01MAST- Astronomía clásica e instrumentación astronómica

Marta González García (marta.gonzalezg@campusviu.es)

Sesión 3 Actividad Guiada 1: Stellarium

Índice

- Dudas, cuestiones que tengáis
- Bibliografía repaso
- Introducción
- Uso de Stellarium
- AG 1

0 Dudas y cuestiones

1 Referencias repaso

Referencias matemáticas

- **Análisis/Cálculo:** Edwards, B. y Larson, R. (2017). Matemáticas I: cálculo diferencial. Cengage Learning. https://elibro-net.universidadviu.idm.oclc.org/es/lc/universidadviu/titulos/108520 (hay también matemáticas II, III, etc.)
- **Geometría/Trigonometría:** Oteyza de Oteyza, E. D. Lam Osnaya, E. y Hernández Garciadiego, C. (2015). Geometría analítica y trigonometría (3a. ed.). Pearson Educación. https://elibro-net.universidadviu.idm.oclc.org/es/ereader/universidadviu/38014?page=1

Introducción

Guión de la actividad

Presentación de clase

Recursos y materiales -> materiales del profesor

Clase de hoy

Videoconferencias -> Grabaciones

Programa stellarium

https://stellarium.org/es/

Linux

snap

64 bit; AppImage

Mac OS X Window 10.12+; 64 32 bit

Window 64 bit

Stellarium Web

WIKI, MANUAL...

Objetivos

- -Aprender a trabajar con programas tipo planetario
- -Familiarizarse con el manejo de Stellarium
- -Comprender el movimiento de la bóveda celeste de manera visual
- -Obtener información relevante sobre el cielo y fenómenos celestes

Astronomía de Posición

Esfera (bóveda) celeste

- Esfera/bóveda celeste: lugar geométrico esférico e imaginario de proyección de todos los astros
- →Es lo que nos muestra Stellarium
- Nuestra esfera celeste depende de: <u>lugar</u> y <u>momento</u> de observación

Astronomía de Posición

Esfera (bóveda) celeste

- <u>Lugar</u>: importante la latitud de observación
- Momento: importante rotación (hora observación) y traslación (fecha observación) de la Tierra alrededor del Sol

Rotación terrestre en torno a su eje

Traslación terrestre en torno al Sol

Inclinación del eje

Debido a la inclinación del eje de rotación de la Tierra respecto al plano de la eclíptica, hay estrellas que nunca se ponen: estrellas circumpolares.

$$\delta > 90^{\circ} - \varphi$$
$$\delta < -90^{\circ} - \varphi$$

Oblicuidad de la eclíptica, $\varepsilon = 23^{\circ}27'$

Coordenadas, planos fundamentales, polos y meridianos

Zenit/Nadir (vertical del lugar)
Horizonte

Polos celestes (eje del mundo) Ecuador

Uso de stellarium

Actividad Guiada 1

Instrucciones

- Acceder al guión
- Practicar con los ejercicios en la sección 3
- Realizar los ejercicios de la sección 4 que son los que se deben entregar. Importante dar explicaciones de todo.
- Entregar un PDF en la plataforma dentro de la fecha indicada.

PRÓXIMA SESIÓN

18/11/21

Videoconferencia Teoría II

- Física de radiación
- Distancias, geometría y radiación
- Telescopios e instrumentos

Gracias!

Dudas?