Appunti di CPS

Omar Polo

14 febbraio 2020

Indice

1	Par	ti mancanti	1
2	Var	iabili casuali	1
	2.1	Nel Discreto	1
		2.1.1 Bivariate con legge discreta	1
	2.2	Nel Continuo	2
		2.2.1 Supporto di una v.c. con legge continua	2
		2.2.2 Bivariate con legge continua	3
3	Ind	ici di posizione	4
	3.1	Moda	4
	3.2	Mediana	4
	3.3	Quantile- p	5
	3.4	Valore atteso	5
		3.4.1 Proprietà del valore atteso	5
4	Ind	ici di variabilità	7
	4.1	Varianza	7
		4.1.1 Proprietà	7
	4.2	Scarto quadratico medio	8
	4.3	Range	8
	4.4	Scarto interquantilico	8
	4.5	Diseguaglianze di Markov e Čebyshev	8

	4.6	Covarianza	9
5	Fun	zione di ripartizione e di sopravvivenza	9
	5.1	Caso univariato	10
6	Fun	zione generatrice dei momenti	11
7	Leg	gi di tipo discreto	12
	7.1	Leggi degeneri	13
	7.2	Leggi binomiali	13
	7.3	Leggi uniformi discrete	14
	7.4	Leggi ipergeometriche	14
	7.5	Leggi di Poisson	14
	7.6	Leggi geometriche	16
8	Leg	gi di tipo continuo	18
	8.1	Leggi uniformi continue	19
	8.2	Leggi esponenziali	19
	8.3	Funzione tasso di guasto	20
	8.4	Leggi di Weibull	21
	8.5	Leggi gamma	21
	8.6	Leggi normali	23

1 Parti mancanti

- capitoli [1, 5]
- capitolo 13: "Leggi di v.c. trasformate"
- capitolo 15:
 - indici di posizione e variabilità per v.c. multivariate
 - varianza di una combinazione lineare
 - varianza di correlazione lineare

2 Variabili casuali

2.1 Nel Discreto

2.1.1 Bivariate con legge discreta

Una v.c. bivariata con legge discreta è definita da:

- il supporto congiunto $S_{X,Y} = \{(x_i, y_i) \in \mathbb{R}^2, i \in I \subseteq \mathbb{N}\}$ successione finita o numerabile di punti distinti in \mathbb{R}^2 senza punti di accumulazione all'infinito.
- la f.m.p congiunta $p_{X,Y}: S_{X,Y} \to [0,1]$

La legge congiunta della v.c. (X,Y) è allora, per ogni $B\in\mathcal{B}_2$ data da:

$$P_{X,Y}(B) = P((X,Y) \in B) = \sum_{(x,y) \in B \cap S_{X,Y}} p_{X,Y}(x,y)$$
(1)

Leggi marginali Da una v.c. bivariata con legge discreta (X,Y) specificata da $S_{X,Y}$ e $p_{X,Y}(x,y)$ si possono "estrarre" varie leggi di v.c. univariata. Anzitutto conviene considerare le leggi delle componenti X e Y, dette **leggi marginali**.

La legge marginale di X ha:

• supporto marginale

$$S_X = x \in \mathbb{R} : (x, y) \in S_{X,Y}$$
 per qualche $y \in \mathbb{R}$

• f.m.p. marginale

$$p_X(x) = P(X = x) = \sum_{y:(x,y)} \in S_{X,Y} p_{X,Y}(x,y), \text{ per } x \in S_X.$$

Similmente si può ottenere la legge marginale di Y in modo del tutto simmetrico.

Leggi condizionali Data una v.c. bivariata con legge discreta (X, Y) si possono "estrarre" anche due famiglie di leggi condizionali: la **legge condizionale di** Y dato un valore osservabile di X indicata con $Y|X=x,x\in S_X$:

• supporto condizionale

$$S_{Y|X=x} = y \in \mathbb{R} : (x,y) \in S_{X,Y}$$

• f.m.p. condizionale

$$P_{Y|X=x}(y) = P(Y = y|X = x) = \frac{P(X = x, Y = y)}{P(X = x)}$$

= $\frac{p_{X,Y}(x,y)}{p_X(x)}$ per $y \in S_{Y|X=x}$.

e la legge condizionale di X dato un valore osservabile di Y che si deduce in modo del tutto analogo.

Componenti indipendenti e dipendenti

Definizione 1 La v.c. con legge discreta (X,Y) si dice con componenti indipendenti se

$$S_{XY} = S_X \times S_Y$$

e se per ogni $(x,y) \in S_{X,Y}$ si ha

$$p_{X,Y}(x,y) = p_X(x)p_Y(y).$$

Se invece le componenti di X e Y di (X,Y) non sono indipendenti si dice che la v.c. ha componenti dipendenti.

2.2 Nel Continuo

2.2.1 Supporto di una v.c. con legge continua

Il supporto S_X di una v.c. univariata X con legge continua è il più piccolo sottoinsieme chiuso di $\mathbb R$ al quale P_X da probabilità 1. Si ricorda che un insieme è chiuso se contiene tutti i suoi punti di accumulazione. Quindi $S_X \in \mathcal B_1$ è tale che

2.2 Nel Continuo 3

- 1. S_X è chiuso
- 2. $S_X \subseteq C$ per ogni $C \subseteq \mathbb{R}$ chiuso con $P_X(C) = P(X \in C) = 1$

In altre parole, S_X è la chiusura dell'insieme $x \in \mathbb{R} : p_X(x) > 0$. Si ricorda che la chiusura di un insieme numerico è l'unione fra l'insieme stesso e i punti non dell'insieme che sono però suoi punti di accumulazione.

2.2.2 Bivariate con legge continua

(X,Y) è una v.c. bivariata con legge continua se per ogni $B \in \mathcal{B}_2$, con $B = [a_1,b_1] \times [a_2,b_2]$, si ha:

$$P_{(X,Y)}(B) = P((X,Y) \in B)$$

$$= P(a_1 \leqslant X \leqslant b_1, a_2 \leqslant Y \leqslant b_2)$$

$$= \iint_B p_{(X,Y)}(x,y) dx dy$$

dove $p_{X,Y}(x,y)$ ha le proprietà di

- non negatività, per ogni $(x, y) \in \mathbb{R}^2$
- normalizzazione: $\iint_{\mathbb{R}^2} p_{X,Y}(x,y) dx dy = 1$.

Per una v.c. con legge continua vale che P(X=x,Y=y) sia zero per ogni $(x,y) \in \mathbb{R}^2$ e che $S_{X,Y}$ sia la chiusura di $\{(x,y) \in \mathbb{R}^2 \mid p_{X,Y}(x,y) > 0\}$.

Come nel caso discreto, si possono ottenere le leggi univariate indotte, che saranno di tipo continuo:

• marginale di X con f.d.p.

$$p_X(x) = \int_{-\infty}^{+\infty} p_{X,Y}(x,y) \, dy$$

 \bullet marginale di Y con f.d.p.

$$p_Y(y) = \int_{-\infty}^{+\infty} p_{X,Y}(x,y) \, dx$$

• condizionale $Y|X=x, x \in S_X$ con f.d.p.

$$p_{Y|X=x}(y) = \frac{p_{X,Y}(x,y)}{p_X(x)}$$

• condizionale $X|Y=y,y\in S_Y$ con f.d.p.

$$p_{X|Y=y}(x) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

Infine, i supporti si ottengono con le identiche formule del caso discreto:

$$S_X = \{x \in \mathbb{R} \mid (x, y) \in S_{X,Y} \text{ per qualche } y\}$$

$$S_Y = \{y \in \mathbb{R} \mid (x, y) \in S_{X,Y} \text{ per qualche } x\}$$

$$S_{Y|X=x} = \{x \in \mathbb{R} \mid (x, y) \in S_{X,Y}\}$$

$$S_{X|Y=y} = \{y \in \mathbb{R} \mid (x, y) \in S_{X,Y}\}$$

Componenti indipendenti In modo del tutto analogo al caso continuo, si dice che una v.c. bivariata (X,Y) con legge continua ha componenti indipendenti se per ogni $(x,y) \in \mathbb{R}^2$ vale che

$$p_{X,Y}(x,y) = p_X(x)p_Y(y).$$

3 Indici di posizione

3.1 Moda

Definizione 2 Sia X una v.c. con legge discreta o continua e f.m.p./f.d.p. $p_X(x)$. Si dice **moda** di X, indicata con x_{mo} , un valore del supporto di X per cui

$$p_X(x_{mo}) \geqslant p_X(x) \quad \forall x \in S_X$$

Nel caso del continuo si richiede inoltre che la densità di X sia continua almeno da destra o da sinistra in x_{mo} .

3.2 Mediana

Definizione 3 Sia X una v.c. univariata con f.r. $F_X(x)$. Si dice **mediana** di X, indicata con $x_{0.5}$, un valore reale tale che valgano simultaneamente

$$P(X \leqslant x_{0.5}) \geqslant 0.5$$
 e $P(X \geqslant x_{0.5}) \geqslant 0.5$

La mediana non è necessariamente unica. Tutte le soluzioni dell'equazione $F_X(x) = 0.5$ sono mediane di X. Se invece l'equazione non ha soluzioni, la mediana di X è unica e risulta essere il più piccolo valore di x per cui $F_X(x) \ge 0.5$.

3.3 Quantile-p 5

3.3 Quantile-p

Definizione 4 Sia X una v.c. univariata con f.r. $F_X(x)$. Per $p \in (0,1)$ si dice **quantile**-p di X, indicato con x_p , un valore reale tale che valgano simultaneamente:

$$P(X \leqslant x_P) \geqslant p$$
 e $P(X \geqslant X_p) \geqslant 1 - p$.

Si tratta di una generalizzazione del concetto di mediana, infatti la mediana è anche detta quantile-0.5.

Come la mediana, anche il quantile-p non è necessariamente unico.

3.4 Valore atteso

Il valore atteso E(X) è la media aritmetica ponderata dei valori assumibili dalla v.c. con pesi dati dalla f.m.p. Se la variabile ha supporto continuo, la ponderazione è data dalla f.d.p. e la somma viene intesa in senso continuo, ovvero come un integrale.

E(X) è quindi definita come

$$\mathrm{E}(X) = \begin{cases} \sum_{x \in S_X} x p_X(x) & \text{se } X \text{ ha legge discreta} \\ \int_{-\infty}^{+\infty} x p_X(x) \, dx & \text{se } X \text{ ha legge continua} \end{cases}$$

Si richiede che la somma (o l'integrale) convergano assolutamente, quindi:

$$\sum_{x \in S_X} |x| p_X(x) < +\infty \quad \text{oppure} \quad \int_{-\infty}^{+\infty} |x| p_X(x) dx < +\infty$$

3.4.1 Proprietà del valore atteso

Valore atteso di trasformate Siano X e Y v.c. univariate con Y = g(X), allora vale che

$$\mathrm{E}(Y) = \mathrm{E}(g(X)) = \begin{cases} \sum_{x \in S_X} g(x) p_X(x) & \text{se } X \text{ ha legge discreta} \\ \int_{-\infty}^{+\infty} g(x) p_X(x) \, dx & \text{se } X \text{ ha legge continua} \end{cases}$$

Valore atteso del prodotto di v.c. indipendenti Sia $X = (X_1, \dots, X_d)$ una v.c. con componenti indipendenti, allora

$$E(X_1,\ldots,X_d) = \prod_{i=1}^d E(X_i)$$

Proprietà di Cauchy Quando esiste finito, il valore atteso può non essere un punto del supporto di X, ma e sempre intermedio fra i punti del supporto. Supponendo, senza perdita di generalità che $S_X = \{x_1, \ldots, x_k\}$

$$x_1 < x_2 < \cdots < x_k$$

si ha

$$x_1 \leqslant x_i \leqslant x_k \quad \forall i \in \{1, 2, \dots, k\}$$

e quindi

$$x_1 p_X(x_i) \leqslant x_i p_X(x_i) \leqslant x_k p_X(x_i) \quad \forall i \in \{1, 2, \dots, k\}.$$

Sommando le diseguaglianze si ottiene

$$x_1 \sum_{i=1}^k p_X(x_i) \leqslant \sum_{i=1}^k x_i p_X(x_i) \leqslant x_k \sum_{i=1}^k p_X(x_i)$$

da cui, per la normalizzazione, si ottiene

$$x_1 \leqslant \mathrm{E}(X) \leqslant x_k$$
.

Proprietà di linearità Siano X e Y v.c. univariate con Y = aX + b, allora

$$E(Y) = E(aX + b) = a E(X) + b.$$

Proprietà di linearità generalizzata Se (X,Y) è una v.c. bivariata e T=aX+bY una combinazione lineare delle componenti di (X,Y) con $a,b\in\mathbb{R}$, allora

$$E(t) = E(aX + bY) = a E(X) + b E(Y).$$

Proprietà del baricentro Si tratta di un caso particolare della linearità

$$E(X - E(X)) = 0.$$

Proprietà dei minimi quadrati Se X è una v.c. univariata e i valori attesi indicati esistono, allora per ogni $c \in \mathbb{R}$

$$E((X-c)^2) \geqslant E((X-E(X))^2)$$

dove

- ullet c è una predizione puntuale della realizzazione futura di X
- X-c è l'errore di predizione
- $(X-c)^2$ è la perdita quadratica dovuta all'errore di predizione
- \bullet E $((X-c)^2)$ è la perdita quadratica media, detta rischio quadratico

4 Indici di variabilità

Sia X una v.c. univariata con legge discreta e supporto finito. Si possono cogliere aspetti importanti della distribuzione di X attraverso indici sintetici.

4.1 Varianza

L'indice di variabilità principale, la varianza di X, è definito come la media aritmetica ponderata del quadrato degli scarti di X dal proprio valore atteso.

$$\operatorname{Var}(X) = \operatorname{E}\left((X - \operatorname{E}(X))^2\right) = \begin{cases} \sum_{x \in S_X} (x - \operatorname{E}(X))^2 p_X(x) & \text{legge continua} \\ \int_{-\infty}^{+\infty} (x - E(X))^2 p_X(x) \, dx & \text{legge discreta} \end{cases}$$

4.1.1 Proprietà

Non negatività Per ogni X con varianza finita $Var(X) \ge 0$. Var(X) = 0 solo per $X \sim \mathcal{D}(x_0)$.

Formula per il calcolo

$$Var(X) = E(X^2) - (E(X))^2$$

Invarianza rispetto a traslazioni

$$Var(X + b) = Var(X)$$

Omogeneità di secondo grado

$$Var(aX) = a^2 Var(X)$$

4.2 Scarto quadratico medio

Lo scarto quadratico medio, o deviazione standard, è definito come la radice quadrata aritmetica della varianza. In simboli

$$\sigma_X = \sqrt{\operatorname{Var}(x)}$$

4.3 Range

Il range di una v.c. univariata X, indicato con R_X è definito per variabili con supporto limitato come

$$R_X = \max(S_X) - \min(S_X).$$

4.4 Scarto interquantilico

Lo scarto interquantilico di una v.c. univariata X, indicato con IQR_X è definito come

$$IQR_X = x_{0.75} - x_{0.25}$$

4.5 Diseguaglianze di Markov e Čebyshev

Teorema 1 (Diseguaglianza di Markov) Sia X una v.c. non negativa con valore atteso $\mu = E(X) > 0$ finito. Allora per ogni c > 0 vale

$$P(X \geqslant c\mu) \leqslant \frac{1}{c}.$$

Teorema 2 (Diseguaglianza di Čebyshev) Sia X una v.c. univariata con valore atteso $\mu = E(X)$ finito e varianza $\sigma^2 = Var(X) > 0$ anch'essa finita. Allora, per ogni k > 0 vale

$$P(|X - \mu| \geqslant k\sigma) \leqslant \frac{1}{k^2}.$$

Entrambe le diseguaglianze sono poco informative per $c \in (0, 1]$ o $k \in (0, 1]$, ma diventano molto informative negli altri casi.

4.6 Covarianza 9

4.6 Covarianza

La covarianza è un indice sintetico della dipendenza delle componenti di una v.c. bivariata. Se indichiamo il supporto come successione dipendente di due indici:

$$S_{X,Y} = (x_i, y_i)$$
 $i \in I, j \in J$ con $I \in J$ finiti o numerabili

ed esprimere la f.m.p. in forma abbreviata come applicazione:

$$(x_i, y_i) \to p_{ij} = P(X = x_i, Y = y_i).$$

Allora la covarianza, indicata con il simbolo Cov(X,Y), è definita come media ponderata del prodotto di scarti:

$$Cov(X,Y) = \sum_{i \in I} \sum_{i \in J} (x_i - E(X))(y_i - E(Y))p_{ij}$$
$$= E((X - E(X)))(Y - E(Y))$$

Per il calcolo della covarianza è nota una formula per il calcolo analoga a quella che si usa per la varianza

$$Cov(X, Y) = E(XY) - E(X)E(Y).$$

5 Funzione di ripartizione e di sopravvivenza

Definizione 5 Si dice funzione di ripartizione di $X = (X_1, ..., X_d)$ la funzione

$$F_X: \mathbb{R}^d \to [0,1]$$

che a ciascun punto $x=(x_1,\ldots,x_d)$ di \mathbb{R}^d fa corrispondere il valore d'immagine

$$F_X(x) = P(X_1 \leqslant x_1, \dots, X_d \leqslant x_d)$$

$$= P_X((-\infty, x_1], \times \dots \times (-\infty, x_d])$$

$$= P(\bigcap_{i=1}^d \{s \in S \mid X_i(s) \leqslant x_i\}).$$

Se X ha componenti indipendenti, per ogni $x \in \mathbb{R}^d$ vale la relazione

$$F_X(x) = F_{X_1,\dots,X_d}(x_1,\dots,x_d) = \prod_{i=1}^d F_{X_i}(x_i)$$

Teorema 3 (Proprietà strutturali) Sia X una v.c. univariata con legge qualsiasi. La funzione di ripartizione $F_X(x)$ e una applicazione $F_X: \mathbb{R} \to [0,1]$ che gode delle seguenti proprietà:

• è monotona non decrescente

$$x_1 < x_2 \Rightarrow F_X(x_1) \leqslant F_X(x_2)$$

• è continua da destra in ogni punto $x \in \mathbb{R}$

$$\forall x \in \mathbb{R} \quad \lim_{\varepsilon \to 0^+} F_X(x + \varepsilon) = F_X(x)$$

• i limiti agli estremi del dominio sono zero ed uno:

$$\lim_{x \to -\infty} F_X(x) = 0$$
$$\lim_{x \to +\infty} F_X(x) = 1$$

Teorema 4 (Caratterizzazione) Se $F : \mathbb{R} \to [0,1]$ ha le proprietà 1, 2 e 3 del Teorema 3 allora esiste una v.c. univariata X con legge di probabilità P_X di cui F ne è la funzione di ripartizione.

5.1 Caso univariato

Se X è una v.c. univariata la sua $F_X(x)$ permette di calcolare agevolmente le probabilità degli intervalli.

$$P(a < X \le b) = F_X(b) - F_X(a) \quad \text{con } a < b$$

Funzione di sopravvivenza La funzione P(X > x) viene detta funzione di sopravvivenza di X

$$P(X > x) = 1 - P(X \le X) = 1 - F_X(x).$$

Dalla $p_X(x)$ **alla** $F_X(x)$ Sia X una v.c. univariata. Dalla definizione si ha subito che

$$F_X(x) = P(X \leqslant x) = \begin{cases} \sum_{t \in S_X | t \leqslant x} p_X(t) & \text{se } X \text{ ha legge discreta} \\ \int_{-\infty}^x p_X(t) dt & \text{se } X \text{ ha legge continua} \end{cases}$$

Si possono quindi fare le seguenti osservazioni:

- se X ha legge discreta univariata, la $F_X(x)$ è costante a tratti, con punti di salto posizionati ai punti del supporto, e con valore del salto pari alla massa di probabilità posta sul punto;
- se X ha legge continua, la sua funzione di ripartizione è una funzione continua di $x \in \mathbb{R}$, in quanto primitiva di una funzione integrabile.

Le varie $F_X(x)$ calcolate verranno mostrate nelle sezioni delle leggi.

Dalla $F_X(x)$ alla funzione di massa di probabilità Data la $F_X(x)$ di una v.c. discreta X si può recuperare il supporto come insieme dei punti di salto

$$S_X = \{ x \in \mathbb{R} \mid F_X(x) - \lim_{\varepsilon \to 0+} F_X(x - \varepsilon) > 0 \}$$

da cui poi dedurre

$$p_X(x) = P(X = x) = \lim_{\varepsilon \to 0^+} P(x - \varepsilon < X \leqslant x) = F_X(x) - \lim_{\varepsilon \to 0^+} F_X(x - \varepsilon)$$

Dalla $F_X(x)$ alla funzione di densità di probabilità Nei punti x in cui $p_X(x)$ è continua, la $F_X(x)$ è derivabile e vale

$$p_X(x) = \frac{d}{dx} F_X(x).$$

6 Funzione generatrice dei momenti

Definizione 6 (Momenti) Si dicono momenti di una v.c. univariata X i valori

$$\mu_r = E(X^r), r = 1, 2, \dots$$

In particolare, μ_r è detto momento r-esimo di X.

Si ha subito che:

$$\mu_1 = \mu = E(X)$$

$$\mu_2 - \mu_1^2 = E(X^2) - (E(X))^2 = Var(X)$$

Definizione 7 (Funzione generatrice dei momenti) Sia X una v.c. univariata con f.m.p. o f.d.p. $p_X(x)$. La funzione generatrice dei momenti di X, indicata con $M_X(t)$, è una funzione di variabile reale definita da

$$M_X(t) = \mathrm{E}(e^{tX}) = \begin{cases} \sum_{x \in S_X} e^{tx} p_X(x) & \text{se } X \text{ ha legge discreta} \\ \int_{-\infty}^{+\infty} e^{tx} p_X(x) \, dx & \text{se } X \text{ ha legge continua} \end{cases}$$

Tale funzione gode delle seguenti proprietà:

- nell'origine vale sempre $M_X(0) = 1$ per ogni X;
- il dominio di finitezza di $M_X(t)$, ovvero $D_X = \{t \in \mathbb{R} \mid M_X(t) < +\infty\}$, è **convesso** (ovvero è un intervallo, una semiretta o l'intera retta reale);

• $M_X(t) > 0 \quad \forall t \in D_X$

Definizione 8 (Funzione generatrice dei momenti propria) Si dice che la v.c. univariata X ha funzione generatrice dei momenti propria se il dominio di finitezza di $M_X(t)$ include l'origine come punto interno.

Una proprietà interessa delle funzioni generatrici dei momenti proprie è che nell'origine hanno derivate di ogni ordine, i cui valori "generano" i momenti di X

$$\mu_r = \mathrm{E}(X^r) = \frac{d^r}{dt^r} M_X(t) \bigg|_{t=0} = M_X^{(r)}(0).$$

che rende in alcuni casi più semplice calcolare valore atteso e varianza.

Definizione 9 (Generatrice della somma di v.c. indipendenti) Sia $X = (X_1, \ldots, X_d)$ una v.c. multivariata con componenti X_i indipendenti che hanno funzione generatrice dei momenti propria $M_{X_i}(t)$. Allora $S = \sum_{i=1}^d X_i$ ha funzione generatrice dei momenti propria

$$M_S(t) = \prod_{i=1}^d M_{X_i}(t).$$

7 Leggi di tipo discreto

Le leggi discrete sono in generale individuate da due ingredienti:

1. un insieme senza punti di accumulazione al finito

$$S_X = \bigcup_{x \in I} x_i, \quad x_i \in \mathbb{R}^d, \quad i \in I \subseteq \mathbb{N}^+$$

detto supporto della variabile casuale.

2. una applicazione

$$p_X: S_X \to [0,1]$$

detta funzione di massa di probabilità che soddisfi le condizioni:

- $p_X(x) > 0$ per ogni $x \in S_x$
- $\sum_{x \in S_n} p_X(x) = 1$

Dato il supporto e la funzione massa di probabilità, la legge discreta corrispondente è definita da

$$P_X(B) = P(X \in B) = \sum_{x \in S_X \cap B} p_X(x).$$

13

7.1 Leggi degeneri

Si dice che una v.c. d-variata X ha legge degenere in $x_0 \in \mathbb{R}^d$, valore prefissato, e si scrive $X \sim \mathcal{D}(x_0)$ se per $B \in \mathcal{B}_d$ la legge di probabilità di X è

$$P_X(B) = P(X \in B) = \begin{cases} 1 & \text{se } x_0 \in B \\ 0 & \text{se } x_0 \notin B. \end{cases}$$

Funzione di ripartizione

$$F_X(x) = \begin{cases} 0 & \text{se } x < x_0 \\ 1 & \text{se } x \geqslant x_0 \end{cases}$$

Generatrice dei momenti, valore atteso e varianza

$$M_X(t) = \mathcal{E}(e^{tX}) = \sum_{x \in S_X} e^{tx} p_X(x) = e^{tx_0}(1) = e^{tx_0}$$

$$M_X'(t) = x_0 e^{tx_0} \Rightarrow \mathcal{E}(X) = M_X'(0) = x_0$$

$$M_X''(t) = x_0^2 e^{tx_0} \Rightarrow \mathcal{E}(X^2) = M_X''(0) = x_0^2$$
 da cui $\operatorname{Var}(X) = \mathcal{E}(X^2) - (\mathcal{E}(X))^2 = x_0^2 - (x_0)^2 = 0.$

7.2 Leggi binomiali

Si dice che la v.c. univariata X ha legge binomiale con indice $n \in \mathbb{N}^+$ e parametro $p \in (0,1)$, e si scrive $X \sim Bi(n,p)$, se per ogni $B \in \mathcal{B}_1$ vale

$$P_X(B) = P(X \in B) = \sum_{x \in \{0,1,\dots,n\} \cap B} \binom{n}{x} p^x (1-p)^{n-x}.$$

Quando n=1 le leggi binomiali sono dette di **di Bernoulli** o **binomiali** elementari.

Alcuni risultati noti:

$$F_X(x) = \begin{cases} 0 & \text{se } x < 0\\ 1 - p & \text{se } 0 \le x < 1\\ 1 & \text{se } x \ge 1 \end{cases}$$
 supponendo $X \sim Bi(1, p)$

Proprietà additiva Sia $X = (X_1, ..., X_d)$ una v.c. multivariata con componenti X_i indipendenti e legge marginale $X_i \sim Bi(n_i, p)$, dove $n_i \in \mathbb{N}^+$ e $p \in (0, 1)$ per cui

$$M_{X_i}(t) = \left(1 - p + pe^t\right)^{n_i}$$

allora $S = \sum_{i=1}^{d} X_i$ ha f.g.m. propria

$$M_S(t) = \prod_{i=1}^{d} M_{X_i}(t)$$

$$= \prod_{i=1}^{d} (1 - p + pe^t)^{n_i}$$

$$= (1 - p + pe^t)^{\sum_{i=1}^{d} n_i}$$

per cui

$$S \sim Bi\left(\sum_{i=1}^{d} n_i, p\right).$$

7.3 Leggi uniformi discrete

La v.c. d-variata X ha legge uniforme discreta in $D = \bigcup_{i=1}^k x_i, x_i \in \mathbb{R}^d$ dove gli x_i sono k punti distinti, e si scrive in breve $X \sim Ud(X_1, \dots, x_k)$ se

- $S_X = D$
- $p_X(x) = 1/k$ per ogni $x \in S_X$.

7.4 Leggi ipergeometriche

Si dice che la v.c. univariata X ha legge ipergeometrica con indice $n \in \mathbb{N}^+$ e parametri N e D, dove $n \leq N \in \mathbb{N}^+$ e $D \in \mathbb{N}^+$ con $D \leq N$, e si scrive in breve $X \sim IG(n; D, N)$ se vale

$$P_X(\lbrace x\rbrace) = P(X = x) = \frac{\binom{D}{x} \binom{N-D}{n-x}}{\binom{N}{n}}$$

per tutti i valori x per cui hanno senso i coefficienti binomiali e 0 altrimenti. Usando il simbolo S_x per i valori di x per cui P(X=x)>0 le leggi P_X ipergeometriche sono tali che per ogni $B\in\mathcal{B}_1$

$$P_X(B) = P(X \in B) = \sum_{x \in S_x \cap B} \frac{\binom{D}{x} \binom{N-D}{n-x}}{\binom{N}{n}}$$

7.5 Leggi di Poisson

Definizione 10 Si dice che X ha legge di Poisson con parametro $\lambda > 0$ e si scrive $X \sim P(\lambda)$ se è una v.c. univariata con legge discreta con supporto $S_X = \mathbb{N}$ e f.m.p. per $x \in S_X$ pari a

$$p_X(x) = e^{-\lambda} \frac{\lambda^x}{x!}.$$

Per verificare che si tratti di una buona definizione occorre controllare le solite due condizioni:

- la positività di $p_X(x)$ sul supporto $S_X = \mathbb{N}$ è banale perché $p_X(x)$ è il prodotto di tre fattori positivi.
- la normalizzazione segue da

$$\sum_{x \in S_X} p_X(x) = \sum_{x=0}^{+\infty} e^{-\lambda} \frac{\lambda^x}{x!}$$

$$= e^{-\lambda} \sum_{x=0}^{+\infty} \frac{\lambda^x}{x!}$$

$$= e^{-\lambda} \sum_{x=0}^{+\infty} \frac{\lambda^x}{x!}$$

$$= e^{-\lambda} e^{\lambda} = e^{-\lambda + \lambda} = e^0 = 1.$$
noto:
$$\sum_{x=0}^{+\infty} \frac{\lambda^x}{x!} = e^{\lambda}$$

Si usa tipicamente $X \sim P(\lambda), \lambda > 0$ per modellare la distribuzione di una variabile casuale che esprime un **conteggio** con supporto illimitato superiormente (o molto più grande dei valori tipicamente assunti dal conteggio). È questo il caso di Bi(n,p) per $p = \lambda/n$ ed n sufficientemente grande.

Valore atteso

$$E(x) = \sum_{x \in S_X} x p_X(x) = \sum_{x=0}^{+\infty} x e^{-\lambda} \frac{\lambda^x}{x!} = \lambda \sum_{x=1}^{+\infty} e^{-\lambda} \frac{\lambda^{x-1}}{(x-1)!} = \lambda \sum_{x=0}^{+\infty} e^{-\lambda} \frac{\lambda^i}{i!} = \lambda$$

Funzione generatrice dei momenti e varianza

$$M_X(t) = E(x^{tX}) = \sum_{x \in S_X} e^{tx} p_X(x)$$
$$= \sum_{x=0}^{+\infty} (e^t)^x e^{-\lambda} \frac{\lambda^x}{x!}$$
$$= e^{-\lambda} \sum_{x=0}^{+\infty} \frac{(\lambda e^t)^x}{x!}$$
$$= e^{-\lambda} e^{\lambda e^t}$$
$$= e^{\lambda (e^t - 1)}$$

da cui

$$M_X'(t) = e^{\lambda(e^t - 1)\lambda e^t} \Longrightarrow \mathcal{E}(X) = M_X'(0) = \lambda$$

$$M_X''(t) = e^{\lambda(e^t - 1)}\lambda^2 e^{2t} + e^{\lambda(e^t - 1)}\lambda e^t \Longrightarrow \mathcal{E}(X^2) = M_X''(0) = \lambda^2 + \lambda$$

e pertanto

$$Var(X) = E(X^2) - (E(X))^2 = \lambda^2 + \lambda - (\lambda)^2 = \lambda.$$

Proprietà additiva Sia $X = (X_1, ..., X_d)$ una v.c. multivariata con componenti X_i indipendenti e legge marginale $X_i \sim P(\lambda_i)$ dove $lambda_i > 0$ per i = 1, ..., n

$$M_{X_i}(t) = e^{\lambda_i(e^t - 1)}$$

allora $S = \sum_{i=1}^d X_i$ ha f.g.m. propria

$$M_S(t) = \prod_{i=1}^d M_{X_i}(t)$$

$$= \prod_{i=1}^d e^{\lambda_i (e^t - 1)}$$

$$= \exp\left\{ \left(\sum_{i=1}^d \lambda_i \right) (e^t - 1) \right\}$$

da cui si evince che

$$S \sim P\left(\sum_{i=1}^{d} \lambda_i\right)$$
.

7.6 Leggi geometriche

Definizione 11 Si dice che X ha legge geometrica con parametro $p \in (0,1)$ e si scrive $X \sim Ge(p)$ se è una v.c. univariata con legge discreta che ha supporto $S_X = \mathbb{N}^+$ e f.m.p. per $x \in S_X$ pari a

$$p_X(x) = p \times (1-p)^{x-1}$$
.

Verifichiamo che sia una buona definizione:

 \bullet positività di $p_X(x)$ sul supporto $S_X=\mathbb{N}^+$ banale perché è il prodotto di fattori positivi

• la normalizzazione segue da

$$\sum_{x \in S_X} p_X(x) = \sum_{x=1}^{+\infty} p(1-p)^{x-1}$$

$$= p \sum_{x=1}^{+\infty} (1-p)^{x-1}$$

$$= p \sum_{i=0}^{+\infty} (1-p)^i$$

$$= p \frac{1}{1 - (1-p)} = 1.$$

dove si è usata il risultato della serie geometrica con ragione x, |x| < 1:

$$\sum_{i=0}^{\infty} x^i = \lim_{n \to \infty} \sum_{i=0}^n x^i$$

$$= \lim_{n \to \infty} \frac{1 - x^{n+1}}{1 - x}$$

$$= \frac{1}{1 - x}.$$

Per una legge geometrica $X\sim Ge(p)$ il parametro p rappresenta P(X=1). La funzione di sopravvivenza è, per $x\in\mathbb{N}^+$

$$P(X > x) = P(C_1 \cap \cdots \cap C_x) = P(C_1) \times \cdots \times P(C_x) = (1 - p)^x$$

per cui la funzione di ripartizione è

$$F_X(x) = P(X \le x) = 1 - P(X > x) = 1 - (1 - p)^x.$$

Per $x \in \mathbb{R}$ invece si ha

$$F_X(x) = \begin{cases} 0 & \text{se } x < 1\\ 1 - (1 - p)^{\lfloor x \rfloor} & \text{se } x \geqslant 1. \end{cases}$$

Se $0 la v.c. <math>X \sim Ge(p)$ può essere vista come il tempo d'attesa nel tempo discreto che gode della proprietà di assenza della memoria, ovvero per ogni $s,t \in \mathbb{N}^+$

$$P(X > s + t \mid X > s)$$
 non dipende da s.

Valore atteso

$$E(X) = 1/p$$
.

Generatrice dei momenti e varianza

$$M_X(t) = E(e^{tX}) = \sum_{x \in S_X} e^{tx} p_X(x)$$

$$= \sum_{x=1}^{+\infty} e^{t(x-1+1)} p(1-p)^{x-1}$$

$$= pe^t \sum_{x=1}^{+\infty} e^{t(x-1)} (1-p)^{x-1}$$

$$= pe^t \sum_{i=0}^{+\infty} (e^t (1-p))^i \qquad \text{posto } i = x-1$$

$$= \frac{pe^t}{1 - (1-p)e^t}$$

Saltando alcuni passaggi si trova che

$$M_X'(t) \Big|_{t=0} = \frac{pe^t}{(1 - (1-p)e^t)^2} \Big|_{t=0} = \frac{1}{p}.$$

Con calcoli lasciati al lettore¹

$$Var(X) = \frac{1 - p}{p^2}.$$

8 Leggi di tipo continuo

Si dice che X è una v.c. univariata con legge di tipo continuo se per ogni $B \in \mathcal{B}_1$ si può esprimere $P_X(B)$ in forma integrale come

$$P_X(B) = P(X \in B) = \int_B p_X(x)dx = \int_a^b p_X(x)dx$$

se B = [a, b] con a < b, dove la funzione $p_X(x)$ detta funzione di densità di probabilità soddisfa le condizioni:

1.
$$p_X(x) \ge 0$$
 per ogni $x \in \mathbb{R}$

2.
$$\int_{\mathbb{R}} p_X(x) = \int_{-\infty}^{+\infty} p_X(x) dx = 1$$

Una P_x definita in questo modo soddisfa gli assiomi di Kolmogorov.

¹dal professore, non da me. Prendetevela con lui.

8.1 Leggi uniformi continue

Si dice che X ha legge uniforme continua in (a,b), dove a < b, e si scrive $X \sim U(a,b)$ se la f.d.p. di X è

$$p_X(x) = \begin{cases} \frac{1}{b-a} & \text{se } x \in (a,b) \\ 0 & \text{se } x \notin (a,b). \end{cases}$$

da cui valori atteso e varianza si ricavano facilmente come:

$$E(X) = \int_{-\infty}^{+\infty} x p_X(x) dx = \int_a^b x \frac{1}{b-a} dx = \frac{1}{b-a} \left[\frac{1}{2} x^2 \right]_a^b = \frac{a+b}{2}$$

$$E(X^{2}) = \int_{a}^{b} x^{2} \frac{1}{b-a} dx = \frac{1}{b-a} \left[\frac{1}{3} x^{3} \right]_{a}^{b} = \frac{a^{2} + ab + b^{2}}{3}$$

$$Var(X) = E(X^2) - (E(X))^2 = \dots = \frac{(b-a)^2}{12}.$$

8.2 Leggi esponenziali

Si dice che X ha legge esponenziale con parametro $\lambda > 0$, e si scrive $X \sim Esp(\lambda)$, se la f.d.p. di X è

$$p_X(x) = \begin{cases} \lambda e^{-\lambda x} & \text{se } x \geqslant 0\\ 0 & \text{se } x < 0 \end{cases}$$

La verifica della non-negatività è banale, e anche la condizione di normalizzazione si verifica facilmente:

$$\int_{-\infty}^{+\infty} p_X(x)dx = \int_0^{+\infty} p_X(x)dx = \int_0^{+\infty} \lambda e^{-\lambda x} dx = \left[-e^{-\lambda x} \right]_0^{+\infty}$$
$$= -\lim_{x \to +\infty} e^{-\lambda x} - (-e^0) = 1.$$

Calcolo del valore atteso:

$$E(X) = \int_{-\infty}^{+\infty} x p_X(x) dx = \int_0^{+\infty} x \lambda e^{-\lambda x} dx = \frac{1}{\lambda} \int_0^{+\infty} \lambda x e^{-\lambda x} dx = 1$$

dove l'ultimo integrale vale 1 (si calcola per parti dopo aver applicato la sostituzione $\lambda x = t$).

Le leggi esponenziali sono la modellazione di default per tempi d'attesa. Il risultato sul valore atteso dà un significato al parametro λ . Per un tempo d'attesa esponenziale, $1/\lambda$ è il valore medio dell'attesa. Quindi:

$$\lambda = \frac{1}{\text{media dell'attesa}} = \frac{1}{\mathbf{E}(X)}$$

Funzione di ripartizione

$$F_X(x) = \begin{cases} 0 & \text{se } x < 0\\ 1 - e^{-\lambda x} & \text{se } x \geqslant 0 \end{cases}$$

Funzione generatrice dei momenti, valore atteso e varianza

$$M_X(t) = E(e^{tX}) = \int_0^{+\infty} e^{tx} \lambda e^{-\lambda x} dx$$
$$= \lambda \int_0^{+\infty} e^{-(\lambda - t)x} dx$$
$$= \frac{\lambda}{\lambda - t} \int_0^{+\infty} (\lambda - t) e^{-(\lambda - t)x} dx$$
$$= \frac{\lambda}{\lambda - t}$$

da cui

$$\begin{split} M_X'(t) &= -\left(1 - \frac{t}{\lambda}\right)^{-2} \left(-\frac{1}{\lambda}\right) = \frac{1}{\lambda} \left(1 - \frac{t}{\lambda}\right)^{-2} \\ M_X''(t) &= \frac{-2}{\lambda} \left(1 - \frac{t}{\lambda}\right)^{-3} \left(-\frac{1}{\lambda}\right) = \frac{2}{\lambda^2} \left(1 - \frac{t}{\lambda}\right)^{-3} \end{split}$$

da cui infine si ottiene

$$Var(X) = E(X^2) - (E(X))^2 = \frac{1}{\lambda}^2.$$

8.3 Funzione tasso di guasto

Sia Tun tempo d'attesa, quindi una v.c. univariata con $P(T\geqslant 0)=1$ e legge continua. Siano date

funzione di ripartizione $F_T(t) = P(T \le t)$

funzione di sopravvivenza $\bar{F}_T(t) = 1 - F_T(t) = P(T > t)$

f.d.p. $p_T(t) = \frac{d}{dt} F_T(t)$ supposta continua ovunque, salvo che in un numero finito di punti.

Definizione 12 Si dice funzione tasso di guasto di T (o hazard rate, failure rate) la funzione $r_T(\cdot)$ definita per i valori di t per cui $F_T(t) < 1$ da

$$r_T(t) = \frac{p_T(t)}{\bar{F}_T(t)} = -\frac{d}{dt} \log \bar{F}_T(t).$$

21

Nei punti in cui $r_T(t)$ è continua, è anche proporzionale alla probabilità che l'attesa, ancora viva al tempo t, termini entro il tempo $t + \varepsilon$, ossia nel tempuscolo immediatamente successivo a t.

Dalla funzione tasso di guasto si può determinare la funzione di ripartizione e la funzione di densità di probabilità di T, infatti:

$$\int_0^t r_T(u) \, du = -\log \bar{F}_T(t)$$

da cui si ottiene che per t > 0

$$F_T(t) = 1 - \exp\left\{-\int_0^t r_T(u) \, du\right\}$$

e

$$p_T(t) = r_T(t) \times \exp\left\{-\int_0^t r_T(u) du\right\}.$$

8.4 Leggi di Weibull

Un tempo d'attesa T_0 ha legge di Weibull monoparametrica con parametro di forma c>0 se per t>0 il suo tasso di guasto è

$$r_{T_0}(t) = c \times t^{c-1}$$

Interessante è notare come Esp(1) faccia parte delle leggi di Weibull, ma $Esp(\lambda), \lambda \neq 1$ no. Per questo motivo, si introduce un secondo parametro alle leggi di Weibull:

$$r_T(t) = \lambda c(\lambda t)^{c-1}$$
.

Le esponenziali diventano un caso particolare $Esp(\lambda) \sim W(1,\lambda)$.

Si noti come $r_{T_0}(t)$ sia decrescente per 0 < c < 1, costante per c = 1 e crescente se c > 1.

Si può calcolare la funzione di ripartizione tenendo a mente che $\int_0^t r_T(u) du = (\lambda t)^c$:

$$F_T(t) = 1 - \exp\{-(\lambda t)^c\}$$

e la corrispondente f.d.p.

$$p_T(t) = \lambda c(\lambda t)^{c-1} \exp\{-(\lambda t)^c\}.$$

8.5 Leggi gamma

Si tratta di un secondo modo per modellare tempi d'attesa nel continuo con tasso di guasto monotono.

Definizione 13 Un tempo d'attesa T_0 ha legge gamma monoparametrica con parametro di forma $\alpha > 0$ se per t > 0 la sua funzione di densità di probabilità è

$$p_{T_0}(t) = \frac{1}{\Gamma(\alpha)} t^{\alpha - 1} e^{-t}.$$

La funzione $\Gamma(\alpha)$ è la funzione gamma di Eulero ed è definita dall'integrale convergente per $\alpha>0$

$$\Gamma(\alpha) = \int_0^{+\infty} t^{\alpha - 1} e^{-t} dt.$$

che è l'estensione della nozione di fattoriale per i numeri reali positivi.

Anche in questo caso introdurre un parametro scala $\lambda > 0$:

$$p_T(t) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} t^{\alpha - 1} e^{-\lambda t}.$$

in modo che le leggi esponenziali diventi un caso particolare di leggi gamma $Esp(\lambda) \sim Ga(1,\lambda)$.

Si dimostra (non qui) che $r_{T_0}(t)$ è decrescente se $0<\alpha<1$, costante se $\alpha=1$ e crescente se $\alpha>1$

Funzione generatrice dei momenti, valore atteso e varianza Alcuni passaggi sono stati omessi per brevità

$$M_X(t) = \mathcal{E}(e^{tX}) = \int_0^{+\infty} e^{tx} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x} dx$$

$$= \lambda^{\alpha} \times \int_0^{+\infty} \frac{x^{\alpha - 1}}{\Gamma(\alpha)} e^{-(\lambda - t)x} dx$$

$$= \frac{\lambda^{\alpha}}{(\lambda - t)^{\alpha}} \times \int_0^{+\infty} \frac{(\lambda - t)^{\alpha}}{\Gamma(\alpha)} e^{-(\lambda - t)x} dx$$

$$= \frac{\lambda^{\alpha}}{(\lambda - t)^{\alpha}}$$

Si ottiene

$$E(X) = M'_X(0) = \frac{\alpha}{\lambda}$$
$$E(X^2) = M''_X(0) = \frac{\alpha(\alpha+1)}{\lambda^2}$$

da cui

$$Var(X) = E(X^{2}) - (E(X))^{2} = \frac{\alpha}{\lambda^{2}}.$$

Proprietà additiva Sia $X = (X_1, ..., X_d)$ una v.c. multivariata con componenti X_i indipendenti e legge marginale $X_i \sim Ga(\alpha_i, \lambda)$ dove $\alpha_i > 0$ per ogni i = 1, ..., n e $\lambda > 0$ per cui

$$M_{X_i}(t) = \left(1 - \frac{t}{\lambda}\right)^{-\alpha_i}$$

allora $S = \sum_{i=1}^d X_i$ ha f.g.m. propria

$$M_S(t) = \prod_{i=1}^d M_{X_i}(t)$$

$$= \prod_{i=1}^d (1 \ fract\lambda)^{-\alpha_i}$$

$$= \left(1 - \frac{t}{\lambda}\right)^{-\sum_{i=1}^d \alpha_i}$$

da cui si evince che

$$S \sim Ga\left(\sum_{i=1}^{d} \alpha_i, \lambda\right).$$

8.6 Leggi normali

Definizione 14 (Legge normale standard) Una v.c. univariata Z con supporto $S_Z = \mathbb{R}$ e f.d.p

$$p_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}$$

è detta con legge normale standard, in breve $Z \sim N(0,1)$.

Definizione 15 (Legge normale con parametri) Una v.c. univariata $X = \mu + \sigma Z$ con $Z \sim N(0,1)$ è detta normale con parametro di posizione μ e parametro di scala σ , in breve $X \sim N(\mu, \sigma^2)$ e a f.d.p.

$$p_X(x) = \frac{1}{\sqrt{2\pi} \sigma} \exp \left\{ -\frac{1}{2} \left(\frac{x - \mu}{\sigma} \right)^2 \right\}$$

Un'applicazione delle leggi normali è lo studio degli errori di misurazione. Si supponga di effettuare misurazioni ripetute con lo stesso strumento di una certa quantità μ . Le misure x_i , affette da errore, possono essere modellate come realizzazione della variabile casuale $X \longrightarrow x_i$. Gli stessi errori di misurazione (ignoti) possono essere modellati come variabile casuale $Z \longrightarrow z_i$. In questo ultimo caso però conviene usare una scala $standard^2$, e perciò

$$x_i = \mu + \sigma z_i$$
 $i = 1, \dots, n$ $\sigma \in \mathbb{R}$

 $^{^{2}}$ che quindi va scalata di caso in caso con l'ausilio di un fattore σ

da cui per confronto si può dedurre che X non è altro che una trasformata

$$X = \mu + \sigma Z$$
.

Chiusura sotto trasformazioni affini Se $X \sim N(\mu, \sigma^2)$ e T = a + bX, con $b \neq 0$ allora

$$T \sim N \left(a + b\mu, b^2 \sigma^2 \right)$$
.

La dimostrazione segue dall'applicazione della definizione di X, dal notare che Z è simmetrica $Z\sim -Z$ e dal confronto:

$$T=a+bX$$
 definizione di T
$$\sim a+b(\mu+\sigma Z)$$
 definizione di X
$$\sim a+b\mu+b\sigma Z$$
 per simmetria
$$\sim N(a+b\mu,b^2\sigma^2)$$
 per confronto.

Funzione generatrice dei momenti

$$M_X(t) = \mathcal{E}(e^{tX})$$
 def. di f.g.m.
 $= \mathcal{E}\left(e^{t(\mu+\sigma Z)}\right)$ def. di X
 $= \mathcal{E}(e^{t\mu}e^{t\sigma Z})$
 $= e^{t\mu}\mathcal{E}(e^{t\sigma Z})$ linearità di $\mathcal{E}(e^{t\sigma Z})$
 $= e^{t\mu}M_Z(t\sigma)$ def. di f.g.m.

esplicitiamo M_Z

$$M_Z(t) = E(e^{tZ}) = \int_{-\infty}^{+\infty} e^{tz} \frac{1}{\sqrt{2\pi}} e^{\frac{1}{2}z^2} dz$$

$$= \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(z^2 - 2tz + t^2 - t^2)} dz$$

$$= e^{\frac{1}{2}t^2} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{\frac{1}{2}(z-t)^2} dz$$
si tratta della f.d.p. di
$$N(t, 1) \text{ e quindi per la}$$
normalizzazione vale 1
$$= e^{\frac{1}{2}t^2}$$

e quindi

$$M_X(t) = e^{t\mu} e^{\frac{1}{2}(t\sigma)^2} = e^{t\mu + \frac{1}{2}t^2\sigma^2}$$

25

Essendo $M_Z(t)$ finita per ogni $t \in \mathbb{R}$, Z ha f.g.m. propria.

Ora è possibile calcolare valore atteso e varianza:

$$\begin{split} E(X) &= M_X'(t) \, \bigg|_{t=0} = \mu \\ \mathrm{E}(X^2) &= M_X''(t) \, \bigg|_{t=0} = \sigma^2 + \mu^2 \\ \mathrm{Var}(X) &= \mathrm{E}(X^2) - (\mathrm{E}(X))^2 = \sigma^2 + \mu^2 - (\mu)^2 = \sigma^2. \end{split}$$

Proprietà additiva Se $X \sim N(\mu_X, \sigma_X^2)$ e $Y \sim N(\mu_Y, \sigma_Y^2)$ sono indipendenti allora

$$S = X + 5 = \mathbb{N}(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2).$$

Funzione di ripartizione La funzione di ripartizione di $Z \sim N(0,1)$ verrà indicata con $\Phi(z)$ definita come:

$$\Phi(z) = P(Z \leqslant z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{\frac{1}{2}u^2} du.$$

È possibile ricondurre la f.r. di una v.c. normale $X \sim N(\mu, \sigma^2)$ a quella della normale standard Z:

$$F_X(x) = P(X \le x) \qquad \text{def. di f.r.}$$

$$= P(\mu + \sigma Z \le x) \qquad \text{def. di } X$$

$$= P\left(Z \le \frac{x - \mu}{\sigma}\right)$$

$$= \Phi\left(\frac{x - \mu}{\sigma}\right).$$