1.

	ALU	load	branch	total
cycles	1	2	4	
A number in millions	30	75	45	150
B number in millions	30	60	30	120
A% occurences	20	50	30	100
B% occurences	25	50	25	100
A CPI				2.4
B CPI				2.25

% Occurences

$$total_A = ALU_A + load_A + branch_A$$

 $150 = 30 + 75 + 45$
 $1 = .2 + .5 + .3$
 $100 = 20 + 50 + 30$

$$total_B = ALU_B + load_B + branch_B$$

 $120 = 30 + 75 + 45$
 $1 = .25 + .5 + .25$
 $100 = 25 + 50 + 25$

$\underline{\text{CPI}}$

$$\mathrm{CPI} = \mathrm{Cycles}_{\mathrm{ALU}}(\mathrm{ALU\%}) + \mathrm{Cycles}_{\mathrm{load}}(\mathrm{load\%}) + \mathrm{Cycles}_{\mathrm{branch}}(\mathrm{branch\%})$$

$$CPI_A = 1(.2) + 2(.5) + 4(.3)$$

= .2 + 1 + 1.2
= 2.4

$$CPI_B = 1(.25) + 2(.5) + 4(.25)$$

= .25 + 1 + 1
= 2.25

Execution Time

$$E.T. = CPI * Instructions * \frac{Time}{Cycle}$$

$$\begin{split} \text{E.T.}_{A} &= 2.4*150,000,000*\frac{\text{Time}}{\text{Cycle}_{A}} \\ &= 360,000,000*\frac{\text{Time}}{\text{Cycle}_{A}} \end{split}$$

$$\begin{split} \text{E.T.}_{B} &= 2.25*120,000,000*\frac{\text{Time}}{1.2*\text{Cycle}_{A}} \\ &= \frac{270,000,000}{1.2}*\frac{\text{Time}}{\text{Cycle}_{A}} \\ &= 225,000,000*\frac{\text{Time}}{\text{Cycle}_{A}} \end{split}$$

$$\mathrm{E.T.}_{B} < \mathrm{E.T.}_{A}$$

2.

	ALU	load	branch	total
cycles	2	4	6	
A number in millions	20	40	30	90
B number in millions	25	50	20	95
A% occurences	$22.\overline{2}$	$44.\overline{4}$	$33.\overline{3}$	100
B% occurences	26	53	21	100
A CPI				$4.\overline{2}$
В СРІ				3.9

% Occurences

$$total_{A} = ALU_{A} + load_{A} + branch_{A}$$

$$90 = 20 + 40 + 30$$

$$1 = .\overline{2} + .\overline{4} + .\overline{3}$$

$$100 = 22.\overline{2} + 44.\overline{4} + 33.\overline{3}$$

$$total_B = ALU_B + load_B + branch_B$$

 $95 = 25 + 50 + 20$
 $1 = .26 + .53 + .21$
 $100 = 25 + 50 + 25$

$\underline{\text{CPI}}$

$$\mathrm{CPI} = \mathrm{Cycles}_{\mathrm{ALU}}(\mathrm{ALU\%}) + \mathrm{Cycles}_{\mathrm{load}}(\mathrm{load\%}) + \mathrm{Cycles}_{\mathrm{branch}}(\mathrm{branch\%})$$

$$CPI_A = 2(.\overline{2}) + 4(.\overline{4}) + 6(.\overline{3})$$

= $.\overline{4} + 1.\overline{7} + 1.\overline{9}$
= $4.\overline{2}$

$$CPI_B = 2(.26) + 4(.53) + 6(.21)$$

= $.52 + 2.12 + 1.26$
= 3.9

Execution Time

$$E.T. = CPI * Instructions * \frac{Time}{Cycle}$$

$$\begin{split} \text{E.T.}_{A} &= 4.\overline{2}*90,000,000*\frac{\text{Time}}{1.15*\text{Cycle}_{B}} \\ &= \frac{380,000,000}{1.15}*\frac{\text{Time}}{\text{Cycle}_{B}} \\ &= 330,434,793*\frac{\text{Time}}{\text{Cycle}_{B}} \\ \text{E.T.}_{B} &= 3.9*95,000,000*\frac{\text{Time}}{\text{Cycle}_{B}} \\ &= 370,500,000*\frac{\text{Time}}{\text{Cycle}_{B}} \end{split}$$

$$E.T._A < E.T._B$$

3. a)

$$\begin{split} \text{CPI} &= \frac{\text{price}_A * \text{quantity}_A + \text{price}_B * \text{quantity}_B + \text{price}_C * \text{quantity}_C}{\text{Quantity}_{\text{total}}} \\ &= \frac{100 * 4 + 200 * 4 + 300 * 7}{15} \\ &= 220 \end{split}$$

$$CPI = 100 * \frac{3}{12} + 200 * \frac{3}{12} + 300 * \frac{6}{12}$$
$$= 225$$