Universidad Monteávila Álgebra Lineal

Ingenierías Ciencia de Datos, Mecatrónica y Telemática Resumen de Espacios Vectoriales

1. Definiciones básicas

Definición 1. Un espacio vectorial (o espacio lineal consta de:

- (1) Un conjunto V de objetos, que llamaremos vectores.
- (2) Una operación llamada suma de vectores, que asigna a cada par de vectores $x, y \in V$ un vector $x + y \in V$, llamado suma de x y de y, de manera que se cumplan las siguientes propiedades:
 - (a) La suma es conmutativa, esto es, x + y = y + x, para todo $x, y \in V$,
 - (b) la suma es asociativa, esto es, x + (y + z) = (x + y) + z, para todo $x, y, z \in V$,
 - (c) existe un único vector $\mathbf{0}$ en V, llamado el vector cero, tal que $x + \mathbf{0} = x$ para todo $x \in V$,
 - (d) para cada vector $x \in X$ existe un único vector $-x \in V$ tal que x + (-x) = 0.
- (3) Una operación llamada multiplicación por un escalar, que asigna a cada escalar $\lambda \in \mathbb{R}$ y a cada vector $x \in V$ un vector λx , llamado producto de λ y de x, de manera que se cumplan las siguientes propiedades:
 - (a) 1x = x para todo $x \in V$,
 - (b) $(\lambda_1 \lambda_2) x = \lambda_1(\lambda_2 x)$, para todo $\lambda_1, \lambda_2 \in \mathbb{R}, x \in V$,
 - (c) $\lambda(x+y) = \lambda x + \lambda y$, para todo $\lambda \in \mathbb{R}, x, y \in V$,
 - (d) $(\lambda_1 + \lambda_2) x = \lambda_1 x + \lambda_2 x$, para todo $\lambda_1, \lambda_2 \in \mathbb{R}, x \in V$.

Observación 2. En este contexto, a los números reales se les suele llamar escalares y no se le suele poner flechas en la parte de arriba a los símbolos que denotan vectores.

En todo espacio vectorial V

$$0u = \mathbf{0}$$
 y $(-1)u = -u$ para todo $u \in V$.

Sea V un espacio vectorial y sean u y u_1, \ldots, u_n elementos de V, se dice que u es una combinación lineal de u_1, \ldots, u_n si existen escalares $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ tales que

$$u = \lambda_1 u_1 + \dots + \lambda_n u_n = \sum_{k=1}^n \lambda_k u_k.$$

2. Subespacios

Definición 3. Sea V un espacio vectorial y W un subconjunto de V, se dice que W es un subespacio de V, si W en si mismo es un espacio vectorial con las mismas operaciones de suma de vectores y multiplicación por un escalar del espacio V

Observación 4. La intersección de subespacios es un subespacio, la unión de subespacios no necesariamente es un subespacio.

Teorema 5. Sea V un espacio vectorial y sea W un subconjunto de V, entonces W es un subespacio de V si y solo si W es distinto de \emptyset y $u + \alpha v \in W$ para todos $u, v \in W$ y $\alpha \in \mathbb{R}$.

Definición 6. Sea V un espacio vectorial y sea A un subconjunto de V. El subespacio generado por A, que se denotará por $\mathrm{Span}(A)$, es el subespacio más pequeño de V, que contiene al conjunto A.

Observación 7. Hay ciertos detalles que se deben tomar en cuenta:

- Si V es un espacio vectorial y $A \subseteq V$, el subespacio generado por el conjunto A es igual a la intersección de todos los subespacios de V que contienen a A. Como la intersección de subespacios es un subespacio, este conjunto es un subespacio y, por construcción, cualquier subespacio que contenga a A lo contiene; por eso es el subespacio más pequeño que contiene a A
- El subespacio más pequeño de un espacio vectorial es el conjunto {0}.
- El subespacio generado por el conjunto \emptyset es $\{0\}$.
- Si $A \neq \emptyset$ el subespacio generado por A es el conjunto de las combinaciones lineales de los elementos de A.

3. Bases, dimensión y coordenadas

Sea V un espacio vectorial.

Definición 8. Sea $A \subset V$, decimos que A es linealmente independiente si dados un número natural $n, u_1, \ldots, u_n \in A$ y escalares $\lambda_1, \ldots, \lambda_n$ se tiene que

$$\lambda_1 u_1 + \dots + \lambda_n u_n = 0$$

implica que

$$\lambda_1 = \dots = \lambda_n = 0.$$

En caso contrario se dice que el conjunto es linealmente dependiente.

Definición 9. Sea V un espacio vectorial, se dice que un subconjunto $\mathfrak B$ de V es una base de V si:

- (1) \mathfrak{B} es linealmente independiente,
- (2) El subespacio generado por \mathcal{B} es V.

Se cumple el siguiente resultado.

Teorema 10. Sea V un espacio vectorial, que tiene una base con n elementos, donde n es un entero positivo, entonces:

- (1) Cualquier otra base de V tiene exactamente n elementos.
- (2) Todo subconjunto de V con más de n elementos es linealmente dependiente.
- (3) Todo subconjunto de V linealmente independiente con n vectores es una base de V.
- (4) Todo subconjunto de V que genere todo el espacio V y que tenga n elementos es linealmente independiente y, por lo tanto, es una base de V.

Tomando en cuenta el resultado anterior, se da la siguiente definición.

Definición 11. Sea V un espacio vectorial, si V tiene una base con n elementos (n un entero positivo) se dice que la dimensión de V es n, en caso de que V no tenga base finita, se dice que V tiene dimensión infinita.

Observación 12. El caso del subespacio $\{0\}$ merece especial atención en lo que se refiere a bases y dimensión. A este espacio se le asigna dimensión 0, podemos aceptar esto como una convención, pero lo que ocurre es que el conjunto vacío (\emptyset) genera este subespacio y es linealmente independiente. Como la cantidad de elementos del conjunto vacío es 0, la dimensión del espacio $\{0\}$ es 0.

Si V es un espacio vectorial que contiene vectores no nulos (es decir $\{0\} \subsetneq V$) el conjunto \mathfrak{B} es una base de V si es linealmente independiente y todo elemento del espacio V es una combinación lineal de elementos de \mathfrak{B} .

También se cumple el siguiente resultado.

Teorema 13. Todo subconjunto linealmente independiente de un espacio vectorial está contenido en una base.

En palabras: todo subconjunto linealmente independiente se puede "completar" hasta obtener una base.

3.1. Coordenadas. Si V es un espacio vectorial de dimensión n, $\mathfrak{B} = \{u_1, \dots, u_n\}$ es una base de V y $u = x_1u_1 + x_2u_2 + \cdots + x_nu_n$ se dice que las coordenadas de u en la base \mathfrak{B} son x_1, x_2, \dots, x_n y se denota por

$$u_{\mathfrak{B}} = [x_1 \ x_2 \cdots x_n]$$
 ó $u_{\mathfrak{B}} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$.

4. Espacios con producto interno

Definición 14. Sea V un espacio vectorial, un producto interno o producto escalar en V es una función

$$\langle , \rangle : V \times V \to \mathbb{R}$$

que satisface las siguientes propiedades para $u, v, w \in V$ y $\alpha \in \mathbb{R}$

- (1) $\langle u, u \rangle \geq 0$ y es igual a 0 si y solo si u = 0,
- (2) $\langle u, v \rangle = \langle v, u \rangle$,
- (3) $\langle \alpha u, v \rangle = \alpha \langle u, v \rangle$,
- (4) $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$.

Definición 15. Sea V un espacio vectorial con producto interno \langle , \rangle , la norma asociada a este producto interno se define como

$$||u|| = \sqrt{\langle u, u \rangle}.$$

Proposición 16 (Desigualdad de Cauchy-Schwarz). Sea \langle , \rangle un producto interno en el espacio vectorial V. Entonces

$$|\langle u, v \rangle| \le ||u|| \, ||v||$$

para todo $u, v \in V$.

Además se cumple la igualdad si y sólo si $u = \lambda v$ para algún $\lambda \in \mathbb{R}$, es decir, u y v son colineales.

Teorema 17. Sea V un espacio vectorial con producto interno $\langle \ , \ \rangle$ entonces la norma asociada $\| \ \|$ satisface las siquientes propiedades:

Si u y v son elementos de V y α es un número real, se cumple

- (1) $||u|| \ge 0$, ||u|| = 0 si y solo si u = 0,
- (2) $\|\alpha u\| = |\alpha| \|u\|$,
- (3) (Designaldad triangular) $||u+v|| \le ||u|| + ||v||$.

En general una función que satisface las propiedades enunciadas en el teorema anterior se le conoce como *norma*, es importante destacar que existen normas no asociadas con un producto interno.

Definición 18. Sea V un espacio vectorial con producto interno \langle , \rangle .

(1) Si $u, v \in V$, se dice que $u \ y \ v$ son ortogonales (abreviado $u \perp v$) si

$$\langle u, v \rangle = 0.$$

(2) Si $\mathcal{M} = \{u_1, \dots, u_n\}$ es un conjunto de vectores, se dice que \mathcal{M} es ortogonal si sus elementos son ortogonales dos a dos, es decir

$$\langle u_i, u_i \rangle = 0 \text{ si } i \neq j.$$

(3) Se dice que \mathcal{M} es ortonormal si \mathcal{M} es ortogonal y cada vector u_i tiene norma 1.

Proposición 19. Sean V un espacio vectorial con producto interno \langle , \rangle , $\mathcal{M} = \{u_1, \dots, u_n\}$ un conjunto ortogonal de vectores $y \alpha_1, \dots, \alpha_n$ una colección de escalares, entonces

(1) $Si \ u = \alpha_1 u_1 + \cdots + \alpha_n u_n \ entonces$

$$||u|| = \sqrt{\alpha_1^2 ||u_1||^2 + \dots + \alpha_n^2 ||u_n||^2}.$$

- (2) Si \mathcal{M} no contiene al vector nulo, entonces \mathcal{M} es linealmente independiente.
- (3) (Generalización del teorema de Pitágoras) Si \mathcal{M} es ortonormal $y u = \alpha_1 u_1 + \cdots + \alpha_n u_n$, entonces

$$||u|| = \sqrt{\alpha_1^2 + \dots + \alpha_n^2}.$$

Corolario 20. Todo conjunto ortonormal es linealmente independiente.

5. PROCESO DE ORTONORMALIZACIÓN DE GRAM-SCHMIDT

Sea V un espacio con producto interno y $\{u_1, \ldots, u_n\}$ es un subconjunto linealmente independiente de V, procediendo de la siguiente manera se obtiene un sistema ortonormal $\{v_1, \ldots, v_n\}$ y que satisface

El proceso anterior se conoce como $m\acute{e}todo$ de ortonormalización de Gram-Schmidt y es un algoritmo que permite transformar un conjunto de vectores linealmente independientes en un conjunto ortonormal.

Observación 21. Si en el proceso de Gram-Schmidt se omite el paso de dividir ente la norma del vector, se obtiene un conjunto ortogonal.

Una consecuencia del proceso de ortonormalización de Gram-Schmidt es la siguiente.

Teorema 22. Todo espacio vectorial de dimensión finita y con producto interno posee una base ortogonal y una base ortonormal.

Observación 23. Sea V un espacio vectorial de dimensión finita con producto interno \langle , \rangle y sea $\{v_1, \dots, v_n\}$ una base ortonormal de V. Entonces

(1) Todo vector v de V se escribe en términos de la base de la siguiente manera

$$v = \langle v, v_1 \rangle v_1 + \dots + \langle v, v_n \rangle v_n = \sum_{i=1}^n \langle v, v_i \rangle v_i,$$

es decir, si

$$v = \alpha_1 v_1 + \dots + \alpha_n v_n,$$

entonces

$$\alpha_i = \langle v, v_i \rangle v_i.$$

(2) Se cumple que

$$||v|| = \sqrt{\langle v, v_1 \rangle^2 + \dots + \langle v, v_n \rangle^2}$$
:

(3) La proyección del vector v sobre el espacio generado por $\{v_1,\ldots,v_k\}$ $(1 \le k \le n)$ es el vector

$$\langle v, v_1 \rangle v_1 + \dots + \langle v, v_k \rangle v_k = \sum_{i=1}^k \langle v, v_i \rangle v_i.$$

(4) El vector del subespacio generado por $\{v_1,\ldots,v_k\}$ $(1 \le k \le n)$ que mejor aproxima a V es

$$\langle v, v_1 \rangle v_1 + \dots + \langle v, v_k \rangle v_k = \sum_{i=1}^k \langle v, v_i \rangle v_i,$$

es decir, su proyección ortogonal sobre el subespacio generado por $\{v_1, \ldots, v_k\}$.