Ethereum Sharding

Yijie Hong 09/28/2018

Roadmap^[1]

- Phase 0: PoS beacon chain without shards
 - Based on Casper FFG (Casper the Friendly Finality Gadget)
 - Target at 2019^[2]
- Phase 1: Basic sharding without EVM
- Phase 2: EVM state transition function
- Phase 3: Light client state protocol
- Phase 4: Cross-shard transactions: see here and more.
- Phase 5: Tight coupling with main chain security: here and more.
- Phase 6: Super-quadratic or exponential sharding

Ethereum Phase 1 architecture

Ethereum sharding research by <u>Prysmatic Labs</u>. [5]

Casper- the friendly consensus mechanism

- Start since 2014
- Two research projects
 - Casper the Friendly Finality Gadget (FFG) led by Vitalik Buterin
 - Casper the Friendly Ghost: Correct-by-Construction (CBC), led by Vlad
 Zamfir
- Casper FFG^[3]
 - A hybrid PoW/PoS consensus mechanism that will assist in the transition to PoS.
 - A checkpoint is added after 50 blocks.
 - Help scaling & Mitigate the "wasted electricity" used in mining.
 - Initially, keep POW and only use PoS to validate "checkpoints" periodically
 - A Proof of Stake Design Philosophy

Ethereum Phase 1 solution

From Ethereum research team (slides)

- Client submits transactions to Tx pool
- Collation proposers create collations which pay a fee to validators
- Validators download potential collation proposals and validate them
- Validators submit collation header to the root chain
- **Committee** votes for collation heads from notaries and generate new block for main chain.
- Detailed process with animation!!!^[4]

Ethereum Sharding FAQs (my notes)

- Some solutions not work
 - More blockchains & more altcoins => N-factor decrease in security
 - Bigger block => only supercomputers can support => centralization
 - Merge mining => more load to miner => less miners => centralization
- Some solutions might work
 - Classic PoW requires over 95% CPU time for hashing; <u>bitcoin-NG</u> can spent more CPU for block validation.
 - Channel-based solutions scale Tx by constant factor, which however cannot scale storage.
 - PoS (Casper FFG): more scalable and decentralizable.
 - Above-mentioned solutions can be applied with sharding.

Single-shard takeover attacks (51%)

- Random sampling is good enough
 - N: # of nodes in a shard; p: % of bad nodes.
 - o size N = 150, 0.000183% if 1/3 of total nodes are bad. (binomial distribution)
- PoS is easy for random sampling
 - Run the random function based on the stake.
- PoW is more difficult
 - Malignant node can keep running random function until it is assigned to a specific shard.
- Reshuffle frequency
 - Downloading the whole Ethereum state snapshot take 2~8 hours ==> reshuffling every few days.

	N = 50	N = 100	N = 150	N = 250
p = 0.4	0.0978	0.0271	0.0082	0.0009
p = 0.33	0.0108	0.0004	1.83 * 10-5	3.98 * 10-8
p = 0.25	0.0001	6.63 * 10 ⁻⁸	4.11 * 10 ⁻¹¹	1.81 * 10-17
p = 0.2	2.09 * 10 ⁻⁶	2.14 * 10 ⁻¹¹	2.50 * 10 ⁻¹⁶	3.96 * 10 ⁻²⁶

Other topic mentioned

- Cross-shard contract yanking
- Data availability problem
- Congealed gas
- Heterogeneous sharding
- Synchronous and semi-asynchronous cross-shard messages messages
- Guaranteed cross-shard call
- Bitcoin-NG

Reference

- 1. https://github.com/ethereum/wiki/wiki/Sharding-roadmap
- 2. https://www.coinstaker.com/ethereum-sharding-casper-release-dates/
- 3. https://bravenewcoin.com/insights/ethereums-move-to-pos-first-version-of-casper-released
- 4. https://docs.google.com/presentation/d/1f97Dhm1ZMnZQb2a6LrT53GTwidLk9LL8oCb7F0EmJss/edit#slide=id.g3595449e9e 0 337
- 5. https://medium.com/prysmatic-labs-f2b1ad55e825
- 6. https://ethfans.org/posts/ethereum-casper-101

