

Introduction to Language Modeling & N-gram Language Models

Yu Meng

University of Virginia

yumeng5@virginia.edu

Sep 02, 2024

Announcement: Assignment 1 Out

- Deadline: 09/11 11:59pm
- Released on course website: https://yumeng5.github.io/teaching/2024-fall-cs4501

Week	Date	Topic	Slides	Slido Link	Deadline
1	08/28	Course Logistics & Overview	overview 0828	08/28	
	08/30	Course Overview (Continued)	overview 0830	08/30	
2	09/02	Intro to Language Modeling & N-gram Language Models	Im intro 0902	09/02	Assignment 1 out: <u>LaTeX script</u>

Download the LaTeX script here

Overview of Course Contents

- Week 1: Logistics & Overview
- Week 2: N-gram Language Models
- Week 3: Word Senses, Semantics & Classic Word Representations
- Week 4: Word Embeddings
- Week 5: Sequence Modeling and Transformers
- Week 6-7: Language Modeling with Transformers (Pretraining + Fine-tuning)
- Week 8: Large Language Models (LLMs) & In-context Learning
- Week 9-10: Knowledge in LLMs and Retrieval-Augmented Generation (RAG)
- Week 11: LLM Alignment
- Week 12: Language Agents
- Week 13: Recap + Future of NLP
- Week 15 (after Thanksgiving): Project Presentations

Agenda

- Introduction to Language Models
- N-gram Language Models
- Smoothing in N-gram Language Models
- Evaluation of Language Models

Overview: Language Modeling

- The core problem in NLP is language modeling
- Goal: Assigning probability to a sequence of words
- For text understanding: p("The cat is on the mat") >> p("Truck the earth on")
- For text generation: $p(w \mid \text{"The cat is on the"}) \rightarrow \text{"mat"}$

Autocomplete empowered by language modeling

Language Model Applications

Join at slido.com #7035 481

Shopping Assistants

Code Assistants

e IMO 2015 P3

"Let ABC be an acute triangle. Let (0) be its circumcircle, H its orthocenter, and F the foot of the altitude from A. Let M be the midpoint of BC. Let Q be the point on (0) such that $QH \perp QA$ and let K be the point on (0) such that $KH \perp KQ$. Prove that the circumcircles (Q_1) and (Q_2) of triangles FKM and KQH are tangent to each other."

Language Models = Universal NLP Task Solvers

- Every NLP task can be converted into a text-to-text task!
 - Sentiment analysis: The movie's closing scene is attractive; it was ____ (good)
 - Machine translation: "Hello world" in French is ____ (Bonjour le monde)
 - Question answering: Which city is UVA located in? ____ (Charlottesville)
 - ...
- All these tasks can be formulated as a language modeling problem!

Language Modeling: Probability Decomposition

- Given a text sequence $m{x} = [x_1, x_2, \dots, x_n]$, how can we model $p(m{x})$?
- Autoregressive assumption: the probability of each word only depends on its previous tokens

$$p(\mathbf{x}) = p(x_1)p(x_2|x_1)p(x_3|x_1,x_2)\cdots p(x_n|x_1,\ldots,x_{n-1}) = \prod_{i=1}^n p(x_i|x_1,\ldots,x_{i-1})$$

- Are there other possible decomposition assumptions?
 - Yes, but they are not considered "conventional" language models
 - We'll see in word embedding/BERT lectures

Language Modeling: Probability Decomposition

- Given a text sequence $m{x} = [x_1, x_2, \dots, x_n]$, how can we model $p(m{x})$?
- Autoregressive assumption: the probability of each word only depends on its previous tokens

$$p(\mathbf{x}) = p(x_1)p(x_2|x_1)p(x_3|x_1,x_2)\cdots p(x_n|x_1,\ldots,x_{n-1}) = \prod_{i=1}^n p(x_i|x_1,\ldots,x_{i-1})$$

- How to guarantee the probability distributions are valid?
 - Non-negative

$$p(x_i = w | x_1, \dots, x_{i-1}) \ge 0, \quad \forall w \in \mathcal{V}$$

Summed to 1: $\sum_{w \in \mathcal{V}} p(x_i = w | x_1, \dots, x_{i-1}) = 1$

• The goal of language modeling is to learn the distribution $p(x_i = w | x_1, \dots, x_{i-1})$!

Language Models Are Generative Models

- Suppose we have a language model that gives us the estimate of $p(w|x_1,\ldots,x_{i-1})$, we can generate the next tokens one-by-one!
- Sampling: $x_i \sim p(w|x_1,\ldots,x_{i-1})$
- Or greedily: $x_i \leftarrow \arg\max_w p(w|x_1, \dots, x_{i-1})$
- But how do we know when to stop generation?
- Use a special symbol [EOS] (end-of-sequence) to denote stopping

Example: Language Models for Generation

- Recursively sample $x_i \sim p(w|x_1,\ldots,x_{i-1})$ until we generate [EOS]
- Generate the first word: "the" $\leftarrow x_1 \sim p(w|[\mathrm{BOS}]]$ beginning-of-sequence
- Generate the second word: "cat" $\leftarrow x_2 \sim p(w|\text{"the"})$
- Generate the third word: "is" $\leftarrow x_3 \sim p(w|$ "the cat")
- Generate the fourth word: "on" $\leftarrow x_4 \sim p(w|$ "the cat is")
- Generate the fifth word: "the" $\leftarrow x_5 \sim p(w|$ "the cat is on")
- Generate the sixth word: "mat" $\leftarrow x_6 \sim p(w|$ "the cat is on the")
- Generate the seventh word: $[EOS] \leftarrow x_7 \sim p(w|$ "the cat is on the mat")
- Generation finished!

How to Obtain A Language Model?

Join at slido.com #7035 481

Learn the probability distribution $p(w|x_1,\ldots,x_{i-1})$ from a training corpus!

J. Caleb Booos

Learning target:

$$p(w|x_1,\ldots,x_{i-1})$$

Text corpora contain rich distributional statistics!

government and the Taliban seizing control. He responded to the Russian invasion of

History of Language Models

- Language models started to be built with statistical methods
 - Sparsity
 - Poor generalization

Weeks 2-3

Before 2000s

Statistical language models (e.g., n-gram language models)

History of Language Models

- The introduction of neural networks into language models mitigated sparsity and improved generalization
 - Neural networks for language models were small-scale and inefficient for a long time
 - Task-specific architecture designs required for different NLP tasks
 - These language models were trained on individual NLP tasks as task-specific solvers

History of Language Models

- Transformer became the dominant architecture for language modeling; scaling up model sizes and (pretraining) data enabled significant generalization ability
 - Transformer demonstrated striking scalability and efficiency in sequence modeling
 - One pretrained model checkpoint fine-tuned to become strong task-specific models
 - Task-specific fine-tuning was still necessary

History of Language Models

- Generalist large language models (LLMs) became the universal task solvers and replaced task-specific language models
 - Real-world NLP applications are usually multifaceted (require composite task abilities)
 - Tasks are not clearly defined and may overlap
 - Single-task models struggle to handle complex tasks

Agenda

- Introduction to Language Models
- N-gram Language Models
- Smoothing in N-gram Language Models
- Evaluation of Language Models

N-gram Language Model: Simplified Assumption

Challenge of language modeling: hard to keep track of all previous tokens!

$$p(m{x}) = \prod_{i=1}^n p(x_i | x_1, \dots, x_{i-1})$$
 Can we model long contexts at all? Yes, but not for now!)

Instead of keeping track of all previous tokens, assume the probability of a word is only dependent on the previous N-1 words

$$p(m{x}) = \prod_{i=1}^n p(x_i|x_1,\dots,x_{i-1})$$
 $pprox \prod_{i=1}^n p(x_i|x_{i-N+1},\dots,x_{i-1})$ N-gram assumption

Should N be larger or smaller?

N-gram Language Model: Simplified Assumption

- Unigram LM (N=1): each word's probability does not depend on previous words
- Bigram LM (N=2): each word's probability is based on the previous word
- Trigram LM (N=3): each word's probability is based on the previous two words
- •
- Example: p("The cat is on the mat") For simplicity, omitting [BOS] & [EOS] in these examples
- Unigram: = p("The") p("cat") p("is") p("on") p("the") p("mat")
- Bigram: = p("The") p("cat" | "The") p("is" | "cat") p("on" | "is") p("the" | "on") p("mat" | "the")
- Trigram: = p("The") p("cat" | "The") p("is" | "The cat") p("on" | "cat is") p("the" | "is on") p("mat" | "on the")
- •

How to Learn N-grams?

Probabilities can be estimated by frequencies (maximum likelihood estimation)! lacksquare

$$p(x_i|x_{i-N+1},\ldots,x_{i-1}) = \frac{\#(x_{i-N+1},\ldots,x_{i-1},x_i)}{\#(x_{i-N+1},\ldots,x_{i-1})} \quad \text{How many times (counts) the sequences occur in the corpus}$$

- Unigram: $p(x_i) = \frac{\#(x_i)}{\#(\text{all word counts in the corpus})}$
- Bigram: $p(x_i|x_{i-1}) = \frac{\#(x_{i-1},x_i)}{\#(x_{i-1})}$
- Trigram: $p(x_i|x_{i-2},x_{i-1}) = \frac{\#(x_{i-2},x_{i-1},x_i)}{\#(x_{i-2},x_{i-1})}$

Practice: Learning Unigrams

Consider the following mini-corpus:

[BOS] The cat is on the mat [EOS] [BOS] I have a cat and a mat [EOS] [BOS] I like the cat [EOS]

Treating "The" & "the" as one word

• Unigram estimated from the mini-corpus $p(x_i) = \frac{\#(x_i)}{\#(\text{all word counts in the corpus})}$

$$p([BOS]) = \frac{3}{23}, \quad p([EOS]) = \frac{3}{23}, \quad p("the") = \frac{3}{23}, \quad p("cat") = \frac{3}{23},$$
$$p("mat") = \frac{2}{23}, \quad p("I") = \frac{2}{23}, \quad p("a") = \frac{2}{23}, \quad p("have") = \frac{1}{23},$$
$$p("like") = \frac{1}{23}, \quad p("is") = \frac{1}{23}, \quad p("on") = \frac{1}{23}, \quad p("and") = \frac{1}{23}$$

Unigram Issues: No Word Correlations

Learned unigram probabilities:

$$p([BOS]) = \frac{3}{23}, \quad p([EOS]) = \frac{3}{23}, \quad p("the") = \frac{3}{23}, \quad p("cat") = \frac{3}{23},$$
$$p("mat") = \frac{2}{23}, \quad p("I") = \frac{2}{23}, \quad p("a") = \frac{2}{23}, \quad p("have") = \frac{1}{23},$$
$$p("like") = \frac{1}{23}, \quad p("is") = \frac{1}{23}, \quad p("on") = \frac{1}{23}, \quad p("and") = \frac{1}{23}$$

Is unigram reliable for estimating the sequence likelihood?

For simplicity, omitting [BOS] & [EOS] in the calculation

$$p(\text{"the the the"}) = p(\text{"the"}) \times p(\text{"the"}) \times p(\text{"the"}) \times p(\text{"the"}) \approx 0.0003$$

 $p(\text{"I have a cat"}) = p(\text{"I"}) \times p(\text{"have"}) \times p(\text{"a"}) \times p(\text{"cat"}) \approx 0.00004$

Why? Unigram ignores the relationships between words!

Practice: Learning Bigrams

Consider the following mini-corpus:

[BOS] The cat is on the mat [EOS] [BOS] I have a cat and a mat [EOS] [BOS] I like the cat [EOS]

Treating "The" & "the" as one word

• Bigram estimated from the mini-corpus $p(x_i|x_{i-1}) = \dfrac{\#(x_{i-1},x_i)}{\#(x_{i-1})}$

$$p(\text{``I''}|[\text{BOS}]) = \frac{2}{3}, \quad p(\text{``The''}|[\text{BOS}]) = \frac{1}{3}, \quad p([\text{EOS}]|\text{``mat''}) = 1, \quad p([\text{EOS}]|\text{``cat''}) = \frac{1}{3}, \\ p(\text{``cat''}|\text{``the''}) = \frac{2}{3}, \quad p(\text{``mat''}|\text{``the''}) = \frac{1}{3}, \quad p(\text{``is''}|\text{``cat''}) = \frac{1}{3}, \quad p(\text{``and''}|\text{``cat''}) = \frac{1}{3}, \\ p(\text{``have''}|\text{``I''}) = \frac{1}{2}, \quad p(\text{``like''}|\text{``I''}) = \frac{1}{2}, \quad p(\text{``a''}|\text{``have''}) = 1, \quad p(\text{``cat''}|\text{``a''}) = \frac{1}{2}$$

... there are more bigrams!

Bigram Issues: Sparsity

Learned unigram probabilities:

$$p(\text{``I''}|[\text{BOS}]) = \frac{2}{3}, \quad p(\text{``The''}|[\text{BOS}]) = \frac{1}{3}, \quad p([\text{EOS}]|\text{``mat''}) = 1, \quad p([\text{EOS}]|\text{``cat''}) = \frac{1}{3}, \\ p(\text{``cat''}|\text{``the''}) = \frac{2}{3}, \quad p(\text{``mat''}|\text{``the''}) = \frac{1}{3}, \quad p(\text{``is''}|\text{``cat''}) = \frac{1}{3}, \quad p(\text{``and''}|\text{``cat''}) = \frac{1}{3}, \\ p(\text{``have''}|\text{``I''}) = \frac{1}{2}, \quad p(\text{``like''}|\text{``I''}) = \frac{1}{2}, \quad p(\text{``a''}|\text{``have''}) = 1, \quad p(\text{``cat''}|\text{``a''}) = \frac{1}{2}$$

Does bigram address the issue of unigram?

For simplicity, omitting [EOS] in the calculation

$$p(\text{``the the the the''}) = p(\text{``the''}|[BOS]) \times p(\text{``the''}|\text{``the''}) \times p(\text{``the''}|\text{``the''}) \times p(\text{``the''}|\text{``the''}) = 0$$
$$p(\text{``I have a cat''}) = p(\text{``I''}|[BOS]) \times p(\text{``have''}|\text{``I''}) \times p(\text{``a''}|\text{``have''}) \times p(\text{``cat''}|\text{``a''}) \approx 0.17$$

• But... $p(\text{``a cat''}) = p(\text{``a''}|[BOS]) \times p(\text{``cat''}|\text{``a''}) = 0$

Sparsity: Valid bigrams having zero probability due to no occurrence in the training corpus

Bigram Issues: Sparsity

Bigram counts can be mostly zero even for larger corpora!

Berkeley Restaurant Project Corpus (>9K sentences)

can you tell me about any good cantonese restaurants close by tell me about chez panisse i'm looking for a good place to eat breakfast when is caffe venezia open during the day

Second word

First word

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Practice: Learning Trigrams

Consider the following mini-corpus:

[BOS] The cat is on the mat [EOS] [BOS] I have a cat and a mat [EOS] [BOS] I like the cat [EOS]

Treating "The" & "the" as one word

Trigram estimated from the mini-corpus $p(x_i|x_{i-2},x_{i-1})=rac{\#(x_{i-2},x_{i-1},x_i)}{\#(x_{i-2},x_{i-1})}$

$$\begin{split} p(\text{``like''}|[\text{BOS}],\text{``I''}) &= \frac{1}{2}, \quad p(\text{``have''}|[\text{BOS}],\text{``I''}) = \frac{1}{2}, \quad p([\text{EOS}]|\text{``the''},\text{``mat''}) = 1, \\ p(\text{``is''}|\text{``the''},\text{``cat''}) &= \frac{1}{2}, \quad p([\text{EOS}]|\text{``the''},\text{``cat''}) = \frac{1}{2}, \quad p([\text{EOS}]|\text{``a''},\text{``mat''}) = 1, \\ p(\text{``the''}|\text{``I''},\text{``like''}) &= 1, \quad p(\text{``a''}|\text{``I''},\text{``have''}) = 1, \quad p(\text{``mat''}|\text{``on''},\text{``the''}) = 1 \end{split}$$

Sparsity grows compared to bigram!

... there are more trigrams!

N-gram Properties

- As N becomes larger
 - Better modeling of word correlations (incorporating more contexts)
 - Sparsity increases
- The number of possible N-grams (parameters) grows exponentially with N!
 - Suppose vocabulary size = 10K words
 - Possible unigrams = 10K
 - Possible bigrams = (10K)^2 = 100M
 - Possible trigrams = (10K)^3 = 1T
 - ..

N-gram Sparsity

Join at slido.com #7035 481

With a larger N, the context becomes more specific, and the chances of encountering any particular N-gram in the training data are lower

198015222 the first 194623024 the same 168504105 the following 158562063 the world

14112454 the door

23135851162 the *

197302 close the window 191125 close the door 152500 close the gap 116451 close the thread 87298 close the deal

2795920 alaaa th

3785230 close the *

3380 please close the door 1601 please close the window 1164 please close the new 1159 please close the gate

0 please close the first

13951 please close the *

Bigram counts

Trigram counts

4-gram counts

Agenda

- Introduction to Language Models
- N-gram Language Models
- Smoothing in N-gram Language Models
- Evaluation of Language Models

Join at slido.com

Overcoming Sparsity in N-gram Language Models #7035 481

- Unseen N-grams in the training corpus always lead to a zero probability
- The entire sequence will have a zero probability if any of the term is zero!

$$p(\mathbf{x}) = \prod_{i=1}^{n} p(x_i|x_1, \dots, x_{i-1}) \approx \prod_{i=1}^{n} p(x_i|x_{i-N+1}, \dots, x_{i-1})$$

All terms must be non-zero

Can we fix zero-probability N-grams?

Smoothing

- Intuition: guarantee all N-grams have non-zero probabilities regardless of their counts in the training corpus
- Smoothing techniques:
 - Add-one smoothing (Laplace smoothing)
 - Add-k smoothing
 - Language model interpolation
 - Backoff
 - ..

Add-one Smoothing (Laplace Smoothing)

Add one to all the N-gram counts!

Original counts

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Smoothed counts

	i	want	to	eat	chinese	food	lunch	spend
i	6	828	1	10	1	1	1	3
want	3	1	609	2	7	7	6	2
to	3	1	5	687	3	1	7	212
eat	1	1	3	1	17	3	43	1
chinese	2	1	1	1	1	83	2	1
food	16	1	16	1	2	5	1	1
lunch	3	1	1	1	1	2	1	1
spend	2	1	2	1	1	1	1	1

Figure source: https://web.stanford.edu/~jurafsky/slp3/3.pdf

Add-one Smoothing (Laplace Smoothing)

Original (no smoothing):
$$p(x_i|x_{i-N+1},\ldots,x_{i-1}) = \frac{\#(x_{i-N+1},\ldots,x_{i-1},x_i)}{\#(x_{i-N+1},\ldots,x_{i-1})}$$

Probability of N-grams under add-one smoothing

Add-one smoothing:
$$p_{\mathrm{Add-1}}(x_i|x_{i-N+1},\ldots,x_{i-1}) = \frac{\#(x_{i-N+1},\ldots,x_{i-1},x_i)+1}{\#(x_{i-N+1},\ldots,x_{i-1})+|\mathcal{V}|}$$

$$\downarrow$$
Vocabulary size

Issues? Over-smoothing: too much probability mass to unseen N-grams

Add-k Smoothing

• Instead of adding 1 to each count, we add a fractional count k (k < 1) to all N-grams

Original (no smoothing):
$$p(x_i|x_{i-N+1},\ldots,x_{i-1}) = \frac{\#(x_{i-N+1},\ldots,x_{i-1},x_i)}{\#(x_{i-N+1},\ldots,x_{i-1})}$$

Add-one smoothing:
$$p_{\text{Add-1}}(x_i|x_{i-N+1},\dots,x_{i-1}) = \frac{\#(x_{i-N+1},\dots,x_{i-1},x_i)+1}{\#(x_{i-N+1},\dots,x_{i-1})+|\mathcal{V}|}$$

Probability of N-grams under add-k smoothing

Add-
$$k$$
 smoothing: $p_{\mathrm{Add-}k}(x_i|x_{i-N+1},\ldots,x_{i-1}) = \frac{\#(x_{i-N+1},\ldots,x_{i-1},x_i)+k}{\#(x_{i-N+1},\ldots,x_{i-1})+k|\mathcal{V}|}$

How to choose k? Use a validation set!

Smoothing via Language Model Interpolation

- Intuition: Combine the advantages of different N-grams
 - Lower-order N-grams (e.g., unigrams) capture less context but are also less sparse
 - Higher-order N-grams (e.g., trigrams) capture more context but are also more sparse
- Combine probabilities from multiple N-gram models of different Ns (e.g., unigrams, bigrams, trigrams)

$$p_{ ext{Interpolate}}(x_i|x_{i-N+1},\ldots,x_{i-1}) = \lambda_1 p(x_i) + \lambda_2 p(x_i|x_{i-1}) + \cdots + \lambda_N p(x_i|x_{i-N+1},\ldots,x_{i-1})$$
Unigram Bigram N-gram

$$\sum_{n=1}^{N} \lambda_n = 1$$
 Interpolation weights sum to 1

• How to pick λ_n ? Use a validation set!

Smoothing via Backoff

- Start with the highest-order N-gram available
- If that N-gram is not available (has a zero count), use the lower-order (N-1)-gram
- Continue backing off to lower-order N-grams until we reach a non-zero N-gram

$$p_{\text{Backoff}}(x_i|x_{i-N+1},\ldots,x_{i-1}) = \begin{cases} p_{\text{Backoff}}(x_i|x_{i-N+1},\ldots,x_{i-1}) & \text{If } \#(x_{i-N+1},\ldots,x_{i-1},x_i) > 0 \\ \alpha \cdot p_{\text{Backoff}}(x_i|x_{i-N+2},\ldots,x_{i-1}) & \text{Otherwise} \end{cases}$$

$$\alpha \text{ (<1): discount factor that adjusts the lower-order probability}$$

Is it possible that even after backing off to unigram, the probability is still zero?

Out-of-vocabulary Words

- Unigrams will have a zero probability for words not occurring in the training data!
- Simple remedy: reserve a special token [UNK] for unknown/unseen words
- During testing, convert unknown words to [UNK] -> use [UNK]'s probability
- How to estimate the probability of [UNK]?
- During training, replace all rare words with [UNK], and estimate its probability as if it is a normal word
- How to determine rare words? Threshold based on counts in the training corpus
- Example: set a fixed vocabulary size of 10K, and words outside the most frequent 10K
 will be converted to [UNK] in training

Thank You!

Yu Meng

University of Virginia

yumeng5@virginia.edu