Lógica para Computação

Aula: Lógica de Predicados (Parte II)

Prof.º Me. Paulo César Oliveira Brito

O cálculo dos predicados usa as mesmas regras do cálculo proposicional. Assim, o cálculo proposicional é um caso particular do cálculo dos predicados que possui, além disso, regras de introdução e eliminação para os quantificadores.

Eliminação Universal (EU): A regra de eliminação do quantificador universal estabelece que o que é verdadeiro para qualquer coisa deve ser verdadeiro, também, para um indivíduo particular.

Exemplo 1. Formalize e prove o seguinte argumento: "Todos os homens são mortais. Sócrates é um homem. Portanto, Sócrates é mortal."

Exemplo 1. Formalize e prove o seguinte argumento: "Todos os homens são mortais. Sócrates é um homem. Portanto, Sócrates é mortal."

Linha	Proposição	Justificativa
1	$\forall x (Hx \rightarrow Mx)$	P (premissa)
2	Hs	P (premissa)
3	$Hs \rightarrow Ms$	1 EU
4	Ms	2,3 MP

Exemplo 2. Todo gasparense é catarinense. Todo catarinense é brasileiro. Deschamps é gasparense. Logo, Deschamps é brasileiro.

Exemplo 2. Todo gasparense é catarinense. Todo catarinense é brasileiro. Deschamps é gasparense. Logo, Deschamps é brasileiro.

Linha	Proposição	Justificativa
1	$\forall x (Gx \rightarrow Cx)$	P (premissa)
2	$\forall x (Cx \rightarrow Bx)$	P (premissa)
3	Gd	P (premissa)
4	$Gd \to Cd$	1 EU
5	$Cd \to Bd$	2 EU
6	Cd	3,4 MP
7	Bd	5,6 MP

Exemplo 3. Se todos são felizes, então todos gostam de viver bem. Alex não gosta de viver bem. Portanto, nem todos são felizes.

Exemplo 3. Se todos são felizes, então todos gostam de viver bem. Alex não gosta de viver bem. Portanto, nem todos são felizes.

$$\forall xFx \rightarrow \forall xGx, \neg Ga :: \neg \forall xFx$$

Linha	Proposição	Justificativa
1	$\forall x Fx \rightarrow \forall x Gx$	P (premissa)
2	~ Ga	P (premissa)
3	∀xFx	H (para RAA)
4	∀x Gx	1,3 MP
5	Ga	2 EU
6	Ga ∧ ~ Ga	2,5 ∧1
7	~∀x Fx	3,6 RAA

Exemplo 4. Todos os homens são mortais. Apolo é imortal. Portanto, Apolo não é um homem.

Exemplo 4. Todos os homens são mortais. Apolo é imortal. Portanto, Apolo não é um homem.

$$\forall x(Hx\rightarrow Mx), \neg Ma :: \neg Ha$$

Linha	Proposição	Justificativa
1	$\forall x \ Hx \rightarrow Mx$	P (premissa)
2	~ Ma	P (premissa)
3	$Ha \rightarrow Ma$	1 EU
4	~Ha	2,3 MT

Introdução Universal (IU): Introduzir o quantificador universal significa generalizar. Como não se pode generalizar a partir de casos particulares, existe a exigência de que o indivíduo α não ocorra em qualquer premissa ou hipótese vigente, mas é anônimo, significando que pode tratar-se de qualquer um do universo. Tudo se passa como se o indivíduo α já fosse uma variável.

Exemplo 5. Formalize e prove o argumento: "Todo gasparense é catarinense. Todo catarinense é brasileiro. Logo, todo gasparense é brasileiro."

Exemplo 5. Formalize e prove o argumento: "Todo gasparense é catarinense. Todo catarinense é brasileiro. Logo, todo gasparense é brasileiro."

$$\forall x(Gx \rightarrow Cx), \ \forall x(Cx \rightarrow Bx) : \ \forall x(Gx \rightarrow Bx)$$

Linha	Proposição	Justificativa
1	$\forall x Gx \rightarrow Cx$	P (premissa)
2	$\forall x \ Cx \rightarrow Bx$	P (premissa)
3	$Ga \to Ca$	1 EU
4	Ca o Ba	2 EU
5	$Ga \to Ba$	3, 4 SH
6	$\forall x Gx \rightarrow Bx$	5 IU

Exemplo 6. $\forall x(Fx \land Gx) : \forall xFx \land \forall xGx$

Exemplo 6. $\forall x(Fx \land Gx) :: \forall xFx \land \forall xGx$

Linha	Proposição	Justificativa
1	∀x Fx ∧ Cx	P (premissa)
2	Fa ∧ Ga	1 EU
3	Fa	2 \ E
4	∀x Fx	3 IU
5	Ga	2 EU
6	∀x Gx	5 IU
7	∀x Fx ∧ ∀x Gx	4,6 ∧1

Exemplo 7. $\forall x(Fx \rightarrow (Gx \lor Hx)), \forall x \neg Gx :: \forall xFx \rightarrow \forall xHx$

Exemplo 7. \forall (Fx \rightarrow (Gx \forall Hx)), \forall x \neg Gx \therefore \forall xFx \rightarrow \forall xHx

`	177	
Linha	Proposição	Justificativa
1	$\forall x (Fx \rightarrow (Gx \ V \ Hx)$	P (premissa)
2	∀x ~Gx	P (premissa)
3	∀xFx	H (para PC)
4	Fa	3 EU
5	Fa \rightarrow Ga \vee Ha	1 EU
6	Ga V Ha	4,5 MP
7	~Ga	2 EU
8	На	6,7 SD
9	∀x Hx	8 IU
10	$\forall x Fx \to \forall x Hx$	3-9 PC