Devoir sur table nº 4

Mathématiques

Durée : 4h. Calculatrice interdite.

- Mettre le numéro des questions.
- Justifiez vos réponses.

• ENCADREZ vos résultats.

Utilisez des mots en français entre les assertions mathématiques.

• Numérotez les copies doubles.

• Bon courage!

Questions de cours

1) Étudier le prolongement par continuité aux bornes du domaine de définition de :

$$f(x) = x^{x}$$
 et $g(x) = \frac{x \ln x}{x^{2} - 1}$.

- 2) Soit $f:[0,1] \to [0,1]$ une fonction continue. Montrer que f admet un point fixe.
- 3) Soit $f: E \to F$ une application entre deux ensemble quelconques E et F. Montrer que pour toutes parties A_1 et A_2 de E, on a :

$$f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$$
 et $f(A_1 \cap A_2) \subset f(A_1) \cap f(A_2)$.

Montrer que si f est injective alors la dernière inclusion est une égalité.

Exercice 1. On considère la matrice suivante : $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

- 1) Calculer A^2 et montrer que A est inversible. Que vaut A^{-1} ?
- 2) Montrer que pour tout entier $n \ge 1$, il existe deux réels u_n et v_n tels que

$$A^n = u_n A + v_n I_3.$$

et donner une relation entre (u_{n+1}, v_{n+1}) et (u_n, v_n) , valable pour tout $n \in \mathbb{N}^*$.

3) On pose, pour tout $n \in \mathbb{N}^*$,

$$\begin{cases} a_n = 2u_n + v_n, \\ b_n = u_n + v_n. \end{cases}$$

a) Déterminer une relation entre a_{n+1} et a_n ainsi qu'une relation entre b_{n+1} et b_n .

- b) Exprimer, pour tout $n \in \mathbb{N}^*$, a_n et b_n en fonction de n.
- c) En déduire u_n , v_n puis A^n en fonction de n.
- 4) Déterminer une relation de récurrence double sur la suite $(u_n)_{n\in\mathbb{N}}$ et retrouver le résultat précédent.

Exercice 2. Pour tout entier $n \ge 2$, on considère la fonction f_n définie par : $f_n(x) = x^n - x - 1$.

- 1) Montrer que l'équation $f_n(x) = 0$ admet une unique solution dans $[1, +\infty[$. On notera u_n cette solution et on rappelle que n est pris supérieur ou égal à 2.
- 2) Calculer la valeur exacte de u_2 .
- 3) Déterminer le signe de $f_{n+1}(x) f_n(x)$ pour $x \ge 1$.
- 4) Montrer que $f_{n+1}(u_n) \ge 0$. En déduire le sens de variation de la suite $(u_n)_{n \ge 2}$.
- 5) Montrer que la suite u converge.
- 6) Calculer: $\lim_{n \to +\infty} f_n \left(1 + \frac{1}{n} \right)$.
- 7) En déduire qu'il existe un rang $n_0 \in \mathbb{N}$ à partir duquel : $\forall n \ge n_0, \quad f_n\left(1 + \frac{1}{n}\right) \ge 0.$
- 8) En déduire que : $\forall n \geqslant n_0, \quad 1 \leqslant u_n \leqslant 1 + \frac{1}{n}$.
- 9) Calculer la limite de la suite u ainsi que $\lim_{n\to+\infty} u_n^n$.

Exercice 3. Dans cet exercice, on étudie quelques propriétés du déterminant, définie sur $\mathcal{M}_2(\mathbb{R})$ par

$$\det : \quad \mathcal{M}_2(\mathbb{R}) \quad \longrightarrow \quad \mathbb{R}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad \longmapsto \quad ad - bc$$

- 1) Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}).$
 - a) Rappeler une condition nécessaire et suffisante sur a, b, c, d pour que A soit inversible et donner, dans ce cas, une expression de A^{-1} .
 - b) Démontrer le résultat précédent.
- 2) Soient $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ et $M' = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$. Montrer que $\det(MM') = \det(M) \times \det(M')$.

3) On considère $\mathcal{M}_2(\mathbb{Z})$ l'ensemble des matrices de taille 2×2 à coefficients entiers :

$$\mathcal{M}_2(\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid (a, b, c, d) \in \mathbb{Z}^4 \right\}$$

On dit que $M \in \mathcal{M}_2(\mathbb{Z})$ est inversible <u>dans</u> $\mathcal{M}_2(\mathbb{Z})$ si M est inversible et que M^{-1} est à coefficients dans \mathbb{Z} .

- a) Montrer que M est inversible dans $\mathcal{M}_2(\mathbb{Z})$ si et seulement si $\det(M) = 1$ ou $\det(M) = -1$.
- b) Montrer que si $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ est inversible dans $\mathcal{M}_2(\mathbb{Z})$ alors a et b sont premiers entre eux.

Exercice 4. Le but de l'exercice est d'étudier la suite d'intégrales définie, pour tout $n \in \mathbb{N}$, par

$$I_n = \int_1^e \frac{(\ln t)^n}{t^2} dt.$$

On rappelle la définition de la factorielle : 0! = 1 et, pour tout $n \in \mathbb{N}^*$,

$$n! = \prod_{k=1}^{n} k = 1 \times 2 \times \dots \times n.$$

Question préliminaire

1) Montrer que pour tout $n \in \mathbb{N}^*$, $n! \ge 2^{n-1}$. En déduire la limite de n! lorsque $n \to +\infty$.

Signe et monotonie de $(I_n)_{n\in\mathbb{N}}$

Pour tout $n \in \mathbb{N}$, on note

$$f_n: x \mapsto \frac{(\ln x)^n}{x^2}.$$

- 2) Déterminer le domaine de définition de f_n et justifier l'existence de I_n .
- 3) La fonction f_n est-elle prolongeable par continuité aux bornes de son domaine de définition?
- 4) Calculer I_0 puis I_1 (on pourra faire une intégration par parties).
- 5) Faire l'étude complète de f_n . On dressera son tableau de variations avec limites aux bornes. En déduire le signe de I_n .
- 6) Montrer que pour tout $x \in [1, e]$, $f_{n+1}(x) \leq f_n(x)$. En déduire la monotonie de la suite $(I_n)_{n \in \mathbb{N}}$.

Convergence de $(I_n)_{n\in\mathbb{N}}$

- 7) Déterminer une relation entre I_{n+1} et I_n pour tout $n \in \mathbb{N}$.
- 8) Calculer I_2 .
- 9) Effectuer le changement de variable $y = \ln t$ dans I_n .

10) En déduire que pour tout $n \in \mathbb{N}$,

$$0 \leqslant I_n \leqslant \frac{1}{n+1}.$$

La suite $(I_n)_{n\in\mathbb{N}}$ est-elle convergente (si oui, on précisera sa limite)?

Une expression de $(I_n)_{n\in\mathbb{N}}$

11) Montrer qu'il existe une suite **d'entiers naturels** $(b_n)_{n\in\mathbb{N}}$ telle que, pour tout $n\in\mathbb{N}$,

$$I_n = n! - \frac{b_n}{e}.$$

On déterminera b_0, b_1, b_2 ainsi qu'une relation entre b_n et b_{n+1} pour tout $n \in \mathbb{N}$.

- 12) Déterminer la limite de $(b_n)_{n\in\mathbb{N}}$ puis la limite de $(b_n/n!)_{n\in\mathbb{N}}$.
- 13) Montrer que, pour tout $n \in \mathbb{N}$,

$$b_n = n! \sum_{k=0}^{n} \frac{1}{k!}.$$

14) Déterminer la limite de la suite $(e_n)_{n\in\mathbb{N}}$ définie par

$$\forall n \in \mathbb{N}, \quad e_n = \sum_{k=0}^n \frac{1}{k!}.$$