

SC60 Hardware Design

Smart LTE Module Series

Rev: SC60_Hardware_Design_V3.0

Date: 2018-09-27

Status: Released

Our aim is to provide customers with timely and comprehensive service. For any assistance, please contact our company headquarters:

Quectel Wireless Solutions Co., Ltd.

7th Floor, Hongye Building, No.1801 Hongmei Road, Xuhui District, Shanghai 200233, China

Tel: +86 21 5108 6236 Email: <u>info@quectel.com</u>

Or our local office. For more information, please visit:

http://www.quectel.com/support/sales.htm

For technical support, or to report documentation errors, please visit:

http://www.quectel.com/support/technical.htm

Or email to: support@quectel.com

GENERAL NOTES

QUECTEL OFFERS THE INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION PROVIDED IS BASED UPON CUSTOMERS' REQUIREMENTS. QUECTEL MAKES EVERY EFFORT TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR RELIANCE UPON THE INFORMATION. ALL INFORMATION SUPPLIED HEREIN IS SUBJECT TO CHANGE WITHOUT PRIOR NOTICE.

COPYRIGHT

THE INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF QUECTEL WIRELESS SOLUTIONS CO., LTD. TRANSMITTING, REPRODUCTION, DISSEMINATION AND EDITING OF THIS DOCUMENT AS WELL AS UTILIZATION OF THE CONTENT ARE FORBIDDEN WITHOUT PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR REGISTRATION OF A UTILITY MODEL OR DESIGN.

Copyright © Quectel Wireless Solutions Co., Ltd. 2018. All rights reserved.

About the Document

History

Revision	Date	Author	Description
1.0	2017-08-28	Sea BAI/ Oscar LIU	Initial
2.0	2018-05-07	Sea BAI	 Updated the document name so as to provide hardware design guidelines for SC60 of varied configurations. This document is dedicated for SC60 R1.0 and SC60 R2.0 versions with PMI8952 power management IC embedded. Updated the minimum boot voltage from 3.5V to 3.55V. Updated the maximum rated voltage of USB_VBUS from 28V to 20V. Added default output current values for flashlight interfaces. The default output current is 625mA in flash mode and 120mA in torch mode. Added the current consumption of SC60-CE, SC60-A, SC60-E.
3.0	2018-09-27	Glenn GE	 Updated the document name from SC60 R1.0&R2.0 Hardware Design to SC60 Hardware Design to keep consistent with the renaming of SC60 module. Updated the models of SC60 module in Chapter 2.1. Added the description of SENSOR_I2C, CAM_I2C and DCAM_I2C interfaces in Chapter 3.14. Updated the RF receiving sensitivity parameters of SC60-E/SC60-PE and SC60-A/SC60-PA in Table 57 and 58. Updated the reflow soldering thermal profile and related parameters in Chapter 9.2.

Contents

Ab	bout the Document	2
Со	ontents	3
Tal	able Index	6
Fig	gure Index	8
1	Introduction	10
	1.1. Safety Information	
•		4.0
2	Product Concept	
	2.1. General Description	
	Key Features Functional Diagram	
	2.4. Evaluation Board	
	2.4. Evaluation board	Δ Ι
3	Application Interfaces	22
	3.1. General Description	22
	3.2. Pin Assignment	
	3.3. Pin Description	
	3.4. Power Supply	
	3.4.1. Power Supply Pins	
	3.4.2. Decrease Voltage Drop	
	3.4.3. Reference Design for Power Supply	
	3.5. Turn on and off Scenarios	
	3.5.1. Turn on Module Using the PWRKEY	
	3.5.2. Turn off Module	
	3.6. VRTC Interface	
	3.7. Power Output	
	3.8. Battery Charge and Management	
	3.9. USB Interface	
	3.10. UART Interfaces	
	3.12. SD Card Interface	
	3.13. GPIO Interfaces	
	3.14. I2C Interfaces	
	3.15. I2S Interface	
	3.16. SPI Interfaces	
	3.17. ADC Interfaces	
	3.18. Vibrator Drive Interface	
	3.19. LCM Interfaces	
	3.20. Touch Panel Interfaces	
	3.21. Camera Interfaces	
	3.21.1. Design Considerations	
	3.21.2. Flashlight Interfaces	
	-	

	3.22. Sensor Interfaces	77
	3.23. Audio Interfaces	77
	3.23.1. Reference Circuit Design for Microphone Interfaces	79
	3.23.2. Reference Circuit Design for Earpiece Interface	80
	3.23.3. Reference Circuit Design for Headphone Interface	80
	3.23.4. Reference Circuit Design for Loudspeaker Interface	81
	3.23.5. Audio Interfaces Design Considerations	81
	3.24. Emergency Download Interface	82
	3.25. LED Sink Driver Interfaces	82
4	Wi-Fi and BT	83
	4.1. Wi-Fi Overview	
	4.1.1. Wi-Fi Performance	83
	4.2. BT Overview	
	4.2.1. BT Performance	86
_	0.100	
5		
	5.1. GNSS Performance	
	5.2. GNSS RF Design Guidelines	88
6	Antenna Interfaces	89
	6.1. Main/Rx-diversity Antenna Interfaces	89
	6.1.1. Main and Rx-diversity Antenna Interfaces Reference Design	
	6.1.2. Reference Design of RF Layout	92
	6.2. Wi-Fi/BT Antenna Interface	94
	6.3. GNSS Antenna Interface	
	6.3.1. Recommended Circuit for Passive Antenna	96
	6.3.2. Recommended Circuit for Active Antenna	
	6.4. Antenna Installation	
	6.4.1. Antenna Requirements	
	6.4.2. Recommended RF Connector for Antenna Installation	98
7	Electrical, Reliability and Radio Characteristics	100
	7.1. Absolute Maximum Ratings	100
	7.2. Power Supply Ratings	100
	7.3. Operation and Storage Temperatures	101
	7.4. Current Consumption	102
	7.5. RF Output Power	110
	7.6. RF Receiving Sensitivity	113
	7.7. Electrostatic Discharge	115
8	Mechanical Dimensions	117
	8.1. Mechanical Dimensions of the Module	117
	8.2. Recommended Footprint	119
	8.3. Top and Bottom View of the Module	120
9	Storage, Manufacturing and Packaging	121

	9.1.	Storage	121
		Manufacturing and Soldering	
		Packaging	
10	Appe	endix A References	125
		endix B GPRS Coding Schemes	
12	Appe	endix C GPRS Multi-slot Classes	129
13	Appe	endix D EDGE Modulation and Coding Schemes	131

Table Index

TABLE 1: SC60-CE/SC60-PC FREQUENCY BANDS	12
TABLE 2: SC60-E/SC60-PE FREQUENCY BANDS	13
TABLE 3: SC60-A/SC60-PA FREQUENCY BANDS	13
TABLE 4: SC60-J*/SC60-PJ*FREQUENCY BANDS	14
TABLE 5: SC60-AU*/SC60-PU* FREQUENCY BANDS	14
TABLE 6: SC60-LA*/SC60-PL* FREQUENCY BANDS	15
TABLE 7: SC60-W/SC60-PW FREQUENCY BANDS	15
TABLE 8: SC60 KEY FEATURES	16
TABLE 9: I/O PARAMETERS DEFINITION	24
TABLE 10: PIN DESCRIPTION	24
TABLE 11: POWER DESCRIPTION	46
TABLE 12: PIN DEFINITION OF CHARGING INTERFACE	47
TABLE 13: PIN DEFINITION OF USB INTERFACE	49
TABLE 14: USB TRACE LENGTH INSIDE THE MODULE	51
TABLE 15: PIN DEFINITION OF UART INTERFACES	
TABLE 16: PIN DEFINITION OF (U)SIM INTERFACES	53
TABLE 17: PIN DEFINITION OF SD CARD INTERFACE	56
TABLE 18: SD CARD SIGNAL TRACE LENGTH INSIDE THE MODULE	57
TABLE 19: PIN DEFINITION OF GPIO INTERFACES	57
TABLE 20: PIN DEFINITION OF I2C INTERFACES	60
TABLE 21: PIN DEFINITION OF I2S INTERFACE	61
TABLE 22: PIN DEFINITION OF SPI INTERFACES	62
TABLE 23: PIN DEFINITION OF ADC INTERFACES	62
TABLE 24: PIN DEFINITION OF VIBRATOR DRIVE INTERFACE	63
TABLE 25: PIN DEFINITION OF LCM INTERFACES	63
TABLE 26: PIN DEFINITION OF TOUCH PANEL INTERFACES	67
TABLE 27: PIN DEFINITION OF CAMERA INTERFACES	69
TABLE 28: MIPI TRACE LENGTH INSIDE THE MODULE	74
TABLE 29: PIN DEFINITION OF FLASHLIGHT INTERFACES	76
TABLE 30: PIN DEFINITION OF SENSOR INTERFACES	77
TABLE 31: PIN DEFINITION OF AUDIO INTERFACES	78
TABLE 32: PIN DEFINITION OF LED SINK DRIVER INTERFACES	82
TABLE 33: Wi-Fi TRANSMITTING PERFORMANCE	83
TABLE 34: Wi-Fi RECEIVING PERFORMANCE	84
TABLE 35: BT DATA RATE AND VERSIONS	86
TABLE 36: BT TRANSMITTING AND RECEIVING PERFORMANCE	86
TABLE 37: GNSS PERFORMANCE	87
TABLE 38: PIN DEFINITION OF MAIN/RX-DIVERSITY ANTENNA INTERFACES	89
TABLE 39: SC60-CE/SC60-PC MODULE OPERATING FREQUENCIES	89
TABLE 40: SC60-E/SC60-PE MODULE OPERATING FREQUENCIES	90
TABLE 41: SC60-A/SC60-PA MODULE OPERATING FREQUENCIES	91

TABLE 42: PIN DEFINITION OF Wi-Fi/BT ANTENNA INTERFACE	94
TABLE 43: Wi-Fi/BT FREQUENCY	95
TABLE 44: PIN DEFINITION OF GNSS ANTENNA	95
TABLE 45: GNSS FREQUENCY	95
TABLE 46: ANTENNA REQUIREMENTS	97
TABLE 47: ABSOLUTE MAXIMUM RATINGS	100
TABLE 48: SC60 MODULE POWER SUPPLY RATINGS	100
TABLE 49: OPERATION AND STORAGE TEMPERATURES	101
TABLE 50: SC60-CE/SC60-PC CURRENT CONSUMPTION	102
TABLE 51: SC60-E/SC60-PE CURRENT CONSUMPTION	104
TABLE 52: SC60-A/SC60-PA CURRENT CONSUMPTION	108
TABLE 53: SC60-CE/SC60-PC RF OUTPUT POWER	110
TABLE 54: SC60-E/SC60-PE RF OUTPUT POWER	111
TABLE 55: SC60-A/SC60-PA RF OUTPUT POWER	
TABLE 56: SC60-CE/SC60-PC RF RECEIVING SENSITIVITY	
TABLE 57: SC60-E/SC60-PE RF RECEIVING SENSITIVITY	
TABLE 58: SC60-A/SC60-PA RF RECEIVING SENSITIVITY	
TABLE 59: ESD CHARACTERISTICS (TEMPERATURE: 25°C, HUMIDITY: 45%)	
TABLE 60: RECOMMENDED THERMAL PROFILE PARAMETERS	
TABLE 61: REEL PACKAGING	
TABLE 62: RELATED DOCUMENTS	
TABLE 63: TERMS AND ABBREVIATIONS	
TABLE 64: DESCRIPTION OF DIFFERENT CODING SCHEMES	
TABLE 65: GPRS MULTI-SLOT CLASSES	129
TABLE 66: EDGE MODULATION AND CODING SCHEMES	131

Figure Index

FIGURE 1: FUNCTIONAL DIAGRAM	. 21
FIGURE 2: PIN ASSIGNMENT (TOP VIEW)	. 23
FIGURE 3: VOLTAGE DROP SAMPLE	. 41
FIGURE 4: STAR STRUCTURE OF POWER SUPPLY	. 41
FIGURE 5: REFERENCE CIRCUIT OF POWER SUPPLY	. 42
FIGURE 6: TURN ON THE MODULE USING DRIVING CIRCUIT	. 43
FIGURE 7: TURN ON THE MODULE USING KEYSTROKE	. 43
FIGURE 8: TIMING OF TURNING ON MODULE	. 44
FIGURE 9: TIMING OF TURNING OFF MODULE	. 45
FIGURE 10: RTC POWERED BY COIN CELL	. 45
FIGURE 11: REFERENCE DESIGN FOR BATTERY CHARGING CIRCUIT	
FIGURE 12: USB 2.0 INTERFACE REFERENCE DESIGN	
FIGURE 13: USB TYPE-C INTERFACE REFERENCE DESIGN	. 50
FIGURE 14: REFERENCE CIRCUIT WITH LEVEL TRANSLATOR CHIP (FOR UART5)	. 52
FIGURE 15: RS232 LEVEL MATCH CIRCUIT (FOR UART5)	
FIGURE 16: REFERENCE CIRCUIT FOR (U)SIM INTERFACE WITH AN 8-PIN (U)SIM CARD CONNECT	OR
FIGURE 17: REFERENCE CIRCUIT FOR (U)SIM INTERFACE WITH A 6-PIN (U)SIM CARD CONNECTO	
FIGURE 18: REFERENCE CIRCUIT FOR SD CARD INTERFACE	
FIGURE 19: REFERENCE CIRCUIT FOR VIBRATOR CONNECTION	
FIGURE 20: REFERENCE CIRCUIT DESIGN FOR LCM0 INTERFACE	
FIGURE 21: REFERENCE CIRCUIT DESIGN FOR LCM1 INTERFACE	
FIGURE 22: REFERENCE DESIGN OF LCM1 EXTERNAL BACKLIGHT DRIVING CIRCUIT	
FIGURE 23: REFERENCE CIRCUIT DESIGN FOR TOUCH PANEL INTERFACES	
FIGURE 24: REFERENCE CIRCUIT DESIGN FOR TWO-CAMERA APPLICATIONS	
FIGURE 25: REFERENCE CIRCUIT DESIGN FOR THREE-CAMERA APPLICATIONS	
FIGURE 26: REFERENCE CIRCUIT DESIGN FOR FLASHLIGHT INTERFACES	
FIGURE 27: REFERENCE CIRCUIT DESIGN FOR ANALOG ECM-TYPE MICROPHONE	
FIGURE 28: REFERENCE CIRCUIT DESIGN FOR MEMS-TYPE MICROPHONE	
FIGURE 29: REFERENCE CIRCUIT DESIGN FOR EARPIECE INTERFACE	
FIGURE 30: REFERENCE CIRCUIT DESIGN FOR HEADPHONE INTERFACE	
FIGURE 31: REFERENCE CIRCUIT DESIGN FOR LOUDSPEAKER INTERFACE	
FIGURE 32: REFERENCE CIRCUIT DESIGN FOR EMERGENCY DOWNLOAD INTERFACE	
FIGURE 33: REFERENCE CIRCUIT DESIGN FOR LED INTERFACES	
FIGURE 34: REFERENCE CIRCUIT DESIGN FOR MAIN AND RX-DIVERSITY ANTENNA INTERFACES.	
FIGURE 35: MICROSTRIP LINE DESIGN ON A 2-LAYER PCB	
FIGURE 36: COPLANAR WAVEGUIDE LINE DESIGN ON A 2-LAYER PCB	. 93
FIGURE 37: COPLANAR WAVEGUIDE LINE DESIGN ON A 4-LAYER PCB (LAYER 3 AS REFERENCE	
GROUND)	. 93
FIGURE 38: COPLANAR WAVEGUIDE LINE DESIGN ON A 4-LAYER PCB (LAYER 4 AS REFERENCE	

GROUND)	94
FIGURE 39: REFERENCE CIRCUIT DESIGN FOR Wi-Fi/BT ANTENNA INTERFACE	95
FIGURE 40: REFERENCE CIRCUIT DESIGN FOR GNSS PASSIVE ANTENNA	96
FIGURE 41: REFERENCE CIRCUIT DESIGN FOR GNSS ACTIVE ANTENNA	96
FIGURE 42: DIMENSIONS OF THE U.FL-R-SMT CONNECTOR (UNIT: MM)	98
FIGURE 43: MECHANICALS OF U.FL-LP CONNECTORS	98
FIGURE 44: SPACE FACTOR OF MATED CONNECTOR (UNIT: MM)	99
FIGURE 45: MODULE TOP AND SIDE DIMENSIONS	117
FIGURE 46: MODULE BOTTOM DIMENSIONS (TOP VIEW)	118
FIGURE 47: RECOMMENDED FOOTPRINT (TOP VIEW)	119
FIGURE 48: TOP VIEW OF THE MODULE	120
FIGURE 49: BOTTOM VIEW OF THE MODULE	120
FIGURE 50: RECOMMENDED REFLOW SOLDERING THERMAL PROFILE	122
FIGURE 51: TAPE DIMENSIONS	123
FIGURE 52: REEL DIMENSIONS	124

1 Introduction

This document defines the SC60 module and describes its air interface and hardware interface which are connected with customers' applications.

This document can help customers quickly understand module interface specifications, electrical and mechanical details as well as other related information of SC60 module. Associated with application note and user guide, customers can use SC60 module to design and set up mobile applications easily.

1.1. Safety Information

The following safety precautions must be observed during all phases of operation, such as usage, service or repair of any cellular terminal or mobile incorporating SC60 module. Manufacturers of the cellular terminal should send the following safety information to users and operating personnel, and incorporate these guidelines into all manuals supplied with the product. If not so, Quectel assumes no liability for customers' failure to comply with these precautions.

Full attention must be given to driving at all times in order to reduce the risk of an accident. Using a mobile while driving (even with a handsfree kit) causes distraction and can lead to an accident. Please comply with laws and regulations restricting the use of wireless devices while driving.

Switch off the cellular terminal or mobile before boarding an aircraft. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communication systems. If the device offers an Airplane Mode, then it should be enabled prior to boarding an aircraft. Please consult the airline staff for more restrictions on the use of wireless devices on boarding the aircraft.

Wireless devices may cause interference on sensitive medical equipment, so please be aware of the restrictions on the use of wireless devices when in hospitals, clinics or other healthcare facilities.

Cellular terminals or mobiles operating over radio signals and cellular network cannot be guaranteed to connect in all possible conditions (for example, with unpaid bills or with an invalid (U)SIM card). When emergent help is needed in such conditions, please remember using emergency call. In order to make or receive a call, the cellular terminal or mobile must be switched on in a service area with adequate cellular signal strength.

The cellular terminal or mobile contains a transmitter and receiver. When it is ON, it receives and transmits radio frequency signals. RF interference can occur if it is used close to TV set, radio, computer or other electric equipment.

In locations with potentially explosive atmospheres, obey all posted signs to turn off wireless devices such as your phone or other cellular terminals. Areas with potentially explosive atmospheres include fuelling areas, below decks on boats, fuel or chemical transfer or storage facilities, areas where the air contains chemicals or particles such as grain, dust or metal powders, etc.

2 Product Concept

2.1. General Description

SC60 is a series of Smart LTE module based on Qualcomm platform and Android operating system, and provides industrial grade performance. Its general features are listed below:

- Support worldwide LTE-FDD, LTE-TDD, DC-HSDPA, DC-HSUPA, HSPA+, HSDPA, HSUPA, WCDMA, TD-SCDMA, EVDO/CDMA, EDGE and GPRS coverage
- Support short-range wireless communication via Wi-Fi 802.11a/b/g/n/ac and BT4.2 LE standards
- Integrate GPS/GLONASS/BeiDou satellite positioning systems
- Support multiple audio and video codecs
- Built-in high performance Adreno[™] 506 graphics processing unit
- Provide multiple audio and video input/output interfaces as well as abundant GPIO interfaces

SC60 module is composed of standard version (SC60-XX) and high-performance version (SC60-PX). It includes models such as SC60-CE/SC60-PC, SC60-E/SC60-PE, SC60-A/SC60-PA, SC60-J*/SC60-PJ*, SC60-AU*/SC60-PU*, SC60-LA*/SC60-PL* and SC60-W/SC60-PW.

The following table shows the supported frequency bands of SC60.

Table 1: SC60-CE/SC60-PC Frequency Bands

Туре	Frequency Bands
LTE-FDD	B1/B3/B5/B8
LTE-TDD	B34/B38/B39/B40/B41
WCDMA	B1/B8
TD-SCDMA	B34/B39
EVDO/CDMA	BC0
GSM	900/1800MHz

Wi-Fi 802.11a/b/g/n/ac	2402MHz~2482MHz; 5180MHz~5825MHz
BT4.2 LE	2402MHz~2480MHz
	GPS: 1575.42MHz±1.023MHz
GNSS	GLONASS: 1597.5MHz~1605.8MHz
	BeiDou: 1561.098MHz±2.046MHz

Table 2: SC60-E/SC60-PE Frequency Bands

Туре	Frequency Bands
LTE-FDD	B1/B3/B5/B7/B8/B20/B28A
LTE-TDD	B38/B40/B41
WCDMA	B1/B2/B5/B8
TD-SCDMA	/
EVDO/CDMA	/
GSM	850/900/1800/1900MHz
Wi-Fi 802.11a/b/g/n/ac	2402MHz~2482MHz; 5180MHz~5825MHz
BT4.2 LE	2402MHz~2480MHz
GNSS	GPS: 1575.42MHz±1.023MHz GLONASS: 1597.5MHz~1605.8MHz BeiDou: 1561.098MHz±2.046MHz

Table 3: SC60-A/SC60-PA Frequency Bands

Туре	Frequency Bands
LTE-FDD	B2/B4/B5/B7/B12/B13/B14/B25/B26
LTE-TDD	B41
WCDMA	B1/B2/B4/B5
TD-SCDMA	/
EVDO/CDMA	/
GSM	850/1900MHz

Wi-Fi 802.11a/b/g/n/ac	2402MHz~2482MHz; 5180MHz~5825MHz	
BT4.2 LE	2402MHz~2480MHz	
	GPS: 1575.42MHz±1.023MHz	
GNSS	GLONASS: 1597.5MHz~1605.8MHz	
	BeiDou: 1561.098MHz±2.046MHz	

Table 4: SC60-J*/SC60-PJ*Frequency Bands

Туре	Frequency Bands	
LTE-FDD	B1/B3/B8/B18/B19/B26	
LTE-TDD	B41	
WCDMA	B1/B6/B8/B19	
TD-SCDMA	/	
EVDO/CDMA	/	
GSM	/	
Wi-Fi 802.11a/b/g/n/ac	2402MHz~2482MHz; 5180MHz~5825MHz	
BT4.2 LE	2402MHz~2480MHz	
GNSS	GPS: 1575.42MHz±1.023MHz GLONASS: 1597.5MHz~1605.8MHz BeiDou: 1561.098MHz±2.046MHz	

Table 5: SC60-AU*/SC60-PU* Frequency Bands

Туре	Frequency Bands	
LTE-FDD	B1/B3/B5/B7/B8/B28	
LTE-TDD	B40	
WCDMA	B1/B2/B5/B8	
TD-SCDMA	1	
EVDO/CDMA	1	
GSM	850/900/1800/1900MHz	
Wi-Fi 802.11a/b/g/n/ac	2402MHz~2482MHz; 5180MHz~5825MHz	

BT4.2 LE	2402MHz~2480MHz
	GPS: 1575.42MHz±1.023MHz
GNSS	GLONASS: 1597.5MHz~1605.8MHz
	BeiDou: 1561.098MHz±2.046MHz

Table 6: SC60-LA*/SC60-PL* Frequency Bands

Туре	Frequency Bands		
LTE-FDD	B2/B4/B5/B7/B8/B28		
LTE-TDD	B40		
WCDMA	B2/B5/B8		
TD-SCDMA	/		
EVDO/CDMA	/		
GSM	850/900/1900MHz		
Wi-Fi 802.11a/b/g/n/ac	2402MHz~2482MHz; 5180MHz~5825MHz		
BT4.2 LE	2402MHz~2480MHz		
	GPS: 1575.42MHz±1.023MHz		
GNSS	GLONASS: 1597.5MHz~1605.8MHz		
	BeiDou: 1561.098MHz±2.046MHz		

Table 7: SC60-W/SC60-PW Frequency Bands

Туре	Frequency Bands	
LTE-FDD	/	
LTE-TDD	/	
WCDMA	/	
TD-SCDMA	/	
EVDO/CDMA	/	
GSM	/	
Wi-Fi 802.11a/b/g/n/ac	2402MHz~2482MHz; 5180MHz~5825MHz	
BT4.2 LE	2402MHz~2480MHz	
GNSS	1	

NOTE

"*" means under development.

SC60 is an SMD type module which can be embedded into applications through its 323 pins (including 152 LCC pads and 171 LGA pads). With a compact profile of 43.0mm × 44.0mm × 2.85mm, SC60 can meet almost all requirements for M2M applications such as smart metering, smart home, security, routers, wireless POS, mobile computing devices, PDA phone, tablet PC, etc.

2.2. Key Features

The following table describes the detailed features of SC60 module.

Table 8: SC60 Key Features

Features	Details			
Application Processor	 SC60-XX Octa-core ARM Cortex-A53 64-bit CPU @1.8GHz Two quad-core processors with 512KB L2 cache SC60-PX Octa-core ARM Cortex-A53 64-bit CPU @2.0GHz (high performance) One quad-core with 1MB L2 cache One quad-core with 512KB L2 cache 			
Modem system	Hexagon DSP v56 core up to 850MHz 768KB L2 cache			
GPU	SC60-XX Adreno TM 506 with 64-bit addressing, designed for 600MHz SC60-PX Adreno TM 506 with 64-bit addressing, designed for 650MHz			
Memory	16GB eMMC + 2GB LPDDR3 (default) 32GB eMMC + 4GB LPDDR3 (optional)			
Operating System	Android OS 7.1			
Power Supply VBAT Supply Voltage: 3.55V~4.4V Typical 3.8V				
Transmitting Power	Class 4 (33dBm±2dB) for GSM850 Class 4 (33dBm±2dB) for EGSM900 Class 1 (30dBm±2dB) for DCS1800 Class 1 (30dBm±2dB) for PCS1900			

	Class E2 (27dBm±3dB) for GSM850 8-PSK
	Class E2 (27dBm±3dB) for EGSM900 8-PSK
	Class E2 (26dBm±3dB) for DCS1800 8-PSK
	Class E2 (26dBm±3dB) for PCS1900 8-PSK
	Class 3 (24dBm+1/-3dB) for WCDMA bands
	Class 3 (24dBm+3/-1dB) for EVDO/CDMA BC0
	Class 2 (24dBm+1/-3dB) for TD-SCDMA bands
	Class 3 (23dBm±2dB) for LTE-FDD bands
	Class 3 (23dBm±2dB) for LTE-TDD bands
	Support 3GPP R8 Cat 6* and Cat 4
	Support 1.4 to 20MHz RF bandwidth
	Support Multiuser MIMO in DL direction
LTE Features	 Cat 6* FDD: Max 300Mbps (DL)/Max 50Mbps (UL)
	 Cat 6* TDD: Max 265Mbps (DL)/Max 30Mbps (UL)
	 Cat 4 FDD: Max 150Mbps (DL)/Max 50Mbps (UL)
	 Cat 4 TDD: Max 130Mbps (DL)/Max 30Mbps (UL)
	Support 3GPP R9 DC-HSDPA/DC-HSUPA/HSPA+/HSDPA/HSUPA/WCDMA
	Support QPSK, 16-QAM and 64-QAM modulation
UMTS Features	DC-HSDPA: Max 42Mbps (DL)
	DC-HSUPA: Max 11.2Mbps (UL)
	WCDMA: Max 384Kbps (DL)/Max 384Kbps (UL)
	Support CCSA Release 3 TD-SCDMA
TD-SCDMA Features	Max 4.2Mbps (DL)/Max 2.2Mbps (UL)
	Support 3GPP2 CDMA2000 1X Advanced, CDMA2000 1x EV-DO Rev.A
CDMA2000 Features	EVDO: Max 3.1Mbps (DL)/Max 1.8 Mbps (UL)
05/// 12000 F Gataroo	1X Advanced: Max 307.2Kbps (DL)/Max 307.2Kbps (UL)
	R99:
	CSD: 9.6kbps, 14.4kbps
	GPRS:
	Support GPRS multi-slot class 33 (33 by default)
	Coding scheme: CS-1, CS-2, CS-3 and CS-4
	Max 107Kbps (DL), 85.6Kbps (UL)
GSM Features	EDGE:
	Support EDGE multi-slot class 33 (33 by default)
	Support GMSK and 8-PSK for different MCS (Modulation and Coding Scheme)
	Downlink coding schemes: CS 1-4 and MCS 1-9
	5
	Uplink coding schemes: CS 1-4 and MCS 1-9
	Max 296Kbps (DL), 236.8Kbps (UL)
WLAN Features	2.4GHz/5GHz, support 802.11a/b/g/n/ac, maximally up to 433Mbps
WLAN Features	Support AP and STA mode
WLAN Features	- Capport in and Cirkmodo
WLAN Features Bluetooth Features	BT4.2 LE

0140	Text and PDU mode
SMS	Point-to-point MO and MT
	SMS cell broadcast
	Support two groups of 4-lane MIPI_DSI
	Support dual LCDs
LCM Interfaces	Support WUXGA up to (1920×1200) at 60fps
	Provide one high voltage output for powering a string of WLEDs
	Provide four drivers for sinking the current from WLED strings, and each sink
	current can reach up to 30mA
	Support three groups of 4-lane MIPI_CSI, up to 2.1Gbps per lane
	Support 3 cameras (4-lane + 4-lane + 4-lane) or 4 cameras (4-lane + 4-lane +
Camera Interfaces	2-lane + 1-lane)
	SC60-XX: up to 21MP with dual ISP
	SC60-PX: up to 24MP with dual ISP
	SC60-XX
	Video encoding and decoding: up to 1080P @60fps
Video Codec	Wi-Fi Video: encoding up to 1080P @30fps; decoding up to 1080P @60fps
VIGCO COGCO	SC60-PX
	Video encoding and decoding: up to 4K @30fps, up to 1080P @60fps
	Wi-Fi Video: encoding up to 1080P @30fps; decoding up to 1080P @60fps
	Audio Input:
	Three analog microphone inputs, integrating internal bias voltage
Audio Interfaces	Audio Output:
Addio Interfaces	Class AB stereo headphone output
	Class AB earpiece differential output
	Class D speaker differential amplifier output
Audio Codec	G711, QCELP, EVRC, EVRC-B, EVRC-WB, AMR-NB, AMR-WB, GSM-EFR,
Audio Codec	GSM-FR, GSM-HR
	Compliant with USB 3.0 and 2.0 specifications, with transmission rates up to
	5Gbps on USB 3.0 and 480Mbps on USB 2.0.
USB Interface	Support USB OTG
	Used for AT command communication, data transmission, software debugging
	and firmware upgrade
	4 UART Interfaces: UART5, UART6, UART4 and UART2
	 UART5 & UART6: 4-wire UART interface with RTS/CTS hardware flow
UART Interfaces	control, baud rate up to 4Mbps
	UART4: 2-wire UART interface
	 UART2: 2-wire UART interface used for debugging
Vibrator drive interface	Drive LRA/ERM vibrator
	Support SD 3.0
SD Card Interface	Support SD card hot-plug
(U)SIM Interfaces	2 (U)SIM interfaces
(5)Olivi ilitoridoes	2 (0)0.00 millionacco

	Support USIM/SIM card: 1.8V/2.95V		
	Support Dual SIM Dual Standby (supported by default)		
I2C Interfaces	Five I2C interfaces, used for peripherals such as TP, camera, sensor, etc.		
I2S Interface	Support for I2S peripherals		
	2 high current Flash and torch LED driver		
Flashlight Interface	 625mA each for Flash mode and 120mA each for torch mode by default 		
	1A each for Flash mode and 200mA each for torch mode maximally		
ADC Interfaces	2 general purpose ADC interfaces		
- TOO IIIIOIIIGOOO	Support up to 15-bit sampling accuracy		
	Two SPI interfaces, only support master mode		
SPI Interfaces	 One SPI interface used for peripheral device 		
	 One SPI interface used for sensor application, such as fingerprint sensors 		
Charging Interface	Used for battery voltage detection, fuel gauge, battery temperature detection		
Real Time Clock	Supported		
Antenna Interfaces	Main antenna, Rx-diversity antenna, GNSS antenna and Wi-Fi/BT antenna interfaces		
	Size: (43.0±0.15)mm × (44.0±0.15)mm × (2.85±0.2)mm		
Physical Characteristics	Package: LCC + LGA		
	Weight: approx. 13.0g		
	Operating temperature range: -35°C ~ +65°C 1)		
Temperature Range	Extended temperature range: -40°C ~ +75°C ²⁾		
	Storage temperature range: -40°C ~ +90°C		
Firmware Upgrade	Over USB interface		
RoHS	All hardware components are fully compliant with EU RoHS directive		

NOTES

- 1. 1) Within operation temperature range, the module is 3GPP compliant.
- 2. ²⁾ Within extended temperature range, the module remains the ability to establish and maintain a voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like P_{out} might reduce in their value and exceed the specified tolerances. When the temperature returns to the normal operating temperature levels, the module will meet 3GPP specifications again.
- 3. "*" means under development.

2.3. Functional Diagram

The following figure shows a block diagram of SC60 and illustrates the major functional parts.

- Power management
- Radio frequency
- Baseband
- LPDDR3+eMMC flash
- Peripheral interfaces
 - -- USB interface
 - -- (U)SIM interfaces
 - -- UART interfaces
 - -- SD card interface
 - -- I2C interfaces
 - -- ADC interfaces
 - -- LCM (MIPI) interfaces
 - -- TP (touch panel) interfaces
 - -- Camera (MIPI) interfaces
 - -- Audio interfaces

Figure 1: Functional Diagram

2.4. Evaluation Board

In order to help customers develop applications with SC60 conveniently, Quectel supplies the evaluation board, USB to RS232 converter cable, USB Type-C data cable, power adapter, earphone, antenna and other peripherals to control or test the module. For more details, please refer to **document [1]**.

3 Application Interfaces

3.1. General Description

SC60 is equipped with 323-pin 1.0mm pitch SMT pads that can be embedded into cellular application platform. The following chapters provide the detailed description of pins/interfaces listed below.

- Power supply
- VRTC interface
- Charging interface
- USB interface
- UART interfaces
- (U)SIM interfaces
- SD card interface
- GPIO interfaces
- I2C interfaces
- I2S interfaces
- SPI interfaces
- ADC interfaces
- Vibrator drive interface
- LCM interfaces
- TP (touch panel) interfaces
- Camera interfaces
- Flashlight interfaces
- Sensor interfaces
- Audio interfaces
- Emergency download interface
- LED sink driver interfaces

3.2. Pin Assignment

The following figure shows the pin assignment of SC60 module.

Figure 2: Pin Assignment (Top View)

3.3. Pin Description

Table 9: I/O Parameters Definition

Туре	Description		
Ю	Bidirectional		
DI	Digital input		
DO	Digital output		
PI	Power input		
PO	Power output		
Al	Analog input		
AO	Analog output		
OD	Open drain		

The following tables show the SC60's pin definition and electrical characteristics.

Table 10: Pin Description

Power Supply					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
VBAT	37, 38	PI/PO	Power supply for the module	Vmax=4.4V Vmin=3.55V Vnorm=3.8V	It must be able to provide sufficient current up to 3.0A. It is suggested to use a TVS to increase voltage surge withstand capability.
VDD_RF	1, 2	РО	Connect to external bypass capacitors to eliminate voltage fluctuation of RF part.	V _O max=4.4V V _O min=3.55V V _O norm=3.8V	Do not load externally.
VRTC	16	PI/PO	Power supply for internal RTC circuit	V _O max=3.2V V _I =2.0V~3.25V	

LDO5_1P8	9	РО	1.8V output power supply	Vnorm=1.8V I _O max=20mA	Power supply for external GPIO's pull up circuits and level shift circuit.
LDO10_2P8	11	PO	2.8V output power supply	Vnorm=2.8V I _o max=150mA	Power supply for VDD of sensors and TPs. Add a 1.0uF~4.7uF bypass capacitor if used. If unused, keep this pin open.
LDO6_1P8	10	PO	1.8V output power supply	Vnorm=1.8V I _O max=300mA	Power supply for I/O VDD of cameras, LCDs and sensors. Add a 1.0uF~2.2uF bypass capacitor if used. If unused, keep this pin open.
LDO17_2P85	12	РО	2.85V output power supply	Vnorm=2.85V I _O max=300mA	Power supply for cameras and LCDs. Add a 1.0uF~4.7uF bypass capacitor if used. If unused, keep this pin open.
LDO23_1P2	15	РО	1.2V output power supply	Vnorm=1.2V I _o max=600mA	Power supply for DVDD of front cameras. Add a 1.0uF~2.2uF bypass capacitor if used. If unused, keep this pin open.
LDO2_1P1	13	РО	1.1V output power supply	Vnorm=1.1V I _O max=1200mA	Power supply for DVDD of rear cameras. Add a 1.0uF~2.2uF bypass capacitor if used. If unused, keep this pin open.

LDO22_2P8	14	РО	2.8V output power supply	Vnorm=2.8V I _O max=150mA	Power supply for AVDD of cameras. Add a 1.0uF~4.7uF bypass capacitor if used. If unused, keep this pin open.
	3, 4, 18, 20, 31,				
	34, 35,				
	40, 43,				
	47, 56,				
	62, 87,				
	98, 101,				
	112, 125,				
GND	128, 130,		Ground		
0.12	133, 135,		O. Garia		
	148, 150,				
	159, 163,				
	170, 173,				
	176, 182,				
	193, 195,				
	219, 225, 243,				
	243, 257~323				

Audio Interfaces

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
MIC_BIAS	167	AO	Microphone bias voltage	V _O =1.6V~2.85V	
MIC1_P	44	Al	Microphone positive input for channel 1		
MIC1_N	45	Al	Microphone negative input for channel 1		
MIC_GND	168		Microphone reference ground		If unused, connect this pin to the ground.
MIC2_P	46	Al	Microphone positive input for headset		
MIC3_P	169	Al	Microphone positive input for channel 2		
EAR_P	53	AO	Earpiece positive output		

EAR_N	52	AO	Earpiece negative output		
SPK_P	55	АО	Speaker positive output		
SPK_N	54	AO	Speaker negative output		
HPH_R	51	АО	Headphone right channel output		
HPH_REF	50	Al	Headphone reference ground		
HPH_L	49	АО	Headphone left channel output		
HS_DET	48	Al	Headset insertion detection		Pulled up internally.
USB Interface					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
USB_VBUS	41, 42	PI/ PO	Charging power input. Power supply output for OTG device. USB/charger insertion detection.	Vmax=10V Vmin=4.0V Vnorm=5.0V	
USB_DM	33	Ю	USB 2.0 differential data bus (minus)	USB 2.0 standard	90Ω differential
USB_DP	32	Ю	USB 2.0 differential data bus (plus)	compliant	impedance.
USB_ID	30	AI	USB ID detection		High level by default.
USB_SS_RX _P	171	Al	USB 3.0 differential receive (plus)		90Ω differential
USB_SS_RX _M	172	Al	USB 3.0 differential receive (minus)	USB 3.0 standard	impedance.
USB_SS_TX _P	174	AO	USB 3.0 differential transmit (plus)	compliant	90Ω differential
USB_SS_TX _M	175	AO	USB 3.0 differential transmit (minus)		impedance.
USB_VCONN	222	Al	Power input pin to drive active cables	Vmax=5.25V Vmin=4.75V	
USBC_CC2	223	AI/ AO	USB Type-C control configuration channel 2		

USIM1_DET						
USIM1_DET 145 DI	USBC_CC1	224		configuration		
Pin Name	USB_SS_SEL	226	DO			
USIM1_DET	(U)SIM Interfac	ces				
USIM1_DET	Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
USIM1_RST 144 DO (U)SIM1 card reset signal VoHmin= 0.8 × USIM1_VDD (U)SIM1 card clock signal VoLmax=0.4V VoHmin= 0.8 × USIM1_VDD (V)Lmax= 0.8 × USIM1_VDD (U)SIM1 card data signal VoLmax= 0.2 × USIM1_VDD (U)SIM1 card data signal VoLmax= 0.2 × USIM1_VDD (U)SIM1 card data signal VoLmax= 0.8 × USIM1_VDD (V)Lmin= 0.8 × USIM1_VDD (V)Lmin= 0.8 × USIM1_VDD (U)SIM1 card power supply Volmin=1.75V (U)SIM: Vmax=1.85V (U)SIM: Vmax=3.1V Vmin=2.8V (U)SIM2_DET 256 DI (U)SIM2 card VILmax=0.63V VILmax=0.63V to 1.8V. (If unused, keep this pin open.	USIM1_DET	145	DI	• •		Require external pull-up to 1.8V. If unused, keep this pin open. Disabled by default, and can be enabled through software
USIM1_CLK	USIM1_RST	144	DO	* *	V _{OH} min=	
USIM1_DATA 142 IO (U)SIM1 card data signal (U)SIM1 card data signal (U)SIM1 card data signal (U)SIM1_VDD (U)SIM1_VDD 1.8V (U)SIM: Vmax=1.85V Vmin=1.75V Either 1.8V or 2.95 (U)SIM card is supported. Vmax=3.1V Vmin=2.8V USIM2_DET 256 DI (U)SIM2 card detection (U)SIM2 card Vi∟max=0.63V Vi⊢min=1.17V If unused, keep this pin open.	USIM1_CLK	143	DO	,	V _{OH} min=	
USIM1_VDD 141 PO (U)SIM1 card power supply USIM2_DET 256 DI (U)SIM1 card power supply Vmax=1.85V Vmin=1.75V Either 1.8V or 2.95 (U)SIM2 card power supported. Vmax=3.1V Vmin=2.8V Active Low. Need external pull- to 1.8V. If unused, keep this pin open.	USIM1_DATA	142	Ю	,	$0.2 \times USIM1_VDD$ $V_{IH}min=$ $0.7 \times USIM1_VDD$ $V_{OL}max=0.4V$ $V_{OH}min=$	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	USIM1_VDD	141	PO		1.8V (U)SIM: Vmax=1.85V Vmin=1.75V 2.95V (U)SIM: Vmax=3.1V	
Disabled by defa	USIM2_DET	256	DI			Need external pull-up to 1.8V. If unused, keep this

					and can be enabled through software configuration.
USIM2_RST	207	DO	(U)SIM2 card reset signal	V_{OL} max=0.4 V V_{OH} min= $0.8 \times USIM2_{VDD}$	
USIM2_CLK	208	DO	(U)SIM2 card clock signal	V_{OL} max=0.4 V V_{OH} min= $0.8 \times USIM2_VDD$	
USIM2_DATA	209	Ю	(U)SIM2 card data signal	V_{IL} max= $0.2 \times USIM2_VDD$ V_{IH} min= $0.7 \times USIM2_VDD$ V_{OL} max= $0.4V$ V_{OH} min= $0.8 \times USIM2_VDD$	
USIM2_VDD	210	РО	(U)SIM2 card power supply	1.8V (U)SIM: Vmax=1.85V Vmin=1.75V 2.95V (U)SIM: Vmax=3.1V Vmin=2.8V	Either 1.8V or 2.95V (U)SIM card is supported.
UART Interface	es				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
UART2_TXD	5	DO	UART2 transmit data. Debug port by default.	V _{OL} max=0.45V V _{OH} min=1.35V	
UART2_RXD	6	DI	UART2 receive data. Debug port by default.	V _{IL} max=0.63V V _{IH} min=1.17V	1.8V power domain. If unused, keep these pins open.
UART4_TXD	7	DO	UART4 transmit data	V _{OL} max=0.45V V _{OH} min=1.35V	
UART4_RXD	8	DI	UART4 receive data	V _{IL} max=0.63V V _{IH} min=1.17V	
UART5_RXD	198	DI	UART5 receive data	V _{IL} max=0.63V	
07 ii (10_10)				V _{IH} min=1.17V	

UART5_RTS	245	DO	UART5 request to send	V _{OL} max=0.45V V _{OH} min=1.35V	
UART5_CTS	246	DI	UART5 clear to send	V _{IL} max=0.63V V _{IH} min=1.17V	_
SD Card Interf	ace				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
SD_CLK	70	DO	High speed digital clock signal of SD card	1.8V SD card: V _{OL} max=0.45V V _{OH} min=1.4V 2.95V SD card: V _{OL} max=0.37V V _{OH} min=2.2V	
SD_CMD	69	Ю	Command signal of SD card	1.8V SD card: V _{IL} max=0.58V V _{IH} min=1.27V V _{OL} max=0.45V V _{OH} min=1.4V 2.95V SD card: V _{IL} max=0.73V V _{IH} min=1.84V V _{OL} max=0.37V V _{OH} min=2.2V	
SD_DATA0	68	Ю		1.8V SD card: V _{IL} max=0.58V V _{IH} min=1.27V	
SD_DATA1	67	Ю	High speed bidirectional digital signal lines of SD	V _{OL} max=0.45V V _{OH} min=1.4V	
SD_DATA2	66	Ю	card	2.95V SD card: V _{IL} max=0.73V V _{IH} min=1.84V V _{OL} max=0.37V	
SD_DATA3	65	Ю		V _{OH} min=2.2V	
SD_DET	64	DI	SD card insertion detection	V _{IL} max=0.63V V _{IH} min=1.17V	Active low.
SD_LDO11	63	РО	Power supply for SD card	Vnorm=2.95V I _O max=800mA	
					_

SD_LDO12	179	РО	1.8V/2.95V output	Vnorm=1.8V/2.95V I _O max=50mA	Power supply for SD card's pull-up circuit.			
TP (Touch Pane	TP (Touch Panel) Interfaces							
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment			
TP0_RST	138	DO	Reset signal of touch panel (TP0)	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain. Active low.			
TP0_INT	139	DI	Interrupt signal of touch panel (TP0)	V _{IL} max=0.63V V _{IH} min=1.17V	1.8V power domain.			
TP0_I2C_SCL	140	OD	I2C clock signal of touch panel (TP0)		1.8V power domain.			
TP0_I2C_SDA	206	OD	I2C data signal of touch panel (TP0)		1.8V power domain.			
TP1_RST	136	DO	Reset signal of touch panel (TP1)	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain. Active low.			
TP1_INT	137	DI	Interrupt signal of touch panel (TP1)	V _{IL} max=0.63V V _{IH} min=1.17V	1.8V power domain.			
TP1_I2C_SDA	204	OD	I2C data signal of touch panel (TP1)		1.8V power domain.			
TP1_I2C_SCL	205	OD	I2C clock signal of touch panel (TP1)		1.8V power domain.			
LCM Interfaces								
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment			
LCD_BL_A	21	РО	Current output for LCD backlight					
LCD_BL_K1	22	AI	Current sink for LCD backlight					
LCD_BL_K2	23	Al	Current sink for LCD backlight					
LCD_BL_K3	24	Al	Current sink for LCD backlight					
LCD_BL_K4	25	Al	Current sink for LCD backlight					
PMU_MPP4	152	DO	PWM signal output					

LCD0_RST	127	DO	LCD0 reset signal	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain. Active low.
LCD0_TE	126	DI	LCD0 tearing effect signal	V _{IL} max=0.63V V _{IH} min=1.17V	1.8V power domain.
LCD1_RST	113	DO	LCD1 reset signal	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain. Active low.
LCD1_TE	114	DI	LCD1 tearing effect signal	V _{IL} max=0.63V V _{IH} min=1.17V	1.8V power domain.
DSI0_CLK_N	116	АО	LCD0 MIPI clock signal (negative)		
DSI0_CLK_P	115	АО	LCD0 MIPI clock signal (positive)		
DSI0_LN0_N	118	АО	LCD0 MIPI lane 0 data signal (negative))	
DSI0_LN0_P	117	АО	LCD0 MIPI lane 0 data signal (positive)		
DSI0_LN1_N	120	АО	LCD0 MIPI lane 1 data signal (negative)		
DSI0_LN1_P	119	AO	LCD0 MIPI lane 1 data signal (positive)		
DSI0_LN2_N	122	АО	LCD0 MIPI lane 2 data signal (negative)		
DSI0_LN2_P	121	АО	LCD0 MIPI lane 2 data signal (positive)		
DSI0_LN3_N	124	АО	LCD0 MIPI lane 3 data signal (negative)		
DSI0_LN3_P	123	AO	LCD0 MIPI lane 3 data signal (positive)		
DSI1_CLK_N	103	AO	LCD1 MIPI clock signal (negative)		
DSI1_CLK_P	102	АО	LCD1 MIPI clock signal (positive)		
DSI1_LN0_N	105	АО	LCD1 MIPI lane 0 data signal (negative)		
DSI1_LN0_P	104	AO	LCD1 MIPI lane 0 data signal (positive)		
DSI1_LN1_N	107	AO	LCD1 MIPI lane 1 data signal (negative)		
DSI1_LN1_P	106	AO	LCD1 MIPI lane 1 data signal (positive)		

DSI1 LN2 N	109	AO	LCD1 MIPI lane 2
DSIT_LINZ_IN	109	AU	data signal (negative)
DSI1 LN2 P	108	АО	LCD1 MIPI lane 2
D3II_LNZ_P	100		data signal (positive)
DOM IND N	111	11 AO	LCD1 MIPI lane 3
DSH_LN3_N	DSI1_LN3_N 111		data signal (negative)
DOM IND D	110	۸.	LCD1 MIPI lane 3
DSI1_LN3_P	110	AO	data signal (positive)

Camera Interfaces

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
CSI0_CLK_N	89	AI	MIPI clock signal of rear camera (negative)		
CSI0_CLK_P	88	AI	MIPI clock signal of rear camera (positive)		
CSI0_LN0_N	91	AI	MIPI lane 0 data signal of rear camera (negative)		
CSI0_LN0_P	90	AI	MIPI lane 0 data signal of rear camera (positive)		
CSI0_LN1_N	93	AI	MIPI lane 1 data signal of rear camera (negative)		
CSI0_LN1_P	92	AI	MIPI lane 1 data signal of rear camera (positive)		
CSI0_LN2_N	95	AI	MIPI lane 2 data signal of rear camera (negative)		
CSI0_LN2_P	94	AI	MIPI lane 2 data signal of rear camera (positive)		
CSI0_LN3_N	97	AI	MIPI lane 3 data signal of rear camera (negative)		
CSI0_LN3_P	96	AI	MIPI lane 3 data signal of rear camera (positive)		
CSI1_CLK_N	184	AI	MIPI clock signal of depth camera		

			(negative)	
CSI1_CLK_P	183	AI	MIPI clock signal of depth camera (positive)	
CSI1_LN0_N	186	AI	MIPI lane 0 data signal of depth camera (negative)	
CSI1_LN0_P	185	AI	MIPI lane 0 data signal of depth camera (positive)	
CSI1_LN1_N	188	AI	MIPI lane 1 data signal of depth camera (negative)	
CSI1_LN1_P	187	AI	MIPI lane 1 data signal of depth camera (positive)	
CSI1_LN2_N	190	Al	MIPI lane 2 data signal of depth camera (negative)	Can be multiplexed into differential data of the fourth camera (negative).
CSI1_LN2_P	189	AI	MIPI lane 2 data signal of depth camera (positive)	Can be multiplexed into differential data of the fourth camera (positive).
CSI1_LN3_N	192	AI	MIPI lane 3 data signal of depth camera (negative)	Can be multiplexed into differential clock of the fourth camera (negative).
CSI1_LN3_P	191	AI	MIPI lane 3 data signal of depth camera (positive)	Can be multiplexed into differential clock of the fourth camera (positive).
CSI2_CLK_N	78	AI	MIPI clock signal of front camera (negative)	
CSI2_CLK_P	77	AI	MIPI clock signal of front camera (positive)	
CSI2_LN0_N	80	AI	MIPI lane 0 data signal of front camera (negative)	

CSI2_LN0_P	79	AI	MIPI lane 0 data signal of front camera (positive)		
CSI2_LN1_N	82	AI	MIPI lane 1 data signal of front camera (negative)		
CSI2_LN1_P	81	Al	MIPI lane 1 data signal of front camera (positive)		
CSI2_LN2_N	84	AI	MIPI lane 2 data signal of front camera (negative)		
CSI2_LN2_P	83	AI	MIPI lane 2 data signal of front camera (positive)		
CSI2_LN3_N	86	Al	MIPI lane 3 data signal of front camera (negative)		
CSI2_LN3_P	85	AI	MIPI lane 3 data signal of front camera (positive)		
MCAM_MCLK	99	DO	Master clock signal of rear camera	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain.
SCAM_MCLK	100	DO	Master clock signal of front camera	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain.
MCAM_RST	74	DO	Reset signal of rear camera	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain.
MCAM_PWDN	73	DO	Power down signal of rear camera	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain.
SCAM_RST	72	DO	Reset signal of front camera	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain.
SCAM_PWDN	71	DO	Power down signal of front camera	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain.
CAM_I2C_SCL	75	OD	I2C clock signal of camera		1.8V power domain.
CAM_I2C_SDA	76	OD	I2C data signal of camera		1.8V power domain.

DCAM_MCLK	194	DO	Master clock signal of	V _{OL} max=0.45V	
			depth camera	V _{OH} min=1.35V	
CAM4_MCLK	236	DO	Master clock signal of	V _{OL} max=0.45V	
	200		fourth camera	V _{OH} min=1.35V	
DCAM DCT	180	DO	Reset signal of depth	V _{OL} max=0.45V	
DCAM_RST	100	DO	camera	V _{OH} min=1.35V	
DOAM DIAIDN	404	D.O.	Power down signal of	V _{OL} max=0.45V	
DCAM_PWDN	181	DO	depth camera	V _{OH} min=1.35V	
DCAM_I2C_			I2C data signal of		
SDA	197	OD	depth camera		1.8V power domain.
DCAM_I2C_			I2C clock signal of		
SCL	196	OD	depth camera		1.8V power domain.
			doptii camera		
Keypad Interfac	es				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
			T	1/ 0.001/	Pull-up to 1.8V
PWRKEY	39	DI	Turn on/off the	V _{IL} max=0.63V	internally.
			module	V _{IH} min=1.17V	Active low.
				V _{IL} max=0.63V	If unused, keep this
VOL_UP	146	DI	Volume up	V _{IH} min=1.17V	pin open.
				V IHITITIE I . I I V	ріп ореп.
VOL_	4.47	DI	Volume down	V _{IL} max=0.63V	If unused, keep this
DOWN	147	DI	volume down	V _{IH} min=1.17V	pin open.
SENSOR_I2C In	nterfaces				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
	1 111 110.	.,,	•	DO GHAFAOTO ISTROS	
SENSOR_I2C_	131	OD	I2C clock signal of		1.8V power domain.
SCL			external sensors		
SENSOR_I2C_	132	OD	I2C data signal of		1.0\/ nower demain
SDA	132	OD	external sensors		1.8V power domain.
ADC Interfaces					
Din Name	Pin No.	1/0	Description	DC Characteristics	Commont
Pin Name	FIII NO.	I/O	Description	DC Characteristics	Comment
B	4.50		General purpose ADC		Maximum input
PMI_MPP1	153	ΑI	interface		voltage: 1.5V.
PMU_MPP2	151	ΑI	General purpose ADC		Maximum input
			interface		voltage: 1.7V.
Charging Interfa	300				
	uoc				

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
BAT_PLUS	27	Al	Differential input signal of battery voltage detection (plus)		Must be connected.
BAT_MINUS	28	Al	Differential input signal of battery voltage detection (minus)		Must be connected.
VBAT_SNS	36	AI	Battery voltage detection		Maximum input voltage: 4.75V. Must be connected.
CS_PLUS	165	AI	Current sense resistor input (plus)		
CS_MINUS	166	Al			
Antenna Interfaces					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
ANT_MAIN	19	Ю	Main antenna interface		
ANT_DRX	149	Al	Diversity antenna interface		- 50Ω impedance
ANT_GNSS	134	Al	GNSS antenna interface		
ANT_WIFI/BT	129	Ю	Wi-Fi/BT antenna interface		
GPIO Interface	s				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
GPIO_0	248	Ю	GPIO		
GPIO_0 GPIO_1	248	10	GPIO GPIO	-	
				-	
GPIO_1	247	Ю	GPIO	V _{IL} max=0.63V V _{IH} min=1.17V	
GPIO_1 GPIO_2	247	10	GPIO GPIO		

GPIO_42	252	Ю	GPIO		
GPIO_43	253	Ю	GPIO		
GPIO_44	254	Ю	GPIO		
GPIO_45	255	Ю	GPIO		
GPIO_66	234	Ю	GPIO		
GPIO_89	232	Ю	GPIO		
GPIO_90	231	Ю	GPIO		
GPIO_96	230	Ю	GPIO		
GPIO_97	229	Ю	GPIO		
GPIO_98	177	Ю	GPIO		
GPIO_99	178	Ю	GPIO		
GPIO_105	242	Ю	GRFC1		GRFC is only used
GPIO_107	241	Ю	GRFC2		for RF Tuner control.
SPI Interfaces					
SPI Interfaces Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
	Pin No. 58	I/O DO	Description Chip selection signal of SPI interface	DC Characteristics	Comment Can be multiplexed into UART6_CTS.
Pin Name			Chip selection signal	DC Characteristics	Can be multiplexed
Pin Name SPI_CS	58	DO	Chip selection signal of SPI interface Clock signal of SPI	DC Characteristics	Can be multiplexed into UART6_CTS. Can be multiplexed
Pin Name SPI_CS SPI_CLK	58 59	DO DO	Chip selection signal of SPI interface Clock signal of SPI interface Master out slave in of	DC Characteristics	Can be multiplexed into UART6_CTS. Can be multiplexed into UART6_RTS. Can be multiplexed
Pin Name SPI_CS SPI_CLK SPI_MOSI	58 59 60	DO DO	Chip selection signal of SPI interface Clock signal of SPI interface Master out slave in of SPI interface Master in salve out of	DC Characteristics	Can be multiplexed into UART6_CTS. Can be multiplexed into UART6_RTS. Can be multiplexed into UART6_TXD. Can be multiplexed
Pin Name SPI_CS SPI_CLK SPI_MOSI SPI_MISO	58 59 60 61	DO DO DO	Chip selection signal of SPI interface Clock signal of SPI interface Master out slave in of SPI interface Master in salve out of SPI interface Chip selection signal	DC Characteristics	Can be multiplexed into UART6_CTS. Can be multiplexed into UART6_RTS. Can be multiplexed into UART6_TXD. Can be multiplexed into UART6_RXD. Can be multiplexed into UART6_RXD.
Pin Name SPI_CS SPI_CLK SPI_MOSI SPI_MISO FP_SPI_CS	58 59 60 61 203	DO DO DO DI DO	Chip selection signal of SPI interface Clock signal of SPI interface Master out slave in of SPI interface Master in salve out of SPI interface Chip selection signal of SPI interface Clock signal of SPI	DC Characteristics	Can be multiplexed into UART6_CTS. Can be multiplexed into UART6_RTS. Can be multiplexed into UART6_TXD. Can be multiplexed into UART6_RXD. Can be multiplexed into I2S_WS. Can be multiplexed
Pin Name SPI_CS SPI_CLK SPI_MOSI SPI_MISO FP_SPI_CS FP_SPI_CLK	58 59 60 61 203 250	DO DO DI DO DO	Chip selection signal of SPI interface Clock signal of SPI interface Master out slave in of SPI interface Master in salve out of SPI interface Chip selection signal of SPI interface Clock signal of SPI interface Master out slave in of	DC Characteristics	Can be multiplexed into UART6_CTS. Can be multiplexed into UART6_RTS. Can be multiplexed into UART6_TXD. Can be multiplexed into UART6_RXD. Can be multiplexed into I2S_WS. Can be multiplexed into I2S_SCK. Can be multiplexed
Pin Name SPI_CS SPI_CLK SPI_MOSI SPI_MISO FP_SPI_CS FP_SPI_CLK FP_SPI_MOSI	58 59 60 61 203 250 249 251	DO DO DI DO DO DO	Chip selection signal of SPI interface Clock signal of SPI interface Master out slave in of SPI interface Master in salve out of SPI interface Chip selection signal of SPI interface Clock signal of SPI interface Master out slave in of SPI interface Master out slave in of SPI interface	DC Characteristics	Can be multiplexed into UART6_CTS. Can be multiplexed into UART6_RTS. Can be multiplexed into UART6_TXD. Can be multiplexed into UART6_RXD. Can be multiplexed into I2S_WS. Can be multiplexed into I2S_SCK. Can be multiplexed into I2S_DO. Can be multiplexed into I2S_DO. Can be multiplexed

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
HAP_N	160	АО	Vibrator drive (negative)		Connected to the negative terminal of vibrator.	
HAP_P	161	АО	Vibrator drive (positive)		Connected to the positive terminal of vibrator.	
LED Sink Driver Interfaces						
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
CHG_LED	157	Al	Current sink for charging indication		Sink current range: 5mA~20mA	
PMI_MPP2	158	AI	Current sink for general purpose indication		Sink current range: 0mA~40mA	
Flashlight Inter	faces					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
FLASH_LED1	26	АО	Flash/torch current driver output		Support flash and	
FLASH_LED2	162	АО	Flash/torch current driver output		torch modes.	
Emergency Do	wnload Inte	erface				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
USB_BOOT	57	DI	Force the module to enter into emergency download mode		Pulled up to LDO5_1P8 during power-up will force the module to enter into emergency download mode.	
Other Interface	es					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
BAT_RBIAS	164	АО	NTC pull up power supply		If unused, keep this pin open.	
BAT_ID	17	Al	Battery type detection		If unused, keep th pin open.	
BAT_THERM	29	AI	Battery temperature detection		Internally pulled up. Externally connected to GND via a 47K	

					NTC resistor.
					For test purpose only.
GNSS_LNA_EN	202	DO	LNA enable control		If unused, keep this
					pin open.
S2A	211		S2A and S2B are connected together in		
S2B	233		the module		
Reserved Interfa	ace				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
	154, 155,				
	156,				
	212~218,				Kaan thaaa nina
RESERVED	220 224		Reserved pins		Keep these pins
NESLIVED	220, 221,		rtoocryca pino		0000
KLOLKVLD	220, 221, 227, 228,		reserved pins		open.
REGERVED			reconved pino		open.

3.4. Power Supply

3.4.1. Power Supply Pins

SC60 provides 2 VBAT pins and 2 VDD_RF pins. VBAT pins are dedicated for connection with an external power supply. VDD_RF pins are designed for module's RF part, and are used to connect bypass capacitors so as to eliminate voltage fluctuation of RF part.

3.4.2. Decrease Voltage Drop

The power supply range of the module is from 3.55V to 4.4V, and the recommended value is 3.8V. The power supply performance, such as load capacity, voltage ripple, etc. directly influences the module's performance and stability. Under ultimate conditions, the module may have a transient peak current up to 3A. If the power supply capability is not sufficient, there will be voltage drops, and if the voltage drops below 3.1V, the module will be powered off automatically. Therefore, please make sure the input voltage will never drop below 3.1V.

Figure 3: Voltage Drop Sample

To decrease voltage drop, a bypass capacitor of about $100\mu\text{F}$ with low ESR (ESR= 0.7Ω) should be used, and a multi-layer ceramic chip capacitor (MLCC) array should also be reserved due to its ultra-low ESR. It is recommended to use three ceramic capacitors (100nF, 33pF, 10pF) for composing the MLCC array, and place these capacitors close to VBAT/VDD_RF pins. The width of VBAT trace should be no less than 3mm. In principle, the longer the VBAT trace is, the wider it will be.

In addition, in order to get a stable power source, it is suggested to use a 0.5W TVS and place it as close to the VBAT pins as possible to increase voltage surge withstand capability. The following figure shows the structure of the power supply.

Figure 4: Star Structure of Power Supply

3.4.3. Reference Design for Power Supply

The power design for the module is very important, as the performance of module largely depends on the power source. The power supply of SC60 should be able to provide sufficient current up to 3A at least. By default, it is recommended to use a battery to supply power for SC60. But if battery is not intended to be used, it is recommended to use a regulator for SC60. If the voltage difference between the input and output is not too high, it is suggested to use an LDO to supply power for the module. If there is a big voltage difference between the input source and the desired output (VBAT), a buck converter is preferred

to be used as the power supply.

The following figure shows a reference design for +5V input power source which adopts an LDO (MIC29502WU) from MICROCHIP. The typical output voltage is 3.8V and the maximum rated current is 5.0A.

Figure 5: Reference Circuit of Power Supply

NOTES

- 1. It is recommended to switch off the power supply for module in abnormal state, and then switch on the power to restart the module.
- 2. The module supports battery charging function by default. If the above power supply design is adopted, please make sure the charging function is disabled by software, or connect VBAT to Schottky diode in series to avoid the reverse current to the power supply chip.
- 3. When the battery power is reduced to 0%, the system will trigger automatic shutdown, so the design of power supply should be consistent with the configuration of fuel gauge driver.

3.5. Turn on and off Scenarios

3.5.1. Turn on Module Using the PWRKEY

The module can be turned on by driving PWRKEY pin to a low level for at least 1.6s. PWRKEY pin is pulled to 1.8V internally. It is recommended to use an open drain/collector driver to control the PWRKEY. A simple reference circuit is illustrated in the following figure.

Figure 6: Turn on the Module Using Driving Circuit

Another way to control the PWRKEY is using a button directly. A TVS component is indispensable to be placed nearby the button for ESD protection. A reference circuit is shown in the following figure.

Figure 7: Turn on the Module Using Keystroke

The turning on scenario is illustrated in the following figure.

Figure 8: Timing of Turning on Module

NOTES

- 1. The turn-on timing might be different from the above figure when the module powers on for the first time.
- 2. Make sure that VBAT is stable before pulling down PWRKEY pin. The recommended time between them is no less than 30ms. PWRKEY cannot be pulled down all the time.

3.5.2. Turn off Module

Pull down PWRKEY for at least 1s, and then choose to turn off the module when the prompt window comes up.

Another way to turn off the module is to drive PWRKEY to a low level for at least 8s. The module will execute forced shutdown. The forced power-down scenario is illustrated in the following figure.

Figure 9: Timing of Turning off Module

3.6. VRTC Interface

The RTC (Real Time Clock) can be powered by an external power source through VRTC when the module is powered down and there is no power supply for the VBAT. The external power source can be rechargeable battery (such as coil cells) according to application demands. The following reference circuit design when an external battery is utilized for powering RTC.

Figure 10: RTC Powered by Coin Cell

If RTC is ineffective, it can be synchronized through network after the module is powered on.

- 2.0V~3.25V input voltage range and 3.0V typical value for VRTC, when VBAT is disconnected.
- When powered by VBAT, the RTC error is 50ppm. When powered by VRTC, the RTC error is about 200ppm.
- If the rechargeable battery is used, the ESR of battery should be less than 2K, and it is recommended to use the MS621FE FL11E of SEIKO.

3.7. Power Output

SC60 supports output of regulated voltages for peripheral circuits. During application, it is recommended to use parallel capacitors (33pF and 10pF) in the circuit to suppress high frequency noise.

Table 11: Power Description

Pin Name	Default Voltage (V)	Drive Current (mA)	Idle
LDO5_1P8	1.8	20	Keep
LDO6_1P8	1.8	300	/
LDO10_2P8	2.8	150	/
LDO17_2P85	2.85	300	/
LDO2_1P1	1.1	1200	/
LDO22_2P8	2.8	150	/
LDO23_1P2	1.2	600	/
SD_LDO12	1.8/2.95	50	/
SD_LDO11	2.95	800	/
USIM1_VDD	1.8/2.95	50	/
USIM2_VDD	1.8/2.95	50	/

3.8. Battery Charge and Management

SC60 module supports a fully programmable switch-mode Li-ion battery charge function. It can charge single-cell Li-ion and Li-polymer battery. The battery charger of SC60 module supports trickle charging, pre-charge, constant current charging and constant voltage charging modes, which optimize the charging procedure for Li-ion batteries.

- **Trickle charging:** When the battery voltage is below 2.1V, a 45mA trickle charging current is applied to the battery.
- **Pre-charge:** When the battery voltage is charged up and is between 2.1V and 3.0V (the maximum pre-charge voltage is 2.4V~3.0V programmable, 3.0V by default), the system will enter into pre-charge mode. The charging current is 250mA (100mA~250mA programmable, 250mA by

default).

- Constant current mode (CC mode): When the battery voltage is increased to between the
 maximum pre-charge voltage and 4.2V (3.6V~4.5V programmable, 4.2V by default), the system will
 switch to CC mode. The charging current is programmable from 300mA~3000mA. The default
 charging current is 500mA for USB charging and 2A for adapter.
- Constant voltage mode (CV mode): When the battery voltage reaches the final value 4.2V, the system will switch to CV mode and the charging current will decrease gradually. When the charging current reduces to about 100mA, the charging is completed.

Table 12: Pin Definition of Charging Interface

Pin Name	Pin No.	I/O	Description	Comment	
			Charging power input.		Vmax=10V
USB_VBUS	41, 42	PI/PO	Power supply output for OTG dev	rice.	Vmin=4.0V
			USB/charger insertion detection.		Vnorm=5.0V
					Vmax=4.4V
VBAT	37, 38	PI/PO	Power supply for the module		Vmin=3.55V
					Vnorm=3.8V
DAT ID	47	A.I.	Dattamatama alataatian		If unused, keep this
BAT_ID	17	Al	Battery type detection		pin open.
DAT DILIO	07		Differential input signal of battery	voltage	Must be connected.
BAT_PLUS	27	Al	detection (plus)		
DAT MANUE		A.I.	Differential input signal of battery voltage detection (minus)		Marthamaria
BAT_MINUS	28	Al			Must be connected.
					Internally pulled up.
DAT TUEDA	00				Externally connected
BAT_THERM	29	Al	Battery temperature detection		to GND via a 47K
					NTC resistor.
\(\(\mathbb{D}\)\(\mathbb{A}\)\(\mathbb{T}\)\(\mathbb{O}\)\(\mathbb{O}\)	00		B		Maximum input
VBAT_SNS	36	Al	Battery voltage detection		voltage is 4.75V.
DAT DDIAG	404	4.0	Dedicated voltage source for		If unused, keep this
BAT_RBIAS	164	AO	battery-related resistor		pin open.
CS_PLUS	165	Al	Current sense resistor input (plus	:)	Keep these pins open
		/ \l	Carrein Series resistor input (plus		to use the internal
CS MINUS	166	Al	Current sense resistor input (min	118)	current detection
	100	/ \	Carrein Series resistor input (min		mechanism.

SC60 module supports battery temperature detection in the condition that the battery integrates a thermistor (47K 1% NTC thermistor with B-constant of 4050K by default; SDNT1608X473F4050FTF of SUNLORD is recommended) and the thermistor is connected to VBAT_THERM pin. If VBAT_THERM pin is not connected, there will be malfunctions such as boot error, battery charging failure, battery level display error, etc.

A reference design for battery charging circuit is shown as below.

Figure 11: Reference Design for Battery Charging Circuit

SC60 offers a fuel gauge algorithm that is able to accurately estimate the battery's state by current and voltage monitor techniques. Using precise measurements of battery voltage, current, and temperature, the fuel gauge provides a dependable state of charge estimate throughout the entire life of the battery and across a broad range of operating conditions. It effectively protects the battery from over-discharging, and also allows users to estimate the battery life based on the battery level so as to timely save important data before completely power-down.

Mobile devices such as mobile phones and handheld POS systems are powered by batteries. When different batteries are utilized, the charging and discharging curve has to be modified correspondingly so as to achieve the best effect.

If thermistor is not available in the battery, or adapter is utilized for powering the module, then there is only a need for VBAT and GND connection. In this case, the system may be unable to detect the battery, which will cause power-on failure. In order to avoid this, VBAT_THERM should be connected to GND with a 47KΩ resistor. VBAT_SNS, BAT_PLUS and BAT_MINUS must be connected, otherwise there may be abnormalities in use of the module. Among them, BAT_PLUS and BAT_MINUS are used for battery level detection, and they should be routed as differential pair to ensure accuracy. CS_PLUS and CS_MINUS are used to detect the battery charge and discharge current, and they can be kept open as SC60 uses the internal current detection mechanism by default.

3.9. USB Interface

SC60 provides one integrated Universal Serial Bus (USB) interface which complies with the USB 3.0/2.0 specifications and supports super speed (5Gbps) on USB 3.0, high speed (480Mbps) on USB 2.0 and full speed (12Mbps) modes. The USB interface supports USB OTG function, and is used for AT command communication, data transmission, software debugging and firmware upgrade.

The following table shows the pin definition of USB interface.

Table 13: Pin Definition of USB Interface

Pin Name	Pin No.	I/O	Description	Comment
USB_VBUS	41, 42	PI/PO	Charging power input; Power supply output for OTG device; USB/charger insertion detection.	Vmax=10V Vmin=4.0V Vnorm=5.0V
USB_DM	33	Ю	USB 2.0 USB differential data bus (minus)	Require differential
USB_DP	32	Ю	USB 2.0 USB differential data bus (plus)	impedance of 90Ω
USB_ID	30	AI	USB ID detection	High level by default
USB_SS_RX_P	171	Al	USB 3.0 differential receive (plus)	
USB_SS_RX_M	172	Al	USB 3.0 differential receive (minus)	Require differential
USB_SS_TX_P	174	AO	USB 3.0 differential transmit (plus)	impedance of 90Ω
USB_SS_TX_M	175	AO	USB 3.0 differential transmit (minus)	
USB_VCONN	222	AI	USB Type-C power supply input	Vmax=5.25V Vmin=4.75V
USBC_CC2	223	AI/ AO	USB Type-C control configuration channel 2	
USBC_CC1	224	AI/ AO	USB Type-C control configuration channel 1	
USB_SS_SEL	226	DO	USB Type-C switch control	

USB_VBUS can be powered by USB power or adapter. It is used for USB connection detection and power supply input for battery charging. Its input voltage ranges from 4.0V to 10.0V, and the typical value is 5.0V. SC60 module supports charging management for a single cell Li-ion battery, but varied charging parameters should be set for batteries with varied models or capacities. The maximum charging current is up to 3.0A.

The module also supports USB On-The-Go (OTG) function, through using USB_ID pin to detect whether the OTG device is attached: when USB_ID is kept open (high level by default), SC60 is in USB slave mode; if USB_ID is connected to ground, it is in OTG mode and USB_VBUS is used to supply power for peripherals with maximum output of 5V/1A.

The following is a reference design for USB interface:

Figure 12: USB 2.0 Interface Reference Design

Figure 13: USB Type-C Interface Reference Design

In order to ensure USB performance, please follow the following principles while designing USB interface.

- It is important to route the USB signal traces as differential pairs with total grounding. The impedance of USB differential trace is 90Ω.
- Pay attention to the influence of junction capacitance of ESD protection devices on USB data lines.
 Typically, the capacitance value should be less than 2pF for USB 2.0 and less than 0.5pF for USB 3.0.

- Do not route signal traces under crystals, oscillators, magnetic devices and RF signal traces. It is
 important to route the USB differential traces in inner-layer with ground shielding on not only upper
 and lower layers but also right and left sides.
- Keep the ESD protection devices as close as possible to the USB connector.
- Make sure the trace length difference between USB 2.0 DM/DP differential pair and that between USB 3.0 RX/TX differential pairs both do not exceed 0.7mm.

Table 14: USB Trace Length Inside the Module

Pin No.	Signal	Length (mm)	Length Difference (DP-DM)
33	USB_DM	41.18	0
32	USB_DP	41.18	0
171	USB_SS_RX_P	25.02	0
172	USB_SS_RX_M	25.02	0
174	USB_SS_TX_P	19.04	0.02
175	USB_SS_TX_M	19.01	0.03

3.10. UART Interfaces

The module provides the following four UART interfaces:

- UART5: 4-wire UART interface, hardware flow control supported, 1.8V power domain
- UART6: 4-wire UART interface, hardware flow control supported, multiplexed from SPI interface
- UART2: 2-wire UART interface, used for debugging
- UART4: 2-wire UART interface

The following table shows the pin definition of UART interfaces.

Table 15: Pin Definition of UART Interfaces

Pin Name	Pin No.	I/O	Description	Comment
UART2_TXD	5	DO	UART2 transmit data. Debug port by default.	1.8V power domain.
UART2_RXD	6	DI	UART2 receive data. Debug port by default.	If unused, keep these pins open.

UART4_TXD	7	DO	UART4 transmit data	
UART4_RXD	8	DI	UART4 receive data	_
UART5_RXD	198	DI	UART5 receive data	
UART5_TXD	199	DO	UART5 transmit data	
UART5_CTS	246	DI	UART5 clear to send	_
UART5_RTS	245	DO	UART5 request to send	
SPI_MISO	61	DI	UART6 receive data	SPI interface pin by default. Can be multiplexed into UART6_RXD.
SPI_MOSI	60	DO	UART6 transmit data	SPI interface pin by default. Can be multiplexed into UART6_TXD.
SPI_CS	58	DI	UART6 clear to send	SPI interface pin by default. Can be multiplexed into UART6_CTS.
SPI_CLK	59	DO	UART6 request to send	SPI interface pin by default. Can be multiplexed into UART6_RTS.

UART5 is a 4-wire UART interface with 1.8V power domain. A level translator chip should be used if customers' application is equipped with a 3.3V UART interface. A level translator chip TXS0104EPWR provided by Texas Instruments is recommended.

The following figure shows a reference design.

Figure 14: Reference Circuit with Level Translator Chip (for UART5)

The following figure is an example of connection between SC60 and PC. A voltage level translator and a RS-232 level translator chip are recommended to be added between the module and PC, as shown below:

Figure 15: RS232 Level Match Circuit (for UART5)

NOTE

UART2, UART4 and UART6 are similar to UART5. Please refer to UART5 reference circuit design for UART2, UART4 and UART6's.

3.11. (U)SIM Interfaces

SC60 provides two (U)SIM interfaces which both meet ETSI and IMT-2000 requirements. Dual SIM Dual Standby is supported by default. Both 1.8V and 2.95V (U)SIM cards are supported, and the (U)SIM interfaces are powered by the dedicated low dropout regulators from SC60 module.

Table 16: Pin Definition of (U)SIM Interfaces

Pin Name	Pin No.	I/O	Description	Comment
USIM1_DET	145	DI	(U)SIM1 card detection	Active Low. Need external pull-up to 1.8V. If unused, keep this pin open. Disabled by default, and can be enabled through software configuration.

USIM1_RST	144	DO	(U)SIM1 card reset signal	
USIM1_CLK	143	DO	(U)SIM1 card clock signal	
USIM1_DATA	142	Ю	(U)SIM1 card data signal	Pull up to USIM1_VDD with a 10K resistor.
USIM1_VDD	141	РО	(U)SIM1 card power supply	Either 1.8V or 2.95V (U)SIM card is supported.
USIM2_DET	256	DI	(U)SIM2 card insertion detection	Active low. Need external pull-up to 1.8V. If unused, keep this pin open. Disabled by default, and can be enabled through software configuration.
USIM2_RST	207	DO	(U)SIM2 card reset signal	
USIM2_CLK	208	DO	(U)SIM2 card clock signal	
USIM2_DATA	209	Ю	(U)SIM2 card data signal	Pull-up to USIM2_VDD with a 10K resistor.
USIM2_VDD	210	РО	(U)SIM2 card power supply	Either 1.8V or 2.95V (U)SIM card is supported.

SC60 supports (U)SIM card hot-plug via the USIM_DET pin, which is disabled by default and can be enabled through software configuration. A reference circuit for (U)SIM interface with an 8-pin (U)SIM card connector is shown as below.

Figure 16: Reference Circuit for (U)SIM Interface with an 8-pin (U)SIM Card Connector

If there is no need to use USIM_DET, please keep it open. The following is a reference circuit for (U)SIM interface with a 6-pin (U)SIM card connector.

Figure 17: Reference Circuit for (U)SIM Interface with a 6-pin (U)SIM Card Connector

In order to ensure good performance and avoid damage of (U)SIM cards, please follow the criteria below in (U)SIM circuit design:

- Keep placement of (U)SIM card connector as close to the module as possible. Keep the trace length
 of (U)SIM card signals as less than 200mm as possible.
- Keep (U)SIM card signals away from RF and VBAT traces.
- A filter capacitor shall be reserved for USIM_VDD, and its maximum capacitance should not exceed 1uF. The capacitor should be placed near to (U)SIM card.
- To avoid cross-talk between USIM_DATA and USIM_CLK, keep them away from each other and shield them with ground. USIM_RST also needs ground protection.
- In order to offer good ESD protection, it is recommended to add a TVS diode array with parasitic capacitance not exceeding 50pF. The 22Ω resistors should be added in series between the module and (U)SIM card so as to suppress EMI spurious transmission and enhance ESD protection. Please note that the (U)SIM peripheral circuit should be close to the (U)SIM card connector.
- The 22pF capacitors should be added in parallel on USIM_DATA, USIM_VDD, USIM_CLK and USIM_RST signal lines so as to filter RF interference, and they should be placed as close to the (U)SIM card connector as possible.

3.12. SD Card Interface

SC60 module supports SD 3.0 specifications. The pin definition of the SD card interface is shown below.

Table 17: Pin Definition of SD Card Interface

Pin Name	Pin No.	I/O	Description	Comment
SD_LDO11	63	РО	Power supply for SD card	Vnorm=2.95V I _O max=800mA
SD_LDO12	179	РО	SD card pull-up power supply	Support 1.8V or 2.95V power supply. The maximum drive current is 50mA.
SD_CLK	70	DO	High speed digital clock signal of SD card	
SD_CMD	69	I/O	Command signal of SD card	Control characteristic impedance as
SD_DATA0	68	I/O		
SD_DATA1	67	I/O	High speed bidirectional	50Ω.
SD_DATA2	66	I/O	digital signal lines of SD card	
SD_DATA3	65	I/O		
SD_DET	64	DI	SD card insertion detection	Active low.

A reference circuit for SD card interface is shown as below.

Figure 18: Reference Circuit for SD Card Interface

SD_LDO11 is a peripheral driver power supply for SD card. The maximum drive current is approx. 800mA. Because of the high drive current, it is recommended that the trace width is 0.5mm or above. In order to ensure the stability of drive power, a 4.7uF and a 33pF capacitor should be added in parallel near the SD card connector.

CMD, CLK, DATA0, DATA1, DATA2 and DATA3 are all high speed signal lines. In PCB design, please control the characteristic impedance of them as 50Ω , and do not cross them with other traces. It is recommended to route the trace on the inner layer of PCB, and keep the same trace length for CLK, CMD, DATA0, DATA1, DATA2 and DATA3. CLK additionally needs ground shielding.

Layout guidelines:

- Control impedance as 50Ω±10%, and ground shielding is required.
- The total trace length difference between CLK and other signal line traces should not exceed 1mm.

Table 18: SD Card Signal Trace Length Inside the Module

Pin No.	Signal	Length (mm)	Comment
70	SD_CLK	32.11	
69	SD_CMD	32.11	
68	SD_DATA0	32.11	
67	SD_DATA1	32.11	
66	SD_DATA2	32.11	
65	SD_DATA3	32.11	

3.13. GPIO Interfaces

SC60 has abundant GPIO interfaces with power domain of 1.8V. The pin definition is listed below.

Table 19: Pin Definition of GPIO Interfaces

Pin Name	Pin No.	GPIO	Default Status	Comment
GPIO_0	248	GPIO_0	B-PD:nppukp 1)	
GPIO_1	247	GPIO_1	B-PD:nppukp	Wakeup 2)
GPIO_2	201	GPIO_2	B-PD:nppukp	
GPIO_3	200	GPIO_3	B-PD:nppukp	
UART2_TXD	5	GPIO_4	B-PD:nppukp	

UART2_RXD	6	GPIO_5	B-PD:nppukp	
TP1_I2C_SDA	204	GPIO_6	B-PD:nppukp	
TP1_I2C_SCL	205	GPIO_7	B-PD:nppukp	
TP1_RST	136	GPIO_8	B-PD:nppukp	
TP1_INT	137	GPIO_9	B-PD:nppukp	Wakeup
TP0_I2C_SDA	206	GPIO_10	B-PD:nppukp	
TP0_I2C_SCL	140	GPIO_11	B-PD:nppukp	
UART4_TXD	7	GPIO_12	B-PD:nppukp	
UART4_RXD	8	GPIO_13	B-PD:nppukp	Wakeup
SENSOR_I2C_SDA	132	GPIO_14	B-PD:nppukp	
SENSOR_I2C_SCL	131	GPIO_15	B-PD:nppukp	
UART5_TXD	199	GPIO_16	B-PD:nppukp	
UART5_RXD	198	GPIO_17	B-PD:nppukp	Wakeup
UART5_CTS	246	GPIO_18	B-PD:nppukp	
UART5_RTS	245	GPIO_19	B-PD:nppukp	
SPI_MOSI	60	GPIO_20	B-PD:nppukp	
SPI_MISO	61	GPIO_21	B-PD:nppukp	Wakeup
SPI_CS	58	GPIO_22	B-PD:nppukp	
SPI_CLK	59	GPIO_23	B-PD:nppukp	
LCD0_TE	126	GPIO_24	B-PD:nppukp	
LCD1_TE	114	GPIO_25	B-PD:nppukp	Wakeup
MCAM_MCLK	99	GPIO_26	B-PD:nppukp	
SCAM_MCLK	100	GPIO_27	B-PD:nppukp	
DCAM_MCLK	194	GPIO_28	B-PD:nppukp	Wakeup
CAM_I2C_SDA	76	GPIO_29	B-PD:nppukp	
CAM_I2C_SCL	75	GPIO_30	B-PD:nppukp	
DCAM_I2C_SDA	197	GPIO_31	B-PD:nppukp	Wakeup

DCAM_I2C_SCL	196	GPIO_32	B-PD:nppukp	
GPIO_33	238	GPIO_33	B-PD:nppukp	
GPIO_36	237	GPIO_36	B-PD:nppukp	Wakeup
MCAM_PWDN	73	GPIO_39	B-PD:nppukp	
MCAM_RST	74	GPIO_40	B-PD:nppukp	
GPIO_42	252	GPIO_42	B-PD:nppukp	Wakeup
GPIO_43	253	GPIO_43	B-PD:nppukp	Wakeup
GPIO_44	254	GPIO_44	B-PD:nppukp	Wakeup
GPIO_45	255	GPIO_45	B-PD:nppukp	Wakeup
LCD0_RST	127	GPIO_61	B-PD:nppukp	
TP0_RST	138	GPIO_64	B-PD:nppukp	
TP0_INT	139	GPIO_65	B-PD:nppukp	Wakeup
GPIO_66	234	GPIO_66	B-PD:nppukp	
VOL_UP	146	GPIO_85	B-PD:nppukp	Wakeup
LCD1_RST	113	GPIO_87	B-PD:nppukp	Wakeup
GPIO_89	232	GPIO_89	B-PD:nppukp	
GPIO_90	231	GPIO_90	B-PD:nppukp	Wakeup
GPIO_96	230	GPIO_96	B-PD:nppukp	
GPIO_97	229	GPIO_97	B-PD:nppukp	Wakeup
GPIO_98	177	GPIO_98	B-PD:nppukp	
GPIO_99	178	GPIO_99	B-PD:nppukp	
GPIO_105	242	GPIO_105	B-PD:nppukp	GRFC is only
GPIO_107	241	GPIO_107	B-PD:nppukp	used for RF Tuner control
CAM4_MCLK	236	GPIO_128	B-PD:nppukp	
SCAM_RST	72	GPIO_129	B-PD:nppukp	
SCAM_PWDN 3)	71	GPIO_130	B-PD:nppukp	
DCAM_RST	180	GPIO_131	B-PD:nppukp	Wakeup

DCAM_PWDN 3)	181	GPIO_132	B-PD:nppukp	Wakeup
SD_DET	64	GPIO_133	B-PD:nppukp	Wakeup
FP_SPI_CLK	250	GPIO_135	B-PD:nppukp	
FP_SPI_CS	203	GPIO_136	B-PD:nppukp	
FP_SPI_MOSI	249	GPIO_137	B-PD:nppukp	Wakeup
FP_SPI_MISO	251	GPIO_138	B-PD:nppukp	Wakeup
USB_SS_SEL	226	GPIO_139	B-PD:nppukp	Wakeup

NOTES

- 1. ¹⁾ B: Bidirectional digital with CMOS input; PD: nppukp = default pulldown with programmable options following the colon (:).
- 2. ²⁾ Wakeup: interrupt pins that can wake up the system.
- 3. 3) SCAM_PWDN and DCAM_PWDN cannot be pulled up when the module starts up.
- 4. More details about GPIO configuration, please refer to document [2].

3.14. I2C Interfaces

SC60 provides five I2C interfaces. As an open drain output, each I2C interface should be pulled up to 1.8V voltage. The SENSOR_I2C interface supports only sensors of the aDSP architecture. CAM/DCAM_I2C bus is controlled by Linux Kernel code and supports connection to video output related devices.

Table 20: Pin Definition of I2C Interfaces

Pin Name	Pin No	I/O	Description	Comment
TP0_I2C_SCL	140	OD	I2C clock signal of touch panel	Used for TP0
TP0_I2C_SDA	206	OD	I2C data signal of touch panel	- Osed for TPO
TP1_I2C_SCL	205	OD	I2C clock signal of touch panel	Used for TP1
TP1_I2C_SDA	204	OD	I2C data signal of touch panel	- Osed for TPT
CAM_I2C_SCL	75	OD	I2C clock signal of camera	Used for

CAM_I2C_SDA	76	OD	I2C data signal of camera	cameras
DCAM_I2C_SCL	196	OD	I2C clock signal of depth camera	Used for depth
DCAM_I2C_SDA	197	OD	I2C data signal of depth camera	cameras
SENSOR_I2C_SCL	131	OD	I2C clock signal for external sensor	Used for external
SENSOR_I2C_SDA	132	OD	I2C data signal for external sensor	sensors

3.15. I2S Interface

SC60 provides one I2S interface. The I2S interface is multiplexed from FP_SPI, with power domain of 1.8V .

Table 21: Pin Definition of I2S Interface

Pin Name	Pin No	I/O	Description	Comment
FP_SPI_CS	203	DO	Chip selection signal of SPI interface	SPI interface pin by default. Can be multiplexed into I2S_WS.
FP_SPI_CLK	250	DO	Clock signal of SPI interface	SPI interface pin by default. Can be multiplexed into I2S_SCK.
FP_SPI_MOSI	249	DO	Master out slave in of SPI interface	SPI interface pin by default. Can be multiplexed into I2S_D0.
FP_SPI_MISO	251	DI	Master in salve out of SPI interface	SPI interface pin by default. Can be multiplexed into I2S_D1.
LCD1_TE	114	DI	Tearing effect signal	LCM interface pin by default. Can be multiplexed into I2S_MCLK_A.
GPIO_66	234	DI/DO	General GPIO	GPIO by default. Can be multiplexed into I2S_MCLK_B.

3.16. SPI Interfaces

SC60 provides two SPI interfaces which only support master mode. The two interfaces are typically applied for fingerprint identification.

Table 22: Pin Definition of SPI Interfaces

Pin Name	Pin No	I/O	Description	Comment
SPI_CS	58	DO	Chip selection signal of SPI interface	Can be multiplexed into UART6_CST.
SPI_CLK	59	DO	Clock signal of SPI interface	Can be multiplexed into UART6_RTS.
SPI_MOSI	60	DO	Master out slave in of SPI interface	Can be multiplexed into UART6_TXD.
SPI_MISO	61	DI	Master in salve out of SPI interface	Can be multiplexed into UART6_RXD.
FP_SPI_CS	203	DO	Chip selection signal of SPI interface	Used for fingerprint
FP_SPI_CLK	250	DO	Clock signal of SPI interface	identification by default. Can be
FP_SPI_MOSI	249	DO	Master out slave in of SPI interface	multiplexed into I2S
FP_SPI_MISO	251	DI	Master in salve out of SPI interface	interface.

3.17. ADC Interfaces

SC60 provides two analog-to-digital converter (ADC) interfaces, and the pin definition is shown below.

Table 23: Pin Definition of ADC Interfaces

Pin Name	Pin No.	I/O	Description	Comment
PMI_MPP1	153	AI	General purpose ADC interface	Maximum input voltage: 1.5V.
PMU_MPP2	151	AI	General purpose ADC interface	Maximum input voltage: 1.7V.

The resolution of the ADC is up to 15 bits.

3.18. Vibrator Drive Interface

The pin definition of vibrator drive interface is listed below.

Table 24: Pin Definition of Vibrator Drive Interface

Pin Name	Pin No	I/O	Description	Comment
HAP_P	161	AO	Vibrator drive (positive)	Connected to the positive terminal of vibrator.
HAP_N	160	AO	Vibrator drive (negative)	Connected to the negative terminal of vibrator.

The Vibrator is driven by an exclusive circuit, and a reference circuit design is shown below.

Figure 19: Reference Circuit for Vibrator Connection

3.19. LCM Interfaces

SC60 module provides two LCM interfaces, and supports dual LCDs with WUXGA (1900×1200) display. The interfaces support high speed differential data transmission, with up to eight lanes.

Table 25: Pin Definition of LCM Interfaces

Pin Name	Pin No.	I/O	Description	Comment
LDO6_1P8	10	РО	1.8V output power supply for LCM logic circuit and DSI	
LDO17_2P85	12	РО	2.85V output power supply for LCM analog circuits	
PMU_MPP4	152	DO	PWM signal output	

LCD_BL_A	21	РО	Current output for LCD backlight	
LCD_BL_K1	22	Al	Current sink for LCD backlight	
LCD_BL_K2	23	Al	Current sink for LCD backlight	
LCD_BL_K3	24	Al	Current sink for LCD backlight	
LCD_BL_K4	25	AI	Current sink for LCD backlight	
LCD0_RST	127	DO	LCD0 reset signal	Active low.
LCD0_TE	126	DI	LCD0 tearing effect signal	
LCD1_RST	113	DO	LCD1 reset signal	Active low.
LCD1_TE	114	DI	LCD1 tearing effect signal	
DSI0_CLK_N	116	АО	LCD0 MIPI clock signal (negative)	
DSI0_CLK_P	115	АО	LCD0 MIPI clock signal (positive)	
DSI0_LN0_N	118	АО	LCD0 MIPI lane 0 data signal (negative)	
DSI0_LN0_P	117	АО	LCD0 MIPI lane 0 data signal (positive)	
DSI0_LN1_N	120	АО	LCD0 MIPI lane 1 data signal (negative)	
DSI0_LN1_P	119	АО	LCD0 MIPI lane 1 data signal (positive)	
DSI0_LN2_N	122	АО	LCD0 MIPI lane 2 data signal (negative)	
DSI0_LN2_P	121	АО	LCD0 MIPI lane 2 data signal (positive)	
DSI0_LN3_N	124	АО	LCD0 MIPI lane 3 data signal (negative)	
DSI0_LN3_P	123	АО	LCD0 MIPI lane 3 data signal (positive)	
DSI1_CLK_N	103	АО	LCD1 MIPI clock signal (negative)	
DSI1_CLK_P	102	АО	LCD1 MIPI clock signal (positive)	
DSI1_LN0_N	105	AO	LCD1 MIPI lane 0 data	

			signal (negative)
DOM INO D	404	АО	LCD1 MIPI lane 0 data
DSI1_LN0_P	104		signal (positive)
DCIA I NA N	107	^ _	LCD1 MIPI lane 1 data
DSI1_LN1_N	107	AO	signal (negative)
DCI1 I N11 D	106	АО	LCD1 MIPI lane 1 data
DSI1_LN1_P	106		signal (positive)
DCI1 I NO N	109	АО	LCD1 MIPI lane 2 data
DSI1_LN2_N			signal (negative)
DSI1_LN2_P	108	АО	LCD1 MIPI lane 2 data
DSIT_LINZ_F			signal (positive)
DSI1 LN3 N	444	AO	LCD1 MIPI lane 3 data
DOIT_LINO_IN	111	AU	signal (negative)
DSI1_LN3_P	110 AO	۸	LCD1 MIPI lane 3 data
DOIT_LINO_F		AU	signal (positive)

The following are the reference designs for LCM interfaces.

Figure 20: Reference Circuit Design for LCM0 Interface

Figure 21: Reference Circuit Design for LCM1 Interface

MIPI are high speed signal lines. It is recommended that common-mode filters should be added in series near the LCM connector, so as to improve protection against electromagnetic radiation interference.

When compatible design with other displays is required, please connect the LCD_ID pin of LCM to the module's ADC pin, and please note that the output voltage of LCD_ID cannot exceed the voltage range of ADC pin.

Backlight driving circuits should be designed for LCMs. SC60 provides backlight driving output which can be used to drive LCM backlight WLEDs directly. The features are listed below:

- Use the high voltage output (LCD_BL_A) for powering WLED strings, and the output voltage can be configured from 6.0V to 28.0V.
- Support 4 current sinks (LCD_BL_K1, LCD_BL_K2, LCD_BL_K3, LCD_BL_K4,), with maximum sink current up to 30mA for each.

- Power two strings of WLEDs (about 16 WLEDs) with two current sink drivers, or power four strings of WLEDs (about 28 WLEDs) with four current sink drivers.
- LCD_BL_K sink current can be configured by software to adjust the backlight brightness.

LCM0 uses the internal backlight driving circuit provided by SC60 by default. LCM1 can use the internal circuit or an external backlight driving circuit according to customers' demands. The following is a reference design for LCM1 external backlight driving circuit where PMU_MPP4 is used to adjust the backlight brightness.

Figure 22: Reference Design of LCM1 External Backlight Driving Circuit

3.20. Touch Panel Interfaces

SC60 provides two I2C interfaces for connection with Touch Panel (TP), and also provides the corresponding power supply and interrupt pins. The pin definition of touch panel interfaces is illustrated below.

Table 26: Pin Definition of Touch Panel Interfaces

Pin Name	Pin No	I/O	Description	Comment
LDO10_2P8	11	РО	2.8V output power supply for TP VDD power	Vnorm=2.8V I _O max=150mA
LDO6_1P8	10	РО	1.8V output power supply	Pull-up power supply of I2C Vnorm=1.8V I _o max=300mA
TP0_INT	139	DI	Interrupt signal of touch panel (TP0)	
TP0_RST	138	DO	Reset signal of touch panel (TP0)	Active low
TP0_I2C_ SCL	140	OD	I2C clock signal of touch panel (TP0)	

TP0_I2C_ SDA	206	OD	I2C data signal of touch panel (TP0)
TP1_INT	137	DI	Interrupt signal of touch panel (TP1)
TP1_RST	136	DO	Reset signal of touch panel (TP1) Active low
TP1_I2C_ SCL	205	OD	I2C clock signal of touch panel (TP1)
TP1_I2C_ SDA	204	OD	I2C data signal of touch panel (TP1)

A reference design for touch panel interfaces is shown below.

Figure 23: Reference Circuit Design for Touch Panel Interfaces

NOTE

TP is powered by LDO10_2P8 by default and LDO10_2P8 can output 150mA current. It is recommended to use an external LDO power supply if dual-TP or other applications need to be supported.

3.21. Camera Interfaces

Based on standard MIPI CSI input interface, SC60 module supports 3 cameras (4-lane + 4-lane + 4-lane) or 4 cameras (4-lane + 4-lane + 2-lane + 1-lane), with maximum pixels up to 21MP for SC60-XX and 24MP for SC60-PX. The video and photo quality are determined by various factors such as camera sensor, camera lens quality, etc.

Table 27: Pin Definition of Camera Interfaces

Pin Name	Pin No.	I/O	Description	Comment
LDO2_1P1	13	РО	1.1V output power supply for digital core circuit of rear camera	Vnorm=1.1V I _O max=1200mA
LDO6_1P8	10	РО	1.8V output power supply for digital I/O circuit of camera	Vnorm=1.8V I _O max=300mA
LDO17_2P85	12	РО	2.85V output power supply auto focus circuit	Vnorm=2.85V I _O max=300mA
LDO22_2P8	14	РО	2.8V output power supply for AVDD of cameras	Vnorm=2.8V I _O max=150mA
LDO23_1P2	15	РО	1.2V output power supply for digital core circuit of front camera	Vnorm=1.2V I _O max=600mA
CSI0_CLK_N	89	Al	MIPI clock signal of rear camera (negative)	
CSI0_CLK_P	88	AI	MIPI clock signal of rear camera (positive)	
CSI0_LN0_N	91	AI	MIPI lane 0 data signal of rear camera (negative)	
CSI0_LN0_P	90	Al	MIPI lane 0 data signal of rear camera (positive)	
CSI0_LN1_N	93	Al	MIPI lane 1 data signal of rear camera (negative)	
CSI0_LN1_P	92	Al	MIPI lane 1 data signal of rear camera (positive)	
CSI0_LN2_N	95	AI	MIPI lane 2 data signal of rear camera (negative)	
CSI0_LN2_P	94	AI	MIPI lane 2 data signal of rear camera (positive)	
CSI0_LN3_N	97	Al	MIPI lane 3 data signal of rear camera (negative)	
CSI0_LN3_P	96	Al	MIPI lane 3 data signal of rear camera (positive)	
CSI1_CLK_N	184	Al	MIPI clock signal of depth camera (negative)	
CSI1_CLK_P	183	AI	MIPI clock signal of depth camera (positive)	
CSI1_LN0_N	186	AI	MIPI lane 0 data signal of depth camera (negative)	

CSI1_LN0_P	185	Al	MIPI lane 0 data signal of depth camera (positive)	
CSI1_LN1_N	188	Al	MIPI lane 1 data signal of depth camera (negative)	
CSI1_LN1_P	187	Al	MIPI lane 1 data signal of depth camera (positive)	
CSI1_LN2_N	190	AI	MIPI lane 2 data signal of depth camera (negative)	Can be multiplexed into differential data of the fourth camera (negative)
CSI1_LN2_P	189	AI	MIPI lane 2 data signal of depth camera (positive)	Can be multiplexed into differential data of the fourth camera (positive)
CSI1_LN3_N	192	AI	MIPI lane 3 data signal of depth camera (negative)	Can be multiplexed into differential clock of the fourth camera (negative)
CSI1_LN3_P	191	AI	MIPI lane 3 data signal of depth camera (positive)	Can be multiplexed into differential clock of the fourth camera (positive)
CSI2_CLK_N	78	Al	MIPI clock signal of front camera (negative)	
CSI2_CLK_P	77	Al	MIPI clock signal of front camera (positive)	
CSI2_LN0_N	80	Al	MIPI lane 0 data signal of front camera (negative)	
CSI2_LN0_P	79	Al	MIPI lane 0 data signal of front camera (positive)	
CSI2_LN1_N	82	Al	MIPI lane 1 data signal of front camera (negative)	
CSI2_LN1_P	81	AI	MIPI lane 1 data signal of front camera (positive)	
CSI2_LN2_N	84	Al	MIPI lane 2 data signal of front camera (negative)	
CSI2_LN2_P	83	AI	MIPI lane 2 data signal of front camera (positive)	
CSI2_LN3_N	86	AI	MIPI lane 3 data signal of front camera (negative)	
CSI2_LN3_P	85	Al	MIPI lane 3 data signal of front camera (positive)	
MCAM_MCLK	99	DO	Master clock signal of rear camera	
SCAM_MCLK	100	DO	Master clock signal of front camera	

MCAM_RST	74	DO	Reset signal of rear camera
MCAM_PWDN	73	DO	Power down signal of rear camera
SCAM_RST	72	DO	Reset signal of front camera
SCAM_PWDN	71	DO	Power down signal of front camera
CAM_I2C_SCL	75	OD	I2C clock signal of camera
CAM_I2C_SDA	76	OD	I2C data signal of camera
DCAM_MCLK	194	DO	Clock signal of depth camera
CAM4_MCLK	236	DO	Master clock signal of fourth camera
DCAM_RST	180	DO	Reset signal of depth camera
DCAM_PWDN	181	DO	Power down signal of depth camera
DCAM_I2C_SDA	197	OD	I2C data of depth camera
DCAM_I2C_SCL	196	OD	I2C clock of depth camera

The following is a reference circuit design for two-camera applications.

Figure 24: Reference Circuit Design for Two-Camera Applications

NOTE

CSI0 is used for rear camera, CSI1 is used for depth camera, and CSI2 is used for front camera.

The following is a reference circuit design for three-camera applications.

Figure 25: Reference Circuit Design for Three-Camera Applications

NOTE

CSI1 data lines CSI1_LN2_P, CSI_LN2_N, CSI_LN3_P and CSI_LN3_N can be multiplexed into MIPI signals for the fourth camera in four-camera application.

3.21.1. Design Considerations

- Special attention should be paid to the pin definition of LCM/camera connectors. Assure the SC60 and the connectors are correctly connected.
- MIPI are high speed signal lines, supporting maximum data rate up to 2.1Gbps. The differential impedance should be controlled as 100Ω. Additionally, it is recommended to route the trace on the inner layer of PCB, and do not cross it with other traces. For the same group of DSI or CSI signals, all the MIPI traces should keep the same length. In order to avoid crosstalk, it is recommended to maintain the intra-lane spacing as trace width and the inter-lane spacing as two times of the trace width. Any cut or hole on GND reference plane under MIPI signals should be avoided.
- It is recommended to select a low capacitance TVS for ESD protection and the recommended parasitic capacitance is below 1pF.
- Route MIPI traces according to the following rules:
 - a) The total trace length should not exceed 305mm;
 - b) Control the differential impedance as $100\Omega \pm 10\%$;
 - c) Control intra-lane length difference within 0.67mm;
 - d) Control inter-lane length difference within 1.3mm.

Table 28: MIPI Trace Length Inside the Module

Pin No.	Pin Name	Length (mm)	Length Difference (P-N)	
116	DSI0_CLK_N	20.82	-0.45	
115	DSI0_CLK_P	20.37	-0.45	
118	DSI0_LN0_N	24.84	0	
117	DSI0_LN0_P	24.84	0	
120	DSI0_LN1_N	24.85	0.02	
119	DSI0_LN1_P	24.82	-0.03	
122	DSI0_LN2_N	25.94	0.24	
121	DSI0_LN2_P	26.18	0.24	
124	DSI0_LN3_N	29.31	0.2	
123	DSI0_LN3_P	29.51	0.2	
103	DSI1_CLK_N	9.52	0.05	
102	DSI1_CLK_P	9.47	-0.05	

DSI1_LN0_N	10.27	0.44
DSI1_LN0_P	10.16	-0.11
DSI1_LN1_N	11.75	0.15
DSI1_LN1_P	11.58	-0.17
DSI1_LN2_N	14.86	
DSI1_LN2_P	14.5	-0.36
DSI1_LN3_N	15.73	
DSI1_LN3_P	15.88	0.15
CSI0_CLK_N	16.54	
CSI0_CLK_P	16.57	0.03
CSI0_LN0_N	17.47	0.07
CSI0_LN0_P	17.4	-0.07
CSI0_LN1_N	12.13	0.05
CSI0_LN1_P	12.08	-0.05
CSI0_LN2_N	9.56	0.14
CSI0_LN2_P	9.7	0.14
CSI0_LN3_N	8.73	0.13
CSI0_LN3_P	8.86	0.13
CSI1_CLK_N	20.32	-0.23
CSI1_CLK_P	20.09	-0.23
CSI1_LN0_N	12.09	0.57
CSI1_LN0_P	12.66	0.37
CSI1_LN1_N	11.33	0.37
CSI1_LN1_P	11.70	0.37
CSI1_LN2_N	5.86	0.40
CSI1_LN2_P	6.05	0.19
	DSI1_LN0_P DSI1_LN1_N DSI1_LN1_P DSI1_LN2_N DSI1_LN3_N DSI1_LN3_P CSI0_CLK_N CSI0_CLK_P CSI0_LN0_N CSI0_LN0_P CSI0_LN1_P CSI0_LN2_N CSI0_LN2_N CSI0_LN3_N CSI0_LN3_P CSI0_LN3_P CSI1_CLK_N CSI1_CLK_P CSI1_CLK_P CSI1_CLK_P	DSI1_LN0_P 10.16 DSI1_LN1_N 11.75 DSI1_LN1_P 11.58 DSI1_LN2_N 14.86 DSI1_LN2_P 14.5 DSI1_LN3_N 15.73 DSI1_LN3_P 15.88 CSI0_CLK_N 16.54 CSI0_CLK_P 16.57 CSI0_LN0_N 17.47 CSI0_LN0_P 17.4 CSI0_LN1_N 12.13 CSI0_LN1_P 12.08 CSI0_LN2_N 9.56 CSI0_LN2_P 9.7 CSI0_LN3_N 8.73 CSI0_LN3_P 8.86 CSI1_CLK_N 20.32 CSI1_CLK_P 20.09 CSI1_LN0_N 12.09 CSI1_LN0_P 12.66 CSI1_LN1_P 11.70 CSI1_LN2_N 5.86

192	CSI1_LN3_N	10.49	-0.43
191	CSI1_LN3_P	10.06	-0.43
78	CSI2_CLK_N	22.00	0.17
77	CSI2_CLK_P	22.17	0.17
80	CSI2_LN0_N	22.07	-0.07
79	CSI2_LN0_P	22.00	-0.07
82	CSI2_LN1_N	22.54	-0.49
81	CSI2_LN1_P	22.05	-0.49
84	CSI2_LN2_N	22.03	0.11
83	CSI2_LN2_P	21.92	-0.11
86	CSI2_LN3_N	21.90	0.50
85	CSI2_LN3_P	22.49	0.59

3.21.2. Flashlight Interfaces

SC60 module supports 2 flash LED drivers, with maximal output current up to 1A per channel in flash mode and 200mA in torch mode. The default output current is 625mA in flash mode and 120mA in torch mode.

Table 29: Pin Definition of Flashlight Interfaces

Pin Name	Pin No.	I/O	Description	Comment
FLASH_LED1	26	AO	Flash/torch drive signal output	
FLASH_LED2	162	АО	Flash/torch drive signal output	

A reference circuit design is shown below.

Figure 26: Reference Circuit Design for Flashlight Interfaces

3.22. Sensor Interfaces

SC60 module supports communication with sensors via I2C interface, and it supports various sensors such as acceleration sensor, gyroscopic sensor, compass, optical sensor, temperature sensor.

Table 30: Pin Definition of Sensor Interfaces

Pin Name	Pin No.	I/O	Description	Comment
SENSOR_I2C_SCL	131	OD	I2C clock signal of external sensor	
SENSOR_I2C_SDA	132	OD	I2C data signal of external sensor	
GPIO_43	253	DI	Interrupt signal of optical sensor	
GPIO_44	254	DI	Interrupt signal of direction sensor (compass)	
GPIO_42	252	DI	Interrupt signal of acceleration sensor	
GPIO_45	255	DI	Interrupt signal of gyroscopic sensor	

3.23. Audio Interfaces

SC60 module provides three analog input channels and three analog output channels. The following table shows the pin definition.

Table 31: Pin Definition of Audio Interfaces

Pin Name	Pin No.	I/O	Description	Comment
MIC1_P	44	Al	Microphone positive input for channel 1	
MIC1_N	45	Al	Microphone negative input for channel 1	
MIC_GND	168		Microphone reference ground	If unused, connect this pin to the ground.
MIC2_P	46	Al	Microphone positive input for headset.	
MIC3_P	169	Al	Microphone positive input for channel 2	
MIC_BIAS	167	AO	Microphone bias voltage	
EAR_P	53	АО	Earpiece positive output	
EAR_N	52	АО	Earpiece negative output	
SPK_P	55	AO	Speaker positive output	
SPK_N	54	АО	Speaker negative output	
HPH_R	51	АО	Headphone right channel output	
HPH_REF	50	Al	Headphone reference ground	
HPH_L	49	АО	Headphone left channel output	
HS_DET	48	Al	Headset insertion detection	High level by default.

- The module offers three audio input channels, including one differential input pair and two single-ended channels. The three sets of MICs are integrated with internal bias voltage.
- The output voltage range of MIC_BIAS is programmable between 1.6V and 2.85V, and the maximum output current is 3mA.
- The earpiece interface uses differential output.
- The loudspeaker interface uses differential output as well. The output channel is available with a Class-D amplifier whose maximum output power is 1.5W when load is 8Ω.
- The headphone interface features stereo left and right channel output, and headphone insertion detection function is supported.

3.23.1. Reference Circuit Design for Microphone Interfaces

Figure 27: Reference Circuit Design for Analog ECM-type Microphone

Figure 28: Reference Circuit Design for MEMS-type Microphone

3.23.2. Reference Circuit Design for Earpiece Interface

Figure 29: Reference Circuit Design for Earpiece Interface

3.23.3. Reference Circuit Design for Headphone Interface

Figure 30: Reference Circuit Design for Headphone Interface

3.23.4. Reference Circuit Design for Loudspeaker Interface

Figure 31: Reference Circuit Design for Loudspeaker Interface

3.23.5. Audio Interfaces Design Considerations

It is recommended to use the electret microphone with dual built-in capacitors (e.g. 10pF and 33pF) for filtering out RF interference, thus reducing TDD noise. The 33pF capacitor is applied for filtering out RF interference when the module is transmitting at EGSM900. Without placing this capacitor, TDD noise could be heard. The 10pF capacitor here is used for filtering out RF interference at DCS1800. Please note that the resonant frequency point of a capacitor largely depends on the material and production technique. Therefore, customers would have to discuss with their capacitor vendors to choose the most suitable capacitor for filtering out high-frequency noises.

The severity degree of the RF interference in the voice channel during GSM transmitting largely depends on the application design. In some cases, EGSM900 TDD noise is more severe; while in other cases, DCS1800 TDD noise is more obvious. Therefore, a suitable capacitor can be selected based on the test results. Sometimes, even no RF filtering capacitor is required.

In order to decrease radio or other signal interference, RF antennas should be placed away from audio interfaces and audio traces. Power traces cannot be parallel with and also should be far away from the audio traces.

The differential audio traces must be routed according to the differential signal layout rule.

3.24. Emergency Download Interface

USB_BOOT is an emergency download interface. Pull up to LDO5_1P8 during power-up will force the module enter into emergency download mode. This is an emergency option when there are failures such as abnormal startup or operation. For convenient firmware upgrade and debugging in the future, please reverse the reference circuit design shown as below.

Figure 32: Reference Circuit Design for Emergency Download Interface

3.25. LED Sink Driver Interfaces

The following is the pin definition of LED sink driver interfaces.

Table 32: Pin Definition of LED Sink Driver Interfaces

Pin Name	Pin No.	I/O	Description	Comment
CHG_LED	157	AI	Current sink for charging indication	Sink current range: 5mA~20mA
PMI_MPP2	158	AI	Current sink for general purpose indication	Sink current range: 0mA~40mA

A reference circuit design for LED interfaces is shown below.

Figure 33: Reference Circuit Design for LED Interfaces

4 Wi-Fi and BT

SC60 module provides a shared antenna interface ANT_WIFI/BT for Wi-Fi and Bluetooth (BT) functions. The interface impedance is 50Ω . External antennas such as PCB antenna, sucker antenna and ceramic antenna can be connected to the module via the interface, so as to achieve Wi-Fi and BT functions.

4.1. Wi-Fi Overview

SC60 module supports 2.4GHz and 5GHz dual-band WLAN wireless communication based on IEEE 802.11a/b/g/n/ac standard protocols. The maximum data rate is up to 433Mbps.

The features are as below:

- Support Wake-on-WLAN (WoWLAN)
- Support ad hoc mode
- Support WAPI SMS4 hardware encryption
- Support AP mode
- Support Wi-Fi Direct
- Support MCS 0-7 for HT20 and HT40
- Support MCS 0-8 for VHT20
- Support MCS 0-9 for VHT40 and VHT80

4.1.1. Wi-Fi Performance

The following table lists the Wi-Fi transmitting and receiving performance of SC60 module.

Table 33: Wi-Fi Transmitting Performance

	Standard	Rate	Output Power
	802.11b	1Mbps	16dBm±2.5dB
	802.11b	11Mbps	16dBm±2.5dB
2.4GHz	802.11g	6Mbps	16dBm±2.5dB
	802.11g	54Mbps	14dBm±2.5dB

	802.11n HT20	MCS0	15dBm±2.5dB
	802.11n HT20	MCS7	13dBm±2.5dB
	802.11n HT40	MCS0	14dBm±2.5dB
	802.11n HT40	MCS7	13dBm±2.5dB
	802.11a	6Mbps	15dBm±2.5dB
	802.11a	54Mbps	13dBm±2.5dB
	802.11n HT20	MCS0	15dBm±2.5dB
	802.11n HT20	MCS7	13dBm±2.5dB
	802.11n HT40	MCS0	15dBm±2.5dB
5GHz	802.11n HT40	MCS7	13dBm±2.5dB
SGHZ	802.11ac VHT20	MCS0	14dBm±2.5dB
	802.11ac VHT20	MCS8	13dBm±2.5dB
	802.11ac VHT40	MCS0	13dBm±2.5dB
	802.11ac VHT40	MCS9	12dBm±2.5dB
	802.11ac VHT80	MCS0	13dBm±2.5dB
	802.11ac VHT80	MCS9	12dBm±2.5dB

Table 34: Wi-Fi Receiving Performance

	Standard	Rate	Sensitivity	
	802.11b	1Mbps	-96dBm	
	802.11b	11Mbps	-87dBm	
2.4011-	802.11g	6Mbps	-91dBm	
2.4GHz	802.11g	54Mbps	-73dBm	
	802.11n HT20	MCS0	-90dBm	
	802.11n HT20	MCS7	-72dBm	

	802.11n HT40	MCS0	-87dBm	
	802.11n HT40	MCS7	-68dBm	
	802.11a	6Mbps	-90dBm	
	802.11a	54Mbps	-70dBm	
	802.11n HT20	MCS0	-88dBm	
	802.11n HT20	MCS7	-69dBm	
5GHz	802.11n HT40	MCS0	-86dBm	
	802.11n HT40	MCS7	-66dBm	
	802.11ac VHT20	MCS8	-68dBm	
	802.11ac VHT40	MCS9	-64dBm	
	802.11ac VHT80	MCS9	-60dBm	

Reference specifications are listed below:

- IEEE 802.11n WLAN MAC and PHY, October 2009 + IEEE 802.11-2007 WLAN MAC and PHY, June 2007
- IEEE Std 802.11b, IEEE Std 802.11d, IEEE Std 802.11e, IEEE Std 802.11g, IEEE Std 802.11i: IEEE 802.11-2007 WLAN MAC and PHY, June 2007

4.2. BT Overview

SC60 module supports BT4.2 (BR/EDR+BLE) specifications, as well as GFSK, 8-DPSK, π /4-DQPSK modulation modes.

- Maximally support up to 7 wireless connections
- Maximally support up to 3.5 piconets at the same time
- Support one SCO or eSCO (Extended Synchronous Connection Oriented) connection

The BR/EDR channel bandwidth is 1MHz, and can accommodate 79 channels. The BLE channel bandwidth is 2MHz, and can accommodate 40 channels.

Table 35: BT Data Rate and Versions

Version	Data rate	Maximum Application	Throughput	Comment
1.2	1Mbit/s	> 80Kbit/s		
2.0+EDR	3Mbit/s	> 80Kbit/s		
3.0+HS	24Mbit/s	Reference to 3.0+HS		
4.0	24Mbit/s	Reference to 4.0 LE		

Reference specifications are listed below:

- Bluetooth Radio Frequency TSS and TP Specification 1.2/2.0/2.0 + EDR/2.1/2.1+ EDR/3.0/3.0 + HS, August 6, 2009
- Bluetooth Low Energy RF PHY Test Specification, RF-PHY.TS/4.0.0, December 15, 2009

4.2.1. BT Performance

The following table lists the BT transmitting and receiving performance of SC60 module.

Table 36: BT Transmitting and Receiving Performance

Transmitter Performance					
Packet Types	DH5	2-DH5	3-DH5		
Transmitting Power	10dBm±2.5dB	8dBm±2.5dB	8dBm±2.5dB		
Receiver Performance					
Receiver Performance					
Receiver Performance Packet Types	DH5	2-DH5	3-DH5		

5 GNSS

SC60 module integrates a Qualcomm IZat™ GNSS engine (Gen 8C) which supports multiple positioning and navigation systems including GPS, GLONASS and BeiDou. With an embedded LNA, the module provides greatly improved positioning accuracy.

5.1. GNSS Performance

The following table lists the GNSS performance of SC60 module in conduction mode.

Table 37: GNSS Performance

Parameter	Description	Тур.	Unit
	Cold start	-146	dBm
Sensitivity (GNSS)	Reacquisition	-158	dBm
	Tracking	-160	dBm
	Cold start	32	S
TTFF (GNSS)	Warm start	30	S
	Hot start	2	S
Static Drift (GNSS)	CEP-50	6	m

5.2. GNSS RF Design Guidelines

Bad design of antenna and layout may cause reduced GNSS receiving sensitivity, longer GNSS positioning time, or reduced positioning accuracy. In order to avoid these, please follow the design rules listed below:

- Maximize the distance between the GNSS RF part and the GPRS RF part (including trace routing and antenna layout) to avoid mutual interference.
- In user systems, GNSS RF signal lines and RF components should be placed far away from high speed circuits, switched-mode power supplies, power inductors, the clock circuit of single-chip microcomputers, etc.
- For applications with harsh electromagnetic environment or high ESD-protection requirements, it is recommended to add ESD protective diodes for the antenna interface. Only diodes with ultra-low junction capacitance such as 0.5pF can be selected. Otherwise, there will be effects on the impedance characteristic of RF circuit loop, or attenuation of bypass RF signal may be caused.
- Control the impedance of either feeder line or PCB trace as 50Ω , and keep the trace length as short as possible.
- Refer to *Chapter 6.3* for GNSS antenna reference circuit designs.

6 Antenna Interfaces

SC60 provides four antenna interfaces for main antenna, Rx-diversity/MIMO antenna, GNSS antenna, and Wi-Fi/BT antenna, respectively. The antenna ports have an impedance of 50Ω .

6.1. Main/Rx-diversity Antenna Interfaces

The pin definition of main/Rx-diversity antenna interfaces is shown below.

Table 38: Pin Definition of Main/Rx-diversity Antenna Interfaces

Pin Name	Pin No.	I/O	Description	Comment
ANT_MAIN	19	Ю	Main antenna interface	50Ω impedance
ANT_DRX	149	Al	Diversity and MIMO antenna interface	50Ω impedance

The operating frequencies of SC60 module are listed in the following table.

Table 39: SC60-CE/SC60-PC Module Operating Frequencies

3GPP Band	Receive	Transmit	Unit
EGSM900	925~960	880~915	MHz
DCS1800	1805~1880	1710~1785	MHz
WCDMA B1	2110~2170	1920~1980	MHz
WCDMA B8	925~960	880~915	MHz
EVDO/CDMA BC0	869~894	824~849	MHz
TD-SCDMA B34	2010~2025	2010~2025	MHz
TD-SCDMA B39	1880~1920	1880~1920	MHz

LTE-FDD B1 2110~2170 1920~1980 MHz LTE-FDD B3 1805~1880 1710~1785 MHz LTE-FDD B5 824~849 869~894 MHz LTE-FDD B8 925~960 880~915 MHz LTE-TDD B34 2010~2025 2010~2025 MHz LTE-TDD B38 2570~2620 2570~2620 MHz LTE-TDD B39 1880~1920 1880~1920 MHz LTE-TDD B40 2300~2400 2300~2400 MHz LTE-TDD B41 1) 2555~2655 MHz				
LTE-FDD B5 824~849 869~894 MHz LTE-FDD B8 925~960 880~915 MHz LTE-TDD B34 2010~2025 2010~2025 MHz LTE-TDD B38 2570~2620 2570~2620 MHz LTE-TDD B39 1880~1920 1880~1920 MHz LTE-TDD B40 2300~2400 2300~2400 MHz	LTE-FDD B1	2110~2170	1920~1980	MHz
LTE-FDD B8 925~960 880~915 MHz LTE-TDD B34 2010~2025 2010~2025 MHz LTE-TDD B38 2570~2620 2570~2620 MHz LTE-TDD B39 1880~1920 1880~1920 MHz LTE-TDD B40 2300~2400 2300~2400 MHz	LTE-FDD B3	1805~1880	1710~1785	MHz
LTE-TDD B34 2010~2025 2010~2025 MHz LTE-TDD B38 2570~2620 2570~2620 MHz LTE-TDD B39 1880~1920 1880~1920 MHz LTE-TDD B40 2300~2400 2300~2400 MHz	LTE-FDD B5	824~849	869~894	MHz
LTE-TDD B38 2570~2620 2570~2620 MHz LTE-TDD B39 1880~1920 1880~1920 MHz LTE-TDD B40 2300~2400 2300~2400 MHz	LTE-FDD B8	925~960	880~915	MHz
LTE-TDD B39 1880~1920 1880~1920 MHz LTE-TDD B40 2300~2400 2300~2400 MHz	LTE-TDD B34	2010~2025	2010~2025	MHz
LTE-TDD B40 2300~2400 2300~2400 MHz	LTE-TDD B38	2570~2620	2570~2620	MHz
	LTE-TDD B39	1880~1920	1880~1920	MHz
LTE-TDD B41 ¹⁾ 2555~2655 2555~2655 MHz	LTE-TDD B40	2300~2400	2300~2400	MHz
	LTE-TDD B41 1)	2555~2655	2555~2655	MHz

Table 40: SC60-E/SC60-PE Module Operating Frequencies

3GPP Band	Receive	Transmit	Unit
GSM850	869~894	824~849	MHz
EGSM900	925~960	880~915	MHz
DCS1800	1805~1880	1710~1785	MHz
PCS1900	1930~1990	1850~1910	MHz
WCDMA B1	2110~2170	1920~1980	MHz
WCDMA B2	1930~1990	1850~1910	MHz
WCDMA B5	871~892	826~847	MHz
WCDMA B8	925~960	880~915	MHz
LTE-FDD B1	2110~2170	1920~1980	MHz
LTE-FDD B3	1805~1880	1710~1785	MHz
LTE-FDD B5	869~894	824~849	MHz
LTE-FDD B7	2620~2690	2500~2570	MHz
LTE-FDD B8	925~960	880~915	MHz

LTE-FDD B20	791~821	832~862	MHz
LTE-FDD B28A	758~788	703~733	MHz
LTE-TDD B38	2570~2620	2570~2620	MHz
LTE-TDD B40	2300~2400	2300~2400	MHz
LTE-TDD B41 ²⁾	2535~2655	2535~2655	MHz

Table 41: SC60-A/SC60-PA Module Operating Frequencies

3GPP Band	Receive	Transmit	Unit
GSM850	869~894	824~849	MHz
PCS1900	1930~1990	1850~1910	MHz
WCDMA B1	2110~2170	1920~1980	MHz
WCDMA B2	1930~1990	1850~1910	MHz
WCDMA B4	2110~2155	1710~1755	MHz
WCDMA B5	871~892	826~847	MHz
LTE-FDD B2	1930~1990	1850~1910	MHz
LTE-FDD B4	2110~2155	1710~1755	MHz
LTE-FDD B5	869~894	824~849	MHz
LTE-FDD B7	2620~2690	2500~2570	MHz
LTE-FDD B12	729~746	699~716	MHz
LTE-FDD B13	746~756	777~787	MHz
LTE-FDD B14	758~768	788~798	MHz
LTE-FDD B25	1930~1995	1850~1915	MHz
LTE-FDD B26	859~894	814~849	MHz
LTE-TDD B41 ²⁾	2535~2655	2535~2655	MHz

NOTES

- 1. ¹⁾ The bandwidth of LTE-TDD B41 for SC60-CE/SC60-PC is 100MHz (2555MHz~2655MHz), and the corresponding channel ranges from 40240 to 41240.
- 2. ²⁾ The bandwidth of LTE-TDD B41 for SC60-E/SC60-PE and SC60-A/SC60-PA is 120MHz (2535MHz~2655MHz), and the corresponding channel ranges from 40040 to 41240.

6.1.1. Main and Rx-diversity Antenna Interfaces Reference Design

A reference circuit design for main and Rx-diversity antenna interfaces is shown as below. A π -type matching circuit should be reserved for better RF performance, and the π -type matching components (R1/C1/C2, R2/C3/C4) should be placed as close to the antennas as possible. The capacitors are not mounted by default and resistors are 0Ω .

Figure 34: Reference Circuit Design for Main and Rx-diversity Antenna Interfaces

6.1.2. Reference Design of RF Layout

For user's PCB, the characteristic impedance of all RF traces should be controlled as 50Ω . The impedance of the RF traces is usually determined by the trace width (W), the materials' dielectric constant, the distance between signal layer and reference ground (H), and the clearance between RF trace and ground (S). Microstrip line or coplanar waveguide line is typically used in RF layout for characteristic impedance control. The following are reference designs of microstrip line or coplanar waveguide line with different PCB structures.

Figure 35: Microstrip Line Design on a 2-layer PCB

Figure 36: Coplanar Waveguide Line Design on a 2-layer PCB

Figure 37: Coplanar Waveguide Line Design on a 4-layer PCB (Layer 3 as Reference Ground)

Figure 38: Coplanar Waveguide Line Design on a 4-layer PCB (Layer 4 as Reference Ground)

In order to ensure RF performance and reliability, the following principles should be complied with in RF layout design:

- Use impedance simulation tool to control the characteristic impedance of RF traces as 50Ω .
- The GND pins adjacent to RF pins should not be designed as thermal relief pads, and should be fully connected to ground.
- The distance between the RF pins and the RF connector should be as short as possible, and all the right-angle traces should be changed to curved ones.
- There should be clearance area under the signal pin of the antenna connector or solder joint.
- The reference ground of RF traces should be complete. Meanwhile, adding some ground vias around RF traces and the reference ground could help to improve RF performance. The distance between the ground vias and RF traces should be no less than two times the width of RF signal traces (2*W).

For more details about RF layout, please refer to document [3].

6.2. Wi-Fi/BT Antenna Interface

Table 42: Pin Definition of Wi-Fi/BT Antenna Interface

Pin Name	Pin No.	I/O	Description	Comment
ANT_WIFI/BT	129	Ю	Wi-Fi/BT antenna interface	50Ω impedance

Table 43: Wi-Fi/BT Frequency

Туре	Frequency	Unit
802.11a/b/g/n/ac	2402~2482 5180~5825	MHz
BT4.2 LE	2402~2480	MHz

A reference circuit design for Wi-Fi/BT antenna interface is shown as below. A π -type matching circuit is recommended to be reserved for better RF performance. The capacitors are not mounted by default and resistors are 0Ω .

Figure 39: Reference Circuit Design for Wi-Fi/BT Antenna Interface

6.3. GNSS Antenna Interface

Table 44: Pin Definition of GNSS Antenna

Pin Name	Pin No.	I/O	Description	Comment
ANT_GNSS	134	Al	GNSS antenna Interface	50Ω impedance
GNSS_LNA_EN	202	DO	LNA enable control	For test purpose only. If unused, keep it open.

Table 45: GNSS Frequency

Туре	Frequency	Unit
GPS	1575.42±1.023	MHz
GLONASS	1597.5~1605.8	MHz
BeiDou	1561.098±2.046	MHz

6.3.1. Recommended Circuit for Passive Antenna

GNSS antenna interface supports passive ceramic antennas and other types of passive antennas. A reference circuit design is given below.

Figure 40: Reference Circuit Design for GNSS Passive Antenna

NOTE

When the passive antenna is placed far away from the module (that is, the antenna trace is long), it is recommended to add an external LNA circuit for better GNSS receiving performance, and the LNA should be placed close to the antenna.

6.3.2. Recommended Circuit for Active Antenna

The active antenna is powered by a 56nH inductor through the antenna's signal path. The common power supply voltage ranges from 3.3V to 5.0V. Although featuring low power consumption, the active antenna still requires stable and clean power supplies. It is recommended to use high performance LDO as the power supply. A reference design of GNSS active antenna is shown below.

Figure 41: Reference Circuit Design for GNSS Active Antenna

6.4. Antenna Installation

6.4.1. Antenna Requirements

The following table shows the requirements on main antenna, Rx-diversity, Wi-Fi/BT antenna and GNSS antenna.

Table 46: Antenna Requirements

Antenna Type	Requirements
	VSWR: ≤ 2
	Gain (dBi): 1
	Max Input Power (W): 50
	Input Impedance (Ω): 50
	Polarization Type: Vertical
GSM/WCDMA/TD-SCDMA/	Cable Insertion Loss: < 1dB
LTE	(GSM850, EGSM900, WCDMA B5/B6/B8/B19, EVDO/CDMA BC0, LTE
	B5/B8/B12/B13/B14/B18/B19/B20/B26/B28A/B28B)
	Cable Insertion Loss: < 1.5dB
	(GSM1800, PCS1900, WCDMA B1/B2/B4, TD-SCDMA B34/B39,
	LTE B1/B2/B3/B4/B25/B34/B39)
	Cable Insertion Loss: < 2dB (LTE-FDD B7, LTE-TDD B38/B40/B41)
	VSWR: ≤ 2
	Gain (dBi): 1
Wi-Fi/BT	Max Input Power (W): 50
***************************************	Input Impedance (Ω): 50
	Polarization Type: Vertical
	Cable Insertion Loss: < 1dB
	Frequency range: 1559MHz~1609MHz
	Polarization: RHCP or linear
	VSWR: < 2 (Typ.)
GNSS 1)	Passive Antenna Gain: > 0dBi
31133	Active Antenna Noise Figure: < 1.5dB (Typ.)
	Active Antenna Gain: > -2dBi
	Active Antenna Embedded LNA Gain: < 17dB (Typ.)
	Active Antenna Total Gain: < 17dBi (Typ.)

NOTE

¹⁾ It is recommended to use a passive GNSS antenna when LTE B13 or B14 is supported, as the use of active antenna may generate harmonics which will affect the GNSS performance.

6.4.2. Recommended RF Connector for Antenna Installation

If RF connector is used for antenna connection, it is recommended to use the U.FL-R-SMT connector provided by HIROSE.

Figure 42: Dimensions of the U.FL-R-SMT Connector (Unit: mm)

U.FL-LP serial connectors listed in the following figure can be used to match the U.FL-R-SMT.

Figure 43: Mechanicals of U.FL-LP Connectors

The following figure describes the space factor of mated connector.

Figure 44: Space Factor of Mated Connector (Unit: mm)

For more details, please visit http://www.hirose.com.

7 Electrical, Reliability and Radio Characteristics

7.1. Absolute Maximum Ratings

Absolute maximum ratings for power supply and voltage on digital and analog pins of the module are listed in the following table.

Table 47: Absolute Maximum Ratings

Parameter	Min	Max	Unit
VBAT	-0.5	6	V
USB_VBUS	-0.5	20	V
Current on VBAT	0	3	А
Voltage on Digital Pins	-0.3	2.3	V

7.2. Power Supply Ratings

Table 48: SC60 Module Power Supply Ratings

Parameter	Description	Conditions	Min	Тур.	Max	Unit
VDAT	VBAT	The actual input voltages must stay between the minimum and maximum values.	3.55	3.8	4.4	V
VBAT	Voltage drop during transmitting burst	Maximum power control level at EGSM900			400	mV

Parameter	Description	Conditions	Min	Тур.	Max	Unit
I _{VBAT}	Peak supply current (during transmission slot)	Maximum power control level at EGSM900		1.8	3.0	А
USB_VBUS			4.0	5.0	10	V
VRTC	Power supply voltage of backup battery.		2.0	3.0	3.25	V

7.3. Operation and Storage Temperatures

The operation and storage temperatures are listed in the following table.

Table 49: Operation and Storage Temperatures

Parameter	Min	Тур.	Max	Unit
Operating temperature range 1)	-35	+25	+65	°C
Extended temperature range ²⁾	-40		+75	°C
Storage temperature range	-40		+90	°C

NOTES

- 1. 1) Within operation temperature range, the module is 3GPP compliant.
- 2. ²⁾ Within extended temperature range, the module remains the ability to establish and maintain a voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like P_{out} might reduce in their value and exceed the specified tolerances. When the temperature returns to the normal operating temperature levels, the module will meet 3GPP specifications again.

7.4. Current Consumption

Table 50: SC60-CE/SC60-PC Current Consumption

Parameter	Description	Conditions	Min	Тур.	Max	Unit
	OFF state	Power down		70		uA
		Sleep (USB disconnected) @DRX=2		4.3		mA
	GSM/GPRS supply current	Sleep (USB disconnected) @DRX=5		3.42		mA
		Sleep (USB disconnected) @DRX=9		3.34		mA
		Sleep (USB disconnected) @DRX=6		3.98		mA
	WCDMA supply current	Sleep (USB disconnected) @DRX=8		3.2		mA
		Sleep (USB disconnected) @DRX=9		3.08		mA
	CDMA supply current	BC0 CH283 @Slot Cycle Index=1		4.67		mA
		BC0 CH283 @Slot Cycle Index=7		3.84		mA
I _{VBAT}	TD-SCDMA supply current	Sleep (USB disconnected) @DRX=6		4.09		mA
		Sleep (USB disconnected) @DRX=8		3.58		mA
		Sleep (USB disconnected) @DRX=9		3.3		mA
		Sleep (USB disconnected) @DRX=6		5.65		mA
	LTE-FDD supply current	Sleep (USB disconnected) @DRX=8		3.69		mA
		Sleep (USB disconnected) @DRX=9		3.36		mA
		Sleep (USB disconnected) @DRX=6		7.8		mA
	LTE-TDD supply current	Sleep (USB disconnected) @DRX=8		4.27		mA
	333	Sleep (USB disconnected) @DRX=9		3.63		mA

	EGSM900 @PCL 5	250	mA
	EGSM900 @PCL 12	110	mA
CCM vaice call	EGSM900 @PCL 19	90	mA
GSM voice call	DCS1800 @PCL 0	160	mA
	DCS1800 @PCL7	110	mA
	DCS1800 @PCL 15	110	mA
MCDMA voice cell	B1 @max power	600	mA
WCDMA voice call	B8 @max power	650	mA
	EGSM900 (1UL/4DL) @PCL 5	250	mA
	EGSM900 (2UL/3DL) @PCL 5	430	mA
	EGSM900 (3UL/2DL) @PCL 5	510	mA
ODDO data tuanafan	EGSM900 (4UL/1DL) @PCL 5	600	mA
GPRS data transfer	DCS1800 (1UL/4DL) @PCL 0	170	mA
	DCS1800 (2UL/3DL) @PCL 0	270	mA
	DCS1800 (3UL/2DL) @PCL 0	370	mA
	DCS1800 (4UL/1DL) @PCL 0	470	mA
	EGSM900 (1UL/4DL) @PCL 8	160	mA
	EGSM900 (2UL/3DL) @PCL 8	260	mA
	EGSM900 (3UL/2DL) @PCL 8	320	mA
EDGE data transfer	EGSM900 (4UL/1DL) @PCL 8	390	mA
EDGE data transfer	DCS1800 (1UL/4DL) @PCL 2	150	mA
	DCS1800 (2UL/3DL) @PCL 2	230	mA
	DCS1800 (3UL/2DL) @PCL 2	320	mA
	DCS1800 (4UL/1DL) @PCL 2	410	mA
WCDMA data	B1 (HSDPA) @max power	550	mA

transfer	B8 (HSDPA) @max power	510	mA
	B1 (HSUPA) @max power	530	mA
	B8 (HSUPA) @max power	610	mA
EVDO/CDMA data transfer	BC0 @max power	510	mA
TD-SCDMA data	TD-SCDMA B34 @max power	130	mA
transfer	TD-SCDMA B39 @max power	130	mA
	LTE-FDD B1 @max power	560	mA
	LTE-FDD B3 @max power	570	mA
	LTE-FDD B5 @max power	460	mA
	LTE-FDD B8 @max power	520	mA
LTE data transfer	LTE-TDD B34 @max power	240	mA
	LTE-TDD B38 @max power	260	mA
	LTE-TDD B39 @max power	240	mA
	LTE-TDD B40 @max power	260	mA
	LTE-TDD B41 @max power	260	mA

Table 51: SC60-E/SC60-PE Current Consumption

Parameter	Description	Conditions	Min	Тур.	Max	Unit
	OFF state	Power down		69		uA
	GSM/GPRS supply current	Sleep (USB disconnected) @DRX=2		4.32		mA
		Sleep (USB disconnected) @DRX=5		3.31		mA
I _{VBAT}		Sleep (USB disconnected) @DRX=9		3.04		mA
	WCDMA supply	Sleep (USB disconnected) @DRX=6		3.71		mA
	current	Sleep (USB disconnected) @DRX=8		2.82		mA

	Sleep (USB disconnected) @DRX=9	2.76	m
	Sleep (USB disconnected) @DRX=6	3.71	n
LTE-FDD supply current	Sleep (USB disconnected) @DRX=8	2.96	n
LTE-TDD supply current	Sleep (USB disconnected) @DRX=9	2.59	n
	Sleep (USB disconnected) @DRX=6	5.37	n
	Sleep (USB disconnected) @DRX=8	3	n
	Sleep (USB disconnected) @DRX=9	2.62	n
	GSM850 @PCL 5	234	n
	GSM850 @PCL 12	107	n
	GSM850 @PCL 19	85	r
	EGSM900 @PCL 5	258	r
	EGSM900 @PCL 12	111	r
	EGSM900 @PCL 19	83	r
GSM voice call	DCS1800 @PCL 0	166	r
	DCS1800 @PCL 7	129	r
	DCS1800 @PCL 15	108	r
	PCS1900 @PCL 0	160	r
	PCS1900 @PCL 7	127	r
	PCS1900 @PCL 15	107	n
	B1 @max power	553	n
	B2 @max power	513	n
WCDMA voice call	B5 @max power	460	n
	B8 @max power	439	n
GPRS data transfer	GSM850 (1UL/4DL) @PCL 5	233	n

	GSM850 (2UL/3DL) @PCL 5	401	mA
	GSM850 (3UL/2DL) @PCL 5	469	mA
	GSM850 (4UL/1DL) @PCL 5	539	mA
	EGSM900 (1UL/4DL) @PCL 5	256	mA
	EGSM900 (2UL/3DL) @PCL 5	444	mA
	EGSM900 (3UL/2DL) @PCL 5	510	mA
	EGSM900 (4UL/1DL) @PCL 5	593	mA
	DCS1800 (1UL/4DL) @PCL 0	174	mA
	DCS1800 (2UL/3DL) @PCL 0	281	mA
	DCS1800 (3UL/2DL) @PCL 0	387	mA
	DCS1800 (4UL/1DL) @PCL 0	495	mA
	PCS1900 (1UL/4DL) @PCL 0	167	mA
	PCS1900 (2UL/3DL) @PCL 0	269	mA
	PCS1900 (3UL/2DL) @PCL 0	369	mA
	PCS1900 (4UL/1DL) @PCL 0	472	mA
	GSM850 (1UL/4DL) @PCL 8	142	mA
	GSM850 (2UL/3DL) @PCL 8	230	mA
	GSM850 (3UL/2DL) @PCL 8	293	mA
	GSM850 (4UL/1DL) @PCL 8	357	mA
EDGE data transfer	EGSM900 (1UL/4DL) @PCL 8	150	mA
LDOL data transier	EGSM900 (2UL/3DL) @PCL 8	248	mA
	EGSM900 (3UL/2DL) @PCL8	311	mA
	EGSM900 (4UL/1DL) @PCL 8	378	mA
	DCS1800 (1UL/4DL) @PCL 2	145	mA
	DCS1800 (2UL/3DL) @PCL 2	233	mA

	DCS1800 (3UL/2DL) @PCL 2	322	mA
	DCS1800 (4UL/1DL) @PCL 2	415	mA
	PCS1900 (1UL/4DL) @PCL 2	141	mA
	PCS1900 (2UL/3DL) @PCL 2	230	mA
	PCS1900 (3UL/2DL) @PCL 2	317	mA
	PCS1900 (4UL/1DL) @PCL 2	409	mA
	B1 (HSDPA) @max power	518	mA
	B2 (HSDPA) @max power	480	mA
	B5 (HSDPA) @max power	432	mA
WCDMA data	B8 (HSDPA) @max power	421	mA
transfer	B1 (HSUPA) @max power	535	mA
	B2 (HSUPA) @max power	497	mA
	B5 (HSUPA) @max power	427	mA
	B8 (HSUPA) @max power	491	mA
	LTE-FDD B1 @max power	596	mA
	LTE-FDD B3 @max power	562	mA
	LTE-FDD B5 @max power	521	mA
	LTE-FDD B7 @max power	796	mA
LTE data transfer	LTE-FDD B8 @max power	538	mA
LIE data transier	LTE-FDD B20 @max power	615	mA
	LTE-TDD B28A @max power	659	mA
	LTE-TDD B38 @max power	384	mA
	LTE-TDD B40 @max power	348	mA
	LTE-TDD B41 @max power	385	mA

Table 52: SC60-A/SC60-PA Current Consumption

Parameter	Description	Conditions	Min	Тур.	Max	Unit
	OFF state	Power down		66		uA
		Sleep (USB disconnected) @DRX=2		4.63		mA
	GSM/GPRS supply current	Sleep (USB disconnected) @DRX=5		4.23		mA
		Sleep (USB disconnected) @DRX=9		3.76		mA
		Sleep (USB disconnected) @DRX=6		5.72		mA
	WCDMA supply current	Sleep (USB disconnected) @DRX=8		3.81		mA
		Sleep (USB disconnected) @DRX=9		3.67		mA
		Sleep (USB disconnected) @DRX=6		6.78		mA
	LTE-FDD supply current	Sleep (USB disconnected) @DRX=8		4.22		mA
I_{VBAT}		Sleep (USB disconnected) @DRX=9			mA	
VDAT		Sleep (USB disconnected) @DRX=6		7.38		mA
	LTE-TDD supply current	Sleep (USB disconnected) @DRX=8		4.63		mA
		Sleep (USB disconnected) @DRX=9		4.28	3.89 7.38 4.63 4.28	mA
		GSM850 @PCL 5		257		mA
		GSM850 @PCL 12	117			mA
	OOM	GSM850 @PCL 19		90		mA
	GSM voice call	PCS1900 @PCL 0		181		mA
		PCS1900 @PCL7		132		mA
		PCS1900 @PCL 15		114		mA
	MCDMA	B1 @max power		692		mA
	WCDMA voice call		569		mA	

	B4 @max power	633	mA
	B5 @max power	537	mA
	GSM850 (1UL/4DL) @PCL 5	253	mA
	GSM850 (2UL/3DL) @PCL 5	439	mA
	GSM850 (3UL/2DL) @PCL 5	498	mA
	GSM850 (4UL/1DL) @PCL 5	604	mA
GPRS data transfer	PCS1900 (1UL/4DL) @PCL 0	174	mA
	PCS1900 (2UL/3DL) @PCL 0	286	mA
	PCS1900 (3UL/2DL) @PCL 0	394	mA
	PCS1900 (4UL/1DL) @PCL 0	505	mA
	GSM850 (1UL/4DL) @PCL 8	153	mA
	GSM850 (2UL/3DL) @PCL 8	248	mA
	GSM850 (3UL/2DL) @PCL 8	313	mA
EDOE late to a fee	GSM850 (4UL/1DL) @PCL 8	380	mA
EDGE data transfer	PCS1900 (1UL/4DL) @PCL 2	146	mA
	PCS1900 (2UL/3DL) @PCL 2	238	mA
	PCS1900 (3UL/2DL) @PCL 2	330	mA
	PCS1900 (4UL/1DL) @PCL 2	426	mA
	Band 1 (HSDPA) @max power	612	mA
	Band 2 (HSDPA) @max power	512	mA
	Band 4 (HSDPA) @max power	568	mA
WCDMA data transfer	Band 5 (HSDPA) @max power	488	mA
	Band 1 (HSUPA) @max power	620	mA
	Band 2 (HSUPA) @max power	526	mA
	Band 4 (HSUPA) @max power	582	mA

	Band 5 (HSUPA) @max power	499	mA
	LTE-FDD B2 @max power	703	mA
	LTE-FDD B4 @max power	671	mA
	LTE-FDD B5 @max power	580	mA
	LTE-FDD B7 @max power	930	mA
LTE data transfer	LTE-FDD B12 @max power	587	mA
LIE data transier	LTE-FDD B13 @max power	622	mA
	LTE-TDD B14 @max power	539	mA
	LTE-TDD B25 @max power	721	mA
	LTE-TDD B26 @max power	591	mA
	LTE-TDD B41 @max power	519	mA

7.5. RF Output Power

The following table shows the RF output power of SC60 module.

Table 53: SC60-CE/SC60-PC RF Output Power

Frequency	Max	Min
EGSM900	33dBm±2dB	5dBm±5dB
DCS1800	30dBm±2dB	0dBm±5dB
WCDMA B1	24dBm+1/-3dB	<-49dBm
WCDMA B8	24dBm+1/-3dB	<-49dBm
EVDO/CDMA BC0	24dBm+3/-1dB	<-49dBm
TD-SCDMA B34	24dBm+1/-3dB	<-49dBm
TD-SCDMA B39	24dBm+1/-3dB	<-49dBm
LTE-FDD B1	23dBm±2dB	<-39dBm

LTE-FDD B3	23dBm±2dB	<-39dBm
LTE-FDD B5	23dBm±2dB	<-39dBm
LTE-FDD B8	23dBm±2dB	<-39dBm
LTE-FDD B34	23dBm±2dB	<-39dBm
LTE-TDD B38	23dBm±2dB	<-39dBm
LTE-TDD B39	23dBm±2dB	<-39dBm
LTE-TDD B40	23dBm±2dB	<-39dBm
LTE-TDD B41	23dBm±2dB	<-39dBm

Table 54: SC60-E/SC60-PE RF Output Power

Frequency	Max	Min
GSM850	33dBm±2dB	5dBm±5dB
EGSM900	33dBm±2dB	5dBm±5dB
DCS1800	30dBm±2dB	0dBm±5dB
PCS1900	30dBm±2dB	0dBm±5dB
WCDMA B1	24dBm+1/-3dB	<-49dBm
WCDMA B2	24dBm+1/-3dB	<-49dBm
WCDMA B5	24dBm+1/-3dB	<-49dBm
WCDMA B8	24dBm+1/-3dB	<-49dBm
LTE-FDD B1	23dBm±2dB	<-39dBm
LTE-FDD B3	23dBm±2dB	<-39dBm
LTE-FDD B5	23dBm±2dB	<-39dBm
LTE-FDD B7	23dBm±2dB	<-39dBm
LTE-FDD B8	23dBm±2dB	<-39dBm
LTE-FDD B20	23dBm±2dB	<-39dBm
LTE-FDD B28A	23dBm±2dB	<-39dBm
LTE-TDD B38	23dBm±2dB	<-39dBm
	·	

LTE-TDD B40	23dBm±2dB	<-39dBm
LTE-TDD B41	23dBm±2dB	<-39dBm

Table 55: SC60-A/SC60-PA RF Output Power

Frequency	Max	Min
GSM850	33dBm±2dB	5dBm±5dB
PCS1900	30dBm±2dB	0dBm±5dB
WCDMA B1	24dBm+1/-3dB	<-49dBm
WCDMA B2	24dBm+1/-3dB	<-49dBm
WCDMA B4	24dBm+1/-3dB	<-49dBm
WCDMA B5	24dBm+1/-3dB	<-49dBm
LTE-FDD B2	23dBm±2dB	<-39dBm
LTE-FDD B4	23dBm±2dB	<-39dBm
LTE-FDD B5	23dBm±2dB	<-39dBm
LTE-FDD B7	23dBm±2dB	<-39dBm
LTE-FDD B12	23dBm±2dB	<-39dBm
LTE-FDD B13	23dBm±2dB	<-39dBm
LTE-FDD B14	23dBm±2dB	<-39dBm
LTE-FDD B25	23dBm±2dB	<-39dBm
LTE-FDD B26	23dBm±2dB	<-39dBm
LTE-TDD B41	23dBm±2dB	<-39dBm

NOTE

In GPRS 4 slots TX mode, the maximum output power is reduced by 3dB. This design conforms to the GSM specification as described in *Chapter 13.16* of *3GPP TS 51.010-1*.

7.6. RF Receiving Sensitivity

The following table shows the conducted RF receiving sensitivity of SC60 module.

Table 56: SC60-CE/SC60-PC RF Receiving Sensitivity

Frequency	R Primary	eceive Sensitivity Diversity	(Typ.) SIMO	3GPP (SIMO)
EGSM900	-109dBm	/	/	-102.4dBm
DCS1800	-109dBm	/	/	-102.4dBm
WCDMA B1	-110dBm	/	/	-106.7dBm
WCDMA B8	-110dBm	/	/	-103.7dBm
EVDO/CDMA BC0	-109dBm	/	/	-104dBm
TD-SCDMA B34	-109dBm	/	/	-108dBm
TD-SCDMA B39	-109dBm	/	/	-108dBm
LTE-FDD B1 (10M)	-98dBm	-99dBm	-102dBm	-96.3dBm
LTE-FDD B3 (10M)	-98dBm	-99dBm	-102dBm	-93.3dBm
LTE-FDD B5 (10M)	-98dBm	-99dBm	-102dBm	-94.3dBm
LTE-FDD B8 (10M)	-99dBm	-99dBm	-102dBm	-93.3dBm
LTE-TDD B34 (10M)	-97.5dBm	-99dBm	-101dBm	-96.3dBm
LTE-TDD B38 (10M)	-98dBm	-99dBm	-102dBm	-96.3dBm
LTE-TDD B39 (10M)	-98dBm	-99dBm	-102dBm	-96.3dBm
LTE-TDD B40 (10M)	-98dBm	-99dBm	-102dBm	-96.3dBm
LTE-TDD B41 (10M)	-98dBm	-99dBm	-102dBm	-94.3dBm

Table 57: SC60-E/SC60-PE RF Receiving Sensitivity

Primary	Diversity	Гур.) SIMO	3GPP (SIMO)
-109dBm	/	1	-102.4dBm
-109dBm	/	/	-102.4dBm
-109dBm	/	/	-102.4dBm
-109dBm	/	/	-102.4dBm
-110dBm	/	/	-106.7dBm
-110dBm	/	/	-106.7dBm
-110dBm	/	/	-104.7dBm
-110dBm	/	/	-104.7dBm
-97.5dBm	-99dBm	-101.5dBm	-96.3dBm
-97.5dBm	-98.5dBm	-101.5dBm	-93.3dBm
-98.5dBm	/	/	-94.3dBm
-96dBm	-98dBm	-100.5dBm	-94.3dBm
-99dBm	-99dBm	-102dBm	-93.3dBm
-96dBm	-98.5dBm	-101dBm	-93.3dBm
-96.8dBm	-98.5dBm	-100.5dBm	-94.8dBm
-98dBm	-98dBm	-100dBm	-96.3dBm
-98dBm	-98dBm	-100dBm	-96.3dBm
-97.5dBm	-97.5dBm	-100dBm	-94.3dBm
	-109dBm -109dBm -109dBm -109dBm -109dBm -110dBm -110dBm -110dBm -110dBm -97.5dBm -97.5dBm -98.5dBm -96dBm -96dBm -96dBm -96dBm -96dBm -96.8dBm -98dBm	-109dBm / -109dBm / -109dBm / -109dBm / -109dBm / -109dBm / -110dBm / -110dBm / -110dBm / -110dBm / -97.5dBm -99dBm -97.5dBm -98.5dBm -98.5dBm / -96dBm -98dBm -96dBm -98.5dBm -96dBm -98.5dBm -98dBm -98.5dBm -98dBm -98dBm	-109dBm / / / -110dBm / / / -97.5dBm -99dBm -101.5dBm / -97.5dBm -98.5dBm -101.5dBm / / -98dBm -98dBm -100.5dBm -98dBm -102dBm / -96dBm -98.5dBm -101dBm / -96dBm -98.5dBm -100dBm / -98dBm -98dBm -100dBm / -98dBm -98dBm -100dBm / -98dBm -98dBm -100dBm /

Table 58: SC60-A/SC60-PA RF Receiving Sensitivity

Frequency		ceive Sensitivity (3GPP (SIMO)
	Primary	Diversity	SIMO	(/
GSM850	-109dBm	/	/	-102.4dBm
PCS1900	-109dBm	/	/	-102.4dBm
WCDMA B1	-110dBm	/	/	-106.7dBm
WCDMA B2	-110dBm	/	/	-106.7dBm
WCDMA B4	-110dBm	/	/	-104.7dBm
WCDMA B5	-110dBm	/	/	-104.7dBm
LTE-FDD B2 (10M)	-96dBm	-99dBm	-102dBm	-96.3dBm
LTE-FDD B4 (10M)	-97dBm	-99dBm	-102dBm	-93.3dBm
LTE-FDD B5 (10M)	-99dBm	-99dBm	-102dBm	-94.3dBm
LTE-FDD B7 (10M)	-97dBm	-98dBm	-101dBm	-94.3dBm
LTE-FDD B12 (10M)	-97dBm	-99dBm	-102dBm	-93.3dBm
LTE-FDD B13 (10M)	-97dBm	-99dBm	-102dBm	-93.3dBm
LTE-FDD B14 (10M)	-97dBm	-99dBm	-101dBm	-93.3dBm
LTE-FDD B25 (10M)	-97dBm	-98dBm	-100dBm	-92.8dBm
LTE-FDD B26 (10M)	-98dBm	-99dBm	-102dBm	-93.8dBm
LTE-TDD B41 (10M)	-98dBm	-98dBm	-100dBm	-94.3dBm

7.7. Electrostatic Discharge

The module is not protected against electrostatic discharge (ESD) in general. Consequently, it should be subject to ESD handling precautions that are typically applied to ESD sensitive components. Proper ESD handling and packaging procedures must be applied throughout the processing, handling and operation of any application that incorporates the module.

The following table shows the electrostatic discharge characteristics of SC60 module.

Table 59: ESD Characteristics (Temperature: 25°C, Humidity: 45%)

Test Points	Contact Discharge	Air Discharge	Unit
VBAT, GND	+/-5	+/-10	KV
All Antenna Interfaces	+/-5	+/-10	KV
Other Interfaces	+/-0.5	+/-1	KV

8 Mechanical Dimensions

This chapter describes the mechanical dimensions of the module. All dimensions are measured in millimeter (mm), and the tolerances for dimensions without tolerance values are ± 0.05 mm.

8.1. Mechanical Dimensions of the Module

Figure 45: Module Top and Side Dimensions

Figure 46: Module Bottom Dimensions (Top View)

8.2. Recommended Footprint

Figure 47: Recommended Footprint (Top View)

NOTES

- 1. For easy maintenance of the module, keep about 3mm between the module and other components on host PCB.
- 2. All RESERVED pins should be kept open and MUST NOT be connected to ground.

8.3. Top and Bottom View of the Module

Figure 48: Top View of the Module

Figure 49: Bottom View of the Module

NOTE

These are renderings of SC60 module. For authentic dimension and appearance, please refer to the module that you receive from Quectel.

9 Storage, Manufacturing and Packaging

9.1. Storage

SC60 is stored in a vacuum-sealed bag. It is rated at MSL 3, and its storage restrictions are shown as below.

- 1. Shelf life in the vacuum-sealed bag: 12 months at <40°C/90%RH.
- 2. After the vacuum-sealed bag is opened, devices that will be subjected to reflow soldering or other high temperature processes must be:
 - Mounted within 168 hours at the factory environment of ≤30°C/60%RH.
 - Stored at <10%RH.
- 3. Devices require baking before mounting, if any circumstance below occurs.
 - When the ambient temperature is 23°C±5°C and the humidity indication card shows the humidity is >10% before opening the vacuum-sealed bag.
 - Device mounting cannot be finished within 168 hours at factory conditions of ≤30°C/60%.
- 4. If baking is required, devices may be baked for 8 hours at 120°C±5°C.

NOTE

As the plastic package cannot be subjected to high temperature, it should be removed from devic es before high temperature (120°C) baking. If shorter baking time is desired, please refer to *IPC/J EDECJ-STD-033* for baking procedure.

9.2. Manufacturing and Soldering

Push the squeegee to apply the solder paste on the surface of stencil, thus making the paste fill the stencil openings and then penetrate to the PCB. The force on the squeegee should be adjusted properly so as to produce a clean stencil surface on a single pass. To ensure the module soldering quality, the thickness of stencil for the module is recommended to be 0.18mm~0.20mm. It is recommended to slightly reduce the amount of solder paste for LGA pads, thus avoiding short-circuit. For more details, please refer to **document [4]**.

It is suggested that the peak reflow temperature is 240~245°C, and the absolute maximum reflow temperature is 245°C. To avoid damage to the module caused by repeated heating, it is strongly recommended that the module should be mounted after reflow soldering for the other side of PCB has been completed. The recommended reflow soldering thermal profile (lead-free reflow soldering) and related parameters are shown below.

Figure 50: Recommended Reflow Soldering Thermal Profile

Table 60: Recommended Thermal Profile Parameters

Factor	Recommendation
Soak Zone	
Max slope	1 to 3°C/sec
Soak time (between A and B: 150°C and 200°C)	60 to 120 sec

Reflow Zone	
Max slope	2 to 3°C/sec
Reflow time (D: over 220°C)	40 to 60 sec
Max temperature	240°C ~ 245°C
Cooling down slope	1 to 4°C/sec
Reflow Cycle	
Max reflow cycle	1

9.3. Packaging

SC60 is packaged in tape and reel carriers. Each reel is 330mm in diameter and contains 200 modules. The following figures show the package details, measured in mm.

Figure 51: Tape Dimensions

Figure 52: Reel Dimensions

Table 61: Reel Packaging

Model Name	MOQ for MP	Minimum Package: 200pcs	Minimum Package×4=800pcs
SC60	200	Size: 398mm × 383mm × 83mm N.W: 1.92kg G.W: 3.67kg	Size: 420mm × 350mm × 405mm N.W: 8.18kg G.W: 15.18kg

10 Appendix A References

Table 62: Related Documents

SN	Document Name	Remark
[1]	Quectel_Smart_EVB-G2_User_Guide	EVB User Guide for SC60
[2]	Quectel_SC60_GPIO_Configuration	GPIO Configuration of SC60
[3]	Quectel_RF_Layout_Application_Note	RF Layout Application Note
[4]	Quectel_Module_Secondary_SMT_User_Guide	Module Secondary SMT User Guide
[5]	Quectel_SC60_Reference_Design	Reference Design for SC60

Table 63: Terms and Abbreviations

Abbreviation	Description
ADC	Analog-to-Digital Converter
AMR	Adaptive Multi-rate
bps	Bits per Second
CS	Coding Scheme
CSD	Circuit Switched Data
CTS	Clear to Send
DRX	Discontinuous Reception
EFR	Enhanced Full Rate
EGSM	Extended GSM900 band (includes standard GSM900 band)
ESD	Electrostatic Discharge
FR	Full Rate

GMSK	Gaussian Minimum Shift Keying		
GPS	Global Positioning System		
GPU	Graphics Processing Unit		
GSM	Global System for Mobile Communications		
HR	Half Rate		
HSDPA	High Speed Down Link Packet Access		
HSPA	High Speed Packet Access		
I/O	Input/Output		
IQ	Inphase and Quadrature		
LCD	Liquid Crystal Display		
LCM	LCD Module		
LED	Light Emitting Diode		
LNA	Low Noise Amplifier		
LRA	Linear Resonant Actuator		
MIPI	Mobile Industry Processor Interface		
PCB	Printed Circuit Board		
PDU	Protocol Data Unit		
PMI	Power Management Interface		
PMU	Power Management Unit		
PSK	Phase Shift Keying		
QAM	Quadrature Amplitude Modulation		
QPSK	Quadrature Phase Shift Keying		
RF	Radio Frequency		
RH	Relative Humidity		
RHCP	Right Hand Circularly Polarized		

RTC	Real Time Clock
Rx	Receive
SMS	Short Message Service
TE	Terminal Equipment
TX	Transmitting Direction
UART	Universal Asynchronous Receiver & Transmitter
UMTS	Universal Mobile Telecommunications System
(U)SIM	(Universal) Subscriber Identity Module
Vmax	Maximum Voltage Value
Vnorm	Normal Voltage Value
Vmin	Minimum Voltage Value
Vı	Voltage Input
V _{IH} min	Minimum Input High Level Voltage Value
V _{IL} max	Maximum Input Low Level Voltage Value
Vo	Voltage Output
V _{OH} min	Minimum Output High Level Voltage Value
V _{OL} max	Maximum Output Low Level Voltage Value
VSWR	Voltage Standing Wave Ratio
WCDMA	Wideband Code Division Multiple Access

11 Appendix B GPRS Coding Schemes

Table 64: Description of Different Coding Schemes

Scheme	CS-1	CS-2	CS-3	CS-4
Code Rate	1/2	2/3	3/4	1
USF	3	3	3	3
Pre-coded USF	3	6	6	12
Radio Block excl.USF and BCS	181	268	312	428
BCS	40	16	16	16
Tail	4	4	4	-
Coded Bits	456	588	676	456
Punctured Bits	0	132	220	-
Data Rate Kb/s	9.05	13.4	15.6	21.4

12 Appendix C GPRS Multi-slot Classes

Twenty-nine classes of GPRS multi-slot modes are defined for MS in GPRS specification. Multi-slot classes are product dependent, and determine the maximum achievable data rates in both the uplink and downlink directions. Written as 3+1 or 2+2, the first number indicates the amount of downlink timeslots, while the second number indicates the amount of uplink timeslots. The active slots determine the total number of slots the GPRS device can use simultaneously for both uplink and downlink communications.

The description of different multi-slot classes is shown in the following table.

Table 65: GPRS Multi-slot Classes

Multislot Class	Downlink Slots	Uplink Slots	Active Slots
1	1	1	2
2	2	1	3
3	2	2	3
4	3	1	4
5	2	2	4
6	3	2	4
7	3	3	4
8	4	1	5
9	3	2	5
10	4	2	5
11	4	3	5
12	4	4	5
13	3	3	NA
14	4	4	NA

15	5	5	NA	
16	6	6	NA	
17	7	7	NA	
18	8	8	NA	
19	6	2	NA	
20	6	3	NA	
21	6	4	NA	
22	6	4	NA	
23	6	6	NA	
24	8	2	NA	
25	8	3	NA	
26	8	4	NA	
27	8	4	NA	
28	8	6	NA	
29	8	8	NA	
30	5	1	6	
31	5	2	6	
32	5	3	6	
33	5	4	6	

13 Appendix D EDGE Modulation and Coding Schemes

Table 66: EDGE Modulation and Coding Schemes

Coding Schemes	Modulation	Coding Family	1 Timeslot	2 Timeslot	4 Timeslot
CS-1:	GMSK	/	9.05kbps	18.1kbps	36.2kbps
CS-2:	GMSK	/	13.4kbps	26.8kbps	53.6kbps
CS-3:	GMSK	/	15.6kbps	31.2kbps	62.4kbps
CS-4:	GMSK	/	21.4kbps	42.8kbps	85.6kbps
MCS-1	GMSK	С	8.80kbps	17.60kbps	35.20kbps
MCS-2	GMSK	В	11.2kbps	22.4kbps	44.8kbps
MCS-3	GMSK	A	14.8kbps	29.6kbps	59.2kbps
MCS-4	GMSK	С	17.6kbps	35.2kbps	70.4kbps
MCS-5	8-PSK	В	22.4kbps	44.8kbps	89.6kbps
MCS-6	8-PSK	А	29.6kbps	59.2kbps	118.4kbps
MCS-7	8-PSK	В	44.8kbps	89.6kbps	179.2kbps
MCS-8	8-PSK	A	54.4kbps	108.8kbps	217.6kbps
MCS-9	8-PSK	A	59.2kbps	118.4kbps	236.8kbps