Thesis Defense Presentation

by

Ayush Bharadwaj

Department of Mathematics

San Francisco State University

Outline

• Neural networks (particularly, *linear networks*)

- Neural networks (particularly, *linear networks*)
- Neural network training as a minimization problem in real analysis

- Neural networks (particularly, linear networks)
- Neural network training as a minimization problem in real analysis
- Neural network training as solving polynomial systems in algebraic geometry

- Neural networks (particularly, linear networks)
- Neural network training as a minimization problem in real analysis
- Neural network training as solving polynomial systems in algebraic geometry
- Results and contributions

•
$$f_w(x_1, ..., x_n) = \phi\left(\sum_{j=1}^n w_j x_j - b\right)$$

•
$$f_w(x_1,...,x_n) = \phi\left(\sum_{j=1}^n w_j x_j - b\right)$$
 (output function)

Neural network

Neural network

Neural network

• The weight matrix of the *i*th layer

$$W_i = egin{pmatrix} w_{i11} & \cdots & w_{i1n} \ dots & & dots \ w_{ir1} & \cdots & w_{irn} \end{pmatrix}$$

Neural network

 \bullet The weight matrix of the *i*th layer

$$W_i = egin{pmatrix} w_{i11} & \cdots & w_{i1n} \\ dots & & dots \\ w_{ir1} & \cdots & w_{irn} \end{pmatrix}$$

Neural network

 \bullet The weight matrix of the *i*th layer

$$W_i = egin{pmatrix} w_{i11} & \cdots & w_{i1n} \ dots & & dots \ w_{ir1} & \cdots & w_{irn} \end{pmatrix}$$

• Output of the *i*th layer

$$z^{(i)} = \phi \Big(W_i \begin{bmatrix} -1 \\ z^{(i-1)} \end{bmatrix} \Big)$$

Neural network

 \bullet The weight matrix of the *i*th layer

$$W_i = egin{pmatrix} w_{i11} & \cdots & w_{i1n} \ dots & & dots \ w_{ir1} & \cdots & w_{irn} \end{pmatrix}$$

• Output of the *i*th layer

$$z^{(i)} = \phi \Big(W_i \begin{bmatrix} -1 \\ z^{(i-1)} \end{bmatrix} \Big)$$

• Output of the network

$$f_W(x) = z^{(H+1)} = \phi\left(W_{H+1} \begin{bmatrix} -1\\ z^{(H)} \end{bmatrix}\right) \tag{2}$$

Linear network

Linear network

We introduce two simplifications in the output function of the neuron:

- \bullet Drop the bias term b
- Choose $\phi = \mathbf{I}$

Linear network

We introduce two simplifications in the output function of the neuron:

 \bullet Drop the bias term b

• Choose
$$\phi = \mathbf{I}$$

$$f_w(x_1, ..., x_n) = \phi\left(\sum_{j=1}^n w_j x_j - b\right)$$

Linear network

We introduce two simplifications in the output function of the neuron:

 \bullet Drop the bias term b

• Choose $\phi = \mathbf{I}$

$$f_w(x_1, ..., x_n) = \phi\left(\sum_{j=1}^n w_j x_j - b\right)$$

This simplifies the network output function:

$$f_W(x) = W_{H+1}W_H \cdots W_2W_1x \tag{2}$$

Linear network

We introduce two simplifications in the output function of the neuron:

• Drop the bias term b

• Choose $\phi = \mathbf{I}$

$$f_w(x_1, ..., x_n) = \phi\left(\sum_{j=1}^n w_j x_j - b\right)$$

This simplifies the network output function:

$$f_W(x) = W_{H+1}W_H \cdots W_2W_1x \tag{2}$$

Linear network

We introduce two simplifications in the output function of the neuron:

• Drop the bias term b

• Choose $\phi = \mathbf{I}$

$$f_w(x_1, ..., x_n) = \phi\left(\sum_{j=1}^n w_j x_j - b\right)$$

This simplifies the network output function:

$$f_W(x) = W_{H+1}W_H \cdots W_2W_1x \tag{2}$$

We want to use f_W to approximate some function $y: \mathbb{R}^n \longrightarrow \mathbb{R}^p$

Training a linear network

Training a linear network

• We know the values $y:\mathbb{R}^n\longrightarrow\mathbb{R}^p$ takes on a finite set of input points $x^{(i)},\,i=1,...,m$

Training a linear network

- We know the values $y:\mathbb{R}^n\longrightarrow\mathbb{R}^p$ takes on a finite set of input points $x^{(i)},\,i=1,...,m$
- Training examples: $(x^{(i)}, y^{(i)}) := (x^{(i)}, y(x^{(i)}))$

Training a linear network

- We know the values $y: \mathbb{R}^n \longrightarrow \mathbb{R}^p$ takes on a finite set of input points $x^{(i)}, i = 1, ..., m$
- Training examples: $(x^{(i)}, y^{(i)}) := (x^{(i)}, y(x^{(i)}))$
- Error (or loss), $\mathcal{L}: \mathbb{R}^n \longrightarrow \mathbb{R}$ defined by:

$$\mathcal{L}(W) = \frac{1}{2} \sum_{i=1}^{m} ||W_{H+1}W_{H}...W_{2}W_{1}x^{(i)} - y^{(i)}||^{2}$$
(3)

Training a linear network

- We know the values $y: \mathbb{R}^n \longrightarrow \mathbb{R}^p$ takes on a finite set of input points $x^{(i)}, i = 1, ..., m$
- Training examples: $(x^{(i)}, y^{(i)}) := (x^{(i)}, y(x^{(i)}))$
- Error (or loss), $\mathcal{L}: \mathbb{R}^n \longrightarrow \mathbb{R}$ defined by:

$$\mathcal{L}(W) = \frac{1}{2} \sum_{i=1}^{m} ||W_{H+1}W_{H}...W_{2}W_{1}x^{(i)} - y^{(i)}||^{2}$$
(3)

• We want to solve the minimization problem:

$$\min_{W \in \mathbb{R}^N} \mathcal{L}(W) \tag{4}$$

Training a linear network

- We know the values $y: \mathbb{R}^n \longrightarrow \mathbb{R}^p$ takes on a finite set of input points $x^{(i)}, i = 1, ..., m$
- Training examples: $(x^{(i)}, y^{(i)}) := (x^{(i)}, y(x^{(i)}))$
- Error (or loss), $\mathcal{L}: \mathbb{R}^n \longrightarrow \mathbb{R}$ defined by:

$$\mathcal{L}(W) = \frac{1}{2} \sum_{i=1}^{m} ||W_{H+1}W_{H}...W_{2}W_{1}x^{(i)} - y^{(i)}||^{2}$$
(3)

• We want to solve the minimization problem:

$$\min_{W \in \mathbb{R}^N} \mathcal{L}(W) \tag{4}$$

Training a linear network

- We know the values $y: \mathbb{R}^n \longrightarrow \mathbb{R}^p$ takes on a finite set of input points $x^{(i)}, i = 1, ..., m$
- Training examples: $(x^{(i)}, y^{(i)}) := (x^{(i)}, y(x^{(i)}))$

Minimization problem in real analysis

• Error (or loss), $\mathcal{L}: \mathbb{R}^n \longrightarrow \mathbb{R}$ defined by:

$$\mathcal{L}(W) = \frac{1}{2} \sum_{i=1}^{m} ||W_{H+1}W_{H}...W_{2}W_{1}x^{(i)} - y^{(i)}||^{2}$$
(3)

• We want to solve the minimization problem:

$$\min_{W \in \mathbb{R}^N} \mathcal{L}(W) \tag{4}$$

Training a linear network

- We know the values $y: \mathbb{R}^n \longrightarrow \mathbb{R}^p$ takes on a finite set of input points $x^{(i)}, i = 1, ..., m$
- Training examples: $(x^{(i)}, y^{(i)}) := (x^{(i)}, y(x^{(i)}))$

Minimization problem in real analysis

• Error (or loss), $\mathcal{L}: \mathbb{R}^n \longrightarrow \mathbb{R}$ defined by:

$$\mathcal{L}(W) = \frac{1}{2} \sum_{i=1}^{m} ||W_{H+1}W_{H}...W_{2}W_{1}x^{(i)} - y^{(i)}||^{2}$$
(3)

• We want to solve the minimization problem:

$$\min_{W \in \mathbb{R}^N} \ \mathcal{L}(W) \tag{4}$$

Not convex

Training a linear network

Training a linear network

Non-convexity of $\mathcal{L}(W)$ presents challenges

Training a linear network

Non-convexity of $\mathcal{L}(W)$ presents challenges

1. Hard to guarantee that all local minima have been found by the algorithm.

Training a linear network

Non-convexity of $\mathcal{L}(W)$ presents challenges

- 1. Hard to guarantee that all local minima have been found by the algorithm.
- 2. Hard to make assertions about the number and location of minima before hand.

Training a linear network

Non-convexity of $\mathcal{L}(W)$ presents challenges

- 1. Hard to guarantee that all local minima have been found by the algorithm.
- 2. Hard to make assertions about the number and location of minima before hand.

Training a linear network

Non-convexity of $\mathcal{L}(W)$ presents challenges

- 1. Hard to guarantee that all local minima have been found by the algorithm.
- 2. Hard to make assertions about the number and location of minima before hand.

Motivation for an algebraic geometry view

Training a linear network

From a problem in Real Analysis to a problem in Algebraic Geometry

Training a linear network

From a problem in Real Analysis to a problem in Algebraic Geometry

Training a linear network

From a problem in Real Analysis to a problem in Algebraic Geometry

We introduce the following relaxations:

• $\min_{W \in \mathbb{R}^N} \mathcal{L}(W)$

Training a linear network

From a problem in Real Analysis to a problem in Algebraic Geometry

•
$$\min_{W \in \mathbb{R}^N} \mathcal{L}(W)$$
 \longrightarrow

Training a linear network

From a problem in Real Analysis to a problem in Algebraic Geometry

•
$$\min_{W \in \mathbb{R}^N} \mathcal{L}(W) \longrightarrow \nabla \mathcal{L}(W) = 0$$

Training a linear network

From a problem in Real Analysis to a problem in Algebraic Geometry

•
$$\min_{W \in \mathbb{R}^N} \mathcal{L}(W) \longrightarrow \nabla \mathcal{L}(W) = 0$$

•
$$W \in \mathbb{R}^N$$

Training a linear network

From a problem in Real Analysis to a problem in Algebraic Geometry

•
$$\min_{W \in \mathbb{R}^N} \mathcal{L}(W)$$
 \longrightarrow $\nabla \mathcal{L}(W) = 0$

•
$$W \in \mathbb{R}^N$$

Training a linear network

From a problem in Real Analysis to a problem in Algebraic Geometry

•
$$\min_{W \in \mathbb{R}^N} \mathcal{L}(W)$$
 \longrightarrow $\nabla \mathcal{L}(W) = 0$

$$\bullet \ \ W \in \mathbb{R}^N$$

$$\longrightarrow W \in \mathbb{C}^N$$

Training a linear network

From a problem in Real Analysis to a problem in Algebraic Geometry

We introduce the following relaxations:

•
$$\min_{W \in \mathbb{R}^N} \mathcal{L}(W) \longrightarrow \nabla \mathcal{L}(W) = 0$$

$$\bullet \ \ W \in \mathbb{R}^N \qquad \longrightarrow \qquad W \in \mathbb{C}^N$$

We solve:

Training a linear network

From a problem in Real Analysis to a problem in Algebraic Geometry

We introduce the following relaxations:

•
$$\min_{W \in \mathbb{R}^N} \mathcal{L}(W) \longrightarrow \nabla \mathcal{L}(W) = 0$$

$$\bullet \ \ W \in \mathbb{R}^N$$

$$\longrightarrow W \in \mathbb{C}^N$$

We solve:

$$\nabla \mathcal{L}(W) = 0, \quad W \in \mathbb{C}^N$$
 (5)

Training a linear network

From a problem in Real Analysis to a problem in Algebraic Geometry

We introduce the following relaxations:

•
$$\min_{W \in \mathbb{R}^N} \mathcal{L}(W) \longrightarrow \nabla \mathcal{L}(W) = 0$$

$$\bullet \ \ W \in \mathbb{R}^N$$

$$\longrightarrow W \in \mathbb{C}^N$$

We solve:

$$\nabla \mathcal{L}(W) = 0, \quad W \in \mathbb{C}^N$$
 (5)

Training a linear network

From a problem in Real Analysis to a problem in Algebraic Geometry

We introduce the following relaxations:

•
$$\min_{W \in \mathbb{R}^N} \mathcal{L}(W) \longrightarrow \nabla \mathcal{L}(W) = 0$$

$$\bullet \ \ W \in \mathbb{R}^N$$

$$\longrightarrow W \in \mathbb{C}^N$$

We solve:

$$\nabla \mathcal{L}(W) = 0, \quad W \in \mathbb{C}^N$$
 (5)

Polynomial system

Training a linear network

From a problem in Real Analysis to a problem in Algebraic Geometry

Training a linear network

From a problem in Real Analysis to a problem in Algebraic Geometry

Example 1.2 (A 4-weight network). Let us consider a 2-layer network with

Training a linear network

From a problem in Real Analysis to a problem in Algebraic Geometry

Example 1.2 (A 4-weight network). Let us consider a 2-layer network with $W_1 = [\alpha_1, \alpha_2]$

Training a linear network

From a problem in Real Analysis to a problem in Algebraic Geometry

Example 1.2 (A 4-weight network). Let us consider a 2-layer network with

$$W_1 = [lpha_1, lpha_2]$$
 , $W_2 = \left[egin{array}{c} eta_1 \ eta_2 \end{array}
ight]$

Training a linear network

From a problem in Real Analysis to a problem in Algebraic Geometry

Example 1.2 (A 4-weight network). Let us consider a 2-layer network with

$$W_1 = [\alpha_1, \alpha_2]$$
, $W_2 = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}$, $X = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, $Y = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$.

Training a linear network

From a problem in Real Analysis to a problem in Algebraic Geometry

Example 1.2 (A 4-weight network). Let us consider a 2-layer network with

$$W_1 = [\alpha_1, \alpha_2]$$
, $W_2 = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}$, $X = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, $Y = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$.

•
$$\mathcal{L}(W) = \mathcal{L}(\alpha_1, \alpha_2, \beta_1, \beta_2) = \frac{1}{2} \sum_{i=1}^{2} ||W_2 W_1 x^{(i)} - y^{(i)}||^2$$

Training a linear network

From a problem in Real Analysis to a problem in Algebraic Geometry

Example 1.2 (A 4-weight network). Let us consider a 2-layer network with

$$W_1 = [\alpha_1, \alpha_2]$$
, $W_2 = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}$, $X = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, $Y = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$.

•
$$\mathcal{L}(W) = \mathcal{L}(\alpha_1, \alpha_2, \beta_1, \beta_2) = \frac{1}{2} \sum_{i=1}^{2} ||W_2 W_1 x^{(i)} - y^{(i)}||^2$$

•
$$\nabla \mathcal{L}(W) = \nabla \mathcal{L}(\alpha_1, \alpha_2, \beta_1, \beta_2) = 0$$
 gives

Training a linear network

From a problem in Real Analysis to a problem in Algebraic Geometry

Example 1.2 (A 4-weight network). Let us consider a 2-layer network with

$$W_1 = [\alpha_1, \alpha_2]$$
, $W_2 = \begin{bmatrix} eta_1 \\ eta_2 \end{bmatrix}$, $X = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, $Y = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$.

•
$$\mathcal{L}(W) = \mathcal{L}(\alpha_1, \alpha_2, \beta_1, \beta_2) = \frac{1}{2} \sum_{i=1}^{2} ||W_2 W_1 x^{(i)} - y^{(i)}||^2$$

•
$$\nabla \mathcal{L}(W) = \nabla \mathcal{L}(\alpha_1, \alpha_2, \beta_1, \beta_2) = 0$$
 gives

$$5\alpha_1\beta_1^2 + 5\alpha_1\beta_2^2 + 11\alpha_2\beta_1^2 + 11\alpha_2\beta_2^2 - 7\beta_1 - 10\beta_2 = 0$$

$$11\alpha_1\beta_1^2 + 11\alpha_1\beta_2^2 + 25\alpha_2\beta_1^2 + 25\alpha_2\beta_2^2 - 15\beta_1 - 22\beta_2 = 0$$

$$5\alpha_1^2\beta_1 + 22\alpha_1\alpha_2\beta_1 + 25\alpha_2^2\beta_1 - 7\alpha_1 - 15\alpha_2 = 0$$

$$5\alpha_1^2\beta_2 + 22\alpha_1\alpha_2\beta_2 + 25\alpha_2^2\beta_2 - 10\alpha_1 - 22\alpha_2 = 0$$

$$(1.13)$$

Training a linear network

From a problem in Real Analysis to a problem in Algebraic Geometry

Example 1.2 (A 4-weight network). Let us consider a 2-layer network with

$$W_1 = [\alpha_1, \alpha_2]$$
, $W_2 = \begin{bmatrix} eta_1 \\ eta_2 \end{bmatrix}$, $X = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, $Y = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$.

•
$$\mathcal{L}(W) = \mathcal{L}(\alpha_1, \alpha_2, \beta_1, \beta_2) = \frac{1}{2} \sum_{i=1}^{2} ||W_2 W_1 x^{(i)} - y^{(i)}||^2$$

•
$$\nabla \mathcal{L}(W) = \nabla \mathcal{L}(\alpha_1, \alpha_2, \beta_1, \beta_2) = 0$$
 gives

Solutions are precisely the critical points

$$5\alpha_1\beta_1^2 + 5\alpha_1\beta_2^2 + 11\alpha_2\beta_1^2 + 11\alpha_2\beta_2^2 - 7\beta_1 - 10\beta_2 = 0$$

$$11\alpha_1\beta_1^2 + 11\alpha_1\beta_2^2 + 25\alpha_2\beta_1^2 + 25\alpha_2\beta_2^2 - 15\beta_1 - 22\beta_2 = 0$$

$$5\alpha_1^2\beta_1 + 22\alpha_1\alpha_2\beta_1 + 25\alpha_2^2\beta_1 - 7\alpha_1 - 15\alpha_2 = 0$$

$$5\alpha_1^2\beta_2 + 22\alpha_1\alpha_2\beta_2 + 25\alpha_2^2\beta_2 - 10\alpha_1 - 22\alpha_2 = 0$$

(1.13)

Training a linear network

From a problem in Real Analysis to a problem in Algebraic Geometry

Example 1.2 (A 4-weight network). Let us consider a 2-layer network with

$$W_1 = [\alpha_1, \alpha_2]$$
, $W_2 = \begin{bmatrix} eta_1 \\ eta_2 \end{bmatrix}$, $X = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, $Y = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$.

•
$$\mathcal{L}(W) = \mathcal{L}(\alpha_1, \alpha_2, \beta_1, \beta_2) = \frac{1}{2} \sum_{i=1}^{2} ||W_2 W_1 x^{(i)} - y^{(i)}||^2$$

•
$$\nabla \mathcal{L}(W) = \nabla \mathcal{L}(\alpha_1, \alpha_2, \beta_1, \beta_2) = 0$$
 gives

Nice polynomial system

(1.13)

$$5\alpha_1\beta_1^2 + 5\alpha_1\beta_2^2 + 11\alpha_2\beta_1^2 + 11\alpha_2\beta_2^2 - 7\beta_1 - 10\beta_2 = 0$$

$$11\alpha_1\beta_1^2 + 11\alpha_1\beta_2^2 + 25\alpha_2\beta_1^2 + 25\alpha_2\beta_2^2 - 15\beta_1 - 22\beta_2 = 0$$

$$5\alpha_1^2\beta_1 + 22\alpha_1\alpha_2\beta_1 + 25\alpha_2^2\beta_1 - 7\alpha_1 - 15\alpha_2 = 0$$

$$5\alpha_1^2\beta_2 + 22\alpha_1\alpha_2\beta_2 + 25\alpha_2^2\beta_2 - 10\alpha_1 - 22\alpha_2 = 0$$

Training a linear network

From a problem in Real Analysis to a problem in Algebraic Geometry

Example 1.2 (A 4-weight network). Let us consider a 2-layer network with

$$W_1 = [\alpha_1, \alpha_2]$$
, $W_2 = \begin{bmatrix} eta_1 \\ eta_2 \end{bmatrix}$, $X = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, $Y = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$.

•
$$\mathcal{L}(W) = \mathcal{L}(\alpha_1, \alpha_2, \beta_1, \beta_2) = \frac{1}{2} \sum_{i=1}^{2} ||W_2 W_1 x^{(i)} - y^{(i)}||^2$$

•
$$\nabla \mathcal{L}(W) = \nabla \mathcal{L}(\alpha_1, \alpha_2, \beta_1, \beta_2) = 0$$
 gives

Nice polynomial system

Solutions are precisely the critical points

$$5\alpha_1\beta_1^2 + 5\alpha_1\beta_2^2 + 11\alpha_2\beta_1^2 + 11\alpha_2\beta_2^2 - 7\beta_1 - 10\beta_2 = 0$$

$$11\alpha_1\beta_1^2 + 11\alpha_1\beta_2^2 + 25\alpha_2\beta_1^2 + 25\alpha_2\beta_2^2 - 15\beta_1 - 22\beta_2 = 0$$

$$5\alpha_1^2\beta_1 + 22\alpha_1\alpha_2\beta_1 + 25\alpha_2^2\beta_1 - 7\alpha_1 - 15\alpha_2 = 0$$

$$5\alpha_1^2\beta_2 + 22\alpha_1\alpha_2\beta_2 + 25\alpha_2^2\beta_2 - 10\alpha_1 - 22\alpha_2 = 0$$

- Square
- Sparse
- Deg 2H + 1

(1.13)

Main Ideas

Main Ideas

Algebraic geometry provides results and methods to analyze and solve systems of polynomial equations. In particular, it provides us ways to:

Main Ideas

Algebraic geometry provides results and methods to analyze and solve systems of polynomial equations. In particular, it provides us ways to:

1. exploit the monomial structure of a polynomial system to place upper bounds on the number of complex solutions **beforehand**

Main Ideas

Algebraic geometry provides results and methods to analyze and solve systems of polynomial equations. In particular, it provides us ways to:

1. exploit the monomial structure of a polynomial system to place upper bounds on the number of complex solutions **beforehand**

Main Ideas

Algebraic geometry provides results and methods to analyze and solve systems of polynomial equations. In particular, it provides us ways to:

1. exploit the monomial structure of a polynomial system to place upper bounds on the number of complex solutions **beforehand** adresses challenge 2

Main Ideas

Algebraic geometry provides results and methods to analyze and solve systems of polynomial equations. In particular, it provides us ways to:

1. exploit the monomial structure of a polynomial system to place upper bounds on the number of complex solutions **beforehand** adresses challenge 2

2. use these upper bounds to algorithmically find all complex solutions

Main Ideas

Algebraic geometry provides results and methods to analyze and solve systems of polynomial equations. In particular, it provides us ways to:

1. exploit the monomial structure of a polynomial system to place upper bounds on the number of complex solutions **beforehand** adresses challenge 2

2. use these upper bounds to algorithmically find all complex solutions

Main Ideas

Algebraic geometry provides results and methods to analyze and solve systems of polynomial equations. In particular, it provides us ways to:

1. exploit the monomial structure of a polynomial system to place upper bounds on the number of complex solutions **beforehand** adresses challenge 2

2. use these upper bounds to algorithmically find all complex solutions

adresses challenge 1

Main Ideas

Algebraic geometry provides results and methods to analyze and solve systems of polynomial equations. In particular, it provides us ways to:

1. exploit the monomial structure of a polynomial system to place upper bounds on the number of complex solutions **beforehand** adresses challenge 2

2. use these upper bounds to algorithmically find all complex solutions

adresses challenge 1

Questions:

Main Ideas

Algebraic geometry provides results and methods to analyze and solve systems of polynomial equations. In particular, it provides us ways to:

1. exploit the monomial structure of a polynomial system to place upper bounds on the number of complex solutions **beforehand**

adresses challenge 2

2. use these upper bounds to algorithmically find all complex solutions

adresses challenge 1

Questions:

• How to place upper bounds

Main Ideas

Algebraic geometry provides results and methods to analyze and solve systems of polynomial equations. In particular, it provides us ways to:

1. exploit the monomial structure of a polynomial system to place upper bounds on the number of complex solutions **beforehand**

adresses challenge 2

2. use these upper bounds to algorithmically find all complex solutions

adresses challenge 1

Questions:

- How to place upper bounds
- How to solve the system

Main Ideas

Algebraic geometry provides results and methods to analyze and solve systems of polynomial equations. In particular, it provides us ways to:

1. exploit the monomial structure of a polynomial system to place upper bounds on the number of complex solutions **beforehand** adresses challenge 2

2. use these upper bounds to algorithmically find all complex solutions

adresses challenge 1

Questions:

- How to place upper bounds
- How to solve the system

Main Ideas

Main Ideas

Homotopy Continuation

• We generate another polynomial system $G(x) = [g_1(x), ..., g_N(x)] = 0$

Main Ideas

- Suppose we want to solve the system $F(x) = [f_1(x), ..., f_N(x)] = 0$
- We generate another polynomial system $G(x) = [g_1(x), ..., g_N(x)] = 0$

Main Ideas

- Suppose we want to solve the system $F(x) = [f_1(x), ..., f_N(x)] = 0$ Target system
- We generate another polynomial system $G(x) = [g_1(x), ..., g_N(x)] = 0$

Main Ideas

- Suppose we want to solve the system $F(x) = [f_1(x), ..., f_N(x)] = 0$ Target system
- We generate another polynomial system $G(x) = [g_1(x), ..., g_N(x)] = 0$ Start system

Main Ideas

- Suppose we want to solve the system $F(x) = [f_1(x), ..., f_N(x)] = 0$ Target system
- We generate another polynomial system $G(x) = [g_1(x), ..., g_N(x)] = 0$ Start system
- G(x) = 0 is guaranteed to have at least as many isolated solutions as F(x) = 0 and these solutions are known beforehand

Main Ideas

- Suppose we want to solve the system $F(x) = [f_1(x), ..., f_N(x)] = 0$ Target system
- We generate another polynomial system $G(x) = [g_1(x), ..., g_N(x)] = 0$ Start system
- G(x) = 0 is guaranteed to have at least as many isolated solutions as F(x) = 0 and these solutions are known beforehand
- We define a parameterized family of systems:

$$H(x,t) = tG(x) + (1-t)F(x), t \in [0,1]$$

Main Ideas

Homotopy Continuation

- Suppose we want to solve the system $F(x) = [f_1(x), ..., f_N(x)] = 0$ Target system
- We generate another polynomial system $G(x) = [g_1(x), ..., g_N(x)] = 0$ Start system
- G(x) = 0 is guaranteed to have at least as many isolated solutions as F(x) = 0 and these solutions are known beforehand
- We define a parameterized family of systems:

$$H(x,t) = tG(x) + (1-t)F(x), t \in [0,1]$$

Main Ideas

Homotopy Continuation

- Suppose we want to solve the system $F(x) = [f_1(x), ..., f_N(x)] = 0$ Target system
- We generate another polynomial system $G(x) = [g_1(x), ..., g_N(x)] = 0$ Start system
- G(x) = 0 is guaranteed to have at least as many isolated solutions as F(x) = 0 and these solutions are known beforehand
- We define a parameterized family of systems:

$$H(x,t) = tG(x) + (1-t)F(x), t \in [0,1]$$

Main Ideas

Homotopy Continuation

- Suppose we want to solve the system $F(x) = [f_1(x), ..., f_N(x)] = 0$ Target system
- We generate another polynomial system $G(x) = [g_1(x), ..., g_N(x)] = 0$ Start system
- G(x) = 0 is guaranteed to have at least as many isolated solutions as F(x) = 0 and these solutions are known beforehand
- We define a parameterized family of systems:

$$H(x,t) = tG(x) + (1-t)F(x), t \in [0,1]$$

A tighter upper bound means fewer paths to track and therefore provides a more efficient way to solve the target system

Main Ideas

Homotopy Continuation

- Suppose we want to solve the system $F(x) = [f_1(x), ..., f_N(x)] = 0$ Target system
- We generate another polynomial system $G(x) = [g_1(x), ..., g_N(x)] = 0$ Start system
- G(x) = 0 is guaranteed to have at least as many isolated solutions as F(x) = 0 and these solutions are known beforehand
- We define a parameterized family of systems:

$$H(x,t) = tG(x) + (1-t)F(x), t \in [0,1]$$

A tighter upper bound means fewer paths to track and therefore provides a more efficient way to solve the target system

Main Ideas

Well known upper bounds

Main Ideas

Well known upper bounds

Theorem 2.13 (Classical Bezout Bound). Let $f_1, ..., f_N$ be polynomials in $\mathbb{C}[x_1, ..., x_N]$.

Then the number of isolated solutions of the system $f_1(x) = ... = f_N(x) = 0$ is bounded above by the product $deg(f_1) \cdots deg(f_N)$.

Main Ideas

Well known upper bounds

Theorem 2.13 (Classical Bezout Bound). Let $f_1, ..., f_N$ be polynomials in $\mathbb{C}[x_1, ..., x_N]$.

Then the number of isolated solutions of the system $f_1(x) = ... = f_N(x) = 0$ is bounded above by the product $deg(f_1) \cdots deg(f_N)$.

Theorem 2.22 (Bernstein's Theorem). Let $f_1, ..., f_N \in \mathbb{C}[x_1, ..., x_N]$ be Laurent polynomials with Newton polytopes $Q_1, ..., Q_N$. The number of isolated solutions of the system $f_1(x) = ... = f_N(x) = 0$ in $(\mathbb{C}^*)^N$ is bounded above by the mixed volume $\mathcal{M}(Q_1, ..., Q_N)$.

Main Ideas

Well known upper bounds

Theorem 2.13 (Classical Bezout Bound). Let $f_1, ..., f_N$ be polynomials in $\mathbb{C}[x_1, ..., x_N]$.

Then the number of isolated solutions of the system $f_1(x) = ... = f_N(x) = 0$ is bounded above by the product $deg(f_1) \cdots deg(f_N)$.

Theorem 2.22 (Bernstein's Theorem). Let $f_1, ..., f_N \in \mathbb{C}[x_1, ..., x_N]$ be Laurent polynomials with Newton polytopes $Q_1, ..., Q_N$. The number of isolated solutions of the system $f_1(x) = ... = f_N(x) = 0$ in $(\mathbb{C}^*)^N$ is bounded above by the mixed volume $\mathcal{M}(Q_1, ..., Q_N)$.

Question: Can we do better?

Main Ideas

Well known upper bounds

Theorem 2.13 (Classical Bezout Bound). Let $f_1, ..., f_N$ be polynomials in $\mathbb{C}[x_1, ..., x_N]$.

Then the number of isolated solutions of the system $f_1(x) = ... = f_N(x) = 0$ is bounded above by the product $deg(f_1) \cdots deg(f_N)$.

Theorem 2.22 (Bernstein's Theorem). Let $f_1, ..., f_N \in \mathbb{C}[x_1, ..., x_N]$ be Laurent polynomials with Newton polytopes $Q_1, ..., Q_N$. The number of isolated solutions of the system $f_1(x) = ... = f_N(x) = 0$ in $(\mathbb{C}^*)^N$ is bounded above by the mixed volume $\mathcal{M}(Q_1, ..., Q_N)$.

Question: Can we do better? Yes!

Main Ideas

Well known upper bounds

Theorem 2.13 (Classical Bezout Bound). Let $f_1, ..., f_N$ be polynomials in $\mathbb{C}[x_1, ..., x_N]$.

Then the number of isolated solutions of the system $f_1(x) = ... = f_N(x) = 0$ is bounded above by the product $deg(f_1) \cdots deg(f_N)$.

Theorem 2.22 (Bernstein's Theorem). Let $f_1, ..., f_N \in \mathbb{C}[x_1, ..., x_N]$ be Laurent polynomials with Newton polytopes $Q_1, ..., Q_N$. The number of isolated solutions of the system $f_1(x) = ... = f_N(x) = 0$ in $(\mathbb{C}^*)^N$ is bounded above by the mixed volume $\mathcal{M}(Q_1, ..., Q_N)$.

Question: Can we do better? Yes!

Number of complex critical points
Critical points with all non-zero weights

Number of complex critical points

Critical points with all non-zero weights

Proposition 3.6 (upper bound on solutions in $(\mathbb{C}^*)^N$, $\mathcal{B}_{\mathbb{C}^*}$). Consider a linear network with

$$H=1, \ m=1, \ d_x=n, \ d_y=p \ \ and \ d_1=d. \ \ Let \ (W_1,W_2)=(\begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \vdots & \\ a_{d,1} & \cdots & a_{d,n} \end{pmatrix}, \ \begin{pmatrix} b_{1,1} & \cdots & b_{1,d} \\ \vdots & \vdots & \\ b_{p,1} & \cdots & b_{p,d} \end{pmatrix})$$

denote a solution to the gradient polynomial system (3.1). Then, there are at most

$$\mathcal{B}_{\mathbb{C}^*} = (4p)^d$$

solutions for which $a_{1,1},...,a_{d,n} \in \mathbb{C}^*$ and $b_{1,1},...,b_{p,d} \in \mathbb{C}^*$.

Number of complex critical points

Critical points with all non-zero weights

Proposition 3.6 (upper bound on solutions in $(\mathbb{C}^*)^N$, $\mathcal{B}_{\mathbb{C}^*}$). Consider a linear network with

$$H=1,\ m=1,\ d_x=n,\ d_y=p\ and\ d_1=d.$$
 Let $(W_1,W_2)=(\begin{pmatrix} a_{1,1}&\cdots&a_{1,n}\\ \vdots\\ a_{d,1}&\cdots&a_{d,n} \end{pmatrix}, \begin{pmatrix} b_{1,1}&\cdots&b_{1,d}\\ \vdots\\ b_{p,1}&\cdots&b_{p,d} \end{pmatrix})$ denote a solution to the gradient polynomial system (3.1). Then, there are at most

$$\mathcal{B}_{\mathbb{C}^*} = (4p)^d$$

solutions for which $a_{1,1},...,a_{d,n} \in \mathbb{C}^*$ and $b_{1,1},...,b_{p,d} \in \mathbb{C}^*$.

Number of complex critical points
All complex critical points

Number of complex critical points All complex critical points

Theorem 3.9 (upper bound on complex critical points, $\mathcal{B}_{\mathbb{C}}$). Consider a linear network with

 $H=1, m=1, d_x=n, d_y=p \text{ and } d_1=d.$ This network has at most

$$\mathcal{B}_{\mathbb{C}} = (1+4p)^d$$

complex critical points.

Number of complex critical points

All complex critical points

Theorem 3.9 (upper bound on complex critical points, $\mathcal{B}_{\mathbb{C}}$). Consider a linear network with

 $H=1,\ m=1,\ d_x=n,\ d_y=p\ \ and\ d_1=d.$ This network has at most

$$\mathcal{B}_{\mathbb{C}} = (1+4p)^d$$

complex critical points.

No	d	d_x	d_y	N	CBB	BKK	$\mathcal{B}_{\mathbb{C}}$	$\mathcal{B}_{\mathbb{C}^*}$	$N_{\mathbb{C}}$	$N_{\mathbb{C}^*}$	$max\{N_{\mathbb{R}}\}$
1	1	1	1	2	9	5	5	4	5	4	3
2	1	2	1	3	27	9	5	4	5	4	3
3	1	3	1	4	81	13	5	4	5	4	3
4	1	1	2	3	27	9	9	8	9	8	3
5	1	2	2	4	81	33	9	8	9	8	3
6	1	3	2	5	243	73	9	8	9	8	3
7	1	1	3	4	81	13	13	12	13	12	3
8	1	2	3	5	243	73	13	12	13	12	3
9	1	3	3	6	729	245	13	12	13	12	3
10	2	1	1	4	81	25	25	16	9	0	4
11	2	2	1	6	729	81	25	16	9	0	5
12	2	3	1	8	6561	169	25	16	9	0	5
13	2	1	2	6	729	81	81	64	33	16	9
14	2	2	2	8	6561	1089	81	64	33	16	9
15	2	3	2	10	59049	5329	81	64	33	16	9
16	2	1	3	8	6561	169	169	144	73	48	9
17	2	2	3	10	59049	5329	169	144	73	48	9
18	2	3	3	12	531441	60025	169	144	73	48	9
19	3	1	1	6	729	125	125	64	13	0	7
20	3	2	1	9	19683	729	125	64	13	0	7
21	3	3	1	12	531441	2197	125	64	13	0	7
22	3	1	2	9	19683	729	729	512	73	0	19
23	3	2	2	12	531441	35937	729	512	73	0	19
24	3	3	2	15	14348907	389017	729	512	73	0	19
25	3	1	3	12	531441	2197	2197	1728	245	64	27
26	3	2	3	15	14348907	389017	2197	1728	245	64	27

Table 3.1: Case: H=1, m=1. Comparison of upper bounds on the number of complex critical points of a linear network. d= number of neurons in each layer, $d_x=$ input dimension and $d_y=$ output dimension. N= total number of weights in the network. CBB and BKK refer to the classical Bezout bound and the BKK bound respectively. $\mathcal{B}_{\mathbb{C}}$ and $\mathcal{B}_{\mathbb{C}^*}$ refer to the new bounds on the number of critical points in $(\mathbb{C})^N$ and $(\mathbb{C}^*)^N$ respectively. $N_{\mathbb{C}}$ and $N_{\mathbb{C}^*}$ refer to the actual number of critical points in $(\mathbb{C})^N$ and $(\mathbb{C}^*)^N$ respectively. $\max\{N_{\mathbb{R}}\}$ = maximum number of real solutions observed thin each sample.

Location of complex critical points

Critical points with some zero weights lie on particular coordinate subspaces

Proposition 3.1 (no stray zeros in W_1). Consider a linear network with $H = 1, m = 1, d_x = n, d_y = p$ and $d_1 = d$. Let $(W_1, W_2) = \begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \vdots & \vdots \\ a_{d,1} & \cdots & a_{d,n} \end{pmatrix}, \begin{pmatrix} b_{1,1} & \cdots & b_{1,d} \\ \vdots & \vdots & \vdots \\ b_{p,1} & \cdots & b_{p,d} \end{pmatrix}$) denote a solution to the regularized gradient polynomial system (3.1). If $a_{i,j} = 0$, then $a_{i,s} = 0$ for all s = 1, ..., n.

Proposition 3.3 (no stray zeros in W_2). Consider a linear network with $H = 1, m = 1, d_x = n, d_y = p$ and $d_1 = d$. Let $(W_1, W_2) = \begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \vdots & \vdots \\ a_{d,1} & \cdots & a_{d,n} \end{pmatrix}, \begin{pmatrix} b_{1,1} & \cdots & b_{1,d} \\ \vdots & \vdots & \vdots \\ b_{p,1} & \cdots & b_{p,d} \end{pmatrix}$) denote a solution to the regularized gradient polynomial system (3.1). Then,

$$b_{k,i} = 0 \implies b_{\cdot,i} = 0$$

Location of complex critical points

Critical points with some zero weights lie on particular coordinate subspaces

Proposition 3.1 (no stray zeros in W_1). Consider a linear network with $H=1, m=1, d_x=1$

$$n, d_y = p \ and \ d_1 = d.$$
 Let $(W_1, W_2) = \begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \vdots & \vdots \\ a_{d,1} & \cdots & a_{d,n} \end{pmatrix}, \begin{pmatrix} b_{1,1} & \cdots & b_{1,d} \\ \vdots & \vdots & \vdots \\ b_{p,1} & \cdots & b_{p,d} \end{pmatrix}$ denote a solution to the regularized gradient polynomial system (3.1). If $a_{i,j} = 0$, then $a_{i,s} = 0$ for all $s = 1, ..., n$.

Proposition 3.3 (no stray zeros in W_2). Consider a linear network with $H=1, m=1, d_x=1$

$$n, d_y = p \ and \ d_1 = d.$$
 Let $(W_1, W_2) = \begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \vdots & \vdots \\ a_{d,1} & \cdots & a_{d,n} \end{pmatrix}, \begin{pmatrix} b_{1,1} & \cdots & b_{1,d} \\ \vdots & \vdots & \vdots \\ b_{p,1} & \cdots & b_{p,d} \end{pmatrix}$) denote a solution to the regularized gradient polynomial system (3.1). Then,

$$b_{k,i} = 0 \implies b_{\cdot,i} = 0$$

Location of complex critical points

Critical points with some zero weights lie on particular coordinate subspaces

Proposition 3.2 (null rows of W_1 match null columns of W_2). Consider a linear network with

$$H = 1, \ m = 1, \ d_x = n, \ d_y = p \ \ and \ d_1 = d. \ \ Let \ (W_1, W_2) = \left(\begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \vdots & \vdots \\ a_{d,1} & \cdots & a_{d,n} \end{pmatrix}, \ \begin{pmatrix} b_{1,1} & \cdots & b_{1,d} \\ \vdots & \vdots & \vdots \\ b_{p,1} & \cdots & b_{p,d} \end{pmatrix} \right)$$

denote a solution to the regularized gradient polynomial system (3.1). Then,

$$a_{i} = 0 \iff b_{\cdot,i} = 0$$

Location of complex critical points

Critical points with some zero weights lie on particular coordinate subspaces

Proposition 3.2 (null rows of W_1 match null columns of W_2). Consider a linear network with

$$H = 1, m = 1, d_x = n, d_y = p \text{ and } d_1 = d. \text{ Let } (W_1, W_2) = \left(\begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \vdots & \vdots \\ a_{d,1} & \cdots & a_{d,n} \end{pmatrix}, \begin{pmatrix} b_{1,1} & \cdots & b_{1,d} \\ \vdots & \vdots & \vdots \\ b_{p,1} & \cdots & b_{p,d} \end{pmatrix} \right)$$

denote a solution to the regularized gradient polynomial system (3.1). Then,

$$a_{i,\cdot} = 0 \iff b_{\cdot,i} = 0$$

Location of complex critical points

Critical points with some zero weights lie on particular coordinate subspaces

```
W2 W1
01 00
0111
subspace dim: 4
solution count: 8
W2 W1
11 11
11 11
subspace dim: 8
solution count: 16
W2 W1
10 11
10 00
subspace dim: 4
solution count: 8
W2 W1
00 00
00 00
subspace dim: 0
solution count: 1
```

Further research

- 3. run experiments to check if increasing m causes BBK bound to be attained? for what value of m for a given architecture?
- 4. Conversely, can we show that the BKK bound is never reached? Even though our systems are non-generic, we might be able to solve the corresponding facial system may have no solutions, in which case, the BKK bound is a strict bound.
- 5. prove zero patterns for H > 1
- 6. extend table for H = 1, m=1 but higher values if d_x, d_y, d_i by solving reduced systems.

• Neural networks (particularly, *linear networks*)

$$\mathscr{B}_{\mathbb{C}}$$
 $\mathscr{B}_{\mathbb{C}^*}$

- Neural networks (particularly, *linear networks*)
- Neural network training as a minimization problem in real analysis

$$\mathscr{B}_{\mathbb{C}}$$
 $\mathscr{B}_{\mathbb{C}^*}$

- Neural networks (particularly, *linear networks*)
- Neural network training as a minimization problem in real analysis
- Neural network training as solving polynomial systems in algebraic geometry

$$\mathscr{B}_{\mathbb{C}}$$
 $\mathscr{B}_{\mathbb{C}^*}$

- Neural networks (particularly, *linear networks*)
- Neural network training as a minimization problem in real analysis
- Neural network training as solving polynomial systems in algebraic geometry
- Results:

$$\mathscr{B}_{\mathbb{C}}$$
 $\mathscr{B}_{\mathbb{C}^*}$

- Neural networks (particularly, *linear networks*)
- Neural network training as a minimization problem in real analysis
- Neural network training as solving polynomial systems in algebraic geometry
- Results:
 - New upper bounds $\mathscr{B}_{\mathbb{C}}$, $\mathscr{B}_{\mathbb{C}^*}$ on the number of complex critical points of 1-hidden layer networks

- Neural networks (particularly, *linear networks*)
- Neural network training as a minimization problem in real analysis
- Neural network training as solving polynomial systems in algebraic geometry
- Results:
 - New upper bounds $\mathscr{B}_{\mathbb{C}}$, $\mathscr{B}_{\mathbb{C}^*}$ on the number of complex critical points of 1-hidden layer networks
 - Structure in the location of complex critical points with some zero weights