Anomalous Cherenkov rings in the DELPHI detector: A search for tachyons

Martin Tat

University of Oxford

15th February 2021

Outline

- Introduction
- DELPHI and RICH
- Tachyon particles
- 4 Event topologies and candidate selection
- 6 Analysis results
 - Correlation between RICH detectors
 - Tachyon mass parameters
 - Kinematic fit
- 6 Conclusion

Introduction

- Physical interpretation of the anomalous Cherenkov rings observed with the DELPHI detector
 - arXiv:2001.08576
 - Retired HEP scientists?
 - Independent of DELPHI Collaboration
- Interpret large Cherenkov rings as tachyons
- Measure mass parameter

DELPHI and RICH

- DELPHI: Detector with Lepton, Photon and Hadron Identification
 - One of four main detectors at LEP
 - Operated from 1989 to 2000
 - Used RICH for PID
- DELPHI Barrel RICH:
 - Cherenkov angle: $cos(\theta) = \frac{1}{n\beta}$
 - C_6F_{14} liquid radiator ($n=1.273 \implies \theta_{\sf max}=667\,{\sf mrad}$)
 - C_5F_{12} gaseous radiator($n=1.00194 \implies \theta_{\sf max}=62\,{\sf mrad}$)

DELPHI and RICH

Figure 1: Principles of the DELPHI RICH detector

- DELPHI strategy: Fit rings with five mass hypotheses (e, μ, π, K, p) \implies obtain Cherenkov angle
- This paper: Fit each photon direction individually

Tachyon particles

- Particles moving at $\beta > 1$
- $E^2 p^2 = -\mu^2$
- μ : Mass parameter
- $\bullet \ \mu = p\sqrt{1 n^2 \cos^2(\theta)}$

Topology 1: $e^+e^- o \gamma t^+t^-$

- High energy photon back-to-back with tachyons
- Signature:
 - One neutral and one charged jet
 - Use dE/dx to distinguish from single tracks
 - EM shower

Figure 2: $e^+e^- \rightarrow \gamma t^+t^-$ event

Topology 2a: $e^+e^- \rightarrow t^+t^-$, 2b: $e^+e^- \rightarrow e^+e^-t^+t^-$

- Tachyon pair production
- Signature:
 - Tracks in opposite directions and opposite charge
 - EM shower

Figure 4: $e^+e^- \rightarrow t^+t^-$ event

Topology 3: $eX \rightarrow eX't^+t^-$

- ullet e $^\pm$ interaction with matter to produce tachyons
- Signature:
 - 1 single track jet, one with 3 charged tracks
 - Non-zero impact parameters in the three-particle jet
 - EM shower

Figure 5: $eX \rightarrow eX't^+t^-$ event

- Other general selection criteria: No hadrons, no muons, good track quality, etc...
- Result after selection:
 - 53 events with at least one anomalous Cherenkov ring
 - 29 candidates had two anomalous rings per track

Correlation between RICH detectors

- From Cherenkov angle formula:
 - $n_1 \cos(\theta_1) = \frac{1}{\beta} = n_2 \cos(\theta_2)$
 - Can plot this as a line in the θ_1 vs θ_2 plane
- ullet Or plot the predicted speeds eta_1 and eta_2

Correlation between RICH detectors

Tachyon mass parameters

- ullet Calculate the mass parameters μ from Cherenkov angles
- Find correlation of μ between tachyon pairs
- ullet Found excess events at $\mu=0.3\,\mathrm{GeV}$ and $\mu=5\,\mathrm{GeV}$

$$\mu = p\sqrt{1 - n^2 \cos^2(\theta)}$$

Tachyon mass parameters

Figure 7: Tachyon mass parameters μ

Kinematic fit

- Do an over-constrained kinematic fit
- ullet μ is a free parameter
- Constraints:
 - Energy-momentum conservation
 - $\mu = p\sqrt{1 n^2\cos^2(\theta)}$

Kinematic fit

Figure 8: Tachyon mass parameters μ after kinematic fit

Conclusion

- Anomalous Cherenkov rings at DELPHI have been interpreted as tachyons
- Strong correlations between the gaseous and liquid RICH radiators
- \bullet Tachyon mass parameters show an excess at (0.29 \pm 0.01) GeV and (4.6 \pm 0.2) GeV
- Further experiments are needed to confirm or refute these findings
 - $\gamma\gamma$ interactions (topology 2b) at ALICE has Z^2 enhancement in cross section
 - LHCb, with high RICH Cherenkov angle resolution, could use low multiplicity events