Supplement to Active physical inference via reinforcement learning: Physics simulation set up

January 2019

We used a standard open source 2-D physics simulator Box2D. Source code is available at https://github.com/erincatto/Box2D. The simulator is originally written in C but to integrate it with our modelling framework, we used a Python port (https://github.com/pybox2d/pybox2d) of the engine.

Table 1 illustrates the settings for the 2-D physics simulator used in our learning experiments.

Table 1: Simulator settings

Parameter	Value
N frames	960
Trial length	16s
Box2D step size	$1/60s \ (\approx 17ms)$
Step size per action	$40/60s \ (\approx 0.7s)$
Pixels to meters	100
Starting velocities	(x,y) drawn from Unif $(-2,2)$ m/s
World width	6m (600 pixels)
World height	4m (400 pixels)
Mouse moving range	$[0.25, 3.75]m \times [0.25, 5.75]m$
Attractive forces	$+3\mathrm{m/s^2}$
Repulsive forces	$-3\mathrm{m/s^2}$
Controlled object attraction cursor	$.2 \times dist(cursor, object) ^{m/s^2}$
Controlled object damping	10
Puck masses	1 kg, 2 kg, 3 kg
Puck friction	.05
Puck elasticity	.98
Puck damping	.05
Puck radius	$0.25 \mathrm{\ m}$
Puck object types	Dynamic
Wall mass	n/a
Wall friction	.05
Wall elasticity	.98
Wall damping	n/a
Wall width	0.2m
Wall object types	Static