Note del corso di Geometria 1

Gabriel Antonio Videtta

27 e 31 marzo 2023

Proprietà e teoremi principali sul prodotto scalare

Nota. Nel corso del documento, per V si intenderà uno spazio vettoriale di dimensione finita n e per φ un suo prodotto scalare. Analogamente si intenderà lo stesso per V' e φ' .

Proposizione (formula delle dimensioni del prodotto scalare). Sia $W \subseteq V$ un sottospazio di V. Allora vale la seguente identità:

$$\dim W + \dim W^{\perp} = \dim V + \dim(W \cap V^{\perp}).$$

Dimostrazione. Si consideri l'applicazione lineare a_{φ} introdotta precedentemente. Si osserva che $W^{\perp} = \text{Ker}(i^{\top} \circ a_{\varphi})$, dove $i : W \to V$ è tale che i(w) = w. Allora, per la formula delle dimensioni, vale la seguente identità:

$$\dim V = \dim W^{\perp} + \operatorname{rg}(i^{\top} \circ a_{\varphi}). \tag{1}$$

Sia allora $f = i^{\top} \circ a_{\varphi}$. Si consideri ora l'applicazione $g = a_{\varphi} \circ i : W \to V^*$. Sia ora \mathcal{B}_W una base di $W \in \mathcal{B}_V$ una base di V. Allora le matrici associate di f e di g sono le seguenti:

(i)
$$M_{\mathcal{B}_{W}^{*}}^{\mathcal{B}_{V}}(f) = M_{\mathcal{B}_{W}^{*}}^{\mathcal{B}_{V}}(i^{\top} \circ a_{\varphi}) = \underbrace{M_{\mathcal{B}_{W}^{*}}^{\mathcal{B}_{V}^{*}}(i^{\top})}_{A} \underbrace{M_{\mathcal{B}_{V}^{*}}^{\mathcal{B}_{V}}(a_{\varphi})}_{B} = AB,$$

(ii)
$$M_{\mathcal{B}_{V}^{*}}^{\mathcal{B}_{W}}(g) = M_{\mathcal{B}_{V}^{*}}^{\mathcal{B}_{W}}(a_{\varphi} \circ i) = \underbrace{M_{\mathcal{B}_{V}^{*}}^{\mathcal{B}_{V}}(a_{\varphi})}_{B} \underbrace{M_{\mathcal{B}_{V}}^{\mathcal{B}_{W}}(i)}_{A^{\top}} = BA^{\top} \stackrel{B^{\top} = B}{=} (AB)^{\top}.$$

Poiché $\operatorname{rg}(A) = \operatorname{rg}(A^{\top})$, si deduce che $\operatorname{rg}(f) = \operatorname{rg}(g) \Longrightarrow \operatorname{rg}(i^{\top} \circ a_{\varphi}) = \operatorname{rg}(a_{\varphi} \circ i) = \operatorname{rg}(a_{\varphi}|_{W}) = \dim W - \dim \operatorname{Ker} a_{\varphi}|_{W}$, ossia che:

$$\operatorname{rg}(i^{\top} \circ a_{\varphi}) = \dim W - \dim(W \cap \underbrace{\operatorname{Ker} a_{\varphi}}_{V^{\perp}}) = \dim W - \dim(W \cap V^{\perp}). \quad (2)$$

Si conclude allora, sostituendo l'equazione (2) nell'equazione (1), che $\dim V = \dim W^{\top} + \dim W - \dim(W \cap V^{\perp})$, ossia la tesi.

Osservazione. Si identifica \underline{w}^{\perp} come il sottospazio di tutti i vettori di V ortogonali a \underline{w} . In particolare, se $W = \operatorname{Span}(\underline{w})$ è il sottospazio generato da $\underline{w} \neq \underline{0}, \ \underline{w} \in V$, allora $W^{\perp} = \underline{w}^{\perp}$. Inoltre valgono le seguenti equivalenze: $\underline{w} \notin W^{\perp} \iff \operatorname{Rad}(\varphi|_W) = W \cap W^{\perp} = \{\underline{0}\} \iff \underline{w} \text{ non è isotropo} \iff V = W \oplus W^{\perp}.$

Proposizione (formula di polarizzazione). Se char $\mathbb{K} \neq 2$, un prodotto scalare è univocamente determinato dalla sua forma quadratica q. In particolare vale la seguente identità:

$$\varphi(\underline{v},\underline{w}) = \frac{q(\underline{v} + \underline{w}) - q(\underline{v}) - q(\underline{w})}{2}.$$

Dimostrazione. Si osserva che $q(\underline{v} + \underline{w}) - q(\underline{v}) - q(\underline{w}) = 2\varphi(\underline{v}, \underline{w})$, e quindi, poiché 2 è invertibile per ipotesi, si deduce che $\varphi(\underline{v}, \underline{w}) = \frac{q(\underline{v} + \underline{w}) - q(\underline{v}) - q(\underline{w})}{2}$.

Definizione. Si definisce **base ortogonale** di V una base $\underline{v_1}$, ..., $\underline{v_n}$ tale per cui $\varphi(\underline{v_i},\underline{v_j})=0 \iff i\neq j$, ossia una base per cui la matrice associata del prodotto scalare è diagonale.

Teorema (di Lagrange). Ogni spazio vettoriale V su \mathbb{K} tale per cui char $\mathbb{K} \neq 2$ ammette una base ortogonale.

Dimostrazione. Si dimostra il teorema per induzione su $n := \dim V$. Per $n \le 1$, la tesi è triviale (se esiste una base, tale base è già ortogonale). Sia allora il teorema vero per $i \le n$. Se V ammette un vettore non isotropo \underline{w} , sia $W = \operatorname{Span}(\underline{w})$ e si consideri la decomposizione $V = W \oplus W^{\perp}$. Poiché W^{\perp} ha dimensione n-1, per ipotesi induttiva ammette una base ortogonale. Inoltre, tale base è anche ortogonale a W, e quindi l'aggiunta di \underline{w} a questa base ne fa una base ortogonale di V. Se invece V non ammette vettori non isotropi, ogni forma quadratica è nulla, e quindi il prodotto scalare è nullo per la proposizione precedente. Allora in questo caso ogni base è una base ortogonale, completando il passo induttivo, e dunque la dimostrazione. \square

Nota. D'ora in poi, nel corso del documento, si assumerà char $\mathbb{K} \neq 2$.

Teorema (di Sylvester, caso complesso). Sia \mathbb{K} un campo i cui elementi sono tutti quadrati di un altro elemento del campo (e.g. \mathbb{C}). Allora esiste una base ortogonale \mathcal{B} tale per cui:

$$M_{\mathcal{B}}(\varphi) = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}.$$

Dimostrazione. Per il teorema di Lagrange, esiste una base ortogonale \mathcal{B}' di V. Si riordini allora la base \mathcal{B}' in modo tale che la forma quadratica valutata nei primi elementi sia sempre diversa da zero. Allora, poiché ogni elemento di \mathbb{K} è per ipotesi quadrato di un altro elemento di \mathbb{K} , si sostituisca \mathcal{B}' con una base \mathcal{B} tale per cui, se $q(\underline{v_i}) = 0$, $\underline{v_i} \mapsto \underline{v_i}$, e altrimenti $\underline{v_i} \mapsto \frac{v_i}{\sqrt{q(v_i)}}$. Allora \mathcal{B} è una base tale per cui la matrice associata del prodotto scalare in tale base è proprio come desiderata nella tesi, dove r è il numero di elementi tali per cui la forma quadratica valutata in essi sia diversa da zero.

Osservazione.

▶ Si può immediatamente concludere che il rango è un invariante completo per la congruenza in un campo \mathbb{K} in cui tutti gli elementi sono quadrati, ossia che $A \cong B \iff \operatorname{rg}(A) = \operatorname{rg}(B)$, se $A \in B$ sono matrici simmetriche con elementi in \mathbb{K} .

Ogni matrice simmetrica rappresenta infatti un prodotto scalare, ed è pertanto congruente ad una matrice della forma desiderata nell'enunciato del teorema di Sylvester complesso. Poiché il rango è un invariante della congruenza, si ricava che r nella forma della matrice di Sylvester, rappresentando il rango, è anche il rango di ogni sua matrice congruente.

In particolare, se due matrici simmetriche hanno lo stesso rango, allora sono congruenti alla stessa matrice di Sylvester, e quindi, essendo la congruenza una relazione di equivalenza, sono congruenti a loro volta tra di loro.

- \blacktriangleright Due matrici simmetriche in \mathbb{K} con stesso rango, allora, non solo sono SD-equivalenti, ma sono anche congruenti.
- \blacktriangleright Ogni base ortogonale deve quindi avere lo stesso numero di vettori isotropi, dal momento che tale numero rappresenta la dimensione del radicale V^{\perp} .

Definizione (somma diretta ortogonale). Siano i sottospazi U e $W \subseteq V$ in somma diretta. Allora si dice che U e W sono in **somma diretta ortogonale** rispetto al prodotto scalare φ di V, ossia che $U \oplus W = U \oplus^{\perp} W$, se $\varphi(\underline{u},\underline{w}) = 0 \ \forall \underline{u} \in U, \underline{w} \in W$.

Definizione (cono isotropo). Si definisce **cono isotropo** di V rispetto al prodotto scalare φ il seguente insieme:

$$CI(\varphi) = \{ \underline{v} \in V \mid \varphi(\underline{v}, \underline{v}) = 0 \},$$

ossia l'insieme dei vettori isotropi di V.

Nota. La notazione $\varphi > 0$ indica che φ è definito positivo (si scrive $\varphi \geq 0$ se invece è semidefinito positivo). Analogamente $\varphi < 0$ indica che φ è definito negativo (e $\varphi \leq 0$ indica che è semidefinito negativo).

Esercizio 1. Sia char $\mathbb{K} \neq 2$. Siano $\underline{v_1}$, ..., $\underline{v_k} \in V$ e sia $M = \left(\varphi(\underline{v_i},\underline{v_j})\right)_{i,j=1\cdots k} \in M(k,\mathbb{K})$, dove φ è un prodotto scalare di V. Sia inoltre $W = \operatorname{Span}(v_1,...,v_k)$. Si dimostrino allora le seguenti affermazioni.

- (i) Se M è invertibile, allora $\underline{v_1}$, ..., $\underline{v_k}$ sono linearmente indipendenti.
- (ii) Siano $\underline{v_1}, ..., \underline{v_k}$ linearmente indipendenti. Allora M è invertibile $\iff \varphi|_W$ è non degenere $\iff W \cap W^{\perp} = \{\underline{0}\}.$
- (iii) Siano $\underline{v_1},...,\underline{v_k}$ a due a due ortogonali tra loro. Allora M è invertibile \iff nessun vettore v_i è isotropo.
- (iv) Siano $\underline{v_1}, ..., \underline{v_k}$ a due a due ortogonali tra loro e siano anche linearmente indipendenti. Allora M è invertibile \Longrightarrow si può estendere $\mathcal{B}_W = \{v_1, \ldots, v_k\}$ a una base ortogonale di V.
- (v) Sia $\mathbb{K} = \mathbb{R}$. Sia inoltre $\varphi > 0$. Allora $\underline{v_1}$, ..., $\underline{v_k}$ sono linearmente indipendenti $\iff M$ è invertibile.
- (vi) Sia $\mathbb{K} = \mathbb{R}$. Sia ancora $\varphi > 0$. Allora se $\underline{v_1}$, ..., $\underline{v_k}$ sono a due a due ortogonali e sono tutti non nulli, sono anche linearmente indipendenti.

Soluzione.

(i) Siano $a_1, ..., a_k \in \mathbb{K}$ tali che $a_1\underline{v_1} + ... + a_k\underline{v_k} = 0$. Vale in particolare che $\underline{0} = \varphi(\underline{v_i}, \underline{0}) = \varphi(\underline{v_i}, a_1\underline{v_1} + ... + a_k\underline{v_k}) = \sum_{j=1}^k a_j\varphi(\underline{v_i}, \underline{v_j}) \ \forall \ 1 \le i \le k$. Allora $\sum_{j=1}^k a_j M^j = 0$. Dal momento che M è invertibile, $\operatorname{rg}(M) = 0$

k, e quindi l'insieme delle colonne di M è linearmente indipendente, da cui si ricava che $a_j = 0 \ \forall \ 1 \le j \le k$, e quindi che $\underline{v_1}, ..., \underline{v_k}$ sono linearmente indipendenti.

- (ii) Poiché $\underline{v_1}$, ..., $\underline{v_k}$ sono linearmente indipendenti, tali vettori formano una base di W, detta \mathcal{B} . In particolare, allora, vale che $M = M_{\mathcal{B}}(\varphi|_W)$. Pertanto, se M è invertibile, $\operatorname{Rad}(\varphi|_W) = \operatorname{Ker} M = \{\underline{0}\}$, e dunque $\varphi|_W$ è non degenere. Se invece $\varphi|_W$ è non degenere, $\{\underline{0}\} = \operatorname{Rad}(\varphi|_W) = W \cap W^{\perp}$. Infine, se $W \cap W^{\perp} = \{\underline{0}\}$, $\{\underline{0}\} = W \cap W^{\perp} = \operatorname{Rad}(\varphi|_W) = \operatorname{Ker} M$, e quindi M è iniettiva, e dunque invertibile.
- (iii) Dal momento che $\underline{v_1}$, ..., $\underline{v_k}$ sono ortogonali tra loro, M è una matrice diagonale. Pertanto M è invertibile se e solo se ogni suo elemento diagonale è diverso da 0, ossia se $\varphi(\underline{v_i},\underline{v_i}) \neq 0 \ \forall \ 1 \leq i \leq k$, e dunque se e solo se nessun vettore v_i è isotropo.
- (iv) Se M è invertibile, da (ii) si deduce che $\operatorname{Rad}(\varphi|_W) = W \cap W^{\perp} = \{\underline{0}\}$, e quindi che W e W^{\perp} sono in somma diretta. Inoltre, per la formula delle dimensioni del prodotto scalare, $\dim W + \dim W^{\perp} = \dim V + \dim(W \cap V^{\perp}) = \dim V$. Pertanto $V = W \oplus^{\perp} W^{\perp}$.

Allora, dacché char $\mathbb{K} \neq 2$, per il teorema di Lagrange, W^{\perp} ammette una base ortogonale $\mathcal{B}_{W^{\perp}}$. Si conclude dunque che $\mathcal{B} = \mathcal{B}_W \cup \mathcal{B}_{W^{\perp}}$ è una base ortogonale di V.

(v) Se M è invertibile, da (i) $\underline{v_1}$, ..., $\underline{v_k}$ sono linearmente indipendenti. Siano ora invece $\underline{v_1}$, ..., $\underline{v_k}$ linearmente indipendenti per ipotesi. Siano $a_1, ..., a_k \in \mathbb{K}$ tali che $a_1\overline{M}^1 + ... + a_kM^k = 0$, allora $a_1\varphi(\underline{v_i}, \underline{v_1}) + ... + a_k\varphi(\underline{v_i}, \underline{v_k}) = 0 \ \forall \ 1 \le i \le k$. Pertanto, detto $\underline{v} = a_1\underline{v_1} + ... + a_k\underline{v_k}$, si ricava che:

$$\varphi(\underline{v},\underline{v}) = \sum_{i=1}^{k} \sum_{j=1}^{k} a_j \, \varphi(\underline{v_i},\underline{v_j}) = 0.$$

Tuttavia questo è possibile solo se $\underline{v} = a_1\underline{v_1} + \ldots + a_k\underline{v_k} = 0$. Dal momento che $\underline{v_1}, \ldots, \underline{v_k}$ sono linearmente indipendenti, si conclude che $a_1 = \cdots = a_k = 0$, ossia che le colonne di M sono tutte linearmente indipendenti e quindi che $\operatorname{rg}(M) = k \implies M$ è invertibile.

(vi) Poiché $\underline{v_1}, ..., \underline{v_k}$ sono ortogonali a due a due tra loro, M è una matrice diagonale. Inoltre, dacché $\varphi > 0$ e $\underline{v_i} \neq \underline{0} \ \forall 1 \leq i \leq k$, gli elementi diagonali di M sono sicuramente tutti diversi da zero, e quindi $\det(M) \neq 0 \implies M$ è invertibile. Allora, per il punto (v), $\underline{v_1}, ..., v_k$ sono linearmente indipendenti.

Definizione (indici e segnatura). Data una base ortogonale \mathcal{B} di V rispetto al prodotto scalare φ , si definiscono i seguenti indici:

$$\iota_{+}(\varphi) = \max\{\dim W \mid W \subseteq V \text{ e } \varphi|_{W} > 0\}, \quad \text{(indice di positività)}$$

$$\iota_{-}(\varphi) = \max\{\dim W \mid W \subseteq V \text{ e } \varphi|_{W} < 0\}, \quad \text{(indice di negatività)}$$

$$\iota_{0}(\varphi) = \dim V^{\perp}. \quad \text{(indice di nullità)}$$

Quando il prodotto scalare φ è noto dal contesto, si semplifica la notazione scrivendo solo ι_+ , ι_- e ι_0 . In particolare, la terna $\sigma(\varphi) = \sigma = (i_+, i_-, i_0)$ è detta **segnatura** del prodotto φ .

Teorema (di Sylvester, caso reale). Sia \mathbb{K} un campo ordinato i cui elementi positivi sono tutti quadrati (e.g. \mathbb{R}). Allora esiste una base ortogonale \mathcal{B} tale per cui:

$$M_{\mathcal{B}}(\varphi) = \begin{pmatrix} I_{\iota_{+}} & 0 & 0 \\ 0 & -I_{\iota_{-}} & 0 \\ 0 & 0 & 0 \cdot I_{\iota_{0}} \end{pmatrix}.$$

Inoltre, per ogni base ortogonale, esistono esattamente ι_+ vettori della base con forma quadratica positiva, ι_- con forma negativa e ι_0 con forma nulla.

Dimostrazione. Per il teorema di Lagrange, esiste una base ortogonale \mathcal{B}' di V. Si riordini la base in modo tale che la forma quadratica valutata nei primi elementi sia strettamente positiva, che nei secondi elementi sia strettamente negativa e che negli ultimi sia nulla. Si sostituisca \mathcal{B}' con una base \mathcal{B} tale per cui, se $q(\underline{v_i}) > 0$, allora $\underline{v_i} \mapsto \frac{v_i}{\sqrt{q(v_i)}}$; se $q(\underline{v_i}) < 0$, allora $\underline{v_i} \mapsto \frac{v_i}{\sqrt{-q(v_i)}}$; altrimenti $\underline{v_i} \mapsto \underline{v_i}$. Si è allora trovata una base la cui matrice associata del prodotto scalare è come desiderata nella tesi.

Sia ora \mathcal{B} una qualsiasi base ortogonale di V. Siano inoltre a il numero di vettori della base con forma quadratica positiva, b il numero di vettori con forma negativa e c quello dei vettori con forma nulla. Si consideri $W_+ = \operatorname{Span}(\underline{v_1},...,\underline{v_a}), W_- = \operatorname{Span}(v_{a+1},...,\underline{v_b}), W_0 = \operatorname{Span}(v_{b+1},...,\underline{v_c}).$

Sia $M = M_{\mathcal{B}}(\varphi)$. Si osserva che $c = n - \operatorname{rg}(M) = \dim \operatorname{Ker}(M) = \dim V^{\perp} = \iota_0$. Inoltre $\forall \underline{v} \in W_+$, dacché \mathcal{B} è ortogonale, $q(\underline{v}) = q(\sum_{i=1}^a \alpha_i \underline{v}_i) = \sum_{i=1}^a \alpha_i^2 q(\underline{v}_i) > 0$, e quindi $\varphi|_{W_+} > 0$, da cui $\iota_+ \geq a$. Analogamente $\iota_- \geq b$.

Si mostra ora che è impossibile che $\iota_+ > a$. Se così infatti fosse, sia W tale che dim $W = \iota_+$ e che $\varphi|_W > 0$. $\iota_+ + b + c$ sarebbe maggiore di $a+b+c=n:=\dim V$. Quindi, per la formula di Grassman, $\dim(W+W_-+W_0)=\dim W+\dim(W_-+W_0)-\dim(W\cap(W_-+W_0))\implies\dim(W\cap(W_-+W_0))=\dim W+\dim(W_-+W_0)-\dim(W+W_-+W_0)>0$, ossia esisterebbe $\underline{v}\neq\{\underline{0}\}\mid\underline{v}\in W\cap(W_-+W_0)$. Tuttavia questo è assurdo, dacché dovrebbe valere sia $q(\underline{v})>0$ che $q(\underline{v})<0$, \boldsymbol{I} . Quindi $\iota_+=a$, e analogamente $\iota_-=b$.

Definizione. Si dice **base di Sylvester** una base di V tale per cui la matrice associata di φ sia esattamente nella forma vista nell'enunciato del teorema di Sylvester. Analogamente si definisce tale matrice come **matrice** di Sylvester.

Osservazione.

- ▶ Come conseguenza del teorema di Sylvester reale, si osserva che la segnatura di una matrice simmetrica reale è invariante per cambiamento di base, se la base è ortogonale.
- La segnatura è un invariante completo per la congruenza nel caso reale. Se infatti due matrici hanno la stessa segnatura, queste sono entrambe congruenti alla stessa matrice di Sylvester, e quindi, essendo la congruenza una relazione di equivalenza, sono congruenti tra loro. Analogamente vale il viceversa, dal momento che ogni base ortogonale di due matrici congruenti deve contenere gli stessi numeri ι_+ , ι_- e ι_0 di vettori di base con forma quadratica positiva, negativa e nulla.
- ▶ Se $\underline{w_1}$, ..., $\underline{w_k}$ sono tutti i vettori di una base ortogonale \mathcal{B} con forma quadratica nulla, si osserva che $W = \operatorname{Span}(\underline{w_1}, ..., \underline{w_k})$ altro non è che V^{\perp} stesso.

Infatti, come visto anche nella dimostrazione del teorema di Sylvester reale, vale che dim $W = \dim \operatorname{Ker}(M_{\mathcal{B}}(\varphi)) = \dim V^{\perp}$. Sia allora la base $\mathcal{B} = \{\underline{w_1}, \dots, \underline{w_k}, \underline{v_{k+1}}, \dots, \underline{v_n}\}$ un'estensione di $\{\underline{w_1}, \dots, \underline{w_k}\}$. Se $\underline{w} \in W$ e $\underline{v} \in V$, $\varphi(\underline{w}, \underline{v}) = \varphi(\sum_{i=1}^k \alpha_i \underline{w_i}, \sum_{i=1}^k \beta_i \underline{w_i} + \sum_{i=k+1}^n \beta_i \underline{v_i}) = \sum_{i=1}^k \alpha_i \beta_i q(\underline{w_i}) = 0$ (dove α_i e $\beta_i \in \mathbb{K}$ rappresentano la i-esima coordinata di \underline{w} e \underline{v} nella base

 $\mathcal{B}),$ e quindi $W\subseteq V^{\perp}.$ Si conclude allora, tramite l'uguaglianza dimensionale, che $W=V^{\perp}.$

- ▶ Poiché dim Ker $(\varphi) = \iota_0$, vale in particolare che rg $(\varphi) = n \iota_0 = \iota_+ + \iota_-$ (infatti vale che $n = \iota_+ + \iota_- + \iota_0$, dal momento che n rappresenta il numero di elementi di una base ortogonale).
- ▶ Se $V = U \oplus^{\perp} W$, allora $\iota_{+}(\varphi) = \iota_{+}(\varphi|_{V}) + \iota_{+}(\varphi|_{W})$. Analogamente vale la stessa cosa per gli altri indici. Infatti, prese due basi ortogonali \mathcal{B}_{U} , \mathcal{B}_{W} di U e W, la loro unione \mathcal{B} è una base ortogonale di V. Pertanto il numero di vettori della base \mathcal{B} con forma quadratica positiva è esattamente $\iota_{+}(\varphi|_{V}) + \iota_{+}(\varphi|_{W})$.

Definizione (isometria tra due spazi vettoriali). Dati due spazi vettoriali (V, φ) e (V', φ') dotati di prodotto scalare sullo stesso campo \mathbb{K} , si dice che V e V' sono **isometrici** se esiste un isomorfismo f, detto *isometria*, che preserva tali che prodotti, ossia tale che:

$$\varphi(\underline{v},\underline{w}) = \varphi'(f(\underline{v}), f(\underline{w})).$$

Esercizio 2. Sia $f: V \to V'$ un isomorfismo. Allora f è un'isometria \iff \forall base $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ di $V, \mathcal{B}' = \{f(\underline{v_1}), \dots, f(\underline{v_n})\}$ è una base di V' e $\varphi(\underline{v_i}, \underline{v_j}) = \varphi'(f(\underline{v_i}), f(\underline{v_j})) \ \forall 1 \leq i, j \leq n \iff \exists$ base $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ di V tale che $\mathcal{B}' = \{f(\underline{v_1}), \dots, f(\underline{v_n})\}$ è una base di V' e $\varphi(\underline{v_i}, v_j) = \varphi'(f(\underline{v_i}), f(v_j)) \ \forall 1 \leq i, j \leq n.$

Soluzione. Se f è un'isometria, detta \mathcal{B} una base di V, $\mathcal{B}' = f(\mathcal{B})$ è una base di V' dal momento che f è anche un isomorfismo. Inoltre, dacché f è un'isometria, vale sicuramente che $\varphi(\underline{v_i},v_j) = \varphi'(f(\underline{v_i}),f(v_j)) \ \forall \ 1 \leq i,j \leq n$.

Sia ora assunto per ipotesi che \forall base $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ di V, $\mathcal{B}' = \{f(\underline{v_1}), \dots, f(\underline{v_n})\}$ è una base di V' e $\varphi(\underline{v_i}, \underline{v_j}) = \varphi'(f(\underline{v_i}), f(\underline{v_j})) \ \forall 1 \leq i, j \leq n$. Allora, analogamente a prima, detta $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ una base di V, $\mathcal{B}' = f(\mathcal{B})$ è una base di V', e in quanto tale, per ipotesi, è tale che $\varphi(\underline{v_i}, \underline{v_j}) = \varphi'(f(\underline{v_i}), f(\underline{v_j})) \ \forall 1 \leq i, j \leq n$.

Sia infine assunto per ipotesi che \exists base $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ di V tale che $\mathcal{B}' = \{f(\underline{v_1}), \dots, f(\underline{v_n})\}$ è una base di V' e $\varphi(\underline{v_i}, \underline{v_j}) = \varphi'(f(\underline{v_i}), f(\underline{v_j})) \ \forall \ 1 \leq i, j \leq n$. Siano $\underline{v}, \underline{w} \in V$. Allora $\exists \ a_1, \dots, \ a_n, \ b_1, \dots, \ b_n \in \mathbb{K}$ tali che $\underline{v} = a_1\underline{v_1} + \dots + a_n\underline{v_n}$ e $\underline{w} = b_1\underline{v_1} + \dots + b_n\underline{v_n}$. Si ricava pertanto che:

$$\varphi'(f(\underline{v}), f(\underline{w})) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i b_j \, \varphi'(f(\underline{v_i}), f(\underline{v_j})) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i b_j \, \varphi(\underline{v_i}, \underline{v_j}) = \varphi(\underline{v}, \underline{w}),$$

da cui la tesi.

Proposizione. Sono equivalenti le seguenti affermazioni:

- (i) $V \in V'$ sono isometrici;
- (ii) \forall base \mathcal{B} di V, base \mathcal{B}' di V', $M_{\mathcal{B}}(\varphi)$ e $M_{\mathcal{B}'}(\varphi')$ sono congruenti;
- (iii) \exists base \mathcal{B} di V, base \mathcal{B}' di V' tale che $M_{\mathcal{B}}(\varphi)$ e $M_{\mathcal{B}'}(\varphi')$ sono congruenti.

Dimostrazione. Se V e V' sono isometrici, sia $f: V \to V'$ un'isometria. Sia $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ una base di V. Allora, poiché f è anche un isomorfismo, $\mathcal{B}' = f(\mathcal{B})$ è una base di V tale che $\varphi(\underline{v_i}, \underline{v_j}) = \varphi'(f(\underline{v_i}), f(\underline{v_j})) \, \forall \, 1 \leq i, j \leq n$. Pertanto $M_{\mathcal{B}}(\varphi) = M_{\mathcal{B}'}(\varphi')$. Si conclude allora che, cambiando base in V (o in V'), la matrice associata al prodotto scalare varia per congruenza dalla formula di cambiamento di base per il prodotto scalare, da cui si ricava che per ogni scelta di \mathcal{B} base di V e di \mathcal{B}' base di V', $M_{\mathcal{B}}(\varphi) \cong M_{\mathcal{B}'}(\varphi')$. Inoltre, se tale risultato è vero per ogni \mathcal{B} base di V e di \mathcal{B}' base di V', vale anche (ii) \Longrightarrow (iii).

Si dimostra ora (iii) \Longrightarrow (i). Per ipotesi $M_{\mathcal{B}}(\varphi) \cong M_{\mathcal{B}'}(\varphi')$, quindi $\exists P \in \operatorname{GL}(n,\mathbb{K}) \mid M_{\mathcal{B}'}(\varphi') = P^{\top}M_{\mathcal{B}}(\varphi)P$. Allora $\exists \mathcal{B}''$ base di V' tale che $P = M_{\mathcal{B}''}^{\mathcal{B}'}(\operatorname{Id}_V)$, da cui $P^{-1} = M_{\mathcal{B}'}^{\mathcal{B}''}(\varphi)$. Per la formula di cambiamento di base del prodotto scalare, $M_{\mathcal{B}''}(\varphi) = (P^{-1})^{\top}M_{\mathcal{B}'}P^{-1} = M_{\mathcal{B}}(\varphi)$. Detta $\mathcal{B}'' = \{\underline{w}_1, \ldots, \underline{w}_n\}$, si costruisce allora l'isomorfismo $f : V \to V'$ tale che $f(\underline{v}_i) = \underline{w}_i \ \forall 1 \leq i \leq n$. Dal momento che per costruzione $M_{\mathcal{B}}(\varphi) = M_{\mathcal{B}''}(\varphi')$, $\varphi(\underline{v}_i, \underline{v}_j) = \varphi'(\underline{w}_i, \underline{w}_j) = \varphi'(f(\underline{v}_i), f(\underline{v}_j)) \ \forall 1 \leq i, j \leq n$. Si conclude dunque che $\varphi(\underline{v}, \underline{w}) = \varphi'(f(\underline{v}_i), f(\underline{w})) \ \forall \underline{v}, \underline{w} \in V$, e dunque che f è un'isometria, come desiderato dalla tesi. \square

Proposizione. (V, φ) e (V', φ') spazi vettoriali su \mathbb{R} sono isometrici $\iff \varphi$ e φ' hanno la stessa segnatura.

Dimostrazione.

 (\Longrightarrow) Per la precedente proposizione, esistono due basi \mathcal{B} e \mathcal{B}' , una di V e una di V', tali che $M_{\mathcal{B}}(\varphi) \cong M_{\mathcal{B}'}(\varphi)$. Allora queste due matrici condividono

la stessa segnatura, e così quindi anche φ e φ' .

 (\Leftarrow) Se φ e φ' hanno la stessa segnatura, esistono due basi $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ e $\mathcal{B}' = \{\underline{w_1}, \dots, \underline{w_n}\}$, una di V e una di V', tali che $M = M_{\mathcal{B}}(\varphi) = M_{\mathcal{B}'}(\varphi')$ e che M è una matrice di Sylvester. Allora si costruisce $f: V \to V'$ tale che $f(\underline{v_i}) = \underline{w_i}$. Esso è un isomorfismo, e per costruzione $\varphi(\underline{v_i}, \underline{v_j}) = \varphi'(\underline{w_i}, \underline{w_j}) = \varphi'(f(\underline{v_i}), f(\underline{v_j})) \ \forall \ 1 \leq i, j \leq n$, da cui si conclude che $\varphi(\underline{v}, \underline{w}) = \varphi'(f(\underline{v}), f(\underline{w})) \ \forall \ \underline{v}, \underline{w} \in V$, e quindi che V e V' sono isometrici. \square

Definizione (sottospazio isotropo). Sia W un sottospazio di V. Allora W si dice **sottospazio isotropo** di V se $\varphi|_{W} = 0$.

Osservazione.

- $ightharpoonup V^{\perp}$ è un sottospazio isotropo di V.
- ▶ \underline{v} è un vettore isotropo $\iff W = \operatorname{Span}(\underline{v})$ è un sottospazio isotropo di V.
- ▶ $W \subseteq V$ è isotropo $\iff W \subseteq W^{\perp}$.

Proposizione. Sia φ non degenere. Se W è un sottospazio isotropo di V, allora dim $W \leq \frac{1}{2} \dim V$.

Dimostrazione. Poiché W è un sottospazio isotropo di $V, W \subseteq W^{\perp} \implies \dim W \leq \dim W^{\perp}$. Allora, poiché φ è non degenere, $\dim W + \dim W^{\perp} = \dim V$, $\dim W \leq \dim V - \dim W$, da cui $\dim W \leq \frac{1}{2} \dim V$.

Definizione (indice di Witt). Si definisce **indice di Witt** $W(\varphi)$ di (V, φ) come la massima dimensione di un sottospazio isotropo.

Osservazione.

ightharpoonup Se $\varphi > 0$ o $\varphi < 0$, $W(\varphi) = 0$.

Proposizione. Sia $\mathbb{K} = \mathbb{R}$. Sia φ non degenere e sia $\sigma(\varphi) = (\iota_+(\varphi), \iota_-(\varphi), 0)$. Allora $W(\varphi) = \min\{\iota_+(\varphi), \iota_-(\varphi)\}$.

Dimostrazione. Senza perdità di generalità si assuma $\iota_{-}(\varphi) \leq \iota_{+}(\varphi)$ (il caso $\iota_{-}(\varphi) > \iota_{+}(\varphi)$ è analogo). Sia W un sottospazio con dim $W > \iota_{-}(\varphi)$. Sia W^{+} un sottospazio con dim $W^{+} = \iota_{+}(\varphi)$ e $\varphi|_{W^{+}} > 0$. Allora, per la formula di Grassmann, dim $W + \dim W^{+} > n \implies \dim W + \dim W^{+} > \dim W + \dim W^{+} > \dim W + \dim W^{+} > 0$. Quindi $\exists \underline{w} \in W$, $\underline{w} \neq 0$ tale che $\varphi(\underline{w}, \underline{w}) > 0$, da cui si ricava che W non è isotropo. Pertanto $W(\varphi) \leq \iota_{-}(\varphi)$.

Sia $a := \iota_+(\varphi)$ e sia $b := \iota_-(\varphi)$. Sia ora $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_a}, \underline{w_1}, \dots, \underline{w_b}\}$ una base tale per cui $M_{\mathcal{B}}(\varphi)$ è la matrice di Sylvester per φ . Siano $\underline{v_1}, \dots, \underline{v_a}$ tali che $\varphi(\underline{v_i}, \underline{v_i}) = 1$ con $1 \le i \le a$. Analogamente siano $\underline{w_1}, \dots, \underline{w_b}$ tali che $\varphi(\underline{w_i}, \underline{w_i}) = -1$ con $1 \le i \le b$. Detta allora $\mathcal{B}' = \{\underline{v_1}' := \underline{v_1} + \underline{w_1}, \dots, \underline{v_b}' := \underline{v_b} + \underline{w_b}\}$, sia $W = \operatorname{Span}(\mathcal{B}')$.

Si osserva che \mathcal{B}' è linearmente indipendente, e dunque che dim $W=\iota_-$. Inoltre $\varphi(\underline{v_i}',\underline{v_j}')=\varphi(\underline{v_i}+\underline{w_i},\underline{v_j}+\underline{w_j})$. Se $i\neq j$, allora $\varphi(\underline{v_i}',\underline{v_j}')=0$, dal momento che i vettori di \mathcal{B} sono a due a due ortogonali tra loro. Se invece i=j, allora $\varphi(\underline{v_i}',\underline{v_j}')=\varphi(\underline{v_i},\underline{v_i})+\varphi(\underline{w_i},\underline{w_i})=1-1=0$. Quindi $M_{\mathcal{B}'}(\varphi|_W)=0$, da cui si conclude che $\varphi|_W=0$. Pertanto $W(\varphi)\geq i_-(\varphi)$, e quindi $W(\varphi)=i_-(\varphi)$, da cui la tesi.