```
History
                                                                Author
                                                                                                                                      Literature Cutoff Date
                     Type
               Full Evaluation
                                     Ashok K. Jain and Anwesha Ghosh, Balraj Singh
                                                                                                      NDS 107, 1075 (2006)
                                                                                                                                            15-Apr-2006
O(\beta^{-}) = -4.81 \times 10^{3} \text{ 4}; S(n) = 9.87 \times 10^{3} \text{ 4}; S(p) = 2.71 \times 10^{3} \text{ 3}; O(\alpha) = 3.03 \times 10^{3} \text{ 4}
                                                                                                  2012Wa38
Note: Current evaluation has used the following Q record.
Q(\beta^{-})=-4810 \ 40; S(n)=9870 \ 40; S(p)=2710 \ 30; Q(\alpha)=3030 \ 40
Analysis of rotational bands In <sup>165</sup>Lu: 2004Ma21, 2004Ka66, 1999Li39.
Triaxial structures in <sup>165</sup>Lu (theory): 2006Ta11.
Additional information 1.
                                                                                <sup>165</sup>Lu Levels
  Q(transition)= Transition quadrupole moment.
  Nomenclature for quasi-particle orbitals used in band assignments:
  a: \pi 1/2[411], \alpha = +1/2.
  b: \pi 1/2[411], \alpha = -1/2.
  c: \pi 7/2[404], \alpha = +1/2.
  d: \pi 7/2[404], \alpha = -1/2.
  e: \pi 9/2[514], \alpha = +1/2.
  f: \pi 9/2[514], \alpha = -1/2.
  g: \pi 7/2[523], \alpha = +1/2.
  h: \pi 7/2[523], \alpha = -1/2.
  k: \pi 5/2[402], \alpha = +1/2.
  1: \pi 5/2[402], \alpha = -1/2.
  A: v5/2[642], \alpha = +1/2.
  B: v5/2[642], \alpha = -1/2.
  C: v3/2[651], \alpha = +1/2.
  D: v3/2[651], \alpha = -1/2.
  E: v5/2[523], \alpha = +1/2.
  F: v5/2[523], \alpha = -1/2.
  G: v3/2[521], \alpha = +1/2.
  H: v3/2[521], \alpha = -1/2.
                                                                     Cross Reference (XREF) Flags
                                                                ^{165}\mathrm{Hf}~\varepsilon~\mathrm{decay}~(76~\mathrm{s})
                                                                                                    ^{139}La(^{30}Si,4n\gamma)
                                                         Α
                                                                                                    ^{150}Sm(^{19}F.4n\gamma)
                                                                ^{124}Sn(^{45}Sc,^{4n}\gamma)
                                                        В
                                                                                             E
                                                                ^{138}Ba(^{31}P.4n^{\gamma})
                                                                                                    ^{153}Eu(^{16}O.4n\gamma)
                                                                                                                  Comments
                                                          \%\varepsilon + \%\beta^+ = 100
                                                          \mu=-0.0245 3 (1998Ge13)
                                                          \langle r^2 \rangle^{1/2} = 5.284 fm 6 (2004An14 evaluation).
                                                          \Delta < r^2 > (^{170}Lu - ^{165}Lu) = -0.561 \text{ fm}^2 (Laser spectroscopy, 1998Ge13). The systematic uncertainty is
                                                          J^{\pi}: spin from collinear laser spectroscopy of the hyperfine structure (1998Ge13). Earlier atomic
                                                             beam magnetic resonance data of 1974Ek03 (see also 1976Ek02) also gave spin of 1/2 for a
                                                             12-min activity of ^{165}Lu. Parity is from agreement of the experimental \mu with calculated
                                                             value of -0.03 (1998Ge13) for the \pi 1/2[411] orbital. 1998Ge13 found no evidence of a
                                                             higher-spin isomer such as 7/2+.
                                                          μ: Collinear laser spectroscopy of the hyperfine structure (1998Ge13). See also 2005St24
```

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
				compilation. T _{1/2} : from 1982Ra19. Others: 11.8 min 5 (1973Me25), 12 min (1974Ek03), 12.0 min 4 (1978Bu13).
0.0+x ^d	(3/2+)		ABCDEF	Additional information 2. E(level): $x \approx 20$ keV, from evaluators' estimate based on the trend of energy separation of 3/2 and 1/2 states for the 1/2[411] bands in odd-A Lu nuclides (163Lu, 167 Lu to 179 Lu).
5.33+x ^h 19	$(5/2^+)$		A CDEF	
23.43+x ^b 19	$(7/2^+)$		ABCDEF	
54.75+x 21	(7/2-)		D	J^{π} : probable bandhead of 7/2[523] band from systematic trend of bandhead energies for odd-A Lu nuclides.
141.39+x ⁸ 17	$(7/2^+)$		A CDEF	XREF: A(?).
147.70+x ^e 12 182.46+x ^c 20	$(5/2^+)$ $(9/2^+)$		CDEF A CDEF	XREF: A(?).
$195.39 + x^d$ 10	$(7/2^+)$	133 ps <i>12</i>	CDEF	ARLI . A(:).
203.4+x 4	(1/2)	133 ps 12	A	J^{π} : (3/2 to 7/2) from possible β feeding from (5/2 ⁻).
234.95+x ^{&} 18	$(9/2^{-})$		AB D F	XREF: A(?).
305.52+x ^h 16	$(9/2^+)$		CDEF	
335.45+x ^a 21	$(11/2^{-})$		B D F	
$345.4 + x^{f} 4$	$(5/2^{-})$		D F	
366.58+x ^b 20	$(11/2^+)$	15.7 ps 15	CDEF	
432.70+x ^e 14	$(9/2^+)$		CDEF	
$466.49 + x^{f}$ 14	$(9/2^{-})$	58.7 ps <i>35</i>	D F	
494.72+x & 20	$(13/2^{-})$	13.0 ps 6	B D F	
499.22+x ⁸ 16	$(11/2^+)$		CDEF	
519.60+x ^d 13 574.13+x ^c 20	$(11/2^+)$	14.9 ps 7	CDEF	
$662.61 + x^a 21$	$(13/2^+)$ $(15/2^-)$	6.70 ps <i>24</i> 6.65 ps <i>35</i>	CDEF B D F	
$694.78 + x^f$ 16	$(13/2^{-})$ $(13/2^{-})$	33.3 ps <i>14</i>	D F	
711.20+x ^h 18	$(13/2^+)$	22.2 ps 17	CDEF	
802.23+x ^b 20	$(15/2^+)$	3.66 ps <i>16</i>	CDEF	
821.14+x ^e 17	$(13/2^+)$	F	CDEF	
893.46+x ^{&} 21	$(17/2^{-})$	2.91 ps 12	B D F	
943.34+x ^d 16	$(15/2^+)$	1.84 ps <i>17</i>	CDEF	
955.32+x ⁸ 18	$(15/2^+)$		CDEF	
976.1+x 7	(17/0-)	7.77	A	
$1030.18 + x^{f} 19$ $1048.83 + x^{c} 20$	$(17/2^{-})$ $(17/2^{+})$	7.77 ps <i>17</i> 2.17 ps <i>8</i>	D F CDEF	
$1048.85 + x^{a} 22$	$(17/2^{-})$ $(19/2^{-})$	1.70 ps 6	B D F	
1197.30+x ^h 19	$(17/2^+)$	F	CDEF	
1292.01+x ^e 18	$(17/2^+)$		CDEF	
1310.65+x ^b 20	$(19/2^+)$		CDEF	
1386.75+x & 22	$(21/2^{-})$	1.25 ps 18	B D F	
1445.45+x ^d 18	$(19/2^+)$	2.16 ps 10	CDEF	
$1462.28 + x^{f} 21$	$(21/2^{-})$	2.8 ps 7	D F	
1478.40+x ⁸ 20	$(19/2^+)$	1.10	CDEF	
1587.07+x ^c 20 1618.75+x ^a 23	$(21/2^+)$	1.10 ps 8	CDEF	
1618./5+x ^h 23 1740.04+x ^h 19	$(23/2^{-})$	0.98 ps 7	B D F	
1/40.04+X** 19	$(21/2^+)$		CDEF	

E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF
1769.6+x ^q 7 1818.57+x ^e 21	$(19/2^{-})$ $(21/2^{+})$	D CDEF	3754.1+x ^h 6 3764.2+x ^r 4	$(37/2^+)$ $(37/2^+)$		D CDE
1871.63+x b 20	$(23/2^+)$	CDEF	3824.1+x ^p 4	$(37/2^{-})$		D
1945.33+x & 23	$(25/2^{-})$	B D F	$3853.7 + x^{f} 6$	$(37/2^{-})$		D F
$1978.68 + x^{f} 23$	$(25/2^{-})$	D F	3863.9+x ^s 8	$(35/2^+)$		D
1990.16+x ^d 19	$(23/2^+)$	CDEF	$3970.2+x^{b}$ 3	$(39/2^+)$		CDE
2048.1+x ⁸ 3	$(23/2^+)$	CDEF	$3981.10+x^{i}$ 25	$(39/2^+)$		CDE
$2155.7 + x^{q} 5$	$(23/2^{-})$ $(23/2^{-})$	D	4010.3+x & 3	$(37/2^{-})$ $(41/2^{-})$		B D F
2166.73+x ^c 20	$(25/2^+)$	CDEF	4034.6+x ^d 7	$(39/2^+)$		DDI
$2196.30+x^a$ 23	$(27/2^{-})$	B D F	4117.1+x ^o 5	$(39/2^{-})$		D
2294.41+x ^h 20	$(25/2^+)$	CDEF	4185.0+x ^q 8	$(39/2^{-})$		D
2348.77+x ^e 22	$(25/2^+)$	CDEF	4269.9+x ^j 3	$(41/2^+)$		CDE
2409.4+x ^r 5	$(25/2^+)$	D	4290.5+x ^c 5	$(41/2^+)$		D
2458.63+x ^b 20	$(27/2^+)$	CDEF	4322.3+x ^a 3	$(43/2^{-})$		B D F
2535.23+x ^{&} 24	$(29/2^{-})$	B D F	4346.6+x ^r 5	$(41/2^+)$		CDE
2538.63+x ^d 21	$(27/2^+)$	CDEF	4373.4+x ^h 7	$(41/2^+)$		D
2545.0+x ⁱ 3	$(27/2^+)$	D	4402.6+x ^{\$} 7	$(39/2^+)$		D
$2564.38 + x^f 25$	$(29/2^{-})$	D F	4453.6+x ^p 5	$(41/2^{-})$		D
2585.7+x ^q 6	$(27/2^{-})$	D	4490.7+x ^f 7	$(41/2^{-})$		D
2612.2+x ^g 4	$(27/2^+)$	CDE	4575.3+x ⁿ 7	$(41/2^{-})$		D
2730.25+x ^c 20	$(29/2^+)$	CDEF	4579.3+x ⁱ 3	$(43/2^+)$		CDE
2753.45+x ^h 23	$(29/2^+)$	CDEF	4613.9+x ^b 4	$(43/2^+)$		CDE
2765.4+x ^j 4	$(29/2^+)$	D	4645.2+x & 3	$(45/2^{-})$		B D
2789.38+x ^a 24	$(31/2^{-})$	B D F	4686.6+x ^d 7	$(43/2^+)$		D
2794.4+x ^r 4	$(29/2^+)$	CDE	4773.5+x ⁰ 6	$(43/2^{-})$		D
2947.5+x ⁰ 4	$(31/2^{-})$	D	4787.5+x ^t 12	$(41/2^+)$		D
2956.70+x ^b 20	$(31/2^+)$	CDE	4800.4+x ^q 8	$(43/2^{-})$		D
$2968.4 + x^{i} 3$	$(31/2^+)$	D	4888.6+x ^J 3	$(45/2^+)$		CDE
2999.6+x ^d 4	$(31/2^+)$	D	4960.5+x ^c 5	$(45/2^+)$		D
3038.95+x & 24	$(33/2^{-})$	B D F	4987.9+x ^r 7	$(45/2^+)$	@	D
$3043.3 + x^{8} 9$	$(31/2^+)$	D	4996.5+x ^a 3	$(47/2^{-})$	>0.19 [@] ps	B D
3067.2+x ^q 7	$(31/2^{-})$	D	5000.7+x ^s 7	$(43/2^+)$		D
3180.45+x ^c 21	$(33/2^+)$	CDE	5068.2+x ^h 8	$(45/2^+)$		D
$3195.3 + x^f 4$	$(33/2^{-})$	D F	5115.7+x ^p 6	$(45/2^{-})$		D
$3201.8 + x^{j} 3$ $3222.5 + x^{p} 4$	$(33/2^+)$ $(33/2^-)$	CDE D	5145.2+x ^f 9 5174.2+x ⁿ 7	$(45/2^{-})$ $(45/2^{-})$		D D
$3224.2+x^{h}$ 5	$(33/2^+)$	D D	$5174.2+x$ / $5220.7+x^{i}$ 4	$(43/2^{+})$		CDE
$3239.7+x^{r}$ 4	$(33/2^+)$	CDE	$5325.9+x^{b}6$	$(47/2^+)$		CDE
$3239.7+x$ 4 $3248.59+x^a$ 25	$(35/2^{-})$	B D F	5363.9+x & 3	$(47/2)$ $(49/2^{-})$		B D
$3248.39+x$ 23 $3417.32+x^{b}$ 22	$(35/2^+)$	CDE	5393.6+x 7	$(47/2^+)$		D D
$3417.32+x^{i}$ 22 $3436.61+x^{i}$ 24	$(35/2^+)$	CDE	5435.6+x ^d 10	$(47/2^+)$		D
$3471.6 + x^{d} 6$	$(35/2^+)$	D	5446.7+x ^q 8	$(47/2^{-})$		D
3475.30+x & 25	$(37/2^{-})$	B D F	$5448.8 + x^t 9$	$(47/2^+)$		D
3485.1+x ⁰ 4	$(37/2)$ $(35/2^{-})$	БDг	5475.8+x ⁰ 6	$(43/2^{-})$ $(47/2^{-})$		D D
3602.3+x ^q 8	$(35/2^{-})$	D	5539.5+x ^j 4	$(49/2^+)$		CDE
3682.55+x° 23	$(37/2^+)$	CDE	5655.8+x ^s 8	$(47/2^+)$		D
3705.3+x ^c 3	$(37/2^+)$	CDE	5684.7+x ^r 8	$(49/2^+)$		CDE
$3735.3 + x^{j} 3$	$(39/2^{-})$	B D F	5695.5+x ^c 7	$(49/2^+)$		D

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF
5740.6+x ^a 4 5786.5+x ^p 8	(51/2 ⁻) (49/2 ⁻)	>0.13 [@] ps	B D D	7760.3+x ^b 12 7788.7+x ^o 12	(59/2 ⁺) (59/2 ⁻)	D D
5823.2+x ^h 10	$(49/2^+)$		D	7837.4+x ^j 6	$(61/2^+)$	CDE
5825.4+x ⁿ 7	$(49/2^{-})$		D	7841.6+x ^d 15	$(59/2^+)$	D
$5845.2 + x^f$ 12	$(49/2^{-})$		D	7864.3+x & 6	$(61/2^{-})$	B D
5861.0+x ^m 12	$(49/2^{-})$		D	7952.7+x ^{\$} 13	$(59/2^+)$	D
5899.8+x ⁱ 5	$(51/2^+)$		CDE	8093.9+x ^r 13	$(61/2^+)$	CDE
6080.9+x ^k 7	$(51/2^+)$		D	8114.5+x ^l 11	$(61/2^+)$	D
6101.7+x ^b 7	$(51/2^+)$		CDE	8128.0+x ^p 10	$(61/2^{-})$	D
6138.1+x ^q 8	$(51/2^{-})$		D	8212.5+x ^c 16	$(61/2^+)$	D
6147.1+x& 4	$(53/2^{-})$	0.13 [@] ps 2	B D	8227.1+x ⁿ 13	$(61/2^{-})$	D
6154.8+x ^t 9	$(49/2^+)$	•	D	8257.4+x ^h 17	$(61/2^+)$	D
6178.7+x° 7	$(51/2^{-})$		D	8269.6+x ^a 6	$(63/2^{-})$	B D
6188.6+x ^d 10	$(51/2^+)$		D	8312.3+x ^f 18	$(61/2^{-})$	D
6236.2+x ^j 5	$(53/2^+)$		CDE	8330.8+x ⁱ 7	$(63/2^+)$	CDE
6367.2+x ^{\$} 9	$(51/2^+)$		D	8336.8+x ^m 18	$(61/2^{-})$	D
6434.9+x ^r 9	$(53/2^+)$		CDE	8551.9+x ^t 15	$(61/2^+)$	D
6448.5+x ¹ 8	$(53/2^+)$		D	8557.0+x ^q 13	$(63/2^{-})$	D
6507.6+x ^p 9	$(53/2^{-})$		D	8584.9+x ^k 11	$(63/2^+)$	D
6511.5+x ^c 11	$(53/2^+)$		D	8660.4+x ^b 14	$(63/2^+)$	D
6539.2+x ^a 4	$(55/2^{-})$		B D	8692.0+x ^o 15	$(63/2^{-})$	D
6552.5+x ⁿ 8	$(53/2^{-})$		D	8733.6+x ^d 17	$(63/2^+)$	D
6608.7+x ^f 14	$(53/2^{-})$		D	8754.7+x ^j 8	$(65/2^+)$	CDE
6612.7+x ^h 13	$(53/2^+)$		D	8795.3+x& 8	$(65/2^{-})$	B D
6632.2+x ⁱ 5	$(55/2^+)$		CDE	8824.9+x ^s 15	$(63/2^+)$	D
6642.3+x ^m 14	$(53/2^{-})$		D	9002.8+x ^r 15	$(65/2^+)$	CDE
6841.9+x ^k 8	$(55/2^+)$		D	9028.0+x ^p 11	$(65/2^{-})$	D
6886.7+x ^q 9	$(55/2^{-})$		D	9067.5+x ^l 13	$(65/2^+)$	D
6903.6+x ^t 10	$(53/2^+)$		D	9133.5+x ^c 18	$(65/2^+)$	D
6907.6+x ^b 9	$(55/2^+)$		D	9156.0+x ⁿ 15	$(65/2^{-})$	D
6947.3+x ⁰ 9	(55/2-)		D	9160.2+x ^h 19	$(65/2^+)$	D
6982.4+x & 5	(57/2-)		B D	9199.0+x ^a 8	(67/2-)	B D
6994.6+x ^d 13	$(55/2^+)$		D	9242.6+ x^f 20	$(65/2^{-})$	D
6998.0+x ^j 6	(57/2+)		CDE	9265.1+x ^m 20	$(65/2^{-})$	D
7132.9+x ^s 10	$(55/2^+)$		D	9308.7+x ⁱ 9	$(67/2^+)$	CDE
$7238.2 + x^r 10$	$(57/2^+)$		D	9456.6+x ^t 17	$(65/2^+)$	D
$7240.5 + x^{l} 9$	$(57/2^+)$		CDE	9475.3+x ^q 15	$(67/2^{-})$	D
7288.1+x ^p 9	(57/2-)		D	9544.9+x ^k 14	$(67/2^+)$	D
7338.5+x ^c 13 7354.9+x ⁿ 10	$(57/2^+)$		D	9607.1+x ^b 16 9643.2+x ^o 17	$(67/2^+)$	D
	(57/2-)		D	9643.2+x ^d 17 9671.6+x ^d 19	$(67/2^{-})$	D
$7383.6 + x^a 5$	$(59/2^{-})$		B D		$(67/2^+)$	D
$7417.6 + x^h$ 15	(57/2 ⁺)		D	9742.6+x ^j 9	$(69/2^+)$	D
$7431.3 + x^{f}$ 16	(57/2-)		D	9751.5+x ^s 17	$(67/2^+)$	D
7439.1+x ⁱ 6 7467.1+x ^m 16	$(59/2^+)$ $(57/2^-)$		CDE D	9781.3+x ^{&} 10 9965.8+x ^r 17	$(69/2^{-})$ $(69/2^{+})$	B D CDE
$7677.9 + x^{k}$ 10				9903.8+x ^P 17 9991.2+x ^P 14		
$7677.9 + x^{0} = 10$ $7693.9 + x^{0} = 10$	$(59/2^+)$		D	$9991.2+x^{p}$ 14 $10072.5+x^{l}$ 16	$(69/2^{-})$	D
$7693.9+x^{4}$ 10 $7702.3+x^{t}$ 13	$(59/2^{-})$		D	10072.5+x ^c 16 10107.5+x ^c 19	$(69/2^+)$	D
1102.3+X 13	$(57/2^+)$		D	10107.5+X° 19	$(69/2^+)$	D

E(level) [†]	$J^{\pi \ddagger}$	XREF
10129.5+x ⁿ 17	(69/2-)	D
$10175.4 + x^a 10$	$(71/2^{-})$	D
$10207.7 + x^{f}$ 22	(69/2-)	D
10367.1+x ⁱ 10	$(71/2^+)$	D
10414.1+x ^t 19 10449.1+x ^q 17	$(69/2^+)$ $(71/2^-)$	D D
$10449.1+x^{4}$ 17 $10546.9+x^{k}$ 16	$(71/2^+)$ $(71/2^+)$	
$10540.9+x^{b}$ 18	$(71/2^{+})$	D
10594.0+x° 18 10645.1+x° 19	$(71/2^{-})$ $(71/2^{-})$	D D
$10646.6 + x^d 21$	$(71/2^+)$	D
10732.6+x ^s 19	$(71/2^+)$	D
10793.8+x ^j 12	$(73/2^+)$	D
10827.3+x & 13	$(73/2^{-})$	D
10985.1+x ^r 19	$(73/2^+)$	D
11017.5+x ^p 16	$(73/2^{-})$	D
11142.3+x ⁿ 19	$(73/2^{-})$	D
$11194.1 + x^{f}$ 23	$(73/2^{-})$	D
11202.0+x ^a 11	$(75/2^{-})$	D
11425.2+x ^t 21 11477.3+x ^q 19	$(73/2^+)$	D
11477.3+x ^q 19 11496.8+x ⁱ 13	$(75/2^{-})$ $(75/2^{+})$	D
11490.8+x 13 11582.9+x ^k 18	$(75/2^+)$	D
1		D
	$(75/2^+)$	D
11656.6+x ^d 22 11684.1+x ^o 20	$(75/2^+)$ $(75/2^-)$	D D
11767.7+x ^s 21	$(75/2^+)$	D D
$11899.2 + x^{j}$ 15	$(77/2^+)$	D
11936.2+x ^{&} 15	$(77/2^{-})$	D
$12061.4 + x^r 21$	$(77/2^+)$	D
12105.5+x p 18	$(77/2^{-})$	D
12190.1+x ⁿ 21	$(77/2^{-})$	D
$12215.8 + x^{f}$ 24	$(77/2^{-})$	D
12278.0+x ^a 14	$(79/2^{-})$	D
12484.3+x ^t 22 12558.9+x ^q 21	$(77/2^+)$	D
$12558.9 + x^{k} 21$ $12643.9 + x^{k} 20$	$(79/2^{-})$ $(79/2^{+})$	D
$12643.9+x^{b}$ 22	$(79/2^+)$ $(79/2^+)$	D
	. , ,	D
$12678.8 + x^{i}$ 15	$(79/2^+)$	D
12720.6+x ^d 24 12857.3+x ^s 22	$(79/2^+)$ $(79/2^+)$	D D
$12037.3+x^{3}$ 22 $13041.4+x^{j}$ 17	$(79/2)$ $(81/2^+)$	
13102.7+x ^{&} 17	$(81/2^{-})$ $(81/2^{-})$	D
$13102.7+x^{2}$ 17 13194.8+x ^r 22	$(81/2^{+})$	D D
$13194.8+x^{2}$ 22 $13245.2+x^{p}$ 20	$(81/2^{-})$ $(81/2^{-})$	D
13399.7+x ^a 16	$(83/2^{-})$	D
13591.8+x ^t 24	$(81/2^+)$	D
13686.6+x ^q 22	$(83/2^{-})$	D
13714.9+x ^b 23	$(83/2^+)$	D

¹⁶⁵Lu Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
13829.6+x ^d 25	$(83/2^+)$	D	
14008.3+x ^s 24	$(83/2^+)$	D	
14199.9+x ^j 19	$(85/2^+)$	D	
14384.1+x ^r 24	$(85/2^+)$	D	
14558.5+x ^a 18	$(87/2^{-})$	D	
14849.1+x ^q 24	$(87/2^{-})$	D	
15208.1+x ^{\$} 25	$(87/2^+)$	D	
15623.4+x ^r 25	$(89/2^+)$	D	
15745.5+x ^a 20	$(91/2^{-})$	D	
16462+x ^s 3	$(91/2^+)$	D	
y u	J	D	Additional information 3.
624.5+y ^u 8	J+2	D	
1308.3+y ^u 12	J+4	D	
2049.0+y ^u 14	J+6	D	
2847.3+y ^u 16	J+8	D	
3703.3+y ^u 18	J+10	D	
4618.9+y ^u 20	J+12	D	
5594.2+y ^u 22	J+14	D	
6631.2+y ^u 23	J+16	D	
z^{v}	J1	D	Additional information 4.
$712.2+z^{\nu}$ 8	J1+2	D	
$1482.4 + z^{V}$ 12	J1+4	D	
$2311.3+z^{V}$ 14	J1+6	D	
3197.1+z ^V 16	J1+8	D	
4140.8+z ^V 18	J1+10	D	
$5143.3+z^{V}$ 20	J1+12	D	
$6206.3+z^{V}$ 22	J1+14	D	

[†] From least-squares fit to E γ 's.

[‡] The assignments for the excited states are from 2004Sc14, based primarily on $\gamma\gamma(\theta)$ data in (HI,xn γ) reactions, rotational band structures, and model predictions. Since firm assignments for bandheads are lacking, the evaluators have placed all the assignments in parentheses.

[#] For excited states, the values are from differential decay curve method in recoil-distance measurements (DDCM,2005An04) in 139 La(30 Si,4n γ) reaction, unless otherwise stated.

[@] From DSAM (1988Fr22) in 124 Sn(45 Sc, $^{4n}\gamma$) reaction.

[&]amp; Band(A): 9/2[514], α =+1/2. Changes to 9/2[514]⊗[AB] at $\hbar\omega$ =0.25 MeV and spin range of 29/2 to 31/2, and 9/2[514]⊗[ABCD] at higher frequencies. A=11.8.

^a Band(a): 9/2[514], $\alpha = -1/2$. See comment for the $\alpha = +1/2$ signature partner of this band. A=11.9.

^b Band(B): 7/2[404], α =−1/2. From low to high spins, configuration changes to 7/2[404]⊗[AB], then to 7/2[404]⊗[ABCD], and finally to 7/2[404]⊗[ABCDEF]. A=16.2.

^c Band(b): 7/2[404], $\alpha = +1/2$. See comment for the $\alpha = -1/2$ signature partner of this band. A=15.4.

^d Band(C): 1/2[411], $\alpha = -1/2$. At higher spins, configuration= $1/2[411] \otimes [AB]$, and then $1/2[411] \otimes [ABCD]$.

^e Band(c): 1/2[411], $\alpha = +1/2$. A=18.2, a=0.62 for both signatures combined.

 $[^]f$ Band(D): 1/2[541], α =+1/2. From low to high spins, configuration changes to 1/2[541]⊗[AB], then to 1/2[541]⊗[ABCD] and finally to 1/2[541]⊗[ABCDEF]. A=13.4, a=3.5.

^g Band(E): 5/2[402], $\alpha = -1/2$.

h Band(e): 5/2[402], α=+1/2. From low to high spins, configuration changes to 5/2[402]⊗[AB], and then to 5/2[402]⊗[ABCD].

¹⁶⁵Lu Levels (continued)

A=17.6.

- ⁱ Band(F): 9/2[514]⊗[AE], α =−1/2. At higher spins, the configuration changes to 9/2[514]⊗[AEBC]. The upbend at $\hbar\omega$ ≈0.56 MeV near spin 59/2 may be due to the alignment of proton pair fg or gh, with the resulting configuration=9/2[514]⊗[AEBC(fg and/or gh)].
- ^j Band(f): 9/2[514]⊗[AE], α =+1/2. See comment for α =-1/2 signature partner of this band.
- ^k Band(G): $9/2[514]\otimes[AHBC]$, $\alpha=-1/2$. At higher frequencies, the configuration is probably $9/2[514]\otimes[AHBCEF]$.
- ¹ Band(g): $9/2[514]\otimes[AHBC]$, $\alpha=+1/2$. See comment for the $\alpha=-1/2$ signature partner of this band.
- ^m Band(H): band #1, α =+1/2. This band probably decays into the 1/2[541] band.
- ⁿ Band(I): Band #2, α =+1/2. See comment for band #3. Configuration for band #2 changes from 7/2[4040]⊗[AE] at high spins to 9/2[514]⊗[BC] at low spins.
- o Band(i): Band #3, α =−1/2. Bands #2 to #5 form pairs of signature partners above 45/2 spin. At lower spins the bands seem to form different pairs, where band #4 interchanges character with band #2 and bands #3 and #4 seem to be signature partners. From low to high spins, configuration for band #3 is 9/2[514], 9/2[514]⊗[BC], and finally to 9/2[514]⊗[BCEF].
- p Band(J): Band #4, α =+1/2. See comment for band #3. Configuration for band #4 changes from 9/2[514]⊗[BC] at high spins to 7/2[404]⊗[AE] at low spins.
- q Band(j): band #5, α =−1/2. See comment for band #3. The configuration changes from unfavored 1/2[541] or from 7/2[404]+octupole vibration at low spin to 7/2[404]⊗[AE] at high spins.
- ^r Band(K): Zero-phonon wobbling-mode (Triaxial) SD-1 band (2004Sc14,2003Sc02,1995Sc39). Q(transition)=6.0 +12-2, 6.4 +19-7 (2002Sc47). 1/2[660] band, α =+1/2. Percent feeding=1.3 (2003Sc02).
- ⁵ Band(L): One-phonon wobbling mode (Triaxial) SD-2 band (2004Sc14,2003Sc02). Percent feeding=0.4.
- ^t Band(M): Two-phonon wobbling mode (Triaxial) SD-3 band (2004Sc14,2003Sc02), Percent feeding=0.1.
- ^u Band(N): Triaxial SD-4 band (2004Sc14).
- ^ν Band(O): Triaxial SD-5 band (2004Sc14).

γ (165Lu)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{@}$	α^{a}	Comments
141.39+x	$(7/2^+)$	136.10 <i>12</i>	100	5.33+x	$(5/2^+)$	D+Q			
147.70+x	$(5/2^+)$	147.67 <i>14</i>	100		$(3/2^+)$	D			
182.46+x	$(9/2^+)$	159.2 <i>1</i>	100	23.43+x		D+Q			
195.39+x	$(7/2^+)$	48.0		147.70+x					E_{γ} : from ¹³⁹ La(³⁰ Si,4n γ) only, intensity not known.
1,010,111	(11-)	195.4 <i>I</i>	100 4	0.0+x		E2		0.303	$\alpha(K)$ =0.179 6; $\alpha(L)$ =0.095 3; $\alpha(M)$ =0.0230 7; $\alpha(N+)$ =0.00640
		-,-,-			(-/- /			******	20
									B(E2)(W.u.)=213 23
203.4+x		180.0 <i>3</i>	100	23.43+x	$(7/2^+)$				()()
234.95+x	$(9/2^{-})$	93.6 <i>1</i>		141.39+x					
	. , ,	180.2 <i>I</i>	918	54.75 + x		D			E_{γ} : this 180.2 γ must Be different from 180.0 γ from 203.3+x
									level populated In ε decay, since No 211.5 γ is seen In ε
									decay.
		211.5 <i>I</i>	100 8	23.43+x	$(7/2^+)$	D			·
305.52+x	$(9/2^+)$	164.28 <i>12</i>	100 <i>3</i>	141.39+x	$(7/2^+)$	D+Q			
		300.12 <i>15</i>	39 2	5.33+x		Q			
335.45+x	$(11/2^{-})$	100.4 2	100 11	234.95+x		D+Q			
		152.6 <i>6</i>	21 7	182.46+x	$(9/2^+)$	D			
345.4+x	$(5/2^{-})$	345.5 5	100	0.0+x					
366.58+x	$(11/2^+)$	184.3 <i>1</i>	79 <i>5</i>	182.46+x	$(9/2^+)$	(M1+E2)	+0.47 7	0.614 14	$\alpha(K)$ =0.495 16; $\alpha(L)$ =0.092 2; $\alpha(M)$ =0.0210 5;
									$\alpha(N+)=0.00590 12$
									B(M1)(W.u.)=0.062 9; B(E2)(W.u.)=190 60
		343.0 <i>1</i>	100 2	23.43+x	$(7/2^+)$	E2		0.0520	$\alpha(K)=0.0378\ 12;\ \alpha(L)=0.0108\ 4;\ \alpha(M)=0.00257\ 8;$
									$\alpha(N+)=0.00076 2$
									B(E2)(W.u.)=61 7
432.70+x	$(9/2^+)$	237.39 16	100 5	195.39+x		D			
		284.96 <i>17</i>	98 5	147.70+x					
466.49+x	$(9/2^{-})$	121.1 5	10 3	345.4+x	$(5/2^{-})$	[E2]		1.65	$\alpha(K)=0.647\ 20;\ \alpha(L)=0.761\ 23;\ \alpha(M)=0.187\ 6;\ \alpha(N+)=0.0513$
									16 P(F2)(N) > 520 100
			400 7-	407.00	(= (a ±)	(5.4)		0.00	B(E2)(W.u.)=530 180
		271.1 <i>I</i>	100 10	195.39+x	$(7/2^{+})$	(E1)		0.0266	$\alpha(K)=0.0223$ 7; $\alpha(L)=0.00334$ 10; $\alpha(M)=0.00074$ 2;
									$\alpha(N+)=0.00022 I$
404.72	(12/2-)	150 4 7	100.0	225 45	(11/0=)	(3.41)		1.00	B(E1)(W.u.)=0.000149 23
494.72+x	$(13/2^{-})$	159.4 <i>I</i>	100 9	335.45+x	(11/2)	(M1)		1.00	$\alpha(K)$ =0.84 3; $\alpha(L)$ =0.129 4; $\alpha(M)$ =0.0288 9; $\alpha(N+)$ =0.00791 24
									 -
		250 9 1	74.6	224.05 +	(0/2=)	(E2)		0.120	B(M1)(W.u.)=0.148 19 c(W)=0.0806 25; c(U)=0.0202 0; c(M)=0.00728 22;
		259.8 <i>1</i>	74 6	234.95+x	(9/4)	(E2)		0.120	$\alpha(K)$ =0.0806 25; $\alpha(L)$ =0.0303 9; $\alpha(M)$ =0.00728 22; $\alpha(N+)$ =0.00212 7
499.22+x	$(11/2^+)$	193.80 <i>12</i>	100 <i>3</i>	305.52+x	(0/2 ⁺)	D			B(E2)(W.u.)=179 21
+ J7.∠∠+X	(11/2)	357.56 <i>16</i>	58 2	303.32+x 141.39+x					I_{γ} : from (³¹ P,4n γ). I_{γ} (193.8)/ I_{γ} (357.6)=4.2 2 in (¹⁹ F,4n γ) is
		337.30 10	38 2	141.39+X	$(1/2^{+})$	Q			1_{γ} : from (3-P,4n γ). 1_{γ} (193.8)/ 1_{γ} (357.6)=4.2 2 in (3-P,4n γ) is discrepant. The relative intensity of the 193.8 γ seems to be to
									large by a factor of about 3 in $(^{19}F,4n\gamma)$.

 ∞

$\gamma(\frac{165}{\text{Lu}})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}^{ \ddagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{@}$	α^a	Comments
519.60+x	$(11/2^+)$	214.1 <i>I</i>	14.9 7	305.52+x	(9/2+)	(M1+E2)		0.33 11	$\alpha(K)$ =0.25 12; $\alpha(L)$ =0.061 5; $\alpha(M)$ =0.0142 16; $\alpha(N+)$ =0.0041 4
		324.2 1	100.0 16	195.39+x	(7/2+)	E2		0.0613	$\alpha(K)$ =0.0439 14; $\alpha(L)$ =0.0133 4; $\alpha(M)$ =0.00315 10; $\alpha(N+)$ =0.00093 3 B(E2)(W.u.)=157 9
574.13+x	(13/2+)	207.6 1	47 <i>4</i>	366.58+x	(11/2+)	(M1+E2)	+0.57 10	0.422 15	$\alpha(K)$ =0.339 <i>16</i> ; $\alpha(L)$ =0.0644 8; $\alpha(M)$ =0.0147 3; $\alpha(N+)$ =0.00426 7
		391.7 <i>I</i>	100.0 14	182.46+x	(9/2+)	E2		0.0357	B(M1)(W.u.)=0.076 11; B(E2)(W.u.)=280 80 α (K)=0.0267 8; α (L)=0.00687 21; α (M)=0.00162 5; α (N+)=0.00047 2
662.61+x	(15/2-)	168.2 <i>I</i>	100 8	494.72+x	(13/2 ⁻)	(M1+E2)	+0.16 3	0.86	B(E2)(W.u.)=100 6 α (K)=0.711 5; α (L)=0.113 1; α (M)=0.0253 2; α (N+)=0.00700 5 B(M1)(W.u.)=0.28 4; B(E2)(W.u.)=120 50
		327.0 1	74 7	335.45+x	(11/2-)	(E2)		0.0596	E _{γ} : level-energy difference=167.9. $\alpha(K)$ =0.0429 13; $\alpha(L)$ =0.0128 4; $\alpha(M)$ =0.00305 10; $\alpha(N+)$ =0.00090 3 B(E2)(W.u.)=98 14
694.78+x	(13/2 ⁻)	175.1 5	17 4	519.60+x	(11/2+)	(E1)		0.0813	$\alpha(K)$ =0.0678 21; $\alpha(L)$ =0.0105 4; $\alpha(M)$ =0.00235 7; $\alpha(N+)$ =0.00063 2 B(E1)(W.u.)=0.00010 4
		228.3 <i>I</i>	100 8	466.49+x	(9/2-)	(E2)		0.182	$\alpha(K)=0.116 \ 4; \ \alpha(L)=0.0504 \ 16; \ \alpha(M)=0.0122 \ 4; \ \alpha(N+)=0.00348 \ 11 \ B(E2)(W.u.)=400 \ 60$
711.20+x	$(13/2^+)$	191.6 8	23 7	519.60+x	$(11/2^+)$				
		212.2 3	100 <i>15</i>	499.22+x		D+Q	+0.25 6		
		344.8 <i>5</i>	37 10	366.58+x					
		405.6 5	70 <i>17</i>	305.52+x		Q			
802.23+x	$(15/2^+)$	228.18 <i>14</i>	29 3	574.13+x		(M1+E2)		0.28 10	$\alpha(K)$ =0.21 <i>10</i> ; $\alpha(L)$ =0.0487 <i>17</i> ; $\alpha(M)$ =0.0114 8; $\alpha(N+)$ =0.00331 <i>17</i>
		435.6 1	100.0 12	366.58+x	(11/2+)	(E2)		0.0267	$\alpha(K)$ =0.0204 7; $\alpha(L)$ =0.00485 15; $\alpha(M)$ =0.00114 4; $\alpha(N+)$ =0.00033 1 B(E2)(W.u.)=131 8
821.14+x	$(13/2^+)$	301.5 <i>5</i> 388.46 <i>14</i>	49.6 <i>17</i> 100.0 <i>25</i>	519.60+x 432.70+x		D(+Q) Q	+0.07 7		
893.46+x	$(17/2^{-})$	230.7 1	100 10	662.61+x		(M1+E2)	+0.25 3	0.347	$\alpha(K)$ =0.288 3; $\alpha(L)$ =0.0458; $\alpha(M)$ =0.0103; $\alpha(N+)$ =0.00307 B(M1)(W.u.)=0.25 4; B(E2)(W.u.)=140 40
		398.6 <i>1</i>	91 9	494.72+x	(13/2 ⁻)	E2		0.0340	$\alpha(K)=0.0255 \ 8; \ \alpha(L)=0.00648 \ 20; \ \alpha(M)=0.00153 \ 5; \ \alpha(N+)=0.00045 \ I$ B(E2)(W.u.)=143 \ 19
943.34+x	(15/2+)	231.88 20	17 5	711.20+x	(13/2+)	(M1+E2)		0.26 9	$\alpha(K)=0.20 \ 10; \ \alpha(L)=0.0461 \ 12; \ \alpha(M)=0.0107 \ 7;$ $\alpha(N+)=0.00314 \ 13$
		423.70 12	100.0 14	519.60+x	$(11/2^+)$	E2		0.0288	$\alpha(K)=0.0218$ 7; $\alpha(L)=0.00531$ 16; $\alpha(M)=0.00124$ 4;

9

$\gamma(\frac{165}{\text{Lu}})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}^{ \ddagger}$	E_f	\mathbf{J}^{π}_f	Mult.#	$\delta^{ extbf{@}}$	α^{a}	Comments
									α(N+)=0.00036 <i>1</i>
042 24 :	(15/2+)	444 10 15	245.0	400.22	(11/2±)	E2		0.0254	B(E2)(W.u.)=260 30
943.34+x	$(15/2^+)$	444.10 <i>15</i>	34.5 9	499.22+x	$(11/2^{+})$	EZ		0.0254	$\alpha(K)$ =0.0194 6; $\alpha(L)$ =0.00456 14; $\alpha(M)$ =0.00107 4; $\alpha(N+)$ =0.00031 1
									B(E2)(W.u.)=72 8
955.32+x	$(15/2^+)$	244.33 15	82 11	711.20+x					
		436.3 4	47 13	519.60+x		(Q)			
076.1		455.88 18	100 3	499.22+x	$(11/2^+)$	Q			
976.1+x 1030.18+x	(17/2=)	772.7 <i>5</i> 335.4 <i>1</i>	100 100	203.4+x 694.78+x	(12/2-)	E2		0.0555	$\alpha(K) = 0.0401 \ 12; \ \alpha(L) = 0.0117 \ 4; \ \alpha(M) = 0.00270 \ 0;$
1030.16+X	$(17/2^{-})$	333.4 1	100	094.78±X	(13/2)	EZ		0.0555	$\alpha(K)$ =0.0401 12; $\alpha(L)$ =0.0117 4; $\alpha(M)$ =0.00279 9; $\alpha(N+)$ =0.00082 3
									B(E2)(W.u.)=302 7
1048.83+x	$(17/2^+)$	246.69 13	22.9 22	802.23+x	$(15/2^+)$	(M1+E2)	+0.38 13	0.279 13	$\alpha(K)=0.230 \ 13; \ \alpha(L)=0.0378 \ 1; \ \alpha(M)=0.0086;$
	` ' '				` ' '	,			$\alpha(N+)=0.00257$
									B(M1)(W.u.)=0.103 <i>15</i> ; B(E2)(W.u.)=120 <i>70</i>
		474.7 <i>1</i>	100.0 10	574.13+x	$(13/2^+)$	E2		0.0213	$\alpha(K)$ =0.0165 5; $\alpha(L)$ =0.00370 11; $\alpha(M)$ =0.00086 3;
									$\alpha(N+)=0.00025 I$
1000 05 1 77	(10/2=)	206.4 1	71 <i>7</i>	893.46+x	(17/2-)	(M1+E2)	+0.16 3	0.482	B(E2)(W.u.)=153 7
1099.95+x	(19/2)	200.4 1	/1 /	693.40+X	(17/2)	(M1+E2)	+0.10 3	0.462	$\alpha(K)$ =0.401 3; $\alpha(L)$ =0.0627 1; $\alpha(M)$ =0.0141 1; $\alpha(N+)$ =0.00409 1
									B(M1)(W.u.)=0.49 7; B(E2)(W.u.)=140 60
		437.6 <i>1</i>	100 10	662.61+x	$(15/2^{-})$	E2		0.0265	$\alpha(K)=0.0202$ 6; $\alpha(L)=0.00480$ 15; $\alpha(M)=0.00112$ 4;
									α(N+)=0.00033 I
	(4 = (5 l)		7000	0.7.7.00	(4 m/m l)				B(E2)(W.u.)=187 24
1197.30+x	$(17/2^+)$	241.82 15	53.0 24	955.32+x	. , ,	(0)			
1292.01+x	$(17/2^+)$	486.10 <i>15</i> 348.32 <i>20</i>	100.0 22 27.8 <i>11</i>	711.20+x 943.34+x		(Q) D(+O)	+0.06 6		
1292.01+X	(17/2)	470.89 15	100.0 22	821.14+x	. , ,	Q Q	+0.00 0		
1310.65+x	$(19/2^+)$	262.00 14	16.3 17	1048.83+x		Ď			
	(- 1)	508.4 <i>1</i>	100.0 9	802.23+x		Q			
1386.75+x	$(21/2^{-})$	287.0 <i>1</i>	77 8	1099.95+x	$(19/2^{-})$	(M1+E2)	+0.20 3	0.193	$\alpha(K)=0.161\ I;\ \alpha(L)=0.0248\ I;\ \alpha(M)=0.00558\ I;$
									$\alpha(N+)=0.00171$
		493.1 <i>1</i>	100 10	902 46	(17/2-)	EO		0.0102	B(M1)(W.u.)=0.28 6; B(E2)(W.u.)=66 23
		493.1 1	100 10	893.46+x	(17/2)	E2		0.0193	$\alpha(K)$ =0.0150 5; $\alpha(L)$ =0.00328 10; $\alpha(M)$ =0.00076 2; $\alpha(N+)$ =0.00022 1
									B(E2)(W.u.)=150 30
1445.45+x	$(19/2^+)$	502.1 <i>I</i>	100	943.34+x	$(15/2^+)$	E2		0.0186	$\alpha(K)=0.0144$ 5; $\alpha(L)=0.00312$ 10
					. , ,				B(E2)(W.u.)=150 7
1462.28+x	$(21/2^{-})$	432.1 <i>1</i>	100	1030.18+x	$(17/2^{-})$	E2		0.0272	$\alpha(K)$ =0.0207 7; $\alpha(L)$ =0.00496 15; $\alpha(M)$ =0.00116 4;
									$\alpha(N+)=0.00034 I$
1.470.40	(10/2+)	201 10 7	5 2 2	1107.20	(17/0+)				B(E2)(W.u.)=240 60
1478.40+x	$(19/2^+)$	281.10 <i>16</i> 523.49 <i>18</i>	53 <i>3</i> 100 <i>4</i>	1197.30+x 955.32+x		0			
1587.07+x	$(21/2^+)$	276.52 13	23.0 10	933.32+x 1310.65+x	\ / /	Q (M1+E2)	+0.26 7	0.211 5	$\alpha(K)=0.176 \ 4; \ \alpha(L)=0.0275 \ I; \ \alpha(M)=0.00619 \ 2;$
1307.07 TX	(21/2)	210.32 13	23.0 10	1310.03TA	(1)/2)	(1111112)	10.20 /	0.211 3	$u(\mathbf{x}_j - 0.170)$, $u(\mathbf{L}_j - 0.0273)$, $u(\mathbf{w}_j - 0.0001)$,

10

$E_i(level)$	J_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.#	δ@	α^{a}	Comments
	<u> </u>								$\alpha(N+)=0.00189 I$
1587.07+x	$(21/2^+)$	538.2 1	100.0 9	1048.83+x	$(17/2^+)$	E2		0.0156	B(M1)(W.u.)=0.158 <i>15</i> ; B(E2)(W.u.)=70 <i>40</i> α (K)=0.0123 <i>4</i> ; α (L)=0.00253 <i>8</i>
									B(E2)(W.u.)=164 13
1618.75+x	$(23/2^{-})$	232.1 <i>I</i>	43 3	1386.75+x	$(21/2^{-})$	(M1+E2)	+0.11 3	0.351	$\alpha(K)$ =0.293 I ; $\alpha(L)$ =0.0450; $\alpha(M)$ =0.0101; $\alpha(N+)$ =0.00302 B(M1)(W.u.)=0.40 δ ; B(E2)(W.u.)=43 24
		518.8 <i>1</i>	100 8	1099.95+x	(19/2-)	E2		0.0171	$\alpha(K)=0.0133$ 4; $\alpha(L)=0.00282$ 9 B(E2)(W.u.)=190 30
1740.04+x	$(21/2^+)$	262.05 18	39 6	1478.40+x	$(19/2^+)$	Q			D(E2)(W.u.)=190 30
-,	(/- /	448.6 <i>3</i>	13.7 23	1292.01+x					
		542.58 16	100.0 23	1197.30+x		Q			
1769.6+x	$(19/2^{-})$	720.7 8	100	1048.83+x		Ď			
1818.57 + x	$(21/2^+)$	373.0 8	25 7	1445.45 + x					
		526.14 <i>17</i>	100 25	1292.01+x	$(17/2^+)$	Q			
1871.63+x	$(23/2^+)$	284.49 15	14.0 18	1587.07+x		Ď			
		561.0 <i>I</i>	100.0 11	1310.65+x		Q			
1945.33+x	$(25/2^{-})$	326.6 <i>1</i>	74 8	1618.75 + x	$(23/2^{-})$	D+Q	+0.09 5		
		558.5 <i>1</i>	100 10	1386.75+x	$(21/2^{-})$	Q			
1978.68+x	$(25/2^{-})$	516.4 <i>1</i>	100	1462.28+x	$(21/2^{-})$	Q			
1990.16+x	$(23/2^+)$	544.7 <i>1</i>	100	1445.45 + x	$(19/2^+)$	Q			
2048.1+x	$(23/2^+)$	308.2 8	31 10	1740.04+x					
		569.75 18	100.0 25	1478.40+x					
2155.7+x	$(23/2^{-})$	386.0 8	21 6	1769.6+x		Q			
		568.9 5	100 26	1587.07+x		D			
2166.73+x	(25/2+)	295.04 14	17.3 4	1871.63+x	(23/2+)	D+Q	+0.40 12		I _{γ} : from (31 P,4n γ). I γ (295.0)/I γ (579.7)=0.97 in (19 F,4n γ) is discrepant. This branching ratio is 0.18 6 in (16 O,4n γ). It seems that the relative intensity of the 579.7 γ is too low by a factor of about 5.
		579.7 <i>1</i>	100.0 11	1587.07+x	$(21/2^+)$	Q			•
2196.30+x	$(27/2^{-})$	251.0 <i>I</i>	24 3	1945.33+x		D(+Q)	+0.01 3		
		577.6 <i>1</i>	100 8	1618.75+x		Q			
2294.41+x	$(25/2^+)$	246.3 8	13 4	2048.1+x	$(23/2^+)$				
		475.01 <i>24</i>	29.5 13	1818.57+x	$(21/2^+)$	Q			E_{γ} : poor fit; level-energy difference=475.85.
		554.59 <i>15</i>	100 3	1740.04+x		Q			
2348.77+x	$(25/2^+)$	530.23 20	100 <i>3</i>	1818.57 + x		Q			
		608.84 <i>20</i>	85 8	1740.04+x		Q			
2409.4+x	$(25/2^+)$	590.7 5	100	1818.57+x		Q			
2458.63+x	$(27/2^+)$	291.80 <i>14</i>	21.8 5	2166.73+x		D+Q	+0.44 12		
		587.0 <i>1</i>	100.0 15	1871.63 + x		Q			
2535.23+x	$(29/2^{-})$	338.9 <i>1</i>	57 6	2196.30+x		D+Q	+0.18 3		
		589.8 <i>1</i>	100 7	1945.33+x		Q			
		510 15 15	100	1990.16+x	(23/2+)	Q			
2538.63+x 2545.0+x	$(27/2^+)$ $(27/2^+)$	548.45 <i>15</i> 554.8 <i>3</i>	100	1990.16+x		Q			

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
2585.7+x (27/2 ⁻) 418.3 8 36 11 2166.73+x (25/2 ⁺) D 430.3 5 100 25 2155.7+x (23/2 ⁻) Q 2612.2+x (27/2 ⁺) 317.7 8 52 17 2294.41+x (25/2 ⁺) 564.03 23 100 25 2048.1+x (23/2 ⁺) Q 2730.25+x (29/2 ⁺) 271.40 14 43.7 7 2458.63+x (27/2 ⁺) D 435.82 16 28 3 2294.41+x (25/2 ⁺) 563.6 1 100.0 17 2166.73+x (25/2 ⁺) Q 2753.45+x (29/2 ⁺) 404.85 20 42.8 18 2348.77+x (25/2 ⁺) Q 458.97 15 100.0 22 2294.41+x (25/2 ⁺) Q 587.7 10 21 3 2166.73+x (25/2 ⁺) Q 587.7 10 21 3 2166.73+x (25/2 ⁺) Q 2765.4+x (29/2 ⁺) 220.2 8 38 10 2545.0+x (27/2 ⁺) 598.2 5 100 24 2166.73+x (25/2 ⁺) Q 2789.38+x (31/2 ⁻) 254.1 1 37 4 2535.23+x (29/2 ⁻) D+Q +0.18 4 593.2 1 100 2196.30+x (27/2 ⁻) Q	
430.3 5 100 25 2155.7+x (23/2 ⁻) Q 2612.2+x (27/2 ⁺) 317.7 8 52 17 2294.41+x (25/2 ⁺) 564.03 23 100 25 2048.1+x (23/2 ⁺) Q 2730.25+x (29/2 ⁺) 271.40 14 43.7 7 2458.63+x (27/2 ⁺) D 435.82 16 28 3 2294.41+x (25/2 ⁺) 563.6 1 100.0 17 2166.73+x (25/2 ⁺) Q 2753.45+x (29/2 ⁺) 404.85 20 42.8 18 2348.77+x (25/2 ⁺) 458.97 15 100.0 22 2294.41+x (25/2 ⁺) Q 587.7 10 21 3 2166.73+x (25/2 ⁺) Q 587.7 10 21 3 2166.73+x (25/2 ⁺) 2765.4+x (29/2 ⁺) 220.2 8 38 10 2545.0+x (27/2 ⁺) 598.2 5 100 24 2166.73+x (25/2 ⁺) Q 2789.38+x (31/2 ⁻) 254.1 1 37 4 2535.23+x (29/2 ⁻) D+Q +0.18 4 593.2 1 100 2196.30+x (27/2 ⁻) Q	
2612.2+x (27/2 ⁺) 317.7 8 52 17 2294.41+x (25/2 ⁺) 564.03 23 100 25 2048.1+x (23/2 ⁺) Q 2730.25+x (29/2 ⁺) 271.40 14 43.7 7 2458.63+x (27/2 ⁺) D 435.82 16 28 3 2294.41+x (25/2 ⁺) 563.6 1 100.0 17 2166.73+x (25/2 ⁺) Q 2753.45+x (29/2 ⁺) 404.85 20 42.8 18 2348.77+x (25/2 ⁺) 458.97 15 100.0 22 2294.41+x (25/2 ⁺) Q 587.7 10 21 3 2166.73+x (25/2 ⁺) Q 587.7 10 21 3 2166.73+x (25/2 ⁺) Q 2765.4+x (29/2 ⁺) 220.2 8 38 10 2545.0+x (27/2 ⁺) 598.2 5 100 24 2166.73+x (25/2 ⁺) Q 2789.38+x (31/2 ⁻) 254.1 1 37 4 2535.23+x (29/2 ⁻) D+Q +0.18 4 593.2 1 100 2196.30+x (27/2 ⁻) Q	
2730.25+x (29/2 ⁺) 271.40 14 43.7 7 2458.63+x (27/2 ⁺) D 435.82 16 28 3 2294.41+x (25/2 ⁺) 563.6 1 100.0 17 2166.73+x (25/2 ⁺) Q 2753.45+x (29/2 ⁺) 404.85 20 42.8 18 2348.77+x (25/2 ⁺) 458.97 15 100.0 22 2294.41+x (25/2 ⁺) Q 587.7 10 21 3 2166.73+x (25/2 ⁺) 2765.4+x (29/2 ⁺) 220.2 8 38 10 2545.0+x (27/2 ⁺) 598.2 5 100 24 2166.73+x (25/2 ⁺) Q 2789.38+x (31/2 ⁻) 254.1 1 37 4 2535.23+x (29/2 ⁻) D+Q +0.18 4 593.2 1 100 2196.30+x (27/2 ⁻) Q	
435.82 16 28 3 2294.41+x (25/2 ⁺) 563.6 1 100.0 17 2166.73+x (25/2 ⁺) Q 2753.45+x (29/2 ⁺) 404.85 20 42.8 18 2348.77+x (25/2 ⁺) 458.97 15 100.0 22 2294.41+x (25/2 ⁺) Q 587.7 10 21 3 2166.73+x (25/2 ⁺) 2765.4+x (29/2 ⁺) 220.2 8 38 10 2545.0+x (27/2 ⁺) 598.2 5 100 24 2166.73+x (25/2 ⁺) Q 2789.38+x (31/2 ⁻) 254.1 1 37 4 2535.23+x (29/2 ⁻) D+Q +0.18 4 593.2 1 100 2196.30+x (27/2 ⁻) Q	
563.6 <i>l</i> 100.0 <i>l</i> 7 2166.73+x (25/2 ⁺) Q 2753.45+x (29/2 ⁺) 404.85 20 42.8 <i>l</i> 8 2348.77+x (25/2 ⁺) 458.97 <i>l</i> 5 100.0 22 2294.41+x (25/2 ⁺) Q 587.7 <i>l</i> 0 21 3 2166.73+x (25/2 ⁺) 2765.4+x (29/2 ⁺) 220.2 8 38 <i>l</i> 0 2545.0+x (27/2 ⁺) 598.2 5 100 24 2166.73+x (25/2 ⁺) Q 2789.38+x (31/2 ⁻) 254.1 <i>l</i> 37 4 2535.23+x (29/2 ⁻) D+Q +0.18 4 593.2 <i>l</i> 100 2196.30+x (27/2 ⁻) Q	
2753.45+x (29/2 ⁺) 404.85 20 42.8 18 2348.77+x (25/2 ⁺) 458.97 15 100.0 22 2294.41+x (25/2 ⁺) Q 587.7 10 21 3 2166.73+x (25/2 ⁺) 2765.4+x (29/2 ⁺) 220.2 8 38 10 2545.0+x (27/2 ⁺) 598.2 5 100 24 2166.73+x (25/2 ⁺) Q 2789.38+x (31/2 ⁻) 254.1 1 37 4 2535.23+x (29/2 ⁻) D+Q +0.18 4 593.2 1 100 2196.30+x (27/2 ⁻) Q	
458.97 15 100.0 22 2294.41+x (25/2 ⁺) Q 587.7 10 21 3 2166.73+x (25/2 ⁺) 2765.4+x (29/2 ⁺) 220.2 8 38 10 2545.0+x (27/2 ⁺) 598.2 5 100 24 2166.73+x (25/2 ⁺) Q 2789.38+x (31/2 ⁻) 254.1 1 37 4 2535.23+x (29/2 ⁻) D+Q +0.18 4 593.2 1 100 2196.30+x (27/2 ⁻) Q	
587.7 10 21 3 2166.73+x (25/2 ⁺) 2765.4+x (29/2 ⁺) 220.2 8 38 10 2545.0+x (27/2 ⁺) 598.2 5 100 24 2166.73+x (25/2 ⁺) Q 2789.38+x (31/2 ⁻) 254.1 1 37 4 2535.23+x (29/2 ⁻) D+Q +0.18 4 593.2 1 100 2196.30+x (27/2 ⁻) Q	
2765.4+x (29/2 ⁺) 220.2 8 38 10 2545.0+x (27/2 ⁺) 598.2 5 100 24 2166.73+x (25/2 ⁺) Q 2789.38+x (31/2 ⁻) 254.1 1 37 4 2535.23+x (29/2 ⁻) D+Q +0.18 4 593.2 1 100 2196.30+x (27/2 ⁻) Q	
598.2 5 100 24 2166.73+x (25/2 ⁺) Q 2789.38+x (31/2 ⁻) 254.1 <i>I</i> 37 4 2535.23+x (29/2 ⁻) D+Q +0.18 4 593.2 <i>I</i> 100 2196.30+x (27/2 ⁻) Q	
2789.38+x (31/2 ⁻) 254.1 <i>I</i> 37 <i>4</i> 2535.23+x (29/2 ⁻) D+Q +0.18 <i>4</i> 593.2 <i>I</i> 100 2196.30+x (27/2 ⁻) Q	
593.2 <i>I</i> 100 2196.30+x (27/2 ⁻) Q	
2794.4+x (29/2 ⁺) 384.8 8 57 17 2409.4+x (25/2 ⁺)	
445.3 5 100 25 2348.77+x (25/2 ⁺) Q	
2947.5+x (31/2 ⁻) 751.2 3 100 2196.30+x (27/2 ⁻) Q	
2956.70+x (31/2 ⁺) 226.52 14 100.0 20 2730.25+x (29/2 ⁺) D	
418.06 14 57 10 2538.63+x (27/2+) Q	
498.27 18 73 6 2458.63+x (27/2 ⁺) Q	
2968.4+x (31/2 ⁺) 203.1 5 50 12 2765.4+x (29/2 ⁺) D	
423.4 5 55 13 2545.0+x (27/2+) Q	
429.7 5 30 8 2538.63+x (27/2 ⁺) 509.8 3 100 15 2458.63+x (27/2 ⁺)	
2999.6+x (31/2 ⁺) 269.4 8 45 13 2730.25+x (29/2 ⁺) D 455.0 8 32 11 2545.0+x (27/2 ⁺) Q	
453.0 6 52.11 2543.0+X (27/2) Q 461.0 8 50 16 2538.63+X (27/2+) Q	
540.9 5 100 26 2458.63+x (27/2+) Q	
3038.95+x (33/2 ⁻) 249.7 1 100 8 2789.38+x (31/2 ⁻) D+Q +0.09 3	
503.7 1 80 6 2535.23+x (29/2 ⁻) Q	
$3043.3+x$ $(31/2^+)$ 431.1^b 8 100 $2612.2+x$ $(27/2^+)$	
$3067.2+x$ $(31/2^-)$ 481.5 5 100 $2585.7+x$ $(27/2^-)$ Q $3180.45+x$ $(33/2^+)$ 224.33 16 42 7 $2956.70+x$ $(31/2^+)$ E_{γ} : poor fit; level-energy difference=223.75.	
450.08 13 100.0 18 2730.25+x (29/2+) Q	
3195.3+x (33/2 ⁻) 630.9 3 100 2564.38+x (29/2 ⁻) Q	
3201.8+x (33/2+) 244.1 5 100 24 2956.70+x (31/2+) D	
435.7 5 73 18 2765.4+x (29/2 ⁺)	
470.6 8 10 2 2730.25+x (29/2+) Q	
3222.5+x (33/2 ⁻) 275.0 8 1.1 3 2947.5+x (31/2 ⁻) D	
658.1 8 2.5 8 2564.38+x (29/2 ⁻)	
687.3 5 100 25 2535.23+x (29/2 ⁻) Q	
3224.2+x (33/2 ⁺) 471.0 5 100 2753.45+x (29/2 ⁺) Q	

E_i (level)	${\rm J}_i^\pi$	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	E_f	${\rm J}_f^\pi$	Mult.#	$\delta^{@}$	Comments
3239.7+x	$(33/2^+)$	445.28 24	100 5	2794.4+x	$(29/2^+)$	Q		
0_0)A	(33/2)	486.4 4	60 9	2753.45 + x		Q		
3248.59+x	$(35/2^{-})$	209.7 1	100 8	3038.95+x		D+Q	+0.07 3	
32 10.33 1 A	(33/2)	301.1 8	1.9 6	2947.5+x	$(31/2^{-})$	Q	10.07 5	
		459.1 <i>1</i>	44 3	2789.38+x		Q		
3417.32+x	$(35/2^+)$	214.1 3	11 8	3201.8+x	$(33/2^+)$	Ď		E_{γ} : poor fit; level-energy difference=215.5.
	(==/=)	237.23 14	100 9	3180.45+x		D		-/· F···, · · · · · · · · · · · · · · · ·
		449.0 5	66 17	2968.4+x	$(31/2^+)$	Q		
		460.51 <i>15</i>	100 9	2956.70+x		Q		
3436.61+x	$(35/2^+)$	235.6 <i>3</i>	100 15	3201.8+x	$(33/2^+)$	Ď		
		468.2 5	58 <i>14</i>	2968.4+x	$(31/2^+)$	Q		
		479.83 <i>17</i>	68.0 <i>17</i>	2956.70+x		Q		
3471.6+x	$(35/2^+)$	472.0 5	100	2999.6+x	$(31/2^+)$	Q		
3475.30+x	$(37/2^{-})$	226.8 <i>1</i>	100 9	3248.59+x	$(35/2^{-})$	D+Q	+0.09 2	
		436.4 <i>1</i>	40 3	3038.95 + x	$(33/2^{-})$	Q		
3485.1+x	$(35/2^{-})$	262.6 5	43 11	3222.5+x	$(33/2^{-})$			
		537.6 8	20 6	2947.5 + x	$(31/2^{-})$			
		695.7 <i>3</i>	100 25	2789.38+x	$(31/2^{-})$	Q		
3602.3+x	$(35/2^{-})$	535.1 5	100	3067.2+x	$(31/2^{-})$	Q		
3682.55+x	$(37/2^+)$	265.33 <i>14</i>	60.4 <i>14</i>	3417.32+x		D		
		502.04 16	100.0 25	3180.45 + x		Q		
3705.3+x	$(37/2^+)$	268.63 20	100	3436.61+x		D		
3735.3+x	$(39/2^{-})$	260.0 <i>1</i>	100 7	3475.30+x		_		
	(0=(0.1)	486.6 <i>1</i>	53 4	3248.59+x		Q		
3754.1+x	$(37/2^+)$	530.1 5	100	3224.2+x	$(33/2^+)$	Q		
3764.2+x	$(37/2^+)$	524.44 20	100	3239.7+x	$(33/2^+)$	Q		
3824.1+x	$(37/2^{-})$	339.0 5	100 25	3485.1+x	$(35/2^{-})$	D		
		601.6 5	100 25	3222.5+x	$(33/2^{-})$	Q		
2052 7	(27/2-)	628.8 8	42 13	3195.3+x	$(33/2^{-})$	Q		
3853.7+x 3863.9+x	$(37/2^{-})$	658.4 5	100	3195.3+x 3239.7+x	$(33/2^{-})$	Q		
3863.9+x 3970.2+x	$(35/2^+)$	624.4	44 3		$(33/2^+)$	D		
371U.2+X	$(39/2^+)$	287.6 <i>5</i> 552.9 <i>3</i>	100 3	3682.55+x 3417.32+x		Q		
3981.10+x	$(39/2^+)$	275.2 5	22.7 17	3417.32+x 3705.3+x	$(37/2^+)$	Q D		
5901.1U⊤X	(39/4)	544.65 15	100.0 24	3436.61+x		Q		
		562.5 4	15.4 21	3430.01+x 3417.32+x		V		E_{γ} : poor fit; level-energy difference=563.8.
4010.3+x	$(41/2^{-})$	275.0 <i>1</i>	100 9	3735.3+x	$(39/2^{-})$	D+Q	+0.06 2	Ly. poor in, iever-energy unicience—303.0.
1010.51A	(11/2)	535.1 <i>I</i>	94 9	3475.30+x		Q Q	10.00 2	
4034.6+x	$(39/2^+)$	563.0 5	100	3471.6+x	$(37/2^+)$	Q		
4117.1+x	$(39/2^{-})$	292.9 8	52 16	3824.1+x	$(37/2^{-})$	D		
.11/,11/	(37/2)	632.0 5	100 24	3485.1+x	$(37/2^{-})$	Q		
4185.0+x	$(39/2^{-})$	582.7 5	100 27	3602.3+x	$(35/2^{-})$	Q		
4269.9+x	$(41/2^+)$	288.46 15	74 3	3981.10+x		D		
.207.7 1 1	(11/2)	230.10 13	, , ,	2701.10 X	(37/2)			

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Ι _γ ‡	\mathbb{E}_f	J_f^π	Mult.#	$\delta^{@}$	Comments
4269.9+x	$\overline{(41/2^+)}$	299.8 5	80 15	3970.2+x	$(39/2^+)$	D		
		564.8 8	10 3	3705.3+x	$(37/2^+)$			
		587.46 <i>21</i>	100 5	3682.55+x	$(37/2^+)$			
4290.5 + x	$(41/2^+)$	309.4 8	26 8	3981.10+x	$(39/2^+)$			
		608.0 <i>5</i>	100 26	3682.55 + x		Q		
4322.3+x	$(43/2^{-})$	312.0 <i>I</i>	100 8	4010.3+x	$(41/2^{-})$	D+Q	+0.19 3	
		586.8 <i>1</i>	81 7	3735.3+x	$(39/2^{-})$	Q		
4346.6+x	$(41/2^+)$	582.36 18	100 25	3764.2+x	$(37/2^+)$	Q		
	(14 m±)	592.7 8	25 7	3754.1+x	$(37/2^+)$			
4373.4+x	$(41/2^+)$	608.8 8	34 11	3764.2+x	$(37/2^+)$	0		
4400 6	(20 /2±)	619.4 5	100 25	3754.1+x	$(37/2^+)$	Q		
4402.6+x	$(39/2^+)$	538.9 8	100 29	3863.9+x	$(35/2^+)$			
1152 6	(41/2=)	638.2 8	41 12	3764.2+x	$(37/2^+)$			
4453.6+x	$(41/2^{-})$	336.6 8 629.6 5	27 8	4117.1+x	$(39/2^{-})$	0		
4490.7+x	$(41/2^{-})$	637.1 5	100 <i>26</i> 100	3824.1+x 3853.7+x	$(37/2^{-})$ $(37/2^{-})$	Q Q		
						Q		
4575.3+x	$(41/2^{-})$	840.0 ^b 8	100	3735.3+x	$(39/2^{-})$	ъ		
4579.3+x	$(43/2^+)$	309.08 20	44 4	4269.9+x	$(41/2^+)$	D		
		598.55 <i>15</i>	100.0 24	3981.10+x		Q		
4613.9+x	$(43/2^+)$	609.3 <i>5</i> 643.7 <i>3</i>	49 <i>3</i> 100	3970.2+x 3970.2+x	$(39/2^+)$ $(39/2^+)$	Q Q		
4645.2+x	$(45/2^{-})$	322.7 1	84 7	4322.3+x	$(39/2^{-})$ $(43/2^{-})$	D		
4043.2±X	(43/2)	635.2 1	100 8	4010.3+x	$(43/2^{-})$ $(41/2^{-})$	Q		
4686.6+x	$(43/2^+)$	652.0 5	100 0	4034.6+x	$(39/2^+)$	Q		
4773.5+x	$(43/2^{-})$	320.1 8	37 11	4453.6+x	$(41/2^{-})$	Ď		
1773.31X	(13/2)	656.3 5	100 24	4117.1+x	$(39/2^{-})$	Q		
4800.4+x	$(43/2^{-})$	615.4 5	100	4185.0+x	$(39/2^{-})$	Q		
4888.6+x	$(45/2^+)$	309.36 15	100 15	4579.3+x	$(43/2^+)$	Ď		
		618.51 <i>15</i>	100 15	4269.9+x	$(41/2^+)$	Q		
4960.5+x	$(45/2^+)$	346.6 8	60 <i>17</i>	4613.9+x	$(43/2^+)$	Ď		
		670.0 <i>5</i>	100 26	4290.5+x	$(41/2^+)$	Q		
		690.5 8	43 13	4269.9+x	$(41/2^+)$			
4987.9 + x	$(45/2^+)$	641.3 <i>5</i>	100	4346.6+x	$(41/2^+)$	Q		
4996.5+x	$(47/2^{-})$	351.2 <i>3</i>	67 10	4645.2+x	$(45/2^{-})$	D		
		674.1 <i>1</i>	100 8	4322.3+x	$(43/2^{-})$	Q		B(E2)(W.u.)<240
5000.7+x	$(43/2^+)$	598.0 8	100 30	4402.6+x	$(39/2^+)$			
5 0.50 5		654.1 8	27 8	4346.6+x	$(41/2^+)$			
5068.2+x	$(45/2^+)$	694.8 5	100	4373.4+x	$(41/2^+)$	Q		
5115.7+x	$(45/2^{-})$	625.0 8	35 10	4490.7+x	$(41/2^{-})$	0		
51450.	(45/0=)	662.0 5	100 26	4453.6+x	$(41/2^{-})$	Q		
5145.2+x	$(45/2^{-})$	654.5 5	100	4490.7+x	$(41/2^{-})$	Q		
5174.2+x	$(45/2^{-})$	598.8 5	100	4575.3+x	$(41/2^{-})$	D		
5220.7+x	$(47/2^+)$	331.9 <i>3</i>	88 13	4888.6+x	$(45/2^+)$	D		

$\gamma(\frac{165}{\text{Lu}})$ (continued)

	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.#	$\delta^{@}$	Comments
	5220.7+x	$(47/2^+)$	641.4 3	100 15	4579.3+x (43/2	2 ⁺) Q		
	5325.9+x	$(47/2^+)$	712.0 5	100	4613.9+x (43/2			
	5363.9+x	$(49/2^{-})$	367.2 <i>3</i>	46 7	4996.5+x (47/2			
			718.7 <i>1</i>	100 8	4645.2+x (45/2			
	5393.6+x	$(47/2^+)$	707.0 5	100	4686.6+x (43/2			
	5435.6+x	$(47/2^+)$	749.0 8	100	4686.6+x (43/2			
	5446.7+x	$(47/2^{-})$	331.0 ^b 8	25 8	5115.7+x (45/2			
	D	(,=)	646.3 5	100 25	4800.4+x (43/2			
	5448.8+x	$(45/2^+)$	661.3 8	100	4787.5+x (41/2			
		(-1)	1102.2 ^b		4346.6+x (41/2			
	5475.8+x	$(47/2^{-})$	702.31 5	100	4773.5+x (43/2			
	5539.5+x	$(49/2^+)$	318.6 3	84 12	5220.7+x (47/2			
	3337.3 T K	(17/2)	651.1 3	100 15	4888.6+x (45/2			
	5655.8+x	$(47/2^+)$	655.1 8	100 29	5000.7+x (43/2			
		(/ =)	667.9 8	27 8	4987.9+x (45/2		+3.1& 4	
	5684.7+x	$(49/2^+)$	696.8 5	100	4987.9+x (45/2		13.1 7	
	5695.5+x	$(49/2^+)$	735.0 5	100	4960.5+x (45/2			
	5740.6+x	$(51/2^{-})$	377.0 5	51 <i>13</i>	5363.9+x (49/2			
		(/-)	743.9 <i>3</i>	100 15	4996.5+x (47/2			B(E2)(W.u.)<240
	5786.5+x	$(49/2^{-})$	339.8 8	38 12	5446.7+x (47/2			
			670.8 8	100 <i>31</i>	5115.7+x (45/2			
	5823.2+x	$(49/2^+)$	755.0 <i>5</i>	100 27	5068.2+x (45/2			
	5825.4+x	$(49/2^{-})$	349.5 8	42 12	5475.8+x (47/2	2-)		
			651.2 5	100 24	5174.2+x (45/2			
	5845.2+x	$(49/2^{-})$	700.0_8	100	5145.2+x (45/2	2 ⁻) Q		
	5861.0+x	$(49/2^{-})$	715.8 <mark>b</mark> 8	100	5145.2+x (45/2	2-)		
	5899.8+x	$(51/2^+)$	360.1 5	92 <i>23</i>	5539.5+x (49/2			
			679.2 <i>5</i>	100 26	5220.7+x (47/2			
Į	6080.9+x	$(51/2^+)$	687.2 8	36 11	5393.6+x (47/2			
	<101 -	(755.0 <i>5</i>	100 24	5325.9+x (47/2			
Į	6101.7+x	$(51/2^+)$	708.1 8	14 5	5393.6+x (47/2			
	6120.1.	(51/2=)	775.8 5	100 26	5325.9+x (47/2			
	6138.1+x	$(51/2^{-})$	351.5 8	32 10	5786.5+x (49/2			
	6147.1+x	(53/2-)	691.4 <i>5</i> 406.0 <i>5</i>	100 <i>3</i> 46 <i>12</i>	5446.7+x (47/2			
	014/.1+X	$(53/2^{-})$	783.3 <i>3</i>	100 15	5740.6+x (51/2 5363.9+x (49/2			B(E2)(W.u.)=180 +40-30
ļ	6154.8+x	$(49/2^+)$	706.0 8	100 13	5448.8+x (45/2			D(D2)(11.u.)-100 F70-30
ļ	0157.0 FA	(77/2)	1166.9 ^b	100				
	6170 7	(51/2=)		20.10	4987.9+x (45/2			
	6178.7+x	$(51/2^{-})$	352.8 <i>8</i> 703.0 <i>5</i>	29 10	5825.4+x (49/2			
Į	6188.6+x	$(51/2^+)$	703.0 3 753.0 8	100 24	5475.8+x (47/2			
Į	0100.0+X	(31/4)	795.0 8	100 <i>31</i> 69 <i>23</i>	5435.6+x (47/2 5393.6+x (47/2			
			193.0 0	09 23	3393.0±A (41/2	, , ,		

15

$E_i(level)$	\mathbf{J}_{i}^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^π	Mult.#	δ@
6236.2+x	$(53/2^+)$	336.0 <i>5</i> 696.7 <i>3</i>	72 <i>18</i> 100 <i>15</i>	5899.8+x (5 5539.5+x (4		D Q	
6367.2+x	(51/2+)	682.5 8	6 2	5684.7+x (4	19/2+)	(E2+M1)&	+3.1 & 4
6434.9+x	(53/2 ⁺)	711.4 8 750.2 5	100 <i>31</i> 100	5655.8+x (4 5684.7+x (4	19/2+)	Q Q	
6448.5+x	$(53/2^+)$	367.6 <i>8</i> 753.0 <i>8</i>	86 <i>24</i> 100 <i>29</i>	6080.9+x (5 5695.5+x (4	, ,	Q	
6507.6+x	$(53/2^{-})$	369.4 8 721.2 5	44 <i>13</i> 100 <i>26</i>	6138.1+x (5 5786.5+x (4	$51/2^{-}$)	Q	
6511.5+x	$(53/2^+)$	816.0 8	100	5695.5+x (4		Q	
6539.2+x	$(55/2^{-})$	391.8 5	41 25	6147.1+x (5		Ď	
		798.7 <i>3</i>	100 15	5740.6+x (5	$51/2^{-}$	Q	
6552.5 + x	$(53/2^{-})$	373.5 8	24 10	6178.7+x (5			
		727.3 8	100 29	5825.4+x (4			
6608.7 + x	$(53/2^{-})$	763.5 8	100	5845.2+x (4)	, ,	Q	
6612.7 + x	$(53/2^+)$	789.5 8	100	5823.2+x (4		Q	
6632.2+x	$(55/2^+)$	395.8 5	94 23	6236.2+x (5		D	
		732.9 5	100 25	5899.8+x (5		Q	
6642.3+x	$(53/2^{-})$	781.3 8	100	5861.0+x (4			
6841.9+x	$(55/2^+)$	393.4 8	63 21	6448.5+x (5			
60067	(55/0-)	761.0 8	100 30	6080.9+x (5		Q	
6886.7+x	$(55/2^{-})$	378.9 8	38 11	6507.6+x (5		0	
6002 6	(52/2±)	748.6 5	100 25	6138.1+x (5		Q	
6903.6+x	$(53/2^+)$	748.8 8	100	6154.8+x (4			
<	(## (# L)	1218.9 ^b	400.01	5684.7+x (4		_	
6907.6+x	$(55/2^+)$	805.9 8	100 31	6101.7+x (5		Q	
6047.2	(55/0-)	826.7 8	8 4	6080.9+x (5			
6947.3+x	$(55/2^{-})$	394.8 8	25 8	6552.5+x (5		0	
6002 4	(57/2-)	768.6 8	100 33	6178.7+x (5		Q	
6982.4+x	$(57/2^{-})$	442.9 <i>5</i> 835.4 <i>3</i>	27 <i>6</i> 100 <i>15</i>	6539.2+x (5 6147.1+x (5		D O	
6994.6+x	$(55/2^+)$	806.0 8	100 13	6188.6+x (5	, ,	Q Q	
6998.0+x	$(57/2^+)$	365.9 <i>5</i>	42 11	6632.2+x (5		Q D	
0996.0±X	(31/2)	761.4 5	100 25	6236.2+x (5		Q	
7132.9+x	$(55/2^+)$	697.9 8	21 6	6434.9+x (5		Q	
7132.71X	(33/2)	765.7 8	100 29	6367.2+x (5		Q	
7238.2+x	$(57/2^+)$	803.3 5	100 25	6434.9+x (5	, ,	Q	
7240.5+x	$(57/2^+)$	398.6 8	95 30	6841.9+x (5		~	
	(/=)	792.0 8	100 32	6448.5+x (5		Q	
7288.1+x	$(57/2^{-})$	401.4 8	34 10	6886.7+x (5			
	/	780.4 5	100 24	6507.6+x (5		Q	
7338.5+x	$(57/2^+)$	827.0 8	100	6511.5+x (5		Q	

γ (165Lu) (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.#	E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.#
7354.9+x	(57/2-)	407.5 ^b 8	21 7	6947.3+x	(55/2-)		8795.3+x	(65/2-)	931.0 5	100	7864.3+x	(61/2=)	0
7334.9+X	(31/2)	802.5 8	100 29	6552.5 + x			8824.9+x	$(63/2^+)$	872.1 8	100	7952.7+x		Q Q
7383.6+x	$(59/2^{-})$	401.2 5	35 9	6982.4 + x			9002.8+x	$(65/2^+)$	908.9 8	100	8093.9+x		Q
/363.0±X	(39/2)	844.5 3	100 15	6539.2+x		0	9002.8+x 9028.0+x	$(65/2^{-})$	900.9 6	100	8128.0+x		
7417.6+x	$(57/2^+)$	804.9 8	100 13	6612.7+x		Q	9028.0+x 9067.5+x	$(65/2^+)$	953.0 8	100	8114.5+x		Q
7417.0+x 7431.3+x		822.6 8	100			0	9007.5+x 9133.5+x	. , ,	933.0 8	100			
7431.3+x 7439.1+x	$(57/2^{-})$ $(59/2^{+})$	822.0 8 442.0 8	27 7	6608.7+x 6998.0+x		Q	9155.5+x 9156.0+x	$(65/2^+)$ $(65/2^-)$	921.0 8	100	8212.5+x 8227.1+x		
7439.1+X	(39/2)	806.9 5	100 25			0	9150.0+x 9160.2+x		928.9 8	100			
7467.1+x	$(57/2^{-})$	824.8 8	100 23	6632.2+x 6642.3+x		Q Q	9100.2+x 9199.0+x	$(65/2^+)$ $(67/2^-)$	902.8 8	100	8257.4+x 8269.6+x		\circ
			72 20			Q	9199.0+x 9242.6+x			100			Q
7677.9+x	$(59/2^+)$	437.4 8 836.0 8	100 32	7240.5+x		0	9242.6+x 9265.1+x	$(65/2^{-})$	930.2 8 928.3 8	100	8312.3+x 8336.8+x		
7602.0	(50/2-)		28 9	6841.9+x		Q		$(65/2^{-})$. , ,	
7693.9+x	$(59/2^{-})$	405.9 8		7288.1+x		0	9308.7+x 9456.6+x	$(67/2^+)$	977.9 5	100	8330.8+x		
7702 2	(57/0±)	807.3 5	100 25	6886.7+x		Q		$(65/2^+)$	904.7 8	100	8551.9+x	. , ,	
7702.3+x	$(57/2^+)$	798.7 8	100	6903.6+x			9475.3+x	$(67/2^{-})$	918.2 8	100	8557.0+x		0
7760.3+x	$(59/2^+)$	852.7 8	100	6907.6+x		0	9544.9+x	$(67/2^+)$	960.0 8	100	8584.9+x	. , ,	Q
7788.7+x	$(59/2^{-})$	841.4 8	100	6947.3+x		Q	9607.1+x	$(67/2^+)$	946.7 8	100	8660.4+x		0
7837.4+x	$(61/2^+)$	398.6 5	51 12	7439.1+x		D	9643.2+x	$(67/2^{-})$	951.2 8	100	8692.0+x		Q
7041.6	(50 (0±)	839.50 5	100 25	6998.0+x		Q	9671.6+x	$(67/2^+)$	938.0 8	100	8733.6+x		0
7841.6+x	$(59/2^+)$	847.0 8	100	6994.6+x		Q	9742.6+x	$(69/2^+)$	987.9 5	100	8754.7+x		Q
7864.3+x	$(61/2^{-})$	881.6 5	100	6982.4+x		Q	9751.5+x	$(67/2^+)$	926.6 8	100	8824.9+x		Q
7952.7+x	$(59/2^+)$	819.9 8	100	7132.9+x		Q	9781.3+x	$(69/2^{-})$	986.0 5	100	8795.3+x		Q
8093.9+x	$(61/2^+)$	855.7 8	100	7238.2+x		Q	9965.8+x	$(69/2^+)$	963.0 8	100	9002.8+x		Q
8114.5+x	$(61/2^+)$	436.6 8	24 8	7677.9+x			9991.2+x	$(69/2^{-})$	963.1 8	100	9028.0+x	. , ,	
		874.0 8	100 32	7240.5+x		Q	10072.5+x	$(69/2^+)$	1005.0 8	100	9067.5+x		
8128.0+x	$(61/2^{-})$	434.0 8	16 5	7693.9+x			10107.5+x	$(69/2^+)$	974.0 8	100	9133.5+x		
		839.9 5	100 26	7288.1+x		Q	10129.5+x	$(69/2^{-})$	973.5 8	100	9156.0+x		_
8212.5+x	$(61/2^+)$	874.0 8	100	7338.5+x		Q	10175.4+x	$(71/2^{-})$	976.4 5	100	9199.0+x		Q
8227.1+x	$(61/2^{-})$	872.2 8	100	7354.9+x			10207.7+x	$(69/2^{-})$	965.1 8	100	9242.6+x		
8257.4+x	$(61/2^+)$	839.8 8	100	7417.6+x	. , ,	_	10367.1+x	$(71/2^+)$	1058.4 5	100	9308.7 + x		
8269.6+x	$(63/2^{-})$	405.0 5	34 9	7864.3 + x	. , ,	D	10414.1+x	$(69/2^+)$	957.5 8	100	9456.6+x		
		886.2 5	100 25	7383.6+x		Q	10449.1+x	$(71/2^{-})$	973.9 8	100	9475.3+x		
8312.3+x	$(61/2^{-})$	881.0 8	100	7431.3+x		Q	10546.9+x	$(71/2^+)$	1002.0 8	100	9544.9+x		Q
8330.8+x	$(63/2^+)$	493.2 8	52 16	7837.4 + x			10594.0+x	$(71/2^+)$	986.9 8	100	9607.1+x		
		891.7 <i>5</i>	100 33	7439.1 + x		Q	10645.1+x	$(71/2^{-})$	1001.9 8	100	9643.2+x		
8336.8+x	$(61/2^{-})$	869.7 8	100	7467.1 + x			10646.6+x	$(71/2^+)$	975.0 8	100	9671.6+x		
8551.9+x	$(61/2^+)$	849.6 8	100	7702.3+x			10732.6+x	$(71/2^+)$	981.1 8	100	9751.5+x		Q
8557.0+x	$(63/2^{-})$	863.1 8	100	7693.9+x			10793.8+x	$(73/2^+)$	1051.2 8	100	9742.6+x		
8584.9+x	$(63/2^+)$	470.4 8	17 5	8114.5 + x			10827.3+x	$(73/2^{-})$	1046.0 8	100	9781.3+x		
		907.0 8	100 <i>30</i>	7677.9 + x		Q	10985.1+x	$(73/2^+)$	1019.3 8	100	9965.8+x	$(69/2^+)$	
8660.4+x	$(63/2^+)$	900.1 8	100	7760.3 + x		Q	11017.5+x	$(73/2^{-})$	1026.3 8	100	9991.2+x		
8692.0+x	$(63/2^{-})$	903.2 8	100	7788.7+x		Q	11142.3+x	$(73/2^{-})$	1012.8 8	100	10129.5+x		
8733.6+x	$(63/2^+)$	892.0 8	100	7841.6+x	. , ,	Q	11194.1+x	$(73/2^{-})$	986.4 8	100	10207.7+x		
8754.7+x	$(65/2^+)$	917.2 5	100	7837.4+x	$(61/2^+)$	Q	11202.0+x	$(75/2^{-})$	1026.6 5	100	10175.4+x	$(71/2^{-})$	Q

γ (165Lu) (continued)

E_i (level)	J_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}
11425.2+x	$(73/2^+)$	1011.1 8	100	10414.1+x	$(69/2^+)$		13686.6+x	$(83/2^{-})$	1127.7 8	100	12558.9+x	$(79/2^{-})$
11477.3+x	$(75/2^{-})$	1028.1 8	100	10449.1+x			13714.9+x	$(83/2^+)$	1065.0 8	100	12649.9+x	\ /
11496.8+x	$(75/2^+)$	1129.7 8	100	10367.1+x	. , ,		13829.6+x	$(83/2^+)$	1109.0 8	100	12720.6+x	. , ,
11582.9+x	$(75/2^+)$	1036.0 8	100	10546.9+x		Q	14008.3+x	$(83/2^+)$	1151.0 8	100	12857.3+x	
11612.2+x	$(75/2^+)$	1018.2 8	100	10594.0+x	$(71/2^+)$		14199.9+x	$(85/2^+)$	1158.5 8	100	13041.4+x	$(81/2^+)$
11656.6+x	$(75/2^+)$	1010.0 8	100	10646.6+x	$(71/2^+)$		14384.1+x	$(85/2^+)$	1189.3 8	100	13194.8+x	$(81/2^+)$
11684.1+x	$(75/2^{-})$	1039.0 8	100	10645.1+x	$(71/2^{-})$		14558.5+x	$(87/2^{-})$	1158.8 8	100	13399.7+x	$(83/2^{-})$
11767.7+x	$(75/2^+)$	1035.1 8	100	10732.6+x	$(71/2^+)$		14849.1+x	$(87/2^{-})$	1162.5 8	100	13686.6+x	$(83/2^{-})$
11899.2+x	$(77/2^+)$	1105.4 8	100	10793.8+x	$(73/2^+)$		15208.1+x	$(87/2^+)$	1199.8 8	100	14008.3+x	$(83/2^+)$
11936.2+x	$(77/2^{-})$	1108.9 8	100	10827.3+x	$(73/2^{-})$		15623.4+x	$(89/2^+)$	1239.3 8	100	14384.1+x	$(85/2^+)$
12061.4+x	$(77/2^+)$	1076.3 8	100	10985.1+x	$(73/2^+)$		15745.5+x	$(91/2^{-})$	1187.0 ^b 8	100	14558.5+x	$(87/2^{-})$
12105.5+x	$(77/2^{-})$	1088.0 8	100	11017.5+x	$(73/2^{-})$		16462+x	$(91/2^+)$	1253.7 ^b 8	100	15208.1+x	$(87/2^+)$
12190.1+x	$(77/2^{-})$	1047.8 8	100	11142.3+x			624.5+y	J+2	624.5 8	100	У	J
12215.8+x	$(77/2^{-})$	1021.7 8	100	11194.1+x	$(73/2^{-})$		1308.3+y	J+4	683.8 8	100	624.5+y	J+2
12278.0+x	$(79/2^{-})$	1076.0 8	100	11202.0+x	$(75/2^{-})$	Q	2049.0+y	J+6	740.7 8	100	1308.3+y	J+4
12484.3+x	$(77/2^+)$	1059.1 8	100	11425.2+x	$(73/2^+)$		2847.3+y	J+8	798.3 8	100	2049.0+y	J+6
12558.9+x	$(79/2^{-})$	1081.6 8	100	11477.3+x	$(75/2^{-})$		3703.3+y	J+10	856.0 8	100	2847.3+y	J+8
12643.9+x	$(79/2^+)$	1061.0 8	100	11582.9+x	$(75/2^+)$		4618.9+y	J+12	915.6 8	100	3703.3+y	J+10
12649.9+x	$(79/2^+)$	1037.7 8	100	11612.2+x	$(75/2^+)$		5594.2+y	J+14	975.3 8	100	4618.9+y	J+12
12678.8+x	$(79/2^+)$	1182.0 8	100	11496.8+x	$(75/2^+)$		6631.2+y	J+16	1037.0 8	100	5594.2+y	J+14
12720.6+x	$(79/2^+)$	1064.0 8	100	11656.6+x	$(75/2^+)$		712.2+z	J1+2	712.2 8	100	Z	J1
12857.3+x	$(79/2^+)$	1089.6 8	100	11767.7+x	$(75/2^+)$		1482.4+z	J1+4	770.2 8	100	712.2 + z	J1+2
13041.4+x	$(81/2^+)$	1142.2 8	100	11899.2+x	$(77/2^+)$		2311.3+z	J1+6	828.9 8	100	1482.4 + z	J1+4
13102.7+x	$(81/2^{-})$	1166.5 8	100	11936.2+x	$(77/2^{-})$		3197.1+z	J1+8	885.8 8	100	2311.3+z	J1+6
13194.8+x	$(81/2^+)$	1133.4 8	100	12061.4+x			4140.8+z	J1+10	943.7 8	100	3197.1+z	
13245.2+x	$(81/2^{-})$	1139.7 8	100	12105.5+x	$(77/2^{-})$		5143.3+z	J1+12	1002.5 8	100	4140.8+z	J1+10
13399.7+x	$(83/2^{-})$	1121.7 8	100	12278.0+x	$(79/2^{-})$	Q	6206.3+z	J1+14	1063.0 8	100	5143.3+z	J1+12
13591.8+x	$(81/2^+)$	1107.4 8	100	12484.3+x	$(77/2^+)$							

[†] From $(^{31}P.4n\gamma)$ or $(^{19}F.4n\gamma)$ for positive-parity states and from $(^{16}O.4n\gamma)$ for negative-parity states. Uncertainty of 0.5 or 1 keV is assigned for gamma rays from (45 Sc, $^{4n}\gamma$) only. For SD bands, many values are from 139 La(30 Si, $^{4n}\gamma$).

[‡] Weighted average of all available data. Large uncertainty implies that the values available from (³¹P,4ny) and (¹⁹F,4ny) have a fairly large deviation.

[#] From DCO ratios In heavy-ion reactions such As (³⁰Si,4nγ) and (¹⁶O,4nγ), mult=Q corresponds to ΔJ=2, stretched quadrupole (most likely E2) transition and mult=D corresponds to ΔJ =1, dipole (small quadrupole admixture is possible). The mult=E2 is from DCO ratio and application of RUL for levels of known

[@] From (45 Sc, $^{4n}\gamma$) for negative-parity states and from from (16 O, $^{4n}\gamma$) for positive-parity states.

[&]amp; From DCO. The other solution with dominant M1 component is excluded In analogy with ¹⁶³Lu transitions In SD bands.

^a Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^b Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

¹⁶⁵₇₁Lu₉₄

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Level Scheme (continued)

Level Scheme (continued)

 $^{165}_{71}$ Lu₉₄-32

Level Scheme (continued)

$$^{165}_{\ 71}Lu_{94}$$

$$^{165}_{71}Lu_{94}$$

Adopted Levels, Gammas (continued)

J1

Band(O): Triaxial SD-5

712.2+z

Band(N): Triaxial SD-4 band (2004Sc14)

Band(L): One-phonon wobbling mode (Triaxial) SD-2 band (2004Sc14, 2003Sc02)

Band(M): Two-phonon wobbling mode (Triaxial) SD-3 band (2004Sc14, 2003Sc02)

¹⁶⁵Hf ε decay (76 s) 1989Hi04

History

Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Ashok K. Jain and Anwesha Ghosh, Balraj Singh	NDS 107, 1075 (2006)	15-Apr-2006

Parent: 165 Hf: E=0.0; J^{π} =(5/2 $^{-}$); $T_{1/2}$ =76 s 4; $Q(\varepsilon)$ =4810 40; % ε +% β ⁺ decay=100.0

1989Hi04: Measured γ , $\gamma\gamma$, K x ray, $T_{1/2}$.

1981Br30, 1981LiZM: Measured γ , K x ray, $T_{1/2}$.

1992HeZV: Measured $T_{1/2}(^{165}Hf isotope)=77 s 4$.

The level scheme is based on 772.7-180.0 coincidence and low-lying level structure shown in Adopted Levels.

¹⁶⁵Lu Levels

E(level)	$J^{\pi^{\dagger}}$	Comments
0+x [†]	$(3/2^+)$	E(level): $x \approx 20 \text{ keV}$; see 'Adopted Levels' for comments.
5.4+x [†]	$(5/2^+)$	
23.2+x [†]	$(7/2^+)$	
141.2+x?	$(7/2^+)$	
181.8+x?	$(9/2^+)$	
203.2+x <i>3</i>		J^{π} : 7/2[523] proposed by 1989Hi04 is suspect In view of another low-lying (7/2 ⁻) At 54.8+x reported In 139 La(30 Si,4n γ).
234.2+x?	$(9/2^{-})$	
975.9+x		

[†] From 'Adopted Levels'.

$\gamma(^{165} Lu)$

 $I\gamma/100$ decays cannot be calculated since the decay scheme is not well established.

E_{γ}	I_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^π	Comments
x83.5 [†]						
135.8 ^{†‡}		141.2+x?	$(7/2^+)$	5.4+x	$(5/2^+)$	
158.6 ^{†‡}		181.8+x?	$(9/2^+)$	23.2+x	$(7/2^+)$	
180.0 <i>3</i>	100	203.2+x		23.2+x	$(7/2^+)$	
211 ^{†‡}	<7	234.2+x?	$(9/2^{-})$	23.2+x	$(7/2^+)$	I_{γ} : from 1989Hi04. $I_{\gamma} \approx 10$ (1981Br30).
772.7 5	1.4 2	975.9+x		203.2+x		

[†] Tentative gamma ray from 1981Br30 only.

[‡] Placement of transition in the level scheme is uncertain.

 $^{^{}x}$ γ ray not placed in level scheme.

¹⁶⁵Hf ε decay (76 s) 1989Hi04

Legend

Decay Scheme

Intensities: Relative I_{γ}

¹²⁴Sn(⁴⁵Sc,4nγ) **1988Fr22**

History

Type Author		Citation	Literature Cutoff Date
Full Evaluation	Ashok K. Jain and Anwesha Ghosh, Balraj Singh	NDS 107, 1075 (2006)	15-Apr-2006

1988Fr22 (also 1986Fr14): E=203 MeV. Measured: γ , $\gamma\gamma$, $\gamma\gamma(\theta)$, deduced B(E2) and transition quadrupole moment ratios from DSA measurements.

The level scheme, for only the 9/2[514] band, is from 1988Fr22. In accordance with 1995Sc39, the lowest (9/2⁻) level in 1988Fr22 is shown here at 234.5+x, decaying by a 211.3 γ (from 1995Sc39) to a 23.2+x level.

¹⁶⁵Lu Levels

E(level)	$\mathrm{J}^{\pi^{\dagger}}$	T _{1/2} ‡	Comments
23.2+x	(7/2+)		E(level): from Adopted Levels. E(level): $x \approx 20$ keV; see 'Adopted Levels' for comments.
234.5+x#	9/2-		•
334.9+x [@]	11/2-		
494.2+x#	$13/2^{-}$		
662.1+x [@]	$15/2^{-}$		
892.9+x#	$17/2^{-}$		
1099.2+x [@]	$19/2^{-}$		
1386.4+x#	$21/2^{-}$		
1618.3+x [@]	$23/2^{-}$		
1945.1+x [#]	$25/2^{-}$		
2196.3+x [@]	$27/2^{-}$		
2535.5+x#	$29/2^{-}$		
2789.7+x [@]	$31/2^{-}$		
3039.3+x#	$33/2^{-}$		
3249.3+x [@]	$35/2^{-}$		
3476.4+x#	$37/2^{-}$		
3736.2+x	$39/2^{-}$		
4011.4+x#	$41/2^{-}$		
4324.0+x	$43/2^{-}$		
4647.4+x#	$45/2^{-}$		
4998.7+x	$47/2^{-}$	>0.19 ps	
5366.3+x#	$49/2^{-}$		
5743.8+x @	$51/2^{-}$	>0.13 ps	
6151.2+x#	$53/2^{-}$	0.13 ps 2	
6544.6+x [@]	55/2-		
6988+x#	57/2-		
7389.6+x [@]	59/2-		
7871+x#	61/2-		
8275.6+x [@]	63/2-		
8801+x#	65/2-		
9195+x? [@]	$(67/2^{-})$		
9775+x? [#]	$(69/2^{-})$		

[†] From 1988Fr22, based on $\gamma\gamma(\theta)$ data and band assignment. The assignments are consistent with those in 'Adopted Levels', except that all are given in parenthese there due to lack of strong supporting arguments for low-lying levels.

124 Sn(45 Sc,4n γ) 1988Fr22 (continued)

¹⁶⁵Lu Levels (continued)

- ‡ Deduced (by evaluators) from B(E2)(W.u.)'s given by 1988Fr22 from DSAM measurements. # Band(A): 9/2[514] Band, $\alpha = +1/2$. @ Band(a): 9/2[514] Band, $\alpha = -1/2$.

γ (165Lu)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\dagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	Comments
234.5+x	9/2-	211.3 2		23.2+x	$(7/2^+)$			E_{γ} : from adopted gammas.
334.9+x	11/2-	100.4		234.5+x				, 1 5
494.2+x	$13/2^{-}$	159.3		334.9+x	11/2-			
		259.7		234.5+x	$9/2^{-}$			
662.1+x	$15/2^{-}$	167.9	100	494.2+x		D+Q	+0.16 3	
		327.2	57 <i>5</i>	334.9+x				
892.9 + x	$17/2^{-}$	230.8	100	662.1+x	$15/2^{-}$	D+Q	+0.25 3	
		398.7	91 9	494.2+x	$13/2^{-}$			
1099.2 + x	$19/2^{-}$	206.3	71 5	892.9 + x	$17/2^{-}$	D+Q	+0.16 3	
		437.1	100	662.1+x	$15/2^{-}$			
1386.4 + x	$21/2^{-}$	287.2	78 <i>6</i>	1099.2+x	$19/2^{-}$	D+Q	+0.20 3	
		493.5	100	892.9 + x	$17/2^{-}$			
1618.3+x	$23/2^{-}$	231.9	32 <i>3</i>	1386.4+x	$21/2^{-}$	D+Q	+0.11 3	
		519.1	100	1099.2+x	$19/2^{-}$			
1945.1+x	$25/2^{-}$	326.8	75 8	1618.3+x	$23/2^{-}$	D+Q	+0.09 5	
		558.7	100	1386.4+x	$21/2^{-}$			
2196.3+x	$27/2^{-}$	251.2	24 3	1945.1+x	$25/2^{-}$	D(+Q)	+0.01 3	
		578.0	100	1618.3+x	$23/2^{-}$			
2535.5 + x	$29/2^{-}$	339.2	56 <i>6</i>	2196.3+x	$27/2^{-}$	D+Q	+0.18 3	
		590.4	100	1945.1 + x	$25/2^{-}$			
2789.7+x	$31/2^{-}$	254.2	37 4	2535.5 + x	$29/2^{-}$	D+Q	+0.18 4	
		593.4	100	2196.3+x				
3039.3+x	$33/2^{-}$	249.6	83 7	2789.7 + x		D+Q	+0.09 3	
		503.8	100	2535.5 + x				
3249.3+x	$35/2^{-}$	210.0	100	3039.3+x		D+Q	+0.07 3	
		459.6	93 9	2789.7+x				
3476.4+x	$37/2^{-}$	227.4	100	3249.3+x		D+Q	+0.09 2	
	2012	436.9	82 8	3039.3+x		. .		
3736.2+x	39/2-	260.0	100	3476.4+x		D+Q		
4011.4	41/0-	486.9	86 9	3249.3+x		D 0	0.06.2	
4011.4 + x	$41/2^{-}$	275.4	99 8	3736.2+x		D+Q	+0.06 2	
12210	12/2-	534.9	100	3476.4+x		D 0	0.10.2	
4324.0+x	$43/2^{-}$	312.4	86 8	4011.4+x		D+Q	+0.19 3	
4647.4	4510-	587.3	100	3736.2+x				
4647.4+x	$45/2^{-}$	323.4	64 3	4324.0+x				
4000 7	47/0-	635.9	100	4011.4+x				
4998.7+x	47/2-	351.3	64 3	4647.4+x				D(E2)(W ₁₁) <240 (DCA 1000E ₂ 22)
5266 2 1 2	40/2-	674.7	100	4324.0+x				B(E2)(W.u.)<240 (DSA,1988Fr22).
5366.3+x	49/2-	367.3 719.1	54 <i>3</i> 100	4998.7+x 4647.4+x	,			
5743.8+x	51/2-	377.5	50.5 25	5366.3+x				
3743.0±X	31/2	745.1	100	4998.7 + x				B(E2)(W.u.)<240 (DSA,1988Fr22).
6151.2+x	53/2-	406.6	50 5	5743.8+x				B(E2)(W.u.)<240 (D3A,1988F122).
0131.2TX	33/2	784.9	100	5366.3+x				B(E2)(W.u.)=180 +40-30 (DSA,1988Fr22).
6544.6+x	55/2-	393.0	51 3	6151.2+x				D(E2)(W.u.)-100 +40-30 (D3A,1700F122).
0.77.UTA	33/4	800.8	100	5743.8+x				
6988+x	57/2-	444	41 9	6544.6+x				
0700TA	31/2	837	100	6151.2+x				
		057	100	0131.2TX	23/2			

124 Sn(45 Sc,4n γ) 1988Fr22 (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	E_i (level)	\mathtt{J}_i^{π}	E_{γ}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}^{π}_f
7389.6+x	59/2-	401 845	38 <i>5</i> 100	6988+x 6544.6+x	,	8801+x	65/2-	526 [#] 930	35 <i>4</i> 100	8275.6+x 7871+x	,
7871+x	61/2-	481 883	68 <i>6</i> 100	7389.6+x 6988+x		9195+x?	(67/2 ⁻)	394 [#] 920 [#]		8801+x 8275.6+x	,
8275.6+x	63/2-	405 [#] 886	47 <i>7</i> 100	7871+x 7389.6+x	61/2-	9775+x?	(69/2-)	974 [#]		8801+x	,

 $^{^\}dagger$ Branching ratios. The authors take values from 1984Jo05 for levels below 27/2 $^-$. ‡ From $\gamma\gamma(\theta)$, but No values of A_2 and A_4 coefficients are listed by 1988Fr22. $^\sharp$ Placement of transition in the level scheme is uncertain.

124 Sn(45 Sc, 4 n γ) 1988Fr22

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{165}_{\ 71}Lu_{94}$

124 Sn(45 Sc, 4 n γ) 1988Fr22

Level Scheme (continued)

Intensities: Relative photon branching from each level

124 Sn(45 Sc,4n γ) 1988Fr22

Band(A): 9/2[514] Band, α=+1/2

$$^{165}_{\ 71}Lu_{94}$$

138 Ba(31 P,4n γ) 1995Sc39

	History		
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Ashok K. Jain and Anwesha Ghosh, Balraj Singh	NDS 107, 1075 (2006)	15-Apr-2006

1995Sc39: ¹³⁸Ba(³¹P,4nγ) E=155 MeV. Measured Eγ, Iγ, γγ coin. Deduced a superdeformed structure and other normal-deformed bands. The authors also report data from ¹⁵⁰Sm(¹⁹F,4nγ) reaction. Theory for SD band: 1999Xi02.

165 Lu Levels

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$\mathrm{J}^{\pi \ddagger}$
0.0+x [@] a	$3/2^{+}$	1291.99+x ^{&} 19	$17/2^{+}$	2730.16+x ^d 24	29/2+	5325.7+x ^e 16	47/2+
$5.4 + x^{b} 2$	5/2+	1310.5+x ^e 3	19/2+	2753.44+x ^b 24	29/2+	5539.4+x ^f 4	49/2+
23.2+x ^e 3	$7/2^{+}$	1445.39+x ^a 20	$19/2^{+}$	2956.62+x ^e 24	$31/2^{+}$	5899.6+x ⁸ 4	$51/2^{+}$
141.44+x ^c 20	$7/2^{+}$	1478.39+x ^c 21	$19/2^{+}$	3180.3+x ^d 3	$33/2^{+}$	5904.0+x ^h 6	$(49/2^+)$
147.70+x ^{&} 13	5/2+	1587.0+x ^d 3	$21/2^{+}$	$3200.9 + x^f 3$	$33/2^{+}$	6101.5+x ^e 19	$51/2^{+}$
182.2+x ^d 3	9/2+	1740.01+x ^b 21	$21/2^{+}$	3233.5+x ^h 4	$(33/2^+)$	6236.0+x ^f 4	53/2+
195.39+x ^a 11	$7/2^{+}$	1818.51+x & 22	$21/2^{+}$	3417.2+x ^e 3	$35/2^{+}$	6632.0+x ⁸ 4	55/2+
305.56+x ^b 19	9/2+	1871.5+x ^e 3	$23/2^{+}$	3436.5+x ⁸ 3	$35/2^{+}$	6707.5+x ^h 6	$(53/2^+)$
366.4+x ^e 3	$11/2^{+}$	1879.2+x# 7	$(21/2^+)$	3682.4+x ^d 3	$37/2^{+}$	6997.6+x ^f 4	57/2+
432.70+x ^{&} 14	9/2+	1990.11+x ^a 23	$23/2^{+}$	3705.2+x ^f 4	$37/2^{+}$	7439.0+x ⁸ 4	59/2+
499.21+x ^c 19	$11/2^{+}$	2048.1+x ^c 3	$23/2^{+}$	3815.9+x ^h 4	$(37/2^+)$	7562.8+x ^h 7	$(57/2^+)$
519.58+x ^a 15	$11/2^{+}$	2166.7+x ^d 3	$25/2^{+}$	3970.0+x ^e 6	$39/2^{+}$	7837.4+x ^f 4	$61/2^{+}$
573.9+x ^d 3	$13/2^{+}$	2222.7+x [#] 6	$25/2^{+}$	3981.0+x ⁸ 3	$39/2^{+}$	8330.7+x ⁸ 5	$63/2^{+}$
711.21+x ^b 19	$13/2^{+}$	2263.8+x ^h 4	$(25/2^+)$	4269.8+x ^f 3	$41/2^{+}$	8470.3+x ^h 8	$(61/2^+)$
802.0+x ^e 3	$15/2^{+}$	2294.36+x ^b 22	$25/2^{+}$	4457.2+x ^h 5	$(41/2^+)$	8755.1+x ^f 5	$65/2^{+}$
821.13+x ^{&} 18	$13/2^{+}$	2348.73+x & 23	$25/2^{+}$	4579.2+x ⁸ 3	$43/2^{+}$	9305.7+x ⁸ 6	$67/2^{+}$
943.32+x ^a 17	$15/2^{+}$	2458.5+x ^e 3	$27/2^{+}$	4613.7+x ^e 12	$43/2^{+}$	9432.6+x ^h 9	$(65/2^+)$
955.32+x ^c 20	15/2+	2538.56+x ^a 24	27/2+	4888.5+x ^f 3	$45/2^{+}$		
1048.7+x ^d 3	$17/2^{+}$	2612.2+x ^c 4	$27/2^{+}$	5153.3+x ^h 5	$(45/2^+)$		
1197.29+x ^b 20	17/2+	2709.1+x ^h 4	$(29/2^+)$	5220.6+x ^g 3	47/2+		

[†] From least-squares fit to E γ 's.

[‡] From 1995Sc39, based on rotational-band assignments and $\gamma(\theta)$ data in earlier (1988Fr22,1984Jo05) studies. The assignments are consistent with those in 'Adopted Levels', except that all are given in parenthese there due to lack of strong supporting arguments for low-lying levels.

[#] Level not supported In more recent studies (2004Sc14), the transition connected with this level placed elsewhere. IT is omitted In 'Adopted Levels'.

 $^{^{@}}$ x \approx 20 keV; see 'Adopted Levels' for comments.

[&]amp; Band(A): 1/2[411] band, $\alpha = +1/2$.

^a Band(a): 1/2[411] band, $\alpha = -1/2$.

^b Band(B): 5/2[402] band, $\alpha = +1/2$.

^c Band(b): 5/2[402] band, $\alpha = -1/2$.

^d Band(C): 7/2[404] band, $\alpha = +1/2$.

^e Band(c): 7/2[404] band, $\alpha = -1/2$.

^f Band(D): 3-quasiparticle band, $\alpha = +1/2$.

^g Band(d): 3-quasiparticle band, $\alpha = -1/2$.

^h Band(E): SD (triaxial), 1/2[660] band, $\alpha = +1/2$.

¹³⁸Ba(³¹P,4nγ) **1995Sc39** (continued)

γ (165Lu)

E_{γ}^{\dagger}	I_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbb{E}_f	\mathbf{J}_f^{π}
136.10 12	10.0 10	141.44+x	7/2+	5.4+x	5/2 ⁺
147.67 <i>14</i>	10.0 10	147.70+x	5/2+	0.0+x	3/2+
159.18 <i>11</i>	10.0 10	182.2+x	9/2+	23.2+x	$7/2^{+}$
164.28 <i>12</i>	43.3 16	305.56+x	9/2+	141.44+x	$7/2^{+}$
184.27 <i>11</i>	85.7 19	366.4+x	$11/2^{+}$	182.2+x	$9/2^{+}$
193.80 <i>12</i>	41.9 11	499.21+x	$11/2^{+}$	305.56+x	$9/2^{+}$
195.41 <i>11</i>	83 <i>3</i>	195.39+x	$7/2^{+}$	0.0+x	3/2+
207.59 12	61.5 11	573.9+x	$13/2^{+}$	366.4+x	$11/2^{+}$
212.17 <i>14</i>	25.7 9	711.21+x	$13/2^{+}$	499.21+x	$11/2^{+}$
214.07 <i>16</i>	13.2 5	519.58 + x	$11/2^{+}$	305.56+x	9/2+
214.1 [@] 3	10.4 5	3417.2+x	35/2+	3200.9+x	33/2+
224.33 [#] 16	15.4 5	3180.3+x	33/2+	2956.62+x	31/2+
226.52 14	27.7 7	2956.62+x	31/2+	2730.16+x	29/2+
228.18 14	46.0 9	802.0+x	15/2+	573.9+x	13/2+
231.88 20	8.5 6	943.32+x	15/2+	711.21+x	13/2+
235.60 3	26.5 6	3436.5+x	35/2+	3200.9+x	33/2+
237.23 14	19.7 6	3417.2+x	35/2+	3180.3+x	33/2+
237.39 16	14.9 8	432.70+x	9/2+	195.39+x	7/2+
241.82 15	17.3 <i>6</i> 25.2 <i>6</i>	1197.29+x	17/2+	955.32+x	15/2 ⁺ 31/2 ⁺
244.11 <i>14</i> 244.33 <i>15</i>	23.2 0 17.3 7	3200.9+x 955.32+x	33/2 ⁺ 15/2 ⁺	2956.62+x 711.21+x	13/2 ⁺
246.69 13	33.8 7	933.32+x 1048.7+x	17/2 ⁺	802.0+x	15/2 ⁺
262.00 14	28.3 7	1048.7+x 1310.5+x	17/2 19/2 ⁺	802.0+x 1048.7+x	13/2 17/2 ⁺
262.05 18	11.1 6	1740.01+x	21/2+	1478.39+x	17/2 19/2 ⁺
265.33 14	20.1 6	3682.4+x	37/2+	3417.2+x	35/2 ⁺
268.63 20	16.2 6	3705.2+x	37/2 ⁺	3436.5+x	35/2 ⁺
271.40 <i>14</i>	36.1 7	2730.16+x	29/2+	2458.5+x	27/2+
275.2 10	7.1 4	3981.0+x	39/2 ⁺	3705.2+x	37/2+
276.52 13	38.5 7	1587.0+x	21/2+	1310.5+x	19/2+
281.10 <i>16</i>	13.4 6	1478.39+x	19/2+	1197.29+x	17/2+
284.49 15	17.6 7	1871.5+x	23/2+	1587.0+x	21/2+
284.96 <i>17</i>	15.2 9	432.70+x	9/2+	147.70+x	5/2+
287.6 10	14.9 7	3970.0+x	39/2+	3682.4+x	37/2+
288.46 15	10.6 5	4269.8+x	$41/2^{+}$	3981.0+x	39/2+
291.80 <i>14</i>	24.2 6	2458.5 + x	$27/2^{+}$	2166.7+x	$25/2^{+}$
295.04 <i>14</i>	28.6 <i>6</i>	2166.7+x	$25/2^{+}$	1871.5 + x	$23/2^{+}$
299.9 10	14.2 5	4269.8+x	$41/2^{+}$	3970.0+x	$39/2^{+}$
300.12 <i>15</i>	17.4 <i>10</i>	305.56+x	$9/2^{+}$	5.4 + x	5/2+
301.5 <i>10</i>	16.3 6	821.13+x	$13/2^{+}$	519.58+x	11/2+
309.08 20	16.3 8	4579.2+x	$43/2^{+}$	4269.8+x	$41/2^{+}$
309.36 <i>15</i>	38.0 9	4888.5+x	45/2+	4579.2+x	43/2+
318.58 <i>13</i>	30.7 5	5539.4+x	49/2+	5220.6+x	47/2+
324.18 <i>12</i>	83.2 17	519.58+x	11/2+	195.39+x	7/2+
331.86 <i>14</i>	25.0 5	5220.6+x	47/2+	4888.5+x	45/2+
335.99 14	22.9 6	6236.0+x	53/2+	5899.6+x	51/2 ⁺
343.03 12	121 3	366.4+x	11/2+	23.2+x	7/2+
343.5 3	10.0 10	2222.7+x	25/2+	1879.2+x	$(21/2^+)$
348.32 20	11.0 5	1291.99+x	17/2+	943.32+x	15/2 ⁺
357.56 <i>16</i>	24.5 9	499.21+x	11/2 ⁺	141.44+x	7/2 ⁺
360.06 <i>14</i> 365.94 <i>20</i>	22.8 <i>5</i> 9.1 <i>5</i>	5899.6+x 6997.6+x	51/2 ⁺ 57/2 ⁺	5539.4+x 6632.0+x	49/2 ⁺ 55/2 ⁺
388.46 <i>14</i>	9.1 3 33.4 <i>10</i>	821.13+x	13/2+	432.70+x	9/2 ⁺
391.71 <i>11</i>	142.6 <i>24</i>	573.9+x	13/2+	432.70+x 182.2+x	9/2 9/2 ⁺
395.84 18	13.9 5	6632.0+x	55/2 ⁺	6236.0+x	53/2 ⁺
398.62 20	13.9 5	7837.4+x	61/2 ⁺	7439.0+x	59/2 ⁺
370.02 20	15.5 0	, 057.TIA	01/2	/ 137.01 A	3712

¹³⁸Ba(³¹P,4nγ) **1995Sc39** (continued)

E_{γ}^{\dagger}	I_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbb{E}_f	J_f^π
404.85 20	18.2 10	2753.44+x	29/2+	2348.73+x	25/2+
405.57 16	23.0 11	711.21+x	$13/2^{+}$	305.56+x	9/2+
418.06 <i>14</i>	20.1 4	2956.62+x	$31/2^{+}$	2538.56+x	27/2+
423.70 12	75.0 <i>13</i>	943.32+x	$15/2^{+}$	519.58+x	$11/2^{+}$
435.61 12	183.0 <i>25</i>	802.0+x	$15/2^{+}$	366.4+x	$11/2^{+}$
435.82 16	20.8 8	2730.16+x	$29/2^{+}$	2294.36+x	$25/2^{+}$
436.3 <i>4</i>	8.0 9	955.32+x	15/2+	519.58+x	11/2+
442.0 3	5.9 5	7439.0+x	59/2+	6997.6+x	57/2+
444.10 <i>15</i>	26.8 8	943.32+x	15/2+	499.21+x	11/2+
445.28 24	14.9 9	2709.1+x	$(29/2^+)$	2263.8+x	$(25/2^+)$
445.4 <i>3</i> 448.6 <i>3</i>	3.8 <i>9</i> 5.9 <i>6</i>	2263.8+x 1740.01+x	$(25/2^+)$ $21/2^+$	1818.51+x 1291.99+x	21/2+
448.6 <i>3</i> 450.08 <i>13</i>	3.9 6 43.6 9	1/40.01+x 3180.3+x	33/2 ⁺	1291.99+x 2730.16+x	17/2 ⁺ 29/2 ⁺
455.88 18	24.2 10	955.32+x	15/2 ⁺	499.21+x	11/2 ⁺
458.97 <i>15</i>	40.5 11	2753.44+x	29/2 ⁺	2294.36+x	25/2+
460.51 15	32.7 10	3417.2+x	35/2 ⁺	2956.62+x	$31/2^{+}$
470.65 18	32.6 10	3200.9+x	33/2+	2730.16+x	29/2+
470.89 15	38.3 11	1291.99+x	17/2 ⁺	821.13+x	13/2+
474.73 12	163.6 20	1048.7+x	17/2+	573.9+x	$13/2^{+}$
475.01 [‡] 24	10.4 6	2294.36+x	$25/2^{+}$	1818.51+x	$21/2^{+}$
479.83 <i>17</i>	23.0 8	3436.5 + x	$35/2^{+}$	2956.62+x	$31/2^{+}$
480.0 <i>4</i>	6.9 <i>6</i>	3233.5+x	$(33/2^+)$	2753.44+x	$29/2^{+}$
486.10 <i>15</i>	34.7 11	1197.29+x	17/2+	711.21+x	13/2+
486.4 <i>4</i>	7.4 8	2709.1+x	$(29/2^+)$	2222.7+x	25/2+
493.2 3	5.2 7	8330.7+x	63/2+	7837.4+x	61/2+
498.27 18	23.0 7	2956.62+x	31/2+	2458.5+x	27/2+
502.04 <i>16</i> 502.07 <i>12</i>	34.2 <i>10</i> 98.2 <i>15</i>	3682.4+x 1445.39+x	37/2 ⁺ 19/2 ⁺	3180.3+x 943.32+x	33/2 ⁺ 15/2 ⁺
508.41 12	197.1 20	1310.5+x	19/2 ⁺	802.0+x	15/2 ⁺
523.49 18	27.3 13	1478.39+x	19/2 ⁺	955.32+x	15/2+
523.6 10	5.0 8	2263.8+x	$(25/2^+)$	1740.01+x	21/2+
524.44 20	11.5 9	3233.5+x	$(33/2^+)$	2709.1+x	$(29/2^+)$
526.14 <i>17</i>	38.0 11	1818.51+x	21/2+	1291.99+x	17/2+
530.23 20	18.5 8	2348.73+x	$25/2^{+}$	1818.51+x	$21/2^{+}$
538.25 12	174.9 <i>18</i>	1587.0+x	$21/2^{+}$	1048.7+x	$17/2^{+}$
542.58 <i>16</i>	34.7 11	1740.01+x	21/2+	1197.29+x	$17/2^{+}$
544.65 <i>15</i>	33.9 10	3981.0+x	39/2+	3436.5 + x	$35/2^{+}$
544.73 <i>13</i>	92.9 14	1990.11+x	23/2+	1445.39+x	19/2+
548.45 15	36.7 9	2538.56+x	27/2+	1990.11+x	23/2+
552.9 10	36.5 10	3970.0+x	39/2 ⁺	3417.2+x	35/2 ⁺
554.59 <i>15</i> 561.03 <i>13</i>	33.7 <i>13</i> 151.6 20	2294.36+x 1871.5+x	25/2 ⁺ 23/2 ⁺	1740.01+x 1310.5+x	21/2 ⁺ 19/2 ⁺
562.5 ^a 4	5.0 7	3981.0+x	39/2 ⁺	3417.2+x	35/2 ⁺
563.56 14	84.0 <i>16</i>	2730.16+x	29/2 ⁺	2166.7+x	25/2 ⁺
564.0 10	04.0 10	4269.8+x	41/2+	3705.2+x	37/2 ⁺
564.03 23	16.3 9	2612.2+x	27/2+	2048.1+x	23/2+
569.75 18	22.9 11	2048.1+x	23/2+	1478.39+x	19/2+
579.74 12	165.0 18	2166.7+x	25/2 ⁺	1587.0+x	21/2+
582.36 18	21.5 11	3815.9+x	$(37/2^+)$	3233.5+x	$(33/2^+)$
587.02 <i>13</i>	110.8 <i>19</i>	2458.5+x	$27/2^{+}$	1871.5+x	$23/2^{+}$
587.46 <i>21</i>	14.3 9	4269.8+x	41/2+	3682.4+x	$37/2^{+}$
587.7 10	6.8 15	2753.44+x	29/2+	2166.7+x	$25/2^{+}$
598.55 15	40.7 10	4579.2+x	43/2+	3981.0+x	39/2+
608.84 20	18.1 10	2348.73+x	25/2+	1740.01+x	21/2+
609.3 10	18.9 7	4579.2+x	43/2+	3970.0+x	39/2+

138 Ba(31 P,4n γ) 1995Sc39 (continued)

γ ⁽¹⁶⁵Lu) (continued)</sup>

E_{γ}^{\dagger}	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	\mathbb{E}_f	\mathbf{J}_f^π
618.51 15	44.7 8	4888.5+x	45/2+	4269.8+x	41/2+
641.3 <mark>&</mark> 2	20.6 ^b 10	4457.2+x	$(41/2^+)$	3815.9+x	$(37/2^+)$
641.44 <i>17</i>	37.9 11	5220.6+x	$47/2^{+}$	4579.2+x	$43/2^{+}$
643.7 10	29.1 12	4613.7+x	$43/2^{+}$	3970.0+x	$39/2^{+}$
651.13 <i>15</i>	45.3 10	5539.4+x	$49/2^{+}$	4888.5+x	$45/2^{+}$
679.18 <i>18</i>	24.2 7	5899.6+x	$51/2^{+}$	5220.6+x	$47/2^{+}$
696.10 <i>20</i>	19.7 9	5153.3+x	$(45/2^+)$	4457.2+x	$(41/2^+)$
696.73 <i>17</i>	29.8 9	6236.0+x	$53/2^{+}$	5539.4+x	$49/2^{+}$
712.0 10	26.0 9	5325.7+x	$47/2^{+}$	4613.7+x	$43/2^{+}$
732.95 20	23.6 8	6632.0+x	$55/2^{+}$	5899.6+x	$51/2^{+}$
750.73 20	20.6 9	5904.0+x	$(49/2^+)$	5153.3+x	$(45/2^+)$
761.39 <i>18</i>	31.1 8	6997.6+x	57/2+	6236.0+x	$53/2^{+}$
775.8 10	18.0 8	6101.5 + x	$51/2^{+}$	5325.7+x	$47/2^{+}$
803.5 <i>3</i>	14.0 7	6707.5 + x	$(53/2^+)$	5904.0+x	$(49/2^+)$
806.93 20	28.6 9	7439.0+x	59/2+	6632.0+x	55/2+
839.50 22	22.1 8	7837.4 + x	$61/2^{+}$	6997.6+x	57/2+
855.31 25	14.9 7	7562.8 + x	$(57/2^+)$	6707.5 + x	$(53/2^+)$
891.77 <i>25</i>	17.9 8	8330.7+x	$63/2^{+}$	7439.0+x	59/2+
907.5 <i>3</i>	9.1 7	8470.3+x	$(61/2^+)$	7562.8+x	$(57/2^+)$
917.66 24	20.3 8	8755.1+x	$65/2^{+}$	7837.4+x	$61/2^{+}$
962.3 <i>4</i>	8.0 7	9432.6+x	$(65/2^+)$	8470.3+x	$(61/2^+)$
975.0 <i>3</i>	14.0 8	9305.7+x	$67/2^{+}$	8330.7+x	63/2+

 $^{^{\}dagger}$ From (31 P,4n γ) and (19 F,4n γ) reactions. ‡ Poor fit; level-energy difference=475.85.

[#] Poor fit; level-energy difference=223.71.

[®] Poor fit; level-energy difference=216.2.

[&]amp; From level-energy difference. This gamma ray is not listed in table 1 of 1995Sc39. Uncertainty is assigned by the evaluators.

^a Poor fit; level-energy difference=563.8.

^b From the average of $I_{\gamma}(696\gamma)$ and $I_{\gamma}(582\gamma)$. Intensity is not available from 1995Sc39.

$\begin{array}{c|c} \underline{138} \textbf{Ba} (^{31} \textbf{P,4n} \gamma) & \textbf{1995Sc39} \\ \hline & \underline{\textbf{Level Scheme}} \\ \hline \textbf{Intensities: Relative } \textbf{I}_{\gamma} & & & \\ \hline & & & & \\ \underline{\textbf{I}_{\gamma} < 2\% \times \textbf{I}_{\gamma}^{max}} \\ \hline & & & & \\ \underline{\textbf{I}_{\gamma} < 10\% \times \textbf{I}_{\gamma}^{max}} \\ \hline & & & & \\ \underline{\textbf{I}_{\gamma} > 10\% \times \textbf{I}_{\gamma}^{max}} \\ \hline \end{array}$

¹³⁸Ba(³¹P,4nγ) 1995Sc39

$$^{165}_{\ 71}Lu_{94}$$

¹³⁸Ba(³¹P,4nγ) **1995Sc39** (continued)

139 La(30 Si,4n γ) 2004Sc14,2003Sc02,2005An04

History

Author Type Citation Literature Cutoff Date Full Evaluation Ashok K. Jain and Anwesha Ghosh, Balraj Singh NDS 107, 1075 (2006) 15-Apr-2006

Includes ¹²⁴Sn(⁴⁵Sc,4ny) from 2002Sc47 for lifetime data and deduced quadrupole moments.

2004Sc14, 2003Sc02: E=152 MeV. Measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma$, $\gamma\gamma(\theta)$ (DCO) with the EUROBALL spectrometer array, which comprised of 30 conventional large-volume tapered Ge detectors as well as 26 Clover and 15 Cluster composite Ge detectors. The Clover detectors consist of 4 Ge crystals each and the Clusters are composed of 7 crystals each. All detectors are surrounded by BGO scintillation detectors for Compton suppression. Also, an inner ball of 210 BGO detectors was used to as a multiplicity filter to enhance the detection of high-spin states which deexcite in long γ -ray cascades. Deduced normal-deformed and superdeformed structures.

2005An04: E=135 MeV. Measured lifetimes of normal-deformed states In four low-lying rotational bands using differential decay-curve method (DDCM) In recoil-distance measurements; GASP array of 40 Compton-suppressed Ge detectors and 80 BGO detectors.

2002Sc47: 124Sn(45Sc,4ny) E=217 MeV. Measured lifetimes by DSAM and deduced quadrupole moment.

All data are from 2004Sc14, unless otherwise stated.

Additional information 1.

165 Lu Levels

Q(transition)= Transition quadrupole moment.

Nomenclature for quasi-particle orbitals:

a: $\pi 1/2[411]$, $\alpha = +1/2$.

b: $\pi 1/2[411]$, $\alpha = -1/2$.

c: $\pi 7/2[404]$, $\alpha = +1/2$.

d: $\pi 7/2[404]$, $\alpha = -1/2$.

e: $\pi 9/2[514]$, $\alpha = +1/2$.

f: $\pi 9/2[514]$, $\alpha = -1/2$.

g: $\pi 7/2[523]$, $\alpha = +1/2$. h: $\pi 7/2[523]$, $\alpha = -1/2$.

k: $\pi 5/2[402]$, $\alpha = +1/2$.

1: $\pi 5/2[402]$, $\alpha = -1/2$.

A: v5/2[642], $\alpha = +1/2$.

B: v5/2[642], $\alpha = -1/2$.

C: v3/2[651], $\alpha = +1/2$.

D: v3/2[651], $\alpha = -1/2$.

E: v5/2[523], $\alpha = +1/2$.

F: v5/2[523], $\alpha = -1/2$.

G: v3/2[521], $\alpha = +1/2$.

H: v3/2[521], $\alpha = -1/2$.

The first alignment of pair of $i_{13/2}$ neutrons [AB] results in an alignment gain of $10\hbar$ at $\hbar\omega$ =0.25 MeV in most bands, except for the 1/2[541] band where the alignment is delayed. The alignments of the next pair of i_{13/2} neutrons [BC] and [CD] occur at higher frequencies of $\hbar\omega\approx0.31$ and 0.40 MeV, respectively with an alignment gain of $\approx4.5\hbar$.

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$
$0.0+x^{@d}$	3/2+	182.4+x ^c 4	9/2+		366.6+x ^b 4	11/2+	15.7 ps <i>15</i>
$5.4 + x^{h} 5$	5/2+	195.39+x ^d 10	$7/2^{+}$	133 ps 12	432.7+x ^e 4	9/2+	
23.4+x ^b 4	7/2+	234.9+x& 4	9/2-		466.48+x ^f 14	$9/2^{-}$	58.7 ps <i>35</i>
54.7+x 4	$(7/2^{-})$	305.6+x ^h 4	9/2+		494.7+x& 4	$13/2^{-}$	13.0 ps 6
141.4+x <i>8</i> 4	7/2+	335.5+x ^a 4	$11/2^{-}$		499.3+x ⁸ 4	$11/2^{+}$	
147.7+x ^e 4	5/2+	$345.5 + x^{f} 5$	5/2-		519.60+x ^d 14	$11/2^{+}$	14.9 ps 7

$\frac{139}{La} (^{30}Si, 4n\gamma) \qquad \textbf{2004Sc14,2003Sc02,2005An04 (continued)}$

¹⁶⁵Lu Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	E(level) [†]	Jπ‡
574.2+x ^c 4	13/2+	6.70 ps 24	2956.8+x ^b 4	31/2+
662.7+x ^a 4	$15/2^{-}$	6.65 ps <i>35</i>	2968.4+x ⁱ 4	$31/2^{+}$
694.77+x ^f 17	$13/2^{-}$	33.3 ps <i>14</i>	2999.7+x ^d 5	31/2+
711.4+x ^h 3	$13/2^{+}$		3038.6+x& 4	33/2-
802.2+x ^b 4	$15/2^{+}$	3.66 ps 16	3043.4+x ⁸ 11	$31/2^{+}$
821.2+x ^e 4	$13/2^{+}$		3067.1+x ^q 8	$31/2^{-}$
893.3+x& 4	$17/2^{-}$	2.91 ps <i>12</i>	3180.4+x ^c 5	$33/2^{+}$
943.4+x ^d 3	$15/2^{+}$	1.84 ps <i>17</i>	$3195.2+x^{f}$ 4	$33/2^{-}$
$955.5 + x^{8} 4$	$15/2^{+}$		$3201.1+x^{j}$ 5	$33/2^{+}$
$1030.17 + x^f 20$	$17/2^{-}$	7.77 ps <i>17</i>	$3222.2+x^{p}$ 5	$33/2^{-}$
1048.9+x ^c 4	17/2+	2.17 ps 8	3224.6+x ^h 7	33/2+
1099.5+x ^a 4	19/2-	1.70 ps 6	3240.1+x ^r 7	33/2+
1197.5+x ^h 4	17/2+		$3248.2+x^{a}$	35/2-
1292.1+x ^e 5	17/2+		3417.3+x ^b 5	35/2+
1310.6+x ^b 4	19/2+		3436.6+x ⁱ 5	35/2+
1386.4+x& 4	21/2-	1.25 ps <i>18</i>	$3471.7 + x^{d} 7$	35/2+
1445.5+x ^d 3	19/2+	2.16 ps <i>10</i>	3474.9+x& 4	37/2-
1462.25+x ^f 22 1478.6+x ^g 5	21/2-	2.8 ps 7	3484.8+x ⁰ 5	35/2-
1478.0+x ⁶ 3 1587.0+x ⁶ 4	19/2 ⁺ 21/2 ⁺	1.10 ps 8	3602.2+x ^q 8 3682.5+x ^c 5	35/2 ⁻ 37/2 ⁺
$1618.3 + x^a$ 4	23/2	0.98 ps 7	$3705.4 + x^{j} 6$	37/2 ⁺
$1740.2 + x^h 4$	21/2+	0.70 ps 7	3734.9+x ^a 4	39/2
1769.6+x ^q 7	19/2		$3754.6+x^{h}$ 8	37/2 ⁺
1818.6+x ^e 5	21/2+		3765.2+x ^r 8	37/2+
1871.6+x ^b 4	23/2+		3823.8+x ^p 5	37/2-
1945.0+x & 4	25/2-		3853.5+x ^f 6	37/2-
1978.64+x ^f 24	25/2-		3864.5+x ^{\$} 10	35/2+
1990.2+x ^d 3	23/2+		3970.2+x ^b 5	39/2+
2048.3+x ⁸ 6	23/2+		3980.9+x ⁱ 5	39/2+
2155.6+x ^q 6	$23/2^{-}$		4009.9+x & 4	$41/2^{-}$
2166.7+x ^c 4	$25/2^{+}$		4034.7+x ^d 8	39/2+
2195.9+x ^a 4	$27/2^{-}$		4116.8+x ^o 6	$39/2^{-}$
2294.5+x ^h 5	$25/2^{+}$		4184.9+x ^q 8	$39/2^{-}$
2348.8+x ^e 5	25/2+		$4270.0+x^{j}$ 5	41/2+
2409.3+x ^r 7	25/2+		4290.5+x ^c 6	41/2+
2458.6+x ^b 4	27/2+		4321.9+x ^a 4	43/2-
2534.9+x& 4	29/2-		4347.3+x ^r 9	41/2+
$2538.6 + x^{d}$ 4	27/2+		4374.0+x ^h 9	41/2+
2545.0+x ⁱ 4	27/2+		4403.4+x ^{\$} 10	39/2+
$2564.3 + x^f 3$	29/2-		4453.4+x ^p 6	41/2-
2585.7+x ^q 6 2612.3+x ^g 7	27/2-		4490.6+x ^f 7 4575.0+x ⁿ 8	41/2-
2730.3+x ^c 4	27/2 ⁺		$4575.0+x^{i}$ 5	41/2 ⁻
$2750.3+x^{b}$ 4 $2753.6+x^{h}$ 5	29/2 ⁺ 29/2 ⁺		4579.4+x ^b 6	43/2 ⁺ 43/2 ⁺
$2765.0+x^{j}$ 5	29/2+ 29/2+		4613.9+x 6 4644.9+x 4	45/2
$2789.0+x^{a}$ 4	31/2		4644.9+x ^d 4	43/2 ⁺
2789.0+x ^r 4 2794.1+x ^r 6	31/2 29/2 ⁺		4773.2+x ^o 7	43/2
2947.1+x ^o 5	$31/2^{-}$		4788.2+x ^t 14	41/2+
	,	ļ	ı	,

139 La(30 Si,4n γ) 2004Sc14,2003Sc02,2005An04 (continued)

165 Lu Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	Jπ‡	E(level) [†]	J^π ‡
4800.2+x ^q 8	43/2-	6886.5+x ^q 9	55/2-	9133.5+x ^c 18	65/2 ⁺
$4888.7 + x^{j} 5$	45/2 ⁺	$6904.3 + x^t$ 12	53/2 ⁺	9155.7+ x^n 16	65/2
4960.5+x ^c 6	45/2 ⁺	6907.6+x ^b 9	55/2 ⁺	$9160.9 + x^{h} 20$	65/2 ⁺
4988.6+x ^r 10	45/2+	6947.1+x° 10	55/2 ⁻	9198.6+x ^a 9	67/2
4996.1+x ^a 4	47/2-	6982.1+x& 6	57/2-	9242.4+x ^f 20	65/2-
5001.4+x ^s 10	43/2+	6994.7+x ^d 13	55/2+	9265.0+x ^m 20	(65/2)
5068.9+x ^h 10	45/2+	6998.0+x ^j 7	57/2+	9308.7+x ⁱ 10	67/2+
5115.5+x p 7	45/2-	7133.6+x ^s 12	55/2+	9457.3+x ^t 19	65/2+
5145.1+x ^f 9	$45/2^{-}$	7239.0+x ^r 12	57/2+	9475.1+x ^q 15	67/2-
5173.9+x ⁿ 8	$45/2^{-}$	7240.5+x ^l 10	57/2+	9544.9+x ^k 14	67/2+
5220.8+x ⁱ 6	47/2+	7287.9+x ^p 10	57/2-	9607.1+x ^b 17	67/2+
5325.9+x b 7	47/2+	7338.5+x ^c 14	57/2+	9642.9+x ^o 17	67/2-
5363.5+x& 4	49/2-	7354.6+x ⁿ 10	57/2-	9671.7+x ^d 19	67/2+
5393.7+x 8	47/2+	7383.2+x ^a 6	59/2-	9742.6+x ^j 10	69/2+
5435.6+x ^d 10	47/2+	7418.3+x ^h 16	57/2+	9752.2+x ^{\$} 19	67/2+
5446.5+x ^q 8	$47/2^{-}$	7431.2+x ^f 17	57/2-	9780.9+x ^{&} 10	69/2-
5449.5+x ^t 12	45/2+	7439.2+x ⁱ 8	59/2+	9966.5+x ^r 19	69/2+
5475.5+x° 7	$47/2^{-}$	7467.0+x ^m 17	$(57/2)^{-}$	9991.0+x ^p 14	69/2-
5539.6+x ^j 6	49/2+	7677.9+x ^k 10	59/2+	10072.5+x ^l 16	69/2+
5656.5+x ^s 11	47/2+	7693.8+x ^q 10	59/2-	10107.5+x ^c 20	69/2+
5685.4+x ^r 10	49/2+	7703.0+x ^t 15	57/2 ⁺	10129.2+x ⁿ 18	69/2-
5695.5+x ^C 8	49/2+	7760.3+x ^b 12	59/2+	10175.0+x ^a 10	71/2-
5740.2+x ^a 5	51/2-	7788.4+x° 13	59/2-	$10207.5 + x^f 22$	69/2-
5786.3+x ^p 8	49/2-	7837.5+x ^j 7	61/2+	10367.1+x ⁱ 11	71/2+
5823.9+x ^h 11	49/2+	7841.7+x ^d 15	59/2+	10414.8+x ^t 20	69/2+
5825.1+x ⁿ 8	49/2-	7863.9+x ^{&} 7	61/2-	10449.0+x ^q 17	71/2-
5845.1+x ^f 12	49/2-	7953.5+x ^s 15	59/2+	10546.9+x ^k 17	71/2+
5860.9+x ^m 12	(49/2)	8094.7+x ^r 15	61/2+	10594.0+x ^b 19	71/2+
5899.8+x ⁱ 6	51/2+	8114.5+x ^l 11	61/2+	10644.8+x ⁰ 19	71/2-
$6080.9 + x^{k} 7$	51/2+	8127.8+x ^p 10	61/2-	10646.7+x ^d 21	71/2+
$6101.7 + x^{b} 8$	51/2 ⁺	8212.5+x ^C 16	61/2+	10733.3+x ^s 20	71/2+
6137.9+x ^q 9	51/2-	8226.8+x ⁿ 13	61/2-	10793.7+x ^j 13	73/2+
6146.7+x & 5	53/2-	8258.1+x ^h 18	61/2+	10826.9+x ^{&} 13	73/2 ⁻
6155.5+x ^t 11	49/2+	8269.2+x ^a 7 8312.2+x ^f 18	63/2-	10985.9+x ^r 20	73/2 ⁺
6178.5+x ^o 8 6188.7+x ^d 10	51/2 ⁻		61/2-	11017.3+x ^p 16	73/2-
	51/2 ⁺	8330.8+x ⁱ 9	63/2+	11142.0+x ⁿ 19	73/2-
6236.3+x ^j 6 6367.9+x ^s 11	53/2 ⁺ 51/2 ⁺	8336.7+x ^m 18 8552.6+x ^t 17	$(61/2)^{-}$	11193.9+x ^f 23 11201.6+x ^a 11	73/2 ⁻
6435.7+x ^r 11	53/2+	8556.9+x ^q 13	61/2 ⁺ 63/2 ⁻	$11201.6+x^{t}$ 11 $11425.9+x^{t}$ 22	75/2 ⁻ 73/2 ⁺
$6448.5 + x^{l} 8$	53/2 ⁺	8584.9+x ^k 12	63/2+	$11423.9+x^{2}$ 22 $11477.1+x^{9}$ 19	75/2 ⁻
$6507.5 + x^p 9$	53/2	8660.4+x ^b 15	63/2 ⁺	$11477.1+x^{i}$ 19 $11496.8+x^{i}$ 14	75/2 ⁺
6511.5+x ^c 11	53/2 ⁺	8691.6+x ⁰ 15	63/2	11582.9+x ^k 18	75/2 ⁺
$6538.8 + x^a 5$		8733.7+x ^d 17		$11382.9+x^{-1}8$ $11612.3+x^{-1}9$	
$6538.8 + x^n $ 9 $6552.2 + x^n $ 9	55/2 ⁻ 53/2 ⁻	8754.6+x ^j 9	63/2 ⁺ 65/2 ⁺	$\begin{array}{c} 11612.3 + x^{d} & 20 \\ 11656.7 + x^{d} & 22 \end{array}$	75/2 ⁺ 75/2 ⁺
$6608.6 + x^f$ 14	53/2 ⁻	8794.9+x & 9	65/2 ⁻	11636.7+x ⁰ 22 11683.8+x ⁰ 20	75/2 ⁻
$6613.4 + x^h$ 14	53/2 ⁺	8825.6+x ^{\$} 17	63/2 ⁺	11768.4+x ^s 22	75/2 ⁺
$6632.3 + x^{i} 7$	55/2 ⁺	9003.5+x ^r 17	65/2 ⁺	$11768.4+x^{3}$ 22 $11899.2+x^{j}$ 15	75/2+ 77/2+
6642.2+x ^m 14	(53/2)	$9003.3+x^{p}$ 17 $9027.9+x^{p}$ 12	65/2	11899.2+x ³ 15 11935.8+x ^{&} 15	77/2 ⁻
$6841.9 + x^{k} 9$	(55/2) 55/2 ⁺	$9027.9+x^{l}$ 12 $9067.5+x^{l}$ 14			
U041.9+X 9	33/2	7007.3+X 14	Contin	lued on next page (1	footnotes at end of table)

¹³⁹La(³⁰Si,4nγ) **2004Sc14,2003Sc02,2005An04** (continued)

¹⁶⁵Lu Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
12105.3+x ^p 18	77/2-	13592.5+x ^t 25	81/2+	2049.0+y ^u 14	J+6
12189.8+x ⁿ 21	$77/2^{-}$	13686.4+x ^q 22	$83/2^{-}$	2847.3+y ^u 16	J+8
12215.6+x ^f 24	$77/2^{-}$	13715.0+x ^b 23	83/2+	3703.3+y ^u 18	J+10
12277.6+x ^a 14	79/2-	13829.7+x ^d 25	83/2+	4618.9+y ^u 20	J+12
12485.0+x ^t 23	$77/2^{+}$	14009.0+x ^s 25	$83/2^{+}$	5594.2+y ^u 22	J+14
12558.7+x ^q 21	$79/2^{-}$	14199.8+x ^j 19	85/2+	6631.2+y ^u 23	J+16
12643.9+x ^k 20	79/2+	14384.9+x ^r 25	85/2+	$\mathbf{z}^{\boldsymbol{v}}$	J1
12649.9+x ^b 22	79/2+	14558.1+x ^a 18	$87/2^{-}$	712.2+z ^v 8	J1+2
12678.8+x ⁱ 16	79/2+	14848.9+x ^q 24	$87/2^{-}$	1482.4+z ^v 12	J1+4
12720.7+x ^d 24	$79/2^{+}$	15209+x ^s 3	87/2+	2311.3+z ^v 14	J1+6
12858.0+x ^{\$} 23	$79/2^{+}$	15624+x ^r 3	89/2+	3197.1+z ^v 16	J1+8
13041.3+x ^j 17	$81/2^{+}$	15745.1+x ^a 20	$91/2^{-}$	4140.8+z ^v 18	J1+10
13102.3+x& <i>17</i>	$81/2^{-}$	16463+x? ^s 3	$(91/2^+)$	5143.3+z ^v 20	J1+12
13195.6+x ^r 23	$81/2^{+}$	y <i>u</i>	J	$6206.3+z^{V}$ 22	J1+14
13245.0+x ^p 20	$81/2^{-}$	624.5+y ^u 8	J+2		
13399.3+x ^a 16	$83/2^{-}$	1308.3+y ^u 12	J+4		

[†] From least-squares fit to E γ 's.

 $^{^{\}ddagger}$ As proposed by 2004Sc14 based on $\gamma\gamma(\theta)$ (DCO) data for selected transitions and band assignments. The assignments are consistent with those in 'Adopted Levels', except that all are given in parentheses there due to lack of strong supporting arguments.

[#] From differential decay curve method In recoil-distance measurements (DDCM,2005An04).

 $^{^{(0)}}$ x \approx 20 keV; see 'Adopted Levels' for comments.

[&]amp; Band(A): 9/2[514], α =+1/2. Changes to 9/2[514]⊗[AB] at $\hbar\omega$ =0.25 MeV and spin range of 29/2 to 31/2, and 9/2[514]⊗[ABCD] at higher frequencies.

^a Band(a): 9/2[514], $\alpha = -1/2$. See comment for the $\alpha = +1/2$ signature partner of this band.

^b Band(B): 7/2[404], α =−1/2. From low to high spins, configuration changes to 7/2[404]⊗[AB], then to 7/2[404]⊗[ABCD], and finally to 7/2[404]⊗[ABCDEF].

^c Band(b): 7/2[404], $\alpha = +1/2$. See comment for the $\alpha = -1/2$ signature partner of this band.

^d Band(C): 1/2[411], $\alpha = -1/2$. At higher spins, configuration= $1/2[411] \otimes [AB]$, and then $1/2[411] \otimes [ABCD]$.

^e Band(c): 1/2[411], $\alpha = +1/2$.

 $[^]f$ Band(D): 1/2[541], α =+1/2. From low to high spins, configuration changes to 1/2[541]⊗[AB], then to 1/2[541]⊗[ABCD] and finally to 1/2[541]⊗[ABCDEF].

^g Band(E): 5/2[402], $\alpha = -1/2$.

^h Band(e): 5/2[402], α=+1/2. From low to high spins, configuration changes to 5/2[402]⊗[AB], and then to 5/2[402]⊗[ABCD].

ⁱ Band(F): 9/2[514]⊗[AE], α =−1/2. At higher spins, the configuration changes to 9/2[514]⊗[AEBC]. The upbend at $\hbar\omega$ ≈0.56 MeV near spin 59/2 may be due to the alignment of proton pair fg or gh, with the resulting configuration=9/2[514]⊗[AEBC(fg and/or gh)].

^j Band(f): 9/2[514] \otimes [AE], α =+1/2. See comment for α =-1/2 signature partner of this band.

^k Band(G): $9/2[514]\otimes[AHBC]$, $\alpha=-1/2$. At higher frequencies, the configuration is probably $9/2[514]\otimes[AHBCEF]$.

¹ Band(g): 9/2[514] \otimes [AHBC], α =+1/2. See comment for the α =-1/2 signature partner of this band.

^m Band(H): band #1, $\alpha = +1/2$. This band probably decays into the 1/2[541] band.

ⁿ Band(I): Band #2, α =+1/2. See comment for band #3. Configuration for band #2 changes from 7/2[4040]⊗[AE] at high spins to 9/2[514]⊗[BC] at low spins.

^o Band(i): Band #3, $\alpha = -1/2$. Bands #2 to #5 form pairs of signature partners above spin 45/2. At lower spins, the bands seem to form different pairs, where band #4 interchanges character with band #2 and band #3 and band #4 seem to be signature partners. From low to high spins, configuration for band #3 is $9/2[514] \otimes [BC]$, and finally to $9/2[514] \otimes [BCEF]$.

¹³⁹La(³⁰Si,4nγ) **2004Sc14,2003Sc02,2005An04** (continued)

¹⁶⁵Lu Levels (continued)

- p Band(J): Band #4, α =+1/2. See comment for band #3. Configuration for band #4 changes from 9/2[514]⊗[BC] at high spins to 7/2[404]⊗[AE] at low spins.
- ^q Band(j): band #5, α =−1/2. See comment for band #3. The configuration changes from unfavored 1/2[541] or from 7/2[404]+octupole vibration at low spin to 7/2[404]⊗[AE] at high spins.
- r Band(K): Zero-phonon wobbling-mode (Triaxial) SD-1 band (2004Sc14,2003Sc02,1995Sc39). Q(transition)=6.0 +12−2, 6.4 +19−7 (2002Sc47). 1/2[660] band, α =+1/2. Percent feeding=1.3 (2003Sc02).
- ⁸ Band(L): One-phonon wobbling mode (Triaxial) SD-2 band (2004Sc14,2003Sc02). Percent feeding=0.4.
- ¹ Band(M): Two-phonon wobbling mode (Triaxial) SD-3 band (2004Sc14,2003Sc02). Percent feeding=0.1.
- ^u Band(N): Triaxial SD-4 band (2004Sc14).
- ^ν Band(O): Triaxial SD-5 band (2004Sc14).

$\underline{\gamma(^{165}Lu)}$

R(DCO) are for 25° and 90°. The DCO ratios correspond to gates on ΔJ =2, quadrupole transitions. The ratio of 1 implies ΔJ =2, quadrupole (most likely E2) and DCO \approx 0.5 implies ΔJ =1, dipole transition.

Ε _γ †#	I_{γ}^{\ddagger}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.&	Comments
48.0		195.39+x	7/2+	147.7+x	5/2+		
93.6 <i>1</i>		234.9+x	9/2-	141.4+x	7/2+		
100.6 <i>3</i>	12 2	335.5+x	11/2-	234.9+x	9/2-	D	DCO=0.48 6
121.1 8	1.2 4	466.48+x	$9/2^{-}$	345.5 + x	5/2-		
136.1 5	5.8 14	141.4 + x	7/2+	5.4+x	5/2+	D	DCO=0.46 5
147.7 5	5.8 14	147.7 + x	5/2+	0.0+x	$3/2^{+}$	D	DCO=0.52 6
152.7 8	1.2 4	335.5 + x	$11/2^{-}$	182.4+x	$9/2^{+}$	D	DCO=0.5 1
159.2 <i>I</i>	57 5	182.4+x	$9/2^{+}$	23.4+x	$7/2^{+}$	D	DCO=0.64 7
159.4 <i>1</i>	88 7	494.7 + x	$13/2^{-}$	335.5+x	$11/2^{-}$	D	DCO=0.55 6
164.3 <i>3</i>	11.1 <i>17</i>	305.6+x	9/2+	141.4+x	$7/2^{+}$	D	DCO=0.57 6
168.2 <i>1</i>	77 6	662.7+x	$15/2^{-}$	494.7+x	$13/2^{-}$	D	DCO=0.58 6
175.1 <i>5</i>	4.9 12	694.77 + x	$13/2^{-}$	519.60+x	$11/2^{+}$	D	DCO=0.4 1
180.2 <i>I</i>	108 9	234.9+x	$9/2^{-}$	54.7 + x	$(7/2^{-})$	D	DCO=0.60 6
184.3 <i>1</i>	28.4 23	366.6+x	$11/2^{+}$	182.4+x	$9/2^{+}$	D	DCO=0.61 7
191.6 8	2.4 7	711.4 + x	$13/2^{+}$	519.60+x			
193.8 <i>3</i>	15.7 <i>24</i>	499.3 + x	$11/2^{+}$	305.6+x	$9/2^{+}$	D	DCO=0.56 5
195.4 <i>I</i>	63 5	195.39 + x	$7/2^{+}$	0.0+x	$3/2^{+}$	(E2)	DCO=0.65 7
203.1 5	5.2 13	2968.4+x	$31/2^{+}$	2765.2+x	$29/2^{+}$	D	DCO=0.60 7
206.4 <i>1</i>	72 6	1099.5 + x	19/2-	893.3+x	$17/2^{-}$	D	DCO=0.68 6
207.6 <i>1</i>	23.0 18	574.2+x	$13/2^{+}$	366.6+x	$11/2^{+}$	D	DCO=0.73 9
209.7 <i>1</i>	64 5	3248.2+x	$35/2^{-}$	3038.6+x	33/2-	D	DCO=0.60 7
211.5 <i>I</i>	119 <i>10</i>	234.9+x	9/2-	23.4+x	7/2+	D	DCO=0.60 6
212.2 3	10.4 <i>16</i>	711.4 + x	$13/2^{+}$	499.3+x	$11/2^{+}$	D	DCO=0.46 6
214.1 5	3.8 10	519.60+x	11/2+	305.6+x	9/2+		
214.1 8	1.2 4	3417.3+x	35/2+	3201.1+x	33/2+	D	
220.2 8	1.5 4	2765.2+x	$29/2^{+}$	2545.0+x	$27/2^{+}$		
224.3 [@] 5	8.4 21	3180.4+x	$33/2^{+}$	2956.8+x	$31/2^{+}$		
226.5 <i>3</i>	14.2 <i>21</i>	2956.8+x	$31/2^{+}$	2730.3+x	$29/2^{+}$	D	DCO=0.64 8
226.8 <i>1</i>	59 <i>5</i>	3474.9+x	$37/2^{-}$	3248.2+x	$35/2^{-}$	D	DCO=0.56 6
228.2 <i>3</i>	14.6 22	802.2+x	$15/2^{+}$	574.2+x	$13/2^{+}$	D	DCO=0.80 11
228.3 <i>1</i>	28.8 23	694.77 + x	$13/2^{-}$	466.48+x	$9/2^{-}$		DCO=0.64 6
230.7 <i>1</i>	86 <i>7</i>	893.3+x	$17/2^{-}$	662.7+x	$15/2^{-}$	D	DCO=0.61 7
231.9 5	6.5 16	943.4+x	$15/2^{+}$	711.4 + x	$13/2^{+}$	D	DCO=0.70 6
232.1 <i>I</i>	43 3	1618.3+x	23/2-	1386.4+x	$21/2^{-}$	D	DCO=0.71 8
235.6 3	11.8 18	3436.6+x	35/2+	3201.1+x	33/2+	D	DCO=0.49 7
237.2 3	10.7 16	3417.3+x	35/2+	3180.4+x	33/2+	D	DCO=0.53 8

$\frac{139}{La} (^{30}Si, 4n\gamma) \qquad \textbf{2004Sc14,2003Sc02,2005An04} \ (continued)$

$E_{\gamma}^{\dagger \#}$	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^π	Mult.&	Com	ments
237.4 5	4.9 12	432.7+x	9/2+	195.39+x	7/2+	D	DCO=0.63 6	
241.8 5	6.6 16	1197.5+x	17/2+	955.5+x	15/2+	D	DCO=0.58 6	
244.1 5	8.2 20	3201.1+x	33/2+	2956.8+x	31/2+	D	DCO=0.48 7	
244.3 5	7.7 19	955.5 + x	$15/2^{+}$	711.4 + x	$13/2^{+}$			
246.3 8	1.3 4	2294.5+x	$25/2^{+}$	2048.3+x	$23/2^{+}$			
246.7 <i>3</i>	10.8 16	1048.9 + x	$17/2^{+}$	802.2+x	$15/2^{+}$	D	DCO=0.72 9	
249.7 <i>1</i>	50 4	3038.6+x	$33/2^{-}$	2789.0+x	$31/2^{-}$	D	DCO=0.56 6	
251.0 <i>I</i>	27.9 22	2195.9+x	$27/2^{-}$	1945.0+x	$25/2^{-}$	D	DCO=0.64 6	
254.1 <i>1</i>	27.2 22	2789.0+x	$31/2^{-}$	2534.9+x	$29/2^{-}$	D	DCO=0.60 6	
259.8 [@] 1	65 5	494.7+x	13/2-	234.9+x	9/2-			
260.0 [@] 1	43 3	3734.9+x	39/2-	3474.9+x	37/2-	_	D.C.O. 0.45.5	
262.0 5	9.1 23	1310.6+x	19/2+	1048.9+x	17/2+	D	DCO=0.65 7	
262.0 5	5.9 15	1740.2+x	21/2+	1478.6+x	19/2+	Q	DCO=0.54 6	
262.6 5	5.2 13	3484.8+x	35/2 ⁻	3222.2+x	33/2-	D	DCO-0.50.0	
265.3 <i>5</i> 268.6 <i>5</i>	8.7 22 6.2 <i>16</i>	3682.5+x 3705.4+x	37/2 ⁺ 37/2 ⁺	3417.3+x 3436.6+x	35/2 ⁺ 35/2 ⁺	D D	DCO=0.50 9 DCO=0.47 6	
269.4 8	1.7 5	2999.7+x	31/2+	2730.0+x	29/2 ⁺	D D	DCO=0.47 0 DCO=0.6 1	
271.1 <i>I</i>	27.9 22	466.48+x	9/2-	195.39+x		D	DCO=0.59 6	
271.4 3	13.1 20	2730.3+x	29/2 ⁺	2458.6+x	27/2+	D	DCO=0.48 7	
275.0 8	1.1 3	3222.2+x	33/2-	2947.1+x	31/2-	D	DCO=0.62 9	
275.0 <i>1</i>	34 3	4009.9+x	41/2	3734.9+x	39/2-	D	DCO=0.61 7	
275.2 5	3.5 9	3980.9+x	39/2+	3705.4+x	37/2+	D	DCO=0.51 7	
276.5 <i>3</i>	13.4 20	1587.0+x	$21/2^{+}$	1310.6+x	$19/2^{+}$	D	DCO=0.50 7	
281.1 5	3.5 9	1478.6 + x	$19/2^{+}$	1197.5 + x	$17/2^{+}$			
284.5 5	5.6 14	1871.6+x	$23/2^{+}$	1587.0+x	$21/2^{+}$	D	DCO=0.64 8	
285.0 <i>5</i>	6.0 15	432.7+x	9/2+	147.7 + x	5/2+	Q	DCO=0.80 7	
287.0 <i>1</i>	62 5	1386.4+x	$21/2^{-}$	1099.5 + x	19/2-	D	DCO=0.67 7	
287.6 5	5.1 13	3970.2+x	39/2+	3682.5+x	37/2+	D	DCO=0.58 7	
288.8 5	6.0 15	4270.0+x	41/2+	3980.9+x	39/2+	D	DCO=0.72 1	
291.8 5	6.6 16	2458.6+x	27/2+	2166.7+x	25/2+	D	DCO=0.75 12	
292.9 8 295.0 <i>5</i>	2.6 8 9.6 24	4116.8+x 2166.7+x	39/2 ⁻ 25/2 ⁺	3823.8+x 1871.6+x	37/2 ⁻ 23/2 ⁺	D D	DCO=0.67 9 DCO=0.65 9	
299.8 5	5.4 <i>14</i>	4270.0+x	41/2 ⁺	3970.2+x	39/2 ⁺	D	DCO=0.58 7	
300.1 5	3.4 8	305.6+x	9/2+	5.4+x	5/2+	Q	DCO=0.85 14	
301.1 8	1.2 4	3248.2+x	35/2-	2947.1+x	31/2	Q	Dec 0.03 17	
301.5 5	4.4 11	821.2+x	13/2+	519.60+x		Ď	DCO=0.48 6	
308.2 8	2.5 8	2048.3+x	$23/2^{+}$	1740.2+x	21/2+			
309.1 5	7.5 19	4579.4+x	43/2+	4270.0+x	$41/2^{+}$	D	DCO=0.64 8	
309.4 8	2.2 7	4290.5+x	$41/2^{+}$	3980.9+x	$39/2^{+}$			
309.4 <i>3</i>	12.6 <i>19</i>	4888.7+x	$45/2^{+}$	4579.4+x	$43/2^{+}$	D	DCO=0.64 8	
312.0 <i>I</i>	27.3 22	4321.9+x	43/2-	4009.9+x	41/2-	D	DCO=0.56 6	
317.7 8	2.5 8	2612.3+x	27/2+	2294.5+x	25/2+	_	200 000	
318.6 3	10.3 15	5539.6+x	49/2+	5220.8+x		D	DCO=0.68 9	
320.1 8	1.7 5	4773.2+x	43/2-	4453.4+x		D	DCO 060 8	
322.7 <i>I</i> 324.2 <i>I</i>	22.2 <i>18</i> 29 2	4644.9+x 519.60+x	45/2 ⁻ 11/2 ⁺	4321.9+x 195.39+x	43/2-	D E2	DCO=0.69 8 DCO=0.92 8	
						EZ	DCO=0.92 8	
326.6 [@] 1 327.0 [@] 1	43 <i>3</i> 57 <i>5</i>	1945.0+x 662.7+x	25/2 ⁻ 15/2 ⁻	1618.3+x 335.5+x	23/2 ⁻ 11/2 ⁻			
331.0 ^b 8	0.9 3	5446.5+x	47/2-	5115.5+x	45/2-	D	DCO 0.56 9	
331.9 3	10.8 <i>16</i> 37.9 <i>30</i>	5220.8+x	47/2 ⁺	4888.7+x	45/2 ⁺	D E2	DCO=0.56 8	
335.4 <i>1</i> 336.0 <i>5</i>	7.9 20	1030.17+x 6236.3+x	17/2 ⁻ 53/2 ⁺	694.77+x 5899.8+x	51/2 ⁺	E2 D	DCO=0.80 6 DCO=0.56 7	
336.6 8	1.7 5	4453.4+x	41/2 ⁻	4116.8+x	39/2	D	DCO-0.50 /	
338.9 <i>1</i>	32 3	2534.9+x	29/2-	2195.9+x	$\frac{39/2}{27/2^{-}}$	D	DCO=0.65 6	
		** ***	- , –		-,-			

$E_{\gamma}^{\dagger \#}$	I_{γ}^{\ddagger}	$E_i(level)$	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.&		Comments
339.0 5	6.0 15	3823.8+x	37/2-	3484.8+x	35/2-	D	DCO=0.64 8	_
339.8 <i>8</i> 343.0 <i>I</i>	1.0 <i>3</i> 34.3 27	5786.3+x 366.6+x	49/2 ⁻ 11/2 ⁺	5446.5+x 23.4+x	47/2 ⁻ 7/2 ⁺	E2	DCO=0.93 9	
344.8 [@] 5	3.8 10	711.4+x	13/2+	366.6+x	11/2+			
345.5 5	3.2 8	345.5+x	5/2 ⁻	0.0+x	3/2+	D		
346.6 <i>8</i> 348.3 <i>8</i>	2.8 <i>8</i> 2.0 <i>6</i>	4960.5+x 1292.1+x	45/2 ⁺ 17/2 ⁺	4613.9+x 943.4+x	43/2 ⁺ 15/2 ⁺	D		
349.5 8	1.4 4	5825.1+x	49/2-	5475.5+x	47/2-			
351.2 <i>3</i>	13.7 21	4996.1+x	47/2-	4644.9+x	45/2	D	DCO=0.55 6	
351.5 <i>8</i> 352.8 <i>8</i>	1.3 <i>4</i> 1.2 <i>4</i>	6137.9+x 6178.5+x	51/2 ⁻ 51/2 ⁻	5786.3+x 5825.1+x	49/2 ⁻ 49/2 ⁻			
357.6 <i>5</i>	4.9 12	499.3+x	11/2+	141.4+x	7/2+	Q	DCO=0.91 11	
360.1 5	7.9 20	5899.8+x	$51/2^{+}$	5539.6+x	$49/2^{+}$	(D)	DCO=0.81 11	
365.9 5	3.9 10	6998.0+x	57/2+	6632.3+x	55/2+	D	DCO=0.69 <i>1</i>	
367.2 3	10.9 16	5363.5+x	49/2 ⁻	4996.1+x	47/2 ⁻	D	DCO=0.61 6	
367.6 8 369.4 8	1.8 <i>5</i> 1.7 <i>5</i>	6448.5+x 6507.5+x	53/2 ⁺ 53/2 ⁻	6080.9+x 6137.9+x	51/2 ⁺ 51/2 ⁻			
373.0 8	2.4 7	1818.6+x	21/2+	1445.5+x	19/2+			
373.5 8	0.5 2	6552.2+x	$53/2^{-}$	6178.5+x	$51/2^{-}$			
377.0 5	8.6 22	5740.2+x	51/2-	5363.5+x	49/2-	D	DCO=0.58 7	
378.9 <i>8</i> 384.8 <i>8</i>	2.1 <i>6</i> 2.0 <i>6</i>	6886.5+x 2794.1+x	55/2 ⁻ 29/2 ⁺	6507.5+x 2409.3+x	53/2 ⁻ 25/2 ⁺			
386.0 8	0.96 29	2155.6+x	$\frac{29/2}{23/2^{-}}$	1769.6+x	$19/2^{-}$	Q	DCO=1.20 15	
388.5 <i>3</i>	12.3 18	821.2+x	13/2+	432.7+x	9/2+	Q	DCO=0.93 7	
391.7 <i>1</i>	45 <i>4</i>	574.2+x	$13/2^{+}$	182.4+x	$9/2^{+}$	E2	DCO=0.89 9	
391.8 5	5.1 13	6538.8+x	55/2 ⁻	6146.7+x	53/2 ⁻	D	DCO=0.72 9	
393.4 <i>8</i> 394.8 <i>8</i>	0.9 <i>3</i> 0.3 <i>1</i>	6841.9+x 6947.1+x	55/2 ⁺ 55/2 ⁻	6448.5+x 6552.2+x	53/2 ⁺ 53/2 ⁻			
395.8 5	6.4 16	6632.3+x	55/2 ⁺	6236.3+x	53/2+	D	DCO=0.62 8	
398.6 <i>1</i>	60 5	893.3+x	$17/2^{-}$	494.7 + x	$13/2^{-}$	E2	DCO=0.92 8	
398.6 8	2.1 6	7240.5+x	57/2 ⁺	6841.9+x	55/2 ⁺	ъ	DCO 0.55 0	
398.6 <i>5</i> 401.2 <i>5</i>	4.5 <i>11</i> 3.9 <i>10</i>	7837.5+x 7383.2+x	61/2 ⁺ 59/2 ⁻	7439.2+x 6982.1+x	59/2 ⁺ 57/2 ⁻	D	DCO=0.55 8	
401.4 8	1.4 4	7383.2+x 7287.9+x	57/2 ⁻	6886.5 + x	55/2-			
404.8 [@] 5	3.9 10	2753.6+x	29/2 ⁺	2348.8+x	25/2 ⁺			
405.0 5	3.2 8	8269.2+x	63/2-	7863.9+x	$61/2^{-}$	D	DCO=0.65 7	
405.6 5	7.3 18	711.4+x	13/2+	305.6+x	9/2+	Q	DCO=0.91 9	
405.9 8 406.0 <i>5</i>	0.9 <i>3</i> 7.8 <i>20</i>	7693.8+x 6146.7+x	59/2 ⁻ 53/2 ⁻	7287.9+x 5740.2+x	57/2 ⁻ 51/2 ⁻	D	DCO=0.65 8	
407.5 ^b 8	0.3 1	7354.6+x	57/2 ⁻	6947.1+x	55/2	Ъ	DCO=0.03 0	
418.1 5	7.0 18	2956.8+x	31/2+	2538.6+x	27/2+	Q	DCO=1.01 11	
418.3 8	2.9 9	2585.7+x	$27/2^{-}$	2166.7+x	$25/2^{+}$	Ď	DCO=0.50 8	
423.4 5	5.8 14	2968.4+x	31/2+	2545.0+x	27/2+	Q	DCO=0.95 11	
423.7 3	19.0 28	943.4+x	15/2 ⁺	519.60+x 2538.6+x	11/2 ⁺ 27/2 ⁺	E2	DCO=1.06 9	
429.7 <i>5</i> 430.3 <i>5</i>	3.2 8 8.0 20	2968.4+x 2585.7+x	31/2 ⁺ 27/2 ⁻	2358.6+x 2155.6+x	23/2	Q	DCO=1.04 9	
431.1 ^b 8	2.8 8	3043.4+x	31/2+	2612.3+x	27/2+			
432.1 <i>I</i>	32.4 26	1462.25+x	21/2	1030.17+x		E2	DCO=1.00 6	
434.0 8	0.6 2	8127.8+x	$61/2^{-}$	7693.8+x	59/2-			
435.6 1	47.1 38	802.2+x	15/2+	366.6+x	11/2+	E2	DCO=0.95 9	
435.7 [@] 5	6.0 15	3201.1+x	33/2 ⁺	2765.2+x	29/2+			
436.3 <i>5</i> 436.4 <i>1</i>	3.5 <i>9</i> 23.8 <i>19</i>	955.5+x 3474.9+x	15/2 ⁺ 37/2 ⁻	519.60+x 3038.6+x	$\frac{11/2}{33/2}$	Q	DCO=0.94 9	
436.6 1	97 8	1099.5 + x	19/2	662.7+x	$15/2^{-}$	E2	DCO=0.94 7	
			*					

336.6	$E_{\gamma}^{\dagger \#}$	I_{γ}^{\ddagger}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbb{E}_f	J_f^π	Mult.&	Comments
442.0 8	436.6 8	0.6 2	8114.5+x	61/2+	7677.9+x	59/2+		
444.1 5 9.2 23 943.4 x 15/2 693.8 hs x 55/2 D DCO=0.32 7	437.4 8	1.8 5	7677.9 + x	59/2+	7240.5 + x	57/2+		
444.1 5	442.0 8	1.5 4	7439.2+x	59/2+	6998.0+x	57/2+		
445.18 2.8 8 32.01 + x 33.7 299.1	442.9 5		6982.1+x	57/2-	6538.8+x	55/2-	D	DCO=0.52 7
446.1 8	444.1 5	9.2 23	943.4 + x	$15/2^{+}$	499.3 + x	$11/2^{+}$	E2	DCO=1.31 21
448.6 8 0.3 1 1740.2+x 21/2* 1292.1+x 17/2* 449.0 5 7.1 1/8 3147.3+x 35/2* 2968.4+x 31/2* Q DCO=1.06 1/1 455.0 8 1.2 4 2999.7+x 31/2* Q DCO=1.52 1/2 455.0 5 7.5 19 955.5+x 15/2* 499.3+x 11/2* Q DCO=1.15 2/1 455.0 3 12.6 19 2753.6+x 29/2* 294.5+x 25/2* Q DCO=1.15 2/1 455.0 3 12.6 19 2753.6+x 29/2* 294.5+x 25/2* Q DCO=1.01 9 459.1 7 28.1 22 3248.2+x 35/2* 2789.0+x 31/2* Q DCO=1.08 9 460.5 3 10.7 16 3417.3+x 35/2* 2789.0+x 31/2* Q DCO=1.08 9 460.5 3 10.7 16 3417.3+x 35/2* 2789.0+x 31/2* Q DCO=0.89 1/1 461.0 8 19.6 299.7+x 31/2* 2538.6+x 31/2* Q DCO=0.89 1/1 470.4 8 0.46 1/4 854.9+x 43/2* 2338.4+x 43/2* Q DCO=0.89 1/1 470.4 8 0.8 2 3201.1+x 33/2* 2730.3+x 29/2* Q DCO=0.89 1/1 470.5 6.8 17 3224.6+x 33/2* 2753.6+x 29/2* Q DCO=0.98 1/1 470.5 6.8 17 3224.6+x 33/2* 2753.6+x 29/2* Q DCO=0.09 8 471.0 5 6.8 17 3224.6+x 33/2* 2990.7+x 31/2* Q DCO=0.09 9 9 477.0 5 6.8 17 3224.6+x 33/2* 2990.7+x 31/2* Q DCO=0.09 9 9 477.0 5 6.8 17 3224.6+x 33/2* 2990.7+x 31/2* Q DCO=0.09 9 9 477.0 5 6.8 17 3224.6+x 33/2* 2990.7+x 31/2* Q DCO=0.09 9 9 477.0 5 6.8 17 3224.6+x 33/2* 2990.7+x 31/2* Q DCO=0.09 9 9 477.0 5 6.8 17 3224.6+x 33/2* 2990.7+x 31/2* Q DCO=0.09 9 9 477.0 5 6.8 17 3224.6+x 33/2* 2990.7+x 31/2* Q DCO=0.09 9 9 477.0 6 8 0.8 2 3201.1+x 31/2* 2385.7+x 21/2* Q DCO=0.09 9 9 477.0 6 8 0.6 12 1/1 17.0 6 8 1.3 11.0 6 1.3	445.3 <i>5</i>		2794.1+x	$29/2^{+}$	2348.8+x	$25/2^{+}$	Q	
449.0 5 7.1 18 3417.3+x 35/2¹ 2968.4+x 31/2² Q DCO=1.02 9 450.1 8 1.2 4 2999.7+x 31/2² 2545.0+x 27/2² Q DCO=1.05 11 455.0 8 1.2 4 2999.7+x 31/2² 2545.0+x 27/2² Q DCO=1.15 21 455.9 5 7.5 19 955.5+x 15/2² 499.3+x 11/2² Q DCO=1.15 21 459.0 3 12.6 19 2753.6+x 29/2² 2294.5+x 25/2² Q DCO=1.09 9 459.1 1 28.1 22 3248.2+x 35/2² 2789.0+x 31/2² Q DCO=1.08 9 460.5 3 10.7 16 3417.3+x 35/2² 2789.0+x 31/2² Q DCO=1.08 9 461.0 8 1.9 6 2999.7+x 31/2² 2538.6+x 27/2² Q DCO=1.08 9 461.0 8 1.9 6 2999.7+x 31/2² 2538.6+x 27/2² Q DCO=0.89 11 470.4 8 0.46 1/4 8584.9+x 63/2² 8114.5+x 61/2² 470.4 8 0.8 2 330.1+x 33/2² 2730.3+x 29/2² Q DCO=0.99 18 470.0 5 9.9 2.5 1292.1+x 17/2² 821.2+x 13/2² Q DCO=0.99 18 470.0 5 9.9 2.5 1292.1+x 17/2² 821.2+x 13/2² Q DCO=0.99 18 471.0 5 6.8 17 3224.6+x 33/2² 2753.6+x 29/2² Q DCO=0.95 9 472.0 5 9.6 24 3471.7+x 35/2² 2999.7+x 31/2² Q DCO=0.95 9 472.0 5 9.6 24 3471.7+x 35/2² 2999.7+x 31/2² Q DCO=0.95 9 473.0 8 2.6 8 2294.5+x 25/2² 1818.6+x 21/2² Q DCO=0.95 11 473.7 1 51 4 1048.9+x 17/2² 573.4-x 13/2² E2 DCO=1.01 9 474.7 1 61 4 1048.9+x 17/2² 585.7+x 21/2² Q DCO=0.99 9 486.1 3 10.0 15 1197.5+x 17/2² 171.4+x 13/2² Q DCO=0.99 9 486.1 3 10.0 15 1197.5+x 17/2² 171.4+x 13/2² Q DCO=0.99 9 486.5 8 2.8 8 330.8+x 33/2² 2753.6+x 29/2² Q DCO=0.99 9 486.6 1 22.7 18 3734.9+x 39/2² 2348.2+x 35/2² Q DCO=0.99 9 486.6 1 22.7 18 3734.9+x 39/2² 2348.2+x 35/2² Q DCO=0.09 9 493.2 8 2.6 8 8330.8+x 33/2² 2753.6+x 17/2² E2 DCO=1.05 11 502.1 1 30 2 1445.5+x 17/2² 1818.6+x 29/2² Q DCO=0.09 9 493.3 5 6.7 17 2956.8+x 17/2² 585.7+x 17/2² Q DCO=0.08 15 502.1 5 6.3 16 362.5+x 37/2² 3180.4+x 33/2² Q DCO=0.08 15 503.1 1 40 3 308.6+x 33/2² 234.9+x 33/2² Q DCO=0.09 19 503.1 1 30 2 1445.5+x 17/2² 2458.6+x 27/2² Q DCO=0.08 11 502.1 5 6.7 14 3156.6+x 19/2² 945.5+x 1/2² Q DCO=0.08 11 503.1 7 30 2 1445.5+x 37/2² 340.1+x 33/2² Q DCO=0.09 9 535.1 5 5.7 14 3754.6+x 37/2² 340.1+x 33/2² Q DCO=0.09 9 536.4 1 51 4 1310.6+x 37/2² 3456.4+x 33/2² Q DCO=0.09 9 536.8 2 4 7 3 348.8+x 35/2² 294.1+x 33/2² Q DCO=0.09 9 536.1 5 5.7 14 3754.6+x 37/2² 3456.4+x 33/2²							Q	DCO=0.89 17
450.1 5 7.0 18 3180.4+x 33/2+ 2730.3+x 29/2+ Q DCO=1.06 1/1 455.0 8 1.2 4 2999.7+x 31/2+ 2545.0+x 27/2+ Q DCO=1.15 2/1 455.9 5 7.5 19 955.5+x 15/2+ 499.3+x 11/2+ Q DCO=1.17 1/1 459.0 3 12.6 19 2.753.6+x 29/2+ 2294.5+x 25/2+ Q DCO=1.01 9 459.1 7 28.1 22 3248.2+x 35/2+ 2780.0+x 31/2+ Q DCO=1.08 9 460.5 3 10.7 16 3417.3+x 35/2+ 22956.8+x 31/2+ Q DCO=1.08 9 460.5 3 10.7 16 3417.3+x 35/2+ 22956.8+x 31/2+ Q DCO=0.89 1/1 461.0 8 1.9 6 2999.7+x 31/2+ 2538.6+x 27/2+ Q DCO=0.89 1/1 470.4 8 0.46 14 8854.9+x 63/2+ 2968.4+x 31/2+ Q DCO=0.89 1/1 470.6 8 0.8 2 3201.1+x 33/2+ 2730.3+x 29/2+ Q DCO=0.90 1/8 471.0 5 6.8 17 3224.6+x 33/2+ 2753.6+x 29/2+ Q DCO=0.90 1/8 471.0 5 6.8 17 3224.6+x 33/2+ 2753.6+x 29/2+ Q DCO=0.95 9 471.0 5 6.8 17 3224.6+x 33/2+ 2753.6+x 29/2+ Q DCO=0.95 9 474.7 7 51 4 1048.9+x 17/2+ 574.2+x 13/2+ E2 DCO=1.12 1/1 474.7 7 1 4 1048.9+x 17/2+ 574.2+x 13/2+ Q DCO=0.95 1/4 475.0 8 2.6 8 224.5+x 25/2+ 1818.6+x 21/2+ Q DCO=0.95 1/4 478.5 8 0.2 3456.6+x 35/2+ 29956.8+x 31/2+ Q DCO=0.95 1/4 486.1 3 10.0 15 1197.5+x 17/2+ 711.4+x 13/2+ Q DCO=0.95 1/4 486.1 3 10.0 15 1197.5+x 17/2+ 711.4+x 13/2+ Q DCO=0.99 9 486.1 3 10.0 15 1197.5+x 17/2+ 711.4+x 13/2+ Q DCO=0.99 9 486.1 3 10.0 15 1197.5+x 13/2+ 2753.6+x 29/2+ Q DCO=0.99 9 486.6 1 2.7 18 338.0+x 33/2+ 2753.6+x 29/2+ Q DCO=0.99 9 486.6 1 3 10.0 15 1197.5+x 13/2+ 2458.6+x 27/2+ Q DCO=0.95 1/1 493.1 6 1.5 1386.4+x 21/2- 893.3+x 17/2- E2 DCO=1.02 1/1 493.1 6 1.5 1386.4+x 21/2- 893.3+x 17/2- E2 DCO=1.02 1/1 502.1 1 30 2 1445.5+x 19/2+ 943.4+x 15/2+ E2 DCO=1.09 1/1 502.1 3 0 2 1445.5+x 19/2+ 943.4+x 15/2+ Q DCO=0.95 1/1 503.1 1 30 2 1445.5+x 19/2+ 943.4+x 15/2+ Q DCO=0.95 1/1 503.1 1 30 2 1445.5+x 19/2+ 943.4+x 15/2+ Q DCO=0.95 1/1 503.1 1 30 2 1445.5+x 19/2+ 943.4+x 15/2+ Q DCO=0.95 1/1 533.1 5 5.7 1/4 3754.6+x 37/2+ 32/2+ 1462.25+x 15/2+ Q DCO=0.95 1/1 533.1 5 5.7 1/4 3754.6+x 37/2+ 32/2+ 1462.25+x 15/2+ Q DCO=0.95 1/1 533.1 5 5.7 1/4 3754.6+x 37/2+ 32/2+ 1462.25+x 15/2+ Q DCO=0.09 1/1 533.1 5 5.7 1/4 3754.6+x 37/2+ 32/2+ 1485.6+x 27/2+ Q DCO=0.09 1/1 533.1 5 5.7 1/4 37								
455.0 8								
459.0 3								
459.0 3 12.6 19 2753.6+x 29/2+ 2294.5+x 25/2+ Q DCO=1.01 9 459.1 7 28.1 22 3248.2+x 35/2+ 2956.8+x 31/2+ Q DCO=1.08 9 460.5 3 10.7 16 3417.3+x 35/2+ 2956.8+x 31/2+ Q DCO=0.89 17 461.0 8 1.9 6 2999.7+x 31/2+ 2538.6+x 27/2+ Q DCO=0.89 17 470.4 8 0.46 14 8584.9+x 63/2+ 8114.5+x 61/2+ 470.6 8 0.8 2 320.1.1+x 33/2+ 2956.8+x 31/2+ Q DCO=0.89 17 470.6 8 0.8 2 320.1.1+x 33/2+ 293.3+x 29/2+ Q DCO=0.90 18 470.9 5 9.9 25 1292.1+x 17/2+ 821.2+x 13/2+ Q DCO=0.90 18 470.0 5 9.6 24 3471.7+x 35/2+ 2999.7+x 31/2+ Q DCO=0.95 9 472.0 5 9.6 24 3471.7+x 35/2+ 2999.7+x 31/2+ DCO=0.95 9 474.7 1 1 4 1048.9+x 17/2+ 574.2+x 13/2+ DCO=0.95 9 475.0 8 2.6 8 2294.5+x 25/2+ 1818.6+x 21/2+ DCO=0.95 17 475.0 8 2.6 8 2294.5+x 25/2+ 1818.6+x 21/2+ Q DCO=0.95 17 476.8 5 8.0 2 3436.6+x 35/2+ 2956.8+x 31/2+ Q DCO=0.95 17 478.5 8.0 2 3436.6+x 35/2+ 2956.8+x 31/2+ Q DCO=0.95 17 479.8 5 8.0 2 3436.6+x 35/2+ 2956.8+x 31/2+ Q DCO=0.99 9 486.1 3 10.0 15 1197.5+x 17/2+ 711.4+x 13/2+ Q DCO=0.99 9 486.6 1 22.7 18 3734.9+x 39/2- 3348.2+x 35/2- Q DCO=0.99 9 486.6 6 1 22.7 18 3734.9+x 39/2- 3348.2+x 35/2- Q DCO=0.99 9 493.2 8 2.6 8 830.8+x 63/2+ 7837.5+x 61/2+ B2 493.2 8 2.6 8 8330.8+x 63/2+ 7837.5+x 61/2+ B2 493.2 1 6 15 386.4+x 31/2+ 248.6+x 31/2+ E2 DCO=1.05 17 502.0 5 6.3 16 362.5+x 37/2+ 3180.4+x 33/2+ C DCO=0.92 9 503.7 1 40 3 3088.6+x 33/2+ 2534.9+x 29/2- Q DCO=1.05 17 502.1 7 30 2 1445.5+x 19/2+ 943.4+x 15/2+ D DCO=1.05 17 503.7 1 40 3 308.6+x 33/2+ 2534.9+x 29/2- Q DCO=1.05 17 503.7 1 40 3 308.6+x 33/2+ 2534.9+x 29/2- Q DCO=1.05 17 503.7 1 40 3 308.6+x 33/2+ 2534.9+x 29/2- Q DCO=0.95 12 525.1 5 4.6 12 3765.2+x 37/2+ 3120.4+x 13/2+ Q DCO=0.95 12 525.1 5 4.6 12 3765.2+x 37/2+ 31/2+ 41/2+								
459.1								
460.0 8								
461.0 8								
468.2.5 6.8 17 3436.6+x 35/2+ 2968.4+x 31/2+ Q DCO=0.89 /1 470.4.8 0.46 /4 8858.49+x 63/2+ 8114.5+x 61/2+ 470.6.8 0.8 2 3201.1+x 33/2+ 2730.3+x 29/2+ Q DCO=0.90 /18 470.9 5 9.9 25 1292.1+x 17/2+ 821.2+x 13/2+ Q DCO=0.04.8 471.0.5 6.8 17 3224.6+x 33/2+ 2730.3+x 29/2+ Q DCO=0.05 9 472.0.5 9.6 24 3471.7+x 35/2+ 2999.7+x 31/2+ DCO=0.01 9 475.0.8 2.6 8 2294.5+x 25/2+ 1818.6+x 21/2+ Q DCO=0.95 9 474.7 1 51.4 1048.9+x 17/2+ 574.2+x 13/2+ D DCO=0.01 9 475.0.8 2.6 8 2294.5+x 25/2+ 1818.6+x 21/2+ Q DCO=0.05 /1 479.8 5 8.0 2 3436.6+x 35/2+ 2956.8+x 31/2+ Q DCO=0.05 /1 486.1 3 10.0 15 1197.5+x 17/2+ 711.4+x 13/2+ Q DCO=0.09 9 9 486.1 3 10.0 15 1197.5+x 17/2+ 711.4+x 13/2+ Q DCO=0.09 9 9 486.6 1 22.7 18 3734.9+x 39/2- 3248.2+x 35/2- Q DCO=0.05 /1 493.1 / 61.5 1386.4+x 21/2- 893.3+x 17/2- E2 DCO=1.00 9 9 493.2 8 2.6 8 8330.8+x 63/2+ 7837.5+x 61/2+ Q DCO=0.05 /9 493.2 8 2.6 8 8330.8+x 63/2+ 7837.5+x 61/2+ Q DCO=0.05 /1 502.0 5 6.3 16 3682.5+x 37/2+ 3180.4+x 33/2+ Q DCO=0.05 /1 502.0 5 6.3 16 3682.5+x 37/2+ 3180.4+x 33/2+ Q DCO=0.05 /1 503/3+ 40.3 303.86+x 31/2+ 2584.9+x 29/2- Q DCO=1.02 /1 503/4+ 31.0 6+x 19/2+ 802.2+x 15/2+ Q DCO=1.08 /1 503/4+ 31.0 6+x 19/2+ 802.2+x 15/2+ Q DCO=1.08 /1 503/4+ 31/2+ 259.8 8+x 31/2+ 2458.6+x 27/2- Q DCO=1.08 /1 503/4+ 31/2+ 259.2 544.9+x 29/2- Q DCO=1.08 /1 503/4+ 31/2+ 259.2 540.4+x 31/2+ 2458.6+x 27/2- Q DCO=1.08 /1 503/4+ 31/2+ 259.2 540.4+x 31/2+ 2458.6+x 27/2+ Q DCO=1.08 /1 503/4+x 31/2+ 2458.6+x 27/2+ Q DCO=1.09 9 5/2 53/2+ 5 9.0 22 1478.6+x 31/2+ 2458.6+x 27/2+ Q DCO=1.04 /8 53/2+ 31/2+ 3240.4+x 33/2+ 24/2+ 34/2								
470.6 8 0.8 2 3201.1+x 33/2+ 2730.3+x 29/2+ Q DCO=0.90 /8 470.9 5 99.2 5 1292.1+x 17/2+ 821.2+x 13/2+ Q DCO=0.90 /8 470.9 5 99.2 5 1292.1+x 17/2+ 821.2+x 13/2+ Q DCO=0.95 9 471.0 5 6.8 17 3224.6+x 33/2+ 2753.6+x 29/2+ Q DCO=0.95 9 472.0 5 96.2 4 3471.7+x 35/2+ 2997+x 31/2+ Q DCO=0.95 9 474.7 / 1 51 4 1048.9+x 17/2+ 574.2+x 13/2+ E2 DCO=1.01 9 475.0 8 2.6 8 2294.5+x 25/2+ 1818.6+x 21/2+ Q DCO=0.95 /1 474.7 / 1 51 4 0367.1+x 31/2+ 2585.7+x 27/2- Q DCO=0.95 /1 474.5 5 8.0 2 3436.6+x 35/2+ 2956.8+x 31/2+ Q DCO=0.95 /1 481.5 5 5.4 14 3067.1+x 31/2+ 2585.7+x 27/2- Q DCO=0.92 9 486.5 8 2.8 8 3240.1+x 33/2+ 2753.6+x 29/2+ Q DCO=0.92 9 486.6 / 22.7 /8 3734.9+x 39/2+ 3248.2+x 35/2+ Q DCO=0.95 /1 445.5+x 19/2+ 71.4+x 13/2+ Q DCO=0.95 /1 493.2 8 2.6 8 8330.8+x 63/2+ 873.5+x 61/2+ 493.2 8 2.6 8 8330.8+x 63/2+ 7837.5+x 61/2+ 502.0 5 63.16 3682.5+x 37/2+ 3180.4+x 33/2+ E2 DCO=1.05 9 493.2 1 / 30.2 1445.5+x 19/2+ 943.4+x 15/2+ E2 DCO=1.05 /1 502.1 / 30 2 1445.5+x 19/2+ 943.4+x 15/2+ E2 DCO=1.02 /1 503.7 1 40 3 3038.6+x 31/2+ 2458.6+x 27/2+ Q DCO=0.02 /1 503.7 1 40 3 3038.6+x 31/2+ 2458.6+x 27/2+ DCO=1.02 /1 503.7 1 40 3 3038.6+x 31/2+ 2458.6+x 27/2+ DCO=1.08 /1 503.7 1 40 3 3038.6+x 31/2+ 2458.6+x 27/2+ DCO=1.08 /1 503.7 1 40 3 3038.6+x 31/2+ 2458.6+x 27/2+ 503.6+x 15/2+ Q DCO=1.08 /1 503.7 1 40 3 3038.6+x 31/2+ 2458.6+x 27/2+ 503.6+x 15/2+ Q DCO=1.08 /1 503.7 1 40 3 303.8+x 23/2+ 253.5 5 9.0 22 1478.6+x 23/2+ 31/2+ 3248.8+x 23/2+ 31/2+ 3248.8+x 23/2+ 31/2+ 324.0+x 33/2+ Q DCO=1.08 /1 503.1 5 5.7 14 3754.6+x 37/2+ 3240.1+x 33/2+ Q DCO=1.09 9 532.5 5 4.3 /1 2348.8+x 23/2+ 37/2+ 3240.1+x 33/2+ Q DCO=1.09 9 532.5 5 4.3 /1 2348.8+x 23/2+ 37/2+ 3240.1+x 33/2+ Q DCO=1.09 9 532.5 5 4.3 /1 2348.8+x 23/2+ 37/2+ 3240.1+x 33/2+ Q DCO=1.09 9 532.5 5 4.3 /1 2348.8+x 23/2+ 37/2+ 3240.1+x 33/2+ Q DCO=1.09 9 532.5 5 4.3 /1 2348.8+x 23/2+ 37/2+ 3240.1+x 33/2+ Q DCO=1.09 9 532.5 5 4.3 /1 2348.8+x 23/2+ 37/2+ 3240.1+x 33/2+ Q DCO=1.09 9 532.5 5 4.3 /1 2348.8+x 23/2+ 3246.4+x 33/2+ Q DCO=1.09 9 9 7 8 324.4+x 33/2+ Q DCO=1.09 9 9 7 8 344.9+x 33/2+								
470.6 8 0.8 2 3201.1+x 33/2+ 2730.3+x 29/2+ Q DCO=0.90 // 470.9 5 9.9 25 1292.1+x 17/2+ 821.2+x 13/2+ Q DCO=0.04 // 471.0 5 6.8 17 3224.6+x 33/2+ 2753.6+x 29/2+ Q DCO=0.95 9 472.0 5 9.6 24 3471.7+x 35/2+ 2999.7+x 31/2+ Q DCO=1.12 // 474.7 1 51 4 1048.9+x 17/2+ 574.2+x 13/2+ Q DCO=1.01 9 475.0 8 2.6 8 2294.5+x 25/2+ 1818.6+x 21/2+ Q DCO=0.95 // 479.8 5 8.0 2 3456.6+x 35/2+ 2956.8+x 31/2+ Q DCO=0.95 // 486.1 3 10.0 15 1197.5+x 17/2+ 711.4+x 13/2+ Q DCO=0.92 9 486.5 8 2.8 8 3240.1+x 33/2+ 2753.6+x 29/2+ Q DCO=0.99 9 486.5 8 2.8 8 3240.1+x 33/2+ 2753.6+x 29/2+ Q DCO=0.09 9 493.1 7 61 5 1386.4+x 21/2- 893.3+x 17/2- E2 DCO=1.05 9 493.1 61 5 1386.4+x 31/2+ 2458.6+x 27/2+ Q DCO=0.05 // 493.2 8 2.6 8 8330.8+x 63/2+ 7837.5+x 61/2+ DCO=1.05 // 502.0 5 6.3 16 3682.5+x 37/2+ 3180.4+x 33/2+ Q DCO=1.02 // 503.7 1 40 3 3038.6+x 33/2- 2534.9+x 29/2- Q DCO=1.02 // 503.7 1 40 3 3038.6+x 31/2- 2534.9+x 29/2- Q DCO=1.02 // 503.7 1 40 3 3038.6+x 31/2- 2534.9+x 29/2- Q DCO=1.02 // 503.7 1 40 3 3038.6+x 31/2- 2458.6+x 27/2+ DCO=1.03 // 503.7 1 40 3 3038.6+x 31/2- 2458.6+x 27/2+ DCO=1.03 // 503.7 1 40 3 3038.6+x 31/2- 2458.6+x 27/2+ DCO=1.03 // 503.7 1 40 3 3038.6+x 31/2- 2458.6+x 27/2+ DCO=1.06 // 504.4 1 28.9 23 1978.64+x 25/2- 1462.25+x 21/2- Q DCO=1.04 // 518.8 1 100 8 1618.3+x 23/2- 1099.5+x 19/2- Q DCO=1.04 // 518.8 1 100 8 1618.3+x 23/2- 1099.5+x 19/2- Q DCO=1.06 // 530.1 5 5.7 1/4 3754.6+x 37/2+ 3240.1+x 33/2+ Q DCO=1.05 // 530.1 5 5.7 1/4 3754.6+x 37/2+ 3240.1+x 33/2+ Q DCO=1.06 // 530.1 5 5.7 1/4 3754.6+x 37/2+ 3240.1+x 33/2+ Q DCO=1.09 // 530.2 5 4.3 11 2348.8+x 25/2+ 1818.6+x 21/2+ Q DCO=1.04 // 530.1 5 5.7 1/4 3754.6+x 37/2+ 3240.1+x 33/2+ Q DCO=1.06 // 530.1 5 5.7 1/4 3754.6+x 37/2+ 3240.1+x 33/2+ Q DCO=1.06 // 530.1 5 5.7 1/4 3754.6+x 37/2+ 3240.1+x 33/2+ Q DCO=1.05 // 530.2 5 4.3 11 2348.8+x 25/2+ 1818.6+x 21/2+ Q DCO=1.05 // 530.1 5 5.7 1/4 3754.6+x 37/2+ 3240.1+x 33/2+ Q DCO=1.09 // 530.2 5 4.3 11 2348.8+x 25/2+ 1818.6+x 21/2+ Q DCO=1.00 // 530.1 5 5.7 1/4 3754.6+x 37/2+ 3240.1+x 33/2+ Q DCO=1.00 // 530.1 5 5.7 1/4 37							Q	DCO=0.89 11
470.9 5 9.9 25 1292.1+x 17/2+ 821.2+x 13/2+ Q DCO=1.04 8 471.0 5 6.8 17 3224.6+x 33/2+ 2753.6+x 29/2+ Q DCO=0.95 9 472.0 5 9.6 24 3471.7+x 35/2+ 2999.7+x 31/2+ Q DCO=1.12 11 474.7 1 51 4 1048.9+x 17/2+ 574.2+x 13/2+ E2 DCO=1.01 9 475.0 8 2.6 8 2294.5+x 25/2+ 1818.6+x 21/2+ Q DCO=0.95 11 479.8 5 8.0 2 3436.6+x 35/2+ 2956.8+x 31/2+ Q DCO=0.95 11 481.5 5 5.4 14 3067.1+x 31/2- 2585.7+x 27/2- Q DCO=0.99 9 486.1 3 10.0 15 1197.5+x 17/2+ 711.4+x 13/2+ Q DCO=0.99 9 486.5 8 2.8 8 3240.1+x 33/2+ 2753.6+x 29/2+ Q DCO=0.99 9 486.6 8 2.8 8 3240.1+x 33/2+ 2753.6+x 29/2+ Q DCO=0.09 9 493.1 1 61 5 1386.4+x 21/2- 893.3+x 17/2- E2 DCO=1.05 9 493.1 2 61 5 386.4+x 31/2+ 2458.6+x 27/2+ Q DCO=1.05 9 493.2 8 2.6 8 8330.8+x 63/2+ 7837.5+x 61/2+ 493.2 8 2.6 8 8330.8+x 63/2+ 7837.5+x 61/2+ 502.0 5 6.3 16 3682.5+x 31/2+ 2458.6+x 27/2+ Q DCO=1.05 11 502.1 1 30 2 1445.5+x 19/2+ 943.4+x 15/2+ E2 DCO=1.23 13 503.7 1 40 3 3038.6+x 33/2- 2534.9+x 29/2- Q DCO=1.08 11 508.4 1 51 4 1310.6+x 19/2+ 802.2+x 15/2+ Q DCO=1.08 11 508.8 3 10.5 16 2968.4+x 25/2- 1462.25+x 21/2- Q DCO=1.04 8 518.8 1 100 8 1618.3+x 25/2- 1462.25+x 15/2+ Q DCO=1.06 8 523.5 5 9.0 22 1478.6+x 37/2+ 324.6+x 33/2+ Q DCO=1.09 9 530.2 5 4.3 11 2348.8+x 25/2- 1462.25+x 15/2+ Q DCO=1.09 9 530.1 5 5.7 14 3754.6+x 37/2+ 324.6+x 33/2+ Q DCO=1.09 9 530.2 5 4.3 11 2348.8+x 25/2- 1462.25+x 11/2- Q DCO=1.09 9 530.2 5 4.3 11 3248.8+x 25/2- 1462.25+x 11/2- Q DCO=1.09 9 530.2 5 4.3 11 3248.8+x 25/2- 1462.25+x 11/2- Q DCO=1.09 9 530.2 5 4.3 11 3248.8+x 25/2- 1818.6+x 21/2+ Q DCO=1.09 9 530.2 5 4.3 11 3248.8+x 25/2- 1818.6+x 21/2+ Q DCO=1.09 9 530.2 5 4.3 11 3248.8+x 25/2- 1818.6+x 21/2+ Q DCO=1.09 9 530.2 5 4.3 17 346.4+x 33/2+ 3240.1+x 33/2+ Q DCO=1.09 9 530.2 5 4.3 17 344.8+x 35/2- 3240.1+x 33/2+ Q DCO=1.09 9 530.2 5 4.3 17 344.8+x 35/2- 3474.9+x 37/2- Q DCO=1.09 9 530.2 5 4.3 17 344.8+x 35/2- 3474.9+x 37/2- Q DCO=1.09 9 530.2 5 4.3 17 348.8+x 35/2- 3474.9+x 37/2- Q DCO=1.09 9 530.2 5 4.3 17 348.8+x 35/2- 3474.9+x 37/2- Q DCO=1.09 9 530.2 5 4.3 17 348.8+x 35/2- 3474.9+x 37/2- Q DCO=1.00 9 5							0	DCO 0.00 10
471.0 5 6.8 17 3224.6+x 33/2+ 2753.6+x 29/2+ Q DCO=0.95 9 472.0 5 9.6 24 3471.7+x 35/2+ 2999.7+x 31/2+ Q DCO=1.12 1/1 474.7 1 51 4 1048.9+x 17/2+ 574.2+x 13/2+ E2 DCO=1.01 9 475.0 8 2.6 8 2294.5+x 25/2+ 1818.6+x 21/2+ Q DCO=0.95 1/1 479.8 5 8.0 2 3436.6+x 35/2+ 2956.8+x 31/2+ Q DCO=0.05 1/1 481.5 5 5.4 1/4 3067.1+x 31/2- 2585.7+x 27/2- Q DCO=0.05 1/1 486.1 3 10.0 15 1197.5+x 17/2+ 711.4+x 13/2+ Q DCO=0.99 9 486.1 3 10.0 15 1197.5+x 17/2+ 72753.6+x 29/2+ Q DCO=0.99 9 486.6 1 22.7 18 3734.9+x 39/2- 3248.2+x 35/2- Q DCO=1.02 9 493.1 / 61 5 1386.4+x 21/2- 893.3+x 17/2- E2 DCO=1.05 1/2 498.3 5 6.7 17 2956.8+x 31/2+ 2458.6+x 27/2+ Q DCO=1.05 1/2 502.0 5 6.3 16 3682.5+x 19/2+ 943.4+x 15/2+ E2 DCO=1.02 1/2 502.1 / 30 2 1445.5+x 19/2+ 943.4+x 15/2+ E2 DCO=1.02 1/2 503.7 1 40 3 3038.6+x 33/2- 2534.9+x 29/2- Q DCO=1.02 1/2 503.7 1 40 3 3038.6+x 31/2+ 2458.6+x 27/2+ DCO=1.08 1/2 508.6 3 10.5 16 2968.4+x 31/2+ 2458.6+x 27/2+ DCO=1.08 1/2 508.8 1 51 4 1310.6+x 19/2+ 802.2+x 15/2+ Q DCO=1.04 8 518.8 1 100 8 1618.3+x 23/2- 1099.5+x 19/2- E2 DCO=1.06 8 523.5 5 9.0 22 1478.6+x 19/2+ 955.5+x 15/2+ Q DCO=1.06 8 523.5 5 9.0 22 1478.6+x 25/2- 1462.25+x 21/2- Q DCO=1.06 8 523.5 5 9.4 24 1818.6+x 21/2+ 1292.1+x 17/2+ Q DCO=1.09 9 530.2 5 4.3 1/1 2348.8+x 25/2- 1818.6+x 21/2+ Q DCO=1.09 9 530.1 5 5.7 1/4 3754.6+x 37/2+ 3240.1+x 33/2+ Q DCO=1.09 9 530.2 5 4.3 1/1 2348.8+x 25/2- 1818.6+x 21/2+ Q DCO=1.09 9 530.2 5 4.3 1/1 2348.8+x 35/2- 3067.1+x 31/2- Q DCO=1.09 9 538.2 / 52 4 1587.0+x 21/2+ 1048.9+x 17/2+ E2 DCO=1.09 9 538.2 / 52 4 1587.0+x 21/2+ 1048.9+x 17/2+ E2 DCO=1.09 9 538.2 / 52 4 1587.0+x 21/2+ 1048.9+x 17/2+ E2 DCO=1.09 9 544.6 3 14 2 3980.9+x 39/2+ 3474.9+x 37/2- Q DCO=1.09 9 544.6 3 14 2 3980.9+x 39/2+ 3474.5+x 17/2+ Q DCO=1.00 1/2 544.7 1 30 2 1990.2+x 21/2+ 1197.5+x 17/2+ Q DCO=1.00 1/2								
472.0 5 9.6 24 3471.7+x 35/2+ 2999.7+x 31/2+ Q DCO=1.12 II 474.7 I 51 4 1048.9+x 17/2+ 574.2+x 13/2+ E2 DCO=1.0 9 475.0 8 2.6 8 2294.5+x 25/2+ 1818.6+x 21/2+ Q DCO=0.95 II 479.8 5 8.0 2 3436.6+x 35/2+ 2956.8+x 31/2+ Q DCO=0.95 II 481.5 5 5.4 I4 3067.1+x 31/2- 2585.7+x 27/2- Q DCO=0.92 9 486.1 3 10.0 15 1197.5+x 17/2+ 711.4+x 13/2+ Q DCO=0.99 9 486.5 8 2.8 8 3240.1+x 33/2+ 2753.6+x 29/2+ Q DCO=0.99 9 486.6 8 2.8 8 3340.1+x 33/2+ 2753.6+x 29/2+ Q DCO=0.02 9 493.1 I 61.5 1386.4+x 21/2- 893.3+x 17/2- E2 DCO=1.05 II 493.2 8 2.6 8 8330.8+x 63/2+ 7837.5+x 61/2+ E2 DCO=1.05 9 493.1 I 61.5 1386.4+x 21/2- 893.3+x 17/2- E2 DCO=1.05 9 493.1 I 61.5 1386.4+x 21/2- 893.3+x 17/2- E2 DCO=1.05 9 493.1 I 61.5 1386.4+x 21/2- 893.3+x 15/2+ Q DCO=1.05 II 502.0 5 6.3 I6 3682.5+x 37/2+ 3180.4+x 33/2+ Q DCO=1.02 II 502.1 I 30 2 1445.5+x 19/2+ 943.4+x 15/2+ E2 DCO=1.23 I3 503.7 I 40 3 3038.6+x 33/2- 2534.9+x 29/2- Q DCO=1.08 II 503.8 I 51.4 1310.6+x 19/2+ 802.2+x 15/2+ Q DCO=1.08 II 509.8 3 10.5 I6 2968.4+x 31/2+ 2458.6+x 27/2+ 516.4 I 28.9 23 1978.64+x 25/2- 1099.5+x 19/2- E2 DCO=1.08 II 523.5 5 9.0 22 1478.6+x 19/2+ 955.5+x 15/2+ Q DCO=1.08 II 523.5 5 9.0 22 1478.6+x 19/2+ 3240.1+x 33/2+ Q DCO=0.08 II 530.1 5 5.7 I 4 3754.6+x 37/2+ 3240.1+x 33/2+ Q DCO=0.08 II 531.1 5 5.5 I4 3602.2+x 37/2+ 3240.1+x 33/2+ Q DCO=0.05 I2 525.1 5 9.4 24 1818.6+x 21/2+ 1292.1+x 17/2+ Q DCO=0.05 I2 535.1 1 32 3 4009.9+x 41/2- 3440.3+x 33/2- Q DCO=1.09 9 533.2 5 4.3 II 2348.8+x 25/2+ 11818.6+x 21/2+ Q DCO=1.09 1 535.1 5 5.5 I4 3602.2+x 35/2- 3067.1+x 31/2- Q DCO=1.09 1 538.8 I 5 5.4 3602.2+x 35/2- 3067.1+x 31/2- 3240.1+x 33/2- Q DCO=1.09 9 538.8 8 0.58 I7 4403.4+x 39/2+ 3846.5+x 35/2+ 546.6 37/2+ 3484.8+x 35/2- 2947.1+x 31/2- 3486.5 x 35/2+ 546.0 37/2+ 3484.8+x 35/2- 3464.5 x 35/2+ 546.6 x 37/2+ 3484.8+x 35/2- 3664.5 x 35/2+ 546.6 x 36/2+x 36/2+x 36/2+x 36/2+x 36/2+x 36/2+x 36/2+x 36/2+x 36/2+								
474.7 51 4								
479.8 5								
491.5 5 8.0 2 3436.6+x 35/2 ⁺ 2956.8+x 31/2 ⁺ Q DCO=1.05 II 481.5 5 5.4 I4 3067.1+x 31/2 ⁻ 2585.7+x 27/2 ⁻ Q DCO=0.92 9 486.1 3 10.0 I5 1197.5+x 17/2 ⁺ 711.4+x 13/2 ⁺ Q DCO=0.99 9 486.5 8 2.8 8 3240.1+x 33/2 ⁺ 2753.6+x 29/2 ⁺ Q DCO=0.85 I5 486.6 I 22.7 I8 3734.9+x 39/2 ⁻ 3248.2+x 35/2 ⁻ Q DCO=1.02 9 493.1 I 61 5 1386.4+x 21/2 ⁻ 893.3+x 17/2 ⁻ E2 DCO=1.05 9 493.2 8 2.6 8 8330.8+x 63/2 ⁺ 7837.5+x 61/2 ⁺ 498.3 5 6.7 I7 2956.8+x 31/2 ⁺ 2458.6+x 27/2 ⁺ Q DCO=1.05 II 502.0 5 6.3 I6 3682.5+x 37/2 ⁺ 3180.4+x 33/2 ⁻ Q DCO=1.02 II 502.1 I 30 2 1445.5+x 19/2 ⁺ 943.4+x 15/2 ⁺ E2 DCO=1.02 II 503.7 I 40 3 3038.6+x 33/2 ⁻ 2348.9+x 29/2 ⁻ Q DCO=1.08 II 503.7 I 40 3 3038.6+x 31/2 ⁺ 802.2+x 15/2 ⁺ Q DCO=1.08 II 509.8 3 10.5 I6 2968.4+x 31/2 ⁺ 2458.6+x 27/2 ⁺ 516.4 I 28.9 23 1978.64+x 25/2 ⁻ 1462.25+x 21/2 ⁻ Q DCO=1.04 8 518.8 I 100 8 1618.3+x 23/2 ⁻ 1099.5+x 19/2 ⁻ Q DCO=1.06 8 523.5 5 9.0 22 1478.6+x 19/2 ⁺ 955.5+x 15/2 ⁺ Q DCO=0.95 I2 526.1 5 9.4 24 1818.6+x 21/2 ⁺ 1292.1+x 17/2 ⁺ Q DCO=0.10 8 530.1 5 5.7 I4 3754.6+x 37/2 ⁺ 3240.1+x 33/2 ⁺ Q DCO=1.09 9 530.2 5 4.3 II 2348.8+x 25/2 ⁺ 1818.6+x 21/2 ⁺ Q DCO=1.09 9 530.2 5 4.3 II 2348.8+x 25/2 ⁺ 1818.6+x 21/2 ⁺ Q DCO=1.09 9 537.6 8 2.4 7 3484.8+x 35/2 ⁻ 2947.1+x 31/2 ⁻ Q DCO=1.04 9 538.8 9 0.58 If 4403.4+x 39/2 ⁺ 3440.8+x 35/2 ⁻ Q DCO=1.09 9 538.8 9 0.58 If 4403.4+x 39/2 ⁺ 3440.8+x 31/2 ⁻ Q DCO=1.09 9 537.6 8 2.4 7 3484.8+x 35/2 ⁻ 2947.1+x 31/2 ⁻ Q DCO=1.09 9 538.9 8 0.58 If 4403.4+x 39/2 ⁺ 346.6+x 37/2 ⁺ Q DCO=1.09 9 539.9 5 3.8 10 2999.7+x 31/2 ⁺ 2458.6+x 27/2 ⁺ Q DCO=1.09 9 540.9 5 3.8 10 2999.7+x 31/2 ⁺ 2458.6+x 27/2 ⁺ Q DCO=1.09 9 540.9 5 3.8 10 2999.7+x 31/2 ⁺ 2458.6+x 27/2 ⁺ Q DCO=1.09 9 540.9 5 3.8 10 2999.7+x 31/2 ⁺ 2458.6+x 27/2 ⁺ Q DCO=1.09 9 540.9 5 3.8 10 2999.7+x 31/2 ⁺ 2458.6+x 27/2 ⁺ Q DCO=1.09 9 540.9 5 3.8 10 2999.7+x 31/2 ⁺ 2458.6+x 27/2 ⁺ Q DCO=1.09 9 540.9 5 3.8 10 2999.7+x 31/2 ⁺ 2458.6+x 27/2 ⁺ Q DCO=1.09 9 540.9 5 3.8 10 2999.7+x 31/2 ⁺ 2458.6+x 27/2 ⁺ Q DCO=1.09 9								
481.5 5 5.4 14 3067.1+x 31/2 ⁻ 2585.7+x 27/2 ⁻ Q DCO=0.92 9 486.1 3 10.0 15 1197.5+x 17/2 ⁺ 711.4+x 13/2 ⁺ Q DCO=0.99 9 486.5 8 2.8 8 3240.1+x 33/2 ⁺ 2753.6+x 29/2 ⁺ Q DCO=0.95 15 486.6 1 22.7 18 3734.9+x 39/2 ⁻ 3248.2+x 35/2 ⁻ Q DCO=1.02 9 493.1 1 61 5 1386.4+x 21/2 ⁻ 893.3+x 17/2 ⁻ E2 DCO=1.05 9 493.2 8 2.6 8 8330.8+x 63/2 ⁺ 7837.5+x 61/2 ⁺ 498.3 5 6.7 17 2956.8+x 31/2 ⁺ 2458.6+x 27/2 ⁺ Q DCO=1.05 11 502.0 5 6.3 16 3682.5+x 37/2 ⁺ 3180.4+x 33/2 ⁺ Q DCO=1.02 11 502.1 1 30 2 1445.5+x 19/2 ⁺ 943.4+x 15/2 ⁺ E2 DCO=1.23 13 503.7 1 40 3 3038.6+x 33/2 ⁻ 2534.9+x 29/2 ⁻ Q DCO=1.08 11 508.4 1 51 4 1310.6+x 19/2 ⁺ 802.2+x 15/2 ⁺ Q DCO=1.14 12 509.8 [©] 3 10.5 16 2968.4+x 31/2 ⁺ 2458.6+x 27/2 ⁺ 516.4 1 28.9 23 1978.64+x 25/2 ⁻ 1462.25+x 21/2 ⁻ Q DCO=1.04 8 518.8 1 100 8 1618.3+x 23/2 ⁻ 1099.5+x 19/2 ⁻ E2 DCO=1.06 8 523.5 5 9.0 22 1478.6+x 19/2 ⁺ 955.5+x 15/2 ⁺ Q DCO=0.78 11 525.1 5 4.6 12 3765.2+x 37/2 ⁺ 3240.1+x 33/2 ⁺ Q DCO=0.95 12 526.1 5 9.4 24 1818.6+x 21/2 ⁺ 1292.1+x 17/2 ⁺ Q DCO=1.09 9 530.2 5 4.3 11 2348.8+x 25/2 ⁻ 1818.6+x 21/2 ⁺ Q DCO=1.09 9 530.2 5 4.3 11 2348.8+x 25/2 ⁻ 1818.6+x 21/2 ⁺ Q DCO=1.09 9 530.2 5 4.3 11 2348.8+x 35/2 ⁻ 3067.1+x 31/2 ⁻ 3270.0+x 31/2 ⁻ Q DCO=1.09 9 531.5 5.5 14 3602.2+x 35/2 ⁻ 3067.1+x 31/2 ⁻ Q DCO=1.09 9 532.1 5 5 5.1 4 3602.2+x 35/2 ⁻ 3067.1+x 31/2 ⁻ Q DCO=1.09 9 533.2 5 4.3 11 2348.8+x 25/2 ⁺ 1818.6+x 21/2 ⁺ Q DCO=1.04 9 537.6 8 2.4 7 3484.8+x 35/2 ⁻ 2947.1+x 31/2 ⁻ S38.9 8 0.58 17 4403.4+x 39/2 ⁺ 3864.5+x 35/2 ⁺ 540.9 5 3.8 10 2999.7+x 31/2 ⁺ 2458.6+x 27/2 ⁺ Q DCO=1.02 9 544.6 3 10.8 16 1740.2+x 21/2 ⁺ 1197.5+x 17/2 ⁺ Q DCO=1.02 9 544.6 3 10.8 16 1740.2+x 21/2 ⁺ 1197.5+x 17/2 ⁺ Q DCO=1.02 9 544.6 3 10.8 16 1740.2+x 21/2 ⁺ 1197.5+x 17/2 ⁺ Q DCO=1.02 11 544.7 1 30 2 1990.2+x 23/2 ⁺ 1445.5+x 19/2 ⁺ Q DCO=1.20 12								
486.1 3								
486.5 8								
486.6 1 22.7 18 3734.9+x 39/2 3248.2+x 35/2 Q DCO=1.02 9 493.1 I 61 5 1386.4+x 21/2 893.3+x 17/2 E2 DCO=1.05 9 493.2 8 2.6 8 8330.8+x 63/2 7837.5+x 61/2 498.3 5 6.7 17 2956.8+x 31/2 2458.6+x 27/2 Q DCO=1.05 11 502.0 5 6.3 16 3682.5+x 37/2 3180.4+x 33/2 Q DCO=1.02 11 502.1 I 30 2 1445.5+x 19/2 943.4+x 15/2 E2 DCO=1.23 13 503.7 I 40 3 3038.6+x 33/2 2534.9+x 29/2 Q DCO=1.08 11 508.4 I 51 4 1310.6+x 19/2 802.2+x 15/2 Q DCO=1.14 12 509.8 3 10.5 16 2968.4+x 31/2 2458.6+x 27/2 516.4 I 28.9 23 1978.64+x 25/2 1462.25+x 21/2 Q DCO=1.04 8 518.8 I 100 8 1618.3+x 23/2 1099.5+x 19/2 E2 DCO=1.08 8 523.5 5 90.2 1478.6+x 19/2 955.5+x 15/2 Q DCO=0.78 11 525.1 5 4.6 12 3765.2+x 37/2 3240.1+x 33/2 Q DCO=0.95 12 526.1 5 9.4 24 1818.6+x 21/2 1292.1+x 17/2 Q DCO=0.10 8 530.1 5 5.7 14 3754.6+x 37/2 3224.6+x 33/2 Q DCO=1.10 8 530.1 5 5.5 14 3602.2+x 35/2 3224.6+x 33/2 Q DCO=1.05 11 535.1 I 32 3 4009.9+x 41/2 3474.9+x 37/2 Q DCO=1.04 9 537.6 8 2.4 7 3484.8+x 35/2 3474.9+x 37/2 Q DCO=1.04 9 537.6 8 2.4 7 3484.8+x 35/2 3947.1+x 31/2 Q DCO=1.04 9 538.9 8 0.58 17 4403.4+x 39/2 3864.5+x 35/2 Q DCO=1.09 9 538.9 8 0.58 17 4403.4+x 39/2 3864.5+x 35/2 Q DCO=1.09 9 538.9 8 0.58 17 4403.4+x 39/2 3864.5+x 35/2 Q DCO=1.09 9 538.9 8 0.58 17 4403.4+x 39/2 3864.5+x 35/2 Q DCO=1.09 9 538.9 8 0.58 17 4403.4+x 39/2 3864.5+x 35/2 Q DCO=1.00 10 544.6 3 14 2 3980.9+x 39/2 3436.6+x 35/2 Q DCO=1.20 11 544.7 1 30 2 1990.2+x 23/2 1445.5+x 19/2 Q DCO=1.20 12								
493.1 I 61 5 1386.4+x 21/2								
493.2 8								
498.3 5 6.7 17 2956.8+x 31/2+ 2458.6+x 27/2+ Q DCO=1.05 11 502.0 5 6.3 16 3682.5+x 37/2+ 3180.4+x 33/2+ Q DCO=1.02 11 502.1 1 30 2 1445.5+x 19/2+ 943.4+x 15/2+ E2 DCO=1.23 13 503.7 1 40 3 3038.6+x 33/2- 2534.9+x 29/2- Q DCO=1.08 11 508.4 1 51 4 1310.6+x 19/2+ 802.2+x 15/2+ Q DCO=1.08 11 509.8 3 10.5 16 2968.4+x 31/2+ 2458.6+x 27/2+ 516.4 1 28.9 23 1978.64+x 25/2- 1462.25+x 21/2- Q DCO=1.04 8 518.8 1 100 8 1618.3+x 23/2- 1099.5+x 19/2- E2 DCO=1.06 8 523.5 5 9.0 22 1478.6+x 19/2+ 955.5+x 15/2+ Q DCO=0.78 11 525.1 5 4.6 12 3765.2+x 37/2+ 3240.1+x 33/2+ Q DCO=0.95 12 526.1 5 9.4 24 1818.6+x 21/2+ 1292.1+x 17/2+ Q DCO=1.09 9 530.2 5 4.3 11 2348.8+x 25/2+ 1818.6+x 21/2+ Q DCO=1.09 9 530.2 5 4.3 11 2348.8+x 25/2+ 1818.6+x 21/2+ Q DCO=0.05 11 535.1 5 5.5 14 3602.2+x 35/2- 3067.1+x 31/2- Q DCO=1.04 9 537.6 8 2.4 7 3484.8+x 35/2- 2947.1+x 31/2- S38.2 1 52 4 1587.0+x 31/2+ 3474.9+x 37/2+ E2 DCO=1.03 9 538.9 8 0.58 17 403.4+x 39/2+ 3464.5+x 35/2+ 540.9 5 3.8 10 2999.7+x 31/2+ 2458.6+x 27/2+ Q DCO=1.02 9 534.6 3 14.2 3980.9+x 39/2+ 3864.5+x 35/2+ Q DCO=1.02 9 544.6 3 14.2 3980.9+x 39/2+ 3436.6+x 37/2+ Q DCO=1.20 17 544.6 3 14.2 3980.9+x 39/2+ 3436.6+x 37/2+ Q DCO=1.20 17 544.6 3 14.2 3980.9+x 39/2+ 3436.6+x 35/2+ Q DCO=1.20 17 544.6 3 14.2 3980.9+x 39/2+ 3436.6+x 37/2+ Q DCO=1.20 17 544.6 3 14.2 3980.9+x 39/2+ 3436.6+x 37/2+ Q DCO=1.20 17 544.6 3 14.2 3980.9+x 39/2+ 3436.6+x 37/2+ Q DCO=1.20 17								
502.0 5 6.3 16 3682.5+x 37/2+ 3180.4+x 33/2+ Q DCO=1.02 11 502.1 I 30 2 1445.5+x 19/2+ 943.4+x 15/2+ E2 DCO=1.08 11 503.7 I 40 3 3038.6+x 33/2- 2534.9+x 29/2- Q DCO=1.08 11 508.8 I 51 4 1310.6+x 19/2+ 802.2+x 15/2+ Q DCO=1.14 12 509.8 II 3 10.5 16 2968.4+x 31/2+ 2458.6+x 27/2+ DCO=1.04 8 518.8 I 100 8 1618.3+x 23/2- 1099.5+x 19/2- E2 DCO=1.06 8 523.5 5 9.0 22 1478.6+x 19/2+ 955.5+x 15/2+ Q DCO=0.78 11 525.1 5 4.6 12 3765.2+x 37/2+ 3240.1+x 33/2+ Q DCO=0.95 12 526.1 5 9.4 24 1818.6+x 21/2+ 117/2+ Q DCO=1.08 9 530.2 5 4.3 II 2348.8+x 25/2+ 1818.6+x 21/2+ Q							Q	DCO=1.05 11
502.1 I 30 2 1445.5+x 19/2+ 943.4+x 15/2+ E2 DCO=1.23 I3 503.7 I 40 3 3038.6+x 33/2- 2534.9+x 29/2- Q DCO=1.08 II 508.4 I 51 4 1310.6+x 19/2+ 802.2+x 15/2+ Q DCO=1.14 I2 509.8 3 10.5 I6 2968.4+x 31/2+ 2458.6+x 27/2+ 516.4 I 28.9 23 1978.64+x 25/2- 1462.25+x 21/2- Q DCO=1.04 8 518.8 I 100 8 1618.3+x 23/2- 1099.5+x 19/2- E2 DCO=1.06 8 523.5 5 9.0 22 1478.6+x 19/2+ 955.5+x 15/2+ Q DCO=0.78 II 525.1 5 4.6 I2 3765.2+x 37/2+ 3240.1+x 33/2+ Q DCO=0.95 I2 526.1 5 9.4 24 1818.6+x 21/2+ 1292.1+x 17/2+ Q DCO=1.10 8 530.1 5 5.7 I4 3754.6+x 37/2+ 3224.6+x 33/2+ Q DCO=1.09 9 530.2 5 4.3 II 2348.8+x 25/2+ 1818.6+x 21/2+ Q DCO=1.09 9 530.2 5 4.3 II 2348.8+x 25/2+ 1818.6+x 21/2+ Q DCO=1.04 9 537.6 8 2.4 7 3484.8+x 35/2- 2947.1+x 31/2- S38.2 I 52 4 1587.0+x 21/2+ 1048.9+x 17/2+ E2 DCO=1.03 9 538.9 8 0.58 I7 4403.4+x 39/2+ 3440.8+x 37/2+ Q DCO=1.03 9 544.6 3 14 2 3980.9+x 39/2+ 3436.6+x 27/2+ Q DCO=1.02 9 544.6 3 14 2 3980.9+x 39/2+ 3436.6+x 35/2+ Q DCO=1.20 II 544.7 I 30 2 1990.2+x 23/2+ 1445.5+x 19/2+ Q DCO=1.20 I2								
508.4 1 51 4 1310.6+x 19/2+ 802.2+x 15/2+ Q DCO=1.14 12 509.8 3 10.5 16 2968.4+x 31/2+ 2458.6+x 27/2+ 516.4 1 28.9 23 1978.64+x 25/2- 1462.25+x 21/2- Q DCO=1.04 8 518.8 1 100 8 1618.3+x 23/2- 1099.5+x 19/2- E2 DCO=1.06 8 523.5 5 9.0 22 1478.6+x 19/2+ 955.5+x 15/2+ Q DCO=0.78 11 525.1 5 4.6 12 3765.2+x 37/2+ 3240.1+x 33/2+ Q DCO=0.95 12 526.1 5 9.4 24 1818.6+x 21/2+ 1292.1+x 17/2+ Q DCO=1.10 8 530.1 5 5.7 14 3754.6+x 37/2+ 3224.6+x 33/2+ Q DCO=1.09 9 530.2 5 4.3 11 2348.8+x 25/2+ 1818.6+x 21/2+ Q DCO=1.05 11 535.1 5 5.5 14 3602.2+x 35/2- 3067.1+x 31/2- Q DCO=1.14 12 535.1 1 32 3 4009.9+x 41/2- 3474.9+x 37/2- Q DCO=1.04 9 537.6 8 2.4 7 3484.8+x 35/2- 2947.1+x 31/2- 538.2 1 52 4 1587.0+x 21/2+ 1048.9+x 17/2+ E2 DCO=1.03 9 538.9 8 0.58 17 4403.4+x 39/2+ 3864.5+x 35/2+ Q DCO=1.05 11 542.6 3 10.8 16 1740.2+x 21/2+ 1197.5+x 17/2+ Q DCO=1.02 9 544.6 3 14 2 3980.9+x 39/2+ 3436.6+x 35/2+ Q DCO=1.20 11 544.7 1 30 2 1990.2+x 23/2+ 1445.5+x 19/2+ Q DCO=1.20 12	502.1 <i>I</i>	30 2	1445.5 + x		943.4 + x			DCO=1.23 13
508.4 1 51 4 1310.6+x 19/2+ 802.2+x 15/2+ Q DCO=1.14 12 509.8 3 10.5 16 2968.4+x 31/2+ 2458.6+x 27/2+ 516.4 1 28.9 23 1978.64+x 25/2- 1462.25+x 21/2- Q DCO=1.04 8 518.8 1 100 8 1618.3+x 23/2- 1099.5+x 19/2- E2 DCO=1.06 8 523.5 5 9.0 22 1478.6+x 19/2+ 955.5+x 15/2+ Q DCO=0.78 11 525.1 5 4.6 12 3765.2+x 37/2+ 3240.1+x 33/2+ Q DCO=0.95 12 526.1 5 9.4 24 1818.6+x 21/2+ 1292.1+x 17/2+ Q DCO=1.10 8 530.1 5 5.7 14 3754.6+x 37/2+ 3224.6+x 33/2+ Q DCO=1.09 9 530.2 5 4.3 11 2348.8+x 25/2+ 1818.6+x 21/2+ Q DCO=1.05 11 535.1 5 5.5 14 3602.2+x 35/2- 3067.1+x 31/2- Q DCO=1.04 9 537.6 8 2.4 7 3484.8+x 35/2- 2947.1+x 31/2- 538.2 1 52 4 1587.0+x 21/2+ 1048.9+x 17/2+ E2 DCO=1.03 9 538.9 8 0.58 17 4403.4+x 39/2+ 3864.5+x 35/2+ Q DCO=1.02 9 544.6 3 14 2 3980.9+x 39/2+ 3436.6+x 35/2+ Q DCO=1.20 11 544.7 1 30 2 1990.2+x 23/2+ 1445.5+x 19/2+ Q DCO=1.20 12	503.7 1	40 <i>3</i>	3038.6+x	$33/2^{-}$	2534.9+x	$29/2^{-}$	Q	DCO=1.08 11
516.4 I 28.9 23 1978.64+x 25/2 ⁻ 1462.25+x 21/2 ⁻ Q DCO=1.04 8 518.8 I 100 8 1618.3+x 23/2 ⁻ 1099.5+x 19/2 ⁻ E2 DCO=1.06 8 523.5 5 9.0 22 1478.6+x 19/2 ⁺ 955.5+x 15/2 ⁺ Q DCO=0.78 II 525.1 5 4.6 I2 3765.2+x 37/2 ⁺ 3240.1+x 33/2 ⁺ Q DCO=0.95 I2 526.1 5 9.4 24 1818.6+x 21/2 ⁺ 1292.1+x 17/2 ⁺ Q DCO=1.10 8 530.1 5 5.7 14 3754.6+x 37/2 ⁺ 3224.6+x 33/2 ⁺ Q DCO=1.09 9 530.2 5 4.3 II 2348.8+x 25/2 ⁺ 1818.6+x 21/2 ⁺ Q DCO=1.05 II 535.1 5 5.5 I4 3602.2+x 35/2 ⁻ 3067.1+x 31/2 ⁻ Q DCO=1.04 9 537.6 8 2.4 7 3484.8+x 35/2 ⁻ 2947.1+x 31/2 ⁻ 52 538.9 f 0.58 I7 4403.4+x 39/2 ⁺ 3864.5+x 35/2 ⁺ Q DCO=1.05 II 542.6 3 10.8 16 <	508.4 <i>1</i>	51 4	1310.6+x	$19/2^{+}$	802.2+x	$15/2^{+}$	Q	DCO=1.14 12
516.4 I 28.9 23 1978.64+x 25/2 ⁻ 1462.25+x 21/2 ⁻ Q DCO=1.04 8 518.8 I 100 8 1618.3+x 23/2 ⁻ 1099.5+x 19/2 ⁻ E2 DCO=1.06 8 523.5 5 9.0 22 1478.6+x 19/2 ⁺ 955.5+x 15/2 ⁺ Q DCO=0.78 II 525.1 5 4.6 I2 3765.2+x 37/2 ⁺ 3240.1+x 33/2 ⁺ Q DCO=0.95 I2 526.1 5 9.4 24 1818.6+x 21/2 ⁺ 1292.1+x 17/2 ⁺ Q DCO=1.10 8 530.1 5 5.7 14 3754.6+x 37/2 ⁺ 3224.6+x 33/2 ⁺ Q DCO=1.09 9 530.2 5 4.3 II 2348.8+x 25/2 ⁺ 1818.6+x 21/2 ⁺ Q DCO=1.05 II 535.1 5 5.5 I4 3602.2+x 35/2 ⁻ 3067.1+x 31/2 ⁻ Q DCO=1.04 9 537.6 8 2.4 7 3484.8+x 35/2 ⁻ 2947.1+x 31/2 ⁻ 52 538.9 f 0.58 I7 4403.4+x 39/2 ⁺ 3864.5+x 35/2 ⁺ Q DCO=1.05 II 542.6 3 10.8 16 <	509.8 [@] 3	10.5 16	2968.4+x	$31/2^{+}$	2458.6+x	$27/2^{+}$		
518.8 I 100 8 1618.3+x 23/2 ⁻ 1099.5+x 19/2 ⁻ E2 DCO=1.06 8 523.5 5 9.0 22 1478.6+x 19/2 ⁺ 955.5+x 15/2 ⁺ Q DCO=0.78 II 525.1 5 4.6 I2 3765.2+x 37/2 ⁺ 3240.1+x 33/2 ⁺ Q DCO=0.95 I2 526.1 5 9.4 24 1818.6+x 21/2 ⁺ 1292.1+x 17/2 ⁺ Q DCO=1.10 8 530.1 5 5.7 I4 3754.6+x 37/2 ⁺ 3224.6+x 33/2 ⁺ Q DCO=1.09 9 530.2 5 4.3 I1 2348.8+x 25/2 ⁺ 1818.6+x 21/2 ⁺ Q DCO=1.05 II 535.1 5 5.5 I4 3602.2+x 35/2 ⁻ 3067.1+x 31/2 ⁻ Q DCO=1.04 9 537.6 8 2.4 7 3484.8+x 35/2 ⁻ 2947.1+x 31/2 ⁻ E2 DCO=1.03 9 538.9 8 0.58 I7 4403.4+x 39/2 ⁺ 3864.5+x 35/2 ⁺ E2 DCO=1.05 II 542.6 3 10.8 I6 1740.2+x 21/2 ⁺ 1197.5+x 17/2 ⁺ Q DCO=1.02 9 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>Q</td><td>DCO=1.04 8</td></td<>							Q	DCO=1.04 8
525.1 5 4.6 12 3765.2+x 37/2+ 3240.1+x 33/2+ Q DCO=0.95 12 526.1 5 9.4 24 1818.6+x 21/2+ 1292.1+x 17/2+ Q DCO=1.10 8 530.1 5 5.7 14 3754.6+x 37/2+ 3224.6+x 33/2+ Q DCO=1.09 9 530.2 5 4.3 11 2348.8+x 25/2+ 1818.6+x 21/2+ Q DCO=1.05 11 535.1 5 5.5 14 3602.2+x 35/2- 3067.1+x 31/2- Q DCO=1.04 9 535.1 1 32 3 4009.9+x 41/2- 3474.9+x 37/2- Q DCO=1.04 9 537.6 8 2.4 7 3484.8+x 35/2- 2947.1+x 31/2- DCO=1.03 9 538.2 1 52 4 1587.0+x 21/2+ 1048.9+x 17/2+ E2 DCO=1.03 9 538.9 8 0.58 17 4403.4+x 39/2+ 3864.5+x 35/2+ Q DCO=1.05 11 542.6 3 10.8 16 1740.2+x 21/2+ 1197.5+x 17/2+ Q DCO=1.02 9 544.6 3 14 2 3980.9+x	518.8 <i>1</i>	100 8	1618.3+x	$23/2^{-}$				DCO=1.06 8
525.1 5 4.6 12 3765.2+x 37/2+ 3240.1+x 33/2+ Q DCO=0.95 12 526.1 5 9.4 24 1818.6+x 21/2+ 1292.1+x 17/2+ Q DCO=1.10 8 530.1 5 5.7 14 3754.6+x 37/2+ 3224.6+x 33/2+ Q DCO=1.09 9 530.2 5 4.3 11 2348.8+x 25/2+ 1818.6+x 21/2+ Q DCO=1.05 11 535.1 5 5.5 14 3602.2+x 35/2- 3067.1+x 31/2- Q DCO=1.04 9 535.1 1 32 3 4009.9+x 41/2- 3474.9+x 37/2- Q DCO=1.04 9 537.6 8 2.4 7 3484.8+x 35/2- 2947.1+x 31/2- DCO=1.03 9 538.2 1 52 4 1587.0+x 21/2+ 1048.9+x 17/2+ E2 DCO=1.03 9 538.9 8 0.58 17 4403.4+x 39/2+ 3864.5+x 35/2+ Q DCO=1.05 11 542.6 3 10.8 16 1740.2+x 21/2+ 1197.5+x 17/2+ Q DCO=1.02 9 544.6 3 14 2 3980.9+x	523.5 5	9.0 22	1478.6+x	$19/2^{+}$	955.5 + x	$15/2^{+}$	Q	DCO=0.78 11
530.1 5 5.7 14 3754.6+x 37/2+ 3224.6+x 33/2+ Q DCO=1.09 9 530.2 5 4.3 11 2348.8+x 25/2+ 1818.6+x 21/2+ Q DCO=1.05 11 535.1 5 5.5 14 3602.2+x 35/2- 3067.1+x 31/2- Q DCO=1.04 12 535.1 1 32 3 4009.9+x 41/2- 3474.9+x 37/2- Q DCO=1.04 9 537.6 8 2.4 7 3484.8+x 35/2- 2947.1+x 31/2- 538.2 1 52 4 1587.0+x 21/2+ 1048.9+x 17/2+ E2 DCO=1.03 9 538.9 8 0.58 17 4403.4+x 39/2+ 3864.5+x 35/2+ 540.9 5 3.8 10 2999.7+x 31/2+ 2458.6+x 27/2+ Q DCO=1.05 11 542.6 3 10.8 16 1740.2+x 21/2+ 1197.5+x 17/2+ Q DCO=1.02 9 544.6 3 14 2 3980.9+x 39/2+ 3436.6+x 35/2+ Q DCO=1.20 11 544.7 1 30 2 1990.2+x 23/2+ 1445.5+x 19/2+ <t< td=""><td>525.1 5</td><td>4.6 12</td><td>3765.2+x</td><td>$37/2^{+}$</td><td>3240.1+x</td><td>$33/2^{+}$</td><td></td><td></td></t<>	525.1 5	4.6 12	3765.2+x	$37/2^{+}$	3240.1+x	$33/2^{+}$		
530.2 5 4.3 11 2348.8+x 25/2+ 1818.6+x 21/2+ Q DCO=1.05 11 535.1 5 5.5 14 3602.2+x 35/2- 3067.1+x 31/2- Q DCO=1.14 12 535.1 1 32 3 4009.9+x 41/2- 3474.9+x 37/2- Q DCO=1.04 9 537.6 8 2.4 7 3484.8+x 35/2- 2947.1+x 31/2- 538.2 1 52 4 1587.0+x 21/2+ 1048.9+x 17/2+ E2 DCO=1.03 9 538.9 8 0.58 17 4403.4+x 39/2+ 3864.5+x 35/2+ 540.9 5 3.8 10 2999.7+x 31/2+ 2458.6+x 27/2+ Q DCO=1.05 11 542.6 3 10.8 16 1740.2+x 21/2+ 1197.5+x 17/2+ Q DCO=1.02 9 544.6 3 14 2 3980.9+x 39/2+ 3436.6+x 35/2+ Q DCO=1.20 11 544.7 1 30 2 1990.2+x 23/2+ 1445.5+x 19/2+ Q DCO=1.20 12							Q	
535.1 5 5.5 14 3602.2+x 35/2 ⁻ 3067.1+x 31/2 ⁻ Q DCO=1.14 12 535.1 1 32 3 4009.9+x 41/2 ⁻ 3474.9+x 37/2 ⁻ Q DCO=1.04 9 537.6 8 2.4 7 3484.8+x 35/2 ⁻ 2947.1+x 31/2 ⁻ 538.2 1 52 4 1587.0+x 21/2 ⁺ 1048.9+x 17/2 ⁺ E2 DCO=1.03 9 538.9 8 0.58 17 4403.4+x 39/2 ⁺ 3864.5+x 35/2 ⁺ 540.9 5 3.8 10 2999.7+x 31/2 ⁺ 2458.6+x 27/2 ⁺ Q DCO=1.05 11 542.6 3 10.8 16 1740.2+x 21/2 ⁺ 1197.5+x 17/2 ⁺ Q DCO=1.02 9 544.6 3 14 2 3980.9+x 39/2 ⁺ 3436.6+x 35/2 ⁺ Q DCO=1.20 11 544.7 1 30 2 1990.2+x 23/2 ⁺ 1445.5+x 19/2 ⁺ Q DCO=1.20 12	530.1 5	5.7 14	3754.6+x		3224.6+x		Q	DCO=1.09 9
535.1 I 32 3 4009.9+x 41/2 ⁻ 3474.9+x 37/2 ⁻ Q DCO=1.04 9 537.6 8 2.4 7 3484.8+x 35/2 ⁻ 2947.1+x 31/2 ⁻ 538.2 I 52 4 1587.0+x 21/2 ⁺ 1048.9+x 17/2 ⁺ E2 DCO=1.03 9 538.9 8 0.58 17 4403.4+x 39/2 ⁺ 3864.5+x 35/2 ⁺ 540.9 5 3.8 10 2999.7+x 31/2 ⁺ 2458.6+x 27/2 ⁺ Q DCO=1.05 11 542.6 3 10.8 16 1740.2+x 21/2 ⁺ 1197.5+x 17/2 ⁺ Q DCO=1.02 9 544.6 3 14 2 3980.9+x 39/2 ⁺ 3436.6+x 35/2 ⁺ Q DCO=1.20 11 544.7 I 30 2 1990.2+x 23/2 ⁺ 1445.5+x 19/2 ⁺ Q DCO=1.20 12							Q	
537.6 8 2.4 7 3484.8+x 35/2 ⁻ 2947.1+x 31/2 ⁻ 538.2 I 52 4 1587.0+x 21/2 ⁺ 1048.9+x 17/2 ⁺ E2 DCO=1.03 9 538.9 8 0.58 I7 4403.4+x 39/2 ⁺ 3864.5+x 35/2 ⁺ 540.9 5 3.8 I0 2999.7+x 31/2 ⁺ 2458.6+x 27/2 ⁺ Q DCO=1.05 II 542.6 3 10.8 I6 1740.2+x 21/2 ⁺ 1197.5+x 17/2 ⁺ Q DCO=1.02 9 544.6 3 14 2 3980.9+x 39/2 ⁺ 3436.6+x 35/2 ⁺ Q DCO=1.20 II 544.7 I 30 2 1990.2+x 23/2 ⁺ 1445.5+x 19/2 ⁺ Q DCO=1.20 I2	535.1 5			$35/2^{-}$	3067.1+x	$31/2^{-}$	Q	
538.2 I 52 4 1587.0+x 21/2+ 1048.9+x 17/2+ E2 DCO=1.03 9 538.9 8 0.58 17 4403.4+x 39/2+ 3864.5+x 35/2+ 540.9 5 3.8 10 2999.7+x 31/2+ 2458.6+x 27/2+ Q DCO=1.05 11 542.6 3 10.8 16 1740.2+x 21/2+ 1197.5+x 17/2+ Q DCO=1.02 9 544.6 3 14 2 3980.9+x 39/2+ 3436.6+x 35/2+ Q DCO=1.20 11 544.7 I 30 2 1990.2+x 23/2+ 1445.5+x 19/2+ Q DCO=1.20 12							Q	DCO=1.04 9
538.9 8 0.58 17 4403.4+x 39/2+ 3864.5+x 35/2+ 540.9 5 3.8 10 2999.7+x 31/2+ 2458.6+x 27/2+ Q DCO=1.05 11 542.6 3 10.8 16 1740.2+x 21/2+ 1197.5+x 17/2+ Q DCO=1.02 9 544.6 3 14 2 3980.9+x 39/2+ 3436.6+x 35/2+ Q DCO=1.20 11 544.7 1 30 2 1990.2+x 23/2+ 1445.5+x 19/2+ Q DCO=1.20 12								
540.9 5 3.8 10 2999.7+x 31/2+ 2458.6+x 27/2+ Q DCO=1.05 11 542.6 3 10.8 16 1740.2+x 21/2+ 1197.5+x 17/2+ Q DCO=1.02 9 544.6 3 14 2 3980.9+x 39/2+ 3436.6+x 35/2+ Q DCO=1.20 11 544.7 1 30 2 1990.2+x 23/2+ 1445.5+x 19/2+ Q DCO=1.20 12							E2	DCO=1.03 9
542.6 3 10.8 16 1740.2+x 21/2 ⁺ 1197.5+x 17/2 ⁺ Q DCO=1.02 9 544.6 3 14 2 3980.9+x 39/2 ⁺ 3436.6+x 35/2 ⁺ Q DCO=1.20 11 544.7 1 30 2 1990.2+x 23/2 ⁺ 1445.5+x 19/2 ⁺ Q DCO=1.20 12								D 00 4 05 11
544.6 <i>3</i> 14 2 3980.9+x 39/2 ⁺ 3436.6+x 35/2 ⁺ Q DCO=1.20 <i>11</i> 544.7 <i>1</i> 30 2 1990.2+x 23/2 ⁺ 1445.5+x 19/2 ⁺ Q DCO=1.20 <i>12</i>								
544.7 <i>l</i> 30 2 1990.2+x 23/2 ⁺ 1445.5+x 19/2 ⁺ Q DCO=1.20 <i>l</i> 2								
						,		
348.4 3 14.2 21 2338.0+X 21/2' 1990.2+X 23/2' Q DCO=1.03 12								
552.9 3 10.0 15 3970.2+x 39/2 ⁺ 3417.3+x 35/2 ⁺ Q DCO=1.01 11	JJ2.9 5	10.0 13	397U.Z+X	39/2	341/.3+X	33/2	Ų	DCO=1.01 11

$\frac{139}{La} (^{30}Si, 4n\gamma) \qquad \textbf{2004Sc14,2003Sc02,2005An04 (continued)}$

$E_{\gamma}^{\dagger \#}$	I_{γ} ‡	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_f	J_f^π	Mult.&		Comments
554.6 5	9.7 24	2294.5+x	25/2+	1740.2+x	21/2+	Q	DCO=1.08 9	
554.8 <i>3</i>	11.8 18	2545.0+x	27/2+	1990.2+x	23/2+	Q	DCO=1.04 9	
558.5 <i>1</i>	57 5	1945.0+x	25/2-	1386.4+x	21/2-	Q	DCO=1.02 9	
561.0 <i>1</i>	42 3	1871.6+x	$23/2^{+}$	1310.6+x	19/2+	Q	DCO=0.98 9	
562.5 [@] 8	2.4 7	3980.9+x	39/2 ⁺	3417.3+x	35/2+			
563.0 <i>5</i>	8.8 22	4034.7+x	39/2+	3471.7+x	35/2+	Q	DCO=1.12 12	
563.6 <i>1</i>	27.9 22	2730.3+x	$29/2^{+}$	2166.7+x	$25/2^{+}$	Q	DCO=1.04 9	
564.0 5	4.8 12	2612.3+x	27/2+	2048.3+x	$23/2^{+}$	Q	DCO=1.10 11	
564.8 8	1.7 5	4270.0+x	$41/2^{+}$	3705.4+x	$37/2^{+}$			
568.9 <i>5</i>	4.6 12	2155.6+x	$23/2^{-}$	1587.0+x	$21/2^{+}$	D	DCO=0.59 7	
569.7 <i>5</i>	8.0 2	2048.3+x	$23/2^{+}$	1478.6+x	$19/2^{+}$	Q	DCO=0.90 9	
577.6 <i>1</i>	97 8	2195.9+x	$27/2^{-}$	1618.3+x	$23/2^{-}$	Q	DCO=1.06 9	
579.7 <i>1</i>	53 4	2166.7+x	$25/2^{+}$	1587.0+x	$21/2^{+}$	Q	DCO=1.04 9	
582.1 5	5.5 14	4347.3+x	$41/2^{+}$	3765.2+x	$37/2^{+}$	Q	DCO=0.89 12	
582.7 <i>5</i>	4.5 11	4184.9+x	$39/2^{-}$	3602.2+x	35/2-	Q	DCO=1.02 <i>13</i>	
585.7 <i>1</i>	22.1 18	2564.3+x	29/2-	1978.64+x	,	Q	DCO=1.17 9	
586.8 <i>1</i>	22.1 18	4321.9+x	43/2-	3734.9+x	39/2-	Q	DCO=1.16 11	
587.0 <i>1</i>	36.9 <i>30</i>	2458.6+x	$27/2^{+}$	1871.6+x	$23/2^{+}$	Q	DCO=1.10 9	
587.5 [@] 5	5.2 13	4270.0+x	$41/2^{+}$	3682.5+x	$37/2^{+}$			
589.8 <i>1</i>	56 4	2534.9+x	29/2-	1945.0+x	25/2-	Q	DCO=1.03 9	
590.7 <i>5</i>	3.3 8	2409.3+x	25/2+	1818.6+x	$21/2^{+}$	Q	DCO=1.20 15	
592.7 8	1.4 4	4347.3+x	41/2+	3754.6+x	37/2+	_		
593.2 1	86 7	2789.0+x	31/2	2195.9+x	27/2	Q	DCO=0.90 9	
598.0 8	1.0 3	5001.4+x	43/2+	4403.4+x	39/2+			
598.2 5	4.2 10	2765.2+x	29/2+	2166.7+x	25/2+	Q	DCO=0.97 11	
598.5 <i>3</i>	13 2	4579.4+x	43/2+	3980.9+x	39/2+	Q	DCO=0.97 9	
598.8 5	4.1 10	5173.9+x	45/2-	4575.0+x	41/2-	0	DCO 110 11	
601.6 5	6.0 15	3823.8+x	37/2-	3222.2+x	33/2-	Q	DCO=1.10 11	
608.0 5	8.6 22	4290.5+x	41/2+	3682.5+x	37/2 ⁺	Q	DCO=0.89 11	
608.8 <i>5</i> 608.8 <i>8</i>	7.3 <i>18</i> 1.9 <i>6</i>	2348.8+x 4374.0+x	25/2 ⁺	1740.2+x 3765.2+x	21/2 ⁺ 37/2 ⁺	Q	DCO=1.10 <i>12</i>	
609.3 5	6.3 16	4574.0+x $4579.4+x$	41/2 ⁺ 43/2 ⁺	3703.2+x 3970.2+x	31/2 39/2 ⁺	0	DCO=1.05 11	
615.4 5	4.9 12	4800.2+x	43/2	4184.9+x	39/2	Q Q	DCO=1.05 11 DCO=1.25 15	
618.5 3	12.5 19	4888.7+x	45/2 ⁺	4270.0+x	41/2+	Q	DCO=0.90 11	
619.4 5	5.6 14	4374.0+x	41/2+	3754.6+x	37/2+	Q	DCO=0.90 11 DCO=0.91 9	
624.4	3.0 17	3864.5+x	35/2+	3240.1+x	33/2+	Q	DC0=0.91 9	
624.5 8	0.6 2	624.5+y	J+2	y	J			
625.0 8	1.1 3	5115.5+x	45/2-	4490.6+x	41/2-			
628.8 8	2.5 8	3823.8+x	37/2-	3195.2+x	33/2-	Q	DCO=0.98 11	
629.6 5	6.2 16	4453.4+x	41/2-	3823.8+x	37/2-	Q	DCO=0.96 11	
630.9 <i>3</i>	13.2 20	3195.2+x	33/2-	2564.3+x	29/2-	Q	DCO=1.14 9	
632.0 5	5.0 12	4116.8+x	39/2-	3484.8+x	35/2-	Q	DCO=1.00 9	
635.2 <i>1</i>	26.3 21	4644.9+x	$45/2^{-}$	4009.9+x	$41/2^{-}$	Q	DCO=1.06 9	
637.1 5	5.3 13	4490.6+x	$41/2^{-}$	3853.5+x	37/2-	Q	DCO=1.10 12	
638.2 8	0.24 7	4403.4+x	$39/2^{+}$	3765.2+x	$37/2^{+}$			
641.3 5	7.3 18	4988.6+x	$45/2^{+}$	4347.3+x	$41/2^{+}$	Q	DCO=1.00 9	
641.4 <i>3</i>	12.3 18	5220.8+x	$47/2^{+}$	4579.4+x	$43/2^{+}$	Q	DCO=1.06 9	
643.7 <i>3</i>	10.4 <i>16</i>	4613.9+x	$43/2^{+}$	3970.2+x	39/2+	Q	DCO=1.13 12	
646.3 5	3.6 9	5446.5 + x	47/2-	4800.2+x	43/2-	Q	DCO=1.19 16	
651.1 <i>3</i>	12.2 18	5539.6+x	49/2+	4888.7+x	$45/2^{+}$	Q	DCO=1.16 12	
651.2 5	3.3 8	5825.1+x	49/2-	5173.9+x	45/2	_		
652.0 <i>5</i>	8.4 21	4686.7+x	43/2+	4034.7+x	39/2+	Q	DCO=1.02 11	
654.1 8	0.27 8	5001.4+x	43/2+	4347.3+x	41/2+		D.G.O. O.O	
654.5 5	3.1 8	5145.1+x	45/2-	4490.6+x	41/2	Q	DCO=0.93 12	
655.1 8	2.7 8	5656.5+x	47/2 ⁺	5001.4 + x	$43/2^{+}$			

E_{γ} †#	I_{γ}^{\ddagger}	$E_i(level)$	\mathtt{J}_{i}^{π}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult. &	δ	Comments
656.3 5	4.5 11	4773.2+x	43/2-	4116.8+x 39/2 ⁻	Q		DCO=0.90 10
658.1 8	2.5 8	3222.2+x	33/2-	2564.3+x 29/2 ⁻	-		
658.4 <i>5</i>	8.9 22	3853.5+x	$37/2^{-}$	3195.2+x 33/2-	Q		DCO=1.05 10
661.3 8	1.5 4	5449.5 + x	$45/2^{+}$	$4788.2+x$ $41/2^+$			
662.0 <i>5</i>	3.0 8	5115.5+x	45/2	4453.4+x 41/2 ⁻	Q	<i>a</i>	DCO=0.92 <i>12</i>
667.9 8	0.74 22	5656.5+x	47/2+	4988.6+x 45/2+	(E2+M1) ^a	+3.1 ^a 4	DCO=0.37 14
670.0 5	4.7 12	4960.5+x	45/2+	4290.5+x 41/2+	Q		DCO=1.20 <i>15</i>
670.8 8	2.6 8	5786.3+x	49/2-	5115.5+x 45/2 ⁻	Q		DCO=0.94 <i>12</i>
674.1 <i>I</i>	20.3 16	4996.1+x	47/2 ⁻	4321.9+x 43/2 ⁻	Q		DCO=1.02 9
679.2 5	8.6 22	5899.8+x	51/2 ⁺ 51/2 ⁺	5220.8+x 47/2+	Q	+3.1 ^a 4	DCO=0.92 9
682.5 <i>8</i> 683.8 <i>8</i>	0.52 <i>16</i> 1.0 <i>3</i>	6367.9+x 1308.3+y	J+4	5685.4+x 49/2+ 624.5+y J+2	$(E2+M1)^{a}$	+3.1" 4	DCO=0.38 <i>13</i> (2003Sc02)
687.2 8	1.6 5	6080.9+x	51/2 ⁺	5393.7+x 47/2+			
687.3 5	5.2 13	3222.2+x	33/2-	2534.9+x 29/2	Q		DCO=1.13 12
690.5 8	2.0 6	4960.5+x	45/2 ⁺	4270.0+x 41/2+	V		DCO=1.13 12
691.4 5	4.0 <i>I</i>	6137.9+x	51/2	5446.5+x 47/2	Q		DCO=1.25 16
694.8 5	3.3 8	5068.9+x	45/2 ⁺	4374.0+x 41/2+	Q		DCO=0.89 9
695.7 <i>3</i>	12.2 18	3484.8+x	35/2-	2789.0+x 31/2 ⁻	Q		DCO=1.05 9
696.7 <i>3</i>	10.9 <i>16</i>	6236.3+x	53/2+	5539.6+x 49/2+	Q		DCO=1.21 15
696.8 <i>5</i>	4.9 12	5685.4+x	$49/2^{+}$	4988.6+x 45/2+	Q		DCO=1.20 14
697.9 8	0.36 11	7133.6+x	$55/2^{+}$	$6435.7+x$ $53/2^+$			
700.0 8	2.6 8	5845.1+x	$49/2^{-}$	5145.1+x 45/2 ⁻	Q		DCO=0.90 11
702.31 5	4.2 10	5475.5 + x	$47/2^{-}$	4773.2+x 43/2 ⁻	Q		DCO=0.94 11
703.0 5	4.2 10	6178.5 + x	51/2	5475.5+x 47/2	Q		DCO=0.94 11
706.0 8	1.6 5	6155.5+x	49/2+	5449.5+x 45/2+			DGO 0.00 0
707.0 5	5.1 13	5393.7+x	47/2 ⁺	4686.7+x 43/2 ⁺	Q		DCO=0.98 9
708.1 8	0.6 2	6101.7+x	51/2 ⁺	5393.7+x 47/2 ⁺ 5656.5+x 47/2 ⁺	0		DCO=1.00 9
711.4 8 712.0 <i>5</i>	2.6 <i>8</i> 7.2 <i>18</i>	6367.9+x 5325.9+x	51/2 ⁺		Q		DCO=1.00 9 DCO=1.09 11
712.0 3	0.5 2	712.2+z	47/2 ⁺ J1+2	4613.9+x 43/2 ⁺ z J1	Q		DCO=1.09 11
715.8 ^b 8	1.4 4	5860.9+x	$(49/2)^{-}$	5145.1+x 45/2 ⁻			
713.8 8 718.7 <i>I</i>	23.8 19	5363.5+x	49/2)	4644.9+x 45/2	Q		DCO=1.00 11
720.7 8	0.5 2	1769.6+x	19/2	1048.9+x 17/2+	D		DCO=0.63 9
721.2 5	3.9 10	6507.5+x	53/2	5786.3+x 49/2 ⁻	Q		DCO=1.06 12
727.3 8	2.1 6	6552.2+x	53/2-	5825.1+x 49/2			
732.9 5	6.8 17	6632.3+x	55/2+	5899.8+x 51/2+	Q		DCO=1.25 12
735.0 5	4.1 10	5695.5 + x	49/2+	4960.5+x 45/2+	Q		DCO=0.98 15
740.7 8	0.9 3	2049.0+y	J+6	1308.3+y J+4			
743.9 <i>3</i>	17.0 26	5740.2+x	$51/2^{-}$	4996.1+x 47/2 ⁻	Q		DCO=1.00 9
748.6 <i>5</i>	5.5 14	6886.5 + x	55/2-	6137.9+x 51/2 ⁻	Q		DCO=1.17 15
748.8 8	1.7 5	6904.3+x	53/2+	$6155.5 + x 49/2^+$	_		
749.0 8	1.80 54	5435.6+x	47/2 ⁺	4686.7+x 43/2+	Q		DCO=1.14 20
750.2 5	4.6 12	6435.7+x		5685.4+x 49/2+	Q		DCO=1.12 12
751.2 <i>3</i>	16.8 25	2947.1+x	31/2 ⁻	2195.9+x 27/2 ⁻ 5435.6+x 47/2 ⁺	Q		DCO=1.02 <i>10</i> DCO=1.05 22
753.0 <i>8</i> 753.0 <i>8</i>	1.3 <i>4</i> 2.1 <i>6</i>	6188.7+x 6448.5+x	51/2 ⁺ 53/2 ⁺	5695.5+x 49/2 ⁺	Q		DCO=1.01 12
755.0 <i>5</i>	3.0 8	5823.9+x	49/2 ⁺	5068.9+x 45/2 ⁺	Q Q		DCO=0.93 9
755.0 <i>5</i>	4.5 11	6080.9+x	51/2 ⁺	5325.9+x 47/2 ⁺	Q		DCO=1.01 9
761.0 8	1.42 43	6841.9+x	55/2 ⁺	6080.9+x 51/2+	Q		DCO=1.10 11
761.4 5	9.3 23	6998.0+x	57/2 ⁺	6236.3+x 53/2 ⁺	Q		DCO=1.02 10
763.5 8	1.4 4	6608.6+x	53/2-	5845.1+x 49/2 ⁻	Q		DCO=1.05 11
765.7 8	1.7 5	7133.6+x	55/2 ⁺	6367.9+x 51/2+	Q		DCO=0.88 14
768.6 8	1.2 4	6947.1+x	$55/2^{-}$	6178.5+x 51/2 ⁻	Q		DCO=0.98 11
770.2 8	0.9 3	1482.4+z	J1+4	712.2+z J1+2	_		
775.8 <i>5</i>	4.3 11	6101.7+x	51/2+	5325.9+x 47/2 ⁺	Q		DCO=1.21 <i>15</i>

E_{γ} †#	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.&	Comments
780.4 5	4.1 10	7287.9+x	57/2-	6507.5+x 53/2 ⁻	Q	DCO=0.89 12
781.3 8	1.0 3	6642.2+x	$(53/2)^{-}$	5860.9+x (49/2) ⁻	0	DCO 104 II
783.3 <i>3</i>	16.9 25	6146.7+x	53/2 ⁻	5363.5+x 49/2 ⁻	Q	DCO=1.04 //
789.5 8	2.0 6	6613.4+x	53/2+	5823.9+x 49/2+	Q	DCO=1.04 11
792.0 8	2.2 7	7240.5+x	57/2 ⁺	6448.5+x 53/2+	Q	DCO=1.10 14
795.0 8	0.9 3	6188.7+x	51/2+	5393.7+x 47/2+	Q	DCO=1.15 18
798.3 8	0.8 2	2847.3+y	J+8	2049.0+y J+6		D.G.O. 4.00 11
798.7 <i>3</i>	12.5 19	6538.8+x	55/2-	5740.2+x 51/2 ⁻	Q	DCO=1.02 11
798.7 8	1.9 6	7703.0+x	57/2+	$6904.3+x$ $53/2^+$		
802.5 8	1.4 4	7354.6+x	57/2-	6552.2+x 53/2 ⁻	_	
803.3 5	3.2 8	7239.0+x	57/2+	$6435.7+x$ $53/2^+$	Q	DCO=0.89 11
804.9 8	1.4 4	7418.3+x	57/2+	$6613.4+x 53/2^+$		
805.9 8	2.6 8	6907.6+x	55/2+	$6101.7+x$ $51/2^+$	Q	DCO=1.20 16
806.0 8	1.9 6	6994.7+x	55/2+	$6188.7+x$ $51/2^+$	Q	DCO=1.05 18
806.9 <i>5</i>	5.5 14	7439.2+x	59/2+	6632.3+x 55/2+	Q	DCO=0.92 11
807.3 5	3.2 8	7693.8 + x	59/2-	6886.5+x 55/2 ⁻	Q	DCO=1.21 15
816.0 8	2.3 7	6511.5 + x	53/2+	5695.5+x 49/2+	Q	DCO=1.19 16
819.9 8	1.2 4	7953.5 + x	59/2+	$7133.6+x 55/2^+$	Q	DCO=1.05 12
822.6 8	1.3 4	7431.2 + x	57/2-	6608.6+x 53/2 ⁻	Q	DCO=1.10 <i>12</i>
824.8 8	0.9 3	7467.0+x	$(57/2)^{-}$	$6642.2+x (53/2)^{-}$	Q	
826.7 8	0.2 1	6907.6+x	55/2+	$6080.9+x 51/2^+$		
827.0 8	1.7 5	7338.5 + x	57/2+	$6511.5+x 53/2^+$	Q	DCO=1.05 16
828.9 8	0.8 2	2311.3+z	J1+6	1482.4+z J1+4		
835.4 <i>3</i>	15.4 23	6982.1+x	$57/2^{-}$	6146.7+x 53/2 ⁻	Q	DCO=0.91 9
836.0 8	2.5 8	7677.9 + x	59/2 ⁺	6841.9+x 55/2 ⁺	Q	DCO=1.04 12
839.50 5	8.9 22	7837.5 + x	$61/2^{+}$	6998.0+x 57/2+	Q	DCO=0.98 11
839.8 8	0.8 2	8258.1+x	$61/2^{+}$	7418.3+x 57/2+		
839.9 <i>5</i>	3.8 10	8127.8+x	$61/2^{-}$	7287.9+x 57/2 ⁻	Q	DCO=0.88 11
840.0 ^b 8	2.9 9	4575.0+x	$41/2^{-}$	3734.9+x 39/2 ⁻		
841.4 8	1.1 3	7788.4 + x	59/2-	6947.1+x 55/2 ⁻	Q	DCO=0.83 12
844.5 <i>3</i>	11.0 16	7383.2+x	59/2-	6538.8+x 55/2 ⁻	Q	DCO=0.89 9
847.0 8	1.4 4	7841.7 + x	59/2+	6994.7+x 55/2+	Q	DCO=0.95 15
849.6 8	1.8 5	8552.6+x	$61/2^{+}$	7703.0+x 57/2+		
852.7 8	2.3 7	7760.3+x	59/2+	6907.6+x 55/2+		
855.7 8	2.8 8	8094.7 + x	$61/2^{+}$	7239.0+x 57/2+	Q	DCO=1.01 11
856.0 8	0.6 2	3703.3+y	J+10	2847.3+y J+8		
863.1 8	2.9 9	8556.9+x	$63/2^{-}$	7693.8+x 59/2 ⁻		
869.7 8	0.6 2	8336.7+x	$(61/2)^{-}$	$7467.0+x (57/2)^{-}$		
872.1 8	0.93 28	8825.6+x	63/2+	7953.5+x 59/2+	Q	DCO=0.92 15
872.2 8	1.3 4	8226.8+x	$61/2^{-}$	7354.6+x 57/2 ⁻		
874.0 8	2.5 8	8114.5+x	61/2+	7240.5+x 57/2+	Q	DCO=1.20 15
874.0 8	1.3 4	8212.5+x	$61/2^{+}$	7338.5+x 57/2+	Q	DCO=1.06 16
881.0 8	1.2 4	8312.2+x		7431.2+x 57/2 ⁻	Q	DCO=1.06 12
881.6 <i>5</i>	9.2 23	7863.9+x	$61/2^{-}$	6982.1+x 57/2 ⁻	Q	DCO=1.20 12
885.8 8	0.5 2	3197.1+z	J1+8	2311.3+z J1+6		
886.2 5	9.3 23	8269.2+x	$63/2^{-}$	7383.2+x 59/2 ⁻	Q	DCO=1.15 11
891.7 <i>5</i>	5.0 12	8330.8+x	63/2+	7439.2+x 59/2+	Q	DCO=0.94 11
892.0 8	1.3 4	8733.7+x	63/2+	7841.7+x 59/2 ⁺	Q	DCO=0.98 17
900.1 8	2.2 7	8660.4+x	63/2+	7760.3+x 59/2 ⁺	Q	
900.1 5	3.5 9	9027.9+x	$65/2^{-}$	8127.8+x 61/2 ⁻	Q	DCO=0.92 15
902.8 8	0.7 2	9160.9+x	65/2 ⁺	8258.1+x 61/2 ⁺		
903.2 8	0.55 16	8691.6+x	63/2	7788.4+x 59/2 ⁻	Q	DCO=0.92 15
904.7 8	1.5 4	9457.3+x	65/2+	8552.6+x 61/2+		
907.0 8	2.7 8	8584.9+x	63/2+	7677.9+x 59/2 ⁺	Q	DCO=1.12 15
908.9 8	2.1 6	9003.5+x	65/2+	$8094.7+x 61/2^+$	Q	DCO=1.14 12
			, -			

$E_{\gamma}^{\dagger \#}$	$\mathrm{I}_{\gamma}^{\ddagger}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.&	Comments
915.6 8	0.3 1	4618.9+y	J+12	3703.3+y	J+10		
917.2 5	4.4 11	8754.6+x	$65/2^{+}$	7837.5 + x		Q	DCO=1.25 15
918.2 8	2.3 7	9475.1+x	67/2-	8556.9+x			
921.0 8	1.2 4	9133.5+x	65/2+	8212.5+x			D.G
926.6 8	0.79 24	9752.2+x	67/2+	8825.6+x		Q	DCO=0.95 17
928.3 8	0.3 1	9265.0+x	$(65/2)^{-}$	8336.7+x			
928.9 8	1.2 4	9155.7+x	65/2-	8226.8+x		0	DCO=1.08 9
929.4 <i>5</i> 930.2 <i>8</i>	5.0 <i>12</i> 0.8 <i>2</i>	9198.6+x 9242.4+x	67/2 ⁻ 65/2 ⁻	8269.2+x 8312.2+x		Q	DCO=1.08 9
931.0 5	6.7 17	8794.9+x	65/2	7863.9+x		Q	DCO=1.16 <i>12</i>
938.0 8	1.2 4	9671.7+x	67/2 ⁺	8733.7+x		Q	DCO=1.10 12
943.7 8	0.4 1	4140.8+z	J1+10	3197.1+z			
946.7 8	1.6 5	9607.1+x	67/2 ⁺	8660.4+x			
951.2 8	0.34 10	9642.9+x	67/2-	8691.6+x		Q	DCO=0.92 19
953.0 8	2.2 7	9067.5 + x	65/2+	8114.5+x	,	Q	DCO=1.18 17
957.5 8	1.3 4	10414.8+x	69/2+	9457.3+x			
960.0 8	2.6 8	9544.9 + x	$67/2^{+}$	8584.9+x	$63/2^{+}$	Q	DCO=1.20 <i>15</i>
963.0 8	1.5 4	9966.5+x	$69/2^{+}$	9003.5 + x		Q	DCO=0.95 12
963.1 8	2.3 7	9991.0+x	$69/2^{-}$	9027.9 + x	$65/2^{-}$		
965.1 8	0.6 2	10207.5 + x	69/2-	9242.4+x	,		
973.5 8	1.1 3	10129.2+x	69/2-	9155.7+x			
973.9 8	2.2 7	10449.0+x	71/2	9475.1+x			
974.0 8	0.60 18	10107.5+x	69/2+	9133.5+x			
975.0 8	1.0 3	10646.7+x	71/2+	9671.7+x	,		
975.3 8	0.2 1	5594.2+y	J+14	4618.9+y		0	DCO 1000
976.4 5	3.8 10	10175.0+x	71/2-	9198.6+x		Q	DCO=1.06 9
977.9 <i>5</i> 981.1 <i>8</i>	3.7 <i>9</i> 0.71 <i>21</i>	9308.7+x 10733.3+x	67/2 ⁺	8330.8+x 9752.2+x		0	DCO=1.13 <i>15</i>
986.0 5	3.4 8	9780.9+x	71/2 ⁺ 69/2 ⁻	9732.2+x 8794.9+x	,	Q Q	DCO=1.13 13 DCO=1.08 11
986.4 8	0.4 1	11193.9+x	$73/2^{-}$	10207.5+x		Q	DCO=1.00 11
986.9 8	1.3 4	10594.0+x	71/2+	9607.1+x			
987.9 5	3.3 8	9742.6+x	69/2 ⁺	8754.6+x		Q	DCO=1.14 16
1001.9 8	0.16 5	10644.8+x	71/2-	9642.9+x			
1002.0 8	1.5 4	10546.9+x	71/2+	9544.9+x		Q	DCO=1.22 17
1002.5 8	0.3 1	5143.3+z	J1+12	4140.8+z	J1+10		
1005.0 8	1.6 5	10072.5+x	69/2+	9067.5 + x	$65/2^{+}$		
1010.0 8	0.8 2	11656.7+x	$75/2^{+}$	10646.7+x	,		
1011.1 8	0.7 2	11425.9+x	$73/2^{+}$	10414.8+x			
1012.8 8	0.95 28	11142.0+x	73/2	10129.2+x			
1018.2 8	1.0 <i>I</i>	11612.3+x	75/2 ⁺	10594.0+x			DG0 006 10
1019.3 8	1.1 3	10985.9+x	73/2 ⁺	9966.5+x			DCO=0.96 12
1021.7 8	0.2 1	12215.6+x	77/2-	11193.9+x 9991.0+x			
1026.3 8 1026.6 5	1.9 <i>6</i> 3.0 <i>8</i>	11017.3+x 11201.6+x	73/2 ⁻ 75/2 ⁻	10175.0+x	,	0	DCO=1.14 <i>12</i>
1028.1 8	1.4 <i>4</i>	11201.0+x 11477.1+x	75/2 ⁻	10173.0+x 10449.0+x		Q	DCO=1.14 12
1035.1 8	0.52 16	11768.4+x	75/2 ⁺	10733.3+x	,		DCO=1.14 15
1036.0 8	1.4 4	11582.9+x	75/2 ⁺	10546.9+x		Q	DCO=0.95 15
1037.0 8	0.10 3	6631.2+y	J+16	5594.2+v		*	200 000 10
1037.7 8	0.9 3	12649.9+x	79/2 ⁺	11612.3+x			
1039.0 8	0.11 3	11683.8+x	75/2-	10644.8+x			
1046.0 8	2.2 7	10826.9+x	73/2-	9780.9+x	$69/2^{-}$		
1047.8 8	0.93 28	12189.8+x	77/2-	11142.0+x			
1051.2 8	2.4 7	10793.7+x	73/2+	9742.6+x			
1058.4 5	3.1 8	10367.1+x	71/2+	9308.7+x			
1059.1 8	0.5 2	12485.0+x	77/2 ⁺	11425.9+x			
1061.0 8	1.2 4	12643.9+x	79/2+	11582.9+x	/5/2 ⁺		

¹³⁹La(³⁰Si,4nγ) **2004Sc14,2003Sc02,2005An04** (continued)

Ε _γ †#	I_{γ}^{\ddagger}	$E_i(level)$	J_i^π	\mathbb{E}_f	J_f^π	Mult.&	Comments
1063.0 8	0.10 3	6206.3+z	J1+14	5143.3+z	J1+12		
1064.0 8	0.5 2	12720.7+x	79/2+	11656.7+x	75/2+		
1065.0 8	0.5 2	13715.0+x	83/2+	12649.9+x			
1076.0 8	2.4 7	12277.6+x	79/2-	11201.6+x	$75/2^{-}$	Q	DCO=0.89 13
1076.3 8	0.9 3	12062.1+x	77/2+	10985.9+x	$73/2^{+}$		
1081.6 8	1.1 3	12558.7+x	79/2-	11477.1+x	$75/2^{-}$		
1088.0 8	1.0 3	12105.3+x	$77/2^{-}$	11017.3+x	$73/2^{-}$		
1089.6 8	0.44 13	12858.0+x	79/2+	11768.4+x	$75/2^{+}$		
1102.2 <mark>b</mark>		5449.5+x	$45/2^{+}$	4347.3+x	$41/2^{+}$		
1105.4 8	1.5 4	11899.2+x	77/2+	10793.7+x			
1107.4 8	0.3 1	13592.5+x	81/2+	12485.0+x			
1108.9 8	1.4 4	11935.8+x	$77/2^{-}$	10826.9+x	$73/2^{-}$		
1109.0 8	0.4 1	13829.7+x	$83/2^{+}$	12720.7+x	79/2+		
1121.7 8	1.4 4	13399.3+x	$83/2^{-}$	12277.6+x	$79/2^{-}$	Q	DCO=1.11 14
1127.7 8	0.6 2	13686.4+x	83/2-	12558.7+x	$79/2^{-}$		
1129.7 8	1.2 4	11496.8+x	$75/2^{+}$	10367.1+x	,		
1133.4 8	0.6 2	13195.6+x	$81/2^{+}$	12062.1+x			
1139.7 8	0.8 2	13245.0+x	81/2-	12105.3+x	,		
1142.2 8	0.9 3	13041.3+x	81/2+	11899.2+x			
1151.0 8	0.27 8	14009.0+x	83/2+	12858.0+x			
1158.5 8	0.5 2	14199.8+x	85/2+	13041.3+x			
1158.8 8	0.7 2	14558.1+x	87/2-	13399.3+x			
1162.5 8	0.4 1	14848.9+x	87/2	13686.4+x			
1166.5 8	0.6 2	13102.3+x	$81/2^{-}$	11935.8+x	,		
1166.9 <mark>6</mark>		6155.5 + x	$49/2^{+}$	4988.6+x	$45/2^{+}$		
1182.0 8	0.4 1	12678.8+x	79/2+	11496.8+x	$75/2^{+}$		
1187.0 8	0.40 12	15745.1+x	$91/2^{-}$	14558.1+x			
1189.3 8	0.4 1	14384.9+x	85/2+	13195.6+x			
1199.8 8	0.22 7	15209+x	87/2+	14009.0+x	83/2+		
1218.9 <mark>6</mark>		6904.3 + x	$53/2^{+}$	5685.4+x	$49/2^{+}$		
1239.3 8	0.2 1	15624+x	89/2+	14384.9+x	$85/2^{+}$		
1253.7 ^b 8	0.15 4	16463+x?	$(91/2^+)$	15209+x	87/2+		

[†] Authors give an uncertainty range of 0.1-0.8 keV for all assigned transitions, based on individual γ' s intensity. The evaluators assign uncertainties to γ transitions as follows: 0.1 for I γ >20%, 0.3 for I γ =(10-20)%, 0.5 for I γ =(3-10)% and 0.8 for I γ <3%.

[‡] Authors give an uncertainty range of (8-30)% for all γ intensities. The evaluators have assigned individual uncertainties to γ intensities based on the following criterion: 8% for I γ >20%, 15% for I γ =(10-20)%, 25% for I γ =(3-10)% and 30% for I γ <3%.

 $^{^{\#}}$ DCO values are normalized to known $\Delta J=2$, stretched quadrupole transitions.

[@] Transition contaminated from a γ -ray line with similar energy.

[&]amp; From DCO ratios, mult=Q corresponds to ΔJ =2, stretched quadrupole (most likely E2) transition and mult=D corresponds to ΔJ =1, dipole (small quadrupole admixture is possible). The mult=E2 is from DCO ratio and application of RUL for levels of known lifetimes.

^a From DCO. The other solution with dominant M1 component is excluded In analogy with ¹⁶³Lu transitions In SD bands.

^b Placement of transition in the level scheme is uncertain.

 $^{165}_{71}Lu_{94} \\$

¹³⁹La(³⁰Si,4nγ) 2004Sc14,2003Sc02,2005An04

Level Scheme (continued)

Intensities: Relative I_{γ}

Legend

 $^{165}_{71}Lu_{94}$

139 La(30 Si,4n γ) 2004Sc14,2003Sc02,2005An04

 $^{165}_{71} Lu_{94}$

¹³⁹La(³⁰Si,4nγ) 2004Sc14,2003Sc02,2005An04

Level Scheme (continued)

Intensities: Relative I_{γ}

Legend

¹³⁹La(³⁰Si,4nγ) 2004Sc14,2003Sc02,2005An04

¹⁶⁵₇₁Lu₉₄

¹⁶⁵₇₁Lu₉₄

¹³⁹La(³⁰Si,4nγ) 2004Sc14,2003Sc02,2005An04

Level Scheme (continued)

Intensities: Relative I_{γ}

Legend

139 La(30 Si,4n γ) 2004Sc14,2003Sc02,2005An04

¹³⁹La(³⁰Si,4nγ) 2004Sc14,2003Sc02,2005An04

¹³⁹La(³⁰Si,4nγ) 2004Sc14,2003Sc02,2005An04

$$^{165}_{\,71}Lu_{94}$$

¹³⁹La(³⁰Si,4nγ) 2004Sc14,2003Sc02,2005An04 (continued)

¹³⁹La(³⁰Si,4nγ) 2004Sc14,2003Sc02,2005An04 (continued)

¹³⁹La(³⁰Si,4nγ) 2004Sc14,2003Sc02,2005An04 (continued)

385 2409.3+x

25/2

$$^{165}_{\ 71}Lu_{94}$$

150 Sm(19 F,4n γ) 1995Sc39

History

Type Author Citation Literature Cutoff Date
Full Evaluation Ashok K. Jain and Anwesha Ghosh, Balraj Singh NDS 107, 1075 (2006)

15-Apr-2006

1995Sc39: 150 Sm(19 F,4n γ) E=95 MeV. Measured E γ , I γ , $\gamma\gamma$ coin. Deduced a superdeformed structure and other normal-deformed bands. The authors also report data from 138 Ba(31 P,4n γ) reaction.

Other: 1983RoZW.

Theory for SD band: 1999Xi02.

¹⁶⁵Lu Levels

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
$0.0+x^{@a}$	3/2+	1291.99+x& <i>19</i>	17/2+	2730.16+x ^d 24	29/2 ⁺	5325.7+x ^e 16	47/2+
$5.4 + x^{b}$ 2	5/2+	1310.5+x ^e 3	$19/2^{+}$	2753.44+x ^b 24	$29/2^{+}$	5539.4+x ^f 4	49/2+
23.2+x ^e 3	$7/2^{+}$	1445.39+x ^a 20	$19/2^{+}$	2956.62+x ^e 24	$31/2^{+}$	5899.6+x ⁸ 4	$51/2^{+}$
141.44+x ^c 20	7/2+	1478.39+x ^c 21	19/2+	3180.3+x ^d 3	$33/2^{+}$	5904.0+x ^h 6	$(49/2^+)$
147.70+x & 13	5/2+	1587.0+x ^d 3	$21/2^{+}$	3200.9+x ^f 3	$33/2^{+}$	6101.5+x ^e 19	$51/2^{+}$
$182.2 + x^{d} 3$	9/2+	1740.01+x ^b 21	$21/2^{+}$	3233.5+x ^h 4	$(33/2^+)$	6236.0+x ^f 4	53/2+
195.39+x ^a 11	$7/2^{+}$	1818.51+x ^{&} 22	$21/2^{+}$	3417.2+x ^e 3	$35/2^{+}$	6632.0+x ^g 4	55/2+
305.56+x ^b 19	9/2+	1871.5+x ^e 3	$23/2^{+}$	3436.5+x ⁸ 3	$35/2^{+}$	6707.5+x ^h 6	$(53/2^+)$
366.4+x ^e 3	$11/2^{+}$	1879.2+x [#] 7	$(21/2^+)$	3682.4+x ^d 3	$37/2^{+}$	6997.6+x ^f 4	57/2+
432.70+x ^{&} 14	9/2+	1990.11+x ^a 23	$23/2^{+}$	3705.2+x ^f 4	$37/2^{+}$	7439.0+x ⁸ 4	59/2+
499.21+x ^c 19	$11/2^{+}$	2048.1+x ^c 3	$23/2^{+}$	3815.9+x ^h 4	$(37/2^+)$	7562.8+x ^h 7	$(57/2^+)$
519.58+x ^a 15	$11/2^{+}$	2166.7+x ^d 3	$25/2^{+}$	3970.0+x ^e 6	$39/2^{+}$	7837.4+x ^f 4	$61/2^{+}$
573.9+x ^d 3	$13/2^{+}$	2222.7+x [#] 6	$25/2^{+}$	3981.0+x ⁸ 3	$39/2^{+}$	8330.7+x ^g 5	$63/2^{+}$
711.21+x ^b 19	$13/2^{+}$	2263.8+x ^h 4	$(25/2^+)$	4269.8+x ^f 3	$41/2^{+}$	8470.3+x ^h 8	$(61/2^+)$
802.0+x ^e 3	$15/2^{+}$	2294.36+x ^b 22	$25/2^{+}$	4457.2+x ^h 5	$(41/2^+)$	8755.1+x ^f 5	$65/2^{+}$
821.13+x ^{&} 18	$13/2^{+}$	2348.73+x ^{&} 23	$25/2^{+}$	4579.2+x ⁸ 3	$43/2^{+}$	9305.7+x ⁸ 6	$67/2^{+}$
943.32+x ^a 17	$15/2^{+}$	2458.5+x ^e 3	27/2+	4613.7+x ^e 12	$43/2^{+}$	9432.6+x ^h 9	$(65/2^+)$
955.32+x ^c 20	15/2+	2538.56+x ^a 24	$27/2^{+}$	4888.5+x ^f 3	45/2+		
1048.7+x ^d 3	17/2+	2612.2+x ^c 4	$27/2^{+}$	5153.3+x ^h 5	$(45/2^+)$		
1197.29+x ^b 20	17/2+	2709.1+x ^h 4	(29/2+)	5220.6+x ^g 3	47/2+		

[†] From least-squares fit to $E\gamma'$ s.

 $^{^{\}ddagger}$ From 1995Sc39, based on rotational-band assignments and $\gamma(\theta)$ data in earlier (1988Fr22,1984Jo05) studies. The assignments are consistent with those in 'Adopted Levels', except that all are given in parentheses there due to lack of strong supporting arguments.

[#] Level not supported In more recent studies (2004Sc14), the transition connected with this level placed elsewhere. IT is omitted In 'Adopted Levels'.

 $^{^{@}}$ x \approx 20 keV; see 'Adopted Levels' for comments.

[&]amp; Band(A): 1/2[411] band, $\alpha = +1/2$.

^a Band(a): 1/2[411] band, $\alpha = -1/2$.

^b Band(B): 5/2[402] band, $\alpha = +1/2$.

^c Band(b): 5/2[402] band, $\alpha = -1/2$.

^d Band(C): 7/2[404] band, $\alpha = +1/2$.

^e Band(c): 7/2[404] band, $\alpha = -1/2$.

^f Band(D): 3-quasiparticle band, $\alpha = +1/2$.

^g Band(d): 3-quasiparticle band, $\alpha = -1/2$.

^h Band(E): SD (triaxial), 1/2[660] band, $\alpha = +1/2$.

¹⁵⁰Sm(¹⁹F,4nγ) **1995Sc39** (continued)

γ (165Lu)

$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}
136.10 12	10.0 10	141.44+x	7/2+	5.4+x	5/2+
147.67 <i>14</i>	10.0 10	147.70+x	5/2+	0.0+x	$3/2^{+}$
159.18 <i>11</i>	10.0 10	182.2+x	$9/2^{+}$	23.2+x	$7/2^{+}$
164.28 <i>12</i>	62.9 <i>17</i>	305.56 + x	9/2+	141.44 + x	7/2+
184.27 <i>11</i>	124.3 22	366.4 + x	$11/2^{+}$	182.2+x	9/2+
193.80 <i>12</i>	124.3 [‡] 22	499.21+x	$11/2^{+}$	305.56+x	9/2+
195.41 <i>11</i>	114 <i>4</i>	195.39 + x	$7/2^{+}$	0.0+x	$3/2^{+}$
207.59 12	92.4 <i>13</i>	573.9+x	$13/2^{+}$	366.4+x	$11/2^{+}$
212.17 <i>14</i>	41.3 10	711.21+x	$13/2^{+}$	499.21+x	$11/2^{+}$
214.07 16	16.1 5	519.58+x	$11/2^{+}$	305.56+x	9/2+
214.1 8 3	16.2 5	3417.2+x	35/2+	3200.9+x	$33/2^{+}$
224.33 [@] 16	21.6 5	3180.3+x	$33/2^{+}$	2956.62+x	$31/2^{+}$
226.52 <i>14</i>	41.0 8	2956.62+x	$31/2^{+}$	2730.16+x	29/2+
228.18 <i>14</i>	67.0 <i>10</i>	802.0+x	$15/2^{+}$	573.9+x	13/2+
231.88 20	19.8 6	943.32+x	15/2+	711.21+x	13/2+
235.60 3	31.1 6	3436.5+x	35/2+	3200.9+x	33/2+
237.23 14	24.7 6	3417.2+x	35/2+	3180.3+x	33/2+
237.39 16	20.4 9	432.70+x	9/2+	195.39+x	7/2+
241.82 <i>15</i>	25.6 6	1197.29+x	17/2+	955.32+x	15/2+
244.11 14	31.0 6	3200.9+x	33/2+	2956.62+x	31/2+
244.33 15	26.0 7	955.32+x	15/2+	711.21+x	13/2+
246.69 13	48.8 7	1048.7+x 1310.5+x	17/2 ⁺ 19/2 ⁺	802.0+x	15/2 ⁺ 17/2 ⁺
262.00 <i>14</i> 262.05 <i>18</i>	43.3 8 19.3 6	1310.3+x 1740.01+x	21/2+	1048.7+x 1478.39+x	17/2 19/2 ⁺
265.33 14	22.5 5	3682.4+x	37/2 ⁺	3417.2+x	35/2 ⁺
268.63 20	18.0 5	3705.2+x	37/2 ⁺	3417.2+x 3436.5+x	35/2 ⁺
271.40 <i>14</i>	40.0 6	2730.16+x	29/2+	2458.5+x	27/2 ⁺
275.2 10	9.1 4	3981.0+x	39/2 ⁺	3705.2+x	37/2 ⁺
276.52 13	49.0 8	1587.0+x	21/2+	1310.5+x	19/2+
281.10 <i>16</i>	19.2 6	1478.39+x	19/2 ⁺	1197.29+x	17/2+
284.49 15	24.7 6	1871.5+x	23/2+	1587.0+x	21/2+
284.96 17	19.5 9	432.70+x	9/2+	147.70+x	5/2+
287.6 10	15.7 6	3970.0+x	39/2+	3682.4+x	37/2+
288.46 15	13.4 5	4269.8+x	$41/2^{+}$	3981.0+x	$39/2^{+}$
291.80 <i>14</i>	26.4 6	2458.5 + x	$27/2^{+}$	2166.7+x	$25/2^{+}$
295.04 14	30.6 [‡] 6	2166.7+x	$25/2^{+}$	1871.5+x	$23/2^{+}$
299.9 10	12.4 5	4269.8+x	$41/2^{+}$	3970.0+x	39/2+
300.12 <i>15</i>	23.6 10	305.56+x	$9/2^{+}$	5.4+x	5/2+
301.5 10	18.3 6	821.13+x	$13/2^{+}$	519.58+x	$11/2^{+}$
309.08 <i>20</i>	18.3 8	4579.2+x	$43/2^{+}$	4269.8+x	41/2+
309.36 <i>15</i>	28.9 8	4888.5 + x	45/2+	4579.2+x	43/2+
318.58 <i>13</i>	21.3 4	5539.4+x	49/2+	5220.6+x	47/2+
324.18 <i>12</i>	111.5 18	519.58+x	11/2+	195.39+x	7/2+
331.86 <i>14</i>	22.6 5	5220.6+x	47/2+	4888.5+x	45/2+
335.99 <i>14</i>	23.8 [‡] 5	6236.0+x	$53/2^{+}$	5899.6+x	$51/2^{+}$
343.03 12	146 <i>3</i>	366.4+x	11/2+	23.2+x	7/2+
343.5 <i>3</i>	10.0 <i>10</i>	2222.7+x	$25/2^{+}$	1879.2+x	$(21/2^+)$
348.32 20	12.3 5	1291.99+x	$17/2^{+}$	943.32+x	$15/2^{+}$
357.56 <i>16</i>	29.6 [‡] 9	499.21+x	$11/2^{+}$	141.44+x	7/2+
360.06 <i>14</i>	13.9 4	5899.6+x	51/2+	5539.4+x	49/2+
365.94 20	6.1 4	6997.6+x	57/2+	6632.0+x	55/2+
388.46 <i>14</i>	36.4 9	821.13+x	13/2+	432.70+x	9/2+
391.71 <i>11</i>	180.9 <i>24</i>	573.9+x	13/2+	182.2+x	9/2+

¹⁵⁰Sm(¹⁹F,4nγ) **1995Sc39** (continued)

γ ⁽¹⁶⁵Lu) (continued)</sup>

395.84 18	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	395.84 18	13.7 [‡] 5	6632.0+x	55/2 ⁺	6236.0+x	53/2+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	398.62 20	11.1 [‡] 5	7837.4+x	$61/2^{+}$	7439.0+x	59/2 ⁺
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		18.9 8	2753.44+x		2348.73+x	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	405.57 16	26.3 9	711.21+x		305.56+x	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
442.0 3 5.8‡ 4 7439.0+x 59/2+ 6997.6+x 57/2+ 444.10 15 29.8 8 943.32+x 15/2+ 499.21+x 11/2+ 445.28 24 15.6 7 2709.1+x (29/2+) 2263.8+x (25/2+) 448.6 3 5.2 5 1740.01+x 21/2+ 1291.99+x 17/2+ 450.08 13 44.2 8 3180.3+x 33/2+ 2730.16+x 29/2+ 455.88 18 27.8 9 955.32+x 15/2+ 499.21+x 11/2+ 458.97 15 45.3 10 2753.44+x 29/2+ 2294.36+x 25/2+ 460.51 15 42.3 9 3417.2+x 35/2+ 2956.62+x 31/2+ 470.65 18 35.6 9 3200.9+x 33/2+ 2730.16+x 29/2+ 474.73 12 194.7 20 1048.7+x 17/2+ 821.13+x 13/2+ 475.01 #24 11.3 5 2294.36+x 25/2+ 1818.51+x 21/2+ 479.83 17 27.5 8 3436.5+x 35/2+ 2956.62+x 31/2+						
444.10 15 29.8 8 943.32+x 15/2+ 499.21+x 11/2+ 445.28 24 15.6 7 2709.1+x (29/2+) 2263.8+x (25/2+) 445.4 3 4.5 6 2263.8+x (25/2+) 1818.51+x 21/2+ 448.6 3 5.2 5 1740.01+x 21/2+ 1291.99+x 17/2+ 450.08 13 44.2 8 3180.3+x 33/2+ 2730.16+x 29/2+ 458.8 18 27.8 9 955.32+x 15/2+ 499.21+x 11/2+ 458.97 15 45.3 10 2753.44+x 29/2+ 2294.36+x 25/2+ 460.51 15 42.3 9 3417.2+x 35/2+ 2956.62+x 31/2+ 470.65 18 35.6 9 3200.9+x 33/2+ 2730.16+x 29/2+ 470.89 15 45.2 10 1291.99+x 17/2+ 821.13+x 13/2+ 475.01\(\frac{\						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
445.4 3 4.5 6 2263.8+x (25/2+) 1818.51+x 21/2+ 448.6 3 5.2 5 1740.01+x 21/2+ 1291.99+x 17/2+ 450.08 13 44.2 8 3180.3+x 33/2+ 2730.16+x 29/2+ 455.88 18 27.8 9 955.32+x 15/2+ 499.21+x 11/2+ 458.97 15 45.3 10 2753.44+x 29/2+ 2294.36+x 25/2+ 460.51 15 42.3 9 3417.2+x 35/2+ 2956.62+x 31/2+ 470.89 15 45.2 10 1291.99+x 17/2+ 821.13+x 13/2+ 475.01# 24 11.3 5 2294.36+x 25/2+ 1818.51+x 21/2+ 479.83 17 27.5 8 3436.5+x 35/2+ 2956.62+x 31/2+ 480.0 4 5.7 5 3233.5+x (33/2+) 2753.44+x 29/2+ 486.4 4 10.5 7 2709.1+x (29/2+) 2222.7+x 25/2+ 498.27 18 28.4 6 2956.62+x 31/2+ 2458.5+x 27/2+						
448.6 3 5.2 5 1740.01+x 21/2+ 1291.99+x 17/2+ 450.08 13 44.2 8 3180.3+x 33/2+ 2730.16+x 29/2+ 455.88 18 27.8 9 955.32+x 15/2+ 499.21+x 11/2+ 458.97 15 45.3 10 2753.44+x 29/2+ 2294.36+x 25/2+ 460.51 15 42.3 9 3417.2+x 35/2+ 2956.62+x 31/2+ 470.65 18 35.6 9 3200.9+x 33/2+ 2730.16+x 29/2+ 470.89 15 45.2 10 1291.99+x 17/2+ 821.13+x 13/2+ 474.73 12 194.7 20 1048.7+x 17/2+ 573.9+x 13/2+ 475.01# 24 11.3 5 2294.36+x 25/2+ 1818.51+x 21/2+ 479.83 17 27.5 8 3436.5+x 35/2+ 2956.62+x 31/2+ 480.0 4 5.7 5 3233.5+x (33/2+) 2753.44+x 29/2+ 486.10 15 46.7 10 1197.29+x 17/2+ 711.21+x 13/2+ 498.27 18 28.4 6 2956.62+x 31/2+ 2222.7+x 25/2+ 493.2 3 10.0‡ 6 8330.7+x 63/2+ 7837.4+x 61/2+ 498.27 18 28.4 6 2956.62+x 31/2+ 2458.5+x 27/2+ 502.04 16 36.7 9 3682.4+x 37/2+ 3180.3+x 33/2+ 502.07 12 111.3 15 1445.39+x 19/2+ 943.32+x 15/2+ 523.49 18 34.8 12 1478.39+x 19/2+ 943.32+x 15/2+ 523.49 18 34.8 12 1478.39+x 19/2+ 945.32+x 15/2+ 524.44 20 11.0 9 3233.5+x (33/2+) 2709.1+x (29/2+) 526.14 17 45.3 10 1818.51+x 21/2+ 1291.99+x 17/2+ 530.23 20 24.6 7 2348.73+x 25/2+ 1818.51+x 21/2+ 538.25 12 204.5 17 1587.0+x 21/2+ 1197.29+x 17/2+ 544.65 15 37.3 9 3981.0+x 39/2+ 3436.5+x 35/2+ 544.73 13 102.8 13 1990.11+x 23/2+ 1197.29+x 17/2+ 544.65 15 37.3 9 3981.0+x 39/2+ 3436.5+x 35/2+ 554.59 15 39.4 11 2294.36+x 25/2+ 1740.01+x 21/2+ 561.03 13 161.8 18 1871.5+x 23/2+ 1445.39+x 19/2+ 554.59 15 39.4 11 2294.36+x 25/2+ 1740.01+x 21/2+ 561.03 13 161.8 18 1871.5+x 23/2+ 1445.39+x 19/2+ 562.54 4 6.0 8 3981.0+x 39/2+ 3417.2+x 35/2+ 564.03 23 22.5 8 2612.2+x 27/2+ 2048.1+x 23/2+ 569.75 18 31.6 9 2048.1+x 23/2+ 1478.39+x 19/2+ 562.56 4 6.0 8 3981.0+x 39/2+ 1478.39+x 19/2+ 564.03 23 22.5 8 2612.2+x 27/2+ 2048.1+x 23/2+ 569.75 18 31.6 9 2048.1+x 23/2+ 1478.39+x 19/2+ 562.5						
450.08 13						
455.88 18 27.8 9 955.32+x 15/2+ 499.21+x 11/2+ 488.97 15 45.3 10 2753.44+x 29/2+ 2294.36+x 25/2+ 460.51 15 42.3 9 3417.2+x 35/2+ 2730.16+x 29/2+ 470.65 18 35.6 9 3200.9+x 33/2+ 2730.16+x 29/2+ 470.89 15 45.2 10 1291.99+x 17/2+ 573.9+x 13/2+ 474.73 12 194.7 20 1048.7+x 17/2+ 573.9+x 13/2+ 475.01 24 11.3 5 2294.36+x 25/2+ 1818.51+x 21/2+ 475.01 27.5 8 3436.5+x 35/2+ 2956.62+x 31/2+ 480.0 4 5.7 5 3233.5+x (33/2+) 2753.44+x 29/2+ 486.10 15 46.7 10 1197.29+x 17/2+ 711.21+x 13/2+ 486.4 4 10.5 7 2709.1+x (29/2+) 2222.7+x 25/2+ 493.2 3 10.0 4 6 8330.7+x 63/2+ 7837.4+x 61/2+ 498.27 18 28.4 6 2956.62+x 31/2+ 2458.5+x 27/2+ 502.04 16 36.7 9 3682.4+x 37/2+ 3180.3+x 33/2+ 502.07 12 111.3 15 1445.39+x 19/2+ 943.32+x 15/2+ 503.49 18 34.8 12 1478.39+x 19/2+ 943.32+x 15/2+ 523.49 18 34.8 12 1478.39+x 19/2+ 955.32+x 15/2+ 524.44 20 11.0 9 3233.5+x (33/2+) 2799.1+x (29/2+) 2222.7+x 25/2+ 530.20 24.6 7 2348.73+x 25/2+ 1818.51+x 21/2+ 530.23 20 24.6 7 2348.73+x 25/2+ 1818.51+x 21/2+ 530.23 20 24.6 7 2348.73+x 25/2+ 1818.51+x 21/2+ 530.23 20 24.6 7 2348.73+x 25/2+ 1818.51+x 21/2+ 544.55 15 37.3 9 3981.0+x 25/2+ 1818.51+x 21/2+ 544.55 15 37.3 9 3981.0+x 23/2+ 1445.39+x 19/2+ 552.9 10 33.5 9 3970.0+x 39/2+ 3436.5+x 35/2+ 543.9 15 39.4 11 2294.36+x 25/2+ 1740.01+x 21/2+ 552.59 10 33.5 9 3970.0+x 39/2+ 3417.2+x 35/2+ 561.03 13 161.8 18 1871.5+x 23/2+ 1990.11+x 23/2+ 561.03 13 161.8 18 1871.5+x 23/2+ 1990.11+x 23/2+ 561.03 13 161.8 18 1871.5+x 23/2+ 1445.39+x 19/2+ 562.54 4 6.0 8 3981.0+x 39/2+ 3417.2+x 35/2+ 561.03 13 161.8 18 1871.5+x 23/2+ 1445.39+x 19/2+ 562.54 4 6.0 8 3981.0+x 39/2+ 3417.2+x 35/2+ 561.03 13 161.8 18 1871.5+x 23/2+ 1445.39+x 19/2+ 562.54 4 6.0 8 3981.0+x 39/2+ 3417.2+x 35/2+ 561.03 13 161.8 18 1871.5+x 23/2+ 1445.39+x 19/2+ 562.54 4 6.0 8 3981.0+x 39/2+ 3417.2+x 35/2+ 561.03 13 161.8 18 1871.5+x 23/2+ 1445.39+x 19/2+ 562.54 4 6.0 8 3981.0+x 39/2+ 3417.2+x 35/2+ 561.03 13 161.8 18 1871.5+x 23/2+ 1445.39+x 19/2+ 562.54 4 6.0 8 3981.0+x 39/2+ 3417.2+x 35/2+ 561.03 13 161.8 18 1871.5+x 23/2+ 1478.39+x 19/2+ 562.54 4 6.0						
458.97 15						
460.51 15						
470.89 15 45.2 10 1291.99+x 17/2+ 821.13+x 13/2+ 474.73 12 194.7 20 1048.7+x 17/2+ 573.9+x 13/2+ 475.01# 24 11.3 5 2294.36+x 25/2+ 1818.51+x 21/2+ 479.83 17 27.5 8 3436.5+x 35/2+ 2956.62+x 31/2+ 480.0 4 5.7 5 3233.5+x (33/2+) 2753.44+x 29/2+ 486.10 15 46.7 10 1197.29+x 17/2+ 711.21+x 13/2+ 486.4 4 10.5 7 2709.1+x (29/2+) 2222.7+x 25/2+ 493.2 3 10.0‡ 6 8330.7+x 63/2+ 7837.4+x 61/2+ 498.27 18 28.4 6 2956.62+x 31/2+ 2458.5+x 27/2+ 502.04 16 36.7 9 3682.4+x 37/2+ 3180.3+x 33/2+ 502.07 12 111.3 15 1445.39+x 19/2+ 943.32+x 15/2+ 523.49 18 34.8 12 1478.39+x 19/2+ 955.32+x 15/2+	460.51 <i>15</i>	42.3 9	3417.2+x	$35/2^{+}$	2956.62+x	
474.73 12 194.7 20 1048.7+x 17/2+ 573.9+x 13/2+ 475.01# 24 11.3 5 2294.36+x 25/2+ 1818.51+x 21/2+ 479.83 17 27.5 8 3436.5+x 35/2+ 2956.62+x 31/2+ 480.0 4 5.7 5 3233.5+x (33/2+) 2753.44+x 29/2+ 486.10 15 46.7 10 1197.29+x 17/2+ 711.21+x 13/2+ 486.4 4 10.5 7 2709.1+x (29/2+) 2222.7+x 25/2+ 493.2 3 10.0‡ 6 8330.7+x 63/2+ 7837.4+x 61/2+ 498.27 18 28.4 6 2956.62+x 31/2+ 2458.5+x 27/2+ 502.04 16 36.7 9 3682.4+x 37/2+ 3180.3+x 33/2+ 502.07 12 111.3 15 1445.39+x 19/2+ 943.32+x 15/2+ 503.49 18 34.8 12 1478.39+x 19/2+ 955.32+x 15/2+ 523.49 18 34.8 12 1478.39+x 19/2+ 955.32+x 15/2+						
475.01 [#] 24 11.3 5 2294.36+x 25/2 ⁺ 1818.51+x 21/2 ⁺ 479.83 17 27.5 8 3436.5+x 35/2 ⁺ 2956.62+x 31/2 ⁺ 480.0 4 5.7 5 3233.5+x (33/2 ⁺) 2753.44+x 29/2 ⁺ 486.10 15 46.7 10 1197.29+x 17/2 ⁺ 711.21+x 13/2 ⁺ 486.4 4 10.5 7 2709.1+x (29/2 ⁺) 2222.7+x 25/2 ⁺ 493.2 3 10.0 [‡] 6 8330.7+x 63/2 ⁺ 7837.4+x 61/2 ⁺ 498.27 18 28.4 6 2956.62+x 31/2 ⁺ 2458.5+x 27/2 ⁺ 502.04 16 36.7 9 3682.4+x 37/2 ⁺ 3180.3+x 33/2 ⁺ 502.07 12 111.3 15 1445.39+x 19/2 ⁺ 943.32+x 15/2 ⁺ 523.49 18 34.8 12 1478.39+x 19/2 ⁺ 802.0+x 15/2 ⁺ 523.49 18 34.8 12 1478.39+x 19/2 ⁺ 955.32+x 15/2 ⁺ 523.49 18 34.8 12 1478.39+x 19/2 ⁺ 955.32+x 15/2 ⁺ 523.49 10 2263.8+x (25/2 ⁺) 1740.01+x 21/2 ⁺ 524.44 20 11.0 9 3233.5+x (33/2 ⁺) 2709.1+x (29/2 ⁺) 526.14 17 45.3 10 1818.51+x 21/2 ⁺ 1291.99+x 17/2 ⁺ 530.23 20 24.6 7 2348.73+x 25/2 ⁺ 1818.51+x 21/2 ⁺ 530.23 20 24.6 7 2348.73+x 25/2 ⁺ 1818.51+x 21/2 ⁺ 542.58 16 43.1 10 1740.01+x 21/2 ⁺ 1048.7+x 17/2 ⁺ 544.65 15 37.3 9 3981.0+x 39/2 ⁺ 3436.5+x 35/2 ⁺ 544.73 13 102.8 13 1990.11+x 23/2 ⁺ 1445.39+x 19/2 ⁺ 552.9 10 33.5 9 3970.0+x 39/2 ⁺ 3436.5+x 35/2 ⁺ 554.59 15 39.4 11 2294.36+x 25/2 ⁺ 1740.01+x 21/2 ⁺ 561.03 13 161.8 18 1871.5+x 23/2 ⁺ 1310.5+x 19/2 ⁺ 562.5 ^a 4 6.0 8 3981.0+x 39/2 ⁺ 3417.2+x 35/2 ⁺ 563.56 14 90.6 15 2730.16+x 29/2 ⁺ 1310.5+x 19/2 ⁺ 564.03 23 22.5 8 2612.2+x 27/2 ⁺ 1048.1+x 23/2 ⁺ 564.03 23 22.5 8 2612.2+x 27/2 ⁺ 2048.1+x 23/2 ⁺ 564.03 23 22.5 8 2612.2+x 27/2 ⁺ 2048.1+x 23/2 ⁺ 569.75 18 31.6 9 2048.1+x 23/2 ⁺ 1478.39+x 19/2 ⁺ 579.74 12 31.6 [‡] 9 2166.7+x 25/2 ⁺ 1587.0+x 21/2 ⁺ 582.36 18 25.6 9 3815.9+x (37/2 ⁺) 3233.5+x (33/2 ⁺) 587.02 13 120.7 18 2458.5+x 27/2 ⁺ 1871.5+x 23/2 ⁺ 587.02 13 120.7 18 2458.5+x 27/2 ⁺ 1871.5+x 23/2 ⁺ 587.02 13 120.7 18 2458.5+x 27/2 ⁺ 1871.5+x 23/2 ⁺ 587.02 13 120.7 18 2458.5+x 27/2 ⁺ 1871.5+x 23/2 ⁺ 587.02 13 120.7 18 2458.5+x 27/2 ⁺ 1871.5+x 23/2 ⁺ 587.02 13 120.7 18 2458.5+x 27/2 ⁺ 1871.5+x 23/2 ⁺ 587.02 13 120.7 18 2458.5+x 27/2 ⁺ 1871.5+x 23/2 ⁺						
479.83 17 27.5 8 3436.5+x 35/2+ 2956.62+x 31/2+ 480.0 4 5.7 5 3233.5+x (33/2+) 2753.44+x 29/2+ 486.10 15 46.7 10 1197.29+x 17/2+ 711.21+x 13/2+ 486.4 4 10.5 7 2709.1+x (29/2+) 2222.7+x 25/2+ 493.2 3 10.0‡ 6 8330.7+x 63/2+ 7837.4+x 61/2+ 498.27 18 28.4 6 2956.62+x 31/2+ 2458.5+x 27/2+ 502.04 16 36.7 9 3682.4+x 37/2+ 3180.3+x 33/2+ 502.07 12 111.3 15 1445.39+x 19/2+ 943.32+x 15/2+ 503.41 12 242.4 20 1310.5+x 19/2+ 802.0+x 15/2+ 523.6 10 7.4 10 2263.8+x (25/2+) 1740.01+x 21/2+ 524.44 20 11.0 9 3233.5+x (33/2+) 2709.1+x (29/2+) 526.14 17 45.3 10 1818.51+x 21/2+ 1291.99+x 17/2+						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						31/2+
486.4 4 10.5 7 2709.1+x (29/2+) 2222.7+x 25/2+ 493.2 3 10.0 [‡] 6 8330.7+x 63/2+ 7837.4+x 61/2+ 498.27 18 28.4 6 2956.62+x 31/2+ 2458.5+x 27/2+ 502.04 16 36.7 9 3682.4+x 37/2+ 3180.3+x 33/2+ 502.07 12 111.3 15 1445.39+x 19/2+ 943.32+x 15/2+ 508.41 12 242.4 20 1310.5+x 19/2+ 802.0+x 15/2+ 523.49 18 34.8 12 1478.39+x 19/2+ 955.32+x 15/2+ 523.6 10 7.4 10 2263.8+x (25/2+) 1740.01+x 21/2+ 524.44 20 11.0 9 3233.5+x (33/2+) 2709.1+x (29/2+) 526.14 17 45.3 10 1818.51+x 21/2+ 1291.99+x 17/2+ 530.23 20 24.6 7 2348.73+x 25/2+ 1818.51+x 21/2+ 538.25 12 204.5 17 1587.0+x 21/2+ 1197.29+x 17/2+ 542.58 16 43.1 10 1740.01+x 21/2+ 1197.29+x 17/2+ 544.65 15 37.3 9 3981.0+x 39/2+ 3436.5+x 35/2+ 544.73 13 102.8 13 1990.11+x 23/2+ 1445.39+x 19/2+ 548.45 15 45.3 9 2538.56+x 27/2+ 1990.11+x 23/2+ 552.9 10 33.5 9 3970.0+x 39/2+ 3417.2+x 35/2+ 551.03 13 161.8 18 1871.5+x 23/2+ 1310.5+x 19/2+ 561.03 13 161.8 18 1871.5+x 23/2+ 1310.5+x 19/2+ 561.03 13 161.8 18 1871.5+x 23/2+ 1310.5+x 19/2+ 564.03 23 22.5 8 2612.2+x 27/2+ 2048.1+x 23/2+ 564.03 23 22.5 8 2612.2+x 27/2+ 2048.1+x 23/2+ 569.75 18 31.6 9 2048.1+x 23/2+ 1478.39+x 19/2+ 579.74 12 31.6 [‡] 9 2166.7+x 25/2+ 1587.0+x 21/2+ 587.02 13 120.7 18 2458.5+x 27/2+ 1871.5+x 23/2+ 587.02 13 120.7 18 2458.5+x 27/2+ 1871.5+x 23/2+ 587.02 13 120.7 18 2458.5+x 27/2+ 1871.5+x 23/2+ 587.46 21 18.1 9 4269.8+x 41/2+ 3682.4+x 37/2+						29/2 ⁺
493.2 3						
498.27 18 28.4 6 2956.62+x 31/2+ 2458.5+x 27/2+ 502.04 16 36.7 9 3682.4+x 37/2+ 3180.3+x 33/2+ 502.07 12 111.3 15 1445.39+x 19/2+ 943.32+x 15/2+ 508.41 12 242.4 20 1310.5+x 19/2+ 802.0+x 15/2+ 523.49 18 34.8 12 1478.39+x 19/2+ 955.32+x 15/2+ 523.6 10 7.4 10 2263.8+x (25/2+) 1740.01+x 21/2+ 524.44 20 11.0 9 3233.5+x (33/2+) 2709.1+x (29/2+) 526.14 17 45.3 10 1818.51+x 21/2+ 1291.99+x 17/2+ 530.23 20 24.6 7 2348.73+x 25/2+ 1818.51+x 21/2+ 538.25 12 204.5 17 1587.0+x 21/2+ 1048.7+x 17/2+ 542.58 16 43.1 10 1740.01+x 21/2+ 197.29+x 17/2+ 544.65 15 37.3 9 3981.0+x 39/2+ 3436.5+x 35/2+ <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
502.04 16 36.7 9 3682.4+x 37/2+ 3180.3+x 33/2+ 502.07 12 111.3 15 1445.39+x 19/2+ 943.32+x 15/2+ 508.41 12 242.4 20 1310.5+x 19/2+ 802.0+x 15/2+ 523.49 18 34.8 12 1478.39+x 19/2+ 955.32+x 15/2+ 523.6 10 7.4 10 2263.8+x (25/2+) 1740.01+x 21/2+ 524.44 20 11.0 9 3233.5+x (33/2+) 2709.1+x (29/2+) 526.14 17 45.3 10 1818.51+x 21/2+ 1291.99+x 17/2+ 530.23 20 24.6 7 2348.73+x 25/2+ 1818.51+x 21/2+ 538.25 12 204.5 17 1587.0+x 21/2+ 1048.7+x 17/2+ 542.58 16 43.1 10 1740.01+x 21/2+ 197.29+x 17/2+ 544.65 15 37.3 9 3981.0+x 39/2+ 3436.5+x 35/2+ 544.73 13 102.8 13 1990.11+x 23/2+ 1445.39+x 19/2+						
502.07 12 111.3 15 1445.39+x 19/2+ 943.32+x 15/2+ 508.41 12 242.4 20 1310.5+x 19/2+ 802.0+x 15/2+ 523.49 18 34.8 12 1478.39+x 19/2+ 955.32+x 15/2+ 523.6 10 7.4 10 2263.8+x (25/2+) 1740.01+x 21/2+ 524.44 20 11.0 9 3233.5+x (33/2+) 2709.1+x (29/2+) 526.14 17 45.3 10 1818.51+x 21/2+ 1291.99+x 17/2+ 530.23 20 24.6 7 2348.73+x 25/2+ 1818.51+x 21/2+ 538.25 12 204.5 17 1587.0+x 21/2+ 1048.7+x 17/2+ 542.58 16 43.1 10 1740.01+x 21/2+ 197.29+x 17/2+ 544.65 15 37.3 9 3981.0+x 39/2+ 3436.5+x 35/2+ 544.73 13 102.8 13 1990.11+x 23/2+ 1445.39+x 19/2+ 548.45 15 45.3 9 2538.56+x 27/2+ 1990.11+x 23/2+						
508.41 12 242.4 20 1310.5+x 19/2+ 802.0+x 15/2+ 523.49 18 34.8 12 1478.39+x 19/2+ 955.32+x 15/2+ 523.6 10 7.4 10 2263.8+x (25/2+) 1740.01+x 21/2+ 524.44 20 11.0 9 3233.5+x (33/2+) 2709.1+x (29/2+) 526.14 17 45.3 10 1818.51+x 21/2+ 1291.99+x 17/2+ 530.23 20 24.6 7 2348.73+x 25/2+ 1818.51+x 21/2+ 538.25 12 204.5 17 1587.0+x 21/2+ 1048.7+x 17/2+ 542.58 16 43.1 10 1740.01+x 21/2+ 1197.29+x 17/2+ 544.65 15 37.3 9 3981.0+x 39/2+ 3436.5+x 35/2+ 544.73 13 102.8 13 1990.11+x 23/2+ 1445.39+x 19/2+						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
526.14 17 45.3 10 1818.51+x 21/2+ 1291.99+x 17/2+ 530.23 20 24.6 7 2348.73+x 25/2+ 1818.51+x 21/2+ 538.25 12 204.5 17 1587.0+x 21/2+ 1048.7+x 17/2+ 542.58 16 43.1 10 1740.01+x 21/2+ 1197.29+x 17/2+ 544.65 15 37.3 9 3981.0+x 39/2+ 3436.5+x 35/2+ 544.73 13 102.8 13 1990.11+x 23/2+ 1445.39+x 19/2+ 548.45 15 45.3 9 2538.56+x 27/2+ 1990.11+x 23/2+ 552.9 10 33.5 9 3970.0+x 39/2+ 3417.2+x 35/2+ 554.59 15 39.4 11 2294.36+x 25/2+ 1740.01+x 21/2+ 561.03 13 161.8 18 1871.5+x 23/2+ 1310.5+x 19/2+ 562.5a 4 6.0 8 3981.0+x 39/2+ 3417.2+x 35/2+ 564.0 10 1.8 5 4269.8+x 41/2+ 3705.2+x 37/2+	523.6 10	7.4 10	2263.8+x	$(25/2^+)$	1740.01+x	$21/2^{+}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
544.65 15 37.3 9 3981.0+x 39/2+ 3436.5+x 35/2+ 544.73 13 102.8 13 1990.11+x 23/2+ 1445.39+x 19/2+ 548.45 15 45.3 9 2538.56+x 27/2+ 1990.11+x 23/2+ 552.9 10 33.5 9 3970.0+x 39/2+ 3417.2+x 35/2+ 554.59 15 39.4 11 2294.36+x 25/2+ 1740.01+x 21/2+ 561.03 13 161.8 18 1871.5+x 23/2+ 1310.5+x 19/2+ 562.5d 4 6.0 8 3981.0+x 39/2+ 3417.2+x 35/2+ 563.56 14 90.6 15 2730.16+x 29/2+ 2166.7+x 25/2+ 564.0 10 1.8 5 4269.8+x 41/2+ 3705.2+x 37/2+ 569.75 18 31.6 9 2048.1+x 23/2+ 1478.39+x 19/2+ 579.74 12 31.6 \(\pmathrm{\pmat						
544.73 13 102.8 13 1990.11+x 23/2+ 1445.39+x 19/2+ 548.45 15 45.3 9 2538.56+x 27/2+ 1990.11+x 23/2+ 552.9 10 33.5 9 3970.0+x 39/2+ 3417.2+x 35/2+ 554.59 15 39.4 11 2294.36+x 25/2+ 1740.01+x 21/2+ 561.03 13 161.8 18 1871.5+x 23/2+ 1310.5+x 19/2+ 562.5 ^a 4 6.0 8 3981.0+x 39/2+ 3417.2+x 35/2+ 563.56 14 90.6 15 2730.16+x 29/2+ 2166.7+x 25/2+ 564.0 10 1.8 5 4269.8+x 41/2+ 3705.2+x 37/2+ 569.75 18 31.6 9 2048.1+x 23/2+ 1478.39+x 19/2+ 579.74 12 31.6 \(\frac{a}{2}\) 9 2166.7+x 25/2+ 1587.0+x 21/2+ 582.36 18 25.6 9 3815.9+x (37/2+) 3233.5+x (33/2+) 587.02 13 120.7 18 2458.5+x 27/2+ 1871.5+x 23/2+						
548.45 15 45.3 9 2538.56+x 27/2+ 1990.11+x 23/2+ 552.9 10 33.5 9 3970.0+x 39/2+ 3417.2+x 35/2+ 554.59 15 39.4 11 2294.36+x 25/2+ 1740.01+x 21/2+ 561.03 13 161.8 18 1871.5+x 23/2+ 1310.5+x 19/2+ 562.5 ^a 4 6.0 8 3981.0+x 39/2+ 3417.2+x 35/2+ 563.56 14 90.6 15 2730.16+x 29/2+ 2166.7+x 25/2+ 564.0 10 1.8 5 4269.8+x 41/2+ 3705.2+x 37/2+ 564.03 23 22.5 8 2612.2+x 27/2+ 2048.1+x 23/2+ 569.75 18 31.6 9 2048.1+x 23/2+ 1478.39+x 19/2+ 579.74 12 31.6 9 2166.7+x 25/2+ 1587.0+x 21/2+ 582.36 18 25.6 9 3815.9+x (37/2+) 3233.5+x (33/2+) 587.02 13 120.7 18 2458.5+x 27/2+ 1871.5+x 23/2+ 587.46 21 18.1 9 4269.8+x 41/2+ 3682.4+x 37/2+						
552.9 10 33.5 9 3970.0+x 39/2+ 3417.2+x 35/2+ 554.59 15 39.4 11 2294.36+x 25/2+ 1740.01+x 21/2+ 561.03 13 161.8 18 1871.5+x 23/2+ 1310.5+x 19/2+ 562.5 ^a 4 6.0 8 3981.0+x 39/2+ 3417.2+x 35/2+ 563.56 14 90.6 15 2730.16+x 29/2+ 2166.7+x 25/2+ 564.0 10 1.8 5 4269.8+x 41/2+ 3705.2+x 37/2+ 564.03 23 22.5 8 2612.2+x 27/2+ 2048.1+x 23/2+ 569.75 18 31.6 9 2048.1+x 23/2+ 1478.39+x 19/2+ 579.74 12 31.6 † 9 2166.7+x 25/2+ 1587.0+x 21/2+ 582.36 18 25.6 9 3815.9+x (37/2+) 3233.5+x (33/2+) 587.02 13 120.7 18 2458.5+x 27/2+ 1871.5+x 23/2+ 587.46 21 18.1 9 4269.8+x 41/2+ 3682.4+x 37/2+						
554.59 15 39.4 11 2294.36+x 25/2+ 1740.01+x 21/2+ 561.03 13 161.8 18 1871.5+x 23/2+ 1310.5+x 19/2+ 562.5 ^a 4 6.0 8 3981.0+x 39/2+ 3417.2+x 35/2+ 563.56 14 90.6 15 2730.16+x 29/2+ 2166.7+x 25/2+ 564.0 10 1.8 5 4269.8+x 41/2+ 3705.2+x 37/2+ 564.03 23 22.5 8 2612.2+x 27/2+ 2048.1+x 23/2+ 569.75 18 31.6 9 2048.1+x 23/2+ 1478.39+x 19/2+ 579.74 12 31.6 9 2166.7+x 25/2+ 1587.0+x 21/2+ 582.36 18 25.6 9 3815.9+x (37/2+) 3233.5+x (33/2+) 587.02 13 120.7 18 2458.5+x 27/2+ 1871.5+x 23/2+ 587.46 21 18.1 9 4269.8+x 41/2+ 3682.4+x 37/2+						
561.03 13 161.8 18 1871.5+x 23/2+ 1310.5+x 19/2+ 562.5 ^a 4 6.0 8 3981.0+x 39/2+ 3417.2+x 35/2+ 563.56 14 90.6 15 2730.16+x 29/2+ 2166.7+x 25/2+ 564.0 10 1.8 5 4269.8+x 41/2+ 3705.2+x 37/2+ 564.03 23 22.5 8 2612.2+x 27/2+ 2048.1+x 23/2+ 569.75 18 31.6 9 2048.1+x 23/2+ 1478.39+x 19/2+ 579.74 12 31.6 9 2166.7+x 25/2+ 1587.0+x 21/2+ 582.36 18 25.6 9 3815.9+x (37/2+) 3233.5+x (33/2+) 587.02 13 120.7 18 2458.5+x 27/2+ 1871.5+x 23/2+ 587.46 21 18.1 9 4269.8+x 41/2+ 3682.4+x 37/2+						$21/2^{+}$
563.56 14 90.6 15 2730.16+x 29/2+ 2166.7+x 25/2+ 564.0 10 1.8 5 4269.8+x 41/2+ 3705.2+x 37/2+ 564.03 23 22.5 8 2612.2+x 27/2+ 2048.1+x 23/2+ 569.75 18 31.6 9 2048.1+x 23/2+ 1478.39+x 19/2+ 579.74 12 31.6 † 9 2166.7+x 25/2+ 1587.0+x 21/2+ 582.36 18 25.6 9 3815.9+x (37/2+) 3233.5+x (33/2+) 587.02 13 120.7 18 2458.5+x 27/2+ 1871.5+x 23/2+ 587.46 21 18.1 9 4269.8+x 41/2+ 3682.4+x 37/2+	561.03 <i>13</i>	161.8 <i>18</i>	1871.5 + x	$23/2^{+}$		$19/2^{+}$
564.0 10 1.8 5 4269.8+x 41/2+ 3705.2+x 37/2+ 564.03 23 22.5 8 2612.2+x 27/2+ 2048.1+x 23/2+ 569.75 18 31.6 9 2048.1+x 23/2+ 1478.39+x 19/2+ 579.74 12 31.6 9 2166.7+x 25/2+ 1587.0+x 21/2+ 582.36 18 25.6 9 3815.9+x (37/2+) 3233.5+x (33/2+) 587.02 13 120.7 18 2458.5+x 27/2+ 1871.5+x 23/2+ 587.46 21 18.1 9 4269.8+x 41/2+ 3682.4+x 37/2+						
564.03 23 22.5 8 2612.2+x 27/2+ 2048.1+x 23/2+ 569.75 18 31.6 9 2048.1+x 23/2+ 1478.39+x 19/2+ 579.74 12 31.6 9 2166.7+x 25/2+ 1587.0+x 21/2+ 582.36 18 25.6 9 3815.9+x (37/2+) 3233.5+x (33/2+) 587.02 13 120.7 18 2458.5+x 27/2+ 1871.5+x 23/2+ 587.46 21 18.1 9 4269.8+x 41/2+ 3682.4+x 37/2+						
569.75 18 31.6 9 2048.1+x 23/2* 1478.39+x 19/2* 579.74 12 31.6 † 9 2166.7+x 25/2* 1587.0+x 21/2* 582.36 18 25.6 9 3815.9+x (37/2*) 3233.5+x (33/2*) 587.02 13 120.7 18 2458.5+x 27/2* 1871.5+x 23/2* 587.46 21 18.1 9 4269.8+x 41/2* 3682.4+x 37/2*						
579.74 12 31.6 [‡] 9 2166.7+x 25/2 ⁺ 1587.0+x 21/2 ⁺ 582.36 18 25.6 9 3815.9+x (37/2 ⁺) 3233.5+x (33/2 ⁺) 587.02 13 120.7 18 2458.5+x 27/2 ⁺ 1871.5+x 23/2 ⁺ 587.46 21 18.1 9 4269.8+x 41/2 ⁺ 3682.4+x 37/2 ⁺						
582.36 18 25.6 9 3815.9+x (37/2+) 3233.5+x (33/2+) 587.02 13 120.7 18 2458.5+x 27/2+ 1871.5+x 23/2+ 587.46 21 18.1 9 4269.8+x 41/2+ 3682.4+x 37/2+						
587.02 <i>13</i> 120.7 <i>18</i> 2458.5+x 27/2 ⁺ 1871.5+x 23/2 ⁺ 587.46 <i>21</i> 18.1 9 4269.8+x 41/2 ⁺ 3682.4+x 37/2 ⁺						
587.46 21 18.1 9 4269.8+x 41/2+ 3682.4+x 37/2+						

150 Sm(19 F,4n γ) 1995Sc39 (continued)

$\gamma(^{165}Lu)$ (continued)

E_{γ}^{\dagger}	I_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbb{E}_f	\mathbf{J}_f^{π}
598.55 15	38.3 9	4579.2+x	43/2+	3981.0+x	39/2+
608.84 20	19.8 8	2348.73+x	$25/2^{+}$	1740.01+x	$21/2^{+}$
609.3 10	20.2 7	4579.2+x	$43/2^{+}$	3970.0+x	$39/2^{+}$
618.51 <i>15</i>	35.7 7	4888.5 + x	$45/2^{+}$	4269.8+x	$41/2^{+}$
641.3 <mark>b</mark> 2	20.6 ^c 10	4457.2+x	$(41/2^+)$	3815.9+x	$(37/2^+)$
641.44 <i>17</i>	33.5 9	5220.6+x	$47/2^{+}$	4579.2+x	$43/2^{+}$
643.7 10	23.5 9	4613.7+x	$43/2^{+}$	3970.0+x	$39/2^{+}$
651.13 <i>15</i>	29.8 8	5539.4+x	$49/2^{+}$	4888.5+x	$45/2^{+}$
679.18 <i>18</i>	18.4 6	5899.6+x	$51/2^{+}$	5220.6+x	$47/2^{+}$
696.10 <i>20</i>	15.5 7	5153.3+x	$(45/2^+)$	4457.2+x	$(41/2^+)$
696.73 <i>17</i>	20.9 [‡] 7	6236.0+x	$53/2^{+}$	5539.4+x	$49/2^{+}$
712.0 10	18.3 7	5325.7+x	$47/2^{+}$	4613.7+x	$43/2^{+}$
732.95 20	11.4 [‡] 6	6632.0+x	55/2 ⁺	5899.6+x	51/2+
750.73 20	10.8 6	5904.0+x	$(49/2^+)$	5153.3+x	$(45/2^+)$
761.39 <i>18</i>	12.6 6	6997.6 + x	$57/2^{+}$	6236.0+x	$53/2^{+}$
775.8 10	8.7 6	6101.5+x	$51/2^{+}$	5325.7+x	$47/2^{+}$
803.5 <i>3</i>	6.4 5	6707.5 + x	$(53/2^+)$	5904.0+x	$(49/2^+)$
806.93 20	9.9 [‡] 5	7439.0+x	59/2 ⁺	6632.0+x	55/2+
839.50 22	12.3 [‡] 6	7837.4+x	$61/2^{+}$	6997.6+x	57/2+
855.31 25	4.9 <i>4</i>	7562.8+x	$(57/2^+)$	6707.5 + x	$(53/2^+)$
891.77 25	5.3 [‡] 5	8330.7+x	$63/2^{+}$	7439.0+x	59/2 ⁺
907.5 <i>3</i>	2.6 4	8470.3+x	$(61/2^+)$	7562.8+x	$(57/2^+)$
917.66 <i>24</i>	3.6 5	8755.1+x	65/2+	7837.4+x	61/2+
962.3 <i>4</i>	2.1 3	9432.6+x	$(65/2^+)$	8470.3+x	$(61/2^+)$
975.0 <i>3</i>	2.2 4	9305.7+x	67/2+	8330.7+x	63/2+

 $^{^{\}dagger}$ From ($^{19}\text{F,4n}\gamma$) and ($^{31}\text{P,4n}\gamma$) reactions. ‡ Comparison of branching ratio with that deduced from ($^{31}\text{P,4n}\gamma$) shows a large discrepancy. See adopted gammas for details.

[#] Poor fit; level-energy difference=475.85.

[@] Poor fit; level-energy difference=223.71.

[&]amp; Poor fit; level-energy difference=216.2.

^a Poor fit; level-energy difference=563.8.

^b From level-energy difference. This gamma ray is not listed in tabular gamma-ray data of 1995Sc39. Uncertainty is assigned by the evaluators.

^c From the average of $I\gamma(696\gamma)$ and $I\gamma(582\gamma)$. Intensity is not available from 1995Sc39.

$\frac{^{150}\text{Sm}(^{19}\text{F,4n}\gamma) \qquad 1995\text{Sc39}}{\text{Leyel Scheme}}$

 $^{165}_{\,71}Lu_{94}$

7/2⁺ 5/2⁺

3/2+

141.44+x

23.2+x 5.4+x

0.0+x

150 Sm(19 F,4n γ) 1995Sc39

150 Sm(19 F,4n γ) 1995Sc39 (continued)

153 Eu(16 O,4n γ) 1984Jo05

History

Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Ashok K. Jain and Anwesha Ghosh, Balraj Singh	NDS 107, 1075 (2006)	15-Apr-2006

1984Jo05: E=73-85 MeV. Measured: γ , $\gamma\gamma$, $\gamma(\theta)$, $\gamma(t)$, yield.

The level scheme is from 1984Jo05 with modifications introduced by 1995Sc39. All bands are now interconnected whereas in 1984Jo05 bands 1/2[541], 1/2[411] and 5/2[402] formed one set and the bands 7/2[402] and 9/2[514] formed another set. The value of 0+y in 1984Jo05 is replaced here by 23.2+x, based on 'Adopted Levels'.

¹⁶⁵Lu Levels

E(level)	$J^{\pi \dagger}$	Comments
0.0+x ^{#&}	$(3/2^+)$	Additional information 1.
5.5+x ^b 6	$(5/2^+)$	
23.5+x ^a 3	$(7/2^+)$	
54.75+x [@] 21	$(7/2^{-})$	Additional information 2.
141.7+x ^b 6	$(7/2^+)$	
147.4+x& 4	$(5/2^+)$	
182.6+x ^a 3	$(9/2^+)$	
195.30+x& 19	$(7/2^+)$	
234.84+x ^d 20	$(9/2^{-})$	
305.9+x ^b 6	$(9/2^+)$	
$335.2+x^{d}$ 3	$(11/2^{-})$	
345.3+x ^C 4	$(5/2^{-})$	
366.8+x ^a 4 432.3+x ^{&} 4	$(11/2^+)$ $(9/2^+)$	
432.3+x ^c 4 466.4+x ^c 3	$(9/2^{-})$ $(9/2^{-})$	
$494.5 + x^{d} 3$	$(13/2^{-})$	
$499.2 + x^{b} 5$	$(13/2^+)$ $(11/2^+)$	
519.6+x & 3	$(11/2^+)$	
574.6+x ^a 4	$(13/2^+)$	
662.4+x ^d 3	$(15/2^{-})$	
694.6+x ^c 3	$(13/2^{-})$	
712.0+x ^b 5	$(13/2^+)$	
$802.7 + x^a$ 4	$(15/2^+)$	
821.4+x& 4	$(13/2^+)$	
893.2+ x^{d} 3	$(17/2^{-})$	
943.6+x& 4	$(15/2^+)$	
956.5+x ^b 5	$(15/2^+)$	
1030.0+x ^c 4 1049.8+x ^a 4	$(17/2^{-})$ $(17/2^{+})$	
1049.8+x 4 $1099.5+x d$ 3	$(17/2)$ $(19/2^{-})$	
$1198.4 + x^{b}$ 5	$(17/2^+)$	
1292.9+x & 4	$(17/2^+)$	
$1311.6 + x^a 4$	$(17/2^{+})$ $(19/2^{+})$	
1386.7+x ^d 4	$(21/2^{-})$	
1445.9+x b 4	$(19/2^+)$	
1462.6+x ^c 5	$(21/2^{-})$	
1479.8+x ^b 6	$(19/2^+)$	

153 Eu(16 O,4n γ) 1984Jo05 (continued)

¹⁶⁵Lu Levels (continued)

E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi \dagger}$	E(level)	J^{π} †
1588.3+x ^a 4	$(21/2^+)$	2050.0+x ^b 8	$(23/2^+)$	2546.0+x [‡] 7	$(27/2^+)$	3249.6+x ^d 4	(35/2 ⁻)
1618.6+x ^d 4	$(23/2^{-})$	2168.2+x ^a 5	$(25/2^+)$	2564.3+x ^c 6	$(29/2^{-})$	3330.7+x? [‡] <i>a</i> 7	$(33/2^+)$
1740.9+x ^b 6	$(21/2^+)$	2196.6+x ^d 4	$(27/2^{-})$	2732.1+x ^a 5	$(29/2^+)$	3476.7+x ^d 5	$(37/2^{-})$
1819.4+x& 5	$(21/2^+)$	2295.6+x? ^b 9	$(25/2^+)$	2755.6+x? ^b 13	$(29/2^+)$	3736.5+x ^d 5	$(39/2^{-})$
1873.2+x ^a 4	$(23/2^+)$	2350.2+x& 7	$(25/2^+)$	2790.0+x ^d 4	$(31/2^{-})$	3854.8+x ^c 9	$(37/2^{-})$
1945.4+x ^d 4	$(25/2^{-})$	2460.6+x ^a 5	$(27/2^+)$	3029.6+x? ^{‡a} 7	$(31/2^+)$	4011.7+x ^d 5	$(41/2^{-})$
1979.1+x ^c 5	$(25/2^{-})$	2535.8+x ^d 4	$(29/2^{-})$	3039.6+x ^d 4	$(33/2^{-})$	4324.0+x ^d 6	$(43/2^{-})$
1990.9+x& 5	$(23/2^+)$	2539.3+x 5	$(27/2^+)$	3195.8+x ^c 8	$(33/2^{-})$	4483.9+x ^c 11	$(41/2^{-})$

 $^{^{\}dagger}$ From 'Adopted Levels'.

$\gamma(^{165} Lu)$

Ε _γ &	I_{γ}^{\dagger}	$E_i(level)$	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	Comments
100.4 2	28 3	335.2+x	$(11/2^{-})$	234.84+x	$(9/2^{-})$	D+Q		A_2 =+0.04 3, A_4 =-0.04 3.
121.1 5	5.3 18	466.4 + x	$(9/2^{-})$	345.3+x	$(5/2^{-})$			- , ,
136.2 2	21.3 <i>21</i>	141.7 + x	$(7/2^+)$	5.5 + x	$(5/2^+)$	D+Q		$A_2 = -0.04 \ 3, A_4 = +0.04 \ 3.$
147.4 5	12 4	147.4 + x	$(5/2^+)$	0.0+x	$(3/2^+)$	D		$A_2 = -0.21 \ 7, A_4 = -0.05 \ 7.$
152.6 6	6.0 20	335.2+x	$(11/2^{-})$	182.6+x	$(9/2^+)$	D		$A_2 = -0.21 \ 7, A_4 = -0.05 \ 7.$
159.1 2	56 5	182.6+x	$(9/2^+)$	23.5+x	$(7/2^+)$	D+Q		A_2 =+0.18 2, A_4 =-0.01 2 for 159.1 γ +159.3 γ .
159.3 2	77 7	494.5+x	(13/2 ⁻)	335.2+x	(11/2 ⁻)	D+Q		A_2 =+0.18 2, A_4 =-0.01 2 for 159.3 γ +159.1 γ .
164.2 2	16.0 <i>16</i>	305.9 + x	$(9/2^+)$	141.7 + x	$(7/2^+)$	D+Q		$A_2 = -0.06 \ 4, \ A_4 = -0.01 \ 4.$
167.9 2	65 7	662.4+x	$(15/2^{-})$	494.5 + x	$(13/2^{-})$	D+Q	+0.15 5	$A_2 = -0.01 \ 2, A_4 = -0.01 \ 2.$
175.0 <i>5</i>	5.5 18	694.6 + x	$(13/2^{-})$	519.6+x	$(11/2^+)$	D		$A_2 = -0.32 \ 11, A_4 = +0.06 \ 12.$
180.1 2	100	234.84+x	$(9/2^{-})$	54.75 + x	$(7/2^{-})$	D		$A_2 = +0.16 \ 2$, $A_4 = -0.02 \ 2$.
184.2 2	37 <i>3</i>	366.8 + x	$(11/2^+)$	182.6+x	$(9/2^+)$	D+Q	+0.47 7	$A_2 = +0.32 \ 3, A_4 = -0.01 \ 3.$
193.3 5	8.6 25	499.2 + x	$(11/2^+)$	305.9+x	$(9/2^+)$			
195.3 2	93 9	195.30+x	$(7/2^+)$	0.0+x	$(3/2^+)$	Q		$A_2 = +0.29 \ 2$, $A_4 = -0.07 \ 2$.
206.3 2	53 5	1099.5 + x	$(19/2^{-})$	893.2+x	$(17/2^{-})$	D+Q	+0.15 3	$A_2 = +0.01 \ 2, A_4 = -0.01 \ 2.$
207.8 2	15.3 <i>15</i>	574.6+x	$(13/2^+)$	366.8 + x	$(11/2^+)$	D+Q	+0.57 10	$A_2 = +0.38 \ 6, A_4 = -0.01 \ 5.$
210.0 2	22.2 22	3249.6+x	$(35/2^{-})$	3039.6+x	$(33/2^{-})$	D+Q	+0.05 3	$A_2 = -0.13 \ 3, A_4 = 0.00 \ 3.$
211.3 2	99	234.84+x	$(9/2^{-})$	23.5 + x	$(7/2^+)$	D		$A_2 = -0.27 \ 2, A_4 = 0.00 \ 2.$
212.8 5	6.0 20	712.0+x	$(13/2^+)$	499.2+x	$(11/2^+)$	D+Q	+0.25 6	$A_2 = +0.12 \ 15, \ A_4 = +0.04 \ 15.$
227.1 5		3476.7+x	$(37/2^{-})$	3249.6+x	$(35/2^{-})$			
228.1 5	13 4	802.7+x	$(15/2^+)$	574.6+x	$(13/2^+)$			A_2 =+0.18 2, A_4 =-0.07 2 for 228.1 γ +228.2 γ .
228.2 2	58 6	694.6+x	(13/2 ⁻)	466.4+x	(9/2-)	Q		A_2 =+0.18 2, A_4 =-0.07 2 for 228.2 γ +228.1 γ .
230.8 2	56 5	893.2+x	$(17/2^{-})$	662.4+x	$(15/2^{-})$	D+Q	+0.22 4	$A_2 = +0.10 \ 2, \ A_4 = -0.01 \ 2.$

[†] This level is probably non-existent in view of the more recent work of 1995Sc39, where it is absent. $^{\sharp}$ x \approx 20 keV; see 'Adopted Levels' for comments.

[®] From 'Adopted Levels'.

[&]amp; Band(A): 1/2[411] band.

^a Band(B): 7/2[404] band.

^b Band(C): 5/2[402] band.

^c Band(D): 1/2[541] band.

^d Band(E): 9/2[514] band.

¹⁵³Eu(¹⁶O,4nγ) **1984Jo05** (continued)

γ (165Lu) (continued)

E_{γ}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	Comments
231.9 2 237.0 5 241.9 5	26 <i>3</i> 9 <i>3</i>	1618.6+x 432.3+x 1198.4+x	(23/2 ⁻) (9/2 ⁺) (17/2 ⁺)	1386.7+x 195.30+x 956.5+x	$(15/2^+)$	D+Q D	+0.11 3	A ₂ =-0.04 3, A ₄ =+0.02 3. A ₂ =-0.41 11, A ₄ =0.00 12.
244.5 5 247.1 5 249.6 2 251.2 3	9 <i>3</i> 15.9 11.8 25	956.5+x 1049.8+x 3039.6+x 2196.6+x	$(15/2^+)$ $(17/2^+)$ $(33/2^-)$ $(27/2^-)$	712.0+x 802.7+x 2790.0+x 1945.4+x	$(13/2^+)$ $(15/2^+)$ $(31/2^-)$ $(25/2^-)$	D+Q D(+Q) D(+Q)	+0.38 <i>13</i> +0.04 <i>4</i> +0.07 <i>7</i>	A_2 =+0.29 <i>II</i> , A_4 =-0.08 <i>II</i> . A_2 =-0.14 7, A_4 =-0.01 7. A_2 =-0.11 9, A_4 =+0.05 <i>I0</i> .
254.2 <i>5</i> 259.7 2	12 2	2790.0+x 494.5+x	(31/2 ⁻) (13/2 ⁻)	2535.8+x 234.84+x	$(29/2^{-})$	D Q	. 0.07	$A_2 = -0.25 \ 9, A_4 = +0.07 \ 9.$ I_y : $I(259.7\gamma + 259.8\gamma) = 309 \ 30.$ $A_2 = +0.20 \ 5, A_4 = -0.09 \ 5$ for $259.8\gamma + 259.7\gamma$.
259.8 2	<31	3736.5+x	(39/2 ⁻)	3476.7+x	(37/2 ⁻)			I _y : $309 \ 31$ for $259.8+259.7$. A ₂ =+0.20 5, A ₄ =-0.09 5 for $259.8\gamma+259.7\gamma$.
261.1 <i>5</i> 261.8 <i>5</i>	10 <i>3</i>	1740.9+x 1311.6+x	$(21/2^+)$ $(19/2^+)$	1479.8+x 1049.8+x	$(19/2^+)$ $(17/2^+)$			
271.1 2	56 <i>6</i>	466.4 + x	$(9/2^{-})$	195.30+x	$(7/2^+)$	D		$A_2 = -0.19 \ 3, A_4 = +0.00 \ 3.$
271.5	#	2732.1+x	(29/2+)	2460.6+x	$(27/2^+)$			$A_2 = -0.19 \ 3$, $A_4 = 0.00 \ 3$ for $271.5\gamma + 271.1\gamma$.
275.2 <i>3</i>	14 <i>4</i>	4011.7+x	$(41/2^{-})$	3736.5 + x	$(39/2^{-})$	D(+Q)	+0.04 4	$A_2 = -0.12 \ 8, \ A_4 = +0.01 \ 8.$
276.7 <i>3</i>	12 2	1588.3+x	$(21/2^+)$	1311.6+x	$(19/2^+)$	D+Q	+0.26 7	$A_2 = +0.15 \ 9, A_4 = -0.07 \ 9.$
281.4 5		1479.8+x	$(19/2^{+})$	1198.4+x	$(17/2^+)$			2, 4
284.9 5	12 4	432.3+x	$(9/2^+)$	147.4+x	$(5/2^+)$			A_2 =+0.17 7, A_4 =+0.01 8 for 284.9 γ +284.9 γ .
284.9 5	6.6 20	1873.2+x	$(23/2^+)$	1588.3+x	$(21/2^+)$			A_2 =+0.17 7, A_4 =+0.01 8 for 284.9 γ +284.9 γ .
287.2 2	44 4	1386.7+x	$(21/2^{-})$	1099.5 + x	$(19/2^{-})$	D+Q	+0.21 4	$A_2 = +0.07 4$, $A_4 = -0.02 4$.
292.4 5	5.6 18	2460.6+x	$(27/2^{+})$	2168.2+x	$(25/2^+)$	D+Q	+0.44 12	$A_2 = +0.34 \ 10, \ A_4 = -0.12 \ 10.$
295.0 5	6.5 20	2168.2+x	$(25/2^+)$	1873.2+x	$(23/2^+)$	D+Q	+0.40 12	$A_2 = +0.34 \ 9, \ A_4 = -0.04 \ 8.$
	6.4 20						10.40 12	
300.4 5		305.9+x	$(9/2^+)$	5.5+x	$(5/2^+)$	Q D(+O)	. 0 07 7	$A_2 = +0.38 \ 9, A_4 = -0.14 \ 8.$
301.8 5	4.1 14	821.4+x	$(13/2^+)$	519.6+x	$(11/2^+)$	D(+Q)	+0.07 7	$A_2 = -0.08 \ 14, A_4 = -0.12 \ 16.$
312.3 5	8.1 25	4324.0+x	$(43/2^{-})$	4011.7+x	$(41/2^{-})$	D+Q	+0.18 7	$A_2 = +0.06 9$, $A_4 = +0.07 9$.
324.3 2	33 <i>3</i>	519.6+x	$(11/2^+)$	195.30+x		Q		$A_2 = +0.27 6, A_4 = -0.10 6.$
326.8 2	29 3	1945.4+x	$(25/2^{-})$	1618.6+x	$(23/2^{-})$			A_2 =+0.20 3, A_4 =-0.03 3 for 326.8 γ +327.2 γ .
327.2 2	37 4	662.4+x	(15/2 ⁻)	335.2+x	(11/2 ⁻)	Q		A_2 =+0.20 3, A_4 =-0.03 3 for 327.2 γ +326.8 γ .
335.4 2	45 5	1030.0+x	$(17/2^{-})$	694.6 + x	$(13/2^{-})$	Q		$A_2 = +0.24 \ 3, A_4 = -0.08 \ 3.$
339.2 2	19.6 <i>20</i>	2535.8+x	$(29/2^{-})$	2196.6+x	$(27/2^{-})$	D+Q	+0.16 4	$A_2 = +0.01 \ 4, A_4 = +0.03 \ 4.$
343.3 2	34 <i>3</i>	366.8 + x	$(11/2^+)$	23.5+x	$(7/2^+)$	Q		$A_2 = +0.26 4$, $A_4 = -0.07 4$.
345.3 <i>5</i>	#	345.3+x	$(5/2^{-})$	0.0+x	$(3/2^+)$			
349.3 5	5.3 18	1292.9+x	$(17/2^+)$	943.6+x	$(15/2^+)$	D(+Q)	+0.06 6	$A_2 = -0.01 \ 11, A_4 = +0.10 \ 12.$
357.5 5	4.9 16	499.2+x	$(11/2^+)$	141.7+x	$(7/2^+)$	D(1Q)	10.000	112 0.01 11, 114 1 0.10 12.
389.1 <i>3</i>	12 4	821.4+x	$(13/2^+)$	432.3+x	$(9/2^+)$	\circ		A ₂ =+0.27 8, A ₄ =-0.10 8.
	50 5	574.6+x		182.6+x		Q		
392.0 2			$(13/2^+)$		$(9/2^+)$	Q		$A_2 = +0.25 \ 3, A_4 = -0.09 \ 3.$
398.7 2	51 5	893.2+x	$(17/2^{-})$	494.5+x	$(13/2^{-})$	Q		$A_2 = +0.31 \ 3, A_4 = -0.11 \ 3.$
406.1 5	10 4	712.0+x	$(13/2^+)$	305.9+x	$(9/2^+)$	Q		$A_2 = +0.30 5, A_4 = -0.13 5.$
424.0 2	23.9 24	943.6+x	$(15/2^+)$	519.6+x	$(11/2^+)$	Q		$A_2 = +0.28 \ 3, A_4 = -0.15 \ 3.$
432.6 2	30 <i>3</i>	1462.6+x	$(21/2^{-})$	1030.0+x	$(17/2^{-})$	Q		$A_2 = +0.29 \ 7, A_4 = -0.08 \ 7.$
435.9 2	36 4	802.7+x	$(15/2^+)$	366.8+x	$(11/2^+)$	Q		A_2 =+0.19 2, A_4 =-0.03 2 for 435.9 γ +436.9 γ +437.1 γ +437.1 γ .
436.9 5	7.2 24	956.5+x	$(15/2^+)$	519.6+x	$(11/2^+)$	Q		A_2 =+0.19 2, A_4 =-0.03 2 for 436.9 γ +435.9 γ +437.1 γ .
437.1 2	74 <i>7</i>	1099.5+x	(19/2 ⁻)	662.4+x	(15/2 ⁻)	Q		A_2 =+0.19 2, A_4 =-0.03 2 for 437.1 γ +436.9 γ +435.9 γ .

153 Eu(16 O,4n γ) 1984Jo05 (continued)

$\gamma(^{165}Lu)$ (continued)

E_{γ}	I_{γ}^{\dagger}	$E_i(level)$	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.‡	Comments
437.1 2	16.7 17	3476.7+x	$(37/2^{-})$	3039.6+x	$(33/2^{-})$	(Q)	$A_2 = +0.19 \ 2$, $A_4 = -0.03 \ 2$ for $437.1\gamma + 436.9\gamma + 435.9\gamma$.
444.4 5	11 4	943.6+x	$(15/2^+)$	499.2+x	$(11/2^+)$	Q	$A_2 = +0.41 6, A_4 = -0.15 6.$
457.3 5	5.9 20	956.5+x	$(15/2^{+})$	499.2+x	$(11/2^+)$	Q	$A_2 = +0.54 \ 15, A_4 = +0.15 \ 14.$
459.6 2	20.6 21	3249.6+x	$(35/2^{-})$	2790.0+x	$(31/2^{-})$	Q	$A_2 = +0.26 4$, $A_4 = -0.05 4$.
460 ^a	#	2755.6+x?	$(29/2^+)$	2295.6+x?			
471.5 2	16.3 16	1292.9+x	$(17/2^+)$	821.4+x	$(13/2^+)$	(Q)	$A_2 = +0.33 \ 11, A_4 = +0.01 \ 11.$
475.2 2	49 5	1049.8 + x	$(17/2^+)$	574.6+x	$(13/2^+)$	Q	$A_2 = +0.28 \ 2$, $A_4 = -0.08 \ 2$.
476 ^a	#	2295.6+x?	$(25/2^+)$	1819.4+x	$(21/2^+)$		
486.4 2	16.5 17	1198.4+x	$(17/2^+)$	712.0+x	$(13/2^+)$	Q	$A_2 = +0.22 \ 3$, $A_4 = -0.07 \ 3$ for $486.4\gamma + 486.9\gamma$.
486.9 <i>3</i>	14.4 20	3736.5 + x	$(39/2^{-})$	3249.6+x	$(35/2^{-})$	(Q)	$A_2 = +0.22$ 3, $A_4 = -0.07$ 3 for $486.9\gamma + 486.4\gamma$.
493.5 2	56 <i>6</i>	1386.7+x	$(21/2^{-})$	893.2+x	$(17/2^{-})$	Q	$A_2 = +0.24 \ 2, A_4 = -0.08 \ 2.$
502.3 2	36 <i>4</i>	1445.9+x	$(19/2^+)$	943.6+x	$(15/2^+)$	Q	$A_2 = +0.24 \ 4, A_4 = -0.08 \ 4.$
503.8 2	18.6 <i>19</i>	3039.6+x	$(33/2^{-})$	2535.8+x	$(29/2^{-})$	(Q)	$A_2 = +0.23 \ 6, A_4 = -0.05 \ 6.$
508.9 2	37 4	1311.6+x	$(19/2^+)$	802.7+x	$(15/2^+)$		
516.5 2	23.5 24	1979.1+x	$(25/2^{-})$	1462.6+x	$(21/2^{-})$	Q	$A_2 = +0.18 6, A_4 = -0.13 6.$
519.1 2	80 8	1618.6+x	$(23/2^{-})$	1099.5 + x	$(19/2^{-})$	Q	$A_2 = +0.21 \ 2, \ A_4 = -0.09 \ 2.$
523.3 5		1479.8 + x	$(19/2^+)$	956.5 + x	$(15/2^+)$		
526.5 <i>3</i>	14.1 20	1819.4+x	$(21/2^+)$	1292.9+x	$(17/2^+)$	Q	$A_2 = +0.24 \ 8, \ A_4 = -0.10 \ 8.$
530.8 5	7.6 25	2350.2+x	$(25/2^+)$	1819.4+x	$(21/2^+)$	Q	$A_2 = +0.19 \ 13, A_4 = -0.14 \ 13.$
535.0 5	40.	4011.7+x	$(41/2^{-})$	3476.7+x	$(37/2^{-})$		
538.5 2	48 5	1588.3+x	$(21/2^+)$	1049.8+x	$(17/2^+)$	Q	$A_2 = +0.30 \ 3, A_4 = -0.09 \ 3.$
542.5 2	15.5 16	1740.9+x	$(21/2^+)$	1198.4+x	$(17/2^+)$	Q	$A_2 = +0.28 6, A_4 = -0.12 6.$
545.0 2	34 3	1990.9+x	$(23/2^+)$	1445.9+x	$(19/2^+)$	Q	$A_2 = +0.27 \ 3, A_4 = -0.10 \ 3.$
548.4 2	16.5 <i>17</i> #	2539.3+x	$(27/2^+)$	1990.9+x	$(23/2^+)$	Q	$A_2 = +0.22 \ 7, A_4 = -0.11 \ 7.$
555a		2295.6+x?	$(25/2^+)$	1740.9+x	$(21/2^+)$		
555.1 [@] a 5	10 3	2546.0+x	$(27/2^+)$	1990.9+x	$(23/2^+)$	(Q)	$A_2 = +0.18 \ 7, A_4 = -0.08 \ 8.$
558.7 2	39 4	1945.4+x	$(25/2^{-})$	1386.7+x	$(21/2^{-})$	Q	$A_2 = +0.27 \ 4, A_4 = -0.09 \ 4.$
561.6 2	43 <i>4</i>	1873.2+x	$(23/2^+)$	1311.6+x	$(19/2^+)$	Q	$A_2 = +0.31 \ 3, A_4 = -0.12 \ 3.$
563.9 2	37 4	2732.1+x	$(29/2^+)$	2168.2+x	$(25/2^+)$	Q	$A_2 = +0.41 \ 4, A_4 = -0.12 \ 4.$
569.0 [@] a 5		3029.6+x?	$(31/2^+)$	2460.6+x	$(27/2^+)$		
570.2 5		2050.0+x	$(23/2^+)$	1479.8+x	$(19/2^+)$		
578.0 2	64 6	2196.6+x	$(27/2^{-})$	1618.6+x	$(23/2^{-})$	Q	$A_2 = +0.24 \ 3, \ A_4 = -0.11 \ 3.$
579.9 2	37 4	2168.2+x	$(25/2^+)$	1588.3+x	$(21/2^+)$	Q	$A_2 = +0.28 \ 4, A_4 = -0.10 \ 4.$
585.2 <i>3</i>	14.0 20	2564.3+x	$(29/2^{-})$	1979.1+x	$(25/2^{-})$	0	A .0.24.5 A .0.07.5
587.4 2	24.7 25	2460.6+x	$(27/2^+)$	1873.2+x	$(23/2^+)$	Q	$A_2 = +0.245, A_4 = -0.075.$
587.5 5	12 2	4324.0+x	$(43/2^{-})$	3736.5+x	$(39/2^{-})$	Q	$A_2 = +0.24 5, A_4 = -0.07 5.$
590.4 2	31 3	2535.8+x	$(29/2^{-})$	1945.4+x	$(25/2^{-})$	Q	$A_2 = +0.34$ 5, $A_4 = -0.13$ 5.
593.4 2	31 <i>3</i>	2790.0+x	$(31/2^{-})$	2196.6+x	$(27/2^{-})$	Q	$A_2 = +0.24 \ 6, \ A_4 = -0.12 \ 6.$
598.6 [@] a 5	4174	3330.7+x?	$(33/2^+)$	2732.1+x	$(29/2^+)$		
629.1 5	4.1 14	4483.9+x	$(41/2^{-})$	3854.8+x	$(37/2^{-})$		
631.5 5	7.4 25	3195.8+x	$(33/2^{-})$	2564.3+x	$(29/2^{-})$		
659.0 <i>5</i>	6.2 20	3854.8+x	$(37/2^{-})$	3195.8+x	$(33/2^{-})$		

 $^{^{\}dagger}$ At E(16 O)=84 MeV.

[‡] From $\gamma(\theta)$ data.

[#] Weak gamma ray.

[®] This gamma ray is absent in the more recent work of 1995Sc39.

[&]amp; From least-squares fit to $E\gamma$'s. The energy of 54.75+x is held fixed in this procedure. ^a Placement of transition in the level scheme is uncertain.

153 Eu(16 O,4n γ) 1984Jo05

¹⁶⁵₇₁Lu₉₄

153 Eu(16 O,4n γ) 1984Jo05

