스마트시스템 운영체제 (LD01600)

김준철 정보시스템공학과

greensday@sungshin.ac.kr

2주차 강의

		주차	강의 목차
	9.2	1	과목소개 / 운영체제 개요
휴강(9.30) _ (추석)	9.9	2	컴퓨터 시스템 구조
	9.16	3	프로세스와 스레드1
	9.22	4	프로세스와 스레드 2, CPU 스케쥴링1
	10.7	5	CPU스케쥴링2
	10.14	6	프로세스 동기화
	10.21	7	교착 상태
	10.28	8	중간고사
	11.4	9	물리 메모리 관리
	11.11	10	가상메모리 기초
	11.18	11	가상메모리 관리
	11.25	12	입출력시스템1
	12.2	13	입출력시스템2, 파일시스템1
	12.9	14	파일시스템2
	12.16	15	기말고사

Operating Systems

ch.02 컴퓨터 구조

- 01 컴퓨터의 기본 구성
- 02 CPU와 메모리
- 03 컴퓨터 성능 향상 기술
- 04 병렬 처리
- 05 [심화학습] 무어의 법칙과 암달의 법칙

Basic Definitions

■ SI(International System of Units) 단위와 IEC(International Electotechnical Commission) 단위

			SI(10 <mark>진</mark> 단위)	IEC(<mark>2진</mark> 단위)	
	기호	이름	값	값	
	p	pico-	$(10^3)^{-4} = 10^{-12}$		
	n	nano-	$(10^3)^{-3}=10^{-9}$		
	μ	micro-	$(10^3)^{-2}=10^{-6}$		
	m	mili-	$(10^3)^{-1}=10^{-3}$		
	k, K	kilo-	$(10^3)^1=10^3$	$(2^{10})^1 = 2^{10}$	Kibi
	M	mega-	$(10^3)^2 = 10^6$	$(2^{10})^2 = 2^{20}$	Mebi
	G	giga-	$(10^3)^3=10^9$	$(2^{10})^3 = 2^{30}$	Gibi
	T	tera-	$(10^3)^4 = 10^{12}$	$(2^{10})^4 = 2^{40}$	Tebi

Clocking

■ Digital hardware의 동작은 (constant-rate) clock에 지배됨

- Clock period (주기, 시간): duration of a clock cycle
 - $1000ps (= 1ns) = 1000 \times 10^{-12}s = 1.0 \times 10^{-9}s$
 - 250ps (= 0.25ns) = 250×10^{-12} s = 0.25×10^{-9} s
- Clock frequency (주파수): cycles per second [or clock rate]
 - 1GHz (= 1000MHz) = 1.0×10^9Hz
 - 4.0GHz (= 4000MHz) = 4.0×10^9 Hz

컴퓨터 하드웨어의 구성

■ 컴퓨터의 구성

하드웨어는 필수 장치와 주변장치로 구성되고 시스템 버스로 연결 됨

■ 필수장치: CPU, Main memory

■ 주변장치: 입력장치, 출력장치, 저장장치

■ 폰노이만 구조

■ CPU, Main memory,입출력 장치의 전형적인 3단계 구조로 이루어진 프로그램 내장형 컴퓨터 구조

[그림] 컴퓨터를 구성하는 장치

소스코드의 번역과 실행

■ (간단한)컴파일 과정

- ●소스코드 작성 및 컴파일
- 에러찾기와 최적화
- ❷목적 코드와 라이브러리 연결
- ❸라이브러리를 포함하여 최종 실행

프로그램이 메모리에 올라감

Instruction 처리

프로세서 내부 구성

■ ALU , data path : data 처리(연산)에 관계함 arithmetic / logic unit

Control

: instruction(명령어) **해독**(decode), **제어 신호**발생 CPU 내부 resource를 관리

- **Register**: very fast and expensive(relative to memory)
- general purpose register (GPR) : 프로그램, 데이터 처리 등 일반적인 작업
- special purpose register : 지정된 특별한 용도로 사용 (PC, IR, SP ...)
- 기타 OS / assemble 등에 예약된 register들도 있음
- 피연산자(operand) 및 연산결과의 임시저장
- instruction을 표현하는 bit들을 저장
- **BUS**: system, component 간의 data 전달 역할 (data bus, Control bus, address bus)

PC (program counter)

- PC(program counter)
 - 현재 수행하고 있는 instruction의 memory 주소를 저장
 - Next sequential instruction의 주소 계산
 - * PC는 항상 자동적으로 1word 증가하여 다음 실행할 instruction의 주소를 가리킴
 - Example

```
int x = 4; // LDI R17, 4
int y = 2; // LDI R18, 2
y = y + x; // ADD R18, R17
```


Register Operands(피연산자)

Memory의 operand를 CPU에서 바로 연산하는 것은 불가능
→operand를 register에 저장하고 연산

명령어 사이클

- 명령어 사이클 (Instruction Cycle)
 - 프로그램을 구성하는 명령어는 4단계의 과정을 통해서 수행
- **각 단계별 사이클의 역할**
 - **인출(Fetch)** 사이클 : 필요한 명령어를 주기억장치에서 불러오는 사이클
 - 해독(Decode) 사이클 : 호출된 명령어를 해석하는 사이클
 - 실행(Execute) 사이클: 해석된 명령어를 산술논리연산장치를 통하여서 실행
 - 저장(Store) 사이클 : 수행결과를 주기억장치에 저장하는 사이클

호출 사이클

실행 사이클

② 해독 사이클

④ 저장 사이클

메모리의 종류

■ 휘발성 메모리

- DRAMDynamic RAM
 - 저장된 0과 1의 데이터가 일정 시간이 지나면 사라짐
 - → 일정 시간마다 다시 refresh
- SRAMStatic RAM
 - 전력이 공급되는 동안에는 데이터를 보관할 수 있어서 refresh가 필요가 없음

■ 비휘발성 메모리

- 플래시 메모리flash memory
 - 디지털카메라, MP3 플레이어, USB 드라이버같이 전력이 없어도 데이터를 보관하는 저장장치
- SSD
 - 가격이 비싸지만 빠른 데이터 접근 속도, 저전력, 내구성 때문에 많이 사용
 - Hard Disk Drive(HDD)를 대체하고 있음

저장장치의 계층 구조

■ 레지스터

프로세서 내부에 있으며, 프로세서가 사용할 데이터를 보관하는 가장
 빠른 메모리

■ ¾시(cache)

- 프로세서와 메인 메모리 간에 속도 차이의 부담을 줄이려고 프로세서 내부나 외부에 캐시를 구현하기도 함
- SRAM(Static RAM) 사용 (고가 메모리)

■ 메인 메모리

- 프로세서 외부에 있으면서 프로세서에서 수행할 프로그램과 데이터를 저장하거나 프로세서에서 처리한 결과 저장
- DRAM(Dynamic RAM) 사용 (저장 밀도가 높고 저가격)

저장장치의 계층 구조

■ 저장장치의 계층 구조

[그림] 저장장치의 계층 구조

메인 메모리 및 주소

- 메인 메모리
 - 메모리에는 byte 단위로 주소가 부여 되어 있음

[그림] 메인 메모리의 주소 지정

메모리 보호

■ 메모리 보호의 필요성

- 현대의 운영체제는 시분할 기법을 사용하여 여러 프로그램을 동시에 실행하므로 사용자 영역이 여러 개의 작업 공간으로 나뉘어 있음
- 메모리가 보호되지 않으면 어떤 작업이 다른 작업의 영역을 침범하여 프로그램을 파괴하거나 데이터를 지울 수도 있으며, 최악의 경우 운영체제 영역을 침범하면 시스템이 멈출 수도 있음

두 레지스터의 값을 벗어 나면 메모리 오류와 관련된 <mark>인터립트</mark>가 발생

메모리 영역을 벗어나서 발생한 인터럽트의 경우 운영체제가 해당 프로그램을 강제 종료

부팅

■ 부팅

■ 컴퓨터를 켰을 때 운영체제를 메모리에 올리는 과정

[그림] 부팅 과정

이중 모드(dual mode)

- 이중 모드(dual mode) CPU는 두 가지 모드로 동작함
 - 운영체제가 **커널 모드**와 **사용자 모드**를 전환하며 일 처리를 하는 것

Kernel mode User mode

- 궁극적인 목적은 자원 보호에 있음
- 커널 모드(Kernel mode)
 - 운영체제와 관련된 커널 프로세스가 실행되는 상태
 - Mode bit = 0
- 사용자 모드(User mode)
 - 사용자 프로세스가 실행되는 상태
 - Mode bit = 1

이중모드의 구현 – flag register 사용

mode bit								
flag register		1 또는 0						

타이머 인터럽트

- Timer Interrupt
 - 특정 program의 CPU 독점 방지
 - TSS(time sharing system)의 구현 방법

Computer 외부 (I/O장치)

controller

buffer

Polling 방식과 Interrupt 방식

- Polling 방식: 우선 순위가 없는 순차적 처리
 - 입출력을 요청하면 주기적으로 입출력장치를 직접 확인해서 처리하는 방식
- Interrupt 방식 : 우선 순위가 높은 코드를 먼저 처리
 - Interrupt :
 - μP에게 즉시 특정 작업을 처리하도록 요구하는 (비정상적)사건 micro processor, CPU
 - 정상적인 실행 순서를 바꿀 만큼 중요한 사건
 - 우선 처리를 위한 사건을 정의하고, 우선 순위에 따라 실행 순서를 변경
 - 하드웨어 vs. 소프트웨어 Interrupt
 - HW Interrupt : 하드웨어에 의해 발생, µC의 Interrupt

micro controller

■ SW Interrupt : 운영체제의 커널을 통해 발생

Polling 방식과 Interrupt 방식 차이 예

```
void main(void) {
    while(1) {
        if(button_pressed)
        do_something();
    }

return 0;
}

Polling 방식
```

```
ISR(BUTTON_PRESS_vect) {
    do_something();
}

void main(void) {
    setup_button_press_interrupt();
    while(1) {
    }

return 0;
}

Interrupt 방식
```

감사합니다.