Roadmap for Special Topics on Consumer Theory

```
Px < M+w·ls ⇒ px < M+w(T-l) ⇒ u(x,l) S.t. px+wl < M+wT か始工資工作時间 > Price documents
一生的消费 6一生的财富
```

- Price-dependent endowment
 - Labor supply problem
 - Overtime decisions saving & borrowing
 - Generalization
- Revealed preference an alternative framework
 - Assumptions rational & UMP vs. WARP
 - Predictions (compensated) law of demands
- Aggregation (of choices)
 - o Individual demand vs. aggregate demand
 - Income effect role of wealth distribution
 - Price effect does the (compensated) law of demand hold?

Labour Supply Problem (1)

- \diamond Strictly increasing utility function: $u(x,\ell)$ where x represents the consumption of a composite good; and ℓ represents the consumption of leisure (non-market activities).
- ⋄ Endowment: non-labour income Y and time T
- ⋄ Total budget: W = Y + wT
- ⋄ The optimization problem

$$egin{aligned} \mathit{Max}_{x,\ell} & \mathit{u}(x,\ell) \\ \mathit{s.t.} & \mathit{px} = \mathit{Y} + \mathit{wL_s} \\ \ell + \mathit{L_s} = \mathit{T} \\ & \mathit{x} \geq 0 \\ \ell \geq 0 \\ \ell < \mathit{T} \end{aligned}$$

Labour Supply Problem (2)

Assume $\lim_{x\to 0} MU_x = +\infty$, the optimization problem becomes

$$egin{aligned} \mathit{Max}_{\mathsf{x},\ell} & \mathit{u}(\mathsf{x},\ell) \\ \mathit{s.t.} & \mathit{px} + \mathit{w}\ell = \mathit{Y} + \mathit{w}\mathit{T} \\ \ell \geq 0 \\ \ell \leq \mathit{T} \end{aligned}$$

First Order Conditions x

Lagrangian function:

角点、内点解

$$L(x,\ell,\lambda,\mu_0,\mu_T) = u(x,\ell) + \lambda \left[Y^{\dagger} + wT - px - w\ell \right] + \mu_0 \ell + \mu_T \left[T - \ell \right]$$

KT conditions:

$$MU_x = \lambda p$$
; $MU_\ell = \lambda w - \mu_0 + \mu_T$

2
$$\mu_T > 0 \implies \ell = T, L_s = 0 \text{ and } x = \frac{Y}{R}, \mu_0 = 0$$

$$\frac{MU_{\mathsf{x}}}{p} = \frac{MU_{\ell} - \mu_{\mathsf{T}}}{w} \ \Rightarrow \ \frac{MU_{\mathsf{x}}}{p} < \frac{MU_{\ell}}{w}$$

Labour market non-participants

3
$$\mu_0 > 0 \Rightarrow \ell = 0, L_s = T \text{ and } x = \frac{Y + wT}{p}, \mu_T = 0$$

$$\frac{MU_{\mathsf{x}}}{p} = \frac{MU_{\ell} + \mu_{\mathsf{0}}}{w} \ \Rightarrow \ \frac{MU_{\mathsf{x}}}{p} > \frac{MU_{\ell}}{w}$$

Solutions

Labour market participation decision

- \diamond Reservation wage w^R willingness to work (supply labour)
 - implicit value of non-market activities (leisure)
 - wage rate at which an individual is indifferent between participating
 - $(\ell < T)$ and withdrawing from $(\ell = T)$ labour market w^R is the MRS at point $\ell = T$ (assuming $p_X = 1$)
- \diamond If $w^R > w$, withdraw, a corner solution $\frac{Mu_L}{Mu_R} > \frac{w}{P}$
- ♦ If $w^R \le w$, participate, an interior solution

Labour supply conditional on participation ($w^R < w$)

- \diamond Marshallian demand for leisure $\ell(w, p, Y) = \ell(w, p, Y + wT)$
- ♦ Labour supply function $L_s = T \ell(w, p, Y) = T \ell(w, p, Y + wT)$

Comparative Static Analysis

- How does the budget line change?
- Impact on labour market participation
- Impact on labour supply (leisure demand) conditional on participating

Change in Non-labour Income Y

If leisure is a normal good, when non-labor income Y increases

- Impact on labour supply, conditional on participating $Y \uparrow \Rightarrow$ demand for leisure $\uparrow \Rightarrow$ supply of labour \downarrow
- Impact on labour market participation $Y \uparrow \Rightarrow$ demand for leisure $\uparrow \Rightarrow$ implicit value of leisure $\uparrow \Rightarrow$ reservation wage \(\)
 - Non-participants still do not participate
 - Participants may withdraw

Thus, the overall participating rate \downarrow

Change in Wage - Impact on Labour Market Participation

- ♦ Can a wage increase make a non-participant participate?
- Can a wage increase make a participant withdraw from labour market?
- Overall impact on participating rate?

Change in Wage - Impact on Intensive Labour Supply (1) 和之后的genernal 模型有关

Conditional on participating

$$L_s = T - \ell(w, p, W) = T - \ell(w, p, Y + wT)$$

$$\frac{\partial \ell(w, p, Y + wT)}{\partial w} = \frac{\partial \ell(w, p, W)}{\partial w} + \frac{\partial \ell(w, p, W)}{\partial w}$$
ard Slutsky equation
$$\frac{\partial \ell(w, p, Y + wT)}{\partial w} = \frac{\partial \ell(w, p, W)}{\partial w} + \frac{\partial \ell(w, p, W)}{\partial w}$$
wealth In

The standard Slutsky equation

$$\frac{\partial \mathcal{L}}{\partial w} = \frac{\partial \mathcal{L}}{\partial w} - \frac{\partial \mathcal{L}(w, p, w)}{\partial w} = \frac{\partial \mathcal{L}}{\partial w} - \frac{\partial \mathcal{L}(w, p, w)}{\partial w} = \frac{\partial \mathcal{L}}{\partial w} - \frac{\partial \mathcal{L}(w, p, w)}{\partial w} = \frac{\partial \mathcal{L}}{\partial w} - \frac{\partial \mathcal{L}(w, p, w)}{\partial w} = \frac{\partial \mathcal{L}}{\partial w} = \frac{$$

桂代弘应 < 0.

Change in Wage - Impact on Intensive Labour Supply (2)

Put them together

$$\frac{\partial \ell(w, p, Y + wT)}{\partial w} = \frac{\partial \ell^h}{\partial w} - \frac{\partial \ell(w, p, W)}{\partial W} \ell^* + \frac{\partial \ell(w, p, W)}{\partial W} T$$

$$= \frac{\partial \ell^h}{\partial w} + \frac{\partial \ell(w, p, W)}{\partial W} (T - \ell^*) \qquad \begin{array}{c} \zeta_5 + \frac{\partial \zeta_5}{\partial w} > 0 \\ \zeta_5 + \frac{\partial \zeta_5}{\partial w} < 0. \end{array}$$
Substitution effect $\frac{\partial \ell^h}{\partial w} < 0$.

Income effect for leisure as a normal good $\frac{\partial \ell(w,p,\mathcal{W})}{\partial \mathcal{W}} > 0$.

The overall impact of an increase in w on leisure demand (labor supply) 4 can be positive (negative) for large enough $T - \ell^*$.

- Upward sloping leisure demand curve.
- Backward bending labor supply curve.

Relevant Policy Issues

- Optimal income tax and the elasticity of labour supply \uparrow income tax rate $\Rightarrow \downarrow$ labour supply and tax base \Rightarrow ambiguous impact on tax revenue
- The debate between the conservatives and the liberals
 - Liberals: the high-income earners are insensitive to tax rates thus it is OK to raise their income tax and use the revenue to subsidize the poor
 - Conservatives: the high-income earners should not be taxed heavily as they work harder when the tax rate is low and the wage is high
- ♦ If the conservatives are correct, what is the likely labour supply outcome of the following tax and transfer scheme?
 - Increase income tax rate
 - Return the tax revenue to households as lump-sum transfer

Missing/Imperfect Market for Endowment

先天禀赋.

Example: Impacts of constraints on off-farm job opportunity

A simplified version of "Household composition, labor markets, and labor demand: testing for separation in agricultural household models", by Dwayne Benjamin, Econometrica 1992

An agriculture household's problem

$$max_{c,\ell,L^F,L^O,L^H}$$
 $u(c,\ell)$ 庭何. 負之技力 國工作.
$$s.t. \quad c = F(L) - wL^{\Theta} + wL^O + y$$

$$L = L^F + L^H$$

$$\ell + L^{\Theta} + L^O = L^T$$

- \diamond c consumption; ℓ leisure; $u(c,\ell)$ hh utility function
- \diamond w prevailing wage; y other income; F(L) hh farm production function
- \diamond L^F hh labour on farm; L^O hh off-farm labour supply; L^H hired labour on farm; L^T total hh labour endowment

Lagrangian Function and F.O.C.s

$$L(c,\ell,L^F,L^O,L^H,\lambda_1,\lambda_2) = u(c,\ell) \\ + \lambda_1[F(L^H+L^F) - wL^H + wL^O + y - c] \\ + \lambda_2[L^T - \ell - L^F - L^O] \\ + \lambda_2[L^T - \ell - L^F - L^O] \\ + \lambda_2[L^T - \ell - L^F - L^O] \\ + \lambda_2[L^T - \ell - L^F - L^O] \\ + \lambda_2[L^T - \ell - L^F - L^O] \\ + \lambda_2[L^T - \ell - L^F - L^O] \\ + \lambda_2[L^T - \ell - L^F - L^O] \\ + \lambda_2[L^T - \ell - L^F - L^O] \\ + \lambda_2[L^T - \ell - L^F - L^O] \\ + k_2[L^T - \ell - L^F - L^O] \\ + k_2[L^T - \ell - L^F - L^O] \\ + k_2[L^T - \ell - L^F - L^O] \\ + k_2[L^T - \ell - L^F - L^O] \\ + k_2[L^T - \ell - L^F - L^O] \\ + k_2[L^T - \ell - L^F] \\ + k_2[L^T - \ell - L$$

 L^* is determined by $F'(L^*) = w$, that is, the optimal input in production (farming) L^* is independent of the choice of consumption.

Consumption Budget with $F(L^*)$

With L^* , the consumption budget becomes

$$c = F(L^*) - wL^H + wL^O + y$$

$$= F(L^*) - w(L^* - L^F) + wL^O + y$$

$$= F(L^*) - wL^* + w(L^F + L^O) + y$$

$$= F(L^*) - wL^* + w(L^T - I) + y$$

$$c + w\ell = F(L^*) - wL^* + wL^T + y$$

Thus.

- ⋄ The slope of the budget line is w.
- $\diamond c = F(L^*) + v$, $\ell = L^T L^*$ is one feasible bundle on the BL.
- \diamond Use tangency condition to find the *optimal* bundle (c^*, ℓ^*) .
- \diamond Find L^{F*} and L^{O*} (or L^{H*})

Constraint on Off-farm Job Opportunity L^O

Add one more constraint $L^O \leq \overline{L}^O$ 11 ths.

$$L(c, \ell, L^{O}, L^{F}, \lambda_{1}, \lambda_{2}, \mu) = u(c, \ell) + \lambda_{1} \left[F(L) + wL^{O} + y - c \right]$$

$$+ \lambda_{2} \left[L^{T} - \ell - L^{F} - L^{O} \right] + \mu \left[\overline{L}^{O} - L^{O} \right]$$

 \overline{L}^{O} is small and the constraint is binding. Let $L^{H^*} = 0$.

F.O.C.s become

$$c: MU_c = \lambda_1$$
 $\ell: MU_\ell = \lambda_2$

$$\frac{\lambda_1}{\lambda_1} = W - \frac{M}{\lambda_1} \quad \frac{L^O}{L^F} : \quad \lambda_1 w = \lambda_2 + \mu$$

From the two equalities

$$F(L^{T} - \overline{L}^{O} - \ell^{*}) + w\overline{L}^{O} + y - c^{*} = 0$$

First Order Conditions

Production and consumption decisions are NOT separable.

$$\frac{MU_{\ell}}{MU_{c}} = \frac{\lambda_{2}}{\lambda_{1}} = F'(L^{T} - \overline{L^{O}} - \ell^{*})$$

$$= w - \frac{\mu}{\lambda_{1}}$$

$$\equiv w^{*} \text{ (shadow wage)}$$

$$< w$$

Refer to w^* in balancing consumption of c and I

$$\frac{MU_{\ell}}{w*} = MU_{c}$$

The difference between market wage and shadow wage reflects the tightness of outside employment constraint

$$w - w^* = w - F'(L^*) = \frac{\mu}{\lambda_1}$$

Moral of the Story

- When the market for endowment is perfect and efficient, the household's production decision is separable from its consumption decision, which means the household can make decisions in two steps
 - Maximize the value of the household endowment
 - Optimize household consumption with the budget from Step 1
- When some market is missing or imperfect, the household would have to make production and consumption decisions simultaneously and end up with lower welfare level.
- A well functioning market system improves welfare.

Over-time Consumption Decision

- Decision over consumption today vs. consumption tomorrow
- Budget conditions
 - Endowment: income today and income tomorrow
 - Relative price and interest rate
 - Borrowing rate the same as saving rate
 - Borrowing rate higher than saving rate
- Optimization
 - Borrow or save?
 - · How much?
- Comparative static analysis borrower vs. saver vs. "P-to-P" (paycheck to paycheck)
 - Increase in borrowing rate
 - Increase in saving rate

Problems with Endowment

- \diamond Endowment is a vector of goods $\mathbf{a} \geq \mathbf{0}$ the consumer owns.
- UMP with endowment

$$\max_{\mathbf{x}} u(\mathbf{x})$$
s.t. $\mathbf{p} \cdot \mathbf{x} \le y + \mathbf{p} \cdot \mathbf{a}$

♦ EMP with endowment.

$$\min_{\mathbf{x}} \mathbf{p} \cdot \mathbf{x} - \mathbf{p} \cdot \mathbf{a}$$
s.t. $u(\mathbf{x}) \ge u$

Note the optimal choice is the same as the solution to

$$\min_{\mathbf{x}} \mathbf{p} \cdot \mathbf{x}$$
s.t. $u(\mathbf{x}) \ge u$

But the value functions differ.

UMP with Endowment

Lagrangian

$$\mathcal{L} = u(\mathbf{x}) + \lambda(y + \mathbf{p} \cdot \mathbf{a} - \mathbf{p} \cdot \mathbf{x}) + \sum_{\ell=1}^{L} \mu_{\ell} x_{\ell}$$

KKT conditions

$$u_{\ell}(\mathbf{x}^*) - \lambda^* p_{\ell} + \mu_{\ell}^* = 0$$
$$\lambda^* \ge 0, w - \mathbf{p} \cdot \mathbf{x}^* + \mathbf{p} \cdot \mathbf{a} \ge 0, \lambda^* (y - \mathbf{p} \cdot \mathbf{a} - \mathbf{p} \cdot \mathbf{x}^*) = 0$$
$$\mu_{\ell}^* \ge 0, x_{\ell}^* \ge 0, \mu_{\ell}^* x_{\ell}^* = 0$$

Solution

$$\mathbf{x}^*(\mathbf{p}, y, \mathbf{a}), v(\mathbf{p}, y, \mathbf{a})$$

EMP with Endowment

Lagrangian

$$\mathcal{L} = \mathbf{p} \cdot \mathbf{x} - \mathbf{p} \cdot \mathbf{a} + \gamma (u - u(\mathbf{x})) - \sum_{\ell=1}^{L} \eta_{\ell} x_{\ell}$$

The same KKT conditions as before. Solution

Shephard's Lemma:

$$\frac{\partial e}{\partial p_{\ell}}|_{\mathbf{x}^*} = h_{\ell}(\mathbf{p}, u) - a_{\ell}$$

Slutsky Equation with Endowment (1)

 \diamond The two demand functions $\mathbf{h}(\cdot)$ and $\mathbf{x}(\cdot)$ satisfy

$$h_{\ell}(\mathbf{p}, u) \equiv x_{\ell}(\mathbf{p}, e(\mathbf{p}, u, \mathbf{a}), \mathbf{a})$$

Slutsky decomposition with endowment

$$\frac{\partial h_i}{\partial p_j} = \frac{\partial x_i}{\partial p_j} + \frac{\partial x_i}{\partial w} \frac{\partial e}{\partial p_j}
= \frac{\partial x_i}{\partial p_j} + \frac{\partial x_i}{\partial w} (h_j - a_j)
= \frac{\partial x_i}{\partial p_j} + \frac{\partial x_i}{\partial w} (x_j - a_j)
\frac{\partial x_i}{\partial p_j} = \frac{\partial h_i}{\partial p_j} - \frac{\partial x_i}{\partial w} (x_j - a_j)$$

Slutsky Equation with Endowment (2)

Focus on the own price effect when j = i

Key difference with endowment

$$\frac{\partial x_i}{\partial p_i} = \frac{\partial h_i}{\partial p_i} - \frac{\partial x_i}{\partial w} (x_i - a_i)$$

- ⋄ Even if x_i is a normal good, when a_i is large enough, $\partial x_i/\partial p_i$ may be positive.
 - when $x_i a_i > 0$, the consumer is a *net buyer* of i; otherwise, he is a *net seller*.
 - Without endowment $(a_i = 0)$, an increase in p_i lowers the consumer's purchasing power and induces welfare loss.
 - With endowment $(a_i > 0)$, for a net seller of i $(x_i < a_i)$, an increase in p_i raises the consumer's purchasing power through endowment effects.

Revealed Preference Relationship 显示性偏分

 Observe choice of consumption bundles x¹, x², ..., xⁿ under different budget conditions (prices and wealth)

$$(\mathbf{p}^1, w^1), (\mathbf{p}^2, w^2), ..., (\mathbf{p}^n, w^n)$$

Are these choices consistent with maximizing a (quasi-concave) utility function subject to the budget constraint?

 Revealed preference: binary relationship based on observed choices (instead of axioms on hypothetical preference)

Revealed Preference Definition

 $c(\mathbf{p}, w)$ is the choice function

 \diamond **x** is chosen when **x**' is affordable \Leftrightarrow **x** is revealed preferred to **x**'

$$\mathbf{x} = c(\mathbf{p}, w)$$
 and $\mathbf{p} \cdot \mathbf{x}' \leq w \Leftrightarrow \mathbf{x} \succsim^R \mathbf{x}'$

 \diamond **x** is chosen when **x**' is strictly affordable \Leftrightarrow **x** is strictly revealed preferred to **x**'

$$\mathbf{x} = c(\mathbf{p}, w)$$
 and $\mathbf{p} \cdot \mathbf{x}' < w \iff \mathbf{x} \succ^R \mathbf{x}'$

Weak Axioms of Revealed Preferences

在Po下买得起x',但还是选了x°.
在Pr不起x',买了x'
x°

 $\text{WARP: } \mathbf{p}^0 \cdot \mathbf{x}^1 \leq \mathbf{p}^0 \cdot \mathbf{x}^0 \ \Rightarrow \ \mathbf{p}^1 \cdot \mathbf{x}^0 > \mathbf{p}^1 \cdot \mathbf{x}^1$

无法判断,但不违反.

- \diamond If \mathbf{x}^0 is (weakly) revealed preferred to \mathbf{x}^1 and they are different consumption bundles, x^1 can not be (weakly) revealed preferred to x^0
- The following example of choices does not satisfy WARP
 - when the budget is (\mathbf{p}, w) , the consumer chooses \mathbf{x} and $\mathbf{p} \cdot \mathbf{x}' < w$
 - when the budget is (\mathbf{p}', w') , the consumer chooses \mathbf{x}' and $\mathbf{p}' \cdot \mathbf{x} \leq w'$
- \diamond What if **x** is observed under (**p**, w), **x**' is observed under (**p**', w'),

while
$$\mathbf{p}' \cdot \mathbf{x} > w'$$
 and $\mathbf{p} \cdot \mathbf{x}' > w$?

 $\forall \mathbf{k} \in \mathbb{R}$
 $\forall \mathbf{$

Homogeneous of Degree 0 in (\mathbf{p}, w)

WARP + Walras' Law \Rightarrow Choice function H.D.0 in p and w

$$\mathbf{p}^{0}, w^{0} \rightarrow \mathbf{x}^{0}$$

$$\mathbf{p}^{1} = t\mathbf{p}^{0}, w^{1} = tw^{0}, t > 0 \rightarrow \mathbf{x}^{1}$$

If the choice function is not homogeneous of degree 0 in $\bf p$ and $\bf w$, $\bf x^0$ and \mathbf{x}^1 need to be different

$$\underline{\mathbf{p}^1 \cdot \mathbf{x}^1} = w^1 = tw^0 = \underline{t} \mathbf{p}^0 \cdot \mathbf{x}^0$$

$$\begin{aligned} & \mathbf{p}^0 \cdot \mathbf{x}^1 = \mathbf{p}^0 \cdot \mathbf{x}^0 & \Leftrightarrow & \mathbf{x}^0 \succsim^R \mathbf{x}^1 \\ & \mathbf{p}^1 \cdot \mathbf{x}^1 = \mathbf{p}^1 \cdot \mathbf{x}^0 & \Leftrightarrow & \mathbf{x}^1 \succsim^R \mathbf{x}^0 \end{aligned}$$

Contradict with WARP, so $\mathbf{x}^1 = \mathbf{x}^0$

Compensated Law of Demand

WARP + Walras' Law ⇒ Compensated Law of Demand

- \diamond price change $\mathbf{p}^2 = \mathbf{p}^1 + \Delta \mathbf{p}$
- \diamond Slutsky compensation $\Delta w = \Delta \mathbf{p} \cdot \mathbf{x}^1$ and $w^c = w^1 + \Delta w = \mathbf{p}^2 \cdot \mathbf{x}^1$
- \diamond WARP + Walras' Law \Rightarrow

$$\Delta \mathbf{p} \cdot \Delta \mathbf{x} = (\mathbf{p}^2 - \mathbf{p}^1) \cdot (\mathbf{x}^c(\mathbf{p}^2, w^c) - \mathbf{x}^1(\mathbf{p}^1, w))$$

$$= \mathbf{p}^2 \cdot (\mathbf{x}^c - \mathbf{x}^1) - \mathbf{p}^1 \cdot (\mathbf{x}^c - \mathbf{x}^1)$$

$$= -\mathbf{p}^1 \cdot (\mathbf{x}^c - \mathbf{x}^1)$$

$$\leq 0$$

where equality holds only when $\mathbf{x}^1 = \mathbf{x}^c$

- The second last step uses the rule of Slutsky compensation: $\mathbf{p}^2 \cdot \mathbf{x}^c = \mathbf{p}^2 \cdot \mathbf{x}^1$
- The last step is because of WARP: since $\mathbf{p}^2 \cdot \mathbf{x}^c = \mathbf{p}^2 \cdot \mathbf{x}^1$, we must have $\mathbf{p}^1 \cdot \mathbf{x}^c > \mathbf{p}^1 \cdot \mathbf{x}^1$ if $\mathbf{x}^1 \neq \mathbf{x}^c$.

Negative Semi-definite Substitution Matrix (1)

WARP + Walras' Law ⇒ negative semi-definite substitution matrix

Assume a differentiable choice function $\mathbf{x}(\mathbf{p}, w)$. The compensated demand associated with a change of price from \mathbf{p}^1 to \mathbf{p}^2 is

$$\mathbf{x}^c = \mathbf{x}(\mathbf{p}^2, \mathbf{p}^2 \cdot \mathbf{x}^1)$$

With a change in the price of i

$$dx_i^c = \left(\frac{\partial x_i}{\partial p_i} + \frac{\partial x_i}{\partial w} x_j^1\right) dp_j$$

With changes in the prices of multiple goods

$$dx_i^c = \sum_{j=1}^L \left(\frac{\partial x_i}{\partial p_j} + \frac{\partial x_i}{\partial w} x_j^1\right) dp_j = \mathbf{s}_i \cdot d\mathbf{p}$$

Negative Semi-definite Substitution Matrix (2)

Stack all the compensated demand changes dx_i^c

$$d\mathbf{x}^c = Sd\mathbf{p}$$
, where $S = \left[\frac{\partial x_i}{\partial p_j} + \frac{\partial x_i}{\partial w}x_j^1\right]_{i,j}$

We have shown that $\Delta \mathbf{p} \cdot \Delta \mathbf{x} \leq 0$ under WARP and Walras's Law.

$$d\mathbf{p} \cdot d\mathbf{x}^c = d\mathbf{p}^T S \, d\mathbf{p} \le 0$$

S is negative semi-definite.

Symmetry (1)

Some properties of the substitution matrix

$$\mathbf{p}^T S(\mathbf{p}, w) = 0$$
 and $S(\mathbf{p}, w)\mathbf{p} = 0$, for $\forall \mathbf{p}$ and w .

 \diamond The *j*th column of $\mathbf{p}^T S(\mathbf{p}, w)$ is

$$\sum_{i=1,\dots,L} p_i \left(\frac{\partial x_i}{\partial p_j} + \frac{\partial x_i}{\partial w} x_j \right) = \left(\sum_{i=1,\dots,L} \frac{\partial x_i}{\partial p_j} p_i + x_j \right) + x_j \left(\sum_{i=1,\dots,L} \frac{\partial x_i}{\partial w} p_i - 1 \right)$$

- 0 by Walras' Law: changes in p_i and w for the two terms
- ⋄ The *i*th row of $S(\mathbf{p}, w)\mathbf{p}$ is

$$\sum_{j=1,\dots,L} \left(\frac{\partial x_i}{\partial p_j} + \frac{\partial x_i}{\partial w} x_j \right) p_j = \sum_{j=1,\dots,L} \frac{\partial x_i}{\partial p_j} p_j + \frac{\partial x_i}{\partial w} \sum_{j=1,\dots,L} x_j p_j$$
$$= \sum_{j=1,\dots,L} \frac{\partial x_i}{\partial p_j} p_j + \frac{\partial x_i}{\partial w} w$$

0 by Euler's Theorem: consumption choices x H.D.0 in (p, w)

Symmetry(2)

 \diamond When L=2, S is symmetric, i.e, $s_{1,2}=s_{2,1}$

$$p_1 s_{1,1} + p_2 s_{2,1} = 0$$

 $s_{1,1} p_1 + s_{1,2} p_2 = 0$

 \diamond When L > 2, S is NOT NECESSARILY symmetric

$$p_1 s_{1,1} + p_2 s_{2,1} + p_3 s_{3,1} = 0$$

 $s_{1,1} p_1 + s_{1,2} p_2 + s_{1,3} p_3 = 0$

NOT NECESSARY that $s_{1,2} = s_{2,1}$ and $s_{1,3} = s_{3,1}$

Transitivity(1)

Suppose WARP is satisfied

- \diamond When L=2, the revealed preference is also transitive
 - Suppose NOT, then there exist a, b and c such that

$$\mathbf{a} \succsim^R \mathbf{b}, \quad \mathbf{b} \succsim^R \mathbf{c}, \quad \mathbf{c} \succsim^R \mathbf{a}$$

Without loss of generality, set $p_2^a = p_2^b = p_2^c = 1$.

$$\mathbf{a} \succsim^{R} \mathbf{b}, \mathbf{c} \succsim^{R} \mathbf{a} \quad \Rightarrow \quad p^{\mathbf{a}}c_{1} + c_{2} > p^{\mathbf{a}}a_{1} + a_{2} \ge p^{\mathbf{a}}b_{1} + b_{2}$$

$$\mathbf{a} \succsim^{R} \mathbf{b}, \mathbf{b} \succsim^{R} \mathbf{c} \quad \Rightarrow \quad p^{\mathbf{b}}a_{1} + a_{2} > p^{\mathbf{b}}b_{1} + b_{2} \ge p^{\mathbf{b}}c_{1} + c_{2}$$

$$\mathbf{b} \succsim^{R} \mathbf{c}, \mathbf{c} \succsim^{R} \mathbf{a} \quad \Rightarrow \quad p^{\mathbf{c}}b_{1} + b_{2} > p^{\mathbf{c}}c_{1} + c_{2} \ge p^{\mathbf{c}}a_{1} + a_{2}$$

This is IMPOSSIBLE.

Transitivity(2)

- \diamond With L > 2, the revealed preference that satisfies WARP is NOT NECESSARILY transitive.
 - \circ Example: cycle with L=3

$$\mathbf{p}^1 = (2, 1, 2)$$
 , $\mathbf{x}^1 = (1, 2, 2)$

$$\mathbf{p}^2 = (2, 2, 1)$$
 , $\mathbf{x}^2 = (2, 1, 2)$

$$\mathbf{p}^3 = (1, 2, 2)$$
 , $\mathbf{x}^3 = (2, 2, 1)$

Strong Axiom of Revealed Preference

WARP + 传递性.

SARP(Houthakker 1950) rules out intransitive revealed preference.

 \diamond (JR) SARP is satisfied if, for every sequence of distinct bundles $\{\mathbf{x}^i\}_{i=1}^N,$ where

$$\mathbf{x}^1 \succsim^R \mathbf{x}^2$$
, and $\mathbf{x}^2 \succsim^R \mathbf{x}^3$, . . . , and $\mathbf{x}^{k-1} \succsim^R \mathbf{x}^k$

it is not the case that

$$\mathbf{x}^k \gtrsim^R \mathbf{x}^1$$
 for $\forall k = 2, ..., N$

 \diamond (MWG) If $\mathbf{x}^1 = \mathbf{x}(\mathbf{p}^1, w^1)$ is directly or indirectly revealed preferred to $\mathbf{x}^N = \mathbf{x}(\mathbf{p}^N, w^N)$, then \mathbf{x}^N cannot be (directly) revealed preferred to \mathbf{x}^1 , i.e, $\mathbf{p}^N \cdot \mathbf{x}^1 > w^N$. With $\mathbf{x}^{n+1} \neq \mathbf{x}^n$,

$$\mathbf{p}^n \cdot \mathbf{x}^{n+1} \le w^n, \forall n \le N-1 \Rightarrow \mathbf{p}^N \cdot \mathbf{x}^1 > w^N$$

GARP(Afriat 1967) ... $\Rightarrow p^N \cdot x^1 \ge w^N$; ... x^N not strictly r. p. to x^1 .

Application in Welfare Analysis of Tax

$$\begin{array}{lll} & & & \\$$

Revenue neutral per unit tax (distorting tax)

- Compared to lump-sum tax
- No tax vs. tax & rebate program with balanced budget 很还.

Other Applications

A consumer spends all her income on X and Y. In period 1, she bought 20 units of X at \$5 per unit and 15 units of Y at \$5 per unit. In period 2, she bought 30 units of X at \$5 per unit and 10 units of Y at \$10 per unit.

- Draw the BL and find the consumption bundle for each period
- Which bundle does she prefer?
- Is she better off or worse off in the second period?
- \diamond What if in the second period she bought 12 units of X at \$10 per unit and 23 units of Y at \$5 per unit
- \diamond What if in the second period she bought 8 units of X at \$10 per unit and 30 units of Y at \$5 per unit

Index Numbers

- Change of interest: price index, quantity index
- Weights: Laspeyres Index (base) and Paasche Index (end)
- Welfare change over time if
 - CPI is lower than nominal income growth rate
 - real GDP growth is negative

Aggregation of Individual Demand

Adding up individual demand/Stacking up individual demand curves
 ⇒ aggregate demand (curve)

高品 i

- ∘ *N* consumers, 1, 2, ..., *N*
- $x_i^n(\mathbf{p}, w^n)$: the demand for \hat{y} by the *n*th consumer
- \circ Aggregate demand for i

$$\widehat{D}_{i}(\mathbf{p}, w^{1}, ..., w^{N}) = \sum_{n=1}^{N} x_{i}^{n}(\mathbf{p}, w^{n})$$

Aggregate demand function vs. individual demand function

Key Questions about Aggregate Demand Function

Is the aggregate demand derived this way consistent with the behaviour of a utility maximizing "representative consumer"?

- When does the aggregate demand depend only on total wealth instead of the distribution of wealth?
- What properties does the aggregate demand have? Homogeneous of degree 0 in price and total wealth? Walras' Law? WARP?

Dealing with Wealth (1)

The distribution of wealth does not matter for aggregate demand \iff There exists $D_i(\mathbf{p}, w)$ such that for $\forall (w^1, ..., w^N) > \mathbf{0}$ with $w = \sum_{n=1}^N w^n$ $\mathcal{D}_{i}(\mathbf{p},w)=\widehat{D}_{i}(\mathbf{p},w^{1},...,w^{N})$

The impact of a change in wealth distribution on aggregate demand

$$\sum_{n=1}^{N} \frac{\partial \widehat{D}_{i}}{\partial w^{n}}(\mathbf{p}, w^{1}, ..., w^{N}) = \sum_{n=1}^{N} \frac{\partial x_{i}^{n}(\mathbf{p}, \mathbf{w})}{\partial w^{n}}$$

Redistribution of the same w does not affect aggregate demand

For
$$\forall$$
 $d\mathbf{w}$ such that $\sum_{n=1}^{N} dw^n = 0$, $\sum_{n=1}^{N} \frac{\partial x_i^n(\mathbf{p}, \mathbf{w})}{\partial w^n} dw^n = 0$

Dealing with Wealth (2)

Consider the following redistribution plans

$$(1,-1,0,...0),(1,0,-1,...,0),...,(1,0,0,...,-1)$$

If none of the above has any impact on the aggregate demand, we have

$$D_i(\mathbf{p}, w)$$
 exists $\Leftrightarrow \frac{\partial x_i^k(\mathbf{p}, \mathbf{w})}{\partial w^k} = \frac{\partial x_i^j(\mathbf{p}, \mathbf{w})}{\partial w^j}$ for $\forall j, k = 1, ..., N$

- The same wealth effect for all consumers at all wealth levels.
- The income consumption curves (wealth expansion paths) are parallel and straight lines.

Examples of Common Wealth Effect

- Examples of preference that give "common" income effect?
 - Quasi-linear preference: 0 income effects
 - Identical homothetic preference
 - Homothetic thus the same at all income levels
 - Identical thus the same for all consumers
- ♦ Is there a general form?

♦ Gorman form: indirect utility function of consumer *n*

$$v^n(\mathbf{p}, w) = a^n(\mathbf{p}) + b(\mathbf{p})w^n$$

- Separable in prices and wealth
- Marshallian demand for i by consumer n

$$x_i^n(\mathbf{p}, w^n) = -\frac{\partial v^n/\partial p_i}{\partial v^n/\partial w^n} = -\frac{a_i^n(\mathbf{p}) + b_i(\mathbf{p})w^n}{b(\mathbf{p})}$$

Gorman Form (2)

Income effect

$$\frac{\partial x_i^n}{\partial w^n} = -\frac{b_i(\mathbf{p})}{b(\mathbf{p})}$$

which does not depend on n or w^n . The same linear rate for all consumers at all wealth levels.

The slope of the income consumption curve (wealth expansion curve)

$$\frac{\partial x_i^n}{\partial x_j^n} = \frac{\partial x_i^n/\partial w^n}{\partial x_j^n/\partial w^n} = \frac{b_i(\mathbf{p})}{b_j(\mathbf{p})}$$

Gorman Form (3)

Aggregation

$$D_{i}(\mathbf{p}, w^{1}, ..., w^{N}) = -\sum_{n=1}^{N} \frac{a_{i}^{n}(\mathbf{p}) + b_{i}(\mathbf{p})w^{n}}{b(\mathbf{p})}$$

$$= -\sum_{n=1}^{N} \frac{a_{i}^{n}(\mathbf{p})}{b(\mathbf{p})} - \frac{b_{i}(\mathbf{p})}{b(\mathbf{p})} \sum_{n=1}^{N} w^{n}$$

$$= -\sum_{n=1}^{N} \frac{a_{i}^{n}(\mathbf{p})}{b(\mathbf{p})} - \frac{b_{i}(\mathbf{p})}{b(\mathbf{p})} w^{total}$$

Gorman Form (4)

- This proves the sufficiency of the Gorman form. The proof for the necessity - Gorman form is the only form that gives straight and parallel wealth expansion paths - is more complicated.
- Include information on income distribution in the AD function
 - Variance or other inequality measures of the wealth distribution
 - Specify wealth distributing rules $w^n = w^n(\mathbf{p}, w)$ so that

$$x_i^n(\mathbf{p}, w^n) = x_i^n(\mathbf{p}, w^n(\mathbf{p}, w)) = x_i^n(\mathbf{p}, w)$$

e.g.,
$$w^n = \alpha^n w$$
 and $\sum_{n=1}^N \alpha^n = 1$.

Properties of Aggregate Demand

- Properties of individual demand shared by aggregate demand:
 Continuity, H.D.0 in (p, w), Walras' Law.
- How about compensated Law of demand? or WARP?
 - Compensated Law of Demand:

$$(\mathbf{p}' - \mathbf{p}) \cdot (D(\mathbf{p}', \mathbf{p}' \cdot D(\mathbf{p}, w)) - D(\mathbf{p}, w)) \le 0$$

If WARP is satisfied

$$\mathbf{p} \cdot D(\mathbf{p}', w') \le w$$
 and $D(\mathbf{p}, w) \ne D(\mathbf{p}', w') \Rightarrow \mathbf{p}' \cdot D(\mathbf{p}, w) > w'$

WARP (1)

Individual WARP is NOT sufficient for aggregate WARP.

Example: Individuals $i = 1, 2, w^i = 0.5w$, observe choices under **p** and $\tilde{\mathbf{p}}$.

$$\mathbf{p} \cdot \mathbf{x}^i = 0.5w$$
 and $\tilde{\mathbf{p}} \cdot \tilde{\mathbf{x}}^i = 0.5w$ for $i = 1, 2$

Suppose the above choices satisfy WARP and

$$\label{eq:posterior} \boldsymbol{p}\cdot\boldsymbol{\tilde{x}}^1 < 0.5w \quad \& \quad \boldsymbol{\tilde{p}}\cdot\boldsymbol{x}^1 > 0.5w \quad \textit{thus} \quad \boldsymbol{x}^1 \succsim^R \boldsymbol{\tilde{x}}^1$$

$$\label{eq:posterior} \textbf{p} \cdot \tilde{\textbf{x}}^2 > 0.5 w \quad \& \quad \tilde{\textbf{p}} \cdot \textbf{x}^2 < 0.5 w \quad \text{thus} \quad \tilde{\textbf{x}}^2 \succsim^R \textbf{x}^2$$

It is possible that the following is true

$$\mathbf{p} \cdot (\mathbf{\tilde{x}}^1 + \mathbf{\tilde{x}}^2) < w \text{ and } \mathbf{\tilde{p}} \cdot (\mathbf{x}^1 + \mathbf{x}^2) < w$$

WARP is violated in aggregate. Unrestricted wealth effects are crucial.

WARP (2)

Fixing the wealth distribution rule $\{\alpha^n\}_{n=1}^N$, $\alpha^n \geq 0 \ \forall n, \ \sum_{n=1}^N \alpha^n = 1$.

 \diamond Suppose the price change from **p** to **p**' is compensated for consumer n by wealth adjustment from $\alpha^n w$ to $\alpha^n w'$, i.e.

$$\alpha^n w' = \mathbf{p}' \cdot \mathbf{x}^n (\mathbf{p}, \alpha^n w)$$

Individual WARP means

$$(\mathbf{p}' - \mathbf{p}) \cdot (\mathbf{x}^n(\mathbf{p}', \alpha^n w') - \mathbf{x}^n(\mathbf{p}, \alpha^n w)) \le 0$$

 Add across n to verify compensated price-wealth change and WARP at the aggregate level

$$w' = \mathbf{p}' \cdot \left(\sum_{n=1}^{N} \mathbf{x}^{n} (\mathbf{p}, \alpha^{n} w) \right) = \mathbf{p}' \cdot \mathbf{x} (\mathbf{p}, w)$$
$$(\mathbf{p}' - \mathbf{p}) \cdot (\mathbf{x} (\mathbf{p}', w') - \mathbf{x} (\mathbf{p}, w)) \le 0$$

Luhang WANG (XMU)

WARP (3)

 Start with a price-wealth change that is compensated at the aggregated level, i.e,

$$w' = \mathbf{p}' \cdot \mathbf{x}(\mathbf{p}, w)$$

Consumers might be over or under compensated. It is possible that

$$\alpha^n w' = \alpha^n \mathbf{p}' \cdot \mathbf{x}(\mathbf{p}, w) \neq \mathbf{p}' \cdot \mathbf{x}^n(\mathbf{p}, \alpha^n w)$$

Despite WARP at the individual level, we may have

$$(\mathbf{p}'-\mathbf{p})\cdot (\mathbf{x}^n(\mathbf{p}',\alpha^nw')-\mathbf{x}^n(\mathbf{p},\alpha^nw))\geq 0$$

♦ Adding up across *n* does not necessarily deliver

$$(\mathbf{p}' - \mathbf{p}) \cdot (\mathbf{x}(\mathbf{p}', w') - \mathbf{x}(\mathbf{p}, w)) \le 0$$

Uncompensated Law of Demand and Aggregate WARP

Uncompensated Law of Demand (ULD)

$$(\mathbf{p}' - \mathbf{p}) \cdot (\mathbf{x}(\mathbf{p}', w) - \mathbf{x}(\mathbf{p}, w)) \le 0$$

with equality only when $\mathbf{x}(\mathbf{p}', w) = \mathbf{x}(\mathbf{p}, w)$

⋄ Individual ULD \Rightarrow Aggregate ULD \Rightarrow Aggregate WARP.

Individual ULD ⇒ Aggregate ULD

$$(\mathbf{p}' - \mathbf{p}) \cdot (\mathbf{x}^{n}(\mathbf{p}', w^{n}) - \mathbf{x}^{n}(\mathbf{p}, w^{n})) \leq 0$$

$$\sum_{n=1}^{N} (\mathbf{p}' - \mathbf{p}) \cdot (\mathbf{x}^{n}(\mathbf{p}', w^{n}) - \mathbf{x}^{n}(\mathbf{p}, w^{n})) \leq 0$$

$$(\mathbf{p}' - \mathbf{p}) \cdot (\sum_{n=1}^{N} \mathbf{x}^{n}(\mathbf{p}', w^{n}) - \sum_{n=1}^{N} \mathbf{x}^{n}(\mathbf{p}, w^{n})) \leq 0$$

$$(\mathbf{p}' - \mathbf{p}) \cdot (D(\mathbf{p}', w) - D(\mathbf{p}, w)) \leq 0$$

with equality only when $D(\mathbf{p}', w) = D(\mathbf{p}, w)$

$ULD \Rightarrow CLD (1)$

Choice function $\mathbf{x}(\mathbf{p}, w)$ is homogeneous of degree 0, satisfies Walras Law. The choice functin also satisfies ULD, that is, for $\forall \mathbf{p}^1$, w^1 and \mathbf{p}

$$(\mathbf{p} - \mathbf{p}^1) \cdot (\mathbf{x}(\mathbf{p}, w^1) - \mathbf{x}(\mathbf{p}^1, w^1)) \le 0$$

with equality only when $\mathbf{x}(\mathbf{p}, w^1) = \mathbf{x}(\mathbf{p}^1, w^1)$.

We want to show it also satisfies WARP (therefore CLD), i.e.

for any
$$\mathbf{x}^2 = \mathbf{x}(\mathbf{p}^2, w^2) \neq \mathbf{x}(\mathbf{p}^1, w^1)$$

if
$$\mathbf{p}^1 \cdot \mathbf{x}^2 \leq w^1$$
, then $\mathbf{p}^2 \cdot \mathbf{x}^1 > w^2$

$ULD \Rightarrow CLD (2)$

With H.D.0 choice function.

$$\mathbf{x}^2 = \mathbf{x}(\mathbf{p}^2, w^2) = \mathbf{x}(\frac{w^1}{w^2}\mathbf{p}^2, w^1)$$

$$(\frac{w^{1}}{w^{2}}\mathbf{p}^{2} - \mathbf{p}^{1}) \cdot \left(\mathbf{x}(\frac{w^{1}}{w^{2}}\mathbf{p}^{2}, w^{1}) - \mathbf{x}(\mathbf{p}^{1}, w^{1})\right) \leq 0$$

$$(\frac{w^{1}}{w^{2}}\mathbf{p}^{2} - \mathbf{p}^{1}) \cdot (\mathbf{x}^{2} - \mathbf{x}^{1}) \leq 0$$

$$(w^{1} - \frac{w^{1}}{w^{2}}\mathbf{p}^{2} \cdot \mathbf{x}^{1}) + (w^{1} - \mathbf{p}^{1} \cdot \mathbf{x}^{2}) \leq 0$$

$$w^{1} - \frac{w^{1}}{w^{2}}\mathbf{p}^{2} \cdot \mathbf{x}^{1} \leq 0$$

With $\mathbf{x}^1 \neq \mathbf{x}^2$

$$w^1 - \frac{w^1}{w^2} \mathbf{p}^2 \cdot \mathbf{x}^1 < 0$$
 and $\mathbf{p}^2 \cdot \mathbf{x}^1 > w^2$

Homothetic Preference and ULD (1)

Demand functions based on a homothetic preference satisfies ULD.

 \diamond Homethetic preference \Rightarrow unitary income elasticity for all ℓ

$$\frac{\partial x_i}{\partial w} \frac{w}{x_i} = 1 \implies \frac{\partial x_i}{\partial w} x_j = \frac{x_i x_j}{w}$$

 \diamond Denote by S^M the Marshallian price effect matrix composed of $rac{\partial x_i}{\partial p_j}$

$$\frac{\partial x_i}{\partial p_j} = \frac{\partial h_i}{\partial p_j} - \frac{\partial x_i}{\partial w} x_j = \frac{\partial h_i}{\partial p_j} - \frac{x_i x_j}{w}$$

⋄ Denote by S^H the Hicksian substitution matrix of $\frac{\partial h_i}{\partial p_j}$. Denote by $M = \mathbf{x}\mathbf{x}^T$ the Kronecker product of $\mathbf{x} = (x_1, x_2, ..., x_n)^T$ and $\mathbf{x}^T = (x_1, x_2, ..., x_n)$; $x_i x_j$ is the ij-th entry.

$$S^M = S^H - \frac{1}{w}M$$

Homothetic Preference and ULD (2)

 \diamond Examine the definiteness of S^M

$$d\mathbf{p}^T S^M d\mathbf{p} = d\mathbf{p}^T S^H d\mathbf{p} - \frac{1}{w} d\mathbf{p}^T M d\mathbf{p}$$

- \diamond S^H is negative semi-definite.
- ♦ What about M?

$$d\mathbf{p}^{\mathsf{T}} M d\mathbf{p} = d\mathbf{p}^{\mathsf{T}} \mathbf{x} \mathbf{x}^{\mathsf{T}} d\mathbf{p} = \left(d\mathbf{p}^{\mathsf{T}} \mathbf{x} \right)^2 \ge 0$$

Therefore S^M is negative semi-definite and ULD is satisfied.