The k-Cap Process on Geometric Random Graphs

Mirabel Reid

Georgia Tech, Dept of Computer Science mreid48@gatech.edu

Santosh Vempala

Georgia Tech, Dept of Computer Science vempala@cc.gatech.edu

Abstract

The *k*-cap (or *k*-winners-take-all) process on a graph works as follows: in each iteration, exactly *k* vertices of the graph are in the cap (i.e., winners); the next round winners are the vertices that have the highest total degree to the current winners.

This natural process is a simple model of firing activity in the brain. We study its convergence on geometric random graphs, revealing rather surprising behavior.

Introduction

Definition of the k**-cap Process:** Given a graph G with n vertices $\{1, 2, ..., n\}$, at a timestep t > 0, let A_{t+1} be the set of k vertices with the **largest degree** in A_t (with ties broken randomly). We define the input F_t as a function of the edges $e_{v,x}$ to x:

$$F_t(x) = \sum_{y \in A_t} e_{y,x}$$

Motivating Questions:

- Does this process converge to a small subset of the vertices of G?
- If so, how quickly does it converge?
- How does the structure of A_t evolve as $t \rightarrow \infty$?

Setting: Geometric Random Graphs

- Embed each vertex in a hidden variable space.
- If two vertices are closer in the space, they are more likely to be connected by an edge

Assumption: edge probability is proportional to 1-D *Gaussian* function with parameters $\sigma = 1/k$, $n > k^{3+\epsilon}$.

Discrete Process

 A_0 chosen uniformly at random from [0, 1]. Poisson Clumping: Given uniform random points, some regions will have a higher density.

Expected input and p(x) at t = 0

Fig:: Simulation results at t=0. (TOP) Expected degree to x from A_0 (BOTTOM) Probability that x is in the top k.

Theorem: At step 1, WHP A_1 can be covered by $O(\ln k)$ intervals of size $O(\sigma \ln \ln k)$. **Analysis at t>1**

Expected input and p(x) at t = 4

Fig: Simulation results at time t=4; showing the expected input to a vertex x and the probability that x is in the next firing set, plotted against the hidden variable.

Theorem: After polylog(k) steps, with high probability, the winners at t can be covered by a **single** interval of size $O\left(\sigma\sqrt{\frac{\ln k}{k}}\right)$

Simulation on a graph with hidden variables in 2D Parameters: n=10000 vertices, k=100 cap size

Continuous Limit: a-cap Process

Consider how the process evolves as n (the number of vertices in the graph) approaches ∞ .

Firing set: $A_t \subset [0,1]$ is a union of intervals with measure \boldsymbol{a} . An example of $F_t(x)$ is shown below:

Definition: Let $\alpha = |A_0|$ and g be a real integrable function. For a finite union of intervals A_t , define:

$$F_t(x) = \int_0^1 A_t(y)g(y-x) dy$$

$$A_{t+1}(x) = \begin{cases} 0 & F_t(x) < C_{t+1} \\ 1 & F_t(x) \ge C_{t+1} \end{cases}$$

where $C_{t+1} \in [0,1]$ is the solution to $\int_0^1 A_{t+1}(x) dx = \alpha$.

We showed this converges to a single interval of measure \boldsymbol{a} .

Theorem 1. Let A_0 be a finite set of intervals on [0,1] and g be the edge probability function. For any even, nonnegative, integrable function $g:[0,1] \to \Re_+$ with g'(x) < 0 for all x > 0, the α -cap process converges to a single interval of width α . Moreover, the number of steps to convergence is

$$O\left(\frac{\max_{[0,1]}|g'(x)|}{\min_{\left[\frac{\alpha}{8},1\right]}|g'(x)|}\right).$$

Motivation from the Brain

Graphs and the Brain:

- We model the brain as a random graph, where neurons are vertices and synapses are edges.
- Neuronal connections are not random;
 probability of connection depends on distance in space.
- Geometric graphs have been used to model graphs of neurons;
- Neuron position and characteristics can be represented with the hidden variable.

k-Cap and the Brain:

- The **firing pattern** of neurons behaves similarly to *k*-cap;
 - O Inhibition prevents too many neurons from firing at once.
- Plasticity strengthens connections between adjacent neurons.
- Adding plasticity to the *k*-cap process leads to convergence on directed random graphs.

Future Directions:

- Extend both continuous and discrete processes to higher dimensional hidden variable spaces.
- Other graph models e.g., convergence on G(n,p)

References

Reid, Mirabel, and Santosh S. Vempala. "The \$ k \$-Cap Process on Geometric Random Graphs." *arXiv preprint arXiv:2203.12680* (2022).

Bullmore, Ed, and Olaf Sporns. "Complex brain networks: graph theoretical analysis of structural and functional systems." Papadimitriou, Christos H., et al. "Brain computation by assemblies of neurons."

Simulation code available at

https://github.com/mirabelreid/Assemblies-Simulations