Naghustere sweithi to grafach:

3 sformitovania publemi:

Algorytm Dijlestry (dla wenjewych długości)

· znajdí najktotsza scienky z u do v

· znajdí najlutsza ścielky z Vo do worystkich innych wienchothow

· znajdi najhotsie ścieżli więdzy wszystlimi parami wieudwitusu

Algorytm Warshalla - Floyda (znajduje długośti najbotszych ślicich)

a[i,j] + dtagost harydni (i,j) hub & gdy migdry i,j nie ma hvangshi $a[i,i] \leftarrow 0$

FOR K ←1 TO n:

For i ←1 To n:

FOR j←1 TO n:

 $\alpha[i,j] \leftarrow \min \{\alpha[i,j]; \alpha[i,k] + \alpha[k,j]\}$

Na horien otnymany taklieg/macien a[i,j], w horiej będo znajdonac sig długości najlastszych duty z izloj. Algorytan ten driała warnie dla grafen z ujemnymi wagami hunythi pod wannhiem brahu cyhli o długości ujemnej, poniewai w talocj symayi:

predodige z u do v moglitysny webalië w cyll caty cras, dighi creum najhotson science nie istaintaby (zaune moreny projec cylul ludejny var, uryslæjge lewtry sticiligt.

Moise ponvedici, ie menniennitrem algorytum Warsheller-Floyda jest: Po k-tej iteracji najbardinej zemnetninej petti, a[i,j] zamica dlegost najtustný drogi z i do j, w letry nierochethani postednimi mogg bgi {1,2,..., kg.

Prechodnie domkniscie grafu diewranegs

G- graf shierorany

G*-graf prechodniego domlingura G

1° V(G) = V(G*)

2° W G* jest harydi (u,v) (=> w G istnieje dwya z u do v

3° uRv (=> (u,v) EE(G)

Znajdonanie predodniego dominijaa:

· Algorytm Warshalla - Floydu

For k € 1 To n:

FOR i < 1 ₹0 n:

For j = 1 To n:

macien squiedatura a - aij + aij V (ain 1 akj)

Na hoñen a je jest macieng sgsiedeten grafu a*, cyli macieng prechodniego domlungcia.

Niech A - marien systedztru, a A^* - marien predoduzgo domleniguia, whethy $A^* = I + A + A^2 + A^3 + \dots = I + A + A^2 + \dots + A^n = 1$ potygi ornacnja diogri diogri diogri advoji z i do j $= (I + A)^{N-1} = (((I + A)^2 \dots)^2)^2$ $= (I + A)^{N-1} = (((I + A)^2 \dots)^2)^2$

FALLT: A* moina policy i crusie M(n). log m, gdue M(n) to cus musieuia marieny n x n.

Triendrenie: Cras oblicamin prethodniego domhnizcia vie jest asymptotycnie szybszy nii cras mnorenia macieny nxn.

o
$$y_k$$
 o y_k o y_{k-1} o y_{k-1}

$$Cij = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Najhustere duevo spinajgec (vorpinajgee)

G-graf nieslichan z wagami na hvangdiad

a glany or

Ogsley schemat:

- · Na poczytla T jest grufem pustym,
- · Dopshi T nie jost dneven:
 - · do T dodajemy najbustszy hvanydź międny zbiorami nienchothow V_1 i V_2 tahimi, ie $V_1 \cup V_2 = V(G)$, $V_1 \cap V_2 = \emptyset$, V_1 i V_2 nie są potywone w Thanydnig.

Dowsd:

Zatoring nie upwost, ie ten schemat nie produkuje najkustrigo dneur spinojgoego. Oznaciny dneus zuweiene prin ten schemat jako T. Niedr T* będnie najkustrym dneuem spinajgogn Zatorevającym najdłyższy poczytlosy cigą kungdu dodawyd prin schemat.

Niech $T^{**}=T^*\cup \{e_{\mu}\}\setminus \{e'\}$, interly $d(T^{**})\leq d(T^*)$. T^{**} zamena $e_1e_2\cdots e_{\mu-1}e_{\mu}$.

[...]

Dododiny do spacemosti.

Algorytm Kruskala

16 Uponydhij knanydnie w ponydlum d(e1) ≤ d(e2) ≤ ... ≤ d(em), 2° T ← Ø 3° FOR i ← TO m: IF (dadame ei do T nie thony cyhlu): T ← T U deig

Dousd populuosui:

. T nie postada cylli

- T jest spsjny (bo a jest spsjny, nige dla donolyd V_1, V_2 taled ie $V_1 \wedge V_2 = \emptyset$, $V_1 \cup V_2 = V(a)$, istnieje e_i , letsry Egery te zbiory algorytu Kurshala doda do T najbereśniejszy taley hungdi)
- · alpoytum kushala dodaje lungdt migdry shtartonymi, u litsvej jest jeden z hvoréce dodaninej hvonyshi a sung povostutych shtardonych

Algorytm Prima - Dijhstry (Vo) $\begin{cases}
\nabla^{1} = d \vee s^{i} \\
\text{FOR } V \in N(Vo)
\end{cases}$ $d[V] \leftarrow d(V_{i} \vee v_{o}) - graf vicularionary, is d(v_{i} \vee v_{o}) = d(V_{o}, \vee)$ $p[V] \leftarrow Vo$ $for <math>V \notin N(Vo)$ $d[V] \leftarrow \infty$

WHILE $V' \neq V$ Wybren z V'V' take v, ze d[v] jest minimality $V' \leftarrow V' \cup \{v\}$ FOR $u \in N(v)$ IF (d[u] > d(v,u)) $d[u] \leftarrow d(v,u)$ $p[u] \leftarrow v$

- · Algorytun dodaje do V'n-1 niemchothor (jednovesure dodajge n-1 hrougsti)
- · Algerytu driata vg ogólnego schandu dodaje a haidym hudu. Najhoty hvegti migdry V'i V V' (po haidym hushu v d[a] jest dřegosé najhotré hrangthi Tgarycej u z V')

1°
$$0 \leq f(u_1v) \leq c(u_1v)$$

2° prano Kirchoffa, trn.
$$\sum_{u} f(u,v) = \sum_{u} f(v,u)$$
, crylityle co wdodni na nejstiu, mnsi byjšť na nyjstiu $(v \neq s,t)$

$$\hat{f} = \sum_{u} f(s, u)$$

$$c(S_iT) = \sum_{\substack{u \in S_i \\ V \in T}} c(u_iv),$$

$$f(s_iT) = \sum_{u \in S_i} f(u_iv) - \sum_{u \in S_i} f(v_iu)$$

Lemat:
$$f(s_{i}T) = \hat{f}$$
 dla kaidego $S_{i}T$

$$f(s_{i}T) = \sum_{u \in S_{i}} f(u_{i}v) - \sum_{u \in S_{i}} f(v_{i}u) \quad \sum_{u_{i}v \in S} f(u_{i}v) - \sum_{u_{i}v \in S} f(u_{i}v) = \sum_{u \in S_{i}} f(s_{i}u) + \sum_{v \in S_{i}} \left(\sum_{u \in V} f(v_{i}u) - \sum_{u \in V} f(u_{i}v)\right) = \hat{f}$$

$$\hat{f} \qquad 0 - z \text{ pure Kinchoffa}$$

$$\sum_{u \in S_{i}} f(u_{i}v) = \sum_{u_{i}v \in S_{i}} f(u_{i}v) = \sum_{u \in S_{i}} f(u_{i}v)$$

$$\sum_{u \in S_{i}} f(u_{i}v) = \sum_{u \in S_{i}} f(u_{i}v)$$

$$\sum_{u \in S_{i}} f(u_{i}v) = \sum_{u \in S_{i}} f(u_{i}v)$$