

Computer Security

Εισαγωγή

Aggelos Kiayias

Security

- Αγαθά
- Χρήστες
- Αντίπαλος

Στόχοι

- Μυστικότητα/Confidentiality: Πρόσβαση στα αγαθά (viewing/printing/copying/listing) είναι περιορισμένη σε όσους έχουν το αντίστοιχο δικαίωμα.
- Ακεραιότητα/Integrity: Τα αγαθά αλλάζουν (modified/altered/created/deleted etc.) μόνο με προκαθορισμένους τρόπους από όσους έχουν τα αντίστοιχα δικαιώματα.
- Διαθεσιμότητα/Availability: Τα αγαθά είναι διαθέσιμα σε όσους έχουν το δικαίωμα να τα προσπελάσουν.

Πως μπορούν να επιτευχθούν οι στόχοι;

- Κατανόηση του αντιπάλου
 - (what are the resources available?)
 - (what is the goal of the attack?)
- Κατανόηση του τρόπου της επίθεσης.
 - (in what ways can the attack be launched?)
 - (what are the vulnerabilities?)
- Κατανοηση "trade-offs" μεταξύ χρηστικότητας/διαθεσιμότητας και ασφάλειας
 - (A turned-off system is a secure system.)

 Η ασφάλεια δεν μπορεί να είναι επιπρόσθετο χαρακτηριστικό

- Ένα σύστημα είναι τόσο ασφαλές όσο το πιο ασθενές του συστατικό.
 - Δεν υπάρχει τίποτε που μπορείτε να προσθέσετε στο σύστημα σας (firewalls, antivirus, encryption, biometrics, etc.) το οποίο μπορεί να το κάνει ασφαλές από μόνο του.
- Προσέξτε για "snake-oil" security products.
 - "Unbreakable ciphers"
 - "No key cryptosystems"
 - "Secret cipher"
 - "I-million bit length"

- Το να σκέφτεστε σαν τον αντίπαλο είναι πρωταρχικής σημασία ικανότητα για να ασφαλίσετε ένα σύστημα.
- Πάντα αναρωτηθείτε
 - Ποιος είναι ο αντίπαλος;
 - Ποιές είναι οι πιθανές δρομολογήσεις των επιθέσεων;
 - Τι πρέπει να προστατευτεί και πόσο αξίζει;

- "Security holes" και "vulnerabilities"
 βρίσκονται συνέχεια.
 - Η αρχή της απόλυτης διαφάνειας:
 - Δημοσιοποίηση των επιθέσεων αφού ενημερωθεί ο υπεύθυνος του αδύναμου συστήματος ώστε να δημιουργήσει πλάνο αντιμετώπισης
 - Η δημοσιοποίηση οδηγεί σε θετικές εξελίξης.
 - Η μη δημοσιοποίηση είναι "ωρολογιακή βόμβα."
 - Η ασφάλεια δεν μπορεί να επιτευχθεί με κρυφά επιμέρους συστατικά.

Αυτό το Μάθημα:

- Μελετά πως μπορούμε να ασφαλίσουμε
 - Λογισμικό
 - Δίκτυα
 - Λειτουργικά
 - Βάσεις
- Δίνει μια εισαγωγή σε διάφορα εργαλεία για το χτίσιμο ασφαλών συστημάτων: ciphers, hash functions, signatures...
- Κρίνει την ασφάλεια σε συνδυασμό με πλευρές που έχουν να κάνουν με νομικές, ηθικές και επιχειρηματικές οπτικές.

Software

- Programming & Security.
 - Vulnerabilities in Software
 - and how they can be exploited.
- Software with malicious/questionable intent
 - Viruses, Worms, Trojan Horses, etc.
 - Spyware
 - Web bugs.
 - Cryptoviruses
 - How to protect against the above, write better code, test whether they are present etc.

Βαθμολογία

- 4 projects : 50%
- Τελική Εξέταση 50%
- [Πάνω από τη βάση και στα δύο μέρη]

Συμπεριφορά φοιτητών

- Στην τάξη θα συζητηθούν ευαίσθητα θέματα ασφάλειας και προχωρημένες τεχνικές επιθέσεων.
- Αν ένας φοιτητήες βρεθεί να εφαρμοζεί υλικό της τάξης με το σκοπό να κάνει κάποια επίθεση (πέρα από αυτές που θα ζητηθούν ώς ασκήσεις:-) θα πάρει τον αυτόματο βαθμό "τρία" στην τελική κατάσταση.

Σελίδα του μαθήματος

https://crypto.di.uoa.gr/csec

- Τι θα βρείτε εκεί
 - σημειώσεις.
 - ανακοινώσεις.

Bulletin Board της τάξης

http://comspec.di.uoa.gr