In [1]: import pandas as pd
import numpy as np

In [2]: # import the sklearn libraries for label encoder and linear regrssion
 from sklearn.preprocessing import LabelEncoder
 from sklearn.linear_model import LinearRegression
 from sklearn.metrics import r2_score, mean_squared_error

In [3]: #import matplot for visulization
import matplotlib.pyplot as plt
%matplotlib inline

In [4]: #let's upload train and test data
 train_data=pd.read_csv(r"C:\Users\s323\Desktop\Data Science\ML\Pratical Demo 3.2\b:
 test_data=pd.read_csv(r"C:\Users\s323\Desktop\Data Science\ML\Pratical Demo 3.2\big

In [5]: # Fist five datasets from train data
 train_data.head()

Out[5]:		Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Id
	0	FDA15	9.30	Low Fat	0.016047	Dairy	249.8092	
	1	DRC01	5.92	Regular	0.019278	Soft Drinks	48.2692	
	2	FDN15	17.50	Low Fat	0.016760	Meat	141.6180	
	3	FDX07	19.20	Regular	0.000000	Fruits and Vegetables	182.0950	
	4	NCD19	8.93	Low Fat	0.000000	Household	53.8614	

In [6]: # First five datasets from test data
test data.head()

	Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Id
0	FDW58	20.750	Low Fat	0.007565	Snack Foods	107.8622	
1	FDW14	8.300	reg	0.038428	Dairy	87.3198	
2	NCN55	14.600	Low Fat	0.099575	Others	241.7538	
3	FDQ58	7.315	Low Fat	0.015388	Snack Foods	155.0340	
4	FDY38	NaN	Regular	0.118599	Dairy	234.2300	
	1 2 3	o FDW581 FDW142 NCN553 FDQ58	 FDW58 20.750 FDW14 8.300 NCN55 14.600 FDQ58 7.315 	0 FDW58 20.750 Low Fat 1 FDW14 8.300 reg 2 NCN55 14.600 Low Fat 3 FDQ58 7.315 Low Fat	0 FDW58 20.750 Low Fat 0.007565 1 FDW14 8.300 reg 0.038428 2 NCN55 14.600 Low Fat 0.099575 3 FDQ58 7.315 Low Fat 0.015388	0 FDW58 20.750 Low Fat 0.007565 Snack Foods 1 FDW14 8.300 reg 0.038428 Dairy 2 NCN55 14.600 Low Fat 0.099575 Others 3 FDQ58 7.315 Low Fat 0.015388 Snack Foods	1 FDW14 8.300 reg 0.038428 Dairy 87.3198 2 NCN55 14.600 Low Fat 0.099575 Others 241.7538 3 FDQ58 7.315 Low Fat 0.015388 Snack Foods 155.0340

In [7]: # check the no of rows and columns in the data
 train_data.shape

```
(8523, 12)
Out[7]:
          # Check the shape of test data
 In [8]:
          test_data.shape
          (5681, 11)
 Out[8]:
 In [9]:
          # Print the name of columns of train dataset
          train_data.columns
         Index(['Item_Identifier', 'Item_Weight', 'Item_Fat_Content', 'Item_Visibility',
 Out[9]:
                 'Item_Type', 'Item_MRP', 'Outlet_Identifier',
                 'Outlet_Establishment_Year', 'Outlet_Size', 'Outlet_Location_Type',
                 'Outlet_Type', 'Item_Outlet_Sales'],
                dtype='object')
          # Print the name of columns of test dataset
In [10]:
          test_data.columns
          Index(['Item_Identifier', 'Item_Weight', 'Item_Fat_Content', 'Item_Visibility',
Out[10]:
                  'Item_Type', 'Item_MRP', 'Outlet_Identifier',
                 'Outlet_Establishment_Year', 'Outlet_Size', 'Outlet_Location_Type',
                 'Outlet_Type'],
                dtype='object')
          # Combine both test and train data to perform EDA
In [11]:
          train_data["source"]="train"
          test_data["source"]="test"
          data=pd.concat([train_data,test_data], ignore_index= True)
          data.shape
In [12]:
          (14204, 13)
Out[12]:
In [13]:
          data.head()
Out[13]:
             Item_Identifier Item_Weight Item_Fat_Content Item_Visibility Item_Type Item_MRP Outlet_Id
          0
                    FDA15
                                  9.30
                                                Low Fat
                                                            0.016047
                                                                          Dairy
                                                                                 249.8092
                                                                          Soft
                    DRC01
                                  5.92
                                                Regular
                                                            0.019278
                                                                                  48.2692
                                                                         Drinks
          2
                    FDN15
                                 17.50
                                                Low Fat
                                                            0.016760
                                                                          Meat
                                                                                 141.6180
                                                                      Fruits and
          3
                                                            0.000000
                                                                                 182.0950
                    FDX07
                                 19.20
                                                Regular
                                                                     Vegetables
                   NCD19
                                  8.93
                                                Low Fat
                                                            0.000000 Household
                                                                                  53.8614
In [14]:
          data.columns
          Index(['Item_Identifier', 'Item_Weight', 'Item_Fat_Content', 'Item_Visibility',
Out[14]:
                 'Item_Type', 'Item_MRP', 'Outlet_Identifier',
                 'Outlet_Establishment_Year', 'Outlet_Size', 'Outlet_Location_Type',
                 'Outlet_Type', 'Item_Outlet_Sales', 'source'],
                dtype='object')
```

```
In [15]: # Describe function will show numerical data summary
    data.describe()
```

Out[15]:		Item_Weight	Item_Visibility	Item_MRP	Outlet_Establishment_Year	Item_Outlet_Sales		
	count	11765.000000	14204.000000	14204.000000	14204.000000	8523.000000		
	mean	12.792854	0.065953	141.004977	1997.830681	2181.288914		
	std	4.652502	0.051459	62.086938	8.371664	1706.499616		
	min	4.555000	0.000000	31.290000	1985.000000	33.290000		
	25%	8.710000	0.027036	94.012000	1987.000000	834.247400		
	50%	12.600000	0.054021	142.247000	1999.000000	1794.331000		
	75%	16.750000	0.094037	185.855600	2004.000000	3101.296400		
	max	21.350000	0.328391	266.888400	2009.000000	13086.964800		
						1		
in [16]:	data.:	cking missing isnull().sum		0				
Out[16]:	Item_\\Item_\\Item_\Outlet\Outlet\Outlet\Item_\Outlet\Outlet\Item_\Out	Fat_Content /isibility Type MRP C_Identifier C_Establishme C_Size C_Location_Ty C_Type Outlet_Sales E int64	ent_Year 40 /pe 50	439 0 0 0 0 0 0 0 0 581 0				
n [17]:	# We I	have to find	d unique valu	es,	rough the model _content as it has only	v two unique valu		
	<pre>data["Item_Fat_Content"].unique()</pre>							
ut[17]:	array((['Low Fat',	'Regular', '	low fat', 'L	F', 'reg'], dtype=objec	t)		
n [18]:	<pre># Print the unique values in Outlet_Establishment_Year coulumn where data ranges for data["Outlet_Establishment_Year"].unique()</pre>							
ut[18]:	array(array([1999, 2009, 1998, 1987, 1985, 2002, 2007, 1997, 2004], dtype=int64)						
ín [19]:		culate the or "Outlet_Age"	_	"Outlet_Esta	blishment_Year"]			

data.head(2)

```
Out[19]:
         0
                                9.30
                                                        0.016047
                  FDA15
                                             Low Fat
                                                                     Dairy
                                                                            249.8092
                                                                      Soft
                  DRC01
                                5.92
                                                        0.019278
                                                                             48.2692
                                             Regular
                                                                    Drinks
         #Unique values in outletsize
In [20]:
         data["Outlet_Size"].unique()
         array(['Medium', nan, 'High', 'Small'], dtype=object)
Out[20]:
         There are missing values in this columnm
         # Printing the value of Item fat content column
In [21]:
         data["Item_Fat_Content"].count()
         14204
Out[21]:
In [22]:
         # Printing the count value of Item_fat content column
         data["Item_Fat_Content"].value_counts()
                    8485
         Low Fat
Out[22]:
         Regular
                    4824
                     522
         LF
         reg
                     195
         low fat
                     178
         Name: Item_Fat_Content, dtype: int64
         We can see Low Fat Content are most abundant
         # Print the count value of outlet_size
In [23]:
         data["Outlet_Size"].value_counts()
         Medium
                   4655
Out[23]:
         Small
                   3980
         High
                   1553
         Name: Outlet_Size, dtype: int64
         We can see that majority of outlets are in medium and small size
         # Use the mode function to find out the most common value in outlet_size
In [24]:
         data["Outlet Size"].mode()[0]
         'Medium'
Out[24]:
         The output shows medium is the most coomonly occuring value
In [25]:
         # Two variables Item_wieght and Outlet_Size have missing values
         # Replacing missing value in outlet size with medium size
         data["Outlet_Size"]=data["Outlet_Size"].fillna(data['Outlet_Size'].mode()[0])
         # Replace missing item wieght with mean weight
In [26]:
         data["Item_Weight"]=data["Item_Weight"].fillna(data["Item_Weight"].mean())
         #Plot a histogram to reveal the distribution of item_visiblity column
         data["Item_Visibility"].hist(bins=20)
```

Out[27]: <AxesSubplot:>

```
2000
```

```
In [28]: # Detecting Outliers
# An outlier is a data point that lies outside the overall pattern in a distribution
# Acommonly used rule that states a data point is an outlier if it is 1.5*IQR above
# Using this one can remove outliers and output results in fill_data variable
# Calculating the first quantile for item visiblity

Q1= data["Item_Visibility"].quantile(0.25)
```

```
In [29]: # Calculate the second quantile for item visiblity
Q3= data["Item_Visibility"].quantile(0.75)
```

```
In [30]: # Calculate the IQR- Inter Quantile Range
IQR=Q3-Q1
```

```
In [31]: #Now since the IQR range is known, lets remove the outliers
    #The resulting data is stored in fill data varible

fill_data= data.query("(@Q1 - 1.5* @IQR)<=Item_Visibility<=(@Q3 +1.5* @IQR)")</pre>
```

```
In [32]: # Display the data
fill_data.head(2)
```

Out[32]:		Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Id
	0	FDA15	9.30	Low Fat	0.016047	Dairy	249.8092	
	1	DRC01	5.92	Regular	0.019278	Soft Drinks	48.2692	

```
In [33]: # Check the shape of resulting dataset without the outliers fill_data.shape
```

Out[33]: (13943, 14)

```
In [34]: # Check the shape of original dataset with the outliers data.shape
```

Out[34]: (14204, 14)

```
# Assign the fill data set to the data_frame
In [35]:
         data=fill data
         data.shape
In [36]:
         (13943, 14)
Out[36]:
         # Modify item visiblity by converting the numerical value into cateogries as low V
In [47]:
         data["Item_Visibility.bins"]=pd.cut(data["Item_Visibility"],[0.000,0.065,0.13,0.2]
In [48]: # Total no of counts of item_visiblity
         data["Item Visibility.bins"].value counts()
                     7363
         Low_viz
Out[48]:
         Med viz
                     4283
         High viz
                     1418
         Name: Item_Visibility.bins, dtype: int64
         # Replace nan values with low viz
In [51]:
         data["Item_Visibility.bins"].isnull().sum()
         879
Out[51]:
In [52]: data["Item_Visibility.bins"]= data["Item_Visibility.bins"].replace(np.nan,"Low_viz
         # We have found typos and diffrences in representation in cateogris of Item_fat val
In [54]:
         # This can be corrected below
         # Replace all other representation of low fat with low fat
         data["Item_Fat_Content"] = data["Item_Fat_Content"].replace (["low fat", "LF"],"Low
         # replace all reg with Regular
In [55]:
         data["Item_Fat_Content"]= data["Item_Fat_Content"].replace (["reg"],"Regular")
         # Print unique fat counts
In [56]:
         data["Item_Fat_Content"].unique()
         array(['Low Fat', 'Regular'], dtype=object)
Out[56]:
         # Code all catogorical variable as numeric using "Label Encoder" from SK learn's pi
In [57]:
         # Intialize label encoder
         le= LabelEncoder()
         # Transform Item Fat Content
In [58]:
         data["Item_Fat_Content"]=le.fit_transform(data["Item_Fat_Content"])
         # Transform Item Visiblity bins
In [59]:
         data["Item Visibility.bins"]=le.fit transform(data["Item Visibility.bins"])
In [60]:
         # Transform outletsize
         data["Outlet_Size"]=le.fit_transform(data["Outlet_Size"])
         # Transform outlet location type
In [61]:
         data["Outlet_Location_Type"]=le.fit_transform(data["Outlet_Location_Type"])
```

```
# Print the unique values of Outlet type
In [62]:
          data["Outlet_Type"].unique()
         array(['Supermarket Type1', 'Supermarket Type2', 'Grocery Store',
Out[62]:
                 'Supermarket Type3'], dtype=object)
In [65]:
          # Create dummies for outlet type
          dummies = pd.get_dummies(data["Outlet_Type"])
          dummies.head()
            Grocery Store Supermarket Type1 Supermarket Type2 Supermarket Type3
Out[65]:
         0
                                                                            0
                       0
                                         1
                                                           0
          1
                       0
                                         0
                                                           1
                                                                            0
          2
                       0
                                                           0
                                         1
                                                                             0
          3
                       1
                                         0
                                                           0
                                                                            0
                       0
          4
                                         1
                                                           0
                                                                            0
         # Explore the column Item identifier
In [66]:
          data["Item_Identifier"]
                   FDA15
Out[66]:
                   DRC01
         2
                   FDN15
         3
                   FDX07
         4
                   NCD19
                   . . .
         14199
                   FDB58
         14200
                   FDD47
         14201
                   NC017
         14202
                   FDJ26
          14203
                   FDU37
         Name: Item_Identifier, Length: 13943, dtype: object
In [67]:
         # As we can see there are multiple values for food, non consumable items, and drinks
          data["Item_Identifier"].value_counts()
         FDE33
                   10
Out[67]:
         FDM12
                   10
          FDY47
                   10
          FDT03
                   10
          FD001
                   10
         FDA10
                    7
                    7
         FD033
                    7
         FDZ60
                    7
         NCW54
          FDG21
         Name: Item Identifier, Length: 1559, dtype: int64
         # As multiple item cateogries are present in item identifier, reduce this by mapping
In [69]:
          data["Item_type_Combined"]=data["Item_Identifier"].apply(lambda x: x[0:2])
          data["Item_type_Combined"]=data["Item_type_Combined"].map({"FD":"Food","NC":"Non-Combined"]
In [70]:
         # Only three catogries are present in the item_type_combined column
          data["Item type Combined"].value counts()
```

```
9991
                     Food
Out[70]:
                     Non-Consumable
                                                             2652
                     Drinks
                                                             1300
                     Name: Item_type_Combined, dtype: int64
In [71]:
                      data.shape
                      (13943, 16)
Out[71]:
                     # Perform one hot encoding on all columns as model works on numerical value not on
In [72]:
                      data=pd.get_dummies(data, columns=["Item_Fat_Content","Outlet_Location_Type","Outlet_Location_Type","Outlet_Location_Type","Outlet_Location_Type","Outlet_Location_Type","Outlet_Location_Type","Outlet_Location_Type","Outlet_Location_Type","Outlet_Location_Type","Outlet_Location_Type","Outlet_Location_Type","Outlet_Location_Type","Outlet_Location_Type","Outlet_Location_Type","Outlet_Location_Type","Outlet_Location_Type","Outlet_Location_Type","Outlet_Location_Type","Outlet_Location_Type","Outlet_Location_Type","Outlet_Location_Type","Outlet_Location_Type","Outlet_Location_Type","Outlet_Location_Type","Outlet_Location_Type","Outlet_Location_Type","Outlet_Location_Type","Outlet_Location_Type","Outlet_Location_Type","Outlet_Location_Type "Outlet_Location_Type","Outlet_Location_Type "Outlet_Location_Type","Outlet_Location_Type "Outlet_Location_Type "Ou
                     data.dtypes
In [77]:
                      # Now we can see some of the columns are cateogrical as they are mentioned as object
                     Item Identifier
                                                                                                          obiect
Out[77]:
                     Item_Weight
                                                                                                         float64
                                                                                                         float64
                     Item Visibility
                     Item_Type
                                                                                                          object
                      Item_MRP
                                                                                                         float64
                     Outlet_Identifier
                                                                                                          object
                     Outlet_Establishment_Year
                                                                                                             int64
                     Item_Outlet_Sales
                                                                                                        float64
                      source
                                                                                                          object
                     Outlet_Age
                                                                                                             int64
                      Item Visibility.bins
                                                                                                             int32
                      Item_Fat_Content_0
                                                                                                             uint8
                                                                                                             uint8
                     Item_Fat_Content_1
                     Outlet_Location_Type_0
                                                                                                             uint8
                     Outlet_Location_Type_1
                                                                                                             uint8
                     Outlet_Location_Type_2
                                                                                                             uint8
                     Outlet_Size_0
                                                                                                             uint8
                     Outlet_Size_1
                                                                                                             uint8
                     Outlet Size 2
                                                                                                             uint8
                     Outlet Type Grocery Store
                                                                                                             uint8
                     Outlet_Type_Supermarket Type1
                                                                                                             uint8
                     Outlet_Type_Supermarket Type2
                                                                                                             uint8
                     Outlet_Type_Supermarket Type3
                                                                                                             uint8
                      Item_type_Combined_Drinks
                                                                                                             uint8
                      Item_type_Combined_Food
                                                                                                             uint8
                      Item_type_Combined_Non-Consumable
                                                                                                             uint8
                     dtype: object
                      import warnings
In [82]:
                      warnings.filterwarnings('ignore')
                      # Drop the columns which have been converted into diffrent types
                      data.drop(["Item_Type","Outlet_Establishment_Year"], axis=1,inplace=True)
                      # Divide the dataset created earlier into train and test datasets
                      train = data.loc[data["source"] == "train"]
                      test = data.loc[data["source"] == "test"]
                      # Drop unnecessay columns
                      test.drop(["Item_Outlet_Sales", "source"], axis=1, inplace= True)
                      train.drop(["source"], axis= 1, inplace=True)
                      #Export modified versions of the files
```

```
train.to_csv("train_modified.csv", index=False)
         test.to_csv("test_modified.csv", index= False)
In [83]: # Read the train_modified.csv and test_modified.csv
         train2= pd.read_csv(r"train_modified.csv")
         test2= pd.read_csv(r"test_modified.csv")
         # Print the data types of train 2 columns
In [84]:
         train2.dtypes
         Item_Identifier
                                               object
Out[84]:
                                               float64
         Item_Weight
         Item_Visibility
                                              float64
         Item MRP
                                              float64
         Outlet_Identifier
                                               object
         Item_Outlet_Sales
                                              float64
         Outlet_Age
                                                int64
         Item Visibility.bins
                                                int64
         Item Fat Content 0
                                                int64
         Item_Fat_Content_1
                                                int64
         Outlet_Location_Type_0
                                                int64
         Outlet_Location_Type_1
                                                int64
                                                int64
         Outlet_Location_Type_2
         Outlet_Size_0
                                                int64
         Outlet_Size_1
                                                int64
         Outlet Size 2
                                                int64
         Outlet_Type_Grocery Store
                                                int64
         Outlet_Type_Supermarket Type1
                                                int64
         Outlet_Type_Supermarket Type2
                                                int64
         Outlet_Type_Supermarket Type3
                                                int64
         Item_type_Combined_Drinks
                                                int64
         Item_type_Combined_Food
                                                int64
         Item_type_Combined_Non-Consumable
                                                int64
         dtype: object
In [85]: # Drop the irrelevant variables from train2 datasets
         # Create the indepedent varible X train and depedent variable Y train
         X_train=train2.drop(["Item_Outlet_Sales","Outlet_Identifier","Item_Identifier"], a
         y_train=train2.Item_Outlet_Sales
         # Drop those irelevant variables from test2 dataset
In [86]:
         X_test=test2.drop(["Outlet_Identifier","Item_Identifier"],axis=1)
In [87]:
         X test
```

Out[87]:		Item_Weight	Item_Visibility	Item_MRP	Outlet_Age	Item_Visibility.bins	Item_Fat_Content_0
	0	20.750000	0.007565	107.8622	23	1	1
	1	8.300000	0.038428	87.3198	15	1	0
	2	14.600000	0.099575	241.7538	24	2	1
	3	7.315000	0.015388	155.0340	15	1	1
	4	12.792854	0.118599	234.2300	37	2	0
	•••						
	5563	10.500000	0.013496	141.3154	25	1	0
	5564	7.600000	0.142991	169.1448	13	0	0
	5565	10.000000	0.073529	118.7440	20	2	1
	5566	15.300000	0.000000	214.6218	15	3	0
	5567	9.500000	0.104720	79.7960	20	2	0
	5568 r	ows × 20 colu	mns				
4							>
In [89]:	X_tra	nin.head(2)					
Out[89]:							
ouc[05].	lte	m_Weight Ite	m_Visibility Ite	em_MRP Ou	tlet_Age Ite	m_Visibility.bins Ite	em_Fat_Content_0 Itc
	0	9.30	0.016047 2	249.8092	23	1	1
	1	5.92	0.019278	48.2692	13	1	0
4							•
In [90]:	y_tra	nin.head(2)					
Out[90]:	1	3735.1380 443.4228 Item_Outlet	_Sales, dtype	e: float64			
In [97]:	<pre># import sklearn libraries for model selection from sklearn import model_selection from sklearn.linear_model import LinearRegression</pre>						
In [98]:	<pre># create a train and test split xtrain, xtest, ytrain, ytest = model_selection.train_test_split(X_train,y_train,test_split)</pre>						
In [100	<pre># fit linear regression to training dataset lin=LinearRegression() lin.fit(xtrain,ytrain)</pre>						
Out[100]:	LinearRegression()						
In [101	# find the coefficent and intercept of the line # use X train and Y train for linear regression print(lin.coef_) lin.intercept_						

```
[-1.93054423e+00 -3.47449893e+02 1.58788136e+01 -3.19310190e+01
            -4.64698319e+00 -1.55426303e+00 1.55426303e+00 1.88969149e+02
            4.83874237e+01 -2.37356573e+02 5.39972452e+02 -3.11545503e+02
            -2.28426949e+02 -1.63452944e+03 -1.26820412e+02 -3.48655405e+02
            2.11000526e+03 9.06454503e+00 3.46403369e+01 -4.37048820e+01]
          1074.1452929564798
Out[101]:
In [102...
           # predict the test set results for training data
           predictions=lin.predict(xtest)
           predictions
          array([2077.92386202, 3704.93216108, 2961.28180591, ..., 3541.28725867,
Out[102]:
                  3464.78656382, 1249.59368407])
           import math
In [105...
           # Find the rmse of the model
In [106...
           print(math.sqrt(mean_squared_error(ytest,predictions)))
          1126.2352692434756
           # A good RMSE for this problem is 1130. Here we can improve the RMSE by using algor
In [107...
           # Next, we will predict the sales of each product at a particular store in test dat
           # predict the column of Item_outlet_sales of test data
In [109...
           y_sales_pred=lin.predict(X_test)
           y_sales_pred
          array([1788.81075495, 1593.90875193, 1845.79649796, ..., 1831.65421972,
Out[109]:
                  3605.8573969 , 1284.78769015])
In [110...
           test_predictions=pd.DataFrame({
               "Item_Identifier":test2["Item_Identifier"],
               "Outlet_Identifier": test2["Outlet_Identifier"],
               "Item_Outlet_Sales":y_sales_pred
           },columns=["Item_Identifier","Outlet_Identifier","Item_Outlet_Sales"])
          test_predictions
In [111...
                Item Identifier Outlet Identifier Item Outlet Sales
```

Out[111]:

	item_identifier	Outlet_Identifier	Item_Outlet_Sales
0	FDW58	OUT049	1788.810755
1	FDW14	OUT017	1593.908752
2	NCN55	OUT010	1845.796498
3	FDQ58	OUT017	2675.927968
4	FDY38	OUT027	5134.091429
•••			
5563	FDB58	OUT046	2360.100059
5564	FDD47	OUT018	2419.143609
5565	NCO17	OUT045	1831.654220
5566	FDJ26	OUT017	3605.857397
5567	FDU37	OUT045	1284.787690

5568 rows × 3 columns

In []: