

Energy-Efficient Spiking Neural Networks Using Approximate Neuron Circuits and 3D Stacking Memory

School of Computer Science and Engineering University of Aizu, Fukushima, Japan

Authors: Ryoji Kobayashi, Ngo-Doanh Nguyen, Nguyen Anh Vu Doan,

Khanh N. Dang

E-mail: s1290176@u-aizu.ac.jp

Dec. 17, 2024

- Research Introduction
- Methodology
- Evaluation
- Conclusion

- Research Introduction
- Methodology
- Evaluation
- Conclusion

Research Introduction

Spiking Neural Network

- Low power operation
- Simple neuron impl.
- Noise resilience

Approx. Computing

- Low power & latency computation
- HW design choice

3D Stacking Memory

- Scalability
- High-bandwidth
- Small footprint

Spiking Neural Net. with Approx. Neuron and 3D Stack. Memory

- Research Introduction
- Methodology
- Evaluation
- Conclusion

Methodology (1/4)

- Approximate Computing
 - Allowance of accuracy loss -> Energy-efficient HW implementation
 - Effective for error-tolerant applications
 - Multimedia Processing
 - Machine Learning

However?

🍑 😊 Produce noises in the computing 🛽 🔷 🙂 Noise resilience of Spiking Neural Net.

Our Contribution

- Approximate Spiking Neural Net. Implementation using:
 - Approx. Neurons
 - Approx. Memory

Methodology (2/4)

- Approximate Neuron
 - Use of Approx. Adder

$$V_i(t) = V_i(t-1) + \sum_j w_{ij} x_j(t-1) - \lambda$$

Approximate Memory

Undervolting

Power-gating

Methodology (3/4)

Example of Undervolting operation in memory

Bit-flips resulting from reduced voltage operation

Methodology (4/4)

Example of Undervolting & Power-gating operation in memory

Dynamic quantization by the power-gating

- Research Introduction
- Methodology
- Evaluation
- Conclusion

Evaluation: Setup (1/2)

- Memory Configurations
 - Split memory into 4 layers
 - Undervolting or power-gating each layer separately
- Synaptic weights are quantized to 8-bits and divided into 2-bits each

Evaluation: Setup (2/2)

- Spiking Neural Net. config. = [784 : 48 : 10]
 - Dataset: MNIST
- Power assessment tool = PrimeTime from Synopsys

Evaluation: Result (1/4)

Normal Operation (Only use of Acc. or Approx. Adders [1])

		Adder Name	Accuracy (%)	Energy per Neuron (nJ)	Area Reduction per Neuron (%)
		ACC (Accurate)	94.8	4.039	-
Approx Adders	_[5QT	94.3	3.976	1.59
		5QC	94.0	3.942	2.93
	<	5L8	94.1	3.036	9.94
	<	5RP	93.3	3.192	17.31
		5RL	93.5	3.328	17.13
		5KB	94.5	3.604	9.41
		5SV	83.0	3.668	10.67
	_[5YE	41.4	2.919	24.14

Acc. decreases 0.7%

- ~24.8% less energy
- ~9.9% smaller area

Acc. decreases 1.5%

- ~20.9% less energy
- ~17.3% smaller area

Evaluation: Result (2/4)

• The transformation with the **Undervolting** technique Reduce ~31% energy while

Evaluation: Result (3/4)

The transformation with the Undervolting & Power-gating techniques

Evaluation: Result (4/4)

Comparison results between our hardware and prior works for MNIST

Model Name	Acc.(%)	Arch.	Tech.	Energy per SOP (pJ)	Energy per SOP (pJ) (in 14nm)
TrueNorth [2]	91.94	2D	28nm	26 (0.775V)	4.902
Loihi [3]	96	2D	14nm FinFET	23.6 (0.75V)	23.6
ODIN [4]	84.5	2D	28nm FD-SOI	8.4	1.078
NASH [<u>5</u>]	79.4	3D	45nm	11.3 (1.1V)	0.648
	94.8 ¹	3D	45nm	20.331	1.167 ¹
This work	93.9^{2}			13.28^2	0.762^{-2}
I IIIS WOLK	93.2^{3}			8.976 ³	0.515^3
	77.6 ⁴			8.374 ⁴	0.48^4

Case 1: $\{m_0, m_1, m_2, m_3\} = \{1.1V, 1.1V, 1.1V, 1.1V\}$ (with ACC)

Case 2: $\{m_0, m_1, m_2, m_3\} = \{1.1V, 0.8V, 0.8V, 0.8V\}$ (with 5KB)

Case 3: $\{m_0, m_1, m_2, m_3\} = \{0.825V, 0.825V, 0.825V, 0V\}$ (with 5YE)

⁴ Case 4: $\{m_0, m_1, m_2, m_3\} = \{0.8V, 0.8V, 0.8V, 0V\}$ (with 5L8)

- Research Introduction
- Methodology
- Evaluation
- Conclusion

Conclusion

- Spiking Neural Net. was implemented using approximate neurons and approximate memory.
 - Neurons => Approximate Adders
 - Memory => Undervolting and Power Gating
- The approximate neurons reduced energy consumption by up to 24.8% per neuron with a 0.7% accuracy loss.
- Combining approximate neurons and approximate memory reduced energy consumption by 55.9% with a 1.6% accuracy loss.
- Future work is to optimize the approximate combinations of neurons and memory for energy-optimal Spiking Neural Net.

References

- [1] V. Mrazek, et. al., "Evoapprox8b: Library of approximate adders and multipliers for circuit design and benchmarking of approximation methods," in Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017. IEEE, 2017, pp. 258–261.
- [2] F. Akopyan, et al., "Truenorth: Design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip," IEEE Transactions on computer-aided design of integrated circuits and systems, vol. 34, no. 10, pp. 1537–1557, 2015.
- [3] M. Davies, et al., "Loihi: A neuromorphic manycore processor with on-chip learning," IEEE Micro, vol. 38, no. 1, pp. 82–99, 2018.
- [4] C. Frenkel, et al., "A 0.086-mm^2 12.7pJ/SOP 64k-synapse 256-neuron online-learning digital spiking neuromorphic processor in 28nm CMOS," IEEE Transactions on biomedical circuits and systems, vol. 13, no. 1, pp. 145–158, 2018.
- [5] O. M. Ikechukwu, et al., "On the design of a fault-tolerant scalable three dimensional NoC-based digital neuromorphic system with on-chip learning," IEEE Access, vol. 9, pp. 64331–64 345, 2021.

Thank you for your attention!