SDSC6015 Stochastic Optimization and Online Learning

Xiang ZHOU

School of Data Science

City University of Hong Kong

Chapter 2: Convex Function

A **convex optimization problem** is of the form:

$$\min_{x \in D} f(x)$$

subject to

$$g_i(x) \leq 0, \quad i = 1, \ldots, m \ h_j(x) = 0, \quad j = 1, \ldots, r$$

where f and g_i are all convex functions, and h_j are affine functions. D is the intersection of the domains of definition of all functions.

Convex optimization problem always has a solution.

Any local minimizer of a convex optimization problem is a global minimizer.

nonconvex optimization: local minimum v.s. global minimum

minima, maxima and saddle points

Convex Sets

- affine and convex sets
- some important examples
- operations that preserve convexity

Affine sets

- The collection of the lines through any two distinct points in the set
- representation:

$$x = \sum_i lpha_i e_i + x_0, \ \ lpha_i \in \mathbb{R}, x_0, e_i \in \mathbb{R}^n$$

- ullet example : solution set of the linear equations $\{x|Ax=b\}$
- conversely, every affine set can be expressed as solution set of system of linear equations.
- affine function: f(x) = Ax + b for a matrix A and a vector b.
- The level set of affilne function $\{x|Ax+b=0\}$ is an affine set.

Convex Sets

ullet $C\subset \mathbb{R}^d$ such that

$$x, y \in C \Longrightarrow tx + (1-t)y \in C$$
, for all $0 \le t \le 1$

convex combination and convex hull

- Convex combination of $x_1,\dots,x_k\in\mathbb{R}^n$: any linear combination

$$\theta_1 x_1 + \cdots + \theta_k x_k$$

with $heta_i \geq 0, i=1,\ldots,k,$ and $\sum_{i=1}^k heta_i = 1.$

- Convex hull of a set A, conv(A), is all convex combinations of points in A.
- convex hull is always convex

Examples of convex sets

- Empty set, point, line.
- Norm ball: $\{x: ||x||_p \leq r\}$, for $p \geq 1$.

• ellipsoid : $\{x|(x-x_c)^TP^{-1}(x-x_c)\leq r\}$ with the square matrix P positive definite.

Examples of convex sets

• Hyperplane: $\left\{x:a^Tx=b\right\}$, for given a,b

• Halfspace: $\{ \hat{x} : a^T x \leq b \}$

• Affine space: $\{x: Ax = b\}$, for given A, b

• Polyhedron: $\{x: Ax \leq b\}$, where \leq is interpreted componentwise. The set $\{x: Ax \leq b, Cx = d\}$ is also a polyhedron.

• simplex: special case of polyhedra, given by conv $\{x_0, \ldots, x_k\}$, where these points are affinely independent. The canonical example is the probability simplex,

$$\operatorname{conv} \left\{ e_1, \dots, e_n \right\} = \left\{ w : w \ge 0, 1^T w = 1 \right\}$$

where e_j is the elementray basis function and ${\bf 1}$ is the column vector with one at each entry.

cone and convex cone

- a set C is a cone if for any $x \in C$, we have $tx \in C$ for all $t \geq 0$.
- ullet convex cone: $x_1,x_2\in C\Longrightarrow t_1x_1+t_2x_2\in C$ for all $t_1,t_2\geq 0$
- examples of convex cone:
 - $\circ \ \ \text{norm cone:} \left\{ (x,r) \in \mathbb{R}^n \times \mathbb{R}_+ : \|x\|_2 \leq r \right\}$

convex cone

Normal cone: given a set A and a point x on the boundary of A, the normal cone at this point x is

$${\mathcal N}_A(x) = \left\{g: g^Tx \geq g^Ty, ext{ for all } y \in A
ight\}$$

This is always a convex cone, regardless of A.

- If the bouldary is smooth, then $\mathcal{N}_A(x)$ is just the outter normal vector at x
- If the boundary is cornered at x, then $\mathcal{N}_A(x)$ is a conic area.

Operations that preserve convexity

- Intersection: the intersection of convex sets is convex
- Scaling and translation: if C is convex, then

$$aC+b:=\{ax+b:x\in C\}$$

is convex for any scalars a, b.

- Affine images and preimages: let f(x) = Ax + b and C is convex, then

$$f(C) = \{f(x) : x \in C\}$$

is convex, and if D is convex then

$$f^{-1}(D) = \{x : f(x) \in D\}$$

is convex

- coordinate projection: if $C \subset \mathbb{R}^m imes \mathbb{R}^n$ is convex, then

$$T=\{x_1\in\mathbb{R}^m|(x_1,x_2)\in C\}$$

is convex.

• try to prove the above

Convex functions

convex function

• Convex function $f:\mathbb{R}^n o\mathbb{R}$ such that $\mathrm{dom}(f)\subset\mathbb{R}^n$ is convex, and

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y)$$
 for $0 \le t \le 1$

and all $x,y\in \mathrm{dom}(f)$

- concave function: opposite inequality above, so f concave if and only if -f convex

strictly convex and strongly convex

• Strictly convex: f(tx+(1-t)y) < tf(x)+(1-t)f(y) for $x \neq y$ and 0 < t < 1.

• Strongly convex with parameter m>0 : $f-\frac{m}{2}\|x\|_2^2$ is convex. In words, f is at least as convex as a quadratic function

Note:

- strongly convex ⇒ strictly convex ⇒ convex
- example:
 - $\circ \ a^T x + b$ is convex (and concave), not strictly convex;
 - $\circ \|x\|_1$ is convex, but not strictly convex.
 - $\circ \ f(x) = x^4$ is strictly convex, but not strongly convex. (see why later)

Examples of convex functions

- Univariate functions:
 - \circ The absolute value function f(x)=|x| is convex , even though it does not have a derivative at the point x=0. It is not strictly convex.
 - \circ Exponential function: e^{ax} is convex for any a over $\mathbb R$
 - \circ Power function: x^a is convex for $a \geq 1$ or $a \leq 0$ over \mathbb{R}_+ (nonnegative reals)
 - \circ Power function: x^a is concave for $0 \leq a \leq 1$ over \mathbb{R}_+
 - Logarithmic function: $\log x$ is concave over \mathbb{R}_{++} (positive reals)
- ullet Affine function: a^Tx+b is both convex and concave
- Quadratic function: $\frac{1}{2}x^TQx+b^Tx+c$ is convex provided that $Q\succeq 0$ (positive semidefinite)
- Least squares loss: $\|y-Ax\|_2^2$ is always convex (since A^TA is always positive semidefinite)

Visualization of quadratic function by Python code

Quadratic function: $\frac{1}{2}x^TQx + b^Tx + c$

Norm

- vecotr norm: $\|x\|_p$, $p \in [1,\infty]$, is convex as a vector norm; e.g., ℓ_p norms,

$$\|x\|_p = \left(\sum_{i=1}^n \left|x_i
ight|^p
ight)^{1/p} ext{ for } p>1, \quad \|x\|_\infty = \max_{i=1,\ldots,n} \left|x_i
ight|$$

any norm satisfies triangular inequality : $\|tx+(1-t)y\|\leq t\|x\|+(1-t)\|y\|$ for $t\in[0,1].$ If $p<1,\|x\|_p$ is not a norm.

• (optional) matrix norm: **operator** (spectral) and **trace** (nuclear) **norms** of the matrix,

$$\|X\|_{ ext{op}} = \sigma_1(X), \quad \|X\|_{ ext{tr}} = \sum_{i=1}^r \sigma_r(X) = ext{ trace}(\sqrt{X^TX})$$

where $\sigma_1(X) \geq \ldots \geq \sigma_r(X) \geq 0$ are the singular values of the matrix X.

<u>singular values</u> of X are the square root of (non-negagtive) eigenvalues of the positive semidefinite matrix X^TX .

convex envelope (optional)

- The **convex envelope** of a (possibly nonconvex) function f is the largest convex function f such that $f(x) \leq f(x)$.
- The nuclear norm $||A||_*$ is the convex envelope of the rank function $\operatorname{rank}(A)$ on the convex set $\{X: ||X||_{\operatorname{op}} \leq 1\}$.

Examples of convex functions

• Indicator function: if C is convex, then its indicator function

$$I_C(x) = \left\{egin{array}{ll} 0 & x \in C \ \infty & x
otin C \end{array}
ight.$$

is convex.

• Support function: for any set A (convex or not), its support function

$$I_A^*(x) = \max_{y \in A} x^T y$$

is convex.

• Max function: $f(x) = \max \left\{ x_1, \dots, x_n \right\}$ where $x = (x_1, \dots, x_n) \in \mathbb{R}^n$, is convex.

Proof: Homework

Examples of convex loss functions in machine learning: linear regession

Given $y \in \mathbb{R}^n, X \in \mathbb{R}^{n \times p}, p$ is the dimension of the input x.

• mean square error in ordinary linear regession is a quadratic function

$$\min_{eta \in \mathbb{R}^p} L(eta) = \|y - Xeta\|_2^2$$

• $\lambda > 0$, the objective function in ridge regression:

$$\min_{\beta}\|y-X\beta\|_2^2+\lambda\|\beta\|_2^2$$

• $\lambda > 0$, the objective function in lasso regression (regularized form):

$$\min_{eta} \|y - Xeta\|_2^2 + \lambda \|eta\|_1$$

Examples of loss functions in machine learning: binary classification

We use t to refer to the product yf(x) for the label $y \in \{-1, +1\}$ and the discriminant function f(x). The classifier is thus $\operatorname{sign}(f(x))$.

• 0-1 (misclassification) loss is non-convex:

$$l_{01}(t) = egin{cases} 1, & t < 0 \ 0, & t \geq 0 \end{cases}$$

• hinge loss in SVM

$$h(t) = \max(1 - t, 0)$$

is convex.

Logistic loss in logistic regression

$$l(t) = \frac{1}{\log 2} \log(1+e^{-t})$$

where t refers to the product yf(x) for the label $y \in \{-1, +1\}$ and the discriminant function f(x).

logistic regression usually encodes the labels by $v\in\{0,1\}$, not by $\{-1,+1\}$. By transforming y=2v-1, the loss function takes the conventional form

$$\log(1 + e^{(1-2v)f(x)}) = \begin{cases} \log(1 + e^{f(x)}) = \log(1 + e^{-f(x)}) + f(x), & v = 0\\ \log(1 + e^{-f(x)}), & v = 1 \end{cases}$$

is convex in θ as the discriminant function takes the linear form $f(x) = \theta \cdot x$, regardless v = 0, 1.

• softplus function

$$\log(1+e^x)$$

is convex (note $\log(1+e^{-x})$ is convex too).

• Exponential loss used in AdaBoost: e^{-t}

activation functions

which are convex and which are not in the following figures?

ELU (Exponential Linear Unit) is convex iff $lpha \in [0,1]$

Examples of non-convex functions

• 0-1 (misclassification) loss is non-convex:

$$l_{01}(t) = egin{cases} 1, & t < 0 \ 0, & t \geq 0 \end{cases}$$

· Heaviside step function /sign function

• sigmoid function/logistic function

Gaussian function

$$f(x) = a \cdot \exp\left(-\frac{(x-b)^2}{2c^2}\right)$$

Key properties of convex functions

• A function f(x) is convex if and only if its restriction to any line (a straight line is represented by $t\mapsto x_0+tv$),

$$F(t) = f(x_0 + tv)$$

is convex, where x_0 and v are given and $\mathrm{dom}(F) = \{t | x_0 + tv \in \mathrm{dom}(f)\}$

Proof: Homework

ullet Epigraph characterization: a function f is convex **if and only if** its **epigraph**

$$\operatorname{epi}(f) = \{(x,t) \in \operatorname{dom}(f) imes \mathbb{R} : f(x) \leq t\} \subset \mathbb{R}^{n+1}$$

is a convex set.

Proof: If f is convex, then let $z_i=(x_i,t_i)$, i=1,2 be two different points in ${\operatorname{epi}}(f)$. Then for any $\alpha\in(0,1)$,

$$\alpha z_1 + (1-\alpha)z_2 = (\alpha x_1 + (1-\alpha)x_2, \alpha t_1 + (1-\alpha)t_2).$$

Since $\mathrm{dom}(f)$ is convex, then $\alpha x_1 + (1-\alpha)x_2 \in \mathrm{dom}(f)$ and since f is convex, then $f(\alpha x_1 + (1-\alpha)x_2) \leq \alpha f(x_1) + (1-\alpha)f(x_2) \leq \alpha t_1 + (1-\alpha)t_2$. So, $\alpha z_1 + (1-\alpha)z_2 \in \mathrm{epi}(f)$,i.e., $\mathrm{epi}(f)$ is convex.

If $\operatorname{epi}(f)$ is convex, then $\operatorname{dom}(f)$ is convex and let $t_1=f(x_1), t_2=f(x_2)$, and consider (x_1,t_1) and (x_2,t_2) in the convex set $\operatorname{epi}(f)$, we then have $f(\alpha x_1+(1-\alpha)x_2)\leq \alpha t_1+(1-\alpha)t_2=\alpha f(x_1)+(1-\alpha)f(x_2)$. So f is a convex function.

• Convex sublevel sets: if f is convex, then its **sublevel sets**

$$L_t := \{x \in \text{dom}(f) : f(x) \le t\}$$

are convex for all $t \in \mathbb{R}$. The converse is not true.

Proof: Homework.

Differentiable convex function

characterization of differentiable convex function: gradient

ullet First-order characterization: if f is differentiable, then f is convex if and only if

 $\circ \operatorname{dom}(f)$ is convex, and

$$f(y) \geq f(x) + \nabla f(x)^T (y-x)$$

for all $x,y\in \mathrm{dom}(f)$.

Theorem 2.1.2 in Nesterov (2004)

Proof: Let $x_t = tx + (1-t)y$ for any $t \in [0,1)$. If f is convex, then $f(x_t) \leq (1-t)f(y) + tf(x)$, i.e. $f(y) \geq \frac{1}{1-t}f(x_t) - \frac{t}{1-t}f(x) = \frac{1}{1-t}(f(x_t) - f(x)) + f(x)$. Let $t \to 1$, then the conclusion is proved by noting $f'(x_t) = \nabla f(x_t) \cdot (x-y)$. On the other hand, if $f(y) \geq f(x) + \nabla f(x)^T(y-x)$ for any x,y, then $f(y) \geq f(x_t) + \nabla f(x_t)^T(y-x_t)$ and $f(x) \geq f(x_t) + \nabla f(x_t)^T(x-x_t)$. Then adding them together: $tf(x) + (1-t)f(y) \geq f(x_t) + \nabla f(x_t)^T \left((1-t)(y-x_t) + t(x-x_t) \right) = f(x_t)$.

Therefore for a differentiable convex function

$$\nabla f(x^*) = 0 \Longleftrightarrow x^* \text{ minimizes } f$$

Proof: '' \Longrightarrow " $: f(y) \geq f(x)$ so x is a minimizer; " \Longleftarrow ": first order optimality condition

- ullet If f is differentiable, then f is convex if and only if
 - \circ dom(f) is convex, and

$$(
abla f(x) -
abla f(y))^T (x-y) \geq 0$$

for all $x,y\in \mathrm{dom}(f).$ This property is called *monotonicity* of the gradient.

Theorem 2.1.3 in Nesterov (2004)

Proof: If f is convex, then $f(y) \geq f(x) + \nabla f(x)^T (y-x)$ as well as $f(x) \geq f(y) + \nabla f(y)^T (x-y)$. Adding together, $0 \geq (\nabla f(y) - \nabla f(x))^T (x-y)$.

On the other hand, if $(\nabla f(x) - \nabla f(y))^T(x-y) \geq 0$, then let $x_t = x + t(y-x)$, then $\frac{d}{dt}f(x_t) = \nabla f(x_t) \cdot (y-x)$ and $f(y) = f(x) + \int_0^1 \nabla f(x_t) \cdot (y-x) dt = f(x) + \nabla f(x) \cdot (y-x) + \int_0^1 (\nabla f(x_t) - x) dt = f(x) + \nabla f(x) \cdot (y-x) + \int_0^1 (\nabla f(x_t) - x) dt = f(x) + \nabla f(x) \cdot (y-x) + \int_0^1 (\nabla f(x_t) - x) dt = f(x) + \nabla f(x) \cdot (y-x) + \int_0^1 (\nabla f(x_t) - x) dt = f(x) + \nabla f(x) \cdot (y-x) + \int_0^1 (\nabla f(x_t) - x) dt = f(x) + \nabla f(x) \cdot (y-x) + \int_0^1 (\nabla f(x_t) - x) dt = f(x) + \nabla f(x) \cdot (y-x) + \int_0^1 (\nabla f(x_t) - x) dt = f(x) + \nabla f(x) \cdot (y-x) + \int_0^1 (\nabla f(x_t) - x) dt = f(x) + \nabla f(x) \cdot (y-x) + \int_0^1 (\nabla f(x_t) - x) dt = f(x) + \nabla f(x) \cdot (y-x) + \int_0^1 (\nabla f(x_t) - x) dt = f(x) + \nabla f(x) \cdot (y-x) + \int_0^1 (\nabla f(x_t) - x) dt = f(x) + \nabla f(x) \cdot (y-x) + \int_0^1 (\nabla f(x_t) - x) dt = f(x) + \nabla f(x) \cdot (y-x) + \int_0^1 (\nabla f(x_t) - x) dt = f(x) + \nabla f(x) \cdot (y-x) + \int_0^1 (\nabla f(x_t) - x) dt = f(x) + \nabla f(x) \cdot (y-x) + \int_0^1 (\nabla f(x_t) - x) dt = f(x) + \nabla f(x) \cdot (y-x) + \int_0^1 (\nabla f(x_t) - x) dt = f(x) + \nabla f(x) \cdot (y-x) + \int_0^1 (\nabla f(x_t) - x) dt = f(x) + \nabla f(x) +$

$$abla f(x))\cdot rac{1}{t}(x_t-x)dt\geq f(x)+
abla f(x)\cdot (y-x)$$
. So, $f(y)\geq f(x)+
abla f(x)\cdot (y-x)$, then f is convex.

- ullet If $x\in\mathbb{R}^1$ and f(x) is differentiable and f'(x) is nondecreasing, then f is convex.
- If $x \in \mathbb{R}^1$ and f(x) is differentiable and f'(x) is strictly increasing, then f is stirctly convex.

 $f(x)=x^4$ is strictly convex since x^3 is strictly increasing.

Bregmann divergence

Bregman divergence or *Bregman distance* for continuously-differentiable and strictly convex function:

$$D_f(y,x) := f(y) - f(x) -
abla f(x)^T (y-x) \geq 0$$

Exercise: if $f(x)=\|x\|_2^2$, show that $D_f(y,x)=\|y-x\|_2^2$. **Exercise** Show the (non-negative) linearity of Bregmann divergence: $D_{f+\lambda g}(y,x)=D_f(y,x)+\lambda D_g(y,x)$ for f and g strictly convex and differentiable, $\lambda\geq 0$

characterization of twice-differentiable convex function: Hessian matrix

- Second-order characterization: if f is twice differentiable, then f is convex **if and only if** $\mathrm{dom}(f)$ is convex, and $\nabla^2 f(x) \succeq 0$ for all $x \in \mathrm{dom}(f)$
- $abla^2 f(x) \succ 0$ (strictly positive definite) for all $x \Longrightarrow$ strictly convex (the converse is not true)
- strongly convex: there exists m>0 such that $abla^2 f(x)\succeq m$

Exercise : show that $-\log(1-x)>x$ for all $x\in(0,1)$

Examples of (differentiable) convex functions

• $f(x)=x^4$ is strictly convex, but $f^{\prime\prime}(0)=0$ and not strongly convex.

• $f(x) = \exp(-x)$ is strictly convex, but $f''(x) = \exp(-x)$ can be arbitrarily small, so it is not strongly convex.

- x^2 is strongly convex.
- $f(x)=1/x^2$, with $\mathrm{dom}\, f=\{x\in\mathbb{R}\mid x
 eq 0\}$, satisfies f''(x)>0 for all $x\in\mathrm{dom}(f)$, but is not a convex function.

Why? Is dom(f) convex?

ullet Quadratic-over-linear function. The function $f(x,y)=x^2/y,$ with

$$\operatorname{dom} f = \mathbf{R} imes \mathbf{R}_{++} = \left\{ (x,y) \in \mathbf{R}^2 \mid y > 0 \right\}$$

is convex (check Hessian matrix is positive semidefinite. $H=\begin{bmatrix}2/y,&-2x/y^2\\-2x/y^2,&2x^2/y^3\end{bmatrix}$. $\det H=4x^2/y^4-4x^2/y^4=0$).

• Log-sum-exp. The function $f(x) = \log (e^{x_1} + \dots + e^{x_n})$ is convex on \mathbb{R}^n . This function can be interpreted as a differentiable approximation of the max function, since

$$\max\left\{x_1,\ldots,x_n
ight\} \leq f(x) \leq \max\left\{x_1,\ldots,x_n
ight\} + \log n$$

characterization of differentiable strictly convex function:

If f is differentiable and $\mathrm{dom}(f)$ is convex, then the following statement

1. f is strictly convex.

$$f(y) > f(x) + \nabla f(x)^T (y - x)$$

for all $x \neq y$ in dom(f).

3.
$$(\nabla f(x) - \nabla f(y))^T (x - y) > 0$$

for all $x \neq y$ in dom(f).

Lipschitz gradients and strong convexity

Let f be convex and twice continuously differentiable. Then the following statements are equivalent.

1. $\nabla f(x)$ is Lipschitz with constant L, i.e.,

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$$

for any x, y.

- 2. $(
 abla f(x)
 abla f(y))^T (x-y) \leq L \|x-y\|_2^2$ for all x,y
- 3. $\nabla^2 f(x) \leq LI$ for all x where I is the identity matrix
- 4. $f(y) \leq f(x) + \nabla f(x)^T (y-x) + \frac{L}{2} \|y-x\|_2^2$ for all x,y.

Some literature call f is L-smooth.

equivalent condition of strong convexity

The following statements are equivalent.

- 1. f is strongly convex with constant m
- 2. $(\nabla f(x) \nabla f(y))^T(x-y) \geq m\|x-y\|_2^2$ for all x,y
- 3. $\nabla^2 f(x) \succeq mI$ for all x
- 4. $f(y) \geq f(x) +
 abla f(x)^T (y-x) + rac{m}{2} \|y-x\|_2^2$ for all x,y

Proof: skip

Jensen's inequality

Jensen's inequality: if f is convex, and X is a random variable supported on $\mathrm{dom}(f),$ then

$$f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)]$$

Example: $f(x)=x^2$. then Jensen's inequalty is $(\mathbb{E}[X])^2\leq \mathbb{E}[X^2]$, which is equivalent to the familiar nonnegativity of variance $\mathrm{Var}(X)=\mathbb{E}[X^2]-(\mathbb{E}[X])^2\geq 0$.

Operations that preserve convexity

- nonnegative linear combination: f_1,\ldots,f_m convex implies

$$a_1f_1+\ldots+a_mf_m$$

are also convex for any $a_1, \ldots, a_m \geq 0$.

 \circ **example**: If each loss $\ell_i(\theta)$ from each data sample is convex, then the empirical risk from all data samples

$$L(\theta) = \sum_{i} \ell_i(\theta)$$

is also convex.

- The objective functions in ridge regression and lasso regression are both convex.
- In general, convex risk function + convex regularization is convex.
- **pointwise maximization**: if f(x;s) is convex in x for each s, then

$$f(x) = \max_{s} f(x; s)$$

is also convex

- $\circ \;$ support function $f(x) = \max_{y \in A} y^T x$ is a special case
- \circ if f_1, \ldots, f_m are all convex, then

$$f(x) = \max(f_1(x), \dots, f_m(x))$$

is also convex

Maxout/Leaky RELU function is convex:

ullet affine composition: if f is convex, then

$$g(x) = f(Ax + b)$$

is convex.

- $\circ \ \|eta\|_2^2$ is convex , so $\|y-Xeta\|_2^2$ is also convex.
- $\circ f(x)$ is convex, then f(-x) is also convex.
- partial minimization: if g(x,y) is convex in (x,y), and the set C is convex, then

16/09/2020 6015-W2 $f(x) = \min_{x \in \mathcal{X}} g(x, y)$

$$f(x) = \min_{y \in C} g(x,y)$$

is convex.

 \circ *Example*: the distance function to a convex set C $d(x,C) = \min_{y \in C} \|x-y\|_2$ is convex.

Proof : For two points
$$x_0,x_1$$
, let $x_t=tx_1+(1-t)x_0$ and define y_0,y_1 such that $f(x_0)=g(x_0,y_0)$ and $f(x_1)=g(x_1,y_1)$. Let $y_t=ty_1+(1-t)y_0$. Then $f(x_t)=\min_y g(x_t,y)\leq g(x_t,y_t)\leq tg(x_1,y_1)+(1-t)g(x_0,y_0)=tf(x_1)+(1-t)f(x_0)$.

• reader: try to prove the above.

Homework

Reference of convex function

- S. Boyd and L. Vandenberghe (2004), "Convex optimization", Chapters 2 and 3
- J.P. Hiriart-Urruty and C. Lemarechal (1993), "Fundamentals of convex analysis",
 Chapters A and B
- R. T. Rockafellar (1970), "Convex analysis", Chapters 1–10
- Yurii Nesterov (2004), "Introductory Lectures on Convex Optimization". Chapter 2.1
- S. Bubeck et al. <u>Convex optimization: Algorithms and complexity</u>. Foundations and Trends in Machine Learning, 8(3-4):231–357, 2015.

Homework

Prove the following statements by the definition of the convex function

- 1. Max function: $f(x) = \max{\{x_1, \dots, x_n\}}$ where $x = (x_1, \dots, x_n) \in \mathbb{R}^n$, is convex.
- 2. A function f(x) is convex if and only if its restriction to any line,

$$F(t) = f(x_0 + tv)$$

is convex, where x_0 and v are given and $\mathrm{dom}(F)=\{t|x_0+tv\in\mathrm{dom}(f)\}.$

3. If f is convex, then its **sublevel sets**

$$L_t := \{x \in \text{dom}(f) : f(x) \le t\}$$

are convex for all $t \in \mathbb{R}$. Show the converse is *not* true.

4. Prove that the **entropy function**, defined as

$$f(x) = -\sum_{i=1}^n x_i \log \left(x_i
ight)$$

with
$$\mathrm{dom}(f) = \left\{x \in \mathbb{R}^n_{++} : \sum_{i=1}^n x_i = 1
ight\},$$
 is **strictly concave**.