Projeto de um filtro de RF passa-baixas HFSS Ansys Designer

Ivander Gomes Ferreira Valim
Engenheiro de Telecomunicações - FT Unicamp

Este trabalho apresenta o projeto, modelagem e simulação de um filtro passa-baixas Butterworth de 3ª ordem em tecnologia de microfita, utilizando técnicas de transformador de quarto de onda e stubs. O filtro foi sintonizado para operar na frequência central de 1,75 GHz, dentro da banda L, apresentando atenuação superior a 30 dB fora da faixa passante. A modelagem matemática foi realizada no GNU Octave e a simulação eletromagnética implementada no HFSS (Ansys Designer).

Modelagem do filtro no GNU Octave:

```
clear all;
clc;
epsr = 4.4;
                    % Constante dielétrica do dielétrico
h
     = 1.52e-3;
                     % Altura do dielétrico
     = 75;
                     % Impedância da microfita
      = (z0/60)*sqrt((epsr+1)/2)+(epsr-1)/(epsr+1)*(0.23+0.11/epsr);
if A> 1.52
  t = (8*exp(A)/(exp(2*A)-2));
end
if A<= 1.52
  B = 60*pi^2/(z0*sqrt(epsr));
  t = (2/pi)*(B-1-log(2*B-1)+((epsr-1)/(2*epsr))*(log(B-1)+0.39-0.61/epsr));
end
\mathbf{w} = \mathbf{t} \cdot \mathbf{h} / 1\mathbf{e} - 3;
                       % largura da trilha em milimetros
```

utilizando o código acima desenvolvido em Octave para definir a largura e comprimento das trilhas, em conjunto com as equações (1),(2),(3),(4) e (5) chegamos aos seguintes dados ajustando as dimensões:

$$\gamma = \frac{Z_L - Z_0}{Z_L + Z_0}$$
 (casamento de impedância) (1)

$$R_0 = \sqrt{R_e R_L}$$
 (Impedância)

$$\varepsilon_e = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2} \left(\frac{1}{\sqrt{1 + 12 \frac{d}{W}}} \right)$$
 (permissividade efetiva)

$$\lambda = \frac{c}{\sqrt{\varepsilon_e} f}$$
 (Comprimento de onda)

$$1 = \frac{\gamma}{8}$$
 (Transformador ½ de onda) (5)

Descrição	Valores
Frequência de corte	1,75GHz
Substrato (Er)	4,4
Altura do substrato (h)	1,5200 mm
Espessura do condutor de cobre	0,017mm
Comprimento de trilha (d0)	1,5321mm
Largura da trilha (w0)	2,906 mm
Comprimento do transformador (d1)	12,75mm
Largura do transformador (w1)	0,3769 mm
Comprimento dos stubs (d2) (carta smith)	1,5312mm
espaçamento entre stubs (w2) (carta smith)	2.55mm
Impedância dos stubs	75 Ω

distância dos stub da carga, espaçados igualmente.

Pela carta de smith:

• A distância normalizada é de : 0.160 WTG .

• A admitância do stub deve ser de: 1 + 0,95j.

• distância entre carga e stub será de: 0.160 * 0.102/8 = 2,04mm

• Comprimento normalizada do Stub é: 0.160 WTG

O comprimento do stub 0.160*0.160/8 = 3,2mm

Filtro passa-baixas Fc=1.75 para uma atenuação de -30db em 3.45Ghz

Casamento de Impedância Porta A x Porta B

Conforme o proposto, atingimos o objetivo de um filtro passa baixas com atenuação de -30db em 3,5GHz.