西安电子科技大学

考试时间 120 分钟

试

题

		** 4		/	
题号	_	=	Ξ	四	总分
分数					
1.考试形式: 闭卷; 2.本试卷共三大题,满分 100 分;					
3.=	垮试日期:	2021年	月 日;	(答题内容请写在	装订线外)
、填空	题(本大题:	共 10 小题	[, 每小题 2	分, 共20分)	
				•	o
2. 设序列 2	x(n)=2δ(n+	1)+δ (n)-	δ (n-1),则	$X(e^{j\omega}) _{\omega=0}$ 的值	.为。
。序列的例	事里叶变换	$X(e^{j\omega})$ 是	ω的连续周期]函数,周期为	o
					正弦序列 $e^{j\omega_0 n}$
则其输出为	y(n)=		,设系统	的 <i>H</i> (e ^{jw}) 频率	响应已知。
. 基 2-FF	「算法计算 N	=2 ^L (L 为整	数)点 DFT 需	壽要	_级蝶形。
6. FFT 的应	团主要有		`	. (列出 2 个)
'. 某一模排	以滤波器系统	函数的极点	京位于 S 平面	左半平面,采用	脉冲响应不变法映象
为数字滤波	器,则所得数	数字滤波器	系统函数的极	点位于 Z 平面	•
3. 脉冲响应	立不变法只适	合		_滤波器的设计。	
). FIR 滤波	器的第一类组	线性相位的:	条件为		
IR 滤波器	的单位取样啊	向应为 h (n)	,且其长度为	ı N.	
.0. 窗函数	法设计 FIR	数字滤波器	計,调整		可以有效地控制过
带的宽度。					
、当は	题 (太大!	顿共 10 小	题。 每小题	1分,共10分	·)
					<i>~</i> 「"√",错误的打
"x"。	→ K57 H 3 MP\77	, 10,4//37	ייי אנואיייי	K.141元丁.14五.11	4 , MARCHII
Λ 0					

1. 模拟正弦信号的采样序列都是周期序列。

2

题号

答案

2. 对于线性时不变系统,其输出的傅里叶变换等于输入序列的傅里叶变换与系统频

5

4

10

率相应的卷积。

- 3. 两个长度分别为 N 和 M 的序列,线性卷积后的长度为 N+M-1。
- 4. 系统 y(n)=(n+2)x(n)是一个稳定非因果系统。
- 5. 原点处的极点和零点对频率响应的幅度无影响。
- 6. DIT-FFT 算法和直接计算 DFT 相比,运算量下降很明显,但点数 N 比较大时,优势却不明显了。
- 7. 若计算两个 N 点实序列的 DFT,一种高效方法是: 先构造一个 N 点复数序列,然后做一次 N 点 FFT 求出 Y(k),再分别提取 Y(k)的共轭对称分量和共轭反对称分量,则得到这两个 N 点实序列的 FFT 结果。
- 8. 利用 DFT 计算频谱时,可通过在时域序列末尾补零来减少栅栏效应。
- 9. 用窗函数法设计线性相位 FIR 滤波器 (单位取样响应长度为 N)时,"窗"的中心不一定位于 (N-1)/2。
- 10. 用 DFT 进行谱分析时,可通过增加数据的记录长度来提高谱分辨率。

三、 简答题 (本大题共2小题,共15分)

1. (7分)线性卷积和离散卷积的关系是什么?如何用 FFT 来实现线性卷积?

2. (8分) 试分别从单位取样响应长度、滤波器稳定性、相位的线性性、是否可用快速卷积计算系统输出、零极点分布特点、实现阶次和实现结构递归与否等方面阐述 IIR 滤波器和 FIR 滤波器的特点。

四、 综合题 (本大题共 4 小题, 共 55 分)

1.(15 分)对 $x_a(t) = \cos(2\pi t) + \cos(5\pi t)$ 进行理想采样,采样角频率为 8π 弧度/秒,得到采样信 $\hat{x}_a(t)$ 号和时域离散信号 x(n),再让 $\hat{x}_a(t)$ 通过理想低通滤波器 $G(j\Omega)$, $G(j\Omega)$ 用下式表示:

$$G(j\Omega) = \begin{cases} 0.25 & |\Omega| \le 4\pi \\ 0 & |\Omega| > 4\pi \end{cases}$$

- (1)写出 $\hat{x}_a(t)$ 和 x(n)的表达式;
- (2) 画出采样信号的频谱图;
- (3) 求出理想低通滤波器的输出信号y(t),有无失真?若有失真,分析失真的原因。

- 2. (16 分) 研究一个输入为x(n)和输出为y(n)的时域离散线性时不变系统,已知它满足y(n)=0.4y(n-1)+x(n)+0.8x(n-1),并已知系统是因果的。
 - (1) 求系统的系统函数 H(z) 和频率响应 $H(e^{i\omega})$;
- (2) 采用几何确定法分析该系统的幅频特性, 画出系统的零极点结构图和幅频特性 曲线:
- (3) 该系统是何种通带滤波器?
- (4) 当系统输入为 $x(n)=(-1)^n$ 时,求系统的输出y(n)。

- 3. (12 分) 已知一个有限长序列为 $x(n)=\delta(n)+2\delta(n-5)$ 。
 - (1) 求它的 10 点离散傅里叶变换 X(k);
 - (2) 已知序列 y(n)的 10 点离散傅里叶变换为 $Y(k) = W_{10}^{2k} X(k)$, 求序列 y(n);
 - (3) 已知序列 g(n)的 10 点离散傅里叶变换为 G(k)=X(k) Y(k),求序列 g(n)。

4. (12 分) 用 $H_a(s)$ 表示一模拟滤波器的系统函数,

$$H_a(s) = \frac{1}{s^2 + 5s + 6}$$

- (1) 用脉冲响应不变法,将此模拟滤波器转换成数字滤波器,求数字滤波器的系统函数 H(z),采样周期 T=2s;
- (2) 画出数字滤波器的直接型结构和级联型结构。