Special Topics in Logic and Security I

Seminar & Lab

November 17, 2022

Contents

1	Theory		
	1.1	Basic mathematical concepts	
	1.2	Labelled Transition Systems	
	1.3	Role Terms	
	1.4	Role Events	
	1.5	Event Order	
	1.6	Runs	4
	1.7	Matching	Į
	1.8	Run Events	(
	1.9	Threat Model	
	1.10	Operational semantics for security protocols	
	1.11	Security properties	
2	Solv	ved Exercises	:
3	Oth	ner exercises	1
4	Scy	ther Tool	1
	4.1	Installation	1
	4.2	Scyther Syntax	11

1 Theory

In this section we extract the mathematical concepts, definitions and notation used throughout in Operation Semantics and Verification of Security Protocols

1.1 Basic mathematical concepts

Powerset. Given a set A, we write $\mathcal{P}(A)$ or 2^A to denote the powerset of A.

Concatenation. Given two sequences t_0 and t_1 , where $t_0 = [t_{00}, t_{01}, ...t_{0n}]$, and $t_1 = [t_{10}, t_{11}, ..., t_{1m}]$, the concatenation of these two sequences is denoted by $t \cdot t'$.

Sequence order. We write t_i to denote (i+1)th element of a sequence t, and we write $e <_t e'$ to denote $\exists i, j$ such that $i < j \land t_i = e \land t_j = e'$.

Projection function. Given a tuple $(x_1, x_2, ... x_n)$ we use the π_i function to project the *i*th component of the pair.

Function domains and codomain. Given a function f we write dom(f) to denote the domain, and ran(f) to denote the codomain. (range)

1.2 Labelled Transition Systems

A labelled transition system LTS is a four-tuple (S, L, \rightarrow, s_0) where

- S is a set of states;
- L is a set of labels;
- \rightarrow : $S \times L \times S$ is a ternary transition relation;
- $s_0 \in S$ is the initial state.

We abbreviate $(p, \alpha, q) \in \to$ as $p \xrightarrow{\alpha} q$.

A finite execution of a LTS $P = (S, L, \rightarrow, s_0)$ is an alternating sequence σ of states and labels, starting with s_0 and ending with a state s_n , such that if $\sigma = [s_0, \alpha_1, s_1, \alpha_2..., \alpha_n, s_n]$, then $s_i \xrightarrow{\alpha_{i+1}} s_{i+1}$. If σ is a finite execution of LTS P, then $[\alpha_1, \alpha_2, ... \alpha_n]$ is called a finite trace of P.

A transition rule has a number of premises $Q_1,...Q_n$ which must holds before a conclusion can be drawn:

$$\frac{Q_1 \quad Q_2 \quad \dots \quad Q_n}{p \xrightarrow{\alpha} q}$$

1.3 Role Terms

$$RoleTerm ::= Var \mid Fresh \mid Role$$

$$\mid Func([RoleTerm[,RoleTerm]^*])$$

$$\mid (RoleTerm,RoleTerm)$$

$$\mid \{RoleTerm\}_{RoleTerm}$$

$$\mid sk(RoleTerm) \mid pk(RoleTerm) \mid k(RoleTerm,RoleTerm)$$

Basic terms. We say a term is a basic term if it does not contains pairs or encryptions.

Vars function. $vars: RoleTerm \rightarrow \mathcal{P}(Var)$ determine the variables occurring in a term.

Roles function. $roles: RoleTerm \rightarrow \mathcal{P}(Role)$ determine the roles occurring in a term.

Unpair operator. $unpair : RoleTerm \rightarrow \mathcal{P}(RoleTerm)$, defined by

$$unpair(t) = \begin{cases} unpair(t_1) \cup unpair(t_2) & \text{iff } t = (t_1, t_2) \\ \{t\} & otherwise \end{cases}$$

Subterm relation. We define the syntatic subterm relation \sqsubseteq as the reflexive, transitive closure of the smallest relation satisfying the following for all terms $t_1, ...t_n$, $1 \le i \le n$ and function names $f: t_1 \sqsubseteq (t_1, t_2); t_2 \sqsubseteq (t_1, t_2); t_1 \sqsubseteq \{t_1\}_{t_2}; t_2 \sqsubseteq \{t_1\}_{t_2}; t_i \sqsubseteq f(t_1, ...t_n); t_1 \sqsubseteq k(t_1, t_2); t_2 \sqsubseteq k(t_1, t_2); t_1 \sqsubseteq pk(t_1); t_1 \sqsubseteq sk(t_1).$

Terms inference relation. Let M be a set of terms. The term inference relation \vdash : $\mathcal{P}(Term) \times Term$ is defined as the smallest relation satisfying for all terms t, t_i , k and function names f:

$$t \in M \Longrightarrow M \vdash t$$

$$M \vdash t_1 \land M \vdash t_2 \Longrightarrow M \vdash (t_1, t_2)$$

$$M \vdash t \land M \vdash k \Longrightarrow M \vdash \{t\}_k$$

$$M \vdash (t_1, t_2) \Longrightarrow M \vdash t_1 \land M \vdash t_2$$

$$M \vdash \{t\}_k \land M \vdash k^{-1} \Longrightarrow M \vdash t$$

$$\bigwedge_{1 \le i \le n} M \vdash t_i \Longrightarrow M \vdash f(t_1, ..., t_n)$$

1.4 Role Events

$$RoleEvent_R ::= send_{Label}(R, Role, RoleTerm)$$

 $\mid recv_{Label}(Role, R, RoleTerm)$
 $\mid claim_{Label}(R, Claim[, RoleTerm])$

$$RoleEvent = \bigcup_{R \in Role} RoleEvent_R$$

Accessible subterm relation. The accessible subterm relation \sqsubseteq_{acc} is defined as the reflexive, transitive closure of the smallest relation satisfying the following for terms t_1, t_2 : $t_1 \sqsubseteq_{acc} (t_1, t_2)$; $t_2 \sqsubseteq_{acc} (t_1, t_2)$; $t_1 \sqsubseteq_{acc} \{t_1\}_{t_2}$.

Generalised vars function. $vars: RoleEvent^* \to \mathcal{P}(Vars)$ is a straightforward generalisation of the vars function for $Role\ Terms$,

Well-Formedness. The predicate $well formed : RoleEvent^*$ is defined by

$$well formed(\rho) \iff \forall V \in vars(\rho) : \exists \rho', l, R, R', rt, \rho'' \text{ such that}$$

$$\rho = \rho' \cdot [recv_l(R, R', rt)] \cdot \rho'' \wedge V \notin vars(\rho') \wedge V \sqsubseteq_{acc} rt$$

Role Specification. Given a role R, role specification is defined as follows:

$$RoleSpec = \{(m, s) \mid m \in \mathcal{P}(RoleTerm) \land \forall rt \in m : vars(rt) = \emptyset \land s \in (RoleEvent_R)^* \land wellformed(s)\}$$

We require that the initial role knowledge does not contain variables.

Protocol Specification. We define $Protocol : Role \to RoleSpec$ the set of all possible protocol specifications. For every protocol $P \in Protocol$, and for each role $R \in Role$, P(R) is the role specification of R. We can write $P(R) = (KN_0(R), s)$ where $KN_0(R)$ is a shorthand for the initial knowledge of the role R, and s is a sequence of events.

1.5 Event Order

Role event order. Let R be a role with specification $P(R) = (M, [\varepsilon_1, ..., \varepsilon_n])$. For R, the role event order $<_R$: $RoleEvent \times RoleEvent$ is defined as the strict total order defined by the sequence $[\varepsilon_1, ..., \varepsilon_n]$.

Communication Relation. The communication relation $- \rightarrow : RoleEvent \times RoleEvent$ is defined as

$$\varepsilon_1 - \star \varepsilon_2 \iff \exists l, R, R', rt_1, rt_2 \text{ such that } \varepsilon_1 = send_l(R, R', rt_1) \land \varepsilon_2 = recv_l(R, R', rt_2)$$

for all $\varepsilon_1, \varepsilon_2 \in RoleEvent$.

Protocol Order. Let P be a protocols with roles Role. The transitive closure of the union of the role event order and the communication relation is called the protocol order \prec_P :

$$\prec_P = \left(- \rightarrow \bigcup_{R \in Role} <_R \right)^+$$

1.6 Runs

Executing a role turns a role descripton into a run

Run identifiers. We denote the set of run identifiers as RID.

Agents. We denote the set of agents as *Agent*.

```
RunTerm ::= Fresh^{\#RID} \mid Role^{\#RID} \mid Var^{\#RID}
              \perp Agent
              |Func([RunTerm[,RunTerm]*])
              | (RunTerm, RunTerm) |
              | \{RunTerm\}_{RunTerm} |
              \mid AdversaryFresh
              \mid pk(RunTerm) \mid sk(RunTerm) \mid k(RunTerm, RunTerm)
```

Instantiations. We define *Inst*, the *instantiations set*, as

$$Inst = RID \times (Role \rightarrow Agent) \times (Var \rightarrow RunTerm)$$

Function runidof. We define $runidof: Inst \rightarrow RID$, a projection function to denote the run identifier from an instantiation inst.

Term Instantiation. Let $inst \in Inst$, where $inst = (\theta, \rho, \sigma)$. Let $f \in Func$, and $rt, rt_1, ..., rt_n$ be role terms such that $roles(rt) \subseteq dom(\rho)$ and $vars(rt) \subseteq dom(\sigma)$. We define $\langle inst \rangle : RoleTerm \rightarrow$ RunTerm by:

$$< inst > (rt) = \begin{cases} n^{\#\theta} & rt = n \in Fresh \\ \rho(R) & rt = R \in Role \land R \in dom(\rho) \\ R^{\#\theta} & rt = R \in Role \land R \notin dom(\rho) \\ \sigma(v) & rt = v \in Var \land v \in dom(\sigma) \\ rt = v \in Var \land v \notin dom(\sigma) \end{cases}$$

$$(< inst > (rt_1), ..., < inst > (rt_n)) & rt = f(rt_1, ..., rt_n) \\ (< inst > (rt_1), < inst > (rt_2)) & rt = (rt_1, rt_2) \\ \{< inst > (rt_1)\}_{< inst > (rt_2)} & rt = \{rt_1\}_{rt_2} \\ sk(< inst > (rt_1)) & rt = sk(rt_1) \\ pk(< inst > (rt_1)) & rt = pk(rt_2) \\ k(< inst > (rt_1), < inst > (rt_2)) & rt = k(rt_1, rt_2) \end{cases}$$
 s. The set of all possible runs is defined as $Run = Inst \times RoleEvent^*$.

Runs. The set of all possible runs is defined as $Run = Inst \times RoleEvent^*$.

1.7 Matching

Matching predicate. $Match: Inst \times RoleTerm \times RunTerm \times Inst$. The purpose of this predicate is to match an incoming message to a pattern specified by a role term, in the context of a particular instantiation.

Type function. The function $type: Var \to \mathcal{P}(RunTerm)$ defines the set of run terms that are valid values for a variable. The definition of the type function depends on the agent model.

Match. For all $inst = (\theta, \rho, \sigma)$ and $inst' = (\theta', \rho', \sigma') \in Inst$, $pt \in RoleTerm$ and $m \in RunTerm$, the predicate Match(inst, pt, m, inst') holds iff

$$\theta = \theta' \land \rho = \rho' \land \\ < inst' > (pt) = m \land \forall v \in dom(\sigma') : \sigma'(v) \in type(v) \land \sigma \subseteq \sigma' \land dom(\sigma') = dom(\sigma) \cup vars(pt)$$

The definition of *Match* ensures that

- the instantiation of the pattern is equal to the message;
- the instatiation is well typed;
- the new variable assignment extends the old one;
- the instantiation is only extended for the variables that occur in the pattern.

Type matching. For all variables V,

$$type(V) \in \{S_1, S_2, S_3, S_4, S_5\}$$
 where $S_1 ::= Agent$ $S_2 ::= Func([RunTerm[, RunTerm]*])$ $S_3 ::= pk(RunTerm) \mid sk(RunTerm)$ $S_4 ::= k(RunTerm, RunTerm)$ $S_5 ::= Fresh^{\#RID} \mid AdversaryFresh$

Constructor matching. For all variables V,

$$type(V) \in \{T_1, T_2, RunTerm - (T_1 \cup T_2)\}$$
 where
$$T_1 ::= \{RunTerm\}_{RunTerm}$$

$$T_2 ::= (RunTerm, RunTerm)$$

1.8 Run Events

Run Event. We define the set of run events RunEvents as $Inst \times (RoleEvent \cup \{create(R) \mid R \in Role\})$. We write RecvRunEv for the set of run events corresponding to receive events, SendRunEv for those corresponding to send events, and ClaimRunEv for claim events.

Contents of event. $cont: (RecvRunEv \cup SendRunEv) \rightarrow RunTerm$ is a function that specify the contents of an event, i.e.

$$cont((inst, send_l(R, R', m))) = \langle inst \rangle (R, R', m)$$

 $cont((inst, recv_l(R, R', m))) = \langle inst \rangle (R, R', m)$

Possible runs. $runsof: Protocol \times Role \rightarrow \mathcal{P}(Run)$ is a function for the runs that can be created by a protocol P for a role $R \in dom(P)$:

$$runsof(P,R) = \{((\theta, \rho, \emptyset), s) \mid s = \pi_2(P(R)) \land \theta \in RID \land dom(\rho) = roles(s) \land ran(\rho) = Agent\}$$

Active run identifiers. $runIDs(F) = \{\theta \mid ((\theta, \rho, \sigma), s) \in F\}$, where F is a set of runs.

1.9 Threat Model

We have that $Agent = Agent_H \cup Agent_C$ (reunion between honest agents and compromised agents).

Initial Adversary Knowledge. For a protocol P, we define the initial adversary knowledge $AKN_0(P)$ as

 $AKN_0(P) = AdversaryFresh \cup Agent \cup$

$$\bigcup_{R \in Role, \rho \in Role \rightarrow Agent, \rho(R) \in Agent_C} \{ <\theta, \rho, \emptyset > (rt) \mid \theta \in RID \land rt \in KN_0(R) \land \forall rt' \sqsubseteq rt : rt' \notin Fresh \}$$

1.10 Operational semantics for security protocols

The operational semantics for security protocols P is defined using a LTS

$$(State, RunEvent, \rightarrow, s_0(P))$$

State. The set of possible states is $State = \mathcal{P}(RunTerm) \times \mathcal{P}(Run)$.

Initial State. The initial state of a protocol is defined as

$$s_0(P) = \langle \langle AKN_0(P), \emptyset \rangle \rangle$$

Transitions. We have AKN, the current intruder knowledge, and F, the set of active runs. The operational semantics rules are:

$$[create] \frac{R \in dom(P) \quad ((\theta, \rho, \emptyset), s) \in runsof(P, R) \quad \theta \notin runIDs(F)}{<< AKN, F >> \frac{((\theta, \rho, \emptyset), create(R))}{<< AKN, F \cup \{((\theta, \rho, \emptyset), s)\} >>}}$$

$$[send] \frac{e = send_l(R_1, R_2, m) \quad (inst, [e] \cdot s) \in F}{<< AKN, F >> \frac{(inst, e)}{>} << AKN \cup \{< inst > (m)\}, (F - \{(inst, [e] \cdot s)\}) \cup \{(inst, s)\} >>}$$

$$[recv] \frac{e = recv_l(R_1, R_2, pt) \quad (inst, [e] \cdot s) \in F \quad AKN \vdash m \quad Match(inst, pt, m, inst'))}{<< AKN, F >> \frac{(inst', e)}{>} << AKN, (F - \{(inst, [e] \cdot s)\}) \cup \{(inst', s)\} >>}$$

$$[claim] \frac{e = claim_l(R, c) \lor e = claim_l(R, c, t) \quad (inst, [e] \cdot s) \in F}{<< AKN, F >> \frac{(inst, e)}{>} << AKN, (F - \{(inst, [e] \cdot s)\}) \cup \{(inst, s)\} >>}$$

Traces. We define traces(P) as the set of finite traces of the LTS associated with a protocol P.

1.11 Security properties

Honestity. We define the predicate *honest* for instantiations as $honest((\theta, \rho, \sigma)) \iff ran(\rho) \subseteq Agent_H$.

Actor function. $actor: Inst \times RoleEvent \rightarrow Agent is defined as <math>actor((\theta, \rho, \sigma), \varepsilon) = \rho(role(\epsilon))$.

Secrecy Claim. Let P be a protocol with role R. The secrecy claim event $\gamma = claim_l(R, secret, rt)$ is corect iff

$$\forall t \in traces(P) : \forall ((\theta, \rho, \sigma), \gamma) \in t : honest((\theta, \rho, \sigma)) \Rightarrow AKN(t) \not\vdash < (\theta, \rho, \sigma) > (rt)$$

2 Solved Exercises

Exercise 1 Give role terms s and t such that $\{s\} \vdash t$ but not $t \sqsubseteq s$.

Solution. We can choose $s = (rt_1, rt_2)$ and $t = (rt_2, rt_1)$.

Exercise 2 Compute $unpair(\{p\}_{k(R,R')}, h(a,b))$.

Solution. Using the unpair operator definition, we have

$$unpair(t) = \begin{cases} unpair(t_1) \cup unpair(t_2) & \text{iff } t = (t_1, t_2) \\ \{t\} & \text{otherwise} \end{cases}$$

In this exercise,

$$unpair(\{p\}_{k(R,R')}, h(a,b)) = unpair(\{p\}_{k(R,R')}) \cup unpair(h(a,b))$$

Exercise 3 Prove that the following role description is not well-formed.

$$P(i) = (\{i, r, k\}, \\ [send_1(i, r, \{i, r, V\}_k \\ read_2(r, i, \{V, r\}_k)])$$

Solution. We use the well-formedness predicate. The $well formed : RoleEvent^*$ holds iff

$$\forall V \in vars(\rho): \exists \rho', l, R, R', rt, \rho'': \rho = \rho' \cdot [recv_l(R, R', rt)] \cdot \rho'' \land V \notin vars(\rho') \land V \sqsubseteq_{acc} rt$$

We have that $\rho' = [send_1(i, r, \{i, r, V\}_k)]$, and $V \in vars(\rho')$, but also $V \sqsubseteq_{acc} rt$, where $rt = \{V, r\}_k$, so the predicate does not hold.

Exercise 4 Compute the term instantiation for $<1, \{i \rightarrow A, r \rightarrow B\}, \emptyset > (\{n_i, i\}_{pk(r)}).$

Solution.

$$\begin{split} &<1, \{i \to A, r \to B\}, \emptyset > (\{n_i, i\}_{pk(r)}) \\ &= \{<1, \{i \to A, r \to B\}, \emptyset > (n_i, i)\}_{<1, \{i \to A, r \to B\}, \emptyset > (pk(r))} \\ &= \{<1, \{i \to A, r \to B\}, \emptyset > (n_i), <1, \{i \to A, r \to B\}, \emptyset > (i)\}_{pk(<1, \{i \to A, r \to B\}, \emptyset > (r))} \\ &= \{n_i^{\# 1}, A\}_{pk(B)} \end{split}$$

Exercise 5 Prove that the term h(k) can be inferred from the set $\{\{m^{-1}\}_k, \{k^{-1}\}_{pk(b)}, \{h(k)\}_m, sk(b)\}$.

Solution. We denote the set as Γ . Then,

$$\frac{\frac{\Gamma}{sk(b)} \quad \{k^{-1}\}_{pk(b)}}{k} \quad \{m^{-1}\}_{k}}{m^{-1}} \quad \{h(k)\}_{m}$$

Exercise 6 Assume $\rho = \{i \to A, r \to B\}$ and assume $type(X) = S_5$. Show that the predicate $Match((1, \rho, \emptyset), X, nr^{\#2}, (1, \rho, \{X \to nr^{\#2}\}))$ holds.

Solution. By definition, $Match((\theta, \rho, \sigma), pt, m, (\theta', \rho', \sigma'))$ holds if and only if $\theta = \theta'$, $\rho = \rho'$ and $\langle (\theta', \rho', \sigma') \rangle$ (pt) = m and forall $v \in dom(\sigma')$ we have that $\sigma'(v) \in type(v)$ and $\sigma \subseteq \sigma'$ and $dom(\sigma') = dom(\sigma) \cup vars(pt)$.

We have that 1 = 1 and $\rho = \rho$, so the first two conditions are satisfied. We can immediate show that $\langle (1, \rho, \{X \to nr^{\#2}\}) \rangle (X) = nr^{\#2}$ using the term-instantiation definition.

For all $v \in dom(\sigma')$ means for all $v \in \{X\}$; so for v = X, we have to show that $\sigma'(X) \in type(X)$. We already have that $\sigma \subseteq \sigma'$ (because $\emptyset \subseteq \{X \to nr^{\#2}\}$), and $dom(\sigma') = dom(\sigma) \cup vars(pt)$, that is $\{X\} = \emptyset \cup \{X\} = \{X\}$.

The last thing to prove is that $\sigma'(X) \in type(X)$, and $type(X) = S_5$ using the assumption, so the predicate $Match((1, \rho, \emptyset), X, nr^{\#2}, (1, \rho, \{X \to nr^{\#2}\}))$ holds.

Exercise 7 Assume $\rho = \{i \to A, r \to B\}$ and assume $type(X) = S_5$. Show that the predicate $Match((1, \rho, \emptyset), X, (nr^{\#2}, ni^{\#1}), inst')$ does not hold, for any instantiation inst'.

Solution. This exercise is immediate because the $\sigma'(v) \notin type(v)$, for all $v \in dom(\sigma')$ (types does not match). For any $v \in dom(\sigma')$, $type(\sigma'(v)) \in RunTerm - (T_1 \cup T_2)$ (using constructor matching), and $type(v) \in T_2$.

Exercise 8 Consider the SSC protocol. Give role specifications of the SSC protocol, determine $<_{initiator}$, $<_{responder}$ and $\neg \rightarrow$. Determine \prec_{SSC} .

protocol Simple Secret Communication (SSC)

Solution. We'll consider initiator = i and responder = r.

a. Roles description.

$$SSC(i) = (\emptyset, [send_1(i, r, request), recv_2(r, i, \{m\}_k)])$$

$$SSC(r) = (\emptyset, [recv_1(i, r, request), send_2(r, i, \{m\}_k), claim_3(r, secret, m)])$$

b. Roles events order.

$$send_1(i, r, request) <_{initiator} recv_2(r, i, \{m\}_k)$$

 $recv_1(i, r, request) <_{responder} send_2(r, i, \{m\}_k) <_{responder} claim_3(r, secret, m)$

The role event order is defined as the strict total order for a sequence, so if we have $[\varepsilon_1, \varepsilon_2, \varepsilon_3]$ for a role R, then $\varepsilon_1 <_R \varepsilon_2$ and $\varepsilon_2 <_R \varepsilon_3$ and $\varepsilon_1 <_R \varepsilon_3$.

c. Communication relation.

By definition, communication relation $- \rightarrow : RoleEvent \times RoleEvent$ is defined as

$$\varepsilon_1 \rightarrow \varepsilon_2 \iff \exists l, R, R', rt_1, rt_2 \text{ such that } \varepsilon_1 = send_l(R, R', rt_1) \land \varepsilon_2 = recv_l(R, R', rt_2)$$

for all $\varepsilon_1, \varepsilon_2 \in RoleEvent$, so in this case

- $send_1(i, r, request) \rightarrow recv_1(i, r, request)$
- $send_2(r, i, \{m\}_k) \rightarrow recv_2(r, i, \{m\}_k)$

Now, we can compute \prec_{SSC} ,

$$\prec_{SSC} = \left(\neg \bullet \cup \bigcup_{R \in Role} <_R \right)^+$$

We have:

 $send_1(i, r, request) \prec_{SSC} recv_2(r, i, \{m\}_k)$ $recv_1(i, r, request) \prec_{SSC} send_2(r, i, \{m\}_k)$ $send_2(r, i, \{m\}_k) \prec_{SSC} claim_3(r, secret, m)$ $recv_1(i, r, request) \prec_{SSC} claim_3(r, secret, m)$ $send_1(i, r, request) \prec_{SSC} recv_1(i, r, request)$ $send_2(r, i, \{m\}_k) \prec_{SSC} recv_2(r, i, \{m\}_k)$

3 Other exercises

Exercise 9 Assume $\rho = \{i \rightarrow A, r \rightarrow B\}$ and assume $type(X) = S_5$. Prove that the following predicate holds.

$$Match((1, \rho, \emptyset), \{ni, r\}_{pk(i)}, \{ni^{\#1}, B\}_{pk(A)}, (1, \rho, \emptyset))$$

Exercise 10 Prove that the following predicate does not hold, for any instantiation inst'.

$$Match((1, \rho, \emptyset), nr, nr^{\#2}, inst')$$

Exercise 11 Given the SSC protocol from Exercise 8, determine $AKN_0(SSC)$.

4 Scyther Tool

4.1 Installation

Download the archive from https://people.cispa.io/cas.cremers/scyther/install-generic.html. Now you can run:

```
sudo apt-get install graphviz python python-wxgtk3.0

If there are errors, run the following commands:

sudo apt install python2.7 python-pip
sudo apt-get install python-wxgtk3.0
sudo apt-get install graphviz

To run Scyther, you can use the following command:
python scyther-gui.py
```

4.2 Scyther Syntax

```
General protocol structure:
protocol <name> (<ag_1>, <ag_2>[, <ag_3, ...])</pre>
    role <ag_1> { <spec ag_1> }
    role <ag_2> { <spec ag_2> }
    [role <ag_3> { <spec ag_3> } ...]
}
   Variables types:
Agent
Function // in general, one-way functions
   Variable specification:
var <name>: <type>
   Nonce specification:
fresh <name>: Nonce;
   Tuples:
(x, y, z) // interpreted as ((x, y), z)
   Symmetric keys:
{<message>}<symmkey>
   Public / secret keys:
{<message>}pk(<agent>)
{<message>}sk(<agent>)
   Hash functions:
hashfunction <name>;
```