

Nom: ZIZA KANGUE

Prénom: Sarah Géniva

BTS1SIO

1) Préparation des hôtes

• créations des clones Windows et linux

• Configuration réseau en mode réseau interne

2) Mise en réseau des hôtes .Dans un premier temps, nous configurerons la machine virtuelle

Windows

Vous modifierez les noms des machines Windows et Linux comme ceci :

Configuration de l'adresse IP sur Windows.

Etape 1: ouvrir le panneau de

Etape 3 : centre de réseau partage

Etape 5 : Sélection de propriété

Etape 2 : sélectionner réseau et internet

Etape 4 : Sélectionner Ethernet

Etape6 : sélection de protocole internet version 4(TCP/Pv4)

Vérification dans les configurations de

c)Dans un second temps, nous configurerons la machine virtuelle Linux.

Procédez à la mise à jour de la machine virtuelle. Quelle est la procédure ?

1. Ouvrez un terminal et passez en mode super-utilisateur (root) avec la Commande sudo -s.

2. Tapez la commande hostname. Quelle information obtenez-vous?

Le nom de la machine : ubuntu03

3. Dans le terminal, où voyez-vous également le nom de la machine?

```
root@ubuntu03: /home/sahara
sahara@ubuntu03: ~$ sudo -s
[sudo] Mot de passe de sahara :
root@ubuntu03: /home/sahara# hostname
ubuntu03
```

4. Avec la commande hostname, donnez le nom Linux XX(xx : numéro de

Votre poste) à votre machine Linux.

5. Vérifiez le contenu du ficher

etc/hostname à l'aide de nano. Que contient-il?

6. Rebootez la machine et vérifiez à nouveau.

7. modification du nom de la machine dans le fichier etc/hosts qui gère

L'association des adresses IP et des noms d'hôte.

- 3) configuration IP
- a) Nom des cartes réseaux : enp0s3

```
2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP g
roup default qlen 1000
link/ether 08:00:27:9f:8f:8e brd ff:ff:ff:ff:ff
```

b) Configuration avec les anciennes versions d'Ubuntu

Créez dans le répertoire /etc/netplan un fichier yaml (donnez-lui le nom de votre choix, tant qu'il termine par .yaml)

Création du fichier reseau.yaml


```
root@llnux03: /etc/netplan Q = - \sigma \text{SNU nano 4.8} \text{01-reseau.yanl} \text{Modifié} \text{network:} \text{ethernets:} \text{**Non et configuration de ma carte} \text{enp053:} \text{addressses:} [192.168.3.2/24] \text{gateway4:192.168.1.1} \text{nanservers:} \text{addresses:} [192.168.3.2] \text{dhcp4: false} \text{dhcp6: false} \text{version: 2}
```

Cd /etc/netplan sert a ouvrir le fichier netplan ou est situé le fichier réseau.yaml et pour l'ouvrir faire nano tp reseau +TAB puis entrer

Teste de communication

```
C:\Users\SAHARA GE>ping 192.168.3.3

Envoi d'une requête 'Ping' 192.168.3.3 avec 32 octets de données :
Réponse de 192.168.3.3 : octets=32 temps<1ms TTL=64
Réponse de 192.168.3.3 : octets=32 temps=5 ms TTL=64
Réponse de 192.168.3.3 : octets=32 temps=1 ms TTL=64
Réponse de 192.168.3.3 : octets=32 temps=1 ms TTL=64
Statistiques Ping pour 192.168.3.3:

Paquets : envoyés = 4, recus = 4, perdus = 0 (perte 0%),
Durée approximative des boucles en millisecondes :
Minimum = 0ms, Maximum = 5ms, Moyenne = 1ms

C:\Users\SAHARA GE>_
```

