Tree-based Models for Regression

- Regression trees
- Regression forests
 - randomForest based on bagging
 - gbm based on boosting

Bagging (Bootstrap Aggregation)

- Training data: $\mathbf{Z} = \{(x_i, y_i)_{i=1}^n\}$
- Bootstrap samples^a: $\mathbf{Z}^{*b} = \{(x_i^{*b}, y_i^{*b})_{i=1}^n\}$, where b = 1 : B

$$\mathbf{Z}^{*1}$$
 : $(x_1^{*1}, y_1^{*1}), (x_2^{*1}, y_2^{*1}), \cdots, (x_n^{*1}, y_n^{*1})$

$$\mathbf{Z}^{*2}$$
 : $(x_1^{*2}, y_1^{*2}), (x_2^{*2}, y_2^{*2}), \cdots, (x_n^{*2}, y_n^{*2})$

•

$$\mathbf{Z}^{*B}$$
 : $(x_1^{*B}, y_1^{*B}), (x_2^{*B}, y_2^{*B}), \cdots, (x_n^{*B}, y_n^{*B})$

^asample with replacement from **Z**.

Bagging (Bootstrap Aggregation)

- Training data: $\mathbf{Z} = \{(x_i, y_i)_{i=1}^n\}$
- ullet Bootstrap samples^a: $\mathbf{Z}^{*b}=\{(x_i^{*b},y_i^{*b})_{i=1}^n\}$, where b=1:B
- ullet \hat{f}^{*b} : classification/regression function trained by \mathbf{Z}^{*b}
- The bagging estimate is defined to be

$$\hat{f}_{bag}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^{*b}.$$

 Advantage: reduce variance. So works well for high-variance, low-bias procedures, such as trees.

^asample with replacement from **Z**.

Random Forest

- 1. For b = 1 : B:
 - (a) Draw a bs sample \mathbf{Z}^{*b} from the training data.
 - (b) Grow a BIG tree T_b (with some restriction).
- 2. Output the forest $\{T_b\}_{b=1}^B$.

To make a prediction at a new point x

Regression: $\frac{1}{B} \sum T_b(x)$.

Restriction when growing a tree in the forest:

- ullet At each split, randomly select m variables from the p variables, and then pick the best split among them.
- The recommended value for m is \sqrt{p} for classification and p/3 for regression.
- Purpose: reduce the correlation between trees in the forest.