

Large Charge Moment Change Lightning in an Oklahoma Mesoscale Convective System

Timothy J. Lang¹, Steven Cummer², Danyal Petersen³, Lizzandra Flores-Rivera⁴, Walt Lyons⁵, Donald MacGorman⁶, and William Beasley³

1. NASA Marshall Space Flight Center
2. Duke University
3. University of Oklahoma
4. University of Puerto Rico – Mayaguez
5. FMA Research, Inc.
6. NOAA National Severe Storms Laboratory

Cloud-to-ground strokes can be associated with a parameter called Charge Moment Change:

$$\text{CMC}(t) = Q(t) * Z(t)$$

Q is charge lowered, **Z** is height from which it is lowered

CMC is generally thought to be a critical parameter for the initiation of sprites/halos

The higher it is, the greater chance for sprite initiation;
~100s of C km generally associated with sprite-parent CGs

Impulse CMC (**iCMC**) is measured in real-time by the Duke Charge Moment Change Network (CMCN), full CMC can be retrieved in post-processing

iCMC > 100 C km = ~10% chance of sprite (*Large iCMC*)

iCMC > 300 C km = 75-80% chance of sprite (*Sprite-Class iCMC*)

Sprite-Class Lightning Archetypes

Positive

Negative

El Reno Storm (5/31-6/1 2013)

- Best known for deadly tornado that killed PhOCAL researcher Tim Samaras and 7 others
- Developed into large MCS that affected multiple states
- Lightning behavior both confirmed developing model for large-CMC lightning but also suggests refinements are needed

Before Showing the Results,
a Brief Aside ...

The Problem: NSSL 3-D Reflectivity Mosaics distributed as individual regional tiles

The Need: New research software framework for ingest, stitching, and visualization

Stitch

Task complete!

Features

- Object-oriented, open-source, scalable Python framework
- Interactive or batch mode
- Arbitrary, user-defined stitching
- Customizable visualization
- Simple to add lightning data to plots/analysis

Radar Mosaic Composite 05/31/2013 2000 UTC

Early (2300 UTC)
Supercells, Tornado
Large +iCMCs in convection

Late (0800 UTC)
Mesoscale Convective System
Large +iCMCs in stratiform
Large -iCMCs in convection

Time Series View

TFR Reduction

Tornado

-CG dominant

+iCMCs
Early

-iCMCs
Late

Time Series View (cont.)

Source Density Reduction

Source altitude change
after 0445-0500 UTC

Tornado

Quasi-anticorrelated
behavior between flash
rate and flash size after
0445-0500 UTC

Lightning Hole During El Reno Tornado

/usr/people/tlang/OK_20130531_231001_231513.eps - Mon Jan 13 13:33:15 2014

/usr/people/tlang/OK_20130531_231511_231959.eps - Mon Jan 13 13:33:53 2014

Large-iCMC Strokes, < 120 km from OKLMA

Sprite-Class Strokes, < 200 km from OKLMA

+iCMCs now about as big as -iCMCs
Sprite-class 02-04 UTC

+iCMCs still lower
than -iCMCs

Typical Large-iCMC +CG
23:15:19 UTC 5/31
121 C km
116 kA

X = Large-iCMC +CG
Triangle = Large-iCMC -CG
Diamond = Initiation
Black Dots = LMA sources
Black Polygon = Convex Hull
Gridlines = 0.1 deg

Typical Large-iCMC -CG

09:00:17 UTC 6/01
-341 C km
-175 kA

X = Large-iCMC +CG
Triangle = Large-iCMC -CG
Diamond = Initiation
Black Dots = LMA sources
Black Polygon = Convex Hull
Gridlines = 0.1 deg

Conclusions

- El Reno storm developed upscale from line of supercells to large MCS over the course of many hours
- Early (< 0500 UTC): Supercells, Tornado, Lightning Hole, Large-iCMC +CGs in convection despite -CG dominance, +CGs at edge of convective cores (tilted dipole?)
- Late (> 0500 UTC): MCS, Large-iCMC -CGs in convection, still -CG dominant, Large-iCMC +CGs in stratiform region
- In-cloud portions of large-iCMC +CGs covered smaller area and were lower in altitude than large-iCMC -CGs
- Sprite-class iCMCs larger than in area than smaller iCMC counterparts
- Python mosaic software tools being made available to community