Лекция 1

Ilya Yaroshevskiy

19 апреля 2021 г.

Содержание

1	Исч	счесление высказываний 1	
	1.1	мые	1
	1.2	Мета и предметные	1
	1.3	Сокращение записи	1
	1.4	Теория моделей	2
	1.5	Теория доказательств	2
	1.6	Правило Modus Ponens и доказательство	9

1 Исчесление высказываний

1.1 Язык

- 1. Пропозициональные переменные A_i' большая буква начала латинского алфавита
- Связки

$$\alpha$$
 , β — высказывания метапеременная

Тогда $(\alpha \to \beta), (\alpha \& \beta), (\alpha \lor \beta), (\neg \alpha)$ — высказывания

1.2 Мета и предметные

- $\alpha, \beta, \gamma, \dots, \varphi, \psi, \dots$ метапеременные для выражений
- $\bullet \ X,Y,Z$ метапеременные для предметные переменные

Метавыражение: $\alpha \to \beta$

Предметное выражение: $A \to (A \to A)$ (заменили α на A, β на $(A \to A)$)

Пример. Черным — предметные выражения, Синим — метавыражения

$$(X \to Y)[X \coloneqq A, Y \coloneqq B] \equiv A \to B$$

$$(\alpha \to (A \to X))[\alpha \coloneqq A, X \coloneqq B] \equiv A \to (A \to B)$$

$$(\alpha \to (A \to X))[\alpha \coloneqq (A \to P), X \coloneqq B] \equiv (A \to P) \to (A \to B)$$

1.3 Сокращение записи

- \lor , &, \neg скобки слева направо(лево-ассоциативная)
- ullet o правоассоциативная
- Приоритет по возрастанию: \to , \lor , &, \neg

Пример. Расставление скобок

$$(A \to ((B\&C) \to D))$$
$$(A \to (B \to C))$$

1.4 Теория моделей

ullet $\mathcal{P}-$ множество предметных переменных

ullet $[\![\cdot]\!]:\mathcal{T} o$, где $\mathcal{T}-$ множество высказываний, $V=\{\mathcal{H},\mathcal{I}\}-$ множество истиностных значений

1. $[\![x]\!]:\mathcal{P}\to V$ — задается при оценке $[\!]]^{A:=v_1,B:=v_2}$:

•
$$\mathcal{P} = v_1$$

$$\bullet \ \mathcal{P} = v_2$$

2.
$$\llbracket \alpha \star \beta \rrbracket = \llbracket \alpha \rrbracket$$
 $\underbrace{\star}_{\substack{\text{определенно} \\ \text{ественным образом}}} \llbracket \beta \rrbracket, \, \text{где} \, \star \in [\&, \lor, \neg, \to]$

Пример.

$$\llbracket A \to A \rrbracket^{A:=\mathsf{M},B:=\mathsf{J}} = \llbracket A \rrbracket^{A:=\mathsf{M},B:=\mathsf{J}} \to \llbracket A \rrbracket^{A:=\mathsf{M},B:=\mathsf{J}} = \mathsf{M} \to \mathsf{M} = \mathsf{M}$$

Также можно записать так:

$$\llbracket A \to A \rrbracket^{A:=\mathsf{II},B:=\boldsymbol{\Pi}} = f_{\to}(\llbracket A \rrbracket^{A:=\mathsf{II},B:=\boldsymbol{\Pi}},\llbracket A \rrbracket^{A:=\mathsf{II},B:=\boldsymbol{\Pi}}) = f_{\to}(\mathsf{II},\mathsf{II}) = \mathsf{II}$$

, где $f_{
ightarrow}$ определена так:

1.5 Теория доказательств

Определение. Схема высказывания — строка соответсвующая определению высказывания, с:

• метапеременными α, β, \dots

Определение. Аксиома — высказывания:

1.
$$\alpha \to (\beta \to \alpha)$$

2.
$$(\alpha \to \beta) \to (\alpha \to \beta \to \gamma) \to (\alpha \to \gamma)$$

3.
$$\alpha \to \beta \to \alpha \& \beta$$

4.
$$\alpha \& \beta \to \alpha$$

5.
$$\alpha \& \beta \to \beta$$

6.
$$\alpha \to \alpha \vee \beta$$

7.
$$\beta \to \alpha \vee \beta$$

8.
$$(\alpha \to \gamma) \to (\beta \to \gamma) \to (\alpha \lor \beta \to \gamma)$$

9.
$$(\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha$$

10.
$$\neg \neg \alpha \rightarrow \alpha$$

 $\#+begin_{defintion}$ org

1.6 Правило Modus Ponens и доказательство

Определение. Доказательство (вывод) — последовательность высказываний $\alpha_1, \dots, \alpha_n$, где α_i :

- аксиома
- существует k,l < i, что $\alpha_k = \alpha_l \to \alpha$

$$\frac{A,\ A\to B}{B}$$

 Π ример. $\vdash A \to A$

Определение. Доказательством высказывания β — список высказываний α_1,\dots,α_n

- $\alpha_1, \ldots, \alpha_n$ доказательство
- $\alpha_n \equiv \beta$