Anonymous Web Browsing

Software Security

Steffen Helke

Chair of Software Engineering

7th November 2018

What exactly do we mean by anonymity?

Definition (given by Pfitzmann)

A person in a role R is anonymous relative to an event E and an attacker A, if for every person not cooperating with A, the anonymous person has the role R in E with a probability truly greater than 0 and truly smaller than 1 after every observation from A.

Objectives of today's lecture

- → Repetition definitions of *anonymity* and classification of *remailers*
- → Understanding the principles of *anonymisation services*
- → Reflecting the *differences between TOR and JAP*
- → Being able to reproduce two *protocols for the most important use cases* of TOR

Steffen Helke: Software Security, 7th November 2018

What exactly do we mean by perfect anonymity?

Definition (given by Pfitzmann)

A person in a role R relative to an event E and an attacker A is perfectly anonymous, if for every person not cooperating with A the anonymous person has the role R in E with the same probability before and after an observation from A.

Other Definitions (Degrees) of Anonymity

Source: M. Reiter, A. Rubin: Crowds: Anonymity for Web Transactions, 1999.

- Beyond suspicion
 - ightarrow no more likely than any other potential sender
- Probable innocence
 - ightarrow no more likely to be the sender than not to be the sender
- Possible innocence
 - ightarrow there is a nontrivial probability that the real sender is someone else

Steffen Helke: Software Security, 7th November 2018

4

What is a Mix server?

Basic idea of mixing according to [Chaum, 1981]

- Provides unlikability between incoming and outcoming messages
- Mixes collects messages, changes their coding and forward them in different order

Strategies for Anonymization

Basis Functions of a Mix server?

Source: A. Pfitzmann: Script - Security in IT-Networks, 2012

What types of remailers do you know?

Classification

- Pseudonymous remailers (**Type 0**)
- Cypherpunk remailers¹ (**Type I**)
- Mixmaster remailers (**Type II**)
- Mixminion remailers (**Type III**)

7

→ And what else can the Type III mailers do?

Steffen Helke: Software Security, 7th November 2018

Simple Solution with a Proxy

Idea

- Put a proxy server in between, via which all users must access the Web services
- Servers that offer services only see the IP address of this proxy server

Problem

- Data needed for de-anonymization is located on this proxy server
- Users must blindly trust the proxy server

What other anonymization services do exist?

Problem

- Remailers have *too long response* times
- Applications such as web browsing require low latency
- Approach of remailers (use of MIXes as brokers between users and service providers) have to be transferred to other protocols

Software (Selection)

- Anonymization Proxy
- Jondos (formerly JAP, Java Anon Proxy)
- Tor (The Onion Router)

Steffen Helke: Software Security, 7th November 2018

Better Solution with Jondos/JAP

Idea

■ Routing messages over more than one Mix server, communication will be encrypted

Example with three MIX-es

- I Initiator sends a request to *Mix1* server, *Mix1* can see that the data came from the Initiator
- 2 Forwarding the data to *Mix2*, *Mix2* can only see that the data came from *Mix1*
- 3 Forwarding the data to the *Mix3* server, which can only see that the data came from *Mix2*
 - → finally *Mix3* sends a request to the web server

Assumption

Providers of the three MIXes do not work together,
 e.g. by a self-commitment of the providers

 $^{^{1}\}mathit{Cypherpunk}$ is an artificial word derived from cipher, cyber and punk

Architecture of Jondos/JAP

Nutzer A Nutzer B Nutzer Mix 1 Nutzer XYZ InfoService InfoService

Source: S. Köpsell: AnonDienst - Design und Implementierung, 2004, http://anon.inf.tu-dresden.de

Steffen Helke: Software Security, 7th November 2018

Tor: The Onion Router

Idea

- Use of a multi-layer encryption scheme
- Number of nodes to be used can be set individually by the user

Source: http://en.wikipedia.org/wiki

Source: http://www.torproject.org

Solution with Tor

Idea

■ Distributed anonymous network

Properties of Tor

- Mix servers are not only provided by official providers
- *Each person* is authorized to contribute their own node for the Tor network
- System automatically searches for available mix servers

Problems

- Organization could offer a large number of nodes and thus the ability to control the entire network
- Browsing speed decreases significant when using Tor
- Last step $Mix N \rightarrow Web Server$ is unencrypted by default

Steffen Helke: Software Security, 7th November 2018

12

Differences between Jondos/JAP & Tor

Jondos/JAP

- Cascades: fixed chain of Mixes
- Only one Mix cascade can be selected as user
- Generation of artificial messages
- Fixed number of servers (approx. 16)
- Supports HTTP/HTTPS/FTP
- Good performance with commercial version

Tor

- Dynamically variable routes of Mixes: random selection
- User has no control
- No artificial message generation
- Open network, many servers (2014, approx. 6000)
- Software can only be used as SOCKS proxy
- Performance varies depending on the selected paths

Types of Tor Nodes

- 1 Onion Proxy: User client program to connect to the network
- **Onion Router:** Server for forwarding anonymous connections (middle server and exit server)
- **3 Entry Guard:** Onion router, which acts as an entry point for the Tor network
- **4 Directory Service:** Provides essential information about other servers on the network
- **5 Introduction Point:** Server is required for hidden services in order to receive a message from a service user as a service provider
- **6 Rendezvous Point:** Server is also used for hidden services as an anonymous communication point between service provider and user
- **Bridge Relays:** These servers are highly protected and are intended for use by people from censored Internet networks

Features of TOR

- → Classification according to degree of anonymity for participants
 - Use of public services, whereby *only* the user should be anonymous
- Offer and use hidden services, whereby *both* user and provider should be anonymous

Steffen Helke: Software Security, 7th November 2018

15

16

Steffen Helke: Software Security, 7th November 2018

16

Features of TOR

- → Classification according to degree of anonymity for participants
- Use of public services, whereby *only* the user should be anonymous
- 2 Offer and use hidden services, whereby *both* user and provider should be anonymous

How to use public services anonymously?

Procedure

- Alice defines the length of the routing (number of nodes) to the service and her client requests a list of Tor nodes from the directory server
- 2 Alice's client selects a random path to the service, taking into account the previously defined path length
- 3 The path is changed periodically for further requests to the service

Protocol Step 1

→ Alice's client requests a list of Tor nodes from the directory server

Quelle: http://www.torproject.org

Steffen Helke: Software Security, 7th November 2018

Protocol Step 3

→ The path is changed periodically for further requests to the same or to other services

Quelle: http://www.torproject.org

Protocol Step 2

→ Alice's client selects a random path to the service, taking into account the previously defined path length

Quelle: http://www.torproject.org

Steffen Helke: Software Security, 7th November 2018

Tor: The Onion Router

How it really works?

- Implementation of onion-like encryption by symmetric encrypted channels → called: circuits
- Asymmetric cryptography is used for key exchange
 - → Diffie-Hellman Protocol

Quelle: http://en.wikipedia.org/wiki

Quelle: http://www.torproject.org

18

Diffie-Hellman Key Exchange

- **1** Choose p and g randomly, where p is a *prime number* and g is a *primitive root of unity* for \mathbb{Z}_p^* mit $\mathbb{Z}_p^* = \{a : \mathbb{Z}_p \mid gcd(a, p) = 1\}$ und $\mathbb{Z}_p = \{0, \dots, p-1\}$
 - $\rightarrow p$ and g are public
- 2 Alice and Bob have to choose randomly a and b of \mathbb{Z}_p
 - \rightarrow a and b are secret

- 5 Alice calculates $K := B^a \mod p$ and Bob $K := A^b \mod p$
 - \rightarrow K is the key for the symmetric encryption

Steffen Helke: Software Security, 7th November 2018

Steffen Helke: Software Security, 7th November 2018

Attack to Diffie-Hellman Key Exchange

→ Traditional *Man-in-the-Middle attack*:

Eve pretends to Alice as Bob and to Bob as Alice

- 5 Alice calculates $K_a := (B_e)^a \mod p$ und Bob $K_b := (A_e)^b \mod p$
- **6** Eve calculates $K_a := (A_a)^z \mod p$ und $K_b := (B_b)^z \mod p$
 - → Using K_a und K_b Eve is able to listen in on the entire communication and even make changes

Countermeasure: Signing and encrypting using asymmetric algorithms!

Repetition Number Theory

Properties of the Primitive Root of Unity

- Let p be a prime number with $\mathbb{Z}_p = \{0, \dots, p-1\}$ Then is g primitive root of unity, if $g \in \mathbb{Z}_p^*$ and $\{1, \dots, p-1\} = \{g^1, \dots, g^{p-1}\}$
 - **→** The primitive root of unity g is also called *Generator* of $\mathbb{Z}_p \setminus \{0\}$

Correctness of the Generator

- Correctness of g can be proven efficiently if p-1 is factorizable
 - ⇒ if e.g. $p-1=2\cdot r$ and r is a prime number, so we have to prove that the following conditions are *not* satisfied $g^2 \equiv 1 \mod p$ and $g^r \equiv 1 \mod p$

How to establish a TOR connection?

Procedure

- Constructing Circuits (negotiating a symmetric key with each Onion Router on the circuit) based on asymmetric keys and Diffie-Hellman protcol
- 2 Data exchange via telescope-like channels based on TCP

Source: Figure of M. Ströbel, Tor und Angriffe gegen TOR, Seminar Paper, TUM, SS 2009

23

TOR Key Exchance & Communication

Source: S. Hasenauer, C. Kauba, S. Mayer: *Tor - The Second Generation Onion Router*, Seminar Slides, Uni Salzburg. http://www.cosy.sbg.ac.at/ held/teaching/wiss_arbeiten/slides_10-11/TOR.pdf, last access: 4.11.2014

Steffen Helke: Software Security, 7th November 2018

