Lógica de predicados

Nuevas situaciones

Ejemplos

		En Lógica proposicional
1.	P1. Todos los hombres son mortales P2. Sócrates es hombre	P1. P P2. Q
	Conclusión Sócrates es mortal	Conc. R
2.	P1. Todos los alumnos estudian Matemáticas	P1. M
	P2. Daniel es alumno	P2. A
	Conclusión Daniel estudia Matemáticas	Conc. D
3.	P1 Todos los múltiplos de 4 son divisibles por	2 P1. M
	P2 24 es múltiplo de 4.	P2. <i>C</i>
	Conclusión 24 es divisible por 2	Conc. D

¿Y ahora qué?

Obviamente nos hemos quedado cortos con la Lógica de proposiciones

¿Qué ha ocurrido?

No hemos tenido en cuenta los sujetos que realizan cada acción o a quién se refieren las distintas propiedades

¿Qué hacemos para tener en cuenta a los sujetos de las acciones?

Ejemplos

El coche es rojo.

Pedro come manzanas

Pedro es hermano de María

Con letras mayúsculas denotamos la acción o propiedad

os N

R(...) =... es rojo.

N(...) = ... come manzanas 1

H(..., ...) = ... es hermano de ..

Con letras minúsculas denotamos objetos específicos o individuos

c= el coche

p= Pedro

m= María

R(c)

= El coche es rojo.

N(p)

= Pedro come manzanas

H(p,m)

= Pedro es hermano de María

Son proposiciones

Son

predicados

En general,

$$P(x) = x$$
 es o verifica P

Ejemplos

- 1. Juan es rubio
 - Definimos R(x)=x es rubio, j= Juan Simbolizamos R(j)
- 2. Si definimos A(x)=x es alumno, M(x)=x estudia Matemáticas ¿Cómo traduciríamos $A(x) \rightarrow M(x)$?

 Si x es alumno entonces x estudia Matemáticas

Observaciones

- 1. R(x), A(x), M(x) no son proposiciones porque no sabemos su valor de verdad (cierto o falso), al no estar determinada la x
- 2. ¿Qué o quién es esa x?

Nuevo problema

¿Qué o quién es esa x?

Ejemplo

En
$$A(x)=x$$
 es alumno $M(x)=x$ estudia Matemáticas

$$A(x) \rightarrow M(x)$$

¿A qué alumnos nos referimos: los de esta clase, los de esta escuela, los de esta universidad, los de esta comunidad,...?

Solución

Cuando simbolizamos es necesario definir el conjunto en el que vamos a considerar los elementos. Le llamamos universo, U.

Ejemplo

En el ejemplo anterior consideramos , por ejemplo, U={miembro de la ETSInf de la UPV}

¿Alguna laguna más?

Volviendo a uno de los ejemplos del principio

Todos los alumnos estudian Matemáticas Daniel es alumno Conclusión Daniel estudia Matemáticas

U={miembros de la ETSInf de la UPV}
A(x) = x es alumno
M(x)= x estudia Matemáticas
d = Daniel

¿Qué falta?

No hemos reflejado "todos los.."

Cuantificador universal: ∀

¿Cómo se lee ∀x?

Supongamos definido un universo U.

- Cualquiera que sea x el elemento de U escogido, si...
- Dado un x cualquiera del universo, si ...
- Sea x un elemento cualquiera del universo, si...
- Para cualquier elemento x del universo que consideremos, si...
- Si x es un elemento cualquiera del universo,...

Ejemplo

Todas las águilas vuelan

A(x)=x es águila V(x)=x vuela

- U={aves} $\forall x \ A(x) \longrightarrow V(x)$ Dada un ave cualquiera si es águila entonces vuela No puedo leer « para todo » o « todos »
- U={águilas} ∀x V(x)
 Si x es un águila cualquiera, x vuela
 Puedo leer « para todo » o « todos »

Cuantificador existencial: 3

¿Cómo se lee ∃ x?

Supongamos definido un universo U.

- Hay al menos un elemento x en U que verifica...
- Existe en el universo un elemento que verifica...
- Algún elemento x del universo verifica ...

Observación

Aunque no se indique siempre se sobrentiende al menos uno, salvo que se indique explícitamente que es sólo uno, que es único. Si es único escribiremos $\exists *x \circ \exists! x$

Ejemplo

En esa tienda hay portátiles que pesan muy poco

U={ordenadores de la tienda} P(x) = x es un portátil M(x) = x pesa muy poco

 $\exists x \ P(x) \land M(x)$

Definiciones y propiedades en L. de predicados

Definiciones, propiedades

- Un predicado describe una propiedad de uno o varios objetos
- Llamaremos universo a la clase de objetos o individuos que estamos considerando
- Las variables van acompañadas de un cuantificador:
 - Universal ∀ ó
 - Fxistencial ∃
- Una **fórmula atómica** en la lógica de predicados es una expresión del tipo $P(x_1, x_2, ..., x_n)$, donde P es un predicado y $x_1, x_2, ..., x_n$ son variables.
- Una forma proposicional en la lógica de predicados es la que está construida a partir de fórmulas atómicas, de forma similar a las formas proposicionales en la lógica de enunciados, y en la que todas las variables que en ella aparecen están cuantificadas

Nota

P(x) no es una forma proposicional en lógica proposicional, ya que no puede ser declarada verdadera o falsa. Sin embargo, sí obtenemos una forma proposicional cuando la variable x se remplaza por un objeto o término concreto

Reglas aristotélicas

Simbolización

Ejemplos

U={personas}, P(x) = x es payaso, D(x) = x es divertido

Todos los payasos son divertidos $\forall x \ (P(x) \rightarrow D(x))$

Algunos payasos son divertidos $\exists x (P(x) \land D(x))$

Ningún payaso es divertido $\forall x (P(x) \rightarrow \neg D(x))$

Algunos payasos no son divertidos $\exists x (P(x) \land \neg D(x))$

Reglas aristotélicas

Todos los Q son R

 $\forall x \ (Q(x) \rightarrow R(x))$

Algunos Q son R

 $\exists x (Q(x) \land R(x))$

Ningún Q es R

 $\forall x \ (Q(x) \rightarrow \exists \ R(x))$

Algunos Q no son R

 $\exists x (Q(x) \land \neg R(x))$

Observaciones referentes a los cuantificadores

Al simbolizar enunciados expresados en lenguaje natural utilizando lógica de predicados lo usual es que:

- El cuantificador ∀ vaya acompañado por el conector →
- El cuantificador ∃ vaya acompañado por el conector ∧

Equivalencias y leyes de inferencia en L.P.

Equivalencias en lógica de predicados

El proceso de inferencia en lógica de predicados es análogo al visto para lógica proposicional, pero se añaden algunas equivalencias, implicaciones y leyes de inferencia que son específicas para los cuantificadores.

1. Negación de cuantificadores

- $\exists x P(x) \equiv \exists x \exists x P(x)$
- $\exists x P(x) \equiv \forall x \exists P(x)$

2. Disyunción y conjunción

- $\forall x (P(x) \land Q(x)) \equiv (\forall x P(x)) \land (\forall x Q(x))$ $\exists x (P(x) \lor Q(x)) \equiv (\exists x P(x)) \lor (\exists x Q(x))$

- $((\forall x \ P(x)) \lor (\forall x \ Q(x)) \Rightarrow \forall x (P(x) \lor Q(x))$ $\exists x (P(x) \land Q(x)) \Rightarrow (\exists x \ P(x)) \land (\exists x \ Q(x))$

3. Predicados de dos variables

• $\forall y \ \forall x \ P(x, y) \equiv \forall x \ \forall y \ P(x, y)$

- $\exists y \exists x P(x, y) \equiv \exists x \exists y P(x, y)$
- $\exists x \ \forall y \ P(x,y) \implies \forall y \ \exists x \ P(x,y)$

iAtención!

iAtención

Equivalencias y leyes de inferencia en L.P.

Leyes de inferencia en lógica de predicados

1. Especificación universal

De la forma proposicional $\forall x \ P(x)$ se puede deducir P(a) para un elemento a cualquiera del universo.

2. Especificación existencial

De la forma proposicional $\exists x \ P(x)$ podemos deducir P(a) para algún elemento determinado, concreto, del universo.

3. Generalización universal

Si P(y) es verdadero para cualquier elemento y del universo entonces podemos deducir $\forall x \ P(x)$.

4. Generalización existencial

Si P(a) es verdadero para un elemento concreto a del universo entonces podemos deducir $\exists x \ P(x)$.

Equivalencias y leyes de inferencia en L.P.

Ejercicio

1. Haciendo uso de las reglas específicas del cálculo de predicados y de las propiedades generales de la Lógica Proposicional, demostrad las equivalencias que aparecen a continuación.

a)
$$\neg \forall x (P(x) \lor Q(x)) \equiv \exists x (\neg P(x) \land \neg Q(x))$$

b)
$$\neg \exists x (P(x) \lor Q(x)) \equiv \forall x (\neg P(x) \land \neg Q(x))$$

2. Haciendo uso de las reglas específicas del cálculo de predicados y de las propiedades generales de la Lógica Proposicional, demostrad las implicaciones que aparecen a continuación. Poned un ejemplo que ponga de manifiesto que las recíprocas de dichas implicaciones son falsas.

a)
$$((\forall x P(x)) \lor (\forall x Q(x))) \rightarrow \forall x (P(x) \lor Q(x))$$

b)
$$\exists x \ (P(x) \land Q(x))) \rightarrow (\exists x \ P(x)) \land (\exists x \ Q(x))$$