Inteligência Ambiental: Cenários de Risco por Poluição Plástica em Rios (2015–2060)

Análise de dados de poluição fluvial por plásticos em escala global, com foco nos anos de 2015 e 2060, considerando diferentes cenários de ação climática para apoiar decisões estratégicas.

Objetivo do Projeto

Análise Temporal

Analisar a evolução da emissão de plásticos por país e por rio entre 2015 e 2060

Identificação

Identificar rios críticos mesmo sob cenários de mitigação

Correlações

Avaliar correlações entre risco ambiental, PIB e população

Previsão

Prever carga futura de plástico com base em dados socioeconômicos

Dados e Cenários Analisados

Fonte e Escopo

- Kaggle River Plastic Waste
 Risk Scenarios
- Período: 2015 (base) e 2060 (projeções)
- Mais de 100 países e rios analisados

Cenários Avaliados

- BAU (Business As Usual): Sem mudanças estruturais
- Mitigation: Ações moderadas de mitigação
- Full Action: Mudanças políticas robustas

Metodologia Aplicada

000

Estatística Descritiva

Frequência, médias, desvio padrão

.000

Visualização

Boxplots, Pareto, heatmaps, barras, dispersão

Regressão

Linear, Random Forest Regressor

Clusterização

K-Means, Correlação Spearman

Principais Descobertas

- Países com Crescimento Acelerado de Emissão

 Bangladesh (+157%) e Índia (+149%) lideram o crescimento
 percentual da carga plástica entre 2015 e 2060, mesmo sob
 cenários de mitigação.
- 2 Correlação Forte entre População e Carga Plástica

Análise revelou coeficiente de r = 0.726 entre população e volume de plásticos direcionado aos rios.

Rios de Alto Risco Não Respondem Bem à Mitigação

Rios como River_2547 e River_1762 mantêm cargas superiores a 2.000 toneladas por ano mesmo sob cenário de políticas moderadas.

Recomendações Estratégicas

Intervenção Focada

Concentrar esforços em rios com alta emissão e baixa resposta à mitigação, usando barreiras físicas e filtragem fluvial.

Ações Direcionadas

Priorizar países como Nigéria e República Democrática do Congo, pertencentes ao Cluster de alto risco e baixa governança.

Alianças Regionais

Formar consórcios de cooperação ambiental (governos + ONGs + empresas), com apoio internacional e metas até 2030.

Perguntas Estratégicas Respondidas

- Quais países e rios têm maior crescimento de emissão até 2060?
- Risco ambiental se correlaciona com PIB ou população?
- Quais rios permanecem críticos mesmo em cenário de mitigação?

- É possível prever a emissão futura com variáveis socioeconômicas?
- Quais perfis de risco ambiental emergem entre os países?
- Quais recomendações práticas podem ser extraídas para políticas públicas?

Impacto do Índice de Coleta de Resíduos

0.726

Correlação População-Poluição

Coeficiente de Spearman entre população e volume de plásticos nos rios

2.000 +

Toneladas/Ano

Carga de plástico mantida em rios críticos mesmo sob cenários de mitigação

157%

Crescimento Bangladesh

Aumento percentual da carga plástica entre 2015 e 2060

Modelos de regressão indicaram que o Waste Collection Rate tem alto poder explicativo para a redução da poluição plástica fluvial.

Próximos Passos

1 — Expansão de Dados

Adição de dados climáticos (chuvas, temperatura) para análises mais completas

2 — Regressões Espaciais

Desenvolvimento de mapas interativos para visualização geográfica dos riscos

3 — Conexão com Políticas

Integração com dados de políticas ambientais reais por país para avaliação de eficácia