Multimedia Technology

Lecture 5: Unsupervised Learning

Lecturer: Dr. Wan-Lei Zhao

Autumn Semester 2022

Email: wlzhao@xmu.edu.cn, copyrights are fully reserved by the author.

1/46

Outline

- Openning Discussion
- 2 k-means
- Boost k-means
- 4 References

2/46

Topics in this Lecture

- We are going to leave apart from IR for a while
- We are going to introduce several extremely useful machine learning algorithms
 - While you can say they are data-mining tools/algorithms
- Not all machine learning algorithms will be discussed
 - Only the popular algorithms will be covered
 - We are going to use them in the lectures coming next
- Why I do so
 - I try to make this course self-sufficient and self-containing
 - Considering that you come from different places with different backgrounds

Outline

- 1 Openning Discussion
- k-means
- Boost k-means
- 4 References

4 / 46

General Concept about clustering (1)

- Given a dataset (with N number of items)
- Clustering make a partition on the dataset
- Data items have been divided into **k** groups
- k is usually given by user

Clustering is a hot research topic in 1990s in the heyday of

General Concept about clustering (2)

- data-mining
- There are more than 10 different clustering algorithms in the literature
- They have been built upon different assumptions in different contexts
 - k-means: general purpose, K is required as input parameter
 - DBSCAN and mean-shift: density based approach, distance threshold or density threshold is required
 - Chameleon and Agglomerative Approach: down-to-top approach
 - Normalize cut: proposed under the context of image segmentation

k-means: the general procedure

- It is a chicken-egg loop
- Given N items and K
 - Select K items out as initial centers
 - Assign items to its closest center (a partition is formed)
 - 2 Update each center with average (or centroid) of items in this group
 - 2 Loop until centers do not change
- The complexity is $O(K \cdot N \cdot D)$, where **D** is the dimension of data item
- This is the most efficient clustering, and it can be faster!!
- Only one parameter
- It converges quickly
- Dark side1: **Be careful** if **K** is a critical number in your application
- Dark side2: it only obtains sub-optimal solution, this is true for all clustering algorithms

k-means: a demo

k-means: additional advantage

- k-means forms a convex partition on the whole space
- Known as Voronoi cells
- Each cell is scoped by one cluster center

Variants of k-means: k-means++ (1)

- This work is still quite new¹
- Motivation: try to optimize the initialization of clustering centers
- Idea: try to select points far apart from each other
- Goal: adapt better to the data distribution

 $^{^{1}}$ D. Arthur and S. Vassilvitskii, "k-means++: the advantages of careful seeding", 18th ACM-SIAM symposium on Discrete algorithms, 2007.

Variants of k-means: k-means++ (2)

- Given N items and K
 - 1 Select one item out randomly as the first center
 - 2 Repeat following procedure K-1 times
 - 1 Calculate distance for each item x to existing center(s)
 - 2 Take the distance that each item to its cloest center as D(x)
 - 3 Select a new center out with probability propotional to $D^2(x)$
 - 4 Join this new center to existing centers
 - 3 Complete k-means clustering according to conventional procedure
- Modifications are made only on the initialization stage
- This leads to faster convergence
- Better adaptation to the data distribution

Outline

- Openning Discussion
- 2 k-means
- Boost k-means
- 4 References

Motivation: k-means remains pupolar (1)

- k-means is ranked at top-10 algorithms in data-mining
- It remains popular in various applications
 - Large-scale web page clustering
 - Large-scale Image clustering/linking
 - Vector quantization and product quantization
 - Data Compression

Motivation: superity of k-means (2)

- Advantages
 - Simple
 - Fast, the complexity is $O(n \cdot d \cdot k \cdot t)$
 - n is the size of data
 - d is the dimension of the data
 - k is the number of clusters
 - t is the number of iterations
- Comments:
 - Compared to mean-shift, DB-SCAN, etc.
 - It is much more efficient
 - In terms of clustering quality
 - The results are moderately good in most of the cases

Motivation: disadvantage of k-means (3)

- Disadvantages
 - It is **slow**, the complexity is $O(n \cdot d \cdot k \cdot t)$
 - n is the size of data
 - d is the dimension of the data
 - k is the number of clusters
 - t is the number of iterations
- Comments:
 - Given **n** is big
 - Given **d** is high
 - Given k is large
 - Given t is large too!
- For instance:
 - 2*M* × 128 matrix
 - Divide into 20,000 clusters
 - Run on 3.4G Hz, 4 threads
 - It takes more than 3 days

Motivation: could be faster and better? (4)

- It is **slow**, the complexity is $O(n \cdot d \cdot k \cdot t)$
 - n is the size of data
 - **d** is the dimension of the data
 - **k** is the number of clusters
 - t is the number of iterations
- Possible solutions:
 - We cannot change **n**
 - We cannot change d
 - We can reduce \mathbf{k} to $\log(\mathbf{k})$ by hierarchical clustering
 - We can make t smaller, that means it converges faster

Traditional k-means: a recap

- 1 Initialize k centroids
- Assign each sample to its closest centroids
- Recompute centroids with assignments produced in Step 2
- Repeat Step 2 and Step 3 until convergence

k-means is formulized as a minimization problem:

Min.
$$\sum_{q(x_i)=r} \| C_r - x_i \|^2$$
. (1)

where $q(x_i)$ returns the closest centroid C_r for x_i .

k-means: a demo

Formalize k-means in a new form

- Given $D_r = \sum_{x_i \in S_r} x_i$ and $n_r = |S_r|$
- C_r is the centroid of cluster S_r

Min.
$$\sum_{q(x_i)=r} \| C_r - x_i \|^2$$
 (1)

1

$$\mathsf{Max.} \ \mathcal{I}_1 = \sum_{r=1}^k \frac{D_r' D_r}{n_r} \tag{2}$$

- It takes a little bit of efforts to work out above result
- We are happy to see this result (later you will see)

Optimize k-means with new target function

- Given $D_r = \sum_{x_i \in S_r} x_i$ and $n_r = |S_r|$
- C_r is the centroid of cluster S_r

$$\mathsf{Max.} \ \mathcal{I}_1 = \sum_{r=1}^k \frac{D_r' D_r}{n_r} \tag{2}$$

- Now we have new optimization function
- Problem: how to maximize \(\mathcal{I}_1 \)?

Optimize k-means with new target function

- 1 Pick x_i in random $(x_i \in S_u)$
- **2** Check $\Delta \mathcal{I}_1$ when moving x_i from cluster S_u to S_v

$$\Delta \mathcal{I}_{1}(x_{i}) = \frac{(D_{v} + x_{i})'(D_{v} + x_{i})}{n_{v} + 1} - \frac{(D_{u} - x_{i})'(D_{u} - x_{i})}{n_{u} - 1}$$

$$= \frac{D'_{v}D_{v} + 2x'_{i}D_{v} + x'_{i}x_{i}}{n_{v} + 1} - \frac{D'_{u}D_{u} - 2x'_{i}D_{u} + x'_{i}x_{i}}{n_{u} - 1}$$
(3)

3 Move x_i to S_v that achieves highest $\Delta \mathcal{I}_1$

◆ロト ◆部 ▶ ◆書 ▶ ◆書 ▶ 書 めなぐ

Outline of the algorithm (1)

- **1** Assign $x_i \in X$ with a random label
- 2 Calc. $D_1, \dots, D_r, \dots, D_k$ and \mathcal{I}_1
- 8 Repeat
- **4** For each $x_i \in X$
- Seek S_{ν} that max. $\Delta \mathcal{I}_1(x_i)$
- $\mathbf{6} \qquad \text{If } \Delta \mathcal{I}_1(x_i) > 0$
- 7 Move x_i to cluster S_v
- 8 End-If
- O End-For
- End-Repeat

Boost k-means in breif

- Comments:
 - We can either choose "best" move or "fast" move
 - "fast" converges to lower distortion but takes more rounds
 - "best" converges faster but slower in each iteration

Boost k-means and k-means: major differences

Operations	Boost <i>k</i> -means	<i>k</i> -means
Initial assigment	not necessary	necessary
Seeking closest centroid	not necessary	necessary
Update strategy	incremental	egg-chicken loop

- 1 It is not necessary that assigns samples to closest initial centroid
- 2 It is not necessary to assign sample to its cloest centroid in the loop
- 3 Clusters are updated as soon as we find the moving is approperiate

Boost k-means: a demo (1)

Figure 2. *k*-means iteration

Boost k-means: a demo (2)

Figure: Comparison of initial assignment of two algorithms

Boost k-means in Animation

Hierarchical Boost k-means (1)

- Boost k-means is faster than traditional k-means
- However, they are on the same complexity level: $O(n \cdot d \cdot k \cdot t)$
- We can perform k-means in a hierarchical manner
 - 1 Cluster given matrix into 2 clusters
 - 2 Pick an intermediate cluster
 - 3 Cluster the cluster into 2
 - 4 Repeat Step 2-3 until k is reached

Hierarchical Boost k-means (2)

Hierarchical Boost k-means (3)

- The complexity of hierarchical clustering is $O(n \cdot d \cdot \log(k) \cdot \bar{t})$
- Notice that log(k) is much smaller than k
- That means $n \cdot d$ is multiplied by a small factor
- However, hierarchical boost k-means faces underfitting problem

(a) the 1st round bisecting

(b) the 2nd round bisecting

• Later, we will see the efficiency of hierarchical boost *k*-means and its quality

Experiment: clustering quality (1)

We check how the original target is reached

$$Min. \sum_{q(x_i)=r} \| C_r - x_i \|^2$$
 (4)

The final function score (distortion) is averaged

$$\downarrow$$

$$\bar{E} = \frac{\sum_{q(x_i)=r} \| C_r - x_i \|^2}{n}$$
 (5)

The lower the better

Experiment: clustering quality (2)

• Check the effect of initial assignment

- The way of assigning samples to initial centroids
 - non: no initial assigment
 - rnd: same as k-means
 - kpp: same as k-means++

Initial assignment impacts little to the clustering quality

Experiment: clustering quality (3)

Check whether it is necessary to seek the best moving

Experiment: clustering quality (4)

In comparison to k-means and its variants

(c) Comparison to k-means variants

(d) Significance test

34 / 46

- Boost k-means outperforms k-means and its variants considerably
- Verified by 128 runs plotted in candle chart

Experiment: document clustering (1)

- 15 document datasets are adopted²
- Document is represented by vector under TF/IDF model
- Entropy is adopted for evaluation

Entropy =
$$\sum_{r=1}^{k} \frac{n_r}{n} \frac{1}{\log c} * \sum_{i=1}^{c} \frac{n_r^i}{n_r} * \log \frac{n_r^i}{n_r},$$
 (6)

35 / 46

- In the range of [0,1], the lower the better
- The performance is averaged over 15 datasets

Experiment: document clustering (2)

Table: Clustering performance (average entropy) on 15 datasets

	k = 5	k = 10	k = 15	k = 20
<i>k</i> -means	0.539	0.443	0.402	0.387
<i>k</i> -means++	0.550	0.441	0.403	0.389
Mini-Batch	0.585	0.488	0.469	0.475
BKM(non)	0.552	0.442	0.388	0.368
BKM(rnd)+Fast	0.506	0.419	0.380	0.353
BsKM	0.532	0.438	0.410	0.373
BsKM++	0.507	0.422	0.400	0.379
BsBKM(non)	0.514	0.388	0.353	0.329
RBK	0.486	0.402	0.366	0.339

Different numbers of clusters have been tested

Experiment: product quantization (1)

- Different clustering methods are adopted to produce the PQ vocabulary
- SIFT1M is adopted³
- 128-dimensional SIFT is PQ into 8 segments, each is encoded by 256 words
- The success rate of top-k nearest neigbor search is evaluated

Experiment: product quantization (2)

- PQ is tolerant to clustering quality
- However, Mini-batch and RBK (Repeated Bisecting k-means) are

38 / 46

Experiment: image clustering (1)

- In order to test the scalability of boost k-means
- 10M image dataset is adopted
- Image is represented as 512-dimensional VLAD vector
- We consider both clustering speed and quality (average distortion)

Experiment: image clustering efficiency (1)

- Boost *k*-means is the fastest in two cases
- Bisecting is around 20 times faster than direct k-way

Experiment: image clustering efficiency (2)

- When we increase the number of clusters
- Boost k-means maintains its efficiency

Experiment: image clustering quality

 Boost k-means achieves the best performance in direct k-way and bisecting cases

Summary

- Boost k-means is simpler
 - No chicken-egg loop
 - Initial assignment is not necessary
 - Moving to closest centroid is not necessary
- Boosting k-means always leads to lower clustering distortion
- Boost k-means is the most efficient
- Paper has been submitted to PR
- Story behind this work
 - Motivated by the image linking problem
 - My student, Chenghao Deng suggested to remove the initial assignment

- 1 Empirical and Theoretical Comparisons of Selected Criterion Functions for Document Clustering, Ying Zhao and George Karypis, Machine Learning, 2004
- 2 k-means++: the advantages of careful seeding, D. Arthur and S. Vassilvitskii, 2007
- 3 Top 10 algorithms in data mining, X. Wu, V. Kumar and et al. Knowledge and Information Systems, 2008, 14(1): 1-37
- 4 The Nature of Statistical Learning Theory, Vladimir N. Vapnik , Springer-Verlag, 1995.
- 6 k-means: a revisit, W.-L. Zhao, C.-H. Deng, C.-W. Ngo, Neurocomputing, 2018
- 6 Lecture notes on Machine Learning, Andrew Ng., http://cs229.stanford.edu/

Q & A

Thanks for your attention!