HIGH-ORDER LOGIC IN MATCHING μ-LOGIC

XIAOHONG CHEN AND GRIGORE ROSU

Contents

1.	Simply-Typed λ -Calculus	1
2.	Calculus of Inductive Constructions	1
2.1.	The formal language of Cic	1
2.2.	Typing rules in Cic	2

1. Simply-Typed λ -Calculus

2. Calculus of Inductive Constructions

The following is a compact digest of the comprehensive document of Cic at the reference website of the Coq theorem prover at https://coq.inria.fr/distrib/current/refman/language/cic.html.

2.1. The formal language of Cic.

Definition 2.1. The set of *sorts*, denoted as S, is defined as:

(1)
$$S \equiv \{ \text{Prop}, \text{Set}, \text{Type}(i) \mid i \in \mathbb{N} \}$$

Definition 2.2. The set of *terms* is inductively defined as:

- the sorts Set, Prop, Type(i) are terms.
- variables x, y, \ldots are terms.
- constants c, d, \ldots are terms.
- $\forall x: T$, U is a term, where x is a variable and T, U are terms. If x does not occur in U, we write $T \to U$ instead of $\forall x: T, U$.
- $\lambda x : T \cdot u$ is a term, where x is a variable and T, u are terms.
- (tu) is a term, where t, u are terms.
- let x := t : T in u is a term, where x is a variable and t, T, u are terms.

Remark 2.3. I didn't find the definition of *types*. I quote from the reference document that "from a syntactic point of view, types cannot be distinguished from terms, except that they cannot start by an abstraction or a constructor."

2.2. Typing rules in Cic.

Definition 2.4. A *local context*, denoted as Γ , is an ordered list of *local declarations*, which can be either a *local assumption* with the form x:T where T is a type, or a *local definition* with the form x:=t:T. Variables in a local context must be distinct. If x is declared in Γ , we write $x \in \Gamma$. If x:T is in Γ , or there exists a t such that x:=t:T is in Γ , we write $x:T \in \Gamma$. In the latter case, we also write $x:=t:T \in \Gamma$. The empty local context is denoted as []. We write $\Gamma::(x:T)$ and $\Gamma::(x:=t:T)$ to mean the local context Γ extended with a local assumption/definition. We use $\Gamma_1;\Gamma_2$ to mean the concatenation of two local contexts.

Definition 2.5. A *global environment*, denoted as E, is an ordered list of *global declarations*, which can be either a *global assumption* or a *global definition*, but also a *inductive definition*, which we define later. A global assumption has the form c:T for a constant c. A global definition has the form c:t:T for a constant c. The empty global environment is denoted as []. We write E;c:T and E;c:t:T to mean the global environment extended with a global assumption/definition.

Definition 2.6. The following two forms of judgments are defined simultaneously in Figure 1:

- $E[\Gamma] \vdash t : T$, which means that the term t is well-typed and has type T in the global environment E and local context Γ .
- $WF(E)[\Gamma]$, which means that the global environment E is well-formed and Γ is valid in E.

W-Empty		Var	
	$\overline{\mathcal{WF}([])[]}$		$\frac{\mathcal{WF}(E)[\Gamma]}{(x:T) \in \Gamma \text{ or } (x:=t:T) \in \Gamma \text{ for some } t}$
W-Local-Assum			$E[\Gamma] \vdash x : T$
	$\frac{E[\Gamma] \vdash T : s \qquad s \in \mathcal{S} \qquad x \notin \Gamma}{\mathcal{WF}(E)[\Gamma :: (x : T)]}$	Const	
	$\mathcal{WF}(E)[\Gamma :: (x:T)]$		$\frac{\mathcal{WF}(E)[\Gamma] \qquad (c:T) \in E \text{ or } (c:=t:T) \in E \text{ for some } t}{E[\Gamma] \vdash c:T}$
W-Local-Def			$E[1] \vdash C \cdot I$
	$\frac{E[\Gamma] \vdash t : T \qquad x \notin \Gamma}{\mathcal{WF}(E)[\Gamma :: (x := t : T)]}$	Prod-Prop	
	$\mathcal{WF}(E)[\Gamma :: (x := t : T)]$		$\frac{E[\Gamma] \vdash T : s \qquad s \in \mathcal{S} \qquad E[\Gamma :: (x : T)] \vdash U : Prop}{E[\Gamma] \vdash \forall \ x : T, U : Prop}$
W-Global-Assum		Prod-Set	
	$\frac{E[] \vdash T : s \qquad s \in \mathcal{S} \qquad c \notin \mathcal{E}}{\mathcal{WF}(E; c : T)[]}$		$E[\Gamma] \vdash T \cdot g$ $g \in \{Prop Set\}$ $E[\Gamma \cdot (T \cdot T)] \vdash H \cdot Set$
	$\mathcal{WF}(E;c:T)$		$\frac{E[\Gamma] \vdash T:s}{E[\Gamma] \vdash \forall \ x:T,U:Set} = \frac{s \in \{Prop,Set\}}{E[\Gamma] \vdash \forall \ x:T,U:Set}$
W-Global-Def		Prod-Type	
	$\frac{E[] \vdash t : T \qquad c \notin E}{\mathcal{WF}(E; c := t : T)[]}$		$E[\Gamma] \vdash T : Type(i)$ $E[\Gamma :: (x : T)] \vdash U : Type(i)$
Ax-Prop	(2,00.1)		$E[\Gamma] dash orall x: T, U: Type(i)$
Ах-Ргор	WE FIT	Lam	
	$rac{\mathcal{WF}(E)[\Gamma]}{E[\Gamma] dash ext{Prop}: Type(1)}$		$E[\Gamma] \vdash \forall \ x:T,U:s \qquad E[\Gamma :: (x:T)] \vdash t:U$
Ax-Set			$E[\Gamma] \vdash \lambda x : T. \ t : \forall x : T, U$
	$\mathcal{WF}(E)[\Gamma]$	Арр	
	$E[\Gamma] \vdash Set : Type(1)$		$\frac{E[\Gamma] \vdash t : \forall \ x : U, T \qquad E[\Gamma] \vdash u : U}{E[\Gamma] \vdash (t \ u) : T\{x/u\}}$
Ax-Type			$E[\Gamma] \vdash (t u) : T\{x/u\}$
	$\mathcal{WF}(E)[\Gamma]$	Let	
	$\overline{E[\Gamma] \vdash Type(i) : Type(i+1)}$		$\frac{E[\Gamma] \vdash t : T \qquad E[\Gamma :: (x := t : T)] \vdash u : U}{E[\Gamma] \vdash let \ x := t : T \ in \ u : U\{x/t\}}$
			E[I] Her a .— t . I III a . O \ a/tf

FIGURE 1. Cic proof system