18 Транспортная задача в матричной постановке. Метод потенциалов для решения транспортной задачи. Особенности решения транспортной задачи с дополнительными условиями

7.1 постановка транспортной задачи (Т3). открытая и замкнутая Т3

дано:

m складов

n магазинов

товар хранится на складах и развозится по магазинам.

каждому складу соответствует a_i — запас товара на i-том складе $(i \in 1..m)$.

каждому магазину соответствует b_j — потребность j-того магазина в товаре $(j \in 1...n)$.

 c_{ij} — стоимость перевозки единицы товара со склада i в магазин j.

 x_{ij} — объем перевозки.

таблица:

склад/магазин	b_1	b_2	•••	b_n	
a_1	c_{11}	c_{12}	•••	c_{1n}	

склад/магазин	b_1	b_2	•••	b_n
a_2	c_{21}	c_{22}		c_{2n}
				•••
a_m	c_{m1}	c_{m2}	•••	c_{mn}

пример

склад/магазин	12	13
10	2	3
15	4	1

решения:

$$\begin{pmatrix} 0 & 10 \\ 12 & 3 \end{pmatrix} \quad \begin{pmatrix} 10 & 0 \\ 2 & 13 \end{pmatrix}$$

какое лучше?

посчитаем стоимости:

$$\begin{pmatrix} 0 & 30 \\ 48 & 3 \end{pmatrix} = 81 \quad \begin{pmatrix} 20 & 0 \\ 8 & 13 \end{pmatrix} = 41$$

второе решение более выгодное.

матмодель

целевая функция — суммарная стоимость перевозок.

$$z=\sum_{i=1}^m\sum_{j=1}^nc_{ij}x_{ij} o \min$$

$$\sum_{i=1}^n x_{ij}=a_i,\; i\in 1..\,m$$

$$\sum_{i=1}^m x_{ij} = b_j, \; j \in 1..\,n$$
 $x_{ij} \geq 0$ $\sum a_i = \sum b_j = Q$ $(*)$

когда объемы сбалансированы (см. равенство выше), транспортная задача называется замкнутой (закрытой). иначе задача называется незамкнутой.

любую задачу можно свести к замкнутой.

1. избыток товара на складе

пусть $\sum a_i > \sum b_j$. тогда добавим фиктивный магазин с номером n+1, для которого $b_{n+1} = \sum a_i - \sum b_j$. стоимость перевозки в этот магазин будет равна нулю: $c_{i\,n+1}=0$. теперь задача замкнутая.

2. недостаток товара на складе

пусть $\sum a_i < \sum b_j$. тогда добавим фиктивный склад с номером m+1, для которого $a_{m+1} = \sum b_j - \sum a_i$. стоимость перевозки из этого склада будет равна нулю: $c_{m+1\,j} = 0$. теперь задача замкнутая.

закрытая транспортная задача всегда имеет решение. вот такое решение (пусть и не будет оптимальным) всегда будет удовлетворять ограничениям задачи.

$$x_{ij}=rac{a_ib_j}{Q}$$

$$\sum\limits_{i=1}^{m}x_{ij}=\sum\limits_{i=1}^{m}rac{a_{i}b_{j}}{Q}=rac{b_{j}}{Q}\cdot\sum\limits_{i=1}^{m}a_{i}=rac{b_{j}\cdot Q}{Q}=b_{j}$$

7.3 алгоритм метода потенциалов

теорема о потенциалах

матмодель:

$$egin{aligned} z &= \sum_{i=1}^m \sum_{j=1}^n c_{ij} x_{ij} o \min \ &\sum_{j=1}^n x_{ij} = a_i, \ i \in 1...m \ &\sum_{i=1}^m x_{ij} = b_j, \ j \in 1...n \ &x_{ij} \geq 0 \ &\sum a_i = \sum b_j = Q \end{aligned}$$

в соответствие каждому ограничению по складам поставим новую переменную u_i .

в соответствие каждому ограничению по магазинам поставим новую переменную v_j .

теорема

если для базисных клеток выполняется условие $u_i+v_j=c_{ij}$, а для не базисных выполняется условие $u_i+v_j\leq c_{ij}$, то текущее решение x_{ij} является оптимальным.

алгоритм решения транспортной задачи при использовании метода потенциалов

- 0. привести к замкнутому типу
- 1. построить начальное БДР транспортной задачи (см. пред. лекция)

2. для базисных

$$u_i + u_j = c_{ij}$$
 $m+n-1$, $u \sim m$, $v \sim n$ ПУСТЬ $u_1 = 0$

3. для небазисных

$$S_{ij} = c_{ij} - u_i - v_j$$
 если все $S_{ij} \geq 0$, то найдено оптимальное решение. иначе переходим к шагу 4.

- 4. находим минимальное S_{ij} , и для клетки, соответствующей данной оценке, строим цикл. ставим в ней пометку "+", далее чередуем пометки "-" и "+".
- 5. среди клеток со знаком "-" находим минимальное значение перевозки. обозначим его $\lambda = \min\{x_{ij}^-\}$.
- 6. пересчет транспортной таблицы.

$$x_{ij}' = egin{cases} x_{ij} + \lambda, \ x^+ \ x_{ij} - \lambda, \ x^- \ x_{ij}, \ ext{ остальные клетки} \end{cases}$$

клетку, найденную на шаге 5, исключаем из базиса.

$$z' \leq z \ z' = z + \underbrace{\lambda}_{\geq 0} \underbrace{\min S_{ij}}_{\leq 0}$$

если среди оценок небазисных клеток существуют нули, то данное решение не единственно возможное.

пример

$\dfrac{\text{магазины} ightarrow}{\text{склады} \downarrow}$	58	22	18	22
30	5	8	6	2
50	2	7	5	3
40	1	4	3	5
33	6	5	5	2

приводим к закрытому типу.

	58	22	18	22	33
30	5	8	6	2	0
50	2	7	5	3	0
40	1	4	3	5	0
33	6	5	5	2	0

	58	22	18	22	33	u↓
30	5 / 30	8	6	2	0	0
50	2 / 28	7 / 22	5	3	0	-3
40	1	4 / 0	3 / 18	5 / 22	0	-6
33	6	5	5	2/0	0/33	-9
$V \to$	5	10	9	11	9	

$$u_1 + v_1 = 5$$
 $u_2 + v_1 = 2$
 $u_2 + v_2 = 7$
 $u_3 + v_2 = 4$
 $u_3 + v_3 = 3$
 $u_3 + v_4 = 5$
 $u_4 + v_4 = 2$
 $u_4 + v_5 = 0$

пусть $u_1=0$.

посчитать систему можно по таблице.

$$S_{12}=c_{12}-u_1-v_1=8-0-10=-2$$
 $S_{13}=-3$ $S_{14}=-9$ $S_{15}=-9$

$$S_{23} = -1$$
 $S_{24} = -5$
 $S_{25} = -6$
 $S_{31} = 2$
 $S_{35} = -3$
 $S_{41} = 10$
 $S_{42} = 4$

есть отрицательные значения, поэтому продолжаем.

пример:

 $S_{43}=5$

$$S_{15} = -9$$
 (не S_{14} потому что просто захотелось)

построим цикл:

	58	22	18	22	33	u↓
30	5 / 30 -	8 →	6 →	2 →	0 +	0
50	2 / 28 +	7 / 22 -	5	3	0 ↓	-3
40	1	4 / 0	3 / 18 ←	5 / 22 -	0 ↓	-6
33	6	5	5	2/0	0 /	-9
V ightarrow	5	10	9	11	9	z = 524

$$\lambda=22\;(x_{34})$$
 $0\lambda-0\lambda+2\lambda-5\lambda+4\lambda-7\lambda+2\lambda-5\lambda=-9\lambda$

$$z'=z-9\cdot 22=524-198=326$$

строим новую матрицу:

	58	22	18	22	33	u↓
30	5 / 8 →	8 →	6 →	2 →	0 / 22 ↓	0
50	2 / 50 ↑	7 / 0 ←	5	3	0 ↓	-3
40	1	4 / 22 ↑	3 / 18	5 / 0	0 ↓	-6
33	6	5 ↑	5 ←	2 / 22 ←	0 / 11	0
V ightarrow	5	10	9	2	0	z = 326

не будем прописывать все S, просто запишем самого мелкого:

$$S_{42} = -5$$

$$\lambda = 0$$

рисуем новую таблицу.