

Aula 3: Medidas de desempenho

André C. P. L. F de Carvalho ICMC/USP andre@icmc.usp.br

Tópicos

- Tipos de erro
- Avaliação do desempenho preditivo
- Curvas ROC
- Testes de hipóteses

Classificação binária

- Duas classes: positiva (P) e negativa (N)
 - o Classe de interesse é a classe positiva
- Dois tipos de erro:
 - o Classificação de um exemplo da classe N como da classe P
 - Falso positivo (alarme falso)
 - Ex.: Diagnosticado alguém como doente, quando está saudável
 - o Classificação de um exemplo da classe P como da classe N
 - Falso negativo
 - Ex.: Diagnosticado como saudável, mas está doente

Classificação binária

Classificação binária

- Classe positiva
- Classe negativa

Desempenho preditivo

- Uma matriz de confusão (tabela de contingência) pode ser utilizada para distinguir os erros
 - Base de várias medidas de desempenho preditivo
 - Pode ser utilizada com 2 ou mais classes

<u>.</u>	Classe predita				
ade		1	2	3	
erd	1	25	0	5	
asse verdadeira	2	10	40	0	
Clas	3	0	0	20	

Exemplo

Matriz de confusão para 200 exemplos divididos em 2 classes

Medidas de avaliação

Taxa de FP (TFP) =
$$\frac{FP}{FP+VN}$$
 (Alarmes falsos)

Taxa de FN (TFN) =
$$\frac{FN}{VP + FN}$$

Erro do tipo I

Erro do tipo II

Medidas de avaliação

Taxa de FP (TFP) =
$$\frac{FP}{FP + VN}$$

Taxa de VP (TVP) = $\frac{VP}{FN + VP}$

Custo

Benefício

Exemplo

Avaliação de 3 classificadores

$$\frac{VP}{VP + FN} \quad \frac{FP}{FP + VN}$$

adeira	Classe predita				
ad	p	<u>n</u>			
Verdi 1	20	30			
Slasse Z	15	35			

Exemplo

Avaliação de 3 classificadores

$$\frac{VP}{VP + FN} \quad \frac{FP}{FP + VN}$$

ei.	Classe predita				
aq	p	<u> </u>			
verdadeira ح	20	30			
Classe N	15	35			

Classificador 1

$$TVP = 0.4$$

 $TFP = 0.3$

Classificador 2

$$TVP = 0.7$$

 $TFP = 0.5$

Classificador 3

$$TVP = 0.6$$

 $TFP = 0.2$

Medidas de avaliação

$$\frac{FP}{FP+VN}$$
 Taxa (TFP $\frac{FN}{VP+FN}$ Taxa (TFN

Taxa de falso positivo (TFP) = 1-TVN

 $\frac{VP}{VP + FP}$

 $\frac{VN}{VN + FN}$

Valor predito positivo (VPP), precisão

Valor predito negativo (VPN)

$$\frac{VP}{VP + FN}$$

$$\frac{VN}{VN + FP}$$

Taxa de verdadeiro positivo (TVP), Sensibilidade ou Revocação (Recall)

Taxa de verdadeiro negativo (TVN), especificidade

$$\frac{\mathit{VP} + \mathit{VN}}{\mathit{VP} + \mathit{VN} + \mathit{FP} + \mathit{FN}} \quad \text{Acurácia}$$

$$\frac{2}{1/\textit{prec.} + 1/\textit{revoc.}}$$
 Medida-F1

Acurácia

- Uma das mais usadas
- Taxa de objetos corretamente classificados
 - Trata as classes igualmente
 - Não é adequada para dados desbalanceados
 - Pode induzir modelo com baixa taxa de acerto para classe minoritária
 - o Geralmente mais interessante que a majoritária
 - Acurácia balanceada

Revocação X Precisão

- Revocação (recall)
 - o Porcentagem de exemplos positivos classificados como positivos
 - Nenhum exemplo positivo é deixado de fora
 - Todos são lembrados

- Porcentagem de exemplos classificados como positivos que são realmente positivos
 - Nenhum exemplo negativo é incluído
 - Não tem "intrusos"

$$\frac{\mathit{VP}}{\mathit{VP} + \mathit{FP}}$$

Sensibilidade X Especificidade

- Sensibilidade
 - o Porcentagem de exemplos positivos classificados como positivos
 - Igual a revocação
- Especificidade

$$\frac{VP}{VP + FN}$$

- o Porcentagem de exemplos negativos classificados como negativos
 - Nenhum exemplo negativo é deixado de fora
 - Todos são lembrados

$$\frac{VN}{VN + FP}$$

Medida-F

Média harmônica ponderada da precisão e da revocação

$$\frac{(1+\alpha)\times(prec\times rev)}{\alpha\times prec+rev}$$

- Medida-F1
 - Precisão e revocação têm o mesmo peso

$$\frac{2 \times (prec \times rev)}{prec + rev} = \frac{2}{1/prec + 1/rev}$$

Observação

Outras medidas

- Média geométrica de taxas positivas
 - \circ G-mean $\sqrt{precis\~ao} \times revoca\~c\~ao$
- Acurácia balanceada
- Kappa
- ...

Gráficos ROC

- Do inglês, Receiver operating characteristics
- Medida de desempenho originária da área de processamento de sinais
 - o Muito utilizada nas áreas médica e biológica
 - Mostra relação entre custo (TFP) e benefício (TVP)

Exemplo

• Colocar no gráfico ROC os 3 classificadores do exemplo anterior

Classificador 1

TFP = 0.3

TVP = 0.4

Classificador2

TFP = 0.5

TVP = 0.7

Classificador 3

TFP = 0.2

TVP = 0.6

Gráficos ROC

Gráficos ROC

- Classificadores discretos produzem um simples ponto no gráfico ROC
 - Árvores de decisão e conjuntos de regras
- Outros classificadores produzem uma probabilidade ou escore
 - o Redes neurais e naive bayes
- Curvas ROC permitem uma melhor comparação de classificadores
 - o São insensíveis a mudanças na distribuição das classes

Curvas ROC

- Mostram ROC para diferentes variações
- Classificadores que geram valores contínuos (threshold, probabilidade)
 - o Diferentes valores de *threshold* podem ser utilizados para gerar vários pontos
 - Ligação dos pontos gera uma curva ROC
- Classificadores discretos
 - Convertidos internamente ou usados em comitês

Área Sob a Curva ROC

Área sob a curva ROC (AUC)

- Fornece uma estimativa do desempenho de classificadores
- Gera um valor continuo no intervalo [0, 1]
 - Quanto maior melhor
 - Adição de áreas de sucessivos trapezóides
- Um classificador com maior AUC pode apresentar AUC pior em trechos da curva
- É mais confiável utilizar médias de AUCs

Área Sob Curvas ROC

Teste de hipótese

- Permite afirmar que uma técnica é melhor que outra com X% de confiança
- Podem assumir que os dados seguem uma dada distribuição de probabilidade
 - Paramétricos
 - Não paramétricos
- Número de técnicas comparadas
 - Duas
 - Mais que duas

Teste de hipótese

- Testes usados atualmente são baseados na verificação da hipótese nula
 - o Várias deficiências para uso em AM
 - Não geram probabilidades de ocorrência da hipótese nula e da hipótese alternativa
 - E de uma técnica ser melhor que outra
- Alternativa proposta em 2016
 - o Teste Bayesiano Hierárquico

Teste bayesiano hierárquico

Técnica da linha é X% melhor, Y% igual e Z% pior que a técnica da coluna

Probabilidade de ser: Melhor Igual Pior

Considerações Finais

- Desempenho preditivo
- Medidas
- Gráficos e curvas ROC
- Testes de hipóteses

Final da

Spresentação

