Entrepreneurship, Unemployment and Insurance Effect

Alexandre GAILLARD* & Sumudu Kankanamge*

*Toulouse School of Economics

45min

Overview

- Small firm returns are very risky
 - entrepreneur's exit rate is high (22 26% per year)
 - entrepreneur's income distribution is right skewed and
 - std. dev of entrepreneurs' log income is 2 to 4 times larger than for wage-earners
- Entrepreneurial risk is a barrier that affect the quantity of entrepreneurs
 - Risk perception and business creation (Arenius and Minniti, 2005),
 - ▶ Bankruptcy regulation plays a crucial role (Mankart & Rodano, 2015)

Overview

- Small firm returns are very risky
 - entrepreneur's exit rate is high (22 26% per year)
 - entrepreneur's income distribution is right skewed and
 - std. dev of entrepreneurs' log income is 2 to 4 times larger than for wage-earners
- Entrepreneurial risk is a barrier that affect the quantity of entrepreneurs
 - Risk perception and business creation (Arenius and Minniti, 2005),
 - ▶ Bankruptcy regulation plays a crucial role (Mankart & Rodano, 2015)

Research questions:

- How occupational mobility, entrepreneurial risk and wealth interact?
- We have better insuring entrepreneurial risk affect occupational choice and entrepreneur's quality?
- How it compares to a start-up subsidy?

Outline

- We build a general equilibrium occupational choice model that accounts for
 - heterogeneous agents (ability, wealth)
 - risky entrepreneurship (persistent business shock)
 - ▶ labor market frictions
- We use CPS and SCF to discipline our model to the US,
 - match key characteristics of occupational flows and entrepreneurship
 - infer (unobservable) entrepreneurial ability using occupational flows
- What is the effect of providing a (partial) insurance / a start-up subsidy to unemployment individuals starting a business?

Roadmap

- Motivation
- Related literature
- Model
- 4 Parameterization results
- 6 Policy experiments
- 6 Conclusion

Motivation: Downside Risk Insurance (DRI)

Recent interest in (partially) insuring entrepreneur's downside risk (associated with business failure or bad performances).

- Trade-off of the existence of downside risk:
 - selection mechanism of the most able entrepreneurs
 - could prevent potentially successful individuals from engaging in an entrepreneurial activity
- Downside risk insurance
 - ► France: implemented a DRI mechanism in 2002 that guarantee UI provision to (new entrepreneurs) previously unemployed.
 - Germany: Bridging Allowance (BA) implemented in 1985, similar to the French reform.

French program: quantitative effect (Hombert et al., 2017)

Figure: Effect of the PARE reform on cumulative growth rate of firm creation. *Note:* treatment intensity variable is the fraction of sole-proprietorship in sectors

UI and entrepreneurship in US

Current Unemployment Insurance (UI) system:

 In almost every US states, UI benefits are lost when starting a business.

Ex: Pennsylvania Unemployment Compensation Law:

"a claimant is ineligible for any week in which he/she is engaged in self-employment. When a claimant is starting a new business, the claimant becomes self-employed with the first positive step toward starting the business."

• create a bias for paid-employment rather than self-employment.

Results sneak peek

- Introducing a DRI policy in our baseline model
 - ▶ Helps resorbing the bias towards paid-employment,
 - Increases the fraction of unemployed starting a business,
 - Has small effect on unemployment rate.
- compare to a start-up subsidy (SUS):
 - ▶ DRI favours entry of richer and more able entrepreneurs who grow faster and survive longer.
 - ▶ DRI and SUS are implementable welfare wise in our specification.

Related literature

- Modelling entrepreneurship
 - ► Entrepreneurs are heterogenous: abiliy (Lucas, 1978), wealth (Quadrini, 2002), risk aversion (Herranz et al., 2014)
 - Financial frictions: Cagetti & De Nardi (2006), Buera & Shin (2013), Mankart & Rodano (2015)
 - ▶ Labor market transitions: Poschke (2009) and Visschers et al. (2014)
- Entrepreneurship and insurance policy
 - ▶ Entrepreneurial insurance: Fairlie et al. (2011), Caliendo and Künn (2011), Hombert et al. (2014), Ejrnæs and Hochguertel (2014)
 - ▶ Bankruptcy law: Mankart & Rodano (2015).

Model: structure

 Two production sectors: representative competitive corporate sector and entrepreneurial sector.

Households

- ightharpoonup common heterogeneity: innate ability θ , wealth a.
- ▶ can be employed (W), unemployed (U) or self-employed (E)
- ▶ can be insured (j = i) or not (j = n)
- ▶ can access the credit market (e = A) or be excluded (e = C), depending on previous bankruptcy decision

Government:

- ▶ Baseline model: runs an UI program.
- ▶ Policy experiment: also implement DRI and SUS policies

Model: Workers

- can search a business idea on-the-job with intensity s_e .
- given the probability to find the idea $\pi(s_e)$ and the probability to be laid-off η , choose his occupation.
- subject to transitory shock y
- pay tax τ_w on his labor income $wh(\theta)y$ to finance UI benefits.

$$\begin{split} W(\textbf{\textit{a}}, \theta, \textbf{\textit{y}}, \textbf{\textit{e}}) &= \max_{\textbf{\textit{c}}, \textbf{\textit{a'}}, \textbf{\textit{s}}_e} u(\textbf{\textit{c}}, \textbf{\textit{0}}, \textbf{\textit{s}}_e) + \beta \mathbb{E}_{\textbf{\textit{e'}}, \textbf{\textit{y'}}, \theta'} \Big\{ (1 - \eta) \big[(1 - \pi_e) W' + \pi_e \max\{E', W'\} \big] \\ &+ \eta \big[(1 - \pi_e) U'_i + \pi_e \max\{E', U'\} \big] \big| \textbf{\textit{e}}, \textbf{\textit{y}}, \theta \Big\} \end{split}$$

s.t.
$$c = (1 - \tau_w)h(\theta)wy + (1 + r^d)a - a'$$

Model: Unemployed individuals

- ullet Can search for a job and a business idea with effort s_w and s_e
- Find job with probability $\pi_w(s_w)$ and business idea with $\pi_e(s_e)$.
- Receive home production endowment m.
- If insured $(\epsilon = i)$: receive $b(\theta)$. Lose UI rights with probability ρ .

$$\begin{split} U(a,\theta,e,j) &= \max_{c,a',s_w,s_e} u(c,s_w,s_e) + \beta \mathbb{E}_{\theta',y',j',e'} \Big\{ \pi_w \big[(1-\pi_e) W' + \pi_e \max\{E',W'\} \big] \\ &+ (1-\pi_w) \big[(1-\pi_e) U' + \pi_e \max\{E',U'\} \big] |e,j,\theta \Big\} \end{split}$$
 s.t. $c = m + \mathbb{1}_{\{i=i\}} (1-\tau_w) h(\theta) w \mu + (1+r^d) a - a'$

Model: Entrepreneur (self-employed)

- ullet Can search a job on-the-business with intensity s_w
- Face business shock z (has some persistency) and choose capital invested k before z is realized.
- Can use own wealth or borrow from financial intermediary to invest
- Can repay or bankrupt and be excluded temporarily from the credit market

Entrepreneurial production function:

$$f(k, \theta, z) = zg(\theta)(k)^{\nu}$$

where $g(\theta)$ maps innate ability into entrepreneurial ability.

Model: Entrepreneur - timing

Figure: Timing of an entrepreneur

Model: Repaying and Bankrupting entrepreneur program

- $r^b(\Delta)$ is determined endogenously
 - by financial intermediary using a zero-profit condition,
 - observable characteristics $\Delta = (a, \theta, z_{-1}, j)$ and
 - endogenous default probability.
- **Repayment:** repay $(1 + r^b(\Delta))$ loan and can pursue his activity
- Bankruptcy in the spirit of D'Erasmo and Boedo (2012): firm is liquidated and entrepreneur renegociates what is due in court
 - \blacktriangleright has to pay court fees χk
 - recover $(1 \xi)k$ through liquidation and/or reorganisation.

Baseline model: Parameterisation

Heterogeneity (wealth/skill/shocks) matter for occupational choice, so target moments on mobility and entrepreneurship.

Table: Targeted moments (time is a quarter)

Moment (time is a quarter)	Data	Model
Unemployment rate	5.1	5.06
Entrepreneurship rate	8.5	8.5
Entrepreneur's exit rate	6	5.8
Ratio of net worth E/W	8.0	8.04
Capital used by entrepreneurs (%)	30	29.7
% of entrepreneurs with neg. income	3	3.3
Flows W to E by quantiles	[1.07, 0.87, 1.07]	[1.069, 0.85, 1.082]

The U-shaped curve in the transition W - E \rightarrow provides a mapping between working and entrepreneurial abilities.

W to E transition by earning quantile

Fig. 4. Transition from worker to entrepreneur by earning quantiles. *Data source*: basic monthly CPS from 2001 to 2008.

Results: Non targeted statistics

Statistic	Data	Model
Necessity share* (%)	12-13	10
New entrepreneurs previously unemployed (%)	20	21
Median ratio ent. net worth to whole pop.	6.57	6.42
Median ratio workers over ent. income	1.65	1.61
Median debt to income ratio	0.5	0.75
Fraction total ent. wealth (%)	30	32.6
Fraction zero or negative net worth (%)	10	4
std deviation log E's income / log W's income	2 - 4	2.5

*Necessity share: when $W(a, \theta, y, e) > E(a, \theta, z_{-1}, e, j) > U(a, \theta, e, j)$

Results: search behavior

- Financial frictions plays a crucial role in the business search effort intensity.
- Disincentive to search increases in wealth.

Results: transition between occupations

	Mass (%)					a) (%)
	Data	Model	W	Ε	U	
\overline{W}	86.4	86.44	97.45 (97.56)	0.48 (0.52)	2.07 (1.92)	
Ε	8.5	8.5	5.23 (5.18)	94.22 (93.98)	0.49 (0.84)	
U	5.1	5.06	43.23 (43.05)	2.25 (2.39)	54.32 (54.56)	

Table: Flows between occupations during a quarter (data counterpart between braces). *Data sources:* authors' computations using the monthly basic CPS from 2001 to 2008.

- Only W to U and entrepreneur's exit rate (6%) are targetted.
- Within transitions by ability level are also close to their data counterparts.

Results: entrepreneur's income

Figure: Distribution of normalized entrepreneurs total income (including wage, business income and capital gains) with respect to the median.

Right skewed distribution consistent with actual entrepreneurial risk.

Policy: DRI

In the spirit of French program: insure new entrepreneurs <u>previously</u> insured unemployed (with UI rights).

- Downside Risk Insurance (DRI)
 - ▶ In case of failure: preserve their UI rights when returning to the unemployment pool.
 - ▶ A compensation that guarantees at least UI benefits in case of low but positive entrepreneurial income, only the UI if income is negative.
- Start-Up Subsidy (SUS)
 - ▶ additional amount of wealth *S* provided to the new entrepreneur
 - ▶ US SBA program: free entrepreneurial training, loan guarantees and grants.

Policy: DRI

- Evaluated to the US economy
- Complementary income $b_e(\theta, \pi_r)$ depending on their income π_r
- Policy characterized by: a duration q and an insurance replacement rate f

$$b_e(\theta, \pi_r) = \begin{cases} b(\theta) & \text{if} & \pi_r < 0\\ b(\theta) - (1 - f)\pi_r & \text{if} & 0 \le \pi_r \le \frac{b(\theta)}{1 - f}\\ 0 & \text{if} & \pi_r > \frac{b(\theta)}{1 - f} \end{cases}$$

 $b(\theta) = (1 - \tau_w)h(\theta)w\mu$: full UI benefit while unemployed.

• Full entrepreneurial income with DRI is $\pi_r + b_e(\theta, \pi_r)$

Policy: DRI

3 regions: (i) full benefits if negative income, (ii) complementary amount to at least full benefits if low income (iii) insurance subsidy if income larger than UI benefits

Results: policy experiments

- Standard implementation for DRI is (f, q) = (0.3, 0.5)
 - q is set to match US UI duration
 - *f* is set to the value adopted in France. We conduct robustness on this,
- To make DRI and SUS comparable, the subsidy amount S is adjusted to generate the same share of entrepreneurs between the two policies.

Results: policy experiments

	DRI (% deviation) $(\mu = 0.5, f = 0.3)$	SUS (% deviation) $(S = 0.0693)$
prob. $U \to E$	10	18
Ent. exit rate	1.64	3.76
unemp. rate	-0.07	-0.43
New ent. per year	2.5	4.4
Necessity share	-21.5	20
Avg firm size	-0.18	-0.42
Ent. sector production	0.9	0.6
Tax rate τ_w	2.5	1.8
Ratio cost/GDP	0.0032	0.0026

Table: Effects on mobility and aggregates of the two policies, expressed as % deviation from the baseline economy.

- DRI policy is slightly more expensive tax wise (but similar over production),
- DRI overall smaller quantitative footprint than the SUS policy.

Results: policy experiments - quality

% of entrepreneurs	θ_1	$ heta_2$	θ_3
Baseline	11.60	7.55	7.24
DRI	+0.66	+1.11	+1.38
SUS	+1.30	+0.98	+0.66

Table: Percent increase (relative to the baseline economy) in the share of entrepreneurs by ability groups under different reforms.

- Resorbing the bias due to the UI system favours high-skilled group.
 - ► High opportunity cost of abandoning their UI rights.
 - ► Even under DRI, **low-skilled group are**, on average, the most **financially constrained** group.

Results: policy experiments - performance

We measure performance over 5 years:

5 years average	Baseline	Counterfactual	Selected	
		DRI	DRI	SUS
$g(\theta)$	0.079	0.0791	0.0835	0.0754
Wealth	12.64	12.71	9.94	8.11
Production	0.952	0.954	0.944	0.691
Production growth (in %)	2.83	3.02	2.41	2.1
Survival rate at 5 years (in %)	32.09	32.21	15.20	20.81

Table: Performance and quality of entrepreneurs.

- Counterfactual: people entering entrepreneurship even without DRI in baseline.
- Selected: only people entering entrepreneurship because of the policies

Results: policy experiments - insurance components

Disentangling components of DRI by using partial insurance:

	Baseline	DRI	No compensation	f = 0
% of entrepreneurs	8.488	1.013	0.424	0.966
prob. $U \to E \ (in \ \%)$	2.26	9.734	7.080	9.292
Tax rate τ_w (in %)	0.911	2.525	0.110	2.525
Ratio cost/GDP	-	0.01697	-	0.0172

Table: DRI effects under three different assumptions in % deviation from baseline.

- **No compensation:** only offered the possibility to return to unemployment and claim UI,
 - ▶ impact is still important, resorb part of the bias towards employment.
- f = 0: no subsidy part in DRI, no compensation above initial UI benefit

Results: What else?

- We compute transitional dynamics,
- We compute welfare gains both at steady state and with transitions:
 both policies are implementable welfare wise,
- We conduct robustness and consider alternative policy specifications.

Conclusion

- GE theoretical framework with occupational choice, which accounts for entrepreneur's heterogeneity.
- Occupational flows are very close to their data counterparts in CPS.
- Downside Risk Insurance for unemployed workers
 - ▶ Helps resorb the bias of the current UI system,
 - ▶ Increases the fraction of unemployed starting a business by 10%,
 - ▶ Benefits to high-skilled and richer individuals as compared to SUS.

Program of the entrepreneur non-excluded

$$R(a, k, \theta, z, j) = \max_{c, a', s_w} u(c, s_w, 0) + \beta \mathbb{E}_{\theta', y', j'} \Big\{ \pi_w \max\{W', E'_{j'}\} + (1 - \pi_w) \max\{U'_{j'}, E'_{j'}\} | \theta, j \Big\}$$

$$(1)$$

s.t.
$$\pi_r^A = zg(\theta)(k)^{\nu} - \delta k - r^b(\Delta)(k-a)\mathbb{1}_{\{k \geq a\}}$$

$$c+a'=\pi_r^A+\mathbb{1}_{\{j=i\}}b_e(heta,\pi_r^A)+a+r^d(a-k)\mathbb{1}_{\{k\leq a\}}$$

$$B(a, k, \theta, z, j) = \max_{c, a', s_w} u(c, s_w, 0) + \beta \mathbb{E}_{\theta', y', j'} \left\{ \pi_w W' + (1 - \pi_w) U'_{j'} \mid \theta, j \right\}$$
(4)

s.t.
$$\pi_r = zg(\theta)(k)^{\nu} - \delta k$$
 (5)

$$c + a' = \max\{(1 - \chi)k + \pi_r - \xi(k - a), 0\} + \mathbb{1}_{\{j = i\}}b_e(\theta, \pi_r)$$
 (6)

 $E(a, \theta, z_{-1}, e = A, j) = \max_{k} \left\{ \sum_{z} \pi_{z}(z|z_{-1}) \max\{B(a, k, \theta, z, j), R(a, k, \theta, z, j)\} \right\}$

s.t.
$$\pi_r = zg(\theta)(k)^{\nu} - \delta k$$
 (5)
 $c + a' = \max\{(1 - \chi)k + \pi_r - \xi(k - a), 0\} + \mathbb{1}_{\{j=i\}}b_e(\theta, \pi_r)$ (6)

s.t. $(k-a) < \lambda a$ (8)

(7)

(2)

(3)

Figure: Occupational flows from paid-employment to unemployment by educational attainment and wage level.

Source: authors' calculation from CPS 2001 - 2008.

^{*}Job destruction rate per ability is targetted

Figure: Occupational flows from entrepreneurship to unemployment by productivity level (data: educational attainment, model: θ).

Source: authors' calculation from CPS 2001 - 2008.

^{*}Only the average overall exit rate from entrepreneurship to any other occupation is targeted, not this specific shape

Figure: Occupational flows from entrepreneurship to paid-employment by productivity level (data: educational attainment, model: θ). Source: authors' calculation from CPS 2001 - 2008.

*Only the average overall exit rate from entrepreneurship to any other occupation is targeted, not this specific shape

Figure: Occupational flows from unemployment to entrepreneurship by productivity level (data: educational attainment, model: θ).

Source: authors' calculation from CPS 2001 - 2008.

Figure: Occupational flows from unemployment to paid-employment by productivity level (data: educational attainment, model: θ).

Source: authors' calculation from CPS 2001 - 2008.