ECE 209 — Exam # 3

Estimated time for completion: <75 minutes 22 November 2016

Rules of the Exam

Rule 1: The examination period begins at 11:00pm on Tuesday 24 November 2015 and ends at 12:15pm on Tuesday 24 November 2015.

Rule 2: There are three problems.

Rule 3: Show all work and state all assumptions. Make sure to include the units along with a numerical answer. Answers without support when needed will not receive credit.

Rule 4: The exam is closed book and closed notes. You may have an 8.5" x 11" sheet of paper with notes. You may use a calculator.

Name

Happy Thanksgiving!

Problem 1 (20 points)

In the circuit below, the switch has been closed for a very long time and opens at t = 0. There is no energy stored in the circuit at the time the switch opens.

What is $i_2(0^-)$ ______

What is $i_2(0^+)$ ______

What is the differential equation that describes the behavior of $i_2(t)$ for $t \ge 0$? (Note: you do not need to solve the equation.)

Problem 2 (40 points)

In the circuit below, the switch has been open for a very long time and closes at t=0.

What is the time constant of the circuit for t > 0?

Complete the table below:

	$t = 0^{-}$	$t = 0^{+}$	t = 5 ms	$t = \infty$
i_1				
i_2				
i_3				
v_C				

Problem 3 (40 points)

What is $v_S(4\text{ms})$?

Part A. For the circuit below the voltage source $v_s(t) = 100\cos(1885t - 55^\circ)$ V

What is the peak voltage across the resistor?	

What is
$$i_S(4\text{ms})$$
?

What is the frequency of
$$V_R(t)$$
 in Hz?

Part B. What is the Phasor representation of the following time-domain signals?

$$v(t) = 20\cos(360t - 30^{\circ}) \text{ mV}$$

$$i(t) = 45\sin(450t + 70^{\circ}) \text{ A}$$

Part C. What is the time-domain representation of the following Phasor signals when the frequency is 5 MHz?

$$\mathbf{V} = 21 \angle -50^{\circ} \text{ V}$$

$$I = 3 \angle 10^{\circ} A$$

Part D. Convert the circuit below on the left to the frequency domain when the frequency is $1.5~\mathrm{kHz}$.

At what radian frequency, ω , is the impedance Z_{AB} purely resistive?

Name:
