Lecture 17: Kernel Theory

With kernel ridge regression (KRR) and support vector regression (SVR) we learned three concepts:

- 1) Primal and dual formulations of a model
 - Primal formulation expresses the model in terms of QERd
 - Pual formulation uses $d \in \mathbb{R}^N$ ($N \leftarrow$ size of training data set), and does not depend on the value of 'd'
 - Both formulations are mathematically equivalent
 - · Primal formulation is useful if N > d
 - · Dual formulation is useful if d> N

- We introduced kernels $K(\mathbf{z},\mathbf{z}')$ that allows us to let $d\to\infty$ without explicitly formulating an infinite vector of non-linear transformations $\mathbf{Z}(\mathbf{z})$
 - . The dual formulation is particularly useful when using kernel methods, since the dimension of @ in the primal formulation could be very large
- 3) We used different loss functions (and included L2-regularization)
 - · KRR makes use of squared error loss
 - · SVR uses E-insensitive loss

> gives sparse d
in the dual formulation

Kernel theory

Lets look a bit more into kernels

- Kernel was defined as being any function that takes in two arguments and returns a scalar

positive semi-definite

- We also suggested that we will restrict ourselves to PSD kernels
- Vanilla KNN -> Kernel KNN (provides a variety of distance metrics)
 - · Recall that vanilla kNN constructs prediction for z* by taking the average or a majority vote among the k "nearest" neighbours
 - · In its standard form, "nearest" was defined by the Euclidean distance
 - Fuclidean distance between 2 points \underline{x} and \underline{x}' : $\|\underline{x} \underline{x}'\|_2$ (always)

Fuclidean distance between 2 points \underline{x} and \underline{x}' : $\|\underline{x} - \underline{x}'\|_2$ (always)

· Since Euclidean distance is positive, we can consider squared Euclidean distance instead

$$|| \underline{x} - \underline{x}' ||_{2}^{2} = (\underline{x} - \underline{x}')^{T} (\underline{x} - \underline{x}')$$
For many kernels,
$$= \underline{x}^{T}\underline{x} + \underline{x}'^{T}\underline{x}' - \underline{a}\underline{x}^{T}\underline{x}'$$
Hese terms are
$$|| \underline{x} - \underline{x}' ||_{2}^{2} = (\underline{x} - \underline{x}')^{T} (\underline{x} - \underline{x}')$$
For many kernels,
$$|| \underline{x} - \underline{x}' ||_{2}^{2} = (\underline{x} - \underline{x}')^{T} (\underline{x} - \underline{x}')$$

$$= \underline{x}^{T}\underline{x}' + \underline{x}'^{T}\underline{x}' - \underline{a}\underline{x}^{T}\underline{x}'$$

$$|| \underline{x} - \underline{x}' ||_{2}^{2} = (\underline{x} - \underline{x}')^{T} (\underline{x} - \underline{x}')$$
Hese terms are
$$|| \underline{x} - \underline{x}' ||_{2}^{2} = (\underline{x} - \underline{x}')^{T} (\underline{x} - \underline{x}')$$

$$= \underline{x}^{T}\underline{x}' + \underline{x}'^{T}\underline{x}' - \underline{a}\underline{x}^{T}\underline{x}'$$

$$= \underline{x}^{T}\underline{x}' + \underline{x}^{T}\underline{x}' - \underline{a}\underline{x}^{T}\underline{x}'$$

$$= \underline{x}^{T}\underline{x}' + \underline{x}^{T}\underline{x}' - \underline{a}\underline{x}^{T}\underline{x}' - \underline{a}\underline{x}^{T}\underline{$$

. In kernel KNN, K(x, x') can be replaced with any PSD kernel

• How can you use vanilla KNN where Euclidean distance has no natural meaning?

Example: Distance between words which reflect sentiment

Word	Sentiment
Tremendous	Positive
Horrific	Negative
Outrageous	Negative

- what could be the label for "horrendous"?
- One may think of converting the input space to numbers first and then use Euclidean distance

$$\chi^* = Horrendous$$

$$k=1 \rightarrow Positive$$

- An easier way to compare is using, for ex, Levenstein distance (LD), which is the number of single-character edits needed to transform one word (string) into another
- One can construct a kernel as $K(\underline{x},\underline{x}') = \exp\left(-\frac{(LD(x,x'))^2}{2l^2}\right)$ to implement kernel kNN (instead of vanilla kNN)

- . A kernel defines how close/similar any two points are
 - If $K(\underline{x}^{(i)}, \underline{x}^*) > K(\underline{x}^{(j)}, \underline{x}^*)$, then $\underline{x}^{(i)}$ is more similar to $\underline{x}^{(i)}$ than $\underline{x}^{(j)}$
 - It also implies that prediction $\hat{y}(x^*)$ is most influenced by the training data points that are closest to x^*
 - Therefore, a kernel plays an important role of determining the individual influence of each training data point when making a prediction
- No need to bother about the inner product $\underline{\beta}(\underline{x})^T\underline{\beta}(\underline{x}')$ once we have introduced the kernel $K(\underline{x},\underline{x}')$

- · Choice of a kernel corresponds to preference for certain types of functions
 - For example, the squared exponential (or RBF) kernel $K(\underline{x},\underline{x}') = \exp\left(-\frac{\|\underline{x}-\underline{x}'\|_{2}^{2}}{2l^{2}}\right)$

implies a preference for smooth functions

- In primal formulation, we choose features Q(x) which will reflect the type of transformations we want to introduce. This choice is reflected to some extent in choosing kernels in the dual formulation.
- A machine learning engineer must choose a kernel wisely and should not simply resort to 'default' choices

· We already know that kernels are a way to represent non-linear feature transformation Q(x)

$$K(\mathbf{z},\mathbf{z}') = \underline{\phi}(\mathbf{z})^{\mathsf{T}}\underline{\phi}(\mathbf{z}')$$

- Question: Does an arbitrary kernel $K(\underline{x},\underline{x}')$ always correspond to a feature transformation $\underline{\emptyset}(\underline{x})$?
 - The question is primarily of theoretical nature
 - Practically, it matters very less whether a kernel $K(\underline{x},\underline{x}')$ admits a factorization $K(\underline{x},\underline{x}') = \underline{\beta}(\underline{x})^T \underline{\beta}(\underline{x}')$ or not
 - Furthermore, the factorization has no direct correspondence to how well the kernel will perform in terms of E_{new} , which still has to be evaluated using cross-validation

Question: Does an arbitrary kernel $K(\underline{x},\underline{x}')$ always correspond to a feature transformation $\underline{\varphi}(\underline{x})$?

Answer: Yes, if the kernel $K(\underline{x},\underline{x}')$ is PSD (positive semi-definite) (no negative eigen-values)

Recall that a kernel is PSD if the Gram matrix $\underline{K}(\underline{X},\underline{X})$ is PSD for any \underline{X}

• It holds that any kernel $K(\underline{x},\underline{x}')$ that is defined as an inner product between feature vectors $\underline{\varphi}(\underline{x})$ is always PSD

$$K(\underline{x},\underline{x}') = \underline{\phi}(\underline{x})^{\mathsf{T}}\underline{\phi}(\underline{x}') \qquad \langle \cdot, \cdot \rangle \leftarrow \text{inner}$$

$$= \langle \phi(\underline{x}), \phi(\underline{x}') \rangle \qquad \text{product}$$

Show $\underline{v}^{\mathsf{T}}\underline{K}(\underline{x},\underline{x})\underline{v} > 0$ for any vector v (do yourself)

Question: Does an arbitrary kernel $K(\underline{x},\underline{x}')$ always correspond to a feature transformation $\underline{\varphi}(\underline{x})$?

Answer: Yes, if the kernel $K(\underline{x},\underline{x}')$ is PSD (positive semi-definite) (no negative eigen-values)

• It holds that any kernel K(X,X') that is defined as an inner product between feature vectors $\underline{\varphi}(X)$ is always PSD

$$\underbrace{\phi(\underline{x})} \xrightarrow{\text{inner product}} \underbrace{\kappa(\underline{x},\underline{x}')}_{\text{PSD}}$$

• The other direction also holds true, that is, for any PSD kernel $K(\underline{x},\underline{x}')$ there always exist a feature vector $\underline{p}(\underline{x})$ such that $K(\underline{x},\underline{x}')$ can be written as its inner product

$$\frac{\phi(z)}{\text{feature vector}} \qquad \frac{\kappa(z,z')}{\text{if PSD}}$$

• The other direction also holds true, that is, for any PSD kernel $K(\underline{x},\underline{x}')$ there always exist a feature vector $\underline{p}(\underline{x})$ such that $K(\underline{x},\underline{x}')$ can be written as its inner product

feature vector
$$\frac{\phi(z)}{\text{if PSD}}$$

- It can be shown that for any PSD kernel, it is possible to construct a function space, more specifically a Hilbert space, that is spanned by a feature vector p(x) s.t. $K(x, x') = p(x)^T p(x')$
 - There are multiple ways to construct a Hilbert space space spanned by Q(2). One of the ways is using the so-called reproducing kernel Hilbert space (RKHS) mapping

- · Euclidean space is a space of vectors equipped with inner products between vectors
- * Hilbert space is a generalization of Euclidean space to functions (which can be treated as infinite dimensional vectors). It allows inner product between functions
- A Hilbert space H is called the RKHS if there exists a kernel K(x,x') with the reproducing property that

$$f(z') = \langle f(\cdot), \kappa(\cdot, z') \rangle \quad \forall \quad f \in H, \quad \forall z'$$

- If we set
$$f(\cdot) = K(\cdot, \underline{x})$$
, then $\langle K(\cdot, \underline{x}), K(\cdot, \underline{x}') \rangle = K(\underline{x}, \underline{x}')$

This reproducing property is the main building block of RKHS. This RKHS is spanned by the corresponding feature $\varphi(x)$ of kernel K(x,x')

Question: Does an arbitrary kernel $K(\underline{x},\underline{x}')$ always correspond to a feature transformation $\underline{\varphi}(\underline{x})$?

Answer: Yes, if the kernel $K(\underline{x},\underline{x}')$ is PSD (positive semi-definite) (no negative eigen-values)

$$\underbrace{\phi(\underline{x})}_{\text{feature vector}} \xrightarrow{\text{inner product}} \underbrace{\kappa(\underline{x},\underline{x}')}_{\text{PSD}}$$

feature vector

(spans a RKHS)

$$\kappa(\underline{x},\underline{x}')$$

if PSD

· A given Hilbert space uniquely defines a kernel, but for a kernel there exists multiple Hilbert spaces which correspond to it

feature vector

(spans a RKHS)

$$\mathcal{L}_{1}(\mathcal{L})$$
 $\mathcal{L}_{2}(\mathcal{L})$

feature vector

$$E \cdot g \cdot K(\underline{x}, \underline{x}') = \underline{x}^{T}\underline{x}'$$

$$\varphi_{1}(\underline{x}) = \underline{x}$$

$$\varphi_{2}(\underline{x}) = \begin{bmatrix} \underline{x}/\sqrt{2} \\ \underline{x}/\sqrt{2} \end{bmatrix}$$
(one-dimensional)
(two-dimensional)