Chapter 6: Advanced Machine Learning

6.2.1 Developing a Gradient Descent Algorithm for Linear Regression Model

6.2.1.1 Loading the dataset

```
import pandas as pd
import numpy as np

import warnings
warnings.filterwarnings('ignore')

sales_df = pd.read_csv( 'Advertising.csv' )
# Pring first few records
sales_df.head()
```

	Unnamed: 0	TV	Radio	Newspaper	Sales
0	1	230.1	37.8	69.2	22.1
1	2	44.5	39.3	45.1	10.4
2	3	17.2	45.9	69.3	9.3
3	4	151.5	41.3	58.5	18.5
4	5	180.8	10.8	58.4	12.9

6.2.1.2 Set X and Y Variable

```
X = sales_df[['TV', 'Radio', 'Newspaper']]
Y = sales_df['Sales']
```

6.2.1.3 Standardize X & Y

6.2.1.4 Implementing the Gradient Descent Algorithm

Method 1: Random Initialization the bias and weights

```
import random

#dim - is the number of weights to be initialized besides the bias
def initialize( dim ):
    # For reproducible results, the seed it set to 42.
    # Reader can comment the following two lines
    # and try other initialization values.
    np.random.seed(seed=42)
    random.seed(42)
    #Initialize the bias
    b = random.random()
    #Initialize the weights.
    w = np.random.rand( dim )
    return b, w
```

```
b, w = initialize( 3 )
print( "Bias: ", b, " Weights: ", w )

Bias: 0.6394267984578837 Weights: [0.37454012 0.95071431 0.731993
94]
```

Method 2: Predict Y values from the bias and weights

```
# Inputs:
# b - bias
# w - weights
# X - the input matrix

def predict_Y( b, w, X ):
    return b + np.matmul( X, w )
```

Method 3: Calculate the cost function: MSE

```
import math

# Inputs
# Y - Actual values of y
# Y_hat - predicted value of y
def get_cost( Y, Y_hat ):
    # Calculating the residuals from taking difference between actual and predic
ted values
    Y_resid = Y - Y_hat
    # Matrix multiplication with self will give the square values
    # Then takin the sum and dividing by number of examples to calculate mean
    return np.sum( np.matmul( Y_resid.T, Y_resid ) ) / len( Y_resid )
```

```
b, w = initialize( 3 )
Y_hat = predict_Y( b, w, X)
get_cost( Y, Y_hat )
```

1.5303100198505895

Method 4: Update the bias and weights

```
def update_beta( x, y, y_hat, b_0, w_0, learning_rate ):
    #gradient of bias
    db = (np.sum( y_hat - y ) * 2) / len(y)
    #gradient of weights
    dw = (np.dot( ( y_hat - y ), x ) * 2 ) / len(y)
    #update bias
    b_1 = b_0 - learning_rate * db
    #update beta
    w_1 = w_0 - learning_rate * dw

#return the new bias and beta values
    return b_1, w_1
```

```
b, w = initialize( 3 )
print( "After Initialization - Bias: ", b, " Weights: ", w )
Y_hat = predict_Y( b, w, X)
b, w = update_beta( X, Y, Y_hat, b, w, 0.01 )
print( "After first update - Bias: ", b, " Weights: ", w )

After Initialization - Bias: 0.6394267984578837 Weights: [0.37454 012 0.95071431 0.73199394]
After first update - Bias: 0.6266382624887261 Weights: [0.3807909]
```

6.2.1.5 Finding the optimal bias and weights

3 0.9376953 0.71484883]

```
def run gradient descent( X,
                          alpha = 0.01,
                          num iterations = 100):
    # Intialize the bias and weights
   b, w = initialize( X.shape[1] )
   iter num = 0
    # qd iterations df keeps track of the cost every 10 iterations
   gd iterations df = pd.DataFrame(columns = ['iteration', 'cost'])
   result idx = 0
    # Run the iterations in loop
    for each iter in range(num iterations):
        # Calcuated predicted value of y
        Y hat = predict Y(b, w, X)
        # Calculate the cost
        this cost = get cost( Y, Y hat )
        # Save the previous bias and weights
        prev b = b
        prev w = w
        # Update and calculate the new values of bias and weights
        b, w = update_beta( X, Y, Y_hat, prev_b, prev_w, alpha)
        # For every 10 iterations, store the cost i.e. MSE
        if( iter num % 10 == 0 ):
            gd iterations df.loc[result idx] = [iter num, this cost]
            result idx = result idx + 1
        iter num += 1
   print( "Final estimate of b and w: ", b, w )
    #return the final bias, weights and the cost at the end
   return gd iterations df, b, w
```

```
gd_iterations_df, b, w = run_gradient_descent( X, Y, alpha = 0.001, num_iteratio
ns = 200 )
```

```
Final estimate of b and w: 0.42844895817391493 [0.48270238 0.752659 69 0.46109174]
```

gd_iterations_df[0:10]

	iteration	cost
0	0.0	1.530310
1	10.0	1.465201
2	20.0	1.403145
3	30.0	1.343996
4	40.0	1.287615
5	50.0	1.233868
6	60.0	1.182630
7	70.0	1.133780
8	80.0	1.087203
9	90.0	1.042793

6.2.1.6 Plotting the cost function against the iterations

```
import matplotlib.pyplot as plt
import seaborn as sn
%matplotlib inline
```

```
plt.plot( gd_iterations_df['iteration'], gd_iterations_df['cost'] );
plt.xlabel("Number of iterations")
plt.xlabel("Cost or MSE")
```

Text(0.5,0,'Cost or MSE')


```
print( "Final estimates of b and w: ", b, w )
```

Final estimates of b and w: 0.42844895817391493 [0.48270238 0.75265 969 0.46109174]

```
alpha_df_1, b, w = run_gradient_descent( X, Y, alpha = 0.01, num_iterations = 20
00 )

Final estimate of b and w: 2.7728016698178713e-16 [ 0.75306591  0.5
3648155 -0.00433069]
```

What happens if we change the learning parameter and use smaller value e.g. 0.001.

```
alpha_df_2, b, w = run_gradient_descent( X, Y, alpha = 0.001, num_iterations = 2
000 )

Final estimate of b and w: 0.011664695556930518 [0.74315125 0.52779
959 0.01171703]

plt.plot( alpha_df_1['iteration'], alpha_df_1['cost'], label = "alpha = 0.01" );
plt.plot( alpha_df_2['iteration'], alpha_df_2['cost'], label = "alpha = 0.001" );
plt.legend()
plt.ylabel('Cost');
plt.xlabel('Number of Iterations');
plt.title('Cost Vs. Iterations for different alpha values');
```


6.3 scikit-learn Library for Machine Learning

6.3.1 Steps for Building Machine Learning Models

6.3.1.1 Splitting dataset into train and test datasets

```
len( X_train )

140

len( X_test )
60
```

6.3.1.2 Building Linear Regression model with train dataset

```
from sklearn.linear_model import LinearRegression
```

```
## Initiliazing the model
linreg = LinearRegression()
# Fitting training data to the model
linreg.fit( X_train, y_train )
```

```
linreg.intercept_
```

2.708949092515912

```
linreg.coef_
array([0.04405928, 0.1992875 , 0.00688245])

list( zip( ["TV", "Radio", "Newspaper"], list( linreg.coef_ ) ) )

[('TV', 0.0440592809574652),
  ('Radio', 0.1992874968989395),
  ('Newspaper', 0.0068824522222754)]
```

6.3.1.3 Making prediction on test set

```
# Predicting the y value from the test set
y_pred = linreg.predict( X_test )
```

	actual	predicted	residuals
126	6.6	11.15	-4.553147
170	8.4	7.35	1.049715
95	16.9	16.57	0.334604
195	7.6	5.22	2.375645
115	12.6	13.36	-0.755569
38	10.1	10.17	-0.070454
56	5.5	8.92	-3.415494
165	11.9	14.30	-2.402060
173	11.7	11.63	0.068431
9	10.6	12.18	-1.576049

6.3.1.4 Measuring Accuracy

```
## Importing metrics from sklearn
from sklearn import metrics
```

R-Squared Value

```
## y_train contain the actual value and the predicted value is returned from
# predict() method after passing the X values of the training data.
r2 = metrics.r2_score( y_train, linreg.predict(X_train) )
print("R Sqaured: ", r2)
```

R Sqaured: 0.9055159502227753

RMSE

```
# y_pred contains predicted value of test data
mse = metrics.mean_squared_error( y_test, y_pred )
```

```
# Taking square root of MSE and then round off to two decimal values
rmse = round( np.sqrt(mse), 2 )
print("RMSE: ", rmse)
```

RMSE: 1.95

6.3.2 Bias-Variance Trade-off

```
# Reading the file curve.csv and printing first few examples
curve = pd.read_csv( "curve.csv" )
curve.head()
```

	X	у
0	2	-1.999618
1	2	-1.999618
2	8	-3.978312
3	9	-1.969175
4	10	-0.957770

```
plt.scatter( curve.x, curve.y );
plt.xlabel("x values")
plt.ylabel("y values")
```

Text(0,0.5,'y values')


```
# Input
# degree - polynomial terms to be used in the model
def fit_poly( degree ):
    # calling numpy method polyfit
    p = np.polyfit( curve.x, curve.y, deg = degree )
    curve['fit'] = np.polyval( p, curve.x )
    # draw the regression line after fitting the model
    sn.regplot( curve.x, curve.y, fit_reg = False )
    # Plot the actual x and y values
    return plt.plot( curve.x, curve.fit, label='fit' )
```

```
fit_poly( 1 );
## Plotting the model form and the data
plt.xlabel("x values")
plt.ylabel("y values");
```



```
fit_poly( 2 );
plt.xlabel("x values")
plt.ylabel("y values");
```



```
fit_poly( 10 );
plt.xlabel("x values")
plt.ylabel("y values");
```



```
# Split the dataset into 60:40 split into training and test set
train X, test X, train y, test y = train test split( curve.x,
                                                     curve.y,
                                                    test size = 0.40,
                                                     random state = 100 )
# Define the dataframe store degree and rmse for training and test set
rmse df = pd.DataFrame( columns = ["degree", "rmse train", "rmse test"] )
# Define a method to return the rmse given actual and predicted values.
def get_rmse( y, y_fit ):
   return np.sqrt( metrics.mean_squared_error( y, y_fit ) )
# Iterate from degree 1 to 15
for i in range( 1, 15 ):
    # fitting model
   p = np.polyfit( train_X, train_y, deg = i )
    # storing model degree and rmse on train and test set
   rmse df.loc[i-1] = [i,
                        get_rmse( train_y, np.polyval( p, train_X ) ),
                        get_rmse( test_y, np.polyval( p, test_X ) ) ]
```

rmse_df

	degree	rmse_train	rmse_test
0	1.0	5.226638	5.779652
1	2.0	2.394509	2.755286
2	3.0	2.233547	2.560184
3	4.0	2.231998	2.549205
4	5.0	2.197528	2.428728
5	6.0	2.062201	2.703880
6	7.0	2.039408	2.909237
7	8.0	1.995852	3.270892
8	9.0	1.979322	3.120420
9	10.0	1.976326	3.115875
10	11.0	1.964484	3.218203
11	12.0	1.657948	4.457668
12	13.0	1.656719	4.358014
13	14.0	1.642308	4.659503

6.4 Advanced Regression Models

6.4.1.1 Loading IPL Dataset

```
ipl auction df = pd.read csv( 'IPL IMB381IPL2013.csv' )
ipl auction df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 130 entries, 0 to 129
Data columns (total 26 columns):
                 130 non-null int64
Sl.NO.
PLAYER NAME
                 130 non-null object
AGE
                 130 non-null int64
COUNTRY
                 130 non-null object
TEAM
                 130 non-null object
                 130 non-null object
PLAYING ROLE
                 130 non-null int64
T-RUNS
                 130 non-null int64
T-WKTS
                 130 non-null int64
ODI-RUNS-S
ODI-SR-B
                 130 non-null float64
ODT-WKTS
                 130 non-null int.64
                 130 non-null float64
ODI-SR-BL
CAPTAINCY EXP
                 130 non-null int64
RUNS-S
                 130 non-null int64
HS
                 130 non-null int64
AVE
                 130 non-null float64
                 130 non-null float64
SR-B
                 130 non-null int64
SIXERS
                 130 non-null int64
RUNS-C
WKTS
                 130 non-null int64
                130 non-null float64
AVE-BL
ECON
                130 non-null float64
                 130 non-null float64
SR-BL
               130 non-null int64
AUCTION YEAR
BASE PRICE
                 130 non-null int64
SOLD PRICE
                 130 non-null int64
dtypes: float64(7), int64(15), object(4)
memory usage: 26.5+ KB
X_features = ['AGE', 'COUNTRY', 'PLAYING ROLE',
              'T-RUNS', 'T-WKTS', 'ODI-RUNS-S', 'ODI-SR-B',
              'ODI-WKTS', 'ODI-SR-BL', 'CAPTAINCY EXP', 'RUNS-S',
              'HS', 'AVE', 'SR-B', 'SIXERS', 'RUNS-C', 'WKTS',
              'AVE-BL', 'ECON', 'SR-BL']
# categorical_features is initialized with the categorical variable names.
categorical_features = ['AGE', 'COUNTRY', 'PLAYING ROLE', 'CAPTAINCY EXP']
#get dummies() is invoked to return the dummy features.
ipl auction encoded df = pd.get dummies( ipl auction df[X features],
                                         columns = categorical features,
                                         drop first = True )
```

6.4.1.2 Standardize X & Y

from sklearn.preprocessing import StandardScaler

```
## Initializing the StandardScaler
X_scaler = StandardScaler()
## Standardize all the feature columns
X_scaled = X_scaler.fit_transform(X)

## Standardizing Y explictly by subtracting mean and
## dividing by standard deviation
Y = (Y - Y.mean()) / Y.std()
```

/Users/manaranjan/anaconda/lib/python3.5/site-packages/sklearn/prepr ocessing/data.py:617: DataConversionWarning: Data with input dtype u int8, int64, float64 were all converted to float64 by StandardScale r.

```
return self.partial_fit(X, y)
/Users/manaranjan/anaconda/lib/python3.5/site-packages/sklearn/base.
py:462: DataConversionWarning: Data with input dtype uint8, int64, f
loat64 were all converted to float64 by StandardScaler.
return self.fit(X, **fit params).transform(X)
```

6.4.1.3 Split the dataset into train and test

```
from sklearn.model_selection import train_test_split
```

6.4.1.4 Build the model

```
from sklearn.linear model import LinearRegression
```

```
linreg = LinearRegression()
linreg.fit(X_train, y_train)
```

```
linreg.coef
array([-0.43539611, -0.04632556, 0.50840867, -0.03323988, 0.222037
      -0.05065703, 0.17282657, -0.49173336, 0.58571405, -0.116547
53,
       0.24880095, 0.09546057, 0.16428731, 0.26400753, -0.082533
41,
      -0.28643889, -0.26842214, -0.21910913, -0.02622351, 0.248178
98,
        0.18760332, 0.10776084, 0.04737488, 0.05191335, 0.012352
45,
        0.00547115, -0.03124706, 0.08530192, 0.01790803, -0.050774
54,
        0.187455771)
## The dataframe has two columns to store feature name
## and the corresponding coefficient values
columns coef df = pd.DataFrame( { 'columns': ipl auction encoded df.columns,
                                  'coef': linreg.coef } )
## Sorting the features by coefficient values in descending order
sorted_coef_vals = columns_coef_df.sort_values( 'coef', ascending=False)
```

6.4.1.5 Plotting the coefficient values

Text(0,0.5,'Features')

6.4.1.6 Calculate R-Squared value

```
# Takes a model as a parameter
# Prints the RMSE on train and test set
def get_train_test_rmse( model ):
    # Predicting on training dataset
    y_train_pred = model.predict( X_train )
    # Compare the actual y with predicted y in the training dataset
    rmse_train = round(np.sqrt(metrics.mean_squared_error( y_train, y_train_pred
)), 3)
    # Predicting on test dataset
    y_test_pred = model.predict( X_test )
    # Compare the actual y with predicted y in the test dataset
    rmse_test = round(np.sqrt(metrics.mean_squared_error( y_test, y_test_pred
)), 3)
    print( "train: ", rmse_train, " test:", rmse_test )
```

```
get_train_test_rmse( linreg )
train: 0.679 test: 0.749
```

6.4.2 Applying Regularization

6.4.2.1 Ridge Regression

```
# Importing Ridge Regression
from sklearn.linear_model import Ridge

# Applying alpha = 1 and running the algorithms for maximum of 500 iterations
ridge = Ridge(alpha = 1, max_iter = 500)
ridge.fit( X_train, y_train )

Ridge(alpha=1, copy_X=True, fit_intercept=True, max_iter=500, normal
ize=False,
    random_state=None, solver='auto', tol=0.001)

get_train_test_rmse( ridge )

train: 0.68 test: 0.724

ridge = Ridge(alpha = 2.0, max_iter = 1000)
ridge.fit( X_train, y_train )
get_train_test_rmse( ridge )

train: 0.682 test: 0.706
```

6.4.2.2 Lasso Regression

```
# Importing Ridge Regression
from sklearn.linear model import Lasso
# Applying alpha = 1 and running the algorithms for maximum of 500 iterations
lasso = Lasso(alpha = 0.01, max iter = 500)
lasso.fit( X train, y train )
Lasso(alpha=0.01, copy X=True, fit intercept=True, max iter=500,
   normalize=False, positive=False, precompute=False, random state=N
one,
   selection='cyclic', tol=0.0001, warm start=False)
get train test rmse( lasso )
train: 0.688 test: 0.698
## Storing the feature names and coefficient values in the DataFrame
lasso coef df = pd.DataFrame( { 'columns':
                                 ipl auction encoded df.columns,
                                  'coef':
                                 lasso.coef_ } )
```

Filtering out coefficients with zeros
lasso_coef_df[lasso_coef_df.coef == 0]

	coef	columns
1	-0.0	T-WKTS
3	-0.0	ODI-SR-B
13	-0.0	AVE-BL
28	0.0	PLAYING ROLE_Bowler

6.4.2.3 Elastic Net Regression

```
0.01/1.01
```

0.009900990099009901

```
from sklearn.linear_model import ElasticNet
enet = ElasticNet(alpha = 1.01, l1_ratio = 0.0099, max_iter = 500)
enet.fit( X_train, y_train )
get_train_test_rmse( enet )

train: 0.794 test: 0.674
```

6.5 More Advanced Algorithms

```
bank_df = pd.read_csv( 'bank.csv')
bank_df.head(5)
```

	age	job	marital	education	default	balance	housing- loan	personal- loan	curre campa
0	30	unemployed	married	primary	no	1787	no	no	1
1	33	services	married	secondary	no	4789	yes	yes	1
2	35	management	single	tertiary	no	1350	yes	no	1
3	30	management	married	tertiary	no	1476	yes	yes	4
4	59	blue-collar	married	secondary	no	0	yes	no	1

```
bank_df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4521 entries, 0 to 4520
Data columns (total 11 columns):
age
                     4521 non-null int64
job
                     4521 non-null object
marital
                     4521 non-null object
education
                     4521 non-null object
default
                     4521 non-null object
balance
                     4521 non-null int64
housing-loan
                     4521 non-null object
personal-loan
                     4521 non-null object
                  4521 non-null int64
current-campaign
previous-campaign
                     4521 non-null int64
subscribed
                     4521 non-null object
dtypes: int64(4), object(7)
memory usage: 388.6+ KB
```

6.5.1 Dealing with imbalanced datasets

```
bank_df.subscribed.value_counts()
```

no 4000 yes 521

Name: subscribed, dtype: int64

```
## Importing resample from *sklearn.utils* package.
from sklearn.utils import resample
# Separate the case of yes-subscribes and no-subscribes
bank subscribed no = bank df[bank df.subscribed == 'no']
bank subscribed yes = bank df[bank df.subscribed == 'yes']
##Upsample the yes-subscribed cases.
df minority upsampled = resample(bank subscribed yes,
                                 replace=True,
                                                    # sample with replacement
                                 n samples=2000)
# Combine majority class with upsampled minority class
new bank df = pd.concat([bank subscribed no, df minority upsampled])
from sklearn.utils import shuffle
new bank df = shuffle(new bank df)
# Assigning list of all column names in the DataFrame
X features = list( new bank df.columns )
# Remove the response variable from the list
X features.remove( 'subscribed' )
X features
['age',
 'job',
 'marital',
 'education',
 'default',
 'balance',
 'housing-loan',
 'personal-loan',
 'current-campaign',
 'previous-campaign']
## get dummies() will convert all the columns with data type as objects
encoded bank df = pd.get dummies( new bank df[X features], drop first = True )
X = encoded bank df
# Encoding the subscribed column and assigning to Y
Y = new bank df.subscribed.map( lambda x: int( x == 'yes') )
from sklearn.model_selection import train_test_split
train X, test X, train y, test y = train test split( X,
```

6.5.2 Logistic Regression model

6.5.2.1 Building the model

test_size = 0.3,
random state = 42)

6.5.2.2 Confusion Matrix

```
## Importing the metrics
from sklearn import metrics
## Defining the matrix to draw the confusion metrix from actual and predicted cl
ass labels
def draw cm( actual, predicted ):
    # Invoking confusion matrix from metric package. The matrix will oriented as
[1,0] i.e.
    # the classes with label 1 will be reprensted the first row and 0 as second
   cm = metrics.confusion matrix( actual, predicted, [1,0] )
    ## Confustion will be plotted as heatmap for better visualization
    ## The lables are configured to better interpretation from the plot
   sn.heatmap(cm, annot=True, fmt='.2f',
               xticklabels = ["Subscribed", "Not Subscribed"]
               yticklabels = ["Subscribed", "Not Subscribed"] )
   plt.ylabel('True label')
   plt.xlabel('Predicted label')
   plt.show()
```

```
cm = draw_cm( test_y, pred_y )
cm
```


6523 Classification Banort

```
print( metrics.classification report( test y, pred y ) )
              precision
                            recall
                                    f1-score
                                                support
           0
                              0.92
                    0.73
                                         0.81
                                                   1225
                    0.60
                              0.27
                                         0.37
                                                    575
   micro avg
                    0.71
                              0.71
                                         0.71
                                                   1800
   macro avq
                    0.66
                              0.59
                                         0.59
                                                   1800
                                         0.67
                    0.69
                              0.71
                                                   1800
weighted avg
```

6.5.2.4 ROC AUC Score

```
## Predicting the probability values for test cases
predict_proba_df = pd.DataFrame( logit.predict_proba( test_X ) )
predict_proba_df.head()
```

	0	1
0	0.704479	0.295521
1	0.853664	0.146336
2	0.666963	0.333037
3	0.588329	0.411671
4	0.707982	0.292018

```
## Initializing the DataFrame with actual class lables
test_results_df = pd.DataFrame( { 'actual': test_y } )
test_results_df = test_results_df.reset_index()
## Assigning the probability values for class label 1
test_results_df['chd_1'] = predict_proba_df.iloc[:,1:2]
```

```
test_results_df.head(5)
```

	index	actual	chd_1
0	1321	0	0.295521
1	3677	0	0.146336
2	1680	1	0.333037
3	821	0	0.411671
4	921	0	0.292018

```
# Passing actual class labels and the predicted probability values to compute RO
C AUC score.
auc_score = metrics.roc_auc_score( test_results_df.actual, test_results_df.chd_1
)
round( float( auc_score ), 2 )
```

```
## The method takes the three following parameters
## model: the classification model
## test X: X features of the test set
## test y: actual labels of the test set
## Returns
   - ROC Auc Score
##
   - FPR and TPRs for different threshold values
##
def draw roc curve( model, test X, test y ):
    ## Creating and initializing a results DataFrame with actual labels
   test_results_df = pd.DataFrame( { 'actual': test_y } )
   test results df = test results df.reset index()
    # predict the probabilities on the test set
   predict proba df = pd.DataFrame( model.predict proba( test X ) )
    ## selecting the probabilities that the test example belongs to class 1
   test results df['chd 1'] = predict proba df.iloc[:,1:2]
    ## Invoke roc curve() to return the fpr, tpr and threshold values.
    ## threshold values contain values from 0.0 to 1.0
    fpr, tpr, thresholds = metrics.roc curve( test results df.actual,
                                           test results df.chd 1,
                                           drop intermediate = False )
    ## Getting the roc auc score by invoking metrics.roc auc score method
   auc score = metrics.roc auc score( test results df.actual, test results df.c
hd 1 )
    ## Setting the size of the plot
   plt.figure(figsize=(8, 6))
    ## plotting the actual fpr and tpr values
   plt.plot( fpr, tpr, label='ROC curve (area = %0.2f)' % auc score )
    ## plotting th diagnoal line from (0,1)
   plt.plot([0, 1], [0, 1], 'k--')
   plt.xlim([0.0, 1.0])
   plt.ylim([0.0, 1.05])
   ## Setting labels and titles
   plt.xlabel('False Positive Rate or [1 - True Negative Rate]')
   plt.ylabel('True Positive Rate')
   plt.title('Receiver operating characteristic example')
   plt.legend(loc="lower right")
   plt.show()
   return auc_score, fpr, tpr, thresholds
```

```
## Invoking draw_roc_curve with the logistic regresson model
_, _, _, _ = draw_roc_curve( logit, test_X, test_y )
```


6.5.3 KNN Algorithm

6.5.3.1 KNN Accuracy

```
## Invoking draw_roc_curve with the KNN model
_, _, _, _ = draw_roc_curve( knn_clf, test_X, test_y )
```



```
print( metrics.classification report( test y, pred y ) )
              precision
                            recall f1-score
                                                support
           0
                    0.85
                              0.77
                                         0.81
                                                    1225
           1
                    0.59
                              0.72
                                         0.65
                                                     575
                                                    1800
                                         0.75
   micro avg
                    0.75
                              0.75
                    0.72
                              0.74
                                         0.73
                                                    1800
   macro avq
                    0.77
                              0.75
                                         0.76
                                                    1800
weighted avg
```

6.5.3.2 GridSerach for most optimal parameters

```
## Importing GridSearchCV
from sklearn.model selection import GridSearchCV
## Creating a dictionary with hyperparameters and possible values for searching
tuned parameters = [{'n neighbors': range(5,10),
                      'metric': ['canberra', 'euclidean', 'minkowski']}]
## Configuring grid search
clf = GridSearchCV(KNeighborsClassifier(),
                 tuned parameters,
                 cv=10,
                 scoring='roc auc')
## fit the search with training set
clf.fit(train X, train y )
GridSearchCV(cv=10, error score='raise-deprecating',
       estimator=KNeighborsClassifier(algorithm='auto', leaf size=3
0, metric='minkowski',
           metric params=None, n jobs=None, n neighbors=5, p=2,
           weights='uniform'),
       fit params=None, iid='warn', n jobs=None,
       param_grid=[{'n_neighbors': range(5, 10), 'metric': ['canberr
a', 'euclidean', 'minkowski']}],
       pre dispatch='2*n jobs', refit=True, return train score='war
n',
       scoring='roc_auc', verbose=0)
clf.best score
0.8368537419503068
clf.best params
{'metric': 'canberra', 'n_neighbors': 5}
```

6.5.4 Ensemble Methods

6.5.5 Random Forest

6.5.5.1 Building Random Forest Model

```
_, _, _, _ = draw_roc_curve( radm_clf, test_X, test_y );
```


6.5.5.2 Grid Search for Optimal Parameters

```
## Configuring parameters and values for searched
tuned parameters = [{'max depth': [10, 15],
                    'n estimators': [10,20],
                    'max features': ['sqrt', 'auto']}]
## Initializing the RF classifier
radm clf = RandomForestClassifier()
## Configuring search with the tunable parameters
clf = GridSearchCV(radm clf,
                 tuned parameters,
                 cv=5,
                 scoring='roc auc')
## Fitting the training set
clf.fit(train X, train y )
GridSearchCV(cv=5, error_score='raise-deprecating',
       estimator=RandomForestClassifier(bootstrap=True, class weight
=None, criterion='gini',
            max depth=None, max features='auto', max_leaf_nodes=Non
e,
            min impurity decrease=0.0, min impurity split=None,
            min samples leaf=1, min samples split=2,
            min weight fraction leaf=0.0, n estimators='warn', n job
s=None,
            oob score=False, random state=None, verbose=0,
            warm start=False),
       fit params=None, iid='warn', n jobs=None,
       param grid=[{'n estimators': [10, 20], 'max depth': [10, 15],
'max features': ['sqrt', 'auto']}],
       pre_dispatch='2*n_jobs', refit=True, return_train_score='war
n',
       scoring='roc auc', verbose=0)
clf.best_score_
0.9399595384858543
clf.best params
{'max depth': 15, 'max features': 'auto', 'n estimators': 20}
```

```
6.5.5.3 Building the final model with optimal parameter values
```

```
## Initializing the Random Forest Mode with the optimal values
radm_clf = RandomForestClassifier( max_depth=15, n_estimators=20, max_features =
'auto')
## Fitting the model with the training set
radm_clf.fit( train_X, train_y )
RandomForestClassifier(bootstrap=True, class_weight=None, criterion
```

6.5.5.4 ROC AUC Score

```
_, _, _ = draw_roc_curve( clf, test_X, test_y )
```


6.5.5.5 Drawing the confusion matrix

```
pred_y = radm_clf.predict( test_X )
draw_cm( test_y, pred_y )
```


print(m	etric	s.classifica	tion_repo	rt(test_y	, pred_y)
		precision	recall	f1-score	support
	0	0.90	0.94	0.92	1225
	1	0.86	0.78	0.82	575
micro	avg	0.89	0.89	0.89	1800
macro	avg	0.88	0.86	0.87	1800
weighted	avg	0.89	0.89	0.89	1800

6.5.5.6 Finding important features

feature_rank['cumsum'] = feature_rank.importance.cumsum() * 100
feature rank.head(10)

	feature	importance	cumsum
1	balance	0.269603	26.960282
0	age	0.203664	47.326707
3	previous-campaign	0.117525	59.079219
2	current-campaign	0.090085	68.087703
21	housing-loan_yes	0.039898	72.077486
15	marital_married	0.034329	75.510337
22	personal-loan_yes	0.027029	78.213244
17	education_secondary	0.023934	80.606690
4	job_blue-collar	0.023081	82.914811
16	marital_single	0.022495	85.164357

6.5.6 Boosting

6.5.6.1 Adaboost

```
## Importing Adaboost classifier
from sklearn.ensemble import AdaBoostClassifier
## Initializing logistic regression to use as base classifier
logreg clf = LogisticRegression()
## Initilizing adaboost classifier with 50 classifers
ada clf = AdaBoostClassifier(logreg clf, n estimators=50)
## Fitting adaboost model to training set
ada_clf.fit(train_X, train_y )
AdaBoostClassifier(algorithm='SAMME.R',
          base_estimator=LogisticRegression(C=1.0, class_weight=Non
e, dual=False, fit intercept=True,
          intercept scaling=1, max iter=100, multi class='warn',
          n_jobs=None, penalty='12', random_state=None, solver='war
n',
          tol=0.0001, verbose=0, warm_start=False),
          learning rate=1.0, n estimators=50, random state=None)
```

```
_, _, _, = draw_roc_curve( ada_clf, test_X, test_y )
```


6.5.6.2 Gradient Boosting

```
_, _, _, = draw_roc_curve( gboost_clf, test_X, test_y )
```



```
from sklearn.model_selection import cross_val_score

gboost_clf = GradientBoostingClassifier( n_estimators=500, max_depth=10)
cv_scores = cross_val_score( gboost_clf, train_X, train_y, cv = 10, scoring = 'r oc_auc' )
```

```
print( cv_scores )
print( "Mean Accuracy: ", np.mean(cv_scores), " with standard deviation of: ",
np.std(cv_scores))
```

```
[0.98241686 0.98105851 0.98084469 0.9585199 0.95482216 0.96667006 0.95342452 0.97368689 0.95937357 0.98174607]

Mean Accuracy: 0.969256322542174 with standard deviation of: 0.01 1406249012935668
```

```
gboost_clf.fit(train_X, train_y )
pred_y = gboost_clf.predict( test_X )
draw_cm( test_y, pred_y )
```


print(m	etric	s.classifica	tion_repo	ort(test_y	, pred_y)
		precision	recall	f1-score	support
	0	0.96	0.95	0.96	1225
	1	0.90	0.92	0.91	575
micro	avg	0.94	0.94	0.94	1800
macro	avg	0.93	0.94	0.94	1800
weighted	avg	0.94	0.94	0.94	1800

