Tipe dan Jenis Data

Ali Akbar Septiandri

Universitas Al-Azhar Indonesia aliakbars@live.com

November 16, 2019

Selayang Pandang

- 1 Representasi Data Tentang Data Atribut
- 2 Tipe Data Record Graf Terurut
- 3 Masalah pada Data

Pengumuman

- 1 Segera enroll untuk kuliah Data Mining di e-learning!
- 2 Pengumpulan tugas akan dilakukan melalui e-learning
- 3 Ada baiknya untuk mengecek http://www.inf.ed.ac.uk/ teaching/courses/it/cribsheet.2up.pdf karena akan mulai dipakai dalam waktu dekat
- 4 Siapkan Python, Pandas, dan Jupyter Notebook!

Representasi Data

Variabel seperti apa yang dapat dipakai oleh sistem rekomendasi berdasarkan konten dari aplikasi seperti Spotify?

Korelasi pada Spotify

Gambar: Hubungan cuaca dengan "keakustikan" musik [van Buskirk, 2017] yang dilihat dari bunyi-bunyi alat akustik, e.g. gitar dan tamborin, dibandingkan dengan bunyi-bunyi elektronik, e.g. synthesizer

Korelasi pada Spotify

Gambar: Hubungan cuaca dengan "energi" musik [van Buskirk, 2017] yang dilihat dari kecepatan, volume, dan kebisingan, misalnya perbandingan kontras antara musik *death metal* dan komposisi Bach

Data, Atribut, dan Objek

Data

Data merupakan kumpulan objek (*instances*) yang memiliki atribut-atribut tertentu

Data, Atribut, dan Objek

Data

Data merupakan kumpulan objek (*instances*) yang memiliki atribut-atribut tertentu

Atribut

Karakteristik dari suatu objek, dikenal juga dengan nama **variabel** atau **fitur**

Data, Atribut, dan Objek

Data

Data merupakan kumpulan objek (*instances*) yang memiliki atribut-atribut tertentu

Atribut

Karakteristik dari suatu objek, dikenal juga dengan nama **variabel** atau **fitur**

Objek

Dikenal juga dengan nama **record**, **poin**, **sampel**, **entitas**, atau **instance**

Dari contoh kasus Spotify tadi, mana yang merupakan atributnya dan mana yang merupakan objeknya?

Nilai dan Tipe dari Atribut

1 Nilai dari suatu atribut dapat berupa simbol maupun angka

Nilai dan Tipe dari Atribut

- 1 Nilai dari suatu atribut dapat berupa simbol maupun angka
- Atribut yang sama dapat dipetakan ke beberapa nilai yang berbeda, misalnya karena beda satuan

Nilai dan Tipe dari Atribut

- 1 Nilai dari suatu atribut dapat berupa simbol maupun angka
- Atribut yang sama dapat dipetakan ke beberapa nilai yang berbeda, misalnya karena beda satuan
- 3 Ada tiga tipe atribut secara umum: categorical/nominal, ordinal, numeric

Atribut Nominal

- 1 Atribut nominal bernilai saling lepas (mutually exclusive)
- 2 Perbandingan yang dapat dilakukan hanya menguji kesamaan $(=, \neq)$
- 3 Tidak dapat diurutkan maupun diukur jaraknya
- 4 Contoh: Warna mata, genre musik, pekerjaan

Atribut Ordinal

- 1 Terdapat urutan yang ada secara natural, e.g. {kecil, sedang, besar} atau {tidak suka, netral, suka}
- 2 Dikodekan sebagai angka untuk mempertahankan urutan sehingga dapat dibandingkan (<,=,>)
- 3 Terkadang sulit untuk dibedakan dengan nominal, e.g. apakah ada urutan untuk {belum menikah, menikah, bercerai}?

Atribut Numerik

- Dapat bernilai bulat atau riil sehingga bisa dijumlahkan atau dirata-rata
- Sensitif terhadap nilai ekstrem, e.g. tinggi: {165,171,182,1850}
- 3 Terkadang dibedakan sebagai ratio dan interval

Ratio vs Interval

Ratio

Punya referensi nilai nol, e.g. berat, tinggi, jarak, suhu

Ratio vs Interval

Ratio

Punya referensi nilai nol, e.g. berat, tinggi, jarak, suhu

Interval

Tidak punya referensi nilai nol, e.g. tahun

Kasus dalam Atribut Numerik

- 1 Distribusi yang memiliki kecondongan, e.g. power law distribution $\rightarrow \log(x)$
- **2** Efek non-monotonik dari atribut, e.g. usia dalam menentukan pemenang marathon \rightarrow binning
- Terkadang perlu dilakukan standardisasi, i.e. menjadi distribusi Gaussian standar, atau normalisasi, i.e. dalam rentang [0, 1]

Distribusi yang Condong

Gambar: Power law distribution [Bersin, 2014]

Tipe Data

Data Matriks

Gambar: Data preferensi bubur ayam

Data Matriks

- 1 Bentuk data paling sederhana
- 2 Sudah siap diolah
- 3 Dikenal juga sebagai data terstruktur
- 4 Contoh lain: data transaksi, hasil penapisan verbal

Gambar

Bagaimana cara merepresentasikan gambar?

Gambar: Contoh data MNIST

[O'Shea, 2016]

Gambar

Gambar: Contoh data MNIST [O'Shea, 2016]

- Bagaimana cara merepresentasikan gambar?
- 2 Jika tiap pixel adalah atribut, berapa nilainya yang mungkin?

Gambar

Gambar: Contoh data MNIST [O'Shea, 2016]

- Bagaimana cara merepresentasikan gambar?
- 2 Jika tiap pixel adalah atribut, berapa nilainya yang mungkin?
- 3 Apa kelebihan dan kekurangannya?

Gambar: Object Recognition

Gambar: Dataset CIFAR-10 [Krizhevsky, 2009]

- Bagaimana dengan prediksi objek?
- 2 Tantangan: orientasi, skala, pencahayaan
- Menggunakan pixels saja (mungkin) tidak cukup!
- 4 Bisa dibagi berdasarkan "region"

Misklasifikasi dalam Pengenalan Objek

Gambar: Gedung yang dianggap sebagai burung unta setelah diterapkan noise

Teks

Contoh tugas:

- $\mathbf{0}$ berita \rightarrow topik
- 2 e-mail \rightarrow spam
- 3 tweet \rightarrow sentimen

Bagaimana merepresentasikannya?

Representasi bag-of-words (BoW), i.e. satu kata mewakili satu atribut

- Representasi bag-of-words (BoW), i.e. satu kata mewakili satu atribut
- 2 Bernilai 1 jika terdapat di contoh teks, 0 jika tidak

- Representasi bag-of-words (BoW), i.e. satu kata mewakili satu atribut
- 2 Bernilai 1 jika terdapat di contoh teks, 0 jika tidak
- 3 Dapat diubah menjadi frekuensi atau bobot (TF-IDF)

- Representasi bag-of-words (BoW), i.e. satu kata mewakili satu atribut
- 2 Bernilai 1 jika terdapat di contoh teks, 0 jika tidak
- 3 Dapat diubah menjadi frekuensi atau bobot (TF-IDF)
- 4 Catatan: Dimensinya bisa jadi sangat besar dan matriksnya akan menjadi sparse

Jejaring Sosial

Gambar: Graf dari drama Romeo dan Juliet berdasarkan kemunculan karakter di satu babak yang sama

Struktur Kimia

$$\begin{array}{c}
H \\
C \\
C \\
C \\
H
\end{array}$$

$$\begin{array}{c}
H \\
C \\
C \\
H
\end{array}$$

Gambar: Struktur kimia benzena [Hardinger, 2017]

Adjacency Matrix

Gambar: Adjacency matrix dari graf [Easley dan Kleinberg, 2010]

Genomic Sequence

Gambar: Urutan genom [Global Biodefense, 2014]

Spatio-Temporal

Gambar: Peta perjalanan seseorang yang direkam oleh Google Maps

Masalah pada Data

Dealing with Structures

Gambar: Data yang strukturnya berbentuk pohon

- Atribut dapat berupa jalur dari akar ke daun
- 2 Contoh: {2-7-2-NA, 2-7-6-5, 2-7-6-11, ...}

Missing Values

- 1 Tipe: tidak diketahui, tidak tersimpan, tidak relevan
- 2 Penyebab: perubahan desain eksperimen, penggabungan dataset, dsb.
- 3 Sangat mungkin terjadi!

Missing Values - Solusi

- 1 Nominal: Gunakan label spesial, e.g. "NA"
- 2 Numerik: Diganti nilainya, e.g. rata-rata atau median atribut tersebut
- 3 Algoritma: Beberapa algoritma, e.g. Naïve Bayes dan *decision* trees dapat menyelesaikan kasus ini
- 4 Buang instance-nya

Inaccurate Values

- 1 Kasus-kasus pencilan, kesalahan pengukuran, duplikat
- 2 Pahami datanya!
- 3 Dapat dibuang dengan konsekuensi terhadap akurasi model

Imbalanced Data

- 1 Kasus umum pada klasifikasi, e.g. diagnosis pasien
- 2 Frekuensi salah satu kelas lebih banyak dibanding kelas lain
- 3 Mungkin perlu metrics selain akurasi
- 4 Ongkos kesalahan klasifikasi yang mungkin perlu dibuat tidak seimbang
- 5 Lihat [Kotsiantis, et al., 2006]!

Perbedaan Rentang

- Nilai dari atribut yang berbeda bisa ada pada rentang yang berbeda
- Dapat mempengaruhi kinerja algoritma pembelajaran mesin, e.g. SVM atau k-NN
- Perlu "diseragamkan"

Perbedaan Rentang - Solusi

Standardisasi

Mengubah nilai menjadi terdistribusi normal standar

$$x' = \frac{x - \mu}{\sigma}$$

Normalisasi

Mengubah nilai menjadi dalam rentang [0,1]

$$x' = \frac{x - \min}{\max - \min}$$

Atribut Nominal

- Beberapa algoritma pembelajaran mesin tidak bisa mengolah atribut nominal secara langsung, e.g. regresi linear, SVM, neural network
- Data kategorikal tidak selalu bersifat ordinal, e.g. merk ponsel, negara
- Solusi: one-hot encoder

One-hot Encoder

origin		origin_europe	origin_japan	origin_usa
usa		0	0	1
usa		0	0	1
usa	\rightarrow	0	0	1
europe		1	0	0
usa		0	0	1
japan		0	1	0
japan		0	1	0

Referensi

Eliot Van Buskirk (7 Februari 2017)

Spotify, Accuweather Reveal How Weather Affects Music Listening

https://insights.spotify.com/us/2017/02/07/spotify-accuweather-music-and-weather/

Josh Bersin (19 Februari 2014)

The Myth Of The Bell Curve: Look For The Hyper-Performers

https://www.forbes.com/sites/joshbersin/2014/02/19/the-myth-of-the-bell-curve-look-for-the-hyper-performers/

Tim O'Shea (Juli 2016)

MNIST Generative Adversarial Model in Keras

http://www.kdnuggets.com/2016/07/mnist-generative-adversarial-model-keras.html

Alex Krizhevsky (2009)

Learning Multiple Layers of Features from Tiny Images

https://www.cs.toronto.edu/~kriz/cifar.html

Referensi

http://web.chem.ucla.edu/~harding/IGOC/B/benzene_ring.html

David Easley & Jon Kleinberg (2010)

Networks, crowds, and markets: Reasoning about a highly connected world

Cambridge University Press

Global Biodefense (25 Juni 2014)

 ${\sf USAMRIID\ Leads\ Effort\ on\ Viral\ Genome\ Sequencing\ Standards}$

https://globalbiodefense.com/2014/06/25/usamriid-leads-effort-viral-genome-sequencing-standards/

Sotiris Kotsiantis, Dimitris Kanellopoulos, Panayiotis Pintelas (2006) Handling imbalanced datasets: A review

GESTS International Transactions on Computer Science and Engineering, 30(1), 25-36.

Terima kasih