MA439: Functional Analysis Tychonoff Spaces: Exercises 5, 6, 12, 13, 14 on p.31, Ben Mathes

Huan Q. Bui

Due: Wed, Sep 23, 2020

Exercise 1 (Ex 5, p.31). In an arbitrary topological space \mathcal{X} , we say that a sequence (x_i) converges to x (and write $x_i \to x$) if, for every open set G containing x, the sequence (x_i) is eventually in G. Prove that $x_i \to x$ if and only if, for every subbasic open set S containing x, (x_i) is eventually in S.

Proof. (\Longrightarrow) Suppose that $x_i \to x$ in \mathcal{X} . Let some subbasic open set S be given. Because S is subbasic open, it is open. Thus, because $x_i \to x$, (x_i) is eventually in S.

 (\Leftarrow) Let a sequence (x_i) be given. Suppose that for every subbasic open set $S \subseteq \mathcal{X}$ containing x, (x_i) is eventually in S. And, let O_x be an open set containing x. It follows that there is some $k \in \mathbb{N}_+$ for which $x \in \cap_{i=1}^k S_i \subseteq O_x$, where each S_i is a subbasic open set containing x. From here, it is clear that there is some positive integer N for which $x_n \in S_i$ for all $i = 1, \ldots, k$ whenever $n \geq N$. Thus, (x_i) is eventually in $\cap_{i=1}^k S_i \subseteq O_x$. So, $x_i \to x$.

Exercise 2 (Ex 6, p.31). In arbitrary topological spaces, the neighborhood filter \mathcal{F}_x of a point x is defined to be the collection of all subsets that contain an open set containing x, and we again define $\mathcal{F} \to x$ to mean $\mathcal{F}_x \subseteq \mathcal{F}$. Prove that $F \to x$ if and only if every subbasic open set containing x is in \mathcal{F} .

Proof. (\Longrightarrow) Suppose that $\mathcal{F} \to x$. Let S be a subbasic open set containing x. S necessarily contains an open subset containing x, so $S \in \mathcal{F}_x \subseteq \mathcal{F}$.

(\iff) Consider the neighborhood filter \mathcal{F}_x and some $F \in \mathcal{F}_x$. F contains an open set containing x. Thus, there is some $k \in \mathbb{N}_+$ for which $F \supseteq \cap_{i=1}^k S_i$ where S_i 's are subbasic open sets. Now, because each $S_i \in \mathcal{F}$, $\cap_{i=1}^k S_i \in \mathcal{F}$ (since \mathcal{F} is a filter). So, $F \in \mathcal{F}$. Thus, $\mathcal{F}_x \subseteq \mathcal{F}$, i.e., $\mathcal{F} \to x$. \square

Exercise 3 (Ex 12, p.31). Assume that $S = p_k^{-1}(G)$ is a subbasic open set in a product space $\prod_i \mathcal{X}_i$. Prove that $S = p_k^{-1}(p_k(S))$, and if $p_k(E) \subseteq p_k(S)$, then $E \subseteq S$.

Proof. When $S = p_k^{-1}(G) = \cdots \times G \times \cdots$, we have that $p_k(S) = p_k(p_k^{-1}(G)) = G$. So $S = p_k^{-1}(G) = p_k^{-1}(p_k(S))$. Next, assume that $p_k(E) \subseteq p_k(S)$, then because p_k is a projection, $p_k^{-1}(p_k(E)) \subseteq p_k^{-1}(p_k(S)) = S$. Also, because p_k is a projection, $E \subseteq p_k^{-1}(p_k(E))$. So $E \subseteq S$.

Exercise 4 (Ex 13, p.31). Prove that a topological space is compact if and only if every open covering by basic open sets has a finite subcover.

Proof. (\Longrightarrow) Let (\mathcal{X}, τ) be a topological space. Assume that \mathcal{X} is compact, then every open covering has a finite subcover. In particular, every open covering with basic open sets has a finite subcover.

 (\Leftarrow) Let (\mathcal{X}, τ) be a topological space. Let a base \mathcal{B} and an open covering \mathcal{C} be given. For each $x \in \mathcal{X}$, pick $O_x \subseteq \mathcal{C}$ such that $x \in O_x$ and pick $B_x \in \mathcal{B}$ for which $x \in B_x \subseteq O_x$. Assume that every open covering with basic open sets has a finite subcover, then the collection $\mathcal{C}_{\mathcal{B}} = \{B_x : x \in \mathcal{X}\}$ has a finite subcover $\{B_{x_1}, \ldots, B_{x_N}\}$. Consequently the collection $\{O_{x_1}, \ldots, O_{x_N}\}$ is a finite subcover in \mathcal{C} . Thus, \mathcal{C} has a finite subcover.

Exercise 5 (Ex 14, p.31, Alexander's Subbase Theorem). Prove that a topological space is compact if and only if every open covering by subbasic open sets has a finite subcover. (This requires the axiom of choice.)

Proof. (\Longrightarrow) Let (\mathcal{X}, τ) be a topological space. Assume that \mathcal{X} is compact, then every open covering has a finite subcover. In particular, every open covering with subbasic open sets has a finite subcover.

(\iff) Let (\mathcal{X}, τ) be a topological space. Let a subbase \mathcal{B} and an open covering \mathcal{C} be given. Assume that \mathcal{X} is not compact yet every subbasic cover from \mathcal{B} has a finite subcover. By the axiom of choice, choose an open cover \mathcal{C} without a finite subcover is that **maximal**. Observe that $\mathcal{B} \cap \mathcal{C}$ cannot cover \mathcal{X} , since otherwise there would be a finite subcover coming from \mathcal{B} . With this, pick an $x \in \mathcal{X} \setminus \bigcup (\mathcal{B} \cap \mathcal{C})$. Since \mathcal{C} is a cover, choose an $O_x \in \mathcal{C}$ such that $x \in O_x$. Since \mathcal{B} is a subbase, there are $\{B_1, \ldots, B_k\} \subseteq \mathcal{B}$ for which $x \in \cap_{i=1}^k B_i \subseteq O_x$. Now, by the choice of $x, B_i \notin \mathcal{B} \cap \mathcal{C}$ for all $i = 1, 2, \ldots, k$.

Since \mathcal{C} is the maximal open cover for which there is no finite subcover, the collection $\mathcal{C} \cup \{B_i\}$ must have a finite subcover for each $i=1,2,\ldots,k$. Thus,l let this be $\{C_1^i,C_2^i,\ldots,C_{n^i}^i\} \cup \{B_i\}$. It follows that $\{C_1^i,C_2^i,\ldots,C_{n^i}^i\}_{i=1}^n \cup \{\bigcup_{i=1}^n B_i\}$ is a finite open covering of \mathcal{X} . As a result, $\{C_1^i,C_2^i,\ldots,C_{n^i}^i\}_{i=1}^n \cup \{U\}$ is also a finite cover for \mathcal{X} . But notice that $U \in \mathcal{C}$, so this finite cover is made up entirely of elements of \mathcal{C} . This is a contradiction. So, \mathcal{X} must be compact. \mathcal{C}

¹Source: James Keesling, Dept. of Mathematics, Univ. of Florida