Tabica Laplasove transformacije, Z-transformacije i modifikovane Z-transformacije

F(s)	f(t)	F(z)	F(z,m)
e^{-kTs}	$\delta(t - kT)$	z^{-k}	z^{m-1-k}
1	$\delta(t)$	1	0
$\frac{1}{s}$	1	$\frac{z}{z-1}$	$\frac{1}{z-1}$
$\frac{1}{s^2}$	t	$\frac{Tz}{(z-1)^2}$	$\frac{mT}{z-1} + \frac{T}{(z-1)^2}$
$\frac{1}{s^{k+1}}$	$\frac{1}{k!}t^k$	$\lim_{a \to 0} \frac{(-1)^k}{k!} \frac{\partial^k}{\partial a^k} \left(\frac{z}{z - e^{-aT}}\right)$	$\lim_{a \to 0} \frac{(-1)^k}{k!} \frac{\partial^k}{\partial a^k} \left(\frac{e^{-amT}}{z - e^{-aT}} \right)$
$\frac{1}{s+a}$	e^{-at}	$\frac{z}{z-e^{-aT}}$	$\frac{e^{-amT}}{z - e^{-aT}}$
$\frac{\omega_0}{s^2 + \omega_0^2}$	$\sin \omega_0 t$	$\frac{z\sin\omega_0 T}{z^2 - 2z\cos\omega_0 T + 1}$	$\frac{z\sin m\omega_0 T + \sin(1-m)\omega_0 T}{z^2 - 2z\cos\omega_0 T + 1}$
$\frac{s}{s^2 + \omega_0^2}$	$\cos \omega_0 t$	$\frac{z(z-\cos\omega_0 T)}{z^2 - 2z\cos\omega_0 T + 1}$	$\frac{z\cos m\omega_0 T - \cos(1-m)\omega_0 T}{z^2 - 2z\cos\omega_0 T + 1}$
$\frac{\omega_0}{(s+a)^2 + \omega_0^2}$	$e^{-at}\sin\omega_0 t$	$\frac{ze^{-aT}\sin\omega_0 T}{z^2 - 2ze^{-aT}\cos\omega_0 T + e^{-2aT}}$	$\frac{[z\sin\omega_0 mT + e^{-aT}\sin(1-m)\omega_0 T]}{z^2 - 2ze^{-aT}\cos\omega_0 T + e^{-2aT}}e^{-amT}$
$\frac{s+a}{(s+a)^2+\omega_0^2}$	$e^{-at}\cos\omega_0 t$	$\frac{z^2 - ze^{-aT}\cos\omega_0 T}{z^2 - 2ze^{-aT}\cos\omega_0 T + e^{-2aT}}$	$\frac{[z\cos\omega_0 mT - e^{-aT}\cos(1-m)\omega_0 T]}{z^2 - 2ze^{-aT}\cos\omega_0 T + e^{-2aT}}e^{-amT}$

f(k)	F(z)	f(k)	F(z)
$\delta(k)$	1	h(k)	$\frac{z}{z-1}$
$a^k h(k)$	$\frac{z}{z-a}$	$ka^kh(k)$	$\frac{az}{(z-a)^2}$
$\sin \theta k$	$\frac{z\sin\theta}{z^2 - 2z\cos\theta + 1}$	$\cos \theta k$	$\frac{z(z-\cos\theta)}{z^2-2z\cos\theta+1}$