03-09-2020 shift-1

AI24BTECH11012- Pushkar Gudla

- 1) The value of $(2.^{1}P_{0} 3.^{2}P_{1} + 4.^{3}P_{2} \cdots)$ up to 51st term) + $(1! 2! + 3! \cdots)$ up to 51st term) is equal to:
 - a) 1 51(51)!
 - b) 1 + (52)!
 - c) 1
 - d) 1 + (51)!
- 2) Let P be a point on the parabola $y^2 = 12x$ and N be the foot of the perpendicular drawn from P on the axis of the parabola. A line is now drawn through the mid-point M of PN, parallel to its axis which meets the parabola at Q. If the y-intercept of the line NQ is $\frac{4}{3}$, then:
 - a) PN = 4
 - b) $MQ = \frac{1}{2}$
 - c) PN = 3
 - d) $MQ = \frac{1}{4}$
- 3) If $\Delta = \begin{vmatrix} x-2 & 2x-3 & 3x-4 \\ 2x-3 & 3x-4 & 4x-5 \\ 3x-5 & 5x-8 & 10x-17 \end{vmatrix} = Ax^3 + Bx^2 + Cx + D$, then B+C is equal to:
 - a) 1
 - b) -1
 - c) -3
 - d) 9
- 4) The foot of the perpendicular drawn from the point (4,2,3) to the line joining the points (1,-2,3)and (1, 1, 0) lies on the plane:
 - a) x y 2z = 1
 - b) x 2y + z = 1
 - c) 2x + y z = 1
 - d) x + 2y z = 1
- 5) If $y^2 + \log_e(\cos^2 x) = y$, $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, then:
 - a) |y'(0)| + |y''(0)| = 1
 - b) y''(0) = 0
 - c) |y'(0)| + |y''(0)| = 3
 - d) |y''(0)| = 2
- 6) $2\pi \left(\sin^{-1}\frac{4}{5} \sin^{-1}\frac{5}{13} + \sin^{-1}\frac{16}{65}\right)$ is equal to:

 - a) $\frac{5\pi}{4}$ b) $\frac{3\pi}{2}$ c) $\frac{7\pi}{4}$ d) $\frac{\pi}{2}$
- 7) A hyperbola having the transverse axis of length $\sqrt{2}$ has the same foci as that of the ellipse $3x^2+4y^2=$ 12. Then this hyperbola does not pass through which of the following points:

c)
$$\left(\frac{1}{\sqrt{2}}, 0\right)$$

d) $\left(-\sqrt{\frac{3}{2}}, 1\right)$

8) For the frequency distribution:

Variate: x_1 x_2 x_3 ... x_{15} Frequency: f_1 f_2 f_3 ... f_{15}

where $0 < x_1 < x_2 < \cdots < x_{15} \le 10$ and $\sum_{i=1}^{15} f_i > 0$, the standard deviation cannot be:

- a) 1
- b) 4
- c) 6
- d) 2
- 9) A die is thrown two times and the sum of the scores appearing on the die is observed to be a multiple of 4. Then the conditional probability that the score 4 has appeared at least once is:

 - a) $\frac{1}{3}$ b) $\frac{1}{4}$ c) $\frac{1}{8}$ d) $\frac{1}{9}$
- 10) If the number of integral terms in the expansion of $(3^{\frac{1}{2}} + 5^{\frac{1}{8}})^n$ is exactly 33, then the least value of
 - a) 128
 - b) 248
 - c) 256
 - d) 264
- 11) $\int_{-\pi}^{\pi} |\pi |x|| dx$ is:

 - b) $\frac{\pi^2}{2}$
 - c) $\sqrt{2}\pi^2$
 - d) $2\pi^2$
- 12) Consider the two sets:

 $A = (m \in \mathbb{R} : \text{both the roots of } x^2 - (m+1)x + m + 4 = 0 \text{ are real}) \text{ and } B = [-3, 5)$ Which of the following is not true?

- a) $A B = (-\infty, -3) \cup (5, \infty)$
- b) $A \cap B = \{-3\}$
- c) B A = (-3, 5)
- d) $A \cup B = \mathbb{R}$
- 13) The proposition $p \rightarrow \sim (p \land \sim q)$ is equivalent to:
 - a) $(\sim p) \lor (\sim q)$
 - b) $(\sim p) \land q$
 - c) q
 - d) $(\sim p) \vee q$
- 14) The function $f(x) = (3x 7)x^{2/3}$, $x \in \mathbb{R}$, is increasing for all x lying in:
 - a) $\left(-\infty, -\frac{14}{15}\right) \cup (0, \infty)$
 - b) $\left(-\infty, \frac{14}{15}\right)$
 - c) $(-\infty,0) \cup \left(\frac{14}{15},\infty\right)$
 - d) $(-\infty,0) \cup \left(\frac{3}{7},\infty\right)$
- 15) If the first term of an A.P. is 3 and the sum of its first 25 terms is equal to the sum of its next 15

terms, then the common difference of this A.P. is:

- a) $\frac{1}{6}$ b) $\frac{1}{5}$ c) $\frac{1}{4}$ d) $\frac{1}{7}$