Notes on Calculus I

Jacopo Tissino

October 4, 2016

Chapter 1

Naïve set theory

1.1 Basic sets

$$\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R}, \qquad 0 \notin \mathbb{N} \tag{1.1.1}$$

$$\mathbb{R}^+ := \{ x \in \mathbb{R} : x > 0 \} \tag{1.1.2}$$

Remarks

- " \in " is for elements belonging to sets, " \subseteq " is for subsets
- $\{x\} \neq x$: the first is a set with x as its only element, and is called a "singlet"
- $\bullet \ \subsetneq$ means "is a subset of, but not equal to"
- the elements of $\mathcal{P}(A)$ are precisely all the subsets of A
- $\sharp A$ is the cardinality of A
- $\sharp \mathcal{P}(A) = 2^{\sharp A}$

The naïve definitions of $A \cup B$, $A \cap B$, $A \setminus B$ are given.

Properties

- $A = (A \cap B) \cup (A \setminus B)$
- $(A \cap B) \cap (A \setminus B) = \emptyset$
- $C \cap (A \cup B) = (C \cap A) \cup (C \cap B)$
- $C \cup (A \cap B) = (C \cup A) \cap (C \cup B)$

Complement

Definition 1.1.1. With respect to a "universe" set U, we define the complement of A as $U \setminus A$, denoted A^C .

The following hold:

- $\bullet \ (A \cup B)^C = A^C \cap B^C$
- $\bullet \ (A \cap B)^C = A^C \cup B^C$

Cartesian product

Definition 1.1.2. An *ordered pair* is a set of the form $\{\{x\}, \{x,y\}\}$, denoted (x,y) (where order matters).

Definition 1.1.3. We define the *cartesian product* $A \times B$ of two sets A and B as:

$$A \times B := \{(a, b) : a \in A, b \in B\}$$
 (1.1.3)

1.2 Propositional logic

Implication

Definition 1.2.1.

$$p \implies q \iff (\neg p) \lor q \tag{1.2.1}$$

Double implication

Definition 1.2.2.

$$(p \iff q) \iff (p \implies q \land q \implies p)$$
 (1.2.2)

Quantifiers P(x) is a *predicate*. We say that $\forall x : P(x)$ if P(x) is true independently of x, and that

$$\exists x : P(x) \iff \neg(\forall x : \neg P(x)) \tag{1.2.3}$$

Chapter 2

Number sets

2.1 The set \mathbb{N}

The Peano axioms

- 1. $1 \in \mathbb{N}$
- 2. $\forall n \in \mathbb{N} : \exists S(n) : \mathbb{N} \to \mathbb{N}$
- 3. $\forall n \in \mathbb{N} : S(n) \neq 1$
- 4. $\forall m, n \in \mathbb{N} : m \neq n \implies S(n) \neq S(m) \text{ or } S(n) = S(m) \implies n = m$
- 5. $(A \subseteq \mathbb{N}) \land (1 \in A) \land (n \in A \implies S(n) \in A) \implies A = \mathbb{N}$

Any set that verifies these axioms is isomorphic to \mathbb{N} . \mathbb{R}^+ , for example only satisfies the first 4.

2.2 Induction

If P(n) is a proposition, P(1) and $P(n) \implies P(n+1)^1$ (the *inductive hypothesis*); then $\forall n \in \mathbb{N}, P(n)$.

Proof. Define
$$A := \{n \in \mathbb{N} : P(n)\}$$
. By axiom 5, $A = \mathbb{N}$.

If a property a': P(k) holds for some $k \in \mathbb{N}$ and $b': P(n) \implies P(n+1)$, then $\forall n \geq k: P(n)$.

Examples Example: we can show by induction that

$$\sum_{i=1}^{n} = \frac{n(n+1)}{2} \tag{2.2.1}$$

Example 2: we can show by induction that $P(\sharp A): \sharp \mathcal{P}(A) = 2^{\sharp A}$.

¹We introduce the notation n+1 to signify S(n).

Proof. P(1) is true. We see that for any A we can take an element such that $A = \{a\} \cup B$. Then for any subset I, either $a \in I$ or $a \notin I$. If $a \in I$, $I = \{a\} \cup J$, but there are 2^n possible Js. If $a \notin I$, we have 2^n I's. So there are 2^{n+1} possible subsets.

Example 3: show that $n! > 2^n$, which is true for n > 3.

Proof. We will use the second form of the induction principle. P(4) is true. If n > 4 and $n! > 2^n$, we need to show that $(n+1)n! > 2 \cdot 2^n$. But n+1 > 2 by hypothesis, so the inequality always holds.

Observation: the notation $1+2+3+4+\cdots+n$ is unclear, we should use $\sum_{i=1}^{n} i$.

Recursive formulas: we know the first term, and an algorithm to derive any term from the one before it, such as the definition of the factorial:

$$\begin{cases} 0! = 1\\ (n+1)! = (n+1)n! \end{cases}$$
 (2.2.2)

Another example is the sequence:

$$\begin{cases}
S_1 = 2 \\
S_{n+1} = S_n + (2n+1)
\end{cases}$$
(2.2.3)

Proof that $S_n = n^2 + 1$. Assume that $S_n = n^2 + 1$. Then $S_{n+1} = n^2 + 1 + 2n + 1 = (n+1)^2 + 1$.

Formal definition of summation:

$$\sum_{i=0}^{n} a_i = a_0 + a_1 + a_2 + a_3 + \dots + a_n$$
 (2.2.4)

by recursion: for an increment in n, we just add the n+1-th term. So it comes down to the formal definition of induction.

Example: show by induction that

$$\forall a \in \mathbb{N} \lor a = 0 \quad (a \neq 1) : \quad \sum_{k=0}^{n} a^k = \frac{1 - a^{n+1}}{1 - a}$$
 (2.2.5)

See the property for n = 0. Suppose that the property holds for n, show it for n + 1:

$$\sum_{k=0}^{n+1} a_k = \sum_{k=0}^{n} a^k + a^{n+1} = \frac{1 - a^{n+1}}{1 - a} + a^{n+1} = \frac{1 - a^{n+2}}{1 - a}$$
 (2.2.6)

To do: given two real numbers, $\forall n \in \mathbb{N}$, show that

$$(a+b)^n = \sum_{i=0}^n \binom{n}{k} a^k b^{n-k}$$
 (2.2.7)

2.3 Groups

We have a set A with an operation $*: a, b \in A \to a * b \in A$. Es: A strings, * concatenation. (A, *) is a group if the following are satisfied:

- 1. Associativity: $\forall a, b, c \in A$: a * (b * c) = (a * b) * c
- 2. Identity: $\exists e \in A : \forall a \in A : e * a = a * e = a$
- 3. Inverse: $\forall a \in A : \exists a^{-1} \in A : a * a^{-1} = a^{-1} * a = e$

(A,*) is also a commutative group if $\forall a,b \in A: a*b=b*a$

Examples: $(\mathbb{N}, +)$ is not a group: there is no identity, but even if we add 0 there is no inverse. $(\mathbb{Z}, +)$ is a commutative group. (\mathbb{R}, \times) is not a group because 0 has no inverse. (\mathbb{R}_0, \times) is hower a group, as is $(\mathbb{R}_0, +)$. (\mathbb{Z}_0, \times) is not a group because there is no inverse: (\mathbb{Q}_0, \times) is a commutative group.

So we introduce \mathbb{Q} :

$$\mathbb{Q} := \left\{ \frac{a}{b}, a \in \mathbb{Z}, b \in \mathbb{N} \right\} / \sim \tag{2.3.1}$$

but $ad \sim bc$ and \mathbb{Q} is isomorphic to \mathbb{Z}

Definition 2.3.1. Order relation:

$$\frac{a}{b} \le \frac{c}{d} \iff ad \le bc \tag{2.3.2}$$

Definition 2.3.2. Sum and product, subtraction and division are analogous:

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd} \tag{2.3.3}$$

$$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd} \tag{2.3.4}$$

 $(\mathbb{Q}, +, \times)$ is then a field:

- 1. $(\mathbb{Q}, +)$ is a commutative group;
- 2. (\mathbb{Q}_0, \times) is a commutative group
- 3. p(q+r) = pq + pr

Roots The square root of a number $a \ge 0$ is a $b \ge 0$ such that $b^2 = a$. Show that in \mathbb{Q} there is no $\sqrt{2}$:

Proof. By contradiction:² if there were $a \in \mathbb{Z}$ and $b \in \mathbb{N}$ such that

²In the form: to show that
$$p \implies q$$
, we show that $\neg q \implies \neg p$, since

$$(p \implies q) \iff (\neg q \implies \neg p) \tag{2.3.5}$$

$$\left(\frac{a}{b}\right)^2 = 2\tag{2.3.6}$$

Suppose that a, b have $\gcd(a, b) = 1$. Then $a^2 = 2b^2$. So a is even, and a = 2k. Then $4k^2 = 2b^2 \implies b = 2n$: so $\gcd(a, b) \neq 1$

To do: show that $\sqrt{3}$ is irrational, $\sqrt[3]{2}$ is irrational.

2.4 The set \mathbb{R}

The set is given. \mathbb{R} is a completely ordered field:

- 1. $(\mathbb{R}, +)$ is a commutative group
- 2. (\mathbb{R}_0, \times) is a commutative group
- 3. a(b+c) = ab + ac

There also exists a relation called \leq , such that $\forall a, b, c \in \mathbb{R}$:

- 1. $a \leq a$
- $2. \ a < b \land b < a \implies a = b$
- $3. \ a < b \land b < c \implies a < c$
- 4. $a \le b \lor b \le a \ (completely \ ordered)$
- 5. $a < b \implies a + c < b + c$
- 6. $a \ge 0 \land b \ge 0 \implies ab \ge 0$ (of course, $a \ge 0$ means that $0 \le a$)

 $(\mathbb{Q}, +, \times)$ is also a completely ordered field?

Take the set of all the real numbers whose squares are greater or equal to 2: it has a minimum.

In \mathbb{Q} , it has no minimum.

Other statements: show that $a \leq 0 \land b \geq 0 \implies ab \leq 0$

Proof. Is $a \ge 0 \land -b \ge 0$? We first need to show that $a \ge 0 \iff -a \le 0$: it suffices to add -a to both sides. We also need to show that a(-b) = -ab: by an inverse application of the distributive property.

Contents

1	Naï	ve set theory	
	1.1	Basic sets .	
			Remarks
			Properties
			Complement
			Cartesian product
	1.2	Propositional	logic
			Implication
			Double implication
			Quantifiers
2	Nur	mber sets	•
	2.1	The set \mathbb{N} .	
			The Peano axioms
	2.2	Induction .	
			Examples
	2.3	Groups	
		•	Roots
	2.4	The set \mathbb{R}	6