Tracing Problem Set

Table of contents

1	Problem 1:
	1.1 Solution
	1.2 Explanation
2	Problem 2
	2.1 Solution
	2.2 Explanation
3	Problem 3 3.1 Solution
4	Problem 4 4.1 Solution
5	Problem 5
	5.1 Solution
	5.2 Explanation

1 Problem 1:

What is the output of the following code?

1.1 Solution

5

1.2 Explanation

The loop runs once and reduces x to 5, ending the loop.

2 Problem 2

What is the output of the following code?

```
1 lst = [10, 20, 30, 40, 50]
2 for i in range(len(lst)):
3    if lst[i] % 20 == 0:
4         lst[i] = lst[i] + 1
5 print(lst)
```

2.1 Solution

```
[10, 21, 30, 41, 50]
```

2.2 Explanation

Only elements divisible by 20 are modified:

- $20 \rightarrow 21$
- $40 \rightarrow 41$

3 Problem 3

What is the output of the following code?

```
scores = {"Alice": 85, "Bob": 90, "Charlie": 75}
total = 0
for key in scores:
total += scores[key]
print(total)
```

3.1 Solution

250

4 Problem 4

What is the output of the following code?

```
grades = {"John": [80, 85], "Alice": [90, 95], "Bob": [70, 75]}
for student in grades:
    grades[student].append(sum(grades[student]) / len(grades[student]))
print(grades)
```

4.1 Solution

```
{'John': [80, 85, 82.5], 'Alice': [90, 95, 92.5], 'Bob': [70, 75, 72.5]}
```

5 Problem 5

What is the output of the following code?

```
def mystery(n):
    if n <= 0:
        return 0
    else:
        return n + mystery(n - 2)

print(mystery(5))</pre>
```

5.1 Solution

9

5.2 Explanation

The recursion adds values 5, 3, and 1, resulting in 9.