Санкт-Петербургский политехнический университет Петра Великого Высшая школа прикладной математики и вычислительной физики, Физика-механический институт

«Прикладная математика и информатика»

ОТЧЁТ ПО ЛАБОРАТОРНЫМ РАБОТАМ ПО ДИСЦИПЛИНЕ «Интервальный анализ»

Выполнил студент группы 5030102/80201

Войнова Алёна

Проверил к. ф.-м. н., доцент

Баженов Александр Николаевич

Санкт-Петербург 2021

Содержание

1	Постановка задачи	2
	1.1 Использование субдифференциального метода Ньютона	2
2	Теория	3
	2.1 Теорема Зюзина	3
	2.2 Субдифференциальный метод Ньютона	3
3	Реализация	3
4	Результаты	3
	4.1 Итерационный процесс с разложением матрицы на диагональную и	
	недиагональную части	3
	4.2 Итерационный процесс по субградиентному методу Ньютона	4
5	Обсуждение	6
6	Приложения	7
C	Список иллюстраций	
	1 Изображение брусов при решении задачи (4)	4
	2 Зависимость радиусов брусов от числа итераций при решении задачи (4)	4
	3 Решение задачи (5) субградиентным методом Ньютона, $\tau = 1 \dots \dots$	5
	4 Решение задачи (6) субградиентным методом Ньютона, $\tau = 1 \dots \dots$	5
	5 Решение задачи (6) субградиентным методом Ньютона, $\tau = 0.05$	6
		9

1 Постановка задачи

Рассмотрим матрицу

$$C = \begin{pmatrix} [1,2] & [-1,-3] \\ [3,4] & [2,3] \end{pmatrix} \tag{1}$$

и вектор

$$x = \begin{pmatrix} [2,4] \\ [6,8] \end{pmatrix} \tag{2}$$

Тогда несложно сосчитать, что вектор правых частей

$$b = \begin{pmatrix} [-22, 2] \\ [18, 40] \end{pmatrix} \tag{3}$$

Тогда получаем ИСЛАУ

$$\begin{cases}
[1, 2] \cdot x_1 + [-1, -3] \cdot x_2 = [-22, 2] \\
[3, 4] \cdot x_1 + [2, 3] \cdot x_2 = [18, 40]
\end{cases}$$
(4)

Для нее необходимо построить итерационную схему с разложением матрицы на диагональную и недиагональную части по теореме Зюзина, а также провести вычисления и привести иллюстрации:

- Брусов итерационного процесса
- Радиусов решения в зависимости от номера итерации

1.1 Использование субдифференциального метода Ньютона

Даны две ИСЛАУ:

$$\begin{cases} [3, 4] \cdot x_1 + [5, 6] \cdot x_2 = [-3, 3] \\ [-1, 1] \cdot x_1 + [-3, 1] \cdot x_2 = [-1, 2] \end{cases}$$
(5)

$$\begin{cases} [3, 4] \cdot x_1 + [5, 6] \cdot x_2 = [-3, 4] \\ [-1, 1] \cdot x_1 + [-3, 1] \cdot x_2 = [-1, 2] \end{cases}$$
(6)

Необходимо построить итерационную схему субдифференциального метода Ньютона, провести вычисления и привести иллюстрации брусов итерационного процесса, а также сравнить полученные результаты для систем (5) и (6).

2 Теория

2.1 Теорема Зюзина

Пусть в интервальной линейной системе уравнений

$$Cx = d, \quad C \in KR^{n \times n}, \ d \in KR^n$$

правильная проекция матрицы C имеет диагональное преобладание. Тогда формальное решение системы существует и единственно.

Итерационный процесс строится следующим образом

$$D = \operatorname{diag} \{c_{ii}\}_{i=1}^{n} \quad E = C \ominus D$$

$$Cx = d \Leftrightarrow Dx = d \ominus Ex$$

$$x^{k+1} = \operatorname{inv} D \cdot (d \ominus Ex^{k}), \ k = 0, 1, \dots$$

2.2 Субдифференциальный метод Ньютона

Итерационная процедура субдифференциального метода Ньютона описывается следующей формулой:

$$x^{k} = x^{k-1} - \tau(D^{k-1})^{-1} \mathcal{F}(x^{k-1}),$$

где $\mathcal{F}(x)=\mathrm{sti}\;(C\cdot\mathrm{sti}^{-1}\;(x))-x+\mathrm{sti}\;(d)$ (sti - операция стандартного погружения, отображения из KR^n в R^{2n}), D^{k-1} - какой-нибудь субградиент отображения $\mathcal F$ в точке x^{k-1} , τ - константа, в данной работе выбрана единицей.

3 Реализация

Лабораторная работа выполнена с помощью встроенных средств в среде разработки Octave с библиотекой полной интервальной арифметики kinterval. Исходный код лабораторной работы приведён в приложении в виде ссылки на репозиторий GitHub.

4 Результаты

4.1 Итерационный процесс с разложением матрицы на диагональную и недиагональную части

Число итераций - 10. Начальный брус обозначен синим цветом.

Рис. 1: Изображение брусов при решении задачи (4)

Рис. 2: Зависимость радиусов брусов от числа итераций при решении задачи (4)

4.2 Итерационный процесс по субградиентному методу Ньютона

При решении задачи (5) использовался параметр $\tau=1,$ финальный брус получен на четвертой итерации метода.

Полученный результат:

$$x = \begin{pmatrix} [0.0, 0.5] \\ [-0.5, 0.167] \end{pmatrix} \tag{7}$$

Рис. 3: Решение задачи (5) субградиентным методом Ньютона, $\tau=1$ Решение задачи (6) с параметром $\tau=1$. Число итераций - 500.

Рис. 4: Решение задачи (6) субградиентным методом Ньютона, $\tau=1$

Решение задачи (6) с параметром $\tau = 0.05$. Число итераций - 300.

Рис. 5: Решение задачи (6) субградиентным методом Ньютона, $\tau=0.05$

Процесс зацикливается при разных au

5 Обсуждение

- 1. Глядя на график 2, обнаруживаем, что наиболее адекватная оценка была получена на второй итерации. После десятой итарации результат существенно не изменяется => метод Зюзина достаточно быстро сходится и дает корректный результат
- 2. При решении задачи 5 получена точная внутренняя оценка $\Xi_{\rm tol}$, субградиентный метод Ньютона сошелся очень быстро после четвертой итерации итерационный процесс остановился.
- 3. При решении задачи 6 не была получена внутренняя оценка $\Xi_{\rm tol}$. Тем не менее, результат после остановки из-за условия, ограничивающего число итераций показывает достаточно адекватную грубую оценку

4. При уменьшении параметра τ получен другой брус. Оценка получилась более удачна, так как полученный брус больше по площади, чем предыдущий, и еще большая его часть лежит внутри допускового множества.

6 Приложения

 $Koд\,\pi porpammы\, Ha\, Git Hub,\, URL:\, https://github.com/pikabol88/IntervalAnalysis/tree/main/lab4$