λC 中逻辑概念的编码

The encoding of logical notions in λC

读书笔记

许博

1 疑问

P142. 析取的表示 $A \lor B \equiv \Pi C : *.(A \to C) \to (B \to C) \to C$, 对它的解释为: *If A implies C and also B implies C, then C holds on its own*。为什么这里的 A 和 B 是或的关系?

2 类型理论中的谬论(absurdity)与否定(negation)

在章节 5.4 中,通过编码蕴含式 $A \Rightarrow B$ 为函数类型 $A \rightarrow B$,模拟蕴含式的 行为,包括它的导入和消解规则。因为 λP 是 λC 的一部分,所以 λC 中同样拥有最小谓词逻辑。

本章将处理更多的接词(connective),比如否定(\neg),合取(\land)和析取(\lor)。这些在 λP 中不能表示,但在 λC 中存在非常优雅的方式去编码这些概念。

将否定 $\neg A$ 看作蕴含式 $A \Rightarrow \bot$,其中 \bot 是 "谬论 (absurdity)",也可以称为 "矛盾 (contradiction)"。因此 $\neg A$ 被解释为 "A 蕴含了谬论"。为了这个目标,我们需要谬论的编码:

I. 谬论, Absurdity

命题"谬论"或 山 的一个独特的性质是: 如果 山 为真,则每一个命题都为

真。

每一个命题都为真,则存在一个接收任意一个命题 α 然后返回 α 的一个成员的函数,而这个函数的类型为 $\Pi\alpha:*.\alpha$ 。因此"如果 \bot 为真,则每一个命题都为真"可以表述为"如果存在 $M:\bot$,则存在 $f:\Pi\alpha:*.\alpha$ "。因此,在类型理论中,定义 \bot 为 $\Pi\alpha:*.\alpha$ 。

⊥-消解(⊥-elimination)规则:

$$(\perp$$
-elim) $\frac{\perp}{A}$

因为 $\bot \equiv \Pi \alpha : *.\alpha$,则 $s_1 = \Box \coprod s_2 = *$,所以 \bot 存在于 $\lambda 2$ 中,且 $\bot : *$ 。

II. 否定, Negation

定义: $\neg A \equiv A \rightarrow \bot$ 。

 $A \to \bot$ 是 $\Pi x : A.\bot$ 的简写,其中 A : * 且 $\bot : *$,所以 $(s_1, s_2) = (*, *)$ 。 但因为 \bot 存在,至少 $\lambda 2$ 才能够表示否定。

⊥-导入(⊥-introduction)规则:

$$(\perp -intro) \frac{A - \neg A}{\perp}$$

或:

(
$$\perp$$
-intro) $A \rightarrow \perp$

而 $(\neg\text{-intro})$ 和 $(\neg\text{-elim})$ 规则可以以 $(\Rightarrow\text{-intro})$ 和 $(\Rightarrow\text{-elim})$ 规则替换,前者为后者的特殊情况。

需要注意的是,尽管 (\perp -intro) 和 (\neg -elim) 都是 (\Rightarrow -elim) 的特殊情况,但两者具有不同的目的,前者是为了获得 \perp ,而后者则告诉了我们如何使用一个否定 $\neg A$ 。

3 类型理论中的合取和析取

I. 合取, Conjunction

合取 $A \wedge B$ 为真当且仅当 A 和 B 都为真。在 $\lambda 2$ 中,合取的表示为:

$$A \wedge B \equiv \Pi C : *.(A \rightarrow B \rightarrow C) \rightarrow C$$

这是一个合取的所谓"二阶"编码,比如 $A \wedge B \equiv \neg (A \to \neg B)$ 的一阶编码更为通用,因为后者只在经典逻辑中有效。

 $\Pi C: *.(A \to B \to C) \to C$ 可以读作: 对于所有的 C, (A 蕴含(B 蕴含 C)) 蕴含 C。若将 A,B,C 都看作是命题,则可以解释为: 对于所有命

题 C, 如果 A 和 B 共同蕴含 C, 则 C 取决于自身。条件"如果 A 和 B 共同蕴含 C"也即"A 和 B 都为真"是多余的,而为了使条件成立,A 和 B 必须为真。这里我认为,C holds on its own 意为 $C \to C$,也即第二个 C 由第一个 C 蕴含,而 $C \to C$ 恒为真,所以条件是多余的,但条件需要满足(条件满足是命题为真的必要条件),所以 A 和 B 都需要为真。

 $\Pi C: *.(A \to B \to C) \to C$ 被称为二阶是因为它是在命题上的泛化,而命题是二阶对象。

△ 在自然演绎中的规则以及在类型理论中二阶编码的规则:

$$(\land \text{-intro}) \ \frac{A \quad B}{A \land B}$$

$$(\land \text{-elim-left}) \ \frac{A \land B}{A}$$

$$(\land \text{-elim-right}) \ \frac{A \land B}{B}$$

$$(\land \text{-intro-sec}) \ \frac{A \quad B}{\Pi C : *.(A \to B \to C) \to C}$$

$$(\land \text{-elim-left-sec}) \ \frac{\Pi C : *.(A \to B \to C) \to C}{A}$$

$$(\land \text{-elim-right-sec}) \ \frac{\Pi C : *.(A \to B \to C) \to C}{B}$$

$$II. \ \text{析取}, \ \textit{Disjunction}$$

$$\text{析取} \ A \lor B \ \text{的二阶编码}:$$

 $A \lor B \equiv \Pi C : *.(A
ightarrow C)
ightarrow (B
ightarrow C)
ightarrow C$