SF2520 - Laboratory 7

Goyens Florentin & Weicker David 26th November 2015

Introduction

This report answers the question given in the seventh laboratory for the course SF2520 - "Applied Numerical Methods". This laboratory is in the numerical algebra part. The first question concerns a stable QR-factorization for ill-posed systems and the second is about solving the least squares problem using a QR-factorization.

1 Stable QR-factorization

blabla

2 Least Squares with QR-factorization

This section tries to fit the data given with the least squares method. The function used to fit the data is :

$$y(t) = c_1 + c_2 e^{\alpha t} + \sum_{k=1}^{n} \left(a_k \cos(\frac{2\pi kt}{12}) + b_k \sin(\frac{2\pi kt}{12}) \right)$$

The problem consists thus of finding c_1 , c_2 , a_k and b_k that minimize $||Ax - b||_2$ where:

$$A = \begin{pmatrix} 1 & e^{\alpha t_1} & \cos(\frac{2\pi k_1 t_1}{12}) & \dots & \cos(\frac{2\pi k_n t_1}{12}) & \sin(\frac{2\pi k_1 t_1}{12}) & \dots & \sin(\frac{2\pi k_n t_1}{12}) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & e^{\alpha t_m} & \cos(\frac{2\pi k_1 t_m}{12}) & \dots & \cos(\frac{2\pi k_n t_m}{12}) & \sin(\frac{2\pi k_1 t_m}{12}) & \dots & \sin(\frac{2\pi k_n t_m}{12}) \end{pmatrix}$$

$$x = (c_1 c_2 a_1 \dots a_n b_1 \dots b_n)^T$$

And $b \in \mathbb{R}^{m \times 1}$ is the vector containing the data at times t_i with i = 1...m.

This problem can be solved using the least squares method. To do this, we are going to use the QR-factorization, i.e. the fact that:

$$A = QR$$

With Q an orthogonal matrix and R upper triangular. Indeed, to minimize the norm of the residual, we know that we have to solve the normal equations:

$$A^T A x = A^T b$$

But using QR-factorization allows us to say (the proof that be found in the course notes):

$$Rx = Q^T b$$

The Matlab code used to solve the problem can be found at the end of this report. For n = 1, here are the values obtained for the parameters :

c_1	2.5581
c_2	334.9964
a_1	-1.7186
b_1	2.3581

And the computed norm of the residual is:

$$||res(n=1)||_2 = 15.2036$$

For n=2, the parameters are the following :

c_1	2.7340
c_2	334.8298
a_1	-1.7185
a_2	0.8382
b_1	2.3579
b_2	-0.0345

And the norm of the residual is:

$$||res(n=2)||_2 = 11.3936$$

And finally, for n=3, these are the parameters :

c_1	2.7665
c_2	334.7990
a_1	-1.7185
a_2	0.8382
a_3	0.1094
b_1	2.3579
b_2	-0.0345
b_3	-0.0568

And the norm of the residual is:

$$||res(n=3)||_2 = 11.2972$$

It is important to note that the norm of the residual decreases as we increase n. That is to be expected since when we increase n by one, we allow two new degrees of freedom. Thus, it is not possible to obtain a "worse" residual with a higher n. In the worst case scenario, the two new basis functions do not increase the quality of the fitting and then the corresponding coefficients would be zero. The residuals would then be equal.

Figure 1 shows the fitting for n = 3. We can see that it is relatively good. The 'x' are the data points and the red curve is the fitting.

Figure 1: Fitting of the data for n=3