

Lecture 5: Electron diffraction

EEE 6212 - Semiconductor Materials

2

Lecture 5: electron diffraction

- Bragg's Law: the crystal as a diffraction grating
- Ewald's sphere
- diffraction of light, X-rays and electrons
- general evaluation of diffraction patterns
- · spot patterns, CBED & Kikuchi patterns

5

Bragg's Law

optical path difference between diffracted waves 1 and 2 is $2d \sin \theta$.

If $2d \sin \theta = n\lambda$ then the waves are in-phase and interference with each other constructively;

therefore the conditions for diffraction is:

 $\sin\theta = n\lambda/(2d)$

BRAGG'S LAW

where 2θ is the angle between the transmitted and the diffracted beam, hence the crystal acts like a diffraction grating with $\alpha=2\theta$!

EEE 6212 - Semiconductor Materials

6

Ewald's sphere construction

construct so-called 'reciprocal lattice' with points of all crystal reflections, then draw circle with radius k_0 =1/ λ and determine the directions for the incoming beam k_0 and the scattered beam k. Diffraction then occurs only if difference is a reciprocal lattice point, i.e.:

<u>**k**</u>–<u>**k**₀=<u>**g**</u></u>

from sketch follows: $\sin \theta = n(g/2)/k_0 = n\lambda/(2d)$ same result as Bragg's Law!

7

Comparison of wavelengths and angles

example: consider order n=1 and a lattice spacing of d=0.2nm

radiation	wavelength		wavevector	diffraction angle	
	λ =hc [2eVE ₀ +(eV) ²] ^{-1/2}		$k_0=1/\lambda$	θ =arcsin nλ/(2d)	
		[nm]	[nm ⁻¹]	[mrad]	[°]
light (f=5×10 ¹⁴ Hz)		600	0.0017	-	-
X-rays (Cu K_{α} , hf =8041eV)		0.1542	6.485	3957	22.67
electrons (200keV)		0.00251	399	6.275	0.3595
neutrons (0.025eV*)		0.1809	5.528	4693	26.89

^{*} thermal energy

Fast X-rays and slow neutrons have wavelengths similar to atomic spacings and as they are not strongly absorbed, diffraction is strong.

EEE 6212 - Semiconductor Materials

8

Comparison in reciprocal space

Wavelengths similar to lattice spacings mean that the wavevectors $\underline{\textbf{k}}$ and $\underline{\textbf{k}}_0$ are about as long as the reciprocal lattice vector $\underline{\textbf{g}}$, namely $\sim 1/d_{hkl}$. As a result, the Ewald's sphere cuts through a number of lattice points. Whether a few or many reflections will be excited depends on the direction of incidence.

9

Comparison in reciprocal space

Wavelengths similar to lattice spacings mean that the wavevectors $\underline{\mathbf{k}}$ and $\underline{\mathbf{k}}_0$ are about as long as the reciprocal lattice vector $\underline{\mathbf{g}}$, namely $\sim 1/d_{\rm hkl}$. As a result, the Ewald's sphere cuts through a number of lattice points. Whether a few or many reflections will be excited depends on the direction of incidence, as shown here for simultaneous excitation of $\underline{\mathbf{g}}_1$ and $\underline{\mathbf{g}}_2$.

EEE 6212 - Semiconductor Materials

10

Comparison in reciprocal space

What happens for visible light? The radius of the Ewald's sphere is too small to cut through any lattice points: **no diffraction**.

<u>k</u>₀ [©] [∆] g

• • • • • •

14

Selected-area electron diffraction (SAED) in the TEM

selected-area electron diffraction patterns obtained from three different materials: (a) amorphous carbon film, (b) Aluminium single crystal and (c) poly-crystalline gold; images courtesy of IM Ross, Univ. Sheffield

15

Radial distribution functions of amorphous materials

Principle: record diffraction pattern, get radial profile by line averaging along azimuth angle, subtract background, Fourier transform to real space: peaks

Example: comparison of atomic distances from different oxides K. Schulmeister and W. Mader, J. non-cryst. Solids <u>320</u> (2003) 143-150

EEE 6212 - Semiconductor Materials

16

Study of phase transitions as function of temperature

Example: Ima2 – IC – P4/mbm phase transition in <110> $\rm Ba_2NdNb_3Ti_2O_{15}$ bronze

I. Levin et al., Appl. Phys. Lett. 89 (2006) 122908

17

Kikuchi bands

For convergent beam illumination or multiple inelastic scattering in a thick specimen: replace arrow for direction of incidence by a cone and obtain a Kikuchi pattern with bright ('excess') and dark ('deficiency') lines instead of a spot pattern. The pattern's symmetry contains detailed crystallographic information.

EEE 6212 - Semiconductor Materials

18

Electron back-scatter diffraction (EBSD) in the SEM

A single automated EBSD run can provide rather complete characterisation of the microstructure: it maps the local sample orientation (down to ~20nm resolution if the voltage is reduced to ~5kV) from which one can construct maps of

- phase distribution
- grain size distribution and thus measure also
- · grain misorientations
- intra-granular deformation

Prerequisite: a very clean surface (produced e.g. by electro-polishing, etching, ion beam milling)

23

electron crystallography

Principle: record diffraction pattern energy filtered, remove detector point spread function, then get by fit to dynamical simulations in iterative manner:

- lattice and atomic positions
- structure factors
- electron charge density (by FFT)
- Debye-Waller-factor and absorption

R. Holmestad, Europ. School on Advanced TEM measurement techniques for materials science, St. Aygulf, France, 25 Sept. -7 Oct. 2005

EEE 6212 - Semiconductor Materials

24

Summary

- Bragg's law of diffraction states $\sin \theta = n \lambda / (2d)$.
- This is identical to diffraction from an optical grating of spacing *d* for total angle of deflection α=2θ.
- Ewald's sphere construction in reciprocal space yields Bragg's law.
- Crystals diffract fast X-rays or slow neutrons strongly.
- Electrons are diffracted only for thin foils (TEM) or from surfaces (SEM, RHEED). Bulk material absorbs electrons.
- Spot diffraction patterns hence tell is about symmetry, (space group), lattice spacings and angles (reciprocal dimensions, hence also strain) and structure factors.