BiLSTM with Attention

논문

Index

- 1. BiLSTM with Attention
 - 1. Embedding Layer
 - 2. RNN Cell Layer
 - 3. Attention Layer
 - 4. Dense Layers
 - 5. Ensemble Strategy
- 2. Summary

BiLSTM with Attention

위 논문은 Classification 문제를 해결하기 위해 LSTM-Attention 모델과 BiLSTM-Attention 모델을 사용한 논문이다. 구조를 살펴보면 다음과 같다.

- 1. 문장의 단어들을 embedding 한다.
- 2. embedding된 벡터들을 RNN Cell(BiLSTM 혹은 LSTM)에 넣는다.
- 3. 한 문장의 RNN Cell의 출력값들을 attention layer(word level context vector를 사용)에 넣고 취합하여 하나의 벡터를 만든다.
- 4. Dense-Dropout-Dense-Softmax layer에 차례로 입력한다.
- 5. Bi-LSTM에서 나온 확률 분포와 LSTM에서 나온 확률 분포를 이용해 soft voting한다.
- 이 구조에 들어가 있는 layer들을 하나 씩 살펴보자.

Embedding Layer

이 논문에서 Embedding matrix는 twitter를 통해 학습된 word2vec의 projection matrix를 사용한다. Embedding vector의 dimension은 400이다.

RNN Cell Layer

RNN Cell layer는 뉴런의 개수는 400이 LSTM과 BiLSTM을 사용하고 벡터 h를 출력한다. BiLSTM의 출력 벡터 h는 앞에서 뒤로 보내는 LSTM의 출력 벡터 h_f 와 뒤에서 앞으로 보내는 LSTM의 출력 벡터 h_b 를 concat하여 h를 만든다. 이를 통해 특정 time step에서 과거와 미래의 input feature들을 모두 참조할수 있다.

Attention Layer

<u>참조 논문</u>

참조 블로그

Attention layer를 통해 각각의 단어가 tweet의 감정에 얼마나 영향을 끼치는지 파악하고 이를 축약할수 있다. t번째 tweet sentence의 i번째 word는 RNN Cell을 통해 h_{ti} 로 변환되고 이는 먼저 MLP를 지나고 tanh 활성화 함수를 거쳐 u_{ti} 로 변환된다.

• $u_{ti} = tanh(Wh_{ti} + b)$

여기서 W는 MLP의 weight matrix이고 b는 MLP의 bias vector다.

$$ullet \ lpha_{ti} = rac{exp(u_{ti}^T u_w)}{\sum_{j=1}^n exp(u_{tj}^T u_w)}$$

여기서 u_w 는 문장의 뜻이 함축적으로 담아내게 학습되는 벡터(called a word level context vector which is randomly initialized)이고 α_{ti} 는 u_{ti} 가 u_w 와 같은 방향일수록 높게 측정된다.

• $s_t = \sum_i \alpha_{ti} h_{ti}$

 s_t 는 문장을 함축적으로 표현하는 벡터가 되는데, 이 벡터는 h_{ti} 가 변환되어 u_{ti} 가 되었을 때 u_w 와 가장 비슷하면 그 h_{ti} 를 많이 따라가게 된다.

Dense Layers

Attention layer에서 출력된 벡터를 400개의 은닉 뉴런이 있는 layer를 지나 tanh 활성화함수에 입력값으로 넣는다. 그 다음 dropout layer를 통과하게 하고(rate는 경험적으로 추론) 6개의 은닉 뉴런(class의 개수)이 있는 layer를 지나 softmax 함수를 통해 확률로 출력한다.

Ensemble Strategy

LSTM와 BiLSTM에서 출력된 두개의 확률분포를 soft voting을 해서 class를 추측한다.

•
$$H^{j}(x) = \frac{1}{T} \sum_{i=1}^{T} h_{i}^{j}(x)$$

여기서 i는 i번 째 분류기, T는 분류기의 총 수, j는 class label(이 논문에서는 0~5사이의 값), x는 sample, $h_i^j(x)$ 는 i번 째 분류기의 예측 확률 중 j class에 들어갈 확률이고 앙상블이 예측하는 $H^j(x)$ 는 sample x가 j class에 들어갈 확률이다.

Summary

위에 언급된 layer의 구동방식에 따라 BiLTM with Attention classification은 다음과 같이 진행된다.

- 1. 문장의 단어들을 embedding 한다.
- 2. embedding된 벡터들을 RNN Cell(BiLSTM 혹은 LSTM)에 넣는다.
- 3. 한 문장의 RNN Cell의 출력값들을 attention layer(word level context vector를 사용)에 넣고 취합 하여 하나의 벡터를 만든다.
- 4. Dense-Dropout-Dense-Softmax layer에 차례로 입력한다.
- 5. Bi-LSTM에서 나온 확률 분포와 LSTM에서 나온 확률 분포를 이용해 soft voting한다.