BINARIES

BINARIES

Binary basics

Different "classes" of binary:

- Visual
- Spectroscopic
- Eclipsing (more generally, photometrically variable)
- Astrometric

Binary basics

Different "classes" of binary:

- Visual
- Spectroscopic
- Eclipsing (more generally, photometrically variable)
- Astrometric

Binary basics

Photometric variables

Detached (Algol-type / EA)

• Semi-detached (β Lyr-type / EB)

Contact (W UMa-type / EW)

Detached

Photometric variables

Detached (Algol-type / EA)

• Semi-detached (β Lyr-type / EB)

Contact (W UMa-type / EW)

Semi-detached

Photometric variables

Detached (Algol-type / EA)

• Semi-detached (β Lyr-type / EB)

Contact (W UMa-type / EW)

Contact

Parameterisation

Stellar parameters

Masses, temperatures, radii

Orbital parameters

- Period (plus time of superior conjunction and dp/dt)
- Eccentricity (and argument of periastron)
- Inclination

Parameterisation

Direct from observations

$$e = \left[\sin^2 \left(\frac{\psi - \pi}{2} \right) + \left(\frac{w_2 - w_1}{w_2 + w_1} \right)^2 \cos^2 \left(\frac{\psi - \pi}{2} \right) \right]^{1/2}$$

 $2\pi\Delta\Phi = \psi - \sin\psi$

Conroy et al. (2020)

Direct from observations

$$\omega_1 = \arcsin\left(\frac{1}{e} \frac{w_2 - w_1}{w_2 + w_1}\right)$$

$$\omega_2 = \arccos\left(\frac{\sqrt{1 - e^2}}{2e\tan(\psi - \pi)}\right)$$

If
$$\omega_1 \geq 0$$
, $\omega = \omega_2$

else if $\omega_1 < 0$, $\omega = 2\pi - \omega_2$

$$\psi = \pi + 2 \arctan \frac{e \cos \omega}{\sqrt{1 - e^2}}$$

Conroy et al. (2020)

Direct from observations

$$v_{\gamma} = \frac{RV_1(\theta) + q RV_2(\theta)}{1 + q}$$

$$q = \frac{RV_1(\theta) - v_{\gamma}}{-RV_2(\theta) + v_{\gamma}}$$

Conroy et al. (2020)

Rough temperatures

For blackbodies:

$$F \propto R^2 T^4$$

$$\Delta F_2 = R_1^2 T_1^4 + R_2^2 T_2^4 - [(R_2^2 - R_1^2)T_2^4 + R_1^2 T_1^4]$$

$$\Delta F_2 = R_1^2 T_2^4$$

$$\Delta F_1 = R_1^2 T_1^4 + R_2^2 T_2^4 - R_2^2 T_2^4$$

$$\Delta F_1 = R_1^2 T_1^4$$

$$\frac{\Delta F_1}{\Delta F_2} = \left(\frac{T_1}{T_2}\right)^4$$

Assumes blackbodies, bolometric observations and total eclipses

Rough radii

Rough radii

Assumes e=0 and i=90°

Add or subtract and solve for the radius!

Further reading...

Simulating a binary

- Geometric model and choice of meshing
 - Informed by orbital and stellar parameters
- Emergent flux
 - Model atmosphere
 - Limb-darkening
 - Gravity brightening
- Integrate exposed mesh elements at chosen times/phases

