Hodina 30. júna 2023

Program:

- 1. Domáca úloha: zvyšné príklady z prijímačkového testu
- 2. Rôzne postupnosti
- 3. Príklady

0. Úvod

Tento text a texty k nasledujúcim cvičeniam budú vyložené - ako pdf - v Github repozitári https://g ithub.com/PKvasnick/Erik. Odporúčam Github Desktop (na Windows) pre uloženie a synchronizáciu repozitára.

Telekonferencia Používame rovnaký link na moju videomiestnosť na Doucma.sk: https://www.doucma.sk/call/408896-peter

1. Domáca úloha

Toto bola prvá časť DÚ

Používam tieto príklady na prijímaciu skúšku z matematiky: https://fmph.uniba.sk/studium/prijimacie-skusky-zadania-a-riesenia/.

Naposledy sme skončili niekde tuto:

Ako to je s ďalšími príkladmi?

Druhá časť domácej úlohy boli tieto príklady:

Príklad 1

Postupnosť začína číslami 1, 3, 6, 10. Doplň ďalšie členy.

Ako u väčšiny príkladov, ktoré budeme riešiť, nezaujíma nás až tak veľmi konkrétny príklad, ale stratégie a postupy, ktoré sa dajú použiť.

Príklad 2

Platí

$$\sqrt{25}=2+5-2$$
 (odčítame dvojku od druhej odmocniny)
$$=5$$

$$\sqrt{64}=6+4-2=8$$

$$\sqrt{196}=1+6+9-2=14$$

$$\sqrt{289}=2+8+9-2=17$$

Je toto nová fantastická finta na odmocňovanie? Ako to funguje? Pre aké najväčšie číslo to môže platiť?

Príklad 3

Majme postupnosť $x_{n+1} = a \cdot x_n (1 - x_n)$. Ako sa správa pre rôzne a?

2. Všelijaké číselné rady

Aritmetický rad

$$a_n=a_0+nd,\quad n=0,1,\ldots$$

Aký je súčet prvých n členov?

Gaussova finta:

$$S_n = a_0 + 0d + a_0 + 1d + a_0 + 2d + \dots + a_0 + nd$$
 $S_n = a_0 + nd + a_0 + (n-1)d + a_0 + (n-2)d + \dots + a_0 + 0d$
 $2S_n = 2a_0 + nd + 2a_0 + nd + 2a_0 + nd + \dots + 2a_0 + nd$

a posledný súčet ide sčítať ľahko, pretože v ňom máme samé rovnaké členy.

Geometrický rad:

$$a_n = a_0 q^n$$

Súčet: rekurentný vzťah:

$$S_n = a_0 + a_0 q + a_0 q^2 + \dots = a_0 + q S_{n-1}$$