The coordinates of three vertices of $\Box ABCD$ are given. Plot the points and find the coordinates of the fourth vertex.

(17. $A(1, 0), B(5, 0), C(7, 2), D(\frac{?}{?}, \frac{?}{?})$

18. $A(3, 2), B(8, 2), C(\frac{?}{?}, \frac{?}{?}), D(0, 5)$

Each figure in Exercises 19-24 is a parallelogram with its diagonals drawn. Find the values of x and y.

19.

2x + 8

20.

21.

23.

(24.

Quad. DECK is a parallelogram. Complete.

- **25.** If KT = 2x + y, DT = x + 2y, TE = 12, and TC = 9, then $x = \frac{?}{}$ and $y = \frac{?}{}$.
- **26.** If DE = x + y, EC = 12, CK = 2x y, KD = 3x - 2y, then $x = \frac{?}{}$, $y = \frac{?}{}$, and the perimeter of $\square DECK = ?$
- **27.** If $m \angle 1 = 3x$, $m \angle 2 = 4x$, and $m \angle 3 = x^2 70$, then $x = \frac{?}{}$ and $m \angle CED = \frac{?}{}$ (numerical answers).
- **28.** If $m \angle 1 = 42$, $m \angle 2 = x^2$, and $m \angle CED = 13x$, then $m \angle 2 = \frac{?}{}$ or $m \angle 2 = \frac{?}{}$ (numerical answers).

- **29.** Given: $\Box PQRS$; $\overline{PJ} \cong \overline{RK}$ Prove: $\overline{SJ} \cong \overline{OK}$
- **30.** Given: $\square JQKS$; $PJ \cong RK$ Prove: $\angle P \cong \angle R$
- 31. Given: ABCD is a \square : $CD \cong CE$ Prove: $\angle A \cong \angle E$
- **32.** Given: ABCD is a \square ; $\angle A \cong \angle E$ Prove: $AB \cong CE$

