Notes

March 7, 2014

homework 14-15 sturm-lionville expansions. The last stage of separation of variales (on finite intevals)

PDE
$$u_t = u_{xx} + \underbrace{f(x,t)}_{\sin(\lambda,x)} \qquad \text{on } 0 < x < 1$$
 BC
$$u(0,t) = 0$$

$$u_x(1,t) + u(1,t) = 0$$

standard approach (incorrect). the eigenfunctions are $\sin(n\pi x) = X_n(x)$ do not satisfy the BC. The problem is driven by the boundary condition.

correct answer looks like this?

$$u(x,t) = \sum c_n T_n(t) X_n(x)$$

where $X_n(x)$ satisfy the BC. and $X_n(x)$ satisfies the separated equation $\frac{{X_n}''}{{X_n(s)}} = -\lambda_n$. In lesson 9, there is a detailed example that has

BC
$$u(0,t) = 0$$

$$u(1,t) = 0$$

$$PDE$$

$$u_t = u_{xx} + f(x,t)$$

solution is written out in detail and $X_n(x) = \sin(n\pi x)$ appear (because of the BC). In class, BC looked more like (see notes on 2/7)

PDE
$$u_t = \alpha^2 u_{xx} + f(x,t)$$
 BC
$$0 = \alpha_1 u_x(0,t) + \beta_1 u(0,t)$$

$$0 = \alpha_2 u_x(1,t) + \beta_2 u(1,t)$$
 IC
$$u(x,0) = \phi(x)$$

see page 65-66 in text (81-82). Step 1 on page 66. set $u(x,t) = \sum c_n T_n(t) X_n(x)$ where $X_n(x)$ are eigenfunctions for the homogeneous PDE (and homogeneous BC)

Try T(t)X(x). $u_t = \alpha^2 u_{xx}$ gives $\frac{T'(t)}{\alpha^2 T(t)} = \frac{X''(x)}{X(x)} = -\lambda^2 \le 0$. So $X''(x) + \lambda^2 X(x) = 0$.

BC
$$X(0) = 0$$

$$X'(1) + X(1) = 0$$

$$X(x) = a\cos(\lambda x) + b\sin(\lambda x)$$

$$X(0) = 0 = a\cos(0) + b\sin(0) \rightarrow a = 0$$

$$X'(x) = +b\lambda\cos(\lambda x)$$

$$X'(1) + X(1) = 0$$

$$X_n(x) = \sin(\lambda_n x) \text{ where } \tan(\lambda) = -\lambda$$

$$u(x,t) = \sum_{n=1}^{\infty} T_n(t) \sin(\lambda_n x)$$

$$f(x,t) = \sum_{n=1}^{\infty} f_n(t) \sin(\lambda_n x)$$

$$T_n'(t) = \alpha_2(-\lambda_n^2) T_n(t) + f_n(t)$$

coefficient of $sin(\lambda_n x)$

we need $\lambda \cos(\lambda) + \sin(\lambda) = 0$, $\lambda > 0$. $\cos(\lambda) = 0$? no, else $\sin(\lambda) = 0$. So divide out by cosine to get $\lambda + \tan(\lambda) = 0$. Showed that eigenfunctions $\sin(\lambda x)$ are orthogonal.

Homework due date extended to 3/14