	Planes Para	el regto	del curso		
hoj:	aplicacions Lim (s- 5-71 ^t	de la d. 1 1) } K (s)	el # de clave	~~~\(\)	h _k
clase 27:	Prnebe	de Cu	f. Il #	de clase	' ⁄.
	7 K				
	C/Q abelia	ne	_	/	
claje 25:	(10 abelio	Vale 5 (n) = TT	alily. L, (n, x	
		A / - \			
clase 30	5 _K (5) =	- K, (s)	Equiva os; Lné	lencia (Kie	

Example
$$K = Q(\sqrt{10})$$
 $Q_{1} (S-1) \cdot S_{1}(S) = \frac{2}{4} \cdot C_{1}(S+5_{10}) \cdot h_{1}$
 $Q_{1} (S-1) \cdot S_{2}(S) = \frac{2}{4} \cdot C_{1}(S+5_{10}) \cdot h_{1}$
 $Q_{1} (S-1) \cdot S_{2}(S) \cdot h_{1}(S,2) \cdot h_{2} = 2$
 $Q_{1} (S-1) \cdot Q_{1}(S) \cdot h_{2}(S) \cdot h_{2} \cdot h_{2} \cdot h_{2} \cdot h_{2} \cdot h_{2} \cdot h_{2}$
 $Q_{1} (S-1) \cdot Q_{1}(S) = \frac{2^{n} \cdot (2\pi)^{n} \cdot k_{2} \cdot k_{2} \cdot h_{2}}{4 \cdot h_{1} \cdot h_{2} \cdot h_{2}} \cdot h_{2} \cdot h_{2}$
 $Q_{1} (S-1) \cdot Q_{2}(S) = \frac{2^{n} \cdot (2\pi)^{n} \cdot k_{2} \cdot h_{2}}{4 \cdot h_{2} \cdot h_{2} \cdot h_{2}} \cdot h_{2} \cdot h_{2}$
 $Q_{1} (S-1) \cdot Q_{2}(S) = \frac{2^{n} \cdot h_{2}}{4 \cdot h_{2} \cdot h_{2}} \cdot h_{2} \cdot h_{$

$$\begin{array}{l}
 \left[(1, 1) = -\frac{1}{1\sqrt{p}} \sum_{1 \leq \alpha \leq p-1} \chi(\alpha) \cdot \log \left(1 - \frac{1}{3p}\right) \right] \\
 S_{\chi} = -\sum_{\alpha} \chi(\alpha) \cdot \log \left(1 - \frac{1}{3p}\right) - \log \left(1 - \frac{1}{3p}\right) \\
 \left[2 S_{\chi} = \sum_{\alpha} \chi(\alpha) \left(\frac{1}{3y} \left(1 - \frac{1}{3p}\right) - \log \left(1 - \frac{1}{3p}\right) \right) \right] \\
 = \sum_{\alpha} \chi(\alpha) \cdot \log \left(\frac{1 - \frac{1}{3p}}{1 - \frac{1}{3p}} \right) \\
 = \sum_{\alpha} \chi(\alpha) \cdot \log \left(-\frac{1}{3p} \right) \\
 = \sum_{\alpha} \chi(\alpha) \cdot \log \left(\frac{1}{3p} \left(\frac{1}{3p} - \frac{2\pi i \alpha}{p} \right) \right) \\
 = \sum_{\alpha} \chi(\alpha) \cdot \left(\frac{\pi i}{2} - \frac{2\pi i \alpha}{p} \right) \\
 = \sum_{\alpha} \chi(\alpha) \cdot \frac{\pi i}{2} \left(\frac{1}{2} - \frac{\alpha}{p} \right) \\
 = \sum_{\alpha} \chi(\alpha) \cdot \frac{\pi i}{2} \left(\frac{1}{2} - \frac{\alpha}{p} \right) \\
 = \sum_{\alpha} \chi(\alpha) \cdot \frac{\pi i}{2} \left(\frac{1}{2} - \frac{\alpha}{p} \right) \\
 = \sum_{\alpha} \chi(\alpha) \cdot \frac{\pi i}{2} \left(\frac{1}{2} - \frac{\alpha}{p} \right) \\
 = \sum_{\alpha} \chi(\alpha) \cdot \frac{\pi i}{2} \left(\frac{1}{2} - \frac{\alpha}{p} \right) \\
 = \sum_{\alpha} \chi(\alpha) \cdot \frac{\pi i}{2} \left(\frac{1}{2} - \frac{\alpha}{p} \right) \\
 = \sum_{\alpha} \chi(\alpha) \cdot \frac{\pi i}{2} \left(\frac{1}{2} - \frac{\alpha}{p} \right) \\
 = \sum_{\alpha} \chi(\alpha) \cdot \frac{\pi i}{2} \left(\frac{1}{2} - \frac{\alpha}{p} \right) \\
 = \sum_{\alpha} \chi(\alpha) \cdot \frac{\pi i}{2} \left(\frac{1}{2} - \frac{\alpha}{p} \right) \\
 = \sum_{\alpha} \chi(\alpha) \cdot \frac{\pi i}{2} \left(\frac{1}{2} - \frac{\alpha}{p} \right) \\
 = \sum_{\alpha} \chi(\alpha) \cdot \frac{\pi i}{2} \left(\frac{1}{2} - \frac{\alpha}{p} \right) \\
 = \sum_{\alpha} \chi(\alpha) \cdot \frac{\pi i}{2} \left(\frac{1}{2} - \frac{\alpha}{p} \right) \\
 = \sum_{\alpha} \chi(\alpha) \cdot \frac{\pi i}{2} \left(\frac{1}{2} - \frac{\alpha}{p} \right) \\
 = \sum_{\alpha} \chi(\alpha) \cdot \frac{\pi i}{2} \left(\frac{1}{2} - \frac{\alpha}{p} \right) \\
 = \sum_{\alpha} \chi(\alpha) \cdot \frac{\pi i}{2} \left(\frac{1}{2} - \frac{\alpha}{p} \right) \\
 = \sum_{\alpha} \chi(\alpha) \cdot \frac{\pi i}{2} \left(\frac{1}{2} - \frac{\alpha}{p} \right) \\
 = \sum_{\alpha} \chi(\alpha) \cdot \frac{\pi i}{2} \left(\frac{1}{2} - \frac{\alpha}{p} \right) \\
 = \sum_{\alpha} \chi(\alpha) \cdot \frac{\pi i}{2} \left(\frac{1}{2} - \frac{\alpha}{p} \right) \\
 = \sum_{\alpha} \chi(\alpha) \cdot \frac{\pi i}{2} \left(\frac{1}{2} - \frac{\alpha}{p} \right) \\
 = \sum_{\alpha} \chi(\alpha) \cdot \frac{\pi i}{2} \left(\frac{\pi i}{2} - \frac{\pi i}{2} \right) \\
 = \sum_{\alpha} \chi(\alpha) \cdot \frac{\pi i}{2} \left(\frac{\pi i}{2} - \frac{\pi i}{2} \right) \\
 = \sum_{\alpha} \chi(\alpha) \cdot \frac{\pi i}{2} \left(\frac{\pi i}{2} - \frac{\pi i}{2} \right) \\
 = \sum_{\alpha} \chi(\alpha) \cdot \frac{\pi i}{2} \left(\frac{\pi i}{2} - \frac{\pi i}{2} \right) \\
 = \sum_{\alpha} \chi(\alpha) \cdot \frac{\pi i}{2} \left(\frac{\pi i}{2} - \frac{\pi i}{2} \right) \\
 = \sum_{\alpha} \chi(\alpha) \cdot \frac{\pi i}{2} \left(\frac{\pi i}{2} - \frac{\pi i}{2} \right) \\
 = \sum_{\alpha} \chi(\alpha) \cdot \frac{\pi i}{2} \left(\frac{\pi i}{2} - \frac{\pi i}{2} \right) \\
 = \sum_{\alpha} \chi(\alpha) \cdot \frac{\pi i}{2} \left(\frac{\pi i}{2} - \frac{\pi i}{2} \right) \\
 = \sum_{\alpha} \chi(\alpha) \cdot \frac{\pi i}{2} \left(\frac{\pi i}{2} - \frac{\pi i}{2} \right) \\
 = \sum_{\alpha} \chi(\alpha)$$

$$\frac{1}{e} \sum_{i} \chi(a) \cdot a = \begin{cases}
-\frac{1}{3} \sum_{i} \chi(a), & e = 3 \\
-$$

$$= 4 \chi(2) \cdot \sum_{1 \leq a \leq \frac{p-1}{2}} \chi(a) \cdot a - p \cdot \chi(z) \cdot \sum_{1 \leq a \leq \frac{p-2}{2}} \chi(a)$$

$$\rho.C = 2 \sum_{i=1}^{n} \chi(a).a - \rho. \sum_{i=1}^{n} \chi(a)$$
 (1)
 $1 \le a \le \frac{\rho-1}{2}$ $1 \le a \le \frac{\rho-1}{2}$
 $\rho.C = 4 \chi(2). \sum_{i=1}^{n} \chi(a).a - \rho. \chi(2). \sum_{i=1}^{n} \chi(a)$ (2).
 $1 \le a \le \frac{\rho-1}{2}$ $1 \le a \le \frac{\rho-2}{2}$

$$2 \cdot \chi(2)$$
, (1) – (2)

$$C(2x(2)-1) = -x(2) \sum_{1 \le a \le \frac{p-1}{2}} x(a)$$

$$C = \begin{cases} \frac{1}{p} \cdot \frac{2}{q} \cdot \frac{\alpha}{p} \cdot \alpha = -\frac{\chi(2)}{2\chi(2)} - \frac{2\chi(2)}{2\chi(2)} - \frac{1}{2\chi(2)} = \frac{2\chi(2)}{2\chi(2)} - \frac{1}{2\chi(2)} = \frac{2\chi(2)}{2\chi(2)} = \frac{1}{2\chi(2)} = \frac{1}{2\chi(2)$$

$$\chi(2) = \begin{pmatrix} 2 \\ P \end{pmatrix} = \begin{cases} -1 \\ +1 \\ P = 7 \end{cases} \begin{pmatrix} 4 \\ 4 \end{pmatrix}$$

$$h_{0}(5-p) = \begin{cases} \frac{1}{3} \sum_{i=1}^{2} {\binom{a}{p}} & p = 3 \\ \frac{1}{2} (\binom{a}{p}) & p = 7 \\ \frac{1}{2} (\binom{a}{p}) & p = 7 \\ \frac{1}{2} (\binom{a}{p}) & p = 7 \end{cases}$$

$$1 \le a \le \frac{p-1}{2}$$

Corlario
$$P=3(4)$$
 = en [1, $\frac{p-1}{2}$]

hay más cuadrados mod p que no- cuadrados.

Proposición $\chi = \left(\frac{1}{e}\right)$ TX(a) < Sp. leg P. (Prue8a en mis méasn Pólga-Vinogradou. X carécter mód N. $\sum \chi(\alpha) = O(5N \log N)$ Engral, K = Q (5%) $\frac{1}{2}(s) = \frac{1}{2}(s) \cdot \frac{1}{2}(s, \pi)$

hx (1,x), (Borevich, Shatarenich, Capitulo 5)