Analisi II - sesta parte

Sistemi di EDO del I ordine (SEDO)

Motivazioni

SIR

$$\begin{cases} S'(t) = -\beta I(t)S(t) \\ I'(t) = \beta I(t)S(t) - \gamma I(t) \\ R'(t) = \gamma I(t) \end{cases}$$

3 equazioni in 3 incognite, I ordine

 $\begin{cases} U'(t) = aU(t) - bU(t)V(t) \\ V'(t) = -cV(t) + dU(t)V(t) \end{cases}$

a,b,c,d>0, 2 equazioni in 2 incognite, ${\it I}$ ordine

ullet II legge della dinamica

$$egin{cases} m\gamma''(t) = F(t,\gamma(t),Y'(t)) \ \gamma(t) = (x(t),y(t),z(t)^T) \end{cases}$$

3 equazioni in 3 incognite, II ordine

$$\begin{cases} \gamma'(t) = v(t) \\ mv'(t) = F(t, \gamma(t), v(t)) \end{cases}$$

 $\hat{6}$ equazioni in $\hat{6}$ incognite, I ordine

SEDO I ordine

Si consideri il SEDO del ${\it I}$ ordine

$$y_1'(x) = f_1(x,y_1(x),...,y_n(x))$$

$$\vdots \Leftrightarrow Y'(x) = F(x, y(x))$$

$$y_n'(x) = f_n(x, y_1(x), ..., y_n(x))$$

$$ext{dove } F: E(\subseteq \mathbb{R} imes \mathbb{R}^n) o \mathbb{R}^n ext{ con } F(x, \underline{Y}) = F(x, y_1, ..., y_n) = egin{pmatrix} f_1(x, y_1, ..., y_n) \ dots \ f_n(x, y_1, ..., y_n) \end{pmatrix}$$

e
$$Y(x) = egin{pmatrix} y_1(x) \ dots \ y_n(x) \end{pmatrix}$$

Problema di Cauchy

$$(PC) \begin{cases} y_1'(x) = f_1(x,y_1(x),...,y_n(x)) \\ \dots \\ y_n'(x) = f_n(x,y_1(x),...,y_n(x)) \\ y_1(x^0) = y_1^0 \\ \dots \\ y_n(x^0) = y_n^0 \\ \text{dove } (x^0,\underline{Y^0}) = (x^0,y_1^0,...,y_n^0)^T \in E \end{cases} \Leftrightarrow \begin{cases} Y'(x) = F(x,Y(x)) \\ \underline{Y(x^0)} = \underline{Y^0} \\ \dots \\ \underline{Y(x^0)} = \underline{Y^0} \end{cases}$$

- ullet Una funzione $Y(\cdot):I(\subseteq\mathbb{R}) o\mathbb{R}^n$, I intervallo, si dice soluzione di $\underline{Y}'=F(x,\underline{Y})$ se 1. $Y(\cdot)$ è derivabile in I
 - $(x, Y(x)) \in E, \forall x \in I$
 - 3. $\underline{Y}'(x) = F(x,y(x))$, $\forall x \in I$
- ullet Una funzione $Y(\cdot):I(\subseteq\mathbb{R}) o\mathbb{R}^n$, I intervallo, si dice soluzione di $egin{cases} \underline{Y}'=F(x,\underline{Y})\ \underline{Y}(x^0)=\underline{Y}^0 \end{cases}$ se $Y(\cdot)$ è soluzione di $\underline{Y}'=F(x,\underline{Y})$ Valgono, in particolare:

Teorema (esistenza e unicità locali)

Se $F:A\subseteq (\mathbb{R} imes\mathbb{R}^n) o\mathbb{R}^n$, A aperto, è continua allora $orall (x^0,\underline{y}^0)\in A$ esistono un h>0 e una funzione $y(\cdot):]x_0-h,x_0+h[o\mathbb{R}^n$ di classe C^1 soluzione di $egin{cases} \underline{Y}'=f(x,\underline{Y})\\ \underline{Y}(x^0)=\underline{Y}^0 \end{cases}$ Se inoltre le derivate parziali $rac{\partial F}{\partial u_i}$ con i=1,...,n sono continue n A allora tale soluione è unica

Teorema di esistenza globale

Se $F:A=I imes\mathbb{R}^n o\mathbb{R}^n$, I intervallo, A aperto è continua in A, $x^0\in I$, $y^0\in\mathbb{R}^n$ e, per ogni intervallo compatto $H\subset I$, esistono $lpha,eta\in\mathbb{R}$ t.c. $||F(x,\underline{y})||<lpha||\underline{y}||+eta$, $orall x\in H$ e $\underline{y} \in \mathbb{R}^n$ allora il PC $egin{cases} \underline{Y}' = F(x,\underline{Y}) \\ \underline{Y}(x^0) = \underline{Y}^0 \end{cases}$ ha almeno una soluzione $\underline{y}(\cdot)$ determinata su I

SEDO lineari del I ordine di dimensione n

Sia
$$\mathbb{A}(x)=egin{pmatrix} a_{11}(x)\dots a_{1n}(x) \\ \vdots \ddots \vdots \\ a_{n1}(x)\dots a_{nn}(x) \end{pmatrix}$$
 una matrice di $n\times n$ funzioni $a_{ij}(\cdot):I(\subseteq\mathbb{R})\to\mathbb{R}$, per $i,j=1,...,n$, con I intervallo aperto, continue in I e sia $B(x)=egin{pmatrix} b_1(x) \\ \vdots \\ b_n(x) \end{pmatrix}$ un vettore di $b_n(x)$

$$i,j=1,...,n$$
, con I intervallo aperto, continue in I e sia $B(x)=egin{pmatrix} b_1(x)\ dots\ b_n(x) \end{pmatrix}$ un vettore di

N funzioni $b_i(|cdot):I o\mathbb{R}$ per i=1,...,n.

II SEDO (c)
$$\underline{y}'(x)=\mathbb{A}(x)\underline{y}(x)+B(x)\Leftrightarrow \underline{y}'=\underbrace{\mathbb{A}(x)\underline{y}+B}_{F(x,\underline{y})}$$
, con $\underline{y}(x)=\begin{pmatrix}v_1(x)\\\vdots\\y_n(x)\end{pmatrix}$. Si

dice SEDO lineare del ${\cal I}$ ordine di dimensione n completo

Il SEDO (o) $\underline{y}'(x)=\mathbb{A}(x)\underline{y}(x)\Leftrightarrow \underline{y}'=\mathbb{A}(x)\underline{y}$ si dice SEDO del I ordine di dimensione n omogeneto

Teorema 0

Per ogni $x^0\in I$ e $y^0\in\mathbb{R}^n$, il (PC) $\left\{ egin{align*} \underline{Y}'=\mathbb{A}(x)\underline{y}+B(x) \\ \underline{Y}(x^0)=\underline{Y}^0 \end{array}
ight.$ ha una ed una sola soluzione $y\in C^1$ definita su tutto I (intervallo di definizione dei coefficienti)

Definizione

$$L:C^1(I,\mathbb{R}^n) o C^0(I,\mathbb{R}^n)$$
, ponendo $L(y(\cdot))=y'-\mathbb{A}(\cdot)y(\cdot)$

Teorema 1

 $L:C^1(I,\mathbb{R}^n) o C^0(I,\mathbb{R}^n)$ è un'applicazione lineare

• (c)
$$y'=\mathbb{A}(x)y+B(x)\Leftrightarrow L(y(\cdot)=B(\cdot))\Leftrightarrow y(\cdot)\in L^{-1}(B(\cdot))=S_B$$

$$ullet$$
 (o) $\underline{y}'=\mathbb{A}(x)\underline{y}\Leftrightarrow L(\underline{y}(\cdot))=\underline{0}\Leftrightarrow \underline{y}(\cdot)\in L^{-1}(\underline{0})=S_0=KerL$

Teorema 2 (Struttura di S_B)

L'insieme S_B di tutte le soluzioni di (c) è costituito da tutte e sole le funzioni $\underline{y}(\cdot) = \underline{\overline{y}}(\cdot) + Z(\cdot)$ con \overline{y} una soluzione particolare di (c) e $Z(\cdot)$ soluzione generica di (o)

Teorema 3 (dimensione di $S_0=KerL$)

 $S_0=KerL$ è uno spazion vettoriale di dimensione n

Dimostrazione

Fissato $x^0\in I$, siano $z_1(\cdot),...,z_n(\cdot)$ le soluzioni di $\left\{ \dfrac{\underline{y}'=\mathbb{A}(x)\underline{y}}{\underline{y}(x^0)=\underline{e_1}}\ldots \right\} \left\{ \dfrac{\underline{y}'=\mathbb{A}(x)\underline{y}}{\underline{y}(x^0)=\underline{e_n}}, \text{dove } \left\{ \dfrac{\underline{e_1},...,\underline{e_n}}{\underline{s}} \right\}$ è una base di \mathbb{R}^n (per esempio la base canonica). Si provi che $\left\{ z_1(\cdot),...,z_n(\cdot) \right\}$ è una base di S_0 . $z_1(\cdot),...,z_n(\cdot)$ sono linearmente indipendenti, siano $c_1,...,c_n\in\mathbb{R}$ t.c. $c_1z_1(x)+...+_n$

 $z_1(\cdot),...,z_n(\cdot)$ sono linearmente indipendenti, siano $c_1,...,c_n\in\mathbb{R}$ t.c. $c_1z_1(x)+...+_nz_n(x)=\underline{0}$, $orall x\in I$.

In particolare: $c_1z_1(x^0)+...+_nz_n(x^0)=\underline{0}=c_1\underline{e_1}+...+c_n\underline{e_n}$. Siccome $\underline{e_1},..,\underline{e_n}$ sono

una base allora sono linearmente indipendenti, $\Rightarrow c_1 = ... = c_n = 0$ Si provi che $z_1(\cdot),...,z_n(\cdot)$ generano S_0 . Sia $z(\cdot) \in S_0$, si ponga $\underline{y}^0 = z(x^0) \in \mathbb{R}$. Si consideri il (PC) $\left\{ \underbrace{\underline{Y}' = \mathbb{A}(x)\underline{Y}}_{\underline{Y}(x^0) = \underline{Y}^0} \right\}$. Se $\underline{y}^0 = c_1\underline{e_1} + ... + c_n\underline{e_n}$ allora il (PC) ha come soluzione $z(\cdot)$ e $\underline{y}(\cdot) = c_1z_1(\cdot) + ... + c_nz_n(\cdot)$. Per l'unicità si ha $z(\cdot) = \underline{y}(\cdot) = c_1z_1(\cdot) + ... + c_nz_n(\cdot) \Rightarrow cz_1,...,z_n$ generano S_0 .

basi di $S_0 = KerL$

Si ottengono risolvendo gli
$$n$$
 (PC) $\left\{ \underbrace{\underline{Y}' = \mathbb{A}(x)\underline{Y}}_{\underline{Y}(x^0) = \underline{Y}^0}, \ldots, \left\{ \underbrace{\underline{Y}' = \mathbb{A}(x)\underline{Y}}_{\underline{Y}(x^0) = \underline{Y}^0}, \operatorname{dove} \left\{ \underline{e_1}, ..., \underline{e_n} \right\} \right\}$ è base di \mathbb{R}^n e $x^0 \in I$ fissato. In particolare, se $\left\{ \underline{e_1}, ..., \underline{e_n} \right\}$ è la base canonica di \mathbb{R}^n , $\underline{e_1} = (1, 0, ..., 0)^T$,..., $\underline{e_n} = (0, ..., 0, 1)^T$, allora la matrice $\mathbb{U}(x) = (\underbrace{z_1(\cdot)}_{\operatorname{colonna}}, ..., \underbrace{z_n(\cdot)}_{\operatorname{colonna}})$ si dice matrice risolvente

Osservazione

Se
$$n=1\mathbb{U}(x)=e^{A(x)}$$
, con $A'(x)=a(x)$. Risulta $\mathbb{U}'(\cdot)=(z_1'(\cdot),...,z_n'(\cdot))=(\mathbb{A}z_1(\cdot),...,\mathbb{A}z_n(\cdot))=\mathbb{A}(\cdot)\mathbb{U}(\cdot)$ e $\mathbb{U}(x^0)=\mathbb{I}=I_n$ matrice identità. Cioè \mathbb{U} risolve il (PC) matriciale $\begin{cases} \mathbb{U}'=\mathbb{A}(x)\mathbb{U}\\ \mathbb{U}(x^0)=\mathbb{I}=I_n \end{cases}$

Si ha $det\mathbb{U}(x) \neq 0$, $\forall x \in I$. Infatti supponendo per assurdo che esista $\overline{x} \in I$ t.c. det(mathbbU) = 0, si avrebbe che $z_1(\overline{x},...,z_n(\overline{x})$ sono linearmente dipendenti, cioè $\exists c_1,...,c_n \in \mathbb{R}$ non tutti nulli t.c. $c_1z_1(\overline{x})+...+c_nz_n(\overline{x})=\underline{0}$. Allora la funzione $y(\cdot)=c_1z_1(\cdot)+...+c_nz_n(\cdot)$ è soluzione di $\underbrace{\begin{cases}\underline{y}'=\mathbb{A}(x)\underline{y}\\\underline{y}(\overline{x})=0\end{cases}}$ (in quanto combinazione lineare di

soluzioni di (o)). Poichè la funzione nulla 0 è anche soluzione, per l'unicità, dev'essere $\underline{y}(x)=\underline{0}$, $\forall x\in I$ e quindi $c_1=...=c_n=0$, assurdo \forall , $\Rightarrow det(\mathbb{U}\neq 0, \forall x$. Ne consegue che \mathbb{U} è sempre invertibile $\forall x\in I$, esiste $\mathbb{U}^{-1}(x)$.

Matriche esponenziale

Sia $\mathbb{A}(\cdot)$ indipendente da x, cioè $\mathbb{A}(\cdot)=\mathbb{A}$. Allora il sistema si dice **autonomo**. $\underline{y}=\mathbb{A}\underline{y}$. In questo caso $\mathbb{U}(x)$ si indica con $e^{\mathbb{A}x}$. In particolare $e^{\mathbb{A}}$ si dice **matrice esponenziale**.

Osservazione

Se
$$n=1$$
, $\mathbb{A}=(a)$, con $a\in\mathbb{R}$, $\mathbb{U}(x)=e^{ax}$. Si ha che $e^{\mathbb{A}x}=\sum_{n=0}^{+\infty}\frac{1}{n!}\mathbb{A}^nx^n=\mathbb{I}+\mathbb{A}x+\frac{1}{2}\mathbb{A}^2x^2+...+\frac{1}{n!}\mathbb{A}^nx^n$, con $x\in\mathbb{R}$

Osservazione

Se
$$n=1$$
: $e^{\mathbb{A}x}=\sum rac{1}{n!}a^nx^n$, con $x\in\mathbb{R}$

Teorema 4 (determinazioe delle soluzioni particolari di (c))

Una soluzione particolare di (c) è data da $\underline{y}(x)=\int_{x_0}^x \mathbb{U}(x)\mathbb{U}^{-1}(t)B(t)dt$, $\forall x\in I$, $x_0\in I$.

Osservazione

Se
$$n=1$$
: $\underline{y}(x)=\int_{x_0}^x e^{\mathbb{A}x}e^{-\mathbb{A}(t)}b(t)dt.$

La funzione matriciale $G(x,t)=\mathbb{U}(x)\mathbb{U}^{-1}(t)$, con $x,t\in I$ si dice funzione di Green ed è tale che $\overline{\underline{y}}(x)=\int_{x_0}^x G(x,t)B(t)dt$

Osservazione

Se
$$n=1$$
, $G(x,t)=e^{\mathbb{A}(x)-\mathbb{A}(t)}$ con $\mathbb{A}'(x)=a(x)$, $\sigma(x)=a(x)$

Dimostrazione

$$\begin{array}{l} \operatorname{Si\ ha}\, \underline{\overline{y}}'(x) = \frac{d}{dt}(\mathbb{U}(x)\int_{x_0}^x \mathbb{U}^{-1}(t)B(t)dt) = \underbrace{\mathbb{U}'(x)}_{\mathbb{A}(x)\cdot\mathbb{U}(x)} \cdot \int_{x_0}^x \mathbb{U}^{-1}B(t)dt + \\ \underbrace{\mathbb{U}(x)\cdot\mathbb{U}^{-1}(x)}_{=\mathbb{I}=I_n} \cdot B(x) = \mathbb{A}(x)\cdot\mathbb{U}(x) \cdot \int_{x_0}^x \mathbb{U}^{-1}(t)B(t)dt + B(x) = \\ \underline{\mathbb{A}(x)}\underline{\overline{y}}(x) + B(x) = \underline{\overline{y}}(x), \forall x \in I \end{array}$$