WF4313/6613-Fisheries Management

Class 5 – Population dynamics

Announcements

- Student sub-unit of the American Fisheries Society Meeting
- Tuesday September 5th @ 5 pm in TH118

Announcements

- Reminder to see website for content, links, and so on. https://mcolvin.github.io/WFA4313-Fisheries-Management/
- No class Monday, University Holiday

"The trouble with fish is that you never get to see the whole population. They're not like trees, whose numbers can be estimated by flying over a forest. Mostly you see fish only when they're caught..." Schnute 1987

Our "view" of fish populations comes from a variety of sources: anglers, commercial fisheries, and sampling gears. Each has inherent biases, and we rarely have complete information about the fishery of concern.

Thinking outside the box

Population dynamics in a nutshell:

Population Losses

[Population change] = [Inputs] – [Outputs]

Population dynamics • What are population dynamics? • Suppose in 2015 we have a pond with 11 Largemouth Bass in it.

Year	Abundance	Abundance _{year+1} -Abundance _{year}
2015	11	4 = 15-11
2016	15	-5 = 10 - 15
2017	10	3 = 18-10
2018	18	2 = 20-18
2019	20	3 = 17-20
2020	17	-5 = 12-17
2021	12	? = ?-12

Fish dynamics: Mechanisms Gains: Losses: Deaths Births Immigration Harvest Nearby System Predation Other mortality (habitat) Birds Storms and other events Disease Stocking Emmigration State agency (legal) Illegal stockings

Processes & Mechanisms Gains = recruitment + stocking + immigration Losses = mortality + emigration

