

NGUYỄN CÔNG PHƯƠNG

LÝ THUYẾT MẠCH I

MẠCH MỘT CHIỀU

Lý thuyết mạch I

- I. Thông số mạch
- II. Phần tử mạch

III. Mạch một chiều

- 1. Các định luật cơ bản
- 2. Các phương pháp phân tích
- 3. Các định lý mạch
- 4. Phân tích mạch một chiều có L hoặc/và C
- IV. Mạch xoay chiều
- V. Mạng hai cửa
- VI. Mạch ba pha
- VII. Khuếch đại thuật toán

Mạch một chiều

- Là mạch điện chỉ có nguồn một chiều
- Cuộn dây (nếu có) bị ngắn mạch
- Tụ điện (nếu có) bị hở mạch
- Nội dung:
 - Các định luật cơ bản
 - Các phương pháp phân tích
 - Các định lý mạch

Mạch một chiều

- 1. Các định luật cơ bản
 - a) Định luật Ohm
 - b) Nhánh, nút, và vòng
 - c) Định luật Kirchhoff
- 2. Các phương pháp phân tích
- 3. Các định lý mạch
- 4. Phân tích mạch một chiều có L hoặc/và C

Định luật Ohm (1)

- Liên hệ giữa dòng & áp của một phần tử.
- Nếu có nhiều phần tử trở lên thì định luật Ohm chưa đủ.
- → Các định luật Kirchhoff.

Định luật Ohm (2)

VD1

$$R = 20 \ \Omega, \ u = 100 \ V, \ i = ?$$

$$i = \frac{u}{R} = \frac{100}{20} = 5 \text{ A}$$

VD2

$$R = 40 \Omega$$
, $i = 2 A$, $u = ?$

$$u = -Ri = -40.2 = -80 \text{ V}$$

Nhánh, nút, và vòng (1)

Nhánh: biểu diễn 1 phần tử mạch đơn nhất (ví dụ 1 nguồn áp hoặc 1 điện trở), hoặc các phần tử nối tiếp với nhau

Nhánh, nút, và vòng (2)

- *Nút*: điểm nối của ít nhất ba nhánh.
- Biểu diễn bằng một dấu chấm.
- Nếu các nút nối với nhau bằng dây dẫn, chúng tạo thành một nút.

Nhánh, nút, và vòng (3)

- Vòng: một đường khép kín trong một mạch.
- Đường khép kín: xuất phát 1 điểm, đi qua một số điểm khác, mỗi điểm chỉ đi qua một lần, rồi quay trở lại điểm xuất phát.

Mạch một chiều

1. Các định luật cơ bản

- a) Định luật Ohm
- b) Nhánh, nút, và vòng
- c) Định luật Kirchhoff
- 2. Các phương pháp phân tích
- 3. Các định lý mạch
- 4. Phân tích mạch một chiều có L hoặc/và C

Định luật Kirchhoff (1)

- Có hai định luật Kirchhoff: định luật cân bằng dòng (KD), và định luật cân bằng áp (KA).
- KD: suy ra từ luật bảo toàn điện tích.
- KA: suy ra từ luật bảo toàn năng lượng.

Định luật Kirchhoff (2), KD

$$\sum_{n=1}^{N} i_n = 0$$

Quy ước: dòng đi vào nút mang dấu dương (+), dòng đi ra khỏi nút mang dấu âm (–)

$$a: i_1 - i_2 - i_3 = 0$$

$$b: i_3 + J - i_4 = 0$$

$$c: -i_1 + i_2 - J + i_4 = 0$$

Định luật Kirchhoff (3), KD

VD3

$$i_1 = 4 \text{ A}, i_2 = 3 \text{ A}, i_3 = ?$$

$$a: i_1 - i_2 - i_3 = 0 \rightarrow i_3 = i_1 - i_2 = 4 - 3 = 1 \text{ A}$$

Định luật Kirchhoff (4), KA

$$\sum_{n=1}^{N} u_n = 0$$

Quy ước: điện áp cùng chiều với vòng mang dấu dương (+), điện áp ngược chiều với vòng mang dấu âm (–)

$$A: R_1 i_1 + R_2 i_2 - E_1 = 0$$

$$B: -R_2i_2 + R_3i_3 + R_4i_4 - E_3 = 0$$

$$C: R_1 i_1 + R_3 i_3 + R_4 i_4 - E_1 - E_3 = 0$$

Định luật Kirchhoff (5), KA

$$A: R_1 i_1 + R_2 i_2 - E_1 = 0$$

$$B: -R_2i_2 + R_3i_3 + R_4i_4 - E_3 = 0$$

$$C: R_1 i_1 + R_3 i_3 + R_4 i_4 - E_1 - E_3 = 0$$

$$A: R_1i_1 + R_2i_2 = E_1$$

$$B: -R_2i_2 + R_3i_3 + R_4i_4 = E_3$$

$$C: R_1 i_1 + R_3 i_3 + R_4 i_4 = E_1 + E_3$$

Định luật Kirchhoff (6), KA

VD4

$$R_1 = 20 \ \Omega, R_2 = 10 \ \Omega, E_1 = 110 \ V,$$

 $i_1 = 4 \ A, i_2 = ?$

$$A: R_1 i_1 + R_2 i_2 = E_1 \rightarrow 20.4 + 10 i_2 = 110 \rightarrow i_2 = \frac{110 - 20.4}{10} = 3 \text{ A}$$

Mạch một chiều

- 1. Các định luật cơ bản
- 2. Các phương pháp phân tích
 - a) Phương pháp dòng nhánh
 - b) Phương pháp thế nút
 - c) Phương pháp dòng vòng
 - d) Biến đổi tương đương
 - e) Phương pháp ma trận
- 3. Các định lý mạch
- 4. Phân tích mạch một chiều có L hoặc/và C

Phương pháp dòng nhánh (1)

- Ẩn số là các dòng điện của các nhánh.
- Số lượng ẩn số = số lượng nhánh (không kể nguồn dòng, nếu có) của mạch.

Phương pháp dòng nhánh (2)

$$\begin{cases} a: i_1 - i_2 - i_3 = 0 \\ b: i_3 + J - i_4 = 0 \end{cases}$$

$$b: i_3 + J - i_4 = 0$$

$$c: -i_1 + i_2 - J + i_4 = 0$$

$$A: R_1i_1 + R_2i_2 = E_1$$

$$B: -R_2 i_2 + R_3 i_3 + R_4 i_4 = E_3$$

$$C: R_1 i_1 + R_3 i_3 + R_4 i_4 = E_1 + E_3$$

6 phương trình 4 ẩn số → 4 phương trình 4 ẩn số

$$a: i_1 - i_2 - i_3 = 0$$

$$b: i_3 + J - i_4 = 0$$

$$c: -i_1 + i_2 - J + i_4 = 0$$

$$A: R_1 i_1 + R_2 i_2 = E_1$$

$$\begin{cases} a : i_1 - i_2 - i_3 = 0 \\ b : i_3 + J - i_4 = 0 \\ c : -i_1 + i_2 - J + i_4 = 0 \end{cases} \rightarrow i_1 - i_2 - i_3 = 0$$

$$\begin{cases} i_1 - i_2 - i_3 = 0 \\ i_3 + J - i_4 = 0 \\ R_1 i_1 + R_2 i_2 = E_1 \end{cases}$$

3 phương trình 4 ẩn số!!!

Phương pháp dòng nhánh (3)

$$\begin{cases} a: i_1 - i_2 - i_3 = 0 \\ b: i_3 + J - i_4 = 0 \\ c: -i_1 + i_2 - J + i_4 = 0 \\ A: R_1 i_1 + R_2 i_2 = E_1 \end{cases}$$

$$b: i_3 + J - i_4 = 0$$

$$c: -i_1 + i_2 - J + i_4 = 0$$

$$A: R_1i_1 + R_2i_2 = E_1$$

$$\begin{bmatrix} I_1 & I_2 & I_3 & I_4 \\ R_1 & I_2 & B & I_4 \end{bmatrix}$$

$$\int i_1 - i_2 - i_3 = 0$$

$$\left\{i_3 + J - i_4 = 0\right\}$$

$$R_1 i_1 + R_2 i_2 = E_1$$

Viết phương trình KD cho nút nào? Viết phương trình KA cho vòng nào?

Một mạch điện có n_{KD} phương trình KD và n_{KA} phương trình KA, với:

$$n_{KD} = \text{s\acute{o}}_{-}\text{n\acute{u}t} - 1$$

 $n_{KA} = \text{số_nhánh} - \text{số_nút} + 1 \text{ (không kể nguồn dòng, nếu có)}$

Phương pháp dòng nhánh (4)

$$\begin{cases} a: i_1 - i_2 - i_3 = 0 \\ b: i_3 + J - i_4 = 0 \end{cases}$$

$$A: R_1 i_1 + R_2 i_2 = E_1$$

$$B: -R_2 i_2 + R_3 i_3 + R_4 i_4 = E_3$$

Một mạch điện có n_{KD} phương trình KD và n_{KA} phương trình KA, với:

$$n_{KD} = \text{s\acute{o}}_{-}\text{n\acute{u}t} - 1$$

 $n_{KA} = \text{số_nhánh} - \text{số_nút} + 1$ (không kể nguồn dòng, nếu có)

Phương pháp dòng nhánh (5)

$$n_{KD} = 3 - 1 = 2$$

$$n_{KA} = 3 - 2 + 1 = 2$$

$$a: i_1 - i_2 - i_3 = 0$$

$$b: i_3 + J - i_4 = 0$$

$$A: R_1i_1 + R_2i_2 = E_1$$

$$\begin{cases} a: i_1 - i_2 - i_3 = 0 \\ b: i_3 + J - i_4 = 0 \end{cases}$$

$$A: R_1 i_1 + R_2 i_2 = E_1$$

$$B: -R_2 i_2 + R_3 i_3 + u_J = E_3$$

Phương pháp dòng nhánh (6)

VD2

$$n_{KD} = \text{s\^o_n\'ut} - 1 = 4 - 1 = 3$$

$$n_{KA} = \text{s\^o_nh\'anh} - \text{s\^o_n\'ut} + 1 = 6 - 4 + 1 = 3$$

a:
$$-i_1 + i_2 - i_6 = 0$$

b: $i_1 - i_5 + i_3 + J = 0$

$$b: i_1 - i_5 + i_3 + J = 0$$

$$c: -i_3 - i_4 + i_6 - J = 0$$

$$A: R_1 i_1 + R_5 i_5 + R_2 i_2 = E_1$$

$$B: R_3 i_3 + R_5 i_5 - R_4 i_4 = 0$$

B:
$$R_3i_3 + R_5i_5 - R_4i_4 = 0$$

C: $R_2i_2 + R_6i_6 + R_4i_4 = E_6$

Phương pháp dòng nhánh (7)

$$b: i_2 + i_3 + i_6 = 0$$
$$c: i_4 - i_3 + i_5 = 0$$

$$c: i_4 - i_3 + i_5 = 0$$

$$d: -i_1 - i_4 - J = 0$$

$$A: R_1 i_1 + R_5 i_5 - R_4 i_4 = E_1$$

$$B: R_3 i_3 - R_6 i_6 + R_5 i_5 = E_3 - E_6$$

$$C: R_6 i_6 - (R_2 + R_7) i_2 = E_6$$

Phương pháp dòng nhánh (8)

$$R_1=10\Omega,\,R_2=20\Omega,\,R_3=15\Omega,\,E_1=30\mathrm{V},\,E_3=45\mathrm{V},\,$$
 $J=2\mathrm{A}.$ Tính các dòng điện trong mạch?

$$\begin{cases} i_{1} + i_{2} - i_{3} + J = 0 \\ R_{1}i_{1} - R_{2}i_{2} = E_{1} \\ R_{2}i_{2} + R_{3}i_{3} = E_{3} \end{cases} \rightarrow \begin{cases} 1i_{1} + 1i_{2} - 1i_{3} = -2 \\ 10i_{1} - 20i_{2} + 0i_{3} = 30 \\ 0i_{1} + 20i_{2} + 15i_{3} = 45 \end{cases}$$

$$\rightarrow \begin{cases}
1i_1 + 1i_2 - 1i_3 = -2 \\
10i_1 - 20i_2 + 0i_3 = 30 \\
0i_1 + 20i_2 + 15i_3 = 45
\end{cases}$$

$$i_1 = \frac{\Delta_1}{\Delta}; \quad i_2 = \frac{\Delta_2}{\Delta}; \quad i_3 = \frac{\Delta_3}{\Delta}$$

$$\Delta = \begin{bmatrix} 1 \\ 10 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ -20 \\ 20 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \\ 15 \end{bmatrix}; \Delta_1 = \begin{bmatrix} -2 \\ 30 \\ 45 \end{bmatrix} \begin{bmatrix} -1 \\ 20 \\ 15 \end{bmatrix}; \Delta_2 = \begin{bmatrix} 1 \\ 10 \\ 0 \end{bmatrix} \begin{bmatrix} -2 \\ 30 \\ 45 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ 10 \end{bmatrix}; \Delta_2 = \begin{bmatrix} 1 \\ 10 \\ 0 \end{bmatrix}; \Delta_3 = \begin{bmatrix} 1 \\ 10 \\ 0 \end{bmatrix}; \Delta_3 = \begin{bmatrix} 1 \\ 10 \\ 0 \end{bmatrix}; \Delta_3 = \begin{bmatrix} 1 \\ 10 \\ 0 \end{bmatrix}; \Delta_4 = \begin{bmatrix} 1 \\ 10 \\ 0 \end{bmatrix}; \Delta_5$$

Phương pháp dòng nhánh (9)

VD4

$$R_1=10\Omega,\,R_2=20\Omega,\,R_3=15\Omega,\,E_1=30\mathrm{V},\,E_3=45\mathrm{V},\,$$
 $J=2\mathrm{A}.$ Tính các dòng điện trong mạch?

$$\begin{cases} i_1 + i_2 - i_3 + j = 0 \\ R_1 i_1 - R_2 i_2 = e_1 \\ R_2 i_2 + R_3 i_3 = e_3 \end{cases} \rightarrow \begin{cases} i_1 + i_2 - i_3 = -2 \\ 10 i_1 - 20 i_2 = 30 \\ 20 i_2 + 15 i_3 = 45 \end{cases}$$

$$\Delta = \begin{bmatrix} 1 & -1 \\ -20 & 0 \\ \hline 0 & 20 & 15 \end{bmatrix}$$

$$= (-1)^{1+1} 1 \begin{vmatrix} -20 & 0 \\ 20 & 15 \end{vmatrix} + (-1)^{2+1} 10 \begin{vmatrix} 1 & -1 \\ 20 & 15 \end{vmatrix} + (-1)^{3+1} 0 \begin{vmatrix} 1 & -1 \\ -20 & 0 \end{vmatrix}$$

$$= 1(-20.15 - 20.0) - 10[1.15 - 20(-1)] + 0[1.0 - (-20)(-1)]$$

$$=-650$$

Phương pháp dòng nhánh (10)

VD4

$$R_1=10\Omega,$$
 $R_2=20\Omega,$ $R_3=15\Omega,$ $E_1=30V,$ $E_3=45V,$ $J=2A.$ Tính các dòng điện trong mạch?

$$\begin{cases} i_1 + i_2 - i_3 + j = 0 \\ R_1 i_1 - R_2 i_2 = e_1 \\ R_2 i_2 + R_3 i_3 = e_3 \end{cases} \rightarrow \begin{cases} i_1 + i_2 - i_3 = -2 \\ 10 i_1 - 20 i_2 = 30 \\ 20 i_2 + 15 i_3 = 45 \end{cases}$$

$$i_1 = \frac{\Delta_1}{\Delta}; \quad i_2 = \frac{\Delta_2}{\Delta}; \quad i_3 = \frac{\Delta_3}{\Delta}$$

$$\Delta = -650$$
; $\Delta_1 = -1350$; $\Delta_2 = 300$; $\Delta_3 = -2350$

$$\begin{bmatrix} i_1 & E_1 \\ \vdots \\ E_1 \end{bmatrix} \begin{bmatrix} i_2 \\ \vdots \\ E_3 \end{bmatrix} \begin{bmatrix} i_3 \\ \vdots \\ R_1 \end{bmatrix}$$

$$\begin{bmatrix} R_1 & J_b & R_2 \end{bmatrix} \begin{bmatrix} R_3 \\ \vdots \\ R_3 \end{bmatrix}$$

$$i_{1} = \frac{\Delta_{1}}{\Delta}; \quad i_{2} = \frac{\Delta_{2}}{\Delta}; \quad i_{3} = \frac{\Delta_{3}}{\Delta}$$

$$= \frac{\Delta_{1}}{\Delta}; \quad i_{2} = \frac{\Delta_{2}}{\Delta}; \quad i_{3} = \frac{\Delta_{3}}{\Delta}$$

$$= \frac{300}{-650} = 2,08 \text{ A}$$

$$= \frac{300}{-650} = -0,46 \text{ A}$$

$$= \frac{-2350}{-650} = 3,62 \text{ A}$$

Phương pháp dòng nhánh (11)

VD4

 $R_1=10\Omega,\,R_2=20\Omega,\,R_3=15\Omega,\,E_1=30\mathrm{V},\,E_3=45\mathrm{V},\,J=2\mathrm{A}.$ Tính các dòng điện trong mạch?

$$\begin{cases} i_1 + i_2 - i_3 = -2 \\ 10i_1 - 20i_2 = 30 \\ 10i_1 + 15i_3 = 45 + 30 \end{cases}$$

$$\Rightarrow \begin{cases}
i_1 = 2,08 \text{ A} \\
i_2 = -0,46 \text{ A} \\
i_3 = 3,62 \text{ A}
\end{cases}$$

$$\begin{cases} i_1 + i_2 - i_3 = -2 \\ 10i_1 - 20i_2 = 30 \\ 20i_2 + 15i_3 = 45 \end{cases}$$

$$\Rightarrow \begin{cases}
i_1 = 2,08 \text{ A} \\
i_2 = -0,46 \text{ A} \\
i_3 = 3,62 \text{ A}
\end{cases}$$

Mạch một chiều

- 1. Các định luật cơ bản
- 2. Các phương pháp phân tích
 - a) Phương pháp dòng nhánh
 - b) Phương pháp thế nút
 - c) Phương pháp dòng vòng
 - d) Biến đổi tương đương
 - e) Phương pháp ma trận
- 3. Các định lý mạch
- 4. Phân tích mạch một chiều có L hoặc/và C

Phương pháp thế nút (1)

$$\begin{cases} a: i_1 - i_2 - i_3 = 0 \\ b: i_3 - i_4 + J = 0 \end{cases}$$
 (hệ 2 phương trình 4 ẩn số)

$$i_1 = f_1(\varphi_a, \varphi_b)$$

$$i_2 = f_2(\varphi_a, \varphi_b)$$

$$i_3 = f_3(\varphi_a, \varphi_b)$$

$$i_4 = f_4(\varphi_a, \varphi_b)$$

$$\Rightarrow \begin{cases} A_{11}\varphi_{a} + A_{12}\varphi_{b} = B_{1} \\ A_{21}\varphi_{a} + A_{22}\varphi_{b} = B_{2} \end{cases}$$

(hệ 2 phương trình 2 ẩn số)

Phương pháp thế nút (2)

- Ẩn số là điện thế của các nút.
- Còn gọi là "thế đỉnh".

• Dùng KA để đổi ẩn số "dòng điện nhánh" thành ẩn số "điện thế nút".

$$\begin{cases} i_1 + i_2 - i_3 = 0 \\ i_3 - i_4 + J = 0 \\ R_1 i_1 - R_2 i_2 = E_1 - E_2 \\ R_2 i_2 + R_3 i_3 + R_3 i_3 = E_2 \end{cases}$$

(60 định thức bậc 2)

$$i_{1} = f_{1}(\varphi_{a}, \varphi_{b})$$

$$i_{2} = f_{2}(\varphi_{a}, \varphi_{b})$$

$$i_{3} = f_{3}(\varphi_{a}, \varphi_{b})$$

$$i_{4} = f_{4}(\varphi_{a}, \varphi_{b})$$

$$\begin{cases} A_{11}\varphi_{a} + A_{12}\varphi_{b} = B_{1} \\ A_{21}\varphi_{a} + A_{22}\varphi_{b} = B_{2} \end{cases}$$

(3 dịnh thức bậc 2 + 4 hàm f)

Phương pháp thế nút (3)

$$i_1 = f(\varphi_a, \varphi_b, \varphi_c)$$
?

$$R_{1}i_{1} + (\varphi_{a} - \varphi_{c}) = E_{1} \rightarrow i_{1} = \frac{E_{1} - \varphi_{a} + \varphi_{c}}{R_{1}}$$

$$\text{N\'eu dăt } \varphi_{c} = 0$$

$$\rightarrow i_{1} = \frac{E_{1} - \varphi_{a}}{R_{1}}$$

Phương pháp thế nút (4)

$$Ri + (\varphi_a - \varphi_b) = E$$

$$\Rightarrow i = \frac{E - \varphi_a + \varphi_b}{R}$$

$$\varphi_b = 0 \Rightarrow i = \frac{E - \varphi_a}{R}$$

$$-Ri + (\varphi_a - \varphi_b) = E$$

$$\rightarrow i = \frac{-E + \varphi_a - \varphi_b}{R}$$

$$\varphi_b = 0 \rightarrow i = \frac{\varphi_a - E}{R}$$

Phương pháp thế nút (5)

$$Ri + (\varphi_a - \varphi_b) = -E$$

$$\rightarrow i = \frac{-E - \varphi_a + \varphi_b}{R}$$

$$\varphi_b = 0 \rightarrow i = \frac{-E - \varphi_a}{R}$$

$$-Ri + (\varphi_a - \varphi_b) = -E$$

$$\rightarrow i = \frac{E + \varphi_a - \varphi_b}{R}$$

$$\varphi_b = 0 \rightarrow i = \frac{E + \varphi_a}{R}$$

Phương pháp thế nút (6)

$$Ri + (\varphi_a - \varphi_b) = 0$$

$$\Rightarrow i = \frac{-\varphi_a + \varphi_b}{R}$$

$$\varphi_b = 0 \Rightarrow i = \frac{-\varphi_a}{R}$$

$$-Ri + (\varphi_a - \varphi_b) = 0$$

$$\rightarrow i = \frac{\varphi_a - \varphi_b}{R}$$

$$\varphi_b = 0 \rightarrow i = \frac{\varphi_a}{R}$$

Phương pháp thể nút (7)

Đặt
$$\varphi_c = 0$$

$$a: i_1 - i_2 - i_3 = 0$$

$$b: i_3 - i_4 + J = 0$$

$$i_1 = \frac{E_1 - \varphi_a}{R_1}$$

$$i_2 = \frac{\varphi_a}{R_2}$$

$$i_3 = \frac{E_3 + \varphi_a - \varphi_b}{R}$$

$$i_4 = \frac{\varphi_b}{R_4}$$

$$\int \frac{E_{1} - \varphi_{a}}{R_{1}} - \frac{\varphi_{a}}{R_{2}} - \frac{E_{3} + \varphi_{a} - \varphi_{b}}{R_{3}} = 0$$

$$\Rightarrow \begin{cases} E_3 + \varphi_a - \varphi_b \\ R_3 \end{cases} - \frac{\varphi_b}{R_4} + J = 0$$

$$\begin{vmatrix} i_{3} = \frac{E_{3} + \varphi_{a} - \varphi_{b}}{R_{3}} \\ i_{4} = \frac{\varphi_{b}}{R_{4}} \end{vmatrix} \rightarrow \begin{cases} \left(\frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}}\right) \varphi_{a} & -\frac{1}{R_{3}} \varphi_{b} = \frac{E_{1}}{R_{1}} - \frac{E_{3}}{R_{3}} \\ -\frac{1}{R_{3}} \varphi_{a} + \left(\frac{1}{R_{3}} + \frac{1}{R_{4}}\right) \varphi_{b} = \frac{E_{3}}{R_{3}} + J \end{cases} \rightarrow \begin{cases} \varphi_{a} - \frac{1}{R_{3}} \varphi_{b} - \frac{1}{R_{$$

$$-\frac{1}{R_3}\varphi_a + \left(\frac{1}{R_3} + \frac{1}{R_4}\right)\varphi_b = \frac{E_3}{R_3} + J$$

Phương pháp thế nút (8)

Đặt
$$\varphi_c = 0$$

$$\begin{bmatrix}
\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} & -\frac{1}{R_3} & -\frac{1}{R_3} & -\frac{E_1}{R_1} - \frac{E_3}{R_3} \\
-\frac{1}{R_3} & -\frac{1}{R_3} & -\frac{1}{R_3} & -\frac{1}{R_4} & -\frac{E_3}{R_3} & -\frac{E_3}{R_3} + J
\end{bmatrix}$$

TRƯỚNG BẠI HỌC BÁCH KHOA HÀ NỘI

Phương pháp thế nút (9)

Đặt
$$\varphi_c = 0$$

$$\begin{cases} a: & \qquad \qquad \phi_a = \\ b: & \qquad - \qquad \varphi_b = \end{cases}$$

$$b: \qquad \qquad - \qquad \varphi_a + \left(\qquad \qquad \right) \varphi_b =$$

Phương pháp thế nút (10)

Đặt
$$\varphi_d = 0$$

$$\begin{cases} a: \begin{pmatrix} & & \\ & & \\ \end{pmatrix} \varphi_a - \begin{pmatrix} & & \\ & & \\ \end{pmatrix} \varphi_b - \begin{pmatrix} & & \\ & & \\ \end{pmatrix} \varphi_c = \\ c: - \begin{pmatrix} & & \\ & & \\ \end{pmatrix} \varphi_a + \begin{pmatrix} & & \\ & & \\ \end{pmatrix} \varphi_b + \begin{pmatrix} & & \\ & & \\ \end{pmatrix} \varphi_c = \\ \phi_c = \begin{pmatrix} & & \\ & & \\ \end{pmatrix} \varphi_c = \begin{pmatrix} & & \\ & & \\ \end{pmatrix} \varphi_b + \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix} \varphi_c = \begin{pmatrix} & & \\ & & \\ \end{pmatrix} \varphi_c = \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix} \varphi_c = \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix} \varphi_b + \begin{pmatrix} & & \\ & & \\ & & \\ & & \\ \end{pmatrix} \varphi_c = \begin{pmatrix} & & \\ & & \\ & & \\ & & \\ \end{pmatrix} \varphi_c = \begin{pmatrix} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{pmatrix} \varphi_c = \begin{pmatrix} & & \\$$

Phương pháp thế nút (11)

Đặt
$$\varphi_c = 0$$

Phương pháp thế nút (12)

Đặt
$$\varphi_a = 0$$

$$\begin{cases} b: \begin{pmatrix} & & \\ & & \\ \end{pmatrix} \varphi_b - \begin{pmatrix} & & \\ & & \\ \end{pmatrix} \varphi_c & - \begin{pmatrix} & & \\ & & \\ \end{pmatrix} \varphi_d = \\ d: & - \begin{pmatrix} & & \\ & & \\ \end{pmatrix} \varphi_b - \begin{pmatrix} & & \\ & & \\ \end{pmatrix} \varphi_c + \begin{pmatrix} & & \\ & & \\ \end{pmatrix} \varphi_d = \\ \end{pmatrix} \varphi_d =$$

Phương pháp thế nút (13)

Đặt
$$\varphi_a = 0$$

$$\begin{cases} b: \left(\frac{1}{R_2 + R_7} + \frac{1}{R_3} + \frac{1}{R_6}\right) \varphi_b - \left(\frac{1}{R_3}\right) \varphi_c & -(0) \varphi_d = \frac{E_3}{R_3} + \frac{E_6}{R_6} \\ c: -\left(\frac{1}{R_3}\right) \varphi_b + \left(\frac{1}{R_3} + \frac{1}{R_4} + \frac{1}{R_5}\right) \varphi_c & -\left(\frac{1}{R_4}\right) \varphi_d = -\frac{E_3}{R_3} \\ d: -(0) \varphi_b - \left(\frac{1}{R_4}\right) \varphi_c + \left(\frac{1}{R_1} + \frac{1}{R_4} + \frac{1}{R_1} + \frac{1}{R_1}\right) \varphi_d = -J - \frac{E_1}{R_1} \end{cases}$$

$$\begin{cases} b: \left(\frac{1}{R_2 + R_7} + \frac{1}{R_3} + \frac{1}{R_6}\right) \varphi_b - \left(\frac{1}{R_3}\right) \varphi_c - \left(0\right) \varphi_d = \frac{E_3}{R_3} + \frac{E_6}{R_6} \\ c: - \left(\frac{1}{R_3}\right) \varphi_b + \left(\frac{1}{R_3} + \frac{1}{R_4} + \frac{1}{R_5}\right) \varphi_c - \left(\frac{1}{R_4}\right) \varphi_d = -\frac{E_3}{R_3} \\ d: - \left(0\right) \varphi_b - \left(\frac{1}{R_4}\right) \varphi_c + \left(\frac{1}{R_1} + \frac{1}{R_4}\right) \varphi_d = -J - \frac{E_1}{R_1} \end{cases}$$

Phương pháp thế nút (14)

$$\begin{cases} b: \left(\frac{1}{R_2 + R_7} + \frac{1}{R_3} + \frac{1}{R_6}\right) \varphi_b - \left(\frac{1}{R_3}\right) \varphi_c - \left(0\right) \varphi_d = \frac{E_3}{R_3} + \frac{E_6}{R_6} \\ c: - \left(\frac{1}{R_3}\right) \varphi_b + \left(\frac{1}{R_3} + \frac{1}{R_4} + \frac{1}{R_5}\right) \varphi_c - \left(\frac{1}{R_4}\right) \varphi_d = -\frac{E_3}{R_3} \\ d: - \left(0\right) \varphi_b - \left(\frac{1}{R_4}\right) \varphi_c + \left(\frac{1}{R_1} + \frac{1}{R_4}\right) \varphi_d = -J - \frac{E_1}{R_1} \end{cases}$$

Phương pháp thể nút (15)

$$R_1=10\Omega,\,R_2=20\Omega,\,R_3=15\Omega,\,E_1=30\mathrm{V},\,E_3=45\mathrm{V},\,$$
 $J=2\mathrm{A}.$ Tính các dòng điện trong mạch?

$$\left(\frac{1}{10} + \frac{1}{20} + \frac{1}{15}\right) \varphi_a = \frac{30}{10} + 2 - \frac{45}{15}$$

$$\to \varphi_a = 9,23 \text{ V}$$

$$\begin{cases} i_1 = \frac{30 - 9,23}{10} = 2,08 \text{ A} \\ i_2 = \frac{-9,23}{20} = -0,46 \text{ A} \\ i_3 = \frac{45 + 9,23}{15} = 3,62 \text{ A} \end{cases}$$

Phương pháp thế nút (16)

Đặt
$$\varphi_a = 0$$

$$\begin{cases} b: \left(\frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_6}\right) \varphi_b - \left(\frac{1}{R_3}\right) \varphi_c & -\left(0\right) \varphi_d = \frac{E_3}{R_3} + \frac{E_6}{R_6} \\ c: -\left(\frac{1}{R_3}\right) \varphi_b + \left(\frac{1}{R_3} + \frac{1}{R_4} + \frac{1}{R_5}\right) \varphi_c & -\left(\frac{1}{R_4}\right) \varphi_d = -\frac{E_3}{R_3} \\ d: -\left(0\right) \varphi_b - \left(\frac{1}{R_4}\right) \varphi_c + \left(\frac{1}{R_1} + \frac{1}{R_4} + \frac{1}{R_{E7}}\right) \varphi_d = -\frac{E_1}{R_1} - \frac{E_7}{R_{E7}} \end{cases}$$

Phương pháp thế nút (17)

Đặt
$$\varphi_a = 0$$

$$\begin{cases} b: i_{2} + i_{3} + i_{6} = 0 \\ c: i_{4} + i_{5} - i_{3} = 0 \end{cases}$$

$$i_{1} = \frac{E_{1} + E_{7}}{R_{1}}, i_{2} = \frac{-\varphi_{b}}{R_{2}}, i_{3} = \frac{E_{3} - \varphi_{b} + \varphi_{c}}{R_{3}}$$

$$i_{4} = \frac{\varphi_{d} - \varphi_{c}}{R_{4}}, i_{5} = \frac{-\varphi_{c}}{R_{5}}, i_{6} = \frac{E_{6} - \varphi_{b}}{R_{6}}$$

$$\varphi_{d} = E_{7}$$

$$\rightarrow \begin{cases} \frac{-\varphi_b}{R_2} + \frac{E_3 - \varphi_b + \varphi_c}{R_3} + \frac{E_6 - \varphi_b}{R_6} = 0 \\ \frac{E_7 - \varphi_c}{R_4} + \frac{-\varphi_c}{R_5} - \frac{E_3 - \varphi_b + \varphi_c}{R_3} = 0 \end{cases} \rightarrow \begin{cases} \left(\frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_6}\right) \varphi_b - \frac{1}{R_3} \varphi_c = \frac{E_3}{R_3} + \frac{E_6}{R_6} \\ -\frac{1}{R_3} \varphi_b + \left(\frac{1}{R_3} + \frac{1}{R_4} + \frac{1}{R_5}\right) \varphi_c = -\frac{E_3}{R_3} + \frac{E_7}{R_4} \end{cases}$$

Phương pháp thế nút (18)

Đặt
$$\varphi_a = 0$$

$$i_{1} = \frac{E_{1} + E_{7}}{R_{1}}, i_{2} = \frac{-\varphi_{b}}{R_{2}}$$

$$i_{4} = \frac{\varphi_{d} - \varphi_{c}}{R_{4}}, i_{5} = \frac{-\varphi_{c}}{R_{5}}, i_{6} = \frac{E_{6} - \varphi_{b}}{R_{6}}$$

$$\varphi_{d} = E_{7}, \varphi_{b} - \varphi_{c} = E_{3}$$

$$\rightarrow \begin{cases} \frac{-\varphi_b}{R_2} + \frac{E_7 - \varphi_c}{R_4} + \frac{-\varphi_c}{R_5} + \frac{E_6 - \varphi_b}{R_6} = 0 \\ \varphi_b - \varphi_c = E_3 \end{cases} \rightarrow \begin{cases} \left(\frac{1}{R_2} + \frac{1}{R_6}\right) \varphi_b + \left(\frac{1}{R_4} + \frac{1}{R_5}\right) \varphi_c = \frac{E_6}{R_6} + \frac{E_7}{R_4} \\ \varphi_b - \varphi_c = E_3 \end{cases}$$

Mạch một chiều

- 1. Các định luật cơ bản
- 2. Các phương pháp phân tích
 - a) Phương pháp dòng nhánh
 - b) Phương pháp thế nút
 - c) Phương pháp dòng vòng
 - d) Biến đổi tương đương
 - e) Phương pháp ma trận
- 3. Các định lý mạch
- 4. Phân tích mạch một chiều có L hoặc/và C

Phương pháp dòng vòng (1)

$$\begin{cases} A: R_1 i_1 + R_2 i_2 = E_1 \\ B: -R_2 i_2 + R_3 i_3 + R_4 i_4 = E_3 \end{cases}$$
 (hệ 2 phương trình 4 ẩn)

$$i_1 = f_1(i_A, i_B)$$

 $i_2 = f_2(i_A, i_B)$
 $i_3 = f_3(i_A, i_B)$
 $i_4 = f_4(i_A, i_B)$

$$\Rightarrow \begin{cases} A_{11}i_A + A_{12}i_B = B_1 \\ A_{21}i_A + A_{22}i_B = B_2 \end{cases}$$

(hệ 2 phương trình 2 ẩn)

Phương pháp dòng vòng (2)

$$\begin{aligned}
u_1 &= R_1 i_1 \\
u_A &= R_1 i_A \\
u_1 &= u_A
\end{aligned} \rightarrow$$

$$\boxed{i_1 = i_A}$$

$$i_2 = i_B$$

$$u_{3} = R_{3}i_{3}$$
 $u_{A} = R_{3}i_{A}$
 $u_{B} = R_{3}i_{B}$
 $u_{3} = u_{A} - u_{B}$
 $u_{3} = R_{3}(i_{A} - i_{B})$

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Phương pháp dòng vòng (3)

Phương pháp dòng vòng (4)

Phương pháp dòng vòng (5)

- Ẩn số là dòng điện chảy trong một vòng (dòng vòng).
- Dòng vòng là đại lượng không có thực, nhưng tiện lợi cho việc phân tích mạch điện.

• Dùng KD để đổi ẩn số "dòng điện nhánh" thành n_{KA} ẩn số "dòng điện vòng".

$$\begin{cases} i_1 + i_2 - i_3 = 0 \\ i_3 - i_4 + j = 0 \\ R_1 i_1 - R_2 i_2 = e_1 - e_2 \\ R_2 i_2 + R_3 i_3 + R_3 i_3 = e_2 \end{cases}$$

(60 định thức bậc 2)

$$i_{1} = f_{1}(i_{A}, i_{B})$$

$$i_{2} = f_{2}(i_{A}, i_{B})$$

$$i_{3} = f_{3}(i_{A}, i_{B})$$

$$i_{4} = f_{4}(i_{A}, i_{B})$$

$$\begin{cases} A_{11}i_{A} + A_{12}i_{B} = B_{1} \\ A_{21}i_{A} + A_{22}i_{B} = B_{2} \end{cases}$$

(3 dịnh thức bậc 2 + 4 hàm f)

 $A: R_1i_1 + R_2i_2 = E_1$

Phương pháp dòng vòng (6)

$$n_{KA} = s\hat{o}_{nh} + 1$$

= 3 - 2 + 1 = 2

$$B: -R_{2}i_{2} + R_{3}i_{3} + R_{4}i_{4} = E_{3}$$

$$i_{1} = i_{A}$$

$$i_{2} = i_{A} - i_{B}$$

$$i_{3} = i_{B}$$

$$i_{4} = i_{B} + J$$

$$\Rightarrow \begin{cases} R_1 i_A + R_2 (i_A - i_B) = E_1 \\ -R_2 (i_A - i_B) + R_3 i_B + R_4 (i_B + J) = E_3 \end{cases}$$

$$\Rightarrow \begin{cases} i_A \\ i_B \end{cases}$$

Phương pháp dòng vòng (7)

VD2

 $i_{\Lambda} = i_{R}$

$$n_{KA} = \text{s\^o_nh\'anh} - \text{s\^o_n\'ut} + 1$$

= 3 - 2 + 1 = 2

$$A: R_{1}i_{1} + R_{2}i_{2} = E_{1}$$
 $B: -R_{2}i_{2} + R_{3}i_{3} + R_{4}i_{4} = E_{3}$
 $i_{1} = i_{A}$
 $i_{2} = i_{A} - i_{B} + J$
 $i_{3} = i_{B} - J$

$$\Rightarrow \begin{cases} R_1 i_A + R_2 (i_A - i_B + J) = E_1 \\ -R_2 (i_A - i_B + J) + R_3 (i_B - J) + R_4 i_B = E_3 \end{cases}$$

Phương pháp dòng vòng (8)

$$n_{KA} = s\hat{o}_nh\hat{a}nh - s\hat{o}_n\hat{u}t + 1$$

= 3 - 2 + 1 = 2

$$A: R_1 i_1 + R_2 i_2 = E_1$$
 $B: -R_2 i_2 + R_3 i_3 + R_4 i_4 = E_3$
 $i_1 = i_A - J$
 $i_2 = i_A - i_B$

$$i_3 = i_B - J$$

$$i_4 = i_B$$

$$\rightarrow \begin{cases} R_{1}(i_{A} - J) + R_{2}(i_{A} - i_{B}) = E_{1} \\ -R_{2}(i_{A} - i_{B}) + R_{3}(i_{B} - J) + R_{4}i_{B} = E_{3} \end{cases}$$

Phương pháp dòng vòng (9)

$$n_{KA} = \text{s\^o}_\text{nh\'anh} - \text{s\^o}_\text{n\'ut} + 1 = 6 - 4 + 1 = 3$$

$$A: R_1 i_1 + R_5 i_5 + R_2 i_2 = E_1$$

$$B:-R_3i_3+R_4i_4-R_5i_5=0$$

$$C: -R_2i_2 - R_4i_4 - R_6i_6 = -E_6$$

$$i_1 = i_A;$$
 $i_2 = i_A - i_C;$ $i_3 = -i_B - J$

$$i_4 = i_B - i_C;$$
 $i_5 = i_A - i_B;$ $i_6 = -i_C$

$$\Rightarrow \begin{cases} R_1 i_A + R_5 (i_A - i_B) + R_2 (i_A - i_C) = E_1 \\ -R_3 (-i_B - J) + R_4 (i_B - i_C) - R_5 (i_A - i_B) = 0 \\ -R_2 (i_A - i_C) - R_4 (i_B - i_C) - R_6 (-i_C) = -E_6 \end{cases}$$

Phương pháp dòng vòng (10)

$$n_{KA} = \text{s\^o}_\text{nh\'anh} - \text{s\^o}_\text{n\'ut} + 1 = 6 - 4 + 1 = 3$$

$$A: R_1i_1 - R_3i_3 - R_6i_6 = E_1 - E_6$$

$$B: -R_3i_3 + R_4i_4 - R_5i_5 = 0$$

$$C: -R_2i_2 - R_4i_4 - R_6i_6 = -E_6$$

$$i_1 = i_A;$$

$$i_2 = -i_C$$

$$i_2 = -i_C; \qquad i_3 = -i_A - i_B$$

$$i_4 = i_B - i_C - J; i_5 = -i_B + J; i_6 = -i_A - i_C$$

$$\begin{cases}
R_1 i_A - R_3 (-i_A - i_B) - R_6 (-i_A - i_C) = E_1 - E_6 \\
-R_3 (-i_A - i_B) + R_4 (i_B - i_C - J) - R_5 (-i_B + J) = 0 \\
-R_2 (-i_C) - R_4 (i_B - i_C - J) - R_6 (-i_A - i_C) = -e_6
\end{cases}$$

Phương pháp dòng vòng (11)

 $n_{KA} = \text{s\^{o}}_{-}\text{nh\'{a}}\text{nh} - \text{s\^{o}}_{-}\text{n\'{u}}\text{t} + 1 = 6 - 4 + 1 = 3$

$$A: R_1i_1 + R_5i_5 - R_4i_4 = E_1$$

$$B: R_3i_3 - R_6i_6 + R_5i_5 = E_3 - E_6$$

$$C: R_6 i_6 - (R_2 + R_7) i_2 = E_6$$

$$i_1 = i_A - J$$
; $i_2 = -i_C$; $i_3 = i_B$

$$i_4 = -i_A$$
; $i_5 = i_A + i_B$; $i_6 = i_C - i_B$

$$\Rightarrow \begin{cases} R_1(i_A - J) + R_5(i_A + i_B) - R_4(-i_A) = E_1 \\ R_3i_B - R_6(i_C - i_B) + R_5(i_A + i_B) = E_3 - E_6 \\ R_6(i_C - i_B) - (R_2 + R_7)(-i_C) = E_6 \end{cases}$$

Phương pháp dòng vòng (12)

$$R_1=10\Omega,$$
 $R_2=20\Omega,$ $R_3=15\Omega,$ $E_1=30V,$ $E_3=45V,$ $J=2A.$ Tính các dòng điện trong mạch?

$$\begin{cases} 10i_A + 20(i_A - i_B + 2) = 30\\ 20(i_B - i_A - 2) + 15i_B = 45 \end{cases}$$

$$\rightarrow \begin{cases} 30i_A - 20i_B = -10 \\ -20i_A + 35i_B = 85 \end{cases}$$

$$\rightarrow \begin{cases} i_A = 2,08 \text{ A} \\ i_B = 3,62 \text{ A} \end{cases}$$

$$\Rightarrow \begin{cases}
i_1 = i_A = 2,08 \text{ A} \\
i_2 = -i_A + i_B - J = -0,46 \text{ A} \\
i_3 = i_B = 3,62 \text{ A}
\end{cases}$$

Phương pháp dòng vòng (12)

Các phương pháp phân tích

- Đối với một mạch điện có n nhánh, p/p dòng nhánh sẽ dẫn đến việc giải đồng thời hệ n phương trình n ấn.
- → Rất ít khi dùng phương pháp dòng nhánh.
- Hai p/p dòng vòng & thế nút giảm số lượng phương trình & số lượng ân.
- Nên dùng hai p/p dòng vòng & thế nút khi giải mạch điện.
- Cho một mạch điện, chọn p/p thế nút hay dòng vòng?
- \rightarrow Lựa chọn:
 - Chọn p/p nào có ít ẩn số hơn,
 - P/p thế nút rất thích hợp cho mạch điện chỉ có 2 nút,
 - Cổ một số kiểu mạch điện khó dùng p/p thế nút,
 - Có một số kiểu mạch điện khó dùng p/p dòng vòng.

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Các phương pháp phân tích

VD7

Tính i_3 ?

Phương pháp dòng nhánh: 4 ẩn

Phương pháp thế nút: 2 ẩn

Phương pháp dòng vòng: 2 ẩn

$$R_{12} = \frac{R_1 R_2}{R_1 + R_2}$$

$$E_4 = R_4 J$$

$$i_3 = \frac{E_3 - E_4}{R_{12} + R_3 + R_4}$$

Mạch một chiều

- 1. Các định luật cơ bản
- 2. Các phương pháp phân tích
 - a) Phương pháp dòng nhánh
 - b) Phương pháp thế nút
 - c) Phương pháp dòng vòng
 - d) Biến đổi tương đương
 - e) Phương pháp ma trận
- 3. Các định lý mạch
- 4. Phân tích mạch một chiều có L hoặc/và C

Biến đổi tương đương

- Hai phần tử mạch được gọi là tương đương nhau nếu chúng có quan hệ giữa dòng & áp giống nhau.
- Các phép biến đổi tương đương:
 - Nguồn áp
 - Nguồn dòng
 - Điện trở nối tiếp
 - Điện trở song song
 - Y↔∆
 - Nguồn áp ↔ nguồn dòng
 - Millman

TRƯỚNG BẠI HỌC BÁCH KHOA HÀ NỘI

Nguồn áp (1)

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Nguồn áp (2)

$$i_{10} = \frac{50}{10} = 5 \,\mathrm{A}$$

$$i_E = \frac{50}{10} + \frac{50}{20} = 7,5 \,\text{A}$$

$$i_{10} = \frac{50}{10} = 5 A = i_E$$

TRƯỚNG BẠI HỌC BÁCH KHOA HÀ NỘI

Nguồn áp (3)

$$i_{10} = \frac{50}{10} = 5 \text{ A}$$

$$i_E + 2 = i_{10} \rightarrow i_E = 3 \,\mathrm{A}$$

$$i_{10} = \frac{50}{10} = 5 A = i_E$$

TRƯỚNG BẠI HỌC BÁCH KHOA HÀ NỘI

Nguồn dòng (1)

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Nguồn dòng (2)

Điện trở nối tiếp

$$R_1 \qquad R_2 \qquad R_3 \qquad R_{td} = R_1 + R_2 + R_3$$

$$R_{td} = R_1 + R_2 + R_3$$

$$a$$
 R_1
 B_2
 B

$$u_{R1} = R_1 \frac{u_{ab}}{R_1 + R_2}$$

$$u_{R2} = R_2 \frac{u_{ab}}{R_1 + R_2}$$

Điện trở song song

$$i_{1} = i \frac{R_{2}}{R_{1} + R_{2}}$$

$$i_{2} = i \frac{R_{2}}{R_{1} + R_{2}}$$

$$i_{2} = i \frac{R_{1}}{R_{1} + R_{2}}$$

Biến đổi tương đương điện trở (1)

VD5

$$R_1 = 4 \Omega$$
; $R_2 = 6 \Omega$; $R_3 = 8 \Omega$; Tính R_{ab} ?

$$R_{ab} = (R_2 + R_3) / / R_1 = \frac{(R_2 + R_3)R_1}{(R_2 + R_3) + R_1} = \frac{(6+8)4}{6+8+4} = 3,11 \Omega$$

$$R_1 = 4 \Omega$$
; $R_2 = 6 \Omega$; $R_3 = 2 \Omega$; $R_4 = 10 \Omega$; Tính R_{ac} ?

$$R_{ac} = \frac{R_1 R_2}{R_1 + R_2} + \frac{R_3 R_4}{R_3 + R_4}$$
$$= \frac{4.6}{4 + 6} + \frac{2.10}{2 + 10} = 4,07 \Omega$$

Biến đổi tương đương điện trở (2)

VD7

$$R_1 = 4 \Omega$$
; $R_2 = 6 \Omega$; $R_3 = 8 \Omega$; Tính R_{ab} ?

$$R_{td} = R_1 / R_2$$

$$= \frac{R_1 R_2}{R_1 + R_2} = \frac{4.6}{4 + 6} = 2,4 \Omega$$

$$R_1 = 4 \Omega$$
; $R_2 = 6 \Omega$; $R_3 = 2 \Omega$; Tính R_{ac} ?

$$R_{ac} = R_1 / / R_2$$

= $\frac{R_1 R_2}{R_1 + R_2} = \frac{4.6}{4 + 6} = 2,4 \Omega$

Biến đổi tương đương điện trở (3)

$$R_1 = 10 \Omega$$
, $R_2 = 20 \Omega$, $R_3 = 30 \Omega$, $R_4 = 40 \Omega$, $R_5 = 50 \Omega$, Tính R_{ac} ?

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

$Y \leftrightarrow \Delta(1)$

$$R_{a} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{1}}$$

$$R_{b} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{2}}$$

$$R_{c} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{3}}$$

$$R_{1} = \frac{R_{b}R_{c}}{R_{a} + R_{b} + R_{c}}$$

$$R_{2} = \frac{R_{c}R_{a}}{R_{a} + R_{b} + R_{c}}$$

$$R_{3} = \frac{R_{a}R_{b}}{R_{a} + R_{b} + R_{c}}$$

TRƯỚNG BẠI HỌC BÁCH KHOA HÀ NỘI

$$Y \leftrightarrow \Delta(2)$$

VD9

 $R_1 = 10 \ \Omega$, $R_2 = 20 \ \Omega$, $R_3 = 30 \ \Omega$, $R_4 = 40 \ \Omega$, $R_5 = 50 \ \Omega$, Tính R_{ac} ?

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

$Y \leftrightarrow \Delta(3)$

TRƯỚNG BẠI HỌC BÁCH KHOA HÀ NỘI

$Y \leftrightarrow \Delta (4)$

$$R_1 = 10 \Omega$$
, $R_2 = 20 \Omega$, $R_3 = 30 \Omega$, $R_4 = 40 \Omega$, $R_5 = 50 \Omega$, Tính R_{ac} ?

$$R_1 = 10 \Omega$$
, $R_2 = 20 \Omega$, $R_3 = 30 \Omega$, $R_4 = 40 \Omega$, $R_5 = 50 \Omega$, Tính R_{ac} ?

$$R_{12} = \frac{R_1 R_2}{R_1 + R_2 + R_5} = 2,50 \,\Omega, R_{15} = \frac{R_1 R_5}{R_1 + R_2 + R_5} = 6,25 \,\Omega, R_{25} = \frac{R_5 R_2}{R_1 + R_2 + R_5} = 12,50 \,\Omega$$

$$R_{ac} = R_{12} + \left[(R_{15} + R_3) / / (R_{25} + R_4) \right] = R_{12} + \frac{(R_{15} + R_3)(R_{25} + R_4)}{R_{15} + R_3 + R_{25} + R_4} = \boxed{23,94\Omega}$$

TRƯƠNG BẠI HỌC BÁCH KHOA HÀ NỘI

$Y \leftrightarrow \Delta (6)$

VD9

$$R_1 = 10 \ \Omega$$
, $R_2 = 20 \ \Omega$, $R_3 = 30 \ \Omega$, $R_4 = 40 \ \Omega$, $R_5 = 50 \ \Omega$, Tính R_{ac} ?

Cách 2

$$R_{13} = \frac{R_1 R_3 + R_3 R_5 + R_5 R_1}{R_5} = 46,00 \,\Omega$$

$$R_{15} = \frac{R_1 R_3 + R_3 R_5 + R_5 R_1}{R_3} = 76,67 \,\Omega$$

$$R_{35} = \frac{R_1 R_3 + R_3 R_5 + R_5 R_1}{R_1} = 230 \,\Omega$$

$$R_{ac} = [(R_2 / / R_{15}) + (R_4 / / R_{35})] / / R_{13}$$

$$= \frac{\left(\frac{R_2 R_{15}}{R_2 + R_{15}} + \frac{R_4 R_{35}}{R_4 + R_{35}}\right) R_{13}}{\frac{R_2 R_{15}}{R_2 + R_{15}} + \frac{R_4 R_{35}}{R_4 + R_{35}} + R_{13}} = \boxed{23,94 \,\Omega}$$

Biến đổi tương đương

- Hai phần tử mạch được gọi là tương đương nhau nếu chúng có quan hệ giữa dòng & áp giống nhau.
- Các phép biến đổi tương đương:
 - Nguồn áp
 - Nguồn dòng
 - Điện trở nối tiếp
 - Điện trở song song
 - Y↔∆
 - Nguồn áp ↔ nguồn dòng
 - Millman

Nguồn áp ↔ nguồn dòng (1)

$$J = \frac{E}{R}$$

$$E = RJ$$

Nguồn áp \leftrightarrow nguồn dòng (2)

$$R_1 = 10 \Omega$$
, $R_2 = 40 \Omega$, $R_3 = 30 \Omega$, $R_4 = 40 \Omega$, $E_1 = 30 \text{ V}$, $E_3 = 20 \text{ V}$, $J = 2 \text{ A}$. Tính i_3 ?

$$J_1 = \frac{E_1}{R_1} = \frac{30}{10} = 3 \text{ A}$$

$$E_4 = R_4 J = 40.2 = 80 \text{ V}$$

$$R_{12} = \frac{R_1 R_2}{R_1 + R_2} = \frac{10.40}{10 + 40} = 8\Omega$$

$$E_{12} = R_{12}J_1 = 8.3 = 24 \text{ V}$$

$$i_3 = \frac{E_{12} + E_3 - E_4}{R_{12} + R_3 + R_4} = \frac{24 + 20 - 80}{8 + 30 + 40} = \boxed{-0,46 \,\text{A}}$$

TRƯỚNG BẠI HỌC BÁCH KHOA HÀ NỘI

Millman (1)

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Millman (2)

$$R_1 = 10 \ \Omega$$
, $R_2 = 40 \ \Omega$, $R_3 = 30 \ \Omega$, $R_4 = 40 \ \Omega$, $E_1 = 30 \ V$, $E_3 = 20 \ V$, $J = 2 \ A$. Tính i_3 ?

$$E_4 = R_4 J = 40.2 = 80 \text{ V}$$

$$R_{12} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}} = \frac{1}{\frac{1}{10} + \frac{1}{40}} = 8\Omega$$

$$E_{12} = \frac{\frac{E_1}{R_1}}{\frac{1}{R_1} + \frac{1}{R_2}} = \frac{\frac{30}{10}}{\frac{1}{10} + \frac{1}{40}} = 24 \text{ V}$$

$$i_3 = \frac{E_{12} + E_3 - E_4}{R_{12} + R_3 + R_4} = \frac{24 + 20 - 80}{8 + 30 + 40} = \boxed{-0,46 \,\text{A}}$$

NG BẠI HỌC BÁCH KHOA HÀ NỘI

Biến đổi tương đương

- Hai phần tử mạch được gọi là tương đương nhau nếu chúng có quan hệ giữa dòng & áp giống nhau.
- Các phép biến đổi tương đương:
 - Nguồn áp
 - Nguồn dòng
 - Điện trở nối tiếp
 - Điện trở song song
 - Y↔∆
 - Nguồn áp ↔ nguồn dòng
 - Millman

Mạch một chiều

- 1. Các định luật cơ bản
- 2. Các phương pháp phân tích
 - a) Phương pháp dòng nhánh
 - b) Phương pháp thế nút
 - c) Phương pháp dòng vòng
 - d) Biến đổi tương đương
 - e) Phương pháp ma trận
- 3. Các định lý mạch
- 4. Phân tích mạch một chiều có L hoặc/và C

TRƯỜNG BẠI HỌC BÁCH KHOA HÀ NỘI

Ma trận (1)

• Từ mạch điện viết trực tiếp phương trình ma trận:

$$Ax = b$$

• Áp dụng cho dòng nhánh và dòng vòng.

Ma trận (2), dòng nhánh

$$\begin{cases} a: i_1 - i_2 - i_3 = 0 \\ b: i_3 + J - i_4 = 0 \end{cases}$$

$$A: R_1 i_1 + R_2 i_2 = E_1$$

$$B: -R_2 i_2 + R_3 i_3 + R_4 i_4 = E_3$$

	1	- 1	- 1	0	$ i_1 $		0
	0	0	1	- 1	$ i_2 $		-J
\longleftrightarrow	$R_{_1}$	R_{2}	0	0	i_3	=	$E_{_1}$
	0	-1 0 R_2 $-R_2$	R_3	R_4 _	$\lfloor i_4 oxedsymbol{oxedsymbol{oxed}}$		L_3

		b				
	i_1	i_2	i_3	i_4	U	
a	1	- 1	-1	0	0	
b	0	0	1	-1	-J	
A	R_1	R_2	0	0	E_1	
В	0	$-R_2$	R_3	R_4	E_3	

$$\leftrightarrow$$
 Ai = b

$$\rightarrow \mathbf{i} = \mathbf{A}^{-1}\mathbf{b}$$

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Ma trận (3), dòng nhánh

	A						L
	i_1	i_2	i_3	i_4	i_5	i_6	b
a	-1	1	0	0	0	- 1	0
b	1	0	1	0	-1	0	-J
c	0	0	-1	-1	0	1	J
A	R_1	R_2	0	0	R_5	0	E_1
В	0	0	$-R_3$	R_4	$-R_5$	0	0
С	0	$-R_2$	0	$-R_4$	0	$-R_6$	$-E_6$

$\lceil -1 \rceil$	1	0	0	0	$ \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \\ 0 \\ -R_6 \end{bmatrix} $	$\lceil i_1 ceil$		$\begin{bmatrix} 0 \end{bmatrix}$
1	0	1	0	- 1	0	$ i_2 $		-J
0	0	- 1	- 1	0	1	$ i_3 $		J
R_1	R_2	0	0	R_5	0	$\mid i_4 \mid$	=	E_1
0	0	$-R_3$	$R_{\scriptscriptstyle 4}$	$-R_5$	0	$ i_5 $		0
$\begin{bmatrix} 0 \end{bmatrix}$	$-R_2$	0	$-R_4$	0	$-R_6$	$\lfloor i_6 \rfloor$		$\lfloor -E_6 \rfloor$

Ma trận (3), dòng vòng

$$\begin{cases} (R_1 + R_2)i_A - R_2i_B = E_1 \\ -R_2i_A + (R_2 + R_3 + R_4)i_B = E_3 - R_4J \end{cases}$$

$$\leftrightarrow \begin{bmatrix} R_1 + R_2 & -R_2 \\ -R_2 & R_2 + R_3 + R_4 \end{bmatrix} \begin{bmatrix} i_A \\ i_B \end{bmatrix} = \begin{bmatrix} E_1 \\ E_3 - R_4J \end{bmatrix} \iff \mathbf{Ai} = \mathbf{b}$$

	F	4	b		
	A	В			
A	$R_1 + R_2$	$-R_2$	E_1		
В	$-R_2$	$R_2 + R_3 + R_4$	$E_3 - R_4 J$		

VD2

TRƯỜNG BẠI HỌC BÁCH KHOA HÀ NỘI

Ma trận (4), dòng vòng

A				h		
	A	В	C		D .	
$A \qquad R$	$R_1 + R_2 + R_5$	$-R_5$	$-R_2$		E_1	
В	$-R_5$	$R_3 + R_4 + R_5$	$-R_4$		$-R_3J$	
C	$-R_2$	$-R_4$	$R_2 + R_4 + R_6$		$-E_6$	

Mạch một chiều

- 1. Các định luật cơ bản
- 2. Các phương pháp phân tích
- 3. Các định lý mạch
 - a) Nguyên lý xếp chồng
 - b) Định lý Thevenin
 - c) Định lý Norton
 - d) Truyền công suất cực đại
- 4. Phân tích mạch một chiều có L hoặc/và C

Nguyên lý xếp chồng (1)

$$u = u\Big|_{ng1} + u\Big|_{ng2} + u\Big|_{ng3}; \qquad i = i\Big|_{ng1} + i\Big|_{ng2} + i\Big|_{ng3}$$

Nguyên lý xếp chồng (2), tắt nguồn

TRƯỚNG BẠI HỌC BÁCH KHOA HÀ NỘI

Nguyên lý xếp chồng (3), tắt nguồn

VD1

Tắt các nguồn áp?

Nguyên lý xếp chồng (4), tắt nguồn

VD2

Tắt nguồn dòng?

Nguyên lý xếp chồng (5)

VD3

$$R_1 = 10\Omega$$
, $R_2 = 20\Omega$, $E = 30$ V, $J = 2$ A. Tính dòng điện chảy qua R_2 ?

$$i_2|_E = \frac{E}{R_1 + R_2}$$

$$= \frac{30}{10 + 20} = 1 \text{ A}$$

2. Triệt tiêu E, tính $i_2|_{I}$

$$i_{2}|_{J} = \frac{R_{1}J}{R_{1} + R_{2}} \quad R_{1} \left[\begin{array}{c} i_{2}|_{J} \\ + \\ R_{1}J \end{array} \right] R_{2}$$

$$= \frac{10.2}{10 + 20} \quad R_{1}J \quad R_{2}$$

 $= 0.67 \,\mathrm{A}$

3.
$$i_2 = i_2|_E + i_2|_J$$

 $R_{\scriptscriptstyle 1}$

$$i_2 = i_2 \big|_E + i_2 \big|_J$$

= 1 + 0,67
= 1,67 A

Nguyên lý xếp chồng (6)

$$R_1 = 10 \Omega$$
, $R_2 = 40 \Omega$, $R_3 = 30 \Omega$, $R_4 = 40 \Omega$, $E_1 = 30 \text{ V}$, $E_3 = 20 \text{ V}$, $J = 2 \text{ A}$. Tính i_3 ?

- 1. Triệt tiêu E_3 & J, tính $i_3|_{E1}$
- 2. Triệt tiêu E_1 & J, tính $i_3|_{E_3}$
- 3. Triệt tiêu E_1 & E_3 , tính $i_3|_J$
- 4. Tính $i_3|_{E1} + i_3|_{E3} + i_3|_J$

Nguyên lý xếp chồng (7)

VD4

$$R_1 = 10 \ \Omega$$
, $R_2 = 40 \ \Omega$, $R_3 = 30 \ \Omega$, $R_4 = 40 \ \Omega$, $E_1 = 30 \ V$, $E_3 = 20 \ V$, $J = 2 \ A$. Tính i_3 ?

1. Triệt tiêu E_3 & J, tính $i_3|_{E1}$

$$\rightarrow i_3|_{E1} = \frac{\varphi_a}{R_3 + R_4} = 0,3077 \,\text{A}$$

Nguyên lý xếp chồng (8)

VD4

$$R_1 = 10 \ \Omega$$
, $R_2 = 40 \ \Omega$, $R_3 = 30 \ \Omega$, $R_4 = 40 \ \Omega$, $E_1 = 30 \ V$, $E_3 = 20 \ V$, $J = 2 \ A$. Tính i_3 ?

2. Triệt tiêu $E_1 \& J$, tính $i_3|_{E3}$

$$\varphi_c = 0$$

$$\left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3 + R_4}\right) \varphi_a = \frac{-E_3}{R_3 + R_4}$$

$$\to \varphi_a = -2,0513 \text{ V}$$

$$\rightarrow i_3|_{E_3} = \frac{E_3 + \varphi_a}{R_3 + R_4} = 0,2564 \,\text{A}$$

Nguyên lý xếp chồng (9)

VD4

$$R_1 = 10 \ \Omega$$
, $R_2 = 40 \ \Omega$, $R_3 = 30 \ \Omega$, $R_4 = 40 \ \Omega$, $E_1 = 30 \ V$, $E_3 = 20 \ V$, $J = 2 \ A$. Tính i_3 ?

3. Triệt tiêu E_1 & E_3 , tính $i_3|_J$

$$E_{4} = R_{4}J = 40.2 = 80 \text{ V}$$

$$R_{12} = \frac{R_1 R_2}{R_1 + R_2} = \frac{10.40}{10 + 40} = 8\Omega$$

$$i_3 = \frac{-E_4}{R_{12} + R_3 + R_4} = \frac{-80}{8 + 30 + 40} = -1,0256 \text{ A}$$

Nguyên lý xếp chồng (10)

$$R_1 = 10 \ \Omega$$
, $R_2 = 40 \ \Omega$, $R_3 = 30 \ \Omega$, $R_4 = 40 \ \Omega$, $E_1 = 30 \ V$, $E_3 = 20 \ V$, $J = 2 \ A$. Tính i_3 ?

- 1. Triệt tiêu E_3 & J, tính $i_3|_{E_1} = 0.3077$ A
- 2. Triệt tiêu E_1 & J, tính $i_3|_{E_3} = 0,2564 \text{ A}$

- 3. Triệt tiêu E_1 & E_3 , tính $i_3|_{I} = -1,0256$ A
- -0.4615A4. Tính $i_3|_{E_1} + i_3|_{E_3} + i_3|_J$

Mạch một chiều

- 1. Các định luật cơ bản
- 2. Các phương pháp phân tích
- 3. Các định lý mạch
 - a) Nguyên lý xếp chồng
 - b) Định lý Thevenin
 - c) Định lý Norton
 - d) Truyền công suất cực đại
- 4. Phân tích mạch một chiều có L hoặc/và C

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Định lý Thevenin (1)

Định lý Thevenin (2)

Một mạng tuyến tính một cửa (hai cực) có thể được thay thế bằng một mạch tương đương gồm có nguồn áp E_{td} & điện trở R_{td} , trong đó:

- E_{td} : nguồn áp hở mạch trên hai cực,

- R_{td} : điện trở trên hai cực sau khi tắt (các) nguồn (nếu có).

Mạng tuyến tính một cửa (mạng một cửa)

Định lý Thevenin (3)

Mạng tuyến tính một cửa (mạng một cửa)

 E_{td} : nguồn áp hở mạch trên hai cực

 R_{td} : điện trở trên hai cực sau khi tắt (các) nguồn

Định lý Thevenin (4)

Cách 1

Cách 2

$$R_{td} = \frac{u_{v\grave{a}o}}{i_{v\grave{a}o}}$$

Định lý Thevenin (5)

VD3

 $R_1=10\Omega,\,R_2=20\Omega,\,e=30$ V. Tính dòng điện chảy qua R_3 với các giá trị R_3 lần lượt là 30, 60, 100 Ω ?

 $E_{\rm td}$: nguồn áp hở mạch trên hai cực

 R_{td} : điện trở trên hai cực sau khi tắt các nguồn

Định lý Thevenin (6)

VD3

 $R_1 = 10\Omega$, $R_2 = 20\Omega$, e = 30V. Tính dòng điện chảy qua R_3 với các giá trị R_3 lần lượt là 30, 60, 100 Ω ?

$$E_{td} = 20 \text{V}; R_{td} = 6,67 \Omega$$

$$R_3 = 30\Omega \rightarrow i_3 = \frac{E_{td}}{R_{td} + R_3} = \frac{20}{6,67 + 30} = \boxed{0,55A}$$

$$R_3 = 60\Omega \rightarrow i_3 = \frac{E_{td}}{R_{td} + R_3} = \frac{20}{6,67 + 60} = \boxed{0,30A}$$

$$R_3 = 100\Omega \rightarrow i_3 = \frac{E_{td}}{R_{td} + R_3} = \frac{20}{6,67 + 100} = \boxed{0,19A}$$

Định lý Thevenin (7)

VD3

 $R_1 = 10\Omega$, $R_2 = 20\Omega$, e = 30V. Tính dòng điện chảy qua R_3 với các giá trị R_3 lần lượt là 30, 60, 100 Ω ?

$$R_{td} = \frac{u_{v \dot{\alpha} o}}{i_{v \dot{\alpha} o}} = \frac{1}{0.15} = \boxed{6.67\Omega}$$

$$i_1 = \frac{1}{10} = 0.1$$
A

$$i_2 = \frac{1}{20} = 0,05A$$

$$i_{v\dot{a}o} = 0.1 + 0.05$$

= 0.15 A

$$i_2 = 1 \frac{10}{10 + 20} = 0.33 A$$

$$u_{v\dot{a}o} = 20.0,33 = 6,67 \text{ V}$$

$$R_{td} = \frac{u_{v\grave{a}o}}{i_{v\grave{a}o}} = \frac{6,67}{1} = \boxed{6,67\Omega}$$

Định lý Thevenin (8)

VD4

$$R_1=10\Omega,\,R_2=20\Omega,\,e=30\mathrm{V},\,j=2\mathrm{A}.$$
 Tính dòng điện chảy qua R_2 ?

 $E_{\rm td}$: nguồn áp hở mạch trên 2 cực

 $R_{\rm td}$: điện trở trên hai cực sau khi triệt tiêu các nguồn

$$i_2 = \frac{E_{td}}{R_{td} + R_2} = \frac{50}{10 + 20} = \frac{1,67 \,\text{A}}$$

Định lý Thevenin (9)

VD5

$$R_1 = 10 \ \Omega, R_2 = 40 \ \Omega, R_3 = 30 \ \Omega, R_4 = 40 \ \Omega,$$

 $E_1 = 30 \ V, E_3 = 20 \ V, J = 2 \ A. \ Tính i_4?$

$$\begin{cases} R_1 i_1 + R_2 i_2 = E_1 \\ i_1 - i_2 - i_3 = 0 \\ i_3 = -J \end{cases} \rightarrow \begin{cases} i_1 = -1 \text{ A} \\ i_2 = 1 \text{ A} \\ i_3 = -2 \text{ A} \end{cases}$$

 R_{td}

$$\rightarrow E_{td} = 20 + 40.1 - 30(-2) = 120 \text{ V}$$

Định lý Thevenin (10)

$$R_1 = 10 \Omega$$
, $R_2 = 40 \Omega$, $R_3 = 30 \Omega$, $R_4 = 40 \Omega$, $E_1 = 30 \text{ V}$, $E_3 = 20 \text{ V}$, $J = 2 \text{ A}$. Tính i_4 ?

$$R_{td} = \frac{R_1 R_2}{R_1 + R_2} + R_3 = 38\Omega$$

$$i_4 = \frac{E_{td}}{R_{td} + R_4} = \frac{120}{38 + 40} = \boxed{1,5385 \text{ A}}$$

Định lý Thevenin (11)

VD6

$$R_1 = 10 \ \Omega, R_2 = 40 \ \Omega, R_3 = 30 \ \Omega, R_4 = 40 \ \Omega,$$

 $E_1 = 30 \ V, E_3 = 20 \ V, J = 2 \ A. \ Tính i_3?$

 $i_4 = J = 2 A$

 R_{td}

$$\rightarrow E_{td} = 40.0, 60 - 40.2 = -56 \text{ V}$$

Định lý Thevenin (12)

$$R_1 = 10 \ \Omega, R_2 = 40 \ \Omega, R_3 = 30 \ \Omega, R_4 = 40 \ \Omega,$$

 $E_1 = 30 \ V, E_3 = 20 \ V, J = 2 \ A. \ Tính i_3?$

$$R_{td} = \frac{R_1 R_2}{R_1 + R_2} + R_4 = 48\,\Omega$$

$$i_3 = \frac{E_{td} + E_3}{R_{td} + R_3} = \frac{-56 + 20}{48 + 30} = \boxed{-0,4615 \text{ A}}$$

Định lý Thevenin (13)

$$R_1 = 10 \ \Omega, R_2 = 40 \ \Omega, R_3 = 30 \ \Omega, R_4 = 40 \ \Omega,$$

 $E_1 = 30 \ V, E_3 = 20 \ V, J = 2 \ A. \ Tính i_1?$

$$E_{td} = -R_2 i_2$$

$$\varphi_c = 0 \rightarrow \varphi_b = \frac{\frac{E_3}{R_2 + R_3} + J}{\frac{1}{R_2 + R_3} + \frac{1}{R_4}} = 58,18 \text{ V}$$

$$i_2 = \frac{\varphi_b - E_3}{R_2 + R_3} = 0,55 \text{ A}$$

$$\rightarrow E_{td} = -40.0,5455 = -21,82 \text{ V}$$

Định lý Thevenin (14)

$$R_1 = 10 \Omega$$
, $R_2 = 40 \Omega$, $R_3 = 30 \Omega$, $R_4 = 40 \Omega$, $E_1 = 30 \text{ V}$, $E_3 = 20 \text{ V}$, $J = 2 \text{ A}$. Tính i_1 ?

$$R_{td} = \frac{R_2(R_3 + R_4)}{R_2 + R_3 + R_4} = 25,45 \ \Omega$$

$$i_1 = \frac{E_{td} + E_1}{R_{td} + R_1} = \frac{-21,82 + 30}{25,45 + 10} = \boxed{0,23 \text{ A}}$$

Mạch một chiều

- 1. Các định luật cơ bản
- 2. Các phương pháp phân tích
- 3. Các định lý mạch
 - a) Nguyên lý xếp chồng
 - b) Định lý Thevenin
 - c) Định lý Norton
 - d) Truyền công suất cực đại
- 4. Phân tích mạch một chiều có L hoặc/và C

Định lý Norton (1)

Một mạng tuyến tính một cửa (hai cực) có thể được thay thế bằng một mạch tương đương gồm có nguồn dòng J_{td} & điện trở R_{td} , trong đó:

- J_{td} : nguồn dòng ngắn mạch trên hai cực,
- R_{td} : điện trở trên hai cực sau khi tắt (các) nguồn (nếu có).

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Định lý Norton (2)

Mạng tuyến tính một cửa (mạng một cửa)

 J_{td} : nguồn dòng ngắn mạch trên hai cực

 R_{td} : điện trở trên hai cực sau khi tắt (các) nguồn

Định lý Norton (3)

VD1

$$R_1 = 10\Omega$$
, $R_2 = 20\Omega$, $R_3 = 30\Omega$, $e = 30V$. Tính dòng điện chảy qua R_3 ?

 $J_{\rm td}$: nguồn dòng ngắn mạch trên 2 cực

 R_{td} : điện trở trên hai cực sau khi triệt tiêu các nguồn

$$i_3 = J_{td} \frac{R_{td}}{R_3 + R_{td}} = 3 \frac{6,67}{30 + 6,67} = 0,55 \text{A}$$

Định lý Norton (4)

VD2

$$R_1 = 10\Omega$$
, $R_2 = 20\Omega$, $E = 30$ V, $J = 2$ A. Tính dòng điện chảy qua R_2 ?

 J_{td} : nguồn dòng ngắn mạch trên 2 cực

 R_{td} : điện trở trên hai cực sau khi triệt tiêu các nguồn

$$i_2 = J_{td} \frac{R_{td}}{R_2 + R_{td}} = 5 \frac{10}{20 + 10}$$

= 1,67 A

124

Định lý Norton (5)

VD3

$$R_1 = 10 \ \Omega$$
, $R_2 = 40 \ \Omega$, $R_3 = 30 \ \Omega$, $R_4 = 40 \ \Omega$, $E_1 = 30 \ V$, $E_3 = 20 \ V$, $J = 2 \ A$. Tính i_4 ?

$$J_{td} = i_3 + J$$

$$\varphi_c = 0 \rightarrow \varphi_a = \frac{\frac{E_1}{R_1} - \frac{E_3}{R_3}}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}} = 14,7368 \text{ V}$$

$$i_3 = \frac{E_3 + \varphi_a}{R_3} = 1,1579 \text{ A}$$

$$\rightarrow J_{td} = 3,1579 \text{ A}$$

125

Định lý Norton (6)

$$R_1 = 10 \ \Omega, R_2 = 40 \ \Omega, R_3 = 30 \ \Omega, R_4 = 40 \ \Omega,$$

 $E_1 = 30 \ V, E_3 = 20 \ V, J = 2 \ A. \ Tính i_4?$

$$R_{td} = \frac{R_1 R_2}{R_1 + R_2} + R_3 = 38\Omega$$

$$i_4 = J_{td} \frac{R_{td}}{R_{td} + R_4} = 3,1579 \frac{38}{38 + 40} = \boxed{1,5385 \text{ A}}$$

TRƯỚNG ĐẠI HỌC

BÁCH KHOA HÀ NỘI

Định lý Norton (7)

$$R_1 = 10 \ \Omega$$
, $R_2 = 40 \ \Omega$, $R_3 = 30 \ \Omega$, $R_4 = 40 \ \Omega$, $E_1 = 30 \ V$, $E_3 = 20 \ V$, $J = 2 \ A$. Tính i_3 ?

$$E_4 = R_4 J = 40.2 = 80 \text{ V}$$

$$R_{12} = \frac{1}{1/R_1 + 1/R_2} = 8\Omega$$

$$E_{12} = \frac{E_1 / R_1}{1 / R_1 + 1 / R_2} = 24 \text{ V}$$

$$J_{td} = \frac{E_{12} + E_3 - E_4}{R_{12} + R_4} = \frac{24 + 20 - 80}{8 + 40} = -0,75 \,\text{A}$$

Định lý Norton (8)

VD4

$$R_1 = 10 \ \Omega, R_2 = 40 \ \Omega, R_3 = 30 \ \Omega, R_4 = 40 \ \Omega,$$

 $E_1 = 30 \ V, E_3 = 20 \ V, J = 2 \ A. \ Tính i_3?$

$$R_{td} = \frac{R_1 R_2}{R_1 + R_2} + R_4 = 48\,\Omega$$

$$i_3 = J_{td} \frac{R_{td}}{R_{td} + R_3} = -0.75 \frac{48}{48 + 30} = \boxed{-0.4615 \text{ A}}$$

128

Định lý Norton (9)

$$R_1 = 10 \ \Omega, R_2 = 40 \ \Omega, R_3 = 30 \ \Omega, R_4 = 40 \ \Omega,$$

 $E_1 = 30 \ V, E_3 = 20 \ V, J = 2 \ A. \ Tính i_1?$

$$\rightarrow J_{td} = 0.3214 \text{ A}$$

Định lý Norton (10)

$$R_1 = 10 \ \Omega, R_2 = 40 \ \Omega, R_3 = 30 \ \Omega, R_4 = 40 \ \Omega,$$

 $E_1 = 30 \ V, E_3 = 20 \ V, J = 2 \ A. \ Tính i_1?$

$$R_{td} = \frac{R_2(R_3 + R_4)}{R_2 + R_3 + R_4} = 25,45 \ \Omega$$

$$i_1 = J_{td} \frac{R_{td}}{R_{td} + R_1} = 0.3214 \frac{25,45}{25,45+10} = \boxed{0,2308 \text{ A}}$$

Thevenin và Norton (1)

$$R_{td} = \frac{u_{h \mathring{o} mach}}{i_{ng \acute{a} n mach}}$$

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

 \mathbf{a}

^lngắn mạch

Thevenin và Norton (2)

Cách 1

Cách 3

Cách 2

$$R_{td} = \frac{u_{v\grave{a}o}}{i_{v\grave{a}o}}$$

TRƯỚNG BẠI HỌC BÁCH KHOA HÀ NỘI

Thevenin và Norton (3)

VD

 $R_1 = 10 \ \Omega, R_2 = 40 \ \Omega, R_3 = 30 \ \Omega, R_4 = 40 \ \Omega,$ $E_1 = 30 \ V, E_3 = 20 \ V, J = 2 \ A.$ Tính điện trở tương đương R_{bc} của mạng một cửa?

$$R_{bc} = rac{u_{h o' mach}}{i_{ng lpha n mach}} = rac{E_{td}}{J_{td}}$$
 $E_{td} = 120 \text{ V}$ $J_{td} = 3,1579 \text{ A}$

$$\rightarrow R_{bc} = \frac{120}{3,1579} = 38 \ \Omega$$

Mạch một chiều

- 1. Các định luật cơ bản
- 2. Các phương pháp phân tích
- 3. Các định lý mạch
 - a) Nguyên lý xếp chồng
 - b) Định lý Thevenin
 - c) Định lý Norton
 - d) Truyền công suất cực đại
- 4. Phân tích mạch một chiều có L hoặc/và C

TRƯỚNG BẠI HỌC BÁCH KHOA HÀ NỘI

Truyền công suất cực đại (1)

http://www.chegg.com/homework-help/questions-and-answers/use-maximum-power-transfer-theorem-determine-increase-power-delivered-loudspeaker-resultin-g6983635

Truyền công suất cực đại (2)

$$\begin{aligned}
p_{t} &= i_{t}^{2} R_{t} \\
i_{t} &= \frac{E_{td}}{R_{td} + R_{t}}
\end{aligned} \rightarrow p_{t} = \left(\frac{E_{td}}{R_{td} + R_{t}}\right)^{2} R_{t} \\
\frac{dp_{t}}{dR_{t}} &= 0
\end{aligned}$$

$$\rightarrow R_{t} = R_{td}$$

Truyền công suất cực đại (3)

 Công suất cực đại sẽ được truyền đến tải nếu tải bằng điện trở tương đương Thevenin (nhìn từ phía tải):

$$R_{t} = R_{td}$$

- $R_t = R_{td}$: gọi là hoà hợp tải hoặc phối hợp tải.
- Chú ý: với mạch xoay chiều thì

$$Z_{t} = \hat{Z}_{td}$$

Truyền công suất cực đại (4)

$$R_1 = 10 \ \Omega, R_2 = 40 \ \Omega, R_3 = 30 \ \Omega, E_1 = 30 \ V,$$

 $E_3 = 20 \ V, J = 2 \ A.$ Tính R_4 để nó nhận được công suất lớn nhất?

$$\rightarrow R_4 = R_{td} = 38 \Omega$$

Mạch một chiều

- 1. Các định luật cơ bản
- 2. Các phương pháp phân tích
- 3. Các định lý mạch
- 4. Phân tích mạch một chiều có L hoặc/và C

Phân tích mạch một chiều có L hoặc/và C (1)

Trong mạch điện một chiều ở chế độ xác lập:

- Điện áp trên cuộn dây luôn bằng 0
- Dòng điện qua tụ điện luôn bằng 0
- Dòng điện qua cuộn dây **KHÔNG** luôn bằng 0
- Điện áp trên tụ điện **KHÔNG** luôn bằng 0

Phân tích mạch một chiều có L hoặc/và C (2)

VD1

 $R = 10 \Omega$, L = 2H, E = 20 V, tính dòng điện?

$$I = \frac{E}{R} = \frac{20}{10} = 2 \text{ A}$$

VD2

 $R = 10 \Omega$, C = 2F, E = 20 V, tính điện áp trên tụ?

$$RI + u_C = E$$

$$I = 0$$

$$\rightarrow u_C = E = 20 \text{ V}$$

Phân tích mạch một chiều có L hoặc/và C (3)

$$e_1 = 45 \text{ V}, \ e_4 = 60 \text{ V}, \ R_1 = 5\Omega; \ R_3 = 10\Omega; \ C = 2\text{mF}, \ L = 0.1\text{H}; \ \text{tính} \ i_L \& \ u_C?$$

$$R_1 i_1 + u_C + u_L = e_1 - e_4$$

 $i_1 = 0, u_L = 0$

$$\rightarrow u_C = e_1 - e_4 = 45 - 60 = -15 \text{ V}$$

$$R_3 i_3 + u_L = e_4$$

$$i_3 = i_L, u_L = 0$$

$$\to i_L = \frac{e_4}{R_3} = \frac{60}{10} = 6 \,\text{A}$$

Phân tích mạch một chiều có L hoặc/và C (4)

$$E = 12 \text{ V}, R_1 = 20 \Omega, R_2 = 45 \Omega L = 20 \text{ mH}, C = 4 \text{ mF}, \text{ tính } i_L \& u_C$$
?

$$\begin{cases} i_{L} - i_{C} - i_{2} = 0 \\ R_{1}i_{L} + u_{L} + R_{2}i_{2} = E \\ R_{2}i_{2} - u_{C} = 0 \end{cases}$$

$$u_{L} = 0; i_{C} = 0$$

$$\Rightarrow \begin{cases}
i_L = i_2 = \frac{E}{R_1 + R_2} = \frac{12}{20 + 45} = \boxed{0,18 \text{ A}} \\
u_C = R_2 i_2 = 45.0, 18 = \boxed{8,31 \text{ V}}
\end{cases}$$

Phân tích mạch một chiều có L hoặc/và C (5)

$$E_1 = 120 \text{ V}; E_2 = 40 \text{ V}; R_1 = 10 \Omega; R_2 = 20 \Omega; R_3 = 30 \Omega; L = 1 \text{ H}; C = 1 \text{ mF. Tính } i_L \& u_C?$$

$$\begin{cases} a: i_1 + i_2 - i_3 = 0 \\ R_1 i_1 + R_3 i_3 + u_L = E_1 \\ R_2 i_2 + R_3 i_3 + u_C = E_1 \end{cases}$$

$$i_2 = 0, \ u_L = 0$$

$$\Rightarrow \begin{cases}
i_{L} = i_{1} = \frac{E_{1}}{R_{1} + R_{3}} = \frac{120}{10 + 30} = \boxed{3 \text{ A}} \\
u_{C} = E_{1} - R_{3}i_{3} = \boxed{30 \text{ V}}
\end{cases}$$

Phân tích mạch một chiều có L hoặc/và C (6)

$$e=45$$
 V, $j_1=6$ A; $j_2=10$ A; $R_1=5\Omega$; $R_2=10\Omega$; $C=2$ mF; $L=0,1$ H; tính $i_L \& u_C$?

$$R_1 i_1 + u_L = e$$

$$\rightarrow i_1 = \frac{e}{R_1} = \frac{45}{5} = 9 \text{ A}$$

$$a: i_1 - i_L - i_C + j_1 = 0$$
 $\rightarrow i_L = i_1 + j_1 = 9 + 6 = \boxed{15 A}$

$$b: i_C - i_2 - j_1 + j_2 = 0 \rightarrow i_2 = j_2 - j_1 = 10 - 6 = 4 A$$

$$-u_L + u_C + R_2 i_2 = 0$$
 $\rightarrow u_C = -R_2 i_2 = -10.4 = \boxed{-40 \text{ V}}$