Graduate Trade (II): ECON 8433

Sergey Nigai University of Colorado Boulder Fall Semester 2020

Plan

WEEK	TOPIC
Week 1	Introduction to Structural Gravity Equation
Week 2	Calibration and Estimation
Week 3	Mapping Models to the Data
Week 4	Designing Counterfactual Experiments in General Equilibrium
Week 5	Presentations (I) and Catch-up
Week 6	Heterogeneous Firms (I)
Week 7	Heterogeneous Firms (II)
Week 8	Ricardian Models
Week 9	Multi-Sector Models
Week 10	Global Value Chains
Week 11	Presentations (II) and Catch-up
Week 12	Extensions: Demand Side
Week 13	Extensions: Supply Side
Week 14	Extensions: Migration and Geography
Week 15	Presentations (III) and Catch-up

Plan

Week	TOPIC
Week 1	Introduction to Structural Gravity Equation
Week 2	Calibration and Estimation
Week 3	Mapping Models to the Data
Week 4	Designing Counterfactual Experiments in General Equilibrium
Week 5	Presentations (I) and Catch-up
Week 6	Heterogeneous Firms (I)
Week 7	Heterogeneous Firms (II)
Week 8	Ricardian Models
Week 9	Multi-Sector Models
Week 10	Global Value Chains
Week 11	Presentations (II) and Catch-up
Week 12	Extensions: Demand Side
Week 13	Extensions: Supply Side
Week 14	Extensions: Migration and Geography
Week 15	Presentations (III) and Catch-up

Hat Algebra and Armington

Given a shock $\hat{\tau}_{ij}$, we can calculate counterfactual outcomes by solving:

$$Y'_{j} = Y_{j}\widehat{w}_{j}$$

$$\widehat{P}_{j}^{1-\sigma} = \sum_{i \in S} \pi_{ij} (\widehat{\tau}_{ij}\widehat{w}_{i})^{1-\sigma}$$

$$\pi'_{ij} = \pi_{ij} (\widehat{\tau}_{ij}\widehat{w}_{i})^{1-\sigma} \widehat{P}_{j}^{\sigma-1}$$

$$\widehat{w}_{i} = \sum_{j \in S} \pi'_{ij} Y_{j} \widehat{w}_{j} / Y_{i}$$

Hat Algebra and Intepretation of the Data

Let us rewrite the system as follows:

$$Y'_{j} = Y_{j}\widehat{w}_{j}$$

$$\widehat{P}_{j}^{1-\sigma} = \sum_{i \in S} \pi_{ij} (\widehat{\tau}_{ij}\widehat{w}_{i})^{1-\sigma}$$

$$\pi'_{ij} = \pi_{ij} (\widehat{\tau}_{ij}\widehat{w}_{i})^{1-\sigma} \widehat{P}_{j}^{\sigma-1}$$

$$X'_{ij} = \pi'_{ij} Y'_{j}$$

$$\widehat{w}_{i} = \sum_{j \in S} \pi'_{ij} Y_{j} \widehat{w}_{j} / Y_{i}.$$

Note that the interpretation of the data on Y_j and π_{ij} is not unique!

Let us rewrite the system as follows:

$$Y'_{j} = Y_{j}\widehat{w}_{j}$$

$$\widehat{P}_{j}^{1-\sigma} = \sum_{i \in S} \pi_{ij} (\widehat{\tau}_{ij}\widehat{w}_{i})^{1-\sigma}$$

$$\pi'_{ij} = \pi_{ij} (\widehat{\tau}_{ij}\widehat{w}_{i})^{1-\sigma} \widehat{P}_{j}^{\sigma-1}$$

$$X'_{ij} = \pi'_{ij} Y'_{j}$$

$$\widehat{w}_{i} = \sum_{i \in S} \pi'_{ij} Y_{j} \widehat{w}_{j} / Y_{i}.$$

Note that the interpretation of the data on Y_j and π_{ij} is not unique!

Hat Algebra and Import Tariffs

To see that the interpretation of the data is not unique, consider import tariff t_{ij} :

- ▶ Country i can charge imports from country j with tariff t_{ji}
- Let us reformulate total bilateral trade barriers as $au_{ij} = (1+t_{ij})\kappa_{ij}$ where κ_{ij} capture natural trade barriers
- ▶ Further, let $Y_i = L_i w_i + T_i$ where T_i are tariff revenues
- ▶ Tariff Revenues can be calculated as: $T_i = \sum_j \frac{t_{ji}}{1 + t_{ii}} X_{ji}$
- ▶ The goods market clearing is: $L_i w_i = \sum_j \frac{1}{1 + t_{ij}} X_{ij}$

Hat Algebra and Import Tariffs

Using equations for tariff revenues and goods market clearing, we can specify the following:

$$L_i w_i = \sum_j \frac{1}{1 + t_{ij}} \pi_{ij} \frac{L_j w_j}{1 - s_j},$$

wher s_i is implicitly defined from:

$$Y_j = L_j w_j + \sum_i \frac{t_{ij}}{1 + t_{ij}} \pi_{ij} Y_j,$$

which implies that:

$$(1-s_j)=\frac{L_jw_j}{Y_i}$$

What is the interpretation of s_i ?

Hat Algebra and Import Tariffs

Consider a policy change in import tariffs t_{ij} to t'_{ij} and let $E_i = L_i w_i$ in the benchmark, the hat algebra system can be rewritten as:

$$E'_{j} = E_{j}\widehat{w}_{j}$$

$$\widehat{P}_{j}^{1-\sigma} = \sum_{i \in S} \pi_{ij} (\widehat{\tau}_{ij}\widehat{w}_{i})^{1-\sigma}$$

$$\pi'_{ij} = \pi_{ij} (\widehat{\tau}_{ij}\widehat{w}_{i})^{1-\sigma} \widehat{P}_{j}^{\sigma-1}$$

$$\widehat{w}_{i}E_{i} = \sum_{j \in S} \frac{1}{1+t'_{ij}} \pi'_{ij} \frac{E'_{j}}{1-s'_{j}}.$$

$$s'_{j} = \sum_{i} \frac{t'_{ij}}{1+t'_{ij}} \pi'_{ij}$$

Given initial E_i and π_{ij} as well as exogenous shock to tariffs t'_{ij} , we can solve for \widehat{w}_i .

Hat Algebra and Armington

- ► Use WIOD data for 2009 (total trade)
- ► Calculate how trade and welfare would change in response to a trade war between the US and China