Individual Exercises

Benjamin Russell, fdmw97

March 27, 2021

Exercise 1

Exercise 2

- a). When n is very large R is approaching r
- b). Let B be the set of all bids i.e.

$$B = \{b_1, b_2, ..., b_{n-1}, b_n\}$$

Where b_i is the bid of player $i \in [1, n]$. The maximum bid $\max(B)$ is b_n as $b_n > r > 1$ by the problem definition. Therefore $R = E[\max(B \setminus \{b_n\})]$ i.e. the expected maximum of all bids less than b_n .

Let
$$B' = B \setminus \{b_n\}$$

So $R = E[\max(B')]$, if any $b \in B'$ bids r then $\max(B')$ is necessarily r as r > 1 as per the problem definition, else $\max(B')$ is 1.

We can now model B' using a binomial distribution B(n-1,0.5) where a success is bidder b_i bidding r. Let $X \sim B(n-1,0.5)$ be a discrete random variable representing the number of successes in n-1 bidders.

$$P(X \ge 1) = 1 - P(X = 0)$$

$$= 1 - \binom{n-1}{0} \times 0.5^{0} \times 0.5^{n-1}$$

$$= 1 - 0.5^{n-1}$$

This gives the probability that at least 1 bidder from B' bids r therefore by taking the limit to infinity we can determine R for very large n.

$$\lim_{n \to \infty} P(x \ge 1) = \lim_{n \to \infty} 1 - 0.5^{n-1} = 1 - 0 = 1$$

This means as n approaches ∞ , $P(\max(B') = r) = 1$ and $P(\max(B') = 1) = 0$ therefore

$$E[\max(B')] = 1 \times r + 0 \times 1 = r$$

so $R = E[\max(B')] = r$

Exercise 3

a). Mary's preferences $= u_M$: $u_M(B, W) = 2$, $u_M(C, J) = 1$, $u_M(C, W) = 0$, $u_M(B, J) = 0$ Alice's preferences $= u_A$: $u_A(C, J) = 2$, $u_A(B, W) = 1$, $u_A(C, W) = 0$, $u_A(B, J) = 0$

c).

d). Solution = (B, W)

Using backwards induction first we consider the subgames of length 1, starting with the subgame following B. In this game Alice's optimal choice is W giving a payoff of 1>0. Next we consider the subgame following C. In this game Alice's optimal choice is J giving a payoff of 2>0. Now both subgames of length 1 have been studied we can study the subgames of length 2 of which there is only 1 the full game. Given the optimal actions in the subgames of 1 Mary choosing B would yield her a payoff of 2 and choosing C would yield a payoff of 1, therefore Mary's optimal action is choosing B. No subgames exist of length 3 therefore we are done producing the strategy pair B0, B1, and solution of B1.

Exercise 4

- a). Item 1 has final price of k-1 all other items $\{2,...,k\}$ have prices of 0. Buyer x_i buys item 1 at a price of k-1 for a payoff of k-(k-1)=1.
- b). For all items indexed $i \in [2, k]$ the payoff for x_i will always be 0 as the valuation is 0 and so is the asking price.
 - So long as > 1 buyer x_i has a > 0 payoff from item 1 there will be a constricted set S with $N(S) = \{1\}$ as all other items will give payoff of 0 rather than > 0 from item 1. This results in the asking price of item 1 being increased by 1.
 - As there are k buyers with valuations for item 1 of k-i+1 the maximum valuation is x_i with k and the second highest is x_2 with k-1. So by the time item 1's price has increased to k-2 all other buyers have either a negative payoff from item 1 or 0 in the case of x_3 . Therefore all $x_i \notin \{x_1, x_2\}$ can be assigned to an item $\neq 1$, of which there must be enough as there are k-1 such items and k-2 buyers $\notin \{x_1, x_2\}$. Now item 1 increases its price to k-1 as x_1 and x_2 still form a constricted set S. After this increase x_2 's payoff is now 0, so can be assigned to an item $\neq 1$. Now there is no longer a constricted set S so the final price of item 1 is k-1 and all other items are 0.
- c). In this case the construction of market clearing prices models a second-price sealed-bid auction.