# Evaluating Classifiers

# Machine Learning



PHYS 453 – Spring 2022 Dr. Daugherity

# **Evaluating Classifiers**

- How can I measure how well a classifier works?
- Where do I look for ways to improve performance?

## **Sources:**

- https://scikit-learn.org/stable/modules/model\_evaluation.html#classification-metrics
- Binary Classification Metrics paper, on canvas or: <a href="https://arxiv.org/pdf/1410.5330">https://arxiv.org/pdf/1410.5330</a>

**Evaluating Classifiers** 

## **CONFUSION MATRIX**

### **Confusion Matrix**

### Spam detection decision tree







## **Accuracy Metrics**

#### Predicted class

Negatives

(TN)

 $\begin{array}{c|c} P & N \\ \hline True & False \\ Positives & (FN) \\ \hline Actual & False & True \\ \hline \end{array}$ 

Positives

(FP)

$$ERR = \frac{FP + FN}{FP + FN + TP + TN} = 1 - ACC$$
 Error %

$$ACC = \frac{TP + TN}{FP + FN + TP + TN} = 1 - ERR$$
 Accuracy %

$$FPR = \frac{FP}{N} = \frac{FP}{FP + TN}$$

False Positive Rate = (# of FP) / (# actually N) "what percentage of the real N did I miss?"

$$TPR = \frac{TP}{P} = \frac{TP}{FN + TP}$$

True Positive Rate = (# of TP) / (# actually P)
"what percentage of the real P did I get?"

$$PRE = rac{TP}{TP + FP}$$
  $REC = TPR = rac{TP}{P} = rac{TP}{FN + TP}$   $F_1 = 2 \cdot rac{PRE \cdot REC}{PRE + REC}$ 

PRECISION = the ability of the classifier not to label as positive a sample that is negative.

Fraction of pos guesses that are right.

RECALL = the ability of the classifier to find all the positive samples

Fraction of all actual pos we guessed as pos.

F1 Score = combines both into a single number. 1 is perfect.

## Challenge: gotta find them all!

|          | Predicted + | Predicted ⊖ |     |
|----------|-------------|-------------|-----|
| Actual ⊕ | 30          | 20          | 50  |
| Actual ⊖ | 10          | 40          | 50  |
|          | 40          | 60          | 100 |

#### Predicted class



$$ERR = \frac{FP + FN}{FP + FN + TP + TN} = 1 - ACC$$

$$ACC = \frac{TP + TN}{FP + FN + TP + TN} = 1 - ERR$$

$$FPR = \frac{FP}{N} = \frac{FP}{FP + TN}$$

$$TPR = \frac{TP}{P} = \frac{TP}{FN + TP}$$

$$PRE = rac{TP}{TP + FP}$$
  $REC = TPR = rac{TP}{P} = rac{TP}{FN + TP}$   $F_1 = 2 \cdot rac{PRE \cdot REC}{PRE + REC}$ 

| Measure                   | Definition                                                     | Equal to                       | Estimates                         |
|---------------------------|----------------------------------------------------------------|--------------------------------|-----------------------------------|
| number of positives       | $Pos = \sum_{x \in Te} I[c(x) = \oplus]$                       |                                |                                   |
| number of negatives       | $Neg = \sum_{x \in Te} I[c(x) = \Theta]$                       | $ \mathit{Te}  - \mathit{Pos}$ |                                   |
| number of true positives  | $TP = \sum_{x \in Te} I[\hat{c}(x) = c(x) = \oplus]$           |                                |                                   |
| number of true negatives  | $TN = \sum_{x \in Te} I[\hat{c}(x) = c(x) = \Theta]$           |                                |                                   |
| number of false positives | $FP = \sum_{x \in Te} I[\hat{c}(x) = \oplus, c(x) = \ominus]$  | Neg – TN                       |                                   |
| number of false negatives | $FN = \sum_{x \in Te} I[\hat{c}(x) = \Theta, c(x) = \Theta]$   | Pos-TP                         |                                   |
| proportion of positives   | $pos = \frac{1}{ Te } \sum_{x \in Te} I[c(x) = \oplus]$        | Pos/ Te                        | $P(c(x)=\oplus)$                  |
| proportion of negatives   | $neg = \frac{1}{ Te } \sum_{x \in Te} I[c(x) = \Theta]$        | 1-pos                          | $P(c(x) = {\color{red} \ominus})$ |
| class ratio               | clr = pos/neg                                                  | Pos/Neg                        |                                   |
| (*) accuracy              | $acc = \frac{1}{ Te } \sum_{x \in Te} I[\hat{c}(x) = c(x)]$    |                                | $P(\hat{c}(x) = c(x))$            |
| (*) error rate            | $err = \frac{1}{ Te } \sum_{x \in Te} I[\hat{c}(x) \neq c(x)]$ | 1 <i>– acc</i>                 | $P(\hat{c}(x) \neq c(x))$         |

| Measure                                 | Definition                                                                                             | Equal to         | Estimates                                |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------|------------------|------------------------------------------|
| true positive rate, sensitivity, recall | $tpr = \frac{\sum_{x \in Te} I[\hat{c}(x) = c(x) = \oplus]}{\sum_{x \in Te} I[c(x) = \oplus]}$         | TP/Pos           | $P(\hat{c}(x) = \oplus   c(x) = \oplus)$ |
| true negative rate, specificity         | $tnr = \frac{\sum_{x \in Te} I[\hat{c}(x) = c(x) = \Theta]}{\sum_{x \in Te} I[c(x) = \Theta]}$         | TN/Neg           | $P(\hat{c}(x) = \Theta   c(x) = \Theta)$ |
| false positive rate, false alarm rate   | $fpr = \frac{\sum_{x \in Te} I[\hat{c}(x) = \oplus, c(x) = \Theta]}{\sum_{x \in Te} I[c(x) = \Theta]}$ | FP/Neg = 1 - tnr | $P(\hat{c}(x) = \oplus   c(x) = \Theta)$ |
| false negative rate                     | $fnr = \frac{\sum_{x \in Te} I[\hat{c}(x) = \Theta, c(x) = \Theta]}{\sum_{x \in Te} I[c(x) = \Theta]}$ | FN/Pos = 1 - tpr | $P(\hat{c}(x) = \Theta   c(x) = \Theta)$ |
| precision, confi-<br>dence              | $prec = \frac{\sum_{x \in Te} I[\hat{c}(x) = c(x) = \oplus]}{\sum_{x \in Te} I[\hat{c}(x) = \oplus]}$  | TP/(TP+FP)       | $P(c(x) = \oplus   \hat{c}(x) = \oplus)$ |

Table: A summary of different quantities and evaluation measures for classifiers on a test set Te. Symbols starting with a capital letter denote absolute frequencies (counts), while lower-case symbols denote relative frequencies or ratios. All except those indicated with (\*) are defined only for binary classification.

A slightly different version of the same thing, just in case...

Suppose a classifier's predictions on a test set are as in the following table:

|          | Predicted | Predicted ⊖ |     |
|----------|-----------|-------------|-----|
| Actual ⊕ | 60        | 15          | 75  |
| Actual ⊖ | 10        | 15          | 25  |
|          | 70        | 30          | 100 |

From this table, we see that the true positive rate is tpr = 60/75 = 0.80 and the true negative rate is tnr = 15/25 = 0.60. The overall accuracy is acc = (60 + 15)/100 = 0.75, which is no longer the average of true positive and negative rates. However, taking into account the proportion of positives pos = 0.75 and the proportion of negatives neg = 1 - pos = 0.25, we see that

$$acc = pos \cdot tpr + neg \cdot tnr$$

https://xkcd.com/2236/



#### https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion matrix.html

### **sklearn.metrics**.confusion\_matrix

sklearn.metrics.confusion\_matrix(y\_true, y\_pred, \*, labels=None, sample\_weiqht=None, normalize=None)

[source]

Compute confusion matrix to evaluate the accuracy of a classification.

By definition a confusion matrix C is such that  $C_{i,j}$  is equal to the number of observations known to be in group i and predicted to be in group j.

Thus in binary classification, the count of true negatives is  $C_{0,0}$ , false negatives is  $C_{1,0}$ , true positives is  $C_{1,1}$  and false positives is  $C_{0,1}$ .

Read more in the User Guide.

#### Parameters:

#### y\_true : array-like of shape (n\_samples,)

Ground truth (correct) target values.

#### y\_pred : array-like of shape (n\_samples,)

Estimated targets as returned by a classifier.

#### labels: array-like of shape (n\_classes), default=None

List of labels to index the matrix. This may be used to reorder or select a subset of labels. If None is given, those that appear at least once in y\_true or y\_pred are used in sorted order.

#### sample\_weight : array-like of shape (n\_samples,), default=None

Sample weights.

New in version 0.18.

#### normalize : {'true', 'pred', 'all'}, default=None

Normalizes confusion matrix over the true (rows), predicted (columns) conditions or all the population. If None, confusion matrix will not be normalized.

```
>>> from sklearn.metrics import classification report
>>> y_true = [0, 1, 2, 2, 2]
>>> y pred = [0, 0, 2, 2, 1]
>>> target names = ['class 0', 'class 1', 'class 2']
>>> print(classification report(y true, y pred, target names=target names))
             precision recall f1-score
                                           support
    class 0
                           1.00
                 0.50
                                     0.67
    class 1
                 0.00
                           0.00
                                     0.00
                                                                Overall accuracy = 0.60
                                                 3
    class 2
                  1.00
                           0.67
                                     0.80
                                     0.60
                                                  5
   accuracy
  macro avg
                  0.50
                           0.56
                                     0.49
weighted avg
                  0.70
                           0.60
                                     0.61
```

## Chapter 2.1

Difficulty: 2

There are 20 dogs(+) and 10 cats(-). A binary classifier correctly predicts 5 dogs and incorrectly predicts 5 cats. Fill in the following contingency for this binary classifier matrix.

|          | Predicted + | Predicted - |  |
|----------|-------------|-------------|--|
| Actual + |             |             |  |
| Actual - |             |             |  |
|          |             |             |  |

## Chapter 2.1

Difficulty: 2

Given that:

Total = 100
False Negatives = 10
Precision = 4/5
Recall = 6/7
Can you complete the contingency matrix.

|          | Predicted + | Predicted - |  |
|----------|-------------|-------------|--|
| Actual + |             |             |  |
| Actual - |             |             |  |
|          |             |             |  |

## Chapter 2.1

### Difficulty: 4

Two binary classifiers are used to predicted whether a patent has a life threatening diseases or not. Decide whether Classifier A or B would be better at reducing casualties.

| A |    |      |       |
|---|----|------|-------|
|   | 10 | 10   | 20    |
|   | 40 | 9940 | 9980  |
|   | 50 | 9950 | 10000 |

| В |     |      |       |
|---|-----|------|-------|
|   | 13  | 7    | 20    |
|   | 87  | 9813 | 9980  |
|   | 100 | 9900 | 10000 |

Two continguence matrices.

# **Tutorials**

 https://github.com/mdaugherity/PatternRecognition2018/blob/master/ Tutorial%203-1.ipynb

 https://github.com/mdaugherity/PatternRecognition2018/blob/master/ Tutorial%203-2.ipynb

# Summary

## Know the following:

- Accuracy / error rate
- TP, FP, TN, FN in confusion matrix
- Precision
- Recall