1. INTRODUÇÃO

O presente trabalho tem como objetivo selecionar uma bomba hidráulica comercial capaz de recalcar ao menos $80\,m^3/h$ de água para o sistema ilustrado na Figura 1, não apresentando cavitação no ponto de operação. Parâmetros como potência, eficiência e custo operacional são obtidos para o ponto de funcionamento.

1,5 bar

Ar

Ar

Agua

Au

Au

Agua

5 m

10 m

10 m

Válvula de retenção leve

Figura 1 – Sistema hidráulico

2. SISTEMA HIDRÁULICO

2.1 MODELAGEM MATEMÁTICA

Para a análise do sistema hidráulico, é necessário descrever o seu funcionamento através da lei da conservação de energia levando em consideração a viscosidade do fluído. Logo, pela equação de Bernoulli modificada, tem-se

$$\frac{P_8 - P_1}{\gamma} + \frac{\alpha_8 \overline{V_8}^2 + \alpha_1 \overline{V_1}^2}{2g} + Z_8 - Z_1 = H_{p,t,e}$$

onde o termo $H_{p,t,e}$ representa a perda de carga externa à bomba e é dada por correlações experimentais para a perda de carga distribuída e localizada como se segue

$$H_{p,t,e} = \frac{8}{\pi^2} f \frac{(L_{duto} + L_{eq})}{D^5} \frac{Q^2}{g}$$

onde f é o coeficiente de atrito de Darcy obtido pela solução numérica da equação de Colebrook

$$\frac{1}{\sqrt{f}} = -2\log\left(\frac{e}{3.7D} + \frac{2.51}{Re\ f}\right)$$

Para o sistema apresentado na Figura 1, a perda de carga distribuída ocorre pelo escoamento do fluído ao longo de 221.5 m de duto circular retilíneo de aço comercial (e = 0.045 mm); a perda de carga localizada é dada pelos comprimentos equivalentes

• entrada reentrante: $L_{eq} = 0.78 D/f$

• contração para entrada na bomba: $L_{eq} = 0.38 \ D/f$

• expansão para saída na bomba: $L_{eq} = 0.53 \ D/f$

• cotovelo 90° padrão: $L_{eq} = 30 D$

• saída: $L_{eq} = 1 D/f$

Vale notar que a contração e expansão do escoamento para entrada e saída na bomba ocorrem de maneira abrupta, com a perda de carga podendo ser minimizada caso uma suavização nessas regiões seja implementada, entretanto, nota-se que o impacto de tal otimização é negligenciável quando comparado às outras perdas de carga, então a contração e expansão abrupta é mantida por simplicidade de construção e projeto do sistema, reduzindo o custo do próprio.

Assumindo que os reservatórios possuem grande capacidade de armazenamento em relação à quantidade de fluído recalcado, adota-se a hipótese de que

$$\overline{V_1} = \overline{V_8} = 0 \ m/s$$

As pressões nos pontos de entrada e saída são calculadas a partir da pressão hidrostática nos reservatórios

$$P_1 = 1 \cdot 10^5 + \rho g h_1$$

$$P_8 = 1.5 \cdot 10^5 + \rho g h_2$$

2.2 OBTENÇÃO DO DIÂMETRO DA TUBULAÇÃO

Para obter o diâmetro da tubulação de sucção e recalque de diâmetros iguais, foi assumido uma velocidade de escoamento ideal de $1.5\ m/s$ para uma vazão de $80\ m^3/h$. Pela equação da vazão para fluídos incompressíveis, encontra-se

$$D = \sqrt{\frac{4Q}{\pi v}} = 137.34 \ mm$$

Após a solução do modelo matemático com a bomba especificada, refaz-se o cálculo para a vazão de operação de maneira iterativa, com o diâmetro convergindo para $149.80 \ mm$. Portanto, especifica-se um diâmetro comercial de $150 \ mm$.

2.3 SOLUÇÃO NUMÉRICA DO MODELO MATEMÁTICO

As propriedades físicas da água nas condições de operação ($T=25\,^{\circ}C$) são dadas na Tabela 1.

Tabela 1 – Propriedades da água a 25 °C

$\rho (kg/m^3)$	$\nu (m^2/s)$	$P_v(kPa)$
997	$8.96 \cdot 10^{-7}$	3.17

Resolvendo o modelo matemático para vazões no intervalo entre $0\,m^3/h$ e $100\,m^3/h$, obtém-se a curva característica do sistema hidráulico mostrado na Figura 2.

Figura 2 - Curva característica do sistema hidráulico

3. BOMBA HIDRÁULICA

Com os requisitos definidos e obtido a curva característica do sistema hidráulico, procura-se em catálogos uma bomba hidráulica capaz de recalcar $80\ m^3/h$ de água com alta eficiência.

Desse modo, a bomba selecionada foi a Etaline SYT 080-080-160 de $155\ mm$ de diâmetro da fabricante KSB, com suas características sendo descritas em forma gráfica pela Figura 3.

3.1. REGRESSÃO DAS CARACTERÍSTICAS

Com o objetivo de obter funções matemáticas que descrevem as curvas características da bomba selecionada, utiliza-se métodos de regressão de mínimos quadrados, em particular o algoritmo Levenberg-Marquardt, para encontrar parâmetros de funções sugeridas.

Para a regressão da curva $[Q-H_m]_{bomba}$, propõe-se uma função polinomial quadrática com termo linear nulo

$$f(x) = ax^2 + b$$

onde os pontos a serem utilizados de referência (Tabela 2) foram obtidos por um digitalizador de imagens para a Figura 3.

Tabela 2 – Dados da curva Q – Hm da bomba selecionada		
$Q(m^3/h)$	$H_m(m)$	
0	$4.9333 \cdot 10^{1}$	
20	$4.9010 \cdot 10^{1}$	
40	$4.7758 \cdot 10^{1}$	
60	$4.5939 \cdot 10^{1}$	
80	$4.3636 \cdot 10^{1}$	
100	$4.1333 \cdot 10^{1}$	
120	$3.8182 \cdot 10^{1}$	
140	$3.3818 \cdot 10^{1}$	
160	$2.9212 \cdot 10^{1}$	
180	$2.4000 \cdot 10^{1}$	

Tabela 2 – Dados da curva Q – Hm da bomba selecionada

Dessa maneira, obteve-se

$$H_m(Q[m^3/h]) = -7.7503 \cdot 10^{-4}Q^2 + 4.9066 \cdot 10^1$$

 $R^2 = 0.99913$

Analogamente para a regressão da curva Q-NPSHr, propõe-se uma função polinomial cúbica

$$f(x) = ax^3 + bx^2 + cx + d$$

onde os pontos a serem utilizados de referência (Tabela 3) foram obtidos por um digitalizador de imagens para a Figura 3 para as bombas de diâmetro $132 \ mm$ e $174 \ mm$ e interpolados linearmente para o diâmetro da bomba selecionada de $155 \ mm$.

Tabela 3 – Dados da curva Q – NPSHr da bomba selecionada

. azza z zacz da barva g		THE OTHER DOMESTIC	
$Q(m^3/h)$	$NPSHr\ 132mm\ (m)$	NPSHr 174 mm (m)	<i>NPSHr</i> 155 <i>mm</i> (<i>m</i>)
35	$3.3824 \cdot 10^{0}$	$2.7941 \cdot 10^{0}$	$3.0602 \cdot 10^{0}$
50	$3.6765 \cdot 10^{0}$	$2.3529 \cdot 10^{0}$	$2.9517 \cdot 10^{0}$
65	$3.5294 \cdot 10^{0}$	$2.3529 \cdot 10^{0}$	$2.8851 \cdot 10^{0}$
80	$3.9706 \cdot 10^{0}$	$2.5000 \cdot 10^{0}$	$3.1653 \cdot 10^{0}$
95	$4.4118 \cdot 10^{0}$	$3.0882 \cdot 10^{0}$	$3.6870 \cdot 10^{0}$
110	$5.1471 \cdot 10^{0}$	$3.8235 \cdot 10^{0}$	$4.4223 \cdot 10^{0}$
125	$5.7353 \cdot 10^{0}$	$4.5588 \cdot 10^{0}$	$5.0910 \cdot 10^{0}$
140	$6.7647 \cdot 10^{0}$	$5.5882 \cdot 10^{0}$	$6.1204 \cdot 10^{0}$
150	$8.2353 \cdot 10^{0}$	$6.6176 \cdot 10^{0}$	$7.3494 \cdot 10^{0}$
160	$1.5882 \cdot 10^{1}$	$7.6471 \cdot 10^{0}$	$1.1372\cdot 10^{1}$

$$NPSHr(Q[m^3/h]) = 1.0528 \cdot 10^{-5}x^3 - 2.2536 \cdot 10^{-3}x^2 + 1.6010 \cdot 10^{-1}x - 5.0574 \cdot 10^{-1}$$

$$R^2 = 0.95899$$

Analogamente para a regressão da curva Q-P, propõe-se uma função polinomial cúbica onde os pontos a serem utilizados de referência (Tabela 3) foram obtidos por um digitalizador de imagens para a Figura 3.

Tabela 3 – Dados da curva Q – P da bomba selecionada

$Q(m^3/h)$	P(kW)
0	$6.3539 \cdot 10^{0}$
20	$7.8016 \cdot 10^{0}$
40	$9.3029 \cdot 10^{0}$
60	$1.0912 \cdot 10^{1}$
80	$1.2520 \cdot 10^{1}$
100	$1.4021\cdot 10^{1}$
120	$1.5362 \cdot 10^{1}$
140	$1.6273 \cdot 10^{1}$
160	$1.6756 \cdot 10^{1}$
180	$1.7024 \cdot 10^{1}$

$$P(Q[m^3/h]) = -1.8729 \cdot 10^{-6} x^3 + 3.0512 \cdot 10^{-4} x^2 + 6.4721 \cdot 10^{-2} x + 6.3635 \cdot 10^0$$

$$R^2 = 0.99984$$

3.2. PONTO DE OPERAÇÃO

O ponto de operação é dado pela interseção das curvas $Q-H_m$ do sistema hidráulico e da bomba selecionada. Computacionalmente, minimiza-se a diferença absoluta das curvas e, função da vazão

$$\min |H_{m,sistema} - H_{m,bomba}|$$

Assim, encontra-se o ponto de operação para esse caso com uma vazão de $95.284 \, m^3/h = 42.029 \, m$, como mostrado na Figura 5.

Figura 4 – Ponto de operação

3.3. ANÁLISE DE CAVITAÇÃO

O ponto de máxima vazão é dado pela interseção das curvas Q-NPSH do sistema hidráulico (NPSH disponível) e da bomba selecionada (NPSH requerido). Computacionalmente, minimiza-se a diferença absoluta das curvas e, função da vazão

$$min |NPSHd - NPSHr|$$

onde o NPSH disponível para uma bomba afogada, como é o caso, é dado por

$$NPSHd = \frac{P_1 - P_v}{\gamma} + H_{sg} - H_{p,1 \to E}$$

Assim, encontra-se o ponto de máxima vazão de $186.17 \ m^3/h$ e $53.044 \ m$, como mostrado na Figura 5.

Figura 5 – NPSH do sistema e da bomba selecionada

3.4. EFICIÊNCIA E CUSTO OPERACIONAL

A partir da função de interpolação obtida anteriormente, obtém-se a potência consumida pela bomba no ponto de operação de $13.680\ kW$, entregando uma potência hidráulica de

$$P_h = \gamma Q H_m = 10.880 \, kW$$

Definindo a eficiência como a razão entre a potência hidráulica fornecida ao fluído pela bomba e a potência consumida por ela, tem-se

$$\eta = \frac{P_h}{P_t} = 79.5\%$$

Como a bomba é operada a partir de um motor elétrico, é necessário conhecer a taxa de energia elétrica para estimar o custo operacional. Em particular, para o estado do Paraná, classe A3 (69kV), têm-se os valores apresentados na Tabela 4, onde *P* indica o horário de ponta (tarifa mais cara compreendido entre às 18:00 e 21:00 horas) e *FP* indica o horário fora de ponta (tarifa mais barata compreendido entre às 22:00 e 17:00 horas).

Tabela 4 – Tarifas energéticas Copel classe A3

	TUSD (R\$/MWh)	TE(R\$/MWh)
P	81.73	388.08
FP	81.73	247.20

Para um funcionamento contínuo de 24 horas diárias (3 turnos), obtém-se a tarifa

$$tarifa = 35.24 R\$/MWh$$

Então, para 30 dias mensais, o custo de operação contínuo será de $\it R\$$ 3471.18 , recalcando um volume total de $\it 65604~m^3$ de água.