Предварительные замечания:

- 1. Описание алгоритма состоит из описания двух процедур, где процедура SHOWLINE вспомогательная.
- 2. Предполагается, что к началу исполнения алгоритма был произведен переход к экранной системе координат и проведена операция кадрирования, в ходе которой координата z каждой точки (координата в экранной системе координат) не отбрасывается, а остается неизменной. Т. е. после перехода к экранной системе координат выполняется преобразование:

$$\begin{bmatrix} \chi' \\ \gamma' \\ \zeta' \\ \alpha' \end{bmatrix} = \begin{bmatrix} W_x/2 & 0 & 0 & W_{cx} + W_x/2 \\ 0 & -W_y/2 & 0 & W_{cy} - W_y/2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \chi \\ \gamma \\ \zeta \\ \alpha \end{bmatrix}$$

- 3. В описании алгоритма подразумевается, что область рисования имеет координаты по x от W_{cx} до $W_{cx}+W_x$, по y от W_{cy} до $W_{cy}+W_y$, где W_{cx},W_x,W_{cy},W_y неотрицательны.
- 4. Список AEL список семерок, первый элемент которых идентификатор многоугольника, второй цвет многоугольника, а оставшиеся пять вещественные числа.
- 5. При сравнении значений координаты y на равенство следует округлять эти значения до целого числа.
- 6. При рассмотрении ребер многоугольника $[(x_1,y_1,z_1),(x_2,y_2,z_2)]$ считаем, что $y_1\leqslant y_2$ (начальная точка ребра находится не ниже конечной), а при равенстве $y_1=y_2$ выполняется $x_1\leqslant x_2$ (начальная точка ребра находится не левее конечной).

Алгоритм 1: Алгоритм отсечения невидимых граней с использованием S-буфера

Вход: \mathscr{P} — список многоугольников трехмерной сцены

начало алгоритма

- \cdot Для каждого многоугольника в $\mathscr P$ вычислить $y_{P\min}$ и $y_{P\max}$ значения минимальной и максимальной координаты y для вершин многоугольника;
- \cdot Удалить из \mathscr{P} все многоугольники, у которых $y_{P \min} > W_{cy} + W_y$ или $y_{P \max} < W_{cy};$
- \cdot Определить значение $y_{P\,next}$ минимальное значение $y_{P\,{
 m min}}$ для многоугольников в
- $\cdot y_t = y_{P \, next};$
- \cdot цикл пока $y_t \leqslant W_{cy} + W_y$ выполнять
 - \cdot если $y_t = y_{P\,next}$, то
 - · Занести в список APL все многоугольники из \mathscr{P} , для которых $y_{P \min} = y_t$, yдалив их из \mathscr{P} ;
 - $\cdot y_{APL\,next} = y_t;$
 - если список \mathscr{P} пуст, то присвоить $y_{P\,next} = \infty$;

Определить значение $y_{P \, next}$ — минимальное значение $y_{P \, min}$ для многоугольников в \mathscr{P}

- \cdot если $y_t \geqslant W_{cy}$ то
 - \cdot Инициализировать строку растра, соответствующую координате y_t ;
 - Заполнить строку растра цветом фона. Определить вещественнозначный массив Z с количеством элементов равным количеству пикселов в строке растра;
- \cdot если $y_t = y_{APL\,next}$, то
 - $y_t-y_{APL\,next}$, 10 P . Добавить в AEL все семерки $\left(P,C,x_1,z_1,y_2,\dfrac{x_2-x_1}{y_2-y_1},\dfrac{z_2-z_1}{y_2-y_1}
 ight)$, составленные для ребер многоугольников из APL, у которых $y_1 = y_t$ и $y_1 \neq y_2$;
 - \cdot если $y_t \geqslant W_{cy}$ то

Для всех ребер многоугольников в APL, у которых $y_1 = y_t$ и $y_1 = y_2$ выполнить ShowLine $(y_t, (x_1, z_1), (x_2, z_2), C)$, где C — цвет соответствующего многоугольника;

- \cdot Для ребер многоугольников в APL найти $y_{APL\,next}$ минимальное значение y_1 такое, что $y_1 > y_t$. Если таких ребер нет в APL, то присвоить $y_{APL\,next} = \infty;$
- \cdot Упорядочить AEL по значению 1-го элемента семерки, затем по возрастанию 3-го, и затем по возрастанию 6-го;
- \cdot Найти $y_{AEL\,next}$ минимальное значение пятого элемента в семерках в AEL;
- \cdot если $y_t\geqslant W_{cu}$ то
 - $\cdot i = 1$:
 - · цикл пока $i \leq |AEL|$ выполнять
 - · Выполнить SHOWLINE $(y_t, (x_i, z_i), (x_{i+1}, z_{i+1}), C_i)$, где $(P_i, C_i, x_i, z_i, y_i, \Delta_i x, \Delta_i z)$ обозначает i-й элемент списка AEL; $\cdot i = i + 2;$
- $y_t = y_t + 1$;
- \cdot если $y_t \geqslant y_{AEL\,next}$, то
 - \cdot удалить из AEL семерки с пятым элементом меньшим или равным y_t ;
 - · Обновить значение $y_{AEL\,next}$;
- \cdot В каждой семерке $(P_j,C_j,x_j,z_j,y_j,\Delta_jx,\Delta_jz)$ в AEL заменить x_j на $x_j+\Delta_jx,\,z_j$ на $z_i + \Delta_i z$;

Алгоритм 2: ShowLine

Вход: y_0 — координата y строки растра, (x_1, z_1) — координаты x и z первой точки, (x_2, z_2) — координаты x и z второй точки. C — цвет соответствующего многоугольника.

Выход: Измененные Z-буфер и область рисования.

начало алгоритма

- \cdot если $y_0 < W_{cy}$ или $y_0 > W_{cy} + W_y$, то закончить алгоритм;
- \cdot если $x_2 < W_{cx}$ или $x_1 > W_{cx} + W_x$, то закончить алгоритм;

$$x \cdot x = x_1, \ z = z_1; \ \Delta z = \frac{z_2 - z_1}{x_2 - x_1};$$

 \cdot если $x < W_{cx}$, то

$$z = z + (W_{cx} - x)\Delta z;$$

$$x = W_{cx};$$

- \cdot цикл пока $x\leqslant x_2$ и $x\leqslant W_{cx}+W_x$ выполнять
 - \cdot если $Z[x]\leqslant z\leqslant 1$, то

Присвоить Z[x]=z и закрасить в растровой области точку с координатами (x,y_0) цветом C;

· Присвоить x = x + 1, $z = z + \Delta z$;

конец алгоритма