2

F, Cl, Br, I,

C(NH)NH₂, C(NH)NHR⁴, C(NH)NR⁴R⁴, C(NR⁴)NH₂, C(NR⁴)NHR⁴',

C(NR⁴)NR⁴R⁴',

XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴,

XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴', XC(NO(COR⁴))R⁴'

XCN, XCOOH, XCOOR⁴, XCONH₂, XCONR⁴R⁴', XCONHR⁴, XCONHOH,

XCONHOR⁴, XCOSR⁴

XSR⁴, XSOR⁴, XSO₂R⁴,

SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴',

NO₂, XNH₂, XNHR⁴, XNR⁴R⁴', XNHSO₂R⁴, XN(SO₂R⁴)SO₂R⁴',

XNR⁴SO₂R⁴',

XNHCOR⁴, XNHCOOR⁴, XNHCONHR⁴, tetrahydro-2,5-dioxopyrrol-1-yl, 2,5-dihydro-2,5-dioxopyrrol-1-yl, 2,7-dihydro-2,7-dioxoisoindol-1-yl, and R⁴,

wherein two of said substituents for the aryl or heteroaryl group, if they are in orthoposition to one another, can be linked to one another in such a way that they jointly form methanediylbisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl, or butane-1,4-diyl;

 ${\bf R^2}$ means a monocyclic or bicyclic C_{6-10} aryl group or a monocyclic or bicyclic 5-to 10-membered heteroaryl group with 1-4 heteroatoms selected from the group that consists of N, S or O, wherein said aryl or heteroaryl group is unsubstituted or is substituted with up to three of the following substituents, independently of one another:

F, Cl, Br, I,

XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴,

XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴,

XCOOH, XCOOR⁴, XCONH₂, XCONHR⁴, XCONR⁴R⁴, XCONHOH,

XCONHOR⁴, XCOSR⁴,

XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴,

NO₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XN(SO₂R⁴)SO₂R⁴, XNR⁴SO₂R⁴, tetrahydro
2,5-dioxopyrrol-1-yl, 2,5-dihydro-2,5-dioxopyrrol-1-yl, 2,7-dihydro-2,7
dioxoisoindol-1-yl, and R⁴,

wherein two of said substituents for the aryl or heteroaryl group, if they are in orthoposition to one another, can be linked to one another in such a way that they jointly form methanediyl-bisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl, or butane-1,4-diyl;

R³ means one or two substituents which are independently of one another: hydrogen,

F, Cl, Br, I,

XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴,

XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴', XC(NO(COR⁴))R⁴',

XCN, XCOOH, XCOOR⁴, XCONH₂, XCONHR⁴, XCONR⁴R⁴', XCONHOH,

XCONHOR⁴, XCOSR⁴, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴,

SO₂NR⁴R⁴',

NO₂, XNH₂, XNHR⁴, XNR⁴R⁴',

XNHSO₂R⁴, XNR⁴SO₂R⁴', XN(SO₂R⁴)(SO₂R⁴'),

XNHCOR⁴, XNHCOOR⁴, XNHCONHR⁴, tetrahydro-2,5-dioxopyrrol-1-yl, 2,5-dihydro-2,5-dioxopyrrol-1-yl, 2,7-dihydro-2,7-dioxoisoindol-1-yl, or R⁴,

wherein two substituents \mathbb{R}^3 , if they are in ortho-position to one another, can be linked to one another in such a way that they jointly form methanediylbisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl, or butane-1,4-diyl;

 ${f R}^4$ and ${f R}^4$, independently of one another, mean $C_{1.4}$ perfluoroalkyl, $C_{1.6}$ alkyl, $C_{2.6}$ alkenyl, $C_{2.6}$ alkinyl, $C_{3.7}$ cycloalkyl, $C_{1.3}$ alkyl- $C_{3.7}$ cycloalkyl, $C_{1.3}$ alkyl- $C_{6.10}$ aryl, $C_{1.3}$ alkyl-5 to 10-membered heteroaryl with 1-4 N, S or O atoms, or $C_{6.10}$ aryl or 5- to 10-membered heteroaryl with 1-4 N, S or O atoms, wherein aryl and heteroaryl groups are unsubstituted or substituted by one or two substituents selected from F, Cl, Br, CH_3 , C_2H_5 , NO_2 , OCH_3 , OC_2H_5 , CF_3 , and C_2F_5 , or can carry an annelated methanediylbisoxy group or ethane-1,2-diylbisoxy group, and wherein a 5-membered cycloalkyl ring can have an N or O ring member, and wherein a 6- or 7-membered cycloalkyl ring can have N and/or O, and wherein one or two ring members which are each ring nitrogens optionally can be substituted with C_{1-3} alkyl or C_{1-3} alkanoyl,

CI omi.

4.

 ${\bf R}^5$ and ${\bf R}^{5'}$, independently of one another, mean C_{1-6} alkyl, C_{2-6} alkenyl, or C_{2-6} alkinyl, wherein in each case a carbon atom can be optionally replaced by O, S, SO, SO₂, NH, N C_{1-3} alkyl or N C_{1-3} alkanoyl,

 C_{3-7} cycloalkyl- C_{0-3} alkyl, wherein a 5-membered cycloalkyl ring, can optionally have an N or O ring member and a 6- or 7-membered cycloalkyl ring can optionally have one or two ring members which are each N or O, wherein ring nitrogens optionally can be substituted with C_{1-3} alkyl or C_{1-3} alkanoyl,

 C_{6-10} aryl or 5- to 10-membered heteroaryl with 1-4 heteroatoms from N, S, and O, whereby the mentioned alkyl, alkenyl and alkinyl chains can be substituted with one of the previously mentioned cycloalkyls, aryls or heteroaryls,

whereby all previously mentioned alkyl and cycloalkyl radicals can be substituted with up to two substituents selected from CF₃, C₂F₅, OH, O C₁₋₃ alkyl, NH₂, NHC₁₋₃ alkyl, NHC₁₋₃ alkyl), N(C₁₋₃ alkyl)₂, N(C₁₋₃ alkyl)(C₁₋₃ alkanoyl), COOH, CONH₂, and COO C₁₋₃ alkyl, and all previously mentioned aryl and heteroaryl groups can optionally be substituted with one or two substituents selected from F, Cl, Br, CH₃, C₂H₅, NO₂, OCH₃, OC₂H₅, CF₃, and C₂F₅, or else can carry an annelated methanediylbisoxy, ethane-1,2-diylbisoxy group, or₅

 R^5 and $R^{5'}$ together with the nitrogen atom form a 5-to 7-membered heterocyclic group, which can optionally contain another oxygen, nitrogen or sulfur atom and can be optionally substituted by C_{1-4} alkyl, C_{1-4} alkoxy- C_{0-2} alkyl, C_{1-4} alkoxy-carbonyl, aminocarbonyl or phenyl,

A means C_{1-10} alkanediyl, C_{2-10} alkenediyl, C_{2-10} alkinediyl, or (C_{0-5} alkanediyl- C_{3-7} cycloalkanediyl- C_{0-5} alkanediyl), wherein a 5-membered cycloalkyl ring, can optionally have an N or O ring member, and a 6- or 7-membered cycloalkyl ring can optionally have one or two ring members which are each N or O, whereby ring nitrogens optionally can be substituted with C_{1-3} alkyl or C_{1-3} alkanoyl,

whereby in above-mentioned aliphatic chains, a carbon atom or two carbon atoms can be optionally replaced by O, NH, N C_{1-3} alkyl, N C_{1-3} alkanoyl, and whereby alkyl or cycloalkyl groups can be optionally substituted with up to two substituents selected from =O, OH, O C_{1-3} alkyl, NH₂, NHC₁₋₃ alkyl, NHC₁₋₃ alkanoyl, N(C_{1-3} alkyl)₂, and N(C_{1-3} alkyl)(C_{1-3} alkanoyl),

B means COOH, COOR⁵, CONH₂, CONHNH₂, CONHR⁵, CONR⁵R^{5'}, CONHOH, CONHOR⁵, SO₃H, SO₂NH₂, SO₂NHR⁵, SO₂NR⁵R^{5'}, PO₃H, PO(OH)(OR⁵),

Conti

9. 1

PO(OR⁵)(OR⁵), PO(OH)(NHR⁵), PO(NHR⁵)(NHR⁵), or tetrazolyl, in each case bonded to a carbon atom of group A, or the entire group Y-A-B is N(SO₂R⁴)(SO₂R⁴) or NHSO₂R⁴,

- X means a bond, CH₂, (CH₂)₂, CH(CH₃), (CH₂)₃, CH(CH₂CH₃), CH(CH₃)CH₂, or CH₂CH(CH₃),
 - Y means O, NH, NR⁴, NCOR⁴, NSO₂R⁴, provided that if Y means NH, NR⁴, NCOR⁴ or NSO₂R⁴, and
- a) substituent \mathbb{R}^2 contains a nitrogen-containing, saturated heterocyclic group, this heterocyclic group is not substituted in the imine nitrogen with H, methyl, ethyl, propyl or isopropyl,

or

b) in optionally present groups XNHR⁴ or XNR⁴R^{4'} of substituent R², R⁴ and/or R^{4'} does not mean $C_{1.4}$ alkyl,

that B does not mean COOH, SO₃H, PO₃H₂ or tetrazolyl at the same time, and R¹ and R², independently of one another, mean C₅₋₆ heteroaryl or phenyl, if the latter, independently of one another, are unsubstituted, or are substituted simply with C₁₋₆ alkyl, C₁₋₄ perfluoroalkyl, O C₁₋₆ alkyl, O C₁₋₆ alkyl, COOH, COO C₁₋₆ alkyl, CO C₁₋₆ alkyl, CONH₂, CONHR⁴, NO₂, NH₂, NHCOR⁴, NHSO₂R⁴, or with 1 or 2 halogen atoms from the group F, Cl, Br, and I, and

whereby the following compounds are excluded:

- [(1,2-Diphenyl-1H-benzimidazol-6-yl)oxy]acetic acid methyl ester,
- 5-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]pentanoic acid methyl ester,
- 4-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]butanoic acid ethyl ester,
- 5-[[1-(4-nitrophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]-pentanoic acid methyl ester,
 - 6-[[1-(4-nitrophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester,
- 5-[[1-(4-aminophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]pentanoic acid methyl ester,
- 5-[[1-[4-[[(4-chlorophenyl)sulfonyl]amino]phenyl]-2-phenyl-1H-benzimidazol-6-yl]oxy]pentanoic acid methyl ester,

Carry.

- 5-[[1-[4-[(acetyl)amino]phenyl]-2-phenyl-1H-benzimidazol-6-yl]oxy]pentanoic acid methyl ester
- 5-[[1-(3-nitrophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]pentanoic acid methyl ester,
- 6-[[1-(3-nitrophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester, 5-[[1-(3-aminophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]pentanoic acid methyl ester,
- 5-[[1-[3-[[(4-chlorophenyl)sulfonyl]amino]phenyl]-2-phenyl-1H-benzimidazol-6-yl]oxy]pentanoic acid methyl ester, and
- 5-[[1-[3-[(acetyl)amino]phenyl]-2-phenyl-1H-benzimidazol-6-yl]oxy]pentanoic acid methyl ester.
 - 2. (Amended) A benzimdazole compound according to claim 1, wherein
- R^1 is a monocyclic or bicyclic C_{6-12} aryl group or a monocyclic or bicyclic 5- to 10-membered heteroaryl group with 1-2 heteroatoms selected from the group that consists of N, S or O, wherein said aryl or heteroaryl group is unsubstituted or substituted with up to three of the following substituents, independently of one another:

F, Cl, Br, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, XCN, XCOOH, XCOOR⁴, XCONH₂, XCONR⁴R⁴, XCONHR⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴, NO₂, XNHR⁴, XNR⁴R⁴, R⁴, whereby two of said substituents for the aryl or heteroaryl group, if they are in ortho-position to one another, can be linked to one another in such a way that they jointly form

methanediylbisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl, butane-1,4-diyl.

3. (Twice Amended) A benzimdazole compound according to claim 1, wherein

 ${f R}^2$ is a monocyclic or bicyclic $C_{6\text{-}10}$ aryl group or a monocyclic or bicyclic 5- to 10-membered heteroaryl group with 1-2 heteroatoms selected from the group that consists of N, S or O, wherein said aryl or heteroaryl group is unsubstituted or substituted with up to three of the following substituents, independently of one another:

unsubstituted or substituted with up to three of the following substituents, independently of one another:

C3 cont.

F, Cl, Br, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴,

XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴,

XCOOH, XCOOR⁴, XCONH₂, XCONHR⁴, XCONR⁴R⁴, XCONHOH,

XCONHOR⁴, XCOSR⁴, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴,

NO₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XN(SO₂R⁴)SO₂R⁴, XNR⁴SO₂R⁴, R⁴,

whereby two of said substituents for the aryl or heteroaryl group, if they are in ortho-position to one another, can be linked to one another in such a way that they jointly form

4. (Twice Amended) A benzimdazole compound according to claim 1, wherein

methanediylbisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl, butane-1,4-diyl.

 \mathbb{R}^3 is one or two substituents, which are, independently of one another:

hydrogen, F, Cl, Br, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCN, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNH₂, XNHR⁴, XNR⁴N⁴, XNHSO₂R⁴, XNR⁴SO₂R⁴, XN(SO₂R⁴)SO₂R⁴, XNHCOR⁴, XNHCOOR⁴, XNHCONHR⁴, or R⁴, XNHCONHR⁴, XNHCONHR⁴, OR R⁴, XNHCONHR⁴, XNHCONHR⁴, OR R⁴, XNHCONHR⁴, XNHCONHR⁴, XNHCONHR⁴, OR R⁴, XNHCONHR⁴, XNH

whereby two substituents \mathbb{R}^3 , if they are in ortho-position to one another, can be linked to one another in such a way that they jointly form methanediylbisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl, or butane-1,4-diyl.

5. (Twice Amended) A benzimdazole compound according to claim 1, wherein $\mathbf{R^4}$ and $\mathbf{R^{4'}}$, independently of one another, are each CF₃, C₂F₅, C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkinyl, C₃₋₆ cycloalkyl, (C₁₋₃ alkyl-C₃₋₆ cycloalkyl), phenyl or 5- to 6-membered heteroaryl with 1-2 N, S or O atoms, wherein the phenyl and heteroaryl group is unsubstituted or substituted with one or two substituents from the group that consists of F, Cl, Br, CH₃, C₂H₅, OCH₃, OC₂H₅, CF₃, and C₂F₅, and

in a 5-membered cycloalkyl ring, a ring member can be an N or an O atom, and in a 6-membered cycloalkyl ring, one or two ring members can in each case be N or O atom, whereby ring nitrogens optionally can be substituted with C_{1-3} alkyl or C_{1-3} alkanoyl.

6. (Twice Amended) A benzimdazole compound according to claim 1, wherein \mathbf{R}^{5} and \mathbf{R}^{5} , independently of one another, are each

 C_{1-6} alkyl, whereby a carbon atom can be exchanged for O, NH, NC₁₋₃ alkyl, or NC₁₋₃ alkanoyl,

 C_{3-7} cycloalkyl- C_{0-3} alkyl, whereby in a 5-membered cycloalkyl ring, a ring member can be an N or an O atom, and in a 6- or 7-membered cycloalkyl ring, one or two ring members can in each case be N or O atom, whereby ring nitrogens optionally can be substituted with C_{1-3} alkyl or C_{1-3} alkanoyl, whereby the mentioned C_{1-6} alkyl part can be substituted with one of the previously mentioned cycloalkyls, or a 5- to 6-membered heteroaromatic compound with 1-2 heteroatoms, selected from N, S or O,

whereby all previously mentioned alkyl and cycloalkyl parts are, optionally, substituted with up to two substituents that consist of CF₃, OH, O C₁₋₃ alkyl, and the previously mentioned heteroaryl groups are, optionally, substituted with one or two substituents that consist of F, Cl, CF₃, CH₃, C₂H₅, OCH₃, OC₂H₅, or

 R^5 and $R^{5'}$ together with the nitrogen atom form a 5- to 7-membered heterocyclic compound, which can contain another oxygen, nitrogen or sulfur atom and is unsubstituted or substituted with C_{1-4} alkyl, C_{1-4} alkoxy- C_{0-2} alkyl, C_{1-4} alkoxy-carbonyl, aminocarbonyl or phenyl.

7. (Twice Amended) A benzimdazole compound according to claim 1, wherein A is C_{1-10} alkanediyl, C_{2-10} alkenediyl, C_{2-10} alkinediyl, or (C_{0-5} alkanediyl- C_{3-7} cycloalkanediyl- C_{0-5} alkanediyl), whereby in a 5-membered cycloalkanediyl ring, a ring member can be an N or an O atom, or in a 6- or 7-membered cycloalkyl ring, one or two ring members can in each case be N or O atom,, whereby ring nitrogens optionally can be substituted with C_{1-3} alkyl or C_{1-3} alkanoyl,

whereby in the alkanediyl, alkenediyl, and alkinediyl chains, a carbon atom or two carbon atoms can be exchanged for O, NH, NC₁₋₃ alkyl, or NC₁₋₃ alkanoyl.

- 8. (Twice Amended) A benzimdazole compound according to claim 1, wherein **B** means COOH, COOR⁵, CONH₂, CONHR⁵, CONR⁵R^{5'}, CONHOH, CONHOR⁵ or tetrazolyl, which in each case is bonded to a carbon atom of group **A**.
- 9. (Twice Amended) A benzimdazole compound according to claim 1, wherein X means a bond or methylene.
- 10. (Twice Amended) A benzimdazole compound according to claim 1, wherein Y means O.
- 11. A benzimdazole compound according to claim 1, wherein said compound is selected from:

[(1,2-Diphenyl-1H-benzimidazol-6-yl)oxy]acetic acid isopropyl ester

3-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]propanoic acid methyl ester

2-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]propanoic acid methyl ester

4-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]butanoic acid isopropyl ester

5-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]pentanoic acid isopropyl ester

6-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]hexanoic acid methyl ester

6-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]hexanoic acid isopropyl ester

6-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]hexanamide

N-methoxy-6-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]hexanamide

N-(phenylmethoxy)-6-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]hexanamide

N-hydroxy-6-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]hexanamide

7-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]heptanoic acid methyl ester

6-[[1-(3-nitrophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl

ester

6-[[2-phenyl-1-[3-(trifluoromethyl)phenyl]-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester

6-[[2-phenyl-1-[3-(trifluoromethyl)phenyl]-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl ester

6-[[2-phenyl-1-[3-(trifluoromethyl)phenyl]-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl ester

6-[[1-(3-cyanophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester

6-[[1-(3-cyanophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl ester

6-[[1-(3-cyanophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid

6-[[1-(4-cyanophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl

ester

6-[[1-(4-cyanophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl

ester

() Ta.

6-[[1-(3-chlorophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl

ester

6-[[1-(3-chlorophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl

ester

6-[[1-(4-chlorophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl

ester

6-[[1-(4-chlorophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl

ester

6-[[1-(3-methylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl

ester

6-[[1-(3-methylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl

ester

6-[[1-(4-methylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl

ester

6-[[1-(4-methylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl

ester

6-[[1-(3,4-dimethylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl

ester

6-[[1-(3,5-dimethylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl

ester

- 10 -

SCH-1738

- 6-[[1-(3,5-dimethylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl ester
- 6-[[1-(3-methoxyphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[1-(4-methoxyphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[1-(3,4-dimethoxyphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[1-[3,4-(methylenedioxy)phenyl]-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[1-[3,4-(methylenedioxy)phenyl]-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid
- 6-[[2-phenyl-1-(3,4,5-trimethoxyphenyl)-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
 - 6-[[2-phenyl-1-(3,4,5-trimethoxyphenyl)-1H-benzimidazol-6-yl]oxy]hexanoic acid
- 6-[[2-phenyl-1-(3,4,5-trimethoxyphenyl)-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl ester
- 6-[[1-[4-(N,N-dimethylamino)phenyl]-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic; acid methyl ester
- 6-[[1-[4-(N,N-dimethylamino)phenyl]-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoica
- 6-[[1-phenyl-2-[3-(trifluoromethyl)phenyl]-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl ester
- 6-[[2-(3-chlorophenyl)-1-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[2-(3-chlorophenyl)-1-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl ester
- 6-[[2-(4-chlorophenyl)-1-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[2-(4-chlorophenyl)-1-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl ester

C4

- 6-[[2-(4-methylphenyl)-1-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[2-(4-methylphenyl)-1-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl ester
 - 6-[[1-phenyl-2-(4-pyridinyl)-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
 - 6-[(1,2-diphenyl-5-nitro-1H-benzimidazol-6-yl)oxy]hexanoic acid methyl ester
 - 6-[(1,2-diphenyl-5-nitro-1H-benzimidazol-6-yl)oxy]hexanoic acid isopropyl ester
- 6-[[5-[[(4-bromophenyl)sulfonyl]amino]-1,2-diphenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl ester
- 6-[[5-[[(4-chlorophenyl)sulfonyl]amino]-1,2-diphenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[5-[[(4-chlorophenyl)sulfonyl]amino]-1,2-diphenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl ester
- 6-[[1,2-diphenyl-5-[[(3-methylphenyl)sulfonyl]amino]-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl ester
- 6-[[1,2-diphenyl-5-[[(4-methylphenyl)sulfonyl]amino]-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl ester
- 6-[[1,2-diphenyl-5-[[(4-methoxyphenyl)sulfonyl]amino]-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl ester
- 6-[[1,2-diphenyl-5-[[[(4-trifluoromethyl)phenyl]sulfonyl]amino]-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl ester
- 6-[[5-[[[4-(acetylamino)phenyl]sulfonyl]amino]-1,2-diphenyl-1H-benzimidazol-6-yl]oxy]-hexanoic acid isopropyl ester
- 6-[[5-[[bis(3-chlorophenyl)sulfonyl]amino]-1,2-diphenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl ester
- 6-[[1,2-diphenyl-5-[(propylsulfonyl)amino]-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl ester
- 6-[[5-[(benzylsulfonyl)amino]-1,2-diphenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl ester
 - 2-[2-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]ethoxy]acetic acid methyl ester
 - 3-[2-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]ethoxy]propanoic acid methyl ester

5

43

- 6-[[1-(3-nitrophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid ethyl ester 6-[[4-acetyl-1-(4-methylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[1-(4-methylphenyl)-2-phenyl-1H-benzimidazol-5-yl]oxy]hexanoic acid methyl ester
- 6-[[2-phenyl-1-[4-(thiomethyl)phenyl]-1H-benzimidazol-5-yl]oxy]hexanoic acid methyl ester
- 6-[[2-phenyl-1-[(4-(thiomethyl)phenyl]-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
 - 6-[[2-phenyl-1-(3-thienyl)-1H-benzimidazol-5-yl]oxy]hexanoic acid methyl ester
 - 6-[[2-phenyl-1-(3-thienyl)-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
 - 4-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]butanoic acid methyl ester
- N-(phenylmethoxy)-6-[[2-phenyl-1-(3,4,5-trimethoxyphenyl)-1H-benzimidazol-6-yl]oxy]-hexanamide
 - N,N-dimethyl-6-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]hexanamide
 - N-isopropyl-6-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]hexanamide
 - 6-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]-1-pyrrolidin-1-ylhexan-1-one
- 5-[[5-[[(4-chlorophenyl)sulfonyl]amino]-1,2-diphenyl-1H-benzimidazol-6-yl]oxy]pentanoic acid methyl ester
- 6-[[5-[[(4-chlorophenyl)sulfonyl]amino]-1-(4-methylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[5-[[(4-chlorophenyl)sulfonyl]amino]-1-(4-methoxyphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[4-(acetyloxy)-1-(4-methylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[4-hydroxy-1-(4-methylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[4-hydroxy-1-(4-methylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid, or
- 6-[[7-methyl-1-(4-methylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester.

CH CONT

Š

5

- 12. (Twice Amended) A benzimdazole compound according to claim 1, wherein said compound is selected from:
- 6-[[2-Phenyl-1-(3-pyridyl)-1H-benzimidazol-5-yl]oxy]hexanoic acid methyl ester
- 6-[[2-phenyl-1-(3-pyridyl)-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[2-phenyl-1-(4-pyridyl)-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[2-(4-fluoro-phenyl)-1-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[2-(4-methoxyphenyl)-1-phenyl-1H-benzimidazol-6-yl]oxy]-hexanoic acid methyl ester
- 6-[[2-(4-bromophenyl)-1-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[2-[4-(trifluoromethyl)phenyl]-1-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[1-phenyl-2-(benzothien-2-yl)-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[1-phenyl-2-(benzothien-2-yl)-1H-benzimidazol-6-yl]oxy]hexanoic acid
- 6-[[5-hydroxy-1-(4-methylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl ester
- 6-[[5-hydroxy-1-(4-methylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid
- 6-[[5-methoxy-1-(4-methylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl ester
- 6-[[5-hydroxy-1-(4-methylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[5-methoxy-1-(4-methylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[5-[[(4-chlorophenyl)sulfonyl]amino]-1-(3,4-dimethylphenyl)-2-phenyl-1H-benzimidazol-
- 6-yl]oxy]hexanoic acid methyl ester benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[5-[[(4-chlorophenyl)sulfonyl]amino]-2-(4-fluorophenyl)-1-(4-methoxyphenyl)-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[5-[[(4-chlorophenyl)sulfonyl]amino]-1-(4-methoxyphenyl)-2-(4-methoxyphenyl)-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 4-[[5-[[(4-chlorophenyl)sulfonyl]amino]-1-(4-methoxyphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]butanoic acid methyl ester

Cont.

5-[[5-[[(4-chlorophenyl)sulfonyl]amino]-1-(4-methoxyphenyl)-2-phenyl-1H-benzimidazol-6yl]oxy]pentanoic acid methyl ester 5-[[5-[[(4-chlorophenyl)sulfonyl]amino]-1,2-diphenyl-1H-benzimidazol-6-yl]oxy]pentanoic acid methyl ester 6-[[5-[[(4-(trifluoromethyl)phenyl)sulfonyl]amino]-1-(4-methoxyphenyl)-2-phenyl-1Hbenzimidazol-6-yl]oxy]hexanoic acid methyl ester 6-[[5-[[(4-chlorophenyl)sulfonyl]methylamino]-1-(4-methoxyphenyl)-2-phenyl-1Hbenzimidazol-6-yl]oxy]hexanoic acid methyl ester 6-[[1-(indan-5-yl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester 6-[[1-(indan-5-yl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid 6-[[1-(3-fluorophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester 6-[[2-(4-nitrophenyl)-1-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester 6-[[1-phenyl-2-(3-pyridinyl)-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester N-(cyclopropylmethoxy)-6-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]hexanamide 330 N-isobutoxy-6-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]hexanamide N-(cyclopropylmethoxy)-6-[2-phenyl-1-(3,4,5-trimethoxyphenyl)-1H-benzimidazol-6-yl)oxy]-hexanamide N-isobutoxy-6-[2-phenyl-1-(3,4,5-trimethoxyphenyl)-1H-benzimidazol-6-yl)oxy]hexanamide N-(2-methoxyethyl)-6-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]hexanamide 4 N-(3-methoxypropyl)-6-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]hexanamide ÷ N-isobutyl-6-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]hexanamide 6-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]-1-morpholin-1-ylhexan-1-one N,N-di(-2-methoxyethyl)-6-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]hexanamide N-isopentyl-6-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]hexanamide N-(pyridin-2-yl)-6-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]hexanamide N-(pyridin-3-yl)-6-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]hexanamide N-isopropyl-6-[[1-(3,4-dimethylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanamide N,N-dimethyl-6-[[1-(3,4-dimethylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanamide

N,N-diethyl-6-[[1-(3,4-dimethylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanamide

N-isobutyl-6-[[1-(3,4-dimethylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanamide

N-cyclopropyl-6-[[1-(3,4-dimethylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanamide

٠, , ,

- 15 -

SCH-1738

N-cyclobutyl-6-[[1-(3,4-dimethylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanamide N-tert-butyl-6-[[1-(3,4-dimethylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanamide (R)-6-[[1-(3,4-dimethylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]1-(2-methoxymethyl)-pyrrolidin-1-ylhexan-1-one

N-(3-imidazol-1-yl-propyl)-6-[[1-(3,4-dimethylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanamide

N-(2-pyridin-2-ylethyl)-6-[[1-(3,4-dimethylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanamide

N-(3-methoxypropyl)-6-[[1-(indan-5-yl)-2-phenyl-1H-benzimidazol-6-yl]oxy]heptanamide
6-[[1-(4-methylphenyl)-2-(3-pyridyl)-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
6-[[1-(4-methylphenyl)-2-(4-pyridyl)-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
6-[[1-(4-methylphenyl)-2-(2-thicnyl)-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
6-[[1-(4-methylphenyl)-2-(3-thienyl)-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
6-[[1-(4-methylphenyl)-1-(4-methylphenyl)-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
6-[[1-(4-methylphenyl)-2-(2-furyl)-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
6-[[1-(4-methylphenyl)-2-(3-furyl)-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
6-[[1-(4-methylphenyl)-2-(5-methyl-2-thienyl)-1H- benzimidazol-6-yl]oxy]hexanoic acid methyl ester

6-[[1-(4-methylphenyl)-2-(3-methyl-2-thienyl)-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester.

6

13. (Twice Amended) A process for preparing a pharmaceutical composition comprising combining a compound according to claim 1 with a pharmaceutical vehicle or diluent.

٦م

15. (Twice Amended) A method for treating a patient suffering from a disease associated with microglia activation comprising administering to said patient an effective amount of a benzimidazole compound of formula II

$$R^3$$
 R^2
 R^2
 R^2
 R^1

SCH-1738

in which

 R^1

means a monocyclic or bicyclic C₆₋₁₂ aryl group or a monocyclic or bicyclic 5to 10-membered heteroaryl group with 1-4 heteroatoms selected from of N, S and O, whereby said aryl or heteroaryl group can be optionally substituted with up to three of the following substituents, independently of one another:

F, Cl, Br, I, C(NH)NH₂, C(NH)NHR⁴, C(NH)NR⁴R⁴, C(NR⁴)NH₂,

C(NR⁴)NHR⁴, C(NR⁴)NR⁴R⁴, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴,

XOCOOR⁴, XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCN.

XCOOH, XCOOR⁴, XCONH₂, XCONR⁴R⁴, XCONHR⁴, XCONHOH.

XCONHOR⁴, XCOSR⁴, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴,

SO₂NR⁴R⁴, NO₂, XNH₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XN(SO₂R⁴)(SO₂R⁴).

XNR⁴SO₂R⁴, XNHCOR⁴, XNHCOOR⁴, XNHCONHR⁴, tetrahydro-2.5-

dioxopyrrol-1-yl, 2,5-dihydro-2,5-dioxopyrrol-1-yl, 2,7-dihydro-2,7-

dioxoisoindol-1-yl, and R⁴, wherein two of said substituents for the aryl or &

heteroaryl group, if they are in ortho-position to one another, can optionally be

linked to one another in such a way that they jointly form methanediylbisoxy,

ethane-1,2-diylbisoxy, propane-1,3-diyl, or butane-1,4-diyl;

 \mathbb{R}^2 means a monocyclic or bicyclic C₆₋₁₀ aryl group or a monocyclic or bicyclic 5to 10-membered heteroaryl group with 1-4 heteroatoms selected from N, S and O, wherein said aryl or heteroaryl group can be optionally substituted with up to three of the following substituents, independently of one another: F. Cl, Br, I, C(NH)NH₂, C(NH)NHR⁴, C(NH)NR⁴R⁴, C(NR⁴)NH₂,

C(NR⁴)NHR⁴, C(NR⁴)NR⁴R⁴, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴.

(17

XOCOOR⁴, XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCN, XCOOH, XCOOR⁴, XCONH₂, XCONR⁴R⁴, XCONHR⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNH₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XN(SO₂R⁴)(SO₂R⁴), XNR⁴SO₂R⁴, XNHCOR⁴, XNHCOOR⁴, XNHCONHR⁴, tetrahydro-2,5-dioxopyrrol-1-yl, 2,5-dihydro-2,5-dioxopyrrol-1-yl, 2,7-dihydro-2,7-dioxoisoindol-1-yl, and R⁴, whereby two of said substituents for the aryl or heteroaryl group, if they are in ortho-position to one another, can be optionally linked to one another in such a way that they jointly form methanediyl-bisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl, or butane-1,4-diyl;

R³ stands for one or two substituents which are each independently of one another:

hydrogen, F, Cl, Br, I, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCN, XCOOH, XCOOR⁴, XCONH₂, XCONHR⁴, XCONR⁴R⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNH₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XNR⁴SO₂R⁴, XN(SO₂R⁴)(SO₂R⁴), XNHCOR⁴, XNHCOOR⁴, XNHCONHR⁴, tetrahydro-2,5-dioxopyrrol-1-yl, or 2,5-dihydro-2,5-dioxopyrrol-1-yl, 2,7-dihydro-2,7-dioxoisoindol-1-yl, or R⁴, wherein two substituents R³, if they are in orthoposition to one another, can be optionally linked to one another in such a way that they jointly form methanediylbisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl, or butane-1,4-diyl;

7

Cons.

R⁴ and R⁴, independently of one another, mean C₁₋₄ perfluoroalkyl, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkinyl, C₃₋₇ cycloalkyl, (C₁₋₃ alkyl-C₃₋₇ cycloalkyl), C₁₋₃ alkyl-C₆₋₁₀ aryl, C₁₋₃ alkyl 5 to 10-membered heteroaryl with 1-4 N, S or O atoms, C₆₋₁₀ aryl, or 5- to 10-membered heteroaryl with 1-4 N, S or O atoms, wherein the C₆₋₁₀ aryl and heteroaryl groups can be optionally substituted with one or two substituents selected from F, Cl, Br, CH₃, C₂H₅, NO₂, OCH₃, OC₂H₅, CF₃, and C₂F₅, or else can carry an annelated methanediylbisoxy group or ethane-1,2-diylbisoxy group, and wherein a 5-membered cycloalkyl ring can optionally have an N or O ring member, and wherein a 6- or 7-membered cycloalkyl ring can optionally have one or two ring members selected have N and O, wherein ring nitrogens optionally can be substituted with C₁₋₃ alkyl or C₁₋₃ alkanoyl,

 ${f R}^5$ and ${f R}^5$, independently of one another, mean hydrogen, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkinyl, wherein in each case a carbon atom can be optionally replaced by O, S, SO, SO₂, NH, N C₁₋₃ alkyl or N C₁₋₃ alkanoyl,

 C_{3-7} cycloalkyl- C_{0-3} alkyl, wherein a 5-membered cycloalkyl ring can optionally have an N or O ring member and a 6- or 7-membered cycloalkyl ring can optionally have one or two ring members selected from N and O, wherein ring nitrogens optionally can be substituted with C_{1-3} alkyl or C_{1-3} alkanoyl,

 C_{6-10} aryl or 5- to 10-membered heteroaryl with 1-4 heteroatoms selected from N, S, and O, whereby the mentioned alkyl, alkenyl and alkinyl chains can be substituted with one of the previously mentioned cycloalkyls, aryls or heteroaryls,

77

R⁵ and R⁵ together with the nitrogen atom form a 5-to 7-membered group, which can optionally contain another oxygen, nitrogen or sulfur atom and can be optionally substituted by C₁₋₄ alkyl, C₁₋₄ alkoxy-C₀₋₂ alkyl, C₁₋₄ alkoxy-carbonyl, aminocarbonyl or phenyl,

means C₁₋₁₀ alkanediyl, C₂₋₁₀ alkenediyl, C₂₋₁₀ alkinediyl, (C₀₋₅ alkanediyl-C₃₋₇ cycloalkanediyl-C₀₋₅ alkanediyl), (C₀₋₅ alkanediylarylene-C₀₋₅ alkanediyl), or (C₀₋₅ alkanediyl-heteroarylene-C₀₋₅ alkanediyl), wherein the aryl and heteroaryl groups can optionally be substituted with one or two substituents selected from F, Cl, Br, CH₃, C₂H₅, NO₂, OCH₃, OC₂H₅, CF₃, and C₂F₅, wherein a 5-membered cycloalkyl ring can optionally have a ring member selected from N and O, and a 6- or 7-membered cycloalkyl ring can optionally have one or two ring members selected from N and O, wherein ring nitrogens optionally can be substituted with C₁₋₃ alkyl or C₁₋₃ alkanoyl, wherein the mentioned aliphatic chains, one or two carbon atoms can each optionally be replaced by for O, NH, NR⁴, NCOR⁴, or NSO₂R⁴,

and wherein alkyl or cycloalkyl groups can be substituted with up to two substituents selected from F, OH, OR⁴, OCOR⁴, =0, NH₂, NR⁴R^{4'}, NHCOR⁴, NHCOOR⁴, NHCONHR⁴, NHSO₂R⁴ SH, and SR⁴,

means hydrogen, OH, OCOR⁵, OCONHR⁵, OCOOR⁵, COR⁵, C(NOH)R⁵, В C(NOR⁵)R⁵, C(NO(COR⁵))R⁵, COOH, COOR⁵, CONH₂, CONHNH₂, CONHR⁵, CONR⁵R⁵, CONHOH, CONHOR⁵, SO₃H, SO₂NH₂, SO₂NHR⁵, SO₂NR⁵R⁵, PO₃H, PO(OH)(OR⁵), PO(OR⁵)(OR⁵), PO(OH)(NHR⁵), PO(NHR⁵)(NHR⁵), or tetrazolyl, respectively bonded to a carbon atom of group A,

or the entire group Y-A-B is N(SO₂R⁴)(SO₂R⁴) or NHSO₂R⁴,

- \mathbf{X} means a bond, CH₂, (CH₂)₂, CH(CH₃), (CH₂)₃, CH(CH₂CH₃), CH(CH₃)CH₂, or CH₂CH(CH₃),
- means a bond, O, S, SO, SO₂, NH, NR⁴, NCOR⁴, or NSO₂R⁴. \mathbf{Y}

16. (Twice Amended) A method according to claim 15, wherein

 \mathbf{R}^1 means a monocyclic or bicyclic aryl group or a monocyclic or bicyclic 5- to 10-membered heteroaryl group with 1-2 heteroatoms selected from the group that consists of N, S and O, wherein said aryl or heteroaryl group can be optionally substituted with up to three of the following substituents, independently of one another:

F, Cl, Br, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, XCN, COOH, XCOOR⁴, XCONH₂, XCONR⁴R⁴, XCONHR⁴, XCONHOH, XCONHOR⁴, XCOSR⁴. XSR⁴, NO₂, XNHR⁴, XNR⁴R⁴, and R⁴,

wherein two of said substituents for the aryl or heteroaryl group, if they are in orthoposition to one another, can be linked to one another in such a way that they jointly form methanediylbisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl, or butane-1,4-diyl.

17. (Twice Amended) A method according to claim 15, wherein,

1

R² means a monocyclic or bicyclic aryl group or a monocyclic or bicyclic 5- to 10-membered heteroaryl group with 1-2 heteroatoms selected from N, S and O, wherein said aryl group or heteroaryl group can be optionally substituted with up to three of the following substituents, independently of one another:

Com -

F, Cl, Br, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCN, XCOOH, XCOOR⁴, XCONH₂, XCONR⁴R⁴, XCONHR⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNH₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XN(SO₂R⁴)(SO₂R⁴), XNR⁴SO₂R⁴, XNHCOOR⁴, XNHCOOR⁴,

whereby two of said substituents for the aryl or heteroaryl group, if they are in ortho-position to one another, can be optionally linked to one another in such a way that they jointly form methanediylbisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl or, butane-1,4-diyl.--

Please add the following new claims:

--27. A benzimdazole compound according to claim 1, wherein

is a monocyclic or bicyclic C_{6-12} aryl group or a monocyclic or bicyclic 5- to 10-membered heteroaryl group with 1-2 heteroatoms selected from the group that consists of N, S or O, whereby the mentioned aryl or heteroaryl group can be substituted with up to three of the following substituents, independently of one another:

F, Cl, Br, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, XCN, XCOOH, XCOOR⁴, XCONH₂, XCONR⁴R⁴, XCONHR⁴, XCONHOH, CONHOR⁴, XCOSR⁴, XSR⁴, NO₂, XNHR⁴, XNR⁴R⁴, and R⁴,

whereby two of said substituents for the aryl or heteroaryl group, if they are in ortho-position to one another, can be linked to one another in such a way that they jointly form methanediylbisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl, butane-1,4-diyl;

R² is a monocyclic or bicyclic C₆₋₁₀ aryl group or a monocyclic or bicyclic 5- to 10-membered heteroaryl group with 1-2 heteroatoms selected from the group that consists of N, S or O, whereby the mentioned aryl or heteroaryl group can be substituted with up to three of the following substituents, independently of one another:

F, Cl, Br, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCOOH, XCOOR⁴, XCONH₂, XCONHR⁴, XCONR⁴R⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XN(SO₂R⁴)SO₂R⁴, XNR⁴SO₂R⁴, and R⁴,

whereby two of said substituents for the aryl or heteroaryl group, if they are in ortho-position to one another, can be linked to one another in such a way that they jointly form methanediylbisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl, butane-1,4-diyl;

is one or two substituents, which are each, independently of one another:

hydrogen, F, Cl, Br, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴,

XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCN, XSR⁴,

XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNH₂, XNHR⁴,

XNR⁴N⁴, XNHSO₂R⁴, XNR⁴SO₂R⁴, XN(SO₂R⁴)SO₂R⁴,

XNHCOR⁴, XNHCOOR⁴, XNHCONHR⁴, or R⁴,

whereby two substituents \mathbb{R}^3 , if they are in ortho-position to one another, can be linked to one another in such a way that they jointly form methanediylbisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl, or butane-1,4-diyl;

R⁴ and R⁴, independently of one another, are each CF₃, C₂F₅, C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkinyl, C₃₋₆ cycloalkyl, (C₁₋₃ alkyl-C₃₋₆ cycloalkyl), phenyl or 5- to 6-membered heteroaryl with 1-2 N, S or O atoms, wherein said phenyl and

Ę

heteroaryl groups are unsubstituted or substituted with one or two substituents from F, Cl, Br, CH₃, C₂H₅, OCH₃, OC₂H₅, CF₃, and C₂F₅, and

wherein in a 5-membered cycloalkyl ring, a ring member can optionally be an N or an O atom, and in a 6-membered cycloalkyl ring, one or two ring members can in each case optionally be an N or O atom, whereby ring nitrogens optionally can be substituted by C₁₋₃ alkyl or C₁₋₃ alkanoyl;

R⁵ and R⁵, independently of one another, are each

 C_{1-6} alkyl, whereby a carbon atom can be exchanged for O, NH, NC₁₋₃ alkyl, or NC₁₋₃ alkanoyl,

 C_{3-7} cycloalkyl- C_{0-3} alkyl, wherein in a 5-membered cycloalkyl ring, a ring member can optionally be an N or an O atom, and in a 6- or 7-membered cycloalkyl ring, one or two ring members can in each case optionally be N or O atom, wherein ring nitrogens optionally can be substituted by C_{1-3} alkyl or C_{1-3} alkanoyl, or

a 5- to 6-membered heteroaromatic compound with 1-2 heteroatoms selected from N, S or O, which is unsubstituted or substituted with one or two substituents selected from F, Cl, CF₃, CH₃, C₂H₅, OCH₃, and OC₂H₅, or

 R^5 and R^5 , together with the nitrogen atom, form a 5- to 7-membered heterocyclic group which can optionally contain another oxygen, nitrogen or sulfur atom and which is unsubstituted or substituted by $C_{1.4}$ alkyl, $C_{1.4}$ alkoxy- $C_{0.2}$ alkyl, $C_{1.4}$ alkoxy-carbonyl, aminocarbonyl or phenyl;

A is C_{1-10} alkanediyl, C_{2-10} alkanediyl, C_{2-10} alkanediyl, or (C_{0-5} alkanediyl- C_{3-7} cycloalkanediyl- C_{0-5} alkanediyl),

(8

4

wherein in a 5-membered cycloalkyl ring, a ring member can optionally be an N or an O atom, or in a 6- or 7-membered cycloalkyl ring, one or two ring members can in each case optionally be N or O atom, wherein ring nitrogens optionally can be substituted by C₁₋₃ alkyl or C₁₋₃ alkanoyl,

wherein in the alkanediyl, alkenediyl, and alkinediyl chains a carbon atom or two carbon atoms can optionally each be replaced by O, NH, NC₁₋₃ alkyl, or NC₁₋₃ alkanoyl;

Carr.

- B is COOH, COOR⁵, CONH₂, CONHR⁵, CONR⁵R⁵, CONHOH, CONHOR⁵ or tetrazolyl, which in each case is bonded to a carbon atom of group A;
- X is a bond or methylene; and
- \mathbf{Y} is \mathbf{O} .
- 28. A compound according to claim 1, wherein

R¹ is phenyl, biphenyl, naphthyl, indane, fluorenyl, pyrrolyl, thienyl, furanyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, pyrazolyl, furazanyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, thienoimidazolyl, indolyl, isoindolyl, benzothiophenyl, benzofuranyl, benzimidazolyl, indazolyl, imidazopyridinyl, purinyl, quinolyl, isoquinolyl, phthalazinyl, quinazolinyl, quinaxolinyl, cinnolinyl, naphthyridinyl or pteridinyl, which in each case is unsubstituted or substituted with up to three of the following substituents, independently of one another:

F, Cl, Br, I, C(NH)NH₂, C(NH)NHR⁴, C(NH)NR⁴R⁴, C(NR⁴)NH₂, C(NR⁴)NHR⁴, C(NR⁴)NR⁴R⁴, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCN, XCOOH, XCOOR⁴, XCONH₂, XCONR⁴R⁴, XCONHR⁴, XCONHOH, XCONHOR⁴, XCOSR⁴ XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNH₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XN(SO₂R⁴)SO₂R⁴, XNR⁴SO₂R⁴, XNHCOR⁴, XNHCOOR⁴,

XNHCONHR⁴, tetrahydro-2,5-dioxopyrrol-1-yl, 2,5-dihydro-2,5-dioxopyrrol-1-yl, 2,7-dihydro-2,7-dioxoisoindol-1-yl, and R⁴,

wherein two of said substituents for the aryl or heteroaryl group, if they are in orthoposition to one another, can be linked to one another in such a way that they jointly form methanediylbisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl, or butane-1,4-diyl;

R² phenyl, biphenyl, naphthyl, indane, fluorenyl, pyrrolyl, thienyl, furanyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, pyrazolyl, furazanyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, thienoimidazolyl, indolyl, isoindolyl, benzothiophenyl, benzofuranyl, benzimidazolyl, indazolyl, imidazopyridinyl, purinyl, quinolyl, isoquinolyl, phthalazinyl, quinazolinyl, quinaxolinyl, cinnolinyl, naphthyridinyl or pteridinyl, which in each case is unsubstituted or subsituted with up to three of the following substituents, independently of one another:

F, Cl, Br, I, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, C(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCOOH, XCOOR⁴, XCONH₂, XCONHR⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XN(SO₂R⁴)SO₂R⁴, XNR⁴SO₂R⁴, tetrahydro-2,5-dioxopyrrol-1-yl, 2,5-dihydro-2,5-dioxopyrrol-1-yl, 2,7-d ihydro-2,7-dioxoisoindol-1-yl, and R⁴,

wherein two of said substituents for the aryl or heteroaryl group, if they are in orthoposition to one another, can be linked to one another in such a way that they jointly form methanediyl-bisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl, or butane-1,4-diyl;

 ${\bf R^4}$ and ${\bf R^{4'}}$, independently of one another, mean C_{1-4} perfluoroalkyl, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkinyl, C_{3-7} cycloalkyl, C_{1-3} alkyl- C_{3-7} cycloalkyl, C_{1-3} alkyl- C_{6-10} aryl, C_{1-3} alkyl-5 to 10-membered heteroaryl with 1-4 N, S or O atoms, or

phenyl, biphenyl, naphthyl, indane, fluorenyl, pyrrolyl, thienyl, furanyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, pyrazolyl, furazanyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, thienoimidazolyl, indolyl, isoindolyl, benzothiophenyl, benzofuranyl, benzimidazolyl, indazolyl, imidazopyridinyl, purinyl, quinolyl, isoquinolyl, phthalazinyl, quinazolinyl, quinaxolinyl, cinnolinyl, naphthyridinyl or pteridinyl, which in each case is

Co

unsubstituted or substituted by one or two substituents selected from F, Cl, Br, CH₃, C₂H₅, NO₂, OCH₃, OC₂H₅, CF₃, and C₂F₅, or can carry an annelated methanediylbisoxy group or ethane-1,2-diylbisoxy group, and

• • • • •

wherein a 5-membered cycloalkyl ring can have an N or O ring member, and wherein a 6- or 7-membered cycloalkyl ring can have N and/or O, and wherein one or two ring members which are each ring nitrogens optionally can be substituted with C_{1-3} alkyl or C_{1-3} alkanoyl; and

 ${f R}^5$ and ${f R}^{5'}$, independently of one another, mean C_{1-6} alkyl, C_{2-6} alkenyl, or C_{2-6} alkinyl, wherein in each case a carbon atom can be optionally replaced by O, S, SO, SO₂, NH, N C_{1-3} alkyl or N C_{1-3} alkanoyl,

 C_{3-7} cycloalkyl- C_{0-3} alkyl, wherein a 5-membered cycloalkyl ring, can optionally have an N or O ring member and a 6- or 7-membered cycloalkyl ring can optionally have one or two ring members which are each N and/or O, wherein ring nitrogens optionally can be substituted with C_{1-3} alkyl or C_{1-3} alkanoyl,

phenyl, biphenyl, naphthyl, indane, fluorenyl, pyrrolyl, thienyl, furanyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, pyrazolyl, furazanyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, thienoimidazolyl, indolyl, isoindolyl, benzothiophenyl, benzofuranyl, benzimidazolyl, indazolyl, imidazopyridinyl, purinyl, quinolyl, isoquinolyl, phthalazinyl, quinazolinyl, quinaxolinyl, cinnolinyl, naphthyridinyl or pteridinyl,

whereby the mentioned alkyl, alkenyl and alkinyl chains can be substituted with one of the previously mentioned cycloalkyls, aryls or heteroaryls,

whereby all previously mentioned alkyl and cycloalkyl radicals can be substituted with up to two substituents selected from CF₃, C₂F₅, OH, O C₁₋₃ alkyl, NH2, NH C₁₋₃ alkyl, NH C₁₋₃ alkyl, N (C₁₋₃ alkyl)₂, N(C₁₋₃ alkyl)(C₁₋₃ alkanoyl), COOH, CONH₂, and COO C₁₋₃ alkyl, and all previously mentioned aryl and heteroaryl groups can optionally be substituted with one or two substituents selected from F, Cl, Br, CH₃, C₂H₅, NO₂, OCH₃, OC₂H₅, CF₃, and C₂F₅, or else can carry an annelated methanediylbisoxy, ethane-1,2-diylbisoxy group,

or R⁵ and R^{5'} together with the nitrogen atom form a 5-to 7-membered heterocyclic group, which can optionally contain another oxygen, nitrogen or sulfur atom and can be

Caro

optionally substituted by C_{1-4} alkyl, C_{1-4} alkoxy- C_{0-2} alkyl, C_{1-4} alkoxy-carbonyl, aminocarbonyl or phenyl.

29. A method according to claim 15, wherein

R¹ is a monocyclic or bicyclic aryl group or a monocyclic or bicyclic 5- to 10-membered heteroaryl group with 1-2 heteroatoms selected from the group that consists of N, S and O, wherein said aryl or heteroaryl group can be optionally substituted with up to three of the following substituents, independently of one another:

F, Cl, Br, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, XCN, COOH, XCOOR⁴, XCONH₂, XCONR⁴R⁴, XCONHR⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴, NO₂, XNHR⁴, XNR⁴R⁴, and R⁴,

wherein two of said substituents for the aryl or heteroaryl group \mathbb{R}^1 -substituents, if they are in ortho-position to one another, can be linked to one another in such a way that they jointly form methanediylbisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl, or butane-1,4-diyl;

R² means a monocyclic or bicyclic aryl group or a monocyclic or bicyclic 5- to 10-membered heteroaryl group with 1-2 heteroatoms selected from N, S and O, wherein said aryl group or heteroaryl group can be optionally substituted with up to three of the following substituents, independently of one another:

F, Cl, Br, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCN, XCOOH, XCOOR⁴, XCONH₂, XCONR⁴R⁴, XCONHR⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNH₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XN(SO₂R⁴)(SO₂R⁴), XNR⁴SO₂R⁴, XNHCOOR⁴, XNHCOOR⁴, XNHCOOR⁴, XNHCOOR⁴, XNHCOONHR⁴, or R⁴,

whereby two of said substituents for the aryl or heteroaryl group \mathbb{R}^2 substituents, if they are in ortho-position to one another, can be optionally linked to one another in such a way that they jointly form methanediylbisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl or, butane-1,4-diyl;

R³ is one or two substituents, which independently of one another, each mean:

hydrogen, F, Cl, Br, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCN, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNH₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XNR⁴SO₂R⁴, XN(SO₂R⁴)(SO₂R⁴), XNHCOR⁴, XNHCOOR⁴, XNHCONHR⁴, or R⁴, wherein two substituents **R**³, if they are in ortho-position to one another, can be linked to one another in such a way that they jointly form methanediylbisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl or, butane-1,4-diyl;

Carr.

R⁴ and R⁴, independently of one another, mean CF₃, C₂F₅, C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkinyl, C₃₋₆ cycloalkyl, (C₁₋₃ alkyl-C₃₋₆ cycloalkyl), C₁₋₃ alkylaryl, C₁₋₃ alkylheteroaryl, monocyclic aryl or 5- to 6-membered heteroaryl with 1-2 N, S or O atoms, wherein said the aryl and heteroaryl groups can be optionally substituted with one or two substituents selected from F, Cl, Br, CH₃, C₂H₅, NO₂, OCH₃, OC₂H₅, CF₃, and C₂F₅ or else can carry an annelated methanediylbisoxy or ethane-1,2-diylbisoxy group, and in addition a 5-membered cycloalkyl ring can optionally have a ring member selected from N and O, and a 6-membered cycloalkyl ring can optionally have one or two ring members selected from N and O, wherein ring nitrogens optionally can be substituted with C₁₋₃ alkyl or C₁₋₃ alkanoyl;

 ${f R}^5$ and ${f R}^{5'}$, independently of one another, can be C_{1-6} alkyl wherein a carbon atom can optionally be replaced by O, NH, N C_{1-3} alkyl, N C_{1-3} alkanoyl, or C_{3-7} cycloalkyl- C_{0-3} alkyl, wherein a 5-membered cycloalkyl ring can optionally have a ring member selected from N and O, and a 6- or 7-membered cycloalkyl ring can optionally have one or two ring members selected from N and O, wherein ring nitrogens optionally—can be substituted with C_{1-3} alkyl or C_{1-3} alkanoyl, wherein the mentioned C_{1-6} alkyl—part can optionally be substituted with one of the previously mentioned cycloalkyls or else a 5- to 6-membered heteroaromatic group with 1-2 heteroatoms selected from N, S and O,

wherein all previously mentioned alkyl and cycloalkyl parts can be substituted with up to two substituents selected from CF_3 , OH, and OC_{1-3} alkyl, and the previously mentioned heteroaryl groups can optionally be substituted with one or two substituents selected from F, Cl, CF_3 , CH_3 , C_2H_5 , OCH_3 , and OC_2H_5 , or

 R^5 and $R^{5'}$ together with the nitrogen atom form a 5- to 7-membered heterocyclic group which optionally contains another oxygen, nitrogen or sulfur atom and is optionally substituted by C_{1-4} alkyl, C_{1-4} alkoxy- C_{0-2} alkyl, C_{1-4} alkoxy-carbonyl, aminocarbonyl or phenyl;

Means C_{1-10} alkanediyl, C_{2-10} alkenediyl, C_{2-10} alkinediyl, (C_{0-5} alkanediyl- C_{3-7} cycloalkanediyl- C_{0-5} alkanediyl), or (C_{0-5} alkanediyl-heteroarylene- C_{0-5} alkanediyl), wherein if a heteroaryl group is present it is optionally substituted with one or two—substituents selected from F, Cl, Br, CH₃, C_2H_5 , NO₂, OCH₃, OC₂H₅, CF₃, and C_2F_5 ,—and in addition a 5-membered cycloalkyl ring can optionally have a ring member selected from N and O, and a 6- or 7-membered cycloalkyl ring can optionally have one or two ring members selected from N and O, wherein ring nitrogens optionally can be substituted with C_{1-3} alkyl or C_{1-3} alkanoyl,

wherein in aliphatic chains one or two carbon atoms can be replaced by O, NH, N C_{1-3} alkyl, N C_{1-3} alkanoyl, or NSO₂ C_{1-3} alkyl, and whereby alkyl or cycloalkyl parts can be optionally substituted with up to two F atoms or by one of the substituents selected from OH, O C_{1-3} alkyl, O C_{1-3} alkanoyl, =O, NH₂, NH C_{1-3} alkyl, N (C_{1-3} alkyl)₂, NH C_{1-3} alkanoyl, NHCOO C_{1-3} alkyl, NHCONH C_{1-3} alkyl, NHSO₂ C_{1-3} alkyl, SH, and S C_{1-3} alkyl;

- **B** means hydrogen, OH, OCOR⁵, OCONHR⁵, OCOOR⁵, COOH, COOR⁵, CONH₂, CONHR⁵, CONR⁵R^{5'}, CONHOH, CONHOR⁵, or tetrazolyl, in each case bonded to a carbon atom of group **A**;
 - X means a bond or CH₂; and
 - Y means a bond, O, S, NH, NR⁴, NCOR⁴ or NSO₂R⁴.
- 30. A method according to claim 15, wherein in R¹, R², R⁴, R⁵ and R⁵, said aryl groups are substituted or unsubstituted phenyl, biphenyl, naphthyl, indane, or fluorenyl, and said heteroaryl group are substituted or unsubstituted pyrrolyl, thienyl, furanyl,

18

imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, pyrazolyl, furazanyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, thienoimidazolyl, indolyl, isoindolyl, benzothiophenyl, benzofuranyl, benzimidazolyl, indazolyl, imidazopyridinyl, purinyl, quinolyl, isoquinolyl, phthalazinyl, quinazolinyl, quinaxolinyl, cinnolinyl, naphthyridinyl or pteridinyl.

31. A compound according to claim 1, wherein

R¹ is a monocyclic or bicyclic C₆₋₁₂ aryl group which is unsubstituted or is substituted with up to three of the following substituents, independently of one another: F, Cl, Br, I, C(NH)NH₂, C(NH)NHR⁴, C(NH)NR⁴R⁴, C(NR⁴)NH₂, C(NR⁴)NHR⁴, C(NR⁴)NR⁴R⁴, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCN, XCOOH, XCOOR⁴, XCONH₂, XCONH₂, XCONR⁴R⁴, XCONHR⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNH₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XN(SO₂R⁴)SO₂R⁴, XNR⁴SO₂R⁴, XNHCOR⁴, XNHCOOR⁴, XNHCONHR⁴, tetrahydro-2,5-dioxopyrrol-1-yl, 2,5-dihydro-2,5-dioxopyrrol-1-yl, 2,7-dihydro-2,7-dioxoisoindol-1-yl, and R⁴;

- R² is a monocyclic or bicyclic C₆₋₁₀ aryl group which is unsubstituted or is substituted with up to three of the following substituents, independently of one another:

 F, Cl, Br, I, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴,

 XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCOOH, XCOOR⁴, XCONH₂,

 XCONHR⁴, XCONR⁴R⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴, XSOR⁴,

 XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴,

 XN(SO₂R⁴)SO₂R⁴, XNR⁴SO₂R⁴, tetrahydro-2,5-dioxopyrrol-1-yl, 2,5-dihydro-2,5-dioxopyrrol-1-yl, 2,7-dihydro-2,7-dioxoisoindol-1-yl, and R⁴;
 - R³ is one or two substituents which are independently of one another: hydrogen, F, Cl, Br, I, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCN, XCOOH, XCOOR⁴, XCONH₂, XCONHR⁴, XCONR⁴R⁴, XCONHOH, XCONHOR⁴,

(8)

够

XCOSR⁴, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNH₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XNR⁴SO₂R⁴, XN(SO₂R⁴)(SO₂R⁴), XNHCOR⁴, XNHCOR⁴, XNHCONHR⁴, tetrahydro-2,5-dioxopyrrol-1-yl, 2,5-dihydro-2,5-dioxopyrrol-1-yl, 2,7-dihydro-2,7-dioxoisoindol-1-yl, or R⁴;

 ${\bf R^4}$ and ${\bf R^{4'}}$, independently of one another, are each C_{1-4} perfluoroalkyl, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkinyl, C_{3-7} cycloalkyl, C_{1-3} alkyl- C_{3-7} cycloalkyl, C_{1-3} alkyl- C_{6-10} aryl, or C_{6-10} aryl, wherein aryl groups are unsubstituted or substituted by one or two substituents selected from F, Cl, Br, CH₃, C_2H_5 , NO₂, OCH₃, OC₂H₅, CF₃, and C_2F_5 ,

R⁵ and R⁵', independently of one another, are each

 C_{1-6} alkyl, C_{2-6} alkenyl, or C_{2-6} alkinyl, wherein in each case a carbon atom can be optionally replaced by O, S, SO, SO₂, NH, N C_{1-3} alkyl or N C_{1-3} alkanoyl,

 C_{3-7} cycloalkyl- C_{0-3} alkyl, or C_{6-10} aryl;

A is C_{1-10} alkanediyl, C_{2-10} alkanediyl, C_{2-10} alkanediyl, or (C_{0-5} alkanediyl- C_{3-7} cycloalkanediyl- C_{0-5} alkanediyl),

wherein in the alkanediyl, alkenediyl, and alkinediyl chains, a carbon atom or two carbon atoms can be optionally replaced by O, NH, NC_{1-3} alkyl, NC_{1-3} alkanoyl, and wherein alkanediyl and cycloalkanediyl groups can be optionally substituted with up to two substituents selected from =O, OH, OC_{1-3} alkyl, NHC_{1-3} alkyl, NHC_{1-3} alkanoyl, $N(C_{1-3}$ alkyl)₂, and $N(C_{1-3}$ alkyl)(C_{1-3} alkanoyl); and

B is COOH, COOR⁵, CONH₂, CONHNH₂, CONHR⁵, CONR⁵R^{5'}, CONHOH, CONHOR⁵, SO₃H, SO₂NH₂, SO₂NHR⁵, SO₂NR⁵R^{5'}, PO₃H, PO(OH)(OR⁵), PO(OR⁵)(OR^{5'}), PO(OH)(NHR⁵), or PO(NHR⁵)(NHR^{5'}), in each case bonded to a carbon atom of group **A**, or

the entire group Y-A-B is N(SO₂R⁴)(SO₂R⁴) or NHSO₂R⁴.

32. A method according to claim 15, wherein

Caro .

18

 $\mathbf{R}^{\mathbf{1}}$ is a monocyclic or bicyclic C₆₋₁₂ aryl group which is unsubstituted or is substituted with up to three of the following substituents, independently of one another: F, Cl, Br, I, $C(NH)NH_2$, $C(NH)NHR^4$, $C(NH)NR^4R^4$, $C(NR^4)NH_2$, $C(NR^4)NHR^4$, $C(NR^4)NR^4R^4$ XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, $XC(NOH)R^4$ XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCN, XCOOH, XCOOR⁴, XCONH₂, XCONR⁴R⁴, XCONHR⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNH₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XN(SO₂R⁴)SO₂R^{4'}, XNR⁴SO₂R^{4'}, XNHCOR⁴, XNHCOR⁴, XNHCONHR⁴, tetrahydro-2,5-dioxopyrrol-1-yl, 2,5-dihydro-2,5dioxopyrrol-1-yl, 2,7-dihydro-2,7dioxoisoindol-1-yl, and R⁴;

R² is a monocyclic or bicyclic C₆₋₁₀ aryl group which is unsubstituted or is substituted with up to three of the following substituents, independently of one another:

F, Cl, Br, I, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴,

XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCOOH, XCOOR⁴, XCONH₂,

XCONHR⁴, XCONR⁴R⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴, XSOR⁴,

XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴,

XN(SO₂R⁴)SO₂R⁴, XNR⁴SO₂R⁴, tetrahydro-2,5-dioxopyrrol-1-yl, 2,5-dihydro
2,5-dioxopyrrol-1-yl, 2,7-dihydro-2,7-dioxoisoindol-1-yl, and R⁴;

kydrogen, F, Cl, Br, I, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCN, XCOOH, XCOOR⁴, XCONH₂, XCONHR⁴, XCONR⁴R⁴, XCONHOH, XCONHOR⁴, XCONHOR⁴, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNH₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XNR⁴SO₂R⁴, XN(SO₂R⁴)(SO₂R⁴), XNHCOR⁴, XNHCOOR⁴, XNHCONHR⁴, tetrahydro-2,5-dioxopyrrol-1-yl, 2,5-dihydro-2,5-dioxopyrrol-1-yl, 2,7-dihydro-2,7-dioxoisoindol-1-yl, or R⁴;

 ${\bf R^4}$ and ${\bf R^{4'}}$, independently of one another, are each $C_{1\text{-}4}$ perfluoroalkyl, $C_{1\text{-}6}$ alkyl, $C_{2\text{-}6}$ alkenyl, $C_{2\text{-}6}$ alkinyl, $C_{3\text{-}7}$ cycloalkyl, $C_{1\text{-}3}$ alkyl- $C_{3\text{-}7}$ cycloalkyl, $C_{1\text{-}3}$ alkyl- $C_{6\text{-}10}$ aryl, or $C_{6\text{-}10}$

aryl, wherein aryl groups are unsubstituted or substituted by one or two substituents selected from F, Cl, Br, CH₃, C₂H₅, NO₂, OCH₃, OC₂H₅, CF₃, and C₂F₅,

R⁵ and R⁵, independently of one another, are each

 C_{1-6} alkyl, C_{2-6} alkenyl, or C_{2-6} alkinyl, wherein in each case a carbon atom can be optionally replaced by O, S, SO, SO₂, NH, N C_{1-3} alkyl or N C_{1-3} alkanoyl,

 C_{3-7} cycloalkyl- C_{0-3} alkyl, or

 C_{6-10} aryl;

A is C_{1-10} alkanediyl, C_{2-10} alkenediyl, C_{2-10} alkinediyl, or (C_{0-5} alkanediyl- C_{3-7} cycloalkanediyl- C_{0-5} alkanediyl),

wherein in the alkanediyl, alkenediyl, and alkinediyl chains, a carbon atom or two carbon atoms can be optionally replaced by O, NH, NC_{1-3} alkyl, NC_{1-3} alkanoyl, and wherein alkanediyl and cycloalkanediyl groups can be optionally substituted with up to two substituents selected from =O, OH, OC_{1-3} alkyl, NHC_{1-3} alkyl, NHC_{1-3} alkanoyl, $N(C_{1-3}$ alkyl)₂, and $N(C_{1-3}$ alkyl)(C_{1-3} alkanoyl); and

B is COOH, COOR⁵, CONH₂, CONHNH₂, CONHR⁵, CONR⁵R⁵, CONHOH, CONHOR⁵, SO₃H, SO₂NH₂, SO₂NHR⁵, SO₂NR⁵R⁵, PO₃H, PO(OH)(OR⁵), PO(OR⁵)(OR⁵), PO(OH)(NHR⁵), or PO(NHR⁵)(NHR⁵), in each case bonded to a carbon atom of group A, or

the entire group Y-A-B is N(SO₂R⁴)(SO₂R⁴) or NHSO₂R⁴.

33. A method according to claim 15, wherein said patient is suffering from AIDS dementia, amyotrophic lateral sclerosis, Creutzfeldt-Jacob disease, Down's syndrome, diffuse Lewy body's disease, Huntington's disease, leukoencephalopathy, multiple sclerosis, Parkinson's disease, Pick's disease, Alzheimer's disease, stroke, temporary lobe epilepsy or tumors.

- (g).
- 34. A method according to claim 15, wherein said patient is suffering from a stroke.
- 35. A method according to claim 32, wherein said compound is 6-[[1-(4-methylphenyl)-2-phenyl-1H-benzimdazol-6-yl]oxy] hexanoic isopropyl ester.
- 36. A method according to claim 32, wherein said compound is 6-[[1-(4-methylphenyl)-2-phenyl-1H-benzimdazol-6-yl]oxy] hexanoic isopropyl ester.--