Linear Regression

Instructor: Alan Ritter

Many Slides from Tom Mitchell

TA

- Chaoyue Liu
 - <u>liu.2656@buckeyemail.osu.edu</u>
 - DL 586

HW1

What if we have continuous X_i ?

Eg., image classification: X_i is real-valued ith pixel

What if we have continuous X_i ?

Eg., image classification: X_i is real-valued ith pixel

Naïve Bayes requires $P(X_i | Y=y_k)$, but X_i is real (continuous)

$$P(Y = y_k | X_1 ... X_n) = \frac{P(Y = y_k) \prod_i P(X_i | Y = y_k)}{\sum_j P(Y = y_j) \prod_i P(X_i | Y = y_j)}$$

Common approach: assume $P(X_i | Y=y_k)$ follows a Normal (Gaussian) distribution

Gaussian Distribution (also called "Normal")

p(x) is a *probability*density function, whose integral (not sum) is 1

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

The probability that X will fall into the interval (a, b) is given by

$$\int_a^b p(x)dx$$

• Expected, or mean value of X, E[X], is

$$E[X] = \mu$$

• Variance of X is

$$Var(X) = \sigma^2$$

• Standard deviation of X, σ_X , is

$$\sigma_X = \sigma$$

What if we have continuous X_i ?

Gaussian Naïve Bayes (GNB): assume

$$p(X_i = x | Y = y_k) = \frac{1}{\sqrt{2\pi\sigma_{ik}^2}} e^{-\frac{1}{2}(\frac{x-\mu_{ik}}{\sigma_{ik}})^2}$$

Sometimes assume variance

- is independent of Y (i.e., σ_i),
- or independent of X_i (i.e., σ_k)
- or both (i.e., σ)

Gaussian Naïve Bayes Algorithm – continuous X_i (but still discrete Y)

• Train Naïve Bayes (examples) for each value y_k estimate* $\pi_k \equiv P(Y=y_k)$ for each attribute X_i estimate $P(X_i|Y=y_k)$

- class conditional mean μ_{ik} , variance σ_{ik}
- Classify (X^{new})

$$Y^{new} \leftarrow \arg\max_{y_k} \ P(Y = y_k) \prod_i P(X_i^{new} | Y = y_k)$$
 $Y^{new} \leftarrow \arg\max_{y_k} \ \pi_k \prod_i \mathcal{N}(X_i^{new}; \mu_{ik}, \sigma_{ik})$

^{*} probabilities must sum to 1, so need estimate only n-1 parameters...

Estimating Parameters: Y discrete, X_i continuous

Maximum likelihood estimates:

jth training example

$$\hat{\mu}_{ik} = \frac{1}{\sum_{j} \delta(Y^{j} = y_{k})} \sum_{j} X_{i}^{j} \delta(Y^{j} = y_{k})$$
 ith feature kth class

 δ ()=1 if (Y^j=y_k) else 0

$$\hat{\sigma}_{ik}^{2} = \frac{1}{\sum_{j} \delta(Y^{j} = y_{k})} \sum_{j} (X_{i}^{j} - \hat{\mu}_{ik})^{2} \delta(Y^{j} = y_{k})$$

GNB Example: Classify a person's cognitive state, based on brain image

- reading a sentence or viewing a picture?
- reading the word describing a "Tool" or "Building"?
- answering the question, or getting confused?

Mean activations over all training examples for Y="bottle"

Y is the mental state (reading "house" or "bottle") X_i are the voxel activities,

this is a plot of the μ 's defining $P(X_i \mid Y=\text{"bottle"})$

Classification task: is person viewing a "tool" or "building"?

Where is information encoded in the brain?

Accuracies of cubical 27-voxel classifiers centered at each significant voxel

[0.7-0.8]

Naïve Bayes: What you should know

- Designing classifiers based on Bayes rule
- Conditional independence
 - What it is
 - Why it's important
- Naïve Bayes assumption and its consequences
 - Which (and how many) parameters must be estimated under different generative models (different forms for P(X|Y))
 - and why this matters
- How to train Naïve Bayes classifiers
 - MLE and MAP estimates
 - with discrete and/or continuous inputs X_i

Linear Regression

Regression

So far, we've been interested in learning P(Y|X) where Y has discrete values (called 'classification')

What if Y is continuous? (called 'regression')

- predict weight from gender, height, age, ...
- predict Google stock price today from Google, Yahoo, MSFT prices yesterday
- predict each pixel intensity in robot's current camera image, from previous image and previous action

Regression

Wish to learn f:X \rightarrow Y, where Y is real, given $\{<x^1,y^1>...< x^n,y^n>\}$

Approach:

- choose some parameterized form for P(Y|X; θ)
 (θ is the vector of parameters)
- 2. derive learning algorithm as MCLE or MAP estimate for θ

1. Choose parameterized form for $P(Y|X;\theta)$

Assume Y is some deterministic f(X), plus random noise

$$y = f(x) + \epsilon$$
 where $\epsilon \sim N(0, \sigma)$

Therefore Y is a random variable that follows the distribution

$$p(y|x) = N(f(x), \sigma)$$

and the expected value of y for any given x is f(x)

$$p(y|x;W) = N(w_0 + w_1 x, \sigma)$$

How can we learn W from the training data?

$$p(y|x;W) = N(w_0 + w_1 x, \sigma)$$

How can we learn W from the training data?

Learn Maximum Conditional Likelihood Estimate!

$$W_{MCLE} = rg \max_{W} \prod_{l} p(y^{l}|x^{l}, W)$$
 $W_{MCLE} = rg \max_{W} \sum_{l} \ln p(y^{l}|x^{l}, W)$

where

$$p(y|x;W) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(\frac{y-f(x;W)}{\sigma})^2}$$

Learn Maximum Conditional Likelihood Estimate

$$W_{MCLE} = \arg \max_{W} \sum_{l} \ln p(y^{l}|x^{l}, W)$$

where

$$p(y|x;W) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(\frac{y-f(x;W)}{\sigma})^2}$$

where

$$p(y|x;W) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(\frac{y-f(x;W)}{\sigma})^2}$$

so:
$$W_{MCLE} = \arg\min_{W} \sum_{l} (y - f(x; W))^2$$

Gradient Descent

Gradient

$$\nabla E[\vec{w}] \equiv \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots \frac{\partial E}{\partial w_n} \right]$$

Training rule:

$$\Delta \vec{w} = -\eta \nabla E[\vec{w}]$$

i.e.,

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

Gradient Descent:

Batch gradient: use error $E_D(\mathbf{w})$ over entire training set D Do until satisfied:

- 1. Compute the gradient $\nabla E_D(\mathbf{w}) = \left[\frac{\partial E_D(\mathbf{w})}{\partial w_0} \dots \frac{\partial E_D(\mathbf{w})}{\partial w_n}\right]$
- 2. Update the vector of parameters: $\mathbf{w} \leftarrow \mathbf{w} \eta \nabla E_D(\mathbf{w})$

Stochastic gradient: use error $E_d(\mathbf{w})$ over single examples $d \in D$ Do until satisfied:

- 1. Choose (with replacement) a random training example $d \in D$
- 2. Compute the gradient just for d: $\nabla E_d(\mathbf{w}) = \left[\frac{\partial E_d(\mathbf{w})}{\partial w_0} \dots \frac{\partial E_d(\mathbf{w})}{\partial w_n}\right]$
- 3. Update the vector of parameters: $\mathbf{w} \leftarrow \mathbf{w} \eta \nabla E_d(\mathbf{w})$

Stochastic approximates Batch arbitrarily closely as $\eta \to 0$ Stochastic can be much faster when D is very large Intermediate approach: use error over subsets of D

Learn Maximum Conditional Likelihood Estimate

$$W_{MCLE} = \arg\min_{W} \sum_{l} (y - f(x; W))^{2}$$

Can we derive gradient descent rule for training?

$$\begin{split} \frac{\partial \sum_{l} (y - f(x; W))^{2}}{\partial w_{i}} &= \sum_{l} 2(y - f(x; W)) \frac{\partial (y - f(x; W))}{\partial w_{i}} \\ &= \sum_{l} -2(y - f(x; W)) \frac{\partial f(x; W)}{\partial w_{i}} \end{split}$$

Normal Equation

$$w^* = (X^T X)^{-1} X^T y$$

How About MAP instead of MLE?

$$w^* = \arg\max_{W} \sum_{l} \ln P(Y^l | X^l; W) + \ln N(W | 0, I)$$

$$= \arg\max_{W} \sum_{l} \ln P(Y^{l}|X^{l};W) - c \sum_{i} w_{i}^{2}$$

Regression - What you should know

- MLE -> Sum of Squared Errors
- MAP -> Sum of Squared Errors minus sum of squared weights
- Learning is an optimization problem once we choose objective function
 - Maximize Data Likelihood
 - Maximize Posterior Prob of Weights
- Can use Gradient Descent as General Learning Algorithm