Today's Lecture

Lab Policy

Recursive function definitions in Scheme

Sets

Lab Policy

Attendance is mandatory.

If you are absent without permission, your score is 0.

Exceptions: My prior permission, or else a doctor's note if you were unwell and did not email me in advance.

Grading your Scheme assignment:

If your file does not load or does not compile, then 0.

If any function is incorrect then 0 for that function.

If you do not implement a function, leave the "implement" string alone.

Otherwise, your file may not compile!

Late Submission: same penalties as for late problem sets

Evaluating Expressions

Every Scheme expression has a value.

ATOMS: The value of a number or boolean is itself.

The expression (define x = 5) binds x = to 5

LISTS: To evaluate the list (f a b c) the interpreter

- 1. Checks if the first element is the name of a defined function. If not, the interpreter gives an error.
- 2. Evaluates every argument (if any undefined, then return an error).
- 3. Apply the function f (as defined) to the values returned in Step 2.

CAR, CDR, & CONS

The function car returns the first element of a list.

```
(car '(a b c)) returns a
```

The function cdr returns the rest of the list, (i.e. the list minus its first element).

```
(cdr '(a (b c) d)) returns ((b c) d)
```

The function cons inserts the first argument into the second argument which is a list.

```
(cons 'x '(a b c)) returns (x a b c)
```

SIMPLE CONDITIONALS

The expression

```
(null? x) returns #t if x is the null list, #f otherwise
(list? x) returns #t if x is a list, #f otherwise
(number? x) returns #t if x is numeric, #f otherwise
(boolean? x) returns #t if x is a boolean, #f otherwise
(string? x) returns #t if x is a string, #f otherwise
(eq? \times y) returns #t if x and y have the same value,
                      #f otherwise
```

CONDITIONAL EXPRESSIONS

(if cond expr1 expr2)

Evaluate cond

if true, return value of expr1

if false, return value of expr2

Does not evaluate expr1 (expr2) unless cond is true (false)

CONDITIONAL EXPRESSIONS

```
(cond (cond1 expr1)
  (cond2 expr2)
  (cond3 expr3)
  (else expr))
```

Evaluate cond1, cond2, ... in sequence.

Return exprk corresponding to the first condk that evaluates to #t

If none evaluate to #t return expr

Does not evaluate exprk unless condk is true and condi is false for all i < k.

$$f(n) = 1 + f(n-1)$$

$$f(0) = 0$$

$$f(4) = 1 + f(3)$$

$$= 1 + (1 + f(2))$$

$$= 1 + (1 + (1 + f(1)))$$

$$= 1 + (1 + (1 + f(0)))$$

$$= 1 + (1 + (1 + (1 + 0)))$$

$$= 1 + (1 + (1 + 1))$$

$$= 1 + (1 + 2)$$

$$= 1 + 3$$

$$= 4$$
evaluate

Defining New Functions

This expression binds the function name f to the function body.

```
Define function (findlast L) that returns the last element of a list.
        (findlast '(a b c)) returns c
The last element of '(a b c)
        is the last element of (b c)
        which is (cdr '(a b c))
So (findlast L) is the same as (findlast (cdr L))
```

A first attempt:

Here's the fix:

```
(define (findlast L)
    (if (null? (cdr L)) (car L)
                         (findlast (cdr L))
(findlast '(a b c) )
    (findlast (b c))
        (findlast (c) )
        But what about (findlast '()) ?
```

Finally:

List Length

Exercises

```
(define (select k L) ... )
    return the element with index k (first element has index 0)
(define (myappend X Y) ... )
    return a list containing the elements of X followed by elements of Y
(define (myreverse X) ... )
    return the list of elements of X in reverse order
```

Solutions

```
(define (select k L)
 (cond ((null? L) 'LIST_IS_TOO_SHORT )
        ((< k 0) 'NO_SUCH_INDEX )</pre>
        ((= k 0) (car L))
        (else (select (- k 1) (cdr L)))))
(define (myappend X Y) (cond
                         ((null? X) Y)
                          ((null? Y) X)
                          (else (cons (car X) (myappend (cdr X) Y))))
(define (myreverse X)
 (cond ((null? X) X)
        (else (myappend (myreverse (cdr X))(list (car X)))))
```

Sets

A set is an unordered collection of objects, called members or elements of the set.

 $x \in S$ represents the proposition "x is a member of S."

 $x \notin S \equiv \neg(x \in S)$ (x is not a member of S).

Sets can contain numbers, letters, people, strings, trees, birds, ... as members.

 $\{1, 2, Jack, Jill, elm, sparrow, USA\}$

Can a set contain no members?

Sure, the *empty set* contains no members.

There is a unique empty set, denoted Φ

Is the proposition $\forall x \in \Phi : x = x$ true? Yes

Is the proposition $\forall x \in \Phi : x \neq x$ true? Yes!

Is the proposition $\exists x \in \Phi : x = x \text{ true}$?

Can a set contain sets as members?

Sure!

$$X = \{1, 2, \{Jack, Jill\}, \{elm, beech\}\}$$

 $Y = \{\Phi, 1, 2\}$

Is $\{\Phi\}$ different from Φ ?

Yes, $\{\Phi\}$ contains one member (the set Φ), but Φ contains nothing!

How many members does $\{\{\Phi\}\}\$ contain?

One, its only member is the set $\{\Phi\}$.

The set $\{\Phi, \{\Phi\}, \{Jack, Jill\}, \{a, \{b, c\}\}\}\$ contains 4 elements.

Can a set contain itself as a member?

Let's see what happens if we allow that.

Now consider all the sets that don't contain themselves:

$$S = \{X : X \notin X\}$$

Is $S \in S$? Or is $S \notin S$?

$$(S \in S) \Leftrightarrow (S \notin S)!$$

Defining sets precisely is extremely tricky!

We'll just agree that sets cannot contain themselves.

If A contains B then B cannot contain A.

Subsets

 $A \subseteq B$ means that every member of A is also a member of B

or,
$$\forall x : (x \in A \Rightarrow x \in B)$$

 $A \subset B$ means that every member of A is a member of B, and B has members that are not members of A

or,
$$\forall x$$
: $(x \in A \Rightarrow x \in B) \land (\exists x : x \in B \land x \notin A)$

Set Notation

 \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} : sets of natural numbers, integers, rationals, real numbers

Sets can be represented by:

- Listing elements in the set {1, 2, 3}
- By a predicate that describes properties of elements (Set builder notation)

```
\{x \colon P(x)\}\\{x \in \mathbb{N} : \exists y \in \mathbb{N}, x = 2y\}
```

This is the set of even numbers.