

1. Our Team
2. The Client
3. The Problem
4. The Solution
5. Requirements & Constraints
6. System Overview
7. Design Details
a. Hardware
b. Firmware
c. Software
d. Mechanical
8. Test Results
9. Product Demo
10. Limitations

2

11. Impact on Client

The Client

Orca Advanced Materials Inc.

- Startup based in Vancouver, BC
- Specializing in functional thin film devices and their applications
- Need to measure the electrical characteristics of thin films

page 4

The Problem

- Different tests require different lab equipment to perform
- Multimeter, oscilloscope, spectrum analyzer, power supply...
- Process is labour-intensive and inefficient due to the manual setup of each tool and material

page:

5

Functional Requirements

Complete System

- 11 measurement methods
- 2, 3 & 4-probe configurations
- DC/AC voltage & current sourcing and measuring capabilities

Device Hardware

- 0-5 V and 0-10 mA signal range support
- USB link for power and data
- Automated control of measurement execution

Software GUI

- User control over device functionality
- Supports multiple input configurations
- Outputs results as plots, data logs, and calculations

Mechanical Chassis

- Enclosure for dedicated hardware
- User ports: USB, power jack, LEDs
- Slider switches for individual probe control

page 7

7

Non-Functional Requirements

Speedup & Automation

- Automates process to minimize user labor
- Reduces testing time by at least x5 times

Accuracy

 Maximum ±5% error when compared to conventional tool results

Modular & Flexible

 Individually designed systems with future upgradeability

Minimum Material Damage

• Contact method minimizes damage to thin-film samples

page 8

Verification Test Results

Test Category	Pass	Incomplete	Fail
Basic PCB Functionality	3	0	0
Probe Sourcing	6	0	0
Probe Monitoring	4	0	0
Probe Switching	1	0	0
Embedded System	6	0	0
Software GUI	8	0	0
Device-to-Host Communication	4	0	0
Mechanical Chassis	5	0	0
End-to-End Measurements	9	1	1
Total	46	1	1

- Discrete components were used for quick testing cycles.
- Some end-to-end measurements are performed on the client's thin-film samples.

Validation Test Results

Material & Test Category	Pass	Incomplete	Fail		
Carbon Nanotube Resistors					
Measurement Accuracy	3	0	0		
Device Reconfigurability	3	0	0		
Process Speedup	3	0	0		
Polymer Capacitors					
Measurement Accuracy	3	0	0		
Device Reconfigurability	3	0	0		
Process Speedup	3	0	0		
Carbon Nanotube Transistors					
Measurement Accuracy	2	0	1		
Device Reconfigurability	2	0	1		
Process Speedup	3	0	0		
Total	25	0	2		

- Limitations:

 - Resistor samples degraded over time
 Low transistor yield made most samples unusable

41

Appendix B Cost Breakdown CATEGORY **AMOUNT** DATE DESCRIPTION 2024-Oct-28 \$ 21.27 Vaveform generator dev board Component 2024-Nov-04 Breadboard prototyping Component \$ 25.15 \$ 2024-Nov-12 Breadboard prototyping Component 82.36 2024-Nov-18 Breadboard prototyping \$ 82.93 Component \$ 75.07 2024-Nov-25 Breadboard prototyping Component 2024-Dec-11 Breadboard prototyping \$ 64.02 Component \$ 2025-Jan-22 Mechanical component Mechanical 11.19 2025-Jan-28 Breadboard prototyping Component \$ 83.62 2025-Feb-03 Breadboard prototyping Component 32.84 PCB Rev1 Components Component \$ 119.55 2025-Feb-19 2025-Feb-22 Customs Clearance Fee PCB customs clearance \$ 59.25 2025-Feb-22 PCB Rev1 PCB circuit board 392.50 2025-Mar-25 PCB Rev2 PCB circuit board \$ 97.65 2025-Mar-26 PCB Rev2 Components Component \$ 88.85 **Total** \$ 1,236.25

