$12n_{0420} (K12n_{0420})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 364223527493u^{32} - 2361609064840u^{31} + \dots + 171190334071b + 90526252853, \\ & 671951659745u^{32} - 4453002864896u^{31} + \dots + 342380668142a - 1160832184987, \\ & u^{33} - 8u^{32} + \dots - 11u + 2 \rangle \\ I_2^u &= \langle -u^{18} - 6u^{17} + \dots + b + 3, \ 2u^{18} + 7u^{17} + \dots + a + 2, \ u^{19} + 5u^{18} + \dots - 2u - 1 \rangle \\ I_3^u &= \langle u^{14}a + 39u^{14} + \dots + a + 69, \ 12u^{14}a + 4u^{14} + \dots + 19a + 12, \\ & u^{15} + 3u^{14} + 3u^{13} - 4u^{12} - 9u^{11} - 2u^{10} + 11u^9 + 5u^8 - 6u^7 - 2u^6 + 10u^5 + 3u^4 - 5u^3 + 3u + 1 \rangle \\ I_4^u &= \langle b^2 - 3ba + a - 1, \ a^2 + 1, \ u - 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 86 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$\begin{matrix} \text{I. } I_1^u = \\ \langle 3.64 \times 10^{11} u^{32} - 2.36 \times 10^{12} u^{31} + \dots + 1.71 \times 10^{11} b + 9.05 \times 10^{10}, \ 6.72 \times 10^{11} u^{32} - \\ 4.45 \times 10^{12} u^{31} + \dots + 3.42 \times 10^{11} a - 1.16 \times 10^{12}, \ u^{33} - 8u^{32} + \dots - 11u + 2 \rangle \end{matrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1.96259u^{32} + 13.0060u^{31} + \cdots - 22.5803u + 3.39047 \\ -2.12759u^{32} + 13.7952u^{31} + \cdots - 2.47506u - 0.528805 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1.18113u^{32} - 6.74280u^{31} + \cdots - 5.72215u + 4.99723 \\ 2.30591u^{32} - 15.5550u^{31} + \cdots + 7.17397u - 1.80465 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.716291u^{32} + 1.55456u^{31} + \cdots + 4.09153u + 1.50206 \\ -7.10380u^{32} + 48.6587u^{31} + \cdots - 37.9303u + 6.10199 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -1.12478u^{32} + 8.81217u^{31} + \cdots - 10.8961u + 6.80188 \\ -1.14806u^{32} + 10.3781u^{31} + \cdots - 22.6370u + 4.15836 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1.96259u^{32} + 13.0060u^{31} + \cdots - 22.5803u + 3.39047 \\ 0.996508u^{32} - 9.67025u^{31} + \cdots + 23.2414u - 5.91819 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.264402u^{32} + 4.24281u^{31} + \cdots - 27.6237u + 5.38349 \\ 2.69469u^{32} - 18.4334u^{31} + \cdots + 18.1980u - 3.92517 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1.35910u^{32} + 12.0492u^{31} + \cdots - 33.5143u + 3.10913 \\ 3.64636u^{32} - 25.3633u^{31} + \cdots + 26.2232u - 4.54568 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$= -\frac{71232541821}{171190334071}u^{32} + \frac{136288968420}{171190334071}u^{31} + \dots + \frac{5957445668473}{171190334071}u - \frac{448061765060}{171190334071}u - \frac{136288968420}{171190334071}u^{31} + \dots + \frac{136$$

Crossings	u-Polynomials at each crossing
c_1	$u^{33} + 8u^{32} + \dots + 13u + 4$
c_2, c_5	$u^{33} + 8u^{32} + \dots - 11u - 2$
c_3, c_{12}	$u^{33} - 9u^{31} + \dots + 11u + 1$
c_4	$u^{33} - 16u^{31} + \dots + 868u + 259$
c_6, c_{10}	$u^{33} + u^{32} + \dots + 29u + 2$
C ₇	$u^{33} - 29u^{32} + \dots - 159744u + 16384$
c_8, c_{11}	$u^{33} - 11u^{32} + \dots - 57u + 4$
<i>c</i> ₉	$u^{33} + u^{32} + \dots + 2u + 1$

Crossings	Riley Polynomials at each crossing
c_1	$y^{33} + 40y^{32} + \dots - 2383y - 16$
c_2, c_5	$y^{33} - 8y^{32} + \dots + 13y - 4$
c_3,c_{12}	$y^{33} - 18y^{32} + \dots + 59y - 1$
c_4	$y^{33} - 32y^{32} + \dots + 556584y - 67081$
c_6,c_{10}	$y^{33} + 53y^{32} + \dots + 33y - 4$
	$y^{33} - 9y^{32} + \dots - 1459617792y - 268435456$
c_8,c_{11}	$y^{33} + 23y^{32} + \dots + 177y - 16$
<i>c</i> ₉	$y^{33} - 53y^{32} + \dots - 8y - 1$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.703285 + 0.636850I $a = 1.106170 + 0.251999I$	4.30952 + 3.14688I	2.88697 - 4.88211I
b = 0.909144 - 1.059290I $u = -0.703285 - 0.636850I$		
a = 1.106170 - 0.251999I b = 0.909144 + 1.059290I	4.30952 - 3.14688I	2.88697 + 4.88211I
u = -0.417059 + 1.000070I $a = -0.648249 - 0.662444I$	5.17920 - 2.64024I	3.71273 + 1.48167I
b = -0.580122 + 0.953178I $u = -0.417059 - 1.000070I$		
a = -0.648249 + 0.662444I $b = -0.580122 - 0.953178I$	5.17920 + 2.64024I	3.71273 - 1.48167I
u = 1.030280 + 0.369979I $a = -0.005672 - 0.234478I$ $b = -0.462951 - 0.491884I$	-1.92686 - 1.50296I	-0.206389 + 1.352839I
u = 1.030280 - 0.369979I $a = -0.005672 + 0.234478I$ $b = -0.462951 + 0.491884I$	-1.92686 + 1.50296I	-0.206389 - 1.352839I
u = 1.100340 + 0.181053I $a = 0.180870 + 0.010838I$ $b = 0.858956 - 0.643211I$	-0.342656 + 0.092474I	-4.88343 + 1.19512I
u = 1.100340 - 0.181053I $a = 0.180870 - 0.010838I$ $b = 0.858956 + 0.643211I$	-0.342656 - 0.092474I	-4.88343 - 1.19512I
u = -0.759456 + 0.391806I $a = 0.009616 + 1.198430I$ $b = 0.866202 + 1.049840I$	3.92702 + 0.90107I	3.65109 - 2.09842I
u = -0.759456 - 0.391806I $a = 0.009616 - 1.198430I$ $b = 0.866202 - 1.049840I$	3.92702 - 0.90107I	3.65109 + 2.09842I

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.075450 + 0.453106I		
a = -0.361831 + 0.442964I	-1.12678 + 5.28243I	-1.72426 - 8.87772I
b = -0.063445 + 1.049590I		
u = -1.075450 - 0.453106I		
a = -0.361831 - 0.442964I	-1.12678 - 5.28243I	-1.72426 + 8.87772I
b = -0.063445 - 1.049590I		
u = 0.617486 + 0.446217I		
a = 0.750133 + 0.203711I	-0.66765 - 1.55785I	-3.86335 + 5.45533I
b = 0.207012 - 0.540399I		
u = 0.617486 - 0.446217I		
a = 0.750133 - 0.203711I	-0.66765 + 1.55785I	-3.86335 - 5.45533I
b = 0.207012 + 0.540399I		
u = -0.268250 + 0.672707I		
a = 0.777671 + 0.095093I	1.35635 - 1.05663I	4.19428 + 2.46182I
b = 0.068519 - 0.534112I		
u = -0.268250 - 0.672707I		
a = 0.777671 - 0.095093I	1.35635 + 1.05663I	4.19428 - 2.46182I
b = 0.068519 + 0.534112I		
u = 0.868458 + 0.964205I		
a = -1.45868 - 0.78756I	12.95180 - 2.19664I	5.82474 + 2.27919I
b = -0.48302 - 1.49770I		
u = 0.868458 - 0.964205I		
a = -1.45868 + 0.78756I	12.95180 + 2.19664I	5.82474 - 2.27919I
b = -0.48302 + 1.49770I		
u = 0.916626 + 0.950177I		
a = -1.06864 - 1.17969I	9.06275 + 2.60903I	0.48775 - 2.35974I
b = -0.08093 - 1.74309I		
u = 0.916626 - 0.950177I		
a = -1.06864 + 1.17969I	9.06275 - 2.60903I	0.48775 + 2.35974I
b = -0.08093 + 1.74309I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.023220 + 0.876693I		
a = 0.87894 + 1.19241I	12.43740 - 4.58287I	4.99508 + 2.38247I
b = 0.37002 + 2.13539I		
u = 1.023220 - 0.876693I		
a = 0.87894 - 1.19241I	12.43740 + 4.58287I	4.99508 - 2.38247I
b = 0.37002 - 2.13539I		
u = 0.990802 + 0.915834I		
a = 1.36449 + 0.89241I	8.82668 - 9.47341I	0. + 6.83895I
b = 0.89932 + 1.99675I		
u = 0.990802 - 0.915834I		
a = 1.36449 - 0.89241I	8.82668 + 9.47341I	0 6.83895I
b = 0.89932 - 1.99675I		
u = -1.241080 + 0.559280I		
a = -0.055515 - 0.655838I	2.34090 + 8.49049I	2.07804 - 5.32543I
b = -1.07954 - 1.10250I		
u = -1.241080 - 0.559280I		
a = -0.055515 + 0.655838I	2.34090 - 8.49049I	2.07804 + 5.32543I
b = -1.07954 + 1.10250I		
u = 0.893546 + 1.073000I		
a = 1.11701 + 1.10394I	14.6502 + 8.3217I	2.61160 - 3.46041I
b = -0.47751 + 1.72433I		
u = 0.893546 - 1.073000I		
a = 1.11701 - 1.10394I	14.6502 - 8.3217I	2.61160 + 3.46041I
b = -0.47751 - 1.72433I		
u = 1.08079 + 0.94085I		
a = -1.30612 - 0.84939I	14.0051 - 15.6492I	1.72340 + 7.56042I
b = -0.96271 - 2.44484I		
u = 1.08079 - 0.94085I		
a = -1.30612 + 0.84939I	14.0051 + 15.6492I	1.72340 - 7.56042I
b = -0.96271 + 2.44484I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.530622		
a = -2.30551	-2.29787	-17.6560
b = -1.44839		
u = 0.208352 + 0.257728I		
a = -2.37744 - 2.48596I	3.34739 - 0.13046I	5.79773 + 0.03563I
b = -0.264747 + 1.039230I		
u = 0.208352 - 0.257728I		
a = -2.37744 + 2.48596I	3.34739 + 0.13046I	5.79773 - 0.03563I
b = -0.264747 - 1.039230I		

$$II. \\ I_2^u = \langle -u^{18} - 6u^{17} + \dots + b + 3, \ 2u^{18} + 7u^{17} + \dots + a + 2, \ u^{19} + 5u^{18} + \dots - 2u - 1 \rangle$$

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -2u^{18} - 7u^{17} + \dots + u - 2 \\ u^{18} + 6u^{17} + \dots - 4u - 3 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -2u^{17} - 8u^{16} + \dots - 4u + 1 \\ -u^{17} - 4u^{16} + \dots - 4u^{3} - 6u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{18} - 4u^{17} + \dots - 4u - 1 \\ -3u^{18} - 12u^{17} + \dots + 3u + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{17} - 4u^{16} + \dots - 2u + 1 \\ -4u^{18} - 17u^{17} + \dots + 5u + 4 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{18} - 7u^{17} + \dots + u - 2 \\ 4u^{18} + 19u^{17} + \dots - 8u - 6 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -3u^{18} - 14u^{17} + \dots + 3u + 2 \\ 3u^{18} + 12u^{17} + \dots - 6u - 2 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -3u^{18} - 12u^{17} + \dots + 5u + 3 \\ 2u^{18} + 11u^{17} + \dots - 3u - 5 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$-14u^{18} - 57u^{17} - 68u^{16} + 85u^{15} + 290u^{14} + 126u^{13} - 418u^{12} - 544u^{11} + 95u^{10} + 567u^9 + 182u^8 - 289u^7 - 164u^6 + 78u^5 + u^4 - 101u^3 - 31u^2 + 35u + 22u^8 - 289u^7 - 164u^6 + 101u^8 - 101$$

Crossings	u-Polynomials at each crossing
c_1	$u^{19} - 7u^{18} + \dots + 8u - 1$
c_2	$u^{19} + 5u^{18} + \dots - 2u - 1$
c_3, c_{12}	$u^{19} + 2u^{16} + \dots + 3u + 1$
c_4	$u^{19} - 7u^{17} + \dots + 2u - 1$
	$u^{19} - 5u^{18} + \dots - 2u + 1$
<i>C</i> ₆	$u^{19} + u^{18} + \dots - u - 1$
	$u^{19} - 8u^{18} + \dots + 2u - 1$
<i>c</i> ₈	$u^{19} - 8u^{18} + \dots + 103u - 13$
<i>c</i> ₉	$u^{19} - u^{18} + \dots + 2u + 1$
c_{10}	$u^{19} - u^{18} + \dots - u + 1$
c_{11}	$u^{19} + 8u^{18} + \dots + 103u + 13$

Crossings	Riley Polynomials at each crossing
c_1	$y^{19} + 17y^{18} + \dots + 4y - 1$
c_2, c_5	$y^{19} - 7y^{18} + \dots + 8y - 1$
c_3,c_{12}	$y^{19} + 10y^{17} + \dots + 3y - 1$
c_4	$y^{19} - 14y^{18} + \dots - 4y - 1$
c_6, c_{10}	$y^{19} + 7y^{18} + \dots + 15y - 1$
	$y^{19} - 8y^{18} + \dots - 6y - 1$
c_8, c_{11}	$y^{19} + 12y^{18} + \dots - 25y - 169$
<i>c</i> ₉	$y^{19} - 11y^{18} + \dots + 12y - 1$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.932201 + 0.382585I		
a = -0.652447 + 0.235364I	-2.78530 - 1.52808I	-10.73635 + 2.82089I
b = -0.990085 - 0.241494I		
u = 0.932201 - 0.382585I		
a = -0.652447 - 0.235364I	-2.78530 + 1.52808I	-10.73635 - 2.82089I
b = -0.990085 + 0.241494I		
u = -0.624787 + 0.658264I		
a = 1.003060 + 0.151577I	-0.002497 + 0.784497I	2.96024 + 1.59105I
b = 0.255285 + 0.371052I		
u = -0.624787 - 0.658264I		
a = 1.003060 - 0.151577I	-0.002497 - 0.784497I	2.96024 - 1.59105I
b = 0.255285 - 0.371052I		
u = -1.021020 + 0.575808I		
a = 0.239601 + 0.502383I	-1.25834 + 4.04878I	-0.84230 - 4.09364I
b = 0.144505 + 1.025180I		
u = -1.021020 - 0.575808I		
a = 0.239601 - 0.502383I	-1.25834 - 4.04878I	-0.84230 + 4.09364I
b = 0.144505 - 1.025180I		
u = -1.067510 + 0.498451I		
a = -0.488686 - 0.116550I	0.84328 + 8.76402I	-3.62315 - 7.96043I
b = -0.948978 - 0.694197I		
u = -1.067510 - 0.498451I		
a = -0.488686 + 0.116550I	0.84328 - 8.76402I	-3.62315 + 7.96043I
b = -0.948978 + 0.694197I		
u = 1.169200 + 0.389254I		
a = 0.304496 - 0.673763I	0.243599 + 1.379440I	-1.72015 - 3.05492I
b = 1.20589 - 0.89024I		
u = 1.169200 - 0.389254I		
a = 0.304496 + 0.673763I	0.243599 - 1.379440I	-1.72015 + 3.05492I
b = 1.20589 + 0.89024I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.371084 + 0.611861I		
a = 1.24272 - 1.18831I	3.06976 - 5.52425I	0.98196 + 6.56688I
b = 1.054910 + 0.717314I		
u = 0.371084 - 0.611861I		
a = 1.24272 + 1.18831I	3.06976 + 5.52425I	0.98196 - 6.56688I
b = 1.054910 - 0.717314I		
u = -0.555549 + 0.399589I		
a = -1.021540 - 0.577214I	2.60739 - 4.81529I	1.74304 + 2.99283I
b = 0.486749 - 0.634203I		
u = -0.555549 - 0.399589I		
a = -1.021540 + 0.577214I	2.60739 + 4.81529I	1.74304 - 2.99283I
b = 0.486749 + 0.634203I		
u = -0.876351 + 1.033240I		
a = -1.20703 + 0.83058I	10.98580 + 1.99614I	1.00063 - 2.24339I
b = 0.00403 + 1.52107I		
u = -0.876351 - 1.033240I		
a = -1.20703 - 0.83058I	10.98580 - 1.99614I	1.00063 + 2.24339I
b = 0.00403 - 1.52107I		
u = -1.063610 + 0.923538I		
a = 1.021470 - 0.912245I	10.36830 + 5.14621I	0.49469 - 2.50743I
b = 0.57254 - 2.13980I		
u = -1.063610 - 0.923538I		
a = 1.021470 + 0.912245I	10.36830 - 5.14621I	0.49469 + 2.50743I
b = 0.57254 + 2.13980I		
u = 0.472695		
a = -2.88328	-2.08591	20.4830
b = -1.56969		

III.
$$I_3^u = \langle u^{14}a + 39u^{14} + \dots + a + 69, \ 12u^{14}a + 4u^{14} + \dots + 19a + 12, \ u^{15} + 3u^{14} + \dots + 3u + 1 \rangle$$

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{1}{4}u^{14}a - \frac{39}{4}u^{14} + \dots - \frac{1}{4}a - \frac{69}{4} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -7u^{14}a - u^{14} + \dots - 12a - 4 \\ \frac{3}{4}u^{14}a + \frac{1}{4}u^{14} + \dots + \frac{5}{4}a + \frac{5}{4} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -7u^{14}a - u^{14} + \dots - 12a - 3 \\ \frac{3}{4}u^{14}a + \frac{1}{4}u^{14} + \dots + \frac{5}{4}a + \frac{5}{4} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -7.75000au^{14} - 1.25000u^{14} + \dots - 13.2500a - 5.25000 \\ -\frac{5}{2}u^{14}a - 7u^{13}a + \dots - \frac{11}{2}a - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{1}{4}u^{14}a - \frac{39}{4}u^{14} + \dots - \frac{1}{4}a - \frac{69}{4} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{1}{4}u^{14}a + \frac{11}{4}u^{14} + \dots + \frac{5}{4}a + \frac{21}{4} \\ -7u^{14} - 17u^{13} + \dots - 17u - 12 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -\frac{11}{4}u^{14}a - \frac{3}{4}u^{14} + \dots - \frac{9}{4}a - \frac{11}{4} \\ \frac{1}{4}u^{14}a - \frac{11}{4}u^{14} + \dots + \frac{1}{4}a - \frac{9}{4} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-17u^{14} - 44u^{13} - 31u^{12} + 85u^{11} + 122u^{10} - 24u^9 - 191u^8 - 12u^7 + 126u^6 - 8u^5 - 174u^4 + 11u^3 + 96u^2 - 32u - 45$$

Crossings	u-Polynomials at each crossing
c_1	$(u^{15} + 3u^{14} + \dots + 9u + 1)^2$
c_{2}, c_{5}	$(u^{15} - 3u^{14} + \dots + 3u - 1)^2$
c_3,c_{12}	$u^{30} + 3u^{29} + \dots + 8u + 2$
c_4	$u^{30} - u^{29} + \dots + 72516u + 14102$
c_6, c_{10}	$u^{30} - 3u^{29} + \dots + 8468u + 872$
	$(u+1)^{30}$
c_8, c_{11}	$(u^{15} + 3u^{14} + \dots + u + 3)^2$
<i>c</i> ₉	$u^{30} - u^{29} + \dots + 47532u + 25406$

Crossings	Riley Polynomials at each crossing
c_1	$(y^{15} + 21y^{14} + \dots + 9y - 1)^2$
c_2, c_5	$(y^{15} - 3y^{14} + \dots + 9y - 1)^2$
c_3, c_{12}	$y^{30} - 3y^{29} + \dots + 316y^2 + 4$
c_4	$y^{30} - 27y^{29} + \dots - 960449880y + 198866404$
c_6, c_{10}	$y^{30} + 39y^{29} + \dots - 9306704y + 760384$
c_7	$(y-1)^{30}$
c_8, c_{11}	$(y^{15} + 13y^{14} + \dots + 49y - 9)^2$
<i>c</i> ₉	$y^{30} - 39y^{29} + \dots + 4154402864y + 645464836$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.455780 + 0.742288I		
a = 0.374894 - 0.055630I	4.49075 - 5.71085I	6.46241 + 7.10367I
b = 0.80444 + 1.32107I		
u = 0.455780 + 0.742288I		
a = -2.14568 + 1.13593I	4.49075 - 5.71085I	6.46241 + 7.10367I
b = -0.614258 - 0.952191I		
u = 0.455780 - 0.742288I		
a = 0.374894 + 0.055630I	4.49075 + 5.71085I	6.46241 - 7.10367I
b = 0.80444 - 1.32107I		
u = 0.455780 - 0.742288I		
a = -2.14568 - 1.13593I	4.49075 + 5.71085I	6.46241 - 7.10367I
b = -0.614258 + 0.952191I		
u = 1.138960 + 0.300791I		
a = -0.103181 - 0.773806I	1.96309 + 1.51473I	3.34538 - 3.96091I
b = 0.554576 - 0.429686I		
u = 1.138960 + 0.300791I		
a = -0.365344 + 1.172340I	1.96309 + 1.51473I	3.34538 - 3.96091I
b = -1.36268 + 2.77623I		
u = 1.138960 - 0.300791I		
a = -0.103181 + 0.773806I	1.96309 - 1.51473I	3.34538 + 3.96091I
b = 0.554576 + 0.429686I		
u = 1.138960 - 0.300791I		
a = -0.365344 - 1.172340I	1.96309 - 1.51473I	3.34538 + 3.96091I
b = -1.36268 - 2.77623I		
u = 0.679943 + 0.425075I		
a = 1.288550 + 0.270756I	-0.68938 - 1.70420I	-3.28110 + 6.20426I
b = 0.310334 - 0.078658I		
u = 0.679943 + 0.425075I		
a = 0.176983 - 0.279271I	-0.68938 - 1.70420I	-3.28110 + 6.20426I
b = -0.096624 - 1.275770I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.679943 - 0.425075I		
a = 1.288550 - 0.270756I	-0.68938 + 1.70420I	-3.28110 - 6.20426I
b = 0.310334 + 0.078658I		
u = 0.679943 - 0.425075I		
a = 0.176983 + 0.279271I	-0.68938 + 1.70420I	-3.28110 - 6.20426I
b = -0.096624 + 1.275770I		
u = -0.966502 + 0.945831I		
a = 1.230920 - 0.689205I	8.07776 + 3.48053I	-1.20552 - 1.99086I
b = 0.90511 - 1.88788I		
u = -0.966502 + 0.945831I		
a = -0.95957 + 1.09544I	8.07776 + 3.48053I	-1.20552 - 1.99086I
b = 0.08832 + 1.59239I		
u = -0.966502 - 0.945831I		
a = 1.230920 + 0.689205I	8.07776 - 3.48053I	-1.20552 + 1.99086I
b = 0.90511 + 1.88788I		
u = -0.966502 - 0.945831I		
a = -0.95957 - 1.09544I	8.07776 - 3.48053I	-1.20552 + 1.99086I
b = 0.08832 - 1.59239I		
u = -0.572435 + 0.216966I		
a = 1.54766 - 0.25368I	1.75184 + 5.76927I	-5.27590 - 9.59925I
b = 2.07813 + 0.63415I		
u = -0.572435 + 0.216966I		
a = 1.59367 + 1.91830I	1.75184 + 5.76927I	-5.27590 - 9.59925I
b = 0.541087 - 0.592067I		
u = -0.572435 - 0.216966I		
a = 1.54766 + 0.25368I	1.75184 - 5.76927I	-5.27590 + 9.59925I
b = 2.07813 - 0.63415I		
u = -0.572435 - 0.216966I		
a = 1.59367 - 1.91830I	1.75184 - 5.76927I	-5.27590 + 9.59925I
b = 0.541087 + 0.592067I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.862360 + 1.093580I		
a = -1.045040 + 0.596115I	12.51580 + 1.19189I	6.81331 + 0.30242I
b = -0.319838 + 1.263430I		
u = -0.862360 + 1.093580I		
a = 1.27746 - 1.33704I	12.51580 + 1.19189I	6.81331 + 0.30242I
b = -1.21684 - 1.86631I		
u = -0.862360 - 1.093580I		
a = -1.045040 - 0.596115I	12.51580 - 1.19189I	6.81331 - 0.30242I
b = -0.319838 - 1.263430I		
u = -0.862360 - 1.093580I		
a = 1.27746 + 1.33704I	12.51580 - 1.19189I	6.81331 - 0.30242I
b = -1.21684 + 1.86631I		
u = -1.11139 + 0.94100I		
a = 0.803051 - 0.849353I	11.69180 + 6.19707I	5.35055 - 5.75816I
b = 0.41663 - 1.67373I		
u = -1.11139 + 0.94100I		
a = -1.44943 + 0.77049I	11.69180 + 6.19707I	5.35055 - 5.75816I
b = -1.21250 + 3.06428I		
u = -1.11139 - 0.94100I		
a = 0.803051 + 0.849353I	11.69180 - 6.19707I	5.35055 + 5.75816I
b = 0.41663 + 1.67373I		
u = -1.11139 - 0.94100I		
a = -1.44943 - 0.77049I	11.69180 - 6.19707I	5.35055 + 5.75816I
b = -1.21250 - 3.06428I		
u = -0.523988		
a = -2.22494 + 0.27610I	-2.29134	-14.4180
b = -1.375880 - 0.228118I		
u = -0.523988		
a = -2.22494 - 0.27610I	-2.29134	-14.4180
b = -1.375880 + 0.228118I		

IV.
$$I_4^u = \langle b^2 - 3ba + a - 1, \ a^2 + 1, \ u - 1 \rangle$$

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} a \\ b \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -ba + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -ba \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} ba+2 \\ 2ba-a+2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a \\ b - a \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -b + 3a \\ a \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} ba + a + 3 \\ b + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^4$
c_3, c_{12}	$u^4 - 2u^3 - u^2 + 2u + 2$
c_4, c_9	$u^4 + 3u^2 - 2u + 2$
c_5, c_7	$(u+1)^4$
c_6, c_8, c_{10} c_{11}	$(u^2+1)^2$

Crossings	Riley Polynomials at each crossing	
c_1, c_2, c_5 c_7	$(y-1)^4$	
c_3, c_{12}	$y^4 - 6y^3 + 13y^2 - 8y + 4$	
c_4, c_9	$y^4 + 6y^3 + 13y^2 + 8y + 4$	
c_6, c_8, c_{10} c_{11}	$(y+1)^4$	

	Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	1.00000		
a =	1.000000I	1.64493	0
b =	0.418797 + 0.306103I		
u =	1.00000		
a =	1.000000I	1.64493	0
b =	-0.41880 + 2.69390I		
u =	1.00000		
a =	-1.000000I	1.64493	0
b =	0.418797 - 0.306103I		
u =	1.00000		
a =	-1.000000I	1.64493	0
b = -	-0.41880 - 2.69390I		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^4)(u^{15} + 3u^{14} + \dots + 9u + 1)^2(u^{19} - 7u^{18} + \dots + 8u - 1)$ $\cdot (u^{33} + 8u^{32} + \dots + 13u + 4)$
c_2	$((u-1)^4)(u^{15} - 3u^{14} + \dots + 3u - 1)^2(u^{19} + 5u^{18} + \dots - 2u - 1)$ $\cdot (u^{33} + 8u^{32} + \dots - 11u - 2)$
c_3, c_{12}	$(u^{4} - 2u^{3} - u^{2} + 2u + 2)(u^{19} + 2u^{16} + \dots + 3u + 1)$ $\cdot (u^{30} + 3u^{29} + \dots + 8u + 2)(u^{33} - 9u^{31} + \dots + 11u + 1)$
c_4	$(u^{4} + 3u^{2} - 2u + 2)(u^{19} - 7u^{17} + \dots + 2u - 1)$ $\cdot (u^{30} - u^{29} + \dots + 72516u + 14102)(u^{33} - 16u^{31} + \dots + 868u + 259)$
c_5	$((u+1)^4)(u^{15} - 3u^{14} + \dots + 3u - 1)^2(u^{19} - 5u^{18} + \dots - 2u + 1)$ $\cdot (u^{33} + 8u^{32} + \dots - 11u - 2)$
c_6	$((u^{2}+1)^{2})(u^{19}+u^{18}+\cdots-u-1)(u^{30}-3u^{29}+\cdots+8468u+872)$ $\cdot(u^{33}+u^{32}+\cdots+29u+2)$
c ₇	$((u+1)^{34})(u^{19} - 8u^{18} + \dots + 2u - 1)$ $\cdot (u^{33} - 29u^{32} + \dots - 159744u + 16384)$
c_8	$((u^{2}+1)^{2})(u^{15}+3u^{14}+\cdots+u+3)^{2}(u^{19}-8u^{18}+\cdots+103u-13)$ $\cdot (u^{33}-11u^{32}+\cdots-57u+4)$
c_9	$(u^{4} + 3u^{2} - 2u + 2)(u^{19} - u^{18} + \dots + 2u + 1)$ $\cdot (u^{30} - u^{29} + \dots + 47532u + 25406)(u^{33} + u^{32} + \dots + 2u + 1)$
c_{10}	$((u^{2}+1)^{2})(u^{19}-u^{18}+\cdots-u+1)(u^{30}-3u^{29}+\cdots+8468u+872)$ $\cdot(u^{33}+u^{32}+\cdots+29u+2)$
c_{11}	$((u^{2}+1)^{2})(u^{15}+3u^{14}+\cdots+u+3)^{2}(u^{19}+8u^{18}+\cdots+103u+13)$ $\cdot(u^{33}-11u^{32}+\cdots-57u+4)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing	
c_1	$((y-1)^4)(y^{15} + 21y^{14} + \dots + 9y - 1)^2(y^{19} + 17y^{18} + \dots + 4y - 1)$ $\cdot (y^{33} + 40y^{32} + \dots - 2383y - 16)$	
c_2, c_5	$((y-1)^4)(y^{15} - 3y^{14} + \dots + 9y - 1)^2(y^{19} - 7y^{18} + \dots + 8y - 1)$ $\cdot (y^{33} - 8y^{32} + \dots + 13y - 4)$	
c_3, c_{12}	$(y^4 - 6y^3 + 13y^2 - 8y + 4)(y^{19} + 10y^{17} + \dots + 3y - 1)$ $\cdot (y^{30} - 3y^{29} + \dots + 316y^2 + 4)(y^{33} - 18y^{32} + \dots + 59y - 1)$	
c_4	$(y^4 + 6y^3 + 13y^2 + 8y + 4)(y^{19} - 14y^{18} + \dots - 4y - 1)$ $\cdot (y^{30} - 27y^{29} + \dots - 960449880y + 198866404)$ $\cdot (y^{33} - 32y^{32} + \dots + 556584y - 67081)$	
c_6, c_{10}	$((y+1)^4)(y^{19} + 7y^{18} + \dots + 15y - 1)$ $\cdot (y^{30} + 39y^{29} + \dots - 9306704y + 760384)$ $\cdot (y^{33} + 53y^{32} + \dots + 33y - 4)$	
c_7	$((y-1)^{34})(y^{19} - 8y^{18} + \dots - 6y - 1)$ $\cdot (y^{33} - 9y^{32} + \dots - 1459617792y - 268435456)$	
c_8, c_{11}	$((y+1)^4)(y^{15}+13y^{14}+\cdots+49y-9)^2$ $\cdot (y^{19}+12y^{18}+\cdots-25y-169)(y^{33}+23y^{32}+\cdots+177y-16)$	
<i>c</i> ₉	$(y^{4} + 6y^{3} + 13y^{2} + 8y + 4)(y^{19} - 11y^{18} + \dots + 12y - 1)$ $\cdot (y^{30} - 39y^{29} + \dots + 4154402864y + 645464836)$ $\cdot (y^{33} - 53y^{32} + \dots - 8y - 1)$	