PEP 345 Modelling and Simulation

Week	Topic
Week 1	C++: types, declarations, loops, functions; editing and compiling.
Week 2	Euler method simulation of LHO; exporting and plotting the data.
Week 3	Leapfrog method and conservation of energy. RK-methods.
Week 4	Damped LHO; phase space. Orbital motion.
Week 5	Eigen library. Basic matrix operations. Coupled LHOs.
Week 6	Simulation of coupled oscillators with matrix algebra. Vibrational
	modes of CO ₂ and other simple molecules.
Week 7	Tight binding model. Calculating energy levels and absorption
	spectra of long chains and aromatic rings using matrix algebra.
Week 8	Random library. Pseudorandom numbers. Markov chain.
Week 9	Simulating random walk and Brownian motion.
Week 10	Simulating epidemics using random numbers and matrix algebra.
Week 11	Ising model. Monte-Carlo methods, Markov chain Monte Carlo.
Week 12	Simulating Ising model with Metropolis-Hastings algorithm.
Week 13	Discretization of derivatives. Crank-Nicholson method.
	Introduction to heat and diffusion equation.
Week 14	Simulating heat and diffusion equation.

Course outcomes:

- 1. Choose the appropriate approximation scheme for the given problem.
- 2. Simulate the damped harmonic oscillator and illustrate it using position vs. time and phase space plots.
- 3. Find the natural frequencies of the system of harmonic oscillators using matrix algebra package.
- 4. Write the nearest neighbor tight binding Hamiltonian matrix for the polycyclic aromatic compounds (e.g. naphthalene or anthracene).
- 5. Simulate random walk with and without drift.

Text:

Arieh Iserles, A First Course in the Numerical Analysis of Differential Equations (2nd ed.), Cambridge University Press, 2009.

Jack Simons, Advanced Theoretical Chemistry, LibreTexts, https://chem.libretexts.org/@go/page/11538

Grading:

Homework -- 55% Canvas quizzes – 15% Final Project -- 30%

Catalog description:

Development of deterministic and non-deterministic models for physical systems, engineering applications, simulation tools for deterministic and non-deterministic systems, case studies and projects