PBX 157B 5 001 (ATENA) 8901 J 601 (AND STAN) /84B NETWORK GATEMAY Docket No.: 42P14031D2D Blakely, Sokoloff, Taylor & Zafman LLP
Title: Instruction Set Architecture for Signal Processors
1st Named Inventor: Kumar Ganapathy
Express Mail No.: EV323393578US
Sheet: 1 of 12 したニ A TO1 80,

(714) 557-3800

Blakely, Sokoloff, Taylor & Zafman LLP
Title: Instruction Set Architecture for Signal Processors (714) 557-3800

1st Named Inventor: Kumar Ganapathy
Express Mail No.: EV323393578US
Sheet: 2 of 12

Title: Instruction Set Architecture for Signal Processors

1st Named Inventor: Kumar Ganapathy Express Mail No.: EV323393578US

Sheet: 3 of 12

39 39 37 38 35 34 33 32 31 30 29 28 27 2	क इंडा इब इउ	227170	19 18 17	16 15 14 13	12 11 10 9	8 7 6	5 4 3 2 1 0
1 0 0 PS S' SX SY	VISINO	Sub-op	1 Pred	PL Sxt	Syl Rnd	5.2.2.	0 SADA aba 0 0
da = +/- sx'sy	Nop	000					
da = +/-(sx*sy) + sa	Add	001			[Li		
da = +/-(sx*sa) + sy	Add	0 1 0			u		
$da = +/-(sx^*sy) - sa$	Sub	011			u		-
da = +/-(sx*sa) - sy	Sub	100			u	1	
$da = min(+/-sx^*sy,sa)$	Min	101			Gi	1	1 = 10
de = min(+/- sx*se,sy)	Min	1110			Gx	1	1=0.0
de = max(+/- sx * sy, sa)	Mex	111			G.		

39	38	37	4			34	33	32	31	30	29	28	27							
<u></u>	0	0	1	_ <u>P</u>	<u>s_</u>	s.		<u></u> S	<u>X</u>			S	Υ	 V/S	SA	DA	9	ے اد	Add	$da = +/-(mx^*sa) + my$
																	1	1	 Sub Min	da = +/-(mx*sa) - my da = min(+/-mx*sa, my

FI 6.6D

(714) 557-3800

Blakely, Sokoloff, Taylor & Zafman LLP Title: Instruction Set Architecture for Signal Processors 1st Named Inventor: Kumar Ganapathy Express Mail No.: EV323393578US Docket Sheet: 7 of 12

Docket No.: 42P14031D2D

प्रहा अव-ठट

20-bit persilel 20-bit serial 40-bit extended 20-bit serial

Control || Control Control # Control DSP, extensions/Shadow DSP # DSP

OSP instructions

39 38 37 36 35 34 33 32 31 30 28 28 27 28 25 24 23 22 21 20

Muttiply		0	0	PS	S		×	П		λ		V/S SA DA	Ν	₹	Sub-op	8	
			İ			de e ex*ey	À,							۲	0 0	0	doN
						da = (8x*8y)	(X8.X)	:							0 0	Ξ	¥dd
						da = (ax*sa) + sy	(88.X	*						0	1	0	PDV 0
						de = (8x'8y) - 80	. (A	2						_	10	_	Sub
						da = (8x*84) - 8y	(X	ķ							٥	0	Sub
						do - min(sx*sy,so)	in(ex*	Ž,	-						0	ı	Min
						de = min(ex*ee.ey)	In(ex	10.87	_							0	0 Min
						de " max(ex"sy,64)	X (ex	8 y . 6	~						Ξ	-	Max
₹	_	0	Ε	PS	ż		×			λ		VIS SA DA	N V	¥	Sub-op	g	
						da = 8x + 8y	4 8 y		ŀ					0	0	0	doN
						de = sx + sy + se	B.							0	0		Add
						da = sx + sy; sa = sx - sy;	. + 8y:		8 × ×	×				0	1	0	AddSub
						de = (sx + sy) * sb	× * *	. (_					0		-	Mul
						ds = -(sx + sy) * sa	1X + 8)		•						0	0	Mulk
						de = min(sx+sy.ss)	ln(ex+	89.88	•						0	-	Min
						da = max(ax+sy.sa)	BK(8X+	¥.	•						_	0	Max
	ł		į			8 . ap	um(ee		ă	3	(ex, sy unused)				-	-	CombAdd
Extremum	-	-	9	PS	×		SX			SΥ	,	V/S SA DA	9	<	Sub-op	8	
						de = ext(ex,ey)	rt(8x,8)	2						9	٥	Н	g Q
						de = ext(sx,sy,ss	1(8X,8)	(88.)						0	٥	-	Ext
						de = ext(ax,sa) * sy	(8×,9)	:	_					0		0	PE PE
						da = -ext(sx,ss) * sy	xt(8 x, a	(e)	ý					9		1	McN No
						de = ext(ex,se) + sy	1(8X,94	-	<u>~</u>					-	0	0	₩qq
						de = ext(sx.sa) - sy	1(8X,84		>					_	0	1	Sub
	-		į			ext(sa,de) ? t = sx, tr = sy, kcs = lc	16) 7 (* 8X	tr = 8	Y, K	3 = IC				-	0	8mex
hype-metch	-	-	0	ьS	0		SX	П		λ		×	×	-	-	H	
Pormule	-	-	0	S	-		×S			Į¥p•		×	geve			-	Permute
			7			-		7	1	-		-	\dashv		Ц		
Reserved	-	3	7	S	×		SX	٦		š		SA DA V/S	<u>></u>		Sub-op	۵	

Type override permute override Offset override Nop (uadd) Muhhud Minhmax Address Add/Sub min/max 19 18 17 18 15 14 13 12 11 10 9 8 7 8 5 4 3 2 1 0 Syt [And | S* | S* | S* | 0 | SA | DA | abs | 0 | 0 0 SA DA abs 0 0 0 ereg Pcii 0 0 0 SA DA x 0 1 0 SA DA Py 1 0 0 SA DA Py 1 1 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Sub-ext */- */- x x V/S Rnd Fp r-ct Gx Fp Type:SY Permute:SY Offset:SY ٥اد 8 0 Pred PL SM Syl Li Type:SX Permute:SX Offset:SX Control and specifier Extensions Type/offset/permute extensions 0 Pred PL Sxt 0 Pred PL Sxt Add ₹ Ä

0 Pred Pt Pass 0 Pred I/R I/R px

FIG. 6 E

Blakely, Sokoloff, Taylor & Zafman LLP Title: Instruction Set Architecture for Signal Processors

1st Named Inventor: Kumar Ganapathy Express Mail No.: EV323393578US Sheet: 8 of 12

Docket No.: 42P14031D2D

(714) 557-3800

<Bit1, Bits9-6> == UI5 (Shift Amount)

<8113, 811a13-10> == UIS :POS

	9	18 17	٤	15	E	13 12 11 10	8	7	8 5	₹	c	2	-	0
400	E	P	0	0	0	ž		ΑŸ		RZ	7		7	٥
	<u>I</u> -	1	ŀ	9	٥	æ		ž	L	æ	RZ	Ã	×	-
max,man	1		2	9	•	ă		1	Ļ	۳	7	F	5	돭
E .	1-	3	2	•	-	X		Z.	L	2	22	F		9
3	<u>T</u> -	3	ŀ	ŀ	ŀ	×		 ≿	L	۳	7	F	ρd	0
YOU TO	<u>1</u> -		9	Ŀ	-	×		20	E	Red Dzt	0	0	0	-
2 4	Ŧ	3	9	Ŀ	ŀ	Sid		20	×	×	-	0	0	-
	<u>T</u> -	1	2	ŀ	-	X	Ē	og e	B	Ξ		-	0	-
200	Ŀ	1	9	-	-	Ä		120	Г	022	2	۲	-	-
200	1	1	-	ŀ	9	UIA:POS		22	Š	L	5		Н	0
200	<u>1</u> -		ŀ	ŀ	ŀ	VIIA POS		2	Rzi	ļ	OI2	0	0	-
2000	1	3	ŀ	P	ŀ	SOGAIL		RZ	Rzi	5	5	F	6	-
	1	3	ŀ	ŀ	9	1	SIB		L	٣	RZ	۲	F	_
5	1-	3	ŀ	P	· -		eis		l	6	g d	╏	6	0
÷ ;	1-	3	-	•	-		SIB		l	E	Pre	_	0	0
3 3	1	1	-	9	ŀ	UIS LCount	ŀ	UIS: Laize	2		UI2: Lei	=	0	-
3	-	2	-	0	-	ž	×	×	×	0	Pred	P		0
100	E	8	-	0	-	æ	×	×	×	-	Pre	P		9
1000	E	Pred	Ŀ	0	-	XX	×	UIS: Laize	9Z]1		UIZ: Let	10	-	-1
	E	Pred	-	-	0	ΑX	ľ	RY		ÞΣ	Н	Y.	^	ᅴ
Testbil	E	200	Ŀ	E	0	RX		CIS		20	2	۵	~	-1
Ando. oro	-	Pred	Ŀ	-	0	Вd	P.	Pc		2	٦		킈	-1
9	F	ğ	Ŀ	Ŀ	-	ΧX	•	RZ	Ц	ž		0	ᅴ	0
Store		Pred	-	-	-	MZ		χ	4	ũ	1	_		न
0.0ed	E	9 9	Ŀ	Ŀ	ŀ	MX		RZ	7	=	-	ᅴ	ᅴ	ᅴ
Store	-	Pred	Ŀ	-	١	MZ		×		=	-	킈	히	0
Extended	-	Pred	Ŀ	-	1		Bits	Bits 27:18				┪	_	ન
Look	Ŀ	Pred	<u> -</u>	-	-	æ	ά	RY/RZ	ě	죕	9	ᆿ	히	-1
mov-erd	-	Pred	Ŀ	-	_	unit ereg		RZ	B		us.	히	킈	-
ę	-	Pre	Ŀ	-	-	RX		25	ş	0	0	-	-	-[
Party	Ŀ	Pred	Ŀ	-	-	RX	Zd		O/E O	-	9	=	킈	-1
S	-	Pred	Ŀ	-	1	MZ		X		Ξ	9	_	_	-1
4	-	Pred	Ŀ	Ŀ	-	æ		RZ	٥	0	-	=	-	-1
2	E	Pred	Ŀ	Ŀ	-	æ		25	٥	1	-	-	=	-1
De-eleo	-	Pre	Ŀ	-	-	æ		RZ	-	0	-	-	-	-1
Test & Set	F	P 76	Ŀ	Ŀ	-	RX	Zd	۲	1 0	Ξ	1	-		-
	E			Ě	TAY BY		SM. 14		*· ;:	j - 1. 11 0	• • • • • • • • • • • • • • • • • • • •	•	:	
Return	7	Pred	-	1	ı	Pred I-ct	0	0		=	-	=	_	-[
Zero-ec	-	Pred	-	-	-	8 C €	- -	0	-	Ξ	-	_	-	-1
Sync	E	Pred	-	E	ŀ	RZ	0	-	-	Ξ	-	_	ᅴ	-1
SIE	7	Pred	٠	ı	ļ	OI3	-	=		Ξ	-	=	ᅴ	-1
S S S S S S S S S S S S S S S S S S S	7	Pred	-	Ξ	-	UI3 1			\exists	\exists	-	=	⇉	7

					Filt; Slgn/Zero					Bit 15 is continuation of inner LC					andp, orp, andorp, orandp; pz = (px refop py) refop pv)									
	10 9 8 7 6 5 4 3 2 1	Offset:UIS	x RV X	Ui5: Position (mm10	D U/S 1 Shin: UIS AL LI RL 0 Fill 1	0 nm RY	x x 1 Shift: UIS 1 x RM. 1 x 1	0 ηπ RY	U115	x ext 0 UII UI4: outer Laize UI4: Inner Laize [UI2: O-La] UI4: Inner Latar 0	x UI4; outer Laize UI4; Inner Laize (UI2: O-Le) UI4; Inner Latert [1	0 rxh md ryh +/- =/+ RZ W rzh rzi a/u a/u 0	0 not	X 12 DESCRIPTION OF THE PROPERTY OF THE PARTY OF THE PART	TRE[TRE[TRE] & A X 1	lmm18	lmm18	imm! ↓	timm!	0 Type Sito	1 Type Si10	lmm16	Imm16	imm16
Bits 13:2 of upper half (39:20)	7 8 5 4 3 2 19 18	RZ 0 0 0 0 x x 0 Rxt Rzt I/E PA RA		RZ [0 0 0 1 0 x x 0 Rzt	RZ [0 0 0 0 ndr nd 0 nzh nz		RZ 0 0 0 0 x x 0 x x		JJC 0 0 1 0 0 Pred 0 x	UI4: Inner LC 0 0 1 1 0 x ext 0 U11 U14	0 0 1 1 0 x ext 0	RY 0 1 0 0 x x 0 0 mh	RY 0 1 0 0 x x 0 0 ndh	ANGENTROSE HONES (SEALTH IN THE STATE OF THE	7 0 1 0 0 x x 0 1 1 1 1 1 1 1 1 1	DZ [0 1 0 1 0 24	RZ 0 1 1 1 0 0 x x 0	RZ 0 1 1 0 x x 0 0 0	RX 0 1 1 1 1 0 x x 0 0 1	RZ 0 1 1 1 0 x x 0 1 Rzi	RX 0 1 1 0 x x 0 1 Rzt	RZ 1 0 4/- 0 LI 4/4 0	RZ 1 0 X/N 1 0 x x 0	RZ 1 1 8 HA 0 x x 0
Bhs 13:2 o	를	Insert/Extract		Inserti	Shift		Rotate		mp. cent	UI4: outer LC		mut RX		Passerved	O X4 CONTROL		HAL FILL	Type	Type	RX	atorel MZ		mini,mand RX	

Blakely, Sokoloff, Taylor & Zafman LLP
Title: Instruction Set Architecture for Signal Processors
1st Named Inventor: Kumar Ganapathy
Express Mail No.: EV323393578US
Docket f
Sheet: 10 of 12

(714) 557-3800

Ű A	
	39 39 37 38 37 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38 38 38 38 38 38 38 38 38 38 38 38
ARTH:	36 36 37 38 35 34 34
E AT:	396 39 35 34 33 32 31 30 29 27 28 27 23 22 21 20 19 16 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 1 0
ÖÖ	39 39 37 36 35 34 33 32 31 30 29 28 27 29 25 24 23 22 21 20 19 19 17 16 15 14 13 12 11 10 9 9 7 6 5 4 3 2 1 1 0 Group Pred Sy Opcode SX
SHET;	39 38 37 38 35 34 32 31 30 79 28 27 78 25 24 23 22 21 20 19 16 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 5 5 5 5 5 5 5 5 5 5 5 5 5
::	39 34 37 36 35 34 33 32 31 36 22 22 22 22 22 22 22 22 22 22 22 22 22
2	39139 37130 135134 33131 30139 28 27 28 27 28 27 28 27 27 27 28 27 27 28
Branch:	39 38 38 37 38 35 32 31 30 29 28 27 28 27 28 22 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 7 6 5 4 3 2 1 1 0
Mac	

Blakely, Sokoloff, Taylor & Zafman LLP
Title: Instruction Set Architecture for Signal Processors
1st Named Inventor: Kumar Ganapathy
Express Mail No.: EV323393578US
Docket N
Sheet: 11 of 12 (714) 557-3800

Blakely, Sokoloff, Taylor & Zafman LLP
Title: Instruction Set Architecture for Signal Processors
1st Named Inventor: Kumar Ganapathy
Express Mail No.: EV323393578US
Docket N
Sheet: 12 of 12

(714) 557-3800

