Professional Readiness For Innovative, Employability And Entrepreneurship HX 8001

PROJECT TITLE:

Exploratory Analysis of Rainfall Data in India for Agriculture

DOMAIN: Applied Data Science

TEAM MEMBERS:

V.LOGESH (Team Leader)
P.MANOJKUMAR
S.ASHWIN
T.KEERTHIDHARAN

TEAM ID: PNT2022TMID28004

DEPARTMENT: INFORMATION TECHNOLOGY

COLLEGE: MEENAKSHI SUNDARARAJAN ENGINEERING

COLLEGE, CHENNAI-600024.

INSTITUTION MENTOR: K.GAYATHRI

INDUSTRIAL MENTOR: LALITHA GAYATHRI

1. INTRODUCTION

- 1.Project Overview
- 2.Purpose

2. LITERATURE SURVEY

- 1.Existing problem
- 2.References
- 3. Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- 1.Empathy Map Canvas
- 2.Ideation & Brainstorming
- 3. Proposed Solution
- 4.Problem Solution fit

4. REQUIREMENT ANALYSIS

- 1.Functional requirement
- 2.Non-Functional requirements

5. PROJECT DESIGN

- 1.Data Flow Diagrams
- 2. Solution & Technical Architecture
- 3.User Stories

6. PROJECT PLANNING & SCHEDULING

- 1. Sprint Planning & Sprint Delivery Schedule
- 2.Reports from JIRA

7. CODING & SOLUTIONING (Explain the features added in the project along with code)

- 1.Feature 1
- 2.Feature 2
- 3. Database Schema (if Applicable)

8. TESTING

- 1.Test Cases
- 2.User Acceptance Testing

9. RESULTS

- 1.Performance Metrics
- 10. ADVANTAGES & DISADVANTAGES
- 11. CONCLUSION
- 12. FUTURE SCOPE

13. APPENDIX

Source Code &GitHub

Project Demo Link

1.INTRODUCTION

1.1 Project Overview

Rainfall has been a majorconcern these days. Weather conditions have been changingfortime being. Rainfallforecasting is important otherwise, it may lead to many disasters. Irregularheavy rainfallmay lead to the destruction of crops, heavy floods that can cause harm to humanlife. It is important to exactly determine the rainfall for effective use of water resources, cropproductivity, and pre-planning of water structures. This comparative study is conducted concentrating on the following aspects: modeling inputs, Visualizing the data, modeling methods, and pre-processing techniques. The results provide a comparison of various evaluation metrics of these machinelearning techniques andtheir reliability to predict rainfall by analyzing the weather data.

1.2 Purpose

The main purpose of our project is to detect the rainfall detection in Agricultural area inIndia with a help of machine learning. To design a disaster management system by forecasting a flood event to control flood risk by recommending an evacuation area fromflood hazard areas which ultimately helps to manage theenvironment and water resource system. This also serves a purpose of the Early warning system by training a model and selecting the best prediction algorithm among the classifiers. The occurrence of flash floods can cause catastrophic damage to the society. They first mainly affect the people living nearto the riverbeds. Evacuating them from the hazard areas and providing them the shelter they needed. With the irregular change in climate patterns, it's been difficult to predict the occurrence of floods using traditional methods leading to massive destruction. Thus to copewith flash floods and to handle critical situations new methodologies are invented to overcome such difficulties.

2. LITERATURE SURVEY

2.1 Existing problem

A bad rainfall prediction can affect the agriculture mostly framers as their whole crop is depend on the rainfall and agriculture is always an important part of every economy. So, makingan accurate prediction of the rainfall somewhat good. Now climate change is the biggest issue all over the world. Peoples are working on to detect the patterns in climate change as it affects the economy in production to infrastructure. Soas in rainfall also making prediction of rainfall is a challenging task with a good accuracy rate. Making prediction on rainfall cannot be done by the traditional way, so scientist is using machine learning and deep learning to find out the pattern for rainfall prediction.

2.2 Refrences

PROJECT TITLE	AUTHOR	OBJECTIVE/OUTCOME
Rainfall Prediction using different Data Mining Techniques (March,2022)	Ankit Rasam Damini Pandare Shruti Narkar Charmi Chaniyara	This literature review did serve its purpose of answering some research questions that usually comes across every time someone tries to study about rainfall prediction using different data mining techniques or is fairly new into the field.
Rainfall Prediction Using Machine Learning Models (January,2022)	Eslam A. Hussein Mehrdad Ghaziasgar Christopher Thron Mattia Vaccari	This review serves as detailing the methods used to forecast rainfall, one of the important contributions of this chapter is to demonstrate various pitfalls that lead to an overestimation in model performance of the ML models in various papers.
Exploratory Data Analysis OfIndian Rainfall Data (Oct25,2019)	Anusha Gajinkar.	This Study shows that, India has two monsoon rainfall season one is north west monsoon and second one is south east monsoon.

2.3 Problem Statement Definition

Weather conditions changes then and often. This can lead to Severe threats to all the living beings including human beings. So predicting weather, especially Irregular heavy rainfall, Droughts can cause huge economic losses. This also decreases crop productivity and may lead into Food shortage. Predicting the Rainfall plays a vital role in our life time. Farmers will get benefit due to this

and Our country's GDP will rise. Collection of previous 10 year's data may give us an idea about the pattern of Rainfall. Using all these Data's, Appropriate farming activities can be performed. Water is the vital mineral for a life. So, these data's can help us in predicting Rainfall during summer days to save water. Agriculture definitely requires gallons of waters.

3. IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

3.2 Ideation and Brainstorming

3.3 Proposed Solution

S.No.	Parameter	Description
1.	Problem Statement (Problem to	Heavy Rainfall may cause huge threat to
	be solved)	all living beings, especially in the field of
		Agriculture. Droughts could do the same
		too. It may destroy the crops and cause
		huge loss to Farmers and dependent field
		workers. Predicting Rainfall is a major
		task in bothsummer and Rainy season.
2.	Idea / Solution description	Analysing the previous 10 years data's
		cangive us a rough idea about Rainfall
		pattern. UsingData Science, we could
		solve this and predict the Rainfall up
	Name to Aller Aller	tosome good extent.
3.	Novelty / Uniqueness	AI, IOT and so many other fields may require different sensors. We are not
		going to use any kind of equipment. Time
		of prediction is very less and easywith
		affordable cost.
4.	Social Impact/ Customer	Farmers (theysave crops and money),
	Satisfaction	Vegetable sellers(they knows about
		vegetable stocks and its emergency)
5.	Business Model (Revenue	This could cost really low as a person
	Model)	should develop knowledge in
		Datascience and probably a gadget to
		developthis.However, deploying as an
		App
		attached with otherfacilities may costan
6.	Carlability of the Calutian	extra charge.
б.	Scalability of the Solution	Farmers, Vegetable sellers, Citizens

3.4 Problem Solution Fit

Project Title:

Exploratory Analysis of Rain Fall Data in India for Agriculture Project Design Phase-I - Solution Fit Template Team ID: PNT2022TMID28004

1. CUSTOMER SEGMENT(S) 6. CUSTOMER CONSTRAINTS CC 5. AVAILABLE SOLUTIONS AS Explore AS, differentiate fine Time limitation CS, Cost limitation Internet Farmers Negative impacts of Knowledge about · Agriculture Sectors climate fit into applications and Social Public media · Traditional devices ი ი 2. JOBS-TO-BE-DONE / PROBLEMS 9. PROBLEM ROOT CAUSE 7. BEHAVIOUR Focuses on the nature of Climate changes decision making by farmers Dryland Agriculture · Global Warming and on the many influences Improve rain water Investment on necessary which affect such decisions irrigation and reduce capitals on improving water scarcity while agriculture farming. 3. TRIGGERS 10. YOUR SOLUTION 8. CHANNELS of BEHAVIOUR 8.1 ONLINE To build an idea or innovation to Significant necessities for predict weather to save water and Extract online & offline Applications for Agriculture an appropriate irrigation also the crops Sectors system considering rising · Standardized Customer Base water scarcity 4. EMOTIONS: BEFORE / AFTER · Reducing Post-harvesting 8.2 OFFLINE Identity strong loss, due to heavy rainfall Lack of stored water available in By analyzing a farmer's market dryland-rainfall harvesting contacts and strategies Your local newspapers and zonal magazines

4. REQUIREMENT ANALYSIS

4.1 Functional requirement

Following are the functional requirements of the proposed solution.

FR	Functional	Sub Requirement (Story / Sub-Task)
No.	Requirement(Epic)	
FR-1	User Registration	Registration through Form Registration
		through Gmail Registration
		throughLinkedIN
FR-2	User Confirmation	Confirmation via Email
		Confirmation via OTP
FR-3	Reliability	Theprediction will be provided by the systemerror-free.
FR-4	Performance	The expected output will be produces immediatelyto the user withoutmuch delay.
NFR-5	Availability	The system wouldbe available 24/7
NFR-6	Scalability	Thesystem would be available on web applicationand any user can login and use it without anydisruptions.

4.2 Non-Functional requirements

Following are the non-functional requirements of the proposed solution.

FR	Non-Functional	Description
No.	Requirement	
NFR-1	Usability	Can be used anywhere(remote villages to metropolitan cities), anybody (kids to old age)
NFR-2	Security	Security is given over the model, so the user can usethis with full trust. However, there are no personaldetails required to use this.
NFR-3	Reliability	Goodconnectivity and a supporting devicecanprovide goodresults upto an extent.
NFR-4	Performance	Thismodel can give a high accuracy prediction.

NFR-5	Availability	Anyperson can use this and this is an open-
		sourcemodel.

5.PROJECT DESIGN

5.1 DATA FLOW DIAGRAM:

5.2 SOLUTION AND TECHNICAL ARCHITECTURE

Solution Architecture:

Solution architecture is a complex process – with many sub-processes – that bridges the gap between business problems and technology solutions. Its goals are to:

- Find the best tech solution to solve existing business problems.
- Describe the structure, characteristics, behavior, and other aspects of the software to project stakeholders.
- Define features, development phases, and solution requirements.
- Provide specifications according to which the solution is defined, managed, and delivered.

SOLUTION ARCHITECTURE

Technical Architecture:

The Deliverable shall include the architectural diagram as below and the information as per the table 1 & table 2Technology architecture associates application components from application architecture with technology components representing software and hardware components. Its components are generally acquired in the marketplace and can be assembled and configured to constitute the enterprise's technological infrastructure.

Table-1 : Components & Technologies:

S.NO	COMPONENTS	DESCRIPTION	TECHNOLOGY
1.	User interface	To anticipate thedata for rainfall,the user engageswith the prediction modelviaa website.	HTML, CSS, JavaScript
2.	Cloud Database	The model receives information from an IBM cloud database.	IBM Cloud DB, ibm_db(pyth onpackage)
3.	APL	used to expandservice to additional applications	Flask Application
4.	JWT&Sessions	Is employed to extend serviceto more applications	PyJWT, Flask Application
5.	Machine Learning Model	This model wascreated to forecast rainfallusing machine learning	Sklearn, Algorithms - DT & MLR

Table-2:Application Characteristics:

S.NO	CHARCTERITICS	DESCRIPTION	TECHNOLOGY
1.	Open-Source Frameworks	Backend Framework, CSSStyling framework, RelationalData base	PyJWT, Flask, IBM Cloud DB
2.	Security Implementations	Request authentication using JWT Tokens	HS-256, Encryptions, SSL Certs
3.	Scalable Architecture	Support for Multiple Sampleprediction using Excel File	File Pandas, Numpy
4.	Availability	Availability is increased by Distributed Servers in CloudVPS	IBM Cloud Hosting
5.	Performance	The applicationis expected to handle multiple predictions per second	Load Balancers, Distributed ServerS

Technical Architecture:

5.3 User Stories

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer	Registration/ Login	USN-1	As a user, I can register or login to create a dashboard for my processing	I can access my account/ dashboard	High	Sprint-1
	Dashboard	USN-2	Once I enter thedashboard I can input values for a singlesample prediction	I can predict for single sample	High	Sprint-1
Customer (Organization)		USN-3	Once I enter thedashboard I can input values for multiple sampleprediction	I can perform multiple sample prediction	Medium	Sprint-2
		USN-4	As a user I can get the predicted results	I can havedifferent forms of output	High	Sprint-1
		USN-5	As a user I can view the detailed report ofmy prediction	I can accessdeta ils ofmy process and prediction	Medium	Sprint-3
Developer	Settings	USN-6	As a developer I can accessdashboard's settings and view the APItoken	I can viewthe API token for creating request	Low	Sprint-4

6. PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Sprint Delivery Schedule

Product Backlog, Sprint Schedule, and Estimation

Use the below template to create product backlog and sprint schedule

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Point s	Priority	Team Members
Sprint-1	Rainfall PredictionML Model (Dataset)	USN-1	Weather Dataset Collection, Data preprocessing, Data Visualization.	5	High	Ashwin S, <u>Manojkumar</u> P
Sprint-1		USN-2	Train Model using Different machine learning Algorithms	5	High	Logesh V, Keerthidharan T
Sprint-1		USN-3	Test the model and give best	1 0	High	Ashwin S, Manojkumar P
Sprint-2	Front end	USN-4	Finalization of background and its requirements.	5	Medium	Logesh V, Keerthidharan T
Sprint-2		USN-5	Necessary input boxes designed to get input from the user	5	Medium	Ashwin S, Manojkumar P
Sprint-2		USN-6	Checking whether the data is valid and predicting accordingly to the model used	4	Medium	Ashwin S, Logesh V

Sprint-2	Dashboard	USN-7	Attractive dashboard for forecasting designed	6	Low	Logesh V, Keerthidharan T
Sprint-3	Rainfall Prediction	USN-8	User enter the location, temperature, humidity and other key factors	1 0	High	Ashwin S, <u>Manojkumar</u> P
Sprint-3		USN-9	Predict the rainfall and display the result	1 0	High	Ashwin S, , <u>Keerthidharan</u> T

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Point s	Priority	Team Members
Sprint-4	Testing	USN-10	Test the application	10	High	Ashwin S, <u>Manojkumar</u> P
Sprint-4	Deploy Model	USN-11	Deploy the model in IBM cloud to make userfriendly application	10	High	Logesh V, Keerthidharan T

Project Tracker, Velocity & Burndown Chart:

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date(Actual)
Sprint-1	20	6 Days	31Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-2	20	6 Days	05 Nov 2022	10 Nov 2022	20	10 Nov 2022
Sprint-3	20	6 Days	10 Nov 2022	13 Nov 2022	20	13 Nov 2022
Sprint-4	20	6 Days	13 Nov 2022	16 Nov 2022	20	16 Nov 2022

6.2 Reports from JIRA

7.CODING AND SOLUTIONING

Feature 1: To retrieve information from IBM cloud account using API Key

```
import requests import json
API_KEY = "PQBr9MBF7mFuSh2VVLfOE-liIA04VH-h5VEk8EfjFIuw"

token_response = requests.post('https://iam.cloud.ibm.com/identity/token', data={"apikey":
API_KEY, "grant_type": 'urn:ibm:params:oauth:grant-type:apikey'})

mltoken = token_response.json()["access_token"] print("ML Token",mltoken)
header = {'Content-Type': 'application/json', 'Authorization': 'Bearer' + mltoken
```

Feature 2: To get predictions when the user enters the values and connecting to the deployed ML model using scoring end point

```
def predict():
res = " "
# If a form is submitted
if request.method == "POST":
Location = request.form.get('Location') MinTemp = request.form['MinTemp'] MaxTemp =
request.form['MaxTemp'] Rainfall = request.form['Rainfall']
WindGustSpeed = request.form['WindGustSpeed'] WindSpeed9am =
request.form['WindSpeed9am'] WindSpeed3pm = request.form['WindSpeed3pm'] Humidity9am
= request.form['Humidity9am'] Humidity3pm = request.form['Humidity3pm'] Pressure9am =
request.form['Pressure9am'] Pressure3pm = request.form['Pressure3pm'] Temp9am =
request.form['Temp9am']
Temp3pm = request.form['Temp3pm'] RainToday = request.form.get('RainToday') WindGustDir
= request.form.get('WindGustDir') WindDir9am = request.form.get('WindDir9am') WindDir3pm
= request.form.get('WindDir3pm')
new row =
{'Location':Location,'MinTemp':MinTemp,'MaxTemp':MaxTemp,'Rainfall':Rainfall,'WindGustSp
eed':WindGustSpeed,'WindSpeed9am':WindSpeed9am,'WindSpeed3pm':WindSpeed3pm,'Hu
```

```
3pm':Pressure3pm,'Temp9am':Temp9am,'Temp3pm':Temp3pm,'RainToday':RainToday,'WindG
ustDir':WindGustDir,'WindDir9am':WindDir9am,'WindDir3pm':WindDir3pm}
print(new row) new df =
pd.DataFrame(columns=['Location','MinTemp','MaxTemp','Rainfall','WindGustSpeed','WindSpe
ed9am', 'WindSpeed3pm', 'Humidity9am', 'Humidity3pm', 'Pressure9am', 'Pressure3pm', 'Temp9a
m', 'Temp3pm', 'RainToday', 'WindGustDir', 'WindDir9am', 'WindDir3pm'])
new df = new df.append(new row,ignore index=True) labeled =
new df[['Location', 'MinTemp', 'MaxTemp', 'Rainfall', 'WindGustSpeed', 'WindSpeed9am', 'WindSp
eed3pm','Humidity9am','Humidity3pm','Pressure9am','Pressure3pm','Temp9am','Temp3pm','R
ainToday','WindGustDir','WindDir9am','WindDir3pm']]
X = labeled.values print(X)
payload scoring = {"input data": [{"field":
[['Location', 'MinTemp', 'MaxTemp', 'Rainfall', 'WindGustSpeed', 'WindSpeed9am', 'WindSpeed3pm
','Humidity9am','Humidity3pm','Pressure9am','Pressure3pm','Temp9am','Temp3pm','RainyTod
ay','WindGustDir','WindDir9am','WindDir3pm']], "values": X.tolist()}]}
response scoring =
requests.post('https://us-south.ml.cloud.ibm.com/ml/v4/deployments/73230b85-51ea-45d b-
baa7-e86b5d528fbe/predictions?version=2022-11-14',
ison=payload scoring,headers={'Authorization': 'Bearer ' + mltoken})
print("Scoring response") predictions = response scoring.json() print(predictions)
output = predictions['predictions'][0]['values'][0][0] print(output)
else:
output = "" if output == 1:
return redirect(url for('chance')) elif output == 0:
return redirect(url_for('nochance'))
return render_template("index.html", output = res)
```

Feature 3 : To navigate between pages

```
<div class="navbar">

    <div class="nav"><a href="">HOME</a></div>
<div class="nav"><a href=""{{ url_for('predict') }}">PREDICTOR</a></div>
<div class="nav"><a href="{{ url_for('help') }}">HELP</a></div>
<div class="nav"><a href="{{ url_for('contact') }}">CONTACT</a></div>

</div>
```

8.TESTING

8.1 Test Cases:

Test case ID	Feature Type	Comp	Test Scenario	Prerequisite	Steps To Execute	Test Data	Expected Result	Actual Result	Status	Com ments	TC for Automat ion(Y/N)	BUG ID	Executed by
HomePa ge_TC_0 01	UI	Home Page	Verify all the UI elements in Home page rendered properly	HTML	Enter URL and click go Verify all the UI elements displayed or not		All the UI elements rendered properly	Working as expected	Pass		N		Ghowdham kalyana sundaram
HomePa ge_TC_0 02	Functiona I	Home page	Verify the Data Entry page can be reachable.	HTML, CSS	1. click the predict tab in navigation bar. 2. Verify all the UI elements displayed or not.		User should navigate to Predictor page	Working as expected	Pass		N		Yuvaraj bharath

Predict_ Page_TC _003	UI	Predic t Page	Verify all the UI elements in Predict page rendered properly	HTML,CSS	Enter URL and click go Verify all the UI elements displayed or not		All the UI elements rendered properly	Working as expected	Pass	N	Madhu singh
PredictP age_TC_ 004	Functiona I	Predic t Page	Enter all the values and verify the prediction	Flask	1. Enter URL and click go 2. Enter the values for 17 attributes 3. Click Predict	NewCastl e 13.4 22.6 0.6 44 21 24 70 78 1007.7 1007.1 34 32 Yes WSW NNIW ESE	Redirect to correspon ding html page (chance/n o chance)	Working as expected	Pass	N	Raksith.R
OutputP age_TC_ 005	Functiona I	Chanc e Page	Verify whether it is redirected to chance page		1. Enter URL and click go 2. Enter the values and click predict button	Predictio n = 1	Redirect to chance page	Working as expected	Pass	N	Nixon christhuraj
					 If prediction equals one, chance page is displayed. 						
OutputP age_TC_ 006	Functiona 	No chanc e Page	Verify whether it is redirected to no chance page		1. Enter URL and click go 2. Enter the values and click predict button 3. If prediction equals zero, no chance page is displayed.	Predictio n = 0	Redirect to no chance page	Working as expected	Pass	N	Ghowdham kalyana sundaram

S.NO	Test Scenerios	
1	Verify all the UI elements in Home page rendered properly.	
2	Verify the Data Entry page can be reachable.	
3	Verify all the UI elements in Predict page rendered properly	
4	Enter all the values and verify the prediction	
5	Verify whether it is redirected to chance page	
6	Verify whether it is redirected to no chance page	

8.2 USER ACCEPTANCE TESTING

1.Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the Project Exploratory Analysis of Rainfall data in India for Agriculture at the time of the release to User Acceptance Testing (UAT)

2.Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	0	0	0	0	0
Duplicate	0	0	0	0	0
External	0	0	0	0	0
Fixed	0	0	0	0	0
Not Reproduced	0	0	0	0	0
Skipped	0	0	0	0	0
Won't Fix	0	0	0	0	0
Totals	0	0	0	0	0

3.Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fail	Pass
Home Page	2	0	0	2
Predict Page	4	0	0	4

9.RESULTS

9.1 Performance Metrics

S.N	Parameter	Values	Screenshot					
0. 1.	Metrics	Classification Model: Random Forest Confusion Matrix –	Random forest Confusion matrix conf_matrix = metrics.confusion_matrix(y_test,t1) fig.ax = plt.subplots(figsize=(7.5,7.5)) ax.matsbu/conf_matrix_alpha=0.3)					
		[[31372 1448] [4726 4691]]	<pre>ax.matshow(conf_matrix_alpha=0.3) for i in range(conf_matrix_shape[0]): for j in range(conf_matrix_shape[1]): ax.text(x=j, y=i, s=conf_matrix[i,j], va ='center', ha='center',size='xx-larg plt.xlabel('Predictions',fontsize=18) plt.ylabel('Actuals',fontsize=18) plt.title('Confusion Matrix',fontsize=18)</pre>					
		Accuracy Score- 0.8538248455145963	plt.show() Confusion Matrix					
		Classification Report – Accuracy: 0.8538248455145963 Precision: 0.7641309659553673	o 31372 1448					
		Recall: 0.49814165870234683 F1-score: 0.6031113396760092	Yernov 4726 4691					
			Predictions					
			<pre>t1 = Rand_forest.predict(X_test_scaled)</pre>					
			<pre>print("Rand_forest:",metrics.accuracy_score(y_test,t1)) Rand_forest: 0.8538248455145963</pre>					
			<pre>print("*"*10, "Classification Report", "*"*10) print("-"*30) print(classification_report(y_test, t1)) print("-"*30)</pre>					
			********* Classification Report ************************************					
			precision recall f1-score support					
			0 0.87 0.96 0.91 32820 1 0.76 0.50 0.60 9417					
			accuracy 0.85 42237 macro avg 0.82 0.73 0.76 42237 weighted avg 0.85 0.85 0.84 42237					

Tune the Hyperparameter Tuning & **Hyperparameter Tuning** Model Validation Method -RandomizedSearchCV : from sklearn.ensemble import RandomForestRegressor rf = RandomForestRegressor(random_state = 42) from pprint import pprint # Look at parameters used by our current forest print('Parameters currently in use:\n') pprint(rf.get_params()) Parameters currently in use: {'bootstrap': True, 'ccp_alpha': 0.0, 'criterion': 'mse', 'max_depth': None, 'max_features': 'auto', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_impurity_split': None, 'min_samples_leaf': 1,
'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random state': 42. 'verbose': 0, 'warm_start': False}

```
n_estimators = [10,20,10,50]
max_features = ['auto', 'sgr']
max_features = ['auto', 'sgr']
max_features = ['auto', 'sgr']
max_features = [max_features]
min_samples_split = [4, 8, 10]
min_samples_last = [2, 4, 6]
bootstrap = [True, False]
# Covere true, False]
# Co
```

10. ADVANTAGES & DISADVANTAGES:

10.1 Advantages:

- As Weather conditions have been changing for the time being this helps people to know about the rainfall prediction
- •To avoid unnecessary floods by opening dams with the help of rainfall prediction
- Farmers and fisherman will get the most advantage of these rainfall details so that we they can plan accordingly
- •During the monsoon days it helps the government to find the evacuation areas to avoid loss of human life and costly things

10.2 Disadvantages:

- As the data was collected from limited places so it helps only for the people who located in those areas.
- •In case the data was collected being wrong the algorithm will produce the wrong prediction
- •As of now have collecting only a limited number of data set, In feature, we will make the algorithm to work worldwide

11. CONCLUSION:

Floods are the most common natural disasters and have widespread effect flood forecasting is hence an important research area and various possible solutions have been presented in literature to this end the input data were selected based on a correlation and uncertainty analysis of the rainfall and flood data and a classification based real-time flood prediction model was developed heavy rainfall that may occur in urban areas was analyzed in advance and the expected range of an urban flood was predicted in real time using the proposed model

12. FUTURE SCOPE:

With the change in climatic conditions and rainfall patterns this can lead to flash floods causing catastrophic damage to the environment. The system can be further enhanced with a flood prediction system along with rainfall prediction. Evacuation areas can be included along with the flood prediction system in such a way that the system recommends the user as well as to the community if there might be an occurrence of flood. A recommendation system integrated with the prediction system shall sound good for society.

13. APPENDIX

13.1 Source Code

Handle Missing Values

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import preprocessing
import scipy.stats as stats
from sklearn.model selection import train test split
from collections import Counter
from imblearn.over_sampling import SMOTE
from sklearn.metrics import accuracy score, confusion matrix, classification report
from sklearn import metrics
from sklearn.ensemble import RandomForestClassifier
from catboost import CatBoostClassifier
from xgboost import XGBClassifier
from sklearn.svm import SVC
from sklearn.linear model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
import joblib
df = pd.read csv("weatherAUS.csv")
pd.set option("display.max columns", None)
df
numerical_feature = [feature for feature in df.columns if df[feature].dtypes != 'O']
discrete_feature=[feature for feature in numerical_feature if len(df[feature].unique())<25]
continuous feature = [feature for feature in numerical feature if feature not in discrete feature]
categorical_feature = [feature for feature in df.columns if feature not in numerical_feature]
print("Numerical Features Count {}".format(len(numerical feature)))
print("Discrete feature Count {}".format(len(discrete feature)))
print("Continuous feature Count {}".format(len(continuous feature)))
print("Categorical feature Count {}".format(len(categorical_feature)))
```

```
df.isnull().sum()*100/len(df)
print(numerical_feature)
def randomsampleimputation(df, variable):
  df[variable]=df[variable]
  random_sample=df[variable].dropna().sample(df[variable].isnull().sum(),random_state=0)
  random_sample.index=df[df[variable].isnull()].index
  df.loc[df[variable].isnull(),variable]=random_sample
randomsampleimputation(df, "Cloud9am")
randomsampleimputation(df, "Cloud3pm")
randomsampleimputation(df, "Evaporation")
randomsampleimputation(df, "Sunshine")
df
corrmat = df.corr(method = "spearman")
plt.figure(figsize=(20,20))
#plot heat map
g=sns.heatmap(corrmat,annot=True)
```


for feature in continuous_feature:

```
data=df.copy()
sns.distplot(df[feature])
plt.xlabel(feature)
plt.ylabel("Count")
plt.title(feature)
plt.figure(figsize=(15,15))
plt.show()
```


#A for loop is used to plot a boxplot for all the continuous features to see the outliers for feature in continuous_feature:

df["RainTomorrow"] = pd.get_dummies(df["RainTomorrow"], drop_first = True)

```
for feature in continuous_feature:
    data=df.copy()
    sns.boxplot(data[feature])
    plt.title(feature)
    plt.figure(figsize=(15,15))

for feature in continuous_feature:
    if(df[feature].isnull().sum()*100/len(df))>0:
        df[feature] = df[feature].fillna(df[feature].median())

df.isnull().sum()*100/len(df)

discrete_feature

def mode_nan(df,variable):
    mode=df[variable].value_counts().index[0]
    df[variable].fillna(mode,inplace=True)

mode_nan(df,"Cloud9am")

mode_nan(df,"Cloud3pm")

df["RainToday"] = pd.get_dummies(df["RainToday"], drop_first = True)
```

df

```
for feature in categorical feature:
  print(feature, (df.groupby([feature])["RainTomorrow"].mean().sort values(ascending =
False)).index)
windgustdir = {'NNW':0, 'NW':1, 'WNW':2, 'N':3, 'W':4, 'WSW':5, 'NNE':6, 'S':7, 'SSW':8,
'SW':9, 'SSE':10,
    'NE':11, 'SE':12, 'ESE':13, 'ENE':14, 'E':15}
winddir9am = {'NNW':0, 'N':1, 'NW':2, 'NNE':3, 'WNW':4, 'W':5, 'WSW':6, 'SW':7, 'SSW':8,
'NE':9, 'S':10,
    'SSE':11, 'ENE':12, 'SE':13, 'ESE':14, 'E':15}
winddir3pm = {'NW':0, 'NNW':1, 'N':2, 'WNW':3, 'W':4, 'NNE':5, 'WSW':6, 'SSW':7, 'S':8,
'SW':9, 'SE':10,
    'NE':11, 'SSE':12, 'ENE':13, 'E':14, 'ESE':15}
df["WindGustDir"] = df["WindGustDir"].map(windgustdir)
df["WindDir9am"] = df["WindDir9am"].map(winddir9am)
df["WindDir3pm"] = df["WindDir3pm"].map(winddir3pm)
df["WindGustDir"] = df["WindGustDir"].fillna(df["WindGustDir"].value_counts().index[0])
df["WindDir9am"] = df["WindDir9am"].fillna(df["WindDir9am"].value_counts().index[0])
df["WindDir3pm"] = df["WindDir3pm"].fillna(df["WindDir3pm"].value_counts().index[0])
df.isnull().sum()*100/len(df)
df1 = df.groupby(["Location"])["RainTomorrow"].value counts().sort values().unstack()
df1
df1[1].sort values(ascending = False)
df1[1].sort values(ascending = False).index
len(df1[1].sort values(ascending = False).index)
location = {'Portland':1, 'Cairns':2, 'Walpole':3, 'Dartmoor':4, 'MountGambier':5,
    'NorfolkIsland':6, 'Albany':7, 'Witchcliffe':8, 'CoffsHarbour':9, 'Sydney':10,
    'Darwin':11, 'MountGinini':12, 'NorahHead':13, 'Ballarat':14, 'GoldCoast':15,
```

```
'SydneyAirport':16, 'Hobart':17, 'Watsonia':18, 'Newcastle':19, 'Wollongong':20,
    'Brisbane':21, 'Williamtown':22, 'Launceston':23, 'Adelaide':24, 'MelbourneAirport':25,
    'Perth':26, 'Sale':27, 'Melbourne':28, 'Canberra':29, 'Albury':30, 'Penrith':31,
    'Nuriootpa':32, 'BadgerysCreek':33, 'Tuggeranong':34, 'PerthAirport':35, 'Bendigo':36,
    'Richmond':37, 'WaggaWagga':38, 'Townsville':39, 'PearceRAAF':40, 'SalmonGums':41,
    'Moree':42, 'Cobar':43, 'Mildura':44, 'Katherine':45, 'AliceSprings':46, 'Nhil':47,
    'Woomera':48, 'Uluru':49}
df["Location"] = df["Location"].map(location)
df["Date"] = pd.to_datetime(df["Date"], format = "%Y-%m-%dT", errors = "coerce")
df["Date_month"] = df["Date"].dt.month
df["Date_day"] = df["Date"].dt.day
df
corrmat = df.corr()
plt.figure(figsize=(20,20))
#plot heat map
g=sns.heatmap(corrmat,annot=True)
```


sns.countplot(df["RainTomorrow"])

df

```
for feature in continuous_feature:
   data=df.copy()
   sns.boxplot(data[feature])
   plt.title(feature)
   plt.figure(figsize=(15,15))
```

for feature in continuous_feature:
 print(feature)

```
IQR=df.MinTemp.quantile(0.75)-df.MinTemp.quantile(0.25)
lower bridge=df.MinTemp.quantile(0.25)-(IQR*1.5)
upper_bridge=df.MinTemp.quantile(0.75)+(IQR*1.5)
print(lower_bridge, upper_bridge)
df.loc[df['MinTemp']>=30.45,'MinTemp']=30.45
df.loc[df['MinTemp']<=-5.95,'MinTemp']=-5.95
IQR=df.MaxTemp.quantile(0.75)-df.MaxTemp.quantile(0.25)
lower_bridge=df.MaxTemp.quantile(0.25)-(IQR*1.5)
upper_bridge=df.MaxTemp.quantile(0.75)+(IQR*1.5)
print(lower_bridge, upper_bridge)
df.loc[df['MaxTemp']>=43.5,'MaxTemp']=43.5
df.loc[df['MaxTemp']<=2.7,'MaxTemp']=2.7
IQR=df.Rainfall.quantile(0.75)-df.Rainfall.quantile(0.25)
lower_bridge=df.Rainfall.quantile(0.25)-(IQR*1.5)
upper_bridge=df.Rainfall.quantile(0.75)+(IQR*1.5)
print(lower bridge, upper bridge)
df.loc[df['Rainfall']>=1.5,'Rainfall']=1.5
df.loc[df['Rainfall']<=-0.89,'Rainfall']=-0.89
IQR=df.Evaporation.quantile(0.75)-df.Evaporation.quantile(0.25)
lower_bridge=df.Evaporation.quantile(0.25)-(IQR*1.5)
upper_bridge=df.Evaporation.quantile(0.75)+(IQR*1.5)
print(lower bridge, upper bridge)
df.loc[df['Evaporation']>=14.6,'Evaporation']=14.6
df.loc[df['Evaporation']<=-4.6,'Evaporation']=-4.6
IQR=df.WindGustSpeed.quantile(0.75)-df.WindGustSpeed.quantile(0.25)
lower_bridge=df.WindGustSpeed.quantile(0.25)-(IQR*1.5)
upper bridge=df.WindGustSpeed.quantile(0.75)+(IQR*1.5)
print(lower bridge, upper bridge)
```

```
df.loc[df['WindGustSpeed']>=68.5,'WindGustSpeed']=68.5
df.loc[df['WindGustSpeed']<=8.5,'WindGustSpeed']=8.5
IQR=df.WindSpeed9am.quantile(0.75)-df.WindSpeed9am.quantile(0.25)
lower_bridge=df.WindSpeed9am.quantile(0.25)-(IQR*1.5)
upper bridge=df.WindSpeed9am.quantile(0.75)+(IQR*1.5)
print(lower bridge, upper bridge)
df.loc[df['WindSpeed9am']>=37,'WindSpeed9am']=37
df.loc[df['WindSpeed9am']<=-11,'WindSpeed9am']=-11
IQR=df.WindSpeed3pm.quantile(0.75)-df.WindSpeed3pm.quantile(0.25)
lower bridge=df.WindSpeed3pm.quantile(0.25)-(IQR*1.5)
upper bridge=df.WindSpeed3pm.quantile(0.75)+(IQR*1.5)
print(lower bridge, upper bridge)
df.loc[df['WindSpeed3pm']>40.5,'WindSpeed3pm']=40.5
df.loc[df['WindSpeed3pm']<=-3.5,'WindSpeed3pm']=-3.5
IQR=df.Humidity9am.quantile(0.75)-df.Humidity9am.quantile(0.25)
lower bridge=df.Humidity9am.quantile(0.25)-(IQR*1.5)
upper bridge=df.Humidity9am.quantile(0.75)+(IQR*1.5)
print(lower_bridge, upper_bridge)
df.loc[df['Humidity9am']>=122,'Humidity9am']=122
df.loc[df['Humidity9am']<=18,'Humidity9am']=18
IQR=df.Pressure9am.quantile(0.75)-df.Pressure9am.quantile(0.25)
lower bridge=df.Pressure9am.quantile(0.25)-(IQR*1.5)
upper bridge=df.Pressure9am.quantile(0.75)+(IQR*1.5)
print(lower_bridge, upper_bridge)
df.loc[df['Pressure9am']>=1034.25,'Pressure9am']=1034.25
df.loc[df['Pressure9am']<=1001.05,'Pressure9am']=1001.05
IQR=df.Pressure3pm.quantile(0.75)-df.Pressure3pm.quantile(0.25)
```

```
lower bridge=df.Pressure3pm.quantile(0.25)-(IQR*1.5)
upper_bridge=df.Pressure3pm.quantile(0.75)+(IQR*1.5)
print(lower_bridge, upper_bridge)
df.loc[df['Pressure3pm']>=1031.85,'Pressure3pm']=1031.85
df.loc[df['Pressure3pm']<=998.65,'Pressure3pm']=998.65
IQR=df.Temp9am.quantile(0.75)-df.Temp9am.quantile(0.25)
lower bridge=df.Temp9am.quantile(0.25)-(IQR*1.5)
upper_bridge=df.Temp9am.quantile(0.75)+(IQR*1.5)
print(lower_bridge, upper_bridge)
df.loc[df['Temp9am']>=35.3,'Temp9am']=35.3
df.loc[df['Temp9am']<=-1.49,'Temp9am']=-1.49
IQR=df.Temp3pm.quantile(0.75)-df.Temp3pm.quantile(0.25)
lower_bridge=df.Temp3pm.quantile(0.25)-(IQR*1.5)
upper_bridge=df.Temp3pm.quantile(0.75)+(IQR*1.5)
print(lower_bridge, upper_bridge)
df.loc[df['Temp3pm']>=40.45,'Temp3pm']=40.45
df.loc[df['Temp3pm']<=2.45,'Temp3pm']=2.45
for feature in continuous feature:
  data=df.copy()
  sns.boxplot(data[feature])
  plt.title(feature)
  plt.figure(figsize=(15,15))
def qq_plots(df, variable):
  plt.figure(figsize=(15,6))
  plt.subplot(1, 2, 1)
  df[variable].hist()
  plt.subplot(1, 2, 2)
  stats.probplot(df[variable], dist="norm", plot=plt)
  plt.show()
```

```
for feature in continuous feature:
  print(feature)
  plt.figure(figsize=(15,6))
  plt.subplot(1, 2, 1)
  df[feature].hist()
  plt.subplot(1, 2, 2)
  stats.probplot(df[feature], dist="norm", plot=plt)
  plt.show()
df.to_csv("preprocessed_1.csv", index=False)
X = df.drop(["RainTomorrow", "Date"], axis=1)
Y = df["RainTomorrow"]
# scaler = RobustScaler()
# X scaled = scaler.fit transform(X)
X_train, X_test, y_train, y_test = train_test_split(X,Y, test_size =0.2, stratify = Y, random_state =
0)
y_train
sm=SMOTE(random state=0)
X_train_res, y_train_res = sm.fit_resample(X_train, y_train)
print("The number of classes before fit {}".format(Counter(y_train)))
print("The number of classes after fit {}".format(Counter(y_train_res)))
cat = CatBoostClassifier(iterations=2000, eval_metric = "AUC")
cat.fit(X train res, y train res)
y_pred = cat.predict(X_test)
print(confusion_matrix(y_test,y_pred))
print(accuracy_score(y_test,y_pred))
print(classification_report(y_test,y_pred))
metrics.plot_roc_curve(cat, X_test, y_test)
metrics.roc_auc_score(y_test, y_pred, average=None)
```

```
rf=RandomForestClassifier()
rf.fit(X_train_res,y_train_res)
y_pred1 = rf.predict(X_test)
print(confusion_matrix(y_test,y_pred1))
print(accuracy_score(y_test,y_pred1))
print(classification_report(y_test,y_pred1))
metrics.plot_roc_curve(rf, X_test, y_test)
metrics.roc_auc_score(y_test, y_pred1, average=None)
logreg = LogisticRegression()
logreg.fit(X_train_res, y_train_res)
y_pred2 = logreg.predict(X_test)
print(confusion_matrix(y_test,y_pred2))
print(accuracy_score(y_test,y_pred2))
print(classification_report(y_test,y_pred2))
metrics.plot_roc_curve(logreg, X_test, y_test)
metrics.roc_auc_score(y_test, y_pred2, average=None)
gnb = GaussianNB()
gnb.fit(X_train_res, y_train_res)
y_pred3 = gnb.predict(X_test)
print(confusion_matrix(y_test,y_pred3))
print(accuracy_score(y_test,y_pred3))
print(classification_report(y_test,y_pred3))
metrics.plot_roc_curve(gnb, X_test, y_test)
metrics.roc_auc_score(y_test, y_pred3, average=None)
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(X_train_res, y_train_res)
```

```
y_pred4 = knn.predict(X_test)
print(confusion_matrix(y_test,y_pred4))
print(accuracy_score(y_test,y_pred4))
print(classification_report(y_test,y_pred4))
metrics.plot_roc_curve(knn, X_test, y_test)
metrics.roc_auc_score(y_test, y_pred4, average=None)
xgb = XGBClassifier()
xgb.fit(X_train_res, y_train_res)
y_pred6 = xgb.predict(X_test)
print(confusion_matrix(y_test,y_pred6))
print(accuracy_score(y_test,y_pred6))
print(classification_report(y_test,y_pred6))
metrics.plot_roc_curve(xgb, X_test, y_test)
metrics.roc_auc_score(y_test, y_pred6, average=None)
svc = SVC()
svc.fit(X_train_res, y_train_res)
y_pred5 = svc.predict(X_test)
print(confusion_matrix(y_test,y_pred5))
print(accuracy_score(y_test,y_pred5))
print(classification_report(y_test,y_pred5))
metrics.plot_roc_curve(svc, X_test, y_test)
metrics.roc_auc_score(y_test, y_pred5, average=None)
# joblib.dump(rf, "rf.pkl")
# joblib.dump(cat, "cat.pkl")
# joblib.dump(logreg, "logreg.pkl")
# joblib.dump(gnb, "gnb.pkl")
# joblib.dump(knn, "knn.pkl")
joblib.dump(svc, "svc.pkl")
joblib.dump(xgb, "xgb.pkl")
```

HTML Codes

index.html:

```
<!DOCTYPE html>
<html lang="en" dir="ltr">
 <head>
  <meta charset="utf-8">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  <title>Rain Prediction</title>
  <link rel="stylesheet" href={{url_for('static',filename='style1.css')}}>
  <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-</pre>
awesome/5.14.0/css/all.min.css">
 </head>
 <body style="background-color:aqua;" >
  <section>
   <input type="checkbox" id="check">
   <header>
    </div>
    <h2><a href="#" class="logo">Rain Prediction</a></h2>
    <div class="navigation">
      <a href="/predict">Predictor</a>
    </div>
   </header><div class="content" style="margin-top: 8%;">
   </div>
</section>
 </body>
</html>
```

OUTPUT:

predictor.html:

<!DOCTYPE html>

crossorigin="anonymous">

<title>Rain Prediction</title>

BmbxuPwQa2lc/FVzBcNJ7UAyJxM6wuqIj61tLrc4wSX0szH/Ev+nYRRuWlolflfl"

<link rel="stylesheet" href={{url_for('static',filename='predictor.css')}}>

```
</head>
<body>
  <section id="prediction-form">
    <form class="form" action="/predict", method="POST">
       <h1 class="my-3 text-center">Predictor</h1>
       <div class="row">
         <div class="col-md-6 my-2">
           <div class="md-form">
              <label for="date" class="date">Date</label>
              <input type="date" class="form-control" id="date" name="date">
           </div>
         </div>
         <div class="col-md-6 my-2">
           <div class="md-form">
              <label for="mintemp" class="mintemp"> Minimum temprature</label>
              <input type="text" class="form-control" id="mintemp" name="mintemp">
           </div>
         </div>
         <div class="col-md-6 my-2">
           <div class="md-form">
              <label for="maxtemp" class="maxtemp">Maximum Temperature</label>
              <input type="text" class="form-control" id="maxtemp" name="maxtemp">
           </div>
         </div>
         <div class="col-md-6 my-2">
           <div class="md-form">
              <label for="rainfall" class="rainfall">Rainfall</label>
              <input type="text" class="form-control" id="rainfall" name="rainfall">
           </div>
         </div>
         <div class="col-md-6 my-2">
           <div class="md-form">
              <label for="evaporation" class="evaporation">Evaporation</label>
              <input type="text" class="form-control" id="evaporation" name="evaporation">
           </div>
         </div>
         <div class="col-md-6 my-2">
```

```
<div class="md-form">
              <label for="sunshine" class="sunshine">Sunshine</label>
              <input type="text" class="form-control" id="sunshine" name="sunshine">
           </div>
         </div>
         <div class="col-md-6 my-2">
           <div class="md-form">
              <label for="windgustspeed" class="windgustspeed">Wind Gust Speed</label>
              <input type="text" class="form-control" id="windgustspeed"
name="windgustspeed">
           </div>
         </div>
         <div class="col-md-6 my-2">
           <div class="md-form">
              <label for="windspeed9am" class="windspeed9am">Wind Speed 9am</label>
              <input type="text" class="form-control" id="windspeed9am"</pre>
name="windspeed9am">
           </div>
         </div>
         <div class="col-md-6 my-2">
           <div class="md-form">
              <label for="windspeed3pm" class="windspeed3pm">Wind Speed 3pm</label>
              <input type="text" class="form-control" id="windspeed3pm"</pre>
name="windspeed3pm">
           </div>
         </div>
         <div class="col-md-6 my-2">
           <div class="md-form">
              <label for="humidity9am" class="humidity9am">Humidity 9am</label>
              <input type="text" class="form-control" id="humidity9am"</pre>
name="humidity9am">
           </div>
         </div>
         <div class="col-md-6 my-2">
           <div class="md-form">
              <label for="humidity3pm" class="humidity3pm">Humidity3pm</label>
              <input type="text" class="form-control" id="humidity3pm"</pre>
```

```
name="humidity3pm">
           </div>
         </div>
         <div class="col-md-6 my-2">
           <div class="md-form">
              <label for="pressure9am" class="pressure9am">Pressure 9am</label>
              <input type="text" class="form-control" id="pressure9am"</pre>
name="pressure9am">
           </div>
         </div>
         <div class="col-md-6 my-2">
           <div class="md-form">
              <label for="pressure3pm" class="pressure3pm">Pressure 3pm</label>
              <input type="text" class="form-control" id="pressure3pm"</pre>
name="pressure3pm">
           </div>
         </div>
         <div class="col-md-6 my-2">
           <div class="md-form">
              <label for="temp9am" class="temp9am">Temperature 9am</label>
              <input type="text" class="form-control" id="temp9am" name="temp9am">
           </div>
         </div>
         <div class="col-md-6 my-2">
           <div class="md-form">
              <label for="temp3pm" class=temp3pm">Temperature 3pm</label>
              <input type="text" class="form-control" id="temp3pm" name="temp3pm">
           </div>
         </div>
         <div class="col-md-6 my-2">
           <div class="md-form">
              <label for="cloud9am" class="cloud9am">Cloud 9am</label>
              <input type="text" class="form-control" id="cloud9am" name="cloud9am">
           </div>
         </div>
         <div class="col-md-6 my-2">
           <div class="md-form">
```

```
<label for="cloud3pm" class="cloud3pm">Cloud 3pm</label>
    <input type="text" class="form-control" id="cloud3pm" name="cloud3pm">
  </div>
</div>
<div class="col-md-6 my-2">
  <div class="md-form">
    <label for="location" class="location" name="location">Location</label>
    <select class="location" id="location" name="location" aria-label="Location">
      <option selected>Select Location</option>
      <option value= 24>Adelaide</option>
      <option value= 7>Albany</option>
      <option value= 30>Albury</option>
      <option value= 46>AliceSprings</option>
      <option value= 33>BadgerysCreek</option>
      <option value= 14>Ballarat</option>
      <option value= 36>Bendigo</option>
      <option value= 21>Brisbane</option>
      <option value= 2>Cairns</option>
      <option value= 43>Cobar</option>
      <option value= 9>CoffsHarbour</option>
      <option value= 4>Dartmoor</option>
      <option value= 11>Darwin</option>
      <option value= 15>GoldCoast</option>
      <option value= 17>Hobart</option>
      <option value= 45>Katherine</option>
      <option value= 23>Launceston</option>
      <option value= 28>Melbourne</option>
      <option value= 25>Melbourne Airport</option>
      <option value= 44>Mildura</option>
      <option value= 42>Moree</option>
      <option value= 5>MountGambier</option>
      <option value= 12>MountGinini
      <option value= 19>Newcastle
                                      </option>
      <option value= 47>Nhil</option>
      <option value= 13>NorahHead</option>
      <option value= 6>NorfolkIsland
      <option value= 32>Nuriootpa</option>
```

```
<option value= 31>Penrith</option>
               <option value= 26>Perth</option>
               <option value= 35>Perth Airport
               <option value= 1>Portland</option>
               <option value= 37>Richmond</option>
               <option value= 27>Sale
               <option value= 41>Salmon Gums
               <option value= 10>Sydney</option>
               <option value= 16>Sydney Airport</option>
               <option value= 39>Townsville</option>
               <option value= 34>Tuggeranong</option>
               <option value= 49>Uluru</option>
               <option value= 38>WaggaWagga</option>
               <option value= 3>Walpole</option>
               <option value= 18>Watsonia</option>
               <option value= 22>William Town
               <option value= 8>Witchcliffe</option>
               <option value= 20>Wollongong</option>
               <option value= 48>Woomera</option>
             </select>
           </div>
        </div>
        <div class="col-md-6 my-2">
           <div class="md-form">
             <label for="winddir9am" class="winddir9am" name = "winddir9am">Wind
Direction at 9am</label>
             <select class="winddir9am" id="winddir9am" name="winddir9am" aria-</p>
label="Wind Direction 9am">
               <option selected>Select Wind Direction at 9am
               <option value= 1>N</option>
               <option value= 5>W</option>
               <option value= 10>S</option>
               <option value= 15>E</option>
               <option value= 2>NW</option>
               <option value= 9>NE</option>
               <option value= 7>SW</option>
```

<option value= 40>PearceRAAF</option>

```
<option value= 13>SE</option>
                <option value= 0>NNW</option>
                <option value= 3>NNE</option>
                <option value= 8>SSW</option>
                <option value= 11>SSE</option>
                <option value= 4>WNW</option>
                <option value= 6>WSW</option>
                <option value= 12>ENE</option>
                <option value= 14>ESE</option>
             </select>
           </div>
         </div>
         <div class="col-md-6 my-2">
           <div class="md-form">
             <label for="winddir3pm" class="winddir3pm" name = "winddir3pm">Wind
Direction at 3pm</label>
             <select class="winddir3pm" id="winddir3pm" name = "winddir3pm" aria-</pre>
label="Wind Direction at 3pm">
                <option selected>Select Wind Direction at 3pm</option>
                <option value= 2>N</option>
                <option value= 4>W</option>
                <option value= 8>S</option>
                <option value= 14>E</option>
                <option value= 0>NW</option>
                <option value= 11>NE</option>
                <option value= 9>SW</option>
                <option value= 10>SE</option>
                <option value= 1>NNW</option>
                <option value= 5>NNE</option>
                <option value= 7>SSW</option>
                <option value= 12>SSE</option>
                <option value= 3>WNW</option>
                <option value= 6>WSW</option>
                <option value= 13>ENE</option>
                <option value= 15>ESE</option>
             </select>
           </div>
```

```
</div>
         <div class="col-md-6 my-2">
           <div class="md-form">
             <label for="windgustdir" class="windgustdir" name = "windgustdir">Wind Gust
Direction</label>
             <select class="windgustdir" id="windgustdir" name = "windgustdir" aria-</pre>
label="Wind Gust Direction">
                <option selected>Select Wind Gust Direction
                <option value= 3>N</option>
                <option value= 4>W</option>
                <option value= 7>S</option>
                <option value= 15>E</option>
                <option value= 1>NW</option>
                <option value= 11>NE</option>
                <option value= 9>SW</option>
                <option value= 12>SE</option>
                <option value= 0>NNW</option>
                <option value= 6>NNE</option>
                <option value= 8>SSW</option>
                <option value= 10>SSE</option>
                <option value= 2>WNW</option>
                <option value= 5>WSW</option>
                <option value= 14>ENE</option>
                <option value= 13>ESE</option>
             </select>
           </div>
         </div>
         <div class="col-md-6 my-2">
           <div class="md-form">
             <label for="raintoday" class="raintoday" name="raintoday">Rain Today</label>
             <select class="raintoday" id="raintoday" name="raintoday" aria-label="Rain
Today">
                <option selected>Did it Rain Today
                <option value= 1>Yes</option>
                <option value= 0>No</option>
             </select>
           </div>
```

```
</div>
         <div class="col-md-6 my-2 d-flex align-items-end justify-content-around">
           <button type="submit" class="btn btn-info button" style="margin-left:</pre>
100%;">Predict</button>
         </div>
       </div>
    </form>
  </section>
  <div>
     <h1><center> {{ prediction }} </center></h1>
  </div>
  <script src="https://cdn.jsdelivr.net/npm/bootstrap@5.0.0-</pre>
beta2/dist/js/bootstrap.bundle.min.js" integrity="sha384-
b5kHyXgcpbZJO/tY9Ul7kGkf1S0CWuKcCD38l8YkeH8z8QjE0GmW1gYU5S9FOnJ0"
crossorigin="anonymous"></script>
</body>
</html>
```

OUTPUT:

Predictor	
Date	Minimum temprature
mm/dd/yyyy	
Maximum Temperature	Rainfall
Evaporation	Sunshine
Wind Gust Speed	Wind Speed 9am
Wind Speed 3pm	Humidity 9am
Humidity 3pm	Pressure 9am
Pressure 3pm	Temperature 9am
Temperature 3pm	Cloud 9am
Cloud 3pm	Location Select Location V

```
after_rainy.html:
<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="UTF-8">
  <meta http-equiv="X-UA-Compatible" content="IE=edge">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  link
href="https://fonts.googleapis.com/css2?family=Poppins:wght@100;400;500;600;700;800;900&
display=swap" rel="stylesheet">
  <link rel="stylesheet" href={{url_for('static',filename='after_rainy.css')}}>
  <title>Rainy Day</title>
</head>
<body>
  <h1 style="text-align: center; font-size: 3 rem; font-weight: bolder">SUNNY DAY</h1>
  <div class="rainyimg">
    <img src="../static/sunny.jpg" alt="Vasanth" style="height: 550px; width: 550px; margin-
left: 32%">
  </div>
  <div>
    <h2><center> Tomorrow is going to be <span style="font-style: italic; font-weight:
bolder;">sunny day</span>. So enjoy yourselves
    with a cool milkshake and icecream </center></h2>
 </div>
</body>
</html>
```

RAINY DAY

OUTPUT:

Tomorrow is going to be rainy day. So enjoy yourselves with a cup of coffee and hot snack

```
after_sunny.html:
<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="UTF-8">
  <meta http-equiv="X-UA-Compatible" content="IE=edge">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  link
href="https://fonts.googleapis.com/css2?family=Poppins:wght@100;400;500;600;700;800;900&
display=swap" rel="stylesheet">
  <link rel="stylesheet" href={{url_for('static',filename='after_rainy.css')}}>
  <title>Rainy Day</title>
</head>
<body>
  <h1 style="text-align: center; font-size: 3 rem; font-weight: bolder">SUNNY DAY</h1>
  <div class="rainyimg">
    <img src="../static/sunny.jpg" alt="Vasanth" style="height: 550px; width: 550px; margin-
left: 32%">
  </div>
  <div>
    <h2><center> Tomorrow is going to be <span style="font-style: italic; font-weight:
bolder;">sunny day</span>. So enjoy yourselves
    with a cool milkshake and icecream </center></h2>
 </div>
</body>
</html>
```

SUNNY DAY

OUTPUT:

Tomorrow is going to be sunny day. So enjoy yourselves with a cool milkshake and icecream

Integrate flask with scoring end point

```
app.py:
from flask import Flask, render template, url for, request, jsonify
from flask_cors import cross_origin
import pandas as pd
import numpy as np
import datetime
import pickle
app = Flask(__name__, template_folder="template")
model = pickle.load(open("./models/cat.pkl", "rb"))
print("Model Loaded")
@app.route("/",methods=['GET'])
@cross_origin()
def home():
      return render_template("index.html")
@app.route("/predict",methods=['GET', 'POST'])
@cross_origin()
def predict():
      if request.method == "POST":
       # DATE
       date = request.form['date']
       day = float(pd.to_datetime(date, format="%Y-%m-%dT").day)
       month = float(pd.to_datetime(date, format="%Y-%m-%dT").month)
       # MinTemp
       minTemp = float(request.form['mintemp'])
       # MaxTemp
       maxTemp = float(request.form['maxtemp'])
       # Rainfall
       rainfall = float(request.form['rainfall'])
       # Evaporation
       evaporation = float(request.form['evaporation'])
```

```
# Sunshine
sunshine = float(request.form['sunshine'])
# Wind Gust Speed
windGustSpeed = float(request.form['windgustspeed'])
# Wind Speed 9am
windSpeed9am = float(request.form['windspeed9am'])
# Wind Speed 3pm
windSpeed3pm = float(request.form['windspeed3pm'])
# Humidity 9am
humidity9am = float(request.form['humidity9am'])
# Humidity 3pm
humidity3pm = float(request.form['humidity3pm'])
# Pressure 9am
pressure9am = float(request.form['pressure9am'])
# Pressure 3pm
pressure3pm = float(request.form['pressure3pm'])
# Temperature 9am
temp9am = float(request.form['temp9am'])
# Temperature 3pm
temp3pm = float(request.form['temp3pm'])
# Cloud 9am
cloud9am = float(request.form['cloud9am'])
# Cloud 3pm
cloud3pm = float(request.form['cloud3pm'])
# Cloud 3pm
location = float(request.form['location'])
# Wind Dir 9am
winddDir9am = float(request.form['winddir9am'])
# Wind Dir 3pm
winddDir3pm = float(request.form['winddir3pm'])
# Wind Gust Dir
windGustDir = float(request.form['windgustdir'])
# Rain Today
rainToday = float(request.form['raintoday'])
input lst = [location, minTemp, maxTemp, rainfall, evaporation, sunshine,
                     windGustDir, windGustSpeed, winddDir9am, winddDir3pm,
```

13.2 GitHub

GitHub Link: https://github.com/IBM-EPBL/IBM-Project-30189-1660141562

Project Demo Link: https://drive.google.com/file/d/1N5y2siPI LqQxmV-

DeBBTmR1TowoGwKB/view?usp=sharing