Today

- Inference algorithms intro
- Frequentist inference algorithms
 - sampling distribution algorithm
 - coverage algorithm (confidence intervals)

Inference algorithms

Scope and veracity of inference depends on study design

Statistical inference

- Judge the accuracy of an estimation or prediction algorithm
 - Efron & Hastie 2016
- Reliability
- Uncertainty

ISO definition of accuracy: the closeness of a measurement to the true value Two components: bias, variance

Different inference problems

Estimation

Infer a property of a population (e.g. mean) from a sample

Model comparison (weigh evidence)

Infer the data generating process from among a set of candidate datagenerating processes

Hypothesis test (association)

Infer that y is associated with x

Causation (by experiment or observation)

Infer that x causes y
Infer the size of an effect due to an intervention (estimation)
Infer that an intervention had an effect (H-test)

Prediction

Predict the value of a new observation or population state (extrapolation or interpolation)

Predict the population state in the future (forecast/extrapolation)

"Dumb" - doesn't say about reliability

- Inference algorithm
 - looking back: considering all the ways data could have happened
 - •
 - •
 - •
 - looking forward: predicting new data and testing against them

•

These are two big ideas in data science

- Inference algorithm
 - looking back: considering all the ways data could have happened
 - frequentist (sampling distribution)
 - likelihood (probability accounting)
 - Bayesian (likelihood + belief updating)
 - looking forward: predicting new data and testing against them

•

These are two big ideas in data science

- Inference algorithm
 - looking back: considering all the ways data could have happened
 - frequentist (sampling distribution)
 - likelihood (probability accounting)
 - Bayesian (likelihood + belief updating)
 - looking forward: predicting new data and testing against them
 - cross validation, AIC, machine learning

These are two big ideas in data science

Frequentist inference

- Frequentist probability = long-run frequency
 - -e.g. tossing a coin

$$P(\text{Heads}) = \lim_{n \to \infty} \frac{\sum \text{Heads}}{n}$$

Sample vs population statistic

- Population statistic
 - e.g. mean weight
 - there is a true value
 - "fixed" not random
- Sample statistic
 - e.g. mean of sample
 - random variable

Sampling distribution

- Frequentist notion of looking back: considering all the ways data could have happened
- Imaginary repeated sampling from the data generating process

Sampling distribution algorithm

- Data generating process repeated many times
- Each time calc sample statistic

```
repeat very many times
sample n units from the population
calculate the sample statistic
plot sampling distribution (histogram) of the sample statistic
```

Make the algorithm

What is the mean weight of an individual of this species?

repeat very many times
sample n units from the population
calculate the sample statistic
plot sampling distribution (histogram) of the sample statistic

Important: population statistic, sample statistic