Artificial Intelligence:

First-Order Logic

Course V23 I
Department of Computing
Imperial College, London

Jeremy Gow

Al & Logic

- Logic is a good KR language (lecture 4)
 - ★ provides formal basis for many AI techniques

- Not the only approach!
 - * alternative symbolic KR schemes
 - **★ sub-symbolic** approaches
 - e.g. neural networks (see lectures 12 & 13)

Logic-Based Agents

- Knowledge base (KB)
 - Set of logical sentences describing environment
 - Adds new sentences via...
 - Observation of environment
 - Reasoning with existing knowledge
- Logical reasoning
 - Deduction: can X be explained by what I know?
 - Abduction: what fact would explain X?
 - Induction: what rule would explain X?

Logical Reasoning

- Deduction (mathematician)
 - $\{A, A \rightarrow B\}$ so B
- Abduction (detective)
 - $\{B, A \rightarrow B\}$ so A
- Induction (scientist)
 - Always see B with A so A→B

Only deduction is guaranteed

Automated Reasoning

- Enables logic-based Al agents
- Usually refers to automated deduction
 - This and next three lectures
 - Basis for logic programming, e.g. Prolog

- Also logic-based machine learning (induction)
 - See later lectures (inc. inductive LP)
- And automated abduction
 - Outside this course (as is abductive LP)

First-Order Logic

- Central to automated deduction in Al
- This lecture
 - Syntax & Semantics
 - Propositional then first-order
 - From FOL to Prolog

- Lecture 7: Deduction in FOL
- Lecture 8-9: Automated deduction in FOL

Propositional Syntax

- Constants: true, false, (T/⊥, T/F, 1/0) "truth values"
- Variables: represent propositions (P, Q, ...)
- Brackets: (and)
- Connectives
 - ¬ not (negation) also ~
 - ∧ and (conjunction) also & , . (or just PQ)
 - v or (disjunction) also | ; +
 - \rightarrow if then (implication) also $\leftarrow \Rightarrow \supset$
 - if & only if (equivalence) also ⇔ ≡

Propositional Sentence

A **sentence** is either

- 1. A constant or variable
- 2. $\neg P$, $P \land Q$, $P \lor Q$, $P \rightarrow Q$, $P \leftrightarrow Q$ or (P) for formulae P and Q

$$(A \land B) \leftrightarrow (B \land A)$$

$$A \land \neg A$$

$$A \land A \rightarrow A \rightarrow A$$

Propositional Semantics

- Which possible worlds is a sentence true?
- A model defines a possible world
 - ★ Assigns true or false to each variable
- Truth table below define connectives
 - ★ Now know truth of a sentence for any model

Р	Q	P	PAQ	PVQ	$P \to Q$	$P \leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Using Truth Tables

- When is $(P \rightarrow Q) \leftrightarrow (\neg P \lor Q)$ true?
- Draw truth table showing subformulae vs models
 - ★ Brackets: good places to stop and work out

Р	Q	$P \rightarrow Q$	¬P∨Q	↔
false	false	true	true	true
false	true	true	true	true
true	false	false	false	true
true	true	true	true	true

It is always true: it is a valid sentence (see L7)

Propositional Pitfalls

- False implies anything
 - P: "5 is even", Q: "7 is even"
 - $P \rightarrow Q$ is false \rightarrow false is true

- Implication does not indicate relevance
 - P: "5 is odd", Q: "Tokyo is capital of Japan"
 - $P \rightarrow Q$ is true \rightarrow true is true

More Propositional Pitfalls

 Lecture 4 example: "Every Monday and Wednesday I go to John's house for dinner"

- M = Is Monday, W = Is Wednesday
- J = I go to John's house for dinner

$$M \vee W \rightarrow J$$

- 'and' became 'or'
- v is not exclusive: can be Monday and Wednesday

First-Order Syntax

- A term is
 - a constant (lower-case), e.g. apple, red
 - a variable (upper-case), e.g. X, Y, ...
 - a function applied to terms, e.g. colour(apple)
- A proposition is: a predicate applied to terms
- A formula is propositions combined with
 - propositional connectives (as before)
 - quantifiers ∀, ∃
- A sentence is a 'properly quantified' formula

Ground Terms

- Constants directly represent objects
 - physical objects (apple) or concepts (red)
- Functions indirectly represent objects
 - father(john), colour(apple), (1 + 2) + 3
- Arity = number of arguments of function
 - unary, binary, ... n-ary

- Ground terms = constants + functions + brackets
 - They represent specific objects

Semantics of Ground Terms

- A first-order **model** is a pair (Δ , Θ)
 - Δ is a **domain**, a non-empty set
 - Θ is an interpretation, associates ground terms with elements of Δ
- $\Theta(c) \in \Delta$ for constant, $\Theta(f): \Delta^n \to \Delta$ for n-ary f
- So every ground term mapped to an element of Δ
 - father(john) and jack are different terms
 - but Θ could map them to same element

Unwanted Terms

- No restrictions on applying functions
 - Things we want like father(john) and 1 + 1
 - But also father(1) and red + john
- Solution 1: arbitrary interpretation (father(1) to 0)
- Solution 2: Δ includes undefined element
 - Θ maps unwanted applications to undefined
 - Function with undef. argument is undef.
- Practical approach: avoid using these terms
- Other solutions in type theory, multi-valued logics,...

Predicates

- Predicates are relationships between objects
 - Relate ground terms: brother(bob, father(bill))
 - Define arity as before (brother is binary)
 - A proposition that is true or false
- Semantics defined by interpretation Θ
 - $\Theta(p)$: $\Delta^n \rightarrow \{true, false\}$ for predicate p
 - False when any argument is undefined
- = (equality) is a predicate

Ground Formulae

- Ground formulae = ground terms + predicates + connectives
 - Statements about specific objects
 - Model (Δ , Θ) tells us whether true or false

```
(1 < 2) \land (3 < 2)
```

lectures(simon, ai) ∧ lectures(jeremy, ai)

 $odd(3 + 2) \rightarrow capital(japan, tokyo)$

brother(bob, father(bill)) ∨ ¬mother(jane, bill)

pred and ¬pred are positive and negative literals

Choosing Predicates & Terms

"The cost of an omelette at the Red Lion is £5"

```
cost_at_red_lion_is(omelette, five_pounds)
cost_is(omelette, red_lion, five_pounds)
cost(omelette, red_lion) = five_pounds
```

"Omelettes cost less than pies"

```
cost_is(omelette, a) \land cost_is(pie, b) \land a < b cost(omelette) < cost(pie)
```

Variables

- Variables allow us to talk about objects in general
- A variable is just another kind of term
 - Terms: father(X), (X + 2) + Y
 - Propositions: brother(X, father(Y)), X < (Y + 1)
 - Formulae: lectures(X, ai) ∧ lectures(Y, ai),
 cost(X, red_lion) = 3

★ Variables make formulae etc. non-ground

Quantifiers

- For formula f with X ∈ Var(f) (X is free variable)
 - \(\neg X.f \) is a formula (universal quantification)
 - ∃X.f is a formula (existential quantification)
- Free variables Var defined by
 - Var(f) = all variables, for quantifier-free f
 - $Var(\forall X. f) = Var(\exists X. f) = Var(f) \{X\}$

$$Var(X < Y + 1) = \{X, Y\}$$

$$Var(\exists X. X < Y + 1) = \{Y\}$$
 ("X is bound")

Semantics of Quantifiers

- Substitution {t/X} replaces X with term t
 - f.{t/X} is a formula f with free var X replaced
- For model (Δ , Θ)
 - $\forall X$. f is true **iff** f.{t/X} is true for all t in Δ
 - $\exists X.f$ is true **iff** $f.\{t/X\}$ is true for some t in Δ

- Formulae = terms + predicates + connectives + quantifiers
 - A sentence is a formula with no free variables
 - Only sentences are true or false for a model

Translation Pitfalls

"There is a meal at the Red lion which cost £3"

$$\exists X.(meal(X) \land cost(X, red_lion) = 3$$

"All the meals at the Red lion cost £3" (∃ to ∀?)

$$\forall X.(meal(X) \land cost(X, red_lion) = 3)$$

$$\forall X.(meal(X) \rightarrow cost(X, red_lion) = 3)$$

 $\forall X.(meal(X) \land serves(red_lion, X) \rightarrow cost(X, red_lion) = 3$

Be careful with order and type of quantifiers

Prolog

- Declarative programming language
 - Not procedural
 - Tell what to compute not how to compute

- Logic programming
 - Algorithm = Logic + Control (Kowalski)
 - ★ Logic: the representation
 - ★ Control: the search techniques
- Prolog = (FOL Horn clauses) + (SLD resolution)

Horn Clauses

Horn clauses are subset of FOL sentences

$$\forall X_1...\forall X_n.((P_1 \land ... \land P_m) \rightarrow H)$$

for positive literals P_i and H

- $P_1 \wedge ... \wedge P_m$ is the body, H is the head
- For m = 0 this is a **fact** $\forall X_1... \forall X_n.H$
- Often assume ∀s
 - brother(X, Y) ∧ father(Y, Z) → uncle(X, Z)
 - brother(john, X)

Prolog Programs

A Prolog program is a list of FOL Horn clauses

- Translate each clause...
 - 1. Drop universal quantifiers: $P_1 \wedge ... \wedge P_m \rightarrow H$
 - 2. Rotate around implication: $H \leftarrow P_1 \land ... \land P_m$
 - 3. Write \leftarrow as :- and \wedge s as commas, and always end with a full stop: $H := P_1, ..., P_m$.

Example Translation

 "If the lecture has a good lecturer and the subject is interesting then students are awake and listening"

```
\forall X.(good\_lecturer(X) \land interesting\_subject(X) \rightarrow students\_awake(X))
\forall X.(good\_lecturer(X) \land interesting\_subject(X) \rightarrow students\_listening(X))
```

In Prolog:

```
students_awake(X) :- good_lecturer(X), interesting_subject(X)
students_listening(X) :- good_lecturer(X), interesting_subject(X)
```

Search in Prolog

- Given a Prolog program (database of Horn clauses) and a query q(t₁, ..., t_n)
- Scans database for clauses with n-ary q as head
 - For head $q(s_1, ..., s_n)$ tries to find variable assignment such that $t_i = s_i$ (see next lecture)
 - Using variable assignment any literals in body of clause becomes new queries
- Succeeds when all queries proved (via facts)
 - Returns variable assignment for original query

Negation As Failure

- Given knowledge pm(thatcher) and pm(blair) we can't prove pm(brown), but it might be true
- Alternately, make the closed world assumption
 - If we can't prove it then it is false
 - So pm(brown) is false

- Prolog uses negation as failure based on CWA
 - A query \+q is proved by failing to prove q

Prolog Search Example

```
uncle(U, N):- brother(U, F), father(F, N).
uncle(U, N) := brother(U, M), mother(M, N).
brother(bob, bill).
brother(barry, betty).
father(bill, bruce).
mother(betty, bruce).
?- uncle(X, bruce).
X = bob
?-\+uncle(brian, bruce).
Yes
```

Parallelism and Prolog

- Two processors P1 and P2
- OR-parallelism for query uncle(X, bruce).
 - P1 takes uncle(U, N):- brother(U, F), father(F, N).
 - P2 takes uncle(U, N):- brother(U, M), mother(M, N).
- AND-parallelism
 - Use uncle(X, bruce) :- brother(X, F), father(F, bruce).
 - P1 takes brother(X, F)
 - P2 takes father(F, bruce)
 - Trickier because values for F must agree

More on Prolog

- See online notes (and Russell & Norvig):
 - How arithmetic is carried out
 - How performance is measured
 - Logical Inferences per Second (LIPS)
 - How performance is improved
 - By compiling code, e.g. to WAM
 - LIPS now in millions
 - Case study: an expert system in Prolog