运筹学课程作业

石雨凌 2018111442

1 选择题

试题 1.1 (选择题). 互为对偶的两个问题的解一定存在关系_____.

- A. 一个问题有无界解, 另一个问题无可行解
- B. 原问题无可行解, 对偶问题也无可行解
- C. 若最优解存在, 最优解相同
- D. 一个问题无可行解, 另一个问题有无界解

解答 1.1. C, 原问题和对偶问题解的关系如图1, 无可行解和无界解中有多种对应可能.

	一个问题max	2	另一个问题min	
	有最优解	-	有最优解	强对偶性
无最优解	无最优解	-	无最优解	强对偶性
	无界解 (有可行解)	-	无可行解	弱对 偶性
	无可行解		无界解 (有可行解)	
应用	已知最优解	通过解方程	求最优解	互补松 弛定理

图 1: 原问题与对偶问题关系

2 判断题

试题 2.1 (判断题). 单纯形法中, 人工变量一旦出基就不会再进基, 任何变量一旦出也不会再进基.

解答 2.1. 错. 人工变量出基后, 到达原问题可行域, 所以不会再进基. 在 G.B.Dantzig 原本提出的进基准则中, 粗略选取最大检验数对应的基变量进基, 但目标函数的变化还与置换出基变元的产出系数有关, 所以可能反复进出基.

3 第三部分: 论文学习笔记

在"判断题"中,我们提到变量出基后可能又再进基;另外在出现退化的解的情形中,可能出现在有限次迭代求不出最优解的情况.现试图寻找一种能够有更佳迭代效果的单纯形法改进.

3.1 算法设计

考虑线性规划问题

$$\max \quad f = c^{T} x$$

$$s.t. \quad Ax = b$$

$$x \ge 0, b \ge 0$$
(1)

在单纯形迭代步骤中, 设 \boldsymbol{B} , \boldsymbol{N} 分别是系数矩阵的基与非基子矩阵, 记判别数 $\boldsymbol{\sigma} = \boldsymbol{c} - \boldsymbol{c}_B \boldsymbol{B}^{-1} \boldsymbol{A}$, 记 \vec{a}_{il} 为矩阵 $\boldsymbol{B}^{-1} \boldsymbol{N}$ 的元素, \bar{b}_i 为向量 $\boldsymbol{B}^{-1} b$ 的分量, 我们选取

$$\sigma_l = \max_{1 \le j \le n} \left\{ \sigma_j | \sigma_j > 0 \right\}$$

$$\theta_k = \min_{1 \le i \le m} \left\{ \theta_i = \frac{\bar{b}_i}{a_{il}} | \bar{a}_{il} > 0 \right\}$$

对应的 l 和 k 分别作为枢轴列和枢轴行 [1]. 关于目标函数的变化我们有如下定理:

定理 3.1. 在单纯形法迭代中 l 和 k 分别作为枢轴列和枢轴行迭代后, 新的目标函数值满足

$$f' = f_0 + \theta_k \sigma_l \tag{2}$$

证明. 在基 $B = (P_1, \dots, P_{m-1}, P_n)$ 下, 我们有目标函数值

$$f' = (c_{1}, c_{2}, \dots, c_{n-1}, c_{1}) B^{-1}b$$

$$= (c_{1}, c_{2}, \dots, c_{n-1}, c_{1}) \begin{pmatrix} 1 & 0 & \cdots & 0 & -(B^{-1}P_{n})_{1} / (B^{-1}P_{n})_{m} \\ 0 & 1 & \cdots & 0 & -(B^{-1}P_{n})_{2} / (B^{-1}P_{n})_{m} \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 1 & -(B^{-1}P_{n})_{m-1} / (B^{-1}P_{n}) m \\ 0 & 0 & \cdots & 0 & 1 / (B^{-1}P_{n})_{m} \end{pmatrix} B^{-1}b$$

$$= \begin{pmatrix} c_{n} - \sum_{i=1}^{m-1} c (B^{-1}P_{n}) \\ c_{n}, c_{2}, \dots, c_{n-1}, \frac{c_{n}}{(B^{-1}P_{n})_{m}} \end{pmatrix} B^{-1}b$$

$$= \begin{pmatrix} c_{n} - \sum_{j=1}^{m} c (B^{-1}P_{n}) \\ 0, 0, \dots, 0, \end{pmatrix} B^{-1}b$$

$$= (c_{1}, c_{2}, \dots, c_{n-1}, c_{n}) B^{-1}b + \begin{pmatrix} 0, 0, \dots, 0, \frac{c_{n} - c_{n}B^{1}P_{n}}{(B^{-1}P_{n})_{m}} \end{pmatrix} B^{-1}b$$

$$= (c_{1}, c_{2}, \dots, c_{n-1}, c_{n}) B^{-1}b + (c_{n} - \omega B^{-1}P_{n}) \frac{(B^{-1}b)_{m}}{(B^{-1}P_{n})_{m}}$$

$$= f_{0} + \theta_{k}\sigma_{l}$$

由此可以看出,目标函数的变化不仅仅是取决于最大判别数 σ_l , 还与 θ_k 有关, 应该由任意非负判别数 σ_j 与相应的最小检验数比 θ_k 的乘积来确定. 因此, 为了使每一次迭代由最大增益, 提出选取 $\theta_k\sigma_l = \max_{1 \le j \le n} \{\theta_i\sigma_j | \sigma_j > 0\}$ 作为新的"**最大增量进基**"准则 [2], 由此确定新的迭代流程:

- 1) 计算判别数 $\sigma = c c_B B^{-1} A$, 判断是否达到最优解, 若否, 进行下一步.
- 2) 对每个满足 $\sigma_i > 0$ 的列号 j, 计算最小检验比 θ_i , 如果这样的最小检验比不存在, 则问题存在无界解, 算法结束; 否则 以 $\theta_k \sigma_l = \max_{1 \le j \le s_i} \{\theta_i \sigma_j | \sigma_j > 0\}$ 对应的 l 和 k 分别作为枢轴列和枢轴行, 进行迭代, 返回上一步骤.

3.2 算法检验

从理论上看, 新的"最大增量进基"准则保证了每一步迭代达到最大增量, 很可能会减少单纯形迭代次数, 但由于枢轴准则的设计计算更复杂, 计算效率是否会提高需要进行大规模的计算试验和比较. 高培旺 [3] 使用 Matlab V7.1 语言对经典单纯形法和改进的单纯形法进行了编程, 以比较经典单纯形算法和改进的单纯形算法的计算效率, 其结果如图2. 其中问题 air01, lp41, mod010 来自混合整数规划数据库 MIPLIB[4], 其余均来自线性规划数据库 NETLIB[5].

从图2可以看到,大部分问题中,新的单纯形枢轴准则一般比经典的单纯形算法所用的迭代次数少,但每一个问题所耗费的计算时间都要比经典的单纯形算法多.尤其是随着问题的决策变量数增多与规模增大,新的单纯形枢轴准则比经典的单纯形算法所用的计算时间更长,计算效率更低.另外,在整数规划的问题中,新的单纯形枢轴准则出现了无法收敛的问题.

算例	m	n	经典单纯形算法		新的单纯形算法	
			Iters	Time/s	Iters	Time/s
israel	174	142	350	0.901 287	161	1.378 459
share1b	117	225	377	0.658 369	314	0.725 773
sc205	205	203	255	0.817 704	199	1.417 328
beaconfd	173	262	171	0.477 737	171	0.616 937
lotfi	153	308	190	0.520779	172	0.918 730
brandy	220	249	611	2.246 787	568	2.838 146
e226	223	282	637	2.764 180	394	9.226 850
agg	488	163	159	2.453 161	152	3.723 015
scorpion	388	358	394	4.939 951	387	6.188 024
sctap1	300	480	768	6.688 500	659	12.332 99
air01	23	771	64	0.240495	*	*
agg2	516	302	190	3.467 716	167	15.008 57
scsd1	77	760	380	1.436 397	*	*
scagr25	471	500	971	15.456 88	892	32.356 64
lp41	85	1 086	628	3.423 115	580	7.999 950
mod010	146	2 655	1 706	25.215 48	*	*

注:* 表示该问题在执行了 2 000 次单纯形迭代后,仍然没有获得问题的解.

图 2: 经典单纯形算法和新的单纯形算法的计算比较

3.3 总结

在此"最大增量进基"准则改进的单纯形法中, 迭代次数有明显的减少, 但迭代次数的减少一般不能弥补选择枢轴的准则 所带来的计算复杂性, 在整数规划时还会出现无法收敛的问题, 故此方法未得到广泛运用.

参考文献

- [1] 赵可培. 运筹学 (第三版)[M]. 上海: 上海财经大学出版社, 2013:16-38.
- [2] 王全文, 吴育华, 吴振奎, 等. 单纯形法选择进出基变元的一个新准则 [J]. 数学的实践与认识,2009,39(14):75-81.
- [3] 高培旺. 关于"单纯形法选择进出基变元的一个新准则"的计算效率 [J]. 河南工程学院学报: 自然科学版,2012,24 (2):61-64.
- [4] Bixby R E, Ceria S, McZeal C M, et al. An updated mixed integer programming library: MIPLIB 3.0[J].Optima,1998,54(1):12-15.
- [5] Dongarra J, Golub G, Grosse E, et al. Netlib and NA-Net: building a scientific computing community[J].IEEE Annals of the History of Computing, 2008, 30(2):30-41.