

proof of invertible ideals are projective

Canonical name ProofOfInvertibleIdealsAreProjective

Date of creation 2013-03-22 18:35:51 Last modified on 2013-03-22 18:35:51

Owner gel (22282) Last modified by gel (22282)

Numerical id 5

Author gel (22282) Entry type Proof

Classification msc 16D40 Classification msc 13A15 We show that a nonzero fractional ideal $\mathfrak a$ of an integral domain R is invertible if and only if it is http://planetmath.org/ProjectiveModuleprojective as an R-module.

Let \mathfrak{a} be an invertible fractional ideal and $f: M \to \mathfrak{a}$ be an epimorphism of R-modules. We need to show that f has a right inverse. Letting \mathfrak{a}^{-1} be the inverse ideal of \mathfrak{a} , there exists $a_1, \ldots, a_n \in \mathfrak{a}$ and $b_1, \ldots, b_n \in \mathfrak{a}^{-1}$ such that

$$a_1b_1 + \dots + a_nb_n = 1$$

and, as f is onto, there exist $e_k \in M$ such that $f(e_k) = a_k$. For any $x \in \mathfrak{a}$, $xb_k \in \mathfrak{a}\mathfrak{a}^{-1} = R$, so we can define $g \colon \mathfrak{a} \to M$ by

$$g(x) \equiv (xb_1)e_1 + \dots + (xb_n)e_n.$$

Then

$$f \circ g(x) = (xb_1)f(e_1) + \dots + (xb_n)f(e_n) = x(b_1a_1 + \dots + b_na_n) = x,$$

so g is indeed a right inverse of f, and \mathfrak{a} is projective.

Conversely, suppose that \mathfrak{a} is projective and let $(a_i)_{i\in I}$ generate \mathfrak{a} (this always exists, as we can let a_i include every element of \mathfrak{a}). Then let M be a module with free basis $(e_i)_{i\in I}$ and define $f\colon M\to \mathfrak{a}$ by $f(e_i)=a_i$. As \mathfrak{a} is projective, f has a right inverse $g\colon \mathfrak{a}\to M$. As e_i freely generate M, we can uniquely define $g_i\colon \mathfrak{a}\to R$ by

$$g(x) = \sum_{i \in I} g_i(x)e_i,$$

noting that all but finitely many $g_i(x)$ must be zero for any given x. Choosing any fixed nonzero $a \in \mathfrak{a}$, we can set $b_i = a^{-1}g_i(a)$ so that

$$g_i(x) = a^{-1}g_i(ax) = a^{-1}xg_i(a) = b_ix$$

for all $x \in \mathfrak{a}$, and b_i must equal zero for all but finitely many i. So, we can let \mathfrak{b} be the fractional ideal generated by the b_i and, noting that $xb_i = g_i(x) \in R$ we get $\mathfrak{ab} \subseteq R$. Furthermore, for any $x \in R$,

$$x = a^{-1}f \circ g(ax) = \sum_{i} a^{-1}g_i(ax)f(e_i) = \sum_{i} xb_i f(e_i) \in \mathfrak{ba}$$

so that $R \subseteq \mathfrak{ab}$, and \mathfrak{b} is the inverse of \mathfrak{a} as required.