UNIVERSITY OF TARTU

Faculty of Science and Technology Institute of Computer Science Computer Science Curriculum

Gediminas Milašius

Exploring integration complexity of different multi-national eID authentication solutions in the EU private sector

Master's Thesis (24 ECTS)

Supervisor(s): Axel Rose, MSc

May Flower, PhD

Tartu 2022

Exploring integration complexity of different multi-national eID authentication solutions in the EU private sector

Abstract:

Many interpreting program languages are dynamically typed, such as Visual Basic or Python. As a result, it is easy to write programs that crash due to mismatches of provided and expected data types. One possible solution to this problem is automatic type derivation during compilation. In this work, we consider study how to detect type errors in the WHITESPACE language by using fourth order logic formulae as annotations. The main result of this thesis is a new triple-exponential type inference algorithm for the fourth order logic formulae. This is a significant advancement as the question whether there exists such an algorithm was an open question. All previous attempts to solve the problem lead lead to logical inconsistencies or required tedious user interaction in terms of interpretative dance. Although the resulting algorithm is slightly inefficient, it can be used to detect obscure programming bugs in the WHITESPACE language. The latter significantly improves productivity. Our practical experiments showed that productivity is comparable to average Java programmer. From a theoretical viewpoint, the result is only a small advancement in rigorous treatment of higher order logic formulae. The results obtained by us do not generalise to formulae with the fifth or higher order.

Keywords:

List of keywords

CERCS:

CERCS code and name: https://www.etis.ee/Portal/Classifiers/Details/d3717f7b-bec8-4cd9-8ea4-c89cd56ca46e

Tüübituletus neljandat järku loogikavalemitele

Lühikokkuvõte:

One or two sentences providing a basic introduction to the field, comprehensible to a scientist in any discipline.

Two to three sentences of more detailed background, comprehensible to scientists in related disciplines.

One sentence clearly stating the general problem being addressed by this particular study.

One sentence summarising the main result (with the words "here we show' or their equivalent).

Two or three sentences explaining what the main result reveals in direct comparison to what was thought to be the case previously, or how the main result adds to previous knowledge.

One or two sentences to put the results into a more general context.

Two or three sentences to provide a broader perspective, readily comprehensible to a scientist in any discipline, may be included in the first paragraph if the editor considers that the accessibility of the paper is significantly enhanced by their inclusion.

Võtmesõnad:

List of keywords

CERCS:

CERCS kood ja nimetus: https://www.etis.ee/Portal/Classifiers/ Details/d3717f7b-bec8-4cd9-8ea4-c89cd56ca46e

Contents

1	Introduction														
	1.1	Motivation	7												
	1.2	Research Problem	8												
	1.3	Scope and goal	8												
	1.4	± 	8												
2	Bacl	Background 10													
	2.1	eID	0												
		2.1.1 Impact	0												
	2.2	<u> -</u>	0												
	2.3	eID widespread adoption	1												
		1 1	1												
			1												
	2.4	eID providers in Estonia	1												
		•	1												
			2												
		2.4.3 Mobile-ID	2												
		2.4.4 Smart-ID	3												
		2.4.5 TARA	3												
		2.4.6 eeID	4												
		2.4.7 HarID	4												
		2.4.8 Dokobit	4												
Re	eferen	es 1	8												
Aı	pend	x 1	9												
•			9												
		•	20												

Unsolved issues

List of keywords
CERCS code and name: https://www.etis.ee/Portal/Classifiers/Details/d3717f7b-bec8-4cd9-8ea4-c89cd56ca46e
One or two sentences providing a basic introduction to the field, comprehensible to a scientist in any discipline.
Two to three sentences of more detailed background, comprehensible to scientists in related disciplines.
One sentence clearly stating the general problem being addressed by this particular study.
One sentence summarising the main result (with the words "here we show" or their equivalent).
Two or three sentences explaining what the main result reveals in direct comparison to what was thought to be the case previously, or how the main result adds
to previous knowledge
Two or three sentences to provide a broader perspective, readily comprehensible to a scientist in any discipline, may be included in the first paragraph if the editor considers that the accessibility of the paper is significantly enhanced
by their inclusion
CERCS kood ja nimetus: https://www.etis.ee/Portal/Classifiers/Details/
d3717f7b-bec8-4cd9-8ea4-c89cd56ca46e
Cite
Maybe it would be good to change to "is the market ready"
QESD vs. middleware
ISO standard to pick trust level for if companies even need it
What are different options in eIDAS, e.g. what is a QESSD
What are the differences between primary services and middlemen, advantages
disadvantages
What are the weakpoints in the company structrue
What is the research model?
Findings about ID Card, Dokobit, and eeID
Non web-based SSO?
Ponder about the advantages of middleware pseudominization? Say instead of
personal code you get some arbitrary ID that matters only in the system
source: I did it myself 02-27
Why does this matter?
Explain why companies should not consider this protocol in the protocol choice
section

Does it work?	Have to w	vait as muc	h as I	can .								14	4

Introduction 1

Motivation 1.1

With the emergence of COVID-19, work from home has rapidly grown in popularity. It has been especially noticeable in the IT industry. This phenomenon has led some businesses to transition to operate fully remote [1], allowing for potential customers, clients, and employees to operate with the companies' IT systems from all around the globe.

Identity verification is a significant roadblock when establishing a remote work policy. In some managerial businesses, such as logistics, it is essential to assure the authenticity of persons signing in to perform their duties. Traditionally, as work was always onpremises, it was easy to verify the identity with the help of an ID Card or equivalent and physical verification. With the constraints of operations being fully remote, companies can no longer perform such a check.

Establishing identity online for potential employees and clients is not the only use case for digital identity. Organizations such as the British Council employ privacy undermining practices. They require their customers to submit a photocopy of their identity document for verification purposes [2]. This process is a significant privacy concern since anyone could replicate the uploaded document. Having no agency over their documents is of great concern for the end-users, and they would be reluctant to use the company services. Replacing the document upload with a digital signature check is a more secure and trustworthy way of performing business.

After the EU introduced the eIDAS regulation, an alternative method for identity verification became available. All EU member states are mandated to implement an eID solution in their country and recognize other countries' eID solutions [3]. Each eID solution comes with an identity certificate and means to prove it by signing a challenge via public-key cryptography. Because of this regulation, it is now possible to obtain a persons' legal identity with trustworthy means.

Particular risks exist that businesses must be aware of before integrating an eID authentication service. There are no comprehensive resources outlining the obstacles and costs of implementing eID authentication in the private sector. Lack of information makes it difficult to assess risks and estimate the resources required [?]. Unknown Cite risks are an excellent deterrent for innovation and make companies reluctant to use new technologies. Proper research into this subject may lead companies to take risks associated with implementation and kickstart the mainstream adoption of eIDs in the private sector.

1.2 Research Problem

The main goal of the thesis is to investigate if the advantages provided by eIDs are sufficient to warrant adoption in the free market and to shine a light on the costs associated with implementation. From this goal, the extracted research question is as follows:

What is the best eID authentication option available for an Estonian EU targeting enterprise for use in their Web-based Single Sign-On (SSO)?

The research question can be refined further into additional sub-questions:

- What advantages do eIDs provide?
- What technological risks companies must address to implement the solution?
- What privacy considerations must companies take when processing user data?
- What are the categories of eID authentication solutions?
- What are the different eID authentication options available to Estonia's private sector?
 - What risks the eID provider transfers?
 - What is the market reach (in countries) of a given solution?
 - Where are the weak points in the protocol used? How should a company assess them?

1.3 Scope and goal

In the thesis, there will be some assumptions in place about the company wishing to implement eID authentication:

- Company in question already uses an HTTP-based SSO (in the cloud or onpremises);
- Company is willing to spend money for operational costs;

1.4 Contribution

The thesis aims to fill the research gap for the use of eID in the private sector. There is some research about connecting eIDAS nodes, but the focus was to connect eIDAS nodes of other countries and not connect customers to the eIDAS infrastructure.

* The two researches done about the private sector focused on only the eIDAS implementation. * Development cost analysis is ignored. * No instructions as to how

Maybe it would be good to change to "is the market ready"

QESD vs. middle-ware

to properly connect to eIDAS node for businesses. * No research has been done on the development costs on any of the Estonia's eID authentication methods.

This thesis aims to fill the gaps by providing implementation instructions and comparison of 4 eID providers: Estonian ID-card, Smart-ID, Dokobit, and eeID.

Structure of work The document will consist of the following main chapters:

ISO standard to pick trust level for if companies even need it

What are different options in eIDAS, e.g. what is a QESSD

What are the differences between primary services and middlemen, advantages disadvantages

What are the weakpoints in the company structrue

What is the research model?

Findings about ID Card, Dokobit, and eeID

Non web-based SSO?

Ponder about the advantages of middleware pseudominization? Say instead of personal code you get some arbitrary ID that matters only in the system

2 Background

2.1 eID

In Estonia, digital identity has been around for over 20 years [4]. The Estonian government has loaded all identity cards issued with certificates enabling cardholders to identify themselves digitally. Compare the speed of adoption to Romania, where the first easy access to eIDs came in the form of new chip ID cards in August of 2021 [5].

Estonia's early adoption of eID, the political focus on digital government, has led to over 89% of internet users accessing the e-government, landing it the first place in the EU [6]. The 20 years of easy access to an eID has led to a stark difference to Romania, where only 16% of internet users access the government services online.

Depending on the country a company would like to access the market, eID sign-in may confuse the potential clients. Early adopters must be aware of the widespread adoption of the eID infrastructure.

In different countries, the eID solution may vary wildly. There can also be more than one eID solution in a singular county.

2.1.1 Impact

2.2 eIDAS

The eIDAS regulation [3] provided the groundwork for recognizing the signatures issued by other EU countries by imposing strict liability and mutual-recognition requirements. The regulation introduced the concept of a Trust Service Provider (TSP), which allowed relying parties to have a trust anchor. Each member state maintains a list of TSPs, where each TSP is certified to perform specific tasks, such as timestamping or issuing signing certificates. The regulation also requires member states to establish eID systems, if they haven't already, and make them able to be integrated into a federal system.

The regulation was the basis for creating the eIDAS node network [7]. These nodes connect across country borders, allowing users to authenticate with the eID of their home (eID issuer) country in the host (current residence) country. The eIDAS authentication protocol redirects the authentication requests to the appropriate country, federating the identification process. For the institutions trying to target the EU market, this provides a significant advantage since access to one node would mean access to all nodes in the EU.

The main issue private companies will encounter is the highly restricted access to any nodes. The eIDAS network is only concerned about connecting countries. To allow access to the web would be up for the member state to decide.

2.3 eID widespread adoption

2.3.1 eID adoption in Estonia and Lithuania

On the surface, Estonia and Lithuania have the exact eID solutions - Bank Link, ID card, Mobile-ID, and Smart-ID. However, even with the same infrastructure, we see many inconsistencies even in the case of just these two countries.

Consider Lithuania. It is possible to connect from a centralized website https://epaslaugos.lt to access the public sector services [8]. Here it is possible to sign in via bank link, ID card, and Mobile-ID. Smart-ID is not part of the list. Although most banks support sign-in via three major eID providers, including Smart-ID, some listed banks like PaySera provide significant security concerns. With that bank, it is possible to access the e-government services with only email, password, and a 2FA code sent to the registered person's phone number . For this reason, Estonia's Information System Authority has taken steps to deprecate bank link [9] from use in TARA. In Estonia, all three major authentication options, ID card, Mobile-ID, and Smart-ID, are available to access the e-government.

source: I did it myself 02-27

2.3.2 eIDAS notifications in Estonia and Lithuania

For countries to communicate through the eIDAS node network, countries must notify the European Commission about what eID authentication methods they could provide [3]. Other countries can then use these methods to authenticate foreign citizens into their public services.

In the case of Estonia, the country has notified the European Commission about its Smart card and Mobile-ID authentication methods [10]. Smart-ID is not a permitted method of authentication in the context of eIDAS. In Lithuania's case, only the Smart card solution is allowed - no mobile sign-in methods have been notified [10].

Estonia and Lithuania have shown a gap between what countries consider to be a secure and trusted source of eID and what they are willing to be held liable for in the context of eIDAS.

2.4 eID providers in Estonia

Applied Cyber Security Group of the University of Tartu maintains a list of e-services [11] that uses at least one eID authentication method in Estonia. The following authentication methods were listed: Bank Link, ID-card, Mobile-ID, Smart-ID, TARA, and HarID.

2.4.1 Bank link

Banks have initially created this authentication method to provide close integration with e-commerce providers to receive risk-free payments [12]. Over time it saw an

additional use case - secure and trustworthy authentication method for the public and private services [13]. Over time researchers found that the protocol used was extremely insecure [14]. From March of 2021, RIA has disabled the use of bank link to access public services [9], which accounted for only 1 percent of all authentications.

Due to the lack of security auditing required to satisfy eIDAS, poor market reach, and no support from the government, this authentication method will not be discussed in the scope of this thesis.

2.4.2 ID-card

Id cards are the most popular way to access their eID in Estonia, primarily due to the legal requirement of having one. Chapter 2 of the Identity Documents Act [4] requires all EU, not only Estonian, citizens residing in Estonia to hold an ID card, with which they could access public services online. Interestingly, this requirement caused the government to issue more ID cards than there are people in Estonia [15, 16].

There are no variable costs to allow a person to log in to websites with their ID card. For this authentication method, no per-transaction fees exist, as the certificate validity service (OCSP) [17] can be queried for free.

An end user's computer can extract an authentication certificate from their ID card with the help of special software distributed by the government [15]. This certificate, once on the computer, can be sent to the private company's authorization server with Client Certificate TLS option [18] natively or with the use of specialized helper library [19], using standard REST calls.

Qualified trust service provider for Qualified Certificates for e-signatures installs the certificates in ID-cards [20], which ensures a high degree of certainty about the identity of person authenticating.

Why does this matter?

A significant advantage of using a decentralized eID infrastructure, such as the ID-card authentication, is that there are no middlemen in the process, allowing companies to skip going into expensive contracts with an eID service provider.

2.4.3 Mobile-ID

Five years after SK ID Solutions introduced ID cards for use in Estonia, they have developed a mobile phone-friendly way to access the users' eID for use in Estonia and Lithuania [21]. SK achieved it by extending the functionality of SIM cards to make them mimic the functionality of ID cards.

The price of using Mobile-ID for the service provider varies based on usage, starting from 10 euro per month (10ct per request) to costing over 5 000 euro, where the effective cost is under 1ct for request [22]. For the end-user, mobile operators can charge an additional fee for the use of this service [23].

Accepting Mobile-ID would allow companies to access the markets of two countries: Estonia, and Lithuania, as the technical implementation is identical.

Qualified trust service provider for Qualified Certificates for e-signatures installs the certificates in a particular variety of SIM cards, capable of supporting Mobile-ID [20], which ensures a high degree of certainty about the identity of person authenticating.

Explain why companies should not consider this protocol in the protocol choice section.

2.4.4 Smart-ID

Smart-ID is the latest and fastest-growing way of accessing citizens' eID, working in all 3 of the Baltic States [24]. The protocol utilizes mobile phones as authentication, similar to Mobile-ID. Unlike Mobile-ID, it does not require specialized external hardware [25]. The authentication process is handled by combining the eID server and the end user's smartphone. Despite that, it still passed the eIDAS compliance audit for the requirement of ensuring signature private key is "with a high level of confidence under sole control" of its owner [26]. After passing the audit, Smart-ID was recognized as a QSCD, allowing it to create QES in 2018 [27].

The price of using Smart-ID for service providers, much like Mobile-ID, varies based on usage, starting from 50 euros per month (10ct per request) to over 20 000 euros, where the effective cost is under 1ct for request, based on the total amount of transactions performed within a month [28]. For users, unlike Mobile-ID [23], there are no telecommunication operators involved, and there are no costs associated with using Smart-ID.

Implementation of Smart-ID would allow users to access the markets of three countries: Estonia, Latvia, and Lithuania.

Qualified trust service provider for Qualified Certificates for e-signatures users their data centers to hold part of the private key and certificate used to authenticate users [20], which ensures a high degree of certainty about the identity of person authenticating.

2.4.5 TARA

TARA is Estonia's primary gateway for authentication to public services [29]. TARA provides the ability for users to sign in with any of the three primary eID methods of Estonia and with the eID schemes of other EU member states. The ability to authenticate with the systems of other countries is of particular interest, as it also doubles up as the official eIDAS node of Estonia [29].

Estonian Information System Authority intends to limit the use of TARA to public services only [30].

Technical implementation for the consumer, unlike Mobile-ID and Smart-ID, will be much easier to implement, as it uses the well-adopted protocol of OpenID Connect [31, 32].

It is worth mentioning while the underlying authentication methods have received proper eIDAS auditing and are backed by a qualified trust service, this and all of the following authentication methods have not been audited in compliance with eIDAS.

Unlike the eID providers backed by a Trust Service Provider, TARA acts as only an authentication service. It would not be able to provide means of signing documents [31]. If the business is considering expanding to allow for online digital signing, an infrastructure like TARA will unlikely be a great choice.

2.4.6 eeID

Estonian Internet Foundation created eeID service for the exclusive purpose of bringing eID authentication to the private sector [33]. It is a clone of TARA without it being Estonia's gateway for the eIDAS node network. The similarities mean that all points outlined to TARA apply to this service too.

The service is new, does not have pricing tiers, and currently asks for 9ct per successful authentication request [34].

The vision of the said service is to allow users to access the markets of all EU countries. Currently, there are only fourteen countries with notified eID authentication methods [10]: Estonia, Germany, Italy, Spain, Belgium, Luxembourg, Croatia, Portugal, Latvia, Lithuania, Netherlands, Czech Republic, Slovakia, and Denmark.

2.4.7 HarID

Estonian Ministry of Education and Research created this service for the youth of Estonia to access different educational institutions across Estonia [35]. ID cards are only legally required to be held by citizens over the age of 15 [4], so everyone under would have been unable to access their school system. HarID accepts TARA authentication methods with the addition of username & password. This authentication method is held exclusively for the education sector and will be skipped over in this thesis.

2.4.8 Dokobit

In the initial list of services using eID in Estonia, one service stands out - Dokobit [36]. They provide services comparable to eeID in that they aggregate different eID methods of Estonia (ID-card, Mobile-ID, and Smart-ID) and other countries. The primary difference between the authentication providers is the multi-national implementation goals - Dokobit relies on integrating each system individually. In contrast, eeID relies on piggybacking of the eIDAS infrastructure [33].

Pricing for Dokobit varies drastically, and the provided prices for the Baltic States [37] start at 50 euros per month (7.1ct per request), going down to 4.2ct per request at

Does it work? Have to wait as much as I can

500 euros per month.

Dokobit supports 11 countries: Estonia, Italy, Spain, Belgium, Latvia, Lithuania, Finland, Norway, Iceland, Poland, and Portugal [36].

UAB Dokobit is a trust service provider for Qualified validation of qualified esignature. It means the service itself does not provide Digital Signature certificates, but eIDAS considers the results of validation of signatures trustworthy [20].

References

- [1] Adam Ozimek. The future of remote work. Available at SSRN 3638597, 2020.
- [2] British Council. IELTS how to register. https://www.ielts.org/for-test-takers/how-to-register, 2022. Online; accessed 26-Feb-2022.
- [3] THE EUROPEAN PARLIAMENT and THE COUNCIL OF THE EUROPEAN UNION. Regulation (EU) No 910/2014 of the European Parliament and of the Council of 23 July 2014 on electronic identification and trust services for electronic transactions in the internal market and repealing Directive 1999/93/EC. *Official Journal of the European Union*, L 257/73, 2014.
- [4] Riigikogu. Identity documents act. 2021.
- [5] Răzvan Dan. Cât plătesc oamenii pentru buletinul cu cip care a început să fie eliberat deja populației. https://stirileprotv.ro/stiri/actualitate/buletinul-cu-cip-eliberat-deja-in-cluj-napoca-oamenii-platesc-70-de-lei-pentru-html, 2021. Online; accessed 27-Feb-2022.
- [6] European Comission. Digital economy and society index (desi) 2021. 2021.
- [7] Jesus Carretero, Guillermo Izquierdo-Moreno, Mario Vasile-Cabezas, and Javier Garcia-Blas. Federated identity architecture of the european eid system. *IEEE Access*, 6:75302–75326, 2018.
- [8] Informacinės visuomenės plėtros komitetas. E-government gateway. https://www.epaslaugos.lt/portal/nlogin, 2022. Online; accessed 27-Feb-2022.
- [9] Estonian Information System Authority. As of march, possible it will certain public longer be to access services via a bank link. https://www.ria.ee/en/news/ 1-march-it-will-no-longer-be-possible-access-certain-public-e-services-bank-lin html, 2021. Online; accessed 27-Feb-2022.
- [10] European Comission. Electronic identification schemes notified pursuant to Article 9(1) of Regulation (EU) No 910/2014 of the European Parliament and of the Council on electronic identification and trust services for electronic transactions in the internal market. *Official Journal of the European Union*, C 432/7, 2020.
- [11] Applied CyberSecurity Group. Estonian e-services using eid. https://acs.cs.ut.ee/services_using_eid, 2021. Online; accessed 21-Nov-2021.
- [12] Katri Kerem. Internet banking in Estonia, volume 7. PRAXIS, 2003.

- [13] AS SEB Pank. Bank link and authentication service. https://www.seb.ee/en/bank-link, 2021. Online; accessed 21-Nov-2021.
- [14] Arnis Paršsovs. Security analysis of internet bank authentication protocols and their implementations. Master's thesis, Tallinn University of Technology, 2012.
- [15] Estonian Information System Authority. Home id.ee. https://www.id.ee/en/, 2021. Online; accessed 20-Nov-2021.
- [16] Statistics Estonia. Population figure. https://www.stat.ee/en/avasta-statistikat/valdkonnad/rahvastik/population-figure, 2021. Online; accessed 20-Nov-2021.
- [17] Stefan Santesson, Michael Myers, Rich Ankney, Ambarish Malpani, Slava Galperin, and Dr. Carlisle Adams. X.509 Internet Public Key Infrastructure Online Certificate Status Protocol OCSP. RFC 6960, June 2013.
- [18] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446, August 2018.
- [19] Estonian Information System Authority. Web eid. https://www.id.ee/en/article/web-eid/, 2022. Online; accessed 28-Feb-2022.
- [20] European Commission. Trust service providers. https://esignature.ec.europa.eu/efda/tl-browser/#/screen/search/type/3?searchCriteria=eyJjb3VudHJpZXMiOlsiRUUiLCJMVCJdLCJxU2VydmljZVR5cGVzIjpbIlFDZXJ0RVNpZyIsIlFDZXJ0l2022. Online; accessed 28-Feb-2022.
- [21] SK ID Solutions. History 2007. https://www.skidsolutions.eu/en/about/history/year-2007/, 2007. Online; accessed 21-Nov-2021.
- [22] SK ID Solutions. Price list of Mobile-ID service. https://www.skidsolutions.eu/en/services/pricelist/mobile-id-service, 2021. Online; accessed 21-Nov-2021.
- [23] Telia. Mobiil-ID. https://www.telia.ee/era/lisateenused/mobiil-id/, 2022. Online; accessed 28-Feb-2022.
- [24] SK ID Solutions. History 2017. https://www.skidsolutions.eu/en/about/history/year-2017/, 2017. Online; accessed 21-Nov-2021.
- [25] SK ID Solutions. Smart-ID documentation. https://github.com/SK-EID/smart-id-documentation, 2021. Online; accessed 10-Feb-2022.

- [26] Sylvie Lacroix, Olivier Delos, Evgenia Nikolouzou (ENISA), and Slawomir Gorniak (ENISA). Assessment of Standards related to eIDAS. Technical report, European Union Agency For Network and Information Security, 2018.
- [27] SK ID Solutions. Digital signatures with Smart-ID. https://www.smart-id.com/e-service-providers/smart-id-as-a-qscd/, 2018. Online; accessed 28-Feb-2022.
- [28] SK ID Solutions. Price list of Smart-ID service. https://www.skidsolutions.eu/en/services/pricelist/smart-id/, 2021. Online; accessed 21-Nov-2021.
- [29] Estonian Information System Authority. The information system authority's authentication service TARA. https://www.ria.ee/en/state-information-system/eid/partners.html, 2022. Online; accessed 27-Feb-2022.
- [30] Estonian Information System Authority. TARA business description. https://e-gov.github.io/TARA-Doku/Arikirjeldus, 2021. Online; accessed 21-Nov-2021.
- [31] Estonian Information System Authority. TARA technical specification. https://e-gov.github.io/TARA-Doku/TechnicalSpecification, 2021. Online; accessed 21-Nov-2021.
- [32] Natsuhiko Sakimura, John Bradley, Mike Jones, Breno De Medeiros, and Chuck Mortimore. Openid connect core 1.0. *The OpenID Foundation*, 2014.
- [33] Estonian Internet Foundation. eeid service. https://www.internet.ee/eeid-service, 2021. Online; accessed 28-Feb-2022.
- [34] Estonian Internet Foundation. Subscription agreement and terms of use of the estonian internet foundation electronic identification service. https://meedia.internet.ee/files/Pricing_eeID.pdf, 2021. Online; accessed 28-Feb-2022.
- [35] Estonian Ministry of Education and Research. HarID. https://harid.ee/et/users/sign_in, 2022. Online; accessed 28-Feb-2022.
- [36] Dokobit. Electronic signature API solutions. https://www.dokobit.com/solutions, 2022. Online; accessed 28-Feb-2022.
- [37] Dokobit. Dokobit authentication solutions pricing. https://www.dokobit.com/docs/pricing/Dokobit-authentication-solutions-pricing.pdf, 2022. Online; accessed 28-Feb-2022.

Appendix

I. Glossary

II. Licence

Non-exclusive licence to reproduce thesis and make thesis public

I, Gediminas Milašius,

(author's name)

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to reproduce, for the purpose of preservation, including for adding to the DSpace digital archives until the expiry of the term of copyright,

Exploring integration complexity of different multi-national eID authentication solutions in the EU private sector,

(title of thesis)

supervised by Axel Rose and May Flower.

(supervisor's name)

- 2. I grant the University of Tartu a permit to make the work specified in p. 1 available to the public via the web environment of the University of Tartu, including via the DSpace digital archives, under the Creative Commons licence CC BY NC ND 3.0, which allows, by giving appropriate credit to the author, to reproduce, distribute the work and communicate it to the public, and prohibits the creation of derivative works and any commercial use of the work until the expiry of the term of copyright.
- 3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.
- 4. I certify that granting the non-exclusive licence does not infringe other persons' intellectual property rights or rights arising from the personal data protection legislation.

Gediminas Milašius

11.06.2022