第 5 章 付 録

一般化された交通ネットワークの便益帰着分析

第5章付録 一般化された交通ネットワークの便益帰着分析

東北大学大学院情報科学研究科教授 森杉 壽芳東京工業大学大学院理工学研究科助教授 上田 孝行

1 ネットワークモデル

1-1 モデルの概要

本稿におけるモデルの主要な仮定を以下に述べる。

- 1)空間経済における交通ネットワークはゾーンに分割されると仮定する。分割された ゾーンは $r \in \{\cdots, r, \cdots\} = N^C$ のラベルで表される。
- 2) 各ゾーンには同一の選択を持ち、一定の人口であるいくつものタイプの個人の消費者が存在する。また、一般企業と呼ばれるいくつものタイプの企業が存在する。そして個人と一般企業は、交通サービス生産者によって供給される交通サービスを需要する。それぞれのタイプの一般企業は総数一定で、同一の生産技術を持ち、交通サービスを需要することで交通以外の財サービスを生産する(例えば、大規模ネットワークを持つ宅配サービス業など)。

タイプとゾーンによって区別された個人と一般企業の数は、ゾーン $r \in N^C$ 、タイプ $\kappa \in A^{\kappa}$ (個人)、 $\vartheta \in A^{\vartheta}$ (一般企業)によってそれぞれ $n^{\kappa r}$ 、 $n^{\vartheta r}$ で表記される。

- 3)交通サービス生産者は、 $v \in \{\cdots, v, \cdots\} = A^v$ のラベルで表記され、ネットワーク上の交通サービス市場で行動する。そして利潤最大化の原則の下での価格体系に応じて消費者に対して交通サービスを供給する。
- 4) インフラ所有者は $\varpi \in \{\cdots, \varpi, \cdots\} = N^{\varpi}$ のラベルで表記され、ネットワークにおけるリンクとノードに対して維持・投資を行う。そして交通サービス生産者からリンクやノードの賃貸料を徴収する。またインフラ所有者が政府、交通サービス生産者もしくは他の機構を含む経済主体であることも可能である。これは道路交通や航空のように道路や空港を建設・維持する事業者とその施設を使って交通サービスを最終利用者に提供する経営主体が分離している産業(上下分離している産業)、鉄道業のように事業の運営と路線の建設・維持を同一の事業者が受け持つ産業(上下分離していない産業)をモデル内で考慮している。
- 5)政府は、消費者から一括税を徴収し、交通サービス生産者とインフラ所有者がマイナスの利潤となる場合に補助する。
- 6)本稿での交通ネットワークの改善は、二ケースのプロジェクトを意味する。一つは、 既存のリンクを改善するケース、例えばリンクの容量の増進、レーンの再編成など

である。もう一つは、サービス利用者が新しい経路を使用することを可能にする様 なリンクを作るケースである。

1-2 交通ネットワーク

次に本稿で掲げる交通ネットワークの基本構造を明確にする。

のペア

空間経済においてゾーンは、 $r,s \in \{\cdots,r,\cdots,s,\cdots\} = N^r$ のラベルで表記される。ここでゾーン r を起点、ゾーン s を交通の目的地と仮定すると、OD ペアは $(r,s) \in \{\cdots,(r,s),\cdots\} = N^{OD}$ のラベルで表記される。

ノードとリンク

交通ネットワークは、 $i,j \in \{\cdots,i,\cdots,j,\cdots\} = N^n$ のラベルで表記されるノードと $(i,j) \in \{\cdots,(i,j),\cdots\} = L$ のラベルで表記されるリンクから成り立つ。一つのノード $i \in N^P \subset N^n$ が、港湾、空港および駅としての役目を果たすと仮定する。

また、各リンクの所要時間および各ノードの通過時間は、次のように定義する。

リンク所要時間関数

$$t_{ij} = t_{0,ij} \left(1 + \varsigma_m \left(\frac{\overline{X}_{ij}}{Q_{ij}} \right)^{\upsilon_m} \right)$$
 (1.1)

ノード通過時間関数

$$t_{\bar{i}} = t_{0,\bar{i}} \left(1 + \varsigma_{\bar{i}} \left(\frac{\overline{X}_{\bar{i}}}{Q_{\bar{i}}} \right)^{v_{\bar{i}}} \right)$$
 (1.2)

ここで、

 t_{ii} :リンクijの所要時間

 $t_{0,ii}$:リンクijのゼロフロー所要時間

 \bar{X}_{ii} : リンクijの交通需要量

 Q_{ii} : リンクijの交通容量(capacity)

 $\varsigma_{m} v_{m}$:交通機関別のパラメータ

*t*_i: ノード *i* の所要時間

 $t_{
m o\it i}$:ノード $\it i$ のゼロフロー所要時間

 $\bar{X}_{\bar{i}}:$ ノードiの交通需要量

 Q_i : ノードiの交通容量(capacity)

 $\varsigma_{\tau} v_{\tau}:$ ノード別のパラメータ

経路

全ての経路 $l \in P^r$ は、 $h \in P^r$ のラベルで表記され、OD ペア(r,s) として利用できる利用者経路と $k \in P^r$ で表記される交通サービスの供給をする交通サービス生産者の供給者経路により分類できる。ここで全ての利用者経路と全ての供給者経路は、次のように定義する。

利用者経路
$$P^u = \bigcup_{(r,s) \in N^{OD}} P^{rs}$$

供給者経路
$$P^S = \bigcup_{v \in A^v} P^v$$

さらにリンク・ノード接続要素は、次のように定義する。

 $oldsymbol{\delta}_{h,ij} = egin{cases} 1 : 経路 h にリンク(i,j)$ が含まれる場合 0 :それ以外の場合

 $arepsilon_{h,i} = egin{cases} 1 : 経路 h に ノード i が含まれる場合 \\ 0 : それ以外の場合 \end{cases}$

また経路は、消費者経路と供給者経路の二つの方法で分類できるので、それら二つの間の経路接続要素を次のように定義する。

 $oldsymbol{\sigma}_{h,k} = egin{cases} 1 :$ 利用者経路 hが供給者経路 kを含む場合0 : それ以外の場合

交通機関

交通機関は、 $m \in \{\cdots, m, \cdots\} = A^m$ のラベルで経路のグループによって定義される。した

がって交通機関 $m \in A^m$ を含む経路は、 $P_m \cup P_{m'} = \emptyset$ for all $m, m' \in A^m$ のもと $k \in P_m \subset P$ として表され、それぞれの供給者経路がただ一つの機関に属すことを意味する。

2 各経済主体の行動モデル

2-1 個人(代表的交通利用者)の行動モデル

個人の自由トリップに関するモデルの誘導は、古典的消費者行動理論に基づく個人の効用最大化問題として扱う。古典的消費者行動理論では、消費者が所得制約と時間制約の下で効用が最大限に満たされるような組み合わせを選択するものと仮定する。 そこで、ある個人の効用を次のように定式化する。

$$V(q) = \max_{X} (X^{\kappa r}, Z^{\kappa r}, S^{\kappa r}, a^{r}, b^{r}, \theta^{\kappa})$$

$$s.t. \sum_{h \in \mathbf{P}^{rs}} p_{h}^{\kappa r} X_{h}^{\kappa r} + p_{g}^{r} Z_{g}^{\kappa r} = w^{\kappa r} l^{\kappa r} - \tau^{\kappa r}$$

$$\overline{T}^{\kappa r} = l^{\kappa r} + S^{\kappa r} + \sum_{h \in \mathbf{P}^{rs}} t_{h} X_{h}^{\kappa r}$$

$$(1.3)$$

ここで制約条件を一つにまとめると

$$\sum_{h \in \mathbf{P}^{rs}} q_h^{\kappa r} X_h^{\kappa r} + q_g^r Z_g^{\kappa r} + q_s^{\kappa r} S^{\kappa r} = 1$$
 (1.4)

ただし、

$$\begin{split} q_h^{\kappa r} &= \frac{p_h^{\kappa r} + w^{\kappa r} t_h}{\Omega^{\kappa r}} \\ &= \frac{p_h^{\kappa r} + w^{\kappa r} \{\sum_{(i,j) \in \mathbf{L}} \delta_{h,ij} t_{ij} + \sum_{i \in \mathbf{N}^{\mathbf{P}}} \varepsilon_{h,i} t_i \}}{\Omega^{\kappa r}} \\ &= \frac{\sum_{k \in \mathbf{P}^s} \sigma_{h,k} \phi_k + \sum_{i \in \mathbf{P}^l} \sigma_{h,l} \xi_l + w^{\kappa r} \{\sum_{(i,j) \in \mathbf{L}} \delta_{h,ij} t_{ij} + \sum_{i \in \mathbf{N}^{\mathbf{P}}} \varepsilon_{h,\overline{i}} t_{\overline{i}} \}}{\Omega^{\kappa r}} \\ q_g^{r} &= \frac{p_g^{r}}{\Omega^{\kappa r}} \\ q_s^{\kappa r} &= \frac{w^{\kappa r}}{\Omega^{\kappa r}} \end{split}$$

ここで、

 $V(\cdot)$:間接効用関数

U(·):直接効用関数

 $X=^{t}[X_{1},...,X_{h}] \in R_{+}^{k}$:交通消費量ベクトル

 Z_a :合成財消費量

S:余暇時間

1:労働時間

 $\sum_{h} t_h X_h$:交通利用時間

 \bar{T} :総利用可能時間

w:賃金率

τ:一括税

 ϕ :経路別の料金ベクトル

ξ:例えば燃料の費用

σ:経路接続の 0-1 変数

δ:リンク接続の 0-1 変数

ε: ノード接続の 0-1 変数

 $q=^{t}[q_{1},..,q_{h}],q_{g},q_{s}$:価格ベクトル

 $q = p/\Omega$:可処分所得で基準化された価格

Ω:可処分所得

Ψ:一般化所得

 a^r :起点に関するパラメータ

b':目的地に関するパラメータ

 θ^{κ} :利用者に関するパラメータ

式(1.3)の最大化問題を解き、解である需要関数を目的関数である効用関数に代入すると式(1.5)のように各財の価格ベクトルの間接効用関数として表される。

$$V(q) = U(X_1^*, ..., X_h^*, Z_o^*, S^*)$$
(1.5)

本研究において重要な間接効用関数の性質の一つがロワの恒等式であり、式(6.3)の定式化に対して、交通サービス財hに対する需要 $X_h(q)$ は次のように表される。

$$X_{h}(q) = \frac{\partial V(q)/\partial q_{h}}{\sum_{k \in K} q_{k} \cdot \partial V(q)/\partial q_{k}} \text{ for } h \in K$$
(1.6)

ここで間接効用関数V(q) は、以下の特性を持つ。

- V(q)は、qに関して連続関数である。
- V(q) は、q に関して単調減少関数である。

V(q) は、q に関して凸関数である。

V(q) は、 (p,Ω) に関して 0 次同次関数である。

次に交通サービスを意味する財のグループとそれへの総需要量を定義する。

$$N_{H} = \sum_{h \in H} X_{h}(q) (1.7.a)$$

$$h \in \mathbf{H} = \{1, ..., H\} \subset \mathbf{K} = \{1, ..., K\}$$
(1.7.b)

ここで

 N_{H} : グループ \mathbf{H} に属する財の総交通需要量

h:交通サービス財のグループに属するものの種類

 $h \in \mathbf{H} = \{1, ..., H\} \subset \mathbf{K} = \{1, ..., K\}$: 交通サービスを意味する財のグループ

K: あらゆる財のグループの種類

グループに属する各財への需要量は、総交通需要量とグループ内での需要シェアの 積として、次のように分解できる。

$$X_h(q)=N_H(q)\cdot x_h(q)$$
 for all $h\in \mathbf{H}$ (1.8.a)

$$N_{H}(q) = \frac{\sum_{k \in H} \partial V(q) / \partial q_{k}}{\sum_{k \in K} q_{k} \cdot \partial V(q) / \partial q_{k}}$$
(1.8.b)

$$x_h(q) = \frac{\partial V(q)/\partial q_h}{\sum_{h=0}^{\infty} \partial V(q)/\partial q_h}$$
 (1.8.c)

このように分解された形式から、式(6.8.b)と式(6.8.c)の積が式(6.6)で示したロワの恒等式による需要の表現に一致することは明らかである。

2-2 一般企業の行動モデル

一般企業は、交通サービスの利用者であり、利潤最大化行動の下で交通サービスを利用することにより交通以外の財サービスを生産する。その際、一般企業の生産技術は変形関数 $Z(\cdot)$ によって表現する。

ここで一般企業による業務トリップに関するモデルの誘導は、古典的企業行動理論 に基づく企業の利潤最大化問題として扱う。

$$\Pi(p_g^{\vartheta r}, p_g^r, a^r, b^r, \theta^{\vartheta}) = \max_{Z_g^{\vartheta r}, X_h^{\vartheta r}} \sum_{g \in \mathbf{N}^G} p_g^r Z_g^{\vartheta r} - \sum_{h \in \mathbf{P}^{rs}} p_h^{\vartheta r} X_h^{\vartheta r} - \tau^{\vartheta r}$$

$$s.t. \ Z^{\vartheta r} = Z(X^{\vartheta r}, a^r, b^r, \theta^{\vartheta})$$

$$(1.9.a)$$

ここで

П(·):利潤関数

Z:生產関数

X:要素需要関数

 p_a^r :生產量価格

 $p_h^{\vartheta r} (= \phi_h + w^{\vartheta r} t_h)$: 投入量価格

 $h \in \mathbf{H} = \{1, ..., H\} \subset \mathbf{K} = \{1, ..., K\}$: 交通サービスを意味する財のグループ

g:合成財(交通以外の財)を意味するラベル

a^r:起点に関するパラメータ

 b^r :目的地に関するパラメータ

 θ^{ϑ} :利用者に関するパラメータ

τ:一括税

ここで、交通サービスの利用により一つの合成財を生産するものと仮定すると、式 (1.9.a) は次のように書き直すことができる。

$$\Pi(p_g^{\vartheta r}, p_g^r, a^r, b^r, \theta^{\vartheta}) = \max_{Z_g^{\vartheta r}, X_h^{\vartheta r}} p_g^r Z_g^{\vartheta r} - \sum_{h \in \mathbf{P}^{rs}} p_h^{\vartheta r} X_h^{\vartheta r} - \tau^{\vartheta r}$$

$$s.t. \ Z^{\vartheta r} = Z(X^{\vartheta r}, a^r, b^r, \theta^{\vartheta})$$

$$(1.9.b)$$

利潤関数 $\Pi(q)$ は、以下の特性を持つ。

- . $\Pi(q)$ は、 p_g^r で増加して、 $p_1^{\vartheta r},...,p_h^{\vartheta r}$ で減少する。
- $\Pi(q)$ は、 p_{s}^{r} に関して一次同次関数である。
- . $\Pi(q)$ は、p に関して凸関数である。
- $\Pi(q)$ は、pに関して連続関数である。

ここで、ホテリングの補題を用いる。

$$Z_g^{\vartheta r}(\mathbf{p}) = \frac{\partial \Pi(\mathbf{p})}{\partial p_g^r} (1.10.a)$$

$$X_h^{\vartheta r}(\mathbf{p}) = -\frac{\partial \Pi(\mathbf{p})}{\partial p_h^{\vartheta r}} (1.10.b)$$

利潤関数は、投入量価格 p_h^{tr} を生産量価格 p_s^r で基準化した価格を用いて表すと次のようになる。

$$\Pi(\mathbf{p}) = \Pi(p_g^r, p_1^{\vartheta r}, ..., p_H^{\vartheta r})$$

$$= p_g^r \Pi(1, q_1^{\vartheta r}, ..., q_H^{\vartheta r})$$

$$\equiv p_g^r \pi(\mathbf{q})$$

$$\uparrow = \frac{1}{2} \mathbf{l} \cdot \mathbf{l} \cdot$$

さらに、式(1.11)を式(1.10.b)に代入すると次のようになる。

$$X_{h}^{\vartheta r}(\mathbf{p}) = -\frac{\partial \Pi(\mathbf{p})}{\partial p_{h}^{\vartheta r}} = -p_{g}^{r} \frac{\partial \pi(\mathbf{q})}{\partial q_{h}^{\vartheta r}} \frac{1}{p_{g}^{r}} = -\frac{\partial \pi(\mathbf{q})}{\partial q_{h}^{\vartheta r}} \equiv X_{h}^{\vartheta r}(\mathbf{q})$$
(1.12.a)

$$\therefore X_h^{\vartheta r}(\mathbf{q}) = -\frac{\partial \pi(\mathbf{q})}{\partial q_h^{\vartheta r}} \tag{1.12.b}$$

式 (6.12.b) を本研究では、基準化されたホテリングの補題と呼ぶ。なぜなら投入量需要関数が、基準化された価格 q_h^{or} だけの関数であり、基準化された価格 q_h^{or} に関して 0 次同次関数だからである。

ここで利潤関数を以下のように定式化する。

$$\pi(\mathbf{q}) = F[f(\mathbf{q})] (1.13)$$

 $\pi(\mathbf{q})$ は q_h^{vr} に関して 0 次同次関数であるために、 $f(\mathbf{q})$ は q_h^{vr} に関して 0 次同次関数である。そこで基準化されたホテリングの補題を式(1.13) に適用する。

$$X_{h}^{\vartheta r}(\mathbf{q}) = -\frac{\partial \pi(\mathbf{q})}{\partial q_{h}^{\vartheta r}} = -F'(f(\mathbf{q})) \cdot \frac{\partial f(\mathbf{q})}{\partial q_{h}^{\vartheta r}}$$

$$= \left(-F'(f(\mathbf{q})) \cdot \sum_{h \in \mathbf{P}^{rs}} \frac{\partial f}{\partial q_{h}^{\vartheta r}}\right) \frac{\frac{\partial f}{\partial q_{h}^{\vartheta r}}}{\sum_{h \in \mathbf{P}^{rs}} \frac{\partial f}{\partial q_{h}^{\vartheta r}}}$$
(6.14)

式(6.14)を自由トリップのケースと同じ方法を用いて、総交通需要量と需要シェア の積の形に分解する。

$$X_h(q) = N_{\mathbf{H}}(q) \cdot x_h(q)$$
 for all $h \in \mathbf{H}$ (1.15.a)

$$N_{\mathbf{H}}(q) = -F'(f(\mathbf{q})) \cdot \sum_{h \in \mathbf{P}^{r_s}} \frac{\partial f}{\partial q_h^{\vartheta r}}$$
 (1.15.b)

$$x_h(q) = \frac{\partial f / \partial q_h^{\vartheta r}}{\sum_{h \in \mathbf{P}^{rs}} \partial f / \partial q_h^{\vartheta r}} (1.15.c)$$

 $N_H(q)$ は、業務トリップに対する総交通需要量である。 $x_h(q)$ は交通サービス財の交通サービスhの需要シェアであり、業務トリップの一般的なロジットモデルであるといえる。

 $f(\cdot)$ は連続であり、 q_h^{or} に関して減少凸関数である。総交通需要量である $N_{\mathbf{H}}(q)$ は、 $f(\cdot)$ の特定化に加えて、F の関数形に依存する。

2-3 交通サービス生産者の行動モデル

 $v \in A^v$ のラベルで表記される交通サービス生産者の行動は、利潤 π^v を最大にするように交通サービス $y^v = (\cdots, y_k^v, \cdots)$ を供給する。そして自己が供給する経路 $k \in P^v$ に対して、料金 ϕ_k^v で交通サービス y_k^v を供給することで料金収入 $\sum_{k \in P^v} \phi_k^v y_k^v$ を得て、各経路の

生産費用 $\sum_{k\in \mathbf{P}^{v}}$ 、総資本金 K^{v} (例えば、鉄道車両など)という費用を要す。またイン

フラ所有者に対しては、リンクやノードの賃貸料としてそれぞれ ho_{ij}^{v} と ho_{i}^{v} を支払う。そして負の利潤を被るとき、政府から補助金 ho_{ij}^{v} を受ける。

以上より、交通サービス生産者の利潤を次のように場合分けをして定式化する。

1)交通サービス生産者が一つの利用者経路の一部分のみサービスを供給し、リンク・ノードの賃貸料がサービス供給量に依存する場合

$$\pi^{v} = \sum_{k \in \mathbf{P}^{v}(i,j) \in \mathbf{L}} \sum_{k,ij} \phi_{ij}^{v} y_{ij}^{v} - \sum_{k \in \mathbf{P}^{v}(i,j) \in \mathbf{L}} \delta_{k,ij} c_{ij}^{v} - K^{v}$$

$$- \sum_{k \in \mathbf{P}^{v}(i,j) \in \mathbf{L}} \delta_{k,ij} \rho_{ij}^{v} (y_{ij}^{v} \cdot) - \sum_{k \in \mathbf{P}^{v}_{i \in \mathbf{N}^{p}}} \varepsilon_{k,i} \rho_{i}^{v} (y_{i}^{v} \cdot) + T^{v}$$

$$(1.16.a)$$

2)交通サービス生産者が一つの利用者経路の一部分のみサービスを供給し、リンク・ノードの賃貸料が一定の場合

$$\pi^{v} = \sum_{k \in \mathbf{P}^{v}(i,j) \in \mathbf{L}} \delta_{k,ij} \phi_{ij}^{v} y_{ij}^{v} - \sum_{k \in \mathbf{P}^{v}(i,j) \in \mathbf{L}} \delta_{k,ij} c_{ij}^{v} - K^{v}$$

$$- \sum_{k \in \mathbf{P}^{v}(i,j) \in \mathbf{L}} \delta_{k,ij} \rho_{ij}^{v} - \sum_{k \in \mathbf{P}^{v}} \sum_{i \in \mathbf{N}^{p}} \varepsilon_{k,i} \rho_{i}^{v} + T^{v}$$

$$(1.16.b)$$

3)交通サービス生産者が一つの利用者経路の全区間においてサービスを供給し、リンク・ノードの賃貸料がサービス供給量に依存する場合

$$\pi^{v} = \sum_{k \in \mathbf{P}^{v}} \phi_{k}^{v} y_{k}^{v} - \sum_{k \in \mathbf{P}^{v}} c_{k}^{v} - K^{v}$$

$$- \sum_{k \in \mathbf{P}^{v}(i,j) \in \mathbf{L}} \delta_{k,ij} \rho_{ij}^{v} (y_{ij}^{v} \cdot) - \sum_{k \in \mathbf{P}^{v}_{i \in \mathbf{N}^{p}}} \varepsilon_{k,i} \rho_{i}^{v} (y_{i}^{v} \cdot) + T^{v}$$

$$(1.16.c)$$

4)交通サービス生産者が一つの利用者経路の全区間においてサービスを供給し、リンク・ノードの賃貸料が一定の場合

$$\pi^{v} = \sum_{k \in \mathbf{P}^{v}} \phi_{k}^{v} y_{k}^{v} - \sum_{k \in \mathbf{P}^{v}} c_{k}^{v} - K^{v}$$

$$- \sum_{k \in \mathbf{P}^{v}(i,j) \in \mathbf{L}} \delta_{k,ij} \rho_{ij}^{v} - \sum_{k \in \mathbf{P}^{v}} \sum_{i \in \mathbf{N}^{p}} \varepsilon_{k,i} \rho_{i}^{v} + T^{v}$$

$$(1.16.d)$$

ここで

 $\pi^{\scriptscriptstyle V}$:利潤

 ϕ_k^{V} :交通サービス生産者が供給する経路kの価格

 ϕ_i^v :交通サービス生産者が供給する経路 k のリンク ij の価格

ッジ:供給者経路 k の供給量

 y_{ii}^{v} :供給者経路kのリンクijでの供給量

 y_i^v :供給者経路kのノードiでの供給量

 c_{t}^{v} :生產費用関数

 K^{\vee} :資本金

 $ho_{\!\scriptscriptstyle ij}^{\scriptscriptstyle V}$:リンクijの賃貸料

 ρ_i^{v} : ノードiの賃貸料

 $\delta_{k,i}$:経路 k とリンク ij を接続する 0-1 変数

2-4 インフラ所有者の行動モデル

 $\varpi \in N^{\varpi}$ のラベルで表記されるインフラ所有者は、交通サービス生産者からリンクの賃貸料 $\sum_{v \in A^v k \in P^v(i,j) \in L^{\varpi}} \delta_{k,ij} \rho_{ij}^{v}$ とノードの賃貸料 $\sum_{v \in A^v k \in P^v i \in L^{\varpi}} \varepsilon_{k,i} \rho_{i}^{v}$ を徴収する。もしも交通サービ

ス生産者自身がインフラ所有者であるとする場合は、自身に賃貸料を払うと考える。 一方でインフラ所有者は、各リンクと各ノードを維持するためのメンテナンス費用 $\sum_{(i,j)\in L^0} M_{ij}^{\sigma} \ \, \geq \sum_{i\in L^0} M_i^{\sigma} \ \,$ を要し、リンクやノードの規模に応じて $\sum_{(i,j)\in L^0} I_{ij}^{\sigma} \ \,$ 、 $\sum_{i\in L^0} I_i^{\sigma}$ の投資を行

うことでノードとリンクを所有する。そしてインフラ所有者が負の利潤を被るとき、 政府から補助金 T^{σ} を受ける。

以上より、インフラ所有者の利潤を次のように場合分けをして定式化する。

1)リンク・ノードの賃貸料がサービス供給量に依存する場合での利潤は、

$$\pi^{\omega} = \sum_{\mathbf{v} \in \mathbf{A}^{\mathbf{v}}} \sum_{k \in \mathbf{P}^{\mathbf{v}}(i,j) \in \mathbf{L}} \delta_{k,ij} \rho_{ij}^{\mathbf{v}}(y_{ij}^{\mathbf{v}}) + \sum_{\mathbf{v} \in \mathbf{A}^{\mathbf{v}}} \sum_{k \in \mathbf{P}^{\mathbf{v}} i \in \mathbf{N}^{\mathbf{P}}} \sum_{k,i} \rho_{i}^{\mathbf{v}}(y_{i}^{\mathbf{v}})$$

$$- \sum_{(i,j) \in \mathbf{L}} M_{ij}^{\omega} - \sum_{i \in \mathbf{N}^{\mathbf{P}}} M_{i}^{\omega} - \sum_{(i,j) \in \mathbf{L}} I_{ij}^{\omega} - \sum_{i \in \mathbf{N}^{\mathbf{P}}} I_{i}^{\omega} + T^{\omega}$$

$$(1.17.a)$$

2)リンク・ノードの賃貸料が一定の場合での利潤は、

$$\pi^{\omega} = \sum_{v \in \mathbf{A}^{v}} \sum_{k \in \mathbf{P}^{v}(i,j) \in \mathbf{L}} \delta_{k,ij} \rho_{ij}^{v} + \sum_{v \in \mathbf{A}^{v}} \sum_{k \in \mathbf{P}^{v}} \varepsilon_{k,i} \rho_{i}^{v}$$

$$- \sum_{(i,j) \in \mathbf{L}} M_{ij}^{\omega} - \sum_{i \in \mathbf{N}^{\mathbf{P}}} M_{i}^{\omega} - \sum_{(i,j) \in \mathbf{L}} I_{ij}^{\omega} - \sum_{i \in \mathbf{N}^{\mathbf{P}}} I_{i}^{\omega} + T^{\omega}$$

$$(1.17.b)$$

ここで

 M_{ij}^{σ} : リンク ij の維持費 M_{i}^{σ} : ノード i の維持費 I_{ij}^{σ} : リンク ij への投資額 I_{ij}^{σ} : ノード i への投資額

 T^{ϖ} :補助金

2-5 政府の行動モデル

政府は個人と一般企業から税金を徴収して、財政上のバランスの下で交通サービス 生産者とインフラ所有者に対して補助金を譲渡する。

以上より、政府の財政上の利潤 π^G は次のように表現できる。

$$\pi^{G} = \sum_{\kappa \in \mathbf{A}^{\kappa}} \sum_{r \in \mathbf{N}^{c}} n^{\kappa r} \tau^{\kappa r} + \sum_{\vartheta \in \mathbf{A}^{\vartheta}} \sum_{r \in \mathbf{N}^{c}} n^{\vartheta r} \tau^{\vartheta r} - \sum_{\varpi \in \mathbf{A}^{\varpi}} T^{\varpi} - \sum_{\nu \in \mathbf{A}^{\nu}} T^{\nu} = 0$$
 (1.18)

3 均衡条件

内点解だけに焦点をあてた場合、均衡は非線形最適化問題によって述べられる。まず各トリップによる交通需要を各リンクの所要時間を計算するために交通量として考える。個人による自由トリップを交通量に変換する係数を Φ^{κ} 、一般企業による業務トリップを交通量に変換する係数を Γ^{ϑ} と仮定すると、リンクijとノードiの交通量は次のように定義できる。

$$\overline{X}_{ij} = \sum_{\kappa \in \mathbf{A}^{\kappa}} \Phi^{\kappa} \left(\sum_{(r,s) \in \mathbf{N}^{OD}} \sum_{h \in \mathbf{P}^{rs}} \delta_{h,ij} X_{h}^{\kappa rs} \right) + \sum_{\vartheta \in \mathbf{A}^{\vartheta}} \Gamma^{\vartheta} \left(\sum_{(r,s) \in \mathbf{N}^{OD}} \sum_{h \in \mathbf{P}^{rs}} \delta_{h,ij} X_{h}^{\vartheta rs} \right) \quad for \ each \ (i,j) \in l$$

$$(1.19.a)$$

$$\overline{X}_{\overline{i}} = \sum_{\kappa \in \mathbf{A}^{\kappa}} \Phi^{\kappa} \left(\sum_{(r,s) \in \mathbf{N}^{OD}} \sum_{h \in \mathbf{P}^{rs}} \varepsilon_{h,i} X_{h}^{\kappa rs} \right) + \sum_{\vartheta \in \mathbf{A}^{\vartheta}} \Gamma^{\vartheta} \left(\sum_{(r,s) \in \mathbf{N}^{OD}} \sum_{h \in \mathbf{P}^{rs}} \varepsilon_{h,i} X_{h}^{\vartheta rs} \right) \quad for \ each \ i \in \mathbf{N}^{\mathbf{P}}$$

$$(1.19.b)$$

したがって、交通サービスの需給均衡は次のように定義できる。

$$y_k^{\nu} = \sum_{h \in \mathbf{P}^{rs}} \sigma_{h,k} X_h \quad \text{for each } \nu \in \mathbf{N}^{\nu} \quad \text{and } k \in \mathbf{P}^{\nu}$$
 (1.20)

また端点解を含む一般解の場合の均衡は、非線形相補性問題(NCP)によって述べられる。しかし NCP の解法は大変複雑であるため、ここではプロジェクトなしの状態からプロジェクトありの状態への均衡経路が特定できれば、端点解は内点解の場合で近似することができるものとしておく。

4 便益定義

本節では、各経済主体における便益定義を行う。プロジェクトの実施による各経済 主体の効用または利潤の変化は、便益または費用の項目に区分けすることができる。 ここでプロジェクトの実施に対する表記を次のように定義する。

 α : プロジェクト無し β : プロジェクト有り

なお、本研究では交通ネットワークだけに焦点を当てるため、交通以外のサービス(合成財)の価格変化、および個人の一般化所得の変化については考慮しないものと仮定する。

$$dp_g^r = 0$$
 $d\Psi^{\kappa r} = 0$ for all $g \in \mathbf{N}^g$ and $r \in \mathbf{N}^r$ (1.21)

4-1 個人(代表的交通利用者)の主体的帰着便益

個人 $(\kappa,r) \in \mathbb{N}^C \times \mathbf{A}^\kappa$ の純便益は、支出関数 $e(\cdot)$ を用いて等価的偏差 EV の概念を適用することで、次のように表現できる。

$$EV^{\kappa r} = e(V^{\beta \kappa r}, q^{\alpha \kappa r}, p^{\alpha r}, a^{\alpha r}, b^{\alpha r}, \theta^{\kappa}) - e(V^{\alpha \kappa r}, q^{\alpha \kappa r}, p^{\alpha r}, a^{\alpha r}, b^{\alpha r}, \theta^{\kappa})$$

$$= \oint_{\alpha \to \beta} ME^{\kappa r} \cdot MU^{\kappa r} \cdot \{-\sum_{h \in \mathbf{P}^{rs}} X_h^{\kappa r} \Omega^{\kappa r} dq_h^{\kappa r} - \sum_{h \in \mathbf{P}^{rs}} X_h^{\kappa r} q_h^{\kappa r} d\Omega^{\kappa r} - \sum_{g \in \mathbf{N}^G} Z_g^{\kappa r} dp_g^r + d\Psi^{\kappa r} - d\tau^{\kappa r}\}$$

$$(1.22.a)$$

ここで、

限界支出
$$\underline{ME^{\kappa r}(V^{\kappa r}, q^{\alpha \kappa r}, p^{\alpha r}, a^{\alpha r}, b^{\alpha r}, \theta^{\kappa})} = \frac{\partial e^{\kappa r}}{\partial V^{\kappa r}} \tag{1.22.b}$$

所得の限界効用
$$MU^{\kappa r}(\Omega^{\kappa r}, q^{\kappa r}, p^r, a^r, b^r, \theta^{\kappa}) = \frac{\partial V^{\kappa r}}{\partial \Omega^{\kappa r}}$$
 (1.22.c)

ここで式(1.22.a)内の { } において、

第1項は、交通サービスの基準化価格の変化による消費者余剰の変化を意味する。

第2項は、可処分所得の変化による消費者余剰の変化を意味する。

第3項は、交通以外のサービス(合成財)による消費者余剰の変化である。

第4項は、一般化所得の変化である。

第5項は、一括税の変化である。

しかし、第3項、第4項については、式(1.21)の仮定により無視することができる。

したがって、テーラーの二次近似より式(1.22.a)は次の式で近似することができる。

$$EV^{\kappa r} \cong \frac{1}{2} \sum_{h \in \mathbf{P}^{rs}} (X_h^{\alpha \kappa r} + X_h^{\beta \kappa r}) (q_h^{\beta \kappa r} \Omega^{\beta \kappa r} - q_h^{\alpha \kappa r} \Omega^{\alpha \kappa r}) - (\tau^{\beta \kappa r} - \tau^{\alpha \kappa r})$$
 (1.23)

4-2 一般企業の主体的帰着便益

一般企業 $(\eta,r) \in \mathbf{A}^{\times} \times \mathbf{N}^{C}$ の純便益は、利潤の増加分として次のように表現できる。

$$\Delta \pi^{\vartheta r} = \oint_{\alpha \to \beta} \left(-\sum_{h \in \mathbf{P}^{rs}} X_h^{\vartheta r} p_g^r dq_h^{\vartheta r} - d\tau^{\vartheta r} \right)$$
 (1.24.a)

ここで式(1.24.a)の積分内において、

第1項は、一般企業の利用者便益を表す。

第2項は、税金の変化を表す。

そして、テーラーの二次近似により次式で近似することができる。

$$\Delta \pi^{\vartheta r} \cong \frac{1}{2} \sum_{h \in \mathbf{P}^{rs}} (X_h^{\alpha \vartheta r} + X_h^{\beta \vartheta r}) (p_g^r q_h^{\beta \vartheta r} - p_g^r q_h^{\alpha \vartheta r}) - (\tau^{\beta \vartheta r} - \tau^{\alpha \vartheta r})$$
 (1.24.b)

4-3 交通サービス生産者の主体的帰着便益

交通サービス生産者の純便益は、式(6.16.d)を用いて利潤の増加分として次のように表現できる。

$$\Delta \pi^{v} = \oint_{\alpha \to \beta} \left\{ \sum_{k \in \mathbf{P}^{v}} \phi_{k}^{v} dy_{k}^{v} + \sum_{k \in \mathbf{P}^{v}} y_{k}^{v} d\phi_{k}^{v} - \sum_{k \in \mathbf{P}^{v}} dc_{k}^{v} - dK^{v} - \sum_{k \in \mathbf{P}^{v}} \sum_{(i,j) \in \mathbf{L}} \delta_{k,ij} d\rho_{ij}^{v} - \sum_{k \in \mathbf{P}^{v}} \sum_{i \in \mathbf{N}^{p}} \varepsilon_{k,i} d\rho_{i}^{v} + dT^{v} \right\}$$

$$(1.25)$$

ここで式(1.25)の積分内において、

第1項と第2項は、収入の変化を表す。

第3項と第4項は、交通サービスの生産量の変化に伴う生産費用の変化を表す。

第5項と第6項は、リンクijとノードiに対する賃貸料の支払いの変化を表す。

第7項は、補助金の変化を表す。

4-4 インフラ所有者の主体的帰着便益

交通サービス生産者の純便益は、式(1.17.b)を用いて利潤の増加分として次のように表現できる。

$$\Delta \pi^{\varpi} = \oint_{\alpha \to \beta} \{ \sum_{v \in \mathbf{A}^{v}} \sum_{k \in \mathbf{P}^{v}(i,j) \in \mathbf{L}^{\varpi}} \delta_{k,ij} d\rho_{ij}^{v} + \sum_{v \in \mathbf{A}^{v}} \sum_{k \in \mathbf{P}^{v}} \sum_{i \in \mathbf{N}^{\varpi}} \varepsilon_{k,i} d\rho_{i}^{v} - \sum_{(i,j) \in \mathbf{L}^{\varpi}} dM_{ij}^{\varpi} - \sum_{i \in \mathbf{N}^{\varpi}} dM_{ij}^{\varpi} - \sum_{i \in \mathbf{N}^{\varpi}} dI_{ij}^{\varpi} - \sum_{i \in \mathbf{N}^{\varpi}} dI_{i}^{\varpi} + dT^{\varpi} \}$$

$$(1.26)$$

ここで式(1.26)の積分内において、

第1項と第2項は、リンクijとノードiに対する賃貸収入の変化を表す。

第3項と第4項は、リンクii とノードi に対する維持費の変化を表す。

第5項と第6項は、リンクijとノードiに対する投資額の変化を表す。

第7項は、補助金の変化を表す。

4-5 政府の主体的帰着便益

プロジェクトの実施による財政への影響は、次のように表現できる

$$\Delta \pi^{G} = \oint_{\alpha \to \beta} \left\{ \sum_{\kappa \in \mathbf{A}^{\kappa}} \sum_{r \in \mathbf{N}^{c}} n^{\kappa r} d\tau^{\kappa r} + \sum_{\vartheta \in \mathbf{A}^{\kappa}} \sum_{r \in \mathbf{N}^{c}} n^{\vartheta r} d\tau^{\vartheta r} - \sum_{\varpi \in \mathbf{A}^{\varpi}} dT^{\varpi} - \sum_{\nu \in \mathbf{A}^{\nu}} dT^{\nu} \right\} = 0$$
 (1.27)

ここで式(1.27)の積分内において、

第1項と第2項は、税金収入の変化を表す。

第3項と第4章は、補助金の譲渡の変化を表す。

5 便益帰着構成表

5-1 一般的な便益帰着構成表

各経済主体の純便益の総和を、社会的純便益(Social Net Benefit)として定義する。

$$SNB = \sum_{r \in \mathbf{N}^c} \left(\sum_{\kappa \in \mathbf{A}^\kappa} n^{\kappa r} EV^{\kappa r} + \sum_{\vartheta \in \mathbf{A}^\vartheta} n^{\vartheta r} \Delta \pi^{\vartheta r} \right) + \sum_{\nu \in \mathbf{N}^\nu} \Delta \pi^\nu + \sum_{\varpi \in \mathbf{N}^\varpi} \Delta \pi^\varpi + \Delta \pi^G$$
 (1.28)

式(1.22.b)と式(1.22.c)は、各ゾーンにより異なるため近似として次のように仮定する。

$$ME^r \cdot MU^r \cong 1$$
 for all $r \in \mathbb{N}^C$

以上の仮定の下、式(1.28)を詳細に書き直すと

$$SNB = \oint_{\alpha \to \beta} \left[\sum_{\kappa \in \mathbf{A}^{\kappa}} \sum_{\kappa \in \mathbf{A}^{\kappa}} n^{\kappa r} \left(-\sum_{h \in \mathbf{P}^{\kappa}} X_{h}^{\kappa r} \Omega^{\kappa r} dq_{h}^{\kappa r} - \sum_{h \in \mathbf{P}^{\kappa}} X_{h}^{\kappa r} q_{h}^{\kappa r} d\Omega^{\kappa r} - d\tau^{\kappa r} \right) \right.$$

$$+ \sum_{\vartheta \in \mathbf{A}^{\vartheta}} n^{\vartheta r} \left(-\sum_{h \in \mathbf{P}^{\kappa}} X_{h}^{\vartheta r} p_{g}^{r} dq_{h}^{\vartheta r} - d\tau^{\vartheta r} \right) \right\}$$

$$+ \sum_{\mathsf{V} \in \mathbf{N}^{\mathsf{V}}} \left\{ \sum_{k \in \mathbf{P}^{\mathsf{V}}} \phi_{k}^{\mathsf{V}} dy_{k}^{\mathsf{V}} + \sum_{k \in \mathbf{P}^{\mathsf{V}}} y_{k}^{\mathsf{V}} d\phi_{k}^{\mathsf{V}} - \sum_{k \in \mathbf{P}^{\mathsf{V}}} dc_{k}^{\mathsf{V}} - dK^{\mathsf{V}} \right.$$

$$- \sum_{k \in \mathbf{P}^{\mathsf{V}}(i,j) \in \mathbf{L}} \sum_{\mathsf{K},ij} d\rho_{ij}^{\mathsf{V}} - \sum_{k \in \mathbf{P}^{\mathsf{V}}} \sum_{i \in \mathbf{N}^{\mathsf{P}}} \varepsilon_{k,i} d\rho_{i}^{\mathsf{V}} + dT^{\mathsf{V}} \right\}$$

$$+ \sum_{\omega \in \mathbf{N}^{\varpi}} \left\{ \sum_{\mathsf{V} \in \mathbf{A}^{\mathsf{V}}} \sum_{k \in \mathbf{P}^{\mathsf{V}}(i,j) \in \mathbf{L}^{\varpi}} \sum_{\mathsf{E},ij} d\rho_{ij}^{\mathsf{V}} + \sum_{\mathsf{V} \in \mathbf{A}^{\mathsf{V}}} \sum_{k \in \mathbf{P}^{\mathsf{V}}} \varepsilon_{k,i} d\rho_{i}^{\mathsf{V}} \right.$$

$$- \sum_{(i,j) \in \mathbf{L}^{\varpi}} dM_{ij}^{\varpi} - \sum_{i \in \mathbf{N}^{\varpi}} dM_{i}^{\varpi} - \sum_{(i,j) \in \mathbf{L}^{\varpi}} dI_{ij}^{\varpi} - \sum_{i \in \mathbf{N}^{\varpi}} dI_{i}^{\varpi} + dT^{\varpi} \right\}$$

$$+ \left\{ \sum_{\kappa \in \mathbf{A}^{\mathsf{K}}} \sum_{r \in \mathbf{N}^{\mathsf{C}}} n^{\kappa r} d\tau^{\kappa r} + \sum_{\vartheta \in \mathbf{A}^{\mathsf{K}}} \sum_{r \in \mathbf{N}^{\mathsf{C}}} n^{\vartheta r} d\tau^{\vartheta r} - \sum_{\varpi \in \mathbf{A}^{\varpi}} dT^{\varpi} - \sum_{\mathsf{V} \in \mathbf{N}^{\mathsf{V}}} dT^{\mathsf{V}} \right\} \right]$$

さらに式(1.29.a)の中でキャンセルアウトされる項目に注意して書き直すと

$$SNB = \oint_{\alpha \to \beta} \left[\sum_{r \in \mathbf{N}^{c}} \left\{ \sum_{\kappa \in \mathbf{A}^{\kappa}} n^{\kappa r} \left(- \sum_{h \in \mathbf{P}^{r}} X_{h}^{\kappa r} \Omega^{\kappa r} dq_{h}^{\kappa r} - \sum_{h \in \mathbf{P}^{r}} X_{h}^{\kappa r} q_{h}^{\kappa r} d\Omega^{\kappa r} \right) \right.$$

$$\left. + \sum_{\vartheta \in \mathbf{A}^{\vartheta}} n^{\vartheta r} \left(- \sum_{h \in \mathbf{P}^{r}} X_{h}^{\vartheta r} dq_{h}^{\vartheta r} \right) \right\}$$

$$\left. + \sum_{\vartheta \in \mathbf{N}^{\vartheta}} \left\{ \sum_{k \in \mathbf{P}^{\vartheta}} \phi_{k}^{\vartheta} dy_{k}^{\vartheta} + \sum_{k \in \mathbf{P}^{\vartheta}} y_{k}^{\vartheta} d\phi_{k}^{\vartheta} - \sum_{k \in \mathbf{P}^{\vartheta}} dI_{ij}^{\varpi} - \sum_{i \in \mathbf{N}^{\varpi}} dI_{ij}^{\varpi} \right.$$

$$\left. + \sum_{\varpi \in \mathbf{N}^{\varpi}} \sum_{v \in \mathbf{A}^{\vartheta}} \sum_{k \in \mathbf{P}^{\vartheta}(i,j) \in \mathbf{L}^{\varpi}} dM_{ij}^{\varpi} - \sum_{i \in \mathbf{N}^{\varpi}} dM_{ij}^{\varpi} - \sum_{i \in \mathbf{N}^{\varpi}} dI_{ij}^{\varpi} \right.$$

$$\left. + \left\{ \sum_{\varpi \in \mathbf{N}^{\varpi}} \sum_{v \in \mathbf{A}^{\vartheta}} \sum_{k \in \mathbf{P}^{\vartheta}(i,j) \in \mathbf{L}^{\varpi}} \delta_{k,ij} d\rho_{ij}^{\vartheta} - \sum_{v \in \mathbf{N}^{\vartheta}} \sum_{k \in \mathbf{P}^{\vartheta}(i,j) \in \mathbf{L}^{\varpi}} \delta_{k,ij} d\rho_{ij}^{\vartheta} \right\} \right.$$

$$\left. + \left\{ \sum_{\varpi \in \mathbf{N}^{\varpi}} \sum_{v \in \mathbf{A}^{\vartheta}} \sum_{k \in \mathbf{P}^{\vartheta}(i,j) \in \mathbf{L}^{\varpi}} \mathcal{E}_{k,i} d\rho_{i}^{\vartheta} - \sum_{v \in \mathbf{N}^{\vartheta}} \sum_{k \in \mathbf{P}^{\vartheta}(i,j) \in \mathbf{L}^{\varpi}} \delta_{k,ij} d\rho_{ij}^{\vartheta} \right\} \right.$$

$$\left. + \left\{ \sum_{\varpi \in \mathbf{A}^{\omega}} \sum_{v \in \mathbf{A}^{\vartheta}} \sum_{k \in \mathbf{P}^{\vartheta}(i,j) \in \mathbf{L}^{\varpi}} \mathcal{E}_{k,i} d\rho_{i}^{\vartheta} \right\} \right.$$

$$\left. + \left\{ \sum_{\varpi \in \mathbf{A}^{\omega}} \sum_{v \in \mathbf{N}^{\vartheta}} d\tau^{\vartheta r} - \sum_{\vartheta \in \mathbf{A}^{\omega}} \sum_{r \in \mathbf{N}^{\varepsilon}} n^{\vartheta r} d\tau^{\vartheta r} \right\} \right.$$

$$\left. + \left\{ \sum_{\varpi \in \mathbf{A}^{\varpi}} dT^{\varpi} - \sum_{\varpi \in \mathbf{A}^{\varpi}} dT^{\varpi} \right\} \right.$$

$$\left. + \left\{ \sum_{\varpi \in \mathbf{A}^{\varpi}} dT^{\varpi} - \sum_{\varpi \in \mathbf{A}^{\varpi}} dT^{\varpi} \right\} \right.$$

$$\left. + \left\{ \sum_{\varpi \in \mathbf{A}^{\varpi}} dT^{\varpi} - \sum_{\varpi \in \mathbf{A}^{\varpi}} dT^{\varpi} \right\} \right.$$

$$\left. + \left\{ \sum_{\varpi \in \mathbf{A}^{\varpi}} dT^{\varpi} - \sum_{\varpi \in \mathbf{A}^{\varpi}} dT^{\varpi} \right\} \right.$$

$$\left. + \left\{ \sum_{\varpi \in \mathbf{A}^{\varpi}} dT^{\varpi} - \sum_{\varpi \in \mathbf{A}^{\varpi}} dT^{\varpi} \right\} \right.$$

ここで式(1.29.b)の第7行から第10行がキャンセルアウトされるのは明らかである。また、第5行と第6行において経路と交通サービス生産者に関する総計の符号は、次のようにリンクとインフラ所有者に関する総計の符号に書き改めることができる。

$$\sum_{\varpi \in \mathbf{N}^{\varpi}} \sum_{v \in \mathbf{A}^{\mathsf{V}}} \sum_{k \in \mathbf{P}^{\mathsf{V}}(i,j) \in \mathbf{L}^{\varpi}} = \sum_{v \in \mathbf{N}^{\mathsf{V}}} \sum_{k \in \mathbf{P}^{\mathsf{V}}(i,j) \in \mathbf{L}} \sum_{\varpi \in \mathbf{N}^{\varpi}} \sum_{v \in \mathbf{A}^{\mathsf{V}}} \sum_{k \in \mathbf{P}^{\mathsf{V}}} \sum_{i \in \mathbf{N}^{\mathbf{P}}} \sum_{i \in \mathbf{N}^{\mathbf{P}}}$$

以上より、式(1.29.b)において第5行から第10行までキャンセルアウトされて、 次式が得られる。

$$SNB = \oint_{\alpha \to \beta} \left[\sum_{r \in \mathbf{N}^c} \left\{ \sum_{\kappa \in \mathbf{A}^\kappa} n^{\kappa r} \left(-\sum_{h \in \mathbf{P}^n} X_h^{\kappa r} \Omega^{\kappa r} dq_h^{\kappa r} - \sum_{h \in \mathbf{P}^n} X_h^{\kappa r} q_h^{\kappa r} d\Omega^{\kappa r} \right) \right.$$

$$\left. + \sum_{\vartheta \in \mathbf{A}^\vartheta} n^{\vartheta r} \left(-\sum_{h \in \mathbf{P}^n} X_h^{\vartheta r} p_g^r dq_h^{\vartheta r} \right) \right\}$$

$$\left. + \sum_{v \in \mathbf{N}^v} \left\{ \sum_{k \in \mathbf{P}^v} \phi_k^v dy_k^v + \sum_{k \in \mathbf{P}^v} y_k^v d\phi_k^v - \sum_{k \in \mathbf{P}^v} dc_k^v - dK^v \right\}$$

$$\left. + \sum_{m \in \mathbf{N}^\varpi} \left\{ -\sum_{(i \ i) \in \mathbf{I}^\varpi} dM_{ij}^\varpi - \sum_{i \in \mathbf{N}^\varpi} dM_i^\varpi - \sum_{(i \ i) \in \mathbf{I}^\varpi} dI_{ij}^\varpi - \sum_{i \in \mathbf{N}^\varpi} dI_i^\varpi \right\}$$

$$\left. + \sum_{m \in \mathbf{N}^\varpi} \left\{ -\sum_{(i \ i) \in \mathbf{I}^\varpi} dM_{ij}^\varpi - \sum_{(i \ i) \in \mathbf{I}^\varpi} dM_i^\varpi - \sum_{(i \ i) \in \mathbf{I}^\varpi} dI_i^\varpi \right\} \right.$$

価格体系や交通サービスの市場構造にかかわらず、式(1.29.c)で示される利潤変化の形式で述べることが可能である。ここで、式(1.29.c)の第1行は個人の利用者便益の総和を表す。第2項は一般企業の利用者便益の総和を表す。第3行は交通サービス

生産者の利潤変化の総和を表す。第4項はインフラ所有者の利潤変化の総和を表す。 また、交通サービスに対する個人と一般企業の基準化された一般化費用の変化は、 それぞれ次のようになる。

$$\Omega^{\kappa r} dq_{h}^{\kappa r} = \Omega^{\kappa r} \times \frac{\left[\sum_{k \in \mathbf{P}^{s}} \sigma_{h,k} d\phi_{k} + \sum_{l \in \mathbf{P}^{l}} \sigma_{h,l} d\xi_{l} + w^{\kappa r} \left\{\sum_{(i,j) \in \mathbf{L}} \delta_{h,ij} dt_{ij} + \sum_{i \in \mathbf{N}^{p}} \varepsilon_{h,\bar{i}} dt_{\bar{i}} \right\}\right]}{\Omega^{\kappa r}} \\
- \Omega^{\kappa r} \times \frac{d\Omega^{\kappa r} \left[\sum_{k \in \mathbf{P}^{s}} \sigma_{h,k} \phi_{k} + \sum_{l \in \mathbf{P}^{l}} \sigma_{h,l} \xi_{l} + w^{\kappa r} \left\{\sum_{(i,j) \in \mathbf{L}} \delta_{h,ij} t_{ij} + \sum_{i \in \mathbf{N}^{p}} \varepsilon_{h,\bar{i}} t_{\bar{i}} \right\}\right]}{(\Omega^{\kappa r})^{2}} \\
= \left[\sum_{k \in \mathbf{P}^{s}} \sigma_{h,k} d\phi_{k} + \sum_{l \in \mathbf{P}^{l}} \sigma_{h,l} d\xi_{l} + w^{\kappa r} \left\{\sum_{(i,j) \in \mathbf{L}} \delta_{h,ij} dt_{ij} + \sum_{i \in \mathbf{N}^{p}} \varepsilon_{h,\bar{i}} dt_{\bar{i}} \right\}\right] - q_{h}^{\kappa r} d\Omega^{\kappa r}$$

$$p_{g}^{r}dq_{h}^{\partial r} = p_{g}^{r} \times \frac{\sum_{k \in \mathbf{P}^{s}} \sigma_{h,k} d\phi_{k} + \sum_{l \in \mathbf{P}^{l}} \sigma_{h,l} d\xi_{l} + w^{\partial r} \{\sum_{(i,j) \in \mathbf{L}} \delta_{h,ij} dt_{ij} + \sum_{i \in \mathbf{N}^{P}} \varepsilon_{h,\bar{i}} dt_{\bar{i}} \}}{p_{g}^{r}}$$

$$= \sum_{k \in \mathbf{P}^{s}} \sigma_{h,k} d\phi_{k} + \sum_{l \in \mathbf{P}^{l}} \sigma_{h,l} d\xi_{l} + w^{\partial r} \{\sum_{(i,j) \in \mathbf{L}} \delta_{h,ij} dt_{ij} + \sum_{i \in \mathbf{N}^{P}} \varepsilon_{h,\bar{i}} dt_{\bar{i}} \}$$

$$(1.30.b)$$

ここで、式(1.30.a)と式(1.30.b)を式(1.29.c)に代入すると、次のように可処分所得の変化による消費者余剰の変化がキャンセルアウトする。

$$SNB = \oint_{\alpha \to \beta} \left[\sum_{r \in \mathbf{N}^{c}} \left\{ \sum_{\kappa \in \mathbf{A}^{\kappa}} n^{\kappa^{r}} \left(-\sum_{h \in \mathbf{P}^{r}} X_{h}^{\kappa^{r}} \left[\sum_{k \in \mathbf{P}^{s}} \sigma_{h,k} d\phi_{k} + \sum_{l \in \mathbf{P}^{l}} \sigma_{h,l} d\xi_{l} + w^{\kappa^{r}} \left\{ \sum_{(i,j) \in \mathbf{L}} \delta_{h,ij} dt_{ij} + \sum_{i \in \mathbf{N}^{\mathbf{P}}} \varepsilon_{h,\bar{i}} dt_{\bar{i}} \right\} \right] \right) \\ + \sum_{\vartheta \in \mathbf{A}^{\vartheta}} n^{\vartheta r} \left(-\sum_{h \in \mathbf{P}^{r}} X_{h}^{\vartheta r} \left[\sum_{k \in \mathbf{P}^{s}} \sigma_{h,k} d\phi_{k} + \sum_{l \in \mathbf{P}^{l}} \sigma_{h,l} d\xi_{l} + w^{\vartheta r} \left\{ \sum_{(i,j) \in \mathbf{L}} \delta_{h,ij} dt_{ij} + \sum_{i \in \mathbf{N}^{\mathbf{P}}} \varepsilon_{h,\bar{i}} dt_{\bar{i}} \right\} \right] \right) \right\} \\ + \sum_{\mathsf{V} \in \mathbf{N}^{\mathsf{V}}} \left\{ \sum_{k \in \mathbf{P}^{\mathsf{V}}} \phi_{k}^{\mathsf{V}} dy_{k}^{\mathsf{V}} + \sum_{k \in \mathbf{P}^{\mathsf{V}}} y_{k}^{\mathsf{V}} d\phi_{k}^{\mathsf{V}} - \sum_{k \in \mathbf{P}^{\mathsf{V}}} dc_{k}^{\mathsf{V}} - dK^{\mathsf{V}} \right\} \\ + \sum_{\varpi \in \mathbf{N}^{\varpi}} \left\{ -\sum_{(i,j) \in \mathbf{L}^{\varpi}} dM_{ij}^{\varpi} - \sum_{i \in \mathbf{N}^{\varpi}} dM_{i}^{\varpi} - \sum_{(i,j) \in \mathbf{L}^{\varpi}} dI_{ij}^{\varpi} - \sum_{i \in \mathbf{N}^{\varpi}} dI_{i}^{\varpi} \right\}$$

$$(1.31.a)$$

また、式(1.31.a)を効果項目ごとに並べ替えると次のようになる。

$$SNB = \oint_{\alpha \to \beta} \left[-\sum_{r \in \mathbf{N}^{c}} \sum_{\kappa \in \mathbf{A}^{\kappa}} \sum_{h \in \mathbf{P}^{n}} \sum_{k \in \mathbf{P}^{\kappa}} n^{\kappa r} X_{h}^{\kappa r} \sigma_{h,k} d\phi_{k} - \sum_{r \in \mathbf{N}^{c}} \sum_{\kappa \in \mathbf{A}^{\kappa}} \sum_{h \in \mathbf{P}^{n}} n^{\kappa r} X_{h}^{\kappa r} \sigma_{h,l} d\xi_{l} \right]$$

$$- \sum_{r \in \mathbf{N}^{c}} \sum_{\kappa \in \mathbf{A}^{\kappa}} \sum_{h \in \mathbf{P}^{n}} \sum_{(i,j) \in \mathbf{L}} n^{\kappa r} X_{h}^{\kappa r} w^{\kappa r} \delta_{h,ij} dt_{ij} - \sum_{r \in \mathbf{N}^{c}} \sum_{\kappa \in \mathbf{A}^{\kappa}} \sum_{h \in \mathbf{P}^{n}} \sum_{i \in \mathbf{N}^{h}} n^{\kappa r} X_{h}^{\kappa r} w^{\kappa r} \delta_{h,ij} dt_{ij} - \sum_{r \in \mathbf{N}^{c}} \sum_{\vartheta \in \mathbf{A}^{\vartheta}} \sum_{h \in \mathbf{P}^{n}} \sum_{i \in \mathbf{N}^{\vartheta}} n^{\vartheta r} X_{h}^{\vartheta r} \sigma_{h,l} d\xi_{l}$$

$$- \sum_{r \in \mathbf{N}^{c}} \sum_{\vartheta \in \mathbf{A}^{\vartheta}} \sum_{h \in \mathbf{P}^{n}} \sum_{(i,j) \in \mathbf{L}} n^{\vartheta r} X_{h}^{\vartheta r} w^{\vartheta r} \delta_{h,ij} dt_{ij} - \sum_{r \in \mathbf{N}^{c}} \sum_{\vartheta \in \mathbf{A}^{\vartheta}} \sum_{h \in \mathbf{P}^{n}} \sum_{i \in \mathbf{N}^{\vartheta}} n^{\vartheta r} X_{h}^{\vartheta r} w^{\vartheta r} \varepsilon_{h,\bar{i}} dt_{\bar{i}}$$

$$+ \sum_{v \in \mathbf{N}^{v}} \sum_{k \in \mathbf{P}^{v}} \phi_{k}^{v} dy_{k}^{v} + \sum_{v \in \mathbf{N}^{v}} \sum_{k \in \mathbf{P}^{v}} y_{k}^{v} d\phi_{k}^{v}$$

$$- \sum_{v \in \mathbf{N}^{\vartheta}} \sum_{(i,j) \in \mathbf{L}^{\vartheta}} dt_{ij}^{\vartheta} - \sum_{w \in \mathbf{N}^{\vartheta}} \sum_{i \in \mathbf{N}^{\vartheta}} \sum_{i \in \mathbf{N}^{\vartheta}} dt_{i}^{\vartheta}$$

$$- \sum_{\varpi \in \mathbf{N}^{\vartheta}} \sum_{(i,j) \in \mathbf{L}^{\vartheta}} dt_{ij}^{\varpi} - \sum_{\varpi \in \mathbf{N}^{\vartheta}} \sum_{i \in \mathbf{N}^{\vartheta}} dt_{i}^{\varpi}$$

$$- \sum_{\varpi \in \mathbf{N}^{\vartheta}} \sum_{(i,j) \in \mathbf{L}^{\vartheta}} dt_{ij}^{\varpi} - \sum_{\varpi \in \mathbf{N}^{\vartheta}} \sum_{i \in \mathbf{N}^{\vartheta}} dt_{i}^{\varpi}$$

$$- \sum_{\varpi \in \mathbf{N}^{\vartheta}} \sum_{(i,j) \in \mathbf{L}^{\vartheta}} dt_{ij}^{\varpi} - \sum_{\varpi \in \mathbf{N}^{\vartheta}} \sum_{i \in \mathbf{N}^{\vartheta}} dt_{i}^{\varpi}$$

$$- \sum_{\varpi \in \mathbf{N}^{\vartheta}} \sum_{(i,j) \in \mathbf{L}^{\vartheta}} dt_{ij}^{\varpi} - \sum_{\varpi \in \mathbf{N}^{\vartheta}} \sum_{i \in \mathbf{N}^{\vartheta}} dt_{i}^{\varpi}$$

さらに式(1.20)の交通サービスの需給均衡条件より、

$$\sum_{v \in \mathbf{A}^{\mathsf{v}}} \sum_{k \in \mathbf{P}^{\mathsf{v}}} y_{k}^{\mathsf{v}} d\phi_{k}^{\mathsf{v}} = n^{\mathsf{v}\mathsf{r}} \sum_{h \in \mathbf{P}^{\mathsf{r}\mathsf{s}}} \sigma_{h,k} X_{h}^{\mathsf{v}\mathsf{r}} d\phi_{k}^{\mathsf{v}} + n^{\vartheta r} \sum_{h \in \mathbf{P}^{\mathsf{r}\mathsf{s}}} \sigma_{h,k} X_{h}^{\vartheta r} d\phi_{k}^{\mathsf{v}}$$
(1.32)

式(1.32)を用いることで、式(1.31.b)の第1行の第1項と第3行の第1項が、第5行の第2項とキャンセルアウトする。したがって、式(1.31.b)を次のように書き直すことができる。

$$SNB = \oint_{\alpha \to \beta} \left[-\sum_{r \in \mathbf{N}^{c}} \sum_{\kappa \in \mathbf{A}^{\kappa}} \sum_{h \in \mathbf{P}^{r}} \sum_{l \in \mathbf{P}^{l}} n^{\kappa r} X_{h}^{\kappa r} \sigma_{h,l} d\xi_{l} \right]$$

$$-\sum_{r \in \mathbf{N}^{c}} \sum_{\kappa \in \mathbf{A}^{\kappa}} \sum_{h \in \mathbf{P}^{r}} \sum_{(i,j) \in \mathbf{L}} n^{\kappa r} X_{h}^{\kappa r} w^{\kappa r} \delta_{h,ij} dt_{ij} - \sum_{r \in \mathbf{N}^{c}} \sum_{\kappa \in \mathbf{A}^{\kappa}} \sum_{h \in \mathbf{P}^{r}} \sum_{i \in \mathbf{N}^{\mathbf{P}}} n^{\kappa r} X_{h}^{\kappa r} w^{\kappa r} \delta_{h,ij} dt_{ij} - \sum_{r \in \mathbf{N}^{c}} \sum_{\vartheta \in \mathbf{A}^{\vartheta}} \sum_{h \in \mathbf{P}^{r}} \sum_{(i,j) \in \mathbf{L}} n^{\vartheta r} X_{h}^{\vartheta r} w^{\vartheta r} \delta_{h,ij} dt_{ij} - \sum_{r \in \mathbf{N}^{c}} \sum_{\vartheta \in \mathbf{A}^{\vartheta}} \sum_{h \in \mathbf{P}^{r}} \sum_{i \in \mathbf{N}^{\mathbf{P}}} n^{\vartheta r} X_{h}^{\vartheta r} w^{\vartheta r} \varepsilon_{h,i} dt_{i}$$

$$+ \sum_{v \in \mathbf{N}^{v}} \sum_{k \in \mathbf{P}^{v}} \phi_{k}^{v} dy_{k}^{v}$$

$$- \sum_{v \in \mathbf{N}^{v}} \sum_{k \in \mathbf{P}^{v}} dc_{k}^{v} - \sum_{v \in \mathbf{N}^{w}} dK^{v}$$

$$- \sum_{\omega \in \mathbf{N}^{\varpi}} \sum_{(i,j) \in \mathbf{L}^{\varpi}} dM_{ij}^{\varpi} - \sum_{\omega \in \mathbf{N}^{\varpi}} \sum_{i \in \mathbf{N}^{\varpi}} dM_{i}^{\varpi}$$

$$- \sum_{\omega \in \mathbf{N}^{\varpi}} \sum_{(i,j) \in \mathbf{L}^{\varpi}} dI_{ij}^{\varpi} - \sum_{\omega \in \mathbf{N}^{\varpi}} \sum_{i \in \mathbf{N}^{\varpi}} dM_{i}^{\varpi}$$

$$- \sum_{\omega \in \mathbf{N}^{\varpi}} \sum_{(i,j) \in \mathbf{L}^{\varpi}} dI_{ij}^{\varpi} - \sum_{\omega \in \mathbf{N}^{\varpi}} \sum_{i \in \mathbf{N}^{\varpi}} dI_{i}^{\varpi} \right]$$

ここで式(1.33)の積分内において

第1行は、個人の交通価格の変化による利用者便益を表す。

第2行は、個人の交通所要時間の変化による利用者便益を表す。

第3行は、一般企業の交通価格の変化による利用者便益を表す。

第4行は、一般企業の交通所要時間の変化による利用者便益を表す。

第5行は、交通サービス生産者の交通価格による収入の変化を表す。

第6行は、交通サービス生産者の交通サービスに対する生産費用の変化を表す。

第7行は、インフラ所有者のリンクij とノードiに対する維持費の変化を表す。

第8行は、インフラ所有者のリンクij とノードi に対する投資額の変化を表す。

以上より、式(1.33)を基にして便益帰着構成表を作成する(本編第5章表1)。

5-2 ケース別の便益帰着構成表

まず、交通サービス生産者が供給する経路に対して生産量を1単位追加することによって増加する費用に等しく価格を決める限界費用価格形成をとると仮定すると

$$\sum_{v \in \mathbf{N}^{v}} \sum_{k \in \mathbf{P}^{v}} (\phi_{k}^{v} dy_{k}^{v} - dc_{k}^{v}) = \sum_{v \in \mathbf{N}^{v}} \sum_{k \in \mathbf{P}^{v}} (\phi_{k}^{v} - dc_{k}^{v} / dy_{k}^{v}) dy_{k}^{v}$$

$$= 0$$
(1.34)

したがって、式(1.34)を用いて式(1.33)を書き直すと

$$SNB = \oint_{\alpha \to \beta} \left[-\sum_{r \in \mathbf{N}^{c}} \sum_{\kappa \in \mathbf{A}^{\kappa}} \sum_{h \in \mathbf{P}^{rs}} \sum_{l \in \mathbf{P}^{l}} n^{\kappa r} X_{h}^{\kappa r} \sigma_{h,l} d\xi_{l} \right]$$

$$- \sum_{r \in \mathbf{N}^{c}} \sum_{\kappa \in \mathbf{A}^{\kappa}} \sum_{h \in \mathbf{P}^{rs}} \sum_{(i,j) \in \mathbf{L}} n^{\kappa r} X_{h}^{\kappa r} w^{\kappa r} \delta_{h,ij} dt_{ij} - \sum_{r \in \mathbf{N}^{c}} \sum_{\kappa \in \mathbf{A}^{\kappa}} \sum_{h \in \mathbf{P}^{rs}} \sum_{l \in \mathbf{N}^{l}} n^{\kappa r} X_{h}^{\kappa r} w^{\kappa r} \delta_{h,ij} dt_{ij} - \sum_{r \in \mathbf{N}^{c}} \sum_{\vartheta \in \mathbf{A}^{\vartheta}} \sum_{h \in \mathbf{P}^{rs}} \sum_{i \in \mathbf{N}^{\vartheta}} n^{\vartheta r} X_{h}^{\vartheta r} w^{\vartheta r} \delta_{h,ij} dt_{ij} - \sum_{r \in \mathbf{N}^{c}} \sum_{\vartheta \in \mathbf{A}^{\vartheta}} \sum_{h \in \mathbf{P}^{rs}} \sum_{i \in \mathbf{N}^{\vartheta}} n^{\vartheta r} X_{h}^{\vartheta r} w^{\vartheta r} \varepsilon_{h,i} dt_{i}$$

$$- \sum_{v \in \mathbf{N}^{\vartheta}} \sum_{(i,j) \in \mathbf{L}^{\vartheta}} n^{\vartheta r} \sum_{i \in \mathbf{N}^{\vartheta}} \sum_{i \in \mathbf{N}^{\vartheta}} n^{\vartheta r} dM_{i}^{\varpi}$$

$$- \sum_{\varpi \in \mathbf{N}^{\vartheta}} \sum_{(i,j) \in \mathbf{L}^{\vartheta}} dM_{ij}^{\varpi} - \sum_{\varpi \in \mathbf{N}^{\vartheta}} \sum_{i \in \mathbf{N}^{\vartheta}} dM_{i}^{\varpi}$$

$$- \sum_{\varpi \in \mathbf{N}^{\vartheta}} \sum_{(i,j) \in \mathbf{L}^{\vartheta}} dI_{ij}^{\varpi} - \sum_{\varpi \in \mathbf{N}^{\vartheta}} \sum_{i \in \mathbf{N}^{\vartheta}} dI_{i}^{\varpi} \right]$$

$$(1.35)$$

式(1.35)を基にして交通サービス生産者が限界費用価格形成をとるケースの便益帰 着構成表を作成する(本編第5章表2)。

また、交通サービス生産者が平均費用価格形成をとるケースでは、交通サービス生産者は総費用を総生産量で割っって得られる生産物1単位当たりの平均費用に等しく価格を決めるため、交通サービス生産者の利潤はゼロになる(表1)。

さらに、モデルの概要から政府自体がインフラ所有者の役割を担う経済主体である ケースでは、表 2 のように便益帰着構成表が作成できる。

	表 1 交通サービス生産者が平均賃用料金を採用している場合の便益帰者構成表					
主体 項目	インフラ所有者	交通サービス生産者	個人(代表的交通利用者)	一般企業	政府	合計
リンク , ノードの 投資額の変化	$ \oint\limits_{\alpha \to \beta} [-\sum_{\varpi \in \mathbb{N}^{\varpi}} \sum_{(i,j) \in \mathbb{L}^{\varpi}} dI_{ij}^{\varpi} \\ -\sum_{\varpi \in \mathbb{N}^{\varpi}} \sum_{i \in \mathbb{L}^{\varpi}} dI_{i}^{\varpi}] $					
リンク , ノードの 維持費の変化	$ \oint\limits_{\alpha \to \beta} [-\sum_{\vec{\omega} \in \mathbb{N}^{\vec{\omega}}} \sum_{(i,j) \in \mathbb{I}^{\vec{\omega}}} dM_{ij}^{\vec{\omega}} \\ -\sum_{\vec{\omega} \in \mathbb{N}^{\vec{\omega}}} \sum_{i \in \mathbb{I}^{\vec{\omega}}} dM_{i}^{\vec{\omega}}] $					
リンク , ノードの 賃貸料の変化	$\begin{split} &\oint\limits_{\alpha \to \beta} \sum_{\sigma \in \mathbf{N}^{\sigma}} \sum_{v \in \Lambda^{v}} \sum_{k \in \mathbf{P}^{v}} \sum_{(i,j) \in \mathbf{L}^{\sigma}} \delta_{k,ij} d\rho_{ij}^{v} \\ &+ \sum_{\sigma \in \mathbf{N}^{\sigma}} \sum_{v \in \Lambda^{v}} \sum_{k \in \mathbf{P}^{v}} \sum_{i \in \mathbf{N}^{\sigma}} \mathcal{E}_{k,i} d\rho_{i}^{v}] \end{split}$	$\begin{split} &\oint\limits_{\alpha \to \beta} [-\sum_{m \in \mathbb{N}^n} \sum_{v \in \mathbb{A}^v} \sum_{k \in \mathbb{P}^v} \sum_{(i,j) \in \mathbb{L}^n} \delta_{k,ij} d\rho_{ij}^v \\ &-\sum_{m \in \mathbb{N}^n} \sum_{v \in \mathbb{A}^v} \sum_{k \in \mathbb{P}^v} \sum_{i \in \mathbb{N}^n} \varepsilon_{k,i} d\rho_i^v] \end{split}$				0
交通サービスの生 産費用の変化		$\oint_{\alpha \to \beta} \left[-\sum_{v \in N^{\vee}} \sum_{k \in \mathbf{P}^{\nu}} dc_k^{\vee} - \sum_{v \in N^{\vee}} dK^{\vee} \right]$				
交通価格の変化		$ \oint_{\alpha \to \beta} \left[\sum_{v \in \Lambda^{\vee}} \sum_{k \in \mathbf{P}^{\vee}} \phi_k^{\vee} dy_k^{\vee} + \sum_{v \in \Lambda^{\vee}} \sum_{k \in \mathbf{P}^{\vee}} y_k^{\vee} d\phi_k^{\vee} \right] $	$\begin{split} &\oint\limits_{\alpha \to \beta} \left[-\sum_{r \in \mathbf{N}'} \sum_{\mathbf{K} \in \mathbf{A}^{\mathbf{X}}} \sum_{h \in \mathbf{P}''} \sum_{k \in \mathbf{P}'} n^{sr} X_h^{sr} \sigma_{h,k} d\phi_k \right. \\ &- \sum_{r \in \mathbf{N}'} \sum_{\mathbf{K} \in \mathbf{A}^{\mathbf{X}}} \sum_{h \in \mathbf{P}''} \sum_{l \in \mathbf{P}'} n^{sr} X_h^{sr} \sigma_{h,l} d\xi_l \right] \end{split}$	$ \oint\limits_{\alpha \to \beta} \left[-\sum_{r \in \mathbf{N}'} \sum_{\sigma \in \mathbf{A}^{\sigma}} \sum_{h \in \mathbf{P}^{\alpha}} \sum_{k \in \mathbf{P}^{\lambda}} n^{\sigma r} X_{h}^{\sigma r} \sigma_{h,k} d\phi_{k} \right. \\ \left \sum_{r \in \mathbf{N}'} \sum_{\sigma \in \mathbf{A}^{\sigma}} \sum_{h \in \mathbf{P}^{\alpha}} \sum_{k \in \mathbf{P}^{\lambda}} n^{\sigma r} X_{h}^{\sigma r} \sigma_{h,l} d\xi_{l} \right] $		
交通所要時間の変 化			$\begin{split} &\oint\limits_{\alpha \to \beta} \left[-\sum_{r \in \mathbf{N}'} \sum_{\kappa \in \mathbf{A}^\kappa} \sum_{h \in \mathbf{P}^\alpha} \sum_{(i,j) \in \mathbf{L}} n^{sv} X_h^{sv} w^{sv} \delta_{h,ij} dt_{ij} \right. \\ &- \sum_{r \in \mathbf{N}'} \sum_{\kappa \in \mathbf{A}^\kappa} \sum_{h \in \mathbf{P}^\alpha} \sum_{i \in \mathbf{N}^p} n^{sv} X_h^{sv} w^{sv} \delta_{h,i} dt_i \right] \end{split}$	$\begin{split} &\oint\limits_{\alpha \to \beta} \left[-\sum_{r \in \mathbf{N}'} \sum_{\phi \in \mathbf{A}''} \sum_{h \in \mathbf{P}''} \sum_{(i,j) \in \mathbf{L}} n^{\phi r} X_h^{\phi r} w^{b r} \delta_{h,ij} dt_{ij} \right. \\ &- \sum_{r \in \mathbf{N}'} \sum_{\phi \in \mathbf{A}''} \sum_{h \in \mathbf{P}''} \sum_{i \in \mathbf{N}''} n^{\phi r} X_h^{\phi r} w^{\phi r} \delta_{h,i} dt_i \right] \end{split}$		
補助金の変化	$\oint_{\alpha \to \beta} \sum_{\varpi \in \mathbb{N}^{\sigma}} dT^{\varpi}$	$\oint\limits_{\alpha\to\beta} \sum_{\nu\in\mathbf{N}^\nu} dT^\nu$			$ \oint_{\alpha \to \beta} \left[-\sum_{\vec{\omega} \in \mathbf{N}^{\vec{\omega}}} dT^{\vec{\omega}} - \sum_{\nu \in \mathbf{N}^{\nu}} dT^{\nu} \right] $	0
税金の変化			$-\oint_{\alpha\to\beta}\sum_{r\in\mathbf{N}'}\sum_{\kappa\in\mathbf{A}^\kappa}n^{\kappa r}d\tau^{\kappa r}$	$-\oint\limits_{\alpha\to\beta}\sum_{r\in\mathbf{N}'}\sum_{\vartheta\in\mathbf{A}^\vartheta}n^{\vartheta r}d\tau^{\vartheta r}$	$ \oint_{\alpha \to \beta} \left[\sum_{r \in \mathbf{N}'} \sum_{\kappa \in \mathbf{A}^{\kappa}} n^{\kappa r} d\tau^{\kappa r} + \sum_{r \in \mathbf{N}'} \sum_{\vartheta \in \mathbf{A}^{\vartheta}} n^{\vartheta r} d\tau^{\vartheta r} \right] $	0
合計	$\sum_{\varpi\in\mathbf{N}^\varpi}\!$	0	$\sum_{r \in \mathbf{N}^r} \sum_{\kappa \in \mathbf{A}^\kappa} n^{\kappa r} EV^{\kappa r}$	$\sum_{r \in \mathbf{N}^r} \sum_{\vartheta \in \mathbf{A}^\vartheta} n^{\vartheta r} \Delta \pi^{\vartheta r}$	0	SNB

表 2 政府 = インフラ所有者である場合の便益帰着構成表

		12 LX LX LX LY - 1 2 3	ノノ川月日にのも物口の反血		
主体 項目	政府=インフラ所有者	交通サービス生産者	個人(代表的交通利用者)	一般企業	合計
リンク , ノードの投 資額の変化	$\int\limits_{\alpha \to \beta} [-\sum_{\varpi \in \mathbf{N}^{\varpi}} \sum_{(i,j) \in \mathbf{L}^{\varpi}} dI_{ij}^{\varpi} \\ -\sum_{\varpi \in \mathbf{N}^{\varpi}} \sum_{i \in \mathbf{L}^{\varpi}} dI_{i}^{\varpi}]$				
リンク , ノードの維 持費の変化	$\begin{split} &\oint\limits_{\alpha \to \beta} [-\sum_{\varpi \in \mathbf{N}^{\varpi}} \sum_{(i,j) \in \mathbf{L}^{\varpi}} dM_{ij}^{\varpi} \\ &-\sum_{\varpi \in \mathbf{N}^{\varpi}} \sum_{i \in \mathbf{L}^{\varpi}} dM_{i}^{\varpi}] \end{split}$				
リンク , ノードの賃 貸料の変化	$\begin{split} &\oint\limits_{\alpha \to \beta} \sum_{\boldsymbol{\omega} \in \mathbf{N}^{\alpha}} \sum_{\boldsymbol{\omega} \in \mathbf{A}^{\nu}} \sum_{k \in \mathbf{F}^{\nu}} \sum_{(i,j) \in \mathbf{I}^{\alpha}} \delta_{k,ij} d\rho_{ij}^{\nu} \\ &+ \sum_{\boldsymbol{\omega} \in \mathbf{N}^{\alpha}} \sum_{\boldsymbol{\omega} \in \mathbf{A}^{\nu}} \sum_{k \in \mathbf{P}^{\nu}} \sum_{i \in \mathbf{N}^{\alpha}} \mathcal{E}_{k,i} d\rho_{i}^{\nu}] \end{split}$	$ \oint\limits_{\alpha \to \beta} [-\sum_{\sigma \in \mathbb{N}^{\sigma}} \sum_{v \in \mathbb{A}^{V}} \sum_{k \in \mathbb{P}^{V}} \sum_{(i,j) \in \mathbb{L}^{\sigma}} \delta_{k,ij} d\rho_{ij}^{v} \\ -\sum_{\sigma \in \mathbb{N}^{\sigma}} \sum_{v \in \mathbb{A}^{V}} \sum_{k \in \mathbb{P}^{V}} \sum_{i \in \mathbb{N}^{\sigma}} \varepsilon_{k,i} d\rho_{i}^{v}] $			0
交通サービスの生 産費用の変化		$\oint_{\alpha \to \beta} [-\sum_{v \in \mathbf{N}^{v}} \sum_{k \in \mathbf{P}^{v}} dc_{k}^{v} \\ -\sum_{v \in \mathbf{N}^{v}} dK^{v}]$			$\oint_{\alpha \to \beta} \left[-\sum_{v \in \mathbf{N}^v} \sum_{k \in \mathbf{P}^v} dc_k^v - \sum_{v \in \mathbf{N}^v} dK^v \right]$
交通価格の変化		$ \oint_{\alpha \to \beta} \left[\sum_{v \in \mathbf{A}^{V}} \sum_{k \in \mathbf{P}^{V}} \phi_{k}^{v} dy_{k}^{v} + \sum_{v \in \mathbf{A}^{V}} \sum_{k \in \mathbf{P}^{V}} y_{k}^{v} d\phi_{k}^{v} \right] $	$ \oint_{\alpha \to \beta} \left[-\sum_{r \in \mathbf{N}'} \sum_{\kappa \in \mathbf{A}^{\kappa}} \sum_{h \in \mathbf{P}''} \sum_{k \in \mathbf{P}^{k}} n^{\kappa r} X_{h}^{\kappa r} \sigma_{h,k} d\phi_{k} \right. $ $ -\sum_{r \in \mathbf{N}'} \sum_{\kappa \in \mathbf{A}^{\kappa}} \sum_{h \in \mathbf{P}''} \sum_{l \in \mathbf{P}^{l}} n^{\kappa r} X_{h}^{\kappa r} \sigma_{h,l} d\xi_{l} \right] $	$\begin{split} &\oint\limits_{\alpha\to\beta} [-\sum_{r\in\mathbf{N}'}\sum_{\vartheta\in\mathbf{A}^\vartheta}\sum_{h\in\mathbf{P}^n}\sum_{k\in\mathbf{P}^1}n^{\vartheta r}X_h^{\vartheta r}\sigma_{h,k}d\phi_k \\ &-\sum_{r\in\mathbf{N}'}\sum_{\vartheta\in\mathbf{A}^\vartheta}\sum_{h\in\mathbf{P}^n}\sum_{l\in\mathbf{P}^l}n^{\vartheta r}X_h^{\vartheta r}\sigma_{h,l}d\xi_l] \end{split}$	
交通所要時間の変 化			$ \oint\limits_{\alpha \to \beta} [-\sum_{r \in \mathbf{N}^{'}} \sum_{\kappa \in \mathbf{A}^{\kappa}} \sum_{h \in \mathbf{P}^{n}} \sum_{(i,j) \in \mathbf{L}} n^{\kappa} X_{h}^{\kappa r} w^{\kappa r} \delta_{h,ij} dt_{ij} \\ - \sum_{r \in \mathbf{N}^{'}} \sum_{\kappa \in \mathbf{A}^{\kappa}} \sum_{h \in \mathbf{P}^{n}} \sum_{i \in \mathbf{N}^{\mathbf{p}}} n^{\kappa r} X_{h}^{\kappa r} w^{\kappa r} \delta_{h,i} dt_{i}] $	$ \oint\limits_{\alpha \to \beta} [-\sum_{r \in \mathbf{N}'} \sum_{\vartheta \in \mathbf{A}^{\vartheta}} \sum_{h \in \mathbf{P}^{n}} \sum_{(i,j) \in \mathbf{L}} n^{\vartheta r} X_{h}^{\vartheta r} w^{\vartheta r} \delta_{h,ij} dt_{ij} \\ -\sum_{r \in \mathbf{N}'} \sum_{\vartheta \in \mathbf{A}^{\vartheta}} \sum_{h \in \mathbf{P}^{n}} \sum_{i \in \mathbf{N}^{\mathfrak{p}}} n^{\vartheta r} X_{h}^{\vartheta r} w^{\vartheta r} \delta_{h,i} dt_{i}] $	
補助金の変化	$-\oint_{\alpha\to\beta}\sum_{\nu\in\mathbf{N}^{\nu}}dT^{\nu}$	$\oint\limits_{\alpha\to\beta} \sum_{\nu\in {\rm N}^{\rm v}} \!\!\! dT^{\nu}$			0
税金の変化	$ \oint_{\alpha \to \beta} \left[\sum_{r \in \mathbf{N}'} \sum_{\kappa \in \mathbf{A}^{\kappa}} n^{\kappa r} d\tau^{\kappa r} + \sum_{r \in \mathbf{N}'} \sum_{\vartheta \in \mathbf{A}^{\vartheta}} n^{\vartheta r} d\tau^{\vartheta r} \right] $		$-\oint\limits_{\alpha\to\beta}\sum_{r\in\mathbf{N}'}\sum_{\kappa\in\mathbf{A}^\kappa}n^{\kappa r}d\tau^{\kappa r}$	$-\oint\limits_{\alpha\to\beta}\sum_{r\in\mathbf{N}^r}\sum_{\vartheta\in\mathbf{A}^\vartheta}n^{\vartheta r}d\tau^{\vartheta r}$	0
合計	$\Delta\pi^{G}$	$\sum_{v \in \mathbf{N}^{v}} \Delta \pi^{v}$	$\sum_{r \in \mathbf{N}'} \sum_{\kappa \in \mathbf{A}^{\kappa}} n^{\kappa r} E V^{\kappa r}$	$\sum_{r \in \mathbf{N}^r} \sum_{\vartheta \in \mathbf{A}^\vartheta} n^{\vartheta r} \Delta \pi^{\vartheta r}$	SNB