Obsah

22	Elek	ctromagnetické vlnění
	22.1	Maxwellova teorie
		22.1.1 První Maxwellova rovnice
		22.1.2 Druhá Maxwellova rovnice
		22.1.3 Třetí Maxwellova rovnice
		22.1.4 Čtvrtá Maxwellova rovnice
	22.2	Elektromagnetický oscilátor
		22.2.1 Nejjednodušší oscilátor
	22.3	Vlastnosti elektrického vlnění
		22.3.1 Parametry elmag. vlny
	22.4	Vlastní a nucené kmitání elmag. vln
		22.4.1 Vlastní kmitání
		22.4.2 Nucené kmitání
	22.5	Elektromagnetický dipól
	22.6	Šíření elektromagnetických vln
		22.6.1 Typy elektrických vln

22 Elektromagnetické vlnění

- šíření elektrického a magnetického pole prostorem
- oscilující elektrické a magnetické pole
- vlnoplocha z bodového zdroje koule
- emitovány částicemi s nábojem při zrychlení

Obr. 22.1: Šíření elektrického a magnetického pole

22.1 Maxwellova teorie

- definována Jamesem Clerkem Maxwellem
- zkompletoval a doplnil známe rovnice o elektrickém a magnetickém poli
- došel k závěru, že světlo jsou elmag. vlny
- obecné vyjádření elektromagnetického pole jednoznačné vyjádření z proudu a náboje
- rozšíření informací: https://fykos.cz/_media/rocnik23/ulohy/pdf/serie23_4.pdf

22.1.1 První Maxwellova rovnice

• diferenciální tvar

$$abla \cdot \mathbf{E} = rac{arrho}{arepsilon_0}$$

 $-\nabla \cdot$ – divergence (skalár vyjadřující tok vektorového pole), kdy

$$\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \quad \Rightarrow \quad \nabla \cdot \mathbf{E} = \frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z}$$

- ϱ hustota náboje
- $-\varepsilon_0$ permitivita vakua
- význam: jestliže se v prostoru nachází náboj $(\varrho \neq 0)$, potom je přítomno nenulové elektrické pole
- "elektrické pole vzniká v nábojích"

22.1.2 Druhá Maxwellova rovnice

• diferenciální tvar

$$\nabla \cdot \mathbf{B} = 0$$

- neexistují magnetické náboje
- magnetické pole nemá na rozdíl od elektrického žádná místa v prostoru, kde by vznikalo nebo zanikalo

22.1.3 Třetí Maxwellova rovnice

• diferenciální tvar

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

- $-\nabla \times \text{rotace}$
- zákon elektromagnetické indukce
- parafráze Faradayova zákona
- "jestliže se někde mění magnetické pole v čase, vzniká elektrické"

22.1.4 Čtvrtá Maxwellova rovnice

• diferenciální tvar

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{j} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$

- -j vektor hustoty proudu
- $-\mu_0$ permeabilita vakua
- "pokud někde teče proud nebo se mění magnetické pole, vznikne kolem něj magnetické pole"

Obr. 22.2: Vizualizace divergence

22.2 Elektromagnetický oscilátor

- elektrický obvod generující elektromagnetické vlnění
- přeměna elektrické energie na energii magnetickou a naopak

22.2.1 Nejjednodušší oscilátor

- LC obvod (L indukčnost cívka, C kapacita kondenzátor)
- dochází k rezonanci na rezonanční frekvenci

$$X_{L} = X_{C}$$

$$\omega L = \frac{1}{\omega C}$$

$$\omega = \frac{1}{\sqrt{LC}}$$

$$f = \frac{1}{2\pi\sqrt{LC}}$$

- iniciace LC oscilátoru nabití kondenzátoru
- průběh
 - -t=0 nabitý kondenzátor, začíná se vybíjet
 - zvýšení proudu procházející cívkou, tvorba mag. pole přeměna el. pole na mag. pole
 - -t=T/4 kondenzátor vybit, $I=I_{\rm max},$ všechna energie v mag. poli
 - -zmenšování proudu \to indukování napětí, procházení indukovaného proudu \to nabíjení kondenzátoru
 - -t = T/2 kondenzátor nabit, ovšem s opačnou polaritou
 - opakování popsaného děje v druhé polovině periody s opačnou polaritou

Obr. 22.3: Nákres LC obvodu

Obr. 22.4: Průběh oscilace LC obvodu

22.3 Vlastnosti elektrického vlnění

- neoddělitelné oscilující elektrické a magnetické pole
- elektrické a magnetického pole navzájem kolmé, společně se směrem pohybu
- příčné vlnění
- vlny
 - postupná vlna souhlasné váze E a B
 - stojatá vlna fáze **E** a **B** posunuty o $\pi/2$
- platí zákony odrazu a ohybu
 - rozměry překážky $\leq \lambda \rightarrow$ ohyb
 - rozměry překážky > $\lambda \to \mathrm{za}$ překážkou stín
- rychlost šíření
 - ve vakuu pohyb rychlostí světla $c = 3 \cdot 10^8 \,\mathrm{m\cdot s^{-1}}$
 - v prostředí

$$v = \frac{c}{\varepsilon_{\rm r} \mu_{\rm r}}$$

* $\varepsilon_{\rm r}, \mu_{\rm r}$ – relativní permitivita a permeabilita prostředí

22.3.1 Parametry elmag. vlny

- vlnová délka λ , $[\lambda] = m$
 - vzdálenost, kterou vlna urazí za jednu periodu / délka jedné periody
- perioda T, [T] = s
 - doba jedné periody
- frekvence $f, [f] = Hz = s^{-1}$
 - počet period za jednu sekundu

$$f = \frac{1}{T}$$

- rychlost šíření $v, [v] = \text{m} \cdot \text{s}^{-2}$

$$v = \frac{\lambda}{T} = \lambda f$$

- úhlová frekvence $\omega, [\omega] = \text{rad} \cdot \text{s}^{-1}$
 - rychlost kmitání vlny vyjádřeno jako úhlová rychlost

$$\omega = 2\pi f = \frac{2\pi}{T}$$

• okamžité elektrické a magnetické pole

$$\mathbf{E} = \mathbf{E}_{\max} \sin \omega t$$

$$\mathbf{B} = \mathbf{B}_{\max} \sin \omega t$$

22.4 Vlastní a nucené kmitání elmag. vln

22.4.1 Vlastní kmitání

- kmitání soustavy bez vnějšího zásahu
- po prvotním nabití a odpoje LC obvod kmitá vlastním kmitáním
- ztráty energie \rightarrow tlumené
 - soustava po čase kmitat přestane
- oscilace pouze vlastní frekvencí

22.4.2 Nucené kmitání

- kmitání soustavy s vnějším zásahem
- dodávání síly/energie do systému
- kompenzace ztrát energie
- netlumené harmonické kmitání
- oscilace s frekvencí vnějšího působení

22.5 Elektromagnetický dipól

- zařízení se dvěma konci, na kterých se nachází opačný náboj o stejné velikosti
- rozevření konců rovnoběžných vodičů o délce $\lambda/4$ do směru kolmému vedení \to půlvlnový dipól
- periodické dosažení maxima napětí na koncích vodiče \rightarrow vznik elektrického pole
- vytváření elektromagnetického pole
 - elektrické siločáry v rovině dipólu
 - magnetické indukční vlny soustředné kružnice v rovině kolmé dipólu
- využití antény
 - vysílač vyzařování vlnění do okolí, většina energie vyzařována ve směru kolmém k ose energie
 - přijímač vznik nuceného kmitání, příjem signálu

Obr. 22.5: Vytvoření elektrického půlvlnového dipólu

Obr. 22.6: Půlvlnový dipól jako anténa

22.6 Šíření elektromagnetických vln

- závislé na frekvenci / vlnové délce
- ohyb podél zemského povrchu
 - šíření přes velké překážky

Obr. 22.7: Elektrické a magnetické pole dipólu

- dlouhé a střední vlny
- velmi krátké vlny (rozhlas, televize) nutná zachovat přímou cestu k vysílači
- ionosféra $(60 \,\mathrm{km} 80 \,\mathrm{km})$
 - volné elektrony a ionty vodivá pro elmag. vlny
 - odražení některých krátkých vln
 - proměnlivé vlastnosti
- radiolokace systémy sledující přímočaré šíření
 - radar určování poloha rádiem $(0.01 \,\mathrm{m} 0.5 \,\mathrm{m})$
- šíření vedením sériové zapojení LC obvodů

22.6.1 Typy elektrických vln

- gamma záření γ
- rentgenové záření
 - HX = Hard X-rays
 - -SX = Soft X-Rays
- ultrafialové
 - EUV = Extreme-ultraviolet
 - NUV = Near-ultraviolet
- viditelné světlo
- infračervené
 - NIR = Near-infrared
 - MIR = Mid-infrared
 - FIR = Far-infrared
- mikrovlny
 - EHF = Extremely high frequency (microwaves)
 - SHF = Super-high frequency (microwaves)
- rádiové vlny

- UHF = Ultrahigh frequency (radio waves)
- VHF = Very high frequency (radio)
- HF = High frequency (radio)
- MF = Medium frequency (radio)
- LF = Low frequency (radio)
- VLF = Very low frequency (radio)
- VF = Voice frequency
- ULF = Ultra-low frequency (radio)
- SLF = Super-low frequency (radio)
- ELF = Extremely low frequency (radio)

CLASS	FREQUENCY	WAVELENGTH	ENERGY
γ	300 EHz	1 pm	1.24 MeV
HX —	30 EHz	10 pm	124 keV
ПЛ	3 EHz	100 pm	12.4 keV
SX —	300 PHz	1 nm	1.24 keV
EUV	30 PHz	10 nm	124 eV
NUV	3 PHz	100 nm	12.4 eV
NIR	300 THz	1 µm	1.24 eV
MIR	30 THz	10 µm	124 meV
FIR	3 THz	100 µm	12.4 meV
	300 GHz	1 mm	1.24 meV
EHF SHF	30 GHz	1 cm	124 µeV
UHF	3 GHz	1 dm	12.4 µeV
VHF	300 MHz	1 m	1.24 µeV
VHF	30 MHz	10 m	124 neV
MF	3 MHz	100 m	12.4 neV
I F	300 kHz	1 km	1.24 neV
VLF	30 kHz	10 km	124 peV
VEF VF/ULF	3 kHz	100 km	12.4 peV
	300 Hz	1 Mm	1.24 peV
SLF	30 Hz	10 Mm	124 feV
ELF_	3 Hz	100 Mm	12.4 feV

Obr. 22.8: Frekvence, vlnové délky a energie jednotlivých záření

Obr. 22.9: Elektromagnetické spektrum

Obr. 22.10: Porovnání velikostí elektromagnetických vln