

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 8 November 2001 (08.11.2001)

(10) International Publication Number WO 01/83729 A2

(51) International Patent Classification7:

(21) International Application Number:

- (74) Agent: BECKER, Konrad; Novartis AG, Corporate In-C12N 15/00 tellectual Property, Patent & Trademark Dept., CH-4002 Basel (CH). PCT/EP01/04863
- 30 April 2001 (30.04.2001) (22) International Filing Date:
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 09/562,934

1 May 2000 (01.05.2000) US

- (71) Applicants: NOVARTIS AG [CH/CH]; Schwarzwaldallee 215, CH-4058 Basel (CH). THE SCRIPPS RESEARCH INSTITUTE [US/US]; 10550 North Torrey Pines Road, La Jolla, CA 92037 (US).
- (71) Applicants and
- (72) Inventors: NEMEROW, Glen, R. [US/US]; 462 Cerro Street, Encinitas, CA 92024 (US). VON SEGGERN, Daniel, J. [US/US]; Apartment 30, 5175 Luigi Terrace, San Diego, CA 92122 (US). FRIEDLANDER, Marty [US/US]; 1720 Zapo Street, Del Mar, CA 92014 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL,

TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: VECTORS FOR OCULAR TRANSDUCTION AND USE THEREOF FOR GENETIC THERAPY

(57) Abstract: Adenovirus vector-based gene therapy methods for treating ocular disorders are provided. Adenovirus vectors for therapy of ocular diseases and methods of treatment using the vectors are provided. Compositions, kits, and methods of preparation and use of the vectors for gene therapy are provided.

VECTORS FOR OCULAR TRANSDUCTION AND USE THEREOF FOR GENETIC THERAPY

Work described herein was supported by NIH grants EY11431 and HL54352. The government has certain rights in such subject matter.

5 RELATED APPLICATIONS

This application claims the benefit of priority to U.S. application Serial No. 09/562,934, filed May 1, 2000, to Glen R. Nemerow, Daniel Von Seggern,; Martin Friedlander, entitled "VECTORS FOR OCULAR TRANSDUCTION AND USE THEREFOR FOR GENETIC THERAPY".

No. 09/482,682 (also filed as International PCT application No. PCT/US00/00265, filed January 14, 2000)), to Daniel Von Seggern, Glen R. Nemerow, Paul Hallenbeck, Susan Stevenson, Yelena Skripchenko, filed January 14, 2000, entitled "Adenovirus Vectors, Packaging Cell Lines, Compositions, and Methods for Preparation and Use," which is a continuation-in-part of U.S. Application 09/423,783 filed November 12, 1999 and claims the benefit of the filing date of U.S. Provisional Application 60/115,920 filed January 14, 1999. Where permitted, the contents and subject matter of each application and of the provisional application are incorporated in their entirety herein by reference.

20 FIELD OF INVENTION

The present invention relates to gene therapy, especially to adenovirus vector-based gene therapy. In particular, adenovirus vectors for therapy of ocular diseases and methods of treatment using the vectors are provided.

Compositions, kits, and methods of preparation and use of the vectors for gene therapy are provided.

BACKGROUND OF THE INVENTION

Retinal dystrophies

30

The eye is susceptible to a number of hereditary and/or age related degenerative disorders. In the United States, common causes of irreversible blindness or severe loss of vision are retinal dystrophies (see, e.g., Cotlier et al. (1995) Surv. Ophthalmology 40:51-61; Bird (1995) Am. J. Ophthal. 119: 543-562; and Adler (1996) Arch Ophthal 114:79-83). The retina is the sensory

15

20

25

30

tunic of the eye, containing light sensitive receptors, a complex of neurons, and pigmented epithelium, arranged in discrete layers. In humans, the macula is the portion of the retina that lies directly behind the lens. Cones, the photoreceptor cells responsible for central vision, are heavily concentrated in the macula.

Central dystrophies, which affect the macula, include Best's disease, age-related macular degeneration, and Stargardt's macular dystrophy. The peripheral retina is composed mainly of rods, which are responsible for side and night vision. Peripheral degenerative retinal diseases include retinitis pigmentosa, choroidemia and Bietti's crystalline dystrophy.

Macular degenerations are a heterogenous group of diseases, characterized by progressive central vision loss and degeneration of the macula and underlying retinal pigmented epithelium. Age-related macular degeneration (ARMD) is the most common form of the disease, affecting an estimated 20% of persons over 75 years of age. ARMD is poorly understood in terms of etiology and pathogenesis. The very late onset of the disease has made genetic mapping particularly difficult. Certain macular degenerative conditions with a clear genetic basis, such as Stargardt's and Best's diseases, share many features with ARMD, but have been more amenable to molecular and genetic analysis.

Hereditary peripheral retinopathies are also relatively common. Retinitis pigmentosa (RP), for example, affects approximately 1.5 million people worldwide. Substantial genetic heterogeneity has been observed in this condition, with over 20 chromosomal loci identified. A predisposition to retinitis pigmentosa can be inherited by autosomal dominant, autosomal recessive, X-linked or digenic mode. Mutations have been identified in seven genes, four of which encode proteins in the rod phototransduction cascade: rhodopsin, alpha and beta subunits of rod cGMP phosphodiesterase, and rod cGMP cation-gated channel protein .alpha. subunit. Mutations in the peripherin/RDS gene have been linked to retinitis pigmentosa and macular degeneration. A single peripherin/RDS mutation apparently caused retinitis pigmentosa, pattern dystrophy and fundus flavimaculatus, in different family members.

15

25

30

In spite of causal heterogeneity, there is significant clinical similarity among RP subtypes. Common signs and symptoms include early electroretinographic abnormalities, ophthalmoscopic findings, and protracted, contiguous expansion of the ring-like scotoma toward the macula, leading to progressively worsening tunnel vision. A recent hypothesis is that active photoreceptor cell death, which is characteristic of these genetically distinct disorders, is mediated by a common induction of apoptosis. It may be possible to treat these conditions by the administration of agents that block induction of apoptosis in photoreceptors, such as neurotrophic factors.

10 Adenovirus delivery vectors

Adenovirus, which is a DNA virus with a 36 kilobase (kb) genome, is very well-characterized and its genetics and genetic organization are understood. The genetic organization of adenoviruses permits substitution of large fragments of viral DNA with foreign DNA. In addition, recombinant adenoviruses are structurally stable and no rearranged viruses are observed after extensive amplification.

Adenoviruses have been employed as delivery vehicles for introducing desired genes into eukaryotic cells. The adenovirus delivers such genes to eukaryotic cells by binding to cellular receptors followed by internalization. The adenovirus fiber protein is responsible for binding to cells. The fiber protein has two domains, a rod-like shaft portion and a globular head portion that contains the receptor binding region. The fiber spike is a homotrimer, and there are 12 spikes per virion. Human adenoviruses bind to and infect a broad range of cultured cell lines and primary tissues from different species.

The 35,000+ base pair (bp) genome of adenovirus type 2 has been sequenced and the predicted amino acid sequences of the major coat proteins (hexon, fiber and penton base) have been described (see, e.g., Neumann et al., Gene 69: 153-157 (1988); Herisse et al., Nuc. Acids Res. 9: 4023-4041 (1981); Roberts et al., J. Biol. Chem. 259: 13968-13975 (1984); Kinloch et al., J. Biol. Chem. 259: 6431-6436 (1984); and Chroboczek et al., Virol. 161: 549-554, 1987).

10

20

25

The 35,935 bp sequence of Ad5 DNA is also known and portions of many other adenovirus genomes have been sequenced. The upper packaging limit for adenovirus virions is about 105% of the wild-type genome length (see, e.g., Bett, et al., J. Virol. 67(10): 5911-21, 1993). Thus, for Ad2 and Ad5, this would be an upper packaging limit of about 38kb of DNA.

Adenovirus DNA also includes inverted terminal repeat sequences (ITRs) ranging in size from about 100 to 150 bp, depending on the serotype. The inverted repeats permit single strands of viral DNA to circularize by base-pairing of their terminal sequences to form base-paired "panhandle" structures that are required for replication of the viral DNA.

For efficient packaging, the ITRs and the packaging signal (a few hundred bp in length) comprise the "minimum requirement" for replication and packaging of a genomic nucleic acid into an adenovirus particle. Helper-dependent vectors lacking all viral ORFs but including these essential *cis* elements (the ITRs and contiguous packaging sequence) have been constructed.

Ad vectors have several distinct advantages as gene delivery vehicles. For example, recombination of such vectors is rare; there are no known associations of human malignancies with adenoviral infections despite common human infection with adenoviruses; the genome may be manipulated to accommodate foreign genes of a fairly substantial size; and host proliferation is not required for expression of adenoviral proteins. Adenovirus (Ad)-based gene delivery vectors efficiently infect many different cells and tissues. This broad tropism, however, means that gene delivery cannot be directed to a specific A large fraction of intravenously administered adenovirus is target cell. retained by the liver, which could lead to undesirable side-effects. Adenovirus may potentiate immune responses. For example, Adenovirus type 5 (Ad5) also transduces dendritic cells, which present antigens very efficiently, thereby possibly exacerbating the immune response against the vector. It has been proposed that vectors with different targeting efficiencies might eliminate these problems, permitting a lower total particle dose and more specific targeting (see, e.g., U.S. application Serial No. 09/482,682).

10

20

25

30

The wealth of information on adenovirus structure and mechanism of infection, its efficient infection of nondividing cells, and its large genetic capacity make adenovirus a popular gene therapy vector. The wide expression of receptors to which adenovirus binds makes targeting adenovirus vectors difficult.

-5-

Hence there is a need to improve delivery and targeting of adenoviral vectors and also to provide treatments for ocular disorders. Therefore, it is an object herein to provide adenoviral vectors that specifically or selectively target cells in the eye. It is also an object herein to provide these vectors for treatment of ocular disorders.

SUMMARY OF THE INVENTION

Degenerative ocular diseases, such as, but not limited to, retinitis pigmentosa, Stargardt's disease, diabetic retinopathies, retinal vascularization, and others (see, e.g., Table below), have a genetic basis. Genes expressed in the photoreceptor cells at the back of the retina are implicated in these diseases. Provided herein are recombinant viral vectors for targeting therapeutic products to these cells.

Recombinant adenoviral vectors that include nucleic acid that permits specific binding to these photoreceptors are provided. In particular, the vector particles contain a fiber protein of Ad37 or a modified form thereof. As shown herein, fiber protein from Ad37 permits efficient infection of photoreceptor cells. Fiber proteins from other adenovirus D serotypes may also be used. In addition, the portions of the fiber protein, particularly those that interact with other viral structural proteins, such as penton, may be modified to resemble the viral source of the other structural proteins. As exemplified herein, the recombinant virus provided herein include Ad5 structural components. The N-terminus of the Ad37 fiber protein, which interacts with the penton protein, is modified to resemble the Ad5 fiber protein N-terminus to ensure production of viral particles.

The recombinant adenoviral vectors are intended for gene therapy of diseases in which genes expressed in the photoreceptors are implicated. Such diseases include, but are not limited to, degenerative ocular diseases, such as retinitis pigmentosa and Stargardt's disease. These vectors are also useful for

15

20

25

30

targeting to other ocular cells, such as conjunctival cells, which also bear receptors to which fiber from Ad37 and related serotypes bind.

The vectors will deliver therapeutic agents to the targeted cells for treatment of a variety of disorders (see e.g., Tables 3 and 4, below)). The therapeutic agents are intended for expression in the photoreceptors and for secretion from the photoreceptor cells, which are surrounded on one side by choroidal vasculature, and on the other side by retinal vasulature, thereby providing a means for delivery of products. In addition, expression of growth factors, such as VEGF and others, can be used to enhance blood flow to the retina and prevent or slow the degeneration.

Therapeutic agents encoded by the recombinant adenoviral vectors include, but are not limited to, nucleic acid nucleic acid molecules encoding genes that are defective in certain hereditary disorders, nucleic acid molecules that encode antiangiogenics and antitumor agents for treatment of retinal disorders, such as retinoblastomas; nucleic acid molecules encoding trophic factors, such as glial cell line-derived neuroptrophic factor (GDNF) and ciliary neurotrophic factor (CNTF), growth factors and growth factor inhibitors, antiapoptotic factors, such as Bcl-2 (CNTF), antitumor agents, anti-angiogenics, and genes or portions thereof for gene replacement or repair of defective genes. Hence, methods for treatment of inherited and acquired retinal diseases, including diseases involving neovascular and vascular degeneration are provided.

Methods for treating diseases involving genes expressed in photoreceptor cells are provided herein. The methods provided herein are practiced by administration of the recombinant viral vectors by any means suitable for delivery to the photoreceptors. A preferred mode of administration is intraocular injection including intravitreal and subretinal injection. Other modes of administration include, but are not limited to, intrascleral, periorbital and intravenous administration. The vectors also can include photoreceptor-specific promoters thereby providing a means, not only for specific targeting of expression in these cells, but also for photoreceptor-restricted transgene expression.

-7-

DETAILED DESCRIPTION OF THE INVENTION

A. DEFINITIONS

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of skill in the art to which this invention belongs. All patents, applications, published applications and other publications and sequences from GenBank and other data bases referred to anywhere in the disclosure herein are incorporated by reference in their entirety.

As used herein, the amino acids, which occur in the various amino acid sequences appearing herein, are identified according to their three-letter or one-letter abbreviations. The nucleotides, which occur in the various DNA fragments, are designated with the standard single-letter designations used routinely in the art (see, Table 1).

As used herein, amino acid residue refers to an amino acid formed upon chemical digestion (hydrolysis) of a polypeptide at its peptide linkages. The amino acid residues described herein are preferably in the "L" isomeric form. However, residues in the "D" isomeric form can be substituted for any L-amino acid residue, as long as the desired functional property is retained by the polypeptide. NH₂ refers to the free amino group present at the amino terminus of a polypeptide. COOH refers to the free carboxy group present at the carboxyl terminus of a polypeptide. In keeping with standard polypeptide nomenclature described in *J. Biol. Chem.*, 243:3552-59 (1969) and adopted at 37 C.F.R. § § 1.821 - 1.822, abbreviations for amino acid residues are shown in the following Table:

25

30

20

15

Table 1
Table of Correspondence

Table of Central		
SYMBOL		
1-Letter	3-Letter	AMINO ACID
Υ	Tyr	tyrosine
G	Gly	glycinė
F	Phe	phenylalanine
М	Met	methionine

10

SYMBOL		
Α	Ala	alanine
s	Ser	serine
ı	lle	isoleucine
L	Leu	leucine
Т	Thr	threonine
V	Val	valine
P	Pro	proline
К	Lys	lysine
Н	His	histidine
a	Gln	glutamine
E	Glu	glutamic acid
Z	Glx	Glu and/or Gln
W	Trp	tryptophan
R	Arg	arginine
D	Asp	aspartic acid
N	Asn	asparagine
В	Asx	Asn and/or Asp
С	Cys	cysteine
X	Xaa	Unknown or other

20

25

15

herein by formulae have a left to right orientation in the conventional direction of amino-terminus to carboxyl-terminus. In addition, the phrase "amino acid residue" is broadly defined to include the amino acids listed in the Table of Correspondence and modified and unusual amino acids, such as those referred to in 37 C.F.R. § § 1.821-1.822, and incorporated herein by reference. Furthermore, it should be noted that a dash at the beginning or end of an amino acid residue sequence indicates a peptide bond to a further sequence of one or

35

more amino acid residues or to an amino-terminal group such as NH_2 or to a carboxyl-terminal group such as COOH.

In a peptide or protein, suitable conservative substitutions of amino acids are known to those of skill in this art and may be made generally without altering the biological activity of the resulting molecule. Those of skill in this art recognize that, in general, single amino acid substitutions in non-essential regions of a polypeptide do not substantially alter biological activity (see, e.g., Watson et al. Molecular Biology of the Gene, 4th Edition, 1987, The Bejacmin/Cummings Pub. co., p.224).

Such substitutions are preferably made in accordance with those set forth in TABLE 2 as follows:

TABLE 2 Conservative substitution Original residue Gly; Ser Ala (A) Lys Arg (R) 15 Gln; His Asn (N) Ser Cys (C) Asn Gln (Q) Asp Glu (E) Ala: Pro Gly (G) 20 Asn; Gln His (H) Leu; Val lle (1) lle; Val Leu (L) Arg; Gln; Glu Lys (K) Leu; Tyr; lle 25 Met (M) Met; Leu; Tyr Phe (F) Thr Ser (S) Ser Thr (T) Tyr Trp (W) Trp; Phe Tyr (Y) 30 lle; Leu Val (V)

Other substitutions are also permissible and may be determined empirically or in accord with known conservative substitutions.

As used herein, a complementing plasmid describes plasmid vectors that deliver nucleic acids into a packaging cell line for stable integration into a chromosome in the cellular genome.

As used herein, a delivery plasmid is a plasmid vector that carries or delivers nucleic acids encoding a therapeutic gene or gene that encodes a

15

20

25

30

therapeutic product or a precursor thereof or a regulatory gene or other factor that results in a therapeutic effect when delivered *in vivo* in or into a cell line, such as, but not limited to a packaging cell line, to propagate therapeutic viral vectors.

As used herein, a variety of vectors with different requirements are described. For example, one vector is used to deliver particular nucleic acid molecules into a packaging cell line for stable integration into a chromosome. These types of vectors are generally identified herein as complementing plasmids. A further type of vector described herein carries or delivers nucleic acid molecules in or into a cell line (e.g., a packaging cell line) for the purpose of propagating therapeutic viral vectors; hence, these vectors are generally referred to herein as delivery plasmids. A third "type" of vector described herein is used to carry nucleic acid molecules encoding therapeutic proteins or polypeptides or regulatory proteins or are regulatory sequences to specific cells or cell types in a subject in need of treatment; these vectors are generally identified herein as therapeutic viral vectors or recombinant adenoviral vectors or viral Ad-derived vectors and are in the form of a virus particle encapsulating a viral nucleic acid containing an expression cassette for expressing the therapeutic gene.

As used herein, a DNA or nucleic acid homolog refers to a nucleic acid that includes a preselected conserved nucleotide sequence, such as a sequence encoding a therapeutic polypeptide. By the term "substantially homologous" is meant having at least 80%, preferably at least 90%, most preferably at least 95% homology therewith or a lesser percentage of homology or identity and conserved biological activity or function.

The terms "homology" and "identity" are often used interchangeably. In this regard, percent homology or identity may be determined, for example, by comparing sequence information using a GAP computer program. The GAP program utilizes the alignment method of Needleman and Wunsch (*J. Mol. Biol.* 48:443 (1970), as revised by Smith and Waterman (*Adv. Appl. Math.* 2:482 (1981). Briefly, the GAP program defines similarity as the number of aligned symbols (i.e., nucleotides or amino acids) which are similar, divided by the total number of symbols in the shorter of the two sequences. The preferred default

15

-11-

parameters for the GAP program may include: (1) a unary comparison matrix (containing a value of 1 for identities and 0 for non-identities) and the weighted comparison matrix of Gribskov and Burgess, *Nucl. Acids Res.* 14:6745 (1986), as described by Schwartz and Dayhoff, eds., *ATLAS OF PROTEIN SEQUENCE AND STRUCTURE*, National Biomedical Research Foundation, pp. 353-358 (1979); (2) a penalty of 3.0 for each gap and an additional 0.10 penalty for each symbol in each gap; and (3) no penalty for end gaps.

Whether any two nucleic acid molecules have nucleotide sequences that are at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% "identical" can be determined using known computer algorithms such as the "FAST A" program, using for example, the default parameters as in Pearson and Lipman, *Proc. Natl. Acad. Sci. USA 85*:2444 (1988). Alternatively the BLAST function of the National Center for Biotechnology Information database may be used to determine identity.

In general, sequences are aligned so that the highest order match is obtained. "Identity" per se has an art-recognized meaning and can be calculated using published techniques. (See, e.g.: Computational Molecular Biology, Lesk, A.M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D.W., ed., Academic Press, New York, 1993; 20 Computer Analysis of Sequence Data, Part I, Griffin, A.M., and Griffin, H.G., eds., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; and Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991). While there exist a number of methods to measure identity between two 25 polynucleotides or polypeptide sequences, the term "identity" is well known to skilled artisans (Carillo, H. & Lipton, D., SIAM J Applied Math 48:1073 (1988)). Methods commonly employed to determine identity or similarity between two sequences include, but are not limited to, those disclosed in Guide to Huge Computers, Martin J. Bishop, ed., Academic Press, San Diego, 1994, and 30 Carillo, H. & Lipton, D., SIAM J Applied Math 48:1073 (1988). Methods to determine identity and similarity are codified in computer programs. Preferred

10

15

20

30

computer program methods to determine identity and similarity between two sequences include, but are not limited to, GCG program package (Devereux, J., et al., Nucleic Acids Research 12(I):387 (1984)), BLASTP, BLASTN, FASTA (Atschul, S.F., et al., J Molec Biol 215:403 (1990)).

Therefore, as used herein, the term "identity" represents a comparison between a test and a reference polypeptide or polynucleotide. For example, a test polypeptide may be defined as any polypeptide that is 90% or more identical to a reference polypeptide. As used herein, the term at least "90% identical to" refers to percent identities from 90 to 99.99 relative to the reference polypeptides. Identity at a level of 90% or more is indicative of the fact that, assuming for exemplification purposes a test and reference polynucleotide length of 100 amino acids are compared. No more than 10% (i.e., 10 out of 100) amino acids in the test polypeptide differs from that of the reference polypeptides. Similar comparisons may be made between a test and reference polynucleotides. Such differences may be represented as point mutations randomly distributed over the entire length of an amino acid sequence or they may be clustered in one or more locations of varying length up to the maximum allowable, e.g. 10/100 amino acid difference (approximately 90% identity). Differences are defined as nucleic acid or amino acid substitutions, or deletions.

As used herein, genetic therapy involves the transfer of heterologous DNA to the certain cells, target cells, of a mammal, particularly a human, with a disorder or conditions for which such therapy is sought. The DNA is introduced into the selected target cells in a manner such that the heterologous DNA is expressed and a therapeutic product encoded thereby is produced. Alternatively, the heterologous DNA may in some manner mediate expression of DNA that encodes the therapeutic product, it may encode a product, such as a peptide or RNA that in some manner mediates, directly or indirectly, expression of a therapeutic product. Genetic therapy may also be used to deliver nucleic acid encoding a gene product to replace a defective gene or supplement a gene product produced by the mammal or the cell in which it is introduced. The introduced nucleic acid may encode a therapeutic compound, such as a growth

30

factor inhibitor thereof, or a tumor necrosis factor or inhibitor thereof, such as a receptor therefor, that is not normally produced in the mammalian host or that is not produced in therapeutically effective amounts or at a therapeutically useful time. The heterologous DNA encoding the therapeutic product may be modified prior to introduction into the cells of the afflicted host in order to enhance or otherwise alter the product or expression thereof.

As used herein, heterologous DNA is DNA that encodes RNA and proteins that are not normally produced *in vivo* by the cell in which it is expressed or that mediates or encodes mediators that alter expression of endogenous DNA by affecting transcription, translation, or other regulatable biochemical processes. Heterologous DNA may also be referred to as foreign DNA. Any DNA that one of skill in the art would recognize or consider as heterologous or foreign to the cell in which it is expressed is herein encompassed by heterologous DNA. Examples of heterologous DNA include, but are not limited to, DNA that encodes traceable marker proteins, such as a protein that confers drug resistance, DNA that encodes therapeutically effective substances, such as anti-cancer agents, enzymes and hormones, and DNA that encodes other types of proteins, such as antibodies. Antibodies that are encoded by heterologous DNA may be secreted or expressed on the surface of the cell in which the heterologous DNA has been introduced.

Hence, herein heterologous DNA or foreign DNA, refers to a DNA molecule not present in the exact orientation and position as the counterpart DNA molecule found in the corresponding wild-type adenovirus. It may also refer to a DNA molecule from another organism or species (*i.e.*, exogenous) or from another Ad serotype.

As used herein, a therapeutically effective product is a product that is encoded by heterologous DNA that, upon introduction of the DNA into a host, a product is expressed that effectively ameliorates or eliminates the symptoms, manifestations of an inherited or acquired disease or that cures said disease.

Typically, DNA encoding the desired heterologous DNA is cloned into a plasmid vector and introduced by routine methods, such as calcium-phosphate mediated DNA uptake (see, (1981) Somat. Cell, Mol. Genet. 7:603-616) or

15

20

25

30

microinjection, into producer cells, such as packaging cells. After amplification in producer cells, the vectors that contain the heterologous DNA are introduced into selected target cells.

As used herein, an expression or delivery vector refers to any plasmid or virus into which a foreign or heterologous DNA may be inserted for expression in a suitable host cell — *i.e.*, the protein or polypeptide encoded by the DNA is synthesized in the host cell's system. Vectors capable of directing the expression of DNA segments (genes) encoding one or more proteins are referred to herein as "expression vectors." Also included are vectors that allow cloning of cDNA (complementary DNA) from mRNAs produced using reverse transcriptase.

As used herein, a gene is a nucleic acid molecule whose nucleotide sequence encodes RNA or polypeptide. A gene can be either RNA or DNA. Genes may include regions preceding and following the coding region (leader and trailer) as well as intervening sequences (introns) between individual coding segments (exons).

As used herein, tropism with reference to an adenovirus refers to the selective infectivity or binding that is conferred on the particle by the fiber protein, such as by the C-terminus portion that comprises the knob.

As used herein, isolated with reference to a nucleic acid molecule or polypeptide or other biomolecule means that the nucleic acid or polypeptide has separated from the genetic environment from which the polypeptide or nucleic acid were obtained. It may also mean altered from the natural state. For example, a polynucleotide or a polypeptide naturally present in a living animal is not "isolated," but the same polynucleotide or polypeptide separated from the coexisting materials of its natural state is "isolated", as the term is employed herein. Thus, a polypeptide or polynucleotide produced and/or contained within a recombinant host cell is considered isolated. Also intended as an "isolated polypeptide" or an "isolated polynucleotide" are polypeptides or polynucleotides that have been purified, partially or substantially, from a recombinant host cell or from a native source. For example, a recombinantly produced version of a compound can be substantially purified by the one-step method described in

10

15

20

25

30

Smith and Johnson, Gene 67:31-40 (1988). The terms isolated and purified are sometimes used interchangeably.

Thus, by "isolated" is meant that the nucleic acid is free of the coding sequences of those genes that, in the naturally-occurring genome of the organism (if any) immediately flank the gene encoding the nucleic acid of interest. Isolated DNA may be single-stranded or double-stranded, and may be genomic DNA, cDNA, recombinant hybrid DNA, or synthetic DNA. It may be identical to a native DNA sequence, or may differ from such sequence by the deletion, addition, or substitution of one or more nucleotides.

Isolated or purified as it refers to preparations made from biological cells or hosts means any cell extract containing the indicated DNA or protein including a crude extract of the DNA or protein of interest. For example, in the case of a protein, a purified preparation can be obtained following an individual technique or a series of preparative or biochemical techniques and the DNA or protein of interest can be present at various degrees of purity in these preparations. The procedures may include for example, but are not limited to, ammonium sulfate fractionation, gel filtration, ion exchange chromatography, affinity chromatography, density gradient centrifugation and electrophoresis.

A preparation of DNA or protein that is "substantially pure" or "isolated" should be understood to mean a preparation free from naturally occurring materials with which such DNA or protein is normally associated in nature. "Essentially pure" should be understood to mean a "highly" purified preparation that contains at least 95% of the DNA or protein of interest.

A cell extract that contains the DNA or protein of interest should be understood to mean a homogenate preparation or cell-free preparation obtained from cells that express the protein or contain the DNA of interest. The term "cell extract" is intended to include culture media, especially spent culture media from which the cells have been removed.

As used herein, a packaging cell line is a cell line that provides a missing gene product or its equivalent.

As used herein, an adenovirus viral particle is the minimal structural or functional unit of a virus. A virus can refer to a single particle, a stock of

15

20

25

30

-16-

particles or a viral genome. The adenovirus (Ad) particle is relatively complex and may be resolved into various substructures.

As used herein, "penton" or "penton complex" are preferentially used herein to designate a complex of penton base and fiber. The term "penton" may also be used to indicate penton base, as well as penton complex. The meaning of the term "penton" alone should be clear from the context within which it is used.

As used herein, a plasmid refers to an autonomous self-replicating extrachromosomal circular nucleic acid molecule, typically DNA.

As used herein, a post-transcription regulatory element (PRE) is a regulatory element found in viral or cellular messenger RNA that is not spliced, i.e. intronless messages. Examples include, but are not limited to, human hepatitis virus, woodchuck hepatitis virus, the TK gene and mouse histone gene. The PRE may be placed before a polyA sequence and after a heterologous DNA sequence.

As used herein, pseudotyping describes the production of adenoviral vectors having modified capsid protein or capsid proteins from a different serotype than the serotype of the vector itself. One example, is the production of an adenovirus 5 vector particle containing an Ad37 fiber protein. This may be accomplished by producing the adenoviral vector in packaging cell lines expressing different fiber proteins.

As used herein, promoters of interest herein may be inducible or constitutive. Inducible promoters will initiate transcription only in the presence of an additional molecule; constitutive promoters do not require the presence of any additional molecule to regulate gene expression. a regulatable or inducible promoter may also be described as a promoter where the rate or extent of RNA polymerase binding and initiation is modulated by external stimuli. Such stimuli include, but are not limited to various compounds or compositions, light, heat, stress and chemical energy sources. Inducible, suppressible and repressible promoters are considered regulatable promoters. Preferred promoters herein, are promoters that are selectively expressed in ocular cells, particularly photoreceptor cells.

10

15

20

25

As used herein, receptor refers to a biologically active molecule that specifically or selectively binds to (or with) other molecules. The term "receptor protein" may be used to more specifically indicate the proteinaceous nature of a specific receptor.

As used herein, recombinant refers to any progeny formed as the result of genetic engineering. This may also be used to describe a virus formed by recombination of plasmids in a packaging cell.

As used herein, a transgene or therapeutic nucleic acid molecule includes DNA and RNA molecules encoding an RNA or polypeptide. Such molecules may be "native" or naturally-derived sequences; they may also be "non-native" or "foreign" that are naturally- or recombinantly-derived. The term "transgene," which may be used interchangeably herein with the term "therapeutic nucleic acid molecule," is often used to describe a heterologous or foreign (exogenous) gene that is carried by a viral vector and transduced into a host cell.

Therefore, therapeutic nucleotide nucleic acid molecules include antisense sequences or nucleotide sequences which may be transcribed into antisense sequences. Therapeutic nucleotide sequences (or transgenes) all include nucleic acid molecules that function to produce a desired effect in the cell or cell nucleus into which said therapeutic sequences are delivered. For example, a therapeutic nucleic acid molecule can include a sequence of nucleotides that encodes a functional protein intended for delivery into a cell which is unable to produce that functional protein.

As used herein, the vitreous of the eye refers to material that fills the chamber behind the lens of the eye (i.e., vitreous humor or vitreous body).

As used herein, a promoter region refers to the portion of DNA of a gene that controls transcription of the DNA to which it is operatively linked. The promoter region includes specific sequences of DNA that are sufficient for RNA polymerase recognition, binding and transcription initiation. This portion of the promoter region is referred to as the promoter. In addition, the promoter region includes sequences that modulate this recognition, binding and transcription initiation activity of the RNA polymerase. These sequences may be *cis* acting or

10

15

30

may be responsive to trans acting factors. Promoters, depending upon the nature of the regulation, may be constitutive or regulated.

Thus, promoters are nucleic acid fragments that contain a DNA sequence that controls the expression of a gene located 3' or downstream of the promoter. The promoter is the DNA sequence to which RNA polymerase specifically binds and initiates RNA synthesis (transcription) of that gene, typically located 3' of the promoter. A promoter also includes DNA sequences that direct the initiation of transcription, including those to which RNA polymerase specifically binds. If more than one nucleic acid sequence encoding a particular polypeptide or protein is included in a therapeutic viral vector or nucleotide sequence, more than one promoter or enhancer element may be included, particularly if that would enhance efficiency of expression.

A regulatable or inducible promoter may be described as a promoter wherein the rate of RNA polymerase binding and initiation is modulated by external stimuli. (see, e.g., U.S. Patent Nos. 5,750,396 and 5,998,205). Such stimuli include various compounds or compositions, light, heat, stress, chemical energy sources, and the like. Inducible, suppressible and repressible promoters are considered regulatable promoters.

Regulatable promoters may also include tissue-specific promoters.

Tissue-specific promoters direct the expression of the gene to which they are operably linked to a specific cell type. Tissue-specific promoters cause the gene located 3' of it to be expressed predominantly, if not exclusively, in the specific cells where the promoter expressed its endogenous gene. Typically, it appears that if a tissue-specific promoter expresses the gene located 3' of it at all, then it is expressed appropriately in the correct cell types (see, e.g., Palmiter et al. (1986) Ann. Rev. Genet. 20: 465-499).

As used herein, the phrase "operatively linked" generally means the sequences or segments have been covalently joined into one piece of DNA, whether in single or double stranded form, whereby control sequences on one segment control expression or replication or other such control of other segments. The two segments are not necessarily contiguous.

As used herein, exogenous encompasses any therapeutic composition that is administered by the therapeutic methods provided herein. Thus, exogenous may also be referred to herein as foreign, or non-native or other equivalent expression.

B. Ad37 fiber tropism 5

The adenovirus fiber protein is a major determinant of adenovirus tropism (Gall et al. (1996) J. Virol. 70:2116-2123; Stevenson et al. (1995) J. Virol. 69:2850-2857). The fiber protein extends from the capsid and mediates viral binding to the cell surface by binding to specific cell receptors (Philipson et al. (1968) J. Virol. 2:1064-1075). The fiber is a trimeric protein that includes an N-10 terminal tail domain that interacts with the adenovirus penton base, a central shaft domain of varying length, and a C-terminal knob domain that contains the cell receptor binding site (Chroboczek et al. (1995) Curr. Top. Microbiol. Immunol. 199:163-200; Riurok et al. (1990) J.Mol.Biol. 215:589-596; Stevenson et al. (1995) J. Virol. 69:2850-2857). Fiber proteins of most adenovirus subgroups have been shown to bind specifically or selectively to the 46 kDa coxsackievirusadenovirus receptor (CAR), (Bergelson et al. (1997) Science 275:1320-1323; Roelvink et al. (1998) J. Virol. 72:7909-7915). CAR appears to be expressed in a variety of human tissues, including the lung, at various levels (Bergelson et al. (1997) Science 275:1320-1323), but Ad37 binds poorly to lung epithelial cells 20 (Huang et al. (1999) J. Virol. 73:2798-2802). This suggests that the tropism of this serotype may be influenced by factors independent of CAR expression.

Structural and biochemical data also suggest that distinct receptor binding sites are located on different regions of the Ad5 and Ad37 fiber knobs. Adopting the nomenclature of Xia et al. (Xia et al. (1994) Structure 2:1259-25 1270), the receptor binding site for Ad5 is located at the AB-loop on the side of the fiber knob (Bewley et al. (1999) Science 286:1579-1583; Roelvink et al. (1999) Science 286:1568-1571). It is known that a lysine residue at position 240 of the Ad37 fiber, located in the CD-loop, is important for receptor binding (Huang et al. (1999) J. Virol. 73:2798-2802). The co-crystal structure of the 30 Ad12 knob and the N-terminal domain of CAR (Bewley et al. (1999) Science 286:1579-1583) show that the CD-loop does not contact CAR. It thus appears

15

20

-20-

that different regions of the Ad5 and Ad37 fiber knobs recognize distinct cell receptors.

A 46 kDa receptor for coxsackieviruses and adenoviruses (CAR) mediates attachment for many adenovirus serotypes. The wide distribution of CAR fails to explain why certain adenovirus serotypes (i.e. Ad37) are highly associated with severe ocular infections such as epidemic keratoconjunctivitis (EKC). Ad37 does not use CAR, but instead uses a glycoprotein that contains sialic acid as its primary receptor (Arnberg *et al.* ((2000) *J. Virol.* 74:42-48). The modest number of Ad37 binding sites per cell (Huang *et al.* (1999) *J. Virol.* 73:2798-2802) also suggests that Ad37 recognizes a specific glycoprotein as its primary receptor for binding to conjunctival cells.

Adenovirus type 37 (subgroup D) has been associated with infections of the eye and genital tract. The tropism of Ad37 derives from the binding preference of its fiber protein, which binds to a receptor located on the surface of cells including Chang C, conjunctival epithelial cell line (Huang et al. (1999) J. Virology 73:2798-2802).

A protein receptor that is preferentially expressed on conjunctival cells to which Ad37 fiber binds is shown herein. The preferential expression of the Ad37 receptor protein on conjunctival cells suggests that this receptor likely influences Ad37 tropism and should play a key role in ocular pathogenesis. It is shown herein that Ad37 uses a distinct protein receptor that is selectively expressed on conjunctival cells. It is shown that Ad37 binds well to conjunctival cells (Chang C), but poorly to lung carcinoma cells (A549). To determine if infection correlated with cell binding, an Ad5 vector containing the Ad37 fiber protein was constructed. The 'pseudotyped' vector delivered transgenes to Chang C cells better than to A549 cells. Ad37 binding was abolished by protease treatment of Chang C cells, indicating the receptor is a membrane protein. Ad37 binding to conjunctival cells is shown herein to be calciumdependent. It is also shown that Ad37 infection was not inhibited by a functionblocking anti-CAR monoclonal antibody, which is a feature distinct from Ad5 fiber interaction with CAR. Using a virus overlay protein blot assay (VOPBA), calcium-dependent Ad37 binding to a 50 KDa membrane protein on Chang C

15

20

25

-21-

cells, but not A549 cells was detected. Ad19p a closely related serotype that fails to bind to conjunctival cells, does not recognize the 50 kDa protein. Together, these data indicate that the 50 kDa protein is a candidate receptor for Ad37 on conjunctival cells.

Significantly, it is also shown herein that, upon administration of the vector to the vitreous humor, the recombinant adenovirus with the Ad37 fiber preferentially and selectively binds to photoreceptor cells. Hence, a recombinant adenoviral delivery vehicle that has an Ad37 fiber protein can serve as a vector for delivery of therapeutic agents to the eye for treatment of ocular disorders, including genetic and acquired disorders. The identification of the receptor for Ad37 and the resulting recognition of Ad37 tropism allows targeting of adenovirus vectors to specific human ocular cells.

As noted, fiber plays a crucial role in adenovirus infection by attaching the virus to a specific receptor on a cell surface. Hexon, penton and fiber capsomeres are the major components on the surface of the virion. The fiber is an elongated protein which exists as a trimer of three identical polypeptides (polypeptide IV) of 582 amino acids in length. An adenovirus fiber includes three domains: an N-terminal tail domain that interacts with penton base; a shaft composed of variable numbers of repeats of a 15-amino-acid segment that forms beta-sheet and beta-bends; and a knob at the C-terminus ("head domain") that contains the type-specific antigen and is responsible for binding to the cell surface receptor. The gene encoding the fiber protein from Ad2 has been expressed in human cells and has been shown to be correctly assembled into trimers, glycosylated and transported to the nucleus (see, e.g., Hong and Engler, Virology 185: 758-761, 1991). Thus, alteration of the fiber in recombinant Ad vectors can lead to alteration in gene delivery.

As shown herein, alteration of fiber in recombinant Ad vectors such that the fiber is derived from Ad37 or another adenovirus serotype D, provides a means for selective delivery of a recombinant virus to particular cells in the eye, including conjunctival cells, and most significantly photoreceptors, thereby providing a means for targeted delivery to photoreceptor cells.

25

Photoreceptor cells are implicated in a number of hereditary and acquired retinal degenerative disorders. In addition, photoreceptor cells are located such that products produced therein can be delivered to other areas of the eye by virtue of the blood flow in the vicinity of the photoreceptor cells and also by virtue of the proximity of the photoreceptors to the retinal pigmented epithelium (RPE) and other retinal cells.

Hence it is contemplated herein that the recombinant viral vector will include a packaged recombinant adenovirus genome containing at least the minimal elements for replication and packaging; heterologous DNA encoding a desired gene product, typically a therapeutic product or plurality of products, such as several trophic factors, whose combined activity is effective for treating a disorder, such as a retinal degenerative disorder; and the resulting virion particles will include a fiber that has a sufficient portion to confer specific targeting to photoreceptor cells when the recombinant viral particles are introduced into the aqueous humor of a mammalian, preferably a human, eye, or 15 otherwise contacted with the photoreceptor cells. The fiber may be a chimeric protein that has been modified for effective interaction with other coat structural proteins, such as penton. In addition, the fiber may be modified to include other elements that alter its tropism to permit binding to other cells as well (see, e.g., U.S. Patent Nos. 5,756,086 and 5,543,328, International PCT application No. 20 WO 95/26412 and WO 98/44121 and Krasnykh, et al. (J. Virol. 70: 6839-46, 1996).

Construction of the viral particles C.

Selection of viral genome and fiber protein 1.

Methods for preparing recombinant adenoviral vectors for gene product delivery are well known. Preferred among those are the methods exemplified herein (see EXAMPLES) and also described in copending U.S. application Serial No. 09/482,682 (also filed as International PCT application No. PCT/US00/00265, filed January 14, 2000, which claims priority to U.S. provisional application Serial No. 60/115,920, as does U.S. application Serial No. 09/482,682)).

25

30

-23-

As noted, any desired recombinant adenovirus is contemplated for use in the methods herein as long as the viral genome is packaged in a capsid that includes at least the portion of a fiber protein that provides selective binding to photoreceptor cells. This fiber protein is preferably from an adenovirus type D serotype and is preferably an Ad37 fiber. The fiber protein should retain the knob region at the C-terminus ("head domain") from the Ad virus of subgroup D that contains the type-specific antigen and is responsible for binding to the cell surface receptor. Hence the fiber protein can be a chimeric fiber protein as long as it retains a sufficient portion of the type D serotype to specifically or selectively bind to photoreceptor cells. Generally the portion retained will be all or a portion of the knob region. The precise amount of knob region required can be determined empirically by including portions thereof and identifying the minimum residues from and Ad type D serotype, preferably Ad37, to effect selective targeting of a virion packaged with such fiber to photoreceptors in the eye upon introduction of the packaged virion into the aqueous humor.

Recombinant adenovirus containing heterologous nucleic acids that encode a desired product, such a gene to correct a genetic defect, may be made by any methods known to those of skill in the art. The viruses must be packaged in a cell line that results in expression of fiber on the particles that specifically, electively or preferentially targets (binds and results in internalization) the viral particle to cells in the eye. The fiber protein from Ad37 and other Adenoviruses of serotype D that infect the eye effects such targeting. The resulting adenovirus particles that express such fiber is administered by intraocular injection, subretinal injection, particularly intravitreal injection, or any means that results in preferential accumulation in photoreceptor cells.

The family of Adenoviridae includes many members with at least 47 known serotypes of human adenovirus (Ad1-Ad47) (Shenk, *Virology*, Chapter 67, *in* Fields *et al.*, eds. Lippincott-Raven, Philadelphia, 1996,) as well as members of the genus Mastadenovirus including human, simian, bovine, equine, porcine, ovine, canine and opossum viruses and members of the Aviadenovirus genus, including bird viruses, such as CELO.

69

-24-

Thus it is contemplated that the methods herein can be applied to any recombinant viral vectors derived from any adenovirus species. One of skill in the art would have knowledge of the different adenoviruses (see, e.g., Shenk, Virology, Chapter 67, in Fields et al., eds. Lippincott-Raven, Philadelphia, 1996,) and can construct recombinant viruses containing portions of the genome of any such virus.

In the exemplified embodiment, viral particles with Ad37 fiber were prepared. Site-directed mutations were made to the Ad37 fiber gene to make the tail sequence more closely match that of Ad5 to facilitate Ad37 fiber binding to the Ad5 penton base. The plasmid for the expression of the Ad37 fiber protein, pDV80, contains the CMV promoter, the adenovirus type 5 tripartite leader (TPL), and the modified Ad37 fiber gene sequence. Genes of interest, such as nucleic acid encoding the β subunit of cGMP phosphodiesterase (β PDE), β -glucuronidase, rhodopsin, growth factors, anti-cancer agents, growth factor receptors and other anti-angiogenic agents, and anti-apoptotic agents, can be incorporated into these vectors using the methods known to those of skill in the art and exemplified herein.

Known adenovirus vectors, previously constructed for intraocular therapy (see, e.g., Bennett et al. (1996) Nature Medicine 2:649-654, which provides an Ad virus encoding βPDE for treatment of retinitis pigmentosa; Cayouette et al. (1998) Human Gene Therapy 8:423-430, which provides an Ad vector that expresses CNTF for treatment of retinitis pigmentosa and other retinal degenerative diseases; and Li et al. (1995) Proc. Natl. Acad. Sci. U.S.A. 92:7700-7704, which provides an Ad virus vector that encodes a human β-glucuronidase for treatment of lysosomal storage disease caused by β-glucuronidase deficiency) can be modified by repackaging the recombinant genome using a packaging line that expresses an Ad37 fiber or other D serotype fiber.

For exemplification, nucleic acid encoding GFP was incorporated into these vectors as a means to visualize their localization. Other genes, such as genes that encode therapeutic products, my be included in place of or in addition to GFP.

Plasmid pDV80 was electroporated into E1-2a S8 cells and stable lines were selected. The fiber-deleted vectors Ad5. β gal. Δ F and Ad5.GFP. Δ F were grown in cells in a resulting cell line, designated 705, to produce virions, which express the Ad37 fiber (Ad5. β gal. Δ F/37F and Ad5.GFP. Δ F/37F) and CsCl-purified. These virions selectively transduce photoreceptor cells when injected intraocularly into the vitreous humor.

2. Packaging

Recombinant adenoviral vectors generally have at least a deletion in the first viral early gene region, referred to as E1, which includes the E1a and E1b regions. Deletion of the viral E1 region renders the recombinant adenovirus defective for replication and incapable of producing infectious viral particles in subsequently-infected target cells. Thus, to generate E1-deleted adenovirus genome replication and to produce virus particles requires a system of complementation which provides the missing E1 gene product. E1 complementation is typically provided by a cell line expressing E1, such as the 15 human embryonic kidney packaging cell line, i.e. an epithelial cell line, called 293. Cell line 293 contains the E1 region of adenovirus, which provides E1 gene region products to "support" the growth of E1-deleted virus in the cell line (see, e.g., Graham et al., J. Gen. Virol. 36: 59-71, 1977). Additionally, cell lines that may be usable for production of defective adenovirus having a portion of 20 the adenovirus E4 region have been reported (WO 96/22378).

Multiply deficient adenoviral vectors and complementing cell lines have also been described (WO 95/34671, U.S. Patent No. 5,994,106).

Copending U.S. application Serial No. 09/482,682 (also filed as

International PCT application No. PCT/US00/00265, filed January 14, 2000))

provides packaging cell lines that support viral vectors with deletions of major portions of the viral genome, without the need for helper viruses and also provides cell lines and helper viruses for use with helper-dependent vectors. The packaging cell line has heterologous DNA stably integrated into the chromosomes of the cellular genome. The heterologous DNA sequence encodes one or more adenovirus regulatory and/or structural polypeptides that complement the genes deleted or mutated in the adenovirus vector genome to

20

25

30

-26-

be replicated and packaged. The packaging cell line express, for example, one or more adenovirus structural proteins, polypeptides, or fragments thereof, such as penton base, hexon, fiber, polypeptide Illa, polypeptide V, polypeptide VII, polypeptide VIII, and biologically active fragments thereof. The expression can be constitutive or under the control of a regulatable promoter. These cell lines are designed for expression of recombinant adenoviruses intended for delivery of therapeutic products.

Particular packaging cell lines complement viral vectors having a deletion or mutation of a DNA sequence encoding an adenovirus structural protein, regulatory polypeptides E1A and E1B, and/or one or more of the following regulatory proteins or polypeptides: E2A, E2B, E3, E4, L4, or fragments thereof.

The packaging cell lines are produced by introducing each DNA molecule into the cells and then into the genome via a separate complementing plasmid or plurality of DNA molecules encoding the complementing proteins can be introduced via a single complementing plasmid. Of interest herein, is a variation in which the complementing plasmid includes DNA encoding adenovirus fiber protein (or a chimeric or modified variant thereof), from Ad virus of subgroup D, such as Ad 37, polypeptide or fragment thereof.

For therapeutic applications, the delivery plasmid further includes a nucleotide sequence encoding a foreign polypeptide. Exemplary delivery plasmids include, but are not limited to, pDV44, p Δ E1B β -gal and p Δ E1sp1B. In a similar or analogous manner, therapeutic genes may be introduced.

The cell further includes a complementing plasmid encoding a fiber as contemplated herein; the plasmid or portion thereof is integrated into a chromosome(s) of the cellular genome of the cell.

In one embodiment, a composition comprises a cell containing first and second delivery plasmids wherein a first delivery plasmid comprises an adenovirus genome lacking a nucleotide sequence encoding fiber and incapable of directing the packaging of new viral particles in the absence of a second delivery plasmid, and a second delivery plasmid comprises an adenoviral genome capable of directing the packaging of new viral particles in the presence of the first delivery plasmid.

15

20

25

30

-27-

In a variation, the packaging cell line expresses fiber protein or chimeric variant thereof from an Ad virus of subgroup D, preferably Ad37, serotype or it can be any fiber protein but one that has been modified to include the portion of the Ad virus of subgroup D, such as Ad37, responsible for selective targeting to photoreceptors upon introduction into the vitreous humor of the eye of a mammal, preferably a human. The fiber protein can be further modified to include a non-native amino acid residue sequence that targets additional specific receptors. In all instances, the modification should not disrupt trimer formation or transport of fiber into the nucleus. In another variation, the non-native amino acid residue sequence alters the binding specificity of the fiber for a targeted cell type. The structural protein is fiber can include amino acid residue sequences from more than one adenovirus serotype. The nucleotide sequences encoding fiber protein or polypeptide need not be modified solely at one or both termini; fiber protein, may be modified "internally" as well as at the termini.

Additional nucleic acid fragments can encode polypeptides that are added to the fiber protein. In one variation, the non-native amino acid residue sequence is coupled to the carboxyl terminus of the fiber. In another, the nonnative amino acid residue sequence further includes a linker sequence. Alternatively, the fiber protein further comprises a ligand coupled to the linker. Suitable ligands include, but are not limited to, ligands that specifically or selectively bind to a cell surface receptor and ligands that can be used to couple other proteins or nucleic acid molecules. Typically, the packaging cell lines will contain nucleic acid encoding the fiber protein or modified protein stably integrated into a chromosome or chromosomes in the cellular genome.

The packaging cell line can be derived from a procaryotic cell line or from a eukaryotic cell line. While various embodiments suggest the use of mammalian cells, and more particularly, epithelial cell lines, a variety of other, non-epithelial cell lines are used in various embodiments. Thus, while various embodiments disclose the use of a cell line selected from among the 293, A549, W162, HeLa, Vero, 211, and 211A cell lines, and any other cell lines suitable for such use are likewise contemplated herein.

Components of the nucleic acid molecule included in the particle 3.

15

20

25

A recombinant viral vector or therapeutic viral vector for use in the methods herein, typically includes a nucleic acid fragment that encodes a protein or polypeptide molecule, or a biologically active fragment thereof, or other regulatory sequence, that is intended for use in therapeutic applications.

The nucleic acid molecule to be packaged in the viral particle also may include an enhancer element and/or a promoter located 3' or 5' to and controlling the expression of the therapeutic product-encoding nucleic acid molecule if the product is a protein. Further, for purposes herein, the promoter and/or other transcriptional and translational regulatory sequences controlling expression of the product is preferably one that is expressed specifically in the targeted cells, such as the a photoreceptor-specific promoter, such as a rhodopsin gene promoter.

The nucleic acid molecule to be packaged in viral capsid includes at least 2 different operatively linked DNA segments. The DNA can be manipulated and amplified by PCR as described herein and by using standard techniques, such as those described in *Molecular Cloning: A Laboratory Manual, 2nd Ed.*, Sambrook et al., eds., Cold Spring Harbor, New York (1989). Typically, to produce such molecule, the sequence encoding the selected polypeptide and the promoter or enhancer are operatively linked to a DNA molecule capable of autonomous replication in a cell either *in vivo* or *in vitro*. By operatively linking the enhancer element or promoter and nucleic acid molecule to the vector, the attached segments are replicated along with the vector sequences.

Thus, the recombinant DNA molecule (rDNA) is a hybrid DNA molecule comprising at least 2 nucleotide sequences not normally found together in nature. In various preferred embodiments, one of the sequences is a sequence encoding an Ad-derived polypeptide, protein, or fragment thereof. The nucleic acid molecule intended to be packaged is from about 20 base pairs to about 40,000 base pairs in length, preferably about 50 bp to about 38,000 bp in length. In various embodiments, the nucleic acid molecule is of sufficient length to encode one or more adenovirus proteins or functional polypeptide portions thereof. Since individual Ad polypeptides vary in length from about 19 amino acid residues to about 967 amino acid residues, encoding nucleic acid molecules

25

30

-29-

from about 50 bp up to about 3000 bp, depending on the number and size of individual polypeptide-encoding sequences that are "replaced" in the viral vectors by therapeutic product-encoding nucleic acid molecules.

Preferably the molecule includes an adenovirus tripartite leader (TPL) nucleic acid sequence operatively linked to an intron containing RNA processing signals (such as for example, splice donor or splice acceptor sites) suitable for expression in the packaging cell line. Most preferably the intron contains a splice donor site and a splice acceptor site. Alternatively, the TPL nucleotide sequence The intron includes any sequence of may not comprise an intron. nucleotides that function in the packaging cell line to provide RNA processing signals, including splicing signals. Introns have been well characterized from a large number of structural genes, and include but are not limited to a native intron 1 from adenovirus, such as Ad5's TPL intron 1; others include the SV40 VP intron; the rabbit beta-globin intron, and synthetic intron constructs (see, e.g., Petitclerc et al. (1995) J. Biothechnol., 40:169; and Choi et al. (19910 Mol. 15 Cell. Biol., 11:3070).

The nucleic acid molecule encoding the TPL includes either (a) first and second TPL exons or (b) first, second and third TPL exons, where each TPL exon in the sequence is selected from among the complete TPL exon 1, partial TPL exon 1, complete TPL exon 2 and complete TPL exon 3. A complete exon is one which contains the complete nucleic acid sequence based on the sequence found in the wild type viral genome. Preferably the TPL exons are from Ad2, Ad3, Ad5, Ad7 and the like, however, they may come from any Ad serotype, as described herein. A preferred partial TPL exon 1 is described in the Examples. The use of a TPL with a partial exon 1 has been reported (International PCT application No. WO 98/13499).

The intron and the TPL exons can be operatively linked in a variety of configurations to provide a functional TPL nucleotide sequence. An intron may not be a part of the construct. For example, the intron can be positioned between any of TPL exons 1, 2 or 3, and the exons can be in any order of first and second, or first/second/third. The intron can also be placed preceding the first TPL exon or following the last TPL exon. In a preferred embodiment,

20

25

30

complete TPL exon 1 is operatively linked to complete TPL exon 2 operatively linked to complete TPL exon 3. In a preferred variation, adenovirus TPL intron 1 is positioned between complete TPL exon 1 and complete TPL exon 2. It may also be possible to use analogous translational regulators from other viral systems such as rabiesvirus.

A preferred "complete" TPL nucleic acid molecule containing complete TPL exons 1, 2 and 3 with adenovirus intron 1 inserted between exons 1 and 2 has a nucleotide sequence shown in SEQ ID NO: 32. A preferred "partial" TPL nucleic acid molecule containing partial TPL exon 1 and complete TPL exons 2 and 3 in that order has a nucleotide sequence shown in SEQ ID NO: 26. The construction of these preferred TPL nucleotide sequences is described in the Examples.

Thus, preferred expression cassettes and complementing plasmids for expressing adenovirus structural genes, particularly fiber protein, contain an adenovirus TPL nucleotide sequence as described herein.

4. Complementing Plasmids

Also contemplated are the use of nucleic acid molecules, typically in the form of DNA plasmid vectors, which are capable of expression of an adenovirus structural protein or regulatory protein. Because these expression plasmids are used to complement the defective genes of a recombinant adenovirus vector genome, the plasmids are referred to as complementing or complementation plasmids.

The complementing plasmid contains an expression cassette, a nucleotide sequence capable of expressing a protein product encoded by the nucleic acid molecule. Expression cassettes typically contain a promoter and a structural gene operatively linked to the promoter. The complementing plasmid can further include a sequence of nucleotides encoding TPL nucleotide to enhance expression of the structural gene product when used in the context of adenovirus genome replication and packaging.

A complementing plasmid can include a promoter operatively linked to a sequence of nucleotides encoding an adenovirus structural polypeptide, such as, but are not limited to, penton base; hexon; fiber; polypeptide Illa; polypeptide V;

15

20

25

30

polypeptide VI; polypeptide VII; polypeptide VIII; and biologically active fragments thereof. In another variation, a complementing plasmid may also include a sequence of nucleotides encoding a first adenovirus regulatory polypeptide, a second regulatory polypeptide, and/or a third regulatory polypeptide, and any combination of the foregoing.

Plasmid pDV80 is a preferred plasmid herein. Other plasmids constructed in an analogous manner to encode modified fiber proteins and chimeric fiber proteins are also contemplated herein.

5. Nucleic Acid Molecule Synthesis

A nucleic acid molecule comprising synthetic oligonucleotides can be prepared using any suitable method, such as the phosphotriester or phosphodiester methods (see, e.g., Narang (1979) et al., Meth. Enzymol., 68:90; U.S. Patent No. 4,356,270; and Brown et al., (1979) Meth. Enzymol., 68:109). For oligonucleotides, the synthesis of the family members can be conducted simultaneously in a single reaction vessel, or can be synthesized independently and later admixed in preselected molar ratios. For simultaneous synthesis, the nucleotide residues that are conserved at preselected positions of the sequence of the family member can be introduced in a chemical synthesis protocol simultaneously to the variants by the addition of a single preselected nucleotide precursor to the solid phase oligonucleotide reaction admixture when that position number of the oligonucleotide is being chemically added to the growing oligonucleotide polymer. The addition of nucleotide residues to those positions in the sequence that vary can be introduced simultaneously by the addition of amounts, preferably equimolar amounts, of multiple preselected nucleotide precursors to the solid phase oligonucleotide reaction admixture during chemical synthesis. For example, where all four possible natural nucleotides (A,T,G and C) are to be added at a preselected position, their precursors are added to the oligonucleotide synthesis reaction at that step to simultaneously form four variants (see, e.g., Ausubel et al. (Current Protocols in Molecular Biology, Suppl. 8. p.2.11.7, John Wiley & Sons, Inc., New York ,1991).

20

25

30

-32-

Nucleotide bases other than the common four nucleotides (A,T,G or C), or the RNA equivalent nucleotide uracil (U), can also be used. For example, it is well known that inosine (I) is capable of hybridizing with A, T and G, but not C. Examples of other useful nucleotide analogs are known in the art and may be found referred to in 37 C.F.R. §1.822.

Thus, where all four common nucleotides are to occupy a single position of a family of oligonucleotides, that is, where the preselected nucleotide sequence is designed to contain oligonucleotides that can hybridize to four sequences that vary at one position, several different oligonucleotide structures are contemplated. The composition can contain four members, where a preselected position contains A,T,G or C. Alternatively, a composition can contain two nucleotide sequence members, where a preselected position contains I or C, and has the capacity to hybridize at that position to all four possible common nucleotides. Finally, other nucleotides may be included at the preselected position that have the capacity to hybridize in a non-destabilizing manner with more than one of the common nucleotides in a manner similar to inosine.

Similarly, larger nucleic acid molecules can be constructed in synthetic oligonucleotide pieces, and assembled by complementary hybridization and ligation, as is well known.

D. Adenovirus Expression Vector Systems

The adenovirus vector genome that is encapsulated in the virus particle and that expresses exogenous genes in a gene therapy setting is a key component of the system. Thus, the components of a recombinant adenovirus vector genome include the ability to express selected adenovirus structural genes, to express a desired exogenous protein, and to contain sufficient replication and packaging signals that the genome is packaged into a gene delivery vector particle. The preferred replication signal is an adenovirus inverted terminal repeat containing an adenovirus origin of replication, as is well known and described herein.

20

25

30

Although adenovirus include many proteins, not all adenovirus proteins are required for assembly of a recombinant adenovirus particle (vector). Thus, deletion of the appropriate genes from a recombinant Ad vector permits accommodation of even larger "foreign" DNA segments.

A preferred recombinant adenovirus vector genome is "helper independent" so that genome can replicate and be packaged without the help of a second, complementing helper virus. Complementation is provided by a packaging cell.

In a preferred embodiment, the adenovirus vector genome does not encode a functional adenovirus fiber protein. A non-functional fiber gene refers to a deletion, mutation or other modification to the adenovirus fiber gene such that the gene does not express any or insufficient adenovirus fiber protein to package a fiber-containing adenovirus particle without complementation of the fiber gene by a complementing plasmid or packaging cell line. Such a genome is referred to as a "fiberless" genome, not to be confused with a fiberless particle. Alternatively, a fiber protein may be encoded but is insufficiently expressed to result in a fiber containing particle.

Thus, contemplated for use are helper-independent fiberless recombinant adenovirus vector genomes that include genes that (a) express all adenovirus structural gene products but express insufficient adenovirus fiber protein to package a fiber-containing adenovirus particle without complementation of said fiber gene, (b) express an exogenous protein, and (c) contain an adenovirus packaging signal and inverted terminal repeats containing adenovirus origin of replication.

The adenovirus vector genome is propagated in the laboratory in the form of rDNA plasmids containing the genome, and upon introduction into an appropriate host, the viral genetic elements provide for viral genome replication and packaging rather than plasmid-based propagation. Exemplary methods for preparing an Ad-vector genome are described in the Examples.

A vector herein includes a nucleic acid (preferably DNA) molecule capable of autonomous replication in a cell and to which a DNA segment, e.g., a gene or polynucleotide, can be operatively linked to bring about replication of the

20

25

30

69

-34-

attached segment. For purposes herein, one of the nucleotide segments to be operatively linked to vector sequences encodes at least a portion of a therapeutic nucleic acid molecule. As noted above, therapeutic nucleic acid molecules include those encoding proteins and also those that encode regulatory factors that can lead to expression or inhibition or alteration of expression of a gene product in a targeted cell.

Nucleic Acid Gene Expression Cassettes

In various embodiments, a peptide-coding sequence of the therapeutic gene is inserted into an expression vector and expressed; however, it is also feasible to construct an expression vector which also includes some non-coding sequences as well. Preferably, however, non-coding sequences are excluded. Alternatively, a nucleotide sequence for a soluble form of a polypeptide may be utilized. Another preferred therapeutic viral vector includes a nucleotide sequence encoding at least a portion of a therapeutic nucleotide sequence operatively linked to the expression vector for expression of the coding sequence in the therapeutic nucleotide sequence.

The choice of viral vector into which a therapeutic nucleic acid molecule is operatively linked depends directly, as is well known in the art, on the functional properties desired, e.g., vector replication and protein expression, and the host cell to be transformed — these being limitations inherent in the art of constructing recombinant DNA molecules. Although certain adenovirus serotypes are recited herein in the form of specific examples, it should be understood that the use of any adenovirus serotype, including hybrids and derivatives thereof are contemplated.

A translatable nucleotide sequence is a linear series of nucleotides that provide an uninterrupted series of at least 8 codons that encode a polypeptide in one reading frame. Preferably, the nucleotide sequence is a DNA sequence. The vector itself may be of any suitable type, such as a viral vector (RNA or DNA), naked straight-chain or circular DNA, or a vesicle or envelope containing the nucleic acid material and any polypeptides that are to be inserted into the cell.

10

20

25

30

2. Promoters

As noted elsewhere herein, an expression nucleic acid in an Ad-derived vector may also include a promoter, particularly a tissue or cell specific promoter, preferably one expressed in ocular cells, particularly photoreceptors.

Promoters contemplaged for use herein include regulatable (inducible) as well as constitutive promoters, which may be used, either on separate vectors or on the same vector. Some useful regulatable promoters are those of the CREB-regulated gene family and include inhibin, gonadotropin, cytochrome c, glucagon, and the like. (See, e.g., International PCT application No. WO 96/14061). Preferably the promoter selected is from a photoreceptor-specific gene, such as a rhodopsin gene or gene that encodes a protein that regulates rhodopsin expression.

E. Formulation and administration

Compositions containing therapeutically effective concentrations of recombinant adenovirus delivery vectors are provided. These are for delivery of therapeutic gene products to cells, particularly cells express a particular 50 kDa receptor or other receptor with which the vectors interact. These cells include cells of the eye and genital tract. Of particular interest are photoreceptor cells of the eye. Administration is effected by any means through which contacting with the photoreceptors is effected. Preferable modes of administration include, but are not limited to, subretinal injection, particularly intravitreal injection, to provide access to photoreceptor cells.

The recombinant viral compositions may also be formulated for implantation into the anterior or posterior chamber of the eye, preferably the vitreous cavity, in sustained released formulations, such as those adsorbed to biodegradable supports, including collagen sponges, or in liposomes. Sustained release formulations may be formulated for multiple dosage administration, so that during a selected period of time, such as a month or up to about a year, several dosages are administered. Thus, for example, liposomes may be prepared such that a total of about two to up to about five or more times the single dosage is administered in one injection.

10 ·

15

20

25

30

-36-

The vectors are formulated in an ophthalmologically acceptable carrier for intraocular, preferably intravitreal, administration in a volume of between about 0.05 ml and 0.150 ml, preferably about 0.05 and 0.100 ml.

The composition can be provided in a sealed sterile vial containing an amount of a compound of formula I, that upon intraocular administration will deliver a sufficient amount of viral particles to the photoreceptors in a volume of about 50 to 150 μ l, containing at least about 10⁷, more preferably at least about 10⁸ plaque forming units in such volume. Typically, the vials will, thus, contain about 0.150 ml of the composition.

To prepare compositions the viral particles are dialzyed into a suitable ophthalmologically acceptable carrier or viral particles, for example, may be concentrated and/or mixed therewith. The resulting mixture may be a solution, suspension or emulsion. In addition, the viral particles may be formulated as the sole pharmaceutically active ingredient in the composition or may be combined with other active agents for the particular disorder treated.

For administration by intraocular injection or via eyedrops, suitable carriers include, but are not limited to, physiological saline, phosphate buffered saline (PBS), balanced salt solution (BSS), lactate Ringers solution, and solutions containing thickening and solubilizing agents, such as glucose, polyethylene glycol, and polypropylene glycol and mixtures thereof. Liposomal suspensions may also be suitable as pharmaceutically acceptable carriers. These may be prepared according to methods known to those skilled in the art. Suitable ophthalmologically acceptable carriers are known. Solutions or mixtures intended for ophthalmic use may be formulated as 0.01% - 10% isotonic solutions, pH about 5-7, with appropriate salts [see, e.g., U.S. Patent No. 5,116,868, which describes typical compositions of ophthalmic irrigation solutions and solutions for local application]. Such solutions, which have a pH adjusted to about 7.4, contain, for example, 90-100 mM sodium chloride, 4-6 mM dibasic potassium phosphate, 4-6 mM dibasic sodium phosphate, 8-12 mM sodium citrate, 0.5-1.5 mM magnesium chloride, 1.5-2.5 mM calcium chloride, 15-25 mM sodium acetate, 10-20 mM D.L.-sodium $oldsymbol{eta}$ -hydroxybutyrate and 5-5.5 mM glucose.

15

The compositions may be prepared with carriers that protect them from rapid elimination from the body, such as time release formulations or coatings. Such carriers include controlled release formulations, such as, but not limited to, microencapsulated delivery systems, and biodegradable, biocompatible polymers, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, polyorthoesters, polylactic acid and other types of implants that may be placed directly into the anterior or posterior chamber or vitreous cavity of the eye. The compositions may also be administered in pellets, such as Elvax pellets (ethylene-vinyl acetate copolymer resin).

Liposomal suspensions, including tissue-targeted liposomes, may also be suitable as pharmaceutically acceptable carriers. For example, liposome formulations may be prepared by methods known to those of skill in the art [see, e.g., Kimm et al. (1983) Bioch. Bioph. Acta 728:339-398; Assil et al. (1987) Arch Ophthalmol. 105:400; and U.S. Patent No. 4,522,811]. The viral particles may be encapsulated into the aqueous phase of liposome systems.

The active materials can also be mixed with other active materials, that do not impair the desired action, or with materials that supplement the desired action or have other action, including viscoelastic materials, such as hyaluronic acid, which is sold under the trademark HEALON, which is a solution of a high molecular weight (MW) of about 3 millions fraction of sodium hyaluronate 20 [manufactured by Pharmacia, Inc; see, e.g., U.S. Patent Nos. 5,292,362, 5,282,851, 5,273,056, 5,229,127, 4,517,295 and 4,328,803], VISCOAT [fluorine-containing (meth)acrylates, such as, 1H,1H,2H,2H-heptadecafluorodecylmethacrylate; see, e.g., U.S. Patent Nos. 5,278,126, 5,273,751 and 5,214,080; commercially available from Alcon Surgical, Inc.], ORCOLON 25 [see, e.g., U.S. Patent No. 5,273,056; commercially available from Optical Radiation Corporation], methylcellulose, methyl hyaluronate, polyacrylamide and polymethacrylamide [see, e.g., U.S. Patent No. 5,273,751]. The viscoelastic materials are present generally in amounts ranging from about 0.5 to 5.0%, preferably 1 to 3% by weight of the conjugate material and serve to coat and protect the treated tissues. The compositions may also include a dye, such as

15

20

25

30

methylene blue or other inert dye, so that the composition can be seen when injected into the eye. Additional active agents may be included.

The compositions can be enclosed in ampules, disposable syringes or multiple or single dose vials made of glass, plastic or other suitable material. Such enclosed compositions can be provided in kits. In particular, kits containing vials, ampules or other containers, preferably disposable vials with sufficient amount of the composition to deliver about 0.100 ml thereof, and disposable needles, preferably self sealing 25-30 gauge needles, are provided herein.

Finally, the compounds may be packaged as articles of manufacture containing packaging material, typically a vial, an ophthalmologically acceptable composition containing the viral particles and a label that indicates the therapeutic use of the composition.

Also provided are kits for practice of the methods herein. The kits contain one or more containers, such as sealed vials, with sufficient composition for single dosage administration, and one or more needles, such as self sealing 25-33 gauge needles, preferably 33 gauge or smaller needles, precisely calibrated syringes or other precisely calibrated delivery device, suitable for intravitreal injection.

Administration of the composition is preferably by intraocular injection, although other modes of administration may be effective, if the sufficient amount of the compound achieves contact with the vitreous cavity. Intraocular injection may be effected by intravitreal injection, aqueous humor injection or injection into the external layers of the eye, such as subconjunctival injection or subtenon injection, or by topical application to the cornea, if a penetrating formulation is used.

Administration

The compositions containing the compounds are administered intraocularly or by other means, such as topically in the form of penetrating eyedrops, whereby contact of the recombinant vectors with the aqueous humor is effected. Intraocular administration may be effected by intravitreal injection, aqueous humor injection, injection into the external layers of the eye, such as

30

-39-

subconjunctival injection or subtenon injection, preferably in free form, but, alternatively, in liposomes or other sustained drug delivery device. Administration is preferably by intravitreal injection, preferably through self sealing 25-30 gauge needles or other suitably calibrated delivery device. Injection into the eye may be through the pars plana via the self-sealing needle.

It is further understood that, for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the recombinant viruses, and that the concentration ranges set forth herein are exemplary only and are not intended to limit the scope or practice of the claimed methods

Diseases, Disorders and therapeutic products F.

1. Disease and disorders

Retinitis pigmentosa

Methods for specifically or selectively targeting recombinant adenovirus 15 vectors for delivery of gene products, particularly therapeutic products are provided herein. These methods are particularly suitable for targeting cells that express receptors that are selectively recognized by Ad virus of subgroup D viruses, particularly Ad37. It is shown herein that these viruses selectively recognize receptors on cells, such as conjunctival cells and photoreceptors, that 20 are not recognized by other adenoviruses. Hence, methods for targeting to these cell types by providing vectors that are packaged in viral particles that contain a sufficient portion of a fiber protein from one of these Ad serotypes to bind to these receptors. These methods are useful for targeting to photoreceptors and for treating ocular disorders, including, but are not limited to, inherited and acquired retinal, neovascular degenerative diseases (see table below).

It is estimated that 1 in 3,500 individuals in the United States suffer from one of the pigmented retinopathies. This group of retinal diseases, commonly called retinitis pigmentosa, is characterized by progressive loss of peripheral and night vision. Patients may be affected at almost any age and it is not uncommon to experience symptoms in early childhood in certain inherited forms.

25

30

It has been shown that there are a variety of mutations in genes expressed in the photoreceptors, including genes in the rhodopsin gene and pathway that appear to be responsible for these diseases. In addition to mutations in rhodopsin, changes in the retinal pigmented epithelial (RPE) cells, also undergo degenerative changes and can form clumps of pigment that give rise to the characteristic pigmentary changes seen in patients with RP.

Angiogenesis and ocular diseases and disorders

The vast majority of diseases that cause catastrophic loss of vision do so as a result of ocular neovascularization; age related macular degeneration (ARMD) affects 12-15 million American over the age of 65 and causes visual loss in 10-15% of them as a direct effect of choroidal (sub-retinal) neovascularization. The leading cause of visual loss for Americans under the age of 65 is diabetes; 16 million individuals in the United States are diabetic and 40,000 per year suffer from ocular complications of the disease, which often are a result of retinal neovascularization. Laser photocoagulation has been effective in preventing severe visual loss in subgroups of high risk diabetic patients, but the overall 10 year incidence of retinopathy remains essentially unchanged. For patients with choroidal neovascularization due to ARMD or inflammatory eye disease, such as ocular histoplasmosis, photocoagulation, with few exceptions, is ineffective in preventing visual loss. While recently developed, nondestructive photodynamic therapies hold promise for temporarily reducing individual loss in patients with previously untreatable choroidal neovascularization, only 61.4% of patients treated every 3-4 months had improved or stabilized vision compared to 45.9% of the placebo-treated group.

In the normal adult, angiogenesis is tightly regulated and limited to wound healing, pregnancy and uterine cycling. Angiogenesis is turned on by specific angiogenic molecules such as basic and acidic fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), angiogenin, transforming growth factor (TGF), tumor necrosis factor-a (TNF-a) and platelet derived growth factor (PDGF). Angiogenesis can be suppressed by inhibitory molecules such as interferon-a, thrombospondin-1, angiostatin and endostatin. It is the balance of these naturally occurring stimulators and inhibitors that controls the normally

25

30

quiescent capillary vasculature. When this balance is upset, as in certain disease states, capillary endothelial cells are induced to proliferate, migrate and ultimately differentiate.

-41-

Angiogenesis plays a central role in a variety of diseases, including, but are not limited to, cancer and ocular neovascularization. Sustained growth and metastasis of a variety of tumors has also been shown to be dependent on the growth of new host blood vessels into the tumor in response to tumor derived angiogenic factors. Proliferation of new blood vessels in response to a variety of stimuli occurs as the dominant finding in the majority of eye diseases that blind, such as, but are not limited to, proliferative diabetic retinopathy (PDR), ARMD, rubeotic glaucoma, interstitial keratitis and retinopathy of prematurity. In these diseases, tissue damage can stimulate release of angiogenic factors resulting in capillary proliferation. VEGF plays a dominant role in iris neovascularization and neovascular retinopathies. While reports clearly show a correlation between intraocular VEGF levels and ischemic retinopathic ocular neovascularization, FGF likely plays a role. Basic and acidic FGF are known to be present in the normal adult retina, even though detectable levels are not consistently correlated with neovascularization. This may be largely due to the fact that FGF binds very tightly to charged components of the extracellular matrix and may not be readily available in a freely diffusible form that would be detected by standard assays of intraocular fluids.

A final common pathway in the angiogenic response involves integrin-mediated information exchange between a proliferating vascular endothelial cell and the extracellular matrix. This class of adhesion receptors, called integrins, are expressed as heterodimers having an α and β subunit on all cells. One such integrin, α, β_3 , is the most promiscuous member of this family and allows endothelial cells to interact with a wide variety of extracellular matrix components. Peptide and antibody antagonists of this integrin inhibit angiogenesis by selectively inducing apoptosis of the proliferating vascular endothelial cells. Two cytokine-dependent pathways of angiogenesis exist and may be defined by their dependency on distinct vascular cell integrins, α, β_3 and α, β_5 . Specifically, basic FGF- and VEGF-induced angiogenesis depend on integrin

15

20

25

30

 $a_{\nu}\beta_{3}$ and $a_{\nu}\beta_{5}$, respectively, since antibody antagonists of each integrin selectively block one of these angiogenic pathways in the rabbit corneal and chick chorioallantoic membrane (CAM) models. Peptide antagonists that block all a_{ν} integrins inhibit FGF- and VEGF-stimulated angiogenesis. While normal human ocular blood vessels do not display either integrin, $a_{\nu}\beta_{3}$ and $a_{\nu}\beta_{5}$ integrins are selectively displayed on blood vessels in tissues from patients with active neovascular eye disease. While only $a_{\nu}\beta_{3}$ was consistently observed in tissue from patients with ARMD, $a_{\nu}\beta_{3}$ and $a_{\nu}\beta_{5}$ were present in tissues from patients with PDR. Systemically administered peptide antagonists of integrins blocked new blood vessel formation in a mouse model of retinal vasculogenesis.

In addition to adhesion events described above, cell migration through the extracellular matrix also depends on proteolysis. Matrix metalloproteinases are a family of zinc-requiring matrix-degrading enzymes that include the collagenases, gelatinases and stromelysins, all of which have been implicated in invasive cell behavior. Invasive cell processes such as tumor metastasis and angiogenesis have been found to be associated with the expression of integrins and MMP-2, MMP-2 are all found throughout the eye where they may interact to maintain a quiescent vasculature until the balance is upset, resulting in pathological angiogenesis. A non-catalytic C-terminal hemopexin-like domain of MMP-2 (PEX) can block cell surface collagenolytic activity and inhibit angiogenesis in the CAM model by preventing localization of MMP-2 to the surface of invasive cells through interaction with the integrin $\alpha_s \beta_3$.

Hence, anti-angiogenic agents have a role in treating retinal degeneration to prevent the damaging effects of these trophic and growth factors.

Angiogenic agents, also have a role in promoting desirable vascularization to retard retinal degeneration by enhancing blood flow to cells.

Members of adenovirus subgroup D, Ad8, 19A, and 37, are infectious agents that cause particularly severe cases of epidemic keratoconjunctivitis (EKC) (Arnberg et al. (1998) Virology 227:239-244; Curtis et al. (1998) J.Med.Microbiol. 47:91-94; Ritterband et al. (1998) Rev.Med.Virol. 8:187-201; and Takeuchi et al. (1999) J.Clin.Microbiol. 37:3392-3394). There is no effective treatment for this debilitating and contagious disease and EKC

continues to be a problem in ophthalmology clinics worldwide (Curtis et al. (1998) J.Med.Microbiol. 47:91-94, Lukashok et al. (1998) Curr.Clin.Top.Infec.Dis. 18:286-304). Hence the vectors herein may be used for treating the disease.

Table 3

Candidate targets for ocular disease therapy CANDIDATE TARGETS FOR OCULAR DISEASE THERAPY Candidate target(s) Disease Rhodopsin gene, and genes that Retinitis pigmentosa regulate expression thereof rds/peripherin rim protein (ARC protein) Stargardt's disease rab geranylgeranyl transferase Choroideremia CHM, TCD, CHML* ornithine aminotransferase Gyrate Atrophy rds/peripherin Macular dystrophy 15

* see, "MSR6-yeast homologue of the choroideraemia gene," Nature Genetics 3: 193-4 (1993)

TABLE 4

Other Diseases			
20	Exudative Choroidal Diseases		
	ICSC, fluorescein angiogram		
	ICSC with large serious detachment of RPE (retinal pigmented epithelium)		
	ICSC with bullous retinal detachment		
	Macular drusen, exudative, confluent		
25	Drusen, sub-RPE choroidal neovascularization		
	Drusen, notched serous detachment of RPE		

5

10

	Other Diseases
_	Drusen, notched serous and hemorrhagic detachment of RPE
	Drusen, serous and hemorrhagic detachment of RPE and retina
ſ	Drusen, organized RPE detachment causing bullous retinal detachment
_	Drusen, geographic atrophy of RPE
ļ	Drusen, exudative and cuticular, vitelliform macular detachment
	Drusen, cuticular, large vitelliform macular detachment
_	North Carolina dystrophy with macular staphyloma
ı—	North Carolina dystrophy with macular staphyloma
	Angioid streaks, pseudoxanthoma elasticum (PXE), CNVM
╟	Angioid streaks, PXE, large notched retinal detachment
╟	Myopic degeneration, Foerster-Fuchs spot
۱	Presumed ocular histoplasmosis syndrome (POHS)
ľ	Submacular bacterial abscess
l	Toxocara canis, subretinal granuloma
1	Serpiginous (geographic) choroiditis
1	Posterior scleritis
	Harada's disease
	Posterior sympathetic uveitis
	Benign reactive lymphoid hyperplasia of uveal tract
I	Choroidal ruptures and CNVM
Ì	Cavernous hemangioma of choroid
	Choroidal osteoma
1	Choroidal nevus, serous macular detachment
	Choroidal nevus with CNVM
	Diffuse sclerochoroidal melanocytic nevus
	Choroidal melanoma with serous detachment of RPE
	Metastatic lung carcinoma to choroid
	Sub-RPE reticulum cell sarcoma

-45-

	Other Diseases			
F	RPE tear, idiopathic choroidal neovascularization			
	Heredodystrophic Disorders Affecting RPE & Retina			
	Best's vitelliform macular dystrophy			
	Best's vitelliform macular dystrophy with CNVM			
	Best's vitelliform macular dystrophy, multiple lesions			
	Adult-onset vitelliform foveomacular dystrophy			
	Pattern dystrophy simulating fundus flavimaculatus			
	Stargardt's disease (fundus flavimaculatus)			
ʻ∐⊢	Asteroid macular dystrophy			
╟	Sjögren-Larssen syndrome			
╟	Oguchi's disease, light-adapted state			
-	Oguchi's disease, dark-adapted state			
l	Fundus albipunctatus			
∦	Retinitis pigmentosa, cystoid macular edema			
	Crystalline tapetoretinal dystrophy			
I	Choroideremia			
	Goldmann-Favre syndrome			
	Sex-linked juvenile retinoschisis			
	Perivenous retinitis pigmentosa			
	Retinal Vascular Disorders			
ľ	Retinal arteriovenous aneurysm			
	Central retinal artery occlusion			
	Cilioretinal artery obstruction			
	Ischemic retinopathy in systemic lupus erythematosus			
	Ischemic retinopathy in scleroderma			
	Hemorrhagic detachment of internal limiting membrane, hypertensive retinopathy			
	Acquired retinal arterial macroaneurysm			

-46-

	Other Diseases			
	Cystoid macular edema, aphakic			
	Cystoid macular edema, nicotinic acid maculopathy			
	Congenital retinal telangiectasis			
.	Acquired bilateral juxtafoveal telangiectasis			
5	Acquired bilateral juxtafoveal obliterative telangiectasis			
Ī	Diabetic optic neuropathy			
	X-ray radiation exudative retinopathy			
	Sickle cell SC disease, macular hemorrhage			
	Retinal arterial aneurysms, arteritis, neuroretinitis			
0	Branch retinal vein obstruction (BRVO)			
	BRVO, exudative maculopathy			
	BRVO, optic disc new vessels, photocoagulation			
	Waldenström's macroglobulinemia			
	Inflammatory Diseases of the Retina and Choroid			
5	Luetic retinal vasculitis			
	Focal Candida retinal abscess			
	Toxoplasmosis, atrophic chorioretinal scar			
	Toxoplasmosis retinitis and macular detachment			
	Toxoplasmosis scar, CNVM, macular detachment			
20	Diffuse unilateral subacute neuroretinitis, small worm			
	Diffuse unilateral subacute neuroretinitis, large worm			
	Cytomegalic inclusion disease, papillitis			
•.	Acute posterior multifocal placoid pigment epitheliopathy			
25	Acute macular neuroretinitis			
	Sarcoid retinitis			
	Sarcoid papillitis			
	Behcet's disease			
	Vitiliginous (bird-shot) chorioretinitis			
	L			

-47-

	Other Diseases
	Multifocal choroiditis and panveitis (pseudo-POHS)
	Retinal and Pigment Epithelial Hamartomas
	Congenital grouped albinotic RPE spots
11-	Congenital hyperplasia of RPE
	Combined RPE and retinal hamartoma, juxtapapillary
1	Combined RPE and retinal hamartoma, peripheral
	Cystic astrocytoma, juxtapapillary
	Astrocytoma, macula
-	Astrocytoma, juxtapapillary
-	Cavernous hemangioma of retina
- 1	Juxtapapillary sessile retinal capillary hemangioma
	Juxtapapillary endophytic retinal capillary hemangioma
	Other Tumors of the Choroid
	Choroidal metastasis
,	Choroidal osteoma
	Choroidal hemangioma
	Miscellaneous uveal tumors
	Intraocular Lymphoid Tumors
	The leukemias and lymphomas
0	Tumors of the Vitreous
	Non-Hodgkins ("reticulum cell") lymphoma
	Tumor involvement of the vitreous cavity
	Macular Disease
	Age-related macular degeneration atrophic form
5	Exudative age-related macular degeneration
	Choroidal neovascular membrane in degenerative myopia
	Central serous retinopathy
	Macular hole

PCT/EP01/04863

-48

r	Other Diseases
	Macular dystrophies
	Retinal Vascular Disease
	Etiologic mechanisms in diabetic retinopathy
11-	Background diabetic retinopathy
	Proliferative diabetic retinopathy
	Retinal arterial obstructive disease
	Central retinal vein occlusion
	Retinal branch vein occlusion
I	Pregnancy and retinal disease
	Pregnancy-induced hypertension
·	Hypertension
	The rheumatic disease
į	Parafoveal telangiectasis
	Coats disease
,	Disseminated intravascular systemic coagulopathy and related vasculopathi
	Hemoglobinopathies
	Retinopathy of prematurity
	Acquired retinal macroaneurysms
	Eales disease
0	Radiation retinopathy
•	The ocular ischemic syndrome
	Inflammatory Disease
	Ocular toxoplasmosis
	Ocular toxocariasis
25	Ocular cysticercosis
	Cytomegalovirus infections of the retina
	Retinal and ophthalmologic manifestations of AIDS
	Acute retinal necrosis syndrome
	_

-49-

ſ	Other Diseases		
	Endogenous fungal infections of the retina and choroid		
	Pars planitis		
	Syphilis and tuberculosis		
	Diffuse unilateral subacute neuroretinitis		
5	Scleritis		
	Birdshot retinochoroidopathy		
İ	Punctate inner choroidopathy		
	Sarcoidosis		
	Acute multifocal placoid pigment epitheliopathy		
	Geographic helicoid peripapillary choroidopathy (GHPC): serpiginous choroiditis		
•	Sympathetic ophthalmia		
	Vogt-Koyanigi-Harada syndrome (uveomeningitic syndrome)		
	Ciliochoroidal (uveal) effusion		
15	Characteristic Atlas of Ocular Diseases Diagnosis and Treat-		

Reproduced from: Stereoscopic Atlas of Ocular Diseases Diagnosis and Treatment, 2nd Edition, J. Donald O. Gass, Vol. 1 & 2, C.V. Mosley Co. (1987); and Retina Vol. II, Editor, Stephen J. Ryan, Medical Retina, C.V. Moslay Co. (1989).

Therapeutic products

Therapeutic products include but are not limited to, wild-type genes that are defective in ocular disorders, such as rhodopsin, or fragments thereof sufficient to correct the genetic defect, trophic factors, including growth factors, inhibitors and agonists of trophic factors, anti-apoptosis factors and other products described herein or known to those of skill in the art to be useful for treatment of disorders of the eye or that can be treated by a product expressed by a photoreceptor.

OCULAR GENE THERAPY STRATEGIES				
GENERAL DISEASE	EXAMPLES	STRATEGY		
GENTIAL DIGENOS				

10

OCULAR GENE THERAPY STRATEGIES			
Hereditary retinal and macular degeneration	 Retinitis pigmentosa Stargardt's disease Other macular dystrophies 	Growth factors (e.g., GDNF) anti-apoptotic factors (e.g., bcl2 gene) Stargardt Disease Gene (ABCR) [†]	
Neovascular	Diabetes Choroidal neovascularization	Anti-angiogenesis factors	
Anti-tumor	Retinoblastoma	Antiproliferant	
Glaucoma	Nerve fiber layer atrophy	Neuroprotective agent	

See Allikmets et al. (1997) Science 277:1805-1807.

For example, for treatment of retinitis pigmentosa the adenovirus vector can deliver a wild-type rhodopsin gene or a growth factor or trophic factor, such as ciliary neurotrophic factor CNTF; for treatment of Stargardt's disease, the vector can deliver a wild type ABCR (also called STGD1) or a growth factor or anti-angiogenic agent; for diabetic retinopathies, retinal vascularization the vector can deliver growth factors, such as a TGF (TGF β), to prevent degeneration.

The following examples are included for illustrative purposes only and are 15 not intended to limit the scope of the invention.

EXAMPLE 1

Preparation of Adenovirus Packaging Cell Lines

Cell lines that are commonly used for growing adenovirus are useful as host cells for the preparation of adenovirus packaging cell lines. Preferred cells 20 include 293 cells, an adenovirus-transformed human embryonic kidney cell line obtained from the ATCC, having Accession Number CRL 1573; HeLa, a human epithelial carcinoma cell line (ATCC Accession Number CCL-2); A549, a human lung carcinoma cell line (ATCC Accession Number CCL 1889); and other epithelial-derived cell lines. As a result of the adenovirus transformation, the 25

293 cells contain the E1 early region regulatory gene. All cells were maintained in complete DMEM + 10% fetal calf serum unless otherwise noted.

These cell lines allow the production and propagation of adenovirus-based gene delivery vectors that have deletions in preselected gene regions and that are obtained by cellular complementation of adenoviral genes. To provide the desired complementation of such deleted adenoviral genomes in order to generate a viral vector, plasmid vectors that contain preselected functional units have been designed. Such units include but are not limited to E1 early region, E4 and the viral fiber gene. The preparation of plasmids providing such complementation, thereby being "complementary plasmids or constructs," that are stably inserted into host cell chromosomes are described below.

Preparation of an E4-Expressing Plasmid for Complementation of A. **E4-Gene-Deleted Adenoviruses**

The viral E4 regulatory region contains a single transcription unit that is alternately spliced to produce several different mRNA products. The E4-expressing plasmid prepared as described herein and used to transfect the 293 cell line contains the entire E4 transcription unit. A DNA fragment extending from 175 nucleotides upstream of the E4 transcription start site including the natural E4 promoter to 153 nucleotides downstream of the E4 polyadenylation signal including the natural E4 terminator signal, corresponding 20 to nucleotides 32667-35780 of the adenovirus type 5 (hereinafter referred to as Ad5) genome as described in Chroboczek et al. (Virol., 186:280-285 (1992), GenBank Accession Number M73260), was amplified from Ad5 genomic DNA, obtained from the ATCC, via the polymerase chain reaction (PCR). Sequences of the primers used were 5'CGGTACACAGAATTCAGGAGACACAACTCC3' (forward or 5' primer referred to as E4L) (SEQ ID NO: 1) and 5'GCCTGGATCCGGGAAGTTACGTAACGTGGGAAAAC3' (SEQ ID NO: 2) (backward or 3' primer referred to as E4R). To facilitate cloning of the PCR fragment, these oligonucleotides were designed to create new sites for the restriction enzymes EcoRI and BamHI, respectively, as indicated with underlined 30 nucleotides. DNA was amplified via PCR using 30 cycles of 92 C for 1 minute,

20

25

30

-52-

50 C for 1 minute, and 72 C for 3 minutes resulting in amplified full-length E4 gene products.

The amplified DNA E4 products were then digested with EcoRI and BamHI for cloning into the compatible sites of pBluescript/SK+ by standard techniques to create the plasmid pBS/E4. A 2603 base pair (bp) cassette including the herpes simplex virus thymidine kinase promoter, the hygromycin resistance gene, and the thymidine kinase polyadenylation signal was excised from the plasmid pMEP4 (Invitrogen, San Diego, CA) by digestion with Fspl followed by addition of BamHI linkers (5'CGCGGATCCGCG3') (SEQ ID NO: 3) for subsequent digestion with BamHI to isolate the hygromycin-containing fragment.

The isolated BamHI-modified fragment was then cloned into the BamHI site of pBS/E4 containing the E4 region to create the plasmid pE4/Hygro containing 8710 bp. The pE4/Hygro plasmid has been deposited with the ATCC under accession number 97739. The complete nucleotide sequence of pE4/Hygro is set forth in SEQ ID NO: 4. Position number 1 of the linearized vector corresponds to approximately the middle portion of the pBS/SK+ backbone. The 5' and 3' ends of the E4 gene are located at respective nucleotide positions 3820 and 707 of SEQ ID NO: 4 while the 5' and 3' ends of the hygromycin insert are located at respective nucleotide positions 3830 and 6470. In the clone that was selected for use, the E4 and hygromycin resistance genes were divergently transcribed.

Preparation of a Fiber-Expressing Plasmid for Complementation of Fiber-Gene-Deleted Adenoviruses

To prepare a fiber-encoding construct, primers were designed to amplify the fiber coding region from Ad5 genomic DNA with the addition of unique BamHI and NotI sites at the 5' and 3' ends of the fragment, respectively. The Ad5 nucleotide sequence is available with the GenBank Accession Number M18369. The 5' and 3' primers had the respective nucleotide sequences of 5'ATGGGATCCAAGATGAAGCGCGCAAGACCG3' (SEQ ID NO: 5) and 5'CATAACGCGGCCGCTTCTTTATTCTTGGGC3' (SEQ ID NO: 6), where the inserted BamHI and NotI sites are indicated by underlining. The 5' primer also

contained a nucleotide substitution 3 nucleotides 5' of the second ATG codon (C to A) that is the initiation site. The nucleotide substitution was included so as to improve the consensus for initiation of fiber protein translation.

The amplified DNA fragment was inserted into the BamHl and Notl sites of pcDNA3 (Invitrogen) to create the plasmid designated pCDNA3/Fiber having 7148 bp. The parent plasmid contained the CMV promoter, the bovine growth hormone (BHG) terminator and the gene for conferring neomycin resistance. The viral sequence included in this construct corresponds to nucleotides 31040-32791 of the Ad5 genome.

The complete nucleotide sequence of pCDNA3/Fiber is listed in SEQ ID NO: 7 where the nucleotide position 1 corresponds to approximately the middle of the pcDNA3 vector sequence. The 5' and 3' ends of the fiber gene are located at respective nucleotide positions 916 with ATG and 2661 with TAA.

To enhance expression of fiber protein by the constitutive CMV promoter provided by the pcDNA vector, a Bglll fragment containing the tripartite leader 15 (TPL) of adenovirus type 5 was excised from pRD112a (Sheay et al., BioTechniques, 15:856-862 (1993) and inserted into the BamHI site of pCDNA3/Fiber to create the plasmid pCLF having 7469 bp. The adenovirus tripartite leader sequence, present at the 5' end of all major late adenoviral mRNAs as described by Logan et al., Proc._Natl. Acad. Sci., USA, 81:3655-3659 (1984) and Berkner, BioTechniques, 6:616-629 (1988), also referred to as 20 a "partial TPL" since it contains a partial exon 1, shows correspondence with the Ad5 leader sequence having three spatially separated exons corresponding to nucleotide positions 6081-6089 (the 3' end of the first leader segment), 7111-7182 (the entire second leader segment), and 9644-9845 (the third leader segment and sequence downstream of that segment). The corresponding cDNA 25 sequence of the partial tripartite leader sequence present in pCLF is included in SEQ ID NO: 8 bordered by BamHI/BgIII 5' and 3' sites at respective nucleotide positions 907-912 to 1228-1233. The nucleotide sequence of an isolated partial TPL is also listed separately as SEQ ID No. 22 with the noted 5' and 3' restriction sites and with the following nucleotide regions identified: 1-6 nt Bglll site; 1-18 nt polylinker; 19-27 nt last 9 nt of the first leader segment (exon 1);

15

20

25

30

28-99 nt second leader segment (exon 2); 100-187 nt third leader segment (exon 3); 188-301 nt contains the nt sequence immediately following the third leader in the genome with an unknown function; and 322-327 nt Bglll site.

The pCLF plasmid has been deposited with the ATCC as described in Example 4. The complete nucleotide sequence of pCLF is listed in SEQ ID NO: 8 where the nucleotide position 1 corresponds to approximately the middle of the pcDNA3 parent vector sequence. The 5' and 3' ends of the Ad5 fiber gene are located at respective nucleotide positions 1237-1239 with ATG and 2980-2982 with TAA.

C. Generation of an Adenovirus Packaging Cell Line Carrying Plasmids Encoding Functional E4 and Fiber Proteins

The 293 cell line was selected for preparing the first adenovirus packaging line as it already contains the E1 gene as prepared by Graham *et al.*, *J. Gen. Virol.*, 36:59-74 (1977) and as further characterized by Spector, *Virol.*, 130:533-538 (1983). Before electroporation, 293 cells were grown in RPMI medium + 10% fetal calf serum. Four x 106 cells were electroporated with 20 μ g each of pE4/Hygro DNA and pCLF DNA using a BioRad GenePulser and settings of 300 V, 25 μ F. DNA for electroporation was prepared using the Qiagen system according to the manufacturer's instructions (Bio-Rad, Richmond, CA).

Following electroporation, cells were split into fresh complete DMEM + 10% fetal calf serum containing 200 μ g/ml Hygromycin B (Sigma, St. Louis, MO).

From expanded colonies, genomic DNA was isolated using the "MICROTURBOGEN" system (Invitrogen) according to manufacturer's instructions. The presence of integrated E4 DNA was assessed by PCR using the primer pair E4R and ORF6L (5'TGCTTAAGCGGCCGCGAAGGAGA AGTCC3') (SEQ ID NO: 9), the latter of which is a 5' forward primer near adenovirus 5 open reading frame 6.

One clone, designated 211, was selected exhibiting altered growth properties relative to that seen in parent cell line 293. The 211 clone contained the product, indicating the presence of inserted DNA corresponding to most, if

20

25

30

-55-

not all, of the E4 fragment contained in the pE4/Hygro plasmid. The 211 cell line has been deposited with the ATCC as described in Example 4. This line was further evaluated by amplification using the primer pair E4L/E4R described above, and a product corresponding to the full-length E4 insert was detected. Genomic Southern blotting was performed on DNA restricted with EcoRl and BamHl. The E4 fragment was then detected at approximately one copy/genome compared to standards with the EcoRl/BamHl E4 fragment as cloned into pBS/E4 for use as a labeled probe with the Genius system according to manufacturer's instructions (Boehringer Mannheim, Indianapolis, IN). In DNA from the 211 cell line, the labeled internal fragment pE4/Hygro hybridized with the isolated E4 sequences. In addition, the probe hybridized to a larger fragment which may be the result of a second insertion event.

Although the 211 cell line was not selected by neomycin resistance, thus indicating the absence of fiber gene, to confirm the lack of fiber gene, the 211 cell line was analyzed for expression of fiber protein by indirect immunofluorescence with an anti-fiber polyclonal antibody and a FITC-labeled anti-rabbit IgG (KPL) as secondary. No immunoreactivity was detected. Therefore, to generate 211 clones containing recombinant fiber genes, the 211 clone was expanded by growing in RPMI medium and subjected to additional electroporation with the fiber-encoding pCLF plasmid as described above.

Following electroporation, cells were plated in DMEM + 10% fetal calf serum and colonies were selected with 200 μ g/ml G418 (Gibco, Gaithersburg, MD). Positive cell lines remained hygromycin resistant. These candidate sublines of 211 were then screened for fiber protein expression by indirect immunofluorescence as described above. The three sublines screened, 211A, 211B and 211R, along with a number of other sublines, all exhibited nuclear staining qualitatively comparable to the positive control of 293 cells infected with AdRSV β gal (1 pfu/cell) and stained 24 hours post-infection.

Lines positive for nuclear staining in this assay were then subjected to Western blot analysis under denaturing conditions using the same antibody. Several lines in which the antibody detected a protein of the predicted molecular weight (62 kd for the Ad5 fiber protein) were selected for further study including

25

30

211A, 211B and 211R. The 211A cell line has been deposited with ATCC as described in Example 4.

Immunoprecipitation analysis using soluble nuclear extracts from these three cell lines and a seminative electrophoresis system demonstrated that the 5 fiber protein expressed is in the functional trimeric form characteristic of the native fiber protein. The predicted molecular weight of a trimerized fiber is 186 kd. Under denaturing conditions, the trimeric form was destroyed resulting in detectable fiber monomers. Those clones containing endogenous E1, newly expressed recombinant E4 and fiber proteins were selected for use in complementing adenovirus gene delivery vectors having the corresponding adenoviral genes deleted as described in Example 2.

Preparation of an E1-Expressing Plasmid for Complementation of E1-Gene-Deleted Adenoviruses

In order to prepare adenoviral packaging cell lines other than those based 15 on the E1-gene containing 293 cell line as described in Example 1C above, plasmid vectors containing E1 alone or in various combinations with E4 and fiber genes are constructed as described below.

The region of the adenovirus genome containing the E1a and E1b gene is amplified from viral genomic DNA by PCR as previously described. The primers used are E1L, the 5' or forward primer, and E1R, the 3' or backward primer, having the respective nucleotide sequences 5'CCG AGCTAGC GACTGAAAATGAG3' (SEQ ID NO: 10) and 5'CCTCTCGAG AGACAGC AAGACAC3' (SEQ ID NO: 11). The E1L and E1R primers include the respective restriction sites Nhel and Xhol as indicated by the underlines. The sites are used to clone the amplified E1 gene fragment into the Nhel/Xhol sites in pMAM commercially available from Clontech (Palo Alto, CA) to form the plasmid pDEX/E1 having 11152 bp.

The complete nucleotide sequence of pDEX/E1 is listed in SEQ ID NO: 12 where the nucleotide position 1 corresponds to approximately 1454 nucleotides from the 3' end of the pMAM backbone vector sequence. The pDEX/E1 plasmid includes nucleotides 552 to 4090 of the adenovirus genome positioned downstream (beginning at nucleotide position 1460 and ending at 4998 in the

25

30

pDEX/E1 plasmid) of the glucocorticoid-inducible mouse mammary tumor virus (MMTV) promoter of pMAM. The pMAM vector contains the <u>E. coli gpt</u> gene that allows stable transfectants to be isolated using hypoxanthine/amino-pterin/thymidine (HAT) selection. The pMAM backbone occupies nucleotide positions 1-1454 and 5005-11152 of SEQ ID NO: 12.

-57-

E. Generation of an Adenovirus Packaging Cell Line Carrying Plasmids Encoding Functional E1, and Fiber Proteins

To create separate adenovirus packaging cell lines equivalent to that of the 211 sublines, 211A, 211B and 211R, as described in Example 1C, alternative cell lines lacking adenoviral genomes are selected for transfection with the plasmid constructs as described below. Acceptable host cells include A549, Hela, Vero and the like cell lines as described in Example 1. The selected cell line is transfected with the separate plasmids, pDEX/E1 and pCLF, respectively for expressing E1, and fiber complementary proteins. Following transfection procedures as previously described, clones containing stable insertions of the two plasmids are isolated by selection with neomycin and HAT. Integration of full-length copy of the E1 gene is assessed by PCR amplification from genomic DNA using the primer set E1L/E1R, as described above. Functional insertion of the fiber gene is assayed by staining with the anti-fiber antibody as previously described.

The resultant stably integrated cell line is then used as a packaging cell system to complement adenoviral gene delivery vectors having the corresponding adenoviral gene deletions as described in Example 2.

F. Preparation of a Plasmid Containing Two or More Adenoviral Genes for Complementing Gene-Deleted Adenoviruses

The methods described in the preceding Examples rely on the use of two plasmids, pE4/Hygro and pCLF, or, pCLF and pDEX/E1 for generating adenoviral cell packaging systems. In alternative embodiments, complementing plasmids containing two or more adenoviral genes for expressing of encoded proteins in various combinations are also prepared as described below. The resultant plasmids are then used in various cell systems with delivery plasmids having the corresponding adenoviral gene deletions. The selection of packaging cell, content of the delivery plasmids and content of the complementing plasmids for

10

15

20

30

-58-

use in generating recombinant adenovirus viral vectors thus depends on whether other adenoviral genes are deleted along with the adenoviral fiber gene, and, if so, which ones.

1. Preparation of a Complementing Plasmid Containing Fiber and E1 Adenoviral Genes

A DNA fragment containing sequences for the CMV promoter, adenovirus tripartite leader, fiber gene and bovine growth hormone terminator is amplified from pCLF prepared in Example 1B using the forward primer 5'GACGGATCGGGAGATCTCC3' (SEQ ID NO: 13), that anneals to the nucleotides 1-19 of the pCDNA3 vector backbone in pCLF, and the backward primer 5'CCGCCTCAGAAGCCATAGAGCC3' (SEQ ID NO: 14) that anneals to nucleotides 1278-1257 of the pCDNA3 vector backbone. The fragment is amplified as previously described and then cloned into the pDEX/E1 plasmid, prepared in Example 1D. For cloning in the DNA fragment, the pDEX/E1 vector is first digested with Ndel, that cuts at a unique site in the pMAM vector backbone in pDEX/E1, then the ends are repaired by treatment with bacteriophage T4 polymerase and dNTPs.

The resulting plasmid containing E1 and fiber genes, designated pE1/Fiber, provides dexamethasone-inducible E1 function as described for DEX/E1 and expression of Ad5 fiber protein as described above.

The complete nucleotide sequence of pE1/Fiber is listed in SEQ ID NO: 15 where the nucleotide position 1 corresponds to approximately 1459 nucleotides from the 3' end of the parent vector pMAM sequence. The 5' and 3' ends of the Ad5 E1 gene are located at respective nucleotide positions 1460 and 4998 followed by pMAM backbone and then separated from the Ad5 fiber from pCLF by the filled-in blunt ended Ndel site. The 5' and 3' ends of the pCLF fiber gene fragment are located at respective nucleotide positions 10922-14223 containing elements as previously described for pCLF.

The resultant pE1/Fiber plasmid is then used to complement one or more delivery plasmids expressing E1 and fiber.

The pE1/Fiber construct is then used to transfect a selected host cell as described in Example 1E to generate stable chromosomal insertions preformed as

10

20

-59-

previously described followed by selection on HAT medium. The stable cells are then used as packaging cells as described in Example 2.

2. Preparation of a Complementing Plasmid Containing E4 and Fiber Adenoviral Genes

Plasmid pCLF prepared as described in Example 1B is partially digested with Bgill to cut only at the site in the pCDNA3 backbone. The pE4/Hygro plasmid prepared in Example 1A is digested with BamHI to produce a fragment containing E4. The E4 fragment is then inserted into the BamHI site of pCLF to form plasmid pE4/Fiber. The resultant plasmid provides expression of the fiber gene as described for pCLF and E4 function as described for pE4/Hygro.

A schematic plasmid map of pE4/Fiber, having 10610 bp. The complete nucleotide sequence of pE4/Fiber is listed in SEQ ID NO: 16 where the nucleotide position 1 corresponds to approximately 14 bp from the 3' end of the parent vector pCDNA3 backbone sequence. The 5' and 3' ends of the Ad5 E4 gene are located at respective nucleotide positions 21 and 3149 followed by fused BgIII/BamHI sites and pCDNA3 backbone including the CMV promoter again followed by BgIII/BamHI sites. The adenovirus leader sequence begins at nucleotide position 4051 and extends to 4366 followed by fused BamHI/BgIII sites and the 5' and 3' ends of the fiber gene located at respective nucleotide positions 4372 and 6124.

Stable chromosonal insertions of pE4/Fiber in host cells are obtained as described above.

EXAMPLE 2

Preparation of Adenoviral Gene Delivery Vectors Using Adenoviral Packaging Cell
Lines

Adenoviral delivery vectors are prepared to separately lack the combinations of E1/fiber and E4/fiber. Such vectors are more replication-defective than those previously in use due to the absence of multiple viral genes. A preferred adenoviral delivery vector is replication competent but only via a non-fiber means is one that only lacks the fiber gene but contains the remaining functional adenoviral regulatory and structural genes. Furthermore, these adenovirus delivery vectors have a higher capacity for insertion of foreign DNA.

15

20

25

30

-60-

A. Preparation of Adenoviral Gene Delivery Vectors Having Specific Gene Deletions and Methods of Use

To construct the E1/ fiber deleted viral vector containing the LacZ reporter gene construct, two new plasmids were constructed. The plasmid $p\Delta$ E1B β gal was constructed as follows. A DNA fragment containing the SV40 regulatory sequences and E. coli β -galactosidase gene was isolated from pSV β gal (Promega) by digesting with Vspl, filling the overhanging ends by treatment with Klenow fragment of DNA polymerase I in the presence of dNTP's and digesting with Bam H1. The resulting fragment was cloned into the EcoRV and BamHI sites in the polylinker of pA E1sp1B (Microbix Biosystems, Hamilton, Ontario) to form p Δ E1B etagal that therefore contained the left end of the adenovirus genome with the Ela region replaced by the LacZ cassette (nucleotides 6690 to 4151) of pSVB gal. Plasmid DNA may be prepared by the alkaline lysis method as described by Birnboim and Doly, Nuc. Acids Res., 7:1513-1523 (1978) or by the Quiagen method according to the manufacturer's instruction, from transformed cells used to expand the plasmid DNA was then purified by CsCl-ethidium bromide density gradient centrifugation. Alternatively, plasmid DNAs may be purified from E. coli by standard methods known in the art (e.g. see Sambrook et al.)

The second plasmid (pDV44), prepared as described herein, is derived from pBHG10, a vector prepared as described by Bett *et al.*, *Proc. Natl. Acad. Sci.*, *USA*, 91:8802-8806 (1994) (see, also International PCT application No. WO 95/00655) using methods well known to one of skill in the art. This vector is also commercially available from Microbix and and contains an Ad5 genome with the packaging signals at the left end deleted and the E3 region (nucleotides 28133:30818) replaced by a linker with a unique site for the restriction enzyme Pacl. An 11.9 kb BamHl fragment, which contains the right end of the adenovirus genome, is isolated from pBHG10 and cloned into the BamHl site of pBS/SK(+) to create plasmid p11.3 having approximately 14,658 bp. The p11.3 plasmid was then digested with Pacl and Sall to remove the fiber, E4, and inverted terminal repeat (ITR) sequences.

-61-

This fragment was replaced with a 3,4 kb fragment containing the ITR segments and the E4 gene which was generated by PCR amplification from pBHG10 using the following oligonucleotide sequences:

5' TGTACACCG GATCCGGCGCACACC3' SEQ ID NO: 17; and

5'CACAACGAGCTC AATTAATTAATTGCCACATCCTC3' SEQ ID NO: 18.

These primers incorporated sites for Pacl and BamHI. Cloning this fragment into the Pacl and blunt ended Sall sites of the p11.3 backbone resulted in a substitution of the fused ITRs, E4 region and fiber gene present in pBHG10, by the ITRs and E4 region alone. The resulting p11.3 plasmid containing the ITR and E4 regions, designated plasmid pDV43a, was then digested with BamHI. This BamHI fragment was then used to replace a BamHI fragment in pBHG10 thereby creating pDV44 in a pBHG10 backbone.

In an alternative approach to preparing pDV44 with an additional subcloning step to facilitate the incorporation of restriction cloning sites, the following cloning procedure was performed. pDV44 as above was constructed by removing the fiber gene and some of the residual E3 sequences from pBHG10 (Microbix Biosystems). As above, to simplify manipulations, the 11.9 kb BamHl fragment including the rightmost part of the Ad5 genome was removed from pBHG10 and inserted into pBS/SK. The resulting plasmid was termed p11.3. The 3.4 kb DNA fragment corresponding to the E4 region and both ITRs of 20 adenovirus type 5 was amplified as described above from pBHG10 using the oligonucleotides listed above and subcloned into the vector pCR2.1 (Invitrogen) to create pDV42. This step is the additional cloning step to facilitate the incorporation of a Sall restriction site. pDV42 was then digested with Pacl, which cuts at a unique site (bold type) in one of the PCR primers, and with Sall, 25 which cuts at a unique site in the pCR2.1 polylinker. This fragment was used to replace the corresponding Paci/Xhol fragment of p11.3 (the pBS polylinker adjacent to the Ad DNA fragment contains a unique Xhol site), creating pDV43.

A plasmid designated pDV44 was constructed by replacing the 11.9 kb BamHI fragment of pBHG10 by the analogous BamHI fragment of pDV43. As generated in the first procedure, pDV44 therefore differs from pBHG10 by the

15

20

30

-62-

deletion of Ad5 nucleotides 30819:32743 (residual E3 sequences and all but the 3'-most 41 nucleotides of the fiber open reading frame).

Thus, to summarize, the cloning procedures described above result in the production of a fiber-deleted Ad5 genomic plasmid (pDV44) that was constructed by removing the fiber gene and some of the residual E3 sequences from pBHG10. pDV44 contains a wild-type E4 region, but only the last 41 nucleotides of the fiber ORF (this sequence was retained to avoid affecting expression of the adjacent E4 transcription unit). Plasmids pBHG10 and pDV44 contain unpackageable Ad5 genomes, and must be rescued by cotransfection and subsequent homologous recombination with DNA carrying functional packaging signals. In order to generate vectors marked with a reporter gene, either pDV44 or pBHG10 was cotransfected with pΔE1Bßgal, which contains the left end of the Ad5 genome with an SV40-driven β-galactosidase reporter gene inserted in place of the E1 region.

In general, and as described below, the method for virus production by recombination of plasmids followed by complementation in cell culture involves the isolation of recombinant viruses by cotransfection of any one of the adenovirus packaging cell systems prepared in Example 1, namely 211A, 211B, 211R, A549, Vero cells, and the like, with plasmids carrying sequences corresponding to viral gene delivery vectors.

A selected cell line is plated in dishes and cotransfected with pDV44 and $p\Delta E1B\beta$ gal using the calcium phosphate method as described by Bett *et al.*, *Proc. Natl. Acad. Sci., USA, 91*:8802-8806 (1994). Recombination between the overlapping adenovirus sequences in the two plasmids leads to the creation of a full-length viral chromosome where pDV44 and $p\Delta E1B\beta$ gal recombine to form a recombinant adenovirus vector having multiple deletions. The deletion of E1 and of the fiber gene from the viral chromosome is compensated for by the sequences integrated into the packaging cell genome, and infectious virus particles are produced. The plaques thus generated are isolated and stocks of the recombinant virus are produced by standard methods.

Because of the fiber deletion, a pDV44-derived virus is replication-defective, cells in which it is grown must complement this defect.

-63-

The 211B cell line (a derivative of 293 cells which expresses the wild-type (wt) AD5 fiber and is equivalent to 211A on deposit with ATCC as described in Example 4) was used for rescue and propagation of the virus described here. pDV44 and pΔE1ßgal were cotransfected into 211B cells, and the monolayers were observed for evidence of cytopathic effect (CPE). Briefly, for virus construction, cells were transfected with the indicated plasmids using the Gibco Calcium Phosphate Transfection system according to the manufacturer's instructions and observed daily for evidence of CPE.

One of a total of 58 transfected dishes showed evidence of spreading cell death at day 15. A crude freeze-thaw lysate was prepared from these cells and 10 the resulting virus (termed Ad5. β gal. Δ F) was plaque purified twice and then expanded. To prepare purified viral preparations, cells were infected with the indicated Ad and observed for completion of CPE. Briefly, at day zero, 211B cells were plated in DMEM plus 10% fetal calf serum at approximately 1 X 107 cells/150 cm² flask or equivalent density. At day one, the medium was replaced 15 with one half the original volume of fresh DMEM containing the indicated Ad, in this case Ad5.ßgal. AF, at approximately 100 particles/cell. At day two, an equal volume of medium was added to each flask and the cells were observed for CPE. Two to five days after infection, cells were collected and virus isolated by lysis via four rapid freeze-thaw cycles. Virus was then purified by centrifugation on 20 preformed 15-40% CsCl gradients (111,000 x g for three hours at 4°C). The bands were harvested, dialyzed into storage buffer (10 mM Tris-pH 8.1, 0.9% NaCl, and 10% glycerol), aliquoted and stored at - 70°C. Purified Ad5. Sgal. ΔF virus particles containing human adenovirus Ad5.ßgal.ΔFgenome (described further below) have been deposited with the ATCC on January 15, 1999 as 25 further described in Example 4.

For viral titering, as necessary in the below Examples, Ad preparations were titered by plaque assay on 211B cells. Cells were plated on polylysine-coated 6 well plates at 1.5 x 10⁶ cells/well. Duplicate dilutions of virus stock were added to the plates in 1 ml/well of complete DMEM. After a five hour incubation at 37°C, virus was removed and the wells overlaid with 2

10

15

20

25

30

-64-

ml of 0.6% low-melting agarose in Medium 199 (Gibco). An additional 1 ml of overlay was added at five day intervals.

As a control, the first-generation virus Ad5.ß gal.wt, which is identical to Ad5.ßgal. Δ F except for the fiber deletion, was constructed by cotransfection of pBHG10 and p Δ E1Bßgal. In contrast to the low efficiency of recovery of the fiberless genome (1/58 dishes), all of 9 dishes cotransfected with p Δ E1B β gal and pBHG10 produced virus.

In another embodiment, a delivery plasmid is prepared that does not require the above-described recombination events to prepare a viral vector having a fiber gene deletion. In one embodiment, a single delivery plasmid containing all the adenoviral genome necessary for packaging but lacking the fiber gene is prepared from plasmid pFG140 containing full-length Ad5 that is commercially available from Microbix. The resultant delivery plasmid referred to as pFG140-f is then used with pCLF stably integrated cells as described above to prepare a viral vector lacking fiber. For genetic therapy, the fiber gene can be replaced with a therapeutic gene of interest for preparing a therapeutic delivery adenoviral vector. Methods for producing a fiberless vector with a complete TPL are described in Example 3.

Vectors for the delivery of any desired gene and preferably a therapeutic gene are prepared by cloning the gene of interest into the multiple cloning sites in the polylinker of commercially available $p\Delta E1sp1B$ (Microbix Biosystems), in an analogous manner as performed for preparing $pE1B\beta$ gal as described above. The same cotransfection and recombination procedure is then followed as described herein to obtain viral gene delivery vectors as further discussed in later Examples.

1. Characterization of the Ad5.βgal.ΔF Genome

To confirm that the vector genomes had the proper structures and that the fiber gene was absent from the Ad5.ßgal. Δ F chromosome, the DNA isolated from viral particles was analyzed. Briefly, purified viral DNA was obtained by adding 10 μ l of 10 mg/ml proteinase K, 40 μ l of 0.5 M EDTA and 50 μ l of 10% SDS to 800 μ l of adenovirus-containing culture supernatant. The suspension

15

20

25

was then incubated at 55°C for 60 minutes. The solution was then extracted once with

400 μl of a 24:1 mixture of chloroform:isoamyl alchohol. The aqueous phase was then removed and precipitated with sodium acetate/ethanol. The pellet was washed once with 70% ethanol and lightly dried. The pellet was then suspended in 40 μl of 10 mM Tris-HCl, pH 8.0, 1 mM EDTA. Genomic DNA from Ad5.ßgal.wt and Ad5.ßgal.ΔF produced the expected restriction patterns following digestion with either EcoRl or with Ndel. Southern blotting, performed with standard methods, with labeled fiber DNA as a probe demonstrated the presence of fiber sequence in Ad5.ßgal.wt but not in Ad5.ßgal.ΔF DNA. As a positive control, the blot was stripped and reprobed with labeled E4 sequence. Fiber and E4 sequences were detected by using labeled inserts from pCLF and pE4/Hygro, respectively. E4 signal was readily detectable in both genomes at equal intensities. The complete nucleotide sequence of Ad5.ßgal.ΔF is presented in SEQ ID NO: 23 and is contained in the virus particle on deposit with ATCC.

2. Characterization of the Fiberless Adenovirus Ad5. $oldsymbol{eta}$ gal. Δ F

To verify that Ad5.ßgal.ΔF was fiber-defective, 293 cells (which are permissive for growth of E1-deleted Ad vectors but do not express fiber) were infected with Ad5.ßgal.ΔF or with Ad5.ßgal.wt. Twenty-four hours post infection, the cells were stained with polyclonal antibodies directed either against fiber or against the penton base protein. Cells infected with either virus were stained by the anti-penton base antibody, while only cells infected with the Ad5.ßgal.wt control virus reacted with the anti-fiber antibody. This confirms that the fiber-deleted Ad mutant does not direct the synthesis of fiber protein.

3. Growth of the Fiber-Deleted Ad5.βgal.ΔF Vector in Complementing Cells

Ad5.ßgal.ΔF was found to readily be propagated in 211B cells. As assayed by protein concentration, CsCl-purified stocks of either Ad5.ßgal.ΔF or Ad5.ßgal.wt contained similar numbers of viral particles. The particles appeared to band normally on CsCl gradients. Infectivity of the Ad5.ßgal.ΔF particles was lower than the Ad5.ßgal.wt control, as indicated by an increased particle/PFU ratio. Ad5.ßgal.ΔF was also found to plaque more slowly than the control

10

15

20

25

virus. When plated on 211B cells, Ad5.ßgal.wt plaques appeared within 5-7 days, while plaques of Ad5.ßgal.ΔF continued to appear until as much as 15-18 days post infection. Despite their slower formation, the morphology of Ad5.ßgal.ΔF plaques was essentially normal.

4. Production of Fiberless Ad5.ßgal.ΔF Particles

As Ad5.ßgal.ΔF represents a true fiber null mutation and its stocks are free of helper virus, the fiber mutant phenotype was readily investigated. A single round of growth in cells (such as 293) which do not produce fiber generating a homogeneous preparation of fiberless Ad allowed for the determination of whether such particles would be stable and/or infectious. Either Ad5.ßgal.wt or Ad5.ßgal.ΔF was grown in 293 or 211B cells, and the resulting particles purified on CsCl gradients as previously described. Ad5.ßgal.ΔF particles were readily produced in 293 cells at approximately the same level as the control virus and behaved similarly on the gradients, indicating that there was not a gross defect in morphogenesis of fiberless capsids.

Particles of either virus contained similar amounts of penton base regardless of the cell type in which they were grown. This demonstrated that fiber is not required for assembly of the penton base complex into virions. The Ad5.ßgal.ΔF particles produced in 293 cells did not contain fiber protein. 211B-grown Ad5.ßgal.ΔF also contained less fiber than the Ad5.ßgal.wt control virus. The infectivities of the different viral preparations on epithelial cells correlated with the amount of fiber protein present. The fiberless Ad particles were several thousand-fold less infectious than the first-generation vector control on a per-particle basis, while infectivity of 211B-grown Ad5.ßgal.ΔF was only 50-100 fold less than that of Ad5.ßgal.wt. These studies confirmed fiber's crucial role in infection of epithelial cells via CAR binding.

5. Composition and Structure of the Fiberless Ad5.ßgal.ΔF Particles

The proteins contained in particles of 293-grown Ad5.ßgal. Δ F were compared to those in Ad5.ßgal.wt, to determine whether proteolysis or particle assembly was defective in this fiber null mutant. The overall pattern of proteins in the fiberless particles was observed to be quite similar to that of a

15

20

25

30

first-generation vector, with the exception of reduced intensity of the composite band resulting from proteins Illa and IV (fiber). The fiberless particles also had a reduced level of protein VII. Although substantial amounts of uncleaved precursors to proteins VI, VII, and VIII were not seen, it is possible that the low-molecular weight bands migrating ahead of protein VII represent either aberrantly cleaved viral proteins or their breakdown products.

Cryo-electron microscopy was used to more closely examine the structure of the 293 grown Ad5.ßgal. AF and of Ad5ßgal.wt. The fiber, having an extended stalk with a knob at the end, was faintly visible in favorable orientations of wild-type Ad5 particles, but not in images of the fiberless particles. Filamentous material likely corresponding to free viral DNA was seen in micrographs of fiberless particles. This material was also present in micrographs of the first-generation control virus, albeit at much lower levels.

Three-dimensional image reconstructions of fiberless and wild-type particles at ~20 Å resolution showed similar sizes and overall features, with the exception that fiberless particles lacked density corresponding to the fiber protein. The densities corresponding to other capsid proteins, including penton base and proteins Illa, VI, and IX, were comparable in the two structures. This confirms that absence of fiber does not prevent assembly of these components into virions. The fiber was truncated in the wild-type structure as only the lower portion of its flexible shaft follows icosahedral symmetry. The RGD protrusions on the fiberless penton base were angled slightly inward relative to those of the wild-type structure. Another difference between the two penton base proteins was that there is a ~30 Å diameter depression in the fiberless penton base around the five-fold axis where the fiber would normally sit. The Ad5 reconstructions confirm that capsid assembly, including addition of penton base to the vertices, is able to proceed in the complete absence of fiber.

6. Integrin-Dependent Infectivity of Fiberless Ad5.ßgal.ΔF Particles

While attachment via the viral fiber protein is a critical step in the infection of epithelial cells, an alternative pathway for infection of certain hematopoietic cells has been described. In this case, penton base mediates

10

15

20

25

60

-68-

binding to the cells (via ß2 integrins) and internalization (through interaction with av integrins). Particles lacking fiber might therefore be expected to be competent for infection of these cells, even though on a per-particle basis they are several thousand-fold less infectious than normal Ad vectors on epithelial cells.

To investigate this, THP-1 monocytic cells were infected with Ad5.ßgal.wt or with Ad5.ßgal. AF grown in the absence of fiber. Infection of THP-1 cells was assayed by infecting 2 x 105 cells at the indicated m.o.i. in 0.5 ml of complete RPMI. Forty-eight hours post-infection, the cells were fixed with glutaraldehyde and stained with X-gal, and the percentage of stained cells was determined by light microscopy. The results of the infection assay showed that the fiberless particles were only a few-fold less infectious than first-generation Ad on THP-1 cells. Large differences were seen in plaquing efficiency on epithelial (211B) cells. Infection of THP-1 cells by either Ad5.βgal.ΔF or Ad5.ßgal.wt was not blocked by an excess of soluble recombinant fiber protein, but could be inhibited by the addition of recombinant penton base). These results indicate that the fiberless Ad particles use a fiber-independent pathway to infect these cells. Furthermore, the lack of fiber protein did not prevent Ad5.ßgal\Delta F from internalizing into the cells and delivering its genome to the nucleus, demonstrating that fiberless particles are properly assembled and are capable of uncoating.

The foregoing results with the recombinant viruses thus produced indicates that they can be used as gene delivery tools in cultured cells and *in vivo* as described more fully in the Examples. For example, for studies of the effectiveness and relative immunogenicity of multiply-deleted vectors, virus particles are produced by growth in the packaging lines described in Example 1 and are purified by CsCl gradient centrifugation. Following titering, virus particles are administered to mice via systemic or local injection or by aerosol delivery to lung. The LacZ reporter gene allows the number and type of cells which are successfully transduced to be evaluated. The duration of transgene expression is evaluated in order to determine the long-term effectiveness of treatment with multiply-deleted recombinant adenoviruses relative to the

15

20

25

30

M18369 and M12411. Oligonucleotide primers are designed to amplify the entire coding sequence of the full-length fiber genes, starting from the start codon, ATG, and ending with the termination codon TAA. For cloning purposes, the 5' and 3' primers contain the respective restriction sites BamHl and Notl for cloning into pcDNA plasmid as described in Example 1A. PCR is performed as described above.

The resulting products are then used to construct chimeric fiber constructs by PCR gene overlap extension (Horton et al. (1990) BioTechniques, 8:525-535). The Ad5 fiber tail and shaft regions (5TS; the nucleotide region encoding amino acid residue positions 1 to 403) are connected to the Ad3 fiber head region (3H; the nucleotide region encoding amino acid residue positions 136 to 319) to form the 5TS3H fiber chimera. Conversely, the Ad3 fiber tail and shaft regions (3TS; the nucleotide region encoding amino acid residues positions 1 to 135) are connected to the Ad5 fiber head region (5H; the nucleotide region encoding the amino acid residue positions 404 to 581) to form the 3TS5H fiber chimera. The fusions are made at the conserved TLWT (SEQ ID NO: 19) sequence at the fiber shaft-head junction.

The resultant chimeric fiber PCR products are then digested with BamHI and Notl for separate directional ligation into a similarly digested pcDNA 3.1. The TPL sequence is then subcloned into the BamHI as described in Example 1A for preparing an expression vector for subsequent transfection into 211 cells as described above or into the alternative packaging cell systems as previously described. The resultant chimeric fiber construct-containing adenoviral packaging cell lines are then used to complement adenoviral delivery vectors as previously described. Other fiber chimeric constructs are obtained with the various adenovirus serotypes using a similar approach.

In an alternative embodiment, the use of modified proteins including with modified epitopes (see, e.g., Michael et al. (1995) Gene Therapy, 2:660-668 and International PCT application Publication No. WO 95/26412, which describe the construction of a cell-type specific therapeutic viral vector having a new binding specificity incorporated into the virus concurrent with the destruction of the endogenous viral binding specificity). In particular, the authors described the

production of an adenoviral vector encoding a gastrin releasing peptide (GRP) at the 3' end of the coding sequence of the Ad5 fiber gene. The resulting fiber-GRP fusion protein was expressed and shown to assemble functional fiber trimers that were correctly transported to the nucleus of HeLa cells following synthesis.

Similar constructs are contemplated for use in the complementing adenoviral packaging cell systems for generating new adenoviral gene delivery vectors that are targetable, replication-deficient and less immunogenic. Heterologous ligands contemplated for use herein to redirect fiber specificity range from as few as 10 amino acids in size to large globular structures, some of which necessitate the addition of a spacer region so as to reduce or preclude steric hindrance of the heterologous ligand with the fiber or prevent trimerization of the fiber protein. The ligands are inserted at the end or within the linker region. Preferred ligands include those that target specific cell receptors or those that are used for coupling to other moieties such as biotin and avidin.

A preferred spacer includes a short 12 amino acid peptide linker composed of a series of serines and alanine flanked by a proline residue at each end using routine procedures known to those of skill in the art. The skilled artisan will be with the preparation of linkers to accomplish sufficient protein presentation and to alter the binding specificity of the fiber protein without compromising the cellular events that follow viral internalization. Moreover, within the context of this disclosure, preparation of modified fibers having ligands positioned internally within the fiber protein and at the carboxy terminus as described below are contemplated for use with the methods described herein.

25

15

20

The preparation of a fiber having a heterologous binding ligand is prepared essentially as described in the above-cited paper. Briefly, for the ligand of choice, site-directed mutagenesis is used to insert the coding sequence for a linker into the 3' end of the Ad5 fiber construct in pCLF as prepared in Example

30 1.

The 3' or antisense or mutagenic oligonucleotide encodes a preferred linker sequence of ProSerAlaSerAlaSerAlaSerAlaProGlySer (SEQ ID NO: 20)

20

followed by a unique restriction site and two stop codons, respectively, to allow the insertion of a coding sequence for a selected heterologous ligand and to ensure proper translation termination. Flanking this linker sequence, the mutagenic oligonucloetide contains sequences that overlap with the vector sequence and allow its incorporation into the construct. Following mutagenesis of the pCLF sequence adding the linker and stop codon sequences, a nucleotide sequence encoding a preselected ligand is obtained, linkers corresponding to the unique restriction site in the modified construct are attached and then the sequence is cloned into linearized corresponding restriction site. The resultant fiber-ligand construct is then used to transfect 211 or the alternative cell packaging systems previously described to produce complementing viral vector packaging systems.

In a further embodiment, intact fiber genes from different Ad serotypes are expressed by 211 cells or an alternative packaging system as previously described. A gene encoding the fiber protein of interest is first cloned to create a plasmid analogous to pCLF, and stable cell lines producing the fiber protein are generated as described above for Ad5 fiber. The adenovirus vector described which lacks the fiber gene is then propagated in the cell line producing the fiber protein relevant for the purpose at hand. As the only fiber gene present is the one in the packaging cells, the adenoviruses produced contain only the fiber protein of interest and therefore have the binding specificity conferred by the complementing protein. Such viral particles are used in studies such as those described above to determine their properties in experimental animal systems.

EXAMPLE 3

25 Tripartite leader sequences (TPLs) that are useful in enhancing the expression of complementing adenoviral proteins, particularly fiber protein, for use in preparing an adenoviral gene delivery vector are provided. The complete Ad5 TPL was constructed by assembling PCR fragments. First, the third TPL exon (exon 3) (nt 9644-9731 of the Ad5 genome) was amplified from Ad5 genomic DNA using the synthetic oligonucleotide primers 5'CTCAACAATTGTGGATCCGTACTCC3'(SEQ ID No. 24) and 5'GTGCTCAGCAGATCTTGCGACTGTG3' (SEQ ID No. 25). The resulting

20

25

30

-73-

product was cloned to the BamHI and BgIII sites of pΔE1Sp1a (Microbix Biosystems) using sites in the primers (shown in bold) to create plasmid pDV52. A fragment corresponding to the first TPL exon (exon 1), the natural first intron (intron 1), and the second TPL exon (exon 2) (Ad5 nt 6049-7182) was then amplified using primers 5'GGCGCGTTCGGATCCACTCTCTCC3' (SEQ ID No. 26) and 5'CTACATGCTAGGCAGATCTCGTTCGGAG3' (SEQ ID No. 27),and cloned into the BamHI site of pDV52 (again using sites in the primers) to create pDV55.

This plasmid contains a 1.2 kb BamHI/BgllI fragment containing the first TPL exon, the natural first intron, and the fused second and third TPL exons. The nucleotide sequence of the complete TPL containing the noted 5' and 3' restriction sites is shown in SEQ ID No 28 with the following nucleotide regions identified: 1-6 nt BamHI site; 7-47 nt first leader segment (exon 1); 48-1068 nt natural first intron (intron 1); 1069-1140 nt second leader segment (exon 2); 1141-1146 nt fused BamHI and BglII sites; 1147-1234 nt third leader segment (exon 3); and 1235-1240 nt BglII site.

EXAMPLE 4

Deposit of Materials

The following cell lines and plasmids were deposited on September 25, 1996, with the American Type Culture Collection, 10801 University Blvd, Manassas, Virginia, USA (ATCC) under the provisions of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure and the Regulations thereunder (Budapest Treaty):Plasmid pE4/Hygro (accession number 97739), Plasmid pCLF (accession number 97737), 211 Cell Line (accession number CRL-12193) and 211A Cell Line (accession number CRL-12194)

The following virus, Ad5. β gal. Δ F, was deposited on January 15, 1999, with the ATCC as listed above and provided with accession number VR2636.

Additionally, plasmids pDV60, pDV67, pDV69, pDV80 and pDV90 were deposited at the ATCC on January 5, 2000 and provided with accession numbers PTA-1144, PTA-1145, PTA-1146, PTA-1147 and PTA-1148 respectively.

20

25

-74-

EXAMPLE 5

Preparation and Use of Adenoviral Packaging Cell Lines Containing Plasmids Containing Alternative TPLs

Plasmids containing tripartite leaders (TPLs) have been constructed. The resulting plasmids that contain different selectable markers, such as neomycin and zeocin, were then used to prepare fiber-complementing stable cell lines for use as for preparing adenoviral vectors.

A. pDV60

Plasmid pDV60 was constructed by inserting this TPL cassette of SEQ ID

No. 28 into the BamHI site upstream of the Ad5 fiber gene in pcDNA3/Fiber, a
neomycin selectable plasmid (see, e.g., U.S. application Serial No. 09/482,682
(also filed as International PCT application No. PCT/US00/00265 on January 14,
2000); see also Von Seggern et al.
(1998) J. Gen Virol., 79: 1461-1468). The nucleotide sequence of pDV60 is

15 listed in SEQ ID NO: 29. Plasmid pDV60 has been deposited in the ATCC under accession number PTA-1144.

B. pDV61

To construct pDV61, an Asp718/Notl fragment containing the CMV promoter, partial Ad5 TPL, wildtype Ad5 fiber gene, and bovine growth hormone terminator was transferred from pCLF (ATCC accession number 97737; and described in copending U.S. application Serial No. 09/482,682 (also filed as International PCT application No. PCT/US00/00265 on January 14, 2000);), to a zeocin selectable cloning vector referred to as pCDNA3.1/Zeo (+) (commerically available from Invitrogen and for which the sequence is known).

C. pDV67

In an analogous process, pDV67 containing complete TPL was constructed by transferring an Asp 718/Xbal fragment from pDV60 into pcDNA3.1/Zeo(+) backbone. The nucleotide sequence of pDV67 is set forth in

15

20

25

30

SEQ ID No. 30. Plasmid pDV67 is available from the ATCC under accession number PTA-1145.

D. pDV69

To prepare pDV69 containing a modified fiber protein, the chimeric Ad3/Ad5 fiber gene was amplified from pGEM5TS3H (Stevenson *et al.* (1995) *J. Virol.*, 69: 2850-2857) using the primers 5'ATGGGAT CAAGATGAAGCGCGCAAGACCG3' (SEQ ID No. 31) and 5'CACTATAGCGGCCGCATTCTCAGTCATCTT3' (SEQ ID No. 32), and cloned to the BamHI and NotI sites of pcDNA3.1/Zeo(+) via new BamHI and NotI sites engineered into the primers to create pDV68. Finally, the complete TPL fragment described above was then added to the unique BamH1 site of pDV68 to create pDV69. The nucleotide sequence of pDV69 is listed in SEQ ID No. 33 and has been deposited in the ATCC under accession number PTA-1146.

E. Preparation of Stable Adenovirus Packaging Cell Lines

E1-2a S8 cells are derivatives of the A549 lung carcinoma line (ATCC # CCL 185) with chromosomal insertions of the plasmids pGRE5-2.E1 (also referred to as GRE5-E1-SV40-Hygro construct and listed in SEQ ID No. 34) and pMNeoE2a-3.1 (also referred to as MMTV-E2a-SV40-Neo construct and listed in SEQ ID No. 35), which provide complementation of the adenoviral E1 and E2a functions, respectively. This line and its derivatives were grown in Richter's modified medium (BioWhitaker) + 10% FCS. E1-2a S8 cells were electroporated as previously described (Von Seggern *et al.* (1998) *J. Gen Virol.*, 79: 1461-1468) with pDV61, pDV67, or with pDV69, and stable lines were selected with zeocin (600 μg/ml).

The cell line generated with pDV61 is designated 601. The cell line generated with pDV67 is designated 633 while that generated with pDV69 is designated 644. Candidate clones were evaluated by immunofluorescent staining with a polyclonal antibody raised against the Ad2 fiber. Lines expressing the highest level of fiber protein were further characterized.

For the S8 cell complementing cell lines, to induce E1 expression, 0.3 μ M of dexamethasone was added to cell cultures 16-24 hours prior to challenge with virus for optimal growth kinetics. For preparing viral plaques, 5 X 10⁵

15

25

-76-

cells/well in 6 well plates are prepared and pre-induced with the same concentration of dexamethasone the day prior to infection with 0.5 $\mu\mathrm{M}$ included at a final concentration in the agar overlay after infection.

Development of Cell Lines for Complementation of E1'/E2a' Vectors

The Adenovirus 5 genome was digested with Scal enzyme, separated on an agarose gel, and the 6,095 bp fragment containing the left end of the virus genome was isolated. The complete Adenovirus 5 genome is registered as Genbank accession #M73260, incorporated herein by reference, and the virus is available from the American Type Culture Collection, Manassas, Virginia, U.S.A., 10 under accession number VR-5. The Scal 6,095 bp fragment was digested further with Clal at bp 917 and Bglll at bp 3,328. The resulting 2,411 bp Clal to Bglll fragment was purified from an agarose gel and ligated into the superlinker shuttle plasmid pSE280 (Invitrogen, San Diego, CA), which was digested with Clal and Bglll, to form pSE280-E.

Polymerase chain reaction (PCR) was performed to synthesize DNA encoding an Xhol and Sall restriction site contiguous with Adenovirus 5 DNA bp 552 through 924. The primers which were employed were as follows: 5' end, Ad5 bp 552-585:

5'-GTCACTCGAGGACTCGGTC-GACTGAAAATGAGACATATTATCTGCCACGGA 20 CC-3' (SEQ ID No 36)

3' end, Ad5 bp 922-891:

5'-CGAGATCGATCACCTCCGGTACAAGGTTTGGCATAG-3' (SEQ ID No. 37)

This amplified DNA fragment (sometimes hereinafter referred to as Fragment A) then was digested with Xhol and Clal, which cleaves at the native Clal site (bp 917), and ligated to the Xhol and Clal sites of pSE280-E, thus reconstituting the 5' end of the E1 region beginning 8 bp upstream of the ATG codon.

PCR then was performed to amplify Adenovirus 5 DNA from bp 3,323 through 4,090 contiguous with an EcoRI restriction site. The primers which were employed were as follows:

5' end, Ad5 bp 3323-3360:

20

25

-77-

5'-CATGAAGATCTGGAAGGTGCTGAGGTACGATGAGACC-3' (SEQ ID No. 38); and

3' end, Ad5 bp 4090-4060:

5'-GCGACTTAAGCAGTCAGCTG-AGACAGCAAGACACTTGCTTGATCCAAATCC -3' (SEQ ID No. 39).

This amplified DNA fragment (sometimes hereinafter referred to as Fragment B) was digested with Bglll, thereby cutting at the Adenovirus 5 Bglll site (bp 3,382) and EcoRl, and ligated to the Bglll and EcoRl sites of pSE280-AE to reconstruct the complete E1a and E1b region from Adenovirus 5 bp 552 through 4,090. The resulting plasmid is designated pSE280-E1.

A construct containing the intact E1a/b region under the control of the synthetic promoter GRE5 was prepared as follows. The intact E1a/b region was excised from pSE280-E1, which was modified previously to contain a BamHI site 3' to the E1 gene, by digesting with Xhol and BamHI. The Xhol to BamHI fragment containing the E1a/b fragment was cloned into the unique Xhol and BamHI sites of pGRE5-2/EBV (U.S. Biochemicals, Cleveland, Ohio) to form pGRE5-E1).

Bacterial transformants containing the final construct were identified. Plasmid DNA was prepared and purified by banding in CsTFA prior to use for transfection of cells.

Construction of plasmid including Adenovirus 5 E2A sequence.

The Adenovirus 5 genome was digested with BamHI and Spel, which cut at bp 21,562 and 27,080, respectively. Fragments were separated on an agarose gel and the 5,518 bp BamHI to Spel fragment was isolated. The 5,518 bp BamHI to Spel fragment was digested further with Smal, which cuts at bp 23,912. The resulting 2,350 bp BamHI to Smal fragment was purified from an agarose gel, and ligated into the superlinker shuttle plasmid pSE280, and digested with BamHI and Smal to form pSE280-E2 BamHI-Smal.

PCR then was performed to amplify Adenovirus 5 DNA from the Smal site at bp 23,912 through 24,730 contiguous with Nhel and EcoRI restriction sites. The primers which were employed were as follows: 5' end, Ad5 bp 24,732-24,708:

20

25

30

-78-

5'-CACGAATTCGTCAGCGCTTCTCGTCGCGTCCAAGACCC-3' (SEQ ID No. 40); 3' end, Ad5 bp 23,912-23,934:

5'-CACCCGGGGAGGCGGCGCGACGGGGACGGG-3' (SEQ ID No. 41)

This amplified DNA fragment was digested with Smal and EcoRl, and ligated to the Smal and EcoRl sites of pSE280-E2 Bam-Sma to reconstruct the complete E2a region from Ad5 bp 24,730 through 21,562. The resulting construct is pSE280-E2a.

In order to convert the BamHI site at the 3' end of E2a to a Sall site, the E2a region was excised from pSE280-E2a by cutting with BamHI and NheI, and recloned into the unique BamHI and NheI sites of pSE280. Subsequently, the E2a region was excised from this construction with NheI and Sall in order to clone into the NheI and Sall sites of the pMAMneo (Clonetech, Palo Alto, CA) multiple cloning site in a 5' to 3' orientation, respectively. The resulting construct is pMAMneo E2a.

Bacterial transformants containing the final pMAMneo-E2a were identified. Plasmid DNA was prepared and purified by banding in CsTFA. Circular plasmid DNA was linearized at the Xmnl site within the ampicillin resistance gene of pMAMneo-E2a, and further purified by the phenol/chloroform extraction and ethanol precipitation prior to use for transfection of cells. Transfection and selection of cells.

In general, this process involved the sequential introduction, by calcium phosphate precipitation, or other means of DNA delivery, of two plasmid constructions each with a different viral gene, into a single tissue culture cell. The cells were transfected with a first construct and selected for expression of the associated drug resistance gene to establish stable integrants. Individual cell clones were established and assayed for function of the introduced viral gene. Appropriate candidate clones then were transfected with a second construct including a second viral gene and a second selectable marker. Transfected cells then were selected to establish stable integrants of the second construct, and cell clones were established. Cell clones were assayed for functional expression of both viral genes.

15

20

25

30

40

-79-

A549 (ATCC Accession No. CCL-185) were used for transfection.

Appropriate selection conditions were established for G418 and hygromycin B by standard kill curve determination.

Transfection of A549 cells with plasmids including E1 and E2a regions.

pMAMNeo-E2a was linearized with Xmnl with the Amp^R gene, introduced into cells by transfection, and cells were selected for stable integration of this plasmid by G418 selection until drug resistant colonies arose. The clones were isolated and screened for E2a expression by staining for E2a protein with a polyclonal antiserum, and visualizing by immunofluorescence. E2a function was screened by complementation of the temperature-sensitive mutant Ad5ts125 virus which contains a temperature-sensitive mutation in the E2a gene. (Van Der Vliet, et al., J. Virology, Vol. 15, pgs. 348-354 (1975)). Positive clones expressing the E2a gene were identified and used for transfection with the 7 kb EcoRV to Xmnl fragment from pGRE5-E1, which contains the GRE5 promoted E1a/b region plus the hygromycin^R gene. Cells were selected for hygromycin resistance and assayed for E1a/b expression by staining with a monoclonal antibody for the E1 protein (Oncogene Sciences, Uniondale, N.Y.). E1 function was assayed by ability to complement an E1-deleted vector. At this point, expression and function of E2a was verified as described above, thus establishing the expression of E1a/b and E2a in the positive cell clones.

A transfected A549 (A549 (ATCC Accession No. CCL-185);) cell lines showed good E1a/b and E2a expression and was selected for further characterization. It was designated the S8 cell line.

 G. Preparation of Adenoviral Vectors Containing Ad5.βgal.ΔF Genome in S8 Improved Fiber-Complementing Cell Lines

To prepare adenoviral vectors containing Ad5. β gal. Δ F (Ad5. β gal. Δ F has been was deposited the ATCC under accession number VR2636) in S8 cells containing alternative forms of TPL for enhancing the expression of fiber proteins, the protocol as described in Example 2 for preparing Ad5. β gal. Δ F in 211B cells was followed with the exception of pretreatment with 0.3 μ M dexamethasone for 24 hours as described above. Thus, viral particles with the wildtype Ad5 fiber protein on their surface and containing the fiberless

-80-

Ad5. β gal. Δ F genome were produced in 633 cells. Particles produced in 644 cells also contained the fiberless Ad5. β gal. Δ F genome, but had the chimeric 5T3H fiber protein, with the Ad3 fiber knob, on their surface.

Thus, these viral preparations, prepared as described herein are useful for targeting delivery of the Ad5.βgal.ΔF, Ad5.GFP.ΔF, or other similarly constructed fiberless genome with either wild-type or modified fibers. Preferably for purposes herein the fibers are from an Ad serotype D virus, more preferably from Ad37.

EXAMPLE 6

10 Pseudotyping and Infectivity of Recombinant Adenoviral Vectors
Produced with Improved Fiber-Complementing Cell Lines

A. Pseudotyping of Ad5.βgal.ΔF

To verify that adenoviral vectors were produced had altered tropisms, viral particles were purified from either 633 or 644 cells and were then Western blotted and probed with a polyclonal rabbit antibody against the Ad2 fiber (which detects the Ad5 and chimeric 5T3H fiber proteins).

B. Infectivity of Cells with 633 or 644 Generated Virus Particles The cell lines, 633 or 644, prepared as described above, were infected with the indicated number of particles/cell of Ad5.βgal.ΔF and virus particles produced.
20 Virus was then used to infect selected cell lines, including 211B, MRC-5 human fibroblasts, A-10 rat aortic endothelial cells, and THP-1 human monocytic cells. Unbound virus was removed by washing the cells and the cells were further incubated at 37°C for 48 hours. Cells were then fixed with glutaraldehyde and stained with X-gal. The percentage of stained cells was then determined by light microscopy where all experiments were done in triplicate.

The results indicated that adenoviral vectors could be retargeted by pseudotyping using packaging cell lines expressing different fiber proteins. Particles containing either fiber were equally infectious on 211B cells, while MRC-5 fibroblasts and THP-1 cells were more readily infected by virus containing the chimeric fiber. The A-10 rat endothelial cells were more readily infected by particles containing the wildtype Ad5 fiber protein.

25

30

-81-

EXAMPLE 7

Transient Transcomplementation

The ability of adenovirus type 5 (Ad5) to deliver therapeutic genes to cells is mediated by the interaction of the adenoviral fiber protein with the coxsackievirus-adenoviral receptor (CAR). Because a wide-range of cells express CAR, it was thought that it would be difficult to use adenoviruses to deliver genes to specific cell types. A system for testing modified fiber genes to identify tropisms of interest is described in copending U.S. application Serial No. 09/482,682 (also filed as International PCT application No.

10 PCT/US00/00265 on January 14, 2000). An *in vitro* system has been developed that involves infection of tissue culture cells with a fiber-deleted Ad and transient co-transfection with a plasmid directing fiber expression. This system allows one to produce and evaluate modified fibers expressed on a viral particle. This system can be used to produce therapeutic quantities of adenoviral vectors with modified fiber proteins, with such fibers having a new tropism added by insertion of a desired ligand into the fiber gene. These fibers may also have the natural tropism (*i.e.* binding to CAR) ablated.

Plasmids used were pDV60 and pDV55 were prepared as described herein and in U.S. application Serial No. 09/482,682 (also filed as International PCT application No. PCT/US00/00265 on January 14, 2000). pDV60 is an pcDNA3.1-based expression plasmid that contains the CMV promoter, Ad5 tripartite leader, an intron, and the Ad5 fiber gene sequence. pDV55 contains no fiber gene and serves as the negative control. Ad5.βgal.ΔF and 211B are described above. 293T cells are identical to 293 cells except they express an integrated SV40 large T antigen gene. HDF cells are human diploid fibroblasts. 293T cells express CAR and α_v integrins; HDF cells express α_v integrins but no CAR. Transfections with fiber expression plasmids were performed with Lipofectamine (GIBCO-BRL) using 20mg DNA and 50ml Lipofectamine per 15cm dish. Cells were maintained in DMEM supplemented with 10% fetal bovine serum.

The fiber deletion mutation of Ad5. β gal. Δ F is complemented in *trans* by passaging virions through 211B, a cell line that stably expresses functional Ad5

20

25

-82-

fiber. The present system was designed to complement Ad5. β gal. Δ F by modified fibers expressed from transfected episomal plasmids in 293T cells. The result is a simplified and rapid method to incorporate modified fibers on a viral particle containing the Ad5. β gal. Δ F genome that does not require propagation of the virus.

The feasibility of transcomplementation of Ad5.βgal.ΔF with episomal fiber-expressing plasmids was demonstrated in the following experiment. 293T cells were transfected with one of two plasmids: pDV55, which expresses no fiber or pDV60, which expresses wildtype Ad5 fiber. Fiber expression persists for at least six days. Twenty-four hours after transfection, these cells were infected at 2000 particles/cell with Ad5.βgal.ΔF passaged through 211B cells. Seventy-two hours later, a crude viral lysate (CVL) was generated by exposing the cells to five freeze-thaw cycles. Viral particles were purified by cesium chloride gradient centrifugation. The resulting virions incorporated the fiber expressed from the episomal plasmid, as confirmed by Western blots performed with an antibody specific to the Ad5 fiber.

Episomal plasmid transcomplementation system is suitable for quickly expressing and evaluating the properties of modified fibers in the context of a viral particle. Episomal plasmid transcomplementation will also be of great utility for quickly evaluating a bank of modified fibers for other binding properties, including new tropisms and the ablation of the native tropism. In addition to the rapid generation and testing of large numbers of modified fibers, there are other advantages to the Ad5. $oldsymbol{eta}$ gal. ΔF transcomplementation system in terms of production and safety. Episomal plasmid transcomplementation has the inherent advantage over transcomplementation in that it is not necessary to make a stable cell line for every modified fiber for complementation with Ad5. β gal. Δ F. Because the Ad5. $oldsymbol{eta}$ gal. Δ F is deleted in E1, E3 and fiber, there is an additional gene deletion, which should render it very suitable for gene therapy. In addition, the presence of the fiber gene deletion decreases the opportunity to generate replication-competent virus via recombination in the packaging cells. A single Ad vector preparation can be retargeted to any number of different cell types simply by transfecting the cells with the appropriate fiber-expression construct.

20

30

-83-

EXAMPLE 8

Preparation of Adenoviral Gene Delivery Vectors Containing the Ad37 fiber protein

This example describes construction of packaging cell lines expressing the Ad37 fiber protein, and their use in generating particles of a fiber-deleted Ad vector (such as Ad5.\(\beta\)gal.\(\Delta\)F) containing this fiber protein. The fiber protein is attached to the viral capsid by binding to the penton base protein through its N-terminus, and the Ad37 fiber was modified in order to make its N-terminal sequence more closely match that of the Ad5 protein to ensure that it would efficiently bind the Ad5 penton base in these vectors.

A. Materials and methods

Cell lines and wild-type adenovirus. Human A549 lung carcinoma epithelial cells and human Chang C conjunctival cells (American Type Culture Collection) were maintained in complete Dulbecco's Modified Eagle Medium (DMEM) with 10% fetal bovine serum. Wild-type Ad19p and Ad37 (ATCC) were propagated in A549 cells and purified by banding on $CsCl_2$ density gradients as previously described (Huang *et al.* (1999) *J. Virol.* 73:2798-2802). Viral protein concentration was determined by the Bio-Rad Protein Assay, and was used to calculate the number of viral particles based on the known molecular weight of Ad2 virions (1 μ g = 4 x 10⁹ particles).

- B. Construction of the Ad37 fiber expressing cell lines and the recombinant Ad37 knob protein.
 - Construction of an Expression Plasmid for the Ad37 Fiber Protein (pDV80)

25 The plasmid designated pDV80 (see, SEQ ID No. 42) prepared for expression of the Ad37 fiber protein in mammalian cells, uses the same regulatory elements as the elements in pDV60, pDV67, and pDV69 to express the Ad37 fiber in packaging lines. It was constructed in two steps.

First, the Ad37 fiber open reading frame was amplified from Ad37 genomic DNA using synthetic oligonucleotide primers, L37: 5' TGT CCT GGA TCC AAG ATG AAG CGC GCC CGC CCC AGC GAA GAT GAC TTC 3'(SEQ ID NO. 43) and 37FR: 5' AAA CAC GGC GGC CGC TCT TTC ATT CTT G 3' SEQ ID NO. 44). L37 contains nucleotides (underlined) that differ from the Ad37

15

20

25

-84-

genomic sequence in order to add a unique BamH1 site (bold) before the start codon (italicized) and to create point mutations that make the N-terminal sequence of the fiber more closely match the N-terminal sequence of the Ad5 fiber protein as follows:

37FR also incorporates a unique *Not*1 site (bold). The PCR product was inserted into the *Bam*H1 and *Not*1 sites of pCDNA3.1zeo(+) (Invitrogen) to create pDV78. The correct sequence of the Ad37 fiber protein, including inserted changes, was confirmed by sequencing.

Two point mutations in the fiber gene in the 705 line, S356 to P356 and I362 to T362, were discovered by the sequencing. The mutations are not in the receptor binding domain in Ad37 fiber gene in the 705 cell line. They are buried in the knob trimer interface. To confirm that the these mutations do not affect receptor binding, the Ad37 fiber protein with the correct sequence was recloned, and 293T cells transfected with the virus and subsequently infected with Ad5.GFPΔF to produce Ad37 pseudotyped virus. The results were the same as the results of the experiments with Ad37 pseudotyped virus produced from line 705 (see, Wu *et al.* (2001) *Virology 279*:78-89).

Second, a 1.2 kb Bam H1/Bg/ II fragment containing an adenovirus type 5 tripartite leader was excised from pDV55 (see EXAMPLE 3) and inserted into the Bam H1 site of pDV78 to create pDV80 (SEQ ID No 42). Plasmid pDV80 has been deposited in the ATCC under accession number PTA-1147.

Construction of the recombinant Ad37 knob protein

Recombinant Ad37 knob protein containing an N-terminal T7•Tag was produced in *E. coli* using the PET expression system (Novagen). Ad37 fiber DNA (GenBank accession number U69132) was PCR amplified from wild-type Ad37 genomic DNA using the following primers (SEQ ID Nos. 48 and 49): 5' GGATCCATGGGATACTTGGTAGCA 3' (BamHI site underlined and 5' GCAACTCGAGTCATTCTTGGGCAATATAGG 3'(Xhol site underlined).

20

25

30

-85-

The PCR reactions were performed at 94°C (denaturation), 55°C (annealing), 72°C (extension, 30 cycles) using *Taq* DNA polymerase (Qiagen). The amplified DNA fragments, which contained residues 172 to 365 of the Ad37 fiber protein with the addition of an N-terminal start codon (italicized), were purified and subcloned into the pCR-TOPO vector using the TA-Cloning Kit (Invitrogen). No replication errors were found by DNA sequencing. Plasmids from cultured transformed colonies were purified and digested with *Bam*HI and *Xho*I. The fragment was inserted into the *Bam*HI and *Xho*I sites of the bacterial expression vector, pET21a (Novagen), and transformed into (DE3)pLYS S expression cells (Invitrogen). Colonies were selected for knob expression by induction with 1 mM IPTG for four hours at 37°C and knob expression was determined by SDS-PAGE. The colony displaying highest knob expression was used for large-scale knob expression and induced with 0.5 mM IPTG at 30°C for four hours.

The recombinant T7•Tagged Ad37 knob protein was purified from sonicated bacteria using the T7•Tag Affinity Purification Kit as recommended by the manufacturer (Novagen). Recovered protein was analyzed for purity by SDS-PAGE followed by Coomassie staining or Western blotting with an HRP-conjugated α -T7•Tag monoclonal antibody as described by the manufacturer (Novagen) or an α -Ad37 fiber rabbit antibody.

3. Preparation of Cell Lines that Express the Ad37 fiber protein Plasmid pDV80 DNA was purified using the Qiagen method and electroporated into the adenovirus-complementing cell line E1-2a S8 (see Examples herein; see also, Gorziglia et al. (1996) J. Virology 70:4173-4178; and Von Seggern et al. (1998) J. Gen. Virol. 79:1461-1468). Stable clones were selected with 600 µg/ml zeocin (Invitrogen).

Clones were expanded and were screened for fiber expression by indirect immunofluorescence (Von Seggern et al. (1998) J. Gen. Virol. 79:1461-1468) using a rabbit polyclonal antibody directed against the Ad37 fiber (a-Ad37 fiber rabbit antibody) raised by immunizing rabbits with recombinant Ad37 fiber protein. Two clones (lines 705 and 731) that expressed the protein at a uniformly high level were selected.

15

20

25

30

-86-

EXAMPLE 9

Production of Pseudotyped Ad Vector Particles

To generate vector particles equipped ('pseudotyped') with the Ad37 fiber protein, the Ad37 fiber-expressing 705 cells were infected (approximately 1000 particles/cell) with Ad5. β gal. Δ F or with Ad5.GFP. Δ F.

Materials and methods

Ad5.βgal.ΔF

The construction of Ad5.βgal.ΔF is described in Example 2 (it has been deposited on January 15, 1999, with the ATCC as listed above under accession number VR2636; see also, Von Seggern *et al.* (1999) *J.Virol.* 73:1601-1608; copending U.S. application Serial No. 09/482,682 filed January 14, 2000, and also International PCT application No. PCT/US00/00265, filed January 14, 2000).

Ad5.GFP.ΔF

Ad5.GFP.ΔF was constructed by recombination in bacteria using a modification of the AdEasy System (see, U.S. Patent No. 5,922,576; see, also He *et al.* (1998) *Proc. Natl. Acad. Sci. U.S.A. 95*:2509-2514; the system is publicly available from the authors and other sources).

First, a fiber-deleted genomic plasmid was constructed by removing the fiber gene from pAdEasy-1 (see, U.S. Patent No. 5,922,576; and He *et al.* (1998) *Proc. Natl. Acad. Sci. U.S.A.* 95:2509-2514; the AdEasy system and vectors are publicly available from He *et al.* at Johns Hopkins University). Plasmid pAdEasy-1 contains the entire Ad5 genome, except for nucleotides 1-3,533, which encompass the E1 genes, and nucleotides 28,,130-30,820, which encompass the E3 gene.

Plasmid pDV43 (see Example 2; see, also Von Seggern *et al.* (1999) J.Virol. 73:1601-1608) was digested with Pac1, the ends blunted by treatment with the large fragment of E. coli DNA polymerase and dNTPs, and the product re-ligated to produce plasmd pDV76. The resulting plasmid pDV76 is identical to pDV43 except for loss of the Pac1 site and contains the right end of the Ad5 genome with E3 and fiber deletions. A 4.23 kb fragment from PDV76 was amplified using the oligonucleotide primers (SEQ ID Nos. 50 and 51:

-87-

5' CGC GCT GAC TCT TAA GGA CTA GTT TC 3', including the unique *Spe1* site in the Ad5 genome (bold); and 5' GCG CTT AAT TAA CAT CAT CAA TAA TAT ACC TTA TTT T 3', including a new *Pac1* site (bold) adjacent to the right Ad5 ITR. Hence the resulting PCR amplified fragment contains nucleotides 27,082 to 35,935 of the Ad5 genome with deletions of nucleotides 28,133 to 32,743 (the E3 and fiber genes), and was used to replace the corresponding *Spe1/Pac1* fragment of pAdEasy 1 (see, U.S. Patent No. 5,922,576) to create pDV77.

Second, *E. coli* strain BJ5183 was electroporated with a mixture of pDV77 and *Pme*1-linearized pAdTrack as described (U.S. Patent No. 5,922,576; He *et al.* (1998) *Proc. Natl. Acad. Sci. U.S.A. 95*:2509-2514), and DNA was isolated from kanamycin-resistant colonies. The resulting plasmid, pDV83, contains a complete Ad5 genome with E1-, E3-, and fiber-deletions with a CMV-driven GFP reporter gene inserted at the site of the E1 deletion. The full length Ad chromosome was isolated by *Pac*1 digestion, and transfected into the E1-and fiber-complementing 633 cells (Von Seggern *et al.* (2000) *J. Virol. 74*:354-362). The 633 cells were produced by electroporating pDV67 (SEQ ID No. 30, deposited under ATCC accession number PTA-1145) into the E1-2a S8 cells, described above. The recovered virus Ad5.GFP.ΔF was then plaque purified by plating on 633 cells and virus stocks were prepared by freeze-thawing cell pellets.

Ad5-pseudotype particle production Particles with Ad5 fiber

Ad5-pseudotyped particles were generated by virus growth in 633 cells, which express the wild type Ad5 fiber protein. Viral particles were isolated and purified over CsCl gradients (Von Seggern et al. (1999) J. Virol. 73:1601-1608; purified by centrifugation on preformed 15-40% CsCl gradients (111,000 x g for three hours at 4°C)). For analysis of viral proteins, ten µg of the purified particles were electrophoresed on 8-16% gradient gels and the protein transferred to nylon membranes. The resulting blot was probed with rabbit polyclonal antibodies raised against recombinant Ad37 fiber or Ad5 fiber or penton base proteins expressed in baculovirus-infected cells.

15

20

Particles with Ad37 fiber

Cells from the Ad37 fiber producing cell line 705 were infected at approximately 1000 particles/cell with Ad5.8gal. Δ F or with Ad5.GFP. Δ F. Viral particles were isolated and purified over CsCl gradients. The bands were harvested, dialyzed into storage buffer (10 mM Tris-pH 8.1, 0.9% NaCl, and 10% glycerol), aliquoted and stored at -70°C.

Viral protein analyses

For analysis of viral proteins, 10 μ g of purified Ad5. β gal. Δ F particles with no fiber (grown in 293 cells), the Ad5 fiber (grown in 633 cells), or the Ad37 fiber (grown in 705 cells) were electrophoresed by 8-16% polyacrylamide gradient SDS-PAGE and the proteins were transferred to nylon membranes. The blot was then probed with α -Ad37 fiber rabbit antibody. Ad5 fiber and penton base were detected by reprobing the blot with polyclonal antibodies raised against recombinant proteins expressed in baculovirus-infected cells (Wickman *et al.* (1993) *Cell* 2:309-319).

Adenovirus infection and cell binding assays

Adherent Chang C and A549 cells were infected with GFP expressing Ad5 vectors containing the Ad5 fiber (Ad5.GFP. DF/5F) or the Ad37 fiber (Ad5.GFP. Δ F/37F) at 10,000 particles per cell for 3 hours at 37°C, 5% CO₂ in DMEM, 10% FCS. Cells were washed twice with saline and then cultured overnight at 37°C, 5% CO2. The next day, the cells were detached with buffer containing 0.05% (w/v) trypsin and 0.5 mM EDTA (Boehringer Mannheim) for 5 minutes at 37°C. Suspended cells were washed once with PBS and then resuspended in phosphate-buffered saline (PBS), pH 7.4. GFP fluorescence was measured with a FACScan flow cytometer. A threshold established by the fluorescence of uninfected cells was used to distinguish cells expressing GFP. To assess the role of CAR in Ad infection, 10,000 attached cells were preincubated with 180 μ g/ml RmcB, a function-blocking anti-CAR monoclonal antibody (Hsu et al. (1988) J. Virol. 62:1647-1652), in complete DMEM for 1 hour at 4°C. A small volume containing Ad5.GFP.ΔF/5F or Ad5.GFP.ΔF/37F was then added at 10,000 particles per cell. The cells were infected for 3 hours, cultured overnight, harvested, and analyzed for GFP expression. Percent

15

20

25

-89-

cells expressing GFP was determined by the percent of cells detected above a threshold set by the fluorescence of uninfected Chang C cells.

To measure adenovirus binding to cells, wild type Ad37 was labeled with 125 I using lodogen (Pierce) according to manufacturer instructions and separated from free 125 I by gel filtration as described (Huang *et al.* (1999) *J. Virol.* 73:2798-2802). Binding of radiolabeled wild type Ad37 on Chang C cells was then quantitated as described (Huang *et al.* (1999) *J. Virol.* 73:2798-2802). Non-specific binding was determined by incubating cells and labeled Ad37 particles in the presence of 100-fold concentration of unlabeled Ad37. Specific binding was calculated by subtracting the non-specific binding from the total cpm bound. To examine if divalent cations are required for binding, 10 mM ethylenediaminetetraacetic acid (EDTA) or various concentrations of CaCl₂, or MgCl₂ were added to cells before incubation with labeled virus. To examine if the receptor for Ad37 is a protein, cells were pretreated with 10 μ g/ml trypsin (GIBCO), subtilisin (Sigma), proteinase K (Boehringer-Mannheim), and bromelain (Sigman) at 37 °C for 1 hour, then washed twice with complete DMEM before adding labeled virus. Cells were >95% viable after protease treatment.

Ad37 binding to conjunctival cells is calcium-dependent. Specific ¹²⁵I-labeled Ad37 binding to Chang C cells was measured in the presence of 10 mM EDTA and in the presence of varying concentrations of calcium chloride or magnesium chloride. Specific binding was determined by subtracting the nonspecific counts in the presence of 100-fold excess unlabeled virus from the total counts.

Pretreatment of conjunctival cells with proteases inhibits Ad37 binding. Change C cells were pretreated with various proteases for 1 hour before binding ¹²⁵I-labeled Ad37 to the cells. Nonspecific binding was measured by adding 100-fold unlabeled Ad37 to cells with ¹²⁵I-labeled Ad37 and subtracting from total counts for specific binding. Percent inhibition represents the difference in specific binding of untreated cells and pretreated cells as a percentage of the specific binding of untreated cells.

15

20

30

-90-

Virus overlay protein blot assay (VOPBA)

For VOPBA of human conjunctival membrane proteins probed with Ad37 in the presence of EDTA or calcium chloride, Chang C membrane fractions were separated by 8% SDS-PAGE and transferred to a PDVF membrane. The membrane was subsequently probed with or without whole Ad37 particles, a polyclonal antibody against Ad37 fiber, and finally a horseradish peroxidase conjugated anti-rabbit antibody, in the presence of EDTA or calcium chloride. Transferred Chang C membrane proteins were probed with recombinant Ad37 knob protein, instead of Ad37 knob, in the presence of calcium chloride.

Confluent monolayers of Chang C and A549 cells were detached by scraping, pelleted by centrifugation, and then resuspended in 250 mM sucrose, 20 mM HEPES, pH 7.0, 1 mM EDTA, and 2 μ g/ml aprotinin and leupeptin. Cells were transferred into a dounce homogenizer and disrupted with 30 strokes. Organelles and nuclei were pelleted at 500g for 15 min. Plasma membrane fragments were then pelleted from the supernatant of cell lysates at 200,000g for 1 hour and then resuspended in 10 mM Tris•Cl, pH 8.1, 10 μ g/ml aprotinin and leupeptin.

Cell membranes of Chang C or A549 cells were incubated (1:1) with a 2% SDS, non-reducing buffer and separated on an 8% polyacrylamide gel without boiling. Membrane proteins were then electroblotted onto a PVDF membrane (Immobilon-P) and blocked in 5% (w/v) milk in PBS, pH 7.4, 0.02% Tween-20 (PBS-T). After blocking, the membrane was incubated with 1 µg/ml wild-type Ad19p or Ad37 in 0.5% (w/v) milk in PBS-T, 1 mM CaCl₂, for 1 hour at room temperature. The membrane was then washed once with phosphate-buffered saline, pH 7.4 (PBS), 1 mM CaCl₂, and incubated with 1:500 dilution of a-Ad37 fiber rabbit antibody in 0.5% (w/v) milk in PBS-T, 1mM CaCl₂, for 30 minutes at room temperature. The membrane was washed again with PBS, 1 mM CaCl₂, and incubated with 1:5000 dilution of horseradish peroxidase (HRP) conjugated a-rabbit antibody (Sigma) in 0.5% (w/v) milk in PBS-T, 1 mM CaCl₂, for 30 minutes at room temperature. The membrane was washed four times in PBS, 1 mM CaCl₂, once with PBS-T, 1 mM CaCl₂, and once in 1 mM CaCl₂. The blot was developed with enhanced chemiluminescence reagents (Pierce) for 5

20

25

30

-91-

minutes and placed onto a piece of Biomax film (Kodak) for 5 seconds to 1 minute. For divalent metal cation experiments, membranes were incubated in the presence of 2 mM EDTA instead of 1 mM CaCl₂ in all solutions. To assay fiber knob binding to cell membrane proteins, membrane filters were incubated with 1 μ g/ml purified T7-tagged Ad37 knob protein in Tris-buffered saline, 0.1% Tween-20, 1 mM CaC1₂, for 1 hour at room temperature. α -Ad37 fiber rabbit antibody and HRP-conjugated anti-rabbit antibody were applied and the membrane was developed with substrate solution as described above. Results: Comparison of adenovirus infection of human conjunctival and lung

epithelial cells with virus particles retargeted with Ad5 or Ad37 fiber proteins

Packaging cell lines producing the Ad37 fiber protein were generated. Since the N-terminal amino acid sequences of the Ad5 and Ad37 fiber proteins differ significantly, and to ensure that the Ad37 fiber would be efficiently incorporated into Ad5 vector particles, several residues in the wild-type Ad37 fiber were mutated to more closely match the Ad5 sequence. Stable cell lines producing this fiber under control of the CMV promoter and the adenovirus type 5 tripartite leader were then generated and screened for fiber expression by indirect immunofluorescence. One clone (line 705), which expressed the Ad37 fiber at a high level, was selected for further study.

Cells from one cell line 633, which expresses the wild-type Ad5 fiber protein, and line 705 were infected with a fiber-deleted Ad5 vector carrying a $oldsymbol{eta}$ galactosidase reporter gene. The resulting vector particles contained the Ad5 fiber protein (Ad5. β gal. Δ F/5F) and the Ad37 fiber protein (Ad5. β gal. Δ F/37F), respectively. Incorporation of the correct fiber protein into viral particles was verified by Western blotting. Adenoviral vectors containing the GFP reporter gene, Ad5.GFP. Δ F/5F and Ad5.GFP. Δ F/37F, were created in the same fashion.

Infection of a variety of cell types using the retargeted adenovirus particles was examined. As assayed by GFP fluorescence, Ad5.GFP.ΔF/5F exhibited good gene delivery to lung epithelial (A549) and conjunctival cells (Chang C). In contrast, Ad5.GFP.ΔF/37F efficiently delivered GFP to Chang C cells, but exhibited very poor gene delivery to A549 cells. Although CAR is expressed on the surface of A549 cells, as indicated by AD5.GFP. Δ F/5F

20

25

30

infection, Ad5.GFP.ΔF/37F was unable to infect these cells efficiently. This experiment shows that the Ad37 fiber protein can confer preferential infection of human conjunctival cells, but not CAR-expressing human lung epithelial cells.

Hence CAR is not the primary receptor for Ad37. Recent studies reported that expression of CAR on the surface of chinese hamster ovary (CHO) cells did not improve Ad37 binding (Arnberg *et al.* (2000) *J. Virol.* 74:42-48), implying that Ad37 does not use CAR as a primary receptor. In order to verify this on human conjunctival cells, A549 and Chang C cells were pretreated with RmcB (Hsu *et al.* (1988) *J. Virol.* 62:1647-1652), a function-blocking monoclonal antibody against CAR. The RmcB antibody inhibited infection of A549 cells by Ad5.GFP.ΔF/5F, but it had little effect on infection of Chang C cells by Ad5.GFP.ΔF/37F. This indicates that CAR is not the primary receptor for Ad37 on Chang C conjunctival cells.

Ad37 binding to conjunctival cells requires divalent metal cations. It has been proposed (Roelvink *et al.* (1998) *J. Virol.* 72:7909-7915) that a combination of fiber binding to CAR and penton base binding to a_v -integrins allows some adenovirus serotypes to attach to cells. Although a_v -integrin binding to the RGD motif of the adenovirus penton base is of relatively low affinity (Wickman *et al.* (1993) *Cell* 2:309-319), it may nonetheless contribute to viral attachment to the cell surface. Ad37 shows a particularly strong affinity for binding to integrin $a_v \beta_s$ (Mathias *et al.* (1998) *J. Virol.* 72:8669-8675), suggesting that integrin $a_v \beta_s$ might be a primary receptor for Ad37. Binding of the RGD motif by a_v -integrins requires the presence of divalent cations, such as calcium or magnesium (Stuiver *et al.* (1996) *J. Cell Physiol.* 168:521-531). In contrast, no divalent cations were required for binding in the CAR-Ad12 knob complex (Bewley *et al.* (1999) *Science* 286:1579-1583).

To investigate the potential role of $a_{\rm v}$ -integrins and divalent metal cations in Ad37 receptor binding, ¹²⁵I-labeled Ad37 binding to Chang C cells was examined in the absence or presence of EDTA. EDTA inhibited Ad37 binding to conjunctival cells but did not alter Ad5 binding. These findings suggest a requirement for divalent metals for Ad37 binding.

20

25

30

-93-

The presence of either calcium or magnesium ions helps $a_{\nu}\beta_{5}$ organize in focal contacts (Stuiver *et al.* (1996) *J.Cell Physiol.* 168:521-531), suggesting that calcium and magnesium aid in integrin $a_{\nu}\beta_{5}$ function. To further test the potential role of integrin $a_{\nu}\beta_{5}$ in Ad37 cell attachment, ¹²⁵I-labeled Ad37 binding to Chang C cells was measured in the presence of varying concentrations of calcium or magnesium chloride. Magnesium ions had little effect on Ad37 binding to Chang C cells. In contrast, calcium ions dramatically enhanced Ad37 binding to Chang C cells. The optimal concentration of calcium chloride for Ad37 binding was 1 mM, while higher concentrations of calcium actually decreased virus binding to cells. The fact that calcium, but not magnesium, promoted Ad37 attachment is not consistent with integrin $a_{\nu}\beta_{5}$ as the primary receptor for viral attachment to the cells since either metal will support ligand binding to integrin $a_{\nu}\beta_{5}$. Moreover, A549 cells express abundant a_{ν} -integrins (Mathias *et al.* (1998) *J. Virol.* 72:8669-8675) but were unable to support efficient binding of Ad37.

Wild-type Ad37 particles bind to three conjunctival membrane proteins. Recent studies reported that protease treatment of CHO cells abolished Ad37 binding (Arnberg *et al.* (2000) *J. Virol.* 74:42-48), implying that Ad37 bound to a protein receptor on CHO cells. Scatchard analysis of Ad37 binding to Chang C cells showed that each cell expresses approximately 24,000 fiber binding sites (Huang *et al.* (1999) *J. Virol.* 73:2798-2802). To determine if the Ad37 binding site on human conjunctival cells is also a protein, Chang C cells were treated with different proteases prior to measuring binding of ¹²⁵I-labeled Ad37. Digestion of surface proteins by all four proteases inhibited Ad37 binding to Chang C cells by greater than 50%. This finding showed that Ad37 also binds to a protein receptor on Chang C cells.

Virus overlay protein blot assays (VOPBAs) were used to identify candidate viral protein receptors. This Western blot technique uses intact viral particles in place of antibodies to probe viral-receptors interactions. VOPBA was used herein to identify Chang C membrane proteins that bind to Ad37. In the absence of Ad37 particles, no protein bands were observed, while addition of virus in the absence of calcium revealed binding to a single 45 kDa protein. In

15

20

25

30

the presence of 1 mM calcium chloride, Ad37 reacted with three proteins with approximate molecular weights of 45, 50 and 60 kDa. The same three proteins were detected using a recombinant Ad37 fiber knob alone, indicating that Ad37-receptor interactions are fiber mediated and do not involve interactions of other capsid proteins such as the penton base. The size of the calcium-independent protein (45 kDa) is very similar to the known molecular weight of CAR. A direct comparison of the Ad37 VOPBA and a CAR Western blot showed that the 45 kDa receptor co-migrates with CAR on SDS-PAGE. Moreover, two other members of subgroup D adenoviruses, Ad9 and AD15, have been shown to bind to CAR (Roelvink *et al.* (1998) *J. Virol.* 72:7909-7915).

Since CAR does not appear to mediate Ad37 binding on intact Chang C cells, the possibility that the 50 or 60 kDa protein serves this function was tested by examining an adenovirus serotype that does not bind to Chang C cells. Ad19p, a closely related subgroup D adenovirus, binds poorly to Chang C cells (Huang et al. (1999) J. Virol. 73:2798-2802) and Ad19p recognition of the Ad37 receptor is therefore unlikely. Ad19p particles bound to the 45 and 60 kDa receptors in the VOPBA, but did not bind to the 50 kDa receptor. Moreover, the 50 kDa receptor is expressed on Chang C cells, but not A549 cells, which only support low levels of Ad37 binding and infection. Taken together, these data indicate that the 50 kDa protein is a primary candidate receptor for Ad37 on human conjunctival cells.

Discussion

The identification of the CAR protein as a major adenovirus receptor does not explain why certain subgroup D members, such as Ad37, preferentially infect ocular cells. A 50 kDa human conjunctival cell membrane protein is identified herein as a primary candidate for the receptor for Ad37. This 50 kDa protein is not present on A549 lung epithelial cells. Ad37 binding to this receptor is calcium-dependent, which is consistent with Ad37 binding and infection experiments. Ad37 also bound to a 60 kDa protein that is present on human conjunctival and lung epithelial cells. It does not, however, appear to be serotype specific. The molecular weights of MHC class I heavy chain, which has been proposed as a receptor for Ad5, and $\alpha_{\nu}\beta_{5}$ intergrins, receptors for

20

25

the penton base, are distinct from the 50 or to kDa receptor characterized in this study.

The studies of Ad37-receptor interaction using VOPBAs are consistent with previous studies showing that subgroup D adenoviruses can bind to the extracellular domain of CAR (Roelvink et al. (1998) J. Virol. 72:7909-7915). Biochemical and structural studies on knob-CAR interactions indicate that the CAR binding site is located on the AB-loop of the fiber knob. Alignment of the fiber sequences of Ad37 and other adenoviruses reveals that the AB-loop of Ad37 is similar to those of Ad12 and Ad5. Moreover, a phylogenetic tree of adenovirus knobs (Roelvink et al. (1998) J. Virol. 72:7909-7915) shows that fiber proteins of subgroup D are similar to those of subgroup C and E, which use CAR as their primary receptor. Ad37 does not, however, appear to effectively use CAR as a primary receptor, as demonstrated by virus binding and infection studies on Chang C conjunctival cells and A549 lung epithelial cells.

hamster ovary (CHO) cells and human lung carcinoma (A549) cells (Arnberg et al. ((2000) J. Virol. 74:42-48). Human conjunctival cells were not studied. Human corneal epithelial (HCE) cells were the only ocular cell line studied and Ad37 binds relatively poorly to these cells, compared to binding on A549 cells (Arnberg et al. ((2000) J. Virol. 74:42-48). In addition, 8,4 X 10⁷ wheat germ agglutinin molecules per cell were required to significantly inhibit Ad37 binding to sialic acid on sialic acid positive CHO cells (Arnberg et al. (2000) J. Virol. 74:42-48), three orders of magnitude higher than the number of Ad37 receptors on Chang C conjunctival cells (Huang et al. (1999) J. Virol. 73:2798-2802). Clearly, sialic acid is not the only factor responsible for Ad37 binding to the cell surface and its influence on Ad37 tropism is unclear.

The results herein show that Ad37 selects a 50 kDa cellular receptor for binding to conjunctival cells, but it is possible that sialic acid also plays a role in this interaction. The characterization and identification of the Ad37 receptor have therapeutic implications and also explain the different tropism of Ad37. The 50 kDA receptor for Ad37 may also be the receptor for other subgroup D adenoviruses that cause severe cases of EKC, Ad19a and Ad8. Ad19p is a

15

20

30

-96-

nonpathogenic variant of Ad19 (Arnberg et al. (1998) Virology 227:239-244) while Ad19A, along with Ad8 and Ad37, are major causes of EKC. Ad19a and Ad37 have identical fiber proteins (Arnberg et al. (1998) Virology 227:239-244) and have similar tropism in vivo. Ad8, Ad19a, and Ad37 agglutinate dog and guinea pig erythrocytes more effectively than four other serotypes that are associated with less severe forms of conjunctivitis (Arnberg et al. (1998) Virology 227:239-244), implying that the receptors of Ad18, Ad19A, and Ad37 have similar characteristics. Hence, this 50 kDa receptor is an attractive drug target against EKC caused by adenoviruses to provide therapeutic intervention of ocular diseases associated with these viruses.

EXAMPLE 10

Targeting of the Ad5 vector to photoreceptor cells

The fiber-deleted adenovirus vector Ad5.GFP. Δ F was propagated in 705 cells, which express a modified Ad37 fiber protein. Viral particles (Ad5.GFP. Δ f/37F) were harvested, CsCl-purified and dialized into 0.9% NaCl, 10 mM Tris, pH 8.1, and 10% glycerol. Two to three μ l of the resulting solution, containing approximately 1 x 10° particles/ μ l was injected into the vitreous chamber of a mouse eye. Seven days post-injection, eyes were harvested, fixed with paraformaldehyde and cryo-sectioned. Sections were stained with an anti-rhodopsin antibody to identify photoreceptor cells and with DAPI to show all cell nuclei. The resulting sections showed red anti-rhodopsin staining in the photoreceptors, blue DAPI-stained nuclei, and green GFP staining in any transduced cells. The results revealed substantially exclusive transduction of photoreceptors. Co-localization of rhodopsin staining and GFP expression indicated selective transduction of photoreceptor cells.

As a control, contralateral eyes were injected with a stock of the fiber-deleted vector AD5. β gal. Δ F grown in the same Ad37 fiber-expressing cells. Since this virus (Ad5. β gal. Δ F/37F) produces β gal rather than GFP, the green staining is absent from the photoreceptors.

Additional experiments using the AD37 fiber for targeting to the photoreceptor cells have been performed. Subretinal and intravitreal injection have been used in mouse models and the results demonstrate targeting to the

photoreceptors. As with intravitreally injected eyes, the major cell type infectd via subretinal administration was the photoreceptor.

As noted, Ad5.GFP. Δ F /37F infected Chang C cells efficiently, but A549 cells poorly. Ad37 fiber protein confers preferential infection on human conjunctival cells, but not CAR-expressing human lung epithelial cells. Binding to conjunctival cells requires divalent cations.

Since modifications will be apparent to those of skill in this art, it is intended that this invention be limited only by the scope of the appended claims.

20

25

30

WHAT IS CLAIMED IS:

- An isolated nucleic acid molecule, comprising: adenovirus inverted terminal repeat sequences; an adenovirus packaging signal operatively linked thereto; and a photoreceptor-specific promoter.
- 2. The isolated nucleic acid molecule of claim 1, further comprising a nucleic acid encoding a therapeutic product operatively linked to the promoter.
- 3. The isolated nucleic acid molecule of claim 1, wherein the promoter is a rhodopsin promoter.
- The nucleic acid molecule of claim 1, wherein the adenovirus
 genome does not encode a functional fiber protein such that packaging the nucleic acid requires complementation in a packaging cell.
 - A recombinant adenovirus vector, comprising the nucleic acid
 molecule of any of claims 1-4 packaged therein.
- A recombinant adenovirus vector of claim 5, wherein inverted
 terminal repeat sequences (ITR) and a packaging signal are derived from adenovirus type 2 or adenovirus type 5.
 - 7. A recombinant adenovirus vector of claim 5, wherein the virus comprises a fiber protein.
 - 8. A recombinant adenovirus vector of claim 7, wherein the fiber protein selectively binds to photoreceptors in the eye of a mammal.
 - 9. A recombinant adenovirus vector of claim 7, wherein the fiber is a chimera composed of N-terminal sequences from adenovirus type 2 or type 5, and a sufficient portion of an adenovirus serotype D fiber for selective binding to photoreceptors in the eye of a mammal.
 - 10. A method for targeted delivery of a gene product to the eye of a mammal, comprising:

administering a recombinant adenovirus virus that comprises heterologous DNA encoding the gene product or resulting in expression of the gene product, wherein the recombinant virus comprises a fiber protein that specifically or selectively binds to receptors that are expressed on cells in the eye.

20

25

- The method of claim 10, wherein the cells are photoreceptors.
- 12. The method of claim 10, wherein administration is effected by intraocular delivery.
- 13. The method of claim 10, wherein administration is effected by a5 method selected from subretinal injection, intravenous administration, periorbital administration, and intravitreal administration.
 - 14. The method of claim 10, wherein the recombinant virus comprises a fiber protein from an adenovirus type D serotype.
- 15. The method of any of claims 10-14, wherein the fiber protein is an10 adenovirus type 37.
 - 16. The method of any of claims 10-14, wherein the fiber is a chimeric protein containing a sufficient portion of the N-terminus of an adenovirus type 2 or type 5 fiber protein for interaction with an adenovirus type 2 or type 5 penton, and a sufficient portion of an adenovirus serotype D knob portion of the fiber for selective binding to photoreceptors in the eye of a mammal.
 - 17. The method of any of claims 10-16, wherein the recombinant virus is an adenovirus type D serotype.
 - 18. The method of any of claims 10-17, wherein the encapsulated nucleic acid comprises a photoreceptor-specific promoter operatively linked to a nucleic acid comprising the therapeutic product.
 - 19. The method of claim 18, wherein the therapeutic product is selected from the group consisting of a trophic factor, an anti-apoptotic factor, a gene encoding a rhodopsin protein, a wild-type Stargardt disease gene (STDG1), an anti-cancer agent and a protein that regulates expression of a photoreceptor-specific gene product.
 - 20. The method of any of claims 10-19, wherein delivery is effected for treatment of an ocular disease.
 - 21. The method of claim 20, wherein the disorder is a retinal degenerative disease.
 - 30 22. The method of claim 20, wherein the disease is retinitis pigmentosa, Stargardt's disease, diabetic retinopathies, retinal vascularization, or retinoblastoma.

25

- 23. The method of any of claims 10-22, wherein the mammal is a human.
- 24. The method of any of claims 10-22, wherein the viral nucleic acid comprises:
- an adenovirus inverted terminal repeat (ITR) sequences; and an adenovirus packaging signal operatively linked thereto.
- 25. The method of claim 24, wherein the ITRs and packaging signal are derived from an adenovirus serotype B or C.
- 26. The method of claim 24, wherein the ITRs and packaging signal10 are derived from an adenovirus type 2 or 5.
 - 27. The method of claim 24, wherein the viral nucleic acid further comprises a photoreceptor-specific promoter.
- 28. A method of targeted gene therapy, comprising:
 administering a recombinant viral vector that comprises an adenovirus
 15 type 37 fiber protein or portion thereof, whereby the vector selectively transduces photoreceptors and delivers a gene product encoded by the recombinant viral vector; wherein the portion is sufficient for selective binding to photoreceptors.
- 29. The method of claim 28, wherein the vector is administered into 20 the eye.
 - 30. The method of claim 28, wherein the vector is administered to the vitreous cavity of the eye.
 - 31. The method of claim 28, wherein administration is effected by subretinal injection, intravenous administration, periorbital administration or intravitreal administration.
 - 32. The method of any of claims 10-31, wherein at least about 10⁷ plaque forming units of virus are administered.
 - 33. The method of any of claims 10-31, wherein about 1 plaque forming unit to about 10¹⁴ plaque forming units of virus are administered.

SEQUENCE LISTING

	VON SEGGERN, DANIEL NEMEROW, GLEN R. FRIEDLANDER, MARTIN			
<120>	VECTORS FOR OCULAR TRANSDUCTION AND USE THEREFOR	FOR	GENETIC	THERAPY
<130>	756.1PCT/NOV0205P			
<140> <141>	2001-05-01			
<150> <151>	09/562,934 2000-05-01		-	
<160>	51			
<170>	PatentIn Ver. 2.1	•	*	
<210><211><211>	3 0 DNA		· .	
	Artificial Sequence Description of Artificial Sequence: primer		4.	
<400×				30
<210: <211: <212: <213:				
<220: <223:	Description of Artificial Sequence: primer		1	
<400 gcct	> 2 ggatcc gggaagttac gtaacgtggg aaaac		-	35
<210 <211 <212 <213				•
<220 <223	> > Description of Artificial Sequence: linker			
<400 cgcg	> 3 gateeg eg			12
<212	> 8710 > DNA			
<213	> Artificial Sequence		•	<i>:</i>
<220	'	٠.		

<223> Description of Artificial Sequence: plasmid

<400> 4			aaattcaca	++aaattttt	gttaaatcag 6	0
cacctaaatt	gtaagcgtta a	atattttgtt (aaaactcgcg	tataaatcaa	gttaaatcag 6 aagaatagac 1	20
ctcattttt	aaccaatagg	ocyanalcyg v	caacaacaact	ccactattaa	agaacgtgga 1	80
cgagataggg	ttgagtgttg	cucaguage :	taaaaaaaa	ggcccactac	gtgaaccatc 2	40
ctccaacgtc	aaagggcgaa	aaaccyccta	ccagggggaa	ctaaatcgga	accetaaagg 3	00
accctaatca	agttttttgg !	ggregaggre	ccgcaaagea	atagcaagaa	aggaagggaa 3	60
gagcccccga	tttagagctt	gacggggaaa	gccggcgaac	acaatcacac	tgcgcgtaac 4	20
gaaagcgaaa	ggagcgggcg	etagggeget	acaddddda	tcccattcqc	cattcaggct 4	80
caccacaccc	geegegetta	atgegeegee	accetettes	ctattacqcc	agctggcgaa s	40
gcgcaactgt	tgggaagggc	gattggtgtg	ggtaacgcca	gggttttccc	agtcacgacg (500
agggggatgt	getgeaagge	attataata	cgactcacta	tagggcgaat	tgggtaccgg (660
ttgtaaaacg	acggccagug	atat caataa	gcttgatatc	qaattcagga	gacacaactc 'attaatgaaa'	720
caagtgcata	atactattac	actititicat	acattgccca	agaataaaga	atcgtttgtg ttcattcagt	840
tatttgccac	acctottat	ttttcaattq	cagaaaattt	caagtcattt	ttcattcagt actcacaga	900
ttatgtttta	acgegeeeae	tagettatae	agatcaccgt	accttaatca	aactcacaga cctttctccc	960
agtatageec	teaacctaca	acctccctcc	caacacacag	agtacacagt	cctttctccc tgttatattc	1020
accctaguat	taaaaaccat	catatcatgg	qtaacagaca	tattcttagg	tgttatattc cccgggcagc	1080
eggetggtet	cctatagaga	caaacqctca	tcagtgatat	taataaactc	cccgggcagc aacttgcggt	1140
tacacggccc	teateteet	atccaactac	tgagccacag	gctgctgtcc	aacttgcggt ataatcgtgc	1200 .
teacttaage	acaacaaaaa	agaagtccac	gcctacatgg	gggtagagtc	ataatcgtgc ccgccgctcc	1260
cycciaacyy	geggegaagg	ctacaacaac	gcgcgaataa	actgctgccg	ccgccgctcc cgcccgcagc	1320
attaggatag	aatacaacat	ggcagtggtc	tcctcagcga	tgattcgcac	cgcccgcagc atcagcacag	T380
gteetgeagg	tratectees	ggcacagcag	cgcaccctga	tctcacttaa	atcagcacag gctgtatcca	1440
taactgcage	acagcaccac	aatattgttc	aaaatcccac	agtgcaaggc	gctgtatcca caggtagatt	1500
aactgeage	cadadaccac	agaacccacg	tggccatcat	accacaagcg	caggtagatt catgttgtaa	1520
aageeeacgag	ccctcataaa	cacgctggac	ataaacatta	cctcttttgg	catgttgtaa caccaccatc	1620
ttcaccacct	cccaqtacca	tataaacctc	tgattaaaca	tggcgccatc	caccaccatc gggactggaa	1740
ctaaaccago	tggccaaaac	ctgcccgccg	gctatacact	. gcagggaacc	gggactggaa catgatatca	1900
caatgacagt	ggagagccca	ggactcgtaa	ccatggatca	tcatgetegt	catgatatca	1860
atattaacac	: aacacaggca	cacgtgcata	cacttcctca	ggattacaag	ctcctcccgc	1920
gttagaacca	tatcccaggg	aacaacccat	tcctgaatca	gegtaaatee	cacactgcag	1980
ggaagaccto	gcacgtaact	cacgttgtgc	attgtcaaag	tgttacattc	gggcagcagc acgatcccta	2040
ggatgatcct	: ccagtatggt	agcgcgggtt	tetgteteaa	aaggaggcag	acgateceta gecaaatgga	2100
ctqtacggag	tgcgccgaga	caaccgagat	cgtgttggt	gragratas	gccaaatgga aaacagatct	2160
acqccggacg	tagtcatatt	tcctgaagca	aaaccaggt	g egggegtgad	aaacagatct tccactctct	2220
gcgtctccg	tetegeeget	tagatcgctc	: tgtgtagtag	acteettest	tccactctct gcgccgctgc	2280
caaagcatco	aggcgcccc	tggcttcggg	ttctatgtac	accectecat	gcgccgctgc attcgttctg	2340
cctgataaca	a tccaccaccg	cagaataago	cacacccago	a aratttttt	attegttetg ttttatteca	2400
cgagtcacac	c acgggaggag	cgggaagagc	tggaagaac	acgeceecte	ttttattcca cctccggtgg	2460
aaagattat	c caaaacctca	aaatgaagat	testages	tataagatgi	cctccggtgg tgcacaatgg	2520
cgtggtcaa	a ctctacagec	aaayaacay	- ataggaat	aanactaaa	ccttcagggt	2580
cttccaaaa	g gcaaacggcc	Cicacgicce	. agoggaege	c caaataatt	tcatctcqcc	2640
gaatctcct	c tataaacatt	. ccagcacct		a tecaaccat	- otaaaaatct	2700
accttctca	a tatateteta	agcaaacccc	. 54464644	t catgattgc	a aaaattcagg	2760
gctccagag	c gccctccacc	cedageeee	ageagegaa.	a acaaaaata	c cacaatccca	2820
ttcctcaca	g acctgtatae	gatttaaaa		a tetacacaa	a ccadcdcddc	2880
taggtccct	t cgcagggcca	t golgaacaca	a accedent	g attatgaca	c qcatactcgg	2940
cacttcccc	g ccaggaacci	: tgacaaaag	a acctitatt	g catggggg	c gcatactcgg c gatataaaat c acatcgtagt	3000
agctatgct	a accagegras	Coccedate	a aguerogea	a aaaagaaag	c acatcqtagt	3060
gcaaggtgc	t geteaaaaa	ccaggeaaa		c cacagaaaa	a gacaccattt	3120
catgeteat	g cagataaag	a catttetac	a taaacacaa	a ataaaataa	c aaaaaaacat a taagacggac	3180
ttctctcaa	a catgtetge	ttaceacec	g aaaaacaac	c cttataagc	a taagacggac a qcaccaccga	3240
ttaaacatt	a gaageetge	r cotasasas	a ctggtcacc	g tgattaaaa	a gcaccaccga t caggttgatt	3300
tacggccat	g ceggegega	r cactcataa	t gtaagacto	g gtaaacaca	t caggttgatt	3360
cagctcctc	g greatgree	g cdaccdaaa	t agcccgggg	g aatacatac	c cgcaggcgta	3420
categgtea	t tacadecee	c ataggaggt	a taacaaaat	t aataggaga	g aaaaacacat	3480
gagacaaca	a aaaaccctc	c tacetagge	a aaatagcac	c ctcccgctc	c agaacaacat	3540
aaacacccc	,		-			

			accttacca	gtaaaaaaqa	aaacctatta 3	600
acagegette	acagcggcag	cctaacagic e	atcactcac	agtgtaaaaa	aaacctatta 3 agggccaagt 3 caaaaaacac 3	660
aaaaacacc	actegacacy	gcaccagece (accussocc	ttaaagtcca	caaaaaacac 3	720
gcagagcgag	tatatatagg	actadadad	32266	casasasccc	acaacttcct 3	780
ccagaaaacc	gcacgcgaac	ctacycccag (-tt	ggatccgcgg	cattcacagt 3	840
caaatcgtca	cttccgtttt	cocacyctac ;		aatccottag	caaggtacca 3	900
tctccgcaag	aattgattgg	CCCCaacccc	c2242422	cacaacacaa	cacaaaaaaa 3	960
ccggcttcca	ttcaggtcga	agrageceaa .		cottccatot	actcaccaaa 4	020
cagacaaggt	atagggcggc	gectacaace	cacgecates	aanttagget	ggtaagagcc 4	1080
gcggcataaa	tegeegtgae	gattagtggt	tagtestets	cctgcctgga	cagcatggcc 4	140
gcgagcgatc	cttgaagetg	Leccigacgg		trataatggg	gaaggccatc 4	1200
tgcaacgcgg	gcatcccgat	geegeeggaa	gegagaagaa	catcaaccac	catgccctgc 4	1260
cagcctcgcg	tcgcgaacgc	Cagcaagacg		ccccccaaaaa	aatatatttq 4	1320
ttcatccccg	taacccarra	Geogle		tetteteatt	ggcgaattcg 4	1380
catgtcttta	gttctatgat	gacacaaacc	-cegood-geg	cttcgcatat	taaggtgacg 4	4440
aacacgcaga	tgcagtcggg	gcggcgcggg.		ttaacagcgt	caacagcgtg 4	4500
cgtgtggcct	cgaacaccga	gegaceeege		gaccacaaca	tototogaga 4	4560
ccgcagatcc	cgggcaatga	gatatgaaaa	agcctgaact	gradeteteg	tctgtcgaga gagggcgaag gtaaatagct	4620
agtttctgat	cgaaaagttc	gacagegeee		tatactacaa	gtaaatagct	4680
aatctcgtgc	tttcagcttc	gatgtaggag	ggcgtggata	ctttgcatcg	gtaaataget geegegetee tgeateteee	4740
gcgccgatgg	tttctacaaa	gatcgttatg	tttateggea	cctcgcateg	tgcatctccc	4800
cgattccgga	. agtgcttgac	attggggaat	tcagcgagag	ccegacecae	tgcatctccc gctgttctgc	4860
gccgtgcaca	gggtgtcacg	ttgcaagacc	tgcctgaaac	tattaaccaa	gctgttctgc acgagcgggt	4920
agccggtcgc	ggaggccatg	gatgcgatcg	ctgcggccga	. ctctagecag	acgagegggt ttcatatgeg	4980
teggeceatt	cggaccgcaa	ggaatcggtc	aatacactac	arggrargar	ttcatatgcg gtcagtgcgt	5040
coattoctoa	tccccatgtg	tatcactggc	aaactgtgat	ggacgacacc	gtcagtgcgt gaagtccggc	5100
ccatcacaca	ggctctcgat	gagctgatgc	tttgggccga	ggadtgttt	gaagtccggc cgcataacag	5160
acctcqtqca	cgcggatttc	ggctccaaca	atgtcctgac	ggacaacggc	cgcataacag	5220
cogtcattga	ctggagcgag	gcgatgttcg	gggattccca	acacgaggic	gccaacatct	5280
tcttctqqaq	gccgtggttg	gcttgtatgg	agcagcagac	gegetaette	gageggagge ggtettgace	5340
atccggagct	tgcaggatcg	ccgcggctcc	gggcgtatat	gereegeare	ggtcttgacc	5400
aactctatca	a gagcttggtt	gacggcaatt	tcgatgatg	agettggges	cagggtcgat gcccgcagaa	5460
gcgacgcaat	cgtccgatco	ggagccggga	ctgtcgggcg	- castacter	gecegeagaa	5520
acacaaccat	t ctggaccgat	ggctgtgtag	aagtactege	cyacagegge	aaccgacgcc gaaacacgga	5580
ccagcactcg	tccgagggca	aaggaatagg	ggagatggg	g gaggetaact	gaaacacgga aataaaacgc	5640
aggagacaat	t accggaagga	accegegeta	tgacggcaai	t aaaaagacus	aataaaacgc gcactctgtc	5700
acqqqtqtt	g ggtcgtttgt	Ccataaacgc	999900033	- tttsttssti	ttccccaccc	5760
gatacccca	c cgagacccca	ttggggccaa	tacgcccgc	a acategoda	ttccccaccc ggcaggccct ggtttatggt	5820
cacccccca	a grrcgggry	aggeceaggs		a catagggaai	- gotttatoot	5880
qccatagcc	a ctggccccgt	: gggttaggga	cadadrece	t carggggaa	ggtttatggt g actgagcaga c gacacgaaca	5940
tcqtggggg	t tattattttg	g ggcgttgcgt	ggggtctgg	t ctacgaceg	r dacacdaaca	6000
cagacccat	g gtttttggat	: ggcctgggca	tggaccgca	e accepted	gacacgaaca ggatttctgg	6060
ccaagegte	t gtggctgcca	a aacaccccc	acceccaaa	a accaccacca	c ggatttctgg c ccgctgacgc	6120
caccagtg	c cgtcgaccg	g tcatggctgo	gccccgaca	e ecgecaaca	c cegetgaege a cegteteegg	6180
gccctgacg	g gcttgtctg	tcccggcato	cgcttacag	a caagergeg	a ccgtctccgg c agccggatca	6240
gagetgeat	g tgtcagagg	t tttcaccgto	atcaccgaa	a cycycyagg	c agccggatca c cccacctccc	6300
taatcagcc	a taccacatt	c gragagger		t aacttottt	a ttocaoctta	6360
cctgaacct	g aaacataaa	a tyaatycau		+	+ tttttcact	6420
taatqqtta	c aaataaagc	a acageaceu		- batastata	t ggatccacta	6480
gcattctag	it tgtggttig	CCaaaccca		+ ~++coctt+	a otgagggtta	6540
gttctagag	ic daccacesc	c geggegge		a forgaaatt	g ttatccgctc	6600
atttcgago	t tggcgtaat	c atggtcata	g etgttteet	g tgtgaaatt	g tocctaatga	6660
acaattcca	ic acaacacac	g ageeggaas		- attrocact	r gggaaacetg	r 6720
gtgagctaa	ic ccacactaa	c cgcgccg-g		- gagggggtt	t ocotatiogo	r 6780
tegtgecas	c tgcattaat	g aatcggcca	a cgcgcgggg	a yayyuyyu	t gcgtattggg t gcggcgagcg	6840
cgctcttcc	g cttcctcgc	t cactgactc	g ctgcgctcg	y coyclogge	t geggegageg a taacgeagga	6900
gtatcagct	c actcaaagg	c ggtaatacg	g ttatccaca	ay aaccayyys	ga taacgcagga gc cgcgttgctg	6960
aaqaacatg	gt gagcaaaay	g ccagcaaaa	9 900095	an anastroad	o ctcaagtcag	7020
gcgttttt	c ataggetee	g cccccctga	c gagcatca	ia aaaallyak	g ctcaagtcaggg aagctccctc	7080
aggtagca	aa acccgacag	g actataaag	a taccagge	an tatacacat	g aageteeete	7140
atacactet	c ctgttccga	c cctgccgct	t accggata	te teretter	t tetecetteg	7200
ggaagcgt	gg cgctttctc	a tagctcacg	c rgraggra	a accorde	gt gtaggtcgtt tg cgccttatco	7260
cgctccaa	gc tgggctgtg	t gcacgaacc	c cccgttca	ge eegacege	g cgccttatco	-,

WO 01/83729 PCT/EP0

```
ggtaactate gtettgagte caacceggta agacacgaet tategecaet ggcageagee 7320
actggtaaca ggattagcag agcgaggtat gtaggcggtg ctacagagtt cttgaagtgg 7380
tggcctaact acggctacac tagaaggaca gtatttggta tctgcgctct gctgaagcca 7440
gttaccttcg gaaaaagagt tggtagctct tgatccggca aacaaaccac cgctggtagc 7500 ggtggttttt ttgtttgcaa gcagcagatt acgcgcagaa aaaaaggatc tcaagaagat 7560
cettigatet titetaeggg gtetgaeget eagtggaaeg aaaaeteaeg ttaagggatt 7620
ttggtcatga gattatcaaa aaggatcttc acctagatcc ttttaaatta aaaatgaagt
tttaaatcaa tctaaagtat atatgagtaa acttggtctg acagttacca atgcttaatc 7740
agtgaggcac ctatctcagc gatctgtcta tttcgttcat ccatagttgc ctgactcccc 7800 gtcgtgtaga taactacgat acgggaggc ttaccatctg gccccagtgc tgcaatgata 7860 ccgcgagacc cacgctcacc ggctccagat ttatcagcaa taaaccagcc agccggaagg 7920
geogagegea gaagtggtee tgeaacttta teegeeteea teeagtetat taattgttge 7980 egggaageta gagtaagtag ttegeeagtt aatagtttge geaacgttgt tgeeattget 8040
acaggcateg tggtgtcacg ctcgtcgttt ggtatggctt cattcagctc cggttcccaa 8100 cgatcaaggc gagttacatg atccccatg ttgtgcaaaa aagcggttag ctccttcggt 8160 cctccgateg ttgtcagaag taagttggcc gcagtgttat cactcatggt tatggcagca 8220
 ctgcataatt ctcttactgt catgccatcc gtaagatgct tttctgtgac tggtgagtac 8280 tcaaccaagt cattctgaga atagtgtatg cggcgaccga gttgctcttg cccggcgtca 8340
 atacgggata ataccgcgcc acatagcaga actttaaaag tgctcatcat tggaaaacgt 8400
 tettegggge gaaaactete aaggatetta eegetgttga gatecagtte gatgtaacce 8460
 actegtgeac ceaactgate tteageatet tttactttea ceagegttte tgggtgagea 8520
 aaaacaggaa ggcaaaatgc cgcaaaaaag ggaataaggg cgacacggaa atgttgaata 8580 ctcatactct tcctttttca atattattga agcatttatc agggttattg tctcatgagc 8640
 ggatacatat ttgaatgtat ttagaaaaat aaacaaatag gggtteegeg cacattteec 8700
 cgaaaagtgc
  <210> 5
  <211> 30
  <212> DNA
  <213> Artificial Sequence
  <223> Description of Artificial Sequence: primer
                                                                                           30
  atgggatcca agatgaagcg cgcaagaccg
  <210> 6
  <211> 30
  <212> DNA
  <213> Artificial Sequence
  <223> Description of Artificial Sequence: primer
                                                                                           30
   cataacgcgg ccgcttcttt attcttgggc
   <210> 7
   <211> 7148
   <212> DNA
   <213> Artificial Sequence
   <223> Description of Artificial Sequence: plasmid
   gacggatcgg gagatetece gatecectat ggtegactet cagtacaate tgetetgatg 60
   cegcatagtt aagccagtat ctgeteectg cttgtgtgtt ggaggteget gagtagtgcg 120
   cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc 180
```


						4.0
ttagggttag	acattttaca	ctacttcaca a	atgtacgggc	cagatatacg (cgttgacatt 2 agcccatata 3	40
eggageeeeg	cacatcaata	atgacgtatg	ttcccatagt	aacgccaata	gggactttcc 4	20
ceegeccare	staggtagea	tatttacoot	aaactgccca	cttggcagta	catcaagtgt 4	80
atgcccagta	catgacctta	restttteec	actacatcaa	tagacataga	tageggtttg 6	60
tcgctattac	catggtgatg	-t	ttaacatcaa	taggagttta	ttttggcacc 7	20
actcacgggg	atttccaagt	ctccacccca	agacyccaa	cccattgacg	ttttggcacc 7	80 -
aaaatcaacg	ggactttcca	aaacgccgca	acaaccccgc	ctggctaact	caaatgggcg 7	40
gtaggcgtgt	acggtgggag	gtctatataa	geagagetee	ccadacccaa	agagaaccca 8	900
ctgcttactg	gcttatcgaa	attaatacga	Cicactacag	atacetteaa	gcttggtacc S	960
gagctcggat	ccaagatgaa	gcgcgcaaga	ccgcccgaag	ttactcctcc	ccccgtgtat s	L020
ccatatgaca	cggaaaccgg	tcctccaact	gracerric	tacacctata	ctttgtatcc :	1080
cccaatgggt	ttcaagagag	tccccctggg	gtactetett	cactatatat	cgaacctcta :	1140
gttacctcca	atggcatgct	tgcgctcaaa	atgggcaacg	geetetetet	ggacgaggcc :	1200
ggcaacctta	cctcccaaaa	tgtaaccact	gtgagcccac		aaccaagtca :	1260
aacataaacc	tggaaatatc	tgcacccctc	acagttacct	cagaageeee	aactgtggct	1320
accaccacac	ctctaatggt	cgcgggcaac	acactcacca	tgcaatcaca	ggccccgcta gtcagaagga	1380
aagctagccc	tocaaacatc	aggccccctc	accaccaccg	atagcagtac	ccttactatc	1500
atttatacac	aaaatggaaa	actaggacta	aagtacgggg	ctcctttgca	tgtaacagac tacttccttg	1500
gacccaaaaa	ttactggage	cttgggtttt	gattcacaag	gcaatatgca	acttaatgta tagttatccg	T000
caaaccaaag	taaggattga	ttctcaaaac	agacgcctta	tacttgatgt	tagttatccg tataaactca	1/40
geaggaggae	aaaaccaact	aaatctaaga	ctaggacagg	gccctctttt	tataaactca ttcaaacaat	T800
cctgatgete	togatattaa	ctacaacaaa	ggcctttact	: tgtttacagc	ttcaaacaat	1860
geceaeaacc	ttgaggttaa	cctaagcact	gccaaggggt	: tgatgtttga	cgctacagcc	1920
tccaaaaagc	atocaooada	tgggcttgaa	tttggttcac	ctaatgcacc	aaacacaaat	1980
atagecatta	cassasttoo	ccatogccta	gaatttgatt	: caaacaaggc	tatggttcct aaacaaaaat	2040
CCCCCCaaaa	ctacacttac	ttttgacage	acaggtgcca	a ttacagtagg	aaacaaaaat actaaatgca	2100
aaactaggaa	taactttata	gaccacacca	gctccatctc	ctaactgtag	actaaatgca acttgctaca	2160
aatgataayo	ctablectges	tregetetta	acaaaatqt	gcagtcaaat	acttgctaca tcaaagtgct	2220
getteagett	toggergerae	cgaaaatgga	gtgctacta	a acaattcctt	cctggaccca aaacgctgtt	2340
catcttatta	. caayaccege	togadatett	actgaaggc	a cagcctatac	aaacgctgtt caaaagtaac	2400
gaatattgg	actitagaac	. eggagatoce	aaatctcac	gtaaaactgc	caaaagtaac	2460
ggatttatge	ctaacctacc	. ageceaces	aaaactaaa	ctgtaacact	aaccattaca gtcattttca	2520
attgtcagtc	aagtttact	, aaacggagac	actccaagt	catactctat	gtcattttca ttacactttt	2580
ctaaacggta	cacaggaaa	. aggagacaca	gaaatattt	ccacatcctc	ttacactttt	2640
tgggactggt	ctggccacae	a clacattaat	cactcaaac	a tocatctaga	gggccctatt ttctagttgc	2700
tcatacatto	g cccaagaata	a aagaagtggt	tastasaca	t cgactgtgc	ttctagttgc	2760
ctatagtgtc	acctaaatg	: cagagetege	cetteette	a coctogaage	tgccactccc gtgtcattct	2820
cagccatct	g ttgtttgccc	t	ccetccce;	r gtctgagtag	gtgtcattct caatagcagg	2880
actgtcctti	cctaataaa	a tgaggaaatt	. aannaaaa	g attoggaaga	caatagcagg ctggggctct	2940
attctgggg	a araaaaraa	g gcaggacagc	tctgaggg	g aaagaacca	ctggggctct ggtggttacg	3000
catgctggg	g atgeggtgg	t-t	. cceguggeg	a caacaaatat	ggtggttacg	3060
agggggtat	c cccacgcgc	e etgtagtggt	- etsecoago	g ctcctttcg	tttcttccct	3120
cgcagcgtg	a ccgctacac	e egodagogod	. ccagcgccc	d taaatcooo	catecettta	3180
teetttete	g ccacgttcy	o cggcccccc	. ~~~~~~	a aacttgatta	aggtgatggt	3240
gggttccga	t ttagtgctt	t acggcacct	gaccccaaa	a atttaacati	ggagtccacg cccggtctat	3300
tcacgtagt	g ggccatcgc	c ctgatagac	gettetege	- topacctai	ctcootctat	3360
ttctttaat	a gtggactct	t gttccaaaci	ggaacaaca	t cattagge	t ctcggtctat a tgagctgatt	3420
tcttttgat	t tataaggga	t tttggggati	teggeetat	. yyrraaaaa	a tgagctgatt	3480
taacaaaaa	t ttaacgcga	a ttaattctg	t ggaatgtgt	g coageragy	g tgtggaaagt	3540
ccccaggct	c cccaggcag	g cagaagtat	g caaagcatg	c accceaact	a gtcagcaacc	3600
aggtgtgga	a agtccccag	g ctccccagc	a ggcagaagt	a tgcaaagca	t gcatctcaat	3660
tagtcagca	a ccatagtco	c geceetaac	t ccgcccatc	c cgcccctaa	c teegeeeagt	3720
tccacccat	t ctccgcccc	a tggctgact:	a attttttt	a tttatgcag	a ggccgaggcc g cctaggcttt	3780
gcctctgcc	t ctgagctat	t ccagaagta	g tgaggaggo	t tttttggag	g cctaggcttt a gacaggatga	3840
tocaaaaa	c tecegggag	c ttgtatatc	c attttcgga	at ctgatcaag	a gacaggatga c cgcttgggtg	, 3000
ggatcgttt	c gcatgatte	a acaagatgg	a ttgcacgca	ag gtteteegg	c cgcttgggtg	, 5500
33-00300					*	

gagaggetat teggetatga etgggeacaa cagacaateg getgetetga tgeegeegtg 3960 tteeggetgt cagegeaggg gegeeeggtt etttttgtea agacegaeet gteeggtgee 4020 ctgaatgaac tgcaggacga ggcagcgcgg ctatcgtggc tggccacgac gggcgttcct 4080 tgcgcagctg tgctcgacgt tgtcactgaa gcgggaaggg actggctgct attgggcgaa 4140 gtgccggggc aggatetect gtcateteae ettgeteetg ccgagaaagt atceateatg 4200 getgatgeaa tgcggcgget gcatacgett gatecggeta cetgeceatt cgaccaccaa 4260 gcgaaacatc gcatcgagcg agcacgtact cggatggaag ccggtcttgt cgatcaggat 4320 gatctggacg aagagcatca ggggctcgcg ccagccgaac tgttcgccag gctcaaggcg 4380 cgcatgcccg acggcgagga tctcgtcgtg acccatggcg atgcctgctt gccgaatatc 4440 atggtggaaa atggccgctt ttctggattc atcgactgtg gccggctggg tgtggcggac 4500 account tectogram at the tectogram and tectogram a ccaaactcat caatgtatct tatcatgtct gtataccgtc gacctctagc tagagettgg 4980 cgtaatcatg gtcatagctg tttcctgtgt gaaattgtta tccgctcaca attccacaca 5040 cgtaatcatg gtcatagctg tttcctgtgt gaaattgtta tccgctcaca attccacaca 5040 acatacgagc cggaagcata aagtgtaaag cctggggtgc ctaatgagtg agctaactca 5100 cattaattgc gttgcgctca ctgcccgctt tccagtcggg aaacctgtcg tgccagctgc tcttccgctcac tgactcgctg cgctcggtcg caaaaggcgg aatacggta tccacagaat caaaaggcag gcaaaaggcc ggaaccgta tccacagaat caaaaggcca gcaaaaggcc cctgacaga catcacaaaa atcgacgcc ggttgcggaagg ctcccctgggg tgtgctggc tcttccata 5400 aaggaccgca ataaagatac caggcgtttc ccctggaag ctccctcgtg cgctcctgc ccctgacaga atcacagaa atcacaga atcacagaa atcacagaa atcacagaa atcacagaa atcacagaa atcacagaa atcacagaa atcacagaa aggatacctg cccctggaag ctccctcgtg cgctctcctg 5520 ttccacagaac ccctcacaga aggatacctg cccctgggaa ggtcgttcgc tccaaagctg 5640 ttccaaaag ctcacagaa aggtagcgc 5640 tttctcaatg ctcacgctgt aggtatctca gttcggtgta ggtcgttcgc tccaagctgg 5640 getgtgtgca egaacecece gttcageceg acegetgege ettateeggt aactategte 5700 ttgagtccaa eeeggtaaga eaegacttat egecaetgge ageagecaet ggtaacagga 5760 ttagcagage gaggtatgta ggeggtgcta cagagttett gaagteggtgg cetaactaga 5820 getacactag aaggacagta tttggtatet gegetetget gaagcagtt acetteggaa 5880 gaaagagttgg tagetettga teeggcaaac aaaccacege tggtageggt ggtttttttg 5940 tttgcaagca gcagattacg cgcagaaaaa aaggatctca agaagatcct ttgatctttt 6000 ctacggggtc tgacgctcag tggaacgaaa actcacgtta agggattttg gtcatgagat 6060 ctacggggtc tgacgctcag tggaacgaaa actcacgtta agggattttg gcatgagat 6060 tatcaaaaaag gatcttcacc tagatccttt taaattaaaa atgaagtttt aaatcaatct 6120 aaagtatata tgagtaaact tggtctgaca gttaccaatg cttaatcagt gaggcaccta 6180 ctacgataacg ggagggetta ccatctgcc caagtgctgc actcaccggc ggagggctta ccatctgcc caagtgctgc ccaggtcgc cggaagggcc gagggcagaa 6360 gtggtcctgc aactttatcc gcctcaatca agcctattaa tggttgccg gaagctagag 6420 taagtagtagtc gcaggtaaat agtttggga acgttgttgc cattggtaca ggcatcgtgg 6480 gragateerge aactitatee geereeatee agrituatia trytogeegg gaageategrag 6480 taagtagtte geeagttaat agtitgegea aegitgitge cattgetaca ggeategrag 6540 tgteacgete gregittigt argesticat teageteegg treecaaega teaaggegag 6540 traeatgate eeccatgitg tgeaaaaaag eggitatee etteggieet eegategritg 6600 teagaagtaa gitggeegea gigtateae teaaggitat ggeageaetg eataatiete 6660 teagaagtaa gitggeegea gigtateae teaaggitat ggeageaetg eataatiete 6660 ttactgtcat gccatccgta agatgctttt ctgtgactgg tgagtactca accaagtcat 6720 tctgagaata gtgtatgcgg cgaccgagtt gctcttgcc ggcgtcaata cgggataata 6780 ccgcgccaca tagcagaact ttaaaagtgc tcatcattgg aaaacgttct tcggggcgaa 6840 aactctcaag gatcttaccg ctgtgagat ccagttcgat gtaacccact cgtgcacca 6900 actgatette ageatetttt acttteacea gegtttetgg gtgageaaaa acaggaagge 6960 aaaatgccgc aaaaaaggga ataagggcga cacggaaatg ttgaatactc atactcttcc tttttcaata ttattgaagc atttatcagg gttattgtct catgagcgga tacatatttg 7080 aatgtattta gaaaaataaa caaatagggg ttccgcgcac atttccccga aaagtgccac 7140

ctgacgtc

<210> 8

<211> 7469

<212> DNA

<213> Artificial Sequence

<220> <223> Description of Artificial Sequence: plasmid

<400> 8					tactatasta	60
gacggatcgg	gagatetece	gatcccctat	ggtcgactct	cagtacaate	tgctctgatg	120
ccgcatagtt	aagccagtat	ctgctccctg	cttgtgtgtt	ggagguegee	gagtagtgcg :	180
cgagcaaaat	ttaagctaca	acaaggcaag	gettgaeega	caactgcacg	aagaatctgc	240
		+ > + + + 2 COOT	aaaci uccca	CCCGGCGGGG	0460445050	
aaaatcaacg	ggactttcca	aaatgtcgta	acaactetgt	ctccctaact	caaatgggcg	840
gtaggcgtgt	acggtgggag	gtctatataa	geagagetee	ccadecccaa	agagaaccca	900
ctgcttactg	gcttatcgaa	attaatacga	ccaccacag	ttaaaaaaaa	gettggtace	960
gagctcggat	ctgaattcga	getegetget	gggeregegg	caacactact	actettegeg	1020
gggacctgag	cgagtccgca	tegaceggat	terregard	caccacatas	gcgtctaacc	1140
agtcacagtc	gcaaggtagg	ctgageaccg	cggcgggcgg	ggggggtgg	cggtcggggt	1200
tgtttctggc	ggaggtgctg	ctgatgatgt	taccadagea	adcacacasa	agacggcgga accgtctgaa	1260
					accgtctgaa tgtgcctttt	
cttactcctc	cettegtate	ccccaacggg	aatogcatgo	ttgcgctcaa	aatgggcaac tgtgagcca	1440
tcagaagccc	raactgtggt	aaccatacac	gactccaaac	ttagcattgc	cacccaagga caccaccacc	1680
cccccacag	cacttactat	cactgcctca	cccctctaa	ctactgccac	tggtagcttg	1800
ggtattgatt	. egadagagaga . atataacaga	cgacctaaac	actttgaccg	tagcaactgg	tccaggtgtg	1920
actattaata	atacttcctt	gcaaactaaa	gttactggag	ccttgggttt	tgattcacaa cagacgcctt	1980
gggaatatgg	aacttaatgt	agcaggagga	ctaaggattg	attctcaaaa	cagacgcctt	2040
atacttcatc	ttagttatco	gtttgatgct	caaaaccaac	taaatctaag	actaggacag	2100
tratttacae	cttcaaacaa	ttccaaaaa	cttgaggtta	acctaagcac	: tgccaagggg . atttggttca	2220
ttgatgttt	acactacago	catagccatt	aatgcaggag	, atgggcttga	atttggttca agaatttgat	2280
attacagtag	gaaacaaaa	taatgataag	g ctaactttgt	ggaccacacc	agetecatet aacaaaatgt	2520
cctaactqta	gactaaatgo	: agagaaagat	gctaaactca	cereggeet	aacaaaatgt	2520
ggcagtcaa	a tacttgctac	: agtttcagtt	ttggctgtta	aaggcagtt	ggctccaata	2500
tctggaacag	g ttcaaagtgo	: tcatcttatt	t ataagattt	acgaaaatg	g agtgctacta	2700
aacaattcci	tcctggacco	: agaatattg	g aactttagaa	arggagate	tactgaaggc	2750
acagcctata	a caaacgctgt	: tggatttatg	g cctaacctat	cagettate	c aaaatctcac a caaaactaaa	2820
ggtaaaact	g ccaaaagtaa	a cattgtcagt	t caagtttaci	taaacggag	a caaaactaaa c aactccaagt	2880
cctgtaaca	c taaccatta	actaaacgg	t acacaggaa	a caggagaca	aactccaagt	2940
gcatactct	a tgtcatttt	atgggactg	g tetggecae	accacaccac	tgaaatattt	3000
gccacatcc	t cttacactt	t ttcatacat	t gcccaagaa	c adagaageg	g ccgctcgago	3060
atgcatcta	g agggccctai	t tctatagtg	t cacctaaat	g clagageee	ctgatcagco	3120
tcgactgtg	c cttctagtts	g ccagccatc	t gregerige	a atdaddaaa	t gccttccttg	3180
accctggaa	g gtgccactc	c cactgtcct	T CCCLaacaa	a acyayyaaa	t tgcatcgcat	3240
tgtctgagt	a ggtgtcatt	c tattetggg	g ggcggggg	g getetatgg	c ttctgaggc	3300
gattgggaa	g acaatagca	g geatgetgg	9 90090900	c cetatageg	g cgcattaag	3360
gaaagaacc	a gctggggct	e cagggggca	- aggactaca	c ttgccagcg	c cctagcgcc	3420
gcggcgggt	g tggtggtta	c gcgcagcgt	g acceptace	a ccaactttc	c cctagcgccc c ccgtcaagct	3480
gctcctttc	g ctttcttcc	c recepted	gccacgett			

PCT/EP01/04863

tgtaacccac tcgtgcaccc aactgatett cagcatettt tactttcacc agcgtttctg 7260 ggtgagcaaa aacaggaagg caaaatgccg caaaaaaggg aataagggcg acacggaaat 7320 ottquatact catactette ettetteaat attattgaag catttateag ggttattgte 7380 tcatgagcgg atacatattt gaatgtattt agaaaaataa acaaataggg gttccgcgca 7440 catttccccg aaaagtgcca cctgacgtc 7469 <210> 9 <211> 28 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: primer <400> 9 28 tgcttaagcg gccgcgaagg agaagtcc <210> 10 <211> 23 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: primer <400> 10 23 ccgagctagc gactgaaaat gag <210> 11 <211> 23 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: primer <400> 11 23 cctctcgaga gacagcaaga cac <210> 12 <211> 11152 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: plasmid <400> 12 aagettggge agaaatggtt gaacteeega gagtgteeta caectagggg agaageagee 60 aagggettgt ttcccaccaa ggacgacccg tctgcgcaca aacggatgag cccatcagac 120 aaaggacatat tcattctctg ctgcaaactt ggcatagctc tgctttgcct ggggctattg 180 ggggaagttg cggttcgtgc tcgcagggct ctcacccttg actcttttaa tagctcttct 240 gtgcaagatt acaatctaaa caattoggag aactegacet teeteetgag gcaaggacca 300 cagccaactt cctcttacaa gccgcatcga ttttgtcctt cagaaataga aataagaatg 360 cttgctaaaa attatattt taccaataag accaatccaa taggtagatt attagttact 420 atgitaagaa atgaatcatt atcttttagi actatttta ctcaaaitca gaagitagaa 480 atgggaatag aaaatagaaa gagacgctca acctcaattg aagaacaggt gcaaggacta 540 ttgaccacag gcctagaagt aaaaaaggga aaaaagagtg tttttgtcaa aataggagac 600 aggtggtggc aaccagggac ttatagggga ccttacatct acagaccaac agatgcccc 660 ttaccatata caggaagata tgacttaaat tgggataggt gggttacagt caatggctat 720

	•					
aaagtgttat	atagatecet	cccttttcqt	gaaagactcg	ccagagctag	acctccttgg	780
					ttatatttat	
					gacagtggct	
					atagccttta	
					ctgttcttaa	
					tctgatctga	
					atgtaaatgc	
					acagtcctaa	
cattcacctc	ttatatattt	atatctattc	gccatcccgt	ctccqctcqt	cacttatcct	1260
					gactgcggca	
					tactatttgg	
					aacggactca	
					aggtgttatt	
					ggctgataat	
cttccacctc	ctagccattt	tgaaccacct	accettcacg	aactgtatga	tttagacgtg	1620
acggcccccg	aagatcccaa	cgaggaggcg	gtttcgcaga	tttttcccga	ctctgtaatg	1680
					ttctccggag	
					teeggtttet	
atgccaaacc	ttgtaccgga	ggtgatcgat	cttacctgcc	acgaggctgg	ctttccaccc	1860
agtgacgacg	aggatgaaga	gggtgaggag	tttgtgttag	attatgtgga	gcaccccggg	1920
cacggttgca	ggtcttgtca	ttatcaccgg	aggaatacgg	gggacccaga	tattatgtgt	1980
tcgctttgct	atatgaggac	ctgtggcatg	tttgtctaca	gtaagtgaaa	attatgggca	2040
gtgggtgata	gagtggtggg	tttggtgtgg	taatttttt	tttaattttt	acagttttgt	2100
ggtttaaaga	attttgtatt	gtgattttt	taaaaggtcc	tgtgtctgaa	cctgagcctg	2160
agcccgagcc	agaaccggag	cctgcaagac	ctacccgccg	tcctaaaatg	gcgcctgcta	2220
tcctgagacg	cccgacatca	cctgtgtcta	gagaatgcaa	tagtagtacg	gatagctgtg	2280
actccggtcc	ttctaacaca	cctcctgaga	tacacccggt	ggtcccgctg	tgccccatta	2340
aaccagttgc	cgtgagagtt	ggtgggcgtc	gccaggctgt	ggaatgtatc	gaggacttgc	2400
ttaacgagcc	tgggcaacct	ttggacttga	gctgtaaacg	ccccaggcca	taaggtgtaa	2460
					gtaagtttaa	
					cttaaagggt	
					tgggagtgtt	
tggaagattt	ttctgctgtg	cgtaacttgc	tggaacagag	ctctaacagt	acctcttggt	2700
					aaggaggatt	
acaagtggga	atttgaagag	cttttgaaat	cctgtggtga	gctgtttgat	tctttgaatc	2820
tgggtcacca	ggcgcttttc	caagagaagg	tcatcaagac	tttggatttt	tccacaccgg	2880
ggcgcgctgc	ggctgctgtt	gettttttga	gttttataaa	ggataaatgg	agcgaagaaa	2940
cccatctgag	cggggggtac	ctgctggatt	ttetggeeat	gcatctgtgg	agagcggttg	3000
tgagacacaa	gaatcgcctg	ctactgttgt	cttccgtccg	cccggcgata	ataccgacgg	3060
aggagcagca	gcagcagcag	gaggaagcca	aacaacaaca	gcaggagcag	agcccatgga	3120
acccgagagc	cggcctggac	cctcgggaat	gaatgttgta	caggtggctg	aactgtatcc	3180
agaactgaga	cgcattttga	caattacaga	ggatgggcag	gggctaaagg	gggtaaagag	3240
ggagcggggg	gcttgtgagg	ctacagagga	ggctaggaat	ctagetttta	gcttaatgac	3300
cagacaccgt	cctgagtgta	ttacttttca	acagatcaag	gataattgcg	ctaatgagct	3300
tgatetgetg	gegeagaage	attecataga	geagetgace	acttactggc	tgcagccagg	3420
					cagattgcaa	
gracaagare	agcaaacttg	caaataccag	gaartgrige	tatacatte	ggaacggggc	3500
cgaggtggag	atagatacgg	aggatagggt	ggeetttaga	chancetta	taaatatgtg	3660
geegggggeg	cctggcatgg	acggggtggt	cactacyaac	staagguuta	ctggccccaa	3720
tectagegge	acggttttcc	tagenageta	caaccutate	ccacacggcg	taagcttcta	3720
tgggtttaac	tacaccigig	tagaageetg	gaccyacyca	agggcccggg	gctgtgcctt	3040
ctactgetge	rggaaggggg	teastates	ceccaaage	agggetteaa	ttaagaaatg	2040
cetettegaa	aggegeacet	cgggtateet	gcccgagggc	aaccccaggg	tgcgccacaa	3960
catogtotee	gactytyytt	accacacacac	ayuyaaaayu	ctaractact	ttaagcataa	4020
ctatasasta	ggcaactgcg	ttcacctacc	gaggagatet	cacaacacac	cggacggcaa	4020
tagaataa	atactesees	actattactt	gastttgg	ageaggeet	ggccagtgtt	4140
accttaccaac	tocaattto	gtcacactaa	geactigggt catatteett	aacayyayyy	gggtgttcct gcatgtccaa	4200
acculacted	aacaggggtgt	ttgacatgac	catcaacatc	tagaaaatac	tgaggtacga	4260
tracacces	accadataca	gaccetgac	atataacact	aaacatatta	ggaaccagcc	4320
tatastacta	gatgtgacco	aggagetgag	acccastcsc	ttaatactaa	cctgcacccg	4380
cactasattt	gactetageg	atgaagatac	agattgaggt	actgaaatgt	gtgggegtgg	4440
-30-305000						

cttaagggtg ggaaagaata tataaggtgg gggtcttatg tagttttgta tctgttttgc 4500 agcagccgcc gccgccatga gcaccaactc gtttgatgga agcattgtga gctcatattt 4560 gacaacgcgc atgccccat gggccggggt gcgtcagaat gtgatgggct ccagcattga 4620 tggtcgcccc gtcctgcccc caacctctac taccttgacc taccgagaccg tgtctggaac 4680 geegttggag actgeageet eegeegeege tteageeget geageeaceg eeegegggat 4740 tgtgactgae tttgetttee tgageeeget tgeaageagt geagetteee gtteateege 4800 ccgcgatgac aagttgacgg ctcttttggc acaattggat tctttgaccc gggaacttaa 4860 tgtcgtttct cagcagctgt tggatctgcg ccagcaggtt tctgccctga aggcttcctc 4920 coctcocaat goggtttaaa acataaataa aaaaccagac totgtttgga tttggatcaa 4980 gcaagtgtot tgctgtotot cgagggatot ttgtgaagga accttactto tgtggtgtga 5040 cataattgga caaactacot acagagattt aaagctotaa ggtaaatata aaatttttaa 5100 gtgtataatg tgttaaacta ctgattctaa ttgtttgtgt attttagatt ccaacctatg 5160 gaactgatga atgggagcag tggtggaatg cetttaatga ggaaaacetg ttttgetcag 5220 aagaaatgee atetagtgat gatgaggeta etgetgaete teaacattet aeteeteeaa 5280 aaaagaagag aaaggtagaa gaccccaagg actttccttc agaattgcta agttttttga 5340 gtcatgctgt gtttagtaat agaactcttg cttgctttgc tatttacacc acaaaggaaa 5400 aagetgeact getatacaag aaaattatgg aaaaatatte tgtaacettt ataagtagge 5460 ataacagtta taatcataac atactgtttt ttcttactcc acacaggcat agagtgtctg ctattaataa ctatgctcaa aaattgtgta cctttagctt tttaatttgt aaaggggtta 5580 ataaggaata tttgatgtat agtgccttga ctagagatca taatcagcca taccacattt 5640 gtagaggttt tacttgcttt aaaaaacctc ccacacctcc ccctgaacct gaaacataaa 5700 atgaatgcaa ttgttgttgt taacttgttt attgcagctt ataatggtta caaataaagc 5760 aatagcatca caaatttcac aaataaagca tttttttcac tgcattctag ttgtggtttg 5820 tccaaactca tcaatgtatc ttatcatgtc tggatccggc tgtggaatgt gtgtcagtta 5880 gggtgtggaa agtccccagg ctccccagca ggcagaagta tgcaaagcat gcatctcaat 5940 tagtcagcaa ccaggtgtgg aaagtcccca ggctccccag caggcagaag tatgcaaagc 6000 atgcatetea attagteage aaccatagte eegeceetaa eteegeceat eeegeceeta 6060 actocgocca gttocgocca ttotocgocc catggotgac taatittttt tatttatgca 6120 gaggeegagg eegeetegge etetgageta tteeagaagt agtgaggagg ettttttgga 6180 ggcctaggct tttgcaaaaa gcttggacac aagacaggct tgcgagatat gtttgagaat 6240 accactttat ecegegteag ggagaggeag tgegtaaaaa gaegeggaet catgtgaaat 6300 actggttttt agtgegeeag atetetataa tetegegeaa eetatttee eetegaacae 6360 tttttaagcc gtagataaac aggctgggac acttcacatg agcgaaaaat acatcgtcac 6420 ctgggacatg ttgcagatcc atgcacgtaa actcgcaagc cgactgatgc cttctgaaca 6480 atggaaaggc attattgccg taagccgtgg cggtctggta ccgggtgcgt tactggcgcg 6540 tgaactgggt atcgtcatg tcgataccgt ttgtatttcc agctacgatc acgacaacca 6600 gogogagott aaagtgotga aacgogoaga aggogatggo gaaggottca togttattga 6660 tgacctggtg gataccggtg gtactgcggt tgcgattcgt gaaatgtatc caaaagcgca 6720 ctttgtcacc atcttcgcaa aaccggctgg tcgtccgctg gttgatgact atgttgttga 6780 tatcccgcaa gatacctgga ttgaacagcc gtgggatatg ggcgtcgtat tcgtcccgcc 6840 aatctccggt cgctaatctt ttcaacgcct ggcactgccg ggcgttgttc tttttaactt 6900 caggcgggtt acaatagttt ccagtaagta ttctggaggc tgcatccatg acacaggcaa 6960 acctgagcga aaccctgttc aaaccccgct ttaaacatcc tgaaacctcg acgctagtcc 7020 gccgctttaa tcacggcga caaccgcctg tgcagtcggc ccttgatggt aaaaccatcc 7080 ctcactggta tcgcatgatt aaccgtctga tgtggatctg gcgcggcatt gacccacgcg 7140 aaatcctcga cgtccaggca cgtattgtga tgagcgatgc cgaacgtacc gacgatgatt 7200 tatacgatac ggtgattggc taccgtggcg gcaactggat ttatgagtgg gccccggatc 7260 tttgtgaagg aaccttactt ctgtggtgtg acataattgg acaaactacc tacagagatt 7320 taaagctcta aggtaaatat aaaattttta agtgtataat gtgttaaact actgattcta 7380 attgtttgtg tattttagat tecaacetat ggaactgatg aatgggagca gtggtggaat 7440 gcetttaatg aggaaaacct gttttgctca gaagaaatgc catctagtga tgatgaggct 7500 actgctgact ctcaacattc tactcctcca aaaaagaaga gaaaggtaga agaccccaag 7560 gactttcctt cagaattgct aagtttttg agtcatgctg tgtttagtaa tagaactctt 7620 gcttgctttg ctatttacac cacaaaggaa aaagctgcac tgctatacaa gaaaattatg 7680 gaaaaatatt ctgtaacctt tataagtagg cataacagtt ataatcataa catactgttt 7740 tttettacte cacacaggea tagagtgtet getattaata actatgetea aaaattgtgt 7800 acetttaget ttttaatttg taaaggggtt aataaggaat atttgatgta tagtgeettg 7860 actagagate ataatcagee ataccacatt tgtagaggtt ttacttgett taaaaaacet 7920 cccacacctc cccctgaacc tgaaacataa aatgaatgca attgttgttg ttaacttgtt 7980 tattgcagct tataatggtt acaaataaag caatagcatc acaaatttca caaataaagc 8040 attttttca ctgcattcta gttgtggttt gtccaaactc atcaatgtat cttatcatgt 8100 ctggatcccc aggaagctcc tctgtgtcct cataaaccct aacctcctct acttgagagg 8160

<210> 13 <211> 19 <212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer

<400> 13 gacggatcgg gagatctcc


```
<210> 14
 <211> 22
 <212> DNA
 <213> Artificial Sequence
  <223> Description of Artificial Sequence: primer
                                                                                                                                                                                                                                                                                                                                                                                                                                                   22
   <400> 14
   ccgcctcaga agccatagag cc
     <210> 15
      <211> 14455
       <212> DNA
     <213> Artificial Sequence
       <223> Description of Artificial Sequence: plasmid
       aagettggge agaaatggtt gaacteeega gagtgteeta cacetagggg agaageagee 60
        aaggggttgt tteccaccaa ggacgacceg tetgegeaca aacggatgag cecatcagae 120
       aayyyyttyt tteedadda gyacyattey teeggataa aacygatyay coateagat 180 aaagacatat teattetety etgcaaactt ggcatagete tgetttgeet ggggctattg 180 ggggaagtty eggttegtye tegcaggget etcaceetty actetttaa tagetettet 240 gtgcaagat acaatetaaa caatteggay aactegacet teeteetyay geaaggacea 300 gtgcaagat acaatetaaa caatteggay tettagett eggeaggat acaatetaaa caatteggay aactegacet teeteetyay geaaggacea 300
        gradulti acaatetaaa caateegaay aactegacet teeteetgag gcaaggacea 300 cagccaactt cetettacaa gccgcatega tittgteett cagaaataga aataagaatg 360 cttgctaaaaa atgaateatt taccaataag accaateeaa taggtagatt atgttaagaa atgaateatt atettttagt actatittta ctcaaattea gagategatagaa 480 atgggaatag aaaatagaaa gagacgetea acctcaattg aagaacaggt gcaaggacta 540 ttggccacag gcctagaagt aaaaaaggga aaaaagggg tttttgcaa aataggagac 600 aggtcgctca acctcaattg acateggaagt categgagac aataggagac 600 aggtcgctca acctcaattg acctcaattg acateggagac acctcaattg acctcaactg gcctagaagt aaaaaaggga aaaaagggga caggacca 300 acctcactga gcaaggacca 300 aataaggacca 300 acctcactga gcaaggacca 300 acctcactga acctcactga acctcactga caggacca 300 acctcactga a
           aggtggtggc aaccagggac ttatagggga ccttacatct acagaccaac agatgcccc 660
          traccatata caggaagata tgacttaaat tgggataggt gggttacagt caatggctat 720 aaagtgttat atagatccct cccttttcgt gaaagactcg ccagagctag acctccttgg 780 tgtatgttgt ctcaagaaga aaaagacgac atgaaacaac aggtacatga ttatatttat 840
            ctaggaacag gaatgcactt ttggggaaag attttccata ccaaggaggg gacagtggct 900 ggactaatag aacattatte tgcaaaaact catggcatga gttattatga atagccttta 960 ttggcccaac cttgcggtte ccagggctta agtaagttt tggttacaaa ctgttcttaa 1020 ttggcccaac cttgcggtte ccagggctta cttagttaga tagccttaga 1080
             getetgagtg ttetattte ctatgttett ttggaattta tecaaatett atgtaaatge 1140 ttatgtaaac caagatataa aagagtgetg atttttgag taaacttgea acagteetaa 1200 catteacete ttgtgtgtt gtgtetgtte gecatecegt etecatetee gagtgegee eeggegaceet eggegaceet teetetatte taetatteg 1320 getggegee gaacagggae eeteggataa gtgaceettg teetetatte taetatttgg 1320 tgttgtett gtattgtete tteetgata aggeatete teetetatte taetatttgg 1340 tgttgtett gtattgtete tteetgataa gegaceettg teetetatte taetatttgg 1340 tgttgtett gtattgtete tteetgataa aggeateta teetgeacegg aacaggaetea 1440 acaggaetes 1320 tgttgtett gtattgtete tteetgataa teetgaceeteg acaggaetee 1320 teetgaaaatg aggeatatata teetgeeacegg aacaggaetea 1440 acaggaetee 1320 teetgaaaatg aggeatateate acaggaetee 1320 teetgaaaatg aggeatatata teetgeeacegg aacaggaetea 1440 acaggaetee 1320 teetgaaaatg aggeatatata teetgaagaetee 1440 acaggaetee 1320 teetgaaaatg aggeatatata teetgaagaetee 1320 teetgaagaetee 1320 teetgaaaatg aggeatatata teetgaagaetee 1320 teetgaaga
               atgectated trigracegia ggrgaregat createring acquiring critical 1860 agtgaregae aggatgaaga gggrgaregae trigratura attatgriga geaceceggi 1920 aggatgaega gggrettigat attategagae aggataegg gggacecaga tattatgigt 1980 trigrigate attatgaggae crigriggeate trigrigate ggggrgare gagtgare gagtgare aggatgare aggatgar
                    ggtttaaaga attttgtatt gtgattttt taaaaggtcc tgtgtctgaa cctgagcctg 2160
```


ggcctaggct tttgcaaaaa gcttggacac aagacaggct tgcgagatat gtttgagaat 6240 accactttat cccgcgtcag ggagaggcag tgcgtaaaaa gacgcggact catgtgaaat 6300 actggttttt agtgcgccag atctctataa tctcgcgcaa cctattttcc cctcgaacac 6360 tttttaagcc gtagataaac aggctgggac acttcacatg agcgaaaaat acatcgtcac 6420 ctgggacatg ttgcagatcc atgcacgtaa actcgcaagc cgactgatgc cttctgaaca 6480 atgaaagge attattgccg taagccgtgg cggtctggta ccgggtgcgt tactggcgcg 6540 tgaactgggt attcgtcatg tcgataccgt ttgtatttcc agctacgatc acgacaacca 6600 gegegagett aaagtgetga aacgegeaga aggegatgge gaaggettea tegttattga 6660 tgacctggtg gataccggtg gtactgcggt tgcgattcgt gaaatgtatc caaaagcgca 6720 ctttgtcacc atcttcgcaa aaccggctgg tcgtccgctg gttgatgact atgttgttga 6780 tatecegeaa gatacetgga ttgaacagee gtgggatatg ggegtegtat tegtecegee 6840 aatctccggt cgctaatctt ttcaacgct ggcactgccg ggcgttgttc tttttaactt 6900 caggcgggtt acaatagttt ccagtaagta ttctggaggc tgcatccatg acacaggcaa 6960 acctgagcga aaccetgttc aaaccccgct ttaaacatcc tgaaacctcg acgctagtcc 7020 geetttaatg aggaaaaeet gtttgetea gaagaaatge catetagtga tgatgagget 7500 actgetgact etcaacatte tacteetea aaaaagaaga gaaaggtaga agaeeeeaag 7560 actteette cagaattget aagtttttg getatgetgt etattacae cacaaaggaa aageegeae tgetatacaa gaaaattatg 7620 gaaaaaatatt etgtaaeett tacaaggaa taaageegeae tgetatacaa gaaaattatg 7740 tttettaete cacaaaggaa tagaagtget aageegeae tagaagtget aaageegeae tagaagtgete aagatteete 7740 getattaata actatgetea aagatteete 7740 tttcttactc cacacaggca tagagtgtct gctattaata actatgctca aaaattgtgt 7800 acctttagct ttttaatttg taaagggtt aataaggaat atttgatgta tagtgccttg 7860 acctttagagtc ataatcagcc ataccacatt tgtagaggtt ttacttgctt taaaaaaacct 7920 actagaggat ataatcagcc ataccacatt tgtagaggtt actattgct taaaaaaacct 7920 cccacacete cccctgaace tgaaacataa aatgaatgca attgttgttg ttaacttgtt 7980 tattgcagct tataatggtt acaaataaag caatagcatc acaaatttca caaataaagc 8040 attttttta etgeateta gttgtggtt gtecaaaete ateaatgtat ettateatgt 8100 etggatecee aggaagetee tetgtgteet eataaaeeet aeeteetet aettggaggg 8160 acaacaaagga aattgggtag gggttttea eagaeggett tetaagggta aettgggaag teeetteeae tgetgtgte eagaagtgtt ggtaaaeag eeacaaatgt 8280 acaacaaggaag aacatacaag etgetggtte tgeagagg eeaaaagg eeaaaatgt 8280 aattgggaag aacatacaag etgetggtte tgeagaggg eeaaaagg eeaaaaagg eeaaaaagg 8400 caacagcaga aacatacaag ctgtcagctt tgcacaaggg cccaacaccc tgctcatcaa 8400 gaagcactgt ggttgctgtg ttagtaatgt gcaaaacagg aggcacattt tccccacctg 8460 tgtaggttcc aaaatacta gtgttttcat ttttacttgg atcaggaacc cagcactcca 8520 tgtaggttcc attatactts tcccaacagg aggcacatt tccccacctg 8520 tgtaggttcc attatactts tcccaacagg actatacaggaacc cagcactcca 8520 tgtaggataagg attatactts ctggataagc attatectta tecaaaacag cettgtggte agtgtteate tgetgactgt 8580 caactgtage attitttggg gttacagttt gagcaggata tittggtcctg tagtittgcta 8640 acacacctg cagctccaaa ggttcccac caacagcaaa aaaatgaaaa tittgaccctt 8700 gaatgggtt tccagcacca tittcatgag tittttggt ccctgaatgc aagtitaaca 8760 tagcagttac cccaataacc tcagttttaa cagtaacagc ttcccacatc aaaatatttc 8820 cacaggttaa gtcctcattt aaattaggca aaggaattct tgaagacgaa agggcctcgt 8880 gatacgccta tttttatagg ttaatgtcat gataataatg gtttcttaga cgtcaggtgg 8940 cacttttcgg ggaaatgtgc gcggaacccc tatttgttta tttttctaaa tacattcaaa 9000 tatgtatccg ctcatgagac aataaccctg ataaatgctt caataatatt gaaaaaggaa 9060 gagtatgagt attcaacatt teegtgtege cettatteee ttttttgegg cattttgeet 9120 tectgetett geteaceag aaacgetggt gaaagtaaaa gatgetgaag ateagttggg 9180 tgcacgagtg ggttacateg aactggatet caacageggt aagateettg agagtttteg 9240 eccegaagaa egttttecaa tgatgageae ttttaaagtt etgetatgtg gegeggtatt 9300 atcccgtgtt gacgccgggc aagagcaact cggtcgccgc atacactatt ctcagaatga 9360 cttggttgag tactcaccag tcacagaaaa gcatcttacg gatggcatga cagtaagaga 9420 attatgcagt gctgccataa ccatgagtga taacactgcg gccaacttac ttctgacaac 9480 gatcggagga ccgaaggagc taaccgcttt tttgcacaac atgggggatc atgtaactcg 9540 cettgategt tgggaacegg agetgaatga agecatacea aacgacgage gtgacaceae 9600 gatgeetgea geaatggeaa caacgttgeg caaactatta actggegaac tacttactet 9660 agetteegge caacaattaa tagactggat ggaggeggat aaagttgeag gaecaettet 9720 gegeteggee etteeggetg getggttat tgetgataaa tetggaggeg gtgaggegtgg 9780 gtetegeggt atcattgeag cactggggee agatggtaag ceeteeegta tegtagttat 9840 etacacgaeg gggagteagg caactatgga tgaacgaaat agacagateg etgagatagg 9900


```
gatgactaat acgtagatgt actgccaagt aggaaagtcc cataaggtca tgtactgggc 13680 ataatgccag gcgggccatt taccgtcatt gacgtcaata gggggcgtac ttggcatatg 13740 atacacttga tgtactgcca agtgggcagt ttaccgtaaa tagtccaccc attgacgtca 13800
atggaaagtc cctattggcg ttactatggg aacatacgtc attattgacg tcaatgggcg 13860
ggggtcgttg ggcggtcagc caggcgggcc atttaccgta agttatgtaa cgcggaactc 13920
catatatggg ctatgaacta atgaccccgt aattgattac tattaataac tagtcaataa 13980
tcaatgtcaa cgcgtatate tggcccgtac atcgcgaagc agcgcaaaac gcctaaccct 14040 aagcagatte tteatgcaat tgtcggtcaa gccttgcctt gttgtagctt aaattttgct 14100 cgcgcactac tcagcgacct ccaacacaa agcaggagc agatactggc ttaactatgc 14160
 ggcatcagag cagattgtac tgagagtcga ccatagggga tcgggagatc tcccgatccg 14220
yyearcagag cayartytac tyayayteya ccarayyyya tegygayate teecgareeg 14220 tetatggtgc acteteagta caatetgete tgatgeegea tagttaagee agetatacaet 14280 cegetatege taegtgaetg ggteatgget gegeceegae accegecaae accegetgae 14340 gegecetgae tgtgteagag gtttteaceg teateacega aacgegegag geage 14455
```

<210> 16 <211> 10610 <212> DNA

<213> Artificial Sequence

<223> Description of Artificial Sequence: plasmid

gacggatcgg gagatccgcg cggtacacag aattcaggag acacaactcc aagtgcatac 60 tctatgtcat tttcatggga ctggtctggc cacaactaca ttaatgaaat atttgccaca 120 tcctcttaca cttttcata cattgcccaa gaataaagaa tcgtttgtgt tatgtttcaa 180 cgtgtttatt tttcaattgc agaaaatttc aagtcatttt tcattcagta gtatagccc 240 accaccacat agettataca gatcaccgta cettaatcaa acteacagaa ceetagtatt 300 caacetgeca cetecetece aacacacaga gtacacagte ettteteece ggetggeett 360 aaaaagcatc atatcatggg taacagacat attcttaggt gttatattcc acacggtttc 420 ctgtcgagcc aaacgctcat cagtgatatt aataaactcc ccgggcagct cacttaagtt 480 catgtcgctg tccagctgct gagccacagg ctgctgtcca acttgcggtt gcttaacggg 540 cagcaccaca atattgttca aaatcccaca gtgcaaggcg ctgtatccaa agctcatggc 840 ggggaccaca gaacccacgt ggccatcata ccacaagcgc aggtagatta agtggcgacc 900 cctcataaac acgctggaca taaacattac ctcttttggc atgttgtaat tcaccacctc 960 ccggtaccat ataaacctct gattaaacat ggcgccatcc accaccatcc taaaccagct 1020 ggccaaaacc tgccgccgg ctatacactg cagggaaccg ggactggaac aatgacagtg 1080 gagagcccag gactcgtaac catggatcat catgctcgtc atgatatcaa tgttggcaca 1140 acacaggeac acgtgeatac acttecteag gattacaage tectecegeg ttagaaceat 1200 atcccaggga acaacccatt cctgaatcag cgtaaatccc acactgcagg gaagacctcg 1260 cacgtaactc acgttgtgca ttgtcaaagt gttacattcg ggcagcagcg gatgatcctc 1320 cagtatggta gcgcgggttt ctgtctcaaa aggaggtaga cgatccctac tgtacggagt 1380 gegeegagae aacegagate gtgttggteg tagtgteatg ceaaatggaa egeeggaegt 1440 agticatatit cetgaageaa aaceaggtge gggegtgaca aacagatetg egteteeggt 1500 etegeegett agategetet gtgtagtagt tgtagtatat ceaetetete aaageateca 1560 ggcgccccct ggcttcgggt tctatgtaaa ctccttcatg cgccgctgcc ctgataacat 1620 ccaccaccgc agaataagcc acaccagcc aacctacaca ttcgttctgc gagtcacaca 1680 cgggaggagc gggaagaacca tgttttttt tttattccaa aagattatcc 1740 aaaacctcaa aatgaagatc tattaagtga acgcgctccc ctccggtggc gtggtcaaac 1800 tetacageca aagaacagat aatggcattt gtaagatgtt gcacaatgge ttecaaaagg 1860 caaacggee teaegteeaa gtggaegtaa aggetaaace etteagggtg aateteetet 1920 ataaacatte cageacette aaccatgee aaataattet catetegea eettetaat 1980 atatetetaa geaaateeg aatattaagt eeggeeattg taaaaatetg eteeagageg 2040 eeeteeacet teageeteaa geagegaate atgattgeaa aaatteaggt teeteacaga 2100 cetgtataag atteaaaage ggaacattaa caaaaatace gegateeegt aggteeette 2160 geagggecag etgaacataa tegtgeaggt etgeaeggae eagegeggee aetteeege 2220

ggagagtga ttatgacacg catactcgga gctatgctaa 2240
aggaacett gacaaaagaa eecacaetga ttatgacaeg cataetegga getatgetaa 2260 eegggaacett gacaaaagaa getttgttge atgggeggeg atataaaatg caaggtgetg 2340 eeagegtage eecgaatgtaa geteggaaa aaagaaagea categtagte atgeteatge 2460
Language CaddCaaaqC CCC9C9C9C9C9C9C9C9C9C9C9C9C9C9C9C9C9C
Antingard addition to the first tasacattad 2020
tatataraa deeeccidaa aaaaaaaaaaaaataaaaaaar acddccatdc 4300
aggetator tacadogga account
eggegtgace gtaaaaaaac tggtcaccgt gattaaaaag caccactgac agettooss 2700 eggegtgace gtaaaaaac taggtcacgg taaacacatc aggttgattc atcggtcagt 2700 tcatgtccgg agtcataatg taagactcgg taaacacatc gcaggcgtag agacaacatt 2760
teatgteegg agteataatg taagaetegg taaacacate aggetgated about the catgteegg agteataatg taagaetegg taaacacate geaggegtag agacaacatt 2760 getaaaaage gacegaaata geeeggggga atacatacee geaggegtag agacaacatta a2820 getaaaaage bacaggatat aacaacatta ataggagaga aaaacacata aacacetgaa 2820
gctaaaaagc gaccgaaata gcccggggga atacataccc gcaggcgtag agacacctgaa 2820 gctaaaaagc taggaggtat aacaaaatta ataggaggaga aaaacacata aacacctgaa 2880 acagccccca taggaggtat aacaaaatta taggaggactca gaacaacata cagcgcttca 2880
acagececca taggaggtat aacaaaatta ataggagaga aadacacata adoosoo 2880 aaacectect geetaggeaa aatageacee teeegeteea gaacaacata cagegettea 2880 aaacectect geetaggeaa actageacee taaaaaagaa aacetattaa aaaaacacaca 2940
adageteeta geetaggeaa aatageacee teeegeteea gadeacata eagageacea 2940 aaaceeteet geetaggeaa aatageacee teeegeteea gadeacata eagageage 2940 cageggeage etaacagtea geettaceag taaaaaaaaa gggeeaagtg cagagegagt 3000 cageggeage etaacagtea atcagteaca gtgtaaaaaa gggeeaagtg cagagegagt 3000
abaganarda caccadelea accagedada sis annanarare cadaaaaced suou
LLABELTTC CCACCILLACG CAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
Laterations readings grows
acaattgcat gaagaatctg cttagggtta ggcgttttgc gctgcttcgc gatgacagggt 3420 ccagatatac gcgttgacat tgattattga ctagttatta atagtaatca attacgggt 3480 ccagatatac gcgttgacat atggggttcc gcgttacata acttacggta aatggcccgc 3480
acaattataa gagttaacat taattattaa ctagttatta atagtaatta antagagga 3480
ccagatatac gcgttgacat tgattattga ctagttatta atagtaatta attaggcccgc 3480 cattagttca tagcccatat atggagttcc gcgttacata acttacggta aatggcccgc 3480 cattagttca tagcccatat atggagttcc gcgtcaat aatgacgtat gttcccatag 3540
cattagttca tagcccatat atggagttcc gcgttacata acttacggta datggccatag 3540 ctggctgacc gcccaacgac ccccgccat tgacgtcaat aatgacgtat gttcccatag 3540 ctggctgacc gcccaacgac ccccgcccat tgacgtcgac ctatttacgg taaactgcc 3600
ctggctgacc gcccaatgta cattgacgtc aatgggtgga ctatttacgg taaactgccc 3660
thandersat addddcttt carrages
THE THOUGHT ACALCAGGE CANONICS TO THE THOUGHT COTACELLACE STAN
FILESCHE GEFFEGGCGC CGGGGGGGGGGGGGGGGGGGGGGGGGG
Laborate and tadadaacce doubter to the contractor foodcecded woo
telegeted agettggtac cqaqetegga tetgaatteg agetegetgt 4340
gggagacca agettggtac egagetegga tetgaatteg agetegetge egsgete 4140 gttgaggaca agetettege ggtettteca gtactettgg ateggaaace egteggeete 4200 egaacggtac teegecaceg agggacetga gegagteege ategacegga teggagacace gtggegggeg 4260 egaacggtac teegecaceg agggacetga egcaaggtag getgagcace gtggegggeg 4260
gttgaggaca tccgccaccg agggacctga gcgagtccgc atcgaccgga ctggcgggg 4260
cgaacggtac tecgecaccg agggacetga gegagteege atcgategga teggegggeg 4260 tetegagaaa ggcgtetaac cagteacagt cgcaaggtag getgagcacc gtggcggggg 4260 tetegagaaa ggcgtetaac cagteacagt cgcaaggtagt getgatgatg taattaaagt 4320
tetegagaaa ggegtetaac cagteacagt egcaaggtag getgagtace gtgagtagt 4320 geagegggtg geggtegggg ttgtttetgg eggaggtget getgatgatg taattaaagt 4380 geagegggtg geggteggg tgagteggg tgaggtgtgg caggettgag atceaagatg 4380
gcagcgggtg gcgggggatgggggggggggggggggggg
gcagcgggtg gcggtcgggg ttgtttctgg cggaggtgct gctgatgatg atccaagatg 4380 aggcggtctt gagacggcgg atggtcgagg tgaggtgtgg caggcttgag atccaagatg 4440 aagcgcgcaa gaccgtctga agataccttc aaccccgtgt atccatatga cacggaaacc 4440 aagcgcgcaa gaccgtctga agataccttc ccctttgtat cccccaatgg gtttcaagag 4500
The standards of Coulded a succession of the standard for the standard stan
Fatagacccc Ecacaditac Cooperators Faragactaga Caactccaaa 4000
atagagada acacacida cacedante e e e e e e e e cacedada 4000
actactgcca ctggtagctt gggcattgac ttgaaagagc ccatttatac actactggc 5040 aaactaggac taaagtacgg ggctcctttg catgtaacag acgacctaaa cactttgacc 5040 aaactaggac taaagtacgg ggctccttta aatacttcct tgcaaactaa agttactgga 5100
actactigeta teggardacag agetectitig catgtaacag acgaectaaa cattagtaga 5100
actactgeac taaagtacgg ggctcctttg catgtaacag acgacttaaa cattactgga 5100 gtagcaactg gtccaggtgt gactattaat aatacttcct tgcaaactaa agttactgga 5160 gtagcaactg gtccaggtgt gactattaat caacttaatg tagcaggagg actaaggatt 5160
gtagcaactg gtccaggtgt gactattaat aatacttcct tgcaaactaa tgsaaggatt 5160 gccttgggtt tgattcaca aggcaatatg caacttaatg tagcaggagg actaaggatt 5220 gccttgggtt tagattcaca tgattgat gttagttatc cgtttgatgc tcaaaaccaa 5220
gcettgggtt ttgattcaca aggcaatatg caacttaatg tagcaggagg tcaaaaccaa 5220 gattctcaaa acagacgcct tatacttgat gttagttatc cgtttgatgc tcaaaaccaa 5280 gattctcaaa acagacgcct tatacttgat tttataaact cagcccacaa cttggatatt 5280
otasatotaa dactaqqaca 999000000000000000000000000000000000
- and partical Ceutodayaya accamang the contract of the contra
TO THE PROPERTY ASSESSMENT OF THE PROPERTY OF
and a force table to the total to the table to table to the table to ta
tggaccacac cagctccatc tectaactgt agactaaatg cagagaaaga tgetaatt 5700 actttggtet taacaaaatg tggcagtcaa atacttgeta cagtttcagt ttttggetgtt 5760 actttggtet taacaaaatg tggcagtcaa gttcaaagtg ctcatcttat tataaattt 5760
actttggtct taacaaaatg tggcagtcaa atacttgcta cagtttcagt tetagastt 5760 aaaggcagtt tggctcaat atctggaaca gttcaaagtg ctcatcttat tataagattt 5760 aaaggcagtt tggctcaat atctggaaca gttcatagac cagaatattg gaactttaga 5820
aaaggcagtt tggctccaat atctggaaca gttcaaagtg ctcatcttat tactaga 5820 gacgaaaatg gagtgctact aaacaattcc ttcctggacc cagaatattg gaactttaga 5880 gacgaaaatg gagtgctact acaaacgctg ttggatttat gcctaatcta 5880
gacgaaaatg gagtgctact aaacaattcc ttcctggacc cagaatattg gactaaccta 5880 aatggagatc ttactgaagg cacagcctat acaaacgctg ttggatttat gcctaaccta 5940
aatggagatc ttactgaagg cacagcctat acaaacgctg ttggatttat geotation 5940 tcagcttatc caaaatctca cggtaaaact gccaaaagta acattgtcag tcaagtttac 5940
tcagcttatc caaaatctca cygcaaaat g

dan santa gagtagaggg tagagaggaa 6000
taaacggag acaaaactaa acctgtaaca ctaaccatta cactaaacgg tacacaggaa 6000 ctaaacggag gtctggccac 6060 acaggagaca caactccaag tgcatactct atgtcatttt catgggactg gtctggccac 6120
caddadaca caactccady tycutation and the threatacat tocccaadaa 6120
ancharanta atquadatati tyetatatata ancharanta tracctaaat blou
-aaagaaggg gccgcccgag cacgcatta 5-555, aggagggatc tgttgtttgc 6240
actagagete detdateade elegacias a la l
accetececeg tgeetteett gaccetggaa ggtgeeatt ctattetggg gggtggggtg 6360 aatgaggaaa ttgeategea ttgtetgagt aggtgteatt etattetggg ggatgeggtg 6420
aatgaggaaa ttgcatcgca ttgtctgagt aggtgtcatt ctattctggg ggatgcggtg 6420 gggcaggaca gcaaggggga ggattgggaa gacaatagca ggcatgctgg ggatgcggtg 6480 gggcaggaca ctagggggta tccccacgcg 6480
gggcaggaca gcaaggggga ggattgggaa gacaatagca ggcatgctgg ggatgcsgs 6480 ggctctatgg cttctgaggc ggaaagaacc agctggggct ctagggggtta tccccacgcg 6480 ggctctatgg cttctgaggc ggaaagaacc agctggggtta cgcgagcgt gaccgctaca 6540
ARRESTANCE COCCECUAS VIVIII III III III III III AREFAE COCCACULU TOVO
cttgccagcg ccctagcgcc cgcccccc , taggettccg atttagtgct obou
according coolings to the second transfer transfer to the second transfer
ttaccocacc ecoaccccaa aaaacccaa in an anticatttaa taccocacec o/ov
contrataga cogettetecy coccessions and attacheteca thataaggg 6840
ttattanaaa ciggadada accamo to the bear and an affragacoco obvo
attitudga titicquita tuggitaan and a magazaga tocccaqqa byo
anthanter deddaduud tyttagaang bo b a managarara aaadeccca /vzv
adoadaadta Edcadadcat godootoon oo
ggetececag caggeagaag tatgeaaage atgeatetea attagttage attoteegeec 7140 eegeceetaa eteegeecat eeegeceeta aeteegeeca gtteegeeca tteteegeec 7200 eegeceetaa eteegeecat tattatgea gaggeegagg eegectetge etetgageta 7200
cegecectaa eteegeceat eeegececta acteegeeda gittegeda etetgageta 7200 catggetgae taattititt tattatgea gaggeegagg cegectetge etetgageta 7260 catggetgae tattititga ggeetagget titgeaaaaa geteeeggga 7260
catggctgac taattittt tattiatgca gaggccgagg ccgctctga gctcccggga 7260 ttccagaagt agtgaggagg cttttttgga ggcctaggct tttgcaaaaa gctcccggga 7260 ttccagaagt agtgaggagg cttttttgga gagacaggat gaggatcgtt tcgcatgatt 7320
acttatatat coattiting accessors and the languagest attendetat /300
daaraagatd dattqcacgc aggeesters 5.5
gactggggac aacagacaat cygoog of a tark agatgaatga actgcaggac /ovo
addedeedd fectettigt caagaaaaa
gaggeagege ggctategtg getggeoweg this again antiquegg geaggatete /620
gttgtcactg aagcgggaag ggactgatgatgatgatgatgatgatgatgatgatgatgatgat
ctgtcatctc accuractc tgoogaaaaa aagcgaaaca tcgcatcgag //w
ctgcatacgc ttgatccggc tacctgccca ttcgaccacc aagogatata ctgcatacgc ttgatccggc tacctgccca ttcgaccacc aagogatata cgagcacgta ctcggatgga agccggtctt gtcgatcagg atgatctgga cgaagagcaa 7860 cgagcacgta ctcggatgga agccgctaagg cgcgcatgcc cgacggcgaa 7860
cgagcacgta ctcggatgga agccggtctt gtcgatcagg atgatcagg cgacggag 7860 caggggctcg cgccagccga actgttcgcc aggctcaagg cgcgcatgcc cgacggcggc 7920 caggggctcg cgcacgcga actgttcgtgc ttgccgaata tcatggtgga aaatggccgc 7920
gatchcotco toacccalgg cyaryous
thereforat teatedaces esseement of the teated of the teate
transfered deducting the second of the secon
CEFFACOCEA ECOCOCOCO OSCOTOS SOCIEDADES SECUEDADES SECUEDADAS SECUEDADES SECU
thefterdad edddaeleeg gagaraan a santtedda aredtette 6220
cacqagatet cdattccacc goodstate to the categorite tedeccacc ozon
gggacgcgg ctggatgatc ctccagcgcg gggatctcat gctggagctc acaaatttca 8340 ccaacttgtt tattgcagct tataatggtt acaaataaag caatagcatc acaaatttca 8400
ccaacttgtt tattgcagct tataatggtt acaaataaag caatagtat acaaatgtat 8400 caaataaagc attttttca ctgcattcta gttgtggttt gtccaaactc atcaatgtat 8460 caaataaagc attttttca ctgcattcta gctagagctt ggcgtaatca tggtcatagc 8460
offetcator crucatory comments decompanded one
totttoorgt didadatige castas
taaantotaa adccedggge geeddaaaaa aa aantaatoa atcodccaac oogo
and taccade telecading graduation in the stage actuacted actuacted to the
acacadadad addeddeed egenegalar a
tacactcage catteagues castasassas
tatecarada attadoggat accessoras
ccaggaaccg taaaaaggcc gcgttgctgg cgtttttcca taggctccgc ccataaagat 8940 agcatcacaa aaatcgacgc tcaagtcaga ggtggcgaaa cccgacagga ctataaagat 8940 agcatcacaa aaatcgacgc tcaagtcaga ggtggcgaaa cccgacagga ctataaagat 8940 agcatcacaa aaatcgacgc tgagctcctcg tgcgctctcc tgttccgacc ctgccgctta 9060
agcatcacaa aaatcgacgc tcaagtcaga ggtggcgaaa cccgacagga ctgccgctta 9000 accaggcgtt tccccttgga agctccctcg tgcgctctcc tgttccgacc ctgccgctta 9060 accaggcgtt ctcccttcgg gaagcgtggc gctttctcaa tgctcacgct 9120
According to the contract of t
Ataddtatet cadeleggeg tassess
confroadce edacegoege solutions of the second decade services
danacdactt attuctud godgood of anaaddatad good
tannonton tanadadece essentiation
tatttootat ctococcocy cogadates Lattacaad cadcadates 7220
matrongona acadecede govasaria y a a a a a a a a a a a a a a a a a a
ACCCCACARA AddaGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
agtggaacga aaactcacgt taagggattt tggtcatgag attatcaaaa aggataaa 9600 cctagatcct tttaaattaa aaatgaagtt ttaaatcaat ctaaagtata tatgagtaaa 9660
cctagatcct tttaaattaa aaatgaagtt ttaaatcaat ctaaagtata tudgagacce cctagatcct tttaaattaa aaatgaagtt ttaaatcaat ctaaagtata tudgagacac ctaaagtata tudgagacat 9660
000333

```
ttegtteate catagttgee tgaeteeeeg tegtgtagat aactaegata egggaggget 9720
taccatctgg ccccagtgct gcaatgatac cgcgagaccc acgctcaccg gctccagatt 9780
tatcagcaat aaaccagcca gccggaaggg ccgagcgcag aagtggtcct gcaactttat 9840
cegectecat ccagtetatt aattettee gggaagetag agtacategt tegecagtta 9900 atagtttee acagtetet gecatteet gecatteet gggaagetag agtacateg tegecgtte 9960 atagtttee ateagetee ggtteecaae ggteacage agtacatega tececcate 10020 gtatggeaaaa ageggttage teetteggte teetteggte tegetage tegetage tegetage tegetage teetteggte tegetage tegetage teetteggte tegetage tegetage 10080
cagtgttatc actcatggtt atggcagcac tgcataattc tcttactgtc atgccatccg 10140
tagatgett ttetgtgaet ggtgagtaet caaccaagte attetgagaa tagtgtatge 10200 ggcgaecgag ttgetettge eeggegteaa taegggataa taeegegeea catageagaa 10260
 ctttaaaagt gctcatcatt ggaaaacgtt cttcgggggcg aaaactctca aggatcttac 10320
 cgctgttgag atccagttcg atgtaaccca ctcgtgcacc caactgatct tcagcatctt 10380
 ttactttcac cagcgtttct gggtgagcaa aaacaggaag gcaaaatgcc gcaaaaaagg 10440 gaataagggc gacacggaaa tgttgaatac tcatactctt ccttttcaa tattattgaa 10500
 gcatttatca gggttattgt ctcatgagcg gatacatatt tgaatgtatt tagaaaaata 10560
 aacaaatagg ggttccgcgc acatttcccc gaaaagtgcc acctgacgtc
  <210> 17 <211> 24
  <212> DNA
  <213> Artificial Sequence
  <223> Description of Artificial Sequence: Primer
  <400> 17
  tgtacaccgg atccggcgca cacc
  <210> 18
   <211> 35
   <212> DNA
   <213> Artificial Sequence
   <223> Description of Artificial Sequence: Primer
   <220>
                                                                                              35
   cacaacgagc tcaattaatt aattgccaca tcctc
   <210> 19
   <211> 4
   <212> PRT
   <213> adenovirus
    <400> 19
   Thr Leu Trp Thr
    <210> 20
    <211> 12
    <212> PRT
    <213> adenovirus
    Pro Ser Ala Ser Ala Ser Ala Pro Gly Ser
     <210> 22
     <211> 327
     <212> DNA
```

<213> adenovirus

<400> 22
agatctgaat tcgagctcgc tgttgggctc gcggttgagg acaaactctt cgcggtcttt 60
ccagtactct tggatcggaa acccgtcggc ctccgaacgg tactccgcca ccgagggacc 120
tgagcgagtc cgcatcgacc ggatcggaaa acctctcgag aaaggcgtct aaccagtcac 180
agtcgcaagg taggctgagc accgtggcgg gcggcagcgg gtggcggtcg gggttgtttc 240
tggcggaggt gctgctgatg atgtaattaa agtaggcggt cttgagacgg cggatggtcg 300
aggtgaggtg tggcaggctt gagatct

<210> 23 <211> 32480 <212> DNA <213> adenovirus

catcatcaat aatatacctt attttggatt gaagccaata tgataatgag ggggtggagt 60 ttgtgacgtg gcgcggggcg tgggaacggg gcgggtgacg tagtagtgtg gcggaagtgt 120 gatgttgcaa gtgtggcgga acacatgtaa gcgacggatg tggcaaaagt gacgtttttg 180 gtgtgcgccg gtgtacacag gaagtgacaa ttttcgcgcg gttttaggcg gatgttgtag 240 taaatttggg cgtaaccgag taagatttgg ccattttcgc gggaaaactg aataagagga 300 agtgaaatct gaataatttt gtgttactca tagcgcgtaa tctctagcat cgatgtcgac 360 aagettgaat tegattaatg tgagttaget cacteattag geaceceagg etttacaett 420 tatgetteeg getegtatgt tgtgtggaat tgtgagegga taacaattte acacaggaaa 480 aactccgccc agttccgccc attcccgcc ccatggctga ctaattttt tattage 900 agaggccgag gccgctcgg attccagac ttttgcaaaa agcttgggat ctctataatc tcgcgcaacc tattttcccc 960 aggcctagct tttaagccgt atcgtcacct gggacatgtt ggaagatccat gcagataaac gcagataaac tcgcaagccg actgatgcc 1080 tctgaacaat ggaaggcat tattgccga agcgtttcaa ggtgggtgaa 1140 gaccagaaac agcacctcga actgagccgc gatattgccc agcgtttcaa cgcgctgtat 1200 gaccagaad agcacctoga actgagecyc gatactggg aaaaacctgg cgttacccaa 1260 ggcgagatcg atcccgtcgt tttacaacgt cgtgactggg aaaaacctgg cgttacccaa 1260 cttaatcgcc ttgcagcaca tcccctttc gccagctggc gtaatagcga agaggcccgc 1320 accgatcgcc cttcccaaca gttgcgcagc ctgaatggcg aatggcgctt tgcctggttt 1380 ceggeaccag aageggtgee ggaaagetgg etggagtgeg atetteetga ggeegataet 1440 gtcgtcgtcc cctcaaactg gcagatgcac ggttacgatg cgcccatcta caccaacgta 1500 acctatccca ttacggtcaa tccgccgttt gttcccacgg agaatccgac gggttgttac 1500 togotcacat ttaatgttga tgaaagctgg ctacaggaag gccagacgcg aattattttt 1620 gatggcgtta actcggcgtt tcatctgtgg tgcaacgggc getgggtcgg ttacggccag 1680 gacagtcgtt tgccgtctga atttgacctg agcgcatttt tacgcgccgg agaaaaccgc 1740 ctcgcggtga tggtgctgcg ttggagtgac ggcagttatc tggaagatca ggatatgtgg 1800 ctcgcggtga tggtgctgcg ttggagtgac ggcagttatc tggaagacca ggatatggg 1800 cggatgagg gcattttccg tgacgtctcg ttgctgcata aaccgactac acaaatcagc 1860 gatttccatg ttgccactcg ctttaatgat gatttcagcc gcgctgtact ggaggctgaa 1920 gataacgcagg tcgccagcgg caccgcgct ttcggcggtg aaattatcga tgagcgggt 1980 atgctatgccg atcgcgtcac actacgtctg aacgtcgaaa acccgaaact gtgagcggc 2100 ggttatgccg atcgcgtcac actacgtcts cgctacggcc tgtatgtggt ggatgaagcc aatattgaaa cccacggcat ggtgccaatg 2460 aatcgtctga ccgatgatcc gcgctggcta ccggcgatga gcgaacgcgt aacgcgaatg 2520 gtgcagegeg ategtaatea eeegagtgtg ateatetggt egetggggaa tgaateagge 2580 cacggegeta ateaegaege getgtatege tggatcaaat etgtegatee tteeegeeeg 2640 gtgcagtatg aaggcggcgg agccgacacc acggccaccg atattatttg cccgatgtac 2700 gcgcgcgtgg atgaagacca gcccttcccg gctgtgccga aatggtccat caaaaaatgg 2760

			atactttaca	aatacgccca	cacaataaat 2	820
ctttcgctac	ctggagagac g	gegeeegetg (cacccctttc	gtcagtatcc	cgcgatgggt 2 ccgtttacag 2	880
aacagtcttg	geggtttege 1	taaatactgg '	taggegete	aatatgatga	ccgtttacag 2	940
ggcggcttcg	tctgggactg	ggtggatcag	cegeegaeea	accatccca	aaacggcaac 2	000
ccgtggtcgg	cttacggcgg	egaetttggt v	gatacgccga	tracogaage	gttctgtatg 3	060
aacggtctgg	tctttgccga	ccgcacgccg	cattcagege	aagtgaccag	aaaacaccag 3	120
cagcagtttt	tccagttccg	tttateeggg	teesteetee	cactagatag	cgaatacctg 3	180
aacgcgaccg	catggtcaga	agccgggcac	tagagagaga	tcccgcatct	gcgtctggcg 3	3420
gaaaacctca	gtgtgacgct	ccccgccgcg	agattaga	aatttaaccq	gaccaccage :	3480
gaaatggatt	tttgcatcga	gctgggtaat	aagegeegge	taacaccact	ccagtcaggc	3540
tttctttcac	agatgtggat	tggcgataaa	gagataaata	aagcgacccg	gcgcgatcag :	3600
ttcacccgtg	caccgctgga	taacyacacc	cccattacc	aggccgaagc	agcgttgttg	3660
aacgcctggg	tegaaegetg	gaaggeggeg	gtgctgatta	cgaccgctca	cacatagcag	3720
cagtgcacgg	cagatacact	tgetgatgeg	assactace	ggattgatgg	tagtggtcaa	3780
catcagggga	aaaccttatt	tateageegg	aggaccade	cacatccac	geggattgge agggeegeaa	3840
atggcgatta	ccgttgatgt	retaggiggig	caataaact	ggctcggatt	agggccgcaa gccattgtca	3900
ctgaactgcc	agctggcgca	ggtagtagag	totttaacc	gctgggatct	gccattgtca gacgcgcgaa	3960
gaaaactatc	ccgaccgcct	chtegeegee	gaaaacggtc	tacactacaa	gacgcgcgaa ccgctacagt	4020
gacatgtata	cccgtacgt	atacacacac	gadadoggo	tcaacatcag	ccgctacagt aggcacatgg	4080
ttgaattatg	gcccacacca	gradeatede	catctoctoc	acqcqqaaqa	aggcacatgg cccqtcagta	4140
caacagcaac	tgatggaaac	tategeatt	antagagaaa	actcctggag	cccgtcagta gtgtcaaaaa	4200
ctgaatatcg	acggeeeca	cacegggace	taccattacc	agttggtctg	gtgtcaaaaa cattatgtac	4260
teggeggaat	tecagergag	statatacca	gtatttcgcg	taaggaaatc	cattatgtac ctttttatc	4320
taataataac	egggeaggee	ttgcctgccc	gotttattct	ttttcttta	cttttttatc	4380
tatttaaaaa	acacaaactt	tttcccgatt	togctacato	acatcaacca	tatcagcaaa ccaaccgctg	4440
atgggagcct	acttecegu	taccactatt	tetetattet	coctattatt	ccaaccgctg	4500
aaagcaacag	actoatoat	gratettate	atgtctggat	ccagatctgg	gcgtggctta ttttgcagca	4680
gtttgtccae	acccaccacc	aggtagaagt	cttatgtagt	tttgtatctg	ttttgcagca atatttgaca	4740
agggrgggae	. ccatgaggac	caactcqttt	gatggaagca	a ttgtgagcto	atatttgaca cattgatggt	4800
geogeogeeg	cccatagge	cagagtacat	cagaatgtga	a tgggctccag	cattgatggt	4860
acgegeate	tacccacaaa	ctctactacc	ttgacctac	g agaccgtgto	tggaacgccg	4920
ttagagagt	cageeteege	caccacttca	gccgctgcag	g ccaccgccc	cgggattgtg atccgcccgc	4980
actgacttt	ctttcctgag	cccgcttgca	agcagtgcag	g cttcccgtt	atccgcccgc	5040
actgactes;	tgacggctct	tttggcacaa	ttggattct	t tgacccggga	a acttaatgtc	2100
gatgataag	agctgttgga	tctgcgccag	g caggtttctg	g ccctgaagg	ttcctccct	2100
cccatccc	tttaaaacat	aaataaaaa	ccagactct	g tttggattt	g gatcaagcaa a ccagcggtct	5220
tacaaaata	g tgttgtagat	gatccagtc	g tagcaggag	c gctgggcgt	g gtgcctaaaa t gtttacaaag	5520
atotottto	a gtagcaagct	gattgccag	g ggcaggccc	t tggtgtaag	t gtttacaaag a ctgtatttt	5580
cggttaagc	t gggatgggtg	g catacgtgg	g gatatgaga	c gcatcutgg	a ctgtattttt	5640
aggttggct	a tgttcccago	c catatecet	c cggggattc	a tgttgtgta	g aaccaccagc a tqcqtggaag	5700
acagtgtat	c cggtgcactt	gggaaattt	g tcatgtage	t tagaayyaa	a tgcgtggaag t aatgatggca	5760
aacttggag	a cgcccttgtg	g acctccaag	a ttttccatg	c actogetea	t aatgatggca	5820
atgggccca	c gggcggcgg	c ctgggcgaa	g atatttetg	g gattattaa	c gtcatagttg g ggtgccagac	5880
tgttccagg	a tgagatcgt	ataggccat	t tttacaaag	e actasasa	g ggtgccagac t ttgcatttcc	5940
tgcggtata	a tggttccato	c cggcccagg	g gegtagita	c ccccacaga	t ttgcatttco a gaaaacggtt	6000
cacgetttg	a gttcagatg	g ggggatcat	g totacctgo	g yyycyacya	a gaaaacggtt g cgacttaccg	6060
tccggggta	g gggagatca	g ctgggaaga	a ageaggite	a actooteot	g cgacttaccg	6120
cagccggtg	g gcccgtaaa	t cacacctat	t accegggige	a accyglago	t aagagagete	6180
cagctgccg	t catccctga	g cagggggg	c actrogrea	a grangerer	t gactcgcatg	6240
ttttccctg	a ccaaatccg	e cagaaggeg	e togeogee	a geatgettt	t gagcgtttga	6300
gaagcaaag	t ttttcaacg	g cccgagace	g ctcgccgc	t ctacggcat	c togatocago	: 6360
ccaagcagt	t ccaggcggt	e ecacagete	e ttteectet	a cooragtac	t caatactcat	: 6420
atatctcct	c gtttcgcgg	g trygggegg	ים ממכמכשממי	t cctcctcac	t cggtgctcgt c gtagtctgg	6480
ccagacggg	ge cagggteat	g coccedat	,	,,		
			•			

			- · · · -			- 40
·	ggggtgcgct c	caaactaca o	gctggccag g	ggtgcgcttg a	agetagece s	1540
teaeggigaa	ggggtgcgct o	egtettege (ctacacatc 9	ggccaggtag (atttgacca 5	600
tgctggtgct	gaagegetge o	ccacaacat (accettage	gcgcagcttg	ccttggagg	660
tggtgtcata	gtccagcccc t cgaggggcag t	gcagacttt	tgaggggta	gagcttgggc 9	gogagaaata 6	720
aggegeegea	cgaggggcag t ggagtaggca t	ccacaccac i	aggccccqca (gacggtctcg (cattccacga 6	780
ccgattccgg	ggagtaggca t ctctggccgt t	ccgcgccgc	aaaccaggtt	tececeatge	ttttgatgc 6	5840
gccaggtgag	ctctggccg. (cggggccaa		aataacaaa	aggetateeg (5900
gtttcttacc	tctggtttcc 4	acgageegge		tattecacaa	tectectest (5960
tgtccccgta	tacagactty o	agaggeeege		adceadcacd	aaggaggeta '	7020
atagaaactc	tacagacttg a	gagacaaagg	eccecetaca.	tcactccaaa	gtgtgaagac '	7080
agtgggaggg	ggaccactct gtagcggtcg	ttgtccacta	gggggtccac	at add at ad	gecacgtgac '	7140
acatqtcgcc	gtagcggtcg ctcttcggca	tcaaggaagg	tgattggttt	geaggegees	reactetett '	7200
cagatattee	tgaagggggg	ctataaaagg	agaragaaaa.	gegeeegeee	aaacccccca '	7260
ccgcatcgct	tgaagggggg gtctgcgagg	gccagctgtt	ggggtgagta	tttata	ttcacctggc	7320
tgacttctgc	gtctgcgagg gctaagattg	tcagtttcca	aaaacgagga	ggatttgata	stattttat	7380
ccacaataat	gctaagattg gcctttgagg	gtggccgcat	ccatctggtc	agaaaagaca	accetecege	7440
tatasaatt	gcctttgagg ggtggcaaac	gacccgtaga	gggcgttgga	cagcaacttg	gegaeggage	7500
agagattta	ggtggcaaac gtttttgtcg	cgatcggcgc	gctccttggc	cgcgatgttt	agecgeacge	7560
gcagggcccg	gtttttgtcg aacgcaccgc	cattcgggaa	agacggtggt	gcgctcgtcg	ggeaecagge	7530
accegegege	accgcggttg	tacagagtga	caaggtcaac	gctggtggct	acctctccgc	7620
geacgegeea	accgcggttg gttggtccag	cagaggggg	cgcccttgcg	cgagcagaat	ggcggtaggg	7000
graggegete	gttggtccag	agagateta	cgtccacggt	aaagaccccg	ggcagcaggc	7740
ggtetagetg	gtagtctatc	ttgcatcctt	qcaagtctag	cgcctgctgc	catgcgcggg	7800
gcgcgtcgaa	gtagtctatc	gagttgagtg	qqqqacccca	tggcatgggg	tgggtgagcg	7860
cggcaagcgc	gcgctcgtat	atotootaaa	catagagggg	ctctctgagt	attccaagat	7920
cggaggcgca	catgccgcaa gcatcttcca	ccacagatac	tagcacacac	gtaatcgtat	agttcgtgcg	7980
atgtagggta	gcatcttcca gaggtcggga	ccasaattac	tacgggggg	ctgctctgct	cggaagacta	8040
agggagcgag	gaggtcggga gatggcatgt	cagtagata	atatogttgg	acgctggaag	acgttgaagc	8100
tctgcctgaa	gatggcatgt gagacctacc	gageeggaeg	cgaaggaggC	gtaggagtcg	cgcagcttgt	8160
tggcgtctgt	gagacctacc	tessesteta	ggggggggta	gtccagggtt	tccttgatga	8220
tgaccagctc	gagacctacc ggcggtgacc atcctgtccc	tettttcc	acadeteded	gttgaggaca	aactcttcgc	8280
totcatactt	atcetgteec		~~~~~	ggaacggtaa	gagectagea	8340
ggtctttcca	atcetgteee gtactettgg gttgaeggee	testagge	agcatccctt	ttctacgggt	agcgcgtatg	8400
tgtagaactg	gttgacggcc	Lygiaggege	1,500,500	agtatacata	accatgactt	8460
cctqcgcggc	cttccggagc	gaggegegg		cfactcccad	agcaaaaaqt	8520
tgaggtactg	gtatttgaag	ccagegeege		garatcatta	aagagtatct	8580
ccgtgcgctt	tttggaacgc	ggacceggea	55505000	+ foregrace	tcagaacagt	8640
ttcccgcgcg	aggcataaay	cegegege		attastatte	togcccacaa	8700
tgttaattac	cegggeggeg	aguacyacou	- testagaaga	Caatttttt	agttcctcgt	8760
tgtaaagtto	caagaagcgc	gggatgeeet		ggcccagtct	gcaagatgag	8820
aggtgagcto	: ttcaggggag	Clyagecege	, goodgaaa	taggatttgg	aggtggtcgc	8880
ggttggaage	gacgaatgay	CCCacagg		antastacao	tagaaggtaa	8940
gaaaggtcct	: aaactggcga	cctatggcca	ttttttttg	taggtetete	gcggcagtca	9000
acagatett	aaactggcga ttcccagcgg	tcccatccaa	ggttegegge	caggeeees	tocttcccaa	9060
ctagaggct	ttcccagcgg atctccgccg ccaagtatag	aacttcatga	ccagcatga	a gggcacgag	toggtgcgag	9120
aggccccat	t ccaagtatag	gtctctacat	: cgtaggtgad	aaagagacg	toggtattoa	9180
gatgcgagc	t ccaagtatag	aactggatct	cccgccacca	a acceptages	ttotaaaaac	9240
tataataaa	gatcgggaag	ctgcgacgg	g ccgaacact		acctgacgac	9300
gtgcgcagt	a gtagaagtco	tgcacgggc1	gtacatect	- teegagget	- acctgatgat	9360
cacacacaa	a ctggcagcgg g gaagcagagt	gggaatttg:	a gcccctcgc	e tggtgggtt	- accotocato	9420
cttctactt	g gaagcagagt c ggctgcttgt	: ccttgaccg	t ctggctgct	c gaggggagt	t coggeggad	9480
ggaccacca	c ggctgcttgt c gccgcgcga	g cccaaagtc	c agatgtccg	e gegeggegg	c cygayctcac	9540
tgacaacat	c geegegegag c gegeagatge	g gagetgtee:	a tggtctgga	g eteeegegg	t agatecaggious	9600
graggaget	c gcgcagatgg c ctgcaggttt	acctcgcat	a gacgggtca	g ggegeggge	c agaccouss.	9660
gatacctaa	c ctgcaggttt t ttccagggg	: tggttggtg	g cggcgtcga	t ggettgeaa	e testteset	9720
ccacaaca	t ttccaggggg c gactacggt	a ccgcgcggc	g ggcggtggg	c cacaaaaac	g toccoggac	9780
atacateta	c gactacggta a aagcggtga	gcgggcgag	c ccccggagg	t aggggggg	t coggaccog	~ 9840
cadasasas	a aagcggtgad g ggcaggggc	a cgtcggcgc	c gcgcgcggg	c aggagctgg	r gergegege	9 2040
taggagagg	g ggcaggggc	a cgacgcggc	g gttgatctc	c tgaatctgg	c geetetgeg	- 99KN
caygregee	g gcgaacgcg	a gcttgagcc	t gaaagagag	t tcgacagaa	t caatttegg	a 10020
gaagacgac	g ggcccggtg	c ccaaaatct	c ctgcacgtc	t cctgagttg	t cttgatagg	# 10020
geegeegae	g geggeetgg	t coatctctt	c ctcctggag	ga tctccgcgt	c cggctcgct	- 10140
gatetegge	c atgaactgo	t togaaatgo	g ggccatgag	gc tgcgagaag	g cgttgaggc	~ 10200
cacggragg	g gcgaggtcg c cagacgcgg	c totagacca	c geceette	g gcatcgcgg	g cgcgcatga	C TOZOO
tccctcgtt	,c cagacgcgg		~	-		

cacctgegeg agattgaget ccacgtgeeg ggegaagaeg gegtagttte geaggegetg 10260 aaagaggtag ttgagggtgg tggeggtgtg ttetgeeaeg aagaagtaca taacccageg 10320 tegeaacgtg gattegttga tatececeaa ggeetcaagg egetecatgg cetegtagaa 10380 gtccacggcg aagttgaaaa actgggagtt gcgcgccgac acggttaact cetectccag 10440 aagacggatg agctcggcga cagtgtcgcg cacctcgcgc tcaaaggcta caggggcctc 10500 ttettettet teaateteet ettecataag ggeeteeest tettettett etggeggegg 10560 tgggggaggg gggacacggc ggcgacgacg gcgcaccggg aggcggtcga caaagcgctc 10620 gatcatctcc ccgcggcgac ggcgcatggt ctcggtgacg gcgcggccgt tctcgcgggg 10680 gcgcagttgg aagacgccgc ccgtcatgtc ccggttatgg gttggcgggg ggctgccatg 10740 cggcagggat acggcgctaa cgatgcatct caacaattgt tgtgtaggta ctccgccgcc 10800 ggeggeggeg gagtttggee gtaggtggeg ceetetteet eccatgegtg tgaeceegaa 11220 geeceteate ggetgaagea gggetaggte ggegaeaaeg egeteggeta atatggeetg 11280 ctgcacctgc gtgagggtag actggaagtc atccatgtcc acaaagcggt ggtatgcgcc 11340 cgtgttgatg gtgtaagtgc agttggccat aacggaccag ttaacggtct ggtgacccgg 11400 ctgcgagagc tcggtgtacc tgagacgcga gtaagccctc gagtcaaata cgtagtcgtt 11460 gcaagtccgc accaggtact ggtatcccac caaaaagtgc ggcggcggct ggcggtagag 11520 gggccagcgt agggtggccg gggctccggg ggcgagatet tccaacataa ggcgatgata 11580 tccgtagatg tacctggaca tccaggtgat gccggcggcg gtggtggagg cgcgcggaaa 11640 gtcgcggacg cggttccaga tgttgcgcag cggcaaaaag tgctccatgg tcgggacgct 11700 ctggccggtc aggcgcgcg aatcgttgac gctctagacc gtgcaaaagg agagcctgta 11760 agegggeact effectigt etggfggata aattegeaag ggfateatgg eggacgaceg 11820 ceggcactac etggacttgg aggaggega gggcetggeg eggetaggag egecetetee 12420 tgageggtac ceaagggtge agetgaageg tgataegegt gaggegtaeg tgeegeggea 12480 gaacctgttt cgcgaccgcg agggagagga gcccgaggag atgcgggatc gaaagttcca 12540 cgcagggcgc gagctgcggc atggcctgaa tcgcgagcgg ttgctgcgcg aggaggactt 12600 tgagecegae gegegaaceg ggattagtee egegegegea caegtggegg eegeegaeet 12660 ggtaacegea taegageaga eggtgaacea ggagattaac tttcaaaaaa getttaacaa 12720 ccacgtgcgt acgcttgtgg cgcgcgagga ggtggctata ggactgatgc atctgtggga 12780 ctttgtaage gegetggage aaaacecaaa tagcaageeg etcatggege agetgtteet 12840 tatagtgcag cacagcaggg acaacgaggc attcagggat gcgctgctaa acatagtaga 12900 gcccgagggc cgctggctgc tcgatttgat aacatcctg cagagcatag tggtgcagga 12960 gcgcagcttg agcctggctg acaaggtggc cgccatcaac tattccatgc ttagcctggg 13020 caagtittac geeegeaaga tataccatac ecettaegtt eccatagaca aggaggtaaa 13080 gatcgagggg ttctacatgc gcatggcgct gaaggtgctt accttgagcg acgacctggg 13140 cgtttatcgc aacgagcgca tccacaaggc cgtgagcgtg agccggcggc gcgagctcag 13200 cgaccgcgag ctgatgcaca gcctgcaaag ggccctggct ggcacgggca gcggcgatag 13260 agaggccgag tcctactttg acgcgggcgc tgacctgcgc tgggccccaa gccgacgcgc 13320 cctggaggca gctggggccg gacctgggct ggcggtggca cccgcgcgcg ctggcaacgt 13380 cggcggcgtg gaggaatatg acgaggacga tgagtacgag ccagaggacg gcgagtacta 13440 agcggtgatg tttctgatca gatgatgcaa gacgcaacgg acccggcggt gcgggcggcg 13500 ctgcagagcc agccgtccgg ccttaactcc acggacgact ggcgccaggt catggaccgc 13560 atcatgtege tgaetgegeg caateetgae gegtteegge ageageegea ggeeaacegg 13620

actogtactg ttgtatgtat ccagoggogg oggogogoaa ogaagotatg tocaagogoa 17700 aaatcaaaga agagatgete caggteateg egeeggagat etatggeeee eegaagaagg 17760 aagagcagga ttacaagccc cgaaagctaa agcgggtcaa aaagaaaaag aaagatgatg 17820 atgatgaact tgacgacgag gtggaactgc tgcacgctac cgcgcccagg cgacgggtac 17880 agtggaaagg tcgacgcgta aaacgtgttt tgcgacccgg caccaccgta gtctttacgc 17940 ceggtgageg etceacege acetacaage gegtgtatga tgaggtgtac ggegaegagg 18000 acctgettga geaggeeaac gagegeeteg gggagtttge etaeggaaag eggeataagg 18060 acatgetgge gttgeegetg gaegagggea acceaacace tageetaaag eeegtaacac 18120 tgcagcaggt gctgcccgcg cttgcaccgt ccgaagaaaa gcgcggccta aagcgcgagt 18180 ctggtgactt ggcacccacc gtgcagctga tggtacccaa gcgccagcga ctggaagatg 18240 ccccggcta tcgtggctac acctaccgcc ccagaagacg agcaactacc cgacgccgaa 18660 ccaccactgg aacccgccgc cgccgtcgcc gtcgccagcc cgtgctggcc ccgatttccg 18720 tgcgcagggt ggctcgcgaa ggaggcagga ccctggtgct gccaacagcg cgctaccacc 18780 ccagcatcgt ttaaaagccg gtctttgtgg ttcttgcaga tatggccctc acctgccgcc 18840 tccgtttccc ggtgccggga ttccgaggaa gaatgcaccg taggaggggc atggccggcc 18900 acggcctgac gggcggcatg cgtcgtgcgc accaccggcg gcggcgcgcg tcgcaccgtc 18960 gcatgcgcgg cggtatcctg ccctcctta ttccactgat cgccgcggcg attggcgccg 19020 tgcccggaat tgcatccgtg gccttgcagg cgcagagaca ctgattaaaa acaagttgca 19080 tgtggaaaaa tcaaaataaa aagtctggac tctcacgctc gcttggtcct gtaactattt 19140 tgtagaatgg aagacatcaa ctttgcgtct ctggccccgc gacacggctc gcgcccgttc 19200 atgggaaact ggcaagatat cggcaccagc aatatgagcg gtggcgcctt cagctggggc 19260 tegetgtgga geggeattaa aaattteggt tecacegtta agaactatgg cagcaaggee 19320 ctgggggtgc aatccctgaa gcgccgacga tgcttctgaa tagctaacgt gtcgtatgtg 19920 tgtcatgtat gcgtccatgt cgccgccaga ggagctgctg agccgccgcg cgcccgcttt 19980 ccaagatggc taccccttcg atgatgccgc agtggtctta catgcacatc tcgggccagg 20040 acgectegga gtacetgage ecegggetgg tgeagtttge eegegeeace gagacgtact 20100 teagectgaa taacaagttt agaaaceca eggtggegee taegeacgae gtgaccacag 20160 accegetcca gegetteace etagetgtg gegataaceg tetegaga actegetaca 20220 cgtacaagge gegetteace etagetgtgg gegataaceg tetegagac atggetteca 20280 cgtacttega cateegegge gegetggaca ggggecetac teteagaca tetegagaca tetegagaca teteagaca 20340 cetacaa egecetgget eccaagggtg ecceaaatec tegagacagggagaca egagagatga eagagatga eagag ctactgctct tgaaataaac ctagaagaag aggacgatga caacgaagac gaagtagacg 20460 agcaagctga gcagcaaaaa actcacgtat ttgggcaggc gccttattct ggtataaata 20520 ttacaaagga gggtattcaa ataggtgtcg aaggtcaaac acctaaatat gccgataaaa 20580 catttcaacc tgaacctcaa ataggagaat ctcagtggta cgaaactgaa attaatcatg 20640 cattleaace tgaacetcaa ataggagaat eccagtggta egaaactgaa attaateatg 20640 cagetgggag agteettaaa aagactaece caatgaaace atgttaeggt teatatgeaa 20700 aacecacaaa tgaaaatgga gggaaaggca ttettgtaaa gcaacaaaat ggaaagctag 20760 aaagteaagt ggaaatgeaa tttttetaa etaetgagge gaeegeagge aatggtgata 20820 acttgactee taaagtggta ttgtacagtg aagatgtaga tatagaaace ccagacacte 20880 atatttetta atatttetta catgeecaet attaaggaag gtaacteaeg agaactaatg ggeeaacaat 20940 ctatgeecaa caggeetaat tacattgett ttagggacaa ttttattggt etaatgtatt 21000 acaacagcac gggtaatatg ggtgttetgg cgggccaagc atcgcagttg aatgctgttg 21060 tagatttgca agacagaaac acagagettt cataccaget tttgcttgat tccattggtg 21120 atagaaccag gtacttttct atgtggaatc aggctgttga cagctatgat ccagatgtta 21180 gaattattga aaatcatgga actgaagatg aacttccaaa ttactgcttt ccactgggag 21240 gtgtgattaa tacagagact cttaccaagg taaaacctaa aacaggtcag gaaaatggat 21300 gggaaaaaga tgctacagaa ttttcagata aaaatgaaat aagagttgga aataattttg 21360

		aatat	ccacaaattt	cctgtactcc	aacatagcgc 21420 gataacccaa 21480)
ccatggaaat	caatctaaat	gccaaccigi	ottocaacot	aaaaatttct	gataacccaa 21480 tgctacatta 21540)
totatttqcc	cgacaagcia	aagcacagee		ataasc	rochacatta 21540)
acacctacga	ctacatgaac	aagegagegg		manage att	aaccaccacc 21600)
accttggagc	acgctggtcc	Citgaccaca	09900000	+ cataact at	atacacttcc 21660)
acaatactaa	cctgcgctac	cgcccaacgc		act act act a	coggeteat 21720)
acatecaggt	qcctcagaag	CCCCCGGGG		tatacacaac	tecetaggaa 21780	י
acacctacga	qtqgaacttc	aggaaggacg			tacgccacct 21849	U
atgacctaag	qqttgacgga	gccagcacca		-atacttaca	aacgacacca 2190	U
tettecccat	ggcccacaac	accected	090000	agtataccct	atacccccca 2196	U ·
acdaccaqtc	CEELaacyac	caccacaca		~~~~~~	cacaactaaa 2202	U
acgctaccaa	cgtgcccata	CCCACCCCC		etegggetac	gaccettatt 2208	U
ccttcacqcq	ccttaagact	aaggaaaccc		ttacctcaac	cacaccttta 2214	U
acacctactc	tggctctata	CCCCacccag		Faggaatgac	cacctactta 2220	U
agaaggtggc	cattaccttt	gacteteeg		gggttagag	attacccagt 2226	0
ccccaacqa	gtttgaaatt	aagegeeeag	2095555	taactacaac	attogctace 2232	U
graacatgac	caaagactyy	ccccaaca		abaattatt	agaaacttcc 2238	U
agggetteta	tatcccagag	agctacaagg	accgcatgta	gccccccc	caggtgggca 2244 atgcgcgaag 2250	0
agcccatgag	ccqtcaggtg	gtggatgata	ctaaatacaa	ggactaccaa	atronogaag 2250	0
tectacacca	acacaacaac	tctggatttg	ttggctacct	tgececeace	atgcgcgaag 2250 gttgacagca 2256	0
as as a concept a	ccctactaac	ttcccctatc	cgcttatagg	caagaccgca	gttgacagca 2256 tccagtaact 2262	0
thaccaggeee	aaaotttctt	tgcgatcgca	ccctttggcg	catcccattc	tccagtaact 2262 aactccgcc 2268	30
testatagae	gaagacacto	acagacctgg	gccaaaacct	tctctacgcc	aactccgccc 2268 ctttatgttt 2274	ŗu .
ccatgcccat	catgactttt	gaggtggato	: ccatggacga	. gcccaccctt	ctttatgttt 2274 atcgaaaccg 2280	10
acgegerage	cattgacata	atccatatac	accggccgca	ccgcggcgtc	atcgaaaccg 2280 aagcaacatc 2286	50
tgtttgaagi	. cacagacytt	tcaaccaaca	acgccacaac	: ataaagaago	aagcaacatc 2286 tcaaagatct 2292	20
tgtacctgc	geografia	gctccagtga	gcaggaacto	aaagccatte	tcaaagatct 2292 ttgtttctcc 2298	20
aacaacagc	geegeeaegs	toggcaccta	tgacaagcgc	: tttccaggct	ttgtttctcc 2298 gcgtacactg 230	40
tggttgtgg	- coatacccc	tagtcaatag	gaccagtcac	gagactgggg	g gcgtacactg 2304 cctttggctt 231	20
acacaagct	geetgegee.	cocactcaa	aacatgctad	ctctttgag	cctttggctt 2310 tgcgccgtag 2310	60
gatggcctt	- goodgaac	- aggtttacca	gtttgagtag	gagtcactco	tgcgccgtag 2310 aaagcgtaca 232	20
ttctgacca	g cgactcaag	acceptatal	aacgctggaa	a aagtccacc	aaagcgtaca 232 g cctttgccaa 232	20 .
cgccattgc	- terreces	r gragactati	t ctactacate	tttctccac	g cctttgccaa 232 g gggtacccaa 233	40
ggggcccaa	e teggeegee	r atracaacc	caccatgaa	cttattacc	g gggtacccaa 233 g aacagctcta 234	40
ctggcccca	a actectacy	g accudates	c caccetgegi	cgcaaccag	g aacagctcta 234 a ttaggagcgc 234	
ctccatgct	c aacagteec	t aggedeage	t ccacaacca	agtgcgcag	a ttaggagcgc 234 a ctttcaataa 235	60
cagetteet	g gagegeeac	c egecetat	a aaaataatg	t actagagac	a ctttcaataa 235 c ttgccgtctg 235	20
cacttcttt	t tgtcacttg	a addacacgo	g gtgattatt	taccccacc	c ttgccgtctg 235 g gcagggacac 236	80
aggcaaatg	c ttttatttg	- acattetee	g cgcatcgct	a tgcgccact	g gcagggacac 236 c gcggcagctc 237	40
cgccgttta	a aaatcaaag	g ggctccgcc	t asactcagg	c acaaccato	c geggeagete 237 a ggtegggege 237	00
gttgcgata	c tggtgttta	g tyctccace	c catcaccaa	c gcgtttagc	a ggtcgggcgc 237 c gatacacagg 238	60
ggtgaagtt	t tcactccac	a ggccgcgc		- cagaaatta	c gatacacagg 238	20
cgatatett	g aagtcgcag	t tygggcccc	0 90000		a coctettate 238	80
attacaaca	ic tggaacaci	a ccagogo-s	3 3-33 3	~ ~~~~~~~~	o tcaactttqq 233	140
ggagatcag	ia teegegtee	a ggcccccc	, , , , , , , , , , , , , , , , , , , ,	- Fracactic	c accortagio 240	100
tagctgcct	t cccaaaaa	ig gegegese		- sacacetae	a taaaagcctt 240	160
catcaaaaq	id tgaccara	ic caacccaa	, , , , , , , , , , , , , , , , , , , ,	- 22022Cato	ic cocaagactt 24J	LZU
gatctgctt	a aaageeace	,c gagecees	, , , , , , , , , , , , , , , , , , , ,	- angegeett	a categotatt 241	LBU
accadaaaa	ac tgattggco	g gacaggees	90 900 900		+ toctagactg 242	240
ggagatet	ge accaeatti	e ggeeceau	99 90-0-		e cotoctcctt 24.	300
ctccttcac	ac dedeacrar	ic editional		tete	ar cocaccotto 24.	360
atttatcat	ta atgettees	ge geagacae.		tenacete	-a caaacgactg 244	420
cacccaca	ac gcgcagcc	ig rgggeres.	09 009000	a++ a++	rc tootoaaggt 24	480
caggtacg	cc tgcayyaa	cc geocoars.			ra cragagette 44	34 4
cadctdca	ac ccgcggrg			++++cc>c	at acticity 44	900
cacttqqt	ca ggcagtag	cc cgaageee.			og gcacactcag 44	990
catcageg	cg cgcgcagc	ccatgees		Fattacta	rr catattacat 24	720
caaattca	tc accytaat	CC Caccette			oc octtacctcc 44	780
ccacatac	ca cgcgccac	tg ggttgtt		saasttta	ta ococcacate 24	840
tttaccat	ge ttgattay	ca ccggcggg	JJ-		ct caaacttaaa 24	900
ttctcttt	ct tecteget	gt ccacgatt	ac ctctggtg	at ggcgggcg	ct cgggcttggg 24 cg aggtcgatgg 24	960
agaaggg	ac ttctttt	ct tcttgggc	gc aatggcca	aa teegeege	cg aggtcgatgg 24 ct cgtcctcgga 25	020
CCGCGGGG	ta agtataca	cg gcaccago	gc gtcttgtg	at gagtette	ct cgtcctcgga 25 cg gcgacgggga 25	080
ctcastac	oc cocctcat	cc gctttttt	gg gggcgccc	gg ggaggcgg	cg gcgacgggga 25	-
CCCGGCGC	33	_				

cggggacgac acgtcctcca tggttggggg acgtcgcgcc gcaccgcgtc cgcgctcggg 25140 ggtggtttcg cgctgctcct cttcccgact ggccatttcc ttctcctata ggcagaaaaa 25200 gatcatggag tcagtcgaga agaaggacag cctaaccgcc ccctctgagt tcgccaccac 25260 egectecace gatgeegeea acgegeetae cacettecee gtegaggeae eccegettga 25320 ggaggaggaa gtgattatcg agcaggaccc aggttttgta agcgaagacg acgaggaccg 25380 ctcagtacca acagaggata aaaagcaaga ccaggacaac gcagaggcaa acgaggaaca 25440 agteggegg gggacgaaa ggcatggega ctacctagat gtgggagacg acgtgctgtt 25500 gaagcatetg cagegecatt gegecattat ctgegacgeg ttgeaagag geagegatg 2560 gecectegec atageggatg teagecttge ctacgaacge cacctattet cacegeggt 25620 acceccaaa egecaagaaa aeggeacatg egageecaac eegegeetea aettetacee 25680 cgtatttgcc gtgccagagg tgcttgccac ctatcacatc tttttccaaa actgcaagat 25740 acceptate tgeogtgeca accoraged ageggacaag cagetggeet tgeggcaggg 25800 cgctgtcata cctgatatcg cctcgctcaa cgaagtgcca aaaatctttg agggtcttgg 25860 acgcgacgag aagcgcgcg caaacgctct gcaacaggaa aacagcgaaa atgaaagtca 25920 ctctggagtg ttggtggaac tcgagggtga caacgcgcgc ctagccgtac taaaacgcag 25980 categaggte acceaetttg cetaceegge acttaaceta cececeaagg teatgageae 26040 agteatgagt gagetgateg tgegeegtge geageceettg gagagggatg caaatttgea 26160 agaacaaaca gaggagggee taceegeagt tggegaegag cagetagege getggettea 26160 aacgcgcgag cetgccgact tggaggagcg acgcaaacta atgatggccg cagtgctcgt 26220 taccgtggag cttgagtgca tgcagcggtt ctttgctgac ccggagatgc agcgcaagct 26280 agaggaaaca ttgcactaca cetttegaca gggctacgta cgccaggeet gcaagatete 26340 caacgtggag ctctgcaacc tggtctccta ccttggaatt ttgcacgaaa accgccttgg 26400 gcaaaacgtg cttcattcca cgctcaaggg cgtttactta tttctatgct acacctggca gacggcatg ggcgtttggc agcagtgct 26520 ggaggagtgc aacctcaagg agctgcagaa acctgcaac agggtctgcc ggaggcatt acacctggca acctgctaaa accctgcaac agggtctgcc gacatctactt tccccgaacg 26640 cctgcttaaa accctgcaac agggtctgcc agacttcacc agacttcacc aggacttacc agacttcacc agtcaaagca tttatccaa agggtctgcc ctttaggaac tttatcctag agcgctcagg aatcttgccc gccacctgct gtgcacttcc 26760 tagegacttt gtgcccatta agtacegega atgccetege cegetttggg gccactgeta 26820 cettetgeag ctagecaact acettgeeta ceaectetgae ataatggaag acgtgagegg 26880 tgaeggteta etggagtgte actgtegetg caaectatge acecegeace getecetggt 26940 ttgcaattcg cagctgctta acgaaagtca aattatcggt acctttgagc tgcagggtcc 27000 ctegectgae gaaaagteeg eggeteeggg gttgaaacte acteegggge tgtggaegte 27060 ggettacett egcaaatttg tacetgagga etaceaegee eaegagatta ggttetaega 27120 agaccaatco ogocogocaa atgoggagot tacogoctgo gtoattacoo agggocacat 27180 tottggocaa ttgcaagoca toaacaaago cogocaagag tttotgotao gaaagggacg 27240 gggggtttac ttggaccccc agtccggcga ggagctcaac ccaatcccc cgccgccgca 27300 gccctatcag cagcagccgc gggcccttgc ttcccaggat ggcacccaaa aagaagctgc 27360 accgtcatet etacagecea tactgeaceg geggeagegg cageggeage aacageageg 27900 gecacacaga ageaaaggeg accggatage aagaetetga caaageceaa gaaateeaca 27960 geggeggeag cageaggagg aggagegetg egtetggege ceaacgaace egtategace 28020 egegagetta gaaacaggat tttteceact etgtatgeta tattteaaca gageagggge 28080 caagaacaag agctgaaaat aaaaaacagg tctctgcgat ccctcacccg cagctgcctg 28140 tatcacaaaa gcgaagatca gctteggcgc acgctggaag acgcggaggc tctcttcagt 28200 aaatactgcg cgctgactct taaggactag tttegcgccc tttctcaaat ttaagcgcga 28260 aaactacgtc atctccaggg gcgacacccg gcgccagcac gtgtcgtcag ggccattatg 28320

				tatasacc (regetetaga 2	28860
ttcacgcctc	gtcaggcaat	cctaactctg	cagacctcgt	tataatt	aaccccttc	28920
gcattggaa	gtcaggcaat	tattgaggag	tttgtgccat	cggcccaccc	rationage :	28980
tegagaecte	ctctgcaatt	tccggatcaa	tttattccta	actttgacge	gradaggac (29040
tegggaeee	ccggccacta gctacgactg	aatgttaagt	ggagaggcag	agcaactgcg	occyanacac .	20100
-testeeset	gctacgactg gtcgccgcca	caagtgcttt	gcccgcgact	ccggtgagtt	etgetacttt.	29100
etggteeact	gtcgccgcca aggatcatat	casaaaccca	gcgcacggcg	tccggcttac	cgcccaggga	29160
gaattgeeeg	aggatcatat gtagcctgat	togggagttt	acccaqcqcc	ccctgctagt	tgagcgggac	29220
gagettgeee	gtagcctgat gtgttctcac	totgatttgc	aactotccta	accttggatt	acatcaagat	29280
aggggaccct	gtgttctcac	ettogacttt	ttcatacatt	gcccaagaat	aaagaatcgt	29340
ttaattaatt	gccacatcct		aattgcagaa	aatttcaagt	catttttcat	29400
ttgtgttat9	tttcaacgtg agcccacca		tatacacatc	accotacctt	aatcaaactc	29460
tcagtagtat	: agccccacca	Ccacacagec		cacagagtac	acagtccttt	29520
acagaaccct	: agtattcaac	ergecacere		agacatatto	ttaggtgtta	29580
ctccccggct	ggccttaaaa ggtttcctgt	agcatcatat	catgggtaac	catattaata	aactccccqq	29640
tattccacac	ggtttcctgt:	cgagccaaac	geteateage	gacaccaaca	tatccaactt	29700
gragetract	ggtttcctgt taagttcatg	tcgctgtcca	gctgctgagc	cacaggerge	cactcatest	29760
geagettacti	taagttcatg	qaaggagaag	tccacgccta	catgggggta	gagecacaac	29820
geggeegee	aacgggcggc gatagggcgg	tagtactaca	gcagcgcgcg	aataaactgc	egeegeegee	29020
egigeaceas	g gatagggcgg t gcaggaatac	aacatggcag	tggtctcctc	agcgatgatt	cgcaccgccc	29880
geteegtee	gcaggaatac g gcgccttgtc	ctccagacac	agcagcgcac	cctgatctca	cttaaatcag	29940
gcagcataa	g gegeettgte t geageacage	accacaatat	tottcaaaat	cccacagtgc	aaggcgctgt	30000
cacagtaac	t gcagcacago t catggcgggg	. accacacacac	ccacataacc	atcataccac	aagcgcaggt	30060
atccaaagc	t catggcgggg g gcgacccct	accacagaac	togacataaa	cattacctct	tttggcatgt	30120
agattaagt	g gegaeeeete c caceteeeg	; alaaacacgo	acctctgatt	aaacatggcg	ccatccacca	30180
totaattca	c cacctcccy	Laccatataa		acactgcagg	gaaccgggaC	30240
ccatcctaa	a ccagetgge	: addaccigce	0900950	tastasta	ctcgtcatga	30300
tagaacaat	g acagtggaga	geceaggace	. Cguaronoj	catagggatt	acaageteet	30360
tatcaatgt	t ggcacaaca	aggcacacgc	. goddaeae	natoagogta	aatcccacac	30420
cccacatta	t ggcacaacac g aaccatatco g acctcgcac	c cagggaacaa	cccattcctg	aaccagegea	cattegggca	30480
tacagggaa	g acctegeac	g taactcacgt	tgtgcattgt	-tanagegeea	cateagagat	30540
gcagcggat	g acctegeace	t atggtagcgc	: gggtttctgt	cccaaaayya	ggcagacgae	30600
geageggat	g atcctccag	c cgagacaaco	: gagatcgtgt	tggtcgtagt	gccacgccaa	30660
otectacego	a cggagtgcg c ggacgtagt	c atatttccts	aagcaaaacc	aggtgcgggc	gegacaaaca	30720
acggaacgc	c ggacgtagt	g ccacttagat	cgctctgtgt	: agtagttgta	gratatecae	20720
gatetgege	c teeggtete g catecagge	a coccetaget	togggttcta	tgtaaactco	ttcatgcgcc	30760
tctctcaaa	g catccaggo ga taacatcca	c caccocagaa	taagccacac	ccagccaacc	tacacattcg	30840
getgeeet	taacatcca t cacacacgg	a saasacaaa	agagetggaa	a gaaccatgtt	ttttttta	30900
. ttctgcgag	t cacacacgg a ttatccaaa	g aggagoggg	aagatctatt	aagtgaacgo	gctcccctcc	30960
ttccaaaag	ga ttatccaaa gg tcaaactct	2 0300000000	acadataato	gcatttgtaa	gatgttgcac	31020
ggtggcgtg	gg tcaaactct c aaaaggcaa	a cagecadas.	grocaagtg	acqtaaagg	: taaacccttc	31080
aatqqcttq	c aaaaggcaa	a cggcccca		atocccaaat	· aattctcatc	31140
agggtgaat	c tectetata	a acacecas		ttaagtccg	r ccattotaaa	31200
tcgccacct	t ctcaatata	C CLCLaagea		- coastcato	ttocaaaaat	: 31260
aatctgct	cc agagegeed ct cacagacet	t ccaccttca	g Colcaagea	s cattaacaa	aataccgcga	a 31320
tcaggitco	t cacagacet	g tataagatt	c aaaagcyga	t gaagateta	accoaccago	31380
tcccqtaq	et cacagaeet gt ceettege	ig ggccagctg	a acataateg	c geaggeets.	- gacacgcata	31440
gcggccac	gt cccttcgca tt ccccgccag	g aaccttgac	a aaagaaccc	a caccyacta	gacacgetai	31500
ct cggage	tt ccccgccag	g cgtagcccc	g atgtaagct	tigitigiate	g geggegeet.	c 31560
aaaatoca	ta tgctaacca ag gtgctgcto	a aaaaatcag	g caaagcctc	g cgcaaaaa	g adagedede	31620
ctactcat	ag gtgctgctogc	at aaaggcagg	t aagctccgg	a accaccaca	g aaaaagaca	2 31680
gcagccac	gc tcatgcaga tc tcaaacat	t ctacagatt	t ctgcataaa	c acaaaataa	a ataacaaaa	a 31000
Callitie	tc tcaaacatg	rc ctgtcttac	a acaggaaaa	a caaccctta	t aagcataag	a 31/40
aacattta	aa cattagaag gg ccatgccgg	r otgaccota	a aaaaactgg	t caccgtgat	t aaaaagcac	6 31800
cggactac	gg ccatgccgg ct cctcggtc	et atcaggat	c ataatqtaa	g actcggtaa	a cacatcagg	£ 31860
accgacag	ct cctcggtca cg gtcagtgc		c gaaatagco	c gggggaata	c atacccgca	g 31920
tgattcat	cg greagege	La addagegue		- aaattaata	a dadadaaaa	a 31980
gcqtaqag	ac aacattac	ag cocceacus	9 -95-	- coacctcc	c getecagaa	C 32040
cacataaa	ca cctgaaaa	at terrere	,,	+ Faccadtaa	a aaagaaaac	c 32100
aacataca	ge getteacas	ge ggcagccc	u cugotage	- atazaarta	+ aaaaaaaaa	ic 32160
tattaaaa	aa acaccact	eg acacggca	.c agossano	+ anggettas	a otccacaaa	a 32220
caaqtqca	iga gcgagtat	at ataggacte	ia dadaoja-j	~ ~~~~~~	a aacccacaa	C 32280
aacaccca	iga gcgagtat iga aaaccgca	cg cgaacctad	g cccagaaac	y adagecada	+ 22222224	a 32340
ttcctcaa	ga aaaccgca aat cgtcactt	cc gttttccc	ac gttacgtaa	ac ttcccattt	. aayaaaacc	32400
casttoco	at cgtcactt	ag ttactccg	cc ctaaaacct	a cgtcacccg	a congress	+ 32460
caattee	aa cacataca gc cacgtcac	aa actccacc	cc ctcattato	a tattggctt	c aacccaaa	22400
egeceege	att attgatga	ta	÷			3240V
aaggcac	accgacga	-3				


```
ctgccatgcg cgggcggcaa gcgcgcgctc gtatgggttg agtgggggac cccatggcat 660
ggggtgggtg agegeggagg egtacatgee geaaatgteg taaaegtaga ggggetetet 720
gagtatteca agatatgtag ggtageatet tecacegegg atgetggege geaegtaate 780 gtatagtteg tgegaggag egaggaggte gggacegagg ttgetaeggg egggetgete 840
tgctcggaag actatctgcc tgaagatggc atgtgagttg gatgatatgg ttggacgctg
                                                                                       900
gaagacgttg aagctggcgt ctgtgagacc taccgcgtca cgcacgaagg aggcgtagga 960
gtcgcgcagc ttgttgacca gctcggcggt gacctgcacg tctagggcgc agtagtccag 1020
ggtttccttg atgatgtcat acttatcctg tccctttttt ttccacaget cgcggttgag 1080
gacaaactct tcgcggtctt tccagtactc ttggatcgga aacccgtcgg cctccgaacg 1140
agateegtae teegeegeeg agggaeetga gegagteege ategaeegga teggaaaace 1200
tetegagaaa ggegtetaac cagteacagt egcaagatet
                                                                                        1240
<210> 29
<211> 8383
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: plasmid pDV60
<400> 29
gacggatcgg gagatctccc gatcccctat ggtcgactct cagtacaatc tgctctgatg 60
cogcatagit aagccagtat ctgctccctg citgtgtgtt ggaggtcgct gagtagigcg 120
cgagcaaaat ttaagctaca acaaggcaag gettgaccga caattgcatg aagaatetge 180
ttagggttag gegttttgeg etgettegeg atgtaeggge eagatataeg egttgaeatt 240 gattattgae tagttattaa tagtaateaa ttaeggggte attagtteat ageceatata 300
tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc 360
cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc 420
attgacgtca atgggtggac tatttacggt aaactgccca cttggcagta catcaagtgt 480
 atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt 540
atgeccagta catgacetta tgggaettte ctacttggca gtacatetac gtattagtea 600 tegetattac catggtgatg eggttttggc agtacateaa tggggegtgga tageggtttg 660 acteaegggg atttccaagt etceaececa ttgacgtcaa tgggagtttg ttttggeaec 720
 aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg 780
 gtaggegtgt acggtgggag gtctatataa gcagagetet ctggetaact agagaaccca 840 etgettactg gettategaa attaatacga etcactatag ggagacccaa gettggtace 900
 gageteggat ceaetetett cegeateget gtetgegagg geeagetgtt ggggtgagta 960 etecetetga aaagegggea tgaettetge getaagattg teagttteea aaaaegagga 1020
 ggatttgata ttcacctggc ccgcggtgat gcctttgagg gtggccgcat ccatctggtc 1080
 agaaaagaca atctttttgt tgtcaagctt ggtggcaaac gacccgtaga gggcgttgga 1140
 cagcaacttg gcgatggagc gcagggtttg gtttttgtcg cgatcggcgc gctccttggc 1200 cgcgatgttt agctgcacgt attcgcgcgc aacgcaccgc cattcgggaa agacggtggt 1260
 gegetegteg ggeaccaggt geacgegeea acegeggttg tgeagggtga caaggteaac 1320
 getggtgget aceteteege gtaggegete gttggteeag cagaggegge egecettgeg 1380 egageagaat ggeggtaggg ggtetagetg egtetegtee gggggggtetg egtecaeggt 1440 aaagaceeeg ggcageagge gegegtegaa gtagtetate ttgcateett gcaagtetag 1500
 cgcctgctgc catgcgcggg cggcaagcgc gcgctcgtat gggttgagtg ggggacccca 1560
 tggcatgggg tgggtgagcg cggaggcgta catgccgcaa atgtcgtaaa cgtagagggg 1620
 ctetetgagt attecaagat atgtagggta geatetteea eegeggatge tggegegeae 1680
 gtaatcgtat agttcgtgcg agggagcgag gaggtcggga ccgaggttgc tacgggcggg 1740
 ctgctctgct cggaagacta tctgcctgaa gatggcatgt gagttggatg atatggttgg 1800
 acgetggaag acgttgaage tggegtetgt gagacetace gegteaegea egaaggagge 1860
 gtaggagtcg cgcagcttgt tgaccagctc ggcggtgacc tgcacgtcta gggcgcagta 1920
 gtccagggtt tccttgatga tgtcatactt atcctgtccc ttttttttcc acagctcgcg 1980
 gttgaggaca aactettege ggtettteea gtactettgg ateggaaace egteggeete 2040
 cgaacgagat ccgtactccg ccgccgaggg acctgagcga gtccgcatcg accggatcgg 2100 aaaacctctc gagaaaggcg tctaaccagt cacagtcgca agatccaaga tgaaggcgc 2160 aagaccgtct gaagatacct tcaaccccgt gtatccatat gacacggaaa ccggtcctcc 2220
 aaggetytet gaagatatet teaateegt geateedaa gaggetetaag agagteece 2280 tggggtacte tetttgeget tateegaace tetagttace tecaatggca tgettgeget 2340 caaaatggge aacggeetet etettgaacga ggeeggeaac ettaceteec aaaatgtaac 2400
 cactgtgage ceaectetea aaaaaaceaa gteaaacata aacetggaaa tatetgeace 2460
```



```
tgtctgtata ccgtcgacct ctagctagag cttggcgtaa tcatggtcat agctgtttcc 6240 tgtgtgaaat tgttatccgc tcacaattcc acacaacata cgagccggaa gcataaagtg 6300
caaaaatcga cgctcaagtc agaggtggcg aaacccgaca ggactataaa gataccaggc 6720
 gtttcccct ggaagetccc tcgtgcgctc tcctgttccg accetgccgc ttaccggata 6780
 cetgteegee ttteteeett egggaagegt ggegetttet eaatgeteae getgtaggta 6840 teteagtteg gtgtaggteg ttegeteeaa getgggetgt gtgcacgaae cececgttea 6900 gecegacege tgegeettat eeggtaacta tegtettgag tecaaceegg taagacacga 6960
 cttategeca etggeageag ceaetggtaa caggattage agagegaggt atgtaggegg 7020 tgetacagag ttettgaagt ggtggeetaa etaeggetae actagaagga cagtatttgg 7080
  atccatagtt gcetgactcc ccgtcgtgta gataactacg atacgggagg gcttaccatc 7500 tggccccagt gctgcaatga taccgcgaga cccacgctca ccggctccag atttatcagc 7560
   attateage georgiaa gggeegageg cagaagtggt eetgeaactt tateegeete 7620 cateeagtet attaattgtt geoggaage tagagtaagt agttegeeag teaggtgtea egetegtegt tagagtatgt cateatteage teeggttee aacgateaag geoggattea tgateeeca tgttgtatage 7860 tgtgteattg egetegtegt tagagtatgt egetegtegt ttggtatgge 7740 aacageggt ageteeteg gteeteegat egetgteaga agtaagttgg eegeagtgt 7860 tateeggtte 2740 aacageggt ageteeteg gteeteegat egetgteaga agtaagttgg eegeagtgt 7860 tateeggte 7860 tateeggte 2740 tat
    atcactcatg gttatggcag cactgcataa ttctcttact gtcatgccat ccgtaagatg 7920
    cttttctgtg actggtgagt actcaaccaa gtcattctga gaatagtgta tgcggcgacc 7980
   gagttgctct tgcccggcgt caatacggga taataccgcg ccacatagca gaactttaaa 8040 agtgctcatc attggaaaac gttcttcggg gcgaaaactc tcaaggatct taccgctgtt 8100 gagatccagt tcgatgtaac ccactcgtgc acccaactga tcttcagcat cttttacttt 8160
    gagacacage totgggtgag caaaaacagg aaggcaaaat gccgcaaaaa agggaataag 8220 ggcgacacgg aaatgttgaa tactcatact cttcctttt caatattatt gaagcatta 8280
    tcagggttat tgtctcatga gcggatacat atttgaatgt atttagaaaa ataaacaaat 8340
     aggggttccg cgcacatttc cccgaaaagt gccacctgac gtc
     <210> 30
      <211> 7960
      <212> DNA
      <213> Artificial Sequence
      <223> Description of Artificial Sequence: plasmid pDV67
      gacggategg gagatetece gateceetat ggtegaetet cagtacaate tgetetgatg 60
      gaeggategg gagatetede gateecetat ggtegaetet eagtadaat tydelegg to cogeatagtt aageeagtat etgeteectg ettgtgtt ggaggteget gagtagtege 120 egageaaaat ttaagetaca acaaggeaag gettgaeega eaattgeatg aagaatetge 180 ttagggttag gegtttgeg etgettegeg atgtaeegge eagatataeg egttgaeatt 240 ggatatategae tagtattaa tagtaateaa ttaeggggte attagtteat ageeceatata 300 gatatategae tagtattaa egttaeegae etgetgaeeg eggagggege 360
       tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc 360
       cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc 420
       attgacgtca atgggtggac tatttacggt aaactgccca cttggcagta catcaagtgt 480
       atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt 540 atgcccagta catgacctta tgggactttc ctacttggca gtacatctac gtattagtca 600
       tegetattae catggtgatg eggttttgge agtacateaa tgggegtgga tageggtttg 660 acteaegggg attteeaagt eteeaececa ttgaegteaa tgggagtttg ttttggeaec 720
        aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg 780
       gtaggegtgt acggtgggag gtctatataa gcagagetet etggetaact agagaaceca 840 etgettactg gettategaa attaatacga etcaetatag ggagaeceaa getggetage 900
```


						60
tttaaactt	aagettggta	ccgagctcgg	atccactctc	ttccgcatcg	ergrergega 3	020
		accacarar	T. Add. Lucac	quaduququ	90000	
gaccgaggoo	tgatatggtt	ggacgctgga	agacgttgaa	gctggcgtct	gtgagaccta	1860
ccccatcaca	cacgaaggag	gcgtaggagt	cgcgcagctt	gttgaccagc	tcggcggtga	1920
ccttttttt	ccacageteg	cggttgagga	caaactcttc	gcggtctttc	cagtactctt	2040
gattegat	cccgtcggcc	ggaaaacctc	tcgagaaagg	cgtctaacca	gtcacagtcg	7TP0
caadatccaa	gatgaagege	gcaagaccgt	ctgaagatac	cttcaacccc	gtgtatccat	2220
atgacacgga	gatgaagege aaceggteet	ccaactgtgc	cttttcttac	tectecettt	gtatccccca	2280
atgacutgga	agagagtccc	cctggggtac	tctctttgcg	cctatccgaa	cctctagtta	2340
cctccaatoo	catgettgeg	ctcaaaatgg	gcaacggcct	ctctctggac	gaggccggca	2400
accttacctc	catgettgeg	accactgtga	gcccacctct	caaaaaaacc	aagtcaaaca	2460
tasacctors	aatatctgca	cccctcacag	ttacctcaga	agccctaact	gtggctgccg	2520
tacacaacte	caaacttage	attgccaccc	aaggacccct	cacagtgtca	gaaggaaagc	2640
cctcacccc	tctaactact	gccactggta	gcttgggcat	. tgacttgaaa	gagcccattt	2/60
taaacacttt	gaccgtagca	actggtccag	gtgtgactat	taataatact	tccttgcaaa	2000
ctaaacttac	gaccgtagca tggagccttg	ggttttgatt	cacaaggcaa	tatgcaactt	aatgtagtag	2000
gaggactaac	gattgattct	caaaacagac	gccttatact	: tgatgttagt	tateegetty	3060
atoctcaaaa	gattgattct ccaactaaat	ctaagactag	gacagggcc	tcttttata	aacteageee	3120
acaacttqqa	ccaactaaat tattaactac	aacaaaggco	: tttacttgtt	: tacagettca	aacaacccca	3180
aaaagettga	ggttaactac	. agcactgcca	ı aggggttgat	gtttgacgct	acayccacay	3240
ccattaatgo	aggagatggg	cttgaatttg	gttcaccta	tgcaccaaac	acaaaccccc	3300
ataaqctaaq	tttgtggaco	: acaccagcto	catctccta	ctgtagacta	aatytagaga	3480
aagatgctaa	a actcacttte	, gtcttaacaa	aatgtggca	tcaaatacti	. gctacagete	3540
cagttttgg	tgttaaagg	: agtttggctd	caatatctg	g aacagttcae	agegeeeaee	3600
ttattataa	g atttgacga	aatggagtg	tactaaaca	a tteetteets	gacccagaat	3660
attggaacti	g atttgacgaa t tagaaatgga	gatettact	g aaggcacag	- postacasa	geegeeggw	3720
ttatgccta	t tagaaatgga a cctatcagct	: tatccaaaa1	ctcacggta	a aactyccaa	agtacectaa	3780
tcagtcaag	a cctatcagct t ttacttaaac	ggagacaaa	a ctaaacctg	- atctatcacc	ttttcatcac	3840
acggtacac	t ttacttaaac a ggaaacagga	a gacacaact	caagtgcat	a etectatgee	a cetetetess	3900
actggtctg	a ggaaacagga g ccacaacta	attaatgaa	a tatttgcca	e accoucta	taaaccccct	3960
acattgccc	a agaataaaa	g aageggeeg	e tegagteta	g agggeeege	tecccatac	4020
gatcagcct	a agaataaaa c gactgtgcct	tctagttgc	c agccatctg	a attactored	- daddaaattd	4080
cttccttga	c cctggaaggt	gccactccc	a ctgtccttt	c ccaacaada	. Aadaaaaca	4140
catcgcatt	c cctggaagg g tctgagtag	g tgtcattct	a ttct99999	9	- totatooott	4200
agggggagg	g totgagtagg a ttgggaaga	c aatagcagg	c argergggg	a rycygrygg	- totacggccc	4260
ctgaggcgg	a ttgggaagad a aagaaccag	c tggggctct	a gggggtate	a contract	raceaccaca	4320
cattaagcg	a aagaaccag c ggcgggtgt	g gtggttacg	c gcagcgtga	a ascettace	c goodstacee	4380
tagcgcccg	c ggcgggtgtg	t ttetteeet	t cettteteg	t tactcett	a cadcacetee	4440
gtcaagctc	t aaatcgggg	c atcccttta	g ggttccgat	a agastacas	c tostagacoo	4500
accccaaaa	t aaatcgggg a acttgatta	g ggtgatggt	t cacgtagtg	g goodcogoo	c thecasacte	4560
tttttcgcc	a actigatia c tttgacgtt	g gagtccacg	t cctttaata	y tyyactott	t ttagagattt	4620
gaacaacac	t caaccetat	c tcggtctat	t cttttgatt	.c acaayyyac		

<210> 31

<211> 30

<212> DNA

<213> Artificial Sequence

```
<223> Description of Artificial Sequence: primer
                                                                                        30
atgggatcca agatgaagcg cgcaagaccg
<211> 30
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: primer
<400> 32
                                                                                         30
cactatageg geegeattet eagteatett
<210> 33
<211> 7989
<212> DNA
 <213> Artificial Sequence
<223> Description of Artificial Sequence: plasmid pDV69
gacggatcgg gagatctccc gatcccctat ggtcgactct cagtacaatc tgctctgatg 60
 <400> 33
 ccgcatagtt aagccagtat ctgctccctg cttgtgtgtt ggaggtcgct gagtagtgcg 120
cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc 180 ttagggttag gcgttttgcg ctgcttcgcg atgtacgggc cagatatacg cgttgacatt 240 gattattgac tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata 300
 tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc 360
 cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc 420
 attgacgtca atgggtggac tatttacggt aaactgccca cttggcagta catcaagtgt 480
 atcatatgcc aagtacgcc cctattgacg tcaatgacgg taaatggccc gcctggcatt 540 atgcccagta catgacctta tgggactttc ctacttggca gtacatctac gtattagtca 600
 tegetattae catggtgatg eggttttgge agtacateaa tgggegtgga tageggtttg 660 acteaegggg atttecaagt etceaecea ttgaegteaa tgggagtttg ttttggeaec 720
 aaaatcaacg ggacttteca aaatgtcgta acaactccgc cccattgacg caaatgggcg 780 gtaggcgtgt acggtgggag gtctatataa gcagagctct ctggctaact agagaaccca 840
aaatgtcgta aacgtagagg ggctctctga gtattccaag atatgtaggg tagcatcttc 1680 caccgcggat gctggcgcg acgtaatcgt atagttcgtg cgagggagcg aggaggtcgg 1740
 gaccgaggtt getacgggcg ggctgctctg ctcggaagac tatctgcctg aagatggcat 1800
 gtgagttgga tgatatggtt ggacgctgga agacgttgaa gctggcgtct gtgagaccta 1860
  cegegteacg cacgaaggag gegtaggagt egegcagett gttgaccage teggeggtga 1920 cetgeacgte taggegcag tagtecagg ttteettgat gatgteatae ttateetgte 1980
  cettttttt ccacageteg eggttgagga caaactette geggtettte cagtactett 2040 ggateggaaa ceegteggee teegaaegag atcegtacte egeegeegag ggacetgage 2100
  gagteegeat egaceggate ggaaaacete tegagaaagg egtetaacea gteacagteg 2160
```



```
aacatacgag ccggaagcat aaagtgtaaa gcctggggtg cctaatgagt gagctaactc 5940
acattaattg cgttgcgctc actgcccgct ttccagtcgg gaaacctgtc gtgccagctg 6000
cattaatgaa toggocaacg cgcgggaga ggcggtttgc gtattgggcg ctcttccgct 6060
tectegetea etgaeteget gegeteggte gtteggetge ggegageggt ateageteae 6120 tecaaaggegg taataeggtt atecacagaa teaggggata acgeaggaaa gaacatgtga 6180
gcaaaaggcc agcaaaaggc caggaaccgt aaaaaggccg cgttgctggc gtttttccat 6240
aggeteegee eccetgaega geateacaaa aategaeget caagteagag gtggegaaac 6300
ccgacaggac tataaagata ccaggcgttt ccccctggaa gctccctcgt gcgctctcct 6360 gttccgaccc tgccgcttac cggatacctg tccgcctttc tcccttcggg aagcgtggcg 6420 cttctcaat gctcacgctg taggtatctc agttcggtgt aggtcgttcg ctccaagctg 6480
ggctgtgtg acgaacccc cgttcagcc gaccgctgcg ccttatccgg taactatcgt 6540 cttgagtcca acceggtaag acacgactta tcgccactgg cagcagccac tggtaacagg 6600 attagcagag cgaggtatgt aggcggtgct accactag taactatcgt tgaagtgtg gcctaactac 6660 aggctacacta gaaggacagt atttggtatc tgcgctctgc tgaagccagt taccttcgga 6720 aaaagaggttg gtaggtcgta atttggtatc gccacagg ctggtaccacta gaaggacagt atttggtatc gccacagg ctggtaccac ctggtaccac accacagg 6720
actacgatac gggagggctt accatctggc cccagtgctg caatgatacc gcgagaccca 7140 cgctcaccgg ctccagattt atcagcaata aaccagccag ccggaagggc cgagcgcaga 7200 agtggtcctg caactttatc cgcctccatc cagtctatta attgttgccg ggaagctaga 7260 gtaagtagtt cgccagttaa tagtttgcgc aacgttgttg ccattgctac aggcatcgtg 7320 gtagacgct coccagt cacttata cgcctcacc cacttgctac aggcatcgtg 7320
  gtgtcacgct cgtcgtttgg tatggcttca ttcagctccg gttcccaacg atcaaggcga 7380 gttacatgat cccccatgtt gtgcaaaaaa gcggttagct ccttcggtcc tccgatcgtt 7440
  gtcagaagta agttggccgc agtgttatca ctcatggtta tggcagcact gcataattct 7500
  cttactgtca tgccatccgt aagatgcttt tctgtgactg gtgagtactc aaccaagtca 7560 ttctgagaat agtgatgcg gcgaccgagt tgctcttgcc cggcgtcaat acgggataat 7620 tctactgcac atagcagaac tttaaaagtg ctcatcattg gaaaacgttc ttcggggcga 7680 aaactctcaa ggatcttacc gctgttgaga tccagttcga tgtaaccac tcgtgcacca 7740 aactgatctt cagcatctt tactttaaca aggatcttct cagcatctt tactttaaca aggatcttcta ggtgagaaca aacacacac tcgtgcacca 7740
  aactgatctt cagcatcttt tactttcacc agcgtttctg ggtgagcaaa aacaggaagg 7800
  caaaatgccg caaaaaaggg aataagggcg acacggaaat gttgaatact catactcttc 7860 ctttttcaat attattgaag cattatcag ggttattgtc tcatgagcgg atacatattt 7920
   gaatgtattt agaaaaataa acaaataggg gttccgcgca catttccccg aaaagtgcca 7980
   cctgacgtc
   <210> 34
   <211> 7607
    <212> DNA
    <213> Artificial Sequence
   <223> Description of Artificial Sequence: plasmid GRE5-E1-SV40-Hygro
    tctagaagat ccgctgtaca ggatgttcta gctactttat tagatccgct gtacaggatg 60
    ttctagctac tttattagat ccgctgtaca ggatgttcta gctactttat tagatccgct 120
    gtacaggatg ttctagctac tttattagat ccgtgtacag gatgttctag ctacttatt 180
    agatcgatct cctggccgtt cggggtcaaa aaccaggttt ggctataaaa gggggtgggg 240
   acaattgtta taattaaatg ataaggtaga atatttctgc atataaattc tggctggcgt 720
     ggaaatattc ttattggtag aaacaactac atcetggtca tcatcetgcc tttctcttta 780
     tggttacaat gatatacact gtttgagatg aggataaaat actctgagtc caaaccgggc 840 ccctctgcta accatgttca tgccttcttc tttttcctac agctcctggg caacgtgctg 900 gttattgtgc tgtctcatca ttttggcaaa gaattagatc taagcttctg cagctcgagg 960
```

acteggtega etgaaaatga gacatattat etgecaegga ggtgttatta eegaagaaat 1020 ggccgccagt cttttggacc agctgatcga agaggtactg gctgataatc ttccacctcc 1080 tagccatttt gaaccaccta cccttcacga actgtatgat ttagacgtga cggcccccga 1140 agateceaac gaggaggegg tttegeagat tttteeegac tetgtaatgt tggeggtgea 1200 ggaagggatt gaettaetea etttteegee ggegeeeggt teteeggage egeeteaeet 1260 tteceggeag cecgageage eggageagag ageetteggt eeggttteta tgecaaacet 1320 tgtaccggag gtgatcgatc ttacctgcca cgaggctggc tttccaccca gtgacgacga 1380 ggatgaagag ggtgaggagt ttgtgttaga ttatgtggag caccccgggc acggttgcag 1440 gtcttgtcat tatcaccgga ggaatacggg ggacccagat attatgtgtt cgctttgcta 1500 tatgaggacc tgtggcatgt ttgtctacag taagtgaaaa ttatgggcag tgggtgatag 1560 agtggtgggt ttggtgtggt aattttttt ttaatttta cagttttgtg gtttaaagaa 1620 ttttgtattg tgatttttt aaaaggteet gtgtetgaae etgageetga geeegageea 1680 tetgetgtge gtaacttget ggaacagage tetaacagta cetettggtt ttggaggttt 2220 etgtgggget cateccagge aaagttagte tgeagaatta aggaggatta caagtgggaa 2280 tttgaagagc ttttgaaatc ctgtggtgag ctgtttgatt ctttgaatct gggtcaccag 2340 gegettttee aagagaaggt catcaagact ttggatttt ceacaceggg gegegetege 2400 getgetgttg etttttgag ttttataaag gataaatgga gegaagaaac ceatetgage 2460 ggggggtace tgetggattt tetggecatg catetgtgga gageggttgt gagacacaag 2520 aategeetge tactgttgte tteegteege ceggegataa taccgaegga ggageageag 2580 cagcagcagg aggaagccag gcggcggcgg caggagcaga gcccatggaa cccgagagcc 2640 ggcctggacc ctcgggaatg aatgttgtac aggtggctga actgtatcca gaactgagac 2700 geattttgac aattacagag gatgggcagg ggctaaaggg ggtaaagagg gagcgggggg 2760 cttgtgaggc tacagaggag gctaggaatc tagcttttag cttaatgacc agacaccgtc 2820 ctgagtgtat tacttttcaa cagatcaagg ataattgcgc taatgagct gatctgctgg 2880 cgcagaagta ttccatagag cagctgacca cttactggct gcagccaggg gatgattttg 2940 aggaggetat tagggtatat geaaaggtgg cacttaggee agattgeaag tacaagatea 3000 ggaagggggt ggtgtgtcgc cccaaaagca gggcttcaat taagaaatgc ctctttgaaa 3360 ggaaggggt ggtgtgteg cccaaaagca gggcttcaat taagaaatgc ctctttgaaa 3360 ggtgtacctt gggtatcetg tctgagggta actccagggt gcgccacaat gtggctgtcg 3420 actgtggttg cttcatgcta gtgaaaagcg tggctgtgt taagcataca atggtatgtg 3480 gcaactgcga ggacagggce tctcagatge tggcaggcaac ggcaggaaca tcacgtagce catttgggta acaggaggg ggtgttccta ggcaatttgg gcaatttgag acagggggtgtt tgacactaac atgaagatct ggaaggtgct gaggtaccac atgaaccaga accetgcaa accetgc ccaggtgcag accetgcgag tgtggcggta aacatattag gaaccagcet gtgatgctgg 3840 atgtgaccga ggagctgagg cccgatcact tggtgctggc ctgcacccgc gctgagtttg 3900 gctctagcga tgaagataca gattgaggta ctgaaatgtg tgggcgtggc ttaagggtgg 3960 gaaagaatat ataaggtggg ggtettatgt agttttgtat etgttttgea geageegee 4020 eegecatgag caccaacteg tttgatggaa gcattgtgag etcatattt acaacgegea 4080 tgeeeceatg ggeegggtg egteagaatg tgatgggete eageattgat ggtegeeeeg 4140 teetgeeege aaactetact acettgaeet aegagaeegt gtetggaaeg eegttggaga 4200 getgtetcag etgactgett aagtegcaag eegaattgga tecaattegg ategatetta 4560 ttaaageaga aettgtttat tgeagettat aatggttaca aataaageaa tageateaca 4680 aattteacaa ataaageatt ttttteactg cattetagtt gtggtttgte caaacteate 4680 aatgtatett ateatgtetg gtegaeteta gaetetteeg etteeteget eactgaeteg 4740 ctgcgctcgg tcgttcggct gcggcgagcg gtatcagctc actcaaaggc ggtaatacgg 4800 ttatccacag aatcagggga taacgcagga aagaacatgt gagcaaaagg ccagcaaaag 4860 gccaggaacc gtaaaaaggc cgcgttgctg gcgtttttcc ataggctccg ccccctgac 4920 gagcatcaca aaaatcgacg ctcaagtcag aggtggcgaa acccgacagg actataaaga 4980 taccaggcgt ttccccctgg aagctccctc gtgcgctctc ctgttccgac cctgccgctt 5040 gtaggcggtg ctacagagtt cttgaagtgg tggcctaact acggctacac tagaaggaca 5340 gtatttggta tctgcgctct gctgaagcca gttaccttcg gaaaaagagt tggtagctct 5400 tgatccggca aacaaaccac cgctggtagc ggtggtttt ttgtttgcaa gcagcagatt 5460 acggggaacg aaaactcacg ttaagggatt ttggtcatga gattatcaaa aaggatcttc 5580 acctagatct ttttaaatta aaaatgaagt tttaaatcaa tctaaagtat atatgagtaa 5640 acctagatct accagtacac acctagatca acctagatca acctagatca acctagatca acctagatca acctagatca acctagatca acctagatca accagatca acctagatca accagatca a acttagated tittaaatta dadatgaagt titaaattaa totaaagtat atatgagtaa 5040 acttggtetg acagttacca atgettaate agtgaggeac ctateteage gatetgteta 5700 tttegtteat ccatagttge etgacteece gtegtgtaga taactaegat aegggaggge 5760 ttaccatctg gccccagtgc tgcaatgata ccgcgagacc cacgctcacc ggctccagat 5820 ttatcagcaa taaaccagcc agccggaagg gccgagcgca gaagtggtcc tgcaacttta 5880 tccgcctcca tccagtctat taattgttgc cgggaagcta gagtaagtag ttcgccagtt 5940 aatagttgc gcaacgttgt tgccattgct acaggcatcg tggtgtcacg ctcgtcgtt 6000 ggtatggctt cattcagctc cggttcccaa cgatcaaggc gagttacatg atcccccatg 6060 ttgtgcaaaa aagcggttag ctccttcggt cctccgatcg ttgtcagaag taagttggcc 6120 gcagtgttat cactcatggt tatggcagca ctgcataatt ctcttactgt catgccatcc 6180 gtaagatget tttctgtgac tggtgagtac tcaaccaagt cattctgaga atagtgtatg 6240 eggegacega gttgetettg eeeggegtea atacegggata atacegegee acatageaga 6300 actttaaaaag tgeteateat tggaaaaegt tettegggge gaaaaetete aaggatetta 6360 ccgctgttga gatccagttc gatgtaaccc actcgtgcac ccaactgatc ttcagcatct 6420 cegetgttga gatccagtte gatgtaacee actegtgaa ecaactgate tetageatet 6420 tttactttea ceagegttte tgggtgagea aaaacaggaa ggeaaaatge egeaaaaaag 6480 ggaataaggg egacacggaa atgttgaata etcatactet teetttttea atattattga 6540 ageatttate agggttattg teteatgage egaaaagtge eacetgaegt etaagaaaac 6600 aaaacaaataa gggtteegeg eacattteee egaaaagtge eacetgaegt etaagaaace 6660 attattatca tgacattaac ctataaaaat aggcgtatca cgaggcccct ttcgtctcgc 6720 attattatca tgacattaac ctataaaaat aggegtatea egaggeeet teegtetege 6720 gegttteggt gatgacggtg aaaacetetg accacatgeag cteceggaga eggteacage 6780 ttgtetgtaa geggatgeeg ggagcagaca accactgeag ageeggteag ggeggtetgg eggtgttgg 6840 egggtgtegg ggetggeta accactgege attageggt gaaatacege acagatgegt aattettgtt aaattetgta aattettgtt aaatcagete accactage ggaaattgta 6960 egggttaata ttttgttaaa attegegtta aattettgtt aaatcagete accactage gaaattgta 7020 caataggccg aaatcggcaa aatccttat aaatcaaaag aatagaccga gatagggttg 7080 agtgttgttc cagtttggaa caagagtcca ctattaaaga acgtggactc caacgtcaaa 7140 agryrryrre cayrrrygaa caayayreed cractacaya acyryyacec caacyreada 7140 gggcgaaaaa ccgtctatca gggcgatggc ccactacgtg aaccatcacc ctaatcaagt 7200 tttttggggt cgaggtgccg taaagcacta aatcggaacc ctaaagggag cccccgattt 7260 agagettgae ggggaaagee ggegaacgtg gegagaaagg aagggaagaa agegaaagga 7320 gegettaatg egeegetaca gggegegtee cattegeat teaggetgeg caactgttgg 7440 gaagggcgat cggtgcgggc ctcttcgcta ttacgccagc tggcgaaagg gggatgtgct 7500 gcaaggcgat taagttgggt aacgccaggg ttttcccagt cacgacgttg taaaacgacg 7560 gccagtgaat tgtaatacga étcactatag ggcgaattaa ttcgggg

```
<210> 35
<211> 11600
```

<212> DNA

<213> Artificial Sequence

<223> Description of Artificial Sequence: plasmid MMTV-E2a-SV40-Neo

gaatteegea ttgeagagat attgtattta agtgeetage tegatacaat aaaegeeatt 60 tgaccattca ccacattggt gtgcacctcc aagcttgggc agaaatggtt gaactcccga 120

gagtgtccta cacctagggg agaagcagcc aaggggttgt ttcccaccaa ggacgacccg 180 tctgcgcaca aacggatgag cccatcagac aaagacatat tcattctctg ctgcaaactt 240 ggcatagoto tgctttgcot ggggctattg ggggaagttg cggttcgtgc tcgcaggget 300 ctcaccottg actottttaa tagotottot gtgcaagatt acaatotaaa caattcggag 360 aactegacet teeteetgag geaaggacea cagecaaett cetettacaa geegeatega 420 ttttgteett cagaaataga aataagaatg ettgetaaaa attatattt taccaataag 480 accaatccaa taggtagatt attagttact atgttaagaa atgaatcatt atcttttagt 540 actattttta ctcaaattca gaagttagaa atgggaatag aaaatagaaa gagacgctca 600 acctcaattg aagaacaggt gcaaggacta ttgaccacag gcctagaagt aaaaaaggga 660 aaaaaagagtg tttttgtcaa aataggagac aggtggtggc aaccagggac ttatagggga 720 cettacatet acagaceaac agatgecece ttaccatata caggaagata tgaettaaat 780 tgggataggt gggttacagt caatggctat aaagtgttat atagatccct cccttttcgt 840 gaaagactcg ccagagctag acctccttgg tgtatgttgt ctcaagaaga aaaagacgac 900 atgaaacaac aggtacatga ttatatttat ctaggaacag gaatgcactt ttggggaaag 960 atyaaacaac ayytacatya ttatattat ctayyaacay yaatyaacat ttyyyyaady 300 attttccata ccaaggaggg gacagtggct ggactaatag aacattattc tgcaaaaact 1020 catggcatga gttattatga atagccttta ttygcccaac cttgcggttc ccagggctta 1080 agtaagtttt tggttacaaa ctgttcttaa aacgaggatg tgagacaagt ggtttcctga 1140 cttggtttgg tatcaaaggt tctgatctga gctctgagtg ttctattttc ctatgttctt 1200 ttggaattta tccaaatctt atgtaaatgc ttatgtaaac caagatataa aagagtgctg 1260 attttttgag taaacttgca acagtcctaa cattcacctc ttgtgtgttt gtgtctgttc 1320 gccatcccgt ctccgctcgt cacttatcct tcactttcca gagggtcccc ccgcagaccc 1380 eggegaceet caggteggee gactgeggea getggegeee gaacagggae ceteggataa 1440 gtgaceettg tetetattte tactatttgg tgtttgtett gtattgtete tttettgtet 1500 ggctatcatc acaagagcgg aacggactca ccatagggac caagctagcg cttctcgtcg 1560 cgtccaagac cctcaaagat ttttggcact tcgttgagcg aggcgatatc aggtatgaca 1620 gcgccctgcc gcaaggccag ctgcttgtcc gctcggctgc ggttggcacg gcaggatagg 1680 ggtatcttgc agttttggaa aaagatgtga taggtggcaa gcacctctgg cacggcaaat 1740 gageggteet egtegtette gettacaaaa eetgggteet getegataat eaetteetee 2100 teeteaageg ggggtgeete gaeggggaag gtggtaggeg egttggegge ateggtggag 2160 teeteaageg egaaeteaga gggggeggtt aggetgteet tettetegae tgaetecatg 2220 ategtt atotttttct goctatagga gaaggaaatg gocagtogga aagaggaga gogogaaacc 2280 accoccgage gogogogog tgogogogog coccocaaaaa agoggatgag gogogotatc 2400 gagtocgagg agaggagaa ctcatcacaa gacgoctgg tgococcoc accocaacaa agoggatgag gogogotatc 2400 gagtocgagga ctcatcacaa gacgoctgg tgococcoca accoagocog 2460 cggccatcga cctcggcggc ggatttggcc attgcgccca agaagaaaaa gaagcgccct 2520 teteceaage eegagegee gecateaca gaggtaateg tggacagega ggaagaaaga 2580 gaagatgtgg egetacaaat ggtgggtte ageaaceae eggtgetaat caagcatgge 2640 aaaggaggta agegeacagt geggeggetg aatgaagaeg acceagtgge gegtggtatg 2700 cgacgcaag aggaagaga agagccagc gaagcggaaa gtgaaattac ggtgatgaac 2760 cgctgagtg tgccgatcgt gtctgcgtgg gagaagggca tggaggctg gcgcgcgctg 2820 atggacaagt accacgtgga taacgatcta aaggcgaact tcaaactact gcctgaccaa 2880 gtgaagctc tggcggcgcg atgcaagacc tggctgaacg aggagcaccg cgggttgcag 2940 cgcgatcta ctgaccttca ccagcaacaa gacctttgtg acgatgatgg ggcgattcct gcaggcgtac 3000 ctgcagtcgt ttgcagaggt gacctacaag catcacgagc ccacgggctg cgcgttgtgg 3060 ctgcaccgct gcgctgagat cgaaggcgag cttaagtgtc tacacggaag cattatgata 3120 aataaggagc acgtgattga aatggatgtg acgagcgaaa acgggcagcg cgcgctgaag 3180 gagcagtota gcaaggccaa gatcgtgaag accggtggg gccgaaatgt ggtgcagatc 3240 tccaacaccg acgcaaggtg ctgcgtgcac gacgcggcct gtccggccaa tcagttttcc 3300 ggcaagtott gcggcatgtt cttctctgaa ggcgcaaagg ctcaggtggc ttttaagcag 3360 atcaaggctt ttatgcagge gctgtatcct accggccaga ccgggcacgg tcaccttttt gagcastaa ggcgcasta ggcgcaagg ccgggcacgg caccttttt gagcastaa gatcgcaga gacgcgaagg ccgggcacgg caccttttt gagcastaa gatcgcaga gacgcaga gacgcaagg ccgggcacgg caccttttt gagcastaa gatcgcaga gacgcaga gacgcaga 3480 atgecactac ggtgcgagtg caactcaaag cctgggcacg egccttttt gggaaggcag 3480 ctaccaaagt tgactccgtt egcctgagc aacgcggagg acctggacgc ggatctgatc 3540 tccgacaaga gcgtgctggc cagcgtgcac cacccggcgc tgatagtgtt ccagtgctgc 3600 tccgacatgtgt atggasact aaccetgtgt atcgcaacte gegegegeag ggeggaggee ccaactgega ettcaagata 3660 teggegeeeg acetgetaaa egegttegt atggtgegea geetgtegga tegaaaactte 3720 acegagetge egeggategt tetegeegat tetaagtega geactaaaca ceagtatege 3780 aaegtgteee tegecagtege geatagegat gegeggeaga acecettega tetetaagata 3860

			acattccaac	chatogaact	gatgaatggg 7	620
aactactgat	tctaattgtt	gtgtattt	agattttta	ctcagaagaa	gatgaatggg 7 atgccatcta 7 aagagaaagg 7	680
agcagtggtg	gaatgccttt	aatgaggaaa i	attetactee	tresasasag	aagagaaagg 7	740
gtgatgatga	ggctactgct	gacteteaac	tacticactic	tttgagtcat	aagagaaagg 7 gctgtgtta 7	7800
tagaagaccc	caaggacttt	cetteagaat	cgccaagccc	ggaaaagct	gctgtgttta 7 gcactgctat 7	7860
gtaatagaac	tcttgcttgc	ettgetattt	acaccacaa	taggcataac	gcactgctat ?	7920
ataacatact	gttttttctt	actccacaca	ggcatagage	gcttaataag	aataactatg (3040
gctttaaaaa	acctcccaca	cctcccctg	aacctgaaac	acadaceac	tgcaattgtt	8220
ttcacaaata	aagcattttt	ttcactgcat	tecagetge	tectestass	actcatcaat	8340
gtatcttatc	atgtctggat	ccccaggaag	etecetetgeg	accetetata	ccctaacctc	8400
ctctacttga	gaggacattc	caatcatagg	ergeceatet	ttcacacacc	tcctcctgtt	8460
aattaggtca	cttaacaaaa	aggaaattgg	graggggttt	attacagaea	gctttctaag tgttggtaaa	8520
ggtaatttta	aaatatctgg	gaagtecett		actttacaca	tgttggtaaa agggcccaac	8580
cagcccacaa	atgtcaacag	cagaaacata	caagetgeea	atatacaaaa	agggcccaac caggaggcac	8640
accetgetea	tcaagaagca	ctgtggttgc	tgtgttagta	tcatttttac	caggaggcac ttggatcagg	8700
attttcccca	cctgtgtagg	ttccaaaata	tetagigiti	acaccettat	ttggatcagg ggtcagtgtt	8760
aacccagcac	tccactggat	aagcattatc	cccacccaaa	atttaaacaa	ggtcagtgtt gatatttggt	8820
catctgctga	ctgtcaactg	tagcattttt	tggggttaca	gcccgagcag	gatatttggt caaaaaaaatg	8880
cctgtagttt	gctaacacac	cctgcagctc	caaaggtttc	tgagttttt	caaaaaaatg gtgtccctga.	8940
aaaatttgac	ccttgaatgg	gttttccagc	accattttta	ttaacactaa	gtgtccctga. cagcttccca	9000
atgcaagttt	aacatagcag	ttaccccaat	aaccicagii	ccaacagcaa	cagetteeca ttettgaaga	9060
catcaaaata	tttccacagg	ttaagtcctc	acctadacta	testestast	ttcttgaaga aatggtttct	9120
cgaaagggcc	tcgtgatacg	cctattttta	taggttaaty	cacgatatta	aatggtttct tttattttc	9180
tagacgtcag	gtggcacttt	toggggaaat	gegegeggaa	cotcotactes	tttattttc ccttcaataa	9240
taaatacatt	caaatatgta	teegeteatg	agacaataac	toggettat	getteaataa teeettttt	9300
tattgaaaaa	ggaagagtat	gagtattcaa	cattteegty	tagtassat	tccctttttt aaaagatgct	9360
gcggcatttt	gccttcctgt	ttttgctcac	ccagaaacyc	cygryaaagr	aaaagatgct cggtaagatc	9420
gaagatcagt	tgggtgcacg	agtgggttac	atcgaactgg	accidadeag	cggtaagatc agttctgcta	9480
cttgagagtt	ttcgccccga	agaacgtttt	ccaatgatga	geacticaa	agttctgcta ccgcatacac	9540
tgtggcgcgg	tattatcccg	tgttgacgcc	gggcaagagc	aacceggeeg	ccgcatacac tacggatggc	9600
tattctcaga	atgacttggt	tgagtactca	ccagtcacag	adaagcaccc	tacggatggc tgcggccaac	9660
atgacagtaa	a gagaattatg	cagtgctgcc	ataaccatga	gigalaacac	tgcggccaac caacatgggg	9720
ttacttctga	caacgatcgg	aggaccgaag	gagetaace	atanageeat	caacatgggg accaaacgac	9780
gatcatgtaa	a ctcgccttga	tcgttgggaa	ccggagetge	t acgaageeat	accaaacgac attaactggc	9840
gagcgtgaca	a ccacgatgcc	tgcagcaatg	gcaacaacgu	. cgcgcaaact	attaactggc ggataaagtt	9900
gaactactta	a ctctagcttc	ccggcaacaa	ttaatagac	ggatggagg	ggataaagtt taaatctgga	9960
gcaggaccad	ttctgcgctc	ggcccttcc	getggetgg		taaatctgga taagccctcc	10020
gccggtgag	gtgggtctcg	cggtatcatt	gcagcactg	ggccagacgg	taagccctcc aaatagacag	10080
cotatogta	ttatctacac	: gacggggagt	caggeaact	tggatgaac	aaatagacag agtttactca	10140
atcoctgage	a taggtgcctc	: actgattaag	g cattggtaa	tgleagace	agtttactca aggtgaagatc	10200
tatatactt	t agattgattt	: aaaacttcat	ttttaattt	a aaaggatete	ggtgaagatca ctgagcgtca	10260
ctttttgat	a atctcatgac	caaaatccci	taacgtgag	t tettgetee	ctgagcgtca cgtaatctgc	10320
gaccccgtag	g aaaagatcaa	aggatette	t tgagateet	t ettecces	g cgtaatctgc a tcaagagcta	10380
tacttacaa	a caaaaaaac	: accgctacca	a deddedder	e geregeegg	tcaagagcta tactgtcctt	10440
ccaactctt	t ttccgaaggt	: aactggctt	c agcagagcg	c agataccaa	tactgtcctt	10500
ctagtgtag	c cgtagttagg	g ccaccactt	c aagaactct	g tageaccyc	tacataccto	10560
gctctgcta	a tcctgttace	agtggctgc	t gccagtggc	g acaageege	g tettaceggg	10620
ttggactca	a gacgatagti	: accggataa	g gcgcagcgg	t cgggctgaa	ggggggttcg t acagcgtgag	10680
tgcacacag	c ccagcttgg	a gcgaacgac	c tacaccgaa	e tgagatacc	t acagegtgage c ggtaagegge	10740
ctatgagaa	a gegeeaeget	t tcccgaagg	g agaaaggcg	g acaggrace	c ggtaagcggc g gtatcttat	10800
agggtcgga	a caggagagc	g cacgaggga	g cttccaggg	g gaaacyccc	g gtatctttat g ctcgtcagg	10860
agtectate	g ggtttcgcc	a cctctgact	t gagcgtcga	t ttttgtgat	g ctcgtcaggg t ggccttttg	10920
agacagaac	c tatggaaaa	a cgccagcaa	c geggeettt	tacggcccc	t ggccttttgc a taaccgtatt	10980
tggcctttt	g ctcacatgt	t ctttcctgc	g ttatcccct	g attetgtgg	a taaccgtatt g cagcgagtca	11040
accaccttt	g agtgagctg	a taccgctcg	c cgcagccga	a cgaccgago	g cagcgagtca a tctgtgcgg	11100
gtgagcgag	g aagcggaag	a gcgcctgat	g cggtatttt	c tccttacge	a tetgtgeggt	11160
atttcacac	c gcatatggt	g cactctcag	t acaatctgo	t ctgatgccg	c atagttaag	11220
cagtatete	c tecetgett	g tgtgttgga	g gtcgctgag	r agrgcgcga	g caaaattta	11280
gctacaaca	a ggcaaggct	t gaccgacaa	it tgcatgaag	ja atetgetta	g ggttaggcg	
J						

ettgegetge ttegegatgt aegggeeaga tataegegta tetgagggga etagggtgg Ettaggegaa aagegggget teggttgtae geggttagga gteeeeteag gatatagtag Ettegetttt geatagggag ggggaaatgt agtettatge aataeaettg tagtettgea acatggtaae gatgagttag eaacatgeet tacaaggaga gaaaaageae egtgeatgee gattggtgga agtaaggtgg tacgategtg eettattagg aaggeaaeag aegggtetga eatggattgg aegaaeeaet	11460 11520
<210> 36 <211> 53 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 36 gtcactcgag gactcggtcg actgaaaatg agacatatta tctgccacgg acc	53
<210> 37 <211> 36 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	**
<400> 37 cgagatcgat cacctccggt acaaggtttg gcatag	36
<210> 38 <211> 37 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 38 catgaagatc tgaggtacga tgagacc	- 37
<210> 39 <211> 51 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 39 gcgacttaag cagtcagctg agacagcaag acacttgctt gatccaaatc c	51
<210> 40 <211> 38 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 40 cacgaattcg tcgtcgcgtc caagaccc	38

```
<210> 41
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: primer
<400> 41
                                                                                                                               32
cacccgggg aggcggcggc gacggggacg gg
 <210> 42
 <211> 7231
 <212> DNA
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: plasmid pDV80
 etgetecetg ettgtgtgtt ggaggteget gagtagtgeg egagcaaaat ttaagetaca 60
 acaaggcaag gcttgaccga caattgcatg aagaatctgc ttagggttag gcgttttgcg 120 etgettcgcg atgtacgggc cagatatacg cgttgacatt gattattgac tagttattaa 180 tagtaatcaa ttacggggtc attagtcat agcccatata tggagttccg cgttacataa 240
 cttacggtaa atggcccgcc tggctgaccg cccaacgacc cccgcccatt gacgtcaata 300
 atgacgtatg ttcccatagt aacgccaata gggactttcc attgacgtca atgggtggac 360
  tatttacggt aaactgccca cttggcagta catcaagtgt atcatatgcc aagtacgccc 420
  cetattgacg teaatgacgg taaatggeee geetggeatt atgeeeagta catgacetta 480 tgggaettte etaettggea gtacatetae gtattagtea tegetattae catggtgatg 540
  cggttttggc agtacatcaa tgggcgtgga tagcggtttg actcacgggg atttccaagt 600
 gaggatttga tattcacctg gcccgcggtg atgcctttga gggttggccgc atccatctgg 1020 tcagaaaaga caatctttt gttgtcaagc ttggtggcaa acgacccgta gagggcgttg 1080
  gacagcaact tggcgatgga gcgcagggtt tggttttgt cgcgatcggc gcgctccttg 1140 gccgcgatgt ttagctgcac gtattcgcgc gcaacgcacc gccattcggg aaagacggtg 1200
  gtgcgctcgt cgggcaccag gtgcacgcgc caaccgcggt tgtgcagggt gacaaggtca 1260 acgctggtgg ctacctctcc gcgtaggcgc tcgttggtcc agcagaggcg gccgcccttg 1320 cgcgagcaga atggcggtag ggggtctagc tgcgtctcgt ccggggggtc tgcgtccacg 1380 gtaaggcaga acgcgagcaga acgcgagcaga ggggtctagc tgcgtctcgt ccggggggtc tgcgtccacg 1380
   gtaaagaccc cgggcagcag gcgcgctcg aagtagtcta tcttgcatcc ttgcaagtct 1440 agcgcctgct gccatgcgcg ggcggcaagc gcgcgctcgt atgggttgag tgggggaccc 1500 catggcatgg ggtggtgag cgcggaggcg tacatgccgc aaatgtcgta aacgtagagg 1560 agcgtctctga gtattccaag atatgtaggg tagcatctc caccgcggat gctggcgcg 1620 acgtaatcgt atagttcgta aaggaggtcg 1620
   acgtaatcgt atagttcgtg cgagggagcg aggaggtcgg gaccgaggtt gctacgggcg 1680 ggctgctctg ctcggaagac tatctgcctg aagatggcat gtgagttgga tgatatggtt 1740
   ggacgctgga agacgttgaa gctggcgtct gtgagaccta ccgcgtcacg cacgaaggag 1800 gcgtaggagt cgcgcagctt gttgaccagc tcggcggtga cctgcacgtc tagggcgcag 1860
   tagtccaggg tttccttgat gatgtcatac ttatcctgtc ccttttttt ccacagctcg 1920 cggttgagga caaactcttc gcggtctttc cagtactctt ggatcggaaa cccgtcggcc 1980
   tegacegag ateegtacte egeegeegag gagteegeat egaceggate 2040 ggaaaacete tegagaaagg egtetaacea gteaceget eaagatecaa gatgaaggeg 2100 geeegeecea gegaagatga etteaaeeee gteacecet atggetaege geggaateag 2160 aatateeeet teeteaceet teeteacee geetaeeee gatteaaaaa etteeeeeet 2220 aatateeeet teeteaceet eeeetttgte teeteegatg gatteaaaaa etteeeeeet 2220
    ggggtactgt cactcaaact ggctgatcca atcaccatta ccaatgggga tgtatccctc 2280 aaggtgggag gtggtctcac tttgcaagat ggaagcctaa ctgtaaaccc taaggctcca 2340
    ctgcaagtta atactgataa aaaacttgag cttgcatatg ataatccatt tgaaagtagt 2400 gctaataaac ttagtttaaa agtaggacat ggattaaaag tattagatga aaaaagtgct 2460
```


