

UFCSPA Informática Biomédica

Introdução aos Sistemas Operacionais

Prof. João Gluz

Porto Alegre, RS, Brasil 2019

Resumo

 A disciplina de Sistemas Operacionais introduz os conceitos básicos de sistemas operacionais, enfatizando o gerenciamento de processos, controle de concorrência, gerenciamento de memória e dispositivos de entrada e saída, bem como sistemas de arquivo.

Objetivos Específicos

A disciplina visa prover os alunos, ao final do semestre, conhecimentos e competências sobre:

- Conceitos básicos de sistemas operacionais.
- Programação concorrente.
- Processos normais versus processos leves (threads).
- Escalonamento de processos.
- Gerência de memória
- Memória virtual.
- Subsistema de entrada/saída.
- Gerência de arquivos.

Conteúdos

- 1. Apresentação da disciplina, Plano de ensino e Evolução da arquitetura dos computadores.
- 2. Introdução aos Sistemas Operacionais, Multiprogramação, Conceitos.
- 3. Programação Concorrente (Modelo, Hierarquia, Estados e Implementação).
- 4. Conceitos de Comunicação entre Processos (Seção Crítica, Exclusão Mútua, Deadlock).

Conteúdos

- 5. Implementação de Programação Concorrente (Semáforos e Monitores).
- 6. Processos normais x Processos Leves (Threads)
- 7. Escalonamento de Processos, Multiprogramação
- 8. Gerenciamento de Memória Partições Fixas e Variáveis, Swapping.

Conteúdos

- 9. Gerência de Memória, Paginação e Segmentação Paginada.
- 10. Memória Virtual, Conceitos, Política de Substituição de Páginas.
- 11. Subsistema de Entrada e Saída, Controladores de Dispositivos.
- 12. Gerência de Arquivos, Gerenciamento de Diretórios, Dispositivos de Armazenamento, Escalonamento de Disco.

Didática

- Tipos de aula: expositivas, dialogadas, ilustradas com recursos audiovisuais e softwares de simulação.
- Atividades: Trabalhos práticos individuais e em grupo.
- Recursos didáticos: Quadro branco, Datashow, computadores, artigos, livros, softwares de simulação.

Avaliação

 Duas provas teóricas (individuais e sem consulta), dois trabalhos práticos e exercícios práticos. Os trabalhos práticos serão avaliados da seguinte forma: 50% da nota será referente à apresentação (como foi desenvolvido, que técnicas utilizou, etc.) e o restante da nota será referente à codificação do programa. Os exercícios práticos serão entregues para serem desenvolvidos em aula ou durante um período após a aula (a soma de todos os exercícios será a quinta avaliação). A nota final é adquirida pela média das cinco avaliações.

UFCSPA

Bibliografia Básica

- OLIVEIRA, Rômulo; CARÍSSIMI, Alexandre;
 TOSCANI, Simão. Sistemas Operacionais. Porto Alegre: Bookman, 4. Edição 2010.
- TANENBAUM, Andrew S.; WOODHULL, Albert S. Sistemas operacionais: projeto e implementação. 3. ed. Porto Alegre: Bookman, 2008.
- SILBERSCHATZ, A., Fundamentos de Sistemas Operacionais: princípios básicos.

Bibliografia Complementar

- THOMAS, Anderson; DAHLIN Michael; Operating Systems: Principles and Practice, Editora 8. Edição. 2014, Editora Recursive Books.
- BOVET, Daniel; CESATI, Marco, Understanding the Linux Kernel, 3rd Edition Editora O'Reilly, 2005.
- SILBERSCHATZ, A., Sistemas Operacionais: projeto e implementação - O Livro do MINIX. ed. 3 Porto Alegre: Bookman, 2008.
- SILBERSCHATZ, A., Operationg System Concepts Essential ed. 2, Wiley, 2008.
- PATTERSON, D., Organização e Projeto de Computadores A interface Hardware/Software. 4 ed. CAMPUS.

Introdução

Sistema bancário	Reserva de passagens aéreas	Visualizador Web	Programas de aplicação
Compiladores	Editores	Interpretador de comandos	Programas do sistema
Sistema operacional			do sistema
Linguagem de máquina			
Microarquitetura			Hardware
Dispositivos físicos			

- Um sistema computacional consiste em
 - hardware
 - programas do sistema
 - programas de aplicação

O que é um Sistema Operacional

- É uma máquina estendida
 - Oculta os detalhes complicados que têm quer ser executados
 - Apresenta ao usuário uma máquina virtual,
 mais fácil de usar
- É um gerenciador de recurso
 - Cada programa tem um tempo com o recurso
 - Cada programa tem um espaço no recurso

História dos Sistemas Operacionais

Antigo sistema em lote

- traz os cartões para o 1401 bom de I/O
- lê os cartões para a fita
- coloca a fita no 7094 que executa o processamento bom de processamento
- coloca a fita no 1401 que imprime a saída

UFCSPA

História dos Sistemas Operacionais

Estrutura de um job FMS típico – 2a. geração

História dos Sistemas Operacionais (4)

- Sistema de multiprogramação
 - Três jobs na memória 3a. geração

"Zoológico" dos Sistemas Operacionais

- Sistemas operacionais de computadores de grande porte – E/S (Servidores Web, B2B) -OS/390
- Sistemas operacionais de servidores (Sistemas de arquivos, impressora, etc) -Unix, Linux e Windows 2000 Server
- Sistemas operacionais de multiprocessadores – SO são variações dos de servidores;

"Zoológico" dos Sistemas Operacionais

- Sistemas operacionais de computadores pessoais
 - Linux, Windows
- Sistemas operacionais de tempo-real
- Sistemas operacionais embarcados
 - PalmOS e Windows CE, IPOD
- Sistemas operacionais de cartões inteligentes
 - JavaCard

Revisão sobre hardware

Componentes de um computador pessoal simples

Revisão sobre hardware

- Função básica da CPU: buscar a próxima instrução da memória, decodificá-la e executá-la;
 - instrução operando1 operando2
- Cada CPU tem um conjunto específico de instruções;
- Registradores: contador de programa, ponteiro da pilha, PSW (status do programa)

Revisão sobre hardware: CPUs

- (a) Um pipeline de três estágios
- (b) Uma CPU superescalar

Revisão sobre hardware: CPUs

- CPUs: funcionamento em modo núcleo ou modo usuário;
- Modo núcleo: a CPU pode executar qualquer instrução do seu conjunto de instruções (normalmente entre 50 e 300 instruções);
- O SO executa em modo núcleo;
- Os aplicativos de usuário funcionam em modo usuário;
 - i.e.: programa de usuário não pode mudar o UFCSI

Revisão sobre hardware: CPUs

- A CPU passa de modo usuário para núcleo através de um TRAP, através de um system call do programa do usuário;
- Outro tipo de TRAP: exceção que pode ocorrer executando uma rotina do sistema operacional;
 - O SO usa traps para indicar, por exemplo, que houve uma divisão por 0;
- Ou mesmo para mudar de modo de operação:

UFCSPA

Revisão sobre hardware: memória

- Típica hierarquia de memória
 - números mostrados são apenas aproximações

UFCSPA

Revisão sobre hardware: discos

Estrutura de uma unidade de disco

Revisão sobre hardware: memória

- Memória ROM: bios;
- Memória EEPROM (Electrically Erasable ROM): apagável;
- CMOS: data e hora do computador. Com bateria falha, o computador "esquece" os seus componentes;

- Forma de E/S (I/O):
 - Busy waiting:
 - Instrução requisita dados de um dispositivo;
 - O SO chama o driver apropriado;
 - O driver se comunica com o controlador do dispositivo e realiza a ação requisitada;
 - O resultado é retornado para a instrução do programa do usuário;
 - Problema: a CPU fica constantemente perguntando se o dispositivo terminou o trabalho;

• Interrupções:

- Instrução requisita dados de um dispositivo;
- O SO chama o driver apropriado;
- O driver se comunica com o controlador do dispositivo e requisita a ação;
- O driver retorna;
- O SO bloqueia o programa que requisitou a ação e vai fazer a instrução de um outro programa;
- Quando o controlador tiver o resultado, ele envia uma interrupção à CPU e esta vai tratar a interrupção (pegar o resultado da ação solicitada);

(a)

- (a) Passos para iniciar um dispositivo de E/S e obter uma interrupção
- (b) Como a CPU é interrompida

UFCSPA

- 1 = Envia pedido ao controlador do dispositivo;
- 2 = Dispositivo realizou a ação, tenta contactar o controlador de interrupção;
- 3 = Controlador de interrupção, depois que estiver livre, interromperá a CPU;
 - A CPU guarda todos os registradores do programa em execução para continuar a execução depois (coloca na pilha);
- 4 = Controlador de interrupção coloca o número do dispositivo no barramento para que a CPU possa ler o dispositivo;
- Parte da memória tem o Vetor de interrupções, que é um conjunto de procedimentos para tratamento de diferentes interrupções;

Acesso Direto `a Memória (DMA):

- Terceira forma de acesso a I/O;
- O controlador acessa diretamente a memória, sem precisar passar pela CPU;

Revisão sobre hardware

Estrutura de um sistema Pentium

