

Sistemas de Informação - Parte 2 Jorge Ricardo Marques Duarte

Instituto Superior de Engenharia de Coimbra 2021110042

5 de dezembro de 2024

Conteúdo

1	1 Processo de negócio a modelar		3
2	2 Avaliação da granularidade		4
3	3 Dimensões e os atributos		5
4	4 Factos a serem incluídos		7
	4.1 F_ACADEMIC_PERFORMANCE		7
	4.2 F_BENCHMARK_SUCCESS		7
5	5 Modelo em estrela - Constelação		9
6	6 Cálculos aproximados do tamanho que ocupar	á o modelo concebido	10
	6.1 Estimativa de registos		10
	6.2 Cálculo de Tamanho por Tabela		10
	6.2.1 Tabela D_STUDENTS		10
	6.2.2 Tabela D_COURSES		10
	6.2.3 Tabela F_ACADEMIC_PERFORMANCE		11
	6.2.4 Tabela F_BENCHMARK_SUCCESS		11
	6.3 Tamanho Total do Modelo		11
	6.4 Explicação		11
7	7 Implementação modelo em estrela no Oracle		12
	7.1 Benefícios do Uso de Liquibase		12
8	8 Sumário dos Valores introduzidos por tabela		13
9	9 Dicionário de Dados		14
10	10 Power BI Dashboard		15

1 Processo de negócio a modelar

O processo de negócio a modelar no contexto deste Data Warehouse (DW) está relacionado à gestão acadêmica e análise de desempenho de estudantes. Ele abrange o armazenamento e análise de dados sobre:

Informações demográficas e socioeconômicas dos estudantes (ex.: idade, renda familiar, acesso à internet). Matrículas em cursos e disciplinas, incluindo status financeiro e modos de inscrição. Estrutura de cursos e disciplinas, como tipo, duração e créditos (ECTS). Análise de desempenho acadêmico, incluindo notas finais e status de aprovação. Dados temporais e anos acadêmicos para acompanhar a evolução e conclusão de cursos. Esse modelo suporta decisões estratégicas, como alocação de recursos, identificação de padrões de sucesso e falhas, e políticas de inclusão socioeconômica.

2 Avaliação da granularidade

Na avaliação da granularidade, inicialmente estava voltado para um fato F_EXAMS , mas rapidamente notei que não representava adequadamente o desempenho acadêmico dos estudantes. Isso porque as notas finais não dependem exclusivamente dos exames, mas também de trabalhos práticos, projetos e outros componentes avaliativos. Usar apenas essa tabela implicaria assumir um erro ao simplificar o cálculo da nota final.

Por isso, optei por modelar a tabela $F_ACADEMIC_PERFORMANCE$, que captura o desempenho acadêmico de forma mais abrangente, incluindo a granularidade ao nível de cada estudante em cada disciplina. A granularidade deste Data Warehouse está, portanto, definida no nível de estudante, disciplina, curso, ano acadêmico e período de tempo, permitindo análises detalhadas e precisas sobre o desempenho e evolução dos estudantes.

3 Dimensões e os atributos

No modelo do Data Warehouse, as dimensões foram cuidadosamente definidas para permitir análises detalhadas do desempenho acadêmico. As principais dimensões e seus atributos são:

- D_STUDENTS: contém informações dos estudantes, como:
 - STUDENT_ID (identificador único do estudante),
 - NAME (nome do estudante),
 - SOCIOECONOMIC_ID (relacionado à dimensão socioeconômica),
 - DEMOGRAPHIC_ID (relacionado à dimensão demográfica).
- D_SOCIOECONOMIC_DATA: armazena dados socioeconômicos, como:
 - SCHOLARSHIP_STATUS (se possui bolsa de estudos),
 - FAMILY_INCOME e INCOME (renda familiar e individual),
 - HAS_INTERNET_ACCESS e HAS_COMPUTER_ACCESS (acessos básicos de tecnologia),
 - WORKING_STATUS (situação de trabalho).
- D_STUDENT_DEMOGRAPHIC_DATA: inclui dados demográficos, como:
 - DATE_OF_BIRTH (data de nascimento),
 - NATIONALITY (nacionalidade),
 - GENDER e ETHNICITY (dados de género e etnia),
 - CITY_OF_BIRTH e COUNTRY_OF_BIRTH (local de nascimento).
- **D_COURSES**: descreve os cursos, com:
 - COURSE_ID (identificador único),
 - COURSE_NAME (nome do curso),
 - FIELD_OF_STUDY_ID (área de estudo relacionada),
 - DURATION_YEARS (duração do curso em anos).
- D_FIELDS_OF_STUDY: define as áreas de estudo:
 - FIELD_ID (identificador único da área),
 - FIELD_NAME (nome da área de estudo).
- **D_TIME**: armazena dimensões temporais, como:

- DAY, MONTH, YEAR e SEMESTER (dados temporais detalhados),
- WEEKDAY (dia da semana),
- DATE (data específica).
- \bullet D_ACADEMIC_YEAR: guarda informações sobre o ano letivo, com:
 - ACADEMIC_YEAR_ID (identificador único),
 - ACADEMIC_YEAR (descrição do ano letivo),
 - START_DATE e END_DATE (datas de início e fim).

Essas dimensões suportam a análise detalhada de desempenho acadêmico ao nível individual, temporal e institucional, proporcionando um modelo robusto para responder às necessidades do negócio.

4 Factos a serem incluídos

As tabelas de factos criadas para este Data Warehouse foram desenhadas para suportar análises específicas e detalhadas sobre o desempenho acadêmico e os indicadores de sucesso dos estudantes. As tabelas de factos são as seguintes:

4.1 F_ACADEMIC_PERFORMANCE

Esta tabela de factos registra o desempenho dos estudantes em cada disciplina. A granularidade está ao nível da inscrição de um estudante numa disciplina, para um determinado ano acadêmico. Os atributos desta tabela incluem:

- ENROLLMENT_SUBJECT_ID: identificador único da inscrição numa disciplina.
- ENROLLMENT_ID: identificador da inscrição no curso.
- SUBJECT_ID: identificador da disciplina.
- STUDENT_ID: identificador do estudante.
- ACADEMIC_YEAR_ID: identificador do ano acadêmico.
- COURSE_ID: identificador do curso.
- TIME_ID: identificador da dimensão temporal.
- FINAL_GRADE: nota final obtida pelo estudante na disciplina.
- STATUS: status da disciplina (ex.: aprovado, reprovado).

4.2 F_BENCHMARK_SUCCESS

Esta tabela de factos foca nos indicadores de sucesso dos estudantes, como conclusão de curso e situação profissional. A granularidade é por estudante e curso. Os atributos desta tabela incluem:

- BENCHMARK_SUCCESS_ID: identificador único do registo de sucesso.
- STUDENT_ID: identificador do estudante.
- COURSE_ID: identificador do curso.
- ACADEMIC_YEAR_OF_COMPLETION_ID: identificador do ano acadêmico de conclusão.
- VERIFICATION_TIME_DATE_ID: identificador da data de verificação.

• WORKING_ON_FIELD_DATE_SINCE_ID: identificador da data em que o estudante começou a trabalhar na sua área.

- COURSE_CONCLUDED: indicador booleano se o curso foi concluído.
- IS_WORKING_ON_THE_FIELD: indicador booleano se o estudante está a trabalhar na sua área de formação.

Estas tabelas de factos são alimentadas pelas dimensões relevantes, como D_STUDENTS, D_COURSES, D_SUBJECTS, D_TIME e D_ACADEMIC_YEAR, garantindo uma modelagem robusta para suportar análises e relatórios detalhados.

5 Modelo em estrela - Constelação

Figura 1: Modelo em estrela inicial

Este é o modelo em estrela inicial, onde podemos observar que neste momento ainda não continha os campos $COURSE_ID$, $STUDENT_ID$, e $ACADEMIC_YEAR_ID$ na tabela de fato $F_ACADEMIC_PERFORMANCE$.

Posteriormente, de modo a melhorar a performance das queries, acabei por defini-los no modelo onde ficou como podemos observar na Figura 2.

Figura 2: Modelo em estrela - Final

6 Cálculos aproximados do tamanho que ocupará o modelo concebido

Nota: Suponha que as condições seguintes serão observadas: terá de registar dados de 5 anos e a existem cerca de 30 cursos. Contemple apenas cursos de licenciatura (3 anos). Suponha que uma turma só pode ter 40 alunos no máximo.

6.1 Estimativa de registos

Primeiramente, calculei o número total de alunos que estarão presentes no sistema ao longo de 5 anos:

- Para 30 cursos, com 40 alunos por turma, temos um total de $30 \times 40 = 1200$ alunos por ano.
- Com 5 anos de dados, o total de alunos é $1200 \times 5 = 6000$.

6.2 Cálculo de Tamanho por Tabela

Abaixo, apresento os cálculos detalhados para cada tabela, considerando os campos, tipos de dados e número de registos:

6.2.1 Tabela D_STUDENTS

A tabela D_STUDENTS contém as seguintes colunas principais:

- STUDENT_ID (4 bytes)
- SOCIOECONOMIC_ID, DEMOGRAPHIC_ID (4 bytes cada)
- NAME (100 caracteres, média de 50 bytes por nome)

O tamanho total por registo é 4+4+4+50=62 bytes. Com 6000 registos:

$$6000 \times 62 = 372 \text{ KB}.$$

6.2.2 Tabela D_COURSES

Esta tabela possui:

- COURSE_ID (4 bytes)
- COURSE_NAME (100 bytes)
- FIELD_OF_STUDY_ID, DURATION_YEARS (4 bytes cada)

Com 4 + 100 + 4 + 4 = 112 bytes por registo e 30 registos:

$$30 \times 112 = 3.36 \, \text{KB}.$$

6.2.3 Tabela F_ACADEMIC_PERFORMANCE

Esta tabela é a mais volumosa, pois contém um registo para cada disciplina frequentada por cada aluno. Os campos principais incluem:

- IDs (ENROLLMENT_SUBJECT_ID, ENROLLMENT_ID, etc.) com 4 bytes cada.
- FINAL_GRADE (5 bytes) e STATUS (4 bytes).

O total por registo é $7 \times 4 + 5 + 4 = 37$ bytes. Considerando que cada aluno frequenta 10 disciplinas por ano:

$$6000 \times 3 \times 10 = 180,000 \text{ registos}.$$

O tamanho total da tabela é:

$$180,000 \times 37 = 6.66 \,\mathrm{MB}.$$

6.2.4 Tabela F_BENCHMARK_SUCCESS

Por fim, esta tabela possui campos principais como:

- IDs (BENCHMARK_SUCCESS_ID, STUDENT_ID, etc.) com 4 bytes cada.
- COURSE_CONCLUDED, IS_WORKING_ON_THE_FIELD (1 byte cada).

O total por registo é $6 \times 4 + 2 = 26$ bytes. Com 6000 registos:

$$6000 \times 26 = 156 \,\mathrm{KB}.$$

6.3 Tamanho Total do Modelo

Somando todas as tabelas principais, o tamanho aproximado do modelo é:

$$372 \text{ KB} + 3.36 \text{ KB} + 6.66 \text{ MB} + 156 \text{ KB} = 7.19 \text{ MB}.$$

6.4 Explicação

O tamanho total do modelo é dominado pela tabela F_ACADEMIC_PERFORMANCE, devido à alta granularidade dos dados. Este modelo foi projetado para suportar consultas analíticas detalhadas, sendo eficiente para armazenar informações de 5 anos de atividades acadêmicas.

7 Implementação modelo em estrela no Oracle

Para implementar o modelo em estrela no SQL Server, utilizei o Liquibase para definir as tabelas dimensionais e factuais com suas devidas relações. O uso do Liquibase permite a gestão de alterações no esquema do banco de dados de forma controlada e rastreável, facilitando atualizações e rollback quando necessário.

7.1 Benefícios do Uso de Liquibase

- Rastreabilidade: Cada alteração no esquema é registrada, permitindo auditorias. - Automação: Scripts podem ser aplicados automaticamente em diferentes ambientes. - Rollback: Facilita reverter mudanças em caso de erro.

Com essa abordagem, assegurei uma implementação consistente do modelo em estrela, alinhada aos requisitos do Data Warehouse.

O script liquibase está presente no projeto datawarehouse, no ficheiro V1_create_constellation.yml.

8 Sumário dos Valores introduzidos por tabela

Os seguintes resultados mostram a contagem de registos inseridos em cada tabela:

Tabela	Total de Registos
D_STUDENTS	33150
D_STUDENT_DEMOGRAPHIC_DATA	33150
D_SOCIOECONOMIC_DATA	33150
D_COURSES	58
D_FIELDS_OF_STUDY	48
D_SUBJECTS	2006
$D_{-}TIME$	7016
D_ACADEMIC_YEAR	21
F_ACADEMIC_PERFORMANCE	1126081
F_BENCHMARK_SUCCESS	7115

Tabela 1: Sumário dos Registos nas Tabelas

9 Dicionário de Dados

Para a apresentação e catalogação das informações de colunas, tabelas e as suas relações criei um projeto chamado Data Dictionary, onde apresenta as relações e informações configuradas através do ficheiro *metadata.json*

Figura 3: Data Dictionary - Página Principal

Figura 4: Visualização de Informação de Tabela

Figura 5: Data Dictionary - Visualização de relações em Graph

10 Power BI Dashboard

No presente trabalho, criei um relatório em Power BI que contém várias visualizações relacionadas com os dados de matrícula e desempenho acadêmico. O documento é composto pelas seguintes páginas:

- Figura 6: Relatório Geral, que apresenta informações gerais como por exemplo o número de alunos e cursos.
- Figura 7: Informação de Matrículas, exibindo dados detalhados sobre o total de matrículas e inscrições.
- Figura 8: *Performance de Alunos Acadêmica, com a análise do desempenho dos alunos nas disciplinas e estatísticas de sucesso.
- Figura 9: Sucesso Acadêmico, que mostra as taxas de sucesso dos alunos por terem frequentado o curso.

Essas páginas fornecem uma visão abrangente dos dados de performance e sucesso dos alunos em diferentes áreas do sistema educacional.

Figura 6: General Relatório Geral

Figura 7: Informação de matriculas

Figura 8: Performance de Alunos Académica

Figura 9: Sucesso Académico