Diagramma di Dualità

Analisi dei Dati¹

¹Corso di Laurea in Scienze Statistiche e Attuariali Dipartimento di Diritto, Economia, Management e Metodi Quantitativi (DEMM) Università degli Studi del Sannio

Prof. Pietro Amenta

Fonte: Pietro Amenta. Appunti di Analisi dei Dati Multidimensionali

 Una applicazione f di un vettoriale V (spazio vettoriale di partenza) in un vettoriale W (spazio vettoriale d'arrivo) è lineare se

$$\begin{cases} f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y}) \\ f(\lambda \mathbf{x}) = \lambda f(\mathbf{x}) \end{cases}$$

• L'insieme $L(V, W) = \{f/V \xrightarrow{f} W\}$ delle applicazioni lineari dal vettoriale V nel vettoriale W, munito delle operazioni seguenti

Addizione:
$$V \xrightarrow{f_1 + f_2} W$$
 $\mathbf{x} \longrightarrow f_1(\mathbf{x}) + f_2(\mathbf{x})$
Omotetia: $V \xrightarrow{\lambda f} W$
 $\mathbf{x} \longrightarrow \lambda f(\mathbf{x})$

è uno spazio vettoriale.

- L'insieme L(V, W) delle applicazioni lineari f: V → W è uno spazio vettoriale di dimensione pari prodotto delle dimensioni di V e W
- Quando W ha dimensione 1, lo spazio delle applicazioni lineari L(V, R) si chiama spazio vettoriale duale di V, e si denota con il simbolo V*

$$V^* = \{f/V \xrightarrow{f} \Re; f \text{ lineare}\}$$

ed i suoi elementi vengono denominati *funzionali lineari* o *forme lineari*

• Un funzionale lineare è quindi una funzione $f: V \longmapsto \Re$ tale che

$$f(a\mathbf{v} + b\mathbf{w}) = af(\mathbf{v}) + bf(\mathbf{w})$$

con $\mathbf{v}, \mathbf{w} \in V$ e $a, b \in \Re$.

- Supponiamo che il vettoriale V di dimensione n è munito della base $\{\mathbf{v}_i/i=1,\ldots,n\}$.
- Sia \mathbf{v}_i^* inoltre una applicazione che, qualunque sia $\mathbf{x} \in V$, fornisce la sua i-esima coordinata rispetto alla base $\{\mathbf{v}_i/i=1,\ldots,n\}$

$$V \xrightarrow{\mathbf{V}_{i}^{*}} \Re$$

$$\mathbf{x} = \sum_{i=1}^{n} x_{i} \mathbf{v}_{i} \longrightarrow \mathbf{v}_{i}^{*}(\mathbf{x}) = x_{i}$$

con
$$\mathbf{v}_i^*(\mathbf{v}_i) = 1$$
 e $\mathbf{v}_i^*(\mathbf{v}_i) = 0$ per $i \neq j$:

 \mathbf{v}_i^* è quindi una forma lineare: $\mathbf{v}_i^* \in V^*$

Se f è un funzionale lineare qualunque

$$V \xrightarrow{f} \Re$$

$$\mathbf{x} \longrightarrow f(\mathbf{x}) \in \Re$$

la sua linearità ci permette di scrivere

$$f(\mathbf{x}) = f(\sum_{i=1}^{n} x_i \mathbf{v}_i) = \sum_{i=1}^{n} x_i f(\mathbf{v}_i) = \sum_{i=1}^{n} f(\mathbf{v}_i) \mathbf{v}_i^*(\mathbf{x})$$

che risulta vera $\forall \mathbf{x}$, e quindi tutti i funzionali lineari risultano essere combinazioni lineari delle forme lineari \mathbf{v}_i^*

$$f = \sum_{i=1}^{n} f(\mathbf{v}_i) \mathbf{v}_i^* = \sum_{i=1}^{n} f_i \mathbf{v}_i^*$$

con $f(\mathbf{v}_i) = f_i$.

- Lo spazio duale V^* di V, spazio vettoriale dei funzionali lineari su V ha quindi le stesse dimensioni di V, e a tutta la base $\{\mathbf{v}_i/i=1,\ldots,n\}$ di V corrisponde in V^* la **base duale** $\{\mathbf{v}_i^*/i=1,\ldots,n\}$
- Alla forma lineare f è associato inoltre il vettore $\mathbf{f} \in V^*$
- Con la notazione < f, x > (o < x, f >) si indicherà l'immagine del vettore x tramite la forma lineare f (o l'immagine del vettore f tramite la forma lineare x)

$$f(\mathbf{x}) = \langle \mathbf{f}, \mathbf{x} \rangle = \langle \mathbf{x}, \mathbf{f} \rangle = \mathbf{x}(\mathbf{f})$$

 Un funzionale lineare scritto in coordinate ha sempre la forma di una funzione

$$f(\mathbf{x}) = f(x_1, \dots, x_n) = f_1 x_1 + \dots + f_n x_n$$

dove (x_1, \ldots, x_n) sono le coordinate del vettore sul quale calcoliamo **f**

In generale, una espressione della forma

$$f_1x_1+\ldots+f_nx_n$$

può vedersi come una funzione tante delle (f_1, \ldots, f_n) quanto delle (x_1, \ldots, x_n) ; questa idea conduce al concetto di **prodotto scalare** classico che indichiamo con

$$f(\mathbf{x}) = \langle \mathbf{f}, \mathbf{x} \rangle = \langle \mathbf{x}, \mathbf{f} \rangle = \mathbf{x}(\mathbf{f})$$

- Sia X una matrice di dimensione n × p che raccoglie le rilevazioni delle variabili x₁,...,x_p su n unità statistiche.
- Il numero x^j_i, elemento delle i-esima riga e della j-esima colonna, risulta essere allora il valore preso dalla variabile j sull'i-esima unità statistica:

$$i \in I$$
 $j \in J$ $h_i(j) = x_i^j \in \Re$

con
$$I = \{1, ..., n\}$$
 e $J = \{1, ..., p\}$

• All'insieme dei p numeri $\{x_i^1, \dots, x_i^p\}$ è associato il vettore

$$\mathbf{x}_{i} = h(i) = (x_{i}^{1}, \dots, x_{i}^{p}) = \sum_{k=1}^{p} x_{i}^{k} \mathbf{v}_{k} \in V = \Re^{p}$$

dove $\{v_1, \dots, v_p\}$ è la base canonica dello **Spazio degli Individui** V.

 In modo simmetrico, il numero x^j, elemento delle i-esima riga e della j-esima colonna, risulta essere anche il valore preso dall'i-esima unità statistica sulla variabile j:

$$i \in I$$
 $j \in J$ $g_i(j) = x_i^j \in \Re$

• All'insieme degli n numeri $\{x_1^j, \dots, x_n^j\}$ è associato il vettore

$$\mathbf{x}^{j} = g(j) = (x_{1}^{j}, \dots, x_{n}^{j})^{T} = \sum_{k=1}^{n} x_{k}^{j} \mathbf{f}_{k} \in F = \Re^{n}$$

dove $\{f_1, \ldots, f_n\}$ è la base canonica dello **Spazio delle Variabili** F.

• $V^* = \Re^{p^*}$ e $F^* = \Re^{n^*}$ risultano essere spazi duali rispettivamente di V e F, muniti delle basi duali $\{\mathbf{v}_i^*/j=1,\ldots,p\}$ e $\{\mathbf{f}_i^*/j=1,\ldots,n\}$. Abbiamo allora

$$\mathbf{x}_{i}^{j} = \langle \mathbf{v}_{j}^{*}, \mathbf{x}_{i} \rangle = \langle \mathbf{f}_{i}^{*}, \mathbf{x}^{i} \rangle$$

da cui, x_i^j è la coordinata dell'unità i rispetto alla base \mathbf{v}_j in \Re^p , ed anche la coordinata della variabile j rispetto alla base \mathbf{f}_i in \Re^n

Riassumendo, abbiamo che

Alla variabile $j \in J$ è associato:

- il vettore $\mathbf{x}^j \in \mathbb{R}^n$;
- l'asse $\Delta_{\mathbf{e}_{i}} \in \Re^{p} = \oplus \{\Delta_{e_{i}}/j = 1, \dots, p\};$
- il funzionale lineare $\mathbf{e}_{i}^{*} \in \Re^{p*}$.

All'unità statistica $i \in I$ è associato:

- il vettore $\mathbf{x}_i \in \mathbb{R}^p$;
- l'asse $\Delta_{\mathbf{f}_i} \in \Re^n = \oplus \{\Delta_{f_i}/i = 1, \dots, n\};$
- il funzionale lineare $\mathbf{f}_{i}^{*} \in \mathbb{R}^{n*}$.

E' naturale allora considerare l'applicazione lineare X

$$\Re^{p*} \xrightarrow{\mathbf{X}} \Re^{n}$$

$$\mathbf{v}_{j}^{*} \longrightarrow \mathbf{x}^{j} = \mathbf{X}(\mathbf{v}_{j}^{*})$$

che, alla forma lineare \mathbf{v}_{j}^{*} , rappresentazione della variabile j in \Re^{p*} , fa corrispondere il vettore \mathbf{x}^{j} , rappresentazione della variabile j in \Re^{n} .

 Allo stesso modo consideriamo l'applicazione lineare X^T (trasposta di X)

$$\Re^{n*} \xrightarrow{\mathbf{X}^T} \Re^p$$

$$\mathbf{f}_i^* \xrightarrow{} \mathbf{x}_i = \mathbf{X}^T (\mathbf{f}_i^*)$$

che, alla forma lineare \mathbf{f}_{i}^{*} , rappresentazione dell'unità statistica i in \Re^{n*} , fa corrispondere il vettore \mathbf{x}_{i} , rappresentazione dell'unità statistica i in \Re^{p} .

• Poichè le basi $\{\mathbf{v}_j^*/j=1,\ldots,p\}$ e $\{\mathbf{f}_i/i=1,\ldots,n\}$ sono contenute, rispettivamente, negli spazi \Re^{p*} e \Re^n , la matrice associata all'applicazione lineare \mathbf{X} risulta essere allora la matrice \mathbf{X} di dimensione $n\times p$, che raccoglie le rilevazioni delle variabili $\mathbf{x}_1,\ldots,\mathbf{x}_p$ su n unità statistiche.

$$\Re^{p*} \longrightarrow \Re^n$$

• Allo stesso modo, poichè le basi $\{\mathbf{f}_i^*/i=1,\ldots,n\}$ e $\{\mathbf{v}_j^*/j=1,\ldots,p\}$ sono contenute, rispettivamente, negli spazi \Re^{n*} e \Re^p , la matrice associata all'applicazione lineare \mathbf{X}^T risulta essere allora la matrice \mathbf{X}^T di dimensione $p\times n$.

$$\Re^{p} \leftarrow \mathbf{X}^{T}$$
 \Re^{n*}

• L'aggiunta di una trasformazione lineare $T: V_1 \longmapsto V_2$ fra due spazi dotati del prodotto scalare, è definita come l'applicazione $T^*: V_2 \longmapsto V_1$ tale che

$$<$$
 Tu, z $>_2 = <$ u, T*z $>_1$

 $\forall \mathbf{u} \in V_1, \mathbf{z} \in V_2.$

Poichè prodotti scalari di tipo standard su \(\mathbb{R}^p \) e \(\mathbb{R}^n\) (e i rispettivi duali), allora \(\mathbb{X}^*\) corrisponde alla matrice trasposta \(\mathbb{X}^T\) di \(\mathbb{X}\). Allora \(\mathbb{X}^*\mathbb{X} = \mathbb{X}^T\mathbb{X}\) e \(\mathbb{X}^*\mathbb{X}^*\), quindi

$$\Re^p \leftarrow \mathbf{X}^* (= \mathbf{X}^T)$$

- Consideriamo ora la situazione dove i prodotti scalari (cioè le geometrie) su \Re^p e \Re^n sono non standard.
- In generale, alla forma bilineare simmetrica definita positiva M

$$\Re^{p} \times \Re^{p} \xrightarrow{\mathbf{M}} \Re$$

$$(\mathbf{x}, \mathbf{y}) \xrightarrow{\mathbf{M}} \mathbf{M}(\mathbf{x}, \mathbf{y}) \in \Re$$

è associato l'isoformismo denominato M

$$\mathfrak{R}^{\rho} \xrightarrow{\qquad \qquad} \mathfrak{R}^{\rho*} \\
\mathbf{x} \xrightarrow{\qquad \qquad} \mathbf{M}(\mathbf{x}) \in \mathfrak{R}^{\rho*}$$

tale che $\mathbf{M}(\mathbf{x}, \mathbf{y}) = <\mathbf{M}(\mathbf{x}), \mathbf{y}> = <\mathbf{x}, \mathbf{M}(\mathbf{y})>$, dove $<\mathbf{M}(\mathbf{x}), \mathbf{y}>$ designa l'immagine del vettore $\mathbf{y}\in\Re^{\rho}$ attraverso la forma lineare $\mathbf{M}(\mathbf{x})\in\Re^{\rho*}$.

 Assumiamo, quindi, che esistano delle matrici simmetriche, definite positive Q e D, di dimensioni rispettivamente p × p e n × n, tali che i prodotti scalari sono così definiti

$$<\mathbf{u},\mathbf{v}>_{\mathbf{Q}}=\mathbf{u}^{T}\mathbf{Q}\mathbf{v}$$
 $\forall \mathbf{u},\mathbf{v}\in\Re^{p}$

$$<\mathbf{w},\mathbf{z}>_{\mathbf{D}}=\mathbf{w}^{T}\mathbf{D}\mathbf{z}$$
 $\forall \mathbf{w},\mathbf{z}\in\Re^{n}$

• **Q** può essere visto come una applicazione da \Re^{ρ} a $\Re^{\rho*}$

$$\Re^{\rho} \longrightarrow \Re^{\rho*}$$

• **D** può essere visto come una applicazione da \Re^n a \Re^{n*}

$$\Re^n \longrightarrow \Re^{n*}$$

Se uniamo le relazioni ottenute sugli elementi di base di una tripletta statistica (**X**, **Q**, **D**) in uno schema grafico, otteniamo lo schema di base del **Diagramma di Dualità** (Cazes, 1970; Cailliez & Pages, 1976; Escoufier, 1987)

Il **Diagramma di Dualità** può essere visto come una visione complessiva dei sottostanti oggetti matematici usati nella descrizione teorica di una tecnica. Il diagramma ha diverse funzioni:

- rendere più facile la memorizzazione degli elementi caratteristici di diversi metodi:
- individuare facilmente le matrici che consentono particolari soluzioni;
- dove individuare particolari oggetti e procedere al loro calcolo;
- associare ad un data set un operatore dallo spazio delle osservazioni R^p allo spazio delle variabili Rⁿ (Escoufier).

 $\mathbf{u} \in \Re^p$

Se uniamo le relazioni ottenute sugli elementi di base in uno schema grafico, otteniamo uno schema avanzato del **Diagramma di Dualità**

VQ operatore (Q-simmetrico) caratteristico del diagramma

WD operatore (D-simmetrico) caratteristico del diagramma

Possiamo quindi includere gli operatori caratteristici nel diagramma

Escoufier associa ad un data set un operatore dallo spazio delle osservazioni \Re^p allo spazio delle variabili \Re^n e viceversa

$$\mathbf{X}^T \mathbf{D} \mathbf{X} \mathbf{Q} \mathbf{u} \in \Re^p$$
 $\mathbf{V} \mathbf{Q} \mathbf{u} \in \Re^p$
 $\mathbf{Q} \mathbf{V} \mathbf{Q} \mathbf{u} \in \Re^{p*}$
 $\mathbf{X} \mathbf{Q} (\mathbf{V} \mathbf{Q}) \mathbf{u} \in \Re^n$

$$\mathbf{XQX}^T\mathbf{Dv} \in \Re^n$$
 $\mathbf{WDv} \in \Re^n$
 $\mathbf{DWDv} \in \Re^{n*}$
 $\mathbf{X}^T\mathbf{D(WD)v} \in \Re^p$

$$\Re^{\rho} \xrightarrow{\mathbf{XQ}} \Re^{n} \quad \Re^{n} \xrightarrow{\mathbf{X}^{T}\mathbf{D}} \Re^{\rho}$$

La decomposizione di **VQ** conduce a quella di **WD** e la transizione fra componenti principali ed assi principali.

Gli operatori caratteristici **VQ** e **WD** potrebbero però non essere simmetrici. Per ottenere un operatore simmetrico da diagonalizzare possiamo utilizzare il diagramma di dualità e la **decomposizione di Cholesky** degli operatori **Q** e **D**:

$$\mathbf{Q} = \mathbf{E}^T \mathbf{E} \qquad \mathbf{D} = \mathbf{B}^T \mathbf{B}$$

dove dim(**E**) è $q \times p$ e dim(**B**) è $g \times n$.

Sia $\Omega = \mathbf{BXE}^T$. L'operatore $\Omega^T \Omega = \mathbf{EX}^T \mathbf{B}^T \mathbf{BXE}^T$ di dimensione $q \times q$, risulta essere simmetrico, e la sua diagonalizzazione è pari a

$$\Omega^T \Omega = \mathbf{V} \wedge \mathbf{V}^T \text{ con } \mathbf{V}^T \mathbf{V} = \mathbf{I}_q$$

Si consideri la decomposizione della matrice $\Omega^T \Omega$

$$\Omega^{T}\Omega = V \wedge V^{T}$$

$$EX^{T}B^{T}BXE^{T} = V \wedge V^{T}$$

$$EX^{T}B^{T}BXE^{T}V = V \wedge V^{T}V$$

$$EX^{T}B^{T}BXE^{T}V = V \wedge$$

$$E^{T}EX^{T}B^{T}BXE^{T}V = E^{T}V \wedge \text{ poniamo } \mathbf{F} = \mathbf{E}^{T}V$$

$$QX^{T}DXF = F \wedge \iff QVF = F \wedge$$

$$Q^{\frac{1}{2}}Q^{\frac{1}{2}}X^{T}DXQ^{\frac{1}{2}}Q^{-\frac{1}{2}}F = F \wedge$$

$$Q^{\frac{1}{2}}X^{T}DXQ^{\frac{1}{2}}Q^{-\frac{1}{2}}F = Q^{-\frac{1}{2}}F \wedge$$

$$Q^{\frac{1}{2}}X^{T}DXQ^{\frac{1}{2}}H = H \wedge$$

e allora
$$\mathbf{H}^T \mathbf{H} = \mathbf{I} = \mathbf{F}^T \mathbf{Q}^{-\frac{1}{2}} \mathbf{Q}^{-\frac{1}{2}} \mathbf{F} \qquad \Longleftrightarrow \boxed{\mathbf{F}^T \mathbf{Q}^{-1} \mathbf{F} = }$$

Si consideri la decomposizione della matrice $\Omega^T\Omega$

$$\Omega^{T}\Omega = V \wedge V^{T}$$

$$EX^{T}B^{T}BXE^{T} = V \wedge V^{T}$$

$$E^{-1}EX^{T}B^{T}BXE^{T} = E^{-1}V \wedge V^{T}$$

$$X^{T}B^{T}BXE^{T}E = E^{-1}V \wedge V^{T}E$$

$$X^{T}B^{T}BXQ = E^{-1}V \wedge V^{T}E$$

$$X^{T}DXQE^{-1} = E^{-1}V \wedge V^{T}EE^{-1}$$

$$X^{T}DXQE^{-1} = E^{-1}V \wedge V^{T}$$

$$X^{T}DXQE^{-1}V = E^{-1}V \wedge V^{T}V \quad \text{poniamo} \quad A = E^{-1}V$$

$$X^{T}DXQA = A \wedge \iff VQA = A \wedge$$

da cui

$$\mathbf{X}^{T}\mathbf{D}\mathbf{X}\mathbf{Q}\mathbf{A} = \mathbf{A}\boldsymbol{\Lambda} \iff \mathbf{V}\mathbf{Q}\mathbf{A} = \mathbf{A}\boldsymbol{\Lambda}$$

$$\mathbf{Q}^{\frac{1}{2}}\mathbf{X}^{T}\mathbf{D}\mathbf{X}\mathbf{Q}\mathbf{A} = \mathbf{Q}^{\frac{1}{2}}\mathbf{A}\boldsymbol{\Lambda}$$

$$\mathbf{Q}^{\frac{1}{2}}\mathbf{X}^{T}\mathbf{D}\mathbf{X}\mathbf{Q}^{\frac{1}{2}}\underbrace{\mathbf{Q}^{\frac{1}{2}}\mathbf{A}}_{=\mathbf{H}} = \underbrace{\mathbf{Q}^{\frac{1}{2}}\mathbf{A}}_{=\mathbf{H}}\boldsymbol{\Lambda}$$

$$\mathbf{Q}^{\frac{1}{2}}\mathbf{X}^{T}\mathbf{D}\mathbf{X}\mathbf{Q}^{\frac{1}{2}}\mathbf{H} = \mathbf{H}\boldsymbol{\Lambda}$$

e allora
$$\mathbf{H}^T \mathbf{H} = \mathbf{I} = \mathbf{A}^T \mathbf{Q}^{\frac{1}{2}} \mathbf{Q}^{\frac{1}{2}} \mathbf{A} \qquad \Longleftrightarrow \mathbf{A}^T \mathbf{Q} \mathbf{A} = \mathbf{I}$$

Sia $\Omega = \mathbf{B}\mathbf{X}\mathbf{E}^T$. L'operatore $\Omega\Omega^T = \mathbf{B}\mathbf{X}\mathbf{E}^T\mathbf{E}\mathbf{X}^T\mathbf{B}^T$ di dimensione $g \times g$, risulta essere simmetrico, e la sua diagonalizzazione è pari a

$$\Omega\Omega^T = \mathbf{U} \wedge \mathbf{U}^T \text{ con } \mathbf{U}^T \mathbf{U} = \mathbf{I}_g$$

La rappresentazione congiunta degli operatori $\Omega^T\Omega$ e $\Omega\Omega^T$ risulta essere allora

Si consideri la decomposizione della matrice $\Omega\Omega^T$

e allora
$$\mathbf{H}^T \mathbf{H} = \mathbf{I} = \mathbf{G}^T \mathbf{D}^{-\frac{1}{2}} \mathbf{D}^{-\frac{1}{2}} \mathbf{G} \qquad \Longleftrightarrow \mathbf{G}^T \mathbf{D}^{-1} \mathbf{G}$$

Si consideri la decomposizione della matrice $\Omega\Omega^T$

$$\Omega\Omega^T = \mathbf{U} \wedge \mathbf{U}^T$$

$$\mathbf{B} \mathbf{X} \mathbf{E}^T \mathbf{E} \mathbf{X}^T \mathbf{B}^T = \mathbf{U} \wedge \mathbf{U}^T$$

$$\mathbf{B}^{-1} \mathbf{B} \mathbf{X} \mathbf{E}^T \mathbf{E} \mathbf{X}^T \mathbf{B}^T = \mathbf{B}^{-1} \mathbf{U} \wedge \mathbf{U}^T$$

$$\mathbf{X} \mathbf{E}^T \mathbf{E} \mathbf{X}^T \mathbf{B}^T \mathbf{B} = \mathbf{B}^{-1} \mathbf{U} \wedge \mathbf{U}^T \mathbf{B}$$

$$\mathbf{X} \mathbf{Q} \mathbf{X}^T \mathbf{D} \mathbf{B}^{-1} = \mathbf{B}^{-1} \mathbf{U} \wedge \mathbf{U}^T \mathbf{B} \mathbf{B}^{-1}$$

$$\mathbf{X} \mathbf{Q} \mathbf{X}^T \mathbf{D} \mathbf{B}^{-1} = \mathbf{B}^{-1} \mathbf{U} \wedge \mathbf{U}^T$$

$$\mathbf{X} \mathbf{Q} \mathbf{X}^T \mathbf{D} \mathbf{B}^{-1} \mathbf{U} = \mathbf{B}^{-1} \mathbf{U} \wedge \mathbf{U}^T \mathbf{U} \qquad \text{poniamo} \quad \mathbf{K} = \mathbf{B}^{-1} \mathbf{U}$$

$$\mathbf{X} \mathbf{Q} \mathbf{X}^T \mathbf{D} \mathbf{K} = \mathbf{K} \wedge \iff \mathbf{W} \mathbf{D} \mathbf{K} = \mathbf{K} \wedge$$

Richiami teorici

da cui

$$\mathbf{XQX}^{T}\mathbf{DK} = \mathbf{K}\Lambda \qquad \longleftarrow \boxed{\mathbf{WDK} = \mathbf{K}\Lambda}$$

$$\mathbf{XQX}^{T}\mathbf{D}^{\frac{1}{2}}\mathbf{D}^{\frac{1}{2}}\mathbf{K} = \mathbf{K}\Lambda$$

$$\mathbf{D}^{\frac{1}{2}}\mathbf{XQX}^{T}\mathbf{D}^{\frac{1}{2}}\underbrace{\mathbf{D}^{\frac{1}{2}}\mathbf{K}}_{=\mathbf{H}} = \underbrace{\mathbf{D}^{\frac{1}{2}}\mathbf{K}}_{=\mathbf{H}}\Lambda$$

$$\underbrace{\mathbf{D}^{\frac{1}{2}}\mathbf{XQX}^{T}\mathbf{D}^{\frac{1}{2}}}_{=\mathbf{H}}\mathbf{H} = \mathbf{H}\Lambda$$
e allora $\mathbf{H}^{T}\mathbf{H} = \mathbf{I} = \mathbf{K}^{T}\mathbf{D}^{\frac{1}{2}}\mathbf{D}^{\frac{1}{2}}\mathbf{K} \qquad \longleftarrow \boxed{\mathbf{K}^{T}\mathbf{D}\mathbf{K} = \mathbf{I}}$

Ciò comporta che le relazioni

$$\begin{array}{cccc} \Omega^T\Omega &= \mathbf{V} \wedge \mathbf{V}^T & \operatorname{con} \mathbf{V}^T \mathbf{V} = \mathbf{I}_q \\ \mathbf{Q} \mathbf{X}^T \mathbf{D} \mathbf{X} \mathbf{F} &= \mathbf{F} \wedge & \operatorname{con} \mathbf{F}^T \mathbf{Q}^{-1} \mathbf{F} = \mathbf{I}_q \\ \mathbf{X}^T \mathbf{D} \mathbf{X} \mathbf{Q} \mathbf{A} &= \mathbf{A} \wedge & \operatorname{con} \mathbf{A}^T \mathbf{Q} \mathbf{A} = \mathbf{I}_q \\ \Omega\Omega^T &= \mathbf{U} \wedge \mathbf{U}^T & \operatorname{con} \mathbf{U}^T \mathbf{U} = \mathbf{I}_g \\ \mathbf{D} \mathbf{X}^T \mathbf{Q} \mathbf{X}^T \mathbf{G} &= \mathbf{G} \wedge & \operatorname{con} \mathbf{G}^T \mathbf{D}^{-1} \mathbf{G} = \mathbf{I}_g \\ \mathbf{X} \mathbf{Q} \mathbf{X}^T \mathbf{D} \mathbf{K} &= \mathbf{K} \wedge & \operatorname{con} \mathbf{K}^T \mathbf{D} \mathbf{K} = \mathbf{I}_g \end{array}$$

hanno tutte gli stessi $r \leq \min(n, p, q, g)$ autovalori non negativi $\lambda_1 \geqslant \lambda_2 \geqslant \ldots \geqslant \lambda_r > 0$, raccolti nella matrice diagonale Λ di dimensione $r \times r$

possiamo allora definire

Mat	rice	Autovettori	Normalizzazione	Denominazione	Criterio
Q V D' W	Q W	$\begin{aligned} & \textbf{F} = [\textbf{f}_1,, \textbf{f}_r] \\ & \textbf{A} = [\textbf{a}_1,, \textbf{a}_r] \\ & \textbf{G} = [\textbf{g}_1,, \textbf{g}_r] \\ & \textbf{K} = [\textbf{k}_1,, \textbf{k}_r] \end{aligned}$	$\mathbf{F}^{T}\mathbf{Q}^{-1}\mathbf{F} = \mathbf{I}_{q}$ $\mathbf{A}^{T}\mathbf{Q}\mathbf{A} = \mathbf{I}_{q}$ $\mathbf{G}^{T}\mathbf{D}^{-1}\mathbf{G} = \mathbf{I}_{g}$ $\mathbf{K}^{T}\mathbf{D}\mathbf{K} = \mathbf{I}_{g}$	Fattori Principali Assi Principali Cofattori Principali Componenti Principali	$\begin{aligned} \mathbf{X}\mathbf{f} _{\mathbf{D}}^2 \\ \mathbf{X}\mathbf{Q}\mathbf{a} _{\mathbf{D}}^2 \\ \mathbf{X}^T\mathbf{g} _{\mathbf{Q}}^2 \\ \mathbf{X}^T\mathbf{D}\mathbf{k} _{\mathbf{Q}}^2 \end{aligned}$

Il termine dualità è giustificato dalle connessioni fra le quattro diagonalizzazioni e tali che possiamo calcolare solo un sistema di assi per ottenere gli altri tre. Valgono le seguenti formule di transizione:

$$\begin{aligned} \textbf{F} &= \textbf{Q} \textbf{A} & \textbf{G} &= \textbf{D} \textbf{K} \\ \textbf{K} &= \textbf{X} \textbf{F} \boldsymbol{\Lambda}^{-\frac{1}{2}} & \textbf{A} &= \textbf{X}^{T} \textbf{G} \boldsymbol{\Lambda}^{-\frac{1}{2}} \end{aligned}$$

$$\mathbf{QVF} = \mathbf{F}\Lambda$$

 $\mathbf{F}^T\mathbf{Q}^{-1}\mathbf{F} = \mathbf{I}$

$$\mathbf{F} = \mathbf{Q}\mathbf{A}$$
 $\mathbf{A} = \mathbf{Q}^{-1}\mathbf{F}$

$$VQA = A \Lambda$$
 $A^TQA = I$
Assi Principali A

$$K = XF\Lambda^{-\frac{1}{2}} \Rightarrow$$

$$\mathbf{A} = \mathbf{X}^T \mathbf{G} \Lambda^{-\frac{1}{2}}$$

Componenti Principali K

$$\begin{array}{c}
 \mathsf{WDK} &= \mathsf{K} \land \\
 \mathsf{K}^\mathsf{T} \mathsf{DK} &= \mathsf{I}
 \end{array}$$

$$\mathbf{K} = \mathbf{D}^{-1}\mathbf{G} \left\| \mathbf{G} = \mathbf{D}\mathbf{K} \right\|$$