1. [3 pts] Determine the arc length along the curve

$$\mathbf{r}(t) = \langle \cos(t) + t \sin(t), \sin(t) - t \cos(t), t^2 \rangle$$

from t = 0 to $t = \pi/2$.

$$\frac{\sqrt{r'(4)} = \langle -\sin(4) + \sin(4) + t\cos(4), \cos(4) - \cos(4) + t\sin(4), 2t \rangle}{\sqrt{r'(4)} = \langle -\sin(4) + \sin(4) + t\cos(4), \cos(4) - \cos(4) + t\sin(4), 2t \rangle}$$

$$= \int \sqrt{t^2 \cos^2 t + t^2 \sin^2 t + 4t^2} dt$$

$$= \int \sqrt{5t^2} dt = \int \sqrt{s} t dt = \frac{\sqrt{s}}{2} \frac{\pi^2}{4} = \frac{\pi^2 \sqrt{s}}{8} / \sqrt{s}$$

2. [3 pts] Interestingly, the notion of arc length can be defined in any dimension. A curve in fourdimensional space \mathbb{R}^4 is parametrized as

$$\mathbf{r}(t) = \langle x(t), y(t), z(t), w(t) \rangle, \quad a \le t \le b.$$

Find the arc length of $\mathbf{r}(t) = \langle t, \ln(t), 1/t, \ln(t) \rangle$ and $1 \le t \le 4$.

- 3. Suppose that the trajectory of a particle in \mathbb{R}^3 is described by the vector-valued function $\mathbf{r}(t)$, and let $\mathbf{v}(t) = \mathbf{r}'(t)$ and $\mathbf{a}(t) = \mathbf{r}''(t)$ be its velocity and acceleration vectors, respectively. For each of the following statements, either give a proof or exhibit a counter-example.
 - (a) [2 pts] Let \mathcal{C} be the space-curve in \mathbb{R}^3 which is parametrized by $\mathbf{r}(t)$, $-\infty < t < \infty$. If the velocity vector $\mathbf{v}(t)$ is constant, then the curve \mathcal{C} lies entirely in a plane.

TRUE.

Pf: Since V(+) = c a constant

=) r(+) = r₆ + t e a live which certainly

is contained in a plane.

(b) [2 pts] Define the *speed* of the particle at time t to be the length of its velocity vector $s(t) = |\mathbf{v}(t)|$ at time t. If the speed is a constant function, then the curve lies entirely in a plane.

Take r(t) = < costl, sinct), t>
Take r(t) = < costl, sinct), t>
Then speed is constant but not restricted to be planar.

(c) [2 pts] If the acceleration vector $\mathbf{a}(t)$ is constant, then the curve \mathcal{C} lies entirely in a single plane.

TRUE. Since \vec{a} is contained in the plane determined by \vec{T} and \vec{N} , it follows that \vec{V} $\times \vec{a}$ is parallel to \vec{T} $\times \vec{N}$.

Moreover: $\vec{d}(\vec{V} \times \vec{a}) = \vec{c} \times \vec{a} + \vec{V} \times d\vec{a} = \vec{o}$, \vec{r} or \vec{r} is planar.

(d) [2 pts] If the velocity vector $\mathbf{v}(t)$ is orthogonal to the acceleration vector $\mathbf{a}(t)$ for all time t, then the curve \mathcal{C} lies entirely in a single plane.

FALSE. Again, consider the helix. (e) [2 pts] Prove that $\mathbf{r}(t) \times \mathbf{a}(t) = \mathbf{0}$ implies $\mathbf{r}(t) \times \mathbf{v}(t) = \mathbf{c}$, where \mathbf{c} is a constant vector.

By taking the derivatives

$$\frac{d(r_{H} \times \vec{v})}{dt} = \vec{v} \times \vec{v} + \vec{v} \times \vec{v}'$$

$$= \vec{0} + \vec{0} = \vec{0} \cdot \vec{\cdot} \cdot \vec{r} + \vec{r} \times \vec{v} \cdot \vec{r} +$$

(f) [2 pts] If $\mathbf{r}(t) \times \mathbf{v}(t) = \mathbf{c}$ for all time t, prove that the motion takes place in a plane (i.e. that the space curve parametrized by $\mathbf{r}(t)$ lies entirely in a plane). Consider both $\mathbf{c} = \mathbf{0}$ and $\mathbf{c} \neq \mathbf{0}$.

Suppose
$$\vec{c} \neq \vec{0}$$
. Then $\vec{c} \perp \vec{v}$ for all time t | if $\vec{c} = 0$ Then $\vec{r} \parallel \vec{v}$
 $\Rightarrow \vec{c} \cdot \vec{v} = 0 \forall \text{ time } t$
 $\Rightarrow \vec{c} \cdot \vec{v} = \vec{0} \Rightarrow \vec{c} \cdot (\vec{r} \cdot t_{1}) = 0$
 $\Rightarrow \vec{c} \cdot \vec{v} = \vec{0} \Rightarrow \vec{c} \cdot (\vec{r} \cdot t_{1}) = 0$
 $\Rightarrow \vec{c} \cdot \vec{v} = \vec{v} \Rightarrow \vec{c} \cdot (\vec{r} \cdot t_{1}) = 0$
 $\Rightarrow \vec{c} \cdot \vec{v} = \vec{v} \Rightarrow \vec{c} \cdot (\vec{r} \cdot t_{1}) = 0$
 $\Rightarrow \vec{c} \cdot \vec{v} = \vec{v} \Rightarrow \vec{c} \cdot (\vec{r} \cdot t_{1}) = 0$
 $\Rightarrow \vec{c} \cdot \vec{v} = \vec{v} \Rightarrow \vec{c} \cdot (\vec{r} \cdot t_{1}) = 0$
 $\Rightarrow \vec{c} \cdot \vec{v} = \vec{v} \Rightarrow \vec{c} \cdot (\vec{r} \cdot t_{1}) = 0$
 $\Rightarrow \vec{c} \cdot \vec{v} = \vec{v} \Rightarrow \vec{c} \cdot (\vec{r} \cdot t_{1}) = 0$
 $\Rightarrow \vec{c} \cdot \vec{v} = \vec{v} \Rightarrow \vec{c} \cdot (\vec{r} \cdot t_{1}) = 0$
 $\Rightarrow \vec{c} \cdot \vec{v} = \vec{v} \Rightarrow \vec{c} \cdot (\vec{r} \cdot t_{1}) = 0$

4. [4 pts] Find a vector-valued function, $\mathbf{r}(t)$, that represents the curve of intersection between the cylinder $\{(x, y, z) | x^2 + y^2 = 9\}$ and the surface $\{(x, y, z) | z = xy\}$.

~ Plugging this parametrization into Quedric equation gives parametrization for curve of intersection

$$T(+) = \langle 3\cos(4), 3\sin(4), 9\cos(4), \sin(4) \rangle, 0 \in \{\pm 2\pi.$$