ECON6300/7320/8300 Advanced Microeconometrics Bootstrap

Christiern Rose

¹University of Queensland

Practical 7 April 2019

Introduction

- This class will review:
 - Bootstrap without asymptotic refinement
 - Bootstrap with asymptotic refinement
 - Clustered bootstrap
 - Residual bootstrap
- We begin with a demonstration using the data from Microeconometrics using STATA chapter 3 (Health and insurance data)
- We move on to a Monte-Carlo based practical.

Practical

- In this practical you will conduct a Monte-Carlo experiment to assess the distribution of the OLS estimator under endogeneity.
- The data generating process is:

$$\begin{aligned} y_i &= \beta x_i + u_i \quad i = 1, ..., N \\ x_i &= \frac{\alpha_1 z_i + \alpha_2 u_i + v_i}{\sqrt{\alpha_1^2 + \alpha_2^2 + 1}} \\ u_i &\sim \mathcal{N}(0, 1), z_i \sim \mathcal{N}(0, 1), v_i \sim \mathcal{N}(0, 1) \end{aligned}$$

▶ **Note:** We scale x_i by $\sqrt{\alpha_1^2 + \alpha_2^2 + 1}$ so that $x_i \sim \mathcal{N}(0, 1)$. Consequently, we can vary α_1, α_2 without changing the marginal distribution of x_i , though clearly we change it's joint distribution with z_i, u_i, v_i .

Practical

- 1. For which value(s) of α_1, α_2 does $E[u_i|x_i] = 0$? For which value(s) does $E[u_i|z_i] = 0$?
- 2. Write a program to generate the data, compute the OLS and 2SLS estimators of β , and store them as scalars.
 - ► To generate the data, use N = 500, $\beta = 1$ and $\alpha_1 = \alpha_2 = 0.5$.
 - For the 2SLS estimator, use z_i as the instrument.
- 3. Conduct a Monte-Carlo experiment with 1000 replications in order to obtain the distributions of $\widehat{\beta}_{OLS}$ and $\widehat{\beta}_{2SLS}$.
- 4. Summarize $\widehat{\beta}_{OLS}$ and $\widehat{\beta}_{2SLS}$ and produce a histogram of their distributions. What do you conclude about the estimators?
- 5. Repeat 2-4 setting $\alpha_1 = 0.5, \alpha_2 = 0$. Explain why your results change.
- 6. Repeat 2-4 setting $\alpha_1 = 0, \alpha_2 = 0.5$. Explain why your results change.
- 7. Repeat 2-4 using N = 10,000. Explain why your results change.