COMP 237 - Online lab assignment "Logistic Regression"

Due date: End of week # 8

Purpose:

The purpose of this Lab assignment is to:

- 1. To get hands-on experience of applying supervised machine Learning namely the Logistic regression algorithm to solve a business problem.
- 2. To get hands-on experience with data exploration and pre-processing for machine learning problems.
- 3. To get hands-on experience in data normalization.
- 4. To experiment with different train-test splits.

General Instructions:

Be sure to read the following general instructions carefully:

- 1. This assignment must be completed individually by all the students.
- 2. Only provide the requested screenshots and make sure to have a complete screenshot, partial screenshots will not earn any marks.
- 3. You will have to provide a **demonstration video for your solution** and upload the video together with the solution on **eCentennial** through the assignment link. See the **video recording instructions** at the end of this document.
- 4. In your 5-minute demonstration video you should explain your solution clearly, going over the main code blocks and the purpose of each module/class/method also demoing the execution of exercises #1 & 2. Youtube links and links to google drive or any other media are not acceptable, the actual recording must be submitted.
- 5. Any submission without an accompanying video will lose 70% of the grade.
- 6. In your analysis report make sure you provide an introduction and clearly state the facts and findings. Any submission missing Analysis report will lose 70%.

Submission:

There are three elements to be submitted for this assignment in one zipped folder (All subject to grading as per the rubric for this assignment):

- 1. For each exercise that requires code, please create a project folder and include all project python scripts/modules and screenshot of output, as needed. Name all python scripts your firstname_linear.py. Name the folder "Exercise#X_firstname", where X is the exercise number and firstname is your first name. (In total 1 folders for this assignment).
- For all questions that require written or graphic response create one "Word document" and indicate the exercise number and then state your response. Name the document "Written_responses_firstname", where firstname is your firstname. (In total one word or pdf document).

3. All submissions need to be accompanied with a recorded demonstration video not to exceed 5 minutes in length, focus on showing the key code functionalities and run the code.

Create one zipped folder containing all of the above, name it Logistic_firstname where firstname is your firstname.

Pre-requisite to carrying out the assignment:

1. Download from the course shell the following comma separated file: titanic.csv. This file contains the details of each passenger on the Titanic and also whether they survived or not.

A brief description of the column names of the dataset is, as follows:

Field	Descriptions				
survival	Survival(0 = No, 1 = Yes)				
pclass	Passenger class(1 = 1st, 2 = 2nd, 3 = 3rd)				
name	Name of the passenger				
sex	Gender of the passenger				
age	Age of the passenger				
sibsp	Number of siblings/spouses aboard				
parch	Number of parents/children aboard				
ticket	Ticket number				
fare	Passenger fare				
cabin	Cabin				
embarked	Port of embarkation (C = Cherbourg, Q = Queenstown, S = Southampton)				

2. Go through and watch all "Linear & Logistic" lecture and lab tutorials related to modules # 5 & 6 to understand the concepts and the presented code.

Assignment - exercises:

1. Exercise # 1: titanic analysis and logistic regression (100 marks)

Requirements:

- a. Get the data:
 - 1.Load the "titanic.csv" data into a data frame, name the dataframe titaninc firstname, where firstname is your firstname.
- b. Initial Exploration:
 - 1. Display (print) the first 3 records.
 - 2. Display (print) the shape of the dataframe.
 - 3. Display (print) the names, types and counts (showing missing values per column).

 Use pandas built in method info. For more info checkout:

https://pandas.pydata.org/pandas-

docs/stable/reference/api/pandas.DataFrame.info.html

- 4. From the info identify <u>four columns</u> that are not going to be useful for the model. Note them in your written response <u>and explain</u> why you chose them. (hint columns with unique values, columns with a lot of missing values)
- 5. Display (print the unique values for the following columns: ("Sex", "Pclass")
- c. Data visualization
 - 1. Use pandas crosstab and matplotlib to generate the following diagrams plots:
 - a. A bar chart showing the # of survived versus the passenger class. Give an appropriate name for the x and y axis in addition to an appropriate title that includes your name.
 - b. A bar chart showing the # of survived versus the gender. Give an appropriate name for the x and y axis in addition to an appropriate title that includes your name.
 - c. Analyze both plots and write a conclusion from each plot in your written response.
 - 2. Use pandas scatter matrix to plot the relationships between the number of survived a the following features (attributes): Gender, Passenger class, Fare, Number of siblings/spouses aboard, Number of parents/children aboard. Analyze the output and write some conclusions in your written response. For more info checkout: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.plotting.scatter_matrix.html
- d. Data transformation (round #1):
 - 1. Drop the three columns you identified in point (b.4) above.
 - 2. Using "Get dummies" transform <u>all</u> the categorical variables in your dataframe into numeric values. (There should be two columns)
 - 3. Attach the newly created variables to your dataframe and <u>drop</u> the original columns.
 - 4. Remove the original categorical variables columns. Use pandas drop method and select the correct argument values. For more info checkout :

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.drop.html

- 5. Replace the missing values in the Age with the mean of the age.
- 6. Change all column types into float.
- 7. By know you should get something like the below when you run pandas info:

```
In [56]: titanic mayv.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 11 columns):
Survived 891 non-null float64
Pclass
             891 non-null float64
             891 non-null float64
Age
            891 non-null float64
SibSp
Parch
             891 non-null float64
        891 non-null float64
Fare
Sex_female 891 non-null float64
Sex_male 891 non-null float64
Embarked_C 891 non-null float64
Embarked_Q 891 non-null float64
Embarked_S 891 non-null float64
dtypes: float64(11)
memory usage: 76.7 KB
```

8. Write a function that accepts a dataframe as an argument and normalizes all the data points in the dataframe. Use pandas .min() and .max().

Below the formula for normalization:

$$x_{norm} = \frac{x - x_{min}}{x_{max} - x_{min}}$$

- 9. Call the new function and pass as an argument your transformed dataframe. By now all your data is numeric.
- 10. Display (print) the first two records.
- 11. Use pandas.hist to generate a plot showing all the variables histograms. Set the figure size to 9 inches by 10 inches. For more info, checkout:

https://pandas.pydata.org/pandas-

docs/stable/reference/api/pandas.DataFrame.hist.html

- 12. Form the histogram generated focus on the "Port of Embarkation" and write in your written response some highlights (Conclusions).
- 13. Split the features into a dataframe named x_firstname and the target class into another dataframe named y_firstname.
- i. Using Sklearn "train_test_split" split your data into 70% for training and 30% for testing, set the random seed to be the last two digits of your student ID number. Store the training data in a dataframe named: x_train_firstname for the features (predictors) and the training labels y_train_firstname. Store the test data as follows: x_test_firstname and y_test_firstname.

- e. Build & validate the model
 - 1. Using sklearn fit a logistic regression model to the <u>training data</u>. Name the model firstname model.
 - 2. Display (print) the coefficients (i.e. the weights of the model). Since we have multiple feature you can use pandas, zip and np transponse, something as follows to get a neat table:

pd.DataFrame(zip(x_train_mayy.columns, np.transpose(model_mayy.coef_)))

- 3. Cross validation:
 - 1. Use Sklearn cross val score to validate the model on the training data.
 - 2. Set the number of folds cv to 10.
 - 3. Repeat the validation for different splits of the train/ test. Start at test size 10% and reach test size 50% increasing your test sample by 5%.
 - 4. In each run print out the minimum, mean and maximum accuracy of the score
 - 5. Note these results in your writer report and recommended the best split scenario.

(Hint: you will need a loop something like this: for i in np.arange (0.10, 0.5, 0.05):)

b. Test the model

- 1. Rebuild the model using the 70% 30% train/test split.
- 2. Define a new variable y_pred_firstname where firstname is your firstname, store the predicted probabilities of the model in this variable (hint: use predict_proba)
- 3. Define another variable name it y_pred_firstname_flag , store in the y_pred_firstname after transforming the probabilities into a bolean value of true or false based on a threshold value of 0.5. (hint: y_pred_mayy_flag = y_pred[:,1] > 0.5)
- 4. From sklearn metrics import : confusion_matrix, accuracy_score, classification_report
- 5. Print out the accuracy of the model on the test data.
- 6. Print out the confusion matrix.
- 7. Print out the classification report.
- 8. Write down and note the values of: accuracy, precision and re-call
- 9. Repeat steps 3 to 6 with changing the threshold value to 0.75
- 10. Compare the accuracy on the test data with the accuracy generated using the training data.
- 11. Compare the values of accuracy, precision and re-call generated at the threshold 0.5 and 0.75.

End of Exercises	
------------------	--

Rubric

Evaluation criteria	Not acceptable	Below	Average	Competent	Excellent
Criteria	0% - 24%	Average 25%-49%	50-69%	70%-83%	84%-100%
Data exploration Visualization & Pre-processing code 30%	Missing all requirements required	Some requirements are implemented.	Majority of requirements are implemented but some are malfunctioning.	Majority of requirements implemented.	All requirements are implemented Correctly.
Model building Validation &Testing 30%	No evidence of testing and evaluation of the requirements.	Minor evaluation and testing efforts.	Some of the requirements have been tested & evaluated.	Majority of requirements are tested & evaluated.	Realistic evaluation and testing, comparing the solution to the requirements.
Code Documentation 5%	No comments explaining code.	Minor comments are implemented.	Some code is correctly commented.	Majority of code is correctly commented.	All code is correctly commented.
Written analysis Content 10%	Missed all the key ideas; very shallow.	Shows some thinking and reasoning but most ideas are underdeveloped.	Indicates thinking and reasoning applied with original thought on a few ideas.	Indicates original thinking and develops ideas with sufficient and firm evidence.	Indicates synthesis of ideas, in-depth analysis and evidences original thought and support for the topic.
Written analysis Format and organization 5%	Writing lacks logical organization. It shows no coherence and ideas lack unity. Serious errors. No transitions. Format is very messy.	Writing lacks logical organization. It shows some coherence but ideas lack unity. Serious errors. Format needs attention, some major errors.	Writing is coherent and logically organized. Some points remain misplaced. Format is neat but has some assembly errors.	Writing is coherent and logically organized with transitions used between ideas and paragraphs to create coherence. Overall unity of ideas is present. Format is neat and correctly assembled.	Writing shows high degree of attention to logic and reasoning of all points. Unity clearly leads the reader to the conclusion. Format is neat and correctly assembled with professional look.
Demonstration Video 20%	Very weak no mention of the code changes. Execution of code not demonstrated.	Some parts of the code changes presented. Execution of code partially demonstrated.	All code changes presented but without explanation why. Code demonstrated.	All code changes presented with explanation, exceeding time limit. Code demonstrated.	A comprehensive view of all code changes presented with explanation, within time limit. Code demonstrated.

Demonstration Video Recording

Please record a short video (max 4-5 minutes) to explain/demonstrate your assignment solution. You may use the Windows 10 Game bar to do the recording:

1. Press the Windows key + G at the same time to open the Game Bar dialog.

- 2. Check the "Yes, this is a game" checkbox to load the Game Bar.
- 3. Click on the Start Recording button (or Win + Alt + R) to begin capturing the video.
- 4. Stop the recording by clicking on the red recording bar that will be on the top right of the program window.

(If it disappears on you, press Win + G again to bring the Game Bar back.)
You'll find your recorded video (MP4 file), under the Videos folder in a subfolder called Captures.

Or you can use any other video recording package freely available.