statComp_hw3

凌浩东

10/21/2021

- 1. Exercises 5.12, and 5.14.
 - 5.12
 - o 5.14
- 2
- 3

1. Exercises 5.12, and 5.14.

5.12

Suppose $l \leq rac{g(x)}{f(x)} \leq u$, then

$$egin{align} Var(\hat{ heta}_{IS}) &= Var\left(rac{1}{m}\sum_{i=1}^{m}rac{g(x_i)}{f(x_i)}
ight) \ &= rac{1}{m^2}\sum_{i=1}^{m}Var\left(rac{g(x_i)}{f(x_i)}
ight) \ &= rac{1}{m^2}\sum_{i=1}^{m}\left(\intrac{g^2(x_i)}{f(x_i)}dx_i - heta^2
ight) \ \end{aligned}$$

where

$$d heta = l\int g(x_i) dx_i \leq \int rac{g^2(x_i)}{f(x_i)} dx_i \leq u\int g(x_i) dx_i = u heta$$

thus

$$rac{1}{m}(l heta- heta^2) \leq Var(\hat{ heta}_{IS}) \leq rac{1}{m}(u heta- heta^2)$$

i.e., $Var(\hat{ heta}_{IS})$ is bounded.

5.14

First, let's take a look at our target function

$$g(x)=rac{x^2}{\sqrt{2\pi}}e^{-rac{x^2}{2}} \qquad x>1$$

10/23/21, 2:23 AM statComp_hw3

```
g <- function(x) {
    x^2 * exp(-x^2 / 2) / sqrt(2*pi) * (x > 1)
}

x <- seq(1, 10, length = 10000)
y <- g(x)
df <- data.frame(x, y)
c(x[ggpmisc:::find_peaks(df$y)], y[ggpmisc:::find_peaks(df$y)])</pre>
```

```
## [1] 1.4140414 0.2935253
```

```
ggplot(df, aes(x = x, y = y)) + geom_line() + stat_peaks(col = 'red') +
    scale_x_continuous(breaks=seq(0, 10, 1))
```


We can see that after a sharp ascend until 1.4 and descend to nearly 0 at around 4. Hence we use two target function, one is a shifted norm density function, the other is a cauchy density function.

```
set.seed(42)
m <- 10000

theta.hat <- se <- numeric(2)

x <- rnorm(m, mean = 1.4)
fg <- g(x) / (dnorm(x, mean = 1.4))
theta.hat[1] <- mean(fg)
se[1] <- sd(fg)

x <- rcauchy(m, location = 1.4, scale = 1)
fg <- g(x) / dcauchy(x, location = 1.4, scale = 1)
theta.hat[2] <- mean(fg)
se[2] <- sd(fg)

theta.hat</pre>
```

[1] 0.4005384 0.3988719

se

[1] 0.3134021 0.4297568

2

Given two random variables X and Y, prove the law of total variance

$$var(Y) = E\{var(Y|X)\} + var\{E(Y|X)\}$$

Be explicit at every step of your proof.

$$E\{var(Y|X)\} = E\{E(Y^2|X) - [E(Y|X)]^2\} = E(Y^2) - E\{[E(Y|X)]^2\}$$

$$var\{E(Y|X)\} = E\{[E(Y|X)]^2\} - \{E[E(Y|X)]^2\} = E\{[E(Y|X)]^2\} - [E(Y)]^2$$

Hence,

$$E\{var(Y|X)\} + var\{E(Y|X)\} = E(Y^2) - [E(Y)]^2 = var(Y)$$

3

Define $heta=\int_A g(x)dx$, where A is a bounded set and $g\in\mathcal{L}_2(A)$. Let f be an importance function which is a density function supported on the set A.

10/23/21, 2:23 AM statComp_hw3

a. Describe the steps to obtain the importance sampling estimator $\hat{\theta}_n$, where n is the number of random samples generated during the process.

- generate n random variables from f.
- caculate the mean of $\frac{g(x)}{f(x)}$, assign it to $\hat{\theta}_n$.
 - b. Show that the Monte Carlo variance of $\hat{ heta}_n$ is $var(\hat{ heta}_n)=rac{1}{n}\Big\{\int_Arac{g^2(x)}{f(x)}dx- heta^2\Big\}.$

$$egin{aligned} var(\hat{ heta}_n) &= var\left(rac{1}{n}\sum_{i=1}^nrac{g(x_i)}{f(x_i)}
ight) \ &= rac{1}{n^2}\sum_{i=1}^n var\left(rac{g(x_i)}{f(x_i)}
ight) \ &= rac{1}{n^2}\sum_{i=1}^n \left(E\left[\left(rac{g(x_i)}{f(x_i)}
ight)^2
ight] - \left(E\left[rac{g(x_i)}{f(x_i)}
ight]
ight)^2
ight) \ &= rac{1}{n^2}\sum_{i=1}^n \left(\int_Arac{g^2(x_i)}{f^2(x_i)}f(x_i)dx_i - \int_Arac{g(x_i)}{f(x_i)}f(x_i)dx_i
ight) \ &= rac{1}{n}igg\{\int_Arac{g^2(x)}{f(x)}dx - heta^2igg\} \end{aligned}$$

c. Show that the optimal importance function f^* , i.e., the minimizer of $var(\hat{\theta}_n)$, is $f*(x)=rac{|g(x)|}{\int_A|g(x)|dx}$, and derive the theoretical lower bound of $var(\hat{\theta}_n)$.

From Cauchy-Schwartz inequality, we know that

$$\int_A rac{g^2(x)}{f(x)} dx = \int_A rac{g^2(x)}{f(x)} dx \cdot 1 = \int_A rac{g^2(x)}{f(x)} dx \int_A f(x) dx \geq \left(\int_A g(x) dx
ight)^2$$

where the equality holds when $f(x) \propto |g(x)|$.

Hence the minimizer is $f*(x)=rac{|g(x)|}{\int_A |g(x)|dx}.$

The theoretical lower bound is $rac{1}{n}\left\{\left(\int_A g(x)dx
ight)^2- heta^2
ight\}=0.$