ACH2011 - Cálculo I

Lista de Exercícios 05

Exercícios

Fornecer a representação em série (de Taylor) das seguintes funções; tome x_0 como sendo o ponto de referência.

001)
$$f(x) = \sin x \ (x_0 = 0)$$
 002) $f(x) = \cos x \ (x_0 = 0)$

003)
$$f(x) = \frac{1}{1+x}$$
, $|x| < 1$ $(x_0 = 0)$ 004) $f(x) = \ln(1 \pm x)$, $|x| \le 1$ $(x_0 = 0)$

005)
$$f(x) = e^x (x_0 = 0)$$
 006) $f(x) = \frac{1}{x} (x_0 = a \neq 0)$

- 007) Estimar o número de Euler e com um desvio do valor verdadeiro não maior que $\epsilon = 10^{-5}$; encontrar n_0 , que é o grau mínimo do polinômio de Taylor usado para esta estimativa.
- 008) Estimar $(3/2)^{1.9}$ com um desvio do valor verdadeiro não maior que $\epsilon = 10^{-5}$; encontrar n_0 , que é o grau mínimo do polinômio de Taylor usado para esta estimativa. **Hint:** $\ln(3/2) \in (0.4, 0.5)$.
- 009) Estimar $\sin 89^{\circ}$ com um desvio do valor verdadeiro não maior que $\epsilon = 10^{-6}$; encontrar n_0 , que é o grau mínimo do polinômio de Taylor usado para esta estimativa.
- 010) Estimar cos 61° com um desvio do valor verdadeiro não maior que $\epsilon = 10^{-8}$; encontrar n_0 , que é o grau mínimo do polinômio de Taylor usado para esta estimativa.
- 011) Estimar ln 20 com um desvio do valor verdadeiro não maior que $\epsilon = 10^{-7}$; encontrar n_0 , que é o grau mínimo do polinômio de Taylor usado para esta estimativa. **Hint:** 20.08 < $e^3 < 20.09$.
- 012) Estimar $\sqrt{101}$ com um desvio do valor verdadeiro não maior que $\epsilon = 10^{-3}$; encontrar n_0 , que é o grau mínimo do polinômio de Taylor usado para esta estimativa.
- 013) Estimar $\sin 46^{\circ}$ com um desvio do valor verdadeiro não maior que $\epsilon = 10^{-13}$; encontrar n_0 , que é o grau mínimo do polinômio de Taylor usado para esta estimativa.
- 014) Estimar $10^{1.99}$ com um desvio do valor verdadeiro não maior que $\epsilon = 10^{-8}$; encontrar n_0 , que é o grau mínimo do polinômio de Taylor usado para esta estimativa. **Hint:** $2 < \ln 10 < 2.5$.
- 015) Estimar $e^{0.9}$ com um desvio do valor verdadeiro não maior que $\epsilon = 10^{-4}$; encontrar n_0 , que é o grau mínimo do polinômio de Taylor usado para esta estimativa.

Problemas

p1) Seja $f: \mathbb{R} \to \mathbb{R}$ uma função derivável (n+1) vezes. Dado um ponto de referência $x_0 \in \mathbb{R}$, mostrar que o resto de Lagrange

$$R_{n+1} := f(x) - P_n(x), \quad \text{com} \quad P_n(x) := \sum_{m=0}^n \frac{f^{(m)}(x_0)}{n!} (x - x_0)^n$$

pode ser representado por

$$R_{n+1} = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1},$$

onde ξ é um ponto entre x e x_0 .

p2) (**Teorema do valor médio**) Se $f:[a,b]\to\mathbb{R}$ for contínua e derivável em (a,b), mostrar que existe $\xi\in(a,b)$ tal que

$$f(b) - f(a) = f'(\xi) (b - a)$$
.

1