Whole Lung Tissue vs. BAL Fluid 16S Sequencing Analysis

Jennifer M. Baker

August 18, 2020 (updated)

This report was created with:

R version 4.0.2 (2020-06-22)

Platform: x86 64-apple-darwin17.0 (64-bit)

locale: en_US.UTF-8||en_US.UTF-8||en_US.UTF-8||C||en_US.UTF-8||en_US.UTF-8 attached base packages: stats, graphics, grDevices, utils, datasets, methods and base

other attached packages: gtools(v.3.8.2), pander(v.0.6.3), cbmbtools(v.0.0.0.9034), vegan(v.2.5-6), lattice(v.0.20-41), permute(v.0.9-5), ggpubr(v.0.4.0), knitr(v.1.29), scales(v.1.1.1), tidyselect(v.1.1.0), forcats(v.0.5.0), stringr(v.1.4.0), dplyr(v.1.0.1), purrr(v.0.3.4), readr(v.1.3.1), tidyr(v.1.1.1), tibble(v.3.0.3), qgplot2(v.3.3.2) and tidyverse(v.1.3.0)

loaded via a namespace (and not attached): httr(v.1.4.2), jsonlite(v.1.7.0), splines(v.4.0.2), carData(v.3.0-4), modelr(v.0.1.8), asserthat(v.0.2.1), blob(v.1.2.1), cellranger(v.1.1.0), yaml(v.2.2.1), pillar(v.1.4.6), backports(v.1.1.8), glue(v.1.4.1), digest(v.0.6.25), ggsignif(v.0.6.0), rvest(v.0.3.6), colorspace(v.1.4-1), htmltools(v.0.5.0), Matrix(v.1.2-18), pkgconfig(v.2.0.3), broom(v.0.7.0), haven(v.2.3.1), openxlsx(v.4.1.5), rio(v.0.5.16), mgcv(v.1.8-31), generics(v.0.0.2), car(v.3.0-9), ellipsis(v.0.3.1), withr(v.2.2.0), cli(v.2.0.2), magrittr(v.1.5), crayon(v.1.3.4), readxl(v.1.3.1), evaluate(v.0.14), fs(v.1.5.0), fansi(v.0.4.1), nlme(v.3.1-148), MASS(v.7.3-51.6), rstatix(v.0.6.0), xml2(v.1.3.2), foreign(v.0.8-80), tools(v.4.0.2), data.table(v.1.13.0), hms(v.0.5.3), lifecycle(v.0.2.0), munsell(v.0.5.0), reprex(v.0.3.0), cluster(v.2.1.0), zip(v.2.0.4), compiler(v.4.0.2), rlang(v.0.4.7), grid(v.4.0.2), rstudioapi(v.0.11), rmarkdown(v.2.3), codetools(v.0.2-16), gtable(v.0.3.0), abind(v.1.4-5), DBI(v.1.1.0), curl(v.4.3), R6(v.2.4.1), lubridate(v.1.7.9), stringi(v.1.4.6), parallel(v.4.0.2), Rcpp(v.1.0.5), vctrs(v.0.3.2), dbplyr(v.1.4.4) and xfun(v.0.16)

I. 16S rRNA gene amplicon quantification

Hypothesis testing - 16S rRNA gene amplicon quantification

Kruskal-Wallis rank sum test

data: Gene_16S_copies_per_mL by Sample_Type
Kruskal-Wallis chi-squared = 29.276, df = 6, p-value = 5.394e-05

Pairwise comparisons using Wilcoxon rank sum exact test

data: ddpcr\$Gene_16S_copies_per_mL and ddpcr\$Sample_Type

	NTC	Iso_Ctrl	PBS	Syringe_Rinse	Homog_Ctrl	BAL
Iso_Ctrl	0.64000	-	-	_	_	-
PBS	0.58947	0.40000	-	_	_	-
Syringe_Rinse	0.42353	0.03333	0.40000	_	_	-
Homog_Ctrl	0.58947	0.16667	0.42353	0.40000	_	-
BAL	0.22238	0.00839	0.31818	0.27082	0.90909	-
Lung	0.00839	0.00262	0.07955	0.00839	0.07955	0.00023

P value adjustment method: BH

II. Quality Checks - Confirmation of Sufficient Reads

2.1 MiSeq Reads by Sample Type

2.2 OTU Counts by Sample Type

III. Principal Component Analysis

3.1 Lung Samples vs. Sampling Controls

Principal Component 1 (13.7% explained)

```
Call:
adonis(formula = adonis.hel.df.wbn ~ otu.df.lungsamp.sampctrls$RA_Groups,
                                                                                permutations = 10000, me
Permutation: free
Number of permutations: 10000
Terms added sequentially (first to last)
                                    Df SumsOfSqs MeanSqs F.Model
                                                                       R2
\verb"otu.df.lungsamp.sampctrls$RA\_Groups"
                                           3.8879 1.94394 2.3806 0.16554
Residuals
                                     24
                                          19.5980 0.81658
                                                                  0.83446
Total
                                     26
                                          23.4859
                                                                  1.00000
                                       Pr(>F)
otu.df.lungsamp.sampctrls$RA_Groups 9.999e-05 ***
Residuals
Total
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Call:
adonis(formula = adonis.hel.bl ~ adonis.otudf.bl$Sample_Type,
                                                                    permutations = 10000, method = "eucl
```

Permutation: free

Number of permutations: 10000

Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)

adonis.otudf.bl\$Sample_Type 1 2.4484 2.4484 3.1334 0.15563 9.999e-05 ***

Residuals 17 13.2838 0.7814 0.84437 Total 18 15.7323 1.00000

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Call:

adonis(formula = adonis.hel.wn ~ adonis.otudf.wn\$RA_Groups, permutations = 10000, method = "euclid

Permutation: free

Number of permutations: 10000

Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)

adonis.otudf.wn\$RA_Groups 1 2.4698 2.46976 3.3064 0.18061 4e-04 ***

Residuals 15 11.2046 0.74697 0.81939 Total 16 13.6744 1.00000

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Call:

adonis(formula = adonis.hel.bn ~ adonis.otudf.bn\$Organ, permutations = 10000, method = "euclidean"

Permutation: free

Number of permutations: 10000

Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)

adonis.otudf.bn\$Organ 1 0.9148 0.91483 0.99522 0.05856 0.463

Residuals 16 14.7076 0.91922 0.94144 Total 17 15.6224 1.00000

3.2 Lung Samples v. Isolation Controls

Principal Component 1 (12.1% explained)

permutatio:

```
Call:
adonis(formula = otu.good.lungsamp.isoctrls_hel ~ otu.df.lungsamp.isoctrls$Sample_Type,
```

Permutation: free

Number of permutations: 10000

Terms added sequentially (first to last)

```
Df SumsOfSqs MeanSqs F.Model R2 otu.df.lungsamp.isoctrls$Sample_Type 3 5.0693 1.6898 2.0376 0.1846 Residuals 27 22.3910 0.8293 0.8154 Total 30 27.4603 Pr(>F)
```

otu.df.lungsamp.isoctrls\$Sample_Type 9.999e-05 ***

Residuals

Total

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Call:

adonis(formula = adonis.hel.il ~ adonis.otudf.il\$RA_Groups, permutations = 10000, method = "euclid

Permutation: free

Number of permutations: 10000

Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)

adonis.otudf.il\$RA_Groups 1 2.6804 2.68040 3.4196 0.15253 9.999e-05 ***

Residuals 19 14.8927 0.78383 0.84747 Total 20 17.5731 1.00000

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Call:

adonis(formula = adonis.hel.ib ~ adonis.otudf.ib\$RA_Groups, permutations = 10000,

method = "euclid

Permutation: free

Number of permutations: 10000

Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)

adonis.otudf.ib\$RA_Groups 1 1.2087 1.20866 1.3141 0.06165 0.07149 .

Residuals 20 18.3957 0.91978 0.93835 Total 21 19.6044 1.00000

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

3.3 Lung Samples vs. Sequencing Controls

Principal Component 1 (13.5% explained)

Number of permutations: 10000

Terms added sequentially (first to last)

```
Df SumsOfSqs MeanSqs F.Model R2 otu.df.lungsamp.seqctrls$Sample_Type 3 7.919 2.63959 3.2847 0.16193 Residuals 51 40.984 0.80361 0.83807 Total 54 48.903 1.00000 Pr(>F)
```

otu.df.lungsamp.seqctrls\$Sample_Type 9.999e-05 ***

Residuals

Total

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Call:

adonis(formula = adonis.hel.sl ~ adonis.otudf.sl\$RA_Groups, permutations = 10000, method = "euclid

Permutation: free

Number of permutations: 10000

Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)

adonis.otudf.sl\$RA_Groups 1 4.146 4.1459 5.1613 0.10717 9.999e-05 ***

Residuals 43 34.541 0.8033 0.89283 Total 44 38.687 1.00000

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Call:

adonis(formula = adonis.hel.sb ~ adonis.otudf.sb\$RA_Groups, permutations = 10000,

method = "euclid

Permutation: free

Number of permutations: 10000

Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)

adonis.otudf.sb\$RA_Groups 1 2.069 2.06931 2.3933 0.05159 4e-04 ***

Residuals 44 38.044 0.86463 0.94841 Total 45 40.113 1.00000

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

3.4 Lung Samples vs. Tongue

Principal Component 1 (10.5% explained)

```
Call:
adonis(formula = otu.good.tong.lungsamp_hel ~ otu.df.tong.lungsamp$Sample_Type,
                                                                                     permutations = 100
Permutation: free
Number of permutations: 10000
Terms added sequentially (first to last)
                                 Df SumsOfSqs MeanSqs F.Model
otu.df.tong.lungsamp$Sample_Type
                                       3.9663 1.98317 2.6355 0.12772 9.999e-05
Residuals
                                 36
                                      27.0894 0.75248
                                                              0.87228
Total
                                 38
                                      31.0557
                                                              1.00000
otu.df.tong.lungsamp$Sample_Type ***
Residuals
Total
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
adonis(formula = adonis.hel.tl ~ adonis.otudf.tl$Sample_Type,
                                                                   permutations = 10000, method = "eucl
```

Permutation: free

Number of permutations: 10000

Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) adonis.otudf.tl\$Sample_Type 1 1.039 1.03903 1.5005 0.05265 0.0142 *

Residuals 27 18.696 0.69244 0.94735 Total 28 19.735 1.00000

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Call:

adonis(formula = adonis.hel.tb ~ adonis.otudf.tb\$Sample_Type, permutations = 10000, method = "eucl

Permutation: free

Number of permutations: 10000

Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)

adonis.otudf.tb\$Sample_Type 1 2.6012 2.60116 3.2809 0.10489 9.999e-05 ***

Residuals 28 22.1989 0.79282 0.89511 Total 29 24.8001 1.00000

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

3.5 Lung vs. Tongue vs. Negative Controls

Principal Component 1 (11.6% explained)

IV. Diversity Indices

4.1 Alpha Diversity - Rarified Richness

Tukey multiple comparisons of means 95% family-wise confidence level

Fit: aov(formula = tukey_otu_df[, "Unique_Otus_per_1k_reads"] ~ tukey_otu_df[, "Alpha_Div_Groups"])

\$`tukey_otu_df[, "Alpha_Div_Groups"]`

	diff	lwr	upr
Isolation Control-BAL	-10.612291	-27.006526	5.7819429
Lung-BAL	25.049970	7.457534	42.6424053
Sampling Control-BAL	-2.528455	-20.690372	15.6334619
Sequencing Control-BAL	-13.515401	-27.202081	0.1712778
Lung-Isolation Control	35.662261	18.778539	52.5459833
Sampling Control-Isolation Control	8.083837	-9.392476	25.5601491
Sequencing Control-Isolation Control	-2.903110	-15.666004	9.8597843
Sampling Control-Lung	-27.578425	-46.183380	-8.9734692
Sequencing Control-Lung	-38.565371	-52.834721	-24.2960216
Sequencing Control-Sampling Control	-10.986946	-25.952766	3.9788736
	p adj		
Isolation Control-BAL	0.3746804		
Lung-BAL	0.0014826		
Sampling Control-BAL	0.9950044		
Sequencing Control-BAL	0.0545862		
Lung-Isolation Control	0.0000011		
Sampling Control-Isolation Control	0.6949822		
Sequencing Control-Isolation Control	0.9684857		
Sampling Control-Lung	0.0008519		
Sequencing Control-Lung	0.0000000		
Sequencing Control-Sampling Control	0.2510366		

4.2 Alpha Diversity - Shannon Diversity Index

Sample Type

Tukey multiple comparisons of means 95% family-wise confidence level

Fit: aov(formula = tukey_otu_df[, "Shannon"] ~ tukey_otu_df[, "Alpha_Div_Groups"])

\$`tukey_otu_df[, "Alpha_Div_Groups"]`

	diff	lwr	upr	p adj
Isolation Control-BAL	-0.9947478	-1.8514868	-0.1380087	0.0147639
Lung-BAL	0.6346623	-0.2846930	1.5540176	0.3098538
Sampling Control-BAL	-0.5859416	-1.5350572	0.3631740	0.4234102
Sequencing Control-BAL	-1.2226705	-1.9379166	-0.5074244	0.0000876
Lung-Isolation Control	1.6294101	0.7470911	2.5117290	0.0000205
Sampling Control-Isolation Control	0.4088062	-0.5044807	1.3220931	0.7201786
Sequencing Control-Isolation Control	-0.2279227	-0.8948932	0.4390477	0.8732743
Sampling Control-Lung	-1.2206039	-2.1928720	-0.2483357	0.0067338
Sequencing Control-Lung	-1.8573328	-2.6030284	-1.1116372	0.0000000
Sequencing Control-Sampling Control	-0.6367289	-1.4188211	0.1453633	0.1637833

4.3 Beta Diversity - Bray-Curtis dissimilarity Index within Sample Type

[1] 87 2

Pairwise comparisons using Wilcoxon rank sum test with continuity correction

 $\tt data: bray_dist_lbtce_long_mut_filt_uniq\$BC_Index \ and \ bray_dist_lbtce_long_mut_filt_uniq\$Sample_Type$

	BAL	Blank	Cecum	Lung
Blank	0.2730	-	-	-
Cecum	< 2e-16	< 2e-16	-	-
Lung	6.3e-09	7.4e-06	< 2e-16	-
Tongue	< 2e-16	8.5e-13	< 2e-16	0.0053

P value adjustment method: BH

4.4 Bray-Curtis dissimilarity - Lung Samples vs. Matched Tongue Samples

Wilcoxon rank sum exact test

data: BC_Index by Comparison_Type
W = 85, p-value = 0.0004114

alternative hypothesis: true location shift is not equal to 0

V. Relative Abundance

5.1 Ordered by Lung OTUs

5.2 Ordered by Pooled Negative Control OTUs

5.3 Ordered by Tongue OTUs

