Math 55a, Fall 2004

Twelfth Assignment, Solutions
Adapted from Andrew Cotton, George Lee, Tseno Tselkov,
and earlier math 55 students

Problem 1

As in the problem statement, ϕ will always refer to an embedding of L into E over K. Since L is a finite extension of K, there is some primitive element $\gamma \in L$ such that $L = K[\gamma]$. Then $\{1, \gamma, \ldots, \gamma^{n-1}\}$ is a basis of L over K, which implies that the monic irreducible in K[X] with root γ (which we will also refer to as "the minimal K[X] polynomial of γ) has degree n.

Observe that for any embedding $\phi: L \to E$, any $p = \sum_{i=0}^m k_i X^i \in K[X]$, and any $\ell \in L$, we have

$$\begin{array}{lll} \phi(p(\ell)) & = & \sum_{i=0}^m \phi(k_i) \phi(\ell)^i & \text{because } \phi \text{ is a homomorphism} \\ & = & \sum_{i=0}^m k_i \phi(\ell)^i & \text{because } \phi \text{ fixes each element in } K \\ & = & p(\phi(\ell)). \end{array}$$

We will use this result several times throughout these solutions.

Claim 1. Suppose $\phi: L \to E$ is an embedding, $\ell \in L$, and $p \in K[X]$ such that $p(\ell) = 0$. Then $\phi(\ell)$ is a root of p.

Proof: This follows immediately from our above observation; $p(\phi(\ell)) = \phi(p(\ell)) = \phi(0) = 0$.

Claim 2. Suppose that $L = M[\zeta]$ is a finite field extension of M. Let g be the minimal M[X] polynomial of ζ . If g splits into linear factors in L[X], then L is a splitting field of g over M.

Proof: We need only prove that L is generated by the roots $\zeta, \zeta_2, \ldots, \zeta_k$ of g. But $L = M[\zeta] \subset M[\zeta, \zeta_2, \ldots, \zeta_k]$. And since $\zeta, \zeta_2, \ldots, \zeta_k \in L$ we have $M[\zeta, \zeta_2, \ldots, \zeta_k] \subset L$. Therefore indeed $L = M[\zeta, \zeta_2, \ldots, \zeta_k]$.

(a) Any embedding $\phi: L \to E$ is injective because it is a nonzero homomorphism of fields. Also, any homomorphism of fields $\sigma: L \to L$ that is the identity on K is also an embedding of L into L over K; so,

 σ is injective. Then σ must map the n basis elements of L over K to n linearly independent elements. These new elements thus form a basis of L, so Im $\phi = L$. Thus ϕ is bijective; and therefore, it is invertible.

(b) Every $\ell \in L$ can be written in the form $p(\gamma)$ for some $p \in K[X]$; then $\phi(\ell) = \phi(p(\gamma)) = p(\phi(\gamma))$. Therefore the embedding is completely determined by the image of $\phi(\gamma)$.

Letting f be the minimal K[X] polynomial of γ , we know that f has at most n roots. From our claim, $\phi(\gamma)$ must be one of these roots, so there are at most n distinct embeddings.

(c) We prove the result is true when E is the splitting field of f, the minimal K[X]-polynomial of γ . (And, we will use this result again later.) E is generated by the roots $\gamma_1, \ldots, \gamma_n$ of f in E (with $\gamma_1 = \gamma$). Thus it is spanned by the finite set $\{\prod_{i=1}^n \gamma_i^{j_i} \mid 1 \leq i \leq n, 0 \leq j_i \leq n-1\}$, and therefore it is finite-dimensional over K. From 1(b) of Assignment 11, we know that the γ_i are distinct. Fix i such that $1 \leq i \leq n$. Then $f(\gamma) = f(\gamma_i) = 0$. From 2(b) of Assignment 10, there exists an isomorphism ϕ_i of fields $L = K[\gamma]$ to $K[\gamma_i] \subset E$ such that $\phi_i(\gamma) = \gamma_i$ and $\phi_i(a) = a$ for all $a \in K$.

Viewing each ϕ_i as a homomorphism from L to E yields n embeddings, which are all distinct because $\phi_1(\gamma), \ldots, \phi_n(\gamma)$ are distinct. Thus there are indeed at least n embeddings of L into E over K; and from (b) there are at $most\ n$, so there must be $exactly\ n$ embeddings.

(d)

Note: For many people, the trickiest parts of this problem were proving directions starting with (ii) or ending with (iii). While many proofs conclude or use that L is the splitting field of the minimal K[X] polynomial of γ , the polynomial given in (ii) may not have γ as a root. It is true that L is generated by all the roots of this polynomial, but this fact can be difficult to work with. Also, some attempts to prove (iii) claimed one could "extend an embedding" from a subfield of L to an embedding from all of L; proving this is possible, however, is also difficult. Below are presented seven proofs: the first four suffice to show the problem, and the last three are for your reading pleasure. As hinted at in a note on a previously problem set, one of the proofs (the first proof to (ii) \Longrightarrow (iii)) uses a past result about a single field by applying it instead to two isomorphic fields — it's a good reminder of how powerful the notion of "isomorphism" can be. And now, on with

the proofs . . .

• $(i) \Longrightarrow (ii)$.

As before, let f be the minimal K[X] polynomial of γ , and let $n = [L : K] = \deg f$. Let E be the splitting field of f over L, and let the roots of f be $\gamma_1, \gamma_2, \ldots, \gamma_n$ with $\gamma_1 = \gamma$. Then, as proven in (c), there are n distinct embeddings $\phi_i : L \to E$ with $\phi_i(\gamma) = \gamma_i$. Using (i), we have $\gamma_i = \phi_i(\gamma) \in \phi_i(L) = L$, so that all the γ_i are in L. By Claim 2, it follows that L is the splitting field of f.

• $(ii) \Longrightarrow (iii)$.

(Adapted from Rasheed Sabar) Suppose L is a splitting field for some polynomial g over K and that p is an irreducible polynomial in K[X] with root $r_1 \in L$. Let r_2 be another zero of p in E. We claim that

$$[L(r_1):L] = [L(r_2):L].$$

To see this, note that for j = 1 or j = 2, we have

$$[L(r_j):L][L:K] = [L(r_j):K] = [L(r_j):K(r_j)][K(r_j):K].$$
(*)

Now, since $p(r_1) = 0$ in $K(r_1)$ and $p(r_2) = 0$ in $K(r_2)$, it follows (from work on a previous assignment) that $K(r_1)$ is isomorphic to $K(r_2)$. Thus,

$$[K(r_1):K] = [K(r_2):K]. \tag{1}$$

Now, $L(r_j)$ is a pseudo-splitting field for f (not necessarily irreducible in $K(r_j)[X]$) over $K(r_j)$ for j = 1, 2. (Can you prove this?) Since $K(r_1)$ is isomorphic to $K(r_2)$ over K, and this isomorphism sends the coefficients of f in $K(r_1)[X]$ to the coefficients of f in $K(r_2)[X]$, we have (by the uniqueness of the pseudo-splitting field up to isomorphism, from work on a previous assignment) that $L(r_1)$ is isomorphic to $L(r_2)$. Hence,

$$[L[r_1]:K[r_1]] = [L[r_2]:K[r_2]]. (2)$$

Substituting (1) and (2) into (*) yields

$$[L[r_1]:L]=[L[r_2]:L].$$

Therefore, $[L[r_2]:L]=[L[r_1]:L]=1$, which implies that $r_2 \in L$. It follows that L contains all the roots of p and hence that p splits into a product of linear factors in L[X].

• $(iii) \Longrightarrow (iv)$.

Any automorphism of L over K is a K-embedding of L into itself; conversely, any K-embedding of L into itself is an automorphism from part (a).

By (iii), the minimal K[X] polynomial f of γ splits into a product of linear factors in L[X] with roots $\gamma, \gamma_2, \ldots, \gamma_n$. From Claim 2, L is a splitting field of f. Then by our argument in (c) we know that there are exactly n distinct embeddings from L into itself over K, i.e. there are exactly n automorphisms of L over K.

• $(iv) \Longrightarrow (i)$.

Let E be an extension field of L. Each automorphism of L, viewed instead as a map from L to E, is an embedding of L into E. From (c) there can be no other embeddings $\phi: L \to E$ than these n; but each of these embeddings maps L to itself, as desired.

• $(i) \Longrightarrow (iii)$. We first prove the following claim:

Claim 3. Suppose we have an irreducible $p \in K[X]$ with a root $\beta = \beta_1 \in L$. Let E be a finite extension of L such that p splits into a product of linear factors in E[X] with roots β_1, \ldots, β_k . Then for each β_i , there exists some embedding ϕ such that $\phi(\beta) = \beta_i$.

Proof: E is a finite extension of K so it equals $K[\zeta]$ for some primitive element $\zeta = \zeta_1 \in E$. Let ζ_2, \ldots, ζ_m be the other roots of the minimal K[X] polynomial g of ζ .

We must have $\beta = q(\zeta)$ for some $q \in K[X]$. Then $p \circ q \in K[X]$ has root ζ so it must have roots ζ_2, \ldots, ζ_k as well. Thus $q(\zeta), q(\zeta_2), \ldots, q(\zeta_m)$ are all roots of p. (Some of these $q(\zeta_i)$ might be equal, but this doesn't matter.)

Consider the polynomial $r = \prod_{i=1}^{m} (X - q(\zeta_i))$. Its coefficients can be viewed as symmetric polynomials (with coefficients in K) in the ζ_i . Such polynomials, from a well-known result, are polynomials (with coefficients in K) in the coefficients of $\prod_{i=1}^{m} (X - \zeta_i) = g$. These, we know, are in K; hence, $r \in K[X]$.

Since both p, r are in K[X] with root $q(\zeta)$, and p is irreducible, we must have $p \mid r$. Then every root β_i of p is a root of r, and therefore of the form $q(\zeta_{j_i})$ for some ζ_{j_i} .

Then for any β_i , consider the automorphism on E that sends any polynomial value $s(\zeta)$ to $s(\zeta_{j_i})$; this induces an embedding of E into E over E that maps E and E are E and E are the formula E are the formula E and E are the formula E and E are the formula E are the formula E and E are the formula E are the formula E and E are the formula E and E are the formula E are the formula E and E are the formula E are the formula E and E are the formula E are the formula E and E are the formula E are the formula E are the formula E are the formula E and E are the formula E and E are the formula E are the formula E are the formula E and E are the formula E are the formula E are the formula E are the formula E and E are the formula E are the for

Applied to this direction, let p be the given irreducible with root $\beta \in L$; and let E be a field as described in the claim. Then given any root of p in E, some embedding maps β to that root; so by (i), that root must lie in E as well. Thus E indeed splits into a product of linear

factors.

• $(ii) \Longrightarrow (iii)$.

(Adapted from Luke Gustafson and Willy Meyerson) Suppose that L is a splitting field of g over K, and suppose that $p \in K[X]$ is irreducible in K[X] with root $\beta \in L$. Then β can be written as a polynomial q (with coefficients in K) of the roots r_1, r_2, \ldots, r_n of g. As in the above proof of (i) \Longrightarrow (ii), we can show that the coefficients of $\prod_{\sigma \in S_n} (X - q(r_{\sigma 1}, r_{\sigma 2}, \ldots, r_{\sigma n}))$ are in K. Thus, this monstrous polynomial has root β and is in K[X], implying that it is divisible by p. This in turn implies that each root of p is of the form $q(r_{\sigma_1}, r_{\sigma 2}, \ldots, r_{\sigma n})$ for some σ ; and any element of that form is in K. Therefore, K0 splits into linear factors in K1, as desired.

• $(iv) \Longrightarrow (iii)$.

(Adapted from Gabriel Carroll) Again suppose that $p \in K[X]$ is irreducible in K[X] with root $\beta \in L$. Let $m = \deg p$ and suppose that p has m' roots $\beta_1, \beta_2, \ldots, \beta_{m'}$ in L. Then $[L:K[\beta_i]] = [L:K]/[K[\beta_i]:K] = n/m$ for $i = 1, 2, \ldots, m'$.

By (iv), there are n distinct K-automorphisms of L; from Claim 1 (stated on the first page of these solutions), each must map β to another root of p in L. Fix i = 1, 2, ..., m', and suppose that t automorphisms $\sigma_1, \sigma_2, ..., \sigma_t$ map β to β_i . Then $\sigma^{-1}\sigma_1, \sigma^{-1}\sigma_2, ..., \sigma^{-1}\sigma_t$ are t distinct automorphisms of L over $K[\beta]$. However, by (iv) applied with fields $\tilde{L} = L$ and $\tilde{K} = K[\beta]$, we find that $t \leq n/m$. Hence, for each of the m' values i, there are at most n/m K-automorphisms of L.

This gives a total of at most nm'/m K-automorphisms of L; but because there are n such automorphisms, we must have $nm'/m \ge n$ or $m' \ge m$. Therefore, all m roots of p in L, as desired.

(e)

From the direction (iii) \Longrightarrow (iv) in part (d), and from part (c), we have the following fact:

Claim 4. Suppose L is a finite Galois extension of M, with primitive element ζ . Let $\zeta_1, \zeta_2, \ldots, \zeta_k$ be the roots to the monic irreducible $g_{\zeta} \in M[X]$ with root $\zeta = \zeta_1$; then Gal(L/M) consists of the k maps $p(\zeta) \longmapsto p(\zeta_i)$ (for all $p \in M[X]$), where $1 \leq i \leq k$.

Now to continue with part (e):

Claim 5. L is a finite Galois extension of any subfield $M \subset L$ containing K.

Proof: Any M-embedding $\tilde{\phi}: L \to E$ is also a K-embedding. Because L is Galois over K, from part (d)-(i) we have that $\tilde{\phi}(L) = L$ for all such $\tilde{\phi}$; then from part (d)-(i) again, this implies that L is Galois over M.

Alternatively: We have $L = M[\zeta]$ for some primitive element $\zeta \in L$. By part (d)-(iii) applied to the Galois extension L of K, $f_{\zeta} \in K[X]$ splits into linear factors in L. Therefore the minimal M[X] polynomial g of ζ — which divides the minimal K[X] polynomial f of ζ — also splits into linear factors in L. Thus by Claim 2, L is a splitting field of g over M. Then by part (d)-(ii), we know that L is indeed a Galois extension of M. And it cannot be an infinite extension of M since it is a finite extension of $K \subset M$.

Claim 6. If L is a finite Galois extension of M, then the fixed field of Gal(L/M) is M.

Proof: By definition, Gal(L/M) fixes every element in M. Now suppose, for sake of contradiction, that its fixed field M' were actually bigger than M. Because L is Galois over M' from our previous claim, there are at most [L:M'] < [L:M] M'-automorphisms of L. In other words, one of the [L:M] M-automorphisms of L does not fix each element in M', a contradiction. Therefore, Gal(L/M) indeed has fixed field M.

Alternatively: Say that L is a degree-k extension of M and write $L = M[\zeta]$ for some primitive element $\zeta \in L$. Then $\{1, \zeta, \ldots, \zeta^{k-1}\}$ is a basis for L over M; thus we can write any $\ell \in L$ in the form $q(\zeta)$ for some $q = \sum_{i=0}^{k-1} m_i X^i \in M[X]$. Furthermore, the minimal M[X] polynomial g with root ζ has degree k; say its roots are $\zeta_1, \zeta_2, \ldots, \zeta_k$ (with $\zeta_1 = \zeta$).

From Claim 4, each of the maps $p(\zeta) \longmapsto p(\zeta_i)$ (for all $p \in M[X]$) is in $\operatorname{Gal}(L/M)$. So if they all fix $\ell = q(\zeta)$ then we must have that all the ζ_i are roots of $q - \ell$, so that $g \mid q - \ell$. But g has degree k while $q - \ell$ has degree at most k - 1. Then we must have $q - \ell = 0$ so that q is a constant in M. Thus, $\operatorname{Gal}(L/M)$ fixes no elements outside of M. This completes the proof.

For any subfield $M \subset L$ containing K, from Claim 5 the group Gal(L/M) exists; and from Claim 6, we know that the fixed field of

Gal(L/M) is M. Therefore the map given in the problem statement is surjective.

Next, say that $M \subset L = M[\zeta]$ is the fixed field of H, and let g be the minimal M[X] polynomial of ζ . Let $\zeta_1, \zeta_2, \ldots, \zeta_k \in L$ be the roots of g (with $\zeta_1 = \zeta$); any automorphism in H fixes M and sends ζ to some ζ_i .

Look at the orbit $\{\zeta_{i_1}, \zeta_{i_2}, \dots, \zeta_{i_r}\}$ of ζ under the action of H (where $i_1 = 1$). Each map in H fixes each coefficient of $p = (X - \zeta_{i_1}) \cdots (X - \zeta_{i_r})$ (here we are not applying each map to the polynomial, but to the individual coefficients), so p's coefficients must all be in M. But since $(X - \zeta_1) \cdots (X - \zeta_k)$ is a minimal polynomial in M[X] with root ζ , this implies that p must have degree k as well so that the orbit of ζ is all of $\{\zeta_1, \dots, \zeta_k\}$. Therefore H must consist exactly of those k automorphisms which fix M and map ζ to any other ζ_i . And from Claim 4, we must have $H = \operatorname{Gal}(L/M)$. Thus, the given map is injective as well, so it is a bijection. And we have also proved that $H = \operatorname{Gal}(L/L^H)$.

Next we prove the statements about normality. We first claim that H is normal in $\operatorname{Gal}(L/K)$ iff $\tau(L^H) = L^H$ for all $\tau \in \operatorname{Gal}(L/K)$. From part (a), any such τ is an automorphism. Then H is normal iff

$$\begin{array}{ll} \tau^{-1} \circ \phi \circ \tau \in H & \forall \ \phi \in H, \tau \in \operatorname{Gal}(L/K) \\ \iff \tau^{-1}(\phi(\tau(x))) = x & \forall \ \phi \in H, \tau \in \operatorname{Gal}(L/K), x \in L^H \\ \iff \phi(\tau(x)) = \tau(x) & \forall \ \phi \in H, \tau \in \operatorname{Gal}(L/K), x \in L^H \\ \iff \tau(x) \in L^H & \forall \ \tau \in \operatorname{Gal}(L/K), x \in L^H, \\ \iff \tau(L^H) \subset L^H & \forall \ \tau \in \operatorname{Gal}(L/K), \\ \iff \tau(L^H) = L^H & \forall \ \tau \in \operatorname{Gal}(L/K), \end{array}$$

as desired. (The last equivalence is true because $\tau|_{L^H}:L^H\to L^H$ is also an automorphism from part (a).)

First assume that L^H is Galois over K. Then applying (i) to the Galois extension L^H over K and the embedding $\tau: L^H \to L$, we find that $\tau(L^H) = L^H$ and hence H is normal in $\operatorname{Gal}(L/K)$.

Next assume that H is normal in $\operatorname{Gal}(L/K)$. Then $\tau(L^H) = L^H$, so we can consider the map ψ which restricts each map in $\operatorname{Gal}(L/K)$ to the set $\mathcal A$ of K-automorphisms of L^H . Because ψ is a restriction, it is a homomorphism. ψ 's kernel consists of precisely those automorphisms that fix every element in L^H ; that is, the automorphisms in $\operatorname{Gal}(L/L^H) = H$. Therefore, we have

$$\operatorname{Gal}(L/K)/H = \operatorname{Gal}(L/K)/\operatorname{Ker} \psi \simeq \operatorname{Im} \psi.$$
 (†)

Observe that $\operatorname{Gal}(L/K)/H = \operatorname{Gal}(L/K)/\operatorname{Gal}(L/L^H)$ has $[L:K]/[L:L^H] = [L^H:K]$ elements, so $|\mathcal{A}| \ge |\operatorname{Im} \psi| = [L^H:K]$. However, from (b) we also have $|\mathcal{A}| \le [L^H:K]$. It follows that $|\mathcal{A}| = [L^H:K]$ and hence (from part (d)-(iv)) L^H is normal over K.

We have now proved that H is a normal subgroup of $\operatorname{Gal}(L/K)$ if and only if L^H is normal over K. Using the notation and building on the results of the last paragraph, it also follows that $\operatorname{Im} \psi = \mathcal{A} = \operatorname{Gal}(L^H/K)$. Combined with (\dagger) , we find that

$$\operatorname{Gal}(L/K)/H \simeq \operatorname{Gal}(L^H/K).$$

This completes the proof.

- (f) The roots of the given polynomial are $\gamma_j = \operatorname{cis}(72j)^\circ$ for j = 1, 2, 3, 4. Since $\gamma_j = \gamma_1^j$ we have $L = \mathbb{Q}[\gamma_1, \gamma_2, \gamma_3, \gamma_4] = \mathbb{Q}[\gamma_1]$ so that γ_1 is a primitive element generating L over \mathbb{Q} . Then the Galois group consists of the functions f_j that map $q(\gamma_1) \mapsto q(\gamma_j) \forall q \in \mathbb{Q}[X]$. And since f_2 maps γ_1 to γ_2 to γ_4 to γ_3 back to γ_1 , it has order 4 so we know that $\operatorname{Gal}(L/\mathbb{Q}) \simeq \mathbb{Z}_4$.
- (g) Nope! In order to be normal over \mathbb{Q} , the field L must satisfy condition (iii) in part (d). But the polynomial X^3-2 has root $\zeta\in L$ yet it does not split into linear factors in $L=\mathbb{Q}+\mathbb{Q}\sqrt[3]{2}+\mathbb{Q}\sqrt[3]{4}\subset\mathbb{R}$. This is because $X^3-2=(X-\sqrt[3]{2})(X^2+\sqrt[3]{2}X+\sqrt[3]{4})$ and the roots of $X^2+\sqrt[3]{2}X+\sqrt[3]{4}$ are not real (in \mathbb{C} they equal $\sqrt[3]{2}\operatorname{cis}(\pm 120^\circ)$).

Problem 2

a) For every $g \in G$ we are given a linear transformation $\pi(g): V \to V$ such that $\pi(e) = 1_V$ and $\pi(gh) = \pi(g) \circ \pi(h)$. By the functoriality that we've discussed in class these induce natural linear transformations $\otimes^k \pi(g): \otimes^k V \to \otimes^k V$. Let's check that the necessary properties are again satisfied, namely that $\otimes^k \pi(e) = 1_{\otimes^k V}$ and $\otimes^k \pi(gh) = \otimes^k \pi(g) \circ \otimes^k \pi(h)$. Indeed,

$$\otimes^k \pi(e)(v_1 \otimes \ldots \otimes v_k) = \pi(e)(v_1) \otimes \ldots \otimes \pi(e)(v_k) =$$
$$= v_1 \otimes \ldots \otimes v_k = 1_{\otimes^k V}(v_1 \otimes \ldots \otimes v_k),$$

where we first applied the definition of $\otimes^k \pi$ and then the properties that we know for π . Also,

$$\otimes^{k} \pi(gh)(v_{1} \otimes \ldots \otimes v_{k}) = \pi(gh)(v_{1}) \otimes \ldots \otimes \pi(gh)(v_{k}) =$$

$$= \pi(g) \circ \pi(h)(v_{1}) \otimes \ldots \otimes \pi(g) \circ \pi(h)(v_{k}) =$$

$$= \otimes^{k} \pi(g) (\pi(h)(v_{1}) \otimes \ldots \otimes \pi(h)(v_{k})) =$$

$$= \otimes^{k} \pi(g) \circ \otimes^{k} \pi(h)(v_{1} \otimes \ldots \otimes v_{k}),$$

where again we only used the definition of $\otimes^k \pi$ and the properties of π .

Thus we showed that indeed any representation π on V induces a representation $\otimes^k \pi$ on $\otimes^k V$.

b) Let's just directly show that the representations $\otimes^k \pi$ of G and a of S_k commute:

$$\otimes^{k} \pi(g) \circ a(\sigma)(v_{1} \otimes \ldots \otimes v_{k}) =$$

$$= \otimes^{k} \pi(g)(v_{\sigma^{-1}(1)} \otimes \ldots \otimes v_{\sigma^{-1}(k)}) =$$

$$= \pi(g)(v_{\sigma^{-1}(1)}) \otimes \ldots \otimes \pi(g)(v_{\sigma^{-1}(k)}) =$$

$$= a(\sigma)(\pi(g)(v_{1}) \otimes \ldots \otimes \pi(g)(v_{k})) =$$

$$= a(\sigma) \circ \otimes^{k} \pi(g)(v_{1} \otimes \ldots \otimes v_{k}).$$

Therefore $\otimes^k \pi(g) \circ a(\sigma) = a(\sigma) \circ \otimes^k \pi(g)$ and we are done.

The End.