Homework 3

龙肖灵

Xiaoling Long
Student ID.:81943968
email:longxl@shanghaitech.edu.cn

October 8, 2017

Problem 1 (3/10, Every subspace has a complement):

Let \mathcal{V} be a vector space and \mathcal{S} a subspace of \mathcal{V} . Show that \mathcal{S} has a complement in \mathcal{V} , i.e.,that there exists a subspace \mathcal{T} of \mathcal{V} , such that $\mathcal{V} = \mathcal{S} \oplus \mathcal{T}$

Proof. S is a subspace of V, Let T be a subspace of V and

$$\mathcal{S} \cap \mathcal{T} = \{0\}$$

Let $s \in \mathcal{S}$ and $t \in \mathcal{T}$. Consider the set,

$$\mathcal{A} = \{as + bt | a, B \in \mathcal{F}\}$$

There are two case.

1. $\exists v \in \mathcal{V}$ and $v \in \mathcal{S}$. Now let B = 0, we get

$$\mathcal{A} = \{as | a \in \mathcal{F}\}$$

In this case, we can know that A = S

2. $\exists v_1, v_2 \in \mathcal{V} \text{ and } v_1, v_2 \notin \mathcal{S}.$ Let $v_1 = a_1 s + b_1 t$ and $v_2 = a_2 s + b_2 t$ and $b_i \neq 0, i = 1, 2$

$$m_1v_1 + m_2v_2 = m_1(a_1s + b_1t) + m_2(a_2s + b_2t)$$

= $(m_1a_1 + m_2a_2)s + (m_1b_1 + m_2b_2)t$
= $ms + nt$

Where is $m, n, m_i \in \mathcal{F}$, (i = 1, 2) so $m_1v_1 + m_2v_2 \in \mathcal{A}$

Let subspace $\mathcal{T} = \{v \in \mathcal{V} | v \notin \mathcal{S}, v \neq 0\}$. We can say that set \mathcal{A} can cover whole space of \mathcal{V} . We have

$$\mathcal{V} = \mathcal{S} + \mathcal{T}$$

And so anything subspace S has a complement in V which called T and $T = \{ \forall v \in V | v \notin S, v \neq 0 \}$. Done.

Problem 2 (4/10, Behavior of basis over direct sums):

Let \mathcal{V} be a vector space.

- 1. Let \mathfrak{B} be a basis for \mathcal{V} . Suppose that there exist subsets $\mathfrak{B}_1, \mathfrak{B}_2$ of \mathfrak{B} , such that $\mathfrak{B} = (\mathfrak{B}_1 \cup \mathfrak{B}_2)$ and $\mathfrak{B}_1 \cap \mathfrak{B}_2 = \emptyset$. Then show that $\mathcal{V} = span(\mathfrak{B}_1) \oplus span(\mathfrak{B}_2)$.
- 2. Let $\mathcal{V} = \mathcal{S} \oplus \mathcal{T}$, and let \mathfrak{B}_1 be a basis for \mathcal{S} and \mathfrak{B}_2 be a basis for \mathcal{T} . Show that $\mathfrak{B}_1 \cap \mathfrak{B}_2 = \emptyset$ and that $\mathfrak{B}_1 \cup \mathfrak{B}_2$ is a basis for \mathcal{V} .

1

Proof. There are 2 questions.

1. Let $\mathfrak{B} = \{b_i | i = 1, 2, ..., n\}$, and $\mathfrak{B}_1 = \{b_i | i = 1, 2, ..., k \ k < n\}, \mathfrak{B}_2 = \{b_i | i = k + 1, k + 2, ..., n\}$ which satisfies $\mathfrak{B} = (\mathfrak{B}_1 \cup \mathfrak{B}_2)$ and $\mathfrak{B}_1 \cap \mathfrak{B}_2 = \emptyset$.

$$\forall v \in \mathcal{V}$$

We have that,

$$v = a_1b_1 + a_2b_2 + \dots + a_nb_n$$

and

$$v_1 = a_1b_1 + a_2b_2 + \dots + a_kb_k \in \text{span}(\mathfrak{B}_1)$$
$$v_2 = a_{k+1}b_{k+1} + a_{k+2}b_{K+2} + \dots + a_nb_n \in \text{span}(\mathfrak{B}_2)$$

We get that $v = v_1 + v_2$. So,

$$\mathcal{V} = \operatorname{span}(\mathfrak{B}_1) + \operatorname{span}(\mathfrak{B}_2)$$

To prove independence of \mathfrak{B}_1 and \mathfrak{B}_2 , by contrary, suppose there exists $u_1 \in \text{span}(\mathfrak{B}_1)$ and $u_2 \in \text{span}(\mathfrak{B}_2)$, satisfying that

$$r_1u_1 + r_2u_2 = 0$$
 $r_1, r_2 \in F$

And r_i aren't all 0 . Then we write as

$$\begin{aligned} u_1 &= a_1b_1 + a_2b_2 + \ldots + a_kb_k \\ u_2 &= a_{k+1}b_{k+1} + a_{k+2}b_{k+2} + \ldots + a_nb_n \\ r_1(a_1b_1 + a_2b_2 + \ldots + a_kb_k) + r_2(a_{k+1}b_{k+1} + \ldots + a_nb_n) &= 0 \\ \rightarrow & m_1b_1 + m_2b_2 + \ldots + m_kb_k + m_{k+1}b_{k+1} + \ldots + m_nb_n &= 0 \end{aligned}$$

This is contradicting the independence of basis. So

$$\operatorname{span}(\mathfrak{B}_1) \cap \operatorname{span}(\mathfrak{B}_2) = \{0\}$$

2. Let $\mathfrak{B}_1 = \{s_i | i \in I_1\}$ and $\mathfrak{B}_2 = \{t_j | j \in I_2\}$. We have that,

$$\forall v \in \mathcal{V} \ \exists s \in \mathcal{S} \ \exists t \in \mathcal{T} \ v = s + t$$

$$\forall s \in \mathcal{S} \rightarrow s = \sum_{i} a_i s_i \quad i \in I_1$$
 $\forall t \in \mathcal{T} \rightarrow t = \sum_{j} b_j t_j \quad j \in I_2$

So we can say that $\forall v \in \mathcal{V}$, $v = a_i s_i + b_j t_j$. So $\mathfrak{B}_1 \cup \mathfrak{B}_2$ is the spanning set for \mathcal{V} Supose that, there exists a set of nonzero coefficients a_i and b_j , let

$$\sum_{i} a_i s_i + \sum_{j} b_j t_j = 0$$

Let $s = \sum_i a_i s_i$ and $t = \sum_j b_j t_j$, then we get s = -t which is contradicting $\mathcal{S} \cap \mathcal{T} = \{0\}$. So \mathfrak{B}_1 and \mathfrak{B}_2 are linearly independent. So $\mathfrak{B}_1 \cap \mathfrak{B}_2 = \emptyset$ and that $\mathfrak{B}_1 \cup \mathfrak{B}_2$ is a basis for \mathcal{V} .

Done.
$$\Box$$

Problem 3 (3/10, Characterization of a basis):

Prove Theorem 1.7 in Roman by proving that $1 \Rightarrow 4 \Rightarrow 3 \Rightarrow 2 \Rightarrow 1$. (In class, I proved it by showing that $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 1$).

Proof. We do four steps to finish this problem.

 $1. 1) \Rightarrow 4)$

Suppose that 1) holds and \mathcal{S} isn't the maximal linearly independent set, let $\exists k \in \mathcal{V}$ is linearly independent to \mathcal{S} . So we cannot find k be a linear combination of \mathcal{S} which is constradicting the fact that \mathcal{S} is a spanning set of \mathcal{V} .

Hence 1) implies 4).

 $2. 4) \Rightarrow 3)$

Suppose that 4) holds and S isn't the minimal spanning set, and let S - S' be the minimal spanning set. But we know that S is the maximal linearly independent set. we cannot write as

$$\forall s' \in \mathcal{S}' \quad s' = \sum_{i} a_i s_i \quad s_i \in \mathcal{S}, a_i \in \mathcal{F}$$

Every element of S' cannot be a linear combination of the elements of S, contradicting the assume. Hence 4) implies 3).

 $3. 3) \Rightarrow 2)$

Suppose that 3) holds and

$$0 \neq v = a_1 s_1 + \dots + a_n s_n = b_1 s_1 + \dots + b_n s_n$$

Where the $a_i \neq b_i$. By subtracting, we can get that,

$$(a_1 - b_1)s_1 + \dots + (a_n - b_n)s_n = 0$$

So $\mathcal S$ isn't the linearly independent set. It means that

$$\exists s \in \mathcal{S} \quad s = \sum_{i \neq j} a_i s_i$$

It constradicts that S is the minimal spanning set. Hence 3) implies 2).

 $4. \ 2) \Rightarrow 1)$

Supposed that 2) hold and that S is not linearly independent or soans V. Not linearly independence means 0 is a linear combination of vectors in S. And not spans V totally contradicts that every nonzero vector $v \in V$ is a linear combination of vectors in S. Hence S is a linear combination of vectors in S.

Done.