第二章 基础知识

修贤超

https://xianchaoxiu.github.io

目录

- 2.1 范数
- 2.2 导数
- 2.3 广义实值函数
- 2.4 凸集
- 2.5 凸函数
- 2.6 共轭函数
- 2.7 次梯度

凸函数的定义

 $lacksymbol{\bullet}$ 设 $f: \mathbb{R}^n \to \mathbb{R}$ 为适当函数,如果 $\mathrm{dom}\ f$ 是凸集,且

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

对所有 $x, y \in \text{dom } f, 0 \le \theta \le 1$ 都成立,则称 f 是凸函数

■ 若对所有 $x, y \in \text{dom } f$, $x \neq y$, $0 < \theta < 1$, 有

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

则称 ƒ 是严格凸函数

一元凸函数的例子

- 仿射函数 对任意 $a,b \in$, ax + b 是 \mathbb{R} 上的凸函数
- 指数函数 对任意 $a \in e^{ax}$ 是 \mathbb{R} 上的凸函数
- 幂函数 对 $\alpha \geq 1$ 或 $\alpha \leq 0$, x^{α} 是 \mathbb{R}_{++} 上的凸函数
- 绝对值的幂 对 $p \ge 1$, $|x|^p$ 是 \mathbb{R} 上的凸函数
- 仿射函数 对任意 $a,b \in \mathbb{R}$, ax + b 是 \mathbb{R} 上的凹函数
- 幂函数 对 $0 \le \alpha \le 1$, x^{α} 是 \mathbb{R}_{++} 上的凹函数
- 对数函数 $\log x$ 是 \mathbb{R}_{++} 上的凹函数

多元凸函数的例子

■ 所有的仿射函数既是凸函数,又是凹函数

$$f(x) = a^{\top} x + b$$
$$f(X) = \text{Tr}(A^{\top} X) + b = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} X_{ij} + b$$

■ 所有的范数都是凸函数

$$f(x) = ||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p} \ (p \ge 1)$$
$$f(X) = ||X||_2 = \sigma_{\max}(X) = (\lambda_{\max}(X^\top X))^{1/2}$$

强凸函数

■ 若存在常数 m>0, 使得

$$g(x) = f(x) - \frac{m}{2} ||x||^2$$

为凸函数,则称 f(x) 为强凸函数,其中 m 为强凸参数

■ 若存在常数 m>0, 使得对任意 $x,y\in \text{dom } f$ 以及 $\theta\in(0,1)$, 有

$$f(\theta x + (1 - \theta y)) \le \theta f(x) + (1 - \theta)f(y) - \frac{m}{2}\theta(1 - \theta)||x - y||^2,$$

则称 f(x) 为强凸函数, 其中 m 为强凸参数

- 为了方便也称 f(x) 为 m-强凸函数
- $lacksymbol{\bullet}$ 设 f 为强凸函数且存在最小值,则 f 的最小值点唯一

凸函数判定定理

■ 设 $f: \mathbb{R}^n \to \mathbb{R}$ 是凸函数,当且仅当对每个 $x \in \text{dom } fv \in \mathbb{R}^n$,函数 $g: \mathbb{R} \to \mathbb{R}$ 是关于 t 的凸函数

$$g(t) = f(x+tv), \quad \text{dom } g = \{t \mid x+tv \in \text{dom } f\}$$

■ $f(X) = -\log \det X$ 是凸函数, 其中 $\operatorname{dom} f = \mathcal{S}_{++}^n$

证明 任取 $X \succ 0$ 以及方向 $V \in S^n$, 将 f 限制在直线 X + tV (t 满足 $X + tV \succ 0$) 上,那么

$$g(t) = -\log \det(X + tV) = -\log \det X - \log \det(I + tX^{-1/2}VX^{-1/2})$$

= $-\log \det X - \sum_{i=1}^{n} \log(1 + t\lambda_i)$

其中 λ_i 是 $X^{-1/2}VX^{-1/2}$ 第 i 个特征值. 对每个 $X\succ 0$ 以及方向 V, g 关于 t 是凸的,因此 f 是凸的

一阶条件

■ 凸集上的可微函数 ƒ 是凸函数当且仅当

$$f(y) \ge f(x) + \nabla f(x)^{\top} (y - x) \quad \forall x, y \in \text{dom } f$$

■ 设 f 为可微函数,则 f 为凸函数当且仅当 $\operatorname{dom} f$ 为凸集且 ∇f 为单调映射

$$(\nabla f(x) - \nabla f(y))^{\top}(x - y) \ge 0, \quad \forall \ x, y \in \text{dom } f$$

二阶条件

 $lacksymbol{lack}$ 设f 为定义在凸集上的二阶连续可微函数, f 是凸函数当且仅当

$$\nabla^2 f(x) \succeq 0 \quad \forall x \in \text{dom } f$$

如果 $\nabla^2 f(x) \succ 0 \ \forall x \in \text{dom } f$, 则 f 是严格凸函数

■ 最小二乘函数 $f(x) = ||Ax - b||_2^2$

$$\nabla f(x) = 2A^{\mathsf{T}}(Ax - b), \quad \nabla^2 f(x) = 2A^{\mathsf{T}}A$$

对任意 A, 函数 f 都是凸函数

■ 二次函数 $f(x) = (1/2)x^{\mathsf{T}}Px + q^{\mathsf{T}}x + r$ (其中 $P \in \mathcal{S}^n$)

$$\nabla f(x) = Px + q, \qquad \nabla^2 f(x) = P$$

f 是凸函数当且仅当 $P \succeq 0$

上方图

■ 函数 f(x) 为凸函数当且仅当其上方图 epif 是凸集

必要性 若 f 为凸函数,则对任意 $(x_1, y_1), (x_2, y_2) \in epi f, t \in [0, 1],$

$$ty_1 + (1-t)y_2 \ge tf(x_1) + (1-t)f(x_2) \ge f(tx_1 + (1-t)x_2),$$

故
$$(tx_1 + (1-t)x_2, ty_1 + (1-t)y_2) \in epif, t \in [0, 1]$$

充分性 若 epif 是凸集,则对任意 $x_1, x_2 \in \text{dom } f, t \in [0, 1]$,

$$(tx_1 + (1-t)x_2, tf(x_1) + (1-t)f(x_2)) \in epif$$

 $\Rightarrow f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2).$

凸函数的判断方法

- 用定义验证(通常将函数限制在一条直线上)
- 利用一阶条件、二阶条件
- 直接研究 *f* 的上方图 epi *f*
- 说明 ƒ 可由简单的凸函数通过一些保凸的运算得到
 - □ 非负加权和
 - □ 与仿射函数的复合
 - □ 逐点取最大值
 - □ 与标量、向量函数的复合

非负加权和与仿射函数的复合

- 若f 是凸函数,则 αf 是凸函数,其中 $\alpha \geq 0$
- 若 f_1, f_2 是凸函数,则 $f_1 + f_2$ 是凸函数
- 若 f 是凸函数,则 f(Ax+b) 是凸函数
- 线性不等式的对数障碍函数

$$f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^{\top} x), \quad \text{dom } f = \{x \mid a_i^{\top} x < b_i, i = 1, ..., m\}$$

■ 仿射函数的(任意)范数 f(x) = ||Ax + b||

逐点取最大值

- 若 f_1, \dots, f_m 是凸函数,则 $f(x) = \max\{f_1(x), \dots, f_m(x)\}$ 是凸函数
- 分段线性函数

$$f(x) = \max_{i=1,\dots,m} (a_i^{\top} x + b_i)$$

■ $x \in \mathbb{R}^n$ 的前 r 个最大分量之和

$$f(x) = x_{[1]} + x_{[2]} + \dots + x_{[r]}$$

事实上, f(x) 可以写成如下多个线性函数取最大值的形式

$$f(x) = \max\{x_{i_1} + x_{i_2} + \dots + x_{i_r} \mid 1 \le i_1 < i_2 < \dots < i_r \le n\}$$

逐点取上界

■ 若对每个 $y \in A$, f(x,y) 是关于 x 的凸函数,则

$$g(x) = \sup_{y \in \mathcal{A}} f(x, y)$$

是凸函数

 \blacksquare 集合 C 的支撑函数

$$S_C(x) = \sup_{y \in C} y^{\top} x$$

 \blacksquare 集合 C 点到给定点 x 的最远距离

$$f(x) = \sup_{y \in C} ||x - y||$$

■ 对称矩阵 $X \in S^n$ 的最大特征值

$$\lambda_{\max}(X) = \sup_{\|y\|_2 = 1} y^{\top} X y$$

与标量函数的复合

■ 给定函数 $g: \mathbb{R}^n \to \mathbb{R}$ 和 $h: \mathbb{R} \to \mathbb{R}$,

$$f(x) = h(g(x))$$

 $egin{array}{ll} g & extbf{ iny LOMB}, h & extbf{ iny LOMB}, ilde{h} & extbf{ iny HOMB}, in &$

证明 对 n=1, g,h 均可微的情形

$$f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)$$

- 如果 g 是凸函数,则 $\exp g(x)$ 是凸函数
- 如果 g 是正值凹函数,则 1/g(x) 是凸函数

与向量函数的复合

■ 给定函数 $g: \mathbb{R}^n \to \mathbb{R}^k$ 和 $h: \mathbb{R}^k \to \mathbb{R}$:

$$f(x) = h(g(x)) = h(g_1(x), g_2(x), ..., g_k(x))$$

若 g_i 是凸函数, h 是凸函数, \tilde{h} 关于每个分量单调不减 g_i 是凹函数, h 是凸函数, \tilde{h} 关于每个分量单调不增 g_i 是凹函数, h 是凸函数, h 关于每个分量单调不增 g_i

证明 对 n=1, g,h 均可微的情形

$$f''(x) = g'(x)^{\top} \nabla^2 h(g(x)) g'(x) + \nabla h(g(x))^T g''(x)$$

- lacksquare 如果 g_i 是正值凹函数,则 $\sum_{i=1}^m \log g_i(x)$ 是凹函数
- 如果 g_i 是凸函数,则 $\log \sum_{i=1}^m \exp g_i(x)$ 是凸函数

取下确界

■ 若 f(x,y) 关于 (x,y) 整体是凸函数, C 是凸集,则

$$g(x) = \inf_{y \in C} f(x, y)$$

是凸函数

■ 考虑函数 $f(x,y) = x^{T}Ax + 2x^{T}By + y^{T}Cy$, 海瑟矩阵满足

$$\begin{bmatrix} A & B \\ B^{\top} & C \end{bmatrix} \succeq 0, \quad C \succ 0,$$

则 f(x,y) 为凸函数. 对 y 求最小值得

$$g(x) = \inf_{y} f(x, y) = x^{\top} (A - BC^{-1}B^{\top})x,$$

因此 g 是凸函数. 进一步地, A 的 Schur 补 $A - BC^{-1}B^{\top} \succeq 0$

■ 点 x 到凸集 S 的距离 $\operatorname{dist}(x,S) = \inf_{y \in S} \|x - y\|$ 是凸函数

透视函数

■ 定义 $f: \mathbb{R}^n \to \mathbb{R}$ 的透视函数 $g: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$,

$$g(x,t) = tf(x/t), \quad \text{dom } g = \{(x,t)|x/t \in \text{dom } f, t > 0\}$$

若 f 是凸函数,则 g 是凸函数

- ullet $f(x)=x^{ op}x$ 是凸函数,则 $g(x,t)=x^{ op}x/t$ 是区域 $\{(x,t)\mid t>0\}$ 上的凸函数
- ullet $f(x) = -\log x$ 是凸函数,则 $g(x,t) = t\log t t\log x$ 是 \mathbb{R}^2_{++} 上的凸函数
- 若 f 是凸函数,则

$$g(x) = (c^{\mathsf{T}}x + d)f((Ax + b)/(c^{\mathsf{T}}x + d))$$

是区域 $\{x \mid c^{\top}x + d > 0, (Ax + b)/(c^{\top}x + d) \in \text{dom } f\}$ 上的凸函数

目录

- 2.1 范数
- 2.2 导数
- 2.3 广义实值函数
- 2.4 凸集
- 2.5 凸函数
- 2.6 共轭函数
- 2.7 次梯度

共轭函数

■ 定义 2.19 适当函数 ƒ 的共轭函数定义为

$$f^*(y) = \sup_{x \in \text{dom } f} (y^\top x - f(x))$$

■ f^* 恒为凸函数,无论 f 是否是凸函数 命题 2.5 Fenchel 不等式

$$f(x) + f^*(y) \ge x^{\mathsf{T}}y \quad \forall x, y$$

例 2.6

■ 考察二次函数

$$f(x) = \frac{1}{2}x^{\mathsf{T}}Ax + b^{\mathsf{T}}x + c$$

■ 强凸情形 (A > 0)

$$f^*(y) = \frac{1}{2}(y-b)^{\top} A^{-1}(y-b) - c$$

一般凸情形 (A ≻ 0)

$$f^*(y) = \frac{1}{2}(y-b)^{\top} A^{\dagger}(y-b) - c, \quad \text{dom } f^* = \mathcal{R}(A) + b$$

这里 $\mathcal{R}(A)$ 为 A 的像空间

例 2.7-2.8

■ 考凸集 C 的示性函数

$$f(x) = \begin{cases} 0, & x \in C \\ +\infty, & x \notin C \end{cases}$$

共轭函数

$$f^*(y) = \sup_{x \in C} y^{\top} x$$

■范数

$$f(x) = ||x||$$

共轭函数

$$f^*(y) = \begin{cases} 0, & ||y||_* \le 1 \\ +\infty, & ||y||_* > 1 \end{cases}$$

二次共轭函数

■ 定义 2.20 任一函数 f 的二次共轭函数定义为

$$f^{**}(x) = \sup_{y \in \text{dom } f^*} (x^{\top}y - f^*(y))$$

■ 定理 2.12 若 f 为闭凸函数,则

$$f^{**}(x) = f(x)$$

■ 如果 ƒ 是闭凸函数,则

$$y \in \partial f(x) \quad \Leftrightarrow \quad x \in \partial f^*(y) \quad \Leftrightarrow \quad x^{\mathsf{T}}y = f(x) + f^*(y)$$

目录

- 2.1 范数
- 2.2 导数
- 2.3 广义实值函数
- 2.4 凸集
- 2.5 凸函数
- 2.6 共轭函数
- 2.7 次梯度

次梯度

 \blacksquare 可微凸函数 f 的一阶条件

$$f(y) \ge f(x) + \nabla f(x)^{\top} (y - x)$$

ullet 设 f 为适当凸函数, $x \in \text{dom } f$, 若向量 $g \in \mathbb{R}^n$ 满足

$$f(y) \ge f(x) + g^{\top}(y - x), \quad \forall y \in \text{dom } f$$

则称 g 为函数 f 在点 x 处的一个次梯度

■ 进一步地, 称集合

$$\partial f(x) = \{ g \mid g \in \mathbb{R}^n, f(y) \ge f(x) + g^{\top}(y - x), \forall y \in \text{dom } f \}$$

为 f 在点 x 处的<mark>次微分</mark>

次梯度

- $\mathbf{M}f(x) + g^{\mathsf{T}}(y x)$ 是 f(y) 的一个全局下界
- g 可以诱导出上方图 epi f 在点 (x, f(x)) 处的一个支撑超平面

$$\begin{bmatrix} g \\ -1 \end{bmatrix} \left(\begin{bmatrix} y \\ t \end{bmatrix} - \begin{bmatrix} x \\ f(x) \end{bmatrix} \right) \le 0 \quad \forall (y, t) \in \text{epi } f$$

- 如果 f 是可微凸函数, 那么 $\nabla f(x)$ 是 f 在点 x 处的一个次梯度
- g_2, g_3 是点 x_2 处的次梯度, g_1 是点 x_1 处的次梯度

次梯度存在性

- 设f 为凸函数,dom f 为其定义域. 如果 $x \in int dom f$, 则 $\partial f(x)$ 是非空的,其中 int dom f 的含义是集合 dom f 的所有内点.
- 绝对值函数 f(x) = |x|

■ 欧几里得范数 $f(x) = ||x||_2$

如果
$$x \neq 0, \partial f(x) = \frac{1}{\|x\|_2} x$$
, 如果 $x = 0, \partial f(x) = \{g | \|g\|_2 \le 1\}$

次梯度的性质

- 对任何 $x \in \text{dom } f$, $\partial f(x)$ 是一个闭凸集(可能为空集)
- 如果 $x \in \text{int dom } f$, 则 $\partial f(x)$ 非空有界集
- 设凸函数 f(x) 在 $x_0 \in \text{int dom } f$ 处可微,则 $\partial f(x_0) = \{\nabla f(x_0)\}$
- **设** $f: \mathbb{R}^n \to \mathbb{R}$ 为凸函数, $x, y \in \text{dom } f$, 则 $(u-v)^\top (x-y) \ge 0$, 其中 $u \in \partial f(x)$, $v \in \partial f(y)$
- 设 f(x) 是闭凸函数且 ∂f 在点 \bar{x} 附近存在且非空. 若序列 $x^k \to \bar{x}$, $g^k \in \partial f(x^k)$ 为 f(x) 在点 x^k 处的次梯度,且 $g^k \to \bar{g}$,则 $\bar{g} \in \partial f(\bar{x})$

方向导数

ullet 设f 为适当函数,给定点 x_0 以及方向 $d\in\mathbb{R}^n$,方向导数(若存在)定义为

$$\lim_{t \downarrow 0} \phi(t) = \lim_{t \downarrow 0} \frac{f(x_0 + td) - f(x_0)}{t}$$

其中 $t \downarrow 0$ 表示 t 单调下降趋于 0

- 若 f 是凸函数,则 $\phi(t)$ 在 $(0,+\infty)$ 上是单调不减的, \lim 可替换为 \inf
- 对于凸函数 f,给定点 $x_0 \in \text{dom } f$ 以及方向 $d \in \mathbb{R}^n$,其方向导数定义为

$$\partial f(x_0; d) = \inf_{t>0} \frac{f(x_0 + td) - f(x_0)}{t}.$$

方向导数有限

■ 设f(x) 为凸函数, $x_0 \in \text{int dom } f$, 则对任意 $d \in \mathbb{R}^n$, $\partial f(x_0; d)$ 有限

证明 首先 $\partial f(x_0;d)$ 不为正无穷是显然的. 由于 $x_0 \in \operatorname{int\ dom\ } f$, 根据次梯度 的存在性定理可知 f(x) 在点 x_0 处存在次梯度 g. 根据方向导数的定义,有

$$\partial f(x_0; d) = \inf_{t>0} \frac{f(x_0 + td) - f(x_0)}{t}$$
$$\geq \inf_{t>0} \frac{tg^{\top} d}{t} = g^{\top} d$$

其中的不等式利用了次梯度的定义. 这说明 $\partial f(x_0;d)$ 不为负无穷

方向导数和次梯度

型设 $f: \mathbb{R}^n \to (-\infty, +\infty]$ 为凸函数, $x_0 \in \text{int dom } f$, d 为 \mathbb{R}^n 中任一方向,则 $\partial f(x_0; d) = \max_{g \in \partial f(x_0)} g^\top d$

$$\partial f(x)$$

- $\partial f(x;y)$ 是 $\partial f(x)$ 的支撑函数
- $\partial f(x_0;d) = \nabla f(x_0)^{\top} d$, 切对所有的 $x_0 \in \text{int dom } f$ 以及所有的 d 都存在

次梯度的计算规则

- 若凸函数 f 在点 x 处可微,则 $\partial f(x) = \{\nabla f(x)\}$
- **设凸函数** f_1, f_2 满足 int dom $f_1 \cap \text{dom } f_2 \neq \emptyset$, 而 $x \in \text{dom } f_1 \cap \text{dom } f_2$. 若

$$f(x) = \alpha_1 f_1(x) + \alpha_2 f_2(x), \quad \alpha_1, \alpha_2 \ge 0$$

则 f(x) 的次微分

$$\partial f(x) = \alpha_1 \partial f_1(x) + \alpha_2 \partial f_2(x)$$

② 设 h 为适当凸函数,f 满足 f(x) = h(Ax + b). 若存在 $x^{\sharp} \in \mathbb{R}^{m}$,使得 $Ax^{\sharp} + b \in \text{int dom } h$,则

$$\partial f(x) = A^{\top} \partial h(Ax + b), \quad \forall \ x \in \text{int dom } f$$

两个函数之和的次梯度

 $lacksymbol{\bullet}$ 设 $f_1,f_2:\mathbb{R}^n \to (-\infty,+\infty]$ 是两个凸函数,则对任意的 $x_0\in\mathbb{R}^n$,

$$\partial f_1(x_0) + \partial f_2(x_0) \subseteq \partial (f_1 + f_2)(x_0).$$

进一步地, 若 int dom $f_1 \cap \text{dom } f_2 \neq \emptyset$, 则对任意的 $x_0 \in \mathbb{R}^n$,

$$\partial (f_1 + f_2)(x_0) = \partial f_1(x_0) + \partial f_2(x_0).$$

证明 对于任意给定的 x_0 , 设 $g \in \partial (f_1 + f_2)(x_0)$. 如果 $f_1(x_0) = +\infty$, 则 $(f_1 + f_2)(x_0) = +\infty$. 由次梯度的定义,我们有

$$(f_1 + f_2)(x) \ge (f_1 + f_2)(x_0) + g^{\top}(x - x_0)$$

对任意 $x \in \mathbb{R}^n$ 成立,故 $f_1 + f_2 \equiv +\infty$ 。这与 int dom $f_1 \cap \text{dom } f_2 \neq \emptyset$ 矛盾,因此以下我们假设 $f_1(x_0), f_2(x_0) < +\infty$

函数族的上确界

 $lacksymbol{\bullet}$ 设 $f_1, f_2, \cdots, f_m : \mathbb{R}^n \to (-\infty, +\infty]$ 均为凸函数,令

$$f(x) = \max\{f_1(x), f_2(x), \dots, f_m(x)\}, \quad \forall x \in \mathbb{R}^n$$

对 $x_0 \in \bigcap_{i=1}^m \text{ int dom } f_i$, 定义 $I(x_0) = \{i \mid f_i(x_0) = f(x_0)\}$, 则

$$\partial f(x_0) = \operatorname{conv} \bigcup_{i \in I(x_0)} \partial f_i(x_0)$$

- $I(x_0)$ 表示点 x_0 处 "有效" 函数的指标
- lacksquare $\partial f(x_0)$ 是点 x_0 处 "有效" 函数的次微分并集的凸包
- 如果 f_i 可微, $\partial f(x_0) = \operatorname{conv}\{\nabla f_i(x_0) \mid i \in I(x_0)\}$

例子

■ 分段线性函数

■ 点 x 处的次微分是一个多面体

$$\partial f(x) = \operatorname{conv}\{a_i \mid i \in I(x)\}\$$

其中
$$I(x) = \{i \mid a_i^{\top} x + b_i = f(x)\}$$

例子

■ ℓ1-范数

$$f(x) = ||x||_1 = \max_{s \in \{-1,1\}^n} s^\top x$$

$$[-1,1], \quad x_k = 0$$

$$\partial f(x) = J_1 \times \dots \times J_n, \quad J_k = \{\begin{cases} \{1\}, & x_k > 0. \\ \{-1\}, & x_k < 0 \end{cases}$$

$$\{-1\}, \quad x_k < 0$$

$$\partial f(0,0) = [-1,1] \times [-1,1] \qquad \partial f(1,0) = \{1\} \times [-1,1] \qquad \partial f(1,1) = \{(1,1)\}$$

复合函数

■ 设 $f_1, f_2, \dots, f_m : \mathbb{R}^n \to (-\infty, +\infty]$ 为 m 个凸函数, $h : \mathbb{R}^m \to (-\infty, +\infty]$ 为 关于各分量单调递增的凸函数, 令

$$f(x) = h(f_1(x), f_2(x), \cdots, f_m(x))$$

- $\mathbf{z}=(z_1,z_2,\cdots,z_m)\in\partial h(f_1(\hat{x}),f_2(\hat{x}),\cdots,f_m(\hat{x}))$ 以及 $g_i\in\partial f_i(\hat{x})$
- $gz_1g_1 + z_2g_2 + \dots + z_mg_m \in \partial f(\hat{x})$

证明

$$f(x) \ge h(f_1(\hat{x}) + g_1^{\top}(x - \hat{x}), f_2(\hat{x}) + g_2^{\top}(x - \hat{x}), \cdots, f_m(\hat{x}) + g_m^{\top}(x - \hat{x}))$$

$$\ge h(f_1(\hat{x}), f_2(\hat{x}), \cdots, f_m(\hat{x})) + \sum_{i=1}^m z_i g_i^{\top}(x - \hat{x})$$

$$= f(\hat{x}) + g^{\top}(x - \hat{x})$$

Q&A

Thank you!

感谢您的聆听和反馈