Redes de Computadores

Shortest Paths in Networks

Manuel P. Ricardo

Faculdade de Engenharia da Universidade do Porto

- » What is a graph?
- » What is a spanning tree?
- » What is a shortest path tree?
- » How are paths defined in a network?
- » How does the Dijkstra algorithm work?
- » How does a link state routing protocol work?
- » How does a node learn about neighbours?
- » How does the Bellman-Ford algorithm work?
- » How does a distance vector work?
- » What are the limitations of the layer 2 network of switches?
- » How does the IEEE spanning tree protocol work?
- » What is the maximum capacity of a flow network?

Graph – Directed and Undirected

a) Directed graph

b) Undirected graph

$$G = (V, E)$$

$$V = \{v_1, v_2, v_3, v_4, v_5, v_6\}, \qquad |V| = 6$$

$$E = \{(v_1, v_2), (v_2, v_3), (v_2, v_4), (v_3, v_4), (v_3, v_4), (v_4, v_3), (v_3, v_5), (v_4, v_5), (v_5, v_6)\}, \qquad |E| = 8$$

$$G = (V, E)$$

$$V = \{v_1, v_2, v_3, v_4, v_5, v_6\}, \qquad |V| = 6$$

$$E = \{(v_1, v_2), (v_2, v_3), (v_2, v_4), (v_3, v_4), (v_3, v_4), (v_3, v_5), (v_4, v_5), (v_5, v_6)\}, \qquad |E| = 7$$

Tree

- Trees T = (V,E)
 - » graph with no cycles
 - » number of edges |E| = |V| 1
 - » any two vertices of the tree are connected by exactly one path
- A tree T is said to span a graph G = (V,E) (spanning tree) if
 - T = (V,E') and $E' \subseteq E$

Shortest Path Trees

- Graphs and Trees can be weighted
 - \rightarrow G=(V,E,w)
 - \rightarrow T=(V, E',w)
 - \gg w: E \rightarrow R

- Total cost of a tree T \rightarrow $C_{total}(T) = \sum_{i=1}^{|E|} w(e_i)$
- Minimum Spanning Tree T* $\rightarrow C_{total}(T^*) = \min(C_{total}(T))$
 - » algorithms used to compute MST: Prism, Kruskal
- Shortest Path Tree (SPT) Rooted at Vertex s
 - » tree composed by the
 - » union of the shortest paths between s and each of other vertices of G
 - » Algorithms used to compute SPT: Dijkstra, Bellman-Ford
- Computer networks use Shortest Path Trees

Routing in Layer 3 Networks

Forwarding, Routing

- Forwarding → data plane
 - » directing packet from input to output link
 - » using a forwarding table
- Nouting → control plane
 - » computing paths the packets will follow
 - » routers exchange messages
 - » each router creates its forwarding table

Importance of Routing

End-to-end performance

- » path affects quality of service
- » delay, throughput, packet loss

Use of network resources

- » balance traffic over routers and links
- » avoiding congestion by directing traffic to less-loaded links

Transient disruptions

- » failures, maintenance
- » limiting packet loss and delay during changes

Shortest-Path Routing

Path-selection model

- » Destination-based
- » Load-insensitive (e.g., static link weights)
- » Minimum hop count or minimum sum of link weights

Shortest-Path Problem

- Given a network topology with link costs
 - $\mathbf{c}(\mathbf{x},\mathbf{y})$ link cost from node x to node y
 - » infinity if x and y are not direct neighbors
- Compute the least-cost paths from source u to all nodes
 p(v) node predecessor of node v in the path to u

Dijkstra's Shortest-Path Algorithm

- Iterative algorithm
 - » After k iterations → known least-cost paths to k nodes
- $\mathbf{S} \rightarrow \mathbf{set}$ of nodes for which least-cost path is known
 - » Initially, $S=\{u\}$, where u is the source node
 - » Add one node to **S** in each iteration
- $D(v) \rightarrow$ current cost of path from source to node v
 - » Initially
 - D(v) = c(u, v) for all nodes v adjacent to u
 - **D**(**v**) =∞ for all other nodes **v**
 - » Continually update **D(v)** when shorter paths are learned

Dijsktra's Algorithm

```
Initialization:
  S = \{u\}
   for all nodes v
     if v adjacent to u {
       D(v) = c(u,v) 
     else D(v) = \infty
   Loop
    find node w not in S with the smallest D(w)
10 add w to S
     update D(v) for all v adjacent to w and not in S:
       D(v) = \min\{D(v), D(w) + c(w,v)\}
1,3 until all nodes in S
```

Dijkstra's Algorithm - Example

Dijkstra's Algorithm - Example

Shortest-Path Tree

◆ Shortest-path tree from u
 ◆ Forwarding table at u

link
(u,v)
(u,w)
(u,w)
(u,v)
(u,v)
(u,w)
(u,w)

Link-State Routing

- Each router keeps track of its incident links
 - » link up, link down
 - » cost on the link
- Each router broadcasts link state every router gets a complete view of the graph
- Each router runs Dijkstra's algorithm, to
 - » compute the shortest paths
 - » construct the forwarding table
- Example protocols
 - » Open Shortest Path First (OSPF)
 - » Intermediate System Intermediate System (IS-IS)

Detection of Topology Changes

- Beacons generated by routers on links
 - » Periodic "hello" messages in both directions
 - » few missed "hellos" → link failure

Broadcasting the Link State

- How to Flood the link state?
 - » every node sends link-state information through adjacent links
 - » next nodes forward that info to all links except the one where the information arrived

- When to initiate flooding?
 - » Topology change
 - link or node failure/recovery
 - link cost change
 - » Periodically
 - refresh link-state information
 - typically 30 minutes

Scaling Link-State Routing

- Overhead of link-state routing
 - » flooding link-state packets throughout the network
 - » running Dijkstra's shortest-path algorithm
- Introducing hierarchy through "areas"

Bellman-Ford Algorithm

- Define distances at each node x
 - $d_x(y) = cost of least-cost path from x to y$
- Update distances based on neighbors
 - $d_x(y) = \min \{c(x,v) + d_v(y)\}$ over all neighbors v

Distance Vector Algorithm

- c(x,v) = cost for direct link from x to v node x maintains costs of direct links c(x,v)
- $D_x(y)$ = estimate of least cost from x to y node x maintains distance vector $\mathbf{D}_x = [D_x(y): y \in \mathbf{N}]$
- Node x maintains also its neighbors' distance vectors for each neighbor v, x maintains $\mathbf{D}_{v} = [\mathbf{D}_{v}(y): y \in \mathbf{N}]$
- Each node v periodically sends D_v to its neighbors
 - » and neighbors update their own distance vectors
 - » $D_x(y) \leftarrow \min_v \{c(x,v) + D_v(y)\}$ for each node y ∈ N
- Over time, the distance vector D_x converges

Distance Vector Algorithm

- Iterative, asynchronous each local iteration caused by:
 - local link cost change
 - distance vector update message from neighbor
- Distributed
 - » node notifies neighbors only when its DV changes
- Neighbors then notify their neighbors, if necessary

Each node:

wait for (change in local link cost or message from neighbor)

recompute estimates

if DV to any destination has changed, notify neighbors

Distance Vector Example - Step 0

Та	able fo	r A	Ta	able for	В		E					
Dst	Cst	Нор	Dst	Cst	Нор		E		3		1	C
Α	0	Α	Α	4	Α					F		\setminus_1
В	4	В	В	0	В		2	6				\
С	8	_	С	8	_			6		\	1	
D	8	_	D	3	D	(4	`		3 D
Е	2	Е	Е	8	_		A		4		B	
F	6	F	F	1	Ŧ						(D)	
'	•	•	•	•	•							_
	able fo			able for		Ta	able for	E	Ta	able for	F	
				<u> </u>		Ta Dst	able for Cst	Нор	Ta Dst	able for Cst	Hop	
Ta	able fo	r C	Та	able for	D		1					
Ta Dst	able fo	r C	Ta Dst	able for Cst	D	Dst	Cst	Нор	Dst	Cst	Нор	
Dst A	Cst ∞	r C Hop	Ta Dst A	Cst	D Hop	Dst A	Cst 2	Нор	Dst A	Cst 6	Нор	
Dst A B	Cst	r C Hop –	Dst A B	Cst ∞	D Hop - B	Dst A B	Cst 2 ∞	Hop A -	Dst A B	6 1	Hop A B	
Dst A B C	Cst	r C Hop - C	Dst A B C	Cst	D Hop - B C	Dst A B C	Cst 2 ∞ ∞	Hop A -	Dst A B C	Cst 6 1 1	Hop A B	

Distance Vector Example - Step 1

Ta	able for	Α	Ta	able for	В							C
Dst	Cst	Нор	Dst	Cst	Нор		E		3		1	
Α	0	Α	Α	4	Α					F		\setminus_1
В	4	В	В	0	В		2	6				\
С	7	F	C	2	F			6		\	1	
D	7	В	D	3	D	(4	`		3 D
Е	2	Е	ш	4	F		A		4		P	
F	_	_	_	4	F						$\left(\begin{array}{c} \mathbf{B} \end{array}\right)$	
	5	Е	F	1	F							_
	able for	<u> </u>		able for	l	Та	able for	Е	Ta	able for	F	
		<u> </u>		<u> </u>	l	Ta Dst	able for Cst	E Hop	Ta Dst	able for Cst	F Hop	
Та	able for	С	Та	able for	D							
Ta Dst	able for Cst	С	Ta Dst	able for Cst	Hop	Dst	Cst	Нор	Dst	Cst	Нор	
Ta Dst A	Cst	C Hop	Ta Dst A	Cst	Hop B	Dst A	Cst 2	Нор	Dst A	Cst 5	Нор	
Dst A B	Cst 7 2	C Hop F	Dst A B	Cst 7	Hop B B	Dst A B	Cst 2 4	Hop A F	Dst A B	5 1	Hop B	
Dst A B C	Cst 7 2 0	C Hop F C	Dst A B C	Cst 7 3	Hop B B C	A B C	2 4 4	Hop A F F	Dst A B C	5 1 1	Hop B B C	

Distance Vector Example - Step 2

Та	able for	Α	Ta	able for	В		E					
Dst	Cst	Нор	Dst	Cst	Нор		E		3		1	C
Α	0	Α	Α	4	Α					F		\setminus_1
В	4	В	В	0	В		2	6				
С	6	Ш	O	2	F			6		\	1	
D	7	В	D	3	D	(4	\	\	3 D
Е	2	ш	ш	4	F		A		4		P	
F	5	Е	F	1	F			_			В	
Ta	Table for C		Ta	Table for D			able for	Е	Ta	able for	·F	
Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор	
Δ.												
Α	6	F	Α	7	В	Α	2	Α	Α	5	В	
В	2	F	A B	7	B B	A B	2	A F	A B	5 1	B B	
В	2	F	В	3	В	В	4	F	В	1	В	
ВС	2	F C	ВС	3	ВС	ВС	4	F F	ВС	1	ВС	

Routing Information Protocol (RIP)

- Distance vector protocol
 - » nodes send distance vectors every 30 seconds
 - » or, when an update causes a change in routing
- RIP is limited to small networks

BGP – The Exterior Gateway Routing Protocol

- (a) A set of BGP routers. (b) Information sent to F

Unique Spanning Tree in Ethernet Networks

L2 Networking - Single Tree Required

- Ethernet frame
 - No hop-count
 - Could *loop* forever
 - broadcast frame, mis-configuration
- Layer 2 network
 - Required to have tree topology
 - Single path between every pair of stations
- Spanning Tree Protocol (STP)
 - Running in bridges
 - Helps building the spanning tree
 - Blocks ports

33

(11,10)

(11,20)

Constructing a Spanning Tree

Distributed algorithm

- » switches need to elect a "root" the switch with the smallest identifier
- » each switch identifies if its interface is on the shortest path from the root
- » messages (Y, d, X)
 - from node X
 - claiming Y is the root
 - and the distance is d

Steps in Spanning Tree Algorithm

- Initially, each switch thinks it is the root
 - » switch sends a message out every interface
 - » identifying itself as the root with distance 0
 - » example: switch X announces (X, 0, X)
- Other switches update their view of the root
 - » upon receiving a message, check the root id
 - » if the new id is smaller, start viewing that switch as root
- Switches compute their distance from the root
 - » add 1 to the distance received from a neighbor
 - » identify interfaces not on a shortest path to the root and exclude them from the spanning tree

Example - Switch #4's Viewpoint

- Switch #4 thinks it is the root
 - \rightarrow sends (4, 0, 4) message to 2 and 7
- Then, switch #4 hears from #2
 - » receives (2, 0, 2) message from 2
 - » ... and thinks that #2 is the root
 - » and realizes it is just one hop away
- Then, switch #4 hears from #7
 - » receives (2, 1, 7) from 7
 - » and realizes this is a longer path
 - » so, prefers its own one-hop path
 - » and removes 4-7 link from the tree

Example - Switch #4's Viewpoint

- Switch #2 hears about switch #1
 - » switch 2 hears (1, 1, 3) from 3
 - » switch 2 starts treating 1 as root
 - \rightarrow and sends (1, 2, 2) to neighbors
- Switch #4 hears from switch #2
 - » switch 4 starts treating 1 as root
 - \rightarrow and sends (1, 3, 4) to neighbors
- Switch #4 hears from switch #7
 - » switch 4 receives (1, 3, 7) from 7
 - » and realizes this is a longer path
 - » so, prefers its own three-hop path
 - » and removes 4-7 link from the tree

Maximum Flow of a Network

Flow Network Model

Flow network

- » source s
- » sink t
- » nodes a, b and c
- Edges are labeled with **capacities**
 - » (e.g. bit/s)

- Communication networks are not flow networks
 - » they are queue networks
 - » flow networks enable to determine limit values

Maximum Capacity of a Flow Network

- Max-flow min-cut theorem
 - » maximum amount of flow transferable through a network
 - » equals minimum value among all simple cuts of the network
- ◆ Cut → split of the nodes V into two disjoint sets S and T
 - \gg S U T = V
 - » there are $2^{|V|-2}$ possible cuts
- Capacity of cut (S, T): $c(S,T) = \sum_{(u,v) \mid u \in S, v \in T, (u,v) \in E} c(u,v)$

Max-flow Min-cut - Example

 $2^{|5|-2} = 8$ possible cuts

		V	ertic	es			
Cut	s	a	ь	c	t	c(S,T)	Feasability
1	S	S	S	\mathbf{S}	Τ	10	✓
2	\mathbf{S}	\mathbf{S}	\mathbf{S}	Τ	Τ	19	✓
3	\mathbf{S}	\mathbf{S}	Τ	\mathbf{S}	Τ	13	✓
4	\mathbf{S}	\mathbf{S}	T	\mathbf{T}	Τ	17	✓
5	\mathbf{S}	Т	\mathbf{S}	\mathbf{S}	Τ	-	×
6	\mathbf{S}	Т	\mathbf{S}	\mathbf{T}	Т	-	×
7	\mathbf{S}	Т	Т	\mathbf{S}	Т	11	✓
8	S	Т	Т	Τ	Т	12	✓

Maximum flow = 10

Homework

1. Review slides

2. Read from Tanenbaum

- » Section 5.2 Routing algorithms
- » Section 4.8.3 Spanning Tree Bridges