Efficient coding, efficiently coded

Gilles de Hollander

Efficient Coding: Key Ideas

1. Sensory Space Representation

- Objective stimulus features x_0 encoded in 'neurocognitive' sensory space (r)
- Noise on r is, by definition, homoscedastic (constant variance)
- ullet Encoding function: e,g., $f(x)=x^{lpha}$ (lpha<1)
- Neurocognitive representation r given a objective stimulus x_0 is a random variable.

$$r|x_0 \sim \mathcal{N}(f(x_0),
u^2)$$

Efficient coding: Key ideas

2. Bayesian Inference

- Estimate stimulus value of stimulus x, \hat{x} using Bayesian inference:
- Posterior distribution:

$$p(x|r) = rac{p(r|x)p(x)}{p(r)}$$

Posterior mean is least-square estimator

$$\hat{x} = \mathbb{E}[x|r] = \int x \, p(x|r) \, dx$$

Why computational graphs?

- For model fitting we want to estimate parameters.
- Often we can not derive likelihood functions, but we can *evaluate* them for specific values.
 - Approximate integrals using grids (GPU!)
 - MCMC sampling
- Both often involve the same calculation on a very large number of variables.

Implementation Steps

1. Define the Generative Model

- Encoding function: $f(x) = x^{\alpha}$
- Noise model: $r \sim \mathcal{N}(f(x_0),
 u^2)$

2. Build the Likelihood Grid

- Create a grid of possible x_0 and r values
- Make a $p(r|x_0)$ for each pair

3. Bayesian Inference

For each observed r, compute the posterior:

$$p(x|r) = rac{p(r|x)p(x)}{p(r)}$$

• Estimate \hat{x} as the expected value:

$$\hat{x} = \mathbb{E}[x|r]$$

4. Data Likelihood Function

• Define a function that returns the response distribution over \hat{x} for any x_0 : $p(\hat{x}|x_0)$.

Approach

Approximate (bounded) distributions using large arrays (vectorize, vectorize, vectorize).

Assignment 5: Efficient coding

• We wil now go over some code together in

notebooks/5_efficient_coding.ipynb