Análisis de Factibilidad y Riesgos

Este documento presenta una evaluación de la viabilidad del proyecto 'NODALIS' y los riesgos asociados a su desarrollo.

1. Análisis de Factibilidad

Tipo de Factibilidad	Nivel de Viabilidad	Justificación
Técnica	Alta	El equipo cuenta con conocimientos en Node.js, Angular, MQTT, bases de datos relacionales y algoritmos de Machine Learning. Las tecnologías utilizadas son modernas, disponibles y adecuadas para los objetivos del proyecto.
Operativa	Media	El sistema será utilizado por dos tipos de usuarios (Administrador y Usuario). Aunque se prevé una curva de aprendizaje inicial para el uso de dashboards, se mitigará mediante interfaces simples e intuitivas.
Económica	Alta	El proyecto será desarrollado por un estudiante con acceso a tecnologías gratuitas y open source. No se requiere inversión monetaria adicional significativa. La infraestructura será local o en servidores gratuitos durante el desarrollo.
Legal / Ética	Alta	El sistema contempla buenas prácticas de privacidad y protección de datos personales. Se utilizará cifrado y control de acceso, cumpliendo con principios básicos de normativas como GDPR.

2. Análisis de Riesgos

ID	Riesgo	Tipo	Probabi lidad	Impacto	Estrategia de Mitigación
R1	Sensores no envían datos correctamente	Técnico	Media	Alta	Simulación con datos alternativos y reconexión automática por MOTT.
R2	Modelo ML no alcanza precisión esperada	Técnico	Alta	Media	Evaluación de múltiples modelos y ajuste con más datos de entrenamiento.
R3	Usuario final no entiende la interfaz	Operati vo	Media	Media	Diseño intuitivo y validaciones de usabilidad antes de lanzamiento.
R4	Falla del servidor backend	Infraest ructura	Baja	Alta	Uso de backups automáticos y monitoreo básico del sistema.
R5	Problemas de integración entre módulos	Técnico	Media	Alta	Aplicación modular y pruebas de integración progresivas por sprint.

3. Conclusiones

Con base en el análisis realizado, se concluye que el proyecto WeSense es técnica y económicamente viable. Los riesgos identificados pueden ser mitigados con prácticas de desarrollo adecuadas. La planificación en sprints permite controlar los avances y detectar desviaciones a tiempo. El sistema proyectado responde a una necesidad real de monitoreo inteligente de variables físicas y está alineado con las capacidades del equipo de desarrollo.