Formulario di TERMODINAMICA e ELETTROMAGNETISMO

TERMODINAMICA

Calore specifico $c = \frac{1}{m} \frac{\Delta Q}{\Delta T}$, quindi: $\Delta Q = mc(T_f - T_i)$;

equivalente meccanico della caloria = 4.186 J = 1 cal; cambiamento di fase $Q = m\lambda$. Primo principio della Termodinamica $\Delta U = Q - L$; se il sistema riceve calore: Q > 0;

se cede calore Q < 0, $L = \int_{V_i}^{V_f} p\Delta V$; a pressione costante: $L = p\Delta V = p(V_f - V_i)$;

Energia interna di un gas perfetto $\Delta U = nc_{\nu}\Delta T$, relazione di Mayer $c_{\scriptscriptstyle p} - c_{\scriptscriptstyle \nu} = R$;

$$R = 8.314 \frac{J}{K \cdot mole} = 0.0821 \frac{atm \cdot l}{K \cdot mole} = 1.98 \frac{cal}{K \cdot mole}.$$

 $c_v = 3/2 \cdot R$ (gas monoatomico) $c_v = 5/2 \cdot R$ (gas biatomico)

 $c_p = 5/2 \cdot R$ (gas monoatomico) $c_p = 7/2 \cdot R$ (gas biatomico)

Equazione di stato dei gas perfetti: PV = nRT;

Trasformazioni termodinamiche di un gas perfetto: isocore $\Delta V=0$, isobare $\Delta P=0$, Isoterme: PV=cost, adiabatiche reversibili: $PV^{\gamma}=cost$; $TV^{\gamma-1}=cost$, con $\gamma=c_n/c_y$.

Lavoro in una trasformazione isoterma $L = nRT \ln \frac{V_f}{V_i}$; lavoro di un ciclo $L = \left| \mathbf{Q}_{\mathrm{C}} \right| - \left| \mathbf{Q}_{\mathrm{F}} \right|$;

rendimento di un ciclo $\eta = \frac{L}{|Q_C|} = 1 - \frac{|Q_F|}{|Q_C|}$; ciclo di Carnot $\frac{|Q_F|}{|Q_C|} = \frac{T_F}{T_C}$;

Entropia $\Delta S = S(B) - S(A) = \int_{A}^{B} \frac{dQ}{T}$ calcolata lungo <u>trasformazioni reversibili</u>;

Numero di Avogadro $N_{Av} = 6.022 \times 10^{23} \, molecole \, / \, mole \, , \ k = \frac{R}{N_{Av}} = 1.3805 \times 10^{-23} \, J \, / \, K \, .$

ELETTROSTATICA e MAGNETISMO

Legge di Coulomb $\vec{F} = k \frac{q_1 q_2}{r^2} \hat{r}$, $k = \frac{1}{4\pi\epsilon_0} = 8.99 \times 10^9 \, Nm^2 / C^2$, $\epsilon_0 = 8.8542 \times 10^{-12} \, C^2 / (Nm^2)$;

carica elettrone $1.602\times10^{-19}\,C$; massa elettrone $9.1095\times10^{-31}\,Kg$; massa protone $1.673\times10^{-27}\,Kg$.

campo elettrico generato da una carica puntiforme $\vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} \hat{r}$;

Forza elettrostatica subita da una carica q immersa in un campo elettrico E: $\vec{F}=q\vec{E}$.

Flusso elettrico $\Phi(\vec{E}) = \int\limits_{S} \vec{E} \cdot \hat{n} dS$; Teorema di Gauss $\Phi(\vec{E}) = \int\limits_{S_{chiusa}} \vec{E} \cdot \hat{n} dS = \frac{Q_{int}}{\epsilon_0}$.

Differenza di Energia Potenziale (U(finale) – U(iniziale)) : $U(B) - U(A) = -q_0 \int_{A}^{B} \vec{E} \cdot d\vec{s}$;

Differenza di Potenziale $V(B)-V(A)=\Delta V=\frac{\Delta U}{q_0}=-\int\limits_A^B \vec{E} \cdot d\vec{s}$;

se il campo elettrico è uniforme $\Delta V = V(B) - V(A) = -\vec{E} \cdot \vec{s}$;

Se la differenza di potenziale è definita al contrario : $\Delta V = V(iniz.) - V(fin.) = \vec{E} \cdot \vec{s}$;

Differenza di potenziale di una carica puntiforme rispetto all'infinito: $V(B) - V(\infty) = \frac{1}{4\pi\varepsilon_0} \frac{q}{r}$;

Energia potenziale di una coppia di cariche puntiformi $\Delta U = \frac{1}{4\pi\varepsilon_0} \frac{q_1q_2}{r_{12}}$;

Capacità $C = \frac{Q}{\Delta V}$; Capacità di un condensatore piano: $C = \varepsilon_0 \frac{S}{d}$; $C = \varepsilon_r \varepsilon_0 \frac{S}{d}$;

Condensatori in parallelo $C_{eq} = C_1 + C_2 + \dots$; Condensatori in serie $\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \dots$;

Energia immagazzinata in un condensatore $U = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} C \Delta V^2$;

Corrente elettrica $i = \frac{dQ}{dt}$, $i = nqv_dA$, densità di corrente $\vec{J} = nq\vec{v}_d$;

Legge di Ohm: $R = \frac{\Delta V}{i}$, seconda legge di Ohm: $R = \rho \frac{l}{A}$;

Resistenze in serie $R_{eq}=R_1+R_2+\dots$; Resistenze in parallelo $\frac{1}{R_{eq}}=\frac{1}{R_1}+\frac{1}{R_2}+\dots$;

Potenza dissipata da una resistenza (effetto Joule): $P = I\Delta V = i^2 R = \frac{\Delta V^2}{R}$;

Forza di Lorentz: $\vec{F} = q\vec{\mathbf{v}} \times \vec{B}$, $\vec{F} = i\vec{\mathbf{L}} \times \vec{B}$, $\mu_0 = 4\pi \times 10^{-7} \, Tm \, / \, A$;

Forza di Lorentz tra due fili percorsi da corrente: $\frac{F_1}{l} = \frac{\mu_0 i_1 i_2}{2\pi d}$; $\mu_0 = 4\pi \times 10^{-7} \, Tm / A$;

traiettoria in campo magnetico uniforme: $R = \frac{mv}{qB}$; Teorema di Ampere: $\oint \vec{B} \cdot d\vec{s} = \mu_0 i$;

Legge di Faraday-Neumann: $f = -\frac{d\Phi_B}{dt}$; dove $\Phi(\vec{\mathbf{B}}) = \int_{\mathbf{S}} \vec{\mathbf{B}} \cdot \hat{\mathbf{n}} d\mathbf{S}$.

OTTICA GEOMETRICA

Indice di rifrazione $n = \frac{c}{v}$, $v = \frac{\lambda}{T} = v\lambda$ Legge di Snell: $n_1 sen\theta_i = n_2 sen\theta_r$;

equazione dello specchio $\frac{1}{p} + \frac{1}{q} = \frac{1}{f}$; $f = \frac{R}{2}$ p=posizione oggetto, q = posizione immagine;

equazione lenti sottili
$$\frac{1}{p} + \frac{1}{q} = \frac{1}{f} = (n-1)(\frac{1}{R_1} - \frac{1}{R_2});$$

VETTORI

prodotto scalare $\vec{a} \cdot \vec{b} = ab \cos \theta = a_x b_x + a_y b_y + a_z b_z$;

prodotto vettoriale $|\vec{a} \times \vec{b} = a \cdot b \cdot \sin \theta$

equazione quadratica $ax^2 + bx + c = 0$ $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$