

Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations

1. Thesis and Dissertation Collection, all items

1993-03

Determining the effect of endwall boundary layer suction in a large scale subsonic compressor cascade

Webber, Matthew Allen

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/26462

This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.

Downloaded from NPS Archive: Calhoun

Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community. Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOOL
MONTEREY CA 93943-5101

Approved for public release; distribution is unlimited.

DETERMINING THE EFFECT OF ENDWALL BOUNDARY LAYER SUCTION IN A LARGE SCALE SUBSONIC COMPRESSOR CASCADE

by

Matthew Allen Webber Lieutenant, United States Navy B.S., University of Kansas

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL March 1993

ity Classification of this page									
	REPORT DOC	UMENTATION PAGE							
eport Security Classification: Unclassifi	ed	1b Restrictive Markings							
ecurity Classification Authority		3 Distribution/Availability	3 Distribution/Availability of Report						
Declassification/Downgrading Schedule		Approved for public release; distribution is unlimited.							
rforming Organization Report Number(s)		5 Monitoring Organization	Report Number	er(s)					
lame of Performing Organization ral Postgraduate School									
ddress (city, state, and ZIP code) nterey CA 93943-5000		7b Address (city, state, and ZIP code) Monterey CA 93943-5000							
lame of Funding/Sponsoring Organization	6b Office Symbol (if applicable)	9 Procurement Instrument Identification Number							
ess (city, state, and ZIP code)		10 Source of Funding Num							
		Program Element No Project No Task No Work Unit Acc							
itle (include security classification) DETI RGE SCALE SUBSONIC COMPR		ECT OF ENDWALL BO	UNDARY I	LAYER SU	UCTION IN A				
ersonal Author(s) Matthew Allen Web	ber								
Type of Report ster's Thesis	13b Time Covered From To	14 Date of Report (year, m 1993, March, 31	onth, day)	15 Page Count 140					
upplementary Notation The views expr he Department of Defense or the U		those of the author and d	lo not reflec	t the offici	ial policy or position				
osati Codes	18 Subject Terms (con	ntinue on reverse if necessary	and identify by	block numb	ber)				
l Group Subgroup	Boundary Layer, (Thickness	Cascade, Controlled-Diffi	usion, Axial	Velocity 1	Ratio, Displacement				

bstract (continue on reverse if necessary and identify by block number)

An arrangement of suction slots was installed in the Naval Postgraduate School's subsonic cascade nd tunnel. The aim was to improve flow two-dimensionality to enable flow separation of the installed strolled-diffusion blades at high incidence. The slots were located 17.25 inches upstream of the test Pressure and laser-Doppler velocimetry measurements were made, for a Reynolds number of .000 and an inlet flow angle of 44.4°, upstream and downstream of the test section to determine the effects varying suction. The set of baseline inlet flow field measurements was to be used for comparison poses in future tunnel modifications. The results showed that the tunnel endwall boundary layers were mmetric for the baseline configuration. Uniform suction was not achieved in both the pitchwise and nwise directions. However, the axial velocity ratio was reduced by 1.9% and the blade loading increased thtly with increased suction.

	21 Abstract Security Classification	
unclassified/unlimited same as report DTIC users	Unclassified	
		22c Office Symbol Code 31/Sc

FORM 1473,84 MAR

83 APR edition may be used until exhausted

security classification of this pay

All other editions are obsolete

Unclassifie

ABSTRACT

An arrangement of suction slots was installed in the Naval Postgraduate School's subsonic cascade wind tunnel. The aim to improve flow two-dimensionality to enable flow separation of the installed controlled-diffusion blades at high incidence. The slots were located 17.25 inches upstream of the test section. Pressure and laser Doppler velocimetry measurements were made, for a Reynolds number of 711000 and an inlet flow angle of 44.4°, upstream and downstream of the test section to determine the effects of varying suction. The set of baseline inlet flow field measurements was to be used for comparison purposes in future tunnel modifications. The results showed that the tunnel endwall boundary layers were asymmetric for the baseline configuration. Uniform suction not achieved in both the pitchwise and spanwise directions. However, the axial velocity ratio was reduced by 1.9% and the blade loading increased slightly with increased suction.

1 10515 1N 33015 C.

TABLE OF CONTENTS

I.	IN	TRODUCTION	1
	A.	BACKGROUND	1
	В.	CASCADE MODIFICATION EXAMPLES	2
	C.	PRIOR CONTROLLED DIFFUSION (CD) BLADE TESTS	4
	D.	PURPOSE	5
II.	T	EST FACILITY, INSTRUMENTATION AND INITIAL SETUP .	6
	A.	CASCADE BASE LINE CONFIGURATION	6
	В.	WIND TUNNEL MODIFICATION	6
		1. SUCTION SLOT	8
		2. BLOWER CONFIGURATION	11
	C.	INSTRUMENTATION	11
		1. RAKE PROBE AND TRAVERSE	11
		2. LDV SYSTEM	14
		3. INSTRUMENTED CD BLADE	17
		4. STATIC PRESSURES	17
	D.	DATA ACQUISITION	22
		1. HARDWARE	22
		2. SOFTWARE	22
III	.]	EXPERIMENTAL PROCEDURE	23
	A.	BASE LINE CONFIGURATION	23

DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL MONTEREY CA 93943-5101

	В.	SUCTION PROCEDURE	23
IV.	RES	SULTS AND DISCUSSION	25
	A.	INLET SURVEYS	25
	В.	AVR	41
	C.	INSTRUMENTED BLADE	41
	D.	LDV SURVEYS	46
IV.	CON	NCLUSIONS AND RECOMMENDATIONS	50
APPE	ENDIX	K A. RECORDED DATA	52
	A1.	RAKE PROBE DATA	52
	A2.	INSTRUMENTED BLADE DATA	73
	A3.	MANOMETER DATA	76
	A4.	LDV DATA	83
APPE	ENDIX	K B. DATA REDUCTION	06
	В1.	LIST OF EQUATIONS	06
	B2.	V _{REF} COMPUTATION AND PROGRAM	09
APPE	ENDIX	C. PROBE CALIBRATION	15
	C1.	YAW PROBE CALIBRATION	15
	C2.	STATIC PROBE CORRECTION	15
APPI	ENDIX	CD. ENGINEERING DRAWINGS	21

LIST	OF	REFERENCES	•	•	•	•	•	٠	•	٠	•	٠	•	•	•	٠	٠	٠	٠	•	12:
רוידויו	ΤλΤ.	חדכיים ד פוייד האו	т	.тс	ıф																12

LIST OF FIGURES

Figure	1.	Rectilinear Subsonic Cascade Wind Tunnel	7
Figure	2.	Top View of the Suction Configuration	9
Figure	3.	Suction Manifold Cross Section	10
Figure	4.	Suction Slot Mounted to the South Endwall .	12
Figure	5.	Blower Configuration	13
Figure	6.	Rake Probe Plan View	15
Figure	7.	Rake Probe Mounted to Downstream Traverse .	16
Figure	8.	LDV Test Section Geometry	18
Figure	9.	Instrumented Blade Pressure Tap Location	19
Figure	10.	Manometer A. Pressure Tap Arrangement	20
Figure	11.	Manometer B. Pressure Tap Arrangement	21
Figure	12.	Inlet Flow Carpet Plot for Base Line Configuration	26
Figure	13.	Inlet Flow Carpet Plot for Low Suction	27
Figure	14.	Inlet Flow Carpet Plot for Medium Suction .	28
Figure	15.	Inlet Flow Carpet Plot for High Suction	29
Figure	16.	Superimposed Spanwise Pressure Distribution at 11.8 in. Pitch for Increased Suction	30
Figure	17.	Superimposed Spanwise Pressure Distribution at 20 in. Pitch for Increased Suction	31
Figure	18.	Superimposed Spanwise Pressure Distribution at 22 in. Pitch for Increased Suction	32
Figure	19.	Superimposed Spanwise Pressure Distribution	33

Figure	20.	Superimposed Spanwise Pressure Distribution at 50.9 in. Pitch for Increased Suction	34
Figure	21.	Average Displacement Thickness for the North and South Endwalls, 20 to 23 in. Pitch	36
Figure	22.	Pitchwise Manifold and Endwall Static Pressure Variations for Low Suction	38
Figure	23.	Pitchwise Manifold and Endwall Static Pressure Variation for Medium Suction	39
Figure	24.	Pitchwise Manifold and Endwall Static Pressure Variation for High Suction	40
Figure	25.	Suction Effects on the Axial Velocity Ratio for the Passage of 20 to 23 in. Pitch	42
Figure	26.	Instrumented Blade Pressure Distribution for Low Suction	43
Figure	27.	Instrumented Blade Pressure Distribution for Medium Suction	44
Figure	28.	Instrumented Blade Pressure Distribution for High Suction	45
Figure	29.	Station 1 Inlet Velocity Comparison for Base Line Configuration and High Suction	47
Figure	30.	Station 1 Inlet Flow Angle Comparison for Base Line Configuration and High Suction	48
Figure	31.	Station 18 Outlet Flow Velocity Comparison for Base line Configuration and High Suction .	49
Figure	A1.	Manometer A for Low Suction Tests	78
Figure	A2.	Manometer B for Low Suction Tests	78
Figure	А3.	Manometer A for Medium Suction Tests	80
Figure	A4.	Manometer B for Medium Suction Tests	80
Figure	A5.	Manometer A for High Suction Tests	82
Figure	Δ6	Manometer B for High Suction Tests	82

I. INTRODUCTION

A. BACKGROUND

Cascade experimentation continues to supply designers of axial flow turbo-machines with useful data. Frequently the objective of the measurements is to obtain two-dimensional flow around a particular blade shape since blading design is still carried out along quasi-three-dimensional or two-dimensional stream tubes. Therefore, the two-dimensionality of the flow within the cascade is important.

Flow two-dimensionality in compressor cascade experiments has received considerable attention. The degree of two-dimensionality has generally been determined by measuring the axial velocity density ratio (AVDR), or axial velocity ratio (AVR) for incompressible flow, across the blade row. There is experimental evidence showing that the AVR and aspect ratio of a cascade are important parameters in affecting flow deviation, losses and pressure distribution, i.e., stall point, of test blades [Ref. 1].

If a cascade has parallel solid end walls, the displacement effect of the endwall boundary layers causes a convergence of the stream-tube through the cascade. This will have two effects on the midspan boundary layers: first, the convergence alters the blade loading and thus the freestream

pressure field applied to the surface boundary layers; secondly, the spanwise convergence of the blade surface flow causes a thickening of the midspan boundary layer [Ref. 2]. Therefore, for a cascade with an aspect ratio less than three, provisions for end wall boundary layer removal should be incorporated. This can take two forms, first, provisions should be made for a porous wall or slots upstream of the blade row and, or, secondly, a porous wall within the blade row. For either compressor or turbine cascades, careful removal of the upstream endwall boundary layer will improve the two-dimensionality of the flow [Ref.3].

B. CASCADE MODIFICATION EXAMPLES

The work of some researchers to modify existing cascades is well documented in References 2, 4, 5 and 6. Reference 2 presents measurements for a large scale turbine cascade in which an arrangement of end-plates was incorporated to improve the two-dimensionality of the midspan flow. The endwall boundary layers were removed through slots located in the inlet section. Since the slots were a considerable distance ahead of the test section, the boundary layer grew to approximately 15mm by the time it reached the test section. Therefore, endwall slots were installed within the test section to further remove the boundary layer, resulting in the effective control of the AVR.

The effect of endwall suction on the flow in two-dimensional wind tunnels is examined in [Ref. 4]. The model that was used involved a flat plate airfoil in a tunnel with a suction window shaped to permit an analytic solution. The solution showed that the lift coefficient depended explicitly on the porosity parameter of the suction window and implicitly on the suction pressure differential.

Boundary layer control for a seven blade compressor cascade is described in [Ref.5]. In this study, a suction slot was placed ahead of the test section to allow optical access for laser-Doppler velocimetry measurements (LDV). system required strong suction and a complex baffling system within the suction slot. Six suction ducts were located at a half blade spacing on either side of the blades. individual duct had a separate baffle control and was adjusted by changing the baffle position while examining the outlet Presumably the control of the endwall distribution controlled the size of the endwall boundary layer its intersection with the blade leading edge, thus controlling the origin of the corner disturbance's. The AVDR was determined by averaging the local axial velocity ratio over three blade passages centered at the minimum velocity ratio point of the center blade wake. The average AVDR was found to be 1.0 with a day-to-day variation of $\pm 3\%$.

The boundary layer control used in Reference 6 on a large scale compressor cascade having 7 blades consisted of three techniques. First, an endwall boundary layer suction scoop was placed ahead of the test section. This scoop was instrumented with static pressure taps to ensure the boundary layer was removed without contracting or diffusing the inlet flow. Secondly, an upper and lower bleed passage was used at the side walls between blade 1 and 7. Thirdly, corner suction was applied on each test blade to eliminate secondary flow caused by the corner disturbance.

C. PRIOR CONTROLLED DIFFUSION (CD) BLADE TESTS

Previous experiments at the Naval Postgraduate School Turbopropulsion Laboratory's Cascade Tunnel, using 20 CD blades designed by Sanger [Ref. 7], have not produced stall of the blade profile at high inlet flow angles. This is possibly due to the effects of three-dimensional flow in the endwall region of the cascade. Dreon, [Ref.8], performed wake measurements and blade surface pressure measurements at air inlet angles of 40.3° and 43.4°. The AVDR for these tunnel settings was 1.062 and 1.042 respectively. The measured blade surface pressures gave no evidence of flow separation.

Extensive LDV experiments by Elazar, [Ref. 9], were performed at inlet angles of 40°, 43.4°, and 46° which also did not show any flow separation on the suction surface. Five-hole pneumatic probe measurements were performed by

Classick [Ref.10] for an inlet flow angle of 48°. These measurements gave an AVDR of 1.108 and no flow separation occurred at this high incidence. More recently, Hobson and Shreeve [Ref. 11], performed detailed measurements at an inlet flow angle of 48°. Their results showed a steady pressure increase on the suction surface with no separation. However, the pressure gradient leveled off at the trailing edge, suggesting, possibly, the approach of flow separation.

D. PURPOSE

The present aim was to improve the two-dimensionality of the flow in the cascade using inlet boundary layer suction in order to allow an investigation of the onset of stall in the present installed CD blades at higher incidence angles. The effect of endwall suction was determined with probe and LDV measurements, with slots installed 17.25 inches ahead of the test section.

II. TEST FACILITY, INSTRUMENTATION AND INITIAL SETUP

A. CASCADE BASE LINE CONFIGURATION

A schematic diagram of the Rectilinear Subsonic Cascade Wind Tunnel facility is shown in Figure 1. A detailed description of its design and operation is found in an earlier thesis [Ref. 12]. Flow inlet conditions were investigated in detail by McGuire [Ref. 13]. Since that time, the inlet guide vanes were replaced with a new row of 60 blades. The design is given in Appendix D. The tunnel contained 20 CD blades with a chord of 5.01 inches and span of 10 inches. The blade spacing was set at 3 inches for a solidity of 1.67 and the setting angle was 14.1°. Blades 7 and 8, located at 20 to 23 inches pitch, were used for all LDV, AVR and boundary layer displacement thickness measurements. The instrumented blade was located at mid-pitch, 30 inches from the east sidewall.

B. WIND TUNNEL MODIFICATION

The ability to perform boundary layer control on the cascade endwalls was incorporated into the original design. Two manifolds with access to a blower were located on each endwall 17.25 inches ahead of the test section. The manifolds were equipped with blank-off plates for the base line tests. The present modifications to the cascade included the installation of suction slots and connections to a blower.

Figure 1. Rectilinear Subsonic Cascade Wind Tunnel

1. SUCTION SLOT

Flush mounted adjustable width slots were installed into the endwall manifolds. Figure 2 shows a top-down schematic of the tunnel suction configuration. A cross section of the slot, baffle and manifold arrangement is found in Figure 3. Each slot was comprised of two flat pieces of stock aluminum with a 5/8 inch radius machined on one edge. The pieces were attached together with machined cross-members that allowed for the variation of the slot height. A detailed drawing is found in Appendix D.

The endwall manifolds were each 120 inches and the test section was 60 inches. Since the inlet flow angle was set to 44.4°, the test section was not centered on the suction Initial tests with the suction slot in the full open position showed that there was strong suction at the sidewall extremities but none at mid-pitch. Because of this, the slot was arbitrarily narrowed to one inch. Further testing showed that the suction improved in strength, however, the nonuniformity in the pitchwise direction remained. A porous baffle was attached to the backside of the slot to try and alleviate this problem. A detailed drawing of the baffle is found in Appendix D. In order to monitor the amount of suction applied across the manifold, eleven taps were drilled into the base of the manifold of which nine were attached to a water manometer. The nine pressure taps were centered on

Figure 2. Top View of the Suction Configuration

Figure 3. Suction Manifold Cross Section

the inlet to the test section. A dimensioned cross section is given in Appendix D. Figure 4 shows the end of the slot outside the tunnel which was taped over for the tests.

2. BLOWER CONFIGURATION

A 30 horsepower Allis Chalmers electric motor driven centrifugal blower was placed behind the south wall of the wind tunnel. A photograph of the blower configuration is given in Figure 5. The blower inlet was connected to a cylindrical plenum having 6 hook-ups, three at a third of the length and three at the end. The blower plenum was connected to the tunnel by mounting four gate valves to each end of the tunnel manifolds and running flex tubing from the valves to the blower plenum. The gate valves allowed the amount of suction to be varied within the manifolds. The two unused attachments of the blower plenum were capped.

C. INSTRUMENTATION

1. RAKE PROBE AND TRAVERSE

A ten inch rake probe was designed to take detailed pressure distribution measurements across the span of the test section with a finer resolution at each end to better record the size of the endwall boundary layer. The probe assembly contained 20 individual probes, of which 17 were total pressure ports, numbered from the north endwall. The two central probes, (numbers 10 and 11), formed a yaw probe located at the midspan with a static pressure port,

Figure 4. Suction Slot Mounted to the South Endwall

Blower Configuration Figure 5.

(numbered 9), one inch off midspan. A detailed drawing of the probe is found in Appendix D. Figure 6 shows a plan-view schematic of the probe.

The rake probe was calibrated in the free jet located at the Turbopropulsion Laboratory. This was done by subjecting the probe to three different levels of dynamic pressure and varying the angle of incidence to obtain a calibration curve for the yaw probe. It was noticed that the static pressure port was subject to probe interference. Therefore, a correction factor was calculated to account for this difference. The calibration data and curves are given in Appendix C.

The rake probe was traversed both upstream and downstream of the test section. This was accomplished by mounting it to a traverse assembly which in turn was mounted to the side of the south wall of the tunnel, as seen in Figure 1. The traverse was equipped with a geared counter used to measure the distance. Figure 7 shows the rake probe mounted to the upper traverse. It also shows the relative position of the suction manifold to the test section, upstream, downstream and manifold pressure taps.

2. LDV SYSTEM

The two component LDV system used for the base line tunnel configuration is described in detail by Murray [Ref.14].

Figure 6. Rake Probe Plan View

Figure 7. Rake Probe Mounted to Downstream Traverse

For the modified tunnel tests, a different LDV system was used to measure the flow under the influence of high suction. The new system used a similar laser light source, however, the rest of the optical system was primarily fiber optics. A complete description of the system is given by Dober. [Ref. 15] Figure 8 shows the test passage bounded by blade numbers 7 and 8 as seen through the optical window. Coordinates for each survey station are also given.

3. INSTRUMENTED CD BLADE

Blade pressure measurements were taken with a fully instrumented blade, located at mid-pitch, that contained 39 static pressure taps, 19 on each surface and one at the leading edge. Figure 9 shows the tap locations.

4. STATIC PRESSURES

Endwall static pressure measurements for both the north and south walls, upstream and downstream as shown in Figure 1, were measured with two banks of water manometers. The manometers were also used to monitor the pressures at the suction manifolds, gate valves, as shown in Figures 2 and 3, and plenum and Prandtl total pressures. (A Prandtl probe was used to monitor inlet dynamic pressure near to blade 15). Each manometer consisted of 50 tubes and the arrangement of pressure taps for each is given in Figures 10 and 11.

Figure 8. LDV Test Section Geometry

Figure 9. Instrumented Blade Pressure Tap Location

Figure 10. Manometer A. Pressure Tap Arrangement

Figure 11. Manometer B. Pressure Tap Arrangement

D. DATA ACQUISITION

1. HARDWARE

The data acquisition system consisted of two 48 channel scanivalves that were connected through an interface to a Hewlett Packard Data Acquisition System (HP-3052). The scanivalves were controlled by the HG-78k controller and is discussed in detail by Classick [Ref. 10]. A Hewlett Packard 900 series 300 computer controlled the system. Scanivalve 0 was connected to the instrumented blade along with the plenum pressure. Scanivalve 1 was connected to the rake probe as well as the plenum and Prandtl pressures.

2. SOFTWARE

Two data acquisition programs were used to record the various tunnel pressures. The program ACQUIRE written by Classick [Ref. 10] was used to take the instrumented blade measurements. The program ACQUIRE4 was a fourth adaptation to the same program and its basic function was to obtain the spanwise rake pressure distribution at various pitchwise locations. In post-processing, the program produced a spanwise Cp plot and finally plotted a Cp surface distribution of the test section flow field. The program is fully described in Reference 15. The fourth modification consisted of adding equations to the program to calculate air flow angle, total velocity and axial velocity.

III. EXPERIMENTAL PROCEDURE

A. BASE LINE CONFIGURATION

The procedure used to adjust the inlet flow angle of the cascade using the LDV system is well documented by Murray [Ref. 14]. Using this procedure, the inlet flow angle was measured to be 44.4° with the sidewalls set at 43.4° and inlet guide vane position at 50mm. LDV measurements were taken at stations 1, 2, 7, 15 and 18 to compare with earlier data [Ref. 9] and to produce a basis for later comparison with results with endwall suction. The plenum pressure was maintained at 12.0 inches of water with a deviation of ±0.1 inches.

Inlet surveys were taken by mounting the rake probe to the upstream traverse position, as shown in Figure 1, and traversing the entire pitch-wise distance referenced from the east sidewall. Appendix A. contains the data taken at each location.

The AVR was obtained by surveying across one blade passage starting at 20 inches and terminating at 23 inches in ¼ in. increments. This was done at both upstream and downstream locations.

B. SUCTION PROCEDURE

Three levels of suction were used to compare with the base line configuration. The levels were measured by the static

pressure taps located at the gate valves at each end of the suction manifolds. The blower was always operated at full speed with its downstream throttle valve in the full open position. When the blower was turned on, the plenum pressure dropped as much as one inch of water in the case of high suction. Therefore, the Prandtl total pressure was used as $P_{\rm ref}$ for all suction tests. This was kept at 10.5 inches of water, the same as the base line tests.

The procedure to set up suction was as follows: (a) start the tunnel and stabilize at 10.5 inches of total pressure on the Prandtl probe. (b) Fully open the gate valves and switch on the blower. (c) Close the valves to obtain equal and stable static pressure at the valves. (d) Adjust the plenum back to 10.5 inches on the Prandtl probe. All four valve static pressures measured -32.0 inches of water for high suction, -20.0 inches for medium suction and -10.0 inches for low suction. The maximum deviation allowed was .5 inches of water for any of the valves. Polaroid photographs were taken of the manometers for documentation purposes at each suction level. Example photographs are given in Appendix A.

The same measurements were taken for suction as for the base line. The instrumented blade measurements were taken only with suction. The LDV measurements were taken only at the inlet and outlet planes and referenced with respect to the Prandtl total pressure, ambient pressure and plenum pressure to calculate V_{REF} as described by Elazar [Ref. 9].

IV. RESULTS AND DISCUSSION

All data and equations for the graphs given in this chapter are found in Appendices A and B respectively.

A. INLET SURVEYS

Inlet carpet plots are seen in Figures 12 through 15. These show that the inlet core flow uniformity is the same for the base line and at all levels of suction. Figure 12 is the full survey for the base line configuration. Figure 13 is for low suction, and shows the endwall boundary layers are being removed at the east and west ends of the test section with the minimum reduction at the mid-pitch location. Figures 14 and 15 are for medium and high suction respectively and show the same trend, giving the first indication of non-uniform suction in the pitchwise direction.

Plots for the spanwise pressure distribution are shown in Figures 16 through 20 for different pitch locations. locations were chosen as a result of the carpet plots and the locations chosen for displacement thickness and **AVR** calculations. Figure 16, at 11.8 in. pitch, shows increased boundary layer removal for increased suction at both end walls. However, the north wall boundary layer was not reduced to the same degree as the south wall. The base line showed the north wall boundary layer was thicker than that on

Figure 12. Inlet Flow Carpet Plot for Base Line Configuration

Figure 13. Inlet Flow Carpet Plot for Low Suction

Figure 14. Inlet Flow Carpet Plot for Medium Suction

Figure 15. Inlet Flow Carpet Plot for High Suction

Figure 16. Superimposed Spanwise Pressure Distribution at 11.8 in. Pitch for Increased Suction

Figure 17. Superimposed Spanwise Pressure Distribution at 20 in. Pitch for Increased Suction

Figure 18. Superimposed Spanwise Pressure Distribution at 22 in. Pitch for Increased Suction

Figure 19. Superimposed Spanwise Pressure Distribution at 35.88 in. Pitch for Increased Suction

Figure 20. Superimposed Spanwise Pressure Distribution at 50.9 in. Pitch for Increased Suction

the south wall. This characteristic is seen in all the plots. In Figure 17, at 20 inches, the core flow is seen to have been shifted towards the south wall and the boundary layer to have thickened at the north wall from an initial displacement thickness of 0.133 inches to 0.146 inches. This happened only at the 20 inch pitch location. Furthermore, the removal of the boundary layer is seen to decrease moving towards midpitch. Figures 18 and 19 show reduced effects to the boundary layer which was also shown in the carpet plots. At the west end of the test section, Figure 20 shows the boundary layer removal again has a noticeable effect.

The displacement thickness was calculated for each level of suction and is shown in Figure 21. The value plotted is the average obtained over three inches from 20 to 23 inches in pitch. The north wall displacement thickness was reduced 0.0255 inches, (13%), from 0.1964 inches to 0.1709 inches. The south wall was decreased by .0591 inches, (39.5%), from 0.1497 inches to 0.0906 inches. The asymmetry of the inlet boundary layer displacement thickness is also seen as characteristic of the tunnel base line configuration. For the base line, there was a difference between the endwalls of 0.0467 in. and this increased to 0.0803 at high suction. Thus, there was a spanwise asymmetry of the boundary layer removal.

After viewing these data, it was evident that equalizing the gate valve pressures might not have been the best method

Figure 21. Average Displacement Thickness for the North and South Endwalls, 20 to 23 in. Pitch

of adjusting the suction. An additional test was conducted, but this time the manifold pressures were balanced with each other. This was accomplished by opening the north manifold valves fully and closing the south manifold valves to the medium suction level. This yielded a north endwall displacement thickness of 0.1767 inches and a south endwall displacement thickness of 0.1038 inches. The difference between these is 0.0729 inches, a 0.0074 inch reduction in the endwall boundary layer thickness difference.

Further illustration of the non-uniformity in the suction is seen in Figures 22 through 24. These show the suction manifold static pressures at their pitch locations for each level of suction. Figure 22 shows the manifold pressures were well below the endwall static pressures at the east end of the test section. This is the region where suction showed the most benefit, as seen in Figure 16. It also shows that the pressure differential between manifolds was at a minimum. the mid-pitch region, the manifold pressure was above the endwall static pressures. This was the region where suction showed the least effect, as seen in Figure 19. The pressure differential between the manifolds is seen also to have increased. In the west end of the test section, the manifold pressures drop below the endwall static pressures but not to the same degree as the east end. This region showed effects of boundary layer removal as seen in Figure 20. The pressure differential between the manifolds also reached a maximum in

Figure 22. Pitchwise Manifold and Endwall Static Pressure Variations for Low Suction

Figure 23. Pitchwise Manifold and Endwall Static Pressure Variation for Medium Suction

Figure 24. Pitchwise Manifold and Endwall Static Pressure Variation for High Suction

this region. The effect of increased suction, shown in Figures 23 and 24, shifted the manifold pressures down, until at high suction the mid-pitch minimum equalled the endwall static pressures. The endwall static pressures remained unchanged for all levels of suction. It is still unclear as to the relationship between the end wall and the manifold static pressures. It is noted that the boundary layer did not thicken at mid-pitch locations as it would if there were blowing in the region where the end wall static pressures were lower than the manifold, for low and medium suction levels.

B. AVR

The effect of suction on the AVR is shown in Figure 25. The were obtained over the three inch passage from 20 to 23 inches pitch. The base line AVR was computed to be equal to 1.071 and was reduced to 1.052 at the highest level of suction. The reduction of the AVR was expected, however, this value is not expected to be independent of pitch location due to non-uniformity in suction.

C. INSTRUMENTED BLADE

Figures 26 through 28 show the midspan pressure distribution on the instrumented blade with increasing suction. The pressures were non-dimensionalized with respect to the Prandtl dynamic pressure. It is seen that blade loading increased with increased suction. However, it was

Figure 25. Suction Effects on the Axial Velocity Ratio for the Passage of 20 to 23 in. Pitch

Figure 26. Instrumented Blade Pressure Distribution for Low Suction

Figure 27. Instrumented Blade Pressure Distribution for Medium Suction

Figure 28. Instrumented Blade Pressure Distribution for High Suction

inconclusive whether boundary layer removal was responsible since the blade was located at mid-pitch. The yaw probe data for each suction level showed that the increased blade loading may be a result of increased inlet flow angle. In the region of the instrumented blade, the average flow angle measured for low suction was 44.02° and this increased to an average of 44.59° at high suction. It is important to note however, that the average inlet flow angle remained relatively constant across the pitch and all deviations were within the uncertainty in the yaw probe measurement.

D. LDV SURVEYS

Inlet and outlet flow measurements were made with the LDV system for comparison between base line and high suction. The inlet flow is seen in Figures 29 through 31. Figure 29 shows a slight reduction occurred in the inlet velocity and Figure 30 shows a half a degree reduction occurred in the inlet flow angle. This conflicts with the rake yaw probe measurements for the change in flow angle, therefore, the cause of the change in blade surface pressure distribution remains inconclusive. Outlet flow velocity profiles seen in Figure 31 show that the point of maximum deficit was shifted, thus the blade wake was displaced as a result of applying suction.

Figure 29. Station 1 Inlet Velocity Comparison for Base Line Configuration and High Suction

Figure 30. Station 1 Inlet Flow Angle Comparison for Base Line Configuration and High Suction

Figure 31. Station 18 Outlet Flow Velocity Comparison for Base line Configuration and High Suction

IV. CONCLUSIONS AND RECOMMENDATIONS

Boundary layer suction was performed 17.25 inches axially ahead of the test section in an effort to improve the two-dimensionality of the inlet flow. The conclusions resulting from these tests are as follows:

- 1. The base line configuration of the cascade now has a detailed set of data for the inlet flow boundary layers which can be used as the bench mark for future boundary layer removal tests.
- 2. The base line configuration has an inherent asymmetry in its endwall boundary layer thicknesses.
- 3. Carpet plots of rake probe surveys showed maximum suction at the east and west extremities of the test section and a minimum at mid-pitch.
- 4. The suction configuration and procedure used for these tests produced asymmetrical boundary layer removal in the spanwise direction.
- 5. There was a reduction in the displacement thickness on both endwalls for all levels of suction. However, the amount of displacement thickness reduction decreased with increased suction.
- 6. The AVR was reduced 1.9% across the passage of blades 7 and 8 from 1.071 to 1.052. For the flow to be considered acceptably two-dimensional, it would have had to be reduced to 1.03 or lower.
- 7. Endwall balanced manifold pressures did not yield symmetrical boundary layer suction and reduced south endwall suction did not increase the north endwall suction.

The present experiments were a first attempt at performing suction in the present cascade facility. Recommendations for the program to follow include:

1. Investigate the effect of varying the slot width.

- 2. Make provisions for the addition of another feed pipe to the suction plenum at the mid-pitch location of the manifold.
- 3. Section the manifold into separate chambers to enable better control of the pitchwise and spanwise suction levels.
- 4. Place an instrumented orifice at each gate valve to monitor the mass flow rate.
- 5. Perform tests on the blower to determine the optimum in its mass flow rate vs. pressure ratio characteristic.
- 6. Investigate the cause of the base line cascade's asymmetric endwall boundary layers.
- 7. Consider other methods for boundary layer removal, including the use of a porous plate with the present tunnel wall hardware, or, more extensively, rebuilding the tunnel walls to allow suction within the blade passages.

APPENDIX A. RECORDED DATA

This Appendix contains the following:

- 1. All rake probe data.
- 2. Instrumented blade data.
- 3. Manometer data.
- 4. LDV data.

A1. RAKE PROBE DATA

All rake probe data presented in this appendix was used for the computation of AVR, displacement thickness, spanwise pressure distribution and carpet plots. It is given in the order of the experimental procedure.

BASE LINE CONFIGURATION UP STREAM LOCATION

PITCH) PROBE PORT	O Cp	2.36	4.72	7.08	9.44	11.8	14.16
1	7808	0514	1706	2225	4000	4004	4054
2			.1706	.2995	.4223	.1291	.1851
3	4715 1837	0116	.2758	.3824	.5617	.2214	.3081
4		.064	.4312	.5543	.7183	.3893	.4704
	.4905	.1587	.5516	.803	.7738	.5304	.6244
5	.7262	.4899	.6617	.7303	.8214	.7908	.8364
6	.8556	.7777	.7818	.8357	.9203	.9142	.9396
7	.749	.8921	.9397	.9602	.9758	.979	.9651
8	.8977	.9214	.972	.9833	.9874	.9891	1
12	1	1	.9946	.9867	.9894	1	.9751
13	.7708	.978	1	.9974	.9998	.993	.9827
14	.4892	.947	.9962	1	1	.979	.9764
15	.6679	.9591	.9928	.994	.9953	.9724	.9697
16	.5538	.879	.9081	.9663	.9489	.9362	.9254
17	.2024	.6425	.5544	.8307	.7494	.8244	.7416
18	.0262	.428	.3012	.5899	.5265	.6744	.4767
19	0443	.2782	.1374	.3912	.3918	.4553	.3432
20	1924	.1686	.0615	.2619	.2396	.3315	.2087
PITCH >	16.52	18.88	21.24	23.6	26	17	19.36
PROBE							
PORT							
1	.2276	.3383	.2714	.2231	.2152	.3107	.3847
2	.3558	.4611	.3889	.324	.3739	.4385	.5457
3	.5272	.6017	.5337	.5026	.4826	.6031	.6503
4	.6256	.6568	.6693	.6447	.6835	.675	.7334
5	.8036	.7651	.751	.7867	.8402	.7528	.7978
6	.8691	.8498	.8558	.8866	.9497	.8427	.9056
7	.8997	.9066	.959	.9928	.9978	.9174	.9614
8	1	1	.9842	.9959	1	.9921	.9853
12	.9851	.9592	.9818	.9669	.9863	1	.9808
13	.9824	.9692	.9813	.9702	.9941	.9966	.9839
14	.9758	.9766	.9998	.9862	.9965	.9916	1
15	.9605	.974	1	1	.9867	.9709	.9916
16	.8755	.8838	.9485	.9698	.9473	.8965	.9455
17	.7387	.6077	.8174	.8517	.8964	.6872	.6202
18	.619	.3472	.5588	.5346	.718	.5638	.3622
19	.4818	.1823	.3586	.3659	.454	.3837	.2423
20	.319	.077	.202	.2279	.3157	.2848	.17

CONTINUED

BASE LINE CONFIGURATION RAKE DATA

i	FULL TRA	VERSEUP		NAKE DATI	1		
PITCH >	21.72	24.08	26.44	28.8	31.16	33.52	35.88
PROBE				20.0	01.10	00.02	33.00
PORT							
1	.1792	.1874	.291	.2957	.3093	.0758	.246
2	.3126	.3183	.3989	.4273	.4358	.2476	.3531
3	.4547	.4646	.5975	.5698	.5696	.4341	.5084
4	.6244	.6356	.6935	.7018	.6948	.661	.6792
5	.7599	.8184	.8757	.8431	.8042	.8081	.8686
6	.9014	.924	.9319	.8772	.8538	.8721	.9571
7	.9761	1	. 9868	.9078	.9077	.9759	.9915
8	.9841	.9895	1	1	1	.9937	.9942
12	.9508	.9738	.9637	.9795	.9696	. 9885	.9931
13	.9854	.9878	.9646	.9709	.9645	.9971	1
14	1	.9849	.9495	.9506	. 9575	1	.9933
15	.9881	.9973	.915	.8964	.9354	.999	.9871
16	.9615	.9639	.8887	.8417	.8726	.9515	.9406
17	.8699	.8277	.8662	.6103	.711	.7604	.8304
18	.654	.6333	.7455	.398	.5655	.4952	.6519
19	.452	4319	.5251	.2997	.365	.3127	.4637
20	.2912	.2813	.357	.167	.211	.2264	.2904
PITCH >	38.24	40.6	43	34.4	36.74	39.1	41.45
PROBE							
PORT							
1	.3627	.2666	.2161	.3336	.2473	.3959	.2175
2	.4811	.3686	.3638	.4632	.3553	.5435	.2983
3	.6522	.5736	.5257	.6099	.5098	.7311	.4698
4	.7146	.6624	.6614	.7012	.6897	.7885	.6954
5 6	.8567	.809	.7605	.8421	.8442	.8646	.8476 .9738
7	.9517 .9833	.8643 .9082	.8521 .95	.9211 .9378	.8895 .8964	.9312 .959	.9736
8	1			• •		.959	.991
12	.984	1 .9915	1 .9888	1 .982	1 .9791	1	1
13	.9836	.9915		.9772	.9733	.9926	1
14			.9837	.9749	.9672	.9804	.999
	9799	9799					
	.9799	.9798	.9917				
15	.9539	.965	.9883	.9569	.9582	.9693	.9854
15 16	.9539 .8827	.965 .91678	.9883 .946	.9569 .8948	.9582 .9113	.9693 .9088	.9854 .9366
15 16 17	.9539 .8827 .7556	.965 .91678 .7944	.9883 .946 .766	.9569 .8948 .7461	.9582 .9113 .7215	.9693 .9088 .7126	.9854 .9366 .8357
15 16 17 18	.9539 .8827 .7556 .5948	.965 .91678 .7944 .5852	.9883 .946 .766 .5092	.9569 .8948 .7461 .4953	.9582 .9113	.9693 .9088	.9854 .9366
15 16 17	.9539 .8827 .7556	.965 .91678 .7944	.9883 .946 .766	.9569 .8948 .7461	.9582 .9113 .7215 .5007	.9693 .9088 .7126 .4659	.9854 .9366 .8357 .5981

CONTINUED BASE LINE CONFIGURATION RAKE DATA FULL TRAVERSE UP STREAM LOCATION

PITCH > PROBE	43.81.	46.18	48.54	50.9	53.3	55.61	57.98
PORT							
1	.2597	.2525	.1948	.1603	.244	.2144	.0667
2	.4014	.348	.3143	.2694	.3696	.3573	.1482
3	.5492	.5165	.4697	.4571	.5444	.4395	.2162
4	.7077	.6835	.6996	.6493	.6996	.6891	.4277
5	.8646	.8301	.8334	.8232	.8892	.8485	.8188
6	.9641	.9073	.9059	.9299	.977	.9299	.9273
7	.9865	.9242	.95	.9955	.9988	.9547	.988
8	1	1	.9994	.9922	.9923	1	.9868
12	.9899	.9693	1	.9942	.9898	.9801	1
13	.9891	.9733	.9882	.9996	.9942	.9885	.9931
14	.9952	.9597	.9697	1	1	.9775	.9943
15	.9838	.9426	.9679	.9872	.9952	.9455	.9689
16	.9388	.8746	.9393	.9396	.9341	.8962	.873
17	.8286	.7017	.8172	.8125	.7464	.7617	.6863
18	.5833	.4981	.608	.6003	.5084	.5538	.4739
19	.4001	.3158	.4	.3965	.3512	.3667	.3377
20	.2567	.2045	.2782	.2321	.2119	.2207	.196

PITCH >	57.98	60.38
PROBE		
PORT		
1	.0667	72
2	.1482	4612
3	.2162	0524
4	.4277	.3904
5	.8188	.6025
6	.9273	.5396
7	.988	.5345
8	.9868	.9189
12	1	.8736
13	.9931	.806
14	.9943	.8088
15	.9689	.9614
16	.873	1
17	.6863	.6
18	.4739	.2896
19	.3377	.2078
20	.196	.126

BASE LINE CONFIGURATION RAKE DATA UP STREAM LOCATION 20 TO 23 INCHES

PITCH > PROBE PORT	20 Cp	20.25	20.5	20.75	21	21.25	21.5
1	.3835	.2685	.2171	.2379	.2858	.3487	.3559
2	.4183	.3076	.2875	.3237	.4205	.4512	.457
3	.5804	.4887	.4341	.4586	.5668	.5995	.5776
4	.7522	.6952	.6303	.6211	.6482	.677	.686
5	.9166	.903	.8441	.781	.7452	.7443	.7587
6	.9769	.96	.907	.8692	.8633	.8726	.8848
7	.9842	.9845	.9701	.9552	.9539	.9727	.9765
8	.9861	1	1	.9863	.9847	.9844	.991
12	.9801	.9786	.9581	.9475	.9777	.9953	.9728
13	1	.9836	.9655	.9668	.9836	.9889	.991
14	.9945	.9987	1	1	1	1	1
15	.9957	.9996	.9825	.981	.9946	.9917	.9869
16	.9688	.952	.9253	.9114	.9279	.9516	.9635
17	.6643	.701	.705	.6828	.7277	.7695	.882
18	.4289	.4772	.441	.3947	.4341	.5473	.6227
19	.3111	.2927	.261	.2024	.2146	.32	.385
20	.2046	.2041	.1486	.0962	.1266	.1702	.2787
PITCH > PROBE PORT	21.75	22	22.25	22.5	22.75	23	
1	.3086	.2563	.2454	.2426	.3245	.3559	
2	.384	.3085	.3186	.3504	.419	.4377	
3	.5275	.4977	.4621	.4757	.5515	.5749	
4	.6525	.6652	.6447	.6291	.6573	.6787	
5	.8027	.8463	.8665	.8531	.8129	.7813	
6	.925	.9527	.9142	.9241	.8967	.8594	
7	.988	.9864	.9459	.9631	.9461	.9463	
8	.9944	.9955	1	1	1	.9845	
12	.9751	.9783	.9687	.9542	.9524	.9611	
13	.9872	.9938	.9763	.9188	.9206	.9257	
14	.9996	1	.987	.9735	.9919	1	
15	1	.989	.9868	.9682	.9827	.9839	
16	.9711	.9729	.9542	.9312	.9003	.8988	
17	.8708	.8445	.8185	.7534	.7186	.7	
18	.6497	.6603	.6358	.5635	.5152	.4645	
19	.4346	.4208	.4061	.3873	.3323	.3065	
20	.2659	.2664	.2706	.2257	.2086	.1721	

BASE LINE CONFIGURATION RAKE DATA DOWN STREAM LOCATION 20 TO 23 INCHES

PITCH > PROBE PORT	20 Cp	20.25	20.5	20.75	21	21.25	21.5
1	.4517	.4278	.4504	.479	.518	.4991	.39
2	.5918	.5617	.5932	.6387	.6441	.6143	.4598
3	.7261	.7118	.716	.7373	.7327	.6747	.5099
4	.6498	.6825	.722	.7743	.7841	.7234	.5977
5	.5897	.5253	.6078	.6994	.8112	.8726	.8461
6	.6082	.5341	.5837	.683	.82	.9022	.9202
7	.5617	.563	.6353	.7658	.8407	.9343	.9552
8	.7085	.8569	.9488	.9961	1	1	1
12	1	1	1	1	.9735	.9765	.9659
13	.742	.8661	.9217	.9742	.9769	.9875	.974
14	.5602	.5278	.5714	.6562	.7611	.8842	.9605
15	.6936	.5722	.5562	.5645	.6508	.7861	.9315
16	.601	.5055	.5266	.5687	.6641	.7998	.9234
17	.586	.5801	.6374	.7105	.7944	.8359	.781
18	.7175	.7171	.7516	.7914	.8304	.835	.7311
19	.7466	.7551	.7929	.8311	.8537	.8283	.701
20	.6834	.7163	.7652	.8051	.8247	.7956	.7016
PITCH >	21.75	22	22.25	22.5	22.75	23	
PROBE							
PORT							
1	.289	.2882	.3951	.4808	.4503	.4339	
2	.3539	.3663	.4627	.5544	.5808	.5256	
3	.4164	.4658	.6005	.7268	.7132	.6691	
4	.4716	.4817	.5431	.6113	.6447	.6121	
5	.8072	.7398	.7023	.7217	.6357	.5066	
6	.9296	.9225	.9294	.9551	.7912	.5885	
7	.9466	.8933	.82	.7855	.6483	.5337	
8	1	.9533	.838	.7871	.6576	.6183	
12	.9633	.8478	.7158	.8076	1	1	
13	.9916	.9221	.7842	.7755	.7734	.8448	
14	.9988	.9555	.8707	.8081	.6335	.5284	
15	.9922	1	1	1	.8214	.6016	
16	.9685	.9694	.9285	.9248	.7635	.5615	
17	.6821	.5733	.5979	.6491	.5889	.5351	
18	.6152	.5322	.6194	.7075	.7407	.6854	
19	.5902	.4865	.5893	.6923	.7535	.6951	
20	.5738	.4376	.5184	.6479	.702	.6782	

LOW SUCTION RAKE DATA FULL TRAVERSE UP STREAM LOCATION

PITCH) PROBE PORT	Ср	2.36	4.72	7.08	9.44	11.8	14.16
1	9632	.3665	.5075	.4171	.5128	.3205	.3328
2	7206	.4172	.6626	.5621	.6475	.4896	.4729
3	4396	.61	.7382	.6987	.7441	.5624	.6122
4	.4427	.6431	.7334	.7689	.7862	.6863	.6775
5	.5687	.6794	.8199	.8337	.8803	.8577	.7897
6	.6648	.7663	.9472	.9656	.961	.966	.6975
7	.5778	.8817	.9831	.9629	.989	.9951	.94
8	.8907	.9447	.9815	.9909	1	1	1
12	1	1	.9936	.8851	.9926	.9943	.9725
13	.683	.9916	1	.9948	.9927	.9974	.968
14	.366	.9712	.9974	.9946	.9959	.998	.9708
15	.604	.9669	.9968	1	.998	.9919	.9471
16	.6541	.8844	.9089	.9771	.9581	.9006	.9119
17	.3967	.6311	.6522	.9312	.836	.8294	.873
18	.3588	.5114	.5029	.8366	.8007	.7885	.7695
19	.2817	.3573	.3669	.6696	.65	.6854	.5881
20	.1048	.2924	.255	.5266	.4968	.549	.4727
Ptot	5.268	10.226	9.97	10.064	10.206	10.164	10.692
Ppr	10.712	10.632	10.558	10.49	10.588	10.514	10.574
Ppl	12.25	12.174	12.146	12.022	12.146	12.042	12.116
Tpl	533.62	534.01	534.38	534.58	534.64	535.11	535.06
RAKE Q	7.834	13.56	13.118	13.118	13.296	13.328	13.63
BETA	44.3	43.11	44.1	43.66	43.62	43.77	43.76
DEIH	44.3	43.11	44.1	43.66	43.62	43.//	43.76
PITCH >	16.52	18.88	21.24	23.6	26	26.44	28.8
PROBE	10.02	20.00	21.24	20.0	20	20144	20.0
PORT							
PORT 1	.3344	.3863	.3364	.2382	.3081	.3447	.3381
PORT 1 2	.3344 .4697	.3863 .5532	.3364 .4584	.2382 .3741	.3081 .4319	.3447	.3381 .4631
PORT 1 2 3	.3344 .4697 .6156	.3863 .5532 .665	.3364 .4584 .5686	.2382 .3741 .5197	.3081 .4319 .557	.3447 .4684 .6456	.3381 .4631 .6089
PORT 1 2 3 4	.3344 .4697 .6156 .6752	.3863 .5532 .665 .694	.3364 .4584 .5686 .664	.2382 .3741 .5197 .655	.3081 .4319 .557 .7083	.3447 .4684 .6456	.3381 .4631 .6089 .6942
PORT 1 2 3 4 5	.3344 .4697 .6156 .6752 .8052	.3863 .5532 .665 .694	.3364 .4584 .5686 .664	.2382 .3741 .5197 .655 .7928	.3081 .4319 .557 .7083 .8551	.3447 .4684 .6456 .7199 .8473	.3381 .4631 .6089 .6942
PORT 1 2 3 4 5	.3344 .4697 .6156 .6752 .8052	.3863 .5532 .665 .694 .7619	.3364 .4584 .5686 .664 .751	.2382 .3741 .5197 .655 .7928	.3081 .4319 .557 .7083 .8551 .9595	.3447 .4684 .6456 .7199 .8473	.3381 .4631 .6089 .6942 .8
PORT 1 2 3 4 5 6 7	.3344 .4697 .6156 .6752 .8052 .8592 .8967	.3863 .5532 .665 .694 .7619 .8697	.3364 .4584 .5686 .664 .751 .8847	.2382 .3741 .5197 .655 .7928 .9375 .9949	.3081 .4319 .557 .7083 .8551 .9595	.3447 .4684 .6456 .7199 .8473 .9036 .9204	.3381 .4631 .6089 .6942 .8 .8402
PORT 1 2 3 4 5 6 7 8	.3344 .4697 .6156 .6752 .8052 .8592 .8967	.3863 .5532 .665 .694 .7619 .8697 .9332 .9788	.3364 .4584 .5686 .664 .751 .8847 .9785	.2382 .3741 .5197 .655 .7928 .9375 .9949	.3081 .4319 .557 .7083 .8551 .9595 .994	.3447 .4684 .6456 .7199 .8473 .9036 .9204	.3381 .4631 .6089 .6942 .8 .8402 .8889
PORT 1 2 3 4 5 6 7 8 12	.3344 .4697 .6156 .6752 .8052 .8592 .8967 1	.3863 .5532 .665 .694 .7619 .8697 .9332 .9788	.3364 .4584 .5686 .664 .751 .8847 .9785 .9774	.2382 .3741 .5197 .655 .7928 .9375 .9949 1	.3081 .4319 .557 .7083 .8551 .9595 .994 1	.3447 .4684 .6456 .7199 .8473 .9036 .9204 1	.3381 .4631 .6089 .6942 .8 .8402 .8889 1
PORT 1 2 3 4 5 6 7 8 12 13	.3344 .4697 .6156 .6752 .8052 .8592 .8967 1 .7958	.3863 .5532 .665 .694 .7619 .8697 .9332 .9788 1	.3364 .4584 .5686 .664 .751 .8847 .9785 .9774 .9843	.2382 .3741 .5197 .655 .7928 .9375 .9949 1 .9825	.3081 .4319 .557 .7083 .8551 .9595 .994 1 .9957	.3447 .4684 .6456 .7199 .8473 .9036 .9204 1 .994 .9835	.3381 .4631 .6089 .6942 .8 .8402 .8889 1 .9722 .9563
PORT 1 2 3 4 5 6 7 8 12 13 14	.3344 .4697 .6156 .6752 .8052 .8592 .8967 1 .7958 .9916	.3863 .5532 .665 .694 .7619 .8697 .9332 .9788 1 .9907	.3364 .4584 .5686 .664 .751 .8847 .9785 .9774 .9843 .9921	.2382 .3741 .5197 .655 .7928 .9375 .9949 1 .9825 .9836	.3081 .4319 .557 .7083 .8551 .9595 .994 .1 .9957 .9918	.3447 .4684 .6456 .7199 .8473 .9036 .9204 .1 .994 .9835 .9331	.3381 .4631 .6089 .6942 .8 .8402 .8889 1 .9722 .9563
PORT 1 2 3 4 5 6 7 8 12 13 14	.3344 .4697 .6156 .6752 .8052 .8592 .8967 1 .7958 .9916 .9846	.3863 .5532 .665 .694 .7619 .8697 .9332 .9788 1 .9907 .9802 .9708	.3364 .4584 .5686 .664 .751 .8847 .9785 .9774 .9843 .9921 .9998	.2382 .3741 .5197 .655 .7928 .9375 .9949 1 .9825 .9836 .9935	.3081 .4319 .557 .7083 .8551 .9595 .994 .1 .9957 .9918 .9858 .9518	.3447 .4684 .6456 .7199 .8473 .9036 .9204 .1 .994 .9835 .9331 .8854	.3381 .4631 .6089 .6942 .8 .8402 .8889 1 .9722 .9563 .9311
PORT 1 2 3 4 5 6 7 8 12 13 14 15 16	.3344 .4697 .6156 .6752 .8052 .8592 .8967 1 .7958 .9916 .9846 .9511	.3863 .5532 .665 .694 .7619 .8697 .9332 .9788 1 .9907 .9802 .9708 .9348	.3364 .4584 .5686 .664 .751 .8847 .9785 .9774 .9843 .9921 .9998 1	.2382 .3741 .5197 .655 .7928 .9375 .9949 1 .9825 .9836 .9935 .9951	.3081 .4319 .557 .7083 .8551 .9595 .994 .1 .9957 .9918 .9858 .9518	.3447 .4684 .6456 .7199 .8473 .9036 .9204 1 .994 .9835 .9331 .8854	.3381 .4631 .6089 .6942 .8 .8402 .8889 1 .9722 .9563 .9311 .9014 .8741
PORT 1 2 3 4 5 6 7 8 12 13 14 15 16	.3344 .4697 .6156 .6752 .8052 .8592 .8967 1 .7958 .9916 .9846 .9511	.3863 .5532 .665 .694 .7619 .8697 .9332 .9788 1 .9907 .9802 .9708 .9348 .8096	.3364 .4584 .5686 .664 .751 .8847 .9785 .9774 .9843 .9921 .9998 1	.2382 .3741 .5197 .655 .7928 .9375 .9949 1 .9825 .9836 .9935 .9951 .9901	.3081 .4319 .557 .7083 .8551 .9595 .994 .1 .9957 .9918 .9858 .9518 .9243 .8884	.3447 .4684 .6456 .7199 .8473 .9036 .9204 1 .994 .9835 .9331 .8854 .864	.3381 .4631 .6089 .6942 .8 .8402 .8889 1 .9722 .9563 .9311 .9014 .8741 .6916
PORT 1 2 3 4 5 6 7 8 12 13 14 15 16 17 18	.3344 .4697 .6156 .6752 .8052 .8592 .8967 1 .7958 .9916 .9846 .9511 .88971 .7771	.3863 .5532 .665 .694 .7619 .8697 .9332 .9788 1 .9907 .9802 .9708 .9348 .8096 .6362	.3364 .4584 .5686 .664 .751 .8847 .9785 .9774 .9843 .9921 .9998 1 .9813 .926 .7323	.2382 .3741 .5197 .655 .7928 .9375 .9949 1 .9825 .9836 .9935 .9951 .9901 .9439 .7654	.3081 .4319 .557 .7083 .8551 .9595 .994 .1 .9957 .9918 .9858 .9518 .9243 .8884	.3447 .4684 .6456 .7199 .8473 .9036 .9204 .1 .994 .9835 .9331 .8854 .864 .7915 .7883	.3381 .4631 .6089 .6942 .8 .8402 .8889 1 .9722 .9563 .9311 .9014 .8741 .6916
PORT 1 2 3 4 5 6 7 8 12 13 14 15 16 17 18 19	.3344 .4697 .6156 .6752 .8052 .8592 .8967 1 .7958 .9916 .9846 .9511 .88971 .7771 .6879	.3863 .5532 .665 .694 .7619 .8697 .9332 .9788 1 .9907 .9802 .9708 .9348 .8096 .6362	.3364 .4584 .5686 .664 .751 .8847 .9785 .9774 .9843 .9921 .9998 1 .9813 .926 .7323 .5363	.2382 .3741 .5197 .655 .7928 .9375 .9949 1 .9825 .9836 .9935 .9951 .9901 .9439 .7654	.3081 .4319 .557 .7083 .8551 .9595 .994 .1 .9957 .9918 .9858 .9518 .9243 .8884 .837	.3447 .4684 .6456 .7199 .8473 .9036 .9204 1 .994 .9835 .9331 .8854 .864 .7915 .7883	.3381 .4631 .6089 .6942 .8 .8402 .8889 1 .9722 .9563 .9311 .9014 .8741 .6916 .5119
PORT 1 2 3 4 5 6 7 8 12 13 14 15 16 17 18 19 20	.3344 .4697 .6156 .6752 .8052 .8592 .8967 1 .7958 .9916 .9846 .9511 .88971 .7771 .6879 .5904 .4632	.3863 .5532 .665 .694 .7619 .8697 .9332 .9788 1 .9907 .9802 .9708 .9348 .8096 .6362 .446 .2881	.3364 .4584 .5686 .664 .751 .8847 .9785 .9774 .9843 .9921 .9998 1 .9813 .926 .7323 .5363 .368	.2382 .3741 .5197 .655 .7928 .9375 .9949 1 .9825 .9836 .9935 .9951 .9901 .9439 .7654 .6107	.3081 .4319 .557 .7083 .8551 .9595 .994 .1 .9957 .9918 .9858 .9518 .9243 .8884 .837 .6667	.3447 .4684 .6456 .7199 .8473 .9036 .9204 1 .994 .9835 .9331 .8854 .864 .7915 .7883 .6846	.3381 .4631 .6089 .6942 .8 .8402 .8889 1 .9722 .9563 .9311 .9014 .8741 .6916 .5119 .3677 .2689
PORT 1 2 3 4 5 6 7 8 12 13 14 15 16 17 18 19 20 Ptot	.3344 .4697 .6156 .6752 .8052 .8592 .8967 1 .7958 .9916 .9846 .9511 .88971 .7771 .6879 .5904 .4632 10.67	.3863 .5532 .665 .694 .7619 .8697 .9332 .9788 1 .9907 .9802 .9708 .9348 .8096 .6362 .446 .2881	.3364 .4584 .5686 .664 .751 .8847 .9785 .9774 .9843 .9921 .9998 1 .9813 .926 .7323 .5363 .368 10.162	.2382 .3741 .5197 .655 .7928 .9375 .9949 1 .9825 .9836 .9935 .9951 .9901 .9439 .7654 .6107 .4862	.3081 .4319 .557 .7083 .8551 .9595 .994 .1 .9957 .9918 .9858 .9243 .8884 .837 .6667 .5179	.3447 .4684 .6456 .7199 .8473 .9036 .9204 1 .994 .9835 .9331 .8854 .864 .7915 .7883 .6846 .5259	.3381 .4631 .6089 .6942 .8 .8402 .8889 1 .9722 .9563 .9311 .9014 .8741 .6916 .5119 .3677 .2689 10.948
PORT 1 2 3 4 5 6 7 8 12 13 14 15 16 17 18 19 20 Ptot Ppr	.3344 .4697 .6156 .6752 .8052 .8592 .8967 1 .7958 .9916 .9846 .9511 .88971 .7771 .6879 .5904 .4632 10.67	.3863 .5532 .665 .694 .7619 .8697 .9332 .9788 1 .9907 .9802 .9708 .9348 .8096 .6362 .446 .2881 10.484 10.514	.3364 .4584 .5686 .664 .751 .8847 .9785 .9774 .9843 .9921 .9998 1 .9813 .926 .7323 .5363 .368 10.162 10.47	.2382 .3741 .5197 .655 .7928 .9375 .9949 1 .9825 .9836 .9935 .9951 .9901 .9439 .7654 .6107 .4862 10.152	.3081 .4319 .557 .7083 .8551 .9595 .994 .1 .9957 .9918 .9858 .9518 .9243 .8884 .837 .6667 .5179 10.284 10.508	.3447 .4684 .6456 .7199 .8473 .9036 .9204 1 .994 .9835 .9331 .8854 .864 .7915 .7883 .6846 .5259 10.648 10.518	.3381 .4631 .6089 .6942 .8 .8402 .8889 1 .9722 .9563 .9311 .9014 .8741 .6916 .5119 .3677 .2689 10.948 10.448
PORT 1 2 3 4 5 6 7 8 12 13 14 15 16 17 18 19 20 Ptot Ppr Ppl	.3344 .4697 .6156 .6752 .8052 .8592 .8967 1 .7958 .9916 .9846 .9511 .88971 .7771 .6879 .5904 .4632 10.67 10.552 12.07	.3863 .5532 .665 .694 .7619 .8697 .9332 .9788 1 .9907 .9802 .9708 .9348 .8096 .6362 .446 .2881 10.484 10.514 12.084	.3364 .4584 .5686 .664 .751 .8847 .9785 .9774 .9843 .9921 .9998 1 .9813 .926 .7323 .5363 .368 10.162 10.47 12.03	.2382 .3741 .5197 .655 .7928 .9375 .9949 1 .9825 .9836 .9935 .9951 .9901 .9439 .7654 .6107 .4862 10.152 10.478 12.028	.3081 .4319 .557 .7083 .8551 .9595 .994 .1 .9957 .9918 .9858 .9518 .9243 .8884 .837 .6667 .5179 10.284 10.508 12.084	.3447 .4684 .6456 .7199 .8473 .9036 .9204 .1 .994 .9835 .9331 .8854 .864 .7915 .7883 .6846 .5259 10.648 10.518 12.076	.3381 .4631 .6089 .6942 .8 .8402 .8889 1 .9722 .9563 .9311 .9014 .8741 .6916 .5119 .3677 .2689 10.948 10.448 12.056
PORT 1 2 3 4 5 6 7 8 12 13 14 15 16 17 18 19 20 Ptot Ppr Ppl Tpl	.3344 .4697 .6156 .6752 .8052 .8592 .8967 1 .7958 .9916 .9846 .9511 .88971 .7771 .6879 .5904 .4632 10.67 10.552 12.07 535.14	.3863 .5532 .665 .694 .7619 .8697 .9332 .9788 1 .9907 .9802 .9708 .9348 .8096 .6362 .446 .2881 10.484 10.514 12.084 535.03	.3364 .4584 .5686 .664 .751 .8847 .9785 .9774 .9843 .9921 .9998 1 .9813 .926 .7323 .5363 .368 10.162 10.47 12.03 535.15	.2382 .3741 .5197 .655 .7928 .9375 .9949 1 .9825 .9836 .9935 .9951 .9901 .9439 .7654 .6107 .4862 10.152 10.478 12.028 535.7	.3081 .4319 .557 .7083 .8551 .9595 .994 .1 .9957 .9918 .9858 .9518 .9243 .8884 .837 .6667 .5179 10.284 10.508 12.084 535.72	.3447 .4684 .6456 .7199 .8473 .9036 .9204 1 .994 .9835 .9331 .8854 .864 .7915 .7883 .6846 .5259 10.648 10.518 12.076 535.51	.3381 .4631 .6089 .6942 .8 .8402 .8889 1 .9722 .9563 .9311 .9014 .8741 .6916 .5119 .3677 .2689 10.948 10.448 12.056 535.67
PORT 1 2 3 4 5 6 7 8 12 13 14 15 16 17 18 19 20 Ptot Ppr Ppl	.3344 .4697 .6156 .6752 .8052 .8592 .8967 1 .7958 .9916 .9846 .9511 .88971 .7771 .6879 .5904 .4632 10.67 10.552 12.07	.3863 .5532 .665 .694 .7619 .8697 .9332 .9788 1 .9907 .9802 .9708 .9348 .8096 .6362 .446 .2881 10.484 10.514 12.084	.3364 .4584 .5686 .664 .751 .8847 .9785 .9774 .9843 .9921 .9998 1 .9813 .926 .7323 .5363 .368 10.162 10.47 12.03	.2382 .3741 .5197 .655 .7928 .9375 .9949 1 .9825 .9836 .9935 .9951 .9901 .9439 .7654 .6107 .4862 10.152 10.478 12.028	.3081 .4319 .557 .7083 .8551 .9595 .994 .1 .9957 .9918 .9858 .9518 .9243 .8884 .837 .6667 .5179 10.284 10.508 12.084	.3447 .4684 .6456 .7199 .8473 .9036 .9204 .1 .994 .9835 .9331 .8854 .864 .7915 .7883 .6846 .5259 10.648 10.518 12.076	.3381 .4631 .6089 .6942 .8 .8402 .8889 1 .9722 .9563 .9311 .9014 .8741 .6916 .5119 .3677 .2689 10.948 10.448 12.056

CONTINUED.

LOW SUCTION RAKE DATA FULL TRAVERSE UP STREAM LOCATION PITCH > 31.16 33.52 35.88 40.6 43 38.24 43.81 PROBE PORT .3382 1 .2334 .2066 .26 .2771 .2827 .2648 2 .4722 .3792 .3378 .4001 .3914 .4307 .4351 .6251 3 .4817 .4824 .5218 .5614 .5769 .5782 .721 4 .682 .6801 .671 .6881 .6825 .6995 5 .8087 .7968 .8718 .8469 .8187 .7506 .8367 6 .8739 .916 .9769 .9423 .8696 .847 .9677 7 .9598 .9854 .9983 .979 .953 .9991 .9707 8 .9847 .9978 .9983 1 1 .9957 1 12 .9992 .9913 .9939 .9891 .9951 .9829 .9881 .994 .9918 .9992 .9885 13 .9959 1 1 1 .995 .9928 .9898 14 .9718 .9968 1 .9878 .9896 15 .9884 .9996 .985 .9951 .9536 .9334 .9401 .9783 .9683 16 .8803 .9468 .9762 .7618 .9081 17 .7367 .8293 .8425 .7135 .8202 .721 .5566 18 .4861 .6611 .50377 .6564 .665 .445 .3398 .4719 .4399 .5479 19 .3693 .5177 20 .3728 .2772 .3977 .4281 .429 .2715 .308 10.542 10.778 10.486 Ptot 10.36 10.798 10.578 10.582 10.464 10.36 Ppr 10.404 10.548 10,478 10.44 10.362 12.066 12.034 12.038 Ppl 12.04 12.038 12.064 12.014 535.73 535.74 Tpl 535,68 535.67 536.02 536.03 536.21 RAKE Q 13.892 13.916 13.584 13.792 13.858 13.71 13.806 BETA 44.16 44.61 44.77 44.78 44.96 44.61 44.88 PITCH > 46.18 57.98 60.38 48.54 50.9 53.3 55.61 PROBE PORT .2967 .3344 .2809 .3811 -.0789 1 .3473 .2693 2 .4333 .5092 .4795 .4237 .5413 .4373 .1632 .5 .5192 3 .5927 .6297 .5983 .691 .5883 .7133 .7461 .7969 4 .7168 .729 .7475 .7605 5 .8501 .8144 .8236 .9069 .8578 .8771 .852 .7443 6 .9168 .8732 .9285 .9791 .911 .9503 .6579 7 .9405 .9109 .9907 .991 1 .991 .9871 8 1 .991 .9938 .9977 .9846 .9851 .9977 .9745 .9955 .9861 1 1 12 1 .9829 .9912 .992 .9932 .9923 .9997 13 1 .991 .971 .97 .9929 .9828 .9037 14 1 .9669 .9929 15 .9502 .9912 .9478 .9957 .9411 .9563 .8915 .9281 .9521 .9258 .7063 .8858 16 .7964 .8026 .7762 .857 .3335 17 .79 .6929 .5917 .6885 .1599 .5158 .6661 .6222 .6424 18 .5285 .5136 .4715 .4949 .3065 .4546 .1303 19 .3874 .3837 .3686 .3366 .1093 .3721 .0819 20 10.966 10.916 6.46 10.486 10.63 10.648 Ptot 10.884 10.384 10.32 Ppr 10.388 10.37 10.358 10.32 10.396 12.076 Ppl 12.05 12.052 12.064 12.048 12.07 12.094 Tpl 536.33 536.1 536.06 536.17 536.06 536.09 535.99 9.824 13.642 RAKE Q 13.718 13.968 13.508 13.54 13.384 47.08 44,49 44.71 45.07 45.2 45.52 BETA 44,34

LOW SUCTION SETTING RAKE DATA UP STREAM LOCATION 20 TO 23 INCHES

PITCH) PROBE PORT	20 Cp	20.25	20.5	20.75	21	21.25	21.5
1	.2738	.2876	.3022	.3496	.378	.3437	.2989
2	.4036	.4325	.4481	.5005	.5215	.4459	.4052
3	.5485	.5709	.5823	.6275	.6425	.5822	.5597
4	.6843	.6618	.6571	.6734	.6822	.6704	.6686
5	.857	.854	.8202	.7951	.7821	.7759	.7942
6	.9465	.9265	.9006	.8923	.8914	.9007	.918
7	.9503	.9473	.9417	.9647	.9718	.968	.9695
8	.958	.9696	.9736		.9861	.9783	.9685
12	.9899	.973	.9551	.9783	.9978	.9897	.9754
13	.986	.9653	.9585	.9847	.9936	.9819	.9834
14	.9905	1	.9858	.9957	.994	1	1
15	1	.9979	1	.9884	1	.9885	.9978
16	.9691	.964	.9185	.9465	.9601	.9762	.9725
17	.7942	.817	.8058	.8638	.8924	.9317	.9877
18	.5874	.6177	.5932	.578	.6632	.7163	.8051
19	.4642	.4604	.4588	.4325	.4216	.5015	.591
20	.3759	.3937	.3676	.3546	.2983	.3525	.429
Ptot	10.534	10.668	10.702	10.326	10.07	10.066	10.098
Ppr	10.604	10.612	10.62	10.62	10.42	10.398	10.474
Ppl	12.096	12.15	12.08	12.054	11.98	11.936	11.882
Tpl	535.58	535.71	535.77	535.81	535.89	536.01	535.95
RAKE Q	13.942	13.844	13.71	13.614	13.538	13.438	13.348
BETA	43.32	43.55	43.56	43.35	43.14	43.28	43.26
PITCH > PROBE PORT	21.75	22	22.25	22.5	22.75	23	
1	.2379	.2605	.3127	.3335	.3571	.2874	
2	.3697	.4041	.4498	.48	.4873	.4387	
3	.5188	.5565	.5826	.5948	.5862	.5752	
4	.6631	.6785	.6672	.6678	.6733	.6819	
5	.8465	.8565	.8424	.8232	.7933	.7847	
6	.9404	.9578	.9432	.9029	.893	.8768	
7	.9732	.9912	.9867	.9539	.9307	.9419	
8	.9814	1	1	.9841	.9824	.9875	
12	.984	.9851	.96	.9383	.9552	.9591	
13	.9855	.9825	.9694	.9545	.9663	.9496	
14	1				0007	.9802	
15		.9969	.9963	1	.9987	. ,	
	.9969	.9969 .9974	.9963 .8858	.988	.9987	1	
16							
16 17	.9969	.9974	.8858	.988	1	1	
	.9969 .9691	.9974 .9674	.8858 .9367	.988 .9262	1 .9296	1 .9273 .8112 .6273	
17 18 19	.9969 .9691 .8573 .7892 .6213	.9974 .9674 .8344 .7852 .6291	.8858 .9367 .7821 .6977 .5624	.988 .9262 .7566 .6304 .4781	1 .9296 .7797 .5822 .4467	1 .9273 .8112 .6273 .4498	
17 18 19 20	.9969 .9691 .8573 .7892 .6213	.9974 .9674 .8344 .7852 .6291	.8858 .9367 .7821 .6977 .5624 .4598	.988 .9262 .7566 .6304 .4781	1 .9296 .7797 .5822 .4467 .3238	1 .9273 .8112 .6273 .4498 .3397	
17 18 19 20 Ptot	.9969 .9691 .8573 .7892 .6213 .4972	.9974 .9674 .8344 .7852 .6291 .512	.8858 .9367 .7821 .6977 .5624 .4598	.988 .9262 .7566 .6304 .4781 .358	1 .9296 .7797 .5822 .4467 .3238 10.45	1 .9273 .8112 .6273 .4498 .3397	
17 18 19 20 Ptot Ppr	.9969 .9691 .8573 .7892 .6213 .4972 10.23	.9974 .9674 .8344 .7852 .6291 .512 10.196 10.548	.8858 .9367 .7821 .6977 .5624 .4598 10.392	.988 .9262 .7566 .6304 .4781 .358 10.542	1 .9296 .7797 .5822 .4467 .3238 10.45	1 .9273 .8112 .6273 .4498 .3397 10.404 10.5	
17 18 19 20 Ptot Ppr Ppl	.9969 .9691 .8573 .7892 .6213 .4972 10.23 10.44 12.03	.9974 .9674 .8344 .7852 .6291 .512 10.196 10.548 12.002	.8858 .9367 .7821 .6977 .5624 .4598 10.392 10.494 12.006	.988 .9262 .7566 .6304 .4781 .358 10.542 10.596	1 .9296 .7797 .5822 .4467 .3238 10.45 10.47	1 .9273 .8112 .6273 .4498 .3397 10.404 10.5	
17 18 19 20 Ptot Ppr Ppl Tpl	.9969 .9691 .8573 .7892 .6213 .4972 10.23 10.44 12.03 536	.9974 .9674 .8344 .7852 .6291 .512 10.196 10.548 12.002 535.91	.8858 .9367 .7821 .6977 .5624 .4598 10.392 10.494 12.006 535.96	.988 .9262 .7566 .6304 .4781 .358 10.542 10.596 12.002 536.08	1 .9296 .7797 .5822 .4467 .3238 10.45 10.47 11.984 536.01	1 .9273 .8112 .6273 .4498 .3397 10.404 10.5 12 535.96	
17 18 19 20 Ptot Ppr Ppl	.9969 .9691 .8573 .7892 .6213 .4972 10.23 10.44 12.03	.9974 .9674 .8344 .7852 .6291 .512 10.196 10.548 12.002	.8858 .9367 .7821 .6977 .5624 .4598 10.392 10.494 12.006	.988 .9262 .7566 .6304 .4781 .358 10.542 10.596	1 .9296 .7797 .5822 .4467 .3238 10.45 10.47	1 .9273 .8112 .6273 .4498 .3397 10.404 10.5	

LOW SUCTION SETTING RAKE DATA DOWN STREAM LOCATION 20 TO 23 INCHES

	PITCH > PROBE PORT	20 Cp	20.25	20.5	20.75	21	21.25	21.5
	1	.4873	.4219	.4949	.5199	.5178	.4299	.3262
	2	.6341	.5944	.6472	.6555	.5989	.5254	.3202
	3	.7029	.6938	.7207	.7235	.6553	.5457	.4548
	4	.6163		.7134	.7546	.7188	.5882	.5166
	5	.5621		.6024	.7335	.818	.8324	.7934
	6	.6251	.546	.5915	.7	.8275	.8887	.9073
	7	.5108	.532	.6482	.7726	.9043	.9321	.9435
	8	.6847	.8139	.9274	.9884	.967	.9981	.9906
	12	1	1	1	.9939	.9878	.9994	.9873
	13	.8605	.9447	.9939	1	1	1	.999
	14	.5742	.597	.7083	.8327	.9464	.9968	1
	15	.6524		.6193	.7235	.8933	.9732	.9992
	16	.6307	.5537	.5937	.7197	.9027	.9551	.9778
	17	.5899	.6131	.7169	.8291	.8929	.8909	.8512
	18	.7273	.7375	.7998	.839	.8878	.8655	.7467
	19	.736	37612	.8049	.8362	.8705	.8525	.7485
	20	.681	.7037	.7246	.7676	.8	.7848	.6989
	Ptot	9.592	10.158	10.16	10.148	10.178	10.156	10.202
	Ppr	10.582	10.486	10.482	10.576	10.574	10.514	10.508
	Ppl	12.054	11.982	11.986	12.042	12.048	11.988	11.982
	Tpl	534.88	535.14	535.23	535.34	535.35	535.58	535.67
F	RAKE Q	8.604	8.854	8.76	8.678	8.636	8.69	8.698
	BETA	-2.75	-1.69	-1.94	-2.32	-3.58	-2.28	-2.84
F	PITCH >	21.75	22	22.25	22.5	22.75	23	
	PROBE							
	PORT			4007		= 400	5004	
	1	.2993	.3922	.4837	.5835	.5638	.5294	
	2	.4117	.4841	.5984	.7281	.7018	.6556	
	3	.4653	.5361	.6395	.7536	.7532	.688	
	4	.4915	.4978	.5363	.6252	.6203	.6297	
	5	.7471	.7414	.7616	.8327	.6894	.5856	
	6	.8986	.9216	.9455	.9725	.7882	.6164	
	7	.9428	.9165	.8786	.7865	.6274	.5248	
	8	.9678	.9059	.8447	.7448	.6681	.7155	
	12	.9739	.8731	.7582	.8779	1	1	
	13	.9829	.9328	.8229	.8135	.8171	.8773	
	14	.9943	.9802	.9315	.8522	.6583	.5737	
	15	1	1	1	1	.8108	.663	
	16	.9635	.9544	.9486	.9171	.7611	.5979	
	17	.6819	.5862	.6204	.6567	.5924	.5766	
	18	.628	.5426	.6395	.764	.7463	.7188	
	19	.6862	.4912	.6029	.7476	.759	.7352	
	20	.5477	.4342	.5455	.6794	.6947	.6632	
	Ptot	10.178	9.622	8.91	8.01	8.68	9.744	
	Ppr	10.49	10.478	10.504	10.586	10.514	10.486	
	Ppl	11.978	11.988	11.998	12.028	11.984	11.996	
	Tpl	535.51	535.51	535.69	535.59	535.66	535.593	
F	RAKE Q	8.766	7.862	5.962	6.236	7.842	8.724	
	BETA	-2.86	-2.73	-2.3	-1.79	-2.15	-3.27	

MEDIUM SUCTION RAKE DATA FULL TRAVERSE UP STREAM LOCATION

PITCH) PROBE PORT	ОСР	2.36	4.72	7.08	9.44	11.8	14.16
1	8174	.4481	4004	475			
2	6965	.5996	.4994	.475	.5371	.3217	.3349
3	3477	.6499	.6968	.6671	.6652	-4782	.4825
4	.545		.7409	.7474	.7806	.6245	.6111
5	- · · -	.6308	.7266	.7548	.7854	.6839	.6958
	.5304	.727	.8772	.8746	.8787	.835	.8184
6 7	.5203	.83	.957	.9647	.9712	.9513	.8935
	.5338	.9109	.9805	. 9827	.9885	.9808	.931
8	1	.9608	.9813	.9889	.9845	.9856	1
12	.9771	1	.9897	.9851	.992	.9856	.9886
13	.659	.9893	.997	.9863	.9961	.9893	.9908
14	.2941	.9684	.9962	1	.998	.988	.9834
15	-4944	.9702	1	.9978	1	1	.9738
16	.7029	.9406	.9869	.9867	.9855	.9293	.8905
17	.5934	.7584	.7963	.8919	.9165	.7954	.8423
18	.6624	.6584	.7081	.8952	.8005	.7843	.8084
19	.6114	.4819	.6057	.8016	.6953	.6925	.6823
20	.4475	. 4	.4389	.6302	.5339	.5013	.5139
Ptot	5.332	9.94	10.052	10.08	10.226	10.302	10.702
Ppr	10.474	10.348	10.584	10.584	10.544	10.594	10.588
Ppl	12.042	11.954	12.174	12.202	12.186	12.18	12.172
Tpl	527.59	527.58	527.63	527.69	527.79	527.71	527.71
RAKE Q	7.994	13.292	13.314	13.242	13.484	13.516	14.024
BETA	44.712	43.52	44.15	43.79	43.68	43.65	43.72
PITCH >	16.52	18.88	21.24	23.6	26	17	19.36
PORT							
1	.3238	.3837	.3487	.2673	.3402	.3262	.395
2	.4941	.5532	.4289	.3671	.495	.4772	.5039
3	.6226	.676	.5579	.5343	.602	.5824	.6343
4	.6909	.711	.6136	.5565	.6792	.6821	.713
5	.7986	.7975	.7565	.8002	.8576	.8105	.8213
6	.8608	.8895	.8695	.9364	.9584	.9163	.9262
7	.8959	.9434	.9212	.9946	.9957	.9495	.9513
8	1	.9838	.9361	1	1	.9866	.9601
12	.9905	.9992	.9654	.9775	.9986	.9941	.9724
13 14	.9949	.992	.9835	.9822	.9959	.9931	.9984
	.9937	1	.9955	.9806	.9926	1	.9971
15	.9659	.9922	1	.982	.947	.9905	
16	.9132	.9672	.9786	.9783	.9201	.9739	.9875
17	.8156	.8205	.9157	.9482	.9166	.8726	.7631
18	.7012	.7163	.794	.8212	.8628	.7446	.5873
19	.5948	.4792	.5221	.6259	.715	.581	.4961
20	.4485	.3842	.3874	.4891	.567	.4823	.3984
Ptot	10.488	10.242	10.3	10.312	10.336	10.134	10.216
Ppr	10.556	10.602	10.616	10.608	10.618	10.5	10.484
Ppl	12.138	12.168	12.15	12.194	12.174	12.11	12.098
Tpl	527.74	527.63	527.58	527.52	527.61	527.31	527.31
RAKE Q	13:956	13.89	13.628	13.754	13.942	13.67	13.562
BETA	43.46	42.94	43.44	43.76	44.03	43.29	43.5

CONTINUED MEDIUM SUCTION RAKE DATA

		VERSE UP			ı		
PITCH)		24.08		28.8	31.16	33.52	35.88
PROBE	_			20.0	01.10	00.02	33.00
PORT							
1	.2535	.2954	.3634	.3516	.3637	.3129	.2457
2	.373	.4381	.5119	.4929	.512	.4735	.3727
3	.5288	.5935	.6525	.6075	.6367	.5571	
4	.636	.683	.729				.5178
5	.8026	.8065		.6943	.69	.6837	.7066
6			.8545	.8033	.7976	.7934	.8818
7	.9303	.9562	.9259	.8423	.8622	.9056	.975
	.9735	.9815	.9442	.8829	,9393	.9805	.9943
8	.983	.9996	1	1	1	.9945	1
12	.981	.9817	.994	.9711	.9905	.9873	. 9864
13	.9837	1	.9832	.9607	.9831	.9848	.9964
14	.9926	.9967	.9378	.9433	. 9827	1	.9926
15	1	.9669	.9029	.9081	.9757	.9922	. 9838
16	.977	.9496	.8854	.8556	.906	.964	.9435
17	.8656	.8452	.8106	.6815	.7361	.7803	.8291
18	.7839	.758	.83	.5196	.6004	.5269	.6705
19	.6389	.5985	.6843	.3683	.477	.3338	.5147
20	.4867	.4735	.5207	.287	.3567	.2527	.3837
Ptot	10.192	10.272	10.612	11.082	10.536	10.552	10.476
Ppr	10.45	10.396	10.49	10.558	10.592	10.524	10.468
Ppl	12.084	11.996	12.128	12.156	12.172	12.104	12.084
Tpl	527.39	527.3	527.69	527.61	527.59	527.5	527.51
RAKE Q	13.65	13.684	14.126	14.334	14	13.922	13.806
BETA	43.52	43.68	44	44.31	44.33	44.49	44.18
DETT	40.02	43.00	-99	74.01	-4-4 . 00	-4-4 /	77.10
PITCH >	38 24	40 6	43	46 18	48 54	50.9	53.3
PITCH >	38.24	40.6	43	46.18	48.54	50.9	53.3
PROBE	38.24	40.6	43	46.18	48.54	50.9	53.3
PROBE PORT							
PROBE PORT 1	.251	.2747	.3393	.3197	.378	.3785	.3759
PROBE PORT 1 2	.251 .3796	.2747 .4282	.3393 .495	.3197 .4824	.378 .5317	.3785 .5285	.3759 .5074
PROBE PORT 1 2 3	.251 .3796 .5335	.2747 .4282 .5869	.3393 .495 .6324	.3197 .4824 .6235	.378 .5317 .6524	.3785 .5285 .6627	.3759 .5074 .6304
PROBE PORT 1 2 3 4	.251 .3796 .5335 .6553	.2747 .4282 .5869	.3393 .495 .6324 .6724	.3197 .4824 .6235 .7124	.378 .5317 .6524 .721	.3785 .5285 .6627 .7363	.3759 .5074 .6304 .7475
PROBE PORT 1 2 3 4 5	.251 .3796 .5335 .6553 .8344	.2747 .4282 .5869 .7047 .8352	.3393 .495 .6324 .6724 .7742	.3197 .4824 .6235 .7124 .8533	.378 .5317 .6524 .721 .8041	.3785 .5285 .6627 .7363 .826	.3759 .5074 .6304 .7475
PROBE PORT 1 2 3 4 5 6	.251 .3796 .5335 .6553 .8344	.2747 .4282 .5869 .7047 .8352 .8829	.3393 .495 .6324 .6724 .7742 .8739	.3197 .4824 .6235 .7124 .8533	.378 .5317 .6524 .721 .8041	.3785 .5285 .6627 .7363 .826	.3759 .5074 .6304 .7475 .916
PROBE PORT 1 2 3 4 5 6 7	.251 .3796 .5335 .6553 .8344 .952	.2747 .4282 .5869 .7047 .8352 .8829	.3393 .495 .6324 .6724 .7742 .8739	.3197 .4824 .6235 .7124 .8533 .9343	.378 .5317 .6524 .721 .8041 .8793	.3785 .5285 .6627 .7363 .826 .918 .9805	.3759 .5074 .6304 .7475 .916 .9736
PROBE PORT 1 2 3 4 5 6 7 8	.251 .3796 .5335 .6553 .8344 .952 .9964	.2747 .4282 .5869 .7047 .8352 .8829 .9475	.3393 .495 .6324 .6724 .7742 .8739 .958	.3197 .4824 .6235 .7124 .8533 .9343 .9567	.378 .5317 .6524 .721 .8041 .8793 .9121	.3785 .5285 .6627 .7363 .826 .918 .9805	.3759 .5074 .6304 .7475 .916 .9736 .9918
PROBE PORT 1 2 3 4 5 6 7 8 12	.251 .3796 .5335 .6553 .8344 .952 .9964 1	.2747 .4282 .5869 .7047 .8352 .8829 .9475 1	.3393 .495 .6324 .6724 .7742 .8739 .958 1	.3197 .4824 .6235 .7124 .8533 .9343 .9567 1	.378 .5317 .6524 .721 .8041 .8793 .9121 .9776	.3785 .5285 .6627 .7363 .826 .918 .9805 .9821	.3759 .5074 .6304 .7475 .916 .9736 .9918 .996
PROBE PORT 1 2 3 4 5 6 7 8 12 13	.251 .3796 .5335 .6553 .8344 .952 .9964 1 .9889	.2747 .4282 .5869 .7047 .8352 .8829 .9475 1 .9954	.3393 .495 .6324 .6724 .7742 .8739 .958 1 .9966	.3197 .4824 .6235 .7124 .8533 .9343 .9567 1 .9753	.378 .5317 .6524 .721 .8041 .8793 .9121 .9776 1	.3785 .5285 .6627 .7363 .826 .918 .9805 .9821 1	.3759 .5074 .6304 .7475 .916 .9736 .9918 .996 .9956
PROBE PORT 1 2 3 4 5 6 7 8 12 13 14	.251 .3796 .5335 .6553 .8344 .952 .9964 1 .9889 .9872	.2747 .4282 .5869 .7047 .8352 .8829 .9475 1 .9954 .9985	.3393 .495 .6324 .6724 .7742 .8739 .958 1 .9966 .9917	.3197 .4824 .6235 .7124 .8533 .9343 .9567 1 .9753 .9757	.378 .5317 .6524 .721 .8041 .8793 .9121 .9776 1 .995 .983	.3785 .5285 .6627 .7363 .826 .918 .9805 .9821 1 .9958	.3759 .5074 .6304 .7475 .916 .9736 .9918 .996 .9956 .9989
PROBE PORT 1 2 3 4 5 6 7 8 12 13 14 15	.251 .3796 .5335 .6553 .8344 .952 .9964 1 .9889 .9872 .9887	.2747 .4282 .5869 .7047 .8352 .8829 .9475 1 .9954 .9985 .9909	.3393 .495 .6324 .6724 .7742 .8739 .958 1 .9966 .9917 .9951	.3197 .4824 .6235 .7124 .8533 .9343 .9567 1 .9753 .9757 .9749	.378 .5317 .6524 .721 .8041 .8793 .9121 .9776 1 .995 .983	.3785 .5285 .6627 .7363 .826 .918 .9805 .9821 1 .9958 .9942	.3759 .5074 .6304 .7475 .916 .9736 .9918 .996 .9956 .9989 1
PROBE PORT 1 2 3 4 5 6 7 8 12 13 14	.251 .3796 .5335 .6553 .8344 .952 .9964 1 .9889 .9872 .9887	.2747 .4282 .5869 .7047 .8352 .8829 .9475 1 .9954 .9985 .9909 .9723	.3393 .495 .6324 .6724 .7742 .8739 .958 1 .9966 .9917	.3197 .4824 .6235 .7124 .8533 .9343 .9567 1 .9753 .9757	.378 .5317 .6524 .721 .8041 .8793 .9121 .9776 1 .995 .983 .96	.3785 .5285 .6627 .7363 .826 .918 .9805 .9821 1 .9958 .9942 .9824	.3759 .5074 .6304 .7475 .916 .9736 .9918 .996 .9956 .9989 1
PROBE PORT 1 2 3 4 5 6 7 8 12 13 14 15	.251 .3796 .5335 .6553 .8344 .952 .9964 1 .9889 .9872 .9887	.2747 .4282 .5869 .7047 .8352 .8829 .9475 1 .9954 .9985 .9909	.3393 .495 .6324 .6724 .7742 .8739 .958 1 .9966 .9917 .9951	.3197 .4824 .6235 .7124 .8533 .9343 .9567 1 .9753 .9757 .9749 .9501 .8929 .7928	.378 .5317 .6524 .721 .8041 .8793 .9121 .9776 1 .995 .983 .96 .9345 .8178	.3785 .5285 .6627 .7363 .826 .918 .9805 .9821 1 .9958 .9942 .9824 .9655 .8688	.3759 .5074 .6304 .7475 .916 .9736 .9918 .996 .9956 .9989 1 .9929 .9565 .8405
PROBE PORT 1 2 3 4 5 6 7 8 12 13 14 15 16	.251 .3796 .5335 .6553 .8344 .952 .9964 1 .9889 .9872 .9887	.2747 .4282 .5869 .7047 .8352 .8829 .9475 1 .9954 .9985 .9909 .9723	.3393 .495 .6324 .6724 .7742 .8739 .958 1 .9966 .9917 .9951 .9877	.3197 .4824 .6235 .7124 .8533 .9343 .9567 1 .9753 .9757 .9749 .9501	.378 .5317 .6524 .721 .8041 .8793 .9121 .9776 1 .995 .983 .96 .9345 .8178 .6733	.3785 .5285 .6627 .7363 .826 .918 .9805 .9821 1 .9958 .9942 .9824 .9655 .8688 .7471	.3759 .5074 .6304 .7475 .916 .9736 .9918 .996 .9956 .9989 1 .9929 .9565 .8405
PROBE PORT 1 2 3 4 5 6 7 8 12 13 14 15 16 17	.251 .3796 .5335 .6553 .8344 .952 .9964 1 .9889 .9872 .9887 .972 .929 .7836	.2747 .4282 .5869 .7047 .8352 .8829 .9475 1 .9954 .9985 .9909 .9723 .9491 .8187	.3393 .495 .6324 .6724 .7742 .8739 .958 .1 .9966 .9917 .9951 .9877 .9698 .8771	.3197 .4824 .6235 .7124 .8533 .9343 .9567 1 .9753 .9757 .9749 .9501 .8929 .7928	.378 .5317 .6524 .721 .8041 .8793 .9121 .9776 1 .995 .983 .96 .9345 .8178 .6733 .5337	.3785 .5285 .6627 .7363 .826 .918 .9805 .9821 1 .9958 .9942 .9824 .9655 .8688 .7471	.3759 .5074 .6304 .7475 .916 .9736 .9918 .996 .9956 .9989 1 .9929 .9565 .8405 .7076
PROBE PORT 1 2 3 4 5 6 7 8 12 13 14 15 16 17 18	.251 .3796 .5335 .6553 .8344 .952 .9964 1 .9889 .9872 .9887 .972 .929 .7836 .5885	.2747 .4282 .5869 .7047 .8352 .8829 .9475 1 .9954 .9985 .9909 .9723 .9491 .8187 .6195	.3393 .495 .6324 .6724 .7742 .8739 .958 .1 .9966 .9917 .9951 .9877 .9698 .8771	.3197 .4824 .6235 .7124 .8533 .9343 .9567 1 .9753 .9757 .9749 .9501 .8929 .7928 .7352	.378 .5317 .6524 .721 .8041 .8793 .9121 .9776 1 .995 .983 .96 .9345 .8178 .6733	.3785 .5285 .6627 .7363 .826 .918 .9805 .9821 1 .9958 .9942 .9824 .9655 .8688 .7471 .5833 .4461	.3759 .5074 .6304 .7475 .916 .9736 .9918 .996 .9956 .9989 1 .9929 .9565 .8405 .7076 .5401
PROBE PORT 1 2 3 4 5 6 7 8 12 13 14 15 16 17 18 19	.251 .3796 .5335 .6553 .8344 .952 .9964 1 .9889 .9872 .9887 .972 .929 .7836 .5885 .4215	.2747 .4282 .5869 .7047 .8352 .8829 .9475 1 .9954 .9985 .9909 .9723 .9491 .8187 .6195	.3393 .495 .6324 .6724 .7742 .8739 .958 .1 .9966 .9917 .9951 .9877 .9698 .8771 .7274	.3197 .4824 .6235 .7124 .8533 .9343 .9567 1 .9753 .9757 .9749 .9501 .8929 .7928 .7352 .5784 .4456	.378 .5317 .6524 .721 .8041 .8793 .9121 .9776 1 .995 .983 .96 .9345 .8178 .6733 .5337	.3785 .5285 .6627 .7363 .826 .918 .9805 .9821 1 .9958 .9942 .9824 .9655 .8688 .7471	.3759 .5074 .6304 .7475 .916 .9736 .9918 .996 .9956 .9989 1 .9929 .9565 .8405 .7076
PROBE PORT 1 2 3 4 5 6 7 8 12 13 14 15 16 17 18 19 20	.251 .3796 .5335 .6553 .8344 .952 .9964 1 .9889 .9872 .9887 .972 .929 .7836 .5885 .4215	.2747 .4282 .5869 .7047 .8352 .8829 .9475 1 .9954 .9985 .9909 .9723 .9491 .8187 .6195 .4861	.3393 .495 .6324 .6724 .7742 .8739 .958 1 .9966 .9917 .9951 .9877 .9698 .8771 .7274 .5791 .4581 10.61	.3197 .4824 .6235 .7124 .8533 .9343 .9567 1 .9753 .9757 .9749 .9501 .8929 .7928 .7352 .5784 .4456	.378 .5317 .6524 .721 .8041 .8793 .9121 .9776 1 .995 .983 .96 .9345 .8178 .6733 .5337	.3785 .5285 .6627 .7363 .826 .918 .9805 .9821 1 .9958 .9942 .9824 .9655 .8688 .7471 .5833 .4461 10.366 10.302	.3759 .5074 .6304 .7475 .916 .9736 .9918 .996 .9956 .9989 .1 .9929 .9565 .8405 .7076 .5401 .4186 10.472 10.246
PROBE PORT 1 2 3 4 5 6 7 8 12 13 14 15 16 17 18 19 20 Ptot	.251 .3796 .5335 .6553 .8344 .952 .9964 1 .9889 .9872 .9887 .972 .929 .7836 .5885 .4215 .3126 10.59	.2747 .4282 .5869 .7047 .8352 .8829 .9475 1 .9954 .9985 .9909 .9723 .9491 .8187 .6195 .4861 .3647	.3393 .495 .6324 .6724 .7742 .8739 .958 .1 .9966 .9917 .9951 .9877 .9698 .8771 .7274 .5791 .4581 10 .61	.3197 .4824 .6235 .7124 .8533 .9343 .9567 1 .9753 .9757 .9749 .9501 .8929 .7928 .7352 .5784 .4456	.378 .5317 .6524 .721 .8041 .8793 .9121 .9776 1 .995 .983 .96 .9345 .8178 .6733 .5337 .4145	.3785 .5285 .6627 .7363 .826 .918 .9805 .9821 1 .9958 .9942 .9824 .9655 .8688 .7471 .5833 .4461 10.366 10.302 11.926	.3759 .5074 .6304 .7475 .916 .9736 .9918 .996 .9956 .9989 1 .9929 .9565 .8405 .7076 .5401 .4186 10.472 10.246 11.932
PROBE PORT 1 2 3 4 5 6 7 8 12 13 14 15 16 17 18 19 20 Ptot Ppr	.251 .3796 .5335 .6553 .8344 .952 .9964 1 .9889 .9872 .9887 .972 .929 .7836 .5885 .4215 .3126 10.59	.2747 .4282 .5869 .7047 .8352 .8829 .9475 1 .9954 .9985 .9909 .9723 .9491 .8187 .6195 .4861 .3647 10.776	.3393 .495 .6324 .6724 .7742 .8739 .958 1 .9966 .9917 .9951 .9877 .9698 .8771 .7274 .5791 .4581 10.61	.3197 .4824 .6235 .7124 .8533 .9343 .9567 1 .9753 .9757 .9749 .9501 .8929 .7928 .7352 .5784 .4456 10.772 10.192	.378 .5317 .6524 .721 .8041 .8793 .9121 .9776 1 .995 .983 .96 .9345 .8178 .6733 .5337 .4145 10.804 10.306	.3785 .5285 .6627 .7363 .826 .918 .9805 .9821 1 .9958 .9942 .9824 .9655 .8688 .7471 .5833 .4461 10.366 10.302	.3759 .5074 .6304 .7475 .916 .9736 .9918 .996 .9956 .9989 1 .9929 .9565 .8405 .7076 .5401 .4186 10.472 10.246 11.932 527.36
PROBE PORT 1 2 3 4 5 6 7 8 12 13 14 15 16 17 18 19 20 Ptot Ppr Ppl	.251 .3796 .5335 .6553 .8344 .952 .9964 1 .9889 .9872 .9887 .972 .929 .7836 .5885 .4215 .3126 10.59 10.424 12.078	.2747 .4282 .5869 .7047 .8352 .8829 .9475 1 .9954 .9985 .9909 .9723 .9491 .8187 .6195 .4861 .3647 10.776 10.428 12.018	.3393 .495 .6324 .6724 .7742 .8739 .958 1 .9966 .9917 .9951 .9877 .9698 .8771 .7274 .5791 .4581 10.61 10.424 11.964	.3197 .4824 .6235 .7124 .8533 .9343 .9567 1 .9753 .9757 .9749 .9501 .8929 .7928 .7352 .5784 .4456 10.772 10.192 11.942	.378 .5317 .6524 .721 .8041 .8793 .9121 .9776 1 .995 .983 .96 .9345 .8178 .6733 .5337 .4145 10.804 10.306 11.94	.3785 .5285 .6627 .7363 .826 .918 .9805 .9821 1 .9958 .9942 .9824 .9655 .8688 .7471 .5833 .4461 10.366 10.302 11.926 527.38 13.378	.3759 .5074 .6304 .7475 .916 .9736 .9918 .996 .9956 .9989 1 .9929 .9565 .8405 .7076 .5401 .4186 10.472 10.246 11.932 527.36 13.334
PROBE PORT 1 2 3 4 5 6 7 8 12 13 14 15 16 17 18 19 20 Ptot Ppr Ppl Tpl	.251 .3796 .5335 .6553 .8344 .952 .9964 1 .9889 .9872 .9887 .972 .929 .7836 .5885 .4215 .3126 10.59 10.424 12.078 527.48	.2747 .4282 .5869 .7047 .8352 .8829 .9475 1 .9954 .9985 .9909 .9723 .9491 .8187 .6195 .4861 .3647 10.776 10.428 12.018 527.482	.3393 .495 .6324 .6724 .7742 .8739 .958 1 .9966 .9917 .9951 .9877 .9698 .8771 .7274 .5791 .4581 10.61 10.424 11.964 527.3	.3197 .4824 .6235 .7124 .8533 .9343 .9567 1 .9753 .9757 .9749 .9501 .8929 .7928 .7352 .5784 .4456 10.772 10.192 11.942 527.47	.378 .5317 .6524 .721 .8041 .8793 .9121 .9776 1 .995 .983 .96 .9345 .8178 .6733 .5337 .4145 10.804 10.306 11.94 527.38	.3785 .5285 .6627 .7363 .826 .918 .9805 .9821 1 .9958 .9942 .9824 .9655 .8688 .7471 .5833 .4461 10.366 10.302 11.926 527.38	.3759 .5074 .6304 .7475 .916 .9736 .9918 .996 .9956 .9989 1 .9929 .9565 .8405 .7076 .5401 .4186 10.472 10.246 11.932 527.36

CONTINUED MEDIUM SUCTION RAKE DATA FULL TRAVERSE UP STREAM LOCATION

	FULL TRE	IVERSE UP	STREAM	LUCALIO
PITCH :	55.61	57.98	60.38	
PROBE				
PORT				
1	.4204	.3137	.0535	
2	.6107	.5007	.3025	
3	.7157	.6058	.588	
4	.7443	.7302	.768	
5	.8796	.8984	.7691	
6	.9559	.9662	.6286	
7	1	.9936	.5847	
8	.9943	.997	.9217	
12	.9787	1	1	
13	.9817	.9953	.988	
14	.9836	.9922	.8799	
15	-9629	.9682	.9769	
16	.9111	.8104	.9845	
17	.8285	.5026	.7776	
18	.7628	.3657	.7338	
19	.6041	.2332	.5289	
20	.4558	.131	.3732	
Ptot	10.614	10.704	6.844	
PPr	10.342	10.316	10.338	
Ppl	11.916	11.874	11.862	
Tpl	527.28	527.35		
RAKE Q	13.126	13.42		
BETA	45.37	45.44	47.58	

MEDIUM SUCTION SETTING RAKE DATA UP STREAM LOCATION 20 TO 23 INCHES

PITCH) PROBE PORT	20 Cp	20.25	20.5	20.75	21	21.25	21.5
	2222						
1	.2928	.295	.3132	.3352	.354	.3137	.2855
2	.4335	.4469	.4653	.4811	.4863	.4442	.3992
3	.5696	.5743	.5984	.6075	.6186	.5733	.5404
4	.6654	.6742	.6586	.6664	.6751	.6651	.6682
5	.868	.8402	.8039	.7681	.7742	.7705	.8195
6	.9239	.9124	.899	.8754	.8889	.9102	.9284
フ	.94	.9464	.9467	.9679	.966	.9669	.9644
8	.9484	.9647	.9782	.9802	.9734	.9733	.9676
12	.9678	.9524	.9614	.9826	. 9874	.9793	.966
13	.9617	.9565	.9704	1	.9886	.9884	.9866
14	.9878	.9878	. 9893	.9969	.9838	1	1
15	1	1	1	.9746	1	.9964	.9947
16	.6413	.9362	.9421	.6429	.9592	.9755	.9711
17	.8132	.8226	.8528	.8617	.8965	.9014	.8645
18	.6332	.6725	.6815	.6494	.6829	.7936	.8228
19	.4917	.4921	.5012	.4762	.4348	.5361	.6276
20	.3937	.3863	.422	.4273	.3113	.3747	.4724
Ptot	10.698	10.664	10.474	10.222	9.99	9.96	10.114
Ppr	10.678	10.658	10.564	10.532	10.542	10.404	10.604
Ppl	12.172	12.084	12.018	11.978	11.944	11.892	11.946
Tpl	536.38		536.44				
RAKE Q	13.924	536.5 13.716		536.48	536.51	536.52	536.48 13.37
BETA		43.43	13.662	13.614	13.448	13.35	
BEIA	43.21	43.43	43.35	43.28	43.5	43.47	43.57
PITCH >	21.75	22	22.25	22.5	22.75	23	
PROBE	21./5	22	22.23	22.5	22.75	23	
PORT							
1	2744	20.42	2120	2224	2240	2027	
2	.2744	.2943	.3128	.3324	.3368	.3237	
	.4122	.458	.4619	.4742	.4835	.4187	
3	.5587	.5726	.5917	.5952	.5976	.5761	
4	.6563	.6737	.6683	.6562	.6725	.662	
5	.8465	.8609	.8357	.804	.787	.7735	
6	.9546	.9589	.923	.8972	.8676	.8718	
フ	.9859	.9911	.9611	.9467	.9451	.9424	
8	.9882	1	.9823	.988	.974	.9676	
12	.9839	.973	.9451	.9327	.9383	.9432	
13	.9809	.9785	.9592	.9454	.9455	.9461	
14	1	.9996	1	1	1	1	
15	.9924	.9971	.9867	.9788	.9854	.9971	
16	.9687	.9581	.9096	.9208	.9181	.9392	
17	.8455	.8248	.7922	.7805	.799	.8494	
18	.8146	.7507	.6927	.604	.643	.675	
19	.6659	.6671	.5534	.4757	.4645	.5278	
20	.4974	.503	.431	.3473	.3828	.4029	
Ptot	10.044	10.31	10.492	10.662	10.528	10.358	
Ppr	10.412	10.576	10.598	10.682	10.626	10.586	
Ppl	11.924	12.178	12.09	12.1	12.094	12.046	
Tpl	536.58	536.75	536.84	536.8	536.72	536.77	
RAKE Q	13.462	13.632	13.514	13.542	13.472	13.342	
BETA	43.58	43.51	43.67	43.54	43.56	43.52	
DEIR	40.00	43.31	43.07	40.54	40.00		

MEDIUM SUCTION SETTING RAKE DATA DOWN STREAM LOCATION 20 TO 23 INCHES

PITCH >	20 Cp	20.25	20.5	20.75	21	21.25	21.5
PORT							
1	.4835	.4694	.5009	.5211	.5308	.4398	.3253
2	.6248	.6129	.6533	.6294	.6496	.5124	.4013
3	.7044	.6901	.7219	.7183	.6613	.5549	.4593
4	.6223	.6585	.7233	.7589	.7327	.625	.5184
5	.5492	.5411	.6275	.7402	.8068	.8239	.7933
6	.6086	.555	.5974	.7074	.8162	.8763	.8976
7	.5045	.5347	.6366	.7694	.8591	.9316	.9396
8	.6787	.8369					
12			.9525	.9822	1	1	.9841
	1	1	1	.9986	.9908	.9883	.9811
13	.8755	.9462	.9982	1	.9953	.9923	.9911
14	.5695	.6196	.7508	.8382	.9461	. 9988	1
15	.6481	.5913	.6358	.7319	.8843	.985	.9929
16	.6236	.5651	.6206	.7313	.8583	.9553	.9746
17	.5934	.6391	.7426	.8456	.9003	.9166	.8549
18	.7225	.752	.7668	.8474	.8806	.8784	.7921
19	.7329	.7623	.7757	.846	.8545	.8565	.7563
20	.6799	.7026	.7453	.7939	.7765	.8002	.7397
Ptot	9.822		10.154	10.102	10.132	10.118	10.158
Ppr	10.528	10.562	10.628	10.578	10.59	10.594	10.59
Ppl	12	11.976	12.044	12.038	12.04	12.086	12.016
Tpl	536.02	536.13	536.06	536.2	536.34		
RAKE Q	8.67	8.834	80816	8.704	8.636	8.586	8.588
	-3.56	-2.22	-1.29	-2.97	-3.14	-3.06	-2.58
BETA	-3.56	-2.22	-1.29	-2.9/	-3.14	-3.06	-2.50
PITCH > PROBE	21.75	22	22.25	22.5	22.75	23	
PROBE PORT							
PROBE PORT 1	.3089	.39	.4948	.6233	.5712	.5336	
PROBE PORT 1 2			.4948 .6048	.6233 .6877	.5712 .6958	.5336 .606	
PROBE PORT 1 2 3	.3089	.39	.4948	.6233	.5712	.5336 .606 .7063	
PROBE PORT 1 2	.3089	.39 .4853	.4948 .6048	.6233 .6877	.5712 .6958	.5336 .606	
PROBE PORT 1 2 3	.3089 .4064 .477	.39 .4853 .5372 .492	.4948 .6048 .6392	.6233 .6877 .7658	.5712 .6958 .7451	.5336 .606 .7063	
PROBE PORT 1 2 3 4 5	.3089 .4064 .477 .4893	.39 .4853 .5372 .492	.4948 .6048 .6392 .5413	.6233 .6877 .7658 .6402 .8179	.5712 .6958 .7451 .6141	.5336 .606 .7063 .6134	
PROBE PORT 1 2 3 4 5 6	.3089 .4064 .477 .4893 .7382 .9088	.39 .4853 .5372 .492 .7175	.4948 .6048 .6392 .5413 .7849	.6233 .6877 .7658 .6402 .8179	.5712 .6958 .7451 .6141 .6727	.5336 .606 .7063 .6134 .54	
PROBE PORT 1 2 3 4 5 6 7	.3089 .4064 .477 .4893 .7382 .9088	.39 .4853 .5372 .492 .7175 .9258	.4948 .6048 .6392 .5413 .7849 .9681 .8699	.6233 .6877 .7658 .6402 .8179 .9645	.5712 .6958 .7451 .6141 .6727 .7661	.5336 .606 .7063 .6134 .54 .6188	
PROBE PORT 1 2 3 4 5 6 7 8	.3089 .4064 .477 .4893 .7382 .9088 .9385	.39 .4853 .5372 .492 .7175 .9258 .9074	.4948 .6048 .6392 .5413 .7849 .9681 .8699 .7958	.6233 .6877 .7658 .6402 .8179 .9645 .7822	.5712 .6958 .7451 .6141 .6727 .7661 .5941	.5336 .606 .7063 .6134 .54 .6188 .5262	
PROBE PORT 1 2 3 4 5 6 7 8 12	.3089 .4064 .477 .4893 .7382 .9088 .9385 .9578	.39 .4853 .5372 .492 .7175 .9258 .9074 .9094	.4948 .6048 .6392 .5413 .7849 .9681 .8699 .7958	.6233 .6877 .7658 .6402 .8179 .9645 .7822 .7316	.5712 .6958 .7451 .6141 .6727 .7661 .5941 .6706	.5336 .606 .7063 .6134 .54 .6188 .5262 .6964	
PROBE PORT 1 2 3 4 5 6 7 8 12 13	.3089 .4064 .477 .4893 .7382 .9088 .9385 .9578 .9541	.39 .4853 .5372 .492 .7175 .9258 .9074 .9094 .8714	.4948 .6048 .6392 .5413 .7849 .9681 .8699 .7958 .7585	.6233 .6877 .7658 .6402 .8179 .9645 .7822 .7316 .9073 .8276	.5712 .6958 .7451 .6141 .6727 .7661 .5941 .6706 1	.5336 .606 .7063 .6134 .54 .6188 .5262 .6964 1	
PROBE PORT 1 2 3 4 5 6 7 8 12 13 14	.3089 .4064 .477 .4893 .7382 .9088 .9385 .9578 .9541 .9715	.39 .4853 .5372 .492 .7175 .9258 .9074 .9094 .8714 .9364	.4948 .6048 .6392 .5413 .7849 .9681 .8699 .7958 .7585 .8348 .9526	.6233 .6877 .7658 .6402 .8179 .9645 .7822 .7316 .9073 .8276 .8458	.5712 .6958 .7451 .6141 .6727 .7661 .5941 .6706 1 .8259 .6489	.5336 .606 .7063 .6134 .54 .6188 .5262 .6964 1 .8678	
PROBE PORT 1 2 3 4 5 6 7 8 12 13 14 15	.3089 .4064 .477 .4893 .7382 .9088 .9385 .9578 .9541 .9715 .985	.39 .4853 .5372 .492 .7175 .9258 .9074 .9094 .8714 .9364 .9722	.4948 .6048 .6392 .5413 .7849 .9681 .8699 .7958 .7585 .8348 .9526	.6233 .6877 .7658 .6402 .8179 .9645 .7822 .7316 .9073 .8276 .8458	.5712 .6958 .7451 .6141 .6727 .7661 .5941 .6706 1 .8259 .6489	.5336 .606 .7063 .6134 .54 .6188 .5262 .6964 1 .8678 .5664	
PROBE PORT 1 2 3 4 5 6 7 8 12 13 14 15 16	.3089 .4064 .477 .4893 .7382 .9088 .9385 .9578 .9541 .9715 .985	.39 .4853 .5372 .492 .7175 .9258 .9074 .9094 .8714 .9364 .9722 1	.4948 .6048 .6392 .5413 .7849 .9681 .8699 .7958 .7585 .8348 .9526 1	.6233 .6877 .7658 .6402 .8179 .9645 .7822 .7316 .9073 .8276 .8458 1	.5712 .6958 .7451 .6141 .6727 .7661 .5941 .6706 1 .8259 .6489 .8033 .7499	.5336 .606 .7063 .6134 .54 .6188 .5262 .6964 .1 .8678 .5664 .6555 .5988	
PROBE PORT 1 2 3 4 5 6 7 8 12 13 14 15	.3089 .4064 .477 .4893 .7382 .9088 .9385 .9578 .9541 .9715 .985	.39 .4853 .5372 .492 .7175 .9258 .9074 .9094 .8714 .9364 .9722	.4948 .6048 .6392 .5413 .7849 .9681 .8699 .7958 .7585 .8348 .9526 1	.6233 .6877 .7658 .6402 .8179 .9645 .7822 .7316 .9073 .8276 .8458 1 .9369 .6729	.5712 .6958 .7451 .6141 .6727 .7661 .5941 .6706 1 .8259 .6489 .8033 .7499 .6042	.5336 .606 .7063 .6134 .54 .6188 .5262 .6964 .1 .8678 .5664 .6555 .5988 .5844	
PROBE PORT 1 2 3 4 5 6 7 8 12 13 14 15 16	.3089 .4064 .477 .4893 .7382 .9088 .9385 .9578 .9541 .9715 .985	.39 .4853 .5372 .492 .7175 .9258 .9074 .9094 .8714 .9364 .9722 1 .9338 .5977	.4948 .6048 .6392 .5413 .7849 .9681 .8699 .7958 .7585 .8348 .9526 1	.6233 .6877 .7658 .6402 .8179 .9645 .7822 .7316 .9073 .8276 .8458 1 .9369 .6729 .7847	.5712 .6958 .7451 .6141 .6727 .7661 .5941 .6706 1 .8259 .6489 .8033 .7499 .6042 .7453	.5336 .606 .7063 .6134 .54 .6188 .5262 .6964 .1 .8678 .5664 .6555 .5988 .5844 .7168	
PROBE PORT 1 2 3 4 5 6 7 8 12 13 14 15 16 17	.3089 .4064 .477 .4893 .7382 .9088 .9385 .9578 .9541 .9715 .985 1	.39 .4853 .5372 .492 .7175 .9258 .9074 .9094 .8714 .9364 .9722 1	.4948 .6048 .6392 .5413 .7849 .9681 .8699 .7958 .7585 .8348 .9526 1	.6233 .6877 .7658 .6402 .8179 .9645 .7822 .7316 .9073 .8276 .8458 1 .9369 .6729	.5712 .6958 .7451 .6141 .6727 .7661 .5941 .6706 1 .8259 .6489 .8033 .7499 .6042 .7453 .7471	.5336 .606 .7063 .6134 .54 .6188 .5262 .6964 .1 .8678 .5664 .6555 .5988 .5944 .7168	
PROBE PORT 1 2 3 4 5 6 7 8 12 13 14 15 16 17 18 19	.3089 .4064 .477 .4893 .7382 .9088 .9385 .9578 .9541 .9715 .985 1 .95 .664 .6144	.39 .4853 .5372 .492 .7175 .9258 .9074 .9094 .8714 .9364 .9722 1 .9338 .5977	.4948 .6048 .6392 .5413 .7849 .9681 .8699 .7958 .7585 .8348 .9526 1 .9381 .6114	.6233 .6877 .7658 .6402 .8179 .9645 .7822 .7316 .9073 .8276 .8458 1 .9369 .6729 .7847	.5712 .6958 .7451 .6141 .6727 .7661 .5941 .6706 1 .8259 .6489 .8033 .7499 .6042 .7453	.5336 .606 .7063 .6134 .54 .6188 .5262 .6964 .1 .8678 .5664 .6555 .5988 .5844 .7168 .7372 .6528	
PROBE PORT 1 2 3 4 5 6 7 8 12 13 14 15 16 17 18 19 20	.3089 .4064 .477 .4893 .7382 .9088 .9385 .9578 .9541 .9715 .985 1 .95 .664 .6144 .5656	.39 .4853 .5372 .492 .7175 .9258 .9074 .9094 .8714 .9364 .9722 1 .9338 .5977 .5564 .4933 .4454	.4948 .6048 .6392 .5413 .7849 .9681 .8699 .7958 .7585 .8348 .9526 1 .9381 .6114 .6351 .5949	.6233 .6877 .7658 .6402 .8179 .9645 .7822 .7316 .9073 .8276 .8458 1 .9369 .6729 .7847	.5712 .6958 .7451 .6141 .6727 .7661 .5941 .6706 1 .8259 .6489 .8033 .7499 .6042 .7453 .7471	.5336 .606 .7063 .6134 .54 .6188 .5262 .6964 .1 .8678 .5664 .6555 .5988 .5944 .7168	
PROBE PORT 1 2 3 4 5 6 7 8 12 13 14 15 16 17 18 19 20 Ptot	.3089 .4064 .477 .4893 .7382 .9088 .9385 .9578 .9541 .9715 .985 1 .95 .664 .6144 .5656 .5215	.39 .4853 .5372 .492 .7175 .9258 .9074 .9094 .8714 .9364 .9722 1 .9338 .5977 .5564 .4933 .4454 9.784	.4948 .6048 .6392 .5413 .7849 .9681 .8699 .7958 .7585 .8348 .9526 1 .9381 .6114 .6351 .5949 .5239 8.852	.6233 .6877 .7658 .6402 .8179 .9645 .7822 .7316 .9073 .8276 .8458 1 .9369 .6729 .7847 .7689 .7091 7.832	.5712 .6958 .7451 .6141 .6727 .7661 .5941 .6706 1 .8259 .6489 .8033 .7499 .6042 .7453 .7471 .6961 8.732	.5336 .606 .7063 .6134 .54 .6188 .5262 .6964 .1 .8678 .5664 .6555 .5988 .5844 .7168 .7372 .6528	
PROBE PORT 1 2 3 4 5 6 7 8 12 13 14 15 16 17 18 19 20 Ptot Ppr	.3089 .4064 .477 .4893 .7382 .9088 .9385 .9578 .9541 .9715 .985 1 .95 .664 .6144 .5656 .5215	.39 .4853 .5372 .492 .7175 .9258 .9074 .9094 .8714 .9364 .9722 1 .9338 .5977 .5564 .4933 .4454 9.784 10.522	.4948 .6048 .6392 .5413 .7849 .9681 .8699 .7958 .7585 .8348 .9526 1 .9381 .6114 .6351 .5949 .5239 8.852 10.536	.6233 .6877 .7658 .6402 .8179 .9645 .7822 .7316 .9073 .8276 .8458 1 .9369 .6729 .7847 .7689 .7091 7.832 10.618	.5712 .6958 .7451 .6141 .6727 .7661 .5941 .6706 1 .8259 .6489 .8033 .7499 .6042 .7453 .7471 .6961 8.732 10.58	.5336 .606 .7063 .6134 .54 .6188 .5262 .6964 .1 .8678 .5664 .6555 .5988 .5944 .7168 .7372 .6528 9.696	
PROBE PORT 1 2 3 4 5 6 7 8 12 13 14 15 16 17 18 19 20 Ptot Ppr Ppl	.3089 .4064 .477 .4893 .7382 .9088 .9385 .9578 .9541 .9715 .985 1 .95 .664 .6144 .5656 .5215 10.114 10.53 12.07	.39 .4853 .5372 .492 .7175 .9258 .9074 .9094 .8714 .9364 .9722 1 .9338 .5977 .5564 .4933 .4454 9.784 10.522 12.054	.4948 .6048 .6392 .5413 .7849 .9681 .8699 .7958 .7585 .8348 .9526 1 .9381 .6114 .6351 .5949 .5239 8.852 10.536 12.094	.6233 .6877 .7658 .6402 .8179 .9645 .7822 .7316 .9073 .8276 .8458 1 .9369 .6729 .7847 .7689 .7091 7.832 10.618 12.094	.5712 .6958 .7451 .6141 .6727 .7661 .5941 .6706 1 .8259 .6489 .8033 .7499 .6042 .7453 .7471 .6961 8.732 10.58	.5336 .606 .7063 .6134 .54 .6188 .5262 .6964 .1 .8678 .5664 .6555 .5988 .5844 .7168 .7372 .6528 9.696 10.576 12	
PROBE PORT 1 2 3 4 5 6 7 8 12 13 14 15 16 17 18 19 20 Ptot Ppr Ppl Tpl	.3089 .4064 .477 .4893 .7382 .9088 .9385 .9578 .9541 .9715 .985 .1 .95 .664 .6144 .5656 .5215 10.114 10.53 12.07 536.51	.39 .4853 .5372 .492 .7175 .9258 .9074 .9094 .8714 .9364 .9722 1 .9338 .5977 .5564 .4933 .4454 9.784 10.522 12.054 536.33	.4948 .6048 .6392 .5413 .7849 .9681 .8699 .7958 .7585 .8348 .9526 1 .9381 .6114 .6351 .5949 .5239 8.852 10.536 12.094 536.22	.6233 .6877 .7658 .6402 .8179 .9645 .7822 .7316 .9073 .8276 .8458 1 .9369 .6729 .7847 .7689 .7091 7.832 10.618 12.094 536.17	.5712 .6958 .7451 .6141 .6727 .7661 .5941 .6706 1 .8259 .6489 .8033 .7499 .6042 .7453 .7471 .6961 8.732 10.58 12.104 536.25	.5336 .606 .7063 .6134 .54 .6188 .5262 .6964 .1 .8678 .5664 .6555 .5988 .5844 .7168 .7372 .6528 9.696 10.576 12 536.31	
PROBE PORT 1 2 3 4 5 6 7 8 12 13 14 15 16 17 18 19 20 Ptot Ppr Ppl	.3089 .4064 .477 .4893 .7382 .9088 .9385 .9578 .9541 .9715 .985 1 .95 .664 .6144 .5656 .5215 10.114 10.53 12.07	.39 .4853 .5372 .492 .7175 .9258 .9074 .9094 .8714 .9364 .9722 1 .9338 .5977 .5564 .4933 .4454 9.784 10.522 12.054	.4948 .6048 .6392 .5413 .7849 .9681 .8699 .7958 .7585 .8348 .9526 1 .9381 .6114 .6351 .5949 .5239 8.852 10.536 12.094	.6233 .6877 .7658 .6402 .8179 .9645 .7822 .7316 .9073 .8276 .8458 1 .9369 .6729 .7847 .7689 .7091 7.832 10.618 12.094	.5712 .6958 .7451 .6141 .6727 .7661 .5941 .6706 1 .8259 .6489 .8033 .7499 .6042 .7453 .7471 .6961 8.732 10.58	.5336 .606 .7063 .6134 .54 .6188 .5262 .6964 .1 .8678 .5664 .6555 .5988 .5844 .7168 .7372 .6528 9.696 10.576 12	

HIGH SUCTION RAKE DATA FULL TRAVERSE UP STREAM LOCATION

PITCH >	0	2.36	4.72	7.08	9.44	11.8	14.46
PROBE	Сp	2.30	4./2	7.08	9.44	11.8	14.16
PORT							
1	-1.1581	.4405	.5266	.4818	.5068	.3306	.3433
2	8766	.5699	.7215	.6599	.6976	.5096	.5175
3	5225	.6514	.7788	.7761	.7466	.6592	.6438
4	.71186	.6108	.774	.805	.8188	.743	.7161
5	.6177	.7165	.9262	.9297	.9012	.8888	.8027
6	.5328	.8443	.9633	.9844	.9546	.9502	.8563
7	.5333	.8947	.9706	.9925	.981	.9823	.9098
8	.9784	.9586	.9797	.9981	1	.999	.9824
12	1	.9886	.9925	.9971	.978	1	.999
13	.6998	1	.9963	-9942	.9744	. 988	1
14	.2519	.9521	.9932	.9988	. 9874	.998	.9853
15	.5338	.9669	1	1	. 9866	.9778	.9657
16	.8007	.9574	.9934	.9858	.9394	.9524	.9139
17	.9306	.8254	.9492	.9492	.88	.8463	.8691
18	.9883	.7301	.8449	.9232	.8194	.7948	.826
19	.9292	.6118	.7195	.8177	.7502	.6	.6852
20	.6656	.507	.5992	.6816	.5568	.5051	.5591
Ptot Ppr	4.264	9.862 10.294	9.646 10.306	9.61	10	9.836	10.482
Ppl	11.994	10.294	10.306	10.216	10.168	10.2 11.744	12.046
Tp1	532.04	532.13	532.21	532.33	532.39	532.62	533.28
RAKE Q	6.98	13.134	12.862	12.822	13.056	13.13	13.92
BETA	44.87	43.51	44.19	43.88	43.71	43.79	43.44
DETA	44.07	45.51	44.17	45.00	45.71	-,5.,,	
PITCH >	16.52	18.88	21.24	23.6	26	17	19.36
PITCH > PROBE	16.52	18.88	21.24	23.6	26	17	19.36
	16.52	18.88	21.24	23.6	26	17	19.36
PROBE	.3454	18.88	.3276	23.6	.3623	.3178	19.36
PROBE PORT							
PROBE PORT 1	.3454	.3859	.3276	.279	.3623	.3178	.3447
PROBE PORT 1 2 3 4	.3454 .506	.3859 .5626	.3276 .4452	.279 .4275	.3623 .5015	.3178	.3447 .517
PROBE PORT 1 2 3	.3454 .506 .6197	.3859 .5626 .6764	.3276 .4452 .5851	.279 .4275 .5822	.3623 .5015 .6057	.3178 .4433 .5887	.3447 .517 .6457 .7315 .8669
PROBE PORT 1 2 3 4 5	.3454 .506 .6197 .6705	.3859 .5626 .6764 .7359	.3276 .4452 .5851 .6781	.279 .4275 .5822 .6673	.3623 .5015 .6057 .6859	.3178 .4433 .5887 .6776 .8184	.3447 .517 .6457 .7315 .8669
PROBE PORT 1 2 3 4 5 6 7	.3454 .506 .6197 .6705 .7964 .848	.3859 .5626 .6764 .7359 .8217 .8915	.3276 .4452 .5851 .6781	.279 .4275 .5822 .6673 .8231 .9511	.3623 .5015 .6057 .6859 .8507 .9482	.3178 .4433 .5887 .6776 .8184 .9246	.3447 .517 .6457 .7315 .8669 .9394
PROBE PORT 1 2 3 4 5 6 7	.3454 .506 .6197 .6705 .7964 .848 .8979	.3859 .5626 .6764 .7359 .8217 .8915 .9448	.3276 .4452 .5851 .6781 .7391 .9293 .9843	.279 .4275 .5822 .6673 .8231 .9511 .9965	.3623 .5015 .6057 .6859 .8507 .9482 .9905	.3178 .4433 .5887 .6776 .8184 .9246 .96	.3447 .517 .6457 .7315 .8669 .9394 .9533 .9619
PROBE PORT 1 2 3 4 5 6 7 8 12	.3454 .506 .6197 .6705 .7964 .848 .8979 .9674	.3859 .5626 .6764 .7359 .8217 .8915 .9448 .9688	.3276 .4452 .5851 .6781 .7391 .9293 .9843 .9958	.279 .4275 .5822 .6673 .8231 .9511 .9965 .9967	.3623 .5015 .6057 .6859 .8507 .9482 .9905 1	.3178 .4433 .5887 .6776 .8184 .9246 .96 .9718 .9809	.3447 .517 .6457 .7315 .8669 .9394 .9533 .9619 .9708
PROBE PORT 1 2 3 4 5 6 7 8 12	.3454 .506 .6197 .6705 .7964 .848 .8979 .9674 .957	.3859 .5626 .6764 .7359 .8217 .8915 .9448 .9688 .9821	.3276 .4452 .5851 .6781 .7391 .9293 .9843 .9958 .9935	.279 .4275 .5822 .6673 .8231 .9511 .9965 .9967 .9799	.3623 .5015 .6057 .6859 .8507 .9482 .9905 1 .9932 .9893	.3178 .4433 .5887 .6776 .8184 .9246 .96 .9718 .9809 .9944	.3447 .517 .6457 .7315 .8669 .9394 .9533 .9619 .9708
PROBE PORT 1 2 3 4 5 6 7 8 12 13	.3454 .506 .6197 .6705 .7964 .848 .8979 .9674 .957	.3859 .5626 .6764 .7359 .8217 .8915 .9448 .9688 .9821 .983	.3276 .4452 .5851 .6781 .7391 .9293 .9843 .9958 .9935	.279 .4275 .5822 .6673 .8231 .9511 .9965 .9967 .9799	.3623 .5015 .6057 .6859 .8507 .9482 .9905 1 .9932 .9893	.3178 .4433 .5887 .6776 .8184 .9246 .96 .9718 .9809 .9944 .9964	.3447 .517 .6457 .7315 .8669 .9394 .9533 .9619 .9708 .9969
PROBE PORT 1 2 3 4 5 6 7 8 12 13 14	.3454 .506 .6197 .6705 .7964 .848 .8979 .9674 .957 .9835 1	.3859 .5626 .6764 .7359 .8217 .8915 .9448 .9688 .9821 .983 1	.3276 .4452 .5851 .6781 .7391 .9293 .9843 .9958 .9935 .996	.279 .4275 .5822 .6673 .8231 .9511 .9965 .9967 .9799 .9955 1	.3623 .5015 .6057 .6859 .8507 .9482 .9905 1 .9932 .9893 .9818	.3178 .4433 .5887 .6776 .8184 .9246 .96 .9718 .9809 .9944 .9964	.3447 .517 .6457 .7315 .8669 .9394 .9533 .9619 .9708 .9969 1
PROBE PORT 1 2 3 4 5 6 7 8 12 13 14 15	.3454 .506 .6197 .6705 .7964 .848 .8979 .9674 .957 .9835 1	.3859 .5626 .6764 .7359 .8217 .8915 .9448 .9688 .9821 .983 1 .9943	.3276 .4452 .5851 .6781 .7391 .9293 .9843 .9958 .9935 .996 1	.279 .4275 .5822 .6673 .8231 .9511 .9965 .9967 .9799 .9955 1 .9965 .9896	.3623 .5015 .6057 .6859 .8507 .9482 .9905 1 .9932 .9893 .9818 .9635	.3178 .4433 .5887 .6776 .8184 .9246 .96 .9718 .9809 .9944 .9964 1	.3447 .517 .6457 .7315 .8669 .9394 .9533 .9619 .9708 .9969 1 .9939
PROBE PORT 1 2 3 4 5 6 7 8 12 13 14 15 16	.3454 .506 .6197 .6705 .7964 .848 .8979 .9674 .957 .9835 1 .9716 .9282 .8442	.3859 .5626 .6764 .7359 .8217 .8915 .9448 .9688 .9821 .983 1 .9943 .97911	.3276 .4452 .5851 .6781 .7391 .9293 .9843 .9958 .9935 .996 1 1 .9907 .9458	.279 .4275 .5822 .6673 .8231 .9511 .9965 .9967 .9799 .9955 1 .9965 .9896	.3623 .5015 .6057 .6859 .8507 .9482 .9905 1 .9932 .9893 .9818 .9635 .9282 .8631	.3178 .4433 .5887 .6776 .8184 .9246 .96 .9718 .9809 .9944 .9964 1 .9881 .8731	.3447 .517 .6457 .7315 .8669 .9394 .9533 .9619 .9708 .9969 1 .9939 .98722 .7751
PROBE PORT 1 2 3 4 5 6 7 8 12 13 14 15 16 17 18	.3454 .506 .6197 .6705 .7964 .848 .8979 .9674 .957 .9835 1 .9716 .9282 .8442 .7139	.3859 .5626 .6764 .7359 .8217 .8915 .9448 .9688 .9821 .983 1 .9943 .97911 .8911	.3276 .4452 .5851 .6781 .7391 .9293 .9843 .9958 .9935 .996 1 1 .9907 .9458 .8488	.279 .4275 .5822 .6673 .8231 .9511 .9965 .9967 .9799 .9955 1 .9965 .9896 .9578	.3623 .5015 .6057 .6859 .8507 .9482 .9905 1 .9932 .9893 .9818 .9635 .9282 .8631 .8851	.3178 .4433 .5887 .6776 .8184 .9246 .96 .9718 .9809 .9944 .9964 .1 .9881 .8731 .7739	.3447 .517 .6457 .7315 .8669 .9394 .9533 .9619 .9708 .9969 1 .9939 .98722 .7751 .5788
PROBE PORT 1 2 3 4 5 6 7 8 12 13 14 15 16 17 18 19	.3454 .506 .6197 .6705 .7964 .848 .8979 .9674 .957 .9835 1 .9716 .9282 .8442 .7139 .6076	.3859 .5626 .6764 .7359 .8217 .8915 .9448 .9688 .9821 .983 1 .9943 .97911 .8911 .748	.3276 .4452 .5851 .6781 .7391 .9293 .9843 .9958 .9935 .996 1 1 .9907 .9458 .8488 .5687	.279 .4275 .5822 .6673 .8231 .9511 .9965 .9967 .9799 .9955 1 .9965 .9896 .9578 .8294 .7059	.3623 .5015 .6057 .6859 .8507 .9482 .9905 1 .9932 .9893 .9818 .9635 .9282 .8631 .8851	.3178 .4433 .5887 .6776 .8184 .9246 .96 .9718 .9809 .9944 .9964 .1 .9881 .8731 .7739 .6641	.3447 .517 .6457 .7315 .8669 .9394 .9533 .9619 .9708 .9969 1 .9939 .98722 .7751 .5788 .5246
PROBE PORT 1 2 3 4 5 6 7 8 12 13 14 15 16 17 18 19 20	.3454 .506 .6197 .6705 .7964 .848 .8979 .9674 .957 .9835 1 .9716 .9282 .8442 .7139 .6076 .4694	.3859 .5626 .6764 .7359 .8217 .8915 .9448 .9688 .9821 .983 1 .9943 .97911 .8911 .748 .5111	.3276 .4452 .5851 .6781 .7391 .9293 .9843 .9958 .9935 .996 1 1 .9907 .9458 .8488 .5687 .3808	.279 .4275 .5822 .6673 .8231 .9511 .9965 .9967 .9799 .9955 1 .9965 .9896 .9578 .8294 .7059	.3623 .5015 .6057 .6859 .8507 .9482 .9905 1 .9932 .9893 .9818 .9635 .9282 .8631 .8851 .7544 .5649	.3178 .4433 .5887 .6776 .8184 .9246 .96 .9718 .9809 .9944 .9964 .1 .9881 .8731 .7739 .6641 .5072	.3447 .517 .6457 .7315 .8669 .9394 .9533 .9619 .9708 .9969 .1 .9939 .98722 .7751 .5788 .5246 .4237
PROBE PORT 1 2 3 4 5 6 7 8 12 13 14 15 16 17 18 19 20 Ptot	.3454 .506 .6197 .6705 .7964 .848 .8979 .9674 .957 .9835 1 .9716 .9282 .8442 .7139 .6076 .4694 10.422	.3859 .5626 .6764 .7359 .8217 .8915 .9448 .9688 .9821 .983 .1 .9943 .97911 .8911 .748 .5111 .35	.3276 .4452 .5851 .6781 .7391 .9293 .9843 .9958 .9935 .996 1 1 .9907 .9458 .8488 .5687 .3808 9.896	.279 .4275 .5822 .6673 .8231 .9511 .9965 .9967 .9799 .9955 1 .9965 .9896 .9578 .8294 .7059 .5926	.3623 .5015 .6057 .6859 .8507 .9482 .9905 1 .9932 .9893 .9818 .9635 .9282 .8631 .8851 .7544 .5649	.3178 .4433 .5887 .6776 .8184 .9246 .96 .9718 .9809 .9944 .9964 1 .9881 .8731 .7739 .6641 .5072	.3447 .517 .6457 .7315 .8669 .9394 .9533 .9619 .9708 .9969 .1 .9939 .98722 .7751 .5788 .5246 .4237 10.19
PROBE PORT 1 2 3 4 5 6 7 8 12 13 14 15 16 17 18 19 20 Ptot Ppr	.3454 .506 .6197 .6705 .7964 .848 .8979 .9674 .957 .9835 1 .9716 .9282 .8442 .7139 .6076 .4694 10.422 10.408	.3859 .5626 .6764 .7359 .8217 .8915 .9448 .9688 .9821 .983 .1 .9943 .97911 .8911 .748 .5111 .35	.3276 .4452 .5851 .6781 .7391 .9293 .9843 .9958 .9935 .996 1 1 .9907 .9458 .8488 .5687 .3808 9.896 10.418	.279 .4275 .5822 .6673 .8231 .9511 .9965 .9967 .9799 .9955 1 .9965 .9896 .9578 .8294 .7059 .5926 10.125 10.396	.3623 .5015 .6057 .6859 .8507 .9482 .9905 1 .9932 .9893 .9818 .9635 .9282 .8631 .8851 .7544 .5649 10.302 10.504	.3178 .4433 .5887 .6776 .8184 .9246 .96 .9718 .9809 .9944 .9964 1 .9881 .8731 .7739 .6641 .5072 10.056 10.392	.3447 .517 .6457 .7315 .8669 .9394 .9533 .9619 .9708 .9969 .1 .9939 .98722 .7751 .5788 .5246 .4237 10.19
PROBE PORT 1 2 3 4 5 6 7 8 12 13 14 15 16 17 18 19 20 Ptot Ppr	.3454 .506 .6197 .6705 .7964 .848 .8979 .9674 .957 .9835 1 .9716 .9282 .8442 .7139 .6076 .4694 10.422 10.408 12.124	.3859 .5626 .6764 .7359 .8217 .8915 .9448 .9688 .9821 .983 1 .9943 .97911 .8911 .748 .5111 .35	.3276 .4452 .5851 .6781 .7391 .9293 .9843 .9958 .9935 .996 1 1 .9907 .9458 .8488 .5687 .3808 9.896 10.418 12.04	.279 .4275 .5822 .6673 .8231 .9511 .9965 .9967 .9759 .9955 1 .9965 .9896 .9578 .8294 .7059 .5926 10.125 10.396 12.064	.3623 .5015 .6057 .6859 .8507 .9482 .9905 .1 .9932 .9893 .9635 .9282 .8631 .8851 .7544 .5649 10.302 10.504 12.12	.3178 .4433 .5887 .6776 .8184 .9246 .96 .9718 .9809 .9944 .9964 .1 .9881 .8731 .7739 .6641 .5072 10.056 10.392 12.012	.3447 .517 .6457 .7315 .8669 .9394 .9533 .9619 .9708 .9969 .1 .9939 .98722 .7751 .5788 .5246 .4237 10.19 10.416 12.09
PROBE PORT 1 2 3 4 5 6 7 8 12 13 14 15 16 17 18 19 20 Ptot Ppr Ppl Tpl	.3454 .506 .6197 .6705 .7964 .848 .8979 .9674 .957 .9835 1 .9716 .9282 .7139 .6076 .4694 10.422 10.408 12.124 533.17	.3859 .5626 .6764 .7359 .8217 .8915 .9448 .9688 .9821 .983 .1 .9943 .97911 .8911 .748 .5111 .35 10.142 10.46 12.162 533004	.3276 .4452 .5851 .6781 .7391 .9293 .9843 .9958 .9935 .996 .1 .1 .9907 .9458 .8488 .5687 .3808 .9.896 10.418 12.04 533.51	.279 .4275 .5822 .6673 .8231 .9511 .9965 .9967 .9799 .9955 1 .9965 .9896 .9578 .8294 .7059 .5926 10.125 10.396 12.064 533.63	.3623 .5015 .6057 .6859 .8507 .9482 .9905 1 .9932 .9893 .9818 .9635 .9282 .8631 .8631 .851 .7544 .5649 10.302 10.504 12.12 533.6	.3178 .4433 .5887 .6776 .8184 .9246 .96 .9718 .9809 .9944 .9964 1 .9881 .7739 .6641 .5072 10.056 10.392 12.012 534.25	.3447 .517 .6457 .7315 .8669 .9394 .9533 .9619 .9708 .9969 1 .9939 .98722 .7751 .5788 .5246 .4237 10.19 10.416 12.09 534.13
PROBE PORT 1 2 3 4 5 6 7 8 12 13 14 15 16 17 18 19 20 Ptot Ppr	.3454 .506 .6197 .6705 .7964 .848 .8979 .9674 .957 .9835 1 .9716 .9282 .8442 .7139 .6076 .4694 10.422 10.408 12.124	.3859 .5626 .6764 .7359 .8217 .8915 .9448 .9688 .9821 .983 1 .9943 .97911 .8911 .748 .5111 .35	.3276 .4452 .5851 .6781 .7391 .9293 .9843 .9958 .9935 .996 1 1 .9907 .9458 .8488 .5687 .3808 9.896 10.418 12.04	.279 .4275 .5822 .6673 .8231 .9511 .9965 .9967 .9759 .9955 1 .9965 .9896 .9578 .8294 .7059 .5926 10.125 10.396 12.064	.3623 .5015 .6057 .6859 .8507 .9482 .9905 .1 .9932 .9893 .9635 .9282 .8631 .8851 .7544 .5649 10.302 10.504 12.12	.3178 .4433 .5887 .6776 .8184 .9246 .96 .9718 .9809 .9944 .9964 .1 .9881 .8731 .7739 .6641 .5072 10.056 10.392 12.012	.3447 .517 .6457 .7315 .8669 .9394 .9533 .9619 .9708 .9969 .1 .9939 .98722 .7751 .5788 .5246 .4237 10.19 10.416 12.09

	HIĞH SU	CTION RAK	E DATA				
		AVERSE UF	STREAM	LOCATION	1		
PITCH :	21.72	24.08	26.44	28.8	31.16	33.52	35.88
PROBE							
PORT							
1	.2525	.3007	.3592	.3681	.3754	.2851	.2525
2	.4083	.4582	.5357	.517	.5061	.3916	.3937
3	.5463	.5785	.6342	.6299	.6464	.5256	.5289
4	.648	.682	.7182	.7025	.67746	.6925	.696
5	.8287	.8306	.8369	.8082	.7902	.8029	.8579
6	.9461	.9233	.8985	.8456	.8247	.9211	.9761
7	.9763	.9831	.9475	.9049	.9409	.9776	.9975
8	.9873	.9908	1	1	1	.9876	1
12	.9786	.9716	.9938	.9925	.9846		.9872
13	.9816	.986	.9849			.9833	
14	.9904	1	.9515	.9777	.9882	.9882	.9937
15				.9562	.9919	.9935	.9918
	1	.9755	.8875	.9251	.9824	1	.9751
16	.953	.9254	.8496	.904	.9353	.9614	.9498
17	.845	.8809	.7727	.7457	.7784	.7803	.8289
18	.775	.7858	.7356	.6115	.6084	.5592	.7534
19	.6486	.5932	.6767	.4293	.4926	.3944	.5379
20	.4912	.5038	.5317	.3299	.4059	.2908	.414
Ptot	10.204	10.428	10.596	10.688	10.362	10.522	10.44
Ppr	10.426	10.446	10.416	10.402	10.392	10.402	10.392
Ppl	13.132	12.118	12.096	12.11	11.996	12.1	12.052
Tpl	533.92	533.84	533.8	533.75	533.95	533.8	533.82
RAKE Q	13.658	13.808	14.146	14.208	13.8	13.89	13.814
BETA	44.01	44.25	44.14	44.6	44.58	44.73	44.8
PITCH >	38.24	40.6	43	34.4	36.74	39.1	41.45
PROBE PORT							
. 1	.2899	.2774	.326	.317	.3087	.4429	.3724
2	.4066	.4397	.4941	.4657	.4728	.6101	.56
3	.5539	.6044	.6313	.6124	.6167	.7282	.6733
4	.6665	.6905	.6875	.6553	.703	.7358	.6922
5	.8568	.8261	.7703	.8455	.8485	.8259	.8159
6	.9704	.8858	.8557	.9266	.8864	.9187	.9452
7	.9917	.9321	.9579	.9428	.892	.9526	.986
8	1	1	1	1	1	1	.9912
12	.9943	.9856	.9849	.9856	.9913	.9947	.9988
13	.9964	.9937	.9847	.9766	.9766	.9903	.9956
14	.9968	.9878	.9957	.874	.9534	.976	1
15	.976	.9736	.9853	.9625	.9358	.9564	.9937
16	.9253	.9456	.9664	.9195	.8951	.8966	.9466
17	.7635	.8565	.8942	.7575	.7535	.739	.8941
18	.5851	.7178	.7769	.5457	.5704	.5444	.7902
			.646	.4067	.4104	.3888	.623
19	.4178	.5823			.3462	.2954	.4862
20	.3352	.4286	.5005	.3245		10.5	10.408
Ptot	10.604	10.844	10.606	10.706	10.774		10.406
Ppr	10.364	10.378	10.45	10.49	10.42	10.372	
Ppl	12.04	12.042	12.086	11.92	11.974	11.984	11.974
Tpl	533.82	533.65	533.61	534.03	534	533.89	533.71
RAKE Q	13.978	14.022	13.705	14.092	14.088	13.786	13.686
BETA	44.8	44.57	45.04	43.72	43.94	44.23	44.22

CONTINUED
HIGH SUCTION RAKE DATA
FULL TRAVERSE UP SIDEAM L

	FULL TRA	AVERSE UP	STREAM	LOCATION			
PITCH >	43.81	46.18	48.54	50.9	53.3	55.61	57.98
PROBE							
PORT							
1	.2954	.3209	.3688	.3897	.3843	. 431	.3644
2	.4645	.4972	.543	.5638	.5676	.6132	.5239
3	.6163	.6417	.6495	.6567	.7064	.6775	.6423
4	.7061	.7267	.7122	.7442	.7999	.7591	.7682
5	.8309	.8591	.8284	.8192	.9081	.8887	.9027
6	.9615	.9282	.8853	.9138	.9757	.9289	.9668
7	.9973	.9656	.9169	.9761	.9916	.9937	1
8	.9973	1	.9852	.9846	.999	1	. 9897
12	.9898	.9706	1	.9998	.9946	.9939	.9908
13	.9935	.9805	.9968	1	.9979	.9966	.9836
14	1	.9727	.9841	.9952	1	.999	.9788
15	1	.9597	.9605	.9879	.991	.9872	.973
16	.9827	.9039	.9135	. 9591	.9718	. 9405	.8491
17	.9244	.8128	.8372	.8944	.8562	.9001	.6288
18	.8452	.7745	.7275	.793	.7499	.8109	.513
19	.6749	.6579	.5276	.6588	.6157	.6929	.4484
20	.5272	.4835	.4324	.4865	.487	.5366	.3119
Ptot	10.398	10.756	10.688	10.376	10.444	10.492	10.83
Ppr	10.346	10.384	10.434	10.336	10.436	10.442	10.348
Ppl	11.986	11.926	11.934	11.954	12.004	11.94	11.916
Tpl	533.76	534	533.97	534.01	534.03	534.01	534.05
RAKE Q	13.468	13.498	13.778	13.408	13.262	13.26	13.442
BETA	44.18	43.9	43.88	43.91	44.79	44.85	45.36

PITCH) 60.38 PROBE PORT .1753 1 2 .4108 3 .7072 .8256 5 .774 6 .5844 7 .5537 8 .9141 12 .8904 .947 13 .8053 14 15 .854 1 16 17 .9141 .8335 18 .6892 19 20 .5013 Ptot 7.098 Ppr 10.32 Pp1 11.884 Tpl 534.29 RAKE Q 9.598

BETA

47.03

HIGH SUCTION SETTING RAKE DATA UP STREAM LOCATION 20 TO 23 INCHES

PITCH) PROBE PORT	20 Cp	20.25	20.5	20.75	21	21.25	21.5
1	.2931	.2939	.3125	.3291	.3331	.3396	.2784
2	.4379	.4503	.4802	.4825	.4864	.3979	.3993
3	.5908	.6049	.6017	.6312	.626	.6008	.5755
4	.6858	.6572	.668	.6798	.6711	.6763	.6843
5	.6623	.8635	.812	.7879	.7744	.7844	.8119
6	.9219	.9151	.892		.9056	.9131	.9407
7	.9455	.9843	.9752	.9753	.9686	.9672	.9707
8	.9534	.9974	.9868	.9952	.9741	.9714	.9738
12	.9639	.9813	.9799	.997	.9957	.9807	.9715
13	.9589	.9766	.9789	.991	1	.9777	.978
14	.9862	.9899	1	1	-9974	. 998	.9954
15	1	1	.9846	.9932	.9929	1	1
16	.958	.9805	.9612	.9601	.9804	.9871	.9782
17	.8124	.9066	.9122	.8931	.9131	.9248	.8819
18	.6392	.7554	.7449	.6876	.7019	.8385	.8371
19	.5166	.5684	.5601	.5199	.4581	.5799	.6629
20	.4236	.4579	481	.485	.3222	.3953	.5069
Ptot	10.426	10.064	10.162	9.968	9.876	9.946	10.092
Ppr	10.406	10.404	10.428	10.52	10.436	10.384	10.422
Ppl	11.922	11.89	11.936	11.918	11.938	11.918	11.966
Tpl	539.51	538.55	538.69	538.71	538.88	538.59	538.46
RAKE Q	13.646	13.488	13.552	13.584	13.496	13.424	13.464
BETA	43.24	43.67	43.32	43.15	43.23	43.28	43.147
PITCH > PROBE PORT	21.75	22	22.25	22.5	22.75	23	
1	.2833	.307	.3233	.3207	.3605	.3335	
2	.4196	.4595	.4761	.4715	.4915	.4643	
3	.576	.6018	.6053	.615	.6279	.604	
4	.6831	.6934	.692	.6697	.702	.6987	
5	.8677	.8671	.8401	.7981	.8117	.7872	
6	.9688	.9977	.9304	.8932	.9118	.8947	
7	.9902	.9871	.9745	.9414	. 9458	.9728	
8	.9936	1	.9949	.9793	.9709	.9888	
12	.9926	.9709	.9502	.9256	.9815	.9664	
13	.9884	.9765	.9628	.9499	.9799	.9694	
14	.9936	.9968	1	1	.9978	.9964	
15	1	.9913	.9856	.9935	1	1	
16	.9814	.9575	.9481	.9196	.9751	.9602 .8981	
17	.8957	.832	.816	.7926	.8768		
18	.805	.7557	.6949	.6565	.7187	.7451 .592	
19 20	.6448 .5063	.6386 .5092	.5883 .43	.5021 .3754	.5397 .4047	.4547	
Ptot	9.99	10.11	10.28	10.452	9.954	10.01	
Ppr	10.446	10.11	10.418	10.432	10.37	10.47	
Ppl	11.954	11.916	11.906	11.952	11.912	11.98	
Tpl	538.67	538.59	538.85	538.86	538.53	538.25	
RAKE Q	13.564	13.46	13.4	13.316	13.408	13.344	
BETA	43.2	43.41	43.5	43.55	43.43	43.2	

HIGH SUCTION SETTING RAKE DATA DOWN STREAM LOCATION 20 TO 23 INCHES

PITCH PROBE		20.25	20.5	20.75	21	21.25	21.5
PORT							
1	.5054	.4918	.5063	.5385	.5271	.4387	.321
2	.6248	.6199	.6493	.6639	.6357	.4886	.3963
3	.7111	.7047	.7239	.7258	.6774	.5132	.4492
4	.6206	.6679	.7264	.7622	.7303	.6383	.5315
5	.5485	.5428	.6255	.7284	.7163		.7885
6	.6114	.5531	.5948	.7015	.8092		.8971
7	.5044	.5319	.6275	.7713	.8682	.9234	.9298
8	.6673	.8037	.937	.9795	.9893	.9918	.9734
12	1	1	.996	.9968	.9968	.9956	.9786
13	.8806	.9522	1	1	1	.9908	.9841
14	.5717	.6082	.7133	.8348	.9567	1	1
15	.6588	.5952	.6407	.7596	.8931	.9806	.9943
16	.631	.556	.616		.8768	.9687	.9824
17	.5915	.6357	.7468	.836	.8945	.9345	.8551
18	.7293	.7096	.8018	.8456	.8903	.9052	.7704
19	.7448	.7163	.8018	.8362	.8682	.8834	.7556
20	.6694	.6863	.7386	.7584	.8138	.7884	.7175
Ptot	9.414	9.882	9.97	9.95	9.938	9.98	10.088
Ppr	10.534	10.396	10.49	10.54	10.446	10.438	10.534
Ppl	11.964	11.874		11.962	11.93	11.93	11.984
Tp1	536.32	536.56	536.66	536.74	536.8	536.77	536.7
RAKE Q	8.486	8.672	8.568	8.542	8.528	8.548	8.524
BETA	-2.829	-2.876	-1.548	-2.21	-1.91	-1.73	-2.7
PITCH >	21.75	22	22.25	22.5	22.75	23	
PROBE							
PORT							
1	.3196	.3834	.505	.6083	.5998	.5423	
2	.3996	.475	.5976	.727	.7256	.6585	
3	.4772	.528	.631	.7582	.7257	.7128	
4	.4867	.4851	.5284	.659	.6293	.6111	
5	.7553	.7058	.7784	.8249	.702	.5553	
6	.9083	.9241	.9584	.9938	.8035	.6134	
7	.947	.9066	.8642	.7865	.6215	.527	
8 12	.9645	.9033 .8633	.8056	.7373 .8674	.6822 1	.6913 1	
13	.9706 .9853	.9286	.7566 .8068	.8133	.824	.8868	
14	.9938	.9697	.925	.8594	.6653	.5758	
15	1	1	1	1	.8337	.655	
16	.9692	.939	.9371	.9804	.7823	.6008	
17	.6919	.6	.6133	.6673	.6182	.5911	
18	.6237	.5402	.6267	.7649	.7168	.7277	
19	.5078	.5098	.5779	.7507	.722	.7362	
20	.553	.4434	.5225	.6832	.6944	.6609	
Ptot	9.924	9.64	8.808	7.766	8.39	9.674	
Ppr	10.5	10.444	10.458	10.474	10.554	10.598	
Ppl	11.978	11.936	11.948	11.97	12.032	12.1	
Tpl	536.71	536.95	536.92	536.94	536.96	536.77	
RAKE Q	8.53	7.478	5.916	6.008	7.59	8.72	
BETA	-3.03	-3.06	-2.1	-1.82	-2.48	-3.52	

SPANWISE BALANCED MANIFOLD PRESSURES UP STREAM LOCATION 20 TO 23 INCHES

PITCH >		20.25	20.5	20.75	21	21.25	21.5
PROBE PORT	Ср						
1	.3606	.3446	.3116	.3265	.3306	.1727	.348
2	.5195	.4627	.4772	.4874	.4967	.4196	.5046
3	.6273	.5884	.6095	.6094	.6283	.5859	.6211
4	.7302	.7067	.7029	.6968	.6929	.683	.6943
5	.858	.8368	.8237	.8358	.8076	.8263	.8562
6	.9114	.8967	.89	.8918	.897	.9095	.9305
7	.9383	.9315	.9363	.9418	.9455	.9459	.9455
8	.9616	.9806	.9967	.998	.9779	.9646	.9551
12	.9783	.9648	.9774	.9968	.9877	.9774	.9661
13	.9754	.9544	.9863	.9876	.9936	.983	.9786
14	1	1	1	.9876	.9922	1	.998
15	.9965	.9949	.9971	1	1	.996	1
16	.9489	.9431	.9357	.9514	.9658	.9766	.9635
17	.7753	.8283	.8531	.8987	.8899	.9037	
18	.551	.6405	.6824	.6309	.6375	.7838	.7879
19	.4724	.4797	.5041		.4019	.5891	.5703
20	.3619		.3811	.4771			.3747
Ptot	10.406			.3772	.298	.4218	
Proc		10.516	10.36	10.132	10.062	10.1 10.59	10.194
Ppl	10.56	10.62	10.56	10.534	10.576	12.066	
Tpl	12.11 540.99	12.084 541.46	12.096 541.58	12.056	12.052 542.16	542.28	
RAKE Q	13.764		13.744	541.84	13.598		
BETA				13.76		44.12	
DEIM	43.89	44.052	44.17	43.85	44.08	40.12	44.10
PITCH >	21.75	22	22.25	22.5	22.75	23	
PROBE							
PORT							
PORT 1	.3193	.2554	.2555	.2736	.3106	.3166	
PORT 1 2	.5052	.4053	.438	.398	.4644	.4554	
PORT 1 2 3	.5052 .6161	.4053 .5832	.438 .546	.398 .5381	.4644 .545	.4554 .5647	
PORT 1 2 3 4	.5052 .6161 .6611	.4053 .5832 .6809	.438 .546 .6618	.398 .5381 .6158	.4644 .545 .6005	.4554 .5647 .6549	
PORT 1 2 3 4 5	.5052 .6161 .6611 .8372	.4053 .5832 .6809 .8668	.438 .546 .6618 .8273	.398 .5381 .6158 .7431	.4644 .545 .6005 .736	.4554 .5647 .6549 .7332	
PORT 1 2 3 4 5	.5052 .6161 .6611 .8372 .9514	.4053 .5832 .6809 .8668 .9483	.438 .546 .6618 .8273	.398 .5381 .6158 .7431 .8461	.4644 .545 .6005 .736 .8368	.4554 .5647 .6549 .7332 .8439	
PORT 1 2 3 4 5 6	.5052 .6161 .6611 .8372 .9514	.4053 .5832 .6809 .8668 .9483	.438 .546 .6618 .8273 .9077 .9712	.398 .5381 .6158 .7431 .8461	.4644 .545 .6005 .736 .8368 .9355	.4554 .5647 .6549 .7332 .8439	
PORT 1 2 3 4 5 6 7 8	.5052 .6161 .6611 .8372 .9514 .965	.4053 .5832 .6809 .8668 .9483 .9718	.438 .546 .6618 .8273 .9077 .9712	.398 .5381 .6158 .7431 .8461 .951	.4644 .545 .6005 .736 .8368 .9355 .9975	.4554 .5647 .6549 .7332 .8439 .9417 .9899	
PORT 1 2 3 4 5 6 7 8 12	.5052 .6161 .6611 .8372 .9514 .965 .9785	.4053 .5832 .6809 .8668 .9483 .9718 .9935	.438 .546 .6618 .8273 .9077 .9712 1	.398 .5381 .6158 .7431 .8461 .951 .9877	.4644 .545 .6005 .736 .8368 .9355 .9975	.4554 .5647 .6549 .7332 .8439 .9417 .9899	
PORT 1 2 3 4 5 6 7 8 12 13	.5052 .6161 .6611 .8372 .9514 .965 .9785 .9834	.4053 .5832 .6809 .8668 .9483 .9718 .9935 .9689	.438 .546 .6618 .8273 .9077 .9712 1 .949	.398 .5381 .6158 .7431 .8461 .951 .9877 .935	.4644 .545 .6005 .736 .8368 .9355 .9975 .9482	.4554 .5647 .6549 .7332 .8439 .9417 .9899 .9476	
PORT 1 2 3 4 5 6 7 8 12 13 14	.5052 .6161 .6611 .8372 .9514 .965 .9785 .9834 .9856	.4053 .5832 .6809 .8668 .9483 .9718 .9935 .9689 .9777	.438 .546 .6618 .8273 .9077 .9712 1 .949 .9631	.398 .5381 .6158 .7431 .8461 .951 .9877 .935 .9454	.4644 .545 .6005 .736 .8368 .9355 .9975 .9482 .9428	.4554 .5647 .6549 .7332 .8439 .9417 .9899 .9476 .9637	
PORT 1 2 3 4 5 6 7 8 12 13 14 15	.5052 .6161 .6611 .8372 .9514 .965 .9785 .9834 .9856	.4053 .5832 .6809 .8668 .9483 .9718 .9935 .9689 .9777 1	.438 .546 .6618 .8273 .9077 .9712 1 .949 .9631 .9931	.398 .5381 .6158 .7431 .8461 .951 .9877 .935 .9454 1	.4644 .545 .6005 .736 .8368 .9355 .9975 .9482 .9428 1	.4554 .5647 .6549 .7332 .8439 .9417 .9899 .9476 .9637 1	
PORT 1 2 3 4 5 6 7 8 12 13 14 15 16	.5052 .6161 .6611 .8372 .9514 .965 .9785 .9834 .9856 .999 1	.4053 .5832 .6809 .8668 .9483 .9718 .9935 .9689 .9777 1 .9926	.438 .546 .6618 .8273 .9077 .9712 1 .949 .9631 .9931 .9904	.398 .5381 .6158 .7431 .8461 .951 .9877 .935 .9454 1 .9843	.4644 .545 .6005 .736 .8368 .9355 .9975 .9482 .9428 1 .9925	.4554 .5647 .6549 .7332 .8439 .9417 .9899 .9476 .9637 1 .9933 .9404	
PORT 1 2 3 4 5 6 7 8 12 13 14 15 16 17	.5052 .6161 .6611 .8372 .9514 .965 .9785 .9834 .9856 .999 1	.4053 .5832 .6809 .8668 .9483 .9718 .9935 .9689 .9777 1 .9926 .952	.438 .546 .6618 .8273 .9077 .9712 1 .949 .9631 .9931 .9904 .9464 .7785	.398 .5381 .6158 .7431 .8461 .951 .9877 .935 .9454 1 .9843 .9004 .7623	.4644 .545 .6005 .736 .8368 .9355 .9975 .9482 .9428 1 .9925 .9255	.4554 .5647 .6549 .7332 .8439 .9417 .9899 .9476 .9637 .1 .9933 .9404	
PORT 1 2 3 4 5 6 7 8 12 13 14 15 16 17 18	.5052 .6161 .6611 .8372 .9514 .965 .9785 .9834 .9856 .999 1 .967 .8473	.4053 .5832 .6809 .8668 .9483 .9718 .9935 .9689 .9777 1 .9926 .952 .8227	.438 .546 .6618 .8273 .9077 .9712 1 .949 .9631 .9931 .9904 .9464 .7785 .6828	.398 .5381 .6158 .7431 .8461 .951 .9877 .935 .9454 1 .9843 .9004 .7623 .6173	.4644 .545 .6005 .736 .8368 .9355 .9975 .9482 .9428 1 .9925 .9255 .7912	.4554 .5647 .6549 .7332 .8439 .9417 .9899 .9476 .9637 1 .9933 .9404 .803 .6016	
PORT 1 2 3 4 5 6 7 8 12 13 14 15 16 17 18 19	.5052 .6161 .6611 .8372 .9514 .965 .9785 .9834 .9856 .999 1 .967 .8473 .8081	.4053 .5832 .6809 .8668 .9483 .9718 .9935 .9689 .9777 1 .9926 .952 .8227 .7452	.438 .546 .6618 .8273 .9077 .9712 1 .949 .9631 .9931 .9904 .9464 .7785 .6828 .5487	.398 .5381 .6158 .7431 .8461 .951 .9877 .935 .9454 1 .9843 .9004 .7623 .6173	.4644 .545 .6005 .736 .8368 .9355 .9975 .9482 .9428 1 .9925 .9255 .7912 .6116	.4554 .5647 .6549 .7332 .8439 .9417 .9899 .9476 .9637 .1 .9933 .9404 .803 .6016 .4212	
PORT 1 2 3 4 5 6 7 8 12 13 14 15 16 17 18 19 20	.5052 .6161 .6611 .8372 .9514 .965 .9785 .9834 .9856 .999 1 .967 .8473 .8081 .6441	.4053 .5832 .6809 .8668 .9483 .9718 .9935 .9689 .9777 1 .9926 .952 .8227 .7452 .5996	.438 .546 .6618 .8273 .9077 .9712 1 .949 .9631 .9931 .9904 .7785 .6828 .5487	.398 .5381 .6158 .7431 .8461 .951 .9877 .935 .9454 1 .9843 .9004 .7623 .6173 .4407	.4644 .545 .6005 .736 .8368 .9355 .9975 .9482 .9428 1 .9925 .9255 .7912 .6116 .4463	.4554 .5647 .6549 .7332 .8439 .9417 .9899 .9476 .9637 1 .9933 .9404 .803 .6016 .4212	
PORT 1 2 3 4 5 6 7 8 12 13 14 15 16 17 18 19 20 Ptot	.5052 .6161 .6611 .8372 .9514 .965 .9785 .9834 .9856 .999 .1 .967 .8473 .8081 .6441 .4537 10.122	.4053 .5832 .6809 .8668 .9483 .9718 .9935 .9689 .9777 1 .9926 .952 .8227 .7452 .5996 .449 10.21	.438 .546 .6618 .8273 .9077 .9712 1 .949 .9631 .9931 .9904 .9464 .7785 .6828 .5487 .3984 10.402	.398 .5381 .6158 .7431 .8461 .951 .9877 .935 .9454 1 .9843 .9004 .7623 .6173 .4407 .3001	.4644 .545 .6005 .736 .8368 .9355 .9975 .9482 .9428 1 .9925 .9255 .7912 .6116 .4463 .2945 10.392	.4554 .5647 .6549 .7332 .8439 .9417 .9899 .9476 .9637 .1 .9933 .9404 .803 .6016 .4212 .2964 10.466	
PORT 1 2 3 4 5 6 7 8 12 13 14 15 16 17 18 19 20 Ptot Ppr	.5052 .6161 .6611 .8372 .9514 .965 .9785 .9834 .9856 .999 .1 .967 .8473 .8081 .6441 .4537 10.122 10.558	.4053 .5832 .6809 .8668 .9483 .9718 .9935 .9689 .9777 1 .9926 .952 .8227 .7452 .5996 .449 10.21	.438 .546 .6618 .8273 .9077 .9712 1 .949 .9631 .9931 .9904 .9464 .7785 .6828 .5487 .3984 10.402 10.484	.398 .5381 .6158 .7431 .8461 .951 .9877 .935 .9454 1 .9843 .9004 .7623 .6173 .4407 .3001 10.578 10.514	.4644 .545 .6005 .736 .8368 .9355 .9975 .9482 .9428 1 .9925 .9255 .7912 .6116 .4463 .2945 10.392 10.496	.4554 .5647 .6549 .7332 .8439 .9417 .9899 .9476 .9637 .1 .9933 .9404 .803 .6016 .4212 .2964 10.466 10.562	
PORT 1 2 3 4 5 6 7 8 12 13 14 15 16 17 18 19 20 Ptot Ppr Ppl	.5052 .6161 .6611 .8372 .9514 .965 .9785 .9834 .9856 .999 .1 .967 .8473 .8081 .6441 .4537 10.122 10.558	.4053 .5832 .6809 .8668 .9483 .9718 .9935 .9689 .9777 1 .9926 .952 .8227 .7452 .5996 .449 10.21 10.592 12.06	.438 .546 .6618 .8273 .9077 .9712 1 .949 .9631 .9931 .9904 .9464 .7785 .6828 .5487 .3984 10.402 10.484 12.056	.398 .5381 .6158 .7431 .8461 .951 .9877 .935 .9454 1 .9843 .9004 .7623 .6173 .4407 .3001 10.578 10.514 12.008	.4644 .545 .6005 .736 .8368 .9355 .9975 .9482 .9428 1 .9925 .7912 .6116 .4463 .2945 10.392 10.496 12.052	.4554 .5647 .6549 .7332 .8439 .9417 .9899 .9476 .9637 .1 .9933 .9404 .803 .6016 .4212 .2964 10.466 10.562 12.174	
PORT 1 2 3 4 5 6 7 8 12 13 14 15 16 17 18 19 20 Ptot Ppr Ppl Tpl	.5052 .6161 .6611 .8372 .9514 .965 .9785 .9834 .9856 .999 .1 .967 .8473 .8081 .6441 .4537 10.122 10.558 .12	.4053 .5832 .6809 .8668 .9483 .9718 .9935 .9689 .9777 1 .9926 .952 .8227 .7452 .5996 .449 10.21 10.592 12.06 543.35	.438 .546 .6618 .8273 .9077 .9712 1 .949 .9631 .9931 .9904 .9464 .7785 .6828 .5487 .3984 10.402 10.484 12.056 543.68	.398 .5381 .6158 .7431 .8461 .951 .9877 .935 .9454 1 .9843 .9004 .7623 .6173 .4407 .3001 10.578 10.514 12.008 543.84	.4644 .545 .6005 .736 .8368 .9355 .9975 .9482 .9428 1 .9925 .7912 .6116 .4463 .2945 10.392 10.496 12.052 543.98	.4554 .5647 .6549 .7332 .8439 .9417 .9899 .9476 .9637 .1 .9933 .9404 .803 .6016 .4212 .2964 10.466 10.562 12.174 544.49	
PORT 1 2 3 4 5 6 7 8 12 13 14 15 16 17 18 19 20 Ptot Ppr Ppl	.5052 .6161 .6611 .8372 .9514 .965 .9785 .9834 .9856 .999 .1 .967 .8473 .8081 .6441 .4537 10.122 10.558	.4053 .5832 .6809 .8668 .9483 .9718 .9935 .9689 .9777 1 .9926 .952 .8227 .7452 .5996 .449 10.21 10.592 12.06	.438 .546 .6618 .8273 .9077 .9712 1 .949 .9631 .9931 .9904 .9464 .7785 .6828 .5487 .3984 10.402 10.484 12.056	.398 .5381 .6158 .7431 .8461 .951 .9877 .935 .9454 1 .9843 .9004 .7623 .6173 .4407 .3001 10.578 10.514 12.008	.4644 .545 .6005 .736 .8368 .9355 .9975 .9482 .9428 1 .9925 .7912 .6116 .4463 .2945 10.392 10.496 12.052	.4554 .5647 .6549 .7332 .8439 .9417 .9899 .9476 .9637 .1 .9933 .9404 .803 .6016 .4212 .2964 10.466 10.562 12.174	

A2. INSTRUMENTED BLADE DATA

The instrumented blade data is listed in the following two pages in the order of increased suction.

INSTRUMENTED BLADE PRESSURE DISTRIBUTION LOW SUCTION 150

X	XZC	DRESSURE	SHOTTON
		SIDE	्राक्ष
0	0		10.67
.08	.0159680639	3,686	-30.36
.16	.0319361277	2.272	-18.76
.24	.0479041916	2.338	14.9
.43	.0858283433	1.24	14.04
.61	.1217564870	.73	-13.68
.98	.1956087824	.928	-14.2
1.35	.2694610778	1.84	-13.44
1.72	.3433133733	2.012	-11.98
2.1	.4191616766	1.544	-9.748
2.47	.4930139721	.778	-8.278
2.84	.5668662675	.526	-6.57
3.21	.6407185629	.854	-4.976
3.58	.7145708583	.878	-3.81
3.95	.7884231537	1.338	-2.86
4.15	.8283433134	1.488	= 2.496
4.35	.8682634731	1.348	-2.284
4.55	.9081836327	.46	-2.084
4.75	.9481037924	006	-1.912
4.95	.9880239521	-2.724	-1.868

INSTRUMENTED BLADE PRESSURE DISTRIBUTION MEDIUM SUCTION Q = 16.512 IN H20

X		PRESSURE	SUCTION
		SIDE	SIDE
C) ()		-11.92
.08	.0159680639	3.718	-31.84
.16		1.826	-20.29
.24	.0479041916	1.838	-16
.43	.0858283433	1.068	-14.69
.61	. 1217564870	.678	-14.31
.98	.1956087824	.832	-14.55
1.35	.2694610778	1.312	14.16
1.72	.3433133733	1,518	-12.57
2.1	.4191616766	1.266	10.2
2.47	.4930139721	.854	8,604
2.84	.5668662675	.694	6.884
3.21	.6407185629	.926	5.262
3.58	.7145708583	.97	4.144
3.95	.7884231537	1.184	3.246
4.15	.8283433134	1.332	2.842
4.35	.8682634731	1.028	2.62
4.55	.9081836327	.184	5.336
4.75	.9481037924	312	2.25
4.95	.9880239521	-3.07	-2.144

INSTRUMENTED BLADE PRESSURE DISTRIBUTION HIGH SUCTION Q = 15.762 IN H20

X		PRESSURE	SUCTION
		SIDE	SIDE
0	O		-12.47
.08	.0159680639	3.83	32.47
.16	.0319361277	2.2	21.58
.24	.0479041916	2.284	16.46
.43	.0858283433	1.112	14.73
.61	.1217564870	.548	- 14.38
.98	.1956087824	.742	-14.6
1.35	.2694610778	1.578	~13.82
1.72	.3433133733	1.866	-12.27
2.1	.4191616766	1.45	~ 9 . 988
2.47	.4930139721	.832	-8,434
2.84	.5668662675	.592	-6.812
3.21	.6407185629	.842	-5.202
3.58	.7145708583	.864	4.022
3.95	.7884231537	1.132	-3.196
4.15	.8283433134	1.28	-2.834
4.35	.8682634731	1.188	-2.61
4.55	.9081836327	.542	-2.398
4.75	.9481037924	308	-2.248
4.95	.9880239521	-3.036	-2.156

A3. MANOMETER DATA

The manometer data was taken by marking the tubes during the test conducted and recorded at completion. Polaroid pictures were taken during the tests and are also presented in this section.

MANIFOLD AND ENDWALL STATIC PRESSURES LOW SUCTION PRESSURES MEASURED IN INCHES OF WATER

PITCH	NORTH	SOUTH	NORTH	SOUTH
(IN)	MANIFOLD	MANIFOLD	ENDWALL	ENDUALL
-7	-7.85	-7.9		
3	-7.6	-7.7	-5.1	წ
6			-4.85	-4.85
9			-5	-4.7
12			-4.85	-4.6
13	-5.5	-6		
15			~5.1	-1.7
18			-5	-5.2
21			-5.3	5
23	-4.7	-4.9		
24			-4.8	-5
27			-5.5	-5
30			-5.4	-5.05
33	-4.4	-4.7	-5.5	-5.3
36			-5.3	-5.3
39			-5.4	~5.1
42			-5.5	-5
43	-4.4	-4.8		
45	• • •		-5.2	-5
48			-5	-5.1
51			-5	5
53	-4.5	-4.9		
54	4.0	• • •	-4.85	-4.85
57			-5	-4.85
60			1	-4.4
63	-4.7	-5.35	1	
73	-5.6	-6.25		
/3	-5.6	0.25		

Figure A1. Manometer A for Low Suction Tests

Figure A2. Manometer B for Low Suction Tests

MANIFOLD AND ENDWALL STATIC PRESSURES MEDIUM SUCTION PRESSURES MEASURED IN INCHES OF WATER

PITCH (IN)	NORTH MANIFOLD	SOUTH MANIFOLD	NORTH ENDWALL	SQUTH ENDWALL
-7	-11.55	-12	CHIOWHEL	ETALYMAIL.E.
3	-11.1	-10.95	-5.1	5
6	11.1	10.75		-5
9			-5.Î	-5.05
12			-4.85	-4.8
13	-6.35	-6.95		
15			5.3	-4.9
18			-5.2	-5.3
21			-5.5	-5.15
23	-5.15	-5.55		
24			-4.95	-5.2
27			-5.5	-5.1
30			-5.35	-5.1
33	-4.95	-5.35	-5.4	-5.4
36			-5.3	-5.35
39			-5.3	5
42			-5.3	-4.9
43	-5.1	-5.7		
45			-5	-4.8
48			-5	-4.8
51			-4.8	-4.6
53	-5.4	-6.3		
54			-4.9	-4.4
57			-4.3	-4.2
60			-4	-4.1
63	-6.25	-7.9		
73	-8.35	-10		

Figure A3. Manometer A for Medium Suction Tests

Figure A4. Manometer B for Medium Suction Tests

MANIFOLD AND ENDWALL STATIC PRESSURES HIGH SUCTION PRESSURES MEASURED IN INCHES OF WATER

PITCH	NORTH	SOUTH	NORTH	SOUTH
(IN)	MANIFOLD	MANIFOLD	ENDUALL	ENDWALL
-7	-15.4	-16		
3	-14.3	-13.9	-5.1	-5
6			5	-5
9			-5.1	.5
12			5	4.8
13	-7.2	-8		
15			-5.3	-4.95
18			-5.2	-5.4
21			-5.5	-5.2
23	-5.5	-6		
24			-5.05	~5.25
27			-5.7	-5.2
30			-5.5	-5.2
33	-5.3	-5.85	-5.6	-5.4
36			-5.4	-5.3
39			-5.4	-5.1
42			-5.35	-5
43	-5.55	-6.45		4 0
45			-5.2	-1.9
48			-5	-4.85
51			-4.8	-4.5
53	-6.15	-7.6	_	4 0
54			-5	-4.3
57			-4.3	-4
60			4	-4.1
63	-7.8	-10.6		
73	-11.5	-14.2		

Figure A5. Manometer A for High Suction Tests

Figure A6. Manometer B for High Suction Tests

A4. LDV DATA

The LDV data is presented sequentially from stations 1 to 18. Graphs not seen in the main body are found after the corresponding data set.

FLOW ANGLE ADJUSTMENT Velocity in M/SEC Data is from the following files: A1101392,1.19

X(in)	Z(in)	U-Mean	U~Standard	V-Mean	V-Standard	UV-Angle
		Velocity	Deviation	Velocity	Deviation	Mean
4	-6.29	53.1	1.09	56.9	1.36	47
3.5	-6.29	53.1	1.25	57.5	1.67	47.2
3	-6.29	54.1	1.24	58.2	1.36	47.1
2.5	-6.29	54.4	1.09	57.8	1.48	46.7
2	-6.29	54.1	1.06	56.7	1.42	46.4
1.5	-6.29	54	1.31	56.2	1.34	46.1
1	~6.29	53.7	1.22	56.7	1.32	46.6
.5	-6.29	53.5	1.11	57.1	1.55	46.9
O	-6.29	53.7	1.08	57.2	1.27	46.8
5	-6.29	54.2	1.26	56.9	1.38	46.4
-1	-6.29	55	1.16	56.5	. 1.24	45.8
-1.5	-6.29	54.2	1.03	55.9	1.18	45.9
-2	-6.29	53.5	1.07	56.1	1.39	46.4
-2.5	-6.29	54.2	1.36	56.8	1.4	46.4
-3	-6.29	54.7	1.13	57.3	1.32	46.3
-3.5	-6.29	54.8	1.09	56.9	1.34	46.1
-4	-6.29	54.7	1.03	55.8	1.38	45.6
-4.5	-6.29	54	1.28	55.7	1.37	45.9
-5	-6.29	54.1	1.43	56.4	1.38	46.2

VELOCITY (M/S)

STATION 1 FLOW ADJUST

TOTAL VELOCITY

STATION 1 FLOW ADJUST

FLOW ANGLE

STATION 1 FLOW ADJUST

U TURBULENCE INTENSITY

STATION 1 FLOW ADJUST

V TURBULENCE INTENSITY

TURBULENCE INTENSITY

BASE LINE STATION t Velocity in M/SEC Data is from the following files: STIA1209.1.41 STATION 1

	211111014	l .				
X(in)	Z(in)	U-Mean	U-Standard	V-Mean	V-Standard	UV-Angle
		VEL	DEV	Velocity	Deviation	Mean
-1	-6.29	0	0	0	0	.0
875	-6.29	60.7	1.21	60.5	1.23	44.9
75	-6.29	60.7	1.24	60.6	1.28	45
625	-6.29	60.7	1.22	60.8	1.17	45
5	-6.29	60.6	1.29	60.9	1.23	45.2
375	-6.29	60.5	1.88	61	1.17	45.2
25	-6.29	60.3	1.28	61.1	1.19	45.4
125	-6.29	60	1.29	61	1.27	45.5
O	-6.29	59.7	1.25	61	1.2	45.6
.125	-6.29	59.7	1.2	61	1.16	45.6
.25	-6.29	59.6	1.2	60.9	1.2	45.6
.375	-6.29	59.3	1.48	60.9	1.28	45.7
.5	-6.29	59.1	1.48	61	1.26	45.9
.625	-6.29	59.2	1.10	61	1.38	45.8
.75	-6.29	59.3	1.27	60.9	1.29	45.8
.875	-6.29	59.4	1.19	60.8	125	45.7
1	-6.29	59.5	1.3	60.7	1.31	45.6
1.13	-6.29	59.8	1.29	60.7	1.28	45.5
1.25	-6.29	59.9	1.3	60.7	1.26	45.4
1.38	-6.29	60.1	1.34	60.6	1.3	45.2
1.5	-6.29	60.1	1.69	60.6	1.13	45.2
1.62	-6.29	60.3	1.4	60.6	1.21	45.1
1.75	-6.29	59.9	1.23	60.6	1.22	45.3
1.87	-6.29	60.1	1.24	60.6	1.28	45.3
2	-6.29	60	1.26	60.7	1.27	45.3
2.13	-6.29	60.3	1.14	61.1	1.21	45.4
2.25	-6.29	60.3	1.18	61.2	1.38	45.4
2.37	-6.29	60.4	1.19	61.4	1.25	45.5
2.5	-6.29	60.4	1.18	61.6	1.31	45.6
2.63	-6.29	60.6	1.19	61.9	1.29	45.6
2.75	-6.29	60.5	1.22	62	1.32	45.7
2.87	-6.29	60.7	1.21	62.3	1.3	45.8
3	-6.29	60.6	1.28	62.3	1.41	45.8
3.12	-6.29	60.5	1.32	62.2	2.29	45.8
3.25	-6.29	60.2	1.37	62.3	1.25	46
3.37	-6.29	60.1	1.43	62.3	1.25	46
3.5	-6.29	59.7	1.49	62	1.18	46.1
3.62	-6.29	59.4	1.44	61.8	1.21	46.1
3.75	-6.29	59.4	1.38	61.6	1.18	46
3.87	-6.29	59.4	1.32	61.4	1.17	46
4	-6.29	59.3	1.26	61.1	1.2	45.9

Velocity in M/SEC Data is from the following files: STISUCK,1,41
STATION 1 HIGH SUCTION
Z(mm) U-Mean U-St

	STATION 1 F					
X(mm)	Z(mm)	U-Mean (U-Standard	V-Mean	V-Standard	UV-Ar
25.4		Velocity	Deviation		Deviation	Mea
-25.4	-160	58	1.35	58.6	1.89	
-22.2	-160	58	1.28	58.5	2.1	1
-19	-160	58.2	1.31	58.8	2.01	
-15.9	-160	58.1	1.38	58.9	2.03	
-12.7	-160	57.9	1.16	59	1.73	
-9.52	-160	57.7	1.17	58.9	2.03	
-6.35	-160	57.6	1.09	59	1.94	
-3.17	-160	57.7	1.13	59.2	2.35	
0	-160	57.1	1.17	59.3	1.84	
3.17	-160	57.1	1.17	59.2	2.91	
6.35	-160	57	1.2	59.4	2.29	
9.52	-160	57.2	1.14	59.5	2.38	
12.7	-160	57.1	1.2	59.6	2.15	
15.9	-160	56.7	1.36	59.5	2.05	
19	-160	56.7	1.34	59.4	1.93	
22.2	-160	56.6	1.33	59	2.2	
25.4	-160	56.7	1.32	59	1.86	
28.6	-160	56.6	1.29	58. <i>7</i>	1.93	
31.7	-160	56.9	1.24	58.4	2.59	
34.9	-160	56.8	1.16	58.4	2.45	
38.1	-160	57.1	1.13	58.5	2.18	
41.3	-160	57.2	1.19	58.5	2.12	
44.5	-160	57.6	1.04	58.6	2.38	
47.6	-160	57.7	1.08	58.9	2.29	
50.8	-160	57.8	1.01	59.1	2.28	
54	-160	58	1.04	59.3	2.47	
57.2	-160	58.2	1.11	59.6	2.21	1
60.3	-160	58.1	1.08	59.9	1.61	
63.5	-160	58.3	1.15	60	3.01	4
66.7	-160	57.9	1.19	60.1	2.57	
69.8	-160	57.4	1.39	60.3	2.46	4
73	-160	57.4	1.39	60.3	2.08	4
76.2	-160	57.1	1.37	60.1	2.72	4
79.4	-160	56.8	1.33	60.2	2.18	4
82.6	-160	56.7	1.37	60	3.02	4
85.7	-160	56.6	1.2	59.8	2.75	4
88.9	-160	56.5	1.17	59.6	2.77	4
92.1	-160	56.5	1.16	59.6	1.99	4
95.2	-160	56.5	1.12	59.6	2.54	4
98.4	-160	56.8	1.2	59.4	2.55	1
102	-160	56.9	1.12	59.2	2.89	1

STATION 1

U TURBULENCE INTENSITY

STATION 1

V TURBULENCE INTENSITY

Velocity in M/SEC Data is from the following files: ST2A1118,1,33 STATION 2 SUCTION SIDE

X(in)	Z(in)	II-Mean	U-Standard	U-Moon I	1-Chandard	III Anala
A(111)	2(11)	Velocity		Velocity		
-1.08	-4.79	78.3				Mean
-1.02	-4.79			39.1	1.35	26.5
-1.01	-4.79	89.6 89		67.4	4.74	36.9
-1.01	-4.79	88.3	1.61	68	4.53	37.4
992	-4.79	87	1.65	69.2	2 74	38.1
979 979	-4.79	85.2	1.75	69.8	3.76	38.7
			1.88	70	3.94	39.4
964 948	-4.79 -4.79	83.5	1.8	70.9	3.49	40.3
946 93		81.3	1.79	71.5	3.24	41.3
93 911	-4.79	79.1	1.89	·	3.05	42.3
	-4.79 -4.70	76.6	1.72	72.2	2.96	43.3 44
889	-4.79	75.3	1.78	72.7	2.59	44.7
866 84	-4.79 -4.79	73.3	1.57	72.6	2.37	45.5
811	-4.79	71.2 69.4	1.54	72.5	2.42	46.3
811 78	-4.79	67.5	1.52	72.5 72.2	1.87	46.9
745	-4.79	66		72.4		47.7
745 707	-4.79		1.45	72.4	1.74	47.7
	-4.79	64.2 62.8	1.27	71.4	1.48	48.6
665	-4.79	61	1.25	70.7	1.61	49.2
619 569	-4.79	59.7	1.25	70.4	1.41	49.7
513	-4.79	58.4	1.23	69.8	1.32	50.1
452	-4.79 -4.79	57.1	1.19	69.1	1.33	50.5
384	-4.79	55.9	1.14	68.9	1.33	50.9
31	-4.79	54.7	1.1	68.4	1.2	51.3
229	-4.79	53.5	1.07	67.7	1.16	51.7
14	-4.79	52.3	1.06	67.3	1.14	52.1
041	-4.79	51.2	1.07	66.7	1.17	52.5
.0672	-4.79	50.1	1.09	65.9	1.16	52.7
		49	1.03	64.9	1.14	52.9
.186	-4.79 -4.79	47.9	1.03	63.8	1.19	53.1
.317	-4.79 -4.79	46.6	1.05	62.4	1.21	53.2
.462	-4.79 -4.79	45.6	1.13	60.8	1.23	53.1
.62		44.4	1.22	58.7	1.24	52.9
.795	-4.79	44.4	1 . 6. 4		£ 24_ · (· ·

Velocity in M/SEC Data is from the following files: ST2B1209.1.30 STATION 2B PRESSURE SIDE

K(in)	Z(in)	U-Mean	U-Standard	V-Mean	V-Standard	UV-Angle
		Velocity	Deviation	Velocity	Deviation	Mean
1.72	-4.79	33.9	5.91	22.6	7.21	33.7
1.72	-4.79	31.6	4.22	21.5	3.68	34.3
1.72	-4.79	31.3	3.46	20.6	3.62	33.4
1.71	-4.79	34.9	1.95	20.8	2.27	30.7
1.69	-4.79	38	1.89	23.4	1.87	31.6
1.68	-4.79	40.5	1.74	26.2	1.73	32.9
1.67	-4.79	42.3	1.57	28.6	1.74	34.1
1.65	-4.79	43.9	1.42	30.7	1.48	35
1.63	-4.79	45.2	1.3	32.8	1.51	36
1.61	-4.79	46.1	1.17	34.9	1.56	37.1
1.59	-4.79	47	1.15	36.8	1.39	38
1.57	-4.79	47.6	1.05	38.5	1.38	39
1.54	-4.79	48.1	1.05	40.1	1.44	39.8
1.51	-4.79	48.5	1.05	41.6	1.24	40.6
1.48	-4.79	49	.969	43	1.25	41.2
1.45	-4.79	49.3	.98	44.2		41.9
1.41	-4.79	49.7	.978	45.6	1.21	42.5
1.37	-4.79	50.2	1	46.8		43
1.32	-4.79	50.5	.961	48	1.3	43.6
1.27	-4.79	50.7	.948	49.3		44.2
1.22	-4.79	51	.977	50.6		44.8
1.16	-4.79	51.4	1	51.8		45.3
1.09	-4.79	51.6	1.01	52.9		45.7
1.03	-4.79	51.9	1.07	54.1	1.29	46.1
.953	-4.79	52.3	1.13	55.2	1.23	46.5
.872	-4.79	52.7	1.32	56.3	1.17	16.9
.782	-4.79	53.2	1.22	57.4	1.25	47.2
.683	-4.79	53.9	1.54	58.7	1.1	47.5
.585	-4.79	54.5	1.69	60		47.8
.485	-4.79	56.2	2.35	60.5	.981	47.1

STATION 2 TOTAL VELOCITY

STATION 2

FLOW ANGLE

VELOCITY M/S

STATION 2

U TURBULENCE INTENSITY

STATION 2

V TURBULENCE INTENSITY

Velocity in M/SEC Data is from the following files: ST7A0126,1,31 STATION 7A SUCTION SIDE

	STRITON /H	200 LOM				
X(in)	Z(in)	U-Mean	U-Standard			UV-Angle
		Velocity	Deviation	Velocity	Deviation	Mean
169	-3.29	41.1	9 10.6	58	9.3	54.2
164	-3.29	35.	7 7.85	60.6	8.14	59.5
16	-3.29	43.6	9.57	60.5	8.35	54.2
15	-3.29	34.3	3 4.1	64	8.37	61.8
125	-3.29	36.3	1 4.07	67.7	8.8	61.9
101	-3.29	37.	5 4.05	71.6	9.03	62.4
0837	-3.29	38.5	3.95	73.4	9.35	62.3
0642	-3.29	39.8	3.72	76.8	8.75	62.6
0428	-3.29	40.1	3.27	79.4	7.84	63.2
0192	-3.29	40.7	3.17	81.5	5.89	63.5
.0067	-3.29	40.9	2.47	82.7	4.1	63.7
.0352	-3.29	40.8	3 2.05	82.9	3.17	63.8
.0667	-3.29	40.5	5 1.71	82.3	2.66	63.8
.101	-3.29	40.2	2 1.45	81.9	1.93	63.9
.139	-3.29	39.8	1.39	81.1	2.16	63.8
.181	-3.29	39.3	3 1.4	80	2.45	63.9
.227	-3.29	38.9	1.35	79	2.97	63.8
.277	-3.29	38.4	1.24	78.2	1.61	63.9
.333	-3.29	38	1.25	77.2	1.39	63.8
.394	-3.29	37.6	1.54	76.2	1.54	63.7
.461	-3.29	37	1.36	75.2	1.66	63.8
.535	-3.29	36.7	1.36	73.9	1.65	63.8
.617	-3.29	35.9	1.16	72.9	1.74	63.8
.706	-3.29	35.2	1.26	71.7	1.44	63.8
.805	-3.29	34.6	1.33	70.4	1.3	63.8
.913	-3.29	33.9	1.08	69.2	1.1	63.9
1.03	-3.29	33.2	1.22	67.9	1.16	63.9
1.16	-3.29	32.4	1.22	66.3	1.2	64
1.24	-3.29	32	1.25	65.4	1.18	64
1.34	-3.29	31.4	1.75	64.3	1.21	64
1.44	-3.29	30.7	1.24	63.3	1.24	64.1

Velocity in M/SEC Data is from the following files: ST7B0121.1,30 STATION 7B PRESSURE SIDE

	31111011 78					
X(in)	Z(in)		U-Standard			UV-Angle
		Velocity	Deviation	Velocity	Deviation	Mean
2.42		20.1		35.4	4.98	60.5
2.41		23.6	2.68	40.7	8.56	59.9
2.41	-3.29	24.8	1.29	52.2	1.89	64.6
2.4	-3.29	25	.911	53.5	3.06	64.9
2.4	-3.29	25.2	.833	53.9	1.57	65
2.39	-3.29	25.2	.84	54.1	1.25	65
2.37	-3.29	25.3	.871	54.2	1.24	65
2.36	-3.29	25.4	.882	54.3	1.22	65
2.34	-3.29	25.5		54.5	1.17	64.9
2.33	-3.29	25.7	.945	54.6	1.31	64.8
2.31	-3.29	25.8	.97	54.9	1.19	64.8
2.28	-3.29	25.9	.992	55.1	1.21	64.8
2.26		26.1		55.4	1.16	64.7
2.23		26.2	1.02	55.5	1.17	64.7
2.21	-3.29	26.4	1.01	55.8	1.22	64.6
2.17	-3.29	26.6	1.04	56	1.2	64.6
2.14		26.8		56.4	1.14	64.6
2.1	-3.29	27	1.04	56.8	1.15	64.5
2.06	-3.29	27.3	1.07	57.1	1.21	64.5
2.01	-3.29	27.6	1.13	57.4	1.28	64.4
1.96	-3.29	27.9	1.13	58	1.2	64.3
1.91	-3.29	28.2	1.1	58.5	1.22	64.3
1.85	-3.29	28.6	1.16	59	1.19	64.1
1.78	-3.29	29	1.21	59.7	1.15	64.1
1.71	-3.29	29.3	1.17	60.3	1.31	64.1
1.62	-3.29	29.8	1.17	61.1	1.24	64
1.53	-3.29	30.4	1.28	62	1.27	63.9
1.44	-3.29	31	1.22	63	1.21	63.8
1.34	-3.29	31.7	1.26	64.1	1.25	63.7
1.24	-3.29	32.3	1.28	65.2	1.33	63.6

STATION 7

FLOW ANGLE

STATION 7

VELOCITY (M/S)

TURBULENCE INTENSITY

TURBULENCE INTENSITY

STATION 7

U TURBULENCE INTENSITY

STATION 7

V TURBULENCE INTENSITY

Velocity in M/SEC
Data is from the following files: S15A1202,1,30
STATION 15 A SUCTION SIDE

		H SOCITOR				
X(in)	Z(in)		U-Standard	V-Mean	V-Standard	
		Velocity	Deviation			Mean
.119	.036	-2.04	. 904	24.1	2.66	94.8
.123	.036	-3.04	4	24.2	6.18	97.2
.129	.036	-3.08	4.15	24.6	6.51	97.1
.138	.036	-3.27	4.55	25.6	6.58	97.3
.149	.036	-3.48	4.74	26	6.7	97.6
.162	.036	-3.49	4.92	27.8	7.11	97.2
.175	.036	-3.19	4.96	27.9	6.97	96.5
.19	.036	-3.26	5.16	30.2	7.74	96.2
.206	.036	-3.48	5.21	32	7.97	96.2
.223	.036	-3.8	5.35	34.7	8.58	96.2
.243	.036	-3.67	5.25	37.1	8.9	95.7
.264	.036	-4.01	5.64	40.2	9.04	95.7
.288	.036	-4.13	5.25	44.1	8.68	95.3
.314	.036	-4.1	5.14	47.2	8.06	95
.342	.036	-4.3	5.09	51	7.79	94.8
.374	.036	-4.28	4.51	54.6	7.45	94.5
.408	.036	-4.32	4.59	58.7	7.21	34.2
.446	.036	-4.31	4.08	62.8	6.7	93.9
.488	.036	-4.38	3.49	66.9	4.97	93.7
.534	.036	-4.41	2.83	69.5	3.35	93.6
.584	.036	-4.22	2.19	70.9	2.05	93.4
.64	.036	-3.99	1.73	71.2	1.64	93.2
.701	.036	-3.68	1.36	71.2	1.48	93
.768	.036	-3.43	1.22	71.1	1.42	92.8
.842	.036	-3.17	1.18	70.9	1.4	92.6
.932	.036	-2.86	1.18	70.6	1.34	92.3
1.03	.036	-2.59	1.17	70.4	1.31	92.1
1.13	.036	-2.3	1.2	70.3	1.28	91.9
1.23	.036	-2.11	1.15	69.9	1.53	91.7
1.33	.036	-1.94	1.14	69.7	1.28	91.6

Velocity in M/SEC
Data is from the following files: S15B1202,1,35
STATION 15B PRESSURE SIDE

((in)	Z(in)	U-Mean	U-Standard	V-Mean	V-Standard	HV-Angle
· ·		Velocity	Deviation			Mean
2.92	.0359	6.05	2.71	38.7		81.1
2.92	.036	7.54	2.91	54.3		82.1
2.91	.036	7.79		57.2		82.2
2.9	.036	8.32	3.13	60.7		82.2
2.89	.036	8.42	2.91	62.9		82.4
2.88	.036	8.51	2.66	65.3		82.6
2.87	.036	8.7	2.2	67.8		82.7
2.85	.036	8.73	1.8	69.3	2.95	82.8
2.83	.036	8.72	1.4	70.2	1.86	82.9
2.81	.036	8.67	1.16	70.3		83
2.79	.036	8.78	1.08	70.2	1.4	82.9
2.77	.036	8.77	1.06	70.1	1.23	82.9
2.75	.036	8.8	1.12	69.7	1.34	82.8
2.72	.036	8.79	1.09	69.5	1.19	82.8
2.69	.036	8.93	1.11	69.3	1.23	82.7
2.66	.036	9.02	1.19	69.1	1.37	82.6
2.63	.036	9.11	1.23	68.9	1.44	82.5
2.59	.0359	9.27	1.22	68.8	1.21	82.3
2.55	.036	9.41	1.19	68.5	1.41	82.2
2.5	.036	9.48	1.26	68.4	1.33	82.1
2.45	.0359	9.56	1.28	68.4	1.29	82
2.4	.036	9.8	1.26	68.4	1.24	81.8
2.34	.036	9.88	1.29	68.3	1.27	81.8
2.27	.036	10.1	1.26	68.4	1.32	81.6
2.19	.036	10.1	1.28	68.2	1.23	81.6
2.11	.036	10.2	1.27	68.3	1.26	81.5
2.02	.036	10.4	1.23	68.5	1.25	81.4 81.4
1.92	.036	10.4	1.21	68.7	1.35	81.5
1.82	.036	10.3	1.22	68.7 68.9	1.19	81.4
1.72 1.62	.036	10.4 10.3	1.14	69	1.16	81.5
1.52	.036	10.3	1.09	69.1	1.15	81.6
1.42	.036	10.2	1.14	69.3	1.16	81.6
1.32	.036	10.1	1.1	69.5	1.2	81.7
1.22	.036	9.85	1.07	69.6	1.34	81.9

STATION 15

TOTAL VELOCITY

VELOCITY (M/S)

ANGLE (DEG)

STATION 15

FLOW ANGLE

STATION 15

U TURBULENCE INTENSITY

STATION 15

V TURBULENCE INTENSITY

Velocity in M/SEC Data is from the following files: ST181207.1.41 STATION 18

X(in)	Z(in)	U-Mean	U-Standard	VMean	V-Standard	UV-Angle
		Velocity	Deviation	Velocity	Deviation	Mean
-1	.678	3.64	1.17	67.5	1.31	86.9
875	.678	3.66	1.06	67.5	1.4	86.9
75	.678	3.78	1.09	67.6	1.37	86.8
625	.678	3.82	1.11	67.6	1.56	86.8
5	.678	4.01	1.16	67.7	1.43	86.6
375	.678	4.14	1.17	67.8	1.26	86.5
25	.678	4.28	1.25	67.9	1.36	86.4
125	.678	4.68	2.09	67.8	2.56	86.1
.0001	.678	4.64	7.69	38.1	10	83.1
.125	.678	398	5.45	24.6	6.5	90.9
.25	.678	0235	5.07	35.6	8.03	90
.375	.678	.95	4.37	50.4	7.23	88.9
.5	.678	1.68	- 3.3	63.4	5.3	88.5
.625	.678	1.87	1.76	68.1	2	88.4
.75	.678	2.09	1.16	68.3	1.77	88.3
.875	.678	2.38	1.09	68.2	1.38	88
1	.678	2.81	1.09	68	1.6	87.6
1.12	.678	3.03	1.08	67.9	1.5	87.4
1.25	.678	3.2	1.03	67.7	1.24	87.3
1.38	.678	3.38	1.02	67.6	1.39	87.1
1.5	.678	3.49	1.01	67.6	1.23	87
1.62	.678	3.68	.992	67.6	1.64	86.9
1.75	.678	3.88	.995	67.6	1.61	86.7
1.87	.678	4.1	1.03	67.6	1.38	86.5
2	.678	4.15	1.06	67.6	1.21	86.5
2.12	.678	3.84	1.17	67.6	1.58	86.7
2.25	.678	3.91	1.22	67.4	1.34	86.7
2.38	.678	4.16	1.19	67.5	1.45	86.5
2.5	.678	4.2	1.13	67.3	1.71	86.4
2.62	.678	4.43	1.18	67.6	1.77	86.3
2.75	.678	4.59	1.16	67.5	1.8	86.1
2.87	.678	5.34	2.57	66.8	3.17	85.4
3	.678	4.67	8.03	31.5	9.13	81.6
3.12	.678	476	5.47	24.1	6.5	91.1
3.25	.678	.436	5.05	38.8	9	89.4
3.38	.678	1.45	3.65	57.3	6.65	88.6
3.5	.678	1.64	1.96	67.4	2.28	88.6
3.62	.678	1.8	1	68.3	1.71	88.5
3.75	.678	2.23	.976	68.6	1.36	88.1
3.87	.678	2.54	1.03	68.6	1.52	87.9
4	.678	2.62	1.1	68.5	1.47	87.8

Velocity in M/SEC Data is from the following files: STATION 18 HIGH SUCTION

X(mm)	Z(mm)	U-Mean	U-Standard	V-Mean	V-Standard	UV-Angle
		Velocity	Deviation	Velocity	Deviation	Mean
-25.4	17.2	3.6		66.3		86.9
-22.2	17.2	3.87	1.19	67.7	2.62	86.7
-19	17.2	3.95	1.26	68	2.79	86.7
-15.9	17.2	4.08	1.34	68.1	2.82	86.6
-12.7	17.2	4.16	1.49	68	2.92	86.5
-9.52	17.2	4.15	1.47	68	3.17	86.5
-6.35	17.2	4.4	1.47	67.9	3.11	86.3
-3.17	17.2	6.53	3.06	62.7	7.15	84.1
0	17.2	4.69	9.07	22.7	7.94	78.3
3.17	17.2	586	4.81	21.4	6.95	91.6
6.35	17.2	1.95	4.38	39	9.06	87.1
9.52	17.2	3.39	3.64	56.5	7.16	86.6
12.7	17.2	1.78	1.92	67	3.35	88.5
15.9	17.2	1.3	1.26	67.8	2.57	88.9
19	17.2	1.61	.963	67.7	3.62	88.6
22.2	17.2	1.96	.941	68	2.81	88.3
25.4	17.2	2.19	.954	68	3.29	88.2
28.6	17.2	2.65	1.24	68.3	2.67	87.8
31.7	17.2	2.91	1.03	68.1	3.49	87.6
34.9	17.2	3.27	1.11	68.1	3.3	87.3
38.1	17.2	3.39	1.21	68.3	3.04	87.2
41.3	17.2	3.63	1.29	68.1	3.04	86.9
44.5	17.2	3.77	1.3	67.9	3.78	86.8
47.6	17.2	3.95	1.38	67.9	3.52	86.7
50.8	17.2	4.02	1.36	67.8	3.3	86.6
54	17.2	3.96	1.33	67.5	3.47	86.6
57.2	17.2	4.03	1.33	67.5	3.35	86.6
60.3	17.2	3.8	1.22	67	3.77	86.8
63.5	17.2	3.69	1.21	67.1	3.32	86.9
66.7	17.2	3.8	1.18	67.1	2.93	86.8
69.8	17.2	4.36	1.36	67.2	3.13	86.3
73	17.2	7.56	4.11	57.5	8.55	82.5
76.2	17.2	2.96	8.44	21	_6.3	82
79.4	17.2	.362	4.56	28.4	7.98	89.3
82.6	17.2	2.3	3.81	46.3	7.31	87.2
85.7	17.2	3.91	3.33	59.9	6.65	86.3
88.9	17.2	1.76	1.89	67.9	3.36	88.5
92.1	17.2	1.58	1.1	68.2	3.7	88.7
95.2	17.2	1.8	1.16	68.1	3.62	88.5
98.4	17.2	2.19	1.19	68.2	3.58	88.2
102	17.2	2.43	1.14	68.2	2.8	88

STATION 18

FLOW ANGLE

STATION 18

U TURBULENCE INTENSITY

ANGLE (DEG)

TURBULENCE INTENSITY

STATION 18 V TURBULENCE INTENSITY

APPENDIX B. DATA REDUCTION

This Appendix contains the following:

- 1. All equations used for the calculations in this document.
- 2. The output of \mathbf{V}_{ref} calculations for the LDV data and program.

B1. LIST OF EQUATIONS

The following equations were used to reduce all data taken by the rake probe and the instrumented blade.

For all rake surveys:

$$C_p = \frac{P_{T i}}{P_{T \max}} \tag{1}$$

$$Q = P_{T 12} - P_{S 9}$$
(2)

$$\alpha = 0.0805 + 31.575 \frac{P_{10} - P_{11}}{Q}$$
 (3)

$$P_{s \ corrected} = P_{s} - (0.412 + 0.1817Q)$$
 (4)

where numbered subscripts indicated probe number of the rake. The α and corrected $P_{\rm s}$ derivations are describle in Appendix C.

The computation of the displacement thickness comes from the definition:

$$\delta^* = \int (1 - \frac{u}{U}) dy$$
 (5)

For the rake probe, the integration interval was taken from the endwall to pressure port 8 for the north and 12 for the south, a total of three inches span for each. This resulted in the following equation for the north endwall:

$$\delta^* = \int \left[1 - \int \frac{\left[\frac{C_{P \ i}}{C_{P \ 8}} * P_{T \ \text{max}} \right] - P_S}{Q} \right] dy$$
 (6)

The integration was performed using the trapezoidal method.

To compute the axial velocity ratio, the definition from Reference 1 was used:

$$AVR = \int_{0}^{S} \frac{C_{z}}{C_{z}} dx \tag{7}$$

where c_z is the axial velocity at the upstream, (1), and downstream, (2), locations and s is one blade space, (3 in.). Because of this definition and since the analysis was done for the incompressible case, the local velocity and flow angle measured by the rake probe was used and corrected for by the

Prandtl total pressure to compensate for the run-to-run variations. This yielded the following equation:

$$AVR = \int \frac{\sqrt{((P_{12} - P_{3}) * \frac{2}{\rho})_{2}}}{\sqrt{((P_{12} - P_{3}) * \frac{2}{\rho})_{1}}} * \sqrt{\frac{P_{T1}}{P_{T2}}} * \frac{Cos(\beta_{2})}{Cos(\beta_{1})} dx$$
(8)

where P_T is the corresponding Prandtl total pressure and P_s is from Equation (4). This integration was performed by a summation since the interval was held constant. $$^{\circ}$$ was measured with the following equation:

$$\beta = \beta_{rake} + \alpha \tag{9}$$

where $\mathfrak{B}_{\text{rake}}$ is the angle the rake probe was mounted in the tunnel, which was 46° for upstream and 90° for downstream, and α is from Equation (3).

The instrumented blade pressure coefficients were computed as follows:

$$C_p = \frac{P_i - P_\infty}{(P_T - P_S)_{Prandtl}} \tag{10}$$

where P_i was the instrumented blade pressure tap number.

B2. V_{ref} COMPUTATION AND PROGRAM

The method for the calculation of V_{ref} came from Elazar [Ref. 9]. The program was written by Garth V. Hobson.

```
รื่อออจอกของการกรกรกรกรกรากการการการกรรมของของกรรมของออจอจอจอจอจองกรองกรองกรรมของออจอจอจอจ
     LEAST SQUARES STRAIGHT LINE CURVE FIT IS USED TO DETERMINE TUNNEL CHARACTERISTICS AT BITTERENT SPEEDS
     NEWTON S METHOD IS USED TO DETERMINE THE REPERENCE VELOCITY FROM THE RECORDED AMBIENT PRESSURE AND TEMPERATURE
PEGIN DETERMINING TUNNEL CHARACTERISTICS FROM THE FOLLOWING MEASURED VALUES
                          TONGENTIAL VEL.
                                                AMBIENT PRESS. PLENUM PRESS. INCHES DERCURY INCHES DATER
     CALCULATED VALUES FOR THE TUNNEL CONFIGURATION
                            MACH NUMBER
                                                     MACH MUMBER FUNCT.
CALLING LEAST SQUARES SUBROUTINE
TO DETERMINE THE PRESSURE RATIO AS A FUNCTION OF HACH NO. PARALL
PRESSURE RATIO = A1 * ANUX + AØ
    MAIRIX EQUATION
                         0.16E+00 A0
                    Ø.14801277555E+01
                                                        0.26913143560E-07
                                              PLENUM TEMPERATURE
DEGREES CELSTUS
                                                                        RUM NAME
       30.0550
                                               17.4444
                         10.4000
                                                                         STISUCK, PRN
STIBSUCK, PRN
 PRESSURE RATIO = 0.02573 MACH NUMBER PARAMETER - 0.3838E 01
            BEGIN NEWTON ITERATION
                                      PARAM. = 0.106457
PARAM. = 0.106459
PARAM. = 0.10620B
                 81.45063904852
 T = 2
PRESSURE RATIO = 0.02641 MACH NUMBER PARADETER = 0.3709E-01
RUN NAME = STIBSUCK.PRN
            BEGIN NEWTON ITERATION
                 82.4981I3I8969
                                                       MONE
                           REFERENCE VELUCITY
 EXPERIMENT NUMBER
                                                         STISUCK.FRN
STIBSUCK.FRN
                                 B1.4505
B2.4981
```

```
россовоесное поправое поправо
                 LEAST SQUARES STRATGHT LINE CURVE DIT IS USED TO DETERMINE TUNNEL CHARACTERISTICS AT DITTERIN SPEEDS
                                                   NETHOD 15 USED TO DETERMINE THE REFERENCE VELOCITY RECORDED AMBIENT PRESSURE AND TUNNEL DIFFICIL
PEGIN DETERMINING TUNNEL CHARACTERISTICS FROM THE FOLLOWING MEASURED VALUES
                                       ATED VALUES FOR THE TUNNEL CONFIGURATION
TO DETERMINE THE PRESSURE RATIO AS A FUNCTION OF MACH NO. PARAM
              MOTRIX EQUATION
                                                               Ø.12975874005E+01
                      30.0500
                                                                                                                                                 23.3300
17.7778
          PRESSURE RATIO = 0.03004 MACH NUMBER PARAMETER = 0.38788 01
                                               BEGIN NEWTON ITERATION
                                                                                   1 MACII NO. PARANI. = 0.106009 ERROR FERTI = MACII NO. PARANI. = 0.107074 ERROR FERTI = 1.007070 ERROR FERTI = 1.007070
                                                               82.65550826344
         1 = 2
PRESSURE RATIO = 0.02984 MACH NUMBER CARAMETER = 0.38720-01
RUN NAME = STIBLE07.PRN
                                              BEGIN NEWION ITERATION
                                                                                              MACH NO. PARAM. = 0.107076 | ERRUR LERU - 0.39772E-03
MACH NO. PARAM. = 0.106699 | ERRUR LERU - 0.6517E-06
MACH NO. PARAM. - 0.106698 | ERRUR LERU - 0.1756E-11
        EXPERIMENT NUMBER
                                                                                              REFERENCE VELDCITY NAME
                                                                                                                   B2.6555
B1.5734
                                                                                                                                                                                                 SIJAJ209.PRN
SIJBJ207.PRN
```

```
0000000000000000
                                               COLIBRATION CHRVE FOR THE HIS LOW SPEED
          THE REFERENCE VELOCITY IS THEN OBTAINED. BY DEPENDING ON THE TUNNEL PLENUM PRESSURE AND
C
                      T=10,FILE='CALIB.DAI',STATUS='UNKMONN')
I=11,FILE='REFER.DAI',STATUS='UNKMONN')
T=12,FILE='CALIB.DUI',STATUS='UNKMONN')
C
 חחחחח
                                C
 COCO
           CALL THE LEAST SQUARES SUBROUTINE TO FIT A STRAIGHT LIME DATA: X-AXIS = PR. Y-AXIS = ANUX (MACH NO. MARANETER)
                                                                S SUBROUTINE',/1X.
AS A FUNCTION OF HACH NO. PARAM
+ A0',//)
 C
                  LEASTSDUARE (NP, PR, ANUX, AØ, A1)
 C
CCC
000
                  REFERENCE CONDITIONS
```

```
TPUT TPOUT PROBRACT CALCURATE
                       AIR. MERCHRY AND WATER PRIDERTIES
                DETERMINING TUNKEL PHOROPHERSINGS
100
             BB 1=1,NE
PRRT1)=1,DØ=(RHOHB*PAR(1))/(RHHU*PPR(1))RHDHB*PAR(1))
 r.
 מממממ
         GUESS INITIAL VALUE OF VREE - VIOT(5)
 C
                                                        HALH HD. PARAH. - 1,18.6.
 C
    999
 PRINT FINAL RESULT
        WRITE(12,505)
FORMAT(71x, EXPERIMENT MUMBER
DU 77 1-1, NE
WRITE(12,590)I, VREF(II, NAME(I)
```

```
CUNTINUE
FORMAT(BX,12,16X,F8.4,10X,A14)
STOP
END
A LEAST SQUARES CURVE FIT FOR A STRAIGHT LINE THROUGH HOTSY DATA
         ALGORITHM TAKEN FROM:
         SUBROUTINE LEASTSQUARE(N,x,FX,AØ,AI)
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION COEFF(2,2),RNS(2),X(N),FX(N)
SET UP COEFFICIENT MATRIX AND RIGHT HOND SIDE.
С
        RHS(1)=0.00
RHS(2)=0.00
C
        CONTINUE
CUEFF(2,1)=COEFF(1,2)
C
C
C
          PRINT MATRIX EQUATION
   3 CONTINUE
102 FURMAT (5x,2(2x,D10.2),' A',11,3x,D10.2)
TERM=COEFF(1,1)/COEFF(2,1)
C
        CDEFF(2,2)=CDEFF(2,2)-CDEFF(1,2)*TERM
RHS(2)=RHS(2)-RHS(1)*TERM
C
        A1=RHS(2)/CDEFF(2,2)
AØ=(RHS(1)-CDEFF(1,2)*A1)/CUEFF(1,1)
C
        RETURN
```

החחחחחחחחח

APPENDIX C. PROBE CALIBRATION

This Appendix contains the following:

- 1. Yaw probe calibration and plot.
- 2. Static probe correction.

C1. YAW PROBE CALIBRATION

The calibration of the yaw probe, pressure ports 10 and 11, located at the midspan of the rake probe was accomplished by mounting it in a free jet and subjecting it to three different dynamic pressures. The range of dynamic pressure was 12.2 in. $\rm H_2O$, 14.1 in. $\rm H_2O$ and 16 in. $\rm H_2O$. The probe was yawed from -5° to +5° in one degree increments. A line was fitted to the data for each test and finally an average equation was fitted. It was noticed that the variation of $(\rm P_{10}-\rm P_{11})$ was not the same for positive and negative incidence due to manufacture imperfection. The uncertainty in the probe calibration was calculated to be 0.5°. The average equation is found in Appendix B.

The data are presented on the following pages and followed by the plot of the data with each equation.

C2. STATIC PROBE CORRECTION

The static probe displayed a deviation of 1.98 in.

 $\rm H_2O$ for the first calibration run and 2.34 in. $\rm H_2O$ for the other two runs. Therefore, a line was fitted to correct the rake-measured static pressure for the tunnel velocity variations. The Reynolds number referenced to the probe diameter was between 6000 and 7000, therefore, Reynolds number effect was considered to be negligible. The correction equation is found in Appendix B.

RAKE PROBE CALIBRATION 10/16/92

REFERENCE PA	-49 9 TN	Р	A= 29.99 I	N Hg	Tt=112 F	
REPERENCE PH	-49.7 IN	PROBE	PROBE	PROBE	DROPE	
ALPHA	PT	(P9)	(P10)	(P11)	(P12)	ATMOS
-5	37.7	47.7	38.6	40.3	37.7	49.9
-4	37.7	47.75	38.7	40.15	37.7	49.9
-3	37.7	47.85	38.95	39.9	37.7	49.9
-2	37.7	47.9	39.05	39.7	37.7	49.9
-1	37.7	47.9	39.25	39.45	37.7	49.9
0	37.7	47.9	39.3	39.3	37.7	49.9
1	37.7	47.9	39.35	39.15	37.7	49.9
2	37.7	48.1	39.5	39	37.7	49.9
3	37.7	48.2	39.8	38.9	37.7	49.9
4	37.7	48.2	39.9	38.8	37.7	49.9
5	37.7	48.2	40.1	38.65	37.7	49.9
		Q:	=14.1 IN H	20		
A1 D11A		PROBE	PROBE	PROBE	PROBE	
ALPHA -5	PT	(P9) 47.35	(P10) 36.9	(P11)	(P12)	ATMOS
-5 -4	35.8			38.9	35.8	49.9
-3	35.8 35.8	47.4 47.5	37.05 37.25	38.65 38.4	35.8 35.8	49.9 49.9
-3 -2	35.8	47.55	37.25	38.15	35.8	49.9
-1	35.8	47.55	37.45 37.65	37.9	35.8	49.9
Ô	35.8	47.6	37.7	37.7	35.8	49.9
1	35.8	47.6	37.7	37.5	35.8	49.9
2	35.8	47.85	38.1	37.4	35.8	49.9
3	35.8	47.7	38.35	37.2	35.8	49.9
4	35.8	47.85	38.6	37.05		49.9
5	35.8	47.7	38.8	36.95	35.8	49.9
	00.0	77.17	30.0	30.70	00.0	
		Q=	:16 IN H20			
		PROBE	PROBE	PROBE	PROBE	
ALPHA	PT	(P9)	(P10)	(P11)	(P12)	ATMOS
-5	33.9	47.5	35.2	37.35	33.9	49.9
-4	33.9	47.6	35.3	37	33.9	49.9
-3	33.9	47.7	35.55	36.75	33.9	49.9
-2	33.9	47.7	35.7	36.5	33.9	49.9
-1	33.9	47.7	35.9	36.15	33.9	49.9
0	33.9	47.7	36	36	33.9	49.9
1	33.9	47.7	36.2	35.7	33.9	49.9
2	33.9	47.6	36.45	35.55	33.9	49.9
3	33.9	47.6	36.8	35.4	33.9	49.9
4	33.9	47.55	37	35.2	33.9	49.9
5	33.9	47.5	37.3	35.2	33.9	49.9

ALPHA (DEG)

RAKE CALIBRATION

Q = 14.1 IN H20

ALPHA (DEG)

RAKE CALIBRATION
Q = 16.0 IN H20

ထ

ALPHA (DEG)

0

7

Ŋ

RAW DATA --- EQUATION

CP (P10-P11)/Qrake

N

APPENDIX D. ENGINEERING DRAWINGS

This Appendix contains all detailed drawings cited in the body of this document. They are displayed in the following order:

- 1. Inlet guide vanes
- 2. Suction slot
- 3. Suction slot adjustable mounting brackets
- 4. Porous baffle
- 5. Suction manifold cross section
- 6. Rake probe plan view
- 7. Rake probe spanwise dimensions

LIST OF REFERENCES

- 1. Horlock, J. H., <u>Axial Flow Compressors</u>, Krieger Publishing Company, 1958, pp. 73-75.
- 2. Rodger, P., and Sjolander, S., <u>Establishing Two-Dimensional Flow in a Large Scale Planar Turbine Cascade</u>, AIAA paper 92-3066 presented at the 28th Joint Propulsion Conference and Exhibit, Nashville, TN, July 6-8, 1992.
- 3. Gostelow, J. P., <u>Cascade Aerodynamics</u>, 1st Ed., Permagon Press, 1984, pp. 35-40.
- 4. Barnwell, R. W., <u>Effect of Sidewall Suction on Flow in Two-Dimensional Wind Tunnels</u>, AIAA paper 84-0242 presented at the AIAA 22nd Aerospace Sciences Meeting, Reno, NV, Jan. 9-12, 1984.
- 5. Deutsch, S., and Zierke, W. C., <u>The Measurement of Boundary layers on a Compressor Blade Cascade Part I: A Unique Experimental Facility</u>, ASME paper 87-GT-248 presented at the Gas Turbine Conference and Exhibition, Anaheim, CA, May 31 June 4, 1987.
- 6. Hobbs, D. E., Wagner, J. H., Dannenhoffer, J. F., and Dring, R. P., <u>Wake Experiments and Modeling for Foreand Aft-Loaded Compressor Cascades</u>, Pratt and Whitney Aircraft Group Government Products Division, West Palm Beach, FL, Sept., 1980.
- 7. Sanger, N. L., and Shreeve, R. P., <u>Comparison of Calculated and Experimental Cascade Performance for Controlled-Diffusion Compressor Stator Blading</u>, Transactions of the ASME, Journal of Turbomachinery, Vol. 108, No. 1, pp. 42-50, July 1986.
- 8. Dreon, J. W., <u>Controlled Diffusion Compressor Blade</u>
 <u>Wake Measurements</u>, M.S. Thesis, Naval Postgraduate
 School, Monterey, California, September 1986.
- 9. Elazar, Y., <u>A Mapping of the Viscous Flow Behavior in a Controlled Diffusion Compressor Cascade Using Laser Doppler Velocimetry and Preliminary Evaluation of Codes for the Prediction of Stall, Ph.D. Dissertation, Naval Postgraduate School, Monterey, California, March 1988.</u>

- 10. Classick, M., <u>Off-Design Loss Measurements in a Compressor Cascade</u>, M.S. Thesis, Naval Postgraduate School, Monterey, California, September 1989.
- 11. Hobson, G., and Shreeve, R., <u>Inlet Turbulence</u>

 <u>Distortion and Viscous Flow Development in a</u>

 <u>Controlled-Diffusion Compressor Cascade at Very High</u>

 <u>Incidence</u>, AIAA paper 91-2004 presented at the 27th

 Joint Propulsion Conference, Sacramento, CA, June 2426, 1991.
- 12. Rose, C., and Guttormson, D. L., <u>Installation and Test of a Rectilinear Cascade</u>, M.S. Thesis, Naval Postgraduate School, Monterey, California, 1964.
- 13. McGuire, A., <u>Determination of Boundary Layer</u>

 <u>Transition and Separation on Double Circular Arc</u>

 <u>Compressor Blades in a Large Subsonic Cascade</u>, M.S.

 Thesis, Naval Postgraduate School, Monterey, California, September 1983.
- 14. Murray, K., <u>Automation and Extension of LDV</u>

 <u>Measurements of Off-Design Flow in a Subsonic Cascade</u>

 <u>Wind Tunnel</u>, M.S. Thesis, Naval Postgraduate School,

 Monterey, California, June 1989.
- 15. Dober, D., <u>3-Dimensional Fiber-Optic LDV Measurements</u>
 <u>in the Endwall Region of a Linear Cascade of</u>
 <u>Controlled-Diffusion Stator Blades</u>, M.S. Thesis, Naval
 Postgraduate School, Monterey, California, March 1993.

INITIAL DISTRIBUTION LIST

1.	Library, Code 0142 Naval Postgraduate School Monterey, California 93943-5002	No. Copies 2
2.	Defense Technical Information Center Cameron Station Alexandria, Virginia 22304-6145	2
3.	Department Chairman, AA Department of Aeronautics Naval Postgraduate School Monterey, California 93943	1
4.	Garth V. Hobson, Turbopropulsion Laboratory Code AA/Hg Department of Aeronautics Naval Postgraduate School Monterey, California 93943	7
5.	Naval Air Systems Command AIR-536T (Attn: Mr. Paul F. Piscopo) Washington, District of Columbia 20361-5360	1
6.	Naval Air Warfare Center Aircraft Division (Trenton) PE-31 (Attn: S. Clouser) 250 Phillips Blvd Princeton Crossroads Trenton, New Jersey 08628-0176	1
7.	Matthew A. Webber U. S. Naval Air Facility PSC 477, Box 25 FPO AP 96306-1225	1

DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL MONTEREY CA 93943-5101 3 2768 00307397 4