Assignment 1 - Pseudocode

Graded

Student

AKSHAJ KAMMARI

Total Points

28.78 / 40 pts

1.1

Train Ticket 13.5 / 15 pts

Inputs, Outputs and Error Conditions

1.5 / 1.5 pts

- - + 0 pts Incorrect
 - + **0.5 pts** inputs: age, bought ticket inside the train?
 - + **0.5 pts** outputs: ticket price
 - + 0.5 pts error: error if age is less than 0 or greater than 120

1.2 Algorithms 10 / 10 pts

- - + 0 pts Incorrect
 - + 0.5 pts READ age
 - + **0.5 pts** READ does the person bought ticket inside the train?
 - + 1 pt Display error for age < 0
 - + 1 pt Display error for age > 120
 - **+ 2 pts** price is 5.20 for age > 70
 - **+ 2 pts** price is 11.50 for 70 >= age >=6
 - + 2 pts Checks if person buys ticket inside train
 - + 1 pt Display the ticket price

1.3 Test cases 2 / 3.5 pts

- + 3.5 pts Correct
- + 0 pts Incorrect
- **→ + 0.4 pts** [negative,trueORFalse][error]
- **→ + 0.4 pts** [<6,trueOrFalse][0]
 - **+ 0.4 pts** [6,true][11.50] OR [6,false][11.50+11.50*0.15] boundary case
- **→ + 0.4 pts** [6<age<70,false][11.50] adult buying at station
- **→ + 0.4 pts** [6<age<70,true][11.50+11.50*0.15] adult buying inside train
 - + **0.35 pts** [71,false][5.20] boundary case (senior buying at station)
 - + **0.35 pts** [71,true][5.20+5.20*0.15] boundary case (senior buying inside train)
 - **+ 0.4 pts** [120,true][5.2] (boundary)
- **→ + 0.4 pts** [>120,trueORFalse][error]

Bank 11.28 / 13 pts

2.1 Input, Output, Error Conditions

1.5 / 1.5 pts

- - + 0.5 pts Inputs: balance
 - + **0.5 pts** Outputs: new balance
 - + 0.5 pts Error or precondition: none
 - + 0 pts Incorrect

2.2 Algorithm 9.5 / 9.5 pts

- - + 0.5 pts READ balance
 - + 2 pts Check balance < 0 and update balance
 - + 2 pts Check 0 >= balance < 500 and update balance
 - + 2 pts Check 500 <= balance <= 1000 and update balance
 - + 2 pts Check balance > 1000 and update balance
 - + 1 pt Display balance
 - + 5 pts Minor Mistake
 - + 0 pts Incorrect
 - 0.5 pts 0 is a valid balance

2.3 Test cases 0.28 / 2 pts

+ 2 pts Correct

- **→ + 0.28 pts** [-4][balance-50] negative balance
 - **+ 0.28 pts** [0][-10] boundary
 - **+ 0.28 pts** **** [499][489] boundary
 - **+ 0.28 pts** [500][500+500*0.01] boundary
 - **+ 0.28 pts** [999][999+999*0.001] boundary
 - **+ 0.28 pts** [1000][1000+1000*0.001] boundary
 - **+ 0.32 pts** [1200][1200+1200*0.002]
 - + 0 pts Incorrect

Question 3 Count Operations - WCS111 FM 3 / 6 pts 3.1 Minimum 4 + 3 pts Correct + 0 pts Incorrect Maximum 4 3 pts Correct + 3 pts Correct + 0 pts Incorrect

Question 4

Count Operations - Lucky Twos

1 / 6 pts

4.1 (no title)

1 / 6 pts

```
+ 6 pts f(n) = 2 + 3n + x + 1 + 1
2 [READ, SET] +
```

3n [number > 0, IF number modulus..., COMPUTE] happens n times. n times the conditional is true x [ADD 1 to count] where x is the number of 2s in the number 1 [when the loop conditional is false] 1 [DISPLAY]

- + 3 pts If answer has 3n
- + 2 pts If answer has any variable to denote the number of 2s in the number
- → + 1 pt If the answer has 4
 - + 0 pts incorrect
 - + **0 pts** Click here to replace this description.

Q1 Train Ticket

15 Points

Train Ticket for one person. Write a program that reads a person's age, then computes and displays the price the person needs to pay for the train ride according to the following rules:

- Children younger than 6 years old ride for free.
- If the ticket is bought at the train station:
 - A person over 70 years old pays \$5.20
 - Everyone else pays \$11.50.
- If ticket is bought inside the train, there is an extra charge of 15% compared to train station prices.

Note that a person's age is within the range of 0 to 120 years. Other inputs are considered error conditions.

Q1.1 Inputs, Outputs and Error Conditions 1.5 Points

In the space below, determine the inputs, outputs and error conditions for the problem.

inputs: age of person, where ticket was purchased

outputs: price of ticket

error conditions: if the age of the person is less than 0 or greater than 120

Q1.2 Algorithms 10 Points

In the space below, write your algorithm using pseudocode (pseudocode reference sheet under Week 1 resources at https://introcs.cs.rutgers.edu/lectures). If you detect an error condition, end your program.

```
READ age
IF age < 0 OR age > 120 THEN
DISPLAY error
ELSE
IF age < 6 THEN
 SET price TO 0.00
 ELSE
 IF age >= 70 THEN
 SET price TO 5.20
 ELSE
  SET price TO 11.50
 ENDIF
 ENDIF
ENDIF
READ location
IF location is inside train THEN
COMPUTE ticket AS price*1.15
DISPLAY price
ELSE
DISPLAY price
ENDIF
```

Q1.3 Test cases 3.5 Points

In the space below, list a thorough set of test cases for your program. Write in the following format [inputs], where the inputs are separated by commas. [inputs][output]

```
[123][error]
[5, inside][0.00]
[4, outside][0.00]
[17, inside][13.23]
[22, outside][11.50]
[82, inside][5.98]
[94, outside][5.20]
[-3][error]
```

Q2 Bank

13 Points

A bank charges fees and/or gives interest based on the balance of a customer. Write a program that reads the customer balance then calculates and displays the new balance after the application of fees and or interest based on the following rules:

- A negative balance incurs a \$50 overdraft fee.
- A balance below \$500 (but positive) incur on a \$10 maintenance fee.
- A balance from \$500 to \$1000 (inclusive) gain 0.1% interest.
- A balance over \$1000 will gain 2% interest.

Q2.1 Input, Output, Error Conditions

1.5 Points

In the space below, determine the inputs, outputs and error conditions for the problem.

inputs: customer current balance output: customer new balance

error conditions: none

Q2.2 Algorithm 9.5 Points

In the space below, write your algorithm using pseudocode (pseudocode reference sheet under Week 1 resources at https://introcs.cs.rutgers.edu/lectures). If you detect an error condition, end your program.

```
READ oldBalance

IF oldBalance < 0 THEN

COMPUTE newBalance TO oldBalance - 50

ELSE

IF oldBalance >= 0 AND oldBalance < 500 THEN

COMPUTE newBalance TO oldBalance - 10

ELSE

IF oldBalance >= 500 AND oldBalance <= 1000 THEN

COMPUTE newBalance TO oldBalance*1.001

ELSE

COMPUTE newBalance TO oldBalance*1.001

ELSE

COMPUTE newBalance TO oldBalance*1.02

ENDIF

ENDIF

ENDIF

DISPLAY newBalance
```

Q2.3 Test cases 2 Points

In the space bellow, list a thorough set of test cases for your program. Write in the following format [inputs], where the inputs are separated by commas. [inputs][output]

```
[-50][-100]
[350][340]
[700][700.70]
[1050][1071]
```

Q3 Count Operations - WCS111 FM 6 Points

WCS111 FM, a radio station by computer scientists for computer scientists. The station runs a contest where listeners win prizes based on how many hours they spend programming in Java. The following program displays the listener prize based on the number of hours spent programming.

```
READ number of hours the listener spent programmi
IF hours IS 0 THEN
 DISPLAY no prize
ELSE
  IF hours >= 1 AND hours <= 5 THEN
    DISPLAY T-SHIRT
  ELSE
    IF hours >= 6 AND hours <= 400 THEN
      IF hours % 10 IS 9 THEN
        DISPLAY laptop
      ENDIF
      IF hours % 2 IS 0 THEN
        DISPLAY hat
      ENDIF
      IF hours % 3 IS 0 THEN
        DISPLAY TV
      ENDIF
    ELSE
      DISPLAY trip to Hawaii
    ENDIF
  ENDIF
ENDIF
```

Q3.1 Minimum 3 Points

What is the minimum number of operations that can be executed in the code? (answer just in numbers)

Q3.2 Maximum 3 Points

What is the maximum	number of operations that can be executed in the code?
(answer just in numbe	rs)
10	

Q4 Count Operations - Lucky Twos 6 Points

Lucky Twos determines and displays the number of digits that are 2s in a whole number. For example, the number of 2s in 3487 is 0, while the number of 2s in 272521 is 3. Note: whole numbers are non-negative integers starting at zero 0, 1, 2, 3, 4.

Assume that the fractional part is discarded in the division:

```
10/4 = 2
8/5 = 1
20/3 = 6
```

```
READ number

SET count TO 0

WHILE number > 0

IF number modulus 10 IS 2 THEN

ADD 1 TO count

ENDIF

COMPUTE number AS number / 10

ENDWHILE

DISPLAY count
```

Q4.1 6 Points

Let n be the number of digits of the whole number. What is the number of operations that are executed in the code in terms of n?

```
4n + 4
```