

## **SECOND SEMESTER 2021-2022**

Course Handout Part II

Date: 15-01-2022

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : PHY F425

Course Title : Advanced Mathematical Methods of Physics

*Instructor-in-Charge* : Subhash Karbelkar

**Scope and Objective of the Course:** The course will cover topics in advanced mathematics which find extensive applications in Theoretical Physics. Upon successful completion, students will have the knowledge and skills to:

- 1. Explain the fundamental concepts of a few special topics in theoretical physics.
- 2. Demonstrate accurate and efficient use of specific mathematical physics techniques.
- 3. Demonstrate capacity for mathematical reasoning through analyzing, proving and explaining concepts from theoretical physics.

## Textbooks:

- 1. Lectures on Advanced Mathematical Methods for Physicists \(^a\) (Sunil Mukhi and N. Mukunda)
- 2. Gauge Fields, Knots and Gravity **b** (John Baez and Javier Muniain)

## Reference books

- 1. Geometrical Methods of Mathematical Physics (Bernard F. Schutz)
- 2. Introduction to Topology (Bert Mendelson)
- 3. Elementary Differential Geometry (Christian Bar)

# **Course Plan:**

| Number<br>of<br>lectures | Learning objectives                                                                                                                            | Topics to be covered                                                                     | Chapter in<br>the Text<br>Book |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------|
| 10                       | Introduction to Topology Topology Topology Topology Topology, Metric Spaces, Manifolds, Connected and compact spaces, Homeomosphisms, Homotopy |                                                                                          | a.1-a.2, b.1                   |
| 10                       | Homology and Fibre<br>Bundles                                                                                                                  | Simplical Homology, de Rham Cohomology,<br>Vector bundles and Principal Bundles          | a.5-a.6, b-1                   |
| 8                        | Differential Manifolds                                                                                                                         | Calculus on manifolds, Vector and Tensor fields, Differential Forms, Riemannian Geometry | a.3-a.4                        |



| 6 | Continuous Groups | Abelian, Non-abelian groups, Lie Groups,<br>Representation, Dynkin Diagrams | a.7-a.9 |
|---|-------------------|-----------------------------------------------------------------------------|---------|
| 6 | Gauge Fields      | De Rham Theory in Electromagnetism,<br>Curvature and Yang Mills Equations   | b.1-b.2 |

# **Evaluation Scheme:**

| Component          | Duration | Weightage<br>(%) | Date & Time              | Nature of<br>Component |  |  |  |  |
|--------------------|----------|------------------|--------------------------|------------------------|--|--|--|--|
| Mid Sem Exam       | 90 mins  | 35               | 11/03 3.30pm<br>to5.00pm | Open Book              |  |  |  |  |
| Assignments (2)    |          | 15 each          |                          |                        |  |  |  |  |
| Comprehensive Exam | 120 mins | 35               | 10/05 AN                 | Open Book              |  |  |  |  |

**Chamber Consultation Hour:** Will be announced during the class.

**Notices:** CMS

Make-up Policy: Student must inform prior to the exam and provide convincing proof for absence.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

**INSTRUCTOR-IN-CHARGE** 

