A BOOK OT Abstract Algebra (2nd Edition)		
Chapter 33, Problem 5EE	Bookmark	Show all steps: ON
Problem		
Let K be a finite extension of F , where K is a root field over F , with $G = Gal(K: F)$ a solvable group. As remarked in the text, we will assume that F contains the required roots of unity. By Exercise D, let H_0, \ldots, H_n be a solvable series for G in which every quotient H_{i+1}/H_i is cyclic of prime order. For any $i = 1, \ldots, n$, let F_i and F_{i+1} be the fixfields of H_i and H_{i+1} . Conclude that K is a radical extension of F .		
Step-by-s	tep solution	
Step	1 of 4	
Here, objective is to prove that K is a radical exception.	xtension of <i>F.</i>	
ω is a primitive p^{th} root of unity and $c^p \in F_{i+1}$		
Comment		
Step	2 of 4	
Radical extension: The radical extension of k is extension of k whice roots of elements	ch is obtained by adjoin	ing the sequence of $p^{\it th}$
Comment		

Step 3 of 4

G = Gal(K : F) is a solvable group.

F is the fixed field of G.

Where, K is a the finite extension of F.

Consider F_i and F_{i+1} are the fixed fields of H_i and H_{i+1} .

Comment

Step 4 of 4

Consider the polynomial $x^p - c^p$.

The root of above polynomial is a primitive p^{th} root of unity

$$x^p - c^p = 0$$

$$x^p = c^p$$

$$x = \sqrt[p]{c^p} \omega$$

$$x = \omega c$$

$$x = c$$

 F_i is the root field of $x^p - c^p$ over F_{i+1}

$$c^p \in F_{i+1}$$

$$c \in F_i$$

 F_{i+1} is the simple radical extension of F_i

$$F=F_0\subset F_1\subset ...F_n=K$$

Therefore, K is a radical extension of F.

Comment