

planetmath.org

Math for the people, by the people.

monadic algebra

Canonical name MonadicAlgebra
Date of creation 2013-03-22 17:48:57
Last modified on 2013-03-22 17:48:57

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 9

Author CWoo (3771)
Entry type Definition
Classification msc 03G15
Classification msc 06E25

Related topic QuantifierAlgebra Related topic PolyadicAlgebra

Defines existential quantifier operator Defines universal quantifier operator Let B be a Boolean algebra. An existential quantifier operator on B is a function $\exists: B \to B$ such that

- 1. $\exists (0) = 0$,
- 2. $a \leq \exists (a)$, where $a \in B$, and
- 3. $\exists (a \land \exists (b)) = \exists (a) \land \exists (b), \text{ where } a, b \in B.$

A monadic algebra is a pair (B, \exists) , where B is a Boolean algebra and \exists is an existential quantifier operator.

There is an obvious connection between an existential quantifier operator on a Boolean algebra and an existential quantifier in a first order logic:

- 1. A statement $\varphi(x)$ is false iff $\exists x \varphi(x)$ is false. For example, suppose x is a real number. Let $\varphi(x)$ be the statement x = x + 1. Then $\varphi(x)$ is false no matter what x is. Likewise, $\exists \varphi(x)$ is always false too.
- 2. $\varphi(x)$ implies $\exists x \varphi(x)$; in other words, if $\exists x \varphi(x)$ is false, then so is $\varphi(x)$. For example, let $\varphi(x)$ be the statement 1 < x, where $x \in \mathbb{R}$. By itself, $\varphi(x)$ is neither true nor false. However $\exists x \varphi(x)$ is always true.
- 3. $\exists x(\varphi(x) \land \exists x\psi(x))$ iff $\exists x\varphi(x) \land \exists x\psi(x)$. For example, suppose again x is real. Let $\varphi(x)$ be the statement x < 1 and $\psi(x)$ the statement x > 1. Then both $\exists x\psi(x)$ and $\exists x\varphi(x)$ are true. It is easy to verify the equivalence of the two sentences in this example. Notice that, however, $\exists x(\varphi(x) \land \psi(x))$ is false.

Remarks

- One may replace condition 3. above with the following three conditions to get an equivalent definition of an existential quantifier operator:
 - 1. $\exists (\exists (a)) = \exists (a)$
 - 2. $\exists (a \lor b) = \exists (a) \lor \exists (b)$
 - 3. $\exists ((\exists a)') = (\exists a)'$

From this, it is easy to see that \exists is a closure operator on B, and that $\exists a$ and $(\exists a)'$ are both closed under \exists .

• Like the Lindenbaum algebra of propositional logic, monadic algebra is an attempt at converting first order logic into an algebra so that a logical question may be turned into an algebraic one. However, the existential quantifier operator in a monadic algebra corresponds to existential quantifier applied to formulas with only one variable (hence the name monadic). Formulas with multiple variables, such as $x^2 + y^2 = 1$, $x \leq y + z$, or $x_i = x_{i+1} + x_{i+2}$ where $i = 0, 1, 2, \ldots$ require further generalizations to what is known as a *polyadic algebra*. The notions of monadic and polyadic algebras were introduced by Paul Halmos.

Dual to the notion of an existential quantifier is that of a universal quantifier. Likewise, there is a dual of an existential quantifier operator on a Boolean algebra, a universal quantifier operator. Formally, a universal quantifier operator on a Boolean algebra B is a function $\forall : B \to B$ such that

- 1. $\forall (1) = 1$,
- 2. $\forall (a) \leq a$, where $a \in B$, and
- 3. $\forall (a \lor \forall (b)) = \forall (a) \lor \forall (b)$, where $a, b \in B$.

Every existential quantifier operator \exists on a Boolean algebra B induces a universal quantifier operator \forall , given by

$$\forall (a) := (\exists (a'))'.$$

Conversely, every universal quantifier operator induces an existential quantifier by exchanging \forall and \exists in the definition above. This shows that the two operations are dual to one another.

References

[1] P. Halmos, S. Givant, *Logic as Algebra*, The Mathematical Association of America (1998).