Automation of Optical Tweezers & Tracking Applications for EV Radii Prediction

Noah Horne

UiT The Arctic University of Norway

July 10, 2025

Overview

- 1. Radii Prediction & Tracking Methodology
 - 1.1 Brownian Diffusion & applied MSD Relationship
 - 1.2 Particle Detection & Image Preprocessing
 - 1.3 Dynamics Capture Calibration for Single Particle Applications
 - 1.4 Accuracy Improvements
 - 1.5 Single Particle Inference Progress
- 2. Visual Automation Interface
 - 2.1 Primary Backends
 - 2.2 Auto Mode Control Flow
 - 2.3 Progress Remarks

MSD inferred Particle Radius & Diffusivity

Brownian Diffusion and Mean Squared Displacement (MSD) Relationship

- EV's and other nanoscale particles undergo Brownian motion.
- Nanoscale particle densities stochastically obey the diffusion relation.
- Rearranging yields a linear relationship between particle MSD and lag time.
- With temperature T and viscosity η the particle radius r is calculated.

$$\frac{\partial \rho(\vec{x}, t)}{\partial t} = D\nabla^2 \rho(\vec{x}, t), \quad \vec{x} \in \mathbb{R}^d$$

$$\psi$$

$$\rho(\vec{x}, t) = \frac{1}{(4\pi Dt)^{\frac{n}{2}}} \exp(\frac{-|\vec{x}|^2}{4Dt})$$

$$\psi$$

$$\mathbb{E}[x] = 0, Var[x] = 2nDt$$

$$\psi$$

$$\frac{\mathbb{E}[x^2]}{2dt} = D = \frac{k_B T}{6\pi nr}$$

Particle Detection & Image Preprocessing

- 1. Bandpass Filter
 - Low-pass truncated 1D Gaussian Convolution:

$$G(x) = \frac{1}{N} \exp(\frac{-x^2}{2\sigma^2}), \quad x \in [-r \cdot \sigma, +r \cdot \sigma]$$

• High-pass 1D Boxcar Convolution:

$$B(x) = \frac{1}{2r+1}, x \in [-r, r]$$

• Difference of these convolution results:

$$I_{bp}(x,y) = \underbrace{G \star I}_{\text{Low-pass}} - \underbrace{B \star I}_{\text{Long-pass}}$$

- 2. Maximum Detection & Binary Thresholding
 - Peak detection via grayscale morphological dilation
 - Binary mask (thresholded with hyperparamter)
- 3. Subpixel Refinement
 - Particle c.o.m found to subpixel accuracy.

Figure: $r=0.5\mu\mathrm{m}$ Polystyrene Detection

Trajectory Analysis

- Image preprocessing and particle location detection is performed on all frames of captured video.
- Crocker-Grier linking algorithm enumerates particles and assigns trajectories.
- Analysis is then free to be performed on returned dataframe.

Figure: 2μ m Polystyrene Trajectories over 120 frames.

Tracking Parameters / Calibration

The tracking calibration procedure allows for 5 levels of configuration:

- 1. Brightness Thresholding & Mask Calibration (frame annotation)
- 2. Custom Thresholding via Cluster Detection (frame annotation)
- 3. Trajectory Linkage & Memory (dynamics capture)
- 4. **Ephemeral Trajectory Thresholding** (dynamics capture)
- 5. Visual Pixel Density / FPS config (physical result calibration)

Dynamics Capture Calibration

Figure: Short Memory, Long Ephemeral Threshold

Figure: Long Memory, Short Ephemeral Threshold

Mean Squared Displacement Plots

- The gradient of the MSD plot permits Diffusivity D & Radii r calculation.
- MSD is measured as a function of lag time, returning the average displacement a
 particle goes through across said lag time, over the entire video sample (N frames).

$$MSD(\tau) = \frac{1}{N - \tau} \sum_{i=1}^{N - \tau} \left[(x_{i+\tau} - x_i)^2 + (y_{i+\tau} - y_i)^2 \right]$$

$$\frac{1}{4} \frac{MSD(\tau)}{\tau} = D \quad (\text{For 2D Case})$$

- Larger τ_{max} : Richer dynamics captured, high temporal variance.
- Smaller τ_{max} : Less complete dynamics, low temporal variance. (more stable)

Figure: Individual $2\mu m$ Polystyrene Mean Squared Displacements fit with 15 frame memory.

Figure: Ensemble Averaged $2\mu m$ Polystyrene Mean Squared Displacements fit with 15 frame memory.

Figure: Individual 1.04 μ m Polystyrene Mean Squared Displacements fit with 15 frame memory.

Figure: Ensemble Averaged 1.04µm Polystyrene Mean Squared Displacements fit with 15 frame memory.

Figure: Individual $0.53\mu m$ Polystyrene Mean Squared Displacements fit with 15 frame memory.

Figure: Ensemble Averaged 0.53 µm Polystyrene Mean Squared Displacements fit with 15 frame memory.

Radii Prediction Accuracy

 The backend takes the gradient of the MSD fit to calculate the radii and diffusivity coefficient:

$$\frac{\mathbb{E}[x^2]}{t} = 4D = \frac{2k_BT}{3\pi\eta r}$$

Comparison between Literature Radii Values and Tracking Model Predicted Values for 100 frames			
Real Radii Values (μm)	1	0.52	0.265
Ensemble Predicted Radii Values (μm)	1.022	0.496	0.2303
Absolute Error (μm)	0.022	0.024	0.0347
Relative Error	0.022	0.046	0.1309

Note: These results use long memory, short ephemeral thresholds, and a long au_{max} .

Estimates under this configuration break down for more diffusive particles.

Radii Prediction Accuracy: Video Length

Enhancing Stability for Single Particle Measurement

The goal is to strongly fit straight lines to single particle mean squared displacement plots for individual radii calculation.

Solution: Short Memory, Long Ephemeral Threshold, Small τ_{max} .

- (+) Very small temporal variance, longer trajectories analyzed.
 - (-) Hard to ensure that the particle we want has a strong enough track. Only very stable particles are kept (careful calibration of the optical tweezer ROI necessary).

Before Changes

Figure: Diffusivity Histogram 1.04 μ m Polystyrene fit with $au_{\it max} = 60$

Before Changes

Figure: Diffusivity Histogram 0.53 μ m Polystyrene fit with $au_{\it max}=60$

Reasoning for observing this exponential distribution (not desired)

- In a very noisy track with high temporal variance, the MSD ceases to be linear and anomalous diffusion begins. The diffusivity D_t consequently becomes governed by some PDF $\pi(D,t)$. (Chubynsky & Slater, 2018)
- One can further say that D is subject to some arbitrary constant noise d_0 (diffusivity), and bias force s_0 due to this temporal variance in the fit. With J=0:

$$J = \frac{-\partial}{\partial D}[d_0\pi(D,t)] - [s_0\pi(D,t)]$$

$$rac{\partial}{\partial D}[d_0\pi(D,t)] = -[s_0\pi(D,t)] \implies \boxed{\pi(D) = rac{1}{D_0}e^{-rac{D}{D_0}}}$$

• Smaller particles will have diffusivity distributions of much higher variance! (scales with $\langle D \rangle^2$).

Figure: IMSD PLot for $1.04 \mu \mathrm{m}$ Polystyrene fit with $\tau_{\mathit{max}} = 15$

Figure: Diffusivity Histogram 1.04 μ m Polystyrene fit with $au_{max}=5$

Figure: Radius Histogram $1.04\mu\mathrm{m}$ diameter Polystyrene fit with $au_{\mathrm{max}}=5$

Figure: Diffusivity Histogram 1.04 μ m Polystyrene fit with $au_{max}=5$

Figure: Radius Histogram $1.04\mu\mathrm{m}$ diameter Polystyrene fit with $au_{\mathrm{max}}=5$

True Distribution of MSD-inferred Diffusivity & Radii

After some calculation, it can be shown that the MSD inferred diffusivity and radius are distributed according to:

$$\boxed{\pi_D(x;N,D,\tau,d) = \frac{x^{\frac{d(N-\tau)}{2}-1}e^{\frac{-d(N-\tau)x}{2D}}}{\left(\frac{2D}{d(N-\tau)}\right)^{\frac{d(N-\tau)}{2}}\Gamma\left(\frac{d(N-\tau)}{2}\right)}} \sim \Gamma\left(\frac{d(N-\tau)}{2};\frac{2D}{d(N-\tau)}\right)$$

$$| \pi_r(x; N, D, d, \tau, T, \eta) = \frac{e^{\left(\frac{-k_B Td(N-\tau)}{12\pi D\eta x}\right) \left(\frac{k_B Td(N-\tau)}{12\pi D\eta}\right)^{\frac{d(N-\tau)}{2}}}}{\Gamma\left(\frac{d(N-\tau)}{2}\right) \cdot x^{\frac{d(N-\tau)}{2}+1}} | \sim \operatorname{Inv}\Gamma\left(\frac{d(N-\tau)}{2}; \frac{k_B Td(N-\tau)}{12\pi D\eta}\right)^{\frac{d(N-\tau)}{2}}$$

Note: This holds for single points, distributions approximate Gaussians for larger τ_{max} by CLT.

Integration into Visual Interface

- Integrates directly into a visual interface.
- Tracking is performed on a parallel process during operation.
- The tracking pipeline supports individual particle analysis via tagging.
- A jupyter notebook has been made for straightforward tracking calibration to accelerate cross-setup changes.

- The following files are returned:
 - 1. Diffusivity distribution histogram
 - 2. Radii distribution histogram
 - 3. Ensemble & Individual mean squared displacement plots
 - 4. Info text file with values.
 - 5. Per particle diffusivity/radius csv
 - 6. Trajectory plots in pixel space
 - 7. Trajectory csv with enumerated particle trajectories.

Visual Automation Interface

About the Visual Interface

- Primary Backends:
 - OpenCV
 - pypylon
 - pythonnet
 - Thorlab's Kinesis SDK
 - Arduino's PyFirmata
 - various other support packages..

- Functionality:
 - Overlayed particle detection
 - Manual detection bounding box adjustment
 - Manual shutter control
 - Screengrabbing & Video
 - Alignment crosshair
 - Radii Estimation (processed concurrently)
 - Auto Mode (complete autonomous control)

Auto Mode Control Flow

Final Remarks

- All features have been tested simultaneously on a webcam based simulated setup and are working in parallel.
- Programmatic control of isoplane is implemented, but not tested.
- Full testing will be done on the setup once hardware integration is complete.
- The entire visual interface backend is extremely object-based and packaged.
- An extensive documentation detailing custom visual interface creation is on Github with examples.