ATRank: An Attention-Based User Behavior Modeling Framework for Recommendation

Alibaba Group

Key Laboratory of High Confidence Software Technologies, EECS, Peking University

2019.07

Background

- The user heterogeneous behaviors are hard to model
- The rating may only be related to very small parts of the user behaviors
 - Manually extract、RNN、CNN、LSTM could not perform well
- ATRank
 - Project all types of behaviors into multiple latent semantic spaces, where influence can be made among the behaviors via self-attention
 - Downstream applications then can use the user behavior vectors via vanilla attention

ATRank Framework

- Raw Feature Spaces
- Behavior Embedding Spaces
- Latent Semantic Spaces
- Self-Attention Layer
- Downstream Application Network

Figure 1: Attention-Based Heterogeneous Behaviors Modeling Framework

Definition

- A user behavior: a tuple {a,o,t} 三元组(动作类型, 目标, 时间)
 - a: action (E.g., 点击/收藏/加购、领取/使用)
 - o: object, is represented as all its belonging <u>features</u> (E.g., 商品, 优惠券, 关键字)
 - t: the timestamp
- A user can be represented as all his/her behaviors:
 - $U = \{(a_j, o_j, t_j) | j = 1, 2, ..., m\}$

Raw Feature Spaces

• Partition the user behavior tuples $U = \{(a_j, o_j, t_j) | j = 1, 2, ..., m\}$ into different behavior groups $G = \{bg_1, bg_2, ..., bg_n\}$ according to the target object types,

where $bg_i \cap bg_j = \emptyset$ and $U = \bigcup_{i=1}^n bg_i$

Behavior Embedding Spaces

• Temporal & Behavior Type Encoding (用户的行为转换为嵌入向量)

$$u_{ij} = emb_i(o_j) + lookup_i^t(bucketize_i(t_j)) + lookup_i^a(a_j) \\$$

- A user behavior: $U = \{(a_j, o_j, t_j) | j = 1, 2, ..., m\}$
- Behavior groups: $G = \{bg_1, bg_2, ..., bg_n\}$ $bg_i \cap bg_j = \emptyset$ and $U = \bigcup_{i=1}^n bg_i$
- All behavior groups: $B = \{u_{bg_1}, u_{bg_2}, ..., u_{bg_n}\}$ $u_{bg_i} = concat_j(u_{ij}) u_{ij} \in bg_i$

- Embedding Sharing (E.g., 店铺 id, 类目 id)
 - 减少一定的稀疏性
 - 降低参数总量

Behavior Embedding Spaces

- The shape of the embeddings for each group may be different
 - The numbers of behaviors
 - The information in each type of behavior
 - E.g., an item behavior vs. a keyword search behavior

Latent Semantic Spaces

- Map each behavior into K latent semantic spaces
 - Heterogeneous behaviors embedding spaces: different sizes and meanings

• Project the variable-length behaviors in different groups into fix-length

encoding vectors

$$S = concat^{(0)}(\mathcal{F}_{M_1}(u_{bg_1}), \mathcal{F}_{M_2}(u_{bg_2}), ..., \mathcal{F}_{M_n}(u_{bg_n}))$$
$$S_k = \mathcal{F}_{P_k}(S)$$

Latent Semantic Spaces

 \mathcal{F}_{P_k} is a projection function for the k-th semantic space

$$S_k = \mathcal{F}_{P_k}(S)$$

$$S = concat^{(0)}(\mathcal{F}_{M_1}(u_{bg_1}), \mathcal{F}_{M_2}(u_{bg_2}), ..., \mathcal{F}_{M_n}(u_{bg_n}))$$

Self-Attention Layer

- Capture the inner-relationships among each semantic space
- Self-attention mechanism
 - Calculate each attention score matrix A_k in the k-th semantic space as:

$$\begin{array}{c} A_k = softmax(a(S_k, S; \theta_k)) \\ a(S_k, S; \theta_k) = S_k W_k S^T \end{array} \rightarrow A_k = softmax(S_k W_k S^T) \end{array}$$

$$Attention(Q, K, V) = softmax(\frac{QK^T}{\sqrt{d_k}})V$$

- The attention vectors of space k are:
 - \mathcal{F}_{Q_k} is another projection function

$$C_k = A_k \mathcal{F}_{Q_k}(S)$$

• \mathscr{F}_{self} is a feedforward network with one hidden layer $C = \mathscr{F}_{self}(concat^{(1)}(C_1, C_2, ..., C_K))$

Downstream Application Network

- Vanilla Attention
 - 框架图中灰色的 bar 代表待预测的任意种类的行为
 - 将该行为也通过 embedding、projection 等转换,然后和用户表征产出的行为向量做 vanilla attention
 - 最后 Attention 向量和目标向量将被送入一个 Ranking Network

$$\vec{h_t} = \mathcal{F}_{M_{g(t)}}(\vec{q_t}), \quad \vec{s_k} = \mathcal{F}_{P_k}(\vec{h_t})$$

$$\vec{c_k} = softmax(a(\vec{s_k}, C; \theta_k))\mathcal{F}_{Q_k}(C)$$

$$\vec{e_u^t} = \mathcal{F}_{vanilla}(concat^{(1)}((\vec{c_1}, \vec{c_2}, ..., \vec{c_K})))$$

$$-\sum_{t,u} y_t \log \sigma(f(h_t, e_u^t)) + (1 - y_t) \log (1 - \sigma(f(h_t, e_u^t)))$$

Experiment

0.000

20.00k

60.00k

80.00k

100.0k

120.0k

140.0k

Epoch	1	Global_step	133000	Train_loss:	0.4485	Eval_AUC:	0.8669
Epoch	1	Global_step	134000	Train_loss:	0.4479	Eval_AUC:	0.8664
Epoch	1	Global_step	135000	Train_loss:	0.4469	Eval AUC:	0.8667
Epoch	1	Global_step	136000	Train loss:	0.4429	Eval AUC:	0.8691
Epoch	1	Global_step	137000	Train loss:	0.4395	Eval AUC:	0.8637
Epoch	1	Global_step	138000	Train_loss:	0.4445	Eval_AUC:	0.8627
Epoch	1	Global_step	139000	Train_loss:	0.4433	Eval_AUC:	0.8693
Epoch	1	Global_step	140000	Train_loss:	0.4455	Eval_AUC:	0.8676
Epoch	1	Global_step	141000	Train loss:	0.4418	Eval AUC:	0.8722
Epoch	1	Global_step	142000	Train_loss:	0.4458	Eval_AUC:	0.8696

40.00k

Dataset	# Users	# Items	# Cates	# Samples
Electro.	192,403	63,001	801	1,689,188
Clothing.	39,387	23,033	484	278,677

Dataset	Electro.	Clothe.
BPR	0.7982	0.7061
Bi-LSTM	0.8757	0.7869
Bi-LSTM + Attention	0.8769	0.7835
CNN + Max Pooling	0.8804	0.7786
ATRank	0.8921	0.7905

Table 3: AUC on Amazon Dataset