Amendments to the Specification

Please replace the paragraph at page 22, line 16 through page 23, line 8 with the following amended paragraph:

Figs. 4A and 4B comprise a flowchart that summarizes an embodiment of the present invention employing the Viterbi inference algorithm for SLDSs, as described above. The steps are as follows:

Initialize LDS state estimates
$$\hat{x}_{0|-1,i}$$
 and $\Sigma_{0|-1,i}$; (Step 102)

Initialize $J_{0,i}$. (Step 102)

for $i=1:T-1$ for $t=1:T-1$ (Steps 104, 122)

for $j=1:S$ (Steps 106, 120)

for $j=1:S$ (Steps 108, 114)

Predict and filter LDS state estimates

 $\hat{x}_{i|\iota,\iota,j}$ and $\Sigma_{i|\iota,\iota,j}$ (Step 110)

Find $j \to i$ "transition probability" $J_{\iota|\iota-1,\iota,j}$ end (Step 112)

Find best transition $J_{\iota,i}$, into state i ; (Step 116)

Update sequence probabilities $J_{\iota,i}$ and LDS state estimates $\hat{x}_{\iota|\iota,\iota}$ and $\Sigma_{\iota|\iota,\iota}$ (Step 118) end

Find "best" final switching state i_{T-1}^* (Step 124)

Backtrack to find "best" switching state sequence i_{ι}^* (Step 126)

Find DBN's sufficient statistics. (Step 128)

Please replace the paragraph at page 24, line 1 through line 5 with the following amended paragraph:

Namely, for a given set of observations Y_T , a distribution $Q(X_T, S_T \mid \eta, Y_T)$ with an additional set of variational parameters h is defined such that Kullback-Leibler divergence between $Q(X_T, S_T \mid \eta, Y_T)$ and $P(X_T, S_T \mid Y_T)$ is minimized with respect to h:

$$\eta^* = \arg\min_{\eta} \sum_{S_T} \int_{X_T} Q(X_T, S_T | \eta, Y_T) \log \frac{P(X_T, S_T | Y_T)}{Q(X_T, S_T | \eta, Y_T)}.$$