Data Science Replication Study

Team A

Data Science for Business
Team A:
Mohamad Abdulla
Anvith Amin
Manjunath Mallikarjun Kendhuli
Papers Reviewed
 Paper 1: Predicting Employee Attrition (IBM) Paper 2: Data Analytics for Optimizing and Predicting Employee Performance Paper 3: Migration and Innovation: Learning from Patent and Inventor Data Challenges faced during the project

Selected Paper

"The Political Economy of Green Industrial Policy"

Juhász et al., 2022

- Used Global Trade Alert (GTA) database
- Three key figures showing green policy trends in G20 countries

Problems Faced

- Unclear objectives at the beginning
- Extremely large and complex datasets
- GitHub deployment issues

Replication of Figure 1

- Title: Green Industrial Policy Activity in G20 Countries (2010–2022)
- What it shows:
 - Annual green policy activity for Middle-income vs. High-income countries
 - Indexed to 2010-2012 average = 100
 - High-income line is scaled (divided by 5) for visual comparison
- Axes:
 - Left Y-axis: Middle-income index
 - Right Y-axis: High-income index (scaled)

Replication Figure

Figure 1: Fig 1: Green Industrial Policy Activity in G20 Countries, 2010–2022

Code Logic Summary

- Step 1: Load and clean raw data
 - Import original IP_G20.dta file
 - Filter valid rows and deduplicate by MeasureID-Year-Country
- Step 2: Identify green policies
 - Use keywords like climate, emission, renewable to flag green measures
- Step 3: Add income group classification

-	Reshape to long format and convert fiscal to calendar years
-	- Merge with green policy data by country and year
Ste	ep 4: Standardize income group labels
	- Map H to "High-income", LM/UM to "Middle-income"
_	- Remove unmatched or missing classifications
Ste	ep 5: Count policies per year
-	- Group by year and income group
_	- Count number of green policies announced
Ste	ep 6: Compute 2010–2012 baseline
-	- Calculate average policy count in 2010–2012 for each group
\mathbf{Ste}	ep 7: Index calculation
-	- Create index: (policy_count / baseline_avg) * 100
-	- Expresses annual activity relative to baseline (baseline = 100)
Ste	ep 8: Visualization
-	- Plot both income groups on one chart
-	- Scale high-income index by /5 on secondary Y-axis for compa
_	
ode	for Replication

– Load World Bank Excel data

Output of Figure 1 Replication

Replication of Figure 2

- **Title:** Top Five Green Industrial Policy Instruments across G20 Economies by Income Group (2010–2022)
- What it shows:
 - Distribution of green industrial policies by instrument type (e.g. financial grant, state loan) -Comparison between High-income and Middle-income G20 countries Focuses only on the top five most frequent instruments within each group -Measures are shown as shares of total green policy activity, normalized within each group
- Axes:
 - Left Y-axis: Income group (High-income / Middle-income)
 - Right Y-axis: Share of green policies by instrument type

Replication Figure

Figure 2

Top Five Green Industrial Policy Instruments across G20 Economies by Income Group, 2010–2022

Figure 2: Figure 2: Top five industrial policy intruments

Code Logic Summary - Figure 2

- Step 1: Load and prepare data
 - Import IP_G20.dta (policy dataset) and wb.xlsx (income classification)
 - Standardize column names using clean_names()
- Step 2: Filter relevant policies
 - Keep policies from 2010–2022 with non-missing descriptions
 - These represent green or environmentally relevant measures

• Step 3: Assign income group

- Use a fixed list to classify countries as *High-income* or *Middle-income*
- Add this classification to each policy record

• Step 4: Identify top 5 policy instruments

- Count frequency of each policy tool (measure_type)
- Select the top 5 most common types separately for each income group

• Step 5: Compute usage shares

- Within each group, calculate how much each of the top 5 instruments was used
- Expressed as a share of total green policies in that group (0.0 to 1.0)

• Step 6: Visualize with stacked bar chart

- Plot horizontal bars showing instrument composition by income group
- Use coord_flip() to flip axes and number_format() to show decimals

• Step 7: Display output

- Render the plot with minimal styling and a grouped color legend

R Code for Replication

Output of Figure 2 Replication

Challenges faces

- Uploaded local data files to GitHub and linked using raw URLs so others could run the code.
- Replaced percent_format() with number_format() to show axis labels as decimals.
- Renamed output to index.html so GitHub Pages would display the updated version.

Future Work with this Replication

- Clean and verify all country names
 - Match them correctly with World Bank data to fix missing values
- Improve keyword filtering
 - Refine how we identify green policies using better or more complete keywords
- Match Stata version exactly
 - Compare our R code outputs with the original Stata graphs for full accuracy
- Check missing data
 - Investigate why some years or countries have fewer policies than expected
- Automate income group assignment
 - Instead of manual grouping, use official classification files from the World Bank