LAB ASSIGNMENT – 1

Course: Basic Electrical and Electronics Engineering

Course Code: EEE1001

Faculty Name: Prof. Medaramelta Praveenkumar

Slot: L-19+L-20

Name: Priyal Bhardwaj

Registration Number: 18BIT0272

Submission Date: 30.08.2018

Aim:

1. Verify Kirchhoff's current and voltage laws(Nodal and Mesh) for the given circuits.

Apparatus/Software Required:

ORCAD/Capture CIS-Analog Library-R,

Source Library-V DC

Ground (GND)-0(zero)

Simulation Settings-Analysis Type-Bias Point

Circuit Diagram:

Procedure:

- 1) Construct the same circuit as mentioned in the question.
- 2) For mesh analysis, assign current in each mesh.
- 3) Apply Kirchhoff's Voltage Law in each mesh.
- **4)** Obtain Equations for each mesh.
- 5) Solve Equations and find the current in respective meshes.
- 6) For nodal analysis assign nodes as V1, V2, V3, V4 and ground node as V5=0 Volt.
- 7) Apply Kirchhoff's Current Law in each node.
- **8)** Obtain Equations for each node.
- 9) Solve Equations and find the voltage at different nodes.
- **10**) Place the circuit in Orcad Capture CIS software.
- 11) Simulate the circuit using PSpice & obtain values for currents & voltages.

Manual Calculations:

Mesh Analysis:

①
$$2i_1 + 4(i_1 - i_2) = 100$$

 $6i_1 - 4i_2 = 10$
 $\rightarrow 3i_1 - 2i_2 = 5$
② $-4(i_1 - i_2) + i_2 + 6(i_2 - i_3) = 0$
 $\rightarrow -4i_1 + 11i_2 - 6i_3 = 0$
③ $-6(i_2 - i_3) + 5i_3 = -20$
 $\rightarrow 6i_2 - 11i_3 = 20$
Solving ①, ② & ③
 $i_1 = 1 \cdot 107 \, \text{A}$; $i_2 = -0.838 \, \text{A}$; $i_3 = -2.275 \, \text{A}$

Nodal Analysis:

$$V_1 = 10V$$
; $V_2 = 20V$; $V_5 = 0V$

① At $V_2 : i_1 = i_2 + i_3$
 $V_1 - V_2 = \frac{V_2}{4} + \frac{V_2 - V_3}{1}$
 $V_2 - V_3 = \frac{V_3}{6} + \frac{V_3 - V_4}{5}$
 $V_2 - 4V_3 = 20$
 $V_2 = 7.784V$; $V_3 = 8.622V$

SIMULATION CIRCUIT:

Values:

Simulated Value:

i₁=1.108A i₂=-0.838A i₃=-2.275A

V1=10.00V V2=7.784 V3=8.623V V4=20V V5=0V

Manual Calculation:

i₁=1.108A i₂=0.838A i₃=2.275A

V₁=10.00V V₂=7.784 V₃=8.623V V₄=20V V₅=0V

Inference:

Manual Calculations = Simulated Values

Result:

Hence, Kirchhoff's Voltage and Current Laws are verified.