2019 32nd International Conference on VLSI Design and 2019 18th International Conference on Embedded Systems (VLSID)

VLSID 2019

Table of Contents

Message from the General Chairs	xviii
Message from the Executive Chair	XX
Message from the Organizing Chair	
Message from the Technical Program Chairs	xxiv
Message from the Steering Committee Chair	xxv
In Memoriam	xxvii
Message from the President, VLSI Society of India	xxviii
VLSI Design Conference Steering Committee (2018)	xxix
VLSID & ES 2019 Organizing Committee	xxx
Technical Program Committee	xxxiii
User Design Track	xxxviii
List of External Reviewers	xxxix
VLSID 2018 Best Paper Awards	xl
· ·	1:
•	XII
Tutorial Abstracts Track 1A: Embedded Systems - I	
Track 1A: Embedded Systems - I Synthesizing Performance-Aware (m, k)-Firm Control Execution Patterns Under Dropped Sumana Ghosh (Indian Institute of Technology Kharagpur), Soumyajit Dey (Indian Institute of Technology Kharagpur), and Pallab Dasgupta	Samples1

19
25
31
. 36
41
46
52
58

Track 2A: Security - I

A State Encoding Methodology for Side-Channel Security vs. Power Trade-off Exploration 79 Richa Agrawal (University of Cincinnati), Mike Borowczak (University of Wyoming), and Ranga Vemuri (University of Cincinnati)	0
An Efficient Memory Zeroization Technique Under Side-Channel Attacks	6
Two-Pattern AIDDQ Test for Recycled IC Detection	2
Parallelization of Brute-Force Attack on MD5 Hash Algorithm on FPGA	8
Track 2B: Test and Validation - I	
A Binary Decision Diagram Approach to On-line Testing of Asynchronous Circuits	4
RTL Test Generation on Multi-core and Many-Core Architectures	0
On-chip MISR Compaction Technique to Reduce Diagnostic Effort and Test Time	6
RSBST: A Rapid Software-Based Self-Test Methodology for Processor Testing	2
Track 2C: RF Design	
A 19.3-24.8 GHz Dual-Slope VCO in 65-nm CMOS for Automotive Radar Applications	8
Analysis and Design of Low Phase Noise LC Oscillator for Sub-mW PLL-Free Biomedical Receivers	4
IIP3 Improvement in Subthreshold LNAs Using Modified Derivative Superposition Technique for IoT Applications	0
Kandpal (Birla Institute of Technology & Science)	

Enhanced IIP2 Chopper Stabilized Direct Conversion Mixer Architecture	135
Track 3A: Power and Energy - I	
Power and Area Efficient Approximate Heterogeneous 8T SRAM for Multimedia Applications	139
Ultra Low Power Digital Front-End for Single Lead ECG Acquisition Sanket Thakkar (VLSI and Embedded Systems Research Group, DA-IICT) and Biswajit Mishra (VLSI and Embedded Systems Research Group, DA-IICT)	145
Scheduling of Dual Supercapacitor for Longer Battery Lifetime in Systems with Power Gating	151
An Energy Efficient In-Memory Computing Machine Learning Classifier Scheme Shixiong Jiang (University at Buffalo), Sheena Ratnam Priya (University at Buffalo), Naveena Elango (University at Buffalo), James Clay (University at Buffalo), and Ramalingam Sridhar (University at Buffalo)	157
Track 3B: CMOS Devices	
An Unified Charge Centroid Model for Silicon and Low Effective Mass III-V Channel Double Gate MOS Transistors Amratansh Gupta (Indian Institute of Technology Gandhinagar), Mohit Ganeriwala (Indian Institute of Technology Gandhinagar), and Nihar Ranjan Mohapatra (Indian Institute of Technology Gandhinagar)	163
Optimization of Multiple Physical Phenomena through a Universal Metric in Junctionless Transistors	168
Delay Skew Reduction in IO Glitch Filter Kiran Gopal (NXP India Pvt LTD) and Avanish K (NXP India Pvt LTD)	174
Insights on Anisotropic Dissipative Quantum Transport in n-Type Phosphorene MOSFET Madhuchhanda Brahma (Indian Institute of Science, Bangalore), Arnab Kabiraj (Indian Institute of Science, Bangalore), and Santanu Mahapatra (Indian Institute of Science, Bangalore)	179
Track 3C: Emerging Tech - I	
Modeling, Fabrication and Investigation of Mixing in Low-Cost Passive PDMS Micromixers	185

91
97
03
09
09 15

Track 4B: Design Automation

RiverOpt: A Multiobjective Optimization Framework Based on Modified River Formation Dynamics Heuristic
Satyabrata Dash (National Institute of Technology Mizoram), Sukanta Dey (Indian Institute of Technology Guwahati), Anish Augustine (Indian Institute of Technology Guwahati), Rusankar Dhar (National Institute of Technology Mizoram), Jan Pidanic (Univerzita Pardubice), Zdenek Nemec (Univerzita Pardubice), and Gaurav Trivedi (Indian Institute of Technology Guwahati)
Structural and Behavioural Facets of Digital Microfluidic Biochips with Hexagonal-Electrode-Based Array
Amartya Dutta (B. P. Poddar Institute of Management and Technology, Kolkata, India), Riya Majumder (Supreme Knowledge Foundation Group of Institutions, West Bengal, India), Debasis Dhal (B. P. Poddar Institute of Management and Technology, Kolkata, India), and Rajat Kumar Pal (University of Calcutta)
Parasitic-Aware Automatic Analog CMOS Circuit Design Environment
Ultra Low Power Low Frequency On-chip Oscillator for Elapsed Time Counter
Track 4C: Embedded Systems - II
Criticality Aware Soft Error Mitigation in the Configuration Memory of SRAM Based FPGA
Multidimensional Grid Aware Address Prediction for GPGPU
Efficient Heap Data Management on Software Managed Manycore Architectures
In Situ Latency Monitoring for Heterogeneous Real-Time Systems

Track 5A: IoT and CPS

Investigation of Unified Emerging-NVM SoC Architecture for IoT-WSN Applications	281
A 75-µW 2.4 GHz Wake-up Receiver in 65-nm CMOS for Neonatal Healthcare Application	287
Perturbation Based Workload Augmentation for Comprehensive Functional Safety Analysis	293
A Double Pumped Single-Line-Cache SRAM Architecture for Ultra-low Energy IoT and Machine Learning	200
Applications Arijit Banerjee (University of Virginia) and Benton H. Calhoun (University of Virginia)	299
Track 5B: Analog /Mixed-Signal- II	
A Mismatch Resilient 16-Bit 20 MS/s Pipelined ADC Satyajit Mohapatra (IIT Gandhinagar, Gujarat), Hari Shanker Gupta (Space Application Centre, Jodhpur Tekra, Ahemdabad), Nihar Ranjan Mohapatra (IIT Gandhinagar, Gujarat), Sanjeev Mehta (Space Application Centre, Jodhpur Tekra, Ahemdabad), Arup Roy Chowdhury (Space Application Centre, Jodhpur Tekra, Ahemdabad), and Nisha Pandya (LD College of Engineering, Ahmedabad)	305
Large Dynamic Range Readout Integrated Circuit for Infrared Detectors Hari Shanker Gupta (Space Applications Centre, ISRO Ahmedabad, India), Sanjeev Mehta (Space Applications Centre, ISRO Ahmedabad, India), Maryam Shojaei Baghini (Indian Institute of Technology, Bombay), Arup Roy Chowdhury (Space Applications Centre, ISRO Ahmedabad, India), A S Kiran Kumar (Space Applications Centre, ISRO Ahmedabad, India), and Dinesh K. Sharma (Indian Institute of Technology, Bombay)	311
Current DAC Based -40dB PSRR Configurable Output LDO in BCD Technology	317
Modeling and Characterization of VBUS Power Discharge for Embedded Superspeed USB Host/Devices Maneesh Pandey (NXP Semiconductors), Mohit Goyal (NXP Semiconductors), Parul Sharma (NXP Semiconductors), and Rohit Sharma (IIT Ropar)	323

Track 5C: Digital Design - II

High-Throughput and High-Speed Polar-Decoder VLSI-Architecture for 5G New Radio
VLSI Architectures for Jacobi Symbol Computation
Soft Error Resilient and Energy Efficient Dual Modular TSPC Flip-Flop
k-Core: Hardware Accelerator for k-Mer Generation and Counting used in Computational Genomics
Track 6A: Security - II
Novel Randomized & Biased Placement for FPGA Based Robust Random Number Generator with Enhanced
Uniqueness
SoCINT: Resilient System-on-Chip via Dynamic Intrusion Detection
Linear Approximation and Differential Attacks on Logic Locking Techniques
Efficient Post-Silicon Validation of Network-on-Chip Using Wireless Links
Track 6B: Test and Validation - II
Improving Performance of a Path-Based Equivalence Checker Using Counter-Examples
Selective Sensitization of Useless Sneak-Paths for Test Optimization in Memristor-Arrays

Methodology for SAT-Based Electrical Error Debugging During Post-Silicon Validation
st Configuration Generation for Different FPGA Architectures for Application Independent Testing
rack 6C: Emerging Tech - II
Efficient Design Approach for Implementation of 2 Bit Ternary Flash ADC Using Optimized implementary TFET Devices
notimizing Quantum Circuits for Modular Exponentiation
Capacity-Aware Wash Optimization for Contamination Removal in Programmable Microfluidic Biochip evices
of Calcutta), and Rajat Kumar Pal (University of Calcutta) ovel Low and High Threshold TFET Based NTI and PTI Cells Benchmarked with Standard 45 nm CMOS chnology for Ternary Logic Applications
rack 7A: Embedded Systems - III
rite Variation Aware Cache Partitioning for Improved Lifetime in Non-volatile Caches
pplying Modified Householder Transform to Kalman Filter

Vinay Kumar (Synopsys India Pvt Ltd.), Neeraj Kapoor (Synopsys India Pvt. Ltd.), Sudhir Kumar (Synopsys India Pvt. Ltd.), Monila Juneja (Synopsys India Pvt. Ltd.), and Amit Khanuja (Synopsys India Pvt. Ltd.) Ltd.)	43 /
Design of an Optimized CMOS ELM Accelerator Manoj Kumar Sharma (Indian Institute of Technology Delhi), Umesh Chandra Lohani (Indian Institute of Technology Delhi), Vivek Parmar (Indian Institute of Technology Delhi), and Manan Suri (Indian Institute of Technology Delhi)	443
Track 7B: Digital Design - III	
Design and Physical Implementation of Array Signal Processor ASIC for Sector Imaging Systems	448
Low Power Design Technique in Passive Tag to Reduce the EMD Noise for Reliable Communication with	45.4
Reader	454
Allowing Switching off Periphery Voltage Island Instead of Doing it per Instance Through Periphery	450
VDD Collapse in SRAMs Krashna Nand Mishra (Synopsys), Ruchin Jain (Synopsys), Shailendra Sharad (Synopsys), and Ravindra Shrivastava (Synopsys)	439
Majority Logic: Prime Implicants and n-Input Majority Term Equivalence Rajeswari Devadoss (Indian Institute of Technology, Delhi), Kolin Paul (Indian Institute of Technology, Delhi), and M Balakrishnan (Indian Institute of Technology, Delhi)	464
Track 7C: Power and Energy - II	
Heterogeneity Aware Power Abstraction for Hierarchical Power Analysis Arun Joseph (IBM Systems), Spandana Rachamalla (IBM Systems), Shashidhar Reddy (IBM Systems), and Nagu Dhanwada (IBM Systems)	470
HEART: A Heterogeneous Energy-Aware Real-Time Scheduler	476
Rajesh Devaraj (Indian Institute of Technology, Guwahati), and Arnab Sarkar (Indian Institute of Technology Guwahati)	
Adaptive Fractional Open Circuit Voltage Method for Maximum Power Point Tracking in a Photovoltaic	402
Panel	482
(Indian Institute of Technology Kharagpur), Amit Patra (Indian Institute of Technology Kharagpur), and Mrigank Sharad (Indian	
Institute of Technology Kharagpur)	

Energy Efficient Power Distribution on Many-Core SoC
Interactive Presentation (IP) Poster Session
Current Collapse Reduction Technique Using N-Doped Buffer Layer into the Bulk Region of a Gate Injection Transistor
Design and Analysis of a Minimally Invasive and ECG Controlled Ventricular Assistive Device
A Simple Synthesis Process for Combinational QCA Circuits: QSynthesizer
Mapping of Boolean Logic Functions onto 3D Memristor Crossbar
Stability Analysis of SRAM Designed Using In0.53Ga0.47As nFinFET with Underlap Region
Neuromorphic Circuits on FDSOI Technology for Computer Vision Applications
Reconfigurable Digital Logic Gate Based on Neuromorphic Approach
Realizing Boolean Functions Using Probabilistic Spin Logic (PSL)

Comparative Study of Analog Matching Structures in 28FDSOI Varun Kumar Dwivedi (STMicroelectronics India Pvt. Ltd), Meenakshi Didharia (Texas Instruments), Madhvi Sharma (STMicroelectronics Pvt. Ltd.), and Manoj Kumar Sharma (STMicroelectronics Pvt. Ltd.)	510
A Model of Spurs for Delta-Sigma Fractional PLLs	512
Exploiting Negative Control Lines and Nearest Neighbor for Improved Comparator Design	514
Intelligent Scheduling of Smart Appliances in Energy Efficient Buildings: A Practical Approach	516
Design and Implementation of Threshold Logic Functions Using Memristors Yaswanth Krishna Yadav Danaboina (Indian Institute of Technology, Kharagpur), Pravanjan Samanta (Indian Institute of Technology, Kharagpur), Kamalika Datta (National Institute of Technology, Meghalaya), Indrajit Chakrabarti (Indian Institute of Technology, Kharagpur), and Indranil Sengupta (Indian Institute of Technology, Kharagpur)	518
A Transimpedance Amplifier with Improved PSRR at High Frequencies for EMI Robustness	520
On-chip RF to DC Power Converter for Bio-Medical Applications	522
Energy Efficient Communication with Lossless Data Encoding for Swarm Robot Coordination Karthik Narayanan (Intel Corporation), Vinayak Honkote (Intel Corporation), Dibyendu Ghosh (Intel Corporation), and Swamy Baldev (NIT Meghalaya)	525
Multi-application Based Network-on-Chip Design for Mesh-of-Tree Topology Using Global Mapping and Reconfigurable Architecture	527
Extending STL BASOPs Used in 3GPP Codecs to Leverage Features of Modern DSP Architectures	529
A Machine Learning Based Approach to Predict Power Efficiency of S-Boxes Rajat Sadhukhan (Indian Institute of Technology-Kharagpur), Nilanjan Datta (Indian Institute of Technology-Kharagpur), and Debdeep Mukhopadhyay (Indian Institute of Technology-Kharagpur)	531

RF and RFID Based Object Identification and Navigation System for the Visually Impaired
Design and Implementation of Low-Power High-throughput PRNGs for Security Applications
Hardware Trojan Detection by Stimulating Transitions in Rare Nets
Continuous Transparent Mobile Device Touchscreen Soft Keyboard Biometric Authentication
Design of a Charge Sensitive Amplifier for Silicon Particle Detector in BCD 180 nm Process
WCET-Aware Stack Frame Management of Embedded Systems Using Scratchpad Memories
Self-Organizing Maps-Based Flexible and High-Speed Packet Classification in Software Defined Networking
A 0.8V V_MIN Ultra-Low Leakage High Density 6T SRAM in 40nm CMOS Technology Using Repeated-Pulse Wordline Suppression Scheme
Author Index