

2D Arrays-1

Lecture-14

Raghav Garg

What and Why?

List

P, C, M	-	6	students
ables			

ل_ _	P	C	M	
	90	95	65	
	91	100	56	
	92	99	91	
	81	q _g	87	
	82	91	88	
	83	90	89	

Representation of 2D array -> Indexing matrix grid

cout << br [2][3];

ary b arr[index]

index - 0 to n-1

Declaration of a 2-Dimensional Array

```
int arr[4][2];
```

While initializing a 2D array it is necessary to mention the second (column) dimension, whereas the first dimension (row) is optional.

```
Correct int arr[2][3]; int arr[][3];
```

```
int arr[2][]; int arr[][];
```

int a[s];

0 1 2 3 4

int arr [3][3]; 0 4 0 1 2 3 arr [b][0] = 4; 1 8 1 4 5 6 arr [1][2] = 8; 2 2 8 9

int arr (3] [3] = { \(\xi_1, 2, 3\xi_3\), \(\xi_4, 5, 6\xi_3\), \(\xi_7, \xi_9\), \(\xi_5\)

2D Arrays are also array of arrays

Initialisation of a 2-Dimensional Array

```
int arr[4][2] = \{ \{ 1234, 56 \}, \{ 1256, 43 \}, \{ 1434, 32 \}, \{ 1312, 96 \} \};
int arr[4][2] = { 1234, 56, 1256, 43, 1434, 32, 1312, 96 };
int arr[2][3] = \{12, 34, 56, 78, 91, 23\};
int arr[][3] = \{12, 34, 56, 78, 91, 23\};
*int arr[2][] = {12, 34, 56, 78, 91, 23}.
```


Traversal through 2D array

Array of Arrays

4 5 6

Taking 2D array as input from the user

Very Simple

Ques: Write a program to store roll number and marks obtained by 4 students side by side in a matrix.

Ques: Write a C++ program to find the largest element of a given 2D array of integers.

Ques: Write a program to print sum of all the elements of a 2D matrix. bitto Same > C.W. attempt

Ques: Write a program to add two matrices.

*Ques : Write a program to print the transpose of the matrix entered by the user and store it in a new

matrix. 0 1

0	1	2	3
1	Ŋ	5	6
ay	r[m]	[n]	2 X 3 M × h

$$(0,0)$$
 $(0,1)$ $(0,2)$

	<u> </u>	l	
6	(Ч	
t	2	S	
2	3	6	
	t [n]	3×2 n×n [m]	

b 0 6 3 0 S 2 2 3 6 2 X 3 arr[m][n] mxh 3×2 t[n][m] nxm

Ques: Write a program to change the given matrix with its transpose.

[Leetcode 867]

Q, you are given a motrix /2D-Array of size (nxn).

Change this motrix into its transpose.

	0	1	2	3		0	<u> </u>	2	3
0	1	7/2	933	13 y y	O		SZ	93	X13
ſ	7 ₈₅	6	10 77	8 8	ſ	28	6	710	8/14
2	3 g	£ 10	n	12 h	2	39	10	II	1215
3	X 13	in in	15	16	3	134	148	15,12	16
		ary	[4][4]				aty	[4][4]	

Ques: Write a program to rotate the matrix by 90 degrees clockwise.

[Leetcode 48]

1	2	3	7	4	1
4	5	6	8	5	2
7	8	9	9	6	3

Hint 1: Transpose

neverse

1 5 9 13

transpose

	U	1	2	3
0	1	5	9	13
1	2	٤	ιU	14
2	3	7	(I	19
3	4	8	12	16

1) Matrix Multiplication
2) Spiral Printing

J. Next Lecture

Thank you!!