4 Closure Properties of Regular Languages

[Linz § 4.1]

We show closure under some simple set operations

(1) L_1, L_2 regular $\Longrightarrow L_1 \cup L_2$ regular

Proof: Suppose for some nfa's, M_1, M_2 :

$$L_1 = L(M_1), \ L_2 = L(M_2)$$

Let $M_1 \sqcup M_2$ = the "union" of M_1 and M_2 shown on p. 3-8 (bottom).

Then $L_1 \cup L_2 = L(M_1 \sqcup M_2)$ is regular.

(2) L_1 , L_2 regular $\implies L_1L_2$ regular

Proof: Suppose $L_1 = L(M_1)$, $L_2 = L(M_2)$ for nfa's M_1 , M_2

Let $M_1 \cdot M_2$ = the "concatenation" of M_1 and M_2 Shown on p. 3-9 (top).

Then $L_1L_2 = L(M_1 \cdot M_2)$ is regular.

(3) L regular $\implies L^*$ regular

Proof: Suppose L = L(M) for some nfa M.

Let $M^* =$ the "star" of M

shown on p. 3-9 (bottom).

Then $L^* = L(M^*)$ is regular.

Given $L \subseteq \Sigma^*$,

 $\overline{L} = \Sigma^* \backslash L =$ the **complement** of L in Σ .

Then:

$(4) \ L \ {\rm regular} \Longrightarrow \overline{L} \ {\rm regular}$

To prove this, we must first define the "**complement**" of a Σ -nfa.

How?

Proposal: Given $M = (Q, \Sigma, \delta, q_0, F)$

Define $\overline{M} = (Q, \Sigma, \delta, q_0, \overline{F})$

where $\overline{F} = Q \backslash F$

Problem Consider e.g. $M: \Sigma = \{a, b\}$

 \overline{M} :

$$L(M) = \{au \mid u \in \Sigma^*\}$$

$$L(\overline{M}) = \Sigma^*$$

Solution Replace M by **equivalent dfa** M^D (p. 2-13)

Then if

$$L = L(M),$$

then

$$\overline{L} = L(\overline{M^D})$$

From now on we write, for any **nfa** M,

 \overline{M} means $\overline{M^D}$

so that if

L = L(M)

then

 $\overline{L} = L(\overline{M})$

is regular.

(5) L_1 , L_2 regular $\Longrightarrow L_1 \cap L_2$ regular

Why?

Suppose $L_1 = L(M_1), L_2 = L(M_2)$ (nfa's).

Define the nfa

$$M_1 \sqcap M_2 = \overline{\overline{M_1} \sqcup \overline{M_2}}$$

Then

$$egin{aligned} L_1 \cap L_2 &= \overline{\overline{L_1} \ \cup \ \overline{L_2}} \ &= L(M_1 \sqcap M_2) \end{aligned}$$