Master of Science in Computer Engineering

Rethinking Automotive Software Development: Exploring Software Defined Vehicle and its potential

Candidate Lorenzo SCIARA Supervisors prof. Danilo Bazzanella dott.sa Piera Limonet

AGENDA

- 1. AUTOMOTIVE CONTEXT
- 2. SOFTWARE DEFINED VEHICLE
- 3. CLOUD COMPUTING
 - 4. BENEFITS
 - **5. CONTRIBUTORS**
 - 6. VALIDATION
 - 7. FUTURE WORKS

AUTOMOTIVE CONTEXT

In the past automotive industry software production was always considered secondary to the mechanical ones.

MECHANICS

SOFTWARE

AUTOMOTIVE CONTEXT

The focus on the mechanical parts of the vehicle resulted in software being very dependent on the hardware.

SOFTWARE DEFINED VEHICLE

Software Defined Vehicle enables software to become a fundamental element of vehicle design.

CLOUD COMPUTING

The vehicle is directly connected to the cloud

CLOUD COMPUTING

The vehicle is directly connected to the cloud

Both for data analysis and to receive *Over The Air (OTA)* updates.

SECURITY

EFFICIENCY

DURABILITY

SECURITY

Vehicle vulnerabilities can be remotely fixed with OTA updates.

EFFICIENCY

DURABILITY

EFFICIENCY

SECURITY

Software independence significantly increases the efficiency of software production.

SECURITY

EFFICIENCY

DURABILITY

Vehicle lifecycle is extended through continuous updates and the addition of new features.

SECURITY

EFFICIENCY

DURABILITY

TCU SIMULATOR

CLOUD INFRASTRUCTURE

DATA VIEWER

TCU SIMULATOR

Telematic Control Unit (TCU) Simulator is a system that can collect and transmit data from simulated subsystems and integrate updates from external sources.

```
'BatteryTemperature': 50, 'EnergyAdded': 0}, 'AirConditioning': {'Zone1': {'St
ate': 'cool', 'Temperature': 18, 'Humidity': 30.0}, 'Zone2': {'State': 'cool'
Femperature': 20, 'Humidity': 30.0}, 'Zone3': {'State': 'cool', 'Temperature':
  'Humidity': 30.0}}, 'Airbag': {'Seat1': {'State': 'safe', 'Triggered': False
 'Active': True, 'SeatbeltFastened': True, 'PassengerPresent': True}, 'Seat2':
'State': 'danger', 'Triggered': False, 'Active': True, 'SeatbeltFastened': False
 'PassengerPresent': True}, 'Seat3': {'State': 'safe', 'Triggered': False, 'Act
ive': True, 'SeatbeltFastened': False, 'PassengerPresent': False}, 'Seat4': {'St
ate': 'safe', 'Triggered': False, 'Active': True, 'SeatbeltFastened': False,
ssengerPresent': False}, 'Seat5': {'State': 'danger', 'Triggered': False, 'Activ
e': False, 'SeatbeltFastened': True, 'PassengerPresent': True}}, 'HeatSeats': {
HeatedSeat1': {'State': 'cool', 'Temperature': 30}, 'HeatedSeat2': {'State':
ol', 'Temperature': 30}, 'HeatedSeat3': {'State': 'cool', 'Temperature': 30}},
ABS': {'BrakePedalPressure': 0, 'BrakeActualPressure': 0, 'TractionControl': Fa'
se, 'Wheel1': {'Speed': 0, 'Pressure': 3, 'FluidTemperature': 10, 'DiskTemperatu
re': 30}, 'Wheel2': {'Speed': 0, 'Pressure': 3, 'FluidTemperature': 10, 'DiskTem
perature': 30}, 'Wheel3': {'Speed': 0, 'Pressure': 3, 'FluidTemperature': 10,
iskTemperature': 30}, 'Wheel4': {'Speed': 0, 'Pressure': 3, 'FluidTemperature'
   'DiskTemperature': 30}}}
```


CLOUD INFRASTRUCTURE

Using AWS services, two distinct cloud infrastructures can be built:

The first is for collecting data from the *TCU* simulator.

The second is to manage and deploy software updates using the *Hawkbit server*.

DATA VIEWER

The data is displayed in an intuitive and user-friendly dashboard using a *Grafana* server thanks to the connection to the cloud infrastructure.

TCU SIMULATOR

CLOUD INFRASTRUCTURE

DATA VIEWER

VALIDATION

The entire proof of concept is tested on a system that can simulate a vehicle TCU as closely as possible. For this reason, the *RaspberryPi* was chosen.

VALIDATION

FUTURE WORKS

KEY POINTS

