

Primer Parcial Análisis Matemático I	C3	4/10/19	Carrera: Bioquímica
Nombre del Alumno:	•••••	•••••	Comisión:

IMPORTANTE: Todas las respuestas deberán estar debidamente justificadas y no se permite que el estudiante realice consultas sobre la resolución del examen una vez comenzado el mismo.

Ejercicio 1.

- a) Hallar el punto de intersección entre la recta y = -4x + 7 y la recta y = 2x + 1.
- b) Graficar ambas rectas del ítem a) indicando claramente el punto de intersección.

Ejercicio 2.

- a) Dada la siguiente función cuadrática $f(x) = -2(x-1)^2 + y_v$, hallar " y_v ", de modo que la gráfica de dicha función corte al eje y en y=6.
- b) Graficar f(x)

Ejercicio 3.

- a) Dado $f(x) = 2^x$, **hallar** la expresión analítica de:
 - i) $h_1(x) = f(-x)$

 - ii) $h_2(x) = f(-x-2)$ iii) $h_3(x) = f(-x-2) 1$
- b) **Graficar** cada expresión hallada anteriormente.

Ejercicio 4.

Determinar el valor de k que pertenece a reales de modo que f(x) resulta continua en x=3

$$f(x) = \begin{cases} \frac{x^2 - 9}{x - 3} & \text{si } x < 3\\ 2 + kx & \text{si } x \ge 3 \end{cases}$$

Ejercicio 5.

A partir del siguiente gráfico de f(x):

Determinar:

a) Dominio de f(x); $\lim_{x\to 4^+} f(x)$ y $\lim_{x\to 4^-} f(x)$

b) Imagen de f(x); $\lim_{x \to +\infty} f(x)$ y $\lim_{x \to -\infty} f(x)$

	Ejercicio 1		Ejercicio 2		Ejercicio 3			3	Ejercicio 4	Ejercicio 5		Total	
Ítem	a	b	a	b		a		b		a	b		
Puntaje	1	1	1	1	i	ii	iii	1	2	1	1		
					0.3	0.3	0.4						

Firma alumno Firma docente

1 Resolución Primer parcial comisión 3, segundo cuatrimestre de 2019.

1. Ejercicio 1

(a) Calculamos las coordenadas x del punto de intersección igualando las coordenadas y de las rectas y despejando.

$$-4x + 7 = 2x + 1 \tag{1}$$

$$-6x = -6 \tag{2}$$

$$x = 1 \tag{3}$$

Hay un solo punto de intersección que corresponde al caso en el que las rectas no son paralelas. La coordenada y del punto se obtiene reemplazando x=1 en la ecuación de alguna de las dos rectas, y=-4*1+7=3.

Respuesta: La itersección da en el punto (1,3)

(b) El gráfico de las rectas es

Figure 1: La recta verde tiene ecuación y = -4x + 7 y la roja, y = 2x + 1.

2. Ejercicio 2

(a) La función cuadrática está dada en su forma canónica $f(x) = -2(x-1)^2 + y_v$. Se puede calcular el parámetro y_v , que corresponde a la coordenada y del vértice, a partir de la condición f(0) = 6

que es equivalente a que la función cuadrática corte al eje y en y=6.

$$f(0) = -2(0-1)^2 + y_v = 6 (4)$$

$$y_v = 8 (5)$$

La función cuadratica es $f(x) = -2(x-1)^2 + 8$

(b) La gráfica de la función cuadrática es

Figure 2: Gráfica de la función $f(x) = -2(x-1)^2 + 8$

- 3. (a) $f(x) = 2^x$,
 - (i) $h_1(x) = f(-x) = 2^{-x}$

(ii)
$$h_2(x) = f(-x-2) = f(-(x+2)) = 2^{-(x+2)}$$

(iii)
$$h_3(x) = f(-x-2) - 1 = 2^{-(x+2)} - 1$$

(b) Los gráficos de detallan en la figura 3.

Figure 3: (i) corresponde a la gráfica de h_1 ,(ii) corresponde a la gráfica de h_2 y (iii) corresponde a la gráfica de h_3 .

4. Ejercicio 4

Para que la función sea continua en x=3 debemos calcular el límite lateral por izquierda L_{-} , el límite lateral por derecha L_+ y la función en el punto f(3) y verificar si estos valores coinciden.

La función es continua si o solo si $L_{-} = L_{+} = f(0)$.

A continuación se calculan los límites correspondientes.

$$L_{+} = \lim_{x \to 3^{+}} 2 + kx = 2 + k3 \tag{6}$$

$$L_{+} = \lim_{x \to 3^{+}} 2 + kx = 2 + k3$$

$$L_{-} = \lim_{x \to 3^{-}} \frac{x^{2} - 9}{x - 3} = \lim_{x \to 3^{-}} \frac{(x + 3)(x - 3)}{x - 3} = \lim_{x \to 3^{-}} (x + 3) = 6$$

$$f(3) = 2 + k3$$

$$(6)$$

$$(7)$$

$$f(3) = 2 + k3 \tag{8}$$

En el límite lateral L_{-} hay una indeterminación $\frac{0}{0}$ que se resuelve factorizando y luego cancelando (x-3) que tiende a cero en el numerador y denominador.

La función va a ser continua si y solo si

$$2 + 3k = 6 \tag{9}$$

. y despejando se obtiene como solución $k = \frac{4}{3}$.

Respuesta: $k = \frac{4}{3}$

5. Ejercicio 5

(a)

$$Dom(f(x)) = \mathbb{R} - \{1, 4\} \tag{10}$$

$$\lim_{x \to \infty} f(x) = +\infty \tag{11}$$

$$\lim_{x \to 4^+} f(x) = +\infty$$

$$\lim_{x \to 4^-} f(x) = -\infty$$
(11)

(b)

$$Im(f(x)) = \mathbb{R} \tag{13}$$

$$\lim_{x \to +\infty} f(x) = 4 \tag{14}$$

$$\lim_{x \to -\infty} f(x) = \frac{6}{5} \tag{15}$$