Implicação lógica

sábado, 16 de abril de 2022 19:13

Regras de Implicação mais importantes!

Abaixo listo algumas regras de implicação lógica que, infelizmente, precisam ser decoradas!

Iremos utilizar essas regras quando estudarmos sobre Regras de Inferência (daqui 2 semanas).

1. Regra da Adição: p => p Vq

2. Regra da Simplificação: p ∧ q => p

3. Modus Ponens: $p \land (p \rightarrow q) \Rightarrow q$

4. Modus Tollens: $^{\sim}q \land (p \rightarrow q) \Rightarrow ^{\sim}p$

5. Silogismo Hipotético: $(p \rightarrow q) \land (q \rightarrow r) \Rightarrow (p \rightarrow r)$

Deixo para vocês provarem que essas regras de <u>implicação lógica</u> são válidas. Para isso, basta fazer a tabela verdade e verificar que: sempre que o lado esquerdo é verdade, o lado direito também é verdade.

As regras <u>Modus Ponens</u> e <u>Modus Tollens</u> são as mais utilizadas. Cuidado para não confundir o nome dessas duas regras!

Vou mostrar um exemplo da regra Modus Ponens

Suponha que a seguinte frase seja verdade: "Hoje está sol. Sempre que está sol, eu vou à praia". Nessa frase temos 2 proposições simples:

P = está sol

Q = eu vou <u>a</u> praia

Traduzindo a sentença "Hoje está sol. Sempre que está sol, eu vou à praia" para a linguagem proposicional, temos:

 $P \wedge (P \rightarrow Q)$

Segundo a regra Modus Ponens, a sentença acima implica logicamente em Q, ou seja, $P \land (P \rightarrow Q) \Rightarrow Q$

Logo, da sentença "Hoje está sol. Sempre que está sol, eu vou à praia" podemos deduzir logicamente que "eu vou à praia", segundo a regra Modus Ponens.

Agora vou mostrar um exemplo da regra **Modus Tollens**

Suponha que a seguinte frase seja verdade: "Hoje eu não vou à praia. Sempre que está sol, eu vou à praia". Nessa frase temos 2 proposições simples:

P = Está sol

Q = eu vou <u>a</u> praia

Traduzindo a sentença "Hoje eu não vou à praia. Sempre que está sol, eu vou à praia" para a linguagem proposicional, temos:

~Q
$$\Lambda$$
 ($P \Rightarrow \to Q$)

Segundo a regra Modus Tollens, a sentença acima implica logicamente em $^{\sim}$ P, ou seja, $^{\sim}$ Q $^{\wedge}$ (P \rightarrow Q) => $^{\sim}$ P

Logo, da sentença "Hoje eu não vou à praia. Sempre que está sol, eu vou à praia" podemos deduzir logicamente que "não está sol", segundo a regra Modus Tollens.

P	Q	~Q	~P	PvQ	P ^ Q	$(p \rightarrow q)$	$P \wedge (p \rightarrow q)$	~q ^ (p → q)	p => p V q	p ∧ q => p	p ^(p \rightarrow q) => q	~q ^ (p > q) => ~p	
F	V	F	٧	V	F	V	F	F					
F	F	V	٧	F	F	V	F	V				SIM	
V	V	F	F	V	V	V	V	F	SIM	SIM	NÃO		
V	F	V	F	V	F	F	F	F	SIM				

P	Q	~Q	~p	~p -> q	$\sim q \Rightarrow (\sim p \rightarrow \rightarrow q)$	~(p \(\cap q \)	p => ~(p \(\lambda q \)	~P ^Q	Q -> ~P	$\sim p \land q \Rightarrow q \rightarrow \sim p$	\sim (p \wedge q) => q \rightarrow \sim p	p => ~p →q	~q => q →~p
F	V	F	V	V	SIM	V		V	V	sim	SIM		
F	F	V	V	F		V		F	V		SIM		SIM
V	V	F	F	V	SIM	F	NÃO	F	F			sim	
V	F	V	F	V		V	SIM	F	V		SIM	sim	SIM

Exercício de reforço #2

As regras Modus Ponens e Modus Tollens são as regras que mais confundem os alunos. Mas lembre-se que essas duas regras são completamente diferentes!

Considere a seguinte sentença:

"Se eu for aprovado na disciplina de MD1, então eu ficarei feliz. Não estou feliz, logo não fui aprovado na disciplina de MD1"

Qual regra foi aplicada para deduzir a proposição que está de azul na frase acima?

• Modus Tollens - OK

Considere essa outra sentença:

"Se eu for aprovado na disciplina de MD1, então eu poderei fazer a disciplina de MD2. Fui aprovado na disciplina de MD1, logo poderei fazer a disciplina de MD2"

Qual regra foi aplicada para deduzir a proposição que está de azul na frase acima?

• Modus Ponens - OK