6.1 电路如图题 6.1 所示,假设 $V_{\rm CC}=10$ V,I=100mA, $R_{\rm L}=100$ 。如果输出是峰值为 8V 的正弦波,求:

- (1) 负载上得到的功率;
- (2) 电源提供的平均功率;
- (3) 功率转换效率。

解: (1)
$$P_L = \frac{V_{OM}^2}{2R_L} = \frac{8^2}{2 \times 100} = 0.32W$$

(2)
$$P_S = 2V_{CC}I = 2 \times 10 \times 100 = 2W$$

(3)
$$\eta = \frac{P_L}{P_S} = \frac{0.32}{2} = 16\%$$

6.2 A 类输出级的电路结构如图题 6.1 所示。假设 $V_{\rm CC}=5$ V, $R=R_{\rm L}=1$ k Ω ,VT₁、VT₂和 VT₃型号相同。 $V_{\rm BE}=0.7$ V, $V_{\rm CE(sat)}=0.3$ V, β 很大。求线性工作时,输出电压的上限和下限分别是多少?相应的输入电压为多少?如果晶体管 VT₃ 的发射结面积是 VT₂ 的两倍,重复求解上述问题。

解:
$$v_{O \max} = V_{CC} - V_{CE(sat)} = 5 - 0.3 = 4.7V$$
 $v_{\text{Im}ax} = 4.7 + 0.7 = 5.4V$

$$I_{REF} = I = \frac{0 - V_{BE(on)} - (-V_{CC})}{R} = \frac{0 - 0.7 - (-5)}{10^3} = 4.3mA$$

$$v_{O \min} = -IR_L = -4.3 mA \times 1 k\Omega = -4.3 V \quad v_{O \min} = -V_{CC} + V_{CE2(sat)} = -5 + 0.3 = -4.7 V$$

取
$$v_{O \min} = -4.3V$$
 ,则 $v_{\text{Im}in} = -4.3 + 0.7 = -3.6V$

若
$$VT_3$$
管的结面积是 VT_2 管的 2 倍, $\frac{I}{I_{REF}} = \frac{1}{2}$, $I = 2.15mA$

$$v_{O \max} = 4.78V$$
, $v_{\text{Im}ax} = 5.4V$

$$v_{Q_{\min}} = -IR_L = -2.15 mA \times 1k\Omega = -2.15 V$$
 $v_{Imin} = -2.15 V + 0.7 = -1.45 V$

- 6.3 在图题 6.2 所示电路中,设三极管的 β =100, V_{BE} =0.7V, $V_{CE(sat)}$ =0.5V, I_{CEO} =0A。输入信号 v_1 为正弦波。求:
- (1) 负载上可能得到的最大平均功率 PLmax 是多少?
- (2) 要得到最大输出功率, RB的阻值应为多大?
- (3) 此时电路的效率 7是多大?

(1) 先求出输出信号的最大不失真幅值。 $v_o = V_{oq} + V_{om} \sin wt$

$$\oplus V_{OO} + V_{om} \leq V_{CC}$$
 $V_{OO} - V_{om} \geq V_{CES}$

得出:
$$2V_{om} \leq V_{CC} - V_{CES}$$
 所以 $V_{om} = \frac{1}{2} (V_{CC} - V_{CES})$

因此最大不失真输出功率
$$P_{om} = \left(\frac{V_{om}}{\sqrt{2}}\right)^2 \frac{1}{R_I} = \frac{\left(V_{CC} - V_{CES}\right)^2}{8} \times \frac{1}{8} \approx 2.07W$$

(2) 静态时,
$$V_{oQ} = \frac{V_{CC} - V_{CES}}{2} + V_{CES} = \frac{1}{2} (V_{CC} + V_{CES})$$

所以,
$$I_{CQ} = \frac{V_{CC} - V_{OQ}}{R_L} = \frac{V_{CC} - V_{CES}}{2R_L} = \frac{12 - 0.5}{2 \times 8} A \approx 0.72 A$$
 $I_{BQ} = \frac{I_{CQ}}{\beta} = 7.2 mA$

$$R_{\scriptscriptstyle B} = \frac{V_{\scriptscriptstyle CC} - V_{\scriptscriptstyle BE}}{I_{\scriptscriptstyle BO}} = \frac{12 - 0.7}{7.2} \, k\Omega \approx 1.57 \, k\Omega$$

(3)
$$\eta = \frac{P_{om}}{P_V} = \frac{P_{om}}{V_{cc}I_{cQ}} = \frac{2.07}{12 \times 0.72} \times 100\% \approx 24\%$$

6.4 如图题 6.3 所示的 B 类功率放大器,已知 V_{CC} =24V, R_L =8 Ω ,若忽略管压降,求电源功

率 P_{S} 、最大输出功率 P_{Omax} 和管耗 P_{DI} ,并选择功率三极管的参数。

解:
$$P_{O \max} = \frac{U_{CC}^2}{2R_L} = \frac{24^2}{2 \times 8} = 36(W)$$
 $P_S = \frac{2U_{CC}^2}{\pi R_L} = \frac{2 \times 24^2}{\pi \times 8} \approx 45.8(W)$

$$P_{D1} = \frac{1}{2} (P_S - P_o) = 0.5 \times (45.8 - 36) = 4.9(W)$$
 $P_{D1m} = 0.2 P_{Omax} = 0.2 \times 36 = 7.2(W)$

$$U_{(BR)CEO} > 2U_{CC} = 2 \times 24 = 48(V)$$
 $I_{CM} > \frac{U_{CC}}{R_L} = \frac{24}{8} = 3(A)$

6.5 如图题 6.3 所示的 B 类功率放大器,已知 P_{Lmax} =9W, R_{L} =8 Ω ,若忽略管压降,求电源功率 P_{S} 并选择功率三极管的参数。

解: 由
$$P_{O \max} = \frac{U_{CC}^2}{2R_L}$$
 得 $U_{CC} = \sqrt{2R_L P_{om}} = \sqrt{2 \times 8 \times 9} = 12(V)$

所以
$$P_S = \frac{2U_{CC}^2}{\pi R_I} = \frac{2 \times 12}{8\pi} \approx 11.5 (W)$$
 $P_{D1m} = 0.2 P_{Omax} = 0.2 \times 9 = 1.8 (W)$

$$U_{(BR)CEO} > 2U_{CC} = 2 \times 12 = 24(V)$$
 $I_{CM} > \frac{U_{CC}}{R_L} = \frac{12}{8} = 1.5(A)$

- 6.6 电路如图题 6.3 所示,晶体管在输入信号 vI 作用下,在一个周期内 VT_1 和 VT_2 轮流导通,电源电压 V_{CC} =20V, R_L =8 Ω ,试计算:
- (1) 在输入信号 V=10V (有效值) 时,电路的输出功率、管耗、直流电源供给的功率和效率。
- (2) 当输入信号 $v_{\rm I}$ 的幅值为 $V_{\rm Im}=V_{\rm CC}=20{\rm V}$,电路的输出功率、管耗、直流电源供给的功率

和效率。

解: (1) 由于输入信号的有效值 $V_I=10V$,所以输出信号的有效值 $V_O=10V$ 。因 此,

电路的输出功率为
$$P_o = \frac{V_o^2}{R_I} = \frac{10^2}{8}W = 12.5W$$

直流电源供给的功率为
$$P_V = \frac{2V_{CC}V_{Om}}{\pi R_L} = \frac{2\times 20\times \sqrt{2}\times 10}{3.14\times 8}W \approx 22.5W$$

总的管耗为
$$P_T = P_V - P_O = (22.5 - 12.5)W = 10W$$

每管的管耗为
$$P_{T1} = P_{T2} = \frac{P_T}{2} = 5W$$
 效率为 $\eta = \frac{P_O}{P_V} = \frac{12.5}{22.5} \times 100\% \approx 55.6\%$

(2) 当输入信号 v_i 的幅值为 $V_{\rm Im} = V_{CC} = 20V$ 时,输出电压的幅值

$$V_{Om} = 20V$$
 时,此时,电路的输出功率为 $P_{O} = \frac{V_{Om}^2}{2R_*} = \frac{20^2}{2 \times 8} W = 25W$

直流电源供给的功率为
$$P_V = \frac{2V_{CC}V_{Om}}{\pi R_L} = \frac{2\times 20\times 20}{3.14\times 8}W \approx 31.85W$$

总的管耗为
$$P_T = P_V - P_O = (31.85 - 25)W = 6.85W$$

每管的管耗为
$$P_{T1} = P_{T2} = P_T / 2 = 6.85 / 2W = 3.425W$$

效率为
$$\eta = \frac{P_O}{P_V} = \frac{25}{31.85} \times 100\% \approx 78.5\%$$

- 6.7 如图题 6.4 所示带互补 MOSFET 的 B 类输出级电路。晶体管参数为 $V_{\rm m}=V_{\rm p}=0$, $k'_{\rm n}(W/L)=0.8mA/V^2$, $R_{\rm L}=5{\rm k}\Omega$ 。
- (1) 试求使 VT1 保持偏置在饱和区的最大输出电压。此种情况下的 ft 和 vt 值为多少?
- (2) 若输出信号为对称正弦波,其峰值如(1)中所求的结果,试求相应的转换效率。

解: (1) 使 VT₁ 保持偏置在饱和区的临界状态下, $v_{DS}=v_{GS}-V_{m}=v_{GS}-0=v_{GS}$ 此时,输出电压 $v_{O}=V_{DD}-v_{DS}=10-v_{DS}$,则流过负载 R_{L} 的电流 $i_{L}=\frac{v_{O}}{R_{r}}=\frac{10-v_{DS}}{5k}$ (1)

 $VT_1 工作时 \ VT_2 截止,则 i_L = i_{D1} = \frac{1}{2} k_n' (W/L) (v_{GS} - V_m)^2 = 0.4 v_{GS}^2 = 0.4 v_{DS}^2$ (2) 联立(1)(2),可解得 $v_{DS} = 2V$ 或 $v_{DS} = -2.5V$ (舍去)

则 $v_O = 10 - v_{DS} = 10 - 2 = 8V$,此时 $v_I = v_{GS} + v_O = v_{DS} + v_O = 2 + 8 = 10V$, $i_L = \frac{v_O}{R_I} = \frac{8}{5k} = 1.6 mA$

(2) 峰值如(1)中所求结果,即
$$V_{OM}=8V$$
,此时 $\eta=\frac{\pi}{4}\cdot\frac{V_{OM}}{V_{DD}}=\frac{\pi}{4}\cdot\frac{8V}{10V}=62.8\%$

6.8 电路如图题 6.5 所示, 试求:

- (1) 运放的输出 vol 与输入 vi 之间的函数表达式;
- (2) 设 R_L =8 Ω ,当电路的输出功率 P_o =1W 时,计算输出 v_o 的幅值 v_{om} ,并计算此时输入 v_I 的幅值 V_{Im} 。

图题 6.5

解: (1) 运算 A 构成同相比例运算电路,则 $v_{o1} = \left(1 + \frac{3R}{R}\right)v_I = 4v_I$

(2) VT_1 与 VT_2 构成乙类功放电路,则 $P_0 = \frac{v_{om}^2}{2R_I} = 1W$

代入 $R_L=8\Omega$, 得 $v_{om}=4V$, 则 $v_{o1m}\approx v_{om}=4V$, 又由 $v_{o1}=4v_I$, 得 $v_{\rm Im}=1V$

6.9 在图题 6.6 所示电路中,设 VT_1 、 VT_2 管饱和压降 $V_{CE(sat)}$ =0, I_{CEO} =0, VT_3 管发射结导通电

压为 VBE3, 试写出:

- (1) 电压 VAB 的表达式;
- (2) 最大不失真输出功率表达式;
- (3) 确定功放管的极限参数;
- (4) 电路可能产生什么失真?
- (5) 如果要求静态时输出电压等于零,应调整哪个元件来实现?

解: (1) 由于流入 VT_3 的基极电流小于流过 R_1 、 R_2 的电流,由分压定理可得

$$V_{BE3} = rac{R_2}{R_1 + R_2} V_{AB}$$
 , Fig. $V_{AB} = \left(1 + R_1 \, / \, R_2 \, \right) V_{BE3} \, \circ$

(2) VT_1 、 VT_2 管构成 OCL 功放电路,代入相应参数计算公式可得结果。

最大不失真输出功率表达式
$$(P_o)_M = \frac{1}{2} \frac{V_{CC}^2}{R_t}$$

(3) 功放管的极限参数: 单管最大功耗 $\left(P_{V1}\right)_{M} = \frac{1}{\pi^{2}} \frac{V_{CC}^{2}}{R_{I}}$

最大允许集电极电流 $I_{CM} > \frac{V_{CC}}{R_L}$

反向电压
$$U_{(BR)CEO} > 2V_{CC}$$

- (4) 电路可能产生交越失真。
- (5) 如果要求静态时输出电压等于零,应调整 R_{B1} 来实现。

6.10 功率放大器如图题 6.7 所示,设三极管 $\beta_1=\beta_2=15$,电源电压 $V_{CC}=16V$,负载 $R_L=4\Omega$,BJT 饱和压降 $V_{CE(sat)}=0V$,试求电路最大不失真输出功率、输出功率最大时的管耗及最大管耗、功率放大电路的效率和输入信号的功率。

解: 最大输出电流为
$$I_{om} = \frac{U_{CC}}{R_L} = \frac{16}{4} = 4(A)$$

最大输出功率为
$$P_{om} = \frac{1}{2}I_{om} \times U_{cem} = \frac{1}{2} \times 4 \times 16 = 32(W)$$

电源供给的直流功率为
$$P_{DC} = \frac{2}{\pi} I_{om} \times U_{CC} = \frac{2}{\pi} \times 4 \times 16 \approx 40.7 (W)$$

输出功率最大时的管耗
$$P_{VT_1} = P_{VT_2} = \frac{1}{2} (P_{DC} - P_{om}) = \frac{1}{2} \times (40.7 - 32) = 4.35(W)$$

最大管耗
$$P_{VT_1m} \approx 0.2P_{om} = 0.2 \times 32 = 6.4(W)$$

输入信号电流和电压的峰值分别为

$$I_{im} = I_{bm} = \frac{I_{om}}{\beta} = \frac{4}{15} \approx 0.267(A)$$
 $U_{im} \approx U_{cem} = U_{CC} = 16(V)$

所以,输入信号的功率应为
$$P_i = \frac{1}{2}I_{bm} \cdot U_{cem} = \frac{1}{2} \times 0.267 \times 16 = 2.13(W)$$

- 6.11 互补对称电路如图题 6.8 所示, $V_{\rm CC}$ =20V, $R_{\rm L}$ =8 Ω ,VT₁、VT₂管的饱和压降 $V_{\rm CE(sat)}$ =2V。
- (1) 当 VT_3 管输出信号 V_{03} =10V (有效值) 时,计算电路的输出功率、管耗、直流电源供给的功率和效率;
- (2) 计算该电路的最大不失真输出功率、效率、和所需的 Vo3 有效值。

解:(1)该电路由两级放大电路组成,其中 VT_3 管电路为推动极, VT_1 与 VT_2 管组 成 互补对称功放电路。 VT_3 管的输出信号 V_{o3} 就是功放电路的输入信号电压。 故 当

$$V_{o3} = 10V$$
 (有效值)时,电路的输出功率为 $P_o = \frac{V_{o3}^2}{R_L} = \frac{10^2}{8}W = 12.5W$

直流电源供给的功率为
$$P_V = \frac{2V_{CC}V_{om}}{\pi R_L} = \frac{2 \times 20 \times \sqrt{2} \times 10}{3.14 \times 8} W \approx 2.5W$$

管耗为
$$P_T = P_V - P_o = (22.5 - 12.5)W = 10W$$
, $P_{T1} = P_{T2} = 5W$

效率为
$$\eta = \frac{P_o}{P_V} = \frac{12.5}{22.5} \times 100\% \approx 55.6\%$$

(2) 该电路的最大不失真输出功率为

$$P_{om} = \frac{1}{2} \frac{(V_{CC} - V_{CES})^2}{R_I} = \frac{1}{2} \times \frac{(20 - 2)^2}{8} W = 20.25W$$

直流电源供给的功率为
$$P_V = \frac{2V_{CC}V_{om}}{\pi R_L} = \frac{2\times20\times\left(20-2\right)}{3.14\times8}W \approx 28.66W$$

效率为
$$\eta = \frac{P_o}{P_V} = \frac{20.25}{28.26} \times 100\% \approx 70.7\%$$

所需的
$$V_{o3}$$
的有效值为 $V_{o3} = \frac{V_{om}}{\sqrt{2}} = \frac{V_{CC} - V_{CES}}{\sqrt{2}} = \frac{20 - 2}{\sqrt{2}}V \approx 12.73V$

功放电路的输出功率、效率,除与电路类型、电源电压等有关外,还与激励信号的大小有关。

6.12 有一个 BJT 的热阻为 θ_{JA} =2 \mathbb{C}/W ,工作的环境温度为 30 \mathbb{C} ,集射电压为 20 \mathbb{V} 。长时间工作允许的最高结温为 130 \mathbb{C} ,求相应的晶体管管耗,集电极电流的最大平均值是多少?

解:
$$T_J - T_A = \theta_{JA} P_D$$
, $130^o - 30^o = 2 \times P_D$, $P_D = 50W$, $I_C = \frac{P_D}{V_{CE}} = \frac{50W}{20V} = 2.5A$

6.13 某功率管在 25℃时的功耗为 200mW,最大结温为 150℃,求它的热阻 θ_{JA} 。如果工作在 70℃的环境温度下,它的功耗应该是多少?若环境温度为 50℃,此时的管耗是 100mW,求此时的结温。

解:
$$T_J - T_A = \theta_{JA} P_D$$
, $\theta_{JA} = \frac{150^{\circ} C - 25^{\circ} C}{200 mV} = 625^{\circ} C / W$, $P_D = \frac{150^{\circ} C - 70^{\circ} C}{625^{\circ} C / W} = 0.128 W$,

$$T_J = 0.1w \times 625^{\circ} C / W + 50^{\circ} C = 112.5^{\circ} C$$

- 6.14 一个集成功放 LM384 组成的功率放大器如图题 6.9 所示。已知电路在通带内的电压增益为 40dB,在 R_L = 8Ω 时最大输出电压(峰-峰值)可达 18V,当 ν_I 为正弦信号时,求:
- (1) 最大不失真输出功率 P_{Omax} ;
- (2)输出功率最大时的输入电压有效值。

解: (1)
$$P_{O\text{max}} = \frac{1}{2} \frac{V_{om}^2}{R_L} = \frac{1}{2} \times \frac{(18/2)^2}{8} W \approx 5.1W$$

(2) 由于
$$V_{om} = 18/2 = 9V$$
,而 $20\lg A_V = 40dB$,即 $A_V = 100$,所以

$$V_{im} = \frac{V_{om}}{A_V} = \frac{9}{100}V = 0.09V$$
 $V_i = \frac{V_{im}}{\sqrt{2}} = \frac{0.09}{\sqrt{2}}V \approx 64mV$