Solució al problema 5 l

a) Espai prehilbertià:

E és un espai vectorial i el producte escalar és bilineal i simètric.

A més $\langle f,f\rangle \geq 0$ i si $\langle f,f\rangle = 0$ llavors $f'(x)=0, \ \forall x\in [-1,1].$ Per tant $f\equiv c,$ on $c\in \mathbb{R}.$ Com que $c=f(-x)=-f(x)=-c,\ c=0.$

Base:

Si
$$p \in E_3$$
 llavors $p(x) = ax^3 + bx^2 + cx + d$. Com que $p \in E$, $p(-x) = -ax^3 + bx^2 - cx + d = -p(x) = -ax^3 - bx^2 - cx - d \Rightarrow p(x) = ax^3 + bx$.

Prenem la base: $\{x, x^3\}$.

b) Recordem que la millor aproximació satisfà:

$$f^* = c_0 \varphi_0 + c_1 \varphi_1, \qquad \varphi_0(x) = x, \quad \varphi_1(x) = x^3.$$

Aleshores, tenim que

$$\left(\begin{array}{cc} \langle \varphi_0, \varphi_0 \rangle & \langle \varphi_0, \varphi_1 \rangle \\ \langle \varphi_1, \varphi_0 \rangle & \langle \varphi_1, \varphi_1 \rangle \end{array}\right) \left(\begin{array}{c} c_0 \\ c_1 \end{array}\right) = \left(\begin{array}{c} \langle f, \varphi_0 \rangle \\ \langle f, \varphi_1 \rangle \end{array}\right).$$

Solució al problema 5 II

Calculant els productes escalars, tenim

$$\left(\begin{array}{cc}2&2\\2&\frac{18}{25}\end{array}\right)\left(\begin{array}{c}c_0\\c_1\end{array}\right)=\left(\begin{array}{c}2\sin 1\\12\cos 1-6\sin 1\end{array}\right).$$

Resolent, $c_0 \approx 0.647611$, $c_1 \approx 0.193859$.

c) Notem que $p \in F_3$ sii $p(x) = x + ax^3$. Obviament, F_3 no és un subespai vectorial. Però trobar l'element més proper a $f_0(x) = \sin x$ vol dir trobar $p_0 \in F_3$ tal que

$$||f - p_0|| \le ||f - p||, \quad \forall p \in F_3.$$

Això és el mateix que trobar un monomi de la forma $q_0 = a_0 x^3$ tal que

$$||g-q_0|| \leq ||g-q||,$$

per a tot $q(x) = ax^3$, on $g(x) = \sin x - x$.

Solució al problema 5 III

Com que $\tilde{F}_3 = \{ax^3 \mid a \in \mathbb{R}\}$ és un subespai de dimensió finita de E i $\sin x - x \in E$, la millor aproximació $p^*(x) = x + ax^3$ satisfà:

$$a = rac{\langle g, arphi
angle}{\langle arphi, arphi
angle} = rac{12 \cos 1 - 6 \sin 1 - 2}{18/5} pprox -0.1569995.$$

Finalment, en el cas de $\cos x$, tenim que $\cos x - x \notin E$, i per tant no podem seguir la mateixa estratègia.