МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский Авиационный Институт» (Национальный Исследовательский Университет)

Институт: №8 «Информационные технологии и прикладная математика»

Кафедра: 806 «Вычислительная математика и программирование»

Курсовая работа по курсу «Фундаментальная информатика» І семестр Задание 3

«Вещественный тип. Приближенные вычисления. Табулирование функций»

Группа	М8О-109Б-22
Студент	Шамбилов Р.Т.
Преподаватель	Сысоев М.А.
Оценка	
Дата	

Постановка задачи

Составить программу на Си, которая печатает таблицу значений элементарной функции, вычисленной двумя способами: по формуле Тейлора и с помощью встроенных функций языка программирования. В качестве аргументов таблицы взять точки разбиения отрезка [a, b] на п равных частей (n+1 точка включая концы отрезка), находящихся в рекомендованной области хорошей точности формулы Тейлора. Вычисления по формуле Тейлора проводить по экономной в сложностном смысле схеме с точностью $\varepsilon * 10^k$, где ε - машинное эпсилон аппаратно реализованного вещественного типа для данной ЭВМ, а k – экспериментально подбираемый коэффициент, обеспечивающий приемлемую сходимость. Число итераций должно ограничиваться сверху числом порядка 100. Программа должна сама определять машинное ε и обеспечивать корректные размеры генерируемой таблицы.

Вариант 5:

Ряд Тэйлора:

$$-\frac{4x^2}{2} + \frac{16x^4}{24} + \ldots + (-1)^n \frac{(2x)^{2n}}{(2n)!}$$

Функция:

$$2(\cos^2 x - 1)$$

Значения а и b: 0.0 и 0.5

Теоретическая часть

Формула Тейлора — формула разложения функции в бесконечную сумму степенных функций. Формула широко используется в приближённых вычислениях, так как позволяет приводить трансцендентных функций к более простым. Сама она является следствием теоремы Лагранжа о среднем значении дифференцируемой функции. В случае а=0 формула называется рядом Маклорена.

$$\sum_{n=0}^k rac{f^{(n)}(a)}{n!} (x-a)^n = f(a) + f^{(1)}(a) (x-a) + rac{f^{(2)}(a)}{2!} (x-a)^2 + \ldots + rac{f^{(k)}(a)}{k!} (x-a)^k$$

Машинное эпсилон — числовое значение, меньше которого невозможно задавать относительную точность для любого алгоритма, возвращающего вещественные числа. Абсолютное значение для машинного эпсилон зависит от разрядности сетки применяемой ЭВМ и от разрядности используемых при расчёте чисел. Формально это машинное эпсилон определяют как число, удовлетворяющее равенству $1 + \varepsilon = 1$. Фактически, два отличных от нуля числа являются равными с точки зрения машинной арифметики, если их модуль разности меньше или не превосходит машинное эпсилон.

В языке Си машинные эпсилон определено для следующих типов: float – $1.19 * 10^{-7}$, double – $2.20 * 10^{-16}$, long double – $1.08 * 10^{-19}$.

Описание алгоритма

Рассмотрим алгоритм решения. Сперва нужно найти машинное эпсилон, на котором будет основываться точность вычисления. Это можно сделать просто деля 1 на 2.

Для каждой N+1 строки нужно просуммировать і членов формулы Тейлора, пока $|A_1-A_2| > \varepsilon$. Для этого просто ищем каждый новый член из формулы Тэйлора и суммируем с результатом

Использованные в программе переменные

Название	Тип	Смысл переменной
переменной	переменной	Cambrest neperation
110p 0111011	1	
n	int64_t	То самое число N, на которое нужно
		разбить отрезок
k	int	То самое число К, используемое для
		вычисления точности.
FLT_EPSILON	float	То самое машинное эпсилон.
		1.192092896e-07F
step	long double	Формально разница между предыдущим
		значением из отрезка и следующим, если
		отрезок разбит на n равных частей.
X	long double	Переменная, для которой будем
	-	производить вычисления
Taylor(i, x)		
	long double	То самое значение А1, вычисленное с
		помощью формулы Тейлора
func	long double	То самое значение А2, вычисленное с
	6	помощью встроенных функций языка
i	int	Счётчик члена формулы Тейлора + кол-
		во итераций

Исходный код программы:

```
#include <stdio.h>
#include <float.h>
#include <stdint.h>
#include <math.h>
uint64 t factorial(uint64_t n) {
  uint64 \text{ tres} = 1;
  for (uint64 t i = 1; i \le n; ++i)
     res *= i;
  return res;
long double Taylor(uint64 t n, long double x) {
  long double res = 0;
  for (int i = 1; i \le n; ++i) {
     res += (powl(-1, i) * (powl(2 * x, 2 * i))) / factorial(2 *
i);
  return res;
long double function(long double x) {
  return (2 * (\cos(x) * \cos(x) - 1));
int main() {
  long double a = 0.0;
  long double b = 0.5;
  uint64 tn;
```

```
scanf("%ld", &n);
  printf("n = %ld\n", n);
  printf("Machine epsilon is equal to: %Lg\n\n",
LDBL EPSILON);
  printf("
            Table of values of Taylor series and standard
function\n");
printf("_____
  printf("| x | sum of Taylor series | f(x) function value |
number of iterations \\n");
printf("_____
                                    n";
  long double x = 0;
  long double step = (b - a) / n;
  long double func = 1;
  int i = 0;
  while (fabsl(func) > LDBL EPSILON && (i < 100) &&
(i \le n)
    i += 1;
    x += step;
    func = function(x);
    printf("|%.31lf|%.16llf|%.16llf| %d |\n", x,
Taylor(i, x), func, i);
```

printf("		
	\n");	
return 0;		

Входные данные

Единственная строка содержит одно целое число N (0≤N≤100) – число разбиений отрезка на равные части

Выходные данные

Программа должна вывести значение машинного эпсилон, а затем N+1 строку.

В каждой строке должно быть значение x, для которого вычисляется функция, число A_1 — значение, вычисленное c помощью формулы Тейлора, A_2 — значение, вычисленное c помощью встроенных функций языка, i — количество итерация, требуемых для вычисления, и Δ — разница значений A_1 и A_2 по модулю. A_1 , A_2 и Δ должны быть выведены c точностью 16 знаков после запятой.

Протокол исполнения и тесты

Тест №1

Ввод:

2

Вывод:

```
Table of values of Taylor series and standard function

| x | sum of Taylor series | f(x) function value | number of iterations |

| 0.250|-0.125000000000000|-0.1224174381096275| 1 |
| 0.500|-0.45833333333333333|-0.4596976941318602| 2 |

...Program finished with exit code 0
```

Ввод: 100

Вывод:

```
100
n = 100
Machine epsilon is equal to: 1.0842e-19
        Table of values of Taylor series and standard function
      | sum of Taylor series | f(x) function value | number of iterations |
|0.005|-0.0000500000000000|-0.0000499995833347|
                                                           2
|0.010|-0.0001999933333333|-0.0001999933334222|
|0.015|-0.0004499662510125|-0.0004499662510125|
                                                           3
|0.020|-0.0007998933390221|-0.0007998933390221|
|0.025|-0.0012497396050338|-0.0012497396050335|
                                                           5
|0.030|-0.0017994600647958|-0.0017994600647957|
|0.035|-0.0024489997467204|-0.0024489997467203|
|0.040|-0.0031982936973806|-0.0031982936973807|
                                                           8
|0.045|-0.0040472669880057|-0.0040472669880056|
                                                           9
|0.050|-0.0049958347219742|-0.0049958347219741|
                                                           10
10.0551-0.00604390204330311-0.00604390204330301
```

Тест №3

Ввод:

323232

Вывод:

Вывод

В работе описано определение машинного эпсилон, приведены его значения для разных переменных языка Си, описана формула Тейлора и составлен алгоритм реализации вычисления значения функции с заданной точностью для заданного числа точек на отрезке. На основе алгоритма составлена программа на языке Си, проведено её тестирование на различных тестах, составлен протокол исполнения программы. В целом, работа понравилась. Приятно применять знания из других областей для решения какой-либо задачи по программированию.

Список литературы

- 1. Машинный ноль URL: https://ru.wikipedia.org/wiki/Машинный ноль
- 2. Ряд Тейлора URL: https://ru.wikipedia.org/wiki/Ряд Тейлора