

Content-Based Recommendation

Problem Formulation

- Items i=1..n
- Users *j=1..p*
- Ratings Y_{ij}
- Binary mask if rating is available M_{ij}
- Problem: matrix completion

Naive Solution

• If k dimensional feature vectors $x^{(i)}$ are known for each item i=1...n

- Learn parameter vectors $\theta^{(j)}$ for each user j=1...p
- Predict user j rating item i by $\theta^{(j)} x^{(i)}$

minimize
$$\frac{1}{2} \sum_{i:M_{i,j}=1} \left(\theta^{(j)} x^{(i)} - Y_{i,j}\right)^2 + \frac{\lambda}{2} \sum_{k} \theta^{(j)}$$

Naive Solution

- If k dimensional feature vectors $x^{(i)}$ are known for each item i=1...n
- Learn parameter vectors $\theta^{(j)}$ for all users j=1...p using gradient descent
- Predict user *j* rating item *i* by $\theta^{(j)} x^{(i)}$

$$\underset{\theta^{(1)}...\theta^{(p)}}{\text{minimize}} \frac{1}{2} \sum_{i,j:M_{ij}=1} \left(\theta^{(j)^T} x^{(i)} - Y_{ij} \right)^2 + \frac{\lambda}{2} \sum_{j} \sum_{k} \theta^{(j)^2}$$

Collaborative Filtering

Problem

• If k dimensional feature vectors $x^{(i)}$ are unknown

• Given parameter vectors $\theta^{(j)}$ for all users j=1...p learn feature vectors $x^{(i)}$

$$\underset{x^{(1)}...x^{(n)}}{\text{minimize}} \frac{1}{2} \sum_{i,j:M_{ij}=1} \left(\theta^{(j)^T} x^{(i)} - Y_{ij} \right)^2 + \frac{\lambda}{2} \sum_{i} \sum_{k} x_k^{(i)^2}$$

Iterative Solution

• Given $\{x^{(1)},...,x^{(n)}\}$ learn $\{\theta^{(1)},...,\theta^{(p)}\}$

• Given $\{\theta^{(1)},...,\theta^{(p)}\}$ learn $\{x^{(1)},...,x^{(n)}\}$

Collaborative Filtering Solution

• Learn $\{x^{(1)},...,x^{(n)}\}$ and $\{\theta^{(1)},...,\theta^{(p)}\}$ together

$$\underset{x^{(1)} \dots x^{(n)}, \theta^{(1)} \dots \theta^{(p)}}{\text{minimize}} \sum_{i,j: M_{ij} = 1} \left(\theta^{(j)^T} x^{(i)} - Y_{ij} \right)^2 + \frac{\lambda}{2} \sum_{i} \sum_{k} x_k^{(i)^2} + \frac{\lambda}{2} \sum_{j} \sum_{k} \theta_k^{(j)^2}$$

• Predictions $\theta^{(j)^T} x^{(i)}$

Collaborative Filtering Solution

 Low rank factorization of rating into product of feature matrix and parameter matrix

$$\begin{bmatrix} \theta^{(1)}{}^T x^{(1)} & \cdots & \theta^{(p)}{}^T x^{(1)} \\ \vdots & \ddots & \vdots \\ \theta^{(1)}{}^T x^{(n)} & \cdots & \theta^{(p)}{}^T x^{(n)} \end{bmatrix}$$