

TEMA: OPERAÇÕES COM VETORES. VETORES COLINEARES.

TIPO: FICHA DE TRABALHO Nº 8

LR MAT EXPLICAÇÕES

1. Considera os vetores $\vec{u}, \vec{v}, \vec{a}$ e \vec{b} representados na figura.

Qual das seguintes afirmações é verdadeira?

(A)
$$\vec{a} = \vec{u} + \vec{v} \in \vec{b} = -\vec{u} + \vec{v}$$

(B)
$$\vec{a} = \vec{u} - \vec{v} \in \vec{b} = \vec{u} + \vec{v}$$

(C)
$$\vec{a} = -\vec{u} + \vec{v} \in \vec{b} = \vec{u} + \vec{v}$$

(D)
$$\vec{a} = \vec{u} + \vec{v} \in \vec{b} = -\vec{v}$$

2. Na figura está representado o paralelogramo dividido em oito paralelogramos iguais.

Considera as proposições:

p: O segmento orientado [A, C] representa o vetor \overrightarrow{GI} .

$$q: B - \frac{1}{2}\overrightarrow{MO} = A$$

$$r: \overrightarrow{AB} + \overrightarrow{EI} - \overrightarrow{BM} = \overrightarrow{EF}$$

Qual das afirmações seguintes é verdadeira?

- (A) Apenas a proposição r é falsa.
- (B) Apenas são verdadeiras as proposições $p \ e \ r$.
- (C) Apenas não é falsa a proposição q.
- (D) As três proposições são falsas.

3. Considera a figura formada apenas por triângulos equiláteros.

Utiliza as letras da figura, calcula cada uma das seguintes operações.

3.1)
$$B + \frac{1}{3} \overrightarrow{AJ}$$

3.2)
$$\overrightarrow{AB} + \overrightarrow{FI} - \overrightarrow{GC}$$

3.3)
$$-2(\overrightarrow{AC} + \overrightarrow{FE})$$

3.4)
$$-\frac{2}{3}\overrightarrow{DJ} + \frac{1}{2}\overrightarrow{IB} - \overrightarrow{JC}$$

4. Observa os 25 pontos representados no quadriculado abaixo, em que o lado da quadricula é a unidade de comprimento. Completa os espaços em branco de modo a obteres proposições verdadeiras:

f)
$$\frac{4}{3}$$
 $(3\overrightarrow{UV}) = \dots \overrightarrow{\ldots} L$

b)
$$2\overrightarrow{AG} + \dots \overrightarrow{AG} = 4\overrightarrow{AG}$$

g)
$$\frac{\|\overrightarrow{AD}\|}{\|\overrightarrow{AB}\|} = \dots$$

c)
$$2\overrightarrow{AB} + 2\overrightarrow{AF} = 2\overrightarrow{A}$$
...

$$\text{h) } \frac{\|\overrightarrow{UI}\|}{\|\overrightarrow{M}\|} = \frac{3}{2}$$

d)
$$3\overrightarrow{YS} + \overrightarrow{JN} = \dots \overrightarrow{OA}$$

e) $2\left(\frac{1}{4}\overrightarrow{AE}\right) = \dots \overrightarrow{AE}$

i)
$$\frac{\|\overrightarrow{PE}\|}{\|\overrightarrow{PE}\|} = 1$$

5. Considera um referencial cartesiano ortonormado $(0, \overrightarrow{e_1}, \overrightarrow{e_2})$, os vetores:

•
$$\vec{a} = 2\vec{e_1} - 3\vec{e_2}$$

•
$$\vec{b} = 2\vec{e_1} + 4\vec{e_1} - 3\vec{e_2} - 6\vec{e_2}$$

•
$$\vec{c} = 2(\overrightarrow{e_1} + 3\overrightarrow{e_2}) - 6\overrightarrow{e_2}$$

- 5.1) Determina as normas dos vetores \vec{a}, \vec{b} e \vec{c} .
- 5.2) \vec{a} e \vec{b} são colineares? Justifica.
- 5.3) \vec{c} e \vec{b} são colineares? Justifica.
- 6. Considera fixado num plano munido de um referencial cartesiano, os vetores $\vec{u}(-3,4)$ e $\vec{v}(2,5)$.

Determina as coordenadas do vetor:

6.1)
$$\vec{w} = 2\vec{u} - \frac{3}{2}\vec{v}$$

6.2)
$$\vec{y}$$
 tal que $\frac{1}{3}\vec{u} = 2\vec{y} + \frac{1}{2}\vec{v}$

- 6.3) \vec{t} colinear com o vetor \vec{u} , com o mesmo sentido, e de norma 50.
- 6.4) \vec{a} colinear com o vetor \vec{v} , com sentido oposto, e de norma $4\sqrt{29}$.
- 7. Considera, fixado um plano munido de um referencial cartesiano, o vetor $\vec{u}(\sqrt{3},5)$.

As coordenadas de um vetor colinear com \vec{u} e de norma $\sqrt{56}$ podem ser:

$$(A)\left(\frac{\sqrt{6}}{2},\frac{5\sqrt{2}}{2}\right)$$

(B)
$$(\sqrt{6}, 5\sqrt{2})$$

(C)
$$\left(5\sqrt{2},\sqrt{6}\right)$$

(D)
$$\left(\frac{\sqrt{6}}{2}, -\frac{5\sqrt{2}}{2}\right)$$

- 8. Considera, num referencial ortonormado $(0, \overrightarrow{e_1}, \overrightarrow{e_2})$ o vetor $\overrightarrow{u} = -\overrightarrow{e_1} 5\overrightarrow{e_2}$. Determina as coordenadas de um vetor colinear com \overrightarrow{u} , de sentido contrário e de norma $2\sqrt{13}$.
- 9. Mostra que:
 - 9.1) os vetores $\vec{u}(3,-9)$ e $\vec{v}(1,-3)$ são colineares.
 - 9.2) os vetores $\vec{u}(2,0)$ e $\vec{v}(4,2)$ não são colineares.

- 10. Verifica se os vetores $\vec{u}(2,\sqrt{2})$ e $\vec{v}(\sqrt{8},2)$ são colineares.
- 11. Num plano munido de um referencial o.n. determina, se existir, um número real k tal que os vetores $\vec{u}(1, k+1)$ e $\vec{v}(2k+1,6)$ sejam colineares e com o mesmo sentido.
- 12. Considera num plano munido de um referencial ortonormado o vetor $\vec{u}(-3,4)$. Determina as coordenadas do vetor \vec{v} colinear a \vec{u} e de norma 15.