Name:		

• READ THE FOLLOWING DIRECTIONS!

- Do NOT open the exam until instructed to do so.
- You have seventy-five (75) minutes to complete this exam. When you are told to stop writing, do it or you will lose all points on the page(s) you write on.
- You may not communicate with other students during this test.
- Keep your eyes on your own paper.
- No written materials of any kind are allowed. No scratch paper is allowed except as given by the proctor.
- No phones, calculators, or any other electronic devices are allowed for any reason, including checking the time (a simple wristwatch is fine).
- Any case of cheating will be taken extremely seriously.
- Show all your work and explain your answers when appropriate.
- Before turning in your exam, check to make certain you've answered all the questions.

Question:	1	2	3	4	5	6	7	Total
Points:	12	12	12	12	12	20	40	120
Score:								

Short answer

1. (12 points) Determine whether the following two graphs are isomorphic. (Give an isomorphism or a short argument why they are not isomorphic.)

2. (12 points) Decompose K_5 into one copy of each of the four trees below.

Algorithms

Give brief justifications for your answers (but not necessarily full proofs; a computation with each step clearly written may suffice).

- 3. (12 points) Determine whether the following sequences are graphic (the degree sequence of a simple graph).
 - (a) 6 5 5 5 2 2 2 1 1

(b) 6 5 5 5 2 2 2 1

4. (12 points) How many spanning trees does the following graph have?

- 5. (12 points) Weighted graph algorithms
 - (a) Use either Kruskal's or Prim's algorithm to find a minimum spanning tree in the following weighted graph.

(b) Use Dijkstra's algorithm to find the minimum distances from the central vertex to each other vertex.

Proofs

- 6. (20 points) Digraphs
 - (a) Prove that if D is a digraph with $\delta^+(D) \geq 1$, then D has a (directed) cycle.

(b) Use the statement in part (a) to prove that if D is a digraph with $d^+(v) = d^-(v)$ at every vertex v, then D decomposes into (directed) cycles.

- 7. (40 points) Give complete careful proofs of **2 of the following 3** statements.
 - (i) If G is disconnected, then \overline{G} is connected.
 - (ii) A graph is a tree if and only if it is loopless and has exactly one spanning tree.
 - (iii) If G is even (i.e., every vertex degree is even), then G has no cut edge.

(The statements are repeated here for your convenience.)

- (i) If G is disconnected, then \overline{G} is connected.
- (ii) A graph is a tree if and only if it is loopless and has exactly one spanning tree.
- (iii) If G is even (i.e., every vertex degree is even), then G has no cut edge.

Scratch Paper - Do Not Remove