1 Partizioni

Quindi per ogni partizione P, poniamo

$$m_k = \inf\{f(x) : x \in [x_{k-1}, x_k]\}$$

Figure 1: Inf

(In questo caso è un minimo) e poniamo

$$M_k = \sup\{f(x) : x \in [x_{k-1}, x_k]\}$$

Figure 2: Sup

(In questo caso è un massimo)

Ad esempio:

In entrambe le figure sono rettangoli con la stessa base, ma con diversa altezza. Sono aree per difetto e per eccesso della regione che voglio stimare.

Definisco le SOMME INTEGRALI INFERIORI: Somma delle aree dei rettangoli inscritti.

$$S(p) = \sum_{k=1}^{n} m_k (x_k - x_{k-1})$$

e le SOMME INTEGRALI SUPERIORI: Somma delle aree dei rettangoli circoscritti.

$$S(p) = \sum_{k=1}^{n} M_k(x_k - x_{k-1})$$

1.1 Osservazione

Se f(x) è positiva, queste somme integrali sono la somma delle aree dei rettangoli inscritti e circoscritti (sono definite a prescindere dal segno)

Si dimostra che:

$$S(P) \le S(P)$$

e indicando con A l'insieme numerico descritto dalle somme integrali inferiori (P) al variare delle partizioni P dell'intervallo [a,b] e con B l'insieme delle corrispondenti somme superiori:

$$A = \{s(P)\}$$
 $B = \{S(P)\}$

si dimostra che A e B sono insiemi SEPARATI, cioè $A \leq B$:

$$a \leq b \forall a \in A \quad \land \quad \forall b \in B$$

⇒ Dall'assioma di completezza segue che esiste almeno un numero reale c maggiore uguale a tutti gli elementi di A e minore o uguale a tutti gli elementi di B.

In generale questo elemento non è unico, e vale la seguente:

2 Integrale definito

Se l'elemento di separazione tra A e B è unico, allora si dice che f(x) è INTEGRABILE SECONDO RIEMANN in [a, b] e l'elemento si chiama con:

$$\int_{a}^{b} f(x)dx$$

e si chiama INTEGRALE DEFINITO di f in [a, b]. Quindi posto:

$$S(f) = \sup\{s(P) : P \ partizione \ di \ [a, b]\}$$

$$S(f) = \inf\{S(P) : P \text{ partizione } di [a, b]\}$$

se $s(f) = S(P) \rightarrow$ allora f(x) è integrabile secondo Riemann.

2.1 Funzione non integrabile secondo Riemann

Funzione di Dirichlet:

$$f(x)$$
:
$$\begin{cases} 0 & x \in \mathbb{Q} \\ 1 & x \in \mathbb{R} - \mathbb{Q} \end{cases}$$

Figure 3: Funzione di Dirichlet

In ogni intervallo $[x_{k-1}, x_k]$ cadono sia punti razionali che irrazionali:

$$m_k = \inf\{f(x); x \in [x_{k-1}, x_k]\} = 0$$

$$M_k = \sup\{f(x); x \in [x_{k-1}, x_k]\} = 1$$

Allora: (somma integrali inferiori)

$$S(P) = \sum_{k=1}^{n} 0 \cdot (x_k - x_{k-1}) = 0$$

$$S(P) = \sum_{k=1}^{n} 1 \cdot (x_k - x_{k-1}) = (x_1 - x_0) + (x_2 - x_1) + (x_3 - x_2) + \dots + (x_{n-1} - x_{n-2}) + (x_n - x_{n-1})$$

= $x_n - x_0 = b - a$

$$\rightarrow S(P) = 0 \ \forall \ P \land S(P) = b - a \ \forall P$$

Non è integrabile secondo Riemann. (lo sarà secondo LEBESGUE)

2.2 Proprietà

2.2.1 Additività integrale rispetto all'intervallo

Se a,b,c sono tre punti di un intervallo dove la funzione f(x) è integrabile, allora:

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

Figure 4: Grafico additività integrale

2.2.2 Linearità dell'integrale

Se f e g sono funzioni integrabili in [a, b], anche f + g è integrabile in [a, b]. Dato c numero reale, anche $c \cdot f$ è integrabile in [a, b].

$$\int_{a}^{b} [f(x) + g(x)]dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$$
$$\int_{a}^{b} c \cdot f(x)dx = c \cdot \int_{a}^{b} f(x)dx$$

2.2.3 Confronto tra gli integrali

Se f e g sono funzioni integrabili in [a,b] e se $f(x) \leq g(x) \forall x \in [a,b]$, allora:

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx$$

2.2.4 Integrabilità delle funzioni continue

Sia f(x) una funzione continua in [a, b]. Allora f(c) è integrabile secondo Riemann in [a, b].

2.3 Teorema della media

Se f(x) è continua in [a, b], esiste un punto $x_0 \in [a, b]$ tale che:

$$\int_{a}^{b} f(x)dx = f(x_0) \cdot (b - a)$$

2.4 Interpretazione geometrica del teorema della media

f(x) continua in [a, b], ad esempio:

Voglio calcolare l'area del rettangolo A. Il teorema della media afferma che \exists un valore opportuno (cioè un valore non scelto a caso, ma in base alla particolare funzione considerata) $f(x_0)$, tale che:

Figure 5: Teorema della media

Per cui area A = area B, dove B è un rettangolo che ha per base l'intervallo [a, b] e per altezza $f(x_0)$.

2.4.1 Dimostrazione del teorema della media

f una funzione continua in [a, b] per ipotesi. Per il teorema di Weierstrass f(x) assume massimo e minimo in [a, b], cioè esisteno m e M tali che: (teo esistenza valori intermedi)

$$m \le f(x) \le M \forall x \in [a, b]$$

Consideriamo ora una partizione P di [a, b], la più semplice possibile, cioè:

$$P = \{x_0 = a, x_1 = b\}$$

Le relative somme integrali inferiori e superiori sono date quindi da:

$$s(P) = m(b - a)$$

Figure 6: Enter Caption

$$S(P) = M(b - a)$$

// grafico

L'integrale definito è, per definizione, l'elemento di separazione delle somme integrali inferiori e delle somme integrali superiori (qualunque sia la partizione P di [a, b]). Quindi:

$$s(P) \le \int_b^a f(x)dx \le S(P)$$

$$\to m(b-a) \le \int_b^a f(x)dx \le M(b-a)$$

se e solo se

$$m \le \frac{1}{b-a} \int_{a}^{b} f(x)dx \le M$$
$$\frac{1}{b-a} \int_{a}^{b} f(x)dx = y_{0}$$

 y_0 è un numero compreso tra m ed M, minimo e massimo di f(x) \implies per il teorema di esistenza dei valori intermedi, $\exists x_0 \in [a,b] \ t.c.$

$$f(x_0) = y_0$$

$$\implies f(x_0) = \frac{1}{b-a} \int_a^b f(x) dx$$

$$\frac{1}{b-a} \int_a^b f(x) dx = y_0$$

$$\implies \int_a^b f(x) dx = (b-a)f(x_0)$$

2.5 Integrabilità delle funzioni monotone

Sia f(x) una funzione monotona in [a, b]. Allora f(x) è integrabile secondo Riemann in [a, b] (indipendente dalle discontinuità)

2.5.1 Osservazioni

In vista di andare a definire gli **INTEGRALI INDEFINITI**, concludiamo con alcune notazioni e definizioni. Abbiamo definito l'integrale definito come:

 $\int_{a}^{b} f(x)dx$

dove a e b sono gli estremi di integrazione, la funzione f si dice funzione **integranda**, la variabile x, si dice **variabile di integrazione**.

Figure 7: funzione a scalini

Notiamo che il risultato dell'integrazione non dipende da x, ma è un numero reale. Poniamo inoltre per definizione:

$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx \quad (a > b)$$

$$\int_{a}^{a} f(x)dx = 0$$

3 Integrali Indefiniti

Mettiamo ora in evidenza, ma dei risultati più importati che lega le derivate con gli integrali. Preliminarmente definiamo la FUNZIONE INTEGRALE.

3.1 Funzione integrale

Data f una funzione continua in [a, b], definiamo:

$$F(x) = \int_{a}^{x} f(t)$$

qui "x" è impegnato.

$$\implies F(x) = \int_{a}^{x} f(t)dt$$