Week 1

Topics: first-order linear ODEs; integrating factor; recap of linear algebra; variation of parameters

- 1. Consider the differential equation $xy' + y = e^x$.
 - (a) Explain why it is a first-order linear inhomogeneous differential equation.

(b) By considering (xy)', find its general solution (involving one arbitrary constant).

(c) Find a solution that satisfies the initial condition y(1) = 0.

(d) Then find the one and only value y_0 for which the initial value problem with $y(0) = y_0$ can be solved.

(e) What feature of the equation suggests that this equation cannot be solved for an arbitrary value of y(0)?

2. Suppose that your student loan balance is \$1K, that it accrues interest at a rate of 50% per decade, and that you pay it off at a steady rate of \$1K per decade. Denote by y the student loan balance as a function of x, the number of decades. What is the student loan balance for x = 1 decade? This amounts to solving the initial value problem

$$\begin{cases} y' = 0.5y - 1\\ y(0) = 1 \end{cases}$$

Use the idea of the integrating factor to solve this problem.

3. Consider the general linear first-order equation,

$$a(x)y' + b(x)y = h(x).$$

Show that we may choose the integrating factor to be

$$\mu(x) = \exp\left(\int_{x_0}^x \frac{b(t)}{a(t)} dt\right),$$

and use this integrating factor to get a general solution to the equation for any region in which $x \mapsto b(x)/a(x)$ is integrable.

4. Show that the function $\ell: V \to V$ given by the formula $\ell(y) = a(x)y' + b(x)y$ has the properties required for linearity, and the kernel of ℓ is a one-dimensional subspace of V. Find a vector (function) $f \in V$ such that $\ker \ell = \operatorname{span}\{f\}$.

Answers and Solutions.

- 1. (a) <u>first-order:</u> since the highest derivative term is y', which has only one derivative; <u>linear:</u> since the equation only involves y, y' (and not powers $(y^3, (y')^{-2}, \text{ etc...})$, or other functions, $\sin(y)$, etc...); inhomogeneous: since terms not involving y, y' are non-zero.
 - (b) Observe that the LHS of the equation is (xy)' = xy' + y and the equation becomes,

$$(xy)'(x) = e^x,$$

$$\int (ty)'(t) dt = \int e^t dt,$$

$$(xy)(x) = e^x + C,$$

$$y(x) = \frac{e^x}{x} + \frac{C}{x}$$

(c) From the last computation we find $y(1) = e^1 + C = e + C = 0 \Rightarrow C = -e$. A solution that satisfies y(1) = 0 is then

$$y(x) = \frac{e^x}{x} - \frac{e}{x}.$$

(d) We need to evaluate the function $x \mapsto y(x) = \frac{e^x}{x} + \frac{C}{x}$ at x = 0. Clearly, we can not just plug this in and we need to consider the limit:

$$\lim_{x \to 0} y(x) = \lim_{x \to 0} \left[\frac{e^x + C}{x} \right].$$

In order for this limit to exist, we need the numerator $e^x + C \to 0$ as $x \to 0$ (at least as fast as $x \to 0$), which means that we need C = -1. In this case,

$$\lim_{x \to 0} y(x) = \lim_{x \to 0} \left[\frac{e^x - 1}{x} \right],$$

$$= \lim_{x \to 0} \left[e^x \right], \text{ by L'Hôpital},$$

$$= 1.$$

Thus, $y_0 = 1$ is the only value for which the initial value problem can be solved.

(e) The fact that the equation may be written as

$$y' + \frac{y}{x} = \frac{e^x}{x},$$

shows that we might expect some "singular" behavior as $x \to 0$ for an arbitrary value of y(0).

2. First multiply both sides of the equation y' - 0.5y = -1, by an integrating factor μ

$$\mu y' - 0.5\mu y = -\mu.$$

We want the LHS of this last equation to have the form $(\mu y)' = \mu y' + \mu' y$, that is

$$\mu y' - 0.5\mu y \stackrel{!}{=} (\mu y)' = \mu y' + \mu' y,$$

 $-0.5\mu y = \mu' y$, cancelling $\mu y'$ from both sides,
 $\mu' = -0.5\mu$, cancelling y from both sides and rearranging.

Thus, we want a solution (any solution will do!) to the equation

$$\mu' = -0.5\mu,$$

$$\int \frac{\mu'}{\mu}(x) dx = -\int 0.5 dx,$$

$$\log |\mu|(x) = -0.5x + K,$$

$$|\mu|(x) = \exp[-0.5x + K] = C \exp[-0.5x], \text{ where } C = e^K.$$

Since any solution will do, we are free to take $\mu = e^{-x/2}$. Going back to our original equation (multiplied by μ),

$$\mu y' - 0.5\mu y = -\mu,$$

$$(\mu y)' = -\mu,$$

$$\int (e^{-x/2}y)'(x) dx = -\int e^{-x/2} dx, \text{ plugging in } \mu = e^{-x/2},$$

$$y(x) = 2 + Ce^{x/2}.$$

Using the initial condition and our last result $y(0) = 2 + Ce^0 = 2 + C = 1 \Rightarrow C = -1$, and

$$y(x) = 2 - e^{x/2}.$$

Thus, there is $y(1) = 2 - \sqrt{e}$ kilobucks owing when x = 1 decade. Note that if y(0) > 2, then C > 0 and the loan keeps increasing!

3. Multiply both sides of the equation by an integrating factor μ and divide the equation by a. We are ignoring any problems that dividing by a might cause for now, and will worry about this for specific choices of a later. Also, recall that we assume that a, b and h are functions of x. We need to find the general solution to

$$\mu y' + \frac{b}{a}\mu y = \frac{h}{a}\mu.$$

Using the usual integrating factor method, we want

$$\mu'(x) = \frac{b(x)}{a(x)}\mu(x),$$

$$\log |\mu|(x) = \int_{x_0}^x \frac{b(t)}{a(t)} dt + \log |\mu|(x_0),$$

$$|\mu|(x) = |\mu|(x_0) \exp \left[\int_{x_0}^x \frac{b(t)}{a(t)} dt \right].$$

Notice that the x_0 is arbitrary. Since any integrating factor is sufficient for our purposes, set

$$\mu(x) = \exp\left[\int_{x_0}^x \frac{b(t)}{a(t)} dt\right].$$

The general solution is then given by

$$(\mu y)'(x) = \frac{h(x)}{a(x)}\mu(x),$$

$$\mu(x)y(x) = \int_{x_0}^x \frac{h(t)}{a(t)}\mu(t) dt$$

$$y(x) = \frac{1}{\mu(x)} \int_{x_0}^x \frac{h(t)}{a(t)}\mu(t) dt + \frac{y(x_0)}{\mu(x)}$$