Topic to discuss

Part -2

- · Problems on Bisection Method.
- · Homework Problem

Q1: Using Bisection Method obtain root

Of the equation $e^{x}-3x=0$, correct upto 2 decimal places.

solution: - Let
$$y = f(x) = e^{x} - 3x = 0$$

To find initial root a & b,
we have to guess the value of x.
So, $f(1) = e^{1} - 3x1 = -0.281718$
 $f(2) = e^{2} - 3x2 = 1.389056$
 $f(1.5) = e^{1.5} - 3x1.5 = -0.019310$

X	1.5	2	1.75	1.625	
f(x)	-0.01831	1.38905	0.50460	0.203419	
. a t	, <u>, , , , , , , , , , , , , , , , , , </u>		1		

1st iteration

$$a = 1.5$$
 and $b = 2$
 $x_0 = \frac{a+b}{2} = \frac{1.5+2}{2} = 1.75$

$$f(x_0) = \frac{1}{2}$$

$$f(x_0) = f(1.75) = e^{1.75} - 3 \times 1.75 = 0.50460$$

2nd iteration

$$a = 1.75$$
 and $b = 1.5$

$$\chi_0 = \frac{1.75 + 1.5}{2} = 1.625$$

$$f(x_0) = f(1.625) = e^{1.625} - 3 \times 1.625$$

$$= 0.203419$$

X	1.5	2	1.75	1.625	1.5625	1.53125
f(x)	-0.01831	1.38905	0.50460	0.203419	0.0832	0.03020

$$a = 1.625$$
 and $b = 1.5$
 $x_0 = \frac{1.625 + 1.5}{2} = 1.5625$
 $f(x_0) = f(1.5625) = e^{x} - 3x$
 $= 0.093233$

$$\chi_0 = \frac{1.5625 + 1.5}{2} = 1.53125$$

$$f(x_0) = f(1.53125) = 0.03020$$

X	1.5	1.5625	1.53125	1.515623	1.50781	
f(x)	-0.01831	0.0832	0.03020	0.005390	-0.066598	

5th iteration,

$$a = 1.53125$$
 and $b = 1.5$
 $x_0 = \frac{1.53125 + 1.5}{2} = 1.515625$

$$f(\alpha_0) = f(1.515625) = 0.005390$$

6th iferation,

$$a = 1.515625$$
 and $b = 1.5$
 $x_0 = \frac{1.515625 + 1.5}{2} = 1.50781$
 $f(x_0) = e^{x} - 3x = -0.006598$

જ	1.5	1.5625	1.53125	1.515625	1.50781	1.5117
f(x)	-0.01831	0.0832	0.03020	0.005390	-0.066598	-0.0006403

 $\frac{1^{th} \text{ idexation}}{a = 1.50781}$ and b = 1.5156252 = 1.50781 + 1.515625 = 1.5117

 $f(x_0) = f(1.5117) = -0.0006403$

The root of x lies between, 1.5/17 and 1.5/15625

So, root of ox is 1.51 (correct upto 2 decimal places)

i. am. arfin

Our initial assumption, a = 1.5, b = 2 f(a) = -0.0183, f(b) = 1.3890

iteration	a	b	$\boldsymbol{\chi}_{0}$	$f(x_0)$
1	1.5	2	1.75	0.50460
2	1.75	1.5	1.625	0.20341
3	1.625	1.5	1-5625	0.0832
4.	1.5625	1.5	1.53125	0.03020
5	1.53125	1.5	1.515625	0.6053904
6	1.515623	1.5	1.5078125	-0.0065981
7	1.5078125	1.515625	1.511718	-0.0006384
				'

Arfin Parween

Home work Problem

a: Find the positive real root of xlog x = 1.15, using the bisection method. (perform 4 iteration)

Solution:
$$\det y = f(x) = x \log_{10} x - 1.15$$

Now, $f(1) = -1.15$
 $f(2) = -0.5479$
 $f(3) = 0.28136$

So f(x) = 0 has atleast one voot in (2,3)

So, according to bisection Method,

we can take, a=2 ad b=3

$$S_0$$
, $S_0 = \frac{2+3}{2} = 2.5$

$$f(x_0) = f(2.5) = -0.15514$$

1st iteration,

$$a = 2.5$$
 and $b = 3$
 $x_0 = \frac{2.5 + 3}{2} = 2.75$
 $f(2.75) = 2.75 \times \log(2.75) - 1.15 = 0.05816$
2nd iteration,
 $a = 2.5$ and $b = 2.75$
 $x_0 = \frac{2.5 + 2.75}{2} = 2.625$
 $f(2.625) = -0.0497$

3rd iteration,
$$a = 2.625 \quad \text{and} \quad b = 2.75$$

$$2_0 = \frac{2.625 + 2.75}{2} = 2.6875$$

$$f(2.6875) = 2.6875 \times \log 2.6875 - 1.15 = 0.003874$$
4th iteration,

$$a = 2.6875$$
 and $b = 2.625$

$$\chi_0 = \frac{2.6875 + 2.625}{2} = 2.65625$$

$$f(2.65625) = -0.02303$$

The positive root of function xlogx =1.15 is lies between 2.625 and 2.65625 which approximates to 2.7 (correct upto 2 significant figures)

