Analysis of NORX

Investigating Differential and Rotational Properties

```
Jean-Philippe Aumasson<sup>1</sup> (@veorq)

Philipp Jovanovic<sup>2</sup> (@daeinar)

Samuel Neves<sup>3</sup> (@sevenps)
```

¹Kudelski Security, Switzerland ²University of Passau, Germany ³University of Coimbra, Portugal

Latincrypt 2014 Florianópolis, September 17, 2014

Outline

- 1. Introduction: NORX
- 2. Differential Cryptanalysis
- 3. Rotational Cryptanalysis
- 4. Conclusion

NORX

Overview of NORX

Parameters

▶ Word size: $W \in \{32, 64\}$ bits

▶ Number of rounds: $1 \le R \le 63$

▶ Parallelism degree: $0 \le D \le 255$

► Tag size: $|A| \le 10W$

Instances

Configurations submitted to CAESAR:

NORXW-R-D	Nonce size (2W)	Key size (4W)	Tag size $(4W)$	
NORX64-4-1				
NORX32-4-1	64			
NORX64-6-1				High security
NORX32-6-1	64			High security
NORX64-4-4				High throughput

Analysis of NORX Philipp Jovanovic 3 / 27

Overview of NORX

Parameters

▶ Word size: $W \in \{32, 64\}$ bits

▶ Number of rounds: $1 \le R \le 63$

▶ Parallelism degree: $0 \le D \le 255$

► Tag size: $|A| \le 10W$

Instances

Configurations submitted to CAESAR:

NORXW-R-D	Nonce size (2W)	Key size (4W)	Tag size (4W)	Classification
NORX64-4-1	128	256	256	Standard
NORX32-4-1	64	128	128	Standard
NORX64-6-1	128	256	256	High security
NORX32-6-1	64	128	128	High security
NORX64-4-4	128	256	256	High throughput

Analysis of NORX Philipp Jovanovic 3 / 27

NORX Mode

NORX in Sequential Mode (D=1)

Features

- (Parallel) monkeyDuplex construction (derived from Keccak/SHA-3)
- Processes header, payload and trailer data in one-pass
- ► Data expansion via multi-rate padding: 10*1
- Extensible (e.g. sessions, secret message numbers)
- Parallel modes (not shown here)

The State

▶ NORX operates on a state of 16 W-bit sized words

W	Size	Rate	Capacity
32	512	320	192
64	1024	640	384

► Arrangement of rate (data processing) and capacity (security) words:

s_0	s_1	s_2	s_3
s_4	s_5	s_6	s_7
s_8	s_9	s_{10}	s_{11}
s_{12}	s_{13}	s_{14}	s_{15}

Initialisation

▶ Load nonce, key and constants into state *S*:

u_0	n_0	n_1	u_1
k_0	k_1	k_2	k_3
u_2	u_3	u_4	u_5
u_6	u_7	u_8	u_9

► Parameter integration:

$$s_{14} \leftarrow s_{14} \oplus (R \ll 26) \oplus (D \ll 18) \oplus (W \ll 10) \oplus |A|$$

ightharpoonup Apply round permutation F^R to S

The Permutation F^R

The Permutation F

The Permutation G

1:
$$a \leftarrow H(a, b)$$

2:
$$d \leftarrow (a \oplus d) \gg r_0$$

$$3: c \leftarrow H(c,d)$$

4:
$$b \leftarrow (b \oplus c) \gg r_1$$

5:
$$a \leftarrow H(a, b)$$

6:
$$d \leftarrow (a \oplus d) \gg r_2$$

8:
$$b \leftarrow (b \oplus c) \gg r_3$$

The Non-linear Operation H

$$\mathsf{H}: \mathbb{F}_2^{2n} \to \mathbb{F}_2^n, (x,y) \mapsto (x \oplus y) \oplus ((x \wedge y) \ll 1)$$

Rotation Offsets (r_0, r_1, r_2, r_3)

The Permutation F^R

Features

- ► F and G derived from ARX-primitives ChaCha/BLAKE2
- ▶ H is an "approximation" of integer addition

$$x + y = (x \oplus y) + ((x \land y) \ll 1)$$

where + is replaced by \oplus

- ► LRX permutation
- No SBoxes or integer additions
- SIMD-friendly
- Hardware-friendly
- High diffusion
- ► Constant-time

Trails

$$\delta := \delta_0 \xrightarrow[\rho_0]{\mathsf{F}} \delta_1 \xrightarrow[\rho_1]{\mathsf{F}} \dots \xrightarrow[\rho_{n-2}]{\mathsf{F}} \delta_{n-1} \xrightarrow[\rho_{n-1}]{\mathsf{F}} \delta_n$$

- ▶ Input difference: δ_0
- Output difference: δ_n
- ▶ Internal differences: δ_i (0 < j < n)
- ▶ Differential probability: $dp(\delta) \approx \prod_{i=0}^{n-1} p_i$
- ightharpoonup dp(δ): fraction of state-pairs following the trail
- ▶ Weights: $w_i = -\log_2(p_i)$ and $w(\delta) \approx \sum_{i=0}^{n-1} w_i$

How do differences propagate through H, G and F?

Trails

$$\delta := \delta_0 \xrightarrow[\rho_0]{\mathsf{F}} \delta_1 \xrightarrow[\rho_1]{\mathsf{F}} \dots \xrightarrow[\rho_{n-2}]{\mathsf{F}} \delta_{n-1} \xrightarrow[\rho_{n-1}]{\mathsf{F}} \delta_n$$

- ▶ Input difference: δ_0
- ▶ Output difference: δ_n
- ▶ Internal differences: δ_i (0 < j < n)
- ▶ Differential probability: $dp(\delta) \approx \prod_{i=0}^{n-1} p_i$
- $ightharpoonup dp(\delta)$: fraction of state-pairs following the trail
- Weights: $w_i = -\log_2(p_i)$ and $w(\delta) \approx \sum_{i=0}^{n-1} w_i$

How do differences propagate through H, G and F?

Let α , β and $\gamma \in \mathbb{F}_2^n$.

Lemma

▶ A XOR-differential $\delta := (\alpha, \beta) \longrightarrow \gamma$ with respect to H is satisfying:

$$(\alpha \oplus \beta \oplus \gamma) \wedge (\neg((\alpha \vee \beta) \ll 1)) = 0$$

▶ The XOR-differential probability is given by

$$xdp^{H}(\delta) = 2^{-w}$$

with

$$w = hw((\alpha \vee \beta) \ll 1)$$

The value w is also called the (XOR-differential) weight of δ .

H-Differentials

Let α , β and $\gamma \in \mathbb{F}_2^n$.

Lemma

▶ A H-differential $\delta := (\alpha, \beta) \longrightarrow \gamma$ with respect to XOR, is satisfying:

$$(\alpha \oplus \beta \oplus \gamma) \land (\neg(\gamma \ll 1) \oplus (\alpha \ll 1)) \land (\neg(\beta \ll 1) \oplus (\gamma \ll 1)) = 0$$

▶ The H-differential probability is given by

$$\mathsf{Hdp}^{\oplus}(\delta) = 2^{-w}$$

with

$$w = hw(((\alpha \oplus \gamma) \vee (\beta \oplus \gamma)) \ll 1)$$

The value w is also called the H-differential weight of δ .

Settings

\mathbf{s}_0	$\mathbf{s_1}$	$\mathbf{s_2}$	s_3	s_0	s_1	s_2	s_3	s_0	s_1	s_2	s_3	s_0	$\mathbf{s_1}$	s_2	s_3
s_4	s_5	s_6	s ₇	s_4	s_5	s_6	s ₇	s_4	s_5	s_6	s ₇	s_4	s_5	s_6	s ₇
s_8	S9	s_{10}	s_{11}	S ₈	S9	s_{10}	s_{11}	S8	S9	s_{10}	s_{11}	S8	S9	s ₁₀	s_{11}
s_{12}	s_{13}	s_{14}	s_{15}	s_{12}	s_{13}	s_{14}	s_{15}	s_{12}	s_{13}	s_{14}	s_{15}	s_{12}	s_{13}	s_{14}	s_{15}
	ini	tω			init	N.K			ra	te			fı	ıll	

- ► Four scenarios how an attacker can inject differences
- ▶ init_N and init_{N,K}: initialisation
- ▶ rate: data processing
- ▶ full: trail construction & estimation of F^R's general strength

The (NO)RX (D)ifferential Search (E)ngine

- ▶ Automatic search for XOR-differentials/differential trails in F^R.
- ▶ Based on differential propagation results of H.
- Description of the problem in CVC language.
- Uses constraint- / SAT-solvers (STP, Boolector, CryptoMiniSat).
- ► Available on GitHub: https://github.com/norx/NODE.

Bonus: Variant of NODE helped to find differentials for *practical forgery* attacks on *Wheesht* and *McMambo*, two other CAESAR candidates.

The (NO)RX (D)ifferential Search (E)ngine

- ▶ Automatic search for XOR-differentials/differential trails in F^R.
- Based on differential propagation results of H.
- Description of the problem in CVC language.
- ▶ Uses constraint- / SAT-solvers (STP, Boolector, CryptoMiniSat).
- ► Available on GitHub: https://github.com/norx/NODE.

Bonus: Variant of NODE helped to find differentials for *practical forgery* attacks on *Wheesht* and *McMambo*, two other CAESAR candidates.

NODE - Experimental Verification (full)

	Settings					NORX64		
We	# <i>S</i>	Ve	Vm	$v_m - v_e$	Wm	Vm	$v_m - v_e$	Wm
12	2 ²⁸	65536	65652	+116	11.997	65627	+91	11.997
13	2^{29}	65536	65788	+252	12.994	65584	+48	12.998
14	2^{30}	65536	65170	-366	14.008	65476	-60	14.001
15	2^{31}	65536	65441	-95	15.002	65515	-21	15.000
16	2^{32}	65536	65683	+147	15.996	65563	+27	15.999
17	2^{33}	65536	65296	-240	17.005	65608	+72	16.998
18	2^{34}	65536	65389	-147	18.003	65565	+29	17.999

▶ w_e: expected weight

▶ #*S*: number of samples

 $v_e = log_2(\#S) - w_e$: expected number of state-pairs adhering trail

 \triangleright v_m : measured number of state-pairs adhering trail

▶ w_m: measured weight

Analysis of NORX Philipp Jovanovic 15 / 27

Differentials of Weight 0 in G

Differences							
$\delta_0 \\ \delta_1$	80000000	80000000 00000001	80000000 80000000	00000000			
$\delta_0 \\ \delta_1$	80000000 80000000	00000000	80000000	80000080			
$\delta_0 \\ \delta_1$	00000000	80000000 00000001	00000000	80000080			

	Differences							
δ_0	8000000000000000	8000000000000000	8000000000000000	0000000000000000				
δ_1	0000000000000000	00000000000000001	8000000000000000	00000000000000000				
δ_0	80000000000000000	0000000000000000	8000000000000000	8000000000000080				
δ_1	8000000000000000	0000000000000000	0000000000000000	00000000000000000				
δ_0	0000000000000000	8000000000000000	0000000000000000	8000000000000080				
δ_1	8000000000000000	00000000000000001	8000000000000000	00000000000000000				

- ▶ "Exhaustive search" for weight-0 (i.e. probability-1) trails in G.
- Exactly 3 such trails exist in 32- and 64-bit G.
- ▶ Re-used later for differential trail search in F⁴.

Lower Bounds for Differential Trails

		NOR	< 32			NORX64				
	$init_{\mathcal{N}}$	$init_{N,K}$	rate	full	init _N	$init_{N,K}$	rate	full		
F ^{0.5}	6	2	2	0	6	2	2	0		
F ^{1.0}	(60)	22	10	2	(53)	22	12	2		
F ^{1.5}	(60)	(40)	(31)	12	(53)	(35)	(27)	12		
F ^{2.0}	(61)	(45)	(34)	(27)	(51)	(37)	(30)	(23)		

Notation:

w = first trails for weight w(w) = no trails for weights $\leq w$

▶ Checked all trails in F under init_N with 1- and 2-bit input differences:

NORX32 NORX64 67 76

Analysis of NORX Philipp Jovanovic 17 / 27

Lower Bounds for Differential Trails

		NOR	〈 32			NORX64				
	$init_{\mathcal{N}}$	$init_{N,K}$	rate	full	$init_{N}$	$init_{N,K}$	rate	full		
F ^{0.5}	6	2	2	0	6	2	2	0		
F ^{1.0}	(60)	22	10	2	(53)	22	12	2		
F ^{1.5}	(60)	(40)	(31)	12	(53)	(35)	(27)	12		
F ^{2.0}	(61)	(45)	(34)	(27)	(51)	(37)	(30)	(23)		

Notation:

 $w = \hat{}$ first trails for weight w $(w) = \hat{}$ no trails for weights < w

► Checked all trails in F under init_N with 1- and 2-bit input differences:

NORX32	NORX64
67	76

Analysis of NORX Philipp Jovanovic 17 / 27

Best Trail in F⁴ (full, 32-bit), Weight 584

<i>w</i> ₁		1	δ		w_0	δ_0			
	00000400	80000000	00000400	40100000		92800154	84246020	90024294	80140100
11	00000000	80000000	80000400	00100200	172	d0004054	e0202424	52240214	e4548300
11	00000400	80008000	80000000	00000000	1/2	90d43134	c1008108	00a08480	c4464046
	00040400	00800000	80000000	40000200		06915342	a4848881	e2eac480	e200c684
<i>w</i> ₃		3	δ		w ₂		2	δ	
	02100000	00020000	00100002	04042425		00000000	00000000	00000000	00000000
357	20042004	20042024	42024200	04200401	44	00000000	00000000	00000000	00000000
357	10021010	25250504	80000200	10001002	44	00000000	00000000	80000000	00000000
	04252504	00000210	00001002	10020010		00000000	00000000	00000000	00000000
							1	δ	
						12220503	0c05b60e	804da817	c4001963
		ab+: 594	total wei			7e0ac646	cc0d56cd	185b792a	9072ъ909
		giii. 304	total wei			3ъ270222	8f003320	100c2800	80116300
						04210001	92002824	88000041	01056104

▶ Based on a low-weight, high-probability differential in G (32-bit).

Analysis of NORX Philipp Jovanovic 18 / 27

Best Trail in F⁴ (full, 64-bit), Weight 836

	δ_0			w_0		å	1		w_1
00900824010288c5 4080882001010885 81600850830b0484 6191548c08000581	4000443880011086 4600841880821086 840080c080868000 0200004006038044	224012044220ac43 a3c0721444632c43 8004449040c14400 8104f01c8702c0e0	e00404448049520 c224440007849504 8102101840908a80 60605084938886e3	349	800000800050000 800000800040000 0000000000	8000000000000000 8000000000000000 800008000000	40000000000000000000000000000000000000	00000100020080 800001000020080 4000808000020080 80808000020000c0	27
	δ	2		W2		δ	3		W3
8000000000000000 8000000000000000 000000	000000000000000 0000000000000000 000000	0000000000000000 00000000000000000 00000	000000000000000 0000000000000000 000000	12	00000000000000000000000000000000000000	00000000000000000000000000000000000000	000010000000000 00000000000000000 000000	0000202000000001 00002000000000021 00000000	448
	δ	4							
321a4500060e4e2e 71540fb858cb9902 786680d0e46406cb 4000404a22120005	27404405026e500e ee018cc282747980 14440844013274e6 07220c4202016240	3806422387200a08 c714164174ce3eb9 03a843203f071b7c 2aa4200a0a041a62	8c40f4a0884c0820 1a49a091101191e1 09a840c00c0ccc78 84a468682000601c			total wei	ght: 836		

▶ Based on a weight-0 differential in G (64-bit).

Iterative Differentials in F^R

▶ Definition:

$$\delta \xrightarrow{\mathsf{F}} \delta$$

Results:

	R	NORX32	NORX64	
_	• •			
	1	(29)	(27)	verified
	1	512	843	best
	8	232 ≤	$216 \le$	estimated
	12	348 ≤	324 ≤	estimated

Equal-Column Differentials in F^R

▶ Based on NORX weak states:

$$\begin{pmatrix}
w & w & w & w \\
x & x & x & x \\
y & y & y & y \\
z & z & z & z
\end{pmatrix}$$

Results:

R	NORX32	NORX64	
1	44	44	best
8	352 ≤	352 ≤	estimated
12	528 ≤	528 ≤	estimated

Rotational Cryptanalysis

Rotational Cryptanalysis

Lemma

Let $x, y \in \mathbb{F}_2^n$. The probability that (x, y) is a rotational pair with respect to H for an offset r is

$$Pr(H(x, y) \gg r = H(x \gg r, y \gg r)) = \frac{9}{16} (\approx 2^{-0.83})$$

 \triangleright Let S be a 16W-bit NORX state, then we get

$$\Pr(\mathsf{F}^R(S) \ggg r = \mathsf{F}^R(S \ggg r)) = \left(\frac{9}{16}\right)^{4\cdot 4\cdot 2\cdot R}$$

re-using the above result and a Theorem* for ARX-primitives.

Analysis of NORX Philipp Jovanovic 23 / 2

^{*} Khovratovich, D., Nikolic, I.: Rotational Cryptanalysis of ARX. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 333–346. Springer, Heidelberg (2010)

Rotational Cryptanalysis

Consequences

 \triangleright Bounds for rotational distinguishers on F^R :

R	4	6	8	12
W	106	159	212	318

ightharpoonup FR on a 16W-bit state is indistinguishable from random for

$$20 \le R$$
 (32-bit) and $39 \le R$ (64-bit)

with weights 531 and 1035, respectively.

► However, not directly applicable to NORX due to asymmetric initialisation constants and the monkeyDuplex construction.

Paper presents more on rotational properties of NORX . . .

Conclusion

Results

Differential cryptanalysis:

R	type	NORX32	NORX64	
1 4	init _N full	$60 < w \le 67$ 584	53 < <i>w</i> ≤ 76 836	bound best

NORX initialisation with $8 \le R$ seems to have a *high security margin* against differential attacks.

Rotational cryptanalysis

Derived bounds for rot. distinguishers on $F^{\mathcal{H}}$. Not directly transferable to NORX: Protection through asymmetric init. constants and the monkeyDuplex construction.

Results

► Differential cryptanalysis:

R	type	NORX32	NORX64	
1 4	init _N full	$60 < w \le 67$ 584	53 < <i>w</i> ≤ 76 836	bound best

NORX initialisation with $8 \le R$ seems to have a *high security* margin against differential attacks.

- ► Rotational cryptanalysis:
 - Derived bounds for rot. distinguishers on F^R
 - Not directly transferable to NORX: Protection through asymmetric init. constants and the monkeyDuplex construction.

Results

► Differential cryptanalysis:

R	type	NORX32	NORX64	
1 4	init _N full	$60 < w \le 67$ 584	53 < <i>w</i> ≤ 76 836	bound best

NORX initialisation with $8 \le R$ seems to have a *high security margin* against differential attacks.

- ► Rotational cryptanalysis:
 - Derived bounds for rot. distinguishers on F^R .
 - Not directly transferable to NORX: Protection through asymmetric init. constants and the monkeyDuplex construction.

Results

► Differential cryptanalysis:

R	type	NORX32	NORX64	
1 4	init _N full	$60 < w \le 67$ 584	53 < <i>w</i> ≤ 76 836	bound best

NORX initialisation with $8 \le R$ seems to have a *high security* margin against differential attacks.

- ► Rotational cryptanalysis:
 - Derived bounds for rot. distinguishers on F^R .
 - Not directly transferable to NORX: Protection through asymmetric init. constants and the monkeyDuplex construction.

Work In Progress

- ▶ Trail clustering and alignment analysis
- ▶ Differential cryptanalysis of F^R for $W \in \{8, 16\}$

Open Problems

- Linear, algebraic, (adv.) differential, (adv.) rotational cryptanalysis
- Side-channel attacks

Further Information

https://norx.io

Contact: jovanovic@fim.uni-passau.de

Analysis of NORX Philipp Jovanovic 27 / 27

Work In Progress

- ▶ Trail clustering and alignment analysis
- ▶ Differential cryptanalysis of F^R for $W \in \{8, 16\}$

Open Problems

- Linear, algebraic, (adv.) differential, (adv.) rotational cryptanalysis
- Side-channel attacks

Further Information

https://norx.io

Contact: jovanovic@fim.uni-passau.de

Analysis of NORX Philipp Jovanovic 27 / 27

Work In Progress

- ▶ Trail clustering and alignment analysis
- ▶ Differential cryptanalysis of F^R for $W \in \{8, 16\}$

Open Problems

- Linear, algebraic, (adv.) differential, (adv.) rotational cryptanalysis
- Side-channel attacks

Further Information

https://norx.io

Contact: jovanovic@fim.uni-passau.de @Daeinar

Analysis of NORX Philipp Jovanovic 27 / 27