Uber data Engineering project

Project Summary

In this project, I successfully built a data engineering pipeline using **Pandas**, **Google Cloud**, **Mage**, **BigQuery** and **LookerStudio**. The key steps included:

- Data Cleaning & Transformation: Removed duplicates and created structured dimensions such as date, time, day, month, pick hours, etc.. using Pandas.
- Data Modeling: Designed a data modeling structure for dimensional analysis.
- Cloud Integration: Set up an instance on Google Cloud and used Mage to build an automated data pipeline.
- **Data Export & Processing:** Exported the transformed data to BigQuery using the configure credentials.
- Data Merging & Visualization: Merged multiple tables and imported the final dataset into Looker Studio for visualization and insights.

This project streamlined data processing, storage, and visualization, making it more efficient and scalable.

Transform Data using pandas

Uber data cleaning

```
import pandas as pd #Import pandas df = pd.read_csv('uber_data.csv') #read
csv file via pandas df.head() #fetch the first five rows df.info() #information
all the dataset
pickup and dropoff date are not correct data type so we can use the pandas datatime
df['tpep_pickup_datetime'] = pd.to_datetime(df['tpep_pickup_datetime'])
df['tpep_dropoff_datetime'] = pd.to_datetime(df['tpep_dropoff_datetime'])
df.info()
datetime_dim =
df[['tpep_pickup_datetime','tpep_dropoff_datetime']].drop_duplicates()
.reset_index(drop=True)
datetime_dim['pick_hour'] =
datetime_dim['tpep_pickup_datetime'].dt.hour
datetime_dim['pick_day'] = datetime_dim['tpep_pickup_datetime'].dt.day
datetime_dim['pick_month'] =
datetime_dim['tpep_pickup_datetime'].dt.month
datetime_dim['pick_year'] =
datetime_dim['tpep_pickup_datetime'].dt.year
datetime_dim['pick_weekday'] =
datetime_dim['tpep_pickup_datetime'].dt.weekday
datetime_dim['drop_hour'] =
datetime_dim['tpep_dropoff_datetime'].dt.hour
datetime_dim['drop_day'] =
datetime_dim['tpep_dropoff_datetime'].dt.day
datetime_dim['drop_month'] =
datetime_dim['tpep_dropoff_datetime'].dt.month
datetime_dim['drop_year'] =
{\tt datetime\_dim['tpep\_dropoff\_datetime'].dt.year}
datetime_dim['drop_weekday'] =
datetime_dim['tpep_dropoff_datetime'].dt.weekday
datetime_dim['datetime_id'] = datetime_dim.index
datetime_dim[['datetime_id','tpep_pickup_datetime','pick_hour','pick_d
ay','pick_month','pick_year','pick_weekday','tpep_dropoff_datetime',
```



```
'drop_hour','drop_day','drop_month','drop_year','drop_weekday']]
passenger_count_dim =
df[['passenger_count']].drop_duplicates().reset_index(drop=True)
passenger_count_dim['passenger_count_id'] = passenger_count_dim.index
passenger_count_dim =
passenger_count_dim[['passenger_count_id','passenger_count']]
trip_distance_dim =
df[['trip_distance']].drop_duplicates().reset_index(drop=True)
trip_distance_dim['trip_distance_id'] = trip_distance_dim.index
trip_distance_dim =
trip_distance_dim[['trip_distance_id','trip_distance']]
passenger_count_dim
rate_code_type = {
    1: 'Standard rate',
    2: 'JFK',
    3: 'Newark',
    4: 'Nassau or Westchester',
    5: 'Negotiated fare',
    6: 'Group ride'
}
rate_code_dim =
df[['RatecodeID']].drop_duplicates().reset_index(drop=True)
rate_code_dim['rate_code_id'] = rate_code_dim.index
rate_code_dim['rate_code_name'] =
rate_code_dim['RatecodeID'].map(rate_code_type)
rate_code_dim =
rate_code_dim[['rate_code_id','RatecodeID','rate_code_name']]
rate_code_dim
pickup_location_dim =
df[['pickup_longitude','pickup_latitude']].drop_duplicates().reset_ind
ex(drop=True)
pickup_location_dim['Pickup_location_id'] = pickup_location_dim.index
pickup_location_dim =
pickup_location_dim[['Pickup_location_id','pickup_latitude','pickup_lo
ngitude'll
dropoff_location_dim =
df[['dropoff_longitude','dropoff_latitude']].drop_duplicates().reset_i
ndex(drop=True)
dropoff_location_dim['drop_location_id'] = dropoff_location_dim.index
dropoff_location_dim =
dropoff_location_dim[['drop_location_id','dropoff_longitude','dropoff_
latitude']]
```



```
payment_type_name = {
    1: "Credit card", 2:
    "cash", 3: "No
    charge",
                    4:
    "Dispute",
                    5:
    "Unknown",
                    6:
    "Voided trip"
payment_type_dim =
df[['payment_type']].drop_duplicates().reset_index(drop=True)
payment_type_dim['payment_type_id'] = payment_type_dim.index
payment_type_dim['payment_type_name'] =
payment_type_dim['payment_type'].map(payment_type_name)
payment_type_dim =
payment_type_dim[['payment_type_id','payment_type','payment_type_name'
11
payment_type_dim
fact_table = df.merge(passenger_count_dim, on='passenger_count')\
                .merge(trip_distance_dim, on='trip_distance')\
                .merge(rate_code_dim, on='RatecodeID')\
                .merge(pickup_location_dim,
on=['pickup_longitude','pickup_latitude'])\
                  .merge(dropoff_location_dim,
      on=['dropoff_longitude','dropoff_latitude'])\
                 .merge(datetime_dim,
 on=['tpep_pickup_datetime','tpep_dropoff_datetime'])\
                .merge(payment_type_dim, on='payment_type')\
                [['VendorID','datetime_id','passenger_count_id',
'trip_distance_id','rate_code_id','store_and_fwd_flag','Pickup_locatio
n_id','drop_location_id','payment_type_id',
'fare_amount','extra','mta_tax','tip_amount','tolls_amount','improveme
nt_surcharge','total_amount']]
fact table
```


Data Modeling

Set up an instance

VM Connect to Mage

Mage to build an automated data pipeline.

· Created Data Loader File to Load Data

· Data Export to BigQuery using the configure credentials .

· Data Tables

Merged multiple tables

