

DELPHION

SUGI 0158

SELECTED

Search Results

RESEARCH

PRODUCTS

INSIDE DELPHION

INPADOC YOKOGAWA SEMI SOURCE

My Account

Search: Quick/Number Boolean Advanced Derwent

Help

The Delphion Integrated View

Get Now: PDF | More choices...Tools: Add to Work File: Create new Work File Add View: INPADOC | Jump to: Top Go to: Derwent Email this to a friend

>Title: JP08338546A2: PRESSURE TYPE FLOW CONTROL DEVICE

Derwent Title: Pressure type flow rate control appts. used in semiconductor and chemical manufacturing plants - adjusts orifice upstream side pressure by opening and closing control valve, to control orifice downstream side flow rate [\[Derwent Record\]](#)

Country: JP Japan
Kind: A (See also: [JP03291161B2](#))

Inventor: NISHINO KOJI;
IKEDA SHINICHI;
MORIMOTO AKIHIRO;
MINAMI YUKIO;
KAWADA KOJI;
DOI RYOSUKE;
FUKUDA HIROYUKI;

[View Image](#)

1 page

Assignee: FUJIKIN:KK
[News, Profiles, Stocks and More about this company](#)

Published / Filed: 1996-12-24 / 1995-06-12

Application Number: [JP1995000144722](#)

IPC Code: [F16K 17/22](#);

Priority Number: 1995-06-12 [JP1995000144722](#)

Abstract: PURPOSE: To heighten the control accuracy of a flow control device and to reduce the size and cost of the device.

CONSTITUTION: A pressure type flow control device is adapted to control the flow of a fluid by keeping the orifice upstream side pressure about two or more times as large as the downstream side pressure. The flow control device comprises an orifice 5, a control valve 2 disposed on the upstream side thereof, a pressure detecting device 3 disposed between the control valve 2 and the orifice 5, and an arithmetic control device 6 for computing the flow from the detected pressure P1 of the pressure detecting device 3 as $Q_c = K P_1$ (wherein K is a constant) and outputting a difference between a flow command signal Q_s and the computed flow Q_c as a control signal Q_y to the driving part of the control valve 2. The pressure P1 is regulated by opening and closing the control valve 2 to control the downstream side flow of the orifice 5.

COPYRIGHT: (C)1996,JPO

INPADOC Legal Status: None [Get Now: Family Legal Status Report](#)

Designated Country: CH DE FR GB IT LI NL

Family: [Show 14 known family members](#)

Forward References: [Go to Result Set: Forward references \(2\)](#)

PDF	Patent	Pub.Date	Inventor	Assignee	Title
<input checked="" type="checkbox"/>	US6450190	2002-09-17	Ohmi; Tadahiro	Ohmi; Tadahiro	Method of detecting abnormalities in flow rate in pressure-type flow controller
<input checked="" type="checkbox"/>	US6158679	2000-12-12	Ohmi; Tadahiro	Fujikin Incorporated	Orifice for pressure type flow rate control unit and process for manufacturing orifice

Other Abstract Info: [DERABS G97-036302](#)

[Nominate this for the Gallery...](#)

Copyright © 1997-2005 The Thomson Corporation

[Subscriptions](#) | [Web Seminars](#) | [Privacy](#) | [Terms & Conditions](#) | [Site Map](#) | [Contact Us](#) | [Help](#)

(19) 日本国特許庁 (J P)

(12) 公開特許公報 (A)

(11) 特許出願公開番号

特開平8-338546

(43) 公開日 平成8年(1996)12月24日

(51) Int.Cl.⁶
F 16 K 17/22

識別記号 執内整理番号

P I
F 16 K 17/22

技術表示箇所

審査請求 未請求 請求項の数4 OL (全 8 頁)

(21) 出願番号

特願平7-144722

(22) 出願日

平成7年(1995)6月12日

(71) 出願人 390033857

株式会社フジキン

大阪府大阪市西区立売堀2丁目3番2号

(72) 発明者 西野 功二

大阪府大阪市西区立売堀2丁目3番2号

株式会社フジキン内

(72) 発明者 池田 信一

大阪府大阪市西区立売堀2丁目3番2号

株式会社フジキン内

(72) 発明者 森本 明弘

大阪府大阪市西区立売堀2丁目3番2号

株式会社フジキン内

(74) 代理人 弁理士 杉本 丈夫 (外1名)

最終頁に続く

(54) 【発明の名称】 圧力式流量制御装置

(52) 【要約】

【目的】 流量制御装置の制御精度を高めると共に、装置の小形化、低コスト化を達成する。

【構成】 オリフィス上流側圧力を下流側圧力の約2倍以上に保持して流体の流量制御を行なう圧力式流量制御装置に於いて、オリフィスと、その上流側に設けたコントロール弁と、コントロール弁とオリフィス間に設けた圧力検出器と、圧力検出器の検出圧力P_cから流量をQ_c=K_cP_c (但しK_cは定数)として演算すると共に、流量指令信号Q_sと演算流量Q_cとの差を制御信号Q_yとしてコントロール弁の駆動部へ出力する演算制御装置とから装置を構成し、コントロール弁を開閉して圧力P_cを調整し、オリフィス下流側流量を制御する。

(2)

特開平8-338546

1

【特許請求の範囲】

【請求項1】オリフィスの上流側圧力P₁を下流側圧力P₂の約2倍以上に保持した状態で流体の流量制御を行なう圧力式流量制御装置に於いて、オリフィス(5)と、オリフィス(5)の上流側に設けたコントロール弁(2)と、コントロール弁(2)とオリフィス(5)間に設けた圧力検出器(3)と、圧力検出器(3)の検出圧力P₃から流量Q_cをQ_c=K·P₁（但しKは定数）として演算すると共に、流量指令信号Q_dと前記演算した流量信号Q_cとの差を制御信号Q_yとして前記コントロール弁(2)の駆動部(14)へ出力する演算制御装置(6)とから構成され、コントロール弁(2)の開閉によりオリフィス上流側圧力P₁を調整し、オリフィス下流側流量を制御することを特徴とする圧力式流量制御装置。

【請求項2】オリフィス(5)を交換自在に取付けする構成とした請求項1に記載の圧力式流量制御装置。

【請求項3】コントロール弁(2)の弁本体(12)に圧力検出器(3)の取付孔(12d)及びオリフィス(5)の取付孔(12f)を夫々設け、コントロール弁(2)の弁本体(12)をロック化して成る請求項1に記載の圧力式流量制御装置。

【請求項4】オリフィス(5)をコントロール弁(2)の弁本体(12)のオリフィス取付孔(12f)内へ交換自在に接着して成る請求項3に記載の圧力式流量制御装置。

【発明の詳細な説明】

【0001】

【産業上の利用分野】本発明は気体等の流量制御装置の改良に関するものであり、主として半導体製造設備や化学品製造設備等に於いて利用されるものである。

【0002】

【従来の技術】半導体製造設備等のガス流量制御装置としては、従前から所謂マスフローコントローラーが多く利用されている。

【0003】しかし、このマスフローコントローラーには①熱式流量センサの場合は、応答速度が比較的遅いこと、②低流量域に於ける制御精度が悪い等の問題があること、③作動上トラブルが多くて安定性に欠けること、④製品価格が高い等、交換用部品も高価であってランニングコストが高くつくこと等の様々な不都合が存在する。

【0004】一方、上述の如きマスフローコントローラーの問題点を避けるものとして、図12に示す如き構成の差圧式流量制御装置が多く用いられている。

【0005】即ち、当該差圧式流量制御装置は、オリフ

10

2

として流量制御弁33へ出力し、前記流量偏差Q_yを零にする方向に流量制御弁33を開・閉制御するものである。

【0006】しかし、当該差圧式流量制御装置には、①検出流量Q_cのレンジ範囲が圧力検出器31、32のレンジ範囲の1/2未となるため、検出流量Q_cの検出精度が低下すること、②流量測定精度を高めるためには、オリフィス上・下流側に比較的長い直管路を設けて流体の流れを層流にする必要があり、必然的に装置が大型化すること、③圧力検出器を2基必要とするため、製造コストの引下げを計り難いこと等の問題が残されている。

20

【0007】

【発明が解決しようとする課題】本願発明は、前記マスフローコントローラーや差圧式流量制御装置に於ける上述の如き問題、即ち①装置としての総合的な検出精度が低いこと、及びの装置の小型化や製造コストの低減が困難なこと等の問題の解決を直接の目的とするものであり、一基の圧力検出器の検出圧力を基準にし、当該検出圧力値に正比例する形で検出流量を演算することにより、高精度な流量制御が行え、しかも小型で且つ安価に製造できるようにした圧力式流量制御装置を提供するものである。

【0008】

【課題を解決するための手段】而して、ノズルを通る気体流の特徴の一つとして、ノズル前後の気体の圧力比P₂/P₁が気体の臨界圧力比（空気や窒素等の場合は約0.5）以下になると、ノズルを通る気体の流速が音速となってノズル下流側の圧力変動が上流側に伝播しないため、ノズル上流側の状態に相応した安定した質量流量を得ることができると云う事象がある。

30

【0009】但し、ノズルの場合には、気体のもつ粘性のためにノズル断面積と音速の積が直接に実際の気体流量を表すことにはならず、気体の流量演算を行うにはノズルの形態によって定まる流出係数を求めなければならないことは勿論である。

40

【0010】そのため、本願発明者等は、各種のノズル形態と流体（ガス）について、その流出係数を求める試験を繰り返し行って来たが、その試験過程に於いて、前記気体の圧力比P₂/P₁が気体の臨界圧力比以下の場合には下流側の圧力変動が上流側に伝播しないと云う特性に着目し、気体流通路をノズルに代えて微小オリフィスとした場合のオリフィス形態と気体流量及びオリフィス上流側の気体圧力P₁と気体流量の関係について、各種の測定試験を行った。その結果、気体圧力比P₂/P₁が気体の臨界圧力比以下である場合には、板状の微小オリフィスを流通する気体流量は、微小オリフィスの径

(4)

5

力される。

【0031】即ち、演算流量信号 Q_c が流量指令信号 Q_s より大きい場合には、コントロール弁2を閉鎖する方向に、また、前記 Q_c が Q_s より小さい場合にはコントロール弁2を開閉する方向に弁駆動部14が作動され、 $Q_c = Q_s$ となるようにコントロール弁2の開度が自動制御される。

【0032】尚、本発明に於いては、前記オリフィス5の上流側の気体圧力 P_1 と下流側の圧力 P_2 との間に、 P_2 / P_1 が約0.5より小さいこと、即ちオリフィス5の上流側圧力 P_1 が下流側圧力 P_2 の約2倍より大きいと云う条件が、常に成立していなければならないことは勿論である。

【0033】そのため、図1の点線で示す如く、オリフィス5の上流側気体圧力 P_1 と下流側気体圧力 P_2 とを反転増幅器10へ入力し、圧力 P_1 と圧力 P_2 の大きさが逆転したような場合（即ち、逆流を生じる状態になった場合）や、或いは $P_2 / P_1 > 0.5$ の状態になった場合（即ち、逆流は生じないものの高精度な流量制御ができなくなってしまった場合）には、コントロール弁2を自動的に閉鎖するようにしてもよい。

【0034】図2及び図3は、本発明に係る装置の演算制御装置6を除いた部分の一例を示す縦断面図と横断面図であり、また、図4及び図5は圧電素子型駆動部の縦断面図と横断面図である。尚、図2乃至図4に於いて、2はコントロール弁、3は圧力検出器、5はオリフィス、9はオリフィス対応弁、11はガス取出し用継手、12は弁本体、13はダイヤフラム、14は駆動部である。

【0035】前記コントロール弁2は、流体入口12a、弁座12b、弁室12c、圧力検出器取付孔12d、流体出口12e等を備えたステンレス鋼製の弁本体12と、ステンレス鋼やニッケル、コバルト合金製のダイヤフラム13と、ダイヤフラム13を下方へ押圧する圧電素子型駆動部14等から形成されている。

【0036】また、前記ダイヤフラム13は皿バネ15の弾性によって常時下方へ押圧されており、弁座2bへ接続した状態となっている。

【0037】更に、圧電素子14aへの入力によりこれが伸長すると、圧電素子支持材19を介してダイヤフラム押え16が上方へ引き上げられる。その結果、ダイヤフラム13が上方へ弹性復帰し、弁座2bから離間することにより、弁が開状態となる。

【0038】尚、本実施例では図4に示すように変位置 $1.6 \mu\text{m}$ 、 $5 \text{mm} \times 5 \text{mm} \times 1.8 \text{mm}$ のピエゾ素子ユニット14aを3個直列状に組み合せることにより、圧電

特開平8-338546

6

【0039】また、前記圧電素子支持材19の熱膨張率は圧電素子（ピエゾ素子）の熱膨張率にはほぼ近いスチール材により形成されている。

【0040】図6は圧力検出器3の取付部の詳細を示すものであり、本実施例では弁本体12の下面側に設けた取付孔12d内へ半導体歪ゲージから成る圧力検出器3が、押えナット21によりメタルOリング22を介して気密状に取付けられている。

【0041】尚、図6に於いて、23はスリーブ、24はペアリングであり、また前記メタルOリング22に代えてメタルCリングやメタルガスケットを用いることができる。

【0042】更に、本実施例では、前記圧力検出器取付孔12dを弁本体12の弁室12cより僅かに下流側寄りの底面に形成するようとしているが、図7に示す如く弁本体12の下面側に弁室12cと対向状に取付孔12dを穿設するようにしててもよい。

【0043】前記オリフィス5は図2に示す如く、前記圧力検出器3より下流側に設けられており、本実施例では、メタルダイヤフラム型のオリフィス対応弁9の弁本体9aに形成した流体入口9b内に配設され、取付ねじ25を締込むことによりペアリング24を介して固定されている。尚、図2及び図3に於いて、9cはオリフィス対応弁9の流体出口である。

【0044】図8は、オリフィス5の取付位置をコントロール弁2の弁本体12側に設けた例を示すものであり、取付構造そのものは、前記オリフィス対応弁9の弁本体9a側に設けるようにした図2の場合と、全く同一である。

【0045】図9はオリフィス5の更に他の取付例を示すものであり、オリフィス5そのものを交換自在に取付けしたものである。

【0046】即ち、弁本体12のオリフィス取付孔12f内にリング状の当り面を形成すると共に、オリフィス挿入孔12gを流体通路と垂直方向に形成し、プレート状のオリフィス5を挿入孔12gを通して上方より取付孔12f内へ挿入すると共に、締付押え体26を締込むことにより、ペアリング27を介してオリフィス5を固定するように形成されている。

【0047】また、流路範囲に応じてオリフィス5を取り替える場合には、前記押え体26をゆるめ、オリフィス5を差し替えたあと、再度押え体26を締込みする。

【0048】本発明では、コントロール弁2の弁本体12をロック化し、これにオリフィス取付孔12fや圧力検出器取付孔12dを夫々一体的に形成する構成としているため、所謂流量調整装置1の内部に於ける流体通

(5)

特閱平8-338546

9

[図5] 図4のイーイ複断面図である。

【図6】圧力式流量制御装置の圧力検出器の取付部を示す部分縦断面図である。

【図7】圧力式流量制御装置の他の実施例を示す横断面図である。

【図8】オリフィスをコントロール弁の弁本体に設けた場合の他の例を示す部分縦断面図である。

【図9】オリフィスをコントロール弁の弁本体に設けた場合の更に他の例を示す部分縦断面図である。

【図10】本発明に係る圧力式流量制御装置の流量制御特性を示すものである（オリフィスの下流側圧力が真空の場合）。

【図11】本発明に係る圧力式流量制御装置の流量制御特性を示すものである（オリフィスの下流側圧力が大気圧の場合）。

【図12】従前の差圧式流量制御装置のブロック線図である

*ある。

【符号の説明】

1は流置制御装置、2はコントロール弁、3は圧力検出器、4は温度検出器、5はオリフィス、6は演算制御装置、7a・7bは増幅器、8a・8bはA/D変換器、9はオリフィス対応弁、9aは弁本体、9bは流体入口、9cは流体出口、10は反転増幅器、11はガス取り出し用維手、12は弁本体、12aは流体入口、12bは弁座、12cは弁室、12dは圧力検出器取付孔、12eは流体出口、12fはオリフィス取付孔、12gはオリフィス挿入孔、13はダイヤフラム、14は駆動部、14aは圧電素子、15は皿バネ、16はダイヤフラム抑え、17はベース本体、18はポール、19は圧電素子支持材、20はストローク調整ねじ、21は押えネット、22はOリング、23はスリーブ、24・27はペアリング、25は取付ねじ、26は適付損失体。

[1]

[图3]

[图6]

(7)

特開平8-338546

【図2】

【図6】

【図8】

【図7】

【図9】

【図10】

(8)

特開平8-338546

【図11】

【図12】

フロントページの続き

(72)発明者 皆見 幸男

大阪府大阪市西区立売堀2丁目3番2号
株式会社フジキン内

(72)発明者 川田 幸司

大阪府大阪市西区立売堀2丁目3番2号
株式会社フジキン内

(72)発明者 土肥 亮介

大阪府大阪市西区立売堀2丁目3番2号
株式会社フジキン内

(72)発明者 福田 浩幸

大阪府大阪市西区立売堀2丁目3番2号
株式会社フジキン内