Classificação de Pokémon

Erick Figueiredo, Sávio Miranda

¹Departamento de Informática – Universidade Federal de Viçosa (UFV)

{erick.figueiredo, savio.miranda}@ufv.br

Resumo. Projeto final apresentado à disciplina de Inteligência Artificial I, de código INF 420, ministrada pelo professor Julio C. S. Reis, como requisito parcial para aprovação na disciplina.

1. Introdução

Neste trabalho, optamos por criar um modelo que visa identificar alguns tipos de pokémon. Escolhemos esse tema por ser algo bastante conhecido e interessante, ocorrendo uma identificação por parte dos outros alunos do curso com o assunto. Vamos trabalhar identificando 11 pokémon, são eles:

- Pikachu
- Charmander
- Squirtle
- Bubassauro
- Articuno
- Butterfree
- Dragonite
- Gengar
- Nidoking
- Magikarp
- MewTwo

2. Metodologia

Criamos um modelo com um conjunto de dados balanceados, cada classe contando com 50 imagens, das quais 70% foram dedicadas para treino e 30% para teste. Para a definição do modelo utilizamos o backend keras para definí-lo e o frontend tensorflow para definição de pipelines de dataset.

Além disso, utilizamos utilizamos a técnica de augumentação para ampliar nossos dados de treino, aplicando filtros como contraste e brilho a cada época, diminuindo as chances do modelo decorar a base, aumentando a variabilidade dos dados

O otimizador foi o Adam, com algumas callbacks:

- Learning Rate Dinâmico
- Early Stop

3. Resultados

Ao final de 32 épocas (em duas runs), conseguimos algumas métricas interessantes em treino:

• Loss: 0.4367

• Accuracy: 0.8725

Ao aplicar o modelo na base de testes, chegamos a alguns resultados promissores

	precision	recall	f1-score	support
0	1.00	0.92	0.96	12
1	1.00	0.83	0.91	12
2	0.90	1.00	0.95	9
3	0.67	0.67	0.67	12
4	0.64	0.58	0.61	12
5	0.91	0.83	0.87	12
6	0.67	0.67	0.67	12
7	0.53	0.67	0.59	12
8	0.60	0.50	0.55	12
9	0.77	0.83	0.80	12
10	0.71	0.83	0.77	12
accuracy			0.75	129
macro avg	0.76	0.76	0.76	129
weighted avg	0.76	0.75	0.75	129

Figura 1: Precisão para cada classe

Figura 2: Accuracy x Loss

Figura 3: matriz de confusão

Após termos extraído essas métricas, conseguimos observar alguns comportamentos interessantes do nosso modelo quanto aos erros cometidos, observasse uma tendência de erro com o pikachu e o dragonite, isso se deve muito pelo fato das orelhas de um serem confundidas com as antenas do outro, além de demais semelhanças como cor, patas e até formato do rosto. Todos esses fatores, juntos, podem induzir a uma percepção errônea da classe

O mesmo acontece com a tríade Nidoking, MewTwo e Gengar, as semelhanças entre eles acaba confundindo o modelo na tomada de decisão

4. Código

O código gerado nesse trabalho pode ser acessado através do link https://github.com/erickfigueiredo/pokemon-classifier

5. Conclusão

Por fim, diante dos resultados apresentados, conseguimos observar que o modelo comporta bem, conseguindo categorizar de forma minimamente aceitável os pokémon. Houveram bons comportamentos no geral para algumas classes, como para articuno e butterfree, para outros, nem tanto.

Ao final, foi uma ótima forma de evoluir os aprendizados vistos em sala, colocando em prática conceitos de uma forma lúdica.

Referências

Akash Rawat. **Pokémon Classification Using CNN**, Medium, 2021. Disponível em:

https://medium.com/analytics-vidhya/pok%C3%A9mon-classification-974a10621381. Acesso em: 08 de ago. 2022.

Code Al Blogs. Classifying Pokémon Images with Machine Learning, Medium, 2021. Disponível em:

https://medium.com/m2mtechconnect/classifying-pok%C3%A9mon-images-with-machine-learning-79b9bc07c080. Acesso em: 08 de ago. 2022.