Тема

Оптимизация транспортного потока при заданных пунктах отправления и назначения всех участников движения

1 Введение

2 Постановка задачи

Пусть задан граф G=(V,E), описывающий некоторую дорожную сеть. Предположим, что имеется n участников движения по этому графу. Каждый участник i имеет точки отправления $A_i \in V$ и точки прибытия $B_i \in V$. Пусть множество P_i - есть множество всех простых путей из A_i в B_i . Пусть декартово произведение $P=\prod_{i=1}^n P_i$ есть множество всех возможных комбинаций путей участников. Элементы этого множества назовем комбинацией путей путей. Пусть известно, что при комбинации путей участников $\mathbf{p} \in P$ i-ый участник затрачивает $T_i(\mathbf{p})$ времени на передвижение. Пару $(P, \{T_i\}_{i=1}^n)$ назовем некооперативным передвижением на графе G. Функции $T_i : P \to R_+$ назовем функцией временных затрат.

Необходимо найти такую комбинацию путей участников \mathbf{p}^* , что суммарные временные затраты на передвижение - минимальны

$$\sum_{i=1}^{n} T_i(\mathbf{p}^*) = \min_{\mathbf{p} \in P} \sum_{i=1}^{n} T_i(\mathbf{p})$$

Комбинацию путей \mathbf{p}^* будем называть *оптимальной*, а суммарные временные затраты $\sum_{i=1}^n T_i(\mathbf{p}^*)$ *оптимальным временем передвижения участников*

3 Поиск функции временных затрат

Сложность численного решения задачи поиска оптимальной комбинации путей во многом зависит от аналитического задания функций $T_i(\mathbf{p})$. Интуитивно вполне очевидно, что на временные затраты при проезде по пути \mathbf{p}_i в первую очередь влияют временные затраты на ребрах, составляющих маршрут \mathbf{p}_i . Поэтому без ограничения общности считаем, что функции временных затрат есть суммарные временные затраты на каждом ребре этого пути

$$T_i(\mathbf{p}) = \sum_{e \in \mathbf{p}_i} \overline{\tau}_e(\mathbf{p}),$$

где функции $\overline{\tau}_e(\mathbf{p})$ есть временные затраты на ребре e при комбинации путей \mathbf{p} . Поскольку подразумевается, что передвижение участников происходит непрерывно во времени, то, можно считать, что временные затраты на ребре e есть усредненные временные затраты в течении времени движения

$$\overline{\tau}_e(\mathbf{p}) = \int_0^\infty \tau_e(\mathbf{p}, t) dt,$$

где функции $\tau_e(\mathbf{p},t)$ представляют из себя затраченное время на передвижение по ребру e в момент времени t при комбинации путей \mathbf{p} . Таким образом, без ограничения общности считаем, что

$$T_i(\mathbf{p}) = \sum_{e \in \mathbf{p}_i} \int_0^\infty \tau_e(\mathbf{p}, t) dt$$

Далее для простоты изложения будем опускать зависимость функций от выбранной комбинации **р**.

Предположим, что у каждого участника движения имеется микроскопическая характеристика скорости движения $v_i(t)$, которая ограничена некоторой константой v_{max} - максимальной скоростью передвижения. В случае постоянных скоростей интуитивно очевидно, что вклад каждого участника, проехавшего по ребру e есть $\frac{l_e}{v_i}$, где l_e - длина ребра e. Обобщим это предположение на случай непостоянных скоростей:

$$\tau_e(t) = \sum_{j=1}^n \theta_{e,j}(t) \frac{l_e}{v_j(t)},$$

где

$$\theta_{e,j}(t) = egin{cases} 1, & \text{если j-ый участник движется по ребру e в момент времени t} \\ 0, & \text{иначе} \end{cases}$$

Таким образом, введя микроскопическую характеристику скорости движения $v_i(t)$ получим:

$$T_i(\mathbf{p}) = \sum_{e \in \mathbf{p}_i} l_e \sum_{j=1}^n \int_0^\infty \theta_{e,j}(t) \frac{1}{v_j(t)} dt$$

Пример 1

Предположим, что задана некоторая зависимость скорости участников $v_j(t)$ от загруженности на ребре $n_e(t) = \sum_{j=1}^n \theta_{e,j}(t)$.

$$v_j(t) = \sum_{e \in \mathbf{p}_i} v(n_e(t))\theta_{e,j}(t)$$

В этом случае врвменные затраты имеют вид

$$T_i(\mathbf{p}) = \sum_{e \in \mathbf{p}_i} l_e \int_0^\infty n_e(t) \frac{1}{v(n_e(t))} dt$$

Такую модель скорости будем в дальнейшем называть макроскопической моделью.

Простейшим примером такой модели является модель постоянной суммарной скорости

$$v(n_e(t)) = \frac{v_{max}}{n_e(t)},$$

или

$$T_i(\mathbf{p}) = v_{max} \sum_{e \in \mathbf{p}_i} l_e \int_0^\infty n_e^2(t) dt$$