

Simple Linear Regression: Model

Data: $\{(x_1,y_1),...,(x_n,y_n)\}$

Model: $Y_i = \beta_0 + \beta_1 x_i + \epsilon_i i = 1,...,n$

Assumptions:

- Linearity/Mean Zero Assumption: $E(\varepsilon_i) = 0$
- Constant Variance Assumption: $Var(\varepsilon_i) = \sigma^2$
- Independence Assumption $\{\varepsilon_1,...,\varepsilon_n\}$ are independent random variables
- (Later we assume $\varepsilon_i \sim Normal$)

Georgia Tech

3

Residual Analysis

Residual Values: $\varepsilon_i \rightarrow \hat{\varepsilon}_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)$

Graphical display: Plot of the residuals ε_{i}

If the scatter of ε_i is **not random around zero line**, it could be that

- > The relationship between X and Y is not linear
- Variances of error terms are not equal
- Response data are not independent

Georgia Tech

Checking Assumptions: Residual Analysis

Linearity Assumption:

This shows that there may be a non-linear relationship between X and Y.

Georgia Tech

5

Checking Assumptions: Residual Analysis

Constant Variance Assumption:

The residuals show larger variance as the predicting variable increases.

Here, it could be that σ^2 is not constant.

Georgia Tech

Checking Assumptions: Residual Analysis

Independence Assumption:

There are clusters of residuals: the independence assumption does not hold.

- Using residual analysis, we check for uncorrelated errors but not independence.
- Independence is a more complicated matter. If the data are from a randomized trial, then independence is established, but most data are from observational studies.

Georgia Tech

7

Checking the Assumption of Normality

One way to check this assumption in a regression is using a Normal Probability Plot

x-axis: $\Phi^{-1} \left(\frac{r_i - 3/8}{n + 1/4} \right)$

y-axis: e_i

 r_i = rank of e_i (between 1, n)

 Φ = CDF of Normal Distribution

- ➤ Let the R statistical software do this for you!
- A straight line in normal probability plot implies assumption of normality is valid
- Curvature (especially at the ends) shows non-normality

Checking the Assumption of Normality

A complementary approach to check for the normality assumption is by plotting the **histogram** of the residuals

Normality Assumption:

The residuals should have an approximately symmetric distribution, unimodal, and with no gaps in the data.

Georgia Tech

a

Variable Transformation

- If the model fit is inadequate, it does not mean that a regression is not useful.
- One problem might be that the relationship between X and Y is not exactly linear.
- To model the nonlinear relationship, we can transform **X** by some nonlinear function such as:

$$f(x) = x^a$$
 or $f(x) = \log(x)$

Georgia Tech

Normality Transformations

Problem: Normality or constant variance assumption does not hold.

Solution: Transform the response variable from y to y* via

$$y^* = y^{\lambda}$$

where the value of λ depends on how Var(Y) changes as X changes.

 $\sigma_{y}(x) \propto const$ $\lambda = 1$ (don't transform)

 $\sigma_{y}(x) \propto \sqrt{\mu_{x}} \qquad \lambda = 1/2$

 $\sigma_{y}(x) \propto \mu_{x}$ $\lambda = 0$ $y^* = \ln(y)$

 $\sigma_{y}(x) \propto 1/\mu_{x}$ $\lambda = -1$

This is called Box-Cox Transformation: The parameter λ can be determined using R statistical software.

Georgia Tech

11

