		13	max	0	1	.001	2	0	12	6.44e-5	1_	NC	1_	NC	1
254			min	0	3	002	3	033	4	-3.637e-4	5	NC	1	744.887	4
255		14	max	0	1	0	2	0	12	6.44e-5	_1_	NC	_1_	NC	1
256			min	0	3	001	3	024	4	-3.637e-4	5	NC	1	1034.8	4
257		15	max	0	1	0	2	0	12	6.44e-5	1_	NC	1_	NC	1
258			min	0	3	001	3	016	4	-3.637e-4	5	NC	1	1549.949	
259		16	max	0	1	0	2	0	12	6.44e-5	1_	NC	1_	NC	1
260			min	0	3	0	3	01	4	-3.637e-4	5	NC	1	2608	4

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio	LC		LC
261		17	max	0	1	0	2	0	12	6.44e-5	_1_	NC	<u>1</u>	NC	1
262			min	0	3	0	3	005	4	-3.637e-4	5	NC	1	5386.64	4
263		18	max	0	1	0	2	0	12	6.44e-5	1_	NC	1_	NC	1
264			min	0	3	0	3	001	4	-3.637e-4	5	NC	1	NC	1
265		19	max	0	1	0	1	0	1	6.44e-5	1_	NC	1_	NC	1
266			min	0	1	0	1	0	1	-3.637e-4	5	NC	1	NC	1
267	M6	1	max	.019	1	.019	2	0	1	1.604e-3	4	NC	3	NC	1
268			min	02	3	027	3	642	4	0	1	3286.919	2	97.642	4
269		2	max	.018	1	.017	2	0	1	1.706e-3	4	NC	3	NC	1
270			min	019	3	025	3	59	4	0	1	3614.534	2	106.306	4
271		3	max	.017	1	.016	2	0	1	1.808e-3	4	NC	3	NC	1
272			min	017	3	024	3	538	4	0	1	4011.215	2	116.592	4
273		4	max	.016	1	.014	2	0	1	1.91e-3	4	NC	3	NC	1
274			min	016	3	023	3	487	4	0	1	4497.042	2	128.921	4
275		5	max	.015	1	.012	2	0	1	2.012e-3	4	NC	1	NC	1
276			min	015	3	021	3	436	4	0	1	5100.218	2	143.866	4
277		6	max	.014	1	.011	2	0	1	2.115e-3	4	NC	1	NC	1
278			min	014	3	02	3	387	4	0	1	5861.364	2	162.22	4
279		7	max	.013	1	.009	2	0	1	2.217e-3	4	NC	1	NC	1
280			min	013	3	018	3	339	4	0	1	6840.748	2	185.104	4
281		8	max	.012	1	.008	2	0	1	2.319e-3	4	NC	1	NC	1
282			min	012	3	017	3	293	4	0	1	8130.994	2	214.154	4
283		9	max	.01	1	.006	2	0	1	2.421e-3	4	NC	1	NC	1
284			min	011	3	015	3	249	4	0	1	9880.61	2	251.827	4
285		10	max	.009	1	.005	2	0	1	2.523e-3	4	NC	1	NC	1
286			min	01	3	014	3	208	4	0	1	NC	1	301.954	4
287		11	max	.008	1	.004	2	0	1	2.625e-3	4	NC	1	NC	1
288			min	009	3	012	3	169	4	0	1	NC	1	370.788	4
289		12	max	.007	1	.003	2	0	1	2.727e-3	4	NC	1	NC	1
290		1	min	008	3	011	3	134	4	0	1	NC	1	469.109	4
291		13	max	.006	1	.002	2	0	1	2.829e-3	4	NC	1	NC	1
292		1	min	007	3	009	3	102	4	0	1	NC	1	616.85	4
293		14	max	.005	1	.001	2	0	1	2.932e-3	4	NC	1	NC	1
294			min	005	3	008	3	073	4	0	1	NC	1	854.357	4
295		15	max	.004	1	0	2	0	1	3.034e-3	4	NC	1	NC	1
296		10	min	004	3	006	3	049	4	0	1	NC	1	1273.999	-
297		16	max	.003	1	0	2	0	1	3.136e-3	4	NC	1	NC	1
298		- 10	min	003	3	005	3	029	4	0	1	NC	1	2128.628	4
299		17	max	.002	1	0	2	0	1	3.238e-3	4	NC	1	NC	1
300		11	min	002	3	003	3	014	4	0.2000 0	1	NC	1	4341.275	
301		18	max	.001	1	0	2	0	1	3.34e-3	4	NC	1	NC	1
302		10	min	001	3	002	3	005	4	0	1	NC	1	NC	1
303		19	max	0	1	0	1	<u>.005</u>	1	3.442e-3	4	NC	1	NC	1
304		10	min	0	1	0	1	0	1	0	1	NC	1	NC	1
305	M7	1	max	0	1	0	1	0	1	0	1	NC	1	NC	1
306	IVIT		min	0	1	0	1	0	1	-8.403e-4	4	NC	1	NC	1
307		2	max	0	3	0	15	.016	4	0	1	NC	1	NC	1
308			min	0	2	002	3	0	1	-1.53e-4	4	NC	1	NC	1
309		3		.002	3	0	15	.031	4	5.344e-4	4	NC	1	NC	1
310		3	max	002	2	004	3	0	1	0	1	NC NC	1	NC NC	1
311		4	max	.002	3	004 001	15	.045	4	1.222e-3	4	NC NC	1	NC NC	1
312		4		002	2	001 006	3		1	0	<u>4</u> 1	NC NC	1	8019.402	_
		E	min					0.50		1.909e-3	•		1		4
313		5	max	.003	3	002	15	.058	1		4	NC NC	1	NC 7042 254	1
314		_	min	003	2	008	3	0		0	1_1	NC NC	•	7043.351	4
315		6	max	.004	3	002	15	.07	1	2.596e-3	4	NC NC	1	NC 6717 406	1
316		7	min	004	2	01	3	0	-	0	1_1	NC NC	•	6717.406	
317		7	max	.005	3	003	15	.081	4	3.284e-3	4	NC	<u>1</u>	NC	_1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r		(n) L/y Ratio			
318			min	005	2	011	3	0	1	0	1_	8817.988	4	6822.043	
319		8	max	.006	3	003	15	.092	4	3.971e-3	4	NC	_1_	NC	1
320			min	006	2	012	3	0	1	0	<u>1</u>	7902.834	4_	7328.24	4
321		9	max	.007	3	003	15	.102	4	4.658e-3	4_	NC		NC 2007 0 40	1
322		40	min	007	2	<u>013</u>	4	0	1	0	1_1	7360.141	4_	8337.943	4
323		10	max	.008	3	003	15	.111	1	5.346e-3	4	NC 7004 040	<u>1</u> 4	NC NC	1
324 325		11	min	007 .008	3	014 003	15	<u>0</u> .12	4	6.0226.2	<u>1</u> 4	7094.949 NC	_ 4 _	NC NC	1
326		+	max	008	2	003 014	4	0	1	6.033e-3	1	7068.046	4	NC NC	1
327		12	max	.009	3	014	15	.129	4	6.72e-3	4	NC	1	NC NC	1
328		12	min	009	2	003 013	4	0	1	0.720-3	1	7280.908	4	NC NC	1
329		13	max	.01	3	003	15	.138	4	7.408e-3	4	NC	1	NC	1
330		13	min	01	2	013	4	0	1	0	1	7778.185	4	NC	1
331		14	max	.011	3	003	15	.148	4	8.095e-3	4	NC	1	NC	1
332		17	min	011	2	012	4	0	1	0.0330 3	1	8670.995	4	NC	1
333		15	max	.012	3	002	15	.157	4	8.782e-3	4	NC	1	NC	1
334			min	011	2	01	3	0	1	0	1	NC	1	NC	1
335		16	max	.013	3	002	15	.168	4	9.47e-3	4	NC	1	NC	1
336			min	012	2	009	1	0	1	0	1	NC	1	NC	1
337		17	max	.014	3	001	15	.179	4	1.016e-2	4	NC	1	NC	1
338			min	013	2	008	1	0	1	0	1	NC	1	NC	1
339		18	max	.014	3	0	15	.191	4	1.084e-2	4	NC	1	NC	1
340			min	014	2	006	1	0	1	0	1	NC	1	NC	1
341		19	max	.015	3	0	15	.205	4	1.153e-2	4	NC	1	NC	1
342			min	015	2	005	1	0	1	0	1	NC	1	NC	1
343	M8	1	max	.007	1	.014	2	0	1	0	1_	NC	1_	NC	1
344			min	0	3	016	3	205	4	-4.41e-4	4	NC	1_	121.244	4
345		2	max	.007	1	.013	2	0	1	0	_1_	NC	_1_	NC	1
346			min	0	3	015	3	188	4	-4.41e-4	4	NC	1	131.861	4
347		3	max	.006	1	.012	2	0	1	0	_1_	NC	_1_	NC	1
348			min	0	3	014	3	172	4	-4.41e-4	4	NC	1_	144.495	4
349		4	max	.006	1	.011	2	0	1	0	1	NC	1	NC_	1
350		-	min	0	3	013	3	1 <u>55</u>	4	-4.41e-4	4_	NC	1_	159.67	4
351		5	max	.006	1	.011	2	0	1	0	1	NC	1	NC 470,000	1
352			min	0	3	012	2	139	4	-4.41e-4	4_	NC NC	1_	178.098	4
353		6	max	.005 0	3	.01	3	0 124	4	0	1_1	NC NC	1	NC 200.767	4
354 355		7	min	.005	1	011 .009	2	124 0	1	-4.41e-4 0	<u>4</u> 1	NC NC	1	NC	1
356			max min	<u>.005</u>	3	00 <u>9</u>	3	108	4	-4.41e-4	4	NC NC	1	229.079	4
357		8	max	.004	1	.008	2	<u>108</u> 0	1	0	1	NC	1	NC	1
358		-	min	0	3	01	3	094	4	-4.41e-4	4	NC	1	265.079	
359		9	max	.004	1	.008	2	0	1	0	1	NC	1	NC	1
360		Ť	min	0	3	009	3	08	4	-4.41e-4	4	NC	1	311.846	4
361		10	max	.004	1	.007	2	0	1	0	1	NC	1	NC	1
362			min	0	3	008	3	066	4	-4.41e-4	4	NC	1	374.19	4
363		11	max	.003	1	.006	2	0	1	0	1	NC	1	NC	1
364			min	0	3	007	3	054	4	-4.41e-4	4	NC	1	459.985	4
365		12	max	.003	1	.005	2	0	1	0	1	NC	1	NC	1
366			min	0	3	006	3	043	4	-4.41e-4	4	NC	1	582.847	4
367		13	max	.002	1	.005	2	0	1	0	1	NC	1	NC	1
368			min	0	3	005	3	032	4	-4.41e-4	4	NC	1	768.049	4
369		14	max	.002	1	.004	2	0	1	0	1	NC	1	NC	1
370			min	0	3	004	3	023	4	-4.41e-4	4	NC	1	1067.005	4
371		15	max	.002	1	.003	2	0	1	0	1	NC	1	NC	1
372			min	0	3	003	3	016	4	-4.41e-4	4	NC	1	1598.228	4
373		16	max	.001	1	.002	2	0	1	0	1	NC	1	NC	1
374			min	0	3	003	3	009	4	-4.41e-4	4	NC	1	2689.309	4

Model Name

Schletter, Inc.HCV

. : Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		LC
375		17	max	0	1	.002	2	0	1	0	1_	NC	1	NC	1
376			min	0	3	002	3	004	4	-4.41e-4	4	NC	1	5554.756	4
377		18	max	0	1	0	2	0	1	0	1	NC	1	NC	1
378			min	0	3	0	3	001	4	-4.41e-4	4	NC	1	NC	1
379		19	max	0	1	0	1	0	1	0	1	NC	1	NC	1
380			min	0	1	0	1	0	1	-4.41e-4	4	NC	1	NC	1
381	M10	1	max	.006	1	.005	2	0	12	1.614e-3	4	NC	1	NC	2
382	IVITO		min	006	3	009	3	642	4	1.31e-5	12	NC	1	97.752	4
383		2		.006	1	.004	2	<u>042</u> 	12	1.714e-3	4	NC	1	NC	2
384			max		3	008	3	589		1.714e-3 1.23e-5	12	NC	1	106.426	
		2	min	006					4						4
385		3	max	.005	1	.003	2	0	12	1.815e-3	4	NC	1	NC	2
386			min	005	3	008	3	<u>537</u>	4	1.15e-5	12	NC	1_	116.723	4
387		4	max	.005	1	.002	2	0	12	1.916e-3	_4_	NC	_1_	NC	2
388			min	005	3	008	3	486	4	1.07e-5	12	NC	1_	129.067	4
389		5	max	.005	1	.002	2	0	12	2.017e-3	4_	NC	<u>1</u>	NC	1
390			min	005	3	008	3	435	4	9.903e-6	12	NC	1	144.029	4
391		6	max	.004	1	.001	2	0	12	2.118e-3	4	NC	1	NC	1
392			min	004	3	007	3	386	4	9.103e-6	12	NC	1	162.404	4
393		7	max	.004	1	0	2	0	12	2.218e-3	4	NC	1	NC	1
394			min	004	3	007	3	338	4	8.304e-6	12	NC	1	185.316	4
395		8	max	.004	1	0	2	0	12	2.319e-3	4	NC	1	NC	1
396		Ŭ	min	004	3	007	3	293	4	7.504e-6	12	NC	1	214.401	4
397		9	max	.003	1	0	2	<u>.233 </u>	12	2.42e-3	4	NC	1	NC	1
398		- 9	min	003	3	006	3	249	4	6.705e-6	12	NC NC	1	252.119	4
		40											_		
399		10	max	.003	1	001	2	0	12	2.521e-3	4	NC	1	NC 000,007	1
400			min	003	3	006	3	207	4	5.905e-6	12	NC	1_	302.307	4
401		11	max	.003	1	001	15	0	12	2.622e-3	_4_	NC	1_	NC	1
402			min	003	3	005	3	169	4	5.105e-6	12	NC	1_	371.226	4
403		12	max	.002	1	001	15	0	12	2.723e-3	4	NC	1_	NC	1
404			min	002	3	005	3	134	4	4.306e-6	12	NC	1_	469.672	4
405		13	max	.002	1	001	15	0	12	2.823e-3	4	NC	_1_	NC	1
406			min	002	3	004	3	102	4	3.506e-6	12	NC	1	617.605	4
407		14	max	.002	1	001	15	0	12	2.924e-3	4	NC	1	NC	1
408			min	002	3	004	4	073	4	2.706e-6	12	NC	1	855.431	4
409		15	max	.001	1	0	15	0	12	3.025e-3	4	NC	1	NC	1
410		1.0	min	001	3	003	4	049	4	1.907e-6	12	NC	1	1275.661	4
411		16	max	0	1	0	15	0	12	3.126e-3	4	NC	1	NC	1
412		10	min	0	3	003	4	029	4	1.107e-6	12	NC	1	2131.567	4
413		17			1	<u>003</u> 0		<u>029</u> 0	12			NC	1	NC	1
		17	max	0			15			3.227e-3	4		1		
414		40	min	0	3	002	4	014	4	1.455e-7	10	NC	_	4347.858	
415		18	max	0	1	0	15	0		3.327e-3	4	NC	1	NC NC	1
416		-	min	0	3	<u>001</u>	4	005	4	-1.392e-5	1_	NC	_1_	NC	1
417		19	max	0	1	0	1	0	1	3.428e-3	4	NC	1_	NC	1
418			min	0	1	0	1	0	1	-2.992e-5	1_	NC	1_	NC	1
419	M11	1	max	0	1	0	1	0	1	9.869e-6	1_	NC	_1_	NC	1
420			min	0	1	0	1	0	1	-8.366e-4	4	NC	1	NC	1
421		2	max	0	3	0	15	.016	4	-8.059e-7	12	NC	1	NC	1
422			min	0	2	002	4	0	1	-1.467e-4	4	NC	1	NC	1
423		3	max	0	3	0	15	.031	4	5.432e-4	4	NC	1	NC	1
424			min	0	2	004	4	0	1	-4.385e-5	1	NC	1	NC	1
425		4	max	0	3	001	15	.045	4	1.233e-3	4	NC	1	NC	1
426			min	0	2	006	4	0	1	-7.071e-5	1	NC	1	8309.399	_
427		5	max	.001	3	002	15	.058	4	1.923e-3	4	NC	1	NC	1
428				.001	2	002	4	0	1	-9.757e-5		NC	1		1
		_	min	•							1		_	7335.518	
429		6	max	.001	3	002	15	.07	4	2.613e-3	4	NC OOFF 047	1_4	NC 7040 075	1
430		-	min	001	2	01	4	001	1	-1.244e-4	1_	9855.017	4	7040.975	
431		7	max	.002	3	003	15	.081	4	3.303e-3	4	NC	<u>1</u>	NC	_1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
432			min	001	2	011	4	001	1	-1.513e-4	1_	8466.462	4	7209.895	4
433		8	max	.002	3	003	15	.092	4	3.993e-3	4	NC TO LO COO	1_	NC	1
434			min	001	2	012	4	002	1	-1.781e-4	1_	7610.086	4_	7831.06	4
435		9	max	.002	3	003	15	.101	4	4.683e-3	4	NC 7404 004	2	NC	1
436		40	min	002	2	013	4	002	1	-2.05e-4	1_	7104.801	4_	9050.682	4
437		10	max	.002	2	003	15	.111	4	5.372e-3 -2.319e-4	4	NC 6962.049	<u>3</u>	NC NC	1
438		11	min	002	3	014	15	002 .12	4		1_	6862.818	3		1
439		11	max	.003 002	2	003 014	4	003	1	6.062e-3 -2.587e-4	<u>4</u> 1	NC 6848.565	4	NC NC	1
441		12		.002	3	014	15	.129	4	6.752e-3	4	NC	3	NC NC	1
442		12	max	002	2	003	4	003	1	-2.856e-4	1	7065.052	4	NC NC	1
443		13	max	.003	3	003	15	.138	4	7.442e-3	4	NC	1	NC	1
444		13	min	002	2	013	4	004	1	-3.124e-4	1	7556.778	4	NC	1
445		14	max	.004	3	003	15	.148	4	8.132e-3	4	NC	1	NC	1
446		17	min	003	2	012	4	005	1	-3.393e-4	1	8432.703	4	NC	1
447		15	max	.004	3	003	15	.158	4	8.822e-3	4	NC	1	NC	1
448		10	min	003	2	01	4	005	1	-3.662e-4	1	9933.945	4	NC	1
449		16	max	.004	3	002	15	.168	4	9.512e-3	4	NC	1	NC	1
450		10	min	003	2	008	4	006	1	-3.93e-4	1	NC	1	NC	1
451		17	max	.004	3	002	15	.18	4	1.02e-2	4	NC	1	NC	1
452			min	003	2	006	4	007	1	-4.199e-4	1	NC	1	NC	1
453		18	max	.005	3	001	15	.192	4	1.089e-2	4	NC	1	NC	1
454			min	003	2	004	1	008	1	-4.467e-4	1	NC	1	NC	1
455		19	max	.005	3	0	10	.206	4	1.158e-2	4	NC	1	NC	1
456			min	004	2	003	1	009	1	-4.736e-4	1	NC	1	NC	1
457	M12	1	max	.003	1	.003	2	.009	1	-3.164e-6	12	NC	1	NC	3
458			min	0	3	005	3	206	4	-3.913e-4	4	NC	1	120.51	4
459		2	max	.003	1	.003	2	.008	1	-3.164e-6	12	NC	1	NC	3
460			min	0	3	005	3	189	4	-3.913e-4	4	NC	1	131.058	4
461		3	max	.002	1	.003	2	.007	1	-3.164e-6	12	NC	1	NC	3
462			min	0	3	004	3	173	4	-3.913e-4	4	NC	1	143.61	4
463		4	max	.002	1	.003	2	.007	1	-3.164e-6	12	NC	1	NC	3
464			min	0	3	004	3	156	4	-3.913e-4	4	NC	1	158.686	4
465		5	max	.002	1	.002	2	.006	1	-3.164e-6	12	NC	1	NC	2
466			min	0	3	004	3	14	4	-3.913e-4	4	NC	1	176.995	4
467		6	max	.002	1	.002	2	.005	1	-3.164e-6	12	NC	_1_	NC	2
468			min	0	3	004	3	124	4	-3.913e-4	4	NC	1_	199.517	4
469		7	max	.002	1	.002	2	.005	1	-3.164e-6	12	NC	_1_	NC	2
470			min	0	3	003	3	109	4	-3.913e-4	4	NC	1_	227.646	4
471		8	max	.002	1	.002	2	.004	1	-3.164e-6		NC	_1_	NC	2
472			min	0	3	003	3	094		-3.913e-4		NC	1	263.414	4
473		9	max	.001	1	.002	2	.003	1	-3.164e-6		NC	1	NC	2
474		10	min	0	3	003	3	08	4	-3.913e-4		NC	_1_	309.877	4
475		10	max	.001	1	.002	2	.003	1	-3.164e-6		NC	1_	NC	2
476		4.4	min	0	3	002	3	067	4	-3.913e-4		NC NC	1_	371.819	4
477		11	max	.001	1	.001	2	.002	1	-3.164e-6		NC NC	1	NC 457.050	1
478		40	min	0	3	002	3	054	4	-3.913e-4		NC NC	1_	457.058	4
479		12	max	.001	1	.001	2	.002	1	-3.164e-6		NC NC	1_	NC 570.404	1
480		40	min	0	3	002	3	043	4	-3.913e-4		NC NC	1_1	579.124	4
481		13	max	0	1	.001	2	.001	1	-3.164e-6		NC NC	1	NC 762 424	1
482		1.4	min	0	3	002	3	033	4	-3.913e-4		NC NC	1	763.124	4
483		14	max	0	3	0	3	.001	1	-3.164e-6		NC NC	1	NC	1
484		15	min	0	1	001		023	4	-3.913e-4			<u>1</u> 1	1060.137 NC	1
485		15	max	0	3	0	2	0	1	-3.164e-6		NC NC	1		
486 487		16	min	<u> </u>	1	001 0	2	016 0	1	-3.913e-4		NC NC	1	1587.903 NC	1
487		10	max	0	3	0	3	009	4	-3.164e-6		NC NC	1	2671.867	4
400			min	U	J	U	3	009	4	-3.913e-4	4	INC		20/1.00/	4

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		LC
489		17	max	0	1	0	2	0	1	-3.164e-6	12	NC	1_	NC	1
490			min	0	3	0	3	004	4	-3.913e-4	4	NC	1	5518.567	4
491		18	max	0	1	0	2	0	1	-3.164e-6	12	NC	1	NC	1
492			min	0	3	0	3	001	4	-3.913e-4	4	NC	1	NC	1
493		19	max	0	1	0	1	0	1	-3.164e-6	12	NC	1	NC	1
494			min	0	1	0	1	0	1	-3.913e-4	4	NC	1	NC	1
495	M1	1	max	.006	3	.094	1	.679	4	1.613e-2	1	NC	1	NC	1
496	IVII	<u> </u>	min	003	2	009	3	0	12	-2.241e-2	3	NC	1	NC	1
497		2	max	.006	3	.046	1	.658	4	8.975e-3	4	NC	3	NC	1
498		 ^		003	2	003	3	006	1	-1.109e-2	3	2375.192	1	NC	1
		2	min										_		•
499		3	max	.006	3	.009	3	.636	4	1.45e-2	4	NC 4400.0	5_	NC 0540.504	1
500			min	003	2	008	2	009	1	-1.911e-4	1_	1136.3	1_	6546.534	5
501		4	max	.006	3	.031	3	.614	4	1.27e-2	4	NC	5	NC	1
502			min	003	2	067	1	009	1	-3.904e-3	3	709.898	1_	4655.685	5
503		5	max	.006	3	.061	3	.591	4	1.091e-2	4_	NC	<u>15</u>	NC	1
504			min	002	2	131	1	006	1	-7.699e-3	3	507.901	1_	3704.768	5
505		6	max	.006	3	.094	3	.568	4	1.338e-2	1_	NC	15	NC	1
506			min	002	2	194	1	003	1	-1.149e-2	3	397.361	1	3134.935	5
507		7	max	.006	3	.126	3	.544	4	1.79e-2	1	NC	15	NC	1
508			min	002	2	25	1	0	12	-1.529e-2	3	332.469	1	2741.34	4
509		8	max	.006	3	.153	3	.52	4	2.243e-2	1	8916.973	15	NC	1
510			min	002	2	294	1	0	12	-1.908e-2	3	294.239	1	2458.797	4
511		9	max	.005	3	.17	3	.494	4	2.475e-2	1	8331.455	15	NC	1
512		+ -	min	002	2	323	1	0	1	-1.905e-2	3	274.394	1	2288.24	4
513		10		.005	3	.176	3	.465	4	2.561e-2	<u> </u>	8153.195	15	NC	1
514		10	max	002	2	332	1	465 0	12	-1.647e-2	3		1	2241.318	
		4.4	min									268.455			4
515		11	max	.005	3	.172	3	.435	4	2.648e-2	1_	8331.195	<u>15</u>	NC 0007.074	
516		10	min	002	2	322	1	0	12	-1.389e-2	3	274.755	1_	2297.374	
517		12	max	.005	3	.158	3	.402	4	2.504e-2	1	8916.381	<u>15</u>	NC	1
518			min	002	2	293	1	001	1	-1.143e-2	3	295.371	1_	2471.823	4
519		13	max	.005	3	.134	3	.365	4	2.015e-2	_1_	NC	<u>15</u>	NC	1
520			min	002	2	248	1	0	1	-9.149e-3	3	335.278	1_	2908.245	4
521		14	max	.005	3	.104	3	.327	4	1.527e-2	1_	NC	15	NC	1
522			min	002	2	19	1	0	12	-6.866e-3	3	403.426	1	3811.143	4
523		15	max	.005	3	.071	3	.287	4	1.038e-2	1	NC	15	NC	1
524			min	002	2	127	1	0	12	-4.583e-3	3	520.462	1	5761.463	4
525		16	max	.005	3	.036	3	.248	4	9.769e-3	4	NC	5	NC	1
526			min	002	2	063	1	0	12	-2.3e-3	3	736.489	1	NC	1
527		17	max	.004	3	.003	3	.212	4	1.09e-2	4	NC	5	NC	1
528		1 '	min	002	2	004	2	0	12		3	1196.744	1	NC	1
529		18	max	.002	3	.047	1	.179	4	9.763e-3	2	NC	4	NC	1
530		10		002	2	026	3				3		1	NC	1
		10	min		_			<u> </u>	12			2529.177	1		1
531		19	max	.004	3	.092	1		4	1.955e-2	2	NC NC	1_	NC	_
532		1	min	002	2	054	3	001	1	-7.377e-3	3	NC	1_	NC NC	1
533	<u>M5</u>	1_	max	.019	3	.224	1	.679	4	0	1_	NC	_1_	NC	1
534			min	012	2	006	3	0	1	-4.253e-6	4	NC	1_	NC	1
535		2	max	.019	3	<u>.108</u>	1	.662	4	7.444e-3	_4_	NC	5_	NC	1
536			min	013	2	.002	3	0	1	0	1_	982.175	1	9119.196	4
537		3	max	.019	3	.028	3	.642	4	1.466e-2	4	NC	5	NC	1
538			min	013	2	025	2	0	1	0	1	459.721	1	5291.937	4
539		4	max	.019	3	.091	3	.619	4	1.194e-2	4	9456.513	15	NC	1
540			min	012	2	185	1	0	1	0	1	279.42	1	4039.8	4
541		5	max	.018	3	.178	3	.595	4	9.229e-3	4	6620.859	15	NC	1
542		Ť	min	012	2	36	1	0	1	0.22000	1	195.574	1	3428.003	_
543		6	max	.018	3	.276	3	.57	4	6.513e-3	4	5099.169	15	NC	1
544			min	012	2	535	1	<u>.57</u> 0	1	0.5136-3	1	150.552	1	3052.054	-
		7					3		4	_			_		
545		7	max	.018	3	.373	_ ა_	.544	4	3.797e-3	4	4220.039	<u>15</u>	NC	_1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		_		(n) L/y Ratio	LC		
546			min	012	2	693	1	0	1	0	1_	124.527	1_	2765.622	
547		8	max	.017	3	<u>.454</u>	3	.519	4	1.081e-3	4_		<u>15</u>	NC	1
548			min	011	2	82	1	0	1	0	_1_	109.386	1_	2500.644	
549		9	max	.017	3	<u>.506</u>	3	<u>.494</u>	4	0	1_		<u>15</u>	NC	1
550		40	min	011	2	9	1	0	1	-2.862e-6	5	101.621	1_	2284.337	4
551		10	max	.016	3	.525	3	.465	4	0	1_		<u>15</u>	NC 0050,000	1
552		4.4	min	011	2	<u>926</u>	1	0	1	-2.762e-6	5	99.311	1_	2256.098	
553		11	max	.016	3	.512	3	.434	4	0	1_		<u>15</u>	NC 0000 404	1
554		40	min	011	2	899	1	0	1	-2.662e-6	5_	101.767	1_	2323.101	4
555		12	max	.016	3	.468	3	.403	4	7.756e-4	4		<u>15</u>	NC	1
556		40	min	011	2	817	1	0	1	0 2.725e-3	1_	109.868	1_	2427.76	4
557		13	max	.015	3	.397	3	.366	4		4		<u>15</u>	NC 2002 F24	1
558		4.4	min	01	_	<u>686</u>	3	0	1	0	1_	125.78	1_	2862.524	
559		14	max	.015	3	.307	1	.326	1	4.674e-3	<u>4</u> 1		<u>15</u> 1	NC 2005 005	1
560 561		15	min	01 .015	3	<u>523</u> .207	3	0 .284	4	6.624e-3	4	153.367 6622.589	<u>1</u> 15	3985.085 NC	1
562		10	max	01	2	346	1	<u>.204</u>	1	0.0246-3	1	201.67	1	7179.84	4
563		16	max	.014	3	.105	3	.243	4	8.573e-3	4		15	NC	1
564		10	min	01	2	17	1	<u>.243</u>	1	0.5736-3	1	293.043	1	NC	1
565		17	max	.014	3	.009	3	.205	4	1.052e-2	4	NC	5	NC NC	1
566		17	min	01	2	014	2	<u>.205</u> 0	1	0	1	492.753	1	NC	1
567		18	max	.014	3	.112	1	.174	4	5.343e-3	4	NC	5	NC	1
568		10	min	01	2	073	3	0	1	0.0436-3	1	1070.48	1	NC	1
569		19	max	.014	3	.218	1	.15	4	0	1	NC	1	NC	1
570		13	min	01	2	147	3	0	1	-2.36e-6	4	NC	1	NC	1
571	M9	1	max	.006	3	.094	1	.679	4	2.241e-2	3	NC	1	NC	1
572	IVIO		min	003	2	009	3	001	1	-1.613e-2	1	NC	1	NC	1
573		2	max	.006	3	.046	1	.661	4	1.109e-2	3	NC	3	NC	1
574		Ĺ	min	003	2	003	3	0	12	-7.825e-3	1	2375.192	1	9369.329	
575		3	max	.006	3	.009	3	.641	4	1.463e-2	4	NC	5	NC	1
576			min	003	2	008	2	0	12	-1.353e-5	10	1136.3	1	5384.923	
577		4	max	.006	3	.031	3	.619	4	1.147e-2	5	NC	5	NC	1
578			min	003	2	067	1	0	12	-4.333e-3	1	709.898	1	4067.982	4
579		5	max	.006	3	.061	3	.595	4	8.619e-3	5		15	NC	1
580			min	002	2	131	1	0	12	-8.857e-3	1	507.901	1	3419.755	4
581		6	max	.006	3	.094	3	.57	4	1.149e-2	3		15	NC	1
582			min	002	2	194	1	0	12	-1.338e-2	1	397.361	1	3024.853	4
583		7	max	.006	3	.126	3	.544	4	1.529e-2	3		15	NC	1
584			min	002	2	25	1	0	1	-1.79e-2	1	332.469	1	2735.601	4
585		8	max	.006	3	.153	3	.519	4	1.908e-2	3	8898.772	15	NC	1
586			min	002	2	294	1	001	1	-2.243e-2	1	294.239	1	2483.731	4
587		9	max	.005	3	.17	3	.494	4	1.905e-2	3		15	NC	1
588			min	002	2	323	1	0	12	-2.475e-2	1	274.394	1	2281.327	4
589		10	max	.005	3	.176	3	.465	4	1.647e-2	3	8136.832	<u>15</u>	NC	1
590			min	002	2	332	1	0	1	-2.561e-2	1	268.455	1	2242.56	4
591		11	max	.005	3	.172	3	.435	4	1.389e-2	3		<u>15</u>	NC	1
592			min	002	2	322	1	0	1	-2.648e-2	1_	274.755	1	2306.395	4
593		12	max	.005	3	.158	3	.402	4	1.143e-2	3		<u>15</u>	NC	1
594			min	002	2	293	1	0	12	-2.504e-2	1_	295.371	1_	2447.273	4
595		13	max	.005	3	.134	3	.366	4	9.149e-3	3		<u>15</u>	NC	1
596			min	002	2	248	1	0	12	-2.015e-2	1_	335.278	1	2910.241	4
597		14	max	.005	3	.104	3	.325	4	6.866e-3	3		<u>15</u>	NC	1
598			min	002	2	19	1	002	1	-1.527e-2	1	403.426	1	3956.671	5
599		15	max	.005	3	.071	3	.284	4	6.232e-3	5_		15	NC	1
600		.	min	002	2	127	1	006	1	-1.038e-2	<u>1</u>	520.462	1_	6483.248	
601		16	max	.005	3	.036	3	.244	4	8.383e-3	5	NC Tool 100	5	NC	1
602			min	002	2	063	1	008	1	-5.49e-3	1_	736.489	1	NC	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	o LC
603		17	max	.004	3	.003	3	.207	4	1.058e-2	4	NC	5	NC	1
604			min	002	2	004	2	009	1	-6.016e-4	1	1196.744	1	NC	1
605		18	max	.004	3	.047	1	.176	4	4.99e-3	5	NC	4	NC	1
606			min	002	2	026	3	006	1	-9.763e-3	2	2529.177	1	NC	1
607		19	max	.004	3	.092	1	.15	4	7.377e-3	3	NC	1	NC	1
608			min	002	2	054	3	0	12	-1.955e-2	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-42 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015					
Engineer:	HCV	Page:	1/5					
Project:	Standard PVMax - Worst Case, 21-30 Inch Width							
Address:								
Phone:								
E-mail:								

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x , V_{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2344.5	1654.5	0.0	1654.5
2	2344.5	1654.5	0.0	1654.5
Sum	4689.0	3309.0	0.0	3309.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4689 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	ıc / ΑΝco) Ψec,N Ψea	$_{I,N}\varPsi_{c,N}\varPsi_{cp,N}N_{b}$ (3	Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$arPsi_{ extsf{c}, extsf{N}}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
378.00	324 00	1 000	0.972	1.00	1 000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

,								
τ _{k,cr} (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ_{g}	$_{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extsty$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

378.00	648.00	1 000	0 836	1 000	1 000	15503	<i>Ψ</i> 0.70	φν cbgx (ID)
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec.V}$	$arPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	φ	ϕV_{cbqx} (lb)
$\phi V_{cbgx} = \phi (A$	$(V_{c}/A_{V_{co}})\Psi_{ec,V}\Psi_{ec}$	$_{ed,V} arPsi_{c,V} arPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
4.00	0.50	1.00	2500	12.00	15593			
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
$V_{bx} = 7(I_e/d_e)$	$(a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}^{1.5}$	⁵ (Eq. D-24)						

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.9}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\mathcal{V}_{c,V} \mathcal{\Psi}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n <i>kcpNag</i> ; <i>kcpN</i>	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$arPsi_{p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in ²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2345	6071	0.39	Pass
Concrete breakout	4689	9208	0.51	Pass
Adhesive	4689	8093	0.58	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1655	3156	0.52	Pass
T Concrete breakout x+	3309	5323	0.62	Pass (Governs)
Concrete breakout y-	1655	12241	0.14	Pass (Governs)
Pryout	3309	19833	0.17	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rat	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 21-30 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3 0.58 0.62 120.1 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.