Indice delle domande degli esami orali: Ingegneria Informatica LM

Questo file contiene le testimonianze degli esami orali di vari studenti del corso di laurea di **Ingegneria Informatica Laurea Magistrale** all' **Unical** (*Università della Calabria*) e fa parte del progetto Indice Argomenti Orali gestito dall'organizzazione **UnicalLoveTelegram**

Leggi il nostro README per conoscere tutti i dettagli del progetto, sapere come partecipare e come sfogliare tutto il nostro materiale!

- Indice delle domande degli esami orali: Ingegneria Informatica LM
- Architetture e programmazione dei sistemi di elaborazione
 - o Fabrizio Angiulli
- Crittografia e analisi reti sociali
 - o Molinaro Cristian
- Linguaggi Formali
 - o Domenico Saccà
 - o Rullo
- Informatica teorica
 - Scarcello Francesco
- Ottimizzazione
 - Maria Flavia Monaco
- Valutazione delle prestazioni
 - Pasquale Legato
- Intelligenza Artificiale (6 CFU)
 - Palopoli Luigi
- Intelligenza Artificiale e rappresentazione della conoscenza (12 CFU)
 - Palopoli Luigi
- Sistemi Informativi
 - o Cassavia
- ISSTRA Ingegneria del software per sistemi real-time ed agenti
 - Libero Nigro
- Sistemi Distribuiti e Cloud Computing (6 CFU e 9 CFU)
 - o Talia Domenico
 - Loris Belcastro
- Basi di Dati evolute
 - Molinaro Cristian
- Calcolo Numerico
 - Yaroslav Sergeyev
 - Marat Mukhametzhanov

- Algoritmi di Crittografia
 - o Cristian Molinaro

Architetture e programmazione dei sistemi di elaborazione

Fabrizio Angiulli

- Roberto
 - o cache completamente associativa
 - o open MP
 - o schema monociclo e segnali di controllo +1
 - o cache a k vie
 - multithreading
 - o grana fine
 - o grana grossa
 - o vantaggi multithreading simultaneo (ogni thread a i suoi registri e PC)
 - o differenza multithreading sw e multithread hw
 - o dimensionamento clock multicolore
 - o conflitti sul controllo
 - o statistica a 2 bit automa
 - o nano programmazione
 - o emissione fuori ordine
 - o tabella segnali alpha monociclo
 - o conflitti sui dati pipeline
 - o conflitti superscalari
 - o ottimizzazione unità di controllo (control store)
 - o completamente fuori ordine e ritiro in ordine
 - CPU vs GPU
 - o una numa
 - o macchina multiciclo
 - macchina monociclo
 - o dimensionamento del clock della multi ciclo
 - o ottimizzazione della parte di controllo microprogrammata
 - o legge di moore e barriera dell'energia
 - o speculazione nell'hardware
 - speculazione hw (epr)
 - o buffer di ordinamento macchina super scalare
 - o completamento fuori ordine
 - o emissione fuori ordine
 - o numero di posizioni
 - o ottimizzazione del controllo microprogrammato
 - o predizione dei salti schema
 - o politiche sostituzione della cache
 - disegno

- o speculazione hardware macchina super scalare
- o differenza uma e numa
- o macchina hasswell
- o differenze cics e risc
- o principi di progettazione risc
- o riduzione parallela
- o rsr

2019 2020

- Anonimi
 - o Legge di Moore e barriera energia
 - Macchina multiciclo
 - o ottimizzazione unità di controllo (control store programmato)
 - Nano programmazione
 - o dimensionamento del clock nella multi ciclo microprogrammata
 - o differenze macchine cisc e risc
 - o principi di progettazione macchina risc
 - o schema monociclo e tabella segnali alpha
 - o conflitti sui dati pipeline
 - o emissione fuori ordine
 - o Rsr
 - o completamente ofuori ordine
 - o ritiro in ordine
 - o confliti sul controllo
 - o predizione dei salti a schema branch prediction unità
 - o statistica a due bit con automa
 - o conflitti sulle super scalari
 - o buffer di ordinamento macchina super scalare
 - speculazione hardware (epr)
 - o completamento fuori ordine macchina super scalare
 - Macchina di Haswell
 - cache completamente associativa
 - o cache a k vie
 - o politiche di sostituzione nella cache disegno
 - o differenza uma e numa
 - o multithreading hw: grana fine e grana grossa
 - o vantaggi multithreading simultaneo
 - o differenza multi threading hw e sw
 - o cpu vs gpu
 - o riduzione parallela
 - o open mp
- Giovanni giordano
 - o cache a k vie
 - o cache a mappatura diretta
 - o tipi di threading
 - o conflitti pipeline

Crittografia e analisi reti sociali

Molinaro Cristian

- Tassone
 - Cifrario a flusso
 - o OTP
 - o PRG
 - o Shannon
 - o Cifrari a blocchi
 - Sicurezza semantica
 - o PRP
 - o ECP
 - o CBC
 - o CBC+nonce
 - o CTR
 - o CTR+nonce
 - o MAC (funzionamento sicurezza e challange)
 - NMac
 - PMAC
 - HMAC
 - ECBC MAC
 - o PAYLOAD
 - HASH (funzionamento sicurezza e challange)
 - o PAradosso compleanno + attacco hash (collissioni)
 - Merkle damgard
 - Autenticazione cifrata (funzionamento sicurezza e challange)
 - tre tipologie costruzione autenticazione cifrata (e than m, e and m, m then e) più differenze e sicurezza
 - o differenza chiave simmetrica e asimmetrica
 - o principi chiave asimmetrica
 - o RSA
 - o Complessità attacco RSA per scoprire chaive segreta
 - o complessita attacco RSA per un messaggio cifrato (differenza con sopra)
 - o Merkle puzzle
 - o autorità di certificazione e firma digitale (molto in generale più schema)
- Riccardo
 - o generazione rsa per calcolo chiavi
 - come si cifra
 - come si decifra
 - o rabin come si generano le chiavi
 - collegarsi alla fattorizzazione
 - output di 4 messaggi
 - cattiva proprietà del sistema
 - o ElGamal su cosa è basato
 - come si calcolano le chiavi
 - o tutti i possibili attacchi di chiave che si muovono contro RSA
 - brute force
 - euclide
 - vari problemi

- o puzzle di merkle
- o introduzione key managment e scneari utilizzo rsa

Linguaggi Formali

Domenico Saccà

2016 2017

- PsykeDady
 - o Compilazione della tipizzazione dinamica dei linguaggi
 - o tipizzazione dinamica che tipo di linguaggio è (risp: 2)
 - o cos'è un automa a pila
- Marco Domenicano
 - Tautologia
 - o conraddizione
 - o memorizzazione di un json in calculista
 - o esercizio del minimo locale in calculist e prolog
- Anonimi
 - o come vengono memorizzati i json in memoria nella calculist

- Alfredo
 - o json
 - o linguaggi di primo, secondo e terzo tipo
 - java di che tipo è
 - html di che tipo è
 - xml di che tipo è
- Giovanni Giordano
 - calculist esercizio Unione(L1,L2,L3)
 - costruire L3 unendo L1 e L2
- Angelo
 - Scrivere automa a stati finiti deterministico che riconosce il linguaggio
 (a+b+)+b*c
 - fare esempio di una stringa che non appartiene al linguaggio
 - fare esempio di stringa che appartiene al linguaggio
- Anonimi
 - Calculist esercizio Intersezione(L1,L2,L3)
 - costruire L3 come intersezione di L1 e L2
 - o cos'è un modello logico
 - o quando un modello è minimo
 - o Calculist lista ordinata L
 - Calculist High Order Function espressione con lambda function

- o complessità del problema di stabilire se un programma logico ammette un unico modello (sol. *PSPACE*)
- Verificare se due Liste L1 e L2 hanno gli stessi elementi

Rullo

2016 2017

- Marco Domenicano
 - scrivere un programma in prolog che riceve una lista L, T, T1 e restituisce una lista di copia in output L1 così composta: se elemento di L corrisponde a T inserisci T1 altrimenti L

2019 2020

- Alfredo
 - o 2 esercizi prolog
- · Giovanni Giordano
 - esercizio prolog su traccia P(L1,L2,L3,L4), soddisfare:

```
1. L3 come L1 intersecato L2
```

- 2. L4 come L1 L2
- o esercizio prolog su traccia su traccia P(T,T1,L,L1), soddisfare
 - se L[i]≠T verificare L[i]==L1[i] altrimenti L1[i]==T1
- Angelo
 - o scrivere un metodo int(L1,L2,L3) che restituisce vero se:
 - 1. L1 sotto insieme improprio di L3
 - 2. L2 sotto insieme improprio di L3
 - 3. L3 non contiene duplicati
 - 4. L1,L2,L3 sono ordinati in modo crescente
- Anonimi
 - o scrivere un programma prolog che: dati due termini T e T1 e una lista L
 - produce una lista L1 identica a L in cui sono state sostituite tutte le istanze di T con T1, ossia la relazione subst(T,T1,L,L1) dove L1 è la lista ottenuta da L sostituendo tutte le istanze del termine T con T1 lasciando gli altri elementi invariati
 - p(L1,L2) che restituisce true se L1 ed L2 contengono gli stessi elementi
 - o lanciare la computazione in calculist
 - descrivere stato memoria
 - dare risultato
 - o Teorema di Rice (accenno)
 - o quanti sono i modelli di un programma positivo
 - o cos'è l'unificazione di due termini?
 - o data:

```
g(x/2)/1: lambda z: x(y,z+y);eseguire: g(molt,3)(4); risultato?
```

o Quanti modelli minimali ci sono in questo programma logico?

```
u(1).
u(2).
u(3).
p(1).
p(2).
r(X):
u(X), not(p(X)).
rc(X):- u(X), not(r(X)).
g(x/2,y)/1: lambda z: x(y,z+y);
pp(x,y): x+2*y;
^g(pp,3)(4);
```

- ○ risultato=17
 - o quanti sono i modelli minimali (stesso modello)?
 - u(1).
 - u(2).
 - **p**(1).
 - r(X):- u(X), not(p(X)).
 - rc(X):- u(X), not(r(X)).
 - o cos'è un universo
 - tutti i termini ground, nel caso di prima i primi due
 - funziona calculist che dato x calcola fibonacci(x)
 - o dato:

```
u(1).
u(2).
p(1).
r(X):- u(X), not(p(X)).
rc(X):- u(X), not(r(X)).
```

- ○ quanti sono i modelli minimali
 - **Legenda**: u sono gli umani, p sono i poveri, r è una persona ricca, rc è il reddito di cittadinanza (i significati hanno poca rilevanza).
 - Risposta: quando si ha la negazione di solito si hanno piu modelli minimali
 - modello migliore: rc(X)=true solo in un caso (reddito di cittadinanza solo ad un elemento)
 - scrivere un metodo che riceve in ingresso 4 liste q(L1, L2, L3, L4) che restituisce true se L3 è l'itersezione di L1+L2 ed L4=L1-L2 (sottrazione insieimistica), le liste vanno intese come insiemi.
 - scrivere un metodo q(A,B,L1,L2) che restituisce true L1=L2 con i caratteri A sostituiti con B in L2
 - scrivere un q(X,L,Y) che restituisce vero se Y è l'elemento successivo a X
 nella L
 - \circ scrivere un q(X,L,Y) che restituisce vero solo se Y è nella posizione X di L

Informatica teorica

Scarcello Francesco

2016 2017

- PsykeDady
 - o Teorema di Cook
 - o Definizione di NP complete
- Riccardo
 - Partendo dal fatto che un problema è np-hard se qualsiasi problema np si riduce ad esso in tempo polinomiale
 - domanda: come cambia la classe np-complete se cambiamo la definizione di hardness considerando trasformazioni esponenziali invece che polinomiali?
 - risposta: Poiché np-complete è l'intersezione di np-hard ed np, i problemi di tale classe rappresentano il sottoinsieme dei problemi più difficili tra quelli appartenenti ad np (risolvibili in p-time da una NTM). Se si cambia la definizione di hardness considerando trasformazioni esponenziali però si estende la classe a problemi exp-time, in quanto si altera il rapporto di complessità durante la riduzione che supporta la hardness: intuitivamente, una trasformazione esponenziale trasferirebbe parte della complessità nella riduzione, permettendo poi di risolvere il problema risultante in tempo polinomiale, dunque tali problemi ricadrebbero in questa versione modificata di np-complete.
- Anonimi
 - o Teorema di Cook
 - o Definizioni di problema Np, Np-hard, Np-complete
 - o Dimostrazione di appartenenza di Hamiltonian Cycle a Np-Complete
 - o Dimostrazione di non appartenenza di Ld a RE
 - o Dimostrazione di appartenenza di Lu a RE
 - o Definizione di riduzione
 - o Teorema di Rice

2017 2018

- Marco
 - Linguaggio Empty
 - o dimostrazione NP complete
 - o dimostrazione indipendent Set

(continuare da 2016 2017 linguaggi formali sacca psykeS)

- Matteo Grollino
 - o Teorema Rice
 - o Teorema Cook
 - Knapsack Intero e Frazionario
 - subset sum
 - o approssimabilità knapsack
 - Algoritmo pseudo-polinomiale
 - FPTAS
 - Definizione NP

- Definizione NP Hard
- Definizione NP Complete
- o Dimostrazioen indecidibilità Lu e non appartenenza a RE di Ld
- o Importanza riduzione polinomiale tra problemi decisionali
- o Perché NP è incluso in PSpace con dimostrazione
- o complessità parametrizzata con definizione di XP e FP
- o Algoritmo FPT del vertex Cover
- Gianpaolo
 - Teorema 4.14.1: un problema NP ha come definizione NP = {L|E R
 polinomialmente decidibile e bilanciata che caratterizza L } con Pl1 R=L
 (dimostrazione)

- Angelo
 - o definizione di problema np-completo
 - o cos' é una trasformazione polinomiale?
 - o dimostrazione del teorema di Rice
 - fixed parameter trattability
 - o cos' é uno schema di approssimazione polinomiale?
 - o dimostrare che nap-sack é np-hard
 - o perché usiamo trasformazioni polinomiali e non esponenziali?
 - o dimostrare che ld é ricorsivamente enumerabile
 - o definizione di np-hard
 - o dimostrare che Hamiltonian cycle é np-hard
- Giovanni Giordano
 - Dimostrazione linguaggio NTM==DTM
 - o caratterizzazione NP dimostrato
 - o Indipendent Set dimostrato
- Anonimi
 - o cook
 - NP dentro PSpace (dimostrazione)
 - Risposta: Perchè la definizione di NP dice che NP appartiene a Ptime, poichè Ptime è un sottoinsieme di Pspace allora anche NP è un sottoinsieme di Pspace
 - o teorema di Rice
 - o np completo (definizione) e vantaggi nellúso
 - o Teorema di Cook
 - Definizione di problema NP-complete
 - Domanda: come cambia la clas shortcut multicursorsse np complete se cambiamo la definizione di hardness considerando trasformazioni esponenziali
 - Risposta: poiché np-complete é l'intersezione di np-hard ed np, i problemi di tale classe rappresentano il sottoinsieme dei problemi più difficili tra quelli appartenenti ad np (risolvibili in p-time da una NTM). Se si cambia la definizione di hardness considerando trasformazioni esponenziali però si estende la classe a problemi exp-time, in quanto si altera il rapporto di

complessità durante la riduzione che supporta la hardness: intuitivamente una trasformazione esponenziale trasferirebbe parte della complessità nella riduzione, permettendo poi di risolvere il problema risultante in tempo polinomiale, dunque tali problemi ricadrebbero in questa versione modificata di np-complete.

- o Dimostrazione di appartenenza di Hamiltonian Cycle a np-complete
- o dimostrazione di non appartenenza di Ld a RE
- o Dimostrazione di appartenenza di Lu a RE
- o definizione di riduzione
- Linguaggio Empty dimostrazione NP complete
- o mostrazione Indipendent SET
- o Knapsack intero e frazionario
- subset sum
- Approssimabilità knpasack (algoritmo pseudo polinomiale e FPTAS)
- o importanza della riduzione polinomiale tra problemi decisionali
- o complessità parametrizzata con definizione di xp e di ffpt
- problema np ha come definizione NP = {L| E R polinomialmente decidibile
 e bilanciata che caratterizza L} con PI1 R=L (dimostrazione)
- FPTAS con costi
- o FPT con VC e con knapsack
- o knapsack con programmazione dinamica

Ottimizzazione

Maria Flavia Monaco

- PsykeDady
 - o Argomento a piacere : Rilassato LaGrangiano
 - o Definizione di problema Rilassato
 - o Duale LaGrangiano (perché farlo? obiettivi)
 - Vehicle Routing Problem formulazione
- Anonimi
 - che ho a disposizione se voglio risolvere un problema piccolo con un algoritmo esatto ? (B&Bound)
 - o Cosa si intende per "cut" e quindi un algoritmo di branch and cut
 - Gomory, tutto il procedimento
 - o Perché posso usare la funzione obiettivo in gomory per indurre un taglio?
 - o come si valuta un euristica? Lagrangiano
 - o Definire duale di Lagrangiano

- Commesso viaggiatore
 - come calcolo un lowerbound?
 - perché non si usa Lagrangiano?
 - perché ha un numero esponenziale di cicli e molto probabilmente avrà sempre sottocicli
- o Problema del commesso viaggiatore non orientato
 - taglio con Branch and Cut
 - oracolo di Separazione
- o Formulazioni commesso viaggiatore sia orientato che non
- Quando una formulazione è ottimale? (matrice TUM)
- Per quale problema ho una formulazione ottimale anche se non è TUM?
 problema del matching
- Set covering definizione
- Commesso viaggiatore
 - perché è intrinsecamente combinatorio
 - complessità
- o come risolvo il set-covering (max saving)
- o chvatal
- Vehicle routing
- Algoritmo clarke wright (massimo risparmio)
- o Epsilon approssimativo
 - definizione
 - TSP
 - algoritmo dell'albero
- o Differenza Hamilton eulero, con confronto tra i due
- o Teorema di minkowsky

Valutazione delle prestazioni

Pasquale Legato

2016 2017

- PsykeDady
 - o problema del professore in ritardo (su excel)
 - produttore consumatore (excel)
 - o modello di markov (slide)

Intelligenza Artificiale (6 CFU)

Palopoli Luigi

2017 2018

- PsykeDady
 - o Estensione di Reiter
 - o Anomalia di Sussman
 - o breadth first (vantaggi rispetto a depth first)
 - strips
 - frame problem
 - quantification problem
 - representation problem
 - o deep learning
 - definizione
 - reti neurali
 - struttura neurone
 - altri approcci
 - deep learning
 - features extracton
 - hill climbing + simulated annealing
 - pac learning
 - Anonime
 - IDA* perchè c'è min nella funzione
 - Frame assension
 - strips
 - risoluzioni
 - problemi del non essere linguaggio logico
 - estensione di reithers
 - come calcolarla
 - che succede se togliamo TH da IN(pigreco)
 - nucleolo

Intelligenza Artificiale e rappresentazione della conoscenza (12 CFU)

Palopoli Luigi

- Anonimi
 - o Iterative Broadening (ordine di visita degli alberi)
 - o Iterative Dipening
 - o processi closed e successful

- shapley value
- o wsat e gsat
- o estensioni di reiter
- o frame problem e perché strips non soffre del problema del frame
- o approssimazione lower bound-upperbound con calcolo greatest lower bound

Sistemi Informativi

Cassavia

2017 2018

- Gianpaolo
 - Parte PENTAHO:
 - OLAP
 - o modellazione concettuale data warehouse
 - o realizzare in saiku roll up e roll down
 - o document datastore
 - o column family
- Luca
 - o Creare in saiku l'operazione slice e selezione
 - o modellazione logica dei data ware house
 - 4 fasi della modellazione
 - o imputation mismatching
 - o schema di HBase
 - disegnare
 - nome delle componenti
 - modi per interfacciarlo con il client
 - o teorema CAP

- PsykeDady
 - o presentazione progetto
 - eseguire su pentaho:
 - drill up
 - roll down
 - selection slice
 - o fasi di progettazione Data Warehouse
 - o Schemi di fatto a stella e snowflake
 - o Proprietà sistemi nosql
 - o utilizzo di hbase

ISSTRA Ingegneria del software per sistemi real-time ed agenti

Libero Nigro

2018 2019

- Anonimi
 - o tempo di blocco FPS
 - o conversione processo sporadico/periodico
 - Ping Pong in Jade
 - o Grafo degli stati UPPAAL
 - Query In Uppaal
 - o Scrivere un parcheggio in reti di petri
 - template tTransaction pTransaction delle ptpn
 - o clock di uppaall
 - o come si rappresenta uno stato nel model state graph di uppaal
 - JSemaphore
 - o Parametro Lambda delle simulazioni ad attori

Sistemi Distribuiti e Cloud Computing (6 CFU e 9 CFU)

Talia Domenico

2018 2019

- Aloeasy
 - o Java Card
 - o Replicazione
 - NFS
 - o COnsistenza

- · Giovanni Giordano
 - Weak Consistency
 - release consistency
 - o differenze EC2, S3 e DNS
- Anonimi
 - o eukaliptus
 - o Naming in generale
 - o HT Condor

Loris Belcastro

2018 2019

- Aloeasy
 - Distribuited garbage collector
 - o Storage di Azure
 - o Fabric Controller di Azure
 - o come si passano i parametri in JAva RMI

2019 2020

- Giovanni Giordano
 - o distribuited garbage collector
 - o riferimenti Java RMI
 - o tabelle Azure
 - o Combiner

Basi di Dati evolute

Molinaro Cristian

2019 2020

- Rak
 - o calcolo relazionale e definizione di linguaggio indipendente dal dominio di valutazione
 - o lock su database distribuiti
 - tecniche di assegnazione
 - deadlock
 - risposta: che se due transazioni richiedono il lock in scrittura sulla stessa risorsa e ci sono dei ritardi nella rete, nessuna delle due transazioni ottiene il lock e quindi si va in deadlock

Calcolo Numerico

Yaroslav Sergeyev

- Anonimi
 - o equazioni differenziali metodi conosciuti impliciti ed esplici

- esistenza polinomio di interpolazione e tecniche con vantaggi e svantaggi (
 LaGrange e Newton)
- o metodo romberg
- o metodi Runge Kutta
- o metodi di interpolazione conosciuti (LaGrange ecc)
- o punto fisso condizioni convergenza
- o grafici di convergenza
- o metodi di derivazione numerica

Marat Mukhametzhanov

2019 2020

- · Giovanni Giordano
 - o errore assoluto e relativo
 - o estrapolazione di Richardson
- Anonimi
 - o fenomeno Runge
 - o cancellazione numerica
 - o decomposizione triangolare con Teoremi

Algoritmi di Crittografia

Cristian Molinaro

- Giovanni Giordano
 - o CBC
 - o funzioni hash
- Anonimi
 - o merkel puzzle
 - obiettivo
 - problemi
 - algoritmo
 - o One Time Pad
 - decifatura e cifratura deterministica
 - decifatura e cifratura randomizzata
 - sicurezza per mandare messaggi
 - problemi
 - o sicurezza Semantica
 - o probab adv dice 1 quando EXP1
 - o modi operativi many time Key
 - o PRG e definizioni sicurezza

o firma digitale e CA