	-	_
ı	A	D
1	•	_

DRSAR/SA/N-51

DISTRIBUTION OF ANGLE OF OBLIQUITY OF LASER-GUIDED PROJECTILES WITH RESPECT TO THE TARGET AT IMPACT

GEORGE J. SCHLENKER RICHARD D. HEIDER

AUGUST 1976

Approved for public release; distribution unlimited.

US ARMY ARMAMENT COMMAND
Systems Analysis Directorate
ROCK ISLAND, ILLINOIS 61201

COPY AVAILABLE TO POG DOES NOT PERMIT FULLY LEGIBLE PRODUCTION

Destroy this report when no longer needed. Do not return it to the originator.

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position.

WARNING

Information and data contained in this document are based on input available at the time of preparation. Because the results may be subject to change, this document should not be construed to represent the official position of the US Army Development & Readiness Command unless so stated.

╮	REPORT DOCUMENTATION PAGE	BEFORE COMPLETING FORM			
/	1. REPORT NUMBER 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER			
1	DRSAR/SA/N-51				
ľ	4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED			
Ŋ	DISTRIBUTION OF ANGLE OF OBLIQUITY OF LASER -	(2)			
4	GUIDED PROJECTILES WITH RESPECT TO THE TARGET	Note - Final nate.			
	AT IMPACT.	6. PERFORMING ORG. REPORT NUMBER			
1	7. 4171076	8. CONTRACT OR GRANT NUMBER(*)			
	7. AUTHOR(s)	or contract or share homoeig-			
)	George J./Schlenker / Richard D./Heider /				
4	Alchard D., Helder				
	9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK			
	US Army Armament Command	AREA & WORK UNIT NUMBERS			
	Systems Analysis Directorate (DRSAR-SA)	<i>(12)</i> ,333 p.)			
	Rock Island, IL 61201				
	11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE			
	US Army Armament Command	August 1976			
	Systems Analysis Directorate (DRSAR-SA)	13NUMBER-OF PAGES			
1	Rock Island, IL 61201	338			
	14. MONITORING AGENCY NAME & ADDRESS(it different from Controlling Office)	15. SECURITY CLASS. (of this report)			
ı		UNCLASSIFIED			
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE			
	16. DISTRIBUTION STATEMENT (of this Report)	<u> </u>			
	, , ,				
	p				
		A.A.			
		so;			
	17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, If different to	en Report)			
	Approved for public release; distribution unlimited	1			
	Approved for public release, distribution unitarities	•			
I					
-	18. SUPPLEMENTARY NOTES				
1					
	19. KEY WORDS (Continue on reverse side if necessary and identify by block number,	· · · · · · · · · · · · · · · · · · ·			
		'			
	Terminal Guidance Impact Obliquity Flight Simulation Error/Accuracy Analysis				
Y	Guided Projectiles Laser Signatures *Terminal Effects Armored Target Models				
	Permitter Filects withouten terker moders				
1	20. ABC RACT (Continue on reverse side if necessary and identify by block number)				
1	Impact obliquity is defined as the angle between	een the longitudinal axis of			
-	the projectile and the surface normal (or perpendic				
- (the projectile first contacts a surface element of	the target.			

In this note the discussion is principally concerned with impact obliquity versus a T54/55 tank target and the factors which affect its statistical distribution.

The primary purpose of this study is to compute an overall or global probability distribution of impact obliquity for laser guided projectiles in a

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

409 577

PRAD INSTRUCTIONS

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered

o^{yff} V

· ··	and the second s
UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered))
typical scenario. Secondarily one wish several parameters on the distribution of the study methodology are estimates	es to determine the sensitivity of of obliquities. Important by-products
	;

UNCLASSIFIED

CONTENTS

<u> </u>	age
BACKGROUND	7
PURPOSES OF THE STUDY	7
PARAMETER OF THE INTEREST	7
STUDY METHODOLOGY	9
DESIGN OF COMPUTER EXPERIMENTS	11
WEIGHTING OF EXPERIMENTAL RESULTS	17
RESULTS OF COMPUTER EXPERIMENTS	17
Guidance Accuracy	17
Impact Speed	23
Angle of Attack	25
Impact Obliquity	25
VERIFICATION OF COMPUTER MODELS	32
CONCLUSIONS AND RECOMMENDATIONS	40
APPENDIX A RODMAN LABORATORY RESULTS FOR THE OBLIQUITY STUDY	45
APPENDIX B PROGRAM FOR PROCESSING FLIGHT SIMULATION TARGET IMPACT DATAIMPAC	265
Description of IMPAC Program for Estimating Hit Probability and Distribution of Impact Obliquity	267
Example of Use of IMPAC	271
Listing of Example Input	275
Example Output	287
Listing of IMPAC Program	315
DISTRIBUTION LIST	333

Next page is blank.

LIST OF FIGURES

			Page
Figure	1,	Target Geometry Used in the HIFAC Model of the T55 Tank	12
Figure	2.	Target Geometry Used in the LOFAC Model of the T55 Tank	13
Figure	3.	Target Geometry Used in the SA Target Model of the T55 Tank	14
Figure	4.	Effect of Designation Range on the Distribution of Impacts	31
Figure	5.	Center of Aim for All Target Models	33
Figure	6.	Sample Postprocessor Statistics Using HIFAC Target Model	34
Figure	7.	Sample Cumulative Distribution Function of Impact Obliquity Using the HIFAC Model	35
Figure	8.	Sample of Target-Plane Impacts Using the HIFAC Model	36
Figure	9.	Sample Postprocessor Statistics Using the LOFAC Target Model	37
Figure	10.	Sample Cumulative Distribution Function of Impact Obliquity Using the LOFAC Model	38
Figure	11.	Sample of Target-Plane Impacts Using the LOFAC Model	39
Figure	12.	Differences in Obliquity Percentiles Between Target Models for Run 497	41
Figure	13.	Comparisons of Obliquity Distribution Estimates Produced by Three Target Models for Run 497	42
Figure	14.	Differences in Obliquity Percentiles Between Target Models for Run 505	43
Figure	15.	Comparison of Obliquity Distribution Estimates Produce	d 44

LIST OF TABLES

			rage
Table	1.	Matrix of Computer Experiments for the Comparative Study of Impact Obliquity	16
Table	2.	Weight Function for Laser (TIWG) Signature Used in Comparative Study of Impact Obliquity	18
Table	3.	Weight Function for Designation Range	18
Table	4A.	Guidance Accuracy Statistics as Functions of Target Aspect and Designation Range	19
Table	4B.	Guidance Accuracy Statistics as Functions of Target Aspect and Designation Range	20
Table	4C.	Guidance Accuracy Statistics as Functions of Target Aspect and Designation Range	21
Table	4D.	Guidance Accuracy Statistics as Functions of Target Aspect and Designation Range	22
Table	5.	Mean and Standard Deviation of Impact Speed of ED CLGP for each Computer Experiment	24
Table	6A.	Statistics for Impact Angle of Attack of CLGP	26
Table	6B.	Statistics for Impact Angle of Attack of CLGP	27
Table	6C.	Comparison of Impact Obliquity and Angle of Attack as a Function of Target Aspect	28
Table	7A.	Single-Parameter Contrasts for Impact Obliquity: Effect of Designation Range	29
Table	7B.	Single-Parameter Contrasts for Impact Obliquity: Effect of Deflection	30
Table	7C.	Single-Parameter Contrasts for Impact Obliquity: Effect of Signature (Target Aspect)	30
Table	7D.	Single-Parameter Contrasts for Impact Obliquity:	30

Next page is blank.

BACKGROUND

Impact obliquity is defined as the angle between the longitudinal axis of the projectile and the surface normal (or perpendicular) at the instant when the projectile first contacts a surface element of the target. One should not confuse the impact obliquity with the angle between the velocity vector of the projectile and surface normal at impact. To be specific, call the latter "velocity obliquity." If the projectile has a negligibly small angle of attack, i.e., angle between the velocity vector and the form axis, the velocity obliquity approximates the impact obliquity of (the longitudinal axis of) the projectile. For ballistic projectiles this approximation is often a reasonably good one; however, for guided projectiles, angles of attack up to 20 degrees are not uncommon. Consequently, the impact obliquity may be quite different from the velocity obliquity. This note will be principally concerned with impact obliquity and the factors which affect its statistical distribution.

There has been a continuing interest by the Project Manager of the Cannon Artillery Weapons Systems (PM-CAWS) in this subject since the advent of the advanced development program (AD) for the Cannon-Launched Guided Projectile (CLGP). As this program moved into engineering development (ED), there has been a heightened interest in the subject of impact obliquity for several reasons. The fuze function may be degraded by large impact obliquities — say, 80 degrees or more. Even with the surface-wave sensors, with which CLGP is equipped, the initiation-of-warhead event may be delayed too long following impact for optimal warhead function. Reliability and effectiveness of fuze operation as a function of impact obliquity is currently under study. It is anticipated that the results of the present study will contribute to a definition of the severity of the fuze-function problem.

Currently there is a special interest in the implications of spacedor array armor on the reduction in lethality of antiarmor missiles. Clearly, the degradation in lethality of existing shaped-charge warheads against improved armor will be a function of the impact obliquities typically encountered. Thus, the configuration of the warhead (and its design adequacy) will interact with other system characteristics which influence impact obliquity. For all of the above reasons impact obliquity of guided projectiles is considered a germinal subject.

PURPOSES OF THE STUDY

The primary purpose of this study is to compute an overall or global probability distribution of impact obliquity for CLGP in a typical scenario. The secondary purpose is to determine the sensitivity of several parameters on the distribution of obliquities. Important by-products of the study methodology are estimates of guidance accuracy, flight speed at impact, and angle of attack at impact.

PARAMETERS OF INTEREST

Having had some experience with guided-projectile flight simulations from previous studies, we had developed expectations regarding the parameters

which might affect the impact obliquity. Obviously, the geometry of the target itself and the position thereon at which the laser is aimed would be expected to influence the distribution of obliquity. To investigate this parameter in a rigorous manner would require computer-based models of a substantial number of combat vehicles. Unfortunately, the effort to develop models of several vehicles was beyond the scope of the immediate study. Therefore, the effect of target vehicle geometry is inadequately studied here. We had to be content with three different models of the same vehicle—the T55 tank. The three models represent different degrees of facetization or fidelity to the objective vehicle and, consequently, slightly different geometries. By comparing the results of identical terminal plane impacts using each of these models, one may draw some qualitative inferences concerning the effect of target geometry. In this context the terminal plane is simply a plane normal to the velocity vector and passing through a fixed point on the target.

Another parameter of interest in this study is the deflection of the target with respect to the plane of the ballistic trajectory, i.e., with respect to the line of fire. Deflection of the target is expected operationally due to errors in locating the target, in pointing the gun, and in the ballistics of the unguided phase of flight. After acquisition of the target, the projectile will sense its heading error and will attempt to null this error and fly a proportionally navigated (PN) trajectory toward the target. In doing so, the relative aspect of the target will change along with the velocity of the projectile (speed and angle). Because of these effects, target deflection is an influential parameter for impact obliquity.

The range from designator to target is an important parameter, affecting guidance accuracy. As explained in the references [1]* and [2]*, laser spot motion is generally the single, most significant error source for laser-guided missiles and projectiles. Longer designation ranges produce larger spot excursions at the target and, consequently, larger guidance errors. In effect, the larger dispersion of impacts means a greater number of facets of the target which are struck and, with a concomitant increased dispersion in projectile angles of attack, implies a greater dispersion in impact obliquity.

For a given designation range and azimuthal position of the laser relative to the target, the laser signature, i.e., apparent spot motion and intensity seen by the projectile, is affected by the azimuth of the target with respect to the line of fire. A set of five discrete target signatures are used in the study to investigate the effect of this parameter.

^{*}Square-brackeled numbers refer to cited literature.

^[1] Memorandum for Record, AMSAR-SAM, 23 July 1975, subject: Army-Navy Guided Projectile Effectiveness Study.

^[2] Memorandum for Record, AMSAR-SAM, 17 December 1974, subject: Army-Navy Guided Projectile Commonality Study.

The five standard signatures, developed for the CLGP Test Integration Working Group, are labeled TIWG 1 thru 5.

The set of parameters which characterize the ballistics of the projectile in guided flight may also be expected to affect impact obliquity. These characteristics include such things as: presence (or absence) of gravity bias, use of synthetic damping in the autopilot, navigation ratio, aerodynamic characteristics, etc. Two quite different approaches to guided projectile design are used in this study to examine the effect of projectile system characteristics. The ED version of the Army's CLGP is one approach; the Navy's 5-inch, sleeved-guided projectile is the other. The same systems were examined in an operational context to assess their relative cost-effectiveness (Ref [1]). In the present study no conclusions are drawn about the relative terminal effects of these systems. Clearly, both systems would have to contend with their dispersions in impact obliquity in terms of fuze reliability and warhead function. It is the intention of this study to investigate differences in the distributions of impact obliquity. In summary, this study investigated four parameters, each at several discrete levels -- designation range, laser (TIWG) signature, target offset, and system type.

STUDY METHODOLOGY

The procedure followed in computing the impact obliquity is outlined, briefly, as follows:

- a. Generate target signature with ERIM Target Reflectivity Model.
- b. Using laser signature in appropriate secnario with other noise sources, employ 5 DOF flight simulator (ZOT.14) to simulate a set of guided flight trajectories.
- c. Save impact-plane statistics for use in multi-faceted target models.
- d. For each impact, perform linear transformation on the target facets to project the target into the impact plane.
 - e. Use dot-(inner) product method to identify the facet struck.
- f. Employ cross-product method to determine direction of outward normal.
- g. Use dot product of surface-normal vector and body-axis vector to determine impact obliquity.

Impact obliquities for each scenario so computed are saved for statistical post-processing. Additional information concerning the various submodels

[1] Op. Cit.

is provided below. A computer program for postprocessing impact data is listed in Appendix B.

A collection of obliquities is obtained for each set of values of the parameters of interest. The set of parameters represents a particular treatment combination in the design of computer experiments. The collection of obliquities represents the Monte-Carlo sample for all shots impacting the target. The post-processor rank orders the obliquities in each experimental set and computes an estimate of the median rank associated with each ordered obliquity value. These statistics are linearly interpolated to calculate percentile estimates — from the 5th thru the 95th at increments of 5%. The post-processor saves the array of percentile estimates for subsequent manipulation.

Notationally, let P_{ijkl} (x), $x = (5,10,\ldots,95)$, represent the estimate of the x th percentile associated with the experimental treatment given by the subscripts, where the subscript i is associated with the level of designation range, j with the level of the laser-signature parameter, k with the level of target deflection, and ℓ with the projectile system. Weights are associated with each of the four parameters of interest—designation range, a; laser signature, b; and target deflection, c. The system subscript ℓ is added for notational convenience. No attempt was made to weight the systems, and each of the two systems was treated separately. The above weights are normalized and can be considered marginal probability density functions for the purpose of developing contingency tables.

Thus,

$$\Sigma_{i}a_{i} = \Sigma_{j}b_{j} = \Sigma_{k}c_{k} = 1.$$

The single-factor effect of a particular parameter on the obliquity distribution, P(x), is obtained by weighting the percentile arrays and summing over all parameters except the single parameter (factor) of interest. For example, if the projectile system effect is of interest, an average distribution is computed as follows:

$$\overline{P}_{...\ell}(x) = \Sigma_{i} a_{i} \Sigma_{j} b_{j} \Sigma_{k} c_{k} P_{ijk\ell}(x)$$

In the methodology sketched above, reference was made to the ERIM Target Reflectivity Model. This is a multi-program model of a combat vehicle developed under contract with the Rodman Laboratories by the Environmental Research Institute of Michigan[3]. Its purpose is to describe the geometry and surface features of the vehicle sufficiently well so that the distribution of reflected laser energy is determined, given the characteristics of the incident laser beam. The incident laser is treated as a pulsed beam of fixed beam divergence, power, designation range, and having second-

的,我们们是一个人,我们是是一个人,我们们们是一个人,我们是一个人,我们是一个人,我们是一个人,我们们们是一个人,我们们是一个人,我们们们是一个人,我们们们们也

^[3]Beard, J., Rice, D., and Ladd, D. <u>Target Reflection Illumination Model</u>
<u>With Second Order (TRIMS)</u> (U); (CONF), ERIM Report No. 192200-2-F, August 1975.

order spot motion dynamics with specified spectral density. Output is the pulse-by-pulse position and intensity of the apparent laser spot viewed by the projectile seeker. This stochastic process can be reduced to a summary statistical model suitable for input to any terminal guidance simulation. The target reflectivity model is maintained and operated by the physics team in the Rodman Laboratories. The laser signature inputs used in this study were prepared by them. Additional analyses, to be described later, were also performed by the team at Rodman in cooperation with the authors.

The ERIM Laser Target Reflectivity Model, referred to above, contains a model of the target in which the vehicle and its surroundings are described in terms of contiguous, triangular facets. The location of each facet is described by the coordinates of its vertices and the outside surface of the facet is described by a vector normal to the surface passing through its centroid and having an inside-out direction. This direction is such that the right-hand thumb would have if the fingers of the right hand traversed the vertices in a counter-clockwise direction on the outside surface of the facet. The number of facets used to describe a particular vehicle is somewhat arbitrary. If a large number of facets is used, the approximation to the surface geometry of the actual vehicle can be excellent; however, the computational time to generate a laser signature may become prohibitively large. A model with fewer facets may be quite suitable for certain purposes while achieving a desirable degree of computational efficiency. To meet these conflicting requirements of computational efficiency and fidelity to target geometry, the Rodman physics team has devised two T55 target models having different degrees of facetization. These models are referred to as the HIFAC and LOFAC target models. The HIFAC model has the higher degree of facetization. Computer-generated displays of the geometry of these models are shown in Figures 1 and 2. For comparative purposes, the geometry of the SA target model is shown in Figure 3. The character of the surface of the target vehicle necessary to compute first-and second-order reflections is also described within the ERIM model. For the purpose of the present study, calculation of second-order reflections was omitted and a diffusely-reflecting surface was assumed.

The spot jitter characteristics used in generating the laser signatures were based upon the measurements taken during the CLGP OT 1 Tracking Tests. These tests indicated that the Ground Laser Locator Designator (GLLD) would have a horizontal component of the tracking error of about 100 microradians standard deviation and a vertical component of approximately 50 microradians standard deviation in daylight tests at ranges from 1.5 to 3 km. In addition to a jitter component due to atmospheric scintillation of about 40 microradians SD, which was present during day tests and virtually absent at night, a jitter component having the typical second-order dynamics of the man-operated GLLD was in evidence. Consequently, the spot motion dynamics used as input to all the flight simulations had second-order Butterworth dynamics with a 0.9 hz corner frequency.

DESIGN OF COMPUTER EXPERIMENTS

The experimental variables described above were treated parametrically

RDDAHN LAB-PHYSICS THETA = 69.8 PHI = 25.5 SCALE: X = -225 TO 75 Y = -110 TO 90

TYPICAL HIFAC VIEW FOR IMPACT DBLIGUITY RUNS

Figure 1. Target Geometry Used in the HIFAC Model of the T55 Tank

RODNAN LAB-PHYSICS THETA = 69.8 PHI = 25.5 SCRLE: X = -225 TO 75

TYPICAL LOFAC VIEW FOR IMPACT DBLIGUITY RUNS

Figure 2. Target Geometry Used in the LOPAC Model of the T55 Tank

RESULTS FOR 499,000 207.14 RUN NUMBER Tärget meaning -115.00 degrees in 207 coordinate system Designation point in facet coordinates -209.36 57.61 17.98

Figure 3. Target Geometry Used in the SA Target Model of the TS5 Tank

in this study. The target vehicle was assumed to be traveling at a constant speed of 5 m/s along a straight-line path, making an azimuthal angle ϕ relative to the line of fire. The values of ϕ used here are: 5, 15, 25, 35, and 45 degrees. These angles correspond, respectively, to TIWG signature numbers 1 thru 5. The laser designator was assumed to be facing the front of the vehicle at a designation range R. The values of R used in the study are: 1, 2, 3, and 4 km. Consistent with OT 1 tracking data, the spot motion amplitudes were assumed pr ortional to designation range for each of the target vehicle aspects The initial deflection of the target, i.e., at the time the flight simulation starts, relative to the line of fire is varied parametrically at two levels -- 0 and 300 meters. The gun-to-target range was not treated as a parameter of interest in this study because previous studies[1,2] had established that guidance accuracy is insensitive to this parameter over a wide range of values. A nominal value of 10 km was used for the gun-to-target range. Additionally, cloud height was fixed at 2500 ft and meteorological visibility range was fixed at the nominal 10 km. Target reflectivity was also a constant 10%.

For each combination of the parameters of interest--i.e., treatment in the experimental sense--a set of 85 replications of the terminal guidance simulation, ZOT.14, were made to form estimates of the statistics-guidance errors, terminal velocity, and impact obliquity. This Monte-Carlo sample size was chosen to permit one to make discriminations between systems whose guidance CEPs differ by as little as 10%. In fact, with a sample of 85 the probable error in the estimate of the linear standard deviation of either the yaw-wise or pitch-wise component of the miss distance (relative to center of aim) is less than 6%--about 1.7 inches for $\sigma = 2.5$ ft. Additionally, the variance-reducing scheme of blocking was employed for all sources of stochastic variation. To sharpen the ability to make discriminations between different levels of any parameter, the variability due to different sequences of random numbers in a replication for each type of random variable was eliminated; i.e., corresponding replications for different parameter levels used the identical set of streams of random numbers (although the number of values in the stream used up at impact might differ). The noise sources treated were spot motion or jitter (previously mentioned), pitch-yaw coupling, projectile acquisition range, and initial heading error. The target position was varied over the replications in constant increments from a position 100 meters uprange of the ballistic impact point (bip) to a position 400 meters downrange of the bip.

A full-factorial set of computer experiments would involve 5 signatures x 4 designation ranges x 2 deflections x 2 systems or 80 experiments. The set of experiments actually performed was a partical-factorial set of the 50 most probable contingencies. The matrix of experiments is shown in Table 1. The entries in the table are the run numbers used to identify each experiment. The reader may wish to refer to this table later.

^[1] Op. Cit.

^[2] Op. Cit.

TABLE 1. MATRIX OF COMPUTER EXPERIMENTS* FOR THE COMPARATIVE STUDY OF IMPACT OBLIQUITY

Gun-Target Range 10 Km

Initial Deflect	MMA ED (Oct 75) Navy AD (Specified) TIWG Signature TIWG Signature)					
	Designation								Signa		
	Range (km)	1	2	3	4	5	1	2	3	4	5
0	1			497	505	•			522	530	
	2	491	494	498	506	513	516	519	523	531	538
	3	492	495	499	507	514	517	520	524	532	539
	4			500	508				525	533	
300	1			501	509				526	534	
	2			502	510				527	535	
	3	493	496	503	511	515	518	521	528	536	540
	4			504	512				529	537	

^{*}Each experiment consists of 85 replications with the prescribed stochastic signature, the target being moved uniformly over a 500 meter range.

The contingencies examined represent about 89% of event space.

WEIGHTING OF EXPERIMENTAL RESULTS

As indicated above in the section on methodology, the estimated distributions of impact obliquity are weighted in accord with weight functions each of which represents the marginal probability associated with a given parameter. For example, the weight function associated with the TIWG laser signature is shown in Table 2. Similarly, the weight function associated with designation range is shown in Table 3. These functions were derived from computational experience gained from the CLGP Operational Simulation (OSM) during and subsequent to the CLGP COEA. The histograms of seeker azimuth and designation range compiled by OSM were further aggregated to form the weights displayed in these tables.

RESULTS OF COMPUTER EXPERIMENTS

Although the primary purpose of this study is to examine the subject of impact obliquity, a variety of derivative results may also be of interest. The following paragraphs address these topics: guidance accuracy, impact speed, angle of attack of the projectile at impact, and impact obliquity. Results concerning these subjects are intended to complement those of References [1] and [2].

Guidance Accuracy

The statistics pertaining to guidance accuracy are summarized in Tables 4A and B for the Army ED CLGP and in Tables 4C and D for the Navy 5-in/155mm sleeved projectile. A cursory examination of these tables reveals that the Army CLGP is more accurate than the Navy guided projectile at the same designation range, target deflection, and for the same signature. As elaborated in the Memoranda for Record[1,2], the reasons for this difference reflect fundamental differences in projectile design philosophy and implementation. At short designation ranges, the accuracy differences between these systems are manifestly inconsequential. However, at ranges in excess of 3 km, or for large-amplitude spot jitter, the more sophisticated Army system produces higher hit probabilities.

As observed in other studies [1,2], guidance accuracy is a strong function of designation range. Tables 4A through 4D show that guidance error also depends upon the laser signature—which in turn depends upon the target aspect for the designator and for the projectile seeker. Generally, accuracy is degraded as the azimuth of the projectile is permitted to increase, when the designator is fixed at zero azimuth. For example, Table 4A indicates an increase in the CEP from 1.76 to 1.90 ft at a designation range of 2 km. Because target presented area also increases

^[1] Op. Cit.

^[2] Op. Cit.

TABLE 2. WEIGHT FUNCTION FOR LASER (TIWG) SIGNATURE USED IN COMPARATIVE STUDY OF IMPACT OBLIQUITY

TIWG Designation No.	Designator Az, Ei (deg)	Seeker Azimuthal Aspect (deg)	Weight (Fraction)	Cumulative Weight
1	0, 0	5	.005	.005
2		15	.060	.065
3		25	.335	.400
4		35	.420	.820
5		45	.190	1.000

^{*}Designator aim point (inches) in Rodman T55 vehicle coordinate system -- (192.5, 15.5, 57)

TABLE 3. WEIGHT FUNCTION FOR DESIGNATION RANGE

Designation Range (km)	Weight Fraction	Cumulative Weight
1	0.05	0.05
2	0.20	0.25
3	0.45	0.70
4	0.30	1.00

TABLE 4A. GUIDANCE ACCURACY STATISTICS AS FUNCTIONS OF TARGET ASPECT AND DESIGNATION RANGE

System: MMA ED CLGP (Oct 75) Target Deflection 0 m

Accuracy	Desig.	Target Azimuth (deg)				
Statistic*	Rng. (km)	5	15	25	35	45
PH1	1			1.00	1.00	
PH2				1.00	1.00	
CEP(f)				0.92	0.89	
SD yaw(f)				1.02	1.13	
SD pitch(f)				0.58	0.56	
PH1	2	0.98	0.96	0.94	0.91	0.86
PH2		1.00	1.00	1.00	1.00	0.98
CEP(f)		1.76	1.83	1.78	1.81	1.90
SD yaw(f)		1.54	1.78	2.00	2.22	2.56
SD pitch(f)		1.18	1.21	1.15	1.12	1.08
PH1	3	0.87	0.81	0.77	0.73	0.67
PH2		0.98	0.98	0.95	0.95	0.93
CEP(f)		2.56	2.72	2.85	2.93	3.01
SD yaw(f)		2.27	2.63	2.96	3.27	3.72
SD pitch(f)		1.75	1.79	1.72	1.67	1.61
PH1	4			0.60	0.57	
PH2				0.88	0.87	
CEP(f)				3.74	3.90	
SD yaw(f)				3.86	4.23	
SD pitch(f)				2.26	2.19	

* PH1 = estimated probability of hitting a standard 7.5 x 7.5 ft NATO target.

PH2 = estimated probability of hitting a T55 tank, based upon a sample of 85 shots.

CEP $\mbox{\tt *e}$ circular error probable or median miss distance relative to center of aim.

SD yaw = estimated standard deviation of horizontal component of miss distance in impact plane

SD pitch = estimated standard deviation of vertical component of miss distance in impact plane

Confidence intervals can be developed for the above standard deviations. Based on a sample size of 85 and using gaussian statistics, these probability statements concerning σ follow:

$$P\{0.889 \le \sigma/\hat{\sigma} \le 1.150\} = 0.90$$

and

$$P\{0.953 \le \sigma/\hat{\sigma} \le 1.058\} = 0.50$$

Thus, for a value of $\hat{\sigma}$ = 2.5 ft, the 90% confidence interval is approximately $\sigma \pm 4$ inches and the 50% (or probable) interval is $\sigma \pm 1.7$ inches.

TABLE 4B. GUIDANCE ACCURACY STATISTICS AS FUNCTIONS OF TARGET ASPECT AND DESIGNATION RANGE

System: MMA ED CLGP (Oct 75) Target Deflection 300 m

Accuracy	Desig.	Target Azimuth (deg)					
Statistic*	Rng. (km)	5	15	25	35	45	
PH1	1			1.00	1.00		
PH2				1.00	1.00		
CEP (f)				0.87	0.88		
SD yaw (f)				0.77	0.87		
SD pitch (f)				0.59	0.58		
PH2	2			0.99	0.97		
PH2				1.00	1.00		
CEP (f)				1.65	1.70		
SD yaw (f)				1.52	1.71		
SD pitch (f)				1.15	1.13		
PH1	3	0.93	0.91	0.88	0.83	0.78	
PH2		0.95	0.96	1.00	1.00	0.99	
CEP (f)		2.21	2.32	2.40	2.58	2.54	
SD yaw (f)		1.94	2.03	2.27	2.56	2.96	
SD pitch (f)		1.58	1.70	1.71	1.69	1.64	
PH1	4			0.71	0.67		
PH2				0.91	0.94		
CEP (f)				3.10	3.37		
SD yaw (f)				3.00	3.38		
SD pitch (f)				2.25	2.21		

* PH1 = estimated probability of hitting a standard 7.5 x 7.5 ft NATO target.

PH2 = estimated probability of hitting a T55 tank, based upon a sample of 85 shots.

CEP = circular error probable or median miss distance relative to center of aim.

SD yaw = estimated standard deviation of horizontal component of miss distance in impact plane

SD pitch = estimated standard deviation of vertical component of miss distance in impact plane

Confidence intervals can be developed for the above standard deviations. Based on a sample size of 85 and using gaussian statistics, these probability statements concerning of follow:

 $P\{0.889 \le \sigma/\hat{\sigma} \le 1.150\} = 0.90$

and

 $P\{0.953 \le \sigma/\hat{\sigma} \le 1.058\} = 0.50$

Thus, for a value of $\hat{\sigma}$ = 2.5 ft, the 90% confidence interval is approximately $\sigma \pm 4$ inches and the 50% (or probable) interval is $\sigma \pm 1.7$ inches.

TABLE 4C. GUIDANCE ACCURACY STATISTICS AS FUNCTIONS OF TARGET ASPECT AND DESIGNATION RANGE

System: 5 in/155mm Navy Guided Projectile with 2 sec rocket ignition delay Target Deflection 0 m

Accuracy	Desig.	Target Azimuth (deg)				
Statistics*	Rng. (km)	5	15	25	35	45
PH1	1			0.96	0.94	
PH2				1.00	1.00	
CEP (f)				1.42	1.26	
SD yaw (f)				1.84	1.96	
SD pitch (f)				0.74	0.74	
PH1	2	0.80	0.75	0.73	0.70	0.68
PH2		0.96	0.98	0.98	0.95	0.91
CEP (f)		2.65	2.78	3.09	3.44	2.99
SD yaw (f)		2.37	3.13	3.34	3.60	3.73
SD pitch (f)		1.48	1.45	1.38	1.38	1.37
PH1	3	0.64	0.59	0.58	0.56	0.55
PH2		0.84	0.88	0.87	0.86	0.87
CEP (f)		3.46	3.52	3.25	3.72	3.60
SD yaw (f)		3.75	3.95	4.12	4.35	4.51
SD pitch (f)		1.94	2.15	2.10	2.04	1.96
PH1	4			0.48	0.49	
PH2				0.84	0.85	
CEP (f)				4.07	3.96	
SD yaw (f)				4.29	4.50	
3D pitch (f)				2.73	2.56	

* PH1 \approx estimated probability of hitting a standard 7.5 x 7.5 ft NATO target.

PH2 = estimated probability of hitting a T55 tank, based upon a sample of 85 shots.

 $\mathtt{CEP} = \mathtt{circular}$ error probable or median miss distance relative to center of aim.

SD yaw = estimated standard deviation of horizontal component of miss distance in impact plane

SD pitch = estimated standard deviation of vertical component of miss distance in impact plane

Confidence intervals can be developed for the above standard deviations. Based on a sample size of 85 and using gaussian statistics, these probability statements concerning σ follow:

 $P\{0.889 \le \sigma/\hat{\sigma} \le 1.150\} = 0.90$

and

 $P\{0.953 \le \sigma/\hat{\sigma} \le 1.058\} = 0.50$

Thus, for a value of $\hat{\sigma}$ = 2.5 ft, the 90% confidence interval is approximately $\sigma \pm 4$ inches and the 50% (or probable) interval is $\sigma \pm 1.7$ inches.

TABLE 4D. GUIDANCE ACCURACY STATISTICS AS FUNCTIONS OF TARGET ASPECT AND DESIGNATION RANGE

System: 5 in/155mm Navy Guided Projectile with 2 sec rocket ignition delay

Target Deflection 300 m

Accuracy	Desig.		Targe	t Azimuth	(deg)	
Statistic*	Rng. (km)	5	15	25	35	45
PH1	1			0.99	0.98	
PH2				1.00	1.00	
CEP (f)				1.22	1.34	
SD yaw (f)				1.46	1.64	
SD pitch (f)				0.74	0.72	
PH1	2			0.78	0.74	
PH2				0.98	0.98	
CEP (f)				2.56	2.64	
SD yaw (f)				3.03	3.30	
SD pitch (f)				1.45	1.45	
PHI	3	0.63	0.63	0.60	0.57	0.54
PH2		0.80	0.85	0.86	0.86	0.81
CEP (f)		3.11	3.30	3.32	3.77	3.86
SD yaw (f)		3.25	3.70	3.98	4.25	4.59
SD pitch (f)		2.06	2.10	2.08	2.07	2.06
PHL	4			0.46	0.45	
PH2				0.74	0.81	
CEP (f)				4.27	4.24	
SD yaw (f)				4.79	4.90	
SD pitch (f)				2.59	2.58	

* PH1 = estimated probability of hitting a standard 7.5 x 7.5 ft NATO target.

PH2 = estimated probability of hitting a T55 tank, based upon a sample of 85 shots.

CEP = circular error probable or median miss distance relative to center of aim.

SD yaw = estimated standard deviation of horizontal component of miss distance in impact plane

SD pitch = estimated standard deviation of vertical component of miss distance in impact plane

Confidence intervals can be developed for the above standard deviations. Based on a sample size of 85 and using gaussian statistics, these probability statements concerning σ follow:

$$P\{0.889 \le \sigma/\hat{\sigma} \le 1.150\} = 0.90$$

and

$$P\{0.953 \le \sigma/\hat{\sigma} \le 1.058\} = 0.50$$

Thus, for a value of $\hat{\sigma}$ = 2.5 ft, the 90% confidence interval is approximately . $\sigma \pm 4$ inches and the 50% (or probable) interval is $\sigma \pm 1.7$ inches.

with azimuth, the probability of hitting the target vehicle (PH2) does not decline appreciably with increasing azimuth.

The combined effects of initial deflection of the target, target motion, and target azimuth interact to produce a complicated picture of accuracy as a function of these parameters. In some instances the effect of initial deflection is to produce a more favorable target aspect at impact. In all cases treated here, initial deflection causes a maneuver which reduces the terminal airspeed relative to a projectile having zero deflection. The lower airspeed effectively reduces the terminal navigation ratio and, consequently, the sensitivity to spot motion.

In comparing the accuracy estimates for the same systems derived in [1] with those in this study, differences will be noticed. Although some system parameter values were changed for the present study, the primary reason for the differences lies in the different laser signatures used in the two studies. This is the case even though the laser jitter characteristics are the same in both studies. The accuracy values presented in Ref [1] are based upon a designation geometry in which the designator is at an azimuth of 45 deg to the front of the target vehicle and the projectile seeker is at an azimuth of zero and at an elevation of 25 degrees. The signature associated with this situation is called WC 1. Although the azimuthal positions of the designator and seeker are reversed relative to the above for the TIWG 3 signature used here, the pattern of spot motion as seen by the seeker is quite different in TIWG 3 and WC 1. For comparison the yaw- and pitch-wise spot motion standard deviations and the coefficient of correlation between these jitter components are shown below for both signatures.

Signature Number	Apparent yaw SD (ft)	Apparent pitch SD (ft)	Pitch- yaw correlation
WC 1	0.570	0.653	-0.10
TIWG 3	1.464	0.834	0.36

Primarily due to the difference in apparent spot motion, the CEP estimated for the Army ED CLGP at 3 km in [1] is 2.00 ft whereas at the same designation range the present estimate of CEP is 2.85 ft with zero initial deflection and 2.40 ft with 300 m initial deflection. This suffices to illustrate the importance of choosing a common scenario when comparing the accuracy of several systems.

Impact Speed

The mean and standard deviation of the speed at impact of the Army CLGP is shown in Table 5. Since only one firing zone, QE, and nominal gun-target range were examined in this study, the range of impact velocities

^{[1]&}lt;sub>Op. Cit.</sub>

TABLE 5. MEAN AND STANDARD DEVIATION OF IMPACT SPEED OF ED CLGP FOR EACH COMPUTER EXPERIMENT

	l Gun-Target		TIWG	SIGNATURE	NUMBER	· · · · · · · · · · · · · · · · · · ·
	ection (m)					
	Designation		_	_		
	Range (km)	1	2	3	4	5
	1			010.0		
	1			810.3	809.8	
				12.7	12.7	
	2	809.9*	809.0	808.5	807.8	806.9
•	_	12.5**	12.7	12.8	12.9	12.9
0				22.0		12.7
	3	807.6	806.8	806.0	805.2	804.1
		12.6	12.7	12.8	12.9	13.1
	4			803.3	802.4	
				12.9	13.1	
	1			782.8	784.0	
				5.5	5.8	
	_					
	2			781.5	782.6	
300 -				5.5	6.1	
	3	77ć.9	778.5	779.7	700 6	701.0
	,	4.6	5.2	5.8	780.6 6.4	781.0
		7.0	٥٠٤	٥.٠	0.4	6.9
	4			777.7	778.4	
				6.2	6.7	

^{*} mean speed (fps)

^{**} sta. dev. of speed (fps)

is restricted relative to the operational range. Stochastic variations in impact conditions with zone and QE fixed depend upon the variable degree of maneuver required to reach the target. As seen in Table 5, the standard deviation in impact speed is generally less than 13 f/s for a mean speed of about 800 f/s. The launch velocity in this case is 1869 f/s produced by zone 7 of the XM201 prop. chg at a QE of 20 deg with a 145.4 lb projectile.

Angle of Attack

By convention, positive yaw is projectile nose to the left while facing in the direction of flight and positive pitch is nose up relative to the direction of flight. It can be seen from Table 6 that the dispersion in angle of attack varies significantly with designation range, slightly more than doubling in standard deviation between 1 km and 4 km. The mean yaw shows no consistent pattern and would be expected to vary with the initial heading error and the direction of target motion. The mean pitch angle is slightly positive at impact. For both systems, mean pitch at impact is about 2 deg. The pitch and yaw dispersions increase with designation range (or laser spot jitter). Differences between systems are not physically significant. The distribution function for the angle of attack is observed to be distinctly non-gaussian.

Impact Obliquity

The effects of the parameters of interest on the distribution of impact obliquity are shown in Tables 7A thru 7D. The median impact obliquity decreases as designation range increases; however, the dispersion of obliquities increases somewhat with designation range for the Army CLGP. Consequently, the upper tail of the probability density function of obliquity with respect to designation range is more positively skewed with increasing range. The effect of designation range on the parts of the target vehicle struck by the Army CLGP is shown in Figure 4. For the Navy 5-in/155mm sleeved round, the combined effects of greater dispersion of guidance error and larger negative mean center of impacts in pitch with respect to designation range produce more impacts on the front glacis. This has the effect of reducing the dispersion of impact obliquity with respect to designation range for this system. See Table 7A.

The effect of initial deflection on impact obliquity statistics is fairly subtile and has a significant second-order interaction with other parameters. For example, the median obliquity decreases somewhat with deflection for the Army system but increases by a comparable amount with respect to deflection for the Navy system (Table 7B). This difference in trend between systems is explained in part by the fact that the Navy sleeved-round uses a larger navigation ratio than the Army system does. As a consequence, the Navy round turns toward the target quicker than does the Army projectile and has a different aspect in the endgame.

As noted in Table 6C, no simple, monotonic relationship is apparent between mean impact obliquity and laser signature (or target aspect).

TABLE 6A. STATISTICS FOR IMPACT ANGLE OF ATTACK OF CLGP

System: MMA ED (Oct 75) TIWG Signature: 3 (25 deg seeker azimuth)

Initial Gun-Target Deflection (m)		Yaw Attack		Pitch Attack	
	Designation Range (km)	Mean (deg)	SD (deg)	Mean (deg)	SD (deg)
0	1	-1.0	5.6	1.2	3.4
	2	-1.8	9.6	1.4	6.3
	3	-2.4	11.8	1.5	8.5
	4	-2.8	13.0	1.6	10.1
300	1	2.7	4.6	0.7	3.8
	2	2.6	8.1	0.6	6.9
	3	2.5	10.4	0.8	9.1
	4	2.4	11.9	1.0	10.6

TABLE 6 A. (cont.)
System: MMA ED (Oct 75)
TIWG Signature: 4 (35 deg seeker azimuth)

0	1	-1.0	6.1	1.3	3.4
	2	-1.7	10.1	1.4	6.2
	3	-2.2	12.2	1.5	8.4
	4	~2.5	13.3	1.6	10.0
300	1	2.6	5.1	0.7	3.7
	2	2.6	8.9	0.7	6.8
	3	2.5	11.1	0.9	9.1
	4	2.4	12.5	1.1	10.6
		 			

TABLE 6B. STATISTICS FOR IMPACT ANGLE OF ATTACK OF CLGP

System: 5 in/155mm Navy Guided Projectile TIWG Signature: 3 (25 deg Seeker Azimuth)

Initial Gun-Target Déflection (m)		Yaw Attack		Pitcl Atta	
	Designation Range (km)	Mean (deg)	SD (deg)	Mean (deg)	SD (deg)
0	1	1.9	8.7	3.4	5.2
	2	2.1	9.9	2.3	7.3
	3	1.9	11.0	2.1	8.9
	4	3.1	11.7	2.0	9.4
300	1	2.1	8.4	3.4	5.0
	2	2.2	9.4	1.3	7.6
	3	2.6	10.3	1.9	7.9
	4	1.5	11.8	2.7	8.5

TABLE 6B. (cont.)

System: 5 in/155mm Navy Guided Projectile
TIWG Signature: 4 (35 deg Seeker Azimuth)

0	1	2.5	8.6	4.0	4.9
	2	2.3	9.8	2.8	7.2
	3	2.1	11.1	2.4	8.8
	4	2.4	12.1	2.0	8.8
300	1	2.4	8.2	3.7	4.9
	2	2.6	9.3	1.9	7.3
	3	0.6	11.0	2.4	8.0
	4	0.5	12.0	2.4	8.6
					

TABLE 6C. COMPARISON OF IMPACT OBLIQUITY AND ANGLE OF ATTACK AS A FUNCTION OF TARGET ASPECT

System: Army ED CLGP Initial Deflection O Designation Range 3 km

TIWG Signature	Angle (deg)						
Number/Az (deg)	Mean Obliq	SD Obliq	SD yaw attack	SD pitch attack			
1/5	57.3	17.6	10.5	8.5			
2/15	54.0	17.6	11.2	8.6			
3/25	53.3	17.7	11.8	8.5			
4/35	54.2	19.8	12.2	8.4			
5/45	55.8	19.8	12.8	8.2			

TABLE 7A. SINGLE-PARAMETER CONTRASTS FOR IMPACT OBLIQUITY: EFFECT OF DESIGNATION RANGE

System/Signature: Army ED CLGP with TIWG 3
Zero Initial Deflection

Obliquity	I	esignation	Range (km	1)
Statistic (deg)	1	2	3	4
median obliquity	61	58	56	56
interquartile range	18	19	23	24
25 th percentile	53	48	42	42
75 th percentile	71	67	65	66
90 th percentile	73	73	75	76

System/Signature: Army ED CLGP with TIWG 4
Zero Initial Deflection

Obliquity	Designation Range (km)				
Statistic (deg)	1	2	3	4	
median obliquity	60	59	57	56	
interquartile range	18	20	24	27	
25 th percentile	52	50	45	41	
75 th percentile.	70	69	69	68	
90 th percentile	74	73	76	77	

System	Army		Navy Range (km)	
Obliquity	Range (km)			
Statistic (deg)	2	3	2	3
median obliquity	59	57	57	55
interquartile range	20	24	31	26
90 th percentile	74	76	83	75

TABLE 7B. SINGLE-PARAMETER CONTRASTS FOR IMPACT OBLIQUITY: EFFECT OF DEFLECTION

Designation Range 3 km

System	Ar	my	Navy	
Obliquity	Deflection (m)		Deflection (r	
Statistic (deg)	0	300	0	300
median obliquity	57	53	55	58
interquartile range	24	26	26	24
90 th percentile	76	75	75	83

TABLE 7C. SINGLE-PARAMETER CONTRASTS FOR IMPACT OBLIQUITY: EFFECT OF SIGNATURE (TARGET ASPECT)

Weighted Averages

System	Aı	my	Navy		
Obliquity	Azimuth	(deg)	Azimut	h (deg)	
Statistics (deg)	25	35	25	35	
median obliquity	55	56	58	57	
interquartile range	25	26	25	25	
90 th percentile	75	76	79	81	

TABLE 7D. SINGLE-PARAMETER CONTRASTS FOR IMPACT OBLIQUITY: EFFECT OF PROJECTILE SYSTEM

Weighted Averages

Obliquity	System			
Statistic (deg)	. Агшу	Navy		
median obliquity	56	58		
interquartile range	25	25		
90 th percentile	76	80		

pure 4. Effect of Designation Range on the Distribution of Impacts

The dispersion in impact obliquity as well as yaw angle of attack increases somewhat with increase in target azimuth. Over the range of target azimuths frequently encountered operationally--25 to 35 deg--the distribution in impact obliquity is independent of azimuth for both Army and Navy systems. See Table 7C.

A weighted average of obliquities over all parameters shows that the differences in obliquity between systems is not great. Both systems have about the same median (within 2 deg) and identical interquartile range. The upper tail of the obliquity probability density function appears somewhat more extensive for the Navy system. However, in view of the magnitude of the effects of other parameters, the system effect is not operationally significant.

VERIFICATION OF COMPUTER MODELS

To assure that the obliquities computed by DRSAR-SA using the SA target model were correct, i.e., free of computational errors, and to be able to infer the consequences for impact obliquity of changes in the geometry of the target, it was important to have other investigators of this subject perform an independent analysis. As indicated earlier, DRSAR-SA had been working with members of the Physics Team of the Rodman Laboratories. This group--Amoruso, DeYoung, and Morris-had prepared all of the laser signatures using the ERIM target reflectivity model. The author asked Dr. Amoruso to consider using the target submodels--HIFAC and LOFAC-to compute obliquities for this study rather than to calculate laser signatures, which is the intended application of these models. The Physics Team agreed to modify the target models to calculate the angle between a given input vector and the normal to the surface facet which the vector initially intercepts. Additionally, a postprocessor computer program was written to calculate and display the obliquity statistics in a form comparable to our own.

To minimize confounding effects which would render comparison of model outputs difficult at best, the impact-plane statistics produced by the SA flight simulation, ZOT.14, were provided as input to all of the target models. All target models were properly indexed geometrically. Specifically, the center of aim for all models is as shown in Figure 5. Additionally, the center of impacts for all models was identical. Impact obliquities reported by the postprocessor for each target model were compared point by point to eliminate the possibility that grossly different target plane impacts had occurred. To facilitate comparison of results, each model reported identical statistics and in the same format. Examples of postprocessor outputs are shown in Figures 6 thru 11. In these figures the results of experiment 491 are displayed using both the HIFAC and LOFAC target models. A three-way comparison of HIFAC, LOFAC, and SA models was performed using data from the following experiments: 491, 492, 493, 497, and 505. See Table 1 for interpretation of experiment numbers. For all other experiments only the results from the LOFAC and SA models were obtained. All the results obtained by the Physics Team at Rodman [4] are in the Appendix A of this note.

^[4]Unpublished results from Rodman Laboratories, Physics Team, SARRI-R, 31 May 76, subject: Results for Obliquity Study--Comparison with ZOT.14

RODMAN LAB...PHYSICS THETR = 87...PHI = 6 SCALE: X= -150 TO 150 Y= -75 TO 125

TIME 1-5 DESIGNATOR....INITIAL AIM SPOT

Figure 5. Center of Aim for All Target Models

RODMAN LAB-PHYSICS

HIFNC.	CUMPARISON	WITH	ZOT.	14	RUH	491
111111		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				

PAGE 1

THERE WERE 0 MISSES

THEY WERE REPS #:

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

38	4.0902	56	45.1309	3	54.0046	36	62.6741	7	71.8092
9	8.8799	83	45.3577	71	54.2424	44	63.0354	26	71.8401
78	10.8549	70	45.9357	27	54.4544	72	63.2242	23	72.2268
62	19.2578	31	46.4452	51	54.5503	50	63.9030	37	72.4793
65	24.7089	49	47.5676	12	55.1322	82	64.0855	41	73.4170
19	24.9656	81	48.2593	48	55.2345	11	64.9787	69	74.5630
39	25.7328	75	48.4514	79	55.6472	6	66.4740	68	74.6205
46	30.1041	34	48.4882	61	55.7017	15	66.8620	5	74.9739
i	31.9493	60	48.8961	21	56.7631	20	67.5250	22	76.2830
43	32.8478	57	49.3113	74	57.3926	47	67.9636	8	77.0774
77	36.1319	42	49.9366	2	58.1233	18	68.1801	33	78.4471
76	38.3001	38	50.054i	80	58.2269	24	68.7220	40	79.0161
59	40.2723	63	51.7254	64	58.9939	45	69.0033	32	81.4444
30	43.2223	53	52.5320	16	59.5320	35	69.5408	14	81.5105
73	43.9422	52	53.0874	10	61.1110	4	70.1904	55	83.4481
54	44 4347	29	53.6936	17	61.3986	13	7:.0313		
25	44.9036	58	53.6299	66	61.4910	67	71.4947		

OBLIQUITY MEAN 55.3863 DEG, STANDARD DEVIATION 17.0987 PEG

PERCENTILES:

RANK	DEVIATE
0.05	20,35
0.10	30.84°
0.15	39.48
9.29	44.81
0.25	46.45
0.30	48.57
0.35	50.72
0.40	53.62
0.45	54.53
0.50	55.70
0.55	58.38
0.60	61.44
0.65	63.63
0.70	66.78
0.75	68.72
0.80	71.12
0.85	72.33
0.90	74.83
a. 95	78.90
~	

Figure 6. Sample Postprocessor Statistics Using the HIFAC Target Model

Sample Cumulative Distribution Function of Impact Obliquity Using the HIFAC Model Figure 7.

RODMAN LAB-PHYSICS THETA = 69.7 PH! = 5.1 SCALE: X = -160 TO 146 Y = -110 TO 96

HIFRC COMPRRISON WITH ZOT. IN RUN HEI Figure 8. Sample of Target-Plane Impacts Using the HIFAC Model

THERE WERE 0 MISSES

THEY WERE REPS #:

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

78	5.6394	31	45.9553	48	55.2345	44	63.0354	7	71.8092
9	11.5741	30	46.3390	12	55.3338	72	63.2242	26	71.8401
43	19.3003	49	47.5676	79	55.6472	50	63.9030	1	72.3639
23	19.9028	81	48.2593	61	55.7017	82	64.0855	54	72.3918
38	22.3769	33	48.4468	5i	55.9481	11	64.9787	37	72.4793
13	25.5265	75	48.4514	21	56.7631	15	66.8620	40	73.0169
65	32.8361	34	48.4882	25	57.1706	28	67.5250	41	73.4170
28	34.2367	66	48.8961	80	58.2269	47	67.9636	69	74.5630
62	36.0275	74	49.4344	77	58.4287	18	68.1801	68	74.6205
46	36.8677	57	49.5663	64	59.1858	24	68.7220	32	74.7286
39	39.3077	42	50.1422	63	59.1971	45	69.0033	3	74.9739
59	40.2723	53	52.5320	16	59.5320	35	69.5408	22	76.2830
76	42.9407	52	53.2934	10	61.3173	4	70.1904	8	77.0774
73	44.1520	58	53.6299	17	61.3986	14	70.4855	2	79.95~7
56	45.3398	29	53.8126	66	61.4910	6	70.6773	55	83.448)
83	45 3577	3	54.0046	19	61.8142	67	71.4947		
70	45.9357	71	54.2424	36	62.6741	27	71.6130		

OBLIQUITY MEAN 56.2672 DEG, STANDARD DEVIATION 16.0152 DEG

RANK		DEVIATE
0.05		20.40
· ·		
0.10		34.95
0.15		41.87
0.20		45.82
0.25		48.26
0.30		49.00
0.35		52.84
0.40		54.15
0.45		
		55.69
0.50		58.23
0.55		59.89
0.60		62.16
0.65		64.01
0.70		67.88
0.75		69.54
0.80		71.52
0.85		72.38
0.90		
	•	74.10
0.95		76.02

Figure 9. Sample Postprocessor Statistics Using the LOFAC Target Model

Figure 10. Sample Cumulative Distribution Function of Impact Obliquity Using the LOFAC Model

RODMAN LAB-PHYSICS THETA = 69.7 PHI = 5.1 SCALE: X = -150 TO 140 Y = -110 TO 90

LOFAC COMPARISON WITH ZOT. 14 RUN 491

Figure 11, Sample of Target-Plane Impacts Using the LOFAC Model

In spite of the apparent differences in the target geometry represented by the HIFAC, LOFAC, and SA models, the estimated distribution functions for impact obliquity are surprisingly similar. Using the HIFAC results as a base, differences in the obliquity percentiles were taken for each run and are selectively displayed in Figures 12 thru 15. One feature that is common to all the comparisons is the overestimate in the percentile values below the 20 th for both the LOFAC and SA models. As shown in Figures 12 and 13 for Run 497, the LOFAC and SA models underestimate the probability invested in the lower tail of the probability density function. Consequently, relative to the HIFAC results, the simpler target models tend to overestimate the lower percentiles. However, for percentiles above the 20 th, approximately, the differences in percentile values are generally 2 to 3 degrees. Similar results are shown for Run 505 in Figures 14 and 15. One must conclude that a highly-faceted target model is a requisite for accuracy only if one is concerned with the lower cail of the distribution of obliquity, viz, below the 15 or 20 th percentile. One may also infer that slight departures from the basic geometry of a particular target vehicle--of the sort examined here--will not significantly affect the major portion of the distribution of impact obliquity.

CONCLUSIONS AND RECOMMENDATIONS

The interpretations of important results discussed above are summarized here. Both guidance accuracy and impact angle of attack are most strongly affected by designation range (or, alternatively, the magnitude of apparent laser spot jitter). It is noted that the distribution of impact obliquity is a function of characteristics of the operational scenario. Such parameters as designation range, target azimuths relative to the designator and relative to the seeker (affecting laser signature), and the initial deflection of the target relative to the direction of fire all affect the distribution of obliquity. However, when a representative universe of engagements is considered, the averaged obliquity distributions for the two projectile systems--Army and Navy--do not differ significantly. Both systems exhibit aedian obliquities between 55 and 60 degrees with a 25 degree interquartile range. There is a somewhat greater than 10% likelihood that a guided projectile will impact with an obliquity in excess of 75 degrees. This fact may be important to the selection of a fuzing system. If surface wave sensors are not employed as part of the fuzing system, it appears that warhead function will suffer by dudding and non-optimally delayed action. This issue merits additional investigation by experts in terminal effects. It is suggested that the results of the present study be used in a detailed analysis of the lethal effects of CLGP.

Figure 12. Differences in Obliquity Percentiles Between Target Models for Run 497

T. Barrettel

Figure 14. Differences in Obliquity Percentiles Between Target Models for Run 505

APPENDIX A

RODMAN LABORATORY RESULTS FOR OBLIQUITY STUDY

Next page is blank.

PODMAN LAB-PHYSICS

LOFAC COMPARISON WITH BOY.14 RUN 491

PAGE 1

THERE WERE 0 MISSES

THEY WERE REPS #:

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

78 9 43 38 13 65 28 46 39 76 76 83 70	5.6394 11.5741 19.3003 19.9028 22.3769 25.5265 32.8361 34.2367 36.8677 40.3723 42.9407 44.1520 45.3398 45.3398 45.9357	31 30 49 81 33 75 40 74 52 53 53 71	45.9553 46.3350 47.5676 48.2593 48.4468 48.4514 48.8961 49.5663 50.1423 50.53663 53.6299 53.6299 53.8136 54.8045 54.2424	48 12 79 61 51 25 80 77 64 63 10 17 64 19	55.2345 55.3338 55.6472 55.7017 55.9481 56.7631 57.1706 58.2369 58.4287 59.1858 59.1971 59.5320 61.3173 61.3986 61.4918 61.4918	44 720 82 11 15 47 18 45 44 67 7	63.0354 63.2242 63.9030 64.0855 64.9787 66.8620 67.9636 67.9636 68.7230 69.0033 69.5408 70.1904 70.4855 70.6773 71.4947 71.6130	7 26 1 54 37 40 41 68 32 55 28 25 55	71.8092 71.8401 72.3639 72.3918 72.4793 73.0169 73.4170 74.5630 74.5630 74.7286 74.9739 76.2830 77.0774 79.9577 83,4481
---	--	--	--	--	--	--	--	--	---

OBLIQUITY MEAN 56.2672 DEG: STANDARD DEVIATION 16.0152 DEG

0.30 0.35 0.40 0.45 0.55 0.60 0.75 0.86 0.85	DEVIATE 20.40 34.95 41.87 45.82 49.00 52.84 54.15 55.69 58.23 59.09 62.16 67.88 69.54 71.52
0.85 0.90 .	72.38 74.10
0.95	76.02

LOFAC COMPARISON WITH ZOT.14 RUN 491

FACET NO.	HO. OF IMPACTS
136 231	19
231	14 E
-136 +73	É
7 (O	3
200 -286	Ž
-231	2
231 -136 178 238 -286 -231 134 135	2
135	2
144	2
146	2
234	2
235	<u>د</u> د
24U 274	1466322222222222221111
2(4 505	2
200 ->40	1
278 -278	i
-238	1
-232	1
-137	i
182	1
233	1 .
241	1 1
242	1
244 546	1
144 146 234 235 240 274 283 -298 -238 -238 -137 182 241 242 244 246 277 284	· 1 1 1
211 221	i
201	-

30DMAN LAB-PHYSICS FHETA = 69.7 PHI = 5.1 SCALE: X = -160 TO 140 Y = -110 TO 90

LDFAC COMPARISON WITH ZOT. 14 RUN 491

RODMAN LAB-PHYSICS

HIFAC COMPARISON WITH ZGT.14 RUN 491

PAGE 1

THERE WEPE 0 MISSES

THEY WERE REPS #:

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

				^	52 0036	36	62.6741	7	71.8692
38	4.0903	56	45.1309	3	54.0046			26	71.8401
9	8.8799	83	45.3577	71	54.2424	44	53.0354		
				27	54.4544	72	53.2242	23	72.2268
78	16.9549	79	45.9357			50	63.9030	37	72.4793
62	19.3578	31	46.4452	51	54.5503				73.4170
	24.7089	4 🖹	47,5878	12	55.1322	82	64.0855	41	
65				48	55.2345	11	64.9787	69	74.5630
19	24.9656	81	48.2593			Ĝ	66.4740	68	74.6205
39	25.7328	75	48.4514	79	55.6472				74.9739
	30.1041	34	48.4882	61	55.7017	15	66.8620	5	
46					56.7631	20	67.5250	22	76.2830
1	31.9493	68	48.8º51	21		47	67.9636	8	77.0774
43	32,8478	57	49.3!13	74	57.3926				78.4471
	36.1319	42	49.9366	2	58.1233	18	68.180i	33	
77				80	58.2269	24	68.7220	40	79.016i
76	33.3091	28	59.0541			45	69.0035	32	81.4444
59	40.2723	63	51.7254	64	58.9939				81.5175
	43.2223	53	52.5320	16	59.5320	35	69.5408	14	
30					61.1110	4	70.1904	55	83.4481
73	43.9422	52	53.0874	10			71,8313		
54	44 4347	29	53.6036	17	61.3986	13			
	44.9036	58	53.6299	66	61.4910	67	71.4947		
25	44.7000	JO	0000000						

OBLIQUITY MEAN 55.3863 DEG, STANDARD DIVIATION 17.0987 DEG

45 C. 11 1	neurore
RAHE	
0.05	20,35
0.10	30.84
0.15	
0.20	44.81
0.25	46.45
	48.57
0.30	
0.35	50.72
0.46	53.62
0.45	54.53
0.50	55.70
0.55	58.38
0.60	61.44
0.65	63.63
0.70	66.78
0.75	68.72
0.80	71.12
0.85	72.33
0.90	74.83
0.95	78.90

PAGE 2

FACET No. 399 -398 -398 -371 254 256 333 -368 -168 -188 2557 317 -366 -365 -366 -366 -366 -366 -366 -366	Nō.	OF INPA 2073333322222211111111111111111111111111	
263 308 310 317 332 472 520		1 1 1 1 1	

ODMAN LAB-PHYSICS HETR = 69.7 PHI = 5.1 CALE:: X = -160 TO 140 Y = -110 TO 90

HIFAC COMPARISON WITH ZOT. 14 RUN 491

RODMAN LAB-PHYSICS

LOFAL COMFARISON WITH ZOT.14 RUN 492

PAGE 1

THERE HUPE 3 MISSES

THEY WERE REPS #: 49 60 72

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

11	12.3661	58	44.3167	73	53,1579	5	61.8187	j	70.9384
5	15.2613	41	45.0647	54	53.3320	18	63.2672	28	71.6933
4	23.3333	85	45.0948	14	54.4112	17	63.8832	84	71.8610
25	24.7429	78	46,9699	55	54.8176	19	64.9953	39	"3.2484
45	25.5569	3	47.1130	31	56.4685	1.3	65.1774	59	73.5984
81	28.7459	51	47.3670	53	57,7473	38	65.3363	42	74.0639
67	29.5334	36	48.3106	50	57.9954	22	65.5739	43	74.5600
15	29.7897	29	48.7101	68	58.6609	46	66.3233	21	76.5252
40	30.1709	30	49.7249	7	59.2264	34	68.1956	70	77.9920
79	31.5511		49.8700	27	59.3518	13	68.4778	71	78.0449
$\mathcal{F}_{\mathbf{F}_{i}}$	32,1314	62	49.9160	63	59.4334	37	68.6898	10	78.7438
88	34.8172	33	50,0819	32	59.4765	8	68.8414	26	82.9719
48	35.0254	35	50.1063	23	59.9867	2.1	68.9540	66	83.9454
64	36.8369	83	50.2701	2	60.7170	16	69.0009	57	97.1870
52	37.0498	44	50.8159	75	60.8447	55	E9.1969		
61	37.3779	59	52.0388	82	61.7563	47	69.455.,		
56	43.3138	76	53.0611	74	61.8159	9	70.5845		

OBLIQUITY MEAN 55.4873 DEC- STANDARD DEVIATION 16.8579 DFG

RAH	DEVIATE
0.05	24.87
9.10	39.90
0.15	34.91
0.20	40.94
0.25	46.67
0.30	48.67
0.35	50.08
0.40	52.24
0.45	54.55
0.50	⇒ 58.33
0.55	59.46
មិ.សូមិ	61.57
0.65	63.85
0.70	65.65
0.75	68.73
0.8ព	69.30
0.85	71.79
0.90	74.41
0.95	78.64

PMGE 2

LOFAC COMPAPISON WITH TOT.14 RUN 492

FACET No. 136 231 -136 178 142 242 -134 -238 241 254 -299 -298 -298 -298 -298 -298 -298 -298	NO.	OF IMPACTS 17 6 433222222111111111111111111111111111111
235 237 236 246 249 253 277 283 287		1 1 1 1 1 1 1 1

THETH = 69.7 PH = 5.1 THETH = 69.7 PH = 5.1 SCALE: X = -160 TO 140 Y = -110 TO 90

LOFAC COMPARISON WITH ZOT. 14 RUN 492

RODMAN LAB-PHYSICS

HIFAC C	COMPARI	SOH	WITH	COT.	14	RUH	492
---------	---------	-----	------	------	----	-----	-----

PAGE 1

THERE WERE 2 MISSES

THEY WERE REPS #: 60 72

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

5	7.6727	58	44.3163	54	53.3320	74	61.8159	28	71.6933
11	9.0822	35	44.9350	53	53.7208	6	61.8187	84	71.8510
67	22.0363	85	46.9848	14	54.4112	18	63.0575	39	73.2484
4	23.3333	3	47.1130	55	54.8176	19	64.9953	69	73.5984
25	23.8790	51	47.3670	59	55.9500	12	65.1774	42	74.0639
26	24.6570	33	47.4749	31	56.4685	38	65.3363	43	74.5600
80	26.3053	36	48.3100	21	57.3486	22	65.5739	34	76.2089
81	28.7459	29	48.7101	50	57.9954	46	66.1134	24	77.8945
15	29.7897	30	49.6771	32	58.0963	49	66.9245	70	77.9920
79	31.5511	77	49.8700	47	58,4026	65	67.2511	71	78.0449
45	35.3703	62	49.9160	68	58.6609	13	68.4778	15	78.7438
41	35.4861	83	50,2701	76	58.8942	37	68.6898	17	81.6760
52	37.0498	44	50.8159	63	59.4334	8	68.8414	20	82.9719
61	37.3779	40	51.2360	23	59.9867	16	69.0009	66	83.9454
64	41.0370	48	51.3324	2	60.7176	9	70.5845	57	94.2563
78	42 0997	27	53.0848	75	69.8447	1	70.9384		
56	43.3138	73	53.1579	82	61.7563	7	71.2842		

OBLIQUITY MEAN 55.6619 DEG, STANDARD DOVIATION 17.3903 DEG

reRCENTILES:

DEVIATE 23.44
29.16 36.42
43.07
47.11
48.90
50.49
53.13
54.74
58.00
59.00
61.21
64.22
66.01
68.69
71.01
73.39
77.22
81.09

HIFAC COMPARISON WITH ZOT.14 RUN 492

FACET NO. 399 -399 333 162 254 305 518 120 173 182 311 400 485 -367 -310 -179 -171 -160 74 100 102 171 172 184 185 188 200 206 255 306 337	NO.	OF IMPACTS 17 6 4 33 32 22 22 1 1 1 1 1 1 1 1 1 1 1 1 1 1
200 296 255 256 306 337 387 388 474 520 522 599 673		1 1 1 1 1 1 1 1 1 1 1 1

THE PROPERTY OF THE PROPERTY O

JDMAN LAB-PHYSICS JETA = 69.7 PH1 = 5.1 CALE: X = -160 TO 140 Y = -110 TO 90

HIFAC COMPARISON WITH ZOT. 14 RUN 492

RODMAN LAB-PHYSICS

LOFAC COMPARISON WITH ZOT.14 RUN 493

PAGE 1

THERE WERE 3 MISSES

THEY WERE REPS #: 59 75 78

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

81	8.5637	17	47.4439	60	59.2829	29	66,8230	37	78.1865
22	15.7236	70	47.6152	31	59.3534	57	67.8941	44	78.5836
8	16.4981	82	48.8908	11	59.7386	76	68.5205	20	79.2985
74	17.1330	83	49.1919	80	59.8009	69	69.2858	18	79.9784
32	18.6329	64	49.6188	15	59.8269	7	70.9869	72	81.1739
36	19.5645	67	49.9456	4	59.8928	84	71.1587	50	81.4046
48	19.6454	45	51.0152	23	60.2230	55	71.3633	1	81.9448
71	19.8391	63	51.4326	30	60.4968	25	72.1228	13	85.4025
21	19.8707	58	52.2913	43	61.0414	34	72.7580	6	85.7892
16	21.0447	68	53.5561	51	61.2044	54	72.7845	9	86.8519
33	22.3290	61	53.7436	46	61.7987	38	73.2719	85	89.6475
27	27.8406	12	54.2455	19	62.4561	28	73.8259	73	90.0054
47	29.7535	77	55.1137	79	63.0575	62	74.0084	49	90.6579
52	30.0951	10	56.4729	53	63.6513	25	74.4808	39	92.3329
35	34.9413	65	56.4852	66	63.9178	2	74.5393		
3	38.4857	56	57.2573	5	64.8395	42	74.7153		
14	39.3788	46	57.6788	41	66.7369	24	76.219L		

OBLIQUITY MEAN 57.8625 DEG, STANDARD DEVIATION 21.0641 DEG

RSHK	DEVIATE
0.05	17.36
0.10	19.85
0.15	28.70
0.20	39.82
0.25	49.12
0.30	51.39
0.35	54.29
0.40	57.34
0.45	59.76
0.50	60.36
0.55	62.23
0.60	64.66
0.65	68.49
0.70	71.44
0.75	73.41
0.80	74.61
0.85	79.02
0.90	81.78
0.95	89.23
	-

PAGE 2

LOFAC COMPARISON WITH ZOT.14 RUN 493

FACET NO. NO. OF 1MF 182 8 178 5 231 5 136 4 238 4 -286 3 -136 3
FACET NO. HO. OF IMP 182 178 231 136 238 -286 -136 134 135 243 286 -287 -271 181 183 235 240 242 253 283 -283 -283 -283 -287 -21 11 177 65 66 11 1177 11 137 142 144 187 1198 232 234 234 241 245 241 245 241 245 241 245 246 271 271 271 271 271 271 271 271

RODMAN LAB-PHYSICS THETA = 71.3 PH1 =-12.1 SCALE: X = -150 TO 150 Y = -100 TO 100

LOFAC COMPARISON WITH ZOT..IY RUN 493

RC 7-PHYSICS

HIFAC COMPARISON WITH 70... 4 13

PAGE 1

THERE WERE 6 MISSES

THEY WERE REPS #: 20 33 47 59 75 78

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

81 8 74 49 36 21 71 16 27 66 52 48 31 35	8.5637 16.4981 17.1330 18.7774 19.5645 19.8707 20.9765 21.0447 23.0136 29.3835 30.0951 32.4635 33.4656 38.4857 39.3788 41.1026	63 17 64 83 45 19 12 82 58 61 77 85 76 23	45.6687 47.4439 49.4253 50.1078 51.0152 51.4763 51.5493 51.5493 53.3489 53.7436 54.9276 55.7169 56.5990 56.6877	40 107 60 37 41 15 46 50 51 53 73 69	57.6788 59.0009 59.1405 59.2329 59.5057 59.6991 59.8269 60.3676 60.3676 60.4968 61.2044 62.5403 62.5403 64.5114 64.6340	29 427 45 76 76 84 44 32 63 63	66.6152 66.9225 67.5882 67.7223 68.3475 68.5205 70.9869 71.1587 72.7580 72.7845 73.2719 73.4572 73.8259 73.8492 74.0084 74.0764	26 24 44 18 72 13 65 39	74.4858 74.5393 76.2192 77.9674 79.3384 80.4572 81.2522 85.4825 85.7892 94.2510 96.2559
							74.0764 74.4119		

OBLIQUITY MEAN 56.9747 DEG, STANDARD DEVIATION 19.3833 DEG

RANK	DEVIATE
0.05	18.78
0.10	21.64
0.15	32.46
0.20	41.10
0.25	49.43
0.30	51.55
0.35	53.74
0.40	56.60
0.45	59.00
0.50	59.70
0.55	60.37
0.60	62.85
0.65	66.62
0.70	68.35
0.75	72.76
0.80	73.83
0.85	74.41
0.90	77.97
0.95	85.40

HIFAC COMPARISON WITH ZOT,14 RUN 493

FACET No.	HO.	0F	IMPRICTS
337			E
365 395			ਹ ਵ
395			5
399			ð
172			3
311			3
333			3
387			3
399 172 311 333 387 390 -119 -118 118 180 191 343			3
-119			2
-118			2
118			2
188			2
191			2
343			2
400 583			2
583			2
-466			<u>1</u>
-368			1
-175			1
-121			1
-101			1
-168			1
-406 -308 -175 -121 -101 -100 -93 -89 58 90 106 161 164 175 183 186 195			655566666000000000000111111111111111111
-89			i
58			1
93			1
100			i
106			1
161			1
16.4			1
175			1
187			1 1
183			1
186			1
195			1 1
254			ī
212			_
99 <i>5</i>			•
990 950			1
330 510			i -
312 336 358 518 529			1 1 1 1 1
522 522			1
52%			1 .
582			1.

HIFAC COMPARISON WITH ZOT. 14 RUN 493

MANN CHB. ETA = 71 ALE: X = 4

RODMAN LAB-PHYSICS

LOFAC COMPARISON WITH ZOT.14 RUN 494

PAGE 1

THERE WERE 0 MISSES

THEY WERE REPS #:

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

11	8.5205	41	43.7437	63	55.9152	56	62.1299	7	71.7068
26	10.2701	75	44.6612	29	56.0038	74	62.8065	69	71.9331
32	16.7112	72	45.7861	73	56.1581	38	63.2504	1	72.5447
45	19.2503	85	46.2344	2	57.4490	46	63.5119	39	72.9483
5	21.4518	58	46.4704	50	57.5614	52	65.2408	42	73.1239
67	27.1221	36	47.9558	23	57.9214	84	65.2779	44	73.2390
48	30.2993	83	48.5381	82	58.6467	13	65.6015	43	74.6820
76	30.3250	51	49.0126	66	59.2258	17	66.1730	70	74.8721
33	32.8411	62	49.8460	18	59.5050	22	67.2798	34	75.3439
40	33.2775	65	51.3875	79	59.6284	ខូម	67.7291	10	76.4423
15	33.7201	77	51.6959	53	59.7367	20	68.5603	24	76.8538
78	36.9557	55	53.1906	12	59 9849	49	68.7295	14	78.5102
35	37.5630	25	53.8255	6	60.2130	37	69.0462	31	79.1399
47	38.4277	60	54.2993	81	60.7867	9	70.4061	71	79.6685
30	39.3174	21	54.6007	19	61.6846	16	70.9518	57	83.7707
59	40.3897	3	54.8930	68	61.7498	9	71.4587	27	84.3315
61	41.1158	54	55.1791	64	61.7429	28	71.5165	4	86.8141

OBLIQUITY MEAN 56.4515 DEG, STANDARD DEVIATION 17.2048 DEG

RANK	DEVIATE
0.05	19.91
0.10	31.83
0.15	37.50
0.20	41.64
0 25	46 35
0.30	49.68
0.35	53.87
0.40	49.68 53.87 55.47
0.45	57.53
0.50	59.51
0.55	60.39
0.60	61.98
0.65	65.07
0.70	67.37
0.75	69.73
0.80	71.67
0.85	73.14
0.90	75.78
0.95	79.51

LOFAC COMPARISON WITH ZOT.14 RUN 494

FACET NO.	но.	OF IMPACTS
136		1 <i>7</i> 9
يم 178		1997553222222222211111111111111111111111111
242		5
286		5
146		3 5
-286 -196		2
-135 134		2
135		Ž
137		2
232		2
234		2
236 974		2
-292		ī
-270		1
-238		1
-231		1
-134 171		1 .
. 182		î
196		i
235		1
240		1
241 243		1
253		i
260		i
27.		1
272		1
136 231 178 242 286 146 -136 -137 238 -137 238 278 -231 -231 -135 246 253 272 279 279 284 279 284 279 287 289 289 289 289 289 289 289 289 289 289		<u>1</u> 1
217 224		1 1
LUT		^

LDFAC COMPARISON WITH ZDT. 14 RUN 494

LOFAC COMPARISON WITH ZOT.14 RUN 495

PAGE 1

THERE WERE 2 MISSES

THEY WERE REPS #: 60 72

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

12	4.4805	13	38.7106	83	50.4191	27	60.3146	39	73.8742
25	7.6093	15	38.9446	62	50.8728	23	60.4750	69	74.1196
17	12.6332	35	41.3050	59	53.0967	75	60.4939	42	74.2215
26	12.8013	78	41.3864	77	53.4626	74	61.1635	58	75.6903
à	13.2242	11	41.7843	73	53.5388	49	62.0934	84	76.0926
45	14.1556	38	41.9149	50	55.0348	82	62.2886	43	76.5895
14	14.6429	76	42.6050	55	55.3338	6	62.7848	34	77.1403
40	20.4371	56	44.1143	31	55.4325	18	62.9732	3	77.6833
4	22.7470	52	44.1169	54	56.7836	19	65.0362	71	77.8275
67	25.9922	7	44.4859	33	57.1661	22	65.2030	70	78.3403
79	29.6835	85	46.8689	53	57.6191	57	65.3959	20	78.3561
81	31.6601	64	47.0255	68	59.0002	46	66.6317	21	79.8080
5	32.5270	36	47.1458	63	59.3767	37	67.9377	65	80.8153
48	33.6107	47	48.3753	2	59.5536	8	68.4151	66	84.8250
80	35.5277	51	49.0813	41	59.6076	16	69.6671	19	93.2764
61	38.2517	44	49.4216	32	60.0390	28	71.1791		
30	38.6877	24	50 1390	24	60 1753	1	71.2111		

OBLIQUITY MEAN 52.8254 DEG, STANDARD DEVIATION 19.7559 DEG

RANK		DEVIATE
0.05		12.89
0.10		21.36
0.15		32.18
0.20		38.60
0.25		41.38
		44.11
		47,07
0.40		49.85
0.45		. 1.77 7
0.50		
0.55		59.00
0.60	•	60.09
0.65		60.90
0.70		62.94
0.75		66.63
0.80		71.19
0.85		74.81
0.90		77.47
0.95	•	79.52

LOFAC COMPARISON WITH 201.14 RUH 495

FACET HO. 136 231 -136 178 1342 197 238 249 298 -298 -298 -298 -298 -298 -298 -298	HO.	1475433222221111111111111111111111111111111
290		1

LOFAC COMPARISON WITH ZOT. 14 RUN 495

THETA = 69.8 PHI SCRLE: X = -200

	LOFAC	COMPARISON	WITH ZOT.	14	BIIII	496
--	-------	------------	-----------	----	-------	-----

PAGE 1

THERE WERE 3 MISSES

THEY WERE REPS #: 20 33 59

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

32 31	8.5664 12.8124	43 63	42.4704 43.3314	58 23	50.7623 51.0302	60 15	58.9115 59.4521	34 28	73.2080 73.9073
48	14.3712	82	43.4462	53	52.0091	69	60.0511	62	73.9294
81	14.6029	54	43.9989	68	52.6739	67	60.4202	38	74.2380
8	14.6216	46	44.8348	5	52.9710	18	60.9473	26	74.4076
74	16.4526	79	45.0366	25	53.3134	41	61.2939	2	74.5745
36	12.9530	17	45.2812	61	53.3860	51	61.8589	39	75.3392
22	20.8745	64	46.2911	77	53.9371	73	64.5792	24	77.0429
11	23.6647	84	46.7324	1	54.0418	12	65.2827	50	79.3892
16	25.5987	70	47.0197	56	54.8976	57	66.2018	72	85.0248
21	26.3392	71	47.7915	65	56.4366	42	67.1586	13	86.3178
47	29.7394	80	49.2745	44	56.9585	76	69.0080	6	86.8382
78	34.5805	27	49.4350	85	57.5179	10	69.7641	29	89.5770
52	37.8896	35	49.6605	30	57.6288	49	71.4083	40	95.6171
3	39.8124	9	49.7960	19	57.6784	7	71.5932		
14	39.9203	83	49.8580	4	58.6364	55	72.5031		
66	42.3017	45	50.3180	37	58.8212	75	72.7736		

OBLIQUITY MEAN 53.4268 DEG, STANDARD DEVIATION 19.3389 DEG

RANK	DEVIATE
0.05	14.61
0.10	21.71
0.15	31.92
0.20	41.35
0.25	43.86
0.30	46.19
0.35	49.28
0.40	49.95
0.45	52.24
0.50	53.66
0.55	56.78
0.69	58.44
0.65	60.02
0.70	62.13
9.75	67.62
0.80	71.96
0.85	73.92
0.90	75.11
0.95	86.12

LOFAC COMPARISON WITH LOT.14 RUN 496

FACET HO.	HO.	OF IMPACTS
FACET NO. 136 182 231 -136 178 248 -286 -271 -134 135 1487 235 238 241 246 277 284 -283 -280 -270 -65 661 144 146 183 188 288	***	10
182		ର ଅ
231 ~136		4
178		3
242	÷	3
-286 -271		2
-134		2
134		2
135 142		2
187		2
235		2
236 238		2
241	•	Ž
246		2
270 277		2
284		2
-284		1
~263 -282		i
-280		1
-270 65		1
-60 65		1
66		1
91 144		1
144 146		i
183		1
188		1
240		i
243		1
244 280		i
240 243 244 280 283 286 296		OF IMPACTS 10 543322222222222222222222222222222222222
286		1
296		1

100MAN LAB-PHYSICS THETH * 71.2 PHI * -1.5 SCALE: X = -160 TO 140 Y = -100 TO 100

LOFAC COMPARISON WITH ZOT.14 RUN 497

PAGE 1

THERE WERE 0 MISSES

THEY WERE REPS #:

CBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

41 76 39 48 35 79 61 65 86 87	13.5797 22.0337 26.0425 26.1048 27.7080 32.2794 32.7006 36.5573 41.6493 45.2395 46.7453 46.8870 47.2157 47.9835 48.5351	44 36 77 50 82 53 54 73 14 29 15 23	49.9800 50.2668 50.7049 51.0262 52.1437 52.3642 52.8728 52.9885 53.2128 53.2865 53.2865 53.3601 55.5041 55.5041 55.5041	1869869523445845643	56.2921 56.7970 57.1325 57.7203 57.8031 57.9935 58.4605 58.5177 60.5688 62.8187 64.8698 64.8845 65.7918 66.1089	59 78 52 67 40 47 69 23 71 70 26	66.7811 67.1235 67.8360 67.8921 67.9926 69.4958 69.8239 69.8239 69.8239 70.0542 70.0552 70.6826 70.7073 71.0664 71.0782	285 421 39 87 169 43 105 44 57	71.8334 71.8807 72.1181 72.1735 72.5620 72.5645 72.6915 72.9200 73.6934 74.6518 74.9443 75.2222 76.2054
_									

OBLIQUITY MEAN 58.9332 DEG, STANDARD DEVIATION 13.9352 DEG

RANK	
0.05	
0.10	39.61
0.15	47.18
0.20	49.31
0.25	49.31 51.58
0.30	52.97
	55.52
0.40	
0.45	57.78
0.50	58.52
0.55	
0.60	66.70
0.65	
0.70	69.87
0.75	70.69
0.80	71.73
0.85	72.45
0.90	73.13
0.95	
OF SU	17.00

LOFAC COMPARISON WITH ZOT.14 RUN 497

PAGE 2

FACET NO.	HO. OF IMPACTS
231	28
136	27
1 37	4
232	
234	2
-232	ž
-136	2
240	4 3 2 2 2
-278	ī
-137	i
135	i
171	î
233	ī
235	i
238	ī
242	ī
270	ī
275	ī
276	
278	1 1
286	Ī

RODMAN LAB-PHYSICS THETA = 69.8 PHI = 25.5 SCALE: X = -260 TO 186 Y = -110 TO 98

LOFAC COMPARISON WITH ZOT. IM RUN 497.

HIFAC COMPAPISON WITH ZOT.14 RUH 497

PAGE 1

III in in Activities of the State of the It of the It of the State of

THERE WERE 0 MISSES

THEY WERE REPS #:

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

48	11.5880	83	47.9835	73	53.2128	4	63.7835	26	71.0783
30	12.3372	56	48.3539	29	55.5041	74	64.7582	20	71.3267
27	12.3602	84	48.3917	15	55,6678	45	64.8698	28	71.8334
53	13.0457	52	48.6919	2	55.9380	68	64.8845	25	71.8807
32	15,4151	58	49,1415	12	56.0900	33	65.1089	42	72.1181
65	17.9683	44	49.7853	3	56.1153	89	66.5699	11	72.1735
76	17.9865	70	49.8400	50	56.1867	59	66.7811	8	72.5620
41	23.1709	36	50.2668	18	56.7970	78	67.1235	7	72.5645
35	26.0425	77	50.7049	48	57.1325	21	67.8921	16	72.6815
39	37.3314	51	51.0262	19	57.7203	67	67.9926	9	72.9298
1	39.4015	60	52.1437	38	57.8031	47	69.4958	13	73,4446
79	41.4618	82	52.3642	86	57.9761	40	69.6203	34	73.6934
81	45.2395	55	52.4805	49	57.9935	17	69.8239	10	74.6518
61	46.7453	54	5^.8055	6	58.4605	62	69.8373	5	74.9443
85	46.8870	63	52.8728	72	58.5177	,69	69.9875	24	75.2222
37	47.0630	31	53.0917	13	60.5688	22	70.0542	57	76.2954
75	47.2157	14	53.1560	64	62.8187	71	70,6826	23	76.3879

OBLIQUITY MEAN 55.7043 DEG, STANDARD DEVIATION 16.7419 DEG

RAHK	DEVIATE
6.05	
0.10	24.89
0.15	44.86
១ព្	44.86 47.37
ç.	48.92
16	
	50.62
Ø,35	52.51
0.40	53.18
0.45	56.04
0.50	57.13
0.55	56.04 57.13 58.13
0,60	63.40
0.65	u 5. 99
0.70	67.91
0.75	69.83
0.80	71.00
0.85	72.12
0.90	72.78
0.95	_
0.20	17.00

PAGE 2

HIFAC COMPARISON WITH ZOT.14 RUN 497

FACET NO.	NO. OF IMPACTS
399	27
256	
200 305	Š
202 254	4
254 255	4
317	4
400	4
-306	ź
-200 170	2
179 253	Ž
263	Ž
264	
306	- 2
307	Ž
389	8544442222222211111111111111111111111111
-390	1
98	1
111	1
119	1
111 119 162	1
164	1
171 173	1
173	1
180 257	1
257	i
284	1
284 311	· 1
395	1

HIFAC COMPRRISON WITH ZOT. 14 RUN 497

LOFAC COMPARISON WITH ZOT.14 RUN 498

PAGE 1

THERE WERE 0 MISSES

THEY WERE REPS #:

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

45	14.5968	41	43.4223	69	55.5704	74	62.4062	28	71.1971
11	16.7741	61	43.9735	32	56.0084	80	62.7321	7	71.2620
27	21.2047	65	44.2080	63	56.4564	38	63.4062	9	71.3554
76	23.4712	25	44.7807	3	56.5708	46	63.4141	16	71.6493
67	24.2057	64	44.9195	73	56.8259	13	65.5956	69	72.1297
4	24.7833	72	46.4040	2	57.0403	17	66.1050	40	72.2215
33	25.1063	75	46.4914	29	57.5527	52	66.3707	1	72.7962
48	25.9398	85	47.1772	82	58.0326	84	66.6722	42	73.1957
35	27.2192	36	48.2981	53	58.2084	22	67.0244	39	73.5350
38	28.6771	58	48.4461	23	59.1407	56	67.6603	70	74.2646
78	30.4299	83	49.4759	12	59.2046	54	67.6831	10	75.3566
5	31.1063	66	49.6099	18	59.6787	71	68.1457	34	75.8522
59	31.5430	62	51.0464	50	60.9559	37	68.7235	43	75.9473
47	32.3328	51	51.4141	6	61.3942	20	69.3345	31	77.1067
79	36.3302	14	53.1577	81	61.4348	26	69.3863	24	77.4819
15	42.4701	55	54.7426	19	61.5353	49	69.5855	44	80.1296
21	42.7282	77	55.0414	68	61.9249	8	70.4717	57	82.6520

OBLIQUITY MEAN 55.3167 DEG, STANDARD DEVIATION 16.7618 DEG

RAHK	DEVIATE
0.05	23.69
0.10	
0.15	31.50
0.20	26.71 31.50 42.87
	44.85
	48.07
0.00	51.08
0.40	55.25
0.45	56.75
·	
0.50	58.21
	61.09
0.60	
0.65	65.38
0.70	67.15
0.75	69.03
0.80	71.05
0.85	72.14
0.90	73.83
0. 95	76.76

LOFAC COMPARISON WITH ZOT.14 RUN 498

PAGE 2

FACET HO. 136 231 178 242 -136 146 232 286 237 -240 -137 135 238 -239 -231 -134 137 171 182 197 2334 235 246 253 274 275 284 285 292	NO. OF IMPACTS 18 10 6 6 4 3 3 3 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
292	î

chie puchologia

HETH = 69.8 PH1 = 25.5 CALE: X = -200 TO 100 Y = -110 TO 90

LOFAC COMPARISON WITH ZOT. 14 RUN 498

	LAFAC	COMPARISON	MITH	ZOT.	14	RUN	499
--	-------	------------	------	------	----	-----	-----

PAGE 1

THERE WERE 4 MISSES

THEY WERE REPS #: 4 54 60 72

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

12	8.8223	13	39.5972	51	51.8296	63	59.5200	16	70.6995
25	11.6407	47	40.2936	62	51.8782	74	60.5311	28	70.7647
40	11.6501	61	41.4738	52	52.1847	75	60.6928	1	71.5780
45	13.7038	38	42.7672	49	52.1944	32	61.3921	42	74.3143
9	23.2771	59	42.7698	80	53.4800	23	61.7339	69	74.3914
6 7	24.7683	56	46.1100	64	53.5877	82	62.4345	39	74.6736
79	30.4665	36	46.8636	73	54.4621	17	62.5497	10	75.5618
48	31.1745	15	47.0358	31	55.5089	18	62.9957	71	77.0830
11	31.5107	35	47,4554	5	55.6105	<i>6</i> 5	63.4009	76	77,8021
7€	32.9385	58	47.8672	55	56.8641	6	63.5382	20	78.1363
26	33.7263	33	48.0338	53	57.0957	32	64.5889	43	78.5256
35	33.9160	50	48.0792	77	57.2435	19	64.7231	66	85.5083
78	35.1684	44	48,8905	27	57.4975	57	65.1921	41	96.5857
34	35.8671	84	51.6899	14	57.6155	46	66.9977		
81	36.5864	83	51.1793	21	58.1257	3	67.2527		
7	37.4766	24	51.7783	2	58.5762	37	67.4218		•
30	38.2596	29	51.8232	68	59.2966	8	68.475i		

OBLIQUITY MEAN 53.0346 DEG, STANDARD DEVIATION 17.3345 DEG

RANI:	DEVIATE
0.05	14.66
0.10	31.24
0.15	34.29
0.20	37.79
	42.12
0.30	46.97
0.35	48.07
0.40	51.66
0.45	52.15
0.50	
0.55	57.11
0.60	58.22
0.65	60.58
0.70	62.52
0.75	64.06
0.89	67.15
0.85	70.75
0.03 0.90	
0.90 0.95	
v. 75	78.10

PAGE 2

LOFAC COMPARISON WITH 201.14 RUH 499

FACET HO.	HO.	OF IMP	AC 15
136 -136 231 178 244		14	
-136		7	
231		6	
178		4	
244		4	
134		3	
238		3	
142		2	
177		2	
179		2	
187		2	
246		2	
270		2	
277		2	
-2 99		177644888888888811111	
-242		1	
-235		1	
134 238 142 177 179 187 246 270 277 -285 -231 -235 -231 -267 -28 144 148 183 193 197 234 235 234 235 284		1	
-231		Tunnel Les-An	
-262		1	
-137		1	
-67		1	
28			
39		Seed Diese	
59		1	
144		1	
145		1	
168		ĺ	
183		1	
193		best back tend has been just	
197		1	
533		1	
234		1	
235		1	
278		1	
283		1	
284		1	
287		1	
287 298 296		pleast breakt pounts	
256		1	

RODMAN LAB-PHYSICS THETR: # 69.8 PH! = 25.5 SCALE: X = -200 TO 100 Y = -110 TO 90

LOFAC COMPARISON WITH ZOT. 14 RUN 499

LOFAC COMPARISON WITH ZOT.14 RUN 500

PAGE 1

THERE WERE 10 MISSES

THEY WERE REPS #: 4 10 14 38 41 53 54 60 72 73

OBLIQUITY ANGLES IN ACCEMBING ORDER (DEG):

45	13.5746	47	45.4366	74	59.5137	19	67.2268	43	80.6175
68	16.1408	36	45.7952	21	59.9418	5i	67.9602	70	80.8627
29	18.4185	64	46.1728	2	60.1216	3	68.0837	24	82.1155
35	21.1221	40	48.3795	75	60.3729	32	68.5712	65	84.8815
67	28.5586	59	49.1990	11	61.6724	17	69.8131	12	87.8875
26	36.4017	84	49.7028	85	61.7575	58	69.9087	66	96.1824
48	37.3922	5	51.4811	63	62.2222	16	69.9457	80	96.3991
13	37.5309	49	51.7156	81	62.2444	1	70.1869		
76	38.3471	7	52.2466	50	62.8831	25	70.6533		
61	39.4207	83	52.7987	22	63.4529	28	70.8441		
46	40.2558	62	53.0822	23	63.4768	15	72.5711		
33	43.1349	78	53.5111	52	63.6316	42	75.4747		
69	44.0694	34	56.2216	6	64.7658	9	75.9858		
79	44.1333	20	57.4071	44	65.4359	39	76.2267		
82	44.3513	27	57.4829	37	66.0796	31	79.1409		
30	44.3763	55	58.7209	57	66.5116	18	80.3382		
56	44.7854	77	58.8842	8	66.5587	71	80.5289		

OBLIQUITY MEAN `58.5773 DEG, STANDARD DEVIATION 17.4275 DEG

RANK	DEVIATE
0.05	
0.10	
	37.48
0.15	41.41
0.20	44.36
0.25	45.80
0.30	49.60
0.35	52.58
	56.70
0.45	59.01
0.50	60.37
0.55	62.24
0.60	63.57
0.65	66.25
0.70	67.98
0.75	69.91
9.89	70.81
0.85	76.13.
0.90	80.56
0.95	· 85.48

LOFAC COMPARISON WITH ZOT.14 RUN 500

FACET NO. 136 -134 137 231 246 287 -146 287 -148 287 -148 287 -297 -297 -297 -297 -297 -297 -297 -29	MÕ.	ŪΕ	IMPACTS 933333332222211111111111111111111111111
285 286			i

LOFAC COMPARISON WITH ZOT. 14 RUN SOB.

LOFAC COMPARISON WITH ZOT.14 RUN 501

PAGE 1

THERE WERE 0 MISSES

THEY WERE REPS #:

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

35 72	9.4148 9.6473	46 41	38.5351 38.7432	49 12	50.6778 50.8198	40 52	65.7941 67.0936	26 44	74.0460 74.2313
10	11.9108	34	39.3456	58	51.2921	30 30	67.3923	9	74.3837
48	13.1484	69	40.2640	8i	52.7628	47	67.9168	7	74.6968
66	15.6927	80	44.7417	79	53.3995	59	69.0312	59	74.7463
32	16.1738	71	45.4615	21	53.9565	11	69.5542	31	74.8482
43	18.1917	64	46.8402	22	54.0393	42	70.5561	39	75.1080
82	24.8952	77	47.2633	51	54.5585	62	71.0625	24	75.1892
53	25.6604	84	48.5989	4	55.0175	33	71.1824	37	75.2364
27	27.4151	74	48.6996	1	55.2921	55	71.4076	73	75.6640
57	29.8243	68	49.2356	15	55.7108	85	71.5022	8	75.7251
65	29.9799	56	49.3297	60	57.1007	25	72.1910	2	75.7407
63	30.5026	75	50.0394	3	58.7950	18	72.6546	20	77.1197
70	35. <i>66</i> 88	61	50.2784	29	59.7357	5	73.0612	19	78.1224
83	36.5056	45	50.3336	14	60.6635	38	73.2883	13	78.7602
23	37.4291	17	50.3920	67	60.7836	16	73.6900	6	79.7342
76	37.8773	36	50.4335	78	63.3934	28	73.6952	54	80.2079

OBLIQUITY MEAN 54.6002 DEG, STANDARD DEVIATION 19.3759 DEG

RANK	
0.05 0.10	25 25
0.15	30.45
0.40	00.00
0.25	42.50
0.30	48.33
0.35	50.06
0.40	50.53
0.45	53.21
0.50	55.02
0.55	
0.60	· 64.83
0.65	68.92
0.70	71.23
0.75	72.86
0.80	73.98
0.85	74.76
0.90	75.38
0.95	77.82

FACST NO.	HO. OF IMPACTS
231	25
136	23
238	5
240	5
234	550000000000000000
235	3
242	3
274	3
137	2
232	ž
233	2
270	2
277	2
278	녿
241	1
284	1
286	1

LOFAC COMPARISON WITH ZOT. 14 RUN SØ1

THETH = 71.1 PH = 8.9 SCALE: X = -180 TO 120 Y = -100 TO 100

LOFAC COMPAPISON WITH 201.14 BUN 502

PAGE 1

THERE WERE 0 MISSES

THEY WERE REPS #:

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

18 89 39 36 74 11 67 33 82 43 21 27 25 33 42	10.8303 15.3661 19.5641 20.4903 22.2344 24.9096 26.1557 28.9448 28.9454 31.7553 32.6984 34.2590 34.8770 35.1415 35.8544 35.8618	32 48 69 63 83 57 46 19 64 65 71 17 34 77	36.8490 37.8896 38.2010 38.5116 40.9879 41.0484 41.8667 42.7187 45.2685 45.6711 45.8767 46.2629 47.4037 48.4220 49.5089	58 56 81 61 12 16 58 85 22 1 44 70 37	50.6719 50.9613 51.5360 51.6843 51.7184 52.4979 53.1740 53.9503 54.2076 54.7889 55.1785 55.3558 55.7567 55.8114	15 79 51 59 78 49 73 66 52 54 60 47 129	57.8326 58.9994 59.8316 59.2631 59.8826 59.9734 60.5771 61.5660 62.5988 63.3932 63.4005 63.6414 64.5200 66.0864 66.3329	635 9 7 8 8 6 2 5 2 4 1 3 9 9 9 3 6 2 1 6	72.3508 72.3809 72.9834 73.5957 73.7652 74.1172 74.1822 74.3115 74.5093 75.1525 76.3621 76.5798 78.3809 79.5522 82.3736 83.4567
42 41	35.0010 36.8312	45	50.4070	10	57.6136	5	67.1101	6	83.4567

OBLIQUITY MEAN 52.7754 DEG, STANDARD DEVIATION 16.9825 DEG

RANK	DEVIATE
0.05	21.01
0.10	28.95
0.15	34.82
0.20	34.82 36.83 39.75
0.25	39.75
0.30	44.75
0.35	
0.40	
0.45	51.71
0.45 0.50 0.55	54.21
0.55	55.63
	57.75
	59,82
0.70	62.31
0.75	
0.75 0.80 0.85	71.30
0.85	73.80
0.90	74.77
0.95	78,29
0.70	.0123

LOFAC COMPAPISON WITH 257.14 90N 502

PAGE 2

FALET HO.	ЫŪ.	QΕ	IMPACTS
135		1	-1
231			9
242			6
135			5
178			4
182			4
-135			3
210			3
270			3
137			2
142			2
235			2
238			2
246			Ž
253			Ž
277			2
278			2
281			2
286			Z
-280			1
-233			1
-137			1
144			1
146			1
232			Ī
234			ì
241			<u>l</u>
24.			1
248			1
273			1
136 2425 178 178 178 178 178 178 178 178 178 178			4985544080000000000000000000000000000000
583			Į.
284			<u></u>

LUFAC COMPARISON WITH ZOT. 14 RUN SAZ

LOFAC COMPARISON WITH ZOT.14 RUN 503

PAGE 1

THERE WERE 0 MISSES

THEY WERE REPS #:

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

80	4.1839	63	36.7108	18	50.3585	35	59.1181	64	69.4942
37	10.2611	41	36.940	45	50.3815	52	59.7783	67	69.9121
32	15.4455	14	38.2810	77	51.5214	15	59.8889	9	71.7556
8	19.6127	25	40.6044	68	51.9673	10	60.0195	7	72.5163
36	20.5699	43	41.0354	34	52.7672	50	60.1468	75	72.8094
74	21.2532	42	41.5678	19	54.2523	21	60.4108	55	73.6107
39	22.2652	54	42.5477	12	54.6117	48	61.2175	62	73.6466
81	23.4505	3	43.2281	61	55.1266	66	61.2450	28	73.8586
59	27.3439	23	43.7058	76	55.3390	20	61.6888	26	74.3280
22	29.8151	17	44.4785	1	55.4637	47	61.7395	38	75.2382
65	30.1395	୫୧	45.3093	40	55.6024	51	62.3793	24	77.6231
49	30.6584	4.5	45.4214	30	56.0910	73	64.6423	56	80.9076
16	33.4997	79	45.9469	4	56.8172	57	65.1562	13	86.5597
11	34.8313	53	46.9440	44	58.0863	5	65.4862	6	87.4426
82	35.2709	84	47.1101	60	58.7648	2	66.2454	72	87.7457
71	35.2995	58	49.9479	85	58.8081	78	66.6161	29	90.3053
27	35.4525	69	50.1703	70	58.9238	33	69.1248	31	96.3547

OBLIQUITY MEAN 52.9788 DEG, STANDARD DEVIATION 18.9844 DEG

RANK	DEVIATE
0.05	
0.10	25.79
0.15	33.22
0.20	35.70
0.25	35.70 40.82
0.30	43.61
	46.05
	50.25
0.45	52.53
0.50	55.34
0.55	57.20
0.60	
0.65	
0.70	
	65.32
0.80	69.42
0.85	72.89
0.90	74.69
0.95	
	- T T T T T

FACET NO. 136 137 138 138 138 138 138 138 138 138 138 138	NO.	OF.	IMPACTS 97633322222222111111111111111111111111111

LIFFIC COMPRESSON WITH ZOT. 14 RUN SRA

THETH = 71.1 PH = 6 SCALE: X = -188 TO Y = -188 TO

THE SECTION ASSESSED ASSESSED

LOFAC COMPAR	:ISON WITH	ZOT.14	RUN 504
--------------	------------	--------	---------

PAGE 1

THERE WERE 9 MISSES

THEY WERE REPS #: 14 20 33 54 58 59 61 65 79

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

60 37	3.6170 7.4859	63 23	44.3830 44.5685	27 18	54.1673 54.2417	73 81	65.5353 66.6791 67.0109	15 4 49	78.6665 80.0468 80.2929
35 31	9.1386 12.5092	10 77	44.9518 46.0155	5	55.3083 55.6043	3 2	68.7993	47 50	86.7401
43	12.5628	67	47.8097	55	55.6162	13	69.2182	29	87.6173
8	19.3335	7	48.0123	12	55.6940	68	69.2445	72	90.7508
11	23.1640	51	48.2250	56	55.9639	36	69.7715	6	90.8919
82	30.5192	46	48.5805	52	56.0082	76	69.9600	70	98.2156
84	32.9208	83	49.1789	69	56.5646	9	70.5071		
16	34.9365	62	49.5161	19	58.1672	47	71.0278		
39	36.7522	45	50.2394	48	58.4102	75	72.0379		
66	38.9846	80	51.5764	21	59.7866	28	74.0403		
17	41.6897	53	52.1244	41	60.0218	26	74.8501		
25	42.7126	78	52,7277	44	60.2875	22	75.1814		
42	42.8750	40	53.1010	85	62.0982	34	75.3824		
24	43.2114	32	53.9393	71	62.8835	74	75.6561		
Б4	44.2135	39	54.1002	57	64.8466	38	76.7852		

OBLIQUITY MEAN 55.3453 DEG, STANDARD DEVIATION 19.9151 DEG

RANK		DEVIATE
0.05		12.00
0.10		28.31
0.15		37.98
0.20		43.01
0.25		44.66
0.30		48.03
0.35		49.50
Й. 4Й		52.61
0.45		54.1,
0.50		55.61
0.55	•	56.20
0.69		59.83
0.65		62.98
0.70		66.98
0.75		69.64
0.80		71.63
0.85		75.27
0.90	•	79.08
0.95		88.09

FACET HO. 136 -283 144	ΝО.	OF	IMPACTS 6 3 3
144 182 231 242 -241 44 68			IMPACT3 6 3 3 3 3 2 2 2 2 2 2 2 2 1
178 213 238 246 253 284 295 -296			2 2 2 2 2
-294 -296			1.
-286 -278 -271 -146 -142 -136	•		1 1 1 1 1
-134 -134 -33 -65 -66 -83		•	1 1 1 1 1
108 132 134 135 137 146			1 1 1 1
183 184			1 1 1 1 1
193 232 234 244 245 248 269			1 1 1 1 1 1 1 1 1 1 1 1
273 280 283 286 298 299	- _		1 1 1 1
C77	110	Б	1

LOFAC COMPARISON WITH ZOT. 14 RUN SAY

પ્રાથમિક કર્યા મારા કર્યા કર્યા કર્યા કાર્યા કાર્યા કાર્યા કર્યા કાર્યા કર્યા કર્ય

THE COLUMN TO A THE COLUMN THE CO

LOFAC COMPARISON WITH 70T.14 RUN 505

PAGE 1

THERE WERE 0 MISSES

THEY WERE REPS #:

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

32 22.8792 62 52.5069 50 59.6074 21 68.8603 7 7	2.2159 2.4558 2.8320 2.8807 2.9218
02 22.01.2 02 02.0001 00 00.00 00 00	2.8807
-48 23.2307 77 53.4278 72 59.9154 47 69.4814 8 7	
	9 0010
	6.7610
65 27.8092 60 54.4368 66 60.5101 69 70.0603 9 7	2.9938
	3.2668
49 47.7259 31 54.9170 4 62.5504 71 70.2748 10 7	3.8282
81 48,9563 55 55,0572 64 62,6270 36 70,4060 34 7	4.1040
85 49,4006 54 55,1113 74 64,8809 41 70,4689 43 7	4.1661
82 49.8887 73 55.8679 76 64.8830 35 70.5077 1 7	4.3575
21 50 1878 46 57 8055 68 65.2724 70 70.8629 5 7	4.8915
75 50.4946 29 58.3083 45 65.7295 26 71.4246 24 7	5.6988
56 56 6977 23 58 4552 33 65.7633 25 71.7400 57 7	5.7659
58 51,6496 3 58,7194 78 66,2546 28 71,8508 2 7	6.4429
44 51.7920 19 58.9552 80 66.3173 11 72.1256 18 7	6.8455
37 51.8960 15 59.0541 59 66.5074 11 72.1256 12 7	6.9873

OBLIQUITY MEAN 60.8656 DEG, STANDARD DEVIATION 13.2873 DEG

RANK		DEVIATE
0.05		
0.10		48.46
0.15		50.46
0.20		51.91
0.25		53.67
0.30		55.03
0.35		58.32
0.40		59.13
0.45		60.27
0.50		62.63
0.55	•	65.74
0.60		67.63
0.65		70.04
0.70		70.42
0.75		71.58
0.80		72.20
0.85		72.93
0.90	•	74.13
0.95		75.75
0.70		10.10

大学的一个人,我们就是一个人的人,我们也不是一个人的人,我们也不是一个人的人,也是一个人的人的人,也是一个人的人,也是一个人的人,也是一个人的人,也是一个人的人

LOFAC COMPARISON WITH 25T.14 RUN 505

FACET NO.	HO. OF IMPACTS
231	28
136	26
-232	5
232	4
234	4
-137	5 4 4 3 3 2
270	3
137	
-136	1
135	1
171	1
233	1
235	1
240	1
241	1
242	1
. 275	1
287	1

LIFTEC COMPTRISON HITH ZOT. IN RUN SES

HIFAC COMPARISON WITH ZOT.14 RUN 505

PAGE 1

THERE WEPE 0 MISSES

THEY WERE REPS #:

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

48	0.3532	83	49.8387	54	54.9467	64	62.6270	41	70.4689
53	2.8084	61	50.1878	55	55.0572	74	64.8809	35	70.5077
27	3.5585	75	50.4946	73	55.8679	76	64.8830	70	70.8629
65	8.4747	56	50.5393	12	56.7405	68	65.2724	26	71.4246
30	11.1497	44	51.6200	46	57.8055	45	65.7295	25	71.7400
32	15.5448	· 58	51.6496	29	58.3083	33	65.7633	28	71.8508
16	16.9585	84	51.8586	23	58.4552	78	66.2546	11	72.1256
67	25.7072	37	51.8960	3	58.7194	80	66.3173	11	72.1256
39	28.9659	36	52.1561	19	58.9552	59	66.5074	42	72.2159
8	33.9039	62	52.5069	15	59.0541	52	68.3851	7	72.4558
63	35.6123	4	53.2961	38	59.2488	21	68.8603	10	73.8282
57	38.4386	77	53.2978	50	59.6074	47	69.2812	34	74.1040
24	43.7151	82	53.5386	72	59.9154	17	69.9212	43	74.1661
79	43.8270	51	53.8085	6	60.3121	49	70.0526	1	74.3575
49	47.7259	60	54.4368	66	60.5101	69	70.0603	5	74.8915
81	48.9563	14	54.5026	13	61.5991	22	70.1475	2	76.4429
85	49.4006	31	54.7402	9	62.0091	71	70.2747	18	76.8455

OBLIQUITY MEAN 55.6266 DEG, STANDARD DEVIATION 17.9642 DEG

RANK	DEVIATI
0.05	9.28
0.10	27.66
0.15	43.19
0.20	49.50
	51.08
0.30	52.10
0.35	53.57
0.40	54.82
0.45	53.57 54.82 57.49
0.50	58.96
0.55	60.03
0.60	
0.65	65.68
0.70	66.88
0.75	69.99
0.80	70.43
0.70 0.75 0.80 0.85	71.75
0.90	72.31
0.95	

PAGE 2

HIFAC COMPARISON WITH ZOT.14 RUN 505

FACET HO.	HO.	
399		26
254		6
256		Ē
305		5
-306		665443333332221111
389		ď
180		2
253		2
200 004		۵ 5
264 265		ن د
306		ა ი
400		ა ი
255		Z
317		2
390		Ž
162		1
163 164 172 257		1
164		1
172		1
257		1
263		1
266		1
[.] 268		1
204		1
307		1
310		ī
310 311		ī
395		i
W 2 W		-

HIFFIC COMPERSION NITH ZITT. 14 RUN STR.

126 ′

LOFAC COMPARISON WITH ZOT.14 RUN 506

PAGE 1

THERE WERE 0 MISSES

THEY WERE REPS #:

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

35	17.6430	26	38.4284	51	54.4535	46	63.1744	28	71.0973
76	18.6823	79	38.7159	75	54.9735	71	63.2761	9	71.3635
27	19.4781	66	40.5530	55	57.2805	6	63.4149	.16	72.7091
30	20.5008	11	43.2035	64	57.4596	38	63.6363	12	72.7331
48	22.6744	32	45.4827	60	57.5615	21	64.6824	3	72.7697
59	23.8006	61	48.3057	77	57.8553	50	64.9859	1	73.2166
78	24.4740	72	48.6527	82	58.1594	17	66.0802	42	73.2532
67	25.0170	37	49.3159	81	59.3067	13	66.3956	70	73.7509
40	25.2384	36	49.8070	73	59.4454	80	66.4341	10	73.8950
47	26.0633	85	49.9992	56	60.0093	22	67.0670	39	74.2604
33	26.7997	15	50.1514	18	60.0495	52	67.2733	29	74.7762
69	27.4788	44	50.3953	5a	60.1169	84	67.9777	5	74.8536
45	28.6454	83	50.8258	23	60.9112	31	68.5066	63	76.8561
34	29.8298	58	50.9810	41	61.0101	49	70.6497	43	77.20.3
4	30.9235	62	53.0717	68	61.9651	20	70.8311	2	77.7699
65	31.5656	53	54.0582	19	62.0422	7	70.8652	24	78.2834
25	34.6485	14	54.1646	74	62.5536	8	70.9388	57	81.8724

OBLIQUITY MEAN 54.8422 DEG. STANDARD DEVIATION 17.6032 DEG

RANK		DEVIATI
0.05		21.15
0.10		25.15
0.15		28.53
0.20		35.40
		44.34
0.30		49.71
0.35		50.84
0.40		34.28
0.45		57.53
0.50		59.45
0.55		60.94
0.60		62.93
0.65		64.58
0.70		66.56
0.75		69.58
0.80		71.07.
0.85		72.81
0.90	•	74.04
0.95		77.10

LOFAC COMPARISON WITH ZOT.14 RUN 506

FACET NO.	HC. OF IMPACT	-:
136	15 1:65 55 432222221 1:1	
231	1]	
178 -136 242	₽ =	
242	.) 5	
287	4	
144	ġ	
-231	2	
146	2	
171	2	
238	2	
240	2	
286 242	ے 1	
-232 -232	1	
-137	- 1	
-134	ī	
134	1	
135	i	
137	1	
182	1	
197	1 1	
202 222	1	
200 234	1	
235	î	
241	. 1	
244	1 1	
247	1	
253	1	
278 278	1	
413 277	Ţ	
417 279	1 1 1 1 1 1 1	
281	1	
284	i	
144 -231 146 171 238 240 286 -242 -137 -134 135 137 182 233 234 235 241 244 247 253 277 278 278 278 278 278	$\bar{1}$	

LOFAC COMPHRISON WITH ZOT. 14 RUN SUE

LOFAC COMPARISON WITH ZOT.14 RUN 507

PAGE 1

THERE WERE 4 MISSES

THEY WERE REPS #: 4 54 60 72

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

45	11.6708	49	41.5258	51	55.1536	75	62.4010	44	73.7174
11	12.8563	13	42.0603	3	56.2674	18	62.4499	10	73.9872
12	17.9603	26	42.6846	73	56.4692	17	62.6839	42	74.3559
48	19.9959	24	42.7386	31	56.7109	23	63.2524	39	75.6391
33	21.0715	81	43.9194	21	57.2707	29	64.0268	71	75.9114
76	21.1723	79	45.1667	5	57.5066	22	64.3392	70	76.5873
25	22.0726	38	45.4764	53	57.5980	19	65.0163	84	76.8494
40	24.4104	61	46.2651	32	58.2548	6	65.2562	34	78.8731
41	24.5083	37	47.1439	55	59.4279	46.	67.4836	2	79.1204
78	28.3602	36	47.8336	68	59.4738	7	68.8741	50	79.1614
35	28.5224	85	50.2373	14	59.7543	8	69.0930	43	79.9019
67	28.8770	83	52.6851	80	59.8534	20	69.4368	66	85.7056
30	30.5098	56	53.5269	74	59.9357	9	69.7901	57	86.1316
69	31.7529	62	53.7490	77	60.0969	53	70.4666		
59	31.8297	65	53.9341	63	60.3296	28	70.5322		
47	33.0216	64	53.9861	52	61.1057	1	72.1613		
15	37.6997	27	55.0482	82	62.3906	16	72.2387		

OBLIQUITY MEAN 54.2755 DEG, STANDARD DEVIATION 18.4882 DEG

RAHK	DEVIAT	E
0.05	20.10	ı
0.10	24.43	Ì
0.15	29.37	•
0.20	34.29	į
0.25	42.71	
	45.95	
0.35	51.95	
0.40	53.98	
0.45	56.45	
0.50	57.60	
0.55	59.76	
0.60 .	60.48	
0.65	62.52	
0.70		
0.75	68.98	
0.80	70.51	
0.85	73.91	
0.90	76.45	
0.95	79.16	

LOFAC COMPARISON WITH ZOT.14 RUN 507

COCCT NO	NO.	OF IMPACTS
FACET NO.	110.	12
136 231		7
-136		3
178		3
244		3
286		. 3 9
-134		5
134		ž
177		2
179		2
187		2
193		2
232 235		2
238		ž
277		2
-298		1
-242		OF IMPACTS 12 7 3 3 2 2 2 2 2 2 2 1 1 1
-235		1
~232 _125		1
-136 178 244 286 -134 134 144 177 179 187 193 235 238 277 -298 -242 -235 -235 -242 -235 -242 -235 -242 -235 -242 -235 -242 -235 243 146 168 183 197 203 239 243 243		ī
28		1
47		1
49		1 .
137		1
142 146		i
168		1
183		1
197		1 1
203		1
233 220		1 1
237		i
246		1 1
247		1
253		• 1
247 253 281 283 284 287 293 296		1 · 1 1 1
203 904		1
287 287		i
293		i 1
296		1

LIFFIC COMPRRISON WITH ZDT. IN RUN SET

LOFAC COMPARISON WITH ZOT.14 RUN :	20	c
------------------------------------	----	---

PAGE 1

THERE WERE 11 MISSES

THEY WERE REPS #: 4 10 14 38 41 49 53 54 60 72 73

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

45	5.6225	40	40.0863	68	57.3737	50	67.1594	65	83.5200
7	11.5383	46	42.9248	17	57.6809	3	67.3152	12	85.7824
26	12.2265	16	43.1970	27	57.9794	19	67.4094	66	87.4493
11	14.3598	61	44.1582	74	58.6615	20	68.5527	57	88.2292
76	18.5486	34	44.3358	2	59.3853	32	69.1287	13	92.1651
67	21.7836	58	44.9502	56	59.5235	28	70.3224	80	104.9580
29	24.0147	37	45.2544	55	61.0906	1	71.0057		
35	26.9186	36	45.9346	63	62.2861	5	72.4016		
30	27.5369	21	47.7739	22	62.5688	25	72.7721		
48	30.1948	79	48.2170	77	62.6296	51	73.1925		
78	33.1463	81	50.6758	82	64.3420	15	75.4006		
9	33.4960	64	52.4506	85	64.7501	42	75.4817		
33	35.6594	83	54.4038	52	64.8345	39	77.0191		
69	36.2445	62	54.5401	44	65.2130	31	78.0860		
47	36.4657	75	54.7408	18	65.2356	71	78.9983		
59	37.4193	3	56.7224	23	65.2896	70	79.3481		•
84	39.4324	43	56.9312	6	66.3856	24	82.7767		

OBLIQUITY MEAN 55.6163 DEG, STANDARD DEVIATION 20.9073 DEG

RANK	DEVIATE
0.05	13.83
0 10	25.47
0.10	20.71
0.15	33.23
0.20	36.47
0.ZJ	42.2Z
0.30	44.64
0.35	47.88
0.40	54.40
0.45	56.88
0.50	58.32
0.55	61.39
0.60	64.34
0.65	65.23
0.70	67.24
0.75	69.43
0.80	72.77
0.85	76.63
0.90	81.06
0.95	87.64
V• 70	01.04

FACET NO.	HO.	OF IMPACTS
136 -146		10 3333222222222222222222222222222222222
-146 231		3
247 -144		3
-137		2
-136 -134		2
45		2
47		2
193		ر 2
234		Ž
246 284		2
287		Ž
-299 -297		1
-278		i
~240 ~232		1
- 202		1 1
247 -144 -137 -136 -134 -134 -134 -134 -297 -297 -291 -64 -64 -137 -178 -178 -178 -178 -178 -178 -178 -17	•	1 1
31		1
44 ee		1
94		. 1
132		1
134		1 1 1 1
177		1
175 179		1
187		1 1 1 1
213 232		1
233		
235 237		1
241		i .
249 254		1
233 235 237 241 249 254 273 274 275 283		1 1 1 1 1 1 1 1
274 275		1 *
. 2 83		i

LOFAC COMPARISON WITH ZOT. IY RUN SBB

LOFAC COMPARISON WITH ZOT.14 RUN 509

PAGE 1

THERE WERE 0 MISSES

THEY WERE REPS #:

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

46	6.4542	83	31.5284	36	51.5962	14	60.9906	28	73.7797
12	7.6063	41	31.5948	58	51.6138	29	61.9370	16	73.9652
19	7.6115	76	32.3977	17	51.8371	40	65.8699	26	74.2056
70	11.1598	57	32.8339	45	51.8799	30	67.4152	50	74.4868
48	17.2105	23	33.0302	49	52.8015	52	67.5265	31	74.5776
72	18.0785	34	33.7336	79	54.1476	47	67.8136	9	74.6019
53	20.8869	80	35.3688	81	54.5587	59	69.1237	21	74.6652
65	21.9080	71	36.0284	44	54.7764	11	69.7942	37	75.0560
35	23.2764	19	37.3483	4	55.6058	42	70.8177	7	75.1142
83	23.5409	77	47.3179	22	56.3848	62	70.9531	24	75.2455
66	23.6714	64	47.7485	51	56.5055	85	71.5083	39	75.2633
27	23.9384	56	49.1401	54	56.5725	33	71.6170	73	75.4190
32	26.0611	84	49.5587	15	56.8690	55	71.6789	2	75.4753
78	26.3094	74	50.1562	1	57.1853	18	72.1966	8	75.7363
69	26.6351	68	50.2967	60	57.4492	25	72.5742	20	77.5053
43	28.4571	75	51.4102	3	60.2161	13	73.9039	13	78.5530
63	28.4792	61	51.4352	67	60.7945	38	73,1115	6	79.8224

OBLIQUITY MEAN 52.2860 DEG, STAMBARD DEVIATION 20.8013 DEG

RANK	DEVIATE
0.05	12.98
0.10	22.73
0.15	25.85
0.20	29.09
Ø.25	32.93
	37.08
	49.62
0.00	77.04
0.40	51.50
0.45	52.53
0.50	55.61
0.55	56.96
0.60	
0.65	
0.70	70.84
0.75	71.94
0.80	73.65
0.85	.74.58
0.90	75.17
0.95	75.66
	17.00

FACET NO.	HO. OF IMPACTS
231	24
136	23
238	5
274 274	2
	5
240	4
242	4
277	3
-137	Ž
232	3 2 2 2 2 2 1
234	5
235	5
. 278	Ę.
-232	
-136	1
178	1
233	ī
241	ī
270	1
	1
284	1

LOFAC COMPARISON WITH ZOT. I'M RUN SHE

THETH - 71.1 PHI - 15
SCALE: X - -200 TO

LOFAC COMPARISON WITH ZOT.14 RUN 510

PAGE 1

THERE WERE 0 MISSES

THEY WERE REPS #:

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

80	4.6673	57	31.9874	46	50.2935	79	59.2602	55	72.8329
48	18.8942	23	32.3643	68	51.4886	66	59.3518	9	73.6320
18	19.5747	24	35.0633	45	52.0819	40	60.0568	38	73.8174
43	22.6561	83	36.1235	84	52.1011	30	61.1786	28	73.8698
65	23.4188	12	36.3822	71	52.2646	51	61.2784	7	74.4208
82	23.4323	34	37.6285	35	52.6183	81	61.4175	26	74.5172
27	23.8882	22	37.9586	61	52.7713	5	62.2140	2	74.6190
53	25.0882	76	39.4707	58	54.0286	54	62.6418	21	74.7412
36	25.2749	19	39.9756	85	55.7181	60	63.7421	8	75.6300
63	27.3993	64	46.2060	4	55.8694	52	64.2818	31	76.0488
39	28.6864	70	47.9831	37	56.0227	47	64.3732	50	77.8185
74	29.0676	77	48.2492	16	56.3249	i 1	64.9655	3	79.0735
25	29.8243	10	48.4716	1	57.7580	14	65.7638	20	80.2431
78	29.9901	17	4~.7849	44	57.8053	75	67.9224	13	81.9368
42	30.1948	49	49.0118	15	58.7208	.29	68.8743	73	82.2064
69	31.3563	59	49.1396	32	58.9276	72	70.6884	6	. 83.6136
41	31.5538	56	49.6688	33	59.2472	62	72.0869	67	90.0442

OBLIQUITY MEAN 52.7368 DEG, STANDARD DEVIATION 18.8746 DEG

RANK	DEVIATE
0.05	22.88
	25.20
ល 15	29 75
0.20	31.64
0.25	21.04
0.23	36.25
0.30	39.87
0.35	48.50
0.40	49.92
	52.22
0.50	55.72
0.55	57.77
0.60	
	- -
0.65	
0.70	63.85
0.75	66.84
0.80	72.68
0.85	74.43
0.90	75.80
0.95	
U.70	81.43

PAGE 2

LOFAC COMPARISON WITH ZOT.14 RUN 510

FACET NO. 136 231 242 178 135 -137 182 244 270 286 -280 -136 -281 -135 137 142 144 171 177 179 234 238 239 243 243 253 277 278 281 285	HO. OF IMPACTS 11 8 7 6 4 3 3 3 3 3 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1
135	4
-137	3
104 232	3
240	3
244	3
270	3
285 _000	ა 2
-136	2
235	2
284	2
-231	1
-133 137	1
142	1
144	1 -
. 171	1
177 179	1
234	i
238	1
239	1
243 537	1
253	i
272	$\bar{\mathbf{i}}$
273	1
277	1
275 281	1
285	i

200MEN LAM-PHYSICS THETH * 71.1 PH; * 18.5 SCHIE: X * -288 TO 188 Y * -188 TO 188

LDFAC COMPARISON WITH ZOT. I'V RUN SIB

LOFAC COMPARISON WITH 70T.14 RUN 511

PHGE 1

THERE WERE 1 MISSES

THEY WERE REPS #: 54

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

89	12.9474	43	34,7108	78	50.1607	60	59.0567	84	70.6296
37	13.4266	23	37.3086	56	50.2254	50	59.7143	75	73.3088
82	22.6000	14	38.4809	21	50.2399	72	59.2806	7	73.7126
36	23.9642	18	39.8536	58	50.6982	85	60.3299	66	73.8072
27	27.3679	22	40.0837	47	51.0494	44	60.5355	28	73.9880
8	27.6796	71	40.1264	32	51.9486	15	60.8570	2	74.0395
74	28.7323	83	40.5922	68	52.5346	52	60.8943	55	74.1839
63	31.3800	69	41.0614	45	52.7951	3	61.4051	26	74.8181
41	31.7416	16	42.7810	48	53.8709	57	63.7121	24	78.0189
39	32.2787	12	44.9687	65	54.6290	5	64.1324	4	78.4552
81	32.4097	64	45.2693	46	54.9984	51	64.6145	11	79.9013
62	33.0214	34	45.3094	30	55.3455	13	64.7058	20	83.3150
25	33.2916	17	45.7688	49	55.4357	73	64.9829	76	86.1450
42	34.1114	67	46.3392	40	55.6875	77	60.8963	б	87.286,
53	34.3468	79	46.6038	9	56.5291	35	66.9215	31	87.9096
59	34.1314	76	47.9651	61	57.3800	33	69.6313	29	90.4415
38	34.5247	19	49.7411	1	58.4106	10	70.3578		

OBLIQUITY MEAN 53.1648 DEG, STANDARD DEVIATION 17.7694 DEG

RAHK	DEVIATE
0.05	24.82
0.10	31.56
	33.22
0.20	34.52
0.25	39.91
0.20	41.92
	45.65
	49.74
0.45	50.79
0.50	53.33
0.55	55.41
0.60	58.41
0.65	
0.70	
0.75	
0.80	70.36
0.85	73.85
B. 9B	· 76.42
0.95	85.44

FACET NO.	NO.	OF IMPACTS
136 182		9 6
242 231 -136		4 3
-134		2 2
44 134		2 2
142 144		2 2
236 244 245		2 2
243 281 -283		9643222222221
-270 -241		1
_940		1 1 1
-240 -239 238 -146 -144 -137		1 1
-144 -137		1 1
45 66		1 1
-137 45 66 135 137 146		1 1
146 177		1 1
177 178 179 187 193 223 232 234 238		1 1
187 193		1 1
223 232		1 1
238 238		1
239 240 243		1
246 246 249		1 1
249 253		1 1 1 1 1 1
254 270		1
272 275		1
246 248 249 253 254 270 272 275 277 283		i 1
Z85		1 1
286 287 290 297		1 1
290 297	146	1 1

RODMAN LAB-PHYSICS THETA = 71.1 PH = 19.3 SCALE: X = -200 TO 100 Y = -100 TO 100

LIFFIC COMPFRISON WITH ZOT. 14 RUN SII

1,0280	COMPARI	SOU	MITH	POT.	14	PHIN	512
	- W-W111 1117. A	2011	F4 7 ()		1 -7	NON	- U 1 (C.

PAGE 1

THERE WERE 5 MISSES

THEY WERE REPS #: 14 54 61 65 79

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

607 82 89 37 43 76	0.6876 9.5918 23.9524 27.3175 29.4133 29.9283 31.7968 32.2343	77 16 83 67 35 69 21 53	43.8095 44.0345 44.1931 45.6253 46.0174 46.9750 49.6777 50.0967	19 10 9 33 34 52 70 41	54.4862 54.5241 55.6608 56.1220 56.3756 56.9453 58.2158 58.3355	12 64 71 5 59 73 32 58	63.9701 64.1646 64.5920 65.3638 65.7202 65.8490 66.3583 67.9239	74 38 22 31 50 49 30 15	75.7764 76.5072 77.0592 79.0965 81.1888 82.3925 82.9619 83.3670
43	31.7968	21	49.6777	70	58.2158	32	66.3583	30	82.9619
42 25 23 75 62 17	34.7777 34.9239 38.0287 40.5760 42.6528 42.8093	45 11 78 40 46 7	52.5679 52.7631 52.8788 53.1812 53.7884 54.4773	47 18 48 44 85 57	59.9473 60.2035 61.5024 62.7960 63.2626 63.6457	36 65 84 28 4 26	70.1596 72.9688 73.8519 73.9823 74.1379 75.1211	56	93.2870

OBLIQUITY MEAN 56.7366 DEG. STANDARD DEVIATION 18.4884 DEG

RANK	DEVIAT
0.05	27.42
0.10	33.30
0.15	34.80
0.20	42,68
0.25	44.55
0.30	49.80
0.35	52.41
	53.42
0.45	
0.50	57.58
0.55	59.07
0.55 0.60	57.87 62.28
0.65	64.10
0.70	<u>65.81</u>
9.75	
0.80	73.58
0.85	
0.90	80.98
0.95	90.30

FACET NO. 136 45	HO.	0F	IMPACTS
45 146 182 342 287 -283			3 3
55			3 2 2 2
68 246 253 284			IMPACTS 8 3 3 3 3 2 2 2 2 2 1 1
-294 -298 -286			1 1 1
-270 -247 -243 -239			1 1 1
253 284 298 -294 -290 -286 -270 -247 -243 -239 -238 -236 -144 -142			1 1 1
-144 -142 -68 -65			1 1 1
106 108 111 118			1 1 1
-68 -65 106 108 111 118 134 137 144 177 178 179			1 1 1 1 1 1 1
183			
184 193 219 222			1 1 1
231 232 234			1 1 1
235 238 243 245			1 1 1
193 219 222 231 232 234 235 243 245 247 248 270 286 290 294			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
286 290 294	150)	1 1 1

LOFAC COMPARISON WITH ZOT. 14 RUN 512

DDMRN LRB-PHYSICS HETR = 71.1 PHI = 19.3 CRLE: X = -200 TO 100 Y = -100 TO 100

PAGE 1

THERE WERE 1 MISSES

THEY WERE REPS #: 4

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

35	8.6734	32	35.2859	15	57.3154	74	63.1035	9	71.6126
67	13.5100	5	40.7067	64	57.6134	38	64.1816	49	71.9164
27	15.2040	11	40.8205	71	58.1379	6	65.2877	69	72.0234
30	15.6465	79	41.4893	82 82	58.4645	17	66.5477	66	72.2869
33	16.5245	75	42.7675	51	58.6087	13	66.9586	70	72.8239
76	17.3298	53	50.5380	63	58.9309	12	67.2020	42	73.0249
59	18.3206	3 <u>6</u>	51.6294	14	59.2903	22	68.0316	3	73.9020
34	18.4346	72	51.8164	31	59.7934	41	68.6281	1	73.9336
45	20.5390	83	52.2733	77	59.9211	37	68.7373	16	74.0669
48	20.6404	44	52.4421	55	60.1519	52	69.1345	39	74.9727
47	21.9060	85	52.6220	18	60.2679	50	69.4914	2	76.6353
78	22.5937	61	53.5965	60	61.0834	84	69.6553	24	78.8291
21	23.7973	58	53.7346	73	61.9157	7	70.0955	43	78.9584
25	26.5833	54	53.9961	81	61.9549	26	70.4270	23	79.7724
65	30.2464	56	54.4212	68	62.6241	28	70.9657	29	79.8104
40	32.3357	62	55.4261	19	62.6755	8	71.3246	57	80.8555
20	34.7677	80	56.9798	46	62.7231	10	71.3615		

OBLIQUITY MEAN 54.590S DEG. STANDARD DEVIATION 19.6263 DEG

RANK	DEVIATE
	15.87
	19.49
0.15	23.50
0.20	34.77
0.25	41.81
0.30	52.04
0.35	53.70
0.40	56.98
0.45	58.50
0.50	59.86
0.55	61.71
0.60	62.72
0.65	
0.70	68.68
0.75	69.99
0.80	07.77
	•
0.85	72.42
0.90	74.00
0.95	
W . 7U	10.70

LOFAC COMPARISON WITH ZOT.14 RUN 513

FACET NO.	NO.	OF IMPACTS	,
136		14	
231		ากั	
287		6	
-136		5	
178		4	
242		4	
-134		ა ი	
146		ა ი	
-231		<u>د</u> 2	
135		<u>د</u> ه	
144		2	
232		2	
234		5	
230 040		2	
<u> </u>		2	
200 102		5	
_006 _006		1	
-230 -222		ī	
-202 -197		ī	
171		ī	
. 179		ī	
182		i	
233 107		1	
238		1	
24A		1	
241		1	
245		1	
248		1	
270		1	
274		1	
275		1	
284		1065443322222222211111111111111111111111111	
136 231 287 -136 178 242 -134 -135 144 234 235 243 243 243 243 243 -237 -179 182 238 249 241 245 248 241 245 248 249 244 245 248 249 249		1	

RODMAN LAB-PHYSICS THETA = 69.9 PHI = 46.5 SCALE: X = -270 TO 30

LOFAC COMPARISON WITH ZDT. 14 RUN 513

PAGE 1

THERE WERE 6 MISSES

THEY WERE REPS #: 4 14 54 60 72 73

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

43	8.1913	67	32.0234	85	53.7045	80	64.9399	5	74.7561
45	9.4811	94	32.1970	27	54.0177	19	65.3899	70	75.1640
76	13.3253	10	32.4046	64	54.2437	22	65.5630	31	76.3126
11	14.6118	41	33.2063	53	55.7535	75	65.6879	39	76.5060
30	16.8776	40	38.0022	62	55.8187	6	66.8796	2	77.5051
59	18.4988	79	40.8754	29	57.6291	37	67.2907	34	80.5466
33	19.0338	65	43.1023	32	57.9677	46	67.5093	24	81.2867
48	19.4226	3	44.9736	68	60.0920	7	67.5281	50	81.5092
78	22.4028	9	46.3261	71	60.3127	21	67.5499	23	82.7246
52	23.3308	36	48.6859	51	60.4805	26	69.1497	57	85.1277
47	23.4552	58	48.8515	63	60.7674	8	69.6078	66	86.4222
69	24.8463	81	50.0304	74	61.3666	13	70.0706		
35	25.3138	38	5r.1849	18	61 7091	28	70.3614		
12	27.8088	56	50.5106	55	62. <i>j</i> 6	20	72.9266		
15	29.8614	44	51.1674	82	62.7513	1	73.1683		
25	30.3737	61	52.1498	17	63.2617	42	73.9720		
49	31.7770	83	53.2124	77	63.9774	16	74.1788		

OSLIQUITY MEAN 52.6867 DEG, STANDARD DEVINTION 20.8162 DEG

RANK	
0.00	14.61
0.10	19.42
0.15	24.85
0.20	30.37
0.25	32.40
0.30	43.10
0.35	48.85
0.46	51.17
0.45	54.02
0.50	57.63
0.55	60.48
0.60	62.13
0.65	64.94
0.70	66.88
0.75	67.55
0.80	70.36
	74.18
0.90	76.51
0.95	81.51

FACET NO. 136 231 -136 178 -232 144 197 234 245 253 278 289 -234 -146 137 142 146 158 177 179 183 196 241 248 248 254	NO.	OF IMPACTS 11 8 4 4 3 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		1

FUDMEN LAG-PHYSICS THETA = 69.9 PHI = 46.5 SCALE: X = -278 TD 38 Y = -188 TD 188

LOFAC COMPARISON WITH ZOT. 14 RUN SI4

LOFAC COMPARISON WITH 201.14 RUN 515

PAGE 1

THERE WERE 1 ' MISSES

THEY WERE REPS #: 54

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

48	11.2846	24	33.4250	19	45.5966	35	59.8742	66	71.0648
43	15.1087	12	35.2919	64	46.2075	61	60.0340	33	71.3570
70	15.1880	83	35.7024	79	46.9443	16	60.8602	2	73.3267
53	19.5347	47	36.2361	17	47.8348	75	60.9095	28	73.8316
37	20.2063		36.9826	56	47.9169	10	61.2221	9	74.2329
82	20.3743	74	37.1581	84	49.4052	71	61.2967	26	75.1534
27	20.6227	34	37.2578	49	49.6400	85	61.9605	7	75.2151
41	24.0837	8	37.7373	22	50.6628	52	62.5985	18	76.2127
25	26.7575	80	38.6945	81	50.8456	15	62.6938	4	77.5378
42	27.2210	21	39.8555	58	53.3872	44	63.3639	11	79.1390
63	27.5397	78	40.8327	68	53.4895	1	63.4085	31	. 79.1781
36	28.7310	14	41.1025	65	55.1726	3	64.5859	60	79.8459
62	30.5815	39	41.4006	40	55.3398	77	64.6203	72	81.7720
23	31.3812	46	42.8045	45	55.3410	30	64.9372	20	85.1101
38	31.4061	32	43.0145	67	58.3636	73	65.4275	13	85.2028
76	31.7704	59	43.2151	55	58.5687	51	66.2779	6	87.4855
69	32.3111	29	44.5101	50	59.8643	5	67.1080		

OBLIQUITY MEAN 50.9613 DEG, STANDARD DEVIATION 19.0542 DEG

RAHK		DEVIATE
0.05		19.70
0.10		25.42
0.15		30.12
0.20		32.31
		36.42
		38,22
0.35		41.33
0.40		44.51
0.45		47.86
0.50		50.75
		55.30
0.60		59.86
0.65		60.99
0.70		62.65
0.75		64.61
0.80		67.11
0.85		73.93
0.90	-	76.88
0.95		81.29

LOFAC COMPARISON WITH ZOT.14 RUN 515

FACET NO. 136 182 135 231 242 -134 177 244 -237 -136 -137 -136 142 -238 -137 -144 -242 -238 -231 -144 -144 -187 193 223 238 239 240	NO.	OF	IMPAC 6644433322222222221111111111111111111111	CTS
240 243 245 247 270 271 273 277 281 283 287			1 1 1 1 1 1 1 1 1 1	•

HETR = 71.1 PH1 = 29.7 HETR = 71.1 PH1 = 29.7 SCRLE: X = -225 TD 75 SCRLE: X = -100 TD 100

LOFAC COMPARISON WITH ZOT.14 RUN 516

PAGE 1

THERE WERE 3 - MISSES

THEY WERE REPS #: 24 63 67

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

28 37 51 51 72 30 32 81 73 66 70 85 47 21	5.1392 7.3281 7.6808 10.1882 10.1940 11.1468 11.4596 18.8589 20.3669 21.7508 22.8130 25.3680 29.1728 29.3385 36.5573 37.5439 38.2020	76 432 52 53 71 16 38 40 38 17 56 78	39.0822 39.9509 41.1559 41.6608 42.5243 43.5271 43.6675 44.1276 44.3815 45.0364 46.5150 47.6424 47.9804 48.7911 49.5447 50.7639 52.0092	20 44 18 49 59 23 64 42 31 75 48 62 12	54.1252 54.4455 54.7391 56.1880 57.0286 57.7453 57.8295 59.8227 59.8227 63.8229 63.8269 63.0393 63.0671 63.0851 63.6055 64.1854	57 625 45 336 427 237 15 428 835	64.7596 65.3324 66.4621 66.5625 67.0303 67.8953 67.9696 67.9932 68.0154 68.4331 69.4467 69.5635 70.1197 71.3384 72.4414 72.5826 72.6848	29 55 65 84 10 79 41 69 61 74 54 13	73.3677 74.5669 75.7452 76.2077 78.5565 78.7137 80.2239 81.3923 84.2348 84.8135 85.2394 85.3064 87.1388 89.4869
--	--	---	---	--	--	--	---	--	---

OBLIQUITY MEAN 54.0454 DEG, STANDARD DEVIATION 21.7039 DEG

DEVIATE 10.19 19.31 27.06 37.94 41.53
44.08
47.66
51.01
55.25
58.83
. 62.93
63.54
66.41
67.97
69.48
72.50
75.21
79.77
85.18

FACET HO. 136 -136 -136 -1384 179 231 -242 -238 -242 -242 -242 -238 -137 -134 -242 -238 -137 -134 -242 -238 -238 -238 -238 -238 -238 -238 -23	HO.	OF IMPAC 10 8 4 3 3 3 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1	TS
270 277 278 283 284 285		1 1 1 1 1	

のでは、「「「「「「」」」」というでは、「「」」」というでは、「」」といい

LDFRC COMPRRISON WITH ZOT. 14 RUN SIG

168

PAGE 1

THERE WERE 13 MISSES

THEY WERE REPS #: 4 7 10 24 26 29 40 45 50 55 63 65 67

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

28 59 46 73 61 85 80 17 33 68 16 37 76	4.0838 6.9130 8.0693 11.2659 12.0210 16.4538 22.4135 29.9488 32.6157 35.9294 37.7366 39.9823 40.9803 42.3989 42.5796 42.8632 44.2825	52 47 83 39 82 43 15 9 78 44 23 72 75 30 37	44.5644 45.2677 46.2393 46.6766 46.7308 47.9038 47.9070 49.3633 50.1769 50.8837 51.1378 53.1633 53.4589 54.8292 55.8091 56.2580 57.0082	32 51 53 60 66 62 49 54 77 23 2	57.8630 59.9648 60.7581 61.8990 63.8607 64.4287 65.6838 66.1532 66.8912 67.0772 67.4859 68.0734 68.2518 68.7697 69.0122	81 70 35 20 41 79 188 69 42 74 38 48 48 34	69.1550 69.5320 71.0074 71.0140 72.2142 73.3958 73.6691 74.0902 74.2650 74.8923 77.9422 79.3793 80.6236 83.3378 83.6963 83.9564 86.2306	6 22 64 25	88.7427 89.9973 95.6740 101.8220
--	--	---	---	---	---	---	---	---------------------	---

OBLIQUITY MEAN 57.1067 DEG, STANDARD DEVIATION 21.5366 DEG

0.10 0.15 0.20 0.25	10.15 24.67 37.65 42.51 44.74 46.73 49.81 53.22 56.19 60.36 64.48

FACET NO.	HO.	QF	IMPACTS
136 231			8
-136			5
-134 182			ა 3
-242 -146			2
44			2
134 242			2
287			2
-297 -281			8 6 5 3 3 2 2 2 2 2 2 1 1 1 1
-271 -246			1
-240 -240			1
-238 -235			1 1
-212			1
-137 -133			1 1
242 287 -297 -281 -271 -246 -238 -235 -212 -137 -133 -66			1 1
65 67			1
67 83			1
99			1
101 106			1
129 122			1
144			1
175 187			<u>i</u> 1
106 129 137 144 175 187 188 199 213			1 1
199 213			1 1
216 226			1
238			1
216 236 238 241 248 249			1 1 1 1 1 1 1
249			î
280 281			1
283			ī

THE PROPERTY OF SERVICE SERVIN SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE

LUFAC COMPARISON HITH ZOT. 14 RUN 517

10MAN LAB-PHYSICS 1ETR = 78.8 PH = 5. CALE: X = 150 TO 14

LOFAC COMPARISON WITH ZOT.14 RUN 518

PAGE 1

THERE WERE 17 MISSES

THEY WERE REPS #: 1 5 13 16 18 20 24 26 28 34 40 45 52 63 67 68 69

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

14 57	12.6962 13.5475	74 56	48.0667 48.3914	82 51	58.8490 59.0862	80 76	71.6211 72.6983
29	14.0715	36	48.4197	46	59.2550	17	75.4471
44	14.5925	21	48.9517	4	59.3642	65	76.7747
64	19.1442	42	49.2353	61	60.9175	35	79.3443
15	19.9502	10	49.3401	59	61.5050	49	81.3217
37	21.6109	84	49.5816	73	61.7321	81	81.4302
53	25.0462	3	51.3864	25	62.1950	2	83.6712
75	30.6345	11	53.3947	54	64.2208	22	83.8683
72	35.8365	71	55.0897	48	66.6428	60	84.1484
78	37.4760	83	56.0629	27	66.7408	12	85.7941
39	42.1226	31	56.7022	55	66.8186	50	87.0542
85	42.3677	79	56.8072	9	67.6780	41	88.0620
33	43.3539	62	57.9892	30	68.4674	19	88.6653
58	44.0240	32	58.3572	6	69.6349	8	88.7758
77	46.2096	70	58.4266	23	70.5305	7	92.1715
43	46.9883	47	58.7266	38	71.0867	66	92.8704

OBLIQUITY MEAN 57.6904 DEG, STANDARD DEVIATION 20.8414 DEG

RANK	DEVIAT	ΓΕ
0.05	14.31	L
0.10	21.44	ļ
0.15	36.41	
0.20	43.16	5
0.25	47.26	;
0.30	48.79)
0.35	49.85	,
0.40	55.67	,
0.45	58.00	•
0.50	58.79	j
0.55	• 59.36	;
0.60	61.92	
0.65	66.73	<u>:</u>
0.70	68.82	
0.75	71.49	ł
0.80	77.29	i -
0.85	82.89	
0.90	85.92	
0.95	88.73	

LOFAC COMPARISON WITH ZOT.14 RUH 518

FACET HO. 136	НО.	OF	IMPACTS
136 -136 134			7 4
231 -286 -270			2
-242 -137			2
134 231 -286 -270 -243 -137 -137			2
146 241 .200			2
-270 -287 -284			1 1
-280 -273			97432222222111111111111111111111111111111
-245 -241 -248			1 .
-234 -144			1
-66 -65			1 1 1
67 68 123			1 1
154 170			1
182 186			1 1 1
190 192 197			1 1
234 247			1 1
146 241 -290 -287 -284 -273 -245 -241 -240 -244 -144 -667 68 123 154 170 188 192 197 248 248 280 283			1 1 1
286 290			· 1

LIFTIC CINFORMISIN WITH ZITT. IN MEM SIB

THETH = 77.8 PH = -5. SCHLE: X = -168 TO 14

LOFAC COMPARISON WITH ZOT.14 RUN 519

PAGE 1

THERE WERE 3 MISSES

THEY WERE REPS #: 35 45 50

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

46	0.9484	26	41.2211	15	53.7957	54	68,6391	20	79.3216
ϵ	5.7634	43	41.4478	64	54.2162	27	68.7506	69	82.0270
13	22.8922	19	41.8482	61	57.3642	23	68.9230	12	82.2368
30	25.8918	33	44.0716	40	60.3047	67	69.5935	21	82.3554
32	28.4375	16	44.2340	18	60.7383	47	70.0317	74	82.5052
56	31.0401	71	44.2743	43	62.0527	9	70.4051	4	82.5732
55	31.2114	58	44.4722	75	63.0918	37	70.8871	34	84.0011
49	31.8659	38	44.5578	85	63.2235	77	71.4307	14	84.2844
72	32.8233	51	44.9101	59	64.7513	79	74.4488	28	84.4060
17	33.6720	1	47.7422	82	64.7803	53	75.5046	81	85.1435
41	34.4218	52	49.0560	31	65.4898	39	76.0520	3	85.5994
76	35.3882	25	51.5278	48	65.7749	5	76.4923	63	89.2435
66	36.0588	68.	52.4410	60	66.1348	8	77.4535	22	89.9278
62	37.1655	84	52.7064	70	66.8144	24	77.9143	7	91.2411
73	39.9588	44	52.9417	57	67.0330	30	78.0044		
11	40.1608	36	53.0837	2	67.5007	65	78.3823		
78	40.9796	83	53.0954	10	68.5062	29	78.8674		

OBLIQUITY MEAN 58.7868 DEG. STANDARD DEVIATION 20.1383 DEG

RANK	DEVIATE
0.05	26.27
0.10	32.15
0.15	35.69
0.20	40.65
0.25	43.52
	44.55
0.35	51.57
0.40	53.09
0.45	58.39
0.50	63.16
0.55	65.68
0.69	67.41
0.65	
0.70	70.94
0.75	76.16
0.80	78.16
0.85	82.14
0.90	83.57
0.95	85.53

FACET HO. 136 -136 178 287 238 45 137 222 241 242 248 -290 -289 -271 -142 -134	NO.	OF	IMPACTS 9 6 6 5 4 3 3 2 2 1 1 1 1 1 1 1 1
136 -136 -137 -138 -138 -138 -138 -238 -239 -242 -248 -248 -248 -248 -248 -248 -248			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Man madainte din idadekriyalayinganakki bingan makankidididi. Man dilingalihin din kan makanandan kan makan di

LDFRC COMPRRISON HITH ZOT. 14 RUN SIS

180

LOFAC	COMPARI	SOH	WITH	POT.	14	RIIH	520
			114 111			110011	

PAGE 1

THERE WERE 10 MISSES

THEY WERE REPS #: 1 24 20 40 43 45 50 64 67 85

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

4.5	4 7055	00	45 D.550	00	EO 2040	4	66.6376	37	85.7259
46	1.7055	82	45.7659	23	59.7848	61			
28	8.9917	72	46.0322	70	60.4285	2	67.3800	34	85.8880
19	10.1694	83	46.4991	52	60.8579	66	67.7252	3	86.2589
48	11.3363	80	46.9313	65	61.4072	77	68.7286	35	86.4547
5	13.1756	44	47.4567	62	61.5023	41	69.2781	18	87.3193
25	13.5232	20	47.8679	81	61.6631	51	69.8316	63	88.0124
14	20.9486	42	49.4029	55	61.9512	11	70.0590	23	90.4623
73	24.9225	27	49.6624	33	62.2620	79	70.2955		
47	26.2601	12	50.5081	75	63.0713	68	71.6009		•
56	30.6344	15	50.8555	53	63.6818	74	73.7498		
8	32.7380	39	55.9169	49	63.8654	29	75.3050		
78	35.3189	54	56.4619	13	65.1430	38	76.3702		
17	37.1868	84	57.0240	60	65.3514	10	78.6174		
76	37.9217	6	58.4747	30	65.3588	7	78.7401		
16	41.2459	4	59.0491	57	65.5221	21	78.9091		
59	43.4164	31	59.3382	58	66.3896	71	82.9758		
9	44.5768	69	59.2877	36	66.3918	32	85.1201		

OBLIQUITY MEAN 56.7546 DEG, STANDARD DEVIATION 21.1113 DEG

RAHK	DEVIATE
0.05	11.10
0.10	23.33
0.15	33.77
0.20	41.68
0.25	46.03
0.30	47.79
0.35	50.72
0.40	57.60
0.45	59.39
0.50	61.41
0.55	62.20
0.60	64.63
0.65	65.87
0.70	67.45
0.75	69.83
0.80	73.32
0.85	78.691
0.90	. 85.36
0.95	8F 63

FACIT NO. 136 137 -136 137 -231 -238 -231 -238 -234 -234 -234 -294 -294 -134 -294 -134 -135 168 179 183 179 183 193	но.	OF	IMPACTS 7 5 4 3 3 3 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1
156 168 179 183 193 197 198 218 223 236 236 244 249 250 271 283 287			1 1 1

LOFAC COMPARISON WITH ZOT. 14 RUN SZB

RODMRN LAB-PHYSICS THETR' = 78.8 PHI = 15. SCALE: X = -208 TO 19

LOFAC COME	MKISUN.	MILH	201.	14	KUN	521
------------	---------	------	------	----	-----	-----

PAGE 1

THÈRÈ MERE 14 MISSES

THEY WERE REPS #: 1 5 7 13 24 26 34 40 45 50 61 63 64 67

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

73 45.2956 33 55.8307 85 64.3080 81 33.5480 83 45.7226 84 56.1531 54 64.4260 20 83.8579									74 6 80	84.963 85.396 95.543
--	--	--	--	--	--	--	--	--	---------------	----------------------------

OBLIQUITY MEAN 56.4200 DEG, STANDARD DEVIATION 17.6464 DEG

RANK	DEVIATE
0.05	16.31
0.10	36.72
0.15	43.36
0.20	45.08
0.25	45.89
0.30	47.31
0.35	49.69
0.40	52 24
0.45	55.60
0.50	57.60
0.55	61.15
0.60	62.35
0.65	63.39
0.70	64.36
0.75	66.59
0.80	70.68
0.85	73.06
0.90	82.31
0.95	84.30

FACET NO.	NO.	OF IMPACTS
136		12
-238		5
104		ā
-134		7
-136		3
-136 242		র
83		2
134		2
135		2
178		2
170		5
134 135 178 179 182 231		5
162		5
231		2
241		2
-290		1
-244		1
-243		1
-242		1
_220		1
231 241 -290 -244 -243 -242 -239		1
- <u>201</u>		1
-146		1
-144		12 5 4 3 3 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1
28		1
44		1 .
66		i
67		1
01 20		1
00 407		4
127		1 1 1 1
129		Ī
137		1
142		1
66 67 68 127 129 137 142 146 189		1 1 1
189		1
.00		1
107		1
17(1
207		1
213		1 1 1 1
248		1
197 207 213 248 253 283 286 287		1 1 1 1 .
283		1
286		1
207		1
÷01		

- 1997年 1997年 - 1997年 1997年 - 1997年

HETH # 77.8 PHI # 5 GALE: X # -150 TO 1

LOFAC COMPARISON HITH ZOT. 14 RUN 521

THERE WERE 0 MISSES

THEY WERE REPS #:

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

35	9.2946	78	38.6659	16	61.3784	4	67.8804	77	77.8094
5	19.8128	69	38.7978	64	61.6427	2	68.1085	56	78.3795
7	23.1013	70	39.2462	68	62.0363	3	68.4806	8	78.6467
48	23.9025	25	41.4747	13	62.2172	57	68.5453	79	79.2933
19	27.1096	61	41.8518	33	62.3502	21	68.9365	50	79.5702
36	28.8541	84	42.0222	23	62.9386	32	69.4011	41	79.9745
62	30.1243	15	43.3579	40	63.0994	27	69.8650	73	80.5334
58	30.9654	75	44.2779	69	65.1083	1	70.0309	55	81.2490
37	32.2120	24	44.4003	17	65.1897	31	70.2303	20	81.3804
49	32.9207	38	45.3241	82	65.4569	14	70.3895	29	82.4085
63	33.0686	18	46.3181	28	65.6665	54	71.1094	39	83.8447
74	33.5010	53	54.9689	9	65.7552	52	71.3868	81	84.2357
10	34.2726	44	56.1872	46	66.8029	12	72.2080	71	84.6708
66	34.4985	51	51.4325	80	66.8739	47	76.3879	67	85.5080
11	36.3966	85	56.5594	59	66.9805	45	76.7278	34	86.0835
76	37.2647	72	57.0555	26	67.0303	33	77.6415	42	. 86.9773
65	38.3519	30	60.1223	43	67.5065	6	77.7954	22	88.2501

OBLIQUITY MEAN 59.1139 DEG, STANDARD DEVIATION 19.3366 DEG

RANK	DEVIAT
0.05	24.86
0.10	31.71
0.15	34.20
	38.41
	41.66
0.30	44.38
0.35	-
0.35 0.40 0.45	60.62
6.45	62.31
0.50	65.19
0.55	
0.60	67.73
0.65	68.90
0.70	70.26
0.75	74.30
0.80	77.81
0.85	
0.90	81.79
0.95	85.26
0.70	93.20

FACET NO.	NO.	OF IMPACTS
136 178		18
178		7
-136		6
231 238		6
238		6
135		5
182		5
287		5
242		3
287 242 244		3
142		2
240		18 7 6 6 5 5 5 3 2 2 1
278		2
-242		1
-232		1
-137		1
65		1
202		1
232		1
232 233		1
235		1
246 254		1
254		1
270 274		1
274		1
283		i
284		1
285		· 1

TH = 79.0 PH = 25.7 LE: X = -200 TO 100 Y = -80 TO 120

LOFAC	COMPARI	(SON	WITH	20T.	14	RUN	523
-------	---------	------	------	------	----	-----	-----

PAGE 1

THERE WERE 3 MISSES

THEY WERE REPS #: 40 45 50

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

58	25.9933	71	42.1396	64	56.1923	75	65.0692	65	82.4519
72	27.0022	25	43.5964	13	56.2673	82	66.2596	85	82.9493
39	27.0637	38	46.2050	70	58.0560	9	66.3064	12	83.1264
56	29.9812	33	46.2991	1	59.5274	2	67.1866	3	83.4752
49	30.4503	43	46.7784	68	61.1466	60	67.2031	74	84.2234
62	31.3984	16	47.8048	24	61.2050	31	67.4262	34	84.4105
41	32.8399	81	49.5415	10	61.2645	51	68.2796	20	85.2989
11	34.4343	19	51,4026	46	61.5351	57	68.5821	69	85.3144
66	35.0415	55	51.7454	42	61.6395	47	70.2355	õ	87.0005
36	35.7671	35	51.9531	23	61.7104	79	70.3264	54	87.4520
76	36.4170	44	52.5369	67	62.8023	27	71.7115	63	88.8635
78	37.7704	18	53.0495	73	63.0963	37	71.8988	5	89.9257
53	37.8680	29	53.0808	21	63.5895	17	71.9286	30	90.2717
26	40.1786	32	53.5939	80	64.2959	77	73.3956	7	93.2929
15	40.7390	23	54.1836	59	64.5367	48	78.0259		
61	40.9990	52	54.5590	28	64.6502	14	79.4878		
84	42.0498	83	56.1403	4	64.9641	8	81.3235		

OBLIQUITY MEAN 59.7535 DEG, STANDARD DEVIATION 17.8252 DEG

RANK	DEVIATE
0.05	
0.10	
0.15	37.81
0.20	44 70
0.25	41.63 46.28
	51.22
	53.05
0.40	
0.45	58.57
0.50	61.40
0.55	62,99
0.60	
0.65	
0.70	68.31
0.75	71.76
0.10	78.61
0.85	83.05
0.0J 0.90	. 85.03
0.90 0.95	88.65
0. 7J	00.00

FACET NO. 136 -136 -136 -178 -240 -47 -179 -246 -287 -142 -137 -134 -144 -184 -238 -247 -246 -278 -246 -278 -146 -278 -146 -137 -146 -237 -146 -237 -146 -237 -146 -237 -146 -237 -146 -237 -246 -247 -247 -247 -247 -247 -247 -247 -247	HO.	OF IMPACTS 10 4 4 4 333333222222211111111111111111111
275 282		i 1

UDMAN LAB-PHYSICS HETA = 78.3 PHI = 25.6 CALE: X = -200 TD 100 Y = -60 TO 120

LOFAC COMPARISON WITH ZOT. 14 RUN 523

LOFAC	COMPAR	(SON	WITH	ZQT.	. 14	RUH	524
-------	--------	------	------	------	------	-----	-----

PAGE 1

THERE WERE 12 MISSES

THEY WERE REPS #: 1 4 13 24 26 30 35 40 45 50 64 85

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

71	7.8994	11	41.9899	65	52.3384	21	66.1474	74	83.4004
46	7.9443	38	43.5872	49	52.6436	39	67.5459	34	84.2483
66	20.2937	41	44.2197	52	52.7532	57	68.1948	32	87.2291
47	21.7777	59	44.6797	81	52.8578	23	68.4549	22	89.9503
62	22.1923	16	45.7023	83	54.0245	2	68.7739	25	90.6800
48	22.4999	54	45.9009	84	56.5059	15	69.5984		
36	23.5485	44	46.4424	6	59.5323	7	70.2722		
5	24.8942	67	47.5084	8 <u>ଡି</u>	60.1742	77	70.7976		
7Ž	26.4267	82	48.2589	69	60.8814	18	71.3772		
19	26.6754	31	48.3883	73	61.4800	20	71.3988		
17	26.9561	63	48.3888	10	61.6336	14	71.4794		
56	29.4017	27 27	49.0119	43	63.9693	79	72.6578		
	-	68	49.2097		64.1449	33	74.3366		
78	32.1891			58				_	
76	36.5723	51	49.2771	28	64.5478	29	75.4329		•
37	39.5711	51	50.4732	8	64.6481	3	77.2351		
9	40.2464	42	50.9046	12	65.0681	75	80.1695		
53	40.4979	55	51.1752	60	65.3701	70	81.3090		
		~~	~~***	~	A	• •			

OBLIQUITY MEAN 53.8078 DEG, STANDARD DEVIATION 19.5647 DEG

0.05 0.10 0.15 0.20 0.25 0.30 0.35	DEVIATE 21.33 24.09 27.20 38.97 42.79 45.74 48.18 49.13 50.99
0.65 0.70 0.75 0.80 0.85	65.99 68.61

LOFAC COMPARISON WITH ZOT.14 RUN 524

FACET NO. 136 -136 178 287 134 47 115 135 247 253 274 288 -212 -134 -68 -66 28 435 56 67 122 125 129 144 168 176 177 179 182 196 197 223 231 240 241 242 243 245 247 277	NO.	ŌF	IMPACTS 85443222221111111111111111111111111111111

THETH = 77.9 PH = 25.7 SCALE: X = -200 TO 100 Y = -80 TO 120

LOFTIC COMPRRISON WITH ZOT. 14 MUN 524

. 0000	CCMPARISON	UTTH	ZOT.	14	RUN	525
ICILIII		141 111	والأراسية	T .*	1/2/1	

PAGE 1

THERE WERE 14 MISSES

THEY WERE REPS #: 8 13 24 26 30 36 40 42 43 45 52 59 66

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

64 1 48 19 47 85 56 28 78 61	8.0111 15.5020 20.6774 23.1261 23.8898 24.4967 24.9295 30.6716 33.6196 36.0187 39.6543	68 69 74 32 19 29 83 73 79 27	49.8606 50.5235 51.2860 51.4533 51.7456 52.1751 53.4328 54.4999 54.5204 56.2771 56.3924	39 70 23 53 49 12 80 60 17 58	61.2047 62.0167 62.2042 62.6044 63.2649 64.3248 64.0725 64.2479 64.3258 64.3452	25 41 72 59 51 77 62 28 76	68.1886 68.5336 68.7638 69.0787 69.5568 69.8296 70.2792 71.4553 72.9597 77.3365 77.3365	22 31 5	89.7984 90.7165 91.8688
56 28	24.9295 30.6716 33.6196	83 9 73	53.4328 54.4999 54.5204	80 60 17	64.0536 64.0725 64.2479	77 62 20	70.2792 71.4553 72.9597		
46 35 2	39.6543 40.4994 41.1011	27 7 57	56.3924 56.5673 51.5953						
65 67 54 84	41.2499 44.6579 46.6861 48.8744	11 38 33 75	58.1271 59.0112 59.5373 60.0105	44 21 16	65.6733 66.3599 67.6731	63 81 4	83.6368 86.4035 87.0704		-

OBLIQUITY MEAN 58.1143 DEG, STANDARD DEVIATION 18.5515 DEG

RANK	DEYIATE
0.05	22.15
0.10	26.08
0.15	38.93
0.20	42.61
0.25	49.86
0.30	51.63
0.35	54.50
0.40	56.53
0.45	59.24
0.50	62.02
0.55	63.72
0.60	64.26
0.65	54.47
0.70	66.89
0.75	68.76
0.80	70.10
0.85	77.46
0.00 0.90	83.16
0.95	88.16
0.70	WU * * W

FACET NO.	MO.	OF	IMPACTS
-134 136			55 433222222111111111111111111111111111111
134			4
-136 67			ა 3
-66 46			2
91			2
129 179			2
182			2
184 199			2
231			2
-241 -235			1
-231			1
-199 -146			1
47 61			1
82			į
-134 136 134 -136 -67 -66 91 129 178 182 184 199 -231 -231 -199 -146 135 135 146 177 188 197 223 233 239			1
125			1
132 135			1 1 1 1
146			1 1
179			1
183 188			1 1
197			1
209 223			1 1
233			1 1 1
239 240			
242 242			1
245			i ·
270 275			1
240 242 243 245 270 275 287 295 297			1 1 1 1 1 1 1 1 1 1
287 295			1
. 297			1

RIDARN LRB-PHYSICS THETA = 77.5 PHI = 25.° SCALE: X = -200 TO 100 Y = -80 TO 12

LDFRC COMPRRISON WITH ZOT.14 RUN 525

204

LOFAC COMPARISON WITH ZOT.14 RUN 526

PAGE 1

THERE WERE 0 MISSES

THEY WERE REPS #:

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

78	3.9128	59	45.2682	16	61.4913	46	66.9909	39	77.8107
35	12.4296	18	48.6644	55	63.1513	23	67.0498	11	80.4105
42	18.6671	73	52.1434	33	63.2592	1	68.1190	49	80.7738
7	24.6229	75	53.3730	10	63.7780	ā	68.3886	8	82.3618
65	30.8653	48	53.4047	24	63.9795	26	68.3971	57	82.5565
12	33.8325	53	53.8002	21	64.0581	4	68.5142	41	83.5297
61	34.3455	62	56.0591	64	ϵ 4.3374	27	68.9077	81	84.2097
38	34.5801	83	56.6977	13	64.3746	72	68.9343	34	84.3008
74	35.4024	79	56.9901	3	64.4169	40	69.4425	82	85,8952
76	35:4191	19	57.2891	29	64.4471	52	69.8489	20	86.1073
84	37.0982	80	57.4441	6	64.6293	14	70.3989	60	86.1544
70	38.2535	47	57.6821	50	65.3099	85	70.4873	43	86.5816
25	39.2897	51	57.7578	32	65.5616	36	73.1388	54	86.9545
71	40.6705	44	58.9798	68	65.6811	66	74.6660	63	87.1642
67	40.7956	56	60.0927	2	66.3152	30	74.7359	31	88.1706
69	43,8197	77	60.6982	37	66.3181	45	75.0688	5	88.4107
15	44.9162	17	61.2027	28	66.9379	58	76.3572	22	88.5509

OBLIQUITY MEAN 61.5753 DEG, STANDARD DEVIATION 18.3921 DEG

LOFAC COMPARISON WITH ZOT.14 RUN 526

FACET NO.	NO. OF IMPACTS
136	25
136 231	10
-136	5
242	5
232	4
231 -136 242 232 135 178 285	3
178	3
285	3
142	2
182	2
234	2
239	2
244	2
274	ş
142 182 234 239 244 274 -253 -241 -137 137 235 238 241 247	1955488888888888
-241	1
-231	1
-137	1
137	1
235	1
238	1
241	1
247	1 1
270	1
277	i
278 204	1
270 277 278 284 286	i
285 107	1
237	j

LOFAC COMPARISON HITH ZDT.14 RUN 526

HETH = 78.1 PH = 16 SCALE: X = -200 TO

LOFAC COMPARISON WITH ZOT.14 RUN 527

PAGE 1

THE BESTER WAS AND BESTER BEST

THERE WERE 3 MISSES

THEY WERE REPS #: 1 45 73

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

57	10.7961	38	44.9565	13	58.7262	32	65.8867	69	80.1990
59	20.6587	33	45.5579	29	58.9976	62	66.0902	41	81.7238
28	24.0476	40	46.8172	70	59.5348	31	66.2554	65	82.5045
18	25.9603	52	47.5751	3	59.7208	54	66.3863	21	83.1980
58	27.6715	36	48.0428	72	60.1177	2	66.7774	63	84.3633
61	34.0145	4	48.1215	43	60.8461	20	67.2788	39	84.7036
35	34.1091	47	49.9664	34	61.6473	37	67.4966	81	84.9044
84	37.4804	83	50.9728	82	61.7096	12	67.8958	79	84.9447
66	37.9785	44	51.9210	19	62.1016	23	68.9375	50	85.7927
49	38.1859	16	52.0598	30	62.4027	9	70.0037	69	85.9899
25	38.7870	15	52.0743	85	63.1866	27	70.1732	6	87.1834
26	39.6025	56	53.4009	42	63.3641	77	72.6427	22	88.6864
71	41.1169	17	53.9096	55	63.4028	80	73.6365	5	89.3905
76	41.2867	10	55.9098	51	64.9505	67	74.0823	7	91.3154
78	42.0890	68	55.9451	14	65.0415	11	75.0632		
74	42.7427	75	56.9717	46	65.0754	8	78.9249		
53	43.0372	64	58.1737	24	65.1742	48	79.8535		

OBLIGUITY MEAN 59.7588 DEG, STANDARD DEVIATION 17.8293 DEG

RANK	
0.05	26.22
0.10	37.63
0.15	40.28
0.20	42.92
0.25	47.39
	50.87
	53.43
0.40	57.21
0.45	59.60
0.50	61.68
0.55	63.30
0.60	65.07
0.65	66.25
0.70	67.54
0.75	70.79
0.80	76.61
0.85	
-	. 82.15
0.90	84.84
0.95	87.00
-	

FACET HO. 136 178 179 231 242 482 482 -146 -136 1822 -148 -136 -1322 -280 -280 -280 -281 -137 -137 -137 -137 -137 -137 -137 -13	NO.	OF IMPRIZE 44 44 43 33 22 22 22 22 21 11 11 11 11 11 11 11 11	icts
284 285		1 -	-

いいけい はいかい かくかん かいかん かいかん かんしょう かんしょう かんしょう しょうしょう しょうしょう しょうしょう しょうしゅう しゅうしゅう かんしゅう しゅうしゅう しゅうしゅう

RIDARN LRB-PHYSICS THETH = 78.4 PHI = 16.8 SCRLE: X = -200 TO 100 Y = -80 TO 120

LOFAC COMPARISON WITH ZOT.14 RUN 52	LOFAC	COMPARISON	WITH	ZOT.	14	RUH	528
-------------------------------------	-------	------------	------	------	----	-----	-----

PAGE 1

THERE WERE 11 MISSES

THEY WERE REPS #: 1 13 16 24 26 40 45 50 53 57 64

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

70	8.7445	56	47.8362	52	57.8976	62	69.8056	6	85.8724
72	21.7737	83	48.0110	33	58.2185	76	71.0824	39	85.8811
73	22.2736	68	48.0712	82	58.2592	23	71.2813	9	87.3095
30	27.4649	77	48.2315	37	59.9845	10	72.5353	18	89.0431
28	28.1071	43	48.8893	69	61.3894	78	72.5432	41	89.2098
74	33.1052	49	49.9799	44	61.8385	54	72.6331	2	89.2578
61	38.7445	80	51.0003	5	61.8819	48	73.4302		
51	39.9331	67	51.9493	32	62.0350	79	73.7847		
66	40.8757	15	53.1207	35	62.6359	63	81.3843		
84	43.1296	47	54.0378	12	62.6748	59	81.6716		
71	43.7849	21	54.1268	20	63.0129	8	83.1409		
85	44.1205	17	55.0934	65	63.1142	75	83.1425		
4	44.9275	7	55.2925	3	64.2595	60	83.8394		
25	45.0452	11	55.3641	58	64.3950	8.1	83.9428		
22	45.1594	14	56.1097	19	65.8332	34	85.2845		
38	46.5762	Ĉ6	57.3329	55	68.9287	29	85.5391		
46	46.6716	31	57.3714	27	69.1575	42	85.8217		

OBLIQUITY MEAN 59.9352 DEG, STANDARD DEVIATION 18.0310 DEG

RAHK	DEVIATE
9.95	26.17
0.10	39.34
	43.87
	45.16
0.25	47.97
0.30	49.43
0.35	53.35
0.40	55.29
	57.36
0.50	
0.55	. 61.92
0.60	63.01
0.65	65.47
0.70	70.44
0.75	72.57
0.80	81.38
0.85	83.67
0.90	85.68
0.95	87.74

FACET NO. 136 178 -136 138 -134 287 -238 -134 118 146 246 254 -233 -271 -243 -234 -234 -232 -144 657 101 108 122 129 135 137 141 182 187 188 203 248 249 254	NO.	OF	IMPACTS 9 5 4 4 3 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
248 249 253 271 272 275 283 286			1 1 1 1 1 1 1 1

· Marie Andrews Andr

RUDHRN LRB-PHYSICS
THETR = 77.0 PHI = 15.9
SCRLE: X = -200 TO 100
SCRLE: Y = -80 TO 120

LOFAC COMPRISON WITH ZOT. 14 RUN 528

LOFAC	COMPARISON	WITH	Z01.	14	RHH	529
	A. A. C. L. L. L. L. L. A. A. A. C. L. L.				1 / 4 / 1	

PAGE 1

THERE WERE 21 MISSES

THEY WERE REPS #: 1 5 8 13 16 24 26 30 33 40 43 44 45 50 52 53 55 57 64 68 76

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

11 70 35 51	23.9306 29.0508 29.5405 29.9176	47 79 31 59	51.2874 52.0314 54.6325 54.6525	61 83 60 73	60.9543 61.0484 61.0746 61.7067	41 54 49 84	78.6283 79.4371 81.0928 81.4288
66 19	30.3741 31.3398	14 82	55.0168 55.0389	6	63.0725	81	83.5633
				36	63.7391	22	84.0268
58	32.8745	15	55.3917	29	65.3664	10	84.2738
39	37.3850	80	55.4432	56	66.1184	74	84.9021
72	38.1105	28	55.8140	65	67.6743	3	86.7717
27	40.6118	34	56.0017	85	69.1356	18	87.0857
71	41.1917	63	56.8384	23	69.7394	78	87.7085
9	41.8176	4	58.2099	7	70.4866	25	88.2228
77	43.6046	21	59.1512	37	72.6270	69	88.7265
38	46.6146	iΞ	59.9391	48	72.6591		
46	49.2620	20	59.9339	75	74.1507		
62	49.8722	32	59.9919	67	77.2540		
17	50.6682	2	60.3104	42	77.3186		

OBLIQUITY MEAN 60.2474 DEG. STANDARD DEVIATION 17.3815 DEG

0.15 0.20 0.25 0.35 0.45 0.55 0.65 0.65 0.85 0.90	29.63 32.11 39.99 43.60 50.07 53.33 55.81 58.45 61.02 63.07 66.51 70.11 73.73 78.63 81.96 84.59
0.95	87.55

FACET NO:	NO:	ΰĒ	impac-s
T.64866628250265285280445682329892474993239484053 FE 1236662825026528528044568232989247499323948405773 FE 1236662825026528528044568232989247499323948405773 FE 123666282508265285280445682329824749932239484053			MPA
286 -136 -23			****
142 178			- New Y
182 235			Ž 2
7280 7272			1
-246 -245 -630			1
7494 -238 -235			i 1
-142 28			1 1
40 4 <u>4</u>			1
45 46 60			1 .
82 83			i i
92 99		٠	1 1
118 129			1
132 134		•	1 1
137 144 . 170			1
199 203			1 1
212 223			1
229 244			1 .
248 254			1 1
210			1

THETH = 77.8 PH = 15.8 THETH = 77.8 PH = 15.8 TCALE: X = -200 TO 100 Y = -80 TO 120

LDFAC COMPARISON WITH ZOT. 14 RUN 525

不是一个时间,我们就是我们的时候,我们就是一个一个,我们们们的时候,我们们们们的时候,我们们们的时候,我们们也是一个一个一个一个一个一个一个一个一个一个一个一个

220

LOFAC COMPARISON WITH ZOT.14 RUN 530

PAGE 1

THERE WERE 0 . MISSES

THEY WERE REPS #:

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

35	21.0511	37	41.6131	19	65.2535	50	69.8479	29	83.2341
69	22.2995	18	41.7300	45	65.3864	57	69.9803	67	85.8148
75	22.8651	63	41.8190	68	65.8698	31	71.7628	5	86.5485
62	26.4461	38	43.1679	16	66.2708	1	71.7746	34	86.8308
11	29.9214	10	43.2978	23	66.2796	4	72.2114	42	86.9838
66	29.9956	71	43.4785	60	66.5805	27	72.2137	6	87.4044
58	30.1085	65	49.2474	40	67.7498	32	72.2323	22	88.5528
70	32.4447	24	49.3573	28	67.8027	54	72.6599	12	88.8457
74	32.7032	30	49.8132	46	67.8512	52	74.3346	3	89.0410
7	32.9832	36	50.40/3	13	68.0677	72	75.1726	21	89.1544
76	33.7254	14	52.4928	59	68.0758	47	76.5000		
48	33.8722	33	54.4231	9	68.3182	77	78.9192		
49	35.4421	44	57.4367	43	68.6110	56	78.9775		
15	36.4649	53	50.1585	17	68.9341	8	79.9729		
78	37.4385	51	59.6695	26	69.2604	41	80.7417		
61	37.8173	64	63.0382	55	69.6487	20	82.2597		•
25	39.6893	73	64.1602	2	69.6731	39	82.7978		

OBLIQUITY MEAN 60.2945 DEG, STANDARD DEVIATION 19.5813 DEG

RANK	DEVIAT
0.05	26.27
0.10	32.21
0.15	33.85
0.20	37.74
	41.80
0.30	47.52
0.35	
0.40	59.07
0.45	65.33
0.50	66.43
0.55	67.95
0.60	68.74
0.65	69.73
0.70	71.91
0.75	73.08
0.80	78.93
0.85	82.34
0.90	86.58
0.95	88.57

FACET NO. 136 -136 -138 182 231 135 171 232 238 242 -231 142 240 244 270 274 287 -232 655 137 196 234 236 241 246 253 277 278 288 286 288	NO.	OF IMPACTS 16 55 4 4 33 33 22 22 21 11 11 11 11 11 11 11 11 11 11
236 241 246 253 275 277 278 283 286 288		1 1 1 1 1 1 1 1

RODMRN LRB-PHYSICS THETH = 79.2 PHI = 35.0 SCALE: X = -250 TO 50

THERE WERE 3 MISSES

THEY WERE REPS #: 13 45 50

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

ORLI	MOTIL UNGE	E0 111	11000						82.4093
35 36 72 62 49 58 66 15 11 56 74 41 61 78 21 84	16.4575 21.1485 21.5371 24.7720 26.2977 26.9702 27.8445 29.0772 30.1465 31.0436 31.3199 32.6834 33.8141 34.0769 34.4460 35.0835	54 70 71 81 25 55 29 40 63 34 7 35 18 53 67	35.9999 37.3488 38.0965 39.5833 39.7470 41.6877 41.8524 41.9586 43.4085 44.0321 45.3663 46.3312 47.6360 49.5403 50.7099 51.4326	43 89 69 16 44 47 83 24 85 46 42 33 23	51.5772 52.2368 52.6513 52.7982 53.1215 54.2149 58.3834 58.5945 59.0159 59.0817 59.1341 60.3702 62.7833 64.9740 65.7147 66.1015 66.2815	59 19 68 28 28 64 51 49 17 48 77 37	66.5223 66.9165 66.9169 67.2838 67.4249 67.8337 68.2722 68.4436 68.7509 69.3926 69.3926 69.9636 70.3517 73.2424 74.4627 75.3085 81.8725	14 57 73 89 75 65 10 27 12 20 31 22 79	82.4055 83.0643 83.4381 83.5368 83.6516 84.2116 84.2198 84.8142 86.0001 86.9772 87.6904 88.7549 90.3821 90.5457

OBLIQUITY MEAN 56.3536 DEG, STANDARD DEVIATION, 20.0413 DEG

RANK	DEVIATE
0.05	25.00
0.10	
0.15	
0.10 Й.20	35.53
0.25 0.25	39.21
0.20	41.95
0.35	
0.33 0.40	50.85
0.45 0.45	
0.43 0.50	58.49
0.55	59.94
0.33 0.60	66.02
0.65	
0.55 0.70	
	69.54
0.75	74.80
0.80	83.27
0.85	
0.90	84.22
0.95	87.58

FACET NO.	NO.	OF	IMPACTS
136 244			8 5
-136			4
10 179	•		4
287 144			4
179 287 144 146			3 3
178 231			3 3
238			3
284 184			3 2
178 231 238 284 184 242 248 272			2
272			2
286 288			2
-280			1
272 286 288 -280 -198 -144 -142 -137			444433333322222111111111111111111111111
142 -127			1 ·
-100			<u>.</u> İ
-134 -68			<u>1</u> 1
34 45			Ī
45 46 65		j	l [
65 68		1	
68 134	•	1	
142 182		1	
193		1	
235 241		1	
142 182 193 235 241 245 246 247		1 1	
247		1	
253		1	

100ARN LAB-PHYSICS THETA = 78.4 PHI = 36.8 SCALE: X = -225 TO 75

LDFAC COMPARISON RITH ZDT. 14 RUN 531

10	FAC	COMPARISON	WITH	ZOT.	14	RUN	532
----	-----	------------	------	------	----	-----	-----

PAGE 1

THEY WERE REPS #: 1 4 10 13 14 24 26 30 35 40 43 45 50 52 64 85 THERE WERE 16 MISSES OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

46	17.5963	25	40.7395	7	56.0411	73	55.2713	_	20.0004
		38	40.7423	83	56.8933	8	65.9452		
17	17.8683			80	57.1052	37	66.4554		
19	19.4579	5	41.5315			ĕ0	67.2830		
56	28.6682	9	41.6802	18	57.4461				
51	29.5792	22	42.0796	20	58.4283	28	68.2262		
	31.1586	70	42.2625	29	58.7241	57	69.2964		
78			42.5741	79	59.0650	12	69.5897		
61	31.8419	81			59.2330	23	70.0235		
71	34.1627	67	43.0607	42			72.9118		
76	34.1815	65	43.5561	53	62.1605	77			
36	34.5390	33	45.1143	6	62.2710	27	75.8371		
	35.4820	66	45.6982	49	62.3493	3	76.3373		
41			45.8599	69	63.5498	74	76.5324		
54	35.6347	44				15	81.9007		
11	35.7233	82	49.3514	72	64.6218				
31	37.8308	59	50.8603	47	64.7494	34	83.4538		
75	39.4378	68	51.7382	58	65.0663	21	85.4737		•
			52.2080	62	65.0687	48	85.5253		
55	39.8944	16			65.1068	32	88.7969		
63	40.0689	84	55.3153	39	69.1660	<i> </i>	Ac		

OBLIQUITY MEAN 53.8400 DEG, STANDARD DEVIATION 17.6809 DEG

PERCENTILES:		
	RANK	DEYIATE
	0.05	24.06
	0.19	31.84
	0.15	35.01
	0.20	37.83
	0.25	40.40
	0.30	41.68
	0.35	42.82
	0.48	45.70
	0.45	51.27
	0.50	56.04
	0.55	57.94
	0.60	59.23
		7.5
	0.65	62.95
	0.70	65.07
	0.75	65.61
	0.80	68.23
	0.85	71.47
	0.90	76.53
	0.95	85.50

PAGE 2

FACIT NO. 136 -136 -136 -135 -242 -286 -125 -134 -146 -178 -182 -199 -246 -273 -278 -273 -135 -65 -65 -10 -11 -13 -28 -118 -132 -144 -179 -132 -243 -247 -249 -252	NO. OF IMPACTS 10 3 3 3 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1
247 249 252 253 270 275 297	1 1 1 1 1 1

RODMAN LAB-PHYSICS THETH = 78.0 PHI = 35.8 SCALE: X = -225 TO 75 SCALE: Y = -90 TO 110

LOFAC COMPARISON WITH ZOT. 14 RUN 532

THERE	HEDE	14	MISSES
1 141- 5-1-	urar	, 4	111.0560

THEY WERE REPS #: 1 10 15 24 26 30 40 43 45 53 54 66 82

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

19	14.2525	_2	43.9792	_8	58.2643	20	66.3928	· 22	88.3299 89.2539
64	17.2128	60	44.3612	73	58.4079	17	68.1998	32	
74	17.4700	65	44.4540	27	60.6620	55	68.6645	5	90.6724
78	21.4462	52	45.1565	14	60.7244	69	69.9843		
56	22.3631	47	46.7919	75	60.8288	23	70.2309		
38	22.8972	11	49.7317	39	61.0027	77	70.3621		
4 i	28,4490	79	50.2099	62	61.5027	3	71.3532		
67	33.1126	42	53.4252	58	62.2956	51	71.9460		
31	34.8657	9	53.5396	6	62.5016	25	72.6469		
12	35.5367	59	53.8490	72	62.7576	61	72.8970		
48	35.5702	70	53.9122	49	63.2420	76	74.7614		
63	36.2807	28	54.7099	35	63.3297	18	80.4389		
8i	40.5075	57	56.0627	80	63.4878	34	81.7972		
36	40.9932	83	56.4031	44	64.1285	71	82.3178		
4	41.6717	68	56.4274	50	64,3999	21	83.4749		
46	42.6331	84	56.6091	16	65.0517	37	83.8911		
33	43.9171	7	56.6207	29	65,1969	13	83.9094		
		•							

OBLIQUITY MEAN 56.4047 DEG, STANDARD DEVIATION 18.3526 DEG

RANK	DEVIATE
0.05	19.86
0.10	29.38
0.15	35.56
0.20	41.26
0.25	43.98
0.30	46.14
0.35	53.45
0.40	54.55
0.45	56.50
0.50	58.41
0.55	60.93
0.60	62.55
0.65	63.46
0.70	65.11
0.75	68.66
0.80	70.961
0.85	73.27
0.90	82.21
0.95	85.68
-	

FACET NO. 134 129 136 -136 -137 -137 -232 45 287 -232 -666 -65 18 13 35 44 46 63 65 67 91 97 142 177 198	NO.	OF	IMPACTS 5 4 4 3 3 3 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
93 97 142 177 198 203 223 223 245 245 278 294 297 297 297			1 1 1

DDMRN LAB-PHYSICS HETA = 77.6 PHI = 36.2 KALE: X = -225 TD 75 Y = -90 TD 110

LOFAC COMPARISON WITH ZOT. 14 RUN 533

236

LOFAC COMPARISON WITH ZOT.14 RUN 534

PAGE 1

THERE WERE 0 MISSES

THEY WERE REPS #:

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

35 78 39 70 42 74 66 84 61 76 21 38 67	12.2912 18.0768 24.2466 25.7709 27.2361 27.2570 31.5993 32.2738 33.0104 33.0594 33.3639 37.2567 37.5015 37.8031 38.6416	69 71 18 12 59 48 57 79 47 44 39 24	41.2425 41.5064 43.2704 43.6072 43.9838 48.4755 56.1032 56.1363 57.8420 58.4515 58.9683 60.3391 60.5694 61.8348	56 64 51 6 16 17 80 82 40 55 68 60	63.1392 64.0801 64.1343 64.3300 64.4289 64.5632 64.5770 65.4346 65.4471 66.0348 66.4604 67.0277 67.1522 67.5762	281296574246077382 51296574246077382	68.5175 68.9037 68.9376 69.1268 69.6430 69.8528 70.9587 71.1646 72.4565 73.6263 75.0623 75.4081 76.4571 76.6130 76.8268	80 11 49 45 45 81 84 63 63 54 21	78.8357 80.8128 81.5848 83.8547 83.8961 84.6010 84.9563 85.4514 86.5145 87.1061 87.1598 87.2113 87.4125 88.4803 88.7585 88.9497
		24 33 37	61.8348 61.8476 61.9558	46 23 13	67.7359 67.7808 68.0706	58 62 77	76.8268 78.2887		

OBLIQUITY MEAN 61.8161 DEG, STANDARD DEVIATION 19.2967 DEG

RANK	DEVIATE
0.05	26.21
0.10	32.72
0.15	37.48
0.20	40.57
0.25	43.80
0.30	
0.35	60.64
0.40	62.43
0.45	64.40
0.50	65.45
0.55	67.28
0.60	68.34
9.65	
0.70	72.46
0.75	75.93
0.80	78.73
0.85	83.97
0.90	86.75
0.95	88.16

FACET NO.	HO. OF IMPACTS
136	22
231	12
-136 178	6
178	4
242	4
232	3
240	3
241	3
142	2
171 182	2
182	2
244	22 12 6 4 4 3 3 3 2 2 2 2 2 2 2 1
274 284	2
284	2
285	2
287	2
-278	1
-235	1
-231	1
32	1
32 135	1
137	1
233	1 ·
246	1
270	1
277	1
278	1
288	. 1

RODMAN LAB-PHYSICS THETA = 79.1 PHI = 28.3 SCALE: X = -225 YO 75

LOFAC CO	MPARISON	WITH	ZOT.	14	RUH	535
----------	----------	------	------	----	-----	-----

PAGE 1

THERE WERE 4 MISSES

THEY WERE REPS #: 1 24 50 73

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

36 25 66 34 76 71 35	20.1578 28.4642 29.8258 30.1018 31.8163 32.2592 32.7756 33.4327 34.5336 35.0870 35.3792 35.4454 36.0899 37.9218 40.4489 40.5461	20 29 44 19 33 47 79 69 45 56 72 17 64	43.5331 48.5516 49.2154 49.8684 50.7115 51.9990 52.0203 52.6797 52.7255 53.3383 54.9761 55.0656 55.4678 55.6903 57.3015 58.1403	43 42 53 53 18 31 46 54 52 32 14 12	59.7354 60.6465 63.9772 64.4149 64.6046 65.1029 65.6409 66.8803 67.1923 67.5655 67.6781 68.1280 68.2827 69.4244	28 9 26 27 39 77 37 80 11 48 67 89	69.9003 70.0077 70.3042 70.3625 71.2382 72.0686 73.1289 73.1829 73.2929 74.4503 75.9021 76.3250 77.4193 80.2624 81.0118 82.1044	65 10 63 81 60 22 7	84.4177 84.6811 84.7936 85.9501 86.2972 88.2453 89.7287 91.9200
--	--	--	--	--	--	---	--	---------------------------------------	--

OBLIQUITY MEAN 59.5434 DEG, STANDARD DEVIATION. 18.3971 DEG

RAHK	DEVIATE
0.05	29.69
0.10	
0.15	35.29
	39.44
0.25	46.04
	51.23
0.35	52.91
0.40	55.51
0.45	52.91 55.51 59.13
0.50	64.41
0.55	66.54
0.60	67.49
0.65	69.08
0.70	70.19 72.60 75.03
0.75	72.60
0.80	75.03
0.85	80.49
0.90	. 84.47
0.95	86.49

LOFAC COMPARISON WITH ZOT. 14 RUN S3S

RODURN LAB-FHYSICS THETR = 78.5 PHI = 2 SCALE: X = -225 TD

LOFAC	COMPARIS	MO.	WITH	ZOT.	14	RUH	536
-------	----------	-----	------	------	----	-----	-----

PAGE 1

THERE WERE 12 MISSES

THEY MERE REPS #: 1 13 16 24 40 45 50 53 57 64 65 73

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

35 36	5.8055 16.5116	22 34	43.8057 45.4037	80 17	56.7033 57.3570	12 27	65.9883 67.1133	3 29	85.6588 86.0046
30 48	19.7045	14	45.8103	11	57.4273	9	67.8817	18	86.6598
37	21.0071	5	45.3861	79	57.8021	36	67.9528	2	89.6185
84	28.7605	7	46.0001	51	58.63 <i>6</i> 9	30	68.4068		
70	31.9051	4	46.4433	62	59.5269	6	68.5472		
61	32.0233	72	48.6717	42	59.7172	23	70.1825		
20	32.4451	52	48.8094	55	61.1388	39	72.3586		
15	33.2098	56	49.2733	- 82	62.0097	76	72.8236		
38	35.3094	43	49.3166	46	62.3421	75	73.2949		
71	37.2987	83	51.1614	66	62.5757	41	76.4554		
74	37.8735	77	51.3111	69	62.6001	31	77.9405		
58	38.2391	21	52.2649	32	64.1742	63	81.5742		
78	40.2635	19	5 3.3578	54	64.4784	59	82.0450		
25	40.3120	47	54.8944	44	64.6424	49	82.9613		
28	40.8303	10	56.2597	33	65.5438	60	83.7673		
81	42.3199	68	56.2681	67	65.7492	8	83.8823		

OBLIQUITY MEAN 56.0041 DEG, STANDARD DEVIATION, 18.2718 DEG

RAHK	DEVIATE
0.05	20.55
0.10	32.15
0.15	37,20
0.20	40.29
	44.21
	45.99
	49.06
0.40	51.50
0.45	56.05
0.50	57.39
0.55	59.56
0.60	62.28
0.65	64.31
0.70	65.77
0.75	67.94
0.80	71.05
9.85	76.53
0.90	82.69
0.95	85.78
• •	

FACET NO136 136 134 178 287 -68 28 129 137 146 182 184 187 212 246 248 273 -271 -223 -134 45	ΝΟ.	of	IMPACTS 7 7 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1
271 -271 -223 -134 47 68 94 118 135 177 199 2231 2445 247 270 281 285 285 285	•		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

LOFAC COMPARISON WITH ZOT. 14 RUN SAG

LOFAC COL	1PARISON	MITH	ZOT.	14	RUN	537
-----------	----------	------	------	----	-----	-----

PAGE 1

THERE WERE 16 MISSES

THEY WERE REPS #: 1 13 16 24 26 30 33 40 44 45 50 51 57 64 68 76

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

72 32 625 825 471 789 8737 7	15.8772 16.9789 20.0160 23.7317 24.0068 32.2661 35.8762 37.1518 38.5609 38.9187 41.6690 41.7803 42.2042 42.2284 42.4207 44.1625 44.9342	56 77 14 52 46 55 55 49 65 65 4	45.4653 46.2687 47.3885 47.8194 49.1897 49.4060 50.7531 51.0488 52.5004 53.6297 53.9225 55.8066 57.1968 57.6260 58.5195 59.8835	60 17 61 10 12 67 88 88 32 43 42 48 75	61.1155 61.1350 61.8851 61.9242 62.3162 63.1641 63.4068 63.5859 64.6941 64.7807 65.3669 66.2173 67.1851 68.0352 68.0461 71.2522	59 23 6 11 53 69 20 70 81 66 38 74 32 18	71.2862 71.3786 73.2708 73.5286 75.4480 77.3706 79.4546 80.1613 80.2901 82.4021 82.9040 83.6715 84.0661 84.8016 85.5383 86.1431 86.4582	29	86.F309
---	---	---	--	--	--	---	---	----	---------

OBLIQUITY MEAN 58.1869 DEG, STANDARD DEVIATION 18.1289 DEG

RANK	DEVIATE
0.05	21.87
0.10	35.88
0.15	40.29
0.20	42.23
0.25	45.20
0.30	47.82
0.35	50.90
0.40	53.63
0.45	57.41
0.50	61.12
0.55	62.12
0.60	63.59
0.65	65.07
0.70	68.04
0.75	71.33
0.80	75.45
0.85	80.23
0.90	83.67
0.95	85.84

FACET NO. 136 -134 287 -136	NO.	OF	
142 -283 45 129 178 203			65433222222211
223 277 -280 -242 -239 -232			1 1
-68 -66 14 31 36 47	•		1 1 1 1 1
66 68 83 96 99 104			1 1 1 1 1
108 118 137 156			1 1 1 1 1 1
171 182 199 202 231 239 243			1 1 1
239 243 244 253 254 270 280 290 295			1 1 1 1 1 1 1 1 1

RODMAN LAB-PHYSICS THETA = 77.7 PHI = 25.5 SCALE: X = -225 TD 75 Y = -90 TD 110

LDFAC COMPARISON WITH ZOT. 14 RUN S37

RODMAN LAB-PHYSICS

LOFAC	COMPARISON	WITH	70T.	14	RIIN	538
		24 ± 111	_~ .	1 7	1000	$\sim \sim \sim$

PAGE 1

THERE WERE 6 MISSES

THEY WERE REPS #: 26 30 45 50 73 85

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

58	16.0047	32	34.0002	7	42.0373	68	68.1717	6	82.1022
35	19.6159	84	34.4396	48	45.8253	59	68.4735	55	84.6321
62	20.1596	74	34.6264	14	46.1584	47	69.0710	34	84.7699
72	20.5549	4	34.9964	53	47.2287	2	69.3800	65	84.7846
49	21.1936	25	35.0159	70	50.3159	28	69.8822	79	85.8474
8	22.5289	78	35.0622	44	55.5702	43	70.0523	20	86.1371
66	23.5119	75	37.6963	16	55.8032	82	70.2054	27	86.1399
38	26.7414	39	37.9828	33	56.7757	60	70.3590	9	86.2243
12	27.0568	21	38.0066	83	58.9966	1	72.3451	10	87.8502
81	29.3495	63	38.2096	64	60.6894	23	73.3011	31	88.5270
61	29.6854	36	38.5786	19	64.2923	40	73.4703	22	90.3019
37	31.6383	71	38.8893	15	64.5866	3	74.2884		
29	32.1817	80	39.0871	46	65.2	56	74.6588		
41	32.2249	67	40.6138	69	65.51.	17	74.6830		
52	33.2120	24	40.8807	42	66.9349	54	74.7347		
11	33.3470	5	40.8898	13	67.7584	77	77.0810		
18	33.6659	76	41.9830	51	68.0220	57	79.6184		

OBLIQUITY MEAN 53.8288 DEG, STANDARD DEVIATION 21.6688 DEG

PERCENTILES:

RANK	DEVIATE
0.05	20.55
0.10	26.74
0.15	31.64
0.20	33.35
0.25	34.63
0.30	37.70
0.35	38.58
0.40	40.88
0.45	45.83
0.50	55.57
0.55	60.69
0.60	65.52
0.65	68.17
0.70	69.88
0.75	72.35
0.80	74.66
0.85	79.62
0.90	84.78
0.95	86.22

136	
287 4 146 3 171 3 178 3 -137 2 -136 2 231 2 234 2	
171 3 178 3 -137 2 -136 2 231 2 234 2	
-137 -136 2 231 2 234 2	
234 2	
243 2	
244 2 246 2	
247 2 270 2	
288 2 -271 1	
-271 1 -146 1 -144 1 -142 1 -135 1	
-135 -68 1	
8 1 11 1	
46 1 67 1	
11 1 1 1 46 1 67 1 68 1 1 95 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
95 1 129 1 135 1 137 1 144 1 156 1 177 1	
144 1 156 1	
177 1 182 1 184 1	
240 1 241 1	
245 1 248 1	
196 1 202 1 240 1 241 1 245 1 248 1 253 1 275 1	
282 . 1 284 1 286 1	

HETH = 78.0 PH = 46.6 SCALE: X = -26% TO 35

RODMAN LAB-PHYSICS

LOFAC	COMPARISON	MITH	ZOT.14	RUN	539	
-------	------------	------	--------	-----	-----	--

PAGE 1

THERE WERE 14 MISSES

THEY WERE REPS #: 1 7 10 13 16 24 26 30 40 43 45 50 52

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

37 66 46 31	21.7469 25.2955 26.2590 28.8561	49 14 9 70	37.8298 37.8989 3% 1335 38.J985	82 4 35 39	53.7547 54.0345 54.5013 56.4575	19 73 25 2 17	67.5495 68.0826 68.7652 70.2540 70.2706	48 3 5	87.1510 88.0750 90.0093
55 62 41 11	29.6742 30.7809 31.1806 31.5880 31.7247	15 22 84 34 36	39.0789 39.3595 41.4923 41.7882 42.7555	64 51 20 69 57	56.6456 59.0052 61.2246 61.3497 62.1679	56 60 23 28	70.3027 70.3334 72,2205 73.6734		
78 58 81 38 76	32.2416 32.6764 33.2384 33.3537	8 79 44 75	45.0645 47.5263 48.1243 48.2533	72 53 74 42	62.4261 63.1035 63.2037 63.2276	61 77 6 27	74.5016 75.2273 75.7761 78.6432		
18 65 63 67	34.1184 34.5154 34.9365 36.8927	33 80 83 32	48.9698 49.3954 51.2023 52.9044	29 47 59 68	63.7227 64.8082 65.3426 66.8003	71 54 21 12	80.5524 82.3030 86.1646 86.4156		

OBLIQUITY MEAN 54.1761 DEG, STANDARD DEVIATION* 18.4169 DEG

PERCENTILES:

RANK	DEVIATE
0.05	27.82
0.10	31.26
	AA 20
0.20	32.59 34.28 37.83
0.25	37.83
	39.01
	41.98
0.40	50.12
0.45	
0.50	54.03
	58.06
0.60	
0.65	63.22
0.70	65.93
0.75	68.77
0.80	70.32
0.85	74.65
8.98	80.17
0.95	86.71
	-

FACET NO. 136 -136 -137 -131 -142 -142 -142 -177 -142 -178 -182 -287 -296 -274 -134 -65 -118 -66 -65 -118 -66 -65 -65 -118 -66 -65 -65 -68 -68 -68 -68 -68 -68 -68 -68 -68 -68	NO.	OF.	IMPACTS 443322222222221111111111111111111111111

LOFAC COMPARISON WITH ZOT. 14 RUN 539

RODMAN LAB-PHYSICS

LOFAC COMPARISON WITH ZOT.14 RUH 540

PAGE 1

THERE WERE 17 MISSES

THEY WERE REPS #: 1 3 13 16 24 26 30 37 40 45 48 50 51 52 57 64 73

OBLIQUITY ANGLES IN ASCENDING ORDER (DEG):

75	12.9655	41	43.7766	34	54.7103	33	69.1071
35	15.4470	38	44.2628	56	55.7439	12	69.3848
69	22.6149	70	45.9613	77	55.8070	85	69.5395
61	24.7512	19	46.7131	67	56.3625	23	69.7547
72	24.8441	10	47.1471	80	56,4822	53	70.0226
42	26.7389	8	47.3320	79	57.5195	28	71.1778
78	26.9810	76	47.9065	2	58.6898	44	71.5600
74	28.7992	68	48.0329	82	59.6102	15	75.3337
71	30.5430	39	49.6462	62	60.2299	31	77.2243
36	33.7869	65	50.2395	54	65.1395	11	77.5674
21	34.0419	17	50.9534	46	65.7086	18	79.3434
66	34.1604	43	51.8436	84	66.7532	63	81.6638
22	34.2233	58	51.9795	60	66.7559	8:	83.4130
25	35.8352	55	52.2234	27	67.9432	49	83.5677
14	36.3447	4	52,6441	6	68.1282	59	83.5918
7	39.6050	47	52.9251	9	68.1345	5	90.0512
29	42.7173	83	53.2318	32	68.2863	120	91.8563

OBLIQUITY MEAN 54.5203 DEG, STANDARD DEVIATION 18.6225 DEG

PERCENTILES:

0.10 26.96 0.15 33.88 0.20 35.51 0.25 42.98 0.30 46.49 0.35 47.93 0.40 50.67 0.45 52.24 0.50 53.97 0.55 56.33 0.60 59.06 0.70 68.00 0.75 68.90 0.80 69.81 0.85 74.01 0.90 79.58 0.95 83.58	RAHK 0.05	DEVIATE 23.58
0.20 35.51 0.25 42.98 0.30 46.49 0.35 47.93 0.40 50.67 0.45 52.24 0.50 53.97 0.55 56.33 0.60 59.06 0.65 65.62 0.70 68.00 0.75 68.90 0.80 69.81 0.85 74.01 0.90 79.58	0.10	26.96
0.25 42.98 0.30 46.49 0.35 47.93 0.40 50.67 0.45 52.24 0.50 53.97 0.55 56.33 0.60 59.06 0.65 65.62 0.70 68.00 0.75 68.90 0.80 69.81 0.85 74.01 0.90 79.58	0.15	33.88
0.30 46.49 0.35 47.93 0.40 50.67 0.45 52.24 0.50 53.97 0.55 56.33 0.60 59.06 0.65 65.62 0.70 68.00 0.75 68.90 0.80 69.81 0.85 74.01 0.90 79.58	0.20	35.51
0.30 46.49 0.35 47.93 0.40 50.67 0.45 52.24 0.50 53.97 0.55 56.33 0.60 59.06 0.65 65.62 0.70 68.00 0.75 68.90 0.80 69.81 0.85 74.01 0.90 79.58	0.25	42.98
0.40 50.67 0.45 52.24 0.50 53.97 0.55 56.33 0.60 59.06 0.65 65.62 0.70 68.00 0.75 68.90 0.80 69.81 0.85 74.01 0.90 79.58	0.30	46.49
0.45 52.24 0.50 53.97 0.55 56.33 0.60 59.06 0.65 65.62 0.70 68.00 0.75 68.90 0.80 69.81 0.90 79.58	0.35	47.93
0.45 52.24 0.50 53.97 0.55 56.33 0.60 59.06 0.65 65.62 0.70 68.00 0.75 68.90 0.80 69.81 0.90 79.58		
0.55 56.33 0.60 59.06 0.65 65.62 0.70 68.00 0.75 68.90 0.80 69.81 0.85 74.01 0.90 79.58		
0.60 59.06 0.65 65.62 0.70 68.00 0.75 68.90 0.80 69.81 0.85 74.01 0.90 79.58		53.97
0.65 65.62 0.70 68.00 0.75 68.90 0.80 69.81 0.85 74.01 0.90 79.58	0.55	56.33
0.70 68.00 0.75 68.90 0.80 69.81 0.85 74.01 0.90 79.58	0.60	59.06
0.70 68.00 0.75 68.90 0.80 69.81 0.85 74.01 0.90 79.58	0.65	65.62
0.80 69.81 0.85 74.01 0.90 79.58		
0.85 74.01 0.90 79.58	0.75	68.90
0.90 79.58	0.80	69.81
	0.85	74.01
	0.90	79.58
	0.95	1177

•			
FACET HO136 -136 -134 118 171 178 196 287 287 -137 -135 -135 -135 -135 -135 -135 -135 -135	NO.	OF	IMPACTS 663322222221111111111111111111111111111

RODNAN LAB-PHYSICS THETA = 78.2 PHI = 37.8 SCALE: X = -258 TO 58

LOFRC COMPRRISON WITH ZOT. 14 RUN SYR

€)·

APPENDIX B

PROGRAM FOR PROCESSING FLIGHT SIMULATION TARGET DATA--IMPAC

Next page is blank.

Description of IMPAC Program for Estimating
Hit Probability and Distribution of Impact Obliquity

General Description

The IMPAC program is a postprocessor program which takes as input the results of a guidance simulation program (ZOT.14) and a geometric description of the surface of a target vehicle. It scores the outcome of each guided flight as a hit or miss and optionally computes the impact obliquity of each miss. Statistical measures of the distributions of guidance error (i.e., the vector from the intended impact point to the nearest point of the shot line), terminal projectile velocity and attitude, impact obliquity, and an estimate of the probability of hitting the target are computed.

Target Description

The target is modeled by means of a set of convex quadrilateral plane figures called facets. The coordinates of each corner of a single facet are punched on one card. The order of the corners determines the sense of the "outside" of the surface according to the right-hand rule: if the curled fingers of the right hand point in the sense of travel in a circuit from the first corner to the second, then to the third, to the fourth, and finally back to the first, then the thumb, cocked away from the hand, points outward from the surface.

Hit/Miss Scoring

The first step in scoring is to orient the target properly with respect to the projectile. Required data are the azimuthal heading of the target, the azimuth and elevation of the projectile velocity, the guidance error vector, and the position on the target of the intended impact point. A series of translational and rotational transformations of coordinates brings the target into a frame of reference whose mutually perpendicular axes are: (1) yaw-wise, parallel to the ground and normal to the projectile velocity; (2) pitch-wise, normal to the velocity and to the yaw direction; and (3) depth-wise, antiparallel to the velocity. The origin is the intended impact point.

Collapsing the depth coordinate brings the target into the "impact plane," having yaw and pitch coordinates only. The guidance error vector defines a point in this plane. Whether this point is on or off the target is determined by a "dot-product" method of hit/miss scoring, which proceeds as follows:

First, a facet is selected. The point A, known to be inside the boundaries of the facet's projection in the impact plane, is defined by averaging the positions of the first and third corners (see Fig B-1, below). Now, taking in turn the sides of the facet defined by corner pairs (1,2), (2,3), (3,4), and (4,1), the perpendicular vector R from point A to the side

Figure-B-1. Scoring Hits by the Dot-Product Method

is defined. Also, the perpendicular vector \overrightarrow{P} from the impact point (guidance error vector) B to the side is defined. Figure 1 shows three possible locations, B_1 , B_2 , and B_3 , for the impact point relative to the facet. If the dot product $\overrightarrow{R} \cdot \overrightarrow{P}$ is positive, A and B are on the same side of the side of the facet; if the dot product is negative, they are on opposite sides. Thus, a negative result for any of the four sides indicates a miss for the facet. A hit requires four positive results (a zero is considered the same as a positive, indicating a hit directly on the edge). In Figure 1, B_1 will thus score a hit, B_2 will score as a miss on the first side, and B_3 will score as a miss on the second side.

All facets may be scored in this manner. A hit on any facet is a hit on the target. All facets must be missed in order to score a miss on the target.

Impact Obliquity Scoring

If the purpose of the scoring is simply to score hits and misses, it is unnecessary to continue scoring facets once a single facet is found to be hit. For impact obliquity scoring, however, it is necessary to continue until all facets have been scored. The list of all facets scored as hits is then searched and the depthwise coordinate of the facet surface at the yaw and pitch coordinates of the impact is calculated for each facet. The maximum depth value (nearest the projectile as it encounters the target) identifies the facet actually struck.

The impact obliquity is calculated in a two-step procedure: (1) the normal direction to the facet that was struck is defined by calculating the cross (vector) product of the vectors of displacement from facet corners 1 to 2 and from 2 to 3 and then normalizing the product vector to unity modulus, and (2) the attitude of the projectile, defined by the angles of attack*, defines another unit vector, which is multiplied (scalar or dot product) by the facet-normal vector to give the cosine of the obliquity.

Input

Input to the program consists of the geometric description of the target, program control parameters, the target heading and location of the intended impact point on the target, and finally a set of card pairs, each pair describing the outcome of a single replication of the guidance simulation. The outcome for guided impacts is described by the miss vector, velocity vector, and angles of attack. In the case of a replication in which acquisition failed to occur, a "miss distance" of -1.0, followed by zeros for the remaining outcome data, flags the program to ignore the replication (except for tallying type of outcome).

Output

Most of the output from the program is printed. The description of the target and the control parameters are echoed and the outcome of each individual replication in sequence is given. A printer-plot showing, by means of printed characters, the (approximate) positions of facet corners and impacts as seen from the average direction of approach are displayed. This enables the user, with some practice, to draw a view of the target and impact distribution. Other plots available are a scatter plot of terminal angles of attack (pitch and yaw) and a cumulative plot of the obliquity distribution.

A summary of statistical measures follows, including means and standard deviations of miss distance, yaw miss error, pitch miss error, angles of attack, angles of approach, airspeed, and impact obliquity. Correlations between several of these statistics are calculated and displayed. Finally, ordered lists of the miss distances, yaw errors, pitch errors, and obliquities are displayed.

Supplementary output is a pair of punched cards containing the estimates of the values of obliquity corresponding to every fifth percentile from the 5th to the 95th.

User Options

The user may process up to one hundred replications per set. A unique combination of target heading and designation point is required for each set.

Note that in this yaw-pitch-depth coordinates system, the velocity vector is antiparallel to the depth axis.

Sets of equal numbers of replications may be processed in groups of up to six sets. No commonality of parameters is required among sets; however, when values of one single parameter distinguish the sets of a group, an option is supplied to fit a curve of one of the guidance accuracy statistics to the varying parameter. The statistic fitted is the "equivalent circular-normal standard deviation," which is the standard deviation of a bivariate circular normal distribution having a probability of hitting a standard square target equal to that of the observed distribution of impacts.

Groups may be processed without limit, the only required point of commonality being the particular target vehicle model used.

The type of processing is controlled by a single control parameter IALPHA, having integer values 4 to 0. The interpretation of each value is as follows:

- (4) Complete analysis including all plots. Target vehicle is transformed into individual impact plane for every replication.
- (3) Same as (4) except that target vehicle is transformed only once into "mean impact plane" for hit/miss scoring, in order to save computational time. This option works well if the range of directions of approach is small. Adjustments to projectile attitude compensate for this approximation during obliquity scoring.
 - (2) Same as (3) except omit obliquity analysis.
 - (1) Same as (2) except omit angle-of-attack plot.
- (0) Omit angle-of-attack data and score for hit/miss only (using mean-impact-plane method).

An example of input and output and a listing of the IMPAC program follow.

Example of Use of IMPAC

The following example illustrates the use of the IMPAC program. Three separate guidance simulation (ZOT.14) runs of 85 replications each are processed

The attached listing of the input deck is marked with reference symbols for the reader's convenience.

The first card (ref. A), format (I3), indicates that the target model consists of 66 facets. The remaining characters on the card are not read by the program but serve to identify the target specification deck to the user.

The following 66 cards (ref. B), format (12F6.2), contain the coordinates of the facet corners—one facet per card.

A title card (ref. C), contains whatever label information the user desires in order to identify the following group of card sets. The next card, format (413, 8X, F10.0, 10X, 10A4) contains the information that 3 sets of 85 replications are to be processed with control parameter IALPHA = 3 and no curve-fit of equivalent standard deviation (NGO = 0). (NGO = 1 if the curve-fit is desired). Also on this card is the information that the standard square target used in calculating equivalent standard deviation is 7.5 feet and that the parameter distinguishing the 3 sets is the designation range in kilometers. The following card, format (8F10.0), contains the values of the distinguishing parameter for each set (1.0, 2.0, and 4.0 kilometers, respectively).

Following the above control data are the card sets describing outcomes of guidance simulations (refs. D, E, F). Each set begins with a single card, format (40X, 4F10.0), indicating the heading of the target vehicle and the designation point on the vehicle. Following are pairs of cards indicating the terminal status of the projectile for each replication. The alphanumeric identifiers at the beginning of each of these cards are not read by the program but are for the user's conveniences. Only the floating-point data are read.

After the last card set of the group (ref. G), the user may begin a new group, starting with the control data of reference C. After the last group, a blank card is inserted as shown at reference G before the end-of-file card.

The attached output shows the results of processing the given input data deck. Table B-l explains those terms used which are not self-explanatory. Note that the impact-plane scatter plot has been completed for the first set, but not for the others.

TABLE B-1. EXPLANATION OF TERMS IN IMPAC OUTPUT

FACET CORNER COORDINATES: Each line of output represents one facet.

The four groups of three numbers represent the four corners in sequence. The first coordinate of each triplet is the distance from the trailing edge of the vehicle forward to the corner times -1.0. The second coordinate is the height of the corner above ground level. The third coordinate is the distance from the centerline of the vehicle to the corner, measure. To the driver's left. All the above distances are in inches.

REP: Replication number.

YAW: Laceral or sideways distance of shot line from aim point, in feet.

PITCH: "Vertical" distance of shot line from aim point, in feet. Both yaw and pitch are measured perpendicular to the velocity.

ALPHA: Angle of attack in degrees. Subscript Y or P for yaw or pitch. Positive yaw is nose left and positive pitch is nose up.

PHI.V: Azimuth of terminal velocity vector in degrees in ZOT coordinate system.

THETA.V: Elevation of terminal velocity vector in degrees.

BETA: Projectile orientation angles with respect to the normal to the impact plane used for scoring. For IALPHA = 4, BETA = ALPHA. For IALPHA < 4, BETA = ALPHA + a correction for the deviation of the velocity angles from the mean velocity angles.

IMPACT PLANE PLOT: The letter 0 marks the position of one or more facet corners. The asterisk (*) marks the position of one impact. A digit from 2 to 9 marks a printer cell in which multiple impacts, as indicated, occurred. The letter X indicates 10 or more impacts in a cell. The plot is drawn from the aspect of the mean direction of approach. Distances are in feet.

ANGLES-OF-ATTACK PLOT: The same characters as above, except the letter 0, are used to indicate terminal attitudes of the projectile for each replication. Note that since positive yaw is nose left, the plot is mirror-imaged. Units are degrees.

OBLIQUITY CUMULATIVE PLOT: The plus sign (+) indicates the points of the sample distribution.

OUTCOMES: Outcomes are separated into the three categories listed. The fraction that acquired the target is the approximate probability of target being in acquisition footprint, which applies only to the specific conditions of the simulation and is not to be taken as representative.

TABLE B-1. EXPLANATION OF TERMS IN IMPAC OUTPUT (CONT)

- CORRELATIONS: YAW-PITCH is correlation between yaw and pitch coordinates of impact points. ALPHA.Y-ALPHA.P is correlation between yaw and pitch angles of attack. ALPHA.Y-ERR.Y is correlation between yaw angle of attack and yaw coordinate of impact point and, similarly, for pitch.
- HIT PROBABILITIES: Approximate square target hit probability is fraction of impacts falling within the square of specified size centered on the designation point and oriented in the impact plane. Derived square target hit probability is that probability predicted using the means and standard deviations of yaw and pitch impact points in an uncorrelated bivariate normal distribution to estimate the probability covered by the square target. Vehicular target hit probability is the fraction of the sample hitting the target.
- EQUIVALENT CIRCULAR-NORMAL STD DEV: The standard deviation of a zeromean circular normal distribution for which the square-target hit probability equals the derived value discussed above.

Next page is blank.

Listing of Example Input

Next page is blank.

のでは、これのでは、こ

-2100 -5000 16400 16400 5700 5700 5700 5700 5700 5700 48000 48000 48000 48000 1600 4300 4800 AC. 173 7.716 7.716 7.716 7.716 7.716 7.716 7.716 7.716 7.716 8.8000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0 5700 4800 3500 1600 5700 5700 3500 1600 5700 5700 14000-21600 -6400 -25500 -6400 -2400 11116000 11116000 11116000 11116000 11116000 11116000 11116000 11116000 11116000 11116000 11116000 11116000 11116000 11116000 11116000 11116000 -6400-21600 -4000-25100 -4000-25500 881195 881195 88195 88195 121600 121600 122800 123600 123600

機能は関係を行うできる場合に対すると ではある きがく アコウルコーカー しゅうしょうかんきん しゅうし

11,000,000,000,000,000

The state of the s

@

-4000 -4000 -4000 -4000 -4000 -4000 AUG 1976	0.00827 9.73576 0.07308	456 456 476 476 476	0.10325 0.67503 0.03990 0.00073	38852 58014 58178 09597	10.94843 46.32843 46.32843 46.32843	26423 26433 26433 26821 20571	80384 80478 80478 63324 59799 24500	idia to the
000 -2800 2600 000-23600 1700 000-21200 5700 000 -1900 5300 000 -2800 1600 2 4 KM, - 30 110N RANGE	57.6 38560 43277	3.07116 5.16400 0.61175 6.97063	36460 13288 13288 32678	0.27105 0.79482 9.76083 1.87326	2.466.3 2.48966.3 3.48966.3 3.48966.3 3.48644.3 3.48644.3	0.72609 0.72609 0.72609 0.72609 0.72609 0.61469	4.72992 6.73007 6.36518 6.02931 6.25931	000000000000000000000000000000000000000
25440 5300 -4 25240 4000 -4 21200 5700 -4 -2400 5300 -4 -1900 5300 -4 -5800 1600 -4 -5800 0 -4 -5800 0 -4	115,000 1,38562 0,91317 2,71131	208 208 107 704	12390 12390 13874 84298	12702 12702 12702 138865 13865 1372 1372 1372 1372 1372 1372 1372 1372	03508 35458 35458	46132 94285 14282 78700 78700	79504 70691 73099 83230 72067	2.113396 792.119173 2.626617 1.334248 793.656508 0.415790 791.4844 1.017559 791.484137 791.484137
5700 -4000 5700 4000- 5700 4000- 5300 4000 1600 4000 12 AI 12 K	.86421	-5.524055 6.978349 6.110326	6.243145	7304 0283	.57858 .29139	-1.251271 7.857152 4.615126	8,238100 4,871736 2,553922 -8,209817	8.539272 7.31;935 3.124843 2.571854 2.636086 6.921913
アアロアアごらて	1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	EP 7	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	193 REP	55662 55662 511 51346	1193, REP *8.5 1193, REP 1193, REP 8.3	193, KEP 1 193, KEP 1 193, REP 1 193, REP 1	N1193, REP. 1193, AEP. N1193, AEP. N1193, REP.
23600 1 23600 1 252400 4 21200 5 22400 5 11900 5 11900 5 3 85 3	01.14 H	145 01.14 R 193 3 01.14 R	01.14 R 193 5 01.14 R 193 6	193 7 7 193 7 7 193 8 8 193 8 8 193	01.14 RU 193 10 01.14 RU 193 11	193 12 0T.14 RU 193 13 0T.14 RU 193 14	193 15 193 16 193 16 01:14 RU 193 17 01:14 RU	4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1

著者はははままで、 きょうしょう きょうきょう きずしょう トラント

The fight of the first of the f

the office of the other of

THE PARTY OF THE P

7 H 7

1193 55	9.90	-5.423050	788.628508	75	
41.00	<u>,</u> č		27.00	81262	2110
1195 35 201.14 RUN1193.	REP 57	000,000	456	26293	1.432657
193 57	5	8.704489	71722	3.74677	630
201,14 RUN1193,	REP 58	606700	85332	190	348
07.14 07.14	1 4 2 4 4 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4		1.38939	1.18296	, ·
193 59		7,912231	8372	39973	6532
201,14 RUN1193.	#EF 60	7,347155	∞ ~	8.01743	356.340583
oT.14	P 61		0,19225	0,13193	-0.1398
193 61	1.46	7.403467	,92731	0.38665	1.7648
201.14 RUNI193.	٠.	3.591460	700757007	5,666	350.0238050
07.14	63.6	•	2,75847	2,71336	4968
193 63	4.0	7.606827	51497	0.83265	5.
1103 44 KUN11930	704	0.000030	→ 0	04610	747 1 6672
oT.14	EP 65		1.20527	69076	~
193 65	9	5.254177	.60774	.04141	.2826
01,14 RUN1193.	HEP 66	2.170412	0.980766	24046	150.27840
OT.14 RUN1193.	ķ.		64984]	
193 67	-5,689936	8,441792	86867	.89765	341,65573.
OT. 14 RUN1193,	- 5		44356	\$ 50	0.245
173 08 17.14 01.101.03	0.0000000000000000000000000000000000000	0.44/056		Š	341.00030
193 69	11.423216	3,930901	786	83408	339,98490
OT . 14 RUN1193,		i	61854	36333	0,872
193 70	-12,355347	7.058852	47630	8	2
01.14 KUN1193.	KEP /1	7,025163	~ .1	42254	יינינים מייני
OT.14 RUN1193.		201140	2.71922	ខ្មា	77777
193 72	7,965035	6.942536	13354	9.24783	359,57876
OT.14 RUN1193.	:		64345	58187	-0.44567
193 /3 01.14 RUN1193.	REP 74	0.473438	^ ^	P-	245.57.7460
193 74	ຸ່ດ	7,761769	83815	59391	
01.14	10.1		95206	.92692	0.384
01.14	1.666509	1.0044/4	780513697	11.968952	348,43107
193 76	4.377442	1.618057	2627	9.95744	5.580
ZOT.14 RUN1193.	P 77		11380	-1.00459	0.4810
7,77	*K*632459	7.430662	794.182/50	193597	341,50179
193 78	0.58	2,623664	46045	03096	3616
ZOT.14 RUN1193,	EP 79		1.15720	08473	0.403
193 79	7.5	-9.901123	0917	64445	6970
201.14 RUN1193.	REP 80	1.450533	78952661	866	0.813200
oT.14	910	7777	91692	0.10353	9110
193 81	20	-0.730974	.09428	91649	0.064
ot.14			.09602	85848	0.6813
1193 86 201.14 RUN1193.	-8.469621 RFP A1	3.489070	33740	97276	340,922409
193 83	4.30	2.866287	5695	15267	7.576
of.14	P 84		0.8046	•43286	9.678
1193 84 701.14 RUN193.	#1.959713 RFP AS	-7,561201	788,073726	-1.233225	358,506276
::5			0	***	-

341,209205	0.570		0.84824	4.58116	18170	0.08972	1.40102	1,78535	97022	96069	-0.24151	45932	1,58107	0.48139	.86241	28268	-1,53395	15079	14688	96770	12474	23956	370.675814	53375	18542	08785	52274	m i	-1.02840	75098	0.500.1	0.45589	. 45139 . 24.345	.02392	0.31578	5.62515	362,5402028	0.34071	. 22951	-2.59171	.56030	• • • • • • • • • • • • • • • • • • •	0.35784	Ļ٠	35.04040
-12.0074	7.36047	44529	4.73775	5,32546	18345	1,36216	.30066	.03141	933804	5.49815	94483	0.17878	42389	3,40803	0,37621	10401	74830	7,58394	53010	72704	71688	2,98299	0 2 1 4 4 0	4.48328	2,20487	12480	58358	2,429733	3.36527	69671	3,48618	1.67754	20695	1,19464	2,15029	.03387	1.635552	0.97449	1.99697	7,37982	7285	-20,638709	3.64760	.81915	36896
794,131889	7,867	21302	4.81309	.37653	25779 98845	1,36511	.95237	6.29010	458304	787.600331	2,95471	-21456	786.057081	3,44186	. 79684	99060	70674	.02729	53436	1.21039	74438	4.40375	62930	.88918	2,50333	\$4634¢	783,699318	m a	3.51890	.50261	785,258369	1.73838	.68055 .17125	.67846	2,17336	~	786.299611	1.03234	68523	7.82168	.95482 .72144	04533	3,66511	65931	(6000
4.732602		5,328043		11.720329	4.414247		3,022425	1	3,826393	A.068110		7.123944	752122-01	•	4,555375	A GEROLA	****	9,878288	44.001747		4.743473	0	3.592109	8.670108		5.961871	0.393891	01007	7	9.146554	A.643257		5.204604	2.077966		7.256027	7.749859		6.910782		-2,631352	1.224710		-4.255749	8.728121
-4,688376	α	-12.6	EP 2	4.7	æ -	KEP 4	12,271487	EP S	-12,14	2 8	EP 7	9,30	KEP 8	REP 9	6.90	X 4	REP 11	S	200	RED 13	-1,39	3	1.810855 RFP 15	- 🌣	91		-=	REP 18	2007	-13,369151	- MEP CU -9.725628	2	2 4	: =	23	ں ⊶	 ←	EP 25	S.	25	_	7.4	EP 28	۰,	֡֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֡֓֡֓֓֡֓֓֡֓
85	56	T I	ZOT . 14 RUN1194 .	NJ	201.14 RUN1194+	. 4	3	ZOT . 14 RUN 194 .	5 2 5 2 1 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	11004	*	,	201.14 RUN11941	7	6	•	. *	11	201,14 RUN1194,	14 RUN1194	13	₹		15	*	. 16 outs	•	7	. *	61	<u>.</u>	*	2	22	4	6 23	<u>.</u>	<u>.</u>	\$2	7	~ ~	14 RUN11	=	. 28 14 com:13	1194 29

500	914	0.39525	9.51218	36436	01137	94761	70245	28127	17754	338,064421	30144	04505	1.17501	17871	85310	4.33731	18692	09230	348,665368	0.54378	35670	.72629	0.862741	1.00585	24040	82790	1.601754	55022	56462	8.54560	363,823420	1.02581	0 . 4 . 4 . 0 0 . 5 . 4 . 4	339.811122		10650	2.24871	so.	31010	3.98262
53				32,296926								6.443695			-6.152656	0.134474	3.691494	14,032589	20,380069	1			⊸ ~					o-			1,688951			4			ទី	-11.361982	, ~	
32	1,192594	:-:	792,396485		'n	2,717816		ณ้อ	'n	786.943410		ď.	2,676106	784,622128		•		-	787.013621				193592	-	005004 - 1 . BB/		48080804		• •	•	785,233747	u	Š	Ñ	_	•	···	767,511203	•	ູ້ທ
8.623869	9.344592	j	2,564554	8.428226		10.405044	5,571905	1	7 + 1 5 0 + 0 -	7,462791	4.163288		-0*///199	8,493418	1.494070	0.477600		5.620527	9.409422		112992.0	-1.500517	S.876032	١ ١	112408*0	-10.264080	-1.322062		20000000	1 4.048162	1.050475	146	14010010	5.005454		σ	•	-11,232046	6.017086	
REP 60 -3.615383	9 4	29	٧,	ີລ	EP 64	#4.004578 RFP 65	7	<u>ي</u> و	ŭ r	٠,	~ ~	œ.	REP 70	-	*** '1	REP 72	REP 73	-7,117259	-3.891894	REP 75	#5,991130 REP 76	8,777726	REP 77	٤	<u> </u>	2,675959	\$	2	••	7.32	96.	484		7,90		. o	REP 2	80.0	30	, , , , , , , , , , , , , , , , , , ,
UN I	. 4	•	62	1194 63		۰.	65	4 AUN1194.	4 RUN1194.	67 . Britis 10	68		٠.٠	70	• '`			2	• '~	. . '	٠.,	76	201.14 RUN1194.		٠,	79	1194 80	o	۰.	92	• =			85	#UN1195	* KUN 1 45*	. RUN1195.	2	201.14 RUN1195.	201.14 RUN1195.

40.0.0.0.0.0		m m - m m m m - m m		NP @ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
73131 09610 96095 93465	6.00 6.00	39417 99417 10421 10471 96171 96171 9790 9790		666 666 666 666 666 666 666 666 666 66	124.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.
			40444000000	m.n.a.a	779,424742 8,173751 763,11015 4,311015 786,775931 8,559391 772,6365 788,644779 10,012915 777,604215 777,
10,724281 4,360929 11,212072	7.682249 12.559229 4.793295	14.451897 10.006578 10.591883 4.215652	7.41194 7.77231 -3.34857 14.58256 8.44052		8,488495 -2,718045 0,756783 -8,732976 9,469170 6,808767 7,379071 5,870299
12.785467 REP 5 110.980203 REP 6	3 W 7~	F-40-40-6-0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	20043 2008 2008 2008 2009 2009 2009 2009 2009	REP 26 12.070081 REP 27 REP 27 13.997393 REP 29 113.997393 REP 29 11.006457 REP 31 -2.895193 REP 33 -2.895193 REP 33
4 RUN119 5 SHUN119 6 RUN119		10 4 RUN1195 11 4 RUN1195 12 4 RUN1195 4 RUN1195	4 EUN119 4 AUN119 4 RUN119 4 RUN119 5 RUN119 5 RUN119 19	. 4	4 RUN119 2 A HUN119 2 A HUN119 2 A HUN119 3 A HUN119 4 HUN119 3 A HUN119 4 RUN119 4 RUN119 5 A RUN119 5 A RUN119

340.92692	3664019	0.35731 344.55027	40.53304	00 348.53381 59 -3.53381	343,12499	40.17858 40.188734	-1.04000	353,3012	368.20936	2.25300	11 357.50329 57 -4.76763	35 366,37697	90911609	1,27503	0.90253	335,56787	348,47300	57.502.7-	38 5.46818	375,52198	4004°ESE 44	30 -1.21011	77 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	334.07445	75 355.08834 75 355.08834	55.5	3.24701	333,49255	340,58105	25°00°55°00°53°00°53°00°53°00°53°00°53°00°53°00°53°00°53°00°53°00°53°00°53°00°53°00°53°00°53°00°53°00°53°00°53°0	0.15607	3.51603	345.04841	28 -7.12227 373.60316	-3,12855	343,95337	347.81050	11 -1.21770
.1 -29.6358	7,3624	0.5300 13.0698	446E*9= E6	.6.3635	9.8289	12.9601	5,5323	40,40,0	32 -1.5428	35 -4.1032	59 20,2787 45 2,4208	50 C	75 C. 7598	15.75	4294.21	9096.9	250 -1 5.0 260 -8 5.0 260 -8 5.0	2010	1108.3	38	72.00.00 0.00 0.00 0.00 0.00 0.00	10,540	75 *** 347. 53 9668	-15.7198	5089.61.	3.6107	4.0877	11,9541	34 -36.9751	75 - 19.0826	4206°9° 01	2000°11" 0000°	-6.3061	-0.8566 -0.8566	1.5259	29 -10.0817 14 -1.2027	13 -30,7134	78 -6.2870
783.	453 767.	0 303 784.	~ ;	• •	.890504 777.311			•			42 768		52.15. E01.577 594009			•		0					13 781. 5.			770	en .				Ø,	in	908568 782,205			0378 784,	4684 789	604.60
6.121100 1.9927	10.281927 -6.392	REP 36 -5,953709 8,525		, 6293 8	2250 5	1000 at		9697 2.	1 0403 11.	~	3,137196 -6,6541 prp 43	5808 14	¢ 9764 8.	in	נייט טנטא פיט טנטא	8279 5	7 6296 14.4		01 /0//	1034 12.	8409 11		**************************************	9951 3	5081 7.	4003		6926 - 3	9270 7.	7 2032 9.	80 6		6803 4.	0 4870 0.	1	5887 6.11	3122 0.71	
34 14 Pub 195	35	,14 RUN1195,	14 RUN1195.	3 37 14 PUN 195	80	14 RUN1195	14 HUN1195.	5 40	. 14 KUN1195•	14 HUN1195.	5 42 14 4(N) 195	643	. 14 RUN1195.	14 RUN1195	14 KUN1195	2.4	.14 RUN1195. 5 47	14 RUN1195.	.14 RUN1195.	69	14 RUN1195	14 AUN1195.	5 51 .14 RUN1195.	28.5	.14 RON1195. 5 53	RUN1195.	14 RUN1195.	5 55 14 RUN1195	5.00	. 14 KUN1195• 5 57	14 RUN1195.	. 14 RUN1195•	O M III	.14 RUN1195.	14 KUN1195.	5 61 14 print 105.	5 62	. 14 RUN1195

Nocon	322.507426 322.507426 -5.726412 352.204271 -2.663260		34 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		2000 2000 2000 2000 2000 2000 2000 200
58596 89987 69488	O-10 0-01	2.00.01.1 2.00.01.1 2.00.01.1 2.00.01.1 2.00.01.1 2.00.01.1 2.00.01.1 2.00.01.1 2.00.01.1 2.00.01.1 2.00.01.1 2.00.01.1	N N N N N N N N N		11. 10. 10. 10. 10. 10. 10. 10.
773,744198 5,005347 779,640296 2,695315 784,966690	1217 1217 1217 1217 1217 1217 1217 1217		780.006.22 780.006.22 778.939874 774.96.317 774.925896.22 774.9258896.22	~ m a m - a ~ a	768.896972 6.377037 781.393723 3.860677 769.174012 1.259027 7.401817 787.049198
12.673286 6.248887 -3.760034	6.077421	3.870841 11.011184 3.933534 9.893460	4.735275 11.588071 5.165660 -7.461372	.94945 .20430 .77520 53940	-8.04.445 7.676851 -1.434404 2.692153 6.903776
195 64 -11,343878 101,14 RUN1195, REP 65 195 65 9,800278 101,14 RUN1195, REP 66 195 66 8,866735	4 RUN1195, REP 67 67 0.19075 4 RUN1195, REP 68 6 1.87850 4 RUN1195, REP 69	69	4 RUN1195, REP 10.2 A RUN1195, REP 10.7 A RUN195, REP 10.7 A	77 4 RUN1195, REP 78 78 12.253015 4 RUN1195, REP 79 79 5.131799 4 RUN1195, REP 80 80 10.157498	1195 81 8.209081 207.14 RUN1195. REP 82 1195 82 -4.269057 207.14 RUN1195. REP 83 1195 83 13.141490 207.14 RUN1195. REP 84 1195 84 -5.267178 207.14 RUN1195. REP 85 1195 85 -11.865241

Example Output

Next page is blank.

PROGRAM FOR STATISTICAL ANALYSIS OF GUIDANCE ERHOR AND ESTIMATING PROBABILITY OF HITTING A VEHICULAR TARGET

-≦

	79.00 0.0	76.00 -38.00	84.00 0.0	76.00 38.00	57.00 -21.00	57.00 -50.00	57.00 -40.00	57.00 0.0	57.00 40.00	57.00 50.00	57.00 21.00	57.00 0.0	57.00 -10.00	68.00 -10.00	80.00 -10.00	68.00 10.00	80.00 10.00	57.00 -10.00	57.00 -10.00	80,00 -10,00	23.00 64.00	48.00 64.00	48,00 64,00	48.00 64.00	48.00 40.00	00.04 0.0	16.00 40.00	87.00 40.00
	.178.00 79	-132.00 76	*100.00 84	-132.00 76	183,00 57	-132,00 57	-100.001-	*86.00 57	-100.00 57	-132.00 57	-183,00 57	-191,00 57	.198.00 57	198,00 68	1.78.00 .80	-198.00 68	-178.00 80	*178,00° 57	-174.00 57	.174,00 80	.251,00 23	-244.00 48	-24.00 48	-216.00 48	244.00 48	-58.00 0	-28.00 16	124.00 G7
CET:	2				-		•	ā						_		•							9			9	2	ç
S BY FACETS	5 -13.39	28.35	26,35	5 13.39		-38.00	-28,35	0.0	26.35	38.00	33,39	0.0	-10.00	-10.00	-10.00	10.00	00.01 0	-10.00	-10.00	-10.00	00**9	00**9	00.49	00.49 0	00.04	00.00	00.04	00.04
ORO INA TE	77.16	79.09	79.09	77.16	77.10	76.00	79.09	84.00	79.09	76.00	77.16	79.00	68.00	80.00	90.00	#0.00	80.00	80.00	80.00	57.00	43.00	48.00	35.00	57.00	43.00	48.00	35.00	57.00
WITH CORNER COORDINATES	-173.98	-107.35	-107.35	4173,68	-173.98	-132.00	-107.35	-100.00	-107.35	-1.32.00	-173.96	-1.76.00	-198.00	-178.00	-174.00	m178.00	-: ****	-178,00	-1.74.00	-174.00		*24.00	00.0-	-216.00	1285.00	.24.00	00*6-	-216.00
AL FACETS W	-38.00	0.0	38.00	0.0	0.0	-13,39	-38.00	-2 6. 38	9	20.35	38.00	13.39	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	00*49	00.40	64.00	00.40	00.04	00.04	40.00	00.04
DRILATER	76.00	84.00	76.00	79.00	79.00	77.16	76.00	79.09	00***	70.09	74.00	77.16	69. 00	00.00	90.00	57.00	57.00	00.00	00.00	57.00	48+00	0.0	16.00	27,00	23,00	48.00	48+00	48.00
VEHICULAR TARGET REPRESENTED BY 66 CONVEX GUADRILATERAL FACETS	-132.00	-100.00	-132.00	-178.00	-178.00	-173.98	-132.00	-107.35	-100.00	-107.35	-132.00	-173.90	-198.00	-176.00	-174.00	-178.00	-174.00	196.00	-178.00	-174.00	1244.00	00°88°	*28*00	136+00	00+182-	244.00	.24.00	*216.00
RSENTED	0.0	0.0	0.0	0.0	0.0	-21.00	00*05-	00.04-	0.0	00.04	, 90.00	21.00	10.00	10.00	10.00	10.00	10.00	-10.00	-10.00	10.00	00**9	00*49	64.00	00**9	00.04	00.04	00.04	00.04
RGET REP	81.95	81.95	81.95	97.00	87.00	57,00	57.00	67,00	97.00	57.00	57400	67.00	\$7.00	00*89	90.00	57.00	57.00	67.00	57.00	90.00	0.0	0.0	0.0	00.84	0.0	0.0	0.0	68.00
VEHICULAR TAN	-132.00	-132.00	-132.00	-132.00	-191.00	-163.00	-132.00	-100.00	00.99.	-100.00	-132.00	-183.00	-198.00	00.8611	-178.00	-198.00	-176.00	-198.00	-178.00	-174.00	-212.00	-212.00	00.00	90.4	1818	-212.00	99.	-24.00

57.00 40.00 -2 57.00 40.00 -2 57.00 40.00 -2 48.00 40.00 -2
57.00 40.00 57.00 40.00 48.00 40.00 35.00 40.00
35.00 40.00
35.00 40.00
-58.00 16.00 40.00 -9.00
-58.00 0.0 40.00 -28.00
-255.00 43.00 -40.00 -251.00
-24.00 48.00 -40.00 -244.00
-9.00 35.00 -40.00 -24.00
-216.00 57.00 -40.00 -216.00
-255.00 43.00 -64.00 -244.00
-24.00 48.00 -64.09 -58.00
-9.00 35.00 -64.00 -28.00
-216.00 57.00 -64.00 -24.00
-251.00 23.00 -64.00 -212.00
-255,60 '3,40 -64,00 -251,00
-244.00 48.00 -64.00 -255.00
-216.00 48.00 -64.00 -244.00
-216.00 57.00 -64.00 -216.00
-24.00 57.00 -64.00 -216.00
-24°00 48°00 -54°00 -24°00
-9.00 35.00 -64.00 -24.00
-28.00 16.00 -64.00 -9.00
-58.00 0.0 -64.00 -28.00
-212.00 57.00 40.00 -254.40

	26.00 -40.00	17.0040.00	40.0040.00	27.00 -40.00	57.00 -40.00	53.00 -40.00	-40.00	0151 TO
•	26.00	17.00	40.00	57.00	57.00	53.00	16,00	3RD (
	-28.00	-236,00	-254.40	-212,00	-24.00	-19.00	-28,00 16,00 -40,00	ABOVE GROUND
	53.00 -40.00	-40.00	-40.00	-40.00	00.04-	-40.00	00.04-	1. 2ND HEIGHT
•	53.00	40.00	57,00	27.00	53,00	16.00	0.0	TIMES .
00.00	-19.00	-524.40	-212.00	-24.00	-19.00	-28.00	-58,00	TRAILING EDGE
-40.00	57.00 -40.00	00.04	00.04	00*07	00.04	00.04	00.04	ORWARD FROM
40*00		40.00	57.00	57.00	53.00	16,00	0.0	S DIST F
-254.40 40.00 -40.00	-24.00	-254.40	-212,00	-24.00	-19.00	-28+00	-58.00	ABOVE COORDINATES IN INCHES. 1ST COORDINATE IS DIST FORWARD FROM TRAILING EDGE TIMES -1. 2ND HEIGHT ABOVE GROUND. 3RD DIST TO DRIVERS LEFT FROM CENTERLINE
-40.00	-40.00	00 * 07	40.00	40*00	40.00	00.04	00.04	INCHES. 1S
17.00 -40.00	17.00	17.00	40.00	57.00	57.00	53.00	16.00	ATES IN FROM CEN
-236,00	-46.00	-236,00	-254,40	-212.00	-24.00	-19.00	-28.00	ABOVE COORDIN DRIVERS LEFT

3 SETS OF SAMPLE SIZE 85 VARYING PARAMETER KM DESIGNATION RANGE SQUARE TARGET WIDTH 7.500 FT ANALYSIS CONTROL PARAMETER IALPHA = 3 POLYNOMIAL-FIT CONTROL PARAMETER NGO = 0

RESULTS FOR 1.000 KM DESIGNATION RANGE
TARGET HEADING -115.00 DEGREES IN ZOT COORDINATE SYSTEM
DESIGNATION POINT IN FACET COORDINATES -209.40 57.60 18.00

OUTCOMES OF INDIVIDUAL REPLICATIONS:

BETA.P	4	
PS) BETA.Y	B-JUBCO-J-FUNTS-BBC-ON-JUNC BH-MBC-BFO BOOOD ON FROM BOOD	3.0
IRSPEED (F	8664. 44428 8665. 00055 8665.	65,930 64,157 66,934 63,372
THETA.V A	11111111111111111111111111111111111111	1- 3 11 0.
PHI.	99999999999999999999999999999999999999	1.00
ALPHA.P	$\begin{array}{c} \begin{smallmatrix} 4 & 4 & 6 & 6 & 6 & 6 \\ 4 & 4 & 6 & 6 & 6 & 6 \\ 6 & 6 & 6 & 6 & 6 \\ 6 & 6 &$	4 (J) (D) (D)
ALPHA.Y		80 B B
OBLIQUITY (DEG)	00000000000000000000000000000000000000	
FACET NO.	୰୰୰୰୰୰୰୰୰୰୰୰୰୰୰୰୰୰୰୰୰୰୰୰୰୰୰୰୰୰୰୰୰୰୰୰୰	8 3 6 6 8 3 6 6
PITCH		-0.2790 -2.1542 -0.8616
YAW	01000000000000000000000000000000000000	0.9710 0.9710 0.9739
REP		4440 6440

88655
\$
990 900 900 900 900 900 900 900
4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
######################################
59 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
ᲐᲥᲐᲥᲐᲥᲐᲥᲐᲥᲐᲥᲥᲥᲥᲥᲥᲥᲥᲥᲥᲥᲥᲝᲝᲥᲥᲥᲥᲥᲥᲥ ᲘᲝᲘᲝᲝᲡᲡᲡᲘᲡᲝᲡᲡᲡᲡᲡᲝᲝᲝᲝᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡ
10000111100000000000000000000000000000
00000000000000000000000000000000000000

RESULTS FOR 1.000 KM DESIGNATION RANGE

TARGET HEADING -115.00 DEGREES IN ZOT COORDINATE SYSTEM
DESIGNATION POINT IN FACET COORDINATES -209.40 57.60 18.00

	·							20.00
								16.00
8 8 1 8 8	1 1 1 1	* * * * *		8 8 8 8			• • • •	
			~	•		· -		12.00
			-=					9.00
8 8 8 8	; ; ; ;	•	:			*	1 1 1	00
		• • •	•	•			· ·	
	<u> </u>			• <u>i</u>		· -		
; ; ;	; ; ; ;		•	1 1 1 5		•	1 8 5 8 8	00
		•	n .					
	· 						<u>i</u>	
# 			•		•	•	5 9 8 8	
	<u></u>							-12.00
					 	<u>!</u>		16.00
7 8 8 8	1 1 1 1	* * * * * * * * * * * * * * * * * * *	: : : :	1	: : : :		1 1 2 4	į
16.00	12.00	0000	-	0000	00.4-	00	-12.00	-16.00

			ALPHA.P Es)	44		0.6211 1.6211 1.66421 1.65629 1.6629 1.67629	-2.00481 -1.3998 -0.6481 -0.0893 -0.4187 1.8956	1111 1000 1000 1000 1000 1000 1000 100	44.2865
			ALPHA.Y (DEGRE	7,4462	7867*0-	0.4158 0.8046 1.9860 1.9861 1.8533 1.8533 2.9564	-1.3856 -1.1419 -0.1653 -0.1035 0.9604 1.7750	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	43.8318
			EE0 PS)	864.5874 2.3951	۵. « «	00 11.00 10.	######################################	1111 0001 00000 00000 00000 00000 00000 00000	38,2910
		00	ùr.	•	GIVEN ACQUISITION 0.5668 ALPHA.P-E	0.1232 1.01310 1.2831 1.8316 2.18316 2.18316	1112 1001112 100112 100112 10012 10012 10012 10012	1110.46601 100.47887 100.14987 000246 000246	36,5809
		NT: 1.00000	THE1 (DEGREES)	349 141 IS IN 201	0.98075 10151710N•	00.00 00	11.2 11.3 11.3 11.3 11.3 11.3 11.3 11.3	11111 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	26.9051
		ION FOOTPRINT	PH1.	90.6 0.8 FROM -2-AX	7. DERIVED 00 GIVEN ACQUIS 0.1832 ALPHA.Y	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	6825°72
FRACTION	0.0 0.0 1.00000	46 IN ACQUISITION	PITCH ERR	-0.3468 0.7882 V MEASURED CCW	0X 0.9764 1.44918 FT ROX 1.000 -ALPHA.P -	6.000000000000000000000000000000000000	1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.08021 1.00.0434 1.00.0434 1.00.0241 0.0241 0.0241 0.0241	19,3601
NOMBER	00 M	TARGET BEIN	لماليا	ž	0.2570 1TIES: APPR STD DEV BILITY: APP NNS: ALPHA.Y	00000000000000000000000000000000000000	40440000000000000000000000000000000000	1) 	17,4957
I OZ	IRE ISSED II	PROBABILITY OF	HISS DIST	1.5503	HIT PROBABIL HIT PROBABIL CULAR-NORMAL ELT HIT PROBA K CORRELATIO	STANCES (FT 0.1871 0.5466 0.9166 1.1572 1.1572 1.9825 1.9105 2.3979 3.3999	ARORS -1-1-9747 -1-375	ERRORS 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	UITIES (0EG): 16.9333
OUTCOMES:	FALLED TO ACQUINED BUT MACQUINED AND H	APPROXIMATE PR	- <u>-</u>	MEANS STD DEVS	YAW-PITCH CORRELATION 0.257 SQUARE TARGET HIT PROBABILITIES EQUIVALENT CIRCULAR-NORMAL STD VEHICULAR TARGET HIT PROBABILIT ANGLE-OF-ATTACK CORRELATIONS: OBLIQUITY MEAN SS-4322, STD.	SORTED 0.000 11 11 11 11 11 11 11 11 11 11 11 11	SORTED YAW ENTED 11.09808 11.09808 10.09847 10.09847 10.09847 10.09748 10.09710 10.0	SORTED PITCH -1.4227 -10.5074 -0.3264 -0.1004 0.3484 0.3484	SORTED 08L10U1 9.4414

1.000 KM DESIGNATION RANGE

RESULTS FOR

50,3900	55.5495	53,8255	55.3511	60.04	69,5394	73.7247								
50.3309	52,2447	53.5705	54.4462	59.0819	699,69	73.7028)							
49.5250	52,2376	53,5103	54.3845	57.9997	69.2614	73.4982	1							
49.4781	2000	53.4687	54.2389	56,7742	68.2976	73,3147	F I							
1174.04	- D7	33.133	24.0443	56,4281	67,9563	73.1451	75.2185							
48.3087		0.00.00	24.0378	55,7250	67,6592	71.7515	74,3745							
20.01 0.01 0.01 0.01 0.01	10000			22,2825	67,2137	11.6770	74.3251		PACTS					
10001	000			220000	00.40IV	010111	/4.1864	TS BY FACETE	NO. OF IM	O.	22	SO.	3 0	
20.77	20,476	, par	יים טיים טיים טיים	0000		10000	14.16.50	NUMBER OF IMPACTS BY FACETS	FACET NO.	.	n :	3 (7	200

RESULTS FOR 2.000 KM DESIGNATION RANGE
TARGET HEADING -115.00 DEGREES IN ZOT COORDINATE SYSTEM
DESIGNATION POINT IN FACET COORDINATES -209.40 57.60 18.00

-
S
z
Ō
<u>ټ</u>
-
ICATIONS
⋍
Ξ.
REPL
<u>a.</u>
w
α
J
⋖
\supset
INDIVIDUAL
≕
=
$\overline{}$
=
Z
_
┺.
9
ຜ
ij.
I
ō
ŭ
OUTCOMES
_
≍
J

BETA, P	1 201	0.4 0.0
S) BETA.Y	######################################	107
AIRSPEED (FP		70.00 0.00
THE TA.V	$\begin{array}{c} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $	70
PH1.V		200
ALPHA.P	$\begin{array}{c} 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ $	96
ALPHA.Y		
OBLIGUITY (DEG)	$\begin{array}{c} Lunch which the contraction of the contrac$	25
FACET NO.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7 0
PITCH		54. 54.
YAY	$\begin{array}{c} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\$.617
7. G	のようなかにどうくらのようなかにごうりらのようなできららららならならってごうらららないにごというないではくしょうないとことにというというないないできます。サイヤヤヤヤにしいられることではごとごとごとことでもますます。	4 A)

Batterie de Saidheill

The latest term of the sentential position of th

THE PROPERTY OF THE PROPERTY O

RESULTS FOR 2.000 KM DESIGNATION RANGE
TARGET HEADING -115.00 DEGREES IN ZOT COORDINATE SYSTEM
DESIGNATION POINT IN FACET COORDINATES -209.40 57.60 18.00

	0-0-	-0	-0					10.00
0 0 0				0				Ā
	000							8.00
	•		0			; 6 6		
	<u> </u>	<u>.</u>	<u>;</u>	•		<u> </u>		00.09
) 	; { 1 1	٥				 		••
	0	0		*	•			4
						0		4
8	8	0			•			2.00
		0	00*	000	* 0	0		Ñ
0	0	. ••	0			0		o
		0	0 •					- 0
	0	0	0 0	• •	8			00
		0	N	* * *				-2.00
† † •	1 1 1	\$ 1 6 0	* * *	• •	•			00
	 		8	*	. 0			
				•	o			0
	'		0 0	*				-6.00
	! ! !	! ! !		0	*			
	<u></u> .	! !	<u></u>			<u> </u>		-8-00
i 	† 1 1		• • • •					-
<u>i</u>	<u>i</u>	<u>.</u>	<u>i</u>			<u>.</u>	<u> </u>	-10.00
8 • 00	00.9	• • • • • • • • • • • • • • • • • • •	9			9		

										• *
			•						9	.90 72.0
-			 !		 ! !				100.00	.85 70.6
			1 1 1			 			93.03	.80 66.5
		1 1 1 1							26	.75 65.1 (
		! ! !	<u> </u>		 	j ! !			86.30	.70 58.2 6
	• •	1 1 1 1	• • •			1 1 1			បំភ	
									70.00	10UITIES 3 *65 5 56.2
1		• • •	•),	SAMPLE DISTRIBUTION OF IMPACT OBLIQUITIES .35 .40 .45 .50 .55 .60 .65 51.4 52.9 53.5 54.0 54.4 55.5 56.2
		 	• •		i 	i i 			60.09	1MPACT .55 54.4
		• • • •		• • • •	• • •				9.	30 OF • 50 54.0
		<u> </u> 	<u> </u> 						20.00	*18VT10 *45 53.5
							• •			. DISTRI •40 52.9 9
		<u>i</u> !							00°04	4PLE (
							•	•		
	i !	<u> </u>	 	 		i - - 			30.00	CUMULAYIVE .25 .30 .7.9 50.6
	\$ \$ 1 1	1 1 1 1				i 1 1 1 1		•		CUMC 47.9
		<u> </u> 	<u> </u> 			<u>!</u> !			20.00	.20 41.0
	T 1 1 1	= 0 1 1				V 0 1 1 1				.15 37.2
		<u>i</u> !	<u> </u>		-	 			10.00	.10 33.3 3
		• • • •	• • • • • • • • • • • • • • • • • • •					٠	•	
			<u>.</u>			· :	i i i	i	-0.	05 . 24.3
č	000	20 1 20 1	9.43	7 0 0 u						ERCENTILES: RANK DEVIATE (D

RESULTS FOR	2.000 KM	DESIGNATION	RANGE						
OUTCOMES:	DN.	NUMBER	FRACTION						
FAILED TO ACOU) ACQUIRED BUT M) ACQUIRED AND H)	UIRE MISSED HIT	ଦ N କ ମ	0.0 0.02353 0.97647						
APPROXIMATE PI	PROBABILITY OF	F TARGET BEIN	G IN ACQUISITION	ION FOOTPRINT	1.00000	001			
	MISS DIST	YAW ERROR (FEET)	PITCH ERROR	>. IHd	THETA (DEGREES)	SPE:	S. S. S.	- 4	ALPHA.P
MEANS STD DEVS	2.8649	-0.5615 2.8514 *NOTE: PHI."	-0.6539 1.3990 MEASURED CCV	6 2	674024 	. 0502 . 6513 YSTEM.	861.1609 3.3015	-0.8821 8.4971	3.2146
YAW-PITCH CORI SQUARE TARGET	RELATION HIT PROBABI	, pp.	0x 0.81176*	• DERIVED	0.79155	GIVEN ACQUISITION	ITION.		
CECTABLE CINCELAR-NORMAL SID DEV VEHICULAR TARGET HIT PROBABILITY: ANGLE-OF-ATTACK CORRELATIONS: ALP: OBLIQUITY MEAN 53.1202, STD. DEV	SET HIT PROB CK CORRELATION 53.1202.	A P.	2.34795 F1 ROX 0.9764 -ALPHA.P -0 14.7452 DEG	7 GIVEN ACQUIS 1288 ALPHA.Y-	JISITION.	0.6983 ALPHA.P	A.P.ERR.P	-0.5442	
	DISTANCES (FT)	Ġ	0.5978	•	9	63.7			
	1.5589	1.5926	1.2738		. 7	1,3436			
	2.1734	2.2336	2.2767		• •	441			
	3.0819	2.6761 3.0841	2.6843 3.2656		, c	836		•	•
3.6196 4.4038	3.6515			3.8776	3.9842	4.0880	4.3379 5.1411	4.3394 5.4817	4,3399 5,7195
•	6.2901	6.4853	6.5279	•					•
YAM	ERRORS (FT)	•	1	1					
-3.6313	-3.5664	-3-4080	-5-6179	-5.0837 -3.3653		580	205		547
-2,5301	-2.4448	-2.4388	2.4044	-2.360S		317	291		111
-0.9201	-0.7580	9769-0-	-1.4676	-1,3387		297 FR1	163		948
0.1641	0.2541	0.4597	0.7270	0.7483		873	905		354
2.2159	2.4297	2.5473	2.6822	2.8337	1.3622 2.9910	1,7091 2,9921	1,8238 2,9958	2,1503 3,6915	2.2049 4.0846
	600	Ŧ	94.4380	70					
3373	ERKUKS (FT) -3.7484			•	9	•	3300	î	ć
-2.5110	-2,3138	-2.2687			-1.5621	-1.5502	-1.5420		-1,5173
-1.0653	-1.0451	-1.0284			87.	~ ~	-1.1750	149	142
-0.7328	-0.5673	-0.5179			39	, ~,	-0.3184	281	247
10.2367	18110	-0.1775			6	9.	0.1163	553	243
0.5705	0.6185	0.00	0.8627	0.8651	0.9547	10	1.0155	1.0258	0.5646 1.0437
•		8100*1		•					
SORTED OBLIGUII 5.1884	TIES (DEG): 11.9464	19,8566	24.2104	24.4740	27.4776	32,0016	33,1847	33,4075	35,1117
								•	

47.7419 51.4246 53.7390 55.2809 58.3201 74.1846	
45.6486 51.4154 53.5666 54.8930 58.2569 69.053 73.9388	
44.5363 51.2760 53.5566 54.7939 58.1987 66.7873	
41,1076 50,9551 53,3346 54,7313 57,8533 66,4232	
40.5629 50.8034 53.3332 54.3117 56.9757 72.0759	
40.2416 52.9889 54.1545 54.1545 56.19486 72.00?22	
39,3658 50,0458 52,9846 54,1285 56,0928 66,0554 71,8353	
37.6420 49.1859 52.8419 54.0603 55.9303 65.0666 71.0717	######################################
36.5580 48.3079 52.4549 54.0256 55.7758 61.8198 77.1942	IMPACTS BY FACET: No. OF IM SACET: No. O
35.2784 47.8932 52.0077 53.9368 55.7559 70.4203	NUMBER OF IMP FACET NO. 62 63 134 11 11 12 12 61 61 61 61 61 61 61 61 61 61 61 61 61

RESULTS FOR 4.000 KM DE. TION RANGE
TARGET HEADING -115.00 DEGREES IN ZOT COORDINATE SYSTEM
DESIGNATION POINT IN FACET COORDINATES -209.40 57.60 18.00

OUTCOMES OF INDIVIDUAL REPLICATIONS:

BETA.P	200	-;	•		ហំ	N (j	•	• 1	4	•	•		•		3	•	•	-,	•	•			-1.3805	٠í	•		•	•	ď,	ó,	•	; ;			•		•	•
S) BETA.Y	-13.0667 -9.9676 -12.8053	3.1	7	5	~	8	1 4	a.	•	4	5.9	:	3	ο . Ο .	, -		S.	B.	2	9	יי מי	, ,	, 40	2	8		7	. ~		4.	φ, σ,		٦r	9	1.6	4	۲.	2	•	•
AIRSPEED (FPS)	852.0544 850.0278 847.0437	52.0	30.00	2	20	ខ្លួ	0,0	່ນ	ຕີເ	ה מית	S	Š	ថ្ង	in a	5	20	99	ກູ້	ថ្ង	6	y a	ם מ	30	25	88	3	9 4	Ç	6	61.	ថ្លាំ	ģ	ָ טַ עַ	2.5	54	54	Š	26	ខ្លួ	, ,
THETA.V	-23.5029 -25.4416 -22.8209	564	351	552	576	848	470	015	358	200	943	.224	718	107	300	712	896	404	584	673	200	000	883	601	524	3	77.60	214	817	379	450	500	233	537	599	109	990	454	185	345
PHI.V	90.6252 90.8482 89.1869	984 585	363	25.2	308	270	960	Ş	374	53.7 22.7	20	950	62	974	7 d	891	293	321	826	333	253) () ()	783	673	776	0	1 4 1 4 1 6	202	282	946	g S	* 1	מי מי	in c	144	192	505	9	900	5
ALPHA.P	9.4332 -11.2320 6.0171	4.3	u 1	ຸນຸ	4.7	4	ວ່ ໜ້	4.2	Φ.	3,		ຶ້	3.	•	9 4		5.4	4	٦,	`•	`•`	, a	ייי פ	æ	٦,	. r	ູນ		æ	Φ,	ς. Ο (٦٠	9	ູ	ຕຸ	4	Ŋ	•	v
ALPHA.Y	-12.9850 -10.0884 -11.3974	~ 6	4.	7 W	LID.	m.	ນ ທ່ ຊຸດ	40	4.6	J C	9	8.6		Ω,	ם מי		~	2.6	2.0	9	W (, ,	3 W	2	œ.		ם טיי	ത	3.8	2.6	ص ص	•	~ u	4	2.0	0	LD.	E (m.	-
OBLIGUITY (DEG)	76,5480 24,4612 52,5661	2,161				•	. 58,8355	60 8004	i	56.5466	787	612	178	513	617	260	162	109		47.0766		76. 56.38	i	ď	15.4494	Ď	75.0137			40,1813	9.791	ì	coc/ •c/	59,1083	•	72,3250	.471		,	9026*/5
FACET NO.	55 14 65	22 155F	#155ED	SSE	ISSE	ISSE	MISSFD	61	HISSED	0 0	25	m	19	4	707	25	000	Ð	HISSED	29	MISSED	225	MISSED	32	25	63	#155EU	155	MISSED	29	9	HISSED	1017	20	MISSED	63	63	MISSED	ISSE	7
PITCH	1,1065 2,2487	m 3				•	n d	, .	'n.	•	-		•						m,		ŏ,		4.0535		1.8467	•	0.7740	, ,	•	ö	٠,	ň	-2.2530 -4.7476	4		•	•	-	•	•
YAW	-4.3499 -0.5615 -5.1966	~ ~	· ·		7	æ,	2.7	5	2.6	3,0	יייי ק •		2.	•	3 C	3.3	7	ď	7	4	'n.	ີ.	7	7	<u>ئ</u> ا	N C	'n'n	֚֓֞֜֜֟֜֜֝֟֜֜֟֓֓֓֓֓֓֜֟֜֜֓֓֓֓֓֓֓֜֟֜֜֓֓֓֓֡֜֜֜֓֓֡֡	٦,	2,3	ហុខ	v.	~ *		7	2.4	ò	٠,	ທູ ທ່າ	စ္
REP	~ ໙ ෆ	4 ռ	. • • •	- 00	•	ន:	- 2	£	14	5 4	2.7	8	61	0 7	100	ຊ	57	25	9	27	80 6) V	3 6	35	8	4 10	ر د ج	37	38	39	9:	7	₩	4	. 1	94	47	84	0 1	ů O

$\begin{array}{c} \circ_4 L \cdot \delta_0'' a_0 L^{'}_{c} L^{'}_{c} a_0 L^{'}_{c} L^{'}_{c} a_0 L^{'}_{c} L^{'}_{c} L^{'}_{c} a_0 L^{'}_{c} L^{'}_{c} L^{'}_{c} L^{'}_{c} L^{'}_{c} a_0 L^{'}_{c}
1
88555 8856 8856 8855
22. 23. 23. 23. 23. 23. 23. 23. 23. 23.
99999999999999999999999999999999999999
10000000000000000000000000000000000000
081440111
4000 400 400 400 400 400 400 400 400 40
\$50
1114 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

RESULTS FOR 4.000 KM DESIGNATION RANGE

TARGET HEADING -115.00 DEGREES IN ZOT COORDINATE SYSTEM
DESIGNATION POINT IN FACET COORDINATES -209.40 57.60 18.00

ALPHA.P (DEGREES) -1.3738 8.7459 0.4656 1.5259 3.0655 4.6107 2.3178 4.86071 5.6293 7.6293 8.7465 8.5593 8.5594 -6.9024 -5.5324 -3.2375 -1.9617 40.1813 ALPHA.Y -0.5839 84.0893 4.13986 4.13986 4.1398 4.1368 4.1368 4.508 38.1624 0.6645 ALPHA.P-ERR.P 854.6904 4.2171 0.42063 GIVEN ACQUISITION. SPEEU (FPS) 1.9477 3.7592 4.6811 5.3470 6.0747 7.1736 38.0708 .1220 -2.0533 90.7143 -24.2645 4402 2.7229 1.0713 0.9284 PHI.V MEASURED CCW FROM +2-AXIS IN ZOT SYSTEM. THETA.V (OEGREES) 1.00000 0.55459 34.1570 YAW-PITCH CORRELATION -0.0005
SQUARE TARGET HIT PROBABILITIES! APPROX 0.38824, DERIVED 0.4206
EQUIVALENT CIRCULAR-NORMAL STD DEV 4.02486 FT
VEHICULAR TARGET HIT PROBABILITY! APPROX 0.67059 GIVEN ACQUISITION.
ANGLE-OF-ATTACK CORRELATIONS! ALPHA.Y-ALPHA.P -0.1688 ALPHA.Y-ERR.Y
OBLIQUITY MEAN 55.9285, STD. DEV. 15.5255 DEG APPROXIMATE PROBABILITY OF TARGET BEING IN ACQUISITION FOOTPRINT: PH1. 30,9136 PITCH ERROR 25.0005 0.0 0.32941 0.67059 FRACTION 4.000 KM DESIGNATION RANGE -1.1220 YAW ERROR (FEET) 111111 12000 12000 12000 12000 12000 12000 12000 12000 12000 24.4612 *NOTE: NUMBER 28 (FT) (FT) SORTED OBLIQUITIES (DEG) 1 15.4494 16.4433 SORTED MISS DISTANCES (F 0.6393 1.0531 2.3836 2.4760 3.9862 4.1778 4.9496 5.0053 5.9294 5.9626 6.3770 6.4039 7.7565 10.0129 5,1703 ERRORS 17.5.50643 13.080613 13.080613 13.080613 10.17170 10.17170 10.6822 2.6622 5.00 1.00 MISS DIST FAILED TO ACUUIRE ACQUIRED BUT MISSED ACQUIRED AND HIT SORTED YAW ERRORS 5087E0 1.50.00000 1.000000 1.000000 1.000000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 MEANS STO DEVS RESULTS FOR OUTCOMES:

2.3296 4.9950 5.9950 7.9950 6.9975 6.995 6.995 6.995 6.995 6.995

0.4056 0.4056 0.4056 0.4056 0.4058 0.4058 0.4005 0.4005 0.4005 0.4005

40.1863

4,3244

```
52.6210
56.1514
63.4282
74.0639
52.5661
55.6797
62.4616
72.3250
  52.1613
55.2670
62.4030
72.2906
  54.1783
54.1783
60.8004
71.4925
80.4713
  50,4003
54,1096
60,7877
70,6923
78,9535
  50.0405
53.4163
59.1083
69.9241
  49.9788
53.2650
58.8355
69.7916
76.5480
  47.0766
53.2607
57.9208
69.3258
75.7565
                                BY FACET!
NO. OF IMPACTS
  46.3004
53.0865
57.6423
69.1637
75.0137
                                43.6120
52.8569
56.5466
68.6942
74.5724
```

Next page is blank.

Listing of IMPAC Program

Next page is blank.

```
| FORMAT (130.4) | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.
                                                                                                                                                                                       0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     00000000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   10F [MPACTS:]

24 FORMAT (T8: 13: T26: 13:

25 FORMAT (T8: 13: T26: 13:

29 FORMAT(*): T29: 2044// 1x: 11: * SETS OF SAMPLE SIZE *: 13: * VAROCOSSIOO 1YING PARAMETER *: 1044/ * SQUARE TARGET WIDTH *: FIG.3: * FT!/ 00005400 2 * ANALYSIS CONTROL PARAMETER IALPHA = *: 11/ * POLYNOMIAL=FIT CONGOSSSOO
11 DATED 76293 ** LIBRARY MANAGEMENT SYSTEM ** 76293--12:12
11 DATED 76293 ** LIBRARY MANAGEMENT SYSTEM ** 76293--12:12
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     00004800
                                                                                                                                                                   ## IN -- MAIN 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       21 FORMAT (*050RTED OBLIQUITIES (DEG)!!)
22 FORMAT (* OBLIGUITY MEAN', Flo.4, ', STD. DEV.', Flo.4, ' DEG')
23 FORMAT (*ONUMBER OF IMPACTS BY FACET!!/TS. 'FACET NO.1, 720, 'NO.
-KSSIMPAC- VERSION
```

```
00011100
00011200
00011300
                                                        100TPRINT: * F10.5 )
28 FORMAT (*0POSITIONS OF GUIDED IMPACTS IN MEAN IMPACT PLANE: *) 00006000
29 FORMAT (*0OUTCOMES: *, T25, *NUMRER*, T40, *FRACTION*/ *0FAILED TO 00006100
1ACQUIRE *, T26, I3, T41, F7.5/* ACQUIRED BUT MISSED *, T26, I3, T41,00006200
2 F7.5/* ACQUIRED AND HIT* T26, I3, T41, F7.5/ )
                                                                                                                                                                  | FORMAT (
| YAM ERROR*, 142*, *PITCH ERROR*, 157*, *PHI,V*, 170*, *THETA,V*, 00006500
| 2 785, *SPEED*, T100*, *ALPHA,Y*, T113*, *ALPHA,P*, /T30*, *(FEET)*, 00006600
| 3 764*, *(DEGREES)*, 785*, *(FPS)*, T107*, *(DEGREES)*, 7 116*, 36(*-*)*,00006700
| 4 54*, 23(*-*)*, 53*, 10(*-*)*, 53(*-*) )
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            00008100
00008200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           00008700
00008800
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             00010800
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      00010700
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  00011000
                  00005700
                                     TARGET BEING IN ACQUISITION F00005800
                                                                                                                                                                                                                                                                                  00690000
                                                                                                                                                                                                                                                                                                      00000000
                                                                                                                                                                                                                                                                                                                             00007100
                                                                                                                                                                                                                                                                                                                                                  00007150
                                                                                                                                                                                                                                                                                                                                                                        00007200
                                                                                                                                                                                                                                                                                                                                                                                             00007300
                                                                                                                                                                                                                                                                                                                                                                                                                  00007400
                                                                                                                                                                                                                                                                                                                                                                                                                                       00051450
                                                                                                                                                                                                                                                                                                                                                                                                                                                              00001500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  00007600
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         00077000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              00007800
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   00007900
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     0008000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      00008300
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            00008400
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 00008500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      00009600
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        00690000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               00060000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    00000100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        00009200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             00063000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  00060000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       00060000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            00960000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  00060000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       00009800
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            00660000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0001000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         00010100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              00010200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   0001000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        00010400
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            00010500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   0001000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       NTROL VARIABLE IALPHA SELECTS THE TYPE OF PROCESSING:

** DO NOT READ ALPHAS. USED FOR OLD-STILE ZOI CARDS HAVING
LABEL DATA IN ALPHAS! FIELDS.

** READ ALPHAS AND COMPUTE SUMMARY STATISTICS.

** ALSO DISPLAY ALPHA-SCATTER PLOT

** ALSO PERFORM IMPACT OBLIQUITY ANALYSIS.

** ALSO SCORE BY TRANSFORMING TARGET INTO INDIVIDUAL IMPACT
PLANES INSTEAD OF AVERAGE IMPACT PLANE.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                12 R
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         CORNR3 CONTAINS THE FACET COORDINATES OF TARGET FACET CORNERS, AN IS NEVER OPERATED UPON, CORNR6 IS THE WORKING AREA FOR FACET CORNERS, (CORNR6(1,J,K),K=1,3) CONTAINS CORN'S COORDINATES WITH RESPECT TO THE ORIGINAL FACET AXES, TRANSLATED TO ORIGIN AT THE "DESIGNATION POINT" AND RESCALED FROM INCHES TO FEET. (CORNR6(1,J,K),K=4,6) WILL CONTAIN THE YAW, PITCH, AND DEPTH COORDINATES OF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             READ (5:9) TGTHDG. DESGPT
IF (IALPHA.GE.3) WRITE (6:10) PARAM (ISET) , NAMPAR, TGTHDG. DESGPT
TRANSLATE & SCALE CORNERS OF VEHICULAR TARGET! STORE IN WORKING
DO 120 1=1, NFACET
DO 110 J=1:4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         WRITE(6,25) TITLE, NSETS, NSAMPL, NAMPAR, WTGT, IALPHA, NGO
READ (5,3) (PARAM(I), I=1,NSETS)
                                                                                                                                                                                                                                                                                                                                                       READ (5:4) (((CORNR3(I+J+K)) KE1+3) + J=1+4) + I=1+ NEACET)
WRITE (6:6) NFACET
WRITE (6:7) (((CORNR3(I+J+K) + K=1+3) + J=1+4) + I=1 + NFACET)
WRITE (6:8)
                 26 FORMAT (1X+ 13+ + DELETED -- FAILED TO ACQUIRE++)
27 FORMAT (+ APPROXIMATE PROBABILITY OF TARGET BEING II
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 READ(5,2) NSETS, NSAMPL, IALPHA, NGO, WIGT, NAMPAR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 CORNR6(1,J*K) = (CORNR3(1,J*K)-DESGPT(K))/12.
CONTINUE
CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              60 TO
                                                                                                                                                                                                                                                                                                                                                    STOP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       98 I=1+20
(TITLE(I).NE.BLANKS)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   -DESGPT (2) /12.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          DO 276 ISET = 1, NSETS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           CONTROL VARIABLE
PARAMETER NGO
                                                                                                                                                                                                                                                                                                                           READ(5+2) NFACET
IF (NFACET-LE-0)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   HFTGT # 0.5*WTGT
                                                                                                                                                                                                                                                                                                          = 180./P
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  READ(5.1) TITLE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              100 K#1+3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 GROUND #
                                                                                                                                                                        30 FORMAT (
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                              CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            뿚
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   98
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     00
                                                                                                                                                                                                                                                                                                                                                                                                                                                               4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        110
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        000000
                                                                                                                                                                                                                                                                                   v
```

S+ BY	00012300 00012400 00012500 00012500 00012800 00013900 00013200 00013200 00013200	DEGREES	_
CTILE VELOCITY VECTOR 16E, AS APPROPRIATE) I 10N.	S ANGLES OF ATTACK	ANGLES OF. A (1)	COORDINATES IN F/S. 1.2) 1.3) (ABS(HIT(I.3)).GT.HFTGT)
G CORNERS. THE PROJECTILE AL SHOT, OR THE AVERAGE. AS HE MINUS-DEPTH DIRECTION.	PL ATISTICS ON IMPACT (1.9.), J=1.3) GO TO 135 ZOT CARDS WITHOUT	CARDS CONTAIN 1) 1 18 18 2 3 4 4 6 6 TO 139 17 (1 1 1 1 1 4 4 2 1 4 4 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6	** VZ* -VY IN 201 ** PHV(I) **2 * THV(I) **2 * AIRSPD(I) * AIRSPD(I) **2 * ALPHA(I,J-6) **2 * ALPHA(I,J-6) **2 * ALPHA(I,J-1) **IT(I,3) * ALPHA(I,1) **IT(I,3) * ALPHA(I,1) **IT(I,3) * ALPHA(I,1) **IT(I,3) * ALPHA(I,1) **IT(I,3) * ALPHA(I,2) **IT(I,3) * ALPHA(I,3) **IT(I,3) *
THE CORRESPONDING C FOR THE INDIVIDUAL DEFINITION, IN THE INITIALIZE SUMS DO 130 1=1.8 SUM(1) = 0. HITS = 0.	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	131 ALPHA(1.) = 0. 135 CONTINUE ANALYZE NEW-TYPE ZOT C 137 CONTINUE 137 CONTINUE 138 CONTINUE 139 CONTINUE 139 CONTINUE 140 SSQ(J) = SSQ(J) + HIT 140 SSQ(J) = SSQ(J) + HIT 140 SSQ(J) = ATANZ(VEL(1) 15 (PHV(1) = ATANZ(VEL(1) 16 (PHV(1) = ATANZ(VEL(1) 17 (PHV(1) = ATANZ(VEL(1) 18 (PHV(1) = ATANZ(VEL(1) 19 (PHV(1) = SQRT(VEL(1) 10 (PHV(1) = SQRT(VEL(1) 11 (PHV(1) = SQRT(VEL(1) 12 (PHV(1) = SQRT(VEL(1) 13 ALRSPD(1) = SQRT(VH**	VELOCITIES ARE SUM(4) = SUM(4) SUM(5) = SSQ(4) SUM(5) = SSQ(6) SUM(6) = SUM(6) SUM(6) = SUM(6) SUM(6) = SUM(6) SUM(1) = SUM(6) SUM(1) = SUM(7) SUM(1) = SUMA7 SUMAP = SUMAP SUMAP = SUMAP
00000	i i	•	

```
00018100
00018200
00018300
                                                                                                                                                                                            00018600
00018700
00018800
                                                                                                                                                                                                                                                                                         00019200
00019300
00019400
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   00021300
00021400
00021500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 00021600
00021700
                                                                                                                                                              00018400
                                                                                                                                                                                                                                           00018900
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    SNORM((-HFTGT-AVG(2))/SD(2))00020600
SNORM((-HFTGT-AVG(3))/SD(3))00020706
               00017500
                                 00017600
                                                               00017800
                                                                             00017900
                                                                                                                                                                                                                                                                           00161000
                                                                                                                                                                                                                                                                                                                                          00019500
                                                                                                                                                                                                                                                                                                                                                       00019600
                                                                                                                                                                                                                                                                                                                                                                         00019700
                                                                                                                                                                                                                                                                                                                                                                                         00019800
                                                                                                                                                                                                                                                                                                                                                                                                        00019900
                                                                                                                                                                                                                                                                                                                                                                                                                         0002000
                                                                                                                                                                                                                                                                                                                                                                                                                                        00020100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      00020300
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       0002000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     0002000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    00021200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  00021800
 00017400
                                                00017700
                                                                                              00018000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     00021000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 00021900
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  00022000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   00022100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  00022400
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                00022500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                00022600
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                00022700
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               00022800
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               00022900
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                00023000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             00023200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              00023300
                                                                                                                                                                                                                                                                                                                                                                                                       RAA = (SUMAA - RSAMPL*AVG(8)) / ((RSAMPL=1)*SD(7)*SD(8))
RAYY = (SUMAYY - RSAMPL*AVG(7)*AVG(2)) / ((RSAMPL=1)*SD(7)*SD(2))
RAPP = (SUMAPP - RSAMPL*AVG(8)*AVG(3)) / ((RSAMPL=1)*SD(8)*SD(3))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                IF (IALPHA.GT.3) GO TO 201
COMPUTE VEHICULAR TARGET CORNER POSITIONS IN MEAN-IMPACT-PLANE
COORDINATES FOR MEAN-IMPACT-PLANE PROCESSING OPTIONS (IALPHA.LT.4)
                                                                                                                                                                                                                                                                                      YAW-PITCH CORRELATION
RYP = (SUMYP - RSAMPL*AVG(2)*AVG(3))/((RSAMPL*1)*SD(2)*SD(3))
ANGLE-OF-ATTACK CORRELATIONS
                                                                                                                                                                          COMPUTE MEAN & STD DEV OF MISS, YAW, PITCH, SSP, DEP, SPD RSAMPL = NSAMPL = NONAGS DO 160 1=1,8 AVG(1) & SUM(1)/RSAMPL
                                                                                                                                                                                                                                             - SUM(1) **2) / (RSAMPL * (RSAMPL-1))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                = -CA*CB*CORNR6(1+J+1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              EQUIVALENT CIRCULAR-NORMAL STD DEV

IF (PHSQT-LE.0.99) 60 TO 170

SIGEQ(ISET) = 0.5*( SD(2) + SD(3) )
60 TO 180

SIGEQ(ISET) = HFTGT / XNORM( (1.+SQRT(PHSQT))*0.5
                                                                               IF (HIT(I+1),EQ,-I,) GO TO 155
IF (PHV(I),LT,0,) PHV(I) = PHV(I) + PI + PI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   APHSQT = HITS/RSAMPL
PH ON SQUARE TARGET
PYAW = SNORM((HFTGT-AVG(2))/SD(2)) - (PPITCH= SNORM((HFTGT-AVG(3))/SD(3)) + (PHSQT = PYAW*PPITCH
                  GO TO 159
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ON VEHICULAR TARGET
WRITE (6+20)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           BETA = PI + 4VG(4) = TGTHDG/DEGREE

SB = SIN.8ETA)

CB = COS(BETA)

SA ==SIN(AVG(5))

CA = COS(AVG(5))

DO 200 I=1.NFACET

DO 190 J=1.4

IF (IALPHA.GE.3) CORNRG(I+J+6) = -
                                                                                                                                                                                                                                                                                                                                                                                         GO TO 165
                                                                                                              SUM(4) # SUM(4) + PHV(I)
SSQ(4) # SSQ(4) + PHV(I)
CHECK VELOCITY AZIMUTHS

IF ((PHVMAX-PHVMIN),LT.PI)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             - SA*SB*CORNR6(I+J+3)
                                                                                                                                                                                                                                                            # OTOH
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      APPROX PH ON SQUARE TARGET
                                                                                                          + PHV(I)
                           SUM(4) = 0.
SSO(4) = 0.
DO 155 I=1.NSAMPL
IF (HIT(1:1).E0.-1.)
                                                                                                                                                                                                                                          HOLD # (RSAMPL *SSQ(I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             1 CONTINUE
BEGIN TO SCORE HITS
IF (IALPHA.GE.3)
                                                                                                                                                                                                                                                                             SD(I) = 52RT (HOLD)
                                                                                                                                                                                                                                                           (HOLD,LT.0.)
                                                                                                                                                                                                                                                                                                                                                                                         IF (IALPHA.EQ.0)
                                                                                                                                                                                                                                                                                                                                                         RAYY # 0.
RAPP # 0.
                                                                                                                                                CONTINUE
                                                                                                                                                               CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                    CONTINUÉ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            200 CONTINUE
                                                                                                                                                                                                                                                                                                                                          RAA = 0.
                                                                                                                                              155
159
                                                                                                                                                                                                                                                                             760
                                                                                                                                                                                                                                                                                                                                                                                                                                                       165
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                190
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              201
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 180
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        .
                                                                                                                                                                                                                                                                                                                          J
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      į
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      :
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    .
                                                                                                                                                                                                                                                                                            ů
```

का का का का का किया में किया में का में का का में का में का किया है। जिस्सी का मान का का मान का का में किया मे

the fortiflate the then we at a det

```
00025800
                          00023600
                                                       00023800
                                                                        00023900
                                                                                       00024000
                                                                                                        00024100
                                                                                                                       00024500
                                                                                                                                        00024300
                                                                                                                                                       00024400
                                                                                                                                                                       00024200
                                                                                                                                                                                      00024600
                                                                                                                                                                                                                      00024800
                                                                                                                                                                                                                                     000542000
                                                                                                                                                                                                                                                    00022000
                                                                                                                                                                                                                                                                    00025100
                                                                                                                                                                                                                                                                                   00025200
                                                                                                                                                                                                                                                                                                  00025300
                                                                                                                                                                                                                                                                                                                      00022400
                                                                                                                                                                                                                                                                                                                                    00025500
                                                                                                                                                                                                                                                                                                                                                                                                                   00026000
                                                                                                                                                                                                                                                                                                                                                     00022600
                                                                                                                                                                                                                                                                                                                                                                                                                                  00026100
                                                                                                                                                                                                                                                                                                                                                                                                                                                  00026200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 00026300
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  00026400
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           00028200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            00027300
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   00026500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 00026700
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              00027200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              00027400
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             00028500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  00026600
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                00026800
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                00027500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 00027600
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               00027800
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              00022000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              00028000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             00028100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              00028400
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             00028700
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            00029100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 * CA*SB*
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   CALL SCOREI(IMPACT+HIT+CORNR6+NFACET+IHIIIT+IALPHA+OMEGA+ALPHA+

EPS+ LISIHT+HIT+ HIT6+ SA+ CA+ GROUND+ PHV+IHV+ AIRSPD)

HITS = HIT5 + IHIIIT

IF (IALPHA-LI+4+) GO TO 4204

COMPUTE IMPACT POINT IN TARGET FRAME OF REFERENCE

HIT6(IMPACT+1) = SB+HIT6(IMPACT+4+ + SA*CB*HIT6(IMPACT+5) =
                                                                                                                                                                                                                                        IF (IALPHA-LT.4) GO TO 2204
COMPUTE VEHICULAR TARGET CORNER POSITIONS IN INDIVIQUAL-IMPACT-
PLANE COORDINATES FOR HIGH OPTIONS (IALPHA.GE.4)
BETA = PI + PHV(IMPACT) - TGTHDG/DEGREE
SB = SIN(BETA)
CB = COS(BETA)
SA = -SIN(IHV(IMPACT))
CA = COS(THV(IMPACT))
DO 1204 I#1.NFACET
                                                                                                                                                                                                                                                                                                                                                                                                                                 - SA*SB*
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  HIT6(IMPACT+2) = CA*HIT6(IMPACT+5) + SA*HIT6(IMPACT+6)
HIT6(IMPACT+3) = CB*HIT6(IMPACT+4) = SA*SB*HIT6(IMPACT+5)
CA*S3*HIT6(IMPACT+6)
                                                                                                                                                                                                                                                                                                                                                                                                                                                       CORNR6(I+J+6) = -CA+CB+CORNR6(I+J+1) + SA+CORNR6(I+J+2)
CORNR6(I+J+3)
                                                                                                                                                                                                                                                                                                                                                                                                       CORNRG(I+J+4) = SB*CORNRG(I+J+1) + CB*CORNRG(I+J+3)
CORNRG(I+J+5) = SA*CB*CORNRG(I+J+1) + CA*CORNRG(I+J+2)
CORNRG(I+J+3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       EPS(1) * (PHV(IMPACT) - AVG(4))*COS(THV(IMPACT))
EPS(2) * THV(IMPACT) - AVG(5)
CONTINUE
                                                                                                                                                GO TO 204
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 MLIST(MISSES) = IMPACT
RMLIST(MISSES+1) = HIT(IMPACT+2)
RMLIST(MISSES+2) = HIT(IMPACT+3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  SOM = SOM + OMEGA (IMPACT)
SSOM = SSOM + OMEGA (IMPACT) ++2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        60 TO 205
60 TO 210
                                                                                           BEGIN REPLICATIONS LOOP
DO 210 IMPACT = 1. NSAMPL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       CA*CB*HIT6(IMPACT.6)
                                                                                                                         OMEGA(IMPACT) = 10000.

IF (MIT(IMPACT.1).GE.0.)

DO 203 J=1.3

HIT(IMPACT.J) = 10000.
                                                                                                                                                                                           WRITE (6,26) IMPACT
GO TO 210
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   MISSES # MISSES + 1
                              MISSES = 0
DO 202 I=1+NFACET
LISTHT(1) = 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     IF (IALPHA.LT.3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      EPS(1) # 0.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       60 TO 3204
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 GO TO 210
                                                                                                                                                                                                                             CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    CONTINUE
SSOH .
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  CONTINUE
                                                                202
                                                                                                                                                                            203
                                                                                                                                                                                                                           204
                                                                                                                                                                                                                                                                                                                                                                                                                                                         1204
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       2204
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      3204
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     202
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     4504
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  210
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     5
```

をおいて こうないない

のできない。 ここのできるのできる。 ここのできる。 このできる。 この

```
0003120
00031400
00031400
00031500
00031500
00032200
00032200
00032200
00032200
00032200
00032700
                                     00029500
00029700
00029700
00030200
00030200
00030200
00030500
00030500
00030500
00030500
                                                                                                                                                                                                                                                                                                              00031100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 00032745
00032745
00032750
00032755
00032760
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             00032770
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     00033300
00033400
00033500
00033600
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                00032900
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 00033000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                00033100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     00033200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          C-- COMPUTE VEHICULAR TARGET CORNER POSITIONS IN "MEAN-IMPACT-PLANE" 00

C COORDINATES FOR DISPLAY

BETA = PI + AVG(4) - TGTHDG/DEGREE

SB = SIN(BETA)

CB = COS(BETA)

CA = COS(BETA)

CA = COS(BETA)

DO 218 I=1*NFACET

DO 218 I=1*NFACET

DO 217 J=1*4

CORNR6(1*J*4) = SB*CORNR6(1*J*1) + CB*CORNR6(1*J*3)

217 CORNR6(1*J*4) = SA*CB*CORNR6(1*J*1) + CA*CORNR6(1*J*2)

CORNR6(1*J*4) = SA*CB*CORNR6(1*J*1) + CA*CORNR6(1*J*2)

CONNR6(1*J*4) = SA*CB*CORNR6(1*J*1) + CA*CORNR6(1*J*2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   CREATE AND PRINT SCATTER PLOT
WRITE (6+10) PARAM(ISET) NAMPAR, TGTHDG, DESGPT
CALL SCTPLT (NSAMPL, HIT6,NFACET, CORNR6, 10., 20., ALPHA, IALPHA)
SORT MISS COMPONENTS
                                                                                                                                                                                                                                                                                                                                                                                                                                 MIT&(1,4) = SB*HIT&(1,1) + CB*HIT&(1,3)
HIT&(1,5) = SA*CB*HIT&(1,1) + CA*HIT&(1,2) = SA*SB*HIT&(1,3)
CONTINUE
                                                                                                    COMPUTE IMPACT LOCATIONS IN "MEAN IMPACT PLANE" FOR DISPLAY
IF (IALPHA,6T,3) GO TO 212
DO 211 I=1,NSAMPL
HIT6(1,4) = HIT(1,2)
HIT6(1,5) = HIT(1,3)
                              APPROX PH ON VEHICULAR TARGET
APHVIG # HITS/RSAMPL
APPROX PROB OF ACQ (TARGET IN ACQ FOOTPRINT)
APACQ = RSAMPL/NSAMPL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 IF (IALPHA.LI.4) GO TO 216
WRITE (6.28)
DO 215 J=1.NSAMPL
IF (HIT6(J.4).EQ.10000.) GO TO 215
WRITE (6.17) J. HIT6(J.4). HIT6(J.5)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         60 10 220
                                                                                                                                                                                                                                                                                                                                             GO TO 213
                                                                                                                                                                                                                                  - TGTHDG/DEGREE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             IP1 = I + I
DO 230 J=IP1, NSAMPL
DO 220 K=1,3
IF (HIT(I*K).LC.HIT(J*K))
HOLD = HIT(I*K)
                                                                                                                                                                                                           2 CONTINUE

BETA = PI + AVG(4) = TGTH

SB = SIN(BETA)

CB = COS(BETA)

SA = -SIN(AVG(5))

CA = COS(AVG(5))

DO 214 I=1*NSAMPL

IF (HIT(1:2)*NE*10000*)

HIT6(1:4) = 10000*

HIT6(1:5) = 10000*
END REPLICATIONS LODP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               DO 240 1=1, NH1
                                                                                                                                                                                                60 TO 216
                                                                                                                                                                                                                                                                                                                                                                                                               CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                CONTINUE
                                                                                                                                                                                                                212
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              215
216
                                                                                                                                                                              211
                                                                                                                                                                                                                                                                                                                                                                                                                  213
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      214
                                     j
                                                                     j
                                                                                                        ;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ;
```

00033900 00034000 00034200 00034200 00034200 00034500 00034500	00034700 00034800 00034900 00035000 00035100 00035200	00035400 00035500 00035500 00035700 00035900 00035100 00035100	00036300 00036400 00036500 00036500 0003600 0003600 0003700 APHVIG 00037200 00037200 00037200	00037500 00037500 00037700 00037700 00037900 0003810	00038300 00038400 00038600 00038600 00038700 00039200 00039200 00039200
	IP1 = 1 + 1 10 241 J=IP1.NSAMPL 10 CMEGA(I).LE.OMEGA(J)) GO TO 241 HOLD = OMEGA(I) OMEGA(I) = OMEGA(J) OMEGA(J) = HOLD 241 CONTINUE	CONTINUC CALL CU CONTINUI SUMMARY DO 250 AVG(I) = SD(I) = CONTINU	LOAT(NSAMPL) LOAT(NSAMPL) LSSES AMISSES, PMISS, WHI PHSQI, SIGEQ(ISET), APP	HOLD # (HITS*SSOM=SOM**S IF (HOLD*LT*0*) HOLD # SDOM # SQRT(HOLD) WRITE (6*22) AVGOM* SDOM CONTINUE N # RSAMPL DO 260 J#1*3 WRITE (6*14) (HEADER(I**)	Z60 WRITE (6.15) (HIT(I.J), I*1.N) IF (IALPHA.6E.3) GO TO 290 WRITE (6.16) MISSES Z65 WRITE (6.17) MLIST(I), (RMLIST(I.J), J*1.2) GO TO 276 CONTINUE WRITE (6.2) J # HITS WRITE (6.2) Z70 CONTINUE WRITE (6.23) Z72 MXHITS * 0

```
00044600
00044700
00044800
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              00045600
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             00042000
00042100
00042200
00042300
00039900
00040000
00040100
00040100
                                                                                                                                         000404000
                                                                                                                                                                                                                                                                                                                                                        00041100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  00045100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              00045200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  00045500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    00041800
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   00041900
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         00042500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          00042600
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      00042700
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     00042800
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          00043200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       00043300
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   00043400
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               00043500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                00043600
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            00043700
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           00043800
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       00663900
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               00044100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           00044500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       00044300
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   00044000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  00044200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          00644000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      00042000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             00045300
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         00042400
                                                                                                                                                                                                                                00040100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        00041700
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  00042400
                                                                                                                                                                                                                                                                                                                                                                                                                   00041300
                                                                                                                                                                                                                                                                                                                                                                                                                                                  00041400
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              00041500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            00041600
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Z FORMAT (* ***ERROR**ZERO DENOMINATOR*)
3 FORMAT (* ***ERROR***NO FACET FCUND BY FIRST-HIT ROUTINE*)
4 FORMAT (1X* 13* T7* F10.4* T19* F10.4* 134* 13* T45* F10.4* T59*
1 4F10.4* ZF11.4* F10.4*

SCORES SCORES ONE IMPACT AGAINST ALL FACETS OF TARGET; FOR IALPHA
< 3 FIND ONLY WHETHER TARGET IS HIT! FOR IALPHA = 3 PERFORM IMPACT
OBLIQUITY ANALYSIS*
                                                                                                                                                                                                                                                                                                                                                                               SCORE! -- SCORE! -- SCORE! -- SCORE! -- SCORE! -- SCORE! SUBROUTINE SCORE! (IMPACT+HIT+CORNER-NFACET+IHITIT+IALPHA+OMEGA+ IMPACT+HIT+CORNER-NFACET+IHITIT+IALPHA+OMEGA+ IMPACT+HIT+CORNER-NFACH+IHIT+IALPHA+OMEGA+ IMPACT+HIT+CORNER-NFACH+OMEGA+ IMPACT+IHIT+IALPHA+OMEGA+ IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+IMPACT+
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              PHB = EPS(1) + ALPHA(IMPACT+1)/DEGREE

DHB = EPS(2) + ALPHA(IMPACT+2)/DEGREE

DFHB = PHB*DEGREE

DTHB = THB*DEGREE

PHI = PHV(IMPACT)*DEGREE

THETA = THV(IMPACT) *DEGREE

IF (IHITI*EQ*1) GO TO 30

WRITE(6*1) IMPACT* XIMP, YIMP, (ALPHA(IMPACT*I)*I=1*2)* PHI*

I THETA + AIRSPO(IMPACT)* DPHB* DTHB
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              HIT6(IMPACT.6) = -CA/SA*HIT6(IMPACT.5) + GROUND/SA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   IF (IALPHA-LT.4) GO TO 25
CALCULATE DEPTHWISE COORDINATE OF IMPACT ON GROUND
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       XVRTX(J) = CORNER(1,J,4)
YVRTX(J) = CORNER(1,J,5)
CALL FACET (XVRTX, YVRTX, XIMP, YIMP, IHIT)
IFACET(1) = IHIT
IF (IHIT,NE,1) GO TO 20
                                                                                                                                                                                                         CALL FITPOL (NSETS, SIGEQ, PARAM)
CONTINUE
GO TO 97
                                                                                           IF (MXHITS.LE.0) GO TO 276 WRITE (6.24) IFACET. MXHITS LISTHT(IFACET) = 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 RETURN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               RETURN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   HITG(IMPACT+4) # XIMP
HITG(IMPACT+5) # YIMP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         XIMP = HIT (IMPACT.2)
       MXHITS # LISTHT(I)
IFACET # I
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    (IALPHA.LT.3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            (IALPHA.LT.3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          IHITIT = 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      CONTINUE
                                                                       CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     RETURN
                                                                                                                                                                                                                                                                                                                                                                  END
SCORE1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       52
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     20
                                                                                                                                                                                                                      276
                                                                                                                                                                                                                                                                                                          280
                                                                       274
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               j
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        .
.
.
                                                                                                                                                                                                                                                                                                                                                                                                      J
```

```
F00051000
00051100
00051200
00051200
00051400
            00004600
00046100
00046500
00046600
00046600
00046800
00047000
00047100
                                                                                                                                                                                                                                                                                                                                                                                                                                               00050300
00050400
00050500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       00050700
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               00051600
00051700
00051800
                                                                                                                                                                         00047600
                                                                                                                                                                                                       00044000
                                                                                                                                                                                                                                                                                                                                                         000464000
                                                                                                                                                                                                                                                                                                                                                                   00049200
                                                                                                                                                                                                                                                                                                                                                                            00049600
                                                                                                                                                                                                                                                                                                                                                                                      000484000
                                                                                                                                                                                                                                                                                                                                                                                               0064000
                                                                                                                                                                                                                                                                                                                                                                                                                    0002000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             0005000
                                                                                                                                                                                                                                                                  000485
                                                                                                                                                                                                                                                                                                                            64000
                                                                                                                                                                                   70067
                                                                                                                                                                                            74000
                                                                                                                                                                                                                                                                                                                                                                                                                                                  -- FACET
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ACT AGAINST ONE FACET OF TARGET VRTX(3)) * 0.5
VRTX(3)) * 0.5
VRTX(3)) * 0.5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   FACET -- FACET -- FACET -- FACET -- FACET SUBROUTINE FACET (XVRTX, YVRTX, XIMP, YIMP, IHIT) DIMENSION XVRTX(4), YVRTX(4)
                                                                                                                                           - A1*A6*A8
                                                                                                                                          . A3*A4*A8
                                          - CORNER(1+1+4)
- CORNER(1+2+4)
                                                                                CORNER(1.2.5) - CORNER(1.1.5)
CORNER(1.3.5) - CORNER(1.2.5)
YIMP - CORNER(1.2.5)
                                                                                                              CORNER(1:2:6) - CORNER(1:1:6)
CORNER(1:3:6) - CORNER(1:2:6)
-CORNER(1:2:6)
                                                                                                                                                                                                                                                                                           LISTHT(MHIT) = LISTHT(MHIT) + 1
HIT6(IMPACT+6) = 2MAX
NOW FIND OBLIQUITY TO IMPACTED FA
A) = CORNER(MHIT+2.5) = CORNER(M
A3 = CORNER(MHIT+2.6) = CORNER(M
A4 = CORNER(MHIT+2.6) = CORNER(M
                                                                                                                                                                         GO TO 40
                                                                                                                                                                                                                           S
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           XVRTX(3))YVRTX(3))
                                                                                                                                                                                                                         GO TO
                                                              CORNER(1.3.4) - CORNIXIMP - CORNER(1.2.4)
                                                                                                                                                                                                                                                                  GO TO 60
NOW FIND FIRST-HIT FACET MHIT # 0
                                                                                                                                                                                                                                                                                                                                                                                                                            H # SORT (A7**2+A9**2)
                                                                                                                                                                                                                                                                                                                                             PHN = ATAN2(-A7:-A9)
                                                                                                                                                                                                     CONTINUE
ZIMP = ANUM/DENOM
IF (ZIMP.LE.ZMAX)
                                                                                                                                                             DENOM # A2*A4 - A
IF (DENOM.NE.0.0)
WRITE (6.2)
                                                                                                                                                                                                                                                                                                                                                                                                                                       THN # ATAN2 (AB+H)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       DIMENSION XVRTX(FACET SCORES ONE XIN # (XVRTX(1) YIN # (YVRTX(1))
                                                                                                                                                                                                                                               MHIT = I
CONTINUE
IF (MHIT.GT.0)
WRITE(6.3)
                                                                                                                                            * A1*A5*A9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                50 Iml 4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  (7,50,5)
                                                              9
                                                                                                                                                                                                                                                        20
                                                                                                                                                                                                                                                                                                ŝ
    :
                                                                                                                                                                                                                                                                                                                            ċ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   j
```

Milledier bließ der Bezon auf der bestehten besteht in de stellte is der besteht der der stellte besteht d

```
COOOS7200
00057300
00057300
00057500
00057700
00057700
           00056700
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         00056900
00057000
00057100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  -- SCTPLI -- SCTPLI -- SCTPLI -- SCTPLI (NSAMPL, HIT6, NFACET, CORNER, SIZEI, SIZE2, ALPHA)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ×
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FORMAT (TB. F6.2, T16, 101A1)
FORMAT (T13, 11(F6.2, 4X))
FORMAT (T13, 11(F6.2, 4X))
FORMAT (*+*, T16, 101A1)
FORMAT (*/T24, *IMPACT-PLANE SCATTER PLOT OF IMPACTS AND TARGET IRNERS RELATIVE TO DESIGNATION POINT*)
                                                                                                                                                                                                                                                                                                      # YVRIX(1) + SLOPE*(XAVCIR-XVRIX(1))
# ( SLOPE**2 *XVRIX(1) + SLOPE*(YIMP-YVRIX(1)) + XIMP )
SLOPE**2 + 1, )
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      EQUIVALENCE (ICHAR(I)+ IBLANK)
DATA ICHAR / ' '+++++ '2++ '3++ '4++ '5++ '5++ '7++ '8+- '9++
DATA IDASH+ IHASH+ KORNER / '=++ '|++ '0+ /
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      T (/ T44. *FREQUENCY PLOT OF TERMINAL ANGLES OF ATTACK*)
(Y.S) = IFIX(26.5 - 30.*Y/S)
                                                                                                                                                                                                                                                                                 E**2 *XVRTX(1) + SLOPE*(YIN-YVRTX(1)) + XIN )
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              DIMENSION HITG(100.6), CORNER(99.4.6), VLABEL(9), MLABEL(11)
DIMENSION ICHAR(11), ALPHA(100.2)
           201
                                                                                                                                                                  60 10 30
            55
                                                                                                                                                                                                                                    CONTINUE
LINE IS SLANTED
SLOPE = (YVRTX(J)-YVRTX(I)) / (XVRTX(J)-XVRTX(I))
XAVCTR = ( SLOPE**2 *XVRTX!!) _ C! OBE.
IF ({ABS(XVRTX(1)-XVRTX(J))},GE, 1,E-4) GO
IF (ABS(YVRTX(1)-YVRTX(J)},GE, 1,E-4) GO
LINE IS END-ON, SO NOT POSSIBLE TO HIT SURFACE
IHIT = 0
                                                                                                                                                                                                                                                                                                                                    ( SLOPE**Z + 1. )
YBVCTR = YVRTX(I) + SLOPE*(XBVCTR=XVRTX(I))
XAVCTR = XAVCTR = XIN
YAVCTR = YBVCTR = YIN
XBVCTR = XBVCTR = XIMP
                                                                                                                                                                  ( ABS(YVRTX(I)-YVRTX(J)) .GE. 1.E-4)
                                                                                                                                                                                                                                                                                                                                                                                                       TR + YAVCTR*YBVCTR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                # IFIX(51,5 + 50, *X/S)
                                                                                                                                                                                                    NI A
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    INTEGER ARRAY (51,101,2)
                                                                                                                                                                                                                                                                                                                                                                                                       ADOTB # XAVCTR*XBVC1
                                                                                LINE IS VERTICAL
XAVCTR # XVRTX(I) -
YAVCTR # 0.
YBVCTR # XVRTX(I) +
YBVCTR # 0.
GO TO 40
                                                                                                                                                                          LINE IS HORIZONTAL
XAVCTR # 0.
YAVCTR # YVRTX(I) --
XBVCTR # 0.
YBVCTR # YVRTX(I) --
GO TO 40
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 SUBROUTINE SCIPLT
                                                                                                                                                                                                                                                                                                                                                                                                                   (ADOTB.GE.O.)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ILINE(Y+S) .
                                                                                                                                                                                                                                                                                                                                                                                                                                                  CONTINUE
IHIT = 1
                                                                     ONTINUE
                                                                                                                                                                                                                                                                                                        YAVCTR
                                                            ETURN
                                                                                                                                                                                                                                                                                                                                                                                                                                         RETURN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            RETURN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          2 FORMA
4 FORMA
5 FORMA
6 FORMA
                                                                       2
                                                                                                                                                       202
                                                                                                                                                                                                                                                  30
                                                                                                                                                                                                                                                                                                                                                                                                                                                    20
                                                                                                                                                                                                                                                                                                                                                                                                        9
                                                                                  :
                                                                                                                                                                                                                                                              å
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    j
```

THE PROPERTY OF THE PROPERTY O

Amilian principal in the interpolation of the formal manufacture of the second interpolation of the second
JALPHA = LIMITR (IALPHA-1-2) DO 260 KALPHA = 1 JALPHA	00057900
SIZE1	00081000
<i>ci</i> sice = 51 Y	00028300
00 20 [*1+51	00058400
ADDAY 19.19.19.19.19.19.19.19.19.19.19.19.19.1	00058600
	00058700
20 CONTINUE	000000000000000000000000000000000000000
- CREATE TORIZONIAL GRIDO VERTICAL LABER DO 40 18109	00083000
	00020100
VLABEL(1) # (=.2+1 + 1.0+81ZE	000885000
ARRAY (LINE +KO	00063000
40 CONTINUE	00029500
C++ CREATE VERTICAL GRID. HORIZONTAL LABELS	00059600
•	00025000
MLABEL(1) = (.2*1 - 1.2)*SIZE	00655000
100 00 00 00 00 00 00 00 00 00 00 00 00	0000000
	00060200
	00060300
C OVERLAY FACET CORNERS	000000000000000000000000000000000000000
DO GO INTERPRETATION	0000000
I IKOLUM (CORNER (IFACET, J.4) . SI	000000
# 1LINE (CORNER (IFACET+J.5) . SIZE	0000000
XOL	00000000
ARRA	00061100
80 CONTINUE	00061200
CARATE SCATTER PLOT	00061300
15 (H116(11+4)-F10-000-) GO TO 90	00061500
IKOLUM(HIT6(1,4)+ SIZE)	00061600
# ILINE(HIT6(I+5)+ SI	00061700
COL # [IZIIK KO] 1010)	000019000
KOL.2) = A	00062000
	00062100
	0000000
	00062400
11T6(1.4) .EQ. 10000.)	00062500
I KOLUM (ALPHA (101)	00000000
101	00062800
MITR(LINE.1+51)	00082900
ARRAY(LINE+KOL+2) = AR GO CONTINUE	00063000
110 CONTINUE	00063200
C CONVERT SCATTERPLOT TO ALPHA CHARACTERS DO 220 LINE # 1,51	00063300
210 KOL = 1+101	00063500
AKKAT (L 1NE (N.67.11)	00063700
VE+KOL+2) =	00063800

```
• RE0006750
0006760
0006770
0006780
A 0006780
                                 00064200
00064300
00064300
00064500
                                                                                                                000065500
000065500
000065500
000065500
000065500
000065500
00006500
                                                                                                                                                                                                                                                                                                                                                    00066900
00067000
00067100
                                                                                                                                                                                                                                                                                                                                                                                      00067200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   00006888400
00006888400
00006888400
0000688000
0000694000
0000694000
000694000
           00064000
                       00064100
                                                                                           00064700
                                                                                                       00064800
                                                                                                                                                                                                                                                                                 00066300
00066400
00066500
                                                                                                                                                                                                                                                                                                                   00066600
                                                                                                                                                                                                                        00065800
                                                                                                                                                                                                                                   00629000
                                                                                                                                                                                                                                                                                                                                                                                                            00067400
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              00068100
                                                                                                                                                                                                                                                00099000
                                                                                                                                                                                                                                                           00066100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         00068200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                00063800
                                                                                                                                                                                                                                                                      0006620
                                                                                                                                                                                                                                                                                                                                          0006680
                                                                                                                                                                                                                                                LIMITR
                                                                                                                                                                                                                                                                                                                             FITPOL
                                                                                                                                                                                                                                                                                                                           ⋖
                                                                                                                                                                                                                                                                                                                                                                                                                                 Z FORMAT (2(5X+ E15.8, 5X+ D15.8))
3 FORMAT (/T6+ *IND VAR+, T26+ *ESTIMATE+, T46+ *UBSERVED+, T66+ |
1 SIDUAL+/)
FITPOL FITS A POLYNOMIAL OF DEGREE 3 OR LESS+ AS NECESSARY+ TO A SET OF UP TO 6 OBSERVATIONS OF Y WITH INDEPENDENT VARIABLE XIN-DETERMINE NUMBER OF COLUMNS OR DEGREE OF POLYNOMIAL
                                                                                                                                                                                                                                               LIMITR
                                          DO 250 LINE = 1, 51

N # (LINE+4)/6*6 = (LINE+4)

IF (N.EQ.0) GO TO 230

WRITE (6.2) (ARRAY(LINE,KOL,1), KOL#1,101)

GO TO 240

WRITE(6.3) VLABEL(L), (ARRAY(LINE,KOL,1), KOL#1,101)
                                                                                                                                                                                    WRITE (6.7)
                                                                                                                                                                                                                                                  :
                                                                                                                         CONTINUE
WRITE (6.5) (ARRAY(LINE.KOL.2). KOLMI.101)
                                                                                                                                                                                                                                              LIMITR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            CALL MMULT (XT+ X+ XTX+ KOLS+ NOBS+ KOLS)
                                                                                                                                                            WRITE (6.4) HLABEL
IF(KALPHA.EG.1) WRITE (6.6)
IF (KALPHA.EG.1).AND.(JALPHA.EG.2))
IF (KALPHA.EG.2) WRITE (6.8)
                                                                                                                                                                                                                                                  .
                                                                                                                                                                                                                                               MITR -- LIMITR -- LIMITR --
UNCTION LIMITR (INPUT+ MIN+ MAX)
IMITR = INPUT
                                                                                                                                                                                                                                                                                 LIMITR # MIN
LIMITR # MAX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          30 XT(J+1) = X(I+J)
40 CONTINUE
- MULT XT TIMES X GIVING XTX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  RETURN
KOLS .
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             LOAD AT MATRIX, YY VECTOR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          00 10 JE2+KOLS
10 X(1+J) = XIN(1) ++(J-1)
20 CONTINUE
                                                                                                                                                                                                                                                                                (INPUT.ET.HIN)
210 CONTINUE
220 CONTINUE
-- PRINT SCATTER PLOT
L = 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       KOLS = NOBS
IF (KOLS.LT.2)
IF (KOLS.GT.4)
LOAD X MATRIX
DO 20 I=1.NOBS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        D0 40 I=1+NOBS
YY(1) = Y(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                DO 30 J#1+KOLS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               X(1,1) = 1.
                                                                                                                                                                                                            CONTINUE
RETURN
                                                                                                                             240
                                                                                                                                                  250
                                                                                                                                                                                                            260
                                                                                                                                                                                                                                                                                                                             :
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ...
                                                                                                                                                                                                                                                j
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           :
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                :
```

00069900 00070000 00070200 00070200 00070400 00070900 000711200 000711200	JNVRS J00071700 00071800 00071800 0007200 00072100 00072300 00072400 00072500 00072500 00072900	00073100 00073200 00073200 00073500 00073500 00074100 00074100 00074100	MMULT M00074500 00074700 00074700 0007500 00075100 00075100 00075500 00075500 00075500
C MULT XT TIMES YY GIVING XTY CALL MAVMPY(XT*YY* XTY* KOLS* NOBS) C INVERT XTX CALL JNVAS (XTX* KOLS* 6) CALL JNVAS (XTX* KOLS* 6) CALL MAVMPY (XTX* XTY* B* KOLS* KOLS) WRITE (6*3) C CALCULATE RESIDUALS DO 60 1=1*NOBS YHAT = B(1) DO 50 J=2*KOLS SO YHAT = YHAT WRITE (6*2) XIN(I)* YHAT* Y(I)* RESID 60 CONTINUE RETURN	S JNVRS JNVRS JNVRS JNVRS JNVRS LNVRS LNVRS JNVRS JNVRS JNVRS JNVRS JNVRS JNVRS LLCIT REAL® (A-H.O-2) ENSION A (6.6) MAT(** THE MATRIX TO BE INVERTED IS SINGULAR.*/* ABORTED AT THE INVERSION.*/* ACT-FORM GAUSS-JORDAN INVERSION METHOD 370 I=1.N A (1.1) P (320.310.320 P (320.310.321) FE(KPRNT.301) *I)	A THE PROPERTY OF THE PROPERTY	MHULI MHULI MHULI MHULI INE MULI (4. B. C. NI. NZ. N.) IT REAL® (4-H.0-Z) ON A(6.6) B(6.6) C(6.6) I=1.N3 = 0. E C(1.J) + A(I.K)*B(K.J) JE

```
00081100
00081100
00081100
00081400
00081600
00081700
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       000779800
0000799800
000080100
000080200
000080400
00080500
                                                                                                                                                                                                 DIMENSION A(100), HLABEL(11), VLABEL(9), PCTS(19)

INTEGER ARRAY(51,101)

DATA IDASH, IHASH, MARK, IBLANK / !-, *!', **', *, *, *

FORMAT (10F8.3)

FORMAT (10F8.3)

FORMAT (10F8.3)

FORMAT (11),

FORMAT (113, 11(F6.2,4x))

FORMAT (116, 101A1)

FORMAT (116, 101A1)

FORMAT (116, 101A1)

FORMAT (116, 101A1)
                                                                                                                                                                                                                                                                                                                                            00078400
                         00076100
00076200
00076300
00076400
00076500
00076500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               00079600
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           00046000
                                                                                                                                               JAPLT --- CUMPLT --- CUMPLT --- CUMPLT --- CUMPLT 00077000
JAROUTINE CUMPLT (A+ B+ AMIN+ AMAX)
IS VECTOR OF ASCENDING VALUES! AMIN & AMAX ARE PLOT SCALE LIMITSO0077200
IS VECTOR OF OBSERVATIONS.
                                                                                                                                                                                                                                                                                                                                                                       00078600
00075900
                                                                                                                                    00692000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0007950
  MAVMPY
                                                                                                                                                                                                                                                                                                                                             .75
                                                                                                                                                                                                                                                                                                                                             FORMAT (* PERCENTILES:*/T4, *RANK*, T17, *.05 .10 .25 .30 .35 .40 .45 .50 .55 .60 .65 .50 .55 .30 .35 .40 .45 .50 .50 .55 .90 .95./T4, *DEVIATE (D):*, T14, 19F6-1.
                                                                                                                                                                                                                                                                                                                                                                                                                 IKOLUM(X*XMIN*XMAX) = IFIX(1.5 + 100.*X/(XMAX=XMIN))
CREATE GRID UNDERLAY
     MAVMPY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          HLABEL(I) = AMIN + (.1*1=.1)*(AMAX-AMIN)
DO SO LINE = 1+51
ARRAY(LINE-KOL) = IMASH
       MAVMPY
                     (A. B. C. NI. NZ)
                                   IMPLICIT REAL® (A-H+0-2)
DIMENSION A(6.6) • B(6) • C(6)
DO 20 1=1.N1
C(1) = 0 •
DO 10 J=1.N2
0 C(1) = C(1) • A(1.J) *B(J)
         HAVMPY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               VLABEL(1) = 1.0 = (1-1)/8.

DO 30 KOL = 1. 101

ARRAY(LINE.KOL) = IDASH

CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            IKOLUM(X.AMIN.AMAX)
LIMITR(KOL.1.101)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Y = 0.
LINE = 1LINE(Y)
LINE = LIMITR(LINE-1-51)
YIN'R = 1.0'(8+1.)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     CREATE CUMULATIVE PLOT
                                                                                                                                                                                                                                                                                                                                                                                                           ILINE(Y) # IFIX(50.5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                DO 20 I=1+51
DO 10 J=1+101
ARRAY(I+J) = 18LANK
                        SUBROUTINE MAVMPY
                                                                                                                                                              SUBROUTINE CUMPLI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        DO 60 1m1+11
KOL m 10*1 - 9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Z . [ . ]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1.9 .
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             CONTINCE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      .
A
*
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     00 70
              MAVMPY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ŝ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                202
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                99
                                                                                                            202
                                                                                                                                                                                             :00
                                                                                                                                                                   j
                 5
```

with which models.

```
ARRAY (LINE KNOL) = MARK

LINE = LILINITY (LINE KNOL) = MARK

LINE = LILINITY (LINE KNOL) = MARK

ARRAY (LINE KNOL) = MARK

PRINT (CAUCHAILY E PLOT

N = LILINITY (LINE = LINE + 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                NOW INTERPOLATE STH-PERCENTILES
                                                                                                                                                                                                  PRINT CUMULATIVE PLOT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        270
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     280
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          300
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             260
                                                                                                                                                                                                                                                                                                                                                                                                     230
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          250
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       j
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            i
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        00000
```

```
00088700
00088200
00088200
00088300
00088300
00088500
00088500
00088500
00088500
00088500
00089700
00089500
00089500
00089500
00089500
00089500
00089500
00089500
00089500
00089500
00089500
00089500
00089500
00089500
                                                                                                                                                                                                                                                                                                                                                0009060u
00090700
00090800
00090900
                                                                                                                                                                                                                                                                                                                                                                                                              00091100
00091200
00091300
                                                                            T= SQRT(ALUG(1,/P/P))
XNORM=I-(2,515517+T*(,802853+T*,010328))/(1,+T*(1,432788+T*
1 (,189269+T*,001308))
XNORM=XNORM*SIGN
RETURN
                                                                                                                                                       ERRFX
                                                                                                                                                                                           FROM THE HANDBOOK OF MATHEMATICAL FUNCTIONS - AMS 55 NATIONAL BUREAU OF STANDARDS NOV. 1970. PAGE 299
                                                                                                                                                       ERRFX
                                                                                                                                                       ERRFX
                                                                                                                                                                                                                                                        IF (%-[1-0]) 60 TO 1

IF (x-6T-0] 60 TO 1

IF (x-6T-0] 60 TO 2

T=1-/(1-+-3275911eX)

SUM=1.06140543+T

SUM=(SUM-1-45315203)+T

SUM=(SUM+1-453151374)+T

SUM=(SUM+284496736)+T

SUM=(SUM+284496736)+T

SUM=(SUM+28496736)+T

SUM=(SUM+28496736)+T

SUM=(SUM+2848696736)+T
   IF (AP. E.0.0) GO TO 1
P=1. AP
                                                                                                                                                       ERREX -- ERREX FUNCTION ERREX(X)
                                                                                                                                                                                                                                   S=SIGN(1.0.X)
X=ABS(X)
                                                                                                                                                                                                                                                                                                                                                                                      ERRFX#0.0
RETURN
ERRFX#S
RETURN
END
                                                                 SIGN=-1.
                            SIGN#1.
                                         G0 T0 2
                                                                                                                                                                                                                                                                                                                                                                            TURN
                                                     P≖AP
                                                                                                                                                                                             ***
```

DISTRIBUTION LIST

Cor No	
1	Department of Defense Office of the Defense Director, Research & Engineering ATTN: Assistant Director (Test Resources) Room 3D 116, The Pentagon Washington, DC 20301
1	HQ, Department of the Army ATTN: DAMO-RDQ DAMA-CSM-CM Washington, DC 20310
1	Commander US Army Materiel Development & Readiness Command ATTN: DRCPM-SA 5001 Eisenhower Avenue Alexandria, VA 22333
1 1 1 2 6 1	Commander US Army Armament Command ATTN: DRSAR-SC DRSAR-EN DRSAR-RD DRSAR-SAS DRSAR-SAM DRSAR-SAM DRSAR-PA DRSAR-AS Rock Island, IL 61201
1 1 1	Commander US Army Test and Evaluation Command ATTN: DRSTE-SY DRSTE-TA DRSTE-ME Aberdeen Proving Ground, MD 21005 Commander US Army Electronics Command
1	ATTN: DRSEL-SA DRSEL-RD Fort Monmouth, NJ 07703
1 1 1 2	Commander US Army Missile Command ATTN: DRSMI-CM DRSMI-D DRSMI-R DRCPM-CAWS-FO Redstone Arsenal, AL 35809

Copy No.	
1 1 1	Commander US Army Tank Automotive Command ATTN: DRSTA-S DRSTA-R DRSTA-V Warren, MI 48090
1 1 1	Commander HQ, US Army Aviation Systems Command ATTN: DRSAV-E DRSAV-W DRSAV-D DRSAV-WR (COL Powers) P. O. Box 209, Main Office St. Louis, MO 63166
1 1 1	Commander Rock Island Arsenal ATTN: SARRI-L SARRI-LR SARRI-LPL Rock Island, IL 61201
1	Commander Watervliet Arsenal ATTN: SARWV-RD Watervliet, NY 12189
1 1 1 1	Commander Picatinny ATTN: SARPA-PA SARPA-AD SARPA-ND SARPA-TS Dover, NJ 07801
1 1	Commander Edgewood Artenal ATTN: SAREA-DE-W SAREA-DE-N Aberdeen Proving Ground, MD 21010
1	Project Manager for Selected Ammunition US Army Materiel Development & Readiness Command ATTN: DRCPM-SA2 Dover, NJ 07801

Copy No.	
1	Project Manager for M110E2 ATTN: DRCPM-M110E2 Rock Island, IL 61201
1	Project Manager for Cannon Artillery Weapons System ATTN: DRCPM-CAWS Dover, NJ 07801
1	Product Manager for Advanced Attack Helicopter Systems US Army Aviation Systems Command St. Louis, MO 63166
1	Product Manager for AH-1 Cobra Series Aircraft US Army Materiel Development & Readiness Command P. O. Box 209 St. Louis, MO 63166
1 1 1	Commander US Army Materiel Systems Analysis Activity ATTN: DRXSY-GS DRXSY-C DRXSY-T DRXSY-D Aberdeen Proving Ground, MD 21005
1 1 1	Commander US Army Ballistic Research Laboratorics ATTN: DRXBR-ED DRSBR-TE DRXBR-VL Aberdeen Proving Ground, MD 21005
1	Commander Army Ordnance Center & School ATTN: ATSL-CTD-MF Aberdeen Proving Ground, MD 21005
1	Commander Human Engineering Laboratories ATTN: DRXHE-SP Aberdeen Proving Ground, MD 21005
1	Commander US Army Aberdeen Research & Development Center ATTN: STEAP-TL Aberdeen Proving Ground, MD 21005

Copy No.	
1	Commander US Army Armor School Fort Knox, KY 40121
1	Commandant US Army Field Artillery School Fort Sill, OK 73503
1	Commandant US Army Infantry School Fort Benning, GA 31905
1	Commander US Army Missile & Munitions Center & School Redstone Arsenal, AL 35809
1	Commander Modern Army Selected System Test, Evaluation & Review Fort Hood, TX 76544
1	Commander US Army Combat Developments Experimentation Command Fort Ord, CA 93941
1	Commander US Army TRADOC Systems Analysis Activity White Sands Missile Range White Sands, NM 88002
1	Commander Harry Diamond Laboratories ATTN: AMXDO-PP Washington, DC 24038
1	Director Advanced Research Projects Agency 1400 Wilson Boulevard Arlington, VA 22209
1	Commander US Army Concepts Analysis Agency 8120 Woodmont Avenue Bethesda, MD 20014
1	Commander Combat Systems Group ATTN: CDMSD-M Fort Leavenworth, KS 66027

Copy No.	
1	Commander USA Combined Arms Combat Developments Activity ATTN: ATCACC Fort Leavenworth, KS 66027
1	Commander Defense Logistics Studies Information Exchange Fort Lee, VA 23801
_	Commander US Army Mobility Equipment Research & Development Center
1	ATTN: STSFB-B STSFB-ZN Fort Belvoir, VA 22060
1	Commander US Army Armor Training Center ATTN: AMSTB-CO-MM Fort Know, KY 40121
1	Commander US Naval Weapons Laboratory Code GS, Mr. Godius Dahlgren, VA 22448
	Chief, Naval Operations
1	ATTN: OP 96 OP 982F
	Washington, DC 00350
1	Commander Naval Weapons Center Code 4072 Mr. E. Breitenstein China Lake, CA 93555
1	Commander US Army White Sands Missile Range ATTN: STEWS-TE-MD White Sands Missile Range, NM 88002
1	Chief, Naval Materiel ATTN: MAT 0362 Washington, DC 20360
1	Director US Marine Corps Development and Education Center

Copy No.

12

Defense Documentation Center Cameron Station Alexandria, VA 22314