08 March 2021 12:40

BALLSEARCH (A, ···)
Find Maximum element of Priod O(1) Insert into PRIOD O(k) Heap O(log_k)
POP PUSH/INSERT
REPLACE HEAD or dist2 PRIOQ. dist2 Coment max dist.
3D density $\rho(r) = \frac{\sum_{k}^{m_k}}{\frac{4}{3}\pi R_0^3}$ TOP HAT:
R I Fof 32ml particle I for SPH al replace this
weight of 32 ponticles
Grid Mothads Eulerian approach
describe the fluid from the point of view of being in the flow.
Lagrangian approach
Deforming mesh
a

SPH: Particles represent parcels of the fluid PHYSICS: Equation of motion E = m.a

F = pSV du fluid

in the moving

frame of reference $\frac{dU}{dt} = \frac{\pi}{\text{Time derivative}} = \frac{u(x+u)t, t+2t}{st} - u(x,t)$ following the motion = $\frac{st}{st}$ $\frac{dF}{dt} = \int_{\mathbb{R}} \left\{ F(\underline{x} + \underline{u}St + \underline{t} + St) - F(\underline{x}, t) \right\}$ $\overline{F(\underline{x}, t)} + \frac{\partial F}{\partial \underline{x}} \underline{u}St + \frac{\partial F}{\partial t}St - \overline{F(\underline{x}, t)}$ $\frac{dF}{dt} = (U \cdot \nabla)F + \frac{\partial F}{\partial t}$ Convective derivative $\frac{du}{du} = u \cdot \nabla u + \frac{\partial u}{\partial t}$ PRV du = pSV g = don't forget the contribution due to pressure $\frac{du}{dt} = g - \frac{P}{\rho}$