Theorem von Rice

Definition, Beweis, Beispiele

Kurze Wiederholung

Codierung

- Programm P, Eingabe x, Ausgabe etc.
- Wir bleiben in der Java-Welt

Halteproblem

spezifisch f
ür Java

Berechenbarkeit

- Es kann für eine Funktion ein Algorithmus formuliert werden
- Eingabe -> Algorithmus -> Ausgabe
- Auch hier: Achtung, passende Codierung!

Entscheidbarkeit

- Charakteristische Funktion ist berechenbar
- ~Mengenzugehörigkeit

Agenda

- Informelle Aussage
- Einführende Beispiele
- Formale Aussage & ihr Beweis
- Nachweise für ausgewählte Beispiele
- Zusammenhang zur Zeitkomplexität
- Zusammenfassung

Informelle Aussage

(Informelle) Aussage

- Alle nicht-trivialen semantischen Eigenschaften von Programmen sind nicht entscheidbar
- nicht-trivial?
 - weder wahr für alle Programme, noch für keines
- semantische Eigenschaften von Programmen?
 - Eigenschaft der durch das Programm P berechneten Funktion f
 - Mathematik: Eigenschaften von Funktionen, Funktionsklassen, etc.
 - Informatik: f berechnet Sortierfunktion, Suchfunktion ...
 - Nicht dazu zählt bspw.:
 - Zeitkomplexität O(n)

Einführende Beispiele

Einfache Beispiele

Mathematik:

- {f | f ist [in,sur,bi]jektiv}
- {f | f ist konstante Funktion}
- {f | f(x) ist durch 3 teilbar}

Informatik:

- {f | f ist definiert bei x}
- {f | f ist überall definiert}
- {f | f sortiert Liste L}

Veranschaulichung

Veranschaulichung

Collatz-Programm

- Programm, das (vermutlich) für beliebige n > 1 mit 1 endet
- Ungelöstes math. Problem
- Für positive Zahlen bis 20 * 2⁵⁸ durch Ausprobieren bestätigt
- Für n = 3 bspw.:
 - 10, 5, 16, 8, 4, 2, 1

```
while (n > 1) {
    if (n%2 == 0) n = n/2;
    else n = 3*n + 1;
}
```

- Frage: Berechnet das Collatz-Programm die Konstante 1?
- Ggf. durch Überlauf zusätzlich erschwert in manchen Programmiersprachen

Formale Aussage & ihr Beweis

Satz von Rice (1953)

```
Sei R = \{f \mid Funktion f \text{ ist berechenbar}\}\ und sei \emptyset \neq S \subsetneq R (S ist nicht-triviale Teilmenge von R).
```

Dann ist die Sprache

```
L_J(S) = \{ p \mid Programm p berechnet eine Funktion aus S \}
```

nicht rekursiv (nicht entscheidbar).

"Lax formuliert"

Satz von Rice (1953)

```
Sei R = \{f \mid Funktion f \text{ ist berechenbar}\}\ und sei \emptyset \neq S \subsetneq R (S ist nicht-triviale Teilmenge von R).
```

Dann ist die Sprache

```
L_J(S) = \{ p \mid Java-Programm p berechnet eine Funktion aus <math>S \} nicht rekursiv (nicht entscheidbar).
```

Definitionen

- Wir betrachten das allgemeines Halteproblem für Java-Programme ${\boldsymbol{\mathcal{H}}}_{\mathsf{I}}$
- Java-Programm p und Eingabe x "passend" zu p
- Simulator Sim(p, x), der Java-Programm p auf der Eingabe x simuliert
 - offensichtlich berechenbar
- Überall undefinierte Funktion u
 - offensichtlich berechenbar
- Ein Java-Programm J_f, welches eine Funktion f berechnet

Konstruktion

```
public void Sim(Object p, Object x) {...}
public void J<sub>f</sub>(Object y) {...}

public void Rice(Object y)
{
    Sim(p, x);
    J<sub>f</sub>(y);
}
```

- Nebenstehendes Programm Rice_(p, x) kann für jedes Paar (p, x) berechnet werden
- Im Folgenden werden wir durch Reduktion auf das Halteproblem das Theorem von Rice beweisen

1. Fall - $u \in R$ - S

- wähle $f \in S$
- Falls $(p, x) \in \mathcal{H}_J \Rightarrow Sim(p, x) \text{ hält} \Rightarrow Rice_{(p, x)} \equiv f \in S$
- Falls $(p, x) \notin \mathcal{H}_J \Rightarrow Sim(p, x)$ hält nicht $\Rightarrow Rice_{(p, x)} \equiv u \in R S$
- Also: Rice $_{(P, x)}$ hält in beiden Fällen und akzeptiert ${\boldsymbol{\mathcal{H}}}_{J}$
 - $\mathcal{H}_{I} \leq_{\mathrm{m}} L_{I}(S)$
 - $\chi_{\mathcal{H}_{\perp}J}(p, x) = \chi_{L_{\perp}J(S)}(Rice_{(p, x)})$
 - Rice_(P, x) berechenbar; wäre $\chi_{L_J(S)}(Rice_{(p, x)})$ berechenbar, so auch $\chi_{\mathcal{H}_J}(p, x)$ und damit \mathcal{H}_I entscheidbar

2. Fall - $u \in S$

- wähle $f \in R S$
- Falls $(p, x) \in \mathcal{H}_J \Rightarrow Sim(p, x) \text{ hält} \Rightarrow Rice_{(p, x)} \equiv f \in R S$
- Falls $(p, x) \notin \mathcal{H}_J \Rightarrow Sim(p, x)$ hält nicht $\Rightarrow Rice_{(p, x)} \equiv u \in S$
- Also: Rice $_{(P, x)}$ hält in beiden Fällen und akzeptiert $\neg \mathcal{H}_{J}$
 - $\neg \mathcal{H}_{I} \leq_{\mathrm{m}} L_{I}(S)$
 - $\chi_{\neg \mathcal{H}_{-J}}(p, x) = \chi_{L_{-J}(S)}(Rice_{(p, x)})$
 - Rice_(p, x) berechenbar; wäre $\chi_{L_J(S)}(Rice_{(p, x)})$ berechenbar, so auch $\chi_{\neg \mathcal{H}_J}(p, x)$ und damit $\neg \mathcal{H}_I$ entscheidbar

Nachweise für ausgewählte Beispiele

Totalitätsproblem

- ∀x: Java-Programm p hält für Eingabe x
- $S_{\text{tot}} = \{ f \mid f \text{ ist rekursiv und total } \}$
- $L(S_{tot}) = \{p \mid Java-Programm p berechnet Funktion aus S_{tot}\}$
- Direktes Korollar aus dem Satz von Rice:
 - S ist nicht-triviale Teilmenge von $R \Rightarrow L(S_{tot})$ nicht entscheidbar

Spezielles Äquivalenzproblem

- Für fest vorgegebenes Programm p':
 - Equiv(p) = 1 <=> Javaprogramm p berechnet die gleiche Funktion f wie Programm p'
- $S = \{f\}$
- f = Funktion, die durch eine Spezifikation gegeben ist
 z.B. Programmverhalten durch Regeln und Fakten (Prolog)
- Java-Programm p ist Implementierung dieser Funktion in Java

Zusammenhang zur Zeitkomplexität

Entscheidbarkeit von $\mathcal{O}(n^k)$

Beispiele

- $P_I^1 = \{p \mid Java-Programm p hat Zeitkomplexität \subseteq \mathcal{O}(n)\}$
- $P_J^2 = \{p \mid Java-Programm p hat Zeitkomplexität \subseteq \mathcal{O}(n^2)\}$

• $P_I^k = \{p \mid Java-Programm p hat Zeitkomplexität \subseteq \mathcal{O}(n^k)\}$

Entscheidbarkeit von $O(n^k)$ - Konstruktion

```
public boolean Sim(Object p, Object
x, Object n) {...}
public int one() { return 1; }
public void compl(String y) {
 int n = y.length();
 if (Sim(\mathbf{p}, \mathbf{x}, \mathbf{n})) {
   while (true) {}
 return 1
```

- Nebenstehendes Programm compl_(p, x) kann für jedes Paar (p, x) berechnet werden
- Dieses Beispiel betrachtet zunächst k = 1

O(n)

Entscheidbarkeit von $O(n^k)$ - Beweis

- Falls $(p, x) \notin \mathcal{H}_J$ $\Rightarrow Sim(p, x, n) \text{ immer false} \Rightarrow compl_{(p, x)} \text{ für kein n in Endlosschleife}$ $\Rightarrow Zeitaufwand \mathcal{O}(n) \text{ für sim}(p, x, n) \Rightarrow \text{ für beliebiges k aus } \mathcal{O}(n^k)$
- Falls $(p, x) \in \mathcal{H}_J$
 - \Rightarrow Sim(p, x, n) true für ein $n_1 \Rightarrow$ compl_(p, x) für ein n_1 in Endlosschleife
 - \Rightarrow Programm terminiert nicht für Eingabelängen $> n_1 =$ für kein k aus $\mathcal{O}(n^k)$
- Also: $(p, x) \notin \mathcal{H}_{I} \Leftrightarrow compl_{(P, x)} aus \mathcal{O}(n^{k})$
 - $\neg \mathcal{H}_{I} <_{m} L(S)$
 - $\chi_{\neg \mathcal{H}_{-}J}(p, x) = \chi_{L(S)}(\text{compl}_{(p, x)})$
 - compl_(p,x) berechenbar;
 - wäre $\chi_{L(S)}(\text{compl}_{(p,x)})$ berechenbar, dann damit $\neg \mathcal{H}_{I}$ entscheidbar $\not =$

Kann Programm P (effizienter) in $O(n^k)$ implementiert werden?

- Beispiele
 - $P_J^1 = \{f \mid \exists p: Java-Programm p berechnet f in Zeitkomplexität \subseteq \mathcal{O}(n)\}$
 - $P_J^2 = \{f \mid \exists p: Java-Programm p berechnet f in Zeitkomplexität \subseteq \mathcal{O}(n^2)\}$

. . .

- $P_J^k = \{f \mid \exists p: Java-Programm p berechnet f in Zeitkomplexität \subseteq \mathcal{O}(n^k)\}$
- Alle diese Mengen sind nichttrivial

Kann Programm P (effizienter) in $O(n^k)$ implementiert werden?

Beweis:

- $P_I^k \neq \emptyset$
 - f(x) = 1
 - public int one() {return 1;}
- $P_I^k \neq R$
 - Traveling Salesman Problem
 - !? nur mittels z.B. "generate & test" sicher in O(n!)

Einschub: P-NP-Problem

- Ist TSP in polynomialer Zeit lösbar, oder nicht?
- Noch nicht gezeigt, daher anderes Vorgehen
- Programm $p \in \mathcal{O}(n^k) \le \exists c$: Laufzeit $T_p(n) \le c * n^k$

Kann Programm P (effizienter) in $O(n^k)$ implementiert werden?

- Idee: Alle Programme mit Zeitkomplexität $\subseteq \mathcal{O}(n^k)$ können aufgezählt werden
 - Tupel (c, i) mit Konstante c für Schranke und
 - i als (Java-) Programm-Nummer
- Diagonalisierungsfunktion muss sich von allen diesen Programmen unterscheiden
 - \Rightarrow kann nicht in $\mathcal{O}(n^k)$ liegen
 - ⇒ Interessanter Nebeneffekt:
 - Diagonalisierungsfkt. für $\mathcal{O}(n^k)$ in $\mathcal{O}(n^{k+1})$ berechenbar;
 - Hierarchiebildung
- Also ist P_I^k eine nicht-triviale Teilmenge von R
 - \Rightarrow Es ist für kein k entscheidbar, ob ein Java-Programm i in $P_I^{\,k}$ liegt

Zusammenfassung

Was haben wir gelernt

• Ob ein Programm eine Funktion, eine Eigenschaft etc. berechnet, können wir nicht entscheiden

- Darunter fallen ALLE berechenbaren Funktionen
- Zusammenhang zur Zeitkomplexität