Показательная и логарифмическая функции. Свойства логарифмов

Показательная функция

Определение

Показательная функция – это функция, которая имеет вид a^x , где a – фиксированное число, $a>0,\ a\neq 1;\ x$ – переменная.

Таблица 1: Свойства функции a^x

	a > 1	0 < a < 1	
МОНОТОННОСТЬ	возрастает	убывает	
область определения	$(-\infty; +\infty)$		
область значений	$(0; +\infty)$		
производная	$a^x \cdot \ln a$		
первообразная	$\frac{a^x}{\ln a}$		

Ниже изображены графики функций a^x .

Пример

Вычислим площадь плоской фигуры, расположенной между графиками функций $y=2^x$ и $y=\left(\frac{1}{3}\right)^x$ и прямой x=1. График функции x=1 — прямая, параллельная оси ординат, проходящая через точку с координатами (1;0). Для построения графиков функций $y=2^x$ и $y=\left(\frac{1}{3}\right)^x$ создадим 2 таблицы, в верхней строке каждой из которых будем записывать значения аргумента, а в нижней — значения функции:

x	-1	0	1	2
2^x	0,5	1	2	4

x	-1	0	1	2
$\left(\frac{1}{3}\right)^x$	3	1	$\frac{1}{3}$	$\frac{1}{9}$

Отметим точки, координаты которых указаны в таблицах, на координатной плоскости и соединим их линиями:

Нам необходимо найти площадь заштрихованной фигуры. Воспользуемся формулой

$$S = \int_{a}^{b} (f_{\text{Выше}}(x) - f_{\text{ниже}}(x)) dx$$
, где $f_{\text{Выше}}(x)$ — функция, график которой расположен выше $f_{\text{нижe}}(x)$ — функция, график которой расположен ниже (1)

В нашем случае $f_{\text{Выше}}(x) = 2^x, \ f_{\text{ниже}}(x) = \left(\frac{1}{3}\right)^x, \ a = 0, \ b = 1$:

$$S = \int\limits_0^1 \left(2^x - \left(\frac{1}{3}\right)^x\right) dx = \left|\begin{array}{c} \text{воспользуемся формулой} \\ \text{первообразной показательной функции} \\ \text{из таблицы 1} \end{array}\right| = \left(\frac{2^x}{\ln 2} - \frac{\left(\frac{1}{3}\right)^x}{\ln \frac{1}{3}}\right) \left|_0^1 = \frac{1}{\ln 2} - \frac{2}{3\ln 3}$$

Мы воспользовались тем, что $\ln \frac{1}{3} = -\ln 3$ (см. свойства логарифмов ниже).

Задачи для самостоятельного решения

1. Постройте графики функций

(a)
$$y = 3^x$$
 (b) $y = \left(\frac{1}{4}\right)^x$

2. Вычислите площадь плоской фигуры, ограниченной линиями

(a)
$$y = 3^x$$
, $y = \left(\frac{1}{2}\right)^x$, $x = 2$
 (b) $y = \left(\frac{1}{3}\right)^x$, $y = 4^x$, $x = -1$

Логарифм числа

Определение

Логарифм положительного числа x **по основанию** a – это показатель степени, в которую нужно возвести a, чтобы получить x:

$$y = \log_a x \iff x = a^y$$

По определению a > 0, $a \neq 1$.

Логарифм по основанию е называют **натуральным логарифмом** и обозначают $\ln x \equiv \log_{\rm e} x$.

Логарифм по основанию 10 называют **десятичным логарифмом** и обозначают $\lg x \equiv \log_{10} x$.

Примеры

1.
$$\log_2 8 = 3$$
, т.к. $8 = 2^3$

2.
$$\log_3 81 = 4$$
, t.k. $81 = 3^4$

3.
$$\log_{25} 5 = \frac{1}{2}$$
, t.k. $25 = \sqrt{25} = 25^{\frac{1}{2}}$

4.
$$\log_9 \frac{1}{9} = -1$$
, t.k. $\frac{1}{9} = 9^{-1}$

Свойства логарифмов

В логарифме $\log_a x$ аргумент x должен быть положительным (x > 0); основание a должно быть больше нуля и HE равно 1 ($a > 0, a \neq 1$).

1.
$$\log_a x + \log_a y = \log_a (x \cdot y)$$
 5. $\log_a x^k = k \cdot \log_a x$

$$5. \log_a x^k = k \cdot \log_a x$$

8.
$$\log_a x = \frac{1}{\log_x a}$$

$$2. \log_a(x \cdot y) = \log_a |x| + \log_a |y|$$

3.
$$\log_a x - \log_a y = \log_a \left(\frac{x}{y}\right)$$

$$6. \log_{a^k} x = \frac{1}{k} \cdot \log_a x$$

9.
$$\log_a 1 = 0$$

10. $\log_a a = 1$

4.
$$\log_a \left(\frac{x}{y}\right) = \log_a |x| - \log_a |y|$$
 7. $\log_a x = \frac{\log_b x}{\log_b a}$

$$7. \log_a x = \frac{\log_b x}{\log_b a}$$

$$11. \quad x = a^{\log_a x}$$

Примеры

Вычислим значения выражений:

1.
$$\log_{\frac{1}{8}} 4 + \log_{\frac{1}{8}} 2 = \begin{vmatrix} \text{воспользуемся} \\ \text{свойством } 3 \end{vmatrix} = \log_{\frac{1}{8}} 8 = -1$$

$$2. \log_{\sqrt{3}} 6 - \log_{\sqrt{3}} 2\sqrt{3} = \begin{vmatrix} \text{воспользуемся} \\ \text{свойством 5} \end{vmatrix} = \log_{\sqrt{3}} \frac{\cancel{6}}{\cancel{2}\sqrt{3}} = \log_{\sqrt{3}} \frac{3}{\sqrt{3}} = \log_{\sqrt{3}} \sqrt{3} = \begin{vmatrix} \text{воспольз.} \\ \text{свойством 2} \end{vmatrix} = 1$$

$$3. \ \log_{\frac{1}{2}} \frac{1}{4\sqrt{2}} = \log_{2^{-1}} \frac{1}{2^2 \cdot 2^{\frac{1}{2}}} = \log_{2^{-1}} \frac{1}{2^{\frac{5}{2}}} = \log_{2^{-1}} 2^{-\frac{5}{2}} = \left| \begin{array}{c} \text{воспользуемся} \\ \text{свойствами 7 и 8} \end{array} \right| = \frac{-\frac{5}{2}}{-1} \log_2 2 = \frac{5}{2}$$

Задачи для самостоятельного решения

Вычислите

1.
$$\log_{144} 3 + \log_{144} 4$$
 4. $\log_{\sqrt{2}} 2$

4.
$$\log_{1/2} 2$$

7.
$$\log_{\sqrt{2}} 7\sqrt{2} - \log_{\sqrt{2}} 14$$
 10. $\sqrt[4]{36^{\log_6 5} - 5^{\log_5 9}}$

10.
$$\sqrt[4]{36^{\log_6 5} - 5^{\log_5 9}}$$

2.
$$\log_{216} 2 + \log_{216} 3$$
 5. $\log_{3\sqrt{2}} 18$

5.
$$\log_{3\sqrt{2}} 18$$

8.
$$\log_{\frac{2}{3}} 32 - \log_{\frac{2}{3}} 243$$
 11. $(0,3)^{3 \log_{0,3} 6}$

11.
$$(0,3)^{3\log_{0,3}6}$$

3.
$$\log_{\frac{1}{12}} 3 + \log_{\frac{1}{12}} 36$$

6.
$$\lg \frac{1}{100\sqrt{10}}$$

9.
$$\log_{0,2} 40 - \log_{0,2} 8$$

12.
$$\left(\frac{1}{16}\right)^{\log_{\frac{1}{2}} 5}$$

Логарифмическая функция

Если каждому положительному числу x поставить в соответствие число y, равное логарифму x по основанию a, то мы получим **логарифмическую функцию**:

$$y = \log_a x$$

Логарифмическая функция $y = \log_a x$ является обратной по отношению к показательной функции $x = a^y$.

a>1 0< a<1 монотонность возрастает убывает область определения $(0;+\infty)$ область значений $(-\infty;+\infty)$ производная $\frac{1}{x \ln a}$ первообразная $\frac{x(\ln x-1)}{\ln a}$

Таблица 2: Свойства функции $\log_a x$

Ниже изображены графики функций $\log_a x$.

Пример

Вычислим площадь плоской фигуры, расположенной между графиками функций $y=\log_2 x$ и $y=\log_{\frac{1}{3}} x$ и прямой x=2. График функции x=2 — прямая, параллельная оси ординат, проходящая через точку с координатами (2;0). Для построения графиков функций $y=\log_2 x$ и $y=\log_{\frac{1}{3}} x$ создадим 2 таблицы, в верхней строке каждой из которых будем записывать значения аргумента, а в нижней — значения функции:

	x	0,5	1	2	4
]	$\log_2 x$	-1	0	1	2

x	$\frac{1}{3}$	1	3	9
$\log_{\frac{1}{3}} x$	1	0	-1	-2

Отметим точки, координаты которых указаны в таблицах, на координатной плоскости и соединим их линиями:

Нам необходимо найти площадь заштрихованной фигуры. Воспользуемся формулой

$$S = \int_{a}^{b} (f_{\text{Выше}}(x) - f_{\text{ниже}}(x)) dx$$
, где $f_{\text{Выше}}(x)$ — функция, график которой расположен выше $f_{\text{нижe}}(x)$ — функция, график которой расположен ниже (2)

В нашем случае $f_{\text{ВЫШе}}(x) = \log_2 x, \ f_{\text{НИЖе}}(x) = \log_{\frac{1}{3}} x, \ a=1, \ b=2$:

$$S = \int\limits_{1}^{2} \left(\log_2 x - \log_{\frac{1}{3}} x\right) dx = \left| \begin{array}{c} \text{воспользуемся формулой} \\ \text{первообразной логарифмической функции} \end{array} \right| = \left(\frac{x(\ln x - 1)}{\ln 2} - \frac{x(\ln x - 1)}{\ln \frac{1}{3}}\right) \left| \begin{array}{c} 2 \\ 1 \end{array} \right| = \left(\frac{2(\ln 2 - 1)}{\ln 2} - \frac{1(\ln 1 - 1)}{\ln 2}\right) - \left(\frac{2(\ln 2 - 1)}{\ln \frac{1}{3}} - \frac{1(\ln 1 - 1)}{\ln \frac{1}{3}}\right) = \frac{(2\ln 2 - 1)\ln 6}{\ln 2\ln 3}$$

Мы воспользовались тем, что $\ln \frac{1}{3} = -\ln 3$ (свойство 5 логарифмов), а также тем, что $\ln 2 + \ln 3 = \ln 6$ (свойство 1 логарифмов).

Задачи для самостоятельного решения

1. Постройте графики функций

(a)
$$y = \log_3 x$$
 (b) $y = \log_{\frac{1}{4}} x$

2. Вычислите площадь плоской фигуры, ограниченной линиями

(a)
$$y = \log_3 x$$
, $y = \log_{\frac{1}{2}} x$, $x = 3$
 (b) $y = \log_{\frac{1}{4}} x$, $y = \log_4 x$, $x = 0.5$