```
library(tidyverse)

rladies_stockholm %>%
  filter(city == 'Stockholm')
```


| Welcome to | R-Ladies Stockholm!

Today's timeline:

18.00

Introduction to the R-ladies

18.15

Dirty data

The universe of Tidyverse

18.50

18.30

Break and food 30 min

19.20

Focus: TidyR and Dplyr

19.45

Topics for future meetups

20.00

End

Who are the Stockholm R-Ladies?

- Elisabeth Dahlqwist PhD in Biostatistics
- Nina Lindell Data Analyst
- Stefanie Möllberg Data Analyst
- Yulia Leontyeva Biostatistician
- Sophie Debonneville Bioinformatician
- Maya Illipse Post doc in image and signal processing
- Ines Illipse Master student in statistical learning and data analysis
- Aminata Ndiaye Biostatistician

Why R and the R community?

- R is an open source software free
- R is rapidly growing and a competence often asked for
- Lots of online material and an active R-community makes it easy to get advanced
- R is often first with providing their users with new methods

http://r4stats.com/2016/06/08/r-passes-sas-in-scholarly-use-finally/

The number of scholarly articles found in each year by Google Scholar. Only the top six "classic" statistics packages are shown.

The R consortium and R-ladies

satRdays are free/cheap accessible R conferences being organised by the community for the community.

packages.

R Foundation taskforce on women and other underrepresented groups The User Group
Program all over the
world. Ex
Stockholm R User
Group (SRUG)

Why R-Ladies?

 Founded in San Francisco 2012 by Gabriela de Queiroz https://rladies.org/

 Mission: "to achieve proportionate representation by encouraging, inspiring, and empowering people of genders currently underrepresented in the R community"

History of R: https://rss.onlinelibrary.wiley.com/doi/10.1111/j.1740-9713.2018.01169.x

- Important question 1: Is diversity in the R community important?
- Important question 2: Is R-ladies the way to do it?

R-ladies Global at UseR2017

R-ladies - steady growing!

https://gqueiroz.shinyapps.io/rshinylady/

R-ladies Stockholm

- Welcome all proficiency levels will host meetups for new and senior users.
- Peer-education → we educate each other
- Share our R-experience in a relaxed and friendly environment
- Contribute to the R-community

Today's topic: Cleaning dirty data in

Cleaning data

- A problem shared by most the dark side of working with data
- Regarded as trivial but this is not very true
- Problems and tools Intro to Tidyverse
- Focus on Dplyr and TidyR to clean data

What is dirty data?

"Tidy datasets are all alike, but every messy dataset is messy in its own way." — Hadley Wickham

- Also, depends on how you want your data to be!
- In general:
 - Missing
 - Misleading coding
 - Wrongly imputed combinations of variables that don't make sense

How do we get dirty data?

In the data collection stage:

- coding of variables
- database imputation errors
- missing values, duplicates

Cleaning data

- The complexity of dirty data missing data, imputation and measurement error are areas of research in itself
- The same dataset can be cleaned different by different people the importance of documenting the cleaning process!
- Follow guidelines of best practice

Four all these aspect the Tidyverse package aims to play a role, more about that later!

Basic checks

- Plot variables do they look as you would expect?
- Cross-tabulation of variables that should give similar answers
- Systematic pattern in the missingness data collection as cause for systematic missingness or error
- Use the code book and get a basic understanding of the data collection
- If you get cleaned data ask for the documentation of the data cleaning and check it

Subjectivity in data cleaning

Problem: Same individual answer Question 1 over three rounds

of visits... but the answers are not consistent...

ID	\$	Q1.0.1 [‡]	Q1.1.1 [‡]	Q1.2.1 [‡]
	1	1	1	1
	2	1	2	2
	3	2	3	NA
	4	NA	1	2

- We want to know THE answer to Q1!
- Median over the individuals?
- The last and most "updated" value?
- The first value?

The answer depends on that variable! Imagine you have 50-100 variables to do this for......

We need tools for data wrangling!

The Tidyverse gives you:

- Code written for humans to read
- Same syntax and operators over different packages not always the case in open source
- This ease the documentation of your workflow with the data

- The core tidy data principles:
 - 1. Variable make up the columns
 - 2. Observations make up the rows
 - 3. Values go into cells

Intro to the Tidyverse by Sophie Debonneville

The Tidyverse

- Collection of R packages for data science
- Developed by Hadley Wickham and others from the Rstudio team

Workflow in data science

http://r4ds.had.co.nz/

Ceci n'est pas une pipe.

A basic building block: The pipe operator %>%

- comes from magrittr package

```
Ceci n'est pas un pipe.
```

```
function1(function2(function3(data)))
data %>% function1() %>% function2() %>%
function3()
```

O'REILLY®

Hadley Wickham & Garrett Grolemund

Online text: http://r4ds.had.co.nz/

Online tutorials:

https://www.datacamp.com/community/tuto rials/tidyverse-tutorial-r

http://www.storybench.org/getting-started-with-tidyverse-in-r/

What defines a tidy data set?

There are three interrelated rules which make a dataset tidy:

- Each variable must have its own column.
- 2. Each observation must have its own row.
- 3. Each value must have its own cell.

What defines a tidy data set?

```
table1
#> # A tibble: 6 x 4
     country
                 year cases population
     <chr>>
                 (int) (int)
                                   <int>
#> 1 Afghanistan 1999
                               19987071
                          745
#> 2 Afghanistan
                               20595360
                         2666
#> 3 Brazil
                              172006362
#> 4 Brazil
                       80488
                              174504898
#> 5 China
                  1999 212258 1272915272
#> 6 China
                  2000 213766 1280428583
```

```
table2
#> # A tibble: 12 x 4
    country
                  year type
                                      count
     <chr>>
                 <int> <chr>>
                                      <int>
#> 1 Afghanistan 1999 cases
                                        745
#> 2 Afghanistan 1999 population 19987071
#> 3 Afghanistan 2000 cases
                                       2666
#> 4 Afghanistan 2000 population 20595360
#> 5 Brazil
                 1999 cases
                                      37737
#> 6 Brazil
                 1999 population 172006362
#> # ... with 6 more rows
```

```
table3
#> # A tibble: 6 x 3
#> country
                 vear rate
#> * <chr>
                 <int> <chr>>
#> 1 Afghanistan 1999 745/19987071
#> 2 Afghanistan
                 2000 2666/20595360
#> 3 Brazil
                 1999 37737/172006362
#> 4 Brazil
                 2000 80488/174504898
#> 5 China
                 1999 212258/1272915272
#> 6 China
                 2000 213766/1280428583
```

How can you make an untidy data set become tidy?

TidyR:

gather() & spread() separate() & unite() nest & unnest()

Dplyr:

filter()

select()

mutate()

arrange()

gather(): gather variables into one column

Valuable when you need your data on either long or wide format Valuable when you have values as column headers

What's needed:

```
key = name of new column
value = name of the new value column
which columns that should be gathered
```

```
table4a %>%
gather(key = "year", value = "cases", 1999:2000)
```


table4a		
#> # A tibble: 3	x 3	
#> country	`1999`	`2000`
#> * <chr></chr>	<int></int>	<int></int>
#> 1 Afghanistan	745	2666
#> 2 Brazil	37737	80488
#> 3 China	212258	213766

country	year	cases	country	1999	2000
Afghanistan	1999	745	Afghanistan	745	2666
Afghanistan	2000	2666	Brazil	37737	80488
Brazil	1999	37737	China	212258	213766
Brazil	2000	80488			
China	1999	212258			
China	2000	213766		table4	

TidyR: gather & spread

spread(): spread values into variables (columns)

What's needed:

key = name of variable that contains values to be spread

value = the column that contains the values to spread

table4a %>%
spread(key = "key", value = "value")

country	year	key	value	country	year	cases
Afghanistan	1999	cases	745	Afghanistan	1000	>
Afghanistan	1999	population	19987071	Afgrianistan	2000	266
Afghanistan	2000	cases	2666	orazil	1000	37737
Afghanistan	2000	population	20595360	Brazil	200	80488
Brazil	1999	cases	37737	Clima	1999	212258
Brazil	1999	population	172006362	Chine	2000	213766
Brazil	2000	cases	80488			
Brazil	2000	population	174504898			
China	1999	cases	212258			
China	1999	population	1272915272			
China	2000	cases	213766	5		
China	2000	population	1280428583			

TidyR: separate & unite

separate(): splitting values in a cell, into more than one cell

Valuable when you have more than one value in the same cell or when you want to split values to make analyses

What's needed:

col = column that contains value that needs to be separated

into = name of new variables created when separating

sep = pattern to separate with

table %>%
separate(col = rate,
into = c("cases", "population"), sep = "/")

table3

#> # A tibble: 6 x 3

#> country year rate

#> * <chr> <int> <chr>
#> 1 Afghanistan 1999 745/19987071

#> 2 Afghanistan 2000 2666/20595360

#> 3 Brazil 1999 37737/172006362

#> 4 Brazil 2000 80488/174504898

#> 5 China 1999 212258/1272915272

#> 6 China 2000 213766/1280428583

country	year	rate
Afghanistan	1999	745 / 19987071
Afghanistan	2000	2666 / 20595360
Brazil	1999	37737 / 172006362
Brazil	2000	80488 / 174504898
China	1999	212258 / 1272915272
China	2000	213766 / 1280428583
	ta	ble3

TidyR: separate & unite

unite(): adding values together in one cell

What's needed:

col = name of new variable

... = name of variables to unite

sep = separator to use between values

table3 %>%
unite(col = year, century, year, sep = "")

country	year	rate
Afghanistan	19 99	745 / 19987071
Afghanistan	2000	2666 / 20595360
Brazil	19 99	37737 / 172006362
Brazil	2000	80488 / 174504898
China	1999	212258 / 1272915272
China	2000	213766 / 1280428583

TidyR: nest & unnest

nest(): creates a list of data frames containing the nested variables (collapses the rows) unnest(): in a list, making each element it's own row

What's needed:

... = specification of columns to nest / unnest

iris %>%
nest(Sepal.Length, Sepal.Width,
Petal.Length, Petal.Width)

iris %>%
unnest(test, data)

Dplyr: filter

filter(): subsets data based on conditions

```
1: table1 %>%
filter(country == "Afghanistan")

2: table1 %>%
filter(country == "Afghanistan"
& year == 1999)

3: table1 %>%
filter(year >= 2000)
```

```
country year cases population
    <chr>
               <int> <int>
                               <int>
#> 2 Afghanistan 2000
                      2666
                            20595360
#> 4 Brazil.
                2000
                     80488
                           174504898
#> 6 China
                2000 213766 1280428583
```


Dplyr: select

select(): keeps variables mentioned and removes other

```
1: table1 %>%
select(country, year)

2: table1 %>%
select(-population)

3: table1 %>%
select(contains("c"))
```

#>	country	cases
#>	<chr></chr>	<int></int>
#> 1	Afghanistan	745
#> 2	Afghanistan	2666
#> 3	Brazil	37737
#> 4	Brazil	80488
#> 5	China	212258
#> 6	China	213766

Dplyr: mutate

mutate(): adds new variables to your data set

```
1: Creating a new variable:
    table1 %>%
    mutate(population2 = population * 2)
2: Overwriting existing variable
    table1 %>%
    mutate(population = population * 2)
```

```
table1
#> # A tibble: 6 x 4
    country year cases population
    <chr>
                <int> <int>
                                  <int>
#> 1 Afghanistan
                 1999
                         745
                               19987071
#> 2 Afghanistan
                 2000
                               20595360
                        2666
#> 3 Brazil.
                 1999
                       37737
                              172006362
#> 4 Brazil
                 2000
                       80488
                              174504898
#> 5 China
                 1999 212258 1272915272
#> 6 China
                 2000 213766 1280428583
```


Dplyr: arrange

arrange(): sorts values in ascending or descending order

```
1: table1 %>%
  arrange(population)

2: table1 %>%
  arrange(desc(population))
```

```
table1
#> # A tibble: 6 x 4
    country year cases population
    <chr>
                <int> <int>
                                  <int>
#> 1 Afghanistan
                 1999
                         745
                               19987071
#> 2 Afghanistan
                 2000
                        2666
                               20595360
#> 3 Brazil.
                 1999
                       37737
                              172006362
#> 4 Brazil
                       80488
                 2000
                              174504898
#> 5 China
                 1999 212258 1272915272
#> 6 China
                 2000 213766 1280428583
```


Dplyr: group_by & summarize

Group_by (): takes an existing tbl and converts it into a grouped tbl where operations are performed "by group"

Summarize(): produces summary statistics. When used in combination with group_by() it creates summary statistics on the groups

```
# A summary applied to ungrouped tbl returns a single row
mtcars %>%
  summarise(mean = mean(disp), n = n())
        mean n
#> 1 230,7219 32
# Usually, you'll want to group first
mtcars %>%
  group_by(cyl) %>%
  summarise(mean = mean(disp), n = n())
#> # A tibble: 3 x 3
      cyl mean
    <dbl> <dbl> <int>
        4 105.
                   11
        6 183.
#> 2
#> 3 8 353. 14
```


Dplyr: join

join(): lets you join data sets based on key

```
left_join()
right_join()
inner_join()
full_join()
```


Putting the functions to use!

Let's analyze some beers!

Our data sets

Our two interconnected data sets:

1. A data set with 2 410 types of beers

2. A data set with breweries 558 breweries

Using TidyR to create a longer format

Would like to change to a long format

```
breweries_longformat <- breweries %>%
  select(-count, -id) %>%
  gather(key = region, value = cases, -name)
```

‡	name	region ‡	cases ‡
	10 Barrel Brewing Company	city	Bend
	10 Barrel Brewing Company	state	OR
	18th Street Brewery	city	Gary
	18th Street Brewery	state	IN
	2 Towns Ciderhouse	city	Corvallis
	2 Towns Ciderhouse	state	OR
	21st Amendment Brewery	city	San Francisco
	21st Amendment Brewery	state	CA
	3 Daughters Brewing	city	St Petersburg
	3 Daughters Brewing	state	
	4 Hands Brewing Company	city	Saint Louis
	4 Hands Brewing Company	state	МО
	450 North Brewing Company	city	Columbus
	450 North Brewing Company	state	IN
	7 Seas Brewing Company	city	Gig Harbor
	7 Seas Brewing Company	state	WA
	7venth Sun	city	Dunedin
	7venth Sun	state	FL
19	Abita Brewing Company	city	Abita Springs
Showing	1 to 20 of 1,116 entries		

Using TidyR to unite variables

- Would like to add the city and state to the brewery name
- Can achieve using unite

^	count	‡	name_city_state \$	id	\$
			NorthGate Brewing, Minneapolis, MN		
			Against the Grain Brewery, Louisville, KY		
			Jack's Abby Craft Lagers, Framingham, MA		
			Mike Hess Brewing Company, San Diego, CA		
			Fort Point Beer Company, San Francisco, CA		
			COAST Brewing Company, Charleston, SC		
			Great Divide Brewing Company, Denver, CO		
			Tapistry Brewing, Bridgman, MI		
			Big Lake Brewing, Holland, Ml		
		10	The Mitten Brewing Company, Grand Rapids, MI		
			Brewery Vivant, Grand Rapids, MI		
		12	Petoskey Brewing, Petoskey, MI		
			Blackrocks Brewery, Marquette, MI		
		14	Perrin Brewing Company, Comstock Park, MI		
		15	Witch's Hat Brewing Company, South Lyon, MI		
		16	Founders Brewing Company, Grand Rapids, MI		
			Flat 12 Bierwerks, Indianapolis, IN		
		18	Tin Man Brewing Company, Evansville, IN		
19		19	Black Acre Brewing Co., Indianapolis, IN		
Showing	Showing 1 to 20 of 558 entries				

Mean abv for two different beer styles

- Would like to know the abv on two different styles of beers
- Can achieve with a spread and some dplyr functions

```
beers_abv <- beers %>%
  select(-ibu, -brewery_id, -id, -ounces) %>%
  filter(style == "Radler" | style == "Tripel") %>%

group_by(style) %>%
  summarize(mean_abv = mean(abv)) %>%
  ungroup()

ggplot(data = beers_abv, aes(x=style, y=mean_abv)) +
  geom_bar(stat="identity", fill = 'purple')
```


Common beer names

Would like to know the most common beer names.

```
beers_split_words <- beers %>%
  dplyr::mutate(name = tolower(name)) %>%
  dplyr::mutate(words_in_name = strsplit(name, ' ')) %>%
  tidyr::unnest(words_in_name) %>%
  dplyr::group_by(words_in_name) %>%
  dplyr::summarize(count = n()) %>%
  dplyr::arrange(desc(count)) %>%
  dplyr::arrange(desc(count)) %>%
  in_name %in% stop_words,
    !words_in_name %in% beer_types)
```

‡	words_in_name \$	count	
	hop	52	
	summer	48	
	style	26	
	point	25	
	old	21	
	(current)	19	
	big	19	
	river	18	
	winter	18	
10	great	16	
11	light	16	
12	oktoberfest	16	
13	barrel	15	
14	beach	14	
15	honey	14	
16	island	14	
17	mountain	14	
18	pumpkin	14	
19	cream	13	
Showing			

Breweries per state

Would like to know nr of breweries per state

```
breweries_per_state <- breweries %>%
  dplyr::group_by(city) %>%
  dplyr::summarize(nr_breweries = n()) %>%
  dplyr::ungroup() %>%
  dplyr::arrange(desc(nr_breweries))
```

*	city ‡	nr_breweries	÷		
	Portland		7		
	Boulder		9		
	Chicago		9		
	Seattle		9		
	Austin		8		
	Denver		8		
	San Diego		8		
	Bend		6		
	San Francisco		5		
10	Anchorage		4		
11	Brooklyn		4		
12	Cincinnati		4		
13	Columbus		4		
14	Indianapolis		4		
15	Albuquerque		3		
16	Athens		3		
17	Aurora		3		
	Baltimore		3		
19	Charlotte		3		
Showing 1 to 20 of 384 entries					

The state with the least diversified beer styles

 Would like to know the share of each beer style in the different states, and which of the states that has the least diversified styles

```
breweries_and_beers <- breweries %>%

right_join(beers, by = c("id" = "brewery_id")) %>%

group_by(state, style) %>%

summarize(nr_of_beers = n()) %>%

group_by(state) %>%

mutate(style_share = nr_of_beers / sum(nr_of_beers)) %>%

arrange(desc(style_share))
```

*	state ‡	style :	nr_of_beers	‡	style_share 🕏
	DE	American IPA			0.50000000
	DE	American Pale Ale (APA)			0.50000000
	wv	American Black Ale			0.50000000
	WV	American Pale Ale (APA)			0.50000000
	NH	Berliner Weissbier			0.37500000
	NJ	American IPA			0.37500000
	ND	American IPA			0.33333333
	ND	American Pale Ale (APA)			0.33333333
	ND	Scottish Ale			0.33333333
	TN	American IPA		2	0.33333333
11	FL	American IPA		19	0.32758621
12	WA	American IPA		21	0.30882353
13	NM	American IPA		4	0.28571429
14	AK	American IPA		7	0.28000000
15	NH	American IPA		2	0.25000000
16	VA	American IPA		10	0.25000000
17	CA	American IPA		45	0.24590164
	MA	American IPA		19	0.23170732
19	VT	American Double / Imperial IPA		6	0.2222222
20	МО	American IPA		9	0.21428571
Showing 1 to 20 of 989 entries					

Future meetup topics:

Thank you for listening! And thanks to Foo café for having us!

Get in contact with us!

Twitter: @RLadiesSTHLM

Facebook: R-Ladies Stockholm

Meetup: meetup.com/rladies-Stockholm

Mail: <u>rladies.stockholm@gmail.com</u>

And check out slides and material here:

https://github.com/rladies/meetup-presentations_stockholm