Projet MPRO - Modélisation papier

Tadeo Delapalme, Dimitri de Saint Guilhem

15 décembre 2024

Question 1.

Proposition de modélisation du problème statique :

$$\begin{aligned} & \underset{x,u}{\min} & & \sum_{(i,j) \in A} t_{ij} x_{ij} \\ & \text{s.t.} & & \sum_{i \in V} x_{ij} = 1, \\ & & \sum_{j \in V} x_{ij} = 1, \\ & & \forall i \in V \setminus \{1\}, \\ & u_j - u_i \geq d_j - C(1 - x_{ij}), \quad \forall (i,j) \in \{(i,j) \in V \setminus \{1\} : i \neq j, d_i + d_j \leq C\}, \\ & & d_i \leq u_i \leq C, \quad \forall i \in V \setminus \{1\}, \\ & & x_{ij} \in \{0,1\}, \quad \forall (i,j) \in A. \end{aligned}$$

Variables de décision :

- $-x_{ij} \in \{0,1\}$: Variable binaire indiquant si l'arc (i,j) est utilisé dans la solution.
 - $x_{ij} = 1$ signifie que le véhicule se déplace du nœud i au nœud j.
 - $x_{ij} = 0$ signifie que l'arc (i, j) n'est pas utilisé.
- $-u_i$: Variable continue représentant la charge du véhicule après avoir visité le nœud i.
 - Cette variable est utilisée pour garantir l'élimination des sous-tours.

Fonction objectif

$$\min_{x,u} \sum_{(i,j)\in A} t_{ij} x_{ij}$$

Cette fonction minimise le temps total du trajet en sommant les coûts t_{ij} de tous les arcs (i, j) où $x_{ij} = 1$.

Contraintes

1. Contraintes de conservation de flux :

$$\sum_{i \in V} x_{ij} = 1, \quad \forall j \in V \setminus \{1\},$$

$$\sum_{j \in V} x_{ij} = 1, \quad \forall i \in V \setminus \{1\}.$$

Ces contraintes garantissent que chaque nœud (sauf le dépôt 1) est visité exactement une fois par un véhicule.

2. Contraintes MTZ d'élimination des sous-tours :

$$u_j - u_i \ge d_j - C(1 - x_{ij}), \quad \forall (i, j) \in \{(i, j) \in V \setminus \{1\} : i \ne j, d_i + d_j \le C\}.$$

Ces contraintes éliminent les sous-tours en garantissant que si le véhicule se déplace du nœud i au nœud j ($x_{ij} = 1$), alors la charge u_j doit être strictement supérieure à u_i d'au moins la demande au nœud j (d_j). Si $x_{ij} = 0$, la contrainte devient inactive grâce au terme $C(1 - x_{ij})$.

3. Contraintes de capacité:

$$d_i \le u_i \le C, \quad \forall i \in V \setminus \{1\}.$$

Ces contraintes garantissent que la charge u_i du véhicule à chaque nœud i est au moins égale à la demande d_i à ce nœud et ne dépasse pas la capacité du véhicule C.

Question 2.

Pour une modélisation robuste, on considère la réalisation du pire des cas :

$$\begin{split} & \underset{x,u}{\min} & \max_{\delta^{1},\delta^{2}} \sum_{(i,j) \in A} \left(t_{ij} + \delta^{1}_{ij} (\hat{t}_{i} + \hat{t}_{j}) + \delta^{2}_{ij} \hat{t}_{i} \hat{t}_{j} \right) x_{ij} \\ & \text{s.t.} & \sum_{i \in V} x_{ij} = 1, & \forall j \in V \setminus \{1\}, \\ & \sum_{j \in V} x_{ij} = 1, & \forall i \in V \setminus \{1\}, \\ & u_{j} - u_{i} \geq d_{j} - C(1 - x_{ij}), & \forall (i,j) \in \{(i,j) \in V \setminus \{1\} : i \neq j, d_{i} + d_{j} \leq C\}, \\ & d_{i} \leq u_{i} \leq C, & \forall i \in V \setminus \{1\}, \\ & x_{ij} \in \{0,1\}, & \forall (i,j) \in A, \\ & \sum_{(i,j) \in A} \delta^{1}_{ij} \leq T, & \forall (i,j) \in A, \\ & \delta^{1}_{ij} \in [0,1], & \forall (i,j) \in A, \\ & \delta^{2}_{ij} \in [0,2], & \forall (i,j) \in A. \end{split}$$

ou:

$$\begin{aligned} & \min \max_{x} \sum_{i \in \mathcal{U}} t'_{ij} x_{ij} \\ & \text{s.t.} \quad \sum_{i \in V} x_{ij} = 1, & \forall j \in V \setminus \{1\}, \\ & \sum_{j \in V} x_{ij} = 1, & \forall i \in V \setminus \{1\}, \\ & u_j - u_i \geq d_j - C(1 - x_{ij}), & \forall (i,j) \in \{(i,j) \in V \setminus \{1\} : i \neq j, d_i + d_j \leq C\}, \\ & d_i \leq u_i \leq C, & \forall i \in V \setminus \{1\}, \\ & x_{ij} \in \{0,1\}, & \forall (i,j) \in A, \end{aligned}$$

où

$$\mathcal{U} = \{ \{t'_{ij} = t_{ij} + \delta^1_{ij}(\hat{t}_i + \hat{t}_j) + \delta^2_{ij}\hat{t}_i\hat{t}_j\}_{ij \in A} | \sum_{(i,j) \in A} \delta^1_{ij} \leq T, \sum_{(i,j) \in A} \delta^2_{ij} \leq T^2, \delta^1_{ij} \in [0,1], \delta^2_{ij} \in [0,2] \forall ij \in A\}.$$

Question 3.a)

 $\min_{x,u,\Theta} \Theta$

s.t.
$$\sum_{(i,j) \in A} \left(t_{ij} + \delta_{ij}^{1}(\hat{t}_{i} + \hat{t}_{j}) + \delta_{ij}^{2}\hat{t}_{i}\hat{t}_{j} \right) x_{ij} - \Theta \leq 0,$$

$$\forall \delta^{1}, \delta^{2} \in R,$$

$$\sum_{i \in V} x_{ij} = 1,$$

$$\forall j \in V \setminus \{1\},$$

$$\sum_{j \in V} x_{ij} = 1,$$

$$\forall i \in V \setminus \{1\},$$

$$u_{j} - u_{i} \geq d_{j} - C(1 - x_{ij}),$$

$$d_{i} \leq u_{i} \leq C,$$

$$\forall i \in V \setminus \{1\},$$

$$x_{ij} \in \{0, 1\},$$

$$\forall (i, j) \in \{(i, j) \in V \setminus \{1\} : i \neq j, d_{i} + d_{j} \leq C\},$$

$$\forall i \in V \setminus \{1\},$$

$$\forall (i, j) \in A.$$

Οù

$$R = \{ (\delta^1, \delta^2) \in [0, 1] \times [0, 2] : \sum_{(i, j) \in A} \delta^1_{ij} \le T, \sum_{(i, j) \in A} \delta^2_{ij} \le T^2 \}$$

Question 3.b) On prend au départ $R^0 = \{(0,0)\}$ ce qui correspond à $\mathcal{U}^* = \{t = (t_{ij})_{ij \in A}\}.$

Question 3.c) La résolution du problème maître donne x^* , Θ^* et u^* , les solutions optimales. Le sous problème à résoudre est alors donné par :

$$\max_{\delta^{1}, \delta^{2}} \sum_{(i,j) \in A} \left(t_{ij} + \delta_{ij}^{1} (\hat{t}_{i} + \hat{t}_{j}) + \delta_{ij}^{2} \hat{t}_{i} \hat{t}_{j} \right) x_{ij}^{*}$$
s.t.
$$\sum_{(i,j) \in A} \delta_{ij}^{1} \leq T$$

$$\sum_{(i,j) \in A} \delta_{ij}^{2} \leq T^{2}$$

$$\delta_{ij}^{1} \in [0, 1], \delta_{ij}^{2} \in [0, 2] \qquad \forall ij \in A$$

Question 3.d) La résolution du sous-problème pour une solution (x^*, Θ^*, u^*) du problème maître donne une solution $\delta^* = (\delta^{1*}, \delta^{2*})$ à laquelle correspond les durées du pire scénario pour x^* , $t^* = (t_{ij} + \delta^{1*}_{ij}(\hat{t}_i + \hat{t}_j) + \delta^{2*}_{ij}\hat{t}_i\hat{t}_j)_{ij \in A}$. La valeur associée est $t^{*\top}x^* = \sum_{ij \in A} t^*_{ij}x^*_{ij}$. La condition d'optimalité est $t^{*\top}x^* \leq \Theta^*$ (même =), si celle-ci est vérifiée; x^* est une solution optimale de valeur Θ^* .

Question 3.e) Dans le cas où l'on n'a pas la condition d'optimalité après résolution du sousproblème, on ajoute une coupe en faisant $\mathcal{U}^* = \mathcal{U}^* \cup \{t^*\}$ ce qui revient à faire $R^{k+1} = R^k \cup \{(\delta^{1*}, \delta^{2*})\}$ à l'itération k+1. On ajoute donc la contrainte

$$\sum_{ij \in A} (t_{ij} + \delta_{ij}^{1*}(\hat{t}_i + \hat{t}_j) + \delta_{ij}^{2*}\hat{t}_i\hat{t}_j) x_{ij} - \Theta \le 0.$$

Question 4.a) On réecrit l'objectif du problème de la question 2 de la manière suivante :

$$\min_{x} \sum_{ij \in A} t_{ij} x_{ij} + \max_{\delta^{1}, \delta^{2} \in \mathcal{D}} \sum_{ij \in A} \left(\delta^{1}_{ij} (\hat{t}_{i} + \hat{t}_{j}) + \delta^{2}_{ij} \hat{t}_{i} \hat{t}_{j} \right) x_{ij},$$

où on a $\mathcal{D} = \{(\delta^1, \delta^2): \sum_{(i,j) \in A} \delta^1_{ij} \leq T, \sum_{(i,j) \in A} \delta^2_{ij} \leq T^2, \delta^1_{ij} \in [0,1], \delta^2_{ij} \in [0,2], \forall ij \in A\}.$

Question 4.b) Le problème interne lié aux variables $\delta^1_{ij}, \delta^2_{ij}$ est à x fixé :

$$\max_{\delta^{1}, \delta^{2}} \sum_{ij \in A} \left(\delta_{ij}^{1}(\hat{t}_{i} + \hat{t}_{j}) + \delta_{ij}^{2} \hat{t}_{i} \hat{t}_{j} \right) x_{ij}$$
s.t.
$$\sum_{ij \in A} \delta_{ij}^{1} \leq T \qquad (4a)$$

$$\sum_{ij \in A} \delta_{ij}^{2} \leq T^{2} \qquad (4b)$$

$$\delta_{ij}^{1} \leq 1 \qquad \forall ij \in A, \quad (4c)$$

$$\delta_{ij}^{2} \leq 2 \qquad \forall ij \in A, \quad (4d)$$

$$\delta_{ij}^{1} \geq 0, \delta_{ij}^{2} \geq 0 \qquad \forall ij \in A.$$

Question 4.c) On note λ^1 la variable duale associée à (4a), λ^2 celle à (4b) ainsi que μ^1_{ij} et μ^2_{ij} celle à (4c) et (4d). Le problème dual s'écrit alors :

$$\begin{split} \min_{\lambda^1,\lambda^2,\mu^1,\mu^2} \lambda^1 T + \lambda^2 T^2 + \sum_{ij \in A} \mu^1_{ij} + 2\mu^2_{ij} \\ \text{s.t.} \quad \lambda^1 + \mu^1_{ij} \geq (\hat{t}_i + \hat{t}_j) x_{ij} & \forall ij \in A, \\ \lambda^2 + \mu^2_{ij} \geq \hat{t}_i \hat{t}_j x_{ij} & \forall ij \in A, \\ \lambda^1 \geq 0, \lambda^2 \geq 0 & \\ \mu^1_{ij} \geq 0, \mu^2_{ij} \geq 0 & \forall ij \in A, \end{split}$$

Question 4.d) En utilisant la formulation duale qui précède, on écrit le problème robuste comme un programme linéaire :

$$\begin{split} \min_{x,u,\lambda^{1},\lambda^{2},\mu^{1},\mu^{2}} \sum_{ij \in A} t_{ij}x_{ij} + \lambda^{1}T + \lambda^{2}T^{2} + \sum_{ij \in A} \mu_{ij}^{1} + 2\mu_{ij}^{2} \\ \text{s.t.} \quad \sum_{i \in V} x_{ij} = 1, & \forall j \in V \setminus \{1\}, \\ \sum_{j \in V} x_{ij} = 1, & \forall i \in V \setminus \{1\}, \\ u_{j} - u_{i} \geq d_{j} - C(1 - x_{ij}), & \forall (i,j) \in \{(i,j) \in V \setminus \{1\} : i \neq j, d_{i} + d_{j} \leq C\}, \\ \lambda^{1} + \mu_{ij}^{1} \geq (\hat{t}_{i} + \hat{t}_{j})x_{ij} & \forall ij \in A, \\ \lambda^{2} + \mu_{ij}^{2} \geq \hat{t}_{i}\hat{t}_{j}x_{ij} & \forall ij \in A, \\ \lambda^{1} \geq 0, \lambda^{2} \geq 0 & \forall ij \in A, \\ d_{i} \leq u_{i} \leq C, & \forall i \in V \setminus \{1\}, \\ x_{ij} \in \{0,1\} & \forall (i,j) \in A. \end{split}$$