This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

1 Publication number:

0 655 501 A1

12

EUROPEAN PATENT APPLICATION

(21) Application number: 95100149.4

2 Date of filing: 13.06.89

(5) Int. CI.⁸ **C12N 15/49**, C12N 7/00, C07K 14/155, G01N 33/569, A61K 39/21, A61K 39/395, C12N 5/10

This application was filed on 06-01-1995 as a divisional application to the application mentioned under INID code 60.

- Priority: 14.06.88 DE 3820223
- 43 Date of publication of application: 31.05.95 Bulletin 95/22
- Publication number of the earlier application in accordance with Art.76 EPC: 0 347 365
- Designated Contracting States:
 AT BE CH DE ES FR GB GR IT LI NL SE
- 7) Applicant: QIAGEN GmbH
 Max-Volmer-Strasse 4
 D-40724 Hilden (DE)
 Applicant: CHEMOTHERAPEUTISCHES
 FORSCHUNGSINSTITUT
 GEORG-SPEYER-HAUS
 Paul-Ehrlich-Strasse 42-44
 D-60596 Frankfurt (DE)
- ② Inventor: Henco, Dr. Karsten Schlickumer Weg 23

D-40699 Erkrath (DE)

Inventor: Von Briesen, Hagen

Ringstrasse 31

D-61479 Kronberg (DE)

Inventor: Immelmann, Dr. Andreas

Vennstrasse 158

D-40627 Düsseldorf (DE)

Inventor: Kühnel, Dr. Herbert

Mainstrasse 7

D-63329 Egelsbach (DE)

Inventor: Dietrich, Dr. Ursula

Gehspritz 6

D-65760 Eschborn (DE)

Inventor: Rübsamen-Walgmann, Prof. Dr.

Helga

Königsteiner Strasse 113

D-65812 Bad Soden/Taunus (DE)

Inventor: Adamski, Michalina

Bickenbacher Weg 22

D-60529 Frankfurt (DE)

Representative: Meyers, Hans-Wilhelm, Dr. et

al

Deichmannhaus am Hauptbahnhof

D-50667 Köln (DE)

(A) HIV-2 virus variants.

(5) HIV-2 virus variants, namely virus HIV D205, which can be cloned from the corresponding virus isolate HIV D205 (ECACC V 87122304) and its RNA or RNA-fragments and DNA and DNA-fragments derived therefrom and/or proteins and the use thereof for diagnostics and therapy.

The present invention relates to HIV D205 a HIV-2 virus variant that may be cloned from the corresponding virus isolate HIV D205 (ECACC V 87122304).

"Molecular cloning of two West African human immunodeficiency virus type 2 isolates which replicate well on macrophages: a Gambian isolate from a case of neurologic aquired immunodeficiency syndrome, and a highly divergent Ghanesian isolate" (Kühnel, H., v. Briesen, H., Dietrich, U., Adamski, M., Mix, D., Biesert, L. Kreutz, R., Immelmann, A., Henco, K., Meichsner, Ch., Andreesen, R., Gelderblom, H. & Rübsamen-Waigmann, H., 1989, Proc. Natl. Acad. Sci. 86, 4, 2383-2387.

In diagnostics, two criteria are demanded to be met, namely specifity and sensitivity for the antigen to be detected. In the diagnostics of AIDS the demand for specifity can certainly be complied with by using the isolates HTLV-III_B and LAV-2 (Guyader, M. et al., "Nature" 326, 1987, 662-669) in order to delimit HIV infections from other infections and, thus, to make a rough assignment into the classes of "HIV-2-related infections" or "HIV-1-related infections". However, a problem is constituted by the sensitivity of the diagnosis. In the range of the so-called seroconversion, i.e. the initial occurrence of the antibody in the infected person, a reduction in sensitivity implies an increase in the number of "falsely negative" test results. Accordingly, it is one main goal to shorten the period between an infection and the detectability of this infection as much as possible by improving the test sensitivity.

A decreased cross reactivity, in the practice of the widely employed ELISA diagnostics, is manifested, for example, in a reduced sensitivity. Thus, the use of the described HIV-1 isolate means about an average reduction of the test sensitivity against HIV-2 sera by the factor of 100 to 1000, whereas the isolate HTLV-III_B enables almost no detection to be accomplished anymore.

A disastrous principle of the diseases caused by HIV resides in the fact that there is not only one type of each of HIV-1 and HIV-2 virus phenotypes and genotypes. What is to be premised is rather a large group of related viruses, possible even populations which by no way are strictly separated from each other but continuously penetrate one another and undergo some evolutionary development to a more and more increasing divergence, while at the same time they begin by recombination events to exchange between each other parts of the genom. Thus, the existing HIV species form a broad continuous population level in which there are no narrowly delimited subpopulations of one virus variant. There is rather to presumed that a continuum exists which is subject to permanent fluctuations with time.

The classified virus variants HIV-1 and HIV-2 are representatives of the diffusely delimited subpopulations having a relative low degree of relationship, which is manifested by only a partial cross reactivity. On the other hand, there are variants of the HIV-1 group (Rübsamen-Waigmann, H. et al., "AIDS-Forschung" 10, 1987, 572-575; Rübsamen-Waigmann, H. et al., J. Med. Virol. 19, 1986, 335-344; v. Briesen, H. et al., J. Med. Virol. 23, 1987 51-66), which do significantly stronger cross-react with HIV-2 than the first characterized HIV-1 isolate itself (Hahn, B. et al., "Nature" 312, 1984, 166-169). A commercial product consisting of such an isolate diagnoses distinctly more sera as being HIV-2 positive than does the described standard isolate HTLV-III_B.

An ideal diagnostic or therapeutic product should contain at least one representative from the populations as significantly biologically distinguished from one another.

HIV-1 viruses in a multitude of highly polymorphic genetic mutants may cause different diseases such as ARC, LAS, AIDS and encephalopathies (ARC: AIDS-related complex, LAS: lymphadenopathy syndrome, AIDS acquired immune deficiency syndrom). Cloned virus variants are distinguished in sequence and restriction pattern, even if they have been isolated at the same time, at the same place and even from the same patient (Rübsamen, H. et al., 1986). It could be shown that virus variants of the HIV-1 type are distinguished in some virus antigens up to about 15%. HIV-2's are even different in more than 40% of the aminoacids in some antigens, substitutions, insertions and deletions having been considered (Guyader, M. et al., 1987; Rabson, A.B. & Martin, M.A. "Cell" 40, 1985, 477-480).

The present invention provides a variant of the HIV-2 virus. The variant was isolated from a clinically asymptomatic patient. The virus isolate proved to be diagnostic agents, relative to DNA/RNA as well as relative to the virus antigens, for serologically and directly identifying infections by the type HIV-2 in the pre-AIDS and AIDS stages.

The virus isolate according to the invention comprises viruses and proviruses, the characteristics of which are identical to those of the disclosed restriction map and the sequence of the cloned partial regions (Figures 1-4). Moreover, the virus isolate comprises variants which are distinguished from the viruses and proviruses described above in that they are different in their nucleotide sequences from the above-described viruses only by up to 5%, and preferably by 2%, particularly preferred by 1%.

The virus variant according to the invention may cause lymphadenopathies (further designated as LAS/AIDS). Claimed according to the invention are also expression products of said virus variant, and more particularly antigens, preferably in accumulated or pure form, and processes for producing said expression

products in full or in parts or in combinations of the parts. The expression products are intended to include all polypeptides in glycosylated and or meristylated forms which have been coded on the positive or negative strand of the cloned RNA or DNA.

A further preferred embodiment consists of cloned DNA sequences capable of hybridizing with genomic RNA and DNA of the virus variant. Claimed according to the invention are stable gene probes containing such DNA sequences which are suitable for the detection of hybridization of those and other HIV variants or related viruses or DNA proviruses in samples to be investigated, more particularly biological or semi-synthetic samples.

A further preferred embodiment of the invention is comprised by virus variant the RNA/DNA of which or respective fragments will hybridize to the virus variants according to the invention under stringent conditions, more particularly c-DNA, genomic DNA, recombinant DNA, synthetic DNA or fragments thereof. These are understood to include variants or fragments which exhibit deletions and insertions in comparison to the virus variant according to the invention.

Stringent conditions of hybridization and washing are meant to be understood as those conditions which ensue by way of experiment or calculation if the melting point of the 100% homologous nucleic acid complexes in conditions of hybridization and washing will be fallen below by not more than 5 °C under the buffer conditions employed.

Also claimed according to the invention are cloned synthetic gene probes which may be derived from the above-described virus variants and can be augmented in vector systems in eukaryotes or prokaryotes. The described cloned DNA fragments are suitable for hybridization with complementary nucleic acids (DNA/RNA) for the purpose of diagnostic detection of the virus variants. The diagnostic tests according to the invention are carried out by using DNA or RNA probes. The probes are radioactive or have been labelled with fluorescent bio- or chemiluminescent groups or enzymes or are specifically detectable with enzymes via coupled reaction systems. The hybridizations may be effected in a homogeneous phase of a solution or in a heterogeneous phase with solid-immobilized nucleic acids, while the solid may be a membrane, particle, cell or tissue, so that the hybridization may also be effected in situ.

From the virus isolate claimed according to the invention, the corresponding DNA sequences (Figure 1) may be cloned in <u>E. coli</u> bacteria by establishing a genomic lambda-gene bank, starting from the DNA of the lymphocytes infected with the virus isolate. The desired clones are obtained by carrying out a plaque-screening with STLV-III sequences of the gag-pol range. In a more specifical way, there may be used as a probe a DNA derived from the published sequence HIV-2 ROD (Guyader, M. et al., "Nature" <u>326</u>, 1987, 662-669), or a DNA probe derived from the partial sequences of the isolate HIV-2 D205 according to the invention.

The diagnostic method based on the use of the viruses claimed according to the invention comprises the following steps: Extraction of RNA or DNA from biological samples, possibly enzymatic processing by restriction enzymes, separation by gel electrophoresis and/or direct blot methods for nucleic acid-binding carriers, and subsequent hybridization with parts of the cloned fragments of the claimed viruses. Hybridizations may also be directly carried out in chemically treated cells or tissues. Therein the origin of the tissues or liquids is insignificant.

Specifically, a process for the in vitro detection of antibodies against expression products of the viruses of the present invention is characterized in that the expression products or parts thereof of the viruses are detected by means of immunological methods. The process is characterized in that the expression products are proteins, peptides or parts thereof which have been coded within the meaning of an open reading frame on the DNA of the proviral partial sequences as characterized in claim 1 and are prepared by synthetic or biosynthetic processes.

The process is further characterized in that previously a definite amount or a combination of expression products or parts thereof are fixed on microtiter plates, whereupon subsequently biological samples, diluted or undiluted, are contacted with the coated microtiter plates and after incubation and sequential washing steps can be identified by means of a detecting reagent or of labelled anti-HIV antibodies.

Alternatively, filter strips and plastic strips or rods are used instead of microtiter plates, wherein the expression products of the viruses have been fixed at respective specific positions by isolated application of the different antigens.

The expression products or parts thereof can also be separated by gel electrophoresis and then transferred by blotting whereupon incubation with anti-HIV antibodies and the detection thereof are effected. Detection is effected on solid phase carriers to which the antigen determinants have been bonded, with the solid phase carrier consisting of particles.

Expression products can be virus antigens derived from in vitro-infected cells, said antigens being contacted with biological test materials as antigens bonded to fixed cells, and that the subsequent antibody

bonding can be determined with immunological detection reagents by means of an apparatus, for example with a cytofluorimeter, or visually.

The antigens can be determined by competitive ELISA. HIV-related nucleic acids (DNA and RNA) can be detected in biological samples, cells and in isolated form by using the nucleic acids according to the present invention.

Expression products can be supplemented by materials which are related to other HIV variants, which, however, are distinguished in their biological properties from the materials of the isolates of the present invention.

For diagnostic and therapeutic goals the described DNA segments may also be employed for expressing coded antigens, parts thereof or combinations thereof with alien antigens. Therein the DNA segments under aimed control of regulation sequences are introduced into pro- or eukaryotic target cells, tissues or multiple-cell organisms to stimulate these to produce the accordingly coded antigens, parts thereof or combinations thereof with alien antigens. Antigens can be detected via the reaction with anti-HIV-2 antibodies, more particularly from the sera of the respective patients. Antigens having longer open reading frames (>50 amino acids) lend themselves as well those which are subject to splicing processes on the RNA level and are only thus composed to form the longer open reading frames.

According to the invention further claimed are polypeptides originating from the cloned virus variant according to the invention to detect such antigens in the material under investigation which contain similar antigen determinants and thereby do immunologically cross-react. This is particularly suitable for the diagnosis of AIDS and pre-AIDS of virus carriers or asymptomatic virus carriers or virus products, respectively, which are derived from blood. Also the serological detection of the antibodies directed against these antigenic polypeptides as expression products of the virus claimed according to the invention becomes possible by employing conventional systems such as ELISA. The immunogenic polypeptides may be used as protective polypeptides as vaccines to cause protection against AIDS infections.

The polypeptides according to the invention are understood to include fragments which are intentionally obtained by means of gene-technological methods, starting from longer open reading frames as well as those obtained by proteolytic enzymes in the production bacterial strains or in vitro by the use of proteases.

The virus isolates according to the invention and the products derived thereform may be combined with other isolates of the partial population HIV-2 in test systems, that is with those which are as far remote as possible in the described population level such as for example, the isolate HIV-2 ROD (Guyader, M. et al., 1987). Thereby it becomes possible sensitively to detect also populations of remote relationship in one test.

The virus variant according to the invention is highly different from the spectrum of the HIV-1 variants and have a closer molecular relationship to the HIV-2 virus described by Guyader, although they are distinguished therefrom to a significant extent (Figure 1). Also the biological properties are clearly distinguished from the described HIV-2 isolate. Thus, the variant according to the invention, for the effective in vitro replication, prefers cells which are derived from myeloidic lines. On the contrary, the virus poorly reproduces itself on lymphocytic lines.

A sample of the virus claimed according to the invention has been deposited in the form of its isolate at the European Collection of Animal Cell Cultures under the designation HIV D205 (V 87122304) according to the Budapest Treaty.

Figure 1 shows the restriction maps of the virus isolate according to the invention in comparison to known HIV sequences.

Figure 2 shows the partial nucleotide sequences of HIV-D205 (corresponding to clone HIV-2 A7.1 of Figure 2).

Figure 3 shows the sequence homology of HIV-2 D205,7 compared to the HIV/SIV group (gene level;

45

Figure 4 shows a nucleotide sequence comparison of HIV-2 D205 with HIV and SIV strains (in % homology).

Experimental results and characteristics of HIV-D205 are described in Kühnel, H. et al. (1989) Proc. Natl. Acad. Sci. 86, 4, 2383-2387.

The sequence of HIV-D205 shows a lot of so-called "open reading frames". Most of these reading frames can be related to in vivo expressed proteins/antigens by comparison of homologies to previously described HIV-viruses, by comparison of Western blots performed with HIV-D205 antigens derived from infected HUT78 or J937 cells and by probing with sera from the corresponding patients and reference sera.

Other open reading frames are not identified on the level of their expressed antigens defined by function or antibody staining on Western Blot. However, they can be expressed under some circumstances in vivo. Other reading frames, even short ones, can be expressed as well in a way difficult to predict solely on the basic of nucleic acid sequencing data because of splicing processes.

Antigenic determinants on expressed proteins as they are important for the biological function, for target antigens in diagnostics or for immunization are spread all over the expressed linear protein sequence. Parts of these sequences can have more general anticenic properties than others as can be shown by peptide screening/ mapping for antigenic sites. These sites can be expressed as single epitopes or as continuous polypeptide or in a version of in vitro or synthetically spliced antigens. Antigenicity of the expressed products can be demonstrated by antigen fixation and blotting in the Western Blot assay. Constructions for antigen expression in E.coli can be done by using conventional techniques using synthetic genes, restriction fragments from cloned viral genome segments, trimming products thereof by using exonuclease or DNase I or by using sequence specific synthetic primers defining the desired 5' and 3' end of the fragment to be expressed together with appropriate restriction sites. These restriction sites can easily be used for ligation into a panel of expression vectors of different organisms like those derived from PLc24 (Remault et al. 1981 Gene 15, 81-83) with multicloning sites (pEX).

The expressed antigens were shown to specifically react with patients' sera. The p27(24) from gag of HIV-D205 react very sensitively with both typical HIV-1 sera and typical HIV-2 sera (see Kühnel et al).

Claims

15

25

30

35

40

45

50

- 1. A virus isolate HIV D205 (ECACC V 87122304).
- 2. DNA of the proviral partial sequences according to the following restriction endonuclease section-site characteristics, within the scope of the possible and conventional variation of errors, formed in establishing restriction maps.

- 3. cDNA and -fragments of the virus isolates according to claim 1.
- 4. Viral RNA and its fragments from virus isolates according to claim 1.
- 50 5. Recombinant DNA containing DNA pieces, starting from the virus isolates according to claim 1.
 - DNA or RNA of the virus isolates according to any one of the claims 1 to 4, wherein the DNA or RNA is present as hybride with complementary labelled DNA or RNA strands.
- 55 7. DNA according to any one of the claims 1 to 5, characterized in that it is complementary to viral DNA or parts thereof.

- 8. Nucleic acid strands in a modified or unmodified form which under stringent conditions hybridize with nucleic acids according to claims 2 to 7, and more specifically those nucleic acids which correspond to the highly variable regions of the HIV genom, more particularly in the range of the region coding the envelope protein.
- 9. Expression products of the virus isolates according to claim 1.

10

20

30

35

- 10. Expression products according to claim 1, characterized in that the proteins, peptides or fragments have been coded within the meaning of an open reading frame on the DNA according to claim 2.
- 11. A process for the <u>in vitro</u> detection of antibodies against expression products of the viruses according to claim 1, characterized in that the expression products or parts thereof of the viruses are detected by means of immunological methods.
- 12. The process according to claim 11, characterized in that the expression products are proteins, peptides or parts thereof which have been coded within the meaning of an open reading frame on the DNA according to claim 2 and are prepared by synthetic or biosynthetic processes.
 - 13. The process according to claims 11 or 12, characterized in that previously a definite amount or a combination of expression products or parts thereof are fixed on microtiter plates, whereupon subsequently biological samples, diluted or undiluted, are contacted with the coated microtiter plates and after incubation and sequential washing steps can be identified by means of a detecting reagent or of labelled anti-HIV antibodies.
- 14. The process according to any one of claims 11 to 13, characterized in that filter strips and plastic strips or rods are used instead of microtiter plates, wherein the expression products of the viruses have been fixed at respective specific positions by isolated application of the different antigens.
 - 15. The process according to claim 14, characterized in that the expression products or parts thereof are separated by gel electrophoresis and then transferred by blotting whereupon incubation with anti-HIV antibodies and the detection thereof are effected.
 - 16. The process according to any one of claims 11 to 15, characterized in that the detection is effected on solid phase carriers to which the antigen determinants have been bonded, the solid phase carrier consisting of particles.
 - 17. The process according to any one of claims 11 to 16, characterized in that the expression products are virus antigens derived from in vitro-infected cells, said anti-genes being contacted with biological test materials as antigens bonded to fixed cells, and that the subsequent antibody bonding can be determined with immunological detection reagents by means of an apparatus, for example with a cytofluorimeter, or visually.
 - 18. The process according to any one of claims 11 to 17, characterized in that the antigens are determined by competitive ELISA.
 - 19. A process for detecting HIV-related nucleic acids (DNA and RNA) in biological samples, cells and in isolated form by using the nucleic acids according to claims 2 to 7.
- 20. The process according to any one of claims 11 to 19, characterized in that the expression products are supplemented by materials which are related to other HIV variants, which, however, are distinguished in their biological properties from the materials of the isolates according to claim 1.
 - 21. Immunogenic composition, containing expression products such as antigens, coded by the viruses of the virus isolates according to claim 1.
 - 22. The immunogenic composition according to claim 21, characterized in that one antigen constitutes part of the total membrane antigen or is the total membrane antigen or a derivative thereof or a mixture of parts of the membrane antigens.

- 23. Antibodies, and more specifically monoclonal antibodies, against expression products of the virus isolates according to claim 1.
- 24. Cells which have been transformed with nucleic acids according to any one of claims 2 to 7.
- 25. Cells which have been infected with virus isolates according to claim 1.

Fig. 1

Fig. 2
Partial nucleotide sequences of HIV-D205
(corresponding to clone HIV-2 A7.1 of Fig. 2);

HIV-D205; corresponding to pos. 8942-9255 in HIV-2 ROD; homology 71.6 %

	20 GTATTATAGT			50 AGACACATAT	60 TTTGAGAATG
70 AAGAAGGCAT	80 TGTGTCTGGC	90 TGGCAAAACT	100 ATACTCATGG	110 GCCAGGGATA	120 AGGCATCCCA
				170 GCCAGCAGCG	
				230 CTCATGGGAT	
250 GGGAGACTCT	260 TATCTGGCAG	270 TTTGATTCCC	280 TCCTGGCATA	290 TGATTATGTG	300 GCTTTCAATA
310 GGTTTCCAGA	AGAGTTT				

HIV-D205, corresponding to position 718-2510 in HIV-2ROD; homology 78.6 %

10	20	30	40	50	60
AAAAAATTCT	TAAAGTCTTA	GCTCCATTAG	TACCAACAGG	GTCAGAAAAT	TTAAAAAGCC
70	80	90	100	110	120
TTTTTAATAT	CCTCTGCGTC	ATTTTTTGCC	TGCACGCAGA	AGAGAAAGTG	AAAGATACAG
130	140	150	160	170	180
AGGAAGCAAA	AAAGATAGCA	CAGAGACATC	TAGCGGCGGA	CACAGAAAAA	ATGCCAGCTA
190	200	210	220	230	240
CAAATAAACC	AACAGCACCA	CCTAGCGGCG	GAAATTATCC	AGTGCAGCAA	CTGGCTGGCA
250	260	270	280	290	300
ACTACGTCCA	CCTGCCGCTA	AGCCCCCGAA	CCTTAAATGC	TTGGGTAAAG	TTAGTAGAAG
310	320	. 330	340	350	360
AAAAGAAGTT	CGGGGCAGAA	GTAGTACCAG	GATTTCAGGC	ACTATCAGAA	GGÄTGCÄCCC
370	360	390	400	. 410	420
CTTATGATAT	AAATCAGAIG	CTAAATTGTG	TAGGAGAACA	TCAGGCAGCC	ATGCAAATTA
430	440	450	460	470	450
TTAGAGAAAT	AATCAATGAG	GAAGCAGCAG	ACTGGGACCA	GCAACACCCG	TCACCAGGCC

Fig. 2

	•				
490 CAATGCCGGC	500 AGGACAACTT	510 AGGGACCCAA	520 GAGGGTCAGA	530 TATAGCAGGA	540 ACCACCAGCA
550 CAGTAGAGGA	560 ACAGATACAG	570 TGGATGTACA	580 GGGCCCAAAA	590 TCCTGTCCCA	600 GTGGGAAACA
610 TTTATAGAAG	620 ATGGATTCAA	630 TTAGGATTGC	640 AGAAATGTGT	650 CCGAATGTAC	660 AATCCTACCA
670 ACATATTAGA	680 CATAAAGCAG	690 GGACCAAAGG	700 AGCCCTTCCA	710 AAGCTATGTA	720 GATAGATTCT
730	740 ACGGGCAGAA	750	760	770	780
790	800 GAATGCTAAC	810	820	830	840
850	860	870	880	890	900
CCACCTTAGA 910	GGAAATGCTA 920				
	CGAAGCCTTA		TAACACCTGC	ACCCATACCG	TTTGCTGCCG
970 TTCAACAAAA	980 AGCAGGAAG			1010 GAACTGTGGC	
1030 ACACAGCCAG	1040 GCAATGCAGG	1050 GCCCCTAGAA	1060 GACAGGGATG	1070 CTGGAAATGT	1080 GGAAAAACAG
1090 GACACATCAT	1100 GTCAAAATGC	1110 CCAGAAAGAC	1120 AGGCGGGTTT	1130 TTTAGGGTTA	1140 GGACCCTGGG
	1160 TCGCAACTTC				
1210	1220	1230	1240	1250	1250
	CCCAGCAGAG			•	
CAGATCCAGC	1280 AGTGGAGATG	CTGAAAAGTT	ACATGCAGAT	GGGGAGACAA	CAGAGAGAGA
1330 GCCGAGAGAG	1340 ACCCTACAAG	1350 GAGGTGACAG	1360 AGGATTTGCT	1370 GCACCTCAAT	1380 TCTCTCTTTG
1390 GAGAAGACCA	1400 GTAGTCAAAG	1410 CATGTATCGA	1420 GGGTCAGTCA	1430 GTAGAAGTAT	1440 TACTAGACAC
1450 AGGAGTTGAC	1460 GACTCAATAG	1470 TAGCAGGGAT	1480 AGAATTAGGT	1490 AGCAATTACA	1500 CCÇCAAAAAT
1510 AGTAGGAGGG	1520 ATAGGAGGGT	1530 TCATAAATAC	1540 CAAAGAATAC	1550 AAAGATGTAG	1560 AAATAGAAGT
1570	1580 AGAGTAAGGG	1590	1600	1610	1620

Fig. 2

1630 1640 1650 1660 1670 1680
CAGAAATATT TTAAATACCT TGGGCATGAC TTTAAATTTC CCAGTGGCAA AGGTAGAACC

1690 1700 1710 1720 1730 1740
AGTAAAAGTT GAGTTAAAAC CTGGAAAAGA TGGGCCAAAG ATCAGACAAT GGCCTCTATC

1750 1760 1770 1780 1790
CAGGGAAAAG ATACTAGCCC TCAAAGAAAT CTGTGAAAAA ATGGAAAAGG

HIV-D205, corresponding to position 2877-7293 in HIV-2ROD; homology 75.1 %.

AGGTATTAGA TCCTTTTAGA AAGGCCAACA GCGATGTCAT TATAATTCAG TACATGGATG ACATCCTTAT AGCAAGTGAC AGAAGTGATC TGGAGCACGA CAGGGTAGTG TCCCAACTAA AAGAGTTATT AAATGACATG GGATTCTCTA CCCCAGAAGA AAAGTTCCAA AAAGACCCTC CGTTCAAATG GATGGGTTAT GAGCTCTGGC CAAAAAGTG GAAACTGCAA AAAATACAAC TGCCAGAAA AGAAGTTTGG ACAGTGAATG CAATTCAAAA ACTGGTAGGA GTATTAAACT GGGCAGCTCA ACTCTTTCCT GGAATTAAGA CAAGGCACAT ATGCAAACTA ATTAGGGGAA AGATGACCCT AACAGAAGAA GTACAGTGGA CAGAACTAGC AGAAGCAGAG CTACAGGAGA ATAAAATCAT CTTAGAACAG GAACAAGAAG GATCCTACTA CAAGGAAAGG GTACCGCTAG AAGCAACAGT ACAGAAAAAC CTAGCAAATC AGTGGACATA CAAAATTCAT CAGGGAAATA AAGTCCTAAA AGTAGGAAAA TATGCAAAGG TTAAAAACAC GCACACCAAC GGGGTAAGAC TACTGGCACA TGTAGTTCAG AAAATAGGCA AAGAAGCCCT AGTCATCTGG GGAGAGATAC CAGTGTTCCA TCTGCCAGTA GAAAGAGAGA CATGGGACCA GTGGTGGACA GATTACTGGC AAGTAACCTG GATCCCAGAG TGGGACTTTG TCTCGACCCC ACCATTAATA AGACTAGCCT ACAACCTAGT CAAAGACCCC CTAGAAGGGA GAGAAACCTA CTACACAGAT GGGTCCTGCA

Fig. 2

850 ATAGAACCTC	860 AAAGGAAGGA	870 AAAGCAGGAT	880 ATGTCACTGA	890 CAGGGGAAAA	900 GATAAGGTTA
910 AAGTGTTAGA	920 ACAGACAACA	930 AACCAACAAG	940 CAGAACTTGA	950 AGCATTTGCA	960 TTAGCATTAA
970 CAGACTCAGA	980 ACCACAAGTT	990 AACATCATAG	1000 TAGATTCACA	1010 ATATGTCATG	1020 GGAATAATAG
1030 CTGCACAGCC		1050 GAATCACCAA	1060 TAGTAGCAAA	1070 AATAATTGAA	1080 GAAATGATCA
1090 AAAAAGAGGC			1120 CAGCTCACAA	1130 GGGACTGGGT	1140 GGTAATCAGG
1150	1160	1170	1180		1200
1210	1220	1230	1240		1260
1270	1280	1290	1300	1310	1320
1330	1340	1350	1360		1380
GGGAAGCTAT				ATGGCAGATG	•
ATTTAGAAGG	AAAAATTATA	ATAGTGGCAG	TCCATGTAGC	CAGTGGGTTT	ATAGAAGCAG
	CCAAGAGACA		CAGCTCTCTT	CCTACTAAAG	TTGGCCAGCA
	CACACACCTA	CACACAGACA	ACGGTGCCAA	1550 CTTCACCTCA	CCAAGTGTAA
1570 AGATGGTAGC	1580 CTGGTGGGTA	1590 GGAATAGAAC	1600 AAACTTTTGG	1610 AGTACCCTAT	1620 AACCCACAAA
1630 GTCAAGGAGT	1640 AGTGGAAGCA	1650 ATGAACCATC	1660 ACCTGAAAAA	1670 TCAAATAGAC	1680 AGACTCAGAG
1690 ACCAAGCAGT	1700 ATCAATAGAG	1710 ACAGTTGTAC	1720 TAATGGCAAC	1730 TCACTGCATG	1740 AATTTTAAAA
1750 GAAGGGGAGG	1760 AATAGGGGAT	1770 ATGACCCCTG	1780 CAGAAAGACT	1790 AGTTAACATG	1500 ATAACCACAG
1810 AGCAAGAAAT	1820 ACAGTTCTTC	1830 CAAGCAAAA	1840 TTAAAATTA	1850 TCAAAATTTC	1860 CAGGTCTATT
1870	1880	1890	1900		1920
1930	1940	1950	1960	1970	1980 AAAGCAAAA
GUOCUGICAI	CHIMMOGIN	COORCAGAMA	- CW-W01W01	ACCUAGGAGA	AAAGCAAAAA

Fig. 2

1990						
CAGCAGGETAG AGAGATAGGCA CAGTCTGATT AAGTATCTTA AGTATAGAAC AGGAGAGTTG	2040 GAGGATACCA	2030 TGCCGACATG	2020 TGGATTGTAG	2010 GGAAAAGGAT	2000 CTATGGAGGA	
CAGCAGGETAG AGAGATAGGCA CAGTCTGATT AAGTATCTTA AGTATAGAAC AGGAGAGTTG	2100	2090	2080	2070	2060	2050
CARCAGGTCT CTTATGTCCC TCACCACAAG GTAGGATGGG CTTGGTGAC TTGCAGTAGA 2170 2180 2190 2200 2210 2220 ATAXTATTTC CCCTAAACAA AGGAGCATGG CTAGAAGTC AAGGATATTG GAACCTAACC 2230 2240 2250 2260 2270 2280 CCAGAAAGGG GATTCTTGAG CTCCTATGCT GTAAGACTAA CATGGTATGA GAGGGAACTTT 2290 2300 2310 2320 2330 2340 TATACAGATG TAACACCTGA TGTGGCAGAC CAGCTACCGA ATGGGTCTTA TTTCTCTTGC 2350 2360 2370 2380 2390 2400 TTTTCAGCCA ATGAAGTAAG GAGGACATC AGGGGAGAAA AGATATTGC CTACTGCAAC 2410 2420 2430 2440 2450 2460 TATCCATCAG CTCACGAAGG GCAGGGACAGA AGCTTACAGT TTCTAGCCCA AGGGAACAGCA AGGATAGAGAA AGCTTACAGT GCAGAACAGAA ACCAACAACAACAGAAAAAAAAAAAAAAAAAAAAAAAA	AGGAGAGTTG	AGTATAGAAC	AAGTATCTTA	CAGTCTGATT	AGAGATGGCA	GGCAGGCTAG
ATAATATTTC CCCTAAACAA AGGAGCATGG CTAGAAGTCC AAGGATATTG GAACCTAACC 2230 2240 2250 2260 2270 2280 CCAGAAAGGG GATTCTTGAG CTCCTATGCT GTAAGACTAA CATGGTATGA GAGGAACTTT 2290 2300 2310 2320 2330 2340 TATACAGATG TAACACCTGA TGTGGCAGAC CAGCTACTGC ATGGGTCTTA TTTCTCTGC 2350 2360 2370 2380 2390 2400 TTTCAGCCA ATGAAGTAAG GAGAGCCATC AGGGGAGAAA AGATATTGC CTACTGCAAC 2410 2420 2430 2440 2450 2460 TATCCATCAG CTCACGAAGG GCAGGTACCA AGCTTACAGT TTCTGGCCT AAGGGTCGTA CAGGAAGGAA AAAATGGATC CCAGGGAGG AGTTCCACCA GGAAACAGCG ACGAAGAACA GCAAAGAAGA ACGAAGAACA GCAAAGAAGA ACGAAGAACA GGGTAGCACA GGTAGCACACA GGTAGCACACA GGTAGCACACA GGTACCCAGAGA TTATTTTCCA GGTCTGGCAG AGGTCCAC		2150 CTTGGTGGAC	2140 GTAGGATGGG	2130 TCACCACAAG		
2230 2240 2250 2260 2270 2280 CCAGAAAGGG GATTCTTGAG CTCCTATGCT GIAAGACTAA CATGGTATGA GAGGAACTTT 2290 2300 2310 2320 2330 2340 TATACAGATG TAACACCTGA TGTGGCAGAC CAGCTACTGC ATGGGTCTTA TTTCTCTGC 2350 2360 2370 AGGGGAGAAA AGATATTGT CTACTGAAC 2410 2420 2430 2440 2450 2460 TATCCATCAG CTCACGAAGG GCAGGAACCA AGCTTACAGT TTCTAGCCCT AAGGGTCGTA 2470 2480 2490 2500 2510 2520 CAGGAAGGAA AAAATGGATC CCAGGGAAGA AACAACGG ACGAACAACG ACGAAGAAACA AGTAGGAGAA GCATTCCCTT GGCTAGAACA AACAATAACA GAGCTCAACA GGGTAGCGT ACAACATTT CCCCGAGAAC TTATTTCCA GGTCTGGCA AGGTCTAGGC CATACTGGCG TGAGGAACAG GCATGTCAA TTATGCTATAC CAAATATTAGA TACTTTTGC			2200	2190		
CCAGARAGGG GATTCTTGAG CTCCTATGCT GIARGACTAA CATGGTATGA GAGGAACTTT 2290 2300 2310 2320 2330 2340 TATACAGATG TAACACCTGA TGTGGCAGAC CAGCTACTGC ATGGGTCTTA TTTCTCTTGC 2350 2360 2370 2380 2390 2400 TTTTCAGCCA ATGAGTAAG GAGAGCCATC AGGGGAGAAA AGATATTGTC CTACTGCAAC 2410 2420 2430 2440 2450 2460 TATCCATCAG CTCACGAAGG GCAGGTACCA AGCTTACACT TTCTAGCCCT AAGGGTCGTA 2470 2480 2490 2500 2510 2520 CAGGAAGGAA AAAATGGAT CCAGGGAGAG AGTGCCACCA GGAAACACCG ACGAAGAACAC 2530 2540 2550 2560 2570 2580 AGTAGGAGAA CCCCGAGAAC TTATTTTCCA GGTCTGCAA AGGTCTACAA GGTTACTGGCG TGAGGAACAG GCCCAGAGAAC TTAGCTATAC CAAAATATACAAAAAAAAAAAAAAAAAAAAAAAAAAAA	GAACCTAACC	AAGGATATTG	CTAGAAGTCC	AGGAGCATGG	CCCTAAACAA	ATAATATTTC
TATACAGATG TAACACCTGA TGTGGCAGAC CAGCTACTGC ATGGGTCTTA TTTCTCTTGC 2350 2360 2370 2380 2390 2400 TTTTCAGCCA ATGAAGTAAG GAGAGCCATC AGGGGAGAAA AGATATTGTC CTACTGCAAC 2410 2420 2430 2440 2450 2460 TATCCATCAG CTCACGAAGG GCAGGTACCA AGCTTACAGT TTCTAGCCCT AAGGGTCGTA 2470 2480 2490 2500 2510 2520 CAGGAAGGAA AAAATGGATC CCAGGGAGGA AGTGCCACCA GGAAACAGCG ACGAAGAAAC 2530 2540 2550 2560 2570 2580 AGTAGGAGAA GCATTCGCTT GGCTAGAAAG AACAATAACA GGGTAGCGGT 2590 2600 2610 2620 2630 2640 CAACCATTG CCCCGAGAAC TTATTTCCA GGTCTGGCAG AGGTCTGGCG CATACTGGCG 2650 2660 2670 2680 2690 2700 TGAGGAACAG <						
2350 2360 2370 2380 2390 2400 TTTTCAGCCA ATGAAGTAAG GAGAGCCATC AGGGGAGAAA AGATATTGTC CTACTGCAAC 2410 2420 2430 2440 2450 2460 TATCCATCAG CTCACGAAGG GCAGGTACCA AGCTTACAGT TTCTAGCCCT AAGGGTCGTA 2470 2480 2490 2500 2510 2520 CAGGAAGGAA AAAATGGATC CCAGGGAGGA AGTGCCACCA GGAAACAGCG ACGAAGAAAC 2530 2540 2550 2560 2570 2580 AGTAGGAGAA GCATTCGCTT GGCTAGAAG AACAATAACA GAGCTCAACA GGGTAGCGGT 2590 2600 2610 2620 2630 2640 CAACCATTTG CCCCGAGAAC TTATTTCCA GGTTCGCAG AGGTCTAGC CATACTGGCG 2650 2660 2670 2680 2680 2690 2700 TGAGGAACAG GGCATGTCAA TTAGCTATAC CAAATATAGA TACTTGTTGC TAATGCAGAA 2710 2720 2730 2740 2750 2760 AGCAATGTTT GTGCACTATA CAAAGGGCTG TAGGTGCCTG CAGGAGGGCC ATGGGCCAGG 2650 2770 2780 2790 2800 2810 2820 GGGATNGAGA TCAGGACCTC CTCCTCCTC TCCCCCAGGC CTGGCCTAAT GGCAGAAGCA 2830 2640 2650 2660 2870 2800 2810 2820 GGGATNGAGA TCCGGGAGAC TCCCTCCTCC TCCCCCAGGC CTGGCCTAAT GGCAGAAGCA 2650 2770 2780 2790 2800 2810 2820 GGGATNGAGA TCAGGGACCTC CTCCTCCTC TCCCCCAGGC CTGGCCTAAT GGCAGAAGCA 2650 2770 2780 2790 2800 2810 2820 GGGATNGAGA TCCGGGAGAAC CTCCTCCTCC TCCCCCAGGC CTGGCCTAAT GGCAGAAGCA 2650 2770 2780 2790 2800 2810 2820 GGGATNGAGA TCCGTCCAGA GAACGAGAAC CCACAAAGAG AACCGTGGA AGAGTGGATA 2650 2950 2960 2970 2980 2990 3000 ACTGCGCTTG GTAACTTTAT CTACAGTAGG CATGGAGATA CCCTTGCAGG AGCAGGAGA 27950 2960 2970 2980 2990 3000 ACTGCGCTTG GTAACTTTAT CTACAGTAGG CATGGAGATA CCCTTGCAGG AGCAGGAGAG 2700 3020 3030 3040 3050 3060 CTCATTAAAA TCCTCCAACG AGCNCTCTC CTCCCCTTCC CTCCCTTCCACTC CTCCACTTCA GAGCCGGTTG TCAACACTCA						
TTTTCAGCCA ATGAAGTAAG GAGAGCCATC AGGGGAGAAA AGATATTGTC CTACTGCAAC 2410 2420 2430 2440 2450 2460 TATCCATCAG CTCACGAAGG GCAGGTACCA AGCTTACAGT TTCTAGCCCT AAGGGTCGTA 2470 2480 2490 2500 2510 2520 CAGGAAGAA AAAATGGATC CCAGGGAGAG AGTGCCACCA GGAAACAGCG ACGAAGAACA 2530 2540 2550 2560 2570 2580 AGTAGGAGAA GCATTCGCTT GGCTAGAAAG AACAATAACA GAGCTCAACA GGGTAGCGGT AGCAACATTG CCCCGAGAAC TTATTTTCCA GGTCTGCAG AGGTCTTGGG CATACTGGCG TGAGGAACAG GGCATGTCAA TTAGCTATAC CAAATATAGA TACTTGTTGC TAATGCAGAA AGCAATGTTT GTCGCACTATA CAAAGGGCTG TAGGTGCCTG CAGGAGGGCC ATGGGCCAGG 2770 2780 2790 2800 2810 2820 GGGATNGAGA TCCCCCAGGA CACCCCAGGC CTGGCCTAAT <td< td=""><td></td><td></td><td></td><td></td><td>TAACACCTGA</td><td>TATACAGATG</td></td<>					TAACACCTGA	TATACAGATG
TATCCATCAG CTCACGAAGG GCAGGTACCA ASCTTACAGT TTCTAGCCCT AAGGGTCGTA 2470 2480 2490 2500 2510 2520 CAGGAAGGAA AAAATGGATC CCAGGGAGAG AGTGCCACCA GGAAACAGCG ACGAAGAAC AGTAGGAGAA GCATTCGCTT GGCTAGAAAG AACAATAACA GAGCTCAACA GGGTAGCGGT AGTAGGAGAA GCATTCGCTT GGCTAGAAAG AACAATAACA GAGCTCAACA GGGTAGCGGT 2590 2600 2610 2620 2630 2640 CAACCATTG CCCCGAGAAC TTATTTTCCA GGTCTGGCA AGGTCTTGGG CATACTGGCG 2650 2660 2670 2680 2690 2700 TGAGGAACAG GGCATGTCAA TTAGCTATAC CAAATATAGA TACTTGTTGC TAATGCAGAA 2710 2720 2730 2740 2750 2760 AGCAATGTTT CTACAGAGAGA TCCCCCCAGGC CTGGCCTAAT GGCAGAAAGAA GCCCCAGAGA TCCCTCCAGA 2850 2800 2810 2850 </td <td>2400 CTACTGCAAC</td> <td>2390 AGATATTGTC</td> <td>2380 AGGGGAGAAA</td> <td>2370 GAGAGCCATC</td> <td>2360 ATGAAGTAAG</td> <td></td>	2400 CTACTGCAAC	2390 AGATATTGTC	2380 AGGGGAGAAA	2370 GAGAGCCATC	2360 ATGAAGTAAG	
TATCCATCAG CTCACGAAGG GCAGGTACCA ASCTTACAGT TTCTAGCCCT AAGGGTCGTA 2470 2480 2490 2500 2510 2520 CAGGAAGGAA AAAATGGATC CCAGGGAGAG AGTGCCACCA GGAAACAGCG ACGAAGAAC AGTAGGAGAA GCATTCGCTT GGCTAGAAAG AACAATAACA GAGCTCAACA GGGTAGCGGT AGTAGGAGAA GCATTCGCTT GGCTAGAAAG AACAATAACA GAGCTCAACA GGGTAGCGGT 2590 2600 2610 2620 2630 2640 CAACCATTG CCCCGAGAAC TTATTTTCCA GGTCTGGCA AGGTCTTGGG CATACTGGCG 2650 2660 2670 2680 2690 2700 TGAGGAACAG GGCATGTCAA TTAGCTATAC CAAATATAGA TACTTGTTGC TAATGCAGAA 2710 2720 2730 2740 2750 2760 AGCAATGTTT CTACAGAGAGA TCCCCCCAGGC CTGGCCTAAT GGCAGAAAGAA GCCCCAGAGA TCCCTCCAGA 2850 2800 2810 2850 </td <td>2460</td> <td>2450</td> <td>2440</td> <td>2430</td> <td>2420</td> <td>2410</td>	2460	2450	2440	2430	2420	2410
CAGGAAGGAA AAAATGGATC CCAGGGAGAG AGTGCCACCA GGAAACAGCG ACGAAGAAAC 2530 2540 2550 2560 2570 2580 AGTAGGAGAA GCATTCGCTT GGCTAGAAAG AACAATAACA GAGCTCAACA GGGTAGCGGT 2590 2600 2610 2620 2630 2640 CAACCATTG CCCCGAGAAC TTATTTCCA GGTCTGGCAG AGGTCTTGGG CATACTGGCG 2650 2660 2670 2680 2690 2700 TGAGGAACAG GGCATGTCAA TTAGCTATAC CAAATTATAGA TACTTGTTGC TAATGCAGAA 2710 2720 2730 2740 2750 2760 AGCAATGTTT GTGCACTATA CAAAAGGGCTG TAGGTGCCTG CAGGAGGGCC ATGGGCCAGG 2770 2780 2790 2800 2810 2820 GGGATNGAGA TCCCTCCAGA CTCCTCCTCC TCCCCCAGGC CTGGCCTAAT GGCAGAAAGA GCCCCAGAGA TCCCTCCAGA GAACGAGAAC CCACALAAGAA AACCGTGGGA AGGTT						
2530 2540 2550 2560 2570 2580 AGTAGGAGAA GCATTCGCTT GGCTAGAAAG AACAATAACA GAGCTCAACA GGGTAGCGGT 2590 2600 2610 2620 2630 2640 CAACCATTTG CCCCGAGAAC TTATTTTCCA GGTCTGGCAG AGGTCTTGGG CATACTGGCG 2650 2660 2670 2680 2690 2700 TGAGGAACAG GGCATGTCAA TTAGCTATAC CAAATATAGA TACTTGTTGC TAATGCAGAA 2710 2720 2730 2740 2750 2760 AGCAATGTTT GTGCACTATA CAAAGGGCTG TAGGTCCTG CAGGAGGGCC ATGGGCCAGG 2770 2780 2790 2800 2810 2820 GGGATNGAGA TCAGGACCTC CTCCTCCTCC TCCCCCAGGC CTGGCCTAAT GGCAGAAGCA 2830 2840 2850 2860 2870 2860 GCCCCAGAGA TCCCTCCAGA GAACGAGAAC CCACAAAGAG AACCGTGGGA AGAGTGGATA 2890 2900 2910 2920 2920 2930 2940 GGGGAGATCC TGGAGGAAAT AAAGCAAGAA GCCTTAAAGA ATTTTGATCC TCGCTTGCTA 2950 2960 2970 2980 2990 ACTGCGCTG ATTTTGATCC TCGCTTGCTA 2950 2960 2970 2980 2990 3000 ACTGCGCTTG GTAACTTTAT CTACAGTAGG CATGGAGATA CCCTTGCAGG AGCAGGAGAG 3010 3020 3030 3040 3050 3060 CTCATTAAAAA TCCTCCAACG AGCNCTCTTC CTCCACTTCA GAGCCGGTTG TCAACACTCA 3070 3080 3090 3100 3110 3120						
AGTAGGAGAA GCATTCGCTT GGCTAGAAAG AACAATAACA GAGCTCAACA GGGTAGCGGT 2590 2600 2610 2620 2630 2640 CAACCATTTG CCCCGAGAAC TTATTTTCCA GGTCTGGCAG AGGTCTTGGG CATACTGGCG 2650 2660 2670 2680 2690 2700 TGAGGAACAG GGCATGTCAA TTAGCTATAC CAAATATAGA TACTTGTTGC TAATGCAGAA 2710 2720 2730 2740 2750 2760 AGCAATGTTT GTGCACTATA CAAAGGGCTG TAGGTGCCTG CAGGAGGGCC ATGGGCCAGG 2770 2780 2790 2800 2810 2820 GGGATNGAGA TCAGGACCTC CTCCTCCTCC TCCCCCAGGC CTGGCCTAAT GGCAGAAGCA 2830 2840 2850 2860 2870 2860 GCCCCAGAGA TCCCTCCAGA GAACGAGAAC CCACAAAGAA AACCGTGGGA AGAGTGGATA 2890 2900 2910 2920 2930 2940	ACGAAGAAAC	GGAAACAGCG	AGTGCCACCA	CCAGGGAGAG	AAAATGGATC	CAGGAAGGAA
2590 2600 2610 2620 2630 2640 CAACCATTTG CCCCGAGAAC TTATTTTCCA GGTCTGGCAG AGGTCTTGGG CATACTGGCG 2650 2660 2670 2680 2690 2700 TGAGGAACAG GGCATGTCAA TTAGCTATAC CAAATATAGA TACTTGTTGC TAATGCAGAA 2710 2720 2730 2740 2750 2760 AGCAATGTTT GTGCACTATA CAAAGGGCTG TAGGTGCCTG CAGGAGGGCC ATGGGCCAGG 2770 2780 2790 2800 2810 2820 GGGATNGAGA TCAGGACCTC CTCCTCCTCC TCCCCCAGGC CTGGCCTAAT GGCAGAAGCA 2830 2640 2850 2660 2870 2860 GCCCCAGAGA TCCCTCCAGA GAACGAGAAC CCACAAAGAG AACCGTGGGA AGAGTGGATA 2890 2900 2910 2920 2930 2940 GGGGAGATCC TGGAGGAAAT AAAGCAAGAA GCCTTAAAGA ATTTTGATCC TCGCTTGCTA 2950 2960 2970 2960 2970 2960 2990 3000 ACTGCGCTTG GTAACTTTAT CTACAGTAGG CATGGAGATA CCCTTGCAGG AGCAGGAGAG						
CAACCATTTG CCCCGAGAAC TTATTTCCA GGTCTGGCAG AGGTCTTGGG CATACTGGCG 2650 2660 2670 2680 2690 2700 TGAGGAACAG GGCATGTCAA TTAGCTATAC CAAATATAGA TACTTGTTGC TAATGCAGAA 2710 2720 2730 2740 2750 2760 AGCAATGTTT GTGCACTATA CAAAGGGCTG TAGGTGCCTG CAGGAGGGCC ATGGGCCAGG 2770 2780 2790 2800 2810 2820 GGGATNGAGA TCAGGACCTC CTCCTCCTCC TCCCCCAGGC CTGGCCTAAT GGCAGAAGCA 2830 2840 2850 2860 2870 2880 GCCCCAGAGA TCCCTCCAGA GAACGAGAAC CCACAAAGAG AACCGTGGAA AGAGTGGATA 2890 2900 2910 2920 2930 2940 GGGGGAGATCC TGGAGGAAAT AAAGCAAGAA GCCTTAAAGC ATTTTGATCC TCGCTTGCTA 2950 2960 2970 2980 2990 3000 ACTGCGCTTG GTAACTTTAT CTACAGTAGG CATGGAGATA CCCTTGCAGG AGCAGGAGAG CTCATTAAAAA TCCTCCAACG AGCNCTCTTC CTCCACTTCA GAGCCGGTTG TCAACACTCA 3070 3080 3090 3100 3110 3120	GGGTAGCGGT	GAGCTCAACA	ARCARTARCA	GGCTAGAAAG	GCATTCGCTT	AGTAGGAGAA
TGAGGAACAG GGCATGTCAA TTAGCTATAC CAAATATAGA TACTTGTTGC TAATGCAGAA 2710 2720 2730 2740 2750 2760 AGCAATGTTT GTGCACTATA CAAAGGGCTG TAGGTGCCTG CAGGAGGGCC ATGGGCCAGG 2770 2780 2790 2800 2810 2820 GGGATNGAGA TCAGGACCTC CTCCTCCTCC TCCCCCAGGC CTGGCCTAAT GGCAGAAGCA 2830 2840 2850 2860 2870 2860 GCCCCAGAGA TCCCTCCAGA GAACGAGAAC CCACAAAGAG AACCGTGGGA AGAGTGGATA 2890 2900 2910 2920 2930 2940 GGGGAGATCC TGGAGGAAAT AAAGCAAGAA GCCTTAAAGC ATTTTGATCC TCGCTTGCTA 2950 2960 2970 2980 2990 3000 ACTGCGCTTG GTAACTTTAT CTACAGTAGG CATGGAGATA CCCTTGCAGG AGCAGGAGAG - 3010 3020 3030 3040 3050 3060 CTCATTAAAAA TCCTCCAACG AGCNCTCTTC CTCCACTTCA GAGCCGGTTG TCAACACTCA 3070 3080 3090 3100 3110 3120						
2710 2720 2730 2740 2750 2760 AGCAATGTTT GTGCACTATA CAAAGGGCTG TAGGTGCCTG CAGGAGGGCC ATGGGCCAGG 2770 2780 2790 2800 2810 2820 GGGATNGAGA TCAGGACCTC CTCCTCCTCC TCCCCCAGGC CTGGCCTAAT GGCAGAAGCA 2830 2840 2850 2860 2870 2860 GCCCCAGAGA TCCCTCCAGA GAACGAGAAC CCACAAAGAG AACCGTGGGA AGAGTGGATA 2890 2900 2910 2920 2930 2940 GGGGAGATCC TGGAGGAAAT AAAGCAAGAA GCCTTAAAGC ATTTTGATCC TCGCTTGCTA 2950 2960 2970 2980 2990 3000 ACTGCGCTTG GTAACTTTAT CTACAGTAGG CATGGAGATA CCCTTGCAGG AGCAGGAGAG - 3010 3020 3030 3040 3050 3060 CTCATTAAAAA TCCTCCAACG AGCNCTCTTC CTCCACTTCA GAGCCGGTTG TCAACACTCA 3070 3080 3090 3100 3110 3120						
AGCAATGTTT GTGCACTATA CAAAGGGCTG TAGGTGCCTG CAGGAGGGCC ATGGGCCAGG 2770 2780 2790 2800 2810 2820 GGGATNGAGA TCAGGACCTC CTCCTCCTCC TCCCCCAGGC CTGGCCTAAT GGCAGAAGCA 2830 2840 2850 2860 2870 2860 GCCCCAGAGA TCCCTCCAGA GAACGAGAAC CCACAAAGAG AACCGTGGGA AGAGTGGATA 2890 2900 2910 2920 2930 2940 GGGGAGATCC TGGAGGAAAT AAAGCAAGAA GCCTTAAAGC ATTTTGATCC TCGCTTGCTA 2950 2960 2970 2960 2990 3000 ACTGCGCTTG GTAACTTTAT CTACAGTAGG CATGGAGATA CCCTTGCAGG AGCAGGAGAG - 3010 3020 3030 3040 3050 3060 CTCATTAAAA TCCTCCAACG AGCNCTCTTC CTCCACTTCA GAGCCGGTTG TCAACACTCA	TAATGCAGAA	TACTTGTTGC	CAAATATAGA	TTAGCTATAC	GGCATGTCAA	TGAGGAACAG
GGGATNGAGA TCAGGACCTC CTCCTCCTCC TCCCCCAGGC CTGGCCTAAT GGCAGAAGCA 2830 2840 2850 2860 2870 2860 GCCCCAGAGA TCCCTCCAGA GAACGAGAAC CCACAAAGAG AACCGTGGGA AGAGTGGATA 2890 2900 2910 2920 2930 2940 GGGGAGATCC TGGAGGAAAT AAAGCAAGAA GCCTTAAAGC ATTTTGATCC TCGCTTGCTA 2950 2960 2970 2980 2990 3000 ACTGCGCTTG GTAACTTTAT CTACAGTAGG CATGGAGATA CCCTTGCAGG AGCAGGAGAG - 3010 3020 3030 3040 3050 3060 CTCATTAAAAA TCCTCCAACG AGCNCTCTTC CTCCACTTCA GAGCCGGTTG TCAACACTCA	_					
2830 2840 2850 2860 2870 2880 GCCCCAGAGA TCCCTCCAGA GAACGAGAAC CCACAAAGAG AACCGTGGGA AGAGTGGATA 2890 2900 2910 2920 2930 2940 GGGGGAGATCC TGGAGGAAAT AAAGCAAGAA GCCTTAAAGC ATTTTGATCC TCGCTTGCTA 2950 2960 2970 2980 2990 3000 ACTGCGCTTG GTAACTTTAT CTACAGTAGG CATGGAGATA CCCTTGCAGG AGCAGGAGAG - 3010 3020 3030 3040 3050 3060 CTCATTAAAAA TCCTCCAACG AGCNCTCTTC CTCCACTTCA GAGCCGGTTG TCAACACTCA 3070 3080 3090 3100 3110 3120	2820	2810	2800	2790	2780	2770
GCCCCAGAGA TCCCTCCAGA GAACGAGAAC CCACAAAGAG AACCGTGGGA AGAGTGGATA 2890 2900 2910 2920 2930 2940 GGGGAGATCC TGGAGGAAAT AAAGCAAAGAA GCCTTAAAGC ATTTTGATCC TCGCTTGCTA 2950 2960 2970 2960 2990 3000 ACTGCGCTTG GTAACTTTAT CTACAGTAGG CATGGAGATA CCCTTGCAGG AGCAGGAGAG 3010 3020 3030 3040 3050 3060 CTCATTAAAA TCCTCCAACG AGCNCTCTTC CTCCACTTCA GAGCCGGTTG TCAACACTCA 3070 3080 3090 3100 3110 3120	GGCAGAAGCA	CTGGCCTAAT	TCCCCCAGGC	CTCCTCCTCC	TCAGGACCTC	GGGATNGAGA
GGGGAGATCC TGGAGGAAAT AAAGCAAGAA GCCTTAAAGC ATTTTGATCC TCGCTTGCTA 2950 2960 2970 2980 2990 3000 ACTGCGCTTG GTAACTTTAT CTACAGTAGG CATGGAGATA CCCTTGCAGG AGCAGGAGAG 3010 3020 3030 3040 3050 3060 CTCATTAAAA TCCTCCAACG AGCNCTCTTC CTCCACTTCA GAGCCGGTTG TCAACACTCA 3070 3080 3090 3100 3110 3120	2880 AGAGTGGATA					
GGGGAGATCC TGGAGGAAAT AAAGCAAGAA GCCTTAAAGC ATTTTGATCC TCGCTTGCTA 2950 2960 2970 2980 2990 3000 ACTGCGCTTG GTAACTTTAT CTACAGTAGG CATGGAGATA CCCTTGCAGG AGCAGGAGAG 3010 3020 3030 3040 3050 3060 CTCATTAAAA TCCTCCAACG AGCNCTCTTC CTCCACTTCA GAGCCGGTTG TCAACACTCA 3070 3080 3090 3100 3110 3120	2940	2930	2920	2910	2900	2890
ACTGCGCTTG GTAACTTTAT CTACAGTAGG CATGGAGATA CCCTTGCAGG AGCAGGAGAG 3010 3020 3030 3040 3050 3060 CTCATTAAAA TCCTCCAACG AGCNCTCTTC CTCCACTTCA GAGCCGGTTG TCAACACTCA 3070 3080 3090 3100 3110 3120					TGGAGGAAAT	GGGGAGATCC
CTCATTAAAA TCCTCCAACG AGCNCTCTTC CTCCACTTCA GAGCCGGTTG TCAACACTCA 3070 3080 3090 3100 3110 3120						
CTCATTAAAA TCCTCCAACG AGCNCTCTTC CTCCACTTCA GAGCCGGTTG TCAACACTCA 3070 3080 3090 3100 3110 3120						
						CTCATTAAAA

Fig. 2

3130	3140	3150	3160	3170 CAGCTTTGTT	3180
CGATAATACA	TGCTACTGTA	AGAAATGCTG	CTACCATTGC	CAGCTTTGTT	TTCTTAAAAA
2130	3200	3210	3220	3230	3240
				GCAAAAAGAG	
3250	3260	3270	3280	3290	3300
TGCACCTTCT	GCACCAGACA	AGTGAGTATG	GCATATTTTA	GCAGCCGCCT	GCCTATTGCG
3310	3320	3330	3340	3350	3360
CTCCTGCTTA	TAGGTATCAG	TGGGTTTGTA	TGTAAACAAT	ATGTTACTGT	CTTCTATGGC
3370	3350	7200	2422	3410	
ATACCCGCAT	GG1GG11CGC	3350	3400	CAACCACAAA	3420
3430	3440	3450	3460	3470	3480
TGGGGAACTG	TACAGTGTCT	CCCAGACAAT	GGTGACTACA	CTGAGATCAG	GCTAAACATA
3490	3500	3510	3520	3530	3540
ACAGAGGCTT	TTGATGCATG	GGATAATACA	GTGACACAAC	AGGCAGTAGA	TGATGTGTGG
3550	7560	2570	2500	3590	
	PARCCECCA	3370	358U	CCCCACTGTG	3600
		MONCCATO!	GICAMACIAA	CCCCACIGIG	TGTGGCAATG
3610	3620	3630	3640	3650	3660
AACTGTAGTA	AAACCGAAAC	AAACCCAGGG	AATGCCAGTA	GTACTACCAC	CACTAAGCCT
3670	3580	3690	3700	3710	. 3720
ACTACCACCT	CTCGTGGGCT	GAAAACGATT	AACGAAACAG	ACCCATGCAT	AAAAAATGAC
3730	3740	3750	3760	3770	3780
AGCTGCACAG	GACTAGGAGA	AGAGGAAATA	ATGCAATGTA	ATTTTAGTAT	GACGGGACTA
3790	3800	3810	3820	3830	3840
AGAAGAGATG	AGCTAAAACA	ATATAAAGAC	ACCTGGTACT	CAGAAGATTT	AGAGTGTAAT
3050	2060				
3050	ACTAATACCA	O / B C	3880	3890 GCAACACAAC	3900
AMINCONGEN	NOIMMINCCA	CAGIGCIAI	ATAMGEMOCT.	GCAACACAAC	AATTATCCAA
3910	3920	3930	3940	3950	3960
GAGTCATGTG	ACAAACATTA	TTGGGACAGC	TTAAGGTTTA	GGTATTGTGC	TCCCCCGGGG
3970	3980	3990	4000	4010	4020
TTTTTTCTAC	TAAGATGTAA	TGATACCAAC	TATTCAGGCT	TCATGCCCAA	CTGCAGTAAG
4030	4040	1050	4060	4070	
GTAGTAGCGT	CCTCCTGCAC	OCOP OTGOTESSEE	0000	CCTCTACATG	4060
4090	4100	4110	4120	4130	4140
AATGGTACAA	GGGCAGAGAA	CAGGACATAT	ATATATTGGC	ATGAAAAAGA	CAATAGGACC
4 150	4160 ************************************	4170	4180	4190	4200
				GTAAGAGGCC	
4210	4220	4230	4240	4250	1260
ACGGTTGTAC	CAATAAGAAC	CGTGTCAGGA	CIACITITICS	ATTCACAGCC	TATCALTALG

Fig. 2

AGACCCAGAC AAGCTTGGTG CTGGTTTAAG GGAAACTGGA CAGAAGCCAT AAAGGAGGTG

4330 4340 4350 4360 4370 4360
AAAAAGGACCA TCATAAAACA TCCCAGGTAT AAAGGAGGTG CAAAAAATAT CACAAGCGTA

4390 4400 4410
AAGTTAGTAT CAGAACATGG AAAAGGTTCA GATC

Fig. 3

Sequence homology of HIV- $2_{
m D205,7}$ compared to the HIV/SIV group (gene level; nt / aa)

HIV-2	HIV-2 _D 205,7						
geno	position	HIV-2 _{ROD}	HIV-2NIHZ	111V-2D194	SIVMAC	SIVAGM	ніу-1вя
GeG	720-1826	80.5 / 85.6					
gag	1860-2114	83.1 / 77.6					
pod	1859-2510	80.2 / 72.5					
lod	2877-4948	78.3 / 83.5					
protease	2084-2381	84.0 / 81.0	83.0 / 84.8	84.8 / 86.8	76.3 / 83.8	57.8 / 47.1	60.4 / 48.5
vii.	4869-5516	72.0 / 68.5	6.79 / 6.07	72.4 / 66.5	71.8 / 60.6	53.8 / 34.7	47.9 / 33.0
xdx	5344-5682	76.1 / 74.1	73.5 / 68.1	0.77 / 0.67	75.2 / 77.0	50.8 / 34.7	
vpr	5682-5999	78.8 / 69.8	77.7 / 69.8	74.2 / 59.4	78.3 / 76.4	•	51.9 / 47.3
talex1	5845-6140	78.4 / 66.3	79.1 / 68.4	74.7 / 63.3	81.1 / 66.3	33.1 / 38.1	33.6 / 34.0
revex1	6071-6140	67.1 / 61.9	6.09 / 9.89	67.1 / 52.2	0.09 / C.07	45.5 / 28.6	38.2 / 40.4
neí	8557-9255	72.1 / 69.5					
env	6147-7293	0 / 9 / 0.0 /					

Flg. 4

Nucleotide sequence comparison of HIV- $2_{\rm D205}$ with HIV and SIV strains (in % homology)

HIV-2 _{D205}						·
position	HIV-2ROD	HIV-2ROD HIV-2NIHZ HIV-2D194 SIVMAC	HIV-2 _{D194}	SIVMAC	1	SIVAGM HIV-1BRU
8942-9255	71.6	77.0	68.8	66.4	26.3	54.7
718-1825	80.5	80.8	80.3	79.1	65.1	63.8
1859-2510	80.2	74.6	75.0	78.8	55.6	56.9
2877-7293	75.1	74.8	75.4	74.0	58.0	54.6
Total	75.9	75.9	75.9	75.0	58.9	56.4

	DOCUMENTS CONS	DERED TO BE RELEVAN	T	
Category	Citation of document with of relevant p	ndication, where appropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.4)
A	PA US pages 1522 - 1525 EVANS ET AL. 'Chara	strain with unusual	1-25	C12N15/49 C12N7/00 C07K14/155 G01N33/569 A61K39/21 A61K39/395 C12N5/10
A	AIDS RESEARCH AND I vol.3, no.1, Januar pages 3 - 10 ALBERT ET AL. 'A no isolate of West Afr and its rlationship HTLV-IIIB' * page 4, last para	ry 1987 ew human retrovirus rican origin (SBL-6669) o to HTLV-IV, LAV-II and	1-25	
A,D	NATURE., vol.326, 16 April : pages 662 - 669 GUYADER ET AL. 'Ger transactivation of immunodeficiency v * the whole document	nome organisation and the human irus type 2'	1-25	TECHNICAL FIELDS SEARCHED (ID.CL4) C12N C07K A61K
P,X	SCIENCES OF USA., vol.86, April 1989, pages 2338 - 2387 KÜHNEL ET AL. 'Mole	ecular cloning of two immunodeficiency virus it replicate well	1-25	
	The present search report has b	<u> </u>		
	Place of search THE HAGUE	Date of completion of the search 17 February 1995	Cun	ido, M
X : part Y : part noce A : tech O : non	CATEGORY OF CITED DOCUME incularly relevant if taken alone totalarly relevant if combined with an unent of the same category nological background written discourse remediate document	NTS T: theory or princip E: earlier patent do after the filing d	ele underlying the current, but publiste in the application for other reasons	invention isbed on, or