Микроэкономика-І

Павел Андреянов, PhD 19 января 2024 г.

План

План

- Бюджетное множество (МЛ)
- Классическая оптимизация с БМ
- Метод множителей лагранжа (ММЛ)
- Две интерпретации ММЛ
- Примеры

Бюджетное ограничение

Бюджетное ограничение

Наиболее часто в нашем курсе будет встречаться классическое (линейное) бюджетное ограничение:

$$B(x,y) = px + qy - W \leqslant 0$$

где $p,q\geqslant 0$ - это цены товаров, а $W\geqslant 0$ - это бюджет.

Для экспозиции я все показываю в пространстве (портфелей) товаров \mathbb{R}^2_+ , но ничего не мешает вам обобщить это в \mathbb{R}^n_+ .

Еще я буду иногда обозначать само бюджетное множество как

$$B(p,q,W) = \{x,y \in \mathbb{R}^2_+ | px + qy \leqslant W\},$$

аргументы функции могут меняться в зависимости от контекста (x, y) или p, q, W.

Бюджетное ограничение (2d)

Бюджетное ограничение (3d)

Бюджетное ограничение

Пусть
$$n=2$$

Откуда берутся координаты концов треугольника?

- Пересечение px + qy = W с x = 0 дает y = W/q
- Пересечение px + qy = W с y = 0 дает x = W/p

Попробуйте представить себе как деформируется бюджетное множество при изменении параметров p,q,W.

Бюджетное множество

Обычно, значения цен и бюджетов: $p, q, W \geqslant 0$.

Вопрос: при каких значениях p, q, W бюджетное множество компактно? Непусто?

Что это значит в контексте Теоремы Вейерштрасса?

Бюджетное множество

Бюджетное множество «монотонно растет» по p,q,W.

- ullet Если p' < p то $B(p,q,W) \subset B(p',q,W)$,
- ullet Если W < W' то $B(p,q,W) \subset B(p,q,W').$

Изменение цены выглядит как «вращение» бюджетного множества вокруг точки, а изменение бюджета как «отодвигание» бюджетной линии.

Отсюда, в частности, следует что полезность в оптимуме не может упасть при увеличении бюджета или уменьшении любой из цен, ведь потребитель может всегда может достигнуть, как минимум, старого уровня полезности.

Бюджетное ограничение

В этом курсе мы будем зачастую нормализовать параметры p, q, W одним из следующих способов:

- ullet прибить последнюю цену к единице: q=1
- прибить бюджет к единице: W=1
- прибить цены к симплексу: p + q = 1

Симплекс здесь - переход к безразмерным величинам:

$$p, q, W \rightarrow \frac{p}{p+q}, \frac{q}{p+q}, \frac{W}{p+q}$$

за счет деления всех денежных параметров на константу.

Метод Лагранжа

Метод Лагранжа

Джозеф-Луи Лагранж (Giuseppe Luigi Lagrangia) итальяно-французский математик второй половины 18 века. Работал над основами теоретической механики, в процессе разработав вариационный анализ, а также популяризовав (уже известный до него) так называемый метод множителей Лагранжа.

Метод Лагранжа

Запишем нашу оптимизационную задачу в следующем виде:

$$U(x,y) \to \max_{(x,y) \in \mathbb{R}^2_+} \quad s.t. \quad B(x,y) \leqslant 0$$

Тогда Лагранжиан принимает вид:

$$\mathcal{L}(x,y|\lambda) = U(x,y) - \lambda B(x,y)$$

Знак перед множителем Лагранжа важен в доказательствах, но на практике не играет роли и можно ставить любой.

Традиция такова, что λW должен войти с плюсом, так чтобы частная производная по бюджету была равна множителю $\lambda.$

Метод Множителей Лагранжа

Далее алгоритм предписывает найти седловую точку Лагранжиана в пространстве (x, y, λ) :

$$\mathcal{L}'_{x}=0, \quad \mathcal{L}'_{y}=0, \quad \mathcal{L}'_{\lambda}=0.$$

Это система из трех уравнений с тремя неизвестными.

Таким образом, задача условной оптимизации сводится к безусловной.

Однако не совсем понятно, почему метод Лагранжа вообще работает.

Выпуклая интерпретация ММЛ

Выпуклая интерпретация ММЛ

Если Лагранжиан (квази-)вогнутый по товарам x, y то можно применить так называемую сильную дуальность или сильный принцип Лагранжа.

Сам Лагранж к этому отношения не имеет, эти идеи были разработаны гораздо позже, в 20 веке.

Фон Нейман

Джон фон Нейман (John von Neumann) венгро-американский математик первой половины 20 века. Работал над многочисленными областями математики и физики, в том числе интерпретацией Лагранжевой дуальности при помощи теории игр и ядерной программой США.

Выпуклая интерпретация ММЛ

$$\min_{\lambda\geqslant 0}\max_{x(\lambda),y(\lambda)\geqslant 0}\mathcal{L}(x,y|\lambda)=\max_{x,y\geqslant 0}\min_{\lambda(x,y)\geqslant 0}\mathcal{L}(x,y|\lambda)$$

Справа стоит негладкая задача, эквивалентная условной оптимизации (нарисую на доске).

Первым ходит потребитель, он выбирает (x,y). Лагранж отвечает ему множителем так чтобы сделать похуже, а именно, $\lambda(x,y)=\infty$ если B(x,y)>0, и $\lambda(x,y)=0$ если $B(x,y)\leqslant 0$.

Потребитель удерживается в ограничении, при этом максимизируя оригинальную полезность $\mathcal{L}(x,y|0) = U(x,y)$.

Выпуклая интерпретация ММЛ

$$\min_{\lambda\geqslant 0}\max_{x(\lambda),y(\lambda)\geqslant 0}\mathcal{L}(x,y|\lambda)=\max_{x,y\geqslant 0}\min_{\lambda(x,y)\geqslant 0}\mathcal{L}(x,y|\lambda)$$

Слева стоит гладкая задача, у которой есть одна критическая точка типа «седло», а значит его можно найти обыкновенными условиями первого порядка:

$$\nabla_{(x,y)}\mathcal{L}=0, \quad \nabla_{\lambda}\mathcal{L}=0.$$

В выпуклом случае (квазивогнутая полезность + выпуклое ограничение) координаты решения двух задач, а также значение целевой функции совпадают, это называется теоремой о Минимаксе, или сильной (Лагранжевой) дуальностью.

Невыпуклая интерпретация

ММЛ

Условия Каруш-Кун-Такера и Фриц-Джона

Вильям Каруш, Харольд Кун и Альберт Такер это три разных американских математика, которым приписывают разработку необходимых и достаточных условий в задачах оптимизации с ограничениями. Историки математики также отметят незаслуженно забытого Фриц Джона (!!!это один человек!!), работа которого очень близка по духу к ККТ.

William Karush, circa 1987

Fritz John at NYU, circa 1987

Harold Kuhn and Albert Tucker, 1980 at von Neumann Prize presentation

Невыпуклая интерпретация ММЛ

Основная идея такова, что градиент целевой функции и градиент активного ограничения должны быть параллельны друг другу:

$$\nabla_{(x,y)}U - \lambda\nabla_{(x,y)}B = 0$$

Это называется необходимыми условиями первого порядка, или сокращенно **УПП** (в англ. **FOC**).

Удивительным образом это совпадает с поиском седловой точки Лагранжиана.

Невыпуклая интерпретация ММЛ

Далее надо сделать еще один шаг и проверить достаточные условия второго порядка, или сокращенно УВП (в англ. SOC):

$$\nabla_{(x,y)}^2 U - \lambda \nabla_{(x,y)}^2 B \leqslant 0$$

на касательном к ограничении пространстве.

Еще более удивительным образом это совпадает с проверкой квазивогнутости Лагранжиана в точке. Убедиться можно, например, через окаймленный Гессиан.

Наконец, всякие Qualification Constraints тривиально выполнены для линейных бюджетных множеств.

Геометрическая интерпретация

ММЛ

Геометрическая интерпретация ММЛ

Если мы каким то образом убедили себя что решение находится «на бюджетной линии», например, за счет одного из фактов

- ullet U локально ненасыщаема в \mathbb{R}^n_+
- ullet $U=-\infty$ на границе \mathbb{R}^n_+

То оптимум находится либо на границе либо в точке касания бюджетной линии и линии уровня полезности, что характеризуется сонаправленностью их градиентов:

$$\nabla_{(x,y)}U=\lambda\cdot\nabla_{(x,y)}B.$$

Ясно, что это те же самые условия, что поиск седла у Фон Неймана или условия Каруш-Куна-Такера.

Геометрическая интерпретация ММЛ

Угловые решения

Угловые решения

На самом деле, поскольку мы оптимизируем в \mathbb{R}^n_+ в Лагранжиан, стоило бы добавить еще дополнительные члены, из за того что $x,y\geqslant 0$.

$$\mathcal{L}(x, y | \lambda, \gamma, \delta) = U(x, y) - \lambda B(x, y) - \gamma x - \delta y$$

Однако, в экономических приложениях, как правило, решение внутреннее, поэтому мы этого делать никогда не будем.

С другой стороны, если решение ожидается на границе (как с линейной полезностью) его можно отыскать непосредственно перебором по остриям бюджетного множества.

Значение Лагранжиана в

оптимуме

Значение Лагранжиана в оптимуме

Вспомним условие невязки из курса мат. анализа:

$$\lambda^* B(x^*, y^*) = 0.$$

Оно означает, что одно из двух обязательно верно:

- либо λ^* равен нулю, тогда полезность максимизируется внутри бюджетного множества, как если бы ограничения не было.
- либо λ^* положительный, тогда полезность максимизируется (как бы) снаружи, но тогда и ограничение выполнено с равенством.

Значение Лагранжиана в оптимуме

В любом случае, получается что в оптимуме значение Лагранжиана совпадает со значением целевой функции:

$$\mathcal{L}(x^*, y^*|\lambda^*) = U(x^*, y^*) - \lambda^* B(x^*, y^*)$$

Это очень полезное свойство, запомним его.

Интерпретация λ

Интерпретация λ

У множителя λ в Лагранжиане есть особая экономическая интерпретация - это теневая цена нарушения ограничения:

$$\mathcal{L} = U(x, y) - \lambda \cdot B(x, y), \quad B(x, y) \leq 0$$

Если вам очень хочется выйти за ограничение, открывается черный рынок на котором продается возможность это сделать по цене $\lambda \cdot B(x,y)$. Далее цена на рынке должна выстроиться таким образом, чтобы вы покупали ровно 0 единиц этого «товара», как говорит условие невязки.

Это и будет правильный множитель Лагранжа.

О преобразованиях полезности

О преобразованиях полезности

Преобразовывать полезность можно не только для быстрой проверки (квази-) вогнутости, но еще и для быстрого выписывания условий первого порядка.

Например, следующие полезности эквивалентны для УПП:

$$x^{1/3}y^{2/3} \sim \frac{1}{3}\log x + \frac{2}{3}\log y$$

только если вас потом спросят оптимальный уровень полезности, придется подставлять решение в оригинальную.

Или в данном случае применить экспоненту к модифицированной полезности.

- ullet область \mathbb{R}^2_+
- ullet ограничение $B(x,y)=px+qy\leqslant 0$, для $p,q\geqslant 0$
- ullet полезность $U(x,y)=\sqrt{xy}
 ightarrow {\sf max}$

Решим эту задачу несколькими способами: А,Б,В,Г

Способ А

способ А

Студент Андрей, послушав лекции по микроэкономике, хочет доказать что это выпуклая задача.

Выпишем Гессиан

$$\nabla^2 U = \begin{pmatrix} \frac{-1}{4x^2} & \frac{1}{4xy} \\ \frac{1}{4xy} & \frac{-1}{4y^2} \end{pmatrix} \cdot U$$

Миноры: $M_1\leqslant 0$, $M_2\leqslant 0$, $M_{1,2}=0$ значит по Критерию Сильвестра это (нестрого) вогнутая функция. С другой стороны, бюджетное ограничение выпукло.

Ура, задача выпуклая!

способ А

Теперь когда задача выпуклая, имеет смысл искать решение в точке касания бюджетной линии и кривой безразличия, то есть их градиенты сонаправлены

$$\nabla U \mid\mid \nabla B$$

Сонаправленность этих градиентов эквивалентна $U_x'/U_y'=p/q$, что приводит к системе уравнений:

$$y/x = p/q$$
, $px + qy = W$

выражая y из первого уравнения подставляем получаем $px+q(rac{p}{q}x)=W$, решаем его и находим

$$x^* = \frac{W}{2p}, \quad y^* = \frac{W}{2q}$$

Способ Б

способ Б

Студент Борис, тоже слушал лекции. Он знает, что данная полезность является монотонным преобразованием вогнутой

$$\sqrt{xy} \sim \log x + \log y$$

соответственно является гарантированно квази-вогнутой, а значит задача выпуклая. Для выпуклых задач работает ММЛ. Причем сразу для преобразованной полезности!

$$\mathcal{L} = \log x + \log y - \lambda (ax + by - W)$$

способ Б

Условия первого порядка для Лагранжиана:

$$1/x = \lambda p$$
, $1/y = \lambda q$, $px + qy = W$

подставляя х,у в третье уравнение получаем:

$$\frac{1}{\lambda} + \frac{1}{\lambda} = W \quad \Rightarrow \quad \lambda = \frac{2}{W}$$

наконец,

$$x^* = \frac{1}{\lambda p} = \frac{W}{2p}, \quad y^* = \frac{W}{2q}$$

еще раз убедимся, что это внутренняя точка и ок.

Способ В

способ В

Студент Владимир проспал первые все лекции, но очень внимательно слушал третью. Он заметил, что полезность \sqrt{xy} является локально ненасыщаемой и даже монотонной в эрэн.

В таком случае решение лежит на бюджетной линии

$$px + qy = W$$

Выражая y и подставляя получается задача без ограничений

$$\sqrt{x(\frac{W-px}{q})} \to \max_{x}$$

ну или почти без ограничений, x по прежнему $\geqslant 0$.

способ В

Итак,

$$\sqrt{x(\frac{W-px}{q})} \to \max_{x\geqslant 0}$$

Но ведь это просто парабола

$$x(W/p-x) \to \max_{x\geqslant 0}$$

а значит максимум в ее середине $x^* = \frac{W}{2p}$.

Наконец,
$$y^* = \frac{W}{2q}$$
.

Способ Г

способ Г

Студент Григорий не ходил ни на одну лекцию, но думает что умнее всех, потому что он сдал матан на отлично.

Уверенно выписываем полный Лагранжиан

$$\mathcal{L} = \sqrt{xy} - \lambda(px + qy - W) + \gamma x + \delta y$$

Пишем условия первого порядка и невязки:

$$\frac{\sqrt{y}}{2\sqrt{x}} - \lambda p + \gamma = 0 \quad \frac{\sqrt{x}}{2\sqrt{y}} - \lambda q + \delta = 0 \tag{1}$$

$$\gamma x = 0$$
, $\delta y = 0$, $\lambda(\rho x + qy - W) = 0$ (2)

способ Г

В результате изнурительного перебора $2^3=8$ случаев отлетают варианты с x=0, y=0 и $\lambda=0$ остается последний вариант где нужно всего лишь решить системи из трех уравнений ...

$$\frac{\sqrt{y}}{2\sqrt{x}} = \lambda p, \quad \frac{\sqrt{x}}{2\sqrt{y}} = \lambda q, \quad px + qy - W = 0$$

... трех нелинейных уравнений от x, y, λ .

способ Г

Потратив 2 часа на эту задачу и исписав 5 листов А4 Григорий в последний момент решается сдуть правильный ответ у своего лучшего друга Владимира ...

$$x^* = \frac{W}{2p}, \quad y^* = \frac{W}{2q}$$

... но вместо этого отправляет в ЛМС домашку самого Владимира, в результате чего обе домашки зануляются а в учебную часть приходит служебная записка.

- ullet область \mathbb{R}^2_+
- ullet ограничение $B(x,y)=px+qy\leqslant 0$, для $p,q\geqslant 0$
- ullet полезность $U(x,y) = \sqrt{x} + \sqrt{y}
 ightarrow \max$

Решим эту задачу несколькими способами: А,Б,В,Г