Assignment #1 (35 points, weight 5%) Due: Wednesday September 28, 9:30PM

The assignment is to be uploaded on blackboard electronically (you may type or write by hand legibly and scan it). Only a single PDF file is accepted.

Late submission is accepted from 1 min late up to 24 hs for 30% off (i.e. your mark is multiplied by 0.7).

- 1. (2 marks) Given an *n*-element array A, Algorithm X executes an *O*(*n*)-time computation for each even number in A and an *O*(*log n*)-time computation for each odd number in A.
 - (a) What is the best-case running time of Algorithm X?
 - (b) What is the worst-case running time of Algorithm X?
- 2. (9 marks) Use the definition of "f(n) is O(g(n))" to prove the following statements.

(a)
$$f(n) = 7n^3 + 3n^2 - 2n + 100$$
 is $O(n^3)$.

(b)
$$f(n) = (n^2 + 1)/(n + 1)$$
 is $O(n)$.

(c)
$$f(n)=n!$$
 is $O(n^n)$.

(d)
$$f(n) = log_2 n$$
 is $O(log_{10} n)$.

(e)
$$f(n) = n^3$$
 is not $O(100n^2)$. [=

(f)
$$f(n) = 2^{n+1}$$
 is $\Theta(2^n)$

- 3. Given an array, A, of n integers, give an O(n)-time algorithm that finds the longest subarray of A such that all the numbers in that subarray are in sorted order. Your algorithm outputs two integers: the initial and final indices of the longest subarray.
 - (a) (4 marks) Give the algorithm pseudocode.

(b) (1 mark) Justify your big-Oh (1 mark).

A solution that uses extra memory that is in O(1) is worth 100%; if you use $\Theta(n)$ extra memory your solutions is worth 80%.

Example: If n = 10 and A = [8,6,7,10,-2,4,5,6,2,5] then the algorithm outputs 4 and 7, since A[4..7] = [-2, 4, 5, 6] is the longest sorted subarray.

- 4. Suppose you are given a sorted array, A, of n distinct integers in the range from 1 to n+1, so there is exactly one integer in this range missing from A. Give an O(log n)-time algorithm for finding the integer in this range that is not in A. Hint: the algorithm resembles binary search
 - (a) (4 marks) Give the algorithm pseudocode.
 - (b) (1 mark) Justify your big-Oh (1 mark).
- 5. (4 marks) Fill a table showing a series of following queue operations and their effects on an initially empty queue *Q* of integer objects. Here *Q* is implemented with an Array of size 7.

Operation	Output Q
enqueue (4)	4, -, -, -, -, -
dequeue ()	<4> -, -, -, -, -, -
dequeue ()	<error message=""> -, -, -, -, -, -</error>
enqueue (44)	-, 44, -, -, -, -, -
enqueue (7)	-, 44, 7, -, -, -, -
enqueue (6)	-, 44, 7, 6, -, -, -
dequeue ()	<44> -, -, 7, 6, -, -, -
isEmpty()	Return False -, -, 7, 6, -, -, -
enqueue (3)	-, -, 7, 6, 3, -, -
enqueue(5)	-, -, 7, 6, 3, 5, -
dequeue ()	Return 7 -, -, -, 6, 3, 5, -

dequeue ()	Return 6, -, -, -, -, 3, 5, -
dequeue ()	Return 3, -, -, -, -, 5, -
dequeue ()	Return 5, -, -, -, -, -, -
enqueue(32)	-, -, -, -, -, 32
enqueue(39)	39, -, -, -, -, 32
enqueue(9)	39, 9, -, -, -, -, 32
size()	Return 3. (7-6+2) mod 7. 39, 9, -, -, -, -, 32
enqueue (32)	39, 9, 32, -, -, -, 32
size()	"Return 4" (7-6+3) mod 7. 39, 9, 32, -, -, -, 32
dequeue ()	"Return 32" 39, 9, 32, -, -, -, -
enqueue (6)	39, 9, 32, 6, -, -, -
enqueue (5)	39, 9, 32, 6, 5, -, -
Dequeue ()	Return 39 -, 9, 32, 6, 5, -, -
front()	Return 9
size()	Return 4. (7-5+1)mod 7
enqueue (9)	-, 9, 32, 6, 5, 9, -

- 6. (2 marks) Give an example of a positive function f(n) such that f(n) is neither $O(n^2)$ nor $O(n^2)$. Explain both assertions.
- 7. (3 marks) Give a big-Oh characterization, in terms of *n*, of the running time of the following method. Show your analysis!

```
public void Ex(int n)
int a = 1;
for (int i = 0; i < n*n; i++)
  for (int j = 0; j <= i; j++)
    if( a <= j)
        a = i;
}</pre>
```

- 8. Give a big-Oh characterization (in terms of the number *n* of elements stored in the queue) of the running time of the following methods. Show your analysis!
 - (a) (4 marks) Describe how to implement the queue ADT using two stacks. That is: write pseudocode algorithms which implement the *enqueue()* and *dequeue()* methods of the queue using the methods of the stack.
 - (b) (1 mark) What are the running times of your dequeue() and enqueue() algorithms?

```
(SI 2110.
 Assignment 1
  STId 8136867
                                                                 assume algorithm x \Rightarrow runing time of f(x)
              (a). The best case running time of f(x) is constant. For army has no element
                      in it. It denotes as \Omega(G(n)) = C. \text{ or } O(1).
                     The worse case running time, of t(x) is O(n). For algorithm runs at { O(logh) ev
                      we can conclude the worse running case obtain when array
                      has both odd and even number. Thus the T(f(x)) = O(n) + O(tog)
             2. prove with I(n) is O(g(n)).
                                                                            ()(T(n)) = ()(n).
                 (00 to prove (f(n) = 7n3+3n2-2n+(00 is O(n3))
                     We assume exist such a sweetingers = cn3 that satisfy a constant c and
               no suchThatf(n) = 7 n3+ 3n2-2n+100 ≤ c n3. For all n ≥ no and c 70.
                                      Hypothesis Tn3+3n2-2n+100 < Cn3 any C > 1 satisfied
                     2n^{3} \ge 2n. If f(n) \le 7n^{3} + 3n^{3} + 2n^{3} + 100n^{3} = 112n^{3} for all n \ge 1.

Since c = |13 \text{ and } n \ge 1 \Rightarrow f(n) = O(n^{3}).
                 (b). To prove O(f(n)) = (n2+1)/(n+1) is O(n).
                   We assume exist such a function gox) = (n+1) that satisfy a constant c and
               no such that: Hypothesis. f(n) = (n2+1) (n+1) < cn . for all n = no. CZO.
                        Since. \frac{n^2+1}{n+1} \leq C \cdot (n+1) \Rightarrow n^2+1 \leq C \cdot (n+1)^2
when C = 1
\Rightarrow n^2+1 \leq C \cdot (n^2+2n+1)
                            : n2+1 < n2+ 2n+1) so C=1 and no D O((n)) = (n2+1)/(n+1) is O(g)
                            O(g(n)) = O(n^2 + 2r + 1) = O(n^2)
                                            The statement is true, there exist avalue c that kn = Organ
              o. (() to prove O (fin) = n! is O(nn).
```

we assume exist such a sunction $g(x) = C n^n$ that satisfy two constant c and ho. such that: f(n) = n! \le c n for all n \ge no. and n \ge 0

Since $h(n!) = I_1 j = 1$ $h_1 j$ assume: $= \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_{-\infty}^{\infty} \ln x \, dx$ $n! = \begin{cases} 1 & \forall n = 0. \end{cases} \rightarrow n \cdot nn - (n+1) \leq \ln c + n \cdot \ln(n). \\ \rightarrow n \cdot (n+1) \leq \ln c. \\ n \cdot (n+1)! & \exists \ln c. \end{cases} \rightarrow n \cdot n = 0.$

The function f(n) is O(gan) is and only when C> e for arbitary no spinc -1.

we assume there is a function $g(n) = 0.10g(0^n)$ that satisfy two constant c and no is greater or equal to 1. such that O(2n) > O(g(n))

Since: $\log_{2} n \leq c \log_{10} n$ $\Rightarrow \frac{\log_{2} n}{\log_{n} 2} \leq \frac{c}{\log_{10} n} + \text{ we assume } 2^{b} = t0$ $\log_{10} a = \log n$ $\Rightarrow \frac{\log_{10} n}{\log_{10} 2} \leq \frac{c}{\log_{10} n} + \log_{10} n \leq \log_{10} n$ $\Rightarrow \log_{10} 2 \leq \frac{c}{\log_{10} n} \leq \log_{10} n$ $\Rightarrow \log_{10} 2 \leq \frac{c}{\log_{10} n} \leq \log_{10} n$ $\Rightarrow \log_{10} 2 \leq \frac{c}{\log_{10} n} \leq \log_{10} n$ $\Rightarrow \log_{10} 2 \leq \frac{c}{\log_{10} n} \leq \log_{10} n$ $\Rightarrow \log_{10} 2 \leq \frac{c}{\log_{10} n} \leq \log_{10} n$ $\Rightarrow \log_{10} 2 \leq \frac{c}{\log_{10} n} \leq \log_{10} n$ $\Rightarrow \log_{10} 2 \leq \frac{c}{\log_{10} n} \leq \log_{10} n$ $\Rightarrow \log_{10} 2 \leq \frac{c}{\log_{10} n} \leq \log_{10} n$ $\Rightarrow \log_{10} 2 \leq \frac{c}{\log_{10} n} \leq \log_{10} n$ $\Rightarrow \log_{10} 2 \leq \frac{c}{\log_{10} n} \leq \log_{10} n$ $\Rightarrow \log_{10} 2 \leq \frac{c}{\log_{10} n} \leq \log_{10} n$ $\Rightarrow \log_{10} 2 \leq \frac{c}{\log_{10} n} \leq \log_{10} n$ $\Rightarrow \log_{10} 2 \leq \frac{c}{\log_{10} n} \leq \log_{10} n$ $\Rightarrow \log_{10} 2 \leq \frac{c}{\log_{10} n} \leq \log_{10} n$ $\Rightarrow \log_{10} 2 \leq \frac{c}{\log_{10} n} \leq \log_{10} n$ $\Rightarrow \log_{10} 2 \leq \frac{c}{\log_{10} n} \leq \log_{10} n$ $\Rightarrow \log_{10} 2 \leq \log_{10} n$ $\Rightarrow \log_{10$

b.- log20 = 3. 321928 · € C.

thand only if when C is a $C \ge 3.321928 = log_2$ to. But if and only if when $log_2 \ge 0$ thought

(e). Prove fon) = n3. is not. O(100 n2).

proving with method of negation \Rightarrow prove such that $f(n) = n^3$ is $O(100n^2)$. \Rightarrow we assume there is aduptation $g(n) = .700n^2$ that satisfy two. constant $c \ge 1$ $n \ge n_0$ such that

 $f(n) \ge c (00n^{2})$ $\Rightarrow n^{3} \ge c (00n^{2})$ $\Rightarrow n \ge c (00)$

 $\therefore C = \frac{h}{100}.$

Y no> no. O (100 n²) > O (fcn).

:. thus the statement ideate the condition. for :. $O(\mathcal{G}(n)) \gg O(100n^2)$.

```
(1). f(n) = 2^{n+1} prove is \Theta(2^n).
   we assume. There exist a function (19(n) < f(n) 3 (29(n) . for 9(n) = 2".
  Such that exist a constant c_i and m_0 that is C \geq 0 and m_0 \geq 1 since. c_1 \geq 2^{n+1} \leq c_2 \geq 2^n c_2 \leq 2^{n+1} \leq c_2 \geq 2^n
     In CHMog 2 < Cn+1) Page & Page2 +11Pag2
      => logC1+h < (n+1) < logC2+h.
                                           inconduction. There exist two constant C, and
                                                         that satisfy Cigar) $1/n) $C29(n)
        for C1 = 1 and C2 = 2. for abortary no >1.
                                                           9(n) = f(n) = 29(n).
                                                       so [f(n)] = 2g(n) \mathcal{L}(f(n)) = \omega(2^n)

[f(n)] = g(n) \mathcal{L}(f(n)) = \omega(2^n)
3. (a) find the largest subarray - Pseudocode.
        algorth X. (Array size of N A)
          In F=0 MS=0 3 1=0 J=0 S=0 E=0
          2. for k \leftarrow 1 to M. (b) \rightarrow line 2 N from tine 3 to 15 has
          3. |if(ACK-I] < a(K) total runtime of 12.
                 lifif (. F! = 1). So the total runtime is.
                 if (k = N - 1) And the running time Complexity of.

P = N - 1: this function X is O(f_n) = (2n) = O(n).
                else
                1 1f(F = = 1)
                       end = k - 1.
                          F = 0.
                if (Ms < e-s)
                   Ms = e - S.
```

16 return . i and j

j = e.