

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
17. Juni 2004 (17.06.2004)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2004/050877 A1

(51) Internationale Patentklassifikation⁷: **C12N 15/63**

(21) Internationales Aktenzeichen: PCT/EP2003/013367

(22) Internationales Anmeldedatum:
27. November 2003 (27.11.2003)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
102 56 381.0 2. Dezember 2002 (02.12.2002) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): **BASF AKTIENGESELLSCHAFT** [DE/DE]; 67056 Ludwigshafen (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): **KEBELE, Maria** [DE/DE]; Max-Joseph-Str. 6, 68167 Mannheim (DE). **ZELINSKI, Thomas** [DE/DE]; Kirchengasse 16, 67271 Neuleiningen (DE). **HAUER, Bernhard** [DE/DE]; Merowingerstr.1, 67136 Fussgönheim (DE).

(74) Gemeinsamer Vertreter: **BASF AKTIENGESELLSCHAFT**; 67056 LUDWIGSHAFEN (DE).

(81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,

[Fortsetzung auf der nächsten Seite]

(54) Title: L-RHAMNOSE-INDUCIBLE EXPRESSION SYSTEMS

(54) Bezeichnung: L-RHAMNOSE-INDUZIERBARE EXPRESSIONSSYSTEME

A

B

WO 2004/050877 A1

auf eine L-Rhamnose-Isomerase.

(57) Abstract: The invention relates to methods for expressing nucleic acid sequences in prokaryotic host cells. According to said methods, at least one DNA construct that can be episomally replicated in said host cells and comprises a nucleic acid sequence that is to be expressed is introduced into the host cells under the transcriptional control of an L-rhamnose-inducible promoter, said promoter being heterologous relative to said nucleic acid sequence, and expression of the nucleic acid sequence is induced by adding L-rhamnose. The inventive methods are characterized by the fact that the prokaryotic host cell used is at least deficient in an L-rhamnose isomerase.

(57) Zusammenfassung: Die vorliegende Erfindung betrifft Verfahren zur Expression von Nukleinsäuresequenzen in prokaryotischen Wirtszellen, wobei man mindestens ein in besagten Wirtszellen episomally replizierbares DNA-Konstrukt umfassend eine zu exprimierende Nukleinsäuresequenz unter transkriptioneller Kontrolle eines L-Rhamnose-induzierbaren Promotors, wobei besagter Promotor in Bezug auf besagte Nukleinsäuresequenz heterolog ist, in besagte Wirtszellen einbringt und die Expression besagter Nukleinsäuresequenz durch Zugabe von L-Rhamnose induziert, dadurch gekennzeichnet, dass die prokaryotische Wirtszelle zumindest defizient ist in Bezug

MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(84) **Bestimmungsstaaten (regional):** ARIPO-Patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF,

Veröffentlicht:

— mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

L-Rhamnose-induzierbare Expressionssysteme

Die vorliegende Erfindung betrifft Verfahren zur Expression von Nukleinsäuresequenzen in prokaryontischen Wirtszellen, wobei man mindestens ein in besagten Wirtszellen episomal replizierbares DNA-Konstrukt umfassend eine zu exprimierende Nukleinsäuresequenz unter transkriptioneller Kontrolle eines L-Rhamnose-induzierbaren Promotors, wobei besagter Promotor in Bezug auf besagte Nukleinsäuresequenz heterolog ist, in besagte Wirtszellen einbringt und die Expression besagter Nukleinsäuresequenz durch Zugabe von L-Rhamnose induziert, dadurch gekennzeichnet, dass die prokaryontische Wirtszelle zumindest defizient ist in Bezug auf eine L-Rhamnose-Isomerase. Die Erfindung betrifft ferner prokaryontische Wirtszellen, die zumindest defizient sind in Bezug auf eine L-Rhamnose-Isomerase und mindestens ein in besagter Wirtszelle replizierbares DNA-Konstrukt enthalten, welches eine zu exprimierende Nukleinsäuresequenz unter transkriptioneller Kontrolle eines durch L-Rhamnose-induzierbaren Promotors umfaßt, wobei besagter Promotor in Bezug auf besagte Nukleinsäuresequenz heterolog ist.

Die heterologe Expression von Genen ist eine ökonomische Möglichkeit, Enzyme und andere Proteine für pharmazeutische und industrielle Verwendungszwecke herzustellen. Besagte Expressionen werden nach wie vor überwiegend mit Stämmen von *Escherichia coli* realisiert. Zur Herstellung rekombinanter Proteine sind eine Vielzahl von Systemen bekannt, die sich unterschiedlicher Wirtsorganismen und Genexpressionskassetten bedienen. Obgleich zahlreiche Systeme und Verfahren zur Expression rekombinanter Proteine in mikrobiellen Systemen beschrieben sind, basieren die Expressionssysteme für gram-negative Bakterien wie *Escherichia coli* auf einem sehr limitierten Repertoire bakterieller Promotoren. Am verbreitesten sind der Laktose-Promotor [*lac*] (Yanisch-Perron et al. (1985) *Gene* 33: 103-109) und der Tryptophan-Promotor [*trp*] (Goeddel et al. (1980) *Nature* (London) 287: 411-416) sowie Hybridpromotoren der vorgenannten [*lac* und *trc*] (Brosius (1984) *Gene* 27:161-172; Amanna & Brosius (1985) *Gene* 40: 183-190). Weitere Beispiele sind die Promotoren PL und PR des λ -Phagen (Elvin et al. (1990) *Gene* 37:123-126), der Phage T7-Promotor (Tabor & Richardson (1998) *Proc Natl Acad Sci USA* 82:1074-1078) und der Promotor der alkalischen Phosphatase [*pho*] (Chang et al. (1986) *Gene* 44:121-125).
Mit der heterologen Expression sind verschiedene Probleme wie beispielsweise die Toxizität des Genproduktes, zu geringe Expressionsraten oder Bildung von unlöslichen Proteinaggregaten

("inclusion bodies") verbunden. Viele der oben beschriebenen Promotoren sind für Anwendungen ungeeignet, bei denen das zu exprimierende rekombinante Proteine eine toxische Wirkung auf den jeweiligen Wirt hat. In diesen Fällen ist eine möglichst strikte

5 Regulation der Expression wünschenswert. Dazu können sogenannte induzierbare Promotorsysteme eingesetzt werden, die mittels Zusage eines Induktors oder eines anderen exogenen Stimulus (z.B. Hitze) induziert werden können. Besagte induzierbare Promotorsysteme bestehen in der Regel aus einer Promotor/Regulator-Kombination, wobei der Regulator beispielsweise ein Protein darstellt, welches in Kombination mit einem exogenen Stimulus die Transkription ausgehend von dem entsprechenden Promotor induziert. Beispieldhaft zu nennen ist die Kombination eines Promotors mit einem Repressor wie z.B. dem lac-Repressor (Studier FW et al. (1990)

15 Methods in Enzymol 185:60-89; Dubendorff JW & Studier FW (1991) J Mol Biol 219:45- 59). Die reprimierende Wirkung dieses Repressor kann durch Zugabe eines natürlichen Induktors (z.B. Laktose) oder eines künstlichen Induktors (z.B. Isopropyl- β -D-thiogalactopyranosid; IPTG) aufgehoben und die Expression so initiiert werden.

20 IPTG kann im Gegensatz zu Laktose nicht verstoffwechselt werden und gewährt so eine langanhaltende Induktion. Ein weiteres Beispiele für diese induzierbaren Promotoren ist der durch Arabinose induzierbare araB Promotor (US 5,028,530; Guzman LM et al. (1995) J Bacteriol 177:4121-4130).

25 IPTG und andere synthetische Induktoren sind sehr teuer und wirken sich teilweise nachteilig auf das Wachstum der Organismen aus, was eine Anwendung im großindustriellen Maßstab unrentabel macht.

30 Physiologische Induktoren wie Aminosäuren (z.B. Tryptophan) und Zucker (Arabinose) sind in der Regel zwar billiger, werden aber vom Organismus verstoffwechselt, so dass sie in einer Zellanzucht, insbesondere bei Hochdichtezellfermentationen, in erheblichen Mengen hinzugefügt und/oder nachträglich zudosiert werden müssen. Außerdem können Metaboliten dieser Verbindungen auch schädlich für die weitere Anzucht sein, z.B. bei der Entstehung von Acetat aus Zuckern.

40 WO 01/73082 beschreibt ein Verfahren zur Expression rekombinanter Proteine unter Kontrolle des induzierbaren araB Promotors in einem E.coli Wirtsorganismus, der eine Defizienz für den aktiven Transport des Induktors Arabinose aufweist. Als Vorteil wird hier geltend gemacht, dass kein aktiver Transport sondern lediglich

45 passiver Transport (durch Diffusion) stattfinden kann. Dadurch kann die intrazellulare Arabinose-Konzentration und somit auch die Expressionsinduktion besser kontrolliert werden. In einigen

der aufgeführten Beispiele wird ein E.coli Stamm (E104) eingesetzt, der eine Defizienz in den Arabinose-metabolisierenden Enzymen Ribulokinase (AraB) und L-Ribulose-5-phosphat-4-Epimerase (AraD) aufweist. Gemäß den Expressionsdaten hat diese Defizienz jedoch keine wesentliche Auswirkung auf die Expressionshöhen. Das Arabinose-induzierbare System hat verschiedene Nachteile:

- a) Arabinose hat bereits ab Konzentrationen von größer 0,1 mM einen wachstumshemmenden Effekt auf die Bakterienkultur, der auch mit dem in WO 01/73082 beschriebenen Verfahren nur bedingt kompensiert werden kann (vgl. Tabelle 4, WO 01/73082).
- b) Der Arabinose-induzierbare Promotor ist in Abwesenheit von Arabinose nicht gänzlich inaktiv, sondern besitzt eine recht hohe Basisaktivität (vgl. Tabelle 5, WO 01/73082).
- c) Die Qualität der exprimierten rekombinanten Proteine ist abhängig von der Zelldichte und nimmt mit zunehmenden Zelldichten ab (De Lisa MP et al. (1999) Biotechnol Bioeng 65:54-64).

Beschrieben ist der Escherichia coli Stamm JB1204 (CGSC6999, Bulawa & Raetz (1984) J Biol Chem 259:11257-11264), der die Transposoninsertion "rha-14::Tn10" aufweist, wobei zur Sequenz oder Funktion von "rha-14" keine genaueren Angaben gemacht werden.

Die Ausnahme und Verstoffwechslung von L-Rhamnose in Bakterien wie E.coli ist beschrieben. L-Rhamnose wird über ein aktives Transportsystem (RhaT) in die Zellen aufgenommen, mit einer Isomerase (RhaA) in L-Rhamnulose überführt, die dann weiter durch die Rhamnulose-1-Phosphatase (RhaB) phosphoryliert und durch eine Aldolase (RhaD) zu Dihydroxyacetonphosphat und Lactaldehyd hydrolysiert wird. Die Gene rhaBAD bilden ein Operon und werden mit Hilfe des sogenannten rhaP_{BAD}-Promotors transkribiert. Das Rhamnosystems zeichnet sich gegenüber anderen Systemen dadurch aus, dass zwei Aktivatoren RhaS und RhaR zur Regulation erforderlich sind. Beide bilden eine Transkriptionseinheit und werden entgegengesetzt zu rhaBAD transkribiert. In Anwesenheit von L-Rhamnose bindet RhaR an den rhaP_{RS}-Promotor und initiiert seine eigene Expression als auch die RhaS-Expression. RhaS wiederum bindet nach Aktivierung durch L-Rhamnose als Effektor an den rhaP_{BAD}-Promotor und den separaten rhaP_T-Promotor des rhaT-Gens und aktiviert die Transkription der Strukturgene (Moralejo P et al. (1993) J Bacteriol 175:5585-5594; Tobin JF et al. (1990) J Mol Biol 211:1-4; Chen YM et al. (1987) J Bacteriol 169:3712-3719; Egan SM et al. (1993) J Mol Biol 243:87-98). Die Kombination zweier Aktivatoren bedingt eine ungewöhnlich strikte Expressionskontrolle

durch den $rhaP_{BAD}$ -Promotor. Ein Vergleich des Arabinose-induzierbaren $araB$ -Promotors und des Rhamnose-induzierbaren $rhaP_{BAD}$ -Promotor zeigt, dass letzterer wesentlich strikter reguliert ist und in Abwesenheit des Induktors Rhamnose quasi einen Null-Phänotyp 5 repräsentiert (Haldimann A et al. (1998) J Bacteriol 180(5):1277-1286).

WO 01/32890 beschreibt die Herstellung von L-Pantolacton-Hydrolase mit *Escherichia coli* TG1 pDHE681 bzw. Derivaten, wobei 10 L-Rhamnose als Induktor für die Genexpression des Enzyms eingesetzt wird. Da L-Rhamnose von *E. coli* gut verstoffwechselt wird, muß die umgesetzte L-Rhamnose durch Zufütterung nachgeführt werden. Dies bedeutet einen erheblichen experimentellen Aufwand und erhöht die Kosten für das Anzuchtmedium.

15 Beschrieben sind ferner Expressionssysteme zur Fermentation unter hohen Zelldichten unter Verwendung des L-Rhamnose-induzierbaren $rhaBAD$ -Promotors und eines *E. coli* Stamm, der eine gezielt-eingeführte Defizienz in der L-Rhamnulosekinase ($rhaB$) aufweist. 20 (Stumpp T et al. (2000) Biospectrum 6(1):33-36; Wilms B et al. (2001) Biotechnol Bioeng 73(2): 95-103). $RhaB$ wurde hier bewußt ausgewählt, da es der erste irreversible Schritt der Metabolisierung von L-Rhamnose ist (vgl. Wilms B et al. (2001) Biotechnol Bioeng 73(2) S.98, linke Spalte, Z.4-8). Eine optimale Induktion 25 kann in diesen System mit L-Rhamnose-Konzentrationen von 2 g/L erreicht werden (vgl. Wilms B et al. (2001) Biotechnol Bioeng 73(2) S.102, linke Spalte, 2. Absatz Z.1-4). Diese Konzentrationen sind immer noch sehr hoch. Bei einem durchschnittlichen Preis von ca. 100 €/kg L-Rhamnose würden bei einem 10 m³ Fermenter noch 30 Kosten von 2000 € nur für die L-Rhamnose anfallen.

Beschrieben sind ferner eng-regulierte Rhamnose-induzierbare Expressionssysteme, bei denen mittels homologer Rekombination das hinter dem endogenen $rhaP_{BAD}$ -Promotor lokalisierte Rhamnose-Operon 35 (BAD) gegen das $PhoB$ -Gen (Transkriptionsaktivator) ausgetauscht wurde (Haldimann A et al. (1998) J Bacteriol 180(5):1277-1286). Das hier beschriebene System ist zwar gut geeignet, um Regulatorstudien zu betreiben, da eine sehr enge Regulation gewährleistet ist. Es ist jedoch zur Überexpression - insbesondere unter hoch- 40 dichten Zellkulturbedingungen - wenig geeignet, da - aufgrund des Austausches des chromosomalen Rhamnose-Operons - jeweils nur eine Kopie der $rhaP_{BAD}$ -Promotor gesteuerten Expressionsskassette eingebracht werden kann. Ferner ist der Austausch von Genen mittels homologer Rekombination aufwendig und erfordert eine mühsame 45 Selektion und Charakterisierung entsprechend modifizierter Orga-

nismen. Dies macht das beschriebene Verfahren untauglich für den Routineeinsatz.

Es stellte sich die Aufgabe, ein verbessertes Verfahren für die 5 Expression von Nukleinsäuren - und bevorzugt rekombinannten Proteinen - bereitzustellen, was mit geringen L-Rhamnose-Mengen hohe Expressionspiegel ergibt. Diese Aufgabe wird durch die vorliegende Erfindung gelöst.

10 Ein erster Gegenstand der Erfindung betrifft Verfahren zur Expression von Nukleinsäuresequenzen in prokaryontischen Wirtszellen, wobei man

- 15 a) mindestens ein in besagten Wirtszellen episomally replizierbares, DNA-Konstrukt umfassend eine zu exprimierende Nukleinsäuresequenz unter transkriptioneller Kontrolle eines L-Rhamnose-induzierbaren Promotors, wobei besagter Promotor in Bezug auf besagte Nukleinsäuresequenz heterolog ist, in besagte Wirtszellen einbringt und
- 20 b) prokaryontischen Wirtszellen selektiert, welche besagtes DNA-Konstrukt in episomaler Form enthalten und
- 25 c) die Expression besagter Nukleinsäuresequenz durch Zugabe von L-Rhamnose zu einer Kultur besagter selektierter Wirtszellen induziert,

dadurch gekennzeichnet, dass die prokaryontische Wirtszelle zumindest defizient ist in Bezug auf L-Rhamnose-Isomerase.

30 In einer bevorzugten Ausführungsform bedingt die Expression der zu exprimierenden Nukleinsäuresequenz die Produktion eines durch besagte Nukleinsäuresequenz kodierten Proteins, so dass das erfindungsgemäße Verfahren zur Herstellung rekombinanter Proteine 35 eingesetzt werden kann.

In einer weiterhin bevorzugten Ausführungsform kann eine zusätzliche Defizienz in einem oder mehreren weiteren L-Rhamnose-metabolisierenden bzw. transportierenden Proteinen vorliegen.

40 Ein weiterer Gegenstand der Erfindung betrifft eine prokaryontische Wirtszelle, die zumindest defizient ist in Bezug auf L-Rhamnose-Isomerase und mindestens ein in besagter Wirtszelle replizierbares DNA-Konstrukt enthält, welches eine zu exprimierende 45 Nukleinsäuresequenz unter transkriptioneller Kontrolle eines

durch L-Rhamnose-induzierbaren Promotor umfaßt, wobei besagter Promotor in Bezug auf besagte Nukleinsäuresequenz heterolog ist.

In einer bevorzugten Ausführungsform kann die erfindungsgemäße 5 prokaryontische Wirtszelle eine zusätzliche Defizienz in einem oder mehreren weiteren L-Rhamnose-metabolisierenden bzw. transportierenden Proteinen vorliegen.

Ausserdem betrifft die Erfindung ein Verfahren zur Herstellung 10 von Herstellung von rekombinanten Proteinen, Enzymen und anderen Feinchemikalien wie beispielweise chiraler Carbonsäuren unter Einsatz einer der erfindungsgemäßen prokaryontischen Wirtszellen oder einer Präparationen derselben.

15 Das erfindungsgemäße Verfahren hat verschiedene Vorteile:

1. Es ist einfach anzuwenden, da ausgehend von einem Wirtsstamm durch einfache Transformation der entsprechende Expressionsstamm generiert werden kann, ohne dass eine Insertion mittels 20 homologer Rekombination in das Genom (wie bei Haldimann A et al. (1998) J Bacteriol 180(5):1277-1286) und eine aufwendige Selektion korrekt modifizierter Organismen erforderlich wäre.
- 25 2. Die im Rahmen der Erfindung zur Verfügung gestellten Expressionskassetten und -vektoren sind leicht handhabbar. Der beispielhaft eingesetzte *rhaP_{BAD}*-Promotor hat eine Länge von lediglich 123 Basenpaaren.
- 30 3. Da L-Rhamnose, insbesondere bei C-Quellen-limitierten Fermentationen, von *E.coli* verstoffwechselt wird, entsteht bei Standardverfahren ein hoher Verbrauch von L-Rhamnose (Zufütterung) und damit hohe Mediumskosten. Durch den niedrigen L-Rhamnose-Bedarf des erfindungsgemäßen Verfahrens (<1 % im Vergleich zu L-Rhamnose-metabolisierenden Stämmen) werden die 35 Kosten für das Fermentationsmedium und damit die Biokatalysator-Herstellung erheblich gesenkt. Durch die Bereitstellung des erfindungsgemäßen Verfahrens, ist die Herstellung rekombinanter Proteine (z.B. Nitrilase, L-Pantolacton-Hydrolase) 40 durch Hochdichtezell-Fermentation (z.B. der bereitgestellten *E.coli*-TG10-Stämme) ohne laufende Rhamnose-Zufütterung möglich.
4. Die Regulation des beschriebenen Systems erwies sich als 45 außergewöhnlich dicht und ergab bereits bei sehr geringen Konzentrationen des Induktors L-Rhamnose von bis zu 0,05 g/l nach wie vor die maximale Induktion, während bei Abwesenheit

des Induktors keinerlei Promotoraktivität detektiert werden konnte. Damit eignet sich das System auch hervorragend für die Expression potentiell toxischer Proteine und ermöglicht eine kostengünstige Produktion insbesondere unter industriellen Bedingungen, da nur geringe L-Rhamnose-Konzentrationen erforderlich sind.

10 "Prokaryontische Wirtzelle" oder "prokaryontischer Wirtsorganismus" meint im Rahmen dieser Erfindung gram-positive oder gram-negative Bakterien, insbesondere solche gram-positive oder gram-negative Bakterien, die natürlicherweise in der Lage sind L-Rhamnose als Kohlenstoffquelle zu metabolisieren. L-Rhamnose kann von den meisten prokaryotischen Organismen als Kohlenstoffquelle genutzt werden.

15

Bevorzugt meint prokaryontische Wirtzelle oder prokaryontischer Wirtsorganismus alle Gattungen und Arten der Enterobacteriaceae und der Familien der Actinomycetales, ganz besonders bevorzugt die Enterobacteriaceae Arten Escherichia, Serratia, Proteus, Enterobacter, Klebsiella, Salmonella, Shigella, Edwardsielle, Citrobacter, Morganella, Providencia und Yersinia.

20 Ferner bevorzugt sind die Arten Pseudomonas, Burkholderia, Nocardioides, Acetobacter, Gluconobacter, Corynebacterium, Brevibacterium, Bacillus, Clostridium, Cyanobacter, Staphylococcus, Aerobacter, Alcaligenes, Rhodococcus und Penicillium.

25 Am meisten bevorzugt sind Escherichia Arten, insbesondere Escherichia coli.

30

30 "L-Rhamnose-induzierbaren Promotor" meint allgemein all solche Promotoren die in Gegenwart von L-Rhamnose eine höhere Expressionsaktivität aufweisen, als in Abwesenheit von L-Rhamnose. Die Expression ist in Gegenwart von L-Rhamnose mindestens doppelt so hoch, bevorzugt mindestens fünfmal so hoch, ganz besonders bevorzugt mindestens zehnmal so hoch, am meisten bevorzugt mindestens einhundertmal so hoch wie in Abwesenheit von L-Rhamnose. Bevorzugt werden im Rahmen der Ermittlung der Expressionshöhe solche Nukleinsäuresequenzen in funktioneller Verknüpfung mit dem zu prüfenden Promotor eingesetzt, die für leicht quantifizierbare Proteine kodieren. Ganz besonders bevorzugt sind dabei Reporterproteine (Schenborn E, Groskreutz D (1999) Mol Biotechnol 13(1): 29-44) wie "green fluorescence protein" (GFP) (Chui WL et al. (1996) Curr Biol 6:325-330; Leffel SM et al. (1997) Biotechniques 23(5):912-8), Chloramphenicoltransferase, Luziferase (Millar et al. (1992) Plant Mol Biol Rep 10:324-414), β -Glucuronidase

oder β -Galactosidase.

Dabei kann die Konzentration von L-Rhamnose in dem Medium allgemein in einem Bereich von ungefähr 0,0001 g/l bis ungefähr 5 50 g/l, bevorzugt 0,001 g/l bis 5 g/l, besonders bevorzugt 0,01 g/l bis 0,5 g/l liegen.

Insbesondere bevorzugt ist der rhaBAD-Promotor aus dem L-Rhamnose-Operon rhaBAD in *E. coli* (Egan & Schleif (1994) J Mol Biol 10 243:821-829), sowie seine funktionellen Äquivalente aus anderen prokaryontischen Organismen, insbesondere Organismen der Enterobacteriaceae Familie.

Ganz besonders bevorzugt sind Promotoren, die mindestens ein 15 RhaS-Bindeglied gemäß SEQ ID NO: 5 oder ein funktionelles Äquivalent desselben als auch ein funktionell äquivalentes Fragment der vorgenannten enthalten.

Insbesondere bevorzugt sind Promotoren die eine Sequenz gemäß 20 SEQ ID NO: 2, 3 oder 4 enthalten sowie funktionelle Äquivalente derselben als auch funktionell äquivalente Fragmente der vorgenannten.

Funktionelle Äquivalente zu einem Promotor umfassend eine Sequenz 25 gemäß SEQ ID NO: 2, 3, 4 oder 5 umfassen bevorzugt solche Promotoren, die

- a) im wesentlichen die gleiche Promotoraktivität wie der Promotor umfassend eine Sequenz gemäß SEQ ID NO: 2, 3, 4 oder 5 30 aufweisen und
- b) eine Homologie von mindestens 50 %, bevorzugt 70 %, vorzugsweise mindestens 80 %, besonders bevorzugt mindestens 90 %, ganz besonders bevorzugt mindestens 95 %, am meisten bevorzugt 99% zu der Sequenz des besagten Promotors aufweisen, wo 35 bei sich die Homologie über eine Länge von von mindestens 30 Basenpaaren, bevorzugt mindestens 50 Basenpaaren, besonders bevorzugt von mindestens 100 Basenpaaren erstreckt.

40 Funktionelle Äquivalente zu einem Promotor umfassend eine Sequenz gemäß SEQ ID NO: 2, 3, 4 oder 5 meint insbesondere natürliche oder künstliche Mutationen des besagten Promotors sowie homologe Sequenzen und funktionell äquivalente Sequenzen aus anderen Organismen, bevorzugt aus anderen prokaryontischen Organismen, insbesondere Organismen der Enterobacteriaceae Familie, die im wesent- 45

lichen die gleiche Promotoraktivität wie der besagte Promotor aufweisen.

5 "Im wesentlichen die gleiche Promotoraktivität" meint die Induzierbarkeit der Expressionsaktivität durch L-Rhamnose nach der oben gegebenen allgemeinen Definition für L-Rhamnose-induzierbaren Promotoren.

10 Wie oben beschrieben, bindet das RhaR-Protein in Anwesenheit von L-Rhamnose an den *rhaP_{RS}*-Promotor und initiiert seine eigene Expression als auch die RhaS-Expression. RhaS wiederum bindet mit L-Rhamnose als Effektor an den *rhaP_{BAD}*-Promotor und aktiviert dann den *rhaP_{BAD}*-Promotor und somit die Transkription der durch besagten Promotor regulierten Nukleinsäuresequenzen. Dieser vorge-15 schaltete Regulationsapparat - bestehend aus RhaR, RhaS und dem *rhaP_{RS}*-Promotor - können durch den prokaryotischen Wirtsorganismus natürlicherweise bereitgestellt, durch gentechnische Verfahren in dessen Genom insertiert oder aber mittels des im Rahmen der Erfindung eingesetzten DNA-Konstruktes zur Verfügung gestellt werden. Eine in diesem Zusammenhang geeignete Promotorkassette ist 20 die durch SEQ ID NO: 1 beschriebene Sequenz.

25 Sollte die für die Induktion in die Zelle erforderliche L-Rhamnose Aufnahme nicht ausreichen, kann es vorteilhaft sein in Organismen, die beispielsweise natürlicherweise keinen L-Rhamnose-Transporter exprimieren, diesen transgen zur Expression zu bringen. Bisherige Erfahrungen zeigen jedoch das der aktive Rhamnose-transport keine limitierende Größe für die Effizienz des erfindungsgemößen Expressionssystems darstellen sollte.

30 30 "L-Rhamnose-Isomerase" meint allgemein all solche Proteine, die befähigt sind, L-Rhamnose in eine andere Hexose zu konvertieren. Bevorzugt meint L-Rhamnose-Isomerase, solche Proteine, die befähigt sind L-Rhamnose in L-Rhamnulose zu überführen (EC 5.3.1.14). 35 Besonders bevorzugt ist das RhaA-Gen aus Organismen der Enterobacteriaceae Familie, insbesondere *E.coli*. Am meisten bevorzugt meint L-Rhamnose-Isomerase das Protein gemäß SEQ ID NO: 9, sowie homologe Sequenzen aus anderen Organismen, bevorzugt aus anderen prokaryontischen Organismen.

40 40 Funktionelle Äquivalente zu der L-Rhamnose-Isomerase gemäß SEQ ID NO: 9 umfasst bevorzugt solche Sequenzen die

45 a) im wesentlichen die gleiche Enzymaktivität wie die L-Rhamnose-Isomerase gemäß SEQ ID NO: 9 aufweisen und

10

b) die eine Homologie aufweisen von mindestens 50 %, bevorzugt 70 %, vorzugsweise mindestens 80 %, besonders bevorzugt mindestens 90 %, ganz besonders bevorzugt mindestens 95 %, am meisten bevorzugt 99% zu der Sequenz der L-Rhamnose-Isomerase
5 gemäß SEQ ID NO: 9, wobei sich die Homologie über eine Länge von von mindestens 30 Aminosäuren, bevorzugt mindestens 50 Aminosäuren, besonders bevorzugt von mindestens 100 Aminosäuren, ganz besonders bevorzugt von mindestens 200 Aminosäuren, am meisten bevorzugt über die gesamte Länge des Proteins erstreckt.
10

Neben der L-Rhamnose-Isomerase können noch weitere Defizienzen in Bezug auf Gene vorliegen, die eine Funktion der L-Rhamnose-Metabolisierung haben. Insbesondere seien hierbei zu nennen Defizienz der Rhamnulose-1-Phosphatase/Kinase (z.B. RhaB; beispielsweise beschrieben durch SEQ ID NO: 11), eine Defizienz der Rhamnulophosphat-Aldolase (z.B. RhaD; beispielsweise beschrieben durch SEQ ID NO: 13) oder eine Defizienz in mindestens einem die Expression vorgenannter Proteine kontrollierenden regulatorischen Element (wie z.B. Promotor, Regulator o.ä.).
15
20

Unter Umständen kann es ferner vorteilhaft sein eine Defizienz in einem aktiven Rhamnose-Transportsystem (z.B. RhaT; beispielsweise beschrieben durch SEQ ID NO: 19) zu erzeugen.
25

“Defizienz” meint in Bezug auf eine L-Rhamnose-Isomerase oder ein anderes Enzym der L-Rhamnose-Aufnahme/Metabolisierung die im wesentlichen vollständige, auf unterschiedliche zellbiologische Mechanismen beruhende Unterbindung oder Blockierung der Expression des entsprechenden Zielgens oder der von ihm abgeleiteten mRNA und/oder des dadurch kodierten Proteinproduktes oder die Veränderung der Proteinsequenz des Genproduktes in einer Weise, das dessen Funktion und/oder Aktivität im wesentlichen unterbunden oder so geändert ist, dass L-Rhamnose im wesentlichen nicht mehr umgesetzt werden kann.
30
35

Eine Unterbindung oder Blockierung im Sinne der Erfindung umfasst insbesondere die mengenmässige Verringerung einer vom Zielgen exprimierten mRNA und/oder des dadurch kodierten Proteinproduktes bis hin zu einem im wesentlichen vollständigen Fehlen derselben. Dabei wird die Expression einer bestimmten mRNA und/oder des dadurch kodierten Proteinproduktes in einer Zelle oder einem Organismus im Vergleich zu der selben Zelle oder Organismus, die dem Verfahren nicht unterworfen wurden, bevorzugt um mehr als 50 %, besonders bevorzugt um mehr als 80%, ganz besonders bevorzugt um mehr als 90 %, am meisten bevorzugt mehr als 95 % vermindert.
40
45

11

Ganz besonders bevorzugt meint Verminderung die vollständige Inaktivierung eines endogenen Gens ("knockout"-Mutation).

Eine Unterbindung oder Blockierung kann auf unterschiedlichen Mechanismen beruhen. Bevorzugt beruht die Unterbindung oder Blockierung auf einer Mutation in dem entsprechenden Zielgen, wobei die Mutation in einer Substitution, Deletion und/oder Addition eines oder mehrerer Nukleotide bestehen kann. Besonders bevorzugt ist eine Unterbindung oder Blockierung mittels Transposon unterstützter Mutagenese oder mittels gezieltem Knock-out.

Die Verminderung kann durch dem Fachmann geläufigen Verfahren ermittelt werden. So kann die Verminderung der Proteinmenge beispielsweise durch immunologischen Nachweis des Proteins bestimmt werden. Weiterhin können biochemische Techniken wie Northern-Hybridisierung, "nuclease protection assay", Reverse Transkription (quantitative RT-PCR), ELISA ("enzyme linked immunosorbent assay"), Western-Blotting, Radioimmunoassay (RIA) oder andere Immunoassays sowie "fluorescence activated cell analysis" (FACS) eingesetzt werden. Je nach Art des verminderten Proteinproduktes kann auch dessen Aktivität oder der Einfluss auf den Phänotyp des Organismus oder der Zelle ermittelt werden.

"Proteinmenge" meinte die Menge eines bestimmten Polypeptides in einem Organismus, einem Gewebe, einer Zelle oder einem Zellkompartiment.

"Verminderung" der Proteinmenge meint die Verminderung der Menge eines bestimmten Polypeptides in einem Organismus, einem Gewebe, einer Zelle oder einem Zellkompartiment im Vergleich zu dem Wildtyp derselben Gattung und Art auf den dieses Verfahren nicht angewendet wurde, unter ansonst gleichen Rahmenbedingungen (wie beispielsweise Kulturbedingungen, Alter, Nährstoffzufuhr etc.). Die Verminderung beträgt dabei mindestens 50 %, bevorzugt mindestens 70%, besonders bevorzugt mindestens 90 %, ganz besonders bevorzugt mindestens 95%, am meisten bevorzugt mindestens 99 %. Verfahren zur Bestimmung der Proteinmenge sind dem Fachmann bekannt. Beispielhaft seien zu nennen: Das Mikro-Biuret Verfahren (Goa J (1953) Scand J Clin Lab Invest 5:218-222), die Folin-Ciocalteu-Methode (Lowry OH et al. (1951) J Biol Chem 193:265-275) oder die Messung der Adsorption von CBB G-250 (Bradford MM (1976) Analyt Biochem 72:248-254).

12

Die Verminderung der L-Rhamnose-Isomerase Aktivität kann insbesondere mittels enzymatischer Testsysteme bestimmt werden. Entsprechende Testsysteme sind dem Fachmann bekannt (Bhuiyan SH et al. (1997) J Ferment Bioeng 84(4):319-323).

5

"In prokaryontischen Wirtszellen episomal replizierbares DNA-Konstrukt" meint all solche DNA-Konstrukte, welche unterschieden sind von der chromosomalen DNA der besagten Wirtszelle und parallel zu dieser in der besagten Wirtszelle existieren und befähigt sind in besagter Wirtszelle unter Verwendung zelleigener oder anderer (beispielsweise über das DNA-Konstrukt selber kodierter) Replikationsmechanismen zu replizieren. Das DNA-Konstrukt kann eine einzel- oder doppelsträngige DNA-Struktur darstellen. Bevorzugt hat das DNA-Konstrukt zumindest zeitweise (d.h. zu einem Zeitpunkt seines Replikationszyklus) eine doppelsträngige DNA-Struktur.

Bevorzugt liegen die besagten episomal replizierbaren DNA-Konstrukte in einer Kopienzahl von mindestens 1, bevorzugt mindestens 5, besonders bevorzugt mindestens 10 in einer Wirtszelle vor.

"Selektion prokaryontischer Wirtszellen, welche besagtes DNA-Konstrukt in episomaler Form enthalten" meint die Auswahl von Wirtzellen, die besagtes DNA-Konstrukt in episomaler Form enthalten. Die Auswahl kann beispielsweise unter Verwendung eines der unten beschriebenen Selektionsmarker realisiert werden. Bevorzugt insertiert das DNA-Konstrukt nicht in die chromosomalen DNA der Wirtszelle. Dies kann beispielsweise dadurch verhindert werden, dass das DNA-Konstrukt keine Sequenzen aufweist, die über einen längeren Bereich identisch zu chromosomalen Sequenzen der Wirtszelle sind.

Bevorzugt haben besagte episomal replizierbaren DNA-Konstrukte eine Größe/Länge von maximal 100.000 Basen bzw. Basenpaaren, besonders bevorzugt maximal 50.000 Basen bzw. Basenpaaren, ganz besonders bevorzugt 10.000 Basen bzw. Basenpaaren (die Angabe Basen bzw. basenpaaren richtet sich danach, ob das DNA-Konstrukt eine einzel- oder doppelsträngige DNA-Struktur darstellt).

40

Bevorzugt handelt es sich bei dem DNA-Konstrukt um einen Vektor. Vektoren können beispielhaft Plasmide, Cosmide, Phagen, Viren, Retroviren oder auch Agrobakterien sein. Bevorzugt ist der Vektor eine zirkuläres Plasmid, das die zu exprimierende Nukleinsäuresequenz in rekombinanter Form umfasst und zu autonomer Replikation in der prokaryotischen Wirtszelle befähigt ist. Vektor kann im Rahmen dieser Erfindung auch als rekombinanter Vektor oder rekombi-

binanter Expressionsvektor bezeichnet werden. Verschiedene Sequenzen, die die Replikation von DNA in Prokaryonten erlauben sind dem Fachmann bekannt. Beispielhaft seien genannt ORI (origin of DNA replication), der pBR322 ori oder der P15A ori (Sambrook et al.: Molecular Cloning. A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989).

Entsprechend geeignete Replikationsursprünge, die eine geringe Kopienzahl gewährleisten ("Low-Copy") können aus BAC (Bacterial artificial chromosomes), F-Plasmiden, Cosmiden wie z.B. pWE15 isoliert werden. Entsprechend geeignete Replikationsursprünge, die eine mittlere Kopienzahl gewährleisten ("Medium-Copy") können z.B. aus pBR322 (Lin-Chao S, Bremer H, Mol Gen Genet 1986 203(1): 143-149) und Derivate wie der pJOE-Serie, pKK223-3, pQE30, pQE40 oder Plasmiden mit einem R1 Ursprung wie pRSF1010 und Derivate wie z.B. pML122, p15A, pSC101 isoliert werden. Entsprechend geeignete Replikationsursprünge, die eine hohe Kopienzahl gewährleisten ("High-Copy") können z.B. aus Phagemiden wie pBluescript II SK/KS+/-, pGEM etc. isoliert werden. Die jeweils in einer Zelle vorliegende Kopienzahl wird zum Teil durch den sogenannten Replikationsursprung (auch Replikon genannt) bestimmt. Plasmide der pBR322 Serien enthalten den ColE1 Replikationsursprung aus pMB1. Dieser ist relativ streng kontrolliert und resultiert in einer Kopienzahl von ca. 25 pro Zelle. Plasmide der pUC umfassen eine mutierte ColE1 Version und können in 200 bis 700 Plasmidkopien pro Zelle vorliegen. Einige Plasmide umfassen den p15a Replikationsursprung, der in einer geringen Kopienzahl resultiert.

Als Vektoren seien beispielhaft zu nennen:

- a) in *E.coli* sind bevorzugt pQE70, pQE60 und pQE-9 (QIAGEN, Inc.); pBluescript Vektoren, Phagescript Vektoren, pNH8A, pNH16a, pNH18A, pNH46A (Stratagene Cloning Systems, Inc.); ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia Biotech, Inc.); pLG338, pACYC184, pBR322, pUC18, pUC19, pKC30, pRep4, pHS1, pHS2, pPLc236, pMBL24, pLG200, pUR290, pIN-III¹¹³-B1, λgt11 oder pBdCI,
- b) in *Streptomyces* sind bevorzugt pIJ101, pIJ364, pIJ702 oder pIJ361,
- c) in *Bacillus* sind bevorzugt pUB110, pC194 oder pBD214,
- d) in *Corynebacterium* pSA77 oder pAJ667,

oder Derivate der vorstehend genannten Plasmide. Die genannten Plasmide stellen eine kleine Auswahl der möglichen Plasmide dar. Weitere Plasmide sind dem Fachmann wohl bekannt und können beispielsweise aus dem Buch Cloning Vektors (Eds. Pouwels P. H. 5 et al. Elsevier, Amsterdam-New York-Oxford, 1985, ISBN 0 444 904018) entnommen werden.

"Transformation" oder "transformiert" meint die Einführung genetischen Materials wie beispielsweise eines Vektors (z.B. ein 10 Plasmid) in eine prokaryotische Wirtzelle. Dazu stehen dem Fachmann verschiedene weiter unten im Detail beschriebene Verfahren zu Verfügung. Eine prokaryotische Wirtzelle, in die besagtes genetisches Material eingeführt wurde, als auch die aus dieser Zelle resultierenden "Nachkommen" und Kolonien, die besagtes 15 genetisches Material umfassen, werden als "Transformanten" bezeichnet.

"Transduktion" oder "transduziert" meint die Einführung genetischen Materials in eine prokaryotische Wirtzelle ausgehend von 20 dem genetischen Material eines Bakteriophagen. Eine prokaryotische Wirtzelle, in die besagtes genetisches Material eingeführt wurde, als auch die aus dieser Zelle resultierenden "Nachkommen" und Kolonien, die besagtes genetisches Material umfassen, werden als "Transduktanten" bezeichnet.

25 "Rekombinantes Protein" meint jedes Proteinprodukt, dass ausgehend von der zu exprimierenden Nukleinsäuresequenz unter funktioneller Kontrolle des L-Rhamnose-induzierbaren Promoters exprimiert werden kann und schließt Peptide, Polypeptide, Proteine, 30 Oligoproteine und/oder Fusionsproteine ein. Bevorzugt meint "rekombinantes Protein" ein Protein mikrobiellen, bakteriellen, tierischen oder pflanzlichen Ursprungs.

"Fusionsproteine" meint eine Fusion aus dem gewünschten Protein 35 und Leitsequenzen die eine Expression in bestimmten Kompartimenten (z.B. Periplasma oder Cytoplasma) der Wirtzelle oder in das umgebende Medium ermöglichen. Beispielhaft sei die pelB Leitsequenz zu nennen (US 5,576,195; US 5,846,818).

40 "Expressionskassette" meint jeweils die Kombination eines Promoters mit mindestens einer unter dessen Kontrolle transkribierbaren Nukleinsäuresequenz.

"Heterolog" meint in Bezug auf das Verhältnis des L-Rhamnose-45 induzierbaren Promoters und der unter Kontrolle besagten Promoters zu exprimierenden Nukleinsäuresequenz, bzw. eine Expressionskassette oder einen Expressionsvektor alle solche durch gen-

technische Methoden zustande gekommene Konstruktionen, in denen entweder

- a) mindestens eine der zu exprimierenden Nukleinsäuresequenzen,
5 oder
- b) mindestens einer der L-Rhamnose-induzierbaren Promotoren, der die Expression besagter zu exprimierender Nukleinsäuresequenz steuert, oder
10
- c) (a) und (b)

sich nicht in ihrer natürlichen, genetischen Umgebung (beispielsweise an ihrem natürlichen chromosomalen Locus) befinden oder
15 durch gentechnische Methoden modifiziert wurden, wobei die Modifikation beispielhaft Substitutionen, Additionen, Deletionen, Inversion oder Insertionen eines oder mehrerer Nukleotidreste umfassen kann.

20 Im erfindungsgemäßen Verfahren werden die erfindungsgemäßen prokaryontischen Wirtszellen in einem Medium, dass das Wachstum dieser Organismen ermöglicht, angezüchtet. Dieses Medium kann ein synthetisches oder ein natürliches Medium sein. Je nach Organismus werden dem Fachmann bekannte Medien verwendet. Für das Wachstum der Mikroorganismen enthalten die verwendeten Medien eine Kohlenstoffquelle, eine Stickstoffquelle, anorganische Salze und gegebenenfalls geringe Mengen an Vitamine und Spurenelemente.
25

30 Vorteilhafte Kohlenstoffquellen sind beispielsweise Polyole wie Glycerin, Zucker wie Mono-, Di- oder Polysaccharide wie Glucose, Fructose, Mannose, Xylose, Galactose, Ribose, Sorbose, Ribulose, Laktose, Maltose, Saccharose, Raffinose, Stärke oder Cellulose, komplexe Zuckerquellen wie Melasse, Zuckerphosphate wie Fructose-1,6-bisphosphat, Zuckeralkohole wie Mannit, Alkohole wie
35 Methanol oder Ethanol, Carbonsäuren wie Citronensäure, Milchsäure oder Essigsäure, Fette wie Sojaöl oder Rapsöl, Aminosäuren wie ein Aminosäurengemisch beispielsweise sog. Casamino acids (Difco) oder einzelne Aminosäuren wie Glyzin oder Asparaginsäure oder Aminozucker, die letztgenannten können auch gleichzeitig als
40 Stickstoffquelle verwendet werden. Besonders bevorzugt sind Polyole, insbesondere Glycerin.

45 Bevorzugt sollte das eingesetzte Medium als Basismedium keine L-Rhamnose enthalten, um eine möglichst dichte Regulation der Expression zu gewährleisten. Die L-Rhamnose wird dann im Bedarfsfall, zum gewünschten Zeitpunkt oder Zelldichte in der jeweils

gewünschten Konzentration zugefügt.

Vorteilhafte Stickstoffquellen sind organische oder anorganische Stickstoffverbindungen oder Materialien, die diese Verbindungen 5 enthalten. Beispiele sind Ammoniumsalze wie NH₄Cl oder (NH₄)₂SO₄, Nitrate, Harnstoff, oder komplexe Stickstoffquellen wie Maisquellwasser, Bierhefeautolysat, Sojabohnenmehl, Weizengluten, Hefeextrakt, Fleischextrakt, Caseinhydrolysat, Hefe oder Kartoffelprotein, die häufig auch gleichzeitig als Stickstoffquelle dienen 10 können.

Beispiele für anorganische Salze sind die Salze von Calcium, Magnesium, Natrium, Kobalt, Molybdän, Mangan, Kalium, Zink, Kupfer und Eisen. Als Anion dieser Salze sind besonders das 15 Chlor-, Sulfat- und Phosphation zu nennen. Ein wichtiger Faktor zur Steigerung der Produktivität im erfindungsgemäßen Verfahren ist die Kontrolle der Fe²⁺- oder Fe³⁺-Ionenkonzentration im Produktionsmedium.

20 Gegebenenfalls werden dem Nährmedium weitere Wachstumsfaktoren zugesetzt, wie beispielsweise Vitamine oder Wachstumsförderer wie Biotin, 2-KLG, Thiamin, Folsäure, Nicotinsäure, Pantothenat oder Pyridoxin, Aminosäuren wie Alanin, Cystein, Prolin, Asparaginsäure, Glutamin, Serin, Phenylalanin, Ornithin oder Valin, Carbonsäuren wie Citronensäure, Ameisensäure, Pimelinsäure oder Milchsäure, oder Substanzen wie Dithiothreitol.

Das Mischungsverhältnis der genannten Nährstoffe hängt von der Art der Fermentation ab und wird im Einzelfall festgelegt. Die 30 Mediumkomponenten können alle zu Beginn der Fermentation vorgelegt werden, nachdem sie falls erforderlich getrennt sterilisiert oder gemeinsam sterilisiert wurden, oder aber je nach Bedarf während der Fermentation kontinuierlich oder diskontinuierlich nachgegeben werden.

35 Die Züchtungsbedingungen werden so festgelegt, dass die Organismen so wachsen, dass die bestmöglichen Ausbeuten (zu ermitteln beispielsweise durch die Aktivitätsmenge des exprimierten rekombinaten Proteins) erreicht werden. Bevorzugte Züchtungstemperaturen liegen bei 15 °C bis 40 °C. Besonders vorteilhaft sind Temperaturen zwischen 25 °C und 37 °C. Vorzugsweise wird der pH-Wert in einem Bereich von 3 bis 9 festgehalten. Besonders vorteilhaft sind pH-Werte zwischen 5 und 8. Im allgemeinen ist eine Inkubationsdauer von wenigen Stunden bis zu einigen Tagen bevorzugt von 40 45 8 Stunden bis zu 21 Tagen, besonders bevorzugt von 4 Stunden bis

14 Tagen ausreichend. Innerhalb dieser Zeit reichert sich die maximale Menge an Produkt im Medium an.

Wie Medien vorteilhaft optimiert werden können, kann der Fachmann 5 beispielsweise dem Lehrbuch Applied Microbiol Physiology, "A Practical Approach (Eds. PM Rhodes, PF Stanbury, IRL-Press, 1997, Seiten 53 - 73, ISBN 0 19 963577 3) entnehmen.

Das erfindungsgemäße Verfahren kann kontinuierlich oder diskontinuierlich in batch- oder fed-batch-weise durchgeführt werden. 10

"Mutation" oder "Mutationen" meint die Substitution, Addition, Deletion, Inversion oder Insertionen eines oder mehrerer Aminosäurereste bzw. Basen/Basenpaare.

15

"Homologie" zwischen zwei Nukleinsäuresequenzen meint die Identität der Nukleinsäuresequenz über die jeweils angegebene Sequenzlänge, die durch Vergleich mit Hilfe des Programmalgorithmus GAP (Wisconsin Package Version 10.0, University of Wisconsin, Genetics Computer Group (GCG), Madison, USA; Altschul et al. (1997) Nucleic Acids Res. 25:3389ff) unter Einstellung folgender Parameter berechnet wird:

Gap Weight: 50

Length Weight: 3

25

Average Match: 10

Average Mismatch: 0

Beispielhaft wird unter einer Sequenz, die eine Homologie von mindestens 50 % auf Nukleinsäurebasis mit der Sequenz SEQ ID 30 NO: 2 aufweist, eine Sequenz verstanden, die bei einem Vergleich mit der Sequenz SEQ ID NO: 2 nach obigem Programmalgorithmus mit obigem Parametersatz eine Homologie von mindestens 50 % aufweist.

"Homologie" zwischen zwei Polypeptiden meint die Identität der 35 Aminosäuresequenz über die jeweils angegebene Sequenzlänge, die durch Vergleich mit Hilfe des Programmalgorithmus GAP (Wisconsin Package Version 10.0, University of Wisconsin, Genetics Computer Group (GCG), Madison, USA) unter Einstellung folgender Parameter berechnet wird:

40

Gap Weight: 8

Length Weight: 2

Average Match: 2,912

Average Mismatch: -2,003

45 Beispielhaft wird unter einer Sequenz, die eine Homologie von mindestens 50 % auf Proteinbasis mit der Sequenz SEQ ID NO: 9 aufweist, eine Sequenz verstanden, die bei einem Vergleich mit

der Sequenz SEQ ID NO: 9 nach obigem Programmalgorithmus mit obigem Parametersatz eine Homologie von mindestens 50 % aufweist.

Für eine optimale Expression heterologer Gene in Organismen kann es vorteilhaft sein, die Nukleinsäuresequenzen entsprechend der im Organismus verwendeten spezifischen "codon usage" zu verändern. Die "codon usage" lässt sich anhand von Computerauswertungen anderer, bekannter Gene des betreffenden Organismus leicht ermitteln.

10

Das DNA-Konstrukt, welches den L-Rhamnose-induzierbaren Promotor und die unter dessen Kontrolle zu exprimierenden Nukleinsäuresequenz umfasst, gewährleistet aufgrund einer funktionellen Verknüpfung von besagtem Promotor und besagter Nukleinsäuresequenz 15 die Transkription und/oder Translation besagter Nukleinsäuresequenz.

Unter einer funktionellen Verknüpfung versteht man allgemein eine Anordnung in der eine genetische Kontrollsequenz ihre Funktion in 20 Bezug auf die zu exprimierende Nukleinsäuresequenz ausüben kann. Funktion kann dabei beispielsweise die Kontrolle der Expression d.h. Transkription und/oder Translation der Nukleinsäuresequenz bedeuten. Kontrolle umfasst dabei beispielsweise die Initiierung, Steigerung, Steuerung oder Suppression der Expression d.h. Transkription und ggf. Translation. Unter einer funktionellen Verknüpfung versteht man zum Beispiel die sequentielle Anordnung 25 eines Promoter, der zu exprimierenden Nukleinsäuresequenz und ggf. weiterer regulativer Elemente wie zum Beispiel einem Terminator derart, dass jedes der regulativen Elemente seine Funktion 30 bei der Expression der Nukleinsäuresequenz erfüllen kann. Dem Fachmann sind verschiedene Wege bekannt, um zu einem der erfindungsgemäßen DNA-Konstrukte zu gelangen. Die Herstellung kann mittels gängiger Rekombinations- und Klonierungstechniken realisiert werden, wie sie beispielsweise in T Maniatis, EF Fritsch 35 und J Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) sowie in TJ Silhavy, ML Berman und LW Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) und in Ausubel, FM et al., Current Protocols in Molecular 40 Biology, Greene Publishing Assoc. and Wiley Interscience (1987) beschrieben sind.

Besagtes DNA-Konstrukt kann weitere Funktionselemente enthalten. Der Begriff der Funktionselemente ist breit zu verstehen und 45 meint all solche Sequenzen, die einen Einfluss auf das Zustandekommen, die Vermehrung oder Funktion der erfindungsgemäßen DNA-Konstrukte oder Organismen haben. Funktionselemente gewährlei-

sten, verstärken, regulieren oder modifizieren zum Beispiel die Transkription und gegebenenfalls Translation in entsprechenden Wirtsorganismen.

5 Funktionselemente sind beispielsweise beschrieben bei "Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990)" oder "Gruber and Crosby, in: Methods in Plant Molecular Biology and Biotechnology, CRC Press, Boca Raton, Florida, eds.:Glick and Thompson, Chapter 7, 89-108" sowie
10 den dort aufgewiesenen Zitaten. Je nach nachstehend näher beschriebenen Wirtsorganismus oder Ausgangsorganismus, der durch Einbringen der Expressionskassetten oder Vektoren in einen genetisch veränderten oder transgenen Organismus überführt wird, eignen sich verschiedene Kontrollsequenzen.

15 "Genetische Kontrollsequenzen" umfassen beispielsweise die 5'-untranslatierte Region oder die nichtkodierende 3'-Region von Genen. "Genetische Kontrollsequenzen" meint ferner Sequenzen, die für Fusionsproteine bestehend aus einer Signalpeptidsequenz
20 kodieren. Beispielhaft aber nicht einschränkend seien zu nennen:

a) Selektionsmarker

25 Selektionsmarker sind in der Regel erforderlich, um erfolgreich transformierte Zellen zu selektionieren und den Verlust des DNA-Kontraktes aus der Wirtszelle im Laufe der Zeit und der Zellteilungen zu verhindern. Ein solcher Verlust kann insbesondere dann auftreten, wenn das durch die zu exprimierende Nukleinsäuresequenz kodierte rekombinante Protein einen toxischen Effekt auf den prokaryontischen Organismus hat. Der
30 mit dem Expressionskonstrukt eingebrachte selektionierbaren Marker verleiht den erfolgreich transformierten Zellen eine Resistenz gegen ein Biozid (zum Beispiel ein Antibiotikum wie zum Beispiel Ampicillin, Kanamycin oder Hygromycin) verleiht. Beispielhaft als Selektionsmarker seien genannt:

35

- Amp (Ampicillin-Resistenz; β -Lactamase)
- Cab (Carbenicillin-Resistenz)
- Cam (Chloramphenicol-Resistenz)
- Kan (Kanamycin-Resistenz)
- Rif (Rifampicin-Resistenz)
- Tet (Tetracyclin-Resistenz)
- Zeo (Zeocin-Resistenz)
- Spec (Spectinomycin)

45

Der Selektionsdruck wird durch entsprechende Mengen des Antibiotikums aufrechterhalten. Beispielhaft seien zu nennen: Ampicillin 100 mg/l, Carbenicillin 100 mg/l, Chloramphenicol

35 mg/l, Kanamycin 30 mg/l, Rifampicin 200 mg/l, Tetracyclin 12,5 mg/l, Spectinomycin 50 mg/l.

Selektionsmarker umfassen ferner solche Gene und Genprodukte, 5 die beispielsweise durch Komplementation einer genetischen Defizienz in der Aminosäure- oder Nukleotidsynthese, eine Selektion einer entsprechend transformierten Wirtszelle ermöglichen. Dazu werden i.a. Medien eingesetzt, die besagte Aminosäure oder den besagten Nukleotidbaustein nicht enthalten. 10 Verschiedene derartige Systeme sind dem Fachmann bekannt. Beispielsweise seien die Defizienzen in der Tryptophan (z.B. trpC), Leucin (z.B. leuB), Histidin (z.B. hisB) Biosynthese zu nennen, wie sie z.B. im E.coli Stamm KC8 (Clontech) vorliegen. Diese Defizienzen können u.a. durch die selektionierbaren Marker TRP1, Leu2 und HIS3 komplementiert 15 werden.

- b) Transkriptionsterminatoren
Der Transkriptionsterminator verhindert eine ungewollte Transkription und erhöht die Plasmid- und mRNA Stabilität.
- c) Shine-Dalgarno Sequenzen
Eine Shine-Dalgarno (SD) Sequenz ist erforderlich für die Initiation der Translation und ist komplementär zum 3'-Ende der 25 16S ribosomalen RNA. Die Effizienz der Initiation der Translation am Start-Kodon hängt von der tatsächlichen Sequenz ab. Eine geeignete Konsensussequenz für E.coli ist beispielsweise: 5'-TAAGGAGG-3'. Sie ist ca. 4 bis 14 Nukleotide straumwärts des Startkodon lokalisiert, wobei das Optimum bei 30 8 Nukleotiden liegt. Um die Ausbildung von Sekundärstrukturen zu vermeiden (welche die Expression reduzieren können), sollte diese Region bevorzugt reich an A/T-Nukleotiden sein.
- d) Startkodon
Das Startkodon ist der Initiationpunkt der Translation. In 35 E. coli ist ATG das meist genutzte Startkodon; GTG kann alternativ auch genutzt werden.
- e) "Tags" und Fusionsproteins
40 N- or C-terminale Fusionen der zu exprimierenden rekombinanten Proteine mit kürzeren Peptiden ("Tags") oder anderen Proteinen (Fusionpartnern) können vorteilhaft sein. Sie können beispielsweise eine verbesserte Expression, Löslichkeit, Detektierbarkeit und Aufreinigung ermöglichen. Bevorzugt werden 45 derartige Fusionen mit Protease-Spaltsequenzen (z.B. für Thrombin oder Faktor X) kombiniert, die eine Entfernung des

"Tags" bzw. des Fusionspartners nach der Expression und Aufreinigung ermöglichen.

5 f) Multiple Klonierungsregionen (Multiple cloning site; MCS) erlauben und erleichtern die Insertion einer oder mehrerer Nukleinsäuresequenzen.

10 g) Stop-Kodon / Translationsterminatoren
Von den drei möglichen Stopp-Kodons ist TAA bevorzugt, da es bei TAG und TGA unter Umständen zu einem "Durchlesen" ("Read-Through") ohne Abbruch der Translation kommen kann. Es können auch mehrere Stopp-Kodons infolge eingesetzt werden um eine verlässliche Termination zu gewährleisten.

15 h) Reportergene
Reportergene kodieren für leicht quantifizierbare Proteine, die über Eigenfarbe oder Enzymaktivität eine Bewertung der Transformationseffizienz, der Expressionshöhe, des Expressionsortes oder -zeitpunktes gewährleisten. Reportergene können z.B. für nachfolgende Proteine kodieren: Hydrolasen, Fluoreszenzproteine, Biolumineszproteine, Glucosidasen oder Peroxidasen. Bevorzugt sind Luciferasen, β -Galactosidasen, β -Glucuronidase, "Green Fluorescence Protein", Acetyl-, Phospho- oder Adenyltransferasen (siehe auch Schenborn E, Groskreutz D (1999) Mol Biotechnol 13(1):29-44).

30 Im Falle von Selektionsmarkern oder Reporterproteinen ist die für besagte Proteine kodierende Nukleinsäuresequenz bevorzugt mit einem in dem entsprechenden prokaryontischen Wirtorganismus funktionellen Promotor und ggf. weiteren Kontrollsequenzen funktional zu einer Expressionskassette verknüpft. Vorteilhafte Promotoren und Kontrollsequenzen sind dem Fachmann allgemein bekannt. Beispielhaft seien Promotoren wie cos-, tac-, trp-, tet-, lpp-, lac-, lacIq-, T7-, T5-, T3-, gal-, trc-, ara-, SP6-, λ -PR- oder λ -PL-Promotor zu nennen.

40 Die Herstellung einer transformierten Wirtzelle oder eines transformierten Wirtsorganismus erfordert, dass die entsprechende DNA (beispielsweise eine der erfindungsgemäßen Expressionskassetten oder Vektoren) in die entsprechende Wirtszelle eingebracht wird. Für diesen Vorgang, der als Transformation bezeichnet wird, steht eine Vielzahl von Methoden zur Verfügung (siehe auch Keown et al. (1990) Methods in Enzymology 185:527-537). So kann die DNA beispielhaft direkt durch Mikroinjektion, Elektroporation oder durch 45 Bombardierung mit DNA-beschichteten Mikropartikeln (biolistische Verfahren mit der Genkanone "particle bombardment") eingeführt werden. Auch kann die Zelle chemisch, zum Beispiel mit Polyethy-

lenglycol, permeabilisiert werden, so dass die DNA durch Diffusion in die Zelle gelangen kann. Die DNA kann auch durch Fusion mit anderen DNA-enthaltenden Einheiten wie Minicells, Zellen, Lysosomen oder Liposomen erfolgen. Elektroporation ist eine weitere geeignete Methode zur Einführung von DNA, bei der die Zellen reversibel durch einen elektrischen Impuls permeabilisiert werden. Als bevorzugte allgemeine Methoden seien zu nennen Calcium-phosphat vermittelte Transformation, DEAE-Dextran vermittelte Transformation, kationische Lipid-vermittelte Transformation, 10 Elektroporation, Transduktion, Infektion. Derartige Verfahren sind dem Fachmann geläufig und beispielsweise beschrieben (Davis et al. (1986) Basic Methods In Molecular Biology; Sambrook J et al. (1989) Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press; Ausubel FM et al. (1994) Current protocols in molecular biology, John Wiley and Sons; Glover DM et al. 15 (1995) DNA Cloning Vol.1, IRL Press ISBN 019-963476-9).

Transformierte Zellen d.h. solche, die die eingeführte DNA enthalten, können von untransformierten selektioniert werden, wenn 20 ein selektionierbarer Marker Bestandteil der eingeführten DNA ist. Verschiedene Selektionsmarker sind oben beschrieben.

Das erfindungsgemäße Verfahren ist hinsichtlich der Art und Sequenz der zu exprimierenden Nukleinsäuresequenz bzw. des davon 25 ausgehend exprimierten rekombinanten Proteins nicht eingeschränkt. Die unter Kontrolle der L-Rhamnose-induzierbaren Promotors zu exprimierenden Nukleinsäuresequenzen können vielfältiger Art sein. Expression meint in diesem Zusammenhang Transkription und gegebenenfalls Translation. Neben der Expression von Nuklein- 30 säuresequenzen, welche für rekombinante Proteine kodieren, können auch Nukleinsäuresequenzen exprimiert werden, die beispielsweise die Transkription einer antisense-RNA bedingen und so die Expression eines endogenen Gens der prokaryontischen Wirtszelle vermindern. Sowohl Sequenzen prokaryontischen als auch eukaryontischen 35 Ursprungs können exprimiert werden. Bevorzugt werden Sequenzen exprimiert die für rekombinante Proteine kodieren, die in einem größerem Umfang herzustellen sind. Beispielhaft jedoch nicht einschränkend seien zu nennen:

40 a) Enzyme, wie z.B. Chymosin, Proteasen, Polymerasen, Saccharidasen, Dehydrogenasen, Nukleasen, Glucanases, Glucoseoxidase, α -Amylase, Oxidoreduktases (wie Peroxidasen oder Laccasen), Xylanases, Phytasen, Cellulasen, Collagenasen, Hemicellulasen und Lipasen. Insbesondere bevorzugt sind

- Enzyme wie sie in Waschmitteln oder anderen Detergentien genutzt werden wie beispielsweise Meerrettichperoxidase, Proteasen, Amylasen, Lipasen, Esterasen oder Cellulasen
- Enzyme wie sie in der Lebensmittelindustrie genutzt werden wie Proteasen, Lipasen, Lactasen, β -Glucanase, Cellulasen oder Pectinasen
- Enzyme wie sie in industriellen Verfahren eingesetzt werden wie Lipasen, α -Amylasen, Amyloglucosidasen, Glucomylasen, Pullulanasen, Glucoseisomerasen,
- 5 - Enzyme wie sie in industriellen Verfahren zur Herstellung von Chemikalien und Feinchemikalien eingesetzt werden wie Lipasen, Amidasen, Nitrilhydratasen, Esterasen oder Nitrilasen
- 10 - Enzyme wie sie in der Tierernährung eingesetzt werden wie β -Glucanasen
- 15 - Enzyme wie sie in der Papier- oder Lederindustrie eingesetzt werden wie Amylasen, Collagenasen, Cellulasen oder Xylanasen.

20 b) Säugerproteine wie beispielsweise Blutproteins (z.B. Serumalbumin, Faktor VII, Faktor VIII, Faktor IX, Faktor X, Gewebeplasminogenfaktor, Protein C, von Willebrand-Faktor, anti-Thrombin III oder Erythropoietin), "Colony Stimulating Factors" (CFS) (z.B. "Granulocyte colony-stimulating factor" (G-CSF), "Macrophage colony-stimulating factor" (M-CSF) oder "Granulocyte macrophage colony-stimulating factor" (GM-CSF)), Cytokine (z.B. Interleukine), Integrine, Addressine, Selectine, Antikörper oder Antikörperfragmente, Strukturproteine (z.B. Collagen, Fibroin, Elastin, Tubulin, Actin oder Myosin), Wachstumsfaktoren, Zellzyklusproteine, Impfstoffe, Fibrinogen, Thrombin, Insulinen.

Besonders bevorzugt kodiert die zu exprimierende Nukleinsäuresequenz für ein rekombinantes Protein ausgewählt aus der Gruppe bestehend aus Chymosinen, Proteasen, Polymerasen, Saccharidasen, Dehydrogenasen, Nukleasen, Glucanases, Glucoseoxidases, α -Amylasen, Oxidoreduktasen, Peroxidasen, Laccasen, Xylanasen, Phytasen, Cellulasen, Collagenasen, Hemicellulosen, Lipasen, Lactasen, Pectinasen, Amyloglucosidasen, Glucoamylasen, Pullulanasen, Glucosidasen, Nitrilasen, Esterasen, Nitrilhydratasen, Amidasen, Oxygenasen, Oxynitrilasen, Lyasen, Lactonasen, Carboxylasen, Collagenasen, Cellulasen, Serumalbuminen, Faktor VII, Faktor VIII, Faktor IX, Faktor X, Gewebeplasminogenfaktoren, Protein C, von Willebrand-Faktoren, antiThrombinen, Erythropoietinen, "Colony Stimulating Factors", Cytokinen, Interleukinen, Insulinen, Integrine, Addressine, Selectinen, Antikörpern, Antikörperfragmenten, Strukturproteinen, Collagen, Fibroinen, Elastinen, Tubulinen, Ac-

tinen, Myosinen, Wachstumsfaktoren, Zellzyklusproteinen, Impfstoffen, Fibrinogenen und Thrombinen.

In einer bevorzugen Ausführungform ist das rekombinante Protein 5 eine Nitrilase, bevorzugt eine Nitrilase beschrieben durch eine Aminosäuresequenz, die kodiert wird durch eine Nukleinsäuresequenz ausgewählt aus der Gruppe

- 10 a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 6 dargestellten Sequenz,
- b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 6 dargestellten Nukleinsäuresequenz ableiten,
- 15 c) Derivate der in SEQ ID NO: 6 dargestellten Nukleinsäuresequenz, die für Polypeptide mit der in SEQ ID NO: 7 dargestellten Aminosäuresequenzen kodieren und mindestens 35 % Homologie auf Aminosäureebene aufweisen, ohne dass die enzymatische Wirkung der Polypeptide wesentlich reduziert ist.
- 20

Ein weiterer Gegenstand der Erfindung betrifft die Verwendung der oben beschriebenen erfindungsgemässen Wirtszellen oder -organismen zur Herstellung von Nahrungs- oder Futtermitteln, Pharmazeutika oder Feinchemikalien. Feinchemikalien meint bevorzugt Proteine, Enzyme, Vitamine, Aminosäuren, Zucker, Fettsäuren, natürliche und synthetische Geschmacks-, Aroma- und Farbstoffe.

Ferner betrifft die Erfindung Verfahren zur Herstellung von rekombinanten Proteinen, Enzymen und anderen Feinchemikalien wie beispielweise Aldehyden, Ketonen oder Carbonsäuren (bevorzugt chiraler Carbonsäuren) unter Einsatz einer der erfindungsgemäßen prokaryontischen Wirtszellen oder einer Präparationen derselben. Die bevorzugten Proteine und Enzyme sind oben aufgeführt.

35 Dabei kann die prokaryontische Wirtzelle in einem wachsenden, ruhenden, immobilisierten oder aufgeschlossenen Zustand vorliegen. Unter aufgeschlossenen Zellen sind beispielsweise Zellen zu verstehen, die über eine Behandlung mit beispielsweise Lösungsmitteln durchlässig gemacht worden sind, oder Zellen die über eine Enzymbehandlung, über eine mechanische Behandlung (z.B. French Press oder Ultraschall) oder über eine sonstige Methode aufgebrochen wurden. Die so erhaltenen Rohextrakte sind für das erfindungsgemässe Verfahren vorteilhaft geeignet. Auch partiell 40 gereinigte Enzympräparationen können für das Verfahren verwendet werden. Ebenfalls geeignet sind immobilisierte Mikroorganismen 45

oder Enzyme, die vorteilhaft in der Reaktion Anwendung finden können.

Ein weiterer Gegenstand der Erfindung betrifft Verfahren zur Herstellung chiraler Carbonsäuren, wobei ein racemisches Nitril (oder alternativ dessen Vorstufen Aldehyd und Blausäure/Cyanidsalz) zu besagter chiraler Carbonsäure umgesetzt wird durch Behandlung mit einer prokarontische Wirtszelle, die zumindest defizient ist in Bezug auf eine L-Rhamnose-Isomerase und mindestens 10 ein in besagter Wirtszelle replizierbares DNA-Konstrukt enthält, welches eine für eine Nitrilase kodierende Nukleinsäuresequenz unter transkriptioneller Kontrolle eines durch L-Rhamnose-induzierbaren Promotors umfaßt, wobei besagter Promotor in Bezug auf besagte Nukleinsäuresequenz heterolog ist.

15

Die für die Nitrilase kodierende Nukleinsäuresequenz ist bevorzugt aus der Gruppe der oben angegebenen für Nitrilasen kodierenden Sequenzen ausgewählt.

20 Chirale Carbonsäuren sind gesuchte Verbindungen für die organische Syntheschemie. Sie sind Ausgangsprodukte für eine Vielzahl von pharmazeutischen Wirkstoffen oder Wirkstoffen für den Pflanzenschutz. Chirale Carbonsäuren können zur klassischen Racematspaltung über Diastereomeresalze verwendet werden. So wird R-(-)- 25 oder S-(-)-Mandelsäure beispielsweise zur Racematspaltung racemischer Amine eingesetzt. R-(-)-Mandelsäure wird ausserdem als Zwischenprodukt bei der Synthese genutzt.

In einer bevorzugten Ausführungsform werden die chiralen Carbonsäuren der allgemeinen Formel I ausgehend von einem racemischen Nitril der allgemeinen Formel II hergestellt.

* ein optisch aktives Zentrum

40 R^1 , R^2 , R^3 unabhängig voneinander Wasserstoff, substituiertes oder unsubstituiertes, verzweigtes oder unverzweigtes C1-C10-Alkyl-, C2-C10-Alkenyl-, substituiertes oder unsubstituiertes Aryl-, Hetaryl-, OR^4 oder NR^4R^5 und wobei die Reste R^1 , R^2 und R^3 immer unterschiedlich sind,

45

R⁴ Wasserstoff, substituiertes oder unsubstituiertes, verzweigtes oder unverzweigtes C1-C10-Alkyl-, C2-C10-Alkenyl-, C1-C10-Alkylcarbonyl-, C2-C10-Alkenylcarbonyl-, Aryl-, Arylcarbonyl-, Hetaryl- oder Hetarylcarbonyl-,

5

R⁵ Wasserstoff, substituiertes oder unsubstituiertes, verzweigtes oder unverzweigtes C1-C10-Alkyl-, C2-C10-Alkenyl-, Aryl- oder Hetaryl-.

10 Als Nitril am meisten bevorzugt sind Mandelonitril, o-Chlormandelonitril, p-Chlormandelonitril oder m-Chlormandelonitril. Als chirale Carbonsäure sind am meisten bevorzugt R-Mandelsäure, S-Mandelsäure, R-p-Chlormandelsäure, S-p-Chlormandelsäure, R-m-Chlormandelsäure, S-m-Chlormandelsäure, R-o-Chlormandelsäure
15 oder S-o-Chlormandelsäure.

Einzelheiten zu der Durchführung dieser Umsetzungen bzw. zur Aufreinigung der Produkte etc. sind beispielsweise in WO 00/23577 im Detail beschrieben. Auf die dort als beschriebenen Edukte, Produkte und Verfahrensparameter wird ausdrücklich bezug genommen.
20

Beispiele

Allgemeine Nukleinsäureverfahren wie z.B. Klonierung, Restriktionspaltungen, Agarose-Gelelektrophorese, Verknüpfen von DNA-Fragmenten, Transformation von Mikroorganismen, Anzucht von Bakterien und Sequenzanalyse rekombinanter DNA wurden wenn nichts anderes beschrieben wurde wie bei Sambrook et al. (1989) (Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6) beschrieben
25 durchgeführt. Die Sequenzierung rekombinanter DNA-Moleküle erfolgte mit einem Laserfluoreszenz-DNA-Sequenzierer der Firma ABI nach der Methode von Sanger (Sanger et al. (1977) Proc Natl Acad Sci USA 74:5463-5467). Fragmente resultierend aus einer Polymerase Kettenreaktion wurden zur Vermeidung von Polymerasefehlern
30 in zu exprimierenden Konstrukten sequenziert und überprüft.
35

Beispiel 1: Charakterisierung des E.coli-Stammes JB1204

Escherichia coli JB1204 (CGSC6999, Bulawa CE & Raetz CRH (1984) J Biol Chem 259:11257-11264) besitzt laut Literatur eine Transposoninsertion "rha-14::Tn10", wobei zur Sequenz oder Funktion von "rha-14" keine genaueren Angaben gemacht wurden. JB1204 (ein K12-Derivat) ist aufgrund zahlreicher anderer Mutationen im Wachstum Stämmen wie TG1 und W3110 unterlegen, weshalb er selbst
40 nicht zur technischen Proteinherstellung herangezogen wird.
45

Um zu testen, ob der Stamm E.coli JB1204 noch Rhamnose verstoffwechselt und ob die Induktion eines Rhamnose-abhängigen Expressionssystems in E. coli JB1204 beeinträchtigt ist, wurden kompetente JB1204-Zellen hergestellt und mit dem Plasmid pDHE1650 transformiert, das ein pJOE-Derivat ist und unter Kontrolle des Rhamnose-Promotors das Gen für eine Nitrilase trägt (Plasmid entspricht pDHE19.2 in DE 19848129). Nach 15 h Kultivierung bei 37 °C in LB-Ampicillin-Tetracyclin mit bzw. ohne Rhamnose wurde die optische Dichte der Kulturen gemessen und die Nitrilase-Aktivität nach Waschen der Zellen im "Resting-Cell"-Assay überprüft (siehe Tabelle 1). Bei Anzucht im Gegenwart von L-Rhamnose findet bei JB1204 wie auch beim Vergleichsstamm TG1 eine Nitrilaseexpression statt, die ohne L-Rhamnose nicht erfolgt.

15 Tab. 1

Probe	Rhamnose-zusatz [g/L]	Rhamnose-verbrauch	OD ₆₀₀	Umsatz Mandelonitrit
1	2	-	5,9	+
20 1	0	-	5,7	-
2	2	+	11,9	+
2	0	-	8,0	-

25 1, E.coli JB1204 pDHE1650 in LB Amp Tet;
2, E.coli TG1 pDHE1650 in LB Amp (Positivkontrolle)

Testbedingungen: 10 mM Tris-HCl, 6 mM Mandelonitrit, 40°C
Analyse: Probe mit 40 µl 1M HCl/ml abstoppen und
30 nach Zellabtrennung mittels HPLC untersuchen
wie in DE 19848129 beschrieben.

Beispiel 2: Herstellung des Rhamnose-defizienten Wirtsstammes TG10 zur Produktion rekombinanter Proteine

35 Der für die Herstellung rekombinanter Biokatalysatoren genutzte Stamm TG1 wurde durch P1-Transduktion so modifiziert, dass er Rhamnose nicht mehr verstoffwechselt, aber das auf Rhamnose-Induktion basierende Expressionssystem der pJOE- und pDHE-Vektoren noch unbeeinträchtigt funktioniert (Bezeichnung dieses neuen 40 Stammabkömmlings: TG10).

Um Fermentationsverfahren kostengünstig und mit hohen Ausbeuten fahren zu können, ist die Auswahl des E.coli-Stammes wichtig.
45 Daher wurde als Wirtsstamm E. coli TG1 gewählt, der für produktive Hochdichtezellfermentationen bekannt ist (Korz et al. (1995) J Biotechnol 39:59-65). Die Rhamnose-Defizienz aus JB1204 wurde

durch P1-Transduktion und Selektion auf Tetracyclin (15 µg/ml) auf TG1 pDHE1650 übertragen (=TG10 pDHE1650= Lu10569).

2.1 P1-Transduktionsprotokoll zum Transfer der Rhamnose-Defizienz
5 von JB1204 (rha14::Tn10) auf TG1

a) Herstellung des Donor-Lysates

- Den Donor, also JB1204 in 3 ml LB-Tet (15 µg/ml) ca. 15 h bei
10 37°C anziehen (Vorkultur).
- 3 ml LB-Tet + 5 mM CaCl₂ + 60 µl Vorkultur (=1:50) bis OD600= 0,3 – 0,5 bei 37°C inkubieren (ca. 45 min)
- + 100 µl (frisches) Lysat des Phagen P1, 10-120 min bis zur
15 Zellyse gut weiterschütteln (Klärung, bei altem Lysat bis zu 5 h)
- + 60 µl Chloroform, 30 sec vortexen zur Abtötung restlicher Zellen, Lagerung bei 4°C.

b) Infektion des Rezipienten

- 20 - Den Rezipienten, also TG1 pDHE1650 (=Lu9682) in 3 ml LB-Amp ca. 15 h bei 37°C anziehen (Vorkultur)
- 5 ml LB-Amp + 5 mM CaCl₂ + 10 mM MgCl₂ + 10 mM MgSO₄ + 100 µl Vorkultur (=1:50) bis OD600= 0,3 – 0,5 bei 37 °C inkubieren (ca. 30 min), Rest Vorkultur auf Eis
- 25 - Vorkultur und Hauprkultur ernten, resuspendieren in 2,5 ml LB-Amp-Ca-Mg
- Je 2x 100 µl Rezipient mit mit 0, 5, 30, 100 µl Donor-Lysat versetzen sowie eine Kontrolle ohne Rezipient + 100 µl Donor-Lysat und 8 min bzw. 24 min ohne zu schütteln bei 30°C inkubieren (Infektion)
- + 100 µl 1 M Na-Citrat pH 7,0, 2 min bei 7000 rpm zentrifugieren, in 1 ml 0,1 M Citratpuffer pH 7,0 2-3x waschen und resuspendieren, 1 h 37°C ohne zu schütteln
- Ernte, resuspendieren in 100 µl 0,02 M Na-Citrat pH 7,0
- 35 - Je 80 µl ausplattieren auf LB-Amp-Tet sowie je 10 µl der Ansätze ohne Donorlysat-Zugabe auf LB-Amp, Inkubation Über Nacht bei 37°C
- Auf LB-Amp wird Rasen erhalten (Kontrolle). Kolonien von LB-Amp-Tet picken und Resistenzen, Rhamnose-Defizienz und -Induktionsfähigkeit, Aktivität verifizieren.
- 40

Parallel wurde auch TG1 pDHE1650 pAgro4 pHSG575, das Pendant zu TG1 pDHE1650 mit Chaperon-Coexpression (GroESL), transduziert (+Spectinomycin 50 µg/ml und Chloramphenicol 10 µg/ml im Medium; 45 Bezeichnung TG10 pDHE1650 pAgro4 pHSG575=Lu10571).

29

Nach Übernachtkultivierung der erhaltenen Klone in 3 ml LB-Ampicillin-Rhamnose (ca. 2 g/l)-Medium (\pm Tetracyclin 10 μ g/ml) wurden die optischen Dichten ($\lambda=600$ nm) der Kulturen bestimmt. Die HPLC-Analytik der Kulturüberstände zeigte, daß der erhaltene E. coli-5 Stamm TG10 pDHE1650 Rhamnose nicht verstoffwechseln kann. Die Zellen wurden anschließend in Puffer gewaschen und im Resting-Cell-Assay auf ihre Nitrilaseaktivität getestet (Tabelle 2).

Die Rhamnose-defizienten Klone zeigten eine ähnliche Nitril-ver-10 seifende Aktivität wie der entsprechender Vergleichsstamm (TG1pDHE1650). Die Rhamnose-Konzentration nahm bei den Klonen kaum ab.

Tab. 2

	Probe	Rhamnose Rest [g/L]	Zell-konz. [xfach]	Inkub.-zeit [min]	Säure [mM]	Aktivität (1x) [U/L]	OD ₆₀₀	Aktivität / OD ₆₀₀ MW [U/L]
15	Blank	-	0	60	0,01	0		
20	TG10 pDHE1650	1,71	0,01	60	1,02	1700	6,01	324
			0,05	10	1,10	2200		
25	TG1 pDHE1650	0	0,01	60	0,84	1400	7,90	180
			0,05	10	0,72	1440		
30	TG10 pDHE1650 pAgropHSG	1,67	0,01	60	0,78	1300	5,01	295
			0,05	10	0,83	1660		
35	TG1 pDHE1650 pAgropHSG	0,34	0,01	60	1,18	1967	7,51	297
			0,05	10	1,25	2500		

40 Testbedingungen: 10 mM Tris-HCl, 6 mM Mandelonitril, 40°C
 Analyse: Probe mit 40 μ l 1M HCl/ml abstoppen und nach Zellabtrennung mittels HPLC untersuchen wie in DE 19848129 beschrieben
 (1U = 1 μ mol Mandelsäure/min)

Beispiel 3: "Curing" des Rhamnose-defizienten Wirtsstamm TG10 pDHE1650

Die Durchführung der Transduktion mit E.coli TG1 pDHE1650 bot den 5 Vorteil der Selektion gegen den Ursprungsstamm JB1204 mit Ampicillin. Für weitere Arbeiten wurde jedoch ein plasmidfreier Wirtsstamm benötigt, d.h. das Plasmid pDHE1650 sollte aus TG10 pDHE1650 entfernt werden ("Curing" von TG10 pDHE1650). Dazu wurde E.coli TG10 pDHE1650 von Eis in 3 ml LB-Tet ohne Ampicillin an-10 geimpft und ÜN bei 37 °C inkubiert. Daraus wurden eine 3 ml-Hauptkulturen 1:100 in LB-Tet animpft, die einem Hitzeschock unterzogen wurden (2,5 min 42°C). Nach 16 h Schütteln bei 37°C betrug die OD₆₀₀ der Kultur 1,3 (entspricht ca. 1,3x10⁹ Zellen/ml). Je 100 µl der Verdünnungsstufen 10⁻⁴ bis 10⁻⁷ wurden ausplattiert auf LB-Tet 15 und die erhaltenen Kolonien (560+140+15+0) überstempelt auf LB-Tet mit Ampicillin. Ein dort schwach gewachsener Klon wurde nochmals auf LB-Amp-Tet ausgestrichen. Er wuchs nicht auf LB-Amp-Tet und zeigte nach Minipräparation (LB-Tet-Anzucht) auch keine Plasmid-DNA. Dieser Ampicillin-sensitive Klon wird als TG10 bezeichnet 20 (=Lu10568) und dient als Ausgangsstamm für neue Überexpressionsstämme.

Beispiel 4: Herstellung von rekombinanter L-Pantolacton-Hydrolase mit dem Rhamnose-defizienten Wirtsstamm 25 E.coli TG10

Es wurden kompetente E. coli-TG10 Zellen hergestellt und mit dem Plasmid pDHE681, pAgro4 und pHSG575-transformiert (= Probe 1 in Tab.3). Nach Übernachtkultivierung bei 37 °C zeigten die Zellen 30 eine hohe L-Pantolacton-verseifende Aktivität im Vergleich zum entsprechenden Kontrollstamm (TG1 pDHE681 pAgro4 pHSG575== Probe 2 in Tab.3), dessen maximale Aktivität i.d.R. nach 6-7 h Inkubation erreicht wird (ca. 1500 U/L) und durch längere Inkubation stark abfällt. Die Rhamnose (0,5 g/L) wurde von TG10 pDHE681 pAgro4 pHSG575 nicht verstoffwechselt.

Tab. 3

Probe	Rhamnose Rest [g/L]	OD ₆₀₀	Zell-konz. [xfach]	Inkub.-zeit [h]	Säure [mM]	Aktivität (1x) [U/L]	Aktivität / OD ₆₀₀ [U/L]
Blank	-		0	1,0	1,74	-	
1	0,52	6,35	0,2	1,0	29,9	2344,2	369,2
2	0	6,64	0,2	1,0	6,27	377,5	56,9

31

- 1, TG10 pDHE681 pAgro4 pHSG575; LB mit Ampicillin (Amp; 100 µg/ml) Tetracyclin (Tet 10 µg/ml), L-Rhamnose (Rha 0,5 g/l) und Isopropylthiogalactosid (IPTG 0,15 mM)
- 2, TG1 pDHE681 pAgro4 pHSG575; LB mit Ampicillin
- 5 (Amp; 100 µg/ml), L-Rhamnose (Rha 0,5 g/l) und Isopropylthiogalactosid (IPTG 0,15 mM)

Der Test wurde detaillierter wiederholt. Die Zugabe von Tetracyclin (15 µg/ml) zum Medium ist zur Erhaltung der Rhamnose-Defizienz nicht notwendig.

15

20

25

30

35

40

45

Beispiel 5: Bestimmung der Abhangigkeit der Induktion von der L-Rhamnose-Konzentration

Der Stamm E.coli TG10 (pDHE1650, pAgro4, pHSG575) wurde analog zu Beispiel 1 auf LB Ampicillin (100 mg/l), Chloramphenicol 10 mg/l, Spectromycin (50 mg/l), IPTG 0,15mM in Gegenwart verschiedener Rhamnosemengen (0 bis 2 g/l Rhamnose) angezogen und auf seine spezifische Nitrilaseaktivitat hin untersucht (Doppelbestimmung). Bereits eine Konzentration von 0,01 g/l L-Rhamnose ergibt eine im Durchschnitt signifikante Induktion der Expression, wahrend in Abwesenheit von Rhamnose keinerlei signifikante Expression (aber die Enzymaktivitat) ermittelt werden konnte.

Vgl. auch Fig.1:

15

A: Darstellung der relativen Aktivitat (Rel. Act. %) im Verhaltnis zu der L-Rhamnose-Konzentration (Conc. in g/l)

20 B: Darstellung der relativen spezifischen Aktivitat (Rel. Spec. Act. %) im Verhaltnis zu der L-Rhamnose-Konzentration (Conc. in g/l)

Tab. 4:

	Rhamnosekonz.	OD600	Rel. Aktiv.	Rel. spez. Akt. [g/l]
25	0,00	5,4	0,1%	0,1%
	0,01	6,2	66%	65%
	0,02	5,8	70%	73%
	0,04	5,7	85%	92%
	0,05	5,2	83%	98%
30	0,07	5,9	90%	93%
	0,10	6,0	97%	98%
	0,15	5,6	101%	111%
	0,20	5,6	100%	108%
	0,30	5,3	99%	115%
35	0,40	5,7	107%	114%
	0,50	6,2	102%	100%
	1,00	5,8	101%	108%
	2,00	6,1	100%	100%
	0 + Tet	4,7	0%	0%
40	0,5 + Tet	5,1	81%	98%
	2,0 + Tet	4,5	86%	117%

Beispiel 6: Analyse des Integrationsortes des Transposon im L-Rhamnose-Isomerase defizienten Stamm E.coli TG10

Um den Integrationsort des Transposons Tn10 näher zu charakterisieren, wurden die Rhamnose-Gene rhaT, rhaB, rhaA und rhaD via PCR (Pfu-Polymerase) im Vergleich von TG1 (pDHE681) und TG10 (pDHE681) untersucht. Bei Amplifikation von rhaA (L-Rhamnose-Isomerase) oder der Region rhaA-rhaD mit den Primern MKe259/260 bzw. MKe 258/259 wurde bei dem mutagenisierten Stamm TG10 im Unterschied zum Wildtypstamm TG1 keine spezifisches Amplifikat erhalten.

MKe258 5'-CCCAAGCTTGGATCATGTTGCTCCTTACAG (rhaD 3' Ende + HindIII)

MKe259 5'-GCGAATTGCGATGACCACTCAACTGGAACA (rhaA 5' Ende + EcoRI)

15 MKe260 5'-CCCAAGCTTACCCGGCGACTCAAAATT (rhaA 3' Ende + HindIII)

Beispiel 7: Herstellung eines L-Rhamnose-Isomerase defizienten E.coli Stamms mittels gezieltem Knockout

20 Zur Inaktivierung der L-Rhamnose-Isomerase (rhaA) wird das rhaA-Gen zunächst mit den Primern MKe001 und MKe002 amplifiziert und in pBluescriptSK⁺ kloniert (XbaI/HindIII-Verdau und Ligation). Anschließend wird durch Restriktionsverdau mit BamHI und Auffüllreaktion mit Klenow-Fragment sowie anschließender Ligation ein 25 Frameshift eingeführt und das entsprechende rha*-Fragment in den Gene-Replacement-Vektor pKO3 (Link et al. (1997) J Bacteriol 179:6228-6237) umkloniert. Der Knock out des rhaA-Gens in TG1pDHE1650 durch homologe Rekombination mit dem rha*-Konstrukt wird nach Link et al. ((Link et al. (1997) J Bacteriol 30 179:6228-6237)) mittels Selektion auf Chloramphenicol bei 43°C, Replikatlattierung auf Saccharose bei 30°C und anschließender Verifizierung auf McConkey-Agar mit 1 g/L Rhamnose durchgeführt.

MKe001: 5'-ATAAGAATGCGGCCGCATGACCACTCAACTGGAACA-3'

35 MKe002: 5'-CTAGCTCTAGATTACCCGGCGACTCAA-3'

Beispiel 8: Herstellung von rekombinanter Nitrilase mit dem Rhamnose-defizienten Wirtsstamm TG10

40 Die Fed-batch-Fermentation von TG10-Derivaten wie TG10 pDHE1650 pAgro4 pHSG575 erfolgt auf einem modifizierten Riesenberg-Medium mit Glycerin als C-Quelle und Rhamnose als Induktor zur Überexpression des Zielproteins, hier der Nitrilase. Mit dem Stamm wurden vergleichbare und höhere Zelldichten und Enzymaktivitäten erreicht.

8.1 Fermentation von *E. coli* TG 1

Die Fermentation des *Escherichia coli* (TG1 pDHE1650 pAgro4 pHSG575) erfolgte im 20 L Bioreaktor. Der Reaktor mit 10L Arbeitsvolumen wurde mit 200 ml Vorkultur aus Schüttelkolben angeimpft. Das Vorkulturmedium entspricht dem Hauptkulturmedium.

Medium:

40 g	Glycerin 99,5 %
10 15 g	Trypton
13,3 g	Kaliumdihydrogenphosphat
5 g	Hefeextrakt
4 g	Di-Ammoniumhydrogenphosphat
1,7 g	Citronensäure
15 1,1 g	Magnesiumsulfat Heptahydrat
1 mL	Spurenelementlösung SL Korz 1000 C
0,1 mL	Tego KS 911 Antischaummittel
0,062 g	Eisen(II)sulfat Heptahydrat
10 mg	Thiaminhydrochlorid
20 ad 1 L.	VE-Wasser

Das Medium wird 30 min bei 121°C sterilisiert. Anschließend werden 0,1 g Ampicillin steril zugesetzt

25 Spurenelementlösung

Citronensäure*H2O	20 g
Kobalt(II)chlorid Hexachlorid (CoCl ₂ * 6H ₂ O)	2,5 g
Mangan(II)chlorid Tetrachlorid (MnCl ₂ * 4H ₂ O)	3,0 g
Kupfer(II)chlorid Dihydrat (CuCl ₂ * 2H ₂ O)	0,3 g
Borsäure (H ₃ BO ₃)	0,6 g
Natriummolybdat Dihydrat (Na ₂ MoO ₄ * 2H ₂ O)	0,5 g
Zinkacetat Dihydrat (Zn(CH ₃ COO) ₂ * 2H ₂ O)	2,6 g
ad 1L VE- H2O	

35 Glycerinfeedlösung

2 L	VE-Wasser
211 g	Natriumsulfat
13,6 g	Eisen(II)sulfat Heptahydrat
8,8 kg	Glycerin 99,5 %
40 220 mL	Spurenelementlösung

Rhamnosefeedlösung

703 g	VE-Wasser
297 g	Rhamnose Monohydrat

35

Die Fermentation erfolgt bei einer Temperatur von 37°C. Die Begasung wird zwischen 8-30 L/min, die Rührerdrehzahl von 400 bis 1500 1/min geregelt um einen pO₂ von 20 % nicht zu unterschreiten. Nach 1 h Fermentationszeit wird die Kultur mit IPTG (0,15 mM) induziert. Anschließend werden 76 ml Rhamnosefeedlösung zugesetzt. Bei einem Unterschreiten der Rhamnosekonzentration im Fermenter von 1.0 g/L wird Rhamnosefeedlösung nachdosiert. Nach Verbrauch der vorgelegten Glycerinmenge wird kontinuierlich Glycerin zugefüttert.

10

Ergebnisse:

Zeit	pO ₂	BTM	Rhamnose	dosierte Rhamnosefeedlösung	Glycerin					
					[h]	[%]	[g/L]	[g/L]	[g]	[g/L]
15	0	0	0	0	0	0	40.0			
	2	75.8	2.3	1.70	76	20.5	35.9			
	5	20.5	7.5	1.54	115	33.7	33.6			
	8	33.7	17.3	1.96	244	39.3	25.4			
	11	39.3	15.7	3.11	365	22.6	17.0			
20	14	22.6	18.8	2.71	364	30.1	8.6			
	17	30.1	21.4	1.87	404	35.1	0			
	20	35.1	24.8	1.36	474	21.5	0			
	23	21.5	31.8	1.18	673	23.9	0			
	26	23.9	28.7	1.80	970	36.4	0			
25	29	36.4	42.2	0.48	1234	28.5	0			
	32	28.5	38.7	1.20	1639	29.8	0			
	35	29.8	47.0	1.22	2033	44.3	0			
	38	44.3	49.2	1.19	2474	47.6	0			
	41	47.6	45.4	1.45	2879	46.2	0			
	44	46.2	45.2	1.80	3237					
30	Aktivität nach 44h:		57200 U/L							

8.2 Fermentation von *E. coli* TG 10

Die Fermentation des *Escherichia coli* TG10 (pDHE1650 pAgro4 pHSG575) erfolgte nach derselben Vorschrift wie in Beispiel 1 mit dem Unterschied, dass die Induktion mit 18,5 g Rhamnosefeedlösung vorgenommen wurde. Es wurde keine Nachdosierung der Rhamnose vorgenommen.

40

45

Ergebnisse:

Zeit	pO ₂	BTM	Rhamnose	dosierte Rhamnose-feedlösung	Glycerin
[h]	[%]	[g/L]	[g/L]	[g]	[g/L]
5	0	0	0.00	0	40.0
0	71.4	2.7	0.58	18.5	38.6
2	20.7	7.0	0.59	18.5	36.5
5	21.7	13.2	0.59	18.5	26.4
8	31.1	16.9	0.57	18.5	13.2
11	44.6	19.0	0.60	18.5	0
10	50.5	24.0	0.58	18.5	0
14	35.9	26.1	0.57	18.5	0
17	33.9	33.4	0.58	18.5	0
20	40.4	36.0	0.57	18.5	0
23	38.2	40.8	0.55	18.5	0
26	34.3	45.3	0.58	18.5	0
29	45.7	48.7	0.50	18.5	0
15	32	40.0	0.50	18.5	0
35	31.8	52.5	0.44	18.5	0
38	29.5	50.0	0.44	18.5	0
41					
44					
20	Aktivität nach 44h: 59200 U/L				

8.3 Aktivitätstest:

Zu 880 µl Natrium-Kalium-Phosphatpuffer (10mM) werden 50 µl Zell-suspension pipettiert und auf 30°C temperiert. Die Reaktion wird 25 durch Zugabe von 20 µl methanolischer Mandelonitrillösung (12%) gestartet. Nach 10min wird er Enzymreaktion durch Zugabe von 50 µl 1M HCl gestoppt. Die Zellmasse wird abzentrifugiert und die Mandelsäurekonzentration im Überstand wird per HPLC (ODS Hypersil 100*2,0 mm, Laufmittel: 75% H₃PO₄ (14.8mM) / 25% Methanol; Flußrate: 0.5 ml/min; Injektionsvolumen: 2 µl; Säulentemperatur: 40°C; Detektion: 210nm; Retentionzeit Mandelsäure: 0.9 min) gemessen.

8.4 Bestimmung der Rhamnosekonzentration:

Zur online Probenahme am Fermenter bedient man sich eines Kermikfilters und einer kontinuierlich betriebenen Schlauchpumpe. 35 Die Programmierung der HPLC-Anlage erfolgt so, daß nach jeder abgeschlossenen Analyse eine erneute Einspritzung erfolgt. Dazwischen wird das Filtrat aus dem Fermenter in ein Abfallgefäß gepumpt.

40

Chromatographische Bedingungen:

Säule: HPX 87 H, 7,8 x 300 mm

Eluent: 0,005 M H₂SO₄

Flußrate: 0,5 mL/min

45 Injektionsvolumen: 1 µL

Säulentemperatur: 55°C

Detektion: RI

Patentansprüche

1. Verfahren zur Expression von Nukleinsäuresequenzen in prokaryontischen Wirtszellen, wobei man
 - 5 a) mindestens ein in besagten Wirtszellen episomal replizierbares, DNA-Konstrukt umfassend eine zu exprimierende Nukleinsäuresequenz unter transkriptioneller Kontrolle eines L-Rhamnose-induzierbaren Promotors, wobei besagter Promotor in Bezug auf besagte Nukleinsäuresequenz heterolog ist, in besagte Wirtszellen einbringt und
 - 10 b) prokaryontischen Wirtszellen selektioniert, welche besagtes DNA-Konstrukt in episomaler Form enthalten und
 - 15 c) die Expression besagter Nukleinsäuresequenz durch Zugabe von L-Rhamnose zu einer Kultur besagter selektionierter Wirtszellen induziert,
- 20 dadurch gekennzeichnet, dass die prokaryontische Wirtszelle zumindest defizient ist in Bezug auf L-Rhamnose-Isomerase.
2. Verfahren nach Anspruch 1, wobei die prokaryontische Wirtszelle ausgewählt ist aus den Arten der Familie der Enterobacteriaceae oder der Ordnung Actinomycetales.
- 25 3. Verfahren nach einem der Ansprüche 1 oder 2, wobei die prokaryontische Wirtszelle *Escherichia coli* ist.
- 30 4. Verfahren nach einem der Ansprüche 1 bis 3, wobei der L-Rhamnose-induzierbare Promotor der *rhaP_{BAD}*-Promotor aus *E. coli* oder ein funktionelles Äquivalent desselben oder ein funktionell äquivalentes Fragment der vorgenannten ist.
- 35 5. Verfahren nach einem der Ansprüche 1 bis 4, wobei der L-Rhamnose-induzierbare Promotor zumindest ein RhaS-Bindeelement gemäß SEQ ID NO: 5 oder ein funktionelles Äquivalent desselben oder ein funktionell äquivalentes Fragment der vorgenannten enthält.
- 40 6. Verfahren nach einem der Ansprüche 1 bis 5, wobei der L-Rhamnose-induzierbare Promotor mindestens eine Sequenz beschrieben durch SEQ ID NO: 1, 2, 3 oder 4 enthält.

7. Verfahren nach einem der Ansprüche 1 bis 6, wobei die L-Rhamnose-Isomerase durch die Aminosäuresequenz gemäß SEQ ID NO: 9 oder ein funktionelles Äquivalent derselben beschrieben ist.
- 5 8. Verfahren nach einem der Ansprüche 1 bis 7, wobei das episomale replizierbare DNA-Konstrukt eine Größe von maximal 100000 Basen bzw. Basenpaaren hat.
9. Verfahren nach einem der Ansprüche 1 bis 8, wobei das episomale replizierbare DNA-Konstrukt ausgewählt ist aus der Gruppe bestehend aus zirkulären Plasmidvektoren, Phagemiden und Cosmiden.
10. Verfahren nach einem der Ansprüche 1 bis 9, wobei die prokaryontische Wirtzelle mindestens eine weitere Defizienz in Bezug auf ein Gene aufweist, das eine Funktion der Rhamnose-Metabolisierung hat, wobei besagtes Gen für ein Protein kodiert ausgewählt aus der Gruppe bestehend aus der Rhamnulose-1-Phosphatase (RhaB) und der Rhamnulosephosphat-Aldolase (RhaD).
11. Verfahren nach einem der Ansprüche 1 bis 10, wobei die Expression der zu exprimierenden Nukleinsäuresequenz die Produktion eines durch besagte Nukleinsäuresequenz kodierten Proteins bedingt.
12. Verfahren nach einem der Ansprüche 1 bis 11, wobei die zu exprimierende Nukleinsäuresequenz für ein rekombinantes Protein kodiert ausgewählt aus der Gruppe bestehend aus Chymosinen, Proteasen, Polymerasen, Saccharidasen, Dehydrogenasen, Nukleasen, Glucanasen, Glucoseoxidinasen, α -Amylasen, Oxidoreduktasen, Peroxidasen, Laccasen, Xylanasen, Phytasen, Cellulinasen, Collagenasen, Hemicellulinasen, Lipasen, Lactasen, Pectininasen, Amyloglucosidasen, Glucoamylasen, Pullulanasen, Glucosidases, Nitrilinasen, Esterasen, Nitrilhydratasen, Amidasen, Oxygenasen, Oxynitrilinasen, Lyasen, Lactonasen, Carboxylasen, Collagenasen, Cellulasen, Serumalbuminen, Faktor VII, Faktor VIII, Faktor IX, Faktor X, Gewebeplasminogenfaktoren, Protein C, von Willebrand-Faktoren, antiThrombinen, Erythropoietinen, "Colony Stimulating Factors", Cytokinen, Interleukinen, Insulinen, Integrine, Addressine, Selectinen, Antikörpern, Antikörperfragmenten, Strukturproteinen, Collagen, Fibroinen, Elastinen, Tubulinen, Actinen, Myosinen, Wachstumsfaktoren, Zellzyklusproteinen, Impfstoffen, Fibringenen und Thrombinen.

39

13. Prokaryontische Wirtszelle, die zumindest defizient ist in Bezug auf L-Rhamnose-Isomerase und mindestens ein in besagter Wirtszelle replizierbares DNA-Konstrukt enthält, welches eine zu exprimierende Nukleinsäuresequenz unter transkriptioneller Kontrolle eines durch L-Rhamnose-induzierbaren Promotors umfaßt, wobei besagter Promotor in Bezug auf besagte Nukleinsäuresequenz heterolog ist.

5

14. Verwendung einer prokarontischen Wirtszellen nach Anspruch 13 zur Herstellung von Nahrungs- oder Futtermitteln, Enzymen, Chemikalien, Pharmazeutika oder Feinchemikalien.

10

15. Verfahren zur Herstellung von rekombinanten Proteinen, Enzymen und Feinchemikalien unter Einsatz einer prokaryontischen Wirtszellen gemäß Anspruch 13 oder einer Präparationen derselben.

15

20

25

30

35

40

45

1/1

A

B

Fig. 1

SEQUENZPROTOKOLL

<110> BASF Aktiengesellschaft
<120> L-Rhamnose-induzierbare Expressionssysteme
<130> AE20020689
<140>
<141>
<160> 19
<170> PatentIn Ver. 2.1
<210> 1
<211> 2046
<212> DNA
<213> Escherichia coli
<220>
<221> misc_feature
<222> (288)..(1121)
<223> coding for rhaS (positve regulator of rhaBAD
operon)
<220>
<221> misc_feature
<222> (1108)..(2043)
<223> coding for rhaR (positive regulator of rhaRS
operon)
<220>
<221> protein_bind
<222> (56)..(72)
<223> potential RhaS binding site
<220>
<221> protein_bind
<222> (89)..(105)
<223> potential RhaS binding site
<220>
<221> protein_bind
<222> (172)..(203)
<223> potential RhaR binding site
<220>
<221> protein_bind
<222> (210)..(241)
<223> potential RhaR binding site
<220>
<221> misc_feature
<222> (24)
<223> potential start of transcription (complement)
<400> 1
aatgtatcc tgctgaattt cattacgacc agtctaaaaa gcgcctgaat tcgcgacctt 60
ctcgttactg acaggaaaat gggccattgg caaccaggga aagatgaacg tgatgtatgtt 120
cacaatttgc tgaattgtgg ttagtgtatg ctcaccgcatttcctgaaaaa ttacacgtgt 180
atcttggaaaa atcgacgttt ttacgtgggt ttcccgatcga aaatttaagg taagaacctg 240
acctcgat tactatccg ccgtgttgac gacatcagga ggccagtatg accgtattac 300
atagtgtgaa tttttttccg tctggtaacg cgtccgtggc gatagaaccc cggctccgc 360
aggcggattt tcctgaacat catcatgatt ttcatgaaat tgtgattgtc gaacatggca 420
cgggtattca tgtgtttaat gggcagccct ataccatcac cggtggcacg gtctgtttcg 480

tacgcgatca tgatcgcat ctgtatgaac ataccataa tctgtgtctg accaatgtgc 540
tgtatcgctc gccggatcgta tttcagttc tcgcgggct gaatcagttg ctgccacaag 600
agctggatgg gcagtatccg tctcactggc gcgttaacca cagcgtattg cagcaggtgc 660
gacagctgt tgcacagatg gaacagcagg aaggggaaaa tgatttaccc tcgaccgcca 720
gtcgcgagat cttgttatg caattactgc tcttgcgtcg taaaagcagt ttgcaggaga 780
acctggaaaaa cagcgcata cgtctcaact tgcttctggc ctggctggag gaccatgg 840
ccgatgaggt gaattggat gccgtggcgg atcaatttc tcttcaactg cgtacgctac 900
atcggcagct taagcagcaa acggactga cgcctcagcg atacctgaac cgcctgcgac 960
tgatgaaagc ccgacatctg ctacgccaca gcgaggccag cgtactgac atgcctatac 1020
gctgtggatt cagcgcacatg aaccacttt cgacgcttt tcgcccagag tttactggt 1080
caccgcgtga tattcgccag ggacgggatg gcttctgca ataacgcgaa tcttctcaac 1140
gtatttgtac gccatattgc gaataatcaa cttcgttctc tggccgaggt agccacgggt 1200
gcccgcatacgt taaaacttct caaagatgat tttttgcca gcgaccagca ggcagtcgt 1260
gtggctgacc gttatccgca agatgtctt gctgaacata cacatgattt ttgtgagctg 1320
gtgatttgcgt ggcgcgttaa tggcctgcat gtactcaacg atcgcctta tcgcattacc 1380
cgtggcgtac tctttacat tcatgcgtac gataaacact cctacgcctc cgttaacgat 1440
ctgggtttgc agaataattat ttattgcccggagcgtctga agtgaatct tgactggcag 1500
ggggcgattc cgggatttaa cgccagcgca gggcaaccac actggcgctt aggtacgtg 1560
gggatggcgc aggccggca gttatcggt cagcttgagc atgaaagtag tcagcatgtg 1620
cggtttgcta acgaaatggc tgagttgtcgttgcggcagt tggtgatgtt gctgaatcgc 1680
catcgttaca ccagtgttcc gttgcgcaca acatccagcg aaacgttgct ggataagctg 1740
attacccggc tggcggctag cctgaaaagt cccttgcgc tggataaaatt ttgtgatgag 1800
gcacatgtgca gtgagcgcgt tttgcgtcag caatttcgccc agcagactgg aatgaccatc 1860
aatcaatatc tgcacaggt cagagtgtgt catgcgcaat atcttctcca gcataggcgc 1920
ctgttaatca gtgatatttc gaccgaatgt ggcttgaag atagtaacta ttttcgggt 1980
gtgttaccc gggaaaccgg gatgacgcggc agccagtggc gtcatctcaa ttgcagaaaa 2040
gattaa 2046

<210> 2
<211> 287
<212> DNA
<213> Escherichia coli

<220>
<221> promoter
<222> (1)..(287)
<223> rhaBAD promoter fragment containing rhaS and rhaR
binding sites

<400> 2
actggcctcc tgatgtcgta aacacggcga aatagtaatc acgagggtcag gttcttaccc 60
taaatttgc acggaaaacc acgtaaaaaa cgtcgatttt tcaagataca gcgtgaattt 120
tcagggaaatg cggtgagcat cacatcacca caattcagca aattgtgaac atcatcacgt 180
tcatcttcc ctgggtgcca atggccatt ttcctgtcag taacgagaag gtcgcgaatt 240
caggcgcttt ttagactggcgtt cgtaatgaaa ttccagcaggaa tcacattt 287

<210> 3
<211> 125
<212> DNA
<213> Escherichia coli

<220>
<221> promoter
<222> (1)..(125)
<223> rhaBAD promoter fragment containing RhaS binding
site

<400> 3
ttgtgaacat catcacgttc atcttccct gttgcataat ggccatttt cctgtcagta 60
acgagaaggt cgcaattca ggccgtttt agactgtcg taatgaaatt cagcaggatc 120
acattt 125

<210> 4
<211> 123
<212> DNA
<213> Escherichia coli

<220>
<221> promoter
<222> (1)..(123)
<223> rhaBAD promoter fragment containing RhaS binding site

<400> 4
atcaccacaa ttccagcaa at tgcgttca atcgttca tctttccctg gttgccaatg 60
gcccatttc ctgtcagtaa cgagaaggc gcgttta gactggcgt 120
aat 123

<210> 5
<211> 51
<212> DNA
<213> Escherichia coli

<220>
<221> misc_feature
<222> (1)..(51)
<223> palindromic RhaS binding site of rhaBAD promoter

<400> 5
atcttcctt ggttgcata ggttgcata cctgtcagta acgagaaggc 51

<210> 6
<211> 1071
<212> DNA
<213> Alcaligenes faecalis

<220>
<221> CDS
<222> (1)..(1068)
<223> coding for nitrilase

<400> 6
atg cag aca aga aaa atc gtc cgg gca gcc gca gta cag gcc gtc 48
Met Gln Thr Arg Lys Ile Val Arg Ala Ala Val Gln Ala Ala Ser
1 5 10 15
ccc aac tac gat ctg gca acg ggt gtt gat aaa acc att gag ctg gct 96
Pro Asn Tyr Asp Leu Ala Thr Gly Val Asp Lys Thr Ile Glu Leu Ala
20 25 30
cgt cag gcc cgc gat gag ggc tgc gac ctg atc gtg ttt ggt gaa acc 144
Arg Gln Ala Arg Asp Glu Gly Cys Asp Leu Ile Val Phe Gly Glu Thr
35 40 45
tgg ctg ccc gga tat ccc ttc cac gtc tgg ctg ggc gca ccg gcc tgg 192
Trp Leu Pro Gly Tyr Pro Phe His Val Trp Leu Gly Ala Pro Ala Trp
50 55 60
tcg ctg aaa tac agt gcc cgc tac tat gcc aac tcg ctc tcg ctg gac 240
Ser Leu Lys Tyr Ser Ala Arg Tyr Tyr Ala Asn Ser Leu Ser Leu Asp
65 70 75 80
agt gca gag ttt caa cgc att gcc cag gcc gca ccg acc ttg ggt att 288
Ser Ala Glu Phe Gln Arg Ile Ala Gln Ala Ala Arg Thr Leu Gly Ile
85 90 95
ttc atc gca ctg ggt tat agc gag cgc agc ggc agc ctt tac ctg 336
Phe Ile Ala Leu Gly Tyr Ser Glu Arg Ser Gly Gly Ser Leu Tyr Leu
100 105 110

ggc caa tgc ctg atc gac gac aag ggc gag atg ctg tgg tcg cgt cgc	384
Gly Gln Cys Leu Ile Asp Asp Lys Gly Glu Met Leu Trp Ser Arg Arg	
115 120 125	
aaa ctc aaa ccc acg cat gta gag cgc acc gta ttt ggt gaa ggt tat	432
Lys Leu Lys Pro Thr His Val Glu Arg Thr Val Phe Gly Glu Gly Tyr	
130 135 140	
gcc cgt gat ctg att gtg tcc gac aca gaa ctg gga cgc gtc ggt gct	480
Ala Arg Asp Leu Ile Val Ser Asp Thr Glu Leu Gly Arg Val Gly Ala	
145 150 155 160	
cta tgc tgc tgg gag cat ttg tcg ccc ttg agc aag tac gcg ctg tac	528
Leu Cys Cys Trp Glu His Leu Ser Pro Leu Ser Lys Tyr Ala Leu Tyr	
165 170 175	
tcc cag cat gaa gcc att cac att gct gcc tgg ccg tcg ttt tcg cta	576
Ser Gln His Glu Ala Ile His Ala Ala Trp Pro Ser Phe Ser Leu	
180 185 190	
tac agc gaa cag gcc cac gcc ctc agt gcc aag gtg aac atg gct gcc	624
Tyr Ser Glu Gln Ala His Ala Leu Ser Ala Lys Val Asn Met Ala Ala	
195 200 205	
tcg caa atc tat tcg gtt gaa ggc cag tgc ttt acc atc gcc gcc agc	672
Ser Gln Ile Tyr Ser Val Glu Gly Gln Cys Phe Thr Ile Ala Ala Ser	
210 215 220	
agt gtg gtc acc caa gag acg cta gac atg ctg gaa gtg ggt gaa cac	720
Ser Val Val Thr Gln Glu Thr Leu Asp Met Leu Glu Val Gly Glu His	
225 230 235 240	
aac gcc ccc ttg ctg aaa gtg ggc ggc agt tcc atg att ttt gcg	768
Asn Ala Pro Leu Leu Lys Val Gly Gly Ser Ser Met Ile Phe Ala	
245 250 255	
ccg gac gga cgc aca ctg gct ccc tac ctg cct cac gat gcc gag ggc	816
Pro Asp Gly Arg Thr Leu Ala Pro Tyr Leu Pro His Asp Ala Glu Gly	
260 265 270	
ttg atc att gcc gat ctg aat atg gag gag att gcc ttc gcc aaa gcg	864
Leu Ile Ile Ala Asp Leu Asn Met Glu Glu Ile Ala Phe Ala Lys Ala	
275 280 285	
atc aat gac ccc gta ggc cac tat tcc aaa ccc gag gcc acc cgt ctg	912
Ile Asn Asp Pro Val Gly His Tyr Ser Lys Pro Glu Ala Thr Arg Leu	
290 295 300	
gtg ctg gac ttg ggg cac cga gac ccc atg act cgg gtg cac tcc aaa	960
Val Leu Asp Leu Gly His Arg Asp Pro Met Thr Arg Val His Ser Lys	
305 310 315 320	
agc gtg acc agg gaa gag gct ccc gag caa ggt gtg caa agc aag att	1008
Ser Val Thr Arg Glu Glu Ala Pro Glu Gln Gly Val Gln Ser Lys Ile	
325 330 335	
gcc tca gtc gct atc agc cat cca cag gac tcg gac aca ctg cta gtg	1056
Ala Ser Val Ala Ile Ser His Pro Gln Asp Ser Asp Thr Leu Leu Val	
340 345 350	
caa gag ccg tct tga	1071
Gln Glu Pro Ser	
355	

<210> 7

<211> 356

<212> PRT

<213> Alcaligenes faecalis

<400> 7

Met Gln Thr Arg Lys Ile Val Arg Ala Ala Ala Val Gln Ala Ala Ser
1 5 10 15

Pro Asn Tyr Asp Leu Ala Thr Gly Val Asp Lys Thr Ile Glu Leu Ala
20 25 30

Arg Gln Ala Arg Asp Glu Gly Cys Asp Leu Ile Val Phe Gly Glu Thr
35 40 45

Trp Leu Pro Gly Tyr Pro Phe His Val Trp Leu Gly Ala Pro Ala Trp
50 55 60

Ser Leu Lys Tyr Ser Ala Arg Tyr Tyr Ala Asn Ser Leu Ser Leu Asp
65 70 75 80

Ser Ala Glu Phe Gln Arg Ile Ala Gln Ala Ala Arg Thr Leu Gly Ile
85 90 95

Phe Ile Ala Leu Gly Tyr Ser Glu Arg Ser Gly Gly Ser Leu Tyr Leu
100 105 110

Gly Gln Cys Leu Ile Asp Asp Lys Gly Glu Met Leu Trp Ser Arg Arg
115 120 125

Lys Leu Lys Pro Thr His Val Glu Arg Thr Val Phe Gly Glu Gly Tyr
130 135 140

Ala Arg Asp Leu Ile Val Ser Asp Thr Glu Leu Gly Arg Val Gly Ala
145 150 155 160

Leu Cys Cys Trp Glu His Leu Ser Pro Leu Ser Lys Tyr Ala Leu Tyr
165 170 175

Ser Gln His Glu Ala Ile His Ile Ala Ala Trp Pro Ser Phe Ser Leu
180 185 190

Tyr Ser Glu Gln Ala His Ala Leu Ser Ala Lys Val Asn Met Ala Ala
195 200 205

Ser Gln Ile Tyr Ser Val Glu Gly Gln Cys Phe Thr Ile Ala Ala Ser
210 215 220

Ser Val Val Thr Gln Glu Thr Leu Asp Met Leu Glu Val Gly Glu His
225 230 235 240

Asn Ala Pro Leu Leu Lys Val Gly Gly Ser Ser Met Ile Phe Ala
245 250 255

Pro Asp Gly Arg Thr Leu Ala Pro Tyr Leu Pro His Asp Ala Glu Gly
260 265 270

Leu Ile Ile Ala Asp Leu Asn Met Glu Glu Ile Ala Phe Ala Lys Ala
275 280 285

Ile Asn Asp Pro Val Gly His Tyr Ser Lys Pro Glu Ala Thr Arg Leu
290 295 300

Val Leu Asp Leu Gly His Arg Asp Pro Met Thr Arg Val His Ser Lys
305 310 315 320

Ser Val Thr Arg Glu Glu Ala Pro Glu Gln Gly Val Gln Ser Lys Ile
325 330 335

Ala Ser Val Ala Ile Ser His Pro Gln Asp Ser Asp Thr Leu Leu Val
340 345 350

Gln Glu Pro Ser

355

<210> 8

<211> 1260

<212> DNA

<213> Escherichia coli

<220>

<221> CDS

<222> (1)..(1257)

<223> coding for rhaA (L-rhamnose isomerase)

<400> 8

atg	acc	act	caa	ctg	gaa	cag	gcc	tgg	gag	cta	gcg	aaa	cag	cgt	ttc	48
Met	Thr	Thr	Gln	Leu	Glu	Gln	Ala	Trp	Glu	Leu	Ala	Lys	Gln	Arg	Phe	
1				5					10					15		

gcg	gca	gtg	ggg	att	gat	gtc	gag	gag	gca	ctg	cgc	caa	ctt	gat	cgt	96
Ala	Ala	Val	Gly	Ile	Asp	Val	Glu	Glu	Ala	Leu	Arg	Gln	Leu	Asp	Arg	
20				25					30							

tta	ccc	gtt	tca	atg	cac	tgc	tgg	cag	ggc	gat	gat	gtt	tcc	ggt	ttt	144
Leu	Pro	Val	Ser	Met	His	Cys	Trp	Gln	Gly	Asp	Asp	Val	Ser	Gly	Phe	
35				40					45							

gaa	aac	ccg	gaa	ggt	tcg	acc	ggg	ggg	att	cag	gcc	aca	ggc	aat	192
Glu	Asn	Pro	Glu	Gly	Ser	Leu	Thr	Gly	Ile	Gln	Ala	Thr	Gly	Asn	
50				55					60						

tat	ccg	ggc	aaa	gca	cgt	aat	gcc	agt	gag	cta	cgt	gcc	gat	ctg	gaa	240
Tyr	Pro	Gly	Lys	Ala	Arg	Asn	Ala	Ser	Glu	Leu	Arg	Ala	Asp	Leu	Glu	
65				70					75			80				

cag	gct	atg	ccg	ctg	att	ccg	ggg	ccg	aaa	ccg	ctt	aat	tta	cat	gcc	288
Gln	Ala	Met	Arg	Leu	Ile	Pro	Gly	Pro	Lys	Arg	Leu	Asn	Leu	His	Ala	
85				90					95							

atc	tat	ctg	gaa	tca	gat	acg	cca	gtc	tcg	cgc	gac	cag	atc	aaa	cca	336
Ile	Tyr	Leu	Glu	Ser	Asp	Thr	Pro	Val	Ser	Arg	Asp	Gln	Ile	Lys	Pro	
100				105					110							

gag	cac	ttc	aaa	aac	tgg	gtt	gaa	tgg	gca	aaa	gcc	aat	cag	ctc	ggt	384
Glu	His	Phe	Lys	Asn	Trp	Val	Glu	Trp	Ala	Lys	Ala	Asn	Gln	Leu	Gly	
115				120					125							

ctg	gat	ttt	aaa	ccc	tcc	tgc	ttt	tcg	cat	ccg	cta	agc	gcc	gat	ggc	432
Leu	Asp	Phe	Asn	Pro	Ser	Cys	Phe	Ser	His	Pro	Leu	Ser	Ala	Asp	Gly	
130				135					140							

ttt	acg	ctt	tcc	cat	gcc	gac	gac	att	cgc	cag	ttc	tgg	att	gat	480
Phe	Thr	Leu	Ser	His	Ala	Asp	Asp	Ser	Ile	Arg	Gln	Phe	Trp	Ile	Asp
145				150					155			160			

cac	tgc	aaa	gcc	agc	cgt	cgc	gtt	tcg	gcc	tat	ttt	ggc	gag	caa	ctc	528
His	Cys	Lys	Ala	Ser	Arg	Arg	Val	Ser	Ala	Tyr	Phe	Glu	Gln	Leu		
165				170					175							

ggc	aca	cca	tcg	gtg	atg	aac	atc	tgg	atc	ccg	gat	ggt	atg	aaa	gat	576
Gly	Thr	Pro	Ser	Val	Met	Asn	Ile	Trp	Ile	Pro	Asp	Gly	Met	Lys	Asp	
180				185					190							

atc	acc	gtt	gac	cgt	ctc	gcc	ccg	cag	cgt	ctg	ctg	gca	gca	ctg	624
Ile	Thr	Val	Asp	Arg	Leu	Ala	Pro	Arg	Gln	Arg	Leu	Ala	Ala	Leu	
195				200					205						

gat gag gtg atc agc gag aag cta aac cct gcg cac cat atc gac gcc	672
Asp Glu Val Ile Ser Glu Lys Leu Asn Pro Ala His His Ile Asp Ala	
210 215 220	
gtt gag agc aaa ttg ttt ggc att ggc gca gag agc tac acg gtt ggc	720
Val Glu Ser Lys Leu Phe Gly Ile Gly Ala Glu Ser Tyr Thr Val Gly	
225 230 235 240	
tcc aat gag ttt tac atg ggg tat gcc acc agc cgc cag act gcg ctg	768
Ser Asn Glu Phe Tyr Met Gly Tyr Ala Thr Ser Arg Gln Thr Ala Leu	
245 250 255	
tgc ctg gac gcc ggg cac ttc cac ccg act gaa gtg att tcc gac aag	816
Cys Leu Asp Ala Gly His Phe His Pro Thr Glu Val Ile Ser Asp Lys	
260 265 270	
att tcc gcc gcc atg ctg tat gtg ccg cag ttg ctg ctg cac gtc agc	864
Ile Ser Ala Ala Met Leu Tyr Val Pro Gln Leu Leu Leu His Val Ser	
275 280 285	
cgt ccg gtt cgc tgg gac agc gat cac gta gtg ctg ctg gat gat gaa	912
Arg Pro Val Arg Trp Asp Ser Asp His Val Val Leu Leu Asp Asp Glu	
290 295 300	
acc cag gca att gcc agt gag att gtg cgt cac gat ctg ttt gac cgg	960
Thr Gln Ala Ile Ala Ser Glu Ile Val Arg His Asp Leu Phe Asp Arg	
305 310 315 320	
gtg cat atc ggc ctt gac ttc ttc gat gcc tct atc aac cgc att gcc	1008
Val His Ile Gly Leu Asp Phe Asp Ala Ser Ile Asn Arg Ile Ala	
325 330 335	
gcg tgg gtc att ggt aca cgc aat atg aaa aaa gcc ctg ctg cgt gcg	1056
Ala Trp Val Ile Gly Thr Arg Asn Met Lys Lys Ala Leu Leu Arg Ala	
340 345 350	
ttg ctg gaa cct acc gct gac gtg cgc aag ctg gaa gcg gcg ggc gat	1104
Leu Leu Glu Pro Thr Ala Asp Val Arg Lys Leu Glu Ala Ala Gly Asp	
355 360 365	
tac act gcg cgt ctg gca ctg ctg gaa gag cag aaa tcg ttg ccg tgg	1152
Tyr Thr Ala Arg Leu Ala Leu Glu Glu Gln Lys Ser Leu Pro Trp	
370 375 380	
cag gcg gtc tgg gaa atg tat tgc caa cgt cac gat acg cca gca ggt	1200
Gln Ala Val Trp Glu Met Tyr Cys Gln Arg His Asp Thr Pro Ala Gly	
385 390 395 400	
agc gaa tgg ctg gag agc gtg cgg gct tat gag aaa gaa att ttg agt	1248
Ser Glu Trp Leu Glu Ser Val Arg Ala Tyr Glu Lys Glu Ile Leu Ser	
405 410 415	
cgc cgc ggg taa	1260
Arg Arg Gly	
<210> 9	
<211> 419	
<212> PRT	
<213> Escherichia coli	
<400> 9	
Met Thr Thr Gln Leu Glu Gln Ala Trp Glu Leu Ala Lys Gln Arg Phe	
1 5 10 15	
Ala Ala Val Gly Ile Asp Val Glu Glu Ala Leu Arg Gln Leu Asp Arg	
20 25 30	

Leu Pro Val Ser Met His Cys Trp Gln Gly Asp Asp Val Ser Gly Phe
35 40 45

Glu Asn Pro Glu Gly Ser Leu Thr Gly Gly Ile Gln Ala Thr Gly Asn
50 55 60

Tyr Pro Gly Lys Ala Arg Asn Ala Ser Glu Leu Arg Ala Asp Leu Glu
65 70 75 80

Gln Ala Met Arg Leu Ile Pro Gly Pro Lys Arg Leu Asn Leu His Ala
85 90 95

Ile Tyr Leu Glu Ser Asp Thr Pro Val Ser Arg Asp Gln Ile Lys Pro
100 105 110

Glu His Phe Lys Asn Trp Val Glu Trp Ala Lys Ala Asn Gln Leu Gly
115 120 125

Leu Asp Phe Asn Pro Ser Cys Phe Ser His Pro Leu Ser Ala Asp Gly
130 135 140

Phe Thr Leu Ser His Ala Asp Asp Ser Ile Arg Gln Phe Trp Ile Asp
145 150 155 160

His Cys Lys Ala Ser Arg Arg Val Ser Ala Tyr Phe Gly Glu Gln Leu
165 170 175

Gly Thr Pro Ser Val Met Asn Ile Trp Ile Pro Asp Gly Met Lys Asp
180 185 190

Ile Thr Val Asp Arg Leu Ala Pro Arg Gln Arg Leu Leu Ala Ala Leu
195 200 205

Asp Glu Val Ile Ser Glu Lys Leu Asn Pro Ala His His Ile Asp Ala
210 215 220

Val Glu Ser Lys Leu Phe Gly Ile Gly Ala Glu Ser Tyr Thr Val Gly
225 230 235 240

Ser Asn Glu Phe Tyr Met Gly Tyr Ala Thr Ser Arg Gln Thr Ala Leu
245 250 255

Cys Leu Asp Ala Gly His Phe His Pro Thr Glu Val Ile Ser Asp Lys
260 265 270

Ile Ser Ala Ala Met Leu Tyr Val Pro Gln Leu Leu Leu His Val Ser
275 280 285

Arg Pro Val Arg Trp Asp Ser Asp His Val Val Leu Leu Asp Asp Glu
290 295 300

Thr Gln Ala Ile Ala Ser Glu Ile Val Arg His Asp Leu Phe Asp Arg
305 310 315 320

Val His Ile Gly Leu Asp Phe Phe Asp Ala Ser Ile Asn Arg Ile Ala
325 330 335

Ala Trp Val Ile Gly Thr Arg Asn Met Lys Lys Ala Leu Leu Arg Ala
340 345 350

Leu Leu Glu Pro Thr Ala Asp Val Arg Lys Leu Glu Ala Ala Gly Asp
355 360 365

Tyr Thr Ala Arg Leu Ala Leu Leu Glu Glu Gln Lys Ser Leu Pro Trp
370 375 380

Gln Ala Val Trp Glu Met Tyr Cys Gln Arg His Asp Thr Pro Ala Gly
385 390 395 400

Ser Glu Trp Leu Glu Ser Val Arg Ala Tyr Glu Lys Glu Ile Leu Ser
405 410 415

Arg Arg Gly

<210> 10
 <211> 1470
 <212> DNA
 <213> Escherichia coli
 <220>
 <221> CDS
 <222> (1)..(1467)
 <223> coding for rhaB (rhamnolukinase)
 <400> 10

atg	acc	ttt	cgc	aat	tgt	gtc	gcc	gtc	gat	ctc	ggc	gca	tcc	agt	ggg	48
Met	Thr	Phe	Arg	Asn	Cys	Val	Ala	Val	Asp	Leu	Gly	Ala	Ser	Ser	Gly	
1		5				10				15						
cgc	gtg	atg	ctg	gcg	cgt	tac	gag	cgt	gaa	tgc	cgc	agc	ctg	acg	ctg	96
Arg	Val	Met	Leu	Ala	Arg	Tyr	Glu	Arg	Glu	Cys	Arg	Ser	Leu	Thr	Leu	
20		25							25			30				
cgc	gaa	atc	cat	cgt	ttt	aac	aat	ggg	ctg	cat	agt	cag	aac	ggc	tat	144
Arg	Glu	Ile	His	Arg	Phe	Asn	Asn	Gly	Leu	His	Ser	Gln	Asn	Gly	Tyr	
35		40							40			45				
gtc	acc	tgg	gat	gtg	gat	agc	ctt	gaa	agt	gcc	att	cgc	ctt	gga	tta	192
Val	Thr	Trp	Asp	Val	Asp	Ser	Leu	Glu	Ser	Ala	Ile	Arg	Leu	Gly	Leu	
50		55							55			60				
aac	aag	gtg	tgc	gag	gaa	ggg	att	cgt	atc	gat	agc	att	ggg	att	gat	240
Asn	Lys	Val	Cys	Glu	Glu	Gly	Ile	Arg	Ile	Asp	Ser	Ile	Gly	Ile	Asp	
65		70							70			75		80		
acc	tgg	ggc	gtg	gac	ttt	gtg	ctg	ctc	gac	caa	cag	ggt	cag	cgt	gtg	288
Thr	Trp	Gly	Val	Asp	Phe	Val	Leu	Leu	Asp	Gln	Gln	Gly	Gln	Arg	Val	
85		90							90			95				
ggc	ctg	ccc	gtt	gct	tat	cgc	gat	agc	cgc	acc	aat	ggc	cta	atg	gcg	336
Gly	Leu	Pro	Val	Ala	Tyr	Arg	Asp	Ser	Arg	Thr	Asn	Gly	Leu	Met	Ala	
100		105							105			110				
cag	gca	caa	caa	ctc	ggc	aaa	cgc	gat	att	tat	caa	cgt	agc	ggc	384	
Gln	Ala	Gln	Gln	Gln	Leu	Gly	Lys	Arg	Asp	Ile	Tyr	Gln	Arg	Ser	Gly	
115		120							120			125				
atc	cag	ttt	ctg	ccc	ttc	aat	acg	ctt	tat	cag	ttg	cgt	gcg	ctg	acg	432
Ile	Gln	Phe	Leu	Pro	Phe	Asn	Thr	Leu	Tyr	Gln	Leu	Arg	Ala	Leu	Thr	
130		135							135			140				
gag	caa	caa	cct	gaa	ctt	att	cca	cac	att	gct	cac	gct	ctg	ctg	atg	480
Glu	Gln	Gln	Pro	Glu	Leu	Ile	Pro	His	Ile	Ala	His	Ala	Leu	Leu	Met	
145		150							150			155		160		
ccg	gat	tac	ttc	agt	tat	cgc	ctg	acc	ggc	aag	atg	aac	tgg	gaa	tat	528
Pro	Asp	Tyr	Phe	Ser	Tyr	Arg	Leu	Thr	Gly	Lys	Met	Asn	Trp	Glu	Tyr	
165		170							165			170		175		
acc	aac	gcc	acg	acc	acg	caa	ctg	gtc	aat	atc	aat	agc	gac	gac	tgg	576
Thr	Asn	Ala	Thr	Thr	Thr	Gln	Leu	Val	Asn	Ile	Asn	Ser	Asp	Asp	Trp	
180		185							180			185		190		
gac	gag	tcg	cta	ctg	gcg	tgg	agc	ggg	gcc	aac	aaa	gcc	tgg	ttt	ggt	624
Asp	Glu	Ser	Leu	Leu	Ala	Trp	Ser	Gly	Ala	Asn	Lys	Ala	Trp	Phe	Gly	
195		200							195			200		205		

cgc ccg acg cat ccg ggt aat gtc ata ggt cac tgg att tgc ccg cag 672
 Arg Pro Thr His Pro Gly Asn Val Ile Gly His Trp Ile Cys Pro Gln
 210 215 220
 ggt aat gag att cca gtg gtc gcc gtt gcc agc cat gat acc gcc agc 720
 Gly Asn Glu Ile Pro Val Val Ala Val Ala Ser His Asp Thr Ala Ser
 225 230 235 240
 gcg gtt atc gcc tcg ccg tta aac ggc tca cgt gct gct tat ctc tct 768
 Ala Val Ile Ala Ser Pro Leu Asn Gly Ser Arg Ala Ala Tyr Leu Ser
 245 250 255
 tct ggc acc tgg tca ttg atg ggc ttc gaa agc cag acg cca ttt acc 816
 Ser Gly Thr Trp Ser Leu Met Gly Phe Glu Ser Gln Thr Pro Phe Thr
 260 265 270
 aat gac acg gca ctg gca gcc aac atc acc aat gaa ggc ggg gcg gaa 864
 Asn Asp Thr Ala Leu Ala Asn Ile Thr Asn Glu Gly Gly Ala Glu
 275 280 285
 ggt cgc tat cgg gtg ctg aaa aat att atg ggc tta tgg ctg ctt cag 912
 Gly Arg Tyr Arg Val Leu Lys Asn Ile Met Gly Leu Trp Leu Leu Gln
 290 295 300
 cga gtg ctt cag gag cag caa atc aac gat ctt ccg gcg ctt atc tcc 960
 Arg Val Leu Gln Glu Gln Ile Asn Asp Leu Pro Ala Leu Ile Ser
 305 310 315 320
 gcg aca cag gca ctt ccg gct tgc cgc ttc att atc aat ccc aat gac 1008
 Ala Thr Gln Ala Leu Pro Ala Cys Arg Phe Ile Ile Asn Pro Asn Asp
 325 330 335
 gat cgc ttt att aat cct gag acg atg tgc agc gaa att cag gct gcg 1056
 Asp Arg Phe Ile Asn Pro Glu Thr Met Cys Ser Glu Ile Gln Ala Ala
 340 345 350
 tgt cgg gaa acg gcg caa ccg atc ccg gaa agt gat gct gaa ctg gcg 1104
 Cys Arg Glu Thr Ala Gln Pro Ile Pro Glu Ser Asp Ala Glu Leu Ala
 355 360 365
 cgc tgc att ttc gac agt ctg gcg ctg ctg tat gcc gat gtg ttg cat 1152
 Arg Cys Ile Phe Asp Ser Leu Ala Leu Leu Tyr Ala Asp Val Leu His
 370 375 380
 gag ctg gcg cag ctg cgc ggt gaa gat ttc tcg caa ctg cat att gtc 1200
 Glu Leu Ala Gln Leu Arg Gly Glu Asp Phe Ser Gln Leu His Ile Val
 385 390 395 400
 ggc gga ggc tgc cag aac acg ctg ctc aac cag cta tgc gcc gat gcc 1248
 Gly Gly Cys Gln Asn Thr Leu Leu Asn Gln Leu Cys Ala Asp Ala
 405 410 415
 tgc ggt att cgg gtg atc gcc ggg cct gtt gaa gcc tcg acg ctc ggc 1296
 Cys Gly Ile Arg Val Ile Ala Gly Pro Val Glu Ala Ser Thr Leu Gly
 420 425 430
 aat atc ggc atc cag tta atg acg ctg gat gaa ctc aac aat gtg gat 1344
 Asn Ile Gly Ile Gln Leu Met Thr Leu Asp Glu Leu Asn Asn Val Asp
 435 440 445
 gat ttc cgt cag gtc agc acc acc gcg aat ctg acc acc acc ttt acc 1392
 Asp Phe Arg Gln Val Val Ser Thr Thr Ala Asn Leu Thr Thr Phe Thr
 450 455 460
 cct aat cct gac agt gaa att gcc cac tat gtg gcg cag att cac tct 1440
 Pro Asn Pro Asp Ser Glu Ile Ala His Tyr Val Ala Gln Ile His Ser
 465 470 475 480

aca cga cag aca aag gag ctt tgc gca tga
Thr Arg Gln Thr Lys Glu Leu Cys Ala
485

<210> 11

<211> 489

<212> PRT

<213> Escherichia coli

<400> 11

Met Thr Phe Arg Asn Cys Val Ala Val Asp Leu Gly Ala Ser Ser Gly
1 5 10 15

Arg Val Met Leu Ala Arg Tyr Glu Arg Glu Cys Arg Ser Leu Thr Leu
20 25 30

Arg Glu Ile His Arg Phe Asn Asn Gly Leu His Ser Gln Asn Gly Tyr
35 40 45

Val Thr Trp Asp Val Asp Ser Leu Glu Ser Ala Ile Arg Leu Gly Leu
50 55 60

Asn Lys Val Cys Glu Glu Gly Ile Arg Ile Asp Ser Ile Gly Ile Asp
65 70 75 80

Thr Trp Gly Val Asp Phe Val Leu Leu Asp Gln Gln Gly Gln Arg Val
85 90 95

Gly Leu Pro Val Ala Tyr Asp Ser Arg Thr Asn Gly Leu Met Ala
100 105 110

Gln Ala Gln Gln Leu Gly Lys Arg Asp Ile Tyr Gln Arg Ser Gly
115 120 125

Ile Gln Phe Leu Pro Phe Asn Thr Leu Tyr Gln Leu Arg Ala Leu Thr
130 135 140

Glu Gln Gln Pro Glu Leu Ile Pro His Ile Ala His Ala Leu Leu Met
145 150 155 160

Pro Asp Tyr Phe Ser Tyr Arg Leu Thr Gly Lys Met Asn Trp Glu Tyr
165 170 175

Thr Asn Ala Thr Thr Thr Gln Leu Val Asn Ile Asn Ser Asp Asp Trp
180 185 190

Asp Glu Ser Leu Leu Ala Trp Ser Gly Ala Asn Lys Ala Trp Phe Gly
195 200 205

Arg Pro Thr His Pro Gly Asn Val Ile Gly His Trp Ile Cys Pro Gln
210 215 220

Gly Asn Glu Ile Pro Val Val Ala Val Ala Ser His Asp Thr Ala Ser
225 230 235 240

Ala Val Ile Ala Ser Pro Leu Asn Gly Ser Arg Ala Ala Tyr Leu Ser
245 250 255

Ser Gly Thr Trp Ser Leu Met Gly Phe Glu Ser Gln Thr Pro Phe Thr
260 265 270

Asn Asp Thr Ala Leu Ala Ala Asn Ile Thr Asn Glu Gly Gly Ala Glu
275 280 285

Gly Arg Tyr Arg Val Leu Lys Asn Ile Met Gly Leu Trp Leu Leu Gln
290 295 300

Arg Val Leu Gln Glu Gln Gln Ile Asn Asp Leu Pro Ala Leu Ile Ser
305 310 315 320

Ala Thr Gln Ala Leu Pro Ala Cys Arg Phe Ile Ile Asn Pro Asn Asp
 325 330 335
 Asp Arg Phe Ile Asn Pro Glu Thr Met Cys Ser Glu Ile Gln Ala Ala
 340 345 350
 Cys Arg Glu Thr Ala Gln Pro Ile Pro Glu Ser Asp Ala Glu Leu Ala
 355 360 365
 Arg Cys Ile Phe Asp Ser Leu Ala Leu Leu Tyr Ala Asp Val Leu His
 370 375 380
 Glu Leu Ala Gln Leu Arg Gly Glu Asp Phe Ser Gln Leu His Ile Val
 385 390 395 400
 Gly Gly Cys Gln Asn Thr Leu Leu Asn Gln Leu Cys Ala Asp Ala
 405 410 415
 Cys Gly Ile Arg Val Ile Ala Gly Pro Val Glu Ala Ser Thr Leu Gly
 420 425 430
 Asn Ile Gly Ile Gln Leu Met Thr Leu Asp Glu Leu Asn Asn Val Asp
 435 440 445
 Asp Phe Arg Gln Val Val Ser Thr Thr Ala Asn Leu Thr Thr Phe Thr
 450 455 460
 Pro Asn Pro Asp Ser Glu Ile Ala His Tyr Val Ala Gln Ile His Ser
 465 470 475 480
 Thr Arg Gln Thr Lys Glu Leu Cys Ala
 485

<210> 12
 <211> 825
 <212> DNA
 <213> Escherichia coli

<220>
 <221> CDS
 <222> (1)...(822)
 <223> coding for rhaD (rhamnulose-phosphate aldolase)
 <400> 12
 atg caa aac att act cag tcc tgg ttt gtc cag gga atg atc aaa gcc 48
 Met Gln Asn Ile Thr Gln Ser Trp Phe Val Gln Gly Met Ile Lys Ala
 1 5 10 15
 acc acc gac gcc tgg ctg aaa ggc tgg gat gag cgc aac ggc ggc aac 96
 Thr Thr Asp Ala Trp Leu Lys Gly Trp Asp Glu Arg Asn Gly Asn
 20 25 30
 ctg acg cta cgc ctg gat gac gcc gat atc gca cca tat cac gac aat 144
 Leu Thr Leu Arg Leu Asp Asp Ala Asp Ile Ala Pro Tyr His Asp Asn
 35 40 45
 ttc cac caa caa ccg cgc tat atc ccg ctc agc cag ccc atg cct tta 192
 Phe His Gln Gln Pro Arg Tyr Ile Pro Leu Ser Gln Pro Met Pro Leu
 50 55 60
 ctg gca aat aca ccg ttt att gtc acc ggc tcg ggc aaa ttc ttc cgt 240
 Leu Ala Asn Thr Pro Phe Ile Val Thr Gly Ser Gly Lys Phe Phe Arg
 65 70 75 80
 aac gtc cag ctt gat cct gcg gct aac tta ggc atc gta aaa gtc gac 288
 Asn Val Gln Leu Asp Pro Ala Ala Asn Leu Gly Ile Val Lys Val Asp
 85 90 95

agc gac ggc ggc tac cac att ctt tgg ggg tta acc aac gaa gcc	336
Ser Asp Gly Ala Gly Tyr His Ile Leu Trp Gly Leu Thr Asn Glu Ala	
100 105 110	
gtc ccc act tcc gaa ctt ccg gct cac ttc ctt tcc cac tgc gag cgc	384
Val Pro Thr Ser Glu Leu Pro Ala His Phe Leu Ser His Cys Glu Arg	
115 120 125	
att aaa gcc acc aac ggc aaa gat cgg gtg atc atg cac tgc cac gcc	432
Ile Lys Ala Thr Asn Gly Lys Asp Arg Val Ile Met His Cys His Ala	
130 135 140	
acc aac ctg atc gcc ctc acc tat gta ctt gaa aac gac acc gcc gtc	480
Thr Asn Leu Ile Ala Leu Thr Tyr Val Leu Glu Asn Asp Thr Ala Val	
145 150 155 160	
ttc act cgc caa ctg tgg gaa ggc agc acc gag tgt ctg gtg gta ttc	528
Phe Thr Arg Gln Leu Trp Glu Gly Ser Thr Glu Cys Leu Val Val Phe	
165 170 175	
ccg gat ggc gtt ggc att ttg ccg tgg atg gtg ccc ggc acg gac gaa	576
Pro Asp Gly Val Gly Ile Leu Pro Trp Met Val Pro Gly Thr Asp Glu	
180 185 190	
atc ggc cag gcg acc gca caa gag atg caa aaa cat tcg ctg gtg ttg	624
Ile Gly Gln Ala Thr Ala Gln Glu Met Gln Lys His Ser Leu Val Leu	
195 200 205	
tgg ccc ttc cac ggc gtc ttc ggc agc gga ccg acg ctg gat gaa acc	672
Trp Pro Phe His Gly Val Phe Gly Ser Gly Pro Thr Leu Asp Glu Thr	
210 215 220	
ttc ggt tta atc gac acc gca gaa aaa tca gca caa gta tta gtg aag	720
Phe Gly Leu Ile Asp Thr Ala Glu Lys Ser Ala Gln Val Leu Val Lys	
225 230 235 240	
gtt tat tcg atg ggc ggc atg aaa cag acc atc agc cgt gaa gag ttg	768
Val Tyr Ser Met Gly Gly Met Lys Gln Thr Ile Ser Arg Glu Glu Leu	
245 250 255	
ata gcg ctc ggc aag cgt ttc ggc gtt acg cca ctc gcc agt gcg ctg	816
Ile Ala Leu Gly Lys Arg Phe Gly Val Thr Pro Leu Ala Ser Ala Leu	
260 265 270	
gcg ctg taa	825
Ala Leu	
<210> 13	
<211> 274	
<212> PRT	
<213> Escherichia coli	
<400> 13	
Met Gln Asn Ile Thr Gln Ser Trp Phe Val Gln Gly Met Ile Lys Ala	
1 5 10 15	
Thr Thr Asp Ala Trp Leu Lys Gly Trp Asp Glu Arg Asn Gly Gly Asn	
20 25 30	
Leu Thr Leu Arg Leu Asp Asp Ala Asp Ile Ala Pro Tyr His Asp Asn	
35 40 45	
Phe His Gln Gln Pro Arg Tyr Ile Pro Leu Ser Gln Pro Met Pro Leu	
50 55 60	
Leu Ala Asn Thr Pro Phe Ile Val Thr Gly Ser Gly Lys Phe Phe Arg	
65 70 75 80	

Asn Val Gln Leu Asp Pro Ala Ala Asn Leu Gly Ile Val Lys Val Asp
 85 90 95
 Ser Asp Gly Ala Gly Tyr His Ile Leu Trp Gly Leu Thr Asn Glu Ala
 100 105 110
 Val Pro Thr Ser Glu Leu Pro Ala His Phe Leu Ser His Cys Glu Arg
 115 120 125
 Ile Lys Ala Thr Asn Gly Lys Asp Arg Val Ile Met His Cys His Ala
 130 135 140
 Thr Asn Leu Ile Ala Leu Thr Tyr Val Leu Glu Asn Asp Thr Ala Val
 145 150 160
 Phe Thr Arg Gln Leu Trp Glu Gly Ser Thr Glu Cys Leu Val Val Phe
 165 170 175
 Pro Asp Gly Val Gly Ile Leu Pro Trp Met Val Pro Gly Thr Asp Glu
 180 185 190
 Ile Gly Gln Ala Thr Ala Gln Glu Met Gln Lys His Ser Leu Val Leu
 195 200 205
 Trp Pro Phe His Gly Val Phe Gly Ser Gly Pro Thr Leu Asp Glu Thr
 210 215 220
 Phe Gly Leu Ile Asp Thr Ala Glu Lys Ser Ala Gln Val Leu Val Lys
 225 230 240
 Val Tyr Ser Met Gly Gly Met Lys Gln Thr Ile Ser Arg Glu Glu Leu
 245 250 255
 Ile Ala Leu Gly Lys Arg Phe Gly Val Thr Pro Leu Ala Ser Ala Leu
 260 265 270

Ala Leu

<210> 14
 <211> 939
 <212> DNA
 <213> Escherichia coli
 <220>
 <221> CDS
 <222> (1)..(936)
 <223> coding for rhaR (positive regulator for rhaRS
 operon)
 <400> 14
 atg gct ttc tgc aat aac gcg aat ctt ctc aac gta ttt gta cgc cat 48
 Met Ala Phe Cys Asn Asn Ala Asn Leu Leu Asn Val Phe Val Arg His
 1 5 10 15
 att gcg aat aat caa ctt cgt tct ctg gcc gag gta gcc acg gtg gcg 96
 Ile Ala Asn Asn Gln Leu Arg Ser Leu Ala Glu Val Ala Thr Val Ala
 20 25 30
 cat cag tta aaa ctt ctc aaa gat gat ttt ttt gcc agc gac cag cag 144
 His Gln Leu Lys Leu Lys Asp Asp Phe Phe Ala Ser Asp Gln Gln
 35 40 45
 gca gtc gct gtg gct gac cgt tat ccg caa gat gtc ttt gct gaa cat 192
 Ala Val Ala Val Ala Asp Arg Tyr Pro Gln Asp Val Phe Ala Glu His
 50 55 60

aca cat gat ttt tgt gag ctg gtg att gtc tgg cgc ggt aat ggc ctg	240
Thr His Asp Phe Cys Glu Leu Val Ile Val Trp Arg Gly Asn Gly Leu	
65 70 75 80	
cat gta ctc aac gat cgc cct tat cgc att acc cgt ggc gat ctc ttt	288
His Val Leu Asn Asp Arg Pro Tyr Arg Ile Thr Arg Gly Asp Leu Phe	
85 90 95	
tac att cat gct gac gat aaa cac tcc tac gct tcc gtt aac gat ctg	336
Tyr Ile His Ala Asp Asp Lys His Ser Tyr Ala Ser Val Asn Asp Leu	
100 105 110	
gtt ttg cag aat att att tat tgc ccg gag cgt ctg aag ctg aat ctt	384
Val Leu Gln Asn Ile Ile Tyr Cys Pro Glu Arg Leu Lys Leu Asn Leu	
115 120 125	
gac tgg cag ggg gcg att ccg gga ttt aac gcc agc gca ggg caa cca	432
Asp Trp Gln Gly Ala Ile Pro Gly Phe Asn Ala Ser Ala Gly Gln Pro	
130 135 140	
cac tgg cgc tta ggt agc atg ggg atg gcg cag gcg cgg cag gtt atc	480
His Trp Arg Leu Gly Ser Met Gly Met Ala Gln Ala Arg Gln Val Ile	
145 150 155 160	
ggt cag ctt gag cat gaa agt agt cag cat gtg ccg ttt gct aac gaa	528
Gly Gln Leu Glu His Glu Ser Ser Gln His Val Pro Phe Ala Asn Glu	
165 170 175	
atg gct gag ttg ctg ttc ggg cag ttg gtg atg ttg ctg aat cgc cat	576
Met Ala Glu Leu Leu Phe Gly Gln Leu Val Met Leu Leu Asn Arg His	
180 185 190	
cgt tac acc agt gat tcg ttg ccg cca aca tcc agc gaa acg ttg ctg	624
Arg Tyr Thr Ser Asp Ser Leu Pro Pro Thr Ser Ser Glu Thr Leu Leu	
195 200 205	
gat aag ctg att acc cgg ctg gcg gct agc ctg aaa agt ccc ttt gcg	672
Asp Lys Leu Ile Thr Arg Leu Ala Ala Ser Leu Lys Ser Pro Phe Ala	
210 215 220	
ctg gat aaa ttt tgt gat gag gca tcg tgc agt gag cgc gtt ttg cgt	720
Leu Asp Lys Phe Cys Asp Glu Ala Ser Cys Ser Glu Arg Val Leu Arg	
225 230 235 240	
cag caa ttt cgc cag cag act gga atg acc atc aat caa tat ctg cga	768
Gln Gln Phe Arg Gln Gln Thr Gly Met Thr Ile Asn Gln Tyr Leu Arg	
245 250 255	
cag gtc aga gtg tgt cat gcg caa tat ctt ctc cag cat agc cgc ctg	816
Gln Val Arg Val Cys His Ala Gln Tyr Leu Leu Gln His Ser Arg Leu	
260 265 270	
tta atc agt gat att tcg acc gaa tgt ggc ttt gaa gat agt aac tat	864
Leu Ile Ser Asp Ile Ser Thr Glu Cys Gly Phe Glu Asp Ser Asn Tyr	
275 280 285	
ttt tcg gtg gtg ttt acc cgg gaa acc ggg atg acg ccc agc cag tgg	912
Phe Ser Val Val Phe Thr Arg Glu Thr Gly Met Thr Pro Ser Gln Trp	
290 295 300	
cgt cat ctc aat tcg cag aaa gat taa	939
Arg His Leu Asn Ser Gln Lys Asp	
305 310	

<210> 15

<211> 312

<212> PRT

<213> Escherichia coli

<400> 15

Met Ala Phe Cys Asn Asn Ala Asn Leu Leu Asn Val Phe Val Arg His
1 5 10 15

Ile Ala Asn Asn Gln Leu Arg Ser Leu Ala Glu Val Ala Thr Val Ala
20 25 30

His Gln Leu Lys Leu Leu Lys Asp Asp Phe Phe Ala Ser Asp Gln Gln
35 40 45

Ala Val Ala Val Ala Asp Arg Tyr Pro Gln Asp Val Phe Ala Glu His
50 55 60

Thr His Asp Phe Cys Glu Leu Val Ile Val Trp Arg Gly Asn Gly Leu
65 70 75 80

His Val Leu Asn Asp Arg Pro Tyr Arg Ile Thr Arg Gly Asp Leu Phe
85 90 95

Tyr Ile His Ala Asp Asp Lys His Ser Tyr Ala Ser Val Asn Asp Leu
100 105 110

Val Leu Gln Asn Ile Ile Tyr Cys Pro Glu Arg Leu Lys Leu Asn Leu
115 120 125

Asp Trp Gln Gly Ala Ile Pro Gly Phe Asn Ala Ser Ala Gly Gln Pro
130 135 140

His Trp Arg Leu Gly Ser Met Gly Met Ala Gln Ala Arg Gln Val Ile
145 150 155 160

Gly Gln Leu Glu His Glu Ser Ser Gln His Val Pro Phe Ala Asn Glu
165 170 175

Met Ala Glu Leu Leu Phe Gly Gln Leu Val Met Leu Leu Asn Arg His
180 185 190

Arg Tyr Thr Ser Asp Ser Leu Pro Pro Thr Ser Ser Glu Thr Leu Leu
195 200 205

Asp Lys Leu Ile Thr Arg Leu Ala Ala Ser Leu Lys Ser Pro Phe Ala
210 215 220

Leu Asp Lys Phe Cys Asp Glu Ala Ser Cys Ser Glu Arg Val Leu Arg
225 230 235 240

Gln Gln Phe Arg Gln Gln Thr Gly Met Thr Ile Asn Gln Tyr Leu Arg
245 250 255

Gln Val Arg Val Cys His Ala Gln Tyr Leu Leu Gln His Ser Arg Leu
260 265 270

Leu Ile Ser Asp Ile Ser Thr Glu Cys Gly Phe Glu Asp Ser Asn Tyr
275 280 285

Phe Ser Val Val Phe Thr Arg Glu Thr Gly Met Thr Pro Ser Gln Trp
290 295 300

Arg His Leu Asn Ser Gln Lys Asp
305 310

<210> 16

<211> 837

<212> DNA

<213> Escherichia coli

<220>
 <221> CDS
 <222> (1)...(834)
 <223> coding for rhaS (positive regulator of rhaBAD
 operon)
 <400> 16

atg acc gta tta cat agt gtg gat ttt ttt ccg tct ggt aac gcg tcc	48
Met Thr Val Leu His Ser Val Asp Phe Phe Pro Ser Gly Asn Ala Ser	
1 5 10 15	
gtg gcg ata gaa ccc cgg ctc ccg cag gcg gat ttt cct gaa cat cat	96
Val Ala Ile Glu Pro Arg Leu Pro Gln Ala Asp Phe Pro Glu His His	
20 25 30	
cat gat ttt cat gaa att gtg att gtc gaa cat ggc acg ggt att cat	144
His Asp Phe His Glu Ile Val Ile Val Glu His Gly Thr Gly Ile His	
35 40 45	
gtg ttt aat ggg cag ccc tat acc atc acc ggt ggc acg gtc tgt ttc	192
Val Phe Asn Gly Gln Pro Tyr Thr Ile Thr Gly Gly Thr Val Cys Phe	
.50 55 60	
gta cgc gat cat gat cgg cat ctg tat gaa cat acc gat aat ctg tgt	240
Val Arg Asp His Asp Arg His Leu Tyr Glu His Thr Asp Asn Leu Cys	
65 70 75 80	
ctg acc aat gtg ctg tat cgc tcg ccg gat cga ttt cag ttt ctc gcc	288
Leu Thr Asn Val Leu Tyr Arg Ser Pro Asp Arg Phe Gln Phe Leu Ala	
85 90 95	
ggg ctg aat cag ttg ctg cca caa gag ctg gat ggg cag tat ccg tct	336
Gly Leu Asn Gln Leu Pro Gln Glu Leu Asp Gly Gln Tyr Pro Ser	
100 105 110	
cac tgg cgc gtt aac cac agc gta ttg cag cag gtg cga cag ctg gtt	384
His Trp Arg Val Asn His Ser Val Leu Gln Gln Val Arg Gln Leu Val	
115 120 125	
gca cag atg gaa cag cag gaa ggg gaa aat gat tta ccc tcg acc gcc	432
Ala Gln Met Glu Gln Gln Glu Gly Glu Asn Asp Leu Pro Ser Thr Ala	
130 135 140	
agt cgc gag atc ttg ttt atg caa tta ctg ctc ttg ctg cgt aaa agc	480
Ser Arg Glu Ile Leu Phe Met Gln Leu Leu Leu Leu Arg Lys Ser	
145 150 155 160	
agt ttg cag gag aac ctg gaa aac agc gca tca cgt ctc aac ttg ctt	528
Ser Leu Gln Glu Asn Leu Glu Asn Ser Ala Ser Arg Leu Asn Leu Leu	
165 170 175	
ctg gcc tgg ctg gag gac cat ttt gcc gat gag gtg aat tgg gat gcc	576
Leu Ala Trp Leu Glu Asp His Phe Ala Asp Glu Val Asn Trp Asp Ala	
180 185 190	
gtg gcg gat caa ttt tct ctt tca ctg cgt acg cta cat cgg cag ctt	624
Val Ala Asp Gln Phe Ser Leu Ser Leu Arg Thr Leu His Arg Gln Leu	
195 200 205	
aag cag caa acg gga ctg acg cct cag cga tac ctg aac cgc ctg cga	672
Lys Gln Gln Thr Gly Leu Thr Pro Gln Arg Tyr Leu Asn Arg Leu Arg	
210 215 220	
ctg atg aaa gcc cga cat ctg cta cgc cac agc gag gcc agc gtt act	720
Leu Met Lys Ala Arg His Leu Leu Arg His Ser Glu Ala Ser Val Thr	
225 230 235	

gac atc gcc tat cgc tgt gga ttc agc gac agt aac cac ttt tcg acg 768
 Asp Ile Ala Tyr Arg Cys Gly Phe Ser Asp Ser Asn His Phe Ser Thr
 245 250 255
 ctt ttt cgc cga gag ttt aac tgg tca ccg cgt gat att cgc cag gga 816
 Leu Phe Arg Arg Glu Phe Asn Trp Ser Pro Arg Asp Ile Arg Gln Gly
 260 265 270
 cg gat ggc ttt ctg caa taa 837
 Arg Asp Gly Phe Leu Gln
 275
 <210> 17
 <211> 278
 <212> PRT
 <213> Escherichia coli
 <400> 17
 Met Thr Val Leu His Ser Val Asp Phe Phe Pro Ser Gly Asn Ala Ser 15
 1 5 10 15
 Val Ala Ile Glu Pro Arg Leu Pro Gln Ala Asp Phe Pro Glu His His 20 25 30
 His Asp Phe His Glu Ile Val Ile Val Glu His Gly Thr Gly Ile His 35 40 45
 Val Phe Asn Gly Gln Pro Tyr Thr Ile Thr Gly Gly Thr Val Cys Phe 50 55 60
 Val Arg Asp His Asp Arg His Leu Tyr Glu His Thr Asp Asn Leu Cys 65 70 75 80
 Leu Thr Asn Val Leu Tyr Arg Ser Pro Asp Arg Phe Gln Phe Leu Ala 85 90 95
 Gly Leu Asn Gln Leu Leu Pro Gln Glu Leu Asp Gly Gln Tyr Pro Ser 100 105 110
 His Trp Arg Val Asn His Ser Val Leu Gln Gln Val Arg Gln Leu Val 115 120 125
 Ala Gln Met Glu Gln Gln Glu Gly Glu Asn Asp Leu Pro Ser Thr Ala 130 135 140
 Ser Arg Glu Ile Leu Phe Met Gln Leu Leu Leu Leu Arg Lys Ser 145 150 155 160
 Ser Leu Gln Glu Asn Leu Glu Asn Ser Ala Ser Arg Leu Asn Leu Leu 165 170 175
 Leu Ala Trp Leu Glu Asp His Phe Ala Asp Glu Val Asn Trp Asp Ala 180 185 190
 Val Ala Asp Gln Phe Ser Leu Ser Leu Arg Thr Leu His Arg Gln Leu 195 200 205
 Lys Gln Gln Thr Gly Leu Thr Pro Gln Arg Tyr Leu Asn Arg Leu Arg 210 215 220
 Leu Met Lys Ala Arg His Leu Leu Arg His Ser Glu Ala Ser Val Thr 225 230 235 240
 Asp Ile Ala Tyr Arg Cys Gly Phe Ser Asp Ser Asn His Phe Ser Thr 245 250 255
 Leu Phe Arg Arg Glu Phe Asn Trp Ser Pro Arg Asp Ile Arg Gln Gly 260 265 270

Arg Asp Gly Phe Leu Gln
275

<210> 18
 <211> 1035
 <212> DNA
 <213> Escherichia coli
 <220>
 <221> CDS
 <222> (1)...(1032)
 <223> coding for rhaT (rhamnose transport protein)
 <400> 18
 atg agt aac gcg att acg atg ggg ata ttt tgg cat ttg atc ggc gcg 48
 Met Ser Asn Ala Ile Thr Met Gly Ile Phe Trp His Leu Ile Gly Ala
 1 5 10 15
 gcc agt gca gcc tgt ttt tac gct ccg ttc aaa aaa gta aaa aaa tgg 96
 Ala Ser Ala Ala Cys Phe Tyr Ala Pro Phe Lys Lys Val Lys Lys Trp
 20 25 30
 tca tgg gaa acc atg tgg tca gtc ggt ggg att gtt tcg tgg att att 144
 Ser Trp Glu Thr Met Trp Ser Val Gly Gly Ile Val Ser Trp Ile Ile
 35 40 45
 ctg ccg tgg gcc atc agc gcc ctg tta cta ccg aat ttc tgg gcg tat 192
 Leu Pro Trp Ala Ile Ser Ala Leu Leu Leu Pro Asn Phe Trp Ala Tyr
 50 55 60
 tac agc tcg ttt agt ctc tct acg cga ctg cct gtt ttt ctg ttc ggc 240
 Tyr Ser Ser Phe Ser Leu Ser Thr Arg Leu Pro Val Phe Leu Phe Gly
 65 70 75 80
 gct atg tgg ggg atc ggt aat atc aac tac ggc ctg acc atg cgt tat 288
 Ala Met Trp Gly Ile Gly Asn Ile Asn Tyr Gly Leu Thr Met Arg Tyr
 85 90 95
 ctc ggc atg tcg atg gga att ggc atc gcc att ggc att acg ttg att 336
 Leu Gly Met Ser Met Gly Ile Gly Ile Ala Ile Gly Ile Thr Leu Ile
 100 105 110
 gtc ggt acg ctg atg acg cca att atc aac ggc aat ttc gat gtg ttg 384
 Val Gly Thr Leu Met Thr Pro Ile Ile Asn Gly Asn Phe Asp Val Leu
 115 120 125
 att agc acc gaa ggc gga cgc atg acg ttg ctc ggc gtt ctg gtg gcg 432
 Ile Ser Thr Glu Gly Gly Arg Met Thr Leu Leu Gly Val Leu Val Ala
 130 135 140
 ctg att ggc gta ggg att gta act cgc gcc ggg cag ttg aaa gag cgc 480
 Leu Ile Gly Val Gly Ile Val Thr Arg Ala Gly Gln Leu Lys Glu Arg
 145 150 155 160
 aag atg ggc att aaa gcc gaa gag ttc aat ctg aaa aaa ggg ctg gtg 528
 Lys Met Gly Ile Lys Ala Glu Glu Phe Asn Leu Lys Lys Gly Leu Val
 165 170 175
 ctg gcg gtg atg tgc ggc att ttc tct gcc ggg atg tcc ttt gcg atg 576
 Leu Ala Val Met Cys Gly Ile Phe Ser Ala Gly Met Ser Phe Ala Met
 180 185 190
 aac gcc gca aaa ccg atg cat gaa gcc gct gcc gca ctt ggc gtc gat 624
 Asn Ala Ala Lys Pro Met His Glu Ala Ala Ala Leu Gly Val Asp
 195 200 205

cca ctg tat gtc gct ctg cca agc tat gtt gtc atc atg ggc ggc ggc 672
 Pro Leu Tyr Val Ala Leu Pro Ser Tyr Val Val Ile Met Gly Gly Gly
 210 215 220
 gcg atc att aac ctc ggt ttc tgt ttt att cgt ctg gca aaa gtg aag 720
 Ala Ile Ile Asn Leu Gly Phe Cys Phe Ile Arg Leu Ala Lys Val Lys
 225 230 235 240
 gat ttg tcg cta aaa gcc gac ttc tcg ctg gca aaa tcg ctg atc att 768
 Asp Leu Ser Leu Lys Ala Asp Phe Ser Leu Ala Lys Ser Leu Ile Ile
 245 250 255
 cac aat gtg tta ctc tcg aca ctg ggc ggg ttg atg tgg tat ctg caa 816
 His Asn Val Leu Leu Ser Thr Leu Gly Gly Leu Met Trp Tyr Leu Gln
 260 265 270
 ttc ttt ttc tat gcc tgg ggc cac gcc cgc att ccg gcg cag tat gac 864
 Phe Phe Phe Tyr Ala Trp Gly His Ala Arg Ile Pro Ala Gln Tyr Asp
 275 280 285
 tac atc agt tgg atg ctg cat atg agt ttc tat gta ttg tgc ggc ggt 912
 Tyr Ile Ser Trp Met Leu His Met Ser Phe Tyr Val Leu Cys Gly Gly
 290 295 300
 atc gtc ggg ctg gtg ctg aaa gag tgg aac aat gca gga cgc cgt ccg 960
 Ile Val Gly Leu Val Leu Lys Glu Trp Asn Asn Ala Gly Arg Arg Pro
 305 310 315 320
 gta acg gtg ttg agc ctc ggt tgt gtg gtg att att gtc gcc gct aac 1008
 Val Thr Val Leu Ser Leu Gly Cys Val Val Ile Ile Val Ala Ala Asn
 325 330 335
 atc gtc ggc atc ggc atg gcg aat taa 1035
 Ile Val Gly Ile Gly Met Ala Asn
 340

<210> 19

<211> 344

<212> PRT

<213> Escherichia coli

<400> 19

Met Ser Asn Ala Ile Thr Met Gly Ile Phe Trp His Leu Ile Gly Ala
 1 5 10 15

Ala Ser Ala Ala Cys Phe Tyr Ala Pro Phe Lys Lys Val Lys Lys Trp
 20 25 30

Ser Trp Glu Thr Met Trp Ser Val Gly Gly Ile Val Ser Trp Ile Ile
 35 40 45

Leu Pro Trp Ala Ile Ser Ala Leu Leu Leu Pro Asn Phe Trp Ala Tyr
 50 55 60

Tyr Ser Ser Phe Ser Leu Ser Thr Arg Leu Pro Val Phe Leu Phe Gly
 65 70 75 80

Ala Met Trp Gly Ile Gly Asn Ile Asn Tyr Gly Leu Thr Met Arg Tyr
 85 90 95

Leu Gly Met Ser Met Gly Ile Gly Ile Ala Ile Gly Ile Thr Leu Ile
 100 105 110

Val Gly Thr Leu Met Thr Pro Ile Ile Asn Gly Asn Phe Asp Val Leu
 115 120 125

Ile Ser Thr Glu Gly Gly Arg Met Thr Leu Leu Gly Val Leu Val Ala
 130 135 140

Leu Ile Gly Val Gly Ile Val Thr Arg Ala Gly Gln Leu Lys Glu Arg
145 150 155 160
Lys Met Gly Ile Lys Ala Glu Glu Phe Asn Leu Lys Lys Gly Leu Val
165 170 175
Leu Ala Val Met Cys Gly Ile Phe Ser Ala Gly Met Ser Phe Ala Met
180 185 190
Asn Ala Ala Lys Pro Met His Glu Ala Ala Ala Leu Gly Val Asp
195 200 205
Pro Leu Tyr Val Ala Leu Pro Ser Tyr Val Val Ile Met Gly Gly Gly
210 215 220
Ala Ile Ile Asn Leu Gly Phe Cys Phe Ile Arg Leu Ala Lys Val Lys
225 230 235 240
Asp Leu Ser Leu Lys Ala Asp Phe Ser Leu Ala Lys Ser Leu Ile Ile
245 250 255
His Asn Val Leu Leu Ser Thr Leu Gly Gly Leu Met Trp Tyr Leu Gln
260 265 270
Phe Phe Phe Tyr Ala Trp Gly His Ala Arg Ile Pro Ala Gln Tyr Asp
275 280 285
Tyr Ile Ser Trp Met Leu His Met Ser Phe Tyr Val Leu Cys Gly Gly
290 295 300
Ile Val Gly Leu Val Leu Lys Glu Trp Asn Asn Ala Gly Arg Arg Pro
305 310 315 320
Val Thr Val Leu Ser Leu Gly Cys Val Val Ile Ile Val Ala Ala Asn
325 330 335
Ile Val Gly Ile Gly Met Ala Asn
340

INTERNATIONAL SEARCH REPORT

Inte Application No
PCT/EP 03/13367

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C12N15/63

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, BIOSIS, EMBASE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>STUMPP T ET AL: "EIN NEUES, L-RHAMNOSE-INDUZIERBARES EXPRESSIONSSYSTEM FUER ESCHERICHIA COLI" BIOSPEKTRUM, SPEKTRUM AKADEMISCHER VERLAG, DE, vol. 6, no. 1, 2000, pages 33-36, XP009004621 ISSN: 0947-0867 cited in the application the whole document</p> <p>---</p> <p style="text-align: center;">-/-</p>	1-15

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the International filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the International filing date but later than the priority date claimed

- *T* later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the International search

3 March 2004

Date of mailing of the International search report

19/03/2004

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Giebeler, K

INTERNATIONAL SEARCH REPORT

Int'l. application No
J3/13367

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>WILMS B ET AL: "High-cell-density fermentation for production of L-N-carbamoylase using an expression system based on the <i>Escherichia coli</i> <i>rhaBAD</i> promoter" <i>BIOTECHNOLOGY AND BIOENGINEERING.</i> <i>INCLUDING: SYMPOSIUM BIOTECHNOLOGY IN ENERGY PRODUCTION AND CONSERVATION</i>, JOHN WILEY & SONS. NEW YORK, US, vol. 73, no. 2, 20 April 2001 (2001-04-20), pages 95-103, XP002228440 ISSN: 0006-3592 cited in the application the whole document</p> <p>-----</p>	1-15
A	<p>BULAWA C E ET AL: "ISOLATION AND CHARACTERIZATION OF <i>ESCHERICHIA-COLI</i> STRAINS DEFECTIVE IN CDP-DIGLYCERIDE HYDROLASE" <i>JOURNAL OF BIOLOGICAL CHEMISTRY</i>, vol. 259, no. 18, 1984, pages 11257-11264, XP002272208 ISSN: 0021-9258 cited in the application</p> <p>-----</p>	
A	<p>HALDIMANN ANDREAS ET AL: "Use of new methods for construction of tightly regulated arabinose and rhamnose promoter fusions in studies of the <i>Escherichia coli</i> phosphate regulon" <i>JOURNAL OF BACTERIOLOGY</i>, vol. 180, no. 5, March 1998 (1998-03), pages 1277-1286, XP002272209 ISSN: 0021-9193 cited in the application</p> <p>-----</p>	
A	<p>EGAN SUSAN M ET AL: "A regulatory cascade in the induction of <i>rhaBAD</i>" <i>JOURNAL OF MOLECULAR BIOLOGY</i>, vol. 234, no. 1, 1993, pages 87-98, XP002272210 ISSN: 0022-2836 cited in the application</p> <p>-----</p>	

INTERNATIONALER RECHERCHENBERICHT

Int. Aktenzeichen
PCT/EP 03/13367

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 C12N15/63

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 C12N

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ, BIOSIS, EMBASE

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	<p>STUMPP T ET AL: "EIN NEUES, L-RHAMNOSE-INDUZIERBARES EXPRESSIONSSYSTEM FUER ESCHERICHIA COLI" BIOSPEKTRUM, SPEKTRUM AKADEMISCHER VERLAG, DE, Bd. 6, Nr. 1, 2000, Seiten 33-36, XP009004621 ISSN: 0947-0867 in der Anmeldung erwähnt das ganze Dokument</p> <p>---</p> <p style="text-align: center;">-/-</p>	1-15

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *E* älteres Dokument, das jedoch erst am oder nach dem Internationalen Anmeldedatum veröffentlicht worden ist
- *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Aussstellung oder andere Maßnahmen bezieht
- *P* Veröffentlichung, die vor dem Internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

- *T* Spätere Veröffentlichung, die nach dem Internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahelegend ist
- *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des Internationalen Recherchenberichts

3. März 2004

19/03/2004

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Giebeler, K

INTERNATIONÄLER RECHERCHENBERICHT

Int. Aktenzeichen
PCT/EP 03/13367

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	<p>WILMS B ET AL: "High-cell-density fermentation for production of L-N-carbamoylase using an expression system based on the <i>Escherichia coli</i> rhaBAD promoter" BIOTECHNOLOGY AND BIOENGINEERING. INCLUDING: SYMPOSIUM BIOTECHNOLOGY IN ENERGY PRODUCTION AND CONSERVATION, JOHN WILEY & SONS. NEW YORK, US, Bd. 73, Nr. 2, 20. April 2001 (2001-04-20), Seiten 95-103, XP002228440 ISSN: 0006-3592 in der Anmeldung erwähnt das ganze Dokument</p> <p>---</p>	1-15
A	<p>BULAWA C E ET AL: "ISOLATION AND CHARACTERIZATION OF <i>ESCHERICHIA-COLI</i> STRAINS DEFECTIVE IN CDP-DIGLYCERIDE HYDROLASE" JOURNAL OF BIOLOGICAL CHEMISTRY, Bd. 259, Nr. 18, 1984, Seiten 11257-11264, XP002272208 ISSN: 0021-9258 in der Anmeldung erwähnt</p> <p>---</p>	
A	<p>HALDIMANN ANDREAS ET AL: "Use of new methods for construction of tightly regulated arabinose and rhamnose promoter fusions in studies of the <i>Escherichia coli</i> phosphate regulon" JOURNAL OF BACTERIOLOGY, Bd. 180, Nr. 5, März 1998 (1998-03), Seiten 1277-1286, XP002272209 ISSN: 0021-9193 in der Anmeldung erwähnt</p> <p>---</p>	
A	<p>EGAN SUSAN M ET AL: "A regulatory cascade in the induction of rhaBAD" JOURNAL OF MOLECULAR BIOLOGY, Bd. 234, Nr. 1, 1993, Seiten 87-98, XP002272210 ISSN: 0022-2836 in der Anmeldung erwähnt</p> <p>-----</p>	

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.