Solution:

1. Défaut monophasé

Ecriture des équations

- Isolement de la zone dissymétrique (cf. fig. 12)
- Equations des composantes réelles dans (D)

$$I_2 = I_3 = 0$$

 $V_1 = Z \times I_1$

Ces équations décrivent le cas examiné. Ce sont les seules qui soient propres à ce cas de figure.

 Equations des composantes symétriques dans (S)

$$\begin{cases} I_1 = Id + Ii + Io \\ I_2 = a^2 Id + a Ii + Io \\ I_3 = a Id + a^2 Ii + Io \\ V_1 = Vd + Vi + Vo \\ V_2 = a^2 Vd + a Vi + Vo \\ V_3 = a Vd + a^2 Vi + Vo \end{cases}$$

Ces équations lient respectivement les courants réels et les tensions réelles à leurs composantes symétriques. On les retrouvera à l'identique dans tous les calculs de régimes déséquilibrés. Elles résultent des définitions précédentes (cf. chap. 2).

■ Continuité à la frontière D-S

En combinant entre elles les équations des composantes réelles dans (D) et les équations des composantes symétriques dans (S) on obtient :

$$\begin{cases}
a^{2} \operatorname{Id} + a\operatorname{Ii} + \operatorname{Io} = 0 \\
a\operatorname{Id} + a^{2} \operatorname{Ii} + \operatorname{Io} = 0 \\
Vd + Vi + Vo = Z \times I_{1}
\end{cases}$$

$$\Rightarrow \begin{cases}
\operatorname{Id} = \operatorname{Ii} = \operatorname{Io} = \frac{I_{1}}{3} \\
Vd + Vi + Vo = 37 \times \operatorname{Io}
\end{cases}$$

■ Equations de fonctionnement de S

$$\begin{cases} E = Vd + Zd \times Id \\ 0 = Vi + Zi \times Ii \\ 0 = Vo + Zo \times Io \end{cases}$$

Ces trois équations se retrouveront systématiquement dans tous les calculs de régimes déséquilibrés ne comportant qu'une seule source de tension.

Résolution des équations

 Valeurs des composantes symétriques des courants et des tensions

$$E + 0 + 0 = Vd + Vi + Vo + Zd \times Id + Zi \times Ii + Zo \times Io$$

= $3Z \times Io + (Zd + Zi + Zo) Io$

soit:

$$Io = Id = Ii = \frac{E}{Zd + Zi + Zo + 3Z}$$

Fig. 12

$$Vd = E - Zd \times Id = E - Zd \frac{E}{Zd + Zi + Zo + 3Z}$$

$$Vd = E \frac{Zi + Zo + 3Z}{Zd + Zi + Zo + 3Z}$$

$$Vi = -Zi \times Ii$$

$$Vi = -Zi \frac{E}{Zd + Zi + Zo + 3Z}$$

$$Vo = -Zo \times Io$$

$$Vo = -Zo \frac{E}{Zd + Zi + Zo + 3Z}$$

 Schéma du réseau selon les composantes symétriques (cf. fig. 13)

Fig. 13

2. Défaut biphasé

Ecriture des équations

Dans la zone (D)

$$I_1 = 0$$

 $V_2 = V_3 = Z(I_2 + I_3)$

Dans la zone (S)

$$I_1 = Id + Ii + Io$$

$$I_2 = a^2 Id + aIi + Io$$

$$I_3 = aId + a^2 Ii + Io$$

$$V_1 = Vd + Vi + Vo$$

$$V_2 = a^2 V d + a V i + V o$$

$$V_3 = aVd + a^2Vi + Vo$$

■ Continuité à la frontière (D) - (S)

$$\begin{cases} I d + Ii + Io = 0 \\ V d = Vi \\ Vo = V d + 3Z \times Io \end{cases}$$

■ Fonctionnement de (S)

$$\begin{cases} E = Vd + Zd \times Id \\ 0 = Vi + Zi \times Ii \\ 0 = Vo + Zo \times Io \end{cases}$$

Fig. 15

Résolution des équations

$$\begin{split} I\,d = & E \; \frac{Zi + Zo + 3Z}{Zd \times Zi + (Zo + 3Z)(Zd + Zi)} \\ I\,i = & \frac{-E\;(Zo + 3Z)}{Zd \times Zi + (Zd + Zi)(Zo + 3Z)} \\ I\,o = & \frac{-E \times Zi}{Zd \times Zi + (Zd + Zi)(Zo + 3Z)} \\ Vd = & Vi = & \frac{E \times Zi\;(Zo + 3Z)}{Zd \times Zi + (Zd + Zi)(Zo + 3Z)} \\ Vo = & \frac{E \times Zi \times Zo}{Zd \times Zi + (Zd + Zi)(Zo + 3Z)} \\ I_1 = & 0 \\ I_2 = & -j\sqrt{3} \; E \; \frac{Zo + 3Z - aZi}{Zd \times Zi + (Zd + Zi)(Zo + 3Z)} \\ I_3 = & j\sqrt{3} \; E \; \frac{Zo + 3Z - a^2Zi}{Zd \times Zi + (Zd + Zi)(Zo + 3Z)} \\ \end{split}$$

$$\begin{split} &I_{2}+I_{3}=-3E\,\frac{Zi}{Zd\times Zi+(Zd+Zi)(Zo+3Z)}\\ &V_{1}=E\,\,\frac{3Zi\,(Zo+2Z)}{Zd\times Zi+(Zd+Zi)(Zo+3Z)}\\ &V_{2}=V_{3}=E\,\,\frac{-3Z\times Zi}{Zd\times Zi+(Zd+Zi)(Zo+3Z)} \end{split}$$

Schéma du réseau selon les composantes symétriques (cf. fig. 16)

Cas particuliers

Défaut franc

Soit Z = 0, le courant de défaut phase-terre

prend la valeur :
$$I_2 + I_3 = -\frac{3E \times Zi}{Zd \times Zi + Zi \times Zo + Zd \times Zo}$$

Défaut biphasé

Défaut biphasé

Soit Z = ∞, le courant de défaut phase vaut

$$I_2 = -I_3 = E \frac{(a^2 - a)}{Zd + Zi} = -jE \frac{\sqrt{3}}{Zd + Zi}$$

Fig. 16

3. Défaut triphasé

Ecriture des équations

■ Dans la zone (D)

$$V_1 = V_2 = V_3 = Z(I_1 + I_2 + I_3)$$

■ Dans la zone (S)

$$\begin{cases} I_1 = Id - Ii + Io \\ I_2 = a^2 Id + aIi + Io \\ I_3 = aId + a^2 Ii + Io \\ V_1 = Vd + Vi + Vo \\ V_2 = a^2Vd - aVi + Vo \\ V_3 = aVd + a^2Vi + Vo \end{cases}$$

Fig. 17

Résolution des équations

$$Id = \frac{E}{Zd}$$
 et $Ii = Io = 0$

$$Vd = Vi = Vo = 0$$

$$I_1 = \frac{E}{Zd}$$

■ Continuité à la frontière (D) - (S)

$$\begin{cases} I_1 + I_2 + I_3 = 3Io = \frac{Vo}{Z} \\ Vd = Vi = 0 \\ V_1 = V_2 = V_3 = Vo \end{cases}$$

Fonctionnement de (S)

$$\begin{cases} E = Vd + Zd \times Id \\ 0 = Vi + Zi \times Ii \\ 0 = Vo + Zo \times Io \end{cases}$$

$$I_2 = a^2 \frac{E}{Zd}$$

$$I_3 = a \frac{E}{Zd}$$

$$V_1 = V_2 = V_3 = 0$$

Les résultats sont indépendants des valeurs Z, Zi et Zo.

Schéma du réseau selon les composantes symétriques (cf. fig. 18).

Fig. 18