

# Trabajo Práctico 2

## Clasificación y Selección de Modelos

3 de marzo de 2024 Laboratorio de Datos

#### Grupo 100

| Integrante                   | LU      | Correo electrónico             |
|------------------------------|---------|--------------------------------|
| Chapana Puma, Joselin Miriam | 1197/21 | yoselin.chapana@gmail.com      |
| Martinelli, Lorenzo          | 364/23  | martinelli.lorenzo12@gmail.com |
| Padilla, Ramiro              | 1636/21 | ramiromdq123@gmail.com         |



#### Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Ciudad Universitaria - (Pabellón I/Planta Baja) Intendente Güiraldes 2610 - C1428EGA Ciudad Autónoma de Buenos Aires - Rep. Argentina Tel/Fax: (++54+11) 4576-3300

http://www.exactas.uba.ar

#### 1. Introducción

#### 1.1. Fuente de datos

A lo largo de este proyecto, trabajaremos con un conjunto de datos de imágenes denominado Sign Language MNIST<sup>1</sup>, el cual se encuentra en formato csv, donde cada imagen del set de datos representa una letra en lenguaje de señas americano. El link al dataset se encuentra al pie de página.

#### 1.2. Análisis exploratorio de datos

Antes de ponernos a trabajar con los datos, necesitamos saber mas acerca de ellos. Sabemos que, cada fila del dataset representa una imagen de 28x28 pixeles en escala de grises que corresponde a una letra en lenguaje de señas. Miremos a continuación un pequeño fragmento del mismo. En este, podremos ver las semejanzas y diferencias que tenemos entre las distintas letras. También, se puede ver en menor medida similitudes entre letras de la misma clase.

## Preview del dataset



Figura 1: Primeras nueve imagenes del dataset

A partir del gráfico anterior, podemos inferir que no todos los pixeles son realmente relevantes para diferenciar imágenes entre si. Por ejemplo, podemos ver que aquellos pixeles correspondientes al fondo no aportan información alguna. ¿Cuántos pixeles necesitaremos realmente para diferenciar las imágenes?

Por otro lado, viendo por ejemplo, que las letras C y D aparecen más de una vez, también surge la pregunta. ¿Están balanceadas las distintas clases que identifican a las letras? En el gráfico a continuación, podremos notar que tenemos un dataset con una excelente distribución de clases. ¿Por qué me interesa tener una cantidad pareja de cada muestra? Esto, adquiere relevancia puesto que al entrenar nuestros modelos en un futuro, no queremos tener sesgos.

Obs: Las letras J y Z no poseen ningún ejemplar puesto que requieren de movimiento para su seña.

<sup>&</sup>lt;sup>1</sup>Link al dataset https://www.kaggle.com/datasets/datamunge/sign-language-mnist



Figura 2: Cantidad de muestras de cada letra



En la imagen anterior, podemos apreciar que tanto la letra E como la M son muy distintas a la letra L, sin embargo, poseen muchas semenjanzas entre sí. Esto, es algo a tener en cuenta a la hora de plantear los modelos, cuales serán los pixeles mas representativos para imagenes similares. Miremos también, si en imagenes pertenencientes a una misma letra hay diferencias notorias.

#### Letra C





#### Letras C apiladas



(b) Todas las muestras de la letra C apiladas

Si bien, a simple vista, cuando comparamos algunos ejemplares, pareciera que las diferencias pueden llegar a ser significativas, a la hora de comparar todos los ejemplares, en este caso, apilandolos, notamos que forman una silueta que representa muy bien la seña a la que corresponde.

A partir de todo el análisis anterior, pudimos notar que no representa diferencias significativas el trabajar con imagenes respecto a datasets como el del titanic, respecto a su dificultad. Si, quizas, lleva algo mas de tiempo su análisis, pero con las herramientas indicadas no presenta mayores dificultades.

#### 2. Modelo

#### 2.1. ¿La imagen corresponde a una seña de la L o a una seña de la A?

En esta sección, trabajeremos con un subconjunto del dataset original, donde solo esten la letra A y L. Nuestro objetivo, será encontrar un modelo que diferencie con la menor cantidad de pixeles posibles. Comencemos entonces, viendo las diferencias entre estas letras y cuantas muestras tenemos.

Letras A y L apiladas





(a) Todas las letras A y L apiladas y reescaladas



(b) Cantidad por clase

Sabemos entonces, que tenemos buena distribución, y podemos ver de la imagen de la izquierda que pareceria que hay dos zonas que diferencian bien ambas letras, lo que vamos a hacer entonces es 'restarámbas letras para asi encontrar donde estan los pixeles de mayor varianza. ¿Por qué los de mayor varianza? Puesto que son aquellos que representan mas la diferencia entre ambas imagenes.

### Varianza entre A y L



Figura 6: Letra L - A

Notamos que, la zona con mayor varianza seria en la zona mas oscura que aparece en el medio de la imagen o, en su defecto, la zona mas blanca. Para saber esto con precisión utilizamos una función de pandas que nos devuelve en una lista las 10 posiciones con los valores mas altos. Destacando, que los pixeles mas representativos son el 301, 274 y 246.

#### 2.2. Construcción del Modelo

Una vez, que conocemos bastante acerca de nuestro dataset, estamos en condiciones de armar nuestro clasificador Knn. A fines de afinar nuestro modelo, hicimos pruebas utilizando distintas cantidades de pixeles, la idea es, utilizar la menor cantidad posible para asi no usar datasets tan grandes. Como ya conociamos aquellos pixeles mas significativos, hicimos pruebas utilizando 1, 3 y 50 pixeles tomando a su vez, distinta cantidad de vecinos. A continuación tenemos los resultados.







(b) Los 3 pixeles mas significativos

Notemos que, a diferencia de lo que marca la intuición, la mejor cantidad de vecinos es 1 en ambos casos. Por otro lado, podemos notar que no es necesaria una gran cantidad de pixeles, sino que solamente con 3 pixeles que sean relevantes podemos tener un modelo con mas del 0.99 de precisión.





Sin embargo, hay un caso que escapa a la regla. Encontramos que cuando tenemos solo un pixel. Sin importar si este es significativo o no, la performance del modelo tiende a aumentar a medida que el numero de vecinos es mayor. En este caso, a partir de los gráficos, pareciera ser que k=9 sería un buen número.

Cerrando esta sección, creo que podemos concluir que tomando los 3 pixeles de mayor varianza y k = 1, tenemos un excelente clasificador para distinguir entre la letra A y la letra L.

#### 3. Clasificador Multiclase

### 3.1. ¿A cuál de las vocales corresponde la seña en la imagen?

En esta sección, se intentará encontrar un modelo de arbol de decisión que prediga las vocales. Para esto, armaremos un dataset a partir del original el cual contenga unicamente estas.

A fin de encontrar el mejor modelo, realizamos distintas pruebas modificando los paramentros del modelo. En primer lugar, lo que hicimos fue testear alturas entre 1 y 14. Para esto, utilizamos dos métodos, por un lado dividimos el el dataset original en train, validation y test, para luego entrenar el modelo con los datos de train y medirlo contra los datos de validation.



Figura 9: Prueba para distintas profundidades

Por otro lado, para poder comparar y seleccionar el mejor arbol de decision, se empleo validacion cruzada con k-folding utilizando los datos de train, los cuales en este caso son la union entre los datos de train y validacion anteriores. Veamos entonces los resultados comparados con el test anterior.





En busqueda del mejor modelo, se exploraron diversas combinaciones de hiper-parametros. Para eso se realiza un Grid Search tomando en cuenta los profundidades entre 10 y 14, y los criterios, entropia y gini. A continuación tenemos una tabla con los resultados.

| Criterio | Altura | Precision |
|----------|--------|-----------|
| gini     | 10     | 0.9306    |
| gini     | 11     | 0.937     |
| gini     | 12     | 0.9334    |
| gini     | 13     | 0.9362    |
| gini     | 14     | 0.9367    |
| entropy  | 10     | 0.9467    |
| entropy  | 11     | 0.9467    |
| entropy  | 12     | 0.9467    |
| entropy  | 13     | 0.9441    |
| entropy  | 14     | 0.9477    |

Figura 11: matriz confusion

Podemos notar, primero que utilizar entropia es un poco mas eficiente que utilizar gini. Y, en segundo lugar, que el rendimiento entre profundidades practicamente no difiere. Por lo tanto, tomaremos aquel de menor profundidad en busca de tener un modelo mas simple. De esta manera, el modelo que escogeremos al final es un arbol de altura 10 con el criterio entropia.

Para poder visualizar mejor estos valores, se recurrió a la matriz de confusión. Esta matriz es una herramienta que muestra de manera detallada cómo el modelo clasifica las muestras en cada una de las clases. Cada fila de la matriz representa la clase real, mientras que cada columna representa la clase predicha por el modelo.

Finalmente, gracias a la informacion proporcionada, aseguramos que el mejor modelo es el arbol de decision con 14 de profundidad.



Figura 12: matriz confusion