Robust (Decentralized) Oracle Design

Leifu Zhang

The Hong Kong University of Science and Technology (Guangzhou)

July 2024 @ CMID

A lending smart contract

I want to borrow ETH by depositing 100 (W)BTC as collateral

Applications that provide (external) information to smart contracts

Sources: https://www.tronweekly.com/inverse-finance-loses-15m-oracle-manipulation/
https://cryptonews.com/news/defi-lending-protocol-fortress-loses-all-funds-oracle-price-manipulation-attack.htm

The importance of oracles

- Oracles are the cornerstone of DeFi
 - Decentralized lending platforms
 - Prediction markets
 - Insurance contracts
 - NFT games
 - (Many) stablecoins

• ...

The oracle problem

• How can we ensure the information provided by oracles is accurate?

The oracle problem

- How can we ensure the information provided by oracles is accurate?
- Single source → single point of failure

The oracle problem

- How can we ensure the information provided by oracles is accurate?
- Single source → single point of failure → decentralization!

Q: Can we find a robust compensation mechanism?

Definition

A compensation mechanism is robust if, under that mechanism, there is an equilibrium in which truthful reporting is the unique optimal response for strategic nodes regardless of the adversary's strategy.

Q: Can we find a robust compensation mechanism?

Definition

A compensation mechanism is robust if, under that mechanism, there is an equilibrium in which truthful reporting is the unique optimal response for strategic nodes regardless of the adversary's strategy.

- A: Without identifying an honest node, generally no
- Takeaway: "A" limit of decentralization

• Q: What is the optimal way to aggregate information under the worst-case scenario?

• Q: What is the optimal way to aggregate information under the worst-case scenario?

- Key observations:
 - 1. Obtaining consensus = unsupervised learning with contaminated data
 - 2. The popular aggregating method ignores the multi-dimensional structure of decentralized oracles---each node usually covers many cryptocurrencies

The high-dimensional structure

Source: https://market.link/nodes/568cedcc-46f3-49e4-84c7-a9d7d5e23a0d/nodes

• Q: What is the optimal way to aggregate information under the worst-case scenario?

- A: A filtering algorithm can dramatically improve the consensus by utilizing this multi-dimensional structure
 - Adversarial nodes which look "normal" in every single dimension could be detected from a "global" view
 - Approaching the theoretical limit

Related literature

- · Oracle design
 - F. Zhang et al. (2016), F. Zhang et al. (2020), Breidenbach et al. (2021)
 - Contribution: 1) "A" limit of decentralization; 2) connecting machine learning to oracle design
- Information elicitation
 - McCarthy (1956), Savage (1971), Prelec (2004), Miller et al. (2005), P. Zhang and Chen (2014), Lambert (2019), Gao et al. (2019)
 - · Contribution: Getting an impossible result under the adversarial environments
- Manipulation in traditional capital markets
 - Gandhi et al. (2019), A. Zhang (2022)
 - Contribution: Shedding light on designing replacements for the London Inter-Bank Offered Rate (LIBOR)
- Byzantine fault tolerance
 - Lamport et al. (1982), Amoussou-Guenou et al. (2021), Halaburda et al. (2021)
- Machine learning
 - Lai et al. (2016), Diakonikolas et al. (2016, 2017, 2019), Charikar et al. (2017), Zhu et al. (2022)

Setting

- n (a large number of) nodes; εn nodes are controlled by an adversary
- The rest nodes are risk-neutral and strategic: Maximizing the expected payoffs given by the designer
- Ground truth $X \sim U(\mathbb{R}^d)$
- Each strategic node has a private signal

$$\mathbf{s}_i = \mathbf{X} + \mathbf{e}_i$$

- $\mathbb{E}[\mathbf{e}_i] = \mathbf{0}$ and \mathbf{e}_i has a bounded covariance matrix
- Key assumption: The adversary observes strategic nodes' private signals

Setting

- n (a large number of) nodes; εn nodes are controlled by an adversary
- The rest nodes are risk-neutral and strategic: Maximizing the expected payoffs given by the designer
- Ground truth $X \sim U(\mathbb{R}^d)$
- Each strategic node has a private signal $\mathbf{s}_i = \mathbf{X} + \mathbf{e}_i$
 - $\mathbb{E}[\mathbf{e}_i] = \mathbf{0}$ and \mathbf{e}_i has a bounded covariance matrix
- Key assumption: The adversary observes strategic nodes' private signals

Timing:

- 1. The designer announces a compensation mechanism
- 2. Each node submits a report
- The designer pays each node and outputs a consensus

Setting

- n (a large number of) nodes; εn nodes are controlled by an adversary
- The rest nodes are risk-neutral and strategic: Maximizing the expected payoffs given by the designer
- Ground truth $X \sim U(\mathbb{R}^d)$
- Each strategic node has a private signal $\mathbf{s}_i = \mathbf{X} + \mathbf{e}_i$

 - $\mathbb{E}[\mathbf{e}_i] = \mathbf{0}$ and \mathbf{e}_i has a bounded covariance matrix
- Key assumption: The adversary observes strategic nodes' private signals

Goals:

- Find a robust compensation mechanism 1.
- Find a robust consensus $\hat{\mathbf{X}}$ that is close to \mathbf{X}

robust = good given the adversary's any strategy

Part 1: (No) Robust compensation mechanism

• Suppose $\mathbf{s}_i = \mathbf{X} + \mathcal{N}(0,1)$ and consider node i's decision problem

• Suppose $\mathbf{s}_i = \mathbf{X} + \mathcal{N}(0,1)$ and consider node i's decision problem

- Suppose $\mathbf{s}_i = \mathbf{X} + \mathcal{N}(0,1)$ and consider node i's decision problem
- Greenline = (1ε) * Blueline + ε * Orangeline
- Node *i*'s beliefs about other nodes' reports

Lemma [implied by an observation in robust statistics]

Under a mild sufficient condition, the adversary has a reporting strategy such that even if node i may have different private information, node i's beliefs about other nodes' reports are unchanged.

Private signal \mathbf{s}_i

_	0	1
0	u_{00}	u_{01}
1	u_{10}	u_{11}

Report \mathbf{r}_i

reports 0

receives 0

Private signal \mathbf{s}_i

	0	1
0	u_{00}	u_{01}
1	u_{10}	u_{11}

Report \mathbf{r}_i

Private signal \mathbf{s}_i

	0	1
0	u_{00}	u_{01}
1	u_{10}	u_{11}

Report \mathbf{r}_i

	0	1
0	u_{00}	u_{01}
1	u_{10}	u_{11}

Report \mathbf{r}_i

- Let $Q(\cdot; \mathbf{s})$ be a strategic node's posterior belief about another strategic node's private signal after observing \mathbf{s}
- Let d_{TV} denotes the total variation distance

$$d_{\mathrm{TV}}(P, P') \coloneqq \sup_{E \in \mathfrak{B}} [P(E) - P'(E)]$$

• Let \mathcal{D} be the dataset of all reports

Theorem

If there are are two different signal realizations, s and s', such that

$$d_{\mathrm{TV}}(Q(\cdot;\mathbf{s}),Q(\cdot;\mathbf{s}')) \leq \frac{\varepsilon}{1-\varepsilon},$$

then for any compensation mechanism $\mathcal M$ as a function of $\mathcal D$, $\mathcal M$ cannot be robust.

- Let $Q(\cdot; \mathbf{s})$ be a strategic node's posterior belief about another strategic node's private signal after observing \mathbf{s}
- Let d_{TV} denotes the total variation distance

$$d_{\mathrm{TV}}(P, P') \coloneqq \sup_{E \in \mathfrak{B}} [P(E) - P'(E)]$$

• Let \mathcal{D} be the dataset of all reports

the private signal's precision

Theorem

If there are are two different signal realizations, s and s', such that

$$d_{\text{TV}}(Q(\cdot; \mathbf{s}), Q(\cdot; \mathbf{s}')) \leq \frac{\varepsilon}{1 - \varepsilon}$$

then for any compensation mechanism \mathcal{M} as a function of \mathcal{D} , \mathcal{M} cannot be robust.

the adversary's power

 Economic intuition: Has to reward truth-telling and/or punish misreporting; but no way to check whether node i misreports or not given the adversary's strategy

• Mathematical "intuition": Data contamination breaks the stochastic relevance condition [which is the necessary condition to have a strict truth-telling eqm (P. Zhang and Chen, 2014)]

Part 2: Robust consensus

Robust consensus: Overview

• The most popular consensus mechanism:

Taking the (coordinate-wise) median

- Bad if the noise term is asymmetric even without an adversary!
- Not a bad estimator if symmetric; but is far from optimal under a highdimensional environment!
 - Even the best 1-d estimator can yield a L^2 -norm error $\geq C\sqrt{\varepsilon d}$ (Folklore)
- Recent machine learning algorithms---unsupervised learning with contaminated datasets--- could yield a consensus that nearly achieves the error's theoretical lower bound without assuming symmetry!

The current method may fail

[The high-level idea (Diakonikolas et al., 2016, 2017; Diakonikolas and Kane, 2021): Using the covariance matrix!]

[The high-level idea (Diakonikolas et al., 2016, 2017; Diakonikolas and Kane, 2021): Using the covariance matrix!]

The filtering algorithm (Diakonikolas et al., 2016, 2017; Zhu et al., 2022)

- 1. Calculate the empirical covariance of the dataset ${\mathcal D}$ and find the largest eigenvalue
- 2. If the largest eigenvalue is small, then return the empirical mean of \mathcal{D}
- 3. Otherwise,
 - project \mathcal{D} onto the eigenvector that is associated with the largest eigenvalue;
 - Downweight each point according to the distance between its projection and the projection of the empirical mean, and obtain a new dataset $\widetilde{\mathcal{D}}$;
 - replace ${\mathcal D}$ with $\widetilde{{\mathcal D}}$ and return to Step 1

theoretical lower bound

Theorem (Zhu et al., 2022)

The filtering algorithm will output a consensus \widehat{X} such that

$$\|\widehat{\mathbf{X}} - \mathbf{X}\|_{2} \le \sigma \sqrt{\varepsilon} \left(\frac{1}{\sqrt{1-\varepsilon}} + \frac{\sqrt{2}}{1-2\varepsilon} \right),$$

where σ^2 is an upper bound on the L^2 -norm of the noise term's covariance matrix.

theoretical lower bound

Theorem (Zhu et al., 2022)

The filtering algorithm will output a consensus \hat{X} such that

$$\|\widehat{\mathbf{X}} - \mathbf{X}\|_{2} \le \sigma \sqrt{\varepsilon} \left(\frac{1}{\sqrt{1-\varepsilon}} + \frac{\sqrt{2}}{1-2\varepsilon} \right),$$

where σ^2 is an upper bound on the L^2 -norm of the noise term's covariance matrix.

Best 1-d estimator: $\geq \sigma \sqrt{\varepsilon d}$

- Charikar et al. (2017)
 - There is no algorithm can return a unique consensus that is close to the ground truth
 - But we can return a list of candidates, in which at least one of them is "good"
 - A clever clustering algorithm

Which point is the ground truth?

Concluding remarks

• In general, no perfect decentralized solution to the oracle problem

Machine learning can improve the consensus substantially

All results also shed light on designing replacements for LIBOR

Thank you! 🕥