Introduction to Java for C++ Programmers

Introduction to Database

By: Mahboob Ali

What is a Database System?

Database Application Systems

Rational Database and Relational Data Model

 Most of today's database systems are relational database systems, based on the relational data model. A relational data model has three key A relational data model has three key components

- □ Structure defines the representation of the data.
- □ *Integrity* imposes constraints on the data.
- □ *Language* provides the means for accessing and manipulating data.

Relational Structure

• A relational database consists of a set of relations.

• A relation has two things in one:

• a schema (which is a relation)

• an *instance* of the schema (which nothing but a table with rows and columns).

Course Table

Relation/Table N	ame		Column	ns/Attributes	
Course Table	courseId	subjectId	courseNumber	title	numOfCredits
Tuples/ Rows →	11111 11112 11113 11114 11115 11116 11117 11118	CSCI CSCI CSCI CSCI MATH MATH EDUC ITEC	1301 1302 3720 4750 2750 3750 1111 1344	Introduction to Java I Introduction to Java II Database Systems Rapid Java Application Calculus I Calculus II Reading Database Administration	4 3 3 3 5 5 5 3 3

Student Table

Student Tabl	e								
ssn	firstName	mi	lastName	phone	birthDate		street	zipCode	deptID
444111110	Jacob	R	Smith	9129219434	1985-04-09	99	Kingston Street	31435	BIOL
444111111	John	K	Stevenson	9129219434	null	100	Main Street	31411	BIOL
444111112	George	K	Smith	9129213454	1974-10-10	1200	Abercorn St.	31419	CS
444111113	Frank	Ε	Jones	9125919434	1970-09-09	100	Main Street	31411	BIOL
444111114	Jean	K	Smith	9129219434	1970-02-09	100	Main Street	31411	CHEM
444111115	Josh	R	Woo	7075989434	1970-02-09	555	Franklin St.	31411	CHEM
444111116	Josh	R	Smith	9129219434	1973-02-09	100	Main Street	31411	BIOL
444111117	Joy	Р	Kennedy	9129229434	1974-03-19	103	Bay Street	31412	CS
444111118	Toni	R	Peterson	9129229434	1964-04-29	103	Bay Street	31412	MATH
444111119	Patrick	R	Stoneman	9129229434	1969-04-29	101	Washington St.	31435	MATH
444111120	Rick	R	Carter	9125919434	1986-04-09	19	West Ford St.	31411	BIOL

Enrollment Table

Enrollment Table						
ssn	courseId	dateRegistered	grade			
444111110 444111110 444111111 444111111 444111111 444111112 444111112 444111113 444111113 444111113 444111115 444111115 444111115 444111117 444111118	11112 11113 11114 11115 11116 11111 11113 11115 11115 11116 11111 11111	2004-03-19 2004-03-19 2004-03-19 2004-03-19 2004-03-19 2004-03-19 2004-03-19 2004-03-19 2004-03-19 2004-03-19 2004-03-19 2004-03-19 2004-03-19 2004-03-19 2004-03-19	A B C D A A B F F D D A			
444111118 444111118	11112 11113	2004-03-19 2004-03-19	D B			

Table vs. File

•A table or a relation is not same as a file.

• Most of the relational database systems store multiple tables in a file.

Integrity Constraints

- An integrity constraint imposes a condition that all legal instances of the relations must satisfy.
- In general, there are three types of constraints:
 - domain constraint,
 - primary key constraint, and
 - foreign key constraint.
- Domain constraints and primary key constraints are known as *intra-relational constraints*, meaning that a constraint involves only one relation.
- The foreign key constraint is known as *inter-relational*, meaning that a constraint involves more than one relation.

Domain Constraints

Each row must have a value for courseId, and the value must be unique

Each value in the numOfCredits column must be greater than 0 and less than 5

Primary Key Constraints

Enrollment Table

ssn	courseId	dateRegistered	grade
444111110	11111	2004-03-19	A
444111110	11112	2004-03-19	В
444111110	11113	2004-03-19	С

Each value in courseId in the Enrollment table must match a value in courseId in the Course table

Course Table

courseId	subjectId	courseNumber	title	numOfCredits
11111	CSCI	1301	Introduction to Java I	
11112	CSCI CSCI	1302 3720	Introduction to Java II Database Systems	3
• • •				

Each row must have a value for couserId, and the value must be unique

Primary
—key
constraint

Each value in the numOfCredits column must be greater than 0 and less than 5

Foreign Key Constraints

	11 4	TC 1 1	1
Hnro	llment	เลก	16
		Iau	u

ssn	courseId	dateRegistered	grade
444111110	11111	2004-03-19	A
444111110	11112	2004-03-19	В
444111110	11113	2004-03-19	С

Each value in courseId in the Enrollment table must match a value in courseId in the Course table

Course Table

courseId	subjectId	courseNumber	title	numOfCredits
11111 11112 11113	CSCI CSCI CSCI	1301 1302 3720	Introduction to Java I Introduction to Java II Database Systems	4 3 3
<u> </u>				

Each row must have a value for couserId, and the value must be unique

Foreign key constraint

Each value in the numOfCredits column must be greater than 0 and less than 5

Domain Constraints

• Domain constraints specify the permissible values for an attribute.

• Domains can be specified using standard data types such as integers, floating-point numbers, fixed-length strings, and variant-length strings.

Domain Constraints Example

```
create table Course (
 courseId char(5),
  subjectId char(4) not null,
 courseNumber integer,
 title varchar(50) not null,
 numOfCredits integer,
  constraint greaterThanOne
       check (numOfCredits >= 1));
```

Primary Key

• The *primary* key is one of the candidate keys designated by the database designer. The primary key is often used to identify tuples in a relation.

```
create table Course (
 courseId char(5),
 subjectId char(4) not null,
 courseNumber integer,
 title varchar(50) not null,
 numOfCredits integer,
 primary key (courseId)
```

Primary Key Constraints

• The *primary key constraint* specifies that the primary key value of a tuple cannot be null

• No two tuples in the relation can have the same value on the primary key.

Foreign Key Constraints Formal Definition

- Formally, a set of attributes FK is a foreign key in a relation R that references relation T if it satisfies the following two rules:
- The attributes in FK have the same domain as the primary key in T.
- A non-null value on FK in R must match a primary key value in T.

Foreign Key Example

```
create table Enrollment (
  ssn char(9),
  courseId char(5),
  dateRegistered date,
  grade char(1),
 primary key (ssn, courseId),
  foreign key (ssn) references Student,
  foreign key (courseId) references Course
```

Foreign Key Discussion

•A foreign key is not necessarily the primary key or part of the primary in the relation.

•For example, <u>subjectCode</u> is a foreign key in the <u>Course</u> table that references the <u>Subject</u> table, but it is not the primary key in <u>Course</u>.

SQL

• Structured Query Language, pronounced S-Q-L, or Sequel

• To access or write applications for database systems, you need to use the Structured Query Language (SQL). SQL is the universal language for accessing relational database systems. Application programs may allow users to access database without directly using SQL, but these applications themselves must use SQL to access the database.

Create table

Drop table

Describe table

Select

Insert

Delete

```
create table Student (
create table Course (
                             ssn char(9),
 courseId char(5),
                             firstName varchar(25),
 subjectId char(4) not null,
                             mi char(1),
 courseNumber integer,
                             lastName varchar(25),
                             birthDate date,
 title varchar(50) not null,
                             street varchar(25),
 numOfCredits integer,
                             phone char(11),
 primary key (courseId)
                             zipCode char(5),
                             deptId char(4),
                             primary key (ssn)
```

Create table

Drop table

Describe table

Select

Insert

Delete

```
drop table Enrollment;
drop table Course;
drop table Student;
```

Create table

Drop table

Describe table

Select

Insert

Delete

$d\epsilon$	escribe Co	urse: (Oracle		

Create table

Drop table

Describe table

Select

Insert

Delete

```
select firstName, mi, lastName
from Student
where deptId = 'CS';
select firstName, mi, lastName
from Student
where deptId = 'CS' and zipCode = '31411';
select *
from Student
where deptId = 'CS' and zipCode = '31411';
```

Create table

Drop table

Describe table

Select

Insert

Delete

```
insert into Course (courseId, subjectId, courseNumber, title)
values ('11113', 'CSCI', '3720', 'Database Systems', 3);
```

Create table

Drop table

Describe table

Select

Insert

Update

Delete

```
update Course
set numOfCredits = 4
where title = 'Database Systems';
```

Create table

Drop table

Describe table

Select

Insert

Update

Delete

delete Course where title = 'Database System';