Linear Regression

Linear Regression: Detailed Study Notes

1. Introduction to Linear Regression

Linear Regression is a fundamental supervised machine learning algorithm used for predicting a continuous target variable based on one or more predictor variables. It models the relationship between variables using a linear equation.

- **Simple Linear Regression:** Involves one predictor variable. Example: life_satisfaction = θ_0 + θ_1 * GDP_per_capita where θ_0 and θ_1 are model parameters.
- Multiple Linear Regression: Involves two or more predictor variables. The general equation is: (\hat{y} = \theta_0 + \theta_1x_1 + \theta_2x_2 + ... + \theta_nx_n) where (\hat{y}) is the predicted value, (x_i) are the feature values, and (\theta_i) are the model parameters (including the bias term (\theta_0)).

2. Vectorized Representation

The linear regression model can be concisely represented in vectorized form:

```
( \hat{y} = h_{\text{theta}}(x) = \hat{x} )
```

where:

- (\theta) is the model's parameter vector (including the bias term).
- (x) is the instance's feature vector (with (x 0 = 1) for the bias term).
- (\theta \cdot x) represents the dot product.

3. Model Training

The goal of training a linear regression model is to find the optimal values for the parameters (\theta) that minimize the difference between the model's predictions and the actual target values in the training data. This is typically done by minimizing a cost function, such as the Mean Squared Error (MSE).

- Methods for finding optimal (\theta):
 - Normal Equation: A closed-form solution that directly calculates the optimal (\theta). This is computationally expensive for large datasets.
 - Gradient Descent: An iterative optimization algorithm that iteratively updates (
 \theta) to minimize the cost function. Variants include batch, mini-batch, and
 stochastic gradient descent.

from sklearn.linear model import LinearRegression
lin reg = LinearRegression()
lin_reg.fit(X_train, y_train)

4. Model Evaluation

After training, the model's performance is evaluated using metrics such as:

- **Mean Squared Error (MSE):** The average squared difference between predicted and actual values.
- **Root Mean Squared Error (RMSE):** The square root of MSE, providing a more interpretable measure in the original units.
- (R^2) **score:** Represents the proportion of variance in the dependent variable explained by the model.

Model Evaluation in scikit-learn
from sklearn.metrics import mean_squared_error, r2_score
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

5. Regularization

Regularization techniques, such as Ridge Regression (L2) and Lasso Regression (L1), are used to prevent overfitting by adding a penalty term to the cost function. This penalty discourages large parameter values. Elastic Net is a combination of both L1 and L2 regularization.

Elastic Net Regularization
from sklearn.linear model import ElasticNet
elastic_net = ElasticNet(l1_ratio=0.3) # l1_ratio controls the mix of L1 a
elastic_net.fit(X_train, y_train)

6. Model Selection and Hyperparameter Tuning

- **Model Selection:** Choosing the appropriate type of linear regression model (simple vs. multiple, with or without regularization).
- **Hyperparameter Tuning:** Optimizing hyperparameters (e.g., regularization strength, learning rate in gradient descent) using techniques like grid search or randomized search with cross-validation.

7. Baseline Models

A baseline model, such as DummyRegressor in scikit-learn, provides a simple prediction (e.g., using the mean of the target variable) to compare against more complex models.

from sklearn.dummy import DummyRegressor
dummy_regr = DummyRegressor(strategy="mean")
dummy_regr.fit(X_train, y_train)

8. Making Predictions

Once the model is trained, predictions can be made on new, unseen data using the predict() method.

_pred = lin_reg.predict(X_test)

Linear Regression is a crucial algorithm in machine learning due to its simplicity, interpretability, and wide applicability. Its ability to model linear relationships between variables makes it a valuable tool for prediction and understanding data, forming a strong foundation for more advanced techniques.