CAP 3. ARQUITETURAS DE REDES DE COMPUTADORES

AULA 1: CONCEITO DE CAMADAS E ARQUITETURAS ABERTAS

INE5422 REDES DE COMPUTADORES II PROF. ROBERTO WILLRICH (INE/UFSC)

ROBERTO.WILLRICH@UFSC.BR

HTTPS://MOODLE.UFSC.BR

Cap 3. Arquiteturas de Redes de Computadores

Estrutura do capítulo

- Conceito de camada de rede
- Arquiteturas Proprietárias e Abertas
- Arquitetura RM-OSI
- Arquitetura Internet
- Comparação entre RM-OSI e Internet

Estruturação do projeto de redes

As redes são complexas!

Muitos componentes:

- hospedeiros
- roteadores
- o enlaces de vários meios físicos
- aplicações
- protocolos
- hardware, software

Pergunta:

 Existe esperança de organizar a estrutura da rede?

Estruturação do projeto de redes

No princípio da história das redes de computadores

- Várias entidades de governo e empresas criavam suas próprias soluções de redes de computadores
- Da experiência obtida nos projetos surgiram vários princípios
 - possibilitando que novos projetos fossem desenvolvidos de uma forma mais estruturada que os anteriores

Estruturação da Rede

- Destacou-se a ideia de estruturar a rede como um conjunto de camadas hierárquicas
 - cada camada sendo construída utilizando as funções e serviços oferecidos pelas camadas inferiores

Analogia: Filósofo-tradutor-secretária

Camadas: cada camada implementa um serviço

- o por meio de suas próprias ações da camada interna
- contando com serviços fornecidos pela camada abaixo

Por que usar camadas?

Lidando com sistemas complexos:

- Estrutura explícita permite a identificação e estabelecimento de relações entre partes do sistema
 - Modelo de referência em camadas para discussão
- Modularização facilita manutenção e atualização do sistema
 - Mudança de implementação do serviço da camada transparente ao restante do sistema
 - Exemplo: troca de uma placa de rede não afeta o restante do sistema
- Uso de camadas considerado prejudicial?

Conceito de Camada

Conceito de Camada (ou Nível)

- Cada camada deve ser pensada como um programa ou processo que se comunica com o processo correspondente na mesma ou em outra máquina
 - implementando por hardware ou software

Protocolo de nível N

 regras que governam a conversação de um nível N qualquer

Conceito de Camada

Protocolo de nível N

- É um conjunto de regras e formatos (semântica e sintaxe)
 - através dos quais informações ou dados de nível N são trocados entre as entidades de nível
 N com o intuito de realizar as funções que implementam os serviços do nível N
- Um ou mais protocolos podem ser definidos em um nível.

Interface

 Permite que uma alteração na implementação de um nível pode ser realizada sem causar impacto na estrutura global

Arquiteturas proprietárias e abertas

Existiram diferentes arquiteturas de redes

 número, nome, conjunto de funções e serviços, e o protocolo de cada camada variam de uma arquitetura de rede para outra

No início

- Cada fabricante desenvolveu sua própria arquitetura
 - de modo que seus computadores pudessem trocar informações entre si
- Essas arquiteturas são denominadas proprietárias
 - pois são controladas por uma única entidade: o vendedor

Para permitir o intercâmbio de informações entre computadores de fabricantes distintos

- tornou-se necessário definir uma arquitetura única
- o arquitetura teria que ser aberta e pública.
- o para garantir que nenhum fabricante levasse vantagem em relação aos outros

Arquiteturas Abertas

Modelo de Referência OSI (RM-OSI)

- Modelo a 7 camadas
 - Aplicação, apresentação, sessão, transporte, rede, enlace e física

Arquitetura Internet (TCP/IP)

- Modelo a 5 camadas
 - Aplicação, transporte, rede, enlace e física

Pontos Importantes

Conceitos básicos

- Camada de Rede
- Arquiteturas Abertas e Proprietárias

CAP 3. ARQUITETURAS DE REDES DE COMPUTADORES

AULA 2: ARQUITETURA RM-OSI

INE5422 REDES DE COMPUTADORES II

PROF. ROBERTO WILLRICH (INE/UFSC)

ROBERTO.WILLRICH@UFSC.BR

HTTPS://MOODLE.UFSC.BR

Cap 3. Arquiteturas de Redes de Computadores

Conceito de camada de rede

Arquiteturas Proprietárias e Abertas

Arquitetura RM-OSI

Arquitetura Internet

Comparação entre RM-OSI e Internet

Arquitetura aberta da ISO

- International Organization for Standardization (ISO) definiu o modelo Reference Model for Open Systems Interconnection (OSI)
 - propõe uma estrutura com sete níveis como referencial para a arquitetura dos protocolos de redes de computadores

Arquitetura TCP/IP

Arquitetura Internet (TCP/IP)

- Proposta pela IETF (Internet Engineering Task Force)
 - Comissão de recomendações para a Internet
 - Padrões são RFCs (Request For Comments)
 - Versões iniciais são Internet Drafts
- Arquitetura importante no contexto de interconexão de redes heterogêneas
 - Baseia-se na família de protocolos TCP/IP
 - Modelo a 5 camadas

Modelo RM-OSI da ISO

Não é uma especificação completa

- RM-OSI fornece um esquema conceitual
 - que permite que equipes de especialistas trabalhem de forma independente no desenvolvimento de padrões para cada uma das camadas

Não garante interoperabilidade

- Fato de dois sistemas distintos seguirem o RM-OSI não garante que eles possam trocar informações entre si
 - pois o modelo permite que sejam usadas diferentes opções de serviços/protocolos para as várias camadas
 - porque as opções adotadas são incompatíveis
- Para garantir interoperabilidade
 - é necessário que escolham opções compatíveis de serviço/protocolo para todas as camadas do modelo

Modelo RM-OSI

Modelo RM-OSI

Nível Físico

Objetivo

- Define características mecânicas, elétricas, óticas, funcionais e de procedimento para ativar, manter e desativar conexões físicas
 - para a transmissão de bits entre entidades de nível de enlace (ou ligação)

Unidade de dados do nível físico

- o um bit (em uma transmissão serial) ou
- n bits (em uma transmissão paralela)

Aplicação

Apresentação

Sessão

Transporte

Rede

Enlace

Nível Físico

Função básica

- Permitir o envio de uma cadeia de bits pela rede
 - sem se preocupar com o seu significado ou com a forma como esses bits são agrupados
- Não é função desse nível tratar de problemas tais como erros de transmissão

Aplicação

Apresentação

Sessão

Transporte

Rede

Enlace

Objetivo

 Gerencia a transferência da informação através do canal de transmissão (do enlace)

Quadro (Frames)

- Camada de enlace realiza a partição da cadeia de bits a serem enviados no nível físico em quadros (frames)
- Camada de enlace deve criar e reconhecer os limites dos quadros

Técnica de detecção de erros

- Quadros contém alguma forma de redundância para detecção de erros (não para correção)
 - Correção do erro é opcional neste nível

Aplicação

Apresentação

Sessão

Transporte

Rede

Enlace

Frame (Quadro)

- Pacotes da camada superior (Nível Rede) são encapsulados em quadros para transmissão
- Cada quadro contém um cabeçalho, um campo de carga útil, onde fica o pacote IP) e um final de quadro.

Onde é implementada

- Ela é implementada no "adaptador" (ou Placa de interface de rede, NIC), podendo ser uma placa Ethernet, uma placa wi-fi, etc.
- Esta conecta aos barramentos do sistema hospedeiro transmitindo e recebendo as requisições do usuário.
- A camada é uma combinação de hardware, software e firmware (da placa).

Controle de Erro

Transmissor

 Calcula e inclui uma sequência de bits adicionais (FCS - Frame Check Sequence) no quadro que será enviado, podendo ser um bit de paridade ou um código de redundância cíclica (CRC – Cyclic Redundancy Check)

Receptor

- Recalcula os bits adicionais e os bits originais recebidos utilizando o mesmo algoritmo, comparando-os.
- Se os bits forem diferentes, detectou-se a presença de erro.

Controle de Erro: Bit de paridade (Par ou Impar)

- Consiste na inserção de um bit que informa se a quantidade de bits 1 é par ou impar (0 para par e 1 para impar) chamado de bit de paridade ao final de cada caractere de um quadro.
- Ex:
 - 11100001 4 bits 1, 4 é par, então ficará 111000010;
 - 11110010 5 bits 1, 5 é impar, então ficará 111100101;
- O problema é que se acontecer erro em mais de um bit o sistema fica falho.

Controle de Fluxo

- Objetivo é evitar que o transmissor envie ao receptor mais dados do que este tem condições de processar
- Compatibiliza velocidade entre transmissor e receptor

Aplicação

Apresentação

Sessão

Transporte

Rede

Enlace

Nível de Rede

Objetivo

 Fornecer ao nível de transporte uma independência quanto a considerações de como levar a informação da origem ao destino (roteamento)

Em redes ponto-a-ponto

 Nível de rede está ligado ao roteamento e seus efeitos (p.e. controle de congestionamento)

Em redes tipo difusão (única rota)

Nível de rede torna-se irrelevante

Aplicação

Apresentação

•

Sessão

Transporte

Rede

Enlace

Nível de Rede

Duas filosofias de serviço

- Serviço de Datagrama (sem conexão)
 - Um pacote não tem relação alguma de passado ou futuro com qualquer outro pacote
 - Pacote deve carregar seu endereço de destino
 - Roteamento é calculado toda vez que um pacote tem que ser encaminhado por um nó da rede (roteador)

Aplicação

Apresentação

Sessão

Transporte

Rede

Enlace

Nível de Rede

Duas filosofias de serviço

- Serviço de Circuito Virtual (com conexão)
 - É necessário que o transmissor estabeleça uma conexão (circuito) antes de enviar os dados
 - a cada conexão é dado um número, correspondente ao circuito, para uso pelos pacotes subsequentes com o mesmo destino

Aplicação

Apresentação

Sessão

Transporte

Rede

Enlace

Nível de Transporte

Nível de Rede

 Não garante que um pacote chegue a seu destino ou mesmo chegar fora da sequência original de transmissão

Objetivos do Nível de Transporte

- Fornecer uma comunicação fim a fim confiável
- Isolar dos níveis superiores a parte de transmissão da rede

Aplicação

Apresentação

Sessão

Transporte

Rede

Enlace

Nível de Transporte

Comunicação é fim a fim

 entidade do nível de transporte da máquina de origem se comunica com a entidade do nível de transporte da máquina de destino

Nível de Transporte

Multiplexação

- Várias conexões de transporte partilhando a mesma conexão de rede
 - uma conexão de transporte normalmente não gera tráfego suficiente para ocupar toda a capacidade da conexão de rede por ela utilizada

Splitting de conexões

- Uma conexão de transporte ligada a várias conexões de rede
 - utilizado para aumentar a vazão de uma conexão de transporte através do uso de várias conexões de rede simultaneamente

Aplicação Apresentação Sessão **Transporte** Rede **Enlace Física**

Nível de Transporte

Controle de fluxo

- Algum mecanismo deve ser fornecido de modo a evitar que o transmissor envie mensagens numa taxa maior do que a capacidade que o receptor tem de recebê-las
 - Não existe espaço de armazenamento infinito

Objetivo

 Fornecer mecanismos que permitam estruturar os circuitos oferecidos pelo nível de transporte

Principais serviços fornecidos

- Gerenciamento de token,
- Controle de diálogo, e
- Gerenciamento de atividades.

Token

- Permite transformar uma transmissão full-duplex em half-duplex
 - Apenas o possuidor do token pode transmitir
- Nível de sessão fornece mecanismos para gerenciar a posse e transferência do token entre as entidades de aplicação que estão utilizando o serviço

Conceito de Atividade

- Torna possível aos usuários do serviço de sessão distinguir partes da troca de dados, denominadas atividades
 - Cada atividade pode consistir em uma ou mais unidades de diálogo.
- Motivação
 - Objetiva suportar o conceito de "atomicidade" na comunicação
 - Em determinadas aplicações, existem sequências de tarefas que, ou são realizadas por completo, ou não são realizadas
 - Exemplo: Transações Bancárias

Gestão de Atividades

Exemplo

Gestão de Atividades

Exemplo

Cliente passa cartão

Sistema reconhece cartão e solicita senha

Cliente informa senha

Sistema reconhece senha

Cliente informa valor do saque

Sistema verifica saldo, realiza o débito e autoriza liberação do dinheiro

Gestão de Atividades

Ponto de sincronização

- uma marca lógica posicionada ao longo do diálogo entre dois usuários do serviço de sessão
- Se por algum motivo a conexão for interrompida e depois restabelecida
 - os usuários podem retomar o diálogo a partir do último ponto de sincronização confirmado

Nível de Apresentação

Objetivo

- realizar transformações adequadas nos dados antes de seu envio ao nível de sessão
 - compressão, criptografia, conversão de padrões de terminais e arquivos para padrões de rede e vice-versa
- deve conhecer a sintaxe do sistema local e de transferência

Serviços oferecidos

- transformação de dados,
- formatação de dados,
- o seleção de sintaxes, e
- estabelecimento e manutenção de conexões de apresentação

Nível de Aplicação

Objetivo

- oferecer aos processos de aplicação os meios para que estes utilizem o ambiente de comunicação OSI
- são definidas funções de gerenciamento e mecanismos genéricos que servem de suporte à construção de aplicações distribuídas

Pontos Importantes

RM-OSI

- Entendimento do princípio geral, que se trata de uma estrutura conceitual para projeto de protocolos
- Por si só não garante interoperabilidade

CAP 3. ARQUITETURAS DE REDES DE COMPUTADORES

AULA 3: ARQUITETURA TCP/IP

INE5422 REDES DE COMPUTADORES II PROF. ROBERTO WILLRICH (INE/UFSC) ROBERTO.WILLRICH@UFSC.BR

HTTPS://MOODLE.UFSC.BR

Arquitetura TCP/IP

Arquitetura Internet (TCP/IP)

- Proposta pela IETF (Internet Engineering Task Force)
 - Comissão de padronização da Internet
- Arquitetura importante no contexto de interconexão de redes heterogêneas
 - Baseia-se na família de protocolos TCP/IP
 - Modelo a 5 camadas

Base da Arquitetura

- Um serviço de transporte orientado à conexão, fornecido pelo *Transmission Control Protocol* (TCP)
- Um serviço de rede não-orientado à conexão (datagrama não confiável), fornecido pelo *Internet Protocol* (IP)

Aplicação Transporte (TCP) Rede (IP) Enlace Física

Arquitetura Internet TCP/IP dá ênfase à interligação de diferentes tecnologias de redes

- Ideia baseou-se na seguinte constatação na época: não existia nenhuma tecnologia de rede que atendesse aos anseios de toda a comunidade de usuários
 - Alguns precisavam de redes de alta velocidade que cobrem uma área geográfica restrita
 - Outros se contentavam com redes de baixa velocidade que conectam equipamentos distantes milhares de quilômetros uns dos outros

 Mas era necessário permitir a conexão entre esses usuários das diferentes redes

Inter-rede

- Única forma de permitir os usuários de diferentes redes possa trocar informações é interligar essas redes
 - Formando uma inter-rede (inter-net)
- Para interligar duas redes distintas
 - É necessário conectar uma máquina a ambas as redes
 - Máquina fica responsável pela tarefa de transferir mensagens de uma rede para a outra
 - Máquina que conecta duas ou mais redes é denominada Internet gateway ou Internet router (roteadores)

Usuários vêem a inter-rede como uma rede virtual única

- à qual todas as máquinas estão conectadas
 - não importando a forma física de interconexão

Pilha de protocolos Internet

Aplicação: dá suporte a aplicações de rede

• FTP, SMTP, HTTP, ...

Transporte: transferência de dados host-a-host

TCP, UDP

Rede: roteamento de datagramas da origem até o destino

• IP, protocolos de roteamento

Enlace: transferência de dados entre elementos de rede vizinhos

• PPP, Ethernet

Física: bits "no fio"

Arquitetura Internet

Data Flow

Camadas: comunicação lógica

Cada camada:

- distribuída
- as "entidades" implementam as funções das camadas em cada nó
- as entidades executam ações e trocam mensagens entre parceiras

Camadas: comunicação lógica

Ex.: transporte

- recebe dados da aplicação
- adiciona endereço e verificação de erro para formar o "datagrama"
- envia o datagrama para a parceira
- espera que a parceira acuse o recebimento (ack)
- · analogia: correio

Camadas: comunicação física

Camadas de protocolos e dados

Cada camada recebe dados da camada superior

- adiciona informação no cabeçalho para criar uma nova unidade de dados
- o passa a nova unidade de dados para a camada inferior

Camadas de protocolos e dados

Interoperabilidade

- Arquitetura Internet TCP/IP não faz nenhuma restrição às redes que são interligadas para formar a inter-rede
 - o qualquer tipo de rede pode ser ligada
- Bastando que seja desenvolvida uma interface que compatibilize a tecnologia específica de rede com o protocolo IP
- · Compatibilização é a função do nível de interface de rede
 - endereços IP, que são endereços lógicos, são traduzidos para os endereços físicos dos hosts ou gateways conectados à rede

Interoperabilidade

- Arquitetura Internet TCP/IP não faz nenhuma restrição às redes que são interligadas para formar a inter-rede
 - qualquer tipo de rede pode ser ligada

Pontos Importantes

Arquitetura TCP/IP

- Visão geral da arquitetura
- Que será objetivo da disciplina

CAP 3. ARQUITETURAS DE REDES DE COMPUTADORES

AULA 4: ARQUITETURA RM-OSI VS INTERNET

INE5422 REDES DE COMPUTADORES II PROF. ROBERTO WILLRICH (INE/UFSC)

ROBERTO.WILLRICH@UFSC.BR

HTTPS://MOODLE.UFSC.BR

Cap 3. Arquiteturas de Redes de Computadores

Conceito de camada de rede

Arquiteturas Proprietárias e Abertas

Arquitetura RM-OSI

Arquitetura Internet

Comparação entre RM-OSI e Internet

A primeira diferença entre as arquiteturas OSI e Internet TCP/IP está no número de camadas

- arquitetura RM-OSI tem sete camadas
- arquitetura TCP/IP tem cinco camadas, ou quatro, ou três?

RFC 1122	Tanenbaum	Cisco Academy	Kurose, Forouzan	Comer, Kozierok	Stallings	Arpanet Reference Model 1982 (RFC 871)
Quatro camadas	Quatro camadas	Quatro camadas	Cinco camadas	4+1Camadas	Cinco camadas	Três camadas
"Internet model"	"TCP/IP reference model"	"Internet model"	"Five-layer Internet model" or "TCP/IP protocol suite"	"TCP/IP 5-layer reference model"	"TCP/IP model"	"Arpanet reference model"
Aplicação	Aplicação	Aplicação	Aplicação	Aplicação	Aplicação	Aplicação/Processo
Transporte	Transporte	Transporte	Transporte	Transporte	Host-a-host ou transporte	Host-to-host
Internet	Internet	Interrede	Rede	Internet	Internet	
Enlace	Host-para-rede	Interface de rede	Enlace	Enlace (Interface de rede)	Acesso de rede	Interface de rede
			Física	(Hardware)	Física	

Relação entre camadas

Agrupa: níveis físico, de enlace e os aspectos do nível de rede do RM-OSI, relativos à transmissão de dados em uma única rede

Propósito geral dos modelos

- RM-OSI
 - Define formalmente os serviços de cada camada, interface entre camadas e os protocolos
 - Alguns dos serviços definidos para as camadas são opcionais
 - Flexibilidade tem aspectos positivos, mas pode levar a situações onde dois sistemas em conformidade com a arquitetura OSI não consigam se comunicar

Arquitetura TCP/IP

- Objetivo é resolver um problema prático: interligar redes com tecnologias distintas
- Foi desenvolvido um conjunto específico de protocolos
 - que resolveu o problema de forma bastante simples e satisfatória.

Inflexibilidade da arquitetura Internet TCP/IP é uma das principais razões de seu sucesso

- Camada de Rede é o protocolo IP: fato de um sistema utilizar ou não o protocolo IP foi usado inclusive para distinguir os sistemas que "estão na Internet" dos que não estão
- Camada de transporte: Protocolos TCP e UDP
 - São equivalentes aos protocolos orientado e não-orientado à conexão do nível de transporte OSI.

Protocolos da arquitetura Internet TCP/IP oferecem uma solução simples para o problema da interconexão de sistemas abertos

porém bastante funcional

Camada de Sessão e Apresentação do RM-OSI

- Na arquitetura Internet as funções destas camadas foram levadas para o aplicativo (camada aplicação)
 - Desenvolvedor é responsável por implementar funcionalidades
 - Se não são necessárias reduz a sobrecarga destas camadas
 - Reduz o atraso de encaminhamento e taxa de bits
- Desconsiderando a sobrecarga das camadas
 - Abordagem da ISO é mais razoável, no sentido em que permite uma maior reutilização de esforços durante o desenvolvimento de aplicações distribuídas

Arquitetura Internet é um padrão de fato

 pelo fato de implementações de seus protocolos terem sido a primeira opção de solução não-proprietária para a interconexão de sistemas

Arquitetura ISO é um padrão de direito (de jure)

- Estrutura organizacional da ISO com membros representando vários países
 - aumenta o tempo de desenvolvimento dos padrões
 - confere aos mesmos uma representatividade bem maior

Pontos Importantes

RM-OSI vs Arquitetura TCP-IP

• Saber comparar as duas propostas de arquiteturas abertas