Goal:

1+2+3 - ..+n

moony-1:

Wishful thinking
4 base case

moo ny - 2:

Inductive step: $f(n-1) \rightarrow f(n)$

moony - 3:

Sf(\(\dagger, b.f(\dagger, D, □), b.f(\dagger, \bar{\dagger}, \bar{\dagger}, \bar{\dagger}, \bar{\dagger}, \bar{\dagger}))

frome (n, rune) {

from cone (n, rune) {

from cone helper (n, rune, max) { $\frac{1}{4}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{1}$? rune

: overlay -f ($\frac{1}{n}$, $1 - \frac{n-1}{max}$)

scale ($\frac{1}{n}$, rune), max

cone helper (n-1, rune,));

}

cone helper ($\frac{1}{n}$, rune, $\frac{1}{n}$);

f(n)

beside-f,

f(n-1)

(1) Base case
$$(n=1)$$

(2) Inductive step

cone (n) {

4 $n===1$

? O

Cone (n-1)

permutations (lst)

list (1,2,3):

n x

(1) Wishful thinking. For each element, assume we have a solution for the list minus that element

remove (x, Lit)

- (2) Wishful thinking:

 permutations (remove (x, lsf))
- (3) Map list in wishful thinking solution

 map $(p \Rightarrow)$ pair (x, p),

 permutations (remove (x, lst))
- (4) Map element in lst

 map $(x \Rightarrow map (p \Rightarrow pair(x, p), permutations (remove(x,lst)))$ lst)
- (5) Final seep: combine solutions using accumulate (append, null,...)

chain (twice,
$$\frac{1}{2}$$
)

Twice (twice) (twice)

 $\frac{1}{2}$
 $\frac{1}$

