Efficient Algorithms for the Longest Path Problem

Ryuhei UEHARA (JAIST)
Yushi UNO (Osaka Prefecture University)

- Finding a longest (vertex disjoint) path in a given graph
- Motivation (comparing to Hamiltonian path):
 - ... Approx. Algorithm, Parameterized Complexity
 - ... More practical/natural
 - ... More difficult(?)

- Known (hardness) results;
 - We cannot find a path of length n-n^ε in a given Hamiltonian graph in poly-time unless P=NP [Karger, Motwani, Ramkumar; 1997]
 - We can find O(log n) length path [Alon, Yuster, Zwick;1995]
 (⇒O((log n/loglog n)²) [Björklund, Husfeldt; 2003])
 - Approx. Alg. achieves O(n/log n) [AYZ95]
 (⇒O(n(loglog n/log n)²)[BH03])
 - Exponential algorithm [Monien 1985]

- Known polynomial time algorithm;
- Dijkstra's Alg.(196?): Linear alg. for finding a longest path in a tree;

- Known polynomial time algorithm;
- Dijkstra's Alg.(196?): Linear alg. for finding a longest path in a tree;

- Known polynomial time algorithm;
- Dijkstra's Alg.(196?): Linear alg. for finding a longest path in a tree;

- Known polynomial time algorithm;
- > Dijkstra's Alg.(196?): Linear alg. for finding a longest path in a tree;

πιτρ://www.jaist.ac.jp/~uehara/ps/longest.pdf

Approaches to the Efficient Algs to Longest Path Problem

- Extension of the Dijkstra's algorithm
 - Weighted trees (linear), block graphs (linear), cacti $(O(n^2))$.

(ISAAC 2004)

- Graph classes s.t. Hamiltonian Path can be found in poly time
 - Some graph classes having interval representations (bipartite permutation, interval biconvex graphs)

(ISAAC 2004)

- 3. Dynamic programming to the graph classes that have tree representations (on going)
 - Cacti(linear), ...

Approaches to the Efficient Algs to Longest Path Problem

- Extension of the Dijkstra's algorithm
 - \rightarrow Weighted trees (linear), block graphs (linear), cacti (O(n^2)).

(ISAAC 2004)

- Graph classes s.t. Hamiltonian Path can be found in poly time
 - Some graph classes having interval representations (bipartite permutation, interval biconvex graphs)

(ISAAC 2004)

- 3. Dynamic programming to the graph classes that have tree representations (on going)
 - Cacti(linear), ...

Bulterman et.al. (*IPL*,2002) showed that the correctness of Dijkstra's alg stands for;

- 1. For each u,v,
 length of the shortest path between u and v
 = length of the longest path between u and v
- 2. For each u,v,w, $d(u,v) \leq d(u,w) + d(w,v)$
- 3. For each u,v,w, d(u,v) = d(u,w) + d(w,v) if and only if w is on the unique path between u and v

Construct G'=(V',E') from G=(V,E) s.t.:

- > V⊆ V'
- For each u,v∈V,
 length of the shortest path between u,v on G'
 = length of the longest path between u,v on G
- For each $u,v \in V$, the shortest path between u,v on G' is unique

Theorem: ExDijkstra finds a longest path if *G* and *G'* satisfy the conditions.

ExDijkstra: G=(V,E) and G'=(V',E')

- 1. pick any vertex w in V;
- find $x \in V$ with max $\{d(w,x)\}$ on G';
- 3. find $y \in V$ with max $\{d(x,y)\}$ on G';
- 4. x and y are the endpoints of the longest path in G, and d(x,y) on G' is its length.

1. Ex of Dijkstra's Alg (Summary)

Theorem: Vertex/edge weighted tree (linear)

Theorem: Block graph (O(|V|+|E|))

Theorem: Cactus $(O(|V|^2))$

Cactus:

Each block is a cycle

Two cycle share at most one vertex which is a separator

http://www.jaist.ac.jp/~uehara/ps/longest.pdf

Graph classes s.t. Hamiltonian Path can be found in poly time

Fact 1:

Hamiltonian Path is NP-hard on a chordal graph. (In fact, strongly chordal split graph[Müller, 1997].)

Fact 2:

Hamiltonian Path is solvable on an interval graph in linear time. [Damaschke, 1993].

Our goal:

Poly-time algorithm for Longest Path on an interval graph.

An interval graph G=(V,E) has an interval representation s.t. {u,v}∈E iff I_µ∩ I_ν≠ φ

Interval Graphs

An interval graph G=(V,E) has an interval representation s.t. {u,v}∈E iff I_u∩I_v≠ φ

Longest Path: ????

⇒ Restricted interval graphs...

 An interval biconvex graph G=(S∪Y,E) has an interval representation s.t...

S: integer points

- Interval biconvex graph G=(SUY,E) is introduced [Uehara, Uno; 2004] from graph theoretical viewpoints;
 - Natural analogy of biconvex graphs (bipartite graph class)
 - Generalization of proper interval graphs
 - Generalization of threshold graphs
 - Best possible class longest path can be found in poly time...

- Find the trivial longest path P on G[Y];
- Embed the vertices in S into P as possible;
- Adjust endpoints if necessary.

- Find the trivial longest path P on G[Y];
- Embed the vertices in S into P as possible;
- Adjust endpoints if necessary.

- Find the trivial longest path P on G[Y];
- Embed the vertices in S into P as possible;
- Adjust endpoints if necessary.

- Find the trivial longest path P on G[Y];
- Embed the vertices in S into P as possible;
- Adjust endpoints if necessary.

- Find the trivial longest path P on G[Y];
- Embed the vertices in S into P as possible;

Embed the vertices in S into P as possible;

Embed the vertices in S into P as possible;

- Longest Path on an interval graph??
 - Combination of *DP/Dijkstra* and *weighted* maximum matching on MPQ-tree representation?
 - Related to the following open problem?
 Hamiltonian Path with a start point on an interval graph?
 [Damaschke, 1993].
- Extension to
 - Longest cycle on some graph classes
 - Hamiltonian cycle/path on some graph classes