Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers

Reilly Jack, Prodhomme Boris and Grauzam Johann

March 19, 2012

Abstract

ADMM [1]

1 Literature review

liyhgihgoih

2 Different software frameworks

2.1 Apache Hadoop

lrjfzjiozjf

2.2 Mesos

lshfcizufhoizauh

2.3 Spark

zdfjzpofjz

3 Alternating Direction Method of Multipliers (ADMM)

3.1 Dual Ascent

Let consider the following convex optimization problem:

$$\begin{array}{ll}
\text{minimize} & f(x) \\
\text{subject to} & Ax = b,
\end{array}$$
(1)

with variables $x \in \mathbb{R}^n$, where $A \in \mathbb{R}^{m \times n}$ and $f : \mathbb{R}^n \to \mathbb{R}$ is convex. The Lagrangian of problem 1 is:

$$L(x,\nu) = f(x) + \nu^{T}(b - Ax)$$

and the dual function is:

$$g(\nu) = \min_x \, L(x,\nu) = -f^*(-A^T\nu) - b^T\nu$$

where ν is the dual variable, and f^* is the convex conjugate of f. The dual is given by:

$$\text{maximize} \qquad g(\nu)$$

with variable $\nu \in \mathbb{R}^m$. Assuming that the strong duality holds, the optimal values of the primal and the dual are the same. Then the following relation holds:

$$x^* = \underset{x}{\operatorname{argmin}} L(x, \nu),$$

where x^* and y^* are the two optimal arguments for the primal and the dual problem.

The dual ascent method solves the dual problem using gradient ascent. Assuming that g is differentiable, we can evaluate $\nabla g(\nu)$ with $\nabla g(\nu) = Ax^+ - b$, where $x^+ = \operatorname{argmin}_x L(x, \nu)$. The dual ascent method is given by this iteration:

$$\begin{array}{lll} x^{k+1} & := & \displaystyle \operatorname*{argmin}_x \, L(x, \nu^k) \\ \\ \nu^{k+1} & := & \displaystyle \nu^k + \alpha^k (Ax^{k+1} - b), \end{array}$$

where $\alpha^k > 0$ is a step size, and the superscript is the iteration counter.

3.2 Method of Multipliers

eizuhdiuzehdioza

3.3 ADMM

eizuhdiuzehdioza

References

[1] S. Boyd, N. PARIKH, E. CHU, B PELEATO, and J ECKSTEIN. Distributed optimization and statistical learning via the alternating direction method of multipliers. *Foundation and Trends in Machine Learning*, pages 1–122, 2010.