CALCULUS lecture 6: INTEGRATION TECHNIQUES
CALCULUS lecture 6: INTEGRATION TECHNIQUES Book (Adams & Essex) 5.6, 61, 6.2, 65
Recap: definite integnal Sf(x)dx is defined as
· area below a craph 1 A
Recap: • definite integnal If(x)dx is defined as • area below a scaph
a limit of la Riemann sum
· limit of a Riemann sure of rectangular areas
Copper Moves
indefinite intescal $\int f(x)dx = F(x) + C$ $= \int \frac{d}{dx} \left(\overline{f}(x)\right) = f(x)$ is an "anti-clenivative"
$\Leftrightarrow \frac{d}{dx}\left(\overline{f}(x)\right) = f(x)$
is an "anti-derivative"
• the fundamental theorem of Calculus connects difinite and indefinite integrals
died trade in benedic
and indefinite integrals
$\int_{a}^{b} f(x)dx = \overline{f}(b) - \overline{f}(a) (for \ \overline{f}'(x) = f(x))$
This lecture how to calculate integrals - tips and fricks
note: not every integral be can be analytically calculated, e.g. se dx
1) Sinds intercolo (libet an well to know he head)
1) Simple integrals (that are useful to know by heart)
$\int dx = x + C \qquad \int \sin(x) dx = -\cos(x) + C$
$\int x^{c} dx = \frac{x^{c+1}}{r+1} + C (r \neq -1) \qquad \int \cos(x) dx = \sin(x) + C$
$\int e^{x} dx = e^{x} + C \qquad \qquad \int \frac{dx}{x} = \ln x + C$
(check by taking the derivative of the cosult)
2) Substitution
* note integration is linear $\int (Af(x) + Bg(x))dx = Aff(x)dx + Bfg(x)dx$
Gyou can take constant factors out of the integral
-verify with area below arrive?
* chain cule: $\frac{d}{dx} (f(g(x)) = f'(g(x)) g'(x)$
f(g(x)) + c = f(u) + c = f(g(x)) g'(x) dx = f(u) du
$f(g(x)) + c = \int f'(g(x)) g'(x) dx = \int f(u) du$ $u = g(x)$

```
substitution: \int f(g(x)) g'(x) dx = \int f(u) du for \int g(x) = \int g'(x) dx
        substitution comes down to replacing the integration variable
               by u = g(x), du = g'(x)dx and country in terms of
 Examples:
                Jan (3x)dx
                                1 du = |n|v|+c = |n|x+1|+C
                                    \frac{1}{2} \cdot 2 \times dx = \frac{1}{2} \int \frac{dv}{v} = \frac{1}{2} \ln |v| + C = \frac{1}{2} \ln (x^2 + 1) + C
                                    \frac{\sin(x)dx}{\cos(x)} = -\int \frac{dv}{v} = -\ln|v| + C = -\ln|\cos(x)| + C
                      du = 2xdx
                  Stan(x)dx =
                           U = Cos(x)
                          du = -\sin(x) dx
         substitution is the most uxful fack
                suitable for integrands of
            · ( Substitutions u = ex, du = dx
                 are nonetimes useful
                                                               wartad State
                     x = \ln(\omega), dx = d\omega
                       x = 8in(0), dx = eos(0)d0
                           tan (u) , dx = du (vincos (to)
for definite integrals, we can change the integration limits accordingly
                                                             Cortransform back to
before evaluating)
   \int f(g(x)) g'(x) dx = \int f(u) du
                  with A = g(a)

B = g(b)
```

```
3) Integration by parts
         product rule : (UV) = U'V + VV'

V UV = SVAU + SVAV
                         E) [UdV = U·V - [VdV
      Example: \int xe^{x}dx - xe^{x} - \int e^{x}dx = xe^{x} - e^{x} + C
                       U=x dV=dx
                       dV = e^{X}dX \quad V = e^{X}
                      \int x \sin(x) dx = -x \cos(x) + \int \cos(x) dx = -x \cos(x) + \sin(x) + C
                          U=x du=dx
                         dV = 8in(x) dx \quad V = -cos(x)
                      \int \ln(x) dx = x \ln(x) - \int x \frac{dx}{x} = x \ln(x) - x + C
                       V = \ln(x) dv = \frac{dx}{x}
                      dV = dx V = x
      A integration by parts is mainly uxful when the integrand contains
           exponentials, trisonometric functions, loss + polynomials.
4) Rational junctions - partial fraction decomposition
     \forall idea: we write a cational function \frac{P(x)}{Q(x)} = \frac{P(x)}{X} + \frac{A_1}{X} + \frac{A_2}{X} + \frac{A_3}{X}
             as a nun of a polynomial P(x) and fractions Ah
                each of those is easy to integrate.
          How? 1) write \frac{P(x)}{\varphi(x)} = \frac{P_2(x)}{\varphi(x)} + \frac{P_2(x)}{\varphi(x)}, with \frac{P_2(x)}{\varphi(x)} = \frac{P_2(x)}{\varphi(x)}
                                                                       desnu than Q(x)
                        ( SP_(x)dx is easy to calculate )
                     2) Re Factorize Q(x) = (x-x1)(x-x1) (x-x1)
                    3) \frac{P_2(x)}{Q(x)} = \frac{A_1}{x-x_1} + \frac{A_n}{x-x_n}
                                 A_{k} = \frac{P_{2}(x_{k})}{(x-x_{k})...(x-x_{k-1})(x-x_{k+1})...(x-x_{n})}
                        or set up equation system (more intuitive)
```

$$\frac{1}{x^{7}-4} = \frac{A_{1}}{x-2} + \frac{A_{2}}{x+2} = \frac{A_{1}(x+2) + A_{2}(x-2)}{(x-2)(x+2)}$$

$$= 0 = (A_1 + A_2) \times = 0 \quad A_1 = -A_2$$

$$1 = 2A_1 - 2A_2 = 4A_1 = 0 \quad A_1 = \frac{1}{4}, \quad A_2 = -\frac{1}{4}$$

$$\int \frac{dx}{x^2 - 4} = \frac{1}{4} \int \left(\frac{1}{x - 2} - \frac{1}{x + 2} \right) dx = \frac{1}{4} \left(\ln|x - 2| - \ln|x + 2| \right) + C$$

* note: if
$$Q(x) = (x-x_1)^2$$
, then $P_1(x) = A_1 + A_2 + A_3 + A_4 + A_5 + A$

example
$$\frac{x+3}{(x-2)^2} = \frac{A_1}{x-2} + \frac{A_2}{(x-2)^2} = \frac{A_1(x-2) + A_2}{(x-2)^2}$$

* note 2: if
$$Q(x) = (x-x_1)(x^2+bx+c)$$

Lo no real roots

then
$$P_1(x) = A_1 + A_2 + B_X$$

 $Q(x) = x - x_1 + A_2 + B_X$