uגרף מכוון קשיר: גרף מכוון G עבורו לכל $u,v \in V$ לכל $u,v \in V$ איים מסלול מuuים מסלול מ־u ל־u מכוון קשיר חזק: גרף מכוון u עבורו לכל אזי $s\in V\left(G
ight)$ אזי :BFS אזי אלגוריתם

```
function BFS(G, s):
      (d, \pi, \operatorname{color}) \leftarrow \operatorname{dict}(V(G))
      for u\in V\left( G\right) \backslash \{s\} do
            color[u] \leftarrow White
            d[u] \leftarrow \infty
           \pi[u] \leftarrow Null
      end
      color[s] \leftarrow Grey
      d[s] \leftarrow 0
      \pi[s] \leftarrow \text{Null}
      Q \leftarrow queue()
      while Q \neq \varnothing do
            u \leftarrow \mathsf{Q}.\mathsf{head}
            for v \in Neighbor(u) do
                 if color(v) = White then
                        color[v] \leftarrow Grey
                        d[v] \leftarrow d[u] + 1
                        \pi[v] \leftarrow u
                        Q.enqueue(v)
            end
            O.dequeue()
            color[u] \leftarrow Black
      end
     return (d, \pi, \text{color})
```

```
\mathcal{O}\left(|V|+|E|
ight) הינה BFS (G,s) טענה: יהי אזי סיבוכיות אי סיבוכיות אי s\in V\left(G
ight) הינה מענה:
                                                            \{v \in V \mid \mathtt{BFS}\left(G,s
ight).\mathsf{color}\left[v
ight] = \mathtt{Black}\} = [s]_{
ightarrow} אזי איז s \in V משפט: יהי G גרף ויהי
                                                            \delta(v,u) = \min(\{\operatorname{len}(\sigma) \mid v,u \mid v \in V \mid u,v \in V \mid u,v \in V \} סיול בין יהי
                                                           \delta\left(v,u
ight) \leq \delta\left(v,w
ight) + 1 אזי \left(w,u
ight) \in E טענה: יהי G גרף ויהיו G גרף באשר באשר
                                                      d\left[v
ight] \geq \delta\left(v
ight) מתקיים BFS \left(G,s
ight) אזי בכל שלב בהרצת אזי גרף ויהיו s,v\in V למה: יהי
             d[v_i] \leq d[v_1]+1 וכן d[v_i] \leq d[v_{i+1}] אזי מתקיים שלב בהרצת BFS (G,s) בו בהרצת G
                                                              .
BFS (G,s) .d[v] = \delta\left(v,s\right) אזי s,v \in V ויהיו גרף יהי הי מרחקים: יהי
עץ יהי C_{\pi}=\{(\pi\left[v\right],v)\mid v\in V_{\pi}\setminus\{s\}\} וכן V_{\pi}=\{v\in V\mid \mathtt{BFS}\left(G,s\right).\pi\left[v\right]\neq \mathtt{Null}\}\cup\{s\} נגדיר s\in V יהי S\in V יהי יהי י
                                                                                                                                                  .G_{\pi} = (V_{\pi}, E_{\pi})
                                                                                                                             טענה: יהי S \in V אזי גרף איר s \in V
```

- $\deg_{G_{\pi}}^{-}(s)=0$ מתקיים
- $\deg_{G_{\pi}}^{-}\left(v
 ight)=1$ מתקיים $v\in V\left(G_{\pi}
 ight)$ •
- s,v בין ב־ G_{π} בין מסלול בי $v \in V\left(G_{\pi}\right)$ לכל
 - . הינו עץ G_{π}
- Gבין ביותר בין המסלול הקצר ביותר בין s,v בין בין G_π בין ויהי $v \in V(G_\pi)$ יהי יהי $v \in V(G_\pi)$

מסלול אוילר: מסלול העובר על כל הקשתות בגרף.

מעגל אוילר: מסלול אוילר שהינו מעגל.

 $(\deg(v) \in \mathbb{N}_{\mathrm{even}}$ מתקיים $v \in V$ מענה: יהי Gטענה: יהי לא מכוון אזי (יש מעגל אוילר ב'

אזי $\deg\left(u
ight)\in\mathbb{N}_{\mathrm{even}}$ מתקיים מעגל אוילר: יהי G גרף קשיר ולא מכוון עבורו לכל

```
function EulerCircle(G, v):
    \sigma \leftarrow \text{List}(E(G))
    u \leftarrow Neighbor(v)
    while u \neq v do
         \sigma.append(\{v,u\})
         G = G \setminus \{\{v, u\}\}
         u \leftarrow \text{Neighbor}(u)
    if length(\sigma) = |E(G)| then
      \mid return \sigma
    else
         w \leftarrow \{x \in V(G) \mid (\exists y \in V(G).(x,y) \in \sigma) \land (\deg(x) > 0)\}
         \sigma[w] = \text{EulerCircle}(G, w)
טענה: יהי v \in V(G) יהי ויהי ממן איים מתקיים עבורו לכל איי מתקיים ויהי עבורו לכל v \in V(G) איי היצה של מתקיים מתקיים איים מתקיים ויהי
                                                                                                                      \mathcal{O}\left(|E|\right) הינה EulerCircle (G,v)
                                                 . Neighbor (u) | \neq \varnothing פעילה מתקיים while כל עוד לולאת באלגוריתם EulerCircle טענה:
                 . הינו מעגל אוילר. EulerCircle (G) אזי \deg (v) \in \mathbb{N}_{\mathrm{even}} מתקיים v \in V מתקיים הינו עבורו לכל
              .(\{v \in V(G) \mid \deg(v) \in \mathbb{N}_{\mathrm{odd}}\} = 2\} גרף קשיר ולא מכוון אזי (יש מסלול אוילר שאינו מעגל ב־G גרף טענה: יהי G גרף שיר ולא מכוון אזי (יש מסלול אוילר אוילר אוילר אוילר שאינו מעגל ב
                         אזי\{v\in V\left(G
ight)\mid \deg\left(v
ight)\in\mathbb{N}_{\mathrm{odd}}\}|=2 אלגוריתם למציאת מסלול אוילר: יהי aגרף קשיר ולא מכוון עבורו
function EulerPath(G):
    \{v, u\} \leftarrow \{v \in V(G) \mid \deg(v) \in \mathbb{N}_{\text{odd}}\}
    G = G + \{\{v, u\}\}\
    \sigma = \operatorname{EulerCircle}(G, v)
    return \sigma \setminus \{v, u\}
                                                      .(לא קיים ב־G מעגל באורך אי־זוגיי) (דו־צדדיG איר מכוון אזי מכוון אזי G יהי G גרף אי
                                                                              אלגוריתם איהוי גרפים דו־צדדיים: יהי G גרף לא מכוון ופשוט אזי
function IsBipartite(G):
    (d, \pi, \operatorname{color}) \leftarrow \operatorname{BFS}(G)
    for (v,u) \in V do
     if d(v) = d(u) then return False
    end
    return True
                                                            .(IsBipartite (G) = \text{True}) איי (G דו־צדדי) מענה: יהי G גרף לא מכוון ופשוט אזי (G דו־צדדי)
      .|\sigma|=\min\{|	au|\ |t| מסלול קצר ביותר בין קודקודים: יהי S גרף ויהיו S גרף אזי מסלול \sigma מS ל־t עבורו T מסלול קצר ביותר בין קודקודים: יהי
                                                           גרף המסלולים הקצרים ביותר מקודקוד (גרף מק"ב): יהי G גרף ויהי s\in V נגדיר
                                                                          E' = \{e \in E \mid sאזי איזי E' = \{e \in E \mid sאזי היוצא מ־פותר ממסלול קצר ביותר היוצא
                                                     אזי אלגוריתם למציאת גרף המסלולים הקצרים ביותר מקודקוד: יהי G גרף ויהי אלגוריתם למציאת אר
```

```
function ShortestPathGraph(G, s):
     (d, \pi, \operatorname{color}) \leftarrow \operatorname{BFS}(G)
     E' \leftarrow E(G_{\pi})
     for (u,v) \in E(G) do
           if |\operatorname{height}_{G_\pi}(u) - \operatorname{height}_{G_\pi(v)}| = 1 then
            \mid E'.append((u,v))
     end
     return (V(G), E')
                                                         .(במק"ב) אזי פאר (G_\pi BFS טענה: תהא במק"ב) אזי מחברת בין מחברת פון מחברת פון אזי פון פאזי פון מענה:
                                                                    sב מ"ב מה"ב הינו גרף מק"ב מהינו אזי ShortestPathGraph (G,s) אזי s\in V מסקנה: יהי
                                                                           גריר המסלולים הקצרים ביותר בין קודקודים: יהיS,t\in V ויהיו גרף המסלולים הקצרים ביותר בין קודקודים:
                                                                               E' = \{e \in E \mid tאזי אזי E' = \{e \in E \mid tאזי אזי מ־סלול קצר ביותר היוצא מ־e\}
טענה: יהי S גרף מכוון ויהיו t בסיבוכיות אמן לחישוב גרף המסלולים הקצרים ביותר מיs ליל בסיבוכיות אמן ריצה אזי קיים אלגוריתם לחישוב און אזי מכוון ויהיו
                                                                                                                                                               \mathcal{O}(|V| + |E|)
                                                                                                                          אזי s \in V יהי גרף ויהי :DFS אלגוריתם
function DFS (G, s):
     (k,\pi) \leftarrow \operatorname{dict}(V)
     color \leftarrow dict(E)
     k[s] \leftarrow 1
     \pi[s] \leftarrow \text{Null}
     for u \in V \backslash s do
          k[u] \leftarrow 0
           \pi[u] \leftarrow \text{Null}
     end
     for e \in E do
      |\operatorname{color}[e] \leftarrow \operatorname{White}
     end
     i \leftarrow 2
     v \leftarrow s
     while (\exists u \in Adj(v).color[(v,u)] = White) \lor (\pi[v] \neq Null) do
           if \{u \in Adj(v) \mid \operatorname{color}[(v,u)] = \operatorname{White}\} \neq \emptyset then
                w \leftarrow \{u \in Adj(v) \mid \operatorname{color}[(v, u)] = \operatorname{White}\}\
                \operatorname{color}[(v, w)] \leftarrow \operatorname{Black}
                if k[w] = 0 then
                      k[w] \leftarrow i
```

```
O(|V|+|E|) סענה: יהי G גרף ויהי s\in V אזי סיבוכיות זמן הריצה של O(|V|+|E|) הינה O(|V|+|E|) אזי O(|V|+|E|) אוווון O(|V|+|E|) אווון O(|V|+|E|)
```

 $\pi[w] \leftarrow v$ $v \leftarrow w$ $i \leftarrow i + 1$

else

return (k,π)

end

 $v \leftarrow \pi[v]$

אזי DFS יהי G_π אויהי יהי יהי יהי יער יהי יער אזי יער

- $.e\in E\left(G_{\pi}
 ight)$ עבורה $e\in E\left(G
 ight)$ קשתות עץ: קשת •
- v שב של אב וכן $u,v)\notin E\left(G_{\pi}\right)$ עבורה $(u,v)\notin E\left(G\right)$ וכן הינו אב של •
- u שב של אב עכן וכן $u,v) \notin E\left(G_{\pi}\right)$ עבורה עבורה $(u,v) \in E\left(G\right)$ וכן הינו אב של
 - . שאינה קשת עץ או קדמית או שאינה $e\in E\left(G\right)$ שאינה קשת \bullet

 G_{π} טענה: יהי G_{π} או G_{π} או עץ אזי u צאצא של ען אזי u בגרף או בגרף או בגרף כענה: יהי G

מסקנה: יהי G גרף לא מכוון אזי לא קיימות קשתות חוצות.

אלגוריתם DFS בעל זמני נסיגה: יהי ארף אזי

```
function DFS(G):
     (k, f, \pi, \text{color}, \text{low}) \leftarrow \text{dict}(V)
     for u \in V do
          k[u] \leftarrow 0
           \pi[u] \leftarrow \text{Null}
           color \leftarrow White
          low \leftarrow \infty
     end
     i \leftarrow 0
     for s \in V do
          if k[s] = 0 then
            DFS-VISIT(s, k, f, \pi, i)
     end
     return (k, f, \pi, low)
function DFS-VISIT(v, k, f, \pi, color, low, i):
     color[u] \leftarrow Gray
     i \leftarrow i + 1
     k[v] \leftarrow i
     for w \in Adj(v) do
          if (\operatorname{color}[v] = \operatorname{Gray}) \wedge (v \neq \pi[u]) then
           | low \leftarrow min(low[u], k[v]) |
           else if color[v] = White then
                \pi[w] \leftarrow v
                DFS-VISIT (w, k, f, \pi, \text{color}, \text{low}, i)
                low \leftarrow min(low[u], low[v])
     end
     color[u] \leftarrow Black
     i \leftarrow i + 1
     f[v] \leftarrow i
```

.DFS (G) אזי f אזי $s \in V(G)$ ארף ויהי G גרף ויהי

 $v,u \in V$ איז ($v,u \in V$ טענה: Gray Path Lemma: יהיע $v,u \in V$ יהיע יהיע: Gray Path Lemma: יאנה

(f[v] < k[u])טענה: יהיו $v,u \in V$ אזי אזי (u,v) קשת חוצה

משפט הסוגריים: יהי G גרף ויהיו אזי מתקיים בדיוק אחד מהבאים משפט משפט הסוגריים:

- $.G_{\pi}$ וכן אינם צאצא־אב ביער $[k\left(u
 ight),f\left(u
 ight)]\cap [k\left(v
 ight),f\left(v
 ight)]=arnothing$ מתקיים \bullet
 - $.G_{\pi}$ ביער ע צאצא u וכן ו $[k\left(u
 ight),f\left(u
 ight)]\subset[k\left(v
 ight),f\left(v
 ight)]$ פתקיים •
 - $.G_{\pi}$ מתקיים u צאצא v וכן ו $[k\left(u
 ight),f\left(u
 ight)]\supset[k\left(v
 ight),f\left(v
 ight)]$ פ

משפט המסלול הלבן: יהי G גרף ויהיו $u,v\in V$ אזי ויהיו $u,v\in V$ אזי ($u,v\in V$ באלגוריתם ביער המסלול לבן: יהי $u,v\in V$ אזי ($u,v\in V$ יש מסלול לבן: יהי $u,v\in V$ יש מסלול לבן: יהי מסלול לבן: יה

גרף מכוון אניקלי: גרף מכוון G בו לא קיים מעגל.

 $u\prec v$ אזי אוי $(u,v)\in E$ אם $u,v\in V$ אם לכל המקיים על סדר על אזי יחס אזי אזי הרף מכוון אזי יחס סדר אי

(G) משפט: יהי G גרף מכוון אזי (G אציקלי) אניקלי) משפט: יהי G גרף מכוון אזי

```
\mathcal{O}\left(|V|+|E|
ight) איז קיים אלגוריתם לבדיקת קיום מיון טופולוגי בסיבוכיות זמן ריצה G גרף מכוון אזי קיים אלגוריתם לבדיקת קיום מיון טופולוגי בסיבוכיות זמן ריצה
                                                                     (G^-משפט: יהי G גרף מכוון אזי G אציקלי) אציקלי) משפט: יהי G גרף מכוון אזי
                                            G טענה: יהי סופולוגי מהרצת DFS G משרה מיון טופולוגי על אזי G המתקבלת מהרצת ליהי יהי
                                                       \left. \left| G/_{\overrightarrow{G}} \right| < \left| G-\{v\}/_{\overrightarrow{G-\{v\}}} \right| עבורו v \in V\left(G\right) אז גרף מכוון אזי G אז מנתק: יהי G גרף מכוון ויהי v \in V אזי v \in V אזי v \in V אזי איז מורג: יהי v \in G
                                                                    .DFS (G) בהרצת low גרף אזי G ביותר: יהי G בהרצת המוקדם ביותר
                                                                      אלגוריתם למציאת כל הקודקודים המנתקים: יהיG גרף מכוון וקשיר אזי
function DetachableVertices(G):
    s \leftarrow V
     (k, f, \pi, \text{low}) \leftarrow \text{DFS}(G, s)
     A \leftarrow \operatorname{set}(V)
    if |Adj_{G_{\pi}}(s)| \neq 1 then
     A.append(s)
    for u \in V \backslash \{s\} do
         if \exists v \in children(u).low[v] \geq k[u] then
           A.append(u)
    end
    return A
                               \mathcal{O}(|V|+|E|) הינה Detachable Vertices (G) טענה: יהי G גרף מכוון וקשיר אזי סיבוכיות זמן הריצה של
                                         סענה: יהי G גרף מכוון וקשיר אזי Detachable Vertices (G) הינה קבוצת כל הקודקודים המנתקים.
וכן uכי מסלול מ־u גרף מכוון אזי קבוצה C\subseteq V מקסימלית בגודלה עבורה לכל u גרף מכוון אזי קבוצה אי מקסימלית בגודלה עבורה לכל
                                                                                                                                                   u^-ט ל־u^-
                                             G^T=(V,E') אזי אזי E'=\{(v,u)\mid (u,v)\in E\} אזי גרף מכוון נגדיר אזי יהי G אזי איי
                                                         (G^T) אזי (G^T) אזי (G^T) אזי איי רף מכוון ותהא אזי ((G^T) אזי ((G^T) אזי רף מכוון ותהא
                                                                אלגוריתם קוסראג'ו־שריר למציאת רכיבים קשירים היטב: יהי G גרף מכוון אזי
function SCC(G):
    (k, f, \pi) \leftarrow \text{DFS}(G)
     /* In the next line, in the main loop of DFS we go through the vertices in decreasing order of f[u]
                                                                                                                                                      */
    (k', f', \pi') \leftarrow \text{DFS}(G^T)
    A \leftarrow \operatorname{set}(\operatorname{set}(V))
    for v \in V do
         A.append \left( [v]_{\overrightarrow{G_{\pi}^T}} \right)
    end
    return A
   .G^{*}=\left(\operatorname{SCC}\left(G
ight),E^{*}
ight) אזי E^{*}=\left\{ \left(A,B
ight)\in\operatorname{SCC}\left(G
ight)^{2}\mid\exists u\in A.\exists v\in B.\left(u,v
ight)\in E
ight\} אזי היי G גרף הרכיבים: יהי
                                                                                            אלגוריתם למציאת גרף הרכיבים: יהי G גרף מכוון אזי
```

```
 \begin{aligned} &(u,v) \in L \text{ do} \\ &\text{if } [v] \xrightarrow[G_{\pi}^T]{} \neq [u] \xrightarrow[G_{\pi}^T]{} \text{ then} \\ & \bigg| E^*.\text{append} \left( \left( [v] \xrightarrow[G_{\pi}^T]{}, [u] \xrightarrow[G_{\pi}^T]{} \right) \right) \end{aligned} 
     end
     return (V^*, E^*)
                                                                                                                  למה: יהי G גרף מכוון אזי G^st אציקלי.
                                                                                                                     אזי U\subseteq V אזי גרף ותהא G יהי
                                                                                                              .k\left( U
ight) =\min_{u\in U}\left( k\left[ u
ight] 
ight) זמן גילוי: •
                                                                                                           f(U) = \max_{u \in U} (f[u]) זמן נסיגה: •
                                         f\left(C_{2}
ight) < f\left(C_{1}
ight) אזי אזי \left(C_{1},C_{2}
ight) \in E\left(G^{st}
ight) באשר רק"ה באשר רק"ה מכוון יהיו הייז G יהיי היי
                               f\left(C_{2}
ight)>f\left(C_{1}
ight) אזי אזי איזי \left(C_{1},C_{2}
ight)\in E\left(\left(G^{T}
ight)^{*}
ight) באשר באשר רק"ה באשר מסקנה: יהי G גרף מכוון יהיו
                                                                         (C\in \operatorname{SCC}(G))אזי (C\cap G)האינ משפט: יהי G גרף מכוון ויהי ויהי אזי C\subseteq V
                                                                                              G^* = \text{KosarajuSharir}(G) אזי גרף מכוון אזי G גרף מכוון אזי
                                                                  \exists v \in V. \exists s \in S. s 	o v המקיימת S \subseteq V הכוון אזי גרף מכוון אזי יהי
                                                                                    אלגוריתם למציאת קבוצת מוצא מינימלית: יהי G גרף מכוון אזי
function MinimalOriginSet(G):
    A \leftarrow \operatorname{set}(V(G))
     G^* \leftarrow \text{ComponentGraph}(G)
     for C \in V(G^*) do
         v \leftarrow \{u \in C \mid \nexists w \in V(G) \backslash C.(w,u) \in E(G)\}
          A.append(v)
     end
     return A
                                                                       . קבוצת מוצא מינימלית MinimalOriginSet (G) אזי מכוון אזי G יהי הי G גרף מכוון אזי
                                  \mathcal{O}\left(|V|+|E|
ight) הינה MinimalOriginSet (G) טענה: יהי G גרף מכוון וקשיר אזי סיבוכיות זמן הריצה של
\mathcal{O}\left(|V|+|E|
ight) איז קיים אלגוריתם הבודק האם קיים הילוך \sigma העובר על S\subseteq V איז קיים אלגוריתם הבודק האם \sigma
                                                                                             (G,w) אזי w:E	o\mathbb{R} גרף ממושקל: יהי
                                                V\left(T
ight)=V\left(G
ight) עץ וכן T באשר באשר אי תת־גרף אזי תת־גרף קשיר לא מכוון אי תת־גרף T\leq G באשר
                                          .w\left(T
ight) = \sum_{e \in E\left(T
ight)} w\left(e
ight) אזי פורש עץ פורש משקל אמכוון ויהי קשיר א מכוון אזי Gיהי יהי משקל עץ פורש: יהי
      .w\left(T
ight)=\min\left\{ w\left(S
ight)\mid G עץ פורש מינימלי (עפ"מ): יהי G גרף קשיר לא מכוון אזי עץ פורש T\leq G עבורו אזי עץ פורש זהי G יהי
                                                                                     A \uplus B = V(G) עבורם A, B \subseteq V(G) אזי אזי G יהי יהי
                               \{(u,v)\in E\left(G
ight)\mid (u\in A)\land (v\in B)\} חתך אזי A,B\subseteq V\left(G
ight) גרף ויהי G גרף יהי
                                                          . בעל מעגל יחיד T+\{e\} אזי e\in E\left(G\right)ackslash E\left(T
ight) בעל מעגל יחיד יהי T\leq G יחיד.
עץ T+\{e_1\}-\{e_2\} עץ פורש תהא עץ פורש e_2\in E (T+\{e_1\}) ותהא ותהא ותהא e_1\in E (G)\setminus E עץ פורש תהא עץ פורש תהא
                                                                                                                                                             פורש.
                                                           . טענה: יער בעל שני עצים T-\{e\} אזי אי פורש ותהא עצים עץ פורש ותהא T=\{e\}
                     [v]_{\overbrace{T-\{e\}}},V\left(G
ight)\setminus\left[v\right]_{\overbrace{T-\{e\}}} אזי v\in V\left(G
ight) ויהי e\in E\left(T
ight) חתך של T\leq G מסקנה: יהי T\leq G
                                                          אלגוריתם גנרי למציאת עץ פורש מינימלי: יהי G גרף קשיר לא מכוון וממושקל w אזי
```

function KosarajuSharir(G):

 $V^* \leftarrow \operatorname{SCC}(G)$ $E^* \leftarrow \operatorname{set}((V^*)^2)$ for $(u, v) \in E$ do

```
function MST(G, w):
       color \leftarrow dict(E)
       for e \in E do
        |\operatorname{color}[e]| = \operatorname{White}
       end
       while \exists e \in E.color[e] = White do
             \mathsf{Blueless} \leftarrow \{A \subseteq V \mid \forall e \in (A^2 \cap E).\mathsf{color}[e] \neq \mathsf{Blue}\}
             Redless \leftarrow \{ \sigma \text{ circle in } G \mid \forall i \in [\text{len}(\sigma)].\text{color}[(\sigma[i], \sigma[i+1])] \neq \text{Red} \}
             if Blueless \neq \emptyset then
                    A \leftarrow \text{Blueless}
                    f \leftarrow \operatorname{argmin}_{e \in A^2 \cap E}(w(e))
                    color[f] = Blue
             if Redless \neq \emptyset then
                    \sigma \leftarrow \text{Redless}
                     f \leftarrow \operatorname{argmax}_{e \in \sigma}(w(e))
                    color[f] = Red
       end
      return (V, \{e \in E \mid \operatorname{color}[e] = \operatorname{Blue}\})
```

 $e \in E$ אזי קיימת MST (G) באיטרציה של color [a]= White עבורה ותהא $a \in E$ אוי ותהא w ותהא אזי קיימת אויר ניתוח לארגעה

. אות אובעת |E| צובעת MST (G) אזי w אווע מסקנה: יהי G גרף אור קשיר איז מסקנה:

עפ"מ עבורו אזי פענה: איטרציה אזי מכוון וממושקל אזי אזי בכל איטרציה אזי עפ"מ עבורו אזי עפ"מ עבורו אזי אזי גרף אזי איזי אזי ענה: יהי אזי לא מכוון וממושקל עפ"מ עבורו

- $.e\in E\left(T
 ight)$ מתקיים color $\left[e
 ight] =$ Blue המקיימת $e\in E$ לכל
- $.e \notin E\left(T
 ight)$ מתקיים color $[e]=\mathrm{Red}$ המקיימת $e \in E$ לכל

G עפ"מ של MST G עפ"מ אזי w אוי מסקנה: יהי G גרף עפ"מ אל עפ"מ ער מסקנה: יהי

אזי w אזי וממושקל אזי אינימלי: יהי G אזי פורש מינימלי: אזי אלגוריתם פרים למציאת אי

```
function Prim's Algorithm (G):
```

```
color \leftarrow dict(E)
U \leftarrow \operatorname{set}(V)
for e \in E do
     color[e] = White
end
r \leftarrow V
U.append(r)
while U \neq V do
      (u,v) \leftarrow \operatorname{argmin}_{e \in U \times (V \setminus U)}(w(e))
     color[(u, v)] = Blue
     U.append(v)
     for w \in U do
           if (w,v) \in E then
             |\operatorname{color}[(w,v)]| = \operatorname{Red}
     end
end
return (V, \{e \in E \mid \operatorname{color}[e] = \operatorname{Blue}\})
```

. נעשית כמו באלגוריתם אזי כל צביעת קשת באלגוריתם Prim'sAlgorithm (G) טענה: יהי G גרף קשיר לא מכוון וממושקל w אזי כל צביעת קשת באלגוריתם G עפ"מ של Prim'sAlgorithm (G) אזי w אוון w אזי w אוון w אוון w אזי w אוון w א

משפט: עם ערימת מינימום בסיבוכיות אז עם Prim'sAlgorithm (G) אזי ניתן לממש אזי ניתן ניתן אזי עס ערימת מינימום אזי יהי G יהי G יהי G יהי G יהי G יהי G יהי לממש אזי ניתן לממש אוני ניתן לממש אזי ניתן לממש אזי ניתן לממש אוני ניתן לממש

 $\mathcal{O}\left(|E|+|V|\log|V|\right)$ בסיבוכיות זמן ריצה Prim'sAlgorithm (G) אזי ניתן לממש אזי ניתן לממש אזי ניתן לממש אזי ניתן למציאת עץ פורש מינימלי: יהי G גרף קשיר לא מכוון וממושקל אזי w אלגוריתם קרוסקל למציאת עץ פורש מינימלי: יהי

```
\begin{array}{l} \text{function Kruskal'sAlgorithm}(G) \text{:} \\ & \operatorname{color} \leftarrow \operatorname{dict}(E) \\ & L \leftarrow \operatorname{sort}(E) \\ & \text{for } (u,v) \in L \text{ do} \\ & | & \operatorname{if} \exists \sigma \in \{u \rightarrow v\}. \forall i \in [n]. \operatorname{color}(\sigma(i)) = \operatorname{Blue \ then} \\ & | & \operatorname{color}[e] = \operatorname{Red} \\ & | & \operatorname{color}[e] = \operatorname{Blue} \\ & | & \operatorname{end} \\ & | & \operatorname{return} \ (V, \{e \in E \mid \operatorname{color}[e] = \operatorname{Blue}\}) \end{array}
```

. נעשית כמו באלגוריתם אזי כל צביעת קשת באלגוריתם אזי כמו באלגוריתם נשית כמו באלגוריתם הגנרי. אזי כמו באלגוריתם מסקנה: יהי G גרף קשיר לא מכוון וממושקל w אזי ל צביעת אזי G גרף קשיר לא מכוון וממושקל w אזי G גרף קשיר לא מכוון וממושקל אזי G

עם Union-Find עם Kruskal'sAlgorithm (G) אי איי ניתן לממש איי ניתן עם איי ניתן עם איי ניתן איי ניתן עם עם U גרף קשיר לא מכוון וממושקל w איי ניתן לממש איי ניתן U וכן סיבוכיות אמן ווממושקל $\mathcal{O}\left(|E|\log|V|\right)$.

אזי שח"ע אזי w באשר באשר א מכוון וממושקל א מינימלי: יהי מינימלי: יהי מינימלי שאר Borůvska אלגוריתם

function Borůvska's Algorithm (G):

```
\begin{array}{l} \operatorname{Trees} \leftarrow \operatorname{set}(\operatorname{set}(G)) \\ \text{for } v \in V \text{ do} \\ | \operatorname{Trees.append}(\{v\}) \\ \text{end} \\ \text{while } |Trees| \neq 1 \text{ do} \\ | \operatorname{for } T \in Tree \text{ do} \\ | (u,v) \leftarrow \operatorname{argmin}_{(u,v) \in V(T) \times V(G)}(w((u,v))) \\ | S \leftarrow \{S \in Tree \mid u \in V(S)\} \\ | S \leftarrow S + T + \{(u,v)\} \\ | \operatorname{Trees.Remove}(T) \\ | \text{end} \\ \text{end} \\ A \leftarrow \operatorname{Trees} \\ \text{return } A \end{array}
```

 $\mathcal{O}\left(|E|\log|V|\right)$ הינה Borůvska's Algorithm (G) אזי סיבוכיות און חח"ע איז חח"ע באשר ש הינה מכוון וממושקל ש באשר ש חח"ע איז קיים ויחיד T < G עפ"מ.

G עפ"מ של Borůvska's Algorithm (G) עפ"מ של באשר w באשר ש מכוון וממושקל א גרף קשיר לא מכוון וממושקל

 $T \leq G$ משפט: יהי G גרף קשיר לא מכוון וממושקל w תהא ערהא יהי $A \subseteq E$ יהי $A \subseteq E$ משפט: יהי $A \subseteq E$ אזי קיים עפ"מ $e \notin E(T)$ וכן $A \subseteq E(T)$ עבורו

 $lpha_i=eta_i$ וכן n=m וכן אזי הקשתות כולל כפילויות משקליי ה $lpha_1\leq\ldots\leqeta_m$ ו־מענה: יהיו עפ"מ ויהיו עפ"מ ויהיו $lpha_1\leq\ldots\leqlpha_n$ וכן הייו לכל וכל לכל ויהיו הייו הייו משקליי הייו משקליי ויהיו משקליי הייו משקליי הייו משקליי ויהיו משקליי הייו משקליי ויהיו משקליי הייו משקליי הייו משקליי ויהיו משקליי הייו משקליי ויהיו משקליי הייו משקליי הייו משקליי ויהיו משקליי הייו משקליי הייו משקליי הייו משקליי הייו משקליי ויהייו משקליי הייו משקליי ויהייו משקליי הייו משקליי הייו

w אלגוריתם למציאת עץ פורש מינימלי המכיל מספר מקסימלי של קשתות מקבוצה מסוימת: יהי G גרף קשיר לא מכוון וממושקל ותהא $F\subseteq E$ אזי

```
function PrioritizeMST(G, w, F):
     \omega \leftarrow (V(G) \rightarrow \mathbb{R})
     m \leftarrow \min(\{|w(e_1) - w(e_2)| \mid (e_1, e_2 \in E) \land (w(e_1) \neq w(e_2))\}
     for e \in E do
         if e \in F then
          \omega(e) \leftarrow w(e)
         else
           | \omega(e) \leftarrow w(e) + \varepsilon
     end
     return Kruskal'sAlgorithm(G, \omega)
                                           w'טענה: תהא T עפ"מ ביחס ל־w PrioritizeMST אזי עפ"מ ביחס ל־T עפ"מ ביחס ל־T עפ"מ ביחס ל
                                                                          wעפ"מ ב־G ביחס עפ"מ ב־G אזי PrioritizeMST (G,w) אזי אזי די מסקנה: תהא
                                                        אזי i \in [n] לכל s_i < f_i באשר בעיית שיבוץ המשימות: יהיו יהיו s_i < f_i באשר בעיית
                                                                                   \max\left\{|A|\mid (A\subseteq\left\{[s_1,f_i]\right\}_{i=1}^n)\wedge (\forall I,J\in A.I\cap J=\varnothing)\right\}
                                  אזי i \in [n] אזי אינוריתם חמדן לבעיית שיבוץ המשימות: יהיו יהיו s_i < f_i באשר באשר אזי אלגוריתם אזי
function ActivitySelectionProblem(s_1, \ldots, s_n, f_1, \ldots, f_n):
     F \leftarrow \operatorname{list}([s_1, f_1], \dots, [s_n, f_n])
     /* In the next line, we put all the parameters in F and sort it based on f_i
     F \leftarrow \operatorname{sort}(\{f_1, \dots, f_n\})
     X \leftarrow \operatorname{list}([s_1, f_1], \dots, [s_n, f_n])
     X \leftarrow \varnothing
     for k \in [1, \ldots, n] do
```

 $\mathcal{O}(n\log(n))$ הינה ActivitySelectionProblem אי סיבוכיות זמן הריצה של $s_i < f_i$ באשר הינה $s_1 \ldots s_n, f_1 \ldots f_n \in \mathbb{R}$ טענה: יהיו

 $.\ell(\sigma) = \min\{\ell(\tau) \mid au \in \{s o t\}\}$ מסלול קצר ביותר בין קודקודים: יהי G גרף ממושקל ℓ ויהיו $s,t \in V$ אזי מסלול קצר ביותר בין קודקודים: יהי למה: יהיו t קשת השייכת למעגל שלילי אזי קיים מסלול לt וכן כל מסלול מ־t לא עובר דרך קשת השייכת למעגל שלילי אזי קיים מסלול למה:

למה: יהיו sעבורם קיים מסלול מיsלי לכן קיים מסלול מיsל לכל אזי לא קיים מסלול מיsלמה: יהיו

sבעיית המסלולים הקצרים מנקודת מוצא (SSSP): יהי S גרף מכוון ממושקל $s\in V$ אזי איי $T\leq G$ עץ פורש בו כל מסלול מ

עבורו X^* באיטרציה פתרון לבעיה אכניים ActivitySelectionProblem משפט: לכל באיטרציה ה־ $k \in [n]$

. מסקנה: יהיו איבוץ בעיית שיבוץ באשר אזי אזי אוא איז אוא איז המשימות. באשר $s_1 \dots s_n, f_1 \dots f_n \in \mathbb{R}$ מסקנה: יהיו $.\ell=1$ בורו גרף הוא ℓ הכוונה היא "אורך הקשת" ובכך אנו "מכלילים" גרף ללא משקל בתור גרף עבורו הקשת" ובכך אנו

רביותר. $\sigma[i],\ldots\sigma[i+k]$ אזי $\sigma[i+k]$ מסלול קצר ביותר ויהי מסלול קצר ביותר ויהי אזי ℓ אוי וממושקל ℓ ויהי ומכוון וממושקל בלגוריתם בלמן-פורד מדיים ביותר מקדים ביותר מנקודת מוצא: אזי אוי

if $X = \emptyset$ then X.append(L[k])

end return X

X.append(L[k])

else if $L[k] \cap X$.last = \emptyset then

*/

 $([s_i, f_i] \in X^*) \iff ([s_i, f_i] \in X)$

tל־s פשוט קצר ביותר בין

tל־ל s פשוט קצר ביותר בין

Gל־ט הינו מסלול קצר ביותר ב־v

 $.\delta\left(s,t
ight)=\inf_{\sigma\in\{s o t\}}\ell\left(\sigma
ight)$ אזי $s,t\in V$ אויהיו הרף ממושקל G גרף ממושקל יהי

 $\delta\left(u,v
ight) \leq \delta\left(u,w
ight) + \delta\left(w,v
ight)$ אזי $u,v,w \in V$ למה אי־שיוויון המשולש: יהיו

```
if d[v] > d[u] + \ell(u, v) then
         d[v] \leftarrow d[u] + \ell(u, v)
         \pi[v] \leftarrow u
         return 1
    return 0
      \delta(s,v) \leq d\left[u\right] + \ell\left((u,v)\right) אזי \delta(s,u) \leq d\left[u\right] מתקיים BellmanFord באשר (u,v) \in E באשר (u,v) \in E למה: יהיו
אזי לאחר הרצת \delta\left(s,v\right)\leq d\left[v\right] וכן הרצת BellmanFord מסקנה: יהיו \delta\left(s,v\right)\leq d\left[v\right] בריצת הרצת בריצת הרצת וע, או וכן בריצת הרצת הרצת בריצת הרצת
                                                                                                         \delta(s,v) \leq d[v] מתקיים Relax (u,v)
נקבל כי לכל Relax עבורו לכל איז אי אי אי מתקיים BellmanFord בריצת איז ארו לכל s\in V איז למה: יהי א s\in V למה:
                                                                                                               \delta\left(s,v
ight) \leq d\left[v
ight] מתקיים v \in V
        d\left[v
ight]=\infty מסקנה: יהיו Relax מתקיים BellmanFord מתקיים מחקיים אזי לאחר כל רצף פעולות איז פביצת או מסקנה: יהיו
d\left[v
ight]=\delta\left(s,v
ight) בקבל כי Relax מסקנה: יהיו איי לאחר כל רצף מתקיים BellmanFord מתקיים BelmanFord מסקנה:
                מתקיים הפעלת אזי לאחר הפעלת מחקיים הפוlmanFord מתקיים מחלול אזי לאחר הפעלת איי למה: יהיו \sigma \in \{s 	o t\} ויהי שפעלת מתקיים מחלול אזי לאחר הפעלת מחלים יהיו
                                                                d\left[t\right] \leq \ell\left(\sigma\right) נקבל כי (Relax \left(\sigma\left[0\right],\sigma\left[1\right]\right),\ldots, Relax \left(\sigma\left[n-1\right],\sigma\left[n\right]\right)
וכן s\in V יוצא מהלולאה הראשית כאשר וכן אליו מ־s אזי שלילי אשר ניתן להגיע אליו איז שלילי אשר ניתן אליו מים אליו מים אליו מאר איים מעגל שלילי אשר ניתן להגיע אליו מי
                                                                                            d\left[v
ight] = \delta\left(s,v
ight) מתקיים v \in V מחזיר סוכן לכל
וכן i=|V| יוצא מהלולאה הראשית כאשר i=|V| אשר ניתן להגיע אליו מיז איזי אוליו פולאה הראשית כאשר i=|V| וכן s\in V
                                                                                                                                           מחזיר 1.
                                                                                                                          מסקנה: יהיs \in V אזי
                                                          (sיים מעגל שלילי אשר ניתן החזיר (קיים מעגל שלילי אליו מ־) BellmanFord) •
       .(d [v]=\delta\left(s,v\right) מתקיים מעגל שלילי אשר ניתן להגיע אליו מ־s וכן לכל אישר מעגל שלילי אשר מעגל שלילי אשר ניתן להגיע אליו מ
E_{\pi} = \{(\pi \left[v\right], v) \mid v \in V_{\pi} \setminus \{s\}\} נכך וכך V_{\pi} = \{v \in V \mid \text{BellmanFord } (G, s) . \pi \left[v\right] \neq \text{Null}\} \cup \{s\} נעץ יהי וכל s \in V יהי BellmanFord יהי
                                                                                                                            G_{\pi}=(V_{\pi},E_{\pi}) אזי
                             . אזי BellmanFord אזי BellmanFord אזי BellmanFord מעגל שלילי. אויהי מעגל בעץ א ויהי ויהי א ויהי s \in V איזי מעגל שלילי.
                                   . אינ עא BellmanFord אינ אליו מs איזי אליו שלילי אשר ניתן שלילי אינ אליו איזי אזי איזי א איזי א איזי א איזי א s \in V
                            מכיל מעגל שלילי. BellmanFord אזי אי אי שלילי אשר ניתן שלילי שלילי שלילי שלילי שלילי שלילי אשר ניתן אליו מ־s\in V
                                                                                   .SSSP מסקנה: יהי BellmanFord אזי s \in V מסקנה:
                                                                \mathcal{O}\left(|E|\cdot|V|
ight) בעל סיבוכיות זמן ריצה BellmanFord משפט: יהי s\in V משפט
                                    \mathcal{O}(|E|\log^2(|V|)\log(|V|\cdot W)\log\log(|V|))
               אליים שליליים ארף מכוון חסר מעגלים שליליים: יהי G גרף מכוון חסר מעגלים שליליים אזי
```

function BellmanFord(G, ℓ, s):

while $(i \leq |V|) \wedge (c > 0)$ do

 $c \leftarrow c + \text{Relax}(\ell, d, u, v)$

for $(u,v) \in E$ do

function Relax(ℓ, d, u, v):

end $(c, i) \leftarrow 1$

end return c

 $\begin{array}{l} \mathbf{end} \\ i \leftarrow i+1 \end{array}$

```
\begin{array}{c|c} \text{function IsZeroCircle}(G,\ell) \text{:} \\ V \leftarrow V \uplus \{s\} \\ \text{for } v \in V \backslash \{s\} \text{ do} \\ & E \leftarrow E \cup \{(s,v)\} \\ & \ell((s,v)) \leftarrow 0 \\ \text{end} \\ & (c,d,\pi) \ gets \text{BellmanFord}(G,\ell,s) \\ \text{for } e \in E \text{ do} \\ & \text{if } d(v) \neq d(u) + \delta(u,v) \text{ then} \\ & \mid E \leftarrow E \backslash \{(s,v)\} \\ \text{end} \\ & \text{if } \exists \text{ circle } C \in G \text{ then return True} \\ & \text{return False} \end{array}
```

טענה: בריצת IsZeroCircle אחר מחיקת כל הקשתות נקבל את גרף מק"ב מC אזי C וואסר מחיקת כל הקשתות קיים מעגל C אזי IsZeroCircle אחר מחיקת כל הקשתות קיים מעגל C אזי וואסענה: יהי C מעגל עבורו C אזי בריצת אזי בריצת וואסענה: יהי C מעגל עבורו C אזי בריצת אזי בריצת וואסר מעגל ממשקל C בגרף מחזיר IsZeroCircle) וואסר מעגלים שליליים אזי C בעל מעגל ממשקל C הינה C וואסר מעגלים שליליים אזי סיבוכיות זמן הריצה של IsZeroCircle הינה C מכוון חסר מעגלים שליליים אזי סיבוכיות מון אביקלי: יהי C מכוון אציקלי ויהי C אזי אלגוריתם למציאת מסלולים קצרים ביותר מנקודת מוצא בגרף מכוון אציקלי: יהי C מכוון אציקלי ויהי C

```
function SSSP-DAG(G, \ell, s):
    (d,\pi) \leftarrow \operatorname{dict}(V)
    d[s] \leftarrow 0
    for u \in V do
         d[u] \leftarrow \infty
         \pi[u] \leftarrow \text{None}
    end
    /* Knuth'sAlgorithm is an algorithm to compute a topological sorting.
                                                                                                                                                        */
    f \leftarrow \text{Knuth'sAlgorithm}(G)
    for i \in [1, \ldots, |V|] do
         for v \in Adj(f(i)) do
          Relax((f(i), v))
         end
    end
    return (d,\pi)
```

טענה: יהי G מכוון אציקלי ויהי $s\in V$ אזי SSSP-DAG (G) פתרון לבעיית SSSP-DAG (G) אזי סענה: יהי G מכוון אציקלי ויהי $s\in V$ אזי סיבוכיות זמן הריצה של SSSP-DAG (G) הינה (|E|+|V|). אלגוריתם דייקסטרה למציאת מסלולים קצרים ביותר מנקודת מוצא בגרף ללא משקלים שליליים: יהי G גרף מכוון עבורו $\ell\geq 0$ ויהי S אזי

```
d[s] \leftarrow 0
    for u \in V do
         d[u] \leftarrow \infty
         \pi[u] \leftarrow \text{None}
    end
     Q.insert((s, d[s]))
    while Q \neq \varnothing do
         u \leftarrow Q.\min
         for v \in Adj(u) do
             if d[v] = \infty then
                  \pi[v] \leftarrow u
                  d[v] \leftarrow d[u] + \ell(u, v)
                  Q.insert((v, d[v]))
              else if d[u] + \ell(u, v) < d[v] then
                  \pi[v] \leftarrow u
                   d[v] \leftarrow d[u] + \ell(u, v)
                  Q.decrease-key((v, d[v]))
         end
    end
    return (d,\pi)
                                                   d\left[u
ight]=\delta\left(s,u
ight) אזי מרקה מ־Dijkstra למה: יהיו אזי אזי אזי אזי מרוב בריצת למה: יהיו
                                                                             \ell \geq 0 כאשר SSSP משפט: יהי היי אוי משפט: אזי אזי משפט משפט יהי
                  \mathcal{O}\left(|E|+|V|\cdot\log\left(|V|
ight)
ight) איז ניתן לממש את Dijkstra אי בסיבוכיות אמן איז ניתן לממש את s \in V משפט: יהי
D_{u,v}=\delta\left(u,v
ight) מתקיים u,v\in V עבורו לכל D\in M_{|V|}\left(\mathbb{R}
ight) אזי אזי B גרף מכוון וממושקל אזי מרון וממושקל אזי מתקיים אזי מתקיים מכוון וממושקל אזי
                                  \Pi(\Pi_{u,v},v)\in\sigma מ־ע ל־\sigma מ"ע מ\sigma מ"ע מיע מסלול קצר א קיים מסלול קצר ביותר \Pi\in M_{|V|}(V) וכן
                                                                                                 p:V	o\mathbb{R} אזי גרף אזי G יהי פוטנציאל: יהי
מתקיים (u,v)\in E מתקיימים u,v\in V מונקציית משקל מונקציית פונקציית פונקציית פונקציית פונקציית משקל מותאמת: תהא
                                                                                                       \ell_p((u,v)) = \ell((u,v)) + p(u) - p(v)
                          \ell_p(\sigma)=\ell\left(\sigma
ight)+p\left(s
ight)-p\left(t
ight) אזי ל־ז אזי s,t\in V משפט: תהא s,t\in V משפט: תהא s,t\in V משפט: תהא
(מסלול קצר ביותר ביחס ל־t מסלול מיs ויהי מסקנה: s ויהי היו וויהי s פונקציית פוטנציאל היו וויהי s מסלול מt
                                                                                                                                   ביותר ביחס ל־(\ell_p).
                                                                        \ell_p\left(\sigma
ight)=\ell\left(\sigma
ight) מסקנה: תהא מונקציית פוטנציאל ויהי מסקנה פונקציית פונקציית פוטנציאל ויהי
                                            .\delta_{\ell}\left(s,t
ight)=\delta_{\ell_{p}}\left(s,t
ight)-p\left(s
ight)+p\left(t
ight) אזי s,t\in V מסקנה: תהא p פונקציית פוטנציאל ויהיו
                                    \ell_p \geq 0 בורה p עבורה פוטנציאל פיזבילית: יהי p גרף מכוון וממושקל \ell אזי פונקציית פוטנציאל פיזבילית: יהי
          משפט: יהי G גרף מכוון וממושקל \emptyset אזי (קיימת פונקציית פוטנציאל פיזבילית)(G) מצוייד עם \emptyset חסר מעגלים שליליים).
```

אלגוריתם למציאת פונקציית פוטנאציל פיזבילית: יהי G גרף מכוון וממושקל אזי

function Dijkstra (G, ℓ, s) : $\begin{array}{c|c} Q \leftarrow \text{heap}((V, \text{int})) \\ (d, \pi) \leftarrow \text{dict}(V) \end{array}$

```
function FeasiblePotential(G, \ell):
         G' \leftarrow G \uplus \{s\}
         for v \in V(G) do
                  E(G') \leftarrow E(G') \cup \{(s,v)\}
                 \ell((s,v)) \leftarrow 0
         end
         c \leftarrow \text{BelmanFord}(G', \ell, s)
         if c=1 then return None
         p \leftarrow (V(G) \rightarrow \mathbb{R})
         for v \in V(G) do
           p(v) \leftarrow \delta(s, v)
         end
         return p
                                                                                                                                                                                                               טענה: יהי G גרף מכוון וממושקל \ell אזי
                                                                                                            .(None מחזיר FeasiblePotential (G,\ell)) בעל מעגל שלילי בעל מעגל מעגל \ell מצוייד עם G
                   מחזיר פונקציית פוטנציאל פיזבילית). FeasiblePotential (G,\ell) פיזבילית פוטנציאל פיזבילית פוטנציאל פיזבילית). \ell
                                                                                                                 אלגוריתם ג'ונסון לבעיית כל המסלולים הקצרים: יהי G גרף מכוון וממושקל אזי
function Johnson (G, \ell):
         p \leftarrow \text{FeasiblePotential}(G, \ell)
         if p = None then return None
         \ell_p \leftarrow (E \to \mathbb{R})
         for (u,v) \in E do
           \ell_p((u,v)) = \ell((u,v)) + p(u) - p(v)
         end
          (D_{\ell_p}, D_{\ell}) \leftarrow M_{|V|}(\mathbb{R})
         \Pi \leftarrow M_{|V|}(E)
         for v \in V do
                  (d,\pi) \leftarrow \text{Dijkstra}(G,\ell_p,v)
                  /* Here D and \Pi will be simplified, to get a solution to APSP as needed we can modify a bit Dijkstra's
                          algorithm to calculate D and \Pi on the way to get constant time for this assignment.
                  D_v \leftarrow d
                \Pi_v \leftarrow \pi
         end
         for (u,v) \in E do
                  D_{\ell}((u,v)) = D_{\ell_p}((u,v)) - p(u) + p(v)
         return (D,\Pi)
                                                                                                                           .
APSP משפט: יהי G גרף מכוון וממושקל אזי אזי \ell אזי וממושקל משפט: יהי G גרף מכוון וממושקל
                              \mathcal{O}\left(|E|\,|V|+|V|^2\log\left(|V|
ight)
ight) הינה הינה אינ סיבוכיות אמן הריצה אז סיבוכיות הינה אזי סיבוכיות אזי סיבוכיות הינה אזי סיבוכיות אונדי סיבונית אונדי סיבונית אונדי סיבונית אונדי סיבונית אונדי סיבונית אונדית אונד
                                                                                            A st B \in M_{m 	imes k} \left( \mathbb{F} 
ight) אזי B \in M_{n 	imes k} \left( \mathbb{F} 
ight) ותהא A \in M_{m 	imes n} \left( \mathbb{F} 
ight) תהא :Min Plus מכפלת
                                                                                                                                                                                                 (A*B)_{i,j} = \min_{k=1}^{n} (A_{i,k} + B_{k,j}) באשר
                                                                                                              \mathcal{O}\left(n^3
ight) אינ סיבוכיות אמן הריצה של A*B\in M_n\left(\mathbb{F}
ight) הינה טענה: תהיינה
                                                                                                                                          A*B*C=(A*B)*C אזי A,B,C\in M_n(\mathbb{F})טענה: תהיינה
                                                                                                              .\delta_k(s,v) = \min\{\ell(\sigma) \mid (\sigma \in \{s \to v\}) \land (|\sigma| \le k)\} אזי s,v \in V סימון: יהיו
                                                                                                                                     .\delta_{k}\left(s,v
ight)=\min_{u\in V}\left(\delta_{k-1}\left(s,v
ight)+\ell\left(u,v
ight)
ight) אזי s,v\in V טענה: יהיו
                                                                                                    v\in V לכל (\delta_{k}\left(s
ight))_{v}=\delta_{k}\left(s,v
ight) באשר \delta_{k}\left(s
ight)\in M_{1	imes |V|}\left(\mathbb{R}
ight) לכל s\in V סימון: יהי
L_{u,v} = \left\{egin{array}{ll} 0 & u=v \\ \ell((u,v)) & (u 
eq v) \land ((u,v) \in E) \\ \infty & (u 
eq v) \land ((u,v) 
eq E) \end{array} 
ight. מתקיים u,v \in V מתקיים באשר לכל L \in M_{|V|}\left(\mathbb{R}\right) אזי L \in M_{|V|}\left(\mathbb{R}\right) אזי באשר לכל יהי
```

 $.\delta_k\left(s
ight)=\delta_{k-1}\left(s
ight)*L$ מסקנה: יהי $s\in V$ מטריצת מטריצת מטריצת ותהא ותהא $s\in V$ מתקיים מסקנה: $.D_{u,v}^{(k)}=\delta_k\left(u,v
ight)$ מתקיים $u,v\in V$ באשר לכל באשר $D^{(k)}\in M_{|V|}\left(\mathbb{R}
ight)$ אזי אי

```
D^{(k)}=L^k אזי מטריצת מטריצת L\in M_{|V|}\left(\mathbb{R}
ight) טענה: תהא
                                                             D^{(k)}=D^{(m)} אזי k,m\geq |V|-1 וחסר מעגלים שליליים ויהיו וממושקל \ell אזי מכוון וממושקל יהי
                                  D_{n,v}^{(|V|)} < 0 אזי שלילי שלילי במעגל שלילי ויהי עv \in V המופיע במעגל שלילי אזי וממושקל ענה: יהי
                                                                  .APSP מסקנה: תהא L \in M_{|V|}\left(\mathbb{R}
ight) מטריצת המשקל אזי וL \in M_{|V|}\left(\mathbb{R}
ight)
                                                             אלגוריתם חזקה איטרטיבית: תהא A\in M_n\left(\mathbb{R}
ight) אלגוריתם חזקה איטרטיבית אוי
function RepeatedSquaring(A, \star):
     (a_k \dots a_0) \leftarrow (n)_2
          B = B \star A
                                            .APSP פתרון לבעיית RepeatedSquaring (L,*) אזי מטריצת מטריצת מטריצת מטריצת מטריצת מטריצת המשקל מינה:
      \mathcal{O}\left(\left|V
ight|^3\log\left(\left|V
ight|
ight)
ight) הינה RepeatedSquaring (L,*) שענה: תהא L\in M_{\left|V\right|}\left(\mathbb{R}
ight) מטריצת המשקל אזי סיבוכיות זמן הריצה של
                                              מתקיים u,v\in V באשר לכל באשר F^{(k)}\in M_{n}\left(\mathbb{R}
ight) אזי און ויהי ויהי גרף מכוון ויהי גרף מכוון ויהי
                                            F_{u,v}^{(k)} = \min \left\{ \ell\left(\sigma\right) \mid \left(\sigma \in \left\{u 
ightarrow v
ight\}
ight) \wedge \left(עוברת דרך הצמתים עוברת למעט בהתחלה ובסוף \left[k\right]
F_{u,v}^{(0)}=L מתקיים u,v\in V באשר לכל באשר F^{(0)}\in M_n\left(\mathbb{R}
ight) מטריצת מטריצת מטריצת מטריצת מטריצת מטריצת מטריצת מטריצת המשקל אזי
                                          F_{u,v}^{(k)}=\min\left\{F_{u,v}^{(k-1)},F_{u,k}^{(k-1)}+F_{k,v}^{(k-1)}
ight\} אזי u,v\in[n] גרף מכוון ויהיו ([n] , E) איזי איזי
                                                 אלגוריתם פלויד־וורשאל: יהי ([n]\,,E) גרף מכוון ותהא אלגוריתם פלויד־וורשאל: יהי
function FloydWarshall (n, L):
              if (u \neq v) \wedge (L_{u,v} < \infty) then
                | \Pi_{u,v} \leftarrow u
                \Pi_{u,v} \leftarrow \text{None}
              for v \in [n] do
                   \begin{array}{c|c} \text{if } F_{u,k} + F_{k,v} < F_{u,v} \text{ then} \\ F_{u,v} \leftarrow F_{u,k} + F_{k,v} \\ \Pi_{u,v} \leftarrow \Pi_{k,v} \end{array}
```

 $B \leftarrow M_n(\mathbb{R})$ for $i \in [k]$ do

end return B

if $a_i = 1$ then

 $A = A \star A$

 $\Pi \leftarrow M_n([n])$ for $u \in [n]$ do for $v \in [n]$ do

else

end

end

return (F,Π)

end

end end $F \leftarrow L$ for $k \in [n]$ do for $u \in [n]$ do $D^{(k)} = D^{(k-1)} * L$ אזי המשקל מטריצת מטריצת $L \in M_{|V|}(\mathbb{R})$ מסקנה: תהא

```
.APSP פתרון לבעיית FloydWarshall (n,L) איי מטריצת המשקל אזי L\in M_n\left(\mathbb{R}
ight) פתרון לבעיית L\in M_n\left(\mathbb{R}
ight) מטריצת היי
\mathcal{O}\left(n^3
ight) הינה FloydWarshall (n,L) מטריצת המשקל אזי סיבוכיות זמן הריצה של ברL\in M_n\left(\mathbb{R}
ight) הינה הינה וL\in M_n\left(\mathbb{R}
ight) הינה
                                                                     (u,v) 
otin E מתקיים u,v \in I עבורה לכל עבורה אזי I \subseteq V ארף אזי יהי G מתקיים
                             \min\left(i
ight)=\max\left\{w\left(I
ight)\mid\left(I\subseteq\left[i
ight]
ight)\wedge\left( בלתי תלויה w:\left[n
ight]
ightarrow\mathbb{R}_{>0} אזי w:\left[n
ight]
ightarrow\mathbb{R}_{>0} גרף שרוך ויהי
                                                         וכן \min (1) = w \, (1) וכן \min (0) = 0 אזי w : [n] \to \mathbb{R}_{\geq 0} וכן יהי גרף שרוך ויהי ויהי
                                                                                                                        mis(i) = max\{w(i) + mis(i-2), mis(i-1)\}\
                                                   \mathcal{O}\left(n
ight) אזי \min\left(n
ight) אזי w:[n]	o\mathbb{R}_{\geq0} אויהי בעל סיבוכיות \left(\left[n
ight],E
ight) מסקנה: יהי
A_{f(i)}=B_i עבורה ממש וחח"ע המקיימת f:[|B|]	o [|A|] עבורה קיימת אזי B\in \Sigma^* אזי אלפבית ותהא אלפבית ותהא
                                                                                                                                                                                i \in [|B|] לכל
                                                                                   B \lhd A ותהא B \in \Sigma^* ותהא ותהא A \in \Sigma^* אלפבית תהא אזי
\max\{|C|\mid (C\in\Sigma^*)\land (C\lhd A)\land (C\lhd B)\} איי A,B\in\Sigma^* אלפבית ותהיינה \Sigma אלפבית ארוכה ביותר (LCS): יהי
    \text{lcs } (k,\ell) = \max \left\{ |C| \mid (C \lhd (A_1,\ldots,A_k)) \land (C \lhd (B_1,\ldots,B_\ell)) \right\} \text{ איז } \ell \leq |B| \text{ איז } k \leq |A| \text{ תהא } A,B \in \Sigma^* \text{ סימון: תהיינה } A,B \in \Sigma^* \text{ outs.}   \text{lcs } (k,\ell) = \begin{cases} 0 & (k=0) \lor (\ell=0) \\ \log(k-1,\ell-1)+1 & (k,\ell>0) \land (A_k=B_\ell) \end{cases} \text{ with } A,B \in \Sigma^* \text{ outs.}   \text{outs.} \text{ max} \left\{ \log(k-1,\ell-1)+1 & (k,\ell>0) \land (A_k=B_\ell) \\ \max\{\log(k-1,\ell),\log(k,\ell-1)\} & (k,\ell>0) \land (A_k\neq B_\ell) \end{cases}   \text{lcs } \left( |A| \cdot |B| \right) \text{ in the constant of } A,B \in \Sigma^* \text{ outs.}   \text{adjets.} \text{ adjets.} \text{ in the constant of } A,B \in \Sigma^* \text{ outs.} 
\max\left\{|C|\mid (C\lhd A)\land (orall i.C_{i-1}\prec C_i)
ight\} אזי אוי A\in \Sigma^* אאי אלפבית בעל סדר היינ\Sigma אלפבית היי\Sigma אלפבית בעל סדר אותהא
                                                                                 A, \operatorname{sort}(A) של LCS של בעיית של LIS טענה: תהא A \in \Sigma^* אזי בעיית
                                  .lenlis (k)=\max\left\{|X|\mid ((A_1,\ldots,A_k)\, של של ווא X)\wedge (A_k מסתיים עם X)
ight\} אזי אזי A\in\Sigma^* איזי A\in\Sigma^*
                                                         .lenlis (k)=\max_{i\in[k-1]}\left\{ \mathrm{lenlis}\left(i\right)\mid A_{i}\prec A_{k}
ight\} וכך וכוווs (1)=1 אזי A\in\Sigma^{*} איזי A\in\Sigma^{*}
                                                            \pilis (k)=rg\max{\{\mathrm{lenlis}\,(i)\mid A_i\prec A_k\}} וכן \pilis (1)=\mathrm{None} אזי A\in\Sigma^* סימון: תהא
LIS מסקנה: תהא A \in \Sigma^* ויהי (x_{\pi \mathrm{lis}(\ell)(k)}, \dots, x_{\pi \mathrm{lis}(2)(k)}, x_{\pi \mathrm{lis}(k)}, x_k) איי אי k = rg \max \{ \mathrm{lenlis}(1), \dots, \mathrm{lenlis}(|A|) \} פתרון של
                                                                                                                                                \mathcal{O}\left(\left|A
ight|^{2}
ight) בעל סיבוכיות זמן ריצה
                                                                                             .min lis (m)=\min\left\{x_k\mid 	ext{lenlis}\left(k
ight)=m
ight\} אזי A\in\Sigma^* איזי A\in\Sigma^*
                                                                                                                                  . עולה ממש \min lis אזי A \in \Sigma^* עולה ממש
                      \mathcal{O}\left(|A|\cdot\log\left(|A|
ight)
ight) אזי אמן ריצה (\min\operatorname{lis}\left(1
ight),\ldots,\min\operatorname{lis}\left(\ell
ight) אזי אזי (\min\operatorname{lis}\left(1
ight),\ldots,\min\operatorname{lis}\left(\ell
ight) אזי אזי (\min\operatorname{lis}\left(1
ight)
                      \operatorname{costp}(T) = \sum_{i=1}^n \left( p_i \cdot \operatorname{depth}_T(x_i) \right) אזי \{x_1 \dots x_n\} איי עץ חיפוש בינארי עץ T ויהי ויהי p_1 \dots p_n \in (0,1] איי
                         מינימלי. Costp\left(T\right) עבורו בינארי אופטימלי: יהיו p_1\dots p_n\in(0,1] אזי עץ חיפוש בינארי סטטי אופטימלי: יהיו
                    \operatorname{costp}(T) = (\sum_{i=1}^n p_i) + \operatorname{costp}(T.\operatorname{left}) + \operatorname{costp}(T.\operatorname{right}) אינה: יהיו עץ חיפוש בינארי אזי p_1 \dots p_n \in (0,1] ויהי
מסקנה: יהיו T.left, T.right מסקנה: יהיו בינארי סטטי אופטימלי פתרון לבעיית עץ ויהי T פתרון לבעיית עץ ויהי
                                                                                                                                                       חיפוש בינארי סטטי אופטימלי.
                                                                                                                .pp (i,j)=\sum_{k=i}^{j}p_{k} אזי p_{1}\dots p_{n}\in(0,1] סימון: יהיו
                  \operatorname{cp}(i,j) = \min\left\{\operatorname{costp}(T) \mid \{x_i \dots x_j\} סימון: יהיו p_1 \dots p_n \in (0,1] ויהיו אזי x_1 \dots x_n אזי ויהיו
                                                               וכן \operatorname{cp}\left(i,i\right)=p_{i} וכן \operatorname{cp}\left(i,i-1\right)=0 אזי x_{1}\ldots x_{n} ויהיו p_{1}\ldots p_{n}\in\left(0,1\right] וכן
                                                                                                   .cp(i, j) = pp(i, j) + \min_{i \le k \le j} (cp(i, k - 1) + cp(k + 1, j))
                                          מסקנה אלגוריתם לבעיית עץ חיפוש בינארי סטטי אופטימלי: יהיו p_1 \ldots p_n \in (0,1] ויהיו x_1 \ldots x_n אזי
```

```
function OSBST(pp):
     K, C \leftarrow \text{List}([n]^2)
     for i \leftarrow [n+1] do
      C(i, i-1) \leftarrow 0
     end
     for d \leftarrow \{0, \ldots, n-1\} do
         for i \leftarrow [n-d] do
              C(i, i+d) \leftarrow \infty
               for k \leftarrow \{i, \dots, i+d\} do
                    t \leftarrow \operatorname{pp}(i,j) + C(i,k-1) + C(k+1,j)
                    if t < C(i, j) then
                         C(i,j) \leftarrow t
                        K(i,j) \leftarrow k
              end
          end
     end
```

מסקנה: יהיו $p_n\in(0,1]$ אזי p_n (pp) משרה פתרון לבעיית עץ חיפוש בינארי סטטי אופטימלי. $p_1\dots p_n\in(0,1]$ מסקנה: יהיו $p_1\dots p_n\in(0,1]$ אזי (OSBST (pp) בעל סיבוכיות זמן ריצה ($p_1\dots p_n\in(0,1]$ אזי $p_1\dots p_n\in(0,1]$ הערה: קיים אלגוריתם קנות' לבעיית עץ חיפוש בינארי סטטי אופטימלי בסיבוכיות זמן ריצה ($p_1\dots p_n\in(0,1]$ הערה: $p_1\dots p_n\in(0,1]$ מקסימלית וכן $p_1\dots p_n\in(0,1]$ מקסימלית וכן $p_2\dots p_n\in(0,1]$ מקסימלית וכן $p_3\dots p_n\in(0,1]$ מקסימלית וכן $p_3\dots p_n\in(0,1]$ מקסימלית וכן $p_3\dots p_n\in(0,1]$ מקסימלית וכן $p_3\dots p_n\in(0,1]$ אזי $p_3\dots p_n\in(0,1]$ מקסימלית וכן $p_3\dots p_n\in(0,1]$

אזי $v_1 \dots v_n \geq 0$ ויהיו $W, w_1 \dots w_n > 0$ יהיו הגב: יהיו שבר תרמיל לבעיית שבר אלגוריתם אלגוריתם

```
function Fractional Knapsack (W, w_1, \dots, w_n, v_1, \dots, v_n):
     f \leftarrow ([n] \rightarrow [0,1])
     P \leftarrow \text{List}([n] \times \mathbb{R})
     for i \leftarrow [n] do
           P(i) \leftarrow (i, \frac{v_i}{w_i})
          f(i) \leftarrow 0
     end
     P \leftarrow \operatorname{sort}(P) // Sort from high to low based on second coordinate.
     t \leftarrow 0
     i \leftarrow 1
     while (t < W) \land (i \le n) do
           j \leftarrow P(i)[0]
           if t + w_j \leq W then
                f(j) \leftarrow 1
               t \leftarrow t + w_i
                f(j) \leftarrow \frac{W-t}{m}
     end
     return f
```

```
.bknap (k,W)=\max\left\{\sum_{i\in S}v_i\mid (S\subseteq[k])\wedge\left(\sum_{i\in S}w_i\leq W\right)\right\} אזי W,w_1\dots w_n,v_1\dots v_n\geq 0 טענה: יהיו w_1\dots w_n,v_1\dots v_n\geq 0 אזי w_1\dots w_n,v_1\dots v_n\geq 0 .bknap (0,m)=0 אזי m\geq 0 .bknap (i,0)=0 אזי i\in [n] .bknap i\in [n] אזי i\in [n] אזי i\in [n] .bknap i\in [n] אזי i\in [n] מסקנה: יהיו i\in [n] אזי i\in [n] אזי חישוב i\in [n] אזי חישוב i\in [n] אזי i\in [n]
```

```
function ZeroOneKnapsack(W, w_1, \ldots, w_n, v_1, \ldots, v_n):
    w \leftarrow W
    S \leftarrow \operatorname{Set}([n])
    S \leftarrow \varnothing
    while (k>0) \wedge (w>0) do
        if bknap(k, w) \neq bknap(k-1, w) then
            S \leftarrow S \cup \{k\}
            k \leftarrow k - 1
            w \leftarrow w - w_k
          k \leftarrow k-1
    end
         פתרון לבעיית 0/1 פתרון לבעיית פרסOneKnapsack (W,w_1\dots w_n,v_1\dots v_n) אזי אי W,w_1\dots w_n,v_1\dots v_n\geq 0 מסקנה: יהיו
                                                    (V,E,c,s,t) אזי s,t\in V ותהיינה c>0 וממושקל מכוון וממושקל
                                                                                  c אזי זרימה אזי (V,E,c,s,t) אוי תהא פונקציית קיבולת:
                                                                                      .s אזי ארימה אדי (V,E,c,s,t) רשת הימה אזי קודקוד מקור: תהא
                                                                                        t אזי ארימה ארי רשת (V,E,c,s,t) אוי הוד קודקוד בור:
                                        עודף \chi_f:V	o\mathbb{R} אזי f:E	o\mathbb{R}_{\geq 0} רשת זרימה ותהא (V,E,c,s,t) אזי עודף זרימה: תהא
                                                            .\chi_f\left(v
ight)=\sum_{\substack{u\in V\\ (u,v)\in E}}f\left((u,v)
ight)-\sum_{\substack{u\in V\\ (v,u)\in E}}f\left((v,u)
ight) עבורה f:E	o\mathbb{R}_{\geq 0} רשת זרימה אזי f:E	o\mathbb{R}_{\geq 0}
                                                                                                                  f \leq c חסם קיבולת: •
                                                                               \chi_f(v)=0 מתקיים v\in V\setminus\{s,t\} שימור זרם: לכל
                        . מקסימלית: תהא \chi_f(t) מקסימלית: רשת איי פונקציית הירימה איי פונקציית הארימה תהא \chi_f(t) מקסימלית: תהא
                       s \in S וכן S \uplus T = V וכן S,T \subseteq V באשר אזי (S,T) רשת זרימה אזי (V,E,c,s,t) וכן ישר יאר מתד: s-t
                      E\left(S,T
ight)=\left\{ (u,v)\in E\mid (u\in S)\wedge (v\in T)
ight\} אזי s-t חתך ויהי ארימה ויהי רשת ארימה G רשת חוצות: תהא
                   E\left(T,S
ight)=\left\{ \left(u,v
ight)\in E\mid\left(u\in T
ight)\wedge\left(v\in S
ight)
ight\} אזי \left(S,T
ight) חתך הימה הוריות: תהא G רשת זרימה ויהי
                                                                 .c\left(S,T
ight)=\sum_{e\in E\left(S,T
ight)}c\left(e
ight) אזי s-t חתך ואי הי הי יהי
                                       f\left(S,T
ight)=\sum_{e\in E\left(S,T
ight)}f\left(e
ight)-\sum_{e\in E\left(T,S
ight)}f\left(e
ight) אזי s-t חתך אזי (S,T) אזי מני חתך: יהי
                                                                          |f|=f\left(V\setminus\{t\},\{t\}\right) אוימה: תהא f זרימה: תהא אזי
                                                                            |f|=f\left(S,T\right) אזי s-t חתך אזי ויהי f ארימה ויהי זרימה ויהי
                                                                                       |f|=f\left(\left\{ s\right\} ,V\backslash\left\{ s\right\} \right) איי זרימה איי f ארימה: תהא
                                                                      f\left(S,T
ight)\leq c\left(S,T
ight) אזי s-t חתך אויהי ויהי זרימה ויהי f ארימה איי
                                                             f\left(S,T
ight)=c\left(S,T
ight) עבורו f\left(S,T
ight) אזי אויה אזי f\left(S,T
ight) אזי איימה ויהי
                                                                                                                   . זרימה מקסימלית f
                                                                            c\left((S,T)\right) \leq c\left((A,B)\right) מתקיים (A,B) s-t לכל חתך
                                           e \in P לכל f\left(e
ight) < c\left(e
ight) באשר באשר אזי לכל זרימה אזי f לכל מסלול ניתן להגדלה :s-t מסלול ניתן להגדלה
|f| < |g| וכן
                                                              .s-t מסלול ניתן להגדלה עבורה לא קיים מסלול ניתן להגדלה f ארימה פונקציית זרימה מסלול ניתן
                                                          e^{-1} אזי e^{-1} \in E אבורה עבורה פכוון ותהא e \in E אזי יהי
     באשר (V, E_f, c_f, s, t) באיר זרימה היור אנטי־מקבילות ותהא f זרימה אזי רע, רשת דרימה אורית: תהא
                                                                                            .E_f = \{e \in E \mid c(e) > f(e)\} \cup E^{-1} \bullet
```

```
.c_{f}\left(e
ight)=c\left(e
ight)-f\left(e
ight)+f\left(e^{-1}
ight) אזי e\in E אהיבולת: הקיבולת שיוריות הקיבולת: •
```

 $.E_f = \{e \in E \mid c_f(e) > 0\} \bullet$

 $.c\left((u,v)
ight)=0$ אזי (u,v)
otin E עבורם $u,v\in V$ הערה: יהיו

. הינה רשת הארימה השיורית. G_f ארימה אזי הינה רשת הארימה השיורית. רשת ארימה השיורית.

 G_f בגרף בגרף פסלול ניתן לשיפור :s-t בגרף פסלול ניתן באר הא ותהא $P \in \{s o t\}$ בגרף מסלול ניתן לשיפור

 $.c_{f}\left(P
ight)=\min\left\{ c_{f}\left(e
ight)\mid e\in P
ight\}$ אזי s-t מסלול ניתן מסלול ניתן זרימה אזי זרימה אזי זרימה אזי מסלול: תהא

 $e\in E\left(G
ight)$ לכל $f_P\left(e
ight)=\left\{egin{array}{ll} f(e)+c_f(P) & e\in P \\ f(e)-c_f(P) & e^{-1}\in P \end{array}
ight.$ איז f איז f ארימה ויהי f מסלול ניתן לשיפור f איז f ארימה של f וכן f וכן f ארימה ויהי f מסלול ניתן לשיפור f איז f זרימה של f וכן f וכן f וכן f ארימה ויהי f מסלול ניתן לשיפור f איז f זרימה של f וכן f

משפט: תהא f זרימה התב"ש

- Gזרימה מקסימלית ב־f
- .s-t מתקיים מסלול מיתן אינו מסלול בגרף בגרף בגרף בגרף בגרף בגרף פגרף פאינו $P \in \{s \to t\}$
 - .Gיים s-t חתך (S,T) מינימלי סיים •

 $\max\{|f|\mid$ ארימה $f\}=\min\{c\left(S,T\right)\mid$ s-t חתך וארימה אזי רשת ארימה הא רשת האזי הימה מקסימלית קיבולת מינימלית: תהא אוי וארימה אזי אלגוריתם פורד־פלקרטון: תהא (V,E,c,s,t) רשת ארימה אזי

```
function FordFulkerson(V, E, c, s, t):
```

```
\begin{array}{l} f \leftarrow (E \rightarrow \mathbb{R}) \\ f \leftarrow 0 \\ \\ \text{while True do} \\ & \mid G_f \leftarrow \operatorname{ResidualNetwork}(G,c,s,t,f) \; / / \; \operatorname{Construct} \; \text{it like any graph.} \\ & \pi_{G_f} \leftarrow \operatorname{BFS}(G,s) \\ & \text{if } \{s \rightarrow t\} \cap \pi_{G_f} = \varnothing \; \text{then return} \; f \\ & \text{else} \\ & \mid P \leftarrow \{s \rightarrow t\} \cap \pi_{G_f} \; / / \; \text{The path is taken from} \; \pi_{G_f}. \\ & \mid f \leftarrow f_P \\ & \text{end} \end{array}
```

הערה: האלגוריתם שיטה גנרית למציאת של EdmondsKarp ובאלגוריתם במניחים שיטה גנרית למציאת מסלול ניתו לשיפור.

.FF = FordFulkerson (V,E,c,s,t) אזי אוי (V,E,c,s,t) רשת ארימה (V,E,c,s,t) אימון: תהא

 $f\left(E
ight)\subseteq\mathbb{N}$ באשר באשר אזי קיימת ארימה מקסימלית אזי קיימת ארימה באשר ער. רשת ארימה באשר אזי קיימת ארימה כווער אזי כווער אויימה באשר אויימה באשר אזי קיימת ארימה באשר אויימה באשר אזי קיימת ארימה באשר אויימה באשר אויימ

מתקיים FF מתקיים אזי בכל איטרציה אוי באשר $c(E) \subseteq \mathbb{N}$ מתקיים ורימה איטרציה של (V,E,c,s,t)

- G זרימה של f
 - $f(E) \subseteq \mathbb{N} \bullet$
 - $.c_f(P) \ge 1 \bullet$

אזי $f\left(E
ight)\subseteq\mathbb{N}$ רשת באשר אוימה מקסימלית ותהא $c\left(E
ight)\subseteq\mathbb{N}$ רשת ארימה באשר ותהא (V,E,c,s,t) אזי משפט:

- FF פתרון לבעיית הזרימה המקסימלית לכל בחירת מסלולים באלגוריתם.
 - . עושה לכל היותר |f| שיפורי מסלול FF
 - .FF $(E) \subseteq \mathbb{N} \bullet$

מסקנה: תהא $f(E)\subseteq\mathbb{N}$ אזי סיבוכיות מקסימלית באשר $f(E)\subseteq\mathbb{N}$ ותהא זרימה באשר אזי סיבוכיות ועד אזי סיבוכיות מסקנה: תהא $c(E)\subseteq\mathbb{N}$ רשת ארימה באשר $c(E)\subseteq\mathbb{N}$ ותהא אזי סיבוכיות הריצה של FF הינה $\mathcal{O}(|E||f|)$

סענה: חריצה אזי סיבוכיות או אזי סיבוכיות באשר f או זרימה מקסימלית או אזי סיבוכיות או סיבוכיות או ריימה באשר $c(E)\subseteq\mathbb{N}$ ותהא או הריצה של $c(E)\subseteq\mathbb{N}$ אוי סיבוכיות או הריצה של EdmondsKarp של הינה $c(E)^2\cdot |V|$

 $|e_1\cap e_2|
eq 1$ מתקיים $e_1,e_2\in M$ עבורה לכל $M\subseteq \stackrel{
ightarrow}{E}(G)$ אזייוג: יהיG גרף לא מכווון אזי

 $rg \max \left\{ |M| \mid G$ זיווג של אייווג מקסימלי: יהי הי ארף לא מכוון אזיM זיווג מקסימלי: יהי

 $\bigcup M=V\left(G
ight)$ עבורו $M\subseteq E\left(G
ight)$ איווג מושלם: יהי G גרף לא מכוון אזי איווג

```
|e\cap A|=|e\cap B|=1 מתקיים e\in E\left(G
ight) מתקיים A\#B=V\left(G
ight) עבורם A,B\subseteq V\left(G
ight) מתקיים מיון ויהיז
                                                                                                                                                                                                                                                                                                   G_R = B וכן G_L = A אזי
                                                                                                                                   V^{\perp}=V\left(G
ight)\cup\left\{ s,t
ight\} אזי s,t
otin V\left(G
ight) איזי לא מכוון ויהיו מימון: יהי
                                                                       E^{
ightarrow}=\{\langle v,u
angle\mid (\{v,u\}\in E\left(G
ight))\land (v\in G_L)\land (u\in G_R)\} סימון: יהי G גרף דו־צדדי לא מכוון אזי
                                                                           .E^{\perp}=\left(\{s\}	imes G_{L}
ight)\cup E^{
ightarrow}\cup\left(G_{R}	imes\{t\}
ight) איי איי s,t
otin V\left(G
ight) ויהיו לא מכוון ויהיו מיהי מימון: יהי
.c_{\lceil_{E}
ightarrow}^{\perp}=\infty וכן .c_{\lceil_{(\{s\}	imes G_L)\cup(G_R	imes \{t\})}}^{\perp}=1 המוגדרת .c_{\lceil E}^{\perp}
ightarrow\mathbb{R}_+ אזי .c_{r}^{\perp} המוגדרת .c_{r}^{\perp} המוגדרת לא מכוון ויהיו .c_{r}^{\perp} וכן .c_{r}^{\perp}
                                                                                                                      G^{\perp}=\left(V^{\perp},E^{\perp},c^{\perp},s,t
ight) אזי א s,t\notin V\left(G
ight) ויהיו לא מכוון ויהיו מימון: יהי יהי לא גרף דו־צדדי לא מכוון ויהיו
                                                                                                                                             אלגוריתם לבעיית זיווג מקסימלי בגרף דו־צדדי: יהי G גרף דו־צדדי לא מכוון אזי
function BMMF(G):
            \begin{array}{l} (s,t) \not\leftarrow V\left(G\right) \\ G^{\perp} \leftarrow (V^{\perp}, E^{\perp}, c^{\perp}, s, t) \end{array} 
           f \leftarrow \text{FordFulkerson}(G^{\perp})
          return \{e \in E(G) \mid f(e) = 1\}
                                                                                                                                                                       . אינו זיווג מקסימלי. אווג מהטון אזי G הינו איווג מקסימלי. ארף דו־צדדי לא מכוון אזי
                                                                                                                \mathcal{O}\left(|E|\cdot|V|
ight) און ריצה מכוון אזי שענה: יהי G גרף דו־צדדי לא מכוון אזי אזי מאוון אזי מיבוכיות און אוי
                  \max\left\{|M|\mid G איווג של M
ight\}=\max\left\{|f|\mid G^\perp ארימה של s,t
otin V(G) איווג של s,t
otin V(G) איווג של s,t
otin V(G)
                                                                                                            e\cap C
eq \emptyset מתקיים e\in E מתקיים עבורה לכל עבורה אזי ממון אזי מכוון אזי C\subseteq V\left( G
ight) אזי יהי
                                                                                                        rg \min \{|C| \mid G ביסוי צמתים מינימלי: יהי G גרף לא מכוון אזי בעיית כיסוי צמתים מינימלי: יהי
                                                               \max\{|M|\mid G איווג של M\}\leq \min\{|C|\mid G למה: יהי Mגרף דו־צדדי לא מכוון אזיC כיסוי צמתים של
                                                                                                                         אלגוריתם לבעיית כיסוי צמתים מינימלי בגרף דו־צדדי: יהי G גרף אלגוריתם מינימלי מינימלי מינימלי אלגוריתם לבעיית ביסוי
function BMVC(G):
           (M, s, t, G^{\perp}, f) \leftarrow \text{BMMF}(G)
           C \leftarrow V(G)
           for \{u,v\}\in M\cap (G_L\times G_R) do
                     \inf\left\{\tau:s\to v \mid G_f^\perp \ \text{ מסלול בגורף} \right\} \neq \varnothing \text{ then } \mid C\leftarrow C\cup\{v\}
                       \mid C \leftarrow C \cup \{u\}
           end
           return C
                                                                                                                                                                          . אינו כיסוי צמתים BMVC (G) אזי לא מכוון אזי דו־צדדי ארף דו־צדדי אינו מענה: יהי
                                                                                                                                    |\mathrm{BMVC}\,(G)| = |M| איווג מקסימלי איזי M איוון ויהי לא מכוון ויהי הרף דו־צדדי לא מכוון ויהי
                                                                                                                                               . מסקנה: יהי G גרף דו־צדדי לא מכוון אזי BMVC (G) אזי לא מינימלי גרף דו־צדדי מינימלי
                                                          \max\{|M|\mid G משפט: יהי M\}=\min\{|C|\mid G איווג של Cל כיסוי צמתים של M\}=\min\{|C|\mid G איווג של
                                                      .DP_{s,t} = \max \{n \in \mathbb{N} \mid t^{-t} גרף מכוון ויהיו s,t \in V אזי לקיימים n מסלולים זרים בקשתות מ־s,t \in V איזי איזי s,t \in V
                      (V,E,1,s,t) אזי s,t\in V רשת 3/1: יהי
                                                                                                                                 \mathrm{DP}_{s,t} = \max\left\{|f| \mid \mathsf{O/1} \mid \mathsf{DP}_{s,t} = s, t \in V \mid \mathsf{O/1} \mid \mathsf{DP}_{s,t} = \mathsf{DP}_{s,t} \mid \mathsf{O/1} \mid \mathsf{DP}_{s,t} \mid \mathsf{O/1} \mid
```

uעבורו מ־u עבורו אזי $u,v\in G$ קיימים u מסלולים ארים בקשתות אזי גרף מכוון u אזי גרף מכוון אזי אלגוריתם לבדיקת uיקשירות בקשתות: יהי uיהי uיהי uיהי uיהי אלגוריתם לבדיקת א־קשירות בקשתות: יהי uיהי uיהי uיהי אלגוריתם לבדיקת א

מתקיים $A\subseteq G_L$ מתקיים איווג מושלם ב־ (G_L) אזי (קיים איווג מושלם ב- (G_L) משפט החתונה/הול: יהי

 $\mathrm{DE}_{s,t} = \min \left\{ c\left(S,T\right) \mid \mathsf{O/1} \right\}$ ברשת s-t חתך אזי $s,t \in V$ טענה: יהי G גרף מכוון ויהיו

 $A(A)=\{y\in G_R\mid (A imes\{y\})\cap E
eq\varnothing\}$ איי $A\subseteq G_L$ איי לא מכוון ותהא $A\subseteq G_L$ איי לא מכוון ותהא

 $ext{DP}_{s,t} = ext{DE}_{s,t}$ אזי $s,t \in V$ מסקנה משפט מנגר: יהי

 $|A| \leq |N(A)|$

```
function kConnected(k, G):
    for u \in V \setminus \{v\} do
        /st The following FordFulkerson calls will return True if the flow size is bigger then k after k augmenting
            paths else False
        b_1 \leftarrow \text{FordFulkerson}(V, E, 1, v, u)
        b_2 \leftarrow \text{FordFulkerson}(V, E, 1, u, v)
        if (\neg b_1) \lor (\neg b_2) then return False
    return True
                                   .(kConnected (G)= True)\Longleftrightarrowטענה: יהי k\in\mathbb{N}_+ אויהי k\in\mathbb{N} גרף מכוון אזי k\in\mathbb{N}_+
                            עבורה f:E	o\mathbb{R}_{\geq 0} רשת זרימה אזי (V,E,c,s,t) עבורה ארימה זרימה/קדם ארימה פונקציית פרה־זרימה
                                                                                                               f \leq c חסם קיבולת: •
                                                                                          \chi_f(v) \geq 0 מתקיים v \in V \setminus \{s, t\} •
x_f(v)>0 צומת גולשת/בעלת עודף זרימה: תהא v\in V\setminus \{s,t\} רשת זרימה ותהא פונקציית קדם זרימה אזיv\in V\setminus \{s,t\} עבורה
E_f = \{e \in E \mid c\left(e\right) > f\left(e\right)\} \cup E^{-1} ארימה אזי דימה חסרת קשתות אנטי־מקבילות ותהא f קדם זרימה אזי (V, E, c, s, t) רשת זרימה חסרת קשתות אנטי־מקבילות ותהא
E_f = E_f = \{e \in E \mid c_f(e) > 0\} רשת ארימה בעלת קשתות אנטי־מקבילות ותהא f קדם ארימה אזי (V, E, c, s, t) רשת ארימה בעלת קשתות אנטי־מקבילות ותהא
c_f\left(e
ight) =  המוגדרת הקיבולת: תהא c_f:E_f	o\mathbb{R}_+ אזי קדם זרימה ותהא f קדם ירימה אזי ועהא ועהא (V,E,c,s,t) המוגדרת

\cdot \begin{cases} c(e) - f(e) & e \in E \\ f(e^{-1}) & e \in E^{-1} \end{cases}

                \Delta_{u,v} = \min\left\{\chi_f\left(u\right), c_f\left((u,v)\right)\right\} אזי u,v \in V אזי קדם זרימה תהא u,v \in V רשת זרימה תהא
                                            אזי u,v\in V אזי ארימה f קדם ארימה (V,E,c,s,t) אאי אלגוריתם אויהיו
function Push ((V, E, c, s, t), f, u, v):
    f^* \leftarrow f
    if (u,v) \in E then
       f^*((u,v)) \leftarrow f((u,v)) + \Delta_{u,v}
    if (v, u) \in E then
     f^*((v,u)) \leftarrow f((v,u)) - \Delta_{u,v}
    return f^*
```

.Push (f,u,v)= Push ((V,E,c,s,t),f,u,v) אזי $u,v\in V$ איי ארימה תהא f קדם ארימה תהא (V,E,c,s,t) רשת ארימה תהא פדם זרימה. Push (f,u,v) אזי $u,v\in V$ איזי אויימה תהא f קדם זרימה תהא (V,E,c,s,t) איזי רימה. $\chi_{\mathsf{Push}(f,u,v)}\left(u
ight)=\chi_{f}\left(u
ight)-\Delta_{u,v}$ אזי איזי $u,v\in V$ טענה: תהא t קדם זרימה תהא t קדם זרימה ויהיו .Push (f,u,v) אזי $\Delta_{u,v}=c_f\left((u,v)
ight)$ עבורם $u,v\in V$ אזי קדם זרימה תהא t קדם ארימה $\Delta_{u,v}=c_f\left((u,v)
ight)$ עבורם עבורה $h:V o\mathbb{N}$ אזי $h:V o\mathbb{N}$ רשת זרימה ותהא f קדם זרימה אזי (V,E,c,s,t) עבורה

- $.h(s) = |V| \bullet$
 - $.h(t) = 0 \bullet$
- $h(u) \leq h(v) + 1$ אזי $(u,v) \in E_f$ יהי

 $\lambda(u)=h\left(v
ight)+1$ וכן $\chi_{f}\left(u
ight)>0$ עבורה על קבילה: תהא עורימה אוי זרימה ותהא לידם ארימה אוי $\chi_{f}\left(u
ight)>0$ עבורה על אוי אוי אוי אוי זרימה אוי ארימה אוי אוי אוי אוי אוי ותהא

```
function Relabel ((V, E, c, s, t), f, h, u):
    h^* \leftarrow h
    h^*(u) \leftarrow \min\{h(v) \mid (u, v) \in E_f\} + 1
    return h*
```

Relabel (f,h,u)=v אזי $u\in V$ אזי מונקציית גובה ותהא t קדם זרימה תהא t קדם זרימה תהא t פונקציית גובה ותהא .Push ((V, E, c, s, t), f, h, u) $u\in V$ טענה: תהא h פונקציית גובה ותהא t רימה תהא $t\in V$ רשת זרימה ותהא $t\in V$ אזי

- .Relabel (f,h,u) $(u) \leq \text{Relabel}$ (f,h,u) (v)+1 אזי $(u,v) \in E_f$ יהי •
- .Relabel (f, h, u) $(w) \leq$ Relabel (f, h, u) (u) + 1 אזי $(w, u) \in E_f$ יהי

Relabel (f,h,u) אזי $u\in V\setminus\{s,t\}$ תהא גובה ותהא פונקציית גובה f קדם זרימה תהא t קדם זרימה אזי t פונקציית גובה.

 $h\left(u
ight) \leq h\left(v
ight) + \delta_{G_f}\left(u,v
ight)$ אזי $u,v \in V$ אזי גובה ותהיינה h פונקציית גובה h קדם ארימה תהא h קדם דרימה תהא h פונקציית גובה ויהי $u \in V$ עבורו קיים מסלול מ־u למה: תהא h קדם ארימה תהא h פונקציית גובה ויהי $u \in V$ עבורו קיים מסלול מ־u למה: $h\left(u
ight) \leq |V| - 1$ אזי $u \in V$

 G_f ב ל־ל ב־ל מסקנה: תהא (V,E,c,s,t) רשת ארימה תהא f קדם ארימה ותהא f פונקציית גובה אזי לא קיים מסלול מ־f למה: תהא f רשת ארימה תהא f קדם ארימה ותהא f באשר f אזי קיים מסלול f מ־f למה: תהא f לכל f פרf לכל f ב־f לכל f

```
function GoldbergTarjan((V, E, c, s, t)):
```

```
\begin{array}{l} f \leftarrow (E \rightarrow \mathbb{R}_+) \\ f \leftarrow 0 \\ \text{for } (s,v) \in E \text{ do} \\ \mid f((s,v)) \leftarrow c((s,v)) \\ \text{end} \\ h \leftarrow (V \rightarrow \mathbb{N}) \\ h \leftarrow 0 \\ h(s) \leftarrow |V| \\ \text{while } \{u \in V \backslash \{s,t\} \mid \chi_f(u) > 0\} \neq \varnothing \text{ do} \\ \mid u \leftarrow \{u \in V \backslash \{s,t\} \mid \chi_f(u) > 0\} \\ \mid \text{if } \{(u,v) \in E_f \mid h\left(u\right) = h\left(v\right) + 1\} \neq \varnothing \text{ then} \\ \mid (u,v) \leftarrow \{(u,v) \in E_f \mid h\left(u\right) = h\left(v\right) + 1\} \\ \mid f \leftarrow \text{Push}(f,u,v) \\ \mid \text{else} \\ \mid h \leftarrow \text{Relabel}(f,h,u) \\ \mid \text{end} \\ \text{return } f \end{array}
```

 $f_s\left((u,v)
ight)=\left\{egin{array}{l} c((u,v))&u=s\\0&else\end{array}
ight.$ המוגדרת $f_s:E o\mathbb{R}_+$ רשת זרימה אזי (V,E,c,s,t) המוגדרת $\mathbb{1}_s:U=\{0,E,c,s,t\}$ רשת זרימה אזי $\mathbb{1}_s:V o\mathbb{N}$ המוגדרת רשת זרימה אזי (V,E,c,s,t) רשת זרימה אזי $|V|\cdot\mathbb{1}_s$ פונקציית גובה וכן לא קיים מסלול מ־(V,E,c,s,t) למה: תהא (V,E,c,s,t) רשת זרימה אזי לאחר כל איטרציה של GoldbergTarjan מתקיים

- .הינה קדם זרימה f ullet
 - .פונקציית גובה $h \bullet$
- $.G_f$ ב ל־ל מ־s לא קיים מסלול מ-s

. פעמים איז Relabel קוראת לפונקציה GoldbergTarjan איז ארימה איז רשת לכל תהא לפונקציה (V,E,c,s,t) איז למה:

. פעמים $2\left|E\right|\left|V\right|$ ביותר לכל היותר מבצעת מבצעת אזי GoldbergTarjan בעמים רשת ארימה אוי רשת למה:

. פעמים פעמים אזי ארימה אזי הרימה אזי GoldbergTarjan מבצעת דחיפה לא מרווה לכל היותר (V,E,c,s,t) רשת ארימה אזי GoldbergTarjan הינה ארימה מקטימלית. (V,E,c,s,t) רשת ארימה אזי העובט הינה ארימה מקטימלית.

 $\mathcal{O}\left(\left|E\right|\cdot\left|V\right|^2\right)$ עם בסיבוכיות אמן ריצה (V,E,c,s,t) רשת אר היימה אזי ניתן לממש את ריצה (V,E,c,s,t) עם בסיבוכיות אמן ריצה (V,E,c,s,t) רשת ארימה אזי ניתן לממש את עם בסיבוכיות בסיבוכיות אמן ריצה (V,E,c,s,t) הערה: תהא (V,E,c,s,t) רשת ארימה אזי ניתן לממש את $\mathcal{O}\left(\left|E\right|\left|V\right|\log\left(\left|V\right|\right)\right)$

 $x \leq y$ אזי $i \in [n]$ לכל $x_i \leq y_i$ עבורן אזי $x,y \in \mathbb{R}^n$ איי סימון: תהיינה

 $x\geq y$ אזי $i\in [n]$ לכל $x_i\geq y_i$ עבורן $x,y\in \mathbb{R}^n$ איי סימון: תהיינה

תהא $q\in\mathbb{R}^k$ יהי $Q\in M_{k imes n}$ תהא תרא יהי $P\in M_{m imes n}$ תהא תרא יהי $n,m,k,\ell\in\mathbb{N}$ יהי $n,m,k,\ell\in\mathbb{N}$ יהי $n,m,k,\ell\in\mathbb{N}$ יהי $n,m,k,\ell\in\mathbb{N}$ יהי $n,m,k,\ell\in\mathbb{N}$ יהי $n,m,k,\ell\in\mathbb{N}$

בעיית תכנות לינארי: תהא (c,P,p,Q,q,R,r) תוכנה לינארית אזי מציאת נקודת קיצון של c^Tx תחת ההנחות (c,P,p,Q,q,R,r) תחת ההנחות (c,P,p,Q,q,R,r) בעיית תכנות לינארי: תהא (c,P,p,Q,q,R,r)

בעיית תכנות לינארי מקסימום של c, P, p, Q, q, R, r תחת ההנחות מקסימום של בעיית תכנות לינארי מקסימלית: תהא (c, P, p, Q, q, R, r) תחת ההנחות $Px \leq p, Qx = q, Rx \geq r$

תחת ההנחות מינימום של מינימום אזי מציאת מינימרית תכנות (c,P,p,Q,q,R,r) תחת ההנחות מינימרית מינימרית מינימרית מינימרית תהא ($Px \leq p,Qx=q,Rx \geq r$)

הערה: מכאן והלאה נשתמש במונח תוכנה לינארית גם עבור בעיית תכנות לינארי.

סימלית מקסימלית בעיית עכנות בעיית בעיית בעיית בעיית אזי יהא בעיית יהא בעיית יהא בעיית יהא

$$\max c^T x$$

s.t.
$$Px \leq p$$

$$Qx = q$$

סימון: תהא (c,P,p,Q,q,R,r) בעיית תכנות לינארית מינימלית אזי

 $\min c^T x$

s.t.
$$Px \leq p$$

$$Qx = q$$

 $Rx \geq r$ וכן $Px \leq p$ וכן $Px \leq p$ עבורו $x \in \mathbb{R}^n$ עבורו $x \in \mathbb{R}^n$ ווכנה לינארית: תהא $x \in \mathbb{R}^n$ עבורו $x \in \mathbb{R}^n$ ווכנה לינארית: תהא LP מוכנה לינארית: תהא לינארית: תהא עבורה לינארית אזי $x \in \mathbb{R}^n$ המהווה פתרון של בעיית התכנות הלינארית. LP עבורה לינארית פיזבילית: תוכנה לינארית עבורה קיים פתרון אופטימלי.

 $x\in\mathbb{R}^n$ עבורה קיים $B\in\mathbb{R}$ המקיים כי לכל פתרון פיזבילי עבורה לינארית (c,P,p,Q,q,R,r) עבורה לינארית מקסימלית חסומה: תוכנה לינארית מתקיים מתקיים a

 $(c,A,b,0,0,I_n,0)$ יהי המקסימלית התוכנה הלינארית ויהי $b\in\mathbb{R}^m$ ויהי ויהי $A\in M_{m imes n}\left(\mathbb{R}
ight)$ תהא ויהי $c\in\mathbb{R}^n$ יהי הינה הינה

$$\max c^T x$$

s.t.
$$Ax \leq b$$

 $\{Px\leq p,Qx=q,Rx\geq r\}$ מצולע/פאון/פוליהדרון הפיזביליות: תהא (c,P,p,Q,q,R,r) תוכנה לינארית אזי (c,P,p,Q,q,R,r) עבורה לכל $\alpha \in \{0,1\}$ מתקיים $\alpha \in \{0,1\}$ מתקיים $\alpha \in \{0,1\}$ עבורה לכל $\alpha \in \{0,1\}$ אזי $\alpha \in \{0,1\}$ אזי $\alpha \in \{0,1\}$ ולכל $\alpha \in \{0,1\}$ ולכל $\alpha \in \{0,1\}$ מתקיים $\alpha \in \{0,1\}$ אזי $\alpha \in \{0,1\}$ אזי $\alpha \in \{0,1\}$ ולכל $\alpha \in \{0,1\}$ ולכל $\alpha \in \{0,1\}$ מתקיים $\alpha \in \{0,1\}$ פאון אזי נקודה קיצונית $\alpha \in \{0,1\}$

תוכנה הלינארית המוכנה הלינארית אזי התוכנה $a\in \mathbb{R}^m$ ויהי והי $a\in M_{m\times n}$ עהא המקסימלית יהי $n,m\in \mathbb{N}$ אזי התוכנה הלינארית המקסימלית הוכנה לינארית בצורה משוואתית: יהיו $a\in \mathbb{R}^n$ יהי יהיו $a\in \mathbb{R}^n$ יהי והי ויהי המקסימלית המקסימ

 $(c,0,0,A,b,I_n,0)$ יהי המקסימלית התוכנה הלינארית ויהי $b\in\mathbb{R}^m$ ויהי ויהי $A\in M_{m imes n}\left(\mathbb{R}
ight)$ תהא הינה $c\in\mathbb{R}^n$ יהי הינה הינה

$$\begin{aligned} & \max \quad c^T x \\ & \text{s.t.} \quad A x = b \\ & \quad x \geq 0 \end{aligned}$$

צורת סלאק/צורה רפויה של תוכנה לינארית סטנדרטית: תהא $(c,A,b,0,0,I_n,0)$ תוכנה לינארית שטנדרטית אזי התוכנה התוכנה המקסימלית $(\left(\begin{smallmatrix} c \\ 0 \end{smallmatrix} \right),0,0,(A|I_m),b,I_{n+m},0)$ הלינארית המקסימלית

המקסימלית המקסימלית אזי התוכנה לינארית חוכנה לינארית תוכנה לינארית חוכנה $(c,A,b,0,0,I_n,0)$ הינה חוכנה $(c,A,b,0,0,I_n,0)$ הינה חוכנה לינארית חוכנה המקסימלית

$$\max \quad c^T x$$
 s.t.
$$Ax + s = b$$

$$\binom{x}{s} \ge 0$$

משתנים בסיסיים בצורה רפויה: תהא SF צורה רפויה אזי $\{x_{n+1},\dots,x_{n+m}\}$ בבעיית התכנות הלינארי. משתנים לא בסיסיים בצורה רפויה: תהא SF צורה רפויה אזי $\{x_1,\dots,x_n\}$ בבעיית התכנות הלינארי. $x_1,\dots,x_n\}$ טענה צורה רפויה: תהא SLP תוכנה לינארית בצורה סטנדרטית ויהי $x\in\mathbb{R}^n$ אזי (קיים $y\in\mathbb{R}^m$ עבורו x_n) פתרון פיזבילי של הצורה הרפויה) x

אלגוריתם סימפלקס: ...

טענה: בעיית הזרימה המקסימלית הינה בעיית תכנות לינארי מקסימלית.

מסקנה: תהא (V,E,c,s,t) רשת זרימה אזי בעיית הזרימה המקסימלית הינה

$$\begin{aligned} & \max & & \sum_{\substack{u \in V \\ (u,v) \in E}} f\left((u,t)\right) - \sum_{\substack{u \in V \\ (v,u) \in E}} f\left((v,t)\right) \\ & \text{s.t.} & & \sum_{\substack{u \in V \\ (u,v) \in E}} f\left((u,v)\right) - \sum_{\substack{u \in V \\ (v,u) \in E}} f\left((v,u)\right) = 0 & , \forall v \in V \backslash \{s,t\} \\ & & f\left((u,v)\right) \leq c\left((u,v)\right) & , \forall \left(u,v\right) \in E \\ & & f\left((u,v)\right) \geq 0 & , \forall \left(u,v\right) \in E \end{aligned}$$

(V,E,c,s,t,a) אזי $a:E o\mathbb{R}$ רשת ארימה ותהא (V,E,c,s,t) רשת תהא עלות: תהא

 $a\cdot f$ אזיי זרימה ותהא f ארימה ותהא (V,E,c,s,t) אויי עלות ארימה:

וכן $\chi_f\left(t
ight)=d$ עבורה f אזי פונקציית איי פונקציית עלות ויהי אויימה עלות (V,E,c,s,t,a) עבורה עבורה בעיית העלות המינימלית: תהא $\chi_f\left(t
ight)=d$ רשת ארימה בעלת עלות ויהי בעיית העלות מינימלית: $\chi_f\left(t
ight)=d$ מינימלית: $\chi_f\left(t
ight)=d$ מינימלית: רשת ארימה בעלת עלות ויהי בעלת עלות ויהי בעיית המינימלית: $\chi_f\left(t
ight)=d$ מינימלית:

טענה: בעיית העלות המינימלית הינה בעיית תכנות לינארי מינימלית.

מסקנה: תהא העלות המינימלית ווהי איזי בעיית בעלת איזימה הינימלית רשת המינימלית חבא (V,E,c,s,t,a) מסקנה:

$$\begin{aligned} & \min \quad \sum_{(u,v) \in E} a\left((a,v)\right) \cdot f\left((a,v)\right) \\ & \text{s.t.} \quad \sum_{\substack{u \in V \\ (u,v) \in E}} f\left((u,t)\right) - \sum_{\substack{u \in V \\ (v,u) \in E}} f\left((v,t)\right) = d \\ & \sum_{\substack{u \in V \\ (u,v) \in E}} f\left((u,v)\right) - \sum_{\substack{u \in V \\ (v,u) \in E}} f\left((v,u)\right) = 0 \qquad , \forall v \in V \backslash \left\{s,t\right\} \\ & f\left((u,v)\right) \leq c\left((u,v)\right) \qquad , \forall \left(u,v\right) \in E \\ & f\left((u,v)\right) \geq 0 \qquad , \forall \left(u,v\right) \in E \end{aligned}$$

מסקנה: תהא (V,E,c,s,t) רשת זרימה בעלת עלות יהי $d\in\mathbb{N}_+$ ותהא זרימה מקסימלית של (V,E,c,s,t,a) אזי (בעיית העלות המינימלית פיזבילית). $(|f|\geq d)$

סענה: תהא (V,E,c,s,t,a) השת בעית העלות ויהי עלות ויהי עלות ויהי אזי בעיית העלות המינימלית פיזבילית אזי בעיית העלות המינימלית בעיית פתרון אופטימלי.

 $f:E o\mathbb{R}_+$ אזי פונקציה אזי פונקציה עלות ותהא עלות איימה בעלת (V,E,c,s,t,a) אזי פונקציה בעיית העלות המינימלית המינימלית עם היצע וביקוש: תהא $\chi_f=d$ וכן $\chi_f=d$ וכן $\chi_f=d$ וכן $\chi_f=d$ וכן לפר בורה בעיית העלות מינימלית.

טענה: בעיית העלות המינימלית עם היצע וביקוש הינה בעיית תכנות לינארי מינימלית.

מסקנה: תהא עם המינימלית עם היצע וביקוש הינה $d:V o \mathbb{Z}$ אזי בעלת עלות ותהא אוי בעלת עם היצע וביקוש הינה (V,E,c,s,t,a) מסקנה:

$$\begin{aligned} & \min & & \sum_{(u,v) \in E} a\left((a,v)\right) \cdot f\left((a,v)\right) \\ & \text{s.t.} & & \sum_{\substack{u \in V \\ (u,v) \in E}} f\left((u,v)\right) - \sum_{\substack{u \in V \\ (v,u) \in E}} f\left((v,u)\right) = d\left(v\right) & , \forall v \in V \\ & & f\left((u,v)\right) \leq c\left((u,v)\right) & , \forall \left(u,v\right) \in E \\ & & f\left((u,v)\right) \geq 0 & , \forall \left(u,v\right) \in E \end{aligned}$$

טענה: תהא המינימלית עם היצע וביקוש פיזבילית עבורה בעיית העלות ותהא איז פיזבילית על זרימה בעלת עלות ותהא איז רימה בעלת אוו ותהא בעלת עלות ותהא בעלת עלות ותהא וביקוש פיזבילית וביקוש פיזבילית בערית העלות המינימלית עם היצע וביקוש פיזבילית בעלת וביקוש פיזבילית וביקוש פיזבילית וביקוש פיזבילית בעלת עלות ותהא בעלת ותהא ב

s.t.
$$\sum_{u \in V} f\left(\left(u,t_{i}\right),i\right) - \sum_{u \in V} f\left(\left(t_{i},u\right),i\right) = \alpha \cdot d\left(i\right) \qquad , \forall i \in [k]$$

$$\sum_{\substack{u \in V \\ (u,v) \in E}} f\left(\left(u,v\right),i\right) - \sum_{\substack{u \in V \\ (v,u) \in E}} f\left(\left(v,u\right),i\right) = 0 \qquad , \forall i \in [k] . \forall v \in V \backslash \left\{s_{i},t_{i}\right\}$$

$$\sum_{i=1}^{k} f\left(\left(u,v\right),i\right) \leq c\left(\left(u,v\right)\right) \qquad , \forall \left(u,v\right) \in E$$

$$f\left(\left(u,v\right),i\right) \geq 0 \qquad , \forall i \in [k] . \forall \left(u,v\right) \in E$$

 $y:V o\mathbb{R}$ אזי $s\in V$ אזי δ גרף מכוון ממושקל אוזי δ אזי אזי $s\in V$ אזיים ויהי שליליים אזי משקל: יהי δ גרף מכוון ממושקל אוזי חסר מעגלים שליליים ויהי אוי $s\in V$ לכל g לכל g לכל g לכל g לכל אויי אויי g לכל עבורה g

 $y:V o\mathbb{R}$ ותהא $v\in V$ ותהא לכל $\delta\left(s,v
ight)<\infty$ עבורו יהי $s\in V$ אחסר מעגלים שליליים יהי עבורו $s\in V$ ותהא אזי $v\in V$ ותהא אזי עבורו $v\in V$ לכל עבורו אזי עבורו פאליים שליליים יהי עבורו מעגלים שליליים יהי עבורו אזי עבורו אזי עבורו מעגלים שליליים יהי אזי עבורו אזי עבורו מעגלים שליליים יהי עבורו אזי עבורו עבורו אזי עבורו אזי עבורו עבור

 $y:V o\mathbb{R}$ אתהא $v\in V$ לכל לכל לכל און עבורו $s\in V$ יהי שליליים שליליים שליליים עבורו ממושקל לכל לכל און ותהא $s\in V$ ותהא אוי קשת g עבורה g עבורה g עבורה g עבורה בעבורה אוי עבורה משקל אוי קשת אוי קשת בעבורה וותהא אוי קשת בעבורה וותהא אוי קשת אוי שליליים אוי שליליים אוי מעגלים שליליים אוי מעגלים שליליים אוי אוי מעגלים שליליים אוי מעגליים שליליים אוים אוים אוי מעגליים שליליים שליליים אוי מעגליים שליליים אוי מעגליים שליליים שליליים אוים אוי מעגליים שליליים שליליים שליליים שליליים אוי מעגליים שליליים שליליים שליליים שליליים אוי מעגליים שליליים שלילים שליליים שליליים שלילים שליליים

 $y:V o\mathbb{R}$ תהא $v\in V$ לכל לכל לכל $\delta\left(s,v
ight)<\infty$ עבורו יהי שליליים שליליים שליליים עבורו חסר מעגלים עבורו ממושקל א תהא $v\in V$ חסר מעגלים שליליים יהי עבורו $s\in V$ המכיל רק קשתות הדוקות אזי עבורו קיים מסלול $u\in V$ המכיל רק קשתות הדוקות אזי עבורו קיים מסלול

 $y:V o\mathbb{R}$ ותהא $v\in V$ לכל לכל לכל לכל עבורו אור מטקנה: יהי אורף מכוון ממושקל חסר מעגלים שליליים יהי שליליים אור אזי עבורו אורף מכוון ממושקל פיזבילית.

טענה: בעיית המסלולים הקצרים מנקודת מוצא הינה בעיית תכנות לינארי מינימלית.

מסקנה: יהי G גרף מכוון ממושקל ℓ ויהי ויהי אי בעיית המסלולים הקצרים מנקודת מוצא הינה מסקנה: יהי

$$\max \quad \sum_{u \in V} y(u)$$
 s.t.
$$y(v) - y(u) \leq \ell(u,v) \qquad , \forall (u,v) \in E$$

$$y(s) = 0$$

מאני $\delta\left(s,v
ight)<\infty$ עבורו אזי $\delta\left(s,v
ight)<\delta\left(s,v
ight)$ לכל לינים שליליים ייהי אזי ממושקל ממושקל חסר מעגלים שליליים אזי משפט: איזי

- בעיית המסלולים הקצרים מנקודת מוצא בעלת פתאון אופטימלי.
- $u\in V$ לכל $y\left(u
 ight)=\delta_{\ell}\left(s,u
 ight)$ יהי y פתרון אופטימלי של בעיית המסלולים הקצרים מנקודת מוצא אזי $y\left(u
 ight)=\delta_{\ell}\left(s,u
 ight)$

טענה: יהי G גרף מכוון ממושקל ℓ בעל מעגל שלילי ויהי $s\in V$ אזי בעיית המסלולים הקצרים מנקודת מוצא איז בעיית מנקודת מנקודת $s\in V$ שבורו ℓ איז בעיית המסלולים הקצרים מנקודת יהי ℓ גרף מכוון ממושקל ℓ ויהי ℓ אויהי ℓ עבורו קיים ℓ אוי בעיית המסלולים הקצרים מנקודת מוצא לא חסומה.

תחת ההנחות c^Tx מוכנה לינארי אזי מציאת (c,P,p,Q,q,R,r) תחת האז תרע בשלמים: תהא בעיית תכנות לינארי c^Tx תחת ההנחות c^Tx תחת ההנחות אזי מציאת נקודת קיצון של c^Tx תחת ההנחות c^Tx תחת ההנחות c^Tx תחת ההנחות c^Tx תחת ההנחות הבעיית תכנות לינארי בשלמים: תחת ההנחות הבעיית הבעיית

תוכנה הלינארית אזי התוכנה הלינארית חוכנה ($c,A,b,0,0,I_n,0$) תוכנה הלינארית אזי התוכנה הלינארית המינימלית ($b,0,0,0,0,\left(\frac{A^T}{I_m} \right),\left(\begin{smallmatrix} c \\ 0 \end{smallmatrix} \right)$

הינה $\left(b,0,0,0,0,\left(\begin{smallmatrix}A^T\\I_m\end{smallmatrix}\right),\left(\begin{smallmatrix}c\\0\end{smallmatrix}\right)\right)$ הינה הלינארית המינימלית תהא תוכנה לינארית סטנדרטית אזי התוכנה הלינארית המינימלית תוכנה לינארית המינימלית החיבה הערה:

$$\begin{aligned} & \min & b^T x \\ & \text{s.t.} & A^T x \geq c \\ & & x \geq 0 \end{aligned}$$

y ויהי $(c,A,b,0,0,I_n,0)$ של פתרון פיזבילי פתרון חלשה: תהא תוכנה לינארית חטנדרטית חטנדרטית חלשה: תהא תהא תוכנה לינארית אזי $c^Tx \leq b^Ty$ אויהי אזי חלשה:

משפט הפרדת היפר־משטח: תהא $\beta\in\mathbb{R}$ עבורם $x\in\mathbb{R}^n$ אזי קיים $x\in\mathbb{R}^n$ אזי קיים א עבורם $x\in\mathbb{R}^n$ וכן $x\in\mathbb{R}^n$ וכן $x\in\mathbb{R}^n$ לכל $x\in\mathbb{R}^n$ לכל $x\in\mathbb{R}^n$

למה מתקיים מהבאים אזי בדיוק $b\in\mathbb{R}^m$ ויהי ויהי $A\in M_{m imes n}\left(\mathbb{R}
ight)$ למה מארקאס: תהא

- Ax = b וכן $x \geq 0$ עבורו $x \in \mathbb{R}^n$ פיים
- $A^Ty \geq 0$ וכן $b^Ty < 0$ עבורו $y \in \mathbb{R}^m$ וכן •

משפט דואליות חזקה: תהא SLP תוכנה לינארית סטנדרטית ותהא DLP התוכנה הלינארית הדואלית אזי

- x=y אזי DLP ויהי אופטימלי פתרון ויהי אויהי SLP יהי פתרון פתרון יהי יהי
 - (SLP) פיזבילית וחסומה \Longrightarrow (חסומה) פיזבילית וחסומה).
 - \bullet (א פיזבילית) לא DLP) לא חסומה SLP) \bullet
 - .(א חסומה) לא DLP) \Longrightarrow לא פיזבילית SLP) •

תוכנה לינארית פרימאלית: תהא SLP תוכנה לינארית סטנדרטית תהא DLP התוכנה הלינארית הדואלית ותהא SDLP הצורה הסטנדרטית של DLP אזי התוכנה הלינארית הדואלית של SDLP.

שקולה ל-SDLP שקולה ל-SDLP תוכנה לינארית סטנדרטית ותהא SDLP התוכנה הלינארית הפרימאלית אזי

טענה: תהא (V,E,c,s,t) רשת זרימה אזי הבעיה הדואלית של בעיית הזרימה המקסימלית הינה

$$\begin{split} & \min \quad \sum_{(u,v) \in E} c\left((u,v)\right) \cdot z\left((u,v)\right) \\ & \text{s.t.} \quad y\left(v\right) - y\left(u\right) + z\left((u,v)\right) \geq 0 \qquad , \forall u,v \in V \backslash \left\{s,t\right\}.\left(u,v\right) \in E \\ & \quad y\left(v\right) + z\left((s,v)\right) \geq 1 \qquad , \forall \left(s,v\right) \in E \\ & \quad -y\left(u\right) + z\left((u,t)\right) \geq 0 \qquad , \forall \left(u,t\right) \in E \\ & \quad z\left((u,v)\right) \geq 0 \qquad , \forall \left(u,v\right) \in E \end{split}$$

טענה: תהא (V,E,c,s,t) רשת זרימה אזי הבעיה הדואלית של בעיית הזרימה מקסימלית שקולה לתוכנה הלינארית

$$\begin{aligned} & \min & & \sum_{(u,v) \in E} c\left((u,v)\right) \cdot z\left((u,v)\right) \\ & \text{s.t.} & & y\left(v\right) - y\left(u\right) + z\left((u,v)\right) \geq 0 & , \forall \left(u,v\right) \in E \\ & & y\left(s\right) = 1 \\ & & y\left(t\right) = 0 \\ & & z\left((u,v)\right) \geq 0 & , \forall \left(u,v\right) \in E \end{aligned}$$

עבורו ($\binom{z}{y}$) משפט: תהא (V,E,c,s,t) משפט: תהא אזי הבעיה אזי הבעיה הדואלית של בעיית הזרימה המקסימלית בעלת פתרון אופטימלי ($u\in V$) עבורו $u\in V$ לכל v

טענה: יהי G גרף מכוון ממושקל ℓ ויהי $s\in V$ אזי הבעיה הדואלית של בעיית המסלולים הקצרים מנקודת מוצא הינה

$$\begin{split} & \min \quad \sum_{(u,v) \in E} \ell\left((u,v)\right) \cdot x\left((u,v)\right) \\ & \text{s.t.} \quad \sum_{\substack{u \in V \\ (u,v) \in E}} x\left((u,v)\right) - \sum_{\substack{u \in V \\ (v,u) \in E}} x\left((v,u)\right) = 1 \qquad , \forall v \in V \backslash \left\{s\right\} \\ & \quad x\left((u,v)\right) \geq 0 \qquad , \forall \left(u,v\right) \in E \end{split}$$

מסקנה: יהי G גרף מכוון ממושקל ℓ יהי יהי $s \in V$ יהי ויהי $s \in V$ יהי מסקנה: יהי G גרף מכוון ממושקל אזי S פתרון אופטימלי של פתרון בשלמים.