Lecture 1: Review on high school geometry

Table of contents

- Course Overview
- 2 Points and vectors
- Operations between vectors
- 4 Lines in \mathbb{R}^2

Course Materials

- **1** Lecture handouts: notes by Professor Boerkoel (Redmond)
- 2 Lecture slides provided by myself.
- Recommended textbooks
 - Practical Linear Algebra: A Geometry Toolbox, 3rd edition by G. Farin and D. Hansford
 - Elementary Linear Algebra with Supplemental Applications,
 10th edition by H. Anton & C. Rorres.

Course content

- 1: Euclidean Space
- 2 Chapter 2: Matrices and Determinants
- Ohapter 3: Linear Transformations
- Chapter 4: Affine Transformations

Assessment tasks (tentative)

Assessment Task	Weight	Tentative date
Homework assignments (5 or 6)	10%	Weeks 1-13
5 Quizzes	30%	Weeks 3,5,9,11,13
1 Midterm test	30%	Week 6
1 Final test	30%	Week 14

Course structure

- Online lecture every Tuesday 3-6pm
- Physical tutorial every Thursday
 - Groups A,B,C: taught by myself
 - Groups D,E: taught by Rosa
- Extra tuitions (starting from week 4) are provided to weak students

What grades can I expect?

- To pass, you need to
 - Score an overall grade D or above
 - Tips: Do all homework assignments and do not skip exams
- To have a higher grade?

Attendance policy

- Student \geq 15 minutes late to class will be marked as absent.
- Student may not leave the class early without the instructor's permission.
- Unexcused absences would result in the following penalty

1 letter grade down for	2 letter grade down for	
# of unexcused absences	# of unexcused absences	
4	8	

What is CSD1241 about?

 Study the concepts of linear stuff in 2D and 3D which include

points, lines, planes

- Study the relation between these linear stuff by the use of matrices and vectors
- CSD1241 builds the foundation for CSD2251 Linear Algebra and CSD1201 Introduction to Computer Graphics

Some applications of Linear Algebra

Linear Algebra has a lot of applications in the real life.

 The Google PageRank search algorithm uses the the theory of Eigenvectors & Eigenvalues.

Some applications of Linear Algebra

Linear Algebra has a lot of applications in the real life.

- The Google PageRank search algorithm uses the the theory of Eigenvectors & Eigenvalues.
- Facial recognition algorithms are based on Singular Value Decomposition.

Some applications of Linear Algebra

Linear Algebra has a lot of applications in the real life.

- The Google PageRank search algorithm uses the theory of Eigenvectors & Eigenvalues.
- Facial recognition algorithms are based on Singular Value Decomposition.
- Linear algebra is pervasive in Machine Learning and AI.
- And many more

Points

A **point** is a reference to a *location*.

Points are often denoted by capital letters P, Q, R, \dots

Points

A **point** is a reference to a *location*.

Points are often denoted by capital letters P, Q, R, \dots

• In 2D plane (or xy plane, or \mathbb{R}^2), points are specified by their x-coordinates and y-coordinates

$$P = (a, b)$$
 has x-coordinate $= a$, y-coordinate $= b$

Points

A **point** is a reference to a *location*.

Points are often denoted by capital letters P, Q, R, \dots

• In 3D space (or xyz space, or \mathbb{R}^3), points are specified by their x-coordinates, y-coordinates and z-coordinates

P=(a,b,c) has x-coordinate =a, y-coordinate =b, z-coordinate =c

Example 1

In the following graphs, what are coordinates of P, Q, R?

Remarks

In this course, we mainly focus on \mathbb{R}^2 (xy plane) and \mathbb{R}^3 (xyz space).

• \mathbb{R}^2 and \mathbb{R}^3 are different *coordinate systems*. We *cannot sketch points simultaneously* on both these systems.

Remarks

In this course, we mainly focus on \mathbb{R}^2 (xy plane) and \mathbb{R}^3 (xyz space).

- \mathbb{R}^2 and \mathbb{R}^3 are different *coordinate systems*. We *cannot sketch points simultaneously* on both these systems.
- We call (0,0) and (0,0,0) the **origins** in \mathbb{R}^2 and \mathbb{R}^3 .

Example 2

Sketch the following points

(a)
$$P = (0,1), Q = (1,0), R = (2,0)$$
 and $S = (2,-1)$ on \mathbb{R}^2 .

Example 2

(b)
$$A=(1,0,0), B=(0,1,0), C=(0,0,1), D=(1,1,0)$$
 and $E=(1,1,1)$ on $\mathbb{R}^3.$

Midpoints

The midpoint between 2 points can be obtained by averaging the corresponding coordinates

lacksquare In \mathbb{R}^2

$$P = (x_1, y_1), Q = (x_2, y_2) \Rightarrow M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

$$P = (x_1, y_1, z_1), Q = (x_2, y_2, z_2) \Rightarrow M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2}\right)$$

Example 3

(a) Sketch the following points: $A=(1,1),\ B=(4,0),\ C=(0,4)$

(b) Find the midpoint M_{AB} of AB and the midpoint M_{AC} of AC

(c) Find the midpoint M of $M_{AB}M_{AC}$

Distances between points

• In \mathbb{R}^2 , the distance between $P=(x_1,y_1)$ and $Q=(x_2,y_2)$ is

$$d(P,Q) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

• In \mathbb{R}^3 , the distance between $R=(x_1,y_1,z_1)$ and $S=(x_2,y_2,z_2)$ is

$$d(R,S) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Example 4

Find the distances between any of the following 2 points.

(a)
$$P = (0,1), Q = (0,1), S = (2,-1)$$

(b)
$$A = (1,0,0), B = (0,1,0), C = (2,3,1)$$

Vectors

In \mathbb{R}^2 , **vector** $\vec{u} = \begin{bmatrix} a \\ b \end{bmatrix}$ is represented by an arrow joining O = (0,0) and P = (a,b) $\vec{u} = \overrightarrow{OP} = \begin{bmatrix} a \\ b \end{bmatrix}$

Vectors

2 In \mathbb{R}^3 , $\vec{v}=\begin{bmatrix} a\\b\\c \end{bmatrix}$ is represented by an arrow joining O=(0,0,0) and Q=(a,b,c)

$$\vec{v} = \overrightarrow{OQ} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

Zero vector

The **zero vector**, denoted by $\vec{0}$, has all coordinates equal to 0.

ullet In \mathbb{R}^2

$$\vec{0} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

ullet In \mathbb{R}^3

$$\vec{0} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

In this course, we use small letters with arrows on top to denote vectors:

$$\vec{a}, \vec{b}, \vec{c}, \dots, \vec{x}, \vec{y}, \vec{z}$$

Example

• The vector $\vec{u}=\begin{bmatrix} 3\\2 \end{bmatrix}$ starts at O=(0,0) and ends at P=(3,2)

$$\vec{u} = \overrightarrow{OP} = \begin{bmatrix} 3\\2 \end{bmatrix}$$

Similarly

$$\vec{v} = \overrightarrow{OQ} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$$

Geometric representation of vectors

 A vector can be geometrically represented by any arrow as long as it preserves length and direction

Geometric representation of vectors

- A vector can be geometrically represented by any arrow as long as it preserves length and direction
- ullet All the following arrows denote the same vector $ec{u} = egin{bmatrix} 1 \\ 2 \end{bmatrix}$

Algebraic representation of vectors

- A vector is represented by the algebraic values of their coordinates.
- Given 2 vectors \vec{u} and \vec{v}

 $\vec{u} = \vec{v} \Leftrightarrow$ their corresponding coordinates are equal.

Example 5

For what values of a, b the following 2 vectors are equal?

$$\vec{u} = \begin{bmatrix} a+b\\2a-3b \end{bmatrix}, \quad \vec{v} = \begin{bmatrix} 2\\a-b \end{bmatrix}$$

Vectors forming by endpoints

For any two points P and Q, we can form the vector \overrightarrow{PQ} which starts from P and ends at Q by subtracting Q-P.

Vectors forming by endpoints

For any two points P and Q, we can form the vector \overrightarrow{PQ} which starts from P and ends at Q by subtracting Q - P.

ullet In \mathbb{R}^2

$$P = (x_1, y_1), Q = (x_2, y_2) \Rightarrow \overrightarrow{PQ} = \begin{bmatrix} x_2 - x_1 \\ y_2 - y_1 \end{bmatrix}$$

ullet In \mathbb{R}^3

$$P = (x_1, y_1, z_1), Q = (x_2, y_2, z_2) \Rightarrow \overrightarrow{PQ} = \begin{bmatrix} x_2 - x_1 \\ y_2 - y_1 \\ z_2 - z_1 \end{bmatrix}$$

Vector addition

Let \vec{u}, \vec{v} be in the **same space** (both in \mathbb{R}^2 or both in \mathbb{R}^3). We can form $\vec{u} + \vec{v}$ or $\vec{u} - \vec{v}$

Vector addition

Let \vec{u}, \vec{v} be in the **same space** (both in \mathbb{R}^2 or both in \mathbb{R}^3). We can form $\vec{u} + \vec{v}$ or $\vec{u} - \vec{v}$

• In \mathbb{R}^2 :

$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}, \ \vec{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \Rightarrow \vec{u} + \vec{v} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \end{bmatrix}, \ \vec{u} - \vec{v} = \begin{bmatrix} u_1 - v_1 \\ u_2 - v_2 \end{bmatrix}$$

Vector addition

Let \vec{u}, \vec{v} be in the **same space** (both in \mathbb{R}^2 or both in \mathbb{R}^3). We can form $\vec{u} + \vec{v}$ or $\vec{u} - \vec{v}$

• In \mathbb{R}^3 :

$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}, \ \vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \Rightarrow \vec{u} + \vec{v} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ u_3 + v_3 \end{bmatrix}, \ \vec{u} - \vec{v} = \begin{bmatrix} u_1 - v_1 \\ u_2 - v_2 \\ u_3 - v_3 \end{bmatrix}$$

Question 1

Let \vec{u} be any vector. What is $\vec{u} + \vec{0}$?

Geometrical interpretation of vector addition

To add two vectors $\vec{v_1}, \vec{v_2}$ geometrically, we do the following

• Take 2 arrows which correspond to v_1, v_2 and arrange them so that the ending point of v_1 lies at the starting point of v_2 .

Geometrical interpretation of vector addition

To add two vectors $\vec{v_1}, \vec{v_2}$ geometrically, we do the following

• Take 2 arrows which correspond to v_1, v_2 and arrange them so that the ending point of v_1 lies at the starting point of v_2 .

• $ec{v_1}+ec{v_2}$ is the arrow which goes from the starting point of $ec{v}_1$ to the ending point of $ec{v}_2$

Scalar multiplication

ullet Any real constant c is called a **scalar**.

Scalar multiplication

- ullet Any real constant c is called a **scalar**.
- The scalar multiplication of c by \vec{u} , denoted by $c\vec{u}$, is another vector formed by multiplying c into each coordinate of \vec{u} .
 - (i) In \mathbb{R}^2

$$c \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} cu_1 \\ cu_2 \end{bmatrix}$$

(ii) In \mathbb{R}^3

$$c \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} cu_1 \\ cu_2 \\ cu_3 \end{bmatrix}$$

Geometric interpretation of scalar multiplication

Geometrically, $c\vec{u}$ is the **scaling** of the vector \vec{u} by the factor c.

• The length of $c\vec{u}$ is |c| times bigger than the length of \vec{u} .

Geometric interpretation of scalar multiplication

Geometrically, $c\vec{u}$ is the **scaling** of the vector \vec{u} by the factor c.

- The length of $c\vec{u}$ is |c| times bigger than the length of \vec{u} .
- If c > 0, $c\vec{u}$ and \vec{u} point to the same direction. If c < 0, $c\vec{u}$ and \vec{u} point to opposite directions.

Example

The vector $(-1.5)\vec{u}$ is obtained as follows.

Example 6

Let
$$\vec{u}=\begin{bmatrix}1\\2\end{bmatrix}$$
 and $\vec{v}=\begin{bmatrix}-1\\3\end{bmatrix}$. Find the following vectors (a) $\vec{u}+\vec{v}$

(b)
$$2\vec{u} - 3\vec{v}$$

(c) $a\vec{u} + b\vec{v}$ for any real constants a,b

Length of vectors

The **length** (or **norm**) of a vector \vec{u} , denoted by $||\vec{u}||$, is the squareroot of the sum of squares of the coordinates of \vec{u} .

Length of vectors

The **length** (or **norm**) of a vector \vec{u} , denoted by $||\vec{u}||$, is the squareroot of the sum of squares of the coordinates of \vec{u} .

ullet In \mathbb{R}^2

$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \Rightarrow ||\vec{u}|| = \sqrt{u_1^2 + u_2^2}$$

ullet In \mathbb{R}^3

$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \Rightarrow ||\vec{u}|| = \sqrt{u_1^2 + u_2^2 + u_3^2}$$

Explanation for length of vectors

• In the following, the vector $\vec{v} = \begin{bmatrix} a \\ b \end{bmatrix}$ is the hypothenuse of a triangle with side lengths a and b.

• By the Pythagoras theorem, its length is $||\vec{v}|| = \sqrt{a^2 + b^2}$.

Example 7

Find the length of the following vectors

$$\vec{u} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}, \ \vec{v} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \ \vec{w} = \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix}$$

Exercise 1 (properties of length)

(a) What is the length of the zero vector $\vec{0}$?

(b) Show that for any $\vec{u} \in \mathbb{R}^2$, we have

$$||\vec{u}|| \ge 0$$

Further, show that the only vector in \mathbb{R}^2 with length 0 is $\vec{0}$.

Exercise 1

- (c) Let \vec{u} be any vector in \mathbb{R}^2 . Prove the following
 - (i) $||2\vec{u}|| = 2||\vec{u}||$

(ii) For any positive number c, $||c\vec{u}|| = c||\vec{u}||$.

Exercise 2: Points vs vectors

List the *similarities* and *differences* between points and vectors in \mathbb{R}^2 .

Dot product

The **dot product** of two vectors \vec{u} and \vec{v} , denoted $\vec{u} \cdot \vec{v}$, is a *scalar* (a real number) defined as follows.

ullet In \mathbb{R}^2

$$\vec{u} \cdot \vec{v} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \cdot \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = u_1 v_1 + u_2 v_2$$

Dot product

The **dot product** of two vectors \vec{u} and \vec{v} , denoted $\vec{u} \cdot \vec{v}$, is a *scalar* (a real number) defined as follows.

 \bullet In \mathbb{R}^3

$$\vec{u} \cdot \vec{v} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \cdot \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = u_1 v_1 + u_2 v_2 + u_3 v_3$$

Example 8

Compute the dot product of any 2 vectors among the following 3 vectors

$$\vec{0} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \ \vec{u} = \begin{bmatrix} 1 \\ 2 \\ \pi \end{bmatrix}, \ \vec{v} = \begin{bmatrix} -3 \\ 7 \\ 1/\pi \end{bmatrix}$$

Exercise 3

(a) Show that for any vector $\vec{u} \in \mathbb{R}^2$

$$\vec{u} \cdot \vec{u} = ||\vec{u}||^2$$

(b) Prove (a) for $\vec{u} \in \mathbb{R}^3$

Exercise 3

(c) Show that for any $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^2$

$$\vec{u}\cdot(\vec{v}+\vec{w})=\vec{u}\cdot\vec{v}+\vec{u}\cdot\vec{w}$$

(d) Prove (c) for $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^3$

Properties of dot product

Theorem 1

Let $\vec{u}, \vec{v}, \vec{w}$ be vectors in the same space. Then the following hold

(a)
$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$$

(Commutativity)

(b)
$$\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$$

(Distributivity)

(c)
$$\vec{u} \cdot (c\vec{w}) = c(\vec{u} \cdot \vec{w})$$
 for any scalar c .

(d)
$$\vec{u} \cdot \vec{u} = ||\vec{u}||^2$$
.

Exercise 4

Using the properties of dot products, prove that

$$(\vec{u} - \vec{v}) \cdot (\vec{u} + \vec{v}) = ||\vec{u}||^2 - ||\vec{v}||^2$$

Angle between 2 vectors

Theorem 2

Let \vec{x}, \vec{y} be 2 vectors in the same space and let $\theta \in [0, 180^o]$ be the angle between \vec{x} and \vec{y} . Then

$$\vec{x} \cdot \vec{y} = ||\vec{x}||||\vec{y}|| \cos \theta$$

Example 9

Compute the angle between \vec{x} and \vec{y} in the following cases.

(a)
$$\vec{x} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$
, $\vec{y} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$

Example 9

(b)
$$\vec{x} = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$$
, $\vec{y} = \begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix}$

Types of angles

There are three types of angles between two vectors \vec{x} and \vec{y} .

1 Right angle: $\theta = 90^o$

$$\cos\theta = 0 \Leftrightarrow \vec{x} \cdot \vec{y} = 0$$

2 Acute angle: $\theta < 90^o$

$$\cos\theta > 0 \Leftrightarrow \vec{x} \cdot \vec{y} > 0$$

3 Obtuse angle: $\theta > 90^o$

$$\cos \theta < 0 \Leftrightarrow \vec{x} \cdot \vec{y} < 0$$

Exercise 5

Find the type of angle (right, acute, obtuse) between \vec{x} and \vec{y}

(a)
$$\vec{x} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
, $\vec{y} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$

(b)
$$\vec{x} = \begin{bmatrix} 2 \\ 1 \\ \pi \end{bmatrix}$$
, $\vec{y} = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$

Exercise 5

(c)
$$\vec{x} = \begin{bmatrix} 1 \\ e \\ \pi \end{bmatrix}, \vec{y} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$

Exercise 6 (Triangle inequality)

Let \vec{x} and \vec{y} be vectors in the same space. Prove that

$$||\vec{x} + \vec{y}|| \le ||\vec{x}|| + ||\vec{y}||.$$

Geometric interpretation of triangle inequality

Put
$$\vec{x} = \overrightarrow{AC}, \vec{y} = \overrightarrow{CB} \Rightarrow \vec{x} + \vec{y} = \overrightarrow{AB}$$
.

$$||\vec{x} + \vec{y}|| \le ||\vec{x}|| + ||\vec{y}|| \Leftrightarrow AB \le AC + CB$$

Imagine you have to travel from A to B. Consider 2 paths

Geometric interpretation of triangle inequality

Put
$$\vec{x} = \overrightarrow{AC}, \vec{y} = \overrightarrow{CB} \Rightarrow \vec{x} + \vec{y} = \overrightarrow{AB}$$
.

$$||\vec{x} + \vec{y}|| \le ||\vec{x}|| + ||\vec{y}|| \Leftrightarrow AB \le AC + CB$$

Imagine you have to travel from A to B. Consider 2 paths

ullet Direct path \Rightarrow shortest way and

$$\mathsf{length} = ||\overrightarrow{AB}|| = ||\overrightarrow{x} + \overrightarrow{y}||$$

Geometric interpretation of triangle inequality

Put
$$\vec{x} = \overrightarrow{AC}, \vec{y} = \overrightarrow{CB} \Rightarrow \vec{x} + \vec{y} = \overrightarrow{AB}$$
.

$$||\vec{x} + \vec{y}|| \le ||\vec{x}|| + ||\vec{y}|| \Leftrightarrow AB \le AC + CB$$

Imagine you have to travel from A to B. Consider 2 paths

 $oldsymbol{0}$ Direct path \Rightarrow shortest way and

$$\mathsf{length} = ||\overrightarrow{AB}|| = ||\overrightarrow{x} + \overrightarrow{y}||$$

② Move A to C, then C to B. The length is

$$||\overrightarrow{AC}|| + ||\overrightarrow{CB}|| = ||\overrightarrow{x}|| + ||\overrightarrow{y}||$$

By length comparison,

$$||\overrightarrow{AB}|| \le ||\overrightarrow{AC}|| + ||\overrightarrow{CB}||$$

Parallel vectors

Two vectors \vec{u} and \vec{v} are called **parallel**, denoted $\vec{u} \parallel \vec{v}$, if there exists a scalar c such that

$$\vec{u} = c\vec{v}$$

ullet In \mathbb{R}^2

$$\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = c \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \Leftrightarrow \frac{u_1}{v_1} = \frac{u_2}{v_2} = c$$

ullet In \mathbb{R}^3

$$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = c \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \Leftrightarrow \frac{u_1}{v_1} = \frac{u_2}{v_2} = \frac{u_3}{v_3} = c$$

Characterization of parallel vectors

Theorem 3

(a) In
$$\mathbb{R}^2$$
, $\vec{u}=egin{bmatrix} u_1 \\ u_2 \end{bmatrix}$ and $\vec{v}=egin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ are parallel if and only if

$$\frac{u_1}{v_1} = \frac{u_2}{v_2},$$

where we use the convention that $u_i = 0$ whenever $v_i = 0$.

55 / 74

Characterization of parallel vectors

Theorem 3

(a) In
$$\mathbb{R}^2$$
, $\vec{u}=\begin{bmatrix}u_1\\u_2\end{bmatrix}$ and $\vec{v}=\begin{bmatrix}v_1\\v_2\end{bmatrix}$ are parallel if and only if

$$\frac{u_1}{v_1} = \frac{u_2}{v_2},$$

where we use the convention that $u_i = 0$ whenever $v_i = 0$.

(b) In
$$\mathbb{R}^3$$
, $\vec{u}=\begin{bmatrix}u_1\\u_2\\u_3\end{bmatrix}$ and $\vec{v}=\begin{bmatrix}v_1\\v_2\\v_3\end{bmatrix}$ are parallel if and only if

$$\frac{u_1}{v_1} = \frac{u_2}{v_2} = \frac{u_3}{v_3},$$

where we use the convention that $u_i = 0$ whenever $v_i = 0$.

Example 10

Which of the following pairs of vectors are parallel?

(a)
$$\vec{u} = \begin{bmatrix} 2 \\ 4 \\ 10 \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix}$

(b)
$$\vec{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 and $\vec{y} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$

(c)
$$\vec{u} = \begin{bmatrix} -2 \\ -4 \\ -8 \end{bmatrix}, \vec{v} = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

Orthogonal vectors

- \vec{x} and \vec{y} are **orthogonal** (or perpendicular), denoted $\vec{x} \perp \vec{y}$, if the angle θ between \vec{x} and \vec{y} is 90^o .
- If $\theta \neq 90^{\circ}$, we write $\vec{x} \not\perp \vec{y}$.

Orthogonal vectors

- \vec{x} and \vec{y} are **orthogonal** (or perpendicular), denoted $\vec{x} \perp \vec{y}$, if the angle θ between \vec{x} and \vec{y} is 90^o .
- If $\theta \neq 90^{\circ}$, we write $\vec{x} \not\perp \vec{y}$.
- Question: When is $\theta = 90^{\circ}$?

Orthogonal vectors

- \vec{x} and \vec{y} are **orthogonal** (or perpendicular), denoted $\vec{x} \perp \vec{y}$, if the angle θ between \vec{x} and \vec{y} is 90^o .
- If $\theta \neq 90^{\circ}$, we write $\vec{x} \not\perp \vec{y}$.
- ullet Remark: The zero vector $\vec{0}$ is orthogonal to any vector.

Example 11

Which of the following pairs of vectors are orthogonal?

(a)
$$\vec{a} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 and $\vec{b} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$

(b)
$$\vec{c} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $\vec{d} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$

(c)
$$\vec{e} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 and $\vec{f} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$

Exercise 7

(a) Find the condition for real numbers a,b so that

$$\vec{x} = \begin{bmatrix} a \\ b \end{bmatrix}$$
 is orthogonal to $\vec{y} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$.

(b) Give 3 examples of the vector \vec{x} in part a.

Orthogonal projection

• The orthogonal projection of \vec{b} onto a nonzero vector \vec{a} , denoted $\mathrm{proj}_{\vec{a}}(\vec{b})$, is formed by

Orthogonal projection

- The *orthogonal projection* of \vec{b} onto a nonzero vector \vec{a} , denoted $\text{proj}_{\vec{a}}(\vec{b})$, is formed by
 - **1** Arrange \vec{a} and \vec{b} so that they have the **same starting point**.
 - 2 Project the **endpoint** of \vec{b} orthogonally into \vec{a} .

Orthogonal projection

- The *orthogonal projection* of \vec{b} onto a nonzero vector \vec{a} , denoted $\text{proj}_{\vec{a}}(\vec{b})$, is formed by
 - Arrange \vec{a} and \vec{b} so that they have the same starting point.
 - 2 Project the **endpoint** of \vec{b} orthogonally into \vec{a} .
- The **orthogonal complement** of \vec{b} onto \vec{a} is

$$\vec{b}^{\perp} = \vec{b} - \mathrm{proj}_{\vec{a}}(\vec{b})$$

Formula for orthogonal projection

Theorem 4

Let \vec{a}, \vec{b} be two vectors in the same space with $\vec{a} \neq \vec{0}$. The orthogonal projection of \vec{b} onto \vec{a} is

$$\operatorname{proj}_{\vec{a}}(\vec{b}) = \frac{\vec{b} \cdot \vec{a}}{\vec{a} \cdot \vec{a}} \vec{a}$$

• Since $\operatorname{proj}_{\vec{a}}(\vec{b})$ and \vec{a} are parallel, there is $c \in \mathbb{R}$:

$$\operatorname{proj}_{\vec{a}}(\vec{b}) = c\vec{a} \Rightarrow \vec{b}^{\perp} = \vec{b} - c\vec{a}$$

• Since $\operatorname{proj}_{\vec{a}}(\vec{b})$ and \vec{a} are parallel, there is $c \in \mathbb{R}$:

$$\operatorname{proj}_{\vec{a}}(\vec{b}) = c\vec{a} \Rightarrow \vec{b}^{\perp} = \vec{b} - c\vec{a}$$

ullet $ec{b}^{\perp}=ec{b}-cec{a}$ is orthogonal to $ec{a}.$ So

$$0 = (c\vec{a} - \vec{b}) \cdot \vec{a} = c\vec{a} \cdot \vec{a} - \vec{b} \cdot \vec{a} \Rightarrow c = \frac{\vec{b} \cdot \vec{a}}{\vec{a} \cdot \vec{a}}$$

Summary on orthogonal projection

- The orthogonal projection $\operatorname{proj}_{\vec{a}}(\vec{b})$ is only defined if $\vec{a} \neq \vec{0}$.
- \bigcirc $\operatorname{proj}_{\vec{a}}(\vec{b})$ is a scalar multiple of \vec{a} , say

$$\operatorname{proj}_{\vec{a}}(\vec{b}) = c\vec{a}$$

with the scale

$$c = \frac{\vec{b} \cdot \vec{a}}{\vec{a} \cdot \vec{a}}$$

Example 12

Find $\operatorname{proj}_{\vec{a}}(\vec{b})$ and \vec{b}^{\perp} . Verify that \vec{b}^{\perp} is orthogonal (perpendicular) to \vec{a} .

(a)
$$\vec{a} = \begin{bmatrix} 6 \\ 4 \end{bmatrix}, \ \vec{b} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$$

Example 12

(b)
$$\vec{a} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}, \ \vec{b} = \begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix}$$

Question

Assume $\vec{a} \perp \vec{b}$. What is $\mathrm{proj}_{\vec{a}}(\vec{b})$?

Exercise 8

Let A=(2,5), B=(8,8), C=(3,8) be three vertices of a triangle.

From A, draw a line perpendicular to BC at the point Q.

- (a) Find the coordinates of Q.
- (b) What is the area of $\triangle ABC$?

Exercise 8

General equation and normal equation of lines

• The general equation of lines in \mathbb{R}^2 has form ax + by + c = 0The normal equation of lines in \mathbb{R}^2 has form ax + by = c

General equation and normal equation of lines

- The general equation of lines in \mathbb{R}^2 has form ax+by+c=0The normal equation of lines in \mathbb{R}^2 has form ax+by=c
- More commonly known is the following 2 types of equation
 - Slanted lines

$$y = mx + c$$

with m =slope of the line, and c =y-intercept.

General equation and normal equation of lines

- The general equation of lines in \mathbb{R}^2 has form ax+by+c=0The normal equation of lines in \mathbb{R}^2 has form ax+by=c
- More commonly known is the following 2 types of equation

Vertical lines

$$x = k$$
.

with k = x-intercept.

Lines through 2 points

Theorem 5

Let $A(x_1, y_1)$ and $B = (x_2, y_2)$ be any two points in \mathbb{R}^2 .

Lines through 2 points

Theorem 5

Let $A(x_1, y_1)$ and $B = (x_2, y_2)$ be any two points in \mathbb{R}^2 .

(a) If $x_1 = x_2$, then the line going through A and B is the vertical line

$$x = x_1$$

Lines through 2 points

Theorem 5

Let $A(x_1, y_1)$ and $B = (x_2, y_2)$ be any two points in \mathbb{R}^2 .

(b) If $x_1 \neq x_2$, then the line going through A and B is the slanted line

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$

(a) Since A and B have the same x-coordinate, the only line going through both both A and B is the vertical line $x=x_1$.

• Since $x_1 \neq x_2$, the line going through A and B is a slanted line

$$y = mx + c \tag{1}$$

• Since $x_1 \neq x_2$, the line going through A and B is a slanted line

$$y = mx + c \tag{1}$$

ullet Both A and B are on the line, their coordinates both satisfy (1)

$$\begin{cases} mx_1 + c = y_1 \\ mx_2 + c = y_2 \end{cases} \Rightarrow \begin{cases} m = \frac{y_2 - y_1}{x_2 - x_1} \\ c = y_1 - \frac{y_2 - y_1}{x_2 - x_1} x_1 \end{cases}$$

• Since $x_1 \neq x_2$, the line going through A and B is a slanted line

$$y = mx + c \tag{1}$$

Both A and B are on the line, their coordinates both satisfy (1)

$$\begin{cases} mx_1 + c = y_1 \\ mx_2 + c = y_2 \end{cases} \Rightarrow \begin{cases} m = \frac{y_2 - y_1}{x_2 - x_1} \\ c = y_1 - \frac{y_2 - y_1}{x_2 - x_1} x_1 \end{cases}$$

Conclusion

$$y = \frac{y_2 - y_1}{x_2 - x_1}x + y_1 - \frac{y_2 - y_1}{x_2 - x_1}x_1 \Leftrightarrow y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$$

Example 13

Find the equation of the line going through two points P and Q. In each case, write out 2 other points (other than P,Q) on the line.

(a)
$$P = (0,1)$$
, $Q = (3,5)$

Example 13

(b)
$$P = (1, -1), Q = (1, \pi)$$