Secure Multiparty Computation in the context of Deep Learning

Raj Patil : CS18BTECH11039

November 17, 2021

Contents

1	$\mathbf{A}\mathbf{b}\mathbf{s}$	stract	2		
	1.1	Focus of the paper	2		
2	Intr	Introduction			
	2.1	Basic overview of Neural Networks	2		
	2.2	Why secure evaluation is needed?	2		
	2.3	What kind of privacy?	2		
	2.4	Secure Multiparty Computation (MPC)	2		
3	Tow	vards deploying secure inference	3		
	3.1	SOTA	3		
	3.2	Challenges	3		
		3.2.1 ML aspect	3		
		3.2.2 MPC perspective	3		
4	Con	atribution	4		
	4.1	Quantization	4		
	4.2	MPC	4		
	4.3	Optimizations	4		
	4.4	Experiments	4		
	4.5	Peculiarities	4		
	4.6	Conclusions:	4		
5	Pas	t/related work	5		
	5.1	regarding quantization	5		
6	Qua	antization in Deep Learning	5		
7	Sys	tem and Threat model	5		
	7.1	MPC protocols	5		
	7.2	for more abstract operations	6		
8	ben	ichmarks	6		
9	Mis	sc (to be arranged)	6		

Secure Evaluation of Quantized Neural Networks\

1 Abstract

1.1 Focus of the paper

- support from current frameworks for secure evaluation
 - what is secure evaluation?
 - * MPC (secure multiparty evaluation being one solution)
- extent the functionality is already present
- trade-offs between different network meta-parameters
 - size, model type, etc
 - overhead of active security over passive attacks

2 Introduction

2.1 Basic overview of Neural Networks

• use of data: of sensitive nature

2.2 Why secure evaluation is needed?

- most data a model is trained on is of sensitive nature
 - medical imaging data, personal profile
 - should remain private.
- Overhead?
 - the training itself is considered to be the bottle-neck and hence enforcing privacy should present itself to be relatively hectic.

2.3 What kind of privacy?

- place infographic for the evaluation phase
- parties being model owner, and image owner
- image-owner should not know about the internals of the model
 - internals of the model covers information about the dataset images as well as the network needing to be treated as a blackbox
- model-owner should not know about the characteristics of the image that was sent for evaluation.

2.4 Secure Multiparty Computation (MPC)

- performing computation on data that needs to be kept secret
- the client-server model
 - model and data owner both share their secrets (model and data) called as secret-share to a set
 of servers which then run the computation over these inputs.

- on secret sharing
- https://medium.com/dropoutlabs/secret-sharing-explained-acf092660d97
- https://en.wikipedia.org/wiki/Secure_multi-party_computation
 - use to define MPC protocols

3 Towards deploying secure inference

3.1 SOTA

- Garbled circuits
- MPC

3.2 Challenges

3.2.1 ML aspect

- the data-model loop is strenous
- existing solutions introduce constraints:
 - specialized activation functions (CryptoNets)
 - specialized training process (XONN)
- training and secure delivery can only be decoupled to an extent
 - translating to and from specialized approximations results in loss of accuracy
 - * floating to fixed point changes, etc
 - limits the expressive capabilities of the securely represented model

1. proposal

• directly try training nets in generic frameworks to avoid sub-optimal conversion penalties

3.2.2 MPC perspective

- MPC (Multiparty computation) relies on customized sub-protocols and are optimized for particular activation functions.
- need to pursue of model-agnosticism : performance of MPCs is dependent on the model undergoing inference

1. solution

- test general purpose MPC frameworks to evaluate CNNs
- better scrutinized by the community
- more reference implementations

4 Contribution

- MPC friendly models interop with existing frameworks
 - without sacrificing evaluation efficiency
 - without customized conversion
- support for running models as is (out of the box).
 - using general purpose MPC frameworks

4.1 Quantization

• transferability from current frameworks for MPC

4.2 MPC

• towards model agnostic MPC toolchain

4.3 Optimizations

- botteleneck is quantization: bitwise right shifts (truncation)
- propose optimized truncations to improve efficiency

4.4 Experiments

- evaluate efficiency for a large class of quantized models:
 - 16 diff sizes for 16 diff settings

4.5 Peculiarities

- 1. a quantization scheme being useful for secure evaluation
- 2. showing compatibility with arithmetic black-box model
 - only secure additions and multiplications are required.
- 3. optimization over truncation to the ring \mathbb{Z}_{2^k} : integers module 2^k
- 4. Experiment factors:
 - Corruption threshold (honest vs dishonest clients)
 - Corruption Model (passive vs active security)
 - algebraic structure $(\mathbb{Z}_{2^k} \text{ or } \mathbb{Z}_p)$
 - exact or probabilistic truncation

4.6 Conclusions:

- corruption threshold has high impact on efficiency of general-purpose MPC
- corruption model has low impact on efficiency of general-purpose MPC
- k being between 4 and 10 is as efficient as choosing a modulo prime structure
- exact gain in efficiency found by experiments with exact and probabilistic truncation

5 Past/related work

5.1 regarding quantization

- non-intelligent ways: floating point to fixed point conversion without monitoring effect on the model's performance
- relatively little has been explored at the intersection of quantization and multiparty-computation
 - past works generally lie in the FHE domain
 - Fully homomorphic encryption compilers (recent work)
 - * allows computation over encrypted data (without decryption)
 - * mixing with quantization leads to limitations (can only perform additions and multiplications)
 - · the model owner doesn't give up weights though
- $\bullet \ \, frameworks: \ \, CrypTFlow: \verb|https://www.microsoft.com/en-us/research/publication/cryptflow-secure-tender-tend$
 - custom conversion from floating to fixed point without loss of accuracy (needs extra neurons)

6 Quantization in Deep Learning

- use figure 1 to explain quantization into 8 bit
- do not explain the minor details for each layer : move on to cryptographic applications
- summarize by saying the basic types of opterations needed in this context:
 - basic:
 - * multiplication and addition (convolution, dot products, etc)
 - need to be reduced to addition and multiplication
 - * truncation during quantization
 - * comparison for ReLU and similar min/max operations

7 System and Threat model

- use figure 2 to describe the client server model
 - talk about the degenerated case of no servers and 2 parties being the source and the computer themeselves

7.1 MPC protocols

- well established for addition and multiplication:
 - give a simple example for addition
- give a similar direction for multiplication

7.2 for more abstract operations

- secure comparison
- probabilistic truncation vs deterministic truncation
 - also mention when it is needed (post multiplication of two quantized values)
 - its benefits : avoid usage of expensive binary adders
- list the other computation requirements and the steps one should follow for it to be adapted into a secure MPC protocol: talk meta (condensation)
 - formulate the computation requirement locally in terms of the parties involved, the data they wish to keep private and the data (secret shares) they will need to share.
 - then establish validation protocols to check for the correctness of the output.
 - finally: try fulfilling these abstractions in terms of lower level MPC-secure primitive operations (like addition and multiplication)
 - * show example of clamping reduced to comparison reduced to addition and multiplication

8 benchmarks

• discuss protocols: honest majority, dishonest majority

9 Misc (to be arranged)

- fields vs rings
- Homomorphic encryption: https://en.wikipedia.org/wiki/Homomorphic_encryption
 - notion of homomorphism from algebra: structure preserving mapping