EE236: Experiment 13 Characterising an Unknown Device

Aaron John Sabu, 170070050

November 1, 2018

1 Aim of the experiment

The experiment aims to realise the I-V Characteristics of an Unknown Device/Circuit and hence identify te circuit. Prior to this, the I-V Characteristics of a Bipolar Junction Transistor will be calculated.

2 Observations and Inferences

2.1 Bipolar Junction Transistor

Figure 1: $I_C - V_{CE}$ Characteristics for Varying I_B

The previous plot for the $I_C - V_{CE}$ characteristics was created using the following data obtained in the lab:

$I_B = 100 \ \mu A$		$I_B = 148.6 \ \mu A$		
V_{CE}	I_C	V_{CE}	I_C	
0.00	0.00	0.000	0.00	
0.05	3.29	0.056	3.65	
0.10	9.67	0.120	13.04	
0.13	13.98	0.156	18.48	
0.18	18.52	0.205	23.38	
0.22	20.33	0.281	26.53	
0.25	21.08	0.308	27.06	
0.28	21.59	0.323	27.41	
0.32	22.32	0.349	27.82	
0.38	23.06	0.411	28.83	
0.42	23.59	0.467	29.64	
0.45	24.00	0.512	30.23	
0.49	24.50	0.558	30.95	
0.54	25.16	0.660	32.37	
0.69	26.90	0.821	34.45	
0.82	28.29	0.978	36.35	
1.00	30.03	1.200	38.90	
1.18	31.49	-	-	

The equations obtained for the linear region of the plots are given below. From these, we may calculate the Early voltage (x-intercept):

I_B	Equation of the plot	Early voltage
100 μΑ	y = 10.182x + 19.719	-1.937 V
148.6 μA	y = 12.355x + 24.184	-1.957 V

2.2 Unknown Device

The given device consisted of three pins which we identified in the following manner:

1. Terminal 1 - Long Red Wire

2. Terminal 2 - Short Red Wire

3. Terminal 3 - Blue Wire

Hence we obtained the following readings where the first mentioned terminal was placed positive:

Terminal 1 / Terminal 3		Terminal 2 / Terminal 3		Terminal 1 / Terminal 2	
V (V)	I (mA)	V (V)	I (mA)	V (V)	I (mA)
-3.00	0.00	-3.00	0.00	-3.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00
0.22	0.00	0.33	0.00	-	-
0.45	0.05	0.47	0.07	-	-
0.50	0.10	0.53	0.15	-	-
0.53	0.15	0.59	0.25	-	-
0.61	0.29	0.64	0.37	-	-
0.75	0.60	0.72	0.54	-	-
0.86	0.91	0.80	0.76	-	-
0.96	1.16	0.87	0.92	-	-
1.06	1.43	1.00	1.27	-	-
1.24	1.93	1.11	1.56	-	-
1.53	2.76	1.22	1.88	-	-
1.70	3.27	1.73	3.35	-	-
1.97	4.08	1.93	3.97	-	-
2.19	4.76	2.23	4.86	_	-
2.62	6.04	2.61	6.00	-	-
3.00	7.19	3.00	7.18	3.00	0.00

As can be noticed, the first and second measurements signify a diode connected in the required fashion and a resistor in series, whereas the third represents two diodes connected with the p-side meeting (back-to-back connection).

Hence, from the performed experiment, we realise that the circuit consists of a star connection of two back-to-back diodes and a resistor meeting at the intersection of the two diodes. Shown below is the circuit diagram for the same:

Figure 2: Equivalent Circuit Diagram

We can plot the I-V Characteristics from the data calculated as shown:

Figure 3: I-V Characteristics of Unknown Device

(a) Terminal 2 / Terminal 3 $\,$

(b) Terminal 1 / Terminal 2