Blackhole Networks a source of intelligence to support investigations

Alexandre Dulaunoy CIRCL - TLP:WHITE

Team CIRCL

November 27, 2019

Enforce information sharing overview

ENFORCE - Training / MISP overview

Workshop details

- 48 pcaps (2 days) are distributed (TLP:GREEN) from two blackhole networks (193.168.81.0/27 - 185.194.92.0/22)
- During the workshop, each team can analyse the network capture without restriction (any tools can be used) and interesting discoveries can be shared during the session (e.g. via MISP)
- Content of the network captures are unknown to CIRCL, the goal is to have an interactive session to share findings and techniques

Motivation and background

- IP darkspace or black hole is
 - Routable non-used address space of an ISP (Internet Service Provider),
 - o incoming traffic is unidirectional
 - o and unsolicited.
- Is there any traffic in those darkspaces?
- If yes, what and why does it arrive there?
 - And on purpose or by mischance?
- What's the security impact?
- What are the security recommendations? How can we use the information to improve traffic analysis?
- Terminology: Honeypot versus darkspace

The infinite value of crap

4 years in the life of a printer

from a series of packets hitting our darkspace

Printer sending syslog to the IP darkspace

```
2014-03-12 18:00:42

SYSLOG lpr.error printer: offline
or intervention needed

2014-03-23 21:51:24.985290

SYSLOG lpr.error printer: paper out
...

2014-08-06 19:14:57.248337

SYSLOG lpr.error printer: paper jam
```

4 years in the life of a printer

Business days based on the printer activity

Printer activity and business hours

Where is the printer?

Origin of traffic in the black hole

- Attackers (and researchers) scan networks to find vulnerable systems (e.g. SSH brute-force)
- Backscatter traffic (e.g. from spoofed DoS)
- Self-replicating code using network as a vector (e.g. conficker, residual worms)
- Badly configured devices especially embedded devices (e.g. printers, server, routers)
 - $\circ \to \text{Our IP}$ darkspace is especially suited for spelling errors from the RFC1918 (private networks) address space

Why is there traffic

Typing/Spelling errors with RFC1918 networks

• While typing an IP address, different error categories might emerge:

Hit wrong key	$19\textbf{2}.x.z.y \rightarrow$	19 3 .x.y.z
	172.x.y.z	1 5 2.x.y.z
Omission of number	1 9 2.x.y.z $ ightarrow$	12.x.y.z
Doubling of keys	$10.a.b.c \to$	10 0 .a.b.c

Research activities related to spelling errors

Spelling errors apply to text but also network configuration

- 34% omissions of 1 character
 - \circ Example: Network \rightarrow Netork
- 23% of all errors happen on 3rd position of a word
 - \circ Example: Text \rightarrow Test)
- 94% spellings errors are single errors in word
 - And do not reappear

References

- Pollock J. J. and Zamora A., Collection and characterization of spelling errors in scientific and scholarly text. J. Amer. Soc. Inf. Sci. 34, 1, 51 58, 1983.
- Kukich K., Techniques for automatically correcting words in text. ACM Comput. Surv. 24, 4, 377-439, 1992.

DDoS and blackhole

backscatter traffic

why DDoS victims are not always silent

DDoS overview

Observing SYN floods attacks in backscatter traffic

Attack description

Fill up state connection state table of the victim

How does backscatter look like?

```
2017-09-16 10:02:22.807286 TP x.45.177.71.80 > x.x
   .105.167.39468: Flags [.], ack 1562196897, win
   16384, length 0
2017-09-16 10:02:27.514922 IP x.45.177.71.80 > x.x
   .121.213.62562: Flags [.], ack 14588990, win 16384,
   length 0
2017-09-16 10:02:28.024516 IP x.45.177.71.80 > x.x
   .100.72.30395: Flags [.], ack 24579479, win 16384,
   length 0
2017-09-16 10:02:30.356876 IP x.45.177.71.80 > x.x
   .65.254.17754: Flags [.], ack 318490736, win 16384,
   length 0
```

What are the typical characteristics?

Is it DDoS backscatter traffic?

Problem

- Distinguish between compromised infrastructure and backscatter
- ullet Look at TCP flags o filter out single SYN flags
- Focus on ACK, SYN/ACK, RST...
- ullet Do not limit to SYN/ACK or ACK ightarrow ECE (ECN Echo)/CWR¹

tshark -n -r capture-20170916110006.cap.gz -T fields -e
 frame.time_epoch -e ip.src -e tcp.flags
1505552542.807286000 x.45.177.71 0x00000010
1505552547.514922000 x.45.177.71 0x00000010

¹https://tools.ietf.org/html/rfc3168

What can be derived from backscatter traffic?

- External point of view on ongoing denial of service attacks
- Confirm if there is a DDoS attack
- Recover time line of attacked targets
- Review targeted services (DNS, webserver, ...)
- Infrastructure changes (e.g. change of routing)
- Assess the state of an infrastructure under denial of service attack
 - Detect failure/addition of intermediate network equipments, firewalls, proxy servers etc
 - Detect DDoS mitigation devices
- Tools, Techniques and Tactics² used by the attackers

²https://www.misp-project.org/taxonomies.html#_ddos_2

Getting DDoS attack information or validation

Example nationalcrimeagency.gov.uk

UK's National Crime Agency hit by DDoS attack, following LizardStresser arrests

Last week, users of Lizard Squad's DDoS-on-demand service were feeling the heat after arrests were made by UK police. This week, it's the UK's National Crime Agency which has found itself the victim of a denial-of-service attack.

Graham Cluley 1 Sep 2015 - 02:01PM

Getting additional information

Example national crimeagency.gov.uk

Gather potential IP addresses (via DNS or Passive DNS)

Check all records type (A, AAAA, MX, CNAME)

nslookup nationalcrimeagency.gov.uk

Server: 127.0.0.53

Address: 127.0.0.53#53

Non-authoritative answer:

Name: nationalcrimeagency.gov.uk

Address: 194.61.183.46

Getting additional information on DDoS attacks

Example nationalcrimeagency.gov.uk

```
find files/2015/08/28/ -type f | parallel -j 7 '
    tcpdump -n -r {1} "host 194.61.183.46"'
17:10:06.857475 IP 194.61.183.46.80 > x.x.109.194.17293
   Flags [S.], seq 1635851834, ack 1801912321, win 0, length 0
17:10:14.869661 IP 194.61.183.46.80 > x.x.109.73.58142:
   Flags [S.EW], seq 1066513712, ack 4190371841, win 0, length 0
17:10:14.881036 IP 194.61.183.46.80 > x.x.111.106.49231:
   Flags [S.EW], seq 1531124927, ack 252116993, win 0, length 0
17:10:15.186684 IP 194.61.183.46.80 > x.x.102.45.62535:
   Flags [S.EW], seq 486934691, ack 536346625, win 0, length 0
17:10:18.946674 TP 194.61.183.46.80 > x.x.67.46.62399:
   Flags [S.EW], seq 234597292, ack 4069785601, win 0, length 0
```

Dealing with DDoS claims

Screenshots from the attacker are valuable information

Dealing with DDoS claims

Screenshots from the potential attacker are valuable information

- If some operational security is done
 - Hide displayed hints (i.e. user name, IP address, country)
- Local time
- Used operating system
- Used browser
- Used browser plugins
- Bookmarks
- Open other tabs
- Configured search engines
- Some cases images contains meta data such as exif
- Validating the claims against DDoS backscatter

DDoS backscatter limitation or drawbacks

- Visibility limited by the spoofed networks from the DDoS attackers
- The size of the network telescope
- The state of the network infrastructure from the victims (e.g. how long the infrastructure is active)
- If the conditions are there, only a subset of the returned packets will be received

What are the most common antivirus software?

by using the DNS queries hitting your darkspace

Sample subset of DNS queries towards antivirus vendors domains

Scripting your statistics for antivirus installations

- Extract a list of words from VirusTotal (antivirus products supported)
- Match the DNS queries with extracted words (e.g. be careful with fake antivirus)
- Filter per source IP address (or aggregated subnets) to limit the result per organisation
- Plot the number of hits per aggregated words using in a single antivirus product name

A/V Statistics from Misconfigured Resolvers

How do we collect all this crap?

by listening to the void

Collection and Analysis Framework

Collection and Analysis Framework

Collection and Analysis Framework

or to keep the collection as simple as possible

- Minimal sensor collecting IP-Darkspace networks (close to RFC1918 address space)
- Raw pcap are captured with the full payload
- Netbeacon³ developed to ensure consistent packet capture
- Potiron⁴ to normalize, index, enrich and visualize packet capture

³https://github.com/adulau/netbeacon/ 4https://github.com/CIRCL/potiron

Blackhole & honeypot operation

Collection and analysis framework

Blackhole operation

Definition (Principle)

- KISS (Keep it simple stupid)
- Linux & OpenBSD operating systems

Sensor

```
tcpdump -l -s 65535 -n -i vr0 -w - '( not port $PORT
   and not host $HOST )' | socat - OPENSSL-CONNECT:
   $COLLECTOR:$PORT,cert=/etc/openssl/client.pem,cafile
   =/etc/openssl/ca.crt,verify=1
```

Dataset collected and statistics on one single blackhole

- From 2012-03-12 until Today (still active)
- More than 700 gigabytes of compressed raw pcap collected
- Constant stream of packets from two /22 network blocks
 no day/night profile.
- Some peaks at 800kbit/s (e.g. often TCP RST from backscatter traffic but also from typographic errors)

General observations

- A large part of traffic is coming from badly configured devices (RFC1918 spelling errors)
 - o Printers, embedded devices, routers or even server.
 - Trying to do name resolution on non-existing DNS servers, NTP or sending syslog messages.
- Even if the black hole is passive, payload of stateless UDP packets or even TCP (due to asymmetric routing on misspelled network) datagrams are present
- Internal network scanning and reconnaissance tool (e.g. internal network enumerationi)
- The recursive effect of statistics (e.g. nmap-services)

Observation per AS

Traffic seen in the darknet

N	Frequency	ASN
1	4596319	4134
2	1382960	4837
3	367515	3462
4	312984	4766
5	211468	4812
6	166110	9394
7	156303	9121
8	153585	4808
9	135811	9318
10 37 of 49	116105	4788

- Occurrences of activities related to the proportion of hosts in a country
- The Great Firewall of China is not filtering leaked packets
- Corporate AS number versus ISP/Telco AS number

How to build your "next" network reconnaissance tools?

by listening to the void

Network reconnaissance (and potential misuse): DNS

```
1 3684 _msdcs.<companyname>.local
2 1232666 time.euro.apple.com
3 104 time.euro.apple.com.<mylocaldomain>
4 122 ocsp.tcs.terena.org
5 50000+ ocsp.<variousCA>
```

- DNS queries to an incorrect nameserver could lead to major misuse
- A single typographic error in a list of 3 nameservers is usually unnoticed

Software Updates/Queries from Misconfigured Resolvers

- Discovering software usage (and vulnerabilities) can be easily done with passive reconnaissance
- Are the software update process ensuring the integrity of the updates?

Network Reconnaissance - A source for your smart DNS Brute-Forcer

ASTTF.NET HELP.163.COM ASUEGYI.INFO HP_CLIENT1

ASUS1025C MACBOOKAIR-CAD7
DEFAULT MACBOOK-B5BA66
DELICIOUS.COM MACBOOKPRO-5357

DELL MAIL.AFT20.COM

DELL1400 S3.QHIMG.COM DELL335873 SERVERWEB

DELL7777 SERVEUR

DELL-PC SERVICE.QQ.COM
DELLPOP3 SMTP.163.COM

And many more ...

Building your DNS brute-forcer

- Smart DNS Brute-Forcer⁵⁶ uses techniques from natural language modeling with Markov Chain Models
- The processor relies on passive DNS data to generate the statistics and extract the features.
- The DNS queries seen in the IP darkspace can be considered as a passive DNS stream with a focus on internal network.
- Providing a unique way to create internal DNS brute-forcers from external observations.

⁵https://www.foo.be/papers/sdbf.pdf
6https://github.com/jfrancois/SDBF

Network Reconnaissance: NetBios Machine Types (1 week)

```
23
      Browser Server
      Client?
      Client? M <ACTIVE>
21
      Domain Controller
      Domain Controller M < ACTIVE>
11
      Master Browser
      NameType=0x00 Workstation
      NameType=0x20 Server
105
      Server
26
      Unknown
      Unknown < GROUP > B < ACTIVE >
5
      Unknown < GROUP > M < ACTIVE >
1322
      Workstation
      Workstation M < ACTIVE>
```

How to configure your router (without security)

Enable command logging and send the logs to a random syslog server

We will let you guess the sensitive part afterwards...

```
Aug 13 10:11:51 M6000-G5 command-log:[10:11:51 08-13-2012 VtyNo: vty1 UserName: XXX IP: XXX ReturnCode: 1 CMDLine: show subscriber interface gei-0/2/1/12.60 Aug 13 10:46:05 M6000-G5 command-log:[10:46:05 08-13-2012 VtyNo: vty2 UserName: XXX IP: XXX ReturnCode: 1 CMDLine: conf t ]
Aug 13 10:46:10 M6000-G5 command-log:[10:46:10 08-13-2012 VtyNo: vty2 UserName: XXX IP: XXX ReturnCode: 1 CMD Line: aaa-authentication-template 1100 ]
...
```

44 of 49

Finding origin of traffic by TCP sequence analysis


```
iph->id = rand_next();
iph->saddr = LOCAL_ADDR;
iph->daddr = get_random_ip();
iph->check = 0;
iph->check = checksum_generic((uint16_t *)iph, sizeof (struct iphdr));
if (i % 10 == 0)
   tcph->dest = htons(2323);
else
   tcph->dest = htons(23);
tcph->seq = iph->daddr;
tcph->check = 0;
tcph->check = checksum_tcpudp(iph, tcph, htons(sizeof (struct tcphdr)), sizeof (struct tcphdr));
paddr.sin_family = AF_INET;
paddr.sin_addr.s_addr = iph->daddr;
paddr.sin_port = tcph->dest;
sendto(rsck, scanner_rawpkt, sizeof (scanner_rawpkt), MSG_NOSIGNAL, (struct sockaddr *)&paddr, sizeof
```

Recommendations for operating an IP darkspace

- Capture raw packets at the closest point, don't filter, don't try to be clever, just store it as it.
- Test your network collection mechanisms and storage. Send test network beacons. Check the integrity, order and completness of packets received.
- You never know in advance which features is required to distinguish a specific pattern.
- Did I mention to store **RAW PACKETS**?

Security conclusions

- Security recommendations
 - Default routing/NAT to Internet in operational network is evil
 - Use fully qualified domain names (resolver search list is evil too)
 - Double check syslog exports via UDP (e.g. information leakage is easy)
 - Verify any default configuration with SNMP (e.g. enable by default on some embedded devices)
- Offensive usage? What does it happen if a malicious "ISP" responds to misspelled RFC1918 addresses? (e.g. DNS/NTP requests, software update or proxy request)
- Some research projects on this topic? Contact us mailto:info@circl.lu

IP darkspace and LE conclusions

- IP darkspace can be a complementary source of intelligence
- Many network telescope are operated by researchers and have different way to collect network packets and provide access
- CIRCL recently started the D4 project⁷, to provide an unified way to collect network packets from distributed IP darkspaces and provide unified access to contributors
- Some IP darkspace are more interesting than others depending of the case investigated (e.g. DDoS tooling always spoofing specific network spaces, networks addresses similar to RFC1918)

⁷https://www.d4-project.org/