Light Curve Analysis of Type II SNe KSP-ZN7090

Patrick Sandoval & Dr. Dae-Sik Moon

First Detection

- First detected by KMTNet on 2020-10-12 14:44 UTC
- Young Type II SN detected within
 1 day after explosion
- Multiband observation (BVi)

Mathew Leung Photometry Work

- Image Subtraction
- PSF Photometry
- Light Curve Binning & ImageStacking
- Colour Corrections
- Extinction Correction

Creating Bolometric Light Curve for KSP-ZN7090

Bolometric light curves can be though as the light curves that account for all E&M radiation emitted at all wavelengths

Bolometric Corrections
Method

- Apply bolometric corrections from well studied SNe
- We must properly classify and understand powering mechanism of ZN7090

Stage 1: Preliminary Analysis on Light Curves

Classifying ZN7090

- A rough inspection on the host galaxy's spectrum indicated
 P-Cygni profile for H-alpha (Hint towards Type II SNe)
- Subdivision within Type II SNe
 - o Type II-P
 - Type II-L
- Difference between division lies on the morphology of light curve

- Type II-L
 - Linear decline post peak
 - Decline rate is greater than0.01 mag/day
- Type II-P
 - Plateau phase post peak
 - Attributed to hydrogen recombination on the ejecta

Estimating Peak Magnitude Epoch

- Fitted a polynomials of degree 7 for light curves
- Date: 2020-10-19 20:52
- V-band decline rate is consistent with other Type II-L SNe

$$\Delta m \, = \, 3.84 \, \pm \, 0.01 \, rac{mag}{100 \, day}$$

Epoch of First Light & Rise Times

- Two main mechanisms could dominate the rise of a CCSNe
 - Shock breakout
 - Radioactive decay
- Mechanisms vary the rise time

Constrain Epoch of First Light

Perform simultaneous power fitting on early light curve

$$f(t) = C_{\lambda}(t-t_0)^n$$

First Light Dates:

- 1. 2020-10-12 09:09
- 2. 2020-10-12 05:56

Table 2: Light curve rise times for power fits in different scenarios

KMTNet Band	2 Day Model	3 Day Model	
	(Days)	(Days)	
B-Band	5.4 ± 0.3	5.5 ± 0.3	
V-Band	7.5 ± 0.3	7.6 ± 0.3	
I-Band	9.5 ± 0.3	9.6 ± 0.3	

Stage 2: Applying Bolometric Corrections

Bolometric Corrections

- Bolometric corrections are energy corrections that are applied to the magnitude system in order to account for the emitted radiation in all wavelengths
- The methods for finding these correction vary between literature

$$BC_x = \Sigma_{k=0}^n c_k (m_x - m_y)^k \qquad \qquad BC_x = m_{bol} - m_x$$

Bolometric Corrections Used

Martinez et al. 2022, Colors: (B-V)

Layman et al. 2014, Colors: (B - V)

Layman et al. <u>2016</u>, Colors: (B - i) (V-i)

Table 4. Coefficients of the polynomial fits to the BC versus different colours.

Colour	Phase	Range	c_0	c_1	c_2	c_3	c_4	σ
B-V	Cooling	(-0.10, 1.16)	-0.740	4.472	-9.637	9.075	-3.290	0.12
	Plateau	(0.07, 1.98)	-0.384	1.692	-2.370	1.524	-0.476	0.19
	Tail	(0.46, 1.78)	-2.696	11.532	-18.805	13.040	-3.315	0.21
g-r	Cooling	(-0.26, 1.09)	-0.352	1.753	-4.078	1.961	_	0.11
	Plateau	(0.01, 2.17)	-0.219	0.813	-2.194	1.205	-0.305	0.14
	Tail	(0.78, 2.07)	-9.994	21.507	-15.343	3.273	3 — 3	0.22
g-i	Cooling	(-0.50, 1.15)	-0.214	0.789	-2.357	1.097	// <u></u> -3	0.11
	Plateau	(-0.10, 2.79)	-0.140	0.292	-1.224	0.522	-0.090	0.07
	Tail	(0.86, 2.43)	-0.263	-0.154	-0.256	_	_	0.08

Notes. BC = $\sum_{k=0}^{n} c_k (colour)^k$, where colour is taken from Column 1. σ is the standard deviation about the fit.

Bolometric Light Curve Adapting Martinez et al. 2022 Bolometric Corrections

Bolometric Corrections using Layman et al. 2014 & 2016

Layman provides a correction for a combination between Sloan and Johnson Cousin filters, and just Johnson magnitudes.

Table 3: Lyman, Bersier, James, Mazzali, et al. 2016b bolometric correction coefficients for polynomial of degree 2 specific to the shock cooling phase.

Color	Phase	Range	c_0	c_1	c_2	σ
B - V	Cooling	(-0.2, 0.5)	-0.393	0.786	-2.124	0.089
B - i	-	(-0.392, 2.273)	-0.155	-0.450	-0.167	0.023
V - i	_	(-0.391, 0.658)	0.181	-0.212	-1.137	0.044

Bolometric Light Curve Adapting Layman et al. 2014 Bolometric Corrections

Bolometric Light Curve Adapting Layman et al. 2016 Bolometric Corrections

Bolometric Light Curve Adapting Layman et al. 2016 Bolometric Corrections

Smooth Color Evolution

- Color is a temperature indicator for a SNe
- All color evolutions plot indicate a transition from blue to red
 - Due to the cooling of the ejecta
- We expect this cooling to be a smooth monotonic function

Gaussian Sampling on Color Evolution

Applying Simulated Color Evolution to Bolometric Correction

Outlier bolometric magnitude in light curve has been 'corrected'

