Challenge data science ANAP-ATIH 2020:

Mieux anticiper l'augmentation des maladies chroniques!

Лучше предвидеть возникновение хронических заболеваний [Google translate]

Савватеев Сергей 10 декабря 2016 г.

Осебе

- работаю аналитиком в TNS
- методы машинного обучения иногда использую в работе, но в контестах не участвовал до осени этого года
- пока не стал ходить на тренировки по машинному обучению...

once pop you can't stop

Contest

Classement

Résumé

Accueil

Ce challenge est terminé.

Mes dernières contributions

14/11/16 19:42 Score 2,29983% 14/11/16 19:38 Score 2,40441% 14/11/16 19:28 Score 2,57185%

Mon compte

Score 1.95602%

Score 2.02876%

Score 2.05166%

Особенности

- на начальном этапе был лик, его пофиксили
- целевая переменная:

среднесрочная эволюция важности лечения хронических заболеваний для медицинских учреждений

распределена от 0 до 1 около половины значений - нули

Особенности

- были доступны "данные из будущего" "ex post" analysis?
- призы только резидентам Франции
- метрика RMSE

Данные

Базовые данные - 8 переменных:

- "ID", название клиники
- место жительства пациента (департамент), пациент младше / старше 75 лет
- область деятельности
- число долгосрочных пребываний, общее число пребываний
- год (2008 2013 для обучения, 2014 2015 для теста) тест делился на public и private части

1.88М записей в обучающих данных, 670К в тестовых

Данные

Opendata (xls-файлы по годам)

- HD 178 показателей
- PDMREG 6 показателей
- PDZMA 5 показателей

для пар госпиталь + район

данные были ключевыми в задаче часть важных показателей для 2015 года были N/A

Целевая переменная

число длит-х визитов == 0 <=> таргет == 0

Целевая переменная (разность)

- прогноз выгодно было домножать коэффициент подбирался по лидерборду
- достаточно один раз было подобрать среднее за год

Валидация

Признаки

finess

310781067

provenance

31-Haute-Garonne

- выделение департаментов из finess и provenance
- "is aborigen" живет ли пациент там же, где госпиталь
- отношение числа длительных визитов к общему числу визитов (quot)

линейная корреляция с таргетом - 74%

• признаки из opendata xls

Признаки

- кодирование таргетом (OOF), quot mean, median с группировкой по разным сочетаниям полей
- таргет, quot с лагом на один и два года с группировкой по finess+domaines+provenance+age 2008 и 2009 год исключался из обработки для 2015 лаг-1 брался прогноз на 2014

В результате датасет уже содержал ~250 признаков

"Блочный" Add-Del

- жадный алгоритм поочередного добавления/удаления признаков не работал (как хотелось бы)
- разбивать признаки на блоки по смыслу и уже внутри них запускать Add-Del получилось лучше

252 признака → 29 признаков без потери качества

base features aggregation	xls PDZMA	xls PDMREG	xls HD	HD missed In 2015
------------------------------	--------------	---------------	-----------	-------------------------

Алгоритмы

Основные модели - "сладкая парочка"

- XGBoost
- LightGBM

после небольшой настройки давал сравнимое качество, при этом работал в 5 раз быстрее

Давали сильно худшее качество

RandomForest и ExtraTrees

Две модели

Модели строились отдельно для 2014 и 2015

- важную фичу y_lag1 приходилось брать из прогноза на 2014
- часть фичей в xls отсутствовала для 2015 взять их из 2014 не помогало

В результате того, что модель для 2015 года строилась без части важных фич, она была сильно хуже по качеству и преодолеть этот разрыв в ходе соревнования так и не удалось

Блендинг

Простое усреднение различных моделей давало хороший прирост

- XGBoost и LightGBM
- "широкий" и узкий датасеты и т.д.

Стекинг

• с помощью XGBoost, LightGBM и RandomForest добавил фич по годам, но не успел отправить...

5 points about LightGBM

Released 2016-10-17

- изначально был только CLI, поэтому все пользовались pyLightGBM сторонним враппером вокруг него
- уже появилась бета-версия родного python-враппера, без оверхеда на сохранение датасета и с полезными плюшками
- API похож на XGBoost, удобно пользоваться
- дискретизирует признаки (histogram based)
- leaf-wise tree growth

Как учесть тренд

Деление на средний таргет по годам не давало прироста по качеству

Как учесть тренд

ID клиники	депар- тамент пациента	возраст	обл-ть деят-ти	год	число долговр. визитов	общее число визитов	таргет
---------------	------------------------------	---------	-------------------	-----	------------------------------	---------------------------	--------

взглянуть на данные, как на 390К временных рядов

простой признак: таргет с лагом, но смасштабированный

по quot

$$y_t' = \frac{y_{t-1}}{quot_{t-1}} * quot_t$$

Как учесть тренд

Регрессия в рамках группы

- без учета года строим модель регрессии (quot и еще какойнибудь признак, как предикторы)
- прогнозируем следущий год **pred**₁
- строим еще одну регрессию уже на остатках (только год в качестве предиктора)
- прогнозируем следующий год **pred**₂
- сумма двух прогнозов $pred_1 + pred_2$ используем как признак, вместе с R^2 от обоих регрессий

4-е место Дмитрий Дрёмов

• join по finess без учета года (для важных признаков из xls) т.е. для каждого finess и признака "col":

year	col					
ycai	COI	year	col1	col2	col7	col8
2008	val1	2008	val1	val2	 val7	val8
2009	val2	2009	val1	val2	 val7	val8
		•••		•••	 •••	
201.4		2014	val1	val2	 val7	val8
2014 val7	2015	val1	val2	 val7	val8	
2015	val8					

- жадное удаление признаков
- модели по годам получились более ровные

3-е место Nicolas Gaude

almost 100% the same but

- huge effort on lag value of cible accross different aggregation (by finess by activity by age etc...)
- plus much different models to give my final blend more diversity linear regression, neural network, randomforest
- having separate model + lag value was the key

1-е место Quentin Morel

- 2012 & 2013 for training
- Same base features
- Open data from Insee was used to add sociodemographic features but it was not really useful
- Missing values for 2015 was replaced with the values of 2014 and it gave a very significant gain
- 40 xgboost on different subsets of features with different parameters and 1 random forest
- Ridge Regression to stacking

Резюме

- join-фичи
- больше фич с лагом и прогнозом внутри групп
- стекинг/блендинг снова решает

Спасибо за внимание

s.savvateev@gmail.com

@sswt opendatascience.slack.com