United States Air Force 611th Civil Engineer Squadron

Elmendorf AFB, Alaska

Final
Baseline Risk Assessment Report
Galena Airport
Alaska

Volume 4 - Addendum

March 1996

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF COLOR PAGES WHICH DO NOT REPRODUCE LEGIBLY ON BLACK AND WHITE MICROFICHE.

United States Air Force 611th Civil Engineer Squadron

Elmendorf AFB, Alaska

Final

Baseline Risk Assessment for the Southeast Runway
Fuel Spill Site and the Control Tower
Drum Storage Area, South

Volume 4 - Addendum

March 1996

TABLE OF CONTENTS

•				Page
	EXEC	UTIVE S	SUMMARY	ES-1
1	INTRO	DDUCTIO	ON	. 1-1
•	1.1	IRP Sit	tes	. 1-1
	1.2	Purpos	e and Objectives of the Baseline Risk Assessment	
	1.3		zation of the Baseline Risk Assessment Addendum	
2	SOUT	HEAST I	RUNWAY FUEL SPILL	. 2-1
	2.1	Site De	escription	2-1
		2.1.1	Sources of Contamination	
		2.1.2	RI Activities	
		2.1.3	RI Conclusions	
	2.2		valuation	
	2.3		Health Risk Assessment Results	
	2.5	2.3.1	Chemicals of Potential Concern	
		2.3.2	Exposure Assessment	
		2.3.3	Toxicity Assessment	
		2.3.4	Risk Characterization	
		2.3.5	Uncertainty Assessment	
		2.3.6	Conclusions and Recommendations	
	2.4	Foolog	ical Risk Assessment Results	2 27
	2.4	2.4.1		
		2.4.1	Site Ecology	
		2.4.2	Chemicals of Potential Ecological Concern	
		2.4.3	Exposure Assessment	
			Effects Assessment	
		2.4.5	Ecological Risk Characterization	
		2.4.6	Uncertainty Assessment	
		2.4.7	Conclusions and Recommendations	2-43
3	CONT	ROL TO	WER DRUM STORAGE AREA, SOUTH	3-1
	3.1	Site De	escription	3-1
		3.1.1	Sources of Contamination	3-1
		3.1.2	RI Activities	3-2
		3.1.3	RI Conclusions	3-2
	3.2		valuation	
	3.3	Human	Health Risk Assessment Results	3-4
		3.3.1	Chemicals of Potential Concern	
		3.3.2	Exposure Assessment	3-9
		3.3.3	Toxicity Assessment	
	÷	3.3.4	Risk Characterization	3-26
		3.3.5		3-29
		3.3.6	Conclusions and Recommendations	

TABLE OF CONTENTS (Continued)

		·	Page
	3.4	Ecological Risk Assessment Results 3.4.1 Site Ecology 3.4.2 Chemicals of Potential Ecological Concern 3.4.3 Exposure Assessment 3.4.4 Effects Assessment 3.4.5 Ecological Risk Characterization 3.4.6 Uncertainty Assessment 3.4.7 Conclusions and Recommendations	3-35 3-35 3-35 3-44 3-44
4	COMB	INED IMPACTS	. 4-1
	4.1	Human Health Assessment	. 4-1
	4.2	Ecological Assessment	. 4-3 . 4-3
5	CONCI	LUSIONS AND RECOMMENDATIONS	. 5-1
	5.1	Human Health Assessment	. 5-1
	5.2	Ecological Assessment	. 5-5 . 5-5
6	REFER	ENCES	. 6-1
Appendix 4A:		Statistical Determination of Chemicals of Potential Concern	4A-1
Appendix 4B:		Risk-Based Screening	4B-1
Appendix 4C:		Groundwater Modeling	4C-1
Appendix 4D:		Air Emissions Estimating and Dispersion Modeling in Ambient Air	4D-1
Appendix 4E:		Uptake By Fruit and Vegetables	4E-1
Appendix 4F:		Air Inside Shower Stall	4F-1
Appendix 4G:		Human Health Exposure Point Concentrations	4G-1
Appendix 4H:		Human Health Intake Equations and Exposure Parameters	4H-1
Appendix 4I:		Human Health Toxicity Profiles	. 4I-1

March 1996

TABLE OF CONTENTS (Continued)

		Page
Appendix 4J:	Human Health Risk Model Output	4J- :
Appendix 4K:	Ecological Assessment Exposure Parameters	4K-1
Appendix 4L:	Ecological Assessment Toxicity Profiles	4L-1
Appendix 4M:	Ecological Assessment Spreadsheets	4M -1

LIST OF FIGURES

		Page
1-1	Selected IRP Sites, Galena Airport, Alaska	1-2
2-1	Conceptual Diagram for the Southeast Runway Fuel Spill Site (ST010)	2-5
2-2	Human Exposure Conceptual Model for Southeast Runway Fuel Spill Site	2-21
2-3	Southeast Runway Fuel Spill	2-42
2-4	Conceptual Site Model Showing Potential Ecological Receptors and Exposure Pathways at the Southeast Runway Fuel Spill	2-46
3-1	Sampling Locations and Soil Gas Survey Results for the Control Tower Drum Storage Area, South (SS013)	3-3
3-2	Human Exposure Conceptual Model for the Control Tower Drum Storage Area, South	3-21
3-3	Control Tower Drum Storage Area, South	3-39
3-4	Conceptual Site Model Showing Potential Ecological Receptors and Exposure Pathways at the CTDSA	3-41
5-1	Southeast Runway Fuel Spill Site - Potential Local Population Impacts	5-6
5-2	Control Tower Drum Storage Area, South - Potential Local Population Impacts	5-7

March 1996 v

LIST OF TABLES

		Page
ES-1	Summary of Potential for Local Population Impacts	ES-5
2-1	Analytical Methods Used at the Southeast Runway Fuel Spill Site During the 1995 RI	2-4
2-2	Analytes Detected at the Southeast Runway Fuel Spill Site	2-7
2-3	Identification Criteria for Surface Soil COPCs at the Southeast Runway Fuel Spill Site	2-11
2-4	Identification Criteria for Subsurface Soil COPCs at the Southeast Runway Fuel Spill Site	2-12
2-5	Identification Criteria for Groundwater COPCs at the Southeast Runway Fuel Spill Site	2-13
2-6	Chemicals of Potential Concern at the Southeast Runway Fuel Spill Site	2-15
2-7	Statistical Summary of Values Used in the Human Health Risk Assessment for Surface Soil at the Southeast Runway Fuel Spill Site	2-16
2-8	Statistical Summary of Values Used in the Human Health Risk Assessment for Subsurface Soil at the Southeast Runway Fuel Spill Site	2-17
2-9	Statistical Summary of Values Used in the Human Health Risk Assessment for Groundwater at the Southeast Runway Fuel Spill Site	2-17
2-10	Comparisons of Southeast Runway Groundwater Modeling Results with USEPA Region III Risk-Based Concentrations (RBCs)	2-20
2-11	Data Used to Derive Exposure Concentrations in Soil-Related Exposure Media at the Southeast Runway Fuel Spill Site	2-24
2-12	Data Used to Derive Exposure Concentrations in Groundwater-Related Exposure Media at the Southeast Runway Fuel Spill Site	
2-13	Toxicity Values for Southeast Runway COPCs	2-28
2-14	Summary of Carcinogenic Risks by Exposure Scenario for the Southeast Runway Fuel Spill Site	2-30
2-15	Summary of Noncarcinogenic Hazard Indices by Exposure Scenario for the Southeast Runway Fuel Spill Site	2-32

LIST OF TABLES (Continued)

		Page
2-16	Risk Characterization Summary for the Southeast Runway Fuel Spill Site: Carcinogenic Risks	2-33
2-17	Risk Characterization Summary for the Southeast Runway Fuel Spill Site: Noncarcinogenic Risks	2-35
2-18	Summary of the Major Uncertainties Associated with the Risk Estimates	2-38
2-19	Chemicals of Potential Ecological Concern in Surface Soil and Discharged Groundwater from the Southeast Runway Fuel Spill	2-44
2-20	Assessment and Measurement Endpoints for the Evaluation of Terrestrial Ecosystems at Southeast Runway Fuel Spill Site	2-47
2-21	Assessment and Measurement Endpoints for the Evaluation of Surface Water Contamination Originating at the Southeast Runway Fuel Spill Site	2-47
2-22	Summary of Terrestrial EQs	2-48
2-23	Summary of Aquatic EQs	2-49
2-24	EQ Values Greater than 1 for Terrestrial Species at the Southeast Runway Fuel Spill	2-50
2-25	EQ Values Greater than 1 for Aquatic and Semiaquatic Species at the Southeast Runway Fuel Spill	2-50
2-26	Uncertainties of ERA at the Southeast Runway Fuel Spill Site	2-51
2-27	Percent Contribution to the Meadow Vole and Robin EQs by Soil and Food Intake	2-54
3-1	Analytical Methods Used at the Control Tower Drum Storage Area, South During the 1994-95 RI	3-5
3-2	Analytes Detected at the Control Tower Drum Storage Area, South	3-6
3-3	Identification Criteria for Surface Soil COPCs at the Control Tower Drum Storage Area, South	3-10
3-4	Identification Criteria for Groundwater COPCs at the Control Tower Drum Storage Area, South	3-13

March 1996

LIST OF TABLES (Continued)

		Page
3-5	Chemicals of Potential Concern at the Control Tower Drum Storage Area, South	3-15
3-6	Statistical Summary of Values Used in the Human Health Risk Assessment for Surface Soil at the Control Tower Drum Storage Area, South	3-16
3-7	Statistical Summary of Values Used in the Human Health Risk Assessment for Groundwater at the Control Tower Drum Storage Area, South	3-17
3-8	Comparisons of Control Tower Drum Storage Area Groundwater Modeling Results with USEPA Region III Risk-Based Concentrations (RBCs)	3-19
3-9	Data Used to Derive Exposure Concentrations in Soil-Related Exposure Media at the Control Tower Drum Storage Area, South	3-23
3-10	Data Used to Derive Exposure Concentrations in Groundwater-Related Exposure Media at the Control Tower Drum Storage Area, South	3-25
3-11	Toxicity Values for Control Tower Drum Storage Area, South COPCs	3-27
3-12	Summary of Carcinogenic Risks by Exposure Scenario for the Control Tower Drum Storage Area, South	3-28
3-13	Summary of Noncarcinogenic Hazard Indices by Exposure Scenario for the Control Tower Drum Storage Area, South	3-30
3-14	Risk Characterization Summary for the CTDSA: Carcinogenic Risks	3-31
3-15	Risk Characterization Summary for the CTDSA: Noncarcinogenic Risks	3-33
3-16	Summary of the Major Uncertainties Associated with the Risk Estimates	3-36
3-17	Chemicals of Potential Ecological Concern in Discharged Groundwater from the CTDSA	3-40
3-18	Assessment and Measurement Endpoints for the Evaluation of Surface Water Contaminants Originating From the CTDSA	3-42
3-19	Summary of Aquatic and Semiaquatic EQs	3-43
3-20	EQ Value Greater than 1 for Aquatic and Semiaquatic Species at the CTDSA	3-45
3-21	Percent Contribution to the Spotted Sandpiper EQ from Water and Invertebrate Intake	3-45

LIST OF TABLES (Continued)

		Page
3-22	Uncertainties of ERA at the CTDSA	3-46
5-1	Chemicals and Pathways that Contribute Estimated Cancer Risks Greater Than 1 in One Million	. 5-2

EXECUTIVE SUMMARY

The U.S. Air Force (USAF), under the Installation Restoration Program (IRP), has conducted a remedial investigation (RI) at Galena Airport (formerly Galena Air Force Station). Within the framework of the IRP, the objective of the RI is to evaluate past hazardous waste disposal and spill sites at Galena Airport. The RI determines the nature and extent of possible contamination, identifies site physical characteristics that may affect contaminant distribution, and defines possible migration pathways.

A baseline risk assessment (BRA) was conducted to support the RI. The BRA determines the potential threat (if any) to human health and/or the environment attributable to the sites under investigation. Remedial actions will be developed for sites that pose an unacceptable threat to either human health or the environment.

ES.1 Background

Volumes 1-3 of this BRA report describe the environmental setting in the vicinity of Galena Airport, document the methods used to evaluate risk, and present the results of the risk assessment for three IRP sites at Galena Airport:

- 1. The Fire Protection Training Area (FPTA);
- 2. The POL Tank Farm; and
- 3. The West Unit.

The BRA was performed for these three sites using data from field investigations conducted during 1992, 1993, and 1994.

This addendum (Volume 4) presents an assessment of the current and possible future risks to human health and the environment

potentially attributable to two additional IRP sites at Galena Airport:

- 1. The Southeast Runway Fuel Spill; and
- 2. The Control Tower Drum Storage Area, South (CTDSA).

The RI was completed for these two sites after additional field investigations were conducted during the summer of 1995.

ES.2 Human Health Assessment

The overall strategy for the human health assessment as well as the technical approach used for individual steps conform to U.S. Environmental Protection Agency (USEPA) recommendations (USEPA, 1989). Risks were evaluated for a range of potentially exposed human populations, including on-base residents, off-base (Galena) residents, on-base workers, and on-base boarding school students (hypothetical). The results of the human health assessment are presented as cancer risk estimates (an estimate of the incremental probability of developing cancer) and noncancer hazard indices (the ratio of an estimated exposure level to a level considered unlikely to cause adverse effects, summed for all chemicals with similar toxic endpoints).

For carcinogenic effects, the USEPA Superfund site remediation goal set forth in the National Contingency Plan (NCP) designates a cancer risk of 10⁻⁴ (1 in 10,000) to 10⁻⁶ (1 in one million). This range is designed to be protective of human health and to provide flexibility for consideration of other factors in risk management decisions. A cancer risk of 1 in one million is considered the *de minimis*, or a level of negligible risk. A cancer risk higher than 1 in one million is not necessarily considered

unacceptable. The State of Alaska plans to use a cancer risk level of 10^{-5} (1 in 100,000) in making risk management decisions (USAF, 1996b). For noncarcinogenic effects, the Superfund site remediation goal is a total hazard index (HI) of 1 for chemicals with similar toxic endpoints.

Of the numerous chemicals detected in environmental media at the two sites, only one chemical poses an estimated risk in excess of 1 in one million: beryllium in groundwater at the Southeast Runway Fuel Spill site. Estimated noncancer HIs are below 1, the Superfund site remediation goal for noncarcinogens, for all scenarios at both sites. An evaluation of combined impacts indicates that combining scenarios (e.g., child and adult), or adding individual site contributions to media at the same location, does not substantially increase the estimated cancer risks or noncancer HIs.

Risks associated with residual petroleum at the sites are addressed by quantifying risks for individual chemicals that are components of the residual petroleum. The results of the risk assessment can be used to evaluate the need to remediate diesel range organics (DRO) and gasoline range organics (GRO), but are not intended to be used to establish alternate cleanup levels for DRO and GRO. Remediation issues related to DRO, GRO, and free product are to be addressed outside the risk assessment.

Southeast Runway Fuel Spill Site

Estimated incremental cancer risks for all scenarios except the current and future Old Town Galena residents are below 1 in one million, considered the *de minimis*, or level of negligible risk. Estimated risks for the current Old Town Galena resident range from an average of 3 in one million to a reasonable maximum of 3 in 100,000 for an adult and from 4 in one million to 1 in 100,000 for a child. These

risk estimates are within the Superfund risk range goal for carcinogens of 1 in 10,000 to 1 in one million. Estimated risks for the future Old Town Galena resident range from an average of 3 in 100,000 to a reasonable maximum of 2 in 10,000 for an adult and from 2 in 100,000 to 3 in 100,000 for a child. The reasonable maximum estimate for the adult exceeds the high end of the Superfund risk range goal.

In the current Old Town Galena resident scenario, ingestion of fruits and vegetables that take up beryllium from the shallow groundwater (either through irrigation or subirrigation) at the location of the gardens southwest of the site contributes the majority of the risks (97%) in all cases. Risks associated with exposure to all other chemicals are negligible. Likewise, in the future Old Town Galena resident scenario, 99% of the estimated risk in all cases is attributable to beryllium in groundwater. Ingestion of groundwater containing beryllium contributes most (85-95%) of the estimated risk; ingestion of fruits and vegetables that take up beryllium from the shallow groundwater (either through irrigation or subirrigation) at gardens in Old Town Galena contributes risks that exceed 1 in one million in some cases. Again, risks associated with exposure to all other chemicals are negligible.

Beryllium is a chemical of potential cancer in groundwater at the site because the background comparison concluded that average beryllium concentrations in groundwater at the site exceeded average beryllium concentrations in background groundwater. However, the level of confidence in this conclusion is rated as weak, based on the p-value of the comparison (0.0630). Moreover, the maximum detected concentration in groundwater at the site (0.00394 mg/L) is lower than the calculated background upper tolerance limit (UTL) for beryllium in groundwater (0.005 mg/L). It is also lower than the USEPA maximum contaminant level (MCL)

ES-2

and maximum contaminant level goal (MCLG) for drinking water, which are both 0.004 mg/L. There is no reason to suspect that concentrations of beryllium in groundwater at this site might be elevated above background; although beryllium and beryllium alloys are sometimes used for various types of instrument springs, control parts, valves, and airplane carburetors and instruments, it is unlikely that these possible uses have resulted in elevated beryllium concentrations in groundwater at this site. Therefore, the estimated risks associated with exposure to beryllium at this site are probably no higher than risks from exposure to background concentrations of beryllium.

Moreover, the methodologies used to model the migration of beryllium in the groundwater from the Southeast Runway Fuel Spill site to Old Town Galena, and to estimate uptake by fruits and vegetables from groundwater, are conservative (i.e., health protective). groundwater modeling accounted only for horizontal dispersion. Vertical dispersion was ignored. The "source" was defined as 100 ft long with a concentration of 0.00394 mg/L (the maximum detected concentration). As a result, the modeled concentration at Old Town Galena (0.00113 mg/L) is higher than that detected at two of the four monitoring wells located at the site.

To calculate uptake by fruits and vegetables grown in gardens southwest of the site and in gardens in Old Town Galena, it was assumed that 100% of water required by the plants is supplied by shallow groundwater, either through irrigation or subirrigation. The depth of the groundwater fluctuates from very close to the surface to 15 to 20 ft below surface over the course of the year. It is unlikely that the roots of garden plants are in direct contact with the groundwater (and thus are subirrigated) for a substantial portion of the growing season. It is

more likely that precipitation and irrigation water from sources other than the shallow groundwater supply some or all of the water required.

Finally, most residents of Old Town Galena have drinking water trucked in from the city well in the New Town area, upgradient from Galena Airport. There are, however, at least seven private wells still in use in Old Town Galena (USAF, 1995b). Four of these wells, all less than 60 ft deep, were sampled in 1992 and 1993 as part of the RI. Results from beryllium were reported as not detected (ND); however, the detection limit was 0.002 mg/L.

If, as the evidence suggests, beryllium is not elevated above background in the groundwater at the Southeast Runway Fuel Spill site and it is removed as a chemical of potential concern, the risks posed by the site are negligible for all human populations that might encounter site-related contaminants. Estimated risks associated with exposure to beryllium in the groundwater downgradient from the site are not significantly different from exposure to background concentrations of beryllium in the groundwater. On the basis of the results of the human health assessment, remedial action at the Southeast Runway Fuel Spill site is not warranted.

Control Tower Drum Storage Area, South

The estimated incremental cancer risks for all other scenarios at the CTDSA are below 1 in one million. Estimated noncancer HIs are below 1 for all scenarios. On the basis of the results of the human health assessment, remedial action at the CTDSA is not warranted.

ES.4 Ecological Assessment

Ecological risk assessment is defined as a process that evaluates the likelihood that adverse ecological effects may occur, or are occurring, as a result of exposure to one or more stressors (e.g., chemical contaminants). The methodology used to conduct the ecological assessment conforms to USEPA guidance (USEPA, 1992b). An in-depth ecological assessment problem formulation was completed for the Galena Airport (USAF, 1995e) prior to conduct of the ecological assessment.

Species evaluated for assessment of terrestrial ecosystems included terrestrial invertebrates, the American robin, the American kestrel, the meadow vole, and the red fox. These species represent several trophic levels in a terrestrial environment and include several upper trophic level species (kestrel and fox). Aquatic invertebrates and the spotted sandpiper, which feeds on aquatic invertebrates, were selected to evaluate the semiaquatic ecosystem (mudflats) at the edge of the Yukon River. The northern pike, a species of fish that is present in the Galena area for most of the year, represented the aquatic ecosystem in the Yukon River. Pike is not a migratory species, as are species of salmon that are present in the Galena area for only short periods of time.

The "quotient method" (Barnthouse et al., 1982; Urban and Cook, 1986) was used to arithmetically compare a toxicity benchmark (TB) concentration (the measurement endpoint) with the chemical-specific intake for each assessment endpoint species. An ecological quotient (EQ) is calculated by the general form:

EQ = Intake (mg/kg-day)/TB (mg/kg-day).

The TB is a reasonable estimate of a contaminant concentration that may result in adverse effects to an assessment endpoint species, if exceeded in a given environmental medium.

The results of the quotient method, the EQ values, were placed in three categories as follows:

- EQ < 1. Those contaminants with EQs less than one were assumed to pose no significant adverse ecological impacts;
- 10 > EQ ≥ 1. Contaminants with EQs greater than or equal to 1 and less than 10 were classified as contaminants of possible concern; and
- EQ ≥ 10. Contaminants with EQs greater than or equal to 10 were classified as contaminants of probable concern.

A high EQ does not necessarily mean that the local population of the species evaluated is at risk. Therefore, using the EOs, the ecological significance of potential impacts was also A weight-of-evidence analysis of evaluated. potential effects on assessment endpoint species was conducted by reviewing the physical, chemical, ecological, and toxicological properties of chemicals with EQs above 1. On the basis of both the EQ values and the weight-of-evidence evaluation, each chemical with an EQ value greater than 1 was rated for potential to cause local population impacts. This population impacts rating (high, medium, or low) provides the initial guidance for the decision-making process. Table ES-1 summarizes the weight-ofevidence findings for local populations of species evaluated in this assessment.

Southeast Runway Fuel Spill Site

Terrestrial Ecosystem—No EQ values above 1 were obtained in this ERA for the invertebrate, red fox, or kestrel. Results of the risk evaluation for plants were inconclusive, except for lead. Given the extreme conservatism associated with the terrestrial toxicity benchmark, the low EQ (1.02) for plants, the lack of impacts to the higher trophic levels, and the fact that site lead levels are not higher than general

Table ES-1 Summary of Potential for Local Population Impacts

				Assessmen	Assessment Endpoint Species	pecies			
			Tarractriol Penacetaer	ietam			Semiaquati	Semiaquatic Ecosystem	Aquatic Ecosystem (Yukon Piccos
Chemicals with EQs > 1	Terrestrial Invertebrates	American Robin	American Kestrel	Terrestrial Plants	Meadow Vole	Red Fox	Aquatic Invertebrates	Spotted Sandpiper	Northern Pike
Southeast Runway Fuel Spill Site	spill Site							4	
Benzo(a)anthracene	:		-	;	Low	:	:	i	:
Benzo(a)pyrene	1	ŀ	:	:	Low	ì	;	;	ł
Benzo(b)fluoranthene	;	Low/Medium	1	:	;	;	;	:	;
Benzo(g,h,i)perylene		1	1	ŀ	Low	i	:	1	;
bis(2-ethylhexyl)phthalate	:	Low	:	ŀ	ì	ŀ	ł	;	;
Fluorene	!	;	;	ŀ	;	i	Low	1	;
Lead	ŀ	;	;	Low	ŀ	ŀ	:	:	;
2-Methylnaphthalene	;	;	:	1	:	1	Low	:	;
Control Tower Drum Storage Area, South	rage Area, South								
DDE	NA	NA	NA	NA	NA	NA	1	Low	ŀ
								I	

= Not applicable = EQ < 1 or not quantified (not a chemical of potential ecological concern at the site in the medium that is contacted) NA:

background agricultural levels, adverse effects of lead on terrestrial plants are not expected. Several polynuclear aromatic hydrocarbons (PNAs) were noted in the meadow vole with EOs greater than 1 (benzo(a)anthracene. benzo(a)pyrene, and benzo(g,h,i)perylene). Although all of these EOs were greater than 1, they were also less than 10, and are categorized as indicating possible risk; however, the potential for risk from PNAs in this EQ category is likely to be insignificant because current data indicate that vertebrates metabolize PNAs (Eisler, 1987), or the PNAs remain bound to soil particles in the gastrointestinal tract and therefore are not accumulated (ATSDR, 1993). Owing to the low EQ levels of these PNAs, low concentrations of PNAs when compared with other sites, lack of impact to the red fox, and physical and biological processes that limit the vertebrate toxicity, the effects of PNAs on the mammals in the terrestrial ecosystem are expected to be minimal.

As with the plant toxicity, little soil invertebrate toxicity information was found. Several TBs were identified; however, none of the EQ results were above 1. Additionally, there were no EOs above 1 for the kestrel. For the robin, benzo(b)fluoranthene was the only contaminant evaluated with an EQ above 10 at 10.9. The only other chemical with an EQ above 1 for the robin was bis(2-ethylhexyl)phthalate, with an EQ of 1.09. As described above, the potential for risk from PNAs is likely to be insignificant because current data indicate that vertebrates metabolize PNAs (Eisler, 1987), or the PNAs remain bound to soil particles in the gastrointestinal tract and therefore are not accumulated (ATSDR, 1993). Information is limited on avian PNA toxicity. A "worst case" exposure is represented in this assessment by the TB. The applicability of this exposure route is dependent on several factors, including the form of the PNAs at the Southeast Runway Fuel Spill site and the use of the Southeast Runway Fuel Spill site as a breeding area for avian species. During the yearly flood, soil contaminants such as PNAs could be transported to the surface by the rising

These contaminated surface waters waters. could potentially contact ecological receptors, especially as water accumulates at the dike. The Southeast Runway Fuel Spill site is vegetated with alders and other tall vegetation on the slope Perching birds are commonly of the dike. observed and nesting could occur in this vegetation. Because of the high quality of habitat along the dike, the propensity of birds, possible transport and exposure mechanisms of contaminants to avian receptors, adverse impacts to avian receptors (especially eggs and young birds) could occur; however, the ability of vertebrate systems to metabolize PNAs and the strong adsorption of these compounds to soils limits the exposures and toxicities. Possible impacts on avian receptors at the Southeast Runway Fuel Spill site by PNAs are therefore given a medium rating.

The EQ for bis(2-ethylhexyl)phthalate in the robin was calculated to be 1.09. Bis(2ethylhexyl)phthalate is bioconcentrated and the compound has been observed in invertebrates, fish, and terrestrial organisms; however, accumulation of bis(2-ethylhexyl)phthalate is likely to minimized by metabolism, biomagnification in the food chain is not expected to occur. This has been confirmed by the detection of metabolites in animal tissues (ATSDR, 1991a). Because of the potential for metabolism of bis(2-ethylhexyl)phthalate, lack of adverse impacts to the kestrel, and low EQ in robin. the effects of bis(2ethylhexyl)phthalate to the avian ecosystem at the Southeast Runway Fuel Spill site are expected to be minimal.

This assessment indicates that impacts on perching birds, especially eggs and young, might occur due to the presence of PNAs in the surface soil. However, numerous birds have been noted at the site.

Semiaquatic Ecosystem—Semiaquatic exposures considered groundwater beneath the Southeast Runway Fuel Spill site that potentially could migrate to the Yukon River, where expo-

sure to the aquatic invertebrates and spotted sandpiper potentially could occur. None of the chemicals of potential ecological concern evaluated in this assessment showed an EQ above 1 for the spotted sandpiper. Ambient water quality criteria (AWQC) were used as the measurement endpoints for evaluation of the aquatic invertebrates when they existed. AWQC are highly conservative since they are designed to protect most aquatic life. 2-Methylnaphthalene and fluorene are the only compounds with EQs greater than 1 for the aquatic invertebrate. PNAs vary substantially in their toxicity to aquatic organisms. In general, toxicity and bioconcentration factors tend to increase as molecular weight increases (Eisler, 1987). Fluorene and 2-methylnaphthalene are both low molecular weight PNAs with molecular weight values of 166.2 and 142.2, respectively (ATSDR, 1993), indicating low potential for bioconcentration or toxicity. PNA levels in fish and higher trophic levels are usually low because they are rapidly metabolized (Eisler, 1987). Because of the low potential for bioconcentration or toxicity from low molecular weight PNAs, and the ability of higher trophic levels to metabolize PNAs, the adverse impacts from fluorene and 2-methylnaphthalene are expected to be minimal.

Aquatic Ecosystem—EQs were less than 1 at the aquatic ecosystem (Yukon River) for the northern pike.

Control Tower Drum Storage Area

Terrestrial Ecosystem—Terrestrial receptors were not considered owing to the lack of habitat at the CTDSA.

Semiaquatic Ecosystem—None of the chemicals of potential ecological concern evalu-

ated in this assessment showed an EQ above 1 for the aquatic invertebrate. AWQC were used as the measurement endpoints for these assessment endpoint species when they existed. No dilution or volatility factors were applied to the discharged concentrations. 4.4'-DDE had an EQ value greater than 1(6.03) for the spotted sandpiper, indicating possible risk. There were no other chemicals of potential ecological concern noted to have EQs above 1 for the spotted sandpiper. DDT and its metabolites (DDE and DDD) are organochlorine pesticides that are recalcitrant and lipophilic compounds that can enter the food chain easily and progressively biomagnify to organisms at the top of the food chain, such as fish-eating birds. Because of the extensive past use of DDT worldwide, and the persistence of the compounds, these chemicals are virtually ubiquitous and are continually being transformed and redistributed in the environment. A steady state bioconcentration factor of 12,000 for rainbow trout was applied to estimate the concentration in the aquatic invertebrate as the food for the spotted sandpiper. This value is based on ingestion of fish lower on the food chain and exposure to the surrounding media (i.e., water and sediment) (ATSDR, 1994). An analysis of the intake model for the spotted sandpiper indicates that 99% of the EQ contribution was from invertebrate ingestion and only 1% was from ingestion of water. Organochlorine pesticides such as DDT were used extensively at the Galena Airport for insect The CTDSA does not represent a unique source for DDT and its metabolites.

Aquatic Ecosystem—No chemicals were found to pose risk to the northern pike in the Yukon River.

Section 1 INTRODUCTION

The U.S. Air Force (USAF), under the Installation Restoration Program (IRP), has conducted a remedial investigation (RI) at Galena Airport (formerly Galena Air Force Station), Alaska. Figure 1-1 in Volume 1 shows the location of Galena Airport in Alaska. Within the framework of the IRP, the objective of the RI is to evaluate past hazardous waste disposal and spill sites at Galena Airport. The RI determines the nature and extent of possible contamination, identifies site physical characteristics that may affect contaminant distribution, and defines possible migration pathways.

This baseline risk assessment (BRA) was conducted to support the RI. The BRA determines whether there is a possible threat to human health and/or the environment attributable to the sites under investigation. For sites that pose an unacceptable threat to either human health or the environment, remedial actions will be developed.

1.1 IRP Sites

There are 13 identified IRP sites at the Galena Airport. Figure 1-2 in Volume 1 shows the location of the IRP sites, source areas, and other areas of interest at the installation.

Some sites have been closed or are proposed for closure. A BRA is not scheduled for the following sites at this time:

- SS002 Control Tower Drum Storage Area;
- ST003 Petroleum, oils, and lubricants (POL) Fuel Line Leak;
- ST004 JP-4 Fuel Truck Spill; and
- SS007 Drums, Perimeter Dike.

One site, SS006 Waste Accumulation Area, has been incorporated into the West Unit (ST009).

Three other sites, LF008-Main Landfill, LF011-Alternate Landfill, and LF012-Southwest Runway Dump, will be addressed separately outside the IRP process.

Five sites remain "active" IRP sites:

- FT001 Fire Protection Training Area (FPTA);
- ST005 POL Tank Farm;
- ST009 West Unit;
- ST010 Southeast Runway Fuel Spill; and
- SS013 Control Tower Drum Storage Area, South (CTDSA).

The RI was completed for the FPTA, the POL Tank Farm, and the West Unit after the 1994 field season. The first three volumes of this BRA provide details of the environmental setting in the area of Galena Airport, describe the risk assessment methodology used, and document the results of the risk assessment for the FPTA, the POL Tank Farm, and the West Unit.

Additional sampling and analysis were conducted during the summer of 1995 at the Southeast Runway Fuel Spill site and the CTDSA. This addendum (Volume 4 of the BRA) focuses on the two sites for which the RI was completed in 1995. Figure 1-1 shows the location of the two sites and other sites in the immediate vicinity.

This addendum was prepared separately from the other volumes of the BRA to accommodate differing timelines for making site management decisions. Descriptions of the environmental setting and risk assessment methodology that are provided in the first three volumes are not repeated in this addendum.

Figure 1-1. Selected IRP Sites, Galena Airport, Alaska

March 1996 1-2

1.2 Purpose and Objectives of the Baseline Risk Assessment

The purpose of this BRA is to identify and characterize the current and potential future threats posed by the sites under investigation to humans living and working in and around Galena Airport and to the ecology of the area. The BRA has three specific objectives:

- 1. To determine the average and reasonable maximum carcinogenic risk (an estimate of incremental risk of developing cancer) to humans attributable to the sites under investigation;
- 2. To characterize the average and reasonable maximum likelihood for noncarcinogenic effects in humans; and
- 3. To evaluate the likelihood that adverse ecological effects may occur.

Average risk is a measure of the central tendency of the risk distribution. The reasonable maximum risk is the highest risk that is reasonably expected to occur.

Within the broader context of the IRP process, the BRA results will be used to make one of the following remedial action recommen-

dations: 1) consider interim remedial action for sites with high current estimated human health risks and/or probable ecological risk; 2) negotiate the need for remedial action for sites with intermediate estimated human health risks and/or possible ecological risk; and 3) pursue no further response action for sites with negligible estimated human health or ecological risks. Section 1.2 in Volume 1 provides a more detailed discussion on how the BRA results are used to support these recommendations.

1.3 Organization of the Baseline Risk Assessment Addendum

This report is organized into six sections. Following the Introduction (Section 1), Sections 2 and 3 each describe the site, summarize data available from the RI, and present the results of the human health and ecological assessments for the Southeast Runway Fuel Spill site and the CTDSA, respectively. Section 4 addresses the potential combined impacts of individual sites and individual scenarios, considering the two sites that are the subject of this addendum, plus the three sites evaluated in Volumes 1-3. Section 5 summarizes conclusions and recommendations. Finally, Section 6 lists references. The appendices supply supporting documentation for the assessments that were conducted.

Section 2 SOUTHEAST RUNWAY FUEL SPILL

Section 2 contains a site-specific BRA for the Southeast Runway Fuel Spill site. Section 2.1 provides a description of the site and Section 2.2 summarizes data evaluation. Section 2.3 presents the human health risk assessment results. Section 2.4 presents the ecological assessment results.

2.1 Site Description

The Southeast Runway Fuel Spill site is located inside of the perimeter dike in a low-lying area just south of the airstrip. It includes a shallow ditch that runs roughly parallel to the runway (Figure 1-1). This is the location of a reported fuel release that occurred during the winter of 1984.

The site is bounded to the north by the runway and to the south by the dike road. The site is vegetated primarily with grass; the state mows the area periodically to keep willows or other tall vegetation from growing too near the runway. Several gardens, maintained by inhabitants of Galena, grow along the southwestern edge of the site. Surface drainage from the ditch flows to the west and accumulates against a dike. In the spring, standing water is common in the lowest portions of the site. Accumulated water evaporates or infiltrates the soil.

The Southeast Runway Fuel Spill site is located entirely within the building restriction line (see Figure 2-2 in Volume 1); therefore, future development/building construction in this area is not possible as long as the airport remains operational.

2.1.1 Sources of Contamination

The site was reportedly contaminated in 1984 from a pipeline leak. During an interview, a Galena resident stated that a spill occurred at this location when the ground was frozen and covered with snow (Danny Patrick, personal communication, 4 October 1992). The source of the spill appeared to be the 4-in.-diameter diesel

pipeline that leads from the barge loading area under the runway to the POL Tank Farm. The spill volume is unknown, but fuel reportedly covered the ground and accumulated in the drainage ditch south of the runway. The accumulated fuel was reported to have been removed from the ground before significant amounts could infiltrate the frozen soil.

The ruptured diesel line was replaced with a 6-in.-diameter diesel pipeline and 8-in.-diameter JP-4 pipeline that were rerouted along the south side of the runway in 1988 (21st Civil Engineering Squadron, drawing no. 86E008, 3 March 1986 with changes made in 1988). The abandoned 4-in.-diameter pipeline was to be removed where it was above ground or interfered with the installation of the new pipeline. Where the old pipeline ran under the runway, it was to be abandoned in place for a distance of 25 ft on either side of the runway shoulder. All piping that was abandoned in place was to be drained, flushed, and capped with ¼-in. steel plates or plugged with concrete.

A barrel dump was also located at the Southeast Runway Fuel Spill site. This dump is noted on the plot plan for the fuel line abandonment and reinstallation project. drums can be seen protruding from the ground at the site. In addition to the fuel line leak and barrel dump, other potential sources of contamination have been identified at the Southeast Runway Fuel Spill site (Assistant Airport Manager Dick Evans, personal communication, 17 July 1995). A tar pit, which has been covered over with soil, was once present at the site, and some patches of tar are still visible at the surface. A building that was located in the area burned down; the contents or purpose of the building is unknown.

A nearby site (JP-4 Fuel Tank leak, SS004), shown in Figure 1-1, was investigated during the Stage 1 RI (USAF, 1989) in response

to an accident that resulted in a POL tank truck releasing approximately 4000 gal. of JP-4 fuel. During that study, petroleum hydrocarbons were detected in the soil. The contaminated soil was removed and no further action was recommended. The JP-4 spill from the tanker did not contribute to the contamination at the Southeast Runway Fuel Spill site.

2.1.2 RI Activities

An investigation was conducted at the Southeast Runway Fuel Spill site during the 1993 and 1995 field seasons. Field screening using soil gas, field infrared (IR) analysis of soils, and laboratory analysis for diesel range organics (DRO) and gasoline range organics (GRO) of direct push technology (DPT) water samples was conducted to determine the extent of fuel contamination at the site. Laboratory confirmation analysis was performed for surface and subsurface soils and groundwater to determine the nature and concentration of site contaminants.

During 1993, field screening was conducted southeast of the main runway to document the presence of hydrocarbons in the soil and to determine the extent of the fuel spill along the ditch. Twenty-four soil vapor samples were collected along the ditch at depths of 5 ft. The samples were analyzed with a photoionization detector (PID) and catalytic hydrocarbon detector (CAT).

On the basis of the results of the soil gas survey, 16 shallow soil samples were collected from locations encompassing the highest soil vapor concentrations and analyzed in the field IR laboratory to determine the presence of hydrocarbons in the soil. Sample results confirmed the east-west extent of contamination found with the soil gas screen.

During 1995, additional investigation activities were conducted at the Southeast Runway Fuel Spill site to confirm the extent of soil contamination and determine the nature of the contaminants and the extent of potential

groundwater contamination. Additional soil gas data were gathered south of the ditch line to help direct sampling activities. On the basis of the soil gas data, DPT water samples were collected and analyzed for DRO. These data were then used to determine the optimum locations of monitoring wells and soil samples.

Three soil borings were sampled at two intervals each along the ditch line. Soil samples were also collected at a depth of 10 to 12 ft below ground level (bgl) from the well bore at three of the four monitoring well locations at the Southeast Runway Fuel Spill site. In addition, a surface soil sample was collected at one of four monitoring well locations. Groundwater samples were collected from all four monitoring wells installed at the site. The analytical results for soil and water samples are presented in Appendix A of the RI report (USAF, 1995b).

2.1.3 RI Conclusions

On the basis of the field screening and laboratory confirmation results, it appears that the reported fuel line rupture occurred near the eastern end of the ditch. Soil contamination due to the fuel leak is limited to the ditch line, and groundwater contamination extends downgradient (south and west) of the ditch. Contaminants of concern include DRO; GRO; and benzene, toluene, ethylbenzene, and xylenes (BTEX) in the immediate vicinity of the leak; however, only DRO were detected any distance from the source. This is consistent with site evidence that indicates reducing conditions near the leak. The high contaminant loading and low permeability in the immediate vicinity of the leak appears to have depleted the available oxygen, limiting the microbial action necessary to break down the BTEX components. Lower concentrations of DRO in the surface soils along the ditch may reflect residual diesel from the spill or the presence of hydrocarbons in runoff from the runway. Although the ground was reportedly frozen at the time of the pipeline rupture, subsurface soil contamination at the western edge of the plume may indicate the

infiltration of fuels flowing along the ditch upon encountering coarser grained soils.

The presence of other site contaminants, such as chlorinated solvents in groundwater and polynuclear aromatic hydrocarbons (PNAs) in soils, are likely to be the result of other sources at the site, such as the drums, the tar pit, or the burned-down building.

2.2 Data Evaluation

Data available from the RI (USAF, 1995b) were used to evaluate human health risks and ecological effects posed by the Southeast Runway Fuel Spill site. Analytical results from a total of four surface soil samples, six subsurface soil samples, and four groundwater samples made up the risk assessment data set. Table 2-1 lists the analytical methods used to test the soil and water samples during the 1995 RI.

Figure 2-1 presents a conceptual diagram for the site from the RI report (USAF, 1995b). This diagram provides a plan view, a geologic cross section, and a table that lists the range of detected concentrations for analytes that have exceeded the RI screening criteria (identified in the key to the figure). The plan view shows the location of all analytical data points (soil samples, monitoring well locations, and DPT water samples). The area of contamination, as determined by soil gas data, is shown on the plan view. The plan view and the geologic cross section can be used in conjunction to provide a three-dimensional visualization of site characteristics and contaminants.

Statistical analyses, in accordance with methods summarized in Section 3 of Volume 1 and described in detail in Appendix A (Volume 2), were conducted on the available data to identify contaminants that were:

- 1. Positively detected in at least one sample in a given medium;
- 2. Detected at levels substantially greater than levels detected in associated blank

samples (at least one result that exceeds the blanks UTL); and

3. Detected at levels elevated above naturally occurring background levels.

Table 2-2 lists the chemicals that were positively detected in the various media at the Southeast Runway Fuel Spill site. These chemicals were subjected to blanks and background comparisons and to additional screening and evaluation for the human health assessment and the ecological assessment before they were identified positively as chemicals of potential concern (COPCs) for human health or chemicals of potential ecological concern (COPECs). Appendix 4A of this volume lists all chemicals that were tested in the various media and indicates, on a medium-specific basis, whether or not there were measurable results after conducting the blanks evaluation and whether or not the average site-related concentration is greater than the average background concentration (metals only).

An evaluation of the adequacy of detection limits was performed by comparing the minimum detection limit for each chemical eliminated as a COPC because it was not detected in a medium with the USEPA Region III residential RBCs. Appendix 4B contains the results of this detection limit screening process. The uncertainties associated with detection limits that are not low enough to detect risk-based concentrations are summarized in Section 2.3.5.

2.3 Human Health Risk Assessment Results

The human health evaluation for the Southeast Runway Fuel Spill site included identification of COPCs (Section 2.3.1), exposure assessment (Section 2.3.2), toxicity assessment (Section 2.3.3), risk characterization (Section 2.3.4), and uncertainty assessment (Section 2.3.5). These tasks were performed according to the methods specified in Section 3 of Volume 1. Section 2.3.6 summarizes conclusions of the human health risk assessment for the site and

Table 2-1 Analytical Methods Used at the Southeast Runway Fuel Spill Site During the 1995 RI

Parameter	Soil a	Water ^b
Alkalinity - Total (SM403)	NA	4
Specific Conductance (E120.1)	NA	4
pH (E150.1 - aqueous, SW9045 - solids)		4
Total Dissolved Solids (E160.1)	NA	4
Total Suspended Solids (E160.2)	NA	4
Temperature (E170.1)	NA	4
Turbidity (E180.1)	NA	4
Anions (E300)	NA	4
Nitrate-Nitrite (E353.1)	NA	4
Metals - ICP Screen (SW6010)		4
Lead (SW7421)	4/6	4
Semivolatile Organic Compounds (SW8270)	4/6	4
Volatile Organic Compounds (SW8240)	4/6	NA
Volatile Organic Compounds (SW8260)	NA	4
Diesel Range Organics (AK102)	4/6	4
Gasoline Range Organics (AK101)	4/6	4
Soil Moisture Content (SW846)	4/6	NA

a Number of surface soil samples/number of subsurface soil samples.
 b Number of groundwater samples.

NA = Not applicable.

⁻⁻ Analytical method not used for this medium.

Analyte	S	oils	Waters		
	Screening Criteria (μ g/kg)	Range of Detections (μ g/kg)	Screening Criteria (μg/L)	Range of Detections (µg/L)	
Benzene	500 AK	340	5M	58	
Ethylbenzene	15,000 AK	6,800			
Toluene	15,000 AK	4,500			
Total Xylenes	15,000 AK	19 - 43,000			
Benzo(a)pyrene	88 RC	550			
Dibenzo(a,h)anthracene	88 RC	95			
DRO	200,000 AK	2 6x10 ⁴ - 1 8x10 ¹			
GRO	100.000 AK	1.5x10°-5.4x10°			
Selenium			50 M	142	
Thallium			2 M	204	
		Key:			

Galena Airport - Southeast Runway Fuel Spill

Conceptual Diagram and Summary of Compounds Exceeding Screening Criteria

Table 2-2
Analytes Detected at the Southeast Runway Fuel Spill Site

Analyte	Analytical Method	Groundwater	Surface Soil	Subsurface Soil
1,2-Dichloroethane	SW8260	D		
2-Butanone (MEK)	SW8240		ND	D
2-Methylnaphthalene	SW8270	D	D	D
Acenaphthene	SW8270	D	ND	D
Acetone	SW8240		ND	D
Acetone	SW8260	D		
Aluminum	SW6010	D		
Anthracene	SW8270	ND	D	ND
Antimony	SW6010	D		
Arsenic	SW6010	D		
Barium	SW6010	D		
Benzene	SW8240		ND	D
Benzene	SW8260	D		
Benzo(a)anthracene	SW8270	ND	D	ND
Benzo(a)pyrene	SW8270	ND	D	ND
Benzo(b)fluoranthene	SW8270	ND	D	ND
Benzo(g,h,i)perylene	SW8270	ND	D	ND
Benzo(k)fluoranthene	SW8270	ND	D	ND
Benzyl alcohol	SW8270	D	ND	ND
Beryllium	SW6010	D		
Cadmium	SW6010	D		
Calcium	SW6010	D		
Chloroethane	SW8260	D		
Chloroform	SW8260	D		
Chloromethane	SW8260	D		
Chromium	SW6010	D		
Chrysene	SW8270	ND	D	ND

Table 2-2 (Continued)

Analyte	Analytical Method	Groundwater	Surface Soil	Subsurface Soil
Cobalt	SW6010	D		
Copper	SW6010	D		
Dibenz(a,h)anthracene	SW8270	ND	D	ND
Dibromomethane	SW8260	D		<u></u>
Dibutyl phthalate	SW8270	D	ND	ND
Diesel Range Organics	AK102	D	D	D
Ethylbenzene	SW8240		ND	D
Ethylbenzene	SW8260	D		
Fluoranthene	SW8270	ND	D	ND
Fluorene	SW8270	D	ND	D
Gasoline Range Organics	AK101	D	ND	D
Indeno(1,2,3-cd)pyrene	SW8270	ND	D	ND
Iron	SW6010	D		
Lead	SW7421	D	D	D
Magnesium	SW6010	D		
Manganese	SW6010	D		.
Methylene chloride	SW8240		D	D
Methylene chloride	SW8260	D		
Molybdenum	SW6010	D		
Naphthalene	SW8270	D	D	D
Nickel	SW6010	D		
Phenanthrene	SW8270	D	D	D
Potassium	SW6010	D	••	
Pyrene	SW8270	ND '	D	ND
Selenium	SW6010	D		
Silver	SW6010	D		

March 1996 2-8

Table 2-2 (Continued)

Analyte	Analytical Method	Groundwater	Surface Soil	Subsurface Soil
Sodium	SW6010	D		
Tetrachloroethene	SW8260	D		
Thallium	SW6010	D		
Toluene	SW8240		ND	D
Toluene	SW8260	D		
Trichloroethene	SW8260	D		
Vanadium	SW6010	D		
Zinc	SW6010	D		
bis(2-Ethylhexyl)phthalate	SW8270	ND	D	D
m&p-Xylenes	SW8240		ND	D
m&p-Xylenes	SW8260	D		
o-Xylene	SW8240		ND	D
o-Xylene	SW8260	D		

D = At least one numerical result was detected in samples.

ND = No numerical results were detected in samples.

-- = Not tested.

recommendations for remedial action based on the risk assessment results.

2.3.1 Chemicals of Potential Concern

Additional screening of the chemicals was performed, in accordance with the methods described in Section 3 of Volume 1, to identify the COPCs carried through the human health assessment. The additional screening involved examining the frequency of detection, evaluating essential nutrients, and comparing maximum detected concentrations with the U.S. Environmental Protection Agency (USEPA) Region III risk-based concentrations (RBCs).

Frequency of Detection

At the Southeast Runway Fuel Spill site, there were no chemicals eliminated from the list of COPCs on the basis of a low (< 5%) frequency of detection.

Essential Nutrients

Essential nutrients that are often present either in the soil and water media were not detected at the Southeast Runway Fuel Spill site at concentrations elevated above background concentrations.

Risk-Based Screening

Maximum detected concentrations of numerous analytes were lower than one-tenth the media-specific USEPA Region III residential RBCs and were eliminated from the list of COPCs. Appendix 4B of this volume contains the risk-based screening results.

COPC Summary

Tables 2-3, 2-4, and 2-5 summarize conclusions for all chemicals that were positively detected in the surface soil, subsurface soil, and groundwater media, respectively, at the Southeast Runway Fuel Spill site. The tables indicate, for each analyte, whether sample concentrations were distinguishable from blank concentrations, whether concentrations were significantly different from background concentrations, whether the chemical was detected in at least 5% of the samples, and whether the chemical was eliminat-

ed as an essential nutrient or by the risk-based screen. Note that since 1993 and later sampling events reported uncensored data (where an ND is reported only if there is no instrument response), very low levels (greater than zero) of many analytes were reported in both blanks samples and site samples. Consequently, many chemicals that are not common field or laboratory contaminants were "detected" in blanks samples and were eliminated as COPCs on the basis of the blanks comparison. No analytes were detected in blanks at concentrations considered to represent a blanks contamination problem requiring corrective action as a result of the data validation process.

Table 2-6 lists the COPCs for the Southeast Runway Fuel Spill site. It includes all chemicals, by medium, with positive results that were greater than background and blank concentrations, that exceeded 5% detection frequency, and that were not eliminated as an essential nutrient or by risk-based screening.

Appendix A of the RI report (USAF, 1995b) provides a complete listing of analytical results from the RI. The appendix reports the sampling location, analytical result, any data qualifiers, and the sample detection limit.

Tables 2-7, 2-8, and 2-9 provide a statistical summary of the values used in the risk assessment for human health COPCs in surface soil and sediments, subsurface soil, and groundwater, respectively. The tables list the detection frequency, maximum detected concentration, mean, standard deviation, and 95% upper confidence limit (UCL) of the data.

2.3.2 Exposure Assessment

Human exposure to COPCs that are present at or migrating from the Southeast Runway Fuel Spill site was assessed in accordance with methods described in Section 3 of Volume 1.

Human Exposure Scenarios

Nine human exposure scenarios were ad-

Table 2-3 Identification Criteria for Surface Soil COPCs at the Southeast Runway Fuel Spill Site

Chemical	Blanks Comparison ^a	Background Comparison ^b	Low Frequency ^c	Essential Nutrient ^d	Risk-Based Screen ^e	COPC
2-Methylnaphthalene	-	-	-	-	-	YES f
Anthracene	-	-	-	_	X	-
Benzo(a)anthracene	-	-	-	-	-	YES
Benzo(a)pyrene	-	-	-	1	-	YES
Benzo(b)fluoranthene	-	-	-		-	YES
Benzo(g,h,i)perylene	-	-		-	-	YES f
Benzo(k)fluoranthene	-	-	-	-	X	-
Chrysene	-	-	-	•	Х	-
Dibenz(a,h)anthracene	-	-	-	1	-	YES
Fluoranthene	-	-	-		X	-
Indeno(1,2,3-cd)pyrene	-	-	-	ī	-	YES
Lead	-	_	-		-	YES f
Methylene chloride	X	-	-	-	-	-
Naphthalene	-	-	_	~	X	
Phenanthrene	-	-	-	1	-	YES f
Pyrene	-	_	1	•	Х	-
bis(2-Ethylhexylphthalate)	-	-	_	-	Х	-

<sup>a Indistinguishable from blank concentrations.
b Not significantly elevated above background concentrations.
c Detected at a frequency less than 5%.</sup>

d Estimated maximum daily intake less than the RDA.

e Maximum detected concentration lower than one-tenth the USEPA Region III residential soil RBC.

f Toxicity value not available with which to perform risk-based screen.

⁻ Not eliminated through this criterion.

Table 2-4 Identification Criteria for Subsurface Soil COPCs at the Southeast Runway Fuel Spill Site

Chemical	Blanks Comparison ^a	Background Comparison ^b	Low Frequency ^c	Essential Nutrient ^d	Risk-Based Screen ^e	СОРС
2-Butanone (MEK)	-	-	-	-	X	-
2-Methylnaphthalene	-	-	-		-	YES f
Acenaphthene	-		-	-	Х	-
Acetone	-	-	-	-	X	_
Benzene	-	-	-	-	X	-
Ethylbenzene	-	-	-	-	Х	-
Fluorene	-	-	-	-	X	-
Lead		X	-	_	-	-
Methylene chloride	X	-	-	-	-	
Naphthalene	_	-	-	-	X	-
Phenanthrene	-	-	-	-	-	YES f
Toluene	-	~		-	X	-
bis(2-Ethylhexylphthalate)	_	<u>-</u>	-	_	Х	-
m & p-Xylenes	<u>-</u>	-	-	-	X	-
o-Xylene	-	-	-	-	X	-

<sup>a Indistinguishable from blank concentrations.
b Not significantly elevated above background concentrations.
c Detected at a frequency less than 5%.
d Estimated maximum daily intake less than the RDA.
e Maximum detected concentration lower than one-tenth the USEPA Region III residential soil RBC.</sup>

f Toxicity value not available with which to perform risk-based screen.

⁻ Not eliminated through this criterion.

Table 2-5
Identification Criteria for Groundwater COPCs at the Southeast Runway Fuel Spill Site

Chemical	Blanks Comparison ^a	Background Comparison ^b	Low Frequency ^c	Essential Nutrient ^d	Risk-Based Screen ^e	COPC
1,2-Dichloroethane	-	-	-	-	-	YES
2-Methylnaphthalene	-	-	-	-	-	YES f
Acenaphthene	_	-	-	-	Х	-
Acetone	Х	-	_	-	<u>-</u>	-
Benzene	-	-	-	-	-	YES
Benzyl alcohol		-	-	-	Х	-
Chloroethane	-	-	-	-	X	-
Chloroform	-	-	-	-	-	YES
Chloromethane	-	-	-	-	-	YES
Dibromomethane	X	-	-	-	-	-
Dibutylphthalate	-	-		•	X	-
Ethylbenzene	-	-	-	-	Х	-
Fluorene	-	-	-	-	Х	-
Methylene chloride	х	-	-	-	-	-
Naphthalene	_	-	-	-	Х	-
Phenanthrene	-	-	-	-	-	YES f
Tetrachloroethene	X	-	-	-		-
Toluene	-	-		-	X	-
Trichloroethene	-	-	-	-	-	YES
m & p-Xylenes	<u>-</u>	•	-	-	X	-
o-Xylene	-	-	-	-	Х	-
Aluminum	-	X	-	-	-	-
Antimony	· -	X	_	-	**	-
Arsenic	-	X	-	-	-	-

Table 2-5 (Continued)

Chemical	Blanks Comparison ^a	Background Comparison ^b	Low Frequency ^c	Essential Nutrient ^d	Risk-Based Screen ^e	СОРС
Barium	-	X	-	-	-	_
Beryllium	-	-	-		-	YES
Cadmium	Х	-	-	-	-	-
Calcium	-	X	-	-	-	-
Chromium	-	X	-	-	-	-
Cobalt	-	X	-	<u>-</u>	-	-
Copper		X	-	-	-	-
Iron	-	X	-	•	-	-
Lead	-	X	-	•	-	-
Magnesium	Į.	X	-	-	-	
Manganese	-	X	_	-	-	-
Molybdenum	-	X	-	-	-	~
Nickel	4-	X	-	-	-	-
Potassium	-	X	-	-	-	-
Selenium	-	X	-	-	-	-
Silver	-	X	-	-	-	-
Sodium	-	X	-	-	-	-
Thallium	-	X	-	-	-	-
Vanadium	-	X	<u>-</u>	-		-
Zinc	-	X	-	•	-	-

<sup>a Indistinguishable from blank concentrations.
b Not significantly elevated above background concentrations.
c Detected at a frequency less than 5%.
d Estimated maximum daily intake less than the RDA.
e Maximum detected concentration lower than one-tenth the USEPA Region III tap water RBC.
f Training the state of the state of</sup>

f Toxicity value not available with which to perform risk-based screen.

⁻ Not eliminated through this criterion.

Table 2-6 Chemicals of Potential Concern at the Southeast Runway Fuel Spill Site

Media								
Chemical	Surface Soil	Subsurface Soil	Groundwater					
Metals								
Beryllium			х					
Lead	x							
PNAs								
Benz(a)anthracene	X							
Benzo(a)pyrene	Х							
Benzo(b)fluoranthene	Х							
Benzo(g,h,i)perylene ^a	X							
Dibenz(a,h)anthracene	X							
Indeno(1,2,3-cd)pyrene	х							
2-Methylnaphthalene a	X	X	X					
Phenanthrene ^a	х	X	X					
Volatiles		·						
Chloroform			Х					
Benzene			Х					
Chloromethane			Х					
1,2-Dichloroethane			X					
Trichloroethene			X					

^a Retained as a COPC for qualitative evaluation only. Toxicity values are not available to perform risk quantification at this time.

Table 2-7 Statistical Summary of Values Used in the Human Health Risk Assessment for Surface Soil at the Southeast Runway Fuel Spill Site

Chemical Name	Detection Frequency	Max Detect (mg/kg)	Mean (mg/kg)	Standard Deviation	95% UCL (mg/kg)
Metals					
Lead ^a	4/4	5.13E+01	2.73E+01	2.00E+01	5.08E+01
PNAs					
Benzo(a)anthracene	1/4	3.54E-01	1.25E-01	1.60E-01	3.13E-01
Benzo(a)pyrene	1/4	5.54E-01	1.94E-01	2.57E-01	4.96E-01
Benz(b)fluoranthene	1/4	4.47E-01	1.63E-01	2.05E-01	4.04E-01
Benzo(g,h,i)perylene b	1/4	2.12E-01	7.04E-02	9.60E-02	1.83E-01
Dibenz(a,h)anthracene	1/4	9.47E-02	5.58E-02	3.17E-02	9.30E-02
Indeno(1,2,3-cd)pyrene	1/4	2.40E-01	1.08E-01	1.12E-01	2.40E-01
2-Methylnaphthalene b	1/4	3.36E-02	1.88E-02	1.05E-02	3.12E-02
Phenanthrene ^b	1/4	1.49E-01	7.90E-02	7.04E-02	1.62E-01

Bold numbers indicate the value used for the risk assessment, which was the lower of either the UCL or the maximum detected concentration.

b No toxicity data available.

^a USEPA Integrated Exposure Uptake Biokinetic (IEUBK) model was used to calculate risk from lead.

Table 2-8
Statistical Summary of Values Used in the Human Health Risk
Assessment for Subsurface Soil at the Southeast Runway Fuel Spill Site

Chemical Name	Detection Frequency	Max Detect (mg/kg)	Mean (mg/kg)	Standard Deviation	95% UCL (mg/kg)
PNAs					
2-Methylnaphthalene ^a	3/6	2.35E+02	3.07E+01	9.50E+01	7.99E+16
Phenanthrene ^a	1/6	2.32E-01	1.09E-01	9.38E-01	6.17E+03

Bold numbers indicate the value used for the risk assessment, which was the lower of either the UCL or the maximum detected concentration.

Table 2-9 Statistical Summary of Values Used in the Human Health Risk Assessment for Groundwater at the Southeast Runway Fuel Spill Site

Chemical Name	Detection Frequency	Max Detect (mg/L)	Mean (mg/L)	Standard Devia- tion	95% UCL (mg/L)
Metals					
Beryllium	4/4	3.94E-03	1.73E-03	1.92E-03	3.99E-03
PNAs					
2-Methylnaphthalene ^a	1/4	9.89E-02	2.52E-02	4.91E-02	1.07E+12
Phenanthrene ^a	1/4	7.39E-04	4.62E-04	2.69E-04	7.79E-04
Volatiles					
Benzene	2/4	5.81E-02	1.45E-02	2.90E-02	1.97E+31
Chloroform	-1/4	3.88E-05	2.13E-05	1.31E-05	3.67E-05
Chloromethane	1/4	1.19E-03	3.65E-04	5.55E-04	1.02E-03
1,2-Dichloroethane	2/4	4.55E-03	1.42E-03	2.14E-04	3.94E-03
Trichloroethene	3/4	2.06E-04	6.58E-05	9.45E-05	2.10E+04

Bold numbers indicate the lower value used for the risk assessment, which was the lower of either the UCL or the maximum detected concentration.

^a No toxicity data available.

^a No toxicity data available.

dressed in the assessment of risks posed by the site:

Current Scenarios (also applicable as future scenarios)

- 1. Short-Term On-Base Resident (subchronic adult only);
- 2. Long-Term On-Base Resident (chronic adult and child);
- 3. Old Town Galena Resident (chronic adult and child);
- New Town Galena Resident (chronic adult and child);
- 5. Short-Term On-Base Worker (subchronic adult only);
- 6. Long-Term On-Base Worker (chronic adult only);
- 7. Construction Worker (subchronic adult only);

Future Scenarios

- 8. Boarding School Student (subchronic/chronic); and
- 9. Old Town Galena Resident (chronic adult and child).

These scenarios are described in Section 3 of Volume 1. Since possible exposures of the Old Town Galena resident might differ in the future if contaminants in the shallow groundwater migrate to the Old Town area, the future Old Town Galena resident is considered separately from the current Old Town Galena resident. The on-base worker scenarios assume that workers at the Southeast Runway Fuel Spill site are engaged in activities outdoors, every work day, for the duration of employment. However, there are no regular employees

in the area of the site. Therefore, the worker scenarios better represent reasonable worst-case exposures that might occur at any time in the future, assuming industrial use of the land involving primarily outdoor work. Owing to the site's location adjacent to the runway, this area will not be frequented by workers or others as long as the airport is actively operating.

Exposure Pathways

Exposure pathways considered for applicability to each Southeast Runway Fuel Spill site exposure scenario included the following:

Soil Pathways

- Incidental ingestion of soil; and
- Dermal contact with soil.

Air Pathways

- Inhalation of fugitive dust; and
- Inhalation of vapors that volatilize from surface and subsurface media.

Groundwater Pathways

- Ingestion of drinking water;
- Dermal contact with water while showering;
- Inhalation of vapors that volatilize from water while showering; and
- Ingestion of plants irrigated or subirrigated with groundwater.

Surface Water Pathways

• Ingestion of fish from the Yukon River.

Groundwater pathways are applicable only if the results of groundwater modeling indicate that contaminants from the Southeast

Runway Fuel Spill site might migrate to Old Town Galena. Surface water pathways are applicable only if the results of groundwater modeling indicate that toxicologically significant concentrations of contaminants originating from the site might reach the Yukon River.

Contaminants detected in the groundwater at the Southeast Runway Fuel Spill site were modeled to Old Town Galena and to the shoreline of the Yukon River. Assuming a generally southwestern flow direction (as determined in the RI), parts of Old Town Galena are directly downgradient of the site.

Concentrations of contaminants in the Yukon River within 5 ft of the shoreline were also estimated, assuming that mixing is limited to river flow within that 5 ft. This assumption was made because there is not instant dilution of contaminants entering the river in the groundwater by the entire volume of river flow that passes by Galena. Rather, a plume would follow the shoreline downstream.

Table 2-10 summarizes the modeled Old Town Galena and river concentrations for the COPCs in groundwater at the Southeast Runway Fuel Spill site. It also lists applicable chemicalspecific fish bioconcentration factors (BCFs) and estimated concentrations in fish exposed to river water within 5 ft of the shoreline. Finally, the table lists the USEPA Region III RBCs for tap water and fish. The estimated fish concentrations are all below the Region III RBCs for fish. The surface water pathways are therefore not quantified for this site. However, modeled concentrations at Old Town Galena of 1,2dichloroethane, benzene, and beryllium exceed one-tenth the Region III tap water RBCs; as such, the groundwater pathways are quantified for the Old Town Galena resident for this site. Since there is no evidence that a groundwater contaminant plume extends from the site to Old town Galena, the groundwater-related exposure pathways are considered possible future exposures and are quantified for the future Old Town Galena resident scenario only.

Also, vegetables grown in gardens located close to the west end of the Southeast Runway Fuel Spill site could possibly be currently taking contaminants directly from the shallow groundwater. Although the water depth fluctuates significantly over the course of a year (from very close to the surface during spring breakup to 15 to 20 ft below the surface at low water), it is unlikely that the roots of the garden plants are in direct contact with the groundwater for a substantial portion of the growing season. Nevertheless, because of the fluctuation in groundwater depth, it is possible that groundwater contamination has affected the soils in which the crops are grown. Therefore, ingestion of plants subirrigated with the shallow groundwater at the location of the gardens located near the site is quantified for the current Old Town Galena resident scenario for this site.

Appendix C (Volume 3) describes the groundwater modeling methodology. Likewise, Appendix D (Volume 3) describes the emissions estimating and air dispersion modeling methodology. These methodologies are not repeated in this addendum. Groundwater modeling results for this site are documented in Appendix 4C of this volume. Appendix 4D of this volume contains dispersion modeling results for this site. Appendices 4E and 4F of this volume describe the methodologies used to model uptake by fruits and vegetables and air concentrations inside a shower stall, respectively, and provide modeling results.

Conceptual Site Model

A conceptual site model presents the current understanding of possible sources of contamination and the likely mechanisms for movement of contamination within and beyond site boundaries. Figure 2-2 is a conceptual site model flow diagram showing the primary sources of contamination at the Southeast Runway Fuel Spill site, their migration pathways, exposure media, and exposure routes that may lead to human exposure. The figure effectively summarizes the results of the human health exposure assessment. It illustrates complete exposure

Comparisons of Southeast Runway Groundwater Modeling Results to USEPA Region III Risk-Based Concentrations (RBCs) **Table 2-10**

	Modeled Old Town Galena	Modeled River		Estimated	USEPA Regi	USEPA Region III RBC d
Chemical	Concentration (ug/L)	Concentration a (ug/L)	Fish BCF ^b	Concentration in Fish c	Tap water (ug/L)	Fish (mg/kg)
1,2-Dichloroethane	4,55E-01 °	2.54E-05	2	5.1E-08	1.2E-01	3.5E-02
2-Methylnaphthalene	3.07E+01	2.45E-03	1000	2.5E-03	NV	NV
Benzene	7.17E-02 e	4.38E-06	4.27	1.9E-08	3.6E-01	1.1E-01
Beryllium	1,13E+00 °	9.02E-05	19	1.7E-06	1.6E-02	7.3E-04
Chloroform	9.02E-03	6.39E-07	8	5.1E-09	1.5E-01	5.2E-01
Chloromethane	3.95E-04	2.99E-09	2.88	8.6E-12	1.4E+00	2.4E-01
Phenanthrene	8.24E-02	3.85E-06	325	1.3E-06	NN	NN
Trichloroethene	4.70E-02	3.30E-06	17	5.6E-08	1.6E+00	2.9E-01

Estimated concentration in Yukon River within 5 ft of shoreline, assuming mixing is limited to river flow within that 5 ft.

Fish bioconcentration factor. See Appendix J (Ecological Assessment Toxicity Profiles) of Volume 3, and Appendix 4L of this addendum.

c Concentration in water (ug/L) x 1 L/kg x 1 mg/1000 ug x BCF (unitless).

U.S. Environmental Protection Agency (USEPA) Region III, Risk-Based Concentration Table, January-June 1995, March 7, 1995.

Modeled concentration exceeds one-tenth the Region III tap water RBC. This chemical is included in the groundwater pathway calculations.

NV = No value NOTE: Shaded values exceed Region III RBC for tap water or fish.

Figure 2-2. Human Exposure Conceptual Model

2-21

pathways for the exposure scenarios that are evaluated and indicates which pathways are quantified for each scenario. It also notes which pathways are possibly complete but probably not significant. These pathways are not quantified.

Quantification of Exposure

Table 2-11 provides a matrix of exposure scenarios and soil-related exposure pathways that are applicable to the Southeast Runway Fuel Spill site and specifies the exposure points and data that were used to derive concentrations in the exposure media at this site. Table 2-12 provides the same information for groundwater-related pathways. Appendix 4G of this volume summarizes the human health exposure point concentrations used to quantify exposure.

Section 3 of Volume 1 describes the methods used to quantify exposure. Human health intake equations and exposure parameters are documented in Appendix 4H of this volume. Intakes were quantified separately for evaluation of carcinogenic and noncarcinogenic effects. Daily intakes for analysis of carcinogenic effects are averaged over a 70-year lifetime. Daily intakes for analysis of noncarcinogenic effects are averaged over the exposure duration only.

2.3.3 Toxicity Assessment

Table 2-13 presents the toxicity values used in the human health risk assessment for COPCs at the Southeast Runway Fuel Spill site. Most of the toxicity values in this table were obtained from USEPA's Integrated Risk Information System (IRIS) in October 1995 or from USEPA's Health Effects Assessment Summary Tables (HEAST) (USEPA, 1994b). Carcinogenic values for some PNAs were calculated using methodologies in provisional guidance for calculating potential potency based on values for benzo(a)pyrene (USEPA, 1993). Although the oral slope factor for benzo(a)pyrene is listed in IRIS, the inhalation slope factor has been withdrawn from IRIS and HEAST. Since there is no inhalation unit risk for benzo(a)pyrene, the USEPA guidance directs that the potential potency values should be applied only to assessment of carcinogenic hazard from oral exposure to PNAs (USEPA, 1993).

The inhalation RfDs for benzene and 1,2-dichloroethane and the inhalation RfD and slope factor for trichloroethene are provisional values recommended by the Superfund Health Risk Technical Support Center (footnoted EPA-ECAO in the USEPA Region III RBC table, USEPA, 1995b). The provisional RfDs and slope factors were converted to RfCs and inhalation unit risk values for use in the risk calculations. The oral slope factor for trichloroethene has been withdrawn from IRIS and HEAST, but is used to evaluate oral exposures to this chemical because no other value is available.

Toxicity values were not available for four COPCs at the Southeast Runway Fuel Spill site. These include lead, benzo(g,h,i)perylene, 2-methylnaphthalene, and phenanthrene. Lead was initially screened using the USEPA-recommended screening level (400 mg/kg) for lead in soil for residential land use (USEPA, 1994d) and the drinking water action level for lead (USEPA, 1994a), and if necessary, evaluated using the USEPA Integrated Exposure Uptake Biokinetic (IEUBK) model for lead in children (USEPA, 1994b). Available health effects information for these COPCs is included in Appendix G (Volume 3), and the impact of the lack of toxicity values for these COPCs is discussed as an uncertainty in Section 2.3.5.

Dermal toxicity values are not listed in Table 2-13. Because of the high level of uncertainty associated with adjusting oral toxicity values (which are generally based on administered dose) to evaluate dermal exposure (which is calculated as an absorbed dose), unadjusted oral values were used to quantify dermal pathway risks. Dermal absorption factors used to quantify dermal contact with soil are listed in Table 2-13. Default values of 1% for inorganic analytes and 10% for organic analytes were used. PNAs were not evaluated for dermal exposure (see discussion in Section 3.1.4 of Volume 1).

Table 2-11

Data Used to Derive Exposure Concentrations in Soil-Related Exposure Media at the Southeast Runway Fuel Spill Site

		Expo	sure Pathways
Exposure Scenario	Ingestion of Soil	Dermal Contact with Soil	Inhalation of Vapor Phase Chemicals and Fugitive Dust in Ambient Air
Current Scenarios			
On-Base Residents -Short Term -Long Term	NA	NA	Modeled concentration of vapor-phase chemicals (D) and wind-blown dust (E) at closest downwind on-base residential receptor.
Galena Residents	NA	NA.	
-Old Town			Modeled concentration of vapor-phase chemicals (D) and wind-blown dust (E) at closest downwind Old Town Galena residential receptor.
-New Town			Modeled concentration of vapor-phase chemicals (D) and wind-blown dust (E) at closest downwind New Town Galena residential receptor.
On-Base Workers			
-Short Term	Surface Soil (A)	Surface Soil (A)	Modeled concentration of vapor-phase chemicals (D) and wind-blown dust (E) directly above the site.
-Long Term	Surface Soil (A)	Surface Soil (A)	Modeled concentration of vapor-phase chemicals (D) and wind-blown dust (E) directly above the site.
-Construction	Mixed Soil (C)	Mixed Soil(C)	Modeled concentration of vapor-phase chemicals (F) and dust generated by construction activity (G) directly above the site.
Future Scenarios			
Boarding School Student	NA	NA	Modeled concentration of vapor-phase chemicals (D) and wind-blown dust (E) at the location of the proposed student dormitory.
Galena Residents			,
-Old Town	NA	NA	Modeled concentration of vapor-phase chemicals (D) and wind-blown dust (E) at closest downwind Old Town Galena residential receptor.

Table 2-11 (Continued)

Exposure Media

Remedial Investigation Data:

- (A) Measured concentrations in surface soils, represented by the 95% UCL, or the maximum detected concentration if lower, in soils within 2 ft of the ground surface at the Southeast Runway Fuel Spill site.
- (B) Measured concentrations in subsurface soils, represented by the 95% UCL, or the maximum detected concentration if lower, in soils greater than 2 ft below the ground surface at the Southeast Runway Fuel Spill site.
- (C) Mixed surface and subsurface soil, represented by the highest of either the surface soil concentration (A) or the subsurface soil concentration (B).

Transport and Fate Modeling:

- (D) Estimated concentration of vapor-phase chemicals in ambient air based on emissions from surface soil (A), subsurface soil (B), and dispersion modeling to specific receptor locations.
- (E) Estimated concentration of wind-blown dust based on particulate emissions from surface soil (A) and dispersion modeling to specific receptor locations.
- (F) Estimated concentration of vapor-phase chemicals in ambient air assuming subsurface soil is brought to the surface by construction activities, based on emissions from mixed soils (C) and dispersion modeling to specific receptor locations.
- (G) Estimated concentration of dust generated by construction activities directly above the site, based on particulate emissions from mixed soil (C) and dispersion modeling to specific receptor locations.

NA = Not Applicable

Table 2-12
Data Used to Derive Exposure Concentrations in Soil-Related Exposure Media at the Southeast Runway Fuel Spill Site

		Exposur	e Pathways	
Exposure Scenario	Ingestion of Groundwater	Dermal Contact with Groundwater	Inhalation of Vapor Phase Chemicals in Shower Stall	Ingestion of Fruits and Vegetables Irrigated or Subirrigated with Groundwater
Current Scenarios				
On-Base Residents -Short Term -Long Term	NA	NA .	NA	NA
Galena Residents -Old Town	NA	NA	NA	Modeled concentra- tions in fruits and vegetables (F) grown in gardens located southwest of site.
-New Town	NA	NA	NA	NA
On-Base Workers -Short Term -Long Term -Construction	NA	NA	NA NA	NA
Future Scenarios			<u> </u>	
Boarding School Student	NA	NA	NA	NA
Galena Residents -Old Town	Modeled concentra- tions in groundwater (C) at closest down- gradient receptor in Old Town Galena	Modeled concentra- tions in groundwater (C) at closest down- gradient receptor in Old Town Galena	Modeled concentrations of vapor-phase chemicals (D) in the air of a shower stall.	Modeled concentra- tions in fruits and vegetables (E) grown in gardens located in Old Town Galena.

Exposure Media

Remedial Investigation Data:

(A) Measured concentrations in shallow groundwater at the site, represented by the 95% UCL, or the maximum detected concentration, if lower, in groundwater at the four wells located at the Southeast Runway Fuel Spill site. (B) Measured concentrations in shallow groundwater close to the gardens southwest of the site, represented by the highest concentration detected at either MW-03 or MW-04, the two monitoring wells closest to the gardens.

Table 2-12 (Continued)

Exposure Media (Continued)

Transport and Fate Modeling:

- (C) Estimated concentrations in shallow groundwater at Old Town Galena based on measured concentrations in the groundwater at the site (A) and modeling to the closest downgradient location in Old Town Galena.
- (D) Estimated concentrations in vapor-phase chemicals in the air of a shower stall, assuming use of shallow groundwater (C) as tap water.
- (E) Estimated concentrations in fruits and vegetables grown in home gardens in Old Town Galena, assuming that groundwater (C) provides the sole source of water for the plants, either through irrigation or subirrigation.
- (F) Estimated concentrations in fruits and vegetables grown in gardens southwest of the site, assuming that groundwater (B) provides the sole source of water for the plants, either through irrigation or subirrigation.

Toxicity Values for Southeast Runway COPCs **Table 2-13**

					Chronic			Subchronic	ronic	Dermal Absorption
COPCs	EPA Class	Oral RfD (mg/kg/day)	Inhal RfD (mg/kg/day)	Inhal RfC (mg/m²)	Oral SF 1/(mg/kg/day)	Inhal SF 1/(mg/kg/day)	Inhai Unit Risk 1/(µg/m²)	Oral RID (mg/kg/day)	Inhal RfC (μg/m³)	Factor (unitless) ABS *
Metals Beryllium Lead ^c	B2 ^b 	5E-03 b	1 1	1 1	4.3E+00 b	8.4E+00 ^d 	2.4E-03 b 	5E-03 ^d 	1 1	1 1
PNAs 2-Methylnaphthalene Benz(a)anthracene	 B2 b	; !	1 1	1 1	7.3E.01 ¢	1 1	1 1	1 1	1 1	1 1
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g, h, i)pervlene	B2 b	1 1 1	: : :	1 1 1	7.3E+00 b 7.3E-01 e	! ! !	111	1 1 1	1 1 1	1 1 1
Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene Phenanthrene	B2 b B2 b D b	1 1 1	: : :	1 1 1	7.3E+00 ° 7.3E-01 °	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1
Volatiles 1,2-Dichloroethane Benzene Chloroform Chloromethane Trichloroethene	B2 b A b B2 b C d	 1E-02 ^d 6E-03 ^f	2.86E-03 f 1.71E-03 f 	1E-02 g 6E-03 g 	9.1E-02 b 2.9E-02 b 6.1E-03 b 1.3E-02 d 1.1E-02 h	9.1E-02 d 2.9E-02 d 8.1E-02 d 6.3E-03 d 6E-03 f	2.6E.05 b 8.3E.06 b 2.3E.05 b 1.8E.06 8	1.0E-02 ^d	11111	1E-01 1E-01 1E-01 1E-01 1E-01

Absorption factor of 1% was used for inorganic analytes and an absorption factor of 10% was used for organic analytes. PNAs are not evaluated for dermal exposures (see discussion in Section 3.1.4 of Volume 1).

b U.S. Environmental Protection Agency (USEPA), 1995. Integrated Risk Information System (IRIS). Database search, October 20, 1995.

^c Risk from exposure to lead was evaluated using the USEPA IEUBK Model.

¹ U.S. Environmental Protection Agency (USEPA), 1994c. Health Effects Assessment Summary Tables (HEAST) Annual Update, FY 1994. EPA 540-R-020, March 1994.

* PNA toxicity values were derived using the Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons (EPA/600/R-93/089) dated July 1993.

Value was taken from Region III RBC table dated 1/31/95. The table states that this is a provisional value from EPA-ECAO Regional Support.

Value was calculated using the appropriate inhalation reference dose or inhalation slope factor with 20 m3 breathing rate and 70 kg adult body weight.

These values were withdrawn from both IRIS and HEAST. However, Region III recommends using these values in deriving RBCs and they are presented in the Region III RBC table

Appendix G (Volume 3) contains toxicological profiles for all of the human health COPCs at the Southeast Runway Fuel Spill site.

2.3.4 Risk Characterization

Carcinogenic risk and noncancer hazard indices (HIs) were estimated for each exposure scenario according to procedures outlined in Section 3 of Volume 1. The carcinogenic risk

and noncarcinogenic risk estimates are presented in Appendix 4J of this volume.

Carcinogenic Effects

For each potentially carcinogenic COPC, the incremental probability that an individual will develop cancer over a lifetime was estimated from projected intake levels and the cancer slope factor or the inhalation unit risk. The USEPA Superfund site remediation goal set forth in the National Contingency Plan (NCP) designates a cancer risk of 10⁻⁴ (1 in 10,000) to 10⁻⁶ (1 in one million). This range is designed to be protective of human health and to provide flexibility for consideration of other factors in risk management decisions. A cancer risk of 1 in one million is considered the de minimis, or a level of negligible risk, for risk management decisions. A cancer risk higher than 1 in one million is not necessarily considered unacceptable. The State of Alaska plans to use a cancer risk level of 10⁻⁵ (1 in 100,000) in making risk management decisions (USAF, 1996b).

Table 2-14 summarizes the cancer risk estimates for each exposure scenario at the Southeast Runway Fuel Spill site. Estimated incremental cancer risks for all scenarios, except for the current and future Old Town Galena resident, are below 1 in one million. Estimated risks lower than 1 in one million are considered "negligible" and do not warrant remedial action. Estimated cancer risks are 0 for the residents (except Old Town Galena residents) and the boarding school students because inhalation unit risk values are not available for any of the COPCs in soil and inhalation risk could not be calculated. The only applicable exposure path-

way for these scenarios is inhalation of vapors and dust from the soils at the site.

The average and reasonable maximum cancer risk estimates for the current adult Old Town Galena resident are 3 in one million and 3 in 100,000, respectively, and for the current child Old Town Galena resident are 4 in one million and 1 in 100,000, respectively. These risk estimates are within the Superfund risk range goal for carcinogens of 1 in 10,000 to 1 in one million. Ingestion of fruits and vegetables that take up beryllium from the shallow groundwater (either through irrigation or subirrigation) at the location of the gardens southwest of the site contributes the majority of the risks (97%) in all cases. Risks associated with exposure to all other chemicals are negligible.

The estimated risks for the future Old Town Galena resident range from an average of 3 in 100,000 to a reasonable maximum of 2-in 10.000 for an adult and from 2 in 100,000 to 3 in 100,000 for a child. The reasonable maximum estimate for the adult exceeds the high end of the Superfund risk range goal. The majority of the estimated risk (99%) in all cases is attributable to beryllium in groundwater. Ingestion of groundwater containing beryllium contributes most (85-95%) of the estimated risk; ingestion of fruits and vegetables that take up beryllium from the shallow groundwater (either through irrigation or subirrigation) at gardens in Old Town Galena contributes risks that exceed 1 in one million in some cases. Risks associated with exposure to all other chemicals are negligible.

Risk summary tables for each exposure scenario are provided in Appendix 4J of this volume. The tables detail the cancer risk estimates for each applicable chemical and exposure pathway and show the percent contribution of each chemical and pathway to the total estimated risk.

Noncarcinogenic Effects

To characterize the potential noncancer

Table 2-14
Summary of Carcinogenic Risks^a by Exposure Scenario for the Southeast Runway Fuel Spill Site

	C	hild	A	dult
Scenario	Average	Reasonable Maximum	Average	Reasonable Maximum
Current Scenarios				
Short-Term On- Base Resident	NA	NA	0 c	0 с
Long-Term On- Base Resident	0 c	0 c	0 c	0 с
Old Town Galena Resident	4E-06	1E-05	3E-06	3E-05
New Town Galena Resident	0 c	0 c	0 c	0 с
Short-Term On- Base Worker	NA	NA	4E-08	1E-07
Long-Term On- Base Worker	NA	NA	5E-07	5E-07
On-Base Construc- tion Worker	NA	NA	9E-09	2E-07
Future Scenarios				
Boarding School Student ^b	0 c	0 c	NA	NA
Old Town Galena Resident	2E-05	3E-05	3E-05	2E-04

NOTE: risk estimates printed in bold type equal or exceed the Superfund site remediation threshold of 10⁻⁶ (1 in one million) for carcinogens.

^aCarcinogenic risk is expressed as a unitless probability of an individual developing cancer.

^bAge 15-18 (Grades 9-12) for the average case and age 6-19 (Grades 1-12, plus two repeat years) for the reasonable maximum case.

^cCancer risks are 0 because inhalation unit risk values are not available for any of the COPCs in soil. The only applicable pathway of exposure is inhalation of vapors and dust from the soils at the site.

NA = Not Applicable

effects of chemicals, comparisons were made between projected intakes of COPCs over a specified time and toxicity values, primarily oral RfDs and inhalation RfCs. A hazard quotient (HQ), which is the ratio between exposure to a chemical and that chemical's toxicity value, was calculated for each noncarcinogenic COPC and exposure pathway. Chemical-specific HQs were then summed for each COPC and each pathway of exposure to calculate the total HI.

The HI is not a statistical probability of a systemic effect occurring. If the exposure level exceeds the appropriate toxicity value (i.e., the HQ is greater than one), there may be cause for concern. The Superfund site remediation goal for noncarcinogens is a total HI of 1 for chemicals with similar toxic endpoints.

Table 2-15 summarizes the noncancer hazard estimates for each exposure scenario. Noncancer HIs are 0 for all scenarios (except Old Town Galena residents) because none of the COPCs in soil have inhalation RfCs and oral RfDs. The only applicable pathways of exposure for these scenarios are soil-related pathways. The HIs for all scenarios are well below the Superfund site remediation goal of 1 for noncarcinogens, indicating that there is little cause for concern about noncarcinogenic effects.

Noncancer risk summary tables for each exposure scenario are provided in Appendix 4J of this volume. The tables detail the noncancer hazard estimates for each applicable chemical and exposure pathway and show the percent contribution of each chemical and pathway to the total estimated HI.

Effects of Exposure to Lead

The maximum detected concentration of lead at the site is 51 mg/kg in the surface soil. Lead is not a COPC in subsurface soil or groundwater at the site. The maximum soil concentrations are well below the 400 mg/kg recommended screening level for lead in residential soil (USEPA, 1994d), which was derived using the IEUBK lead model (USEPA, 1994b).

Since the soil concentrations are well below the soil screening level, lead was not evaluated further.

Major Factors Driving Estimated Risks

Tables 2-16 and 2-17 present a risk characterization summary for carcinogenic risk estimates and noncarcinogenic hazard estimates, respectively. For each scenario the tables specify the exposure pathways that were quantified, the estimated risks for each case, the chemicals and pathways that are major contributors to the estimated risks, and the primary uncertainties associated with the estimates.

The only chemical and pathway that contribute a chemical- and pathway-specific risk greater than 1 in one million is beryllium in groundwater, via ingestion of groundwater and ingestion of fruits and vegetables that take up beryllium from the groundwater. Beryllium is a COPC in groundwater at the site because the background comparison concluded that average beryllium concentrations at the site exceeded average beryllium concentration in background groundwater. However, the level of confidence in this conclusion is rated as weak, based on the p-value of the comparison (0.0630). Moreover, the maximum detected concentration in groundwater at the site (0.00394 mg/L) is lower than the calculated background upper tolerance limit (UTL) for beryllium in groundwater (0.005 mg/L) (USAF, 1995b). It is also lower than the USEPA maximum contaminant level (MCL) and the Maximum Contaminant Level Goal (MCLG) for drinking water, which are both 0.004 mg/L. There is no reason to suspect that concentrations of beryllium in groundwater at this site might be elevated above background; although beryllium and beryllium alloys are sometimes used for various types of instrument springs, control parts, valves, and airplane carburetors and instruments, it is unlikely that these possible uses have resulted in elevated beryllium concentrations at this site.

Table 2-15
Summary of Noncarcinogenic Hazard Indices^a by Exposure Scenario for the Southeast Runway Fuel Spill Site

	C	hild	Ad	lult
Scenario	Average	Reasonable Maximum	Average	Reasonable Maximum
Current Scenarios				
Short-Term On- Base Resident	NA	NA	0 c	0 c
Long-Term On- Base Resident	0 c	0 c	0 c	0 c
Old Town Galena Resident	0.002	0.006	< 0.001	0.001
New Town Galena Resident	0 c	0 c	0 c	0 c
Short-Term On- Base Worker	NA	NA	0 c	0 c -
Long-Term On- Base Worker	NA	NA	0 c	0 c
On-Base Construction Worker	NA	NA	0 c	0 c
Future Scenarios				
Boarding School Student ^b	0 c	0 c	NA	NA
Old Town Galena Resident	0.01	0.02	0.003	0.007

NOTE: Hazard indices printed in bold type equal or exceed the Superfund site remediation goal of 1 for non-carcinogens.

NA = Not Applicable

^aNoncarcinogenic hazard is not expressed as a probability of an adverse effect but rather a comparison between exposure and a reference dose (hazard index).

^bAge 15-18 (Grades 9-12) for the average case and age 6-19 (Grades 1-12, plus two repeat years) for the reasonable maximum case.

Noncancer hazard indices are 0 because none of the COPCs in soil are known to have adverse effects by the inhalation or oral routes. The only applicable pathways of exposure are soil-related pathways.

Table 2-16 Risk Characterization Summary for the Southeast Runway Fuel Spill Site: Carcinogenic Risks

			Estimal	Estimated Total	Chemicals and Pathways that	
Scenario	Pathways Quantified	Case	Average	Reasonable Maximum	Contribute a Chemical- and Pathway-Specific Cancer Risk Greater than 1 in One Million ^b	Primary Site-Specific Uncertainties
Current Scenarios	ios					
Short-Term On- Base Resident (subchronic)	1. Inhalation of vapors and dust	Adult	0	0	None	Applicability of cancer risk estimation methodology to subchronic exposure durations.
Long-Term On- Base Resident (chronic)	1. Inhalation of vapors and dust	Child	0 0	0	None	Duration of residence.
Old Town Galena Resident	1. Inhalation of vapors and dust	Child	4E-06	1E-05	Ingestion of fruits and vegetables that take up beryllium from the	Presence of beryllium in groundwater above background
(chronic)	2. Ingestion of fruits and vegetables (grown in gardens southwest of site) irrigated or subirrigated with groundwater	Adult	3E-06	3E-05	shallow groundwater.	levels. Assumption that 100% of water required by fruits and vegetables grown in gardens southwest of site is supplied by shallow groundwater, either through irrigation or subirrigation. Calculation of uptake by fruits and vegetables of contaminants in groundwater. Risk from accessing the site was not quantified
New Town Galena Resident	1. Inhalation of vapors and dust	Child	0 0	0 0	None	Risk from accessing the site was not quantified.
Short-Term On-	1. Inhalation of vapors and	Adult	4E-08	1E-07	None	Likelihood of workers at the site.
Base Worker (subchronic)	dust 2. Incidental ingestion of soil 3. Dermal contact with soil					Nature and duration of work activities at the site. Applicability of cancer risk estimation methodology to subchronic exposure durations. Lack of dermal toxicity values for any and a
Long-Term On- Base Worker (chronic)	Inhalation of vapors and dust Incidental ingestion of soil Dermal contact with soil	Adult	5E-07	5E-07	None	Likelihood of workers at the site. Nature and duration of work activities at the site. Lack of dermal toxicity values for PNAs.

Table 2-16 (Continued)

			Estimat	Estimated Total Cancer Risk ^B	Chemicals and Pathways that	
Scenario	Pathways Quantified	Case	Average	Reasonable Average Maximum	Pathway-Specific Cancer Risk Greater than 1 in One Million ^b	Primary Site-Specific Uncertainties
On-Base Construction Worker (subchronic)	 Inhalation of vapors and dust Incidental ingestion of soil Dermal contact with soil 	Adult	9E-09	2E-07	None	Likelihood of construction activity at the site. Duration of construction activity. Applicability of cancer risk estimation methodology to subchronic exposure durations. Lack of dermal toxicity values for PNAs.
Future Scenarios	9					
Boarding School Student (subchronic/ chronic)	Boarding School 1. Inhalation of vapors and Student dust (subchronic/	Student	0	0	None	Extension of facility from Grades 9-12 to Grades 1-12. Risk from accessing the site was not quantified.
Old Town Galena Resident (chronic)	I. Inhalation of vapors and dust	Child Adult	2E-05 3E-05	3E-05 2E-04	Ingestion of groundwater containing beryllium Ingestion of fruits and vegetables that take up beryllium from the shallow groundwater	Presence of beryllium in groundwater above background levels. Use of shallow groundwater as drinking water. Estimated concentrations in groundwater at Old Town Galena are the result of conservative groundwater modeling. Assumption that 100% of water required by fruits and vegetables grown in gardens in Old Town Galena is supplied by shallow groundwater, either through irrigation or subirrigation. Calculation of uptake by fruits and vegetables of contaminants in groundwater. Risk from accessing the site was not quantified.

^a Estimated cancer risks printed in bold type equal or exceed the Superfund site remediation threshold of 1E-06 (1 in one million).

^b Applicable only if the total cancer risk exceeds 1 in one million (estimated risk printed in bold type in column titled "Estimated Total Cancer Risk").

Table 2-17
Risk Characterization Summary for the Southeast Runway Fuel Spill Site: Noncarcinogenic Risks

			Estimat Hazard	Estimated Total Hazard Index ^a	Chemicals and Pathways that Contribute a Chemical- and	
Scenario	Pathways Quantified	Case	Average	Reasonable Maximum	Pathway- Specific Noncancer Hazard Quotient Greater than 1 ^b	Primary Site-Specific Uncertainties
Current Scenarios				-		
Short-Term On- Base Resident (subchronic)	 Inhalation of vapors and dust 	Adult	0	0	None	Lack of subchronic inhalation toxicity values for soil COPCs.
Long-Term On- Base Resident (chronic)	 Inhalation of vapors and dust 	Child Adult	0 0	0 0	None	Duration of residence. Lack of chronic inhalation or oral toxicity values for soil COPCs.
Old Town Galena Resident (chronic)	 Inhalation of vapors and dust Ingestion of fruits and vegetables (grown in gardens southwest of site) 	Child	0.002	0.006	None	Assumption that 100% of water required by fruits and vegetables grown in gardens southwest of site is supplied by shallow groundwater either through irrigation or
	irrigated or subirrigated with groundwater)					subirrigation. Calculation of uptake of fruits and vegetables of contaminants in groundwater. Risk from accessing the site was not quantified.
New Town Galena Resident (chronic)	1. Inhalation of vapors and dust	Child	0	0	None	Risk from accessing the site was not quantified. Lack of chronic inhalation or oral toxicity values for soil COPCs.
Short-Term On- Base Worker (subchronic)	 Inhalation of vapors and dust Incidental ingestion of soil Dermal contact with soil 	Adult	0	0	None	Likelihood of workers at the site. Nature and duration of work activities at the site. Lack of subchronic inhalation or oral toxicity values for soil COPCs.
Long-Term On- Base Worker (chronic)	 Inhalation of vapors and dust Incidental ingestion of soil Dermal contact with soil 	Adult	0	0	None	Likelihood of workers at the site. Nature and duration of work activities at the site. Lack of chronic inhaltion or oral toxicity values for soil COPCs.
On-Base Construction Worker (subchronic)	 Inhalation of vapors and dust Incidental ingestion of soil Dermal contact with soil 	Adult	0	0	None	Likelihood of construction activity at the site. Duration of construction activity. Lack of subchronic inhalation or oral toxicity values for soil COPCs.

Table 2-17 (Continued)

			Estimat Hazare	Estimated Total Hazard Index ^a	Chemicals and Pathways that Contribute a Chemical, and	
Scenario	Pathways Quantified	Case	Average	Reasonable Maximum	Reasonable Pathway- Specific Noncancer Average Maximum Hazard Quotient Greater than 1 b	Primary Site-Specific Uncertainties
Future Scenarios						
Boarding School	Boarding School 1. Inhalation of vapors and	Student	0	0	None	Extension of facility from Grades 9-
Student	dust					12 to Grades 1-12.
(subchronic/						Risk from accessing the site was not
chronic)			*			quantified. Lack of subchronic or
						chronic inhalation toxicity values
						for soil COPCs.
Old Town	 Inhalation of vapors and 	Child	0.01	0.02	None	Use of shallow groundwater as
Galena Resident	dust					drinking water. Estimated
(chronic)	2. Ingestion of groundwater	Adult	0.003	0.007		concentrations in groundwater at
	3. Dermal contact with					Old Town Galena are the result of
	groundwater					groundwater modeling. Assumption
	4. Inhalation of vapors while					that 100% of water required by
	showering					fruits and vegetables grown in
				•		gardens in Old Town Galena is
	vegetables irrigated or					supplied by shallow groundwater,
	subirrigated with					either through irrigation or
	groundwater					subirrigation. Calculation of uptake
						by fruits and vegetables of
						contaminants in groundwater. Risk
						from accessing the site was not
						quantified.

^a Hazard indices printed in bold type equal or exceed the Superfund site remediation goal of 1 for noncarcinogens.

^b Applicable only if the total hazard index exceeds 1.

2-36

If, as the evidence suggests, beryllium is not elevated above background in the groundwater at the site and it is removed as a COPC, the estimated cancer risks for scenarios associated with groundwater exposures reduce to less than 1 in one million.

2.3.5 Uncertainty Assessment

The risk characterization results are not fully probabilistic estimates of risk but rather conditional estimates of risk that should be interpreted in light of the considerable number of assumptions required to quantify exposure, intake, and dose-response. Uncertainties associated with identification of COPCs, the exposure assessment, and the toxicity assessment all contribute to the level of confidence that can be placed in the risk characterization results.

In general, risk assessment uncertainty was addressed in the BRA by the following:

- 1. Incorporating both average and reasonable maximum values for input parameters, whenever possible, to provide a
 - range of results rather than a single value;
- 2. Erring on the side of conservatism when defining the reasonable maximum case; and
- 3. Identifying and discussing the major sources of uncertainty and their effect on the risk estimates so that the results can be properly interpreted.

Table 2-18 summarizes the primary sources of uncertainty specific to this assessment and the likely impact on risk estimates.

2.3.6 Conclusions and Recommendations

If the shallow groundwater is not used as tap water and does not provide 100% of the water required by fruits and vegetables consumed by residents, the Southeast Runway Fuel Spill site does not pose an unacceptable health

risk to current on-base residents, Old and New Town Galena residents, workers who spend a majority of the workday outside in the immediate vicinity of the site, or to future boarding school students. Even if the groundwater is used as tap water or subirrigates fruits and vegetables, estimated risks are negligible if beryllium is excluded because its presence is not attributable to the site.

On the basis of the results of the human health assessment, there is no need to propose remedial action at the Southeast Runway Fuel Spill site, unless it is shown that beryllium was contributed to the groundwater by site-related activities.

2.4 Ecological Risk Assessment Results

2.4.1 Site Ecology

Ecological features at the Southeast Runway Fuel Spill site include grass, seasonal standing water, and tall vegetation along the dike. The Southeast Runway Fuel Spill site is a shallow ditch lying between the runway to the north and the perimeter dike to the south (Figure 2-3). The site is vegetated primarily with grass and is mowed periodically to keep willows or other tall vegetation from growing too near the runway; however, alders and willows grow along the slope of the dike. Passerine birds such as robins and sparrows frequent the site, but because of human activity, larger wildlife are not common. Several gardens, maintained by Galena residents, grow along the southwestern edge of the site. In the spring, standing water is common in the lowest portions of the site. Surface water from the ditch flows to the west and accumulates against the dike. Waterfowl have been noted utilizing this surface water. Accumulated water evaporates or infiltrates the soil.

2.4.2 Chemicals of Potential Ecological Concern

As discussed in Section 2.1.1, the area of contamination is at the eastern end of the ditch where the fuel line rupture occurred.

Table 2-18
Summary of the Major Uncertainties Associated with the Risk Estimates

Source of Uncertainty	Impact on Risk Characterization
Chemicals of Potential Concern	
Samples representing site media	Could result in an overestimate or underestimate of risks if the samples do not adequately represent media at the site. However, the number and location of samples collected at the site were sufficient to identify the area of contamination in soils and groundwater and assess the magnitude and extent of contamination. Surface soils, however, were defined as encompassing the top two feet of soil. Since exposures are generally limited to the top several inches, inclusion of the top two feet probably overestimates risk for surface soil pathways.
Analytical methods used to test samples	If the analytical methods used do not apply to some chemicals that are present at the site, risks could be underestimated. Since a full suite of analytical methods was selected to test for chemicals known or suspected to be present at the site, the potential for underestimation is reduced.
Presence of beryllium in groundwater at concentrations elevated above background concentrations	The level of confidence in the statistical conclusion that concentrations of beryllium in groundwater are elevated above background concentrations is weak. The maximum detected concentration of beryllium in groundwater is lower than the calculated background UTL for beryllium in groundwater. There is no known or suspected source for beryllium at this site. As a result, calculated risks associated with exposure to beryllium in groundwater are probably no higher than risks of exposure to background concentrations.
Contamination of blanks	Sporadic presence of chemicals in blanks samples was accounted for in blanks comparison. Blanks data do not indicate extensive field or laboratory contaminants.
Tentatively identified compounds	Tentatively identified compounds were not reported or assessed. Most such chemicals are not known to be highly toxic.
Diesel Range Organics and Gasoline Range Organics	DRO and GRO were not evaluated in the risk assessment as groups of chemicals. The assessment addresses individual chemicals only that were speciated by chemical analysis, which includes many constituent compounds of DRO and GRO. However, some constituent compounds were not on the target analyte list. The majority of the risk associated with exposure to DRO and GRO is probably accounted for in an assessment of individual chemicals.

Table 2-18 (Continued)

Source of Uncertainty	Impact on Risk Characterization			
Chemicals of Potential Concern (Continued)				
Detection Limit Adequacy	The minimum detection limit for a few analytes in groundwater that were eliminated as COPC (because they were not detected) exceeds the USEPA Region III tap water RBCs. These include several PNAs, SVOCs, and VOCs. The same is not true for analytes in the soil (when compared to Region III residential soil ingestion RBCs). If these analytes are in fact present in the groundwater and were contributed to the groundwater by site-related activities, the estimated risks for this site may be underestimated. However, since 1993 and later sampling events reported uncensored data (where an ND is reported only if there is no instrument response), the impact on the risk estimates is minimized.			
Exposure Assessment				
Use of current measured concentra- tions to represent current and future concentrations in the exposure media	Because concentrations of chemicals in the soils and groundwater at the site may decrease over time as the chemicals migrate and/or degrade, risks estimates for the current scenarios do not necessarily represent risks that will occur in the future.			
Inclusion of groundwater pathways	Most Old Town Galena residents have their drinking water trucked in from the New Town area; however, there are at least seven wells still in use in the Old Town area (USAF, 1995b). Use of the shallow groundwater for tap water, therefore, cannot be ruled out. Risks associated with use of the shallow groundwater do not apply to residents who use other sources of water for domestic purposes.			
Groundwater modeling	Results of groundwater modeling are indicative of worst-case concentrations that might reach Old Town Galena and the Yukon River. Impacts are likely overestimated for groundwater pathways.			
Estimation of plant uptake of COPCs from groundwater	Models to estimate plant uptake of chemicals are extremely simplified and could lead to an over- or underestimate of COPC concentrations in fruits and vegetables. Since the shallow groundwater is assumed to provide 100% of the plants' water requirements, either through irrigation or subirrigation, the concentrations in fruits and vegetables are probably overestimated.			
Access to site	Access to the site is open. On-base residents and Galena residents are not restricted from walking on the site. Exposure of a roaming resident was not quantified (see discussion in Section 3 of Volume 1). If a resident spends a significant amount of time in the area of the site, estimated risks for that resident may be underestimated.			

Table 2-18 (Continued)

Source of Uncertainty	Impact on Risk Characterization	
Exposure Assessment (Continued)		
Construction worker scenario	Since construction is unlikely to occur at the site, estimated risks for the construction worker scenario do not represent a current or likely future population. The exposure duration for this scenario is biased high.	
Exposure parameter estimation	The standard assumptions regarding body weight, period exposed, life expectancy, and population characteristics may not be representative of any actual exposure situation. Some assumptions may underestimate risks, but most probably overestimate risk. In some cases, nonstandard assumptions were used for site-specific reasons, such as the reasonable maximum exposure duration of 70 years for Galena residents. The use of a 14-year exposure duration for the boarding school student overstates the likely duration of residence for most students.	
Toxicity Assessment		
Absence of toxicity values for some chemicals detected at the site	Lack of toxicity values may result in underestimation of risk; however, most chemicals that lack toxicity values are not very toxic or carcinogenic. Therefore, the degree of underestimation is probably low.	
Use of unverified toxicity values for some chemicals	Could result in an overestimate of risk. However, chemicals with unverified toxicity values do not contribute significantly to estimated risks at the site.	
Bases for derivation of toxicity values	Some common sources of uncertainty in toxicity values include 1) use of information obtained from dose-response studies conducted in laboratory animals to predict effects that are likely to occur in humans; 2) use of dose-response information from effects observed at high doses to predict adverse health effects that may occur at the low levels to which humans are likely to be exposed in the environment; 3) use of information obtained from short-term exposure studies to predict health effects in humans exposed on a long-term basis; 4) use of toxicity values that have been developed for one route of exposure and employing it under a different exposure route; and 5) use of information gathered in studies using homogeneous animal populations (inbred strains) or health human populations (occupational exposures) to predict the effects that are likely to occur in the general human population.	

Table 2-18 (Continued)

Source of Uncertainty	Impact on Risk Characterization
Toxicity Assessment (Continued)	
Absence of dermal toxicity values	Unadjusted oral toxicity values were used to evaluate dermal exposures. Since most oral values are based on administered dose and dermal exposure is quantified as an absorbed dose, risks from dermal exposure might be underestimated. PNAs were not evaluated for dermal exposures per USEPA guidance (see discussion in Section 3 of Volume 1). PNAs are associated with neoplasia in a variety of mammalian systems. The inability to quantify risks from dermal exposure to PNAs results in an underestimation of risks for the dermal pathway for PNAs.
Possible synergistic or antagonistic effects of exposure to multiple chemicals	Unknown impact on risk estimates. Chemical- and pathway-specific risk and hazard quotients are summed to account for possible additive effects.
Risk Characterization	
Applicability of cancer risk estimation methodology to subchronic exposure durations	The estimated intake for cancer risk estimation is averaged over a 70-year period. Exposure to higher concentrations of potential carcinogens for a short duration of time probably does not have the same effect as exposure to lower concentrations over a long duration.

Figure 2-3. Southeast Runway Fuel Spill

Surface water samples were not taken to address the contamination in runoff; however, lower concentrations of petroleum-related compounds have been found in surface soils along the ditch and may reflect residual diesel from spills or runoff from the runway (USAF, 1995b). Surface water is only present a few weeks of the year. Groundwater that discharges to the Yukon River was modeled (see Appendix 4C). COPECs for the Southeast Runway Fuel Spill site are presented in Table 2-19. Section 3.2.2 of Volume 1 details the methods of COPEC identification. COPECs from surface soil were used to address terrestrial receptors, and discharged groundwater COPECs were used to evaluate aquatic and semiaquatic receptors at the shoreline on the banks of the Yukon River. This table includes all chemicals, by medium, that were not eliminated as essential nutrients and with detection results greater than background and blank concentrations.

2.4.3 Exposure Assessment

Figure 2-4 shows the conceptual model for potential receptors and exposure pathways at the Southeast Runway Fuel Spill site. Receptors at the Southeast Runway Fuel Spill site include both terrestrial and aquatic species. Surface soil contamination could affect receptors by contact (ingestion and dermal) with soils and/or ingestion of plants that have taken up the contaminants. Inhalation of vapors and/or fugitive dust also could be a route of exposure. Surface water accumulates against the dike and evaporates or infiltrates the soil. Waterfowl may be present during periods of flooding in this area. Groundwater migration of contaminants to the Yukon River water and shoreline is evaluated for the aquatic and semiaquatic (i.e., shoreline habitats) pathways.

Tables 2-20 and 2-21 list the assessment and measurement endpoints for the Southeast Runway Fuel Spill site. Plants, invertebrates, robin, American kestrel, meadow vole, and red fox represent the terrestrial receptors. Aquatic invertebrates, spotted sandpiper, and northern pike represent the aquatic receptors. Figures 3-5

and 3-6 in Volume 1, Section 3 depict the trophic food chains graphically.

2.4.4 Effects Assessment

Ecological quotients (EQs) were calculated for the assessment endpoint species at the Southeast Runway Fuel Spill site. The results of this evaluation are presented in Table 2-22 for the terrestrial trophic system and Table 2-23 for the aquatic and semiaquatic system. Supporting spreadsheets are presented in Appendix 4M.

2.4.5 Ecological Risk Characterization

Tables 2-24 and 2-25 list the EQ values greater than 1 for the terrestrial and aquatic species, respectively. These tables also provide the order of magnitude of the EQ values (i.e., $1 \le EQ < 10$).

2.4.6 Uncertainty Assessment

Uncertainty occurs in almost every step of the ecological risk assessment (ERA) process. As stated previously, uncertainty is often addressed by making intentionally biased (health-conservative) assumptions so that impacts will not be underestimated. Individual assumptions are therefore conservative, but because of compounded bias the calculated EQs are biased higher than any individual assumption. Table 3-9 in Volume 1, Section 3 lists the uncertainties associated with the ERA, including the Southeast Runway Fuel Spill site. Uncertainties specific to the Southeast Runway Fuel Spill site are listed in Table 2-26.

2.4.7 Conclusions and Recommendations

EQs greater than 1 were noted in each of the trophic pathways. Each pathway is discussed below.

Terrestrial—Mammal (soil → plant → meadow vole → red fox)

Table 2-24 lists the species and order of magnitude of the EQs that exceed 1. Table 2-22 provides a summary of all of the terrestrial EQs calculated. EQs greater than 1 were not noted for the red fox. Adequate toxicity information was found in the literature for the red fox;

Table 2-19 Chemicals of Potential Ecological Concern in Surface Soil and Discharged Groundwater from the Southeast Runway Fuel Spill

	Media			
Chemical	Surface Soil ^a	Discharged Groundwater		
Metals				
Beryllium		X		
Lead	X			
PNAs				
2-Methylnaphthalene	X	X		
Acenaphthene		X		
Anthracene	X			
Benzo(a)anthracene	X			
Benzo(a)pyrene	X			
Benzo(b)fluoranthene	X			
Benzo(g,h,i)perylene	Х			
Benzo(k)fluoranthene	X			
Chrysene	X			
Dibenz(a,h)anthracene	X			
Fluoranthene	X			
Fluorene		X		
Indeno(1,2,3-cd)pyrene	X			
Naphthalene	X	X		
Phenanthrene	X	X		
Pyrene	X			
Semi-volatiles				
Benzyl alcohol		X		
bis(2-ethylhexyl)phthalate	X			
Di-n-butylphthalate		X		
Volatiles				
1,2-Dichloroethane	-	X		

Table 2-19 (Continued)

	Media			
Chemical	Surface Soil a	Discharged Groundwater		
Benzene		X		
Chloroethane		X		
Chloroform	·	X		
Chloromethane		X		
Ethylbenzene		X		
Toluene		X		
Trichloroethene		X		
Xylenes (m,p, and o)		X		

^a Soils were analyzed for fuel-related compounds only; therefore, lead was the only metal analyzed in soil.

Table 2-20 Assessment and Measurement Endpoints for the Evaluation of Terrestrial Ecosystems at the Southeast Runway Fuel Spill Site

Assessment Endpoint	Measurement Endpoint
Decrease in herbaceous plant survivorship.	Experimental effects such as reduced plant growth taken from available literature. ^a
Decrease in terrestrial invertebrate, robin, and American kestrel productivity and local population survivorship.	LOAELs b with effects such as decrease in eggshell thickness or reduced survival.
Decrease in meadow vole and red fox productivity and local population survivorship.	LOAELs ^b with effects such as decrease in litter number or reduced survival.

a Species-specific information will be used whenever possible, but plants may have to be aggregated because there may be insufficient phytotoxicity data or plant uptake data to perform taxon-specific assessments.
 b If lowest observed adverse effect levels (LOAELs) are unavailable, lethal dose - 50% (LD₅₀) were used.

Table 2-21
Assessment and Measurement Endpoints for the Evaluation of
Surface Water ^a Contamination Originating at the Southeast Runway Fuel Spill Site

Assessment Endpoint	Measurement Endpoint
Decrease in aquatic invertebrate productivity and local population survivorship.	AWQC for the protection of aquatic life. ^b
Decrease in spotted sandpiper productivity and population survivorship.	LOAELs ^c with effects such as decreased eggshell thickness or reduced survival.
Decrease in local northern pike productivity and population survivorship in the Yukon River.	LOAELs with effects such as decreased gamete production, growth rate, or reduced survival.

^a The aquatic ecosystem is the Yukon River. Individual surface water areas include shoreline that may exist part of the year. Modeled groundwater discharge concentrations that potentially migrate from the site to the shoreline and Yukon River were used.

b If ambient water quality criteria (AWQCs) are unavailable (including AWQC-recommended LOELs), LC₅₀ values were used.

c If LOAELs are unavailable, LC₅₀ values were used.

Table 2-22 Summary of Terrestrial EQs

Chemical	EQ	EQ	EQ	EQ	EQ	EQ
	Terrestrial	Meadow	Red	Terrestrial	Robin	Kestrel
	Plants	Vole	Fox	Invertbrate		
2-Methylnaphthalene	a	3.55E-03	1.33E-06	a	a	a
Anthracene	a	1.08E-02	6.93E-06	a	a	a
Benzo(a)anthracene	a	5.42E+00	8.18E-03	a	a	a
Benzo(a)pyrene	a	1.27E+00	2.66E-03	4.96E-01	a	a
Benzo(b)fluoranthene	a	2.73E-01	5.41E-04	a	1.09E+01	1.74E-02
Benzo(g,h,i)perylene	a	5.28E+00	1.22E-02	a	a	a
Benzo(k)fluoranthene	a	1.56E-01	3.10E-04	a	a	a
bis(2-Ethylhexyl)phthalate	a	1.80E-04	8.79E-06	a	1.09E+00	5.76E-02
Chrysene	a	1.80E-01	2.69E-04	a	a	a
Dibenz(a,h)anthracene	a	3.96E-01	4.94E-01	a	a	a
Fluoranthene	a	1.32E-02	1.14E-05	a	a	a
Indeno(1,2,3-cd)pyrene	a	5.51E-01	2.25E-04	a	a	a
Lead	1.02E+00	2.54E-02	8.40E-05	a	5.06E-01	2.79E-04
Naphthalene	a	1.62E-03	4.79E-08	5.92E-02	2.38E-03	3.68E-06
Phenanthrene	a	2.17E-02	1.16E-05	2.48E-01	8.17E-03	2.21E-05
Pyrene	a	3.88E-02	4.27E-04	a	a	a

a = no toxicity data available

Table 2-23 Summary of Aquatic EQs

	Aquatic	Spotted	Northern
	Invertebrate	Sandpiper	Pike
1,2-Dichloroethane	1.03E-05	2.69E-05	1.27E-09
2-Methylnaphthalene	2.30E+02	a	1.23E-02
Acenaphthene	2.25E-05	a	2.18E-09
Benzene	5.08E-07	a	8.27E-09
Benzyl alcohol	4.93E-01	a	4.78E-05
Beryllium	1.76E-01	a	6.10E-03
Chloroethane	a	a	a
Chloroform	5.32E-06	a	5.16E-10
Chloromethane	2.62E-06	a	1.11E-09
Di-n-butylphthalate	6.87E-03	8.03E-03	6.65E-07
Ethylbenzene	1.38E-02	a	7.39E-06
Fluorene	3.59E+03	a	4.25E-03
m&p-Xylenes	9.91E-01	6.87E-03	9.56E-07
Naphthalene	3.41E-03	3.20E-02	3.30E-07
o-Xylene	3.80E-01	2.64E-03	3.55E-07
Phenanthrene	6.31E-04	2.36E-04	6.12E-07
Toluene	5.27E-14	a	2.52E-17
Trichloroethene	1.55E-06	a	1.51E-10

a = no toxicity data available

Table 2-24
EQ Values Greater than 1 for Terrestrial Species at the
Southeast Runway Fuel Spill

	EQ	
Chemical	1 - 9:9	≥10
Benzo(a)anthracene	Meadow Vole	
Benzo(a)pyrene	Meadow Vole	
Benzo(b)fluoranthene		Robin
Benzo(g,h,i)perylene	Meadow Vole	
bis(2-Ethylhexyl)phthalate	Robin	
Lead	Plant	

Note: There are no EQs greater than 1 for red fox or kestrel.

Table 2-25
EQ Values Greater than 1 for Aquatic and Semiaquatic Species at the Southeast Runway Fuel Spill

Chemical	EQ	
	1 - 9.9 ≥10	
2-Methylnaphthalene	Invertebrate	
Fluorene	Invertebrate	

Note: There are no EQs greater than 1 for northern pike or spotted sandpiper.

Table 2-26 Uncertainties of ERA at the Southeast Runway Fuel Spill Site

Parameter	Assumption	Uncertainty	
Pathway: Soil - Plant - Meadow Vole - Red Fox			
Toxicity Data	Adequate toxicity information was not available to assess impacts to plants. The site visit and modeling of contaminants through the food chain provided the assessment in this ERA for plants.	Impacts to plants could be greater or less than this ERA predicted. The uncertainty would be low-high, bias neutral.	
Surface soil exposure	Surface soil samples were taken from 0-2 ft. and composited. This sample is assumed to represent the surface soil available to ecological receptors (Meadow vole).	The method may overestimate exposure concentrations, especially volatiles in the 2 ft anoxic range. The magnitude of the uncertainty would be high, bias high.	
Pathway: Soil → Invertebrate → Robin → Kestrel			
Toxicity data	Adequate toxicity data was not available to assess impacts to terrestrial invertebrates. The food chain assessment provided the mechanism for evaluating contaminants through invertebrates.	Impacts to terrestrial invertebrates could be higher or lower. The uncertainty would be low-high, bias neutral.	
Use of BCFs or BAFs	BAFs are more representitive of terrestrial bioaccumulation than BCFs; however, when BAFs were unavailable for terrestrial receptors, BCFs were used.	BAFs may be more or less representative of terrestrial bioaccumulation. When a BCF was used, bias would be high because BCFs represent bioconcentration from submersion in the medium. Magnitude of uncertainty would be low.	
Pathway: Surface water → Pike			
Groundwater migration	Groundwater beneath the POL migrates and is discharged to the Yukon River where exposure to the pike occurs.	Concentrations were modeled from the POL to the shoreline with no commingling or interferences. The magnitude of the uncertainty would be low, bias neutral.	
	Groundwater modeling accurately estimated the concentration of COPECs in the Yukon River.	Dilution factors may not represent conditions in the Yukon. Concentrations may be higher or lower. Magnitude of uncertainty would be low-high, bias neutral.	
Assessment endpoint species - Pike	Pike are present in the Yukon River near Galena all year.	Pike are present in the general area but may not be near Galena all year. The ERA assumption is conservative, uncertainty would be low, bias high.	

Table 2-26 (Continued)

Parameter	Assumption	Uncertainty
Pathway: Surface water → Inverte	brates – Spotted sandpiper	
AWQC	AWQC are protective of most aquatic life and are conservative measurement endpoints.	AWQC may be more or less conservative than necessary for aquatic invertebrates at the Galena Airport shoreline. The magnitude of the uncertainty would be low, bias high.
Groundwater migration	Groundwater modeling accurately estimated the concentration along the mudflats/shoreline.	No dilution, volatility factors or attenuation was applied to these concentrations. Actual exposure concentrations are likely much lower than predicted. The magnitude of uncertainty would be low, bias high.
Exposure concentration and time	Invertebrates and sandpiper are exposed to the estimated concentrations at the mudflats during entire time species are on site.	Invertebrates may remain in a small geographic area and could be exposed to discharging groundwater continually. However, the spotted sandpiper is mobile and this assumption is highly conservative. The magnitude of uncertainty is low, bias high.
	The spotted sandpiper's water intake is 100% from the discharging groundwater.	The spotted sandpiper travels along the shorelines searching for food. To assume that 100% of water intake is from discharging groundwater is highly conservative. The magnitude of uncertainty is low, bias high.
Bioavailability of COPECs	All COPECs were assumed to be 100% bioavailable.	Bioavailability changes as physical conditions such as pH or % carbon change. This assumption is conservative. The magnitude would be low-high, bias high.
Bioconcentration factors	Bioconcentration factors (BCF) were applied to estimated invertebrate tissue concentrations of COPECs.	BCFs can vary depending on condition of the study that determined the BCF. Applied to this ERA, they may over or underestimate tissue concentrations. Magnitude of uncertainty is lowhigh, bias neutral.

however, this was not the case with terrestrial plants. Despite searches of the Phytotox Data Base and Hazardous Substance Data Base (HSDB), little applicable information was found: therefore, impacts to plants from soil contaminants at the Southeast Runway Fuel Spill site could not be adequately assessed with the exception of lead. Lead had an EQ of 1.02 in terrestrial plants. The toxicity benchmark (TB) for terrestrial plants was the lowest observed effect concentration (LOEC) that gave a greater than 20% reduction in plant growth. These tests were conducted by amending natural soils with lead to mimic wild conditions (Suter, Will, & Evans, 1993). The fate of lead in soil is dependent on such factors as soil pH, organic matter content in soil, the presence of inorganic colloids and iron oxides, ion-exchange characteristics, and the amount of lead in soil. Lead is strongly sorbed to organic matter in soil, and little is transported into surface water or groundwater. Plants and animals may bioconcentrate lead, but biomagnification has not been detected (ATSDR, 1991b). Although lead is found in most plants and some beneficial applications of lead have been reported, lead is not considered to be an essential element for plants (Demayo, Taylor, Taylor, & Hodson, 1982). At a pH of 4 to 6, the organic lead complexes may become soluble and leach out or may be taken up by plants (ATSDR, 1991b); however, the capacity of soil to bind lead by precipitation, sorption, and chelation indicates that probably very little of the total lead content of soil is available for plant uptake. The ratio of lead concentration in soil water to lead concentration in soil ranges between 0.00003 and 0.0031 depending on the pH, and the humus and clay content of the soil. The total lead content of agricultural soil ranges from 2 to 200 mg/kg with a mean of 16 mg/kg and that of "soluble" lead from 0.05 to 5 mg/kg (Demayo et al., 1982). The 95% UCL of lead in soil at the Southeast Runway Fuel Spill site was 50.8 mg/kg. This value is above the mean value in an agricultural soil, but is well within the range. The TB is based on the soluble form of lead and therefore represents an elevated estimate of exposure to terrestrial plants. There

were no adverse impacts projected to occur in the meadow vole or red fox. Given the extreme conservatism associated with the terrestrial plant benchmark, the low EQ (1.02) for plants and the lack of impacts to the higher trophic levels, and the abundance of healthy and prolific plant life, the effects of lead on plant life at the Southeast Runway Fuel Spill site is expected to be minimal.

Uptake of the contaminants into plants was modeled (see section 3.2.2 of Volume 1 for methodology) to assess intake by the meadow vole. Several PNAs were noted in the meadow with EQs greater than (benzo(a)anthracene, EQ 5.42, benzo(a)pyrene, EO = 1.27, benzo(g,h,i)perylene, EQ = 5.28). Although EQs between 1 and 10 are categorized as indicating possible risk, the potential for risk from PNAs in this EQ category is likely to be insignificant because current data indicate that vertebrates metabolize PNAs (Eisler, 1987), and the PNAs remain bound to soil particles in the gastrointestinal tract and therefore are not accumulated (ATSDR, 1993). Table 2-27 indicates that between 52% and 78% of the EO was contributed by soil, but it is assumed in the ERA model that 100% of the PNAs are absorbed by the meadow vole. Sorption of PNAs to soil and sediments increases with increasing organic carbon content and is also directly dependent on particle size. Sources of PNAs include petroleum products, wood fires, automotive emissions, and tobacco smoke. PNAs are ubiquitous in soil. Background concentrations for benzo(a)pyrene range from 2 to 1300 μ g/kg in rural soil, 4.6 to 900 μ g/kg in agricultural soil, and 165 to 200 μ g/kg in urban soil (ATSDR, 1993). The 95% UCL of benzo(a)pyrene in soil at the Southeast Runway Fuel Spill site was 496 μ g/kg. This was the highest concentration of the PNAs with EQs greater than 1 at the Southeast Runway Fuel Spill site. This concentration is within the rural and agricultural soil background level.

Table 2-27
Percent Contribution to Meadow Vole and Robin EQs
by Soil and Food Intake

Chemical	EQ	% EQ Soil	% EQ Food				
Meadow Vole ^a							
Benzo(a)anthracene	5.42	52	48				
Benzo(a)pyrene	1.27	70	30				
Benzo(g,h,i)perylene	5.28	78	22				
	Robin ^b						
Benzo(b)fluoranthene	10.9	27	73				
bis(2-Ethylhexyl)phthalate	1.09	0.2	99.8				

^a The percent contribution to the EQ by food ingestion for the meadow vole is due to the ingestion of plants.

b The percent contribution to the EQ by food ingestion for the robin is due to the ingestion of soil invertebrates.

In summary, there appears to be no potential risk to the higher trophic level consumers such as the red fox, and minimal risk to the meadow vole and terrestrial plants at the Southeast Runway Fuel Spill site. Results of the risk evaluation for plants were inconclusive, except for lead. Given the extreme conservatism associated with the terrestrial plant benchmark. the low EQ (1.02) for plants and the lack of impacts to the higher trophic levels, and the site lead level being within the general background agricultural levels, effects of lead to terrestrial plants would be minimal. Several PNAs were noted in the meadow vole with EQs greater than 1 (benzo(a)anthracene, benzo(a)pyrene, and benzo(g,h,i)perylene). Although all of these EQs were greater than 1, they were also less than 10, and are categorized as indicating possible risk; however, the potential for risk from PNAs in this EQ category is likely to be insignificant because current data indicate that vertebrates metabolize PNAs (Eisler, 1987), and the PNAs remain bound to soil particles in the gastrointestinal tract and therefore are not accumulated. Owing to the low EQ levels of these PNAs, low concentrations of PNAs when compared with other sites, lack of impact to the red fox, and physical and biological processes that limit the vertebrate toxicity, the effects of PNAs to the mammals in the terrestrial ecosystem are expected to be minimal.

Terrestrial—Avian (soil → invertebrate → robin → kestrel)

Table 2-24 lists the compounds and magnitude of the EQs greater than 1. Earthworm bioaccumulation factors (BAFs) were used to estimate contaminant travel through the terrestrial food chain when they were found in the literature. If earthworm BAFs were not available, then aquatic BCFs were used; however, this probably overestimates the bioaccumulation that occurs in terrestrial systems. When evaluating avian toxicity, only toxicity endpoint data specific to birds were used.

As with the plant toxicity, little soil invertebrate toxicity information was found. Several TBs were identified; however, none of the EQ results were above 1. Additionally, there were no EQs above 1 for the kestrel. For the robin, benzo(b)fluoranthene was the only contaminant evaluated with an EQ above 10 at 10.9. The only other chemical with an EO above 1 for the robin was ethylhexyl)phthalate, with an EQ of 1.09. Benzo(b)fluoroanthene is a PNA, and as described above in the terrestrial mammal section, the potential for risk from PNAs is likely to be insignificant because current data indicate that vertebrates metabolize PNAs (Eisler, 1987), and the PNAs remain bound to soil particles in the gastrointestinal tract and therefore are not accumulated (ATSDR, 1993). Information is limited on avian PNA toxicity. The avian toxicity datum for benzo(b)fluoranthene was a single injection of the compound into a developing chicken embryo; the effect was a decrease in survival. A large uncertainty factor had to be applied to the toxicity data to calculate the TB because of the acute exposure time and the taxonomic differences between the test species and the assessment endpoint species. evidence of avian ingestion of PNAs suggest that a diet containing 4000 mg of PNAs/kg does not cause adverse ecological impacts (Eisler, 1987). The calculated oral intake for the robin at the Galena Airport was 0.0164 mg/kg. There is evidence that embryo toxicity in avian species can be caused by relatively small exposures to PNAs in petroleums (Eisler, 1987). This "worst case" exposure is represented by the TB used in this assessment. The applicability of this exposure route is dependent on several factors, including the form of the PNAs at the Southeast Runway Fuel Spill site and the use of the Southeast Runway Fuel Spill site as a breeding area for avian species. During the yearly flood, soil contaminants such as PNAs could be transported to the surface by the rising waters. contaminated surface waters could potentially contact ecological receptors, especially as water accumulates at the dike. The Southeast Runway Fuel Spill site is vegetated with alders and other

tall vegetation on the slope of the dike. Perching birds are commonly observed and nesting could occur in this vegetation. Because of the high quality of habitat along the dike, the propensity of birds, possible transport and exposure mechanisms of contaminants to avian receptors, adverse impacts to avian receptors (especially eggs and young birds) could occur; however, the ability of vertebrate systems to metabolize PNAs and the strong adsorption of these compounds to soils limits the exposures and toxicities. Potential impacts to avian receptors at the Southeast Runway Fuel Spill site by PNAs are therefore given a medium rating.

The EQ for bis(2-ethylhexyl)phthalate in the robin was calculated to be 1.09. Bis(2ethylhexyl)phthalate is bioconcentrated and the compound has been observed in invertebrates, fish, and terrestrial organisms; however, accumulation of bis(2-ethylhexyl)phthalate is likely to be minimized by metabolism, biomagnification in the food chain is not expected to occur. This has been confirmed by the detection of metabolites in animal tissues (ATSDR, 1991a). A ringed dove NOAEL (1.11 mg/kg/day) was adjusted to the robin (NOAEL = 1.39 mg/kg/day). No significant reproductive effects were observed among doves on diets containing 10-ppm bis(2-ethylhexyl)phthalate, and the study considered exposure over four weeks and during a critical life stage (Opresko, Sample, & Suter, 1994). The robin intake at the Galena Airport was calculated to be 1.51 mg/kg/day. This level is well below the diet of the doves in the toxicity study. Because of the potential for metabolism of bis(2ethylhexyl)phthalate, lack of adverse impacts to the kestrel, and low EQ in the robin, the effects of bis(2-ethylhexyl)phthalate to the avian ecosystem at the Southeast Runway Fuel Spill site are expected to be minimal.

Aquatic (surface water → pike)

This exposure pathway considered groundwater beneath the Southeast Runway Fuel Spill site that could migrate to the Yukon River, where exposure to the northern pike potentially

could occur. None of the COPECs evaluated in this assessment showed an EQ above 1 for the northern pike. Ambient water quality criteria (AWQC) were used as the measurement endpoints when they existed. AWQC are highly conservative since they are designed to protect most aquatic life.

Semiaquatic (surface water → aquatic invertebrate → spotted sandpiper) Aquatic Invertebrate

This exposure pathway used modeled concentrations of contaminants in groundwater discharging to the surface at the Yukon River shoreline. No dilution or volatility factors were applied to the discharged concentrations. EQs greater than 1 were noted for the aquatic invertebrates and are shown in Table 2-25. Fluorene and 2-methylnaphthalene had EQs above 10 in the aquatic invertebrate. There were no EQs above 1 for the spotted sandpiper. AWQC were used to evaluate impacts to aquatic invertebrates; however, AWQC were not available for 2-methylnaphthalene or fluorene. High uncertainty factors were applied to these TBs since acute LC₅₀ values were used.

2-Methylnaphthalene and fluorene are the only PNAs, and the only organic compounds, with EQs greater than 1 for the aquatic invertebrate. PNAs vary substantially in their toxicity to aquatic organisms. In general, toxicity and bioconcentration factors tend to increase as molecular weight increases (Eisler, 1987). Fluorene and 2-methylnaphthalene are both low molecular weight PNAs, with molecular weight values of 166.2 and 142.2 respectively (ATSDR, 1993). indicating low potential for bioconcentration or toxicity when compared to high molecular weight PNAs. Uptake of PNAs is highly species specific, being higher in algae, molluscs, and other species that are incapable of metabolizing PNAs. There is evidence indicating that age and body size of the invertebrate are important modifiers in PNA accumulation dynamics. PNA levels in fish and higher trophic levels are usually low because they are rapidly metabolized (Eisler, 1987). Because of the low

potential for bioconcentration or toxicity from low molecular weight PNAs, and the ability of higher trophic levels to metabolize PNAs, the adverse impacts from fluorene and 2-methylnaphthalene are expected to be minimal.

In general, ecological risk from contaminants at the Southeast Runway Fuel Spill site is expected to be minimal. PNAs could affect avian reproduction if birds are exposed to the

contaminants during the breeding season. The impacts of PNAs to mammals such as small rodents are expected to be minimal. Impacts to higher trophic levels such as the red fox, kestrel, and spotted sandpiper are not expected to occur. PNAs in the groundwater that may discharge to the shoreline are not expected to affect ecological receptors adversely. The habitat quality at the shoreline is medium to low owing to human activities that limit the potential for exposure.

Section 3 CONTROL TOWER DRUM STORAGE AREA, SOUTH

Section 3 contains a site-specific BRA for the CTDSA. Section 3.1 provides a description of the site and Section 3.2 summarizes data evaluation. Section 3.3 presents the human health risk assessment results. Section 3.4 presents the ecological assessment results.

3.1 Site Description

The CTDSA is a former storage area where spills and regular dumpings occurred from drum handling from the 1940s to the 1960s. As described in the Phase I Records Search Report (USAF, 1985), the site (Spill/Leak No. 1) is an unpaved area located between the runway and apron on which was stored a large number of drums (stacked horizontally about 3 high and 10 wide) containing unused AVGAS, JP-4, JP-1, diesel fuel, solvents, thinners, cooking fuel, and possibly some waste products. Unused drum residues were reportedly dumped on the ground regularly prior to shipping the empty drums off site. Aerial photographs (dating from 1963 to 1971) indicate that the drum-holding area extended from the southeastern quadrant of the present-day air services parking ramp to 600 ft east of the control tower (approximately 500 ft south of the dike road).

The site is situated on level graded gravel fill. Frozen soils were encountered in boreholes from 10 and 30 ft bgl at the eastern and western portion of the site, respectively; however, no permafrost was encountered at the center of the site. Subsurface soils consist of coarse and fine silty sands with traces of natural organic material.

The CTDSA is located almost entirely within the building restriction line (see Figure 2-2 in Volume 1); therefore, future development/building construction in most of this area is not possible as long as the airport remains operational.

3.1.1 Sources of Contamination

The CTDSA was used to store drums as late as the 1970s, as verified by aerial photographs. The presence of contamination is supported by boring logs from the construction of the control tower that document the presence of fuel odor from soil down to the groundwater level (Norman Burgett, personal communication. October 1992). Sampling was performed during the Stage 1 RI (1986 to 1988), but the area investigated did not include the eastern boundary of the storage area as shown in the aerial photographs. The Stage 1 RI did include an area to the north, where 20,000 to 30,000 gal. of diesel fuel was suspected to have been discharged to the ground from a POL fuel line leak (referred to as Spill/Leak No. 2 [ST003]; USAF, 1985).

During the Stage 1 RI, soil samples were collected from 19 borings drilled to the water table (approximately 15 ft below ground surface) and analyzed for total petroleum hydrocarbons (TPH), volatile organic compounds (VOCs), and lead. Low levels of TPH contamination were detected in soils at or near the water table, and BTEX components (< 600 ppb total BTEX) and lead (maximum 59 mg/kg) were also detected in subsurface soil samples. Three monitoring wells were drilled to approximately 30 ft. Groundwater samples were collected and analyzed for petroleum hydrocarbons, purgeable halocarbons and aromatics, and lead. Groundwater samples from all three wells contained low levels of toluene and lead; two wells contained low levels of benzene. Trichloroethene (TCE) was detected in one well at low levels (USAF, 1989).

Also during the Stage 1 RI, a soil gas survey was conducted with a gas chromatograph (GC) to analyze TPH vapors extracted from probes driven into the ground. The highest values were detected at the center and western boundary of the original CTDSA investigation area, where soil gas concentrations were approximately 10 ppmV TPH.

3.1.2 RI Activities

Field investigations conducted at the CTDSA from 1993 to 1995 include a soil gas survey and field TPH screening, collection of groundwater samples from two preexisting monitoring wells, and collection of six surface soil samples. All sample locations are shown in Figure 3-1. The analytical results for soil and water samples are presented in Appendix A of the RI report (USAF, 1995b).

Because the Stage 1 RI did not encompass the entire extent of the former CTDSA, additional field screening was performed in 1993. At 22 locations (in two lines covering the length of the former drum storage area) soil vapor was withdrawn and analyzed with a PID and flame ionization detector (FID). In addition to the soil gas survey, 14 shallow soil samples (5 ft bgl) were collected from within the CTDSA and analyzed for aromatic hydrocarbons (AH) and TPH using the field IR method. Sample locations and soil gas survey results are shown in Figure 3-1.

The 1993 soil gas data from the CTDSA show sporadic high VOC concentrations. The results from the soil TPH/AH screening indicate low to moderate concentrations of hydrocarbons. These data are in agreement with the findings of the Stage 1 RI and may be characteristic of a drum storage area where spills and leaks result in high levels of contamination over a limited areal extent. Hot spots, which may result from these types of releases, were detected at six soil gas sample locations: A-02, A-08, A-11, B-03, B-09, and B-11 (see Figure 3-1).

Six surface soil samples were collected at the CTDSA in 1995 to determine the nature of the soil contamination at the site. The sample locations, shown in Figure 3-1, were chosen from areas of the site that are not being considered for part of a tarmac extension project to be conducted in the near future. Soils that will be covered with pavement will not pose a significant risk to human health or the environment, since the pavement will eliminate dust and

minimize the potential for contaminants to leach into the groundwater.

The surface soil samples were generally made up of gravelly sand fill. No staining or odor was evident in the samples except for the one collected at location 13-SS-06. The soil at this location consisted of gravelly sand fill overlying dark gray-brown silty clay with red mottling and a faint burn odor.

Samples were collected from monitoring wells MW-037 and MW-038 during the 1994 field season. MW-039 was damaged beyond repair and samples could not be retrieved.

3.1.3 RI Conclusions

Data from soil and soil gas screening conducted at the CTDSA in 1993 indicate the presence of limited areas of elevated VOC and TPH concentrations. Laboratory confirmation of surface soil sampling conducted at this site in 1995 indicated the presence of DRO, possibly from motor oil, in excess of the screening criteria. However, no staining or odor was noted at the sampling locations where the detections occurred, and the majority of the soil samples contained little or no detectable DRO. These data are consistent with minor surface soil contamination from small leaks and spills. Bureau of Land Management (BLM) uses the eastern portion of the site to park aircraft and refueling trucks. Vehicle traffic may also occur at other parts of the site, and small aircraft may taxi through this area as well. Aircraft and vehicle traffic are likely to be sources of DRO at this site.

The Stage 1 RI documented the presence of TCE in groundwater samples from one of the downgradient wells (MW-038). A sample collected from this well in 1994 was found to contain TCE in excess of the 5 μ g/L MCL. It appears that small leaks and spills from drumhandling activities at this site may have resulted in the presence of TCE in the groundwater.

Figure 3-1. Sampling Locations and Soil Gas Survey Results for the Control Tower Drum Storage Area South (SS013)

3.2 Data Evaluation

Data available from the RI (USAF, 1995b) were used to evaluate human health risks and ecological effects posed by the CTDSA. Analytical results from a total of six surface soil samples and two groundwater samples made up the risk assessment data set. Table 3-1 lists the analytical methods used to test the soil and water samples during the 1994-1995 RI.

Statistical analyses, in accordance with methods summarized in Section 3 of Volume 1 and described in detail in Appendix A (Volume 2), were conducted on the available data to identify contaminants that were:

- 1. Positively detected in at least one sample in a given medium;
- Detected at levels substantially greater than levels detected in associated blank samples (at least one result that exceeds the blanks UTL); and
- Detected at levels elevated above naturally occurring background levels.

Table 3-2 lists the chemicals that were positively detected in the various media at the CTDSA. These chemicals were subjected to blanks and background comparisons and to additional screening and evaluation for the human health assessment and the ecological assessment before they were identified *positively* as COPCs for human health or COPECs. Appendix 4A of this volume lists all chemicals that were tested in the various media and indicates, on a medium-specific basis, whether or not there were measurable results after conducting the blanks evaluation and whether or not the average site-related concentration is greater than the average background concentration (metals only).

An evaluation of the adequacy of detection limits was performed by comparing the minimum detection limit for each chemical eliminated as a COPC because it was not detected in a medium with the USEPA Region III

residential RBCs. Appendix 4B contains the results of this detection limit screening process. The uncertainties associated with detection limits that are not low enough to detect risk-based concentrations are summarized in Section 3.3.5.

3.3 Human Health Risk Assessment Results

The human health evaluation for the CTDSA included identification of COPCs (Section 3.3.1), exposure assessment (Section 3.3.2), toxicity assessment (Section 3.3.3), risk characterization (Section 3.3.4), and uncertainty assessment (Section 3.3.5). These tasks were performed according to the methods specified in Section 3 of Volume 1. Section 3.3.6 summarizes conclusions of the human health risk assessment for the CTDSA and recommendations for remedial action based on the risk assessment results.

3.3.1 Chemicals of Potential Concern

Additional screening of the chemicals was performed, in accordance with the methods described in Section 3 of Volume 1, to identify the COPCs carried through the human health assessment. The additional screening involved examining the frequency of detection, evaluating essential nutrients, and comparing maximum detected concentrations with USEPA Region III RBCs.

Frequency of Detection

At the CTDSA, there were no chemicals that were eliminated from the list of COPCs on the basis of a low (< 5%) frequency of detection.

Essential Nutrients

Essential nutrients that are often present either in the soil and water media were not detected at the CTDSA at concentrations elevated above background concentrations.

Risk-Based Screening

Maximum detected concentrations of numerous analytes were lower than one-tenth the media-specific USEPA Region III residential RBCs and were eliminated from the list of

Table 3-1 Analytical Methods Used at the Control Tower Drum Storage Area, South During the 1994-95 RI

Parameter	Soil ^a	Water b
Alkalinity - Total (SM403)	NA	2
Specific Conductance (E120.1)	NA	2
pH (E150.1 - aqueous, SW9045 - solids)		2
Total Dissolved Solids (E160.1)	NA	2
Total Suspended Solids (E160.2)	NA	2
Temperature (E170.1)	NA	2
Turbidity (E180.1)	NA	2
Anions (E300)	NA	2
Nitrate-Nitrite (E353.1)	NA	2
Metals - ICP Screen (SW6010) Arsenic (SW7060) Lead (SW7421) Selenium (SW7740)	6 6 6	2 2 2 2 2
Organochlorine Pesticides and PCBs (SW8080)	6	2
Semivolatile Organic Compounds (SW8270)	6	2
Volatile Organic Compounds (SW8240)	6	NA
Volatile Organic Compounds (SW8260)	NA	2
Diesel Range Organics (AK102)	6	2
Gasoline Range Organics (AK101)	6	2
Soil Moisture Content (SW846)	6	NA

NA = Not applicable.

a Number of surface soil samples.b Number of groundwater samples.

⁻⁻ Analytical method not used for this medium.

Table 3-2
Analytes Detected at the Control Tower Drum Storage Area, South

Analyte	Analytical Method	Groundwater	Surface Soil
1,2-Dichloroethane	SW8260	D	
2-Methylnaphthalene	SW8270	ND	D
4,4'-DDD	SW8080	ND	D
4,4'-DDE	SW8080	D	D
4,4'-DDT	SW8080	ND	D
Acetone	SW8260	D	
Aldrin	SW8080	D	D
Aluminum	SW6010	D	D
Anthracene	SW8270	ND	D .
Antimony	SW6010	D	D
Arsenic	SW7060	D	D
Barium	SW6010	D	D
Benzene	SW8260	D	
Benzo(a)anthracene	SW8270	ND	D
Benzo(a)pyrene	SW8270	ND	D
Benzo(b)fluoranthene	SW8270	ND	D
Benzo(g,h,i)perylene	SW8270	ND	D
Benzo(k)fluoranthene	SW8270	ND	D
Beryllium	SW6010	D .	D
Cadmium	SW6010	D	D
Calcium	SW6010	D	D
Chloromethane	SW8260	D	
Chromium	SW6010	D	D
Chrysene	SW8270	ND	D
Cobalt	SW6010	D	D
Соррег	SW6010	D	D
Dibromomethane	SW8260	D	

March 1996 3-6

Table 3-2 (Continued)

Analyte	Analytical Method	Groundwater:	Surface Soil
Dieldrin	SW8080	D	D
Diesel Range Organics	AK102	D	D
Endosulfan I	SW8080	D	D
Endosulfan II	SW8080	ND	D
Endrin	SW8080	ND	D
Endrin aldehyde	SW8080	ND	D
Fluoranthene	SW8270	ND	D
Gasoline Range Organics	AK101	D	ND
Heptachlor	SW8080	D	D
Heptachlor epoxide	SW8080	D	D
Indeno(1,2,3-cd)pyrene	SW8270	ND	D
Iron	SW6010	D	D
Lead	SW7421	D	D
Magnesium	SW6010	D	D
Manganese	SW6010	D	D
Methylene chloride	SW8240		D
Methylene chloride	SW8260	D	
Molybdenum	SW6010	D	D
Nickel	SW6010	D	D
Phenanthrene	SW8270	ND	D
Potassium	SW6010	D	D
Ругепе	SW8270	ND	D
Selenium	SW6010	D	NU
Selenium	SW7740		D
Silver	SW6010	D	D
Sodium	SW6010	D	D
Thallium	SW6010	D	D

Table 3-2 (Continued)

Analyte	Analytical Method	Groundwater	Surface Soil
Toluene	SW8260	D	
Trichloroethene	SW8260	D	
Vanadium	SW6010	D	D
Zinc	SW6010	D	D
alpha-BHC	SW8080	ND	D
beta-BHC	SW8080	D	ND
bis(2-Ethylhexyl)phthalate	SW8270	ND	D
cis-1,2-Dichloroethene	SW8260	D	
delta-BHC	SW8080	ND	D
gamma-BHC(Lindane)	SW8080	D	D
m&p-Xylenes	SW8260	D	
trans-1,2-Dichloroethene	SW8260	D	

D = At least one numerical result was detected in samples.

ND = No numerical results were detected in samples.

^{-- =} Not tested.

NU = Analytical method not used; more accurate method used instead.

COPCs. Appendix 4B of this volume contains the risk-based screening results.

COPC Summary

Tables 3-3 and 3-4 summarize conclusions for all chemicals that were positively detected in the surface soil and groundwater media, respectively, at the CTDSA. The tables indicate, for each analyte, whether sample concentrations were distinguishable from blank concentrations, whether concentrations were significantly different from background concentrations, whether the chemical was detected in at least 5% of the samples, and whether the chemical was eliminated as an essential nutrient or by the risk-based screen. Note that since 1993 and later sampling events reported uncensored data (where an ND is reported only if there is no instrument response), very low levels (greater than zero) of many analytes were reported in both blanks samples and site samples. Consequently, many chemicals that are not common field or laboratory contaminants were "detected" in blanks samples and were eliminated as COPCs on the basis of the blanks comparison. No analytes were detected in blanks at concentrations considered to represent a blanks contamination problem requiring corrective action as a result of the data validation process.

Table 3-5 lists the COPCs for the CTDSA. It includes all chemicals, by medium, with positive results that were greater than background and blank concentrations, that exceeded 5% detection frequency, and that were not eliminated as an essential nutrient or by risk-based screening.

Appendix A of the RI report (USAF, 1995b) provides a complete listing of analytical results from the RI. The appendix reports the sampling location, analytical result, any data qualifiers, and the sample detection limit.

Tables 3-6 and 3-7 provide a statistical summary of the values used in the risk assessment for human health COPCs in surface soil and groundwater, respectively. The tables list

the detection frequency, maximum detected concentration, mean, standard deviation, and 95% UCL of the data.

3.3.2 Exposure Assessment

Human exposure to COPCs that are present at or migrating from the CTDSA was assessed in accordance with methods described in Section 3 of Volume 1.

Human Exposure Scenarios

Nine human exposure scenarios were addressed in the assessment of risks posed by the CTDSA:

Current Scenarios (also applicable as future scenarios)

- 1. Short-Term On-Base Resident (subchronic adult only);
- Long-Term On-Base Resident (chronic adult and child);
- 3. Old Town Galena Resident (chronic adult and child);
- 4. New Town Galena Resident (chronic adult and child);
- 5. Short-Term On-Base Worker (subchronic adult only);
- 6. Long-Term On-Base Worker (chronic adult only);
- Construction Worker (subchronic adult only);

Future Scenarios

- 8. Boarding School Student (subchronic/chronic); and
- 9. Old Town Galena Resident (chronic adult and child).

Table 3-3
Identification Criteria for Surface Soil COPCs at the Control Tower Drum Storage Area, South

Chemical	Blanks Comparison ^a	Background Comparison ^b	Low Frequency ^c	Essential Nutrient ^d	Risk-Based Screen ^e	COPC
2-Methylnaphthalene	-	-	-	-	-	YES f
4,4'-DDD	-	-	-	-	X	- .
4,4'-DDE	_	-	-	-	Х	-
4,4'-DDT	-	-	-	4	-	YES
Aldrin	-	-	-	1	-	YES
Anthracene	-	-	-	-	Х	-
Benzo(a)anthracene	-	-	-	-	Х	-
Вепло(а)ругепе	-	-	-	1	-	YES
Benzo(b)fluoranthene	-	-	•	-	YES	-
Benzo(g,h,i)perylene	-	-	-	-	-	YES f
Benzo(k)fluoranthene	-	-	-	-	X	-
Chrysene	-	-	-	-	X	-
Dieldrin	-	-	ī	-	-	YES
Endosulfan I	•	-	-	~	X	
Endosulfan II	-	-	-	-	X	-
Endrin	X	-	+	-	-	-
Endrin aldehyde	-	-	-	-	X	-
Fluoranthene	-	_	-	-	X	-
Heptachlor	-	-	-	-	Х	-
Heptachlor epoxide	-	-	-	-	X	-
Indeno(1,2,3-cd)pyrene	-	-	-	-	X	-
Methylene chloride	X	-	-	-	-	-
Phenanthrene	-	-	-	-		YES f

March 1996 3-10

Table 3-3 (Continued)

Chemical	Blanks Comparison ^a	Background Comparison ^b	Low Frequency ^c	Essential Nutrient ^d	Risk-Based Screen ^e	COPC
Pyrene	-	-	-	_	Х	-
alpha-BHC	-	-	-	-	Х	-
bis(2-Ethylhexyl)phthalate	_	-	-	•	Х	-
delta-BHC	-	-	-	-	X	-
gamma-BHC	-	-	-	-	X	-
Aluminum	-	Х	-	-	-	-
Antimony	-	-	-	-	-	YES
Arsenic	-	X	-	-	-	-
Barium	-	X	-	-	-	-
Beryllium	-	X	-	-	-	-
Cadmium	-	X	-	-	_	-
Calcium	-	Х	-	-	_	-
Chromium	-	X	-	-	-	-
Cobalt	-	Х	-	-	-	-
Copper	-	X	-	-	-	-
Iron	-	X	-	-	-	-
Lead	-	-	-	-	-	YES f
Magnesium	•	X	-	-	-	-
Manganese	-	X	-	-	-	-
Molybdenum	-	X	-	-	-	-
Nickel	-	X	-	ı	,	-
Potassium	-	X	-	-	-	-
Selenium	-	Х	+	-	-	-
Silver	-	X	-	-	-	-

Table 3-3 (Continued)

Chemical	Blanks Comparison ^a	Background Comparison ^b	Low Frequency ^c	Essential Nutrient ^d	Risk-Based Screen ⁶	COPC
Sodium	-	X	-	-	-	-
Thallium	-	1	1	-	1	YES
Vanadium	-	X	-	-	-	-
Zinc	-	X	-	-	-	-

3-12

<sup>a Indistinguishable from blank concentrations.
b Not significantly elevated above background concentrations.
c Detected at a frequency less than 5%.
d Estimated maximum daily intake less than the RDA.
e Maximum detected concentration lower than one-tenth the USEPA Region III</sup> residential soil RBC.

f Toxicity value not available with which to perform risk-based screen.

⁻ Not eliminated through this criterion.

Table 3-4
Identification Criteria for Groundwater COPCs at the Control Tower Drum Storage Area, South

Chemical	Blanks Comparison ^a	Background Comparison ^b	Low Frequency ^c	Essential Nutrient ^d	Risk-Based Screen ^e	COPC
1,2-Dichloroethane	-	-	-	-	-	YES
4,4'-DDE	-	-	-	_	Х	-
Acetone	X	-	-	-	-	~
Aldrin	-	-	-	-	-	YES
Benzene	х	-	-	-	-	-
Chloromethane	Х	-	-		-	-
Dibromomethane	-	-	-	-		YES f .
Dieldrin	-	-	-	1	-	YES
Endosulfan I	-	-	-	-	Х	-
Heptachlor	-	-	-	-	-	YES
Heptachlor epoxide	ī	-	-	1	-	YES
Methylene chloride	X	-	-	-	-	-
Toluene	X	-	-		-	-
Trichloroethene		1	-	-	1	YES
beta-BHC	-		-	-	-	YES
cis-1,2-Dichloroethene	-	-	-	-	-	YES
gamma-BHC	ī	-	-	-	-	YES
m & p-Xylenes	•	-	-	-	X	•
trans-1,2-Dichloroethene	-	-	-	-	X	<u></u>
Aluminum	X	•	-	-	-	-
Antimony	X	-	-	1	-	-
Arsenic	X	-	-	1	-	-
Barium	-	X		-	-	-

Table 3-4 (Continued)

Chemical	Blanks Comparison ^a	Background Comparison ^b	Low Frequency ^c	Essential Nutrient ^d	Risk-Based Screen ^e	COPC
Beryllium	х	-	-	-	-	-
Cadmium	х	-	-	_	-	-
Calcium	-	X	-	-	-	-
Chromium	Х	-	-	-	-	-
Cobalt	х	-	_	-	-	-
Соррег	-	Х	-	-	-	-
Iron	х	-	-	-	-	-
Lead	Х	-	-	-	-	-
Magnesium	-	Х	-	-	-	
Manganese	х	-	_	_	-	••
Molybdenum	X	-	-	-	-	-
Nickel	Х	-	-	-	-	-
Potassium	-	X	<u>.</u>	-	-	_
Selenium	Х	-	+	•	-	-
Silver	X	-	-	<u>-</u>	•	-
Sodium	-	X	-	-	-	-
Thallium	X	-	-	-	-	-
Vanadium	X	-	-	-	-	<u>-</u>
Zinc	X	-	-	-	-	-

3-14

<sup>a Indistinguishable from blank concentrations.
b Not significantly elevated above background concentrations.
c Detected at a frequency less than 5%.
d Estimated maximum daily intake less than the RDA.
e Maximum detected concentration lower than one-tenth the USEPA Region III tap water RBC.
f Toxicity value not available with which to perform risk-based screen.</sup>

⁻ Not eliminated through this criterion.

Table 3-5 Chemicals of Potential Concern at the Control Tower Drum Storage Area, South

	M	ledia
Chemical	Surface Soil	Groundwater
Metals		
Antimony	X	
Lead	X	
Thallium	X	
PNAs		
Benzo(a)pyrene	X	
Benzo(b)fluoranthene	X	
Benzo(g,h,i)perylene ^a	X	
2-Methylnaphthalene ^a	X	
Phenanthrene ^a	X	
Pesticides		
Aldrin	X	X
beta-BHC		X
gamma-BHC		X
4,4'-DDT	Х	
Dieldrin	X	X
Heptachlor		X
Heptachlor epoxide		X
Volatiles		
Dibromomethane ^a		X
1,2-Dichloroethane		X
cis-1,2-Dichloroethene		X
Trichloroethene		X

^a Retained as a COPC for qualitative evaluation only. Toxicity values are not available to perform risk quantification at this time.

Table 3-6 Statistical Summary of Values Used in the Human Health Risk Assessment for Surface Soil at the Control Tower Drum Storage Area, South

Chemical Name	Detection Frequency	Max Detect (mg/kg)	Mean (mg/kg)	Standard Deviation	95% UCL (mg/kg)
Metals					
Antimony	6/6	4.92E+01	2.94E+01	1.17E+01	3.90E+01
Lead ^a	6/6	7.66E+01	2.19E+01	2.70E+01	1.42E+02
Thallium	6/6	2.94E+01	1.50E+01	1.27E+01	2.55E+01
Pesticides					
Aldrin	2/6	5.87E-03	2.26E-03	2.51E-03	1.98E-02
4,4'-DDT	6/6	4.96E-01	1.47E-01	1.90E-01	1.27E+02
Dieldrin	5/6	1.16E-02	4.15E-03	4.56E-03	7.90E-03
PNAs					
Benzo(a)pyrene	1/6	8.96E-02	2.53E-02	3.09E-02	9.72E-02
Benzo(b)fluoranthene	1/6	1.50E-01	2.60E-02	5.75E-02	4.76E-01
Benzo(g,h,i)perylene b	1/6	7.77E-02	2.45E-02	2.65E-02	1.03E-01
2-Methylnaphthalene	2/6	2.31E-02	1/65E-02	7.94E-03	2.30E-02
Phenanthrene ^b	1/6	1.27E-01	2.58E-02	4.81E-02	6.30E-01

Bold numbers indicate the value used for the risk assessment, which was the lower of either the UCL or the maximum detected concentration.

March 1996 3-16

 ^a USEPA IEUBK model is used to calculate risk from lead.
 ^b No toxicity data available.

Table 3-7
Statistical Summary of Values Used in the Human Health Risk
Assessment for Groundwater at the Control Tower Drum Storage Area, South

Chemical Name	Detection Frequency	Max Detect	Mean (mg/L)	Standard Devia- tion	95% UCL (mg/L)
Pesticides					
Aldrin	1/2	1.77E-05	8.93E-06	1.24E-05	6.43E-05
beta-BHC	1/2	7.10E-06	3.61E-06	4.93E-06	2.56E-05
gamma-BHC	1/2	1.33E-05	7.39E-06	8.36E-06	4.47E-05
Dieldrin	1/2	7.90E-06	5.25E-06	3.75E-06	2.20E-05
Heptachlor	2/2	3.30E-06	1.85E-06	2.05E-06	1.10E-05
Heptachlor epoxide	2/2	5.55E-05	2.78E-05	3.92E-05	2.03E-04
Volatiles					
Dibromomethane ^a	1/2	2.10E-04	1.13E-04	1.37E-04	7.26E-04
1,2-Dichloroethane	1/2	6.40E-03	3.28E-04	4.42E-04	2.30E-02
cis-1,2-Dichloroethene	1/2	2.33E-02	1.17E-02	1.65E-02	8.51E-02
Trichloroethene	2/2	9.28E-03	4.81E-02	6.33E-03	3.31E-02

Bold numbers indicate the lower value used for the risk assessment, which was the lower of either the UCL or the maximum detected concentration.

^a No toxicity data available.

These scenarios are described in Section 3 of Volume 1. Since possible exposures of the Old Town Galena resident might differ in the future if contaminants in the shallow groundwater migrate to the Old Town area, the future Old Town Galena resident is considered separately from the current Old Town Galena resident. The on-base worker scenarios assume that workers at the CTDSA are engaged in activities outdoors, every work day, for the duration of employment. However, employees in this area work in the control tower itself and do not frequent the grounds outside. Therefore, the worker scenarios better represent reasonable worst-case exposures that might occur at any time in the future, assuming industrial use of the land involving primarily outdoor work.

Exposure Pathways

Exposure pathways considered for applicability to each CTDSA exposure scenario included the following:

Soil Pathways

- Incidental ingestion of soil; and
- Dermal contact with soil.

Air Pathways

- Inhalation of fugitive dust; and
- Inhalation of vapors that volatilize from surface and subsurface media.

Groundwater Pathways

- Ingestion of drinking water;
- Dermal contact with water while showering;
- Inhalation of vapors that volatilize from water while showering; and
- Ingestion of plants irrigated or subirrigated with groundwater.

Surface Water Pathways

Ingestion of fish from the Yukon River.

Groundwater pathways are applicable only if the results of groundwater modeling indicate that contaminants from the CTDSA might migrate to Old Town Galena. Surface water pathways are applicable only if the results of groundwater modeling indicate that toxicologically significant concentrations of contaminants originating from the CTDSA might reach the Yukon River.

Contaminants detected in the groundwater at the CTDSA were modeled to Old Town Galena and the shoreline of the Yukon River. Assuming a generally southwestern flow direction, most of Old Town Galena is not directly downgradient of the CTDSA. However, modeled concentrations at the closest downgradient receptor location in Old Town Galena provide a worst-case estimate of possible impacts on wells that could be located at the extreme western edge of town.

Concentrations of contaminants in the Yukon River within 5 ft of the shoreline were also estimated, assuming that mixing is limited to river flow within that 5 ft. This assumption was made because there is not instant dilution of contaminants entering the river in the groundwater by the entire volume of river flow that passes by Galena. Rather, a plume would follow the shoreline downstream.

Table 3-8 summarizes the modeled Old Town Galena and river concentrations for the COPCs in groundwater at the CTDSA. It also lists applicable chemical-specific fish BCFs and estimated concentrations in fish exposed to river water within 5 ft of the shoreline. Finally, the table lists the USEPA Region III RBCs for tap water and fish. The estimated fish concentrations are all below the Region III RBCs for fish. The surface water pathways are therefore not quantified for the CTDSA. The modeled Old Town Galena concentrations, considered the

Comparisons of Control Tower Drum Storage Area Groundwater Modeling Results with USEPA Region III Risk-Based Concentrations (RBCs) Table 3-8

	Modeled Old Town Galena	Modeled River		Detimoted	USEPA Region III RBC 4	on III RBC d
Chemical	Concentration (ug/L)	Concentration a (ug/L)	Fish BCF ^b	Concentration in Fish c	Tap water (ug/L)	Fish (mg/kg)
1,2-Dichloroethane	1.65E-03	2.76E-07	2	5.5E-10	1.2E-01	3.5E-02
Aldrin	4.59E-04 ^e	3.06E-10	3140	9.6E-10	4.0E-03	1.9E-04
beta-BHC	4.18E-06	3.40E-10	1460	4.96E-10	3.7E-02	1.8E-03
cis-1,2-Dichloroethene	1.65E+00	1.24E-06	23	2.9E-08	6.1E+01	1.4E+01
Dibromomethane	8.67E-12	1.39E-11	5	6.95E-14	ΛN	ΛN
Dieldrin	8:09E-28	2.77E-10	2700	7.5E-10	4.2E-03	2.0E-04
gamma-BHC	6.59E-06	3.11E-10	319	9.9E-11	5.2E-02	2.4E-03
Heptachlor	2.07E-99	3.21E-47	20	4.4E-49	2,3E-03	7.0E-04
Heptachlor epoxide	1.34E-03 °	1.21E-09	20	2.4E-11	1.2E-03	3.5E-04
Trichloroethene	3.20E-01 °	2.57E-07	, 17	4.4E-09	1.6E+00	2.9E-01

Estimated concentration in Yukon River within 5 ft of shoreline, assuming mixing is limited to river flow within that 5 ft. e o

Fish bioconcentration factor. See Appendix J (Ecological Assessment Toxicity Profiles) of Volume 3 and Appendix 4L of this addendum...

Concentration in water (ug/L) x 1 L/kg x 1 mg/1000 ug x BCF (unitless).

Modeled concentration exceeds one-tenth the Region III tap water RBC. This chemical is included in the groundwater pathway calculations. U.S. Environmental Protection Agency (USEPA) Region III, Risk-Based Concentration Table, January-June 1995, March 7, 1995.

NV = No value

NOTE: Shaded values exceed Region III RBC for tap water or fish:

worst-case possible impact on any well located at the western edge of Old Town Galena, are all below the respective Region III tap water RBCs, except for heptachlor epoxide, which only slightly exceeds the tap water RBC. However, since modeled concentrations at Old Town Galena of three chemicals (aldrin, heptachlor epoxide, and TCE) exceed one-tenth the tap water RBC, the groundwater pathways are quantified for the Old Town Galena resident for this site. Since there is no evidence that a groundwater contaminant plume extends from the site to New Town Galena, the groundwater-related exposure pathways are considered possible future exposures and are quantified for the future Old Town Galena resident scenario only.

Appendix C (Volume 3) describes the groundwater modeling methodology. Likewise, Appendix D (Volume 3) describes the emissions estimating and air dispersion modeling methodologies. These methodologies are not repeated in this addendum. Groundwater modeling results for this site are documented in Appendix 4C of this volume. Appendix 4D of this volume contains dispersion modeling results for this site. Appendices 4E and 4F of this volume describe the methodologies used to model uptake by fruits and vegetables and air concentrations inside a shower stall, respectively, and provide modeling results.

Conceptual Site Model

A conceptual site model presents the current understanding of possible sources of contamination and the likely mechanisms for movement of contamination within and beyond site boundaries. Figure 3-20 is a conceptual site model flow diagram showing the primary sources of contamination at the CTDSA, their migration pathways, exposure media, and exposure routes that may lead to human exposure. The figure effectively summarizes the results of the human health exposure assessment. It illustrates complete exposure pathways for the exposure scenarios that are evaluated and indicates which pathways are quantified for each scenario. It also notes which pathways are possibly complete but

probably not significant. These pathways are not quantified.

Quantification of Exposure

Table 3-9 provides a matrix of exposure scenarios and soil-related exposure pathways that are applicable to the CTDSA and specifies the exposure points and data that were used to derive concentrations in the exposure media at this site. Table 3-10 provides the same information for groundwater-related pathways. Appendix 4G of this volume summarizes the human health exposure point concentrations used to quantify exposure.

Section 3 of Volume 1 describes the methods used to quantify exposure. Human health intake equations and exposure parameters are documented in Appendix 4H of this volume. Intakes were quantified separately for evaluation of carcinogenic and noncarcinogenic effects. Daily intakes for analysis of carcinogenic effects are averaged over a 70-year lifetime. Daily intakes for analysis of noncarcinogenic effects are averaged over the exposure duration only.

3.3.3 Toxicity Assessment

Table 2-11 presents the toxicity values used in the human health risk assessment for COPCs at the CTDSA. Most of the toxicity values in this table were obtained from IRIS searches conducted in October 1995 or from HEAST (USEPA, 1994b). Carcinogenic values for some PNAs were calculated using methodologies in provisional guidance for calculating potential potency based on values benzo(a)pyrene (USEPA, 1993). Although the oral slope factor for benzo(a)pyrene is listed in IRIS, the inhalation slope factor has been withdrawn from IRIS and HEAST. Since there is no inhalation unit risk for benzo(a)pyrene, the USEPA guidance directs that the potential potency values should be applied only to assessment of carcinogenic hazard from oral exposure to PNAs (USEPA, 1993).

The inhalation RfD for 1,2-dichloroethane and the inhalation slope factor for

Figure 3-2. Human Exposure Conceptual Model for the

3-21

Table 3-9
Data Used to Derive Exposure Concentrations in Soil-Related Exposure Media at the Control Tower Drum Storage Area, South

		Expos	sure Pathways
Exposure Scenario	Ingestion of Soil	Dermal Contact with Soil	Inhalation of Vapor Phase Chemicals and Fugitive Dust in Ambient Air
Current Scenarios	-		
On-Base Residents -Short Term -Long Term	NA	NA	Modeled concentration of vapor-phase chemicals (D) and wind-blown dust (E) at closest downwind on-base residential receptor.
Galena Residents -Old Town -New Town	· NA	NA	Modeled concentration of vapor-phase chemicals (D) and wind-blown dust (E) at closest downwind Old Town Galena residential receptor.
			Modeled concentration of vapor-phase chemicals (D) and wind-blown dust (E) at closest downwind New Town Galena residential receptor.
On-Base Workers -Short Term	Surface Soil (A)	Surface Soil (A)	Modeled concentration of vapor-phase chemicals (D) and wind-blown dust (E) directly above the CTDSA site.
-Long Term	Surface Soil (A)	Surface Soil (A)	Modeled concentration of vapor-phase chemicals (D) and wind-blown dust (E) directly above the CTDSA site.
-Construction	Mixed Soil (C)	Mixed Soil(C)	Modeled concentration of vapor-phase chemicals (F) and dust generated by construction activity (G) directly above the CTDSA site.
Future Scenarios		_	
Boarding School Student	NA	NA	Modeled concentration of vapor-phase chemicals (D) and wind-blown dust (E) at the location of the proposed student dormitory.
Galena Residents -Old Town	NA	NA	Modeled concentration of vapor-phase chemicals (D) and wind-blown dust (E) at closest downwind Old Town Galena residential receptor.

Table 3-9 (Continued)

Exposure Media

Remedial Investigation Data:

- (A) Measured concentrations in surface soils, represented by the 95% UCL, or the maximum detected concentration if lower, in soils within 2 ft of the ground surface at the CTDSA.
- (B) Measured concentrations in subsurface soils, represented by the 95% UCL, or the maximum detected concentration if lower, in soils greater than 2 ft below the ground surface at the CTDSA.
- (C) Mixed surface and subsurface soil, represented by the highest of either the surface soil concentration (A) or the subsurface soil concentration (B).

Transport and Fate Modeling:

- (D) Estimated concentration of vapor-phase chemicals in ambient air based on emissions from surface soil (A) and subsurface soil (B) and dispersion modeling to specific receptor locations.
- (E) Estimated concentration of wind-blown dust based on particulate emissions from surface soil
- (A) and dispersion modeling to specific receptor locations.
- (F) Estimated concentration of vapor-phase chemicals in ambient air assuming subsurface soil is brought to the surface by construction activities, based on emissions from mixed soils (C) and dispersion modeling to specific receptor locations.
- (G) Estimated concentration of dust generated by construction activities directly above the site, based on particulate emissions from mixed soil (C) and dispersion modeling to specific receptor locations.

NA = Not Applicable

March 1996 3-24

Table 3-10
Data Used to Derive Exposure Concentrations in Groundwater-Related Exposure Media at the Control Tower Drum Storage Area, South

		Exposure Pathways		
Exposure Scenario	Ingestion of Groundwater	Dermal Contact with Groundwater	Inhalation of Vapor Phase Chemicals in Shower Stall	Ingestion of Fruits and Vegetables Irrigated or Subirrigated with Groundwater
Current Scenarios	3			
On-Base Residents -Short Term -Long Term	NA	NA	NA	NA
Galena Residents -Old Town -New Town	NA NA	NA NA	NA NA	NA NA
On-Base Workers -Short Term -Long Term -Construction	NA	NA	NA	NA
Future Scenarios				
Boarding School Student	. NA	NA	NA	NA
Galena Resident -Old Town	Modeled concentrations in groundwater (B) at closest downgradient receptor in Old Town Galena.	Modeled concentrations in groundwater (B) at closest downgradient receptor in Old Town Galena.	Modeled concentrations of vapor phase chemicals (C) in the air of a shower stall.	Modeled concentrations in fruits and vegetables (D) grown in gardens located in Old Town Galena.

Exposure Media

Remedial Investigation Data:

(A) Measured concentrations in shallow groundwater at the CTDSA site represented by the 95% UCL, or the maximum detected concentration if lower, in groundwater at the two wells located at the CTDSA.

Transport and Fate Modeling:

- (B) Estimated concentrations in shallow groundwater at Old Town Galena based on measured concentrations in the groundwater at the CTDSA site (A) and modeling to the closest downgradient location in Old Town Galena.
- (C) Estimated concentrations of vapor-phase chemicals in the air of a shower stall, assuming use of shallow groundwater (B) as tap water.
- (D) Estimated concentrations in fruits and vegetables grown in home gardens in Old Town Galena, assuming that groundwater (B) provides the sole source of water for the plants, either through irrigation or subirrigation.

NA = Not applicable.

TCE are provisional values recommended by the Superfund Health Risk Technical Support Center (footnoted EPA-ECAO in the USEPA Region III RBC table, USEPA, 1995b). The provisional RfD and slope factor were converted to an RfC and inhalation unit risk value for use in the risk calculations. The oral slope factor for TCE has been withdrawn from IRIS and HEAST, but is used to evaluate oral exposures to this chemical because no other value is available.

Toxicity values were not available for four COPCs at the CTDSA. These include lead, benzo(g,h,i)perylene, 2-methylnaphthalene, and phenanthrene. Lead was initially screened using the USEPA-recommended screening level (400 mg/kg) for lead in soil for residential land use (USEPA, 1994d) and the drinking water action level for lead (USEPA, 1994a), and if necessary, evaluated using the USEPA IEUBK model for lead in children (USEPA, 1994b). Available health effects information for these COPCs is included in Appendix G (Volume 3), and the impact of the lack of toxicity values for these COPCs is discussed as an uncertainty in Section 3.3.5.

Dermal toxicity values are not listed in Table 3-11. Because of the high level of uncertainty associated with adjusting oral toxicity values (which are generally based on administered dose) to evaluate dermal exposure (which is calculated as an absorbed dose), unadjusted oral values were used to quantify dermal pathway risks. Dermal absorption factors used to quantify dermal exposures are listed in Table 3-11. Default values of 1% for inorganic analytes and 10% for organic analytes were used. PNAs were not evaluated for dermal exposure (see discussion in Section 3.1.4 of Volume 1).

Appendix G of Volume 1 contains toxicological profiles for all of the human health COPCs at the CTDSA, except antimony. Appendix 4I of this volume contains a toxicological profile for antimony.

3.3.4 Risk Characterization

Carcinogenic risk and noncancer HIs were estimated for each exposure scenario according to procedures outlined in Section 3 of Volume 1. The carcinogenic risk and noncarcinogenic risk estimates are presented in Appendix 4J of this volume.

Carcinogenic Effects

For each potentially carcinogenic COPC, the incremental probability that an individual will develop cancer over a lifetime was estimated from projected intake levels and the cancer slope factor or the inhalation unit risk. The USEPA Superfund site remediation goal set forth in the NCP designates a cancer risk of 10⁻⁴ (1 in 10,000) to 10⁻⁶ (1 in one million). This range is designed to be protective of human health and to provide flexibility for consideration of other factors in risk management decisions. A cancer risk of 1 in one million is considered the de minimis, or a level of negligible risk, for risk management decisions. A cancer risk higher than 1 in one million is not necessarily considered unacceptable. The State of Alaska plans to use a cancer risk level of 10⁻⁵ (1 in 100,000) in making risk management decisions (USAF, 1996b).

Table 3-12 summarizes the cancer risk estimates for each exposure scenario at the CTDSA. Estimated incremental cancer risks for all scenarios are below 1 in one million. Estimated risks lower than 1 in one million are considered "negligible" and do not warrant remedial action.

Risk summary tables for each exposure scenario are provided in Appendix 4J of this volume. The tables detail the cancer risk estimates for each applicable chemical and exposure pathway and show the percent contribution of each chemical and pathway to the total estimated risk.

Noncarcinogenic Effects

To characterize the potential noncancer effects of chemicals, comparisons were made

Table 3-11
Toxicity Values for Control Tower Drum Storage Area, South COPCs

					Chronic			Subch	Subchronic	Dermal Absorption
COPCs	EPA Class	Oral RfD (mg/kg/day)	Inhal RTD (mg/kg/day)	Inhal RfC (mg/m²)	Oral SF 1/(mg/kg/day)	Inhal SF 1/(mg/kg/day)	Inhal Unit Risk 1(µg/m³)	Oral RID (mg/kg/day)	Inhal RfC (µg/m³)	Factor (unitless) ABS #
Metals Antimony Lead ^b Thallium (sulfate)	 B2 °. D	4E-04 ° 8E-05 °	1 1 1	111	111	I I Į		4E-04 e 	! ! !	0.01
PNAs 2-Methylnaphthalene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Phenanthrene	 B2 ¢ B2 ¢ D ¢	1111	1111	1111	7.3B+00° 7.3B-01 ^d -	1111	1111	1111	1111	1111
Pesticides 4,4'-DDT Aldrin beta-BHC Dieldrin gamma-BHC Heptachlor	B2 ° B2 ° C ° B2 ° B2/C ° B2 °	5E-04 ° 3E-05 °	111111	111111	3.4E-01 ° 1.7B+00 ° 1.8B+00 ° 1.6B+01 ° 1.3B+00 ° 4.5E+00 ° 9.1B+00 °	3.4E-01 ° 1.7E+01 ° 1.8E+00 ° 1.6E+01 ° 4.5E+00 °	9.7E-05 ° 4.9E-03 ° 5.3E-04 ° 4.6E-03 ° 1.3E-03 ° 2.6E-03 °	5E-04 ° 3E-05 ° 5E-05 ° 3E-03 ° 5E-04 ° 1.3E-05 °	1111,111	18-01 18-01 18-01 18-01 18-01 18-01 18-01
Volatiles 1,2-Dichlorocthane cis-1,2-Dichlorocthene Dibromomethane Trichlorocthene	B2 ° D °	 1E-02 ° 6E-03 f	2.86E-03 f	1E-02 8 	9.1E-02 ° 1.1E-02 h	9.1E-02 °	2.6E-05 ° 1.7E-06 8	 1E-01 ° 	1111	1E-01 1E-01 1E-01 1E-01

Absorption factor of 1% was used for inorganic analytes and an absorption factor of 10% was used for organic analytes. PNAs are not evaluated for dermal exposures (see discussion in Section 3.1.4 of Volume 1).

b Risk from exposure to lead was evaluated using the USEPA IEUBK model.

CUSEPA, 1995. Integrated Risk Information System (IRIS). Database search, October 20, 1995.

Value was taken from Region III RBC table dated 1/31/95. The table states that this is a provisional value from EPA-ECAO Regional Support.

EValue was calculated using the appropriate inhalation reference dose or inhalation slope factor with 20-m³ breathing rate and 70-kg adult body weight.

In these values were withdrawn from both IRIS and HEAST. However, Region III recommends using these values in deriving RBCs and they are presented in the Region III RBC table dated 1/31/95.

d PNA toxicity values were derived using the Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons (EPA/600/R-93/089) dated July 1993 ^eUSEPA, 1994c. Health Effects Assessment Summary Tables (HEAST) Annual Update, FY 1994. EPA 540-R-020, March 1994.

Table 3-12 Summary of Carcinogenic Risks^a by Exposure Scenario for the Control Tower Drum Storage Area, South

	Cl	nild	Ad	ult
Scenario	Average	Reasonable Maximum	Average	Reasonable Maximum
Current Scenarios				
Short-Term On- Base Resident	NA	NA	8E-13	9E-13
Long-Term On- Base Resident	8E-13	1E-12	1E-12	4E-12
Old Town Galena Resident	1E-12	2E-12	5E-12	2E-11
New Town Galena Resident	5E-14	6E-14	2E-13	8E-13
Short-Term On- Base Worker	NA	NA	3E-08	1E-07
Long-Term On- Base Worker	NA	NA	4E-07	5E-07
On-Base Construction Worker	NA	NA	7E-09	6E-08
Future Scenarios				
Boarding School Student ^b	4E-13	2E-12	NA	NA
Old Town Galena Resident	1E-07	2E-07	2E-07	8E-07

NOTE: risk estimates printed in bold type equal or exceed the Superfund site remediation threshold of 10⁻⁶ (1 in one million) for carcinogens.

NA = Not Applicable

March 1996 3-28

^aCarcinogenic risk is expressed as a unitless probability of an individual developing cancer.

^bAge 15-18 (Grades 9-12) for the average case and age 6-19 (Grades 1-12, plus two repeat years) for the reasonable maximum case.

between projected intakes of COPCs over a specified time and toxicity values, primarily oral RfDs and inhalation RfCs. An HQ, which is the ratio between exposure to a chemical and that chemical's toxicity value, was calculated for each noncarcinogenic COPC and exposure pathway. Chemical-specific HQs were then summed for each COPC and each pathway of exposure to calculate the total HI.

The HI is not a statistical probability of a systemic effect occurring. If the exposure level exceeds the appropriate toxicity value (i.e., the HQ is greater than one), there may be cause for concern. The Superfund site remediation goal for noncarcinogens is a total HI of 1 for chemicals with similar toxic endpoints.

Table 3-13 summarizes the noncancer hazard estimates for each exposure scenario. The HIs for the residents and boarding students (except the future Old Town Galena resident) are 0 because none of the COPCs in soils are known to have systemic effects by the inhalation route and inhalation RfCs are not available. Inhalation of dust and vapors from the soils is the only applicable pathway of exposure for these scenarios. The HIs for all scenarios are below the Superfund site remediation goal of 1 for noncarcinogens, indicating that there is little cause for concern about noncarcinogenic effects.

Noncancer risk summary tables for each exposure scenario are provided in Appendix 4J of this volume. The tables detail the noncancer hazard estimates for each applicable chemical and exposure pathway and show the percent contribution of each chemical and pathway to the total estimated HI.

Effects of Exposure to Lead

The maximum detected concentration of lead at the CTDSA is 77 mg/kg in the surface soil. Lead is not a COPC in groundwater. The maximum soil concentration is well below the 400 mg/kg recommended screening level for lead in residential soil (USEPA, 1994d), which was derived using the IEUBK lead model (USEPA,

1994b). Since the soil concentrations are well below the soil screening level, lead was not evaluated further.

Major Factors Driving Estimated Risks

Tables 3-14 and 3-15 present a risk characterization summary for carcinogenic risk estimates and noncarcinogenic hazard estimates, respectively. For each scenario the tables specify the exposure pathways that were quantified, the estimated risks for each case, the chemicals and pathways that are major contributors to the estimated risks, and the primary uncertainties associated with the estimates. At the CTDSA, there are no chemicals or pathways that contribute a cancer risk greater than 1 in one million or an HI greater than 1.

3.3.5 Uncertainty Assessment

The risk characterization results are not fully probabilistic estimates of risk but rather conditional estimates of risk that should be interpreted in light of the considerable number of assumptions required to quantify exposure, intake, and dose-response. Uncertainties associated with identification of COPCs, the exposure assessment, and the toxicity assessment all contribute to the level of confidence that can be placed in the risk characterization results.

In general, risk assessment uncertainty was addressed in the BRA by the following:

- 1. Incorporating both average and reasonable maximum values for input parameters, whenever possible, to provide a range of results rather than a single value;
- 2. Erring on the side of conservatism when defining the reasonable maximum case; and
- 3. Identifying and discussing the major sources of uncertainty and their effect on the risk estimates so that the results can be properly interpreted.

Table 3-13
Summary of Noncarcinogenic Hazard Indices^a by Exposure Scenario for the Control Tower Drum Storage Area, South

	C	hild	Adult	
Scenario	Average	Reasonable Maximum	Average	Reasonable Maximum
Current Scenarios				
Short-Term On- Base Resident	NA	NA	0 °	0 c
Long-Term On- Base Resident	0 с	0 c	0 c	0 c
Old Town Galena Resident	0 с	0 c	0 c	0 °
New Town Galena Resident	0 с	0 c	0 c	0 с
Short-Term On- Base Worker	NA	NA	0.05	0.06
Long-Term On- Base Worker	NA	NA	0.09	0.09
On-Base Construction Worker	NA	`NA	0.08	0.5
Future Scenarios				
Boarding School Student ^b	0 c	0 c	NA	NA
Old Town Galena Resident	0.01	0.02	0.003	0.006

NOTE: Hazard indices printed in bold type equal or exceed the Superfund site remediation goal of 1 for noncarcinogens.

^aNoncarcinogenic hazard is not expressed as a probability of an adverse effect but rather a comparison between exposure and a reference dose (hazard index).

^bAge 15-18 (Grades 9-12) for the average case and age 6-19 (Grades 1-12, plus two repeat years) for the reasonable maximum case.

^cNoncancer hazard indices are 0 because none of the COPCs in soils are known to have adverse effects by the inhalation route. The only applicable pathway of exposure is inhalation of vapors and dust. NA = Not Applicable

Table 3-14
Risk Characterization Summary for the CTDSA: Carcinogenic Risks

			Estimat	Estimated Total	Chemicals and Pathways that	
		ζ		Reasonable	Contribute to a Chemical- and Pathway- Specific Cancer Risk	Primary Site-Specific
Scenario	Fathways Quantified	Case	Average	Average Maximum	Greater than 1 in One Million	Uncertainties
Current Scenarios	0.8					
Short-Term On- Base Resident (subchronic)	1. Inhalation of vapors and dust	Adult	8E-13	9E-13	None	Applicability of cancer risk estimation methodology to subchronic exposure durations
Long-Term On- Base Resident	1. Inhalation of vapors and dust	Child	8E-13	1E-12	None	Duration of residence.
(chronic)		Adult	1E-12	4E-12		
Old Town Galena Resident	1. Inhalation of vapors and	Child	1E-12	2E-12	None	Risk from accessing the site was not
(chronic)		Adult	5E-12	2E-11		4000000
New Town Galena Resident	1. Inhalation of vapors and	Child	5E-14	6E-14	None	Risk from accessing the site was not
(chronic)	acun.	Adult	2E-13	8E-13		quantifica.
Short-Term On-	1. Inhalation of vapors and	Adult	3E-08	1E-07	None	Likelihood of outdoor workers at
base worker (subchronic)	dust 7 Incidental ingestion of soil			•		the CTDSA. Nature and duration
(amamaans)	Dermal contact with so					Applicability of cancer risk
						estimation methodology to
						subchronic exposure durations.
						Lack of dermal toxicity values for PNAs.
Long-Term On-	1. Inhalation of vapors and	Adult	4E-07	5E-07	None	Likelihood of outdoor workers at
Base Worker	dust					the CTDSA. Nature and duration
(caronic)	2. Incluental ingestion of soil					of work activities at the CTDSA.
				-		PNAs.
On-Base	1. Inhalation of vapors and	Adult	7E-09	6E-08	None	Likelihood of construction activity
Construction	dust Incidental ingestion of soil					at the CTDSA. Duration of
onic)	3. Dermal contact with soil					Applicability of cancer risk
						estimation methodology to
						subchronic exposure durations. Lack of dermal toxicity values for
						PNAs.

Table 3-14 (Continued)

			Estimat Cancer	Estimated Total Cancer Risk ^a	Chemicals and Pathways that Contribute to a Chemical- and	
Scenario	Pathways Quantified	Case	Average	Reasonable Maximum	Reasonable Pathway- Specific Cancer Risk Average Maximum Greater than 1 in One Million	Primary Site-Specific Uncertainties
Future Scenarios						
Boarding School	Boarding School 1. Inhalation of vapors and	Student	4E-13	2E-12	None	Extension of facility from Grades 9-
Student	dust					12 to Grades 1-12. Risk from
(subchronic/						accessing the site was not
chronic)						quantified.
Old Town	1. Inhalation of vapors and	Child	1E-07	2E-07	None	Use of shallow groundwater as
Galena Resident	dust		٠			drinking water. Estimated
(chronic)	2. Ingestion of groundwater	Adult	2E-07	8E-07		concentrations in groundwater at
	3. Dermal contact with					Old Town Galena are the result of
	groundwater		-			conservative groundwater modeling.
	4. Inhalation of vapors while					Estimated concentrations in air of
	showering					shower stall and in fruits and
	5. Ingestion of fruits and					vegetables are also the result of
	vegetables irrigated or	٠				modeling exercises. Risk from
	subirrigated with					accessing the site was not
	groundwater					quantified.

^aEstimated cancer risks printed in bold type equal or exceed the Superfund site remediation threshold of 1E-06 (1 in one million).

^bApplicable only if the total cancer risk exceeds 1 in one million (estimated risk printed in bold type in column titled "Estimated Total Cancer Risk").

Table 3-15 Risk Characterization Summary for the CTDSA: Noncarcinogenic Risks

Scenario		Pathways Quantified	Case	Estimate Hazard Average	Estimated Total Hazard Index a Reasonable verage Maximum	Chemicals and Pathways that Contribute a Chemical- and Pathway-Specific Noncancer Hazard Quotient Greater than 1	Primary Site-Specific Uncertainties
Current Scenarios	soj						
Short-Term On- Base Resident (subchronic)	<u>-i</u>	Inhalation of vapors and dust	Adult	0	0	None	Lack of subchronic inhalation toxicity values for COPCs.
Long-Term On- Base Resident (chronic)	1.	Inhalation of vapors and dust	Child Adult	0 0	0 0	None	Duration of residence. Lack of chronic inhalation toxicity values for COPCs.
Old Town Galena Resident (chronic)		Inhalation of vapors and dust	Child Adult	0 0	0	None	Risk from accessing the site was not quantified. Lack of chronic inhalation toxicity values for COPCs.
New Town Galena Resident (chronic)	1.	Inhalation of vapors and dust	Child Adult	0	0 0	None	Risk from accessing the site was not quantified. Lack of chronic inhalation toxicity values for COPCs.
Short-Term On- Base Worker (subchronic)	1. 2. 3.	Inhalation of vapors and dust Incidental ingestion of soil Dermal contact with soil	Adult	0.02	90'0	None	Likelihood of outdoor workers at the CTDSA. Nature and duration of work activities at the CTDSA. Lack of subchronic inhalation toxicity values for COPCs.
Long-Term On- Base Worker (chronic)	1. 2. 3.	Inhalation of vapors and dust Incidental ingestion of soil Dermal contact with soil	Adult	60:00	. 60.0	None	Likelihood of outdoor workers at the CTDSA. Nature and duration of work activities at the CTDSA. Lack of chronic inhalation toxicity values for COPCs.
On-Base Construction Worker (subchronic)	1. 2. 3.	Inhalation of vapors and dust Incidental ingestion of soil Dermal contact with soil	Adult	0.08	0.5	None	Likelihood of construction activity at the CTDSA. Duration of construction activity. Lack of subchronic inhalation toxicity values for COPCs.

Table 3-15 (Continued)

				Estimat Hazard	Estimated Total Hazard Index ^a	Chemicals and Pathways that Contribute a Chemical- and	
Scenario		Pathways Quantified	Case	Average	Reasonable Maximum	Average Maximum Hazard Quotient Greater than 1 b	Primary Site-Specific Uncertainties
Future Scenarios	S						000000000000000000000000000000000000000
Boarding School 1.	<u>1</u> .	Inhalation of vapors and	Student	0	0	None	Extension of facility from Grades 9-
Student		dust					12 to Grades 1-12. Risk from
(supchronic/							accessing the site was not
chronic)							quantified. Lack of subchronic and
							chronic inhalation toxicity values
							for COPCs.
Old Town	<u>:</u>	Inhalation of vapors and	Child	0.01	0.02	None	Use of shallow groundwater as
Galena Resident		dust					drinking water. Estimated
(chronic)	5.	Ingestion of groundwater	Adult	0.003	9000		concentrations in groundwater at
	33	Dermal contact with					Old Town Galena are the result of
		groundwater					groundwater modeling. Estimated
	4.	Inhalation of vapors					concentrations in air of shower stall
		while showering					and in fruits and vegetables are also
	5.	Ingestion of fruits and					the result of modeling exercises.
		vegetables irrigated or					Risk from accessing the site was not
		subirrigated with					quantified. Lack of chronic
		groundwater					inhalation toxicity values for
							້າວຄວາ

^aHazard indices printed in bold type equal or exceed the Superfund site remediation goal of 1 for noncarcinogens.

^bApplicable only if the total hazard index exceeds 1.

Table 3-16 summarizes the primary sources of uncertainty specific to this assessment and the likely impact on risk estimates.

3.3.6 Conclusions and Recommendations

The CTDSA does not pose an unacceptable health risk to current on-base residents, Old and New Town Galena residents, workers who spend a majority of the workday outside in the immediate vicinity of the CTDSA, or to future boarding school students. The site also does not pose unacceptable health risk to future Old Town Galena residents who may use the shallow groundwater for drinking water if and when contaminants in the groundwater at the site migrate to Old Town Galena.

On the basis of the results of the human health assessment, there is no need to propose remedial action at the CTDSA.

3.4 Ecological Risk Assessment Results

3.4.1 Site Ecology

Figure 3-3 shows the location and features of the CTDSA, including topography. The CTDSA consists primarily of industrial development, and thus ecological features are limited. The BLM uses the eastern portion of the site to park aircraft and refueling trucks. Vehicle traffic may also occur at other parts of the site, and small aircraft may taxi through this area as well. A portion of the site is slated to be paved for the expansion of the tarmac near the control tower (Figure 3-3). This action will further reduce habitat quality. The CTDSA is mostly grass and gravel with a few stands of willow, alder, and spruce at the north edge of the site. Besides common birds such as robins and sparrows that are found throughout the Galena Airport, wildlife has not been noted on the site. Use of this area by fauna is marginal, and is likely to be limited to the common birds previously mentioned. Owing to the lack of accessible habitat and human activities, receptor exposure to surface soil at the CTDSA was not evaluated. Groundwater located beneath the site that might migrate to the shoreline of the Yukon River was evaluated for aquatic and semiaquatic receptors (i.e., pike, invertebrates, and spotted sandpiper).

3.4.2 Chemicals of Potential Ecological Concern

The results of the RI suggest the presence of limited areas of elevated VOC and TPH concentrations. These data are consistent with minor surface soil contamination from small leaks and spills. Aircraft and vehicle traffic are likely to be sources of hydrocarbons at this site. As stated above, ecological receptor exposure to soil was not considered because of lack of habitat. Thus, there were no COPECs for soil. A groundwater model was developed to estimate potential migration of chemicals to the Yukon River (see Appendix 4C). Groundwater COPECs for the CTDSA are presented in Table 3-17 and include organochlorine pesticides and VOCs. Section 3.2.2 in Volume 1 details the methods of COPEC identification. This table includes all chemicals in the groundwater with positive results greater than background and blank concentrations that were not eliminated as essential nutrients.

3.4.3 Exposure Assessment

Figure 3-4 shows the conceptual model for potential receptors and exposure pathways at the CTDSA. The area provides little ecological habitat because of industrial development, human activity, and lack of vegetation. Transportation of contaminants to the Yukon River via groundwater was the only exposure pathway evaluated. Ecological receptors evaluated in this pathway were the northern pike in the Yukon River and invertebrates and the spotted sandpiper at the shoreline. This pathway is the only potential ecologically significant exposure route for this site. The assessment and measurement endpoints are shown in Table 3-18.

3.4.4 Effects Assessment

EQs were calculated for the assessment endpoint species at the CTDSA. The results of this evaluation are presented in Table 3-19. Supporting spreadsheets are presented in Appendix 4K.

Table 3-16
Summary of the Major Uncertainties Associated with the Risk Estimates

Source of Uncertainty	Impact on Risk Characterization
Chemicals of Potential Concern	
Samples representing site media	Could result in an overestimate or underestimate of risks if the samples do not adequately represent media at the site. However, the number and location of samples collected at the CTDSA were sufficient to identify the area of contamination in soils and groundwater and assess the magnitude and extent of contamination. Surface soils, however, were defined as encompassing the top two feet of soil. Since exposures are generally limited to the top several inches, inclusion of the top two feet probably overestimates risk for surface soil pathways.
Analytical methods used to test samples	If the analytical methods used do not apply to some chemicals that are present at the site, risks could be underestimated. Since a full suite of analytical methods was selected to test for chemicals known or suspected to be present at the site, the potential for underestimation is reduced.
Presence of pesticides	Pesticides detected at the CTDSA were evaluated in the same fashion as all other COPCs. However, the pesticides result from widespread application for insect control and estimated risks from exposure to pesticides are not attributable to the CTDSA.
Contamination of blanks	Sporadic presence of chemicals in blanks samples was accounted for in blanks comparison. Blanks data do not indicate extensive field or laboratory contaminants.
Tentatively identified compounds	Tentatively identified compounds were not reported or assessed. Most such chemicals are not known to be highly toxic.
Diesel Range Organics and Gasoline Range Organics	DRO and GRO were not evaluated in the risk assessment as groups of chemicals. The assessment addresses individual chemicals only that were speciated by chemical analysis, which includes many constituent compounds of DRO and GRO. However, some constituent compounds were not on the target analyte list. The majority of the risk associated with exposure to DRO and GRO is probably accounted for in an assessment of individual chemicals.
Detection Limit Adequacy	The minimum detection limit for a few analytes in groundwater that were eliminated as COPC (because they were not detected) exceeds the USEPA Region III tap water RBCs. These include several PNAs, PCBs, SVOCs, and VOCs. The same is not true for analytes in the soil (when compared to Region III residential soil ingestion RBCs). If these analytes are in fact present and were contributed to the groundwater by site-related activities, the estimated risks for this site may be underestimated. However, since 1993 and later sampling events reported uncensored data (where an ND is reported only if there is no instrument response), the impact on the risk estimates is minimized.

March 1996 3-36

Table 3-16 (Continued)

Source of Uncertainty	Impact on Risk Characterization
Exposure Assessment	
Use of current measured concentrations to represent current and future concentrations in the exposure media	Because concentrations of chemicals in the soils and groundwater at the CTDSA may decrease over time as the chemicals migrate and/or degrade, risks estimates for the current scenarios do not necessarily represent risks that will occur in the future.
Inclusion of groundwater pathways	Most Old Town Galena residents have their drinking water trucked in from the New Town area; however, there are at least seven wells still in use in the Old Town area (USAF, 1995b). Use of the shallow groundwater for tap water, therefore, cannot be ruled out. Risks associated with use of the shallow groundwater do not apply to residents who use other sources of water for domestic purposes.
Groundwater modeling	Results of groundwater modeling are indicative of worst-case concentrations that might reach Old Town Galena and the Yukon River. Impacts are likely overestimated for the groundwater pathways.
Estimation of plant uptake of COPCs from groundwater	Models to estimate plant uptake of chemicals are extremely simplified and could lead to an over- or underestimate of COPC concentrations in fruits and vegetables. Since the shallow groundwater is assumed to provide 100% of the plants' water requirements, either through irrigation or subirrigation, the concentrations in fruits and vegetables are probably overestimated.
Access to site	Access to the CTDSA is open. On-base residents and Galena residents are not restricted from walking on the site. Exposure of a roaming resident was not quantified (see discussion in Section 3 of Volume 1). If a resident spends a significant amount of time in the CTDSA area, estimated risks for that resident may be underestimated.
Tarmac expansion	The planned tarmac expansion will reduce the size of the area that is available for direct human exposures. Therefore, risks that were quantified assuming exposure to the entire area are probably overestimated.
Exposure parameter estimation	The standard assumptions regarding body weight, period exposed, life expectancy, and population characteristics may not be representative of any actual exposure situation. Some assumptions may underestimate risks, but most probably overestimate risk. In some cases, nonstandard assumptions were used for site-specific reasons, such as the reasonable maximum exposure duration of 70 years for Galena residents. The use of a 14-year exposure duration for the boarding school student overstates the likely duration of residence for most students.

Table 3-16 (Continued)

Source of Uncertainty	Impact on Risk Characterization
Toxicity Assessment	
Absence of toxicity values for some chemicals detected at the site	Lack of toxicity values may result in underestimation of risk; however, most chemicals that lack toxicity values are not very toxic or carcinogenic. Therefore, the degree of underestimation is probably low.
Use of unverified toxicity values for some chemicals	Could result in an overestimate of risk. However, chemicals with unverified toxicity values do not contribute significantly to estimated risks at the CTDSA.
Bases for derivation of toxicity values	Some common sources of uncertainty in toxicity values include 1) use of information obtained from dose-response studies conducted in laboratory animals to predict effects that are likely to occur in humans; 2) use of dose-response information from effects observed at high doses to predict adverse health effects that may occur at the low levels to which humans are likely to be exposed in the environment; 3) use of information obtained from short-term exposure studies to predict health effects in humans exposed on a long-term basis; 4) use of toxicity values that have been developed for one route of exposure and employing it under a different exposure route; and 5) use of information gathered in studies using homogeneous animal populations (inbred strains) or health human populations (occupational exposures) to predict the effects that are likely to occur in the general human population.
Absence of dermal toxicity values	Unadjusted oral toxicity values were used to evaluate dermal exposures. Since most oral values are based on administered dose and dermal exposure is quantified as an absorbed dose, risks from dermal exposure might be underestimated. PNAs were not evaluated for dermal exposures per USEPA guidance (see discussion in Section 3 of Volume 1). PNAs are associated with neoplasia in a variety of mammalian systems. The inability to quantify risks from dermal exposure to PNAs results in an underestimation of risks for the dermal pathway for PNAs.
Possible synergistic or antagonistic effects of exposure to multiple chemicals	Unknown impact on risk estimates. Chemical- and pathway-specific risk and hazard quotients are summed to account for possible additive effects.
Risk Characterization	
Applicability of cancer risk estimation methodology to subchronic exposure durations	The estimated intake for cancer risk estimation is averaged over a 70-year period. Exposure to higher concentrations of potential carcinogens for a short duration of time probably does not have the same effect as exposure to lower concentrations over a long duration.

Figure 3-3. Control Tower Drum Storage Area, South

Table 3-17
Chemicals of Potential Ecological Concern in Discharged Groundwater from the CTDSA

	Chemical	
Pesticides		
4,4'-DDE	Endosulfan I	
Aldrin	gamma-BHC (Lindane)	
beta-BHC	Heptachlor	
Dieldrin	Heptachlor epoxide	
Volatiles		
1,2-Dichloroethane	m&p-Xylene	
cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	
Dibromomethane	Trichloroethene	

Note: No other media evaluated for COPECs.

March 1996 3-40

Table 3-18
Assessment and Measurement Endpoints for the Evaluation of Surface Water^a
Contaminants Originating From the CTDSA

Assessment Endpoint	Measurement Endpoint
Decrease in aquatic invertebrate productivity and local population survivorship.	AWQC for the protection of aquatic life. ^b
Decrease in spotted sandpiper productivity and survivorship.	LOAELs ^c with effects such as decreased eggshell thickness or reduced survival.
Decrease in local northern pike productivity and population survivorship in the Yukon River.	LOAELs ^c with effects such as decreased gamete production, growth rate, or reduced survival.

^a Individual surface water areas include where shoreline exist part of the year. The aquatic ecosystem is the Yukon River. Modeled groundwater data that migrated from the site to the shoreline and Yukon River was used.

 $^{^{\}mbox{\scriptsize b}}$ If AWQCs are unavailable (including AWQC-recommended LOAELs), LC $_{\mbox{\scriptsize 50}}$ values were used.

 $^{^{\}text{c}}$ If LOAELs are unavailable, LC $_{50}$ values were used.

Table 3-19
Summary of Aquatic and Semiaquatic EQs

Chemical	Northern Pike EQ	Aquatic Invertebrate EO	Sandpiper EQ
1,2-Dichloroethane	1.38E-11	5.18E-08	1.35E-06
4,4'-DDE	2.37E-07	2.92E-01	6.03E+00
Aldrin	1.61E-07	1.99E-01	1.49E-02
beta-BHC	1.06E-07	2.21E-06	8.36E-06
cis-1,2-Dichloroethene	1.07E-10	1.32E-03	a
Dibromomethane	a	a	a
Dieldrin	1.46E-07	6.13E-28	3.96E-29
Endosulfan I	7.60E-71	9.38E-65	2.81E-69
gamma-BHC	1.35E-07	7.42E-07	1.71E-07
Heptachlor	5.81E-45	2.75E-108	8.05E-111
Heptachlor epoxide	3.19E-07	2.88E-01	8.42E-04
Meta-&Para-Xylene	1.04E-08	8.72E-05	6.05E-07
trans-1,2-Dichloroethene	6.12E-12	7.55E-05	a
Trichloroethene	1.17E-11	1.25E-05	a

a = no toxicity data available

3.4.5 Ecological Risk Characterization

Table 3-20 lists the EQ values greater than 1 for the aquatic and semiaquatic species. This table also provides the order of magnitude of the EQ results. Table 3-21 lists the percent contribution to the spotted sandpiper EQ from water and invertebrates.

3.4.6 Uncertainty Assessment

Uncertainty occurs in almost every step of the ERA process. As stated previously, uncertainty is often addressed by making intentionally biased (health conservative) assumptions so that impacts will not be underestimated. Individual assumptions are therefore conservative, but because of compounded bias the calculated EQs are biased higher than any individual assumption. Table 3-9 in Volume 1, Section 3 lists the uncertainties associated with the ERA. Table 3-22 lists the uncertainties associated with the ERA conducted for the CTDSA.

3.4.7 Conclusions and Recommendations

Aquatic (surface water → pike)

This exposure pathway considered groundwater beneath the CTDSA that potentially could migrate to the Yukon River, where exposure to the northern pike potentially could occur. None of the COPECs evaluated in this assessment showed an EQ above 1 for the northern pike. AWQC were used as the measurement endpoints when they existed. AWQC are highly conservative, since they are designed to protect most aquatic species.

Semiaquatic (surface water → aquatic invertebrate → spotted sandpiper)

This exposure pathway used modeled concentrations of contaminants in groundwater discharging to the surface at the Yukon River shoreline. No dilution or volatility factors were applied to the discharged concentrations. An EQ greater than 1 for 4,4'-DDE was noted for the spotted sandpiper and is shown in Table 3-20. This EQ indicates possible risk to the spotted sandpiper. There were no COPECs noted to have EQs above 1 for the aquatic invertebrate.

Spotted Sandpiper

The EQ in the spotted sandpiper for DDE was 6.03. EQs did not exceed 1 for the aquatic invertebrates or the northern pike. AWQC were used as the TBs and are highly conservative, since AWOC are designed to be protective of most aquatic life. NOAEL values obtained for the heron were used to assess impacts to the spotted sandpiper. DDT and its metabolites (DDE and DDD) are organochlorine pesticides that are recalcitrant and lipophilic compounds that can enter the food chain easily and progressively biomagnify to organisms at the top of the food chain such as fish-eating birds. Because of the extensive past use of DDT worldwide, and the persistence of the compounds, these materials are virtually ubiquitous and are continually being transformed and redistributed in the environment. A steady-state BCF of 12,000 for rainbow trout was applied to estimate the concentration in the aquatic invertebrate as the food for the spotted sandpiper. This value is based on ingestion of fish lower on the food chain and exposure to the surrounding media (i.e., water and sediment) (ATDSR, 1994). Table 3-21 indicates that 99% of the EQ contribution was from invertebrate ingestion and only ingestion of water. from Organochlorine pesticides such as DDT were used extensively at the Galena Airport for insect The CTDSA does not represent a control. unique source for DDT and its metabolites.

In summary, constituents were evaluated for their aquatic toxicity, and chemical and physical effects in an aquatic system (i.e., the Yukon River) if their calculated EQ exceeded 1 for the assessment endpoint species. For the northern pike and aquatic invertebrate, it was determined that there was not significant potential for risk from the CTDSA groundwater discharge. AWQC were used as the measurement endpoints when they existed. AWQC are highly conservative, since they are designed to protect most aquatic life. Organochlorine insecticides could possibly affect the spotted sandpiper population adversely. Organochlorine insecticides such as DDT historically were used over

Table 3-20 EQ Value Greater than 1 for Aquatic and Semiaquatic Species at the CTDSA

Chemical	EQ > 1	EQ >10
4,4'-DDE	Spotted Sandpiper	

Table 3-21
Percent Contribution to the Spotted Sandpiper EQ from Water and Invertebrate Intake

3-45

Chemical	EQ	% EQ Water	% EQ Invertebrate
4,4'-DDE	6.03	0.9	99

Table 3-22 Uncertainties of ERA at the CTDSA

Parameter	Assumption	Uncertainty		
Pathway: Surface Wat	er → Pike			
Groundwater migra- tion	Groundwater beneath the POL migrates and is discharged to the Yukon River where exposure to the pike occurs.	Concentrations were modeled from the POL to the shoreline with no co-mingling or interferences. The magnitude of the uncertainty would be low, bias neutral.		
	Groundwater modeling accurately estimated the concentration of COPECs in the Yukon River.	Due to restricted dilution (5 ft. from shore- line) actual concentrations that pike are ex- posed to are probably over-estimated. Con- centrations may be higher or lower. Magni- tude of uncertainty would be low-high, bias high.		
Assessment endpoint species - Pike	Pike are present in the Yukon River near Galena all year.	Pike are present in the general area, but may not be near Galena all year. The ERA assumption is conservative, uncertainty would be low, bias high.		
Pathway: Surface water → Invertebrates → Spotted Sandpiper				
Groundwater migra- tion	Groundwater modeling accurately estimated the concentration along the mudflats/shoreline	No dilution, volatility factors or attenuation was applied to these concentrations. Actual exposure concentrations are likely much lower than predicted. The magnitude of uncertainty would be low, bias high.		
Exposure concentra- tion and time	Invertebrates and sandpiper are exposed to the estimated concentrations at the mudflats during entire time species are on site.	Invertebrates may remain in a small geo- graphic area and could be exposed to dis- charging groundwater continually; however, the spotted sandpiper is mobile and this as- sumption is highly conservative. The magni- tude of uncertainty is low, bias high.		
	The spotted sandpiper's water intake is 100% from the discharging groundwater.	The spotted sandpiper travels along the shore- lines searching for food. To assume that 100% of water intake is from discharging groundwater is highly conservative. The magnitude of uncertainty is low, bias high.		
Bioavailability of COPECs	All COPECs were assumed to be 100% bioavailable.	Bioavailability changes as physical conditions such as pH or % carbon changes. This assumption is conservative. The magnitude would be low-high, bias high.		
Bioconcentration factors	Bioconcentration factors (BCF) were applied to estimated invertebrate tissue concentrations of COPECs.	BCFs can vary depending on conditions of the study that determined the BCF. Applied to this ERA, they may over or underestimate tissue concentrations. Magnitude of uncertainty is low-high, bias neutral.		

March 1996 3-46

the entire Airport for insect control, and the CTDSA does not represent a unique area of contamination. AWQC were used as the TBs and are highly conservative, since they are

designed to be protective of most aquatic life. NOAEL values in birds were used to assess impacts to the spotted sandpiper.

Section 4 COMBINED IMPACTS

The Southeast Runway Fuel Spill site and the CTDSA are located about 1600 ft apart in the central area of the airport. The POL Tank Farm and the West Unit (evaluated in Volume 1) are located adjacent to each other on the west side of the installation. The FPTA (also evaluated in Volume 1) is less than two miles away on the east side of the installation. Additive impacts of all five sites are considered in Section 4.1 for the human health assessment and in Section 4.2 for the ecological assessment.

4.1 Human Health Assessment

For the human health assessment, combined impacts of individual exposure scenarios and individual sites are evaluated.

4.1.1 Exposure Scenario Combinations

Combinations of exposure pathways make up a defined exposure scenario. It is sometimes possible that one individual can be exposed to site-related contaminants by the pathways represented in more than one exposure scenario. Exposure scenario combinations that are possible and were addressed include the following:

- 1. Child and adult Galena resident (to represent an individual who is born in Galena and continues to live there through adulthood);
- On-base resident and on-base worker (to represent an individual who lives and works on base); and
- 3. Construction workers at individual sites (to represent construction workers who work at more than one site during different time periods).

Child and Adult Galena Resident

If the child scenario is added to the adult scenario for Galena residents, the average case represents an individual born in Galena who resides there for 31 years (6 + 25 years) and the reasonable maximum case represents a 76 year exposure duration (6 + 70 years). Combined child plus adult scenario cancer risk estimates for current Old Town Galena residents are as follows:

	Average	Reasonable <u>Maximum</u>
FPTA	7E-10	2E-09
POL Tank Farm	6E-08	2E-07
West Unit	1E-08	3E-08
Southeast Runway	8E-06	4E-05
CTDSA	7E-12	2E-11

These risk estimates are well below levels of concern, except for the Southeast Runway Fuel Spill site estimates. Although the combined risk estimates at this site exceed 1 in one million, they are not substantially higher than those already reported for child and adult residents individually and do not alter conclusions based on the individual results. Combined noncancer HIs are well below levels of concern at all sites. Combined risk estimates for New Town Galena residents are lower than those for Old Town Galena.

Evaluation of the Southeast Runway Fuel Spill site and the CTDSA also involved quantifying risks for future Old Town Galena residents, assuming migration of contaminants in the groundwater to locations in Old Town Galena and use of the shallow groundwater as tap water. Combined child plus adult scenario cancer risk

estimates for future Old Town Galena residents are as follows:

	Average	Reasonable <u>Maximum</u>
Southeast Runway	5E-05	2E-04
CTDSA	3E-07	1E-06

These risk estimates are not substantially higher (within same order of magnitude) than those already reported for child and adult residents individually and do not alter conclusions based on the individual results.

On-Base Resident and On-Base Worker—It is likely that many on-base residents also work on base. Adding the risks estimated for the on-base resident to that estimated for the on-base worker will overstate the risks for the resident who works on base because it is assumed that the resident is exposed for 24 hours/day to contaminants in the air medium at the location of the residences. However, because the estimated risks for the long-term on-base resident are either 0 or several orders of magnitude lower than the estimated risks for the long-term on-base worker at all five sites, combined risk estimates are the same as the estimated risks for the worker.

Construction Workers—Combined cancer risk estimates for a construction worker who works at each of the five sites during different time periods total 7E-05 for the average case (which assumes a three-month construction project at each site) and 1E-04 for the reasonable maximum case (which assumes a six-month construction project at each site). Estimated cancer risks for the construction worker at the FPTA, the West Unit, the Southeast Runway Fuel Spill site, and the CTDSA are at least an order of magnitude lower than those estimated at the POL Tank Farm; therefore, the combined risks are

essentially the same as the POL Tank Farm estimates. Combined noncancer HIs do not exceed 1.

4.1.2 Site Combinations

Media that might receive contributions of contaminants from the different sites at the same location include ambient air, groundwater, and surface water in the Yukon River.

Ambient Air—Each of the five sites contributes volatile and dust emissions to the air that were modeled to residential and boarding school student receptor locations. Risk estimates for the individual sites considered only the contribution of that site. Estimated combined cancer risks from inhaling contaminants in the ambient air from all five sites are as follows:

	Average	Reasonable <u>Maximum</u>
Short-term On-Base		
Resident (adult)	5E-08	1E-07
Long-term On-Base		
Resident (adult)	2E-07	7E-07
Old Town Galena		
Resident (adult)	6E-08	2E-07
New Town Galena		
Resident (adult)	4E-09	2E-08
Boarding School		
Student (student)	4E-07	1E-06

Combined cancer risks for the air pathway remain lower than 1 in one million for all residential scenarios and was equal to 1 in one million in the reasonable maximum case for the boarding school student scenario. However, this risk estimate is based almost entirely (98%) on exposure at the POL Tank Farm. Combined HIs for the air pathway for all scenarios remain lower than 1. Air pathway estimates for the worker scenarios were not combined; presumably the ambient air directly above a site is more

March 1996 4-2

heavily affected by emissions to the air from that site than it is by emissions from a more distant site.

Groundwater—Several of the groundwater contaminant plumes from source areas within the West Unit have commingled, and groundwater modeling considered the contribution of each source together (e.g., groundwater at the Waste Accumulation Area and Power Plant UST No. 49). However, it is unlikely that groundwater plumes from the FPTA, the POL Tank Farm, the West Unit, the Southeast Runway Fuel Spill site, and the CTDSA will commingle to any great extent before discharging to the Yukon River. Commingling of groundwater plumes from the West Unit and POL Tank Farm might occur but it is unlikely to significantly increase groundwater concentrations at any one location. Even if the plumes do commingle, the implications to identified receptors are minimal. There are no existing wells in areas downgradient of the West Unit and POL Tank Farm, nor are there likely to be wells installed in the future that draw from the shallow groundwater. Therefore, the combined impact of the five sites on groundwater quality is not evaluated.

Surface Water—Groundwater that flows under each of the sites discharges to the Yukon River. It is possible that discharges that occur at an upstream site will commingle with the discharges from other sites. The modeling that was performed takes additive impacts into account. Concentrations that are predicted in the river include the contribution of the individual site plus the contribution of upstream sites or source areas. For example, the estimated concentrations in the river attributed to the CTDSA actually include the contributions of other sites that discharge upstream of the CTDSA, such as the Southeast Runway Fuel Spill site and the FPTA. Consequently, additive impacts on the

surface water in the river and uptake by fish have already been addressed.

4.2 Ecological Assessment

Combined impacts for ecological receptors may occur in two ways: through exposures to a receptor by more than one pathway (e.g., ingestion of soils and ingestion of food items) and/or through exposures of a receptor to contaminants at more than one IRP site.

4.2.1 Combined Pathways

Exposures to trophic exposure pathways are evaluated on a site-specific basis for the FPTA, POL Tank Farm, and the West Unit in Sections 4.4, 5.4, and 6.4, respectively (evaluated in Volume 1). Results of these assessments are summarized here and exposure from multiple sites is also detailed.

FPTA-For the FPTA, EQs were derived that considered multiple pathways for the kestrel (ingestion of soil and savannah sparrows), red fox (ingestion of soil and meadow voles), meadow vole (ingestion of soil and plants), savannah sparrow (ingestion of soil and invertebrates), and spotted sandpiper (ingestion of water and invertebrates). The relative contribution of each pathway for each species is shown in Tables 4-25 and 4-26 (in Volume 1). One primary pathway of exposure was considered for terrestrial plants (exposure to soils), terrestrial and aquatic invertebrates (exposure to soils and surface waters, respectively), and the northern pike (exposure to surface water). Thus, combining pathways was applicable for these species.

Risk to plants, terrestrial invertebrates, red fox, and kestrel were determined to be minimal. Through evaluation of the toxicity data and physical properties of the contaminants with EQs above 1 in the context of the FPTA, it was determined that only dioxin and fluorene

have potential for risk to the meadow vole. Dioxin had an EQ in the possible risk range (1 < EO < 10), and fluorene had an EO in the probable risk range (EQ > 10). The potential risk from dioxin was primarily from soil ingestion (93.9%); the potential risk from fluorene was primarily from ingestion of food (plants, 85.9%). After consideration of toxic and physical properties for contaminants with EQs above 1 for the savannah sparrow, it was determined that only DDT, its breakdown products, and dioxin showed potential for risk. DDT and its breakdown products were in the probable risk range, and dioxin was in the possible risk range. Potential risk from all of these chemicals was primarily from consumption of food (97.7% contribution to total EQ from invertebrates).

For the aquatic and semiaquatic pathways, potential risks to the pike were minimal. Aquatic invertebrates were evaluated with AWQC for the protection of most aquatic life, and EQs in the possible risk range were derived for dieldrin, heptachlor epoxide, and lead. An EQ in the probable risk range was derived for DDT. For the spotted sandpiper, an EQ was derived that estimated the potential for risk from exposure to contaminants from the ingestion of groundwater discharged at the Yukon River mudflats and food ingestion pathways. percent contribution of each of these pathways to this EQ is presented in Table 4-25 of Volume 1. DDT exhibited probable risk to the sandpiper with 99% contribution from the food ingestion pathway. Lead exhibited possible risk with 72.3% contribution from the water ingestion pathway.

It should be noted that pesticides (DDT, dieldrin, and heptachlor) were historically broadcast throughout the Airport for pest control, and therefore, the FPTA does not represent an isolated area of high concentrations.

POL Tank Farm—Combined pathways were used to assess risk for the spotted sandpiper from potential POL Tank Farm groundwater discharge to surface waters of the Yukon River. The relative contributions of potential risks due to water ingestion and aquatic invertebrate ingestion are presented in Table 5-22 of Volume 1. Single pathways were used to evaluate impacts to aquatic invertebrates and the northern pike because only risk from exposure to groundwater discharge was considered important.

Toxic, chemical, and physical effects in the context of the Yukon River for those chemicals with EQs greater than 1 were evaluated for all assessment endpoints. For the northern pike, no significant potential for risk from POL Tank Farm groundwater discharge was determined. Chemicals that were considered to pose potential risk to aquatic invertebrates and the spotted sandpiper were DDT, 2-methylnaphthalene, lead, and thallium. DDT, 2-methylnaphthalene, and thallium exhibited EQs in the probable risk range, whereas the EQ for lead was in the possible risk range. For the spotted sandpiper, these EQs combined effects from ingestion of surface waters and aquatic invertebrates. Table 5-22 of Volume 1 shows that potential risks were primarily due to ingestion of invertebrates, except for thallium and lead where ingestion of surface water was the primary pathway.

Organochlorine pesticides historically were used over the entire Airport for insect control, and the POL Tank Farm does not represent a unique area of contamination. Dilution and adsorption to sediments can attenuate the assessment endpoint species' exposure to lead and thallium. On the basis of the transient nature of the mudflats or shoreline as an ecosystem, and the dilution of the constituents as they enter surface water, the population impacts of groundwater from the POL Tank Farm at the mudflats is minimal.

West Unit—Combined pathways for the West Unit were used to assess risk for the Waste Accumulation Area, Million Gallon Hill, Building 1845, and JP-4 Fillstands groundwater discharge impacts to the spotted sandpiper at the Yukon River mudflats. The contributions to potential risks due to water ingestion and aquatic invertebrate ingestion were combined in the EQ evaluation (Table 6-26 in Volume 1). Single pathways were considered for assessment of impacts to aquatic invertebrates and the northern pike because only risk from exposure to groundwater discharge was considered important for evaluation.

No chemicals were found to pose significant risk to northern pike in the Yukon River. After consideration of toxic and physical properties for contaminants with EQs above 1 (Table 6-25 of Volume 1), only dieldrin for aquatic invertebrates and DDT for both invertebrates and the spotted sandpiper were shown to have significant potential for posing risk in the Yukon River mudflats from groundwater originating from the Waste Accumulation Area. The EQ for dieldrin was in the possible risk category and the EQs for DDT were in the probable risk The combined impacts of water category. ingestion and invertebrate ingestion were assessed for the spotted sandpiper. Table 6-30 of Volume 1 shows that 99% of the potential risk was from ingestion of invertebrates. assessment shows potential for risk to these pesticides. However, the pesticides originating from the Waste Accumulation Area do not represent high concentrations relative to the Galena area in general because such chemicals were historically applied for pest control.

Contaminants shown to have significant potential for risk to aquatic invertebrates and the spotted sandpiper at Million Gallon Hill are DDT, DDE, and DDD. The assessment of potential risk for these chemicals for the sand-

piper included evaluation of ingestion of surface water and ingestion of aquatic invertebrates. Table 6-30 of Volume 1 shows that 99% of the potential risk was from ingestion of invertebrates. Consideration of toxic and physical properties for other Million Gallon Hill contaminants with EQs above 1 (Table 6-25 of Volume 1) indicates that these chemicals are not likely to pose significant risk to assessment endpoints at the Yukon River mudflats or shoreline.

Organochlorine pesticides from Bldg. 1845 and the JP-4 Fillstands groundwater potentially pose significant risk to aquatic invertebrates and the spotted sandpiper at the Yukon River mudflats. For the aquatic invertebrates, DDT, DDE, DDD, aldrin, dieldrin, endrin aldehyde, and heptachlor epoxide are pesticides with EQs above 1 for groundwater discharge from Bldg. 1845, and for the JP-4 Fillstands, DDT, DDD, aldrin, and endrin aldehyde are groundwater discharge chemicals with EQs above 1. For the spotted sandpiper, DDD, DDE, and DDT, are pesticides with EQs above 1 for groundwater discharge from Bldg. 1845, and for the JP-4 Fillstands, DDT, DDD, are groundwater discharge chemicals with EQs above 1. The assessment of potential risk for these chemicals for the sandpiper included evaluation of ingestion of surface water and ingestion of aquatic invertebrates. Table 6-30 of Volume 1 shows that 99% of the potential risk form pesticides was from ingestion of inverte-Consideration of toxic and physical properties for other Million Gallon Hill contaminants with EQs above 1 (Table 6-25 of Volume 1) indicates that these chemicals are not likely to pose significant risk to assessment endpoints at the Yukon River mudflats.

The only areas of the West Unit with potential for terrestrial impacts (population survivorship and productivity) were the Waste Accumulation Area and Million Gallon Hill. In

each of these areas, EQs were derived that considered multiple pathways for the kestrel (ingestion of soil, water, and robins), fox (ingestion of soil, water, and meadow voles), meadow vole (ingestion of soil, water, and plants), and robin (ingestion of soil, water, and invertebrates). The relative contribution of each pathway is given in Table 6-28 of Volume 1. One primary pathway of exposure was considered for terrestrial plants (exposure to soils) and terrestrial invertebrates (exposure to soils).

In both of these terrestrial areas of the West Unit, EQs for DDD, DDE, and DDT were above 1 for the robin. DDT had an EQ of 1.08 in the kestrel from the waste accumulation area, but this was the only risk determined for the kestrel, an upper trophic level receptor. Also in the Waste Accumulation Area, an EQ of 10.4 was calculated for gamma-BHC (Lindane) in the terrestrial invertebrate.

Southeast Runway Fuel Spill Site—Similar to those at the FPTA, EQs were derived that considered multiple pathways for the kestrel, red fox, meadow vole, robin, and spotted sandpiper. One pathway was considered for terrestrial plants, terrestrial and aquatic invertebrates, and the northern pike. Combining exposure pathways was applicable for all of these assessment endpoint species.

Risk to terrestrial invertebrates, red fox, and kestrel were determined to be minimal. Through evaluation of the toxicity data and physical properties of the contaminants with EQs above 1 in the context of the Southeast Runway Fuel Spill site, it was determined that PNAs have potential for risk to the meadow vole and the robin. Additionally, bis(2-ethylhexyl)phthalate may have impacts on the robin and lead may have potential for risk to terrestrial plants. All of the EQ levels for the terrestrial receptors were below 10, with the

exception of benzo(b)fluoranthene, which had an EQ in the probable range (EQ > 10) in the robin. For the meadow vole, direct ingestion of soil accounted for 50 to 78% of the exposure to PNAs, whereas robin exposure occurred through ingestion of the invertebrate (78%). Exposure of the robin to bis(2-ethylhexyl)phthalate was almost completely due to ingestion of terrestrial invertebrates (99%).

For the aquatic and semiaquatic pathways, potential risks to the pike and spotted sandpiper were minimal. Aquatic invertebrates and the northern pike were evaluated with AWQC as the TB, when available. AWQC are protective of aquatic life, and represent conservative TBs. EQs in the probable range were derived for 2-methylnaphthalene and fluorene in the aquatic invertebrate.

CTDSA—Combined pathways were used to assess the spotted sandpiper from groundwater discharge to surface waters of the Yukon River. Single impacts were used to evaluate impacts to aquatic invertebrates and the northern pike because only risk from exposure to groundwater discharge was considered important.

Chemicals with EQ values greater than 1 were reviewed for physical and chemical fate in the environment and toxicity in fish, freshwater aquatic invertebrates, and birds. review of toxicity and environmental fate, only 4,4'-DDE in the spotted sandpiper was shown to have potential for posing risk from groundwater originating from the CTDSA. The EQ for 4,4'-DDE was calculated to be in the possible category (i.e., 1 < EQ < 10). For the spotted sandpiper, an EQ was derived that estimated the potential for risk from exposure to contaminants from the ingestion of groundwater discharged to surface water at the shoreline and food (i.e., aquatic invertebrates). The aquatic invertebrate, as food for the spotted sandpiper, contributed 99% to the spotted sandpiper EQ. It should be noted that organochlorine insecticides (DDT, dieldrin, and heptachlor) were historically broadcast throughout the Galena Airport for insect control, and therefore, the CTDSA does not represent a source area of organochlorine insecticides.

4.2.2 Site Combinations

Sites with multiple source areas, such as the Galena Airport, have the potential for receptor exposure to more than one source area. Sections 4.4, 5.4, and 6.4.4 of Volume 1 estimate the potential for risk to assessment endpoints at the FPTA, POL Tank Farm, and the West Unit, respectively. The Southeast Runway Fuel Spill site and the CTDSA are presented in Sections 2.4 and 3.4. As described above, risk due to combinations of pathways has been considered in these estimates. This section estimates the potential for combined risk for receptor exposure to multiple sites.

For ecological receptors, the primary factors that affect exposure to multiple source areas are home range (mobility) and habitat availability. For most soil and sediment invertebrates and plants, multiple site exposure is precluded due to relative immobility. Species with relatively small home ranges are less likely to encounter multiple sites than are species with large home ranges. Moreover, even if home range size makes it possible for encounters of multiple sites, when the appropriate habitat is not available, it is not likely that multiple exposures will occur. The potential for multiple exposures was evaluated for the assessment endpoints at each IRP source area and is summarized below.

The FPTA is approximately 1.5 miles from the terrestrial ecological areas of concern at the West Unit (Waste Accumulation Area and Million Gallon Hill) and approximately 0.3

miles from the Southeast Runway Fuel Spill site. For terrestrial receptors, all species except the fox and the kestrel have home ranges that would preclude frequent encounters with both the West Unit sites and the FPTA; however, all of the mobile terrestrial receptors could frequent the FPTA and the Southeast Runway Fuel Spill site. The kestrel has a home range of approximately 499 acres (Appendix I, Volume 3), and the home range for the fox is approximately 1771 acres (Appendix I, Volume 3). Thus, strictly evaluating home range size indicates that these species easily would have access to any area of the Airport, assuming the center of their home range was within the Airport or near the Airport.

Available habitat for these two species is of better quality at the FPTA and Southeast Runway Fuel Spill site than at the West Unit. The FPTA is located in the large grasslands that surround the eastern runway areas, and there are areas of trees and shrubs along the perimeter dike to the north, east, and south. The dike area provides cover, nesting, and foraging sites for the fox. The dike provides cover and nesting sites for the kestrel. The grassland areas and edges of the wooded areas are good foraging areas for both species, although less so when the grasses are mowed frequently. The Southeast Runway Fuel Spill site is primarily vegetated with grass; however, alders and willows from along the slope of the dike providing habitat for perching birds which are commonly noted. These same habitat types are found at the Waste Accumulation Area, but Million Gallon Hill contains only wooded slopes and cleared, formerly wooded areas at the base of the hill that will presumably returned to wooded areas as taiga wetland. Thus, Million Gallon Hill offers little habitat for the kestrel because there are no open vegetated areas (e.g., grasslands) for foraging. Overall, the abundance of habitat is much less in both areas, the grassy areas of the Waste Accumulation Area and Southeast Runway Fuel Spill site are mowed frequently reducing habitat value, and the degree of human disturbance is greater at the West Unit. Moreover, it is important to note for the fox that there is higher quality habitat outside of the Airport in undisturbed areas, thus further decreasing the likelihood of combined utilization of the source areas. For the kestrel, utilization of infrequently mowed grasslands in areas of human activity is common. However, the degree of human activity still can influence occurrence. Habitat available outside of the airport for the kestrel is not as abundant as for the fox; nevertheless, there are many open fields and woodland edge habitats available, further reducing the likelihood of combined use of the source areas.

At the FPTA and Southeast Runway Fuel Spill site, there were no EQ values indicating possible risk to the red fox or the kestrel. At the Waste Accumulation Area and Million Gallon Hill, there was no potential for risk to the red fox. The EO for the kestrel at the Waste Accumulation Area indicated possible risk. However, as explained above, the habitat at the Waste Accumulation Area is of less quality for the kestrel than at other available areas. Therefore, given the limited acreage of fox and kestrel habitat for West Unit source areas, the lack of habitat for the kestrel at Million Gallon Hill, the higher quality habitats at the FPTA and the Southeast Runway Fuel Spill site, the availability of habitat outside of the Airport, and the lack of EQs in the possible risk category, it is unlikely that there is a significant degree of combined risk due to multiple source area utilization for these assessment endpoints.

Combined utilization for terrestrial assessment endpoints of Million Gallon Hill and the Waste Accumulation Area is possible for the red fox, meadow vole, and robin because the

source areas are adjacent to each other, and the assessment endpoint home range sizes would allow contact with both source areas. As explained above, the kestrel is not likely to occur at Million Gallon Hill, precluding combined site impacts. No EQs were in the possible risk category for the red fox. Combined use of these sites for such a species that has a very large home range is likely to be minimal compared with the total habitat, thus minimizing the potential for combined use to cause potential risk.

For the meadow vole, EQs indicated possible risk for acenaphthene, benzo(a)anthracene, benzo(a)flouranthene, and benzo(g,h,i)perylene at Million Gallon Hill and the Southeast Runway Fuel Spill site. All of these chemicals also showed possible risk, except benzo(b)flouranthene, at the Waste Accumulation Area. As explained in Section 6.4 of Volume 1 and Section 2.4, risk to voles from PNAs at these sites in minimal due to the relatively low concentrations and the ability of vertebrates to readily metabolize these compounds. It is not likely that combined use of the Waste Accumulation Area, Million Gallon Hill, and the Southeast Runway Fuel Spill site would appreciably increase the potential for risk.

Combined site impacts to robins at the Waste Accumulation Area and Million Gallon Hill are possible for DDT, DDE, and DDD, which exhibited EQs above 1 for both sites. These chemicals were applied historically in the Galena area for pest control, and their presence at these two sites does not represent areas of elevated concentrations.

Multiple site exposure for aquatic and semiaquatic species is possible for those species utilizing multiple groundwater discharge areas. Groundwater discharge to surface waters of the Yukon River were modeled for the FPTA, POL Tank Farm, Waste Accumulation Area, Million

Gallon Hill, JP-4 Fillstands, Bldg.1845, CTDSA, and the Southeast Runway Fuel Spill site. Groundwater discharge for the FPTA is approximately 1.5 miles upstream from the discharge points for the remaining sites (Appendix C, Volume 3). Potential combined site impacts to Yukon River aquatic invertebrates at the discharge points are not likely. Also, it is not likely that potential migration of contaminants at the discharge points would significantly affect invertebrates downstream because of the low concentrations at the discharge points and subsequent dilution that would occur in route down stream.

There is a potential for combined impacts to aquatic invertebrates from groundwater discharging to the Yukon River mudflats/shoreline because the discharge points are either overlapping or adjacent to each other and comprise a high quality habitat (Appendix C, Volume 3). After consideration of toxic and physical properties and dilution effects of the river on chemicals with EQs greater than 1, it was determined that organochlorine pesticides were the primary chemicals that may pose risk to invertebrates of the mudflats (Section 6.4.7 of Additive concentrations of the Volume 1). discharging groundwater from various source areas were not evaluated in the groundwater model (Appendix C, Volume 3).

For the spotted sandpiper, utilization of the mudflats at the FPTA groundwater discharge point in conjunction with the discharge points of the POL Tank Farm and the West Unit areas is likely to be minimal because of the small home range size of the sandpiper (approximately 2.5 acres). Wading bird species with larger home ranges potentially could forage in both areas.

However, the abundance of other wetland and mudflat habitat in the area reduces probability of combined use of these areas.

There is a significant likelihood of use by the spotted sandpiper of the POL Tank Farm and source areas of the West Unit groundwater discharge points (mudflats) because these are either overlapping or adjacent to each other (Appendix C, Volume 3). After consideration of toxic and physical properties and dilution effects of the river on chemicals with EQs greater than 1, it was determined that organochlorine pesticides were the primary chemicals that may pose potential risk to wading birds such as sandpipers at the mudflats (Section 6.4.7 of Additive concentrations of the Volume 1). discharging groundwater to the same vicinity were not considered in the groundwater model (Appendix C, Volume 3). Thus, the effect on potential mudflat concentrations is uncertain. The abundance of locally available wetland habitat for foraging would reduce the magnitude of a potential combined use effect.

Combined impacts from all groundwater discharge sources is possible for the northern pike because individuals of this species can range over large areas. However, the only EQ indicating possible risk to pike was the EQ for manganese. It was determined that this metal is not likely to pose risk because of dilution effects and the fact that it is an essential metabolic element. Thus, given that all other EQs were below 1 and that the exposure concentrations modeled did not account for dilution, impacts to the northern pike from combined sources would be minimal (i.e., productivity and population survivorship would not be reduced).

Section 5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Human Health Assessment

For each scenario addressed in this risk assessment, the carcinogenic risk was estimated on a chemical-by-chemical basis for each relevant pathway of exposure. The estimated cancer risk was summed for each chemical associated with a specific pathway to determine total risk by pathway. To determine the total exposure scenario risk, total risks for all pathways were summed. A similar procedure was performed to determine the total noncancer HI for each exposure scenario.

The USEPA Superfund site remediation goal set forth in the NCP designates a cancer risk of 10⁻⁴ (1 in 10,000) to 10⁻⁶ (1 in one million). This range is designed to be protective of human health and to provide flexibility for consideration of other factors in risk management decisions. In effect, risks that are less than 10⁻⁶ are generally considered negligible. Risks that are greater than 104 are usually considered sufficient justification for undertaking remedial action. Risks in the intermediate range between these two values can be considered acceptable on a case-by-case basis. The State of Alaska plans to use a cancer risk level of 10⁻⁵ (1 in 100,000) in making risk management decisions (USAF, 1996b).

The HQ is not a statistical probability of a noncarcinogenic effect occurring. If the exposure level exceeds the appropriate toxicity value (i.e., the HQ is greater than one), there may be cause for concern regarding the potential noncarcinogenic effects. The Superfund site remediation goal for noncarcinogens is a total HI of 1 for chemicals with similar toxic endpoints.

Table 5-1 summarizes the chemicals and exposure pathways that contribute an estimated

cancer risk greater than 1 in one million at the Southeast Runway Fuel Spill site and the The table specifies the applicable CTDSA. exposure scenario, the chemical-specific risk estimate, and the percent of the total risk, and provides summary comments to place the risk estimate in perspective. Of the numerous chemicals detected in environmental media at the two sites, only one chemical poses an estimated risk in excess of 1 in one million: beryllium in groundwater at the Southeast Runway Fuel Spill site. Estimated noncancer HIs are below 1, the Superfund site remediation goal noncarcinogens, for all scenarios at both sites. An evaluation of combined impacts indicates that combining scenarios (e.g., child and adult) or adding individual site contributions to media at the same location does not substantially increase the estimated cancer risks or noncancer HIs.

Risks associated with residual petroleum at the sites are addressed by quantifying risks for individual chemicals that are components of the residual petroleum. The results of the risk assessment can be used to evaluate the need to remediate DRO and GRO, but are not intended to be used to establish alternate cleanup levels for DRO and GRO. Remediation issues related to DRO, GRO, and free product are to be addressed outside of the risk assessment.

It should be noted that the risk estimates presented address risks associated with the IRP sites under investigation and do not include risk associated with airport operations.

5.1.1 Southeast Runway Fuel Spill Site

Estimated incremental cancer risks for all scenarios except the current and future Old Town Galena residents are below 1 in one million, considered the *de minimis*, or level of

Table 5-1 Chemicals and Pathways that Contribute Estimated Cancer Risks Greater Than 1 in One Million

Chemical	Exposure Pathway	Exposure Scenario	Chemical- and Pathway- Specific Risk Estimate (% of Total Risk)	Comments
Southeast Runway Fuel Spill	/ Fuel Spill			
Beryllium	Ingestion of fruits and vegetables at gardens southwest of site (irrigated or subirrigated with shallow groundwater)	Current Old Town Galena Resident (Adult) - Average - Reasonable Maximum Current Old Town Galena Resident (Child) - Average - Reasonable Maximum	3E-06 (97%) 3E-05 (97%) 4E-06 (97%) 1E-05 (97%)	Beryllium is a COPC in groundwater at the site because the background comparison concluded that average beryllium concentrations in groundwater at the site exceeded average beryllium concentrations in background groundwater. However, the level of confidence in this conclusion is rated as weak, based on the p-value of the comparison. Moreover, the maximum detected concentration in groundwater at the site (0.00394 mg/L) is lower than the calculated background UTL for beryllium in groundwater (0.005 mg/L). It is also lower than both the USEPA MCL and the MCLG for drinking water, which are both 0.004 mg/L. There is no reason to suspect that concentrations of beryllium in groundwater at this site might be
•	Ingestion of fruits and vegetables at gardens in Old Town Galena (irrigated or subirrigated with shallow groundwater)	Future Old Town Galena Resident (Adult) - Average - Reasonable Maximum Future Old Town Galena Resident (Child) - Average - Reasonable Maximum	1E-06 (5%) 1E-05 (8%) 2E-06 (8%) 5E-06 (15%)	elevated above background; although beryllium and beryllium alloys are sometimes used for various types of instrument springs, control parts, valves, and airplane carburetors and instruments, it is unlikely that these possible uses have resulted in elevated beryllium concentrations in groundwater at this site. Groundwater modeling methodology is conservative. It accounted only for horizontal, and not vertical, dispersion. The "source" was defined as 100 ft long
				with a concentration of 0.00394 mg/L (the maximum detected concentration). As a result, the modeled concentration at Old Town Galena was 0.00113 mg/L, a concentration higher than that detected at two of the four wells located at the site.

Table 5-1 (Continued)

Chemical	Exposure Pathway	Exposure Scenario	Chemical- and Pathway- Specific Risk Estimate (% of Total Risk)	Comments
Beryllium (Continued)	Ingestion of groundwater (as tap water)	Future Old Town Galena Resident (Adult) - Average - Reasonable Maximum	3E-05 (95%) 1E-04 (92%)	The methodology used to estimate uptake by fruits and vegetables from the groundwater is conservative. It assumes that 100% of water required by fruits and vegetables is supplied by shallow groundwater, either through irrigation or subirrigation.
		Future Old Town Galena Resident (Child) - Average - Reasonable Maximum	2E-05 (92%) 3E-05 (85%)	Most residents of Old Town Galena have drinking water trucked in from the city well in the New Town area, upgradient from Galena Airport. There are, however, at least seven private wells still in use in Old Town Galena.
Contral Tower D	Contral Tower Drum Storage Area, South	1		
None	1	å	1	

5-3

negligible risk. Estimated risks for the current Old Town Galena resident range from an average of 3 in one million to a reasonable maximum of 3 in 100,000 for an adult and from 4 in one million to 1 in 100,000 for a child. These risk estimates are within the Superfund risk range goal for carcinogens of 1 in 10,000 to 1 in one million. Estimated risks for the future Old Town Galena resident range from an average of 3 in 100,000 to a reasonable maximum of 2 in 10,000 for an adult and from 2 in 100,000 to 3 in 100,000 for a child. The reasonable maximum estimate for the adult exceeds the high end of the Superfund risk range goal.

In the current Old Town Galena resident scenario, ingestion of fruits and vegetables that take up beryllium from the shallow groundwater (either through irrigation or subirrigation) at the location of the gardens southwest of the site contributes the majority of the risks (97%) in all cases. Risks associated with exposure to all other chemicals are negligible. Likewise, in the future Old Town Galena resident scenario, 99% of the estimated risk in all cases is attributable to beryllium in groundwater. Ingestion of groundwater containing beryllium contributes most (85-95%) of the estimated risk; ingestion of fruits and vegetables that take up beryllium from the shallow groundwater (either through irrigation or subirrigation) at gardens in Old Town Galena contributes risks that exceed 1 in one million in some cases. Again, risks associated with exposure to all other chemicals are negligible.

Beryllium is a COPC in groundwater at the site because the background comparison concluded that average beryllium concentrations in groundwater at the site exceeded average beryllium concentrations in background groundwater. However, the level of confidence in this conclusion is rated as weak, based on the p-value of the comparison (0.0630). Moreover, the maximum detected concentration in ground-

water at the site (0.00394 mg/L) is lower than the calculated background UTL for beryllium in groundwater (0.005 mg/L). It is also lower than the USEPA MCL and MCLG for drinking water, which are both 0.004 mg/L. There is no reason to suspect that concentrations of beryllium in groundwater at this site might be elevated above background; although beryllium and beryllium alloys are sometimes used for various types of instrument springs, control parts, valves, and airplane carburetors and instruments, it is unlikely that these possible uses have resulted in elevated beryllium concentrations in groundwater at this site. Therefore, the estimated risks associated with exposure to beryllium at this site are probably no higher than risks from exposure to background concentrations of beryllium.

Moreover, the methodologies used to model the migration of beryllium in the ground-water from the Southeast Runway Fuel Spill site to Old Town Galena, and to estimate uptake by fruits and vegetables from groundwater, are conservative. The groundwater modeling accounted only for horizontal dispersion; vertical dispersion was ignored. The "source" was defined as 100 ft long with a concentration of 0.00394 mg/L (the maximum detected concentration). As a result, the modeled concentration at Old Town Galena (0.00113 mg/L) is higher than that detected at two of the four monitoring wells located at the site.

To calculate uptake by fruits and vegetables grown in gardens southwest of the site and in gardens in Old Town Galena, it was assumed that 100% of water required by the plants is supplied by shallow groundwater, either through irrigation or subirrigation. The depth of the groundwater fluctuates from very close to the surface to 15 to 20 ft below surface over the course of the year. It is unlikely that the roots of garden plants are in direct contact with the

groundwater (and thus are subirrigated) for a substantial portion of the growing season. It is more likely that precipitation and irrigation water from sources other than the shallow groundwater supply some or all of the water required.

Finally, most residents of Old Town Galena have drinking water trucked in from the city well in the New Town area, upgradient from Galena Airport. There are, however, at least seven private wells still in use in Old Town Galena (USAF, 1995b). Four of these wells, all less than 60 ft deep, were sampled in 1992 and 1993 as part of the RI. Results from beryllium were reported as ND; however, the detection limit was 0.002 mg/L.

If, as the evidence suggests, beryllium is not elevated above background in the groundwater at the Southeast Runway Fuel Spill site and it is removed as a COPC, the risks posed by the site are negligible for all human populations that might encounter site-related contaminants. Estimated risks associated with exposure to beryllium in the groundwater downgradient from the site are not significantly different from exposure to background concentrations of beryllium in the groundwater. On the basis of the results of the human health assessment, remedial action at the Southeast Runway Fuel Spill site is not warranted.

5.1.2 Control Tower Drum Storage Area, South

The estimated incremental cancer risks for all other scenarios at the CTDSA are below 1 in one million. Estimated noncancer HIs are well below 1 for all scenarios. On the basis of the results of the human health assessment, remedial action at the CTDSA is not warranted.

5.2 Ecological Assessment

Figures 5-1 and 5-2 summarize the

weight of evidence findings for local populations of the assessment endpoint species of this ERA. A weight-of-evidence analysis of potential effects on assessment endpoint species was conducted by reviewing the physical, chemical, ecological, and toxicological properties of the COPECs with EQs above 1. More specifically these properties included:

- Physical and chemical properties:
 - environmental persistence;
 - mobility;
 - degradation products; and
 - bioavailability to ecological receptors.
- Toxicological properties:
 - toxic effects to wildlife:
 - likelihood of metabolism;
 - metabolic products; and
 - excretion time.
- Ecosystem properties:
 - ecosystem type;
 - ecosystem use;
 - habitat quality; and
 - habitat use.

The first two segments of this ERA, problem formulation and analysis, provided a forum for all of these characteristics, but a final review was conducted considering the EQ evaluation. Once all of the input parameters were presented, a rating was given to the COPEC for the assessment endpoint species with EQ values above 1. This rating (high, medium, or low) provides the initial guidance for the decision-making process.

5.2.1 Southeast Runway Fuel Spill Site

No EQ values above 1 were obtained in this ERA for the invertebrate, red fox, or kestrel. Results of the risk evaluation for plants

SOUTHEAST RUNWAY FUEL SPILL AREA Potential Local Population Impacts

	LOW	MEDIUM	HIGH
Aquatic Invertebrates			
2-Methylnaphthalene	×		
Fluorene	×		
Terrestrial Plant			
Lead	×		
Meadow Vole			
Benzo(a)anthracene	×		
Benzo(a)pyrene	×	•	
Benzo(g,h,i)perylene	×		
Robin			
Benzo(b)fluoranthene	-	×	
bis(2-ethylhexyl)phthalate	×		

Figure 5-1

JVG0294 12/4/95

CONTROL TOWER DRUM STORAGE AREA Potential Local Population Impacts

Figure 5-2

JVG0294 12/4/95

were inconclusive, except for lead. Given the extreme conservatism associated with the terrestrial TB, the low EQ (1.02) for plants, the lack of impacts to the higher trophic levels, and the site lead level being within the general background agricultural levels, adverse effects of lead on terrestrial plants are not expected. Several PNAs were noted in the meadow vole with EQs greater than 1 (benzo(a)anthracene, benzo(a)pyrene, and benzo(g,h,i)perylene). Although all of these EQs were greater than 1, they were also less than 10, and are categorized as indicating possible risk; however, the potential for risk from PNAs in this EQ category is likely to be insignificant because current data indicate that vertebrates metabolize PNAs (Eisler, 1987), or the PNAs remain bound to soil particles in the gastrointestinal tract and therefore are not accumulated. Owing to the low EQ levels of these PNAs, low concentrations of PNAs when compared with those at other sites, lack of impact to the red fox, and physical and biological processes that limit the vertebrate toxicity, the effects of PNAs on the mammals in the terrestrial ecosystem are expected to be minimal.

As with the plant toxicity, little soil invertebrate toxicity information was found. Several TBs were identified; however, none of the EO results were above 1. Additionally, there were no EQs above 1 for the kestrel. For the robin, benzo(b)fluoranthene was the only contaminant evaluated with an EQ above 10 at 10.9. The only other chemical with an EQ above 1 for the robin was bis(2-ethylhexyl)phthalate, with an EQ of 1.09. As described above, the potential for risk from PNAs is likely to be insignificant because current data indicate that vertebrates metabolize PNAs (Eisler, 1987), or the PNAs remain bound to soil particles in the gastrointestinal tract and therefore are not accumulated (ATSDR, 1993). Information is limited on avian PNA toxicity. A "worst case" expo-

sure is represented in this assessment by the TB. The applicability of this exposure route is dependent on several factors, including the form of the PNAs at the Southeast Runway Fuel Spill site and the use of the Southeast Runway Fuel Spill site as a breeding area for avian species. During the yearly flood, soil contaminants such as PNAs could be transported to the surface by the rising These contaminated surface waters waters. could potentially contact ecological receptors, especially as water accumulates at the dike. The Southeast Runway Fuel Spill site is vegetated with alders and other tall vegetation on the slope of the dike. Perching birds are commonly observed and nesting could occur in this vegetation. Because of the high quality of habitat along the dike, the propensity of birds, and possible transport and exposure mechanisms of contaminants to avian receptors, adverse impacts to avian receptors (especially eggs and young birds) could occur; however, the ability of vertebrate systems to metabolize PNAs and the strong adsorption of these compounds to soils limits the exposures and toxicities. Possible impacts on avian receptors at the Southeast Runway Fuel Spill site by PNAs are therefore given a medium rating.

The EO for bis(2-ethylhexyl)phthalate in the robin was calculated to be 1.09. Bis(2ethylhexyl)phthalate is bioconcentrated and the compound has been observed in invertebrates, fish and terrestrial organisms; however, accumulation of bis(2-ethylhexyl)phthalate is likely to be minimized by metabolism, and biomagnification in the food chain is not expected to occur. This has been confirmed by the detection of metabolites in animal tissues (ATSDR, 1991a). Because of the potential for metabolism of bis(2ethylhexyl)phthalate, lack of adverse impacts to the kestrel, and low EQ in the robin, the effects of bis(2-ethylhexyl)phthalate to the avian ecosystem at the Southeast Runway Fuel Spill site are expected to be minimal.

The aquatic and semiaquatic exposure pathway considered groundwater beneath the Southeast Runway Fuel Spill site that potentially could migrate to the Yukon River, where exposure to the northern pike, aquatic invertebrates, and spotted sandpiper potentially could occur. None of the COPECs evaluated in this assessment showed an EQ above 1 for the northern pike or spotted sandpiper. AWQC were used as the measurement endpoints for evaluation of the northern pike and aquatic invertebrates when they existed. AWOC are highly conservative since they are designed to protect aquatic life. 2-Methylnaphthalene and fluorene are the only compounds with EOs greater than 1 for the aquatic invertebrate. PNAs vary substantially in their toxicity to aquatic organisms. In general, toxicity and bioconcentration factors tend to increase as molecular weight increases (Eisler, 1987). Fluorene and 2-methylnaphthalene are both low molecular weight PNAs, with molecular weight values of 166.2 and 142.2 respectively (ATSDR, 1993), indicating low potential for bioconcentration or toxicity. PNA levels in fish and higher trophic levels are usually low because they are rapidly metabolized (Eisler, 1987). Because of the low potential for bioconcentration or toxicity from low molecular weight PNAs and the ability of higher trophic levels to metabolize PNAs, the adverse impacts from fluorene and 2methylnaphthalene are expected to be minimal.

The ERA indicates that impacts on perching birds, especially eggs and young, might occur due to the presence of PNAs in the surface soil. However, numerous birds have been noted at the site. Remediation of the groundwater is not required because of the lack of predicted impacts to ecological receptors at the shoreline.

5.2.2 Control Tower Drum Storage Area, South

This site evaluation considered ground-

water beneath the CTDSA that potentially could migrate to the Yukon River, where exposure to the northern pike, aquatic invertebrate, and spotted sandpiper potentially could occur. Terrestrial receptors were not considered owing to the lack of habitat at the CTDSA. None of the COPECs evaluated in this assessment showed an EQ above 1 for the northern pike or aquatic invertebrate. AWOC were used as the measurement endpoints for these assessment endpoint species when they existed. AWQC are highly conservative since they are designed to protect most aquatic life. No dilution or volatility factors were applied to the discharged concentrations. 4,4'-DDE had an EQ value greater than 1(6.03) for the spotted sandpiper, indicating possible risk. There were no other COPECs noted to have EQs above 1 for the spotted sandpiper. DDT and its metabolites (DDE and DDD) are organochlorine pesticides that are recalcitrant and lipophilic compounds that can enter the food chain easily and progressively biomagnify to organisms at the top of the food chain, such as fish-eating birds. Because of the extensive past use of DDT worldwide, and the persistence of the compounds, these chemicals are virtually ubiquitous and are continually being transformed and redistributed in the environment. A steady state BCF of 12,000 for rainbow trout was applied to estimate the concentration in the aquatic invertebrate as the food for the spotted sandpiper. This value is based on ingestion of fish lower on the food chain and exposure to the surrounding media (i.e., water and sediment) (ATDSR, 1994). An analysis of the intake model for the spotted sandpiper indicates that 99% of the EQ contribution was from invertebrate ingestion and only 1% was from ingestion of water. Organochlorine pesticides such as DDT were used extensively at the Galena Airport for insect control. The CTDSA does not represent a unique source for DDT and its metabolites.

On the basis of the results of the ecological assessment, remedial action at the CTDSA

is not warranted.

Section 6 REFERENCES

- ATSDR. Toxicological Profile for Bis(2-ethylhexyl)phthalate. Washington, DC: U.S. Department of Health and Human Services. 1991a.
- ATSDR. Toxicological Profile for Lead. Washington, DC: U.S. Department of Health and Human Services. 1991b.
- ATSDR. Toxicological Profile for Polycyclic Aromatic Hydrocarbons (PAHs). Washington, DC: U.S. Department of Health and Human Services. 1993.
- ATSDR. Toxicological Profile for DDT, DDE, DDD. Washington, DC: U.S. Department of Health and Human Services. 1994.
- Barnthouse, L.W., D.L. DeAngelis, R.H. Gardner, R.V. O'Neill, G.W. Suter II, and D.S. Vaughn. *Methodology for Environmental Risk Analysis*. (ORNL/TM-8167). Oak Ridge, TN: Oak Ridge National Laboratory. 1982.
- Demayo, A., M.C. Taylor, K.W. Taylor, and P.V. Hodson. "Toxic Effects of Lead and Lead Compounds on Human Health, Aquatic Life, and Wildlife Plants, and Livestock." *Critical Reviews in Environmental Control*. Vol 12, I.4., pp. 257-205, 1982.
- Eisler, R., Polycyclic Aromatic Hydrocarbon Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review." (Biological Report No. 85 [1.11]). U.S. Fish and Wildlife Service. 1987.
- Opresko, D.M., B.E.Sample, and G.W. Suter. Toxicological Benchmarks for Wildlife: 1994 Revision. Oak Ridge National Laboratory. Oak Ridge, TN. ES/ER/TM-86/R1. 1994.

- Suter II, G.W., M.E. Will, and C. Evans. Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects on Terrestrial Plants. Oak Ridge National Laboratory. Oak Ridge, TN. ES/ER/TM-85. 1993.
- Urban, D.J., and N.J. Cook. "Hazard Evaluation, Standard Evaluation Procedure, Ecological Risk Assessment." (Report No. EPA-540/9-85-001). Washington, D.C.: U.S. Environmental Protection Agency. 1986.
- United States Air Force (USAF). Installation Restoration Program Phase II: Confirmation/ Quantification—Stage I, Alaska Air Command Interior Installations. Anchorage, Alaska. 1989.
- USAF. Installation Restoration Program (IRP)
 Remedial Investigation/ Feasibility
 Study, Stage 2, Galena AFS and
 Campion AFS, Alaska. 1991.
- USAF. Human and Ecological Baseline Risk Assessment Protocol for Galena Airport (Draft). 1995a.
- USAF. Remedial Investigation Report, Galena Airport and Campion Air Force Station, Volume 1 (Final). 1995b.
- USAF. Response to Shannon & Wilson Comments on the USAF Draft "Human and Ecological Baseline Risk Assessment Protocol for Galena Airport and Campion Air Force Station, Alaska." 1995c.
- USAF. Ecological Risk Assessment Problem Formulation Galena Airport, Alaska. 1995d.

- USAF. Response to ADEC Comments on the USAF Draft "Baseline Risk Assessment Report, Galena Airport, Alaska." 1996a.
- USAF. Summary of the Comments Resolution Meeting. 1996b.
- USEPA. Risk Assessment Guidance for Superfund (RAGS), Volume 1. Human Health Evaluation Manual (Part A) (Interim Final). EPA/540/1-89/002. 1989.
- USEPA. Water Quality Criteria Summary:
 Office of Science and Technology,
 Health, and Ecological Criteria Division,
 Washington, D.C. 1991.
- USEPA. Dermal Exposure Assessment: Principles and Applications (Interim Report). EPA/600/8-91/011B. 1992a.
- USEPA. Framework for Ecological Risk Assessment. EPA/630/R-92/001. 1992b.
- USEPA. Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons. EPA-600/9/93/089. 1993.

- USEPA. Drinking Water Regulations and Health Advisories. Office of Water, EPA/822/R-94-003. 1994a.
- USEPA. Guidance Manual for the Integrated Exposure Uptake Biokinetic Model for Lead in Children. EPA/540/R-93/081. 1994b.
- USEPA. Health Effects Assessment Summary Tables Annual Update FY 1994. EPA/540-R-94-020. 1994c.
- USEPA. Revised Interim Soil Lead Guidance for CERCLA Sites and RCRA Corrective Action Facilities. EPA/540/F-94/043. 1994d.
- USEPA. "Integrated Risk Information System (IRIS)." 1995a.
- USEPA. "Risk-Based Concentration Table, January-June 1995." Memorandum dated 7 March 1995 from R.L. Smith, USEPA Region III Technical Support Section (3HW13). 1995b.

APPENDIX 4A

STATISTICAL DETERMINATION OF CHEMICALS OF POTENTIAL CONCERN

APPENDIX 4A TABLE OF CONTENTS

		Page
4A.1	INTRO	DUCTION
4A.2	SUMM	ARY4A-1
4A.3	TECHN	TICAL APPROACH4A-2
	4A.3.1	Review Raw Data for Representativeness
		Investigation
		4A.3.1.2 Analytical Methods
		4A.3.1.3 Quantitation Limits
		4A.3.1.4 Data Qualifiers or Codes
	4A.3.2	Review of Blank Data
	4A.3.3	Frequencies of Occurrence for Site Data
	4A.3.4	Comparison of Inorganic Site Concentrations to Naturally
		Occurring Background Levels
	4A.3.5	Calculate Summary Statistics for COPCs
4A.4	RESUL	TS 4A-10
	4A.4.1	Review of Blank Data
	4A.4.2	Frequencies of Occurrence for Site Data 4A-11
	4A.4.3	Comparison of Inorganic Site Concentrations to Naturally
		Occurring Background Levels
		4A.4.3.1 Characterization of Background Data 4A-12
		4A.4.3.2 Means and Individuals Comparisons of Inorganic
		Site Concentrations to Background 4A-12
	4A.4.4	Calculate Summary Statistics for COPCs 4A-13
		Raw Data
4A.5	REFER	ENCES 4A-14
Attachmei	nt 4A-1	Summary Tables for Groundwater, Surface Soil, and Subsurface Soil
Attachmei	nt 4A-2	Raw Data for Groundwater, Surface Soil, and Subsurface Soil

APPENDIX 4A LIST OF TABLES

	Pa	age
4A-1	Contaminants of Potential Concern for Control Tower Drum Storage Area (CTDSA)	1-3
4A-2	Contaminants of Potential Concern for Southeast Runway	1-4
4A-3	Multiple Analytical Methods Identified	\ -7

4A.1 INTRODUCTION

This appendix presents the results of the data evaluation performed to determine the chemicals of potential concern (COPCs) for use in the Galena Baseline Risk Assessment for the Southeast Runway Fuel Spill site (SE Runway) and the Control Tower Drum Storage Area, South (CTDSA).

COPCs were identified, in general, following the technical approaches described in Appendix A (Volume 2). COPCs were identified for both organic and inorganic analytes in soils and groundwater for the two sites that are the subject of this addendum. For this risk assessment, data were compiled from sampling efforts in 1994 and 1995. Soil data were divided into surface and subsurface classifications, using the same depth criteria described in Appendix A (Volume 2).

This appendix is divided into five sections. Section 4A.2 presents the COPCs identified for the CTDSA and the SE Runway. Section 4A.3 describes the technical approach used for this risk assessment, and Section 4A.4 gives results of the analyses performed. Lastly, references are in Section 4A.5. Additional tables with detailed results are given in Attachment 4A.1. The raw data used to determine COPCs is given in Attachment 4A.2. These attachments are included in the back of this appendix.

4A.2 SUMMARY

COPCs are chemicals that are positively identified as present at a site due to historical activities at the site. COPCs were determined using the statistical approach and procedures described in Appendix A (Volume 2) with minor modifications. The most significant change was that all 1994 and 1995 data were reported uncensored by the analytical laboratory for the CTDSA and SE Runway. The definition of "Occurrence" (as used to calculate "frequencies of occurrence" or "frequencies of detection") was redefined for 1994 as any result exceeding the upper tolerance limit for uncensored blank data; and for 1995 as any result not

flagged with a "B". The "B" flag indicated that the sample result was less than five times or ten times the maximum blank concentration for all blanks taken in 1995. The justification for this approach and other modifications are provided in this appendix.

Tables 4A-1 and 4A-2 give the possible COPCs for the CTDSA and SE Runway, respectively. The chemicals listed in these tables passed all the criteria to be retained as chemicals of potential concern per the USEPA definition (USEPA, 1989). They were subjected to additional screening before they were positively identified as COPCs for the human health evaluation or chemicals of potential ecological concern (COPECs).

4A.3 TECHNICAL APPROACH

The technical approach used to identify COPCs for this addendum uses the approach described in Appendix A (Volume 2) with minor modifications. The entire approach, including modifications, is described in this section.

COPCs were identified by a technical approach following the *Risk Assessment Guidance for Superfund Volume I Human Health Evaluation Manual* (USEPA, 1989). The evaluation to determine possible COPCs for the risk assessment is presented in Figure 3-2 in Volume 1 and includes the following steps as outlined in the USEPA guidance:

- Review raw data for representativeness;
- Review blank data;
- Compare site results to blank data;
- Perform comparisons between site and background concentrations for naturally occurring chemicals (i.e., inorganic chemicals).
- Calculate frequency of occurrence for site chemicals; and
- Calculate summary statistics for contaminants of potential concern.

Table 4A-1 Contaminants of Potential Concern for Control Tower Drum Storage Area(CTDSA)

Table 4A-2 Contaminants of Potential Concern for Southeast Runway

Contaminants of Potential Concern													
Surface Soil	Subsurface Soil	Groundwater											
2-Methylnaphthalene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Diesel Range Organics Fluoranthene Indeno(1,2,3-cd)pyrene Lead Naphthalene Phenanthrene Pyrene bis(2-Ethylhexyl)phthalate	Not Sampled	1,2-Dichloroethane 2-Methylnaphthalene Acenaphthene Benzene Benzyl alcohol Beryllium Chloroethane Chloroform Chloromethane Dibutyl phthalate Diesel Range Organics Ethylbenzene Fluorene Gasoline Range Organics Naphthalene Phenanthrene Toluene Trichloroethene m&p-Xylenes o-Xylene											

March 1996 4A-4

Each of these steps are described in the following subsections.

4A.3.1 Review Raw Data for Representativeness

The first step in the COPC identification process is to review the available raw data for applicability. The USEPA guidance states that all available data should be used to determine COPCs if the data are of sufficient and comparable quality and representative of site conditions. According to USEPA guidance, this data review process must include an evaluation of the following areas:

- Data available from historical site investigations;
- Analytical methods;
- Quantitation limits; and
- Data qualifiers.

Each of these steps in the data review process is addressed below.

4A.3.1.1 Review of Data Available from the Site Investigation

A number of samples have been collected at Galena Airport during the two sampling efforts in 1994 and 1995. Many of these samples were collected in order to characterize sites for a risk assessment. USEPA guidance allows the compilation of data from different sampling events as long as several criteria are met. These criteria are:

- 1. if sampling methods were similar;
- 2. if analytical methods were similar;
- 3. if QA/QC procedures and criteria were similar;
- 2. if concentrations were similar (i.e., significant changes did not occur to the site between sampling events).

These criteria were met for all data where samples were collected in support of the risk assessment. However, this does not mean that data from all the samples collected were used in this risk assessment.

Data for each site were reviewed to ensure that only data appropriate for a risk assessment were used to identify COPCs. Often measurements were analyzed for the same analyte by more than one method. Measurements that were analyzed by a more exact or more sensitive method were used for the risk assessment. Table 4A-3 presents the preferred analytical methods chosen for analytes where data were available from multiple methods.

4A.3.1.2 Analytical Methods

For each of the two investigations, the approved sampling and analysis plans were implemented successfully and data were generated using the planned analytical methods. Thus, data for these methods were deemed acceptable for use in this determination of COPCs.

4A.3.1.3 Quantitation Limits

The third step in the data review, as specified in the USEPA guidance, involves the evaluation of "quantitation limits" for all of the chemicals assessed at the site. All laboratory analyses meet the sensitivity requirements of the QA plan.

Additionally, uncensored data were reported for many of the inorganic and organic analyses. The reporting of uncensored data improves the project's ability to determine if low-level contamination can be discerned from system noise. Uncensored data means that all results are reported, even those results below the quantitation limit that would normally be censored and reported as "ND". This includes the use of negative results when they were reported for inorganic constituents. For some of the organic and inorganic analytes, the data are automatically censored by the laboratory even when uncensored data are requested. This happens for those methods that use electronic filtering mechanisms to eliminate signals below

March 1996 4A-6

Table 4A-3 Multiple Analytical Methods Identified

Analyte	Media	Method Used (Method Not Used) for Baseline Risk Assessment
Site = Control Tower Drum	Storage Area	
1,2-Dichlorobenzene	Groundwater	SW8260 (SW8270)
1,3-Dichlorobenzene	Groundwater	SW8260 (SW8270)
1,4-Dichlorobenzene	Groundwater	SW8260 (SW8270)
Arsenic	Groundwater, Surface Soil	SW7421 (SW6010)
Lead	Groundwater, Surface Soil	SW7060 (SW6010)
Selenium	Surface Soil	SW7740 (SW6010)
Site = Southeast Runway		
Lead	Groundwater	SW7060 (SW6010)

a specified threshold (e.g., peak height, peak width, area reject). Proxy values were estimated for NDs using a uniform random number between 0 and the smaller of the minimum result and the MDL for each site and media, as described in Appendix A (Volume 2).

4A.3.1.4 Data Qualifiers or Codes

The fourth step in the data review process involves a review of data qualifiers or codes reported with the analytical results so that uncertainties can be identified and evaluated. All data that were validated during the QA/QC process were used to determine COPCs. This includes some data with qualifiers that indicate known identities, but uncertain concentrations. An additional step included during this phase of the risk assessment was a check if all results for an analyte in a specific matrix and site were KJ-flagged (a value that was not second column confirmed and was below the quantitation limit) or were not detected. If all results were KJ-flagged or were not detected, then the analyte was treated as if all results were not detected and the analyte was automatically eliminated as a COPC for that site and matrix.

4A.3.2 Review of Blank Data

Blank results can be used to evaluate the "noise" in the analytical system (field and laboratory components) to verify whether site concentrations were in fact greater than the analytical noise. For this phase of the program, upper tolerance limits (UTLs) established in the first phase of the program (Appendix A, Volume 2) for the 1994 sampling year were used for 1994 data: a site result greater than the blank UTL was considered a positive occurrence for that chemical. Blank results from the 1995 sampling year were used to set B-flags (B-flags identify those results that are due to analytical noise and do not indicate the presence of a chemical.). Since there were not enough blank results to accurately calculate UTLs for the 1995 data, the B-flags were used to identify analytical "noise". For 1995 data, a site result that was not B-flagged was considered a positive occurrence for that chemical. For more information about how B-flags were set, see the 1995 RI Report (USAF, 1995).

4A.3.3 Frequencies of Occurrence for Site Data

The third step in the COPC determination process was to compare the site data to the blank data to determine the potential for false-positive measurements because of laboratory or field contamination and to determine if target analytes occur frequently enough to be retained as a COPC. Frequencies of occurrence were calculated for each analyte, where a positive occurrence was any result from 1994 greater than the UTL for the blanks or any result from 1995 that was not B-flagged. Similar to the first phase of this risk assessment, analytes with positive occurrences less than five percent were considered separately based on detected results and applicable screening levels. Analytes with a frequency of occurrence greater than or equal to 5% for any site were retained as a COPC in the risk assessment. Inorganic analytes were further evaluated by comparing site results to background concentrations, as discussed in the next section.

4A.3.4 <u>Comparison of Inorganic Site Concentrations to Naturally Occurring Background Levels</u>

The fourth step in the COPC determination process was to compare site results to background levels for naturally occurring chemicals. A statistical "means comparison" was performed between site and background concentrations to determine if there was any evidence of metals contamination on the site. In addition, an "individuals comparison" was performed to determine the potential for a hot spot. A summary of the background data that were used for these comparisons and an overview of these two types of tests used can be found in the Appendix A (Volume 2).

4A.3.5 <u>Calculate Summary Statistics for COPCs</u>

The next step in the data analysis was to calculate summary statistics for those analytes determined to be possible COPCs (i.e., analytes retained through all the previously described steps). Measurement values for non-detect results were estimated by substituting

uniform random numbers between 0 and the smaller of the minimum result and the sample specific method detection limit for each site and for each matrix, analytical method, and analyte. Average site concentrations and the 95% upper confidence limit for the average were calculated for COPCs for each site. The upper confidence limit was calculated by strictly following USEPA guidance (USEPA, 1992c). Before calculating the 95% upper confidence limit, each set of results (by matrix, analytical method, and analyte) was tested with the Shapiro-Wilk test to determine whether the data set had a normal distribution, a log-normally distribution, or had neither distribution. Using the appropriate distribution, the 95% upper confidence limit was then calculated. For data that had neither distribution, a normal upper confidence limit was calculated. These summary statistics were used by the risk assessors to perform further screening of the COPCs as well as conduct risk assessments.

4A.4 RESULTS

This section presents the results of the data analyses performed to determine COPCs for the risk-based screen and the risk assessment. Results are presented for each of the following steps in the COPC determination process:

- Review blank data using previously determined upper tolerance limits for blanks in 1994 and using B-flags associated with 1995 data;
- Compare site results to appropriate blank information, and calculate a combined frequency of occurrence for site chemicals from both 1994 and 1995 sampling events;
- Perform comparisons between site and background concentrations for naturally occurring chemicals (i.e., inorganic chemicals) for all of the data.

Additionally, the summary statistics calculated for contaminants of potential concern are presented.

4A.4.1 Review of Blank Data

The Quality Assurance/Quality Control Summary reports for the respective years of sampling contain a discussion of the validity of the blank results and associated site results. Blank UTLs for 1994 that were previously calculated in the first phase of this risk assessment and the maximum B-flagged value for 1995 sampling data were used to represent the upper limit of measurements expected for the blank population (i.e., the upper limit of "noise" due to sampling or analysis activities). For 1994 sampling data, site results greater than the blank UTLs were concluded to indicate potential site contamination, and for 1995 sampling data, site results without a B-flag were concluded to indicate potential site contamination. Results, taken in 1994, less than the blank UTLs and results, taken in 1995, that have B-flags were concluded to be potentially analytical system noise and not indicative of site contamination.

4A.4.2 Frequencies of Occurrence for Site Data

The frequency of occurrence was calculated for each analyte, site, and matrix by determining the percent of results that exceeded the blank UTL for 1994 and were not B-flagged for 1995. These results are given in Attachment 4A, Table 1-1, for groundwater, and Table 2-1, for soils, for each site, respectively. In addition to the blank UTLs and the calculated frequencies of occurrence, these tables show the number of samples collected from each site and the range of site results (minimum and maximum). The tables also show whether or not the chemical was retained as a possible COPC and a footnote describing the reason a chemical was or was not retained as a possible COPC.

4A.4.3 <u>Comparison of Inorganic Site Concentrations to Naturally Occurring</u> <u>Background Levels</u>

As discussed in Section 4A.3.4, the fourth step in the COPC determination process was to compare concentrations of naturally occurring chemicals to background concentrations to determine if there is any evidence of metals contamination on the site due to

past practices. Section 4A.4.3.1 below, discusses tables of the background data that were used for these comparisons and Section 4A.4.3.2 gives the results of these comparisons.

4A.4.3.1 Characterization of Background Data

In the first phase of the risk assessment report (Volumes 1-3), Tables A-4 and A-5 in Appendix A give summary statistics (e.g., minimum, maximum, mean) for the water (groundwater) and soils (surface and subsurface) background data, respectively, for each metal. In addition to summary statistics, these tables show the number of samples collected and give information on the UTLs that were calculated for background. More information about background metals data can be found in Section 2 of the RI Report (USAF, 1995).

4A.4.3.2 Means and Individuals Comparisons of Inorganic Site Concentrations to Background

Tables with the results of the means and individuals comparisons for waters and soils are given in Attachments 4A.1, Table 1-2, for groundwater, and Table 2-2, for soils. These tables show the p-values (i.e., the probability that the two means come from the same parent population) for the tests of central tendency, the conclusion (S = statistically significant at the 0.20 alpha level), the power of the test, and the type of statistical test performed (i.e., Student's t-Test or Wilcoxon test). The power of the test represents the probability of detecting a difference of 40% between the background mean and the site mean at the 80% confidence level. These criteria are recommended in the *Guidance for Data Useability in Risk Assessment* (EPA 1992a). They also show the background UTLs and the number of site results exceeding the UTLs (i.e., the results of the individual comparisons). The last two columns of these tables indicate whether or not it was listed as a possible COPC and a reason for this conclusion.

4A.4.4 <u>Calculate Summary Statistics for COPCs</u>

The next step in the data analysis was to calculate summary statistics for those analytes retained as possible COPCs throughout this process. Organic analytes that had a frequency of occurrence that was greater than or equal to 5% for a given site were initially identified as COPCs. Inorganic analytes that had a frequency of occurrence greater than or equal to 5% and had average concentrations that were significantly greater than background were also initially identified as COPCs. Any analyte that had a frequency of occurrence less than 5% was evaluated to determine if it should remain a possible COPC.

The following summary statistics were calculated for all analytes that were determined to be COPCs: minimum, maximum, mean, and 95% upper confidence limit for the mean. For censored data, proxy concentrations were estimated for values reported as ND by substituting a random uniform number between zero and the smaller of the minimum result or the MDL. This approach was used so that the proxy concentration was not biased high with respect to the sensitivity of the analytical measurement methods.

Table 1-3 and Table 2-3 in Attachment 4A.1 give summary statistics for possible COPCs for waters (groundwater) and soils (surface and subsurface soils), respectively.

4A.4.5 Raw Data

Raw data tables are provided in Attachment 4A.2 for groundwater, surface soil, and subsurface soil. These tables provide the data source, the lab sample id, the analytical method, the estimated concentration (measured value or proxy value if ND), and the MDL for that measurement.

4A.5 REFERENCES

- Gilbert, Richard O., 1987. Statistical Methods for Environmental Pollution Monitoring, Van Nostrand Reinhold Company.
- Helsel, D.R. "Less than Obvious. Statistical Treatment of Data Below the Detection Limit." Environ. Sci. Technol. Vol 24, No. 12, 1990.
- Lambert, D., B. Peterson, and I. Terpenning. "Nondetects, Detection Limits, and the Probability of Detection." *Journal of the American Statistical Association*. Volume 86, Number 414, June 1991.
- Newman, M.C., P.M. Dixon, B.B. Looney, and J.E. Pinder, III. "Estimating the Mean and Variance for Environmental Samples with Below Detection Limit Observations." *Water Resources Bulletin*. American Water Resources Association. Vol. 25, No. 4, August, 1989.
- Radian Corporation, 1995. Galena Baseline Risk Assessment, Austin, TX.
- SAS Institute Inc., 1989. SAS/STAT *User's Guide, Version 6, Fourth Edition, Volume 2*, Cary, NC. 846 pages.
- Shapiro, S. S., and M. B. Wilk, 1965. "An Analysis of Variance Test for Normality (complete samples)," *Biometrika*, 52, 591-611.
- Thiokol Corporation R&D Laboratories, 1994. Analysis of Furfuryl Alcohol, Aniline, and Xylidines by HPLC/UV, SOP-427, Issue 1.
- USAF, 1995. Remedial Investigation Report, Galena Airport and Campion Air Force Station, Volume 1 (Final).
- USEPA, 1989. Risk Assessment Guidance for Superfund, Volume I, Human Health Evaluation Manual (Part A), Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, D.C.
- USEPA, 1992a. Guidance for Data Useability in Risk Assessment (Part A). Final. 9285.7-09A.
- USEPA, 1992b. Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities: Addendum to Interim Final Guidance, Office of Solid Waste, Washington D.C.
- USEPA, 1992c. Supplemental Guidance to RAGs: Calculating the Concentration Term. PB92-963373.

Attachment 4A-1

Summary Tables for Groundwater, Surface Soil, and Subsurface Soil

Table 1-1 Galena Risk Assessment Water Conclusions

Footnote	ø	Φ	ø	ပ	ø	Φ	ပ	Φ	ψ	v	ø	ø	ပ	ø	đ	Φ	U	ø	ø	U	ø
Chemical of Potential Concern?	No	No	No	NO N	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	ON
UTL for Blank Data(2)	0.123514	0.099209	0.001181	0.003513	0.0011	0.002743	0.278874	0.012021	0.015687	0.014603	0.071749	0.00447	0.096178	0.008636	0.020007	0.035653	1.48463	0.11869	0.007836	0.179325	-0.0081
Freq of Occ.(1)	0.0	0.0	0.0	100.0	0.0	0.0	100.0	0.0	0.0	50.0	0.0	0.0	100.0	0.0	0.0	0.0	100.0	0.0	0.0	100.0	0.0
Maximum	-0.0282	0.045	-0.00007	0.165	-0.00053	0.00039	190	0.00415	-0.00182	0.023	0.00266	0.00056	36.9	0.00766	0.00581	0.00311	5.16	0.059	-0.00201	6.29	-0.0188
Minimum	-0.0427	0.03	-0.00145	0.131	-0.00163	-0.00082	164	-0.00207	-0.00365	0.00529	0.00124	-0.00066	31.9	-0.0006	-0.00041	0.00103	3.56	-0.00931	-0.00404	5.4	-0.0499
z	2	7	7	7	2	2	2	7	2	7	2	2	2	2	7	2	7	2	2	7	2
Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	1/6m	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Analyte	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Selenium	Silver	Sodium	Thallium
Analytical Method	SW6010	SW6010	SW7060	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW7421	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010

NC = Not calculated. UCL cannot be calculated with only one site result. (1) Frequency of Occurrence is defined as the percent of results NoT b-flagged for 1995 data or results greater than blank UTLs for 1994 data

~

Galena Risk Assessment Water Conclusions

Table 1-1

METHOD=Inorganics
wer DEPTH=Groundwater
ive Site=Control Tow
RISKTYPE=Quantitat

(continued)

	Footnote	a a
Chemical	or Potential Concern?	o o
UTL for	Blank Data(2)	0.014126
Freq	0cc.(1)	0.0
	Maximum	0.00029
	Minimum	-0.00241 0.00936
	z	8 8
	Units	mg/L mg/L
	Analyte	Vanadium Zinc
***************************************	Method	SW6010 SW6010

N = 23

------ RISKTYPE=Quantitative Site=Control Tower DEPTH=Groundwater METHOD=Organics -----------

		Footnote	æ	Ø	æ	æ	σ
	Chemical of Potential	Concern?	N	No	No	No	No
UTL	for Blank	Data(2)	NC	NC	NC	NC	SC
	Freq	0cc.(1)	0.0	0.0	0.0	0.0	0.0
		Maximum	QN	Q.	QN	Q	Q
		Minimum	S	QN	Q.	QN	Q
		z	2	~	~	~	~
		Units	mg/L	mg/L	mg/L	mg/L	mg/L
		Analyte	1,1,1,2-Tetrachloroethane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane
	Analytical	Method	SW8260	SW8260	SW8260	SW8260	SW8260

(1) Frequency of Occurrence is defined as the percent of results NOT b-flagged for 1995 data or results greater than blank UTLs for 1994 data NC = Not calculated. UCL cannot be calculated with only one site result.

Galena Risk Assessment Water Conclusions Table 1-1

--- RISKTYPE=Quantitative Site=Control Tower DEPTH=Groundwater METHOD=Organics --------------------

(continued)

Footnote	æ	æ	æ	æ	σ	σ	Ø	æ	Œ	æ	σ	σ	σ	æ	Œ	σ	σ	æ	σ	æ
Chemical of Potential Concern?	N _O	No	No	N _O	Yes	No	No	No	No	No	No	No	No	No	S.	N _o	No	No	No	No
UTL for Blank Data(2)	S	NC C	S	NC	NC	N	N	S	S	NC	N	NC	NC	NC	S	NC	NC	NC	NC	NC
Freq of Occ.(1)	0.0	0.0	0.0	0.0	50.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Maximum	Q.	QN	QN	QN	0.00064	QN	Q	QN	QN	QN	QN	QN	ON	QN	QN	QN	ON.	Q.	Q	Ð
Minimum	S	QN	QN	Q.	0.00064	Q	N	Q	QN	Q.	QN	QN	Ð	Q	QN	QN	N Q	QN	QN	Q
z	2	~	7	~	2	7	7	2	7	~	7	7	~	7	7	7	7	~	7	7
Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Analyte	1,1-Dichloroethene	1,2,3-Trichloropropane	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1-Chlorohexane	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Butanone(MEK)	2-Chloroethyl vinyl ether	2-Chloronaphthalene	2-Chlorophenol
Analytical Method	SW8260	SW8260	SW8270	SW8260	SW8260	SW8260	SW8260	SW8260	SW8260	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	SW8260	SW8260	SW8270	SW8270

(1) Frequency of Occurrence is defined as the percent of results NOT b-flagged for 1995 data or results greater than blank UTLs for 1994 data NC = Not calculated. UCL cannot be calculated with only one site result.

Galena Risk Assessment Water Conclusions

Table 1-1

---- RISKTYPE=Quantitative Site=Control Tower DEPTH=Groundwater METHOD=Organics -----

(continued)

Footnote	æ	æ	σ	æ	æ	æ	æ	æ	ס	£	σ	σ	α	σ	æ	æ	σ	æ	σ	æ
Chemical of Potential Concern?	No	No	ON.	N _o	o _N	N _o	N	N _O	Yes	S.	N _o	No	No	No	No	N _O	N _O	No	No	No
UTL for Blank Data(2)	0.00115	NC C	N	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	, NC	N.	NC	NC	NC	SN
Freq of Occ.(1)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0	50.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Maximum	Q	QN	QN	QN	Q.	Q.	QN	Q	5E-6	0.000013	Ą	Q	Q	QN	ON	QN	QN	QN	Q	2
Minimum	QN	N QN	QN	QN	QN	QN	Q.	S	5E-6	0.000013	Ð	Q	Q	Q	Q.	Q	Q	Q	Q.	Q
z	2	7	7	2	2	2	2	2	7	2	2	7	7	2	2	7	~	~	7	7
Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Analyte	2-Hexanone	2-Methylnaphthalene	2-Methylphenol(o-cresol)	2-Nitroaniline	2-Nitrophenol	3,3'-Dichlorobenzidine	3-Nitroaniline	4,4'-DDD	4,4'-DDE	4,4'-DDT	4,6-Dinitro-2-methylphenol	4-Bromophenyl phenyl ether	4-Chloro-3-methylphenol	4-Chloroaniline	4-Chlorophenyl phenyl ether	4-Methyl-2-pentanone(MIBK)	4-Methylphenol/3-Methylphenol	4-Nitroaniline	4-Nitrophenol	Acenaphthene
Analytical Method	SW8260	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	SW8080	SW8080	SW8080	SW8270	SW8270	SW8270	SW8270	SW8270	SW8260	SW8270	SW8270	SW8270	SW8270

(1) Frequency of Occurrence is defined as the percent of results NOT b-flagged for 1995 data or results greater than blank UTLs for 1994 data NC = Not calculated. UCL cannot be calculated with only one site result.

Galena Risk Assessment Water Conclusions Table 1-1

------ RISKTYPE=Quantitative Site=Control Tower DEPTH=Groundwater METHOD=Organics -----------------(continued)

Footnote	Ø	•	ס	æ	ø	æ	æ	σ	æ	æ	σ	Œ	æ	æ	60	Ø	æ	σ	σ	æ
Chemical of Potential Concern?	O.N.	No	Yes	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	NO
UTL for Blank Data(2)	N	0.0149	NC	NC	0.000137	N	NC	NC	NC	NC	NC	NC	NC	NC	S	S	NC	NC	NC	NC
Freq of Occ.(1)	0.0	0.0	50.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Maximum	Q.	0.00615	0.000018	QN	0.00005	QN	QN QN	Q	QN QN		QN	QN	QN	Q.	Q.	2	QN	Q	QN	Q
Minimum	Q	0.00594	0.000018	QN	0.00005	QN	Q.	Q	Q.	Q	Q	QN	Q	Q	Q	QV Qv	QN QN	Q.	Q.	Q
z	2	2	7	2	7	?	7	7	2	7	~	2	7	7	7	7	2	7	~	7
Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Analyte	Acenaphthylene	Acetone	Aldrin	Anthracene	Benzene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Benzoic acid	Benzyl alcohol	Bromobenzene	Bromodichloromethane	Bromomethane	Butylbenzylphthalate	Carbon disulfide	Carbon tetrachloride	Chlordane	Chlorobenzene
Analytical Method	SW8270	SW8260	SW8080	SW8270	SW8260	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	SW8260	SW8260	SW8260	SW8270	SW8260	SW8260	SW8080	SW8260

(1) Frequency of Occurrence is defined as the percent of results NOT b-flagged for 1995 data or results greater than blank UTLs for 1994 data NC = Not calculated. UCL cannot be calculated with only one site result. (2) Blank UTLs for 1994 data only.

9

Galena Risk Assessment Water Conclusions Table 1-1

D=Organics
• METHOD=Organics
EPTH=Groundwater
Tower D
5
RISKTYPE=Quantitative Site=Cont
2
•

(continued)

Footnote	æ	æ	O	æ	æ	Ø	Œ	Ø	ס	æ	Ö	, o	æ	Œ	ø	ס	Ø	£	æ	æ
Chemical of Potential Concern?	No	о <u>х</u>	No	No	N _O	8	N _O	N _O	Yes	o _N	Yes	Yes	N _o	No	N _O	Yes	S.	N _o	No	No
UTL for Blank Data(2)	S	0.00085	0.000435	NC	NC	SC	S	S	0.0002	S	2.7E-6	0.017	N	NC	NC	S	NC	NC	NC	NC
Freq of Occ.(1)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0	0.0	50.0	50.0	0.0	0.0	0.0	50.0	0.0	100.0	0.0	0.0
Maximum	Q	QN	0.00031	QN	QN	Ð	Q.	QN	0.00021	QN	7.9E-6	0.034	Q.	Q	QN	9.4E-6	QN	3.6E-6	Q	Q
Minimum	Q	QN	0.00031	Q.	ON	Q	Q	Q	0.00021	QN	7.9E-6	0	QN	Q.	Q	9.4E-6	Q	3E-6	QN	QN
z	2	2	2	2	2	2	2	~	2	7	2	7	~	7	7	7	7	7	~	2
Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	. mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Analyte	Chloroethane	Chloroform	Chloromethane	Chrysene	Di-n-octylphthalate	Dibenz(a,h)anthracene	Dibenzofuran	Dibromochloromethane	Dibromomethane	Dibutyl phthalate	Dieldrin	Diesel Range Organics	Diethylphthalate	Dimethylphthalate	Diphenylamine (N-Nitrosodiphenylamine)	Endosulfan 1	Endosulfan II	Endosulfan sulfate	Endrin	Endrin aldehyde
Analytical Method	SW8260	SW8260	SW8260	SW8270	SW8270	SW8270	SW8270	SW8260	SW8260	SW8270	SW8080	AK102	SW8270	SW8270	SW8270	SW8080	SW8080	SW8080	SW8080	SW8080

NC = Not calculated. UCL cannot be calculated with only one site result.

⁽¹⁾ Frequency of Occurrence is defined as the percent of results NOT b-flagged for 1995 data or results greater than blank UTLs for 1994 data (2) Blank UTLs for 1994 data only.

Galena Risk Assessment Water Conclusions Table 1-1

.----- RISKIYPE=Quantitative Site=Control Tower DEPIH=Groundwater METHOD=Organics ------(continued)

Footnote	Œ	σ	æ	Ð	ס	ס	Œ	α	æ	æ	æ	æ	£	ø	æ	æ	æ	σ	α	æ
Chemical of Potential Concern?	o <u>N</u>	No	No	No	Yes	Yes	No.	No	No	No	No	No	No	No	No	No	No	No	No	NO ON
UTL for Blank Data(2)	0,00005	NC	NC	0.027	NC	NC	SN.	NC	NC	NC	NC	NC	NC	0.00283	N	NC	NC	NC	NC	S
Freq of Occ.(1)	0.0	0.0	0.0	0.0	100.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Maximum	Q.	QN	QN	0.01	3.3E-6	0.000056	QN	QN	Q	QN	QN	ON	5.8E-6	0.00019	Q	Q	Q	QN	QN	Ð
Minimum	S	Ð	g	0.009	Z-35	1E-7	Q	QN	N ON	Q	QN	ND	5.8E-6	0.00018	Q	Q.	Q.	QN	QN	Ð
z	8	~	7	2	7	7	7	7	2	~	7	7	7	7	7	7	7	7	. 7	~
Units	mg/L	mg/L									mg/L			mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Analyte	Ethylbenzene	Fluoranthene	Fluorene	Gasoline Range Organics	Heptachlor	Heptachlor epoxide	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-cd)pyrene	Isophorone	Methoxychlor	Methylene chloride	N-Nitrosodipropylamine	Naphthalene	Nitrobenzene	PCB-1016	PCB-1221	PCB-1232
Analytical Method	SW8260	SW8270	SW8270	AK101	SW8080	SW8080	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	SW8080	SW8260	SW8270	SW8270	SW8270	SW8080	SW8080	SW8080

(1) Frequency of Occurrence is defined as the percent of results NOT b-flagged for 1995 data or results greater than blank UTLs for 1994 data NC = Not calculated. UCL cannot be calculated with only one site result.

ထ

Galena Risk Assessment Water Conclusions Table 1-1

METHOD=Organics
. DEPTH≕Groundwater
ite=Control Tower
RISKTYPE=Quantitative Si
:

(continued)

Footnote	æ	æ	æ	œ	ø	Ø	σ	σ	σ	σ	ø	æ	σ	ס	Φ	σ	σ	σ	ס	æ
Chemical of Potential Concern?	8	ON O	No	No	No	No	No	No	N _O	No	No	N _O	No	Yes	N _O	No	NO NO	No	Yes	N _O
UTL for Blank Data(2)	NC	NC	NC NC	S	S	S	S	S	0.00005	NC	0.000267	NC	NC	NC	S	NC	NC	NC	NC	NC
Freq of 0cc.(1)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0	50.0	0.0
Maximum	S	Q	QN	QN	QV	Q	Q.	QN	N N	QN	0.00013	QN	Q	0.00928	QN	QN	QN	QN	7.1E-6	Q
Minimum	Q	QN	QN	QN	QN	Q	Q	Q.	Q.	ON	0.00003	QN	Q	0.00033	QN	Q	Q	Q	7.1E-6	S
z	7	7	2	7	7	7	2	2	2	7	2	2	2	2	2	2	2	7	7	~
Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Analyte	PCB-1242	PCB-1248	PCB-1254	PCB-1260	Pentachlorophenol	Phenanthrene	Phenot	Pyrene	Styrene	Tetrachloroethene	Toluene	Toxaphene	Tribromomethane(Bromoform)	Trichloroethene	Trichlorofluoromethane	Vinyl acetate	Vinyl chloride	alpha-BHC	beta-BHC	bis(2-Chloroethoxy)methane
Analytical Method	SW8080	SW8080	SW8080	SW8080	SW8270	SW8270	SW8270	SW8270	SW8260	SW8260	SW8260	SW8080	SW8260	SW8260	SW8260	SW8260	SW8260	SW8080	SW8080	SW8270

(1) Frequency of Occurrence is defined as the percent of results NOT b-flagged for 1995 data or results greater than blank UTLs for 1994 data NC = Not calculated. UCL cannot be calculated with only one site result. (2) Blank UTLs for 1994 data only.

Table 1-1 Galena Risk Assessment Water Conclusions

-- RISKTYPE=Quantitative Site=Control Tower DEPTH=Groundwater METHOD=Organics ------

(continued)

	Footnote	æ	, es	æ	ס	æ	æ	ס	ъ	æ	ъ	æ
Chemical of Potential	Concern?	No	NON	No	Yes	No	No	Yes	Yes	N S	Yes	No
for Blank			NC	NC	NC	NC	8.9E-6	NC	NC	SC	NC	NC
Freq	Occ.(1)	0.0	0.0	0.0	50.0	0.0	0.0	50.0	50.0	0.0	50.0	0.0
	Maximum	QN	QV	QV	0.0233	ON	QN	0.000013	0.00007	QN	0.00133	QN
	Minimum	Q.	Q	QN	0.0233	QN	Q	0.000013	0.00007	QN	0.00133	QN
	z	8	7	2	7	2	2	7	2	~	7	~
	Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	Analyte	bis(2-Chloroethyl)ether	bis(2-Chloroisopropyl)ether	bis(2-Ethylhexyl)phthalate	cis-1,2-Dichloroethene	cis-1,3-Dichloropropene	delta-BHC	gamma-BHC(Lindane)	m&p-Хуlenes	o-Xylene	trans-1,2-Dichloroethene	trans-1,3-Dichloropropene
Analytical	Method	SW8270	SW8270	SW8270	SW8260	SW8260	SW8080	SW8080	SW8260	SW8260	SW8260	SW8260

N = 130

(1) Frequency of Occurrence is defined as the percent of results NOT b-flagged for 1995 data or results greater than blank UTLs for 1994 data NC = Not calculated. UCL cannot be calculated with only one site result. (2) Blank UTLs for 1994 data only.

Galena Risk Assessment Water Conclusions Table 1-1

	!
	METHOD=Inorganics
	DEPTH=Groundwater
	: Runway
	e Site=Southeast
	RISKTYPE=Quantitativ
,	-

Footnote	ပ	ပ	v	υ	Φ	Φ	U	υ	U	ပ	U	U	ပ	U	U	ပ	ပ	ပ	ပ	ပ	U
Chemical of Potential Concern?	N O	NO	No	No	Yes	No	No	N _O	No	N _O	S.	N _O	SN ON	N _o	No	N _O	N _O	N _O	N _O	No	ON O
UTL for Blank Data(2)	NC	S	Š	Š	Š	S	S	S	NC	S	S	NC	NC	S	NC	Š	S	Š	S	S	NC
Freq of Occ.(1)	100.0	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	50.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Maximum	0.0904	0.00583	0.032	0.632	0.00394	0.00851	217	0.0022	0.0228	0.00714	22	-0.00019	63.7	31.2	0.00877	0.0418	9.05	0.142	-0.00082	11.4	0.204
Minimum	-0.0291	-0.103	-0.0326	0.148	0	0.00143	87.6	0.00152	-0.00531	0	0.0107	-0.00118	9.68	0.0272	-0.0173	-0.00697	2.74	-0.0728	-0.0043	1.43	-0.167
z	4	4	4	4	4	4	4	7	4	7	4	4	4	4	4	4	4	4	4	4	4
Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Analyte	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Selenium	Silver	Sodium	Thallium
Analytical Method	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW7421	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010

NC = Not calculated. UCL cannot be calculated with only one site result. (1) Frequency of Occurrence is defined as the percent of results NOT b-flagged for 1995 data or results greater than blank UTLs for 1994 data

Table 1-1 Galena Risk Assessment Water Conclusions

------ RISKTYPE=Quantitative Site=Southeast Runway DEPTH=Groundwater METHOD=Inorganics -------(continued)

Footnote	ပပ
Chemical of Potential Concern?	N N N
UTL for Blank Data(2)	N N
Freq of Occ.(1)	100.0
Maximum	0.00346
Minimum	-0.00257
z	4 4
Units	mg/L mg/L
Analyte	Vanadium Zinc
Analytical Method	SW6010 SW6010

N = 23

		Footnote	Œ	Œ	æ	Œ	æ
	Chemical of Potential	Concern?	N _o	No	No	No	No
UTL	for Blank	Data(2)	NC C	S	SC	NC	NC
	Freq	Occ.(1)	0.0	0.0	0.0	0.0	0.0
		Maximum	Q	ND	S	Ş	2
		Minimum	Š	Q	2	2	Q.
		z	4	7	4	4	4
		Units			mg/L		
		Analyte	1,1,1,2-Tetrachloroethane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane
	Analytical	Method	SW8260	SW8260	SW8260	SW8260	SW8260

NC = Not calculated. UCL cannot be calculated with only one site result.

(1) Frequency of Occurrence is defined as the percent of results NOT b-flagged for 1995 data or results greater than blank UTLs for 1994 data (2) Blank UTLs for 1994 data only.

Galena Risk Assessment

Water Conclusions

Table 1-1

---- RISKTYPE=Quantitative Site=Southeast Runway DEPTH=Groundwater METHOD=Organics -------(continued)

Footnote	æ	æ	æ	æ	ס	æ	æ	Ø	в	æ	æ	в	σ	σ	σ	æ	æ	æ	æ	æ
Chemical of Potential Concern?	N _O	No	No	No	Yes	o _N	No	No	No	No No	No	No	No	No	No	No	No	No	No	No
UTL for Blank Data(2)	NC	NC	NC	NC	SC	NC	NC	S	NC	NC	NC	N C	N.C	NC	N C	NC	NC	NC	NC	NC
Freq of Occ.(1)	0.0	0.0	0.0	0.0	50.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Maximum	Q.	QN	QN	QN	0.00455	QN	QN	Q	Q	ON	QN	Q	Q	QN	QN	Q	QN	QN QN	Q	Q
Minimum	Q	Q	Ş	QN	0.00107	Q.	QN	QN	Q	Q.	Q.	Q.	Q	Q.	Q.	Q	Q	S	Q.	ð
z	4	4	4	4	4	4	7	7	7	4	4	4	7	4	7	4	4	4	4	4
Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Analyte	1,1-Dichloroethene	1,2,3-Trichloropropane	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1-Chlorohexane	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Butanone(MEK)	2-Chloroethyl vinyl ether	2-Chloronaphthalene	2-Chlorophenol
Analytical Method	SW8260	SW8260	SW8270	SW8260	SW8260	SW8260	SW8260	SW8260	SW8260	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	SW8260	SW8260	SW8270	SW8270

(1) Frequency of Occurrence is defined as the percent of results NOT b-flagged for 1995 data or results greater than blank UTLs for 1994 data NC = Not calculated. UCL cannot be calculated with only one site result.

Table 1-1 Galena Risk Assessment Water Conclusions

(continued)

Footnote	Œ	ס	σ	60	Ø	Œ	œ	σ	œ	æ	Ø	ø	Ø	æ	æ	σ	ס	σ	ø	æ
Chemical of Potential Concern?	No	Yes	No O	N _O	No	No	No	No	o <mark>N</mark>	N _O	No	No	N _O	O.N.	No O	N _o	Yes	N _O	No	o _N
UTL for Blank Data(2)	NC	NC	NC	NC	NC	N O	NC	NC	NC	NC	NC	SC	NC	NC	NC	NC	NC	NC	S	NC
Freq of Occ.(1)	0.0	25.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25.0	0.0	0.0	0.0
Maximum	QN	0.0989	S	Q	Q.	Q	QN	QN	Q	Q.	SN.	S.	Q	Q	Q	2	0.000792	Q.	0.0135	QN
Minimum	Q.	0.0989	Q.	Q	Ð	Ð	Q	Q	QN	Q.	S.	S.	Q	Q	Q	Q	0.000792	Q.	0.00259	2
z	4	4	4	7	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Analyte	2-Hexanone	2-Methylnaphthalene	2-Methylphenol(o-cresol)	2-Nitroaniline	2-Nitrophenol	3,3'-Dichlorobenzidine	3-Nitroaniline	4,6-Dinitro-2-methylphenol	4-Bromophenyl phenyl ether	4-Chloro-3-methylphenol	4-Chloroaniline	4-Chlorophenyl phenyl ether	4-Methyl-2-pentanone(MIBK)	4-Methylphenol/3-Methylphenol	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Acetone	Anthracene
Analytical Method	SW8260	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	SW8260	SW8270	SW8270	SW8270	SW8270	SW8270	SW8260	SW8270

(1) Frequency of Occurrence is defined as the percent of results NOT b-flagged for 1995 data or results greater than blank UTLs for 1994 data NC = Not calculated. UCL cannot be calculated with only one site result.

Galena Risk Assessment Water Conclusions Table 1-1

METHOD=Organics	
DEPTH=Groundwater	
Мау	
Site=Southeast Run	
RISKTYPE=Quantitative	

					Footnote	70	Ø	σ	ю	Ø	æ	Ø	σ	Œ	æ	σ	σ	Œ	œ	œ	ō	70	0	σ	æ
			Chemical	of Potential	Concern?	Yes	No	No	N _O	N _N	No	No	Yes	S S	No	N	No	No	N _o	S S	Yes	Yes	Yes	N _O	N
OD=Organics		UTL	for	Blank	Data(2)	N C	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	Ş	NC	NC	NC	NC	NC	NC	SC
dwater METH			Freq	oŧ	Occ.(1)	50.0	0.0	0.0	0.0	0.0	0.0	0.0	25.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25.0	25.0	25.0	0.0	0.0
SKTYPE=Quantitative Site=Southeast Runway DEPTH=Groundwater METHOD=Organics	-				Maximum	0.0581	QN	Q.	QN N	Q	Q	QN	0.00313	Ð	S.	Q.	Ð	QN.	ON	Q.	0.000059	0.000039	0.00119	QN	QN
theast Runway	(continued)				Minimum	0.000051	Q	Q	Q.	Q	QN	Q	0.00313	Q.	Ð	Q	Q	QN	Ñ	Q.	0.000059	0.000039	0.00119	Ð	Q
te=Sou					z	4	4	4	4	4	4	4	4	7	7	4	4	4	7	4	7	4	4	4	.4
antitative S					Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
RISKTYPE=Qu					Analyte	Benzene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Benzoic acid	Benzyl alcohol	Bromobenzene	Bromodichloromethane	Bromomethane	Butylbenzylphthalate	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Chloromethane	Chrysene	Di-n-octylphthalate
				Analytical	Method	SW8260	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	SW8260	SW8260	SW8260	SW8270	SW8260	SW8260	SW8260	SW8260	SW8260	SW8260	SW8270	SW8270

(1) Frequency of Occurrence is defined as the percent of results NOT b-flagged for 1995 data or results greater than blank UTLs for 1994 data NC = Not calculated. UCL cannot be calculated with only one site result.

Table 1-1 Galena Risk Assessment Water Conclusions

----- RISKTYPE=Quantitative Site=Southeast Runway DEPTH=Groundwater METHOD=Organics ---------------(continued)

Footnote	æ	æ	ю	Φ	ס	ס	σ	æ	æ	ס	65	ס	ס	Φ	Ø	æ	æ	æ	æ	ø
Chemical of Potential Concern?	N O	N _O	N _O	ON ON	Yes	Yes	oN O	oN O	N _O	Yes	No	Yes	Yes	oN O	N _O	No	N O	No	0,1	No
UTL for Blank Data(2)	NC	S	S	NC	S	Š	NC	NC	NC	NC	NC	NC	S	NC	S	S	NC	Š	Ş	NC
Freq of Occ.(1)	0.0	0.0	0.0	0.0	25.0	100.0	0.0	0.0	0.0	50.0	0.0	25.0	25.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Махітит	Q.	Ş	QN	0.000559	0.000476	9.3	QN	ON	QN	0.0216	QN	0.00129	0.79	Q.	QN	QN	QN	QN	QN	0.001
Minimum	Q	ON.	ND	0.000189	0.000476	0.33	Q	QN	Q	0.000044	Q	0.00129	0.79	Ð	Q	QN	QN	QN	QN V	0.00018
2	4	7	4	7	4	4	7	7	4	4	4	4	4	4	4	4	4	4	4	4
Ø																				
Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Analyte	Dibenz(a,h)anthracene mg/L	Dibenzofuran mg/L	thane			Diesel Range Organics mg/L	Diethylphthalate mg/L	Dimethylphthalate mg/L	Diphenylamine (N-Nitrosodiphenylamine) mg/L	Ethylbenzene mg/L	ene	Fluorene mg/L	Gasoline Range Organics mg/L		Hexachlorobutadiene mg/L	entadiene	Hexachloroethane mg/L	,3-cd)pyrene	Isophorone mg/L	Methylene chloride mg/L

(1) Frequency of Occurrence is defined as the percent of results NOT b-flagged for 1995 data or results greater than blank UTLs for 1994 data NC = Not calculated. UCL cannot be calculated with only one site result.

Table 1-1 Galena Risk Assessment Water Conclusions

.---- RISKTYPE=Quantitative Site=Southeast Runway DEPTH=Groundwater METHOD=Organics ---------------

(continued)

Footnote	æ	70	æ	Ø	ס	œ	0	æ	ø	ס	æ	ס	æ	æ	æ	Ø	æ	æ	æ	æ
Chemical of Potential Concern?	8	Yes	No	No	Yes	No	No	No	No	Yes	No	Yes	S.	No	N _O	No	2	N _O	N _O	0
UTL for Blank Data(2)	NC	NC	Ş	NC	Š	NC	N O	N. C	S	NC	NC C	NC	NC	NC	Š	NC NC	N.	NC	NC	NC
Freq of Occ.(1)	0.0	25.0	0.0	0.0	25.0	0.0	0.0	0.0	0.0	100.0	0.0	75.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Maximum	QN	0.0807	Q.	<u>Q</u>	0.000739	QN	Q	Q	0.00174	900.0	S.	0.000206	9	R	Q.	ON.	Q.	QN	Q	욧
Minimum	QN	0.0807	Q	Q	0.000739	Q	Q	QN	0.000029	0.000195	Q	0.000021	Q.	Q	QN	ON	Q.	QN	Q	Q.
z	4	7	4	7	4	4	4	4	4	7	4	4	4	4	4	7	4	4	4	4
Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Analyte	N-Nitrosodipropylamine	Naphthalene	Nitrobenzene	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	Styrene	Tetrachloroethene	Toluene	Tribromomethane(Bromoform)	Trichloroethene	Trichlorofluoromethane	Vinyl acetate	Vinyl chloride	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl)ether	bis(2-Chloroisopropyl)ether	bis(2-Ethylhexyl)phthalate	50 cis-1,2-Dichloroethene mg/L
Analytical Method	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	SW8260	SW8260	SW8260	SW8260	SW8260	SW8260	SW8260	SW8260	SW8270	SW8270	SW8270	SW8270	SW8260

(1) Frequency of Occurrence is defined as the percent of results NOT b-flagged for 1995 data or results greater than blank UTLs for 1994 data NC = Not calculated. UCL cannot be calculated with only one site result. (2) Blank UTLs for 1994 data only.

Table 1-1 Galena Risk Assessment Water Conclusions

(continued)

	Footnote	Œ	ס	ס	æ	α
Chemical of Potential	Concern?	No	Yes	Yes	No	No
UTL for Blank	Data(2)	S	SC	NC	NC	NC
Freq		0.0	50.0	. 0.52	0.0	0.0
	Maximum	S	_	_		
	Minimum	S	0.000172	0.0108	Q	9
	z	4	4	7	7	4
	Units	mg/L	mg/L	mg/L	mg/L	mg/L
	Analyte	cis-1,3-Dichloropropene	m&p-Xylenes	o-Xylene	trans-1,2-Dichloroethene	trans-1,3-Dichloropropene
Analytical	Method	SW8260	SW8260	SW8260	SW8260	SW8260

N = 110

(1) Frequency of Occurrence is defined as the percent of results NOT b-flagged for 1995 data or results greater than blank UTLs for 1994 data NC = Not calculated. UCL cannot be calculated with only one site result.

Definition of Footnotes

- Average metal concentration on site significantly greater than average background metal concentration (alpha = 0.20). a. No measureable results on site. b. Average metal and
- Average metal concentration on site not significantly greater than average background metal concentration (alpha = 0.20). ់
 - Frequency of occurrence >= 5%. ę.
 - Frequency of occurrence < 5%. ė.
- No UTL for blanks was calculated and frequency of measureable results >= 5%.
- No UTL for blanks was calculated and frequency of measureable results < 5%. ÷ 6 ÷
 - Results are either not detected or KJ-flagged.

Water Site Comparisons To Background Galena Risk Assessment Table 1-2

----- RISKTYPE=Quantitative Site=Control Tower DEPTH=Groundwater -----

Bkgrd Bkgrd Site Units Detects Mean Max Detects mg/L 4/6 0.041547 0.057 2/2 mg/L 4/6 0.03153 0.0402 2/2 mg/L 5/6 0.004985 0.019 2/2 mg/L 6/6 0.374167 0.537 2/2 mg/L 4/6 0.000012 0.00052 2/2	Bkgrd Site Max Detects 0.057 2/2 0.0402 2/2 0.019 2/2 0.537 2/2	Site Detects 2/2 2/2 2/2 2/2 2/2			Site Mean -0.03545 0.0375 0.148 0.148	Site Max -0.0282 0.045 -0.00007 0.165	Test Type t-Test t-Test t-Test t-Test t-Test	P-val for Test 0.9479 0.3453 0.8395 0.9631	Test Concl NS NS NS NS	Test Power (a) 0.3296 0.5056 0.7071	0.241 0.031 0.893	N N V UTL for by the for the for the form of the form
4/6 0.000955 6/6 231.3333 3 4/6 0.00298 0		0.0009 326 0.00357		2/2	-0.00022 177 0.00104	0.00039	t-Test t-Test t-Test	0.8574 0.8231 0.7998	SSS	0.3191	0.006 498.563 0.011	0000
5/6 0.018398 0 4/6 0.006255 0 5/6 4.980275 0		0.0375 0.00824 18		2/2	-0.00274 0.014145 0.00195	-0.00182 0.023 0.00266	t-Test t-Test t-Test	0.9333 0.2673 0.9307	SSSS	0.3992 0.3630 0.3201	0.079 0.019 30.662	0 - 0
6/6 0.000473 6/6 47.45 6/6 10.36728		73.6 23.1 0.00356		2/2	34.4	36.9	t-lest t-Test t-Test	0.9783 0.9783 0.610	2	0.6293	125.328 45.351	
5/6 0.036132 0.102 6/6 5.92 7.3 4/6 0.051905 0.0217	0.102 7.3 0.0217	,		2/2	0.00207 4.36 0.024845	0.00311 5.16 0.059	t-Test t-Test Wilcoxon	0.8597	S S S	0.3618 0.9390 0.1805	0.179	00-
4/6 0.001778 0.00499 6/6 7.301667 11.3	0.00499		2 2	2 2	-0.00303	-0.00201 6.29	t-Test t-Test	0.9346	S S S	0.2775	0.015	00

(b) = Upper tolerance limit for the 95th percentile for background at the 95% confidence level NS = one-tailed test not statistically significant at the alpha = 0.20 significance level (a) = Power to detect a difference of 40% between background and the site (alpha=0.20) S = one-tailed test statistically significant at the alpha = 0.20 significance level * Background averages appear high due to proxies set at half the detection limit

09:01 Wednesday, October 18, 1995

Water Site Comparisons To Background Galena Risk Assessment

Table 1-2

^	ب.	۳	5	_	_	_
z	5	¥	Bkg		٥	J
UTL	for	Bkgrd	9	0.202	0.025	0.034
	Test	Power	(a)	0.1740	0.2876	0.5318
				NS	SN	SN
	P-Val	for	Test	0.6957	0.8145	0.5505
		Test	Type	t-Test	t-Test	t-Test
		Site	Max	-0.0188	0.00029	0.0116
		Site	Mean	-0.03435	-0.00106	0.01048
		Site	Detects	2/2	2/2	2/2
		Bkgrd	Мах			
		Bkgrd	Mean	-0.01085	0.003177	0.011098
		Bkgrd	Detects	9/7	9/7	9/5
			Units	mg/L	mg/L	mg/L
			Analyte	Thallium	Vanadium	Zinc
		Analytical	Method	SW6010	SW6010	SW6010
		UTL P-Val Test for	UTL P-Val Test for Bkgrd Bkgrd Site Site Test for Test Power Bkgrd	P-Val Bkgrd Bkgrd Site Site Test for Test F Analyte Units Detects Mean Max Detects Mean Max Type Test Concl	UTL Bkgrd Bkgrd Bkgrd Site Site Test for Test Fower Bkgrd Analyte Units Detects Mean Max Detects Mean Max Type Test Concl (a) (b) Thallium mg/L 4/6 -0.01085 0.00008 2/2 -0.03435 -0.0188 t-Test 0.6957 NS 0.1740 0.202	UTL Bkgrd Bkgrd Bkgrd Site Site Test for Test for Analyte Units Detects Mean Max Type Test Concl (a) (b) Thallium mg/L 4/6 -0.01085 0.00008 2/2 -0.03435 -0.0188 t-Test 0.6957 NS 0.1740 0.2025 Vanadium mg/L 4/6 0.003177 0.00341 2/2 -0.00106 0.00029 t-Test 0.8145 NS 0.2876 0.025

N = 23

	^ ~	UIL	for	Bkgrd	0	0	M
; ; ;	UTL	for	Bkgrd	(p)		0.100	0.008
		Test	Power	(a)	0.3571	0.3849	0.1671 (
			Test	Concl	SN		NS
		P-Val	for	Test	0.7560	0.9977	0.5000
oundwater .			Test	Type	t-Test	t-Test	Wilcoxon
ay DEPTH=Gr			Site	Max	0.0904	0.00583	0.032
RISKTYPE-Quantitative Site=Southeast Runway DEPTH-Groundwater			Site	Mean	0.016708	-0.05552	0.005225
e Site=Sou			Site	Detects	7/7	4/4	4/4
luantitativ			Bkgrd		0.057	0.0402	0.00809
RISKTYPE=Q			Bkgrd	Mean	0.041547	0.03153	0.049933
 			Bkgrd	Detects	9/7	9/4	9/4
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				Units	mg/L	mg/L	mg/L
				Analyte	Aluminum	Antimony	Arsenic
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Analytical	Method	SW6010	SW6010	SW6010

(b) = Upper tolerance limit for the 95th percentile for background at the 95% confidence level NS = one-tailed test not statistically significant at the alpha = 0.20 significance level (a) = Power to detect a difference of 40% between background and the site (alpha=0.20) S = one-tailed test statistically significant at the alpha = 0.20 significance level * Background averages appear high due to proxies set at half the detection limit

Water Site Comparisons To Background Galena Risk Assessment Table 1-2

^ Z

Ę

														:
										P-Val		Test	for	UTL
Analytical			Bkgrd	Bkgrd	Bkgrd	Site	Site	Site	Test	for	Test	Power	Bkgrd	for
Method	Analyte	Units	Detects	Mean	Max	Detects	Mean	Мах	Type	Test	Concl	(a)	(p)	Bkgrd
SW6010	Rarium	/pm	9/9	0.374167	0.537	7/7	0.28525	CEY U	Uilcoxon	5798 0	V.	1001	708 0	-
SW6010	Beryllium	1/S	9/4	0.000012	0.00052	7/7	0.001733	0.00394	t-Test	0.0630	2 5	0.2013	0.005	, c
SW6010	Cadmium	mg/L	9/4	0.000955	0.0009	4/4	0.004353	0.00851	t-Test	0.0183	· ω	0.2856	0.006	· -
SW6010	Calcium	mg/L	9/9	231,3333	326	4/4	161.65	217	t-Test	0.9272	NS	0.8943	498.563	0
SW6010	Chromium	mg/L	9/5	0.00298	0.00357	7/7	0.001755	0.0022	t-Test	0.8924	NS	0.5942	0.011	٥
SW6010	Cobalt	mg/L	2/6	0.018398	0.0375	4/4	0.004813	0.0228	t-Test	0.9014	NS	0.4614	0.079	0
SW6010	Copper	mg/L	9/4	0.006255	0.00824	7/7	0.00306	0.00714	t-Test	0.9114	NS	0.6145	0.019	0
SW6010	Iron	mg/L	9/9	4.980275	18	7/7	5.53955	22	Wilcoxon	0.6218	SN	0.1770	30,662	0
SW7421	Lead	mg/L	9/9	0.000473	0.004	7/7	-0.00089	-0.00019	Wilcoxon	0.6965	NS	0.1824	0.011	0
SW6010	Magnesium	mg/L	9/9	47.45	73.6	4/4	37.82	63.7	t-Test	0.7452	NS	0.6870	125.328	0
SW6010	Manganese	mg/L	9/9	10.36728	23.1	7/7	7.9008	31.2	Wilcoxon	0.5413	NS	0.1717	45.351	0
SW6010	Molybdenum	mg/L	9/5	0.008	0.00356	4/4	-0.00433	0.00877	t-Test	0.9015	SN	0.3140	0.058	0
SW6010	Nickel	mg/L	9/9	0.036132	0.102	7/7	0.014683	0.0418	t-Test	0.8291	SN	0.4301	0.179	0
SW6010	Potassium	mg/L	9/9	5.92	7.3	4/4	5.185	9.05	t-Test	0.7071	SN	0.8276	10.312	0
SW6010	Selenium	mg/L	9/4	0.051905	0.0217	7/7	0.044675	0.142	Wilcoxon	0.5000	SN	0.1671	0.022	٣
SW6010	Silver	mg/L	9/4	0.001778	0.00499	7/7	-0.00252	-0.00082	t-Test	0.9704	NS	0.3136	0.015	0
SW6010	Sodium	mg/L	9/9	7.301667	11.3	7/7	6.075	11.4	t-Test	0.7122	SN	0.6971	17.051	0
SW6010	Thallium	mg/L	9/1	-0.01085	0.00008	7/7	0.02095	0.204	t-Test	0.3233	NS	0.1827	0.202	-
SW6010	Vanadium	mg/L	9/4	0.003177	0.00341	7/7	0.000123	0.00346	t-Test	0.8213	SN	0.3283	0.025	0

(b) = Upper tolerance limit for the 95th percentile for background at the 95% confidence level NS = one-tailed test not statistically significant at the alpha = 0.20 significance level (a) = Power to detect a difference of 40% between background and the site (alpha=0.20) S = one-tailed test statistically significant at the alpha = 0.20 significance level

* Background averages appear high due to proxies set at half the detection limit

Water Site Comparisons To Background Galena Risk Assessment

Table 1-2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	^ ~	J <u>T</u> 1	for	Bkgrd	0
	UTL		Bkgrd		0.034 0
; ; ; ; ; ; ;		Test	Power	(a)	0.9977 NS 0.6849
			Test		NS
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		P-Val	for		0.9977
oundwater -			Test	Type	0 t-Test
DEPTH=Gro			Site	Max	0
(continued)			Site	Mean	-0.00168
e Site≕Southeast (continued)			Site	Detects	7/7
uantitativ			Bkgrd	Мах	0.0193
KISKIYPE=Q			Bkgrd Bkgrd	Mean	0.011098 0.0193
; ; ; ; ; ;			Bkgrd	Detects	9/4
1 1 1 1 1				Units	mg/L
				Analyte	Zinc
				Method	SW6010

N = 23

(b) = Upper tolerance limit for the 95th percentile for background at the 95% confidence level NS = one-tailed test not statistically significant at the alpha = 0.20 significance level (a) = Power to detect a difference of 40% between background and the site (alpha=0.20) S = one-tailed test statistically significant at the alpha = 0.20 significance level * Background averages appear high due to proxies set at half the detection limit

For Risk Assessments And Toxicity Screening

....... RISKTYPE=Quantitative Site=Control Tower DEPTH=Groundwater METHOD=Organics

									826
Analytical								Mean	מכר
Method	Analyte	Units	z	Detects	Minimum	Maximum	Distribution	(a)	(a,b)
SW8260	1,2-Dichloroethane	mg/L	~	-	0.00064	0.00064	Normal	3.28E-04	2.30E-03
SW8080	4,4'-DDE	mg/L	7	-	9-3S	5E-6	Normal	3.32E-06	1.39E-05
SW8080	Aldrin	mg/L	7	_	0.000018	0.000018	Normal	8.93E-06	6.43E-05
SW8260	Dibromomethane	mg/L	7	-	0.00021	0.00021	Normal	1.13E-04	7.26E-04
SW8080	Dieldrin	mg/L	7	-	7.9E-6	7.9E-6	Normal	5.25E-06	2.20E-05
AK102	Diesel Range Organics	mg/L	7	~	0	0.034	Normal	1.70E-02	1.24E-01
SW8080	Endosulfan I	mg/L	8	-	9-46-6	9.4E-6	Normal	5.67E-06	2.92E-05
SW8080	Heptachlor	mg/L	7	2	2-35	3.3E-6	Normal	1.85E-06	1.10E-05
SW8080	Heptachlor epoxide	mg/L	7	2	16-7	0.000056	Normal	2.78E-05	2.03E-04
SW8260	Trichloroethene	mg/L	7	~	0.00033	0.00928	Normal	4.81E-03	3.31E-02
SW8080	beta-BHC	mg/L	7	-	7.1E-6	7.1E-6	Normal	3.61E-06	2.56E-05
SW8260	cis-1,2-Dichloroethene	mg/L	2	-	0.0233	0.0233	Normal	1.17E-02	8.51E-02
SW8080	gamma-BHC(Lindane)	mg/L	7	-	0.000013	0.000013	Normal	7.39E-06	4.47E-05
SW8260	m&p-Xylenes	mg/L	7	-	0.00007	0.00007	Normal	6.57E-05	9.26E-05
SW8260	trans-1,2-Dichloroethene	mg/L	7	,-	0.00133	0.00133	Normal	6.84E-04	4.76E-03

N = 15

ND = Not detected.

NC = Not calculated. UCL cannot be calculated with only one site result.

NOTE: A mean associated with Log Normal data was calculated using a scale bias correction factor.

a. Random uniform numbers, between zero and the lesser of the minimum result and the detection limit, substituted for non-detected values. b. One-sided 95% upper confidence limit for the mean. ~

For Risk Assessments And Toxicity Screening Galena Water COPCs Table 1-3

	826	NCL NC	(a,b)	1.73E-03 3.99E-03
sɔ		Mean	(a)	1.73E-03
RISKTYPE=Quantitative Site=Southeast Runway DEPTH=Groundwater METHOD=Inorganics			Distribution	Normal
H=Groundwater			Maximum	0.00394
Runway DEPT			Minimum	0
=Southeast			Detects	4
e Site			z	4
=Quantitativ			Units	mg/L
			Analyte Units	Beryllium mg/L
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Analytical	Method	SW6010

1 0.000792 0.000792 Normal 5.72E-02 1.07E+12 2 0.000051 0.0581 Log Normal 1.45E-02 1.97E+31 1 0.00313 0.00313 Normal 1.04E-03 2.70E-03 1 0.000059 0.000059 Normal 3.89E-05 6.29E-05 1 0.000039 0.000039 Normal 2.13E-05 3.67E-05 1 0.00119 0.00119 Nonparametric 3.65E-04 1.02E-03	Analyte 1,2-Dichloroethane
0.000792 Normal 5.72E-04 8 0.0581 Log Normal 1.45E-02 0.00313 Normal 1.04E-03 0.000059 Normal 3.89E-05 0.000039 Normal 2.13E-05 0.00119 Normanetric 3.65E-04	mg/L 4
0.0581 Log Normal 1.45E-02 0.00313 Normal 1.04E-03 0.000059 Normal 3.89E-05 0.000039 Normal 2.13E-05 0.00119 Nonparametric 3.65E-04	mg/L 4
0.00313 Normal 1.04E-03 3 0.000059 Normal 3.89E-05 0 0.000039 Normal 2.13E-05 0 0.00119 Nonparametric 3.65E-04	4 7/Bm
0.000059 Normal 3.89E-05 0.000039 Normal 2.13E-05 0.00119 Nonparametric 3.65E-04	mg/L 4
0.000039 Normal 2.13E-05 0.00119 Nonparametric 3.65E-04	mg/L 4
0.00119 Nonparametric 3.65E-04	4 7/BW
	4 7/BW

ND = Not detected.

NC = Not calculated. UCL cannot be calculated with only one site result.

NOTE: A mean associated with Log Normal data was calculated using a scale bias correction factor.

a. Random uniform numbers, between zero and the lesser of the minimum result and the detection limit, substituted for non-detected values.

b. One-sided 95% upper confidence limit for the mean.

Table 1-3 Galena Water COPCs For Risk Assessments And Toxicity Screening

...... RISKTYPE=Quantitative Site=Southeast Runway DEPTH=Groundwater METHOD=Organics --------------

(continued)

95%	NCF	(a,b)	4.98E-04	3.78E+04	1.81E-02	1.31E-03	1.50E+07	6.78E-02	7.79E-04	5.07E-03	2.10E+04	1.346+18	9.08E-03
	Mean	(B)	2.23E-04	2.78E+00	5.43E-03	7.91E-04	2.15E-01	2.08E-02	4-62E-04	1.66E-03	6.58E-05	7.16E-03	2.80E-03
		Distribution	Normat	Log Normal	Nonparametric	Normal	Log Normal	Nonparametric	Normal	Nonparametric	Log Normal	Log Normal	Nonparametric
		Maximum	0.000476	9.3	0.0216	0.00129	0.79	0.0807	0.000739	900.0	0.000206	0.0284	0.0108
		Minimum	0.000476	0.33	0.000044	0.00129	0.79	0.0807	0.000739	0.000195	0.000021	0.000172	0.0108
		Detects	-	4	7	-	-	-	-	4	m	2	-
		Z	4	4	4	4	4	4	4	4	7	7	4
		Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
		Analyte	Dibutyl phthalate	Diesel Range Organics	Ethylbenzene	Fluorene	Gasoline Range Organics	Naphthalene	Phenanthrene	Toluene	Trichloroethene	m&p-Xylenes	o-Xylene
:	Analytical	Method	SW8270	AK102	SW8260	SW8270	AK101	SW8270	SW8270	SW8260	SW8260	SW8260	SW8260

N = 19

ND = Not detected.

NC = Not calculated. UCL cannot be calculated with only one site result.

NOTE: A mean associated with Log Normal data was calculated using a scale bias correction factor.

a. Random uniform numbers, between zero and the lesser of the minimum result and the detection limit, substituted for non-detected values. b. One-sided 95% upper confidence limit for the mean.

Table 2-1 Galena Risk Assessment Soil Conclusions

--- RISKTYPE=Quantitative Site=Control Tower DEPTH=Surface METHOD=Inorganics ----

			Footnote	v	٩	ပ	ပ	ပ	ပ	U	ပ	U	ပ	υ	۵	U	U	U	U	ပ	U	U	υ	۵
	Chemical	of Potential	Concern?	No	Yes	N	No	S.	No	N _O	No	No	No	No	Yes	No	N _O	O.X	No	No	No	N _O	No	Yes
UTL	for	Blank	Data(2)	S	NC	NC	N	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	N O	NC	NC	NC	NC
	Fred	of	0cc.(1)	100.0	100.0	100.0	100.0	33.3	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
			Maximum	11800	49.5	11.7	192	0.337	-0.217	15400	38.8	9.58	22.9	21400	76.6	7580	406	1.64	27.8	1270	0.593	-0.669	427	29.4
			Minimum	5510	12.9	3.37	74.9	0.0294	-1.18	3390	10.3	2	8.82	10200	3.85	3080	187	0.265	12.8	483	0.0712	-1.48	136	-1.18
			z	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
			Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
			Analyte	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Selenium	Silver	Sodium	Thallium
		Analytical	Method	SW6010	SW6010	SW7060	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW7421	SW6010	SW6010	SW6010	SW6010	SW6010	SW7740	SW6010	SW6010	SW6010

NC = Not calculated. UCL cannot be calculated with only one site result.

(1) Frequency of Occurrence is defined as the percent of results NOT b-flagged for 1995 data or results greater than blank UTLs for 1994 data (2) Blank UTLs for 1994 data only. ~

Galena Risk Assessment Soil Conclusions

Table 2-1

---- RISKTYPE=Quantitative Site=Control Tower DEPTH=Surface METHOD≖Inorganics -------

(continued)

Footnote	ပပ
Chemical of Potential Concern?	N N
UTL for Blank Data(2)	N N N
Freq of Occ.(1)	100.0
Maximum	44.6
Minimum	22.4
z	9 9
Units	mg/kg mg/kg
Analyte	
Analytical Method	SW6010 SW6010

N = 23

		Footnote	Ø	σ	æ	Ø	æ
	Chemical of Potential	Concern?	No	N _o	N _o	oN o	No
UTL	for Blank	Data(2)	N S	S S S	NC	N O	N C
	Freq of	0cc.(1)	0.0	0.0	0.0	0.0	0.0
		Maximum	QN QN	Q.	욮	2	Q
		Minimum	QV	QN	2	Ş	Q
		z	9	9	9	•	9
		Units			mg/kg		
		Analyte	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene
	Analytical	Method	SW8240	SM8240	SW8240	SW8240	SW8240

NC = Not calculated. UCL cannot be calculated with only one site result.

(1) Frequency of Occurrence is defined as the percent of results NOT b-flagged for 1995 data or results greater than blank UTLs for 1994 data (2) Blank UTLs for 1994 data only.

Galena Risk Assessment Soil Conclusions Table 2-1

	RISKTYPE=Qu	RISKTYPE=Quantitative Site=Control Tower DEPTH=Surface METHOD=Organics	te=Cor	ntrol Tower	DEPTH=Surf	ace METHOD≕	Organics	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	; ; ; ;
				(population)					
							UTL		
						Freq	for	Chemical	
Analytical						of	Blank	of Potential	
Method	Analyte	Units	z	Minimum	Maximum	0cc.(1)	Data(2)	Concern?	Footnote
SW8270	1,2,4-Trichlorobenzene	mg/kg	9	S	QN QN	0.0	Š	ON.	æ
SW8270	1,2-Dichlorobenzene	mg/kg	9	9	QN	0.0	NC	No	æ
SW8240	1,2-Dichloroethane	mg/kg	9	2	Q	0.0	NC	No	в
SW8240	1,2-Dichloropropane	mg/kg	9	옾	Q	0.0	S	No	œ
SW8270	1,3-Dichlorobenzene	mg/kg	9	윤	Q.	0.0	S	No	œ
SW8270	1,4-Dichlorobenzene	mg/kg	9	Q	QN	0.0	NC	No	ø
SW8270	2,4,5-Trichlorophenol	mg/kg	9	S	Q	0.0	NC	No	ø
SW8270	2,4,6-Trichlorophenol	mg/kg	9	QN Q	N Q	0.0	NC	No	æ
SW8270	2,4-Dichlorophenol	mg/kg	9	Q	QN	0.0	SC	NO	ю
SW8270	2,4-Dimethylphenol	mg/kg	9	S	Q.	0.0	NC NC	No	æ
SW8270	2,4-Dinitrophenol	mg/kg	9	Q	QN	0.0	NC	N _O	æ
SW8270	2,4-Dinitrotoluene	mg/kg	9	S	Q	0.0	NC	No	Ø
SW8270	2,6-Dinitrotoluene	mg/kg	9	QN	N Q	0.0	NC	No	æ
SW8240	2-Butanone(MEK)	mg/kg	9	Q.	QN	0.0	NC	No	œ
SW8240	2-Chloroethyl vinyl ether	mg/kg	9	2	Q	0.0	, S	No	œ
SW8270	2-Chloronaphthalene	mg/kg	9	2	QN	0.0	S	No	æ
SW8270	2-Chlorophenol	mg/kg	9	S	Q.	0.0	NC NC	SN.	æ
SW8240	2-Hexanone	mg/kg	9	Q	QN	0.0	NC	No	æ
SW8270	2-Methylnaphthalene	mg/kg	•	0.0217	0.0231	33.3	NC	Yes	ס
SW8270	2-Methylphenol(o-cresol)	mg/kg	9	윤	Q	0.0	SC	No	æ

(1) Frequency of Occurrence is defined as the percent of results NOT b-flagged for 1995 data or results greater than blank UTLs for 1994 data NC = Not calculated. UCL cannot be calculated with only one site result. (2) Blank UTLs for 1994 data only.

Galena Risk Assessment Soil Conclusions Table 2-1

KISKLIPE-WUBHCITETIVE SITE-CONTOL TOWER DEFINESULTECE METHUD-OLGANICS	
DEP1 N=SULTACE	
OMer	continued)
ve site-control	(conti
NITE-WORLTON	
Ž	

Footnote	æ	æ	æ	æ	ъ	ъ	ס	Ø	æ	æ	æ	в	Œ	Ø	æ	æ	æ	æ	Ø	ס
Chemical of Potential Concern?	No	N _O	No	ON	Yes	Yes	Yes	N _o	No	No	N _O	No	No	N _O	o <mark>N</mark>	N _O	No ON	o <mark>N</mark>	No	Yes
UTL for Blank Data(2)	N	ž	S S	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	S	NC	NC
Freq of Occ.(1)	0.0	0.0	0.0	0.0	100.0	83.3	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	33.3
Maximum	身	QN	QN	QN	0.0301	0.00938	0.496	QN	QN	QN QN	Q	QN	Q.	S	QN	Q	QN	Q.	Q	0.00587
Minimum	QN	Q.	Q	QN	0.00187	0.00186	0.00159	Ð	Q	QN	8	N	ð	Q	Q	QN	QN	QN	Ð	99000.0
2	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Analyte	2-Nitroaniline	2-Nitrophenol	3,3'-Dichlorobenzidine	3-Nitroaniline	4,4'-000	4,4'-DDE	4,4'-DDT	4,6-Dinitro-2-methylphenol	4-Bromophenyl phenyl ether	4-Chloro-3-methylphenol	4-Chloroaniline	4-Chlorophenyl phenyl ether	4-Methyl-2-pentanone(MIBK)	4-Methylphenol/3-Methylphenol	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Acetone	Aldrin
Analytical Method	SW8270	SW8270	SW8270	SW8270	SW8080	SW8080	SW8080	SW8270	SW8270	SW8270	SW8270	SW8270	SW8240	SW8270	SW8270	SW8270	SW8270	SW8270	SW8240	SW8080

NC = Not calculated. UCL cannot be calculated with only one site result.

(1) Frequency of Occurrence is defined as the percent of results NOT b-flagged for 1995 data or results greater than blank UTLs for 1994 data

(2) Blank UTLs for 1994 data only.

Table 2-1 Galena Risk Assessment Soil Conclusions

(continued)

Footnote	ס	æ	ס	70	ס	70	70	œ	æ	σ	σ	σ	æ	65	æ	Œ	σ	æ	Œ	70
Chemical of Potential Concern?	Yes	No	Yes	Yes	Yes	Yes	Yes	No	No	No	N _O	No	NO.	No	No	N _O	No	No	No ON	Yes
UTL for Blank Data(2)	NC	NC	NC NC	NC	N.C	NC	NC	NC	S	NC	NC	NC	NC	NC	NC	Š	NC	NC	NC S	Š
Freq of Occ.(1)	16.7	0.0	16.7	16.7	16.7	16.7	16.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	16.7
Maximum	0.0211	S	0.077	0.0896	0.15	0.0777	0.15	Ş	S	9	NO.	9	8	Q	QN	Q	Q	Q	Q	0.106
Minimum	0.0211	S	0.077	0.0896	0.15	0.0777	0.15	2	용	윤	Q	2	용	Q	Q.	Q	Q	QN	Q	0.106
z	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	•	•	•	9
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Analyte	Anthracene	Benzene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Benzoic acid	Benzyl alcohol	Bromodichloromethane	Bromomethane	Butylbenzylphthalate	Carbon disulfide	Carbon tetrachloride	Chlordane	Chlorobenzene	Chloroethane	Chloroform	Chloromethane	Chrysene
Analytical Method	SW8270	SW8240	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	SW8240	SW8240	SW8270	SW8240	SW8240	SW8080	SW8240	SW8240	SW8240	SW8240	SW8270

(1) Frequency of Occurrence is defined as the percent of results NOT b-flagged for 1995 data or results greater than blank UTLs for 1994 data NC = Not calculated. UCL cannot be calculated with only one site result. (2) Blank UTLs for 1994 data only.

Galena Risk Assessment Soil Conclusions Table 2-1

er DEPTH=Surface METHOD=Organics
RISKTYPE=Quantitative Site=Control Tower DEPTH=Surface METHOD=Organics

Footnote	σ	σ	σ	σ	σ	ס	ס	æ	σ	æ	σ	ס	£	ø	ס	ø	ס	æ	æ	σ
Chemical of Potential Concern?	No	No	N _O	N _O	No	Yes	Yes	o <mark>N</mark>	N _O	No	Yes	Yes	ON O	No	Yes	S S	Yes	No No	No	Yes
UTL for Blank Data(2)	NC	NC	NC	NC	NC	NC	NC	NC	SC	NC	NC	NC NC	NC	NC	N _C	NC C	NC	NC	NC	NC
Freq of Occ.(1)	0.0	0.0	0.0	0.0	0.0	83.3	83.3	0.0	0.0	0.0	83.3	33.3	16.7	0.0	50.0	0.0	16.7	0.0	0.0	50.0
Maximum	Q	QN	QN	S	QN	0.0116	200	Q	Q	S	0.00336	0.000067	0.00204	0.00349	0.00326	Q.	0.201	Q	QN	0.00118
Minimum	S	QN	QV	Q	Q	0.000818	5.8	Q.	QN	S	0.000206	0.000063	0.00204	0.000548	0.000267	Q.	0.201	QN	QN	0.000171
z	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		ane .		ine			iics			Diphenylamine (N-Nitrosodiphenylamine)			a i						ganics	
Analyte	Di-n-octylphthalate	Dibenz(a,h)anthracene	Dibenzofuran	Dibromochloromethane	Dibutyl phthalate	Dieldrin	Diesel Range Organics	Diethylphthalate	Dimethylphthalate	Diphenylamine (N-	Endosulfan 1	Endosulfan 11	Endosulfan sulfate	Endrin	Endrin aldehyde	Ethylbenzene	Fluoranthene	Fluorene	Gasoline Range Organics	Heptachlor

NC = Not calculated. UCL cannot be calculated with only one site result.

⁽¹⁾ Frequency of Occurrence is defined as the percent of results NOT b-flagged for 1995 data or results greater than blank UTLs for 1994 data (2) Blank UTLs for 1994 data only.

14:04 Wednesday, October 18, 1995 7

Galena Risk Assessment Soil Conclusions Table 2-1

; ; ; ; ;	RISKTYPE=QL	RISKTYPE=Quantitative Site=Control Tower DEPTH=Surface METHOD=Organics (continued)	i te=Cc	ntrol Tower (continued)	DEPTH=Surfa	ce METHOD=0	rganics		
							UTL		
						Freq	for	Chemical	
Analytical						o	Blank	of Potential	
Method	Analyte	Units	z	Minimum	Maximum	0cc.(1)	Data(2)	Concern?	Footnote
SW8080	Heptachlor epoxide	mg/kg	•	0.00193	0.00263	33.3	S	Yes	σ
SW8270	Hexachlorobenzene	mg/kg	9	Q	Q.	0.0	S	S.	æ
SW8270	Hexachlorobutadiene	mg/kg	9	Q	QN Q	0.0	SC	N N	æ
SW8270	Hexachlorocyclopentadiene	mg/kg	9	QN	QN	0.0	NC	N _O	æ
SW8270	Hexachloroethane	mg/kg	9	Q	QN	0.0	SC	S.	Ø
SW8270	Indeno(1,2,3-cd)pyrene	mg/kg	9	0.068	0.068	16.7	S	Yes	v
SW8270	Isophorone	mg/kg	9	ð	Q	0.0	S	Q.	æ
SW8080	Methoxychlor	mg/kg	9	Q	Q	0.0	S	N _O	æ
SW8240	Methylene chloride	mg/kg	9	0.000522	0.00146	0.0	SC	ON.	ø
SW8270	N-Nitrosodipropylamine	mg/kg	9	Q	QN	0.0	NC	No	æ
SW8270	Naphthalene	mg/kg	9	Q.	QN	0.0	NC	N _O	œ
SW8270	Nitrobenzene	mg/kg	9	QN	Q.	0.0	NC	õ	œ
SW8080	PCB-1016	mg/kg	9	ð	QN	0.0	S	Š	ø
SW8080	PCB-1221	mg/kg	9	₽	Q	0.0	SC	Š	Ø
SW8080	PCB-1232	mg/kg	9	Q	Q	0.0	NC	N	σ
SW8080	PCB-1242	mg/kg	9	Q	QN	0.0	S	No	œ
SW8080	PCB-1248	mg/kg	9	Q	Q	0.0	NC	N _O	æ
SW8080	PCB-1254	mg/kg	9	Q	Q	0.0	S	No	æ
SW8080	PCB-1260	mg/kg	9	2	Q	0.0	S	No	Ø
SW8270	Pentachlorophenol	mg/kg	9	2	2	0.0	NC	N _O	æ

(1) Frequency of Occurrence is defined as the percent of results NOT b-flagged for 1995 data or results greater than blank UTLs for 1994 data NC = Not calculated. UCL cannot be calculated with only one site result. (2) Blank UTLs for 1994 data only.

ø

Galena Risk Assessment Soil Conclusions Table 2-1

			Footnote	ס	σ	ס	æ	Œ	σ	æ	σ	σ	σ	60	. ס	£	σ	60	æ	ס	σ	σ	ъ
	- a cimo d	of Potential	Concern?	Yes	No	Yes	No	N	No	No	No	No	No	No	Yes	No	N _O	No	No	Yes	No	N _O	Yes
ganics	UTL	Blank	Data(2)	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	S
• METHOD=Or	7 0	- - -	0cc.(1)	16.7	0.0	16.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	16.7	16.7	0.0	0.0	0.0	16.7	0.0	0.0	33.3
EPTH=Surface			Maximum	0.127	QN	0.184	S	Q	Q	Q	Q	Q	Q	QV	0.00703	0.00361	QN	Q	Q	0.0938	QN	QN	0.0103
ntrol Tower Di (continued)			Minimum	0.127	Q	0.184	2	Ş	Q	QN ON	Q.	Ð	Q	Q.	0.00703	0.00361	QN	Q	Q.	0.0938	Q	QN	0.00104
te=Cont (c			z	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
SKTYPE=quantitative Site=Control Tower DEPTH=Surface METHOD=Organics - (continued)			Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
RISKTYPE=Quar			Analyte	Phenanthrene	Phenol	Pyrene	Styrene	Tetrachloroethene	Toluene	Toxaphene	Tribromomethane(Bromoform)	Trichloroethene	Vinyl acetate	Vinyl chloride	alpha-BHC	beta-BHC	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl)ether	bis(2-Chloroisopropyl)ether	bis(2-Ethylhexyl)phthalate	cis-1,2-Dichloroethene	cis-1,3-Dichloropropene	delta-BHC
; ; ; ; ; ; ; ; ;		Analytical	Method	SW8270	SW8270	SW8270	SW8240	SW8240	SW8240	SW8080	SW8240	SW8240	SW8240	SW8240	SWB080	SW8080	SW8270	SW8270	SW8270	SW8270	SW8240	SW8240	SW8080

(1) Frequency of Occurrence is defined as the percent of results NOT b-flagged for 1995 data or results greater than blank UTLs for 1994 data NC = Not calculated. UCL cannot be calculated with only one site result. (2) Blank UTLs for 1994 data only.

Galena Risk Assessment Soil Conclusions Table 2-1

MFTHOD=Organics
DEPTH=Surface M
te=Control Tower
SKTYPE=Quantitative Si
RI

	7	Footnote	σ	æ	æ	æ	65
100	chemical of Potential	Concern?	Yes	No	No	No	No
1 of	Blank	Data(2)	NC	NC	S	NC	S
į	of	0cc.(1)	33.3	0.0	0.0	0.0	0.0
			0.00601	2	QN	Q	S
		Minimum	0.00078	Q	Q.	Q	S
		z	•	9	9	9	9
		Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Analyte	gamma-BHC(Lindane)	m&p-Xylenes	o-Xylene	trans-1,2-Dichloroethene	trans-1,3-Dichloropropene
	Analytical	Method	SW8080	SW8240	SW8240	SW8240	SW8240

----- RISKTYPE=Quantitative Site=Southeast Runway DEPTH=Subsurface METHOD=Inorganics ------

N = 130

Analytical Method Analyte Unit SW7421 Lead mg/k	of Blank of Potential
nalytical Method SW7421	
₹	Analytical

NC = Not calculated. UCL cannot be calculated with only one site result.

(1) Frequency of Occurrence is defined as the percent of results NOT b-flagged for 1995 data or results greater than blank UTLs for 1994 data (2) Blank UTLs for 1994 data only. Table 2-1

----- RISKTYPE=Quantitative Site=Southeast Runway DEPTH=Subsurface METHOD=Organics ---------------------------

	Footnote	nts no	ı co	σ	æ	æ	æ	σ	σ	σ	æ	æ	α	α	ω	æ	æ	æ	ס	σ	æ
Chemical of Potential	Concern?	0 2	, ON	N _O	No	N _O	N _O	No	No	No	No ON	N _O	N _O	N _O	No	N _O	N _O	ON ON	Yes	S.	ON
UTL for Blank	Data(2)	2 2	N S	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	N _C	NC	NC	SC	Š
Freq	occ.(1)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	33.3	0.0	0.0
	Maximum	2 2	Q	S	8	QN	QN	QN	QN	Ş	QN QN	QN Q	QN	QN	Q	9	N Q	S	0.0609	2	Q
	Minimum Minimum	2 2	QN	S	8	Q.	QN	Q	QN	QN	8	QN	QN	QN	Q.	QN	QN	Q	0.0181	Q.	Q
:	z v	•	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1	Analyte 1 1 1-Irichloroethene	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Butanone(MEK)	2-Chloroethyl vinyl ether	2-Chloronaphthalene
Analytical	Method SW8240	SW8240	SW8240	SW8240	SW8240	SW8270	SW8270	SW8240	SW8240	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	SW8240	SW8240	SW8270

(1) Frequency of Occurrence is defined as the percent of results NOT b-flagged for 1995 data or results greater than blank UTLs for 1994 data NC = Not calculated. UCL cannot be calculated with only one site result. (2) Blank UTLs for 1994 data only.

Galena Risk Assessment Soil Conclusions Table 2-1

				Footnote	65	σ	ס	σ	σ	σ	σ	æ	æ	æ	æ	63	σ	æ	σ	65	æ	ס	Œ	ס
		Chemical	of Potential	Concern?	No	No	Yes	No	No	No	No	No	No	No	No	N _O	N _O	No	No No	S O N	No O	Yes	No	Yes
	ULL	for	Blank	Data(2)	N	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	S
		Freq	φ	Occ.(1)	0.0	0.0	20.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	16.7	0.0	2.99
				Maximum	Q	9	235	QV	QN	QN	QN	Q	Q.	Ð	ð	S	Q	QV	Q.	Q.	Q	0.225	QN	0.175
(continued)				Minimum	S	2	0.0265	Q	2	QN	QN	2	Ð	2	2	2	Ð	ş	Q	N	Q	0.225	S	0.00315
3				z	•	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
				Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg												mg/kg	mg/kg	mg/kg	mg/kg
				Analyte	2-Chlorophenol	2-Hexanone	2-Methylnaphthalene	2-Methylphenol(o-cresol)	2-Nitroaniline	2-Nitrophenol	3,3'-Dichlorobenzidine	3-Nitroaniline	4,6-Dinitro-2-methylphenol	4-Bromophenyl phenyl ether	4-Chloro-3-methylphenol	4-Chloroaniline	4-Chlorophenyl phenyl ether	4-Methyl-2-pentanone(MIBK)	4-Methylphenol/3-Methylphenol	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Acetone
		:	Analytical	Method	SW8270	SW8240	SW8270	SW8270	SW8270		SW8270										SW8270	SW8270	SW8270	SW8240

(1) Frequency of Occurrence is defined as the percent of results NOT b-flagged for 1995 data or results greater than blank UTLs for 1994 data NC = Not calculated. UCL cannot be calculated with only one site result.

(2) Blank UTLs for 1994 data only.

Galena Risk Assessment Soil Conclusions Table 2-1

stive Site=Southeast Runway DEPTH=Subsurface METHOD=Organics
tive Site=Southeast Runway D
ative Site=Southeast Runway
ative Site=Southeast
ative (
Quantita
RISKTYPE=

Footnote	æ	ס	æ	æ	æ	æ	æ	В	Ø	æ	œ	Ø	æ	æ	σ	σ	σ	æ	æ	æ
Chemical of Potential Concern?	N _O	Yes	N _O	<mark>9</mark>	N _O	N _O	No	No	N _O	ON.	No	N _O	No	N _o	No	No	No.	No	No	NO NO
UTL for Blank Data(2)	NC	NC	NC	NC	NC	NC	NC	NC	NC	S	NC	NC	NC	NC	NC	NC	SC	S	NC	NC
Freq of Occ.(1)	0.0	16.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Maximum	QN	0.336	Q	QN	Q	QN	QN	Q.	ð	9	QN.	Q.	Q	Q	ð	9	Ð	S	Q	욮
Minimum	Q	0.336	Q	9	2	S	S	9	Ş	S	2	g	Q	Ð	2	2	₽	2	QN	Q.
z	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	•
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Analyte	Anthracene	Benzene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Benzoic acid	Benzyl alcohol mg	Bromodichloromethane	Bromomethane	Butylbenzylphthalate	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Chloromethane	Chrysene	Di-n-octylphthalate
Analytical Method	SW8270	SW8240	SW8270								SW8240	SW8270	SW8240	SW8240	SW8240	SW8240	SW8240	SW8240	SW8270	SW8270

NC = Not calculated. UCL cannot be calculated with only one site result.
(1) Frequency of Occurrence is defined as the percent of results NOT b-flagged for 1995 data or results greater than blank UTLs for 1994 data (2) Blank UTLs for 1994 data only.

Table 2-1 Galena Risk Assessment Soil Conclusions

nics
METKOD≂Organi
ubsurface
DEPTH=Suk
unway
Site=Southeast R
ive
itat
RISKTYPE=Quant

				Footnote	æ	æ	æ	æ	Ծ	σ	æ	æ	ס	æ	ס	ס	æ	æ	æ	æ	æ	æ	Ð	æ
		Chemical	of Potential	Concern?	N _O	No	No	No	Yes	No	No	No	Yes	No	Yes	Yes	ON	No	No	No	No	No	No	No
	UTL	for	Blank	Data(2)	N C	NC	S	NC	NC	NG	NC	NC	NC	N N	NC	NC	NC	NC	NC	NC	S	NC	NC	S
•		Freq	of	0cc.(1)	0.0	0.0	0.0	0.0	20.0	0.0	0.0	0.0	16.7	0.0	16.7	33.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
				Maximum	Q	QN	QN.	QN	18000	QN	QN	QN	6.81	Q	0.563	540	QN	QN	QN	Q	Q	Q.	0.00183	Q
(pənı				Minimum	Ā	₽	S	Q.	92	Q	Q	ON	6.81	Q.	0.563	150	Q	QN	QN	QN	Q	QN	0.000472	QN
(continued)				z	9	9	9	9	9	9	9	9	9	•	9	9	9	9	9	9	9	9	9	9
				Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
				Analyte	Dibenz(a,h)anthracene	Dibenzofuran	Dibromochloromethane	Dibutyl phthalate	Diesel Range Organics	Diethylphthalate	Dimethylphthalate	Diphenylamine (N-Nitrosodiphenylamine)	Ethylbenzene	Fluoranthene	Fluorene	Gasoline Range Organics	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-cd)pyrene	Isophorone	Methylene chloride	N-Nitrosodipropylamine
			Analytical	Method	SW8270	SW8270	SW8240	SW8270	AK102	SW8270	SW8270	SW8270	SW8240	SW8270	SW8270	AK101	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	SW8240	SW8270

(1) Frequency of Occurrence is defined as the percent of results NOT b-flagged for 1995 data or results greater than blank UTLs for 1994 data NC = Not calculated. UCL cannot be calculated with only one site result.

(2) Blank UTLs for 1994 data only.

lable 2-1 Galena Risk Assessment Soil Conclusions

Table 2-1

---- RISKIYPE=Quantitative Site=Southeast Runway DEPIH=Subsurface METHOD=Organics -------

(continued)

Footnote of Potential Chemical Concern? Yes ş ş ş မှ ş 운 Blank Data(2) for 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 000.(1) Freq 0.0 0.0 0.0 0.0 0.0 16.7 ŏ Maximum 29.8 0.047 Minimum 4.54 0.0577 ₽ 웆 0.0141 mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units mg/kg bis(2-Chloroisopropyl)ether bis(2-Chloroethoxy)methane bis(2-Ethylhexyl)phthalate Tribromomethane(Bromoform) bis(2-Chloroethyl)ether cis-1,3-Dichloropropene cis-1,2-Dichloroethene Tetrachloroethene **Pentachlorophenol** Trichloroethene Vinyl chloride Vinyl acetate Ni trobenzene Phenanthrene Naph tha lene m&p-Xylenes Toluene Analyte Styrene Phenol Pyrene Analytical SW8240 SW8240 SW8240 SW8240 SW8240 SW8240 SW8240 SW8270 SW8270 SW8270 SW8270 Method SW8270 SW8270 SW8270 SW8270 SW8270 SW8240 SW8240

(1) Frequency of Occurrence is defined as the percent of results NOT b-flagged for 1995 data or results greater than blank UTLs for 1994 data NC = Not calculated. UCL cannot be calculated with only one site result. (2) Blank UTLs for 1994 data only.

Table 2-1 Galena Risk Assessment Soil Conclusions

#ETHOD=Organics
nway DEPTH=Subsurface
ite=Southeast Run
RISKIYPE=Quantitative S
RI

Footnote	.
Chemical of Potential Concern?	N V R
UTL for Blank Data(2)	NC NC
Freq of Occ.(1)	33.3 0.0 0.0
Махітыт	13.2 ND ND
Minimum	0.00482 ND ND
2	999
Units	mg/kg mg/kg mg/kg
Analyte	o-Xylene trans-1,2-Dichloroethene trans-1,3-Dichloropropene
Analytical Method	SW8240 SW8240 SW8240

N = 104

			Footnote	ڡٛ	
	Chemical	of Potential	Concern?	Yes	
UTL	for	Blank	Data(2)	NC	
	Freq	oŧ	0cc.(1)		
			Maximum	51.3	- X
			Minimum	8.9	
			z	4	
			e Units	mg/kg	
			Analyte	Lead	
		Analytical	Method	SW7421	

NC = Not calculated. UCL cannot be calculated with only one site result.

(1) Frequency of Occurrence is defined as the percent of results NOT b-flagged for 1995 data or results greater than blank UTLs for 1994 data (2) Blank UTLs for 1994 data only.

Galena Risk Assessment Soil Conclusions Table 2-1

			Footnote	æ	æ	σ	æ	ø	65	σ	σ	ø	Ø	æ	Œ	æ	Ø	σ	æ	σ	œ	ø	œ	
	Chemical	of Potential	Concern?	∞	No No	o _X	N _O	N _O	No	N _o	No	N _O	No	No	N _O	No	No	N	N _o	N _O	N _O	N _O	No	
UTL	for	Blank	Data(2)	NC	NC	SC	NC	SC	S	S	S	NC	N	NC	NC	NC	NC	NC	NC	NC	NC NC	NC	SC	
	Freq	of	000.(1)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
			Maximum	S.	Q	9	QN	Ş	웆	QN.	용	2	QN	R	2	용	Q	Q	욧	2	2	QN	9	
			Minimum	S	S	2	QN	8	Q	Q	2	9	Q	욧	Ş	2	Q	Q	오	皇	용	Q	S	
			z	4	4	4	4	4	4	4	4	4	7	4	7	4	4	4	4	4	4	4	4	
			Units	mg/kg	_					mg/kg		mg/kg		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
			Analyte	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Butanone(MEK)	2-Chloroethyl vinyl ether	
		Analytical	Method	SW8240	SW8240	SW8240	SW8240	SW8240	SW8270	SW8270	SW8240	SW8240	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	SW8240	SW8240	

(1) Frequency of Occurrence is defined as the percent of results NOT b-flagged for 1995 data or results greater than blank UTLs for 1994 data only. NC = Not calculated. UCL cannot be calculated with only one site result.

Table 2-1 Galena Risk Assessment Soil Conclusions

------ RISKTYPE=Quantitative Site=Southeast Runway DEPTH=Surface METHOD=Organics

(continued)

Footnote	æ	σ	ס	Œ	æ	σ	æ	σ	æ	æ	æ	æ	σ	æ	Œ	æ	σ	σ	æ	æ
Chemical of Potential Concern?	ON ON	No	Yes	No	N _O	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No
UTL for Blank Data(2)	NC	NC	S	SC	NC	NC	NC S	NC C	NC	S	SC	ž	S	NC	NC	Ş	Š	S	S	S
Freq of Occ.(1)	0.0	0.0	25.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Maximum	QN QN	2	0.0336	S	2	용	오	2	2	2	2	2	Ş	2	S	S	2	2	용	Q.
Minimum	S	S	0.0336	S	S.	S.	ð	Š	Q	S	ջ	S	S	QN	Q.	Ş	Ş	æ	웆	Q
z	4	4	4	4	7	4	4	4	4	4	7	4	7	4	4	7	4	4	4	7
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Analyte	2-Chlorophenol	2-Hexanone	2-Methylnaphthalene	2-Methylphenol(o-cresol)	2-Nitroaniline	2-Nitrophenol	3,3'-Dichlorobenzidine	3-Nitroaniline	4,6-Dinitro-2-methylphenol	4-Bromophenyl phenyl ether	4-Chloro-3-methylphenol	4-Chloroaniline	4-Chlorophenyl phenyl ether	4-Methyl-2-pentanone(MIBK)	4-Methylphenol/3-Methylphenol	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Acetone
Analytical Method	SW8270	SW8240	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	SW8240	SW8270	SW8270	SW8270	SW8270	SW8270	SW8240

(1) Frequency of Occurrence is defined as the percent of results NOT b-flagged for 1995 data or results greater than blank UTLs for 1994 data NC = Not calculated. UCL cannot be calculated with only one site result.

(2) Blank UTLs for 1994 data only.

Galena Risk Assessment Soil Conclusions Table 2-1

DISKIYDE=Amentitetive Site=Southeest Dummey DEDIU-Sunface WIIUOD-Amenica	t-score carries of the southeast namedy ber in-our lace me inco-or gaints	(continued)
. PICKTYDE=Orien+i+s	3-2-35×-1-201	
1		

Footnote	ס	Œ	ס	ס	ס	О	ס	æ	Ø	σ	æ	Œ	æ	æ	Œ	Œ	σ	Ø	ס	æ
Chemical of Potential Concern?	Yes	No	Yes	Yes	Yes	Yes	Yes	%	N _O	N _O	N _O	No	N _O	N _O	N	N _O	N _o	No	Yes	ON O
UTL for Blank Data(2)	Š	SC	S.	NC	NC	NC	NC	Ñ	NC	NC	Q	SN.	NC	N C	NC	NC	NC	NC	S	SC
Freq of Occ.(1)	25.0	0.0	25.0	25.0	25.0	25.0	25.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25.0	0.0
Maximum	0.0533	Q	0.354	0.554	0.447	0.212	0.461	S	Ş	Ş	S	QN	9	9	QN	QN	2	Q.	0.515	Q
Minimum	0.0533	2	0.354	0.554	277.0	0.212	0.461	S	S	2	S	QN	윷	용	S.	QN	象	S	0.515	Q
z	4	4	4	4	4	4	4	4	4	4	7	4	4	4	4	4	4	4	4	7
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Analyte	Anthracene	Benzene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Benzoic acid	Benzyl alcohol	Bromodichloromethane	Bromomethane	Butylbenzylphthalate	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Chloromethane	Chrysene	Di-n-octylphthalate
Analytical Method	SW8270	SW8240	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	SW8240	SW8240	SW8270	SW8240	SW8240	SW8240	SW8240	SW8240	SW8240	SW8270	SW8270

(1) Frequency of Occurrence is defined as the percent of results NOT b-flagged for 1995 data or results greater than blank UTLs for 1994 data NC = Not calculated. UCL cannot be calculated with only one site result. (2) Blank UTLs for 1994 data only.

Galena Risk Assessment Soil Conclusions

Table 2-1

------- RISKTYPE=Quantitative Site=Southeast Runway DEPTH=Surface METHOD=Organics ------------------

(continued)

			Footnote	σ	æ	α	σ	ס	Ø	63	æ	œ	O	æ	æ	Œ	σ	Œ	Œ	ਰ	σ	Ð	Œ
	Chemical	of Potential	Concern?	Yes	No	No	No	Yes	No	No	No	No	Yes	No	No	N _o	N _O	No	N _o	Yes	N _S	N _O	O.N.
UTL	for	Blank	Data(2)	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	S	N N	NC	N C	S	NC	NC NC	NC NC
	Freq	of	Occ.(1)	25.0	0.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0	25.0	0.0	0.0	0.0	0.0	0.0	0.0	25.0	0.0	0.0	0.0
			Maximum	0.0947																		_	
			Minimum	0.0947	Q	Q	QN	110	Q	S.	Q.	Q	0.435	2	Q	Q	Ð	S	QN	0.24	Q.	0.000422	Q
			z	4	4	4	7	7	7	4	4	4	4	4	4	7	4	4	7	4	4	4	4
			Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ng/kg	g/kg	g/kg	g/kg	/kg	ı/kg	/kg	/kg	ı/kg	g/kg	3/kg	g/kg	3/kg	g/kg	mg/kg
									_	=	E	Ē	Ē	Ë	Ē	Ē	Ē	Ĕ	Ĕ	Ĕ	Ĕ	E	
			. Analyte	Dibenz(a,h)anthracene	Dibenzofuran	Dibromochloromethane	Dibutyl phthalate	Diesel Range Organics	Diethylphthalate	Dimethylphthalate m	Diphenylamine (N-Nitrosodiphenylamine) m	Ethylbenzene	Fluoranthene mg	Fluorene	Gasoline Range Organics mg	Hexachlorobenzene mg	Hexachlorobutadiene mg	Hexachlorocyclopentadiene m	Hexachloroethane me	Indeno(1,2,3-cd)pyrene	Isophorone me	Methylene chloride	N-Nitrosodipropylamine

NC = Not calculated. UCL cannot be calculated with only one site result.

(1) Frequency of Occurrence is defined as the percent of results NOT b-flagged for 1995 data or results greater than blank UTLs for 1994 data

(2) Blank UTLs for 1994 data only.

Table 2-1 Galena Risk Assessment Soil Conclusions

--- RISKTYPE=Quantitative Site=Southeast Runway DEPIH=Surface METHOD=Organics ----

Footnote	י ס	no co	σ	æ	σ	æ	σ	σ	σ	σ	Œ	ø	æ	Œ	æ	σ	Œ	æ	æ
Chemical of Potential Concern?	Yes	2 S	Yes	N _O	Yes	N _O	N _O	N _o	No	No.	N _O	Š	No	No.	No	Yes	No	No	No
UTL for Blank Data(2)	Š ž	ž Š	NC	NC	NC N	N O	SC	S	NC	SC	NC	N C	S	S	NC	N O	NC	Š	NC
Freq of Occ.(1)	25.0	0.0	25.0	0.0	25.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0	0.0	0.0	0.0
Maximum	0.0225	2 2	0.149	2	0.517	2	8	2	S	QN	Q	N.	S	ON.	2	0.285	2	ð	2
Minimum	0.0225	2 2	0.149	2	0.517	2	2	2	2	2	2	2	2	2	2	0.0349	R	윤	ð
z	4 4	t 4	7	4	4	4	4	7	7	4	4	4	4	4	4	4	4	4	4
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Analyte	Naphthalene Nitrohentene	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	Styrene	Tetrachloroethene	Toluene	Tribromomethane(Bromoform)	Trichloroethene	Vinyl acetate	Vinyl chloride	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl)ether	bis(2-Chloroisopropyl)ether	bis(2-Ethylhexyl)phthalate	cis-1,2-Dichloroethene	cis-1,3-Dichloropropene	m&p-Xylenes
Analytical Method	SW8270	SW8270	SW8270	SW8270	SW8270	SW8240	SW8240	SW8240	SW8240	SW8240	SW8240	SW8240	SW8270	SW8270	SW8270	SW8270	SW8240	SW8240	SW8240

(1) Frequency of Occurrence is defined as the percent of results NOT b-flagged for 1995 data or results greater than blank UTLs for 1994 data NC = Not calculated. UCL cannot be calculated with only one site result. (2) Blank UTLs for 1994 data only.

Table 2-1 Galena Risk Assessment Soil Conclusions

---- RISKTYPE=Quantitative Site=Southeast Runway DEPTH=Surface METHOD=Organics -----

(continued)

Footnote	
Chemical of Potential Concern?	0 0 0 0 0 0
UTL for Blank Data(2)	N N N
Freq of Occ.(1)	0.0
Maximum	8 8 8
Minimum	0 N N
z	444
Units	mg/kg mg/kg mg/kg
Analyte	o-Xylene trans-1,2-Dichloroethene trans-1,3-Dichloropropene
Analytical Method	SW8240 SW8240 SW8240

N = 104

(1) Frequency of Occurrence is defined as the percent of results NOT b-flagged for 1995 data or results greater than blank UTLs for 1994 data NC = Not calculated. UCL cannot be calculated with only one site result. (2) Blank UTLs for 1994 data only.

Definition of Footnotes

- Average metal concentration on site significantly greater than average background metal concentration (alpha = 0.20). a. No measureable results on site. b. Average matel
- Average metal concentration on site not significantly greater than average background metal concentration (alpha = 0.20). ់
 - Frequency of occurrence >= 5%. ė,
- Frequency of occurrence < 5%.
- No UTL for blanks was calculated and frequency of measureable results >= 5%.
 - No UTL for blanks was calculated and frequency of measureable results < 5%.
- Results are either not detected or KJ-flagged. ÷. 9. ÷.

---- RISKTYPE=Quantitative Site=Control Tower DEPTH=Surface -----

^ ~	UTL	for	Bkgrd	0	М	0	0	0	0	-	-	0	0	0	m	0	0	0	0	0	0	0	0
IJ,	for	Bkgrd	(9)	14000.000	30.000	15.000	380,133	0.360	1.480	15000.000	30.000	14.000	80.09	27000.000	17.152	8700.000	766.957	14.800	34.000	2378.521	1.480	3.000	470.000
	Test	Power	(a)	0.2246	0.3821	0.2284	0.9562	0.2197	0.5548	0.2083	0.2001	0.2330	0.2407	0.2284	0.1344	0.2119	0.9816	0.9988	0.2280	0.2040	0.7723	0.2498	0.2156
		Test	Concl	SS	S	SN	SN	NS	SN	SN	NS	SN	NS	NS	S	NS	NS.	SN	SN	NS	SN	NS	SN
	P-Val	for	Test	0.9702	0.0023	0.9768	0.9841	0.9613	0.9998	0.9211	9928.0	0.9822	0.9893	0.9768	0.0999	0.9373	0.9893	1.0000	0.9767	0.9007	0.5866	0.9938	0.9505
		Test	Type	Wilcoxon	t-Test	Wilcoxon	t-Test	Wilcoxon	t-Test	Wilcoxon	Wilcoxon	Wilcoxon	Wilcoxon	Wilcoxon	Wilcoxon	Wilcoxon	t-Test	t-Test	Wilcoxon	Wilcoxon	t-Test	Wilcoxon	Wilcoxon
		Site	Max	11800.00	49.20	11.70	192.00	0.34	-0.22	15400.00	38.80	9.58	22.90	21400.00	76.60	7580.00	406.00	1.64	27.80	1270.00	0.59	-0.67	427.00
		Site	Mean	7581.667	29.367	6.680	116.233	0.142	-0.745	6886.667	19.250	7.465	12.603	14083,333	23.070	4456.667	259.667	1.034	19.483	719.167	0.282	-0.938	221.167
		Site	Detects	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9
		Bkgrd	₩ax	14000	Q	15	250	0.36	ş	15000	30	14	37	27000	=	8700	240	QN Qu	34	1600	₽	Ş	7.00
		Bkgrd	Mean	12057.143	6.093	11.457	187.143	0.281	0.306	12328.571	25.100	11.857	28.529			7114.286	405.714	3.064	28.857	1072.857	0.301	0.609	378.786
		Bkgrd	Detects	7/7	2/0	2/7	2/2	2/9	2/0	2/2	2/1	2/1	2/2	2/1	2/7	2/2	2/1	2/0	2/1	2//	2/0	2/0	2/9
			Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
			Analyte	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Selenium	Silver	Sodium
		Analytical	Method	SW6010	SW6010	090ZMS	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	SW7421	SW6010	SW6010	SW6010	SW6010	SW6010	SW7740	SW6010	SW6010

(b) = Upper tolerance limit for the 95th percentile for background at the 95% confidence level NS = one-tailed test not statistically significant at the alpha = 0.20 significance level (a) = Power to detect a difference of 40% between background and the site (alpha=0.20) S = one-tailed test statistically significant at the alpha = 0.20 significance level * Background averages appear high due to proxies set at half the detection limit

Soil Site Comparisons To Background Galena Risk Assessment

Table 2-2

^ 2	UTL	for	Bkgrd	0	0	0
JTU.	for	Bkgrd	(p)	30.000	48.000	82.000
	Test	Power	(a)	0.3662	0.2123	0.2276
		Test	Concl	S	SN	SN
	P-Val	for	Test	0.0734	0.9375	0.9765
		Test	Type	t-Test	Wilcoxon	Wilcoxon
		Site	Max	29.40	09.44	57.50
		Site	Mean	15.020	29.817	40.000
		Site	Detects	9/9	9/9	9/9
		3kgrd	Max	ð	48	82
		Bkgrd	Mean	6.003	41.286	67.857
		Bkgrd	Detects	2/0	2/2	2/2
			Units	mg/kg	mg/kg	mg/kg
			Analyte	Thallium	Vanadium	Zinc
		Analytical	Method	SW6010	SW6010	SW6010
		UTL Test for	UTL P-Val Test for Bkgrd Bkgrd Site Site Test Power Bkgrd	P-Val Bkgrd Bkgrd Site Site Test for Test F Analyte Units Detects Mean Max Detects Mean Max Type Test Concl	Bkgrd Bkgrd Site Site Test for Test Power Bkgrd Analyte Units Detects Mean Max Detects Mean Max Type Test Concl (a) (b) Thallium mg/kg 0/7 6.093 ND 6/6 15.020 29.40 t-Test 0.0734 S 0.3562 30.000	DTL Bkgrd Bkgrd Site Site Test For For For Site For For Skgrd Skgrd Skgrd Skgrd Site Site Test Fower Skgrd Skgrd

N = 23

------ RISKTYPE=Quantitative Site=Southeast Runway DEPIH=Subsurface ---------

^ ~	UTL	for	Bkgrd	0
1 1	for	Bkgrd	9	13.758
	Test	Power	(a)	0.2747
		Test	Concl	SN
	P-Val	for	Test	0.9817
		Test	Type	Wilcoxon
		Site	Мах	7.32
		Site	Mean	4.390
		Site	Detects	9/9
		Bkgrd	Max	t
		Bkgrd	Mean	9.025
		Bkgrd	Detects	4/4
			Units	mg/kg
			Analyte	Lead
		Analytical	Method	sw7421

_ " X

(b) = Upper tolerance limit for the 95th percentile for background at the 95% confidence level NS = one-tailed test not statistically significant at the alpha = 0.20 significance level (a) = Power to detect a difference of 40% between background and the site (alpha=0.20) S = one-tailed test statistically significant at the alpha = 0.20 significance level * Background averages appear high due to proxies set at half the detection limit

Soil Site Comparisons To Background Galena Risk Assessment Table 2-2

	^ =	JTU	for	Bkgrd	8
	UL	for	Bkgrd	(p	17.152
		Test	Power	(a)	0.3348 17.152
			Test	Concl	v
		P-Val	for	Test	0.0729
urface -			Test	Туре	t-Test
DEPTH=S			Site	Мах	51.3
st Runway			Site	Mean	27.300
RISKTYPE=Quantitative Site=Southeast Runway DEPTH=Surface			l Site	Detects	7/7
uantita				Max	=
			Bkgrd	Mean	7.800
			Bkgrd	Detects	1/1
				Units	mg/kg
				Analyte	Lead
			Analytical	Method	SW7421

N = 1

NS = one-tailed test not statistically significant at the alpha = 0.20 significance level (a) = Power to detect a difference of 40% between background and the site (alpha=0.20) \$ = one-tailed test statistically significant at the alpha = 0.20 significance level

⁽b) = Upper tolerance limit for the 95th percentile for background at the 95% confidence level

^{*} Background averages appear high due to proxies set at half the detection limit

Table 2-3
Galena Soil COPCs
For Risk Assessments And Toxicity Screening

%56		distribution (a) (a,b)	2.94E+01	Log Normal 2.19E+01 1.42E+02	1.50E+01	
		٥	Norme	Log A	Norme	
		Maximum	49.2	76.6	29.4	
		Minimum	12.9	3.85	-1.18	
		Detects	9	9	•	
		z	•	9	9	
		Units	mg/kg	mg/kg	mg/kg	
		Analyte	Antimony	Lead	Thallium	
	Analytical	Method	SW6010	SW7421	SW6010	

| | |

1000									85%
Method	Analyte	Units	z	Detects	Minimum	Maximum	Distribution	Mean (a)	ucr (a,b)
SW8270	2-Methylnaphthalene	mg/kg	•	8	0.0217	0.0231	Normal	1.65E-02	2.30E-02
SW8080	4,4'-000	mg/kg	9	4 9	0.00187	0.0301	Log Normal	1.32E-02	2.46E-01
SW8080	4,4'-DDE	mg/kg	9	2	0.00186	0.00938	Normal	4.87E-03	7.85E-03
SW8080	4,4'-DDT	mg/kg	9	9	0.00159	0.496	Log Normal	1.47E-01	1.27E+02
SW8080	Aldrin	mg/kg	9	2	99000.0	0.00587	Log Normal	2.26E-03	1.98E-02
SW8270	Anthracene	mg/kg	9	-	0.0211	0.0211	Log Normal	8.25E-03	1.73E-02

ND = Not detected.

NC = Not calculated. UCL cannot be calculated with only one site result.

NOTE: A mean associated with Log Normal data was calculated using a scale bias correction factor.

a. Random uniform numbers, between zero and the lesser of the minimum result and the detection limit, substituted for non-detected values. b. One-sided 95% upper confidence limit for the mean.

For Risk Assessments And Toxicity Screening Galena Soil COPCs Table 2-3

---- RISKTYPE=Quantitative Site=Control Tower DEPTH=Surface METHOD=Organics -----

(continued)

									95%
Analytical								Mean	ncr ncr
Method	Analyte	Units	z	Detects	Minimum	Maximum	Distribution	(a)	(a,b)
SW8270	Benzo(a)anthracene	mg/kg	9	-	0.077	0.077	Nonparametric	2.33E-02	4.50E-02
SW8270	Benzo(a)pyrene	mg/kg	9	_	0.0896	0.0896	Log Normal	2.53E-02	9.72E-02
SW8270	Benzo(b)fluoranthene	mg/kg	9	-	0.15	0.15	Log Normal	2.60E-02	4.76E-01
SW8270	Benzo(g,h,i)perylene	mg/kg	9	-	0.0777	0.0777	Log Normal	2.45E-02	1.03E-01
SW8270	Benzo(k)fluoranthene	mg/kg	9	-	0.15	0.15	Log Normal	3.45E-02	3.22E-01
SW8270	Chrysene	mg/kg	9	-	0.106	0.106	Log Normai	4.50E-02	4.75E+01
SW8080	Dieldrin	mg/kg	9	2	0.000818	0.0116	Normal	4.15E-03	7.90E-03
AK102	Dieset Range Organics	mg/kg	9	2	5.8	200	Log Normal	1.17E+02	1.76E+05
SW8080	Endosulfan I	mg/kg	9	5	0.000206	0.00336	Log Normal	1.27E-03	6.40E-02
SW8080	Endosulfan II	mg/kg	9	2	0.000063	0.000067	Normal	3.87E-05	6.18E-05
SW8080	Endrin aldehyde	mg/kg	9	ĸ	0.000267	0.00326	Log Normal	9.04E-04	1.64E-01
SW8270	Fluoranthene	mg/kg	9	-	0.201	0.201	Log Normal	3.88E-02	9.03E+02
SW8080	Heptachlor	mg/kg	9	٣	0.000171	0.00118	Log Normal	2.36E-04	6.06E-03
SW8080	Heptachlor epoxide	mg/kg	9	2	0.00193	0.00263	Normal	9.31E-04	1.84E-03
SW8270	Indeno(1,2,3-cd)pyrene	mg/kg	9	-	0.068	0.068	Log Normal	2.00E-02	2.48E+01
SW8270	Phenanthrene	mg/kg	9	_	0.127	0.127	Log Normal	2.58E-02	6.30E-01
SW8270	Pyrene -	mg/kg	9	-	0.184	0.184	Nonparametric	4.72E-02	1.02E-01
SW8080	alpha-BHC	mg/kg	9	_	0.00703	0.00703	Log Normal	2.29E-03	2.18E+00
SW8270	bis(2-Ethylhexyl)phthalate	mg/kg	9	-	0.0938	0.0938	Log Normal	2.75E-02	4.69E-01
SW8080	delta-BHC	mg/kg	9	2	0.00104	0.0103	Log Normal	2.22E-03	5.05E+03

ND = Not detected.

NC = Not calculated. UCL cannot be calculated with only one site result.

NOTE: A mean associated with Log Normal data was calculated using a scale bias correction factor.

a. Random uniform numbers, between zero and the lesser of the minimum result and the detection limit, substituted for non-detected values. b. One-sided 95% upper confidence limit for the mean. M

For Risk Assessments And Toxicity Screening Galena Soil COPCs

Table 2-3

		95%
	(continued)	
i		

									95%
Analytical								Mean	Ton
Method	Analyte	Units	z	Detects	Minimum	Maximum	Distribution	(a)	(a,b)
SW8080	gamma-BHC(Lindane)	mg/kg	9	2	0.00078	0.00601	Log Normal	1.14E-03	1.95E-01

METHOD=Organics
y DEPTK=Subsurface
outheast Runway
<pre>!ISKTYPE=Quantitative Site=S</pre>

N = 27

95% UCL (a,b)	6.52E-01	7.99E+16	1.53E-01	1.39E+03	1.69E-01	1.64E+18	3.42E+00
Mean (a)	1.45E-02	3.07E+01	7.64E-02	6.80E-02	5.63E-02	6.05E+03	1.14E+00
Distribution	Log Normal	Log Normal	Nonparametric	Log Normal	Nonparametric	Log Normal	Nonparametric
Maximum	0.0609	235	0.225	0.175	0.336	18000	6.81
Minimum	0.0181	0.0265	0.225	0.00315	0.336	52	6.81
Detects	2	м	-	7	-	23	-
2	9	9	9	9	9	9	9
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Analyte	2-Butanone(MEK)	2-Methylnaphthalene	Acenaphthene	Acetone	Benzene	Diesel Range Organics	Ethylbenzene
Analytical Method	SW8240	SW8270	SW8270	SW8240	SW8240	AK102	SW8240

ND = Not detected.

NC = Not calculated. UCL cannot be calculated with only one site result.

a. Random uniform numbers, between zero and the lesser of the minimum result and the detection limit, substituted for non-detected values. NOTE: A mean associated with Log Normal data was calculated using a scale bias correction factor.

b. One-sided 95% upper confidence limit for the mean.

Table 2-3
Galena Soil COPCs
For Risk Assessments And Toxicity Screening

(continued)

									85%
Analytical								Mean	ncr
Method	Analyte	Units	z	Detects	Minimum	Maximum	Distribution	(B)	(a,b)
SW8270	Fluorene	mg/kg	9	-	0.563	0.563	Nonparametric	1.76E-01	3.84E-01
AK101	Gasoline Range Organics	mg/kg	9	~	150	240	Log Normal	1.08E+02	1.61E+11
SW8270	Naphthalene	mg/kg	9	м	0.0577	109	Log Normal	1.78E+01	6.20E+15
SW8270	Phenanthrene	mg/kg	9	-	0.232	0.232	Log Normal	1.09E-01	6.17E+03
SW8240	Toluene	mg/kg	9	-	4.54	4.54	Nonparametric	7.57E-01	2.28E+00
SW8270	bis(2-Ethylhexyl)phthalate	mg/kg	9	-	0.047	0.047	Normal	2.70E-02	4.23E-02
SM8240	m&p-Xylenes	mg/kg	•	7	0.0141	29.8	Nonparametric	4.97E+00	1.50E+01
SW8240	o-Xylene	mg/kg	9	7	0.00482	13.2	Log Normai	3.68E-01	3.64E+15

N = 15

ND = Not detected.

NC = Not calculated. UCL cannot be calculated with only one site result.

NOTE: A mean associated with Log Normal data was calculated using a scale bias correction factor.

a. Random uniform numbers, between zero and the lesser of the minimum result and the detection limit, substituted for non-detected values.

b. One-sided 95% upper confidence limit for the mean.

For Risk Assessments And Toxicity Screening Galena Soil COPCs Table 2-3

S:
ETHOD=Inorganio
ast Runway DEPIH=Surface M
itative Site=Southeast R
RISKTYPE=Quant

									82%
Analytical								Mean	NCF
Method	Analyte	Units	z	N Detects M	Minimum	Maximum	Distribution	(a)	(a,b)
SW7421	Lead	mg/kg	4	4	8.9	51.3	Normal	2.73E+01	5.08E+01
					1				

------ RISKTYPE=Quantitative Site=Southeast Runway DEPTH=Surface METHOD=Organics -----

Analytical Method	Analyte	Units	z	Detects	Minimum	Maximum	Distribution	Mean (8)	95% UCL (a.b)
			:					Ì	
SW8270	2-Methylnaphthalene	mg/kg	4	-	0.0336	0.0336	Normal	1.88E-02	3.12E-02
SW8270	Anthracene		4	-	0.0533	0.0533	Normal	2.23E-02	4.93E-02
SW8270	Benzo(a)anthracene		4		0.354	0.354	Normal	1.25E-01	3.13E-01
SW8270	Benzo(a)pyrene	mg/kg	4	-	0.554	0.554	Normal	1.94E-01	4.96E-01
SW8270	Benzo(b)fluoranthene		4	-	0.447	0.447	Normal	1.63E-01	4.04E-01
SW8270	Benzo(g,h,i)perylene		4	-	0.212	0.212	Normal	7.04E-02	1.83E-01
SW8270	Benzo(k)fluoranthene	mg/kg	4	-	0.461	0.461	Normal	1.77E-01	4.15E-01
SW8270	Chrysene	mg/kg	4	-	0.515	0.515	Log Normal	1.50E-01	8.26E+03

ND = Not detected.

NC = Not calculated. UCL cannot be calculated with only one site result.

NOTE: A mean associated with Log Normal data was calculated using a scale bias correction factor.

a. Random uniform numbers, between zero and the lesser of the minimum result and the detection limit, substituted for non-detected values. b. One-sided 95% upper confidence limit for the mean.

Table 2-3 Galena Soil COPCs For Risk Assessments And Toxicity Screening

--- RISKIYPE=Quantitative Site=Southeast Runway DEPIH=Surface METHOO=Organics -------

(continued)

									826
Analytical								Mean	UCL
Method	Analyte	Units	z	Detects	Minimum	Maximum	Distribution	(a)	(a,b)
SW8270	Dibenz(a,h)anthracene	mg/kg	4	-	0.0947	0.0947	Normal	5.58E-02	9.30E-02
AK102	Diesel Range Organics	mg/kg	4	4	110	250	Normal	1.58E+02	2.33E+02
SW8270	Fluoranthene	mg/kg	4	-	0.435	0.435	Log Normal	1.07E-01	2.28E+04
SW8270	Indeno(1,2,3-cd)pyrene	mg/kg	4	-	0.24	0.24	Normal	1.08E-01	2.40E-01
SW8270	Naphthalene	mg/kg	4	-	0.0225	0.0225	Normal	1.25E-02	2.51E-02
SW8270	Phenanthrene	mg/kg	4	,	0.149	0.149	Normal	7.90E-02	1.62E-01
SW8270	Pyrene	mg/kg	4	-	0.517	0.517	Log Normal	1.48E-01	5.41E+06
SW8270	bis(2-Ethylhexyl)phthalate	mg/kg	4	2	0.0349	0.285	Log Normal	8.31E-02	4.01E+13

N = 16

ND = Not detected.

NC = Not calculated. UCL cannot be calculated with only one site result.

NOTE: A mean associated with Log Normal data was calculated using a scale bias correction factor.

a. Random uniform numbers, between zero and the lesser of the minimum result and the detection limit, substituted for non-detected values.

b. One-sided 95% upper confidence limit for the mean.

Attachment 4A-2

Raw Data for Groundwater, Surface Soil, and Subsurface Soil

Galena Baseline Risk Assessment	Groundwater Data	
1		

Site=Control Tower Method=Inorganics Analyte=Beryllium	Est. Analytical Lab Conc. Hethod Matrix Result (a) Flag DL Units Footnote	SW6010 L0016300163 DET .00051 mg/L JB SW6010 L0005300053 DET .00051 mg/L JB	N = 2	Site=Control Tower Method=Inorganics Analyte=Cadmium	Est. Analytical Lab Conc Hethod Matrix Result (a) Flag DL Units Footnote	SW6010 L0008200082 DET .00386 mg/L JB SW6010 L 0.00039 0.00039 DET .00386 mg/L JB	N = 2	Site=Control Tower Method=Inorganics Analyte=Calcium	Est. Analytical Lab Conc Lab Method Matrix Result (a) Flag DL Units Footnote	SW6010 L 164 164 DET 0.0175 mg/L SW6010 L 190 190 DET 0.0175 mg/L	N = 2	Site=Control Tower Method≍Inorganics Analyte=Chromium	Est. Analytical Lab Method Matrix Result (a) Flag DL Units Footnote	SW6010 L0020700207 DET .00524 mg/L JB SW6010 L 0.00415 0.00415 DET .00524 mg/L JB	N = 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Data Source	1994 1994		1	Data Source	1994 1994			Data Source	1994 1994		1 1	Data Source	1994 1994	
WNL	Lab Units Footnote	mg/L JB mg/L JB		no juc	Lab Units Footnote	mg/L JB mg/L JB		9	Lab nits Footnote	mg/L JB mg/L JB	•	Wi	Lab :s Footnote		
Site=Control Tower Method=Inorganics Analyte=Aluminum	DL	0.0523 mg 0.0523 mg		Site=Control Tower Method=Inorganics Analyte=Antimony	. 10	0.076 n 0.076 n		Site=Control Tower Method=Inorganics Analyte=Arsenic	DL Uni	.000647 mg		Site=Control Tower Method=Inorganics Analyte=Barium	DL Units	.00086 mg/L .00086 mg/L	
nics Ana	Flag	DET DET		nics Ana	Flag	DET DET		nics Ana	Flag	DET DET		ınics Ana	Flag	DET	
=Inorgar	Est. Conc (a)	-0.0427 -0.0282	2 =	=Inorgar	Est. Conc (a)	0.030	= 5	=Inorgar	Est. Conc (a)	00145	2	d≂Inorga	Est. Conc (a)	0.165 0.131	2 =
er Method	Result	-0.0427 -0.0282	2	er Method	Result	0.030	Z	er Method	Result	00145 00007	Z	ver Metho	Result	0.165	Z
trol Tow	Lab Matrix	 _		trol Tow	Lab Matrix		·	trol Towe	Lab Matrix			ntrol Tov	Lab Matrix		
Site=Con	Analytical Method	SW6010 SW6010	·	Site=Con	Analytical Method	SW6010 SW6010		Site=Con	Analytical Method	SW7060 SW7060		Site=Co	Analytical Method	SW6010 SW6010	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Data Source	1994 1994			Data Source	1994 1994		 	Data Source	1994 1994			Data Source	1994 1994	

a. Random uniform numbers, between zero and the lesser of the minimum result a

a. Random uniform numbers, between zero and the lesser of the minimum result a

Risk Assessment	4.5
쏬	۵
2	ā
ne	4
<u>-</u>	Ě
Baseline Ri	Gro
Galena	
Gal	

Baseline Risk Assessment	Groundwater Data
Galena	

Footnote Lab Units mg/L mg/L ------ Site=Control Tower Method=Inorganics Analyte=Magnesium 0.0479 Flag DET DET $\frac{31.9}{36.9}$ Est. Conc (a) Result $31.9 \\ 36.9$ Lab Matrix Analytical Method SW6010 SW6010 Data Source 1994 1994 Footnote Lab ЭВ ЗВ Site=Control Tower Method=Inorganics Analyte=Cobalt ---Units mg/L mg/L .00407 占 Flag DET DET -.00182 -.00365 Est. Conc (a) 2 -.00182 -.00365 z Result Lab Matrix Analytical Method SW6010 SW6010 Data Source

-- Site=Control Tower Method=Inorganics Analyte=Copper

1994 1994

--- Site=Control Tower Method=Inorganics Analyte=Manganese --

Units Footnote ${\rm mg/L}$ ${\rm mg/L}$.00916 占 Flag DET DET 0.00529 Est. Conc (a) 0.00529 Result Lab Matrix Analytical Method SW6010 SW6010 Data Source 1994 1994

Flag DET DET 0.00060 Est. Conc (a) -.00060 0.00766 Result Matrix ____ Analytical Method SW6010 SW6010 Data Source 1994 1994

8

Footnote

Units

9 8

mg/L mg/L

00155

2 = 2

-- Site=Control Tower Method=Inorganics Analyte=Iron Est. Conc (a)

2 = X

Site=Control Tower Method=Inorganics Analyte=Molybdenum Flag Est. Conc (a) Result Lab Matrix Analytical Method Data Source

Footnote

Units

88

mg/L mg/L

.00739

DET DET

-.00041 0.00581 -.00041 0.00581 SW6010 SW6010

1994 1994

明明

mg/L mg/L

00452

DET DET

.00124

.00124

SW6010 SW6010

1994 1994

2 = N

Footnote

Units

Flag

Result

Lab Matrix

Analytical Method

Data Source

Lab

2 = 2

-- Site=Control Tower Method=Inorganics Analyte=Nickel

--- Site=Control Tower Method=Inorganics Analyte=Lead ----

Est. Conc (a) Result Matrix Lab Analytical Method Data Source

Footnote

Units

占

Flag

Result

Matrix

Lab

Analytical Method

Data Source

Est. Conc (a)

Lab

9B JB

mg/L mg/L

.0022

DET DET

0.00056 -.00066

0.00056

SW7421 SW7421

1994 1994

Footnote

Units

占

Flag

明明

mg/L mg/L

0.0141

DET DET

2 #

z

.00103 .00103 SW6010 SW6010 $1994 \\ 1994$

= 2

Random uniform numbers, between zero and the lesser of the minimum result a

. ص

File time stamp: 10/18/95 12:05

File: groundwater.dat

a. Random uniform numbers, between zero and the lesser of the minimum result a

9	1	ote		
	1	Lab s Footnote	85 86	
	llium.	Units	mg/L mg/L	•
nt]yte=Tha	76	0.0833	
ssessme	ics Ana	Flag	DET DET	
e Risk As ater Oata	=Inorgani	Est. Conc (a)	-0.0499 -0.0499 -0.0188 -0.0188	C
Galena Baseline Risk Assessment Groundwater Data	er Method	Result	-0.0499	2
Galená	itrol Towe	Lab Matrix		
	Site=Control Tower Method=Inorganics Analyte=Thallium	Analytical Lab Method Matrix	SW6010 SW6010	•
	1 1 1	Data Source	1994 1994	
2				
	ı			
	1	Lab Footnote		
	assiuma	Lab Units Footnote	mg/L mg/L	
nt	_		0.822 mg/L 0.822 mg/L	
ssessment .a	_	Flag OL Units		
: Risk Assessment Iter Data	_	Flag OL Units	5.16 DET 0.822 3.56 DET 0.822	
ı Baseline Risk Assessment Groundwater Data	_	DL Units	DET 0.822 DET 0.822	
Galena Baseline Risk Assessment Groundwater Data	_	Est. Lab Conc Conc Matrix Result (a) Flag DL Units	5.16 DET 0.822 3.56 DET 0.822	
Galena Baseline Risk Assessment Groundwater Data	Site=Control Tower Method=Inorganics Analyte=Potassium	Est. Conc Result (a) Flag DL Units	5.16 DET 0.822 3.56 DET 0.822	

 	Lab ts Footnote	38 38	
adinm -	Uni1	mg/L mg/L	
yte=Van	Flag ÖL	.00454	
cs Anal	Flag	DET DET	
≃Inorgani	Est. Conc (a)	0.00029	2
r Method	Result	0.00029 0.00029 0024100241	Z
trol Towe	Lab Matrix	ب ب	
Site=Control Tower Method=Inorganics Analyte=Vanadium	Analytical Lab Method Matrix	SW6010 SW6010	
	Data Source	1994 1994	
	Lab ts Footnote	89 89	
nium	Units	mg/L mg/L	
yte≕Sele	Flag DL	0.0891	
s Anal		DET DET	
rganic			
= ho	Est. Conc (a)	-0.00931 0.05900	2
wer Method=Ino	Result	-0.00931 -0.00931 0.05900 0.05900	N = 2
ntrol Tower Method=Ino	Result	L -0.00931 -0.00931 L 0.05900 0.05900	N = 2
Site=Control Tower Method=Inorganics Analyte=Selenium		SW6010 L -0.00931 -0.00931 SW6010 L 0.05900 0.05900	N = 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Lab ts Footnote	മമ		thane
inc	Uni	mg/L mg/L		chloroe
alyte=Z	10	.00402		2-Tetra
nics An	Flag	DET DET		=1,1,1,
od=Inorga	Est. Conc (a)	0.00936 0.01160	N = 2	. Analyte
ower Metho	Result	0.00936 0.00936 0.01160 0.01160	Z	d=Organics
ontrol 1	Lab Matrix			er Metho
Site=Control Tower Method=Inorganics Analyte=Zinc	Analytical Lab Method Matrix	SW6010 SW6010		Site=Control Tower Method=Organics Analyte=1,1,1,2-Tetrachloroethane
	Data Source	1994 1994	•	Site
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Lab ts Footnote	38 38		
ver	Units	mg/L mg/L		Hium
lyte=Si	10	.00519]yte≃Soc
ics Ana	Flag	DET DET		iics Ana
d=Inorgan	Est. Conc (a)	00201	N = 2	d=Inorgan
er Metho	Result	0020100201 0040400404	Z	Site=Control Tower Method=Inorganics Analyte=Sodium
ntrol Tow	Lab Matrix			ntrol Tow
Site=Control Tower Method=Inorganics Analyte=Silver	Analytical Lab Method Matrix	SW6010 SW6010		Site=Co
1	Data Source	1994 1994		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ane	Lab ts Footnote			
loroeth	Uni	mg/L mg/L		
2-Tetrach	Flag DL	.0000851	٠	
=1,1,1,	Flag	9 Q		
ics Analyte	Est. Conc (a)	.0000068827	N = 2	
hod=0rgar	Result			
ower Metl	Lab Matrix			
Site=Control Tower Method=Organics Analyte=1,1,1,2-Tetrachloroethane	Analytical Lab Method Matrix Result	SW8260 SW8260		
Si	Data Source	1994 1994		
Wn	Lab s Footnote			
	Units	mg/L mg/L		
alyte=Soc	DL	0.0401		
ınics An	Flag OL	DET DET		
d=Inorga	Est. Conc (a)	5.40	N = 2	
er Metho	Result	5.40 5.40 6.29 6.29	Z	
	œ			
ntrol Tow	Lab Matrix			•
		SW6010 L SW6010 L		•

a. Random uniform numbers, between zero and the lesser of the minimum result a

a. Random uniform numbers, between zero and the lesser of the minimum result a

ialena Baseline Risk Assessment	Groundwater Data
_	

∞	thene	Lab Units Footnote	mg/L mg/L		opropane	Lab Units Footnote	mg/L mg/L		obenzene	Lab Units Footnote	mg/L mg/L		enzene	Lab Units Footnote
.,	l-Dichloro	10	.0000806		3-Trichlar	ñ 10	.000233 m		4-Trichlor	n 10	.000435 m		-Dichlorob	n 10
essment	yte=1,1	Flag	28		:e=1,2,	Flag	2		te=1,2,	Flag	8 S		yte=1,2	Flag
Baseline Risk Assessment Groundwater Data	ganics Anal	Est. Conc (a)	.000036476	N = 2	anics Analyt	Est. Conc (a)	.00012009	N = 2	anics Analyt	Est. Conc (a)	.00035664	N = 2	ganics Anal	Est. Conc (a)
Galena Baseli Ground	Method=0ı	Result	• •		ethod=Orga	Result			lethod=0rg	Result			Method=Or	Result
Gal	l Tower	Lab Matrix			Tower M	Lab Matrix	ب ب		Tower M	Lab Matrix			Tower	Lab Matrix
	Site=Control Tower Method=Organics Analyte=1,1-Dichloroethene	Analytical Method	SW8260 SW8260		Site=Control Tower Method=Organics Analyte=1,2,3-Trichloropropane	Analytical Method	SW8260 SW8260		Site=Control Tower Method=Organics Analyte=1,2,4-Trichlorobenzene	Analytical Method	SW8270 SW8270		Site=Control Tower Method=Organics Analyte=1,2-Dichlorobenzene	Analytical Method
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Data Source	1994 1994		8	Data Source	1994 1994		S	Data Source	1994 1994		 	Data Source
7	ne	Lab Footnote			hane	Lab Footnote			ne	Lab Footnote			9	Lab Footnote
7	oroethane	Lab Units Footnote	mg/L mg/L		hloroethane	ts Fc	mg/L mg/L		oroethane	Lab Units Footnote	mg/L mg/L		roethane	Lab Units Footnote
nt 7	,1-Trichloroethane		.0000992 mg/L .0000992 mg/L		.2-Tetrachloroethane		.00017 mg/L .00017 mg/L		,2-Trichloroethane		.000092 mg/L .000092 mg/L		,1-Dichloroethane	
ssessment 7	yte=1,1,1-Trichloroethane	Units			==1,1,2,2-Tetrachloroethane	Units	ND .00017 ND .00017		yte=1,1,2-Trichloroethane	Units	ND .000092 ND .000092		alyte=1,1-Dichloroethane	Units
line Risk Assessment ndwater Data	ganics Analyte=1,1,1-Trichloroethane	DL Units	.0000992 .0000992		nics Analyte=1,1,2,2-Tetrachloroethane	Est. Conc (a) Flag DL Units	.00017	N = 2	ganics Analyte=1,1,2-Trichloroethane	Ol Units	.000092	N = 2	Organics Analyte=1,1-Dichloroethane	OL Units
ena Baseline Risk Assessment Groundwater Data	ethod=Organics Analyte=1,1,1-Trichloroethane	Flag DL Units	ND .0000992 ND .0000992	11	nod=Organics Analyte=1,1,2,2-Tetrachloroethane	Est. Conc Result (a) Flag DL Units	ND .00017 ND .00017	ij	ethod=Organics Analyte=1,1,2-Trichloroethane	Flag DL Units	ND .000092 ND .000092	Ħ	Method=Organics Analyte=1,1-Dichloroethane	Flag DL Units
Galena Baseline Risk Assessment Groundwater Data	Tower Method=Organics Analyte=1,1,1-Trichloroethane	Est. Conc (a) Flag DL Units	ND .0000992 ND .0000992	11	wer Method=Organics Analyte=1,1,2,2-Tetrachloroethane	Est. Conc (a) Flag DL Units	ND .00017 ND .00017	ij	Tower Method=Organics Analyte=1,1,2-Trichloroethane	Est. Conc (a) Flag DL Units	ND .000092 ND .000092	Ħ	of Tower Method=Organics Analyte=1,1-Dichloroethane	Est. Conc (a) Flag DL Units
Galena Baseline Risk Assessment Groundwater Data	Site=Control Tower Method=Organics Analyte=1,1,1-Trichloroethane	Est. Conc Result (a) Flag DL Units	ND .0000992 ND .0000992	11	Site=Control Tower Method=Organics Analyte=1,1,2,2-Tetrachloroethane	Est. Conc Result (a) Flag DL Units	ND .00017 ND .00017	ij	Site=Control Tower Method=Organics Analyte=1,1,2-Trichloroethane	Est. Conc Result (a) Flag DL Units	ND .000092 ND .000092	Ħ	- Site=Control Tower Method=Organics Analyte=1,1-Dichloroethane	Est. Conc Result (a) Flag DL Units

.000354

.00016517

SW8260 SW8260

 $1994 \\ 1994$

mg/L mg/L

.0000886

문문

.0000051555

SW8260 SW8260

1994 1994

N = 2

N = 2

ime: 10/18/95 12:07 File: groundwater.dat File time stamp: 10/18/95 12:05 . Curn

a. Random uniform numbers, between zero and the lesser of the minimum result a

a. Random uniform numbers, between zero and the lesser of the minimum result a

6	
ent	
Assessm	ata
Risk	ter D
Baseline	Groundwa
Galena	

Site=Control Tower Method=Organics Analyte=1-Chlorohexane	Est. Conc Conc Lab ix Result (a) Flag DL Units Footnote	000061526 ND .000154 mg/L 000078608 ND .000154 mg/L	Z # Z	Site=Control Tower Method=Organics Analyte=2,4,5-Trichlorophenol	Est. Lab Conc Lab Matrix Result (a) Flag DL Units Footnote	00047839 ND .000544 mg/L00011693 ND .000550 mg/L	N = 2	Site=Control Tower Method=Organics Analyte=2,4,6-Trichlorophenol	Est. Lab Conc Lab Matrix Result (a) Flag DL Units Footnote	00049658 ND .000648 mg/L00016898 ND .000654 mg/L	N = 2	Site=Control Tower Method=Organics Analyte=2,4-Dichlorophenol	Est. Lab Conc Lab Matrix Result (a) Flag DL Units Footnote
Site=Control	Data Analytical Lab Source Method Matrix	1994 SW8260 L 1994 SW8260 L		Site=Control Town	Data Analytical Lab Source Method Matr	1994 SW8270 1994 SW8270		Site=Control Tow	Data Analytical Lab Source Method Matri	1994 SW8270 1994 SW8270		Site=Control To	Data Analytical Lab Source Method Matri
Site=Control Tower Method=Organics Analyte=1,2-Dichloroethane	Est. Data Analytical Lab Conc Source Method Matrix Result (a) Flag DL Units Footnote	1994 SW8260 L00001543 ND .0000791 mg/L 1994 SW8260 L .00064 .00064000 DET .0000791 mg/L	N = 2	Site=Control Tower Method=Organics Analyte=1,2-Dichloropropane	. Est. Data Analytical Lab Conc Lonc Source Method Matrix Result (a) Flag DL Units Footnote	1994 SW8260 L0000049397 ND .0000742 mg/L 1994 SW8260 L0000052919 ND .0000742 mg/L	N = 2	Site=Control Tower Method=Organics Analyte=1,3-Dichlorobenzene	Est. Data Analytical Lab Conc Source Method Matrix Result (a) Flag DL Units Footnote	1994 SWB260 L00023605 ND .000391 mg/L 1994 SWB260 L00010615 ND .000391 mg/L	N = 2	Site=Control Tower Method=Organics Analyte=1,4-Dichlorobenzene	Est. Data Analytical Lab Conc Source Method Matrix Result (a) Flag DL Units Footnote

Page 5

Current time: 10/18/95 12:07

mg/L mg/L

.000861

.00072655

SW8270 SW8270

 $1994 \\ 1994$

mg/L mg/L

.000423

일일

.00008562

SW8260 SW8260

 $1994 \\ 1994$

N = 2

N = 2

a. Random uniform numbers, between zero and the lesser of the minimum result a

a. Random uniform numbers, between zero and the lesser of the minimum result a

Baseline Risk Assessment	Groundwater Data
Galena	

Baseline Risk Assessment	Groundwater Data
Galena	

12

	Lab Footnote			ther
ne(MEK)	Units	mg/L mg/L	•	vinyl e
-Butanor		.00089		roethyl
alyte=2·	Flag	8 S		=2-Chlo
Organics An	Est. Conc (a)	.00063284	N = 2 ·	ics Analyte
Method=(Result			od=Organ
ol Tower	Lab Matrix			wer Metho
Site=Control Tower Method=Organics Analyte=2-Butanone(MEK)	Analytical Lab Method Matrix	SW8260 SW8260	•	Site=Control Tower Method=Organics Analyte=2-Chloroethyl vinyl ether
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Data Source	1994 1994		Sit
phenol	Lab Footnote		٠	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
/1pheno1	Units	1/6w mg/L		ophenol
,4-Dimethy	DF	.000798		,4-Dinitro
lyte=2	Flag	Q Q		ılyte=2
rganics Ana	Est. Conc (a)	.00029567 .00055918	N = 2	rganics And
4ethod=0	Result			/ethod=0
Tower	Lab Matrix			Tower
§ite=Control Tower Method=Organics Analyte=2,4-Dimethyl	Analytical Lab Method Matrix Result	SW8270 SW8270		Site=Control Tower Method=Organics Analyte=2,4-Dinitrophenol
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Data Source	1994 1994		t t t t

Est. Conc (a) Lab Matrix Result Analytical Method Data Source Lab Est. Conc Analytical Method Data Source

Units Footnote mg/L mg/L .00111 Flag 일 옷 .0005987 (a) Result Lab Matrix

SW8270 SW8270

1994 1994

N = 2

Lab Footnote

Units Footnote

占

Flag

mg/L mg/L

.000124

문운

.000062128

SW8260 SW8260

1994 1994

Lab

----- Site=Control Tower Method=Organics Analyte=2-Chloronaphthalene .00019383 Est. Conc (a) N = 2 Result Lab Matrix Analytical Method SW8270 SW8270 Data Source 1994 1994 Site=Control Tower Method=Organics Analyte=2,4-Dinitrotoluene ------Units Footnote mg/L mg/L .000676 딤 Flag .00013082 Est. Conc (a) N = 2 Result Lab Matrix Analytical Method SW8270 SW8270 Data Source 1994 1994

Units mg/L mg/L .0000650 Flag 일 운

Site=Control Tower Method=Organics Analyte=2-Chlorophenol Flag Est. Conc (a) Result Matrix Lab Analytical Method Data Source ------ Site=Control Tower Method=Organics Analyte=2,6-Dinitrotoluene ------Lab Est. Conc (a) Lab Analytical Method Data Source

Footnote

Units

占

mg/L mg/L

.000560

물물

.00005982

SW8270 SW8270

1994 1994

Units Footnote mg/L mg/L .000737 ᆸ Flag 22 .00064684 N = 2Result Matrix

SW8270 SW8270

 $1994 \\ 1994$

a. Random uniform numbers, between zero and the lesser of the minimum result a

File time stamp: 10/18/95 12:05 File: groundwater.dat

a. Random uniform numbers, between zero and the lesser of the minimum result a

Curr

ime: 10/18/95 12:07

Galena Baseline Risk Assessment Groundwater Data

Site=Control Tower Method=Organics Analyte=2-Nitrophenol	Est. Data Analytical Lab Conc Source Method Matrix Result (a) Flag DL Units Footnote	1994 SW8270 L00070587 ND .000733 mg/L 1994 SW8270 L00011183 ND .000741 mg/L	N = 2	Site=Control Tower Method=Organics Analyte=3,3'-Dichlorobenzidine	Est Lab Conc Lab Conc Source Method Matrix Result (a) Flag DL Units Footnote	1994 SW8270 L00068835 ND .000885 mg/L 1994 SW8270 L00088663 ND .000894 mg/L	N = 2	Site=Control Tower Method=Organics Analyte=3-Nitroaniline	. Est. Data Analytical Lab Conc Source Method Matrix Result (a) Flag DL Units Footnote	1994 SW8270 L .00032759 ND .000771 mg/L 1994 SW8270 L .00054299 ND .000778 mg/L	2 " N	Site=Control Tower Method=Organics Analyte=4,4'-DDD	Est. Data Analytical Lab Conc Lab Source Method Matrix Result (a) Flag DL Units Footnote	1994 SW8080 L0000012252 ND .00000299 mg/L 1994 SW8080 L0000020351 ND .00000305 mg/L	N = 2
Site=Control Tower Method=Organics Analyte=2-Hexanone	Est. Data Analytical Lab Conc Conc Source Method Matrix Result (a) Flag DL Units Footnote	1994 SW8260 L00029155 ND .000766 mg/L 1994 SW8260 L00069103 ND .000766 mg/L	. N = 2	Site=Control Tower Method=Organics Analyte=2-Methylnaphthalene	Est. Data Analytical Lab Conc Conc Source Method Matrix Result (a) Flag DL Units Footnote	1994 SW8270 L00005038 ND .000575 mg/L 1994 SW8270 L00035155 ND .000580 mg/L	N = 2	Site=Control Tower Method=Organics Analyte=2-Methylphenol(o-cresol)	Est. Data Analytical Lab Conc Conc Source Method Matrix Result (a) Flag DL Units Footnote	1994 SW8270 L00021563 ND .000311 mg/L 1994 SW8270 L00017380 ND .000314 mg/L	N = 2	Site=Control Tower Method=Organics Analyte=2-Nitroaniline	Est. Data Analytical Lab Conc Conc Source Method Matrix Result (a) Flag DL Units Footnote	1994 SW8270 L00026840 ND .000730 mg/L 1994 SW8270 L00040789 ND .000738 mg/L	Z = N

a. Random uniform numbers, between zero and the lesser of the minimum result a

a. Random uniform numbers, between zero and the lesser of the minimum result a

Galena Baseline Risk Assessment Groundwater Data	Site=Control Tower Method=Organics Analyte=4-Chloro-3-methylphenol	Est. Data Analytical Lab Source Method Matrix Result (a) Flag DL Units Footi
15	9=4,4'-DDE	Lab DL Units Footnote
Galena Baseline Risk Assessment Groundwater Data	hod=Organics Analyt	Est. Conc (a) Flag
Galena Basel Groun		Data Analytical Lab Source Method Matrix Result

Footnote

Site=Control Tower Method=Organics Analyte=4-Chloroaniline mg/L mg/L .000396 .00033475 N = 2 SW8270 SW8270 1994 1994 .00000344 mg/L .00000351 mg/L .----- Site=Control Tower Method=Organics Analyte=4,4'-DDT .0000016433 ND .0000050000 DET .00001 SW8080 SW8080 1994 1994

Est. Conc Lab Matrix Result

Footnote

Units

ᆸ

Flag

(a)

mg/L mg/L

.000929

물 물

.00018103

N = 2

Analytical Method SW8270 SW8270 Data Source 1994 1994 Units Footnote 3 Lab .00000367 mg/L .00001330 mg/L 굽 Flag .0000126 .000012600 DET Est. Conc (a) Lab Matrix Result Analytical Method SW8080 SW8080 Data Source 1994 1994

--- Site=Control Tower Method=Organics Analyte=4-Chlorophenyl phenyl ether --- Site=Control Tower Method=Organics Analyte=4,6-Dinitro-2-methylphenol ----

Footnote Lab Units mg/L mg/L .000972 ᆸ Flag 28 00084048. 00019681Est. Conc (a) Lab Matrix Result Analytical Method SW8270 SW8270 Data Source $1994 \\ 1994$

N = 2

--- Site=Control Tower Method=Organics Analyte=4-Bromophenyl phenyl ether ----

---- Site=Control Tower Method=Organics Analyte=4-Methyl-2-pentanone(MIBK) ----

Footnote

Units

ᆸ

Flag

Result

Lab Matrix

Analytical Method

Data Source

Est. Conc (a)

mg/L mg/L

.000463

오 모

.00008038

SW8270 SW8270

1994 1994

N = 2

Footnote

Units

占

Flag

Result

Lab Matrix |

Analytical Method

Data Source

Footnote

Units

Lab

Est. Conc (a)

mg/L mg/L

.000501

윤윤

.00039260 .00047323

<u>ب</u> ۔

SW8260 SW8260

 $1994 \\ 1994$

mg/L mg/L

S = N

.000415 占 Flag 윤 0003643100033298Est. Conc (a) Lab Matrix Result Analytical Method SW8270 SW8270 Data Source

1994 1994

N = 2

Random uniform numbers, between zero and the lesser of the minimum result a . ص Curre

me: 10/18/95 12:07

File time stamp: 10/18/95 12:05

| File: groundwater.dat

Page

Random uniform numbers, between zero and the lesser of the minimum result a

a.

Galena Baseline Risk Assessment Groundwater Data

	Site=Control Tower Method=Organics Analyte=Acenaphthylene	Est. Data Analytical Lab Conc Conc Source Method Matrix Result (a) Flag DL Units Footnote	1994 SW8270 L000011764 ND .000626 mg/L 1994 SW8270 L000057109 ND .000633 mg/L	N = 2		Est. Data Analytical Lab Source Method Matrix Result (a) Flag DL Units Footnote	1994 SW8260 L .00615 .00615 DET .00209 mg/L 1994 SW8260 L .00594 .00594 DET .00209 mg/L	N = 2		Est. Data Analytical Lab Source Method Matrix Result (a) Flag DL Units Footnote	1994 SW8080 L	N = 2		Est. Data Analytical Lab Conc Source Method Matrix Result (a) Flag DL Units Footnote	1994 SW8270 L00005592 ND .000755 mg/L 1994 SW8270 L00071654 ND .000762 mg/L	N 11 2
			•													
•	phenol	Lab Footnote			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Lab Footnote			3 8 8 8 1 1	Lab Footnote		•		Lab Footnote		
	3-Methylphenol	Lab Units Footnote	mg/L mg/L		aniline	Lab Units Footnote	mg/L mg/L		oheno]	Lab Units Footnote	mg/L mg/L	-	thene	Lab Units Footnote	mg/L mg/L	
	phenol/3-Methylphenol		.000361 mg/L .000364 mg/L		4-Nitroaniline		.00108 mg/L .00109 mg/L		4-Nitraphenol		.00115 mg/L .00116 mg/L		=Acenaphthene		.000632 mg/L .000639 mg/L	
	Methylphenol/3-Methylphenol	Units	ND .000361 ND .000364		nalyte=4-Nitroaniline	Units			nalyte=4-Nitrophenol	Units			Analyte=Acenaphthene	Units		
	s Analyte=4-Methylphenol/3-Methylphenol	DL Units	.000361	N = 2	-Organics Analyte=4-Nitroaniline	DL Units	.00108	N = 2	-Organics Analyte=4-Nitrophenol	DL Units	.00115		d=Organics Analyte=Acenaphthene	DL Units	.000632	N = 2
	-Organics Analyte-4-Methylphenol/3-Methylphenol	Flag DL Units	ND .000361 ND .000364	It	^ Method=Organics Analyte=4-Nitroaniline	Flag OL Units	ND .00108 ND .00109	II	^ Method=Organics Analyte=4-Nitrophenol	Flag OL Units	ND .00115 ND .00116	11	r Method=Organics Analyte=Acenaphthene	Flag DL Units	ND .000632 ND .000639	H
	r Method=Organics Analyte=4-Methylphenol/3-Methylphenol	Est. Conc (a) Flag DL Units	ND .000361 ND .000364	It	າວ] Tower Method=Organics Analyte=4-Nitroaniline	Est. Conc (a) Flag DL Units	ND .00108 ND .00109	II	ol Tower Method=Organics Analyte=4-Nitrophenol	Est. Conc (a) Flag DL Units	ND .00115 ND .00116	11	rol Tower Method=Organics Analyte=Acenaphthene	Est. Conc (a) Flag DL Units	ND .000632 ND .000639	H
	Site=Control Tower Method=Organics Analyte=4-Methylphenol/3-Methylphenol	Est. Conc Result (a) Flag DL Units	ND .000361 ND .000364	It	Site=Control Tower Method=Organics Analyte=4-Nitroaniline	Est. Conc Result (a) Flag DL Units	ND .00108 ND .00109	II	Site=Control Tower Method=Organics Analyte=4-Nitrophenol	Est. Conc Result (a) Flag DL Units	ND .00115 ND .00116	11	Site=Control Tower Method=Organics Analyte=Acenaphthene	Est. Conc Result (a) Flag DL Units	ND .000632 ND .000639	H

a. Random uniform numbers, between zero and the lesser of the minimum result a

a. Random uniform numbers, between zero and the lesser of the minimum result a

Page 9

Current time: 10/18/95 12:07

20	ne	Lab ts Footnote		
)peryle	÷.	mg/L mg/L	
.,	zo(g, h, i	Flag DL	.00112 n	
sessment	yte=ģenz	Flag	9 g	
Galena Baseline Risk Assessment Groundwater Data	unics Anal	Est. Conc (a)	.0005164	,
Baselir Ground	:hod=Org	Result		•
Galena	Tower Met	Lab Matrix		
	Site=Control Tower Method=Organics Analyte=Benzo(g,h,i)perylene	Data Analytical Lab Source Method Matrix	SW8270 SW8270	
	S	Data Source	1994 1994	
19	 	Lab Footnote	æ	
. 19		Lab Units Footnote	mg/l B mg/l	
	yte=Benzene	Lab DL Units Footnote	.0000307 mg/L B .0000307 mg/L	
	s Analyte=Benzene	Uni	DET .0000307	
	hod=Organics Analyte=Benzene	DL Uni	.000052024 ND .0000307	<
	Tower Method-Organics Analyte-Benzene	Est. Conc Aesult (a) Flag DL Uni	DET .0000307	
Galena Baseline Risk Assessment Groundwater Data	Control Tower Method=Organics Analyte=Benzene	Est. Conc Aesult (a) Flag DL Uni	.000052024 ND .0000307	
	Site=Control Tower Method=Organics Analyte=Benzene	Est. Conc (a) Flag DL Uni	.000052024 ND .0000307	

------ Site=Control Tower Method=Organics Analyte=Benzo(k)fluoranthene -----Lab Units Footnote mg/L mg/L .00109 김 Flag 윤 .00041776 Est. Conc (a) N = 2 Lab Matrix Result Analytical Method SW8270 SW8270 Data Source $1994 \\ 1994$ ------ Site=Control Tower Method=Organics Analyte=Benzo(a)anthracene ------Lab Units Footnote mg/L mg/L .000588 님 Flag 일 옷 .00006872 Est. Conc (a) N = 2 Lab Matrix Result Analytical Method SW8270 SW8270

Data Source

1994 1994

 	Lab :s Footnote	•	
acid -	Units	mg/L mg/L	
=Benzoic	占	0.0258 0.0260	
4nalyte	Flag	22	
=Organics	Est. Conc (a)	0.000039 0.022818	N = 2
. Method	Result		
rol Tower	Lab Matrix	ب ب	
Site=Control Tower Method=Organics Analyte=Benzoic acid	Analytical Lab Method Matrix	SW8270 SW8270	
	Data Source	1994 1994	
)pyrene	Lab ts Footnote		
pyrene	Units	mg/L mg/L	
Benzo(a)	DF	.000786	
nalyte=	Flag	0 Q	
=Organics A	Est. Conc (a)	.00077705	N = 2
Method	Result		
rol Tower	Lab Matrix	ب ب	
Site=Control Tower Method=Organics Analyte=Benzo(a)	Analytical Lab Method Matrix R	SW8270 SW8270	
	o o		
	Data Source	1994 1994	

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Lab ts Footnote		
cohol -	Units	2 mg/L 3 mg/L	
Benzyl al	DL Units	.000532	
nalyte=	Flag	<u> </u>	
Organics A	Est. Conc (a)	.00029569 .00037545	N = 2
r Method=	Result		
rol Towe	Lab Matrix	ب.	
Site=Control Tower Method=Organics Analyte=Benzyl alcohol	Analytical Lab Method Matrix	SW8270 SW8270	
! ! ! ! !	Data / Source	1994 1994	
oranthene	Lab Units Footnote		
oranthe	Units	mg/L mg/L	
zo(þ) ا	DL	.00104	
yte=Ben.	Flag DL	28	
ganics Anal	Est. Conc (a)	.00000080	N = 2
thod=Or	Result		
Tower Me	Lab Matrix	نــ	
Site=Control Tower Method=Organics Analyte=Benzo(b)fluo	Data Analytical Lab Source Method Matrix	SW8270 SW8270	
1	Data Source	1994 1994	

File: groundwater.dat File time stamp: 10/18/95 12:05

a. Random uniform numbers, between zero and the lesser of the minimum result a

a. Random uniform numbers, between zero and the lesser of the minimum result a

22	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Lab Units Footnote		
	sulfide	Units	mg/L mg/L	
±	Carbon di	0F	.000161 mg/L .000161 mg/L	
sessmer	ıa]yte=(Flag	8 S	
Galena Baseline Risk Assessment Groundwater Data	Organics An	Est. Conc (a)	.000011906	= 2
na Basel Groun	Method≕	Result		
Galeı	rol Tower	Lab Matrix		
	Site=Control Tower Method=Organics Analyte=Carbon disulfide	Analytical Lab Method Matrix	SW8260 SW8260	
		Data Source	1994 1994	
-	1			
21	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Lab Footnote		
21	nzene	Lab Units Footnote	mg/l mg/L	
	==Bromobenzene	Lab DL Units Footnote	.000165 mg/L .000165 mg/L	
	Analyte=Bromobenzene	Lab Flag OL Units Footnote		
	od=Organics Analyte=Bromobenzene	Ol Units	.000165	
	wer Method=Organics Analyte=Bromobenzene	Est. Conc Result (a) Flag DL Units	ND .000165 ND .000165	. Z = Z
sessment	ontrol Tower Method=Organics Analyte=Bromobenzene	Est. Conc Result (a) Flag DL Units	ND .000165 ND .000165	. N = 2
	Site=Control Tower Method=Organics Analyte=Bromobenzene	Est. Conc Result (a) Flag DL Units	ND .000165 ND .000165	

Units Footnote mg/L mg/L .000117 占 Flag 22 000068736000036464Est. Conc (a) N = 2 Lab Matrix Result Analytical Method SW8260 SW8260 Data Source 1994 1994 Units Footnote .0000536 mg/L .0000536 mg/L 占 Flag 일 .000005886 Est. Conc (a) N = 2 Lab Matrix Result Analytical Method SW8260 SW8260 Data Source 1994 1994

------ Site=Control Tower Method=Organics Analyte=Carbon tetrachloride ------

----- Site=Control Tower Method=Organics Analyte=Bromodichloromethane -----

 	Lab Footnote			
ne	Units	mg/L mg/L		zene
e=Chlorda	OL	.0000199		:Chloroben
Analyt	Flag	22		nalyte=
Site=Control Tower Method=Organics Analyte=Chlordane	Est. Conc (a)	.0000016845	N = 2	d=Organics A
wer Meth	Result			er Methoc
ontrol To	Lab Matrix			trol Towe
Site=C	Analytical Lab Method Matrix	SW8080 SW8080		Site=Control Tower Method=Organics Analyte=Chlorobenzene
 	Data Source	1994 1994		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
\$ 1 5 2 1 2	Lab Footnote			
rane	Units	mg/L mg/L		phthalate
=Bromomet!	10	.0000968 .0000968		ylbenzylpł
Analyte	Flag ·	28		yte=But
anics		28 20 30		Anal
od=0rg	Est. Conc (a)	.000087928	N = 2	ganics
wer Method=Org	Est. Conc Result (a)		N = 2	Method=Organics
ontrol Tower Method=Org	x Result	L	N = 2	ol Tower Method=Organics
Site=Control Tower Method=Organics Analyte=Bromomethane	Result	SW8260 L	N = 2	Site=Control Tower Method=Organics Analyte=Butylbenzyl

		= =	
	Ы	.000112	
	Flag	28	
Est. Conc	(a)	.00011143	N = 2
	Result		
	Matrix		
		SW8260 SW8260	
Data	Source	1994 1994	
Lab	Footnote		
	Units	mg/L mg/L	
) JO 6	.00180	
	Flag	88	
Est. Conc	(a)	.0016179	N = 2
	Result		. •
	Matrix	ب. ب	
Analytical	Method	SW8270 SW8270	
Data	Source	1994 1994	

Units Footnote

mg/L mg/L

a. Random uniform numbers, between zero and the lesser of the minimum result a

Random uniform numbers, between zero and the lesser of the minimum result a a.

Groundwater Data

-	Galena Baseline Risk Assessment	Groundwater Data
	23	

Site=Control Tower Method=Organics Analyte=Di-n-octylphthalate	Est. Data Analytical Lab Conc Conc Source Method Matrix Result (a) Flag DL Units Footnote	1994 SW8270 L00024906 ND .000510 mg/L 1994 SW8270 L00006176 ND .000515 mg/L	. Z = N	Site=Control Tower Method=Organics Analyte=Dibenz(a,h)anthracene	Est. Data Analytical Lab Conc Conc Source Method Matrix Result (a) Flag DL Units Footnote	1994 SW8270 L00041693 ND .00099 mg/L 1994 SW8270 L00052766 ND .00100 mg/L	N = 2	Site=Control Tower Method=Organics Analyte=Dibenzofuran	Est. Data Analytical Lab Conc Conc Source Method Matrix Result (a) Flag DL Units Footnote	1994 SW8270 L00053032 ND .000548 mg/L 1994 SW8270 L00054082 ND .000553 mg/L	N = 2	Site=Control Tower Method=Organics Analyte=Oibromochloromethane	Est. Data Analytical Lab Conc Lab Source Method Matrix Result (a) Flag DL Units Footnote	1994 SW8260 L
Site=Control Tower Method=Organics Analyte=Chloroethane	Est. Data Analytical Lab Conc Conc Source Method Matrix Result (a) Flag DL Units Footnote	1994 SW8260 L000085087 ND .0000972 mg/L 1994 SW8260 L000011293 ND .0000972 mg/L	N = 2	Site=Control Tower Method=Organics Analyte=Chloroform	Est. Data Analytical Lab Conc Source Method Matrix Result (a) Flag DL Units Footnote	1994 SW8260 L000014704 ND .0000363 mg/L 1994 SW8260 L000014278 ND .0000363 mg/L	N = 2	Site=Control Tower Method=Organics Analyte=Chloromethane	Est. Data Analytical Lab Conc Conc Source Method Matrix Result (a) Flag DL Units Footnote	1994 SW8260 L .00031 .00031000 DET .000155 mg/L 1994 SW8260 L00003106 ND .000155 mg/L	N = 2		Est. Data Analytical Lab Conc Lab Source Method Matrix Result (a) Flag DL Units Footnote	1994 SW8270 L00089701 ND .00098 mg/L 1994 SW8270 L00052411 ND .00099 mg/L

a. Random uniform numbers, between zero and the lesser of the minimum result a

N = 2

N = 2

a. Random uniform numbers, between zero and the lesser of the minimum result a

Galena Baseline Risk Assessment Groundwater Data

Footnote Units Footnote Site=Control Tower Method=Organics Analyte=Diethylphthalate Site=Control Tower Method=Organics Analyte=Dimethylphthalate Units mg/L mg/L mg/L mg/L.000443 .000251 占 Flag Flag 22 오 오 .00007649 .00024566 Est. Conc Est. Conc (a) (a) N = 2 Result ·Lab Matrix Result Lab Matrix Analytical Method Analytical Method SW8270 SW8270 SW8270 SW8270 Data Source Data Source $1994 \\ 1994$ 1994 1994 Site=Control Tower Method=Organics Analyte=Dibutyl phthalate ------Footnote Footnote Lab Units Units Site=Control Tower Method=Organics Analyte=Dibromomethane mg/L mg/L mg/L mg/L .0000598 .000489 ᆸ Flag Flag 을 운 SET S .00018522 .00021000 Est. Conc Est. Conc (a) (a) Lab Matrix Result .00021 Result Lab Matrix Analytical Method Analytical Method SW8270 SW8270 SW8260 SW8260 Data Source Data Source $1994 \\ 1994$ 1994 1994

Site=Control Tower Method=Organics Analyte=Diphenylamine (N-Nitrosodiphenylamin Est. Site=Control Tower Method=Organics Analyte=Dieldrin Est.

= 2

N = 2

.000890 Flag 9 9 .00034725 .00037113 Conc (a) Matrix Result Analytical Method SW8270 SW8270 Data Source 1994 1994 Units Footnote Lab .00000280 mg/L .00000286 mg/L Flag . .0000079 .0000025996 ND .0000079 .0000079 .0000079000 DET Conc (a) Result Lab Matrix Data Analytical ource Method SW8080 SW8080 Source $1994 \\ 1994$

Footnote

mg/L mg/L

N = 2

Site=Control Tower Method=Organics Analyte=Endosulfan I ------------ Site=Control Tower Method=Organics Analyte=Diesel Range Organics -----Est.

2 = N

Flag . .0000094 .0000094000 DET Est. Conc (a) Matrix Result Data Analytical SW8080 SW8080 Method Source 1994 1994Footnote JB B Lab Units mg/L mg/L ᆸ Flag DET DET 0.0340.000Conc (a) 2 = 0.034 z Result Matrix Lab Analytical Method AK102 AK102 Data Source 1994 1994

Units Footnote

占

.00000215 mg/L .00000219 mg/L

a. Random uniform numbers, between zero and the lesser of the minimum result a

a. Random uniform numbers, between zero and the lesser of the minimum result a

ena

Galena Baseline Risk Assessment Groundwater Data	
27	
Groundwater Data Groundwater Data	The material of the second of

	Lab Footnote				Lab Units Footnote			
nzene	Units	mg/L mg/L		thene -	Units	mg/L mg/L		ene
Ethylbe	DF	.00011		-Fluoran	DL	000583		te=F}uor
nalyte≔	Flag	S S		nalyte≔	Flag	28		3 Analy
Site=Control Tower Method=Organics Analyte=Ethylbenzene	Est. Conc (a)	.000019022 .000030083	N = 2	Site=Control Tower Method=Organics Analyte=Fluoranthene	Est. Conc (a)	.00005916	N = 2	Site=Control Tower Method=Organics Analyte=Fluorene
er Metho	Result			er Metho	Result			ower Met
trol Tow	Lab Matrix	ناب		itrol Tow	Lab Matrix			Control T
Site=Con	Analytical Method	SW8260 SW8260		Site=Con	Analytical Method	SW8270 SW8270		Site=(
1 1 1	Data Source	1994 1994		† † † 1	Data Source	1994 1994		- I I I I
ł				!				;
	Lab Units Footnote			te	Lab Units Footnote	22		† † † † †
fan II	Units	mg/L mg/L		n sulfate	Units F	mg/L mg/L		Irin
:e≖Endosu]	D L	.00000376 mg/L .00000384 mg/L		-Endosulfa	10	.00001000 mg/L .00000507 mg/L		nalyte=Enc
Analyt	Flag	ON O 8 ON ON		nalyte=	Flag			nics Ar
=Organics	Est. Conc (a)	.0000019090 .0000005458	N = 2	rganics A	Est. Conc (a) I	.0000030 .0000030 DET	N = 2	thod=Orga
er Method	Result		•	Method=0	Result	.0000030		Tower Me
ol Tow	Lab Matrix Result			Tower	Lab Matrix			Control
Site=Control Tower Method=Organics Analyte=Endosulfan	nalytical Method	SW8080 SW8080		Site=Control Tower Method=Organics Analyte=Endosulfan	nalytical Method	SW8080 SW8080		Site=Control Tower Method=Organics Analyte=Endri
1	Data A Source	1994 1994		5	Data A Source	1994 1994		

Site=Control lower Method=Organics Analyte=Fluorene	Est. Data Analytical Lab Source Method Matrix Result (a) Flag DL Units Footnote	1994 SW8270 L00020269 ND .000454 mg/L 1994 SW8270 L00009879 ND .000458 mg/L	Z # N	Site=Control Tower Method=Organics Analyte=Gasoline Range Organics
	Est. Data Analytical Lab Conc Conc Source Method Matrix Result (a) Flag OL Units Footnote	1994 SWB080 L0000020421 ND .00000758 mg/L 1994 SWB080 L0000004043 ND .00000773 mg/L	N = 2	Site=Control Tower Method=Organics Analyte=Endrin aldehyde

	ine Rang	70	0.05	
Analyte=Endrin aldehyde Lab Flag DL Units Footnote 50 ND .00000625 mg/L 98 ND .00000638 mg/L	e=Gaso	Flag	DET DET	
Analyte=Endrin aldehyde Lab Flag DL Units Footnote 50 ND .00000625 mg/L 98 ND .00000638 mg/L	s Analyt	Est. Conc (a)	0.009	2
Analyte=Endrin aldehyde Lab Flag DL Units Footnote 50 ND .00000625 mg/L 98 ND .00000638 mg/L	d=Organic		0.009	z
Analyte=Endrin aldehyde Lab Flag DL Units Footnote 50 ND .00000625 mg/L 98 ND .00000638 mg/L	ower Metho	Lab Matrix	ب-	
Analyte=Endrin aldehyde Lab Flag DL Units Footnote 50 ND .00000625 mg/L 98 ND .00000638 mg/L	ite=Control To	Analytical Method	AK101 AK101	
	S S.	Data Source	1994 1994	
i		Est. Conc (a)	SW8080 L	N = 2
	1	_ <u>`</u>		

Lab Units Footnote

mg/L mg/L

a. Random uniform numbers, between zero and the lesser of the minimum result a

a. Random uniform numbers, between zero and the lesser of the minimum result a

me: 10/18/95 12:07 File: groundwater.dat File time stamp: 10/18/95 12:05 .Curre

	ω		
diene	Lab Footnote		
Jopenta	Ln	1/6w mg/r	
hlorocy		.00118	
e=Hexac	Flag	88	
ics Analyte	Est. Conc (a)	.00041893	N = 2
od=Organi	Result		
wer Meth	Lab Matrix		٠
e=Control To	Analytical Method	SW8270 SW8270	
Sit	Data Source	1994 1994	
!			
	Lab Footnote	33	
achlor	Units	3 mg/L	
lyte=Hept	DF.	.00000645	
ics Ana	Flag	4 DET 3 DET	
od=Organ	Est. Conc (a)	.000000.	N = 2
wer Metho	Result	.0000004	
itrol To	Lab Matrix		
Site=Cor	Analytical Method	SW8080 SW8080	
1	Data Source	1994 1994	
	Site=Control Tower Method=Organics Analyte=Heptachlor Site=Control Tower Method=Organics Analyte=Hexachlorocyclopentadiene	Lab Footnote	Est. Conc (a) Flag DL Units Footnote .0000004 DET .00000645 mg/L FJ

; Units Footnote mg/L mg/L .000546 Ы Flag 일 .00024325 Est. Conc (a) Lab Matrix Result Analytical Method SW8270 SW8270 Data Source 1994 1994 Lab Units Footnote 3 .0000001 .0000001 DET .00000935 mg/L .00000555 .0000555 DET .00000954 mg/L ᆸ Flag Est. Conc (a) Lab Matrix Result Data Analytical Source Method SW8080 SW8080 1994 1994

------ Site=Control Tower Method=Organics Analyte=Hexachloroethane ------

------ Site=Control Tower Method=Organics Analyte=Heptachlor epoxide

Site=Control Tower Method=Organics Analyte=Indeno(1,2,3-cd)pyrene	Est. 1 Analytical Lab Conc Lab 2e Method Matrix Result (a) Flag DL Units Footnote	1 SW8270 L00032689 ND .000874 mg/L00061679 ND .000882 mg/L	N = 2	Site=Control Tower Method=Organics Analyte=Isophorone
	Data Source	1994 1994		!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
obenzene	Lab Units Footnote	mg/L mg/L		Site=Control Tower Method=Organics Analyte=Hexachlorobutadiene
xachlor	DC	.000545		achloro
Jyte=He	Flag	QN QN		yte=Hex
Irganics Ana	Est. Conc (a)	00023593	N = 2	ganics Anal
Method=(Result			ethod=0r
1 Tower	Lab Matrix			Tower M
Site=Control Tower Method=Organics Analyte=Hexachlorob	Analytical Lab Method Matrix	SW8270 SW8270		Site=Control
	Data Source	1994 1994		1 1 1 1 1

	Flag	99	
Est. Conc	(a)	.000065608	N = 2
	Result		
	Matrix		
Analvtical	Method	SW8270 SW8270	
Data	Source	1994 1994	
Lab	Footnote		
	Units	mg/L mg/L	
	DL Units	.00102 mg/L .00103 mg/L	
Est. Conc	Flag DL	.00102	N = 2
Est. Conc	Flag DL	ND .00102 ND .00103	N = 2
Lab	Matrix Result (a) Flag DL	ND .00102 ND .00103	N = 2
Analvtical Lab	Method Matrix Result (a) Flag DL	ND .00102 ND .00103	N = 2
Analvtical Lab	Matrix Result (a) Flag DL	L	N = 2

Units Footnote

ᆸ

mg/L mg/L

.000320

a. Random uniform numbers, between zero and the lesser of the minimum result a

a. Random uniform numbers, between zero and the lesser of the minimum result a

Site=Control Tower Method=Organics Analyte=Nitrobenzene	Analytical Lab Conc Flag DL Units Fratnote	L	Z = X	Site=Control Tower Method=Organics Analyte=PCB-1016	Analytical Lab Conc Lab
Sit	Data Analyt Source Meth	1994 SW8270 1994 SW8270		S	Data Analyti
Site=Control Tower Method=Organics Analyte=Methoxychlor	Est. Data Analytical Lab Source Method Matrix Result (a) Flag DL Units Footnote	1994 SW8080 L .0000035090 ND .0000395 mg/L 1994 SW8080 L .0000058 .0000058000 DET .0000626 mg/L KJ	N = 2	Site=Control Tower Method=Organics Analyte=Methylene chloride	Est. Data Analytical Lab Conc Source Method Matrix Result (a) Flam Di Unite Ecotoxic

Lab Matrix Result Analytical Method SW8080 SW8080 Data Source 1994 1994 Footnote Lab **8**2 **8**2 Units mg/L mg/L .000151 겁 Flag DET DET .00018 Conc (a) N = 2.00018 Result Matrix Analytical Method SW8260 SW8260 Data Source 1994 1994

Units Footnote

굼

Flag

(a)

mg/L mg/L

.0000321

운 운

.000027305

S = N

---- Site=Control Tower Method=Organics Analyte=PCB-1221 Analytical Method SW8080 SW8080 Source 1994 1994 ----- Site=Control Tower Method=Organics Analyte=N-Nitrosodipropylamine -----Footnote Units mg/L mg/L .000610 占 Flag 28 .00059096 Conc (a) Result Matrix Lab Analytical Method SW8270 SW8270 $1994 \\ 1994$

N = 2

Footnote

Units

ಗ

Flag

Est. Conc (a)

Result

Lab Matrix

mg/L mg/L

.0000288

운용

000014565 .000000489

2 = N

Lab

--- Site=Control Tower Method=Organics Analyte=PCB-1232 ----.000064270 Est. Conc (a) N = 2 Result Matrix Analytical Method SW8080 SW8080 Data Source 1994 1994 Footnote Units mg/L mg/L Site=Control Tower Method=Organics Analyte=Naphthalene .000764 Flag 윤 0003376400055467Est. Conc (a) N = 2 Result Lab Matrix Analytical Method SW8270 SW8270 Data Source 1994 1994

Footnote

Units

占

Flag

mg/L mg/L

.0000728

22

a. Random uniform numbers, between zero and the lesser of the minimum result a

Random uniform numbers, between zero and the lesser of the minimum result a

٠ ت

File time stamp: 10/18/95 12:05 File: groundwater.dat

Galena Baseline Risk Assessment Groundwater Data

Site=Control Tower Method=Organics Analyte=Pentachlorophenol	Est. Data Analytical Lab Conc Source Method Matrix Result (a) Flag DL Units Footnote	1994 SWB270 L	N = 2	Site=Control Tower Method=Organics Analyte=Phenanthrene	Est. Data Analytical Lab Conc Source Method Matrix Result (a) Flag DL Units Footnote	1994 SW8270 L00038594 ND .000653 mg/L 1994 SW8270 L00024173 ND .000659 mg/L	. N = 2	Site=Control Tower Method=Organics Analyte=Phenol	Est. Data Analytical Lab Conc Source Method Matrix Result (a) Flag DL Units Footnote	1994 SW8270 L00030649 ND .000369 mg/L 1994 SW8270 L00033664 ND .000372 mg/L	N = 2	Site=Control Tower Method=Organics Analyte=Pyrene	Est. Data Analytical Lab Conc Source Method Matrix Result (a) Flag DL Units Footnote
	Est. Data Analytical Lab Conc Source Method Matrix Result (a) Flag DL Units Footnote	1994 SW8080 L000009740 ND .0000267 mg/L 1994 SW8080 L000021404 ND .0000272 mg/L	. N = 2 ·	Site=Control Tower Method=Organics Analyte=PCB-1248	Est. Data Analytical Lab Conc Lab Source Method Matrix Result (a) Flag DL Units Footnote	1994 SW8080 L000029105 ND .0000316 mg/L 1994 SW8080 L000029105 ND .0000322 mg/L	N = 2	Site=Control Tower Method=Organics Analyte=PCB-1254	Est. Data Analytical Lab Conc Lab Source Method Matrix Result (a) Flag DL Units Footnote	1994 SWB080 L0000051563 ND .0000126 mg/L 1994 SWB080 L0000049297 ND .0000129 mg/L	N = 2	Site=Control Tower Method=Organics Analyte=PCB-1260	Est. Data Analytical Lab Conc Lab Source Method Matrix Result (a) Flag DL Units Footnote

mg/L mg/L

.0007000.

윤

.000049189

SW8270 SW8270

1994 1994

mg/L mg/L

.0000351

22

.000021490

SW8080 SW8080

 $1994 \\ 1994$

N = 2

N = 2

a. Random uniform numbers, between zero and the lesser of the minimum result a

a. Random uniform numbers, between zero and the lesser of the minimum result a

36	form)	Lab Units Footnote			 	Lab Units Footnote											
	e(Bromo	Units	mg/L mg/L		ethene	Units											
÷ī.	momethan	DL	.000108		richloro	. 10											
ssessmen	e=Tribro	Flag	28		alyte=T	Flag											
Galena Baseline Risk Assessment Groundwater Data	ics Analyte	Est. Conc (a)	.000005483	N = 2	Organics A	Est. Conc (a)											
na Basel Groun	ıod≃0rgan	Result			. Method=	. Result											
Gale	wer Meth	×			ol Tower	Lab Matrix											
	Site=Control Tower Method=Organics Analyte=Tribromomethane(Bromoform)	Analytical Lab Method Matri	SW8260 SW8260		Site=Control Tower Method=Organics Analyte=Trichloroethene	Analytical Lab Method Matrix Result											
	Sit	Data	1994 1994		i 1 1 1 1	Data Source											
35		Lab Footnote			 	Lab Footnote											
	əl	Units	mg/L mg/L		oethene	Units											
+ 2	₁te=Styre	DF	.000113		trachlor	DF											
ssessmen	s Analyt	s Analy	s Analy	s Analy	s Analy	s Analy	s Analyt	s Analyt	s Analyt	s Analy	s Analy	cs Analy	Flag	9 Q		ılyte=Te	Flag
Galena Baseline Risk Assessment Groundwater Data	Site=Control Tower Method=Organics Analyte=Styren	Est. Conc (a)	.000054181	N = 2	Irganics Ana	Est. Conc (a)											
ena Basel Grour	lower Met	Result		٠	Method=0	Result											
Gale	Control	Lab Matrix F	۔ ۔		, ol Tower	Lab Matrix											
	Site=(Analytical Method	SW8260 SW8260		Site=Control Tower Method=Organics Analyte=Tetrachloroethene	Analytical Lab Method Matri											
		Data Source	1994 1994		1	Data Source											

----- Site=Control Tower Method=Organics Analyte=Trichlorofluoromethane -----

·	
Lab Footnote	J.B
Units	mg/L mg/L
ָ ה	.0000336
Flag	DET DET
Est. Conc (a)	.00013
Result	.00013
Lab Matrix	-
Analytical Method	SW8260 SW8260
Data Source	1994 1994

N = 2

------- Site=Control Tower Method=Organics Analyte=Toxaphene --

- ο α α
Analytical Method SW8080 SW8080

Footnote Units mg/L mg/L .0000943 占 Flag 2 9 000020563000050616Est. Conc (a) Result Lab Matrix Analytical Method SW8260 SW8260 Data Source 1994 1994

mg/L mg/L

.0000439

DET DET

.00033

.00033

SW8260 SW8260

1994 1994

mg/L mg/L

.000209

일 운

.00003976

SW8260 SW8260

 $1994 \\ 1994$

N = 2

N = 2

N = 2

Units Footnote --- Site=Control Tower Method=Organics Analyte=Vinyl acetate mg/L mg/L .000127 Ы Flag 을 운 .00011333 Est. Conc (a) Result Lab Matrix Analytical Method SW8260 SW8260

N = 2

Random uniform numbers, between zero and the lesser of the minimum result a . m

Random uniform numbers, between zero and the lesser of the minimum result a

me: 10/18/95 12:07 Curre

File time stamp: 10/18/95 12:05

File: groundwater.dat

a.

Galena Baseline Risk Assessment Groundwater Data

--- Site=Control Tower Method=Organics Analyte=bis(2-Chloroisopropyl)ether ----Footnote ---- Site=Control Tower Method=Organics Analyte=bis(2-Chloroethyl)ether mg/L mg/L .000482 ᆸ Flag 윤 .00035189 Est. Conc (a) N = 2 Result Matrix Lab Analytical Method SW8270 SW8270 Data Source 1994 1994 Site=Control Tower Method=Organics Analyte=Vinyl chloride -----Footnote Lab ------ Site=Control Tower Method=Organics Analyte=alpha-BHC -----Units mg/L mg/L .0000992 占 Flag 25 .000093544 Est. Conc (a) 2 = N Result Matrix Analytical Method SW8260 SW8260 Source 1994 1994

Footnote Units mg/L mg/L .000438 占 Flag 28 .00041738 .00024297 Est. Conc (a) N = 2Lab Matrix Result Analytical Method SW8270 SW8270 Data Source 1994 1994 Units Footnote .00000286 mg/L .00000292 mg/L Flag 22 .0000001510 Est. Conc (a) N = 2 Lab Matrix Result Analytical Method SW8080 SW8080 Source $1994 \\ 1994$

---- Site=Control Tower Method=Organics Analyte=bis(2-Ethylhexyl)phthalate ----Units Footnote .00263 Flag 22 .0005183 Est. Conc (a) N = 2 Result Matrix Lab Analytical SW8270 SW8270 Method Data Source 1994 1994 Units Footnote Lab .00000405 mg/L ------- Site=Control Tower Method=Organics Analyte=beta-BHC 占 Flag . .0000001267 ND .00000071000 DET Est. Conc (a) N = 2 Matrix Result Analytical Lab Method Matri SW8080 SW8080 Source Data 1994 1994

----- Site=Control Tower Method=Organics Analyte=cis-1,2-Dichloroethene -----Units Footnote mg/L mg/L .0000785 ᆸ Flag ND DET 0.000024 Est. Conc (a N = 2 0.0233 Matrix Result Lab Analytical Method SW8260 SW8260 Data Source 1994 1994 ---- Site=Control Tower Method=Organics Analyte=bis(2-Chloroethoxy)methane ----Units Footnote mg/L mg/L .000625 占 Flag 28 .00047618 Est. Conc (à N = 2 Result Matrix Lab Analytical Method SW8270 SW8270 Data Source 1994 1994

a. Random uniform numbers, between zero and the lesser of the minimum result a

a. Random uniform numbers, between zero and the lesser of the minimum result a

Galena Baseline Risk Assessment Groundwater Data	
39	3-Dichlessesses
Galena Baseline Risk Assessment Groundwater Data	Cito-Control Town Wathad-Organics Anslyto-ris-1 3

Site=Control Tower Method=Organics Analyte=o-Xylene	Est. Analytical Lab Conc Lab Method Matrix Result (a) Flag DL Units Footnote	SW8260 L000049719 ND .000124 mg/L SW8260 L000027636 ND .000124 mg/L	N = 2	Site=Control Tower Method=Organics Analyte=trans-1,2-Dichloroethene
	Data Source	1994 1994		! ! !
Site=Control Tower Method=Organics Analyte=cis-1,3-Dichloropropene	Lab Units Footnote	mg/L mg/L		BHC
.,3-Dichl	DC	.0000758 .0000758		:e≕delta-
e=cis-1	Flag	28		s Analyt
anics Analyte	Est. Conc (a)	.000021374	N = 2.	Site=Control Tower Method=Organics Analyte=delta-BHC
thod=0rg	Result			ower Met
Tower Me	Lab Matrix			ontrol I
Site=Control	Data Analytical Lab Source Method Matrix	SW8260 SW8260	•	Site=C
	Data Source	1994 1994		1 1 1 2 2 5 3

mg/L mg/L .000131 김 Flag NO DET .0000376 Est. Conc (a N = 2 .00133 Result Lab Matrix Analytical Method SW8260 SW8260 Data Source 1994 1994 Units Footnote .000000852 mg/L .000002380 mg/L 占 Flag 28 .0000004703 Est. Conc (a) N = 2 Lab Matrix Result Data Analytical Source Method SW8080 SW8080 1994 1994

Footnote Lab

---- Site=Control Tower Method=Organics Analyte=trans-1,3-Dichloropropene ----Est. Conc ----- Site=Control Tower Method=Organics Analyte=gamma-BHC(Lindane)

Units Footnote .00000178 mg/L .00000182 mg/L 占 Flag .0000133 .000013300 DET Est. Conc (a) Result Matrix Lab Analytical Method N SW8080 SW8080 Data Source 1994 1994

Footnote

Units

ᆸ

Flag

(a)

Result

Matrix

Analytical Method

Source

mg/t mg/L

.0000829

문문

.000058354

SW8260 SW8260

1994 1994

N = 2

N = 2

Site=Control Tower Method=Organics Analyte=m&p-Xylenes

Footnote Lab Units mg/L mg/L .000365 占 Flag DET ND .000070000 Est. Conc (a) .00007 Matrix Result Analytical Method SW8260 SW8260

Data Source

 $1994 \\ 1994$

2 = N

Units mg/L mg/L mg/L mg/L 0.0523 0.0523 0.0523 0.0523 占 Flag 961 961 961 -0.02910 -0.00093 0.00646 0.09040 Est. Conc (a) 0.09040 -0.02910 -0.00093 0.00646 Result Lab Matrix Analytical Method SWE010 SWE010 SWE010 SW6010

Data Source

1995 1995 1995 1995

7

Site=Southeast Runway Method=Inorganics Analyte=Aluminum ---

Footnote

N = 4

a. Random uniform numbers, between zero and the lesser of the minimum result a

me: 10/18/95 12:07 Curre

File time stamp: 10/18/95 12:05

File: groundwater.dat

a. Random uniform numbers, between zero and the lesser of the minimum result a

Galena Baseline Risk Assessment Groundwater Data

Site=Southeast Runway Method=Inorganics Analyte=Beryllium (continued)	Est. Data Analytical Lab Conc Lab Source Method Matrix Result (a) Flag DI Units Footnote	SW6010 L .00274 .00274 DET .00051 mg/L N = 4	Site=Southeast Runway Method=Inorganics Analyte=Cadmium	Est.	Uata Analytical Lab Source Method Matrix Result (a) Flag DL Units Footnote	1995 SW6010 L .00851 .00851 DET .00386 mg/L B	L .00323 .00323 DET .00386 mg/L L .00424 .00424 DET .00386 mg/L	= b		Data Analytical Lab Source Method Matrix Result (a) Flag DL Units Footnote	SW6010 L 217.0 217.0 DET 0.0175	L 147.0	Site=Southeast Runway Method=Inorganics Analyte=Chromium	Est.	Method Matrix Result	SW6010 L .00220 .00220 DET .00524 mg/L SW6010 L .00155 .00155 DET .00524 mg/L	.00175 .00175 DET .00524 .00152 .00152 DET .00524	 Random uniform numbers, between zero and the lesser of the minimum result a
Site=Southeast Runway Method=Inorganics Analyte=Antimony	Est. Data Analytical Lab Source Method Matrix Result (a) Flag DL Units Footnote	1995 SW6010 L 0.00583 0.00583 DET 0.076 mg/L J 1995 SW6010 L -0.09280 -0.09280 DET 0.076 mg/L J 1995 SW6010 L -0.10300 -0.10300 DET 0.076 mg/L J 1995 SW6010 L -0.03210 -0.03210 DET 0.076 mg/L J	N = 4	Site=Southeast Runway Method=Inorganics Analyte=Arsenic	Est. Data Analytical Lab Conc Lab	Matrix Result	1995 SW6010 L 0.0320 0.0320 DET 0.0468 mg/L J 1995 SW6010 L 0.0104 DET 0.0468 mg/L J 1995 SW6010 L -0.0326 -0.0326 DET 0.0468 mg/L J 1995 SW6010 L 0.0111 DET 0.0468 mg/L J	7 II N	Site=Southeast Runway Method=Inorganics Analyte=Barium	Data Analytical lah Good	Method Matrix Result (a) Flag DL Units Fo	1995 SW6010 L 0.632 0.632 DET .00086 mg/L 1995 SW6010 L 0.164 0.164 DET .00086 mg/L 1995 SW6010 L 0.197 0.197 DET .00086 mg/L 1995 SW6010 L 0.148 0.148 DET .00086 mg/L	N = 4	Site=Southeast Runway Method=Inorganics Analyte=Beryllium	Data Analytical tah Conc tah	e Method Matrix Result (a) Flag DL Units Fo	1995 SW6010 L .00394 .0039 DET .00051 mg/L 1995 SW6010 L .00000 .00000 DET .00051 mg/L J 1995 SW6010 L .00025 .0002 DET .00051 mg/L J	a. Random uniform numbers, between zero and the lesser of the minimum result a

	Baseline Kisk Assessment	distant
•	base	,
٠,	Galena	

	i								
	Lead			Units		mg/L	1		
ent	Analyte≕l			۵۲		.000957			
ssessme a	ganics			Flag	י	DET	•	•	
Baseline Risk As: Groundwater Data	/ Method=Inor (continued)	Est.	Conc	(a)		00118		N = 4	
Galena Baseline Risk Assessment Groundwater Data	Runway Met (cor			Result		0011800118		-	
Galer	utheast		Lab	Matrix		_			
	Site=Southeast Runway Method=Inorganics Analyte=Lead (continued)		Analytical Lab	Method		SW7421			
	i 1 1 1 1		Data	Source		1995		•	
43		Lab	Footnote			ى	ņ	ŋ	
	oalt		Units		mg/L	mg/L	mg/L	mg/L	
	Analyte=Cobalt		ᆸ		.00407	.00407	.00407	.00407	
essment	ics Ana		Flag				DET		
Baseline Risk Ass Groundwater Data	od=Inorgan	Est. Conc	(a)		0.02280	0.00176	0.00000	-0.00531	
Galena Baseline Risk Assessment Groundwater Data	ınway Meth		Result		0.02280	0.00176	0.0000.0	-0.00531	
Galer	itheast Ru	Lab	Matrix		_	_	ب	·	
	Site=Southeast Runway Method=Inorganics	Analytical			SW6010	SW6010	SW6010	SW6010	
	! ! ! ! !	Data	Source		1995	1995	1995	1995	

N = 4

	Lab Footnote	
Copper	Units	mg/L mg/L mg/L mg/L
4nalyte=	10	.00916 .00916 .00916 .00916
anics	Flag	0ET 0ET 0ET
od=Inorg	Est. Conc (a)	.00000 .00255 .00714 .00255
γay Methα	Result	.00000 .00255 .00714 .00255
east Runv	Lab Matrix	<u>.</u>
- Site=Southeast Runway Method=Inorganics Analyte=Copper	Analytical Method	SW6010 SW6010 SW6010 SW6010
1	Data Source	1995 1995 1995 1995
1		

N = 4

	Lab s Footnote B
Iron	Units mg/L mg/L mg/L mg/L
Analyte=	DL .00452 .00452 .00452
anics	Flag DET DET DET
Method=Inorganics Analyte=Iron	Est. Conc (a) 22.0000 0.1240 0.0107
unway Met	Result 22.0000 0.1240 0.0107 0.0235
Site=Southeast Runway	Lab Matrix L L L
Site=Sou	Analytical Method SW6010 SW6010 SW6010 SW6010
1 3 4 1 5 2	Data Source 1995 1995 1995

N = 4

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Lab Footnote	יייי
Lead	Units	mg/L mg/L mg/L
Analyte≕	DL	.000957 .000957 .000957
ganics	Flag	0£T 0£T
thod=Inor	Est. Conc (a)	00115 00102 00019
Site=Southeast Runway Method=Inorganics Analyte=Lead	Result	00115 00102 00019
utheast	Lab Matrix	
Site=Sc	Analytical Method	SW7421 SW7421 SW7421
	Data Source	1995 1995 1995

a. Random uniform numbers, between zero and the lesser of the minimum result a

------ Site=Southeast Runway Method=Inorganics Analyte=Magnesium ------Lab Footnote

 \neg

Lab Units Footnote mg/L mg/L mg/L 0.0479 0.0479 0.0479 0.0479 딥 Flag DET DET DET 63.70 44.80 9.68 33.10 Est. Conc (a) 63.70 44.80 9.68 33.10 Lab Matrix Result Analytical Method SW6010 SW6010 SW6010 SW6010 Data Source 1995 1995 1995 1995

N = 4

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Lab Footnote
nganese	Units mg/L mg/L mg/L mg/L
ılyte≍Ma	DL .00155 .00155 .00155
ics Ana	Flag DET DET DET
- Site=Southeast Runway Method=Inorganics Analyte=Manganese	Est. Conc (a) 31.2000 0.2240 0.0272
	Result 31.2000 0.2240 0.0272
	Lab Matrix L L L
	Analytical Method SW6010 SW6010 SW6010 SW6010
	Data Source 1995 1995 1995

------ Site=Southeast Runway Method=Inorganics Analyte=Molybdenum ---

N = 4

Lab Footnote	777
Units	mg/L mg/L mg/L
DL	.00739 .00739 .00739
Flag	0ET 0ET 0ET 0ET
Est. Conc (a)	-0.01530 -0.01730 0.00652 0.00877
Result	-0.01530 -0.01730 0.00652 0.00877
Lab Matrix	
Analytical Method	SW6010 SW6010 SW6010 SW6010
Data Source	1995 1995 1995 1995

N = 4

a. Random uniform numbers, between zero and the lesser of the minimum result a

Curre

File time stamp: 10/18/95 12:05

File: groundwater.dat

me: 10/18/95 12:07

Data Analytical Lab Continued) Source Method Matrix Result (a) Flag DL Units 1995 SW6010 L0033100331 DET .00519 mg/L 1995 SW6010 L0033100331 DET .00519 mg/L 1995 SW6010 L 11.40 11.40 DET 0.0401 mg/L 1995 SW6010 L 1.43 1.43 DET 0.0401 mg/L 1995 SW6010 L 0.0128 DET 0.0401 mg/L 1995 SW6010 L 0.0128 DET 0.0401 mg/L 1995 SW6010 L 0.0128 DET 0.0833 mg/L 1995 SW6010 L 0.0128 DET 0.0833 mg/L 1995 SW6010 L 0.0128 DET 0.0833 mg/L 1995 SW6010 L 0.0340 DET 0.0843 mg/L 1995 SW6010 L 0.00340 DET 0.0844 mg/L 1995 SW6010 L 0.00034 0.00045 DET 0.00454 mg/L 1995 SW6010 L 0.000034 0.000034 DET 0.00454 mg/L 1995 SW6010 L 0.000034 DET 0.00454 mg/L 0.04454 mg/L 0.004454 mg/L 0.00444 mg/L 0.00444 mg/L 0.00444 mg/L 0.	N = A
DL Units Footnote 0.0141 mg/L 0.0142 mg/L 0.082 mg/L 0.822 mg/L 0.0821 mg/L 0.0891 mg/L	111g/ L
Runway Method=Inorganics Analyte=Nick Est. Conc Result (a) Flag DL (0.04180 0.04180 DET 0.0141 n 0.01290 0.01290 DET 0.0141 n 0.01100 0.01100 DET 0.0141 n 0.01100 0.01100 DET 0.0141 n 0.01100 0.01100 DET 0.0141 n N = 4 N = 4 N = 4 N = 4 N = 4 N = 4 N = 4 Conc X Result (a) Flag DL Ur Conc X Result (a) Flag DL Ur Conc N = 4 N =	<u> </u>
Site=Southeast Runway Method=Inorganics Analyte=Nickel	
Data Analytical Lab Source Method Matrix 1995 SW6010 L	

a. Random uniform numbers, between zero and the lesser of the minimum result a

a. Random uniform numbers, between zero and the lesser of the minimum result a

Footnote

---- aut

Footnote

mg/L mg/L mg/L

.0002030 .0000678 .0000678

.00016995 .00002618 .00000807 00006306

SW8260 SW8260 SW8260 SW8260

1995 1995 1995 1995

47

Site=Southeast Runway Method=Organics Analyte=1,1,2,2-Tetrachloroethane (continued)	Est. Conc	Method Matrix Result (a) Flag DL Units Footnot	SW8260 L000033758 ND .0000708 mg/L		Site=Southeast Runway Method=Organics Analyte=1,1,2-Trichloroethane	Est.	Aliaiyilda Lab Cong Lab
1,2,2-Tetrac	i	ಕ			1,1,2-Trich]		
lyte=1,	i	Flag			nalyte=		
ganics Anal continued)	Est. Conc	(a)	.000033758	N = 4.	Organics Ar	Est.	כפוכ
Method=Org (c	;	Resuit	٠		y Method=(
Runway	Lab	Matrix	_		t Runwa	<u>-</u>	ran
e≕Southeast	Analytical	Method	SW8260		ite=Southeas	Analytical	Allalytical
Site	Data	Source	1995		S		חמום
	Lab Footnote	r		, TO		oethane	
2417	Units	mg/L	mg/L	mg/L		rachlor	
0) II		05	00402	20		-Tet	
ina i yt	Ы	.004	8.8	.004		,1,2	
anıcs Analyt	Flag DL	DET	DET	DET		rte=1,1,1,2	
.nod=Inorganics Analyt Fe+	Conc (a) Flag DL	00463 DET	00131 DET	00078 DET	# # 4	uics Analyte=1,1,1,2	
unway metnod≐Inorganics Anaiyt Fs+		00463 DET	DET	00078 DET	N 1 4	hod=Organics Analyte=1,1,1,2	
itneast Kunway Method≐Inorganics Analyt F≈+	Conc (a)	00463 DET	00131 DET	00078 DET	X 4	nway Method=Organics Analyte=1,1,1,2	
Site=Southeast Kunway Method=Inorganics Analyte=Linc Fs+	Conc Result (a)	L0046300463 DET	00131 DET	L0007800078 DET	A X	Site=Southeast Runway Method=Organics Analyte=1,1,1,2-Tetrachloroethane	

Lab Footnote		
Units	mg/L mg/L mg/L	
DL	.000399 .000133 .000133	
Flag	2222	
Est. Conc (a)	.00035468 .00004096 .00008902 .00011202	N = 4
Result		
Lab Matrix		
Analytical Method	SW8260 SW8260 SW8260 SW8260	
Data	1995 1995 1995 1995	

----- Site=Southeast Runway Method=Organics Analyte=1,1,1-Trichloroethane -----

Lab Footnote	
Units	mg/l mg/l mg/l
01	.00036 .00012 .00012
Flag	
Est. Conc (a)	.00013121 .00011926 .00003667 .00010583
Result	
Lab Matrix	
Analytical Method	SW8260 SW8260 SW8260 SW8260
Data Source	1995 1995 1995 1995

N = 4

alyte=1,1,2,2-Tetrachloroethane
Method=Organics An
Runway
Site=Southeast

Data Source	Analytical Method	Lab Matrix	Result	Est. Conc (a)	Flag	ដ	Units	Lab Footnote
1995	SW8260	ب		.000083190	9	.0002120	ma/L	
1995	SW8260	_		.000054674	2	.0000708	mg/L	
1995	SW8260	_		.000039227	2	.0000708	ma/L	

Random uniform numbers, between zero and the lesser of the minimum result a م

Footnote Footnote Lab ----- Site=Southeast Runway Method=Organics Analyte=1,1-Dichloroethene Units mg/L mg/L mg/L Units mg/L mg/L mg/L .0001940 .0000646 .0000646 .000636 .000212 .000212 .000212 占 ᆸ Flag Flag 2222 2222 .000023140 .000048814 .000063174 .000036912 .00013962 .00002001 .00002001 .00004822 Est. Conc Conc (a) (a) Est. N = 4 Result Result Lab Matrix Lab Matrix Analytical Method Analytical Method SW8260 SW8260 SW8260 SW8260 SW8260 SW8260 SW8260 SW8260 Source Data Source 1995 1995 1995 1995 1995 1995 1995 1995

Lab

Site=Southeast Runway Method=Organics Analyte=1,1-Dichloroethane

N = 4

Random uniform numbers, between zero and the lesser of the minimum result a a.

N = 4

. Curre File time stamp: 10/18/95 12:05

File: groundwater.dat

me: 10/18/95 12:07

Galena Baseline Risk Assessment Groundwater Data

ne	Lab	F001N01e		ane		Lab Footnote					ene		Lab Footnote					ene		Lab Footnote		
oroetha		units mg/L		oroprop		Units	mg/L	mg/L mg/L mg/L			orobenz		Units	mg/L	mg/L mg/L		-	orobenz		Units		
,2-Dichl		.0000481 r	-	l,2-Dichl		10	.000132	. 000044 . 000044 . 000044	. 000044		,3-Dichl		Ы	.000684	.000228	,		, 4-U1ch (DF		
alyte=1	ŗ	riag DET .(ıa]yte=1		Flag	2	299	2		alyte=1		Flag	2 9	222		1	a!yte=1		Flag		
Runway Method=Organics Analyte=1,2-Dichloroethane		(a) r	N = 4	Site=Southeast Runway Method=Organics Analyte=1,2-Dichloropropane	Est.	Conc (a)	000079315	000004603 000007187 000028407	N = 4		Site=Southeast Runway Method=Organics Analyte=1,3-Dichlorobenzene	Est.	Conc (a)	.00064416	.00020690	N = 4	•	olte=ooutneast kunway metnod=Urganics Analyte=1,4-Dichlorobenzene	Est.	Conc (a)		
Method=(ć	.00455		/ Method=C		Result					Method=(Result	•			0.14.4	method=0		Result		
st Runway		Matrix		st Runway	-	Lab Matrix	_	ب ب ب			st Runway		Lab Matrix				-	st Kunway	- -	Lab Matrix		
Site=Southeast	Analytical	SW8260		te=Southea	•	Analytica! Method	SW8260	SW8260 SW8260 SW8260		,	te=Southea	:	Analytical Method	SW8260	SW8260 SW8260 SW8260			ce=sontnea:		Analytical Method		
Si	Data	30urce 1995		Si		Data A Source	1995	1995 1995 1995			Si		Source	1995	1995 1995 1995			20		Source		
ane	Lab Footnote				ene	- -	Footnote						-	Footnote						-4 -		
oropropane	Units	mg/t mg/t	mg/L mg/L	•	Site=Southeast Runway Method=Organics Analyte=1,2,4-Trichlorobenzene			Units	mg/L mg/L	mg/L mg/L			robenze		Units	mg/L mg/L	mg/t mg/L			roethan		
2,3-Trichl	DL		. 00000902				yte=1,2,4-Trich	,2,4-Trich		DL	.000996 m .001040 m .001050 m			-1,2-Dichla		.000546 .000182		.000182			l,2-Dichlo	
yte=1,	Flag	229	29						Flag	229	29			alyte=1		Flag	229	28			alyte=1	
Runway Method=Organics Analyte=1,2,3-Trichl	Est. Conc (a)	.00016039	00016039 00004766 00006098 00006531		yanics Analyt	Est.	(a)	.00076606		N = 4		Site=Southeast Runway Method=Organics Analyte=1,2-Dichlorobenzene	Est.	(a)	.000051286	.00014416	N = 4		Site=Southeast Runway Method=Organics Analyte=1,2-Dichloroethane	Est.		
ethod=Or	Result				ethod≃0r		Result					Method=		Result					Method=			
Runway M	Lab Matrix				Runway Me	tunway Met	Matrix					t Runway	 	Matrix		ب. ب			t Runway	-		
Site=Southeast	Analytical Method	SW8260 SW8260 SW8260 SW8260			=Southeast	Analytical	Method	SW8270 SW8270	SW8270 SW8270			te=Southeas	Analytical	Method	SW8260 SW8260	SW8260			te=Southeas	Analytical		
Site	Data / Source	1995 1995	1995 1995		· Site		Source	1995 1995	1995 1995			Si	Data	Source	1995 1995	1995			Si	Data		

a. Random uniform numbers, between zero and the lesser of the minimum result a

N = 4

mg/L mg/L mg/L

.000648 .000216 .000216

2222

.00060516 .00000451 .00005137 .00008937

SW8260 SW8260 SW8260 SW8260

1995 1995 1995 1995

Footnote

占

Flag

Est. Conc (a)

Lab Matrix

Analytical Method

Data Source

mg/L mg/L mg/L

.0001440 .0000481 .0000481

S S S

.0010700

.00107 Result

SW8260 SW8260 SW8260

1995 1995 1995

a. Random uniform numbers, between zero and the lesser of the minimum result a

Footnote Lab Site=Southeast Runway Method=Organics Analyte=2,4-Dichlorophenol ᆸ Flag (continued) Est. Conc (a) Result Matrix Analytical Method Footnote Lab Site=Southeast Runway Method=Organics Analyte=1-Chlorohexane 님 Flag Conc Est. (a) Result Matrix Analytical Method

SW8270 Source 1995 mg/L mg/L mg/L .000357 000357 00100

9999

00031263

00034410

00034843

SW8260 SW8260 SW8260 SW8260

1995 1995 1995 1995

00016851

mg/L

.00111

2

.00020433

7 = N

----- Site=Southeast Runway Method=Organics Analyte=2,4-Dimethylphenol

--- Site=Southeast Runway Method=Organics Analyte=2,4,5-Trichlorophenol ----

Footnote Units mg/L mg/L mg/L 00103 00107 00108 00105 겁 Flag 2222 .00074510 .00047896 .00007328 00067001 Est. Conc (a) N = 4 Result Lab Matrix Analytical Method SW8270 SW8270 SW8270 SW8270 Source 1995 1995 1995 1995

Footnote

Units

Flag

<u>a</u>

Result

Lab Matrix

Analytical Method

Data Source

Est. Conc

mg/L mg/L mg/L mg/L

000812

.000846 .000855 .000824

2222

00083468

SW8270 SW8270 SW8270

1995 1995 1995 1995

SW8270

.00023865

N = 4

.00004853

----- Site=Southeast Runway Method=Organics Analyte=2,4-Dinitrophenol

Site=Southeast Runway Method=Organics Analyte=2,4,6-Trichlorophenol ----

Footnote Units mg/L mg/L mg/L .00259 .00270 .00273 .00263 Flag 2222 .0025642 .0021160 .0009739 Conc (a) Est. Result Lab Matrix Analytical Method SW8270 SW8270 SW8270 SW8270 Source 1995 1995 1995 1995

Footnote

Flag

(a)

Result

Matrix

Lab

Analytical Method

Source

Conc

Est.

mg/L mg/L mg/L

001030

926000

001020

2222

.00047115 .00084380 .00038886 .00012834

SW8270 SW8270 SW8270

1995 1995 1995 1995

SW8270

Lab

N = 4

----- Site=Southeast Runway Method=Organics Analyte=2,4-Dinitrotoluene

Footnote Units mg/L mg/L mg/L .000991 .001030 .001040 占 Flag 2222 .00006373 .00006544 .00078377 Est. Conc (a) Result Matrix Lab Analytical Method SW8270 SW8270 SW8270 SW8270 Source 1995 1995 1995 1995

Footnote

Units

占

Flag

(a)

Result

Matrix

Lab

Analytical Method

Source

Est. Conc

mg/L mg/L

.00109

222

.00090584

SW8270 SW8270

1995 1995 1995

SW8270

00077088

Lab

Site=Southeast Runway Method=Organics Analyte≈2,4-Dichlorophenol

N = 4

N = 4

Random uniform numbers, between zero and the lesser of the minimum result a

Ö.

Random uniform numbers, between zero and the lesser of the minimum result a ъ.

Page 26 me: 10/18/95 12:07 Curre

File time stamp: 10/18/95 12:05

|File: groundwater.dat

53

ene	Lab Footnote				 	Footnote					4.	rab Footnote				ene	<u>.</u>	Footnote			
aphtha]	Units	mg/L		ophenol		Units	mg/L	mg/L mg/L		canone -		Units	mg/L	mg/L mg/L		naphthal		Units	mg/L	mg/L mg/L	
2-Chloron	5	. 000808		e=2-Chlor		DF	.000799	.000841		yte=2-He>		Ы	.001040	.000347		2-Methylr		ы	.000924	.000973	
nalyte=	Flag	2		Analyt		Flag	2 5	222		cs Anal		Flag		255		nalyte=		Flag	DET	28	
d≕Organics Ar (continued)	Est. Conc	.00055283	N = 4	d=Organics	Est.	(a)	.00029896	.00062721	N = 4	Site=Southeast Runway Method=Organics Analyte=2-Hexanone	Est.	(a)	.00069226	.00033669	× 4	Organics A	Est.	(a)	0.098900	0.000848	¥ 2
Method≃ (o	Result			ay Metho		Result	•			nway Met		Result				Method=		Result	0.0989		
t Runway	Lab Matrix	-		ast Runwa	-1 -	. Lab Matrix	ـ بـ	. ب ب		heast Ru	-	Lab Matrix		ب ب		t Runway	- -	Matrix	 _		
Site=Southeast Runway Method=Organics Analyte=2-Chloronaphthalene (continued)	Analytical Method	SW8270		Site=Southeast Runway Method=Organics Analyte=2-Chlorophenol	A	Anaiyildal Method	SW8270	SW8270 SW8270 SW8270		Site=Sout		Analyticai Method	SW8260	SW8260 SW8260		Site=Southeast Runway Method=Organics Analyte=2-Methylnaphthalene		Method	SW8270	SW8270 SW8270	
Si	Data	1995		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4	Source	1995	1995 1995 1995		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	d	Source	1995	1995 1995		Si	4	Source	1995	1995 1995	
96	Lab Footnote					 	Footnote				vinyl ether	- -	Lab Footnote				ene	-4 -	Footnote		
rotoluene	Units	mg/L mg/L	mg/L mg/L		one (MEK		Units	mg/L mg/L	mg/L mg/L				Units	1/6w mg/L mg/L	mg/L		aphthalene		Units	mg/L mg/L	113/ L
	id	.000805	.000847		=2-Butan		占		.00129		nloroethy		DF	.000393 .000131 .000131	.000131		2-Chloron		DF	.000796	,
alyte=2	Flag	22	<u> </u>		Analyte		Flag	229	22		te=2-Ch		Flag	222	2		alyte=2		Flag	222	Ē
Organics An	Est. Conc (a)	.000042567	.000532/6	N # 4	d=Organics	Est.	(a)	52 78 16 48	N = 4	Site=Southeast Runway Method=Organics Analyte=2-Chloroethyl	Est.	Conc (a)	223 286 976 492	.000013492	N = 4	Organics An	Est.	(a)	.00042913	OOTE (000.	
Method=	Result				ay Metho		Result				thod=Org		Result				Method=		Result		
t Runway	Lab Matrix	.			ast Runwa	_ -	Matrix	-4 -4 .			unway Me	4	Lab Matrix				t Runway	- -	Matrix		١
Site=Southeast Runway Method=Organics Analyte=2,6-Dinit	Analytical Method	SW8270 SW8270	SW8270 SW8270		Site=Southeast Runway Method=Organics Analyte=2-Butanone(MEK)	Anslytical		SW8260 SW8260	SW8260 SW8260		=Southeast R	1.40	Analytical Method	SW8260 SW8260 SW8260	SW8260		Site=Southeast Runway Method=Organics Analyte=2-Chloron	100,400	Method	SW8270 SW8270	CHOLLO
·S	Data Source	1995 1995	1995 1995		 	400	Source	1995 1995	1995 1995		Site		Data /	1995 1995 1995	1995		\$	4	Source	1995 1995	7 7 7

a. Random uniform numbers, between zero and the lesser of the minimum result a

Current time: 10/18/95 12:07 Page 27

a. Random uniform numbers, between zero and the lesser of the minimum result a

N = 4

--- Site=Southeast Runway Method=Organics Analyte=2-Methylphenol(o-cresol) ----

55

Site=Southeast Runway Method=Organics Analyte=3,3'-Dichlorobenzidine ----- (continued) Footnote Lab Units mg/L .000657ᆸ Flag 2 .00032176 Est. Conc (a) Result Matrix Lab Analytical SW8270 Method Data Source 1995

Footnote

Units

占

Flag

Conc (a) Est.

Result

Lab Mạtrix

Analytical Method

Source

mg/L mg/L mg/L

.000700 .000729 .000737 .000711

2222

.00038123 00026674

SW8270 SW8270 SW8270 SW8270

1995 1995 1995 1995

00006614

N = 4

Site=Southeast Runway Method=Organics Analyte=3-Nitroaniline

z

Footnote Lab mg/L mg/L mg/L .00108 .00112 .00114 굽 Flag 2222 .00070373 00041826 00079983 Est. Conc (a) N = 4 Result · Lab Matrix Analytical Method SW8270 SW8270 SW8270 SW8270 Source 1995 1995 1995 1995

Footnote

Units

ᆸ

Flag

(e)

Result

Matrix

Lab

Analytical Method

Source

Data

Est. Conc

mg/L mg/L mg/L

000991 001000 000965

2222

.00076133

SW8270 SW8270 SW8270 SW8270

1995 1995 1995 1995

SW8270

00083771

N = 4

00024046

000951

Lab

Site=Southeast Runway Method=Organics Analyte=2-Nitroaniline

Site=Southeast Runway Method=Organics Analyte=4,6-Dinitro-2-methylphenol ---

Footnote Units mg/L mg/L mg/L .00110 .00112 .00108 00106 ᆸ Flag 9999 .00059303 .00009500 .00018345 .00001404 Conc (a) Est. Result Lab Matrix Analytical Method SW8270 SW8270 SW8270 SW8270 Source Data 1995 1995 1995

Footnote

Units

Flag

(a)

Result

Matrix

Analytical Method

Source

Data

Est. Conc

mg/L mg/L mg/L

2222

.00014255 .00015437 .00076662

SW8270 SW8270 SW8270

1995 1995 1995 1995

SW8270

000931

mg/L

000884 000921

00022156

Lab

Site=Southeast Runway Method=Organics Analyte=2-Nitrophenol

Site=Southeast Runway Method=Organics Analyte=4-Bromophenyl phenyl ether ---

---- Site=Southeast Runway Method=Organics Analyte=3,3'-Dichlorobenzidine -----

N = 4

Footnote Units mg/L mg/L mg/L 00608 00640 00617 00633 ᆸ Flag 2222 .0035562 .0045865 .0057717 .0030734 Conc (a) Est. Result Lab Matrix Analytical Method SW8270 SW8270 SW8270 SW8270 Source 1995 1995 1995 1995

Footnote

Units

겁

Flag

(a)

Result

Matrix

Lab

Analytical Method

Data Source

Est. Conc

mg/L

mg/L mg/L

000647 000674 000681

운모모

.00001637 .00025698 .00067129

SW8270 SW8270 SW8270

1995 1995 1995

Lab

Random uniform numbers, between zero and the lesser of the minimum result a

ile: groundwater.dat

Curren File time stamp: 10/18/95 12:05

а Э

b: 10/18/95 12:07

Random uniform numbers, between zero and the lesser of the minimum result a

₽=

Galena Baseline Risk Assessment Groundwater Data

1BK)			Lab	optnote						phenol -
ntanone(M				Units Footnote		mq/L	'n			/3-Methyl
hyl-2-per				2	1	ND .000316 mg/L				ylphenol
e=4-Met				Flag	n i	S				=4-Meth
ganics Analyt	(near)	Est.	Conc	(a)	ì	.00010545		N = 4		ics Analyte
hod=0rgaا احزا	2			Result						od=Organ
nway Meti			Lab	Matrix		_				way Meth
Site=Southeast Runway Method=Organics Analyte=4-Methyl-2-pentanone(MIBK)			Data Analytical Lab	Method		SW8260				- Site=Southeast Runway Method=Organics Analyte=4-Methylphenol/3-Methylphenol
Site=S			Data	Source		1995				- Site=Sc
loue		Lab	Footnote							
methylph			Units		mg/L	mg/L	mg/L	mg/L		
.hloro-3-			Ы		998000.	.000902	.000912	.000879		
yte=4-(Flag		2	2	2	2		
ganics Anal	Est.	Conc	(a)		.00078817	.00001988	.00016781	.00049483	7 "	!
ethod=Or			Result			•		•	٠	
Runway M		Lab	Matrix		,		_			
Site=Southeast Runway Method=Organics Analyte=4-Chloro-3-methylphenol		Analytical	Method Matrix		SW8270	SW8270	SW8270	· SW8270		
Sit		Data	Source		1995	1995	1995	1995		

	Site=Southeast Runway Method=Organics Analyte=4-Chloro	est Runw	ay Methoc	d≂Organics #	Analyte	=4-Chlor	oaniline	0					Est.				
									Data	Analytical			Conc				Lab
				Est.					Source	Method	Matrix	Result	(a)	Flag	DL DL	Units	Footnote
Data	Analytical	Lab		Conc				Lab)			
Source	Method	Matrix	Result	(a)	Flag	占	Units	Footnote	1995	SW8270	_	•	.00057654	2	000753	mg/L	
									1995	SW8270	_		.00063221	2	000784	mg/L	
1995	SW8270	_		.00027392	욷	.000963	mg/L		1995	SW8270	_		.00004538	2	000793	ma/L	
1995	SW8270	_		.00093985	운	.001000	J/bm		1995	SW8270	_	•	.00075567	2	000764	ma/L	
1995	SW8270	_		.00092027	운	.001010	mg/L									, ,	
1995	SW8270	_	٠	.00083008	운	.000978	mg/L						A = 4				
				7 - 2													
				1													

------ Site=Southeast Runway Method=Organics Analyte=4-Nitroaniline ------

Lab Footnote

Units

占

Flag

mg/L mg/L mg/L

.00120 .00125 .00126 .00122

9999

Est. Conc	(a)	•	.00065179	.00018611	.00038521	.00053142		N = 4
	Result		•			٠		
Lab	Matrix		_	ب.	_	_		
Analvtical	Method		SW8270	SW8270	SW8270	SW8270		
Data	Source		1995	1995	1995	1995		
rner		ab	ootnote					
anyı e		نہ						
y but			Units		mg/L	mg/L	mg/L	mg/L
nioropnen			DF		.000985	.001030	.001040	.001000
:e=4-L			Flag		운	2	욷	Ş
Site=Southeast Kunway Method=Urganics Analyte=4-Unlorophenyl phenyl ether	Est.	Conc	(a)		.0008462	.0003328	.0010303	.0001373
noa=urgai			Result					
пжау мет		Lab	Matrix		_	_	_	
코		tical	thod		SW8270	SW8270	SW8270	SW8270
Southeast			Source Me		٠.	٠.٠		

------ Site=Southeast Runway Method=Organics Analyte=4-Nitrophenol Est. -- Site=Southeast Runway Method=Organics Analyte=4-Methyl-2-pentanone(MIBK)

N = 4

Andiyelcal	Method		SW8270	SW8270	SW8270	SW8270	
חמומ	Source		1995	1995	1995	1995	
		Lab	Footnote				
			Units		mg/L	mg/L	mg/L
			ᆸ		.000948	.000316	.000316
			Flag		2	2	S
	Est.	Conc	(a)		.00092204	.00018449	.00017106
			Result				•
		Lab	Matrix		_	_	_
		Analytical	Method		SW8260	SW8260	SW8260
		Data	Source		1995	1995	1995

_	
Units	mg/L mg/L mg/L
D	.00136 .00142 .00143 .00138
Flag	2222
Conc (a)	.00065215 .00016189 .00064296 .00013561
Result	
Lab Matrix	
Analytical Method	SW8270 SW8270 SW8270 SW8270
Data Source	1995 1995 1995 1995

Lab Footnote

a. Random uniform numbers, between zero and the lesser of the minimum result a

N = 4

a. Random uniform numbers, between zero and the lesser of the minimum result a

Galena Baseline Risk Assessment Groundwater Data		
Baseline Ris	⋖	+3
		ater
Galena	Baselin	Ground

9

Galena Baseline Risk Assessment Groundwater Data

	Lab Ol Units Footnote					
cene	Units		mg/L			
te=Anthra	ă	J ì	.000762 mg/L			
s Analy	E13	n 5	9			
dethod=Organic: (continued)	Est. Conc		.00046671		N = 4	
May Methr (co	Result					
heast Run	×		ليب			
Site=Southeast Runway Method=Organics Analyte=Anthracene (continued)	Analytical Lab Method Matri		SW8270			
1 1 1 1 1 1 1 1 1	Data		1995			
	Lab Footnote	r.				
hene	Units	mg/L	mg/L	mg/L	mg/L	
-Acenapl	DL	.00101	.00105	.00106	.00103	
Analyte	Flag	DET	욷	2	8	
=Organics	Est. Conc (a)	.00079200	.00033053	.00072440	.00044282	= 4
«ay Method	Result	.000792				Z
east Run	Lab Matrix	لب	_	_		
- Site=Southeast Runway Method=Organics Analyte=Acenapht	Analytical Method M	SW8270	SW8270	SW8270	SW8270	
	Data Source	1995	1995	1995	1995	

------ Site=Southeast Runway Method=Organics Analyte=Acenaphthylene ---

Footnote

Units

mg/L mg/L mg/L

Lab

Lab Footnote	
Units	mg/L mg/L mg/L mg/L
DF	.000880 .000917 .000926 .000893
Flag	222
Est. Conc (a)	.00015610 .00089737 .00054972 .00021785
Result	
Lab Matrix	 -
Analytical Method	SW8270 SW8270 SW8270 SW8270
Data Source	1995 1995 1995 1995

N = 4

Site=Southeast Runway Method=Organics Analyte=Acetone

esult
0.0
0.00
0 00259
5

п z

7

Site=Southeast Runway Method=Organics Analyte=Anthracene

Data Source	Analytical Method	Lab Matrix	Result	Est. Conc (a)	Flag	DL	Units	Lab Footnote
1995 1995 1995	SW8270 SW8270 SW8270			.00065042 .00036585 .00052983	222	.000751 .000782 .000791	mg/L mg/L mg/L	

e

Footnote

Units

mg/L mg/L mg/L

a. Random uniform numbers, between zero and the lesser of the minimum result a

File: groundwater.dat

Site=Southeast Runway Method=Organics Analyte=Benzo(a)anthracene ----------- Site=Southeast Runway Method=Organics Analyte=Benzo(a)pyrene .000585 .000609 .000616 .000762 .000794 .000802 .000774 .000366 .000122 .000122 ᆸ Ы 겁 Flag Flag Flag 2222 2222 NO NO DET .00049740 .00051041 .00055098 0.058100 0.000006 0.000028 0.000051 .00068875 .00066379 .00003860 00030936 00037407 Est. Conc Est. Conc (a) Est. Conc (a) (a) N = 4 × = 4 0.058100 0.000051 Result Result Result Matrix Matrix Lab Matrix Lab Analytical Method Analytical Method Analytical Method SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8260 SW8260 SW8260 SW8260 Data Source Data Source 1995 1995 1995 1995 1995 1995 1995 1995 Data Source 1995 1995 1995 1995

Footnote

Units

mg/L mg/L mg/L

Lab

Random uniform numbers, between zero and the lesser of the minimum result a ъ

N = 4

Cur File time stamp: 10/18/95 12:05

ime: 10/18/95 12:07

Galena Baseline Risk Assessment Groundwater Data

Galena Baseline Risk Assessment Groundwater Data

! ! !	4	n n	 		9 10		! ! !		b note				! ! !	Lab	2		
1 1 5 1	Lab		! ! !	Lab	rootnote				Lab Footnote				ane	ָרָר רָרָ	3		
c acid			alcohol		'n	mg/L mg/L mg/L	enzene .		Units	mg/L	mg/L mg/L		orometh	+ 	_	mg/L mg/L	
e≕Benzoi	ā	12				000652	:e=Bromab		DF	.0000501	.000167 .000167		omodichl	2	.0001390	.0000462 .0000462 .0000462	•
Analyt	5	ND ND	Analyte	:	ND NO	ND ND OET .	Analyt		Flag	Q S	222]yte=Br	Ş	2	222	
Site=Southeast Runway Method=Organics Analyte=Benzoic acid (continued)	Est. Conc	. 0026324 N = 4	Site=Southeast Runway Method=Organics Analyte=Benzyl	Est. Conc		.0004036 .0006039 .0031300		Est.	Conc (a)	.00036425	.00011179	N = 4	Runway Method=Organics Analyte=Bromodichloromethane	Est. Conc	.000063789	.000015844 .000021575 .000037672	N = 4
way Meth (c	ć		nay Metho	4	result.	.00313	IWAY Meth		Result	•			Method=0	+[1120]			
east Run	Lab	Hatirix .	ast Runw	Lab	אמנרוא ר	ب ب	least Run		Lab Matrix				Runway	Lab	٠ . ـ .		
- Site=South	Analytical		Site=Southe	Analytical	SW8270	SW8270 SW8270 SW8270	- Site=South		Analytical Method	SW8260	SW8260 SW8260 SW8260		Site=Southeast	Analytical Mothod	SW8260	SW8260 SW8260 SW8260	
	Data	1995	1 1 1 1 1 1	Data	300rce 1995	1995 1995 1995] 3 5 5 1 1		Data Source	1995	1995 1995 1995		Si	Data	1995	1995 1995 1995	
ene	Lab Footnote			ene	Lab Footnote			ene	- - -	Footnote .					Lab Footnote		
uoranth	Units	mg/L mg/L mg/L		i)perylene	Units	mg/L mg/L mg/L	j i	uoranth		Units	mg/L mg/L	mg/L		c acid	Units	mg/L mg/L	ilg/ L
ızo(b)fl	ы	.000698 .000727 .000735		ızo(g,h,	DL	.000676 .000704 .000712		ızo(k)fl		占	.00116			=Benzoi	Ы		. 00003
lyte=Ber	Flag	2222		lyte=Ber	Flag	222		lyte=Ber		Flag		2		Analyte	Flag	229	
Runway Method=Organics Analyte=Benzo(b)fluoranthene	Est. Conc (a)	.00058229 .00000104 .00065585	N = 4	Runway Method=Organics Analyte=Benzo(g,h,i)	Conc (a)	.00030455 .00064987 .00059083	N = 4	ganics Ana	Est.	(a)	.0002166	.0007613	N = A	d=Organics Fet	Conc (a)	.0032056	. 0000053
4ethod=0r	Result			4ethod=Or	Result			lethod=0r		Result				vay Metho	Result		•
Runway P	Lab Matrix				Lab Matrix		ı	Runway ∤	- -	Matrix	_	يـ ن		east Runv	Lab Matrix		_
Site=Southeast	Analytical Method	SW8270 SW8270 SW8270 SW8270		Site=Southeast	Analytical Method	SW8270 SW8270 SW8270 SW8270		Site=Southeast Runway Method=Organics Analyte=Benzo(k)fluoranthene	Anslution	Method	SW8270 SW8270 SU8270	SW8270		- Site=Southeast Runway Method=Organics Analyte=Benzoic	Analytical Method	SW8270 SW8270	0 / 70MS
Si	Data Source	1995 1995 1995 1995		sit	Data Source	1995 1995 1995 1995		Sit	+ 00	Source	1995 1995 1995	1995			Data Source	1995 1995	CEST

a. Random uniform numbers, between zero and the lesser of the minimum result a

a. Random uniform numbers, between zero and the lesser of the minimum result a

< Assessmen	Jata
Baseline Risk	Groundwater [
Galena	

64	e	Lab	Footnote						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	achlorid		Units		mg/ľ				enzene
	bon tetr		DL		000131			-	=Chloron
sessment	yte=Car		Flag		₽.		•		Anaiyte
Galena Baseline Risk Assessment Groundwater Data	Site=Southeast Runway Method=Organics Analyte=Carbon tetrachloride (continued)	Est. Conc	(a)		.000085780 ND .000131 mg/L		N = 4		Site=Southeast Kunway Method=Urganics Analyte=Chlorobenzene
ena Basel Grour	Method≕(c		Result		•			:	пway мет
Gale	t Runway	Lab	Matrix		۔۔۔				heast Kul
	ite=Southeas	Analvtical Lab	Method		SW8260				Site=sout
	S S	Data	Source		1995				
63	ļ	te e					•		
	E B F T	Lab Units Footnote							
	nethane	Units		mg/L	mg/L	mg/L	mg/L		
	=Bromon	10		.00015	.00005	.00005	.00005		
essment	Analyte	Flag		2	Ş	운	S		
Galena Baseline Risk Assessment Groundwater Data	od=Organics	Est. Conc (a)		.000053202	.000036646	.000020407	.000008459	N = 4	
ia Basel Ground	ay Metho	Result) : :				٠.		
Galer	east Runv	Lab Matrix			ب	_	٠.		
	Site=Southeast Runway Method=Organics Analyte=Bromomet	Analytical Lab Method Matrix		SW8260	SW8260	SW8260	. SW8260		
		Data Source		1995	1995	1995	1995		•

Data Source ---- Site=Southeast Runway Method=Organics Analyte=Butylbenzylphthalate

Footnote

Units

占

Flag

Result

Lab Matrix

Analytical Method

Conc

Est. (a) mg/L mg/t mg/L

.000615 .000205 .000205 .000205

2222

.00016579 .00010295 .00000838 .00002406

SW8260 SW8260 SW8260 SW8260

1995 1995 1995 1995

Lab

Lab Footnote		
Units	mg/L mg/L mg/L mg/L	
DL	.000962 .001000 .001010	
Flag	2222	
Est. Conc (a)	.00063454 .00036679 .00053425	N # 4
Result		
Lab Matrix		
Analytical Method	SW8270 SW8270 SW8270 SW8270	
Data Source	1995 1995 1995 1995	

----- Site=Southeast Runway Method=Organics Analyte=Carbon disulfide

Units Footnote

Ы

Flag

(a)

Result

Matrix Lab

Data Analytical Source Method

Est. Conc

.0002690 mg/L .0000898 mg/L .0000898 mg/L

SW8260 SW8260 SW8260

1995 1995 1995 1995

SW8260

Site=Southeast Runway Method=Organics Analyte=Chloroethane

N = 4

Lab Footnote				•
Units	mg/L	mg/L	mg/L	mg/L
DL	.00057	.00019	.00019	.00019
Flag	2	2	2	S
Est. Conc (a)	.00019525	.00005561	.00004704	.00002469
Result				
Lab Matrix		_1		
Analytical Method	SW8260	SW8260	SW8260	SW8260
Data Source	1995	1995	1995	1995

= 4

ide	Lab Footnote			
rachlor	Units	mg/L	mg/L	mg/L
arbon tet	DL	.000393	.000131	.000131
lyte=Ca	Flag	S	운	S
rganics Ana	Est. Conc (a)	.00034754	.00005935	.00001624
Method=0	Result			
Runway	Lab Matrix	_		_
Site=Southeast Runway Method=Organics Analyte=Carbon tetrachloride	Analytical Method	SW8260	SW8260	SW8260
511	Data Source	1995	1995	1995

Data Analytical Source 1995 1995 1995 1995 N = 4

.0000388

-

.0002960 mg/L .0000985 mg/L .0000985 mg/L .0000985 mg/L

.000018269 ND .000018262 ND .000021048 ND .000038800 DET

SW8260 SW8260 SW8260 SW8260

Units Footnote

ᆸ

Flag

(a)

Result

Matrix

Method

Lab

Est. Conc

Lab

Site=Southeast Runway Method=Organics Analyte=Chloroform

N = 4

Random uniform numbers, between zero and the lesser of the minimum result a a. a. Random uniform numbers, between zero and the lesser of the minimum result a

File time stamp: 10/18/95 12:05 File: groundwater.dat

Curr

ime: 10/18/95 12:07

Lab	900000		t 2 1 1 1 1	-	Lab Footnote			lane		Lab Footnote					 	Footnote	ω α	. .	
1	units mg/L		cofuran		Units ma/l	mg/L mg/L mg/L		lorometh		Units	mg/L	mg/L mg/L		omethane		Units	mg/L	mg/L mg/L	
Ž	.000658		te≃Dibenz		. DO 0865	.000901 .000911 .000878		ibromochl		Ы	.000261	.000087		e=Dibromc		Ы			
, [r i ag		s Analy		Flag	999		ı]yte=D		Flag				Analyt		Flag	DET	0ET 0ET	
Est. Conc	.00052740	N = 4	d=Organic	Est.	Conc (a) .00002387	.00039701 .00053668 .00018901	N = 4	ganics And	Est.	(a)	.00018442	.00007440	N = 4	=Organics	Est.	(a)	.000559	.000217	N = 4
(00)	result.		nway Metho		Result			Method=Or		Result		• • •		vay Method		Result	.000559	.000217	
Lab	Matrix		east Rur	4	Lab Matrix L			Runway	-	Matrix				ast Run	 	Matrix			
Analytical	SW8270		- Site=South	1.00	Analytical Method SW8270	SW8270 SW8270 SW8270		te≕Southeast	Anol. + 4001	Method	SW8260	SW8260 SW8260 SW8260		Site=Southe	Analvtical	Method	SW8260	SW8260 SW8260	
Data	3041 CE 1995		1	4	Source 1995	1995 1995 1995		Sit	4	Source	1995	1995 1995 1995		t t t	Data	Source	1995	1995 1995	
Lab Footnote					Lab Footnote				te	- -	Footnote				ene	de l	Footnote		
Units	mg/L mg/L mg/L	mg/L		ene		mg/L mg/L mg/L	mg/L		phthala		Units	mg/L mg/L	mg/L		anthrac		Units	mg/L mg/L	1 /6III
DL	0002680 0000893 0000893	0000893		yte=Chrys	ä	.000858	.000871)i-n-octyl		Of	.000397	.000418		benz(a,h)		10	.000648	70000
Flag		DET		cs Ana	Flag	222	2		alyte=[Flag	999	28		lyte=Di		Flag		ì
Est. Conc (a)	.0001899 .0000116 .0000668	. 0011900	N = 4	thod=Organi	Est. Conc (a)	.00066648 .00010220 .00072429	.00018113	N = 4	Organics An	Est.	(a)	.00013867	.00017316	N = 4	rganics Ana	Est.	(a)	.00059914	. 00005201
Result		.00119		lunway Met	Result				/ Method=(Result				Method=01		Result		
Lab Matrix		_		theast R	Lab Matrix		· —		t Runway	4	Matrix		-			4	Matrix		ı
ytical thod	SW8260 SW8260 SW8260	SW8260		Site=Sou	Analytical Method	SW8270 SW8270 SW8270	SW8270		e=Southeas	nalvtical	Method	SW8270 SW8270	SW8270		Site=Southeast	alvtical	Method	SW8270 SW8270 SW8270	
Ana l Me	22 22 22	0,			An				==	<	Č				te	Ā	Ē		
	Est. Conc Lab Result (a) Flag DL Units Footnote Data Analytical Lab	Est. Lab Conc Matrix Result (a) Flag DL Units Footnote Data Analytical Lab Conc Source Method Matrix Result (a) Flag DL Units Fo L0000116 ND .0000893 mg/L L0000668 ND .0000893 mg/L L000668 ND .0000893 mg/L	Est. Lab Conc Matrix Result (a) Flag DL Units Footnote L0001899 ND .00002680 mg/L L000016 ND .0000893 mg/L L0000668 ND .0000893 mg/L L00119 .0011900 DET .0000893 mg/L Result (a) Flag DL Units Source Method Matrix Result (a) Flag DL Units L000016 ND .0000893 mg/L L00119 .0011900 DET .0000893 mg/L	Lab Conc Est. Lab Data Analytical Lab Conc Conc	Lab	Est. Concord	Lab	Lab Conc C	Lab Conc C	Est. Concording Concordin	Lab	Continued	Lab	Lab	Continued Lab	Continued Est	Concisioned Est. Concisioned Concomposition Lab Concomposition Concomposition	Concess	Continued Concinued Conc

a. Random uniform numbers, between zero and the lesser of the minimum result a

a. Random uniform numbers, between zero and the lesser of the minimum result a

89	ate		Lab	Footnote				
	phthal			Units		mg/L		
يه	Dimethyl			ᆸ		ND .00082 mg/L		
essmen	ıalyte≔			Flag		2		
Galena Baseline Risk Assessment Groundwater Data	Organics Argutinued)	Fot	Conc			.00074157		N = 4
ia Baseli Ground	/ Method= (cc			Result				
Galer	st Runway		Lab	Matrix		لــ		
	Site=Southeast Runway Method=Organics Analyte=Dimethylphthalate (continued)		Analytical Lab	Method		SW8270		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Data	Source		1995		
								•
	9	- -	Footnote	-	ŗ			•
	phthalate	de l	Units Footnote		mg/L J		mg/L	mg/L
	=Dibutyl phthalate		Units	٠			.000919 mg/L	
	nalyte=Dibutyl phthalate	לב			DET .000873	606000' ON	ND .000919	ND .000886
	-Organics Analyte=Dibutyl phthalate	Est.	Flag DL Units		.000873	606000' ON	ND .000919	ND .000886
	y Method=Organics Analyte=Dibutyl phthalate	Est.	Result (a) Flag DL Units		DET .000873	606000' ON	ND .000919	ND .000886
Galena Baseline Risk Assessment Groundwater Data	ast Runway Method=Organics Analyte=Oibutyl phthalate	Est.	Result (a) Flag DL Units		.00047600 DET .000873	606000' ON	ND .000919	ND .000886
	Site=Southeast Runway Method=Organics Analyte=Dibutyl phthalate	Est.	(a) Flag DL Units		L .000476 .00047600 DET .000873		ND .000919	L

N = 4

Lab Footnote		
Units	mg/L mg/L mg/L	
ᆸ	0.1 0.1 0.1	
Flag	06T 06T 06T 0ET	
Est. Conc (a)	9.30 0.77 0.71 0.33	•
Result	9.30 0.77 0.71 0.33	:
lab Matrix		
Analytical Method	AK102 AK102 AK102 AK102	
Data Source	1995 1995 1995 1995	
	Est. Analytical Lab Conc Method Matrix Result (a) Flag DL Units	Analytical Lab Conc Matrix Result (a) Flag DL Units AK102 L 9.30 9.30 DET 0.1 mg/L AK102 L 0.77 0.77 DET 0.1 mg/L AK102 L 0.33 0.33 DET 0.1 mg/L MK102 L 0.33 0.33 DET 0.1 mg/L

N = 4

1 1 1 1 1	Lab Footnote	
hthalate	Units	mg/L mg/L mg/L
=Diethylp	DL	.000962 .001000 .001010
√nalyte	Flag	2222
=Organics /	Est. Conc (a)	.00029354 .00080788 .00002999 .00013135
y Method	Result	
ıst Runwa	Lab Matrix	
Site=Southeast Runway Method=Organics Analyte=Diethylphthalate	Analytical Method	SW8270 SW8270 SW8270 SW8270
	Data Source	1995 1995 1995 1995

N = 4

Lab Footnote	
Units	mg/L mg/L mq/L
DF	.000808 .000842 .000851
Flag	222
Est. Conc (a)	.00036554 .00012093 .00039383
Result	
Lab Matrix	
Analytica Method	SW8270 SW8270 SW8270
Data Source	1995 1995 1995
	Est. Conc (a) Flag DL Units

a. Random uniform numbers, between zero and the lesser of the minimum result a

Site=Sou	ite=Southeast Runway Method=Organics Analyte=Diphenylamine (N-Nitrosodiphenyla	y Method	≕Organics	Analyte=D	iphenyl	amine (N	-Nitros	odiphenyla
Data Source	Analytica Method	al Lab Matrix R	Result	Est. Conc (a)	Flag	10	Units	Lab s Footnote
1995	SW8270	_		.00025970	Ş	.000960	mg/L	
1995	SW8270	_		.00022228	2	.001000	mg/L	
1995	SW8270	_		.00035985	욷	.001010	mg/L	
1995	SW8270	_		.00030068	9	.000975	mg/L	
				N = 4			•	

------ Site=Southeast Runway Method=Organics Analyte=Ethylbenzene

Footnote J	Units mg/L mg/L mg/L mg/L	01 .000738 .000246 .000246	Flag DET ND ND DET	(a) 0.021600 0.000028 0.000041 0.000044	Result 0.021600	LdD Matrix L L L	Analytical Method SW8260 SW8260 SW8260 SW8260	Source 1995 1995 1995 1995	
Lab Footnote	Units	10	Flag	Est. Conc (a)	Result	Lab Matrix	Analytical Method	Data Source	

1
luoranthene
ılyte=Fl
Ana
Method=Organics
Runway
Site=Southeast

•	Lab	Footnote					
		Units	mg/L	mg/L	mg/L	mg/L	
		7	.000751	.000782	.000791	.000762	
		Flag	2	S	욷	2	
Est.	Conc	(a)	.00009183	.00059119	.00062479	.00057292	
		Result	•	•			
		Matrix	_	_		ليـ	
•	Analytical	Method	SW8270	SW8270	SW8270	SW8270	
	Data	Source	1995	1995	1995	1995	

a. Random uniform numbers, between zero and the lesser of the minimum result a

File: groundwater.dat File time stamp: 10/18/95 12:05 . Curr

ime: 10/18/95 12:07

Galena Baseline Risk Assessment Groundwater Data

Galena Baseline Risk Assessment Groundwater Data

ene	Lab Flag DL Units Footnote	·
robutadi	Units	mg/L
exachlo	, d	.00147
ıalyte=H	Flag	S Q
Organics Ar	Est. Conc (a)	
Method=	Result	•
t Runway	Lab Matrix	٦
Site=Southeast Runway Method=Organics Analyte=Hexachlorobutadiene	Data Analytical Lab Source Method Matrix	SW8270
\$	Data Source	1995
	Lab Footnote	
orene	Units	mg/r mg/r mg/r
lyte=Flu	DF	.00104 .00108 .00109
ics Ana	Flag	N N N N N N N N N N N N N N N N N N N
hod=Organi	Est. Conc (a)	.0012900 .0009825 .0006232 .0002688
nway Met	Result	. 00129
heast Ru	Lab Matrix	
Site=Southeast Runway Method=Organics Analyte=Fluorene	Analytical Method	SW8270 SW8270 SW8270 SW8270
	Data Source	1995 1995 1995 1995

N = 4

--- Site=Southeast Runway Method=Organics Analyte=Hexachlorocyclopentadiene ---

Units Footnote

ᆸ

Flag

Est. Conc (a)

Lab Matrix Result

Analytical Method

Data Source

mg/L mg/L mg/L

.00226 .00235 .00238

9999

.0020238 .0008882 .0014228 .0013085

SW8270 SW8270 SW8270 SW8270

1995 1995 1995 1995

Organics	Lab s Footnote		
Range	Units	mg/L mg/L mg/L	
soline	占	0.05 0.05 0.05 0.05	
yte=Ga	Flag	DET ND ND ND	
nics Anal	Est. Conc (a)	0.79000 0.00722 0.02458 0.03985	N = 4
:hod=Orga	Result	67.0	Z
unway Met	l Lab Matrix		
Site=Southeast Runway Method=Organics Analyte=Gasoline Range Organics	Analytical Method	AK101 AK101 AK101 AK101	
Site≕	Source	1995 1995 1995 1995	

------ Site=Southeast Runway Method=Organics Analyte=Hexachloroethane ------

N = 4

Site=Southeast Runway Method=Organics Analyte=Hexachlorobenzene	Est. Lab Conc Lonc Matrix Result (a) Flag DL Units Footnote	ND .000656	ND .000683	L00052587 ND .000691 mg/L	999000° ON
t Runway Metho			ب	٠.	
=Southeast Run	Analytical Lab Method Matri	SW8270 L	48270 L	48270 L	48270 L
Site	Data Ana Source Ms			1995 SI	

N = 4

	Analytical			SW8270	SW8270	SW8270	SW8270	
	Data	Source		1995	1995	1995	1995	
liene			Lab	Footnote				
robutac				Units		mg/L	ma/L	mg/L
lexachlo				占		.00145	.00151	.00153
ıa]yte≓				Flag		욷	2	S
Organics Ar		Est.	Conc	(a)		.00065198	.00092476	.00086762
Method=(Result	,	•		
t Runway			Lab					_
ite=Southeast Runway Method=Organics Analyte=Hexachlorobutadiene		:	Analytical	Method		SW8270	SW8270	SW8270
S			Data	Source		1995	1995	1995

a. Random uniform numbers, between zero and the lesser of the minimum result a

Lab Footnote			rene	Lab Footnote	
Units	7/6w mg/r mg/r		3-cd)py	Units	mg/L mg/L mg/L mg/L
Ы	.00102 .00106 .00107 .00104		deno(1,2,	DL	.000551 .000574 .000580
Flag	2222		yte=In	Flag	2222
Est. Conc (a)	.00054307 .00076311 .00067302 .00064053	N = 4	ganics Anal	Est. Conc (a)	.00039798 .00038703 .00033523 .00035742
Result			ethod=Or	Result	
Lab Matrix			Runway M	Lab Matrix	
Analytical Method	SW8270 SW8270 SW8270 SW8270		Site=Southeast Runway Method=Organics Analyte=Indeno(1,2,3-cd)pyrene	Analytical Method	SW8270 SW8270 SW8270 SW8270
Data Source	1995 1995 1995 1995		Site	Data Source	1995 1995 1995 1995

a. Random uniform numbers, between zero and the lesser of the minimum result a

N = 4

	Lab	Footnote				
thalene	:	Units	1/иш	i		benzene
te=Naph	•	70	.00102 ma/l			e=Nitro
s Analy	1	Flag	S	<u>:</u>		s Analyt
lethod=Organic (continued)	Est. Conc	(a)	.00064273		N = 4	Site=Southeast Runway Method=Organics Analyte=Nitrobenzene
way Metl (α	;	Result	•			√ay Meth
heast Ru	Lab	Matrix		ı		east Run
Site=Southeast Runway Method=Organics Analyte=Naphthalene (continued)	Analytical Lab	Method	SW8270			. Site=South
	Data	source	1995			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Lab ts Footnote					
orone -	Units	ma/L	mg/L	mg/L	mg/L	
te=Isoph	10	.000770	.000802	.000811	.000782	
s Analy	Flag	S	2	2	Q	
hod=Organic Fe+	Conc (a)	.00041112	.00037603	.00080302	.00046031	N = 4
лway Met	Result		-			
heast Ru.	Lab Matrix		_	_	_	
Site=Southeast Runway Method=Organics Analyte=Isophor Fe+	Analytica Method	SW8270	SW8270	SW8270	SW8270	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Data Source	1995	1995	1995	1995	

----- Site=Southeast Runway Method=Organics Analyte=Methylene chloride ------

Lab Footnote	BB BB .
Units	1/6w mg/r mg/r
DF	.001270 .000423 .000423
Flag	061 061 061
Est. Conc (a)	.001000 .000423 .000180
Result	.001000 .000423 .000180 .000291
Lab Matrix	
Analytical Method	SW8260 SW8260 SW8260 SW8260
Data Source	1995 1995 1995 1995

---- Site=Southeast Runway Method=Organics Analyte=N-Nitrosodipropylamine ----

N = 4

Lab Footnote	
Units	mg/L mg/L mg/L
DL	.000896 .000933 .000943 .000910
Flag	2222
Est. Conc (a)	.00073497 .00054087 .00041234 .00050069
Result	
Lab Matrix	
Analytical Method	SW8270 SW8270 SW8270 SW8270
Data Source	1995 1995 1995 1995

N = 4

	Lab Footnote	
thalene	Units	mg/L mg/L mg/L
/te=Naph	0	.00100 .00104 .00105
s Analy	Flag	DET ND ND
Site=Southeast Runway Method=Organics Analyte=Naphthalene	Est. Conc (a)	0.080700 0.000997 0.000822
	Result	0.0807
east Run	Lab Matrix	
- Site=South	Analytical Method	SW8270 SW8270 SW8270
	Data Source	1995 1995 1995

a. Random uniform numbers, between zero and the lesser of the minimum result a

Lab Footnote		
Units	mg/L mg/L mg/L	
DL	.000756 .000787 .000796	
Flag	2222	
Est. Conc (a)	.00033443 .00053015 .00052515	N = 4
Result		
Lab Matrix		
Analytical Method	SW8270 SW8270 SW8270 SW8270	
Data Source	1995 1995 1995 1995	

------ Site=Southeast Runway Method=Organics Analyte=Pentachlorophenol ------

	Lab	Footnote						
		Units	md/L	ma/L	mg/L	mg/L		
		טר	.000834	.000869	.000878	.000847		
		Flag	욷	S	욷	S		
Est.	Conc	(a)	.00038274	.00074445	.00083172	.00015321	N = 4	
		Result						
•	Lab	Matrix	_	ب	_	_		
;	Analytical	Method	SW8270	SW8270	SW8270	SW8270		
	Data	Source	1995	1995	1995	1995		

------ Site=Southeast Runway Method=Organics Analyte=Phenanthrene ----

Lab Footnote	r
Units	mg/t mg/t mg/t mg/L
OL	.000932 .000971 .000981
Flag	DET ND ND
Est. Conc (a)	.00073900 .00049405 .00052146
Result	.000739
Lab Matrix	
Analytical Method	SW8270 SW8270 SW8270 SW8270
Data Source	1995 1995 1995 1995

N = 4

a. Random uniform numbers, between zero and the lesser of the minimum result a

Galena Baseline Risk Assessment Groundwater Data

Assessment	ıta
Risk	er Da
Baseline	Groundwat
Galena	

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Lab	B.J		: : : :		Lab Footnote				rm)	•	Lab Footnote				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Lab Footnote	٠,	כי נ	
roethene	llnits Fo			ene	-	L Units Foo	mg/L	mg/L mg/L mg/L		∍(Bromofo		Units Fo	mg/L	mg/L mg/L mg/L		oethene -		Units F	mg/L	mg/L mg/L	
Analyte=Tetrachloroethene	=	42		yte=Tolu		DL N	.000489 m			omomethan		10	.000408 1			Trichlor		DL	.000591	.000197	
ıa]yte=1	Flan	DET		cs Anal	•	Flag				=Tribro		Flag		222		nalyte=		Flag	DET	ND DET	
od=Organics Ar (continued)	Est. Conc	.0000289	4 =	hod=Organi	Est.	Conc (a) F	000900.		4	cs Analyte	Est.	Conc (a)	.00005772	000013047 000005291	4	Organics A	Est.	Conc (a)	.00020600	.000002080	4 =
y Method=0 (con	Result	.0000289	Z	Site=Southeast Runway Method=Organics Analyte=Toluene		Result	.006000	.000202	Z	hod=Organi		Result			Z	ay Method≍		Result	.0002060	.0000208	Z
st Runwa	Lab Matriy			utheast	-	Lab Matrix	_	ب ب		ınway Met		Lab Matrix		.		east Runw		Lab Matrix		ب.	
Site=Southeast Runway Method=Organics (continued)	Analytical Method	SW8260		Site=So		Analytical Method	SW8260	SW8260 SW8260 SW8260		Site=Southeast Runway Method=Organics Analyte=Tribromomethane(Bromoform)	:	Analytical Method	SW8260	SW8260 SW8260		Site=Southeast Runway Method=Organics Analyte=Trichloroethene	,	Analytical Method	SW8260	SW8260 SW8260	
	Data	1995			ć	Data Source	1995	1995 1995 1995		Site=9		Data Source	1995	1995 1995		1 1 1 1 1 1 1		Data / Source	1995	1995 1995	
	Lab Footnote				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- -	Footnote				! ! !	-4	Footnote				9	- -	Footnote	8 BJ	
٥)	Units	mg/L mg/L	mg/L mg/L		ne		Units	mg/L mg/L	mg/L mg/L		ene		Units	mg/L mg/L	mg/L		roethen		Units	mg/L mg/L	J /6
lyte=Phen	Ы	.000416			lyte=Pyre		占		.000871		lyte=Styr		Ы	.000552			Tetrachlo		占	.00126	
cs Ana	Flag	222	22		cs Ana		Flag	22	22		cs Ana		Flag	225	2		ıa]yte=		Flag	DET NO	≧
Site=Southeast Runway Method=Organics Analyte=Phenol	Est. Conc (a)	.00007197	00028708	N = 4	Runway Method=Organics Analyte=Pyrene	Est.	(a)	00010762	.00052625	N #	Runway Method=Organics Analyte=Styrene	Est.	(a)	00013927	00008603	N = 4	organics Ar	Est.	(a)	.0017400	
Runway Met	Result			2	Runway Met		Result			2	Runway Met		Result			-	y Method=(Result	.0017400	
ıtheast	Lab Matrix		ب ب		ıtheast	- 4	Matrix				utheast	- -	Matrix				st Runwa	4	Matrix		1
Site=Sou	Analytical Method	SW8270 SW8270	SW8270		Site=Southeast	Analutical	Method	SW8270 SW8270	SW8270 SW8270		Site=Southeast	100	Method	SW8260 SW8260	SW8260		Site=Southeast Runway Method=Organics Analyte=Tetrachloroethene	Anslytical	Method	SW8260 SW8260 SW8260	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Data Source	1995 1995	1995				Source	1995 1995	1995 1995		1	4	Source	1995 1995	1995		8	÷	Source	1995 1995 1995	

a. Random uniform numbers, between zero and the lesser of the minimum result a

a. Random uniform numbers, between zero and the lesser of the minimum result a

Assessmen	+ 2
Risk	5
Baseline	Captinghiator
Galena E	

76	thane	Lab	Footnote				ther
	hoxy)mei		Units	mg/L			ethy])e
	Chloroet		7	.000982 mg/L			2-Chloro
essment	=bis(2-(i	Flag	Ş			te=bis(
Galena Baseline Risk Assessment Groundwater Data	Site=Southeast Runway Method=Organics Analyte=bis(2-Chloroethoxy)methane (continued)		(a)	.000080458	N = 4		Site=Southeast Runway Method=Organics Analyte=bis(2-Chloroethyl)ether
na Basel Grour	hod=0rga (c		Result				lethod=01
Gale	nway Met	Lab	Matrix Result	_			Runway M
	Southeast Ru	Analytical Lab	Method	SW8270			e=Southeast
	Site=		source	1995			Sit
75	ane	Lab Footnote					
	orometh	Units	ma/L	mg/L	mg/t mg/t		
ınt	ichloroflu	Dr.	.0003000	.0000999	.0000999		
∖ssessme :a	ılyte=Ir	Flag	QN ON	2 9	28		
Galena Baseline Risk Assessment Groundwater Data	rganics Ana	Est. Conc (a)	.00029098	.00005959	.00000596	N = 4	
ena Base Groui	1ethod=0	Result					
Gale	Runway M	Lab Matrix	_		ل ــ لـ		
	Site=Southeast Runway Method=Organics Analyte=Trichlorofluoromethane	Analytical Lab · Method Matrix	SW8260	SW8260 SW8260	SW8260		
	Si	Data Source	1995	1995 1995	1995		

Analytical Method SW8270 SW8270 SW8270 SW8270 Source 1995 1995 1995 1995 Footnote Lab Site=Southeast Runway Method=Organics Analyte=Vinyl acetate Units mg/L mg/L mg/L .001140 .000381 .000381 .000381 ᆸ Flag 2222 .00025196 .00034133 .00009647 00036579 Conc (a) Est. N = 4 Result Lab Matrix Analytical Method SW8260 SW8260 SW8260 SW8260 1995 1995 1995 1995

Footnote Lab

Units

ᆸ

Flag

Result

Matrix Lab

Est. Conc (a) mg/L mg/L mg/L

.000857 .000893 .000902 .000870

2222

.00079373 .00060075 .00063075

Footnote Lab ------ Site=Southeast Runway Method=Organics Analyte=Vinyl chloride Units тg/L mg/L mg/L mg/L .0002090 .0000697 .0000697 占 Flag 2222 .00001537 .00005307 .00003313 00016332 Est. Conc (a) Result Lab Matrix Analytical Method SW8260 SW8260 SW8260 SW8260 Data Source 1995 1995 1995 1995

-- Site=Southeast Runway Method=Organics Analyte=bis(2-Chloroethoxy)methane ---Footnote Units mg/L mg/L mg/L .000967 님 Flag 222 .00027879 00027473 Est. Conc (a) Result Matrix Analytical Method SW8270 SW8270 SW8270 Source 1995 1995 1995

N = 4

a. Random uniform numbers, between zero and the lesser of the minimum result a

-- Site=Southeast Runway Method=Organics Analyte=bis(2-Chloroisopropyl)ether --

N = 4

Data Source	Analytical Method	Lab Matrix	Result	Est. Conc (a)	Flag	Ы	Units	Lab Footnote
1995	CW8270			00012748	Š	10000	7	
000	0 10 000	J		04/31000	2	reconn.	٦ / الظ	
1995	SW8270	ب		.00030369	2	.000928	ma/l	
1995	CUR270			00000000	2	00000	/ 6	
	0.4040	J		. 00020300	2	000000	113/L	
1995	SW8270	_	•	.00024966	Q	.000000	mg/L	
				N = 4				

-- Site=Southeast Runway Method=Organics Analyte=bis(2-Ethylhexyl)phthalate ---

	Lab	Footnote					
		Units	ma/L	1/pm	ma/L	mg/L	
		0	.000731	.000761	.000769	.000742	
		Flag	S	2	S	S	
Est.	Conc	(a)	.00059027	.00000476	.00004567	.00048959	
		Result				•	
	Lab		_	_	_	_	
	Analytical	Method	SW8270	SW8270	SW8270	SW8270	
	Data	Source	1995	1995	1995	1995	

Random uniform numbers, between zero and the lesser of the minimum result a ъ

me: 10/18/95 12:07 Curre

File time stamp: 10/18/95 12:05

File: groundwater.dat

Galena Baseline Risk Assessment Groundwater Data

	Lab Footnote					1	rene		Footnote							
			mg/L			1	nioroet				mg/L	mg/L	mg/L	mg/L	,	
			.000207			· ·	S-1,2-D1C		10		.000636	.000212	.000212	.000212		
	Flao		9			4	e=tran		Flag)	Ş	욷	웆	Ş		
Est.	Conc (a)		.00011426	N = 4		4	anics Analyt	Est. Conc	(a)		.00001690	.00017652	.00015262	.00012740		N = 4
						0	cnod=Urga		Result			•	•	•		
	Lab Matrix		_			3	ипwау ме				_	_	_	_		
	Analytical Method		SW8260			400014000	sourneast K	Analvtical	Method		SW8260	SW8260	SW8260	SW8260		
•	Data Source		1995			4.0	==1 c	Data	Source		1995	1995	1995	1995		
Lab	Footnote							bued		Lab	Footnote					
	Units	mg/L	mg/L	mg/L mg/L	,			1 oropro			Units		mg/L	mg/L	mg/L	mg/L
	DF.	.000312	.000104	.000104				-1,3-Dic			占		.000348	.000116	.000116	.000116
	Flag	Q.	2	2 2				yte=cis			Flag		2	운	2	운
Est. Conc	(a)	.000068329	.000063485	000059432 000058055		N = 4		ganics Anal	Est.	Conc	(a)		.00015263	.00009646	.00007852	.00003798
	Result		•					ethod=0r			Result		•			•
		_		ب ب				Runway M		Lab	Matrix		_	_	_	_
=		SW8260	SW8260	SW8260 SW8260				e=Southeast		Analytical	Method		SW8260	SW8260	SW8260	SW8260
	Source	1995	1995	1995 1995				Sit		Data	Source		1995	1995	1995	1995
	Est. Conc Lab	Est. Analytical Lab Conc Lab DL Units Footnote Data Analytical Lab Conc Conc Lonc Source Method Matrix Result (a) Flag DL Units	Est. Analytical Lab Conc Lab Method Matrix Result (a) Flag DL Units Footnote Data Analytical Lab Conc Source Method Matrix Result (a) Flag DL Units Fo	Est. Analytical Lab Conc Conc Method Matrix Result (a) Flag DL Units Footnote Source Method Matrix Result (a) Flag DL Units SW8260 L	Est. Analytical Lab Conc Method Matrix Result (a) Flag DL Units Footnote Swazeo L 000068329 ND .000104 mg/L Swazeo L 000058055 ND .000104 mg/L	Est. Analytical Lab Conc Method Matrix Result (a) Flag DL Units Footnote Source Method Matrix Result (a) Flag DL Units SW8260 L000068329 ND .000104 mg/L SW8260 L000053432 ND .000104 mg/L SW8260 L000058055 ND .000104 mg/L SW8260 L000058055 ND .000104 mg/L	Analytical Lab Conc Lab Data Analytical Lab Conc Source Method Matrix Result (a) Flag DL Units Swazoo L 000068329 ND .000104 mg/L SW8260 L 000058055 ND .000104 mg/L 000058055 ND 0000580	Analytical Lab Conc Lab Data Analytical Lab Conc Source Method Matrix Result (a) Flag DL Units Footnote Source Method Matrix Result (a) Flag DL Units SW8260 L	Est. Analytical Lab Conc Method Matrix Result (a) Flag DL Units Footnote Sw8260 L000068329 ND .000104 mg/L Sw8260 L000059432 ND .000104 mg/L Sw8260 L000058055 ND .000104 mg/L Sw8260 L000058055 ND .000104 mg/L Sw8260 L000059432 ND .000104 mg/L Sw8260 L000059432 ND .000104 mg/L Sw8260 L000059655 ND .000104 mg/L Sw8260 L000058055 ND .000104 mg/L N = 4 Site=Southeast Runway Method=Organics Analyte=trans-1,2-Dichloropropene Data Analytical lah Conc Est.	Est. Source Method Matrix Result (a) Flag DL Units 1995 SW8260 L .00011426 ND .000207 mg/L N = 4 Site=Southeast Runway Method=Organics Analyte=trans-1,2-Dichloroet Source Method Matrix Result (a) Flag DL Units	Est. Source Method Matrix Result (a) Flag DL Units 1995 SWB260 L00011426 ND .000207 mg/L N = 4 Site=Southeast Runway Method=Organics Analyte=trans-1,2-Dichloroes Source Method Matrix Result (a) Flag DL Units	Est. Source Method Matrix Result (a) Flag DL Units 1995 SW8260 L00011426 ND .000207 mg/L N = 4 Site=Southeast Runway Method=Organics Analyte=trans-1,2-Dichloroet Source Method Matrix Result (a) Flag DL Units e 1995 SW8260 L .00001690 ND .000636 mg/L	Est. Source Method Matrix Result (a) Flag DL Units 1995 SW8260 L00011426 ND .000207 mg/L N = 4 Site=Southeast Runway Method=Organics Analyte=trans-1,2-Dichloroet Source Method Matrix Result (a) Flag DL Units Source Method Matrix Result (a) Flag DL Units Source Sw8260 L00001690 ND .000636 mg/L 1995 SW8260 L00017652 ND .000212 mg/L	Est. Source Method Matrix Result (a) Flag DL Units 1995 SW8260 L00011426 ND .000207 mg/L N = 4 Site=Southeast Runway Method=Organics Analyte=trans-1,2-Dichloroet Source Method Matrix Result (a) Flag DL Units Est. Conc Source Method Matrix Result (a) Flag DL Units 1995 SW8260 L00001690 ND .000636 mg/L 1995 SW8260 L00017652 ND .000212 mg/L 1995 SW8260 L00015262 ND .000212 mg/L	Est. Source Method Matrix Result (a) Flag DL Units 1995 SW8260 L00011426 ND .000207 mg/L N = 4 Site=Southeast Runway Method=Organics Analyte=trans-1,2-Dichloroet Source Method Matrix Result (a) Flag DL Units 1995 SW8260 L00001690 ND .000636 mg/L 1995 SW8260 L00017652 ND .000212 mg/L 1995 SW8260 L00012740 ND .000212 mg/L 1995 SW8260 L00012740 ND .000212 mg/L	Est. Source Method Matrix Result (a) Flag DL Units 1995 SW8260 L00011426 ND .000207 mg/L N = 4 Site=Southeast Runway Method=Organics Analyte=trans-1,2-Dichloroet Source Method Matrix Result (a) Flag DL Units 1995 SW8260 L00001690 ND .000636 mg/L 1995 SW8260 L0001562 ND .000212 mg/L 1995 SW8260 L0001562 ND .000212 mg/L 1995 SW8260 L00015262 ND .000212 mg/L

Site=Southeast Runway Method=Organics Analyte=trans-1,3-Dichloropropene	Data Analytical lah Conc	Flag OL Units Fo
4 = N	Site=Southeast Runway Method=Organics Analyte=m&p-Xylenes	Est.

2012	Method		SW8260	SW8260	SW8260	SW8260			
מממ	Source		1995	1995	1995	1995			
		Lab	Footnote	•				Ç	
			Units		mg/L	J/Em	mg/L	mg/L	
			Ы		.001660	.000554	.000554	.000554	
			Flag		DET	욷	욷	DET	
	Est.	Conc	(a)		0.028400	0.000040	0.000029	0.000172	
			Result		0.028400		•	0.000172	
		Lab	Matrix		_		_	_	
		Analytical	Method		SW8260	SW8260	SW8260	SW8260	
		Data	Source		1995	1995	1995	1995	

mg/L mg/L mg/L

.0002170 .0000724 .0000724 .0000724

2222

.000019107 .000056558 .000068355

N = 4

Ē
χ
ź.
0=0
χŧ
Inal
A
CS
ani
Orga
Ŧ
thod
1et
- >
Wa
Rur
يد
heas
ب
Sou
£ 8
Sit
-
i

N = 4

Data		de l		Est. Conc				de
Source	Method	Matrix	Result	(a)	Flag	ы	Units	Footnote
1995	SW8260		0.0108	0.010800	DET	.000621	mg/L	
1995	SW8260	_1	•	0.000112	S	.000207	T/bm	
1995	SW8260		•	0.000171	Ş	.000207	T/Dut	

a. Random uniform numbers, between zero and the lesser of the minimum result a

Random uniform numbers, between zero and the lesser of the minimum result a . م

Surface Soil Raw Data

Galena Baseline Risk Assessment Surface Soil Data

Site=Control Tower Method=Inorganics Analyte=Barium	Est. Conc (a) Flag DL Units Footnote	84.8 DET 0.0620 mg/kg 74.9 DET 0.0640 mg/kg 192.0 DET 0.0660 mg/kg 95.7 DET 0.0573 mg/kg 100.0 DET 0.0620 mg/kg 150.0 DET 0.0716 mg/kg	9 =	Site=Control Tower Method=Inorganics Analyte=Beryllium	Est. Conc (a) Flag DL Units Footnote	0.0401 DET 0.0293 mg/kg B 0.0294 DET 0.0302 mg/kg BJ 0.2310 DET 0.0312 mg/kg 0.1460 DET 0.0270 mg/kg B 0.0676 DET 0.0293 mg/kg B 0.3370 DET 0.0338 mg/kg	9 "
itrol Tower Metho	Lab Matrix Result	\$ 84.8 \$ 74.9 \$ 192.0 \$ 95.7 \$ 100.0	Z	ol Tower Method≕	Lab Matrix Result	\$ 0.0401 \$ 0.0294 \$ 0.2310 \$ 0.1460 \$ 0.0676 \$ 0.3370	Z
Site=Cor	Analytical Method	SW6010 SW6010 SW6010 SW6010 SW6010 SW6010		Site=Contu	Analytical Method	SW6010 SW6010 SW6010 SW6010 SW6010 SW6010	
	Data Source	1995 1995 1995 1995 1995			Data Source	1995 1995 1995 1995 1995	
	Lab Footnote			 	Lab Footnote		
uminum	Lab Units Footnote	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg		timony	Lab Units Footnote	mg/kg mg/kg mg/kg mg/kg mg/kg	
alyte=Aluminum	DL Units	2.46 mg/kg 2.53 mg/kg 2.61 mg/kg 2.27 mg/kg 2.46 mg/kg 2.83 mg/kg		alyte=Antimony	.DL Units	5.22 mg/kg 5.38 mg/kg 5.55 mg/kg 4.82 mg/kg 5.22 mg/kg 6.02 mg/kg	
nics Analyte=Aluminum	Flag OL Units	DET 2.46 DET 2.53 DET 2.61 DET 2.27 DET 2.27 DET 2.46 DET 2.46		nics Analyte=Antimony	Flag .DL Units	DET 5.22 DET 5.38 DET 5.55 DET 4.82 DET 6.02	
=Inorganics Analyte=Aluminum	DL Units	2.46 2.53 2.61 2.27 2.46 2.83	9	=Inorganics Analyte=Antimony	Est. Conc (a) Flag .DL Units	5.22 5.38 5.55 4.82 5.22 6.02	9 11
er Method=Inorganics Analyte=Aluminum	Flag OL Units	DET 2.46 DET 2.53 DET 2.61 DET 2.27 DET 2.27 DET 2.46 DET 2.46		er Method=Inorganics Analyte=Antimony	Est. Conc Result (a) Flag .DL Units	DET 5.22 DET 5.38 DET 5.55 DET 4.82 DET 6.02	9 11 N
ontrol Tower Method=Inorganics Analyte=Aluminum	Est. Conc (a) Flag DL Units	6960 DET 2.46 6090 DET 2.53 11800 DET 2.61 5840 DET 2.27 5510 DET 2.46 9290 DET 2.83	11	ontrol Tower Method=Inorganics Analyte=Antimony	Est. Lab Conc Matrix Result (a) Flag .DL Units	31.0 DET 5.22 12.9 DET 5.38 30.5 DET 5.55 25.4 DET 4.82 27.2 DET 5.22 49.2 DET 6.02	9 11 N
Site=Control Tower Method=Inorganics Analyte=Aluminum	Est. Conc Result (a) Flag DL Units	6960 DET 2.46 6090 DET 2.53 11800 DET 2.61 5840 DET 2.27 5510 DET 2.46 9290 DET 2.83	11	Site=Control Tower Method=Inorganics Analyte=Antimony	Est. Conc Result (a) Flag .DL Units	31.0 31.0 DET 5.22 12.9 12.9 DET 5.38 30.5 30.5 DET 5.55 25.4 25.4 DET 4.82 27.2 27.2 DET 5.22 49.2 49.2 DET 6.02	9 11 N

		•
	Lab Footnote	
admium .	Units	mg/kg mg/kg mg/kg mg/kg mg/kg
a}yte=C∂	01	0.332 0.342 0.353 0.306 0.332 0.383
ics An	Flag	DET DET DET DET DET
=Inorgan	Est. Conc (a)	-0.717 -0.870 -1.180 -0.608 -0.217 -0.881
r Method≔	Result	-0.717 -0.870 -1.180 -0.608 -0.217
rol Towe	Lab Matrix	w w w w w
Site=Control Tower Method=Inorganics Analyte=Cadmium	Analytical Method	SW6010 SW6010 SW6010 SW6010 SW6010 SW6010
	Data	1995 1995 1995 1995 1995
 	Lab Footnote	
anic	Units	mg/kg mg/kg mg/kg mg/kg mg/kg
yte=Arse	DI.	0.164 0.183 0.391 0.193 0.165
cs Anal	Flag	061 061 061 061
Inorgani	Est. Conc (a)	3.37 4.05 11.70 5.77 4.89 10.30
er Method∈	Result	3.37 4.05 11.70 5.77 4.89 10.30
ntrol Towe	Lab Matrix	๛๛๛๛๛๛
Site=Control Tower Method=Inorganics Analyte=Arsen	Analytical Method	SW7060 SW7060 SW7060 SW7060 SW7060
1 1 1 1	Data Source	1995 1995 1995 1995 1995

9 = N

9 = N

a. Random uniform numbers, between zero and the lesser of the minimum result a

a. Random uniform numbers, between zero and the lesser of the minimum result a

Assessment	12+2
Galena Baseline Risk Assessment	Curface Coil

4	!	Lab Footnote									
1	lyte=Copper	lyte=Copper	lyte=Copper	lyte=Copper	lyte=Copper	lyte=Copper	lyte=Copper	∩yte=Copper	yte=Coppo	mg/kg mg/kg mg/kg mg/kg mg/kg	
										ı]yte≕Copp	alyte≕Copµ
sessmen. a	ics Ana	Flag	DET 0ET 0ET 0ET								
Risk As oil Dat	Inorgan	Est. Conc (a)	9.52 8.82 22.90 9.14 9.14 16.10								
Galena Baseline Risk Assessment Surface Soil Data	₃r Method=I	er Method≕I	er Method≃I	er Method≃I	er Method≖I	er Method≖Iı	er Method≖Ir	Surface So er Method=In	Result	9.52 8.82 22.90 9.14 9.14 16.10	
Galena	ontrol Tow	Lab Matrix	ကေတတတတ								
	Site=Cor	Site=Cc	Site=C	Site=C	Site=C	Site=C	Analytical Method	SW6010 SW6010 SW6010 SW6010 SW6010 SW6010			
	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Data Source	1995 1995 1995 1995 1995 1995								
~			•								
,	; ; ; ;	Lab Footnote									
	cium	Units	mg/kg mg/kg mg/kg mg/kg mg/kg								
ىپ	yte=Cal	10	1.22 1.25 1.29 1.12 1.22 1.40								
sessmen a	cs Anal	Flag	06T 06T 06T 06T 06T								
Risk As oil Dat	norgani	Est. Conc (a)	3900 3390 15400 5730 5410 7490								
Galena Baseline Risk Assessment Surface Soil Data	 -	1)t	3900 3390 3390 15400 155730 55730 57490 N = 6								
105	r Metho	Result									
Galen	itrol Tower Metho	Lab Matrix Res									
Galen	Site=Control Tower Method=Inorganics Analyte=Calcium		SW6010 S SW6010 S SW6010 S SW6010 S SW6010 S SW6010 S SW6010 S								

Footnote Lab mg/kg mg/kg mg/kg mg/kg mg/kg Units -- Site=Control Tower Method=Inorganics Analyte=Iron ---Site=Control Tower Method=Inorganics Analyte=Lead 0.453 0.467 0.482 0.418 0.453 占 Flag DET DET DET DET DET 12300 12300 21400 11100 10200 17200 Est. Conc (a) 9 12300 12300 21400 111100 10200 17200 Result Lab Matrix S S S S S S Analytical Method SW6010 SW6010 SW6010 SW6010 SW6010 SW6010 1995 1995 1995 1995 1995 1995 Footnote Lab Site=Control Tower Method=Inorganics Analyte=Cobalt ---Units mg/kg mg/kg mg/kg mg/kg mg/kg 0.175 0.181 0.186 0.162 0.175 0.202 占 Flag DET DET DET DET DET 38.8 10.3 23.5 11.3 13.0 18.6 Est. Conc (a) 9 = Result 38.8 10.3 23.5 11.3 13.0 18.6 Lab Matrix Analytical Method SW6010 SW6010 SW6010 SW6010 SW6010 SW6010 Data Source 1995 1995 1995 1995 1995 1995

	DF	0.6320	0.2810	0.3010	0.0657	2.5400	0.7550	
	Flag	DET	DET	DET	DET	DET	DET	
Est.	(a)	18.00	10.10	7.97	3.85	76.60	21.90	11
	Result	18.00	10.10	7.97	3.85	76.60	21.90	z
 	Matrix	s	S	S	S	S	S	
Anslytics	Method	SW7421	SW7421	SW7421	SW7421	SW7421	SW7421	
	Source	1995	1995	1995	1995	1995	1995	
- -	Footnote							
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
	DL Units	0.479 mg/kg	_	_	_	_	_	
	_	_	0.494	0.510	0.442	0.479	0.553	
Est.	Flag DL (DET 0.479 1	DET 0.494	DET 0.510 1	0.442	DET 0.479	DET 0.553	دد
Est.	Flag DL (DET 0.479 1	7.32 DET 0.494 I	9.58 DET 0.510 n	5.78 DET 0.442	5.00 DET 0.479 I	8.82 DET 0.553 I	دد
	(a) Flag DL (8.29 DET 0.479 1	7.32 DET 0.494 I	9.58 DET 0.510 n	5.78 DET 0.442	5.00 DET 0.479 I	8.82 DET 0.553 I	ت ع
.	Result (a) Flag DL (S 8.29 8.29 DET 0.479 1	S 7.32 7.32 DET 0.494 I	S 9.58 9.58 DET 0.510	S 5.78 5.78 DET 0.442	S 5.00 5.00 DET 0.479 I	S 8.82 8.82 DET 0.553 I	:: !!
10.10.4	Matrix Result (a) Flag DL (SW6010 S 8.29 8.29 DET 0.479 1	SW6010 S 7.32 7.32 DET 0.494 I	SW6010 S 9.58 9.58 DET 0.510 n	SW6010 S 5.78 5.78 DET 0.442	SW6010 S 5.00 5.00 DET 0.479 I	SW6010 S 8.82 8.82 DET 0.553	

Footnote Lab

Units

mg/kg mg/kg mg/kg mg/kg mg/kg

Random uniform numbers, between zero and the lesser of the minimum result a ъ

Random uniform numbers, between zero and the lesser of the minimum result a

Ġ.

Curren

File time stamp: 10/18/95 12:07

File: surface.dat

a: 10/18/95 12:08

Galena Baseline Risk Assessment Surface Soil Data

Galena Baseline Risk Assessment Surface Soil Data

i	Q							
1	Lab Footnote				٠			
ckel	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
ıalyte=Ni	DF	1.020	1.050	1.080	0.937	1.010	1.170	•
ınics An	Flag	DET	DET	DET	-DET	DET	DET	
l≂Inorg∂	Est. Conc (a)	27.8	18.1	25.7	15.4	12.8	17.1	9
er Method	Result	27.8	18.1	25.7	15.4	12.8	17.1	Z
Site=Control Tower Method=Inorganics Analyte=Nickel	Lab Matrix	S	S	s	s	s	s	
Site=Co	Analytical Method	SW6010	SW6010	SW6010	SW6010	SW6010	SW6010	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Data Source	1995	1995	1995	1995	1995	1995	
! ! ! !	Lab Footnote							
nesium	Lab Units Footnote	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
yte=Magnesium	<u>_</u>	8.57 mg/kg						
cs Analyte=Magnesium	Units		8.84	9.12	7.91	8.57	9.89	
norganics Analyte=Magnesium	DL Units P	8.57	DET 8.84	DET 9.12	DET 7.91 ·	DET 8.57	DET 9.89	. 9
Method=Inorganics Analyte=Magnesium	Flag DL Units F	DET 8.57	3080 DET 8.84	7580 DET 9.12	3410 DET 7.91	3280 DET 8.57	5010 DET 9.89	9 = 2
rol Tower Method=Inorganics Analyte=Magnesium	Est. Conc (a) Flag DL Units F	4380 DET 8.57	3080 DET 8.84	7580 DET 9.12	3410 DET 7.91	3280 DET 8.57	5010 DET 9.89	. 9 = N
Site=Control Tower Method=Inorganics Analyte=Magnesium	Est. Conc Result (a) Flag DL Units F	4380 DET 8.57	S 3080 3080 DET 8.84	S 7580 7580 DET 9.12	S 3410 3410 DET 7.91	S 3280 3280 DET 8.57	S 5010 5010 DET 9.89	9 = N

Site=Control Tower Method=Inorganics Analyte=Potassium	Est. Data Analytical Lab Conc Lab Source Method Matrix Result (a) Flag DL Units Footnote	1995 SW6010 S 515 515 DET 39.2 mg/kg 1995 SW6010 S 483 483 DET 40.5 mg/kg 1995 SW6010 S 1270 1270 DET 41.7 mg/kg 1995 SW6010 S 540 540 DET 41.7 mg/kg 1995 SW6010 S 585 585 DET 39.2 mg/kg 1995 SW6010 S 922 922 DET 45.3 mg/kg N = 6 N B B 6 6 6 6 6	Site=Control Tower Method=Inorganics Analyte=Selenium
Site=Control Tower Method=Inorganics Analyte=Manganese	Est. Data Analytical Lab Conc Conc Lab Source Method Matrix Result (a) Flag DL Units Footnote	1995 SW6010 S 233 233 DET 0.438 mg/kg 1995 SW6010 S 212 212 DET 0.452 mg/kg 1995 SW6010 S 406 406 DET 0.466 mg/kg 1995 SW6010 S 197 197 DET 0.405 mg/kg 1995 SW6010 S 187 187 DET 0.438 mg/kg 1995 SW6010 S 323 323 DET 0.506 mg/kg	Site=Control Tower Method=Inorganics Analyte=Molybdenum

	Lab Footnote	ŋ		
eien i um	Units	mg/kg mg/kg ma/ka	mg/kg mg/kg mg/kg	
a i yte=s	DF	0.109	0.113 0.110 0.130	
nics an	Flag		DET 0ET 0ET	
=1norga	Est. Conc (a)	0.1720 0.0712 0.5930	0.2830 0.1710 0.4040	9
r method	Result	0.1720 0.0712 0.5930	0.2830 0.1710 0.4040	Z
roi iowe	Lab Matrix	s s s	လလလ	
	Analytical Method		SW7740 SW7740 SW7740	
 	Data Source	1995 1995 1995	1995 1995 1995	
ı	υ υ			
; ; ;	Lab Footnote	C.	Ç.	
odenum	Lab Units Footnot	mg/kg mg/kg mg/ka	mg/kg mg/kg mg/kg	
yte=molybaenum	_		0.315 mg/kg J 0.342 mg/kg 0.394 mg/kg	
cs Analyte=molybdenum	DL Units P	0.342 0.352 0.363		
Inorganics Analyte=Molybdenum	DL Units P	DET 0.342 DET 0.352 DET 0.363	DET 0.315 DET 0.342 DET 0.394	9 11
r method=inorganics Analyte=molybdenum	Est. Conc (a) Flag DL Units B	0.328 DET 0.342 1.640 DET 0.352 1.140 DET 0.363	DET 0.315 DET 0.342 DET 0.394	N = 6
rro∣ lower metnoa=inorganics Analyte=molybaenum	Est. Conc (a) Flag DL Units B	0.328 DET 0.342 1.640 DET 0.352 1.140 DET 0.363	0.265 DET 0.315 1.450 DET 0.342 1.380 DET 0.394	9 = ×
Site=Control lower method=inorganics Analyte=molybdenum	Est. Lab Conc Matrix Result (a) Flag DL Units F	S 0.328 0.328 DET 0.342 S 1.640 1.640 DET 0.352 S 1.140 1.140 DET 0.363	0.265 DET 0.315 1.450 DET 0.342 1.380 DET 0.394	9 = N
Site=Control lower method=inorganics Analyte=molybdenum	Est. Analytical Lab Conc Method Matrix Result (a) Flag DL Units H	SW6010 S 0.328 0.328 DET 0.342 SW6010 S 1.640 DET 0.352 SW6010 S 1.140 DET 0.363	\$ 0.265 0.265 DET 0.315 \$ 1.450 1.450 DET 0.342 \$ 1.380 1.380 DET 0.394	9

a. Random uniform numbers, between zero and the lesser of the minimum result a

Random uniform numbers, between zero and the lesser of the minimum result a ъ Э

		•	•
	Lab Footnote		
adium	Units	mg/kg mg/kg mg/kg mg/kg mg/kg	
lyte≃Van		0.260 0.269 0.277 0.240 0.260	
ics Ana	Flag	DET DET DET DET DET	
:Inorgan	Est. Conc (a)	26.6 24.5 44.6 25.4 35.4	9 ::
r Method≔	Result	26.6 24.5 44.6 25.4 22.4 35.4	z
Site=Control Tower Method=Inorganics Analyte=Vanadium	Lab Matrix	လ လ လ လ် လ လ	
Site=Cor	Analytical Method	SW6010 SW6010 SW6010 SW6010 SW6010	
	Data Source	1995 1995 1995 1995 1995 1995	
į			
	Lab Footnote	77777	
Silver	Units	mg/kg mg/kg mg/kg mg/kg mg/kg	
nalyte≕	10	0.394 0.407 0.419 0.364 0.394 0.455	
anics A	Flag	DET 0ET 0ET 0ET 0ET	
d=Inorg	Est. Conc (a)	-0.695 -0.703 -1.480 -0.669 -0.750	9
er Metho	Result	-0.695 -0.703 -1.480 -0.669 -0.750 -1.330	Z
trol Tow	Lab Matrix	လ လ လ လ လ လ	
Site=Control Tower Method=Inorganics Analyte=Silver	Analytical Method	SW6010 SW6010 SW6010 SW6010 SW6010 SW6010	
!	Data Source	1995 1995 1995 1995 1995 1995	

inc	Units	mg/kg mg/kg mg/kg mg/kg mg/kg		
nalyte≖Z	01	0.309 0.318 0.328 0.285 0.309 0.356		
yanics A	Flag	06T 06T 06T 06T		
od=Inorg	Est. Conc (a)	27.9 28.9 57.5 25.8 46.7 53.2	9 =	
ower Metho	Result	27.9 28.9 57.5 25.8 46.7	Z	
Site=Control Tower Method=Inorganics Analyte=Zinc	Lab Matrix	νννννν		
Site=(Analytical Method	SW6010 SW6010 SW6010 SW6010 SW6010 SW6010		
	Data	1995 1995 1995 1995 1995		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Lab Footnote			
Analyte=Sodium	Units	mg/kg mg/kg mg/kg mg/kg mg/kg		
lyte=So	DL	2.71 2.80 2.89 2.50 2.71 3.13		
nics Ana	Flag	06T 06T 06T 06T 06T		
=Inorgar	Est. Conc (a)	158 136 427 138 167 301	9 =	
er Method	Result	158 136 427 138 167 301	Z Z	
itrol Towe	Lab Matrix	νννννν		
Site=Control Tower Method=Inorganics	Analytical Method	SW6010 SW6010 SW6010 SW6010 SW6010		
	Data Source	1995 1995 1995 1995 1995 1995		

Lab Footnote

9	Lab s Footnote		
oroethan	Units	mg/kg mg/kg mg/kg mg/kg mg/kg	
1-Trichl	. DL	.000792 .000781 .000857 .000783 .000795	
te=1,1,	Flag	22222	
anics Analy	Est. Conc (a)	.00043924 .0004274 .00035573 .00036516 .00056647	9 = R
thod=Org	Result		
Tower Me	Lab Matrix	w w w w w	
Site=Control Tower Method=Organics Analyte=1,1,1-Trichloroethane -	Analytical Method	SW8240 SW8240 SW8240 SW8240 SW8240 SW8240	
\$1	Data Source	1995 1995 1995 1995 1995 1995	
 1 1 1 1	Lab Footnote	״	
]ium	Units	mg/kg mg/kg mg/kg mg/kg mg/kg	
′te=Thal	10	5.48 5.83 5.06 5.48 6.32	
s Analy	Flag	0ET 0ET 0ET 0ET 0ET	
Inorganic	Est. Conc (a)	19.10 -1.18 29.40 5.95 28.90 7.95	9 =
r Method=	Result	19.10 -1.18 29.40 5.95 28.90 7.95	Z
itrol Towe	Lab Matrix	νννννν	
Site=Control Tower Method=Inorganics Analyte=Thalli	Analytical Method	SW6010 SW6010 SW6010 SW6010 SW6010	
	Data Source	1995 1995 1995 1995 1995	

a. Random uniform numbers, between zero and the lesser of the minimum result a Random uniform numbers, between zero and the lesser of the minimum result a

File: surface.dat

a.

File time stamp: 10/18/95 12:07

Current (

Galena Baseline Risk Assessment Surface Soil Data

Footnote Method=Organics Analyte=1,1-Dichloroethene mg/kg mg/kg mg/kg mg/kg mg/kg Units .000745 000743 000816 000754 Flag 999999 .00070691 .00072810 .00004400 .00025946 00042759 Est. Conc (a) 9 = N Result Site=Control Tower Matrix Lab 55555 Analytical Method SW8240 SW8240 SW8240 SW8240 SW8240 SW8240 ource 1995 1995 1995 1995 1995 Footnote Lab Method=Organics Analyte=1,1,2,2-Tetrachloroethane mg/kg mg/kg mg/kg mg/kg mg/kg .00122 .00111 .00113 00111 Flag 22222 0006045 0007945 0010268 0001852 0003307 0009371 Est. Conc (a) 9 z Result Matrix Site=Control Tower Analytical Method SW8240 SW8240 SW8240 SW8240 SW8240 SW8240 Source 1995 1995 1995 1995 1995 1995

mg/kg mg/kg mg/kg mg/kg mg/kg 0.0142 0.0158 0.0143 0.0145 0146 ᆸ 22222 0.008121 0.011563 0.004262 0.012879 0.009690 0.002341 Est. Conc (a Result Matrix S S S S S S Analytical Method SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 Source 1995 1995 1995 1995 1995 1995 Footnote mg/kg mg/kg mg/kg mg/kg mg/kg .000807 .000820 .000915 .000817 .000805 .000884 ᆸ Flag 22222 .00019938 .00047723 .00072312 00015844 00073073 00059363 Conc (a) Est. Result Matrix Lab Analytical SW8240 SW8240 SW8240 SW8240 SW8240 Method SW8240 Source Data 1995 1995 1995 1995 1995

Footnote

-- Site=Control Tower Method=Organics Analyte=1,2,4-Trichlorobenzene

----- Site=Control Tower Method=Organics Analyte=1,1,2-Trichloroethane ------

----- Site=Control Tower Method=Organics Analyte=1,2-Dichlorobenzene Site=Control Tower Method=Organics Analyte=1,1-Dichloroethane ------

9 = N

0.0147 0.0164 0.0149 0.0150 0.0169 Flag 22222 0.013786 0.004574 0.006753 0.009570 0.012202Conc (a) Result Matrix Analytical SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 Method Data Source 1995 1995 1995 1995 1995 Footnote Units mg/kg mg/kg mg/kg 00108 00106 00106 00117 00121 겁 Flag 22222 . 0010367 . 0008969 . 0000780 . 0000098 . 0001828 Est. Conc (a) Result Matrix S S S S S S S Analytical Method SW8240 SW8240 SW8240 SW8240 SW8240 SW8240 Source 1995 1995 1995 1995 1995

Footnote

mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg

> 9 Н

9

Random uniform numbers, between zero and the lesser of the minimum result a ص م

Random uniform numbers, between zero and the lesser of the minimum result a . o

Galena Baseline Risk Assessment Surface Soil Data

Surface Soil Data Site=Control Tower Method=Organics Analyte=1,4-Dichlorobenzene	Est. Data Analytical Lab Conc Source Method Matrix Result (a) Flag DL Units Footnote	1995 SW8270 S 0.017970 ND 0.0214 mg/kg 1995 SW8270 S 0.001922 ND 0.0209 mg/kg 1995 SW8270 S 0.013286 ND 0.0232 mg/kg 1995 SW8270 S 0.006821 ND 0.0211 mg/kg 1995 SW8270 S 0.00034 ND 0.0213 mg/kg 1995 SW8270 S 0.004343 ND 0.0239 mg/kg	9 II N	Site=Control Tower Method=Organics Analyte=2,4,5-Trichlorophenol	Est. Data Analytical Lab Conc Lab Source Method Matrix Result (a) Flag Dl Units Footnote	1995 SW8270 S 0.004644 ND 0.0106 mg/kg 1995 SW8270 S 0.002357 ND 0.0115 mg/kg 1995 SW8270 S 0.005794 ND 0.0115 mg/kg 1995 SW8270 S 0.0105794 ND 0.0105 mg/kg 1995 SW8270 S 0.010153 ND 0.0106 mg/kg 1995 SW8270 S 0.001857 ND 0.0119 mg/kg	9 II N	Site=Control Tower Method=Organics Analyte=2,4,6-Trichlorophenol	Est. Data Analytical Lab Conc Conc Source Method Matrix Result (a) Flag DL Units Footnote
Surrace Soll Data Site=Control Tower Method=Organics Analyte=1,2-Dichloroethane	Est. Data Analytical Lab Source Method Matrix Result (a) Flag DL Units Footnote	1995 SWB240 S . 00035900 ND .000779 mg/kg 1995 SWB240 S . 00022253 ND . 000767 mg/kg 1995 SWB240 S . 00070531 ND . 000843 mg/kg 1995 SWB240 S . 000733776 ND . 000769 mg/kg 1995 SWB240 S . 00038086 ND . 000782 mg/kg 1995 SWB240 S . 00070820 ND . 000782 mg/kg	9 = N	Site=Control Tower Method=Organics Analyte=1,2-Dichloropropane	Est. Data Analytical Lab Conc Conc Source Method Matrix Result (a) Flag DL Units Footnote	1995 SW8240 S . 00026725 ND .000608 mg/kg 1995 SW8240 S . 00046403 ND .000599 mg/kg 1995 SW8240 S . 00057383 ND . 000650 mg/kg 1995 SW8240 S . 00025476 ND . 000610 mg/kg 1995 SW8240 S . 00048496 ND . 000681 mg/kg	9 = N	Site=Control Tower Method=Organics Analyte=1,3-Dichlorobenzene	Est. Data Analytical Lab Conc Source Method Matrix Result (a) Flag DL Units Footnote

Lab Matrix Analytical Method SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 Data Source 1995 1995 1995 1995 1995 Lab Footnote Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg 0.0151 0.0147 0.0163 0.0148 0.0150 Flag 999999 0.014863 0.013448 0.003817 0.012129 0.004643 Conc (a) Result Matrix Analytical Method SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 Data Source 1995 1995 1995 1995 1995

9 = **N**

mg/kg mg/kg mg/kg mg/kg mg/kg

0.0237 0.0231 0.0256 0.0233 0.0235

22222

0.020341 0.001837 0.011526 0.002337 0.012226

9=

Random uniform numbers, between zero and the lesser of the minimum result a a.

a. Random uniform numbers, between zero and the lesser of the minimum result a

Current

File time stamp: 10/18/95 12:07

File: surface.dat

: 10/18/95 12:08

9 Page (

Galena Baseline Risk Assessment Surface Soil Data

9	Lab Footnote			el	Lab Footnote	·		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Lab Footnote		·
rotoluen	Units	mg/kg mg/kg mg/kg mg/kg mg/kg		rotoluer	Units	mg/kg mg/kg mg/kg mg/kg mg/kg		ne(MEK)	Units	mg/kg mg/kg mg/kg mg/kg mg/kg	
,4-Dinit	DF	0.0134 0.0130 0.0145 0.0132 0.0133		,6-Dinit	DL	0.0289 0.0282 0.0313 0.0285 0.0287 0.0323		2-Butano	DF	.00378 .00372 .00409 .00373 .00379	
lyte=2	Flag	22222		lyte=2	Flag	22222		alyte=	Flag	22222	
ganics Ana	Est. Conc (a)	0.010699 0.008031 0.010231 0.01445 0.011482	9 #	ganics Ana	Est. Conc (a)	0.018944 0.025908 0.013369 0.026936 0.024705	9 "	rganics An	Est. Conc (a)	.0008738 .0031107 .0040677 .0032157 .0022350	9 "
lethod=0r.	Result			lethod=0r	Result			Method=0	Result		
Tower M	Lab Matrix	, , , ,		l Tower M	Lab Matrix	~ ~ ~ ~ ~ ~ ~ ~		ol Tower	Lab Matrix	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
Site=Control Tower Method=Organics Analyte=2,4-Dinitrotoluene	Analytical Method	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270		Site=Control Tower Method=Organics Analyte=2,6-Dinitrotoluene	Analytical Method	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270		Site=Control Tower Method=Organics Analyte=2-Butanone(MEK)	Analytical Method	SW8240 SW8240 SW8240 SW8240 SW8240 SW8240	
1	Data Source	1995 1995 1995 1995 1995 1995			Data Source	1995 1995 1995 1995 1995		1	Data Source	1995 1995 1995 1995 1995	
[Lab Footnote	·			Lab Footnote			. !	Lab Footnote		
orophenol	Lab Units Footnote	mg/kg mg/kg mg/kg mg/kg mg/kg		hylphenol	Lab Units Footnote	mg/kg mg/kg mg/kg mg/kg mg/kg			Lab Units Footnote	mg/kg mg/kg mg/kg mg/kg mg/kg	
,4-Dichlorophenol		.00826 mg/kg .00805 mg/kg .00894 mg/kg .00813 mg/kg .00820 mg/kg		,4-Dimethylphenol		0.0227 mg/kg 0.0221 mg/kg 0.0245 mg/kg 0.0223 mg/kg 0.0225 mg/kg				0.0439 mg/kg 0.0428 mg/kg 0.0475 mg/kg 0.0432 mg/kg 0.0436 mg/kg	
lyte=2,4-Dichlorophenol	Units			lyte=2,4-Dimethylphenol	L Units				Units		
ganics Analyte=2,4-Dichlorophenol	DL Units	. 00826 . 00805 . 00894 . 00813 . 00820	9 " N	ganics Analyte=2,4-Dimethylphenol	DL Units	0.0227 0.0221 0.0245 0.0223 0.0225	9 2		DL Units	0.0439 0.0428 0.0475 0.0432 0.0436	9 = 8
ethod=Organics Analyte=2,4-Dichlorophenol	Flag OL Units	ND		ethod=Organics Analyte=2,4-Dimethylphenol	Flag DL Units	ND 0.0227 ND 0.0221 ND 0.0245 ND 0.0223 ND 0.0225 ND 0.0255	Ħ		Flag DL Units	ND 0.0439 ND 0.0428 ND 0.0475 ND 0.0432 ND 0.0436 ND 0.0436	ti .
Tower Method=Organics Analyte=2,4-Dichlorophenol	Est. Conc (a) Flag DL Units	ND	II	Tower Method=Organics Analyte=2,4-Dimethylphenol	Est. Conc (a) Flag DL Units	ND 0.0227 ND 0.0221 ND 0.0245 ND 0.0223 ND 0.0225 ND 0.0255	Ħ		Est. Conc (a) Flag DL Units	ND 0.0439 ND 0.0428 ND 0.0475 ND 0.0432 ND 0.0436 ND 0.0436	ti .
Site=Control Tower Method=Organics Analyte=2,4-Dichlorophenol	Est. Conc Result (a) Flag DL Units		II	Site=Control Tower Method=Organics Analyte=2,4-Dimethylphenol	Est. Conc Result (a) Flag DL Units	0.014738 ND 0.0227 0.011989 ND 0.0221 0.014115 ND 0.0245 0.008258 ND 0.0245 0.010260 ND 0.0223 0.022886 ND 0.0253	Ħ	Site=Control Tower Method=Organics Analyte=2,4-Dinitrophenol	Est. Conc Result (a) Flag DL Units	0.027387 ND 0.0439 0.026173 ND 0.0428 0.034914 ND 0.0475 0.011049 ND 0.0475 0.024865 ND 0.0432 0.016615 ND 0.0436	ti .

a. Random uniform numbers, between zero and the lesser of the minimum result a

a. Random uniform numbers, between zero and the lesser of the minimum result a

Galena Baseline Risk Assessment Surface Soil Data

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Lab s Footnote	×	
anone	Units	mg/kg mg/kg mg/kg mg/kg mg/kg	
:e=2-Hex	7	.00259 .00255 .00280 .00256 .00260	
Analyt	Flag		
Site=Control Tower Method=Organics Analyte=2-Hexanone	Est. Conc (a)	. 0017760 . 0004631 . 0001093 . 0021411 . 0016534	9 = N
er Metho	Result		
itrol Tow	Lab Matrix	w w w w w	
Site=Cor	Analytical Method	SW8240 SW8240 SW8240 SW8240 SW8240 SW8240	
	Data Source	1995 1995 1995 1995 1995 1995	
ther	Lab Footnote		
vinyl ether	Lab Units Footnote	mg/kg mg/kg mg/kg mg/kg mg/kg	
oroethyl vinyl ether		.000872 mg/kg .000859 mg/kg .000944 mg/kg .000861 mg/kg .000875 mg/kg	
e≂2-Chloroethyl vinyl ether		ND .000872 II ND .000859 II ND .000844 II ND .000861 II ND .000875 II ND .000976 II	
ics Analyte≂2-Chloroethyl vinyl ether	DL Units	.000872 m .000859 m .000844 m .000861 m .000875 m	N = 6
od=Organics Analyte=2-Chloroethyl vinyl ether	Est. Conc Wesult (a) Flag DL Units	ND .000872 II ND .000859 II ND .000844 II ND .000861 II ND .000875 II ND .000976 II	9 = N
ower Method=Organics Analyte=2-Chloroethyl vinyl ether	Est. .ab Conc itrix Result (a) Flag DL Units	ND .000872 II ND .000859 II ND .000844 II ND .000861 II ND .000875 II ND .000976 II	
Site=Control Tower Method=Organics Analyte=2-Chloroethyl vinyl ether	Est. Conc (a) Flag OL Units	ND .000872 II ND .000859 II ND .000844 II ND .000861 II ND .000875 II ND .000976 II	9 = N

------ Site=Control Tower Method=Organics Analyte=2-Methylnaphthalene ------Footnote Units mg/kg mg/kg mg/kg 0.0230 0.0224 0.0249 0.0226 0.0228 ᆸ Flag 0.021304 0.023100 0.003230 0.021700 0.010415 Est. Conc (a) 9 = N 0.0217 0.0231 Result Lab Matrix 8 8 8 8 8 8 Analytical Method SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 Data Source 1995 1995 1995 1995 1995 Footnote Lab ----- Site-Control Tower Method-Organics Analyte=2-Chloronaphthalene Units mg/kg mg/kg mg/kg mg/kg mg/kg 0.0178 0.0173 0.0192 0.0175 0.0176 ᆸ Flag 22222 0.003443 0.017263 0.003892 0.015143 0.016952 0.006925 Est. Conc (a) 9 = Result Lab Matrix Analytical Method SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 Data Source 1995 1995 1995 1995 1995

ě	-	
ol (o-cr	Units	mg/kg mg/kg mg/kg mg/kg mg/kg
thylphen	DI	0.0103 0.0101 0.0112 0.0102 0.0102
e=2-Met	Flag	
ics Analyte	Est. Conc (a)	.0096075 .0022983 .0030126 .0068486 .0030195
od=Organ	Result	
wer Meth	Lab Matrix	w w w w w
Site=Control Tower Method=Organics Analyte=2-Methylphenol(o-cres	Analytical Method	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270
Site	Data Source	1995 1995 1995 1995 1995 1995
 	Lab Footnote	
ophenol	Units	mg/kg mg/kg mg/kg mg/kg mg/kg
-2-Chlor	DL	0.0156 0.0153 0.0169 0.0154 0.0155
nalyte≔	Flag	22222
ite=Control Tower Method=Organics Analyte=2-Chlorophenol	Est. Conc (a)	0.005505 0.009563 0.005787 0.007608 0.010797
Method≔	Result	
ol Tower	Lab Matrix	w w w w w
٠,	Analytical Method	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270
2 1 1 1 1 1	Data Source	1995 1995 1995 1995 1995
-		

o-cresol) ----

Footnote

Lab

Random uniform numbers, between zero and the lesser of the minimum result a

ъ.

9=

z

9 = N

Curren

File time stamp: 10/18/95 12:07

File: surface.dat

a. Random uniform numbers, between zero and the lesser of the minimum result a

1	Ì
17	

1 1 1	Lab Footnote			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Lab Footnote	Z a			Lab Footnote		
aniline	Units	mg/kg mg/kg mg/kg mg/kg mg/kg		000-	Units	mg/kg mg/kg mg/kg mg/kg mg/kg		300-	Units	mg/kg mg/kg mg/kg mg/kg mg/kg	
e=3-Nitro	DF	0.0146 0.0142 0.0158 0.0144 0.0145		lyte=4,4	. 01	.001170 .000230 .000255 .002920 .002330		lyte=4,4'	DF	.002420 .000474 .000525 .000479 .004800	
Analyt	Flag	22222		cs Ana	Flag	061 061 061 061		cs Ana	Flag	06T 06T 00T NO 06T	
Site=Control Tower Method=Organics Analyte=3-Nitroaniline	Est. Conc (a)	0.000058 0.011112 0.001262 0.002988 0.009490	9 = N	Site=Control Tower Method=Organics Analyte=4,4'-DDD	Est. Conc (a)	0.01110 0.00187 0.00275 0.00217 0.02980	9 = N	Site=Control Tower Method=Organics Analyte=4,4'-DDE	Est. Conc (a)	.0093800 .0018600 .0036500 .0004504 .0087800	9 "
r Method≃	Result			ower Meth	Result	0.01110 0.00187 0.00275 0.00217 0.02980		ower Meth	Result	.00938 .00186 .00365 .00878	
rol Towe	Lab Matrix	w w w w w		ontrol T	Lab Matrix			ontrol T	Lab Matrix	w w w w w	
Site=Cont	Analytical Method	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270		Site=C	Analytical Method	0808MS 0808MS 0808MS 0808MS 0808MS 0808MS		Site=C	Analytical Method	2M8080 2M8080 2M8080 2M8080 2M8080 2M8080 2M8080	
1	Data Source	1995 1995 1995 1995 1995 1995			Data Source	1995 1995 1995 1995 1995 1995			Data Source	1995 1995 1995 1995 1995	
ı											
	Lab Footnote			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Lab Footnote			ine	Lab Footnote		
aniline	Lab Units Footnote	mg/kg mg/kg mg/kg mg/kg mg/kg		phenol	Lab Units Footnote	mg/kg mg/kg mg/kg mg/kg mg/kg		robenzidine	Lab Units Footnote	mg/kg mg/kg mg/kg mg/kg mg/kg	
=2-Nitroaniline		.00603 mg/kg .00588 mg/kg .00592 mg/kg .00599 mg/kg .00593 mg/kg		=2-Nitrophenol	its	0.0172 mg/kg 0.0167 mg/kg 0.0186 mg/kg 0.0169 mg/kg 0.0171 mg/kg 0.0192 mg/kg		'-Dichlorobenzidine	ts	0.0105 mg/kg 0.0102 mg/kg 0.0114 mg/kg 0.0103 mg/kg 0.0104 mg/kg 0.0117 mg/kg	
nalyte=2-Nitroaniline	- Units			nalyte=2-Nitrophenol	Units			te=3,3'-Dichlorobenzidine	Units		
Organics Analyte=2-Nitroaniline	DL Units	.00603 .00588 .00652 .00594 .00599	N = 6	Organics Analyte=2-Nitrophenol	DL Units	0.0172 mg 0.0167 mg 0.0186 mg 0.0189 mg 0.0171 mg 0.0192 mg	9 = 8	nics Analyte=3,3'-Dichlorobenzidine	DL Units	0.0105 mg 0.0102 mg 0.0114 mg 0.0103 mg 0.0104 mg 0.0117 mg	9
Method=Organics Analyte=2-Nitroaniline	Flag OL Units	ND . 00603 ND . 00588 ND . 00652 ND . 00594 ND . 00599 ND . 00673	11	Method=Organics Analyte=2-Nitrophenol	Flag DL Units	ND 0.0172 mg, ND 0.0167 mg, ND 0.0186 mg, ND 0.0169 mg, ND 0.0171 mg, ND 0.0192 mg, ND	II	hod=Organics Analyte=3,3'-Dichlorobenzidine	Flag DL Units	ND 0.0105 mg ND 0.0102 mg, ND 0.0114 mg, ND 0.0103 mg ND 0.0104 mg, ND 0.0117 mg	. 11
ol Tower Method=Organics Analyte=2-Nitroaniline	Est. Conc (a) Flag DL Units	ND . 00603 ND . 00588 ND . 00652 ND . 00594 ND . 00599 ND . 00673	11	ol Tower Method=Organics Analyte=2-Nitrophenol	Est. Conc (a) Flag DL Units	ND 0.0172 mg, ND 0.0167 mg, ND 0.0186 mg, ND 0.0169 mg, ND 0.0171 mg, ND 0.0192 mg, ND	II	ower Method=Organics Analyte=3,3'-Dichlorobenzidine	Est. Conc (a) Flag DL Units	ND 0.0105 mg ND 0.0102 mg, ND 0.0114 mg, ND 0.0103 mg ND 0.0104 mg, ND 0.0117 mg	. 11
- Site=Control Tower Method=Organics Analyte=2-Nitroaniline	Est. Conc Result (a) Flag DL Units		11	- Site=Control Tower Method=Organics Analyte=2-Nitrophenol	Est. Conc Result (a) Flag DL Units	0.003731 ND 0.0172 mg, 0.005074 ND 0.0167 mg, 0.003833 ND 0.0186 mg, 0.015539 ND 0.0169 mg, 0.003679 ND 0.0171 mg,	II	Site=Control Tower Method=Organics Analyte=3,3'-Dichlorobenzidine	Est. Conc Result (a) Flag DL Units	. 0.010274 ND 0.0105 mg . 0.00648 ND 0.0102 mg, . 0.007028 ND 0.0114 mg, . 0.001582 ND 0.0103 mg, . 0.002122 ND 0.0104 mg, . 0.008338 ND 0.0117 mg,	. 11

a. Random uniform numbers, between zero and the lesser of the minimum result a

a. Random uniform numbers, between zero and the lesser of the minimum result a

¢	,	>	
•	-	4	

20	ano]	Lab Footnote			! ! ! ! ! !	Lab Footnote			ether	Lab	
	nethylphe	Units	mg/kg mg/kg mg/kg mg/kg mg/kg	î Î	aniline	Units	mg/kg mg/kg mg/kg mg/kg mg/kg		phenyl		
int	ıloro-3-⊓	DL	.00634 .00618 .00686 .00625 .00630		4-Chlora	10	0.0146 0.0142 0.0158 0.0143 0.0145		rophenyl	70	0.0221 0.0215 0.0239 0.0218 0.0219
ssessme	:e=4-C}	Flag			alyte=	Flag	888888		4-Chlo	Flag	222222
Baseline Risk Assessment Surface Soil Data	nics Analyt	Est. Conc (a)	.0041838 .0051349 .0008571 .0047433 .0002415	9 = N	rganics An	Est. Conc (a)	0.004438 0.009655 0.003719 0.010234 0.001971	9 #	s Analyte≕	Est. Conc (a)	0.005804 0.015395 0.020419 0.017000 0.000385
	าod=0rgaเ	Result			Method=(Result			=Organic	Result	• • • • •
Galena	ower Met	Lab Matrix	လ လ လ လ လ လ		ol Tower	Lab Matrix	ស ស ស ស ស ស		r Method	Lab Matrix	νννννν
	Site=Control Tower Method=Organics Analyte=4-Chloro-3-methylphenol	Analytical Method	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270		Site=Control Tower Method=Organics Analyte=4-Chloroaniline	Analytical Method	\$W8270 \$W8270 \$W8270 \$W8270 \$W8270 \$W8270		Site=Control Tower Method=Organics Analyte=4-Chlorophenyl phenyl	Analytical Method	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270
	\$1	Data Source	1995 1995 1995 1995 1995			Data Source	1995 1995 1995 1995 1995		Site=	Data Source	1995 1995 1995 1995 1995 1995
. 19		Lab Footnote			pheno!	Lab Footnote			ether	Lab Footnote	
	TOO-'	Units	mg/kg mg/kg mg/kg mg/kg mg/kg		2-methyl	Units	mg/kg mg/kg mg/kg mg/kg mg/kg		phenyl	Units	mg/kg mg/kg mg/kg mg/kg mg/kg
ent]yte=4,4	10	.003890 .000763 .000844 .000771 .007720		Jinitro-2	10	0.135 0.131 0.146 0.133 0.134 0.151		mophenyl	OF.	0.0126 0.0123 0.0137 0.0125 0.0126
ssessm ta	cs Ana	Flag	06T 06T 06T 06T		9=4,6-[Flag	22222		:=4-Bro	Flag	22222
Galena Baseline Risk Assessment Surface Soil Data	Site=Control Tower Method≃Organics Analyte=4,4'-D[Est. Conc (a)	0.14900 0.05300 0.03030 0.00159 0.49600 0.01370	N = 6	cs Analyte	Est. Conc (a)	0.00170 0.03122 0.01532 0.09423 0.03711 0.11628	9 = R	s Analyte	Est. Conc (a)	.0041525 .0005798 .0087334 .0015900 .0060237
ena Basel Surfac	ower Metł	Result	0.14900 0.05300 0.03030 0.00159 0.49600 0.01370		od=Organi	< Result		_	id=Organic	Result	• • • • • •
Gale	ontrol	Lab Matrix	νννννν		ver Meth	Lab Matrix	w w w w w		er Metho	Lab Matrix	လ်လလလလ
	Site=(Analytical Method	SW8080 SW8080 SW8080 SW8080 SW8080 SW8080		Site=Control Tower Method=Organics Analyte=4,6-Dinitro-2-methylphenol	Analytical Method	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270		Site=Control Tower Method=Organics Analyte=4-Bromophenyl	Analytical Method	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270
		Data Source	1995 1995 1995 1995 1995		Site	Data Source	1995 1995 1995 1995 1995		Site	Data Source	1995 1995 1995 1995 1995 1995

a. Random uniform numbers, between zero and the lesser of the minimum result a

9 = N

9 = **V**

File: surface.dat

File time stamp: 10/18/95 12:07

Current

10/18/95 12:08

a. Random uniform numbers, between zero and the lesser of the minimum result a

Footnote mg/kg mg/kg mg/kg mg/kg mg/kg Site=Control Tower Method=Organics Analyte=4-Nitrophenol 0.0146 0.0162 0.0147 0.0148 0.0167 .0150 Flag 22222 Surface Soil Data 0.008651 0.008005 0.012755 0.001360 0.011008 Est. Conc (a) 9 = 2 Result Lab Matrix Analytical Method SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 Data Source 1995 1995 1995 1995 1995 Footnote Site=Control Tower Method=Organics Analyte=4-Methyl-2-pentanone(MIBK) mg/kg mg/kg mg/kg mg/kg mg/kg .00227 .00249 .00227 .00231 Flag 22222 .0010888 .0000822 .0016094 .0020554 0016762 Est. Conc (a) 9 :: Result Matrix 8 8 8 8 8 8 Analytical Method SW8240 SW8240 SW8240 SW8240 SW8240 SW8240 Data Source 1995 1995 1995 1995 1995

Footnote Site=Control Tower Method=Organics Analyte=Acenaphthylene mg/kg mg/kg mg/kg Site=Control Tower Method=Organics Analyte=Acenaphthene Units 0.0151 0.0147 0.0163 0.0149 0.0150 ᆸ Flag 22222 0.010509 0.000654 0.002355 0.004020 0.011198 Est. Conc (a) 9 Result Lab Matrix 888888 Analytical Method SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 Source 1995 1995 1995 1995 1995 Footnote -- Site=Control Tower Method=Organics Analyte=4-Methylphenol/3-Methylphenol Site=Control Tower Method=Organics Analyte=4-Nitroaniline Units mg/kg mg/kg mg/kg mg/kg mg/kg 0.0140 0.0136 0.0151 0.0138 0.0139 占 Flag 22222 0.003043 0.003471 0.003099 0.000921 0.010280 Est. Conc (a) 9 Result Matrix S S S S S S Analytical SW8270 SW8270 SW8270 SW8270 Method SW8270 SW8270 Source 1995 1995 1995 1995 1995 1995

Lab Footnote							
 Units	mg/kg	mg/kg	mg/kg	mq/kg	mg/kg	mg/kg	
). 1	0.0135	0.0132	0.0146	0.0133	0.0134	0.0151	
Flag	S	웆	S	S	웆	Ş	
Est. Conc (a)	0.005899	0.006732	0.008677	0.006252	0.012638	0.008645	9 = 1
Result					•		_
Lab Matrix	s	s	s	s	s	S	
Analytical Method	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	
Data Source	1995	1995	1995	1995	1995	1995	
Lab Footnote							
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
DF.	0.0144	0.0140	0.0155	0.0141	0.0143	0.0160	
Flag	운	2	£	2	2	2	
Est. Conc (a)	0.011279	0.001959	0.008624	0.012108	0.008548	0.009465	9 2
Result				•			
Lab Matrix	s	S	S	S	S	s	
<u>-</u>	70	0.	70	20	70	270	
Analytical Method	SW8270	SW82	SW82	SW82	SW82	SW8	

a. Random uniform numbers, between zero and the lesser of the minimum result a

Random uniform numbers, between zero and the lesser of the minimum result a ۵,

24	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Lab Footnote		
	Э	Units	mg/kg mg/kg mg/kg mg/kg mg/kg	
4	te=Benze	占	.000865 .000852 .000936 .000854 .000868	
essmen	. Analy	Flag	22222	
Galena Baseline Risk Assessment Surface Soil Data	Site=Control Tower Method=Organics Analyte=Benzene	Est. Conc (a)	.00079281 .00023091 .00065585 .00062072 .00065244 .00055685 N = 6	
na Baseli Surfac	ower Meth	Result		
Galer	ontrol To	Lab Matrix	ស ស ស ស ស ស	
	Site=C	Analytical Lab Method Matrix	SW8240 SW8240 SW8240 SW8240 SW8240 SW8240	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Data Source	1995 1995 1995 1995 1995 1995	
23	1	Lab Footnote	·	
	; ; ;		מממממם	
	tone -	Units	mg/kg mg/kg mg/kg mg/kg mg/kg	
±	/te=Ace	70	.00482 .00475 .00521 .00476 .00483	
sessmer a	s Analy	Flag		
Galena Baseline Risk Assessment Surface Soil Data	- Site=Control Tower Method=Organics Analyte=Acetone	Est. Conc (a)	.0026971 .0033237 .0008002 .004102 .0020176 .0018507	
Baseli Surfac	er Meth	Result		
Galena	ntrol Tov	Lab Matrix		
	Site=Co	Analytical Method	SW8240 SW8240 SW8240 SW8240 SW8240 SW8240	
	i	Data Source	1995 1995 1995 1995 1995 1995	

Footnote Site=Control Tower Method=Organics Analyte=Benzo(a)anthracene ----Units 0.0200 0.0195 0.0216 0.0197 0.0198 Ы Flag SSSSS 0.014458 0.007870 0.013464 0.013157 0.013719 0.077000 Est. Conc (a) ti z 0.077 Result Lab Matrix 888888 Analytical Method SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 Data Source 1995 1995 1995 1995 1995 Site=Control Tower Method=Organics Analyte=Anthracene -------Footnote Lab 8 8 8 Units mg/kg mg/kg mg/kg mg/kg mg/kg Site=Control Tower Method=Organics Analyte=Aldrin 001520 000299 000330 000302 003020 ᆸ Flag .0052700 .0011200 .0004490 Est. Conc (a) 9 = z .005270 .000727 .001120 .000660 .005870 Result Lab Matrix Analytical Method SW8080 SW8080 SW8080 SW8080 SW8080 SW8080 Data Source 1995 1995 1995 1995 1995

1	ı.							
)pyrene	Units	mg/kg	ma/ka	ma/ka	ma/ka	ma/ka	mg/kg	
=Benzo(a	DL	0.0209	0.0204	0.0227	0.0206	0.0208	0.0234	
nalyte	Flag	DET	2	2	2	2	2	
rganics A	Est. Conc (a)	0.089600	0.017398	0.013650	0.018313	0.006637	0.017663	رد اا عد
Method=(Result	0.0896			•			-
oł Tower	Lab Matrix	S	S	s	s	S	د	
 Site=Control Tower Method=Organics Analyte=Benzo(a)pyrene 	Analytical Method	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Data	1995	1995	1995	1995	1995	1995	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Lab Footnote							
acene	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
e=Anthr	10	0.0182	0.0177	0.0197	0.0179	0.0181	0.0203	
Analyt	Flag	DET	S	욷	2	S	2	
d=Organics	Est. Conc (a)	0.021100	0.005277	0.003922	0.007654	0.004996	0.007953	ري اا
er Metho	Result	0.0211		-		•		
trol Tow	Lab Matrix	s	S	S	S	S	S	
Site=Control Tower Method=Organics Analyte=Anthracene	Analytical Method M	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	
	Data Source	1995	1995	1995	1995	1995	1995	
•								

Footnote

Lab

Random uniform numbers, between zero and the lesser of the minimum result a

a,

File time stamp: 10/18/95 12:07

File: surface, dat

Random uniform numbers, between zero and the lesser of the minimum result a a.

Galena Baseline Risk Assessment Surface Soil Data

26	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Lab Footnote			1 1 1 1 1	Lab Footnote			9	Lab Footnote	
	acid	Units Fo	mg/kg mg/kg mg/kg mg/kg mg/kg		alcohol -	Units F	mg/kg mg/kg mg/kg mg/kg mg/kg		oromethan	Units	mg/kg mg/kg mg/kg mg/kg mg/kg
#	e=Benzoio	70	0.210 n 0.205 n 0.227 n 0.207 n 0.209 n		=Benzyl a	DL	0.0387 0.0377 0.0419 0.0381 0.0384		omodichlo	Ы	.000780 .000768 .000844 .000770 .000783
sessmel a	Analyt	Flag	22222		nalyte	Flag	22222		yte≕Br	Flag	22222
Baseline Risk Assessment Surface Soil Data	Site=Control Tower Method=Organics Analyte=Benzoic acid	Est. Conc (a)	0.13539 0.11963 0.17428 0.03011 0.17944	9 "	Site=Control Tower Method=Organics Analyte=Benzyl	Est. Conc (a)	0.031888 0.001245 0.018287 0.002712 0.020513	9 -	anics Anal	Est. Conc (a)	.00008090 .00015013 .00003439 .00019865 .00060629
	r Method	Result	• • • • • •		Method=	Result			thod=Org	Result '	
Galena	rol Towe	Lab Matrix	w w w w w		ol Tower	Lab Matrix	w w w w w		Tower Me	Lab Matrix	w w w w w
	Site=Cont	Analytical Method	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270		- Site=Contr	Analytical Method	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270		Site=Control Tower Method=Organics Analyte=Bromodichloromethane	Analytical Method	SW8240 SW8240 SW8240 SW8240 SW8240 SW8240 SW8240
		Data Source	1995 1995 1995 1995 1995		 	Data Source	1995 1995 1995 1995 1995		5	Data Source	1995 1995 1995 1995 1995
55	!		•		į				!		
25	ene	Lab Footnote	ш ×		ene	Lab Footnote	×		ene	Lab Footnote	ч ×
52	luoranthene	Lab Units Footnote	mg/kg F mg/kg mg/kg mg/kg X mg/kg x mg/kg x mg/kg x mg/kg mg/kg x mg/k		,i)perylene	Lab Units Footnote	mg/kg mg/kg mg/kg mg/kg mg/kg		luoranthene	Lab Units Footnote	mg/kg F mg/kg mg/kg mg/kg X mg/kg X
	enzo(b)fluoranthene	its	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		enzo(g,h,i)perylene	DL Units			enzo(k)fluoranthene	ts	2 2 2 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	lyte=Benzo(b)fluoranthene	Units	mg/kg mg/kg mg/kg mg/kg mg/kg		lyte=Benzo(g,h,i)perylene	Units	DET 0.0259 mg/kg ND 0.0253 mg/kg ND 0.0281 mg/kg ND 0.0255 mg/kg ND 0.0257 mg/kg ND 0.0257 mg/kg		lyte=Benzo(k)fluoranthene	Units	mg/kg mg/kg mg/kg mg/kg mg/kg
	anics Analyte=Benzo(b)fluoranthene	DL Units	T 0.0188 mg/kg 0.0183 mg/kg 0.0203 mg/kg 0.0185 mg/kg 0.0187 mg/kg 0.0210 mg/kg	9 11 2	anics Analyte=Benzo(g,h,i)perylene	DL Units	T 0.0259 mg/kg 0.0253 mg/kg 0.0281 mg/kg 0.0257 mg/kg 0.0257 mg/kg	9 " ~	anics Analyte=Benzo(k)fluoranthene	DL Units	T 0.0328 mg/kg 0.0319 mg/kg 0.0355 mg/kg 0.0323 mg/kg 0.0325 mg/kg
Baseline Risk Assessment Surface Soil Data	thod=Organics Analyte=Benzo(b)fluoranthene	Flag DL Units	DET 0.0188 mg/kg ND 0.0183 mg/kg ND 0.0203 mg/kg ND 0.0185 mg/kg ND 0.0187 mg/kg ND 0.0210 mg/kg	11	thod=Organics Analyte=Benzo(g,h,i)perylene	Flag DL Units	DET 0.0259 mg/kg ND 0.0253 mg/kg ND 0.0281 mg/kg ND 0.0255 mg/kg ND 0.0257 mg/kg ND 0.0257 mg/kg	13	thod=Organics Analyte=Benzo(k)fluoranthene	Flag DL Units	DET 0.0328 mg/kg ND 0.0319 mg/kg ND 0.0355 mg/kg ND 0.0323 mg/kg ND 0.0325 mg/kg ND 0.0326 mg/kg
	Tower Method=Organics Analyte=Benzo(b)fluoranthene	Est. Conc (a) Flag DL Units	0.15000 DET 0.0188 mg/kg 0.00313 NO 0.0183 mg/kg 0.01178 ND 0.0203 mg/kg 0.00752 ND 0.0185 mg/kg 0.01520 ND 0.0187 mg/kg 0.01048 ND 0.0210 mg/kg	11	Tower Method=Organics Analyte=Benzo(g,h,i)perylene	Est. Conc (a) Flag DL Units	0.077700 DET 0.0259 mg/kg 0.010338 ND 0.0253 mg/kg 0.024536 ND 0.0281 mg/kg 0.006108 ND 0.0255 mg/kg 0.012334 ND 0.0257 mg/kg 0.022474 ND 0.0290 mg/kg	13	Tower Method=Organics Analyte=Benzo(k)fluoranthene	Est. Conc (a) Flag DL Units	0.15000 DET 0.0328 mg/kg 0.00997 ND 0.0319 mg/kg 0.01127 ND 0.0355 mg/kg 0.00685 ND 0.0323 mg/kg 0.02095 ND 0.0325 mg/kg 0.03579 ND 0.0366 mg/kg
Baseline Risk Assessment Surface Soil Data	Site=Control Tower Method=Organics Analyte=Benzo(b)fluoranthene	Est. Conc Result (a) Flag DL Units	0.15 0.15000 DET 0.0188 mg/kg 0.00313 ND 0.0183 mg/kg 0.01178 ND 0.0203 mg/kg 0.00752 ND 0.0185 mg/kg 0.01520 ND 0.0187 mg/kg 0.01048 ND 0.0210 mg/kg	11	Site=Control Tower Method=Organics Analyte=Benzo(g,h,i)perylene	Est. Conc Result (a) Flag DL Units	0.0777 0.077700 DET 0.0259 mg/kg 0.010338 ND 0.0253 mg/kg 0.024536 ND 0.0281 mg/kg 0.006108 ND 0.0255 mg/kg 0.012334 ND 0.0257 mg/kg 0.022474 ND 0.0290 mg/kg	13	Site=Control Tower Method=Organics Analyte=Benzo(k)fluoranthene	Est. Conc Result (a) Flag DL Units	0.15 0.15000 DET 0.0328 mg/kg 0.00997 ND 0.0319 mg/kg 0.01127 ND 0.0355 mg/kg 0.00685 ND 0.0323 mg/kg 0.02095 ND 0.0325 mg/kg 0.023579 ND 0.0366 mg/kg

9=

9 = N

a. Random uniform numbers, between zero and the lesser of the minimum result a

a. Random uniform numbers, between zero and the lesser of the minimum result a

28	1 1 1 1 1 1	Lab Footnote		. !
	achloride	Units F	mg/kg mg/kg mg/kg mg/kg mg/kg	ane
ent	bon tetr		.000850 .000838 .000920 .000840 .000853	:e=Chlord
sessmen	yte=Car	Flag		s Analyt
Galena Baseline Risk Assessment Surface Soil Data	ganics Anal	Est. Conc (a)	.00051246 .00040589 .00009290 .00057023 .00018086 .00040261	n - g od=Organics
na Basel Surfa	thod=Or	Result		ver Meth
Galer	Tower Me	Lab Matrix	ស ស ស ស ស ស ស ស ស ស ស ស	ntrol To
Galena Baseline Risk Assessment Surface Soil Data Site=Control Tower Method=Organics Analyte=Carbon tetrachloride -	Site=Control	Analytical Method	SW8240 SW8240 SW8240 SW8240 SW8240 SW8240	n – 5. Site=Control Tower Method=Organics Analyte=Chlordane
	1	Ďata Source	1995 1995 1995 - 1995 1995 1995	! ! ! ! !
27	!			·
	 	lab Footnote		te
	thane	Lab Units Footnote	mg/kg mg/kg mg/kg mg/kg mg/kg	phthalate
÷	=Bromomethane		.00107 mg/kg .00105 mg/kg .00115 mg/kg .00105 mg/kg .00107 mg/kg	ylbenzylphthalate
sessment a	Analyte=Bromomethane			yte=Butylbenzylphthalate
ine Risk Assessment ce Soil Data	d=Organics Analyte=Bromomethane	DL Units		ganics Analyte=Butylbenzylphthalate
na Baseline Risk Assessment Surface Soil Data	er Method=Organics Analyte=Bromomethane	Est. Conc Result (a) Flag DL Units	05027 ND .00107 50580 ND .00105 20510 ND .00115 31115 ND .00105 47884 ND .00107 08767 ND .00119	r ethod=Organics Analyte=Butylbenzylphthalate
Galena Baseline Risk Assessment Surface Soil Data	ıtrol Tower Method=Organics Analyte=Bromomethane	Est. Conc (a) Flag DL Units	05027 ND .00107 50580 ND .00105 20510 ND .00115 31115 ND .00105 47884 ND .00107 08767 ND .00119	Tower Method=Organics Analyte=Butylbenzylphthalate
Galena Baseline Risk Assessment Surface Soil Data	Site=Control Tower Method=Organics Analyte=Bromomethane	Est. Conc Result (a) Flag DL Units	05027 ND .00107 50580 ND .00105 20510 ND .00115 31115 ND .00105 47884 ND .00107 08767 ND .00119	Site=Control Tower Method=Organics Analyte=Butylbenzylphthalate

Footnote Lab Units mg/kg mg/kg mg/kg mg/kg mg/kg ------ Site=Control Tower Method=Organics Analyte=Chlorobenzene 0.01250 0.00245 0.00271 0.00248 0.02480 Ы Flag 22222 .0087838 .0000269 .0003399 .0009403 .0010465 Est. Conc (a) 9 = **2** Result Matrix Lab S S S S S S Analytical Method SW8080 SW8080 SW8080 SW8080 SW8080 SW8080 Data Source 1995 1995 1995 1995 1995 Site=Control Tower Method=Organics Analyte=Carbon disulfide ------Footnote Lab Units mg/kg mg/kg mg/kg mg/kg mg/kg 0.0221 0.0215 0.0239 0.0217 0.0219 ᆸ Flag 22222 0.015922 0.008928 0.014681 0.020505 0.013655 Est. Conc (a) 9 = Result Matrix Lab Analytical Method SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 Source 1995 1995 1995 1995 1995 1995

	Units	mg/kg mg/kg mg/kg mg/kg mg/kg
	DF	.000751 .000836 .000763 .000763
	Flag	
	Est. Conc (a)	.00062566 .00007018 .00034853 .00064164 .00009120
	Result	
	Lab Matrix	w w w w w
	Analytical Method	SW8240 SW8240 SW8240 SW8240 SW8240 SW8240
	Data Source	1995 1995 1995 1995 1995 1995
	Lab Footnote	
	Units	mg/kg mg/kg mg/kg mg/kg mg/kg
	DL	.000752 .000741 .000814 .000743 .000755
1	Flag	22222
,	Est. Conc (a)	.00068141 .00014307 .00073575 .00016822 .0004040
	Result	
	Lab Matrix	w w w w w
	Analytical Method	SW8240 SW8240 SW8240 SW8240 SW8240 SW8240
	Data Source	1995 1995 1995 1995 1995

Footnote

Random uniform numbers, between zero and the lesser of the minimum result a a.

a. Random uniform numbers, between zero and the lesser of the minimum result a

9

si z

9 11 z

File: surface.dat

File time stamp: 10/18/95 12:07

Curren

b: 10/18/95 12:08

		Lab Footnote				•			
	ysene	Units	mg/kg	ma/ka	mg/kg	ma/ka	mg/kg	mg/kg	
int	lyte=Chr	DF	0.0214	0.0209	0.0232	0.0211	0.0213	0.0239	
ssessme ta	ss Anal	Flag	DET	2	2	Q	S	Ş	
Galena Baseline Risk Assessment Surface Soil Data	od=Organio	Est. Conc (a)	0.10600	0.00922	0.02239	0.01818	0.01707	0.00025	9 = 1
a Baselir Surface	wer Metho	Result	0.106						-
Galen	ontrol To	Lab Matrix	S	S	s	s	s	s	
	Site=Control Tower Method=Organics Analyte=Chrysene -	Analytical Method	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	
	1	Data Source	1995	1995	1995	. 1995	1995	1995	
59		Lab Footnote							
59	thane	Lab Units Footnote	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
	thane	Lab DL Units Footnote			.00117 mg/kg				
	thane	Lab Flag DL Units Footnote			. 00117		. 00108	.00121	
	thane	DL Unit	ND .00108	NO .00106	. 00117	ND .00106	ND .00108	.00121	9
	thane	Est. Conc Result (a) Flag DL Unit	ND .00108	NO .00106	ND .00117	ND .00106	ND .00108	ND00121	9 = 2
Galena Baseline Risk Assessment Surface Soil Data	thane	Est. Lab Conc Matrix Result (a) Flag DL Unit	ND .00108	NO .00106	ND .00117	ND .00106	ND .00108	ND00121	N = 6
		Est. Conc Result (a) Flag DL Unit	S	S	ND .00117	S	S	S	N = 6

Site=Control Tower Method=Organics Analyte=Di-n-octylphthalate	Est. Conc (a) Flag DL Units Footnote	0.007004 ND 0.0315 mg/kg 0.008720 ND 0.0307 mg/kg 0.000495 ND 0.0341 mg/kg 0.018218 ND 0.0310 mg/kg 0.001221 ND 0.0312 mg/kg X	0.005438 ND 0.0352 mg/kg N = 6	olte-cuitiol lower method-organics Analyte-bluenz(a, n)anthracene
er Method=Or	Lab Matrix Result			
te=Control Tow	Analytical La Method Ma	SW8270 SW8270 SW8270 SW8270 SW8270	SW8270	BM01 10.171107-5
Sit	Data / Source	1995 1995 1995 1995	1995	
2 2 2 3 4 2 2 2 2 3 3 4 4 4 4 4 4 4 4 4	Lab Footnote			
oform	Units	mg/kg mg/kg mg/kg mg/kg	mg/kg	ם פון פון
e=Chlor	10	.00105 .00103 .00113 .00103	.00117	
. Analyt	Flag	22222	ND V substant	1) ce
od=Organics	Est. Conc (a)	.00003673 .00019374 .00091639 .00026071	.00039653 N = 6 =0rdanics 8	Est.
let!	Result		+ + + + + + + + + + + + + + + + + + +	
Wer	Res		 2	<u>-</u>
itrol Tower	Lab Matrix Res	လ လ လ လ လ	S S S S S S S S S S S S S S S S S S S	
Site=Control Tower Method=Organics Analyte=Chlorof		SW8240 SW8240 SW8240 SW8240 SW8240 SW8240	SW8240 S00039653 ND .00117 m N = 6 N = 6 Site=Control Tower Method=Organics Analyte=Chloromet	

ne	Lab Footnote	×	
anthrace	Units	mg/kg mg/kg mg/kg mg/kg mg/kg	
enz(a,h)	DF	0.0268 0.0262 0.0290 0.0264 0.0266	
e=Dibe	Flag	22222	
nics Analyt	Est. Conc (a)	0.010943 0.014783 0.008031 0.020312 0.011940	9 =
hod=Orgar	Result		
ower Met	Lab Matrix	w w w w w	
Site=Control Tower Method=Organics Analyte=Dibenz(a,h)anthracene	Analytical Method	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270	
Sit	Data Source	1995 1995 1995 1995 1995 1995	
	Lab ts Footnote	5,	
ethane	Units	mg/kg mg/kg mg/kg mg/kg mg/kg	
=Chlorom	10	.000942 .000928 .001020 .000930 .000945	
nalyte	Flag	222222	
Site=Control Tower Method=Organics Analyte=Chlorome	Est. Conc (a)	.00078253 .00041511 .00051651 .00073261 .00062216	9 = N
r Method	Result		
rol Towe	Lab Matrix	w w w w w	
Site=Cont	Analytical Method	SW8240 SW8240 SW8240 SW8240 SW8240 SW8240	
	Data Source	1995 1995 1995 1995 1995	-

a. Random uniform numbers, between zero and the lesser of the minimum result a

a. Random uniform numbers, between zero and the lesser of the minimum result a

Galena Baseline Risk Assessment Surface Soil Data

Site=Control Tower Method=Organics Analyte=Dieldrin	Est. Data Analytical Lab Conc Lab Source Method Matrix Result (a) Flag DL Units Footnote	SW8080 S 0.003930 SW8080 S 0.000818 SW8080 S 0.000886 SW8080 S 0.011600 SW8080 S 0.007450	0 1 2
	Lab Footnote		
ofuran -	Units	mg/kg mg/kg mg/kg mg/kg mg/kg	
e=Dibenz	01	0.0216 0.0211 0.0234 0.0213 0.0215	
Analyt	Flag	22222	
=Organics	Est. Conc (a)	0.012101 0.003956 0.010507 0.018691 0.013026 0.023977) !
r Method	Result		
rol Towe	Lab Matrix	ω ω ω ω ω	
Site=Control Tower Method=Organics Analyte=Dibenzofur	Analytical Method	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270	
1	Data Source	1995 1995 1995 1995 1995 1995	

----- Site=Control Tower Method=Organics Analyte=Diesel Range Organics ----------- Site=Control Tower Method=Organics Analyte=Dibromochloromethane ------

Lab Footnote						
Units	ma/ka	ma/ka	ma/ka	ma/ka	ma/ka	mg/kg
, 1	4	4	4	4	4	4
Flag	DET	DET	DET	S	DET	DET
Est. Conc (a)	8.400	220.000	5.800	3.124	500,000	22.000
Result	8.4	220.0	5.8		500.0	22.0
Lab Matrix	S	s	S	S	တ	S
Analytical Method	AK102	AK102	AK102	AK102	AK102	AK102
Data Source	1995	1995	1995	1995	1995	1995
Lab Footnote		•			×	
Lab Units Footnote	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg X	mg/kg
	_	_	_	_	.000801 mg/kg X	_
	_	_	_	_	_	_
DL Units F	. 000799 UN	. NO .000787	ND .000864 I	1 687000. ON	_	ND .000894
Flag DL Units F	. 000799 UN	. NO .000787	ND .000864 I	1 687000. ON	ND .000801	ND .000894
Est. Conc : (a) Flag DL Units F	. 000799 UN	. NO .000787	ND .000864 I	1 687000. ON	ND .000801	ND .000894
Est. Conc Result (a) Flag DL Units F	. 000799 UN	S	S	S	S	S

	Analytica	Method	AK102	4K102	TOTAL	AK102	47103	70174	AK102		AK102
	Data	Source	1995	1995	000	1995	1005	Teer	1995		1995
	Lab	Footnote			•				×		
		Units	ma/ka	ma/kg	6. (6	mg/kg	04/vm	2/5	mg/kg	·	mg/kg
		占	.000799	000787		.000864	007000	50000	.000801		.000894
		Flag	2	S	1	욷	S	2	2	•	⊋
Est.	Conc	(a)	.00066605	.00055553		.00021084	00029454	1010000	.00004604		.00020983
		Result			•						
	Lab	Matrix	s	S	,	S	v	,	s	•	S
	Analytical	Method	SW8240	SW8240		SW8240	SWR240	2000	SW8240	0,000,00	SW8240
	Data	Source	1995	1995	1 4 4	1995	1995	000	1995	1001	. 1995

11 z

9 = N

	Lab Footnote						
hthalate	Units	ma/ka	ma/ka	ma/ka	mg/kg	ma/ka	mg/kg
iethylpl	10	0.0149	0.0145	0.0161	0.0147	0.0148	0.0166
alyte=C	Flag	2	2	운	2	문	Q
rganics Ana	Est. Conc (a)	0.013838	0.009865	0.003468	0.012533	0.003020	0.014150
4ethod=0∣	Result			-			٠
1 Tower	Lab Matrix	s	s	s	S	S	S
Site=Control Tower Method=Organics Analyte=Diethylphthalate	Analytical Method	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Data Source	1995	1995	1995	1995	1995	1995
1	Lab Footnote						
hthalate	Lab Units Footnote	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
占	Lab DL Units Footnote					0.0202 mg/kg	
占	Lab Flag DL Units Footnote						
占	Flag OL Units		ND 0.0199	ND 0.0221	ND 0.0201	ND 0.0202	ND 0.0228
占	Flag OL Units	ND 0.0204	ND 0.0199	ND 0.0221	ND 0.0201	ND 0.0202	ND 0.0228
占	Est. Conc (a) Flag DL Units	ND 0.0204	ND 0.0199	ND 0.0221	ND 0.0201	ND 0.0202	ND 0.0228
Site=Control Tower Method=Organics Analyte=Dibutyl phthalate	Est. Conc Result (a) Flag DL Units	ND 0.0204	S . 0.006084 ND 0.0199	S . 0.010324 ND 0.0221	S . 0.005494 ND 0.0201	S . 0.002964 ND 0.0202	S . 0.007527 ND 0.0228

9 = **R**

9 = N

Random uniform numbers, between zero and the lesser of the minimum result a ъ.

Random uniform numbers, between zero and the lesser of the minimum result a

. ت

e: 10/18/95 12:08 Curren

File time stamp: 10/18/95 12:07

File: surface.dat

Galena Baseline Risk Assessment Surface Soil Data

Site=Control Tower Method=Organics Analyte=Endosulfan II	Est. Data Analytical Lab Conc Conc Source Method Matrix Result (a) Flag DL Units Footnote	1995 SW8080 S .000018077 ND .001980 mg/kg 1995 SW8080 S .0000627 ND .000389 mg/kg PJ 1995 SW8080 S .0000674 .000067400 DET .000393 mg/kg PJ 1995 SW8080 S .000016888 ND .003930 mg/kg PJ 1995 SW8080 S .000016888 ND .003930 mg/kg I		Site=Control Tower Method=Organics Analyte=Endosulfan sulfate	Est. Data Analytical Lab Conc Conc Source Method Matrix Result (a) Flag DL Units Footnote	1995 SW8080 S. 00204 .0020400 DET .003530 mg/kg KJ 1995 SW8080 S0002421 ND .000556 mg/kg KJ 1995 SW8080 S0002421 ND .000615 mg/kg 1995 SW8080 S0013724 ND .00563 mg/kg 1995 SW8080 S0014265 ND .005630 mg/kg	9 = ×
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Lab Footnote			iphenylamin	Lab Footnote		
hthalat	Units	mg/kg mg/kg mg/kg mg/kg mg/kg		itrosod	Units	mg/kg mg/kg mg/kg mg/kg mg/kg	
imethylp	DF	0.0128 0.0124 0.0138 0.0126 0.0127 0.0142	٠	ine (N-N	占	0.0158 0.0154 0.0171 0.0156 0.0157	
ı]yte≕D	Flag	99999		eny}am	Flag	22222	
ganics Ana	Est. Conc (a)	0.005846 0.010688 0.006515 0.004348 0.006812 0.008961	9 = X	nalyte=Diph	Est. Conc (a)	0.008975 0.003204 0.015533 0.003952 0.010765	9 = N
ethod=0	Result			anics Ar	Result		
Tower M	Lab Matrix	လလလ [်] လလ		ethod=Org	Lab Matrix	w w w w w	
Site=Control Tower Method=Organics Analyte=Dimethylphthalate -	Analytical Method	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270		Site=Control Tower Method=Organics Analyte=Diphenylamine (N-Nitrosodiphenylamin	Analytical Method	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270	
; ; ; ;	Data Source	1995 1995 1995 1995 1995		Site=Cont	Data Source	1995 1995 1995 1995 1995	

1 1 1	Lab Footnote BJ BJ BJ B
in	Units mg/kg mg/kg mg/kg mg/kg
yte=Endr	DL .003790 .000742 .000821 .000750
ics Ana	Flag DET DET DET ND ND
od=Organi	Est. Conc (a) .0034900 .0005480 .0007550 .0004854
Sower Meth	Result .003490 .000548 .000755
Site=Control Tower Method=Organics Analyte=Endrin -	Lab Matrix S S S S S S
Site	Analytical Method SW8080 SW8080 SW8080 SW8080 SW8080 SW8080
	Data Source 1995 1995 1995 1995 1995
. !	Lab Footnote J KJ KJ KJ KJ
fan I	Units mg/kg mg/kg mg/kg mg/kg mg/kg
e=Endosu1	DL 0.00475 0.00093 0.00103 0.01500 0.01500
Analyt	Flag ND DET DET DET DET
=Organics	Est. Conc (a) .0000801 .0002500 .0002500 .0029200 .0033600
er Method	Result 000250 000265 00206 002920
itrol Tow	Lab Matrix S S S S S
Site=Control Tower Method=Organics Analyte=Endosulf	Analytical Method SW8080 SW8080 SW8080 SW8080 SW8080 SW8080
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Data Source 1995 1995 1995 1995 1995

9 || |**X**

9 = **2**

a. Random uniform numbers, between zero and the lesser of the minimum result a

a. Random uniform numbers, between zero and the lesser of the minimum result a

36	! ! ! !	Lab Footnote	•	
	rene	Units	mg/kg mg/kg mg/kg mg/kg mg/kg	
±	yte=Fluo	DL	0.0223 0.0217 0.0241 0.0220 0.0221 0.0249	
sessmer a	s Anal	Flag	22222	
Galena Baseline Risk Assessment Surface Soil Data	od=Organic	Est. Conc (a)	0.018613 0.001397 0.006478 0.007075 0.000757 N = 6	
a Baseli Surfac	wer Meth	Result		
Galen	ntrol To	Lab Matrix		
	Site=Control Tower Method=Organics Analyte=Fluorene	Analytical Method	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Data Source	1995 1995 1995 1995 1995	
32]]] [] []	Lab s Footnote	3 3	
	dehyde -	Units	mg/kg mg/kg mg/kg mg/kg mg/kg	
÷	indrin al	DF	.002090 .000409 .000611 .000413 .005590	
sessmer a	alyte=E	Flag	ND ND DET NO DET	
Galena Baseline Risk Assessment Surface Soil Data	rganics An	Est. Conc (a)	.0001464 .0000382 .0002670 .0000874 .0017900 .0032600	
na Baselin Surface	Method=0₁	Result	.000267 .001790 .003260	
Galer	ol Tower	Lab Matrix	~ ~ ~ ~ ~ ~ ~	
	- Site=Control Tower Method=Organics Analyte=Endrin aldehyde	Analytical Method	SW8080 SW8080 SW8080 SW8080 SW8080 SW8080	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Data Source	1995 1995 1995 1995 1995 1995	

----- Site=Control Tower Method=Organics Analyte=Gasoline Range Organics -----Footnote Lab Units mg/kg mg/kg mg/kg mg/kg mg/kg ᆸ Flag 22222 0.94729 0.18088 0.59103 0.36681 0.66854 Est. Conc (a) 9= z Result Lab Matrix S S S S S S Analytical Method AK101 AK101 AK101 AK101 AK101 Data Source 1995 1995 1995 1995 1995 Lab Units Footnote ----- Site=Control Tower Method=Organics Analyte=Ethylbenzene ---mg/kg mg/kg mg/kg mg/kg mg/kg .000653 .000643 .000706 .000644 .000655 ᆸ Flag 22222 .00047934 .00029150 .00059496 .00016764 00004379 Est. Conc (a) 9 = Lab Matrix Result 8 8 8 8 8 8 Analytical Method SW8240 SW8240 SW8240 SW8240 SW8240 SW8240 Data Source 1995 1995 1995 1995 1995

hlor	Units	mg/kg mg/kg mg/kg mg/kg mg/kg
e=Heptac	DL	.001230 .000241 .000267 .000244 .002440
Analyt	Flag	DET DET DET ND ND
l=Organics	Est. Conc (a)	.0011800 .0001980 .0001710 .0000383 .0000472
ver Methoc	Result	.001180 .000198 .000171
ontrol Tow	Lab Matrix	w w w w w
Site=Control Tower Method=Organics Analyte=Heptachlor	Analytical Method	SW8080 SW8080 SW8080 SW8080 SW8080 SW8080
1 1 1	Data Source	1995 1995 1995 1995 1995
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Lab Footnote	
anthene	Units	mg/kg mg/kg mg/kg mg/kg mg/kg
te=Fluora	DI	0.0210 0.0205 0.0228 0.0207 0.0209 0.0235
Analy	Flag	DET ND ND ND ND
=Organics	Est. Conc (a)	0.20100 0.01106 0.00103 0.00017 0.01303
r Method	Result	0.201
trol Towe	Lab Matrix	
Site=Control Tower Method=Organics Analyte=Fluoranthene	Analytical Method	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270
	Data Source	1995 1995 1995 1995 1995 1995

Footnote

o PJ

Page 18

a. Random uniform numbers, between zero and the lesser of the minimum result a

9= z

9 #

z

File time stamp: 10/18/95 12:07

File: surface.dat

Random uniform numbers, between zero and the lesser of the minimum result a ъ

Galena Baseline Risk Assessment Surface Soil Data

Source

1995 1995 1995 1995 1995 1995

Galena Baseline Risk Assessment Surface Soil Data

Site=Control Tower Method=Organics Analyte=Hexachlorocyclopentadiene	Est. Data Analytical Lab Conc Source Method Matrix Result (a) Flag DL Units Footnote	1995 SW8270 S . 0.05532 ND 0.190 mg/kg 1995 SW8270 S . 0.18177 ND 0.185 mg/kg 1995 SW8270 S . 0.19007 ND 0.206 mg/kg 1995 SW8270 S . 0.16766 ND 0.187 mg/kg 1995 SW8270 S . 0.14344 ND 0.189 mg/kg 1995 SW8270 S . 0.15549 ND 0.212 mg/kg
Site=Control Tower Method=Organics Analyte=Heptachlor epoxide	Est. Analytical Lab Conc Conc Lab [Method Matrix Result (a) Flag DL Units Footnote Sc	SW8080 S
Si	e Ana	

Site=Control Tower Method=Organics Analyte=Hexachloroethane ------------ Site=Control Tower Method=Organics Analyte=Hexachlorobenzene

Footnote Lab ᆸ Flag Conc (a) Lab Analytical Data Est. Conc (a)

Result Matrix SW8270 SW8270 SW8270 SW8270 SW8270 Method Source 1995 1995 1995 1995 1995 1995 Footnote Units mg/kg mg/kg mg/kg mg/kg mg/kg 0.0152 0.0148 0.0164 0.0150 0.0151 占 Flag 22222 0.001047 0.008912 0.011381 0.008246 0.000218 .005877 Result Matrix Analytical Method SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 Source 1995 1995 1995 1995 1995 1995

mg/kg mg/kg

0.0132 0.0129 0.0143 0.0130 0.0131

22222

0.004304 0.005942 0.013552 0.006960 0.004364 0.010150

9 = **2**

mg/kg mg/kg mg/kg mg/kg

> 9 n

----- Site=Control Tower Method=Organics Analyte=Indeno(1,2,3-cd)pyrene -----Footnote Units ᆸ Flag Est. Conc (a) Lab Data ----- Site=Control Tower Method=Organics Analyte=Hexachlorobutadiene Est. Conc Analytical Method

0.068Result Matrix S S S S S S Analytical Method SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 1995 1995 1995 1995 1995 Footnote Units mg/kg mg/kg mg/kg mg/kg mg/kg 0.0155 0.0151 0.0167 0.0152 0.0154 ᆸ Flag 22222 0.005461 0.004953 0.009424 0.011435 0.003313 0.000871 **(a)** Result Matrix SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 Source 1995 1995 1995 1995 1995

×

mg/kg mg/kg mg/kg mg/kg mg/kg

0.0244 0.0238 0.0264 0.0241 0.0243

F8888

0.004333 0.008825 0.014615 0.001737 0.000171

9

0.068000

9 =

Random uniform numbers, between zero and the lesser of the minimum result a a.

Random uniform numbers, between zero and the lesser of the minimum result a . 10

40	nine	Lab Footnote							
,	propylam	Units	ma/ka	ma/kn	ma/ka	ma/ka	ma/ka	mg/kg	
+2	trosodi	DL	.00885	00863	.00958	.00872	00879	.00989	
sessmen	te=N-Ni	Flag DL	CN	S	2	2	S	2	
Galena Baseline Risk Assessment Surface Soil Data	nics Analy	Est. Conc (a)	.0067273	0047628	.0017139	.0048403	.0086213	.0047228	9 = N
a Baseli Surfac	hod=Orga	Result	•				•		
Galen	ower Met	Lab Matrix	S	S	S	S	S	S	
	Site=Control Tower Method=Organics Analyte=N-Nitrosodipropylamine	Analytical Method	SW8270	SW8270	SW8270	· SW8270	SW8270	SW8270	
	Si	Data Source	1995	1995	1995	1995	1995	1995	
. 39		Lab Footnote				•			
. 39	orone	Lab Units Footnote	mg/kg·	mg/kg	mg/kg	mg/kg .	mg/kg	mg/kg	
	te=Isophorone	DL Unit				0.0127 mg/kg ·			
	: Analyte=Isophorone	Unit	ND 0.0129	ND 0.0126	ND 0.0140	· ND 0.0127	0.0128	0.0144	
	d=Organics Analyte=Isophorone	DL Unit	ND 0.0129	ND 0.0126	0.0140	· ND 0.0127	ND 0.0128	0.0144	9 = 2
	er Method=Organics Analyte=Isophorone	Est. Conc lesult (a) Flag DL Unit	ND 0.0129	ND 0.0126	ND 0.0140	· ND 0.0127	ND 0.0128	ND 0.0144	9 1 2
Galena Baseline Risk Assessment Surface Soil Data	trol Tower Method=Organics Analyte=Isophorone	Est. Conc lesult (a) Flag DL Unit	ND 0.0129	ND 0.0126	ND 0.0140	· ND 0.0127	ND 0.0128	ND 0.0144	9 1 2
	Site=Control Tower Method=Organics Analyte=Isophorone	Est. Conc (a) Flag DL Unit	S 0.002802 ND 0.0129	S . 0.005821 ND 0.0126	S . 0.000685 ND 0.0140	· ND 0.0127	S . 0.003770 ND 0.0128	S 0.011014 ND 0.0144	9 = 2

Footnote Lab Site=Control Tower Method=Organics Analyte=Naphthalene ---Units mg/kg mg/kg mg/kg mg/kg mg/kg Site=Control Tower Method=Organics Analyte=Nitrohenzene 0.0206 0.0201 0.0223 0.0203 0.0205 占 Flag 22222 0.014351 0.005457 0.001335 0.015007 0.022566 0.002243 Est. Conc (a) 9 11 **2** Result Lab Matrix **~~~~~~~** Analytical Method SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 Data Source 1995 1995 1995 1995 1995 Site=Control Tower Method=Organics Analyte=Methylene chloride ------Footnote Lab Site=Control Tower Method=Organics Analyte=Methoxychlor Units mg/kg mg/kg mg/kg mg/kg mg/kg 0.02850 0.00559 0.00619 0.00565 0.05660 님 Flag 999999 0.018805 0.004283 0.005971 0.004477 0.023330 Est. Conc (a) ø Ħ z Result Lab Matrix S S S S S S Analytical Method SW8080 SW8080 SW8080 SW8080 SW8080 SW8080 1995 1995 1995 1995 1995 1995

! ! ! ! !	Lab Footnote		
- auazua	Units	mg/kg mg/kg mg/kg mg/kg mg/kg	
HILLODI	10	0.0108 0.0105 0.0117 0.0106 0.0107	
HIId I y LE	Flag	222222	
-Organics	Est. Conc (a)	.0037855 .0080255 .0094087 .0056481 .0076377	9 = 1
יו וופנווסמ-	Result		~
, n	Lab Matrix	w w w w w	
sice-control tower Mechon-Ofganics Analyte-Microbenzene	Analytical Method	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270	
	Data Source	1995 1995 1995 1995 1995 1995	
טַ	Lab Footnote	83 83 83	
	Units	mg/kg mg/kg mg/kg mg/kg mg/kg	
פוופ ולווים	10	.000899 .000886 .000973 .000888 .000902	
2	Flag	DET	
2011	Est. Conc (a)	.000522 .000685 .001460 .000814 .000975	9 = 8
	Result	.000522 .000685 .001460 .000814 .000975	
	Lab Matrix	, , , ,	
	Analytical Method	SW8240 SW8240 SW8240 SW8240 SW8240 SW8240	
	Data Source	1995 1995 1995 1995 1995	

Random uniform numbers, between zero and the lesser of the minimum result a a.

Random uniform numbers, between zero and the lesser of the minimum result a

a.

10/18/95 12:08 Current

File time stamp: 10/18/95 12:07

File: surface.dat

Galena Baseline Risk Assessment Surface Soil Data

! ! ! ! !	Lab Footnote				Lab Footnote				Lab Footnote	
1242	Units	mg/kg mg/kg mg/kg mg/kg mg/kg		1248	Units	mg/kg mg/kg mg/kg mg/kg mg/kg		1254	Units	mg/kg mg/kg mg/kg mg/kg mg/kg
lyte=PCB-	10	0.0626 0.0123 0.0136 0.0124 0.1240		.lyte=PCB-	10	0.02180 0.00426 0.00472 0.00431 0.04320		lyte=PCB-	טר	0.01610 0.00315 0.00348 0.00318 0.03190
cs Ana	Flag	22222		cs Ana	Flag	22222		cs Ana	Flag	22222
Site=Control Tower Method=Organics Analyte=PCB-1242	Est. Conc (a)	0.061686 0.009752 0.003286 0.002646 0.045884	9 = V	Site=Control Tower Method=Organics Analyte=PCB-1248	Est. Conc (a)	0.016527 0.002162 0.004588 0.000087 0.028137	9 = ×	Site=Control Tower Method=Organics Analyte=PCB-1254	Est. Conc (a)	0.003864 0.000957 0.003257 0.001543 0.005846
ower Met	Result			ower Met	Result			ower Met	Result	
ontrol I	Lab Matrix	~ ~ ~ ~ ~ ~ ~ ~ ~		ontrol T	Lab Matrix	w w w w w		ontrol T	Lab Matrix	w w w w w
Site=C	Analytical Method	SW8080 SW8080 SW8080 SW8080 SW8080 SW8080		Site=C	Analytical Method	SV8080 SV8080 SV8080 SV8080 SV8080 SV8080		Site=C	Analytical Method	SW8080 SW8080 SW8080 SW8080 SW8080 SW8080
	Data Source	1995 1995 1995 1995 1995		1 1 1 1 1 1	Data Source	1995 1995 1995 1995 1995 1995		1	Data Source	1995 1995 1995 1995 1995 1995
	Lab Footnote	·			Lab Footnote			1	Lab Footnote	
-1016	Lab Units Footnote	mg/kg mg/kg mg/kg · mg/kg		-1221	Lab Units Footnote	mg/kg mg/kg mg/kg mg/kg mg/kg		-1232	Lab Units Footnote	mg/kg mg/kg mg/kg mg/kg mg/kg
lyte≖PC8-1016	ts	0.01270 mg/kg 0.00249 mg/kg 0.00276 mg/kg 0.00252 mg/kg 0.02530 mg/kg 0.01420 mg/kg		lyte=PCB-1221	ts	0.01210 mg/kg 0.00237 mg/kg 0.00262 mg/kg 0.00240 mg/kg 0.02400 mg/kg 0.01350 mg/kg		lyte=PCB-1232	t S	0.00913 mg/kg 0.00179 mg/kg 0.00198 mg/kg 0.00181 mg/kg 0.01810 mg/kg
cs Analyte=PCB-1016	Units			cs Analyte=PCB-1221	Units			cs Analyte=PCB-1232	Units	/gm /gm /gm /gm /gm /gm
thod=Organics Analyte=PCB-1016	OL Units	0.01270 0.00249 0.00276 0.00252 0.02530	N = 6	thod=Organics Analyte=PCB-1221	DL Units	0.01210 0.00237 0.00262 0.00240 0.02400		thod=Organics Analyte=PCB-1232	OL Units	0.00913 mg/ 0.00179 mg/ 0.00198 mg/ 0.00181 mg/ 0.01810 mg/ 0.01020 mg/
Tower Method=Organics Analyte≖PCB-1016	Flag OL Units	ND 0.01270 ND 0.00249 ND 0.00276 ND 0.00552 ND 0.02530 ND 0.01420	ij	Tower Method=Organics Analyte=PCB-1221	Flag DL Units	ND 0.01210 ND 0.00237 ND 0.00262 ND 0.00240 ND 0.02400 ND 0.02400	U	lower Method=Organics Analyte=PCB-1232	Flag DL Units	ND 0.00913 mg/ND 0.00179 mg/ND 0.00198 mg/ND 0.00198 mg/ND 0.00181 mg/ND 0.01810 mg/ND 0.01020 mg/ND
Control Tower Method=Organics Analyte=PCB-1016	Est. Conc (a) Flag DL Units	ND 0.01270 ND 0.00249 ND 0.00276 ND 0.00552 ND 0.02530 ND 0.01420	ij	Control Tower Method=Organics Analyte=PCB-1221	Est. Conc (a) Flag DL Units	ND 0.01210 ND 0.00237 ND 0.00262 ND 0.00240 ND 0.02400 ND 0.02400	U	Control Tower Method=Organics Analyte=PCB-1232	Est. Conc (a) Flag DL Units	ND 0.00913 mg/ND 0.00179 mg/ND 0.00198 mg/ND 0.00198 mg/ND 0.00181 mg/ND 0.01810 mg/ND 0.01020 mg/ND
Site=Control Tower Method=Organics Analyte=PCB-1016	Est. Conc Result (a) Flag DL Units		ij	Site=Control Tower Method=Organics Analyte=PCB-1221	Est. Conc Result (a) Flag DL Units	. 0.007644 ND 0.01210 . 0.000725 ND 0.00237 . 0.002318 ND 0.00262 . 0.000418 ND 0.00240 . 0.021550 ND 0.02400 . 0.004921 ND 0.01350	U	Site=Control Tower Method=Organics Analyte=PCB-1232	Est. Conc Result (a) Flag DL Units	. 0.007428 ND 0.00913 mg/ . 0.001633 ND 0.00179 mg/ . 0.001772 ND 0.00198 mg/ . 0.001133 ND 0.00181 mg/ . 0.011320 ND 0.01810 mg/ . 0.007270 ND 0.01020 mg/

9 = **2**

9 = N

Random uniform numbers, between zero and the lesser of the minimum result a a,

a. Random uniform numbers, between zero and the lesser of the minimum result a

Soil Data	Site=Control Tower Method=Organics Analyte=Phenol	Est. Conc (a) Flag DL Units Footnote		9 11	Site=Control Tower Method=Organics Analyte=Pyrene	Est. Conc (a) Flag DL Units Footnote	0.18400 DET 0.0258 mg/kg 0.02057 ND 0.0251 mg/kg 0.01941 ND 0.0279 mg/kg 0.02036 ND 0.0254 mg/kg 0.02226 ND 0.0256 mg/kg 0.01641 ND 0.0288 mg/kg	9	Site=Control Tower Method=Organics Analyte=Styrene	Est. Conc (a) Flag DL Units Footnote	.00061761 ND .000871 mg/kg .00058464 ND .000858 mg/kg .00042774 ND .000842 mg/kg .00037460 ND .000860 mg/kg .00027768 ND .000874 mg/kg X
Surface	Control Tower Metho	Lab Matrix Result	· · · · · · ·	~	Control Tower Metho	Lab Matrix Result	0.184 0.184		ntrol Tower Method	Lab Matrix Result	ννννν
	Site=(Analytical Method	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270		Site=(Analy Met	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270		Site=Co	Analytical Method	SW8240 SW8240 SW8240 SW8240 SW8240 SW8240
	1 1 1	Data Source	1995 1995 1995 1995 1995			Data Source	1995 1995 1995 1995 1995 1995		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. Data Source	1995 1995 1995 1995 1995 1995
		Lab Footnote				Lab Footnote			 	Lab Footnote	
	-1260	Units	mg/kg mg/kg mg/kg mg/kg mg/kg		rophenc	Units	mg/kg mg/kg mg/kg mg/kg mg/kg		threne	Units	mg/kg mg/kg mg/kg mg/kg mg/kg
	alyte=PCB-	DF.	0.01820 0.00357 0.00395 0.00361 0.03610		Pentachlo	0	. 00603 . 00588 . 00652 . 00594 . 00599		te=Phenan	DI	0.0252 0.0245 0.0272 0.0278 0.0248 0.0250
} }	ics Ana	Flag	222222		ıalyte=	Flag			Analy	Flag	N N N N N N N N N N N N N N N N N N N
	Site=Control Tower Method=Organics Analyte=PCB-1260	Est. Conc (a)	0.008625 0.003171 0.000183 0.002840 0.028072 0.016058	9 = N	rganics Ar	Est. Conc (a)	.0041016 .0041866 .0017139 .0032182 .0034044	9 = X	Site=Control Tower Method=Organics Analyte=Phenanthre	Est. Conc (a)	0.12700 0.02151 0.00455 0.00429 0.01993 0.00421
	Tower Met	Result			Method=0	Result			er Methoc	Result	0.127
	Control	Lab Matrix	ა ა ა ა ა ა ა		l Tower	Lab Matrix	w w w w w		trol Tow	Lab Matrix	w w w w w
	Site=(Analytical Method	SW8080 SW8080 SW8080 SW8080 SW8080 SW8080		Site=Control Tower Method=Organics Analyte=Pentachlorophenol	Analytical Method	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270	-	Site=Con	Analytical Method	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270
		Data Source	1995 1995 1995 1995 1995 1995		 	Data Source	1995 1995 1995 1995 1995 1995			Data	1995 1995 1995 1995 1995 1995

File: surface.dat

a.

9 ≖ N

9 = N

Random uniform numbers, between zero and the lesser of the minimum result a a.

Random uniform numbers, between zero and the lesser of the minimum result a

Galena Baseline Risk Assessment Surface Soil Data

Data Source

1995 1995 1995 1995 1995 1995

	_
45	
7	

Site=Control	Tower	Method=0	ite=Control Tower Method=Organics Analyte=Tetrachloroethene	lyte≕Te	trachlo	roethene		Site	Site=Control Tower Method=Organics Analyte=Tribromomethane(Bromoform)	wer Meth	od=Organi	cs Analyte=	Tribro	momethan	e(Bromof	orm)
Analytical Method	Lab Matrix	Result	Est. Conc (a)	Flag	DF	Units	Lab Footnote	Data Source	Analytical Method	Lab Matrix	Result	Est. Conc (a)	Flag	DL	Units	Lab : Footnote
SW8240 SW8240 SW8240 SW8240 SW8240 SW8240	w w w w w	• • • • • • •	.00005291 .00000610 .00069062 .00058522 .00063616	22222	.00103 .00101 .00111 .00101 .00103	mg/kg mg/kg mg/kg mg/kg mg/kg	×	1995 1995 1995 1995 1995	SW8240 SW8240 SW8240 SW8240 SW8240 SW8240	νννννν	• • • • •	.00002143 .00038401 .00048015 .00032689 .00014373	22222	.000626 .000616 .000677 .000618 .000628	mg/kg mg/kg mg/kg mg/kg mg/kg	. ×
			9 = N				,				_	9 = N	•			

	Lab Footnote		
ethene	Units	mg/kg mg/kg mg/kg mg/kg mg/kg	etate
Trichloro	DL	.000737 .000737 .000809 .000739 .000750	=Vinyl ac
ıa]yte≕	Flag	22222	nalyte:
Site=Control Tower Method=Organics Analyte=Trichloroethene	Est. Conc (a)	.00003347 .00019654 .00031253 .00061989 .00028075 .00014130	Site=Control Tower Method=Organics Analyte=Vinyl acetate
Method≕	Result		r Method
ol Tower	Lab Matrix	w w w w w	rol Towe
- Site=Contr	Analytical Method	SW8240 SW8240 SW8240 SW8240 SW8240 SW8240 SW8240	Site=Cont
1 1 1	Data Source	1995 1995 1995 1995 1995 1995	1
1			
;	Lab Footnote		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ne	Lab Units Footnote	ng/kg ng/kg ng/kg mg/kg mg/kg	ene
		.000745 mg/kg .000734 mg/kg .000806 mg/kg .000735 mg/kg .000747 mg/kg	te=Toxaphene
			. Analyte=Toxaphene
	OL Units	.000745 .000734 .000806 .000735 .000747	od=Organics Analyte=Toxaphene
	Est. Conc Result (a) Flag DL Units	0395 ND .000745 2897 ND .000734 6119 ND .000806 0157 ND .000735 5807 ND .000747 1419 ND .000834	wer Method=Organics Analyte=Toxaphene
	Est. Conc (a) Flag DL Units	0395 ND .000745 2897 ND .000734 6119 ND .000806 0157 ND .000735 5807 ND .000747 1419 ND .000834	ntrol Tower Method=Organics Analyte=Toxaphene
Site=Control Tower Method=Organics Analyte=Toluene	Est. Conc Result (a) Flag DL Units	0395 ND .000745 2897 ND .000734 6119 ND .000806 0157 ND .000735 5807 ND .000747 1419 ND .000834	Site=Control Tower Method=Organics Analyte=Toxaphene

	Lab Footnote		
3	Units	mg/kg mg/kg mg/kg mg/kg mg/kg	
	0 F	000866 000853 000937 000855 000869	
22 (Flag	222222	
	Est. Conc (a)	.00021282 .00066144 .00012822 .00016602 .00011078	9 = N
	Result		
	Lab Matrix	w w w w w	
	Analytical Method	SW8240 SW8240 SW8240 SW8240 SW8240 SW8240	
	Data Source	1995 1995 1995 1995 1995 1995	
	Lab Footnote		
	Units	mg/kg mg/kg mg/kg mg/kg mg/kg	
•	DL	0.02230 0.00437 0.00483 0.00441 0.04420	
	Flag	22222	
,	Est. Conc (a)	0.019936 0.001933 0.002524 0.000301 0.026067	9 = N
	Result	• • • • •	
	čř		
	Lab Matrix		
	<u>.</u>	SW8080 SW8080 SW8080 SW8080 SW8080 SW8080	

a. Random uniform numbers, between zero and the lesser of the minimum result ${\bf a}$

a a. Random uniform numbers, between zero and the lesser of the minimum result a

48	e	Lab Footnote		r Lab
	methar			ether Lz
Galena Baseline Risk Assessment Surface Soil Data	thoxy)	Units	mg/kg mg/kg mg/kg mg/kg mg/kg	ethyl)
	-Chloroe	. _古	0.0140 0.0137 0.0152 0.0138 0.0139	2-Chlorc
	=bis(2	Flag	22222	e=bis(
	s Analyte	Est. Conc (a)	0.012802 0.013027 0.002113 0.000453 0.011439 0.008129	ics Analyt Est. Conc
	l≕Organic	Result		od=Organi
	er Methoo	Lab Matrix	w w w w w	wer Meth
	Site=Control Tower Method=Organics Analyte=bis(2-Chloroethoxy)methane	Analytical Method	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270	Site=Control Tower Method=Organics Analyte=bis(2-Chloroethyl)ether Est. Data Analytical Lab Conc
	Site	Data Source	1995 1995 1995 1995 1995	Sit Data
47	! ! !	Lab Footnote		
	- بو			;
	loric	Units	mg/kg mg/kg mg/kg mg/kg mg/kg	2H8
#2	∙Vinyl chloria	DL Units	.000722 mg/kg .000711 mg/kg .000781 mg/kg .000713 mg/kg .000724 mg/kg	.e=a1pha-BHC
sessment a	nalyte=Vinyl chloric			Analyte=alpha-BHC
ine Risk Assessment se Soil Data	=Organics Analyte=Vinyl chloric			od=Organics Analyte=alpha-BHC Est. Conc
ana Baseline Risk Assessment Surface Soil Data	r Method=Organics Analyte=Vinyl chloric	Est. Conc (a) Flag DL U	ND . 000722 II ND . 000711 I ND . 000781 I ND . 000781 I ND . 000773 ND . 000808 I ND	mer Method=Organics Analyte=alpha-BHC Est. Conc
Galena Baseline Risk Assessment Surface Soil Data	trol Tower Method=Organics Analyte=Vinyl chloric	Est. Lab Conc Matrix Result (a) Flag DL U	ND . 000722 II ND . 000711 I ND . 000781 I ND . 000781 I ND . 000773 ND . 000808 I ND	ontrol Tower Method=Organics Analyte=alpha-BHC Est. Conc
Galena Baseline Risk Assessment Surface Soil Data	Site=Control Tower Method=Organics Analyte=Vinyl chloride	Est. Conc (a) Flag DL U	ND . 000722 II ND . 000711 I ND . 000781 I ND . 000781 I ND . 000773 ND . 000808 I ND	Tower Method≔

--- Site=Control Tower Method=Organics Analyte=bis(2-Chloroisopropyl)ether ----Units Footnote mg/kg mg/kg 0.0140 0.0137 0.0152 0.0138 0.0139 ᆸ Flag 22222 0.007683 0.013134 0.011587 0.009666 0.007663 (a) 9 = Matrix Result S S S S S S Method SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 Source 1995 1995 1995 1995 1995 Units Footnote mg/kg mg/kg mg/kg mg/kg mg/kg --- Site=Control Tower Method=Organics Analyte=beta-BHC .000439 .000485 .000443 .004440 002240 占 Flag 22222 .0004272 .0000185 .0003751 .0070300 0007933 (a) 9 = Matrix Result .00703 S S S S S Method SW8080 SW8080 SW8080 SW8080 SW8080 SW8080 Source 1995 1995 1995 1995 1995

بتو							
Footnote							
Units	mq/kg	mg/kg	ma/ka	mg/kg	mg/kg	mg/kg	
DF	0.0146	0.0142	0.0158	0.0144	0.0145	0.0163	
Flag	2	운	2	2	S	욷	
(a)	0.013864	0.002714	0.005470	0.009944	0.005891	0.000566	9 2
Result		•		•		٠	
Matrix	S	S	S	S	S	S	
Method	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	
Source	1995	1995	1995	1995	1995	1995	
Footnote					2		
Units Footnote	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg KJ	mg/kg	
_					.005320 mg/kg KJ		
_	.001770	.000347	. 000383	.000350		.001980	
OL Units	.001770	ND .000347	ND .000383	ND .000350	DET .005320	ND .001980	9 II &
Flag OL Units	ND .001770	ND .000347	ND .000383	.0000094 ND .000350	DET .005320	ND .001980	9 2
: (a) Flag DL Units I	ND .001770	ND .000347	ND .000383	.0000094 ND .000350	.0036100 DET .005320	ND .001980	9 # 22
Result (a) Flag OL Units	ND .001770	S	S	S	S .00361 .0036100 DET .005320	S	9 11 22
	Method Matrix Result (a) Flag DL	Method Matrix Result (a) Flag DL SW8270 S 0.013864 ND 0.0146	Method Matrix Result (a) Flag DL SW8270 S . 0.013864 ND 0.0146 SW8270 S . 0.002714 ND 0.0142	Method Matrix Result (a) Flag DL SW8270 S . 0.013864 ND 0.0146 SW8270 S . 0.002714 ND 0.0142 SW8270 S . 0.005470 ND 0.0158	Method Matrix Result (a) Flag DL SW8270 S 0.013864 ND 0.0146 SW8270 S 0.002714 ND 0.0142 SW8270 S 0.005470 ND 0.0158 SW8270 S 0.009944 ND 0.0148	Method Matrix Result (a) Flag DL SW8270 S 0.013864 ND 0.0146 SW8270 S 0.002714 ND 0.0142 SW8270 S 0.005470 ND 0.0158 SW8270 S 0.009944 ND 0.0144 SW8270 S 0.005891 ND 0.0144	Result (a) Flag DL 0.013864 ND 0.0146 0.002714 ND 0.0158 0.005470 ND 0.0158 0.009944 ND 0.0147 0.005891 ND 0.0145 0.000566 ND 0.0163

Random uniform numbers, between zero and the lesser of the minimum result a

а Э

File time stamp: 10/18/95 12:07

File: surface.dat

a. Random uniform numbers, between zero and the lesser of the minimum result a

Site=Control Tower Method=Organics Analyte=delta-BHC	Est. Analytical Lab Conc e Method Matrix Result (a) Flag DL	1995 SW8080 S . 0.000026 ND .001140 mg/kg	SW8080 S 0.00104 0.001040 DET .000247	SW8080 S 0.000026 ND .000184	SW8080 S . 0.000659 ND .002260	SW8080 S 0.01030 0.010300 DET .001270	. 9 1 2
Site=Control Tower Method=Organics Analyte=bis(2-Ethylhexyl)phthalate	Est. Analytical Lab Conc Method Matrix Result (a) Flag DL	1995 SW8270 S 0.014873 NO 0.0238 mg/kg	SW8270 S 0.017269 ND 0.0257 SW8270 S 0.001904 ND 0.0257	SW8270 S . 0.008975 ND 0.0234	SW8270 S 0.0938 0.093800 DET 0.0236	SW8270 S . 0.024877 ND 0.0265	9 1 2

------ Site=Control Tower Method=Organics Analyte=gamma-BHC(Lindane) ----- Site=Control Tower Method=Organics Analyte=cis-1,2-Dichloroethene -----

Data Malytical Lab Conc. Source Hethod Matrix Result Lab Conc. Source Data Method Matrix Result Analytical Lab Conc. Source Hethod Matrix Result Flag ND .00082123 ND .000884 Mg/kg 1995 SW8240 S 00001777 ND .0008128 NG .0004229 ND .000886 Mg/kg 1995 SW8240 S 000026017 ND .000886 Mg/kg 1995 SW8240 S 000038768 ND .00038768 ND .000038768 ND .00038768 ND .00038769 ND .00038768 ND .00038	1.1.	
Analytical Lab Matrix Result Conc Conc Conc SW8240 Lab Conc Sw8240 Data Matrix Result Analytical Lab Conc Conc Sw8240 Lab Conc Source Method Matrix Result Est. SW8240 S 000081777 ND SW8240 S 00001777 ND SW8240 S 00001777 ND SW8240 S 000042290 ND SW8240 S 000042290 ND SW8240 S 000026017 ND SW8240 S 000026017 ND SW8240 S 000038768 ND SW8240 S 00001033 ND SW8240 S 000038768 ND SW8240 S 0000038768 ND SW8240 S 000038768 ND SW8240 S	Units	mg/kg mg/kg mg/kg mg/kg mg/kg
Analytical Lab Method Lab Matrix Conc Conc Conc Conc Conc Method Lab Data Matrix Analytical Lab Matrix Lab Conc Conc Method Lab Data Matrix Result (a) Flag DL Units Footnote Lab Data Method Matrix Result (a) Flag DL Units Footnote Lab Data Method Matrix Result (a) Flag DL Units Footnote Lab Data Method Matrix Result (a) Flag DL Units Footnote Lab Data Method Matrix Result (a) Flag DL Units Footnote Lab Data Method Matrix Result (a) Flag DL Units Flag DL Units Flag DL Units Flag DL In Matrix Matrix Result (a) Flag DL Units Flag DL In Matrix Matrix Result (a) Flag DL In Matrix Flag DL In Matrix Matrix Result (a) Flag DL In Matrix Flag DL In Matrix Matrix Result (a) Flag DL In Matrix Flag DL In Matrix Matrix Result (a) Flag DL In Matrix Flag DL In Matrix Matrix Result (a) Flag DL In Matrix Flag DL In Matrix Flag DL In Matrix Matrix Flag DL In Ma	ᆸ	.000705 .000400 .000442 .000404 .004050
Analytical Lab Method Matrix Result Conc Conc Conc Conc Conc Conc Method Matrix Lab Data Method Matrix Data Method Matrix Analytical Lab Method Matrix Lab Method Matrix Result Result Conc Conc Conc Conc Method Matrix Matrix Result Matrix Result Method Matrix Matrix Result Matrix Result Matrix Result Method Matrix Matrix Result Method Matrix Result Method Matrix Matrix Result Method Method Method Method Method Method Method Method Method Signed No.0008 Signed No.0008 No.0008 No.0008 No.0008 No.0008 No.0008 No.0008 No.0009 No.0008 No.	Flag	ND ND DET
Analytical Lab Method Lab Conc Method Lab Data Method Analytical Lab Method Lab Method Data Method Analytical Lab Method Lab Method Metrix SW8240 S . 00082123 ND .000884 mg/kg 1995 SW8080 S SW8240 S . 00001777 ND .000886 mg/kg 1995 SW8080 S SW8240 S . 00042290 ND .000986 mg/kg 1995 SW8080 S SW8240 S . 00026017 ND .000986 mg/kg 1995 SW8080 S SW8240 S . 00026017 ND .000900 mg/kg 1995 SW8080 S SW8240 S . 00026017 ND .000900 mg/kg 1995 SW8080 S SW8240 S . 00026017 ND .000900 mg/kg S	Est. Conc (a)	.0002512 .0007800 .0000432 .0001033 .0006366
Analytical Matrix Lab Conc Conc Matrix Flag Conc Conc Conc Conc Conc Method Lab Data Malytical Method Data Malytical Method Method Matrix Method Matrix Method Matrix Method Suw240 Source Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method M	Result	.00078
Analytical Lab Method Lab Conc Matrix Conc Conc Conc Conc Conc Conc Conc Conc	Lab Matrix	w w w w w
Analytical Lab Conc Lab Conc SW8240 S00030162 ND .000884 mg/kg SW8240 S00001777 ND .000886 mg/kg SW8240 S0001777 ND .000886 mg/kg SW8240 S0001777 ND .000886 mg/kg SW8240 S00025017 ND .000886 mg/kg SW8240 S00025017 ND .000900 mg/kg SW8240 S00038768 ND .001000 mg/kg	Analytical Method	SW8080 SW8080 SW8080 SW8080 SW8080 SW8080
Analytical Lab Conc Matrix Result (a) Flag DL Units F SW8240 S00030162 ND .000897 mg/kg SW8240 S00001777 ND .000884 mg/kg SW8240 S0001777 ND .000886 mg/kg SW8240 S0001777 ND .000886 mg/kg SW8240 S00038768 ND .000900 mg/kg SW8240 S00038768 ND .001000 mg/kg	Data Source	1995 1995 1995 1995 1995
Analytical Lab Conc Conc Matrix Result (a) Flag DL SW8240 S00030162 ND .000897 SW8240 S00001777 ND .000884 SW8240 S00042290 ND .000886 SW8240 S00026017 ND .000900 SW8240 S00038768 ND .001000 S	Lab Footnote	
Analytical Lab Conc Method Matrix Result (a) Flag SW8240 S00082123 ND . SW8240 S00001777 ND . SW8240 S00001777 ND . SW8240 S00042290 ND . SW8240 S00042290 ND . SW8240 S00038768 ND .	Units	mg/kg mg/kg mg/kg mg/kg mg/kg
Analytical Lab Conc Method Matrix Result (a) F1 SW8240 S00030162 P SW8240 S00082123 P SW8240 S00001777 P SW8240 S00042290 P SW8240 S00026017 P SW8240 S00038768 P	DF.	.000897 .000884 .000971 .000886 .000900
Analytical Lab Method Matrix Result SW8240 S SW8240 S SW8240 S SW8240 S SW8240 S SW8240 S	Flag	22222
Analytical Lab Method Matrix F SW8240 S SW8240 S SW8240 S SW8240 S SW8240 S SW8240 S SW8240 S	Est. Conc (a)	.00030162 .00082123 .00001777 .00042290 .00026017
Analytical Method P SW8240 SW8240 SW8240 SW8240 SW8240 SW8240	Result	
•	Lab Matrix	~ ~ ~ ~ ~ ~ ~ ~ ~
Data Source 1995 1995 1995 1995 1995	Analytical Method	SW8240 SW8240 SW8240 SW8240 SW8240 SW8240
	Data Source	1995 1995 1995 1995 1995

Lab Footnote

------ Site=Control Tower Method=Organics Analyte=m&p-Xylenes ----------- Site=Control Tower Method=Organics Analyte=cis-1,3-Dichloropropene -----

9 = N

Lab Footnote	×
Units	mg/kg mg/kg mg/kg mg/kg mg/kg
10	.00154 .00152 .00167 .00152 .00155
Flag	222222
Est. Conc (a)	.0001825 .0003620 .0011428 .0013163 .0005582
Result	
Lab Matrix	w w w w w
Analytical Method	SW8240 SW8240 SW8240 SW8240 SW8240 SW8240 SW8240
Data Source	1995 1995 1995 1995 1995
Lab Jnits Footnote	ng/kg ng/kg ng/kg ng/kg ng/kg
Ę	
10	.000640 .000633 .000632 .000632 .000642
Flag	22222
Est. Conc (a)	00028478 00004907 00040122 00061629 00042942
Result	
Lab Matrix	ωωωωωω
_	SW8240 S SW8240 S SW8240 S SW8240 S SW8240 S SW8240 S

9 = N

9 = N

a. Random uniform numbers, between zero and the lesser of the minimum result a

a. Random uniform numbers, between zero and the lesser of the minimum result a

Galena Baseline Risk Assessment Surface Soil Data

	Lab Footnote	S	
Lead	Units	mg/kg mg/kg mg/kg mg/kg	
Analyte=	10	1.380 0.288 0.754 0.440	
rganics	Flag	0ET 0ET 0ET 0ET	
hod=Ino	Est. Conc (a)	51.3 12.9 36.1 8.9 N = 4	
unway Met!	Result	51.3 12.9 36.1 8.9	
Site=Southeast Runway Method=Inorganics Analyte=Lead	Lab Matrix	νννν	
Site=So	Analytical Method	SW7421 SW7421 SW7421 SW7421	
!	Data Source	1995 1995 1995 1995	
	Lab Footnote	×	
ne	Units	mg/kg mg/kg mg/kg mg/kg mg/kg	
a)	5		
∕te=o-Xyle	DL Un	.000689 mg .000756 mg .000756 mg .000702 mg .000702 mg	
s Analyte=o-Xyle	Flag DL Un		
od=Organics Analyte=o-Xyle	DF.	.000699 .000689 .000756 .000690 .000702	9
ower Method=Organics Analyte=o-Xyle	Flag DL	ND . 000699 ND . 000689 ND . 000756 ND . 000702 ND . 000702 ND . 0007083	9 #
ontrol Tower Method=Organics Analyte=o-Xyle	Est. Lab Conc Matrix Result (a) Flag DL	ND . 000699 ND . 000689 ND . 000756 ND . 000702 ND . 000702 ND . 0007083	99 Z
Site=Control Tower Method=Organics Analyte=o-Xyler	Est. Conc Result (a) Flag DL	ND . 000699 ND . 000689 ND . 000756 ND . 000702 ND . 000702 ND . 0007083	9 " ~

----- Site=Southeast Runway Method=Organics Analyte=1,1,1-Trichloroethane -----

Est.	Analytical Lab Method Matrix Result (a) Flaq DL Units Footnote		S00010617 ND .000833	S	SW8240 S	S00004724 ND .001040		N = 4			Site=Southeast Runway Method=Organics Analyte=1,1,2,2-Tetrachloroethane	Est	Analytical Lab Conc Conc Lab
÷	Source		1995	1995	1995	1995					Site		Data
Site=Control Tower Method=Organics Analyte=trans-1,2-Dichloroethene		Data Analytical Lab Conc . Lab	Method Matrix Result (a) Flag DL Units		ND .00109 mg	SW8240 S0005700 ND .00107 mg	SW8240 S0000620 ND .00118 mg	SW8240 S0000015 ND .00107	SW8240 S0003512 ND .00109 mg	SW8240 S0010301 ND .00122 mg); =	Site-Pontral Town Mathad-Awareta Anslitentures 1 2.01chlouseness

××

mg/kg mg/kg mg/kg mg/kg

.00119 .00130 .00132

2222

.00065202 .00096726 .00012276 .00007282

SW8240 SW8240 SW8240 SW8240

1995 1995 1995 1995

mg/kg mg/kg mg/kg mg/kg mg/kg
.000603 .000594 .000652 .000595 .000605
22222
.00050643 .00007832 .00026735 .00016639 .00010275
w w w w w
SW8240 SW8240 SW8240 SW8240 SW8240 SW8240 SW8240
1995 1995 1995 1995 1995 1995

9 = N

----- Site=Southeast Runway Method=Organics Analyte=1,1,2-Trichloroethane -----

N = 4

Lab Footnote	××
Units	mg/kg mg/kg mg/kg
DL	.000860 .000938 .000957
Flag	888
Est. Conc (a)	.00006321 .00054474 .00069313
Result	
Lab Matrix	w w w
Analytical Method	SW8240 SW8240 SW8240
Data	1995 1995 1995

Random uniform numbers, between zero and the lesser of the minimum result a ص م

Curren

3: 10/18/95 12:08

File time stamp: 10/18/95 12:07

File: surface.dat

ъ

Page 26

Galena Baseline Risk Assessment Surface Soil Data

Galena Baseline Risk Assessment Surface Soil Data

nzene	Lab s Footnote					
hlorobe	Units	mg/kg	mg/kg	mg/kg	mg/kg	
=1,2-Dic	DF	0.0157	0.1730	0.0178	0.0121	
nalyte=	Flag	S	운	2	2	
rganics Ar	Est. Conc (a)	0.01178	0.15791	0.01723	0.00561	
Method=O	Result				•	
Runway	Lab Matrix	S	S	S	S	
Site=Southeast Runway Method=Organics Analyte=1,2-Dichlorobenzene	Analytical Method	SW8270	SW8270	SW8270	SW8270	
Si	Data Source	1995	1995	1995	1995	
oroethane	Lab	Footnote				
		Units	mg/kg			
1,2-Tri		ᆸ	ND .00107			
lyte=1,		Flag DL	2			
rganics Ana ontinued)	Est. Conc	(a)	.00086889		N 11	
Method≍0 (c	•	Result			÷	
Runway	Lab	Matrix	s			
Site=Southeast Runway Method=Organics Analyte=1,1,2-Trich (continued)	Analytical Lab	Method	SW8240			
Si	Data	a	1995			

----- Site-Southeast Runway Method-Organics Analyte=1,1-Dichloroethane

Site=Southeast Runway Method=Organics Analyte=1,2-Dichloroethane -----

₩ | | |

Units Footnote

ᆸ

Flag

Result

Matrix

Analytical Method

Est. Conc (a)

mg/kg mg/kg mg/kg

.000819 .000894 .000912 .001020

2222

.00035288 .00022464 .00072838

5000

SW8240 SW8240 SW8240 SW8240

S			Data	Source		1995	1995	1995	1995
	Lab	Footnote							
	:	Units		mg/kg	mg/kg	mg/kg	mg/kg		
	i	占		.00113	.00124	.00126	.00141		
	í	Flag		S	2	2	S		
Est.	Çouc	(a)		.00087352	.00091960	.00068619	.00068507		N = 4
	;	Kesult							
	Lab	Matrix		S	s	s	s		
	Analytical	Method		SW8240	SW8240	SW8240	SW8240		
	Data	Source		1995	1995	1995	1995		

----- Site=Southeast Runway Method=Organics Analyte=1,1-Dichloroethene -----

	•						
	Lab	Footnote	-				•
		Units	mg/kg	mg/kg	mg/kg	mg/kg	
		ᆸ	.000793	.000866	.000883	. 000988	
		Flag	2	2	운	2	
Est.	Conc	(a)	.00021499	.00013900	.00075076	.00023345	
		Result					
	Lab	Matrix	S	S	S	s	
	Analytical	Method	SW8240	SW8240	SW8240	SW8240	
	Data	Source	1995	1995	1995	1995	

Units Footnote

겁

Flag

(a)

Result

Lab Matrix

Analytical Method

Data Source

Est. Conc

mg/kg mg/kg mg/kg mg/kg

.000698 .000712 .000797

2222

.00003581 .00012751 .00009361 .00018335

5555

SW8240 SW8240 SW8240 SW8240

1995 1995 1995 1995

000640

----- Site=Southeast Runway Method=Organics Analyte=1,2-Dichloropropane

. 4 ...

Site=Southeast Runway Method=Organics Analyte=1,2,4-Trichlorobenzene

O					
Lab Footnote					
Units	mg/kg	mg/kg	mg/kg	mg/kg	
DL	0.0152	0.1670	0.0171	0.0210	
Flag	S	운	S	2	
Est. Conc (a)	0.015139	0.006219	0.008238	0.001602	N = 4
Result		•		•	
Lab Matrix	s	S	S	s.	
Analytical Method	SW8270	SW8270	SW8270	SW8270	
Data Source	1995	1995	1995	1995	

a. Random uniform numbers, between zero and the lesser of the minimum result a

Footnote

Flag

Result

Lab Matrix

Analytical Method

Data Source

Est. Conc (a mg/kg mg/kg mg/kg

0.0157 0.1720 0.0177

222

0.003576 0.080674 0.017557

SW8270 SW8270 SW8270

1995 1995 1995

----- Site=Southeast Runway Method=Organics Analyte=1,3-Dichlorobenzene

N = 4

Galena Baseline Risk Assessment Surface Soil Data

		Lab	Footnote						
lorophen			Units		mg/kg	mg/kg	mg/kg	mg/kg.	
2,4-Dich			占		0.00860	0.09450	0.00972	0.01660	
nalyte≖			Flag		S	2	S	2	•
Organics Ar	Est.	Conc	(a)		0.001029	0.087715	0.004691	0.012652	
Method≕			Result		•		•		
t Runway		Lab	Matrix		s	s	S	S	
Site=Southeast Runway Method=Organics Analyte=2,4-Dichlorophenol		Analytical	Method.		SW8270	SW8270	SW8270	SW8270	
S		Data	Source		1995	1995	1995	1995	
orobenzene			Lab	Footnote					
Joroben				Units		mg/kg			
1,3-Dick				Flag DL		0.0135			
ıalyte≔				Flag)	2			
Organics An ontinued)	•	Est.	Conc	(a)		.0064447 ND 0.0135		N = 4	
) - po									
Meth	-			Result					
Runway Meth	•		Lab	Matrix Result		۰.		•	
Site=Southeast Runway Method=Organics Analyte=1,3-Dichlo (continued)			Analytical Lab	Source Method Matrix Result		SW8270 S .			

----- Site=Southeast Runway Method=Organics Analyte=1,4-Dichlorobenzene

mg/kg mg/kg mg/kg mg/kg	
0.0223 0.2450 0.0252 0.0161	
2222	
0.01357 0.17767 0.00600 0.00616	V - N
တ တ တ တ	
SW8270 SW8270 SW8270 SW8270	
1995 1995 1995 1995	
	SWB270 S 0.01357 ND 0.0223 SWB270 S 0.17767 ND 0.2450 SWB270 S 0.00600 ND 0.252 SWB270 S 0.00616 ND 0.0161

Footnote

Units

겁

Flag

Result

Lab Matrix

Analytical Method

Data Source

Est. Conc (a)

0.0236 0.2590 0.0267 0.0367

2222

0.007565 0.059822 0.006057 0.009803

8888

SW8270 SW8270 SW8270 SW8270

1995 1995 1995 1995

----- Site=Southeast Runway Method=Organics Analyte=2,4-Dimethylphenol

----- Site=Southeast Runway Method=Organics Analyte=2,4,5-Trichlorophenol

				N = 4				
	mg/kg	0.0208	2	0.017503		S		1995
	mg/kg	0.0125	2	0.006300	•	S	••	1995
	mg/kg	0.1220	S	0.098570	•	S		1995
	mg/kg	0.0111	2	0.007991		s	SW8270	1995
Lab Footnote	Units	DL	Flag	Conc (a)	Result	Lab Matrix	Analytical Method	Data Source
•				Est.				

----- Site=Southeast Runway Method=Organics Analyte=2,4,6-Trichlorophenol

Lab	Footnote					
	Units	mg/kg	mg/kg	mg/kg	mg/kg	
	Dľ.	0.0246	0.2710	0.0278	0.0148	
	Flag	2	2	S	R	
Est. Conc	(a)	0.00619	0.12723	0.01165	0.00741	
	Result	•	•		•	
Lab	Matrix	S	S	S	S	
Analytical	Method	SW8270	SW8270	SW8270	SW8270	
Data	Source	1995	1995	1995	1995	

a. Random uniform numbers, between zero and the lesser of the minimum result a

----- Site=Southeast Runway Method=Organics Analyte=2,4-Dinitrophenol

N = 4

Lab Footnote	
Units	mg/kg mg/kg mg/kg mg/kg
10	0.0457 0.5020 0.0517 0.0622
Flag	2222
Est. Conc (a)	0.00441 0.45794 0.02927 0.01287
Result	
Lab Matrix	៷៷ ៷៷
Analytical Method	SW8270 SW8270 SW8270 SW8270
Data Source	1995 1995 1995 1995

N = 4

----- Site=Southeast Runway Method=Organics Analyte=2,4-Dinitrotoluene -----Footnote mg/kg mg/kg mg/kg 0.0139 0.1530 0.0157 ᆸ Flag 0.00732 0.10939 0.01305 Conc (a) Result Matrix တလလ Analytical Method SW8270 SW8270 SW8270 Data Source 1995 1995 1995

Random uniform numbers, between zero and the lesser of the minimum result a . Э

File: surface.dat

File time stamp: 10/18/95 12:07

Curre

he: 10/18/95 12:08

Galena Baseline Risk Assessment Surface Soil Data

Galena Baseline Risk Assessment Surface Soil Data

Footnote Site=Southeast Runway Method=Organics Analyte=2-Chloronaphthalene mg/kg mg/kg mg/kg 0.0185 0.2030 0.0209 0.0377 ᆸ Flag 2222 0.01264 0.15676 0.00278 0.00095 Est. Conc (a) Result Lab Matrix SSSS Analytical Method SW8270 SW8270 SW8270 SW8270 Data Source 1995 1995 1995 1995 Units Footnote Runway Method-Organics Analyte=2,4-Dinitrotoluene (continued) mg/kg 0.0273 Flag 0.016868 Est. Conc (a) · N = 4 . Matrix Result S Analytical Method · ----- Site=Southeast SW8270 Source

----- Site=Southeast Runway Method=Organics Analyte=2,6-Dinitrotoluene ------

Site=Southeast Runway Method=Organics Analyte=2-Chlorophenol ------

N = 4

Footnote

占

Flag

Result

Matrix

Lab

Analytical

Method SW8270

Conc

Est. (a) mg/kg mg/kg mg/kg

0.0163 0.1790 0.0184 0.0140

9999

0.00009 0.11404 0.00001 0.00817

SSSS

SW8270 SW8270 SW8270

ote	1995
Lab Footnote	
Units mg/kg mg/kg mg/kg mg/kg	
DL 0.0301 0.3300 0.0340 0.0218	
Flag ND ND ND	
Est. Conc (a) 0.01437 0.18843 0.02908	\$† 2
Result	
Lab Matrix S S S	
Analytical Method SW8270 SW8270 SW8270 SW8270	
Data Source 1995 1995 1995	

------ Site=Southeast Runway Method=Organics Analyte=2-Butanone(MEK) ------

Lab Footnote	
Units	mg/kg mg/kg mg/kg mg/kg
DF	.00398 .00434 .00443 .00495
Flag	2222
Est. Conc (a)	.0010483 .0006729 .0040565
Result	
Lab Matrix	w w w w
Analytical Method	SW8240 SW8240 SW8240 SW8240
Data Source	1995 1995 1995 1995

Units Footnote

Flag

(a)

Result

Lab Matrix |

Analytical Method

Data Source

Est. Conc

mg/kg

Site=Southeast Runway Method=Organics Analyte=2-Hexanone

--- Site=Southeast Runway Method=Organics Analyte=2-Chloroethyl vinyl ether ---

N = 4

1 1			Date	Sourc		199	199	199
	Lab	Footnote			•			
		Units		mg/kg	ma/ka	mg/kg	mg/kg	
		占		.000917	.001000	.001020	.001140	
		Flag		2	2	2	Q	
Est.	Conc	(a)		.00001668	.00062039	.00065997	.00034591	
		Result				•	•	
	Lab	Matrix		s S	S	s	s	
	Analytical	Method		SW8240	SW8240	SW8240	SW8240	
	Data	Source		1995	1995	1995	1995	

a. Random uniform numbers, between zero and the lesser of the minimum result a

11

Site=Southeast Runway Method=Organics Analyte=2-Methylnaphthalene -----Footnote mg/kg mg/kg mg/kg mg/kg mg/kg 0.0239 0.2630 0.0270 .00272 .00297 .00303 .00339 Flag S S S 0.017882 0.014672 0.033600 .0005298 .0010556 .0003231 .0011043 Conc (a) N = 4 Result Matrix Lab Analytical Method SW8240 SW8240 SW8240 SW8240 SW8270 SW8270 SW8270 ta Ge 1995 1995 1995 1995 95

Random uniform numbers, between zero and the lesser of the minimum result a a,

0.0336

Galena Baseline Risk Assessment Surface Soil Data

59

---- Site=Southeast Runway Method=Organics Analyte=3,3'-Dichlorobenzidine ----Footnote Lab mg/kg mg/kg mg/kg mg/kg 0.0109 0.1200 0.0123 0.0299 ᆸ Flag 2222 0.009534 0.084504 0.006323 0.021906 Est. Conc (a) Result Matrix Lab SSSS Analytical Method SW8270 SW8270 SW8270 SW8270 Source Data 1995 1995 1995 1995 Footnote Lab ----- Site=Southeast Runway Method=Organics Analyte=2-Methylnaphthalene (continued) Units mg/kg 0.0265占 Flag 2 .0090584 Conc (a) Est. Result Matrix Lab S Analytical Method SW8270 Data Source 1995

Site=Southeast Runway Method=Organics Analyte=2-Methylphenol(o-cresol) ----

N = 4

------ Site=Southeast Runway Method=Organics Analyte=3-Nitroaniline Data Source Footnote Lab Units mg/kg mg/kg 0.0107 0.1180 0.0121 0.0104 ᆸ Flag 2222 0.007930 0.026067 0.004451 0.006622 Conc (a) N = 4 Result Lab Matrix 8888 Analytical Method SW8270 SW8270 SW8270 SW8270 Data Source 1995 1995 1995 1995

Footnote

占

Flag

Result

Lab Matrix

Analytical Method

Est. Conc (a)

N = 4

mg/kg mg/kg mg/kg

0.0152 0.1670 0.0172 0.0124

2222

0.000367 0.010069 0.002126 0.002978

SSSS

SW8270 SW8270 SW8270 SW8270

1995 1995 1995 1995

N = 4

Site=Southeast Runway Method=Organics Analyte=2-Nitroaniline

J	Data	Analytical	Lab	+[0	conc		Ē	1177	Lab
7	an ino	nomal	_	lnsay	(a)	r l ag	JI	UNITS	rootnote
	1995	SW8270	S		0.004085	2	0.00628	ma/ka	
	1995	SW8270	S		0.003804	2	0.06900	ma/ka	
	1995	SW8270	S	•	0.006813	욷	0.00710	ma/kg	
	1995	SW8270	S	•	0.024361	Q	0.02480	mg/kg	
					N = 4				

------ Site=Southeast Runway Method=Organics Analyte=2-Nitrophenol ------

Data	Analytical Method	Lab Matrix	Recuit	EST. Conc (a)	Flag	ž	ini +	Lab
3	5		3	3	5 -	3	3	2000
1995	SW8270	S	•	0.008560	2	0.0179	ma/ka	
1995	SW8270	s		0.099364	2	0.1970	mg/kg	
1995	SW8270	s		0.000610	2	0.0202	mg/kg	
1995	SW8270	S	-	0.017352	Q	0.0351	mg/kg	
•				N = 4				

Random uniform numbers, between zero and the lesser of the minimum result a a,

Site=Southeast Runway Method=Organics Analyte=4,6-Dinitro-2-methylphenol -	Est. Conc Lab (esult (a) Flag DL Units Footnote	0.1400	ND 1.5400	ND 0.1590	
4,6-Di	ag				
]yte=					
ics Ana	Est. Conc (a)	0.0144	1.1757	0.1149	0.0017
ıod=0rgar	Result		•		•
nway Meth	Lab Matrix	S	s	S	S
outheast Ru	Analytical Method	SW8270	SW8270	SW8270	SW8270
Site=S	Data Source	1995	1995	1995	1995

-- Site=Southeast Runway Method=Organics Analyte=4-Bromophenyl phenyl ether ---

N = 4

Data		Lab		Est.	ī	ã	:	Lab
Source	метроп		Kesuit	(a)	r l ag	DL.	Units	Footno
1995		S	•	0.003145	ON.	0.0132	mg/kg	
1995		S		0.040330	S	0.1450	mg/kg	
1995		တ	•	0.000582	2	0.0149	ma/ka	

te

Random uniform numbers, between zero and the lesser of the minimum result a a.

File: surface.dat

Current File time stamp: 10/18/95 12:07

a: 10/18/95 12:08

Lab Units Footnote

mg/kg mg/kg mg/kg mg/kg

N = 4

Galena Baseline Risk Assessment Surface Soil Data

Site=Southeast Runway Method=Organics Analyte=4-Methyl-2-pentanone(MIBK)		Est.
Site=Southeast Runway Method=Organics Analyte=4-Bromophenyl phenyl ether	(continued)	

		DF DF		.00242	.00264	.00269	.00301
		Flag)	ş	S	2	2
Est.	Conc	(a)		.0007119	.0008940	.0003867	.0029481
		Result					
	Lab	Matrix		S	s	S	တ
	Analytical	Method		SW8240	SW8240	SW8240	SW8240
	Data	Source		1995	1995	1995	1995
		Lab	Flag DL Units Footnote		ND 0.0192 mg/kg		
	Est.	Conc			.0073511		4 = 4
			Result		•		•
		Lab			· ·		
		Analytical	Method		SW8270		
		Data	Source		1995		

---- Site=Southeast Runway Method=Organics Analyte=4-Chloro-3-methylphenol ----

	mg/kg mg/kg	0.00746	22	0.001474 0.005885 N = 4	• •	လ လ	SW8270 SW8270	1995 1995
	mg/kg ma/ka	0.00746	22	0.001474		s s	SW8270 SW8270	1995 1995
	mg/kg	0.07250	ş	0.046584	•	S	SW8270	1995
	mg/kg	0.00660	Ş	0.001703		s	SW8270	1995
Lab Footnote	Units	10	Flag	cst. Conc (a)	Result	Lab Matrix	Analytical Method	Data Source

------ Site=Southeast Runway Method=Organics Analyte=4-Chloroaniline ------

Lab Footnote	
Units	mg/kg mg/kg mg/kg mg/kg
10	0.0152 0.1670 0.0171 0.0334
Flag	2222
Est. Conc (a)	0.003048 0.077264 0.011715 0.010207
Result	
Lab Matrix	တတ္တတ္လ
Analytical Method	SW8270 SW8270 SW8270 SW8270
Data Source	1995 1995 1995 1995

-- Site=Southeast Runway Method=Organics Analyte=4-Chlorophenyl phenyl ether --

N = 4

a	
Lab Footnote	
Units	mg/kg mg/kg mg/kg mg/kg
DL	0.02300 0.25300 0.02600 0.00934
Flag	2222
Est. Conc (a)	0.007811 0.081954 0.003422 0.003972
Result	
Lab Matrix	ស ស ស ស
Analytical Method	SW8270 SW8270 SW8270 SW8270
Data Source	1995 1995 1995 1995

a. Random uniform numbers, between zero and the lesser of the minimum result a

N = 4

ı	<i>a</i> :	
hy]pheno]	Lab s Footnote	
1/3-Met	Units	mg/kg mg/kg mg/kg mg/kg
ıy l pheno	10	0.0145 0.1600 0.0164 0.0222
:=4-Meth	Flag	2222
s Analyte	Est. Conc (a)	0.004572 0.010531 0.014058 0.002552 N = 4
d=Organic	Result	
ay Metho	al Lab Matrix R	νννν
Site=Southeast Runway Method=Organics Analyte=4-Methylphenol/3-Methylphenol	Analytical L Method Ma	SW8270 SW8270 SW8270 SW8270
- Site=So	Data Source	1995 1995 1995 1995
,		

į
Analyte=4-Nitroaniline
Method=Organics A
Runway
Site=Southeast
-

Lab Footnote	
Units	mg/kg mg/kg mg/kg mg/kg
DL	0.0149 0.1640 0.0169 0.0274
Flag	2222
Est. Conc (a)	0.003661 0.034601 0.014436 0.019795
Result	
Lab Matrix	လလလလ
Analytical Method	SW8270 SW8270 SW8270 SW8270
Data Source	1995 1995 1995 1995

N = 4

	- Site=Southeast Runway Method=Organics Analyte=4-Nitrophenol	ast Runw	ay Metho	d≃Organic	s Anal	yte=4-Ni	trophen	ol
Data Source	Analytical Method	Lab Matrix	Result	Est. Conc (a)	Flag	DL	Units	Lab Footnotë
1995	SW8270	s		0.00304	2	0.0156	mg/kg	
1995	SW8270	s	•	0.11795	2	0.1710	ma/ka	
1995	SW8270	s		0.01099	2	0.0176	mg/kg	

Galena	Baseline	ne	Risk	Assessment
	Confini		Coil Data	2+2

Galena Baseline Risk Assessment Surface Soil Data	Site=Southeast Runway Method=Organics Analyte=Anthrac	Est. Data Analytical. Lab Conc Source Method Matrix Result (a) Flag DL Un
k Assessment Data	nics Analyte=4-Nitrophenol d)	c Lab
Galena Baseline Risk Assessment Surface Soil Data	Site=Southeast Runway Method=Organics Analyte=4-Nitrophenol (continued)	Est. Data Analytical Lab Conc

64

Footnote

mg/kg mg/kg mg/kg mg/kg

0.0189 0.2080 0.0214 0.0289

2 2 2 S

0.053300 0.000056 0.011325 0.024519

0.0533Result Matrix Lab S S S S Analytical. Method SW8270 SW8270 SW8270 SW8270 Data Source 1995 1995 1995 1995 Footnote Lab Units mg/kg 0.0536 ᆸ Flag 2 0.041650 Est. Conc (a) = 4 z Result Matrix S Analytical Method SW8270 Data Source: 1995

Site=Southeast Runway Method=Organics Analyte=Acenaphthene

Flag DL Units F 53 ND 0.0157 mg/kg 38 ND 0.1730 mg/kg 79 ND 0.0178 mg/kg 48 ND 0.0301 mg/kg					1 2				
Analytical Lab Conc Method Matrix Result (a) Flag DL SW8270 S . 0.001763 ND 0.0157 N SW8270 S . 0.001738 ND 0.1730 N SW8270 S . 0.015379 ND 0.0178 N		mg/kg	0.0301	S	0.027648	•	S		1995
Analytical Lab Conc Method Matrix Result (a) Flag DL Units I SW8270 S 0.007763 ND 0.0157 mg/kg SW8270 S 0.001738 ND 0.1730 mg/kg		mg/kg	0.0178	S	0.015379		S	•	1995
Analytical Lab Conc Method Matrix Result (a) Flag DL Units I SW8270 S 0.007763 ND 0.0157 mg/kg		mg/kg	0.1730	S	0.001738	•	S	•	1995
Analytical Lab Conc Hethod Matrix Result (a) Flag DL Units D		mg/kg	0.0157	S	0.007763		S		1995
+ 01	Lab Footnote	Units	Dr.	Flag	Est. Conc (a)		Lab Matrix		Data Source

Site=Southeast Runway Method=Organics Analyte=Acenaphthylene

				N = 4					
	mg/kg	0.0213	2	0.00303	•	s	SW8270	1995	
	mg/kg	0.0159	S	0.00902	•	S	SW8270	1995	
	mg/kg	0.1550	욷	0.14562	-	S	SW8270	1995	
	mg/kg	0.0141	2	0.00460		S	SW8270	1995	
Footnote	Units	Ы	Flag	(a)	Result	Matrix	Method	Source	
Lab				Conc		Lab	Analytical	Data	
				Est.					

Site=Southeast Runway Method=Organics Analyte=Acetone

	Lab	Footnote					
		Units	mg/kg	mg/kg	mg/kg	mg/kg	,
		占	.00507	.00553	.00564	.00631	
		Flag	S	2	2	욷	
Est.	Conc	(a)	.0000420	.0016222	.0015939	.0044545	
		Result	•				
	Lab	_	S	S	S	S	
	Analytical	Method	SW8240	SW8240	SW8240	SW8240	
	Data	Source	1995	1995	1995	1995	

Random uniform numbers, between zero and the lesser of the minimum result a a.

N = 4

N = 4

Footnote

Units

ᆸ

Flag

Result

Lab Matrix

Analytical Method

Data Source

Est. Conc (a)

mg/kg mg/kg mg/kg mg/kg

.000993 .001010 .001130 000910

.0003480 .0004860 .0002548 .0011006

8888

SW8240 SW8240 SW8240 SW8240

1995 1995 1995 1995

Lab

-- Site=Southeast Runway Method=Organics Analyte=Benzene

N = 4

Footnote ----- Site=Southeast Runway Method=Organics Analyte=Benzo(a)anthracene Units mg/kg mg/kg mg/kg mg/kg 0.0208 0.2280 0.0235 0.0282 Flag **3255** 0.11514 0.02006 0.01114 0.35400 Conc (a) Est. 0.354 Result Matrix 8888 Analytical Method SW8270 SW8270 SW8270 SW8270 Data Source 1995 1995 1995 1995

---- Site=Southeast Runway Method=Organics Analyte=Benzo(a)pyrene

N = 4

	mg/kg mg/kg mg/kg	0.2400 0.2400 0.0246	- - - - -	0.20354 0.20354 0.01447		n w w	SW8270 SW8270 SW8270	1995 1995 1995
	mg/kg	0.0218	DET	0.55400	0.554	S	SW8270	1995
Lab Footnote	Units	Of	Flag	Est. Conc (a)	Result	Lab Matrix	Analytical Method	Data Source

w

Random uniform numbers, between zero and the lesser of the minimum result a ъ

File: surface.dat

Curren File time stamp: 10/18/95 12:07

e: 10/18/95 12:08

4	r	ı	١
			J
	4	۲	

Site=Southeast Runway Method=Organics Analyte=Benzoic acid	Est. Data Analytical Lab Conc Source Method Matrix Result (a) Flag DL Units Footnote	SW8270 S . 0.13010 ND 0.219 SW8270 S . 0.65882 ND 2.400	0.04415	A = X	Site=Southeast Runway Method=Organics Analyte=Benzyl alcohol	Est. Est. France Annalytical lab. France France France Lab.	Method Matrix Result (a) Flag DL Units Fo	S . 0.01245 ND 0.0403 S . 0.43755 ND 0.4420	SW8270 SW8270	. 4 = N	- Site=Southeast Runway Method=Organics Analyte=Bromodichloromethane	Analytical lab		SW8240 S	SW8240 S	N = 4	Site=Southeast Runway Method=Organics Analyte=Bromomethane	Est. Est. Fonce	Method Matrix Result (a) Flag DL Units Fo		SW824U S
1	O S						Sou	119	19			+	Source	1995 1995	1995	٠	1	Oa+a	Source	1995	76.T
t : : : : : : : : : : : : : : : : : : :	Lab			hene	_1 1	Footnote				lene		Lab Footnote				hene	1	Lab Footnote			
(a)pyrene		mg/kg		fluorant		Units	mg/kg	mg/kg mg/kg mg/kg		h,i)perylene		Units	mg/kg	mg/kg mg/kg mg/kg		fluorant		Units	mg/kg mg/kg	mg/kg mg/kg	
e=Benzo	2	0.0232		enzo(b)		Ы	0.0196	0.0221 0.0221 0.0508		enzo(g,		10	0.0270	0.0305		enzo(k)		DL	0.0341	0.0386	
s Analyt	<u> </u>			nalyte≕E		Flag	DET	222		ıa]yte≖E		Flag	DET ND	222		na]yte=E		Flag		2 2 2	
Runway Method=Organics Analyte=Benzo(a) (continued)	Est. Conc	.0055482	1 4	Runway Method=Organics Analyte=Benzo(b)fluoranthene	Est.	(a)	0.44700	0.00667 0.01802	N = 4	ganics A	Est.	Conc (a)	0.21200	0.02118 0.00291	= A	ganics A	Est.	Conc (a)	0.46100	0.00800 0.06384	N = A
y Method (co	+[130]			ethod=Or		Result	0.447			ethod=Or		Result	0.212			ethod=Or		Result	0.461		
st Runwa	Lab	S S		Runway M	<u>.</u>	Lab Matrix	S	n vo vo		Runway M		Lab Matrix	So	, w w		Runway M	-	Lab Matrix	S	, v v	
Site=Southeast	Analytical Mothod	SW8270		Site=Southeast	Ann 1 4 : 0 : 1	Method	SW8270	SW8270 SW8270 SW8270		Site=Southeast Runway Method=Organics Analyte=Benzo(g,h,i	;	Analyticat Method	SW8270	SW8270 SW8270 SW8270		Site=Southeast Runway Method=Organics Analyte=Benzo(k)fluoranthene		Analytical Method	SW8270	SW8270 SW8270	
 	Data	1995		Sit	4	Source	1995	1995 1995 1995		Sit		Data Source	1995	1995 1995		Sit		Uata Source	1995	1995 1995	

a. Random uniform numbers, between zero and the lesser of the minimum result a

Current time: 10/18/95 12:08

Assessment	-+-
Risk Ass	[]
Baseline	
Galena B	

68		Lab its Footnote	
Assessment Jata	ics Analyte=Chlorober	Lab Flag ' DL Units Footnote	
Galena Baseline Risk Assessment Surface Soil Data	Site=Southeast Runway Method=Organics Analyte=Chlorobenzene	Est. Lb Conc Lrix Result (a)	
	Site=Southeast	Analytical Lab Method Matrix Result	
29		Data Ana Source M	
	te=Bromomethane	Lab	
Galena Baseline Risk Assessment Surface Soil Data	Site=Southeast Runway Method=Organics Analyte=Bromomet	(continued) Est.	255
Gale	ast Run	- -	2
	- Site=Southe	Data Analutical	30
	t 1 1 1	Data	222

	Units		mg/kg	mg/kg	mg/kg	mg/kg	
	. 01		.000813	.000887	.000905	.001010	
	Flag		웆	S	S	욷	
Est.	Conc (a)		.00073418	.00078870	.00087445	.00089350	
	Result						
	Lab Matrix		s	s	S	'n	
	Analytical Method		SW8240	SW8240	SW8240	SW8240	
	Data Source		1995	1995	1995	. 1995	
	Lab	Footnote					
		Units		ma/ka	,		
		Ы		.0014		•	
1		Flag	1	S			
ntinued)	Est. Conc	(a)		.00087556		·N = 4	
00)		Result			•	•	
	de	Matrix		·	,		
(continued)	Analvtical	Method Matrix		SW8240			
	Data	Source		1995			

----- Site=Southeast Runway Method=Organics Analyte=Butylbenzylphthalate -----

mg/kg mg/kg mg/kg mg/kg	
0.0230 0.2520 0.0260 0.0104	
2222	
0.00164 0.15695 0.00227 0.00400	V 1
៷៷៷៷	
SW8270 SW8270 SW8270 SW8270	
1995 1995 1995 1995	
	SW8270 S . 0.00164 ND 0.0230 I SW8270 S . 0.15695 ND 0.2520 I SW8270 S . 0.00227 ND 0.0260 I SW8270 S . 0.00400 ND 0.0104 I

Footnote

Units

님

Flag

Result

Lab Matrix

Analytical Method

Data Source

Est. Conc (a)

mg/kg mg/kg mg/kg

.00113 .00124 .00126 .00141

2222

.0002895 .0006389 .0002291 .0012192

SW8240 SW8240 SW8240 SW8240

1995 1995 1995 1995

N = 4

Lab

Site=Southeast Runway Method=Organics Analyte=Chloroethane

N = 4

××

----- Site=Southeast Runway Method=Organics Analyte=Carbon disulfide

	Lab	Footnote						
		Units	:	mg/kg	mg/kg	mg/kg	mg/kg	
		占		.000791	.000863	.000880	000985	
		Flag		2	S	S	2	
EST.	Conc	(a)		.00014764	.00011471	.00026139	.00092355	
		Result						
	Lab	Matrix		S	S	s	s	
	Analytical	Method		SW8240	SW8240	SW8240	SW8240	
	Data	Source		1995	1995	1995	1995	

N = 4

----- Site=Southeast Runway Method=Organics Analyte=Carbon tetrachloride -----

Lab Footnote	· .
Units	mg/kg mg/kg mg/kg mg/kg
DI	.000894 .000976 .000996 .001110
Flag	2222
Conc (a)	.00032710 .00088300 .00050467 .00090931
Result	
Lab Matrix	ស ស ស ស
Analytical Method	SW8240 SW8240 SW8240 SW8240
Data Source	1995 1995 1995 1995

Random uniform numbers, between zero and the lesser of the minimum result a

File: surface.dat

Footnote Lab Site=Southeast Runway Method=Organics Analyte=Chloroform Units mg/kg mg/kg mg/kg mg/kg .00110 .00120 .00122 .00137 Flag 요모모요 .0010859 .0004594 .0011707 .0009459 Est. Conc (a) Result Lab Matrix 8888 Analytical Method SW8240 SW8240 SW8240 SW8240 Data Source 1995 1995 1995 1995

Site=Southeast Runway Method=Organics Analyte=Chloromethane ----

N = 4

Lab Footnote	
Units	mg/kg mg/kg mg/kg
0	.00099
Flag	222
Conc (a)	.00026552 .00048586 .00005183
Result	
Lab Matrix	လလလ
Analytical Method	SW8240 SW8240 SW8240
Data	1995 1995 1995
_ \cdot \sigma	

Random uniform numbers, between zero and the lesser of the minimum result a ъ

Curre File time stamp: 10/18/95 12:07

me: 10/18/95 12:08

Site=Southeast Runway Method=Organics Analyte=Dibenzofuran	Lab Flag DL Units Footnote	8 ND 0.0225 mg/kg 4 ND 0.2470 mg/kg 8 ND 0.0254 mg/kg	ND 0.0224		Site=Southeast Runway Method=Organics Analyte=Dibromochloromethane	Lab Flag DL Units Footnote	ND .000840 ND .000917	ND .001050 mg/kg		Site=Southeast Runway Method=Organics Analyte=Dibutyl phthalate	Lab	Flag DL Units Fo	47 ND 0.0212 mg/kg 10 ND 0.2330 mg/kg 72 ND 0.0240 mg/kg 95 ND 0.0160 mg/kg		Site=Southeast Runway Method=Organics Analyte=Diesel Range Organics	2 2 2	(a) Flag UL Units Footnote	250 DET 4 mg/kg 120 DET 4 mg/kg 110 DFT 4 mc/kg	
unway Method=Orga	Est. Conc ix Result (a)	. 0.00528 . 0.24024 . 0.02178	0.01917	N = 4	y Method=Organics	Est. Conc x Result (a)	00027272		N 11	way Method=Organi		ix Result (a)	0.000247 0.039010 0.019172 0.012895	N : 4	y Method=Organics	46	Matrix Kesuit	\$ 250 \$ 120 \$ 110	
Site=Southeast R	Analytical Lab Method Matrix	SW8270 S SW8270 S SW8270 S			e=Southeast Runwa	Analytical Lab Method Matrix	SW8240 S SW8240 S			iite=Southeast Run	Analytical Lab	X	SW8270 S SW8270 S SW8270 S SW8270 S		e=Southeast Runwa	اع	Method	AK102 AK102 AK102	
	Data Source	1995 1995 1995	1995		Sit	Data Source	1995 1995 1995	1995		1	Data	Source	1995 1995 1995 1995		Sit	Data	source	1995 1995 1995	
	Lab Footnote				Lab	Footnote			late	<u>.</u>	Footnote			acene	- -	Footnote			
Analyte=Chloromethane	Units	mg/k		rysene			mg/kg mg/kg mg/kg		tylphtha		Units) B B	mg/kg mg/kg	, h) anthra		Uni			
yte=Chlo	٦٥	0.		alyte=Ch		DL 0.0223	0.0252 0.0376 0.0376		=Di-n-oc		Ы	0.0328	0.0370	Dibenz(a			0.3070	0.0316 0.0342	
s Anal	Flag			nics An	į	Flag DET	222		Inalyte		Flag		288	ıalyte≕				9 2	
Runway Method=Organics (continued)	Est. Conc (a)	.00040312	N = 4	Site=Southeast Runway Method=Organics Analyte=Chrysen	Est. Conc	(a) 0.51500	0.01814 0.01814 0.02414	N = 4	Runway Method=Organics Analyte=Di-n-octylphthalate	Est.	(a)	0.003378	0.033638 0.009840 N = 4	Runway Method=Organics Analyte=Dibenz(a,h)anthracene	Est.	(a)	0.068423	0.028712 0.031223	N = 4
ay Metho (co	Result	•		nway Met		Result 0.515			Method=(Result	•	· • •	lethod=0r		Result	0.034/		
	Lab Matrix	κ'n		heast Ru	Lab	Matrix S	n w w			-4 -	Matrix	ω 'n	o w	Runway M	4	Matrix	n w	က က	
- Site=Southeast	Analytical Method	SW8240		Site=Sout	An		SW8270 SW8270 SW8270		Site=Southeast	1009		. SW8270 SW8270	SW8270 SW8270	Site=Southeast	Anslytical		SW8270	SW8270 SW8270	
-	Data Source	1995		 	Data	Source 1995	1995 1995 1995		S	÷	Source	1995 1995	1995	Sit	C.	Source	1995	1995 1995	

a. Random uniform numbers, between zero and the lesser of the minimum result ${f a}$

amp: 10/18/95 12:07 Current time: 10/18/95 12:08 Page 35

Galena Baseline Risk Assessment Surface Soil Data

Method=Organics Analyte=Diesel Range Organics (continued)

---- Site=Southeast Runway

File: surface.dat

Random uniform numbers, between zero and the lesser of the minimum result a

. G

36 Page

Site=Southeast Runway Method=Organics Analyte=Ethylbenzene Units 님 Result Lab Matrix

72

Galena Baseline Risk Assessment Surface Soil Data

Flag 2222 .00064036 .00072195 .00007520 Est. Conc (a)

Analytical Method

Footnote Lab

딬

Flag

Result

Matrix

Analytical

Method

Source

AK102

1995

Conc

Est.

Footnote

mg/kg mg/kg mg/kg mg/kg

.000749 989000

8 8 8 8

SW8240 SW8240 SW8240 SW8240

1995 1995 1995 1995

mg/kg Units

DET

150 (a)

> 4 **J**I

z 150

N = 4

Site=Southeast Runway Method=Organics Analyte=Fluoranthene

Footnote

Flag

Result

Lab Matrix

Analytical Method

Est. Conc (a)

mg/kg mg/kg

0.0219 0.2410 0.0248 0.0301

SSS

0.43500 0.05256 0.01460 0.01299

8 8 8 8

SW8270 SW8270 SW8270 SW8270

1995 1995 1995 1995

0.435

mg/kg

Lab

Site=Southeast Runway Method=Organics Analyte=Diethylphthalate ------

Lab Footnote mg/kg mg/kg mg/kg Units 0.0155 0.1700 0.0175 0.0207 님 Flag 2222 0.014267 0.084339 0.009815 0.007109 Est. Conc (a) Result Lab Matrix 8 8 8 8 Analytical Method SW8270 SW8270 SW8270 SW8270 Data Source 1995 1995 1995 1995

11

Site=Southeast Runway Method=Organics Analyte=Dimethylphthalate

Lab Footnote Units mg/kg mg/kg mg/kg mg/kg 0.0133 0.1460 0.0150 0.0154 ᆸ Flag 2222 0.00204 0.13300 0.00820 0.01188 Est. Conc (a) Result Lab Matrix Analytical Method SW8270 SW8270 SW8270 SW8270 Data Source 1995 1995 1995 1995

Footnote

Units

Flag

(a)

Result

Lab Matrix

Analytical Method

Data Source

Est. Conc

mg/kg mg/kg mg/kg mg/kg

0.0232 0.2550 0.0262 0.0267

0.01681 0.23387 0.00174 0.01050

8 8 8 8

SW8270 SW8270 SW8270

1995 1995 1995 1995

SW8270

Lab

Site=Southeast Runway Method=Organics Analyte=Fluorene

N = 4

Site=Southeast Runway Method=Organics Analyte=Diphenylamine (N-Nitrosodiphenyla

Site=Southeast Runway Method=Organics Analyte=Gasoline Range Organics ----

N = 4

Footnote

Units

ᆸ

Flag

(a)

Result

Matrix

Lab

Analytical

Method

Data Source

1995 1995 1995

Est. Conc

mg/kg mg/kg mg/kg

222

0.12553 0.83061 0.90495

AK101 AK101 AK101

m m

ne: 10/18/95 12:08 Curre File time stamp: 10/18/95 12:07

Galena Baseline Risk Assessment Surface Soil Data

Galena Baseline Risk Assessment Surface Soil Data

Site=Southeast Runway Method=Organics Analyte=Hexachloroethane	Est. Data Analytical Lab Conc Source Method Matrix Result (a) Flag DL Units Footnote	1995 SWB270 S 0.003730 ND 0.0137 mg/kg 1995 SWB270 S 0.087403 ND 0.1510 mg/kg 1995 SWB270 S 0.013766 ND 0.0155 mg/kg 1995 SWB270 S 0.028957 ND 0.0382 mg/kg	N = 4	e=Southeast Runway Method=Organics Analyte=Indeno(1,2,3-cd)pyr Est.	Data Analytical tab Source Method Matrix Result (a) Flag DL Units Footnote	1995 SW8270 S 0.24 0.24000 DET 0.0254 mg/kg 1995 SW8270 S 0.16258 ND 0.2790 mg/kg 1995 SW8270 S 0.02549 ND 0.0288 mg/kg	SW8270 S 0.00438 ND 0.0395	N = 4	Site=Southeast Runway Method=Organics Analyte=Isophorone	Data Analytical Lab Conc
Site=Southeast Runway Method=Organics Analyte=Gasoline Range Organics	Est. Data Analytical Lab Conc Conc Lab	AK101 S 0.17300 ND 1 mg/kg N = 4	Site=Southeast Runway Method=Organics Analyte=Hexachlorobenzene	Est. Data Analytical Lab Conc Source Method Matrix Result (a) Flag DL Units Footnote	SW8270 S 0.006414 ND 0.0158 cus270 c 0.0158	S . 0.001042 ND S . 0.014688 ND	N = 4	Site=Southeast Runway Method=Organics Analyte=Hexachlorobutadiene	Est. Data Analytical Lab Conc Conc Lab Source Method Matrix Result (a) Flam Ol Units Footnote	7 7070 0 12 10000 0 0 00000

ji ene	Lab Footnote		
orobutac	Units	mg/kg mg/kg mg/kg mg/kg	
=Hexach]	10	0.0161 0.1770 0.0182 0.0272	
Analyte≔	Flag	2222	
rganics /	Est. Conc (a)	0.00937 0.14519 0.01643 0.01932	
Method=0	Result		
Runway	Lab Matrix	SSSS	
Site=Southeast Runway Method=Organics Analyte=Hexachlorobutadiene	Analytical Method M	SW8270 SW8270 SW8270 SW8270	
Si	Data Source	1995 1995 1995 1995	

Lab Units Footnote

占

Flag

(a)

Result

Lab Matrix I

Analytical Method

Data Source

mg/kg mg/kg mg/kg mg/kg

0.0134 0.1470 0.0152 0.0168

2222

0.004090 0.056944 0.007385 0.009585

SSSS

SW8270 SW8270 SW8270 SW8270

1995 1995 1995 1995

N = 4

חווויא בחסרווסופ						
21 120	mg/kg	mg/kg	mg/kg	mg/kg		
riay ur	0.0161	0.1770	0.0182	0.0272		
Į,	2	욷	욷	S		
(g	0.00937	0.14519	0.01643	0.01932	7 1 2	† !
עבאחור	•	•				
שמרווא	S	S	s	S		
nounau	SW8270	SW8270	SW8270	SW8270		
annoc	1995	1995	1995	1995		

s Analyte=Hexachlorocyclopentadiene	
Method=Organics	
Runway	
- Site=Southeast	

. Runway Method=Orga	Analytical Lab Conc	Source Method Matrix Result (a) Flag DL Units Footnote		1995 SW8240 S .000498 .000498 DET .000946 mg/kg BJ	SW8240 S .000484 .000484 DET .001030 mg/kg	SW8240 S .000649 .000649 DET .001050 mg/kg	
Lab s Footnote							
Units		mg/kg	mg/kg	mg/kg	mg/kg		
<u>1</u> 0		0.198	2.170	0.224	0.146		
Flag		2	욷	2	2		
Est. Conc (a)		0.15636	0.32822	0.21888	0.07791		4 = 4
Result					•		_
Lab Matrix		s	S	S	s		
Analytical Method		SW8270	SW8270	SW8270	SW8270		
Data Source		1995	1995	1995	1995		

a. Random uniform numbers, between zero and the lesser of the minimum result a

333 mg/kg mg/kg mg/kg .000946 .001030 .001050 .000498 .000484 .000649 .000498 လ လ လ

. Galena Baseline Risk Assessment Surface Soil Data

٤	?	

٥١	Lab s Footnote	
orophen	Units	mg/kg mg/kg mg/kg mg/kg
e=Pentach]	ᆸ	0.00628 0.06900 0.00710 0.01580
Analyte	Flag	
=Organics	Est. Conc (a)	0.001666 0.044904 0.002381 0.009093
/ Method	Result	
ıst Runway	Lab Matrix	w w w w
Site=Southeast Runway Method=Organics Analyte=Pentachlorophenol	Analytical Method M	SW8270 SW8270 SW8270 SW8270
1 1 1 1 1	•	1995 1995 1995 1995
chloride	Lab s Footnote	. BJ
	nit	g/k
ethylene	DI	.00118
ıalyte=M	Flag	DET
yanics Ar tinued)	Est. Conc (a)	000422 N = 4
fethod=Org (conf	Est. Conc Result (a) Flag DL U	.000422 .000422 DET N = 4
Runway A	Lab Matrix	ν
Site=Southeast Runway Method=Organics Analyte=Methylene (continued)	Analytical Lab Method Matrix F	SW8240
	Data A Source	1995

---- Site=Southeast Runway Method=Organics Analyte=N-Nitrosodipropylamine ----

Lab Footnote		
Units	mg/kg mg/kg mg/kg mg/kg	
DI	0.00921 0.10100 0.01040 0.02640	
Flag	2222	
Est. Conc (a)	0.004921 0.096124 0.003468 0.025539	N N
Result		
Lab Matrix	νννν	
Analytical Method	SW8270 SW8270 SW8270 SW8270	
Data Source	1995 1995 1995 1995	

Footnote

Units

占

Flag

Matrix Result

Analytical Method

Data Source

Est. Conc (a)

mg/kg mg/kg mg/kg mg/kg

0.0262 0.2880 0.0296 0.0200

NO SE

0.14900 0.13031 0.02150 0.01537

SW8270 SW8270 SW8270 SW8270

1995 1995 1995 1995

0.149

Lab

Site=Southeast Runway Method=Organics Analyte=Phenanthrene -----

N = 4

------ Site=Southeast Runway Method=Organics Analyte=Naphthalene

1995 SW8270 S 0.003004 ND 0.0215 mg/kg 1995 SW8270 S 0.0225 0.022500 DET 0.0243 mg/kg J 1995 SW8270 S 0.002489 ND 0.0243 mg/kg J	Data Source	~	Analytical Method	Lab Matrix	Result	Conc (a)	Flag	10	Units	Lab Footnote
	1995 1995 1995 1995	0,0,0,0,	W8270 W8270 W8270 W8270	S S S S	0.0225	0.003004 0.021095 0.022500 0.003489	ND ND DET ND	0.0215 0.2360 0.0243 0.0243	mg/kg mg/kg mg/kg mg/kg	5

N = 4

------ Site=Southeast Runway Method=Organics Analyte=Nitrobenzene ------

Lab Footnote	
Units	mg/kg mg/kg mg/kg mg/kg
DI.	0.0112 0.1240 0.0127 0.0171
Flag	2222
Est. Conc (a)	0.007181 0.028678 0.011774 0.012865
Result	
Lab Matrix	៷៷៷៷
Analytical Method	SW8270 SW8270 SW8270 SW8270
Data Source	1995 1995 1995 1995

a. Random uniform numbers, between zero and the lesser of the minimum result a

N = 4

------ Site=Southeast Runway Method=Organics Analyte=Phenol

N = 4

Lab Footnote	
Units	mg/kg mg/kg mg/kg mg/kg
10	0.0146 0.1600 0.0165 0.0351
Flag	2222
Est. Conc (a)	0.014015 0.077852 0.016294 0.032867
Result	
Lab Matrix	w w w w
Analytical Method	SW8270 SW8270 SW8270 SW8270
Data Source	1995 1995 1995 1995

N = 4

Footnote Lab --- Site=Southeast Runway Method=Organics Analyte=Pyrene ---mg/kg mg/kg mg/kg 0.0268 0.2950 0.0303 Flag S S E 0.51700 0.08377 0.02023 Est. Conc (a) 0.517 Result Lab Matrix Analytical Method SW8270 SW8270 SW8270 Data Source 1995 1995 1995

Random uniform numbers, between zero and the lesser of the minimum result a a.

File: surface.dat

File time stamp: 10/18/95 12:07

e: 10/18/95 12:08 Currer

Galena Baseline Risk Assessment Surface Soil Data

Galena Baseline Risk Assessment Surface Soil Data

			•															•			
form)	Lab Footnote	×	×			Lab Footnote				! ! !	- - -	Footnote					Lab	Footnote			
ne(Bromo	Units	mg/kg mg/kg	mg/kg mg/kg		roethene	Units	mg/kg mg/kg	mg/kg mg/kg		acetate		Units	mg/kg mg/kg	mg/kg mg/kg		nìoride		Units	mg/kg mg/kg	mg/kg	
romometha	D F	.000658	.000/32		e=Trichlo	01	.000787	9/8000.		te=Vinyl		ᆸ	.000911	.001130		e=Vinyl ch		10	.000759	. 000845	
e=Trib	Flag	229	2 2		Analyt	Flag	229	2 2		Analy		Flag	888	29		Analyte		Flag	225	2	
Site=Southeast Runway Method=Organics Analyte=Tribromomethane(Bromoform)	Est. Conc (a)	.00024361	.00008311	N = 4	Site=Southeast Runway Method=Organics Analyte=Trichloroethene	Est. Conc (a)	.00000815	.00029184	N = 4	Site=Southeast Runway Method=Organics Analyte=Vinyl acetate	Est.	(a)	.00003644	.00067389	N # 4	Site=Southeast Runway Method=Organics Analyte=Vinyl chloride	Est. Conc	(a)	.00050630	. 00055556	
thod=Orga	Result		•		۸ay Metho	Result				nway Meth		Result				vay Methoo		Result		•	
іпмау Ме	Lab Matrix	ဟဟ	ယ် လ		east Run	Lab Matrix	တ တ လ	nσ		least Rui	<u>-</u>	Matrix	တ တ ပ	၈ ဟ		ast Run	Lab	Matrix	S	n	
southeast Ru	Analytical Method	SW8240 SW8240	SW8240 SW8240		Site=Southe	Analytical Method	SW8240 SW8240	SW8240 SW8240		- Site=South	Analytical	Method	SW8240 SW8240	SW8240		Site=Southe	Analytical	Method	SW8240 SW8240	SW8240	
Site=S	Data Source	1995 1995	1995			Data Source	1995 1995	1995		1	Nata	Source	1995 1995	1995		1	Data	Source	1995 1995	CAAT	
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Lab		•	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Lab	rootnote	<×			 	ran Footnote	>	×		! ! ! !	Lab	Footnote				
	llni ts	5 5		ene		units mg/kg	mg/kg mg/kg mg/kg		roethen		Units F	mg/kg mg/kg	mg/kg mg/kg		ene		Units	mg/kg ma/ka	mg/kg mg/kg		
]yte=Pyre	=	9/		lyte=Styr	ā		.001020		Tetrachlo		D TO	.00108 m			lyte=Tolu			.000783		•	
ics Ana	Flag	£ 8		ics Ana	Š	ND ND	299		nalyte=		Flag	2 2			cs Ana		Flag	22	22		
Site=Southeast Runway Method=Organics Analyte=Pyrene (continued)	Est. Conc (a)	.0056135	N = 4	Site=Southeast Runway Method=Organics Analyte=Styrene	Est. Conc	.00033264	.00022562	N = 4	Runway Method=Organics Analyte=Tetrachloroethene	Est.	(a)	.0002067	.0003947	N = 4	Site=Southeast Runway Method=Organics Analyte=Toluene	Est. Conc	(a)	.00063903	00013689 00090878	N = 4	
Runway Me (cc	Result			Runway Me	Docu1+				/ Method≍		Result				lunway Me		Result				
utheast	Lab . Matrix	s		utheast f	Lab Matric	S S	ດທຸ		it Runwa)	 	Matrix	s v	လလ		itheast F	Lab	Matrix	ა თ	လ လ		
Site=Sou	Analytical Method		•	Site=Sou	Analytical Method	SW8240	SW8240 SW8240 SW8240		Site=Southeast	Anslytical	Method	SW8240 SW8240	SW8240 SW8240		Site=Sou	Analytical	Method	SW8240 SW8240	SW8240 SW8240		
1	Data Source	1995			Data	30urce 1995	1995 1995 1995		S	- c	Source	1995 1995	. 1995 1995		1 1 1 1 1 1	Data		1995 1995	1995 1995		
													•								

File: surface.dat File time stan

a. Random uniform numbers, between zero and the lesser of the minimum result a

File time stamp: 10/18/95 12:07 Current time:

Current time: 10/18/95 12:08 Page 39

Site=Southeas

79

1

te

Footnote

님

Flag

mg/kg mg/kg mg/kg mg/kg

0.0247 0.2720 0.0280 0.0170

ND ND DET

Lab

Baseline Risk Assessment	Soil D
Galena	

Site=Southeast Runway Method=Organics Analyte=bis(2-Ethylhexyl)phth	4-7
ast Runway Method=Organics Analyte=Vinyl chloride (continued)	

Est. Conc (a)	,	0.03490	0.00314	0.00061	0.28500
Result	,	0.0349			0.2850
Lab Matrix		S	s	s	s
Analytical Method		SW8270	SW8270	SW8270	· SW8270
Data Source		1995	1995	1995	1995
Lab	Footnote				
	Units		mg/kg		
	Ы		.000946		
	Flag		2		•
Est. Conc	(a)		.00045570		N = 4
	Result				
Lab	Matrix		S		
Analytical	Method		SW8240		
Data	Source	1	1995		

Site=Southeast Runway Method=Organics Analyte=bis(2-Chloroethoxy)methane

Lab Footnote		
Units	mg/kg mg/kg mg/kg ma/kg	i i
DL	0.0146 0.1600 0.0165 0.0121	
Flag	2222	
Est. Conc (a)	0.002814 0.076857 0.013032 0.008769	N = 4
Result		,
Lab Matrix	w w w w	
Analytical Method	SW8270 SW8270 SW8270 SW8270	
Data Source	1995 1995 1995 1995	

Footnote

Units

ᆸ

Flag

(a

Result

Matrix

Analytical Method

Data Source

Est. Conc

mg/kg mg/kg mg/kg mg/kg

.000943 .001030 .001050

2222

.00008218 .00000283 .00067844 .00054836

8888

SW8240 SW8240 SW8240

1995 1995 1995 1995

SW8240

N = 4

---- Site=Southeast Runway Method=Organics Analyte=cis-1,2-Dichloroethene

п 4

z

---- Site=Southeast Runway Method=Organics Analyte=bis(2-Chloroethyl)ether ----

٠ -	Lab Footnote				
	Units	mg/kg	ma/kg	ma/ka	mg/kg
	DF	0.0146	0.1600	0.0165	0.0189
	Flag	S	2	S	S
Est.	(a)	0.002639	0.014086	0.012781	0.012222
	Result				
-	ran Matrix	S	S	s	s
Anslytical	Method	SW8270	SW8270	SW8270	SW8270
0+40	Source	1995	1995	1995	1995

N = 4

-- Site=Southeast Runway Method=Organics Analyte=bis(2-Chloroisopropyl)ether --

ource 1995 1995 1995	Analytical Method SW8270 SW8270 SW8270	Lab Matrix S S	Result	Conc (a) 0.00654 0.14326	F1ag ND ND	DL 0.0152 0.1670 0.0172	Units mg/kg mg/kg	Lab Footnote
_	SW8270	လ		0.00209	₽	0.0180	mg/kg	

ď

Random uniform numbers, between zero and the lesser of the minimum result a a.

N = 4

Site=Southeast Runway Method=Organics Analyte=cis-1,3-Dichloropropene ----Footnote Lab Units mg/kg mg/kg mg/kg mg/kg .000673 .000735 .000749 .000839 占 Flag 2222 .00015220 .00048149 .00010746 Est. Conc (a) Result Lab Matrix S S S S Analytical Method SW8240 SW8240 SW8240 SW8240 Data Source 1995 1995 1995 1995

Site=Southeast Runway Method=Organics Analyte=m&p-Xylenes

7 = **2**

Lab Footnote	. × ×
Units	mg/kg mg/kg mg/kg
10	.00162 .00177 .00181
Flag	222
Est. Conc (a)	.00072713 .00047928 .00015908
Result	
Lab Matrix	တ လ လ
Analytical Method	SW8240 SW8240 SW8240
Data Source	1995 1995 1995

a. Random uniform numbers, between zero and the lesser of the minimum result a

File time stamp: 10/18/95 12:07

File: surface.dat

e: 10/18/95 12:08 Curren

Galena Baseline Risk Assessment Surface Soil Data

----- Site=Southeast Runway Method=Organics Analyte=m&p-Xylenes ----

	Lab s Footnote		
	Unit	mg/kg	
	Flag DL	.00202	
	Flag	QN	
(continued)	Est. Conc (a)	.00027713 ND .00202	
Ö	Result		
	Lab Matrix	s	
	Analytica Method	SW8240	
	Data Source	1995	

------- Site=Southeast Runway Method=Organics Analyte=o-Xylene ---

) i			N = 4				
	mg/kg	.000916	2	.00065898		S	SW8240	1995
×	mq/kg	.000819	2	.00026081		S	SW8240	1995
×	mg/kg	.000803	운	.00057848		S	SW8240	1995
	mg/kg	.000735	Q	.00007551		s	SW8240	1995
Footnote	Units	Ы	Flag	(a)	Result	Matrix	Method	Source
del				Est. Conc			Analytical	Data

--- Site=Southeast Runway Method=Organics Analyte=trans-1,2-Dichloroethene ----

Lab Footnote	
Units	mg/kg mg/kg mg/kg mg/kg
10	.00114 .00125 .00127 .00143
Flag	2222
Est. Conc (a)	.00070537 .00021826 .00061685 .00042044
Result	• • • •
Lab Matrix	S S S S S
Analytical Method	SW8240 SW8240 SW8240 SW8240
Data	1995 1995 1995 1995

--- Site=Southeast Runway Method=Organics Analyte=trans-1,3-Dichloropropene ---

N = 4

Lab Footnote	
Units	mg/kg mg/kg mg/kg mg/kg
00	.000634 .000692 .000706
Flag	2222 2222
Est. Conc (a)	.00026928 .00038717 .00014775
Result	
Lab Matrix	w w w w
Analytical Method	SW8240 SW8240 SW8240 SW8240
Data Source	1995 1995 1995 1995

Galena Baseline Risk Assessment Subsurface Soil Data

-- Site=Southeast Runway Method=Inorganics Analyte=Lead --

----- Site=Southeast Runway Method=Organics Analyte=1,1,2-Trichloroethane

Lab Footnote							
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
DL	.001010	.000813	.000845	.004660	.000841	.001930	
Flag	QN	S	2	ջ	욷	Q	
Est. Conc (a)	.0008591	.0005691	.0000144	.0023087	.0007425	.0001706	9 = N
Result			•	•			
Lab Matrix	S	s	S	s	S	S	
Analytical Method	SW8240	SW8240	SW8240	SW8240	SW8240	SW8240	
Data Source	1995	1995	1995	1995	1995	1995	
Lab Footnote	s	s	s				
Lab Units Footnote	mg/kg S	mg/kg S	mg/kg S	mg/kg	mg/kg	mg/kg	
"	_	_	_	0.2720 mg/kg	_		
Units	0.0780	0.0703	0.0701	_	0.0717	0.2610	
DL Units F	0.0780	DET 0.0703	DET 0.0701	DET 0.2720 1	DET 0.0717	DET 0.2610	9 11
Flag DL Units F	DET 0.0780	2.90 DET 0.0703	3.28 DET 0.0701	7.32 DET 0.2720	3.52 DET 0.0717	5.96 DET 0.2610	9 # N
Est. Conc (a) Flag DL Units F	3.36 DET 0.0780	2.90 DET 0.0703	3.28 DET 0.0701	7.32 DET 0.2720	3.52 DET 0.0717	5.96 DET 0.2610	9
Est. Conc Result (a) Flag DL Units F	3.36 DET 0.0780	S 2.90 2.90 DET 0.0703	\$ 3.28 3.28 DET 0.0701	S 7.32 7.32 DET 0.2720	S 3.52 3.52 DET 0.0717	S 5.96 5.96 DET 0.2610	N = 6

----- Site=Southeast Runway Method=Organics Analyte=1,1-Dichloroethane --------- Site=Southeast Runway Method=Organics Analyte=1,1,1-Trichloroethane ----

Units Footnote ᆷ Flag Est. Conc (a) Result Matrix Lab Analytical Method Data Source Units Footnote 굽 Flag Est. Conc (a) Result Matrix Analytical Method Data Source

SW8240 SW8240 SW8240 SW8240 SW8240 SW8240 1995 1995 1995 1995 1995 mg/kg mg/kg mg/kg mg/kg mg/kg .000788 .000819 .004520 .000815 000981 22222 .0006670 .0001078 .0041964 .0007382 0000380 SW8240 SW8240 SW8240 SW8240 SW8240 SW8240 SW8240 1995 1995 1995 1995 1995

----- Site=Southeast Runway Method=Organics Analyte=1,1-Dichloroethene ------

--- Site=Southeast Runway Method=Organics Analyte=1,1,2,2-Tetrachloroethane ---

9

9 " **X**

mg/kg mg/kg mg/kg mg/kg mg/kg

.00133 .00107 .00111 .00614 .00111

22222

.0008420 .0000402 .0055499 .0004542

0004852

-4 1	Footnote						
	Units	ma/ka	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	DL	.000933	.000750	.000780	.004300	.000776	.001780
	Flag	2	S	2	S	웆	S
Est.	(a)	.0005712	.0006230	.0006201	.0001042	.0000410	.0011529
	Result	•		•		•	•
- - -	Matrix	S	S	S	s	s	S
Analytical	Method	SW8240	SW8240	SW8240	SW8240	SW8240	SW8240
+	Source	1995	1995	1995	1995	1995	1995
-	Footnote						
<u>,</u>	Lab Units Footnote	ma/ka	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
-	"		.00112 mg/kg				
;	"						
	DL Units F	ND .00140		ND .00117	ND . 00644	ND .00116	ND .00267
	Flag DL Units F	ND .00140	ND .00112	ND .00117	ND . 00644	ND .00116	ND .00267
Est.	t (a) Flag DL Units F	ND .00140	ND .00112	ND .00117	ND . 00644	ND .00116	ND .00267
Est.	Result (a) Flag DL Units F	S	ND .00112	S	S	S	S

a. Random uniform numbers, between zero and the lesser of the minimum result

Random uniform numbers, between zero and the lesser of the minimum result a ė.

9 ≈ ×

9 iſ

	ane	Lab Footnote							
	loroprop	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
ıt	1,2-Dichl	DL	.000752	.000605	.000629	.003470	.000625	.001440	
ssessme ata	nalyte=	Flag	2	2	2	2	S	2	
Galena Baseline Risk Assessment Subsurface Soil Data	Organics An	Est. Conc (a)	.0006685	.0001863	.0004210	.0029227	.0001906	.0009971	9 = N
a Baseli Subsurfa	Method=(Result	٠						
Galer	t Runway	Lab Matrix	s	s	S	ഗ	S	S	
	Site=Southeast Runway Method=Organics Analyte=1,2-Dichloropropane	Analytical Lab Method Matrix	SW8240	SW8240	SW8240	SW8240	SW8240	SW8240	
	S	Data Source	1995	1995	1995	· 1995	1995	1995	
т	nzene	Lab Footnote							
	chlorobenzene	Lab Units Footnote	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
ent 3	,2,4-Trichlorobenzene	DL Unit					0.0151 mg/kg		
ssessment 3 ata	lyte=1,2,4-Trichlorobenzene	Unit							
ne Risk Assessment ce Soil Data	anics Analyte=1,2,4-Trichlorobenzene	DL Unit		ND 0.0158	ND 0.0164	ND 9.9700	ND 0.0151	ND 0.0497	9 = N
a Baseline Risk Assessment Subsurface Soil Data	thod=Organics Analyte=1,2,4-Trichlorobenzene	Est. Conc Result (a) Flag DL Unit	ND 0.0196	ND 0.0158	ND 0.0164	ND 9.9700	ND 0.0151	ND 0.0497	N = 6
Galena Baseline Risk Assessment Subsurface Soil Data	unway Method=Organics Analyte=1,2,4-Trichlorobenzene	Est. Lab Conc Matrix Result (a) Flag DL Unit	ND 0.0196	ND 0.0158	ND 0.0164	ND 9.9700	ND 0.0151	ND 0.0497	9 = N
Galena Baseline Risk Assessment Subsurface Soil Data	Site=Southeast Runway Method=Organics Analyte=1,2,4-Trichlorobenzene	Est. Conc Result (a) Flag DL Unit	s . 0.00373 ND 0.0196	S . 0.01010 ND 0.0158	S . 0.00400 ND 0.0164	S 0.50618 ND 9.9700	ND 0.0151	S . 0.00703 ND 0.0497	9 = N

----- Site=Southeast Runway Method=Organics Analyte=1,3-Dichlorobenzene Footnote ----- Site=Southeast Runway Method=Organics Analyte=1,4-Dichlorobenzene Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg 0.0127 0.0102 0.0106 10.3000 0.0156 0.0514 겁 Flag 22222 0.01232 0.00608 0.00337 0.61411 0.01392 0.00031 Est. Conc (a) 9 = **N** Result Lab Matrix S S S S S S Analytical Method SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 Data Source 1995 1995 1995 1995 1995 ----- Site-Southeast Runway Method=Organics Analyte=1,2-Dichloroethane ---------- Site=Southeast Runway Method=Organics Analyte=1,2-Dichlorobenzene Footnote Lab Units mg/kg mg/kg mg/kg 0.0113 0.0091 0.0095 10.4000 0.0157 ᆸ Flag 22222 0.00875 0.00369 0.72413 0.00342 Est. Conc (a) 0.003879 = Result Lab Matrix Analytical Method SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 Data Source 1995 1995 1995 1995 1995 1995

<u>. </u>		
Units	mg/kg mg/kg mg/kg mg/kg mg/kg	
٦٦	0.0151 0.0122 0.0126 14.7000 0.0222 0.0732	
Flag		
Est. Conc (a)	0.0033 0.0109 0.0032 14.1131 0.0209	9 # N
Result		
Lab Matrix	თ თ თ თ თ თ	
Analytical Method	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270	
Data Source	1995 1995 1995 1995 1995	
Lab Footnote		
Units	mg/kg mg/kg mg/kg mg/kg mg/kg	
20	.000964 .000775 .000805 .004440 .000801	
Flag	222222	
Est. Conc (a)	.0000302 .0004278 .0006903 .0036894 .0006478	9 = N
Result		
Lab Matrix	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
Analytical Method	SW8240 SW8240 SW8240 SW8240 SW8240 SW8240	
Data Source	1995 1995 1995 1995 1995	

Footnote

Lab

Random uniform numbers, between zero and the lesser of the minimum result a

œ.

File time stamp: 10/18/95 12:08

File: subsurface.dat

a. Random uniform numbers, between zero and the lesser of the minimum result a

Galena Baseline Risk Assessment Subsurface Soil Data

Galena Baseline Risk Assessment Subsurface Soil Data

	Lab Footnote		
thylpheno	Units F	mg/kg mg/kg mg/kg mg/kg mg/kg	
2,4-Dime	DF	0.0344 0.0277 0.0288 15.5000 0.0235	
าลไyte≖	Flag		
ganics Ar	Est. Conc (a)	0.0138 0.0062 0.0157 12.8255 0.0130	9 =
Method=Or	Result		Z
: Runway	Lab Matrix	w w w w w	
Site=Southeast Runway Method=Organics Analyte=2,4-Dimethylphenol	Analytical Method	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270	
Si	Data Source	1995 1995 1995 1995 1995 1995	
lorophenol	Lab s Footnote		
chloro	Units	mg/kg mg/kg mg/kg mg/kg mg/kg	
2,4,5-Tri	10	0.0195 0.0157 0.0163 7.2800 0.0110	
alyte=	Flag	SSSSS	
ganics An	Est. Conc (a)	0.01524 0.00346 0.01241 3.46076 0.00339 0.00795	ص ا عد
ethod=0r	Result	· · · · · · ·	
Runway M	Lab Matrix	w w w w w	
Site=Southeast Runway Method=Organics Analyte=2,4,5-Trichl	Analýtical Method M	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270	
Sit	Data Source	1995 1995 1995 1995 1995 1995	

-	Lab Footnote		96
itrophen	Units	mg/kg mg/kg mg/kg mg/kg mg/kg	trotoluer
=2,4-Din	DF	0.0583 0.0470 0.0488 30.1000 0.0455 0.1500	2,4-Dini
Analyte	Flag	22222	nalyte=
rganics /	Est. Conc (a)	0.0015 0.0391 0.0351 18.0890 0.0320 0.0618	ganics Ar
Method=(Result		Method=Or
st Runway	Lab Matrix	ល ល ល ល ល ល	: Runway
Site=Southeast Runway Method=Organics Analyte=2,4-Dinitrophenol	Analytical Method	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270	Site=Southeast Runway Method=Organics Analyte=2,4-Dinitrotoluene -
S	Data Source	1995 1995 1995 1995 1995	Si
eno]	Lab Footnote	×	
chlorop	Units	mg/kg mg/kg mg/kg mg/kg mg/kg	orophenol
2,4,6-Trichlorop		0.0138 mg/kg 0.0112 mg/kg 0.0116 mg/kg 16.2000 mg/kg 0.0245 mg/kg 0.0808 mg/kg	-2,4-Dichloropheno
alyte=2,4,6-Trichlorop	Units		nalyte=2,4-Dichloropheno
ganics Analyte=2,4,6-Trichlorop	DL Units	0.0138 0.0112 0.0116 16.2000 0.0245 0.0808	rganics Analyte=2,4-Dichloropheno
ethod=Organics Analyte=2,4,6-Trichlorop	Est. Conc Result (a) Flag DL Units	ND 0.0138 ND 0.0112 ND 0.0116 ND 16.2000 ND 0.0245 ND 0.0808	Method=Organics Analyte=2,4-Dichloropheno
Runway Method=Organics Analyte=2,4,6-Trichlorop	Est. Conc (a) Flag DL Units	ND 0.0138 ND 0.0112 ND 0.0116 ND 16.2000 ND 0.0245 ND 0.0808	Runway Method=Organics Analyte=2,4-Dichloropheno
Site=Southeast Runway Method=Organics Analyte=2,4,6-Trichlorophenol	Est. Conc Result (a) Flag DL Units	ND 0.0138 ND 0.0112 ND 0.0116 ND 16.2000 ND 0.0245 ND 0.0808	s Analyte=2,4-Dichl

ene	Lab Footnote		٠
rrotolu	Units	mg/kg mg/kg mg/kg mg/kg	fill / fill
=2,4-U1n	DF	0.0255 0.0206 0.0214 9.1600 0.0139	6.0
nalyte	Flag	999999	≧
rganics Al	Est. Conc (a)	0.00225 0.01609 0.02020 2.64429 0.01140	0.02/31 = 6
Metriod=Ul	Result		
L Kullway	Lab Matrix	๛๛๛๛๛	,
31te-30utileast Kullway Metrion=Urganics Analyte=∠,4-Ulnitrotoluene ~-	Analytical Method	SW8270 SW8270 SW8270 SW8270 SW8270	
16	Data Source	1995 1995 1995 1995 1995	
opriellot	Lab Units Footnote	mg/kg mg/kg mg/kg mg/kg	n
-	ם ר	0.01560 m 0.01250 m 0.01300 m 5.65000 m 0.00855 m	
a y cer	Flag	22222	}
r Sallas	Est. Conc (a)	0.01297 0.00846 0.00426 4.96346 0.00199	9 = 8
	Result		•
formula i	Lab Matrix	w w w w w	•
orce-southeast maintag method-organics maryte-tit-orch	Analytical Method M	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270	
5	Data Source	1995 1995 1995 1995 1995	
	Sot		

a. Random uniform numbers, between zero and the lesser of the minimum result a

a. Random uniform numbers, between zero and the lesser of the minimum result a

æ

Galena Baseline Risk Assessment Subsurface Soil Data Galena Baseline Risk Assessment Subsurface Soil Data

Runway Method=Organics Analyte=2-Chloronaphthalene -----Footnote mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg 0.0353 0.0284 0.0295 12.2000 0.0184 0.0607 ᆸ Flag 222<u>2</u>22 0.00211 0.02348 0.02880 3.5337 0.01410 Est. Conc (a) 9 Result Matrix Lab S S S S S S ----- Site=Southeast Analytical Method SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 Data Source 1995 1995 1995 1995 1995 Footnote Lab ----- Site=Southeast Runway Method=Organics Analyte=2,6-Dinitrotoluene Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg 0.0204 0.0164 0.0171 19.8000 0.0299 0.0986 Flag 22222 0.00131 2.53405 0.02629 0.02096 01569 0.01569 0.00467Conc Est. (a) 9 Result Matrix Lab S S S S S S Analytical SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 Method Source Data 1995 1995 1995 1995 1995 1995

Site=Southeast Runway Method=Organics Analyte=2-Chlorophenol Site=Southeast Runway Method=Organics Analyte=2-Butanone(MEK)

님 Flag Est. Conc (a) Result Lab Matrix Lab Est. Conc

Footnote

mg/kg mg/kg mg/kg mg/kg mg/kg

0.0105 0.0110 10.7000 0.0162 0.0534

22222

0.00632 0.00869 0.00415 1.38567 0.01367

S S S S S S Analytical Method SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 Data Source 1995 1995 1995 1995 1995 Footnote Units 00468 ᆸ Flag NO GET .001706 (a) 0.0609 Result Lab Matrix S S S S S S Analytical Method SW8240 SW8240 SW8240 SW8240 SW8240 SW8240 Source 1995 11995 11995 11995 11995

mg/kg mg/kg mg/kg mg/kg mg/kg 0.00376 0.00391 0.02160 0.00389 0.00894 0.003737 0.001195 0.060900 0.018100 -- Site=Southeast Runway Method=Organics Analyte=2-Chloroethyl vinyl ether

9

11

Result Matrix Lab Analytical Method SW8240 SW8240 SW8240 SW8240 SW8240 SW8240 Data Source 1995 1995 1995 1995 1995 Footnote Lab mg/kg mg/kg mg/kg mg/kg mg/kg Units .000868 .000902 .004970 .000897 님 Flag 22222 .0006157 .0003539 .0038380 .0004970 0001267 Est. Conc (a) Result Lab Matrix S S S S S S Analytical Method SW8240 SW8240 SW8240 SW8240 SW8240 SW8240 SW8240 Data Source 1995 1995 1995 1995 1995

Footnote

Units

Flag

Conc (a)

Est.

mg/kg mg/kg

mg/kg mg/kg mg/kg

0.00320 占

0026856

0.00258 0.00268 0.01480 0.00266

999999

.0022717 .0022437 .0057144 .0003168

9

Lab

Site=Southeast Runway Method=Organics Analyte=2-Hexanone

9 = N

9 н

Random uniform numbers, between zero and the lesser of the minimum result a a.

Random uniform numbers, between zero and the lesser of the minimum result a ъ

me: 10/18/95 12:08 Curre

File time stamp: 10/18/95 12:08

File: subsurface.dat

Galena Baseline Risk Assessment

Galena Baseline Risk Assessment Subsurface Soil Data

	rophenol	Lab Units Footnote	mg/kg	mg/kg	mg/kg	mg/kg .	mg/kg	mg/kg	
	∕te=2-Nit	DL	0.0329	0.0265	0.0275	11.8000	0.0178	0.0586	
ıta	s Analy	Flag	2	2	S	2	2	2	
Subsurface Soil Data	d≃Organics	Est. Conc (a)	0.02647	0.00513	0.01386	0.77920	0.00110	0.05615	9 = 8
Subsurfac	ay Methoc	Result						٠	-
	ast Runw	Lab Matrix	S	s	s	s	s	s	
	Site=Southeast Runway Method=Organics Analyte=2-Nitrophenol	Analytical Method	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Data Source	1995	1995	1995	1995	1995	1995	
	alene	Lab Footnote							
	naphth	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
	=2-Methyl	DF	0.0248	0.0200	0.0208	15.7000	0.0238	0.0784	
ata	nalyte	Flag	S	웆	용	DET	DET	DET	
Subsurface Soil Data	rganics A	Est. Conc (a)	0.018	0.016	0.004	235.000	0.027	13.200	9 = N
Subsurfac	Method=0≀	Result				235.000	0.027	13.200	-
	t Runway	Lab Matrix	S	s	s	S	S	s	
	Site=Southeast Runway Method=Organics Analyte=2-Methylnaphthalene	Analytical Method	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	
		Data Source							

				ф 6									Fet				
Data Source	Analytical Method	Lab Matrix	Result	Conc (a)	Flag	0	Units	Lab Footnote	Data Source	Analytical Method	Lab Matrix	Result	Conc (a)	Flag	ΟΓ	Units	Lab Footnote
				•													
1995	SW8270	S		0.00180		0.00977			1995	SW8270	s	•	0.02173	욷	0.0280	mg/kg	
1995	SW8270	S		0.00292		0.00787			1995	SW8270	s		0.01984	Ş	0.0226	mg/kg	
1995	SW8270	S		0.00568		0.00818			1995	SW8270	s	•	0.00172	2	0.0235	mg/kg	
1995	SW8270	S		4.59251	2	7.06000			1995	SW8270	s	•	3.79664	2	7.1800	mg/kg	
1995	SW8270	S		0.00745		0.01070			1995	SW8270	s	٠	0.00103	2	0.0109	mg/kg	
1995	SW8270	s		0.01561	2	0.03520	mg/kg		1995	SW8270	S		0.02252	2	0.0358	mg/kg	
				و ا ح									9 = N				
1	Site=Southeast Runway Method=Organics Analyte=2-Nitroar	ast Runwa	ay Method	1=0rganics	; Analy	te=2-Nitr	oaniline		1 1 1	Site=Southeast Runway Method=Organics Analyte=3-Nitroaniline	st Runwa	y Method	=Organics	Analy	te=3-Nit	roanili	ne

	Lab Footnote							
	Units F	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
	DF	0.01160	0.00936	0.00973	9.99000	0.01510	0.04980	
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Flag	S			2	2	Q	
2011	Est. Conc (a)	0.00130	0.00279	0.00665	5.38572	0.01403	0.04408	9 =
5	Result			•	•	٠		_
	Lab Matrix	,s	S	S	S	s	S	
	Analytical Method	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	
	Data Source	1995	1995	1995	1995	1995	1995	
	Lab s Footnote							
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
1	DL	0.02320						
	Flag	2	S	욷	S	운	9	
2011	Est. Conc (a)	0.00162	0.01009	0.01876	4.08886	0.00301	0.00735	9 = N
	Result	•		•		•	•	
Common 30	Lab Matrix	s	S	s	S	S	S	
	Analytical Method	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	
	Data Source	1995	1995	1995	1995	1995	1995	

a. Random uniform numbers, between zero and the lesser of the minimum result a

a. Random uniform numbers, between zero and the lesser of the minimum result a

Galena Baseline Risk Assessment Subsurface Soil Data

Site=Southeast Runway Method=Organics Analyte=4-Chloroaniline	Est. Data Analytical Lab Conc Source Method Matrix Result (a) Flag DL Units Footnote	1995 SW8270 S 0.01151 ND 0.0313 mg/kg 1995 SW8270 S 0.01393 ND 0.0252 mg/kg 1995 SW8270 S 0.00662 ND 0.0262 mg/kg 1995 SW8270 S 7.65935 ND 9.970 mg/kg 1995 SW8270 S 0.01316 ND 0.0151 mg/kg 1995 SW8270 S 0.04314 ND 0.0497 mg/kg	9 " 2
Site=Southeast Runway Method=Organics Analyte=4,6-Dinitro-2-methylphenol	Est. Data Analytical Lab Conc Source Method Matrix Result (a) Flag DL Units Footnote	1995 SW8270 S 0.0106 ND 0.0155 mg/kg 1995 SW8270 S 0.0013 ND 0.0125 mg/kg 1995 SW8270 S 34:5352 ND 92.3000 mg/kg 1995 SW8270 S 0.0856 ND 0.1400 mg/kg 1995 SW8270 S 0.3431 ND 0.4600 mg/kg	9 11 N

Site=Southeast Runway Method=Organics Analyte=4-Chlorophenyl phenyl ether ! Site=Southeast Runway Method=Organics Analyte=4-Bromophenyl phenyl ether

i

Footnote Units 0.0087 0.0070 0.0073 15.1000 0.0229 님 Flag 22222 0.00842 0.00106 0.00183 2.33710 0.00380 Est. Conc (a) Result Matrix 888888 Analytical Method Data Source Lab Footnote Units Flag Est. Conc (a) Result Lab Matrix Analytical Method

1995 1995 1995 1995 1995 mg/kg mg/kg mg/kg mg/kg 0.0145 0.0150 8.6600 0.0131 22222 0.01147 0.00127 0.00909 2.54686 0.01141 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 Data Source 1995 1995 1995 1995 1995

9 п

Site=Southeast Runway Method=Organics Analyte=4-Methyl-2-pentanone(MIBK) Site=Southeast Runway Method=Organics Analyte=4-Chloro-3-methylphenol

II z

SW8270 SW8270 SW8270

SW8270 SW8270

mg/kg mg/kg mg/kg mg/kg mg/kg

Footnote Units mg/kg mg/kg mg/kg mg/kg mg/kg 0.00238 0.01310 0.00237 0.00543 0.00285 占 Flag 22222 .0098988 .0023177 .0031027 .0002243 .0002839 Conc (a) Est. Result Matrix E B Analytical Method SW8240 SW8240 SW8240 SW8240 SW8240 Data Source 1995 1995 1995 1995 1995 Footnote Lab mg/kg mg/kg mg/kg mg/kg 0.02780 0.02240 0.02330 4.34000 0.00657 0.02160 占 22222 0.01928 0.01240 0.00888 2.26962 0.00429 Est. Conc (a) Result Matrix Lab Analytical Method SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 Source Data 1995 1995 1995 1995 1995

9 =

9 = N

Random uniform numbers, between zero and the lesser of the minimum result a

٠ ت

File time stamp: 10/18/95 12:08

File: subsurface.dat

9

Random uniform numbers, between zero and the lesser of the minimum result a ъ,

mg/kg mg/kg mg/kg mg/kg

0.0281 0.0227 0.0236 10.3000 0.0156 0.0515

0.02467 0.01804 0.01380 0.16303 0.01407 0.22500

888888

SW8270 SW8270 SW8270 SW8270 SW8270 SW8270

1995 1995 1995 1995 1995

mg/kg mg/kg mg/kg mg/kg mg/kg

0.0208 0.0168 0.0174 9.5700 0.0145

22222

0.01618 0.01670 0.00044 3.64885 0.01429 0.02336

SW8270 SW8270 SW8270 SW8270 SW8270

1995 1995 1995 1995 1995 1995

SW8270

9 11

z

9 ■ N

0.225

. 14	Site=Southeast Runway Method=Organics Analyte=Acenaphthene	Lab DL Units Footnote
ent	yte=Ace	
Assessm Data	cs Anal	Est. Conc (a) Flag
e Risk e Soil	l≂0rgani	Est. Conc (a)
Galena Baseline Risk Assessment Subsurface Soil Data	ray Methoc	Result
Galer	ast Run	Lab Matrix
	Site=Southe	Data Analytical Lab Source Method Matrix Result
		Data Source
13	1	
13	thylphenol -	Lab Footnote
13	ol/3-Methylphenol -	Lab Units Footnote
	thylphenol/3-Methylphenol -	
	te=4-Methylphenol/3-Methylphenol -	Lab Flag DL Units Footnote
	s Analyte=4-Methylphenol/3-Methylphenol -	
	d=Organics Analyte=4-Methylphenol/3-Methylphenol -	Est. Conc (a) Flag DL
Galena Baseline Risk Assessment 13 Subsurface Soil Data	ay Method=Organics Analyte=4-Methylphenol/3-Methylphenol -	Est. Conc (a) Flag DL
	Site=Southeast Runway Method=Organics Analyte=4-Methylphenol/3-Methylphenol -	Flag DL

Footnote ---- Site=Southeast Runway Method=Organics Analyte=Acenaphthylene -----Lab mg/kg mg/kg mg/kg mg/kg mg/kg 0.0200 0.0161 0.0167 9.2600 0.0140 Flag 22222 0.00996 0.01361 0.00074 8.42780 0.00031 Est. Conc (a) 9 = 2 Result Matrix Lab S S S S S S Analytical Method SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 Source 1995 1995 1995 1995 1995 Data Footnote Site=Southeast Runway Method=Organics Analyte=4-Nitroaniline ----Lab Units mg/kg mg/kg mg/kg mg/kg mg/kg 0.0256 0.0207 0.0215 9.8300 0.0149 占 Flag 22222 0.01088 0.01445 0.01592 6.17652 0.01020 Est. Conc (a) 11 ć Result ţ Lab Matrix Analytical Method SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 Data Source 1995 1995 1995 1995 1995

-	Lab Footnote	r.	
etone -	Units	mg/kg mg/kg mg/kg mg/kg mg/kg	
nalyte=Ac	ы	0.00596 0.00479 0.00498 0.02750 0.00495	
ınics A	Flag	ND ND DET DET OET	
thod=0rga	Est. Conc (a)	0.00143 0.00048 0.00315 0.17500 0.09440	9 = R
Runway Me	Result	0.00315 0.17500 0.09440	
outheast	Lab Matrix	w w w w w w	
Site=Southeast Runway Method=Organics Analyte=Acetone	Analytical Method	SW8240 SW8240 SW8240 SW8240 SW8240 SW8240	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Data Source	1995 1995 1995 1995 1995 1995	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Lab s Footnote		
tropheno	Units	mg/kg mg/kg mg/kg mg/kg mg/kg	
4-Nit		0.0501 0.0404 0.0420 10.2000 0.0155	
yte=	חם	000000	
s Analyte=	Flag DL		
d=Organics Analyte=	Flag		9 = N
ay Method=Organics Analyte=	Est. Conc Result (a) Flag	0.04332 ND 0.00811 ND 0.02350 ND 0.88091 ND 0.00254 ND 0.00066 ND	9 = N
east Runway Method=Organics Analyte=	Est. Conc Result (a) Flag	0.04332 ND 0.00811 ND 0.02350 ND 0.88091 ND 0.00254 ND 0.00066 ND	9 11 22
Site=Southeast Runway Method=Organics Analyte=4-Ni	Est. Analytical Lab Conc Method Matrix Result (a) Flag	SW8270 S 0.04332 ND SW8270 S 0.00811 ND SW8270 S 0.02350 ND SW8270 S 0.088091 ND SW8270 S 0.00254 ND SW8270 S 0.00056 ND	9 " N
Site=Southeast Runway Method=Organics Analyte=	Est. Analytical Lab Conc Method Matrix Result (a) Flag	0.04332 ND 0.00811 ND 0.02350 ND 0.88091 ND 0.00254 ND 0.00066 ND	9 II N

o

Random uniform numbers, between zero and the lesser of the minimum result a ъ.

Random uniform numbers, between zero and the lesser of the minimum result a a.

Galena Baseline Risk Assessment Subsurface Soil Data

Data Source 1995 1995 1995 1995	Analytical Method SW8270 SW8270 SW8270 SW8270 SW8270 SW8270	Lab Matrix S S S S S	Result	Est. Conc (a) 0.01520 0.00425 0.01227 3.55557 0.01767	Flag ND ND ND ND ND	DL 0.0270 0.0218 0.0227 12.5000 0.0188	Units mg/kg mg/kg mg/kg mg/kg	Lab Footnote	Data Source 1995 1995 1995 1995 1995	Analytical Method SW8270 SW8270 SW8270 SW8270 SW8270 SW8270	Lab Matrix S S S	Result	Est. Conc (a) 0.0030 0.0097 0.0137 10.9488 0.0175	Flag ND ND ND ND .	DL 0.0217 0.0175 0.0182 14.3000 0.0217	Units mg/kg mg/kg mg/kg mg/kg	Lab Footnote
	S = S $S = S$ S $S = S$ $S = S$ $S = S$ S $S = S$ S S S S S S S S S	7		9 = N			A /A		0 0	$\theta = N$)		9				į

Site=Southeast Runway Method=Organics Analyte=Benzo(g,h,i)perylene -----Units mg/kg mg/kg mg/kg 0.0476 0.0383 0.0399 12.9000 0.0195 占 Flag 22222 0.04708 0.02083 0.00552 7.00672 0.00290 Est. Conc (a) 9 " " Result Lab Matrix S S S S S S Analytical Method SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 Data Source 1995 1995 1995 1995 1995 ----- Site=Southeast Runway Method=Organics Analyte=Benzo(a)anthracene Footnote Lab Units mg/kg mg/kg mg/kg mg/kg mg/kg .001070 .000861 .000894 .004930 .000890 Ы Flag 22222 0.00023 0.00008 0.00008 0.33600 0.00020 Est. Conc (a) 9 = N 0.336 Result Lab Matrix Analytical Method SW8240 SW8240 SW8240 SW8240 SW8240 SW8240 Data Source 1995 1995 1995 1995 1995 1995

Footnote

Lab

		Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		占	0.0271	0.0218	0.0227	17.7000	0.0269	0.0885
		Flag	2	2	2	2	2	2
Est.	Conc	(a)	0.01180	0.01426	0.01083	8.48759	0.00307	0.03979
		Result			•	•		
	Lab	Matrix	S	S	တ	S	S	S
	Analytical	Method	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270
	Data	Source	1995	1995	1995	1995	1995	1995
	Lab	Footnote						
		Units	mg/kg	mg/kg	mg/kg	ma/ka	mg/kg	mg/kg
		ᆸ	0.0264	0.0213	0.0222	13.7000	0.0207	0.0682
		Flag	2	2	2	2	2	2
Est.	Conc	(a)	0.0224	0.0037	0.0099	11.7692	0.0067	0.0676
		Result	•			•	•	•
	Lab	Matrix	s	S	S	<i>လ</i>	S	S
	Analytical	Method	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270
	Data	Source	1995	1995	1995	1995	1995	1995

Footnote

Lab

Random uniform numbers, between zero and the lesser of the minimum result a

a.

Random uniform numbers, between zero and the lesser of the minimum result a . . m

9 = N

9

z

File time stamp: 10/18/95 12:08 File: subsurface.dat

Curr

ime: 10/18/95 12:08

æ Page Galena Baseline Risk Assessment Subsurface Soil Data

Galena Baseline Risk Assessment Subsurface Soil Data

Footnote Lab ---- Site=Southeast Runway Method=Organics Analyte=Bromodichloromethane mg/kg mg/kg mg/kg mg/kg .000776 .000806 .004450 .000802 96000 ద Flag 22222 .0005319 .0004593 .0004259 .0030083 .0005807 .0008585 Est. Conc (a Result Matrix Lab Analytical Method SW8240 SW8240 SW8240 SW8240 SW8240 SW8240 Data Source 1995 1995 1995 1995 1995 ----- Site=Southeast Runway Method=Organics Analyte=Benzo(k)fluoranthene -----Footnote Lab Units mg/kg mg/kg mg/kg mg/kg mg/kg 0.0767 0.0618 0.0643 22.4000 0.0339 0.1120 ᆸ Flag 22222 0.00754 0.00354 0.03509 9.34825 0.03101 0.06262 Conc (a) Est. Result Matrix SSSSSS Analytical SW8270 SW8270 SW8270 SW8270 SW8270 Method

Source

1995 1995 1995 1995 1995 1995

9 = **N**

9 #

Footnote ---- Site=Southeast Runway Method=Organics Analyte=Butylbenzylphthalate Site=Southeast Runway Method=Organics Analyte=Bromomethane mg/kg mg/kg mg/kg mg/kg mg/kg .00132 .00106 .00110 .00608 .00110 ద Flag 22222 .0023639 .0008713 .0004915 .0009957 0007872 Est. Conc (a) 9= Result Matrix S S S S S S Analytical Method SW8240 SW8240 SW8240 SW8240 SW8240 SW8240 SW8240 Source 1995 1995 1995 1995 1995 Footnote Site=Southeast Runway Method=Organics Analyte=Benzyl alcohol Site=Southeast Runway Method=Organics Analyte=Benzoic acid Units mg/kg mg/kg mg/kg mg/kg mg/kg 0.277 0.223 0.232 144.000 0.218 0.717 ద Flag 22222 0.005 0.020 0.041 140.917 0.129 0.175 Est. Conc (a) 9 Result Lab Matrix S S S S S S Analytical Method SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 Data Source 1995 1995 1995 1995 1995 1995

Lab Footnote		
Units	mg/kg mg/kg mg/kg mg/kg mg/kg	
10	0.0098 0.0079 0.0082 15.1000 0.0228	
Flag	222222	
Est. Conc (a)	0.0011 0.0022 0.0033 13.0985 0.0189	9
Result		_
Lab Matrix	N N N N N N	
Analytical Method	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270	
Data Source	1995 1995 1995 1995 1995	
Lab Footnote		
Units	mg/kg mg/kg mg/kg mg/kg mg/kg	
10	0.0266 0.0214 0.0223 26.5000 0.0401	
Flag	22222	
Est. Conc (a)	0.0020 0.0201 0.0193 12.3978 0.0269 0.0808	<u>ن</u>
Result		~
Lab Matrix	w w w w w	
Analytical Method	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270	
Data Source	1995 1995 1995 1995 1995 1995	

Page 9

Current time: 10/18/95 12:08

Random uniform numbers, between zero and the lesser of the minimum result a

Random uniform numbers, between zero and the lesser of the minimum result a . 7

!	Lab S Footnote	·
thane	Units Foo	787 kg 197 kg 197 kg 197 kg 197 kg
e=Chloroe	Dt. 10	.00107 .00101 .00614 .00111
Analvt	Flag	22222
d=Organics	Est. Conc (a)	. 0004427 . 0004435 . 0031341 . 0003570 . 0024888
ay Metho	Result	
ast Runw	Lab Matrix S	w w w w w
Site=Southeast Runway Method=Organics Analyte=Chloroethane	Analytical Method SW8240	SW8240 SW8240 SW8240 SW8240 SW8240
	Data Source 1995	1995 1995 1995 1995
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Lab s Footnote q	
isu]fide	Units mq/kq	mg/kg mg/kg mg/kg mg/kg
Carbon d	DL .000931	.000748 .000778 .004290 .000773
nalyte=	Flag	22222
-Organics A	Est. Conc (a)	.00065888 .00005179 .00030596 .00046447 .00018619 N = 6
y Method≘	Result	
st Runway Method≔	Lab Matrix Result S .	ω ω ω ω ω
Site=Southeast Runway Method=Organics Analyte=Carbon disulfide	Data Analytical Lab Source Method Matrix Result 1995 SW8240 S .	SW8240 S SW8240 S SW8240 S SW8240 S SW8240 S

------ Site=Southeast Runway Method=Organics Analyte=Chloroform -------

----- Site=Southeast Runway Method=Organics_Analyte=Carbon tetrachloride -----

Est. Data Analytical Lab Conc Source Method Matrix Result (a) Flag DL Units Footnote	1995 SW8240 S	Site=Southeast Runway Method=Organics Analyte=Chloromethane	
Est. Data Analytical Lab Conc Source Method Matrix Result (a) Flag DL Units Footnote	1995 SW8240 S0001715 ND001050 mg/kg 1995 SW8240 S0005462 ND000846 mg/kg 1995 SW8240 S0005307 ND000879 mg/kg 1995 SW8240 S0013167 ND004850 mg/kg 1995 SW8240 S0006808 ND002010 mg/kg 1995 SW8240 S0006808 ND002010 mg/kg	Site=Southeast Runway Method=Organics Analyte=Chlorobenzene	411

Lab -ootnote		
Units 1	mg/kg mg/kg mg/kg mg/kg mg/kg	
DF.	001170 000937 000974 005370 000968	
Flag		
Est. Conc (a)	.0010444 .0001778 .0004880 .0027262 .0001631	9 = N
Result	· · · · · ·	
Lab Matrix	w w w w w	
Analytical Method	SW8240 SW8240 SW8240 SW8240 SW8240 SW8240	
Data Source	1995 1995 1995 1995 1995	
Lab Footnote		
Units	mg/kg mg/kg mg/kg mg/kg mg/kg	
10	.000956 .000769 .000799 .004410 .000795	
Flag		
Est. Conc (a)	.0008675 .0004174 .0001617 .0033067 .0007424	9 = N
Result		
Lab Matrix	ស ស ស ស ស ស	
Analytical Method	SW8240 SW8240 SW8240 SW8240 SW8240 SW8240	
Data Source	1995 1995 1995 1995 1995 1995	

a. Random uniform numbers, between zero and the lesser of the minimum result a

File time stamp: 10/18/95 12:08

File: subsurface.dat

a. Random uniform numbers, between zero and the lesser of the minimum result a

Galena Baseline Risk Assessment Subsurface Soil Data

21

1	Lab Footnote							
zofuran	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
te=Diben	DL	0.0209	0.0169	0.0176	14.8000	0.0224	0.0737	•
s Analy	Flag	Ş	욷	2	Ş	2	S	
l=Organic:	Est. Conc (a)	0.0080	0.0139	0.0033	11.1933	0.0223	0.0475	9 =
ay Methoc	Result					•		_
east Runw	Lab Matrix	s	S	S	'n	S	S	
Site=Southeast Runway Method=Organics Analyte=Dibenzofuran	Analytical Method	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	
	Data Source	1995	1995	1995	1995	1995	1995	
	Lab Footnote							
/sene	Lab Units Footnote	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
alyte≕Chrysene	Lab DL Units Footnote					0.0222 mg/kg		
nics Analyte=Chrysene	Lab Flag DL Units Footnote							
hod=Organics Analyte=Chrysene	DL Units		ND 0.0284	ND 0.0295	ND 14.7000	ND 0.0222	ND 0.0732	. 9 2
nway Method=Organics Analyte=Chrysene	. Flag DL Units	ND 0.0352	ND 0.0284	ND 0.0295	ND 14.7000	ND 0.0222	ND 0.0732	N = 6
heast Runway Method=Organics Analyte=Chrysene	Est. Conc atrix Result (a) Flag DL Units	ND 0.0352	ND 0.0284	ND 0.0295	ND 14.7000	ND 0.0222	ND 0.0732	. (9 11 Z
Site=Southeast Runway Method=Organics Analyte=Chrysene	Est. Conc Result (a) Flag DL Units	ND 0.0352	S . 0.0181 ND 0.0284	S . 0.0189 ND 0.0295	S12.0061 ND 14.7000	S . 0.0184 ND 0.0222	S . 0.0679 ND 0.0732	. 9 = Z

Site=Southeast Runway Method=Organics Analyte=Dibromochloromethane	Est. Data Analytical Lab Conc Lab Source Method Matrix Result (a) Flag DL Units Footnote	1995 SW8240 S	Site=Southeast Runway Method=Organics Analyte=Dibutyl phthalate
Site=Southeast Runway Method=Organics Analyte=Di-n-octylphthalate	Est. Data Analytical Lab Conc Conc Source Method Matrix Result (a) Flag DL Units Footnote	1995 SW8270 S . 0.008989 ND 0.0147 mg/kg 1995 SW8270 S . 0.000009 ND 0.0118 mg/kg 1995 SW8270 S . 0.010261 ND 0.0123 mg/kg 1995 SW8270 S . 0.030825 ND 21.5000 mg/kg 1995 SW8270 S . 0.029089 ND 0.0326 mg/kg 1995 SW8270 S . 0.001503 ND 0.1070 mg/kg	Site=Southeast Runway Method=Organics Analyte=Dibenz(a,h)anthracene

Data Analytical Lab Conc Lab Data Analytical Source Method Matrix Result Lab Conc Lab Conc Lab Conc Lab Conc Method Matrix Result Flag DL Units Footnote Method Matrix Matrix Result (a) Flag DL Units Footnote Lab Conc Method Matrix Method Matrix Method Matrix Method Matrix Method Matrix Method Matrix Result (a) Flag DL Units Footnote Lab Conc Method Matrix Result (a) Flag DL Units Footnote Method Matrix Method		Lab	Units Footnote						mg/kg	
Analytical Lab Conc Matrix Result (a) Flag DL Units Footnote Source Method Matrix Result (a) Sw8270 S . 0.0148 ND 0.0258 mg/kg Sw8270 S . 0.0249 ND 0.0268 mg/kg Sw8270 S . 0.0231 ND 0.0268 mg/kg Sw8270 S . 0.0231 ND 0.0278 mg/kg Sw8270 S . 0.0231 ND 0.0278 mg/kg Sw8270 S . 0.02031 ND 0.0278 mg/kg Sw8270 S . 0.02031 ND 0.0278 mg/kg Sw8270 S . 0.02031 ND 0.0278 mg/kg Sw8270 S . 0.02034 Sw8270 S . 0.02034 Sw8270 S . 0.02034 ND 0.0268 mg/kg Sw8270 S . 0.02034			Ы	0.0150	0.0121	0.0125	14.0000	0.0211	0.0696	
Analytical Lab Conc Conc Conc Conc Conc Conc Conc Conc			Flag						9	
Analytical Lab Conc Lab Data Analytical Lab Method Matrix Result (a) Flag DL Units Footnote Source Method Matrix SW8270 S . 0.0148 ND 0.0258 mg/kg 1995 SW8270 S . 0.0249 ND 0.0268 mg/kg 1995 SW8270 S . 0.0221 ND 0.0268 mg/kg 1995 SW8270 S . 0.0231 ND 0.0278 mg/kg 1995 SW8270 S . 0.0231 ND 0.0278 mg/kg 1995 SW8270 S . 0.0231 ND 0.0278 mg/kg 1995 SW8270 S . 0.0207 ND 0.0916 mg/kg SW8270 S . 0.	Est	Conc	(a)	0.00002	0.01062	0.00665	4.65790	0.00018	0.02994	9 " N
Analytical Lab Conc Lab Data Analytical Method Matrix Result (a) Flag DL Units Footnote Source Method Surce Method Swa270 S . 0.0148 ND 0.0258 mg/kg 1995 SW8270 S . 0.0249 ND 0.0258 mg/kg 1995 SW8270 S . 16.9852 ND 18.4000 mg/kg 1995 SW8270 SW8270 S . 0.0231 ND 0.0278 mg/kg 1995 SW8270 SW8270 S . 0.0231 ND 0.0278 mg/kg 1995 SW8270 SW8270 S . 0.0231 ND 0.0278 mg/kg 1995 SW8270 SW8270 S . 0.0207 ND 0.0916 mg/kg 1995 SW8270 SW82			Result			•	•			
Analytical Lab Conc Lab Conc Swethod Matrix Result (a) Flag DL Units Footnote Source Sw8270 S . 0.0148 ND 0.0258 mg/kg Sw8270 S . 0.0249 ND 0.0258 mg/kg 1995 Sw8270 S . 16.9852 ND 18.4000 mg/kg 1995 Sw8270 S . 0.0231 ND 0.0278 mg/kg 1995 Sw8270 S . 0.0231 ND 0.0278 mg/kg 1995 Sw8270 S . 0.0207 ND 18.4000 mg/kg 1995 Sw8270 S . 0.0207 ND 0.0916 mg/kg 1995 Sw8270 S . 0.0207 ND 0.0916 mg/kg 1995 Sw8270 S . 0.0207 ND 0.0916 mg/kg 1995				S	S	S	S	S	S	
Analytical Matrix Result Est. Conc Conc Conc Matrix Flag DL Units Footnote Data Source Source SW8270 S 0.0148 ND 0.0258 mg/kg Mg/kg 1995 1995 1995 1995 1995 1995 1995 1995		Analytical	Method	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	
Analytical Lab Conc Matrix Result (a) Flag DL Units SW8270 S . 0.0148 ND 0.0258 mg/kg SW8270 S . 0.0121 ND 0.0268 mg/kg SW8270 S . 0.0121 ND 0.0268 mg/kg SW8270 S . 16.9852 ND 18.4000 mg/kg SW8270 S . 0.0231 ND 0.0278 mg/kg SW8270 S . 0.0207 ND 0.0278 mg/kg SW8270 S . 0.0207 ND 0.0916 mg/kg SW8270 S . 0.0207 ND 0.0916 mg/kg				1995	1995	1995	1995	1995	1995	
Analytical Lab Conc Matrix Result (a) Flag DL Units SW8270 S . 0.0148 ND 0.0258 mg/kg SW8270 S . 0.0249 ND 0.0258 mg/kg SW8270 S . 0.0121 ND 0.0268 mg/kg SW8270 S . 16.9852 ND 18.4000 mg/kg SW8270 S . 0.0231 ND 0.0278 mg/kg SW8270 S . 0.0207 ND 0.0278 mg/kg SW8270 S . 0.0207 ND 0.0916 mg/kg SW8270 S . 0.0207 ND 0.0916 mg/kg		Lab	Footnote							
Analytical Lab Conc Method Matrix Result (a) Flag SW8270 S . 0.0148 ND SW8270 S . 0.0249 ND SW8270 S . 16.9852 ND SW8270 S . 16.9852 ND SW8270 S . 16.9852 ND SW8270 S . 0.0231 ND			Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
Analytical Lab Conc Method Matrix Result (a) SW8270 S . 0.0148 SW8270 S . 0.0249 SW8270 S . 16.9852 SW8270 S . 16.9852 SW8270 S . 0.0231 SW8270 S . 16.9852 SW8270 S . 0.0231			占	0.0320	0.0258	0.0268	18.4000	0.0278	0.0916	
Analytical Lab Method Matrix Result SW8270 S			Flag	2	2	욷	S	2	S	
Analytical Lab Method Matrix SW8270 S SW8270 S SW8270 S SW8270 S SW8270 S SW8270 S	Fst	Conc	(a)	0.0148	0.0249	0.0121	16.9852	0.0231	0.0207	9 # 2
Analytical Method SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270				•						
				S	s	S	s	s	S	
Data Source 1995 1995 1995 1995 1995		lytical	Method	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	

a. Random uniform numbers, between zero and the lesser of the minimum result a

a. Random uniform numbers, between zero and the lesser of the minimum result a

Galena Baseline Risk Assessment	Subsurface Soil Data	
23		
Galena Baseline Risk Assessment	Subsurface Soil Data	

S	Site=Southeast Runway Method=Organics Analyte=Diesel Range	Runway M	ethod=Orga	unics Analy	te=Dies	el Ran		Organics	Site=Sout	Site=Southeast Runway Method=Organics Analyte=Diphenylamine (N-Nitrosodiphenyla	Method=(Organics	Analyte=D) i pheny	lamine (N-Nitro	sodiphenyla
Data Source	Analytical Method	tab Matrix	Result	Est. Conc (a)	Flag	10	Units	Lab Footnote	Data Source	Analytical Method	Lab Matrix	Result	Est. Conc (a)	Flag	10	Units	Lab Footnote
1995 1995	AK102 AK102	လ လ		3.34	8 S	rv 4	mg/kg mg/kg		1995 1995	SW8270 SW8270	တ တ		0.01811	윤	0.0342	mg/kg mg/kg	
1995 1995	AK102	ss o	18000	0.92	ND PET	4 <	mg/kg		1995	SW8270	တဖ	•	0.00328	2 5	0.0287	mg/kg	
1995 1995	AK102 AK102	ာ ဟ ဟ	26 26 7100	26.00 7100.00	DET	144	mg/kg mg/kg		1995 1995 1995	SW8270 SW8270 SW8270	က လ လ		0.00341 0.02637	222	0.0164	mg/kg mg/kg mg/kg	
			z	9								_	9) }	
1	Site=Southeast Runway Method=Organics Analyte=Diethylphthalate	st Runway	Method=Or	ganics Ana	lyte≕Di	ethylp	hthalate			. Site=Southeast Runway Method=Organics Analyte=Ethylbenzene	ast Runw	ay Methoo	d=Organics	s Analy	te=Ethyl	benzene	
Data	Analytical	Lab		Est. Conc				Lab	Data	Analytical Lab	Lab		Est. Conc				Lab

Units Footnote ----- Site=Southeast Runway Method=Organics Analyte=Fluoranthene mg/kg mg/kg mg/kg mg/kg mg/kg 0.000808 0.000649 0.000675 0.082100 0.000671 0.001540 님 0.00072 0.00063 0.00053 6.81000 0.00063 9 (a) Matrix Result 6.81 8 8 8 8 8 Method SW8240 SW8240 SW8240 SW8240 SW8240 SW8240 Source 1995 1995 1995 1995 1995 1995 ------ Site=Southeast Runway Method=Organics Analyte=Dimethylphthalate Units Footnote mg/kg mg/kg mg/kg mg/kg mg/kg 0.0194 0.0156 0.0163 10.2000 0.0154 0.0508 님 Flag 22222 0.01078 0.01089 0.00097 6.15339 0.01376 (a) 9 = Matrix Result Method SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 Source 1995 1995 1995 1995 1995

	_								
	Units	_	_		-	_	mg/kg		
	Ы	0.0282	0.0227	0.0236	14.4000	0.0218	0.0718		
	Flag	2	2	2	2	2	S		
Est. Conc	(a)	0.00338	0.00793	0.00919	8.25991	0.00937	0.03024	9 = N	
	Result	•	•	•		•			
Lab	Matrix	S	S	s	S	s	S		
Analytical	Method	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270		
Data	Source	1995	1995	1995	1995	1995	1995		
Lab	Footnote								
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg		
	占	0.0144	0.0116	0.0121	8.7300	0.0132	0.0435		
	Flag	2	2	2	2	2	S		
Est. Conc	(a)	0.01306	0.00765	0.00444	4.61782	0.00375	0.03982	9 #	
	Result	•	•		•		•		
Lab	Matrix	S	S	S	S	S	S		
Analytical	Method	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270		
Data	Source	1995	1995	1995	1995	1995	1995		

Footnote

a. Random uniform numbers, between zero and the lesser of the minimum result a

Random uniform numbers, between zero and the lesser of the minimum result a

ď.

Curre

File time stamp: 10/18/95 12:08

File: subsurface.dat

Page 12 me: 10/18/95 12:08

Galena Baseline Risk Assessment Subsurface Soil Data

------ Site=Southeast Runway Method=Organics Analyte=Fluorene --

Galena Baseline Risk Assessment Subsurface Soil Data

----- Site=Southeast Runway Method=Organics Analyte=Hexachlorobutadiene

An	SW8270 S 0.00966 ND 0.0255 mg/kg SW8270 S 0.01032 ND 0.0205 mg/kg SW8270 S 0.00131 ND 0.0214 mg/kg SW8270 S 0.43004 ND 10.6000 mg/kg SW8270 S 0.01235 ND 0.0160 mg/kg	S . 0.01609 ND 0.0528 r N = 6
Data Source	1995 1995 1995 1995 1995	1995
Lab Units Footnote	mg/kg mg/kg mg/kg mg/kg mg/kg	mg/kg
Lab OL Units Footnote	0.0250 mg/kg 0.0201 mg/kg 0.0209 mg/kg 5.3000 mg/kg 0.0231 mg/kg	
	ND 0.0250 mg/kg ND 0.0201 mg/kg ND 0.0209 mg/kg ND 15.3000 mg/kg NO 0.0231 mg/kg	0.0761
Flag OL Units F	0.0250 0.0201 0.0209 15.3000 0.0231	DET 0.0761
Flag OL Units F	ND 0.0250 ND 0.0201 ND 0.0209 ND 15.3000 ND 0.0231	0.56300 DET 0.0761 N = 6
Est. Conc (a) Flag OL Units F	0.01319 ND 0.0250 0.01858 ND 0.0201 0.01440 ND 0.0209 0.43117 ND 15.3000 0.01852 ND 0.0231	0.56300 DET 0.0761 N = 6
Est. Il Lab Conc Matrix Result (a) Flag DL Units F	0.01319 ND 0.0250 0.01858 ND 0.0201 0.01440 ND 0.0209 0.43117 ND 15.3000 0.01852 ND 0.0231	S 0.563 0.56300 DET 0.0761 N = 6

--- Site=Southeast Runway Method=Organics Analyte=Hexachlorocyclopentadiene ------- Site=Southeast Runway Method=Organics Analyte=Gasoline Range Organics ----

Footnote Units 占 Flag Est. Conc (a) Result Matrix Analytical Method Data Source

1995 1995 1995 1995 1995 Footnote Units mg/kg mg/kg mg/kg mg/kg mg/kg 굽 Flag ESE ES SE 0.492 0.797 540.000 0.410 150.000 Est. Conc (a) 0.144 Result 150 Matrix Analytical Method AK101 AK101 AK101 AK101 AK101 Data Source 1995 1995 1995 1995 1995 1995

9 = **X**

0.136 0.110 0.114 130.000 0.197 0.648

22222

0.06753 0.03356 0.09210 3.85973 0.02648

SSSSSSS

SW8270 SW8270 SW8270 SW8270 SW8270 SW8270

------ Site=Southeast Runway Method=Organics Analyte=Hexachloroethane ------

----- Site=Southeast Runway Method=Organics Analyte=Hexachlorobenzene -----

9 =

Lab s Footnote	_	_	. =				
Units	mg/kg	ma/ka	ma/ka	ma/ka	mg/kg	mg/kg	
DL	0.0357	0.0288	0.0299	9.0400	0.0137	0.0451	
Flag	8	2	S	9	2	Q	
Est. Conc (a)	0.00306	0.01303	0.00429	4.18356	0.01239	0.01760	9 = N
Result		•					
Lab Matrix	s	S	S	s	s	s	
Analytical Method	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	
Data Source	1995	1995	1995	1995	1995	1995	
Lab Footnote							
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
DL	0.0332	0.0268	0.0279	10.4000	0.0157	0.0519	
Flag	S	2	욷	2	문	웆	
Est. Conc (a)	0.03213	0.02621	0.00077	4.58258	0.00925	0.01117	9 "
Result	•	•	•	•	•	٠	,
Lab Matrix Result		ς.	s.	s.	د	· s	•
_	SW8270 S	SW8270 S .					
Lab Matrix	1995 SW8270 S .	••	••	•	•	•	

Page 13

Current time: 10/18/95 12:08

a. Random uniform numbers, between zero and the lesser of the minimum result a

Random uniform numbers, between zero and the lesser of the minimum result a а .

28	1	e)	
	ine	Lab s Footnote	
	ipropylam	Units F	mg/kg mg/kg mg/kg mg/kg mg/kg
ant	Nitrosod		0.02470 0.01990 0.02070 6.06000 0.00917
ssessme ata	lyte=N-	Flag	
Galena Baseline Risk Assessment Subsurface Soil Data	anics Ana	Est. Conc (a)	0.00533 0.01810 0.01183 1.53691 0.00397 N = 6
a Baseli Subsurfa	thod=Org	Result	······
Galer	Runway Me	Lab Matrix	νννννν
	Site=Southeast Runway Method≐Organics Analyte=N-Nitrosodipropylamine	Analytical Method	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270
	Site	Data Source	1995 1995 1995 1995 1995
27	!	a >	
	yrene	Lab Footnote	
	,3-cd)p	Units	mg/kg mg/kg mg/kg mg/kg mg/kg
ent	ndeno(1,2	DI	0.0369 0.0298 0.0309 16.7000 0.0253
ıssessm lata	lyte=I	Flag	22222
Galena Baseline Risk Assessment Subsurface Soil Data	anics Ana	Est. Conc (a)	0.01523 0.00806 0.00687 5.95001 0.00780 0.00846
a Baseli Subsurfa	:hod=Org	Result	
Galena	unway Met	Lab Matrix	w w w w w
	Site=Southeast Runway Method=Organics Analyte=Indeno(1,2,3-cd)pyrene	Analytical Method	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270
	Site	Data Source	1995 1995 1995 1995 1995

------ Site=Southeast Runway Method=Organics Analyte=Naphthalene ------------ Site=Southeast Runway Method=Organics Analyte=Isophorone ----

Lab -ootnote		
Units	mg/kg mg/kg mg/kg mg/kg mg/kg	
10	0.0227 0.0183 0.0191 14.1000 0.0214 0.0704	
Flag	ND ND ND DET DET	
Est. Conc (a)	0.003 0.004 0.015 109.000 0.058 8.970	נב
Result	109.000 0.058 8.970	Z
Lab Matrix	w w w w w	
Analytical Method	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270	
Data Source	1995 1995 1995 1995 1995 1995	
Lab Footnote		
Units	mg/kg mg/kg mg/kg mg/kg mg/kg	
5	0.0158 0.0127 0.0132 8.8300 0.0134 0.0440	
Flag	222222	
Est. Conc (a)	0.01318 0.00155 0.00998 6.97457 0.01007	9 = R
Result		
Lab Matrix	w w w w w	
Analytical Method	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270	
Data Source	1995 1995 1995 1995 1995	

----- Site=Southeast Runway Method=Organics Analyte=Methylene chloride ------

------ Site=Southeast Runway Method=Organics Analyte=Nitrobenzene -----

Lab Footnote		
Units	mg/kg mg/kg mg/kg mg/kg mg/kg	
DF.	0.0160 0.0129 0.0134 7.3900 0.0112	
Flag	88888	
	0.00895 0.00332 0.00899 3.32285 0.00686	9 = N
Result		
Lab Matrix	w w w w w	
Analytical Method	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270	
Data Source	1995 1995 1995 1995 1995	
Lab Footnote	38888	
Units	mg/kg mg/kg mg/kg mg/kg mg/kg	
0F	.001110 .000895 .000930 .005130 .00925	
Flag	06T 06T 06T 06T	
Est. Conc (a)	.001110 .000771 .000609 .001830 .000472	9 = 8
Result	.001110 .000771 .000609 .001830 .000472	
Lab Matrix	w w w w w	
Analytical Method	SW8240 SW8240 SW8240 SW8240 SW8240 SW8240	
Data Source	1995 1995 1995 1995 1995	

a. Random uniform numbers, between zero and the lesser of the minimum result a

a. Random uniform numbers, between zero and the lesser of the minimum result a

he: 10/18/95 12:08 Curre

File time stamp: 10/18/95 12:08

File: subsurface.dat

30	1	Lab Footnote			٠				
	eue	Units F	mg/kg ma/ka	ma/ka	ma/ka	mg/kg	mg/kg		rene
¥	ı]yte=Pyr	DF	0.0258						ılyte=Sty
ssessmer ata	nics And	Flag	2 2	운	2	ջ	ON		nics And
Galena Baseline Risk Assessment Subsurface Soil Data	:hod=0rga	Est. Conc (a)	0.01491	0.00443	3.50851	0.01426	0.04121	9	:hod=0rga
a Baselir Subsurfac	ınway Met	Result			•	٠		-	ınway Met
Galena	theast Ru	Lab Matrix	လ လ	S	s	S	s		theast Ru
	Site=Southeast Runway Method=Organics Analyte=Pyrene	Analytical Method	SW8270 SW8270	SW8270	SW8270	SW8270	SW8270		Site=Southeast Runway Method=Organics Analyte=Styrene
		Data Source	1995 1995	1995	1995	1995	1995		! ! ! ! ! !
59	[01	Lab Footnote							
59	lorophenol	Lab Units Footnote	mg/kg mg/ka	mg/kg	mg/kg ·	mg/kg	mg/kg		threne
	e=Pentachlorophenol		0.01480 mg/kg 0.01190 mg/kg						yte=Phenanthrene
	Analyte=Pentachlorophenol	Units		0.01240		0.00624			s Analyte=Phenanthrene
	Organics Analyte=Pentachlorophenol	DL Units	0.01480	ND 0.01240	ND 4.13000	0.00624	ND 0.02060	9 11	J=Organics Analyte=Phenanthrene
	Method=Organics Analyte=Pentachlorophenol	Est. Conc Result (a) Flag DL Units	ND 0.01480 ND 0.01190	ND 0.01240	ND 4.13000	ND 0.00624	ND 0.02060		ay Method=Organics Analyte=Phenanthrene
Galena Baseline Risk Assessment Subsurface Soil Data	t Runway Method=Organics Analyte=Pentachlorophenol	Est. Lab Conc Matrix Result (a) Flag DL Units	ND 0.01480 ND 0.01190	ND 0.01240	ND 4.13000	ND 0.00624	ND 0.02060	9 = N	ast Runway Method=Organics Analyte=Phenanthrene
	Site=Southeast Runway Method=Organics Analyte=Pentachlorophenol	Est. Conc Result (a) Flag DL Units	S . 0.00930 ND 0.01480 S . 0.00422 ND 0.01190	S . 0.00071 ND 0.01240	S 3.69841 ND 4.13000	S . 0.00236 ND 0.00624	ND 0.02060	9 11 22	Site=Southeast Runway Method=Organics Analyte=Phenanthrene

ne	Lab Footnote		
loroethe	Units	mg/kg mg/kg mg/kg mg/kg mg/kg	
Tetrach	10	.00127 .00102 .00106 .00585 .00105	
nalyte=	Flag	22222	
Organics A	Est. Conc (a)	.0003669 .0000707 .0031699 .0007029	9 = 1
/ Method=(Result	• • • • • •	Z
st Runway	Lab Matrix	ល	
Site=Southeast Runway Method=Organics Analyte=Tetrachloroethene	Analytical Method	SW8240 SW8240 SW8240 SW8240 SW8240 SW8240	
S	Data Source	1995 1995 1995 1995 1995 1995	
. !	Lab Footnote	·	
henol	Units	mg/kg mg/kg mg/kg mg/kg mg/kg	
nalyte=P	Ы	0.0328 0.0265 0.0275 9.5900 0.0145	
nics A	Flag	222222	
thod=Orga	Est. Conc (a)	0.02063 0.01632 0.01029 6.70640 0.01047	9
unway Me	Result	• • • • • •	
theast R	Lab Matrix	w w w w w	
Site=Southeast Runway Method=Organics Analyte=Phenol	Analytical Method M	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270	
1	Data Source	1995 1995 1995 1995 1995	
į	S		

a. Random uniform numbers, between zero and the lesser of the minimum result a

a. Random uniform numbers, between zero and the lesser of the minimum result a

32		Lab Footnote							
	acetate	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
nt	te=Vinyl	DF.	.001070	.000862	.000895	.004940	.000891	.002050	
ssessme ata	s Analy	Flag	2	2	2	2	2	Q	
Galena Baseline Risk Assessment Subsurface Soil Data	od=Organic	Est. Conc (a)	.0001391	.0005064	.0002789	.0043686	.0004037	.0002541	9 = N
na Basel Subsurf	way Meth	Result	•		•			•	
Gale	least Run	Lab Matrix	S	ဟ	S	တ	S	S	
	- Site=Southeast Runway Method=Organics Analyte=Vinyl acetate	Analytical Method	SW8240	SW8240	SW8240	SW8240	SW8240	SW8240	
		Data Source	1995	1995	1995	1995	1995	1995	
31		Lab Footnote							
31	nuene	Lab Units Footnote						mg/kg	
ment 31	Analyte=Toluene	Lab DL Units Footnote	0.000922 mg/kg						
Assessment 31 Data	anics Analyte=Toluene	Lab Flag DL Units Footnote	0.000922	0.000741					
ine Risk Assessment ace Soil Data	ethod=Organics Analyte=Toluene	DL Unit	0.000922	ND 0.000741	0.00035 ND 0.000770	4.54000 DET 0.062800	0.00026 ND 0.000766	ND 0.001760	N = 6
31 Subsurface Soil Data	Runway Method=Organics Analyte=Toluene	Est. Conc Result (a) Flag DL Unit	ND 0.000922	ND 0.000741	0.00035 ND 0.000770	DET 0.062800	0.00026 ND 0.000766	ND 0.001760	N = 6
Galena Baseline Risk Assessment Subsurface Soil Data	outheast Runway Method=Organics Analyte=Toluene	Est. Lab Conc Matrix Result (a) Flag DL Unit	ND 0.000922	ND 0.000741	0.00035 ND 0.000770	4.54000 DET 0.062800	0.00026 ND 0.000766	ND 0.001760	9 = N
. Galena Baseline Risk Assessment Subsurface Soil Data	Site=Southeast Runway Method=Organics Analyte=Toluene	Est. Conc (a) Flag DL Unit	ND 0.000922	S . 0.00056 ND 0.000741	S . 0.00035 ND 0.000770	S 4.54 4.54000 DET 0.062800	S . 0.00026 ND 0.000766	S 0.00082 ND 0.001760	9 = N

------ Site=Southeast Runway Method=Organics Analyte=Vinyl chloride --------- Site=Southeast Runway Method=Organics Analyte=Tribromomethane(Bromoform) ---

Lab Footnote						
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
ъ	.000893	.000718	.000747	.004120	.000743	.001710
Flag	욷	운	운	2	S	2
Est. Conc (a)	.00058475	.00071432	.00057473	.00016118	.00060087	.00085878
Result						
Lab Matrix	s	S	S	s	s	S
Analytical Method	SW8240	SW8240	SW8240	SW8240	SW8240	SW8240
Data Source	1995	1995	1995	1995	1995	1995
Lab Footnote						
Lab Units Footnote	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
					.000644 mg/kg	
DL Units R	ND .000774	ND .000622	ND .000647	ND .003570		ND .001480
Flag DL Units F	ND .000774	ND .000622	ND .000647	ND .003570	ND .000644	ND .001480
Est. Conc : (a) Flag DL Units F	ND .000774	ND .000622	ND .000647	ND .003570	ND .000644	ND .001480
Est. Conc Result (a) Flag DL Units F	S	S	S	S	ND .000644	S .0006041 ND .001480

-- Site=Southeast Runway Method=Organics Analyte=bis(2-Chloroethoxy)methane --------- Site=Southeast Runway Method=Organics Analyte=Trichloroethene

9 = N

Data Analytical Lab Conc Conc Lab Data Data Rthod Analytical Lab Matrix Result Est. Est. Source Method Matrix Result (a) Flag DL Units Footnote Source Method Matrix Result (a) Flag DL Units Donora Units Donora Matrix Result (a) Flag DL Units Donora	Lab -ootnote							
Analytical Lab Method Conc Matrix Lab Conc Conc Method Lab Matrix Conc Conc Method Est. Conc Matrix Est. Conc Conc Method Est. Conc Matrix Est. Conc Conc Method Est. Conc Matrix Est. Conc Conc Conc Method Matrix Result (a) Flag Flag DL Units Footnote Footnote Source Method Matrix Matrix Result (a) Flag Flag Plag	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
Analytical Matrix Result Lab Conc Conc Method Lab Conc Matrix Result Lab Conc Conc Conc Conc Method Lab Conc Matrix Result Est. SW8240 S S	10	0.01130	0.00912	0.00948	9.59000	0.01450	0.04780	•
Analytical Lab Conc Lab Data Analytical Lab Batis Analytical Lab Conc Method Matrix Result (a) Flag DL Units Footnote Source Method Matrix Result SW8240 S0001567 ND .000774 Mg/kg 1995 SW8270 S0005502 ND .000773 mg/kg 1995 SW8270 S0014627 ND .000773 mg/kg 1995 SW8270 S0014627 ND .000789 mg/kg 1995 SW8270 S0004382 ND .000770 mg/kg ND	Flag	운	2	웆	욷	2	2	
Analytical Lab Conc Lab Data Analytical Lab Method Matrix Result (a) Flag DL Units Footnote Source Method Matrix SW8240 S0001567 ND .000744 mg/kg 1995 SW8270 S SW8240 S0014627 ND .000773 mg/kg 1995 SW8270 S SW8240 S0014627 ND .000769 mg/kg 1995 SW8270 S SW8240 S0014627 ND .000769 mg/kg 1995 SW8270 S SW8240 S0004382 ND .000770 mg/kg 1995 SW8270 S SW8240 S0004382 ND .001770 mg/kg 1995 SW8270 S SW8240 S SW82	Est. Conc (a)	0.01119	0.00537	0.00918	1.24620	0.01189	0.02771	9 = N
Analytical Matrix Lab Conc Matrix Conc Conc Conc Matrix Lab Conc Method Matrix Flag DL Units Units Footnote Data Method Method Method Includes SW8240 S0001567 ND000926 mg/kg 1995 SW8270 SW8240 S0005502 ND000773 mg/kg 1995 SW8270 SW8240 S	Result		•					
Analytical Lab Conc Lab Data / Hab Data / Method Matrix Result (a) Flag DL Units Footnote Source SW8240 S0001567 ND .000926 mg/kg 1995 SW8240 S0003796 ND .000773 mg/kg 1995 SW8240 S0003796 ND .000773 mg/kg 1995 SW8240 S0014627 ND .000779 mg/kg 1995 SW8240 S0004382 ND .000769 mg/kg 1995 SW8240 S0004382 ND .001770 mg/kg 1995 SW8240 S0004382 ND .001770 mg/kg 1995	Lab Matrix	s	s	s	S	S	S	
Analytical Lab Conc Lab Method Matrix Result (a) Flag DL Units Footnote SW8240 S .0001567 ND .000926 mg/kg SW8240 S .0003796 ND .000773 mg/kg SW8240 S .0003796 ND .000773 mg/kg SW8240 S .0004251 ND .000770 mg/kg SW8240 S .0004382 ND .001770 mg/kg NB SW8240 S .0004382 ND .001770 mg/kg	Analytical Method	SW8270	SW8270	SW8270	SW8270	SW8270	SW8270	
Analytical Lab Conc (a) Flag DL Units F SW8240 S 0001567 ND 000926 mg/kg SW8240 S 0005502 ND 000744 mg/kg SW8240 S 0004567 ND 000773 mg/kg SW8240 S 0004527 ND 000769 mg/kg SW8240 S 0004382 ND 000769 mg/kg SW8240 S 0004382 ND 000770 mg/kg SW8240 S 0004382 ND 001770 mg/kg	Data Source	1995	1995	1995	1995	1995	1995	
~								
	Est. Conc Matrix Result (a) Flag DL Units F	s .0001567 ND .000926	S	S	S	S	S0004382 ND .001770	9 = V

a. Random uniform numbers, between zero and the lesser of the minimum result a

	١
<u>.</u>	

Galena Baseline Risk Assessment Subsurface Soil Data

hene	Lab s Footnote		
chloroet	Units	mg/kg mg/kg mg/kg mg/kg mg/kg	
s-1,2-Di	DI	.001110 .000893 .000928 .005120 .000923	
yte≂ci	Flag		
anics Anal	Est. Conc (a)	.0000454 .0007817 .001078 .0018292 .0008470	(d
ethod=Org	Result		
Runway M	Lab Matrix	ა ა ა ა ა ა	
Site=Southeast Runway Method=Organics Analyte=cis-1,2-Dichloroethene	Analytical Method	SW8240 SW8240 SW8240 SW8240 SW8240 SW8240	
Site	Data Source	1995 1995 1995 1995 1995	
hyl)ether	Lab . Footnote		
oroeth	Units	mg/kg mg/kg mg/kg mg/kg mg/kg	
is(2-Chì	DF	0.0176 0.0142 0.0148 9.5900 0.0145	
lyte=b	Flag	22222	
anics Ana	Est. Conc (a)	0.00770 0.00781 0.00654 6.89925 0.01390	۷ ا
thod=0rg	Result		
lunway Me	Lab Matrix		
ڻ ج	_ g	70 70 70 70 70	
=Southeas	Analytical Method	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270	
Site=Southeast Runway Method=Organics Analyte=bis(2-Chloroet	Data Analytic Source Method	1995 SW82 1995 SW82 1995 SW82 1995 SW82 1995 SW82	

---- Site=Southeast Runway Method=Organics Analyte=cis-1,3-Dichloropropene ------ Site=Southeast Runway Method=Organics Analyte=bis(2-Chloroisopropyl)ether --

Lab Footnote						
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
OL	.000792	.000637	.000662	.003650	.000658	.001510
Flag	S	욷	2	웃	ş	S
Est. Conc (a)	.0003208	.0002505	.0001233	.0017179	.0003569	.0003026
Result			•			•
Lab Matrix	s	S	s	s	S	S
Analytical Method	SW8240	SW8240	SW8240	SW8240	SW8240	SW8240
Data Source	1995	1995	1995	1995	1995	1995
Lab Footnote						
Lab Units Footnote	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
11			0.0141 mg/kg			
Units F					0.0151	
DL Units F		ND 0.0136	ND 0.0141	0066.6 QN	ND 0.0151	ND 0.0498
Flag DL Units F	ND 0.0169	ND 0.0136	ND 0.0141	0066.6 QN	ND 0.0151	ND 0.0498
Est. Lab Conc Matrix Result (a) Flag DL Units F	ND 0.0169	ND 0.0136	ND 0.0141	0066.6 QN	ND 0.0151	ND 0.0498
Est. Conc Result (a) Flag DL Units F	ND 0.0169	S . 0.00651 ND 0.0136	S . 0.00998 ND 0.0141	S 4.41931 ND 9.9900	S . 0.01017 ND 0.0151	S . 0.03285 ND 0.0498

-- Site=Southeast Runway Method=Organics Analyte=bis(2-Ethylhexyl)phthalate ---

9

ø						
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
DL.	0.00191	0.00154	0.00160	0.13800	0.00159	0.00365
Flag	S	2	S	DET	욷	DET
Est. Conc (a)	0.0014	0.0002	0.0012	29.8000	0.0013	0.0141
Result				29.8000		0.0141
Lab Matrix	s	S	s	s	s	S
Analytical Method	SW8240	SW8240	SW8240	SW8240	SW8240	SW8240
Data Source	1995	1995	1995	1995	1995	1995
Lab ootnote						
윤						
Units Fo	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	_	_	_	16.3000 mg/kg	_	_
Units F	0.0159	0.0128	_	16.3000 r	_	_
DL Units F	0.0159	DET 0.0128 r	ND 0.0134 r	ND 16.3000 r	ND 0.0246 r	ND 0.0811
Flag DL Units F	0.012792 ND 0.0159 r	DET 0.0128 r	ND 0.0134 r	ND 16.3000 r	ND 0.0246 r	ND 0.0811
Est. Conc (a) Flag DL Units F	0.012792 ND 0.0159 r	0.047000 DET 0.0128 r	ND 0.0134 r	ND 16.3000 r	ND 0.0246 r	ND 0.0811
Est. Conc Result (a) Flag DL Units F	0.012792 ND 0.0159 r	S 0.047 0.047000 DET 0.0128 r	S . 0.006913 ND 0.0134 r	S . 0.043930 ND 16.3000 r	S . 0.011290 ND 0.0246 r	S . 0.040263 ND 0.0811 n
Est. Lab Conc Matrix Result (a) Flag DL Units F	SW8270 S 0.012792 ND 0.0159 r	SW8270 S 0.047 0.047000 DET 0.0128 r	SW8270 S 0.006913 ND 0.0134 r	S . 0.043930 ND 16.3000 r	SW8270 S . 0.011290 ND 0.0246 r	SW8270 S . 0.040263 ND 0.0811 r

Lab Footnote

Site=Southeast Runway Method=Organics Analyte=m&p-Xylenes -----

9 = N

9

11

a. Random uniform numbers, between zero and the lesser of the minimum result a

a. Random uniform numbers, between zero and the lesser of the minimum result a

------ Site=Southeast Runway Method=Organics Analyte=o-Xylene ------

Lab Footnote							
Units	mg/kg	ma/kg	ma/ka	mg/kg	mq/kg	mg/kg	
DF	0.000865	0.000696	0.000723	0.072500	0.000719	0.001650	
Flag	Q.	Q	2	DET	2	DET	
Est. Conc (a)	9000.0	0.0005	0.0001	13.2000	0.0000	0.0048	9 11 2
Result			•	13.2000		0.0048	
Lab Matrix	s	S	S	S	S	S	
Analytical Method	SW8240	SW8240	SW8240	SW8240 ·	SW8240	SW8240	
Data Source	1995	1995	1995	1995	1995	1995	

--- Site=Southeast Runway Method=Organics Analyte=trans-1,2-Dichloroethene ----

Lab Footnote							
Units	mg/kg	ma/ka	mq/kg	mq/kg	ma/ka	mg/kg	
DL	.00135	.00108	.00112	.00620	.00112	.00257	
Flag	9	2	2	S	S	Q	
Est. Conc (a)	.0011545	.0002875	.0001937	.0016956	.0007034	.0023791	ن ا ت
Result							
Lab Matrix	s	S	S	S	S	S	
Analytical Method	SW8240	SW8240	SW8240	SW8240	SW8240	SW8240	
Data	1995	1995	1995	1995	1995	1995	

--- Site=Southeast Runway Method=Organics Analyte=trans-1,3-Dichloropropene ---

Data	Analvtical	Lab		Est. Conc				· qe l
Source	Method	Matrix	Result	(a)	Flag	DF	Units	Footnote
1995	SW8240	S		.0003577	S	.000746	mg/kg	
1995	SW8240	S	•	.0003435	Ş	.000000	mg/kg	
1995	SW8240	S	•	.0001572	S	.000623	mg/kg	
1995	SW8240	Š	•	.0011434	욷	.003440	mg/kg	
1995	SW8240	S	-	.0003859	2	.000620	mg/kg	
1995	SW8240	S	•	0006639	Q.	.001420	mg/kg	
				ب اا ع				

a. Random uniform numbers, between zero and the lesser of the minimum result a

APPENDIX 4B

RISK-BASED SCREENING

Note: Methodology for conducting risk-based screening is described in Section 3 of Volume 1.

APPENDIX 4B LIST OF TABLES

		Page
4B-1	Screening Results for Southeast Runway—Surface Soil	4B-1
4B-2	Screening Results for Southeast Runway—Subsurface Soil	4B-3
4B-3	Screening Results for Southeast Runway—Groundwater	4B-5
4B-4	Screening Results for Control Tower—Surface Soil	4B-7
4B-5	Screening Results for Control Tower—Groundwater	4B-10
4B-6	Detection Limit Screening for Surface Soil for the Southeast Runway Fuel Spill Site	4B-12
4B-7	Detection Limit Screening for Subsurface Soil for the Southeast Runway Fuel Spill Site	4B-15
4B-8	Detection Limit Screening for Groundwater for the Southeast Runway Fuel Spill Site	4B-18
4B-9	Detection Limit Screening for Surface Soil for the Control Tower Drum Storage Area	4B-21
4B-10	Detection Limit Screening for Groundwater for the Control Tower Drum Storage Area	4B-24

Table 4B-1 Screening Results for Southeast Runway—Surface Soil

Chemical of Potential Concern	CAS number	Classification	Screening Result
Benzo(a)pyrene	50-32-8	PNA	Yes
Dibenz(a,h)anthracene	53-70-3	PNA	Yes
Benzo(b)fluoranthene	205-99-2	PNA	Yes
Benzo(a)anthracene	56-55-3	PNA	Yes
Indeno(1,2,3-cd)pyrene	193-39-5	PNA	Yes
Lead	7439-92-1	Metal	NV ^a
Phenanthrene	85-01-8	PNA	NV
Benzo(g,h,i)perylene	191-24-2	PNA	NV
2-Methylnaphthalene	91-57-6	PNA	NV

Yes = Screening level exceeded Region III risk-based concentration and is a chemical of potential concern.

NV = No toxicity values are available for this analyte. A screening level was not calculated for this analyte.

PNA = Polynuclear aromatic hydrocarbon.

^a Risk from exposure to lead is evaluated using the USEPA IEUBK model.

RISK BASED SCREENING FOR SOIL

FACILITY: GALENA RISK ASSESSMENT, PHASE II

SWMU: SOUTHEAST RUNWAY

Sample Date: 10/13/95

		•	!	Frequency	Maximum				EPA REGION III, RESIDENTIAL	II, RESID	ENTIAL
Chemical Name	CAS Number	Oral RfD mg/kg/day	oral RfD oral SF mg/kg/day (mg/kg/day) ⁻¹	of Detection	Detection mg/kg	Mean mg/kg	Standard Deviation	UCL SC mg/kg	Screening Level	Reg. Meets Ratio Criteria	Meets
Benzo (a) pyrene	50-32-8	.00000E+0	.73000E+1	1/4	.554000E+0	.194000E+0	.257000E+0	.496000E+0	.87496E-1	6.33167	YES
Dibenz (a,h) anthracene	53-70-3	.00000E+0	.73000E+1	1/4	.947000E-1	.558000E-1	.317000E-1	.930000E-1	.87496E-1	1.08233	YES
Benzo(b)fluoranthene	205-99-2	.00000E+0	.73000E+0	1/4	.447000E+0	.163000E+0	.205000E+0	.404000E+0	.87496E+0	0.51088	YES
Benzo (a) anthracene	56-55-3	.00000E+0	.73000E+0	1/4	.354000E+0	.125000E+0	.160000E+0	.313000E+0	.87496E+0	0.40459	YES
Indeno (1, 2, 3-cd) pyrene	193-39-5	.00000E+0	.73000E+0	1/4	.240000E+0	.108000E+0	.112000E+0	.240000E+0	.87496E+0	0.27430	YES
Benzo(k)fluoranthene	207-08-9	.00000E+0	.73000E-1	1/4	.461000E+0	.177000E+0	.202000E+0	.415000E+0	.87496E+1	0.05269	S S
bis(2-Ethylhexyl)phthalate	117-81-7	.20000E-1	.14000E-1	2/4	.285000E+0	.831000E-1	.137000E+0	.40100E+14	.45623E+2	0.00625	NO
Chrysene	218-01-9	.00000E+0	.73000E-2	1/4	.515000E+0	.150000E+0	.236000E+0	.826000E+4	.87496E+2	0.00589	NO
Pyrene	129-00-0	.30000E-1	.00000E+0	1/4	.517000E+0	.148000E+0	.243000E+0	.541000E+7	.23464E+4	0.00022	NO
Fluoranthene	206-44-0	.40000E-1	.00000E+0	1/4	.435000E+0	.107000E+0	.205000E+0	.228000E+5	.31285E+4	0.00014	S S
Naphthalene	91-20-3	.40000E-1	00000四十0	1/4	.225000E-1	.125000E-1	.107000E-1	.251000E-1	.31285E+4	0.00001	NO
Phenanthrene	85-01-8	.00000E+0	000000年0	1/4	.149000E+0	.790000E-1	.704000E-1	.162000E+0	.00000E+0	0.00000	NV
Benzo(g,h,i)perylene	191-24-2	.00000E+0	.00000E+0	1/4	.212000E+0	.704000E-1	.960000E-1	.183000E+0	.00000E+0	0.00000	NV
Anthracene	120-12-7	.30000E+0	.00000E+0	1/4	.533000E-1	.223000E-1	.230000E-1	.493000E-1	.23464E+5	0.00000	NO
2-Methylnaphthalene	91-57-6	.00000E+0	.00000E+0	1/4	.336000E-1	.188000E-1	.105000E-1	.312000E-1	.00000E+0	0.00000	N V
Diesel Range Organics	110-54-3	000000日	.00000医+0	4/4	.250000E+3	.158000E+3	.640000E+2	.233000E+3	.00000E+0	0.00000	NA NA
Lead	7439-92-1	.00000E+0	.00000E+0	4/4	.513000E+2	.273000E+2	.200000E+2	.508000E+2	.00000E+0	0.0000.0	MV
Parameters used in this report:	report:										

									1-1000000	0.40000.	Š
Param	Parameters used in this report:	n this repo	rt:								
*	Body weight, adult	adult	••	70.00000 kg	0 kg		True Soil	True Soil Porosity		0.50000	
н	Body weight, child	child	15.00000	00	kg		True Soil	True Soll/Particulate Density	Density	0.00000	
-	Lifetime		70 years	ars			Averaging Time	Time		6.00000	
~	Exposure Duration	ation	6 уе	years			Area of C	Area of Contamination		50000000.00	_
	Exposure Frequency		350 day	days/year			Side Leng	Side Length of Contaminated Area	inated Area	0.00000	
-	Exposure Interval	erval		0.00	sec.		Diffusion Height	Height		0.0000	
~	Absorption Factor	actor	1.00000	00			Inhalation Rate	n Rate		0.00000	
93	Soil Intake Assumption, adult	Assumption,	adu1t	•	0.10000	g/day	Wind Speed	Ď		0.00000	
93	Soil Intake Assumption, child	Assumption,	child	-	0.20000	g/day	Mean Annu	Mean Annual Wind Speed	ਚ	4.50000	
~	Age-adjusted Soil Ingestion Factor	Soil Inges	tion Fac	tor	114.29000	mg-yr/kg-day	Equivalen	Equivalent Threshold Wind Speed	Wind Speed	12.80000	
~	Cancer Risk, Class A,B	Class A,B	.00000100	0100			Vegetative Cover	e Cover		0.00000	
~	Cancer Risk, Class C	Class C	.000000100	0010			Um/Ut Function	action		0.04970	
-	Hazard Quotient	ent	1.00000	00			Decision Factor	Factor		0.1	0.100

4B-2

cm²

g/cm³ Years m³/day m/sec m/sec m/sec

0.10000

H

Table 4B-2 Screening Results for Southeast Runway—Subsurface Soil

Chemical of Potential Concern	CAS number	Classification	Screening Result
Phenanthrene	85-01-8	PNA	NV
2-Methylnaphthalene	91-57-6	PNA	NV

NV = No toxicity values are available for this analyte. A screening level was not calculated for this analyte.

PNA = Polynuclear aromatic hydrocarbon.

RISK BASED SCREENING FOR SOIL

FACILITY: GALENA RISK ASSESSMENT, PHASE II

SWMU: SOUTHEAST RUNWAY

Sample Date: 10/13/95

			ı	Frequency	Maximum			:	EPA REGION III, RESIDENTIAL	II, RESII	ENTIAL
Cnemi cal Name	CAS	oral RtD mg/kg/day	oral ktD oral SF mg/kg/day (mg/kg/day) ⁻¹	of Detection	Detection mg/kg	Mean mg/kg	Standard Deviation	UCL SC mg/kg	Screening Level	Reg. Meets	Meets
Naphthalene	91-20-3	.40000E-1	.00000E+0	9/6	.109000E+3	.178000E+2	.439000E+2	.62000E+16	.31285E+4	0.03484	QN N
Benzene	71-43-2	.00000年+0	.29000E-1	1/6	.336000E+0	.563000E-1	.137000E+0	.169000E+0	.22025E+2	0.01526	N ON
bis(2-Ethylhexyl)phthalate	117-81-7	.20000E-1	.14000E-1	1/6	.470000E-1	.270000E-1	.185000E-1	.423000E-1	.45623E+2	0.00103	о 2
Ethylbenzene	100-41-4	.10000压+0	.00000E+0	1/6	.681000E+1	.114000E+1	.278000E+1	.342000E+1	.78214E+4	0.00087	ON ON
Toluene	108-88-3	.20000E+0	.00000E+0	1/6	.454000E+1	.757000E+0	.185000E+1	.228000E+1	.15642E+5	0.00029	ON ON
m&p-Xylenes	1330-20-78	.20000E+1	.00000E+0	2/6	.298000E+2	.497000E+1	.122000E+2	.150000E+2	.15642E+6	0.00019	0N
Fluorene	86-73-7	.40000E-1	.00000E+0	1/6	.563000E+0	.176000E+0	.252000E+0	.384000E+0	.31285E+4	0.00018	0 <u>N</u>
o-Xylene	95-47-6	.20000E+1	.00000E+0	2/6	.132000E+2	.368000E+0	.539000E+1	.36400E+16	.15642E+6	0.00008	NO NO
Acenaphthene	83-32-9	. 60000E-1	.00000E+0	1/6	.225000E+0	.764000E-1	.932000E-1	.153000E+0	.46928E+4	0.00005	NO
Acetone	67-64-1	.10000E+0	.00000E+0	4/6	.175000E+0	.680000E-1	.707000E-1	.139000E+4	.78214E+4	0.00002	ON ON
Phenanthrene	85-01-8	.00000E+0	.00000E+0	1/6	.232000E+0	.109000E+0	.938000E-1	.617000E+4	.00000E+0	0.00000	NA VA
2-Methylnaphthalene	91-57-6	.000002+0	.00000E+0	9/6	.235000E+3	.307000E+2	.950000E+2	.79900E+17	.00000E+0	0.00000	W
2-Butanone (MEK)	78-93-3	. 60000E+0	.00000E+0	2/6	.609000E-1	.145000E-1	.231000E-1	.652000E+0	.46928E+5	0.0000	N ON
Diesel Range Organics	110-54-3	.00000区+0	.00000E+0	9/6	.180000E+5	.605000E+4	.734000E+4	.16400E+19	.00000年+0	0.00000	M
Gasoline Range Organics		.00000E+0	.00000E+0	2/6	.540000E+3	.108000E+3	.216000E+3	.16100E+12	.00000E+0	0.00000	M

			20000
Parameters used in this report:			
Body weight, adult 70.00000 kg	True Soil Porosity	0.50000	
Body weight, child 15.00000 kg	True Soil/Particulate Density	0.0000	g/cm ³
Lifetime 70 years	Averaging Time	6.00000	years
Exposure Duration 6 years	Area of Contamination	50000000.00	cm ²
Exposure Frequency 350 days/year	Side Length of Contaminated Area	0.00000	E
Exposure Interval 0.00 sec.	Diffusion Height	0.0000	E
Absorption Factor 1.00000	. Inhalation Rate	0.00000	m ³ /day
Soil Intake Assumption, adult 0.10000 g/day	Wind Speed	0.00000	m/sec
Soil Intake Assumption, child 0.20000 g/day	Mean Annual Wind Speed	4.50000	m/sec
Age-adjusted Soil Ingestion Factor 114.29000 mg-yr/kg-day	Equivalent Threshold Wind Speed	12.80000	m/sec
Cancer Risk, Class A,B .00000100	Vegetative Cover	0.00000	
Cancer Risk, Class C .00000100	Um/Ut Function	0.04970	
Hazard Quotient 1.00000	Decision Factor	0.10000	00

4B-4

Table 4B-3 Screening Results for Southeast Runway—Groundwater

Chemical of Potential Concern	CAS number	Classification	Screening Result
Beryllium	7440-41-7	Metal	Yes
Benzene	71-43-2	Volatile	Yes
1,2-Dichloroethane	107-06-2	Volatile	Yes
Chloromethane	74-87-3	Volatile	Yes
Chloroform	67-66-3	Volatile	Yes
Trichloroethene	79-01-6	Volatile	Yes
Phenanthrene	85-01-8	PNA	NV
2-Methylnaphthalene	91-57-6	PNA	NV

Yes = Screening level exceeded Region III risk-based concentration and is a chemical of potential concern.

NV = No toxicity values are available for this analyte. A screening level was not calculated for this analyte.

PNA = Polynuclear aromatic hydrocarbon.

RISK BASED SCREENING FOR WATER

FACILITY: GALENA RISK ASSESSMENT, PHASE II

SWMU: SOUTHEAST RUNWAY

Sample Date: 10/13/95

		Oral Den		Frequency	Maximum			EPA RU	EPA REGION III, RESIDENTIAL	SSIDENTIAL	
Chemical Name	CAS	mg/kg/day	mg/kg/day (mg/kg/day)	of Detection	Detection mg/L	Mean mg/L	Standard Deviation	UCL Scre mg/L	UCL screening Level	Reg. Ratio	Meets Criteria
Beryllium	7440-41-7	. 50000E-2	.50000E-2 .43000E+1	4/4	.39400E-2	.173000E-2	.39400E-2 .173000E-2 .19200E-2 .399000E-2 .155700E-4 252.9696 YES	.399000E-2	.155700E-4	252.9696	YES
Benzene	71-43-2	.00000E+0	.29000E-1	2/4	.58100E-1	.145000E-1	.29000E-1	.29000E-1 .19700E+32 .363760E-3 159.7193	.363760E-3	159.7193	YES
1,2-Dichloroethane	107-06-2	.000000E+0	.91000E-1	2/4	.45500E-2	.142000E-2	.21400E-2	.21400E-2 .394000E-2 .115920E-3 39.24967	.115920E-3	39.24967	YES
Chloromethane	74-87-3	0000008+0	130008-1	1/4	1100011	2650000	SECONDED SERVICE OF CONTRACT O	500000		1000	

•	į	Oral RfD	מטורייט	Frequency	Maximum			EPA R	EPA REGION III, RESIDENTIAL	ESIDENTIAL	
Chemical	Ses		-1 or at or	of J	Detection	Mean	Standard	UCL SCRE	Screening Level	E E	Moote
Мате	Number		(mg/kg/day)	Detection	mg/L	mg/L	Deviation		mg/L		Criteria
Beryllium	7440-41-7	. 50000E-2	.43000E+1	4/4	.39400E-2	.173000E-2	.19200E-2	.399000E-2	.155700E-4	252.9696	YES
Benzene	71-43-2	.00000E+0	.29000E-1	2/4	.58100E-1	.145000E-1	.29000E-1	.19700E+32	.363760E-3	159.7193	XES
1,2-Dichloroethane	107-06-2	.00000E+0	.91000E-1	2/4	.45500E-2	.142000E-2	.21400E-2	.394000E-2	.115920E-3	39.24967	YES
Chloromethane	74-87-3	.00000E+0	.13000E-1	1/4	.11900E-2	.365000E-3	.55500E-3	.102000E-2	.143421E-2	0.82972	YES
Chloroform	67-66-3	.10000E-1	.61000E-2	1/4	.38800E-4	.213000E-4	.13100E-4	.367000E-4	.153370E-3	0.25298	YES
Trichloroethene	79-01-6	. 60000E-2	.11000E-1	3/4	.20600E-3	.658000E-4	.94500E-4	.210000E+5	.155418E-2	0.13255	YES
Naphthalene	91-20-3	.40000E-1	.00000E+0	1/4	.80700E-1	.208000E-1	.39900E-1	.678000E-1	.146000E+1	0.05527	N Ox
m&p-Xylenes	1330-20-78	.20000E+1	.00000E+0	2/4	.28400E-1	.716000E-2	.14200E-1	.13400E+19	.620294E+0	0.04578	NO
Ethylbenzene	100-41-4	.10000E+0	.00000E+0	2/4	.21600E-1	.543000E-2	.10800E-1	.181000E-1	.132811E+1	0.01626	NO
Toluene	108-88-3	.20000E+0	.00000E+0	4/4	. 60000E-2	.166000E-2	.28900E-2	.507000E-2	.747037E+0	0.00803	NO
o-Xylene	95-47-6	.20000E+1	.00000E+0	1/4	.10800E-1	.280000E-2	. 53300E-2	.908000E-2	.143137E+1	0.00755	NO NO
Fluorene	86-73-7	.40000E-1	.000000年+0	1/4	.12900E-2	.791000E-3	.44200E-3	.131000E-2	.146000E+1	0.00088	ON
Acenaphthene	83-32-9	.60000E-1	.00000E+0	1/4	.79200E-3	.572000E-3	.22100E-3	.833000E-3	.219000E+1	0.00036	NO
Benzyl alcohol	100-51-6	.30000E+0	.000000至+0	1/4	.31300E-2	.104000E-2	.14100E-2	.270000E-2	.109500E+2	0.00029	NO
Dibutyl phthalate	84-74-2	.10000E+0	.00000E+0	1/4	.47600E-3	.223000E-3	.23400E-3	.498000E-3	.365000E+1	0.00013	NO
Chloroethane	75-00-3	.40000E+0	.00000E+0	1/4	.58900E-4	.389000E-4	.20400E-4	.629000E-4	.858823E+1	0.00001	NO
Phenanthrene	85-01-8	.00000区+0	.000002+0	1/4	.73900E-3	.462000E-3	.26900E-3	.779000E-3	.000000E+0	0.00000	MV
2-Methylnaphthalene	91-57-6	.00000E+0	.000000年0	1/4	.98900E-1	.252000E-1	.49100E-1	.10700E+13	.000000E+0	0.00000	M
Diesel Range Organics	110-54-3	.00000E+0	.00000E+0	4/4	.93000E+1	.278000E+1	.43500E+1	.378000E+5	.000000E+0	0.00000	NA VA
Gasoline Range Organics		.00000E+0	.00000E+0	1/4	.79000E+0	.215000E+0	.38300E+0	.150000E+8	.000000E+0	0.00000	MV

4B-6

Body weight, adult	70.00000 kg	o kg	Averaging Time	30.0000	Years
Body weight, child	15.00000	·kg	Area of Contamination	0.00	c _m 2
Lifetime	70 years		Side Length of Contaminated Area	0.0000	E
Exposure Duration	30 years		Diffusion Height	0.00000	E
Exposure Frequency	350 days/year		Volatialization Factor	0.50000	L/m3
Exposure Interval	0.00	sec.	Drinking Water Ingestion	2.00000	L/dav
Absorption Factor	1.00000		Age-adjusted Water Ingestion	1.09000	L-y/kg-day
Cancer Risk, Class A, B	.00000100		Age-adjusted Inhalation Factor	11.66000	m ³ -v/kg-day
Cancer Risk, Class C	.000000100		Decision Factor	0.10000	6: /T
Hazard Onotient	1.00000				

Table 4B-4
Screening Results for Control Tower—Surface Soil

Chemical of Potential Concern	CAS number	Classification	Screening Result
Thallium	7440-28-0	Metal	Yes
Antimony	7440-36-0	Metal	Yes
Benzo(a)pyrene	50-32-8	PNA	Yes
Dieldrin	60-57-1	Pesticide	Yes
4,4'-DDT	50-29-3	Pesticide	Yes
Benzo(b)fluoranthene	205-99-2	PNA	Yes
Aldrin	309-00-2	Pesticide	Yes
Lead	7439-92-1	Metal	NV ^a
Phenanthrene	85-01-8	PNA	NV
Benzo(g,h,i)perylene	191-24-2	PNA	NV
2-Methylnaphthalene	91-57-6	PNA	NV

Yes = Screening level exceeded Region III risk-based concentration and is a chemical of potential concern.

NV = No toxicity values are available for this analyte. A screening level was not calculated for this analyte.

PNA = polynuclear aromatic hydrocarbon

^a Risk from exposure to lead is evaluated using the USEPA IEUBK model.

RISK BASED SCREENING FOR SOIL

FACILITY: GALENA RISK ASSESSMENT, PHASE II

SWMU: CONTROL TOWER

Sample Date: 10/13/95

				Frequency	Maximum				EPA REGION III, RESIDENTIAL	II, RESID	INTIAL
Chemical Name	CAS	Oral RfD mg/kg/day	oral SF (mg/kg/day) ⁻¹	of Detection	Detection mg/kg	Mean mg/kg	Standard Deviation	UCL SO mg/kg	Screening Level	Reg. Ratio C	Meets Criteria
Thallium	7440-28-0	.80000E-4	.00000E+0	9/9	.294000E+2	.150000E+2	.127000E+2	.255000E+2	.62571E+1	4.69863	YES
Antimony	7440-36-0	.40000E-3	.00000E+0	9/9	.492000E+2	.294000E+2	.117000E+2	.390000E+2	.31285E+2	1.57260	YES
Benzo (a) pyrene	50-32-8	.00000E+0	.73000E+1	1/6	.896000E-1	.253000E-1	.309000E-1	.972000E-1	.87496E-1	1.02404	YES
Dieldrin	60-57-1	.50000E-4	.16000E+2	9/9	.116000E-1	.415000E-2	.456000E-2	.790000E-2	.39920E-1	0.29058	YES
4,4'-DDT	50-29-3	.50000E-3	.34000E+0	9/9	.496000E+0	.147000E+0	.190000E+0	.127000E+3	.18786E+1	0.26403	YES
Benzo(b)fluoranthene	205-99-2	.00000E+0	.73000E+0	1/6	.150000E+0	.260000E-1	.575000E-1	.476000E+0	.87496E+0	0.17144	YES
Aldrin	309-00-2	.30000E-4	.17000E+2	2/6	.587000E-2	.226000E-2	.251000E-2	.198000E-1	.37572E-1	0.15623	YES
Benzo (a) anthracene	56-55-3	.00000E+0	.73000E+0	1/6	.770000E-1	.233000E-1	.264000E-1	.450000E-1	.87496E+0	0.08800	NO
Indeno (1,2,3-cd) pyrene	193-39-5	.00000E+0	.73000E+0	1/6	.680000E-1	.200000E-1	.259000E-1	.248000E+2	.87496E+0	0.07772	NO
alpha-BHC	319-84-6	.00000E+0	. 63000E+1	1/6	.703000E-2	.229000E-2	.266000E-2	.218000E+1	.10138E+0	0.06934	NO
Heptachlor epoxide	1024-57-3	.10000E-4	. 91000E+1	2/6	.263000E-2	.931000E-3	.111000E-2	.184000E-2	.70189E-1	0.03747	NO
Benzo(k)fluoranthene	207-08-9	.00000E+0	.73000E-1	1/6	.150000E+0	.345000E-1	.553000E-1	.322000E+0	.87496E+1	0.01714	NO
gamma-BHC (Lindane)	58-89-9	.30000E-3	.13000E+1	2/6	.601000E-2	.114000E-2	.232000E-2	.195000E+0	.49132E+0	0.01223	NO
4,4'-DDD	72-54-8	.00000E+0	.24000E+0	9/9	.301000E-1	.132000E-1	.136000E-1	.246000E+0	.26613E+1	0.01131	No
Heptachlor	76-44-8	.50000E-3	.45000E+1	3/6	.118000E-2	.236000E-3	.448000E-3	.606000E-2	.14193E+0	0.00831	NO
4,4'-DDE	72-55-9	.00000E+0	.34000E+0	2/6	.938000E-2	.487000E-2	.363000E-2	.785000E-2	.18786E+1	0.00499	S S
bis(2-Ethylhexyl)phthalate	117-81-7	.20000E-1	.14000E-1	1/6	.938000压-1	.275000E-1	.337000E-1	.469000E+0	.45623E+2	0.00206	NO
Chrysene	218-01-9	.00000E+0	.73000E-2	1/6	.106000E+0	.450000E-1	.386000E-1	.475000E+2	.87496E+2	0.00121	S S
delta-BHC	319-86-8	.45000E-3	.00000E+0	2/6	.103000E-1	.222000E-2	.408000E-2	.505000E+4	.35196E+2	0.00029	8
Endrin aldehyde	7421-93-4	.30000E-3	.00000E+0	3/6	.326000E-2	.904000E-3	.132000E-2	.164000E+0	.23464E+2	0.00014	Ñ
Pyrene	129-00-0	.30000E-1	.00000E+0	1/6	.184000E+0	.472000E-1	.671000E-1	.102000E+0	. 23464E+4	0.00008	NO
Fluoranthene	206-44-0	.40000E-1	.00000E+0	1/6	.201000E+0	.388000E-1	.796000E-1	.903000E+3	.31285E+4	90000.0	NO NO
Endosulfan I	929-98-8	. 60000E-2	.00000E+0	5/6	.336000E-2	.127000E-2	.149000E-2	.640000E-1	.46928E+3	0.00001	NO NO
Phenanthrene	85-01-8	.00000E+0	.00000E+0	1/6	.127000E+0	.258000E-1	.481000E-1	.630000E+0	.00000E+0	0.00000	¥
Benzo(g,h,i)perylene	191-24-2	.00000E+0	.00000E+0	1/6	.777000E-1	.245000E-1	.265000E-1	.103000E+0	.00000E+0	0.00000	M
Anthracene	120-12-7	.30000E+0	.00000E+0	1/6	.211000E-1	.825000E-2	.638000E-2	.173000E-1	.23464E+5	0.0000	8
2-Methylnaphthalene	91-57-6	.00000E+0	.00000E+0	2/6	.231000E-1	.165000E-1	.794000E-2	.230000E-1	.00000E+0	0.0000	NA NA
Endosulfan II	33213-65-9	.60000E-2	.00000E+0	2/6	.674000E-4	.387000E-4	.282000E-4	.618000E-4	.46928E+3	0.00000	NO NO
Diesel Range Organics	110-54-3	.00000年+0	.00000E+0	2/6	.500000E+3	.117000E+3	.201000E+3	.176000E+6	.00000E+0	0.00000	Ş.
Lead	7439-92-1	.00000E+0	.00000E+0	9/9	.766000E+2	.219000E+2	.270000E+2	.142000E+3	.00000E+0	0.00000	NV

							g/day	g/day	mg-yr/kg-day			
000 kg	kg			Ħ	sec.		0.10000	0.20000	114.29000			
70.00000 kg	15.00000	70 years	6 years	350 days/year	00.00	1.00000	adult	child	tion Factor	.000000100	.00000100	1.00000
Body Weight, adult	Body weight, child	Lifetime	Exposure Duration	Exposure Frequency 3	Exposure Interval	Absorption Factor	Soil Intake Assumption, adult	Soil Intake Assumption, child	Age-adjusted Soil Ingestion Factor	Cancer Risk, Class A,B	Cancer Risk, Class C	Hazard Chottent

True Soil Porosity	0.50000	
True Soil/Particulate Density	0.00000	g/cm3
Averaging Time	6.00000	years
Area of Contamination	50000000.00	Ġ,
Side Length of Contaminated Area	0.00000	E
Diffusion Height	0.00000	E
Inhalation Rate	0.00000	m ³ /day
Wind Speed	0.00000	m/sec
Mean Annual Wind Speed	4.50000	m/sec
Equivalent Threshold Wind Speed	12.80000	m/sec
Vegetative Cover	0.00000	
Um/Ut Function	0.04970	
Decision Factor	0.10000	000

Table 4B-5
Screening Results for Control Tower—Groundwater

Chemical of Potential Concern	CAS number	Classification	Screening Result
Heptachlor epoxide	1024-57-3	Pesticide	Yes
Trichloroethene	79-01-6	Volatile	Yes
1,2-Dichloroethane	107-06-2	Volatile	Yes
Aldrin	309-00-2	Pesticide	Yes
Dieldrin	60-57-1	Pesticide	Yes
Heptachlor	76-44-8	Pesticide	Yes
cis-1,2-Dichloroethene	156-59-2	Volatile	Yes
gamma-BHC (Lindane)	58-89-9	Pesticide	Yes
beta-BHC	319-85-7	Pesticide	Yes
Dibromomethane	74-95-3	Volatile	NV

Yes = Screening level exceeded Region III risk-based concentration and is a chemical of potential concern.

NV = No toxicity values are available for this analyte. A screening level was not calculated for this analyte.

RISK BASED SCREENING FOR WATER

FACILITY: GALENA RISK ASSESSMENT, PHASE II

SWMU: CONTROL TOWER

Sample Date: 10/13/95

		Cro Lord		Frequency	Maximum			EPA R	EPA REGION III, RESIDENTIAL	ESIDENTIAL	
Chemical	CAS	mg/kg/day	mg/kg/day (mg/kg/dav) ⁻¹	of Detection	Detection	Mean me /T	Standard		Screening Level	Reg.	Meets
				DECECTOR	T/Sur	न/6m	Deviation	т/бш	mg/L	Ratio Criteria	riteria
Heptachlor epoxide	1024-57-3	.10000E-4	.91000E+1	2/2	. 55500E-4	.278000E-4	.39200E-4	.203000E-3	.116000E-5	47.87597	YES
Trichloroethene	79-01-6	.60000E-2	.11000E-1	2/2	.92800E-2	.481000E-2	.63300E-2	.331000E-1	.155418E-2	5.97098	YES
1,2-Dichloroethane	107-06-2	.00000E+0	.91000E-1	1/2	.64000E-3	.328000E-3	.44200E-3	.230000E-2	.115920E-3	5.52083	YES
Aldrin	309-00-2	.30000E-4	.17000E+2	1/2	.17700E-4	.893000E-5	.12400E-4	.643000E-4	.394000E-5	4.49289	YES
Dieldrin	60-57-1	.50000E-4	.16000E+2	1/2	.79000E-5	.525000E-5	.37500E-5	.220000E-4	.419000E-5	1.88734	YES
Heptachlor	76-44-8	.50000E-3	.45000E+1	2/2	.33000E-5	.185000E-5	.20500E-5	.110000E-4	.234000E-5	1.40770	YES
cis-1,2-Dichloroethene	156-59-2	.10000E-1	.00000E+0	1/2	.23300E-1	.117000E-1	.16500E-1	.851000E-1	.608333E-1	0.38301	YES
gamma-BHC(Lindane)	58-89-9	.30000E-3	.13000E+1	1/2	.13300E-4	.739000E-5	.83600E~5	.447000E-4	.515200E-4	0.25817	YES
beta-BHC	319-85-7	.00000E+0	.18000E+1	1/2	.71000E-5	.361000E-5	.49300E-5	.256000E-4	.372100E-4	0.19082	YES
4,4'-DDE	72-55-9	.00000E+0	.34000E+0	1/2	. 50000E-5	.332000E-5	.23700E-5	.139000E-4	.196980E-3	0.02538	NO OX
trans-1,2-Dichloroethene	156-60-5	.20000E-1	.00000E+0	1/2	.13300E-2	.684000E-3	.91400E-3	.476000E-2	.12166EH0	0.01093	S S
m&p-Xylenes	1330-20-78	.20000E+1	.00000E+0	1/2	.70000E-4	.657000E-4	.60100E-5	.926000E-4	.620294E+0	0.00011	N ON
Endosulfan I	959-98-8	.60000E-2	.000000年0	1/2	.94000E-5	.567000E-5	.52700E-5	.292000E-4	.219000E+0	0.00004	N O
Dibromomethane	74-95-3	.000000E+0	.00000E+0	1/2	.21000E-3	.113000E-3	.13700E-3	.726000E-3	.000000E+0	0.00000	NA
Diesel Range Organics	110-54-3	.00000E+0	.00000E+0	1/2	.34000E-1	.170000E-1	.24000E-1	.124000E+0	.000000E+0	0.0000	NA VA
Parameters used in this report:	report:										
Body weight, adult	70.0	70.00000 kg			Averaging Time	ine		30.00000	Years		

Body weight, adult	70.00000 kg	kg	Averaging Time	30.00000	years
Body weight, child	15.00000	kg	Area of Contamination	00.00	cm ²
Lifetime	70 Years		Side Length of Contaminated Area	0.00000	E
Exposure Duration	30 years		Diffusion Height	0.0000	E
Exposure Frequency	350 days/year		Volatialization Factor	0.50000	r/m3
Exposure Interval	00.00	sec.	Drinking Water Ingestion	2.00000	L/day
Absorption Factor	1.00000		Age-adjusted Water Ingestion	1.09000	L-y/kg-day
Cancer Risk, Class A,B	.0000000.		Age-adjusted Inhalation Factor	11.66000	m ³ -v/kg-day
Cancer Risk, Class C	.000000100		Decision Factor	0.10000	1
Hazard Quotient	1.00000				

4B-11

н

Table 4B-6

Detection Limit Screening for Surface Soil for the Southeast Runway Fuel Spill Site

		DL	DL	Screening		Exceeds
	CAS		Maximum	Level		Screening
Chemical Name	No.	mg/kg	mg/kg	mg/kg	Ratio	Level
N-Nitrosodipropylamine	621-64-7	.009210	.1010		1.01E-01	NO
Hexachlorobenzene	118-74-1	.01580			3.96E-02	NO
bis(2-Chloroethyl)ether	111-44-4	.01460			2.51E-02	NO
2,6-Dinitrotoluene	606-20-2	.02180	.330		2.32E-02	NO
2,4-Dinitrotoluene	121-14-2	.01390	.1530	9.39E-01	1.48E-02	NO
2-Nitroaniline	88-74-4	.006280	.0690	4.69E-01	1.34E-02	NO
3,3'-Dichlorobenzidine	91-94-1	.01090	.120	1.42E+00	7.68E-03	NO
Vinyl chloride	75-01-4	.000759	.000946	3.36E-01	2.26E-03	NO
Hexachlorobutadiene	87-68-3	.01610	.1770	8.19E+00	1.97E-03	NO
bis(2-Chloroisopropyl)ether	39638-32-9	.01520	.1670	9.12E+00	1.67E-03	NO
Pentachlorophenol	87-86-5	.006280	.0690	5.32E+00	1.18E-03	NO
1,1-Dichloroethene	75-35-4	.000793	.000988	1.06E+00	7.40E-04	NO
1,4-Dichlorobenzene	106-46-7	.01610	.2450	2.66E+01	6.00E-04	NO
1,1,2,2-Tetrachloroethane	79-34-5	.001190	.001480	3.19E+00	3.70E-04	NO
Hexachloroethane	67-72-1	.01370	.1510	4.56E+01	3.00E-04	NO
Nitrobenzene	98-95-3	.01120	.1240	3.91E+01	2.90E-04	NO
2,4-Dinitrophenol	51-28-5	.04570	.5020	1.56E+02	2.90E-04	NO
Hexachlorocyclopentadiene	77-47-4	.1460	2.170	5.48E+02	2.70E-04	NO
2,4,6-Trichlorophenol	88-06-2	.01480	.2710	5.81E+01	2.50E-04	NO
cis-1,3-Dichloropropene	542-75-6	.000673	.000839	3.65E+00	1.80E-04	NO
Carbon tetrachloride	56-23-5	.000894	.001110	4.91E+00	1.80E-04	NO
trans-1,3-Dichloropropene	10061-02-6	.000634	.000790	3.65E+00	1.70E-04	NO
1,2-Dichloroethane	107-06-2	.000819	.001020	7.02E+00	1.20E-04	NO
Dibromochloromethane	124-48-1	.000840	.001050	7.60E+00	1.10E-04	NO
Tetrachloroethene	127-18-4	.001080	.001340	1.23E+01	9.00E - 05	NO
Bromodichloromethane	75-27-4	.000820	.001020	1.06E+01	8.00E-05	NO
1,1,2-Trichloroethane	79-00-5	.000860	.001070	1.12E+01	8.00E-05	NO
Dibenzofuran	132-64-9	.02240	.2470	3.13E+02	7.00E-05	NO
1,2-Dichloropropane	78-87-5	.000640	.000797		7.00E-05	NO
4-Nitroaniline	100-01-6	.01490	.1640	2.35E+02		NO
4-Chloroaniline	106-47-8	.01520	.1670	3.13E+02		NO
3-Nitroaniline	99-09-2	.01240	.1670	2.35E+02	5.00E-05	NO
4-Methylphenol/3-Methylphenol	106-44-5	.01450	.160	3.91E+02	4.00E-05	NO
2-Chlorophenol	95-57-8	.0140	.1790	3.91E+02	4.00E-05	NO
2,4-Dichlorophenol	120-83-2	.00860	.09450	2.35E+02		NO
Benzene	71-43-2	.000910	.001130	2.20E+01		NO
Isophorone	78-59-1	.01340	.1470		2.00E-05	NO
2,4-Dimethylphenol	105-67-9	.02360	.2590		2.00E-05	NO
1,2,4-Trichlorobenzene	120-82-1	.01520	.1670		2.00E-05	NO
Chloromethane	74-87-3	.000990	.001230	4.91E+01	2.00E-05	NO

Table 4B-6 (Continued)

	8 miliones		K44440000-00000000000000000000000000000	207-100-100-100-100-100-100-100-100-100-1	200000000000000000000000000000000000000	1
	٠.,	DL	DL	Screening		Exceeds
CL	CAS	000000000000000000000000000000000000000	Maximum	Level		Screening
Chemical Name Fluorene	No.	mg/kg	mg/kg	mg/kg	Ratio	Level
•	86-73-7	.02320	.2550	3.13E+03	1.00E-05	NO
Diphenylamine (N-Nitrosodiphenylamine) Di-n-octylphthalate	122-39-4	.01650	.1810	1.96E+03		NO
Trichloroethene	117-84-0	.01570	.360	1.56E+03		NO
	79-01-6	.000787	.000980		1.00E-05	NO
Tribromomethane(Bromoform) Chloroform	75-25-2	.000658	.000820	8.09E+01	1.00E-05	NO
	67-66-3	.00110	.001370		1.00E-05	NO
Bromomethane	74-83-9	.001120	.00140	1.10E+02		NO
Phenol	108-95-2	.01460	.160	4.69E+04		NO
Dimethylphthalate	131-11-3	.01330	.1460	7.82E+05		NO
Diethylphthalate	84-66-2	.01550	.170	6.26E+04		NO
Dibutyl phthalate	84-74-2	.0160	.2330	7.82E+03		NO
Butylbenzylphthalate	85-68-7	.01040	.2520	1.56E+04		NO
Benzyl alcohol	100-51-6	.02840	.4420	2.35E+04		NO
Benzoic acid	65-85-0	.2190	2.40	3.13E+05		NO
Acenaphthene	83-32-9	.01570	.1730	4.69E+03		NO
4-Nitrophenol	100-02-7	.01560	.1710	4.85E+03		NO
4-Bromophenyl phenyl ether	101-55-3	.01320	.1450	4.54E+03	0.00E+00	NO
2-Methylphenol(o-cresol)	95-48-7	.01040	.1180	3.91E+03	0.00E+00	NO
2-Chloronaphthalene	91-58-7	.01850	.2030	6.26E+03		NO
2,4,5-Trichlorophenol	95-95-4	.01110	.1220	7.82E+03	0.00E+00	NO
1,3-Dichlorobenzene	541-73-1	.01350	.1720	6.96E+03	0.00E+00	NO
1,2-Dichlorobenzene	95-50-1	.01210	.1730	7.04E+03	0.00E+00	NO
trans-1,2-Dichloroethene	156-60-5	.001140	.001430	1.56E+03	0.00E+00	NO
o-Xylene	95-47-6	.000735	.000916	1.56E+05		NO
m&p-Xylenes	108-32-3M	.001620	.002020	1.56E+05	0.00E+00	NO
cis-1,2-Dichloroethene	156-59-2	.000943	.001180	7.82E+02	0.00E+00	NO
Vinyl acetate	108-05-4	.000911	.001130	7.82E+04	0.00E+00	NO
Toluene	108-88-3	.000783	.000976	1.56E+04		NO
Styrene	100-42-5	.000916	.001140	1.56E+04	0.00E+00	NO
Ethylbenzene	100-41-4	.000686	.000855	7.82E+03	0.00E+00	NO
Chloroethane	75-00-3	.001130	.001410	3.13E+04	0.00E+00	NO
Chlorobenzene	108-90-7	.000813	.001010	1.56E+03		NO
Carbon disulfide	75-15-0	.000791	.000985	7.82E+03	0.00E+00	NO
Acetone	67-64-1	.005070	.006310	7.82E+03	0.00E+00	NO
4-Methyl-2-pentanone(MIBK)	108-10-1	.002420	.003010	6.26E+03	0.00E+00	NO
2-Chloroethyl vinyl ether	110-75-8	.000917	.001140	1.96E+03	0.00E+00	NO
2-Butanone(MEK)	78-93-3	.003980	.004950	4.69E+04	0.00E+00	NO
1,1-Dichloroethane	75-34-3	.001130	.001410	7.82E+03	0.00E+00	NO
1,1,1-Trichloroethane	71-55-6	.000833	.001040	7.04E+03	0.00E+00	NO
bis(2-Chloroethoxy)methane	111-91-1	.01210	.160	0.00E+00	0.00E+00	NV
Acenaphthylene	208-96-8	.01410	.1550	0.00E+00	0.00E+00	NV
4-Chlorophenyl phenyl ether		.009340	.2530	0.00E+00	0.00E+00	NV

Table 4B-6 (Continued)

Chemical Name	CAS No.	DL Minimum mg/kg	DL Maximum mg/kg	Screening Level mg/kg	Ratio	Exceeds Screening Level
4-Chloro-3-methylphenol	59-50-7	.00660	.07250	0.00E+00	0.00E+00	NV
4,6-Dinitro-2-methylphenol		.01660	1.540	0.00E+00	0.00E+00	NV
2-Nitrophenol	88-75-5	.01790	.1970	0.00E+00	0.00E+00	NV
2-Hexanone	591-78-6	.002720	.003390	0.00E+00	0.00E+00	NV
Gasoline Range Organics		1.0	1.0	0.00E+00	0.00E+00	NV

^a No screening level is given for this chemical in the U.S. EPA Region III Risk-Based Concentration Table.

Table 4B-7

Detection Limit Screening for Subsurface Soil for the Southeast Runway Fuel Spill Site

		DL	DL	Screening		Exceeds
	CAS		Maximum			Screening
Chemical Name	No.	mg/kg	mg/kg	mg/kg	Ratio	Level
Dibenz(a,h)anthracene	53-70-3	.02580	18.40		2.95E-01	NO
Benzo(a)pyrene	50-32-8	.01750	14.30	8.75E-02	2.00E-01	NO
N-Nitrosodipropylamine	621-64-7	.009170	6.060	9.12E-02	1.01E-01	NO
Hexachlorobenzene	118-74-1	.01570	10.40	3.99E-01	3.93E-02	NO
Indeno(1,2,3-cd)pyrene	193-39-5	.02530	16.70	8.75E-01	2.89E-02	NO.
bis(2-Chloroethyl)ether	111-44-4	.01420	9.590	5.81E-01	2.45E-02	NO
Benzo(a)anthracene	56-55-3	.02070	13.70	8.75E-01	2.37E-02	NO
Benzo(b)fluoranthene	205-99-2	.01950	12.90	8.75E-01	2.23E-02	NO
2,6-Dinitrotoluene	606-20-2	.01640	19.80	9.39E-01	1.75E-02	NO
2,4-Dinitrotoluene	121-14-2	.01390	9.160	9.39E-01	1.48E-02	NO
2-Nitroaniline	88-74-4	.006240	4.130	4.69E-01	1.33E-02	NO
3,3'-Dichlorobenzidine	91-94-1	.01090	7.180	1.42E+00	7.68E-03	NO
Benzo(k)fluoranthene	207-08-9	.03390	22.40	8.75E+00	3.87E-03	NO
Vinyl chloride	75-01-4	.000718	.004120	3.36E-01	2.14E-03	NO
Hexachlorobutadiene	87-68-3	.0160	10.60	8.19E+00	1.95E-03	NO
bis(2-Chloroisopropyl)ether	39638-32-9	.01360	9.990	9.12E+00	1.49E-03	NO
Pentachlorophenol	87-86-5	.006240	4.130	5.32E+00	1.17E-03	NO
1,1-Dichloroethene	75-35-4	.000750	.00430	1.06E+00	7.00E-04	NO
1,4-Dichlorobenzene	106-46-7	.01220	14.70	2.66E+01	4.60E-04	NO
1,1,2,2-Tetrachloroethane	79-34-5	.001120	.006440	3.19E+00	3.50E-04	NO
Hexachloroethane	67-72-1	.01370	9.040	4.56E+01	3.00E-04	NO
Nitrobenzene	98-95-3	.01120	7.390	3.91E+01	2.90E-04	NO
2,4-Dinitrophenol	51-28-5	.04550	30.10	1.56E+02	2.90E-04	NO
Chrysene	218-01-9	.02220	14.70	8.75E+01	2.50E-04	NO
Hexachlorocyclopentadiene	77-47-4	.110	130.0	5.48E+02	2.00E-04	NO
2,4,6-Trichlorophenol	88-06-2	.01120	16.20	5.81E+01	1.90E-04	NO
cis-1,3-Dichloropropene	542-75-6	.000637	.003650	3.65E+00	1.70E-04	NO
Carbon tetrachloride	56-23-5	.000846	.004850	4.91E+00	1.70E-04	NO
trans-1,3-Dichloropropene	10061-02-6	.00060	.003440	3.65E+00	1.60E-04	NO
1,2-Dichloroethane	107-06-2	.000775	.004440	7.02E+00		NO
Dibromochloromethane	124-48-1	.000795	.004550	7.60E+00	1.00E-04	NO
Tetrachloroethene	127-18-4	.001020	.005850	1.23E+01	8.00E-05	NO
Bromodichloromethane	75-27-4	.000776	.004450	1.06E+01	7.00E-05	NO
1,1,2-Trichloroethane	79-00-5	.000813	.004660	1.12E+01	7.00E-05	NO
4-Nitroaniline	100-01-6	.01490	9.830	2.35E+02	6.00E-05	NO
1,2-Dichloropropane	78-87-5	.000605	.003470	9.39E+00	6.00E-05	NO
Dibenzofuran	132-64-9	.01690	14.80	3.13E+02	5.00E-05	NO
4-Chloroaniline	106-47-8	.01510	9.970	3.13E+02	5.00E-05	NO
4-Methylphenol/3-Methylphenol	106-44-5	.01450	9.570	3.91E+02	4.00E-05	NO
3-Nitroaniline	99-09-2	.009360	9.990	2.35E+02	4.00E-05	NO

Table 4B-7 (Continued)

		DL	DL	Screening		Exceeds
	CAS		Maximum			Screening
Chemical Name	No.	mg/kg	mg/kg	mg/kg	Ratio	Level
2,4-Dichlorophenol	120-83-2	.008550	5.650	2.35E+02		NO
2-Chlorophenol	95-57-8	.01050	10.70	3.91E+02		NO
Isophorone	78-59-1	.01270	8.830		2.00E-05	NO
2,4-Dimethylphenol	105-67-9	.02350	15.50	1.56E+03		NO
1,2,4-Trichlorobenzene	120-82-1	.01510	9.970		2.00E-05	NO
Chloromethane	74-87-3	.000937	.005370		2.00E-05	NO
Pyrene	129-00-0	.02080	17.60	2.35E+03		NO
Fluoranthene	206-44-0	.02180	14.40		1.00E-05	NO
Diphenylamine (N-Nitrosodiphenylamine)	122-39-4	.01640	10.80		1.00E-05	
Di-n-octylphthalate	117-84-0	.01180	21.50	1.56E+03		NO
Trichloroethene	79-01-6	.000744	.004270	5.81E+01		NO
Tribromomethane(Bromoform)	75-25-2	.000622	.003570		1.00E-05	NO
Chloroform	67-66-3	.001040	.005970		1.00E-05	NO
Bromomethane	74-83-9	.001060	.006080		1.00E-05	NO
Phenol	108-95-2	.01450	9.590	4.69E+04	0.00E+00	NO
Dimethylphthalate	131-11-3	.01160	8.730	7.82E+05	0.00E+00	NO
Diethylphthalate	84-66-2	.01540	10.20	6.26E+04	0.00E+00	NO
Dibutyl phthalate	84-74-2	.01210	14.0	7.82E+03	0.00E+00	NO
Butylbenzylphthalate	85-68-7	.007870	15.10	1.56E+04	0.00E+00	NO
Benzyl alcohol	100-51-6	.02140	26.50	2.35E+04	0.00E+00	NO
Benzoic acid	65-85-0	.2180	144.0	3.13E+05	0.00E+00	NO
Anthracene	120-12-7	.01880	12.50	2.35E+04	0.00E+00	NO
4-Nitrophenol	100-02-7	.01550	10.20	4.85E+03	0.00E+00	NO
4-Bromophenyl phenyl ether	101-55-3	.01310	8.660	4.54E+03	0.00E+00	NO
2-Methylphenol(o-cresol)	95-48-7	.007870	7.060	3.91E+03	0.00E+00	NO
2-Chloronaphthalene	91-58-7	.01840	12.20	6.26E+03	0.00E+00	NO
2,4,5-Trichlorophenol	95-95-4	.0110	7.280	7.82E+03	0.00E+00	NO
1,3-Dichlorobenzene	541-73-1	.01020	10.30	6.96E+03	0.00E+00	NO
1,2-Dichlorobenzene	95-50-1	.009120	10.40	7.04E+03	0.00E+00	NO
trans-1,2-Dichloroethene	156-60-5	.001080	.00620		0.00E+00	NO
cis-1,2-Dichloroethene	156-59-2	.000893	.005120		0.00E+00	NO
Vinyl acetate	108-05-4	.000862	.004940		0.00E+00	NO
Styrene	100-42-5	.000867	.004970		0.00E+00	NO
Chloroethane	75-00-3	.001070	.006140		0.00E+00	NO
Chlorobenzene	108-90-7	.000769	.004410		0.00E+00	NO
Carbon disulfide	75-15 - 0	.000748	.004290		0.00E+00	NO
4-Methyl-2-pentanone(MIBK)	108-10-1	.002290	.01310		0.00E+00	NO
2-Chloroethyl vinyl ether	110-75-8	.000868	.004970		0.00E+00	NO
1,1-Dichloroethane	75-34-3	.001070	.006140		0.00E+00	NO
1,1,1-Trichloroethane	71-55-6	.000788	.004520		0.00E+00	NO
bis(2-Chloroethoxy)methane	111-91-1	.009120	9.590		0.00E+00	NV^a
Benzo(g,h,i)perylene	191-24-2	.02180	17.70	0.00E+00	0.00E+00	NV^a

Table 4B-7 (Continued)

Chemical Name	CAS No.	DL Minimum mg/kg	DL Maximum mg/kg	Screening Level mg/kg	Ratio	Exceeds Screening Level
Acenaphthylene	208-96-8	.0140	9.260	0.00E+00	0.00E+00	NV^{a}
4-Chlorophenyl phenyl ether		.007040	15.10	0.00E+00	0.00E+00	NV^a
4-Chloro-3-methylphenol	59-50-7	.006570	4.340	0.00E+00	0.00E+00	NV^a
4,6-Dinitro-2-methylphenol		.01250	92.30	0.00E+00	0.00E+00	NV^a
2-Nitrophenol	88-75-5	.01780	11.80	0.00E+00	0.00E+00	NV^a
2-Hexanone	591-78-6	.002580	.01480	0.00E+00	0.00E+00	NV^a

^a No screening level is given for this chemical in the U.S. EPA Region III Risk-Based Concentration Table.

Table 4B-8

Detection Limit Screening for Groundwater for the Southeast Runway Fuel Spill Site

		ÐL	DL	Screening		Exceeds
	CAS		Maximum	Level		Screening
Chemical Name	No.	mg/L	mg/L	mg/L	Ratio	Level
Hexachlorobenzene	118-74-1	.000656	.000691	6.59E-06	#######	YES
N-Nitrosodipropylamine	621-64-7	.000896	.000943	9.57E-06	#######	YES
bis(2-Chloroethyl)ether	111-44-4	.000857	.000902	9.59E-06	#######	YES
Dibenz(a,h)anthracene	53-70-3	.000648	.000682	9.17E-06	#######	YES
Benzo(a)pyrene	50-32-8	.000585	.000616	9.17E-06	#######	YES
1,1-Dichloroethene	75-35-4	.000212	.000636	9.54E-06	#######	YES
Hexachlorobutadiene	87-68-3	.001450	.001530	1.35E-04	#######	YES
Hexachlorocyclopentadiene	77-47-4	.002260	.002380	2.19E-04	#######	YES
2,4-Dinitrotoluene	121-14-2	.000991	.001040	9.85E-05	#######	YES
Benzo(a)anthracene	56-55-3	.000762	.000802	9.17E-05	#######	YES
2,6-Dinitrotoluene	606-20-2	.000805	.000847	9.85E-05	#######	YES
Benzo(b)fluoranthene	205-99-2	.000698	.000735	9.17E-05	#######	YES
Indeno(1,2,3-cd)pyrene	193-39-5	.000551	.000580	9.17E-05	#######	YES
3,3'-Dichlorobenzidine	91 - 94-1	.000647	.000681	1.49E-04	#######	YES
2-Nitroaniline	88-74-4	.000951	.0010	2.19E-04	#######	YES
Vinyl chloride	75-01-4	.000070	.000209	1.91E-05	#######	YES
bis(2-Chloroisopropyl)ether	39638-32-9	.000891	.000938	2.60E-04	#######	YES
cis-1,3-Dichloropropene	542-75-6	.000116	.000348	7.70E-05	#######	YES
Pentachlorophenol	87-86-5	.000834	.000878	5.58E-04	#######	YES
Hexachloroethane	67 - 72-1	.001020	.001070	7.54E-04	#######	YES
1,1,2,2-Tetrachloroethane	79-34-5	.000071	.000212	5.28E-05	#######	YES
Benzo(k)fluoranthene	207-08-9	.001160	.001220	9.17E-04	#######	YES
Carbon tetrachloride	56-23-5	.000131	.000393	1.62E-04		NO
Dibromochloromethane	124-48-1	.000087	.000261	1.26E-04		NO
1,4-Dichlorobenzene	106-46-7	.000216	.000648	4.40E-04		NO
1,1,2-Trichloroethane	79-00-5	.000068	.000203	1.85E-04		NO
1,1,1,2-Tetrachloroethane	630-20-6	.000133	.000399	4.06E-04		NO
1,2-Dichloropropane	78-87-5	.000044	.000132	1.55E-04		NO
Bromodichloromethane	75-27-4	.000046	.000139	1.76E-04		NO
Nitrobenzene	98 - 95 - 3	.000756	.000796	3.39E - 03		NO
trans-1,3-Dichloropropene	10061-02-6	.000072	.000217	3.83E-04		NO
2,4,6-Trichlorophenol	88-06-2	.000976	.001030	6.09E-03		NO
bis(2-Ethylhexyl)phthalate	117-81-7	.000731	.000769	4.78E-03		NO
Chrysene	218-01-9	.000858	.000903	9.17E-03		NO
Tribromomethane(Bromoform)	75-25-2	.000136	.000408	2.33E-03		NO
1,2,4-Trichlorobenzene	120-82-1	.000996	.001050	1.78E-02		NO
2,4-Dinitrophenol	51-28-5	.002590	.002730	7.30E-02		NO
4-Nitroaniline	100-01-6	.00120	.001260	1.10E-01		NO
Isophorone	78 - 59-1	.000770	.000811	7.05E-02		NO
2,4-Dichlorophenol	120-83-2	.001090	.001150	1.10E-01	9.95E-03	NO

Table 4B-8 (Continued)

		DL	DL	Screening		Exceeds
	CAS		Maximum	Level		Screening
Chemical Name	No.	mg/L	mg/L	mg/L	Ratio	Level
3-Nitroaniline	99-09-2	.001080	.001140	1.10E-01	9.86E-03	NO
Carbon disulfide	75-15-0	.000190	.000570	2.08E-02	9.15E-03	NO
4-Chloroaniline	106-47-8	.000963	.001010	1.46E-01	6.60E-03	NO
Dibenzofuran	132-64-9	.000865	.000911	1.46E-01	5.92E-03	NO
Bromomethane	74-83-9	.000050	.000150	8.67E-03	5.77E-03	NO
Chlorobenzene	108-90-7	.000205	.000615	3.94E-02	5.20E-03	NO
2-Chlorophenol	95-57-8	.000799	.000841	1.83E-01	4.38E-03	NO
4-Methylphenol/3-Methylphenol	106-44-5	.000753	.000793	1.83E-01	4.13E-03	NO
4-Bromophenyl phenyl ether	101 - 55-3	.006080		2.12E+00		NO
1,2,3-Trichloropropane	96-18-4	.000090		3.65E-02		NO
trans-1,2-Dichloroethene	156-60-5	.000212	.000636	1.22E-01		NO
cis-1,2-Dichloroethene	156-59-2	.000104	.000312	6.08E-02		NO
2,4-Dimethylphenol	105-67-9	.001030	.001080	7.30E-01		NO
Diphenylamine (N-Nitrosodiphenylamine)	122-39-4	.000960	.001010	9.13E-01		NO
2-Chloroethyl vinyl ether	110-75-8	.000131	.000393		8.60E - 04	NO
Pyrene	129-00-0	.000858	.000903	1.10E+00		NO
2-Butanone(MEK)	78-93-3	.001290	.003870	1.90E+00		NO
4-Nitrophenol	100-02-7	.001360	.001430	2.26E+00		NO
Di-n-octylphthalate	117-84-0	.000397	.000418	7.30E-01		NO
Fluoranthene	206-44-0	.000751	.000791	1.46E+00		NO
1,2-Dichlorobenzene	95-50-1	.000182	.000546	3.70E-01		NO
1,3-Dichlorobenzene	541-73-1	.000228	.000684	5.41E-01		NO
2-Methylphenol(o-cresol) 2-Chloronaphthalene	95-48-7 91-58-7	.00070	.000737	1.83E+00		NO
2,4,5-Trichlorophenol	95-95-4	.000798	.000855	2.92E+00 3.65E+00		NO NO
Butylbenzylphthalate	85-68-7	.000812	.001010	7.30E+00		NO
Styrene	100-42-5	.000302	.001010	1.62E+00		NO
4-Methyl-2-pentanone(MIBK)	108-10-1	.000184	.000948	2.92E+00		NO
1,1,1-Trichloroethane	71-55-6	.000120	.000340	1.28E+00		NO
Trichlorofluoromethane	75-69-4	.000120	.00030	1.29E+00		NO
1,1-Dichloroethane	75-34-3	.000065	.000194	8.11E-01		NO
Anthracene	120-12-7	.000751	.000791	1.10E+01		NO
Benzoic acid	65-85-0	.006030	.006350	1.46E+02		NO
Diethylphthalate	84-66-2	.000962	.001010	2.92E+01		NO
Phenol	108-95-2	.000416	.000438	2.19E+01		NO
Vinyl acetate	108-05-4	.000381	.001140	3.65E+01		NO
Dimethylphthalate	131-11-3	.000808	.000851	3.65E+02		NO
bis(2-Chloroethoxy)methane	111-91-1	.000967	.001020	0.00E+00		NV^a
Benzo(g,h,i)perylene	191-24-2	.000676	.000712	0.00E+00		NV^a
Acenaphthylene	208-96-8	.000880	.000926	0.00E+00		NV ^a
4-Chlorophenyl phenyl ether		.000985	.001040	0.00E+00		NV ^a
4-Chloro-3-methylphenol	59-50-7	.000866	.001040			
Cinoro-3-incuryiphenoi	J 7- JU-/	.00000	.000912	0.00E+00	#######	NV^a

Table 4B-8 (Continued)

Chemical Name	CAS No.	DL Minimum mg/L	DL Maximum mg/L	Screening Level mg/L	Ratio	Exceeds Screening Level
4,6-Dinitro-2-methylphenol		.001060	.001120	0.00E+00	#######	NV^a
2-Nitrophenol	88-75-5	.000884	.000931	0.00E+00	#######	NV^a
Bromobenzene	108-86-1	.000167	.000501	0.00E+00	#######	NV^a
2-Hexanone	591-78-6	.000347	.001040	0.00E+00	#######	NV^a
1-Chlorohexane		.000357	.001070	0.00E+00	#######	NV^a

^a No screening level is given for this chemical in the U.S. EPA Region III Risk-Based Concentration Table.

Table 4B-9

Detection Limit Screening for Surface Soil for the Control Tower Drum Storage Area

		DL	DL	Screening		Exceeds
	CAS		Maximum			Screening
Chemical Name	No.	mg/kg	mg/kg	mg/kg	Ratio	Level
Dibenz(a,h)anthracene	53-70-3	.02620		8.75E-02	2.99E-01	NO
PCB-1242	1336-36-3	.01230		8.30E-02	1.48E-01	NO
N-Nitrosodipropylamine	621-64-7	.008630		9.12E-02	9.46E-02	NO
PCB-1260	11096-82-5	.003570		8.30E-02	4.30E-02	NO
Hexachlorobenzene	118-74-1	.01480	.0170	3.99E-01	3.71E-02	NO
2,6-Dinitrotoluene	606-20-2	.02820	.03230	9.39E-01	3.00E-02	NO
PCB-1221	11104-28-2	.002370	.0240	8.30E-02	2.86E-02	NO
bis(2-Chloroethyl)ether	111-44-4	.01370	.01560	5.81E-01	2.36E-02	NO
PCB-1232	11141-16-5	.001790	.01810	8.30E-02	2.16E-02	NO
2,4-Dinitrotoluene	121-14-2	.0130	.01490	9.39E-01	1.38E-02	NO
2-Nitroaniline	88-74-4	.005880	.006730	4.69E-01	1.25E-02	NO
Toxaphene	8001-35-2	.004370	.04420	5.81E-01	7.53E-03	NO
3,3'-Dichlorobenzidine	91-94-1	.01020	.01170	1.42E+00	7.19E-03	NO
Chlordane	57-74-9	.002450	.02480	4.91E-01	4.99E-03	NO
Vinyl chloride	75-01-4	.000711	.000808	3.36E-01	2.11E-03	NO
PCB-1254	11097-69-1	.003150	.03190	1.56E+00	2.01E-03	NO
Hexachlorobutadiene	87-68-3	.01510	.01730	8.19E+00	1.84E-03	NO
bis(2-Chloroisopropyl)ether	39638-32-9	.01420	.01630	9.12E+00	1.56E-03	NO
Pentachlorophenol	87-86-5	.005880	.006730	5.32E+00	1.10E-03	NO
beta-BHC	319-85-7	.000347	.005320	3.55E-01	9.80E-04	NO
1,4-Dichlorobenzene	106-46-7	.02090	.02390	2.66E+01	7.90E-04	NO
1,1-Dichloroethene	75-35-4	.000743	.000844	1.06E+00	7.00E-04	NO
PCB-1016	12674-11-2	.002490	.02530	5.48E+00	4.50E-04	NO
2,4,6-Trichlorophenol	88-06-2	.02310	.02640	5.81E+01	4.00E-04	NO
1,1,2,2-Tetrachloroethane	79-34-5	.001110	.001260	3.19E+00	3.50E-04	NO
Hexachlorocyclopentadiene	77-47-4	.1850	.2120	5.48E+02	3.40E-04	NO
Hexachloroethane	67-72-1	.01290	.01480	4.56E+01	2.80E-04	NO
Nitrobenzene	98-95-3	.01050	.01210	3.91E+01	2.70E-04	NO
2,4-Dinitrophenol	51-28-5	.04280	.0490	1.56E+02	2.70E-04	NO
cis-1,3-Dichloropropene	542-75-6	.000631	.000716	3.65E+00	1.70E-04	NO
Carbon tetrachloride	56-23-5	.000838	.000952	4.91E+00	1.70E-04	NO
trans-1,3-Dichloropropene	10061-02-6	.000594	.000675	3.65E+00	1.60E-04	NO
1,2-Dichloroethane	107-06-2	.000767	.000872	7.02E+00	1.10E-04	NO
Dibromochloromethane	124-48-1	.000787	.000894	7.60E+00	1.00E-04	NO
Tetrachloroethene	127-18-4	.001010	.001150	1.23E+01	8.00E-05	NO
Dibenzofuran	132-64-9	.02110	.02410	3.13E+02	7.00E-05	NO
Bromodichloromethane	75-27-4	.000768	.000873	1.06E+01	7.00E-05	NO
1,1,2-Trichloroethane	79-00-5	.000805	.000915	1.12E+01	7.00E-05	NO
4-Nitroaniline	100-01-6	.0140	.0160	2.35E+02	6.00E-05	NO
3-Nitroaniline	99-09-2	.01420	.01630	2.35E+02	6.00E-05	NO

Table 4B-9 (Continued)

		DL	DL	Screening		Exceeds
	CAS	Minimum	Maximum			Screening
Chemical Name	No.	mg/kg	mg/kg	mg/kg	Ratio	Level
1,2-Dichloropropane	78-87 - 5	.000599		9.39E+00	6.00E-05	NO
4-Chloroaniline	106-47-8	.01420	.01630	3.13E+02	5.00E-05	NO
2-Chlorophenol	95-57 - 8	.01530	.01750	3.91E+02	4.00E-05	NO
Benzene	71-43-2	.000852	.000968	2.20E+01	4.00E-05	NO
4-Methylphenol/3-Methylphenol	106-44-5	.01360	.01560	3.91E+02	3.00E-05	NO
2,4-Dichlorophenol	120-83-2	.008050	.009220	2.35E+02	3.00E-05	NO
Isophorone	78-59-1	.01260	.01440	6.72E+02	2.00E-05	NO
Di-n-octylphthalate	117-84-0	.03070	.03520	1.56E+03	2.00E-05	NO
1,2,4-Trichlorobenzene	120-82-1	.01420	.01630	7.82E+02	2.00E-05	NO
Chloromethane	74-87-3	.000928	.001050	4.91E+01	2.00E-05	NO
Naphthalene	91-20-3	.02010	.0230	3.13E+03	1.00E-05	NO
Fluorene	86-73-7	.02170	.02490	3.13E+03	1.00E-05	NO
Diphenylamine (N-Nitrosodiphenylamine)	122-39-4	.01540	.01770	1.96E+03	1.00E-05	NO
2,4-Dimethylphenol	105-67-9	.02210	.02530	1.56E+03	1.00E-05	NO
Trichloroethene	79-01-6	.000737	.000837	5.81E+01	1.00E-05	NO
Tribromomethane(Bromoform)	75-25-2	.000616	.00070	8.09E+01	1.00E-05	NO
Chloroform	67-66-3	.001030	.001170	1.05E+02	1.00E-05	NO
Bromomethane	74-83-9	.001050	.001190	1.10E+02	1.00E-05	NO .
Methoxychlor	72-43-5	.005590	.05660	3.91E+02	1.00E-05	NO
Phenol	108-95-2	.01370	.01560	4.69E+04	0.00E+00	NO
Dimethylphthalate	131-11-3	.01240	.01420	7.82E+05	0.00E+00	NO
Diethylphthalate	84-66-2	.01450	.01660	6.26E+04	0.00E+00	NO
Dibutyl phthalate	84-74-2	.01990	.02280	7.82E+03	0.00E+00	NO
Butylbenzylphthalate	85-68-7	.02150	.02460	1.56E+04	0.00E+00	NO
Benzyl alcohol	100-51-6	.03770	.04320	2.35E+04	0.00E+00	NO
Benzoic acid	65-85-0	.2050	.2350	3.13E+05	0.00E+00	NO
Acenaphthene	83-32-9	.01470	.01690	4.69E+03	0.00E+00	NO
4-Nitrophenol	100-02-7	.01460	.01670	4.85E+03	0.00E+00	NO
4-Bromophenyl phenyl ether	101-55-3	.01230	.01410	4.54E+03	0.00E+00	NO
2-Methylphenol(o-cresol)	95-48-7	.01010	.01150	3.91E+03	0.00E+00	NO
2-Chloronaphthalene	91-58-7	.01730	.01990	6.26E+03	0.00E+00	NO
2,4,5-Trichlorophenol	95-95-4	.01040	.01190	7.82E+03	0.00E+00	NO
1,3-Dichlorobenzene	541-73-1	.01470	.01680	6.96E+03	0.00E+00	NO
1,2-Dichlorobenzene	95-50-1	.01470	.01690	7.04E+03	0.00E+00	NO
trans-1,2-Dichloroethene	156-60-5	.001070	.001220	1.56E+03	0.00E+00	NO
o-Xylene	95-47-6	.000689	.000783	1.56E+05	0.00E+00	NO
m&p-Xylenes	108-32-3M	.001520	.001730	1.56E+05	0.00E+00	NO
cis-1,2-Dichloroethene	156-59-2	.000884	.0010	7.82E+02	0.00E+00	NO
Vinyl acetate	108-05-4	.000853	.000969	7.82E+04	0.00E+00	NO
Toluene	108-88-3	.000734	.000834	1.56E+04	0.00E+00	NO
Styrene	100-42-5	.000858	.000975	1.56E+04	0.00E+00	NO
Ethylbenzene	100-41-4	.000643	.000730	7.82E+03	0.00E+00	NO

Table 4B-9 (Continued)

Chemical Name	CAS No.	DL Minimum mg/kg	DL Maximum mg/kg	Screening Level mg/kg	Ratio	Exceeds Screening Level
Chloroethane	75-00-3	.001060	.001210	3.13E+04	0.00E+00	NO
Chlorobenzene	108-90-7	.000761	.000865	1.56E+03	0.00E+00	NO
Carbon disulfide	75-15-0	.000741	.000842	7.82E+03	0.00E+00	NO
Acetone	67-64-1	.004750	.005390	7.82E+03	0.00E+00	NO
4-Methyl-2-pentanone(MIBK)	108-10-1	.002270	.002570	6.26E+03	0.00E+00	NO
2-Chloroethyl vinyl ether	110-75-8	.000859	.000976	1.96E+03	0.00E+00	NO
2-Butanone(MEK)	78-93-3	.003720	.004230	4.69E+04	0.00E+00	NO
1,1-Dichloroethane	75-34-3	.001060	.001210	7.82E+03	0.00E+00	NO
1,1,1-Trichloroethane	71-55-6	.000781	.000887	7.04E+03	0.00E+00	NO
Endosulfan sulfate	1031-07-8	.000556	.005630	4.69E+02	0.00E+00	NO
bis(2-Chloroethoxy)methane	111-91-1	.01370	.01560	0.00E+00	0.00E+00	NV
Acenaphthylene	208-96-8	.01320	.01510	0.00E+00	0.00E+00	NV
4-Chlorophenyl phenyl ether		.02150	.02470	0.00E+00	0.00E+00	NV
4-Chloro-3-methylphenol	59-50-7	.006180	.007080	0.00E+00	0.00E+00	NV
4,6-Dinitro-2-methylphenol		.1310	.1510	0.00E+00	0.00E+00	NV
2-Nitrophenol	88-75-5	.01670	.01920	0.00E+00	0.00E+00	NV
2-Hexanone	591-78-6	.002550	.00290	0.00E+00	0.00E+00	NV
PCB-1248	12672-29-6	.004260	.04320	0.00E+00	0.00E+00	NV
Gasoline Range Organics		1.0	1.0	0.00E+00	0.00E+00	NV

^a No screening level is given for this chemical in the U.S. EPA Region III Risk-Based Concentration Table.

Table 4B-10

Detection Limit Screening for Groundwater for the Control Tower Drum Storage Area

		DL	DL	Screening		Exceeds
	CAS		Maximum	Level		Screening
Chemical Name	No.	mg/L	mg/L	mg/L	Ratio	Level
Dibenz(a,h)anthracene	53-70-3	.000990	.0010	9.17E-06	1.08E+02	YES
Benzo(a)pyrene	50-32-8	.000786	.000794	9.17E-06	8.57E+01	YES
Hexachlorobenzene	118-74-1	.000545	.000550	6.59E-06	8.27E+01	YES
N-Nitrosodipropylamine	621-64-7	.000610	.000616	9.57E-06	6.38E+01	YES
bis(2-Chloroethyl)ether	111-44-4	.000482	.000487	9.59E-06	5.03E+01	YES
Benzo(b)fluoranthene	205-99-2	.001040	.001050	9.17E-05	1.13E+01	YES
Indeno(1,2,3-cd)pyrene	193-39-5	.000874	.000882	9.17E-05	9.53E+00	YES
1,1-Dichloroethene	75-35-4	.000081	000081	9.54E-06	8.45E+00	YES
PCB-1232	11141-16-5	.000073	.000074	8.70E-06	8.37E+00	YES
Hexachlorobutadiene	87-68-3	.001020	.001030	1.35E-04	7.54E+00	YES
2,6-Dinitrotoluene	606-20-2	.000737	.000745	9.85E-05	7.48E+00	YES
2,4-Dinitrotoluene	121-14-2	.000676	.000683	9.85E-05	6.86E+00	YES
Benzo(a)anthracene	56-55-3	.000588	.000594	9.17E-05	6.41E+00	YES
3,3'-Dichlorobenzidine	91-94-1	.000885	.000894	1.49E-04	5.95E+00	YES
Hexachlorocyclopentadiene	77-47-4	.001180	.001190	2.19E-04	5.39E+00	YES
Vinyl chloride	75-01-4	.000099	.000099	1.91E-05	5.19E+00	YES
PCB-1260	11096-82-5	.000035	.000036	8.70E-06	4.04E+00	YES
2-Nitroaniline	88-74-4	.000730	.000738	2.19E-04	3.33E+00	YES
PCB-1221	11104-28-2	.000029	.000029	8.70E-06	3.31E+00	YES
1,1,2,2-Tetrachloroethane	79-34-5	.000170	.000170	5.28E-05	3.22E+00	YES
PCB-1242	1336-36-3	.000027	.000027	8.70E-06	3.07E+00	YES
Pentachlorophenol	87-86-5	.000942	.000951	5.58E-04	1.69E+00	YES
bis(2-Chloroisopropyl)ether	39638-32-9	.000438	.000443	2.60E-04	1.68E+00	YES
Benzo(k)fluoranthene	207-08-9	.001090	.00110	9.17E-04	1.19E+00	YES
cis-1,3-Dichloropropene	542-75-6	.000076	.000076	7.70E-05	9.85E-01	NO
1,4-Dichlorobenzene	106-46-7	.000423	.000423	4.40E-04	9.62E-01	NO
Toxaphene	8001-35-2	.000056	.000058	6.09E-05	9.26E-01	NO
Hexachloroethane	67-72-1	.000546	.000551	7.54E-04	7.25E-01	NO
Carbon tetrachloride	56-23-5	.000117	.000117	1.62E-04	7.22E-01	NO
bis(2-Ethylhexyl)phthalate	117-81-7	.002630	.002650	4.78E-03	5.50E-01	NO
1,1,2-Trichloroethane	79-00-5	.000092	.000092	1.85E-04	4.97E-01	NO
1,2-Dichloropropane	78-87-5	.000074	.000074	1.55E-04	4.78E-01	NO
Chlordane	57-74-9	.000020	.000020	5.15E-05	3.86E-01	NO
Bromodichloromethane	75-27-4	.000054	.000054	1.76E-04	3.05E-01	NO
alpha-BHC	319-84-6	.000003	.000003	1.06E-05	2.73E-01	NO
Chloroform	67-66-3	.000036	.000036	1.53E-04	2.37E-01	NO
Dibromochloromethane	124-48-1	.000028	.000028	1.26E-04	2.25E-01	NO
trans-1,3-Dichloropropene	10061-02-6	.000083	.000083	3.83E-04	2.17E-01	NO
1,1,1,2-Tetrachloroethane	630-20-6	.000085	.000085	4.06E-04	2.10E-01	NO
Tetrachloroethene	127-18-4	.000209	.000209	1.07E-03	1.96E-01	NO

Table 4B-10 (Continued)

		8000000 ** 100000000	Essession and a second			1000c
	CAS	DL Minimum	DL Maximum	Screening		Exceeds
Chemical Name	No.	mg/L	mg/L	Level mg/L	Datie	Screening
Nitrobenzene	98-95-3	.000434	.000439	3.39E-03	Ratio 1.28E-01	Level NO
Chrysene	218-01-9	.000980	.000439	9.17E-03	1.28E-01 1.07E-01	NO
2,4,6-Trichlorophenol	88-06-2	.000580	.000550	6.09E-03	1.07E-01 1.06E-01	NO
Tribromomethane(Bromoform)	75-25-2	.000108	.000034	2.33E-03	4.64E-02	NO
1,2,4-Trichlorobenzene	120-82-1	.000108	.000108	2.33E-03 1.78E-02	4.04E-02 2.44E-02	NO
4,4'-DDT	50-29-3	.0000433	.000013	1.78E-02 1.97E-04	1.88E-02	NO
PCB-1254	11097-69-1	.000004	.000013	7.30E-04	1.73E-02	NO
2,4-Dinitrophenol	51-28-5	.00011	.001120	7.30E-04 7.30E-02	1.73E-02 1.52E-02	NO
PCB-1016	12674-11-2	.000032	.000033	2.56E-03	1.32E-02 1.26E-02	NO
Bromomethane	74-83-9	.000032	.000097	8.67E-03	1.12E-02	NO
4,4'-DDD	72-54-8	.000007	.000007	2.79E-04	1.12E-02 1.08E-02	NO
4-Nitroaniline	100-01-6	.001080	.001090	1.10E-01	9.86E-03	NO
2,4-Dichlorophenol	120-83-2	.000861	.000869	1.10E-01	7.86E-03	NO
Carbon disulfide	75-15 - 0	.000161	.000161	2.08E-02	7.76E-03	NO
3-Nitroaniline	99-09-2	.000771	.000778	1.10E-01	7.76E-03	NO
1,2,3-Trichloropropane	96-18-4	.000233	.000778	3.65E-02	6.38E-03	NO
4-Chloroaniline	106-47-8	.000929	.000233	1.46E-01	6.36E-03	NO
Isophorone	78-59-1	.000320	.000323	7.05E-02	4.54E-03	NO
Dibenzofuran	132-64-9	.000548	.000553	1.46E-01	3.75E-03	NO
2-Chlorophenol	95-57-8	.000560	.000565	1.83E-01	3.07E-03	NO
Chlorobenzene	108-90-7	.000112	.000112	3.94E-02	2.84E-03	NO
4-Methylphenol/3-Methylphenol	106-44-5	.000361	.000364	1.83E-01	1.98E-03	NO
Acenaphthene	83-32-9	.000632	.000639	3.65E-01	1.73E-03	NO
2,4-Dimethylphenol	105-67-9	.000798	.000806	7.30E-01	1.09E-03	NO
Diphenylamine (N-Nitrosodiphenylamine)	122-39-4	.000890	.000899	9.13E-01	9.80E-04	NO
1,2-Dichlorobenzene	95-50-1	.000354	.000354	3.70E-01	9.60E-04	NO
2-Chloroethyl vinyl ether	110-75-8	.000124	.000124	1.52E-01	8.20E-04	NO
1,3-Dichlorobenzene	541-73-1	.000391	.000391	5.41E-01	7.20E-04	NO
Di-n-octylphthalate	117-84-0	.000510	.000515	7.30E-01	7.00E-04	NO
Endrin	72-20-8	.000008	.000008	1.10E-02	6.90E-04	NO
Pyrene	129-00-0	.00070	.000707	1.10E+00	6.40E-04	NO
Endrin aldehyde	7421-93-4	.000006	.000006	1.10E-02	5.80E-04	NO
Naphthalene	91-20-3	.000764	.000771	1.46E+00	5.20E-04	NO
4-Nitrophenol	100-02-7	.001150	.001160	2.26E+00	5.10E-04	NO
2-Butanone(MEK)	78-93-3	.000890	.000890	1.90E+00	4.70E-04	NO
Fluoranthene	206-44-0	.000583	.000589	1.46E+00	4.00E-04	NO
Fluorene	86-73-7	.000454	.000458	1.46E+00	3.10E-04	NO
Butylbenzylphthalate	85-68-7	.00180	.001820	7.30E+00	2.50E-04	NO
2-Chloronaphthalene	91-58-7	.000650	.000656	2.92E+00	2.20E-04	NO
Methoxychlor	72-43-5	.000040	.000063	1.83E-01	2.20E-04	NO
4-Bromophenyl phenyl ether	101-55-3	.000415	.000419	2.12E+00	2.00E-04	NO
Benzoic acid	65-85-0	.02580	.0260	1.46E+02	1.80E-04	NO

Table 4B-10 (Continued)

		DL	DL	Screening		Exceeds
	CAS		Maximum			Screening
Chemical Name	No.	mg/L	mg/L	mg/L	Ratio	Level
2-Methylphenol(o-cresol)	95-48-7	.000311	.000314	1.83E+00	1.70E-04	NO
4-Methyl-2-pentanone(MIBK)	108-10-1	.000501	.000501	2.92E+00	1.70E-04	NO
2,4,5-Trichlorophenol	95-95-4	.000544	.000550	3.65E+00	1.50E-04	NO
Dibutyl phthalate	84-74-2	.000489	.000494	3.65E+00	1.30E-04	NO
1,1-Dichloroethane	75-34-3	.000089	.000089	8.11E - 01	1.10E-04	NO
Endosulfan II	33213-65-9	.000004	.000004	3.65E-02	1.00E-04	NO
Ethylbenzene	100-41-4	.000110	.000110	1.34E+00	8.00E-05	NO
1,1,1-Trichloroethane	71-55-6	.000099	.000099	1.28E+00	8.00E-05	NO
Anthracene	120-12-7	.000755	.000762	1.10E+01	7.00E-05	NO
Trichlorofluoromethane	75-69-4	.000094	.000094	1.29E+00	7.00E-05	NO
Styrene	100-42-5	.000113	.000113	1.62E+00	7.00E-05	NO
Benzyl alcohol	100-51-6	.000532	.000538	1.10E+01	5.00E-05	NO
delta-BHC	319-86-8	.000001	.000002	1.64E-02	5.00E-05	NO
Phenol	108-95-2	.000369	.000372	2.19E+01	2.00E-05	NO
Endosulfan sulfate	1031-07-8	.000005	.000010	2.19E-01	2.00E-05	NO
Diethylphthalate	84-66-2	.000251	.000253	2.92E+01	1.00E-05	NO
o-Xylene	95-47-6	.000124	.000124	1.22E+01	1.00E-05	NO
Chloroethane	75-00-3	.000097	.000097	8.59E+00	1.00E-05	NO
Dimethylphthalate	131-11-3	.000443	.000448	3.65E+02	0.00E+00	NO
Vinyl acetate	108-05-4	.000127	.000127	3.65E+01	0.00E+00	NO
bis(2-Chloroethoxy)methane	111-91-1	.000625	.000632	0.00E+00	0.00E+00	NV^a
Phenanthrene	85-01-8	.000653	.000659	0.00E+00	0.00E+00	NV^a
Benzo(g,h,i)perylene	191-24-2	.001120	.001130	0.00E+00	0.00E+00	NV^a
Acenaphthylene	208-96-8	.000626	.000633	0.00E+00	0.00E+00	NV^a
4-Chlorophenyl phenyl ether		.000463	.000467	0.00E+00	0.00E+00	NV^a
4-Chloro-3-methylphenol	59-50-7	.000396	.00040	0.00E+00	0.00E+00	NV^a
4,6-Dinitro-2-methylphenol		.000972	.000981	0.00E+00	0.00E+00	NV^a
2-Nitrophenol	88-75-5	.000733	.000741	0.00E+00	0.00E+00	NV^a
2-Methylnaphthalene	91-57-6	.000575	.000580	0.00E+00	0.00E+00	NV^a
Bromobenzene	108-86-1	.000165	.000165	0.00E+00	0.00E+00	NV_a
2-Hexanone	591-78-6	.000766	.000766	0.00E+00	0.00E+00	NV^a
1-Chlorohexane		.000154	.000154	0.00E+00	0.00E+00	NV^a
PCB-1248	12672-29-6	.000032	.000032	0.00E+00	0.00E+00	NV^a

^a No screening level is given for this chemical in the U.S. EPA Region III Risk-Based Concentration Table.

APPENDIX 4C

GROUNDWATER MODELING

Note: Methodology for conducting groundwater modeling is described in Appendix C (Volume 3).

APPENDIX 4C LIST OF TABLES

	Page
4C-1	Groundwater Modeling Results for the Southeast Runway Fuel Spill Site
4C-2	Groundwater Modeling Results for the Control Tower Drum Storage Area, South

Table 4C-1
Groundwater Modeling Results for the Southeast Runway Fuel Spill Site

ANALYTE	LOCATION	DATE	RESULT (ppb)	SHORELINE Conc. (ppb)	River Conc. within 5ft mixing zone (ppb)	Old Town Galena Concentration (ppb)
1,2-Dichloroethane	MW-04	8/9/95	4.55E+00	2.06E-01	2.54E-05	4.55E-01
2-Methylnaphthalene	MW-01	8/9/95	1.07E+02	2.53E+01	2.45E-03	3.07E+01
Benzene	MW-01	8/9/95	5.85E+01	2.69E-03	4.38E-06	7.17E-02
Benzyl alcohol	MW-04	8/9/95	3.13E+00	7.40E-01	7.17E-05	8.98E-01
Beryllium	MW-01	8/9/95	3.94E+00	9.31E-01	9.02E-05	1.13E+00
Chloroethane	MW-04	8/9/95	5.89E-02	3.50E-07	3.39E-11	1.95E-05
Chloroform	MW-04	8/9/95	3.88E-02	6.60E-03	6.39E-07	9.02E-03
Chloromethane	MW-04	8/9/95	1.19E+00	7.07E-06	2.99E-09	3.95E-04
Dibutyl phthalate	MW-01	8/9/95	5.23E-01	1.24E-01	1.20E-05	1.50E-01
Ethylbenzene	MW-01	8/9/95	2.16E+01	3.79E-01	3.69E-05	1.18E+00
Fluorene	MW-01	8/9/95	1.52E+03	3.59E+02	3.48E-02	4.36E+02
m&p-Xylenes	MW-01	8/9/95	2.84E+01	1.29E+00	1.29E-04	2.84E+00
Naphthalene	MW-01	8/9/95	8.92E+01	2.11E+00	2.05E-04	5.89E+00
o-Xylene	MW-01	8/9/95	1.09E+01	4.95E-01	4.79E-05	1.09E+00
Phenanthrene	MW-01	8/9/95	7.39E-01	3.98E-02	3.85E-06	8.24E-02
Toluene	MW-01	8/9/95	6.01E+00	9.22E-10	4.41E-13	2.36E-06
Trichloroethene	MW-01	8/9/95	2.06E-01	3.40E-02	3.30E-06	4.70E-02

Table 4C-2
Groundwater Modeling Results for the Control Tower Drum Storage Area, South

ANALYTE	LOCATION	DATE	RESULT (ppb)	SHORELINE Conc. (ppb)	River Conc. within 5ft mixing zone (ppb)	Old Town Galena Concentration (ppb)
1,2-Dichloroethane	13-MW-38	9/19/94	6.40E-01	1.04E-03	2.76E-07	1.65E-03
4,4'-DDE	13-MW-38	9/19/94	5.00E-03	2.92E-04	2.37E-10	3.19E-04
Aldrin	13-MW-38	9/19/94	1.77E-02	3.78E-04	3.06E-10	4.59E-04
beta-BHC	13-MW-38	9/19/94	7.10E-03	2.21E-06	3.40E-10	4.18E-06
cis-1,2-Dichloroethene	13-MW-38	9/19/94	2.33E+01	1.53E+00	1.24E-06	1.65E+00
Dibromomethane	13-MW-37	9/19/94	2.10E-01	6.59E-13	1.39E-11	8.67E-12
Dieldrin	13-MW-38	9/19/94	7.90E-03	1.16E-30	2.77E-10	8.09E-28
Endosulfan I	13-MW-38	9/19/94	9.40E-03	5.25E-67	4.26E-73	2.63E-60
gamma-BHC	13-MW-38	9/19/94	1.33E-02	3.41E-06	3.11E-10	6.59E-06
Heptachlor	13-MW-38	9/19/94	3.30E-03	1.05E-110	2.21E-47	2.07E-99
Heptachlor epoxide	13-MW-38	9/19/94	5.55E-02	1.09E-03	1.21E-09	1.34E-03
m&p-Xylene	13-MW-37	9/19/94	7.00E-02	1.13E-04	1.40E-06	1.80E-04
trans-1,2-Dichloroethene	13-MW-38	9/19/94	1.33E+00	8.76E-02	7.09E-08	9.43E-02
Trichloroethene	13-MW-38	9/19/94	9.28E+00	2.73E-01	2.57E-07	3.20E-01

March 1996 4C-2

APPENDIX 4D

AIR EMISSIONS ESTIMATING AND DISPERSION MODELING IN AMBIENT AIR

Note: Methodology for estimating air emissions and modeling air dispersion is described in Appendix D (Volume 3).

APPENDIX D LIST OF FIGURES

		Page
4D-1	Southeast Runway Fuel Spill Site Sources	4D-1
4D-2	Southeast Runway Fuel Spill Receptors	4D-2
4D-3	Control Tower Drum Storage Area Sources	4D-3
4D-4	Control Tower Drum Storage Area Receptors	4D-4

APPENDIX D LIST OF TABLES

		Page
4D-1	Predicted Emission Fluxes (General and Normal Worker Scenarios)	4D-5
4D-2	Predicted Emission Fluxes (Construction Scenario)	4D-6
4D-3	Maximum Predicted Concentrations for General Exposure Scenario	4D-7
4D-4	Maximum Predicted Concentrations for On-Site Worker Exposure	4D-10
4D-5	Maximum Predicted Concentrations for Six-Month Construction Worker Exposures	4D-11
4D-6	Maximum Predicted Concentrations for Three-Month Construction Worker Exposures	4D-12

4D-3

Table 4D-1 Predicted Emission Fluxes (General and Normal Worker Scenarios)

Site	CAS No.	Chemical	Emission Mechanism	Soil Concentration (mg/kg)	Predicted Emissions Flux (gms/sec/m²)
Control Tower Drum Storage	91-57-6	2-Methylnaphthalene	Dust Emissions	2.30e-02	4.57e-14
Control Tower Drum Storage	50-29-3	4,4'-DDT	Dust Emissions	4.96e-01	9.86e-13
Control Tower Drum Storage	309-00-2	Aldrin	Dust Emissions	5.87e-03	1.17e-14
Control Tower Drum Storage	7440-36-0	Antimony	Dust Emissions	3.90e+01	7.75e-11
Control Tower Drum Storage	50-32-8	Benzo(a)pyrene	Dust Emissions	8,96e-02	1.78e-13
Control Tower Drum Storage	205-99-2	Benzo(b)fluoranthene	Dust Emissions	1.50e-01	2.98e-13
Control Tower Drum Storage	191-24-2	Benzo(g,h,i)perylene	Dust Emissions	7.77e-02	1.54e-13
Control Tower Drum Storage	60-57-1	Dieldrin	Dust Emissions	7.90e-03	1.57e-14
Control Tower Drum Storage	7439-92-1	Lead	Dust Emissions	7.66e+01	1.52e-10
Control Tower Drum Storage	85-01-8	Phenanthrene	Dust Emissions	1.27e-01	2.52e-13
Control Tower Drum Storage	7440-28-0	Thallium	Dust Emissions	2.55e+01	5.07e-11
South Runway Fuel Spill	91-27-6	2-Methylnaphthalene	Dust Emissions	3.12e-02	6.20e-14
South Runway Fuel Spill	56-55-3	Benz(a)anthracene	Dust Emissions	3.13e-01	6.22e-13
South Runway Fuel Spill	50-32-8	Benzo(a)pyrene	Dust Emissions	4.96e-01	9.86e-13
South Runway Fuel Spill	205-99-2	Benzo(b)fluoranthene	Dust Emissions	4.04e-01	8.03e-13
South Runway Fuel Spill	191-24-2	Benzo(g,h,i)perylene	Dust Emissions	1.83e-01	3.64e-13
South Runway Fuel Spill	53-70-3	Dibenz(a,h)anthracene	Dust Emissions	9.30e-02	1.85e-13
South Runway Fuel Spill	193-39-5	Indeno(1,2,3-cd)pyrene	Dust Emissions	2.40e-01	4.77e-13
South Runway Fuel Spill	7439-92-1	Lead	Dust Emissions	5.08e+01	1.01e-10
South Runway Fuel Spill	85-01-8	Phenanthrene	Dust Emissions	1.49e-01	2.96e-13

Table 4D-2
Predicted Emission Fluxes (Construction Scenario)

Site	CAS No.	. Chemical	Emission Mechanism	Soil Concentration (mg/kg)	Predicted Emissions Flux (gms/sec/m²)
Control Tower Drum Storage	91-57-6	2-Methylnaphthalene	Dust Emissions	2.30e-02	2.40e-12
Control Tower Drum Storage	50-29-3	4,4'-DDT	Dust Emissions	4.96e-01	5.18e-11
Control Tower Drum Storage	309-00-2	Aldrin	Dust Emissions	5.87e-03	6.14e-13
Control Tower Drum Storage	7440-36-0	Antimony	Dust Emissions	3.90e+01	4.07e-09
Control Tower Drum Storage	50-32-8	Benzo(a)pyrene	Dust Emissions	8.96e-02	9.35e-12
Control Tower Drum Storage	205-99-2	Benzo(b)fluoranthene	Dust Emissions	1.50e-01	1.57e-11
Control Tower Drum Storage	191-24-2	Benzo(g,h,i)perylene	Dust Emissions	7.77e-02	8.11e-12
Control Tower Drum Storage	60-57-1	Dieldrin	Dust Emissions	7.90e-03	8.25e-13
Control Tower Drum Storage	7439-92-1	Lead	Dust Emissions	7.66e+01	7.99e-09
Control Tower Drum Storage	85-01-8	Phenanthrene	Dust Emissions	1.27e-01	1.33e-11
Control Tower Drum Storage	7440-28-0	Thallium	Dust Emissions	2.55e+01	2.66e-09
South Runway Fuel Spill	91-57-6	2-Methylnaphthalene	Dust Emissions	2.35e+02	2.45e-08
South Runway Fuel Spill	56-55-3	Benz(a)anthracene	Dust Emissions	3.13e-01	3.27e-11
South Runway Fuel Spill	50-32-8	Benzo(a)pyrene	Dust Emissions	4.96e-01	5.18e-11
South Runway Fuel Spill	205-99-2	Benzo(b)fluoranthene	Dust Emissions	4.04e-01	4.22e-11
South Runway Fuel Spill	191-24-2	Benzo(g,h,i)perylene	Dust Emissions	1.83e-01	1.91e-11
South Runway Fuel Spill	53-70-3	Dibenz(a,h)anthracene	Dust Emissions	9.30e-02	9.70e-12
South Runway Fuel Spill	193-39-5	Indeno(1,2,3-cd)pyrene	Dust Emissions	2.40e-01	2.50e-11
South Runway Fuel Spill	7439-92-1	Lead	Dust Emissions	5.08e+01	5.30e-09
South Runway Fuel Spill	85-01-8	Phenanthrene	Dust Emissions	2.32e-01	2.43e-11

Table 4D-3

Maximum Predicted Concentrations for General Exposure Scenario

Site	Chemical	Receptor Class	Maximum Predicted Concentration (μg/m³)
Control Tower Drum Storage	Benzo(g,h,i)perylene	Residential	8.660192e-09
Control Tower Drum Storage	Benzo(b)fluoranthene	Residential	1.671852e-08
Control Tower Drum Storage	Aldrin	Residential	6.542510e-10
Control Tower Drum Storage	4,4'-DDT	Residential	5.528256e-08
Control Tower Drum Storage	Benzo(a)pyrene	Residential	9.986527e-09
Control Tower Drum Storage	Dieldrin	Residential	8.805090e-10
Control Tower Drum Storage	Lead	Residential	8.537589e-06
Control Tower Drum Storage	Thallium	Residential	2.842148e-06
Control Tower Drum Storage	Antimony	Residential	4.346814e-06
Control Tower Drum Storage	Phenanthrene	Residential	1.415501e-08
Control Tower Drum Storage	2-Methylnaphthalene	Residential	2.563506e-09
Control Tower Drum Storage	Benzo(g,h,i)perylene	Dormitory	7.011551e-09
Control Tower Drum Storage	Benzo(b)fluoranthene	Dormitory	1.353581e-08
Control Tower Drum Storage	Aldrin	Dormitory	5.297010e-10
Control Tower Drum Storage	4,4'-DDT	Dormitory	4.475842e-08
Control Tower Drum Storage	Benzo(a)pyrene	Dormitory	8.085392e-09
Control Tower Drum Storage	Dieldrin	Dormitory	7.128860e-10
Control Tower Drum Storage	Lead	Dormitory	6.912288e-06
Control Tower Drum Storage	Thallium	Dormitory	2.301088e-06
Control Tower Drum Storage	Antimony	Dormitory	3.519311e-06
Control Tower Drum Storage	Phenanthrene	Dormitory	1.146032e-08
Control Tower Drum Storage	2-Methylnaphthalene	Dormitory	2.075491e-09
Control Tower Drum Storage	Benzo(g,h,i)perylene	Off Site	4.362451e-08
Control Tower Drum Storage	Benzo(b)fluoranthene	Off Site	8.421720e-08
Control Tower Drum Storage	Aldrin	Off Site	3.295700e-09
Control Tower Drum Storage	4,4'-DDT	Off Site	2.784782e-07
Control Tower Drum Storage	Benzo(a)pyrene	Off Site	5.030574e-08
Control Tower Drum Storage	Dieldrin	Off Site	4.435439e-09
Control Tower Drum Storage	Lead	Off Site	4.300692e-05
Control Tower Drum Storage	Thallium	Off Site	1.431692e-05
Control Tower Drum Storage	Antimony	Off Site	2.189647e-05
Control Tower Drum Storage	Phenanthrene	Off Site	7.130390e-08
Control Tower Drum Storage	2-Methylnaphthalene	Off Site	1.291330e-08

Table 4D-3 (Continued)

Site	Chemical	Receptor Class	Maximum Predicted Concentration (µg/m³)
Control Tower Drum Storage	Benzo(g,h,i)perylene	Old Town	1.383268e-08
Control Tower Drum Storage	Benzo(b)fluoranthene	Old Town	2.670401e-08
Control Tower Drum Storage	Aldrin	Old Town	1.045017e-09
Control Tower Drum Storage	4,4'-DDT	Old Town	8.830126e-08
Control Tower Drum Storage	Benzo(a)pyrene	Old Town	1.595120e-08
Control Tower Drum Storage	Dieldrin	Old Town	1.406411e-09
Control Tower Drum Storage	Lead	Old Town	1.363685e-05
Control Tower Drum Storage	Thallium	Old Town	4.539682e-06
Control Tower Drum Storage	Antimony	Old Town	6.943043e-06
Control Tower Drum Storage	Phenanthrene	Old Town	2.260940e-08
Control Tower Drum Storage	2-Methylnaphthalene	Old Town	4.094615e-09
Control Tower Drum Storage	Benzo(g,h,i)perylene	New Town	5.334340e-10
Control Tower Drum Storage	Benzo(b)fluoranthene	New Town	1.029795e-09
Control Tower Drum Storage	Aldrin	New Town	4.029900e-11
Control Tower Drum Storage	4,4'-DDT	New Town	3.405189e-09
Control Tower Drum Storage	Benzo(a)pyrene	New Town	6.151310e-10
Control Tower Drum Storage	Dieldrin	New Town	5.423600e-11
Control Tower Drum Storage	Lead	New Town	5.258820e-07
Control Tower Drum Storage	Thallium	New Town	1.750652e-07
Control Tower Drum Storage	Antimony	New Town	2.677467e-07
Control Tower Drum Storage	Phenanthrene	New Town	8.718930e-10
Control Tower Drum Storage	2-Methylnaphthalene	New Town	1.579020e-10
South Runway Fuel Spill	Benzo(g,h,i)perylene	Residential	5.469160e-09
South Runway Fuel Spill	Indeno(1,2,3-cd)pyrene	Residential	7.172669e-09
South Runway Fuel Spill	Benzo(b)fluoranthene	Residential	1.207399e-08
South Runway Fuel Spill	Benzo(a)pyrene	Residential	1.482352e-08
South Runway Fuel Spill	Dibenz(a,h)anthracene	Residential	2.779409e-09
South Runway Fuel Spill	Benz(a)anthracene	Residential	9.354355e-09
South Runway Fuel Spill	Lead	Residential	1.518215e-06
South Runway Fuel Spill	Phenanthrene	Residential	4.453032e-09
South Runway Fuel Spill	2-Methylnaphthalene	Residential	9.324470e-10
South Runway Fuel Spill	Benzo(g,h,i)perylene	Dormitory	4.787879e-09
South Runway Fuel Spill	Indeno(1,2,3-cd)pyrene	Dormitory	6.279186e-09
South Runway Fuel Spill	Benzo(b)fluoranthene	Dormitory	1.056996e-08
South Runway Fuel Spill	Benzo(a)pyrene	Dormitory	1.297698e-08

March 1996 4D-8

Table 4D-3 (Continued)

Site			Maximum Predicted
	Chemical	Receptor Class	Concentration (μg/m³)
South Runway Fuel Spill	Dibenz(a,h)anthracene	Dormitory	2.433184e-09
South Runway Fuel Spill	Benz(a)anthracene	Dormitory	8.189105e-09
South Runway Fuel Spill	Lead	Dormitory	1.329094e-06
South Runway Fuel Spill	Phenanthrene	Dormitory	3.898328e-09
South Runway Fuel Spill	2-Methylnaphthalene	Dormitory	8.162940e-10
South Runway Fuel Spill	Benzo(g,h,i)perylene	Off Site	7.236197e-07
South Runway Fuel Spill	Indeno(1,2,3-cd)pyrene	Off Site	9.490095e-07
South Runway Fuel Spill	Benzo(b)fluoranthene	Off Site	1.597499e-06
South Runway Fuel Spill	Benzo(a)pyrene	Off Site	1.961286e-06
South Runway Fuel Spill	Dibenz(a,h)anthracene	Off Site	3.677412e-07
South Runway Fuel Spill	Benz(a)anthracene	Off Site	1.237667e-06
South Runway Fuel Spill	Lead	Off Site	2.008737e-04
South Runway Fuel Spill	Phenanthrene	Off Site	5.891767e-07
South Runway Fuel Spill	2-Methylnaphthalene	Off Site	1.233712e-07
South Runway Fuel Spill	Benzo(g,h,i)perylene	Old Town	4.590733e-07
South Runway Fuel Spill	Indeno(1,2,3-cd)pyrene	Old Town	6.020634e-07
South Runway Fuel Spill	Benzo(b)fluoranthene	Old Town	1.013473e-06
South Runway Fuel Spill	Benzo(a)pyrene	Old Town	1.244264e-06
South Runway Fuel Spill	Dibenz(a,h)anthracene	Old Town	2.332996e-07
South Runway Fuel Spill	Benz(a)anthracene	Old Town	7.851910e-07
South Runway Fuel Spill	Lead	Old Town	1.274367e-04
South Runway Fuel Spill	Phenanthrene	Old Town	3.737810e-07
South Runway Fuel Spill	2-Methylnaphthalene	Old Town	7.826824e-08
South Runway Fuel Spill	Benzo(g,h,i)perylene	New Town	3.552262e-09
South Runway Fuel Spill	Indeno(1,2,3-cd)pyrene	New Town	4.658704e-09
South Runway Fuel Spill	Benzo(b)fluoranthene	New Town	7.842153e-09
South Runway Fuel Spill	Benzo(a)pyrene	New Town	9.627989e-09
South Runway Fuel Spill	Dibenz(a,h)anthracene	New Town	1.805248e-09
South Runway Fuel Spill	Benz(a)anthracene	New Town	6.075727e-09
South Runway Fuel Spill	Lead	New Town	9.860924e-07
South Runway Fuel Spill	Phenanthrene	New Town	2.892279e-09
South Runway Fuel Spill	2-Methylnaphthalene	New Town	6.056320e-10

Table 4D-4
Maximum Predicted Concentrations for On-Site Worker Exposure

Site	Chemical	Receptor Class	Maximum Predicted Concentration (µg/m³)
Control Tower Drum Storage	2-Methylnaphthalene	Worker	5.640856e-07
Control Tower Drum Storage	4,4'-DDT	Worker	1.216463e-05
Control Tower Drum Storage	Aldrin	Worker	1.439645e-07
Control Tower Drum Storage	Antimony	Worker	9.564929e-04
Control Tower Drum Storage	Benzo(a)pyrene	Worker	2.197481e-06
Control Tower Drum Storage	Benzo(b)fluoranthene	Worker	3.678819e-06
Control Tower Drum Storage	Benzo(g,h,i)perylene	Worker	1.905628e-06
Control Tower Drum Storage	Dieldrin	Worker	1.937511e-07
Control Tower Drum Storage	Lead	Worker	1.878650e-03
Control Tower Drum Storage	Phenanthrene	Worker	3.114733e-06
Control Tower Drum Storage	Thallium	Worker	6.253992e-04
South Runway Fuel Spill	2-Methylnaphthalene	Worker	7.930388e-07
South Runway Fuel Spill	Benz(a)anthracene	Worker	7.955806e-06
South Runway Fuel Spill	Benzo(a)pyrene	Worker	1.260728e-05
South Runway Fuel Spill	Benzo(b)fluoranthene	Worker	1.026884e-05
South Runway Fuel Spill	Benzo(g,h,i)perylene	Worker	4.651477e-06
South Runway Fuel Spill	Dibenz(a,h)anthracene	Worker	2.363866e-06
South Runway Fuel Spill	Indeno(1,2,3-cd)pyrene	Worker	6.100298e-06
South Runway Fuel Spill	Lead	Worker	1.291230e-03
South Runway Fuel Spill	Phenanthrene	Worker	3.787269e-06

March 1996 4D-10

Table 4D-5
Maximum Predicted Concentrations for Six-Month Construction Worker Exposures

Site	Chemical	Receptor Class	Maximum Predicted Concentration (μg/m³)
Control Tower Drum Storage	Heptachlor epoxide	Worker	7.788130e-08
Control Tower Drum Storage	1,2-Dichloroethane	Worker	3.950662e-01
Control Tower Drum Storage	cis-1,2-Dichloroethene	Worker	2.355393e-01
Control Tower Drum Storage	Benzo(g,h,i)perylene	Worker	1.090338e-04
Control Tower Drum Storage	Benzo(b)fluoranthene	Worker	2.104900e-04
Control Tower Drum Storage	Aldrin	Worker	8.262013e-06
Control Tower Drum Storage	beta-BHC	Worker	9.963194e-09
Control Tower Drum Storage	4,4'-DDT	Worker	6.960203e-04
Control Tower Drum Storage	Benzo(a)pyrene	Worker	1.257327e-04
Control Tower Drum Storage	gamma-BHC	Worker	1.866345e-08
Control Tower Drum Storage	Dieldrin	Worker	1.109689e-05
Control Tower Drum Storage	Dibromomethane	Worker	1.039830e-04
Control Tower Drum Storage	Lead	Worker	1.074902e-01
Control Tower Drum Storage	Thallium	Worker	3.578330e-02
Control Tower Drum Storage	Antimony	Worker	5.472740e-02
Control Tower Drum Storage	Heptachlor	Worker	4.630780e-09
Control Tower Drum Storage	Trichloroethene	Worker	9.922819e-02
Control Tower Drum Storage	Phenanthrene	Worker	1.782149e-04
Control Tower Drum Storage	2-Methylnaphthalene	Worker	3.227513e-05
South Runway Fuel Spill	1,2-Dichloroethane	Worker	2.526670e+00
South Runway Fuel Spill	Benzo(g,h,i)perylene	Worker	2.758607e-04
South Runway Fuel Spill	Indeno(1,2,3-cd)pyrene	Worker	3.617845e-04
South Runway Fuel Spill	Benzo(b)fluoranthene	Worker	6.090040e-04
South Runway Fuel Spill	Benzo(a)pyrene	Worker	7.476880e-04
South Runway Fuel Spill	Dibenz(a,h)anthracene	Worker	1.401915e-04
South Runway Fuel Spill	Benz(a)anthracene	Worker	4.718273e-04
South Runway Fuel Spill	Chloroform	Worker	2.739773e-04
South Runway Fuel Spill	Benzene	Worker	5.783262e-01
South Runway Fuel Spill	Chloromethane	Worker	1.446621e-02
South Runway Fuel Spill	Lead	Worker	7.657773e-02
South Runway Fuel Spill	Beryllium	Worker	5.939296e-06
South Runway Fuel Spill	Trichloroethene	Worker	2.365782e-03
South Runway Fuel Spill	Phenanthrene	Worker	3.508390e-04
South Runway Fuel Spill	2-Methylnaphthalene	Worker	3.543964e-01

 ${\bf Table~4D-6}\\ {\bf Maximum~Predicted~Concentrations~for~Three-Month~Construction~Worker~Exposures}$

			Maximum Predicted Concentration
Site	Chemical	Receptor Type Worker	(μg/m³) 7.503356e-08
Control Tower Drum Storage	Heptachlor epoxide		
Control Tower Drum Storage	1,2-Dichloroethane	Worker	3.806205e-01
Control Tower Drum Storage	cis-1,2-Dichloroethene	Worker	2.269267e-01
Control Tower Drum Storage	Benzo(g,h,i)perylene	Worker	1.050470e-04
Control Tower Drum Storage	Benzo(b)fluoranthene	Worker	2.027934e-04
Control Tower Drum Storage	Aldrin	Worker	7.959912e-06
Control Tower Drum Storage	beta-BHC	Worker	9.598888e-09
Control Tower Drum Storage	4,4'-DDT	Worker	6.705702e-04
Control Tower Drum Storage	Benzo(a)pyrene	Worker	1.211353e-04
Control Tower Drum Storage	gamma-BHC	Worker	1.798102e-08
Control Tower Drum Storage	Dieldrin	Worker	1.069113e-05
Control Tower Drum Storage	Dibromomethane	Worker	1.001809e-04
Control Tower Drum Storage	Lead	Worker	1.035598e-01
Control Tower Drum Storage	Thallium	Worker	3.447488e-02
Control Tower Drum Storage	Antimony	Worker	5.272629e-02
Control Tower Drum Storage	Heptachlor	Worker	4.461455e-09
Control Tower Drum Storage	Trichloroethene	Worker	9.559990e-02
Control Tower Drum Storage	Phenanthrene	Worker	1.716984e-04
Control Tower Drum Storage	2-Methylnaphthalene	Worker	3.109499e-05
South Runway Fuel Spill	1,2-Dichloroethane	Worker	2.430281e+00
South Runway Fuel Spill	Benzo(g,h,i)perylene	Worker	2.653370e-04
South Runway Fuel Spill	Indeno(1,2,3-cd)pyrene	Worker	3.479830e-04
South Runway Fuel Spill	Benzo(b)fluoranthene	Worker	5.857713e-04
South Runway Fuel Spill	Benzo(a)pyrene	Worker	7.191648e-04
South Runway Fuel Spill	Dibenz(a,h)anthracene	Worker	1.348434e-04
South Runway Fuel Spill	Benz(a)anthracene	Worker	4.538278e-04
South Runway Fuel Spill	Chloroform	Worker	2.635255e-04
South Runway Fuel Spill	Benzene	Worker	5.562639e-01
South Runway Fuel Spill	Chloromethane	Worker	1.391434e-02
South Runway Fuel Spill	Lead	Worker	7.365639e-02
South Runway Fuel Spill	Beryllium	Worker	5.712720e-06
South Runway Fuel Spill	Trichloroethene	Worker	2.275531e-03
South Runway Fuel Spill	Phenanthrene	Worker	3.374550e-04
South Runway Fuel Spill	2-Methylnaphthalene	Worker	3.408767e-01

March 1996 4D-12

APPENDIX 4E UPTAKE BY FRUIT AND VEGETABLES

APPENDIX 4E TABLE OF CONTENTS

		Page
4E.1	INTRODUCTION	4E-1
4E.2	UPTAKE BY FRUIT AND VEGETABLES SUBIRRIGATED WITH SHALLOW GROUNDWATER	4E-2
4E.3	REFERENCES	4E-3

APPENDIX 4E LIST OF TABLES

		Page
4E-1	Modeled Concentrations in Current Old Town Galena Fruit and Vegetables (Cf)	4E-4
4E-2	Modeled Concentrations in Future Old Town Galena Fruit and Vegetables (Cf)	4E-5
4E-3	Modeled Concentrations in Future Old Town Galena Fruit and Vegetables (Cf)	4E-6

4E.1 INTRODUCTION

Uptake of contaminated shallow groundwater by locally grown vegetables may contribute to concentrations of certain chemicals in edible portions of plants. The concentration of chemicals in plants subirrigated with contaminated water depends on the concentration of the chemical in the shallow groundwater, the water solubility and lipophilicity of the chemical, the plant type, and other factors. Volatile chemicals as well as non-volatile chemicals were evaluated for this pathway at the Southeast Runway Fuel Spill site and Control Tower Drum Storage Area, South (CTDSA). Because the vegetable gardens may take in water through tap roots which access the shallow groundwater, these constituents are not volatilized to the atmosphere via agitation and volatilization that can occur with above ground irrigation.

Currently, Galena residents grow vegetables in gardens southwest of the Southeast Runway Fuel Spill site. Therefore, maximum concentrations of groundwater chemicals of potential concern (COPCs) were taken from wells MW-03 and MW-04 located near the Southeast Runway Fuel Spill site and the gardens. These concentrations were used in the fruit and vegetable uptake model for the current Old Town Galena resident (see Table 4E-1). For the future Old Town Galena resident, modeled groundwater concentrations in Old Town Galena were used in the fruit and vegetable uptake model. See Appendix C (Volume 3) for a discussion of the groundwater modeling and see Appendix 4C of this volume for the groundwater modeling results for the two sites that are the subject of this addendum.

Direct deposition of chemicals from dust and particulates in the air onto the soil and edible parts of fruit and vegetables may also occur. However, the relative contribution to contaminant concentrations in plants by this pathway is expected to be minor in comparison to the contribution by subirrigation with groundwater. The extent of surface contamination at the Southeast Runway Fuel Spill site and the CTDSA is limited to small areas. Moreover, any dust generated at the site is likely to settle to the ground fairly near

the site because of the generally large particle size of dust generated from soil. Also, washing of fruit and vegetables prior to consumption generally removes a large percentage of the deposited dirt and dust. Overall, dust contribution to plant uptake is likely to be insignificant compared to uptake from groundwater, given the extremely conservative methodology used to calculate uptake from groundwater.

4E.2 UPTAKE BY FRUIT AND VEGETABLES SUBIRRIGATED WITH SHALLOW GROUNDWATER

The chemical concentration in fruit and vegetables with roots that take up contaminants directly from the shallow groundwater was derived as follows (USEPA, 1986):

$$C_{ts} = TSCF \times C_{w}$$

where:

 C_{ts} = Concentration in transpiration stream ($\mu g/L$);

TSCF = Transpiration stream concentration factor (unitless); and

 C_w = Concentration in water (groundwater) (μ g/L).

and

$$C_f = (C_{ts} \times WC_p)/1000$$

where:

C_f = Concentration in fruit and vegetables (mg/kg);

 WC_p = Water content of plant (%); and

1/1000 = Conversion factor (1 mg/1000 μ g × 1 L/kg).

The transpiration stream concentration factor (TSCF) was calculated as follows (USEPA, 1986):

TSCF = $0.784 \exp - [\log K_{ow} - 1.78]^2/(2.44)]$

Tables 4E-1 through 4E-3 list the calculated TSCF values for chemicals of potential concern in the shallow groundwater.

For water content of plant (WC_p) a mid-range value from the range presented in USEPA (1986) for fruits and green vegetables (0.84) was used to derive an average concentration in fruit and vegetables and the highest value in the range (0.94) was used to derive a reasonable maximum concentration in fruit and vegetables.

Tables 4E-1 through 4E-3 contains the spreadsheet calculations for uptake by fruit and vegetables directly from the shallow groundwater.

4E.3 REFERENCES

U.S. Environmental Protection Agency (USEPA), 1986. Methods for Assessing Exposure to Chemical Substances, Volume 8: Methods for Assessing Environmental Pathways of Food Contamination. EPA/560/8-85-008.

Modeled Concentrations in Current Old Town Galena Fruit and Vegetables (Cf) Table 4E-1

(based on direct subirrigation with shallow groundwater) ^a

Galena Air Force Base - Southeast Runway Fuel Spill Site

Cts = TSCF x Cw where,

Cts = Concentration in transpiration stream (ug/L) TSCF = Transpiration stream concentration factor

CF = Transpiration stream concentration factor = 0.784 exp -[(log Kow - 1.78)^2/(2.44)]

Cw = Concentration in groundwater (ug/L)

 $Cf = (Cts \times WCp)/1000$ where,

Cf = Concentration in fruit and vegetables (mg/kg)
WCp = Water content of plant. For fruits and green vegetables

= Water content of plant. For fruits and green vegetables: Average = 0.84 RME = 0.94 (USEPA 1986)

Average - 0.04 NIVIE = 0.94 (USEFA I

1/1000 = Conversion factor (mg*L)/(1000 ug*kg)

Chemical	Average	Cw (ug/L) ige RME	log Kow	TSCF (unitless)	TSCF Cts (innitless) Average	Cts (ug/L) age RME	W(Average	WCp	Cf (mg/kg) Average R	ig/kg) RME
1,2-Dichloroethane	4.55E+00	4.55E+00	1.45	1.01	4.60E+00	4.60E+00	0.84	0.94	3.86E-03	4.32E-03
Benzene	5.05E-02	5.05E-02	2.13	1.01	5.11E-02	5.11E-02	0.84	0.94	4.29E-05	4.81E-05
Beryllium ^b	2.74E+00	2.74E+00	0	1.37	3.76E+00	3.76E+00	0.84	0.94	3.16E-03	3.53E-03
Chloroform	3.88E-02	3.88E-02	1.92	1.00	3.89E-02	3.89E-02	0.84	0.94	3.27E-05	3.65E-05
Chloromethane	1.19E+00	1.19E+00	0.91	1.08	1.28E+00	1.28E+00	0.84	0.94	1.08E-03	1.21E-03
Trichloroethene	2.08E-02	2.08E-02	2.42	1.04	2.17E-02	2.17E-02	0.84	0.94	1.82E-05	2.04E-05

a United States Environmental Protection Agency (USEPA) 1986. Methods for Assessing Expousre to Chemical Substances. Volume 8 Methods for Assessing Environmental Pathways of Food Contamination. EPA/560/8-85-008.

^b Beryllium has no log Kow value since it is a metal.

Table 4E-2
Modeled Concentrations in Future Old Town Galena Fruit and Vegetables (Cf)

(based on direct subirrigation with shallow groundwater) ^a

Galena Air Force Base - Southeast Runway Fuel Spill Site

Cts = TSCF x Cw where,

Cts = Concentration in transpiration stream (ug/L)

TSCF = Transpiration stream concentration factor

= 0.784 exp -[(log Kow - 1.78)^2/(2.44)]

= Concentration in groundwater (ug/L)

Č

 $Cf = (Cts \times WCp)/1000$ where, Cf

Concentration in fruit and vegetables (mg/kg)

Water content of plant. For fruits and green vegetables:

WCp

Average = 0.84 RME = 0.94 (USEPA 1986)

00 = Conversion factor (mg*L)/(1000 ug*kg)

1 46F-03	0 94 1 30F-03	0 94	0.84		1.55E+00 1.55E+00	1.37	0	1.13E+00	1.13E+00	Bervllium b
6.82E-05	6.10E-05	0.94	0.84	7.26E-02	7.26E-02	1.01	2.13	7.17E-02	7.17E-02	Benzene
4.32E-04	3.86E-04	0.94	0.84	4.60E-01	4.60E-01	1.01	1.45	4.55E-01	4.55E-01	1,2-Dichloroethane
mg/kg) RME	p Cf (mg/kg) RME Average R	WCp rage RME	V Average	Cts (ug/L.) V rage RME Average	Cts (i	TSCF (unitless)	log Kow	ug/L) RME	Average	Chemical

^a United States Environmental Protection Agency (USEPA) 1986. Methods for Assessing Expousre to Chemical Substances. Volume 8 Methods for Assessing Environmental Pathways of Food Contamination. EPA/560/8-85-008.

^b Beryllium has no log Kow value since it is a metal.

Modeled Concentrations in Future Old Town Galena Fruits and Vegetables (Cf) Table 4E-3

(based on direct subirrigation with shallow groundwater) ^a

Galena Air Force Base - Control Tower Drum Storage Area, South

where, Cts = TSCF x Cw Concentration in transpiration stream (ug/L) H Cts

Transpiration stream concentration factor TSCF

 $0.784 \exp -[(\log \text{Kow} - 1.78)^2/(2.44)]$

Concentration in groundwater (ug/L) 11 Š

where, $Cf = (Cts \times WCp)/1000$

Concentration in fruit and vegetables (mg/kg) WCp IJ

Water content of plant. For fruits and green vegetables: 11

(USEPA 1986) Conversion factor (mg*L)/(1000ug*kg) Average = 0.84 RME = 0.941/1000 =

g/kg) RME	1.97E-06 4.65E-06 3.13E-04
Cf (mg/kg) Average F	1.76E-06 4.16E-06 2.80E-04
WCp ge RME	0.94
Averag	0.84
ME	2.09E-03 4.95E-03 3.33E-01
Cts (ug/L) Average R	2.09E-03 4.95E-03 3.33E-01
(unitless)	4.56 3.69 1.04
Kow	5.68 5.4 2.42
ig/L) RME	4.59E-04 1.34E-03 3.20E-01
Average	4.59E-04 1.34E-03 3.20E-01
Chemical	Aldrin Heptachlor epoxide Trichloroethene

^a United States Environmental Protection Agency (USEPA) 1986. Methods for Assessing Expousre to Chemical Substances. Volume 8 Methods

for Assessing Environmental Pathways of Food Contamination. EPA/560/8-85-008.

APPENDIX 4F
AIR INSIDE SHOWER STALL

APPENDIX 4F TABLE OF CONTENTS

		Page
4F.1	METHODOLOGY	4F-1
4F.2	REFERENCES	4F-4

APPENDIX 4F LIST OF TABLES

		Page
4F-1	Shower Vapor Concentrations for Average and Reasonable Maximum Scenario for Future Galena Residents - Control Tower Drum Storage Area, South	4F-5
4F-2	Shower Vapor Concentrations for Average and Reasonable Maximum Scenario for Future Galena Residents - Southeast Runway Fuel Spill Area	4F-6

4F.1 METHODOLOGY

Use of contaminated water in residences for bathing/showering may contribute concentrations of volatile chemicals in the indoor air. The method used to estimate concentrations in air while showering is based on results of shower volatilization experiments (Andelman, et al., 1986). The experiments involved pumping a tracer chemical (aqueous trichloroethene) solution through an experimental shower chamber and measuring resulting concentrations of the tracer in the air. The experiments revealed the following: 1) The trichloroethene concentration increased in approximately a linear fashion over time; 2) The volatilization was higher at higher water temperatures; and 3) The volatilization rate increased when the height of the shower water drop path increased. The percent volatilization during the experiment ranged from 43 to 79 percent.

A kinetic-mass-balance relationship that predicts concentrations of volatile chemicals in air as a function of time was developed by Andelman (Andelman et al, 1986). The basic mass balance equation is:

$$V_A(dC_A/dt) = (R) - (F_AC_A)$$

where:

 $V_A = Chamber volume (m^3);$

 $dC_A/dt = Rate of change in concentration in air (g/m³/min);$

R = Mass of chemicals volatilized per unit time (g/min);

 F_A = Air flow rate (m³/min);

 C_A = Concentration of a particular volatile compound in air (g/m^3) .

and where:

$$R = k(C_w - C_A/H)$$

where:

C_w = Concentration of a particular volatile compound in water (g/m³);

H = Henry's Law Constant (dimensionless); and

k = Volatilization transfer coefficient (m³/min).

Since k equals F_w (water flow rate) at complete volatilization and F_A (the air flow rate) is much greater than F_w , k/H can be neglected. Combining these equations and treating k/H as insignificant, the equation reduces to:

$$V_A(dC_A/dt) = (kC_w) - (F_AC_A)$$

Integrating, we get:

$$Ln(1-F_AC_A/kC_w) = -(F_A/V_A)t.$$

This equation is used to predict concentrations as a function of time in the shower. The maximum value for k, the volatilization transfer coefficient, is assumed to be equal to F_w (the water flow rate) at 100% volatilization (Andelman, et al., 1986). In the absence of experimental data, $k=F_w$ will give the worst-case concentration in the shower at different times.

However, Andelman's work with experimental showers showed that the percent of trichloroethene in water that volatilizes is less than 100%, varying from 43 to 79% (Andelman, at al., 1986). The k value (at steady state = $C_A F_A / C_w$) drops significantly from 100% to between 5% and 15% when the percent volatilization drops from 100% to the range of 43 to 79 percent. For trichloroethene, therefore, it is conservative to assume a k value that is 50% of the maximum value. Since $k=F_w$ is the maximum value for k, corresponding to 100% theoretical volatilization for trichloroethene, 50% of the water flow rate is a justifiable estimate for k.

Experimental data on percent volatilization in showers was not available for all the chemicals of potential concern (COPCs) for this assessment. By considering the relative volatility of a specific chemical compared to the volatility of trichloroethene, k values can be estimated for the COPCs, as

follows:

$$k = 0.5 F_w X \frac{VP_c}{VP_{TCE}}$$

where:

VP_c = Vapor pressure of chemical (mm at 48°C); and

 VP_{TCE} = Vapor pressure of trichloroethene (which is 200 mm at 48°C).

This approach is applicable to chemicals with vapor pressures lower than the vapor pressure of trichloroethene, as well as chemicals with vapor pressures higher than the vapor pressure of trichloroethene but less than or equal to 400 mm Hg. For chemicals with vapor pressures higher than 400 mm Hg, use of this equation provides an estimate for the k value which is higher than the maximum value $(k=F_w)$. For these chemicals, $k=F_w$ was conservatively assumed.

Many factors affect the volatilization of a compound from water to air. These include thermodynamic or physical properties of a chemical, aqueous solubility, vapor pressure, Henry's law constant and diffusivity.

Andelman's work with TCE showed that the percent volatilized varied between 67 to 79%. A relative volatility based on the vapor pressure of less volatile compounds was used to estimate k and then estimate volatilization from water. Henry's law constant was not used for the following reasons:

- 1. Henry's law constants are difficult to obtain for temperatures other than 25°C. Vapor pressures on the other hand can be easily obtained.
- 2. Henry's law constant usage in a shower model situation is not appropriate. In a shower, water is sprayed from a shower head at higher temperatures than ambient temperatures. The water usually breaks down into smaller droplets (with a large surface area). Henry's law constant does not account for this situation. Henry's law constants are determined for quiescent water layers. The spraying action in a shower would make more compounds volatilize than in a quiescent state. Vapor pressure is probably more appropriate to use in this situation.

3. By linking the relative volatility to that of TCE, for which data are available, a more realistic estimate for volatilization is obtained. In addition, TCE is very sparingly soluble in water. Therefore, by linking compounds to TCE by use of a relative volatility function, estimates for volatilization are more conservative.

Other assumptions include:

- 1. Water flow rate = 20 L/min [based on findings of a U.S. Department of Housing and Urban Development survey that the mean and maximum value for water flow rate in showers is between 10 L/min and 30 L/min (Andelman et al, 1989)];
- 2. Air exchange rate 1 per hour (a conservative value suggested by Andelman et al., 1989);
- 3. Dimensions of the shower stall = $5.5 \times 3 \times 8$ ft (volume = 3.736 m^3); and
- 4. Shower duration = 7 minutes for the average shower duration and 15 minutes for the reasonable maximum (USEPA, 1989).

Tables 4F-1 and 4F-2 present the shower vapor concentrations for both the average and reasonable maximum scenario for the future Galena residents at the Southeast Runway and Control Tower sites.

4F.2 REFERENCES

- Andelman, J.B., et. al., 1986. "Inhalation Exposure in Indoor Air to Trichloroethylene." *Environmental Epidemiology*: pp 201-213.
- Andelman, J.B., et al., 1989. "Exposure to Volatile Organics from Indoor Uses of Water." In *Proceedings of Symposium on Total Exposure Methodology: A New Horizon*. Las Vegas, Nevada, November 27-30.
- U.S. Environmental Protection Agency (USEPA), 1989. Risk Assessment Guidance for Superfund, Volume 1: Human Health Evaluation Manual, Part A. EPA/540/1-89/002, December 1989.

Shower Vapor Concentrations for Average and Reasonable Maximum Scenario for Future Galena Residents - Control Tower Drum Storage Area, South

 1.1E+1	2.9E+0	3.2E-4	3.2E-4	15	7	197	Trichloroethene
6.4E-4	1.7E+4	1.3E-6	1.3E-6	15	7	2.7	Heptachlor epoxide
3.8E-9	1.1E-9	4.6E-7	4.6E-7	15	7	0.00046	Aldrin
Reasonable Maximum (µg/m³)	Average (#g/m³)	Reasonable Maximum (mg/L)	Average (mg/L)	Reasonable Maximum (min)	Average (min)	@ 48C (mmHg)	Analyte
Groundwater Concentration Shower Vapor Concentration	Shower Vapo	Concentration	Groundwater	Time in Shower	Time i		

Shower Vapor Concentrations for Average and Reasonable Maximum Scenario for Future Galena Residents - Southeast Runway Fuel Spill Site

 1.7E+1	4.5E+0	4.6E-4	4.6E-4	15	7	214	1,2-Dichloroethane
 3.2E+0	8.2E-1	7.2E-5	7.2E-5	15	7	250	Benzene
 Reasonable Maximum (µg/m³)	Average (µg/m³)	Reasonable Maximum (mg/L)	Average (mg/L)	Reasonable Maximum (min)	Average (min)	VP @ 48C (mmHg)	Analyte
 Shower Vapor Concentration	Shower Vapor	oncentration	Groundwater Concentration	Shower	Time in Shower		

APPENDIX 4G HUMAN HEALTH EXPOSURE POINT CONCENTRATIONS

APPENDIX 4G LIST OF TABLES

Page
Exposure Point Concentrations for the Control Tower Drum Storage Area, South
Exposure Point Concentrations for Current and Future Old Town Galena Residents at the Control Tower Drum Storage Area, South
Exposure Point Concentrations for the Southeast Runway Fuel Spill Site
Exposure Point Concentrations for Current and Future Old Town Galena Residents at the Southeast Runway Fuel Spill Site

Exposure Point Concentrations for the Control Tower Drum Storage Area, South Table 4G-1

		Ambie	nt Air Concer	Ambient Air Concentration (µg/m²))		Soil Concentr	Soil Concentrations (mg/kg)
	Om Boss	New Town	Boarding	or direct	Construction Workers	uction kers	On-Base	Construction
Analyte	Residents ",c	Galena Residents ^c	Students c	Workers ^{b,c}	Average ^d	RME e	Workers (Surface Soil)	Workers C
Metals								
Antimony	4.3E-06	2.7E-07	3.5E-06	9.6E-04	5.3E-02	5.5E-02	3.9E+01	3.9E+01
Lead	8.5E-06	5.3E-07	6.9E-06	1.9E-03	1.0E-01	1.1E-01	7.7E+01	7.7E+01
Thallium	2.8E-06	1.8E-07	2.3E-06	6.3E-04	3.4E-02	3.6E-02	2.6E+01	2.6E+01
Pesticides								
4,4'-DDT	5.5E-08	3.4E-09	4.5E-08	1.2E-05	6.7E-04	6.9E-04	4.9E-01	4.9E-01
Aldrin	6.5E-10	4.0E-11	5.3E-10	1.4E-07	8.0E-06	8.3E-06	5.9E-03	5.9E-03
Dieldrin	8.8E-10	5.4E-11	7.1E-10	1.9E-07	1.0E-05	1.1E-05	7.9E-03	7.9E-03
PNAs								
2-Methylnaphthalene	2.6E-09	1.6E-10	2.1E-09	5.6E-07	3.1E-05	3.2E-05	2.3E-02	2.3E-02
Benzo(a)pyrene	9.9E-09	6.2E-10	8.1E-09	2.2E-06	1.2E-04	1.3E-04	8.9E-02	8.9E-02
Benzo(b)fluoranthene	1.7E-08	1.0E-09	1.4E-08	3.7E-06	2.0E-04	2.1E-04	1.5E-01	1.5E-01
Benzo(g,h,i)perylene	8.7E-09	5.3E-10	7.0E-09	1.9E-06	1.0E-04	1.1E-04	7.8E-02	7.8E-02
Phenanthrene	1.4E-08	8.7E-10	1.1E-08	3.1E-06	1.7E-04	1.8E-04	1.3E-01	1.3E-01

^a On-base residents include caretakers and long-term base residents.

^b On-base workers include both long-term and short-term workers.

c Data for average and reasonable maximum scenario are the same.

^d Concentrations determined after exposure for 3 months. ^e Concentrations determined after exposure for 6 months.

NOTE: Mixed soil concentrations were determined by taking the higher value of surface or subsurface soil concentrations.

RME = Reasonable maximum

Exposure Point Concentrations for Current and Future Old Town Galena Residents at the Control Tower Storage Area, South Table G-2

			Future			Current and Future
	Groundwater a	Shov (µg/	Shower ^c (µg/m³)	Fruit and Vegetables ^d (mg/kg)	getables ^d (g)	Ambient Air ^b
Analyte	(μg/L)	Average	RME	Average	RME	(μg/m³)
Metals Antimony Lead Thallium	111	1 1 1	1 1 1			6.9E-06 1.4E-05 4.5E-06
Pesticides 4,4'-DDT Aldrin Dieldrin Heptachlor epoxide	 4.6E-04 1.3E-03	1.1E-09 1.7E-04	3.8E-09 6.4E-04	1.8E-06 4.2E-06	2.0E-06 4.7E-06	8.8E-08 1.0E-09 1.4E-09
PNAs 2-Methylnaphthalene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Phenanthrene	1111	1111	1111	1 1 1 1 1	[[]]]	4.1E-09 1.6E-08 2.7E-08 1.4E-08 2.3E-08
Volatiles Trichloroethene	3.2E-01	2.9E+00	1.1E+01	2.8E-04	3.1E-04	*

^a See Appendix 4C for groundwater modeling results.

^b See Appendix 4D for air emissions estimating and dispersion modeling in ambient air results.
^c See Appendix 4F for air inside shower stall calculations, methodology, and modeling results.

^d See appendix 4E for fruit and vegetable uptake methodology and modeling results. RME = Reasonable maximum

Table 4G-3
Exposure Point Concentrations for the Southeast Runway Fuel Spill Site

		Ambie	ent Air Conce	Ambient Air Concentration (μg/m³)	(Soil Concentr	Soil Concentrations (mg/kg)
		New Town	Boarding	E 0	Construction Workers	uction kers	On-Base	Construction
Analyte	On-base Residents ^{a,c}	Galena Residents ^c	Senooi Students ^c	On-Base Workers ^{b,c}	Average ^d	RME *	Workers "" (Surface Soil)	Workers 5 (Mixed Soil)
Metals Lead	1.5E-06	9.9E-07	1.3E-06	1.3E-03	7.4E-02	7.7E-02	5.1E+01	5.1E+01
PNAs								
2-Methylnaphthalene	9.3E-10	6.1E-10	8.2E-10	7.9E-07	3.4E-01	3.5E-01	3.1E-02	2.4E+02
Benzo(a)anthracene	9.4E-09	6.1E-09	8.2E-09	7.9E-06	4.5E-04	4.7E-04	3.1E-01	3.1E-01
Benzo(a)pyrene	1.5E-08	9.6E-09	1.3E-08	1.3E-05	7.2E-04	7.5E-04	4.9E-01	4.9E-01
Benzo(b)fluoranthene	1.2E-08	7.8E-09	1.1E-08	1.0E-05	5.9E-04	6.1E-04	4.0E-01	4.0E-01
Benzo(g,h,i)perylene	5.5E-09	3.6E-09	4.8E-09	4.7E-06	2.7E-04	2.8E-04	1.8E-01	1.8E-01
Dibenz(a,h)anthracene	2.8E-09	1.8E-09	2.4E-09	2.4E-06	1.3E-04	1.4E-04	9.3E-02	9.3E-02
Indeno(1,2,3-cd)pyrene	7.2E-09	4.7E-09	6.3E-09	6.1E-06	3.5E-04	3.6E-04	2.4E-01	2.4E-01
Phenanthrene	4.5E-09	2.9E-09	3.9E-09	3.8E-06	3.4E-04	3.5E-04	1.5E-01	2.3E-01

^a On-base residents include caretakers and long-term base residents.

^b On-base workers include both long-term and short-term workers.

c Data for average and reasonable maximum scenario are the same.

^d Concentrations determined after exposure for 3 months.

e Concentrations determined after exposure for 6 months.

NOTE: Mixed soil concentrations were determined by taking the higher value of surface or subsurface soil concentrations.

Exposure Point Concentrations for Current and Future Old Town Galena Residents at the Southeast Runway Spill Site Table 4G-4

t	Ð	Current				Future			Current and Future
	Groundwater ^b	Fruit & Veget (mg/kg)	Vegetables g/kg)	Groundwater ^c	Shov (gg/)	Shower ^e (µg/m³)	Fruit and Vegetables f (mg/kg)	egetables ^f kg)	Ambient Air ^d
Analyte	(μg/L)	Average	RME	(mg/L)	Average	RME	Average	RME	(µg/m³)
Beryllium ^a Lead	2.7E+00	3.2E-03 	3.5E-03 	1.1E+00 	1 1		1.3E-03 	1.5E-03	 1.3E-04
2-Methylnanhthalene	1								
Benzo(a)anthracene	i	1	l !	1 1		1 1	1 1	! !	7.8E-08
Benzo(a)pyrene	i	1	!	1	1	1	1	i	1.2E-06
fluoranthene	1	1	!	i	:	1	1	ļ	1.0E-06
Benzo(g,h,i)perylene	ŀ	1	!	1	ŀ	;	;	ı	4 6F-07
Dibenz(a,h)anthracene	ł	1	1	;	!	+	1	ŀ	2.3E-07
Indeno(1,2,3-cd)pyrene	1	ŀ	1	1	1	ŧ	!	1	6.0E-07
Phenanthrene		1	-	+	1	1	!	;	3.7E-07
1,2-Dichloroethane	4.5E+00	3.9E-03	4.3E-03	4.6E-01	4.5E+00	1.7E+01	3.9E-04	4.3E-04	}
Benzene	5.1E-02	4.3E-05	4.8E-05	7.2E-02	8.2E-01	3.2E+00	6.1E-05	6.8E-05	ł
Chloroform	3.9E-02	3.3E-05	3.7E-05	:	1	, ,) 	20 1	ł
Chloromethene	1.2E+00	1.1E-03	1.2E-03	ł	ł	ŧ	;	1	ļ
Trichloroethene	2.1E-02	1.8E-05	2.0E-05	:	ŀ	ł	!	ł	1

No value

No shower concentrations were derived for beryllium because it does not readily volatilize.

These are groundwater results from wells MW-03 and MW-04 that are close to the gardens and Southeast Runway site. These values are maximum concentrations of groundwater chemicals of potential concern detected in these wells.

See Appendix 4C for groundwater modeling results.

See Appendix 4D for air emissions estimating and dispersion modeling in ambient air results. See appendix 4F for air inside shower stall calculations, methodology, and modeling results. See Appendix 4E for fruit and vegetables uptake methodology and modeling results.

APPENDIX 4H

HUMAN HEALTH INTAKE EQUATIONS AND EXPOSURE PARAMETERS

APPENDIX 4H LIST OF TABLES

		Page
4H-1	General Parameters	4H-1
4H-2	Ingestion of Soil	4H-2
4H-3	Ingestion of Groundwater	4H-3
4H-4	Ingestion of Fruit	4H-4
4H-5	Ingestion of Vegetables	4H-5
4H-6	Dermal Contact with Soil	4H-6
4H-7	Dermal Contact with Groundwater	4H-7
4H-8	Inhalation of Fugitive Dust/Vapors	4H-8
4H-9	Inhalation of Vapors While Showering	4H-9

Table 4H-1 General Parameters

Exposure Parameter	v	alue	Selection Rationale (Reference)
			GENERAL PARAMETERS
Averaging Time (AT)			
Non-carcinogens	Varies	days	Calculated as ED x 365 days/yr (USUSEPA, 1989a).
Carcinogens	25550	days	Default value = 70 yrs x 365 days/yr (USEPA, 1989a).
Body Weight (BW)			
Adult Residents	70	kg	Default value for adults (USEPA, 1991a).
Child Residents	15	kg	Default value for children (USEPA, 1991a).
All Workers	70	kg	Default value for adults (USEPA, 1991a).
Boarding Students			` ,
- Average	61.2	kg	Calculated mean for high school aged boys and girls 15-18 years old (USEPA, 1989b).
- Reasonable Maximum	48.6	kg	Calculated mean for boys and girls 6-20 years old, elementary through high school (USEPA, 1989b).
Exposure Duration (ED)			
Average			
On-Base Residents			
Short Term	2	yr	Caretaker expected to live on the base from 2 to 5 years.
Long Term - Adult	9	yr	National average time at one residence (USEPA, 1989b).
Long Term - Child	6	yr	Default value (USEPA, 1991a).
Galena Residents		J -	(,,,,
Adult	24.5	yr	Average length of residency in Galena (ADF&G, 1990).
Child	6	yr	Default value (USEPA, 1991a).
On-Base Workers		•	
Short Term	2	yr	Caretaker expected to work from 2 to 5 years on the base.
Long Term	25	yr	Default value (USEPA, 1991a).
Construction Workers	0.25	yr	Assumes construction will last 3 to 6 months.
Boarding Students	4	yr	Assumes student attends grades 9-12 at boarding school.
Reasonable Maximum			
On-Base Residents			
Short Term	5	yr	Caretaker expected to live on the base from 2 to 5 years.
Long Term - Adult	25	yr yr	Default value (USEPA, 1991a).
Long Term - Child	6	yr yr	Default value; from birth to 6 years (USEPA, 1991a).
Galena Residents	U	yı.	Delaut value, from offer to 0 years (USEFA, 1991a).
Adult	70	vr	Based on lifetime residency in Galena.
Child	6	yr vr	Default value; from birth to 6 years (USEPA, 1991a).
On-Base Workers	U	yr	Detaun value, from onth to 0 years (USEPA, 1991a).
Short Term	5	vr	Caratakar avnacted to work from 2 to 5 years on the base
Long Term	25	yr vr	Caretaker expected to work from 2 to 5 years on the base. Default value (USEPA, 1991a).
Construction Workers	0.5	yr	Assumes construction will last 3 to 6 months.
Constitution Workers	0.5	yr	Assumes Construction with last 3 to 0 inoritis.
Boarding Students	14	yr	Assumes student attends grades 1-12 at boarding school and repeats two years at same school.

Table 4H-2 Ingestion of Soil

Exposure Parameter	V	alue	Selection Rationale (Reference)							
INGESTION OF SOIL										
$Intake (mg/kg-day) = (Cs \times IR \times F \times EF \times ED \times CF) / (BW \times AT)$										
Concentration in Soil (Cs)	Varies	mg/kg	Chemical-specific value.							
Ingestion Rate (IR)										
Average										
All Workers	50	mg/day	Default value for workers (USEPA, 1991a).							
Boarding Students	100	mg/day	Amount consumed by individuals 7 years and older (USEPA, 1991a).							
Reasonable Maximum		•								
Short Term Workers	50	mg/day	Default value for workers (USEPA, 1991a).							
Long Term Workers	50	mg/day	Default value for workers (USEPA, 1991a).							
Construction Workers	480	mg/day	Default value for construction workers (USEPA, 1991a).							
Boarding Students	100	mg/day	Amount consumed by individuals 7 years and older (USEPA, 1991a).							
Faction Ingested from										
Contaminated Source (F)										
Average & Reasonable Maximum										
All Workers	I	unitless	Assumes 100% from contaminated source.							
Boarding Students	1	unitless	Assumes 100% from contaminated source.							
Exposure Frequency (EF)										
Average										
On-Base Workers	150	day/yr	Assumes 250 work days a year, 100 days (5 months x 20 days/month) of snow cover, and that the snow will prevent direct contact with soil.							
Construction Workers	260	day/yr	Number of work days a year. Since the exposure duration (page 1) is 3-6 months, exposure is limited to the days when soil is not snow-covered.							
Boarding Students	120	day/yr	Assumes students board for 270 days a year (9 months), 150 days (5 months) of snow cover, and that the snow will prevent direct contact with soil.							
Conversion Factor (CF)	0.000001	kg/mg								
Note: (ED). (B	W) and (A	AT) are ger	neral parameters. Please refer to page 4H-1 for their values.							

Table 4H-3
Ingestion of Groundwater

INGESTION OF GROUNDWATER** Intake (mg/kg-day) = (Cw x IR x EF x ED) / (BW x AT)								
Concentration in Water (Cw)	Varies	mg/L	Chemical-specific value.					
Ingestion Rate (IR)								
Average								
Adult Residents	1.4	L/day	Adult average (USEPA, 1989b).					
Child Residents	1	L/day	Default value for children (USEPA, 1991a).					
sonable Maximum								
Adult Residents	2	L/day	Default value for adults (USEPA, 1991a).					
Child Residents	1	L/day	Default value for children (USEPA, 1991a).					
Exposure Frequency (EF)								
Average								
All Residents	275	day/yr	On average, people spend 75% of their time at home. 75 percent of a full year equals 275 days/year (USEPA, 1991a).					
Reasonable Maximum			ran jour oquins 212 anja jour (ODEA IS, 1991a).					
All Residents	350	day/yr	Default value; 365 days/year minus 2 weeks vacation (USEPA, 1991a).					

Table 4H-4
Ingestion of Fruit

INGESTION OF FRUIT Intake (mg/kg-day) = (Cf x IR x F x EF x ED) / (BW x AT)									
Concentration in Fruit (Cf)	Varies	mg/kg	Chemical-specific value.						
Ingestion Rate (IR)*									
Average									
Adults	0.17	kg/day	Based on daily intake rate for fruit (Pao et al., 1982).						
Children	0.13	kg/day	Based on daily intake rate for fruit (Pao et al., 1982).						
Reasonable Maximum									
Adults	0.24	kg/day	Based on daily intake rate for fruit (Pao et al., 1982).						
Children	0.19	kg/day	Based on daily intake rate for fruit (Pao et al., 1982).						
Faction Ingested from									
Contaminated Source (F)*									
Average	0.2	unitless	Average fraction of fruit eaten that is home grown (USEPA, 1989a).						
Reasonable Maximum	0.3	unitless	Worst-case fraction of fruit eaten that is home grown (USEPA, 1989a).						
Exposure Frequency (EF)			•						
Average	275	days/yr	On average, people spend 75% of their time at home. 75 percent of a full year equals 275 days/year (USEPA Region X, 1991b).						
Reasonable Maximum	350	days/yr	Default value; 365 days/year minus 2 weeks vacation (USEPA, 1991a).						

Table 4H-5
Ingestion of Vegetables

INGESTION OF VEGETABLES Intake (mg/kg-day) = (Cv x IR x F x EF x ED) / (BW x AT)									
Concentration in Vegetables (Cv)	Varies	Chemical-specific value.							
Ingestion Rate (IR)*									
Average									
Adults	0.11	kg/day	Based on daily intake rate for vegetables (Pao et al., 1982).						
Children	0.18	kg/day	Based on daily intake rate for vegetables (Pao et al., 1982).						
Reasonable Maximum									
Adults	0.14	kg/day	Based on daily intake rate for vegetables (Pao et al., 1982).						
Children	0.19	kg/day	Based on daily intake rate for vegetables (Pao et al., 1982).						
Faction Ingested from									
Contaminated Source (F)*			·						
Average	0.25	unitless	Average fraction of vegetables eaten that is						
		•	home grown (USEPA, 1989a).						
Reasonable Maximum	0.4	unitless	Worst-case fraction of vegetables eaten that is						
			home grown (USEPA, 1989a).						
Exposure Frequency (EF)									
Average	275	days/yr	On average, people spend 75% of their time at home. 75 percent of a full year equals 275 days/year (USEPA Region X, 1991b).						
Reasonable Maximum	350	days/yr	Default value; 365 days/year minus 2 weeks vacation (USEPA, 1991a).						

Table 4H-6
Dermal Contact with Soil

Exposure Parameter	V	alue	Selection Rationale (Reference)
		DERM	IAL CONTACT WITH SOIL
	Absorbed 1	Dose (mg/kg-d	$(ay) = (Cs \times SA \times AF \times ABS \times EF \times ED \times CF) / (BW \times AT)$
Concentration in Soil (Cs)	Varies	mg/kg	Chemical-specific value.
Skin Surface Area (SA) Average			
All Workers	5000	cm ² /day	Recommended value for dermal exposure to soil. Calculated as 25% of the adult mean skin SA (USEPA, 1992).
Boarding Students	4375	cm ² /day	Calculated as 25% of the total SA, 50th percentile value, for males 15 to 18 years old (USEPA, 1992).
Reasonable Maximum		2	
All Workers	5000	cm ² /day	Recommended value for dermal exposure to soil. Calculated as
Boarding Students	3113	cm ² /day	25% of the adult mean skin SA (USEPA, 1992). Calculated as 25% of the total SA, 50th percentile value, for males 6 to 19 years old (USEPA, 1992).
Adherence Factor (AF)			0 to 19 years old (USEFA, 1992).
Average	0.6	mg/cm ²	Default value (USEPA Region X, 1991b).
Reasonable Maximum	1	mg/cm ²	Recommended reasonable upper value (USEPA, 1992).
Absorption Factor (ABS)	Varies	unitless	Chemical-specific value.
	1%	unitless	Default value for inorganic chemicals in the absence of specific data.
	10%	unitless	Default value for organic chemicals in the absence of specific data.
Exposure Frequency (EF)			
Average & Reasonable Maximum On-Base Workers	150	day/yr	Assumes 250 work days a year, 100 days (5 months x 20 days/month) of snow cover, and that the snow will prevent direct contact with soil.
Construction Workers	260	day/yr	Number of work days a year. Since the exposure duration (page 1) is 3-6 months, exposure is limited to the days when soils are not snow-covered.
Boarding Students	120	day/yr	Assumes students board for 270 days a year (9 months), 150 days (5 months) of snow cover, and that the snow will prevent direct contact with soil.
Conversion Factor (CF)	0.000001	kg/mg	
Note: (ED). (R	W) and (A	AT) are gen	neral parameters. Please refer to page 4H-1 for their values.

Table 4H-7 **Dermal Contact with Groundwater**

			ACT WITH GROUNDWATER** (Bathing) $day) = (Cw \times SA \times PC \times ET \times EF \times ED \times CF) / (BW \times AT)$
Concentration in Water (Cw)	Varies	mg/L	Chemical-specific value.
Skin Surface Area (SA) Average			
Adult Residents	20000	cm ²	Aproximate mean value for adults (USEPA, 1992).
Child Residents Reasonable Maximum	7280	cm ²	50th percentile total body SA for males 3-6 years (USEPA, 1989a).
Adult Residents	20000	cm ²	Aproximate mean value for adults (USEPA, 1992).
Child Residents	7280	cm ²	50th percentile total body SA for males 3-6 years (USEPA, 1989a).
meability Constant (PC)	Varies	cm/hr	Chemical-specific value.
Exposure Time (ET) Average			
All Residents	0.12	hr/day	Median shower time; 7 min/day (USEPA, 1992).
Reasonable Maximum All Residents	0.17	hr/day	Recommended reasonable maximum value (USEPA Reg. X, 1991b).
Exposure Frequency (EF)			
Average			
All Residents	275	day/yr _	On average, people spend 75% of their time at home. 75% of a full year equals 275 days/year (USEPA, 1991a).
Reasonable Maximum			· · · · · · · · · · · · · · · · · · ·
All Residents	350	day/yr	Default value (USEPA, 1991a).
Conversion Factor (CF)	0.001	L/cm ³	

Table 4H-8
Inhalation of Fugitive Dust / Vapors

Exposure Parameter	V	alue	Selection Rationale (Reference)
			ON OF FUGITIVE DUST/VAPORS
	Effective 2	Air Concentrat	ion $(mg/m^3) = (Ca \times IRD \times ET \times EF \times ED) / (IRE \times AT)$
Concentration in Air (Ca)	Varies	mg/m^3	Chemical-specific value.
Breathing Rate During Exposure (IRD) Average			
Adult Residents	0.833	m ³ /hr	Equivalent to adult rate, 20 m3/day (USEPA, 1991a).
Child Residents	0.5	m³/hr	Default value for children (USEPA Region III, 1995).
Short Term Workers	0.833	m ³ /hr	Equivalent to adult rate, 20 m3/day (USEPA, 1991a).
Long Term Workers	0.833	m ³ /hr	Equivalent to adult rate, 20 m3/day (USEPA, 1991a).
Construction Workers	2.5	m ³ /hr	Default value for workers (USEPA, 1991a).
Boarding Students	0.833	m ³ /hr	Equivalent to adult rate, 20 m3/day (USEPA, 1991a).
Reasonable Maximum	0.000	111 / 111	Equitable to addition, 20 moraly (ODE 12, 1771a).
Adult Residents	0.833	m ³ /hr	Equivalent to adult rate, 20 m3/day (USEPA, 1991a).
Child Residents	0.5	m ³ /hr	Default value for children (USEPA Region III, 1994).
All Workers	2.5	m ³ /hr	Default value for workers (USEPA, 1991a).
Boarding Students	0.833	m³/hr	Equivalent to adult rate, 20 m3/day (USEPA, 1991a).
Exposure Time (ET)			
Average & Reasonable Maximum			
All Residents	24	hr/day	Indoor and ourdoor air assumed to be equivalent.
All Workers Boarding Students	8 24	hr/day hr/day	Default value (USEPA, 1991a). Indoor and ourdoor air assumed to be equivalent.
_	24	111/Uay	indoor and ourdoor an assumed to be equivalent.
Exposure Frequency (EF)			
Average All Residents	275	day/yr	On average, people spend 75% of their time at home. 75 percent of a full year equals 275 days/year (USEPA, 1991a).
All Workers	250	day/yr	Assumes a 5 day work week for 50 weeks (USEPA, 1991a).
Boarding Students	270	day/yr	Assumes students board for 270 days a year (9 months).
Reasonable Maximum	250	dove	Default value: 265 develoes minus 2 weeks vacation (ISEDA 1001s)
All Residents All Workers	350 250	day/yr day/yr	Default value; 365 days/year minus 2 weeks vacation (USEPA, 1991a). Assumes a 5 day work week for 50 weeks (USEPA, 1991a).
Boarding Students	270	day/yr	Assumes 270 school days a year (9 months).
Daily Breathing Rate (IRD) Average & Reasonable Maximum			
Adult Residents	20	m ³ /day	Default value for adults (USEPA, 1991a).
Child Residents	12	m ³ /day	Default value for children (USEPA Region III, 1995).
All Workers	20	m ³ /day	Default value for adults (USEPA, 1991a).
Boarding Students	20	m ³ /day	Default value for adults (USEPA, 1991a).
-		-	eral parameters. Please refer to page 4H-1 for their values.

Table 4H-9
Inhalation of Vapors While Showering

Exposure Parameter	v	alue	Selection Rationale (Reference)								
	INHA	LATION (OF VAPORS WHILE SHOWERING**								
	Effective Air Concentration (mg/m ³) = (Ca x BRe x ET x EF x ED) / (BRd x AT)										
Concentration in Air (Ca)	Varies	mg/m ³	Chemical-specific value.								
Breathing Rate During Exposure (BRe) Average & Reasonable Maximum											
All Residents	0.6	m ³ /hr	Inhalation rate for all age groups while showering (USEPA, 1989b).								
Exposure Time (ET)											
All Residents Reasonable Maximum	0.12	hr/day	Median shower time; 7min/day (USEPA, 1992).								
All Residents	0.17	hr/day	Recommended reasonable maximum value (USEPA Region X, 1991b).								
Exposure Frequency (EF) Average											
All Residents Reasonable Maximum	275	day/yr	On average, people spend 75% of their time at home. 75 percent of a full year equals 275 days/year (USEPA, 1991a).								
All Residents	350	day/yr	Default value; 365 days/year minus 2 weeks vacation (USEPA, 1991a).								
Daily Breathing Rate (BRd) Average & Reasonable Maximum											
Adult Residents	20	m ³ /day	Default value for adults (USEPA, 1991a).								
Child Residents	12	m ³ /day	Default value for children (USEPA Region III, 1995).								
			dwater modeling shows Old Town Galena to be downgradient of the base. eral parameters. Please refer to page 4H-1 for their values.								

References for Appendix 4H

- Alaska Department of Fish and Game(ADF&G), 1990. Subsistence Harvest of Fish and Wildlife by Residents of Galena, Alaska, 1985-1986. Technical Paper No. 155 by James R. Mancotte. January 1990.
- Pao, E.M., K.H. Fleming, P.M. Guenther, and J. Mickle, 1982. Foods Commonly Eaten by Individuals: Amount Per Day and Per Eating Occasion. U.S. Department of Agriculture.
- United States Air Force (USAF), 1995. Human and Ecological Baseline Risk Assessment Protocols for Galena Airport and Campion Air Force Station, Alaska. United States Air Force 611th Civil Engineer Squadron, Elmendorf AFB, Alaska. January 1995.
- U.S. Environmental Protection Agency (USEPA), 1989a. Risk Assessment Guidance for Superfund (RAGS), Volume 1. Human Health Evaluation Manual (Part A) Interim Final. United States Environmental Protection Agency EPA/540/1-89/002, Washington, D.C.
- U.S. Environmental Protection Agency (USEPA), 1989b. Exposure Factors Handbook. EPA/600/8-89/043.

- U.S. Environmental Protection Agency (USEPA), 1991a. Risk Assessment Guidance for Superfund (RAGS), Volume 1: Human Health Evaluation Manual. Supplemental Guidance. Standard Default Exposure Factors.
- U.S. Environmental Protection Agency (USEPA), 1991b. Supplemental Guidance for Superfund Risk Assessments in Region 10. EPA Region 10, Seattle, WA.
- U.S. Environmental Protection Agency (USEPA), 1992 . Dermal Exposure Assessment: Principles and Applications. Interim Report. EPA/600/8-91/011B.
- U.S. Environmental Protection Agency (USEPA), 1995. Risk-Based Concentration Table, January-June 1995. EPA Region III, Philadelphia, Pennsylvania.

APPENDIX 4I

HUMAN HEALTH TOXICITY PROFILES

Note: Toxicity Profiles for all other human health COPCs are in Appendix G (Volume 3)

APPENDIX I TABLE OF CONTENTS

											•		•	ra	ge
4I.1	Antimony	 	. 	 	. I	-1									

4I.1 Antimony

Antimony toxicity data in humans is available from both accidental poisonings and occupational exposures. Acute illnesses occurred in 70 people who drank lemonade containing 0.013% antimony. The lemonade contained approximately 36 mg antimony/300 mL lemonade (approximately 0.5 mg/kg for a 70 kg adult). Acute signs of toxicity included stomach pain, colic, nausea, and vomiting. Recovery was complete in three hours to several days (Dunn, 1928; Monier-Williams, 1934).

Occupational exposure has resulted in a variety of toxic effects. Respiratory disorders include pneumonitis, alterations in pulmonary functions, chronic bronchitis, chronic emphysema, inactive tuberculosis, pleural adhesions and irritation. Increases in blood pressure and altered EKG readings, gastrointestinal disorders, dermatitis, and ocular conjunctivitis also have been seen (ATSDR, 1990). Myocardial effects are among the best characterized human health effects associated with antimony. In one study, the no observed effect level (NOEL) for myocardial damage from inhalation exposure was suggested to be approximately 0.5 mg/m³ (Brieger, 1954). However, the database regarding heart damage is not sufficient to estimate the myocardial NOEL with any confidence. A higher incidence of spontaneous abortion was reported in workers exposed to antimony (Belyaeva, 1967). A high rate of premature deliveries among workers in an antimony smelting and processing plant was also reported (Aiello, 1955).

In a chronic study in rats, a group of 50 males and 50 females received 5 ppm potassium antimony tartrate in water (Schroeder et al., 1970). The growth rates of treated rats were not affected, but males survived 106 fewer days than did controls at median lifespans, and female rats survived 107 fewer days. Nonfasting blood glucose levels were decreased in treated males, and cholesterol levels were altered in both sexes. A decrease in mean heart weight for males was noted. No increase in tumors occurred. The 5 ppm antimony exposure was expressed as 0.35 mg/kg/day by the authors. Because only one level of antimony was administered, a NOEL was not established.

The oral RfD for antimony in IRIS is 4E-04 mg/kg/day. This is based on the chronic study in rats noted above. The uncertainty factor used to derive the RfD for antimony is 1000. This adjusts for interspecies conversion, sensitive individuals, and the use of a LOAEL in place of the NOEL. IRIS confidence in the supporting study was low. Only one species and one dose level were used, and no NOEL was determined. Gross pathology and histopathology were not described well. IRIS confidence in the database was also low. There is no inhalation RfC for antimony. HEAST lists a subchronic oral RfD of 4.00E-04 mg/kg/day. No carcinogenicity data exists in IRIS or HEAST for antimony. The Threshold Limit Value for antimony is 0.5 mg/m³ (8-hour time weighted average) (ACGIH, 1993-1994).

References

- ACGIH (American College of Governmental Industrial Hygienists) (1993-1994) 1993-1994 Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices. ACGIH, Cincinnati, OH.
- Aiello, G. (1955) "Pathology of Antimony". Folia Med. (Naples) 38: 100.
- ATSDR (Agency for Toxic Substances and Disease Research) (1993) <u>Toxicological Profile for Antimony</u>. U.S. Dept. of Health and Human Services, Atlanta, GA.
- Belyaeva, A. P. (1967) "The Effect of Antimony on Reproduction". Gig. Truda. Prof. Zabol. 11: 32.
- Brieger, H., C. W. Semisch, III, J. Stasney, and D. A. Platnek (1954) "Industrial Antimony Poisoning". <u>Ind. Med. Surg.</u> 23: 521.
- Dunn, J. T. (1928) "A Curious Case of Antimony Poisoning". Analyst 53: 532-533.
- Monier-Williams, G. W. (1934) "Antimony in Enamelled Hollow-Ware". In: Report on Public Health and Medical Subjects, No. 73, Ministry of Health, London, p. 18.
- Schroeder, H. A., M. Mitchner, and A. P. Nasor (1970) "Zirconium, Niobium, Antimony, Vanadium and Lead in Rats: Life Term Studies". <u>J. Nutr.</u> 100:59-68.

March 1996 4I-2

APPENDIX 4J

HUMAN HEALTH RISK MODEL OUTPUT

Note: Risk estimates that are reported as a zero (0) do not necessarily represent a 0 risk. The number is reported as 0 if there is no toxicity value with which to calculate a risk estimate.

APPENDIX J LIST OF TABLES

	•	rage
4J-1	Carcinogenic and Noncarcinogenic Risk Estimates for Adult Current Short-Term On-Base Resident (subchronic) Attributable to the Southeast Runway Fuel Spill Site: Average Exposure Scenario	
4Ј-2	Carcinogenic and Noncarcinogenic Risk Estimates for Adult Current Short-Term On-Base Resident (subchronic) Attributable to the Southeast Runway Fuel Spill Site: Reasonable Maximum Exposure Scenario	
4J-3	Carcinogenic and Noncarcinogenic Risk Estimates for Child Current Long-Term On-Base Resident (chronic) Attributable to the Southeast Runway Fuel Spill Site: Average Exposure Scenario	4J-3
4J-4	Carcinogenic and Noncarcinogenic Risk Estimates for Child Current Long-Term On-Base Resident (chronic) Attributable to the Southeast Runway Fuel Spill Site: Reasonable Maximum Exposure Scenario	4J-4
4J-5	Carcinogenic and Noncarcinogenic Risk Estimates for Adult Current Long-Term On-Base Resident (chronic) Attributable to the Southeast Runway Fuel Spill Site: Average Exposure Scenario	4J-5
4J-6	Carcinogenic and Noncarcinogenic Risk Estimates for Adult Current Long-Term On-Base Resident (chronic) Attributable to the Southeast Runway Fuel Spill Site: Reasonable Maximum Exposure Scenario	4J-6
4J-7	Carcinogenic and Noncarcinogenic Risk Estimates for Child Current Old Town Galena Resident (chronic) Attributable to the Southeast Runway Fuel Spill Site: Average Exposure Scenario	4J-7
4J-8	Carcinogenic and Noncarcinogenic Risk Estimates for Child Current Old Town Galena Resident (chronic) Attributable to the Southeast Runway Fuel Spill Site: Reasonable Maximum Exposure Scenario	4J-9

		Page
4J-9	Carcinogenic and Noncarcinogenic Risk Estimates for Adult Current Old Town Galena Resident (chronic) Attributable to the Southeast Runway Fuel Spill Site: Average Exposure Scenario	. 4J-11
4J-10	Carcinogenic and Noncarcinogenic Risk Estimates for Adult Current Old Town Galena Resident (chronic) Attributable to the Southeast Runway Fuel Spill Site: Reasonable Maximum Exposure Scenario	. 4J-13
4J-11	Carcinogenic and Noncarcinogenic Risk Estimates for Child Current New Town Galena Resident (chronic) Attributable to the Southeast Runway Fuel Spill Site: Average Exposure Scenario	. 4J-15
4J-12	Carcinogenic and Noncarcinogenic Risk Estimates for Child Current New Town Galena Resident (chronic) Attributable to the Southeast Runway Fuel Spill Site: Reasonable Maximum Exposure Scenario	. 4 J -16
4J-13	Carcinogenic and Noncarcinogenic Risk Estimates for Adult Current New Town Galena Resident (chronic) Attributable to the Southeast Runway Fuel Spill Site: Average Exposure Scenario	. 4J-17
4J-14	Carcinogenic and Noncarcinogenic Risk Estimates for Adult Current New Town Galena Resident (chronic) Attributable to the Southeast Runway Fuel Spill Site: Reasonable Maximum Exposure Scenario	. 4J-18
4J-15	Carcinogenic and Noncarcinogenic Risk Estimates for Current Short-Term On-Base Worker (subchronic) Attributable to the Southeast Runway Fuel Spill Site: Average Exposure Scenario	. 4 J -19
4J-16	Carcinogenic and Noncarcinogenic Risk Estimates for Current Short-Term On-Base Worker (subchronic) Attributable to the Southeast Runway Fuel Spill Site: Reasonable Maximum Exposure Scenario	. 4J-20

		Page
4J-17	Carcinogenic and Noncarcinogenic Risk Estimates for Current Long-Term On-Base Worker (chronic) Attributable to the Southeast Runway Fuel Spill Site: Average Exposure Scenario	4J-21
4J-18	Carcinogenic and Noncarcinogenic Risk Estimates for Current Long-Term On-Base Worker (chronic) Attributable to the Southeast Runway Fuel Spill Site: Reasonable Maximum Exposure Scenario	4J-22
4J-19	Carcinogenic and Noncarcinogenic Risk Estimates for Current On-Base Construction Worker (subchronic) Attributable to the Southeast Runway Fuel Spill Site: Average Exposure Scenario	4J-23
4J-20	Carcinogenic and Noncarcinogenic Risk Estimates for Current On-Base Construction Worker (subchronic) Attributable to the Southeast Runway Fuel Spill Site: Reasonable Maximum Exposure Scenario	4J-24
4J-21	Carcinogenic and Noncarcinogenic Risk Estimates for Future Boarding School Student (subchronic) Attributable to the Southeast Runway Fuel Spill Site: Average Exposure Scenario	4J-25
4J-22	Carcinogenic and Noncarcinogenic Risk Estimates for Future Boarding School Student (chronic) Attributable to the Southeast Runway Fuel Spill Site: Reasonable Maximum Exposure Scenario	4 J -26
4J-23	Carcinogenic and Noncarcinogenic Risk Estimates for Child Future Old Town Galena Resident (chronic) Attributable to the Southeast Runway Fuel Spill Site: Average Exposure Scenario	4J-27

		Page
4J-24	Carcinogenic and Noncarcinogenic Risk Estimates for Child Future Old Town Galena Resident (chronic) Attributable to the Southeast Runway Fuel Spill Site: Reasonable Maximum Exposure Scenario	4J-29
4J-25	Carcinogenic and Noncarcinogenic Risk Estimates for Adult Future Old Town Galena Resident (chronic) Attributable to the Southeast Runway Fuel Spill Site: Average Exposure Scenario	4J-31
4J-26	Carcinogenic and Noncarcinogenic Risk Estimates for Adult Future Old Town Galena Resident (chronic) Attributable to the Southeast Runway Fuel Spill Site: Reasonable Maximum Exposure Scenario	4J-33
4J-27	Carcinogenic and Noncarcinogenic Risk Estimates for Adult Current Short-Term On-Base Resident (subchronic) Attributable to the Control Tower Drum Storage Area, South: Average Exposure Scenario	4J-35
4J-28	Carcinogenic and Noncarcinogenic Risk Estimates for Adult Current Short-Term On-Base Resident (subchronic) Attributable to the Control Tower Drum Storage Area, South: Reasonable Maximum Exposure Scenario	, 4J-36
4J-29	Carcinogenic and Noncarcinogenic Risk Estimates for Child Current Long-Term On-Base Resident (chronic) Attributable to the Control Tower Drum Storage Area, South: Average Exposure Scenario	
4J-30	Carcinogenic and Noncarcinogenic Risk Estimates for Child Current Long-Term On-Base Resident (chronic) Attributable to the Control Tower Drum Storage Area, South: Reasonable Maximum Exposure Scenario	4J-38
4J-31	Carcinogenic and Noncarcinogenic Risk Estimates for Adult Current Long-Term On-Base Resident (chronic) Attributable to the Control Tower Drum Storage Area, South: Average Exposure Scenario	4J-39

		Page
4J-32	Carcinogenic and Noncarcinogenic Risk Estimates for Adult Current Long-Term On-Base Resident (chronic) Attributable to the Control Tower Drum Storage Area, South: Reasonable Maximum Exposure Scenario	4J-40
4J-33	Carcinogenic and Noncarcinogenic Risk Estimates for Child Current Old Town Galena Resident (chronic) Attributable to the Control Tower Drum Storage Area, South: Average Exposure Scenario	4 J- 4 1
4J-34	Carcinogenic and Noncarcinogenic Risk Estimates for Child Current Old Town Galena Resident (chronic) Attributable to the Control Tower Drum Storage Area, South: Reasonable Maximum Exposure Scenario	4J-42 _.
4J-35	Carcinogenic and Noncarcinogenic Risk Estimates for Adult Current Old Town Galena Resident (chronic) Attributable to the Control Tower Drum Storage Area, South: Average Exposure Scenario	4J-43
4J-36	Carcinogenic and Noncarcinogenic Risk Estimates for Adult Current Old Town Galena Resident (chronic) Attributable to the Control Tower Drum Storage Area, South: Reasonable Maximum Exposure Scenario	4J-44
4J-37	Carcinogenic and Noncarcinogenic Risk Estimates for Child Current New Town Galena Resident (chronic) Attributable to the Control Tower Drum Storage Area, South: Average Exposure Scenario	4J-45
4J-38	Carcinogenic and Noncarcinogenic Risk Estimates for Child Current New Town Galena Resident (chronic) Attributable to the Control Tower Drum Storage Area, South: Reasonable Maximum Exposure Scenario	4J-46
4J-39	Carcinogenic and Noncarcinogenic Risk Estimates for Adult Current New Town Galena Resident (chronic) Attributable to the Control Tower Drum Storage Area, South: Average Exposure Scenario	4J-47

	Paş
4J-40	Carcinogenic and Noncarcinogenic Risk Estimates for Adult Current New Town Galena Resident (chronic) Attributable to the Control Tower Drum Storage Area, South: Reasonable Maximum Exposure Scenario
4J-41	Carcinogenic and Noncarcinogenic Risk Estimates for Current Short-Term On-Base Worker (subchronic) Attributable to the Control Tower Drum Storage Area, South: Average Exposure Scenario
4J-42	Carcinogenic and Noncarcinogenic Risk Estimates for Current Short-Term On-Base Worker (subchronic) Attributable to the Control Tower Drum Storage Area, South: Reasonable Maximum Exposure Scenario
4J-43	Carcinogenic and Noncarcinogenic Risk Estimates for Current Long-Term On-Base Worker (chronic) Attributable to the Control Tower Drum Storage Area, South: Average Exposure Scenario
4J-44	Carcinogenic and Noncarcinogenic Risk Estimates for Current Long-Term On-Base Worker (chronic) Attributable to the Control Tower Drum Storage Area, South: Reasonable Maximum Exposure Scenario
4J-45	Carcinogenic and Noncarcinogenic Risk Estimates for Current On-Base Construction Worker (subchronic) Attributable to the Control Tower Drum Storage Area, South: Average Exposure Scenario
4J-46	Carcinogenic and Noncarcinogenic Risk Estimates for Current On-Base Construction Worker (subchronic) Attributable to the Control Tower Drum Storage Area, South: Reasonable Maximum Exposure Scenario
4J-47	Carcinogenic and Noncarcinogenic Risk Estimates for Future Boarding School Student (subchronic) Attributable to the Control Tower Drum Storage Area, South: Average Exposure Scenario 41-5

		Page
4J-48	Carcinogenic and Noncarcinogenic Risk Estimates for Future Boarding School Student (chronic) Attributable to the Control Tower Drum Storage Area, South: Reasonable Maximum Exposure Scenario	4J-56
4J-49	Carcinogenic and Noncarcinogenic Risk Estimates for Child Future Old Town Galena Resident (chronic) Attributable to the Control Tower Drum Storage Area, South: Average Exposure Scenario	4J-57
4J-50	Carcinogenic and Noncarcinogenic Risk Estimates for Child Future Old Town Galena Resident (chronic) Attributable to the Control Tower Drum Storage Area, South: Reasonable Maximum Exposure Scenario	4 J -59
4J-51	Carcinogenic and Noncarcinogenic Risk Estimates for Adult Future Old Town Galena Resident (chronic) Attributable to the Control Tower Drum Storage Area, South: Average Exposure Scenario	4J-6 1
4J-52	Carcinogenic and Noncarcinogenic Risk Estimates for Adult Future Old Town Galena Resident (chronic) Attributable to the Control Tower Drum Storage Area, South: Reasonable Maximum Exposure Scenario	4 J -63

SBR1-AV.XLW 12/13/95 08:35 AM

Carcinogenic and Noncarcinogenic Risk Estimates for Adult Current Short-Term On-Base Resident (subchronic) Attributable to Southeast Runway Fuel Spill Site: Average Exposure Scenario Table 4J-1

		Cancer Risk Summary	Summary			Non-Cancer	ancer	
						Hazard Index Summary	x Summary	_
Analyte	Vapor	Dust	Total	% of	Vapor	Dust	Total	Jo %
	Inhalation	Inhalation	Risk	Total	Inhalation	Inhalation	Hazard	Total
				Risk			Index	Н
PNAs	0	0	0	#DIV/0!	0	0	0	i0/AIQ#
2-Methylnaphthalene	0	0	0	#DIV/0!	0	0	0	#DIV/0!
Benz(a)anthracene	0	0	0	#DIV/0!	0	0	0	#DIV/0!
Benzo(a)pyrene	0	0	0)0/AIQ#	0	0	0	#DIV/0!
Benzo(b)fluoranthene	0	0	0	#DIV/0!	0	0	0	#DIN/0i
Benzo(g,h,i)perylene	0	0	0	#DIN/0!	. 0	0	0	#DIN/01
Dibenz(a,h)anthracene	0	0	0	#DIV/0/	0	0	0	#DIN/0!
Indeno(1,2,3-cd)pyrene	0	0	0	#DIV/0!	0	0	0	#DIV/0!
Phenanthrene	0	0	0	#DIV/0!	0	0	0	#DIV/0!
TOTALS	0.0E+00	0.0E+00	0.0E+00	#DIV/0!	0.0E+00	0.0E+00	0.00	10/AIG#
% of Total Risk or HI	#DIV/0!	#DIA/0i		#DIA/0i	#DIA/0i	#DIV/0!		#DIA/0i

Carcinogenic and Noncarcinogenic Risk Estimates for Adult Current Short-Term On-Base Resident (subchronic) Attributable to Southeast Runway Fuel Spill Site: Reasonable Maximum Exposure Scenario Table 4J-2

		Cancer Risk Summary	Summary			Non-Cancer	ancer	
						Hazard Index Summary	x Summary	
Analyte	Vapor	Dust	Total	Jo %	Vapor	Dust	Total	% of
	Inhalation	Inhalation	Risk	Total	Inhalation	Inhalation	Hazard	Total
				Risk			Index	H
PNAs	0	0	0	#DIN/0!	0	0	0	#DIV/0!
2-Methylnaphthalene	0	0	0	#DIV/0!	0	0	0	#DIV/0!
Benz(a)anthracene	0	0	0	#DIV/0!	0	0	0	#DIV/0!
Benzo(a)pyrene	0	0	0	#DIV/0i	0	0	0	#DIV/0!
Benzo(b)fluoranthene	0	0	0	#DIV/0!	0	0	0	#DIA/0i
Benzo(g,h,i)perylene	0	0	0	#DIV/0!	0	0	0	#DIV/0!
Dibenz(a,h)anthracene	. 0	0	0	#DIV/0!	0	0	0	#DIV/0!
Indeno(1,2,3-cd)pyrene	0	0	0	#DIV/0!	0	0	0	#DIN/0i
Phenanthrene	0	0	0	#DIV/0!	0	0	0	#DIV/0!
TOTALS	0.0E+00	0.0E+00	0.0E+00	#DIV/0!	0.0E+00	0.0E+00	0.0E+00	#DIV/0!
% of Total Risk or HI	#DIV/0!	#DIV/0!		#DIV/0!	#DIA/0i	#DIV/0!		#DIV/0!

Carcinogenic and Noncarcinogenic Risk Estimates for Child Current Long-Term On-Base Resident (chronic) Attributable to Southeast Runway Fuel Spill Site: Average Exposure Scenario Table 4J-3

		Cancer	Cancer Risk Summary			Non-Cancer	ancer	
						Hazard Index Summary	x Summary	
Analyte	Vapor	Dust	Total	Jo %	Vapor	Dust	Total	Jo %
	Inhalation	Inhalation	Risk	Total	Inhalation	Inhalation	Hazard	Total
				Risk			Index	Ш
PNAs	0	0	0	i0/AIG#	0	0	0	#DIV/0!
2-Methylnaphthalene	0	0	0	#DIV/0!	0	0	0	#DIV/0!
Benz(a)anthracene	0	0	0	#DIV/0!	0	0	0	#DIV/0!
Benzo(a)pyrene	0	0	0	#DIN/0!	0	0	0	#DIV/0!
Benzo(b)fluoranthene	0	0	0	#DIN/0!	0	0	0	#DIV/0i
Benzo(g,h,i)perylene	0	0	0	#DIV/0!	0	0	0	#DIV/0!
Dibenz(a,h)anthracene	0	0	0	#DIV/0!	0	0	0	#DIV/0!
Indeno(1,2,3-cd)pyrene	0	0	0	#DIV/0!	0	0	0	#DIV/0!
Phenanthrene	0	0	0	#DIV/0!	0	0	0	#DIV/0!
TOTALS	0.0E+00	0.0E+00	0.0E+00	#DIN/0i	0.0E+00	0.0E+00	0.0E+00	#DIV/0!
% of Total Risk or HI	#DIA/0i	#DIA/0i		#DIA/0i	#DIV/0!	#DIA/0i		#DIA/0i

Carcinogenic and Noncarcinogenic Risk Estimates for Child Current Long-Term On-Base Resident (chronic) Attributable to Southeast Runway Fuel Spill Site: Reasonable Maximum Exposure Scenario Table 4J-4

		Cancer Risk Summary	Summary			Non-Cancer	ancer	
						Hazard Index Summary	x Summary	
Analyte	Vapor	Dust	Total	Jo %	Vapor	Dust	Total	% of
	Inhalation	Inhalation	Risk	Total	Inhalation	Inhalation	Hazard	Total
				Risk			Index	HI
PNAs	0	0	0	#DIV/0!	0	0	0	#DIN/0i
2-Methylnaphthalene	0	0	0	#DIV/0i	0	0	0	#DIV/0i
Benz(a)anthracene	0	0	0	#DIV/0i	0	0	0	#DIV/0!
Benzo(a)pyrene .	0	0	0	#DIV/0i	0	0	0	#DIV/0!
Benzo(b)fluoranthene	0	0	0	#DIV/0!	0	0	0	#DIV/0!
Benzo(g,h,i)perylene	0	0	0	#DIV/0i	0	0	0	#DIV/0!
Dibenz(a,h)anthracene	0	0	0	#DIV/0i	0	0	0	#DIV/0!
Indeno(1,2,3-cd)pyrene	0	0	0	#DIV/0i	0	0	0	#DIV/0!
Phenanthrene	0	0	0	#DIV/0!	0	0	0	#DIV/0!
TOTALS	0.0E+00	0.0E+00	0.0E+00	10/AIG#	0.0E+00	0.0E+00	0.0E+00	#DIV/0!
% of Total Risk or HI	#DIA/0i	#DIA/0i		#DIV/0!	#DIA/0i	#DIA/0i		#DIV/0i

Carcinogenic and Noncarcinogenic Risk Estimates for Adult Current Long-Term On-Base Resident (chronic) Attributable to Southeast Runway Fuel Spill Site: Average Exposure Scenario Table 4J-5

		Cancer R	Cancer Risk Summary	y		Non-Cancer	Jancer	
						Hazard Ind	Hazard Index Summary	
Analyte	Vapor	Dust	Total	% of	Vapor	Dust	Total	% of
	Inhalation	Inhalation	Risk	Total	Inhalation	Inhalation	Hazard	Total
				Risk			Index	HI
PNAs	0	0	0	i0/AIG#	0	0	0	#DIV/0!
2-Methylnaphthalene	0	0	0	#DIV/0!		0	0	#DIV/0!
Benz(a)anthracene	0	0	0	#DIN/0i	0	0	0	#DIV/0!
Benzo(a)pyrene	0	0	0	#DIV/0!	0	0	0	#DIV/0!
Benzo(b)fluoranthene	0	0	0	#DIV/0!	0	0	0	#DIV/0!
Benzo(g,h,i)perylene	0	0	0	#DIN/0!	0	0	0	#DIV/0!
Dibenz(a,h)anthracene	0	0	0	#DIV/0!	0	0	0	#DIV/0!
Indeno(1,2,3-cd)pyrene	0	0	0	#DIV/0!	0	0	0	#DIV/0!
Phenanthrene	0	0	0	#DIV/0!	0	0	0	#DIV/0!
TOTALS	0.0E+00	0.0E+00	0.0E+00	#DIN/0!	0.0E+00	0.0E+00	0.0E+00	#DIV/0!
% of Total Risk or HI	#DIA/0i	#DIA/0i		#DIV/0!	#DIV/0!	#DIV/0!		#DIV/0!

Carcinogenic and Noncarcinogenic Risk Estimates for Adult Current Long-Term On-Base Resident (chronic) Attributable to Southeast Runway Fuel Spill Site: Reasonable Maximum Exposure Scenario Table 4J-6

		Cancer Risk Summary	s Summary			Non-Cancer	ancer	
						Hazard Index Summary	x Summary	
Analyte	Vapor	Dust	Total	Jo %	Vapor	Dust	Total	% of
	Inhalation	Inhalation	Risk	Total	Inhalation	Inhalation Inhalation	Hazard	Total
				Risk			Index	HI
PNAs	0	0	0	#DIV/0!	0	0	0	#DIV/0!
2-Methylnaphthalene	0	0	0	#DIV/0!	0	0	0	#DIV/0!
Benz(a)anthracene	0	0	0	#DIV/0!	0	0	0	#DIV/0!
Benzo(a)pyrene	0	0	0	#DIV/0!	0	0	0	#DIV/0!
Benzo(b)fluoranthene	0	0	0	#DIV/0!	0	0	0	#DIV/0i
Benzo(g,h,i)perylene	0	0	0	#DIV/0!	0	0	0	10/AIG#
Dibenz(a,h)anthracene	0	0	0	#DIV/0!	0	0	0	#DIV/0!
Indeno(1,2,3-cd)pyrene	0	0	0	#DIV/0!	0	0	0	#DIV/0!
Phenanthrene	0	0	0	#DIV/0!	0	0	0	#DIV/0!
TOTALS	0.0E+00	0.0E+00	0.0E+00	#DIV/0!	0.0E+00	0.0E+00	0.0E+00	#DIV/0!
% of Total Risk or HI	#DIA/0i	#DIA/0i		#DIA/0i	#DIA/0i	#DIA/0i		#DIV/0!

Carcinogenic and Noncarcinogenic Risk Estimates for Child Current Old Town Galena Resident (chronic) Attributable to Southeast Runway Fuel Spill Site: Average Exposure Scenario Table 4J-7

	Carcinogenic Risk Summary	ic Risk Su	mmary				
	A	Air Pathways	S.	Food	Food Pathways		Jo %
Analyte	Vapors					Total	Total
	Outdoor	Shower	Dust	Fruit	Vegetables	Risk	Risk
	VOCs	VOCs			1		
Metals							
Beryllium	0	0	0	1.5E-06	2.6E-06	4.2E-06	97.4
PNAs	0	0	0	0	0	0	0.0
2-Methylnaphthalene	0	0	0	0	0	0	0.0
Benz(a)anthracene	0	0	0	0	0	0	0.0
Benzo(a)pyrene	0	0	0	0	0	0	0.0
Benzo(b)fluoranthene	0	0	0	0	0	0	0.0
Benzo(g,h,i)perylene	0	0	0	0	0	0	0.0
Dibenz(a,h)anthracene	0	0	0	0	0	0	0.0
Indeno(1,2,3-cd)pyrene	0	0	0	0	0	0	0.0
Phenanthrene	0	0	0	0	0	0	0.0
Volatiles	0	0	0	0	0	0	0.0
1,2-Dichloroethane	0	0	0	3.9E-08	6.8E-08	1.1E-07	2.5
Benzene	0	0	0	1.4E-10	2.4E-10	3.8E-10	0.0
Chloroform	0	0	0	2.2E-11	3.9E-11	6.1E-11	0.0
Chloromethane	0	0	0	1.6E-09	2.7E-09	4.3E-09	0.1
Trichloroethene	0	0	0	2.2E-11	3.9E-11	6.1E-11	0.0
TOTALS	0.0E+00	0.0E+00	0.0E+00	1.6E-06	2.7E-06	4.3E-06	100
% of Total Risk or HI	0.0	0.0	0.0	36.6	63.4		100.0

09:20 AM

Table 4J-7 (Continued)

	Non-Carcil	Non-Carcinogenic Risk Summary	sk Summa	ry.			
	Ai	Air Pathways	S	Food	Food Pathways		Jo %
Analyte	Vapors					Hazard	Total
	Outdoor	Shower	Dust	Fruit	Vegetables	Index	Index
	VOCs	VOCs					
Metals							
Beryllium	0	0	0	8.3E-04	1.4E-03	0.00225	0.66
PNAs	0	0	0	0	0	0.0000.0	0.0
2-Methylnaphthalene	0	0	0	0	0	0.00000	0.0
Benz(a)anthracene	0	0	0	0	0	0.0000.0	0.0
Benzo(a)pyrene	0	0	0	0	0	0.0000.0	0.0
Benzo(b)fluoranthene	0	0	0	0	0	0.0000.0	0.0
Benzo(g,h,i)perylene	0	0	0	0	0	0.0000.0	0.0
Dibenz(a,h)anthracene	0	0	0	0	0	0.0000.0	0.0
Indeno(1,2,3-cd)pyrene	0	0	0	0	0	0.0000.0	0.0
Phenanthrene	0	0	0	0	0	0.0000.0	0.0
Volatiles	0	0	0	0	0	0.0000.0	0.0
1,2-Dichloroethane	0	0	0	0	0	0.0000.0	0.0
Benzene	0	0	0	0	0	0.0000.0	0.0
Chloroform	0	0	0	4.3E-06	7.4E-06	0.00001	0.5
Chloromethane	0	0	0	0	0	0.0000.0	0.0
Trichloroethene	0	0	0	4.0E-06	6.9E-06	0.00001	0.5
TOTALS	0.0E+00	0.0E+00	0.0E+00	8.3E-04	1.4E-03	0.00228	100.0
% of Total Risk or HI	0.0	0.0	0.0	36.6	63.4		100.0

12/8/95

Carcinogenic and Noncarcinogenic Risk Estimates for Child Current Old Town Galena Resident (chronic) Attributable to Southeast Runway Fuel Spill Site: Reasonable Maximum Exposure Scenario Table 4J-8

	Carcinogen	Carcinogenic Risk Summary	mmary				
	A	Air Pathways	S/	Food	Food Pathways		Jo %
Analyte	Vapors				•	Total	Total
	Outdoor	Shower	Dust	Fruit	Vegetables	Risk	Risk
	VOCs	VOCs)		
Metals							
Beryllium	0	0	0	4.7E-06	6.3E-06	1.1E-05	97.4
PNAs	0	0	0	0	0.	0	0.0
2-Methylnaphthalene	0	0	0	0	0	0	0.0
Benz(a)anthracene	0	0	0	0	0	0	0.0
Benzo(a)pyrene	0	0	0	0	0	0	0.0
Benzo(b)fluoranthene	0	0	0	0	0	0	0.0
Benzo(g,h,i)perylene	0	0	0	0	0	0	0.0
Dibenz(a,h)anthracene	0	0	0	0	0	0	0.0
Indeno(1,2,3-cd)pyrene	0	0	0	0	0	0	0.0
Phenanthrene	0	0	0	0	0	0	0.0
Volatiles	0	0	0	0	0	0	0.0
1,2-Dichloroethane	0	0	0	1.2E-07	1.6E-07	2.9E-07	2.5
Benzene	0	0	0	4.4E-10	5.8E-10	1.0E-09	0.0
Chloroform	0	0	0	7.0E-11	9.3E-11	1.6E-10	0.0
Chloromethane	0	0	0	4.9E-09	6.6E-09	1.1E-08	0.1
Trichloroethene	0	0	0	7.0E-11	9.3E-11	1.6E-10	0.0
TOTALS	0.0E+00	0.0E+00	0.0E+00	4.9E-06	6.5E-06	1.1E-05	100
% of Total Risk or HI	0.0	0.0	0.0	42.9	57.1		100.0

S AM

Table 4J-8 (Continued)

	Non-Carci	Non-Carcinogenic Risk Summary	sk Summa	ŗy			
	Ai	Air Pathways	S	Food	Food Pathways		Jo %
Analyte	Vapors	ors				Hazard	Total
	Outdoor	Shower	Dust	Fruit	Vegetables	Index	Index
	VOCs	VOCs					
Metals							
Beryllium	0	0	0	2.6E-03	3.4E-03	0900.0	0.66
PNAs	0	0	0	0	0	0.0000	0.0
2-Methylnaphthalene	0	0	0	0	0	0.0000	0.0
Benz(a)anthracene	0	0	0	0	0	0.0000	0.0
Benzo(a)pyrene	0	0	0	0	0	0.0000	0.0
Benzo(b)fluoranthene	0	0	0	0	0	0.0000	0.0
Benzo(g,h,i)perylene	0	0	0	0	0	0.0000	0.0
Dibenz(a,h)anthracene	0	0	0	0	0	0.0000	0.0
Indeno(1,2,3-cd)pyrene	0	0	0	0	0	0.0000	0.0
Phenanthrene	0	0	0	0	0	0.0000	0.0
Volatiles	0	0	0	0	0	0.0000	0.0
1,2-Dichloroethane	0	0	0	0	0	0.0000	0.0
Benzene	0	0	0	0	0	0.0000	0.0
Chloroform	0	0	0	1.3E-05	1.8E-05	0.0000	0.5
Chloromethane	0	0	0	0	0	0.0000	0.0
Trichloroethene	0	0	0	1.2E-05	1.7E-05	0.0000	0.5
TOTALS	0.0E+00	0.0E+00	0.0E+00	2.6E-03	3.5E-03	0.0061	100.0
% of Total Risk or HI	0.0	0.0	0.0	42.9	57.1		100.0

Carcinogenic and Noncarcinogenic Risk Estimates for Adult Current Old Town Galena Resident (chronic) Attributable to Southeast Runway Fuel Spill Site: Average Exposure Scenario Table 4J-9

	Carcinoge	Carcinogenic Risk Summary	Summary				
	V	Air Pathways	s.h	Food	Food Pathways		Jo %
Analyte	Vapors	S			ı	Total	Total
	Outdoor	Shower	Dust	Fruit	Vegetables	Risk	Risk
	VOC _s	VOCs					
Metals							
Beryllium	0	0	0	1.7E-06	1.4E-06	3.1E-06	97.4
PNAs	0	0	0	0	0	0	0.0
2-Methylnaphthalene	0	0	0	0	0	0	0.0
Benz(a)anthracene	0	0	0	0	0	0	0.0
Benzo(a)pyrene	0	0	0	0	0	0	0.0
Benzo(b)fluoranthene	0	0	0.	0	0	0	0.0
Benzo(g,h,i)perylene	0	0	0	0	0	0	0.0
Dibenz(a,h)anthracene	0	0	0	0	0	0	0.0
Indeno(1,2,3-cd)pyrene	0	0	0	0	0	0	0.0
Phenanthrene	0	0	0	0	0	0	0.0
Volatiles	0	0	0	0	0	0	0.0
1,2-Dichloroethane	0	0	0	4.5E-08	3.6E-08	8.1E-08	2.5
Benzene	0	0	0	1.6E-10	1.3E-10	2.9E-10	0.0
Chloroform	0	0	0	2.6E-11	2.1E-11	4.6E-11	0.0
Chloromethane	0	0	0	1.8E-09	1.5E-09	3.3E-09	0.1
Trichloroethene	0	0	0	2.6E-11	2.1E-11	4.6E-11	0.0
TOTALS	0.0E+00	0.0E+00	0.0E+00	1.8E-06	1.4E-06	3.2E-06	100
% of Total Risk or HI	0.0	0.0	0.0	55.3	44.7		100.0

Table 4J-9 (Continued)

	Non-Carci	Non-Carcinogenic Risk Summary	isk Summ	ary			
	Ai	Air Pathways	S	Food	Food Pathways		Jo %
Analyte	Vapors					Hazard	Total
-	Outdoor	Shower	Dust	Fruit	Vegetables	Index	Index
	VOCs	VOCs					
Metals							
Beryllium	0	0	0	2.3E-04	1.9E-04	0.0004	0.66
PNAs	0	0	0	0	0	0.0000	0.0
2-Methylnaphthalene	0	0	0	0	0	0.0000	0.0
Benz(a)anthracene	0	0	0	0	0	0.0000	0.0
Benzo(a)pyrene	0	0	0	0	0	0.0000	0.0
Benzo(b)fluoranthene	0	0	0	0	0	0.0000	0.0
Benzo(g,h,i)perylene	0	0	0	0	0	0.0000	0.0
Dibenz(a,h)anthracene	0	0	0	0	0	0.0000	0.0
Indeno(1,2,3-cd)pyrene	0	0	0	0	0	0.0000	0.0
Phenanthrene	0	0	0	0	0	0.0000	0.0
Volatiles	0	0	0	0	0	0.0000	0.0
1,2-Dichloroethane	0	0	0	0	0	0.0000	0.0
Benzene	0	0	0	0	0	0.0000	0.0
Chloroform	0	0	0	1.2E-06	9.7E-07	0.0000	0.5
Chloromethane	0	0	0	0	0	0.0000	0.0
Trichloroethene	0	0	0	1.1E-06	9.0E-07	0.0000	0.5
TOTALS	0.0E+00	0.0E+00	0.0E+00	2.3E-04	1.9E-04	0.0004	100.0
% of Total Risk or HI	0.0	0.0	0.0	55.3	44.7		100.0

SCGRIARM.XLW

Table 4J-10

Carcinogenic and Noncarcinogenic Risk Estimates for Adult Current Old Town Galena Resident (chronic) Attributable to Southeast Runway Fuel Spill Site: Reasonable Maximum Exposure Scenario

	Carcinoge	Carcinogenic Risk Summary	ummary				
	A	Air Pathways	S,	Food	Food Pathways		J0 %
Analyte	Vapors					Total	Total
	Outdoor	Shower	Dust	Fruit	Vegetables	Risk	Risk
	VOCs	VOCs)		
Metals							
Beryllium	0	. 0	0	1.5E-05	1.2E-05	2.7E-05	97.4
PNAs	0	0	0	0	0	0	0.0
2-Methylnaphthalene	0	0	0	0	0	0	0.0
Benz(a)anthracene	0	0	0	0	0	0	0.0
Benzo(a)pyrene	0	0	0	0	0	0	0.0
Benzo(b)fluoranthene	0	0	0	0	0	0	0.0
Benzo(g,h,i)perylene	0	0	0	0	0	0	0.0
Dibenz(a,h)anthracene	0	0	0	0	0	0	0.0
Indeno(1,2,3-cd)pyrene	0	0	0	0	0	0	0.0
Phenanthrene	0	0	0	0	0	0	0.0
Volatiles	0	0	0	0	0	0	0.0
1,2-Dichloroethane	0	0	0	3.9E-07	3.0E-07	6.9E-07	2.5
Benzene	0	0	0	1.4E-09	1.1E-09	2.4E-09	0.0
Chloroform	0	0	0	2.2E-10	1.7E-10	3.9E-10	0.0
Chloromethane	0	0	0	1.6E-08	1.2E-08	2.8E-08	0.1
Trichloroethene	0	0	0	2.2E-10	1.7E-10	3.9E-10	0.0
TOTALS	0.0E+00	0.0E+00	0.0E+00	1.5E-05	1.2E-05	2.7E-05	100
% of Total Risk or HI	0.0	0.0	0.0	56.3	43.8		100.0

09.25 AM

Table 4J-10 (Continued)

	Non-Carcinogenic Risk Summary	nogenic R	isk Summ	ıary			
	Air P	Air Pathways					Jo %
Analyte	Vapors			Food	Food Pathways	Hazard	Total
	Outdoor	Shower	Dust	Fruit	Vegetables	Index	Index
Matalo	\$0C\$	*OC\$					
Metats							
Beryllium	0	0	0	7.0E-04	5.4E-04	0.0012	99.0
PN4s	0	0	0	0	0	0.0000	0.0
2-Methylnaphthalene	0	0	0	0	0	0.0000	0.0
Benz(a)anthracene	0	0	0	0	0	0.0000	0.0
Benzo(a)pyrene	0	0	0	0	0	0.0000	0.0
Benzo(b)fluoranthene	0	0	0	0	0	0.0000	0.0
Benzo(g,h,i)perylene	0	0	0	0	0	0.0000	0.0
Dibenz(a,h)anthracene	0	0	0	0	0	0.0000	0.0
Indeno(1,2,3-cd)pyrene	0	0	0	0	0	0.0000	0.0
Phenanthrene	0		0	0	0	0.0000	0.0
Volatiles	0	0	0	0	0	0.0000	0.0
1,2-Dichloroethane	0	0	0	0	0	0.0000	0.0
Benzene	0	0	0	0	0	0.0000	0.0
Chloroform	0	0	0	3.6E-06	2.8 <u>È</u> -06	0.0000	0.5
Chloromethane	0	0	0	0	0	0.0000	0.0
Trichloroethene	0	0	0	3.4E-06	2.6E-06	0.0000	0.5
TOTALS	0.0E+00	0.0E+00	0.0E+00	7.0E-04	5.5E-04	0.0013	100.0
% of Total Risk or HI	0.0	0.0	0.0	56.3	43.8		100.0

Carcinogenic and Noncarcinogenic Risk Estimates for Child Current New Town Galena Resident (chronic) Attributable to Southeast Runway Fuel Spill Site: Average Exposure Scenario **Table 4J-11**

		Cancer R	Cancer Risk Summary			Non-Cancer	ancer	
					- •	Hazard Index Summary	x Summary	
Analyte	Vapor	Dust	Total	Jo %	Vapor	Dust	Total	Jo %
	Inhalation	Inhalation Inhalation	Risk	Total	Inhalation	Inhalation	Hazard	Total
				Risk			Index	НП
PNAs	0	0	0	#DIN/0i	0	0	0	i0/AIC#
2-Methylnaphthalene	0.	0	0	#DIV/0!	0	0	0	#DIN/0!
Benz(a)anthracene	0	0	0	#DIV/0i	0	0	0	#DIV/0!
Benzo(a)pyrene	0	0	0	#DIV/0!	0	0	0	#DIN/0i
Benzo(b)fluoranthene	0	0	0	#DIV/0!	0	0	0	#DIN/0i
Benzo(g,h,i)perylene	0	0	0	#DIV/0i	0	0	0	#DIV/0!
Dibenz(a,h)anthracene	0	0	0	#DIV/0!	0	0	0	#DIN/0i
Indeno(1,2,3-cd)pyrene	0	0	0	#DIV/0!	0	0	0	#DIN/0!
Phenanthrene	0	0	0	#DIV/0!	0	0	0	#DIV/0!
TOTALS	0.0E+00	0.0E+00	0.0E+00	#DIV/0!	0.0E+00	0.0E+00	0.0E+00	#DIV/0!
% of Total Risk or HI	#DIA/0i	#DIA/0i		#DIV/0!	#DIA/0i	#DIV/0i		#DIA/0i

Carcinogenic and Noncarcinogenic Risk Estimates for Child Current New Town Galena Resident (chronic) Attributable to Southeast Runway Fuel Spill Site: Reasonable Maximum Exposure Scenario **Table 4J-12**

		Cancer Risk Summary	Summary			Non-C	Non-Cancer	
						Hazard Inde	Hazard Index Summary	
Analyte	Vapor	Dust	Total	Jo %	Vapor	Dust	Total	% of
	Inhalation	Inhalation Inhalation	Risk	Total	Inhalation	Inhalation	Hazard	Total
				Risk			Index	HI
PNAs	0	0	0	#DIV/0!	0	0	0	#DIA/0i
-Methylnaphthalene	0	0	0	#DIV/0!	0	0	0	#DIN/0i
Senz(a)anthracene	0	0	0	#DIV/0!	0	0	0	#DIV/0!
Senzo(a)pyrene	0	0	0	#DIV/0!	0	0	0	#DIV/0!
3enzo(b)fluoranthene	0	0	0	#DIV/0!	0	0	0	#DIN/0i
3enzo(g,h,i)perylene	0	0	0	#DIV/0!	0	0	0	#DIN/0i
Dibenz(a,h)anthracene	0	0	0	#DIV/0!	0	0	0	#DIV/0!
ndeno(1,2,3-cd)pyrene	0	0	0	#DIV/0!	0	0	0	#DIV/0!
henanthrene	0	0	0	#DIV/0!	0	0	0	#DIV/0!
TOTALS	0.0E+00	0.0E+00	0.0E+00	#DIV/0!	0.0E+00	0.0E+00	0.0E+00	#DIV/0!
% of Total Risk or HI	#DIA/0i	#DIA/0i		#DIA/0i	#DIA/0i	#DIV/0i		#DIA/0i

Carcinogenic and Noncarcinogenic Risk Estimates for Adult Current New Town Galena Resident (chronic) Attributable to Southeast Runway Fuel Spill Site: Average Exposure Scenario **Table 4J-13**

		Cancer Ris	Cancer Risk Summary			Non-Cancer	ancer	
				•		Hazard Index Summary	x Summary	
Analyte	Vapor	Dust	Total	% of	Vapor	Dust	Total	Jo %
	Inhalation	Inhalation	Risk	Total	Inhalation	Inhalation	Hazard	Total
				Risk			Index	Щ
PNAs	0	0	0	#DIV/0!	0	0	0	#DIN/0
2-Methylnaphthalene	0	0	0	#DIV/0!	0	0	0	#DIV/0i
Benz(a)anthracene	0	0	0	#DIV/0!	0	0	0	#DIV/0!
Benzo(a)pyrene	0	0	0	#DIV/0!	0	0	0	#DIV/0!
Benzo(b)fluoranthene	0	0	0	#DIV/0!	0	0	0	#DIV/0!
Benzo(g,h,i)perylene	0	0	0	#DIN/0!	0	0	0	#DIV/0!
Dibenz(a,h)anthracene	0	0	0	#DIV/0!	0	0	0	#DIV/0!
Indeno(1,2,3-cd)pyrene	0	0	0	#DIV/0i	0	0	0	#DIV/0!
Phenanthrene	0	0	0	#DIV/0!	0	0	0	#DIV/0!
TOTALS	0.0E+00	0.0E+00	0.0E+00	#DIV/0!	0.0E+00	0.0E+00	0.0E+00	#DIV/0!
% of Total Risk or HI	#DIA/0i	#DIA/0i		#DIA/0i	#DIA/0i	#DIV/0!		#DIV/0!

Carcinogenic and Noncarcinogenic Risk Estimates for Adult Current New Town Galena Resident (chronic) Attributable to Southeast Runway Fuel Spill Site: Reasonable Maximum Exposure Scenario Table 4J-14

		Cancer Risk Summary	ummary			Non-Cancer	ıncer	
					H	Hazard Index Summary	K Summary	
Analyte	Vapor	Dust	Total	Jo %	Vapor	Dust	Total	% of
	Inhalation	Inhalation	Risk	Total	Inhalation	Inhalation	Hazard	Total
				Risk			Index	Н
PNAs	0	0	0	#DIV/0!	0	0	0	#DIV/0!
2-Methylnaphthalene	0	0	0	#DIV/0!	0	0	0	#DIV/0!
Benz(a)anthracene	0	0	0	#DIV/0!	0	0	0	#DIV/0!
Benzo(a)pyrene	0	0	0	#DIV/0!	0	0	0	#DIV/0!
Benzo(b)fluoranthene	0	0	0	#DIV/0!	0	0	0	#DIV/0!
Benzo(g,h,i)perylene	0	0	0	#DIV/0i	0	0	0	#DIV/0i
Dibenz(a,h)anthracene	0	0	0	#DIV/0!	0	0	0	#DIV/0!
Indeno(1,2,3-cd)pyrene	0	0	0	#DIV/0!	0	0	0	#DIV/0!
Phenanthrene	0	0	0	#DIN/0!	0	0	0	#DIV/0!
TOTALS	0.0E+00	0.0E+00	0.0E+00	#DIV/0!	0.0E+00	0.0E+00	0.0E+00	10/AIG#
% of Total Risk or HI	#DIA/0i	#DIV/0!		#DIA/0i	#DIA/0i	#DIV/0!		#DIV/0!

Table 4J-15

Carcinogenic and Noncarcinogenic Risk Estimates for Current Short-Term On-Base Worker (subchronic) Attributable to Southeast Runway Fuel Spill Site: Average Exposure Scenario

	Cancer Risk By Pathway	By Pathway					Hazard Index By Pathway	By Pathway				
	Surface	ace	Inhalation	ation			Surface	ace	Inha	Inhalation		
Analyte	Soil Pathways	thways	Path	Pathways		% of	Soil Pathways	hways	Path	Pathways	Hazard	% of
	Dermal	Ingestion			Total	Total	Dermal	Ingestion			Index	Total
	Contact		Vapors	Dust	Risk	Risk	Contact		Vapors	Dust		Index
PNAs	0	0	0	0	0	0.0	0	0	0	0	0	#DIV/0!
2-Methylnaphthalene	0	0	0	0	0	0.0	0	0	0	0	0	#DIV/0!
Benzo(a)anthracene	0	1.9E-09	0	0	1.9E-09	4.6	0	0	0	0	0	#DIV/0!
Benzo(a)pyrene	0	3.0E-08	0	0	3.0E-08	72.4	0	0	0	0	0	#DIV/0!
Benzo(b)fluoranthene	0	2.5E-09	0	0	2.5E-09	5.9	0	0	0	0	0	#DIV/0!
Benzo(g,h,i)perylene	0	0	0	0	0	0.0	0	0	0	0	0	#DIV/0!
Dibenz(a,h)anthracene	0	5.7E-09	0	0	5.7E-09	13.6	0	0	0	0	0	#DIV/0!
Indeno(1,2,3-cd)pyrene	0	1.5E-09	0	0	1.5E-09	3.5	0	0	0	0	0	#DIV/0!
Phenanthrene	0	0	0	0	0	0.0	0	0	0	0	0	#DIV/0i
TOTALS	0.0E+00	4.2E-08	0.0E+00	0.0E+00	4.2E-08	100	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	#DIV/0!
% of Total Risk or HI	0.0	100.0	0.0	0.0		100.0	#DIA/0i	#DIA/0i	#DIV/0!	#DIA/0i		#DIV/0!

12/8/95

Table 4J-16

Carcinogenic and Noncarcinogenic Risk Estimates for Current Short-Term On-Base Worker (subchronic) Attributable to Southeast Runway Fuel Spill Site: Reasonable Maximum Exposure Scenario

	HELL MISH T	Cancer Kisk by Paunway			į		Hazard Index By Pathway	By Pathway				
	Surface	_ as	Inhalation	ation			Surface	ace	Inhal	Inhalation		
Analyte	Soil Pathways	ways	Pathv	hways		% of	Soil Pathways	hways	Path	Pathways	Hazard	% of
	Dermal	Ingestion			Total	Total	Dermal	Ingestion			Index	Total
IV	Absorption		Vapors	Dust	Risk	Risk	Absorption	,	Vapors	Dust		Index
PNAs	0	0	0	0	0	0.0	0	0	0	0	0	i0/AIC#
2-Methylnaphthalene	0	0	0	0	0	0.0	0	0	0	0	0	#DIV/0!
Benzo(a)anthracene	0	4.8E-09	0	0	4.8E-09	4.6	. 0	0	0	0	0	#DIV/0!
Benzo(a)pyrene	0	7.6E-08	0	0	7.6E-08	72.4	0	0	0	0	0	#DIV/0!
Benzo(b)fluoranthene	0	6.2E-09	0	0	6.2E-09	5.9	0	0	0	0	0	#DIA/0i
Benzo(g,h,i)perylene	0	0	0	0	0	0.0	0	0	0	0	0	#DIV/0!
Dibenz(a,h)anthracene	0	1.4E-08	0	0	1.4E-08	13.6	0	0	0	0	0	#DIV/0i
Indeno(1,2,3-cd)pyrene	0	3.7E-09	0	0	3.7E-09	3.5	0	0	0	0	0	#DIV/0!
Phenanthrene	0	0	0	0	0	0.0	0	0	0	0	0	#DIV/0!
TOTALS	0.0E+00	1.0E-07	0.0E+00	0.0E+00	1.0E-07	100	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	#DIV/0i
% of Total Risk or HI	0.0	100.0	0.0	0.0		100.0	#DIV/0!	#DIV/0i	#DIA/0i	#DIA/0i		#DIV/0!

SWKR2-AV.XLW

Table 4J-17

Carcinogenic and Noncarcinogenic Risk Estimates for Current Long-Term On-Base Worker (chronic) Attributable to Southeast Runway Fuel Spill Site: Average Exposure Scenario

	Cancer R	Cancer Risk By Pathway	way				Hazard Inc	Hazard Index By Pathway	vay			
	Sui	Surface	Inha	Inhalation			Sur	Surface	Inha	Inhalation		
Analyte	Soil Pa	Soil Pathways	Path	Pathways		Jo %	Soil Pa	Soil Pathways	Path	Pathways	Hazard	Jo %
		Ingestion			Total	Total	Dermal	Ingestion			Index	Total
	Contact		Vapors	Dust	Risk	Risk	Contact		Vapors	Dust		Index
PNAs	0	0	0	0	0	0.0	0	0	0	0	0	#DIV/0!
2-Methylnaphthalene	0	0	0	0	0	0.0	0	0	0	0	0	#DIV/01
Benzo(a)anthracene	0	2.4E-08	0	0	2.4E-08	4.6	0	0	0	0	· 0	#DIV/01
Benzo(a)pyrene	0	3.8E-07	0	0	3.8E-07	72.4	0	0	0	0	0	#DIV/01
Benzo(b)fluoranthene	0	3.1E-08	0	0	3.1E-08	5.9	0	0	0	0	0	#DIV/0!
Benzo(g,h,i)perylene	0	0	0	0	0	0.0	0	0	0	0	0	#DIV/0!
Dibenz(a,h)anthracene	0	7.1E-08	0	0	7.1E-08	13.6	0	0	0	0	0	i0/AIG#
Indeno(1,2,3-cd)pyrene	0	1.8E-08	0	0	1.8E-08	3.5	0	0	0	0	0	#DIV/0!
Phenanthrene	0	0	0	0	0	0.0	0	0	0	0	0	#DIV/0!
TOTALS	0.0E+00	0.0E+00 5.2E-07 0.0E+00	0.0E+00	0.0E+00	5.2E-07	100	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	#DIV/0!
% of Total Risk or HI	0.0	100.0	0.0	0.0		100.0	#DIA/0i	#DIA/0i	#DIV/0!	#DIV/0!		#DIV/0!

12/8/95

Table 4J-18

Carcinogenic and Noncarcinogenic Risk Estimates for Current Long-Term On-Base Worker (chronic) Attributable to Southeast Runway Fuel Spill Site: Reasonable Maximum Exposure Scenario

	Cancer Ri	Cancer Risk By Pathway	way				Hazard Ind	Hazard Index By Pathway	ray			
	InS	Surface	Inhalation	ation			Sur	Surface	Inhalation	ation		
Analyte	Soil Pa	Soil Pathways	Pathways	ways		Jo %	Soil Pa	Soil Pathways	Pathways	ways	Hazard	% of
	Dermal	Dermal Ingestion			Total	Total	Dermal	Ingestion			Index	Total
	Contact		Vapors	Dust	Risk	Risk	Contact		Vapors	Dust		Index
PNAs	0	0	0	0	0	0.0	0	0	0	0	0	#DIV/0!
2-Methylnaphthalene	0	0	0	0	0	0.0	0	0	0	0	0	#DIV/0!
Benzo(a)anthracene	0	2.4E-08	0	0	2.4E-08	4.6	0	0	0	0	0	i0/AIQ#
Benzo(a)pyrene	0	3.8E-07	0	0	3.8E-07	72.4	0	0	0	0	0	#DIV/0!
Benzo(b)fluoranthene	0	3.1E-08	0	0	3.1E-08	5.9	0	0	0	0	0	#DIN/0i
Benzo(g,h,i)perylene	0	0	0	0	0	0.0	0	0	0	0	0	#DIV/0!
Dibenz(a,h)anthracene	0	7.1E-08	0	0	7.1E-08	13.6	0	0	0	0	0	#DIV/0!
Indeno(1,2,3-cd)pyrene	0	1.8E-08	0	0	1.8E-08	3.5	0	0	0	0	0	#DIV/0!
Phenanthrene	0	0	0	0	0	0.0	0	0	0	0	0	#DIV/0!
TOTALS	0.0E+00	5.2E-07	0.0E+00	0.0E+00	5.2E-07	100	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	#DIV/0!
% of Total Risk or HI	0.0	100.0	0.0	0.0		100.0	#DIV/0!	#DIV/0i	#DIA/0i	#DIA/0i		#DIA/0i

SCWKR-AV.XLW

Carcinogenic and Noncarcinogenic Risk Estimates for Current On-Base Construction Worker (subchronic) Attributable to Southeast Runway Fuel Spill Site: Average Exposure Scenario Table 4J-19

	Cancer Risk By Pathway	By Pathway					Hazard Index By Pathway	By Pathway				
	Mixed	pa	Inhal	nhalation			Mixed	pa	Inhalation	ation		
Analyte	Soil Pathways	hways	Path	athways		% of	Soil Pathways	hways	Pathways	ways	Hazard	% of
	Dermal Absorption	Ingestion	Vapors	Dust	Total Risk	Total Risk	Dermal Absorption	Ingestion	Vapors	Dust	Index	Total Index
PNAs	0	0	0	0	0	0.0	0	0	0	0	0	#DIV/0!
2-Methylnaphthalene	0	0	0	0	0	0.0	0	0	0	0	0	#DIV/0!
Benzo(a)anthracene	0	4.2E-10	0	0	4.2E-10	4.6	0	0	0	0	0	#DIV/0!
Benzo(a)pyrene	0	6.6E-09	0	0	6.6E-09	72.4	0	0	0	0	0	#DIV/0!
Benzo(b)fluoranthene	0	5.4E-10	0	0	5.4E-10	5.9	0	0	0	0	0	#DIV/0!
Benzo(g,h,i)perylene	0	0	0	0	0	0.0	0	0	0	0	0	#DIV/0!
Dibenz(a,h)anthracene	0	1.2E-09	0	0	1.2E-09	13.6	0	0	0	0	0	#DIV/0!
Indeno(1,2,3-cd)pyrene	0	3.2E-10	0	0	3.2E-10	3.5	0	0	0	0	0	#DIV/0!
Phenanthrene	0	0	0	0	0	0.0	0	0	0	0	0	#DIV/0!
TOTALS	0.0E+00	9.1E-09	0.0E+00	0.0E+00	9.1E-09	100	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	#DIV/0!
% of Total Risk or HI	0.0	100.0	0.0	0.0		100.0	#DIA/0i	#DIA/0i	#DIA/0i	#DIA/0i		#DIA/0i

) AM

Table 4J-20

Carcinogenic and Noncarcinogenic Risk Estimates for Current On-Base Construction Worker (subchronic) Attributable to Southeast Runway Fuel Spill Site: Reasonable Maximum Exposure Scenario

	Cancer Risk By Pathway	By Pathway					Hazard Index By Pathway	By Pathway				
	Mixed	ed	Inhal	lation			Mixed	ed	Inhal	Inhalation		
Analyte	Soil Pathways	hways	Path	ways	-	% of	Soil Pathways	hways	Path	Pathways	Hazard	% of
	Dermal	Ingestion			Total	Total	Dermal	Ingestion			Index	Total
	Absorption		Vapors	Dust	Risk	Risk	Absorption		Vapors	Dust		Index
PN4s	0	0	0	0	0	0.0	0	0	,	0	0	#DIN/0i
2-Methylnaphthalene	0	0	0	0	0	0.0	0	0	0	0	0	#DIV/0!
Benzo(a)anthracene	0	8.0E-09	0	0	8.0E-09	4.6	0	0	0	0	0	#DIV/0!
Benzo(a)pyrene	0	1.3E-07	0	0	1.3E-07	72.4	0	0	0	0	0	#DIV/0!
Benzo(b)fluoranthene	0	1.0E-08	0	0	1.0E-08	5.9	0	0	0	0	0	#DIV/0!
Benzo(g,h,i)perylene	0	0	0	0	0	0.0	0	0	0	0	0	#DIV/0!
Dibenz(a,h)anthracene	0	2.4E-08	0	0	2.4E-08	13.6	0	0	0	0	0	#DIV/0!
Indeno(1,2,3-cd)pyrene	0	6.1E-09	0	0	6.1E-09	3.5	0	0	0	0	0	#DIV/0!
Phenanthrene	0	0	0	0	0	0.0	0	0	0	0	0	#DIV/0!
TOTALS	0.0E+00	1.7E-07	0.0E+00	0.0E+00	1.7E-07	100	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	#DIV/0!
% of Total Risk or HI	0.0	100.0	0.0	0.0		100.0	#DIA/0i	#DIA/0i	#DIA/0i	#DIA/0i		#DIV/0!

12/8/95

SFSTU-AV.XLW

Table 4J-21

Carcinogenic and Noncarcinogenic Risk Estimates for Future Boarding School Student (subchronic) Attributable to Southeast Runway Fuel Spill Site: Average Exposure Scenario

	Cancer Risk By Pathway	By Pathway					Hazard Index By Pathway	By Pathway				
	Surface	ace	Inhal	Inhalation			Surface	ace	Inhalation	ation		
Analyte	Soil Pathways	hways	Path	Pathways		Jo %	Soil Pathways	hways	Pathways	ways	Hazard	% of
	Dermal	Ingestion			Total	Total	Dermal	Ingestion			Index	Total
	Contact		Vapors	Dust	Risk	Risk	Contact		Vapors	Dust		Index
PNAs .	0	0	0	0	0		0	0	0	0	0	10/AIQ#
2-Methylnaphthalene	0	0	0	0	0	#DIV/0!	0	0	0	0	0	#DIV/0!
Benz(a)anthracene	0	0	0	0	0	#DIN/0i	0	0	0	0	0	i0/AIQ#
Benzo(a)pyrene	0	0	0	0	0	#DIV/0i	0	0	0	0	0	#DIV/0!
Benzo(b)fluoranthene	0	0	0	0	0	#DIN/0i	0	0	0	0	0	#DIV/0!
Benzo(g,h,i)perylene	0	0	0	0	0	#DIN/0i	0	0	0	0	0	#DIV/0!
Dibenz(a,h)anthracene	0	0	0	0	0	#DIV/0!	0	0	0	0	0	#DIV/0!
Indeno(1,2,3-cd)pyrene	0	0	0	0	0	#DIV/0!	0	0	0	0	0	#DIV/0!
Phenanthrene	0	0	0	0	0	#DIV/0!	0	0	0	0	0	#DIV/0!
TOTALS	0.0E+00	0.0E+00 0.0E+00	0.0E+00	0.0E+00	0.0E+00	#DIN/0i	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	#DIV/0!
% of Total Risk or HI	#DIV/0!	#DIA/0i	#DIV/0!	#DIV/0!		#DIV/0!	#DIA/0i	#DIA/0i	#DIA/0i	#DIV/0!		#DIV/0!

Table 4J-22

Carcinogenic and Noncarcinogenic Risk Estimates for Future Boarding School Student (chronic) Attributable to Southeast Runway Fuel Spill Site: Reasonable Maximum Exposure Scenario

	Cancer Risk By Pathway	By Pathway					Hazard Index By Pathway	By Pathway				
	Surface	ace	Inhalation	ation			Surface	ace	Inhalation	ation		
Analyte	Soil Pathways	hways	Path	Pathways		₩ of	Soil Pathways	hways	Pathways	ways	Hazard	of %
	Dermal	Ingestion			Total	Total	Dermal	Ingestion			Index	Total
	Contact		Vapors	Dust	Risk	Risk	Contact		Vapors	Dust		Index
PNAs	0	0	0	0	0	#DIN/0	0	0	0	0	0	#DIV/0i
2-Methylnaphthalene	0	0	0	0	0	#DIV/0!	0	0	0	0	0	#DIV/0i
Benz(a)anthracene	0	0	0	0	0	#DIV/0i	0	0	0	0	0	#DIV/0i
Benzo(a)pyrene	0	0	0	0	0	#DIV/0i	0	0	0	0	0	#DIV/0!
Benzo(b)fluoranthene	0	0	0	0	0	#DIV/0!	0	0	0	0	0	#DIV/0!
Benzo(g,h,i)perylene	0	0	0	0	0	#DIV/0!	0	0	0	0	0	#DIV/0!
Dibenz(a,h)anthracene	0	0	0	0	0	#DIN/0i	0	0	0	0	0	#DIV/0!
Indeno(1,2,3-cd)pyrene	0	0	0	0	0	#DIV/0!	0	0	0	0	0	#DIV/0!
Phenanthrene	0	0	0	0	0	#DIV/0!	0	0	0	0	0	#DIV/0!
TOTALS	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	#DIN/0i	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	#DIV/0!
% of Total Risk or HI	#DIV/0!	#DIV/0!	#DIA/0i	#DIV/0!		#DIV/0!	#DIA/0i	#DIA//0i	#DIV/0i	#DIV/0!		#DIV/0!

Carcinogenic and Noncarcinogenic Risk Estimates for Child Future Old Town Galena Resident (chronic) Attributable to Southeast Runway Fuel Spill Site: Average Exposure Scenario

	Carcinogen	Carcinogenic Risk Summary	mmary						
	Ground	Groundwater	Y	Air Pathways	S/	Food]	Food Pathways		Jo %
Analyte	Path	Pathways	Vapors					Total	Total
	Ingestion	Dermal Contact	Outdoor VOCs	Shower VOCs	Dust	Fruit	Vegetables	Risk	Risk
Metals									
Beryllium	2.1E-05	0	0	0	0	6.3E-07	1.1E-06	2.3E-05	99.1
PNAs	0	0	0	0	0	0	0	0	0.0
2-Methylnaphthalene	0	0	0	0	0	0	0	0	0.0
Benz(a)anthracene	0	0	0	0	0	0	0	0	0.0
Benzo(a)pyrene	0	0	0	0	0	ö	0	0	0.0
Benzo(b)fluoranthene	0	0	0	0	0	0	0	0	0.0
Benzo(g,h,i)perylene	0	0	0	0	0	0	0	0	0.0
Dibenz(a,h)anthracene	0	0	0	0	0	0	0	0	0.0
Indeno(1,2,3-cd)pyrene	0	0	0	0	0	0	0	0	0.0
Phenanthrene	0	0	0	0	0	0	0	0	0.0
Volatiles	0	0	0	0	0	0	0	0	0.0
1,2-Dichloroethane	1.8E-07	8.3E-10	0	1.9E-09	0	3.9E-09	6.8E-09	1.9E-07	0.8
Benzene	9.0E-09	7.8E-10	0	1.1E-10	0	2.0E-10	3.4E-10	1.0E-08	0.0
TOTALS	2.1E-05	1.6E-09	0.0E+00	2.0E-09	0.0E+00	6.3E-07	1.1E-06	2.3E-05	100
% of Total Risk or HI	92.4	0.0	0.0	0.0	0.0	2.8	4.8		100.0

Table 4J-23 (Continued)

	Non-Carcinogenic Risk Summary	genic Risk	Summary						
	Groundwater	water	Ai	Air Pathways	S	Food 1	Food Pathways		Jo %
Analyte	Pathways	ays	Vapors					Hazard	Total
	Ingestion	Dermal Contact	Outdoor VOCs	Shower VOCs	Dust	Fruit	Vegetables	Index	Index
Metals				·					
Beryllium	1.1E-02	0	0	0	0	3.4E-04	5.9E-04	0.0123	99.1
PNAs	0	0	0	0	0	0	0	0.000.0	0.0
2-Methylnaphthalene	0	0	0	0	0	0	0	0.0000	0.0
Benz(a)anthracene	0	0	0	0	0	0	0	0.0000	0.0
Benzo(a)pyrene	0	0	0	0	0	0	0	0.0000	0.0
Benzo(b)fluoranthene	0	0	0	0	0	0	0	0.0000	0.0
Benzo(g,h,i)perylene	0	0	0	0	0	0	0	0.0000	0.0
Dibenz(a,h)anthracene	0	0	0	0	0	0	0	0.0000	0.0
Indeno(1,2,3-cd)pyrene	0	0	0	0	0	0	0	0.000.0	0.0
Phenanthrene	0	0	0	0	0	0	0	0.0000	0.0
Volatiles	0	0	0	0	0	0	0	0.0000	0.0
1,2-Dichloroethane	0	0	0	8.5E-05	0	0	0	0.0001	0.7
Benzene	0	0	0	2.6E-05	0	0	0	0.0000	0.7
TOTALS	1.1E-02	0.0E+00	0.0E+00	1.1E-04	0.0E+00	3.4E-04	5.9E-04	0.0124	100.0
% of Total Risk or HI	91.6	0.0	0.0	6.0	0.0	2.7	4.8		100.0

Carcinogenic and Noncarcinogenic Risk Estimates for Child Future Old Town Galena Resident (chronic) Attributable to Southeast Runway Fuel Spill Site: Reasonable Maximum Exposure Scenario **Table 4J-24**

	Carcinogenic Risk Summary	ic Risk Su	mmary						
	Groundwater	lwater	A	Air Pathways	ys	Food]	Food Pathways		Jo %
Analyte	Pathways	ways	Vapors				•	Total	Total
	Ingestion	Dermal Contact	Outdoor VOCs	Shower VOCs	Dust	Fruit	Vegetables	Risk	Risk
Metals									
Beryllium	2.7E-05	0	0	0	0	2.0E-06	2.6E-06	3.1E-05	99.1
PNAs	0	0	0	0	0	0	0	0	0.0
2-Methylnaphthalene	0	0	0	0	0	0	0	0	0.0
Benz(a)anthracene	0	0	0	0	0	0	0	0	0.0
Benzo(a)pyrene	0	0	0	0	0	0	0	0	0.0
Benzo(b)fluoranthene	0	0	0	0	0	0	0	0	0.0
Benzo(g,h,i)perylene	0	0	0	0	0	0	0	0	0.0
Dibenz(a,h)anthracene	0	0	0	0	0	0	0	0	0.0
Indeno(1,2,3-cd)pyrene	0	0	0	0	0	0	0	0	0.0
Phenanthrene	0	0	0	0	0	0	0	0	0.0
Volatiles	0	0	0	0	0	0	0	0	0.0
1,2-Dichloroethane	2.3E-07	1.5E-09	0	1.3E-08	0	1.2E-08	1.6E-08	2.7E-07	6.0
Benzene	1.1E-08	1.4E-09	0	7.7E-10	0	6.2E-10	8.2E-10	1.5E-08	0.0
TOTALS	2.7E-05	2.9E-09	0.0E+00	1.4E-08	0.0E+00	2.0E-06	2.6E-06	3.1E-05	100
% of Total Risk or HI	85.3	0.0	0.0	0.0	0.0	6.3	8.3		100.0

09-58 AM

Table 4J-24 (Continued)

	Non-Carcinogenic Risk Summary	enic Risk	Summary						
	Groundwater	vater	Ai	Air Pathways	9	Food]	Food Pathways		Jo %
Analyte	Pathways	ays	Vapors	S				Hazard	Total
	Ingestion	Dermal Contact	Outdoor VOCs	Shower VOCs	Dust	Fruit	Vegetables	Index	Index
Metals									
Beryllium	1.4E-02	0	0	0	0	1.1E-03	1.4E-03	0.0169	95.7
PNAs	0	0	0	0	0	0	0	0.0000	0.0
2-Methylnaphthalene	0	0	0	0	0	0	0	0.0000	0.0
Benz(a)anthracene	0	0	0	0	0	0	0	0.000.0	0.0
Benzo(a)pyrene	0	0	0	0	0	0	0	0.0000	0.0
Benzo(b)fluoranthene	0	0	0	0	0	0	0	0.0000	0.0
Benzo(g,h,i)perylene	0	0	0	0	0	0	0	0.0000	0.0
Dibenz(a,h)anthracene	0	0	0,	0	0	0	0	0.0000	0.0
Indeno(1,2,3-cd)pyrene	0	0	0	0	0	0	0	0.0000	0.0
Phenanthrene	0	0	0	0	0	0	0	0.0000	0.0
Volatiles	0	0	0	0	0	0	0	0.0000	0.0
1,2-Dichloroethane	0	0	0	5.8E-04	0	0	0	9000'0	3.3
Benzene	0	0	0	1.8E-04	0	0	0	0.0002	1.0
TOTALS	1.4E-02	0.0E+00	0.0E+00	7.6E-04	0.0E+00	1.1E-03	1.4E-03	0.0177	100.0
% of Total Risk or HI	81.7	0.0	0.0	4.3	0.0	0.9	8.0		100.0

Carcinogenic and Noncarcinogenic Risk Estimates for Adult Future Old Town Galena Resident (chronic) Attributable to Southeast Runway Fuel Spill Site: Average Exposure Scenario Table 4J-25

	Carcinogenic Risk Summary	ic Risk Su	mmary						
	Groundwater	lwater	Y	Air Pathways	s,	Food	Food Pathways		Jo %
Analyte	Pathways	ways	Vapors				•	Total	Total
	Ingestion	Dermal Contact	Outdoor VOCs	Shower VOCs	Dust	Fruit	Vegetables	Risk	Risk
Metals									
Beryllium	2.6E-05	0	0	0	0	7.2E-07	5.8E-07	2.7E-05	99 1
PNAs	0	0	0	0	0	0	0	0	0.0
2-Methylnaphthalene	0	0	0	0	0	0	0	0	0.0
Benz(a)anthracene	0	0	0	0	0	0	0	0	0.0
Benzo(a)pyrene	0	0	0	0	0	0	0	0	0.0
Benzo(b)fluoranthene	0	0	0	0	0	0	0	0	0.0
Benzo(g,h,i)perylene	0	0	0	0	0	0	0	0	0.0
Dibenz(a,h)anthracene	0	0	0	0	0	0	0	0	0.0
Indeno(1,2,3-cd)pyrene	0	0	0	0	0	0	0	0	0.0
Phenanthrene	0	0	0	0	0	0	0	0	0.0
Volatiles	0	0	0	0	0	0	0	0	0.0
1,2-Dichloroethane	2.2E-07	2.0E-09	0	4.6E-09	0	4.5E-09	3.6E-09	2.3E-07	6.0
Benzene	1.1E-08	1.9E-09	0	2.7E-10	0	2.3E-10	1.8E-10	1.4E-08	0.0
TOTALS	2.6E-05	3.9E-09	0.0E+00	4.9E-09	0.0E+00	7.2E-07	5.8E-07	2.7E-05	100
% of Total Risk or HI	95.2	0.0	0.0	0.0	0.0	2.7	2.1		100.0

Table 4J-25 (Continued)

	Non-Carcinogenic Risk Summary	genic Risk	Summary						
	Groundwater	water	Ai	Air Pathways	9	Food]	Food Pathways		Jo %
Analyte	Pathways	ays	Vapors					Hazard	Total
	Ingestion	Dermal Contact	Outdoor VOCs	Shower VOCs	Dust	Fruit	Vegetables	Index	Index
Metals									
Beryllium	3.4E-03	0	0	0	0	9.5E-05	7.7E-05	0.0036	98.2
PNAs	0	0	0	0	0	0	0	0.0000	0.0
2-Methylnaphthalene	0	0	0	0	0	0	0	0.0000	0.0
Benz(a)anthracene	0	0	0	0	0	0	0	0.0000	0.0
Benzo(a)pyrene	0	0	0	0	0	0	0	0.0000	0.0
Benzo(b)fluoranthene	0	0	0	0	0	0	0	0.0000	0.0
Benzo(g,h,i)perylene	0	0	0	0	0	0	0	0.0000	0.0
Dibenz(a,h)anthracene	0	0	0	0	0	0	0	0.0000	0.0
Indeno(1,2,3-cd)pyrene	0	0	0	0	0	0	0	0.0000	0.0
Phenanthrene	0	0	0	0	0	0	0	0.0000	0.0
Volatiles	0	0	0	0	0	0	0	0.0000	0.0
1,2-Dichloroethane	0	0	0	5.1E-05	0	0	0	0.0001	1.4
Benzene	0	0	0	1.5E-05	0	0	0	0.0000	0.4
TOTALS	3.4E-03	0.0E+00	0.0E+00	6.6E-05	0.0E+00	9.5E-05	7.7E-05	0.0036	100.0
% of Total Risk or HI	93.5	0.0	0.0	1.8	0.0	2.6	2.1		100.0

Carcinogenic and Noncarcinogenic Risk Estimates for Adult Future Old Town Galena Resident (chronic) Attributable to Southeast Runway Fuel Spill Site: Reasonable Maximum Exposure Scenario **Table 4J-26**

	Carcinogenic Risk Summary	ic Risk Sur	nmary						
	Groundwater	water	Y	Air Pathways	S/	Food 1	Food Pathways		Jo %
Analyte	Pathways	vays	Vapors	9				Total	Total
	Ingestion	Dermal Contact	Outdoor VOCs	Shower VOCs	Dust	Fruit	Vegetables	Risk	Risk
Metals									
Beryllium	1.3E-04	0	0	0	0	6.2E-06	4.8E-06	1.4E-04	99.1
PN4s	0	0	0	0	0	0	0	0	0.0
2-Methylnaphthalene	0	0	0	0	0	0	0	0	0.0
Benz(a)anthracene	0	0	0	0	0	0	0	0	0.0
Benzo(a)pyrene	0	0	0	0	0	0	0	0	0.0
Benzo(b)fluoranthene	0	0	0	0	0	0	0	0	0.0
Benzo(g,h,i)perylene	0	0	0	0	0	0	0	0	0.0
Dibenz(a,h)anthracene	0	0	0	0	0	0	0	0	0.0
Indeno(1,2,3-cd)pyrene	0	0	0	0	0	0	0	0	0.0
Phenanthrene	0	, 0	0	0	0	0	0	0	0.0
Volatiles	0	0	0	0	0	0	0	0	0.0
1,2-Dichloroethane	1.1E-06	1.0E-08	0	9.0E-08	0	3.9E-08	3.0E-08	1.3E-06	6.0
Benzene	5.7E-08	9.7E-09	0	5.4E-09	0	2.0E-09	1.5E-09	7.6E-08	0.1
TOTALS	1.3E-04	2.0E-08	0.0E+00	9.5E-08	0.0E+00	6.2E-06	4.8E-06	1.5E-04	100
% of Total Risk or HI	92.3	0.0	0.0	0.1	0.0	4.3	3.3		100.0

10.14 AM

Table 4J-26 (Continued)

	Non-Carcinogenic Risk Summary	genic Risk	Summary						
	Groundwater	vater	Ai	Air Pathways	S	Food I	Food Pathways		Jo %
Analyte	Pathways	ays	Vapors					Hazard	Total
	Ingestion	Dermal Contact	Outdoor VOCs	Shower VOCs	Dust	Fruit	Vegetables	Index	Index
Metals									
Beryllium	6.2E-03	0	0	0	0	2.9E-04	2.2E-04	0.0067	93.6
PN4s	0	0	0	0	0	0,	0	0.0000	0.0
2-Methylnaphthalene	0	0	0	0	0	0	0	0.0000	0.0
Benz(a)anthracene	0	0	0	0	0	0	0	0.000.0	0.0
Benzo(a)pyrene	0	0	0	0	0	0	0	0.000.0	0.0
Benzo(b)fluoranthene	0	0	0	0	0	0	0	0.000.0	0.0
Benzo(g,h,i)perylene	0	0	0	0	0	0	0	0.000.0	0.0
Dibenz(a,h)anthracene	0	0	0	0	0	0	0	0.000.0	0.0
Indeno(1,2,3-cd)pyrene	0	0	0	0	0	0	0	0.0000	0.0
Phenanthrene	0	0	0	0	0	0	0	0.000.0	0.0
Volatiles	0	0	0	0	0	0	0	0.0000	0.0
1,2-Dichloroethane	0	0	0	3.5E-04	0	0	0	0.0003	4.8
Benzene	0	0	0	1.1E-04	0	0	0	0.0001	1.5
TOTALS	6.2E-03	0.0E+00	0.0E+00	4.6E-04	0.0E+00	2.9E-04	2.2E-04	0.0072	100.0
% of Total Risk or HI	86.5	0.0	0.0	6.4	0.0	4.0	3.1		100.0

CBR1-AV.XLW 12/6/95 03:49 PM

Carcinogenic and Noncarcinogenic Risk Estimates for Adult Current Short-Term On-Base Resident (subchronic) Attributable to Control Tower Drum Storage Area, South: Average Exposure Scenario **Table 4J-27**

Analyte Carcinogens Non-Carcinogens Inhalation Post of Inhalation Total 9,6 of Inhalation Total 9,6 of Inhalation Approximants Analyte Analyte Analyte Analyte Inhalation Total Aport Dust Total Inhalation Total Total Analyte Inhalation Index and analyte Index and analy			Ä	ffective	Effective Air Concentrations	ntrations			Cancer Risk Summary	Summary			Non-Cancer	ancer	
Analyte Carcinogens Non-Carcinogens Vapor vapor vapor sortinogens Non-Carcinogens Inhalation vapor va					ug/m3								Hazard Inde	x Summary	
Metals of Payors Off Vapors of Off Off Abelian off Inhalation off Inhalation off This lation off This lation off Inhalation o	Analyte		Carci	nogens		Non-Car	cinogens	Vapor	Dust	Total	Jo %	Vapor	Dust	Total	Jo %
Metals 0 <th></th> <th>on</th> <th>Vapors</th> <th>uo uo</th> <th>Dust</th> <th>Vapors</th> <th>Dust</th> <th>Inhalation</th> <th>Inhalation</th> <th>Risk</th> <th>Total Bish</th> <th>Inhalation</th> <th>Inhalation</th> <th>Hazard</th> <th>Total</th>		on	Vapors	uo uo	Dust	Vapors	Dust	Inhalation	Inhalation	Risk	Total Bish	Inhalation	Inhalation	Hazard	Total
esticides 0 3.3E-06 0	Metals										WCINT			TANIT	1111
esticides 0	Antimony	0	0		9.4E-08	0	3.3E-06	0	0	0	0.0	0	0	0	#DIV/0!
esticides 0	Thallium	0	0	1	6.1E-08	0	2.1E-06	0	0	0	0.0	0	0	0	#DIV/0!
PMAs 0 0 1	Pesticides	0	0	0	0	0	0	0	0	0	0.0	0	0	0	#DIV/0i
0 0 1 1.4E-11 0 4.9E-10 0 6.9E-14 6.9E-14 5.5F-14 5.5F-14 6.9E-14 6.9E-14 5.5F-14 32.1 0 0 0 0	4,4'-DDT	0	0	1	1.2E-09	0	4.2E-08	0	1.2E-13	1.2E-13	42.5	0	0	0	#DIV/0!
0 0 1 1.9E-11 0 6.6E-10 0 8.7E-14 8.7E-14 32.1 0 0 0 0	Aldrin	0	0	_	1.4E-11	0	4.9E-10	0	6.9E-14	6.9E-14	25.4	0	0	0	#DIV/0!
0 0	Dieldrin	0	0	_	1.9E-11	0	6.6E-10	0	8.7E-14	8.7E-14	32.1	0	0	0	#DIV/0!
0 0 0 1 5.5E-11 0 1.9E-09 0 <	PNAs	0	0	0	0	0	0	0	0	0	0.0	0	0	0	#DIV/0!
0 0 1 2.1E-10 0 7.5E-09 0 <	2-Methylnaphthalene	0	0	_	5.5E-11	0	1.9E-09	0	0	0	0.0	0	0	0	#DIV/0!
0 0 1 3.6E-10 0 1.3E-08 0 0 0 0.0 0	Benzo(a)pyrene	0	0	_	2.1E-10	0	7.5E-09	0	0	0	0.0	0	0	0	#DIV/0!
0 0 1 1.9E-10 0 6.5E-09 0 <	Benzo(b)fluoranthene	0	0	_	3.6E-10	0	1.3E-08	0	0	0	0.0	0	0	0	#DIV/0i
0 0 1 3.0E-10 0 1.1E-08 0 <	Benzo(g,h,i)perylene	0	0	-	1.9E-10	0	6.5E-09	0	0	0	0.0	0	0	0	#DIV/0!
0.0E+00 1.6E-07 0.0E+00 5.5E-06 0.0E+00 2.7E-13 2.7E-13 100 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E 0.0E	Phenanthrene	0	0	1	3.0E-10	0	1.1E-08	0	0	0	0.0	0	0	0	#DIV/0!
0.0 100.0 #DIV/0! #DIV/0!	TOTALS		0.0E+00		1.6E-07	0.0E+00	5.5E-06	0.0E+00	2.7E-13	2.7E-13	100	0.0E+00	0.0E+00	00.00	#DIV/0!
	% of Total Risk or HI							0.0	100.0		100.0	#DIA/0i	#DIV/0!		#DIV/0i

Carcinogenic and Noncarcinogenic Risk Estimates for Adult Current Short-Term On-Base Resident (subchronic) Attributable to Control Tower Drum Storage Area, South: Reasonable Maximum Exposure Scenario **Table 4J-28**

		E	ffective	Effective Air Concentrations	ıtrations			Cancer Risk Summary	ummary			Non-Cancer	ancer	
				ng/m3			į				<u>. '</u>	Hazard Index Summary	x Summary	
Analyte		Carci	Carcinogens		Non-Carcinogens	cinogens	Vapor	Dust	Total	% of	Vapor	Dust	Total	Jo %
	uo	Vapors	uo	Dust	Vapors	Dust	Inhalation	Inhalation	Risk	Total	Inhalation	Inhalation	Hazard	Total
	IIO		011							Risk			Index	НІ
Metals														
Antimony	0	0	_	3.0E-07	0	4.2E-06	0	0	0	0.0	0	0	0	#DIV/0!
Thallium	0	0	_	1.9E-07	0	2.7E-06	0	0	0	0.0	0	0	0	#DIV/0i
Pesticides	0	0	0	0	0	0	0	0	0	0.0	0	0	0	#DIV/0!
4,4'-DDT	0	0	_	3.8E-09	0	5.3E-08	0	3.7E-13	3.7E-13	42.5	0	0	0	#DIV/0!
Aldrin	0	0	_	4.5E-11	0	6.3E-10	0	2.2E-13	2.2E-13	25.4	0	0	0	#DIV/0!
Dieldrin	0	0	_	6.0E-11	0	8.4E-10	0	2.8E-13	2.8E-13	32.1	0	0	0	#DIV/0!
PNAs	0	0	0	0	0	0	0	0	0	0.0	0	0	0	#DIV/0!
2-Methylnaphthalene	0	0	-	1.8E-10	0	2.5E-09	0	0	0	0.0	0	0	0	#DIV/0!
Benzo(a)pyrene	0	0	_	6.8E-10	0	9.6E-09	0	0	0	0.0	0	0	0	#DIV/0!
Benzo(b)fluoranthene	0	0		1.1E-09	0	1.6E-08	0	0	0	0.0	0	0	0	#DIV/0!
Benzo(g,h,i)perylene	0	0		5.9E-10	0	8.3E-09	0	0	0	0.0	0	0	0	#DIV/0!
Phenanthrene	٥	٥	-	9.7E-10	0	1.4E-08	0	0	0	0.0	0	0	0	#DIV/0!
TOTALS		0.0E+00		5.0E-07	0.0E+00	7.0E-06	0.0E+00	8.6E-13	8.6E-13	100	0.0E+00	0.0E+00	0.0E+00	#DIV/0!
% of Total Risk or HI							0.0	100.0		100.0	#DIA/0i	#DIV/0!		#DIV/0!

Carcinogenic and Noncarcinogenic Risk Estimates for Child Current Long-Term On-Base Resident (chronic) Attributable to Control Tower Drum Storage Area, South: Average Exposure Scenario **Table 4J-29**

		Cancer]	Cancer Risk Summary			Non-Cancer	ancer	
						Hazard Index Summary	x Summary	
Analyte	Vapor	Dust	Total	J0 %	Vapor	Dust	Total	Jo %
	Inhalation	Inhalation	Risk	Total Risk	Inhalation	Inhalation	Hazard Index	Total HI
Metals								
Antimony	0	0	0	0.0	0	0	0	#DIV/0!
Thallium	0	0	0	0.0	0	0	0	#DIV/0!
Pesticides	0	0	0	0.0	0	0	0	#DIV/0!
4,4'-DDT	0	3.5E-13	3.5E-13	42.5	0	0	0	#DIV/0!
Aldrin	0	2.1E-13	2.1E-13	25.4	0	0	0	#DIV/0!
	0	2.6E-13	2.6E-13	32.1	0	0	0	#DIV/0!
PN4s	0	0	0	0.0	0	0	0	#DIV/0!
2-Methylnaphthalene	0	0	0	0.0	0	0	0	#DIV/0!
Benzo(a)pyrene	0	0	0	0.0	0	0	0	#DIV/0!
Benzo(b)fluoranthene	0		0	0.0	0	0	0	#DIV/0!
Benzo(g,h,i)perylene	0	0	0	0.0	0	0	0	#DIV/0!
Phenanthrene	0	0	0	0.0	0	0	0	#DIV/0!
TOTALS	0.0E+00	8.1E-13	8.1E-13	100	0.0E+00	0.0E+00	0.0E+00	#DIV/0!
% of Total Risk or HI	0.0	100.0		100.0	#DIA/0i	#DIV/0!		#DIA/0i

Carcinogenic and Noncarcinogenic Risk Estimates for Child Current Long-Term On-Base Resident (chronic) Attributable to Control Tower Drum Storage Area, South: Reasonable Maximum Exposure Scenario **Table 4J-30**

		Cancer Risk Summary	. Summary			Non-Cancer	ancer	
						Hazard Index Summary	ex Summary	
Analyte	Vapor	Dust	Total	J0 %	Vapor	Dust	Total	% of
	Inhalation	Inhalation	Risk	Total	Inhalation	Inhalation Inhalation	Hazard	Total
				Kısk			Index	HI
Metals								
Antimony	0	0	0	0.0	0	0	0	#DIV/0!
Thallium	0	0	0	0.0	. 0	0	0	#DIV/0!
Pesticides	0	0	0	0.0	0	0	0	#DIV/0!
4,4'-DDT	0	4.4E-13	4.4E-13	42.5	0	0	0	#DIV/0!
Aldrin	0	2.6E-13	2.6E-13	25.4	0	0	0	#DIV/0/
Dieldrin	0	3.3E-13	3.3E-13	32.1	0	0	0	#DIV/0!
PNAs	0	0	0	0.0	0	0	0	#DIV/0!
2-Methylnaphthalene	0	0	0	0.0	0	0	0	#DIV/0i
Benzo(a)pyrene	0	0	0	0.0	0	0	0	#DIV/0!
Benzo(b)fluoranthene	0	0	0	0.0	0	0	0	#DIV/0!
Benzo(g,h,i)perylene	0	0	0	0.0	0	0	0	#DIV/0!
Phenanthrene	0	0	0	0.0	0	0	0	#DIV/0!
TOTALS	0.0E+00	1.0E-12	1.0E-12	100	0.0E+00	0.0E+00	0.0E+00	#DIV/0!
% of Total Risk or HI	0.0	100.0		100.0	#DIV/0!	#DIV/0!		#DIV/0!

Carcinogenic and Noncarcinogenic Risk Estimates for Adult Current Long-Term On-Base Resident (chronic) Attributable to Control Tower Drum Storage Area, South: Average Exposure Scenario **Table 4J-31**

		Cancer Risk Summary	Summary			Non-Cancer	ancer	
						Hazard Inde	Hazard Index Summary	
Analyte	Vapor	Dust	Total	Jo %	Vapor	Dust	Total	Jo %
	Inhalation	Inhalation	Risk	Total Risk	Inhalation	Inhalation	Hazard Index	Total HI
Metals								
Antimony	0	0	0	0.0	0	. 0	0	#DIV/0!
Thallium	0	0	0	0.0	0	0	0	#DIV/0!
Pesticides	0	0	0	0.0	0	0	0	#DIV/0!
4,4'-DDT	0	5.2E-13	5.2E-13	42.5	0	0	0	#DIV/0!
Aldrin	0	3.1E-13	3.1E-13	25.4	0	0	0	#DIV/0!
Dieldrin	0	3.9E-13	3.9E-13	32.1	0	0	0	#DIV/0!
PNAs	0	0	0	0.0	0	0	0	#DIV/0!
2-Methylnaphthalene	0	0	0	0.0	0	0	0	#DIV/0!
Benzo(a)pyrene	0	0	0	0.0	0	0	0	#DIV/0!
Benzo(b)fluoranthene	0	0	0	0.0	0	0	0	#DIV/0!
Benzo(g,h,i)perylene	0	0	0	0.0	0	0	0	#DIV/0!
Phenanthrene	0	0	0	0.0	0	0	0	#DI1//0!
TOTALS	0.0E+00	1.2E-12	1.2E-12	100	0.0E+00	0.0E+00	0.0E+00	#DIV/0!
% of Total Risk or HI	0:0	100.0		100.0	#DIV/0i	#DIV/0!		#DIV/0!

Carcinogenic and Noncarcinogenic Risk Estimates for Adult Current Long-Term On-Base Resident (chronic) Attributable to Control Tower Drum Storage Area, South: Reasonable Maximum Exposure Scenario **Table 4J-32**

		Cancer Risk Summary	ummary			Non-Cancer	ancer	
					,	Hazard Index Summary	x Summary	
Analyte	Vapor	Dust	Total	Jo %	Vapor	Dust	Total	Jo %
	Inhalation	Inhalation	Risk	Total Risk	Inhalation	Inhalation Inhalation	Hazard Index	Total HI
Metals								
Antimony	0	O.	0	0.0	0	.0	0	#DIV/0!
Thallium	0	0	0	0.0	0	0	0	#DIV/0!
Pesticides	0	0	0	0.0	0	0	0	#DIV/0!
4,4'-DDT	0	1.8E-12	1.8E-12	42.5	0	0	0	#DIV/0!
Aldrin	0	1.1E-12	1.1E-12	25.4	0	0	0	#DIV/0!
Dieldrin	0	1.4E-12	1.4E-12	32.1	0	0	0	#DIV/0!
PN4s	0	0	0	0.0	0	0	0	#DIV/0!
2-Methylnaphthalene	0	0	0	0.0	0	0	0	#DIV/0!
Benzo(a)pyrene	0	0	0	0.0	0	0	0	#DIV/0!
Benzo(b)fluoranthene	0	0	0	0.0	0	0	0	#DIV/0!
Benzo(g,h,i)perylene	0	0	0	0.0	0	0	0	#DIV/0!
Phenanthrene	0	0	0	0.0	0	0	0	#DIV/0!
TOTALS	0.0E+00	4.3E-12	4.3E-12	00I	0.0E+00	0.0E+00	0.0E+00	#DIV/0!
% of Total Risk or HI	0.0	100.0		100.0	#DIV/0!	#DIA/0i		#DIA/01

Carcinogenic and Noncarcinogenic Risk Estimates for Child Current Old Town Galena Resident (chronic) Attributable to Control Tower Drum Storage Area, South: Average Exposure Scenario **Table 4J-33**

		Cancer	Cancer Risk Summary			Non-Cancer	ancer	
						Hazard Index Summary	x Summary	
Analyte	Vapor	Dust	Total	Jo %	Vapor	Dust	Total	% of
	Inhalation	Inhalation Inhalation	Risk	Total	Inhalation	Inhalation	Hazard	Total
				Risk			Index	Ш
Metals								
Antimony	0	0	0	0.0	0	0	0	#DIV/0!
Thallium	0	0	0	0.0	0	0	0	#DIV/0!
Pesticides	0	0	0	0.0	0	0	0	#DIV/0!
4,4'-DDT	0	5.5E-13	5.5E-13	42.5	0	0	0	#DIV/0!
Aldrin	0	3.3E-13	3.3E-13	25.4	0	0	0	#DIN/0i
Dieldrin	0	4.2E-13	4.2E-13	32.1	0	0	0	#DIV/0!
PNAs	0	0	0	0.0	0	0	0	#DIV/0!
2-Methylnaphthalene	0	0	0	0.0	0	0	0	#DIV/0!
Benzo(a)pyrene	0	0	0	0.0	0	0	0	#DIV/0!
Benzo(b)fluoranthene	0	0	0	0.0	0	0	0	#DIV/0!
Benzo(g,h,i)perylene	0	0	0	0.0	0	0	0	#DIV/0!
Phenanthrene	0	0	0	0.0	0	0	0	#DIN/0i
TOTALS	0.0E+00	1.3E-12	1.3E-12	100	0.0E+00	0.0E+00	0.0E+00	#DIV/0!
% of Total Risk or HI	0.0	100.0		100.0	#DIA/0i	#DIA/0i		#DIV/0!

Carcinogenic and Noncarcinogenic Risk Estimates for Child Current Old Town Galena Resident (chronic) Attributable to Control Tower Drum Storage Area, South: Reasonable Maximum Exposure Scenario **Table 4J-34**

		Cancer Ris	Cancer Risk Summary			Non-Cancer	ancer	
						Hazard Index Summary	x Summary	
Analyte	Vapor	Dust	Total	Jo %	Vapor	Dust	Total	% of
	Inhalation	Inhalation Inhalation	Risk	Total Risk	Inhalation	Inhalation Inhalation	Hazard Index	Total HI
Metals								
Antimony	0	0	0	0.0	0	0	0	#DIV/0!
Thallium	0	0	0	0.0	0	0	0	#DIV/0!
Pesticides	0	0	0	0.0	0	0	0	#DIV/0i
4,4'-DDT	0	7.0E-13	7.0E-13	42.5	0	0	0	#DIV/0!
Aldrin	0	4.2E-13	4.2E-13	25.4	0	0	0	#DIV/0!
Dieldrin	0	5.3E-13	5.3E-13	32.1	0	0	0	#DIV/0!
PNAs	0	0	0	0.0	0	0	0	#DIV/0!
2-Methylnaphthalene	0	0	0	0.0	0	0	0	#DIV/0!
Benzo(a)pyrene	0	0	0	0.0	0	0	0	#DIV/0!
Benzo(b)fluoranthene	0	0	0	0.0	0	0	0	#DIV/0!
Benzo(g,h,i)perylene	0	0	0	0.0	0	0	0	#DIV/0!
Phenanthrene	0	0	0	0.0	0	0	0	#DIV/0!
TOTALS	0.0E+00	1.7E-12	1.7E-12	100	0.0E+00	0.0E+00	0.0E+00	#DIV/0!
% of Total Risk or HI	0.0	100.0		100.0	#DIA/0i	#DIA/0i		#DIV/0i

Carcinogenic and Noncarcinogenic Risk Estimates for Adult Current Old Town Galena Resident (chronic) Attributable to Control Tower Drum Storage Area, South: Average Exposure Scenario **Table 4J-35**

		Cancer Risk Summary	ummary			Non-Cancer	ancer	
						Hazard Index Summary	x Summary	
Analyte	Vapor	Dust	Total	Jo %	Vapor	Dust	Total	% of
	Inhalation	Inhalation	Risk	Total Risk	Inhalation Inhalation	Inhalation	Hazard Index	Total HI
Metals								
Antimony	0	0	0	0.0	0	0	0	#DIV/0!
Thallium	0	0	0	0.0	0	0	0	#DIV/0!
Pesticides	0	0	0	0.0	0	0	0	#DIV/0!
4,4'-DDT	0	2.3E-12	2.3E-12	42.5	0	0	0	#DIV/0!
Aldrin	0	1.3E-12	1.3E-12	25.4	0	0	0	#DIV/0!
Dieldrin	0	1.7E-12	1.7E-12	32.1	0	0	0	#DIV/0!
PN4s	0	0	0	0.0	0	0	0	#DIV/0!
2-Methylnaphthalene	0	0	0	0.0	0	0	0	#DIV/0!
Benzo(a)pyrene	0	0	0	0.0	0	0	0	#DIV/0!
Benzo(b)fluoranthene	0	0	0	0.0	0	0	0	#DIV/0!
Benzo(g,h,i)perylene	0	0	0	0.0	0	0	0	#DIV/0!
Phenanthrene	0	0	0	0.0	0	0	0	#DIV/0!
TOTALS	0.0E+00	5.3E-12	5.3E-12	100	0.0E+00	0.0E+00	0.0E+00	#DIV/0!
% of Total Risk or HI	0:0	100.0		100.0	#DIV/0!	#DIV/0!		#DIA/0i

Table 4J-36

Carcinogenic and Noncarcinogenic Risk Estimates for Adult Current Old Town Galena Resident (chronic) Attributable to Control Tower Drum Storage Area, South: Reasonable Maximum Exposure Scenario

		Cancer Risk Summary	ummary			Non-Cancer	ancer	
		,				Hazard Index Summary	x Summary	
Analyte	Vapor	Dust	Total	Jo %	Vapor	Dust	Total	% of
	Inhalation	Inhalation	Risk	Total Risk	Inhalation	Inhalation	Hazard Index	Total HI
Metals								
Antimony	0	0	0	0.0	0	0	0	#DIV/0!
Thallium	0	0	0	0.0	0	0	0	#DIV/0!
Pesticides	0	0	0	0.0	0	0	0	#DIV/0!
4,4'-DDT	0	8.2E-12	8.2E-12	42.5	0	0	0	#DIV/0!
Aldrin	0	4.9E-12	4.9E-12	25.4	0	0	0	#DIV/0!
Dieldrin	0	6.2E-12	6.2E-12	32.1	0	0	0	#DIV/0!
PN4s	0	0	0	0.0	0	0	0	#DIV/0!
2-Methylnaphthalene	0	0	0	0.0	0	0	0	#DIV/0!
Benzo(a)pyrene	0	0	0	0.0	0	0	0	#DIV/0!
Benzo(b)fluoranthene	0	0	0	0.0	0	0	0	#DIV/0!
Benzo(g,h,i)perylene	0	0	0	0.0	0	0	0	#DIV/0!
Phenanthrene	0	0	0	0.0	0	0	0	#DIV/0!
TOTALS	0.0E+00	1.9E-11	1.9E-11	100	0.0E+00	0.0E+00	0.0E+00	# <i>DIV/0</i> !
% of Total Risk or HI	0.0	100.0		100.0	#DIV/0!	#DIV/0!		#DIV/0!

Carcinogenic and Noncarcinogenic Risk Estimates for Child Current New Town Galena Resident (chronic) Attributable to Control Tower Drum Storage Area, South: Average Exposure Scenario **Table 4J-37**

		Cancer Risk Summary	Summary			Non-Cancer	ancer	
				,		Hazard Index Summary	x Summary	-
Analyte	Vapor	Dust	Total	J0 %	Vapor	Dust	Total	Jo %
	Inhalation	Inhalation Inhalation	Risk	Total Risk	Inhalation	Inhalation Inhalation	Hazard Index	Total HI
Metals								
Antimony	0	0	0	0.0	0	0	0	#DIV/0!
Thallium	0	0	0	0.0	0	0	0	#DIV/0!
Pesticides	0	0	0	0.0	0	0	0	#DIV/0!
4,4'-DDT	0	2.1E-14	2.1E-14	42.5	0	0	0	#DIV/0!
Aldrin	0	1.3E-14	1.3E-14	25.4	0	0	0	#DIV/0!
Dieldrin	0	1.6E-14	1.6E-14	32.1	0	0	0	#DIV/0!
PNAs	0	0	0	0.0	0	0	0	#DIV/0!
2-Methylnaphthalene	0	0	0	0.0	0	0	0	#DIV/0!
Benzo(a)pyrene	0	0	0	0.0	0	0	0	#DIV/0!
Benzo(b)fluoranthene	0	0	0	0.0	0	0	0	#DIV/0!
Benzo(g,h,i)perylene	0	0	0	0.0	0	0	0	#DIV/0!
Phenanthrene	0	0	0	0.0	0	0	0	#DIV/0!
TOTALS	0.0E+00	5.0E-14	5.0E-14	100	0.0E+00	0.0E+00	0.0E+00	#DIV/0!
% of Total Risk or HI	0.0	100.0		100.0	#DIV/0!	#DIV/0!		#DIA/0i

Carcinogenic and Noncarcinogenic Risk Estimates for Child Current New Town Galena Resident (chronic) Attributable to Control Tower Drum Storage Area, South: Reasonable Maximum Exposure Scenario **Table 4J-38**

		Cancer Risk Summary	Summary			Non-C	Non-Cancer	
						Hazard Ind	Hazard Index Summary	
Analyte	Vapor	Dust	Total	€ 0 Jo	Vapor	Dust	Total	Jo %
	Inhalation Inhalation	Inhalation	Risk	Total Risk	Inhalation	Inhalation	Hazard Index	Total HI
Metals								
Antimony	0	0	0	0.0	0	0	0	#DIV/0!
Thallium	0	0	0	0.0	0	0	0	#DIV/0!
Pesticides	0	0	0	0.0	0	0	0	#DIV/0!
4,4'-DDT	0	2.7E-14	2.7E-14	42.5	0	0	0	#DIV/0!
Aldrin	0	1.6E-14	1.6E-14	25.4	0	0	0	#DIV/0!
Dieldrin	0	2.1E-14	2.1E-14	32.1	0	0	0	#DIV/0!
PNAs	0	0	0	0.0	0	0	0	#DI1//0!
2-Methylnaphthalene	0	0	0	0.0	0	0	0	#DIV/0!
Benzo(a)pyrene	0	0	0	0.0	0	0	0	#DIV/0!
Benzo(b)fluoranthene	0	. 0	0	0.0	0	0	0	#DIV/0!
Benzo(g,h,i)perylene	0	0	0	0.0	0	0	0	#DIV/0!
Phenanthrene	0	0	0	0.0	0	0	0	#DIV/0!
TOTALS	0.0E+00	6.4E-14	6.4E-14	100	0.0E+00	0.0E+00	0.0E+00	#DIV/0!
% of Total Risk or HI	0.0	100.0		100.0	#DIA/0i	#DIA/0i		#DIA/0i

Carcinogenic and Noncarcinogenic Risk Estimates for Adult Current New Town Galena Resident (chronic) Attributable to Control Tower Drum Storage Area, South: Average Exposure Scenario **Table 4J-39**

		Cancer Risk Summary	Summary			Non-Cancer	ancer	
						Hazard Index Summary	x Summary	
Analyte	Vapor	Dust	Total	Jo %	Vapor	Dust	Total	Jo %
	Inhalation	Inhalation	Risk	Total Risk	Inhalation	Inhalation	Hazard Index	Total HI
Metals								
Antimony	0	0	0	0.0	0	0	0	#DIV/0!
Thallium	0	0	0	0.0	0	0	0	<i> 10/AIQ#</i>
Pesticides	0	0	0	0.0	0	0	0	#DIV/0!
4,4'-DDT	0	8.7E-14	8.7E-14	42.5	0	0	0	#DIV/0!
Aldrin	0	5.2E-14	5.2E-14	25.4	0	0	0	#DIV/0!
Dieldrin	0	6.6E-14	6.6E-14	32.1	0	0	0	#DIV/0!
PN4s	0	0	0	0.0	0	0	0	#DIV/0!
2-Methylnaphthalene	0	0	0	0.0	0	0	0	#DIV/0!
Benzo(a)pyrene	0	0	0	0.0	0	0	0	#DIV/0!
Benzo(b)fluoranthene	0	0	0	0.0	0	0	0	#DIV/0!
Benzo(g,h,i)perylene	0	0	0	0.0	0	0	0	#DIV/0!
Phenanthrene	0	0	0	0.0	0	0	0	#DIV/0!
TOTALS	0.0E+00	2.0E-13	2.0E-13	100	0.0E+00	0.0E+00	0.0E+00	#DIV/0!
% of Total Risk or HI	0.0	100.0		100.0	#DIV/0!	#DIV/0i		#DIA/0i

Carcinogenic and Noncarcinogenic Risk Estimates for Adult Current New Town Galena Resident (chronic) Attributable to Control Tower Drum Storage Area, South: Reasonable Maximum Exposure Scenario Table 4J-40

		Cancer Risk Summary	ummary			Non-Cancer	ıncer	
					_	Hazard Index Summary	s Summary	
Analyte	Vapor	Dust	Total	Jo %	Vapor	Dust	Total	Jo %
	Inhalation	Inhalation	Risk	Total Risk	Inhalation	Inhalation Inhalation	Hazard Index	Total HI
Metals								
Antimony	0	0	0	0.0	0	0	0	#DIV/0!
Thallium	0	0	0	0.0	0	0	0	#DIV/0!
Pesticides	0	0	0	0.0	0	0	0	#DIV/0!
4,4'-DDT	0	3.2E-13	3.2E-13	42.5	0	0	0	#DIV/0!
Aldrin	0	1.9E-13	1.9E-13	25.4	0	0	0	#DIV/0!
Dieldrin	0	2.4E-13	2.4E-13	32.1	0	0	0	#DIV/0!
PN4s .	0	0	0	0.0	0	0	0	#DIV/0!
2-Methylnaphthalene	0	0	0	0.0	0	0	0	#DIV/0!
Benzo(a)pyrene	0	0	0	0.0	0	0	0	#DIV/0!
Benzo(b)fluoranthene	0	0	0	0.0	0	0	0	#DIV/0!
Benzo(g,h,i)perylene	0	0	0	0.0	0	0	0	#DIV/0!
Phenanthrene	0	0	0	0.0	0	0	0	#DIV/0!
TOTALS	0.0E+00	7.5E-13	7.5E-13	00I	0.0E+00	0.0E+00	0.0E+00	#DIV/0!
% of Total Risk or HI	0.0	100.0		100.0	#DIV/0!	#DIA/0i		#DIA/0i

CWKR1-AV.XLW

Carcinogenic and Noncarcinogenic Risk Estimates for Current Short-Term On-Base Worker (subchronic) Attributable to Control Tower Drum Storage Area, South: Average Exposure Scenario Table 4J-41

Surface Soil Pathways Dermal Ingestion	Inhalation				Liazaru inuex	Hazard Index By Pathway				
Contact Contact 0 0	Path	Inhalation Pathways		Jo %	Surface Soil Pathways	face	Inha	Inhalation Pathways	Hozond	ر 0 / 0
	200		Total	Total	Dermal	Ingestion	;	2 (2	Index	Total
Metals 0 0 Antimony 0 0 Thallium 0 0 PNAs 0 0	vapors	Dust	KISK	Kisk	Contact		Vapors	Dust		Index
Antimony 0 0 0 Thallium 0 0 0										
Thallium 0 0 0 0 PNAs 0 0 0	0	0	0	0.0	1.7E-02	2.9E-02	0	0	4 6F-02	1 00
PNAs 0 0	0	0	0	0.0	0	0	0		0	00
	0	0	0	0.0	0	0	0	0	0	0.0
2-Methylnaphthalene 0 0	0	0	0	0.0	0	0	0	0	0	0.0
Benzo(a)pyrene 0 5.5E-09	0 6	0	5.SE-09	18.5	0	0	0	0	0	0.0
Benzo(b)fluoranthene 0 9.2E-10	0 (0	9.2E-10	3.1	0	0	0	0	0	0.0
Benzo(g,h,i)perylene 0 0	0	0	0	0.0	0	0	0	0	0	0.0
Phenanthrene 0 0	0	0	0	0.0	0	0	0	0	0	0.0
Pesticides 0 0	0	0	0	0.0	0	0	0	0	0	0.0
4,4'-DDT 8.5E-09 1.4E-09	0 6	7.7E-12	9.9E-09	33.5	0	2.9E-04	0	0	2.9E-04	90
Aldrin 5.0E-09 8.4E-10	0 (4.6E-12	5.9E-09	19.8	0	5.7E-05	0	0	5.7E-05	0.1
Dieldrin 6.4E-09 1.1E-09	0 (5.8E-12	7.4E-09	25.I	0	4.6E-05	0	0	4.6E-05	0.1
TOTALS 2.0E-08 9.7E-09	0.0E+00	1.8E-11	3.0E-08	100	1.7E-02	2.9E-02	0.0E+00	0.0E+00	4.6E-02	100
% of Total Risk or HI 67.1 32.8	0.0	0.1		100.0	37.2	62.8	0.0	0.0		100.0

6 AM

Carcinogenic and Noncarcinogenic Risk Estimates for Current Short-Term On-Base Worker (subchronic) Attributable to Control Tower Drum Storage Area, South: Reasonable Maximum Exposure Scenario Table 4J-42

	Cancer Risk By Pathway	By Pathway					Hazard Index By Pathway	By Pathway				
	Surface	ace	Inhala	halation			Surface	ıce	Inhalation	ation		
Analyte	Soil Pathways	hways	Pathy	ıthways		% of	Soil Pathways	hways	Pathways	ways	Hazard	% of
	Dermal	Ingestion			Total	Total	Dermal	Ingestion			Index	Total
	Absorption		Vapors	Dust	Risk	Risk	Absorption		Vapors	Dust		Index
Metals												
Antimony	0	0	0	0	0	0.0	2.9E-02	2.9E-02	0	0	5.7E-02	99.3
Thallium	0	0	0	0	0	0.0	0	0	0	0	0	0.0
PNAs	0	0	0	0	0	0.0	0	0	0	0	0	0.0
2-Methylnaphthalene	0	0	0	0	0	0.0	0	0	0	0	0	0.0
Benzo(a)pyrene	0	1.4E-08	0	0	1.4E-08	12.8	0	0	0	0	0	0.0
Benzo(b)fluoranthene	0	2.3E-09	0	0	2.3E-09	2.1	0	0	0	0	0	0.0
Benzo(g,h,i)perylene	0	0	0	0	0	0.0	0	0	0	0	0	0.0
Phenanthrene	0	0	0	0	0	0.0	0	0	0	0	0	0.0
Pesticides	0	0	0	0	0	0.0	0	0	0	0	0	0.0
4,4'-DDT	3.5E-08	3.5E-09	0	5.8E-11	3.9E-08	36.3	0	2.9E-04	0	0	2.9E-04	0.5
Aldrin	2.1E-08	2.1E-09	0	3.5E-11	2.3E-08	21.5	0	5.7E-05	0	0	5.7E-05	0.1
Dieldrin	2.7E-08	2.7E-09	0	4.4E-11	2.9E-08	27.2	0	4.6E-05	0	0	4.6E-05	0.1
TOTALS	8.3E-08	2.4E-08	0.0E+00	1.4E-10	1.1E-07	100	2.9E-02	2.9E-02	0.0E+00	0.0E+00	5.8E-02	100
% of Total Risk or HI	77.2	22.7	0.0	0.1		100.0	49.7	50.3	0.0	0.0		100.0

CWKR2-AV.XLW

Carcinogenic and Noncarcinogenic Risk Estimates for Current Long-Term On-Base Worker (chronic) Attributable to Control Tower Drum Storage Area, South: Average Exposure Scenario

	Cancer R	Cancer Risk By Pathway	way				Hazard Inc	Hazard Index By Pathway	жау			
	Su	Surface	Inhal	Inhalation			Sur	Surface	Inhalation	ation		
Analyte	Soil P	Soil Pathways	Path	Pathways		Jo %	Soil Pa	Soil Pathways	Pathways	ways	Hazard	% of
	Dermal	Ingestion			Total	Total	Dermal	Ingestion			Index	Total
	Contact		Vapors	Dust	Risk	Risk	Contact		Vapors	Dust		Index
Metals												
Antimoin	0	0	0	0	0	0.0	0	0	0	0	0	0.0
Thallium	0	0	0	0	0	0.0	5.6E-02	9.4E-02	0	0	1.5E-01	98.2
PNAs	0	0	0	0	0	0.0	0	0	0	0	0	0.0
2-Methylnaphthalene	0	0	0	0	0	0.0	0	0	0	0	0	0.0
Benzo(a)pyrene	0	6.9E-08	0	0	6.9E-08	18.5	0	0	0	0	0	0.0
Benzo(b)fluoranthene	0	1.1E-08	0	0	1.1E-08	3.1	0	0	0	0	0	0.0
Benzo(g,h,i)perylene	0	0	0	0	0	0.0	0	0	0	0	0	0.0
Phenanthrene	0	0	0	0	0	0.0	0	0	0	0	0	0.0
Pesticides	0	0	0	0	0	0.0	0	0	0	0	0	0.0
4,4'-DDT	1.1E-07	1.8E-08	0	9.6E-11	1.2E-07	33.5	1.7E-03	2.9E-04	0	0	2.0E-03	1.3
Aldrin	6.3E-08	1.0E-08	0	5.7E-11	7.3E-08	19.8	3.4E-04	5.7E-05	0	0	4.0E-04	0.3
Dieldrin	8.0E-08	1.3E-08	0	7.3E-11	9.3E-08	25.1	2.8E-04	4.6E-05	0	0	3.2E-04	0.2
TOTALS	2.5E-07	1.2E-07	0.0E+00	2.3E-10	3.7E-07	100	5.9E-02	9.4E-02	0.0E+00	0.0E+00	1.5E-01	100
% of Total Risk or HI	67.1	32.8	0.0	0.1		100.0	38.4	61.6	0.0	0.0		100.0

12/7/95

Table 4J-44

Carcinogenic and Noncarcinogenic Risk Estimates for Current Long-Term On-Base Worker (chronic) Attributable to Control Tower Drum Storage Area, South: Reasonable Maximum Exposure Scenario

	Cancer Ri	Cancer Risk By Pathway	vay				Hazard Inc	Hazard Index By Pathway	vay			
	Ins	Surface	Inhalation	ıtion			Sur	Surface	Inhalation	ation		
Analyte	Soil Pa	Soil Pathways	Pathways	vays		€ of	Soil Ps	Soil Pathways	Pathways	ways	Hazard	% of
	Dermal	Ingestion	Vonone	J	Total Diel	Total Diel	Dermal	Ingestion	Vonome	10.00	Index	Total
	College		v apor s	Danze	MISH	MISH	Colliact		vapors	1Sm/T		Inuex
Metals												
Antimony	0	0	0	0	0		0		0	0	0	0.0
Thallium	0	0	0	0	0	0.0	9.4E-02	9.4E-02	0	0	1.9E-01	97.7
PNAs	.0	0	0	0	0		0		0	0	0	0.0
2-Methylnaphthalene	0	0	0	0	0	0.0	0	0	0	0	0	0.0
Benzo(a)pyrene	0	6.9E-08	0	0	6.9E-08	12.8	0	0	0	0	0	0.0
Benzo(b)fluoranthene	0	1.1E-08	0	0	1.1E-08	2.1	0	0	0	0	0	0.0
Benzo(g,h,i)perylene	0	0	0	0	0	0.0	0	0	0	0	0	0.0
Phenanthrene	0	0	0	0	0	0.0	0	0	0	0	0	0.0
Pesticides	0	0	0	0	0	0.0	0	0	0	0	0	0.0
4,4'-DDT	1.8E-07	1.8E-08	0	2.9E-10	1.9E-07	36.3	2.9E-03	2.9E-04	0	0	3.2E-03	1.7
Aldrin	1.0E-07	1.0E-08	0	1.7E-10	1.2E-07	21.5	5.7E-04	5.7E-05	0	0	6.3E-04	0.3
Dieldrin	1.3E-07	1.3E-08	0	2.2E-10	1.5E-07	27.2	4.6E-04	4.6E-05	0	0	5.1E-04	0.3
TOTALS	4.1E-07	1.2E-07	0.0E+00	6.8E-10	5.4E-07	100	9.8E-02	9.4E-02	0.0E+00	0.0E+00	1.9E-01	100
% of Total Risk or HI	77.2	22.7	0.0	0.1		100.0	50.9	49.1	0.0	0.0		100.0

CCWKR-AV.XLW

Carcinogenic and Noncarcinogenic Risk Estimates for Current On-Base Construction Worker (subchronic) Attributable to Control Tower Drum Storage Area, South: Average Exposure Scenario Table 4J-45

	Cancer Risk By Pathway	By Pathway					Hazard Index By Pathway	By Pathway				
	Mixed	pe	Inhalation	ation			Mixed	pa:	Inhalation	ation		
Analyte	Soil Pathways	hways	Pathways	ways		Jo %	Soil Pathways	hways	Pathways	ways	Hazard	Jo %
	Dermal	Ingestion	Vanore	Duet	Total Biek	Total Biek	Dermal	Ingestion	Vonone	2	Index	Total
	mond rocory		t apor s	Ten C	MEINT	WEINT	Wasar prion		vapors	18nG		Index
Metals												
Antimony	0	0	0	0	0	0.0	3.0E-02	5.0E-02	0	0	7.9E-02	94.3
Thallium	0	0	0	0	0	0.0	0	0	0	0	0	0.0
PNAs	0	0	0	0	0	0.0	0	0	0	0	0	0.0
2-Methylnaphthalene	0	0	0	0	0	0.0	0	0	0	0	0	0.0
Benzo(a)pyrene	0	1.2E-09	0	0	1.2E-09	17.5	0	0	0	0	0	0.0
Benzo(b)fluoranthene	0	2.0E-10	0	0	2.0E-10	2.9	0	0	0	0	0	0.0
Benzo(g,h,i)perylene	0	0	0	0	0	0.0	0	0	0	0	0	0.0
Phenanthrene	0	0	0	0	0	0.0	0	0	0	0	0	0.0
Pesticides	0	0	0	0	0	0.0	0	0	0	0	0	0.0
4,4'-DDT	1.8E-09	3.1E-10	0	1.6E-10	2.3E-09	34.0	3.0E-03	5.0E-04	0	0	3.5E-03	4.2
Aldrin	1.1E-09	1.8E-10	0	9.5E-11	1.4E-09	20.1	6.0E-04	1.0E-04	0	0	7.0E-04	0.8
Dieldrin	1.4E-09	2.3E-10	0	1.2E-10	1.7E-09	25.5	4.8E-04	8.0E-05	0	0	5.6E-04	0.7
TOTALS	4.3E-09	2.1E-09	0.0E+00	3.7E-10	6.8E-09	100	3.4E-02	5.0E-02	0.0E+00	0.0E+00	8.4E-02	100
% of Total Risk or HI	63.4	31.0	0.0	5.5		100.0	40.2	59.8	0.0	0.0		100.0

7 AM

Table 4J-46

Carcinogenic and Noncarcinogenic Risk Estimates for Current On-Base Construction Worker (subchronic) Attributable to Control Tower Drum Storage Area, South: Reasonable Maximum Exposure Scenario

	Cancer Risk By Pathway	By Pathway					Hazard Index By Pathway	By Pathway				
	Mixed	ed	Inhalation	ation			Mixed	ed	Inha	Inhalation		
Analyte	Soil Pathways	hways	Pathways	ways		% of	Soil Pathways	hways	Path	Pathways	Hazard	% of
	Dermal Absorption	Ingestion	Vanors	Dust	Total Risk	Total Risk	Dermal Absorntion	Ingestion	Vanore	Duet	Index	Total
	¥								c vis.dea .	1633		THACA
Metals												
Antimony	0	0	0	0	0	0.0	5.0E-02	4.8E-01	0	0	5.3E-01	97.5
Thallium	0	0	0	0	0	0.0	0	0	0	0	0	0.0
PN4s	0	0	0	0	0	0.0	0	0	0	0	0	0.0
2-Methylnaphthalene	0	0	0	0	0	0.0	0	0	0	0	0	0.0
Benzo(a)pyrene	0	2.3E-08	0	0	2.3E-08	41.1	0	0	0	0	0	0.0
Benzo(b)fluoranthene	0	3.8E-09	0	0	3.8E-09	6.9	0	0	0	0	0	0.0
Benzo(g,h,i)perylene	0	0	0	0	0	0.0	0	0	0	0	0	0.0
Phenanthrene	0	0	0	0	0	0.0	0	0	0	0	0	0.0
Pesticides	0	0	0	0	0	0.0	0	0	0	0	0	0.0
4,4'-DDT	6.1E-09	5.9E-09	0	3.3E-10	1.2E-08	22.2	5.0E-03	4.8E-03	0	0	9.9E-03	1.8
Aldrin	3.6E-09	3.5E-09	0	2.0E-10	7.3E-09	13.2	1.0E-03	9.6E-04	0	0	2.0E-03	0.4
Dieldrin	4.6E-09	4.4E-09	0	2.5E-10	9.3E-09	16.7	8.0E-04	7.7E-04	0	0	1.6E-03	0.3
TOTALS	1.4E-08	4.0E-08	0.0E+00	7.8E-10	5.6E-08	001	5.6E-02	4.8E-01	0.0E+00	0.0E+00	5.4E-01	100
% of Total Risk or HI	25.8	72.8	0.0	1.4		100.0	10.5	89.5	0.0	0.0		100.0

12/13/95

CFSTU-AV.XLW

Carcinogenic and Noncarcinogenic Risk Estimates for Future Boarding School Student (subchronic) Attributable to Control Tower Drum Storage Area, South: Average Exposure Scenario **Table 4J-47**

	Cancer Risk By Pathway	By Pathway					Hazard Index By Pathway	By Pathway				
	Surface	ace	Inhal	Inhalation			Surface	ace	Inhalation	ation		
Analyte	Soil Pathways	hways	Path	Pathways		% of	Soil Pathways	hways	Pathways	ways	Hazard	% of
	Dermal	Ingestion			Total	Total	Dermal	Ingestion			Index	Total
	Contact		Vapors	Dust	Risk	Risk	Contact		Vapors	Dust		Index
Metals												
Antimony	0	0	0	0	0	0.0	. 0	0	0	0	0	#DIV/0i
Thallium	0	0	0	0	0	0.0	0	0	0	0	0	10/AIQ#
Pesticides	0	0	0	0.	0	0.0	0	0	0	0	0	#DIV/0!
4,4'-DDT	0	0	0	1.8E-13	1.8E-13	42.5	0	0	0	0	0	#DIV/0!
Aldrin	0	0	0	1.1E-13	1.1E-13	25.4	0	0	0	0	0	#DIV/0!
Dieldrin	0	0	0	1.4E-13	1.4E-13	32.1	0	0	0	0	0	#DIV/0!
PN4s	0	0	0	0	0	0.0	0	0	0	0	0	#DIV/0!
2-Methylnaphthalene	0	0	0	0	0	0.0	0	0	0	0	0	#DIV/0!
Benzo(a)pyrene	0	0	0	0	. 0	0.0	0	0	0	0	0	#DIV/0!
Benzo(b)fluoranthene	0	0	0	0	0	0.0	0	0	0	0	0	#DIV/0!
Benzo(g,h,i)perylene	0	0	0	0	0	0.0	0	0	0	0	0	#DIN/0!
Phenanthrene	0	0	0	0	0	0.0	0	0	0	0	0	#DIV/0!
TOTALS	0.0E+00	0.0E+00	0.0E+00	4.3E-13	4.3E-13	100	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	#DIN/0i
% of Total Risk or HI	0.0	0.0	0.0	100.0	:	100.0	#DIA/0i	#DIV/0!	#DIA/0i	#DIV/0!		#DIA/0i

12/7/95

Attributable to Control Tower Drum Storage Area, South: Reasonable Maximum Exposure Scenario Carcinogenic and Noncarcinogenic Risk Estimates for Future Boarding School Student (chronic)

	Cancer Risk By Pathway	By Pathway					Hazard Index By Pathway	By Pathway				
	Surface	ace	Inhalation	ation			Surface	ace	Inhalation	ation		
Analyte	Soil Pathways	hways	Pathways	ways		% of	Soil Pathways	hways	Pathways	Ways	Hazard	Jo %
	Dermal	Ingestion			Total	Total	Dermal	Ingestion			Index	Total
	Contact		Vapors	Dust	Risk	Risk	Contact		Vapors	Dust		Index
Metals												
Antimony	0	0	0	0	0	0.0	0	0	0	0	0	#DIV/0!
Thallium	0	0	0	0	0	0.0	0	0	0	0	0	#DIV/0!
Pesticides	0	0	0	0	0	0.0	0	0	0	0	0	#DIV/0!
4,4'-DDT	0	0	0	6.4E-13	6.4E-13	42.5	0	0	0	0	0	#DIV/0!
Aldrin	0	0	0	3.8E-13	3.8E-13	25.4	0	0	0	0	0	#DIV/0!
Dieldrin	0	0	0	4.8E-13	4.8E-13	32.1	0	0	0	0	0	#DIV/0!
PNAs	0	0	0	0	0	0.0	0	0	0	0	0	#DIV/0!
2-Methylnaphthalene	0	0	0	0	0	0.0	0	0	0	0	0	#DIV/0!
Benzo(a)pyrene	0	0	0	0	0	0.0	0	0.	0	0	0	#DIV/0!
Benzo(b)fluoranthene	0	0	0	0	0	0.0	0	0	0	0	0	#DIV/0!
Benzo(g,h,i)perylene	0	0	0	0	0	0.0	0	0	0	0	0	#DIV/0!
Phenanthrene	0	0	0	0	0	0.0	0	0	0	0	0	#DIV/0!
TOTALS	0.0E+00	0.0E+00	0.0E+00	1.5E-12	1.5E-12	100	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	#DIV/0!
% of Total Risk or HI	0.0	0.0	0.0	100.0		100.0	#DIA/0i	#DIA/0i	#DIV/0!	#DIV/0!		#DIV/0i

Carcinogenic and Noncarcinogenic Risk Estimates for Child Future Old Town Galena Resident (chronic) Attributable to Control Tower Drum Storage Area, South: Average Exposure Scenario Table 4J-49

	Carcinogen	Carcinogenic Risk Summary	nmary						
	Groundwater	iwater	Y	Air Pathways	S/	Food	Food Pathways		Jo %
Analyte	Pathways	ways	Vapors					Total	Total
	Ingestion	Dermal Contact	Outdoor VOCs	Shower VOCs	Dust	Fruit	Vegetables	Risk	Risk
Metals									
Antimony	0	0	0	0	0	0	0	0	0.0
Thallium	0	0	0	0	0	0	0	0	0.0
Pesticides	0	0	0	0	. 0	0	0	0	0.0
4,4-DDT	0	.0	0	0	2.3E-14	0	0	2.3E-14	0.0
Aldrin	3.4E-08	4.7E-11	0	8.7E-17	1.4E-14	3.3E-09	5.8E-09	4.3E-08	33.9
Dieldrin	0	0	0	0	1.7E-14	0	0	1.7E-14	0.0
Heptachlor epoxide	5.2E-08	5.0E-10	0	7.1E-12	0	4.2E-09	7.3E-09	6.5E-08	51.2
PNAs	0	0	0	. 0	0	0	0	0	0.0
2-Methylnaphthalene	0	0	0	0	0	0	0	0	0.0
Benzo(a)pyrene	0	0	0	0	0	0	0	0	0.0
Benzo(b)fluoranthene	0	0	0	0	0	0	0	0	0.0
Benzo(g,h,i)perylene	0	0	0	0	0	0	0	0	0.0
Phenanthrene	0	0	0	0	0	0	0	0	0.0
Volatiles	0	0	0	0	0	0	0	0	0.0
Trichloroethene	1.5E-08	2.6E-09	0	8.0E-11	0	3.4E-10	6.0E-10	1.9E-08	14.9
TOTALS	1.0E-07	3.2E-09	0.0E+00	8.7E-11	5.4E-14	7.9E-09	1.4E-08	1.3E-07	100
% of Total Risk or HI	80.2	2.5	0.0	0.1	0.0	6.3	10.9		100.0

CFGR1CAV.XLW

Table 4J-49 (Continued)

	Non-Carcinogenic Risk Summary	genic Risk	Summary						
	Groundwater	water	A	Air Pathways	S	Food	Food Pathways		Jo %
Analyte	Pathways	ays	Vapors	مير ا				Hazard	Total
	Ingestion	Dermal	Outdoor	Shower	Dust	Fruit	Vegetables	Index	Index
		Contact	VOCs	VOCs					
Metals									
Antimony	0	0	0	0	0	0	0	0.0000	0.0
Thallium	0	0	0	0	0	0	0	0.0000	0.0
Pesticides	0	0	0	0	0	0	0	0.0000	0.0
4,4'-DDT	0	0	0	0	0	0	0	0.0000	0.0
Aldrin	7.7E-04	1.1E-06	0	0	0	7.7E-05	1.3E-04	0.0010	9.2
Dieldrin	0	0	0	0	0	0	0	0.0000	0.0
Heptachlor epoxide	5.2E-03	5.0E-05	0	0	0	4.2E-04	7.2E-04	0.0064	59.7
PNAs	0	0	0	0	0	0	0	0.0000	0.0
2-Methylnaphthalene	0	0	0	0	0	0	0	0.000.0	0.0
Benzo(a)pyrene	0	0	0	0	0	0	0	0.000.0	0.0
Benzo(b)fluoranthene	0	0	0	0	0	0	0	0.0000	0.0
Benzo(g,h,i)perylene	0	0	0	0	0	0	0	0.0000	0.0
Phenanthrene	0	0	0	0	0	0	0	0.0000	0.0
Volatiles	0	0	0	0	0	0	0	0.0000	0.0
Trichloroethene	2.7E-03	4.7E-04	0	0	0	6.1E-05	1.1E-04	0.0033	31.1
TOTALS	8.6E-03	5.2E-04	0.0E+00	0.0E+00	0.0E+00	5.6E-04	9.6E-04	0.0107	100.0
% of Total Risk or HI	6.08	4.9	0.0	0.0	0.0	5.2	9.0		100.0

Carcinogenic and Noncarcinogenic Risk Estimates for Child Future Old Town Galena Resident (chronic) Attributable to Control Tower Drum Storage Area, South: Reasonable Maximum Exposure Scenario **Table 4J-50**

	Carcinogenic Risk	c Risk Sun	Summary							
	Groundwater	water		Air Pat	Air Pathways		Food 1	Food Pathways		Jo %
Analyte	Pathways	vays	Vapors	ors	Dust				Total	Total
	Ingestion	Dermal Contact	Outdoor VOCs	Shower VOCs	Surface Soil	Mixed Soil	Fruit	Vegetables	Risk	Risk
Metals										
Antimony	0	0	0	0	0	0	0	0	0	0.0
Thallium	0	0	0	0	0	0	0	0	0	0.0
Pesticides	0	0	0	0	0	0	0	0	0	0.0
4,4-DDT	0	0	0	0	2.9E-14	0	0	0	2.9E-14	0.0
Aldrin	4.3E-08	8.5E-11	0	5.4E-16	1.8E-14	0	1.0E-08	1.4E-08	6.7E-08	34.8
Dieldrin	0	0	0	0	2.2E-14	0	0	0	2.2E-14	0.0
Heptachlor epoxide	6.7E-08	9.1E-10	0	4.8E-11	0	0	1.3E-08	1.8E-08	9.9E-08	51.1
PNAs	0	0	0	0	0	0	0	0	0	0.0
2-Methylnaphthalene	0	0	0	0	0	0	0	0	0	0.0
Benzo(a)pyrene	0	0	0	0	0	0	0	0	0	0.0
Benzo(b)fluoranthene	0	0	0	0	0	0	0	0	0	0.0
Benzo(g,h,i)perylene	0	0	0	0	0	0	0	0	0	0.0
Phenanthrene	0	0	0	0	0	0	0	0	0	0.0
Volatiles	0	0	0	0	0	0	0	0	0	0.0
Trichloroethene	1.9E-08	4.8E-09	0	5.4E-10	Ó	0	1.1E-09	1.4E-09	2.7E-08	14.1
TOTALS	1.3E-07	5.8E-09	0.0E+00	5.9E-10	6.9E-14	0.0E+00	2.5E-08	3.3E-08	1.9E-07	100
% of Total Risk or HI	8.99	3.0	0.0	0.3	0.0	0.0	12.8	17.1		100.0

12/8/95

Table 4J-50 (Continued)

	Non-Carcinogenic Risk Summary	genic Risk	Summary						
	Groundwater	water	Ai	Air Pathways	S	Food]	Food Pathways		Jo %
Analyte	Pathways	8						Hazard	Total
	Ingestion	Dermal	Outdoor	Shower	Dust	Fruit	Vegetables	Index	Index
,		Contact	VOCs	VOCs					
Metals									
Antimony	0	0	0	0	0	0	0	0.0000	0.0
Thallium	0	0	0	0	0	0	0	0.0000	0.0
Pesticides	0	0	0	0	0	0	0	0.0000	0.0
4,4'-DDT	0	0	0	0	0	0	0	0.0000	0.0
Aldrin	9.8E-04	1.9E-06	0	0	0	2.4E-04	3.2E-04	0.0015	9.6
Dieldrin	0	0	0	0	0	0	0	0.0000	0.0
Heptachlor epoxide	6.6E-03	9.0E-05	0	0	0	1.3E-03	1.7E-03	0.0097	6.09
PNAs	0	0	0	0	0	0	0	0.0000	0.0
2-Methylnaphthalene	0	0	0	0	0	0	0	0.0000	0.0
Benzo(a)pyrene	0	0	0	0	0	0	0	0.0000	0.0
Benzo(b)fluoranthene	0	0	0	0	0	0	0	0.0000	0.0
Benzo(g,h,i)perylene	0	0	0	0	0	0	0	0.0000	0.0
Phenanthrene	0	0	0	0	0	0	0	0.0000	0.0
Volatiles	0	0	0	0	0	0	0	0.0000	0.0
Trichloroethene	3.4E-03	8.4E-04	0	0	0	1.9E-04	2.5E-04	0.0047	29.4
TOTALS	1.1E-02	9.4E-04	0.0E+00	0.0E+00	0.0E+00	1.7E-03	2.3E-03	0.0160	100.0
% of Total Risk or HI	8.89	5.9	0.0	0.0	0.0	10.9	14.5		100.0

CFGR1AAV.XLW

Carcinogenic and Noncarcinogenic Risk Estimates for Adult Future Old Town Galena Resident (chronic) Attributable to Control Tower Drum Storage Area, South: Average Exposure Scenario **Table 4J-51**

	Carcinogen	Carcinogenic Risk Summary	nmary						
	Groundwater	dwater	Y	Air Pathways	ı,S	Food]	Food Pathways		Jo %
Analyte	Pathways	ways	Vapors				-	Total	Total
	Ingestion	Dermal Contact	Outdoor VOCs	Shower VOCs	Dust	Fruit	Vegetables	Risk	Risk
Metals									
Antimony	0	0	0	0	0	0	0	0	0.0
Thallium	0	0	0	0	0	0	0	0	0.0
Pesticides	0	0	0	0	0	0	0	0	0.0
4,4'-DDT	0	0	0	0	9.4E-14	0	0	9.4E-14	0.0
Aldrin	4.1E-08	1.1E-10	0	2.1E-16	5.6E-14	3.8E-09	3.1E-09	4.8E-08	32.5
Dieldrin	0	0	0	0	7.1E-14	0	0	7.1E-14	0.0
Heptachlor epoxide	6.4E-08	1.2E-09	0	1.7E-11	0	4.8E-09	3.9E-09	7.4E-08	50.1
PNAs	0	0	0	0.	0	0	0	0	0.0
2-Methylnaphthalene	0	0	0	0	0	0	0	0	0.0
Benzo(a)pyrene	0	0	0	0	0	0	0	0	0.0
Benzo(b)fluoranthene	0	0	0	0	0	0	0	0	0.0
Benzo(g,h,i)perylene	0	0	0	0	0	0	0	0	0.0
Phenanthrene	0	0	0	0	0	0	0	0	0.0
Volatiles	0	0	0	0	0	0	0	0	0.0
Trichloroethene	1.9E-08	6.4E-09	0	2.CE-10	0	3.9E-10	3.2E-10	2.6E-08	17.4
TOTALS	1.2E-07	7.7E-09	0.0E+00	2.1E-10	2.2E-13	9.1E-09	7.3E-09	1.5E-07	100
% of Total Risk or HI	83.6	5.2	0.0	0.1	0.0	6.1	4.9		100.0

10:41 AM

Table 4J-51 (Continued)

	Non-Carcinogenic Risk Summary	genic Risk	Summary						
	Groundwater	water	Ai	Air Pathways	S	Food I	Food Pathways		Jo %
Analyte	Pathways	ays	Vapors					Hazard	Total
	Ingestion	Dermal	Outdoor	Shower	Dust	Fruit	Vegetables	Index	Index
		Contact	VOCs	VOCs					
Metals									
Antimony	0	0	0	0	0	0	0	0.0000	0.0
Thallium	0	0	0	0	0	0	0	0.0000	0.0
Pesticides	0	0	0	0	0	0	0	0.0000	0.0
4,4'-DDT	0	0	0	0	0	0	0	0.000.0	0.0
Aldrin	2.3E-04	6.3E-07	0	0	0	2.1E-05	1.7E-05	0.0003	8.5
Dieldrin	0	0	0	0	0	0	0	0.0000	0.0
Heptachlor epoxide	1.6E-03	2.9E-05	0	0	0	1.2E-04	9.5E-05	0.0018	5.95
PNAs	0	0	0	0	0	0	0	0.0000	0.0
2-Methylnaphthalene	0	0	0	0	0	0	0	0.000.0	0.0
Benzo(a)pyrene	0	0	0	0	0	0	0	0.0000	0.0
Benzo(b)fluoranthene	0	0	0	0	0	0	0	0.0000	0.0
Benzo(g,h,i)perylene	0	0	0	0	0	0	0	0.0000	0.0
Phenanthrene	0	0	0	0	0	0	0	0.0000	0.0
Volatiles	0	0	0	0	0	0	0	0.0000	0.0
Trichloroethene	8.0E-04	2.8E-04	0	0	0	1.7E-05	1.4E-05	0.0011	35.0
TOTALS	2.6E-03	3.1E-04	0.0E+00	0.0E+00	0.0E+00	1.6E-04	1.3E-04	0.0032	100.0
% of Total Risk or HI	81.5	9.6	0.0	0.0	0.0	4.9	4.0		100.0

Carcinogenic and Noncarcinogenic Risk Estimates for Adult Future Old Town Galena Resident (chronic) Attributable to Control Tower Drum Storage Area, South: Reasonable Maximum Exposure Scenario Table 4J-52

	Carcinogen	Carcinogenic Risk Summary	nmary						
	Ground	Groundwater	Y	Air Pathways	S	Food]	Food Pathways		Jo %
Analyte	Pathways	ways	Vapors					Total	Total
	Ingestion	Dermal Contact	Outdoor VOCs	Shower VOCs	Dust	Fruit	Vegetables	Risk	Risk
Metals									
Antimony	0	0	0	0	0	0	0	0	0.0
Thallium	0	0	0	0	0	0	0	0	0.0
Pesticides	0	0	0	0		0	0	0	0.0
4,4'-DDT	0	0	0	0	3.4E-13	0	0	3.4E-13	0.0
Aldrin	2.1E-07	5.8E-10	0	3.8E-15	2.0E-13	3.3E-08	2.6E-08	2.7E-07	33.0
Dieldrin	0	0	0	0	2.6E-13	0	0	2.6E-13	0.0
Heptachlor epoxide	3.3E-07	6.2E-09	0	3.4E-10	0	4.2E-08	3.2E-08	4.1E-07	50.2
PNAs	0	0	0	0	0	0	0	0	0.0
2-Methylnaphthalene	0	0	0	0	0	0	0	0	0.0
Benzo(a)pyrene	0	0	0	0	0	0	0	0	0.0
Benzo(b)fluoranthene	0	0	0	0	0	0	0	0	0.0
Benzo(g,h,i)perylene	0	0	0	0	0	0	0	0	0.0
Phenanthrene	0	0	0	0	0	0	0	0	0.0
Volatiles	0	0	0	0	0	0	0	0	0.0
Trichloroethene	9.6E-08	3.3E-08	0	3.8E-09	0	3.4E-09	2.6E-09	1.4E-07	16.8
TOTALS	6.4E-07	4.0E-08	0.0E+00	4.1E-09	8.0E-13	7.8E-08	6.1E-08	8.3E-07	100
% of Total Risk or HI	77.9	4.8	0.0	0.5	0.0	9.5	7.4		100.0

Table 4J-52 (Continued)

	Non-Carcinogenic Risk Summary	genic Risk	Summary						
	Groundwater	water	Ai	Air Pathways	S	Food]	Food Pathways		% of
Analyte	Pathways	ays	Vapors					Hazard	Total
	Ingestion	Dermal	Outdoor	Shower	Dust	Fruit	Vegetables	Index	Index
		Colligic	\$OC\$	VOC.					
Metals									
Antimony	0	0	0	0	0	0	0	0.000.0	0.0
Thallium	0	0	0	0	0	0	0	0.0000	0.0
Pesticides	0	0	0	0	0	0	0	0.0000	0.0
4,4'-DDT	0	0	0	0	0	0	0	0.0000	0.0
Aldrin	4.2E-04	1.1E-06	0	0	0	6.5E-05	5.0E-05	0.0005	8.8
Dieldrin	0	0	0	0	0	0	0	0.0000	0.0
Heptachlor epoxide	2.8E-03	5.3E-05	0	0	0	3.5E-04	2.7E-04	0.0035	57.5
PNAs	0	0	0	0	0	0	0	0.0000	0:0
2-Methylnaphthalene	0	0	0	0	0	0	0	0.000.0	0.0
Benzo(a)pyrene	0	0	0	0	0	0	0	0.0000	0.0
Benzo(b)fluoranthene	0	0	0	0	0	0	0	0.0000	0.0
Benzo(g,h,i)perylene	0	0	0	0	0	0	0	0.0000	0.0
Phenanthrene	0	0	0	0	0	0	0	0.0000	0.0
Volatiles	0	0	0	0	0	0	0	0.0000	0.0
Trichloroethene	1.5E-03	5.0E-04	0	0	0	5.1E-05	4.0E-05	0.0020	33.7
TOTALS	4.7E-03	5.5E-04	0.0E+00	0.0E+00	0.0E+00	4.7E-04	3.6E-04	0.0061	100.0
% of Total Risk or HI	77.3	9.0	0.0	0.0	0.0	7.7	6.0		100.0

APPENDIX 4K ECOLOGICAL ASSESSMENT EXPOSURE PARAMETERS

APPENDIX 4K TABLE OF CONTENTS

		Page
4K.1	INTRODU	JCTION4K-1
	4K.1.1	Meadow Vole 4K-1
	4K.1.2	Spotted Sandpiper 4K-1
	4K.1.3	Red Fox
	4K.1.4	Robin
	4K.1.5	American Kestrel 4K-4
	4K.1.6	Northern Pike 4K-5
•	4K.1.7	Invertebrates (Aquatic and Terrestrial) 4K-5
4K.2	REFEREN	ICES4K-6

APPENDIX 4K LIST OF TABLES

							Page
4K-1	Site Areas	 	 	 	 	 	 4K-2

4K.1 INTRODUCTION

Constants used in the exposure assessment for the ERA are listed below. Assessment endpoint species contaminant intake is detailed in Section 3.2.3 of Volume 1. Spreadsheets showing the calculations are shown in Appendix 4M. The size of the sites are shown in Table 4K-1. The areas were also used in the intake estimation. Areas are based on the extent of soil contamination.

4K.1.1 Meadow Vole

The values used to calculate meadow vole exposure are:

- Body weight: 0.039 kilograms (EPA, 1993);
- Water intake: 0.0053 Liters per day (calculated using methodology in Section 3.2.3);
- Food ingestion rate: 0.0049 kilograms dry matter per day (calculated using methodology in Section 3.2.3);
- Percent of food from contaminated source: 100%;
- Fraction of food in diet: 0.97;
- Fraction of soil in diet: 0.024 (Beyer et al., 1993); and
- Home range: 0.034 acres (EPA, 1993).

4K.1.2 <u>Spotted Sandpiper</u>

The values used to calculate spotted sandpiper intake are:

- Body Weight: 0.047 kilograms (EPA, 1993);
- Water intake: 0.67 Liters per day (calculated using methodology in Section 3.2.3);

Table 4K-1 Site Areas

Site or Source Area	Acres
Southeast Runway Fuel Spill	6.32
CTDSA	3.78

- Food ingestion rate for seabirds: 0.00744 kilograms dry matter per day (calculated using methodology in Section 3.2.3);
- Fraction of food in diet: 0.82;
- Fraction of soil in diet: 0.18 (value for western sandpiper, Beyer et al, 1994);
- Home range: 2.5 acres (CDFG, 1990); and
- Time on site: 5 months (May September, Robbins, 1983).

4KI.1.3 Red Fox

The values used to calculate red fox intake are:

- Body weight: 5.25 kg (male, EPA, 1993);
- Water intake: 0.44 Liters/day (calculated using methodology in Section 3.2.3);
- Food ingestion rate: 0.268 kilograms dry matter/day (calculated using methodology in Section 3.2.3);
- Percent of food from contaminated source: 100%;
- Fraction of food in diet: 0.97;
- Fraction of soil in diet: 0.028 (Beyer et al., 1993); and
- Home range: 1771 acres (EPA, 1993).

4K.1.4 Robin

The values used to calculate robin intake are:

• Body weight: 0.077 kilograms (Dunning, 1993);

- Water intake: 0.0105 Liters/day (calculated using methodology in Section 3.2.3);
- Food ingestion rate: 0.01597 kilograms dry matter/day (calculated using methodology in Section 3.2.3);]
- Percent of food from contaminated source: 100%;
- Fraction of food in diet: 0.896;
- Fraction of soil in diet: 0.104 (Woodcock, Beyer et al., 1993); and
- Home range: 2.00 acres (foraging home range fledglings, EPA, 1993).

4K.1.5 American Kestrel

The values used to calculate American kestrel intake are:

- Body weight: 0.120 kilograms (female, Dunning, 1993);
- Water intake: 0.014 Liters/day (calculated using methodology in Section 3.2.3);
- Food ingestion rate: 0.01096 kilograms dry matter/day (calculated using methodology in Section 3.2.3);
- Percent of food from contaminated source: 100%;
- Fraction of food in diet: 0.90;
- Fraction of soil in diet: 0.10; and
- Home range: 499 acres (EPA,1993).; and
- Time on site: 6 months.

4K.1.6 Northern Pike

Northern Pike intake was not assessed, therefore no intake parameters are

listed.

4K.1.7 <u>Invertebrates (Aquatic and Terrestrial)</u>

Invertebrate intake was not assessed, therefore no intake parameters are listed.

4K.2 REFERENCES

- Beyer, W.N., Connor, E.E., and S. Gerould. "Estimates of Soil Ingestion by Wildlife." Journal of Wildlife Management 58(2): 375-382, 1994.
- U.S. Environmental Protection Agency (EPA) Wildlife Exposure Factors Handbook. EPA/600/R-93/187a, 1993.
- California Department of Fish and Game (CDFG), California's Wildlife, Volume 2. California Statewide Wildlife Habitat Relationship System, 1990.
- Dunning, J.B. (Editor) CRC Handbook of Avian Body Masses. CRC Press. Boca Raton, Fl. 1993.

APPENDIX 4L ECOLOGICAL ASSESSMENT TOXICITY PROFILES

APPENDIX 4L LIST OF TABLES

]	Page
4L-1	Ecological Toxicity Profile for Benzene	4L-1
4L-2	Ecological Toxicity Profile for Benzo(a)anthracene	4L-3
4L-3	Ecological Toxicity Profile for Benzo(a)pyrene	4L-5
4L-4	Ecological Toxicity Profile for Benzo(b)fluoranthene	4L-8
4L-5	Ecological Toxicity Profile for Benzo(g,h,i)perylene	L-10
4L-6	Ecological Toxicity Profile for Benzo(k)fluoranthene	L-11
4L-7	Ecological Toxicity Profile for Benzyl Alcohol	L-12
4L-8	Ecological Toxicity Profile for Beryllium	L-14
4L-9	Ecological Toxicity Profile for BHC (alpha, beta, and delta) 41	L-15
4L-10	Ecological Toxicity Profile for BHC (gamma), Lindane	L-19
4L-11	Ecological Toxicity Profile for Chloroethane	L-22
4L-12	Ecological Toxicity Profile for Chloroform	L-23
4L-13	Ecological Toxicity Profile for Chloromethane	L-26
4L-14	Ecological Toxicity Profile for Chrysene	L-27
4L-15	Ecological Toxicity Profile for Dibenz(a,h)anthracene	L-29
4L-16	Ecological Toxicity Profile for Dibromomethane	L-32
4L-17	Ecological Toxicity Profile for 1,2-Dichloroethane	L-33
4L-18	Ecological Toxicity Profile for 1,2Dichloroethene (cis,-trans-) 4	L-35
4L-19	Ecological Toxicity Profile for Endosulfan, Endosulfan I, II, and Endosulfan Sulfate	L-37

APPENDIX 4L LIST OF TABLES (Continued)

		Page
4L-20	Ecological Toxicity Profile for Ethylbenzene	4L-40
4L-21	Ecological Toxicity Profile for Fluoranthene	4L-42
4L-22	Ecological Toxicity Profile for Heptachlor Epoxide	4L-44
4L-23	Ecological Toxicity Profile for Indeno(1,2,3 cd)pyrene	4L-48
4L-24	Ecological Toxicity Profile for Lead	4L-49
4L-25	Ecological Toxicity Profile for 2-methylnaphthalene	4L-54
4L-26	Ecological Toxicity Profile for Phenanthrene	4L-56
4L-27	Ecological Toxicity Profile for Pyrene	4L-58
4L-28	Ecological Toxicity Profile for Trichloroethene	4L-60

 Cable 4L-1

Ecological Toxicity Profile for Benzene

Organism	Dose	Exposure Route	Exposure Period	Effect	Endpoint	Reference
			Benzene			
Rat		Inhalation	4 hours	Death .	$LC_{50} = 13700 \text{ ppm}$	1
Rabbit		Inhalation	GD 7-20, 24 hours/day	Decreased fetal weight	LOAEL = 313 ppm	1
Mouse		Inhalation	GD 6-15, 7 hours/day	Decreased fetal weight	LOAEL = 500 ppm	
Rat		Oral-food	1 day	Death	$LD_{50} = 930 \text{ mg/kg/day}$	1
Mouse		Gavage-oil	GD 8-12	Decreased fetal weight	LOAEL = 1300 mg/kg/day	1
Freshwater aquatic organism			Acute	Proposed AWQC- protection of aquatic life	$LOAEL = 5300 \ \mu g/l$	2
Saltwater aquatic organism			Chronic	Proposed AWQC- protection of aquatic life	LOAEL = $700 \mu g/1$	2
Meadow vole					NOAEL = 23.23 mg/kg/day	3
Red fox					NOAEL = 5.04 mg/kg/day	3
Grass shrimp (Paleamonetes pugio)			96 hours	Death	$LC_{s0} = 27 \text{ ppm}$	4
Bluegill sunfish (Lepomis macrochirus)			24-48 hours	Death	$LD_{50} = 20 \text{ mg/l}$	4

(Continued)

sure Effect Endpoint Reference Benzene	Death $LD_{50} = 46 \text{ mg/l}$ 4	Death $LC_{50} = 63 \text{ ppm}$ 4
Exposure Period Benz	24 hours	14 days
Exposure Boste		
Organism	Goldfish (Carassius auratus)	Guppy (Poecilia reticulata)

to be important. Evidence exists for the uptake of benzene by cress and barley plants from soil; however, because benzene exists primarily in the vapor phase, root uptake is not expected to be a major pathway of vegetative contamination. Benzene is biodegradable in surface water and soil under aerobic such as styrene, cumene, and cyclohexane. Benzene is also used for the manufacturing of some types of rubber, lubricants, dyes, detergents, drugs, and pesticides. The high volatility and water of 24, benzene is not expected to bioconcentrate to any great extent in aquatic organisms. On the basis of estimated and measured BCFs, biomagnification in aquatic food chains does not appear solubility of benzene are the physical properties with the greatest influence on environmental transport and partitioning. Benzene released to soil surfaces partitions to the atmosphere through runoff and to groundwater as a result of leaching. Benzene is considered highly mobile. On the basis of a reported log K_w of 2.13 and an estimated BCF which include volcanoes and forest fires, account for a small amount of benzene in the environment. Benzene is also a natural part of crude oil. It is used widely and is ranked in the top 20 in production volume for chemicals produced in the United States. Most of the benzene is produced from petroleum sources. Various industries use benzene to make other chemicals, also known as benzol, evaporates into air quickly and dissolves easily in water. Benzene found in the environment is from both natural processes and human activities. Natural conditions (1).

Bioconcentration:

- General BCF (estimated) = 24
 - Barley plant BCF = 17 Cress plant BCF = 10
- Goldfish BCF = 4.24 (1)
- Environmental Fate:
- $Log K_{oc} = 1.8-1.9$ $Log K_{ow} = 2.13$
- Henry's Law Constant = 5.5×10^{-3} atm m³/mol at 20° C
 - Water Solubility = 1,780 mg/l at 25° C
- Vapor Pressure at 25° C = 95.2 mmHg Henry's Law Constant at 25° C = 5.5×10^{3} atm-m²/moL

References:

- Toxicological Profile for Benzene. Agency for Toxic Substances and Disease Registry (ATSDR). 1992.
- U.S. Environmental Protection Agency (EPA), Office of Science and Technology, Health and Ecological Criteria Division, Washington, D.C. 1991. Water quality criteria summary Federal Register Notice 57FR60911.
 - Oak Ridge National Laboratory, Environmental Sciences and Health Science Research Division, Oak Ridge, Tn. 1994. Screening Benchmarks for Ecological Risk Assessment. U.S. Department of Health and Human Services, Bethesda, Md. 1995. Hazardous Substances Data Base (HSDB) On-Line Computer Database.

Table 4L-2

Ecological Toxicity Profile for Benzo(a)anthracene

Organism	Dose	Exposure Route	Exposure Period	Effect	Endpoint	Reference
			Benzo(a)anthracene	hracene		
Rat	180 mg/kg	Oral	Acute	Oncogenic transformation		1
Mouse	18 mg/kg	Dermal	Acute	Skin tumors		2
Mouse	2 mg/kg	Subcutaneous	Acute	Tumors at site of application		3
Rat		Intravaneous	1 Injection	Death	$LD_{s0} > 200 \text{ mg/kg}$	4
Bluegill (Lepomis macrochirus)		Medium	87 hours	Death	$LC_{87} = 1000 \ \mu g/L$	9
Mouse		Dermal	3 per week for 50 weeks	Skin tumors	LOAEL = 0.15 mg/kg-BW	5
Rodent	2 mg/kg	Oral	Chronic	Carcinogenic		9
Mouse	1 mg	Dermal		Carcinogenic		9
Mouse	5 mg	Subcutaneous	Single	Carcinogenic	ſ	9
Mouse	2 mg	Gavage	2 Days	Increase hepatomas and pulmonary adenomas		7
Mouse	1.5 mg/kg	Gavage	Intermittent over 5 weeks	Increase hepatomas and pulmonary adenomas		7

Biodegradation is slow in soils and sediment. The half-life is approximately 1 year. B(a) a is strongly adsorbed by bacteria (9). B(a) as not sepected to bioconcentrate or bioaccumulate. Laboratory studies on experimental animals indicate that B(a) a is potentially carcinogenic following oral exposure. It has been shown to be carcinogenic following intermediate-term dermal exposure. The majority of genotoxicity tests have shown positive results, although some have also been negative. 33% of the B(a) a added to the water column of a controlled ecosystem was recovered in the sediment a week later (9). In atmospheric samples, B(a)a is found adsorbed to particulate matter and in the vapor phase (9). Benzo(a)anthracene (B(a)a) is a polycyclic aromatic hydrocarbon (PAH) which is a byproduct of incomplete combustion. B(a)a binds strongly to soil and sediment (K_{ow}= 4.1x10⁵ and K_{os}= 2x10⁵),

(Continued)

Bioaccumulation:

Daphnia Log BCF = 4.0 (9) Earthworm BCF = 0.125 (8) Oyster Log BCF = 3.03 (9)

•Cladacoeran (Daphnia pulex) BCF = 10,109 (24-hr) Bioconcentration:

Environmental Fate: • $K_{co} = 0.55 \times 10^6 - 1.87 \times 10^3$ (9) • $Log K_{cw} = 5.61$ (9)

References:

Cancer Res., vol 40, pg. 1157 (1980).

Cancer Res., vol 38, pg. 1699 (1978).

Cancer Res., vol 15, pg. 632, (1955).

Mol. Pharmacol., vol 4, pg 427, (1968).

ICF-Clement. 1990. Toxicological Profile for Benz(a)anthracene.

Eisler, R. 1987. Polycyclic aromatic hydrocarbon hazards to fish, wildlife, invertebrates: a synoptic review. U.S. Fish Wild. Serv. Biol. Rep. 85 (1.11), 81 pp.

Agency for Toxic Substances and Disease Registry (ATSDR). 1989. Toxicological Profile for Polycyclic Aromatic Hydrocarbons.

Beyer, W.N. 1990. Evaluating soil contamination. U.S. Fish Wild. Serv. Biol. Rep. 90(2), 25 pp.

œ.

U.S. Department of Health and Human Services, Bethesda, Md. 1995. Hazardous Substances Data Base (HSDB) On-Line Computer Database.

Table 4L-3

Ecological Toxicity Profile for Benzo(a)pyrene

Organism	Dose	Exposure Route	Exposure Period	Effect	Endpoint	Reference
			Benzo(a)pyrene	rene		
Rat		Oral	Acute	Death	$LD_{50} = 50 \text{ mg/kgBW}$	1
Rodent	0.002 mg/kg	Oral	Chronic	Tumor formation		1
Mouse	5 mg/kg/d	Oral	Intermediate	Cancer 15 -365 days		1
Mouse	10 mg/kg/d	Oral	GD 7-16	Reduced pup weights and reproductive alterations		2
Mouse	5.2 mg/kg/d	Oral-food	110 Days	Forestomach tumors		3
Mouse	33.3 mg/kg/d	Oral-food	Intermediate	Stomach cancer, lung tumors, leukemia		3
Mallard	0.036 $\mu g/k$ kg-whole egg	PAH mixture applied to external surface of egg		Reduction in embryonic growth, increased number of abnormal survivors		1
Hamster	500 ppm	Oral-food	4 days/week for 14 months	Tumorigenic		4
Mouse		Intraperitoneal	Acute	Death	$LD_{s0} = 250 \text{ mg/kg}$	5
Duck	50 - 200 mg	Intratracheal		Reduced survival rate		9
Mouse	40 - 160 mg/kg		GD 7-16	Female sterility		7

Table 4L-3

(Continued)

Organism	Dose	Exposure Route	Exposure Period	Effect	Endpoint	Reference
			Benzo(a) pyrene	rene		
Rat		Oral		Tumorigenic Gastrointestinal Musculo-skelatal	TD _{Lo} = 15 mg/kg	&
Mouse		Oral		Tumorigenic, lung and thorax	$TD_{LO} = 700 \text{ mg/kg}$	6
Hamster		Oral		Tumorigenic Gastrointestinal	$TD_{Lo} = 420 \text{ mg/kg}$	10
Meadow vole					NOAEL = 0.881 $mg/kg/day$	14
Red fox					NOAEL = 0.191 mg/kg/day	14
Rat		Oral		Embryonic or fetal effects	$TD_{Lo} = 40 \text{ mg/kg}$	11
Sandworm (Neanthes grenceodentata)			96 hours	Death	LC ₅₀ > 1000 μg/L	
Mouse		Oral		Decreased litter and male/female sterility	$TD_{LO} = 100 \text{ mg/kg}$	12
Mouse	40 mg/kg/d	Gavage	10 days during gestation	Reduced pup weights at 20 days		2

Benzo(a)pyrene B(a)P is a polycyclic aromatic hydrocarbon (PAH) present in the environment as a byproduct of incomplete combustion. Some microbes have also demonstrated the ability to synthesize B(a)P. The majority of B(a)P present in the environment is due to releases into the atmosphere. B(a)P that deposits on land and water will partition primarily to soil and sediment, where it is very persistent (K_{ow}=1.55x10° and K_{oc}=5.5x10°). Biodegradation is the principle route of B(a)P degradation in soil and sediment. The process is slow, with a T_{1/2} of approximately 290 days (soil). B(a)P has been shown to be acutely toxic in high doses. The primary endpoint of concern is cancer. B(a)P has been shown to cause cancer in experimental animals through exposure via inhalation, dermal application and ingestion. In addition, B(a)P is a recognized genotoxic and mutagenic agent and is a suspected human carcinogen (2).

(Continued)

Earthworm BAF = 0.342 (13)

Bioaccumulation:

Claum (Rongia cuneata) BCF (24 hrs.) = 9-236 Bluegill BCF (4 hrs.) = 12 Atlantic salmon, egg BCF (168 hrs.) = 71 Oyster BCF (14 days) = 242 Northern pike BCF (3.3 hrs.) = 3974 Bioconcentration:

References:

Eisler, R. 1987. Polycyclic aromatic hydrocarbon hazards to fish, wildlife, and invertebrates: a synoptic review. U.S. Fish Wild. Serv. Biol. Rep. 85(1.11), 81 pp.

ICF-Clement. 1987. Toxicological Profile for Benzo(a)pyrene.

Agency for Toxic Substances and Disease Registry (ATSDR). 1989. Toxicological Profile for Polcyclic Aromatic Hydrocarbons.

IARC Monographs on the evaluation of carcinogenic risk of chemicals to man. V3 104 (1973).

IARC Monographs on the evaluation of carcinogenic risk of chemicals to man. V32 213 (1983). ۶.

IARC Monographs on the evaluation of carcinogenic risk of chemicals to man. V3 109 (1983). ٠.

Shepard, T.H. 1983. Catalog of Teratogenic Agents, 4th ed.

Exp. Pathol. Vol 18 pg 288. 1980. ∞:

Gig. Sanit. Vol 45(12). 1980. 6

10. Z. Krebsforsch. Vol 65 pg 56. 1962.

11. Nauyn-Schmiedeberg's Arch. Pharmacol., Vol 272 pg 89. 1972.

12. Bio. Reprod., Vol 24 pg 183. 1981.

13. Beyer, W.N. 1990. Evaluating soil contamination. U.S. Fish Wild. Serv. Biol. Rep. 90(2), 25 pp.

14. Oak Ridge National Labs, Oak Ridge, Tn., Environmental Sciences and Health Sciences Research Division. 1994. Screening Benchmarks for Ecological Risk Assessment.

€.

Table 4L-4

Ecological Toxicity Profile for Benzo(b)fluoranthene

Organism	Dose	Exposure Route	Exposure Period	Effect	Endpoint	Reference
		Benz	Benzo(b)fluoranthene			
Rodent	40 mg/kg	Oral	Chronic	Carcinogenic		1
Rat	1 mg	Injection into lung	Single application, time release	Lung tumors		2
Mouse	1.2 mg/kg	Dermal application	3/week, lifetime	Skin tumors		2
Mouse	0.6 mg	Subcutaneous injection	3 injections/ 2 months	Sarcoma		3
Chicken	10 µg/egg	Injection into yolk sac through egg shell	Single injection	Decrease in hatchability		4
Chicken	15 ppm	Injection into developing embryo	Single injection, near term	Decreased survival rate		5

considered an important fate process; however, organisms which lack a metabolic detoxification enzyme system, namely phytoplankton, certain zooplankton, mussels (Mytilus edulis), scallops Benzo(b)fluoranthene [B(b)F] is a polycyclic aromatic hydrocarbon (PAH) that is a byproduct of incomplete combustion. In the environment, B(b)F adsorbs strongly to soil and sediment (Kow=1.15x106, Koc=5.5x103). It is considered immobile in soil. Leaching to groundwater is not expected. Bioaccumulation in vertebrate organisms is considered to be short-term and is not (Placopecten sp.), and snails (Litternia littorea), tend to accumulate PAHs (7). The high estimated Kow suggests that B(b)F will bioconcentrate appreciably in aquatic organisms. The presence of microsomal oxidase in fish suggests, however, that the PAHs, including B(b)F, will not bioconcentrate in fish due to the anticipated rapid metabolism of these compounds. (7) The major fate systemic or reproductive toxicity data is available for B(b)F. Experimental evidence exists that B(b)F is a skin carcinogen in animals following dermal application or subcutaneous injection. B(b)F of sediment-bound B(b)F is most likely biodegradation. The T12 in soil is estimated to be approximately 610 days. Volatilization from soil is not expected to be significant (7). Limited lethality, is considered a probable human carcinogen.

Bioaccumulation:

Earthworm BAF = 0.32 (6)

(Continued)

Environmental Fate:

Log $K_{oc} = 5.88 (7)$ Log $K_{ow} = 6.124 (7)$

Henry's Law Constant = 1.38×10^4 atm m³/mol (7) Vapor pressure = 5.0×10^7 mm Hg (7) Water solubility = 0.0012 mg/l (7)

References:

Eisler, R. 1987. Polycyclic aromatic hydrocarbon hazards to fish, wildlife, invertebrates: a synoptic review. U.S. Fish Wildl. Serv. Biol. Rep. 85(1.11), 81 pp.

Agency for Toxic Substances and Disease Registry. (ATSDR). 1989. Toxicological Profile for Polycyclic Aromatic Hydrocarbons.

Research on Cancer, V# 74 (1973).

Toxicol Appl Pharmacol 8(2):351 (1966).

Kuwabara, K., et al; Shokuhin Eisei Hen 14: 47-51 (1983).

Beyer, W.N. 1990. Evaluating soil contamination. U.S. Fish Wildl. Serv. Biol. Rep. 90(2), 25 pp. છં

U.S. Department of Health and Human Services, Bethesda, Md. 1995. Hazardous Substances Data Base (HSDB) On-Line Computer Database.

Ecological Toxicity Profile for Benzo(g,h,i)perylene

Organism	Dose 5 mg	Exposure Route I Lung implant	Exposure Period Benzo(g,h,i)perylene	Effect No tumor formation	Endpoint	Reference
Mouse	0.8 mg	Dermal		Carcinogenic		2
Rat		Interperitoneal		Tumor		3

Benzo(g,h,i)perylene [B(ghi)P] is a polycyclic aromatic hydrocarbon (PAH), that is a byproduct of incomplete combustion. In the environment, B(ghi)P is expected to adsorb strongly to soil and organic moving environmental waters may be important (5). B(ghi)P has the potential to bioconcentrate in aquatic systems (5). Limited toxicological data is available specific to B(ghi)P. Some evidence materials in sediment (Kow=3.2x10°, Koc=1.6x10°). Adsorption to suspended particulate matter and sediments is an important environmental process. Movement by sediment-sorbed B(ghi)P is probably an important transport process for this compound. B(ghi)P is highly immobile in soil. (5) The half-life in aerobic soils is estimated to be approximately 600 days. Volatilization from shallow, fastexists that B(ghi)P is genotoxic. The data regarding the carcinogenicity of B(ghi)P is considered inconclusive at this time.

Bioaccumulation:

• Earthworm BAF = 0.24 (4)

Environmental Fate:

- Henry's Law Constant = 1.6×10^6 atm m³/mol (5)

 - Vapor pressure = 1.0×10^{-10} mm Hg @ 25° C (5) Water solubility = 2.6×10^{4} mg/l @ 25° C (5)

References:

- J. Nat. Cancer Inst., 71 (3): 538-44. 1983.
- Eisler, R. 1987. Polycyclic aromatic hydrocarbon hazards to fish, wildlife, invertebrates: a synoptic review. U.S. Fish Wildl. Serv. Biol. Rep. 85(1.11), 81 pp.
- Agency for Toxic Substance and Disease Control (ATSDR). 1989. Toxicological Profile for Polycyclic Aromatic Hydrocarbons.
- Beyer, W.N. 1990. Evaluating soil contamination. U.S. Fish Wildl. Serv. Biol. Rep. 90(2), 25 pp.
- U.S. Department of Health and Human Services, Bethesda, Md. 1995. Hazardous Substances Data Base (HSDB) On-Line Computer Database. 'n

Ecological Toxicity Profile for Benzo(k)fluoranthene

Organism	Dose	Exposure Route	Exposure Period	Effect	Endpoint	Reference
			Benzo(k)fluoranthene			
Mouse	0.6 mg/injection	Subcutaneous injection	1 injection/month for 3 months	Sarcoma at site of injection		1
Rat	5 mg/kg	Implant		Tumors at site of implant		2
Mouse		Subcutaneous		Tumors at site of injection	$TD_{LO} = 72 \text{ mg/kg}$	E
Rodent	72 mg/kg	Oral	Chronic	Carcinogen		4

(Kow=1.15x106, Koc=5.5x102). Leaching from soil to groundwater can occur, especially in soils with low organic content (e.g., sand) or high porosity, or from sites htat have been exposed to spills Benzo(k)fluoranthene [B(k)F] is a polycyclic aromatic hydrocarbon (PAH) that is a byproduct of incomplete combustion. In the environment, B(k)F adsorbs strongly to soil and sediment or chemical wastes containing B(k)F. B(k)F is not expected to leach in soil under most other conditions. Volatilization from soil would probably be low due to B(k)F's low vapor pressure and strong adsorption to soil. B(k)F is not expected to volatilize significantly from the aquatic environment. (6) Lethality, systemic and reproductive toxicity data for B(k)F is limited. Experimental data that is available suggests that B(k)F is a weak carcinogen through the oral or dermal route. Studies to date also suggest that B(k)F may be genotoxic and mutagenic.

Bioaccumulation:

Earthworm BCF = 0.25(5)

Bioconcentration:

Fish Log BCF = 4.97 (6)

Environmental Fate:

- Henry's Law Constant = 4.2×10^8 atm m³/mol (6)
- Vapor pressure = 9.59×10^{-11} mm Hg @ 25° C (6)
 - Water solubility = $0.00076 \text{ ppm} @ 25^{\circ}$ (6)

References:

- 1. IARC Monographs, V32 15. 1983.
- 2. Polynucl. Aromatic Hydrocarbons Int. Synp. 7th vol 7, pg 571 1983.
 - 3. Acta. Unio. Int. Contra. Cancrum. Vol 19 pg 490. 1963.
- Eisler, R. 1987. Polycyclic aromatic hydrocarbon hazards to fish, wildlife, invertebrates: a synoptic review. U.S. Fish Wildl. Serv. Biol. Rep. 85(1.11), 81 pp.
 - 5. Beyer, W.N. 1990. Evaluating soil contamination. U.S. Fish Wildl. Serv. Biol. Rep. 90(2), 25 pp.
- U.S. Department of Health and Human Services, Bethesda, Md. 1995. Hazardous Substances Data Base (HSDB) On-Line Computer Database.

Table 4L-7

Ecological Toxicity Profile for Benzyl Alcohol

Organism	Dose	Exposure Route	Exposure Period	Effect	Endpoint	Reference
			Benzyl Alcohol	hol		
Rat .		Oral	One dose	Death	$LD_{50} = 1,230 \text{ mg/kg}$	1
Mouse		Oral	One dose	Death	$LD_{50} = 1,580 \text{ mg/kg}$	1
Rat		Inhalation	4 hours	Death	$LC_{50} = 2,000 \text{ ppm}$	-
Mouse	750 mg/kg/day	Gavage-water	GD 6-13	Decreased birth weight and pup weight gain		2
Rat		Oral	One dose	Death	$LD_{50} = 3.1 \text{ g/kg}$	3
Rat		Inhalation	8 hours	Death	$LC_{100} = 200-300 \text{ ppm}$	4
Fathead minnow (<i>Pimephales</i> <i>promelas</i>)		Medium	48 hours	Death	$LC_{50} = 770 \text{ mg/L}$	3
Inland silverside (Menidia beryllina)		Medium - static	96 hours	Death	$LC_{50} = 15 \text{ mg/L}$	9
Fathead minnow (juvenile)		Medium - static	1 hour	Death	$LC_{50} = 770 \text{ mg/L}$	9

Benzyl alcohol is used in the manufacturing of other benzyl compounds. It is also used in a variety of other common products such as perfumes, food flavorings, nylon dyes, insect repellents, and cosmetics (1).

Bioconcentration:
• BCF = 4.0 (Calculated)

(Continued)

Environmental Fate:

Biological half- life = 1.5 hours in dog Half-life in atmosphere = 2 days (estimated) Henrys's Law Constant = 3×10^{-7} atm m³/mol

References:

Lewis, R.J. 1992. Sax's Dangerous Properties of Industrial Materials. Van Nostrand Reinhold, N.Y.

Hardin, B.D., et al. 1987. Teratog. Carcinog. Mutagen. 7:29-48.

The Merck Index, 10th ed. Rahway NJ., 1983.

Verschueren, K. 1983. Handbook of Environmental Data of Organic Chemicals. Van Nostrand Reinhold, New York, N.Y.

U.S. Department of Health and Human Services, Bethesda, Md. 1995. Hazardous Substances Data Base (HSDB) on-line computer database.

Chemical Information Systems, Inc., Bethesda, Md. 1995. Aquatic Information Retrieval (AQUIRE) on-line computer database. ٠,

Table 4L-8

Ecological Toxicity Profile for Beryllium

Organism	Dose	Exposure Route	Exposure Period	Effect	Endpoint	Reference
			Beryllium			
Rat		Gavage as BeF ₂	1 day	Death	$LD_{50} = 18.8 \text{ mg/kg/day as BeF}_2$	
Rat		Gavage as BeF2, BeO	1 day	Death	$LD_{50} = 18.3 \text{ mg/kg/day}$	
Mouse		Gavage-water as BeSO ₄	1 day	Death	$LD_{50} = 140 \text{ mg/kg/day}$	-1
Mouse		Gavage as BeF2	1 day	Death	$LD_{50} = 19.1 \text{ mg/kg/day}$	-1
Meadow vole	,				NOAEL = 1.308 mg/kg/day	2
Red fox	•				NOAEL = 0.284 mg/kg/day	2
Daphnia magna				Death	$EC_{20} = 3.8 \ \mu g/L$	2
Fish				Death	$EC_{20} = 148 \ \mu g/L$	2

Berylium is a naturally occurring element that is released to the environment by the weathering of rocks and soils. It is also naturally emitted to the atmosphere by windblown dusts and volcanic particles. Fuel oil and coal combustion produce significant emissions. Beryllium is not expected to bioconcentrate or biomagnify in the food chain. Limited mobility in soil is expected due to its tendency to adsorb tightly. Leaching through soil to groundwater also is not expected.

Bioconcentration:
• Fish BCF = 19 (1)

- Agency for Toxic Substances and Disease Registry (ATSDR). 1991. Toxicological Profile for Beryllium.
- Oak Ridge National Laboratory, Environmental Sciences and Health Sciences Research Division, Oak Ridge, Tn. 1994. Screening Benchmarks for Ecological Risk Assessment.

Table 4L-9

Ecological Toxicity Profile for BHC (alpha, beta, and delta)

Reference		-	2	3	4	5	9	9	9	8	8
Endpoint				,		LOAEL=50 mg/kg/day	LOAEL = 12.5 mg/kg/day	LOAEL = 39 mg/kg/day	LOAEL = 12.5 $mg/kg/day$	NOAEL = 0.997 mg/kg/day	NOAEL = 0.172 mg/kg/day
Effect	alpha, beta and delta-BHC	Reduced weight gain, increased mortality, and chronic nephritis at 800 mg/kg. Fatty degeneration and centrilobular liver necrosis at higher doses	Histologically benign liver tumors	Hepatocellular carcinomas, liver nodular hyperplasia	Hepatocellular carcinomas and/or nodular hyperplasia	Hepatocellular carcinoma	Decreased weight gain	Decreased cell-mediated immunity	Atrophy of uterus, ovary, testes		
Exposure Period	alpha, beta	Lifespan	26 wk	24 wk	24 wk	72 wk	13 weeks as beta	30 days as beta	13 weeks as beta		
Exposure Route		Oral	Oral	Oral	Oral	Oral-food	Oral-food	Oral-food	Oral-food		
Dose		0.69-1100 mg/kg/day	70 mg/kg/day	12-58 mg/kg/- day	29 mg/kg/day					beta-BHC	beta- BHC
Organism		Rat	Mouse	Mouse	Mouse	Rat	Rat	Mouse	Rat	White footed mouse	Red fox

Table 4L-9

Organism	Dose	Exposure Route	Exposure Period	Effect	Endpoint	Reference
			alpha, beta	alpha, beta and delta-BHC		
Mouse		Oral-food	24 weeks as alpha	Hepatocellular carcinoma	LOAEL = 65 mg/kg/day	9
Rat		Oral-food	7 weeks as tech	Decreased sperm count	LOAEL = 50 mg/kg/day	9
Guppy / medaka	32 µg/L	Medium	3 months	Estrogenic activity		7
Meadow vole	Mixed isomers				NOAEL = 3.17 $mg/kg/day$	&
Red fox	Mixed isomers				NOAEL = 0.008 $mg/kg/day$	&
American Robin	Mixed isomers				NOAEL = 0.702 mg/kg/day	8
Great Blue Heron	Mixed isomers		,		NOAEL = 0.226 $mg/kg/day$	∞
Barn Owl	Mixed isomers				NOAEL = 0.387 mg/kg/day	8
Cooper's Hawk	Mixed isomers				NOAEL = 0.395 mg/kg/day	8
Red-tailed Hawk	Mixed isomers				NOAEL = 0.289 mg/kg/day	8
Alga (Scendesmus acutus)	alpha - BHC	Medium - freshwater		Growth inhibition	$EC = 500 \ \mu g/L$	6

(Continued)

6	EC ₅₀ = 0.1 ppm	Reduced reproductive efficiency		Medium	alpha - BHC
		aipha, beta and delta-BHC	alpha, beta		9000000000000
Reference	Endpoint Ro	Effect	Exposure Period	Exposure Route	

metabolites are chlorophenols and an epoxide. The conversion occurs mainly by hepatic enzymes. In mice, exposure to 64.6 mg technical grade BHC/kg/day for 3 months led to increased testicular weight and degeneration of seminiferous tubules. α-BHC, β-BHC, γ-BHC, and technical-grade BHC have been shown to be liver carcinogens in rats and mice (6). A bioconcentration toxicity of \(\theta\)-BHC is probably due to its longer half-life in the body and its accumulation in the body with time. The excretion of BHC isomers is primarily through the urine. The primary urinary γ -BHC (lindane) is the most toxic, followed by α -, δ -, and β -BHC; however, on chronic exposure β -BHC is the most toxic followed by α -, γ -, and δ -BHC. With chronic exposures, the increased Technical-grade hexachlorocyclohexane (BHC) has been shown to be well-absorbed in the gastrointestinal tract of animals. The toxicity of the isomers varies. With respect to acute exposure, factor of 1,613 has been calculated for BHC.

Bioconcentration (α-BHC):

Zebra fish steady-state BCF = 1100 (6)

Bioconcentration (β -BHC):

Zebra fish steady-state BCF = 1460 (6)

Bioconcentration (8-BHC):

Zebra fish steady-state BCF = 1770 (6)

Environmental Fate (α -BHC):

 $Log K_{oc} = 3.57$

Log K., = 3.46

Henry's Law Constant = 4.8×10^{-6} atm m³/mol Vapor Pressure at 20°C = 0.02 mm Hg

Environmental Fate (β -BHC):

 $Log~K_{\infty}=3.57$

= 4.50Log K.

Henry's Law Constant = 4.5×10^{-7} atm m³/mol Vapor pressure at 20° C = 0.005 mm Hg

(Continued)

Environmental Fate (8-BHC):

Log K_w = 3.8

 $\text{Log } \mathbf{K}_{ow} = 2.80$

Henry's Law Constant = 2.1×10^{-7} atm m³/mol

Vapor pressure at 20° C = 0.02 mm Hg

- World Health Organization, International Agency for Research on Cancer (IARC), Geneva. 1979. Monographs of the Evaluation of the Carcinogenic Risk of Chemicals to Man, V. 20,
- World Health Organization, International Agency for Research on Cancer (IARC), Geneva. 1979. Monographs of the Evaluation of the Carcinogenic Risk of Chemicals to Man, V. 20,
- World Health Organization, International Agency for Research on Cancer (IARC), Geneva. 1979. Monographs of the Evaluation of the Carcinogenic Risk of Chemicals to Man, V. 20, p. 211.
- World Health Organization, International Agency for Research on Cancer (IARC), Geneva. 1979. Monographs of the Evaluation of the Carcinogenic Risk of Chemicals to Man, V. 20, p. 212.
 - to et al. 1975. As cited in Toxicological Profile for Alpha-, Beta-, Delta-, and Gamma-Hexachlorocyclohexane. U.S. Department of Health and Human Services, 1993.
- Webster, P.W. 1991. Histopathological effects of environmental pollutants \(\beta\)-HCH and methylmercury on reproductive organs in freshwater fish. Comp. Biochem. Physiol. V.100C No. 15 Agency for Toxic Substances and Disease Registry (ATSDR). 1994. Toxicological Profile for Alpha-, Beta-, Gamma-, and Delta-Hexachlorocyclohexane
 - - Oak Ridge National Laboratory, Environmental Sciences and Health Sciences Research Division, Oak Ridge, Tn. 1994. Screening Benchmarks for Ecological Risk Assessment. U.S. Department of Health and Human Services, Bethesda, Md. 1995. Hazardous Substances Data Base (HSDB) on-line computer database.

Table 4L-10

Ecological Toxicity Profile for BHC (gamma), Lindane

Organism	Dose	Exposure Route	Exposure Period	Effect	Endpoint	Reference
			gamma-l	gamma-BHC (Lindane)		
Rat		Gavage	One time	Death	$LD_{50} = 88 \text{ mg/kg/day}$	1
Rat		Gavage-oil	One time	Decreased sexual receptivity	LOAEL = 33 mg/kg/day	1
Rabbit		Capsule	5-6 weeks	Suppressed antibody response	LOAEL = 1.5 mg/kg/day	1
Rat		Oral-food	90 days	Disrupted spermatogenesis, testicular atrophy	LOAEL = 75 mg/kg/day	1
Mallard					$LD_{50} = >2,000 \text{ mg/kg}$	2
Bobwhite quail		Oral	Acute		$LD_{50} = 120-130 \text{ mg/kg}$	3
Mallard	•	Applied to eggs	One time	Death, birth defects, stunted growth	LC ₅₀ = 74,000 mg/L	4
Meadow vole					NOAEL = 15.8 mg/kg/day	. 2
Red fox					NOAEL = 3.44 mg/kg/day	5
American robin					NOAEL = 4.66 mg/kg/day	5
Cooper's hawk					NOAEL = 2.62 mg/kg/day	5
Red-tailed hawk					NOAEL = 1.92 mg/kg/day	. 5

Table 4L-10

Oreanism	Dosa	Exposure	Exposure	Differen	Do Jacins	n.e
Ot Bannsini	ACOUT	INOUE	TOTIOT	FILECE	Enapoint	Keterence
			gamma-l	gamma-BHC (Lindane)		
Japanese quail		Oral - diet		Death	$LC_{s0} = 425 \text{ ppm}$	9
Water flea (Daphnia pulex)			48 hours		$LC_{48} = 460 \mu g/L$	9
Insect larva (Chaoborus)			48 hours		LC ₅₀ = 0.008 ppm	9
Gastropod (Lymnea stagnalis)			48 hours		LC ₅₀ =7.3 ppm	9
Fathead minnow			96 hours	Death	$LC_{so} = 87 \mu g/L$	9
Coho salmon			96 hours	Death	$LC_{s0} = 23 \ \mu g/L$	9

decomposition process for BHCs in soil and water. Lindane can leach from soil to groundwater, sorb to soil particles, or volatilize to the atmosphere. Lindane is bioconcentrated to high levels treatment, in forestry, and for animal treatment. BPA no longer permits the use of lindane for purposes involving direct aquatic application. Direct supervision is required for certain applications of lindane on livestock, structures, and domestic pets. Once released in the environment, BHCs can partition to all environmental media. Biodegredation is believed to be the dominant terrestrial and aquatic organisms. Technical-grade BHC has been shown to be well-absorbed in the gastrointestinal tract of animals. The toxicity of the isomers varies. With respect to acute Lindane is used as an insecticide and as a therapeutic scabicide, pediculocide, and ectoparasiticide for humans and animals. As an insecticide, it is used on fruit and vegetable crops, for seed following uptake from surface waters by a number of aquatic organisms. Lindane and isomers do not undergo biomagnification in terrestrial food chains to a great extent due to metabolism by exposure, γ-BHC (lindane) is the most toxic, followed by α-, δ-, and β-BHC; however, chronic exposure to β-BHC is the most toxic, followed by α-, γ-, and δ-BHC. With chronic exposures, the increased toxicity of eta-BHC is probably due to its longer half-life in the body and its accumulation in the body with time. The excretion of BHC isomers is primarily through the urine. The primary urinary metabolites are chlorophenols and an epoxide. The conversion occurs mainly by hepatic enzymes. Lindane has not been reported to cause fetotoxicity in animals. In mice, exposure to 64.6 mg technical-grade BHC/kg/day for three months led to increased testicular weight and degeneration of seminiferous tubules. α-BHC, β-BHC, γ-BHC, and technical-grade-BHC have been shown to be liver carcinogens in rats and mice (1).

Bioaccumulation:

Earthworm BAF = 4.2(7)

(Continued)

Bioconcentration:

- Brine shrimp BCF (from surface water) = 183
- Rainbow trout fry BCF (from surface water) = 319
 - Pink shrimp BCF (from surface water) = 84
- = 490 Sheepshead minnow BCF (from surface water) Prawn BCF (from surface water) = 1,273

Environmental Fate:

- Log $K_{ow} = 3.3$
- Henry's Law Constant = 3.2×10^{-6} m³/mol
 - Vapor pressure = $9.4 \times 10^{-6} \text{ mm Hg}$

References:

- Agency for Toxic Substances and Disease Registry (ATSDR). 1992. Toxicological Profile for Alpha-, Beta-, Gamna-, and Delta-Hexachlorocyclohexane.
- Hudson, R.H., R.K. Tucker, and M.A. Haegele. 1984. Handbook of Toxicity of Pesticides to Wildlife, second edition. U.S. Department of the Interior, Fish and Wildlife Service Resource Publication 153. Washington, D.C. ri
- Worthing, C.R., and S.B. Walker. 1983. The Pesticide Manual, A World Compendium, seventh edition. The British Crop Protection Council. е;
- Hoffman, D.J. 1994. Measurements of toxicity and critical stages of development, wildlife toxicity and population modeling. In Integrated Studies of Agroecosystems, R.J. Kendal and T.E. Lacher, Jr., eds. Lewis P. 4.

Oak Ridge National Laboratory, Environmental Sciences and Health Sciences Research Division, Oak Ridge, Tn. 1994. Screening Benchmarks for Ecological Risk Assessment.

'n

- U.S. Department of Health and Human Services, Bethesda, Md. 1995. Hazardous Substance Data Base (HSDB) on-line computer database. 9
 - - Beyer, W.N. 1990. Evaluating soil contamination. U.S. Fish Wildl. Serv. Biol. Rep., 90(2), 25pp.

Table 4L-11

Ecological Toxicity Profile for Chloroethane

Organism	Dose	Exposure Route	Exposure Period	Effect	Endpoint	Reference
			Chi	Chloroethane		
Rat		Inhalation	102 weeks, 5 day/wk, 6 hours/day	Reproductive	NOAEL = 15,000 ppm	1
Mouse		Inhalation	100 weeks, 5 day/wk, 6 hours/day	Reproductive	NOAEL = 15,000 ppm	1
Mouse		Inhalation		Cancer effect level (uterus, liver, lungs)	LOAEL = 15,000	1

The high vapor pressure and volatility from water suggest that this compound would evaporate rapidly from soil sufaces and that volatilization would be a mojor removal process. The relatively low Ko values for chloroethane indicate that this compound is highly mobile in soil and may undergo significant leaching (1).

Bioconcentration: • BCF = 7.5 based on K_{ow} and water solubility (1)

Environmental Fate:

 $Log K_{oc} = 1.52$ $Log K_{ow} = 1.43$

Henry's Law Constant at 24.8° C = 1.11×10^{-2} atm-m³/moL

Water solubility = 5.678 mg/L at 20°C Vapor Pressure at $20^{\circ}\text{C} = 1,008 \text{ mmHg}$

References:

1. Agency for Toxic Substances and Disease Registry (ATSDR). 1989. Toxicologial Profile for Chloroethane.

Table 4L-12

Ecological Toxicity Profile for Chloroform

Organism	Dose	Exposure Route	Exposure Period	Effect	Endpoint	Reference
			Chlor	Chloroform		
Rat (F)		Inhalation	4 hours	Death	$LC_{50} = 9,770 \text{ ppm}$	1
Mouse (F)		Inhalation	9 hours	Death (50% mortality)	LOAEL = 4,500 ppm	1
Rat (M)		Inhalation	6 months 5 days/week 7 hours/day	Increased Mortality (60%)	LOAEL = 85 ppm	1
Rat		Inhalation	10 days GD 6-15, 7 hr/day	73% decreased conception rate	LOAEL = 300 ppm	1
Mouse		Inhalation	8 days GD 8-15, 7 hr/day	30-48% decreased ability to maintain pregnancy	LOAEL = 100 ppm	1
Rat (M)		Oral (Gavage)	1 time	Death	$LD_{50} = 908 \text{ mg/kg/day}$	1
Mouse		Oral (Gavage)	1 time	Death	$LD_{50} = 1,100 \text{ mg/kg/day}$	1
Rabbit		Oral (Gavage)	13 days GD 6-18, 1 time	Abortion	LOAEL = 63 mg/kg/day	1
Rat		Oral (Gavage)	78 weeks 5 days/week 1 time/day	Decreased survival	LOAEL = 90 mg/kg/day	1
Water flea (Daphnia magna)		Static test	48 hours		$LC_{50} = 28,900 \ \mu g/L$	2

Fable 4L-1

Organism	Dose	Exposure Route	Exposure Period	Effect	Endpoint	Reference
			Chlor	Chloroform		
Rainbow trout (Salmo gairdneri)		Static test	96 hours		$LC_{50} = 43,800 \ \mu g/L$	2
Bluegill (Lepomis macrochirus)		Static test	96 hours		$LC_{50} = 115,000 \ \mu g/L$	2
Pink shrimp (Penaeus duorarum)		Static test	96 hours		$LC_{s0} = 81,500 \ \mu g/L$	2
Rainbow trout (embryo)	10,600 μg/L		23 days	40% teratogenesis		2
Pink shrimp (Penaeus duorarum)		Medium - static	96 hours	Death	LC ₅₀ = 81.5 mg/L	3
Bluegill (Lepomis macrochirus)		Medium - static	96 hours	Death	LC ₅₀ = 43.8 mg/L	33
Water flea (Daphnia magna)		Medium - static	48 hours		LC ₅₀ = 28.9 mg/L	8
Rainbow trout (Salmo gairdneri)		Medium - flow- through	27 Days	40% teratogenesis	LC ₅₀ = 2.03 mg/L	E.

(Continued)

t		4	g/kg/day 4	(/L 5
Endpoint		NOAEL = 29.7 mg/kg/day	NOAEL = 6.4 mg/kg/day	Proposed AWQC - LOEL = 1240 μ g/L aquatic life
Effect	Chloroform			Proposed AWQC - protective of aquatic life
Exposure Period	Chlor			Chronic
Exposure Route				
Dose				
Organism		Meadow vole	Red fox	Freshwater organism

Significant effects are not expected in terrestrial or aquatic ecosystems rapidly diluted and degraded to low concentrations in the troposphere. Acute efects on wildlife can occur in the vicinity of major chloroform spills, but signs of chronic effects from long term exposure to low ambient levels are unlikely.

Environmental Fate:

Log $K_{ow} = 1.92$ Henry's Law Constant at $20^{\circ}C = 3.0 \times 10^{3}$ atm/m³/mol

Vapor Pressure at 20°C = 159 mmHg

Bioconcentration:

Bluegill sunfish BCF = 6 and 8 Green alga BCF = 690

References:

1. Agency for Toxic Substances and Disease Registry (ATSDR). 1991. Toxicological Profile for Chloroform.

U.S. Environmental Protection Agency (EPA). 1984. EPA Health Assessment Document for Chloroform. EPA-600/8-84-004 A.

U.S. Department of Health and Human Services, Bethesda, Md. 1994. Hazardous Substances Data Base (HSDB) on-line computer database.

Oak Ridge Natiuonal Labs, Environmental Sciences and Health Sciences Research Division, Oak Ridge, Tn. 1994. Screening Benchmarks for Ecological Risk Assessment.

U.S. Environmental Protection Agency (EPA), Office of Science and Technology, Health and Ecological Criteria Divison, Washington, D.C. 1991. Water Quality Criteria Summary.

Table 4L-13

Ecological Toxicity Profile for Chloromethane

Organism	Dose	Exposure Route	Exposure Period	Effect	Endpoint	Reference
			Chloromethane	thane		
Mouse		Inhalation	6 hours	Death	$LC_{50} = 2,200 \text{ ppm}$	
Rat		Inhalation	2-3 days 24 hours/day	Kidney failure	LOAEL = 1,000 ppm	
Mouse		Inhalation	12 months 5 days/week 6 hours/day	Increased mortality	LOAEL = 1,000 ppm	1
Mouse		Inhalation	12 days 6 hours/day GD 6-17	Heart defect in fetuses	LOAEL = 500 ppm	1
Rat		Inhalation	18 months 5 days/week 6 hours/day	Testicular atrophy	LOAEL = 1,000 ppm	1
Bluegill (Lepomis macrochirus)		Medium - static	96 hours	Death	$LC_{50} = 550 \text{ mg/L}$	5
Inland silverside (Menidia beryllina)		Medium - static	96 hours	Death	$LC_{50} = 27 \text{ mg/L}$	2

Bioconcentration:

• BCF = 2.88

Environmental Fate:

Log $K_{co}=0.7$ Log $K_{co}=0.91$ Henry's Law Constant at $25^{\circ}C=8.82\times10^3$ atm m^3/mol Vapor Pressure at $25^{\circ}C=4,309.7$ mm Hg

References:

file for Chloromethane. Agency for Toxic Substances and Disease Registry (ATSDR). 1990. Toxicologic Chemical Information Systems, Inc., Bethesda, Md. 1995. Aquatic Information

Table 4L-14

Ecological Toxicity Profile for Chrysene

Organism	Dose	Exposure Route	Exposure Period	Effect	Endpoint	Reference
			Chrysene			
Rodent	99 mg/kg	Oral	Chronic	Carcinogenicity		1
Rat	100 mg/kg/day	Dermal	17 months	Benign and malignant skin tumors		2
Rat	100 mg/kg/day	Intra-gastrically	4 days	Induction of hepatic aldehyde dehydrogenase		2
Rat	50 mg/kg/day	Intra-gastrically		Induction of hepatic carboxylesterase		2
Mallard	0.27 μg/kg whole egg	PAH mixture applied to the external surface of the egg		Reduction in embryonic growth, increased number of abnormal survivors		1
Carp (Cyprinus carpio)		Oral-diet	43 hours	Death	EC = 190-218 mg/kg	3
Chinook salmon (Oncorhynchus tshawtscha)		Medium - static	24 hours	Death	$EC = 10000$ $\mu g/L$	3
Water flea (Daphnia magna)		Medium - renewal	24 hours	Death	$LC_{s0} = 0.7$ $\mu g/L$	3

(Continued)

Dose
il in the second

Chrysene is one of the polycyclic aromatic hydrocarbons (PAHs). Chrysene is present in the environment due to natural and man-made sources. Combustion is the primary source of chrysene in Biodegradation ocurs in soils and sediment at a slow rate (t,, = 1,000 days). Limited toxicological data specific to chrysene is available. At relatively high concentrations, ingestion of chrysene is however, PAHs are not likely to appreciably bioconcentrate in organisms which have mucrosomal oxidase, such as fish, as this enzyme enables the organism to metabolize them. Some marine organisms have no detectable aryl hydrocarbons hydroxylase enzyme systems, namely phytoplankton, certain zooplankton, mussels (Mytilus edulis), scallops (Placopecten sp.), and snails (Litternia the environment. Chrysene is persistent in the environment, partitioning to soil and sediment (Kow = 4.1×10°, Koc = 2×10°, and Log Kow = 5.61). The potential exists for bioaccumulation. fatal to rats and mice. Experiental evidence suggests that chrysene is a weak carcinogen. Moderate evidence supports the conclusion that chrysene is a skin carcinogen in experimental animals. Chrysene has been shown to be genotoxic in some test systems. The evidence is considered weakly positive. Based on the estimated BCF values, chrysene would be expected to bioconcentrate; ilitorea). Those organisms which lack a metabolic detoxification system tend to accumulate PAHs. Volatilization from water should not be an important process. (5)

Bioaccumulation:

Earthworm BAF = 0.07 (4)

Bioconcentration:

- BCF = 10,816
- Water flea (Daphnia magna) BCF (after 70 hours—rapidly eliminated) ≈ 2,000 (5)

Environmental Fate:

- $K_{ow} = 5.61-5.91$
- Henry's Law Constant = 9.4×10^{-8} atm m³/mol

- Eisler, R. 1987. Polycyclic aromatic hydrocarbon hazards to fish, wildlife, and invertebrates: a synoptic review. U.S. Fish Wildl. Serv. Biol. Rep. 85(1.11), 81 pp.
 - Agency for Toxic Substance and Disease Registry (ATSDR). 1989. Toxicological Profile for Polycyclic Aromatic Hydrocarbons. Chemical Information Systems, Inc., Baltimore, Md. 1995. Aquatic Information Retrieval (AQUIRE) on-line computer database.
 - 4. Beyer, W.N. 1990. Evaluation of soil contamination. U.S. Fish Wildl. Serv. Biol. Rep. 90(2).
- U.S. Department of Health and Human Services, Bethesda, Md. 1995. Hazardous Substances Data Base (HSDB) on-line computer database.

Table 4L-15

Ecological Toxicity Profile for Dibenz(a,h)anthracene

Organism	Dose	Exposure Route	Exposure Period	Effect	Endpoint	Reference
			Dibenz(a,h)anthracene	ene		
Mouse		Oral	Acute	Death	$TD_{LO} = 4,160 \text{ mg/kg}$	1
Rat	200 mg/kg	Oral	Acute	Oncogenic trans- formation		2
Rat		Subcutaneous	Acute	Tumorigenic	$TD_{LO} = 2.4 \text{ mg/kg}$	3
Mouse		Subcutaneous	Acute	Tumors at site of injection	$TD_{LO} = 0.445 \text{ mg/kg}$	4
Guinea pig		Intervaneous	Acute	Tumors; lung and thorax	$TD_{LO} = 30 \text{ mg/kg}$	5
Rat	3 mg/Kg	Interperitoneal	Acute	Reduced growth rate		9
Rat	5 mg/day	Subcutaneous	GD 1 to birth	Fetal resorption and death		7
Rat	0.76 - 0.85 mg/day	Oral	Chronic	Pulmonary adenomas		8
Mouse		Subcutaneous	Acute (single injection)	Local sarcomas	LOAEL = 0.0019 mg	7
Mouse	0.012 mg/kg/day	Dermal application	Lifetime	Papilloma carcinoma		7
Rodent	0.006 mg/kg	Oral	Chronic	Carcinogenic		6
Frog		Injection into kidney	·	Renal adenosarcomas	$TD_{LO} = 12 \text{ mg/kg}$	10
Pigeon		Intramuscular Injection		Fibrosarcomas at site of injection (12 %)	$TD_{LO} = 6 \text{ mg/kg}$	11

Table 4L-15

7 KH 2 KH 2

is estimated to be approximately 18-21 days. Limited lethality and systemic or reproductive toxicity data are available for D(ah)A. D(ah)A has been shown to be carcinogenic in experimental animals = 6.9×10°, K_{oc} = 3.3×10°). It is considered immobile in soil and leaching to groundwater is not expected. The major fate of soil- and sediment-bound D(ah)A is biodegradation. The T₁₅ in soil (lung, thorax, and skin). There is sufficient evidence that D(ah)A is active in short-term genotoxicity tests. D(ah)A is expected to bioconcentrate in aquatic organisms; however, it may bioconcentrate in organisms which have microsomal oxidase, such as fish, as this enzyme enables the rapid metabolization of certain PAHs. Those organisms which lack a metabolic detoxification enzyme system, namely phytoplankton, certain zooplankton, mussels (Mytlus edulis), scallops (Placopecten sp.), and snails (Litternia littorea), tend to accumulate PAHs. Volatilization should not be an important Dibenz(a,h)anthracene [D(ah)A] is a polycyclic aromatic hydrocarbon (PAH) that is a byproduct of incomplete combustion. In the environment, D(ah)A adsorbs strongly to soil and sediment (K_w process. (13)

Bioconcentration:

BCF = 51,000 (13)

Environmental Fate:

- Henry's Law Constant $< 3 \times 10^7$ atm m³/mol
 - Vapor Pressure = 1×10^{-10} mm Hg
 - Water Solubility = 0.0005 ppm

- Lewis, R.J. Sax's Dangerous Properties of Industrial Metals, 8th edition.
- 2. Cancer Res, Vol 38 pg 2621 (1978).
- Carcinog. Aromatic Hydrocarbons, pg 1975 (1975).
- Carcinogenesis, Vol 11, pg 1721 (1990).
- 5. J. Nat. Cancer Inst, vol 13, pg 705 (1952).
- 6. Int. Agency for Research on Cancer, V32, 301 (1983).

(Continued)

Agency for Toxic Substances and Disease Registry (ATSDR). 1989. Toxicological Profile for Polycyclic Aromatic Hydrocarbons.

8. Int. Agency for Research on Cancer, V3 182 (1973).

Eisler, R. 1987. Polycyclic aromatic hydrocarbon hazards to fish, wildlife, invertebrates: a synoptic review. U.S. Fish Wildl. Serv. Biol. Rep. 85(1.11), 81 pp.

10. Cancer Res, vol 24, (1969).

11. J Natl Cancer Inst, vol 32 pg 905, (1964).

12. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Man V3 186 (1973).

U.S. Department of Health and Human Services, Bethesda, Md. 1995. Hazardous Substances Data Base (HSDB) on-line computer database. 13.

Ecological Toxicity Profile for Dibromomethane

Bioconcentration of dibromomethane in aquatic organisms should not be significant. Dibromomethane will not adsorb significantly to soil or sediment (2).

Environmental Fate:

 $\mathbf{N}_{oc} = L_{D}\left(L\right)$

• Log $K_{ow} = 1.23 (1)$

Henry's Law Constant = 8.88×10^{-4} atm m³/mol (2)

Water solubility = 11.70 g/L @ 15°C (2)

Bioconcentration Factor (BCF):
• Fish, BCF = 5 (1)

References:

1. Sims and Hansen, Soil, Transport, and Fate Database, Version 2.0, Utah State University, April 1991.

U.S. Department of Health and Human Services, Bethesda, Md. 1995. Hazardous Substances Data Base (HSDB) on-line computer database.

Table 4L-17

Ecological Toxicity Profile for 1,2-Dichloroethane

Reference		1	1	1	1	1	1	1	1	1	1
Endpoint		LOAEL = 200 ppm	LOAEL = 400 ppm	LOAEL = 1000 ppm	LOAEL = 1000 ppm				LOAEL = 259 mg/kg/day	LOAEL = 92 mg/kg/day	LOAEL = 47 mg/kg/day
Effect	thane	Death (5/14)	Death (5/5)	Death (2/6)	Death (2/2)	Embryo mortality	Decreased fertility	Increased testicular lesions	Decreased body weight gain	Death (42/50)	Cancer Effect Levelliver, spleen, adrenal gland, pancreas
Exposure Period	1,2-Dichloroethane	25 weeks 5 days/week 7 hours/day	20 weeks 5 days/week 7 hours/day	9 weeks 5 days/week 7 hours/day	8 weeks 5 days/week 7 hours/day	4 months prior to mating, continuing through pregnancy	6 months	Intermittent 2 years	13 weeks	78 weeks	78 weeks
Exposure Route		Inhalation	Inhalation	Inhalation	Inhalation	Inhalation	Inhalation	Inhalation	Water	Oral-gavage	Oral-gavage
Dose						4.7 ppm	14 ppm	udd 09			
Organism		Guinea pig	Rabbit	Dog	Monkey	Rat	Rat	Rat	Rat	Rat	Rat

Table 4L-17

Organism	Dose	Exposure Route	Exposure Period	Effect	Endpoint	Reference
			1,2-Dichloroethane	ethane		
Freshwate r aquatic organism			Chronic	Proposed AWQC - protection of aquatic life	$LOEL = 20,000~\mu g/L$	ю
Meadow Vole					NOAEL = 46.3 mg/kg/day	4
Red Fox					NOAEL = 10.06 $mg/kg/day$	4
American Robin					NOAEL = 46.81 mg/kg/day	4
Cooper's Hawk		:			NOAEL = 26.4 $mg/kg/day$	4
Red-tailed Hawk					NOAEL = 19.3 mg/kg/day	4

1,2-Dichloroethane does not occur naturally. It is produced commercially and used as a chemical intermediate in the production of several other chemicals as well as a lead scavenger additive to unleaded gasoline. Previously it was used in varnish and finish removers, soaps and scouring compounds, solvents, degreasers, paints, adhesives, and fumigants. Releases to surface water and soils are likely to partition rapidly to the atmosphere by volitilization. Little absorption to soil is expected. An experimental BCF of 2 indicates that the compound will not bioconcentrate in aquatic organisms or bioaccumulate in the food chain (1),

Bioconcentration:

BCF (Bluegill) = 2(2)

Environmental Fate:

Log $K_{ow} = 1.45 - 1.48$ Vapor Pressure at $20^{\circ}C = 64 \text{ mmHg}$

References:

Agency for Toxic Substances and Disease Registry (ATSDR). 1994. Toxicological Profile for 1,2-Dichloroethane.
U.S. Environmental Protection Agency (EPA). 1984. Health Effects Assessement for 1,2-Dichloroethane.
U.S. Environmental Protection Agency (EPA), Office of Science and Technology, Health and Ecological Criteria Division, Washington, D.C. 1991. Water Quality Criteria Summary. Oak Ridge, Oak Ridge, Th., Environmental Sciences and Health Sciences Research Division. 1994. Screening Benchmarks for Ecological Risk Assessment.

Table 4L-18

Ecological Toxicity Profile for 1,2-Dichloroethene (cis,-trans-)

Organism	Dose	Exposure Route	Exposure Period	Effect	Endpoint	Reference
			1,2-Dichloroethe	1,2-Dichloroethene (cis-, trans-)		
Mouse		Inhalation as trans	1 day, 6hrs/day	Death	$LC_{50} = 21723 \text{ ppm}$	1
Rat		Oral - gavage as trans	1 day	Death	$LC_{50} = 1275$ mg/kg/day	1
Mouse		Oral - gavage as trans	1 day	Death	$LC_{50} = 2122 \text{ mg/kg/day}$	1
Freshwater Aquatic Organsisms		Medium	Acute	Proposed water quality criteria- protective of aquiatic life	$LOEL = 11,600 \ \mu g/L$	2
Bluegill (Lepomis macrochirus		Medium-static	96 hours	Death	$LC_{50} = 140 \text{ mg/L}$	3
Meadow Vole			:		NOAEL = 39.8 mg/kg/day	4
Red Fox					NOAEL = 8.65 mg/kg/day	4

environment will eventually enter the atmosphere or groundwater, where it is broken down further. Bioconcentration factors (BCFs) in fish ranging between 5 and 23 have been estimated for the 1,2-dichloroethene isomers using linear regression. These BCFs suggest that these compounds do not bioconcentrate significantly in aquatic organisms and that there is little potential for cis- and trans-1,2-Dichloroethene are man-made compounds. Sources of 1,2-dichloroethene environmental exposure include: process and fugitive emissions from its production and use as a chemical intermediate; evaporation from wastewater streams, landfills, solvents, emissions from combustion or heating of vinyl copolymers. Most of the 1,2-dichloroethene released in the biomagnification within the food chain.

Bioconcentration (cis-1,2-dichloroethene):

BCF = 0.8 (2)

(Continued)

Environmental Fate (cis-1,2-dichloroethene):

Log K_{oc} = 1.51-1.69

 $Log K_{ow} = 1.86$

Henry's law constant = 4.08×10^{-3} atm-m³/mole at 24.8°C

Vapor pressure = 215 mmHg

Environmental Fate (trans-1,2-dichloroethene):

 $Log K_{\infty} = 1.51-1.69$

 $Log K_{ow} = 2.09$

Henry's law constant = 9.38×10^3 atm-m³/mole at 24.8°C Vapor pressure = 336 mmHg

References:

Agency for Toxic Substance and Disease Registry (ATSDR). 1989. Toxicological Profile for 1,2-Dichloroethene.

Oak Ridge National Labs, Oak Ridge, Tn., Environmental Sciences and Health Sciences Division. 1994. Screening Benchmarks for Ecological Risk Assessmsnt.

Chemical Information Systems, Inc., Baltimore, Md. 1994. Aquatic Information Retrieval (AQUIRE) On-Line Computer Database.

U.S. Department of Health and Human Services, Bethesda, Md. 1994. Hazardous Substances Data Base (HSDB) On-Line Computer Database.

Table 4L-19

Ecological Toxicity Profile for Endosulfan, Endosulfan I, II, and Endosulfan Sulfate

Organism	Dose	Exposure Route	Exposure Period	Effect	Endpoint	Reference
		End	osulfan, Endosu	Endosulfan, Endosulfan I, II, and Endosulfan Sulfate	Sulfate	
Rat		Gavage-oil	One time	Death	$LD_{50} = 121 \text{ mg/kg/day}$	1
Rat		Gavage-oil	7 days	Increased liver weight	LOAEL = 2.5 mg/kg/day	1
Rat		Gavage-oil	7-15 days	Decreased testosterone levels	LOAEL = 5 mg/kg/day	1
Rat		Oral-food	84 days	Decreased litter weight	LOAEL = 3.75 mg/kg/day	1
Mouse		Oral-food	78 weeks	Testicular atrophy (males), ovarian cysts (females)	LOAEL (males) = 0.46 mg/kg/day, (females) = 0.26 mg/kg/day	1
Rainbow trout		Medium	96 hour static	Death	$LC_{50} = 1.6 \mu g/L$	2
Freshwater aquatic organism		All isomers	Chronic	Protection of aquatic life	AWQC = 0.0056 ug/L	&
Freshwater fish (Channa puncutata)		Medium	96 hour		$LC_{50} = 0.16 \text{ ppb (Endosulfan I)}$ $LC_{50} = 4.8 \text{ ppb (tech)}$ $LC_{50} = 6.6 \text{ ppb (Endosulfan II)}$	
Carp (Cirrhinus mrigrala)			96 hour		$LC_{50} = 0.6$ ppb (Endosulfan I) $LC_{50} = 1.3$ ppb (tech) $LC_{50} = 8.8$ ppb (Endosulfan II)	
Saltwater aquatic organism		All isomers	Chronic	Protection of aquatic life	AWQC = 0.0087 ug/L	&

Table 4L-19

Organism	Dose	Exposure Route	Exposure Period	Effect	Endpoint	Reference
		End	osulfan, Endosu	Endosulfan, Endosulfan I, II, and Endosulfan Sulfate	Sulfate	
Japanese quail		Egg immersed 30 sec.	Observed 15- 17 days	Embryonic mortality	0.1 g/L	٠
Mallard		Oral		Acute	$LD_{50} = 205-245 \text{ mg/kg}$	4
Ring-necked pheasant		Oral		Acute	LD ₅₀ = 620-1,000 mg/kg	4
Meadow vole		Endosulfan			NOAEL = 0.29 mg/kg/day	6
Red fox		Endosulfan			NOAEL = 0.065 mg/kg/day	6
American Robin		Endosulfan			NOAEL = 17.22 mg/kg/day	6
Great Blue Heron		Endosulfan			NOAEL = 5.54 mg/kg/day	6
Cooper's hawk		Endosulfan			NOAEL = 9.69 mg/kg/day	6
Red-tailed hawk		Endosulfan			NOAEL = 7.10 mg/kg/day	6

Pure endosulfan may be found as two different conformations: \alpha, or I, and \beta, or II. Technical grade endosulfan consists mainly of these isomers as well as a few impurities and degradation products. One of these products, endosulfan sulfate, which has similar chemical properities to the pure substance, results from endosulfan's photolysis, biotransformation, or oxidation. Both endosulfan isomers can be readily metabolized to endosulfan sulfate by a variety of organisms. Endosulfan has been released into the environment mainly as a result of its use as an insecticide. There are no known natural sources of the compound. (3) Endosulfan does not bioaccumulate to high levels in terrestrial or aquatic systems. In aquatic systems, residue levels in fish generally peak within 7 days to 2 weeks after continuous exposure to endosulfan. In terrestrial systems, endosulfan generally is not translocated in plant tissues (1). Endosulfan does not appear to biomagnify in the food chain. No toxicity information was found Endosulfan is registered in the United States and is widely used as a contact and stomach insecticide on over 60 food and non-food crops. for the environmental fate specific to the isomers of endosulfan sulfate.

Bioconcentration (Endosulfan):

- BCF $\leq 3,000$
- Mussel BCF = 600, 22.5
- Striped mullet BCF = 2,755(1)

Bioconcentration (Endosulfan I);

Mosquitofish BCF = 59

(Continued)

Environmental Fate (Endosulfan):

- Log K. = 3.5
- $Log K_{ow} = 3.55, 3.62$
- Henry's Law Constant = 1.0×10^{-5} atm m³/mol @ 25°C
 - Vapor Pressure = 1×10⁻⁵ mm Hg @ 25°C
- Water Solubility = 0.16-0.15 ppm @ 22°C

Environmental Fate (Endosulfan I):

- Log Kow = 3.83, 3.55
- Henry's Law Constant = 1.0×10^{-5} atm m³/mol @ 25°C
 - Vapor Pressure = 1×10^{-5} mm Hg @ 25° C
 - Water Solubility = 0.32 ppm @ 22°C

Environmental Fate (Endosulfan II):

- $Log K_{ow} = 3.52$
- Henry's Law Constant = 1.91×10^{-5} atm m³/mol @ 25°C
 - Vapor Pressure = 1×10^{-5} mm Hg @ 25°C
 - Water Solubility = 0.33 ppm @ 22°C

Environmental Fate (Endosulfan sulfate):

- $Log~K_{ow}=3.66$
- Henry's Law Constant = 2.6×10^{-5} atm m³/mol @ 25°C
 - Vapor Pressure = 1×10⁻⁵ mm Hg @ 25°C
 - Water Solubility = 0.22 ppm @ 22°C

- Agency for Toxic Substances and Disease Registry (ATSDR). 1990. Toxicological Profile for Endosulfan.
- Sunderam, R.I.M., D.M.H. Cheng, and G.B. Thompson. 1992. Toxicity of endosulfan to native and introduced fish in australia. Env. Tox. Chem. 11:1469-1476.
- Chandler, G.T. and G.I. Scott. 1991. Effects of sediment-bound endosulfan on sirvival, reproduction, and larval settlement of meiobenthic polychaetes and copepods. Env. Tox. Chem.
- Worthing, C.R. and S.B. Walker. 1983. The Pesticide Manual, A World Compendium, seventh edition. British Crop Protection Council.
- Hoffman, D.J. 1990. Embryotoxicity and teratogenicity of environmental contaminants to bird eggs. Reviews of Envir. Contam. and Toxicol. 115:40-88.

 Priyamuada Devi, A., D.M. Rato, K.S. Tilak, and A.S. Murty. 1981. Relative toxicity to the technical grade material, isomers and formulations of endosulfan to the fish Channa punctuata. bull. Envir. Contam. Toxicol. (27):239-243. 6
 - Bull. Envir. Contam. Toxicol. (27):850-855. 1981. Toxicity of endosulfan to the freshwater fish Cirrhinus mrigala. Ananda Swarup, P., D. Mohanarao, and A.S. Murty.
- U.S. Environmental Protection Agency (EPA). 1991. Water quality criteria summary. Federal Register, notice 45FR79334. Office of Science and Technology, Health and Ecological Criteria Division, Washington, D.C.
 - Oak Ridge National Laboratory, Environmental Sciences and Health Sciences Research Division, Oak Ridge, Tn. 1994. Screening Benchmarks for Ecological Risk Assessment.

Table 4L-20

Ecological Toxicity Profile for Ethylbenzene

Organism	Dose	Exposure Route	Exposure Period	Effect	Endpoint	Reference
			Ethylbenzene			
Rat	408 - 680 mg/kg/day	Oral	182 days	Increased liver and kidney weight		1
Rat		Oral	Single dose	Death	$LD_{50} = 3,500 \text{ mg/kg}$	3
Rat		Inhalation	7 hrs	Fetotoxicity	$TC_{Lo} = 985 \text{ ppm}$	4
Rat		Inhalation	7 hrs	Decreased fertility	$TC_{Lo} = 97 \text{ ppm}$	4
Rabbit		Inhalation	7 hrs	Decreased fertility	$TC_{Lo} = 99 \text{ ppm}$	4
Rabbit		Inhalation	24 hrs	Fetotoxicity	$TC_{Lo} = 500 \text{ mg/m}^3$	4
Fish		Oral	96 hr	Death	$LC_{50} = 42.3 - 48.5 \text{ mg/L}$	2
Shrimp (Mysidopsis bahia)		Medium	96 hr	Death	$LC_{so} = 275 \text{ mg/L}$	7
Guppy (Poecilla reticulata)		Medium	96 hr	Death	$LC_{s0} = 97.1 \text{ mg/L}$	∞
Fathead minnow (Pimephales promelas)		Medium - static	96 hr	Death	$LC_{s0} = 42.3 mg/L$	6
Coho salmon (Oncorhynchus kisutch)		Medium - static	24 hr	Death	$LC_{loo} = 50.0 \text{ mg/L}$	6

(Continued)

Ethylbenzene is an aromatic hydrocarbon present in crude petroleum. The physicochemical properties of ethylbenzene reveal a strong tendency for it to partition to the atmosphere. The log K_{cw} of ethylbenzene indicates that there is a good possibility of its adsorption to soil. Sorption and retardation by soil organic carbon will occur to a small extent, but sorption is not significant enough to prevent migration in most soils. Ethylbenzene does not significantly bioaccumulate. Biodegradation of this compound occurs by aerobic soil microbes. In surface water, transformation may occur through oxidation and biodegradation (5).

Bioconcentration:

- Clam BCF = 4.7 (6)
- Clam log BCF = 0.67
- Fish BCF = 37.5 (based on log Kow)
 - Fish log BCF = 2.16
- Goldfish log BCF = 1.9

Environmental fate:

- Log $K_{ow} = 3.15$ Henry's Law Constant = 8.44 x 10-3 atm m³/mol
 - Vapor Pressure = 7 mm Hg @ 20°C

References:

- Patty's Industrial Hygiene and Toxicology: volume 2A, 2B, 2C.
- Pickering OH, Henderson C.; J Water Pollut Control Fed 38; 1419 (1966).

4

- AMA Arch Ind Health, vol 14, pg 387,1956. e,
- Natl Tech Inf Serv[PB83-20874] 4.
- Agency for Toxic Substance and Disease Registry (ATSDR). 1989. Toxicological Profile for Ethylbenzene. ۶.
- U.S. Environmental Protection Agency (EPA). 1984. Health Effects Assessment for Ethylbenzene. EPA/5041/1-86/008. છ
- U.S. Department of Health and Human Services, Bethesda, Md. 1995. Hazardous Substance Data Base (HSDB) on-line computer database. ۲.
- Chemical Information Systems, Inc., Baltimore, Md. 1995. Aquatic Information Retrieval (AQUIRE) on-line computer database. ∞:

Table 4L-21

Ecological Toxicity Profile for Fluoranthene

Organism	Dose	Exposure Route	Exposure Period	Effect	Endpoint	Reference
			Fluoranthene			
Rat		Oral		Death	$LD_{50} = 2,000 \text{ mg/kg}$	1
Mouse		Interveneous injection		Death	$LD_{50} = 2 \text{ gm/kg}$	-
Mouse	3.5 mg/mouse			Increase in lung tumor incidence		2
Rabbit		Dermal	Not specified	Death	$LD_{50} = 3.18 \text{ gm/kg/24 hr}$	3
Bluegill	-	Medium	96 hour	Death	$LC_{s0} = 3,980 \text{ ug/L}$	4
Sheepshead minnow		Medium	96 hour	Death	LC ₅₀ = 560 mg/L	4
Mysid shrimp		Medium - static	96 hour	Death	$LC_{so} = 40 \text{ ug/L}$	5
Polychaete		Medium - static	96 hour	Death	$LC_{s0} = 500 \text{ mg/L}$	5
Alga (Skeletonima costatum)		Medium - static	96 hour	reduced cell numbers	EC ₅₀ = 45 mg/L	5

Fluoranthrene is a polycyclic aromatic hydrocarbon (PAH) that is a byproduct of incomplete combustion. In the environment, fluoranthrene adsorbs strongly to soil and would be expected to remain bound in the upper layers of soil ($K_{ow} = 7.9 \times 10^4$, $K_{ow} = 3.8 \times 10^3$). Fluoranthene degrades slowly in soil ($t_{1/2} = 5$ months - 2 years). The bioconcentration factor as determined in rainbow trout indicates the potential for bioconcentration in aquatic species (Log BCF = 2.58). Limited toxicity data is available for fluoranthene.

Bioaccumulation:

Earthworm B

Earthworm BAF = 0.08 (6)

(Continued)

Bioconcentration:
• Rainbow trout BCF (liver) = 379

References:

1. Lewis, R.J. Sax's Dangerous Properties of Industrial Materials, eighth edition.

2. Busby WF. Jr. et al; Carcinogenesis 5(10):1311-6 (1984).

3. Smyth HF. et al; Am In Hyg Assoc J 23;95 (1962).

U.S. Environmental Protection Agency (EPA). 1980. Ambient Water Quality Criteria Document: Fluoranthene. 4. U.S. Department of Health and Human Services, Bethesda, Md. 1995. Hazardous Substances Data Base (HSDB) on-line computer database. ς.

6. Beyer, W.N. 1990. Evaluating soil contamination. U.S. Fish Wildl. Serv. Biol. Rep. 90(2), 25 pp.

Table 4L-22

Ecological Toxicity Profile for Heptachlor and Heptachlor Epoxide

Organism	Dose	Exposure Route	Exposure Period	Effect	Endpoint	Reference
			Heptachlor and Heptachlor Epoxide	chlor Epoxide		
Rat		Oral-food	60 days	16% Embryo survival in F1 generation	LOAEL = 0.25 mg/kg/day	1
Rat		Oral-food	60 days	Fertility decreased by 22% in F1 generation; 100% infertility in F2 generation	LOAEL = 0.25 mg/kg/day	1
Mouse		Oral-food	10 weeks, 4 times/day	100% Infertility	LOAEL = 6.5 mg/kg/day	
Rat		Oral-food	80 weeks, once/day	20% Decrease in survival of females	LOAEL = 2.56 mg/kg/day	1
Rat	··· · · · · · · · · · · · · · · · · ·	Oral-food	18 months, once/day	24% Decrease in litter size, 57.2% mortality at 1 month	LOAEL = 6 mg/kg/day	1
Mouse	· · · · · · · · · · · · · · · · · · ·	Oral-food	90-91 weeks, once/day	Hepatocellular carcinoma in males	LOAEL = 1.8 mg/kg/day for males and 2.3 mg/kg/day for females	-
Mallard					LD ₅₀ > 2080 mg/kg	2
American kestrel		Trophic	Lifetime as heptachlor epoxide	Production adversely affected	> 1.5 mg/kg in egg	8
Canada goose		Trophic	Lifetime as heptachlor epoxide	Reduction in hatching success	> 10 mg/kg in egg	E
Mink (Mustela vison)		Oral-diet		Reduced kit growth	LOAEL = 6.25 mg/kg	4
Freshwater aquatic organism	_		Chronic - heptachlor and heptachlor epoxide	Protection of aquatic life	AWQC = 0.0038ug/L	5

Table 4L-22 (Continued)

Organism D	Dose	Exposure Route	Exposure Period	Effect	Endpoint	Reference
			Heptachlor and Heptachlor Epoxide	chlor Epoxide		
Saltwater aquatic organism			Chronic - heptachlor and heptachlor epoxide	Protection of aquatic life	AWQC = 0.0036ug/L	5
Meadow vole			Heptachlor		NOAEL = 1.58 mg/kg/day	. 9
Red fox			Heptachlor		NOAEL = 0.344 mg/kg/day	9
Snail (Aplexa hypnorum)		Medium	96 hours as heptachlor	Death	$LC_{50} = 1450 \ \mu g/L$	7
Bobwhite quail		Oral - diet	5 days as heptachlor	Death	$LD_{50} = 92 \text{ ppm}$	7
Ring-necked pheasant		Oral - diet	5 days as heptachlor	Death	$LD_{50} = 224 \text{ ppm}$	7
Daphid		Medium - static	48 hours as heptachlor		$EC_{50} = 47 \ \mu g/L$	7
Stonefly (Pteronarcus californica)		Medium - static	96 hours as heptachlor	Death	$LC_{50}=1.1\mu g/L$	7
Northern pike (Esox lucius)		Medium - static	96 hours as heptachlor	Death	$LC_{50} = 6.2 \ \mu g/L$	7
Alga (Selenastrum capricornutum)			96 hours as heptachlor	Growth inhibition	$EC_{50} = 26.7 \ \mu g/L$	7
Fowler's toad (larva)			96 hours as heptachlor	Death	$LC_{50} = 440 \ \mu g/L$	7
Channel catfish (Ictalurus punctatus)		Medium - static	96 hours as heptachlor	Death	$LC_{50} = 25 \ \mu g/L$	7
Sheepshead minnow (C)prinodon Variegatus)		Medium (saltwater), flow- through	96 hours as heptachlor	Death	$LC_{50}=10.5~\mu g/L$	7

(Continued)

log soil organic carbon adsorption coefficient (log Kw) for heptachlor is estimated to be 4.34. The log Kw for heptachlor epoxide is estimated to range between 3.34 and 4.37. These log Kw values indicate epoxide are described together because 20% of heptachlor is changed within hours into heptachlor epoxide in the environment and in living systems such as animals or humans by microsomal enzymes. The bottom sediment. Heptachlor and heptachlor epoxide are taken up by plants through the roots. The logarithm of the n-octanol/water partition coefficient (log K_w.) for heptachlor is 5.44 and for heptachlor Biomagnification of heptachlor is not significant since heptachlor is metabolized to heptachlor epoxide readily by higher trophic levels. Because of the more persistent nature of heptachlor epoxide and its lipophilicity, biomagnification of heptachlor epoxide in terrestrial food chains is significant. Animals that ingested heptachlor in food before and/or during gestation had smaller litters, some offspring had Heptachlor is a man-made chemical that was used for killing insects in homes, buildings and on food crops. There are no natural sources of heptachlor or heptachlor epoxide. Heptachlor and heptachlor factor affecting mobility. Heptachlor and heptachlor epoxide are less likely to leach from soil with a high organic matter content. If released into water, then they will adsorb strongly to suspended and epoxide is 5.40, indicating a high potential for bioconcentration and biomagnification in the food chain. A bioconcentration factor (BCF) of 20 has been calculated. A bioaccumulation factor (BAF) for damaged eyes, and some offspring did not survive long after birth. Infertility was also observed in studies with rats and mice. Lifetime exposure to heptachlor resulted in liver tumors (1). Heptachlor The organic matter content of the soil is another epoxide does not thin American kestrel eggs. These findings are in agreement with earlier studies of Canada geese. The presence of heptachlor epoxide in kestrel eggs, however, indicates food chain earthworms for heptachlor epoxide has been calculated to be 10 (8). Heptachlor epoxide is more harmful than heptachlor, primarily because of its ability to be stored in fat for long periods of time. a very high sorption tendency, suggesting that these compounds will adsorb strongly to soil and are not likely to leach into groundwater in most cases. contamination (3).

Bioaccumulation (Heptachlor epoxide): Earthworm BAF = 10 (8)

Bioconcentration (Heptachlor): BCF = 9500 (9) Bioconcentration (Heptachlor epoxide):

BCF = 4500 (9)

(Continued)

Environmental Fate (Heptachlor):

Log K_w = 4.34

Log K., = 5.44

Environmental Fate (Heptachlor epoxide):

 $Log K_{co} = 3.34-4.37$ $Log K_{cov} = 5.40$

References:

Agency for Toxic Substances and Disease Registry (ATSDR). 1991. Toxicological Profile for Heptachlor/Heptachlor Epoxide.

Hudson, R.H., R.K. Tucker, and M.A. Haggele. 1984. Handbook of Toxicity of Pesticides to Wildlife, second edition. U.S. Department of the Interior, Fish and Wildlife Service Resource Publication 153, Washington, D.C. 4

Henney, C.H., L.J. Blus, and C.J. Stafford. 1983. Effects of heptachlor on American kestrela in the Columbia Basin, Oregon. J. Wildl. Manage. 47(4):1080-1087. લ Giesy, J.P., D.A. Verbrugge, R.A. Othout, W.W. Bowerman, M.A. Mora, P.D. Jones, J.L. Newsted, C. Vandervoot, S.N. Heaton, R.J. Aulerich, S.J. Bursian, J.P. Ludwig, G.A. Dawson, T.J. Kubiak, D.A. Best, and D.E. Tillit. Contaminants in fishes from Great Lakes-influenced sections and above dams of three Michigan rivers, II: implications for health of mink. Arch. Environ. Contam. Toxicol. 27:213-223

U.S. Environmental Protection Agency (EPA), Office of Science and Technology, Health and Ecological Criteria Division, Washington, D.C. 1991. Water quality criteria summary. Federal Register notice 45FR79334.

Oak Ridge National Laboratory, Environmental Sciences and Health Sciences Research Division, Oak Ridge, Tn. 1994. Screening Benchmarks for Ecological Risk Assessment

ė.

U.S. Department of Health and Human Services, Bethesda, Md. 1995. Hazardous Substances Data Base (HSDB) on-line computer database.

Beyer, W.N. 1990. Evaluating soil contamination. U.S. Fish Wildl. Serv. Biol. Rep. 90(2), 25 pp. ∞i

Howard, P.H. 1991. Handbook of Environmental Fate and Exposure Data for Organic Chemicals, V. III. Lewis P., Chelsea, Mi. 6

Ecological Toxicity Profile for Indeno(1,2,3 cd)pyrene

Organism	Dose	Exposure Route	Exposure Period	Effect	Endpoint	Reference
			Indeno(1,2,3-cd)pyrene	او		
Mouse		Skin	20 Days	Tumors	$TD_{LO} = 40 \text{ mg/kg}$	1
Mouse	0.6 mg	Subcutaneous	1 time per month for Sarcomas 265 days	Sarcomas		2
Rat	4.15 mg/kg	Implant		Tumors; lung and thorax		3
Rodent	72 mg/kg-BW	Oral	Chronic	Carcinogen		4

Indeno(1,2,3-CD)pyrene [I(1,2,3-CD)P] is a polycyclic aromatic hydrocarbon (PAH) that is a byproduct of incomplete combustion. In environment, I(1,2,3-CD)P adsorbs strongly to soil and sediment animals via ingestion. Data is inconclusive regarding carcinogenic potential by dermal exposure. Some evidence of genotoxicity is also indicated. I(1,2,3-CD)P shows a strong potential for bioconcentration; however, PAHs are not likely to appreciably bioconcentrate in organisms that have microsomal oxidase, such as fish, since this enzyme enables the organism to metabolize PAHs (K_{orr}=3.2x10°, K_{or}=1.6x10°). Lethality and systemic and reproductive toxicity data for I(1,2,3-CD)P is limited. Experimental evidence suggests that I(1,2,3-CD)P is carcinogenic to experimental (6). Those organisms lacking a metabolic detoxification enzyme system, namely phytoplankton, certain zooplankton, mussels (Mytilus edulis), scallops (Placopecten sp.), and snails (Liternia litorea), tend to accumulate PAHs (6). Bioaccumulation, especially in vertebrate organisms, is considered to be short-term, and is not considered an important fate process (6). Volatilization from water will probably not be an important transport process (6).

Bioaccumulation:

Earthworm BAF = 0.42(5)

Bioconcentration:

BCF = 59,407 (6)

Environmental Fate:

- Henry's Law Constant = 5.89×10^{-10} atm m³/mol (6)
 - Vapor Pressure = 1.0×10^{-10} mm Hg (6)
 - Water Solubility = 0.062 mg/L (6)

- Carcinogenesis, Vol 7, pg 1761 (1986).
 - IARC Monographs, V3 233 (1973)
- J. Natl Cancer Inst, Vol 71, pg 539 (1983).
- Eisler, R. 1987. Polycyclic aromatic hydrocarbon hazards to fish, wildlife, invertebrates: a synoptic review. U.S. Fish Wildl. Serv. Biol. Rep. 85(1.11), 81 pp.
 - Beyer, W.N. 1990. Evaluating soil contamination. U.S. Fish Wildl. Serv. Biol. Rep. 90(2), 25 pp.

Table 4L-24

Ecological Toxicity Profile for Lead

Organism	Dose	Exposure Route	Exposure Period	Effect	Endpoint	Reference
			Lead	pi		
Rat	10 g/kg	Oral-food	2 generations	Decreased pup weights; decreased pups/litter		1
Rat	0,0.5,5,50, 250 mg/L	Oral-water	6-7 weeks pre-breeding until 6-9 months post partum	Decreased maternal BW and delayed sexual maturation of female offspring; delayed locomotor development	LOAEL = 0.5 mg/kg/day	1
Rat	0.7 mg/kg/day	Oral-water	First 18-21 days of gestation	Reproductive toxicity	LOAEL = 0.04 mg/kg/day (female) LOAEL = 0.5 mg/kg/day (male)	2
Mouse	2.2 mg/kg or 3 mg/kg		Daily	Frequency of pregnancy reduced when dose given 3-5 days after mating		ю
Mouse	20 mg/kg	Intrauterine	Single dose	Smaller litters; increased fetal deaths		3
Rat	5 mg/L	Oral-water	Lifetime	Reduced survival and longevity		3
Rat	200 mg/kg		Daily	50% of progeny dead in 3 weeks		3
Sheep	8 mg/kg		220 days	Death		3
Horse	2.4 mg/kg	Oral-food	Daily	Death		3
Horse	1.7 mg/kg	Oral-food		Lethal over several months		3

Table 4L-24 (Continued)

Organism	Dose	Exposure Route	Exposure Period	Effect	Endpoint	Reference
			Lead	ld		
Cattle	6-7 mg/kg		Daily for 2 months	Fatal		3
Cattle	220-400 mg/kg	Oral	Single dose	Fatal		e.
Cattle	5 mg/kg		10-20 days	Blindness, 16% mortality		3
Bald eagle		Oral	121 days	20-25% decrease in hematocrit and hemoglobin concentration	0.8 mg/L blood level	4
Mallard	8 mg/kg	Oral-diet as lead nitrate	6 days	66% decrease in erythrocyte count		4
Herring gull, day-old chick	100 mg/kg	Interperitoneal injection	Singel dose	Reduced growth rate, reduced bill and wingbone length		13
Japanese quail	500 mg/kg	Oral-diet as lead acetate	Several weeks	Significant anemia, decreased hemoglobin concentration		4
Fathead minnow		Medium pH = 6-6.5		Death	$LC_{50} = 810 \text{ ug/L}$	S
American kestrel	625 ppm	Diet		Death (40% mortality)		12
	125 mg/kg			Significant impairment of growth		
Bald eagle		Trophic		Sub-lethal poisoning	> 0.6 ug/g blood level	9

(Continued)

Organism	Dose	Exposure Route	Exposure Period	Effect	Endpoint	Reference
			Lead	וק		
Freshwater aquatic organsim			Chronic	Protection of aquatic life	AWQC = 3.2 ug/L	14
Saltwater aquatic organism			Chronic	Protection of aquatic life	AWQC = 8.5 ug/L	14
Guppy				Delayed sexual maturity	2 ppm	10
Fathead minnow		Medium	96 hours as PbCl ₃	Death	$LC_{50} = 5.58 \text{ ppm}$	10
Mallard	6-8 mg/kg/day as lead nitrate	:		Lowered hematocrit and hemoglobin concentration		11
Meadow vole	As lead nitrate				NOAEL = 15.86 mg/kg/day	15
Red fox	As lead nitrate				NOAEL = 3.44 mg/kgday	15
Earthworm					$LC_{50} = 3,000 \text{ mg/kg}^{-1}$	17
Terrestrial plant		Soil		20% reduction in plant growth	50 mg/kg	15

Lead is ubiquitous and is a characteristic trace constituent in rocks, soils, water, plants, animals and air. More than 4 million metric tons of lead are produced worldwide each year, mostly for the manufacture of storage batteries, gasoline additives, pigments, alloys, and ammunition. The widespread broadcasting of lead through anthropogenic activities, especially during the past 40 years, has resulted in an increase in lead residues throughout the environment. Lead is neither essential nor beneficial to living organisms and is toxic in most of its chemical forms. Excessive amounts of lead can cause growth inhibition in plants, as well as reduced photosynthesis, mitosis, and water absorption. In domestic and experimental animals, lead adversely affects weight, survival, behavior, litter size, and skeletal development, and induces teratogenic and carcinogenic responses in some species. Lead chemistry is complex. In water, lead is most soluble and bioavailable under conditions of low pH, low organic content, low concentrations of suspended sediments, and low concentrations of salts of calcium, iron, manganese, zinc, and cadmium (3). Models of lead speciation combined

(Continued)

Although mobility through soils to waters, both surface and groundwater, is not a major route of environmental exposure, exposure with toxicity changes in the cell membrane predict that lead is more toxic at lower pH (4). Likewise for soils, mobility is dependent on factors such as pH, organic content, presence of inorganic lead-bearing soil particles either by ingestion or inhalation can be a route of exposure. Lead can be incorporated into the body by inhalation, ingestion, dermal absorption, and placental transfer to the fetus. Lead is an accumulative metabolic poison that affects behavior and the hematopoietic, vascular, nervous, renal, and reproductive systems. In general, organo-lead compounds are more toxic than inorganic lead compounds, food chain biomagnification is negligible, and younger, more immature organisms are most susceptible (3). Although lead does not biomagnify, its concentration in aquatic and terrestrial vertebrates tends to increase with the age of the animal. Distribution of lead is localized in hard tissues, such as bones and teeth (6). Ingestion of lead shot from hunter-killed or crippled waterfowl appears to be the major source of lead exposure to bald eagles. Alternatively, ospreys do not ingest those items which contain lead shot or hard tissues that have accumulated lead (7). The proposed lead criteria for the protection of natural resources and human health recommends for the mouse a daily total intake > 0.05 mg/kg and for the mule deer total intake > 3 mg/day (3). Accumulation of lead with age has been reported in the pronghorn antelope, but the mule deer did not show accumulation in the same study. Background levels of lead in the livers and kidneys from mule deer and pronghorn antelope range from 0.6 to 0.9 µg/g (freeze-dried weight) (8). Lead concentrations of > 10 µg/g have been associated with diagnostic lead toxicosis in experimental mammals; however, mammals with behavioral and physiological signs of lead intoxication have died with < 5 µg/g (9). Plants and animals may bioconcentrate lead, but biomagnification has not been detected. Older organisms tend to contain the greatest body burden of lead. In aquatic organisms, lead concentrations are usually highest in benthic organisms and algae, and lowest in upper colloids and iron oxides, and ion-exchange characteristics (2). trophic level predators such as carnivorous fish (2)

Bioaccumulation:

Earthworm BAF = 0.66 (16)

Bioconcentration:

- Oyster BCF = 6600 (14)
- Alga BCF = 92,000 (14)
- Rainbow trout BCF = 726 (14)
 - Fish BCF = 42(3)
- Insect BCF = 500(3)
- Oyster BCF = 536(3)Alga BCF = 725(3)

References:

- U.S. Environmental Protection Agency (EPA). 1984. Health Effects Assessment for Lead.
- Toxicological Profile for Lead. Agency for Toxic Substances and Disease Registry (ATSDR). 1990.
- Eisler, R. 1988. Lead hazards to fish, wildlife, and invertebrates: a synoptic review. U.S. Fish Wildl. Serv. Biol. Rep.
- Hoffman, D.J., O.H. Pattee, S.N. Wiemeyer, and B. Mulhern. 1981. Effects of lead shot ingestion on aminolevulinc acid dehydrate activity, hemoglobin concentration, and serum chemistry 1993. pH-dependent toxicity of Cd, Cu, Ni, Pb, and Zn to Ceriodaphnia dubia, Pimephales promelas, Hyalelle Schubauer-Berigan, M.K., J.R. Dierkey, P.D. Monson, and G.T. Ankley. in bald eagles. J. Wildlife Diseases 17(3):423-431. 5.
- atteca, and Lumbriculus variegatus. Environ. Tox. Chem. 12:1261-1266. છ

(Continued)

- Wiemeyer, S.N. 1991. Effects of environmental contamination on raptors in the midwest. In Proc. Midwest Raptor Management Symposium and Workshop. National Wildlife Federation, Washington, D.C.
- Munshower, F.F. and D.R. Newman. 1979. Metals in soft tissues of mule deer and antelope. Bull. Environm. Contam. Toxicol. 22:827-832.
- Lawrence, J.B. and C.J. Henny. 1990. Lead and cadmium concentrations in mink from northern Idaho. Northwest Science 64(4):217-223.
- 10. Dhar, S.K. (ed.). 1973. Metal Ions in Biological Systems. Plenum P., N.Y.
- Finley, M.T. and M.P. Dieter. 1976. Sublethal effects of chronic lead ingestion in mallard ducks. J. Tox. Env. Health 1:929-937. Ξ
- Hoffman, D.S., S. Franson, O.H. Paltee, C.M. Bunck, and A. Anderson. 1985. Survival, growth, and accumulation of ingested lead in nesting American kestrels (Falco sparverius). Arch. Env. Contam. Tox. 14:89-94. 12.
- Burger, J. and M. Gochfeld. 1988. Effects of lead on growth in young herring gulls (Larus argentatus). J. Tox. Env. Health 25:227-236 13.
- U.S. Environmental Protection Agency (EPA), Office of Science and Technology, Health and Ecological Criteria Division, Washington, D.C. Water quality criteria summary. Federal Register notice 57FR60914. 4.
- Oak Ridge National Laboratory, Environmental Sciences and Health Sciences Research Division, Oak Ridge, Tn. 1994. Screening Benchmarks for Ecological Risk Assessment 15.
- 16. Beyer, W.N. 1990. Evaluating soil contamination. U.S. Fish Wildl. Serv. Biol. Rep. 90(2), 25 pp.
- Wei-Chun, M. 1982. The influence of soil properties and worm-related factors on the concentration of heavy metals in earthworms. Pedobiologica 24:109-119. 17.

Table 4L-25

Ecological Toxicity Profile for 2-methylnaphthalene

Organism	Dose	Exposure Route	Exposure Period	Effect	Endpoint	Reference
			2-Methylnaphthalene	ene		
Rat	5 mg/kg	Oral		Lethal		1
Rat		Oral		Death	$LD_{50} = 1,630 \text{ mg/kg}$	2
Rat		Feed	700 days, 6 days/week		NOAEL = 41 mg/kg/day	9
Mice	400 mg/kg	Intraperitoneal injection	Single dose	Complete exfoliation of bronchiolar epithelium		3
Mouse	1,000 mg/kg	Intraperitoneal injection	Single dose	20-40% lethality		3
Grass shrimp		Medium	96 hours	Death	$LC_{50} = 1100 \ \mu g / L$	4
Sheepshead minnow		Medium	96 hours	Death	$LC_{50} = 2000 \ \mu g/L$	4
Dungeness Crab		Medium	48 hours	Death	LC ₅₀ = 5.0 mg/L	5
Dungeness Crab		Medium	96 hours	Death	$LC_{50} = 1.3 \text{ mg/L}$	5

2-Methylnapthalene (2-MN) is a polycyclic aromatic hydrocarbon (PAH) that is a component of crude oil and a byproduct of combustion. 2-MN adsorbs strongly to soils and is considered innuobile in soils (Log K_{ow} = 3.86, K_{co} = 8.5×10³). Volatilization and biodegradation are the principle removal mechanisms for 2-MN from soils and surface water. Toxicological data for 2-MN is limited and somewhat contradictory.

Bioconentration:

Crustacean BCF = 967-1625 (dimethylnaphthalenes)

(Continued)

References:

1. Clayton, GD & FE Clayton. Patty's Industrial Hygiene and Toxicology: Vol 2A, 2B & 2C.

.. Lewis, Richard J. Sax's Dangerous Properties of Industrial Materials, 8th ed.

Agency for Toxic Substances and Disease Registry (ATSDR). 1989. Toxicological Profile for Naphthalene and 2-Methylnapthatlene.

Eisler, R. 1987. Polycyclic aromatic hydrocarbon hazards to fish, wildlife, invertebrates: a synoptic review. U.S. Fish Wildl. Serv. Biol. Rep. 85(1.11), 81 pp.

U.S. Department of Health and Human Services, Bethesda, Md. 1995. Hazardous Substances Data Base (HSDB) On-Line Computer Database.

Agency for Toxic Substance and Disease Registry (ATSDR). 1990. Toxicological Profile for 2-Methylnaphthalene. ٠.

Table 4L-26

Ecological Toxicity Profile for Phenanthrene

Organism	Dose	Exposure Route	Exposure Period	Effect	Endpoint	Reference
			Phenanthrene			
Mouse		Oral	Not specified	Death	$LD_{s0} = 700 \text{ mg/kg}$	1
Mouse	71 mg/kg	Applied to skin	Not specified	Tumor formation at site of application	Not specified	2
Mallard	4,000 mg/kg in diet (PAH mixture)	Oral	7 months	Increased liver weight and hepatic blood flow	Not specified	3
Grass shrimp		Medium	24 hour	Death	$LC_{s0} = 370 \text{ ug/L}$	3
Sandworm		Medium	96 hour	Death	$LC_{50} = 600 \text{ ug/L}$	3
Freshwater aquatic organism			Chronic	Proposed AWQC - protection of aquatic life	LOEL = 6.3 ug/L	5
Saltwater aquatic organism			Chronic	Proposed AWQC - protection of aquatic life	LOEL = 4.6 ug/L	5
Mouse		Intravenous injection	Not specified	Death	$LD_{50} = mg/Kg$	4
Rat	150 mg/kg-BW	Intraperitoneal injection	Not specified	Changes in blood chemistry and nephrotoxicity	Not Specified	6

Phenanthrene is a polycyclic aromatic hydrocarbon (PAH) that is a byproduct of incomplete combustion. In the environment, phenanthrene adsorbs strongly to soil and sediment and is considered to be relatively immobile. Volatilization from water and soil is not expected to be significant, since most of the phenanthrene is expected to be adsorbed (7). It is not expected to leach to groundwater. Phenanthrene has tested negative as a complete carcinogen. Significant bioconcentration should occur in aquatic organisms. By the action of microsomal oxidase, however, fish are capable of rapidly metabolizing PAHs. Phananthrene is expected to be similarly degraded in fish, and therefore may not bioconcentrate significantly. (7) Some marine organisms have no aryl hydrocarbons bydroxylase

(Continued)

enzyme systems, namely phytoplankton, certain zooplankton, mussels (Mytilus edulis), scallops (Placopecten sp.), and snails (Litternia littorea). Those organisms which lack a metabolic detoxification enzyme system tend to accumulate PAHs. (7)

Bioaccumualtion:

Earthworm BCF = 0.12 (6)

Bioconcentration:

- Clam (24 hrs.) BCF = 32 (3)
- Daphnia pulex (24 hrs.) BCF = 325 (3)

Environmental Fate:

- $K_{oc} = 1.4 \times 10^4$
- $Log K_{oc} = 4.36 (7)$
 - $K_{ow} = 2.4 \times 10^4$
- Log $K_{ow}=4.57$ (7) Henry's Law Constant = 1.24×10⁻⁴ atm m³/mol (7)
 - Vapor pressure = 6.80×10^4 mm Hg (7)
 - Water solubility = 1.29 mg/L (7)

References:

- Lewis, R.J. 1987. Sax's Dangerous Properties of Industrial Meterials. Van Nostrand Reinhold, N.Y.
- Agency for Toxic Substances and Disease Registry (ATSDR). 1989. Toxicological Profile for Polycyclic Aromatic Hydrocarbons.
- Eisler, R. 1987. Polycyclic aromatic hydrocarbons hazares to fish, wildlife, and invertebrates: a synoptic review.
- US Army Data NIOSH Exch Chem.

ь. Н

- 5. Federal Ambient Water Quality Criteria. Federal Register Notice 57FR60848.
- 6. Beyer, W.N. 1990. Evaluating soil contamination. U.S. Fish Wildl. Serv. Biol. Rep. 90(2), 25 pp.
- U.S. Department of Health and Human Services, Bethesda, Md. 1995. Hazardous Substances Data Base (HSDB) on-line computer database.

Table 4L-27

Ecological Toxicity Profile for Pyrene

Organism	Dose	Exposure Route	Exposure Period	Effect	Endpoint	Reference
			Pyrene			
Guinea pig	5 mmol	Dermal	Single dose	Phototoxic when subsequently exposed to UV light.		1
Rat, Mouse	50-90 ug/m3	Inhalation	22 months	Lung neoplasia 10x above controls.		2
Mosquito fish		Medium	96 hr	Death	TLm = 0.0026 mg/L	3
Rat		Oral	Acute	Death	$LD_{s0} = 2,700$ mg/Kg	4
Mouse		Oral	Acute	Death	$LD_{so} = 800 \text{ mg/Kg}$	4
Mouse	10 % pyrene solution	Applied to skin	Lifetime	No skin tumors		9
Mouse		IP injection	Single	Death	$LD_{50} = 680 \text{ Kg-BW}$	9
Rat	150 mg/kg	IP injection	Single	Altered blood chemistry and nephrotoxicity		5
Mouse	127 mg/kg	Oral-Food	25 Days	Dialation of renal tubules	7	9

Pyrene is a polycyclic aromatic hydrocarbon (PAH) that is a byproduct of incomplete combustion. In the environment, pyrene adsorbs strongly to soil and sediment. It is not expected to leach to groundwater and will not hydrolyze or evaporate significantly. Laboratory tests with soil microbes indicate probable biodegradation. Bioaccumulation, especially in vertebrate organisms, is not considered an important fate process. Minimal to moderate bioconcentration of pyrene in aquatic ecosystems would be expected. Some marine organisms have no detectable aryl oxidase hydrocarbons hydroxylase enzyme systems, namely phytoplankton, certain zooplankton, mussels (Mytilus edulis), scallops (Placopecten sp.), and snails (Litternia littorea). Those organisms which lack a metabolic detoxification enzyme system tend to accumulate PAHs. (8) Pyrene has been shown to be acutely toxic at high doses. Evidence suggests that pyrene may be slightly genotoxic. Pyrene is a questionable carcinogen.

(Continued)

Bioaccumulation:

Earthworm BCF = 0.09(7)

Bioconcentration:

Daphnia pulex BCF (24 hrs.) = 2702 (6)

Fathead minnow BCF = 600-970 (8) Goldfish BCF = 457 (8)

Rainbow trout BCF, liver (21 days) = 69 (6)

Environmental Fate:

 $K_{oc} = 3.8 \times 10^4$

Log $K_{oc} = 4.58$ $K_{ow} = 8.0 \times 10^4$

Henry's Law Constant = 1.09×10^4 atm m³/mol - 5.42×10^{-5} atm m³/mol (8)

References:

Kochevar IE et al; Photochem Photobiol 36(1):6509(1982).

Heinrich U et al; Exp Pathol 29 (1):29-34(1986).

7

Verscheuren, K. 1983. Handbook of Environmental Data of Organic Chemicals, second edition. Van Nostrand Reinhold, N.Y. щ.

Lewis, R.J. Sax's Dangerous Properties of Industrial Materials, eighth edition.

Eisler, R. 1987. Polycyclic aromatic hydrocarbon hazards to fish, wildlife, invertebrates: a synoptic review. U.S. Fish Wildl. Serv. Bio. Rep. 85(1.11), 81 pp.

Agency for Toxic Substances and Disease Registry (ATSDR). 1989. Toxicological Profile for Polycyclic Aromatic Hydrocarbons ٠.

7. - Beyer, W.N. 1990. Evaluating soil contamination. U.S. Fish Wildl. Serv. Biol. Rep. 90(2), 25 pp.

U.S. Department of Health and Human Services, Bethesda, Md. 1995. Hazardous Substances Data Base (HSDB) on-line computer database. ∞:

Table 4L-28

Ecological Toxicity Profile for Trichloroethene

Organism	Dose	Exposure Route	Exposure Period	Effect	Endpoint	Reference
			Tric	Trichloroethene		
Rat		Inhalation	4 hours	Death 50%	$LC_{50} = 12.500 \text{ ppm}$	1
Mouse		Inhalation	4 hours	Death 50%	$LC_{50} = 8,450 \text{ ppm}$	1
Rat		Inhalation	4 hours/day 13 days	Complete litter resorption	LOAEL = 100 ppm	-
Dog		Oral	1 time	Death	$LD_{s0} = 5,680 \text{ mg/kg}$	1
Mouse		Oral	5 days/wk 103 weeks	Death Liver tumors	LOAEL = 1,000 mg/kg	1
Rabbit		Dermal	1 time	Death	$LD_{so} = 29 \text{ g/kg}$	1
Rat				death	LOAEL = $6,000 - 7,000 \text{ mg/kg}$	1
Cat				death	LOAEL = $6,000 - 7,000 \text{ mg/kg}$	1
Rabbit				death	LOAEL = $6,000 - 7,000 \text{ mg/kg}$	-
Rat		Inhalation	7 hours/day 5 day/week 6 months	significant reductions in body weight gain	400 ppm	-

Trichloroethene is insoluble in water, but highly soluble in lipids (2). Exposure to trichloroethene caused no embryo toxicity or teratogenicity in rats or mice (2).

BCF (derived from K_{ow}) = 32.4

(Continued)

Environmental Fate:

Log K $_{ow}=2.42$ Henry's Law Constant at $25^{\circ}C=1.1\times10^{\circ}$ atm-m³/moL Vapor Pressure at $25^{\circ}C=74$ mmHg

References:

Agency for Toxic Substances and Disease Registry (ATSDR). 1990. Toxicological Profile for Trichloroethene.

American Conference of Governmental Industrial Hygienists (ACGIH). 1991. Documentation of TLVs and BEIs, sixth edition. Cincinnati, Oh.

APPENDIX 4M ECOLOGICAL ASSESSMENT SPREADSHEETS

APPENDIX M LIST OF TABLES

	Page
4M-1	Southeast Runway Fuel Spill Site - Ecological Quotients for the Northern Pike from Discharged Groundwater 4M-1
4M-2	Southeast Runway Fuel Spill Site - Ecological Quotients for Aquatic Invertebrates
4M-3	Southeast Runway Fuel Spill Site - Ecological Quotients for the Spotted Sandpiper
4M-4	Southeast Runway Fuel Spill Site - Ecological Quotients for Terrestrial Plants
4M-5	Southeast Runway Fuel Spill Site - Ecological Quotients for the Meadow Vole
4M-6	Southeast Runway Fuel Spill Site - Ecological Quotients for the Red Fox
4M-7	Southeast Runway Fuel Spill Site - Ecological Quotients for Terrestrial Invertebrates
4M-8	Southeast Runway Fuel Spill Site - Ecological Quotients for the Robin
4M-9	Southeast Runway Fuel Spill Site - Ecological Quotients for the Kestrel
4M-10	Control Tower Drum Storage Area, South - Ecological Quotients for the Northern Pike from Discharged Groundwater
4M-11	Control Tower Drum Storage Area, South- Ecological Quotients for Aquatic Invertebrates 4M-11
4M-12	Control Tower Drum Storage Area, South- Ecological Quotients for the Spotted Sandpiper

Table 4M-1 Southeast Runway Fuel Spill Site - Ecological Quotients for the Northern Pike from Discharged Groundwater

Chemical	Conc in Water mg/L	Toxicity Data mg/kg	Reference	B	Toxicity Benchmark	
1,2-Dichloroethane	2.54E-08	20	AWQC	1	20	1.27E-09
2-Methylnaphthalene	2.45E-06	2	LC50-minnow	10000	0.0002	1.23E-02
Acenaphthene	1.13E-09	0.52	AWQC	1	0.52	2.18E-09
Benzene	4.38E-09	5.3	AWQC	10	0.53	8.27E-09
Benzyl alcohol	7.17E-08	15	LC50-silverside	10000	0.0015	4.78E-05
Beryllium	9.02E-08	0.148	EC20-fish	10000	1.48E-05	6.10E-03
Chloroethane	3.39E-14	a	a	a	a	a
Chloroform	6.39E-10	1.24	AWQC	1	1.24	5.16E-10
Chloromethane	2.99E-12	27	LC50-silverside	10000	0.0027	1.11 E- 09
Di-n-butylphthalate	1.20E-08	1.8	LC50-trout	100	0.018	6.65E-07
Ethylbenzene	3.69E-08	50	LC100-salmon	10000	0.005	7.39E-06
Fluorene	3.48E-05	0.82	LC50-trout	100	0.0082	4.25E-03
m&p-Xylenes	1.29E-07	13.5	LC50-trout	100	0.135	9.56E-07
Naphthalene	2.05E-07	0.62	AWQC	1	0.62	3.30E-07
o-Xylene	4.79E-08	13.5	LC50-trout	100	0.135	3.55E-07
Phenanthrene	3.85E-09	0.0063	AWQC	1	0.0063	6.12E-07
Toluene	4.41E-16	17.5	AWQC	1	17.5	2.52E-17
Trichloroethene	3.30E-09	21.9	AWQC	1	21.9	1.51E-10

a = no toxicity information available

EQ pike = concentration in water/toxicty benchmark

Concentration in water = modeled groundwater concentrations, at a 5-feet range from shoreline (see Appendix 4C)

Table 4M-2 Southeast Runway Fuel Spill Site - Ecological Quotients for Aquatic Invertebrates

Chemical	Cone in GW mg/L	Toxicity Data mg/L	Reference	Uncert Factor	Toxicity Benchmark	Total EQ
1,2-Dichloroethane	2.06E-04	20	AWQC	1	20	1.03E-05
2-Methylnaphthalene	2.53E-02	1.1	LC50-shrimp	10000	0.00011	2.30E+02
Acenaphthene	1.17E-05	0.52	AWQC	1	0.52	2.25E-05
Benzene	2.69E-06	5.3	AWQC	1	5.3	5.08E-07
Benzyl alcohol	7.40E-04	15	LC50-fish	10000	0.0015	4.93E-01
Beryllium	9.31E-04	0.0053	AWQC	1	0.0053	1.76E-01
Chloroethane	3.50E-10	a	a	a	a	a
Chloroform	6.60E-06	1.24	AWQC	1	1.24	5.32E-06
Chloromethane	7.07E-09	27	LC50-bluegill	10000	0.0027	2.62E-06
Di-n-butylphthalate	1.24E-04	1.8	LOEC - daphnia	100	0.018	6.87E-03
Ethylbenzene	3.79E-04	275	LC50-shrimp	10000	0.0275	1.38E-02
Fluorene	3.59E-01	1	LC50-shrimp	10000	0.0001	3.59E+03
m&p-Xylenes	1.29E-03	13	LC50-fish	10000	0.0013	9.91E-01
Naphthalene	2.11E-03	0.62	AWQC	1	0.62	3.41E-03
o-Xylene	4.95E-04	13	LC50-fish	10000	0.0013	3.80E-01
Phenanthrene	3.98E-05	0.063	AWQC	1	0.063	
Toluene	9.22E-13	17.5	AWQC	1	17.5	5.27E-14
Trichloroethene	3.40E-05	21.9	AWQC	1	21.9	1.55E-06

a = no toxicity data available

EQ = Concentration in water/toxicity benchmark

Concentration in water = modeled groundwater concentrations discharging to the shoreline (see Appendix 4C)

Table 4M-3 Southeast Runway Fuel Spill Site - Ecological Quotients for the Spotted Sandpiper

	Cond	Insect	Conc	dSS	Toxicity				% E0	% EO	Total
("hamilton"	::::	Tintake	in Invert	Infake	Data	Reference	Incert	Toxicity	Water	Inver	Ç
	mgL	Factor	mg/kg	mg/kg-day	mg/kg			Benchmark			y L
1,2-Dichloroethane		2	4.13E-04	1.26E-03	46.81	46.81 NOAEL-robin	1	46.81	98.21144	1.788562	2.69E-05
2-Methylnaphthalene	2.53E-02	1000	2.53E+01	1.53E+00	ಪ	æ	æ	æ	æ	æ	ď
Acenaphthene	1.17E-05	2.6	3.05E-05	7.18E-05	B	æ	a	æ	æ	æ	æ
Benzene	2.69E-06	4.27	1.15E-05	1.67E-05	B	æ	æ	ಡ	æ	æ	æ
Benzyl alcohol	7.40E-04	4	2.96E-03	4.59E-03	а	æ	æ	æ	es .	æ	æ
Beryllium	9.31E-04	19	1.77E-02	6.54E-03	В	B	а	а	æ	æ	æ
Chloroethane	3.50E-10	B	ಜ	æ	es	B	æ	æ	В	В	æ
Chloroform	6.60E-06	8	5.28E-05	4.24E-05	а	а	а	а	а	B	æ
Chloromethane	7.07E-09	2.88	2.03E-08	4.34E-08	æ	æ	B	ಡ	В	æ	æ
Di-n-butylphthalate	1.24E-04	57	7.05E-03	1.12E-03	0.14	0.14 NOAEL-robin	1	0.14	65.83178	34.16822	8.03E-03
Ethylbenzene	3.79E-04	144	5.46E-02	5.25E-03	в	В	æ	ಡ	æ	æ	æ
Fluorene	3.59E-01	2000	1.80E+03	1.00E+02	æ	B	ĸ	æ	æ	æ	æ
m&p-Xylenes	1.29E-03	08	1.03E-01	1.33E-02	1940	1940 NOAEL-quail	1000	1.94	57.85518	42.14482	6.87E-03
Naphthalene	2.11E-03	1000	2.11E+00	1.28E-01	40000	40000 Dose-mallard	10000	4	9.895433	90.10457	3.20E-02
o-Xylene	4.95E-04	80	3.96E-02	5.12E-03	1940	1940 NOAEL-quail	1000	1.94	57.85518	42.14482	2.64E-03
Phenanthrene	3.98E-05	325	1.29E-02	9.43E-04	4000	4000 Dose-mallard	1000	4	25.25671	74.74329	2.36E-04
Toluene	9.22E-13	8	8.30E-11	1.00E-11	В	ಜ	B	æ	æ	æ	æ
Trichloroethene	3.40E-05	17	5.78E-04	2.35E-04	а	.8	а	В	а	æ	æ
Snotted Condinar Constants:				FO = candn	ner intake/t	RO = candnivar intake/toxicity benchmark					
Sported Sandpiper Consume. Rody weight (RW):	ko	0.047		Intake = (H)	2/RW) x 0.4	futake = (HR/BW) x () 42 x ((Conc. in Invert x FT x FF) + (Conc. in water x WI))	x H x FF) +	(Conc in wate	r x WT))		
Water Intake (WI):	r.e L/dav	0.67		Conc. in Wa	ter = model	Conc. in Water = modeled groundwater concentrations discharged to the mudflats (see Appendix 4C)	centrations di	scharged to the	e mudflats (see Appendi	× 4C)
Food Ingestion rate (FI):	kg/day	0.00744		a = no avian toxicity data available	toxicity da	ta available	•)	•	•	`
Soil Ingestion fraction (S):	unitless	0.18									
Food Ingestion fraction (F):	unitless	0.82									
Home Range:	acres	2.5									
Time on site:	months	S									
Home Range Fraction (HR):	unitless	-									
Site Area:	acres	6.32									

Table 4M-4 Southeast Runway Fuel Spill Site - Ecological Quotients for Terrestrial Plants

Chemical	Conc in Soil mg/kg	Tox Data mg/kg	Reference	Uncert Factor	Toxicity Benchmark	Ecological Quotients
2-Methylnaphthalene	3.12E-02	a	a	a	a	<u>a</u>
Anthracene	4.93E-02	a	a	a	a	a
Benzo(a)anthracene	3.13E-01	a	a	a	a	a
Benzo(a)pyrene	4.96E-01	a	a	a	a	a
Benzo(b)fluoranthene	4.04E-01	a	a	a	a	a
Benzo(g,h,i)perylene	1.83E-01	a	a	a	a	a
Benzo(k)fluoranthene	4.15E-01	a	a	a	a	a
bis(2-Ethylhexyl)phthalate	2.85E-01	a	a	a	a	a
Chrysene	5.15E-01	a	a	a	a	a
Dibenz(a,h)anthracene	9.30E-02	a	a	a	a	a
Fluoranthene	4.35E-01	a	a	a	a	a
Indeno(1,2,3-cd)pyrene	2.40E-01	а	a	a	a	a
Lead	5.08E+01	50	LOEC	1	50	1.02E+00
Naphthalene	2.25E-02	a	a	a	a	a
Phenanthrene	1.49E-01	a	a	a	a	a
Pyrene	5.17E-01	a	a	a	a	a

a = no toxicity data available

EQ plant = Concentration in soil/toxicity benchmark

Southeast Runway Fuel Spill Site - Ecological Quotients for the Meadow Vole Table 4M-5

	Conn		Dlant	Conc	MV	Toyfoliv				EO %	% EO	Total
Chemiral	. ·=	log Kaw	Untake	in Plants	Intake	Deta	Reference	Uncert	Uncert Taxicity	Soil	Plant	Œ
	54		Factor	mø/kg	mg/kg-d	mg/kg		Pactor	Benchmark			
2-Methylpaphthalene	3.12E-02	3.86	0.2274678	0.007097	0.007097 0.0009644	1630	1630 LD50-rat	0009	0.27166667	9.755756	90.24424	3.55E-03
Anthracene	4.93E-02	4.45	0.103729	0.0051138	0.0051138 0.0007757	430	430 LD50-rodent	0009	0.07166667	19.16329	80.83671	1.08E-02
Renzo(a)anthracene	3.13E-01	5.6	0.0224492	0.0070266	0.0070266 0.0018055	2	2 Dose-rodent	0009	0.00033333	52.27577	47.72423	5.42E+00
Benzo(a)nvrene	4.96E-01	6.19	0.0102372	0.0050776	0.0050776 0.0021183	10	10 LD50-rodent	0009	0.00166667	70.60593	29.39407	1.27E+00
Benzo(h)fluoranthene	4.04E-01	90.9	0.0121708	0.004917	0.004917 0.0018212	40	40 Dose-rodent	0009	0.00666667	66.89201	33.10799	2.73E-01
Benzo(g.h.i)nervlene	1.83E-01	6.5	0.0067764	0.0012401	0.0012401 0.0007039	0.8	0.8 Dose-mouse	0009	0.00013333 78.39607	78.39607	21.60393	5.28E+00
Benzo(k)flioranthene	4.15E-01	90.9	0.0121708		0.0050509 0.0018708	72	72 Dose-mouse	0009	0.012	66.89201	33.10799	1.56E-01
his(2-Fihylhexvl)nhthalate	2.85E-01	4.88	0.0585275	ļ	0.0166803 0.0029048	16.15	16.15 NOAEL-vole	1	16.15		29.58476 70.41524	1.80E-04
Chrysetle	5.15E-01	5.6	0.0224492	0.0115613 0.0029706	0.0029706	8	99 Dose-rodent	0009	0.0165	52.27577	47.72423	1.80E-01
Dibenz(a,h)anthracene	9.30E-02	6.83	0.0043678		0.0004062 0.0003302	5	5 Dose-rat	0009	1 1	84.91684	15.08316	3.96E-01
Fluoranthene	4.35E-01	4.89	0.0577537	0.0251229	0.0251229 0.0043924	2000	2000 Dose-rat	0009	0.33333333	29.86277	70.13723	1.32E-02
Indeport 2.3-cd)pyrene	2.40E-01	6.5	0.2		0.048 0.0066097	72	72 Dose-rodent	0009	0.012	10.94891	89.05109	5.51E-01
Dea 1	5.08E+01	م	0.04	2.032	0.4023568	15.86	15.86 NOAEL-vole	ī	15.86	38.07107	61.92893	2.54E-02
Nanhthalene	2.25E-02	3.29	0.15		0.003375 0.0004817	1780	1780 LD50-rodent	0009	0.29666667	14.08451	85.91549	1.62E-03
Phenanthrene	1.49E-01	4.38	0.1138571	0.0169647	0.0025296	700	700 Dose-mouse	0009	0.11666667	17.7614	82.2386	2.17E-02
Pyrene	5.17E-01	4.9		0.0569902 0.0294639	0.005172	800	800 LD50-mouse	0009	0.13333333	30.14227	69.85773	3.88E-02
				FOvole = vo	e intake/toxi	FOvole = vole intake/toxicity benchmark						
		0,0040		Vole intelle	WO (IND)	(Cono in plan	Materials = (UD/DW) = (Concin plants = H = H) ± (Concin coil = H = S)	and in coil v	EI v S))			
	kg/day	0.0049		Vole Intake	Y (MG/NU)=	ICOIIC III pian	(1) A 1.1 A 1.) T (C.)	Alle III soli A	l (o v t t			
	unitless	0.024		Conc in plan	ts = Conc in	Conc in plants = Conc in soil x plant uptake factor	ake factor					
	L/day	0.0053		a = no toxicity data available	y data availa	p je						
	unitless	0.976		b = Kow not applicable to metals	applicable to	metals						
	kg	0.039										
	acres	0.34										
Site Area:	acres	6.32										•
Home Range Fraction (HR):	unitless	-										

Table 4M-6 Southeast Runway Fuel Spill Site - Ecological Quotients for the Red Fox

	Conc	MV	Conc	Red Fax	Toxicity				% EQ	Ø E0	Total
Chemical	in Soil		in MVs	Intake	Data	Reference	Uncert	Toxicity	Soll	MV	Ğ
	mg/kg		mg/kg	mg/kg-d	mg/kg		Factor	Benchmark			
2-Methylnanhthalene	3.12E-02	0.342	0.00033	2.18E-07	1630	1630 LD50-rat	10000	0.163	73.1551	26.8449	1.33E-06
Anthracene	4.93E-02	0.34	0.00026	2.98E-07	430	430 LD50-mouse	10000	0.043	84.3369	15.6631	6.93E-06
Benzo(a)anthracene	3.13E-01	0.125	0.00023	1.64E-06	2	2 Dose-rodent	10000	0.0002	97.5581	97.5581 2.44188	8.18E-03
Benzo(a)pyrene	4.96E-01	0.342	0.00072	2.66E-06	10	10 Dose-mouse	10000	0.001	95.1744	4.82565	2.66E-03
Benzo(b)fluoranthene	4.04E-01	0.32	0.00058	2.16E-06	40	40 Dose-mouse	10000	0.004	95.2312	4.76877	5.41E-04
Benzo(g.h.i)pervlene	1.83E-01	0.34	0.00024	9.76E-07	0.8	0.8 Dose-mouse	10000	0.00008	95.6574	4.34264	1.22E-02
Benzo(k)fluoranthene	4.15E-01	0.34	0.00064	2.23E-06	72	72 Dose-rodent	00001	0.0072		94.9482 5.05176	3.10E-04
his(2-Ethylhexyl)phthalate	2.85E-01	57	0.16557	3.08E-05	3.5	3.5 NOAEL-red fox	1	3.5	4.72416	95.2758	8.79E-06
Chrysene	5.15E-01	0.07	0.00021	2.66E-06	66	99 Dose-rodent	10000	0.0099	98.6177	1.3823	2.69E-04
Dibenz(a.h)anthracene	9.30E-02	0.34	0.00011	4.94E-07	0.01	0.01 Dose-rodent	10000	0.000001	95.9774	4.02258	4.94E-01
Fluoranthene	4.35E-01	0.08	0.00035	2.28E-06	2000	2000 LD50-rat	10000	0.2		97.2723 2.727.72	1.14E-05
Indeno(1.2.3-cd)pyrene	2.40E-01	0.34	0.00225	1.62E-06	72	72 Dose-rodent	10000	0.0072	75.4685	24.5315	2.25E-04
Lead	5.08E+01	0.42	0.16899	2.89E-04	3.44	3.44 NOAEL-red fox	1	3.44	l	89.6475 10.3525	8.40E-05
Naphthalene	2.25E-02	0.34	0.00016	1.44E-07	300	300 LOAEL-mouse	100	3	79.8282	20.1718	4.79E-08
Phenanthrene	1.49E-01	0.12	0.0003	8.14E-07	700	700 LD50-mouse	10000	0.07	- 1	93.3949 6.60508	1.16E-05
Pyrene	5.17E-01	0.34	0.00176	2.95E-06	69	69 LD50-mouse	10000	0.0069	89.4395	10.5605	4.27E-04
Dod Dev Constants				FO red fox	= red fox in	EO red fox = red fox intake/toxicity benchmark	nmark				
Ked Fox Constants:	:	0,00		D-4 6	/dn/1-	DWY - (/Cono in M	V . EI . I	o tropo in c	oil v El v C	173	
Food Ingestion Rate (FI):	kg/day	0.208		Ked Iox int	ake = (nr)	Ked Iox intake = ($\pi K D W$) x [(Colic III in V x r I x r) + (Colic III soli x r I x s)]	1	.) + (COIIC III 8	7 Y 1.7 Y 110	17	٠
Soil Ingestion Fraction (S):	unitless	0.028		Conc in M	V = BAFx	Conc in MV = BAF x Meadow vole intake	e)				
Water Ingestion Rate (WI):	L/day	0.44		a = no toxicity data available	ity data av	ailable					
Food Ingestion Fraction (F):	unitless	0.972									
Body Weight (BW):	kg	5.25									
Home Range:	acres	1771									
Site Area:	acres	6.32									
Home Range Fraction (HR):	unitless	0.003569									

March 1996 4M-6

Table 4M-7 Southeast Runway Fuel Spill Site - Ecological Quotients for Terrestrial Invertebrates

Chemical	Conc in Soil mg/kg	Toxicity Data mg/kg	Reference	Uncert Factor	Toxicity Benchmark	Total EQ
2-Methylnaphthalene	3.12E-02	a	a	a	a	a
Anthracene	4.93E-02	a	a	a	a	a
Benzo(a)anthracene	3.13E-01	a	a	a	a	а
Benzo(a)pyrene	4.96E-01	1	LC50-sandworm	1	1	4.96E-01
Benzo(b)fluoranthene	4.04E-01	a	a	a	а	a
Benzo(g,h,i)perylene	1.83E-01	a	a	a	a	a
Benzo(k)fluoranthene	4.15E-01	а	a	a	a	a
bis(2-Ethylhexyl)phthalate	2.85E-01	a	a	a	a	a
Chrysene	5.15E-01	a	a	a	a	a
Dibenz(a,h)anthracene	9.30E-02	a	a	a	a	a .
Fluoranthene	4.35E-01	a	a	a	a	a
Indeno(1,2,3-cd)pyrene	2.40E-01	а	a	a	a	a
Lead	5.08E+01	a	a	a	a	a
Naphthalene	2.25E-02	3.8	LC50-sandworm	10	0.38	5.92E-02
Phenanthrene	1.49E-01	6	LC50-sandworm	10	0.6	2.48E-01
Ругепе	5.17E-01	a	a	a	a	a

a = no toxicity data available

EQ invertebrate = Concentration in soil/toxicity benchmark

Table 4M-8 Southeast Runway Fuel Spill Site - Ecological Quotients for the Robin

	1000	Triesco	Concer	Dakta	Tovicity				O# %	OT 70	Total
		ःः	1	Total	2	Deference	Incom	Torioite	7 = 3	Thrond	C G
	mgkg		mg/kg	mg/kg	mg/kg		Factor	Benchmark			Ž
2-Methylnaphthalene	3.12E-02	0.342	1.07E-02	1.33E-03	В	В	а	а	В	а	æ
Anthracene	4.93E-02	0.342	1.69E-02	2.10E-03	а	а	а	а	а	B	В
Benzo(a)anthracene	3.13E-01	0.125	3.91E-02	7.01E-03	В	В	В	я	а	а	æ
Benzo(a)pyrene	4.96E-01	0.342	1.70E-01	2.11E-02	а	а	а	я	а	а	æ
Benzo(b)fluoranthene	4.04E-01	0.32	1.29E-01	1.64E-02	15	5 Dose-chicken	10000	0.0015	26.61753	73.38247	1.09E+01
Benzo(g,h,i)perylene	1.83E-01	0.32	5.86E-02	7.41E-03	а	а	В	а	а	а	æ
Benzo(k)fluoranthene	4.15E-01	0.32	1.33E-01	1.68E-02	B	B	a	а	а	а	а
bis(2-Ethylhexyl)phthalate	2.85E-01	57	1.62E+01	1.51E+00	1.39	1.39 NOAEL-robin	1	1.39	0.20322	81961.66	1.09E+00
Chrysene	5.15E-01	0.07	3.61E-02	8.90E-03	а	в	ย	В	В	B	હ
Dibenz(a,h)anthracene	9.30E-02	0.342	3.18E-02	3.96E-03	a	В	В	а	8	B	а
Fluoranthene	4.35E-01	0.08	3.48E-02	7.92E-03	B	В	B	ย	a	¥	а
Indeno(1,2,3-cd)pyrene	2.40E-01	0.42	1.01E-01	1.20E-02	æ	ಡ	æ	B	B	В	ત્વ
Lead	5.08E+01	0.42	2.13E+01	2.53E+00	200	500 Dose-quail	100	5	21.65223	78.34777	5.06E-01
Naphthalene	2.25E-02	0.34	7.65E-03	9.53E-04	4000	4000 Dose-mallard	10000	0.4	25.45027	74.54973	2.38E-03
Phenanthrene	1.49E-01	0.12	1.79E-02	3.27E-03	4000	4000 Dose-mallard	10000	0.4	49.16793	50.83207	8.17E-03
Pyrene	5.17E-01	0.00	4.65E-02	9.90E-03	В	В	а	а	В	В	а
Rohin constants:											
Food Ingestion Rate (FI):	kg/day	0.01597		EQ robin =	robin intak	EQ robin = robin intake/toxicity benchmark	nark				
	unitless	0.104		Robin intak	e = (HR/B	Robin intake = (HR/BW) x 0.5 [(Conc in invert x FI x F) + (Conc in soil x FI x S)]	n invert x FI	x F) + (Conc i	n soil x FI x	(S)]	
Water Ingestion Rate (WI):	L/day	0.0105		Conc in inv	ert = BAF	Conc in invert = BAF x Conc in soil					
	unitless	0.896		a = no avian	n toxicity d	= no avian toxicity data available					
Body Weight (BW):	kg	0.077									
ge:	acres	7									
Site Area:	acres	6.32									
Fraction (HR):	unitless										
Time on Site	months	9									

March 1996 4M-8

Table 4M-9 Southeast Runway Fuel Spill Site - Ecological Quotients for the Kestrel

			-								
	Conc		Conc	Kestrel	Toxicity				% EQ	% E0	Total
Thomas of	ii Soii	Robin	in Robin	Intake	Data	Кебегенсе	Uncert	Toxicity	Soil	Robin	EQ
	mø/kg		me/ke	me/ke-d	mg/kg-d		Factor	Benchmark			
2-Methylnaphthalene	3.12E-02	0.342	4.54E-04	2.04E-06	В	æ	В	а	В	æ	æ
Anthracene	4.93E-02	0.342	7.18E-04	3.22E-06	8	В	æ	B	ત્ય	æ	æ
Benzo(a)anthracene	3.13E-01	0.125	8.76E-04	1.86E-05	а	æ	ત	æ	83	В	æ
Benzo(a)pyrene	4.96E-01	0.342	7.22E-03	3.24E-05	В	B	ત્વ	æ		В	в
Benzo(b)fluoranthene	4.04E-01	0.32	5.24E-03	2.61E-05	15	15 Dose-chicken	10000	0.0015	89.55018	10.44982	1.74E-02
Benzo(g,h,i)perylene	1.83E-01	0.32	2.37E-03	1.18E-05	В	æ	æ	æ	æ	В	В
Benzo(k)fluoranthene	4.15E-01	0.32	5.38E-03	2.68E-05	В	æ	es	es	- 1	в	æ
his/2-Ethylhexyl)phthalate	2.85E-01	57	8.62E+01	4.49E-02	0.78	0.78 NOAEL-hawk		0.78	0.036717	99.96328	5.76E-02
Chrysene	5.15E-01	0.07	6.23E-04	3.01E-05	ъ.	æ	63	63	æ	æ	æ
Dibenz(a,h)anthracene	9.30E-02	0.342	1.35E-03	6.08E-06	B	æ	æ	æ	æ	В	æ
Fluoranthene	4.35E-01	0.08	6.34E-04	2.55E-05	æ	æ	В	ત	æ	В	В
Indeno(1.2.3-cd)pyrene	2.40E-01	0.42	5.02E-03	1.65E-05	æ	В	а	ಡ	æ	æ	æ
Lead	5.08E+01	0.42	1.06E+00	3.49E-03	125	125 Dose-kestrei	10	12.5	84.15517	15.84483	2.79E-04
Naphthalene	2.25E-02	0.34	3.24E-04	1.47E-06	4000	4000 Dose-mallard	10000	0.4	88.52126	11.47874	3.68E-06
Phenanthrene	1.49E-01	0.12	3.92E-04	8.82E-06		4000 Dose-mallard	10000	0.4	97.68585	2.314148	2.21E-05
Pyrene	5.17E-01	0.09	8.91E-04	3.04E-05	а	æ	В	а	a	а	а
Kestrel constants:					•						
Food Ingestion Rate (FI):	kg/day	0.01096		EQ kestrel =	= kestrel int	EQ kestrel = kestrel intake/ toxicity benchmark	nmark	í	:	í	
Soil Ingestion Fraction (S):	unitless	0.1		Kestrel intal	ce = (HR/B	Kestrel intake = $(HR/BW) \times 0.5 \times [(Conc in sparrow \times Fi \times F) + (Conc in soil \times Fi \times S)]$	in sparrow	x Fi x F) + (Co	nc in soil x l	FI x S)]	
Water Ingestion Rate (WI):	L/day	0.014		Conc in robi	in = BAF x	Conc in robin = BAF x robin intake					
Food Ingestion Fraction (F):	unitless	0.0		a = no avian toxicity data available	toxicity da	ta available		•			
Body Weight (BW):	kg	0.12									
Home Range:	acres	. 499			•						
Site Area:	acres	6.32									
Home Range Fraction (HR):	unitless	0.012665									
Time on site:	months	9									

Control Tower Drum Storage Area, South - Ecological Quotients for the Northern Pike from Discharged Groundwater Table 4M-10

1.2-Dichloroethane 2.76E-10 20 AWQC 1 20 1.38E-13 4,4-DDE 4,4-DDE 2.37E-13 0.000001 AWQC 1 0.000001 2.37E-13 Aldrin 3.06E-13 1.90E-06 AWQC 1 0.0000019 1.61E-10 cis-1,2-Dichloroethene 1.24E-09 11.6 AWQC 1 0.0000032 1.06E-10 Dibromomethane 1.39E-14 a a a a a Dieldrin 2.77E-13 1.9E-06 AWQC 1 0.0000019 1.46E-16 Endosulfan I 4.26E-76 5.60E-06 AWQC 1 0.0000056 7.60E-16 Bamma-BHC 2.21E-50 3.80E-06 AWQC 1 0.0000023 1.35E-18 Heptachlor 1.21E-12 3.80E-06 AWQC 1 0.0000038 5.81E-19 Meta-&Para-Xylene 1.40E-09 13.5 LC50-trout 1 0.0000038 3.19E-19 Trichloroethene 2.57E-10 21.9 AWQC 1 0.0000038	Chemical	Conc in Water mg/L	Toxicity Data mg/kg	Reference	Uncert Factor	Uncert Toxicity Factor Benchmark	Total EQ
2.37E-13 0.000001 AWQC 1 0.000001 3.06E-13 1.90E-06 AWQC 1 0.0000019 1.24E-09 11.6 AWQC 1 0.0000032 1.39E-14 a a a a 2.77E-13 1.9E-06 AWQC 1 0.0000019 4.26E-76 5.60E-06 AWQC 1 0.0000023 2.21E-50 3.80E-06 AWQC 1 0.0000038 1.21E-12 3.80E-06 AWQC 1 0.0000038 ne 7.09E-11 11.6 AWQC 1 0.0000038 ne 7.09E-11 11.6 AWQC 1 0.0000038 2.57E-10 21.9 AWQC 1 0.135	1,2-Dichloroethane	2.76E-10	20	AWQC	1	20	1.38E-11
3.06E-13 1.90E-06 AWQC 1 0.0000019 3.40E-13 0.032 EC-guppy 10000 0.0000032 1.24E-09 11.6 AWQC 1 11.6 2.77E-13 1.9E-06 AWQC 1 0.0000019 4.26E-76 5.60E-06 AWQC 1 0.0000023 2.21E-50 3.80E-06 AWQC 1 0.0000038 1.21E-12 3.80E-06 AWQC 1 0.0000038 1.40E-09 13.5 LC50-trout 10 0.135 ne 7.09E-11 11.6 AWQC 1 11.6 2.57E-10 21.9 AWQC 1 21.9	4,4'-DDE	2.37E-13	0.000001	AWQC	1	0.000001	2.37E-07
3.40E-13 0.032 EC-guppy 10000 0.0000032 1.24E-09 11.6 AWQC 1 11.6 1.39E-14 a a a a 2.77E-13 1.9E-06 AWQC 1 0.0000019 4.26E-76 5.60E-06 AWQC 1 0.0000056 2.21E-50 3.80E-06 AWQC 1 0.0000038 1.21E-12 3.80E-06 AWQC 1 0.0000038 ne 7.09E-11 11.6 AWQC 1 0.0000038 ne 7.09E-11 11.6 AWQC 1 0.0000038 2.57E-10 21.9 AWQC 1 11.6	Aldrin	3.06E-13	1.90E-06	AWQC	1	0.0000019	1.61E-07
1.24E-09 11.6 AWQC 1 11.6 1.39E-14 a a a a a 2.77E-13 1.9E-06 AWQC 1 0.0000019 4.26E-76 5.60E-06 AWQC 1 0.0000023 2.21E-50 3.80E-06 AWQC 1 0.0000038 1.21E-12 3.80E-06 AWQC 1 0.0000038 ne 7.09E-11 11.6 AWQC 1 0.0000038 ne 7.09E-11 11.6 AWQC 1 11.6 2.57E-10 2.57E-10 21.9 AWQC 1 21.9	beta-BHC	3.40E-13	0.032	EC-guppy	10000	0.0000032	1.06E-07
ane a a a a 2.77E-13 1.9E-06 AWQC 1 0.0000019 4.26E-76 5.60E-06 AWQC 1 0.0000023 oxide 2.21E-50 3.80E-06 AWQC 1 0.0000038 xylene 1.21E-12 3.80E-06 AWQC 1 0.0000038 xylene 1.40E-09 13.5 LC50-trout 10 0.135 nloroethene 7.09E-11 11.6 AWQC 1 11.6 ne 2.57E-10 21.9 AWQC 1 21.9	cis-1,2-Dichloroethene	1.24E-09	11.6	AWQC	1	11.6	1.07E-10
xylene 7.77E-10 1.9E-06 AWQC 1 0.0000019 xylene 3.11E-13 0.023 LC50-salmon 10000 0.0000023 xylene 1.21E-12 3.80E-06 AWQC 1 0.0000038 xylene 1.40E-09 13.5 LC50-trout 10.0000038 noroethene 7.09E-11 11.6 AWQC 1 11.6 ne 2.57E-10 21.9 AWQC 1 21.9	Dibromomethane	1.39E-14	а	B	В	а	а
A.26E-76 5.60E-06 AWQC 1 0.0000056 3.11E-13 0.023 LC50-salmon 10000 0.0000023 oxide 1.21E-12 3.80E-06 AWQC 1 0.0000038 Kylene 1.40E-09 13.5 LC50-trout 10 0.135 nloroethene 7.09E-11 11.6 AWQC 1 11.6 ne 2.57E-10 21.9 AWQC 1 21.9	Dieldrin	2.77E-13	1.9E-06	AWQC	1	0.0000019	1.46E-07
3.11E-13 0.023 LC50-salmon 10000 0.0000023 oxide 2.21E-50 3.80E-06 AWQC 1 0.0000038 Kylene 1.40E-09 13.5 LC50-trout 100 0.135 nloroethene 7.09E-11 11.6 AWQC 1 11.6 ne 2.57E-10 21.9 AWQC 1 21.9	Endosulfan I	4.26E-76		AWQC	1	0.0000056	7.60E-71
2.21E-50 3.80E-06 AWQC 1 0.0000038 1.21E-12 3.80E-06 AWQC 1 0.0000038 nene 7.09E-11 11.6 AWQC 1 11.6 2.57E-10 21.9 AWQC 1 21.9	gamma-BHC	3.11E-13		LC50-salmon	10000	0.0000023	1.35E-07
nene 7.09E-11 2.57E-10 2.57E-10 2.57E-10 2.57E-10 2.57E-10 3.80E-06 AWQC 1 0.0000038 3.5 nene 7.09E-11 11.6 AWQC 1 11.6 0.135	Heptachlor	2.21E-50	3.80E-06	AWQC	1	0.0000038	5.81E-45
nene 1.40E-09 13.5 LC50-trout 100 0.135 2.57E-10 21.9 AWQC 1 21.9	Heptachlor epoxide	1.21E-12	3.80E-06	AWQC	1	0.0000038	3.19E-07
7.09E-11 11.6 AWQC 1 11.6 2.57E-10 21.9 AWQC 1 21.9	Meta-&Para-Xylene	1.40E-09		LC50-trout	100	0.135	1.04E-08
2.57E-10 21.9 AWQC 1 21.9	trans-1,2-Dichloroethene	7.09E-11	11.6	AWQC	1	11.6	6.12E-12
	Trichloroethene	2.57E-10	21.9	AWQC	1	21.9	1.17E-11

EQ pike = concentration in water/toxicty benchmark

Concentration in water = modeled groundwater concentrations, at a 5-feet range from shoreline (see Appendix 4C) a = no toxicity information available

4M-11 Control Tower Drum Storage Area, South- Ecological Quotients for Aquatic Invertebrates

Chemical	Conc in GW mg/L	Toxicity Data mg/kg	Reference	Uncert Factor	Toxicity Benchmark	Total EQ
1,2-Dichloroethane	1.04E-06	20	AWQC	1	20	5.18E-08
4,4'-DDE	2.92E-07	0.000001	AWQC	1	0.000001	2.92E-01
Aldrin	3.78E-07	0.0000019	AWQC	1	0.0000019	1.99E-01
beta-BHC	2.21E-09	0.1	EC50-daphnia	100	0.001	2.21E-06
cis-1,2-Dichloroethene	1.53E-03	11.6	AWQC-acute	10	1.16	1.32E-03
Dibromomethane	6.59E-16	a	a	a	a	a
Dieldrin	1.16E-33	0.0000019	AWQC	1	0.0000019	6.13E-28
Endosulfan I	5.25E-70	0.0000056	AWQC	1	0.0000056	9.38E-65
gamma-BHC	3.41E-09	0.46	LC48-daphnia	100	0.0046	7.42E-07
Heptachlor	1.05E-113	0.0000038	AWQC	1	0.0000038	2.75E-108
Heptachlor epoxide	1.09E-06	0.0000038	AWQC	1	0.000038	2.88E-01
Meta-&Para-Xylene	1.13E-07	13	LC50-fish	10000	0.0013	8.72E-05
trans-1,2-Dichloroethene	8.76E-05	11.6	AWQC-acute	10	1.16	7.55E-05
Trichloroethene	2.73E-04	21.9	AWQC	1	21.9	1.25E-05

EQ = Concentration in water/toxicity benchmark

Concentration in water = modeled groundwater concentrations discharging to the shoreline (see Appendix 4C) a = no toxicity data available

4M-12 Control Tower Drum Storage Area South - Ecological Quotients for the Spotted Sandpiper

	Conc	Insect	Conc	dSS	Toxicity				% E0	% EO	Total
Chemical	In GW	Uptake	in Invert		Data	Reference		Toxicity	Water	Invert	O _H
	mg/L	Factor	mg/kg	mg/kg mg/kg-day	mg/kg		Factor	Benchmark			
1,2-Dichloroethane	1.04E-06	2	2.07E-06	6.32E-06	46.81	46.81 NOAEL-robin	10	4.681	98.21144	1.788562	1.35E-06
4,4'-DDE	2.92E-07	12000	3.51E-03	1.93E-04	0.00032	0.00032 NOAEL-heron	10	0.000032	0.906881	99.09312	6.03E+00
Aldrin	3.78E-07	3140	1.19E-03	6.70E-05	0.045	0.045 NOAEL-heron	10	0.0045	3.379314	96.62069	1.49E-02
beta-BHC	2.21E-09	1460	3.22E-06	1.89E-07	0.226	0.226 NOAEL-heron	10	0.0226	6.995805	93.00419	8.36E-06
cis-1,2-Dichloroethene	1.53E-03	23	3.53E-02	1.11E-02	æ	8	B	æ	B	æ	а
Dibromomethane	6.59E-16	В	В	В	æ	æ	æ	æ	æ	а	æ
Dieldrin	1.16E-33	2700	3.14E-30	1.78E-31	0.045	0.045 NOAEL-heron	10	0.0045	3.908492	96.09151	3.96E-29
Endosulfan I	5.25E-70	59	3.10E-68	4.84E-69	17.22	17.22 NOAEL-robin	10	1.722	65.05188	34.94812	2.81E-69
gamma-BHC	3.41E-09	319	1.09E-06	7.98E-08	4.66	4.66 NOAEL-robin	10	0.466	25.6101	74.3899	1.71E-07
Heptachlor	1.05E-113	20	2.1E-112	2.1E-112 7.40E-113	92	92 LC50-quail	10000	0.0092	84.59425	15.40575	8.05E-111
Heptachlor epoxide	1.09E-06	20	2.19E-05	7.74E-06	92	92 LC50-quail	10000	0.0092	84.59425	15.40575	8.42E-04
Meta-&Para-Xylene	1.13E-07	80	9.07E-06	1.17E-06	1940	1940 NOAEL-quail	1000	1.94	57.85518	42.14482	6.05E-07
trans-1,2-Dichloroethene	8.76E-05	23	2.01E-03	6.34E-04	а	а	В	B	æ	B	æ
Trichloroethene	2.73E-04	<i>L</i> 1	4.65E-03	1.89E-03	а	а	В	а	В	я	æ
						-					
Spotted Sandpiper Constants:	•	0	•	EQ = sandp	per intake	EQ = sandpiper intake/foxicity benchmark	ĺ				
Body weight (BW):	×8	0.047		Intake = (H)	KVBW) X U.	Intake = (HK/BW) x 0.42 x ((Conc in Invert x F1 x FF) + (Conc in water x W1))	H X FF) + (Conc in water	x WI))		
Water Intake (WI):	L/day	0.67	-	Conc. in We	iter = mode	Conc. in Water = modeled groundwater concentrations discharged to the mudflats (see Appendix 4C)	trations dis	charged to the	mudflats (se	e Appendix	4C)
Food Ingestion rate (FI):	kg/day	0.00744	-	a = no avian	toxicity da	a = no avian toxicity data available					
Soil Ingestion fraction (S):	unitless	0.18									
Food Ingestion fraction (F):	unitless	0.82									
Home Range:	acres	2.5									
Time on site:	months	S									
Home Range Fraction (HR):	unitless	-									
Site Area:	acres	3.78									