	TP1 Pression - Charpin Chevillard	Pt		АВС	D Note	
1	Préparation du travail					
1	Compléter le schéma TI avec l'instrumentation et les liaisons nécessaires à la conception de la boucle de régulation.	2	Α		2	
2	Quel est le nom de la grandeur réglée ?	1	Α		0,5	
3	Quel est le principe utilisé pour mesurer la grandeur réglée ?	1	Α		0,5	
4	Quelle est la grandeur réglante ?	1	Α		0,5	
5	Donner une grandeur perturbatrice.	1	Α		0,5	
6	Etablir le schéma de câblage complet en tenant compte de la nature des signaux utilisés. Prévoir les convertisseurs,	1	Α		1	
U	alimentations, générateurs nécessaires. Faire apparaître les polarités.	_	^		1	
II.	Etude du procédé					
1	Paramétrer les entrées-sorties de votre régulateur en fonction de la nature des signaux utilisés.	1	Α		1	
2	Tracer la caractéristique statique de votre procédé. On prendra au moins 6 mesures (3 pour les régulations de	1	Α		1	
	température et niveau).	_	^			
3	En déduire le gain statique du procédé autour du point de fonctionnement.	1	D		0,05	For
4	En déduire le sens d'action à régler sur le régulateur.	1	Α		1	
5	Déterminer le modèle de Broïda du procédé, en faisant un échelon de 10% autour du point de fonctionnement.	3	Α		3	
Ш	Etude du régulateur					
1	Déterminer la structure interne (parallèle, série ou mixte) du correcteur PID utilisé par Lintools.	2	Α		1,5	
2	En déduire le réglage du régulateur en utilisant le tableau de réglage fourni dans le cours.	2	В		1,125	Erre
IV	Performances et optimisation					
1	Programmer votre régulateur pour assurer le fonctionnement de la régulation.	1	Α		1	
_	Mesurar les performances de votre régulation en réponse à un échelon de consigne de 10%. On mesurara le temps de	_			4 -	
2	réponse à 10%, la valeur du premier dépassement et la précision relative.	2	Α		1,5	
_	Améliores votre réglage pour réduire au maximum la valour du temps de réponse. On dennera le nom et la valour des				4	
3	paramètres modifiés.	1	Α		1	
4	Mesurer à nouveau les performances de votre régulation, comparer les avec celles obtenues à la question précédente.	2	Α		1,5	
			Not	e sur : 2	0 18,7	

TP N°4 Pression

- Pression dans la cuve.
- 3) le principe utilisé pour mesurer la pression est la déformation de la membrane qui est placé sur le capteur.
- 4) La grandeur réglante est le débit en sortie de cuve (Qs).
- 5)
 La grandeur perturbatrice est le débit en entrée de le cuve (Qe).

II. Étude du procédé

1) Entrée :

TagName	01M01_04		LIN Name	01M01_04	
Туре	AI_UIO		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
MODE	MANUAL		Alarms		
Fallback	MANUAL		Node	>00	
			Sitello	1	
PV	0.0	%	Channel	1	
HR	100.0	%	InType	mA	
LR	0.0	%	HR_in	20.00	mΑ
			LR_in	4.00	mΑ
HiHi	100.0	%	Al	0.00	mΑ
Hi	100.0	%	Res	0.000	Ohms
Lo	0.0	%			
LoLo	0.0	%	CJ_type	Auto	
Hyst	0.5000	%	CJ_temp	0.000	
			LeadRes	0.000	Ohms
Filter	0.000	Secs	Emissiv	1.000	
Char	Linear		Delay	0.000	Secs
UserChar					
			SBreak	Up	
PVoffset	0.000	%	PVErrAct	Up	
AlmOnTim	0.000	Secs	Options	>0000	
Alm0fTim	0.000	Secs	Status	>0000	

Sortie:

TagName	02P01_04		LIN Name	02P01_04	
Туре	AO_UIO		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
MODE	AUTO		Alarms		
Fallback	AUTO		Node	>00	
			Sitello	2	
OP	0.0	%	Channel	1	
HR	100.0	%	OutType	mA	
LR	0.0	%	HR_out	20.00	r
			LR_out	4.00	r
Out	0.0	%	AO	0.00	r
Track	0.0	%			
Trim	0.000	mA	Options	>0000	
			Status	>0000	

PID:

TagName	PID PID		LIN Name	PID <local></local>	
Туре			DBase		
Task	3 (110ms)		Rate	0	
Mode	AUTO		Alarms		
FallBack	AUTO				
			HAA	100.0	9
PV	0.0	%	LAA	0.0	9
SP	0.0	%	HDA	100.0	90
OP	0.0	%	LDA	100.0	9
SL	0.0	%			
TrimSP	0.0	%	TimeBase	Secs	
RemoteSP	0.0	%	XP	100.0	90
Track	0.0	%	TI	0.00	
			TD	0.00	
HR_SP	100.0	%			
LR_SP	0.0	%	Options	00101100	
HL_SP	100.0	%	SelMode	00000000	
LL_SP	0.0	%			
			ModeSel	00000000	
HR_OP	100.0	%	ModeAct	00000000	
LR_OP	0.0	%			
HL_OP	100.0	%	FF_PID	50.0	90
LL_OP	0.0	%	FB_OP	0.0	90

2)

OP (%)	PV (%)
0	12,4
20	17,6
40	30,3
60	52,1
80	78,9
100	86,7

3)

On calcul K avec OP qui varie de 20 à 80%. K=60/(79,6-17,6)=0,96

4)

Quand la pression dans la cuve augmente il faut ouvrir la vanne, sachant que la vanne est NO, lorsque la pression augmente il faudra donc diminuer la sortie du régulateur pour ouvrir la vanne. La sens d'action du régulateur est donc inverse.

delta X = 12delta Y = 10t0 = 10:12:56

t1 =10:12:59 t2 = 10:13:00

le retard T = 2.8(3)-1.8(4)=1.2s

le gain K = deltaX/deltaY= 1,2 la constante de temps t = 5,5(1)=5,5s

kr=0,218

III. Etude du régulateur 1)

Le régulateur est un régulateur mixte :

delta
$$P = 4,4 = delta i$$

delta = 10

2)

=6s

Donc on prend Td= 0s C'est donc un régulateur PI et non PID.

IV. Performances et optimisation

1)

TimeBase	Secs	
XP	79.0	%
TI	6.00	
TD	0.00	

Valeur calculé appliqué sur le régulateur.

2)

t0 = 11:01:11 t1 = 11:01:32:600

temps de réponse est : t1-t0 = 32,6-11 = 22,6s

Il n'y a pas de dépassement et pas d'erreur statique. Nous allons donc améliorer le temps de réponse...

3,4)

t0 = 11:18:35t1 = 11:18:55

t1 - t0 = 20s

TimeBase	Secs	
XP	100.0	%
TI	5.00	
TD	0.00	

On à donc stabiliser la courbe avec un Ti=5s, on à augmenté Xp de 21%. On à donc gagner 2,6 seconde sur le temps de réponse par rapport à l'ancien réglages tout en gardant un dépassement et une erreur statique nul.