Memory Size= 7 bits=> 2**7 = 126 bytes in my memory
Frame/page size=> number of bits per frame=> want 16 bytes/page
=> In base 2 of 16 = 4 bits
Can address up to 2**3 VP's

Page Table P1

VP#	valid	PP
0=000	1	2=010
1=001	1	5=101
2=010	1	3=011
3=011	0	
4	0	
5	:	
6		
7		

Page Table P2

VP#	valid	l PP
0=000	1	100
1=001	1	110
2=010	0	
3=011	0	
4	0	
5	:	
6		
7		

What is the valid range of virtual addresses?

For P1 -> 7 bit system, virtual addresses can go from 000 0000-> 010 1111 (see valid bits)

For P2 000 0000-> 001 1111

Physical memory

000 0000 000 1111	
001 0000 001 1111	
010 0000 010 1111	P1-0
011	P1-2
100	P2-0
101	P1 -1
110	P2-1

20 bits VPN	Offset=>12 bits
-------------	-----------------

20 bits VPN Offset=>12 bits

If using single page table 2^12 =4K per page If code and heap take up 1 Then how many pages will

Stack storage **OxFFFFFFF**

20 bits VPN	Offset=>12 bits
-------------	-----------------

20 bits VPN	Offset=>12 bits
-------------	-----------------

If using single page table 2^12 =4K per page If code and heap take up 1 Then how many pages will 1 meg/4K=>2^20/2^12 = 2^8 pages or 256 pages Need 256 pages for stack too

But have 2^20 = 1,000,000 Virtual pages, which means the page table will have Of which only 512 are

Multilevel page table version

Outer=10 bits	Outer=10 bits
---------------	---------------

1 Outer page table has 2^10 or 1000 rows, each row holds the address of an inner page table 1000 *potential* inner page tables, each with 2^10 or 1000 rows (only allocate the ones needed, ie valid bit=1 in outer page table

