Predict the stock price from the Apple stock

In this Notebook we want to predict the future opening price of the Apple NSDAQ stock.

First let's import our neccessaray libarys:

```
In [209]: import numpy as np
   import pandas as pd
   from sklearn import model_selection
   from sklearn import linear_model
   import math
```

Loading the dataset

Now let's load the Apple stock dataset.

```
In [210]: names = ['Date','Open','High','Low','Close','Adj Close','Volume']
    stock_values = pd.read_csv('AAPL.csv',names=names,engine='python')
    stock_values.drop(0, inplace=True)
```

Now let's just create a DataFrame to convert the objects to strings and floats:

Out[211]:

	1Date	2Open	3High	4Low	5Close
1	2017-04-19	141.880005	142.000000	140.449997	140.679993
2	2017-04-20	141.220001	142.919998	141.160004	142.440002
3	2017-04-21	142.440002	142.679993	141.850006	142.270004
4	2017-04-24	143.500000	143.949997	143.179993	143.639999
5	2017-04-25	143.910004	144.899994	143.869995	144.529999

1 von 2

Splitting the dataset into training and testing data

With the sklearn model selection we will now split the data into training and testing data:

```
In [212]: forecast_col = '5Close'
    stock.fillna(-99999, inplace=True)
    forecast_out = int(math.ceil(0.01*len(stock)))
    stock['6Label'] = stock[forecast_col].shift(-forecast_out)
    stock.dropna(inplace=True)
    stock.head()
```

Out[212]:

	1Date	2Open	3High	4Low	5Close	6Label
1	2017-04-19	141.880005	142.000000	140.449997	140.679993	143.639999
2	2017-04-20	141.220001	142.919998	141.160004	142.440002	144.529999
3	2017-04-21	142.440002	142.679993	141.850006	142.270004	143.679993
4	2017-04-24	143.500000	143.949997	143.179993	143.639999	143.789993
5	2017-04-25	143.910004	144.899994	143.869995	144.529999	143.649994

```
In [213]: X = stock[['20pen','3High', '4Low', '5Close']]
Y = stock['6Label']
X_lately = X[-forecast_out:]

test_size = 0.20
seed = 7

features_train, features_test, labels_train, labels_test = model_selection.train_test_split(X, Y, test_size=test_size, random_state=seed)
```

Defining the classifier

Now let's get to the final step of predicting stoc prices. Let'S define the classifier:

```
In [214]: clf = linear_model.LinearRegression()
    clf.fit(features_train, labels_train)
    accuarcy = clf.score(features_test, labels_test)
    prediction = clf.predict(X_lately)
    print("Accuarcy: " + str(accuarcy))

Accuarcy: 0.853620276289

In [215]: print("Here are the next three days stock prices:")
    print(prediction)

Here are the next three days stock prices:
    [ 173.71773801 174.18778137 175.09761291]
```

2 von 2