Knight Foundation School of Computing and Information Sciences

Course Title: Advanced Quantum Information and Probability **Date:** 6/2/2024

Course Number: COT 5603

Number of Credits: 3

Subject Area: Foundations

Catalog Description:

Advanced topics in quantum information theory and probability; Quantum complexity classes; Quantum channel capacity; Quantum Fourier Transform; Quantum entanglement distillation.

Textbook: Quantum Computation and Quantum Information: 10th Anniversary Edition

Authors: Michael A. Nielsen, Isaac L. Chuang

ISBN-10: 9781107002173

References: Printed lecture notes will be provided.

Prerequisites: Permission of the instructor

Corequisites: None

Type: Elective

Prerequisites Topics:

- Boolean algebra
- Probability Theory

Course Outcomes:

- 1. State the axioms of quantum mechanics [Remember]
- 2. Explain quantum superposition, entanglement, teleportation, and the uncertainty principle [Understanding]
- 3. Evaluate algorithms in sense of classical and quantum complexity classes [Evaluating]
- 4. Analyze classical-quantum and quantum-quantum channels [Analyzing]
- 5. Design CSS encoding and decoding mechanisms [Creating]
- 6. Understand quantum Fourier transforms and applications in quantum key generation [Understanding]

Knight Foundation School of Computing and Information Sciences COT 5603

Advanced Quantum Information and Probability

Outline

Topic	No. of Lecture Hours	Outcome
 Review of Probability and Linear Algebra Matrices, matrix operations, and traces Random Variables Joint Distributions and Conditional Distributions Tensor Products 	3	1
 Axioms of Quantum Mechanics Quantum States and State Spaces State Evolution Projective and General Measurements Composite State Spaces 	3	2
 Quantum Protocols and Complexity Classes Classical vs Quantum Complexity Classes Quantum Security and Introduction to Post-Quantum Cryptography 	5	3,6
 Quantum Information and Capacity Uncertainty Principle and Quantum Ensemble Purification Quantum Conditional Probability Von Neuman Entropy Quantum Channel Capacity 	3	4
 Quantum Error Correction Bit-flip channel and Phase flip-channel CSS Code Decoding CSS Code 	6	4,5
 Quantum Fourier Transform and Applications Quantum Fourier Transform Shor's Quantum Algorithm for Finding Order Classical Post-Processing 	5	5
 Quantum Entanglement Distillation and Key Generation Classical Correlation Distillation Entanglement Distillation Applications in Key Generation 	5	6

Knight Foundation School of Computing and Information Sciences COT 5603

Advanced Quantum Information and Probability

Course Outcomes Emphasized in Laboratory Projects / Assignments

Outcome	Number of Weeks
Linear Algebra and Probability Theory Review	v 1.5
Exercises	
Outcomes: 1	
Axioms of Quantum Mechanics Exercises	3
Outcomes: 2	
Quantum Algorithms and Complexity Exercise	es 3
Outcomes: 3	
Quantum Capacity and Coding Exercises	3.5
Outcomes: 4,5	
Quantum Fourier Transform Exercises	4
Outcomes: 6	