ابتدا توجه بفرمایید که ضرب ۴ بیتی را میتوانیم به صورت حاصل جمع تعداد ضرب ۲ بیتی محاسبه کنیم

$$a_3a_2a_2a_1 \times b_3b_2b_1b_0 = (2^2(a_3a_2) + a_1a_0) \times (2^2(b_3b_2) + b_1b_0)$$

= $2^4(a_3a_2 \times b_3b_2) + 2^2(a_3a_2 \times b_1b_0) + 2^2(a_1a_0 \times b_3b_2) + (a_1a_0 \times b_1b_0)$

توجه کنید که حاصل ضرب دو عدد n بیتی بدون علامت حداکثر برابر $(1-2^n-1)(2^n-1)$ خواهد بود. بنابرین این حاصل کوچکتر از $(2^n)^2$ خواهد بود بنابرین برای نمایش این حاصل $(2^n)^2$ بیت کافی است.

 $2^n(a_{i+1}a_i \times b_{j+1}b_j)$ بنابرین حاصل هر یک از $a_{i+1}a_i \times b_{j+1}b_j$ یک عدد ۴ بیتی خواهد بود. توجه کنید که $a_{i+1}a_i \times b_{j+1}b_j$ با چسبیدن $a_{i+1}a_i \times b_{j+1}b_j$ با چسبیدن $a_{i+1}a_i \times b_{j+1}b_j$

با استفاده از Full Adder می توانیم یک جمع کننده n بیتی بسازیم. این Adder و عدد n بیتی دریافت و یک عدد n بیتی خروجی می دهد که حاصل جمع دو ورودی است. در ساخت ماژول raban، تعداد بیت ورودی، n، را به صورت n پارامتر در نظر میگیریم تا در صورت لزوم بتوانیم جمع کننده هایی با طول های متفاوت بسازیم. برای نگارش این ماژول از generate استفاده می کنیم و n عدد Full Adder را به هم متصل می کنیم. برای این منظور از تعدادی wire کمکی نیز برای وصل کردن n وصل کردن n استفاده می کنیم.

در ماژول اصلی ابتدا با استفاده از ضربکننده دو بیتی عبارات $a_{i+1}a_i \times b_{j+1}b_j$ تولید میکنیم. سپاس با رعایت ارزشگذاری مکانی ، حاصلها را با یک دیگر جمع میکنیم. جدول زیر ارزش های مکانی را نشان می دهد.

Term#	7	6	5	4	3	2	1	0
1					$a_1 a_0 \times b_1 b_0$			
2			а	a_0				
3			$a_3a_2 \times b_1b_0$					
4	а	$a_3a_2 \times b_3b_2$						

توجه کنید که دو بیت کمارزش $a_1a_0 \times b_1b_0$ با هیچ مقداری جمع نمی شوند بنابرین میتوانیم آنها را مستقیما با کمک یک buffer به دو بیت کمارزش خروجی وصل کنیم.

در مرحله اول، میتوانیم عبارات ۲ و ۳ را با یکدیگر جمع کنیم. توجه کنید که حاصل جمع دو عدد ۴ بیتی برابر یک عدد ۵ بیتی خواهد بود بنابرین برای جمع کردن این دو عبارت از ماژول Adder با پارامتر N=5 استفاده میکنیم و یک صفر به سمت چپ این دو عبارت اضافه میکنیم تا پنج بیتی شوند. در نتیجه عبارات جدید به صورت زیر خواهند بود.

1				$a_1a_0 \times b_1$) 0
(2 + 3)		$a_1 a_0 \times b_3 b_2 + a_3 a_2 \times b_1 b_0$						
4	а	$a_3a_2 \times b_3b_2$						

حال دو بیت پرارزش $a_1a_0 \times b_1b_0$ را در سمت راست $a_3a_2 \times b_3b_2$ قرار می دهیم تا یک عدد ۶ بیتی به دست آید. سپس یک صفر در سمت چپ عبارت ۵ بیتی (2+2) قرار می دهیم تا ۶ بیتی شود. سپس این دو عدد را به کمک یک Adder با پارامتر N=6 جمع می کنیم و به ۶ بیت پرارزش خروجی وصل می کنیم.