华侨大学 08-09 学年第二学期期末考试

《过程控制工程》试卷(B)

班级______ 姓名______ 学号 ______ 得分_____

题号	_	<u> </u>	=	四	五	六	总分
得分							
阅卷人							

- 一 填空题(20分,每空1分)
- 1. 下图三组记录曲线是由于比例度太小,积分时间太短,微分时间太

长引起,请加以鉴别(a)_____(b)____(c)

2. 调节系统在纯比例作用下已整定好,加入积分后,为保证原稳定度,

此时应将比例度____。

3. 设制分程控制系统的目的是_____。

4. 通常情况下,如卷图 1—1 所示的锅炉气包水位控制

系统阀门气开气	、天和调节器止	及作用的	<u> </u>		o
5. 气动执行器的	的辅助装置			_是利用反馈原	理来改善
执行器的性能,	使执行器能按	调节器的	的控制	信号实现准确定	定位。
6. 表示调节阀沿	流通能力的参数	足		0	
7. 对于直线结构	J特性的调节阀	,由于串	联管证	道阻力的影响,	直线的理
想的流量特性将	肾畸变成	_特性,	而对于	等百分比结构	的特性调节
阀,其流量特性	上将畸变成	特[生。		
8. 调节阀的流量	赴特性是指				之间的
关系,理想流量	齿特性是指在			情况下得到	削的流量特
性。					
9. 用衰减频率物	持性法整定调节	器参数	方法,	对于只有一个	整定参数
K_c 的比例调节器	器,请写出使系	统整定	到相对	稳定度册。的两	i个条件
			_	0	
(对象的 $G_{n}(r)$	$(m,\omega) = M_{\rm p}(m)$	$(\omega)e^{i\varphi}$	$\rho_p(m_s,\omega)$)	

10. 串级控制系统与单回路相比控制效果有显著的提高,主要体现 在哪三方面: 11. 前馈控制器的数学模型是______, 主要是克服_____ 扰动。 二、简答题 20% (每题 5 分) 前馈控制和反馈控制各有什么特点?为什么采用前馈-反馈 1. 复合控制系统将能较大地改善系统的控制品质? 2. 请简述一下过程控制都有哪些主要特点? 试总结调节器 P、PI、PD 动作规律对系统控制质量的影响? 3. 什么是调节阀的可调比? 串联管系的 s_{100} 值,并联管系的 s_{100}' 4. 值对调节阀的可调比有何影响? 试画出电动执行器的框图,并说明其各部分作用与原理? 5. 6. 常用的评价控制系统动态性能的单项性能指标及误差积分指标 有哪些?它们各有何特点? 试说明采用闭环测试方法测试对象数学模型的方法? 6. (假设对象是 $G(s) = \frac{k_0 e^{-\tau s}}{T.s+1}$)

8. 基本模糊控制器由哪几部分组成,简述各部分在构成控制系第3页共9页

7

其优缺点?

什么叫比值控制系统? 常用比值控制方案有哪些? 并比较

统中的作用?

- 1. 图所示为两水箱串联工作的双容过程,设其被控量是第二只水箱的液位 h_2 ,输入量为 q_1 。其余参数见图,求双容水箱的数学模型。(10分)
- 2. 对象传递函数 $G(s) = e^{-3s} / 4s$,调节器采用 PI 动作。试用稳定边界 法(利用闭环测试原理计算)估算调节器的整定参数。(8 分)

整定参数调节规律	k_{p}	T_{i}
PI	$0.46k_{ps}$	$0.85T_{\scriptscriptstyle S}$

有关参数整定如下表所示

- 3.换热器温度控制系统如图所示,试选择该系统中调节阀的气开、气 关形式。(6分)
 - (1) 如被加热流体出口温度过高会引起分解、自聚、或结焦;
 - (2)被加热流体出口温度过低会引起结晶、凝固等现象;
 - (3) 如果调节阀是调节冷却水,该地区冬季最低温度气温为 $0^{\circ}C$ 以下。

第4页共9页

- 4.图所示的蒸汽加热器出口温度控制系统,冷物料通过蒸汽加热器加热,出口温度要求控制严格。试问:
 - (1) 这是一个什么类型的控制系统? 试画出它的方块图。
- (2)如果被加热的物料过热时易分解,试确定调节的气开、气关形式并说明理由。
 - (3) 确定主、副调节器的正、反作用并说明理由。
 - (4) 如果主要干扰是蒸汽压力波动,试简述其控制过程。(12分)

- 7. 图 7-43 为聚合釜温度控制系统。试问:
 - (1) 它是什么类型的控制系统?
 - (2)聚合釜的温度不允许过高,否则易 发生事故,试确定执行器的气升、气 关形式。
 - (3) 确定主、副控制器的正、反作用。
 - (4) 简述当冷却水的压力波动时系统的 控制过程。
 - (5) 如果冷却水的温度是经常波动的, 上述控制系统是否能满足要求?哪 些地方需要改进?

图 7-43 聚合釜温度控制系统

- (6) 当夹套内的水温作为副变量构成串级控制时,试确定主、副控制器的正、反作用。
- 图 为聚合釜温度控制系统。试问
- (1) 它是什么类型的控制系统
- (2) 聚合釜的温度不允许过高,否则易发生事故,试确定执行器的气开、气关形式。
- (3) 确定主、副控制器的正反作用。

- (4) 简述当冷却水的压力波动时系统的控制过程
- (5)如果冷却水的温度是经常波动的,上述控制系统是否能满足要求?哪些地方需要改进?
- (6) 当夹套内的水温作为副变量构成串级控制时,试确定主、副控制器的正、反作用。

6.

5. 工艺要求 $F_2/F_1=1:1.2$, F_2 和 F_1 是体积流量。 F_1 的流量是不可控的,仪表量程是 $0\sim3600~\text{Nm}^3/\text{h}$, F_2 的流量是可调的,仪表量程是 $0\sim2400\text{Nm}^3/\text{h}$ 。画出控制流程图,并计算比值系数 K。

工艺要求 $\frac{F_2}{F_1}$ =1:1.2, F_2 和 F_1 是体积流量。 F_1 的流量是不可控的,

仪表量程是 $0 \square 3600Nm^3/h$, F_2 的流量是可调的,仪表量程是 $0 \square 2400Nm^3/h$ 。画出控制流程图,并计算比值系数K。

试为下述过程设计一个前馈-反馈控制系统。已知过程的控制通道传 递函数为:

 $W_o(s) = \frac{3e^{-3s}}{2s+1}$,过程干扰通道传递函数为: $W_a(s) = \frac{6e^{-3s}}{s+1}$,试写出前馈调节器的传递函数 $W_m(s)$ 并说明其模型是超前还是滞后,画出前馈反馈系统方框图及分析其实现方案(设 $\frac{1}{Ts+1}$ 是容易实现的模型)。(15分)

已知某模糊控制器的控制规则为"若 \tilde{A} 且 \tilde{B} 则 \tilde{C} ,且

$$\tilde{A} = (0.4, 0.7)$$
 $\tilde{B} = (0.2, 0.4, 0.5)$ $\tilde{C} = (0.4, 0.2)$

- (1) 求模糊关系 \tilde{R} ;
- (2) 若己知 \tilde{A}_{1} = (0.2, 0.4); \tilde{B}_{1} = (0.5, 0.7, 1) 求 \tilde{C}_{1} (12分)

³⁻¹¹ 某精馏塔的塔顶为液相出料如图 3-61,为控制塔顶压力稳定,可通过调节冷却剂量和放气阀来实现,工艺要求当冷却剂阀门全开而塔顶压力仍降不下来时,再打开放气阀门,试设计分程控制系统,(1)选择调节阀的气开、气关形式和设计分程关系;(2)确定调节器的调节规律和正反作用。

图 3-61 精馏塔塔顶压力控制

某精馏塔的塔顶为液相出料,为控制塔顶压力稳定,可通过调节冷却剂量和放气阀来实现,工艺要求当冷却剂阀门全开而塔顶压力仍降不下来时,再打开放气阀门;(1)试计分程控制系统(在图中画出连线框图(2)选择调节阀的气开、气关形式和设计分程关系(3)确定调节器的调节规律和正反作用。

设有一个三种液体混合的系统,其中一种是水。混合液流量为 Q,系统被调量是混合液的密度 ρ 和粘度 ν ,已知它们之间有下列关系,即 $\rho = \frac{A\mu_1 + B\mu_2}{Q}$, $\nu = \frac{C\mu_1 + D\mu_2}{Q}$,其中 A、B、C、D 为物理常数, μ_1 、 μ_2 为两个可控流量。请求出该系统的相对增益矩阵。若设 A = B = C = 0.5,D = 1.0,则相对增益是什么?并对计算结果进行分析。

图是一个三种流量混合的例子,设经 μ_1 与 μ_3 通过温度为100°C的流体。而经 μ_2 通过温度为200°C的流体。该系统中总流量 Q 及两热量 H_{11} 、 H_{22} 是需要控制的三个被控参数, μ_1 、 μ_2 、 μ_3 是三个控制量,若

 $H_{11} = \mu_1 + \mu_2$, $H_{22} = \mu_2 + \mu_3$, $Q = \mu_1 + \mu_2 + \mu_3$, 请求出该系统的相对增益 矩阵,并由该相对增益矩阵求出一组较好控制方案。

