Assignment4

Chia-Wei Lai | clai2 2024/06/03

- 1. Provide a formal analysis of interest rate behavior over time by applying the econometric concept of cointegration. Summarize and interpret the results of your analysis from a statistical/econometric perspective.
 - i. We begin by visualizing the evolution of yields with different maturities to observe patterns over time.

ii. The ADF test is implemented for each yield to determine stationarity. The results indicate that all yields are non-stationary

	ADF Statistic	p-value
3-month	-1.707357	0.427326
6-month	-1.804738	0.378112
1-year	-1.702301	0.429927
2-year	-2.233559	0.194292
3-year	-2.260166	0.185137
5-year	-2.339511	0.159541
7-year	-2.504235	0.114447
10-year	-2.519285	0.110852
20-year	-2.424748	0.134873
30-year	-2.429034	0.133709

iii. We split data into training set (80%) and validation set (20%) and do the Johansen test, with a constant term and lag one, is conducted for pairs of yields to check for cointegration. We display the trace statistic as follows.

	3-month	6-month	1-year	2-year	3-year	5-year	7-year	10-year	20-year	30-year
3-month	NaN	105.672901	72.020209	50.477974	32.399735	17.437226	13.567883	11.043822	8.855981	9.038284
6-month	NaN	NaN	60.3571	45.099833	28.527976	14.915785	11.990479	10.510184	9.922652	10.071221
1-year	NaN	NaN	NaN	39.90001	23.348664	13.518149	11.773586	11.077011	10.573078	10.690947
2-year	NaN	NaN	NaN	NaN	15.182834	11.981184	11.391304	11.075805	9.787915	10.019489
3-year	NaN	NaN	NaN	NaN	NaN	12.701071	11.332583	10.691193	8.978149	9.453938
5-year	NaN	NaN	NaN	NaN	NaN	NaN	12.035779	10.193462	8.24576	9.015199
7-year	NaN	NaN	NaN	NaN	NaN	NaN	NaN	11.833767	8.567326	9.610683
10-year	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	9.471421	10.338029
20-year	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	17.798997
30-year	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

Here is the critical value of 5% significant level.

	3-month	6-month	1-year	2-year	3-year	5-year	7-year	10-year	20-year	30-year
3-month	NaN	15.4943	15.4943	15.4943	15.4943	15.4943	15.4943	15.4943	15.4943	15.4943
6-month	NaN	NaN	15.4943	15.4943	15.4943	15.4943	15.4943	15.4943	15.4943	15.4943
1-year	NaN	NaN	NaN	15.4943	15.4943	15.4943	15.4943	15.4943	15.4943	15.4943
2-year	NaN	NaN	NaN	NaN	15.4943	15.4943	15.4943	15.4943	15.4943	15.4943
3-year	NaN	NaN	NaN	NaN	NaN	15.4943	15.4943	15.4943	15.4943	15.4943
5-year	NaN	NaN	NaN	NaN	NaN	NaN	15.4943	15.4943	15.4943	15.4943
7-year	NaN	15.4943	15.4943	15.4943						
10-year	NaN	15.4943	15.4943							
20-year	NaN	15.4943								
30-year	NaN									

Results show which pairs have at least one cointegration relationship (1) and which do not (0).

	3-month	6-month	1-year	2-year	3-year	5-year	7-year	10-year	20-year	30-year
3-month	NaN	1	1	1	1	1	0	0	0	0
6-month	NaN	NaN	1	1	1	0	0	0	0	0
1-year	NaN	NaN	NaN	1	1	0	0	0	0	0
2-year	NaN	NaN	NaN	NaN	0	0	0	0	0	0
3-year	NaN	NaN	NaN	NaN	NaN	0	0	0	0	0
5-year	NaN	NaN	NaN	NaN	NaN	NaN	0	0	0	0
7-year	NaN	NaN	NaN	NaN	NaN	NaN	NaN	0	0	0
10-year	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	0	0
20-year	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	1
30-year	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

- 2. Provide an interpretation of your results from part 1, in terms of what general insights they provide for predicting and managing the interest rate risk associated with the banking business model.
 - i. Short-term vs. Long-term Yields
 - The cointegration analysis indicates that short-term yields (less than 5 years) are more likely to exhibit cointegration relationships compared to long-term yields (more than 5 years).
 - 2. Short-term yields tend to react more sensitively and quickly to changes in monetary policy. This is because monetary policy interventions, such as changes in the central bank's interest rate, directly affect short-term borrowing and lending rates.
 - Long-term yields are influenced by broader economic factors, including inflation
 expectations, economic growth forecasts, and risk premiums. These factors introduce
 greater variability and less predictable patterns, reducing the likelihood of cointegration
 with short-term yields.

ii. Predictive Power of Cointegrated Pairs

- Identifying cointegrated pairs of interest rates allows for more reliable predictions of their relative movements. When two rates are cointegrated, deviations from their longterm equilibrium relationship are temporary and will correct over time.
- For instance, if the 3-month and 5-year yields are cointegrated, a divergence from their historical spread can be expected to revert to the mean, providing a basis for predicting future movements.

iii. Implications for Risk Management

- Interest Rate Risk Hedging: Understanding cointegration helps in designing effective
 hedging strategies. For instance, a bank can hedge its exposure to short-term interest
 rate movements by taking positions in instruments tied to the cointegrated long-term
 rates, thereby reducing the overall risk.
- Stress Testing and Scenario Analysis: By incorporating cointegration relationships into stress testing frameworks, banks can better assess the potential impact of extreme market movements on their portfolios. This enhances the robustness of their risk management practices.
- 3. Yield Curve Strategies: Cointegration insights can be leveraged to develop trading strategies based on the yield curve. For example, a pairs trading strategy that exploits deviations in the cointegrated spread between short-term and long-term rates can generate profits while managing risk.

iv. Ten pairs with cointegration relationships are identified. Using the maximum eigenvalue, we find the corresponding eigenvector to construct a stationary time series. Out-of-sample periods are marked beyond the vertical red dash line in the visualization.

- 3. Using the data provided design and test (including back-testing) a pairs trading strategy for the 3-month and 5-year pair of constant maturity rates. For this part you can assume that the constant maturity rates are the closing prices for each day. Provide supporting reasons for any assumptions and choices you make.
 - i. We apply the Kalman Filter with dynamic beta hedge to generate residuals.

The time series for beta and intercept are tracked.

ii. Trading strategy:

- 1. When residuals exceed 0.5, short the pair until residuals fall below -0.5.
- 2. When residuals drop below -0.5, long the pair until residuals rise above 0.5.
- 3. The strategy's performance is measured by cumulative profit, winning rate (47%), profit/loss ratio (1.01), and Sharpe ratio (0.33).

