Задача 10-5

Оксиды азота и равновесия

1. Оксид азота NO₂ находится в равновесии со своим димером:

$$N_2O_4(\Gamma) \rightleftarrows 2NO_2(\Gamma)$$
.

Выразите степень диссоциации (α) оксида N_2O_4 через общее давление (P) в реакторе и константу равновесия этой реакции, выраженную через давления (K_P).

Как изменятся константа равновесия и степень диссоциации при увеличении давления? Как изменятся константа равновесия и степень диссоциации при увеличении температуры? Объясните свой ответ в каждом случае.

2. Константа равновесия реакции

$$N_2O_4(\Gamma) \rightleftarrows 2NO_2(\Gamma)$$

при 25 °C равна $K_p = 0,142$.

Примечание: При расчёте констант равновесия K_P давления газов следует выражать в барах (1 бар = 10^5 Па).

В вакуумированный сосуд объёмом 5 л поместили 4,6 г N_2O_4 и выдержали при 25 °C до установления равновесия.

<u>Рассчитайте</u> степень диссоциации N_2O_4 , состав смеси газов в сосуде (в мольных долях), парциальные давления газов и общее давление (в бар), среднюю молярную массу и плотность смеси. Газы считайте идеальными.

3. Оксид азота N_2O_3 в газовой фазе подвергается термической диссоциации по реакции

$$N_2O_3(\Gamma) \rightleftarrows NO(\Gamma) + NO_2(\Gamma)$$
.

В свою очередь, образующийся в этой реакции оксид азота NO_2 димеризуется с образованием N_2O_4 :

$$2NO_2(\Gamma) \rightleftarrows N_2O_4(\Gamma)$$
.

При температуре 33 °C константа равновесия первой реакции равна $K_{P1} = 3.0$.

В вакуумированный реактор объёмом 1,25 л поместили 15,7 г чистого оксида N_2O_3 , нагрели до 33 °C и дождались установления равновесия. Равновесное давление NO оказалось равно 3,5 бар.

<u>Рассчитайте</u> равновесные парциальные давления всех газов (в бар) и общее равновесное давление газов в реакторе, а также константу равновесия второй реакции K_{P2} . Считайте все газы идеальными.

Решение задачи 10-5 (авторы: Каргов С.И.)

1.

$$N_2O_4(\Gamma) = 2NO_2(\Gamma)$$

0

Исходное количество: 1

Равновесное количество: $1-\alpha$ 2 α Всего моль: $1+\alpha$

Равновесная мольная доля: $\frac{1-\alpha}{1+\alpha}$ $\frac{2\alpha}{1+\alpha}$

Равновесное давление: $\frac{1-\alpha}{1+\alpha} \cdot P$ $\frac{2\alpha}{1+\alpha} \cdot P$ P – общее давление.

$$K_P = \frac{P^2(\text{NO}_2)}{P(\text{N}_2\text{O}_4)} = \frac{4\alpha^2 P}{(1-\alpha)(1+\alpha)} = \frac{4\alpha^2 P}{1-\alpha^2}.$$

Отсюда

$$\alpha = \left(\frac{K_P}{K_P + 4P}\right)^{0.5}.$$

Константа равновесия не зависит от давления, поэтому не изменится. Степень диссоциации при увеличении давления уменьшится в соответствии с принципом Ле Шателье (т. к. количество газов слева меньше, чем справа).

Разрыв связи в молекуле N_2O_4 — эндотермическая реакция, поэтому константа равновесия и степень диссоциации при увеличении температуры увеличатся в соответствии с принципом Ле Шателье.

2.

$$N_2O_4(\Gamma) = 2NO_2(\Gamma)$$

Исходное количество: n = 0

Равновесное количество: $n(1-\alpha)$ $2n\alpha$ Всего моль: $n(1+\alpha)$

Равновесная мольная доля: $\frac{1-\alpha}{1+\alpha}$ $\frac{2\alpha}{1+\alpha}$

Равновесное давление: $\frac{1-\alpha}{1+\alpha} \cdot P = \frac{2\alpha}{1+\alpha} \cdot P$ P – общее давление.

n = 4,6 / 92 = 0,05 моль.

$$K_P = \frac{P^2(NO_2)}{P(N_2O_4)} = \frac{4\alpha^2 P}{(1-\alpha)(1+\alpha)}.$$

Общее давление $P = \frac{n(1+\alpha)RT}{V}$. Тогда

$$K_P = \frac{4\alpha^2 nRT}{(1-\alpha)V}$$

Подставляем величины в системе СИ (1 бар = 10^5 Па, 5π = 0.005 м^3):

$$0.142 \cdot 100000 = \frac{4 \cdot \alpha^2 \cdot 0.05 \cdot 8.31 \cdot 298}{(1 - \alpha) \cdot 0.005},$$

откуда $\alpha = 0.314$.

Примечание: можно не переводить л в $м^3$, если давление подставить в кПа (1 бар = 100 кПа):

$$0.142 \cdot 100 = \frac{4 \cdot \alpha^2 \cdot 0.05 \cdot 8.31 \cdot 298}{(1 - \alpha) \cdot 5}.$$

Общее давление:

$$P = \frac{n(1+\alpha)RT}{V} = \frac{0.05 \cdot (1+0.314) \cdot 8.31 \cdot 298}{5} \approx 32,5 \text{ к}$$
 па = 0,325 бар

Мольные доли газов:

$$x(N_2O_4) = \frac{1-\alpha}{1+\alpha} = 0,523, x(NO_2) = \frac{2\alpha}{1+\alpha} = 0,477.$$

Парциальные давления газов:

$$P(N_2O_4) = 0.523 \cdot P = 0.170 \text{ fap}, P(NO_2) = 0.477 \cdot P = 0.155 \text{ fap}.$$

Средняя молярная масса смеси:

$$M = 0.523 \cdot 92 + 0.477 \cdot 46 = 70.0$$
 г/моль.

Плотность смеси: $\rho = 4.6 \ \Gamma / 5 \ \pi = 0.92 \ \Gamma / \pi$.

3. Давление N₂O₃ (г) в отсутствие диссоциации было бы равно:

$$P_0 = \frac{mRT}{MV} = \frac{15.7 \cdot 8.31 \cdot 306}{76 \cdot 1.25} = 420$$
 κΠa = 4,2 бap.

Парциальные давления газов после установления равновесия:

$$N_2O_3(\Gamma) \rightleftarrows NO(\Gamma) + NO_2(\Gamma).$$

 $4,2-x x x-y$
 $2NO_2(\Gamma) \rightleftarrows N_2O_4(\Gamma).$
 $x-y 0,5y$

По условию P(NO) = 3,5 бар.

Константа равновесия первой реакции

$$K_{P1} = \frac{P(\text{NO}) \cdot P(\text{NO}_2)}{P(\text{N}_2\text{O}_3)} = \frac{x \cdot (x - y)}{4.2 - x}$$
$$3.0 = \frac{x \cdot (x - y)}{4.2 - x} = \frac{3.5 \cdot (3.5 - y)}{4.2 - 3.5},$$

откуда y = 2,9 бар.

Равновесные давления газов:

$$P(N_2O_3) = 4,2 - x = 0,7 \text{ fap},$$

 $P(NO_2) = x - y = 0,6 \text{ fap},$
 $P(N_2O_4) = 0,5y = 1,45 \text{ fap}.$

Общее давление газов:

$$P(\text{общ}) = P(\text{N}_2\text{O}_3) + P(\text{NO}) + P(\text{NO}_2) + P(\text{N}_2\text{O}_4) = 6,25 \text{ бар.}$$

Константа равновесия второй реакции:

$$K_{P2} = \frac{P(N_2O_4)}{P^2(NO_2)} = \frac{1.45}{0.6^2} = 4.0.$$

Система оценивания:

1	За правильное выражение α	4 балла
	Зависимость K_p и α от P : за правильный ответ с	1 балл
	объяснением $2 \cdot 0.5 = 1$ балл, без объяснения 0	
	баллов	
	Зависимость K_p и α от T : за правильный ответ с	1 балл
	объяснением $2 \cdot 0.5 = 1$ балл, без объяснения 0	
	баллов	
	Всего за п. 1	6 баллов
2	За правильный расчёт α	3 балла
	За правильный расчёт общего давления	1 балл
	За правильный расчёт парциальных давлений 1 + 1	2 балла
	балл	
	За правильный расчёт средней молярной массы	1 балл
	За правильный расчёт плотности смеси	1 балл
	Всего за п. 2	8 баллов
3	За правильный расчёт парциальных давлений трёх	3 балла
	газов по 1 баллу	
	За правильный расчёт общего давления	1 балл
	За правильный расчёт константы равновесия	2 балла
	Всего за п. 3	6 баллов
	Итого:	20 баллов