SUPSI

Esercizi di verifica Capitolo 3 Algebra lineare 2

- 1) Si consideri in \mathbb{R}^2 la proiezione ortogonale p_r sulla retta r: 2x + y + 3 = 0.
 - a) Scrivere in coordinate omogenee la matrice *P* associata a tale proiezione.
 - b) Determinare le coordinate esatte del punto Q_1 immagine attraverso p_r di Q = (3; -1).
- 2) Si considerino in \mathbb{R}^3 la simmetria Σ_{α} rispetto al piano $\alpha: x-y+z+1=0$ e la traslazione $\tau_{\vec{v}}$

$$\operatorname{con} \ \vec{v} = \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}.$$

- a) Scrivere in coordinate omogenee la matrice F che definisce la trasformazione composta $f=\Sigma_{\alpha}\circ au_{\bar{v}}$.
- b) Calcolare le coordinate esatte del punto A la cui immagine attraverso la trasformazione f è il punto $A_1 = (1;0;1)$.
- c) Scrivere un'equazione parametrica vettoriale della retta r_1 immagine attraverso f della

retta
$$r: \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 1 \\ 4 \end{pmatrix}.$$

- 3) Si consideri in \mathbb{R}^2 la rotazione $\rho(C,\alpha)$, di centro il punto $C = (c_1; c_2)$ e con $\alpha = \frac{\pi}{3}$.
 - a) Scrivere in coordinate omogenee la matrice R associata a tale rotazione.
 - b) Determinare le coordinate esatte del punto C centro della rotazione se l'immagine attraverso $\rho(C,\alpha)$ di P=(3,-1) è il punto $P_1=(0,5)$.
- **4)** Sia dato il piano $\alpha : x + 2y 3z 4 = 0$.
 - a) Scrivere in coordinate omogenee la matrice che descrive la proiezione ortogonale p_{α} sul piano α .
 - b) Calcolare le coordinate esatte del punto P_1 immagine del punto P = (3;1;2) attraverso p_{α} .
 - c) Scrivere le coordinate di tutti i punti Q la cui immagine attraverso p_{α} è il punto $Q_1=(2;1;0)\in\alpha$.