

Adithya M N

Address: Enschede, Netherlands Mail: adithyamn000@gmail.com Contact: +31 6 59361945

Online Portfolio: adithyamn.github.io

Profile: adithya mn

SUMMARY

— Graduate Student with keen interest in Mobile Robotics, Machine Vision and Autonomous Systems. My passion for robotics enthused me to take up various projects which helped me gain a lot of practical knowledge, shaping my views on how I learn subjects. Excited to take up an array of subjects and willing to pursue it with utmost dedication.

Technical Skills

- → Subjects: Robot Kinematics and Dynamics

 Computer Vision

 Mobile Robotics

 Deep Learning
- \longrightarrow **Softwares**: Python \diamond MATLAB \diamond LabVIEW \diamond LaTex \diamond Solidworks
- \longrightarrow Frameworks & Libraries : Tensorflow \Diamond OpenCV \Diamond Keras \Diamond Scikit Learn

Languages : English ♦ German (B1 Level) ♦ French ♦ Hindi ♦ Telugu ♦ Tamil

EDUCATION

June 2017 - May 2021 S. R. M. Institute of Science and Technology, Chennai, India.

 \longrightarrow B. Tech Mechatronics Engineering

 \longrightarrow CGPA - 7.98/10 (85.69%)

June 2015 - April 2017

Padma Seshadri Bala Bhavan, Chennai, India

→ HSC - Informatics Practices (Java)

 $\longrightarrow CGPA - 8.8/10$

WORK EXPERIENCE

- → Worked on the project "Automatic Pizza Vending Machine".
- \longrightarrow Proposed a new methodology for the pizza cutting mechanism Ultrasonic Cutting and the pizza cutter cleaning mechanism Hydrophobic Coating
- → Coordinated with a team to solve tasks and was commended for the contribution made.

June 2018 - Dec 2018

Industrial Trainee - Rexroth Bosch Pvt. Ltd., Chennai, India.

- → Trained at "SRM-BRIN Center of Excellence in Automation Technology"
- \longrightarrow Exposed to industrial automation based on electronic and proportional hydraulics
- \longrightarrow Supervised a team of 5 and was tasked with several real world problems faced by industries such as problems during inspection, maintenance and troubleshooting repair.

PROJECTS (Highlights)

Jan 2021 - May 2021

Development of a Collaborative Multi-Robot System for Material Handling

- → Multiple Mobile robot transport a material from one location to another autonomously within the arena by collaborating with each other.
- \longrightarrow Developed a novel "Composite Robot Algorithm" for a holonomic robot formation to transport the object. Configured a co-opertive path planning algorithm that provides three collision free paths from a single set of waypoints.

July 2020 - Oct 2020

Path Planning in a 2D Environment

- \longrightarrow Developed a differential drive robot model and built a custom 2D binary occupancy grid in which path planning was simulated.
- \longrightarrow Implemented probabilistic roadmaps as the motion planner to find the shortest path between the locations and a modified pure pursuit controller for efficient path tracking; in the software stack.

Jan 2020 - June 2020

RoboCUBES - An Intelligent, Modular, Reconfigurable Robotics Platform

- \longrightarrow Built a modular reconfigurable robot that uses modular cubes to autonomously detect many configurations and performs a specific functions based on the detected configuration.
- \longrightarrow Configured a complete modular software stack based on a novel "Self-Awareness" algorithm.
- Developed a **patented** novel hardware addressing system designed to interact with the algorithm and detect the configuration autonomously.
- \longrightarrow Developed Object-detection/tracking, Lane Detection and implemented Visual SLAM for AI/CV Cube.

Feb 2018 - May 2018

Virtual Digital Storage Oscilloscope

- → Coordinated with a team of 5 with the aim of creating a "low cost" PC based Oscilloscope.
- \longrightarrow A comparative study between our research project and the industry standard "Keysight InfiniiVision DSO-X 2002A" was conducted and the corresponding trade-offs were studied.
- → Developed an 8 channel Virtual DSO. Implemented in NI LabVIEW. Designed the hardware interfacing unit and interfacing system.

November 2020

An Onboard Hardware Addressing System for Modular Reconfigurable Robots

- This invention envisages an on-board hardware addressing system for a modular reconfigurable robot (MRR). The MRR is composed of at least one central module and plurality of peripheral modules each of whom have dockable faces.
- → This invention is low cost, hardware level addressing system for the MRR. The modified power rails connect pins to a unique hardware address. Thereby autonomously detecting the configuration the MRR is currently in.

AWARDS AND PRIZES

January 2020 Runners Up: Make-A-Thon 4.0 by Lema Labs - Project: BlockBots

Most Popular Project Award - Make-A-Thon 4.0

June 2019 Placed 2^{nd} : Maze Solving Robot Competition - Kaizen Robotics

December 2018 Placed 2nd: Course Following Robot Competition - Kaizen Robotics

April 2018 Best Project: Physics and Nanotechnology Research Day - Obstacle Avioding Robot

CERTIFICATIONS (Highlights)

Robotics Certifications:

June 2020 Control of Mobile Robots - Georgia Institute of Technology (Coursera)

 \longrightarrow Primarily dealed with Control Systems. Worked on many navigation problem of mobile robots, developed switches using control theory to switch between "go-to-goal" and "obstacle avoiding" behaviour.

January 2020 Autonomous Mobile Robots - ETH Zurich (Edx)

→ Learned fundamentals on several probabilistic robotics concepts such as, mobile robot kinematics, map representation state estimation using perception, probabilistic map based localisation and motion planning.

June 2019

Kaizen Robotics Training Program - Lema Labs

- \longrightarrow Gained practical knowledge in robotics, register level programming- embedded C & arduino programming.
- \longrightarrow Tasked with several robotics projects, from "ADC based speed control" to "Maze Solver with shortest path algorithm".
- \longrightarrow Developed a "Hand-Writing" robot using G-code conversion to convert data into motor commands.

Artificial Intelligence and Machine Learning Certifications:

May 2020 - July 2020

Self - Driving Cars Specialization - University of Toronto (Coursera)

\diamond Introduction to Self Driving Cars

—>This course laid the foundation for various segments incorporated in the development of an autonomous vehicle. Learned the various terminology, design considerations and safety assessment of self-driving cars.

♦ State Estimation and Localisation of Self Driving Cars

- \longrightarrow Introduced to different sensors and their use for state estimation and localization in self-driving car
- \longrightarrow Developed models for localisation sensors such as IMU and GPS and applied Extended and Unscented Kalman Filter for the estimation problem.

⋄ Visual Perception of Self Driving Cars

- → Derived a pin-hole camera model and Performed intrinsic and extrinsic calculations on it.
- \longrightarrow Performed static and dynamic object detection using deep learning.
- \longrightarrow Applied semantic segmentation for the estimation of the drivable surface.

Motion Planning for Self Driving Cars

- → Learned the fundamental concepts of all the different motion planners such as mission planner, behavioural planner.
- → Implemented Dijkstra's and A* algorithm to find the shortest path between two places
- \longrightarrow Introduced to a Hierarchical motion planner to navigate autonomously through an environment using the carla simulator.

July 2020

Structuring Machine Learning Projects (Coursera)

- Learned how to diagnose errors and reduce them in any machine learning system.
- \longrightarrow Analysed the effect of bias and variance with mismatched data. Introduced to transfer learning and end to end deep learning.

June 2020

Machine Learning Advanced Certification Program (Simpli Learn)

- \longrightarrow Gained comprehensive & in depth knowledge in all the fundamental machine learning concepts.
- → Worked with real-time data, developed algorithms using supervised and unsupervised learning, regression, classification, time series modelling and recommender systems.

_