CONTROL DE TRANSMISIÓN DE DATOS. GRUPO 40

Notas Importantes:

Un error conceptual grave, puede anular todo el problema.

Problema 1 (50%)

Sea un canal discreto con de N símbolos (tanto a la entrada como a la salida, $N \ge 2$). $x_i \in \{0,...,N-1\}$ $y_i \in \{0,...,N-1\}$, que puede modelarse estadísticamente mediante $\Pr\{x_i = y_i\} = 1 - p$ y $\Pr\{x_i = y_{(i+1) \bmod N}\} = p$. Sea una fuente sin memoria compuesta por 6 símbolos $F = \{A,B,C,D,E,F\}$ con probabilidades $\{0.3,0.2,0.2,0.1,0.1,0.1\}$ respectivamente.

- a) Calcule la información mutua entre la entrada y la salida del canal I(X;Y), así como la capacidad de canal (C), en función de N y p. Particularice para N=4 y p=0.5 (2 puntos)
- b) Realice una codificación de Huffman de la fuente F para el canal anterior (con N=4). Calcule la eficiencia de codificación (1 punto)
- c) Calcule la entropía a la salida del canal (para N=4, p=0.5 y fuente F). (1 punto)
- d) Realice una codificación aritmética de la secuencia BACCDE emitida por F (1 punto)

Problema 2 (50%)

Sea $C(D) = D^7 + D^6 + D^5 + D^4 + D^3 + D^2 + D + 1$ el polinomio de conexiones de un cifrador en flujo síncrono y $S(D) = D^6 + D^5 + D^4 + D^3 + D^2 + D + 1$ el estado inicial. Tenemos dos usuarios RSA, **A**: $p_A = 67$, $q_A = 89$, $e_A = 31$ y **B**: $p_B = 73$, $q_B = 97$, $e_B = 31$.

- e) Decodifique el criptograma C=7, enviado confidencialmente por A a B (usando RSA). Obtenga M. (2 puntos)
- f) Calcule el estado del LFSR al cabo de número de iteraciones que indica M. (1 punto)
- g) Vamos a cifrar en flujo el mensaje S (ASCII = 01010011) usando para ello un generador compuesto por dos LFSR con polinomios primitivos, cuyas salidas se unen en una puerta suma módulo 2 XOR para entregar la secuencia cifrante o clave S. Los polinomios asociados son: LFSR1 = D⁵ + D² + 1; LFSR2 = D⁶ + D + 1. Las semillas son todos 1s. Encontrar los primeros 8 bits de la secuencia cifrante y luego cifrar el mensaje. (1 punto)
- h) Indicar el tamaño del mensaje máximo en bytes que se recomendaría cifrar con la clave S_i completa generada en este caso y comentar porqué. (1 punto)

DE CATALUNYA	E.T.S. d'Enginyeria de Telecomunicació de Barcelona
Titulació	E.T.S. d'Enginyers de Camins, Canals i Ports de Barcelona
Assignatura	Facultat d'Informàtica de Barcelona
Cognoms	Pàgina de
DNI	
ENTROPÍA A LA SACIDA DEC	CANAC
$H(y) = \sum_{i=0}^{\infty} \rho(y_i) \log \frac{1}{2} = \sum_{i=0}^{\infty} \frac{1}{2} \log \frac{1}{2}$	
	P=0'5
$P(y_n) = (1-p) P(X_n) + P P(X_0)$	= 4/13
$P(y_2) = (1-p) p(x_2) + p \cdot p(x_1)$ $P(y_3) = (1-p) p(x_3) + p \cdot p(x_2)$	= 1/26
Prob de simbility A ENTRADA DE	
SAGEMOS PROB SÍMBOLOS DE FUENTE.	SUPONGA MUS QUE
LA FUENTE EMITE LOS SÍMBOLOS SEG P=0'3 P=0'2 P=0'2 P=0'1 A A A B B C C D	UN SU PRUB P=04 p=012
ODIF: 11 1 1 2 2 3 3 00	01 02;
D(Xi) = H cosos posibles =	
$p(x_0) = 4/13$ $p(x_1) = 4/13$ $p(x_2)$	$1 = \frac{3}{13}$ $p(x_3) = \frac{2}{13}$
	$\frac{3}{4}$ + $\frac{1}{7}\log_2\left(\frac{26}{7}\right)$ + $\frac{5\log_2\left(\frac{26}{5}\right)}{5\log_2\left(\frac{26}{5}\right)}$
- 11978 6its	

Titulació Assignatura		E.T.S. d'Enginyeria de Telecomunicació de Barcelona E.T.S. d'Enginyers de Camins, Canals i Ports de Barcelona	
		Facultat d'In	Facultat d'Informàtica de Barcelona
Cognoms	Nom	Pàgina	de
DNI			
	SIIIP		
	1 6 1 2 1		
A	1 (0/3)		
3	012		
	9 9		
	00101		
	011		
F	102101		
		,	
		· - (
	10) 000000000		
Suponindo 1	10 (1 \tag{1} \tag{1}		
p(3/= 0'2			
A A A 'I R R	CCDE	F	
1 1 1 2 2	3 3 0 0 0 1 0		
1 1 1 1 4 4	C C D E 3 3 0 0 0 1 0	4	
	3,		
p(0) = 4/13	$p(z) = \frac{3}{13}$		
p(1) = 4/12	p(3) 2/13		

UNIVERSITAT POLITÈCNICA DE CATALUNYA	E.T.S. d'Enginyeria de Telecomunicació de Barcelona
Titulació	E.T.S. d'Enginyers de Camins, Canals i Ports de Barcelona
Assignatura	Facultat d'Informàtica de Barcelona
Cognoms	Pàgina de
DNI	
PROBURMA 2	
el A - B C = E B (m)	
B: M= D (C) = C dB	nod NB
S _B V	
$N_{B} = P_{B} \cdot q_{B} = 73.97 = 7081^{2}$	
$Q(N_8) = (p_8 - 1)(q_8 - 1) = 6912$	
$e_{B}d_{3} = k \phi(N_{3}) + 1 \Rightarrow d_{3} =$	223
6912 = 1.6912 + 0.31	
31 = 0.6912 + 1.31 $0 < (-22)$	
1 = 1-1) 6412 + 223-31	
M = Cd3 mod N3 = 6892 = 6893	2
1 1 1 1 1 1 1 1 1 1	- 7 + 1 - 8
$\int D \omega d\sigma S(D) y C(\Omega) L = m + 1$	
$S^{(N)}(0) = 0^N S(0) \mod C(0)$	J L=8
$\mathbf{S}^{(N)}(0) = 0^N S(0) \mod C(0)$ $\mathbf{S}^{(N)}(0) = 0^{N} S(0) \mod C(0)$	D4. D861.8 5(D) mod (C)
= D4 (D7+06+D5+D4+03+02.	
	rviji (Noo Celj)
$S(0) = 0^3$	

