Assessing the scientific impact of research

Thanasis Vergoulis
1/10/2020

The constantly increasing size of scientific output

Exponential growth of scientific publications

- Increase in the number of researchers worldwide [1]
- Large number of journals [2]
- "Publish or perish" [3]

The constantly increasing size of scientific output

Exponential growth of scientific publications

- Increase in the number of researchers worldwide [1]
- Large number of journals [2]
- "Publish or perish" [3]

The constantly increasing size of scientific output

Exponential growth of scientific publications

- Increase in the number of researchers worldwide [1]
- Large number of journals [2]
- "Publish or perish" [3]

In many cases, articles contain low quality research^[4,5]...

honest mistakes because of time pressure (publish or perish)

predatory publishers

data manipulation e.g. pi-hacking

peer-review scams plagiarism

Assessing scientific impact is crucial for...

A major problem...

Useful data for reseach assessment:

- Publication content
- References (citations)
- Social media data (e.g., #tweets)
- Usage data (e.g., #downloads)

These data have been **isolated in data silos** of publishers or/and research organizations

Photo by Jeremy Olson on Unsplash

Open Science - Open Access - Science 2.0

Ongoing change:

- Many open science & open access initiatives
 - BOAI https://www.budapestopenaccessinitiative.org/
 - cOAlation S https://www.scienceeurope.org/coalition-s/
 - Scientific data should be **FAIR**: Findable, Accessible, Interoperable, Reusable
- Most research is publicly funded → the results should be open

Scientific impact has many aspects

Many diverge indicators/metrics have been proposed in the literature.

Each captures a slightly or completely **different impact aspect**.

We will focus on **citation-based** metrics.

No silver bullets

Naïve to believe that one metric captures the "holistic impact".

- The impact of a paper has many different aspects [6]
 - **Popularity**: Short-term impact (having a "hype")
 - Influence: Long-term impact (being "fundamental" for a discipline)
 - Social impact: Having hype in social media (e.g., altmetrics)
- Different aspects may be more important for different users.
 - Different algorithms may capture better different impact aspects.

Don't forget Goodhart's law!

Measuring impact

- How?
 - Use **citation count** (CC) to measure impact
 - Not all citations equally important
 - Citation networks ~ Web (page=paper, link=citation)
 - Use **PageRank** (PR) instead (link analysis measures centrality
 - Considers the impact/importance of those citing a paper

Bias against recent papers

- Centrality-based impact (CC,PR) inserts bias against recently published papers [7,8,9]
 - New papers have almost zero in-degree.
 - Citations to these papers will appear after months or even years (citation lag). [10,11,12,13]
 - However, these "late" citations indicate contemporary impact, not future impact (papers being read now)
- In this case, network evolution is much slower than in the case of the Web making the "bias-against-recent-nodes" problem more crucial.
 - Ranking algorithms trying to alleviate this issue have been proposed in the last years
 - Large room for improvements (as you will see)

Existing approaches

23+1 methods 7 approaches

Method	Basic PR variants	Time Aware		Metadata		Multiple Networks	Engemble	Othen
		Network Matrix	Landing Probability	Venue	Author	Muniple Networks	Ensemble	Other
Non-Linear PageRank (NPR) [50]	√							
SPR [53]	✓							
SCEAS [41]	✓							
Focused PageRank [31]	✓							
Weighted Citation (WC) [49]		✓		✓				
Retained Adjacency Matrix (RAM) [19]		✓						
Timed PageRank [51,52]		✓		✓	✓			
Effective Contagion Matrix (ECM) [19]		✓						
NewRank (NR) [13]		✓	✓					
NTUWeightedPR [11]		✓	✓	✓	✓			
EWPR [34]		✓		✓	✓		✓	
CiteRank (CR) [45]			✓					
FutureRank (FR) [40]			✓		✓	✓		
YetRank (YR) [24]			✓	✓				
Wang et al. [47]			✓	✓	✓	✓		
PopRank [36]						✓		
MutualRank [27]						✓		
NTUTriPartite (WSDM) [17]				✓	✓	✓	✓	
NTUEnsemble [9]		✓	✓	✓	✓	✓	✓	
bletchleypark [22]		✓		✓	✓		✓	
ALEF [48]					✓		✓	
S-RCR [38]								✓
Citation Wake [29]								✓

Website: https://bip.imsi.athenarc.gr/

Twitter: @BipFinder

BIP! comparison

	Title	Venue	Year	Impact	
•	Fast Pattern Matching in Strings 1	SIAM J Comput	1973	<u> •</u> 🟛	×
•	BRIEF: binary robust independent elementary features 19	European Conference On Co ()	2010	<u> •</u> <u> </u>	×

Special Issue of Quantitative Science Studies

n

Scientific Knowledge Graphs and Research Impact Assessment

AlMinScience 2020

1st International Workshop on Assessing Impact and Merit in Science

Lyon, France / August 25, 2020

Co-located with TPDL, ADBIS, and EDA

Website: https://aiminscience.athenarc.gr/

Twitter: <u>@aiminscience</u>

Editor in Chief:

Ludo Waltman, Leiden University, the Netherlands

Guest Editors:

Paolo Manghi, ISTI-CNR, Italy & OpenAIRE Andrea Mannocci, ISTI-CNR, Italy Francesco Osborne, The Open University, UK Dimitris Sacharidis, TU Wien, Austria, Angelo Salatino, The Open University, UK Thanasis Vergoulis, "Athena" RC, Greece)

Submission deadline: January 31th, 2021

https://aiminscience.athenarc.gr/

@aiminscience

Call for Papers

References

- [1] UNESCO Science Report: towards 2030. UNESCO Publishing, 2015
- [2] SCImago, (n.d.). SJR SCImago Journal & Country Rank [Portal]. Retrieved 19/11/2018, from http://www.scimagojr.com
- [3] D. Fanelli. Do pressures to publish increase scientists' bias? an empirical support from us states data. PLOS ONE, 5(4):1–7, 04 2010.
- [4] J. P. Ioannidis. Why most published research findings are false. PLoS Med, 2(8):e124, 2005.
- [5] D. Sarewitz. The pressure to publish pushes down quality. Nature, 533(7602):147–147, 2016.
- [6] P. Chen, H. Xie, S. Maslov, and S. Redner. Finding scientific gems with googles pagerank algorithm. Journal of Informetrics, 1(1):8(15, 2007.
- [7] W.-S. Hwang, S.-M. Chae, S.-W. Kim, and G. Woo. Yet another paper ranking algorithm advocating recent publications. In Proceedings of the 19th international conference on World wide web, pages 1117-1118. ACM, 2010.
- [8] P. S. Yu, X. Li, and B. Liu. On the temporal dimension of search. In Proceedings of the 13th international World Wide Web conference on Alternate track papers & posters, pages 448-449. ACM, 2004.
- [9] E. V. Bernstam, J. R. Herskovic, Y. Aphinyanaphongs, C. F. Aliferis, M. G. Sriram, and W. R. Hersh. Using citation data to improve retrieval from medline. Journal of the American Medical Informatics Association, 13(1):96{105, 2006.
- [10] V. P. Diodato and P. Gellatly. Dictionary of Bibliometrics (Haworth Library and Information Science). Routledge, 1994.
- [11] P. Groth and T. Gurney. Studying scientific discourse on the web using bibliometrics: A chemistry blogging case study. 2010.
- [12] D. R. Smith. A 30-year citation analysis of bibliometric trends at the archives of environmental health, 1975(2004. Archives of environmental & occupational health, 64(sup1):43(54, 2009.
- [13] J. Bollen, H. Van de Sompel, A. Hagberg, and R. Chute. A principal component analysis of 39 scientific impact measures. PloS one, 4(6):e6022, 2009.
- [14] X. Bai, H. Liu, F. Zhang, Z. Ning, X. Kong, I. Lee, and F. Xia. An overview on evaluating and predicting scholarly article impact. Information, 8(3):73, 2017.