

The Relationship between Macroeconomic Uncertainty and Interest Rates in China

MACS 30200 Project Proposal

Presenter: Zunda Xu

Motivation

Uncertainty

- Uncertainty about future economic growth is thought to have a broad impact on the economy
- Volatility —> Uncertainty: Using conditional variance to present uncertainty

Interest Rates

- The real risk-free interest rate is determined by two economic forces
- Inter-temporal smoothing— a positive relation between the interest rate and expectations of economic growth
- precautionary savings a negative relation between the interest rate and uncertainty, the conditional variance of growth

Motivation

Uncertainty

- Uncertainty about future economic growth is thought to have a broad impact on the economy
- Volatility —> Uncertainty: Using conditional variance to present uncertainty

Interest Rates

- The real risk-free interest rate is determined by two economic forces
- Inter-temporal smoothing— a positive relation between the interest rate and expectations of economic growth
- precautionary savings a negative relation between the interest rate and uncertainty, the conditional variance of growth

Model

Basic Model:

$$r_t = \beta_0 + \beta_1 E_t[g_{t+1}] + \beta_2 Var_t[g_{t+1}]$$

 r_t is the log of the time t to t+1 risk-free rate,

 g_{t+1} is the log economic growth rate in the subsequent period,

 E_t is the expectation conditioning on in-formation at time t,

 Var_t is the variance conditioning on information at time t.

Data Source

Measures of Economic Growth Rate:

Consumption Expenditure:

Private Final Consumption Expenditure in China (https://fred.stlouisfed.org/series/CHNPFCEADSMEI)

GDP:

Real GDP at Constant National Prices for China (https://fred.stlouisfed.org/series/RGDPNACNA666NRUG)

Industrial Production:

Total Industry Production Excluding Construction for China (https://fred.stlouisfed.org/series/RGDPNACNA666NRUG)

Data Source

Main Interest Rate Data:

3-Month or 90-day Rates and Yields: Treasury Securities for China

Federal Reserve Bank of St. Louis (https://fred.stlouisfed.org/series/IR3TTS01CNM156N)

China Interest Rate

Trading Economics

Interest Rates for China:

Federal Reserve Bank of St. Louis

Method

Estimates of Expected economic growth and the variance of economic growth:

Model growth as ARMA(1,1):

$$g_{t+1} = \phi g_t + \theta \epsilon_t + \mu + \epsilon_{t+1}$$

Two methods to estimate variance:

- (1) the square of the residuals in period t: $(\hat{g}_t g_t)^2$
- (2) using a GARCH(1,1) model (Engle 1982; Bollerslev 1986):

$$g_{t+1} = \phi g_t + \theta \epsilon_t + \mu + \epsilon_{t+1}$$
$$Var_t(\epsilon_{t+1}) = \gamma + \alpha_1 \epsilon_t^2 + \alpha_2 \sigma_t^2$$

Method

Estimates of Expected economic growth and the variance of economic growth:

Model growth as ARMA(1,1):

$$g_{t+1} = \phi g_t + \theta \epsilon_t + \mu + \epsilon_{t+1}$$

Two methods to estimate variance:

- (1) the square of the residuals in period t: $(\hat{g}_t g_t)^2$
- (2) using a GARCH(1,1) model (Engle 1982; Bollerslev 1986):

$$g_{t+1} = \phi g_t + \theta \epsilon_t + \mu + \epsilon_{t+1}$$
$$Var_t(\epsilon_{t+1}) = \gamma + \alpha_1 \epsilon_t^2 + \alpha_2 \sigma_t^2$$

Method

Using Alternative Forecasts:

Professional Forecasts:

China Economic Forecasts

(http://www.consensuseconomics.com/China_Economic_Forecasts.htm)

Data of other Developing Countries:

India, Brazil, South Africa and etc.

Reference

Engle, R. F. 1982. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50:987–1007.

Fisher, I. 1907. The rate of interest: It's nature, determination and relation to economic phenomena. London: The Macmillan Company.

Bollerslev, T. 1986. Generalized autoregressive conditional heteroscedasticity. Journal of Econometrics 31:307–327.

Samuel M. Hartzmark; Economic Uncertainty and Interest Rates, The Review of Asset Pricing Studies, Volume 6, Issue 2, 1 December 2016, Pages 179–220