_			_	
Ese	rciz	ZIO	5	.d

lunedì 24 maggio 2021

13:25

- **5.d)** Sia X una variabile aleatoria con distribuzione normale tale che E(X+2) = 1 e Var(2X+2) = 4.
- (i) Calcolare $P(X \ge 0)$ e $P(-1.55 \le X \le 1.55 \mid X \ge 0)$.
- (ii) Determinare il valore di c tale che P(X > c) = 0.30.

$$E(X+2)=1$$
 $Vor(2X+2)=4$ $Z=X-M$ $STANDARDIZZ.$ $E(X)+2=1$ $4\cdot Vor(X)=4$

$$\mu = \mathbb{E}(x) = -1$$
 $\sigma^2 = Var(x) = 1$

$$(i) \quad \underline{P}(X \geqslant 0) = \Lambda - \underline{P}(X < 0) = \Lambda - \underline{P}(X - (-\Lambda) < 0 - (-\Lambda))$$

$$= 1 - P(Z < 1) = 1 - \phi(1) = 1 - 0,8413 = 0,1587$$

Zi une normale

(ii) P(X>c) = 0.30	
P(X-(-1)>C-(-1))=O,30	
$P \left(Z > c + \Lambda \right) = 0,30$	
$1 - P(Z \leqslant C + 1) = 0,30$	
P(Z < C + 1) = 0, 70	
$\phi(c+n)=0,70$	
$C+A=0.52 \Rightarrow C=0.52-1=-0.48$	

Eserc	izio 2 -	prova	intercorso (e	mail)				
lunedi 24	maggio 2021	13:26						
		Sin X E(X)	izio 2 (10 punti) una variabile aleatori = 1 e Var(X) = 3. sterminare i valori di a					
		Sia X E(X) (i) De	una variabile aleatori	e b e scrivere l'e	spressione	della funzione	di distribuzi	

$$F(x) = \frac{\omega + b}{2} = 1$$

$$Vor(x) = (b - \omega)^{2} = 3$$

$$12$$

$$(b - \omega)^{2} = 3$$

$$12$$

Start conversation

 $\times \text{ N Umif}(a, b)$ $F(x) = \frac{x - a}{b - a}$

$$\begin{cases} a = 2 - lr \\ (lr - 2 + lr)^2 = 3 \end{cases} \begin{cases} (2lr - 2)^2 = 36 \implies 2lr - 2 = +6 \end{cases} \begin{cases} app. & 2lr - 2 = -6 \\ 2lr = 8 \end{cases} \begin{cases} app. & 2lr = -4 \end{cases} \begin{cases} app. & 2lr = -4 \end{cases}$$

$$\begin{cases} \alpha = -2 \\ b = 4 \end{cases} \begin{cases} \alpha = 4 \\ b = -2 \end{cases} \text{ mon accettable as } b$$

 $\frac{P(Y \le 2|Y > 0)}{P(Y > 0)} = \frac{P(Y \le 2 \cap Y > 0)}{P(Y > 0)} = \frac{P(0 < Y \le 2)}{P(Y > 0)} = \frac{F_{Y}(2) - F_{Y}(0)}{1 - F_{Y}(0)}$ $\frac{5}{12} - \frac{3}{12} = \frac{2}{12} = \frac{2}{9}$ $\frac{1}{12} = \frac{9}{42} = \frac{9}{9}$

Esercizio congiunte num1

lunedi 24 maggio 2021

13:27

Esercizio 1 Da uno studio sulle abitudini delle famiglie americane è stata ottenuta la seguente distribuzione congiunta per la variabile X=numero di bambini nella famiglia e la variabile Y=numero di televisioni in casa

$x \setminus y$	1	2	3
1	0.06	0.05	0.04
2	0.2	0.15	0.05
3	0.1	0.1	0.1
4 o più	0.07	0.05	0.03

(i) Qual è la probabilità che una famiglia con 2 bambini abbia 3 televisori?

(ii) Calcolare la probabilità che una famiglia abbia almeno tre bambini ed un solo televisore;

(iii) Determinare la distribuzione marginale di X e quella di Y.

(i)
$$P(X=2, Y=3) = h(2,3) = 0.05$$

(ii)
$$P(X \ge 3, Y = 1) = p(3, 1) + p(4, 1) = 0, 1 + 0, 07 = 0, 17$$

(ini)
$$h_{\chi}(x) = \sum_{y} h(x,y)$$
 $h_{\chi}(y) = \sum_{x} h(x,y)$

24	1	2	3	h _X (χ)
1	906	0,05	0,04	0,15
2	0,2	0,15	0,05	0,4
3		0,1	1.7	0,3
40 più		0.05		0,15
hy (y)	0,43	0,3	0,22	1

Esercizio cor		num2							
unedî 24 maggio 2021	13;28								
nel senso che conta a quello c	che ciascun il numero lel lancio pi	a moneta mos di ripetizioni (recedente) e si	stra testa con prol (si ha una ripetizi a	e nel lanciare a caso 4 mo babilità 1/4. Sia X la vari ione quando l'esito di un la	abile aleatoria ancio è uguale				
8	$Y = \begin{cases} 1, \\ 0, \end{cases}$	se il numero d altrimenti.	li teste è maggior	e o uguale al numero di cr	oci,				
(i) Deter marginali (ii) Calo	minare la d	lensità di prob Y).		p(x,y) = P(X = x, Y = y)					
		X	У			X	y		
17-	TT	3	1	(4)4	TTCC	2	1 .	$\left(\frac{4}{4}\right)^2 \left(\frac{3}{4}\right)^L$	
T T -	ТС	2	1 •	$\left(\frac{4}{4}\right)^3 \left(\frac{3}{4}\right)$	ТСТС	0	1		
TT	сТ	1	4	$(\frac{4}{4})^3 (\frac{3}{4})$	CTTC	1	1		
T C	TT	1	1	$\left(\frac{1}{4}\right)^3 \left(\frac{3}{4}\right)$	TCCT	1	1		
СТ	гт	2	1.	$\left(\frac{1}{4}\right)^3\left(\frac{3}{4}\right)$	СТСТ	0	1		
					CCTT	2	1.	V	

C	CCT	2		У	$(\frac{3}{4})^3 \frac{1}{4}$	x	ф	1	1/ _X (x)	
C	CTC	1		0		-6	6	9/128	9/128	
С	T C C			0		1	27	3/32	<u>39</u> 128	
Т	C C C	2	18	0	2.4	0	27	3/32	<u>39</u> 128	
C	CCC	3		0	$(\frac{3}{4})^4$	2	128	1/256	41	
						3	256		128	
						hy (y)	<u>189</u> 256	256	1 1	
(ii)	£(X.	y) = Z	7	x.y. h	(x,y) = 1	.1.3 +	2.1. <u>3</u> +	3, 1, 1	= <u></u> \$5 256	
(ini)	Cov (X	,Y) = F	(X.	y) - E(>	$(), E(\lambda) =$	75 256	15 67 8 256	- = _	405 2048	

(ii)
$$E(X,Y) = \sum_{x} \sum_{y} x_{x} y \cdot h(x,y) = 1 \cdot 1 \cdot \frac{3}{32} + 2 \cdot 1 \cdot \frac{3}{32} + 3 \cdot 1 \cdot \frac{1}{256} = \frac{75}{256}$$

(iii) $Cov(X,Y) = E(X,Y) - E(X) \cdot E(Y) = \frac{75}{256} - \frac{15}{8} \cdot \frac{67}{256} - \frac{405}{2048}$
 $E(X) = 1 \cdot \frac{39}{128} + 2 \cdot \frac{39}{128} + 3 \cdot \frac{41}{128} = \frac{15}{8}$
 $E(Y) = \frac{67}{256}$