1

ASSIGNMENT 1: GATE 2010 IN: INSTRUMENTATION ENGINEERING

EE25BTECH11062 - Vivek K Kumar

1) The infinite ser	ies $f(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}$	∞ converges to	(CATE	DI 2010
			(GATE	IN 2010)
a) $\cos(x)$	b) $\sin(x)$	c) $sinh(x)$	d) e^x	
were found to b	of 10000 ball bearings we be 10mm and 0.05mm respected that the number of meaning the second	ectively. Assuming Gauss	ian distribution of meas	
-				IN 2010)
a) 230	b) 115	c) 15	d) 2	
3) A person weigh absorbed (in rad	aing 60kg receives radiation d) is	energy of $0.3J$ over the	entire body. The dose o	f radiation
			(GATE	IN 2010)
a) 0.005 rad	b) 0.1 rad	c) 0.3 rad	d) 0.5 rad	
4) $u(t)$ represents	the unit step function. The	Laplace transform of u		IN 2010)
a) $\frac{1}{s\tau}$	b) $\frac{1}{s-\tau}$	c) $\frac{e^{-s\tau}}{s}$	d) $e^{-s\tau}$	
	t system with input $x(t)$		ibed by the differentia	l equation
$3\frac{dy}{dt} + 5y = 8x.$	The static sensitivity of the	e system is	(GATE	IN 2010)
a) 0.60	b) 1.60	c) 1.67	d) 2.67	
6) Poisson's ratio made of this m	of a metal is 0.35. Neglect	ing piezo-resistance effec	et, the gage factor of a s	strain gage
made of this in	etai is		(GATE	IN 2010)
a) 0.65	b) 1	c) 1.35	d) 1.70	
7) Match the follo	owing:			
	on Pyrometer		ocity measurement	
Q. Dall tul			ssure measurement	
R. Pirani g		Y. Flow measur		
S. Gyrosco	ope	Z. Temperature		
			(GATE	IN 2010)

a) P-Z, Q-W, R-X, S-Y

c) P-W, Q-X, R-Y, S-Z

b) P-Z, Q-Y, R-X, S-W

- d) P-Z, Q-X, R-W, S-Y
- 8) In a pulse code modulated (PCM) signal sampled at f_s and encoded into an n-bit code, the minimum bandwidth required for faithful reconstruction is

(GATE IN 2010)

a) $2nf_s$

b) nf_s

c) $\frac{nf_s}{2}$

- d) f_s
- 9) A beam of unpolarized light is first passed through a linear polarizer and then through a quarter-wave plate. The emergent beam is

(GATE IN 2010)

a) unpolarized

c) circularly polarized

b) linearly polarized

- d) elliptically polarized
- 10) f(x), shown in the adjoining figure is represented by

$$f(x) = a_0 + \sum_{n=1}^{\infty} \{a_n \cos(nx) + b_n \sin(mx)\}\$$

The value of a_0 is

(GATE IN 2010)

a) 0

b) $\frac{\pi}{2}$

c) π

- d) 2π
- 11) The PMMC ammeter A in the adjoining figure has a range of 0 to 3 mA. When switch S1 is opened, the pointer of the ammeter swings to the 1 mA mark, returns and settles at 0.9 mA. The meter is

- a) critically damped and has a coil resistance of 100 Ω
- b) critically damped and has a coil resistance of 200 Ω
- c) under damped and has a coil resistance of 100 Ω
- d) under damped and has a coil resistance of 200 Ω
- 12) The open loop transfer function of a unity gain feedback system is given by:

$$G(s) = \frac{k(s+3)}{(s+1)(s+2)}$$

The range of positive values of k for which the closed loop system will remain stable is:

(GATE IN 2010)

a)
$$1 < k < 3$$

b)
$$0 < k < 10$$

c)
$$5 < k < \infty$$

d)
$$0 < k < \infty$$

13) A real $n \times n$ matrix $A = [a_{ij}]$ is defined as follows:

$$a_{ij} = i, if i = j;$$

= 0, otherwise

The summation of all eigenvalues of A is

(GATE IN 2010)

a)
$$n(n+1)/2$$

b)
$$n(n-1)/2$$

a)
$$n(n+1)/2$$
 b) $n(n-1)/2$ c) $\frac{n(n+1)(2n+1)}{6}$

d)
$$n^2$$

14) The contour C in the adjoining figure is described by $x^2 + y^2 = 16$.

The value of

$$\oint\limits_C \frac{z^2 + 8}{0.5z - 1.5j} dz$$

is (Note:
$$j = \sqrt{-1}$$
)

- a) $-2\pi j$
- b) $2\pi j$

c) $4\pi j$

- d) $-4\pi j$
- 15) In the dc circuit shown in the adjoining figure, the node voltage V_2 at steady state is

(GATE IN 2010)

a) 0 V

b) 1 V

c) 2 V

- d) 3 V
- 16) A 100 Ω , 1 W resistor and a 800 Ω , 2 W resistor are connected in series. The maximum dc voltage that can be applied continuously to the series circuit without exceeding the power limit of any of the resistors is

(GATE IN 2010)

- a) 90 V
- b) 50 V

c) 45 V

- d) 40 V
- 17) The seismic mass of an accelerometer oscillates sinusoidally at 100 Hz with a maximum displacement of 10 mm from its mean position. The peak acceleration of the seismic mass is

- a) $3947.84 \, m/s^2$
- b) $3141.50 \, m/s^2$
- c) $314.15 \, m/s^2$
- d) $100.00 \, m/s^2$
- 18) In the ideal opamp circuit given in the adjoining figure, the value of R_f is varied from 1 k Ω to 100 k Ω . The gain $G = (v_o/v_i)$ will

- a) remain constant at +1
- b) remain constant at -1

- c) vary as $-(R_f/10,000)$ d) vary as $(1 + R_f/10,000)$
- 19) A signal with frequency components 50 Hz, 100 Hz and 200 Hz only is sampled at 150 samples/s. The ideally reconstructed signal will have frequency component(s) of

(GATE IN 2010)

- a) 50 Hz only
- b) 75 Hz only

- c) 50 Hz and 75 Hz
- d) 50 Hz, 75 Hz and 100 Hz
- 20) The subroutine SBX given below is executed by an 8085 processor. The value in the accumulator immediately after the execution of the subroutine will be:

SBX: MVI A, 99h ADI 11h MOV C, A RET

(GATE IN 2010)

a) 00h

b) 11h

c) 99h

d) AAh

21) The integral $\int_{-\infty}^{\infty} \delta(t - \pi/6) 6 \sin(t) dt$ evaluates to

(GATE IN 2010)

a) 6

b) 3

c) 1.5

- d) 0
- 22) The deflection angle of the pointer of an ideal moving iron ammeter is 20° for 1.0 ampere dc current. If a current of $3\sin(314t)$ amperes is passed through the ammeter then the deflection angle is (GATE IN 2010)
 - a) 0°

b) 42°

c) 60°

- d) 90°
- 23) An 8-bit DAC is interfaced with a microprocessor having 16 address lines $(A_0 ... A_{15})$ as shown in the adjoining figure. A possible valid address for this DAC is

- a) 3000h
- b) 4FFFh
- c) AFFFh
- d) C000h
- 24) H(z) is a discrete rational transfer function. To ensure that both H(z) and its inverse are stable its (GATE IN 2010)
 - a) poles must be inside the unit circle and zeros must be outside the unit circle.
 - b) poles and zeros must be inside the unit circle.
 - c) poles and zeros must be outside the unit circle.
 - d) poles must be outside the unit circle and the zeros should be inside the unit circle.
- 25) The output voltage of a transducer with an output resistance of $10~k\Omega$ is connected to an amplifier. The minimum input resistance of the amplifier so that the error in recording the transducer output does not exceed 2% is

- a) $10 \text{ k}\Omega$
- b) 49 k Ω
- c) $490 \text{ k}\Omega$
- d) $1.2 \text{ M}\Omega$

	a) $ X = 0$ and $ Y \neq 0$ b) $ X \neq 0$ and $ Y = 0$		c) $ X = 0$ and $ Y = 0$ d) $ X \neq 0$ and $ Y \neq 0$	
27)	Consider the differentia	al equation $\frac{dy}{dx} + y = e^x$ wi	th $y(0) = 1$. The value o	f $y(1)$ is (GATE IN 2010)
	a) $e + e^{-1}$	b) $\frac{1}{2} (e - e^{-1})$	c) $\frac{1}{2} \left(e + e^{-1} \right)$	d) $2(e - e^{-1})$
28)				$\sigma(x, y) = 1 C/m^2$, where x on R is (GATE IN 2010)
	a) 4π	b) 2π	c) π/2	d) 0
29)	The input $x(t)$ and the system is	corresponding output y (t	r) of a system are related	by $y(t) = \int_{-\infty}^{5t} x(\tau) d\tau$. The (GATE IN 2010)
	a) time invariant and cab) time invariant and no	oncausal	c) time variant and nond) time variant and cau	sal
30)	and Direct Form-II real	a transfer function $H(z)$ izations of IIR structure. lizations are, respectively	$= \frac{p_0 + p_1 z^{-1} + p_3 z^{-3}}{1 + d_3 z^{-3}}$ is implent the number of delay unit	nented using Direct Form-I ts required in Direct Form-I (GATE IN 2010)
	a) 6 and 6	b) 6 and 3	c) 3 and 3	d) 3 and 2
31)				= $v+t$. Using Euler forward ze of 0.1 s, the velocity at (GATE IN 2010)
	a) 0.01 m/s	b) 0.1 m/s	c) 0.2 m/s	d) 1 m/s
32)	particular position of the	ne rotor of the control train	nsmitter. The transmitter	num voltage of 1.0 V at a rotor is now rotated by 30° stor voltage for this position (GATE IN 2010)
	a) 1.0 V	b) 0.866 V	c) 0.5 V	d) 0 V
33)		rs Q1 and Q2 shown in to be 0.7 V, the collector-or		$\gamma e \beta = 100$. Assuming the transistor Q2 is

26) X and Y are non-zero square matrices of size $n \times n$. If $XY = 0_{n \times n}$ then

- a) 33.9 V
- b) 27.8 V
- c) 16.2 V
- d) 0.7 V
- 34) The volume of a cylinder is computed from measurements of its height (h) and diameter (d). A set of several measurements of height has an average value of 0.2 m and a standard deviation of 1%. The average value obtained for the diameter is 0.1 m and the standard deviation is 1%. Assuming the errors in the measurements of height and diameter are uncorrelated, the standard deviation of the computed volume is (GATE IN 2010)
 - a) 1.00%
- b) 1.73%
- c) 2.23%
- d) 2.41%
- 35) A thermocouple based temperature measurement system is shown in the adjoining figure. Relevant thermocouple emf data (in mV) is given below. The cold junction is kept at $0^{\circ}C$. The temperature is $30^{\circ}C$ in the other parts of the system. The emf V_o is measured to be 26.74 mV. The temperature of the hot liquid is

Temperature	emf of Chromel-Constantan	emf of Copper-Constantan
10°C	0.591	0.391
20°C	1.192	0.789
30°C	1.801	1.196
370° <i>C</i>	26.549	19.027
380° <i>C</i>	27.345	19.638

- a) 370.0°C
- b) 372.4°*C*
- c) 376.6°*C*
- d) 380.0°C
- 36) A differential pressure transmitter is used to measure the flow rate in a pipe. Due to aging, the sensitivity of the pressure transmitter is reduced by 5%. All other aspects of the flow meter remaining constant, change in the sensitivity of the flow measurement is (GATE IN 2010)

- a) 10.0%
- b) 5.0%

- c) 2.5%
- d) 2.2%
- 37) The asymptotic Bode magnitude plot of a lead network with its pole and zero on the left half of the s-plane is shown in the adjoining figure. The frequency at which the phase angle of the network is maximum (in rad/s) is

a) $\frac{3}{\sqrt{10}}$

b) $\frac{1}{\sqrt{20}}$

c) $\frac{1}{20}$

- d) $\frac{1}{30}$
- 38) In an analog single channel cathode ray oscilloscope (CRO), the x and y sensitivities are set as 1 ms/div and 1 V/div, respectively. The y-input is connected to a voltage signal $4\cos\left(200\pi t 45^{\circ}\right)$ V. The trigger source is internal, level chosen is zero and the slope is positive. The display seen on the CRO screen is

a)

b)

c)

- d)
- 39) A unit ramp input is applied to the system shown in the adjoining figure. The steady state error in its output is

a) 0

b) 0.5

c) 1

- d) 2
- 40) A unity feedback system has an open loop transfer function $G(s) = \frac{k}{s(s+3)}$. The value of k that yields a damping ratio of 0.5 for the closed loop system is (GATE IN 2010)
 - a) 1

b) 3

c) 5

- d) 9
- 41) A 4-bit successive approximation type ADC has a full scale value of 15 V. The sequence of the states, the SAR will traverse, for the conversion of an input of 8.15 V is

42) The logic gate circuit shown in the adjoining figure realizes the function

(GATE IN 2010)

a) XOR

b) XNOR

c) Half adder

d) Full adder

43) In an 8085 processor, the main program calls the subroutine SUB1 given below. When the program returns to the main program after executing SUB1, the value in the accumulator is

Address	0pcode	Mnemonic
2000h	3E 00	SUB1: MVI A, 00h
2002h	CD 05 20	CALL SUB2
2005h	3C	SUB2: INR A
2006h	C9	RET

(GATE IN 2010)

a) 00

b) 01

c) 02

d) 03

44) Light coming out of an optical fiber is incident on a plane perpendicular to the fiber axis and 50 mm away from the end of the fiber. The light coming out creates a circular spot that can at most be of 20 mm diameter. Neglecting the diameter of the fiber, the numerical aperture of the fiber is, approximately,

(GATE IN 2010)

a) 0.14

b) 0.20

c) 0.34

d) 0.40

45) A solution "P" is put in a spectrophotometer cuvette of optical path length 1 cm. The transmittance is found to be 10%. Another solution "Q" has a transmittance of 40% under the same circumstances. If equal volumes of P and Q are mixed together, the transmittance of the resulting solution (assuming the constituents of P and Q do not react with each other) is, approximately,

(GATE IN 2010)

a) 15%

b) 20%

c) 25%

d) 30%

- 46) 4-point DFT of a real discrete-time signal x[n] of length 4 is given by X[k], n = 0, 1, 2, 3 and k = 0, 1, 2, 3. It is given that X[0] = 5, X[1] = 1 + j1, X[2] = 0.5. X[3] and x[0] respectively are (GATE IN 2010)
 - a) 1 j, 1.875
- b) 1 j, 1.500
- c) 1 + j, 1.875
- d) 0.1 j0.1, 1.500
- 47) An active filter is shown in the adjoining figure. The dc gain and the 3 dB cut-off frequency of the filter respectively, are, nearly

- a) 40 dB, 3.14 kHz
- b) 40 dB, 1.00 kHz

- c) 20 dB, 6.28 kHz
- d) 20 dB, 1.00 kHz

A differential amplifier is constructed using an ideal opamp as shown in the adjoining figure. The values of R_1 and R_2 are 47 k Ω and 470 k Ω respectively.

48) The input impedances seen looking into the terminals V_1 and V_2 , with respect to ground, respectively are (GATE IN 2010)

- a) 47 k Ω and 43 k Ω
- b) 47 k Ω and 47 k Ω

- c) 47 k Ω and 517 k Ω
- d) 517 k Ω and 517 k Ω
- 49) V_1 and V_2 are connected to voltage sources having an open circuit output of +1 V each and internal resistances of 13 k Ω and 3 k Ω respectively. The output voltage V_o is (GATE IN 2010)
 - a) 0 V

- b) 0.15 V
- c) 1.5 V
- d) 10 V

A PMMC type ammeter has full scale current of 100 μ A and a coil resistance of 100 Ω .

50) The resistance required to convert the 100 μ A ammeter into a 1A full scale dc ammeter is

(GATE IN 2010)

- a) 10 m Ω in series with the meter
- c) 1 m Ω in series with the meter
- b) 10 m Ω in parallel with the meter
- d) 1 m Ω in parallel with the meter
- 51) The above PMMC meter is connected in the circuit shown in the adjoining figure. The opamp is ideal. The voltage $v_i(t) = 1.0 \sin 314t$ V. Assuming the source impedance of $v_i(t)$ to be zero, the ammeter will indicate a current of

(GATE IN 2010)

a) $100 \, \mu A$

b) 70.7 μA

c) $63.7 \mu A$

d) $31.8 \, \mu A$

A coil having an inductance (L) of 10 mH and resistance R is connected in series with an ideal 100 μ F capacitor (C). When excited by a voltage source of value $10\sqrt{2}\cos(1000t)$ V, the series RLC circuit draws 20 W of power.

52) The value of the coil resistance R is

(GATE IN 2010)

a) 1Ω

b) 2Ω

c) 4 Ω

d) 5Ω

53) The Q factor of the coil at an angular frequency of 1000 rad/s is

(GATE IN 2010)

a) 1

b) 2

c) 4

d) 5

Consider a temperature measurement scheme shown in the adjoining figure. It uses an RTD whose resistance at 0° C is 100Ω and temperature coefficient of resistance (α) is $0.00392 / ^{\circ}$ C.

- 54) The differential gain of the instrumentation amplifier to achieve a voltage sensitivity of $10 \text{ mV/}^{\circ}\text{C}$ at 0°C , should be approximately (GATE IN 2010)
 - a) 13.41
- b) 26.02
- c) 57.53
- d) 90.14
- 55) The RTD is placed in a hot water bath of temperature 100°C. Based on the gain calculated in Q.54, the error in the measured value of the temperature due to bridge nonlinearity is (GATE IN 2010)
 - a) -0.1° C
- b) 0.4°C
- c) 0.9°C
- d) $+1.2^{\circ}$ C

56)	<u> -</u>	± •	· · · · · · · · · · · · · · · · · · ·	y football and 10 of them neither hockey nor football (GATE IN 2010)
	a) 2	b) 17	c) 13	d) 3
57)				plete the following sentence: we a better planet for our
				(GATE IN 2010)
	a) upholdb) restrainc) cherishd) conserve			
58)	-	es the relation in the original	•	ir pairs of words. Select the
	enemployeu t work			(GATE IN 2010)
	a) fallow: landb) unaware: sleeperc) wit: jesterd) renovated: houseWhich of the followinCircuitous	g options is the closest in	n meaning to the word be	elow: (GATE IN 2010)
	a) cyclic b) indirect c) confusing d) crooked			(GML IIV 2010)
60)		=		plete the following sentence: busness about the subject.
	a) masked	b) belied	c) betrayed	d) suppressed

 1st January. The is less than 3 ye Hari's age + The age differ not the young 		ny two successive sibling facts: - Saira's age.	s (that is born one after	another)
• There are no		\?		
ili wilat oldel w	ere they born (oldest first):	(GATE I	N 2010)
a) HSIG	b) SGHI	c) IGSH	d) IHSG	
unskilled worker	s can build a wall in 20 dars can build a wall in 30 dang will it take to build th	ays. If a team has 2 skille		ınskilled
a) 20 days	b) 18 days	c) 16 days	d) 15 days	
populations. Cl and regretfully	re has changed from la nemical agents that do the , there exist people in n s for their cause.	heir work silently appea	r to be suited to such v	varfare;
Which of the fo	llowing statements best so	ums up the meaning of th	e above passage: (GATE I	N 2010)
a) Modern warfa	are has resulted in civil st	rife.		
,	nts are useful in modern			
c) Use of chemi	cal agents in warfare wou	ld be undesirable.		

- d) People in military establishments like to use chemical agents in war.
- 64) Given digits 2, 2, 3, 3, 4, 4, 4, 4 how many distinct 4-digit numbers greater than 3000 can be formed? (GATE IN 2010)

a) 50 b) 51 c) 52 d) 54

65) If 137 + 276 = 435 how much is 731 + 672?

(GATE IN 2010)

a) 534

b) 1403

c) 1623

d) 1513

END OF THE QUESTION PAPER