EX5 - CIA 1

Use the telco-customer-churn dataset for the following:

- 1. Perform the necessary pre-processings.
- 2. Apply all the classification algorithms (KNN, Logisitc Regression, Naive Bayes, Decision Trees, SVM) on this dataset and print the accuracies.
- 3. Find which algorithm gave the best accuracy.
- 4. Provide a justification as to why that algorithm provided the best accuracy
- 5. zip the code files and the justification file and attach the zipped folder in the submission page

```
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
df = pd.read_csv("/content/Telco-Customer-Churn.csv")
```

df

	customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneServ		
0	7590- VHVEG	Female	0	Yes	No	1			
1	5575- GNVDE	Male	0	No	No	34			
2	3668-QPYBK	Male	0	No	No	2			
3	7795- CFOCW	Male	0	No	No	45			
4	9237-HQITU	Female	0	No	No	2			
7038	6840-RESVB	Male	0	Yes	Yes	24			
7039	2234- XADUH	Female	0	Yes	Yes	72			
7040	4801-JZAZL	Female	0	Yes	Yes	11			
7041	8361-LTMKD	Male	1	Yes	No	4			
7042	3186-AJIEK	Male	0	No	No	66			
7043 rows × 21 columns									

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7043 entries, 0 to 7042
Data columns (total 21 columns):
Column Non-Null Count

#	Column	Non-Null Count	Dtype
0	customerID	7043 non-null	object
1	gender	7043 non-null	object
2	SeniorCitizen	7043 non-null	int64
3	Partner	7043 non-null	object
4	Dependents	7043 non-null	object
5	tenure	7043 non-null	int64
6	PhoneService	7043 non-null	object
7	MultipleLines	7043 non-null	object
8	InternetService	7043 non-null	object
9	OnlineSecurity	7043 non-null	object
10	OnlineBackup	7043 non-null	object
11	DeviceProtection	7043 non-null	object
12	TechSupport	7043 non-null	object
13	StreamingTV	7043 non-null	object
14	StreamingMovies	7043 non-null	object
15	Contract	7043 non-null	object
16	PaperlessBilling	7043 non-null	object

```
17 PaymentMethod 7043 non-null object
18 MonthlyCharges 7043 non-null float64
19 TotalCharges 7043 non-null object
20 Churn 7043 non-null object
dtypes: float64(1), int64(2), object(18)
memory usage: 1.1+ MB
```

df.isnull().sum()

```
customerID
                     0
                     0
gender
SeniorCitizen
                     0
Partner
                     0
Dependents
tenure
                     0
                     0
PhoneService
                     0
MultipleLines
InternetService
                     0
                     0
OnlineSecurity
                     0
OnlineBackup
DeviceProtection
                     0
TechSupport
StreamingTV
                     0
StreamingMovies
Contract
                     0
PaperlessBilling
                     0
                     0
PaymentMethod
MonthlyCharges
                     0
TotalCharges
                     0
Churn
dtype: int64
```

1. Data Preprocessing

```
df = df.drop(["customerID"], axis = 1)
df["TotalCharges"] = pd.to_numeric(df["TotalCharges"], errors="coerce")
df.isnull().sum()
                           0
    gender
    SeniorCitizen
                           0
    Partner
                           0
    Dependents
                           0
    tenure
                           0
    PhoneService
                           0
    MultipleLines
                           0
    InternetService
                           0
    OnlineSecurity
                           0
    OnlineBackup
                           0
    DeviceProtection
                           0
    TechSupport
                           0
    StreamingTV
                           0
    StreamingMovies
```

Contract 0
PaperlessBilling 0
PaymentMethod 0
MonthlyCharges 0
TotalCharges 11
Churn 0
dtype: int64

df = df.fillna(df["TotalCharges"].mean())

df.isnull().sum()

0 gender SeniorCitizen 0 Partner 0 Dependents 0 0 tenure PhoneService 0 MultipleLines 0 0 InternetService OnlineSecurity 0 OnlineBackup 0 DeviceProtection 0 TechSupport 0 StreamingTV 0 0 StreamingMovies Contract PaperlessBilling 0 PaymentMethod MonthlyCharges 0 TotalCharges 0 Churn 0 dtype: int64

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7043 entries, 0 to 7042

Data columns (total 20 columns):

#	Column	Non-Null Count	Dtype
0	gender	7043 non-null	object
1	SeniorCitizen	7043 non-null	int64
2	Partner	7043 non-null	object
3	Dependents	7043 non-null	object
4	tenure	7043 non-null	int64
5	PhoneService	7043 non-null	object
6	MultipleLines	7043 non-null	object
7	InternetService	7043 non-null	object
8	OnlineSecurity	7043 non-null	object
9	OnlineBackup	7043 non-null	object
10	DeviceProtection	7043 non-null	object
11	TechSupport	7043 non-null	object
12	StreamingTV	7043 non-null	object
13	StreamingMovies	7043 non-null	object
14	Contract	7043 non-null	object
15	PaperlessBilling	7043 non-null	object

```
16 PaymentMethod 7043 non-null object
17 MonthlyCharges 7043 non-null float64
18 TotalCharges 7043 non-null float64
19 Churn 7043 non-null object
dtypes: float64(2), int64(2), object(16)
memory usage: 1.1+ MB
```

```
df["PaymentMethod"].unique()
```

```
df.replace({'No phone service': "No", 'No internet service': "No"}, inplace=True)
```

```
df["OnlineSecurity"].unique()
```

```
array(['No', 'Yes'], dtype=object)
```

```
df["Churn"].unique()
```

```
object_cols = df.select_dtypes(include=['object']).columns
le = LabelEncoder()
for col in object_cols:
   df[col] = le.fit_transform(df[col])
df
```

		gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	Multipl
	0	0	0	1	0	1	0	
	1	1	0	0	0	34	1	
	2	1	0	0	0	2	1	
	3	1	0	0	0	45	0	
	4	0	0	0	0	2	1	
7	7038	1	0	1	1	24	1	
7	7039	0	0	1	1	72	1	
7	7040	0	0	1	1	11	0	
7	7041	1	1	1	0	4	1	
7	7042	1	0	0	0	66	1	
_								

7043 rows × 20 columns

```
df1 = pd.get_dummies(df)
df1.head()
```

	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLi
0	0	0	1	0	1	0	
1	1	0	0	0	34	1	
2	1	0	0	0	2	1	
3	1	0	0	0	45	0	
4	0	0	0	0	2	1	

```
X = df1.drop(columns = ["Churn"])
y = df1["Churn"].values
```

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_s

Model Prediction

KNN

```
knn = KNeighborsClassifier(n_neighbors = 10)
knn.fit(X_train,y_train)
y_pred = knn.predict(X_test)
knn_acc = knn.score(X_test,y_test)
print("KNN accuracy:",knn_acc)
```

KNN accuracy: 0.7884524372929484

Logistic Regression

```
lr = LogisticRegression()
lr.fit(X_train,y_train)
lr_acc = lr.score(X_test,y_test)
print("Logistic Regression accuracy:",lr_acc)
```

Logistic Regression accuracy is: 0.807382867960246 /usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_logistic.py:458 STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

✓ SVM

```
svc = SVC(kernel="linear", random_state = 42)
svc.fit(X_train,y_train)
svc_acc = svc.score(X_test,y_test)
print("SVM accuracy:", svc_acc)
```

SVM accuracy: 0.792238523426408

Naive Bayes

```
nb = GaussianNB()
nb.fit(X_train,y_train)
nb_acc = nb.score(X_test,y_test)
print("Naive Bayes accuracy:",nb_acc)
```

Naive Bayes accuracy: 0.7586370089919545

Decision Tree

```
dt = DecisionTreeClassifier()
dt.fit(X_train,y_train)
dt_acc = dt.score(X_test,y_test)
print("Decision Tree accuracy:",dt_acc)
```

Decision Tree accuracy: 0.7259820160908661

Summary

- Logistic Regression has the highest accuracy, followed by SVM.
- Logistic Regression excels in binary classification, so it has higher accuracy for this dataset.
- Logistic Regression needs independent variables to be linearly related to the log-odds of the outcome, providing non-linear decision boundaries in probability space. It is also less sensitive to outliers and can perform well without extensive feature scaling.
- Decision Trees and SVM underperform when features are unscaled
- KNN is affected by outliers.
- Naive Bayes assumes independence between features, which contradicts the interdependence in the given dataset.