"固废资源化"重点专项 2019 年度项目申报指南 (征求意见稿)

为贯彻党中央《关于加快推进生态文明建设的意见》精神 和党的十九大关于"加强固体废弃物和垃圾处置"、"推进资源 全面节约和循环利用"的部署,按照《国务院关于深化中央财 政科技计划(专项、基金等)管理改革的方案》(国发〔2014〕 64号)要求,科技部会同有关部门、地方及相关行业组织制定 了国家重点研发计划"固废资源化"重点专项实施方案。专项 面向生态文明建设与保障资源安全供给的国家重大战略需求, 以"减量化、资源化、无害化"为核心原则,围绕源头减量一 智能分类—高效转化—清洁利用—精深加工—精准管控全技 术链,研究适应我国固废特征的循环利用和污染协同控制理论 体系,攻克整装成套的固废资源化利用技术,形成固废问题系 统性综合解决方案与推广模式,建立系列集成示范基地,全面 引领提升我国固废资源化科技支撑与保障能力,促进壮大资源 循环利用产业规模,为大幅度提高我国资源利用效率,支撑生 态文明建设提供科技保障。

本专项执行期 2018—2022 年。2019 年拟部署 45 个研究方向, 国拨经费概算约 10 亿元。重点针对固废源头减量、智能分类回收、清洁增值利用、高效安全转化、智能精深拆解、精

1

准管控决策,以及综合集成示范等内容部署相关基础研究、共性关键技术、应用示范类研究任务,突破一批前瞻性、重大性、急迫性的核心关键技术和系统解决方案,以及一批"短板、卡脖子"关键器件和装备。

本专项以项目为单元组织申报,2019年指南申报项目执行期2019年至2022年。鼓励产学研用联合申报。对基础研究类项目,应充分发挥各类国家级科研基地的作用;对典型应用示范类项目,要充分发挥地方和市场作用,强化产学研用紧密结合,并明确相关配套资金,用于典型应用示范类项目的中央财政资金不得超过该专项中央财政资金总额的30%;用于典型市场导向且明确要求由企业牵头申报的项目,自筹资金与中央财政资金的比例至少要达到1:1。同一指南方向下,除特殊说明外,原则上只支持1项,仅在申报项目评审结果相近,技术路线明显不同时,可同时支持2项,并建立动态调整机制,结合过程管理开展中期评估,根据中期评估结果,再择优继续支持。所有项目均应整体申报,须覆盖全部考核指标。除指南中有特殊说明外,每个项目下设课题数不超过5个,参与单位总数不超过10家。

应用示范类项目鼓励在国家可持续发展议程创新示范区、国家可持续发展实验区、国家生态文明试验区等区域开展。

本专项 2019 年项目申报指南如下:

- 1. 固废资源化利用基础科学问题与前瞻性技术
- 1.1 大宗铝硅酸盐无机固废物相重构与转化利用科学基础

研究内容: 针对复杂铝硅酸盐固废产生量巨大、大规模高效利用基础研究薄弱问题, 研究大宗铝硅酸盐固废矿相结构与界面特性、矿相重构热力学规律与动力学机理, 研究物相-结构-形貌-性能耦合调控机制及直接材料化技术基础, 研究多组份高效提取与清洁转化新过程新方法, 研究伴生有害元素迁移转化规律与环境影响调控机制, 构建大宗铝硅酸盐固废高效转化利用的基础理论体系与重大技术原型。

考核指标: 形成大宗铝硅酸盐固废矿相重构与转化利用的物理化学基础理论; 揭示3类以上典型物相的转化机理与分子迁移途径; 获得固废基多元系热力学区域相图及预报新型物相热力学数据10套以上; 建立铝硅酸盐固废转化过程多参数构效模型、多力场耦合调控模型等基础模型3-5个,模型不确定性小于15%,并在3-5项万吨级/年规模以上示范工程中获得实际应用; 形成涵盖5类以上典型铝硅酸盐固废物相重构与高值化利用重大技术原型3-5项,直接材料化率70%以上,处理成本降低30%以上,完成技术验证或中试示范; 发表学术论文100篇以上(其中能够体现研究成果重大原创性及科学价值的代表性论文不低于20篇), 申请技术发明专利10件以上。

有关说明: 申报项目下设课题数不超过4个,项目所含单位总数不超过6家。

1.2 有机固废定向生物转化机制及调控原理

研究内容: 研究城市有机固废生物转化功能菌群及其代谢 网络调控基础理论, 研究极端环境胁迫下生物转化微生物耐受 机制和抗逆境定向调控机理,研究生物转化过程碳氮代谢分配和产物协同调控原理,研究基于物质-能量-环境自平衡耦合定向转化和系统优化新方法。

考核指标: 形成有机固废典型生物转化过程的产物定向调控基础理论,明确3种以上种间信号传递路径;明确质量95%以上碳氮元素全过程转化途径,分离获得功能菌株10个以上,确定3-5种核心酶类型;建立有机固废生物转化菌群-物质耦合代谢网络模型、物质-能量耦合调控模型等3-5项,优化调控不确定性低于15%;形成典型有机固废高效定向转化重大新技术原型3-5项,开展技术验证或中试示范,生物转化效率提高60%以上;发表学术论文100篇以上(其中能够体现研究成果重大原创性及科学价值的代表性论文不低于20篇),申请技术发明专利10项以上。

有关说明: 申报项目下设课题数不超过4个,项目所含单位总数不超过6家。

1.3 重点行业固废源头减量及近零排放新技术

研究内容:针对固废产生量大、污染重的化工、冶金重点行业,研究绿色循环技术发展趋势,研究复杂资源高效精准转化与清洁利用新原理、新过程,研究固废源头减量与近零排放原创性新技术,探索构建"无废型"绿色新流程。

考核指标:形成面向中长期的重点行业绿色循环技术发展 趋势研究报告2-3份;形成1-2项固废大幅源头减量原创性新技术,完成核心技术中试验证,资源综合利用率达到100%,资源 产出率提高50%以上,产品达到国家绿色产品指标;提出新技术原则流程,全过程实现"三废"近零排放;申请技术发明专利3件以上。

有关说明:本方向支持前瞻性、变革性技术探索研究,拟分别针对化工、冶金重点行业各支持1项项目,项目所含单位总数不超过3家;项目申请人年龄不超过40周岁。

1.4 有机固废全组分清洁转化及安全利用新技术

研究内容: 针对生活垃圾、城市污泥等有机固废,研究高效清洁转化技术发展趋势,研究有机组分高效转化与重构新原理,研究高值转化及全组分利用非常规技术,研究协同转化过程物质组分迁移机制和风险评估技术,构建有机固废高效转化绿色新流程。

考核指标: 形成面向中长期的有机固废高效清洁转化技术 发展趋势研究报告2-3份,形成1-2项有机固废高效转化及全组 分利用新流程,完成核心技术中试验证,资源产出率提高40% 以上,探明2-3类高风险污染组分迁移规律,构建精准风险评估 系统,完成核心技术中试验证,申请技术发明专利3件以上。

有关说明:本方向支持前瞻性、变革性技术探索研究,拟分别针对生活垃圾、城市污泥等典型有机固废高效转化新技术各支持1项项目,项目所含单位总数不超过3家;项目申请人年龄不超过40周岁。

1.5 危险废物毒害组分快速识别与检测新技术

研究内容: 针对危险废物中抗生素、芳烃等毒害物质快速

识别难问题,研究危险废物污染特性快速识别需求与未来技术 发展趋势,研究特征污染物的快速识别与检测的新原理、新方法,研究复杂体系中痕量有毒有害物质快速检测器件,研制便 携式专业化装备。

考核指标:形成1-2套危险废物毒害物质快速识别与检测原创性技术及核心器件和装备原型,国产化率达到100%,定性时间小于60s,准确率达80%以上,其中2-3种组分定量检测精度相对标准偏差低于20%,申请技术发明专利3件以上。

有关说明:本方向支持前瞻性、变革性技术探索研究,拟分别针对危险废物中抗生素、芳烃等毒害物质的快速识别与定量检测各支持1项项目,项目所含单位总数不超过3家;项目申请人年龄不超过40周岁。

1.6 城市固废大数据挖掘及全生命周期管控新技术

研究内容: 研究城市固废产生源的高分辨识别与地表信息提取技术, 研究城市固废产生数量和组分信息获取及其时空分布特征分析的大数据挖掘技术, 研究适用于城市固废及其源产品全生命周期精准管理的循环代谢图谱构建及大数据管控技术, 依托 "无废城市"建设, 开展应用验证。

考核指标: 开发2种以上基于遥感影像的城市固废产生源高分辨识别算法和2种以上城市固废时空分布特征分析智能算法, 固废源清单分辨率满足国家固废2-3级分类标准, 地表信息空间分辨率达到1公里; 构建3-5种典型城市固废及其源产品的全生命周期循环代谢图谱; 技术成果至少在1个"无废城市"

建设试点中获得应用;申请技术发明专利或软件著作权5件以上。

有关说明: 本方向支持前瞻性、变革性技术探索研究,项目所含单位总数不超过3家;项目申请人年龄不超过40周岁。

2. 重污染固废源头减量与生态链接技术

2.1 钢铁冶炼难处理渣尘泥过程协同控制与生态链接技术

研究内容: 针对钢铁冶炼典型危废类渣尘泥,研究工序间安全化协同利用过程控制技术,研究多元有价金属组分高效提取循环利用技术;针对难处理冶炼渣,研究跨产业生态链接及高值化利用技术;构建与生产流程高度协同的钢铁冶炼过程难处理渣尘泥过程协同控制、生态链接技术体系,开展工程示范。

考核指标:形成 3-5 套钢铁冶炼难处理渣尘泥源头减量与生态链接利用成套技术及专属装备,核心装备国产化率100%; 典型危废类渣尘泥流程内协同利用过程中无害化处置率100%, 源头减排量大于90%; 多元有价金属组分回收利用率大于90%; 跨产业利用产品中难处理冶炼渣原料占比大于70%, 性能达到行业中高端标准, 吨冶炼渣综合利用效益提升30%以上。针对不同种类渣尘泥, 建成万吨级/年规模工程示范 3-5 项, 实现经济稳定运行。形成覆盖研究内容的技术专利与标准体系(申请发明专利10件以上, 形成国家、行业或团体标准及规范征求意见稿3项以上),建立商业化推广创新模式。

2.2 精细化工园区磷硫氯固废源头减量及循环利用集成技术

研究内容: 研究精细化工园区磷硫氯元素迁移转化规律, 研究磷硫高效协同转化大宗固废源头减量技术, 研究磷硫氯高端产品制备及固废循环利用一体化技术, 研究精细磷化工废盐深度净化氯碱行业链接利用技术, 构建典型精细化工园区磷硫氯固废源头减量与循环利用优化集成技术体系, 开展工程示范。

考核指标: 针对典型精细化工园,形成 3-5 套磷硫氯多产业固废源头减量及循环利用成套技术及装备;磷硫协同利用产品收率大于 95%,含磷/含硫固废源头减量 90%以上;精细磷化工废盐资源化利用率大于 90%,产品质量满足离子膜烧碱电解生产标准。选择典型精细化工园区开展集成示范,集中建成万吨级/年规模工程示范 3-5 项,园区磷硫氯元素循环利用率大于 90%,实现经济稳定运行,综合经济效益提升 20%以上。形成覆盖研究内容的技术专利与标准体系(申请发明专利 10 件以上,形成国家、行业或团体标准及规范征求意见稿 3 项以上),建立商业化推广创新模式。

有关说明:项目应依托国家循环化改造重点支持的精细化工园区,鼓励在长江经济带区域开展示范工程建设;所在地政府需出具书面支持文件,承诺协调落实相关政策和经费配套措施;企业牵头,产学研联合申报。

2.3 废纸替代清洁生产工艺及固废源头减量集成技术

研究内容: 针对替代进口废纸的需求, 研究废弃植物纤维原料预处理过程多相反应体系动力学调控机理, 研究废弃植物纤维原料生物-化学联合预处理技术, 研究纤维原料高剪切磨制及纤维表面修饰与干湿增强技术, 研究生产过程固废源头减量全过程控制集成技术, 构建废弃植物纤维原料替代进口废纸清洁生产成套技术与装备, 开展工程示范。

考核指标: 形成1-2套造纸工业废纸替代清洁生产成套技术及装备,核心设备国产化率100%; 原料预处理得率大于80%,脱木素率大于10%, 生产纤维产品抗张指数大于30 N·m/g, 干湿增强后抗张指数大于40 N·m/g, 制浆能耗吨产品低于1000 kWh, 制浆造纸过程废纸替代率大于80%, 固废源头减排90%以上; 建成生产规模大于5万吨/年的示范工程1-2项,产品价格不高于制浆时替代进口废纸价格,实现经济稳定运行。形成覆盖研究内容的技术专利与标准体系(申请发明专利10件以上,形成国家、行业或团体标准及规范征求意见稿3项以上),建立商业化推广创新模式。

3. 智能化回收与分类技术

3.1 社区垃圾源头智能分类与清洁收集技术及装备

研究内容: 研究典型社区生活垃圾投放规律及多部门联动的分类收集模式, 研究生活垃圾人机互动分类投放-智能识别-分类信息评估与反馈一体化技术及成套装备, 研究湿组分清洁收集减量与环境污染控制技术, 研究臭气监测预警与削减净化技术, 集成研制适宜于不同社区类型的生活垃圾回收-存储-清

理-转运全流程智能分类装备,开展应用示范。

考核指标: 形成 2-3 套经济合理的多部门联动社区垃圾分类投放与减量化资源化模式; 形成 2-3 项适合不同区域大中城市的社区生活垃圾小型智能分类成套技术及装备, 分类种类大于3个, 分类准确率大于90%, 信息评估时间小于3s, 易腐组份暴露时间小于10分钟, 恶臭浓度削减率达85%以上, 装备国产化率100%, 故障率小于1%, 运行能耗不超过1kWh/d m³。集成技术装备及模式在2个以上典型大中城市的城区街道进行示范应用, 覆盖10-15个居民社区, 垃圾回收溯源系统注册居民达到10万人以上。形成覆盖研究内容的技术专利与标准体系(申请发明专利10件以上, 形成国家、行业或团体标准及规范征求意见稿3项以上), 建立商业化推广创新模式。

有关说明:本方向鼓励在京津冀、长三角、粤港澳大湾区地区针对性开展示范应用研究,拟支持2-3个项目。

3.2 城镇建筑垃圾智能精细分选与升级利用技术

研究内容: 针对城镇建设建筑垃圾, 研发建筑垃圾人工智能分选技术与成套装备, 研究建筑垃圾定向分类预处理技术, 研究建筑垃圾升级利用技术与产品, 研究城镇建设建筑垃圾回收利用技术研发-工程示范-产业推广-政策支持一体化解决方案, 开展工程示范。

考核指标: 形成2-3套城镇建筑垃圾人工智能分选技术及成套装备,核心装备国产化率达到100%,具有智能学习功能,建筑垃圾识别精度大于95%,砖/混凝土分选率大于85%,有机/

无机材料分选率大于85%,处理成本降低20%以上;形成可规模消纳建筑垃圾的升级利用新产品3-5种。建成10万吨级/年规模建筑垃圾回收利用绿色示范工程2-3项,满足《绿色工厂评价通则》(GB/T 36132-2018)要求,实现经济稳定运行。提出城镇建设建筑垃圾回收利用技术研发-工程示范-产业推广-政策支持一体化解决方案,在全国不同区域建成2-3个集成应用示范基地。形成覆盖研究内容的技术专利与标准体系(申请发明专利10件以上,编制标准或规范3项以上),建立商业化推广创新模式。

有关说明:企业牵头,产学研联合申报。

- 4. 有机固废高效转化利用及安全处置(共性关键技术类)
- 4.1 城镇有机固废高值化利用及残余物资源化技术及示范

研究内容: 研究城镇有机固废生物转化产物的物化性质、结构特征、生物特性及调控机制, 研究城镇有机固废制备高值化学品定向生物转化技术, 研究定向转化过程与产物提取耦合及精细化、低能耗分离技术, 研究残余物消纳及全过程污染控制技术, 构建城镇有机固废高效转化制备高值液体和固体化学品成套技术, 开展工程示范。

考核指标:针对餐厨垃圾、厨余垃圾、果蔬垃圾、园林垃圾、城市污泥等典型城镇湿垃圾,形成3-5套城镇有机固废制备高值化学品成套技术,固废综合利用率大于90%,固相残余物量低于10%,液体化学品得率达到70%以上,固体化学品得率达到70%以上,产品分离能耗下降40%以上;针对不同技术路

线,建成示范工程3-5个,其中,有机固废制备液体化学品规模达1.5万吨/年,固体化学品规模达1万吨/年,实现经济稳定运行,产品综合经济效益提高200%以上;形成覆盖研究内容的技术专利与标准体系(申请发明专利10件以上,形成国家、行业或团体标准及规范征求意见稿3项以上),建立商业化推广创新模式。

4.2 城乡混合有机垃圾快速稳定化及资源化利用技术

研究内容: 研究城乡混合有机垃圾联合好氧代谢调控机制, 研究多源有机物源头快速稳定化技术及装备, 研发多组分均质化及好氧定向腐殖酸化技术, 研究副产物风险控制及可持续利用技术, 研究城乡混合有机垃圾资源化产物利用技术, 构建集成化成套技术与装备, 开展工程示范。

考核指标: 形成2-3套城乡混合有机垃圾好氧快速稳定与定向腐殖酸化关键技术,涵盖3种以上不同种类有机垃圾,有机组分定向转化腐殖酸浓度大于25%,资源化率大于90%,适宜于-20℃以下等极端条件; 开发2-3套具有智能学习功能的一体化好氧发酵装备,核心部件国产化率达100%,有机物稳定化时间小于15天,与同类混合垃圾相比处理成本降低20%以上; 形成2-3项生物转化副产物风险控制及可持续利用技术,转化产物安全利用率达100%; 建成2-3项适用于不同区域特征的成套技术示范工程,处理规模达到10万吨/年以上,实现经济稳定运行; 形成覆盖研究内容的技术专利与标准体系(申请发明专利10件以上,形成国家、行业或团体标准及规范征求意见稿3项以上),建立商业化推广创新模式。

4.3 污泥快速减量与资源化耦合利用技术

研究内容: 研究污泥结合水强化分离调理技术, 研究污泥中有毒有害物质削减技术, 研究基于土地利用的脱水污泥深度处理技术, 研制污泥调理-脱水-减量的智能处理系统装备, 研究污泥资源化产品环境风险评估方法, 开展工程示范。

考核指标: 开发2-3套污泥高效调理技术及环境友好型污泥脱水材料或药剂,形成2-3套污泥调理-脱水-减量的智能处理系统装备;核心装备国产化率达到100%,具有智能学习功能,脱水调理剂用量不高于污泥干基10%,污泥电导率增幅小于10%,脱水后泥饼含水率低于60%、重量与体积降低45%以上。形成1套基于土地利用的脱水污泥深度处理及污泥减毒技术,污泥中有毒有害物质含量低于《城镇污水处理厂污泥处置--园林绿化用泥质》(GB/T23486-2009)限值。建成100吨/天(以含水率为80%计)规模以上的示范工程2-3项,实现经济稳定运行,直接运行成本不高于120元/吨。形成覆盖研究内容的技术专利与标准体系(申请发明专利10件以上,形成国家、行业或团体标准及规范征求意见稿3项以上),建立商业化推广创新模式。

4.4 中药固废资源化利用与无害化处置技术

研究内容: 针对中药加工过程的资源利用率低、固废生成量大问题, 研究中药固废生物降解抗性屏障的结构特征与调控机制, 研究药渣成分解构和清洁分级处理技术, 研究中药固废全组份高值化转化和耦合利用技术, 研究残余物消纳与全过程污染控制技术, 开展工程示范。

考核指标:建立典型中药固废结构与资源性成分信息数据库;形成药渣清洁处理与高值转化耦合技术及装备3-5项,糖得率大于60%,药渣综合利用率大于80%,中药固废综合利用后的残余物小于10%,中药固废综合利用增值大于1000元/吨;针对不同中药生产过程,建成3000吨/年规模以上示范工程2-3项,实现经济稳定运行;形成覆盖研究内容的技术专利与标准体系(申请发明专利10件以上,形成国家、行业或团体标准及规范征求意见稿3项以上),建立商业化推广创新模式。

4.5 废弃秸秆制备能源化学品成套技术与装备

研究内容: 研究废弃秸秆热化学制备能源化学品的分质转化机制, 研究热化学高效定向转化稳定运行技术, 研究转化液提质制备生物汽柴油技术, 研究转化残渣制备高值化材料新技术, 开展万吨级工程示范, 研发百万吨级成套技术。

考核指标: 形成1-2套废弃秸秆制备能源化学品大型化成套技术及装备; 催化剂原位再生效率大于95%, 总脱氧率不小于99%; 建成不小于3万吨/年规模废弃秸秆分质转化制汽柴油工程示范1项, 干基废弃秸秆汽柴油收率不小于15%; 建成不小于500吨/年规模转化残渣工程示范1项, 转化残渣制备催化材料收率不小于50%, 连续稳定运行不小于2000小时; 形成百万吨级装置工艺包, 吨干基废弃秸秆实现产值1200元以上。形成覆盖研究内容的技术专利与标准体系(申请发明专利10件以上, 形成国家、行业或团体标准及规范征求意见稿3项以上), 建立商业化推广创新模式。

4.6 有机固废高效气化及产品深度利用技术与装备

研究内容: 研究多种工况下有机固废高效协同气化新工艺; 针对县域生活垃圾, 研究非均质有机固废稳定高效气化-焚烧一体化技术及装备; 针对有机危险废物, 研究多组份有机危废零排放的安全清洁气化-熔融一体化技术及装备; 针对大宗均质有机固废, 研究高效气化耦合热电利用技术及装备, 研究气化产品直接制备高纯氢和高纯甲烷技术及装备; 开展工程示范。

考核指标: 形成3-5套有机固废高效气化及产品深度利用成套技术及装备,核心装备国产化率达到100%; 气化效率大于85%, 气化-焚烧及气化-熔融减容率大于95%(湿基), 残渣热灼减率小于5%, 浸出毒性与烟气排放低于欧盟现行垃圾焚烧污染物排放标准(DIRECTIVE 2010), 气化焚烧处理成本低于150元/吨, 气化熔融处理成本低于1500元/吨; 热电耦合发电效率大于50%; 合成气直接制备氢气纯度大于99.99%、甲烷纯度大于90%。针对不同固废种类, 建成200吨/天规模以上工程示范2-3项, 实现经济稳定运行。形成覆盖研究内容的技术专利与标准体系(申请发明专利10件以上, 形成国家、行业或团体标准及规范征求意见稿3项以上), 建立商业化推广创新模式。

4.7 固废焚烧残余物稳定化无害化处理技术与装备

研究内容: 针对固废焚烧产生的有毒有害残余物,解析固废焚烧残余物组份与结构,研究残余物危害因子解毒机理和稳定化结构调控原理,研发残余物解毒、稳定化与资源化清洁利

用技术及装备,研发无害化稳定化过程及产物相关的环境快速 检测技术及装备,开展工程示范。

考核指标:形成3套不同技术路线的焚烧残余物无害化稳定化处理技术及装备,核心装备国产化率达到100%,单台装备处理能力大于10吨/天;玻璃态渣达到国家第I类一般工业固废标准,二噁英含量低于40 ng-TEQ/kg,尾气二噁英含量小于0.05 ng-TEQ/m³,废水实现达标排放,回收盐类产品满足工业级盐标准,形成2项以上稳定化过程和产品的快速检测技术,检测结果与标准方法结果偏差小于10%。针对不同技术路线,建成3000吨/年规模的示范工程2-3项,焚烧灰渣建材利用率100%,实现经济稳定运行。形成覆盖研究内容的技术专利与标准体系(申请发明专利10件以上,形成国家、行业或团体标准及规范征求意见稿3项以上),建立商业化推广创新模式。

有关说明:企业牵头,产学研联合申报。

4.8 有机危废高效清洁稳定焚烧处置技术与装备

研究内容: 研究多种有机危废协同稳定焚烧交互反应机制, 研究适合有机危废特性的预处理工艺及智能识别与配伍方法, 开发多种有机危废协同稳定强制焚烧技术及装备, 研究危废焚烧装备长周期耐火材料与节能技术, 研究二噁英、重金属、酸性气体等污染物防腐蚀与深度净化技术, 研究危废焚烧飞灰、炉渣无害化及资源化技术, 开展工程示范。

考核指标:形成有机危废智能化配伍数据库及软件1套,覆盖危废40类以上。形成2-3套不同技术路线的危废协同稳定强

制焚烧技术及装备(包括顺流和逆流工艺),核心装备国产化率达到100%,焚毁去除率大于99.99%;二噁英、重金属、酸性气体等特征污染物排放达到欧盟现行垃圾焚烧污染物排放标准(DIRECTIVE 2010);形成与主体工艺衔接的焚烧飞灰、炉渣无害化资源化处置技术及装备1-2套,资源化利用率大于80%;焚烧装置耐火材料使用寿命大于18个月。针对不同技术路线,建成50吨/天规模以上示范工程2-3项,正常投运率超过80%,实现经济稳定运行。形成覆盖研究内容的技术专利与标准体系(申请发明专利10件以上,形成国家、行业或团体标准及规范征求意见稿3项以上),建立产业化推广创新模式。

有关说明:企业牵头,产学研联合申报。

5. 无机固废清洁增值利用技术

5.1 大宗工业固废协同制备低成本胶凝材料及应用技术

研究内容: 研究矿业、冶金、煤电等行业大宗工业固废硅-铝-氧四面体解聚和再聚合规律, 研究典型固废低能耗细化活化技术, 研究多固废协同胶凝强化技术, 研究大宗固废胶凝材料在道路工程、地下胶结充填工程中的应用技术, 研究大宗固废胶凝材料在 3D 打印建筑中的应用技术。

考核指标:形成 3-5 项典型大宗工业固废协同制备低成本 胶凝材料技术与大型化装备,装备国产化率 100%;粉磨比表面积大于 450m²/kg,钢渣微粉吨产品电耗低于 60kWh;固废基 胶凝材料中固废掺量大于 95%;固废胶凝材料混凝土抗压强度 大于 60MPa,工作性能和耐久性指标达到《高性能混凝土评价

标准(JGJ/T385-2015)》要求; 固废基凝材料生产成本比普通 硅酸盐水泥降低 50%。针对不同固废种类,建成 100 万吨/年规 模生产胶凝材料工程示范 1 项、10 万吨/年规模示范工程 2 项, 实现经济稳定运行; 在道路混凝土、地下胶结充填工程等实现 大规模应用,总利用规模大于 1000 万立方; 在普通建筑和 3D 打印建筑中实现试验应用,在普通建筑中试验应用不低于 20 万立方米混凝土,在 3D 打印建筑中试验应用不低于 500 立方 米混凝土。形成覆盖研究内容的技术专利与标准体系(申请发 明专利 10 件以上,形成国家、行业或团体标准及规范征求意 见稿 3 项以上),建立商业化推广创新模式。

5.2 工业固废大掺量制备装配式预制构件技术

研究内容: 研究尾矿/废石、煤矸石、煤灰、钢渣、脱硫灰等冶金、能源行业大宗工业固废精细化预处理技术, 研制固废粉体活化改性制备预制构件专用掺合料技术, 研究掺合料-骨料协同制备装配式预制构件技术, 研究预制构件产品质量安全与环境标准评价体系, 开展工程示范。

考核指标: 形成 3-5 项工业固废大掺量制备装配式预制构件成套技术; 预处理固废骨料 28 天浸水膨胀率小于 1%, 改性掺合料 28 天活性指数大于 95%; 装配式轻质混凝土预制构件工业固废掺量大于 60%, 抗压强度大于 30MPa, 干表观密度小于 1900kg/m³; 装配式混凝土结构预制构件工业固废掺量大于70%, 抗压强度大于 40MPa; 装配式非结构预制构件工业固废掺量大于 500 kg/m³; 掺量大于 85%, 抗压强度大于 3MPa, 体积密度小于 500 kg/m³;

与既有装配式预制构件生产工艺相比,生产成本降低30%以上。针对不同工业固废种类,建成预制构件10万方级/年规模以上工程示范3-5项。形成覆盖研究内容的技术专利与标准体系(申请发明专利10件以上,形成国家、行业或团体标准及规范征求意见稿3项以上),建立商业化推广创新模式。

有关说明:企业牵头,产学研联合申报。

5.3 复杂铅基多金属固废协同冶炼技术与大型化装备

研究内容: 研究复杂铅基多金属固废资源环境属性及协同 冶炼过程多金属迁移分配和逸出规律, 研究复杂铅基固废协同 强化熔炼技术, 研究复杂烟气余热利用与深度净化技术, 研究 稀贵金属选择性分离与高效提取技术, 开发协同熔炼过程自适 应在线智能优化控制系统, 研制大型成套装备, 开展工程示范。

考核指标: 形成 1-2 项复杂铅基固废协同强化熔炼与优化控制成套技术及装备,装备国产化率达到 100%,单台装备处理能力达到 20 万吨/年,氧气喷嘴寿命大于 6 个月,耐火炉衬寿命大于 12 个月,稀贵金属回收率大于 96%,关键参数实现自适应在线控制,熔炼温度动态波动不大于±15℃,熔炼渣铁硅比、钙硅比动态波动不大于±10%,粗铅单位产品成本节约180 元/吨以上(按铅基物料 65%品位核算),残渣达到国家第 I类一般工业固废标准,二氧化硫、颗粒物、氮氧化物、铅及其化合物、二噁英类、单位产品基准排气量等大气污染物排放达到《再生铜、铝、铅、锌工业污染物排放标准》(GB31574-2015)中特别排放限值标准。建成 20 万吨/年规模示范生产线 1-2 项,

实现经济稳定运行。形成覆盖研究内容的技术专利与标准体系 (申请发明专利10件以上,形成国家、行业或团体标准及规 范征求意见稿3项以上),建立商业化推广创新模式。

有关说明:企业牵头,产学研联合申报。

5.4 镍钴/钨/锑战略金属冶金固废清洁提取与无害化技术

研究内容: 针对镍钴/钨/锑等典型战略金属冶金复杂固废,研究冶炼过程有价有害组份迁移规律和冶炼渣特征属性,研究硫酸盐渣等重污染固废源头减量与资源化利用技术,研究冶金渣有价组份深度提取-低价组份协同利用技术,研究稀有稀土金属高效富集分离技术,研究有毒有害组份稳定化及安全处置技术,开展工程示范。

考核指标: 形成 3-4 套复杂固废源头减量、清洁提取及无害处置成套技术; 硫酸盐渣减量 90%, 镍钴冶炼渣资源利用率大于 80%, 钨冶炼渣钨钼回收率大于 80%, 钽铌钪富集率达到 8-10 倍, 尾渣实现 100%无害化处置, 锑冶炼固废资源化利用率大于 98%, 砷开路率达到 92%。建成千吨级/年规模以上源头减量工程示范 1 项; 针对不同冶炼渣,建成万吨级/年规模以上资源化利用工程示范 2-3 项,实现经济稳定运行,工艺生产成本降低 5-10%,节能减排及副产品新增经济效益 10-15%。形成覆盖研究内容的技术专利与标准体系(申请发明专利 10 件以上,形成国家、行业或团体标准及规范征求意见稿 3 项以上),建立商业化推广创新模式。

有关说明:企业牵头,产学研联合申报。

5.5 废弃环保催化剂金属回收与载体再用技术

研究内容: 针对大气环境治理重点领域产生的废弃催化剂, 研究多组份赋存规律与结构特性; 针对废脱硝催化剂 (SCR), 研究钾、钠、铁等组份分离和处置技术, 研究废弃催化剂载体高效重构与循环回用技术; 针对废汽车尾气净化催化剂, 研究铂、铑、钯等贵金属组份精准检测和剥离技术, 研究适应多种废弃催化剂的高效熔炼装备及富集分离技术; 开展工程示范。

考核指标:针对不同种类废弃环保催化剂,形成 2-3 套经 济合理的金属回收与载体再用成套技术。针对废脱硝催化剂 (SCR), 钛、钨回收率大于98%, 钒回收率大于80%; 再生 载体钾、钠、铁含量分别低于 200 μg/g, 二氧化硅含量低于 1%, 孔容大于 0.3 m³/g (氮气吸附法), 生产成本相比原生钛钨粉降 低 30%以上; 所制得催化剂产品中, 再生载体替代钛钨粉的比 例大于 70%, 指标满足《蜂窝式烟气脱硝催化剂》(GB/T 31587-2015), 蜂窝式催化剂成本降低 20%以上 (3000 元/m³); 建成处理规模万方级/年工程示范1项,制得催化剂产品在300 MW 以上机组稳定运行 3000 h。针对废汽车尾气净化催化剂, 铂、铑、钯等贵金属回收率大于99%,熔炼炉衬使用寿命大于 12 个月,核心装备国产化率达到 100%,与国际同类技术相比 生产成本降低 15%以上; 建成处理规模 3000 吨/年示范工程 1 项,实现经济稳定运行,要求尾渣100%安全处置,废气废水 达标排放。形成覆盖研究内容的技术专利与标准体系(申请发

明专利10件以上,形成国家、行业或团体标准及规范征求意见稿3项以上),建立商业化推广创新模式。

有关说明:企业牵头,产学研联合申报。

5.6 高浓工业危废资源化回收与污染控制技术

研究内容: 针对化工/环保、新能源材料、金属加工、电子信息等典型行业高浓工业危废,研究有机/无机高浓固液渣浆有价组份分离回收、纯化利用与残渣稳定化处置技术,研究无机废酸多元重金属分级回收、再生利用与资源化技术,研究金属/有机废液高效破络、金属组份回收、再生利用及毒害组分无害化处置技术,研究多源危废协同处置及残渣安全固化技术,开展工程示范。

考核指标: 针对不同种类典型高浓工业危废,形成 3-5 套资源化回收与无害化处置技术及成套装备,核心装备国产化率 100%; 固液渣浆高值有价组份回收率大于 95%, 残渣实现 100% 无害化处置; 无机废酸重金属分离率大于 99%, 废酸资源化利用率大于 95%; 金属/有机废液金属回收率大于 99%, 残渣量较传统工艺削减 50%以上,实现 100%稳定化处置;有机废液-无机废酸协同处置酸根离子去除率达到 99%以上;废液直接处置成本(处置成本-回收收益)低于 300 元/吨。针对不同种类危废处置利用,建成万吨级/年规模工程示范 3-5 项,实现经济稳定运行。形成覆盖研究内容的技术专利与标准体系(申请发明专利 10 件以上,形成国家、行业或团体标准及规范征求意见稿 3 项以上),建立商业化推广创新模式。

5.7 放射性固废清洁解控与安全处置技术

研究内容: 针对铀、铍、钨、锆、铁等矿产资源开发利用产生的放射性固废,研究其特征属性及辐射防护调控机制,研究铀等有价组份综合回收技术,开展工程示范; 研究放射性废树脂减容固化技术,开展工程示范, 研究放射性污染金属材料协同去污解控技术及装备, 研究放射性固废长期稳定化处置技术。

考核指标: 形成 3-5 套放射性固废減量化、资源化、安全稳定化处置技术,建立放射性固废辐射防护调控体系; 铀回收率大于 50%,建成万吨级固废处理规模工程示范 1 项,铀回收全成本低于铀的销售价; 放射性废树脂减容率大于 85%,固化体抗压强度大于 20MPa,建成 10m3 减容固化示范工程 1 项; 放射性污染金属协同去污无限制利用率大于 30%; 铀采冶固废长期安全稳定性大于 200 年,降雨入渗量小于 3%,氡析出和渗水水质指标优于国家标准 (GB 23727),处置费用低于国际同类技术平均成本的 80%。形成覆盖研究内容的技术专利与标准体系(申请发明专利 10 件以上,形成国家、行业或团体标准及规范征求意见稿 3 项以上)。

6. 废旧复合材料精细回收与精深利用

6.1 退役磷酸铁锂电池分选与正极材料高值化利用技术

研究内容: 针对磷酸铁锂动力电池大规模退役的发展趋势, 研究退役电池回收利用过程有价组份嵌布、转化及迁移规律, 研发兼容多种退役电池的柔性上料、安全破碎和智能分选

技术与装备,研究退役磷酸铁锂电池正极材料修复再生技术,研究废旧磷酸铁锂正极材料中锂高效提取技术,研究铁磷廉价组份高值利用技术,开展工程示范。

考核指标: 形成3-4套退役磷酸铁锂电池分选装备与正极材料高值化利用技术; 退役电池柔性上料、破碎和分选系统可兼容全规格电池,破碎电池单体着火率小于1%,外壳、铜、铝、隔膜、正负极材料回收率大于98%; 修复再生后的磷酸铁锂正极材料0.5C放电比容量大于130 mAh/g, 5C放电比容量大于120 mAh/g; 锂回收率大于90%,碳酸锂产品达到电池级碳酸锂标准(YS/T582-2013); 铁、磷回收率大于90%,磷酸铁产品达到电池用标准(HG/T4701-2014),残渣无害化处置率100%。建成万吨级/年规模电池破碎分选、千吨级/年规模磷酸铁锂材料修复再生、千吨级/年规模碳酸锂和磷酸铁制备等示范工程3-4项,实现经济稳定运行,磷酸铁生产成本不高于现有国内市场主流工艺的生产成本。形成覆盖研究内容的技术专利与标准体系(申请发明专利10件以上,形成国家、行业或团体标准及规范征求意见稿3项以上),建立商业化推广创新模式。

6.2 退役三元锂电材料全组份清洁回收利用技术

研究内容:针对退役三元锂电材料全组份回收利用需求,研究电解液、粘结剂、隔膜等有机组份清洁脱除技术及装备,研究有价金属高效转化与提取技术,研究石墨废料深度除杂净化技术,研究回收处理全过程特征污染物控制技术,研究代表性能源金属供给方式演变趋势,开展工程示范。

考核指标: 形成 3-4 套退役三元锂电材料全组份清洁回收利用技术及装备,国产化率达到 100%; 有机组份脱除率大于 95%; 钴镍综合回收率大于 98%; 锂综合回收率大于 90%; 石墨纯度大于 98%。针对不同技术路线,建成万吨级/年规模三元锂电材料回收利用示范工程 3-4 项,实现经济稳定运行,石墨生产成本不高于同类石墨现有国内市场主流生产工艺。构建面向 2035 年 3-4 种代表性能源金属可持续供给路线图; 形成覆盖研究内容的技术专利与标准体系(申请发明专利 10 件以上,形成国家、行业或团体标准及规范征求意见稿 3 项以上),建立商业化推广创新模式。

有关说明:企业牵头,产学研联合申报。

6.3 废旧服务终端自动化拆解与高效回收利用技术

研究内容:针对废旧银行柜员机、车辆充电设备等服务终端,研究整机自动化无损拆解技术,研究关键元器件智能识别、精准检测与再利用/再制造技术,研究废液晶面板稀散金属定向分离与玻璃再利用技术,研制漆包线涂层有机材料高效热处理技术及成套装备,研究废旧服务终端回收利用模式及污染控制技术规范,开展工程示范。

考核指标: 形成 2-3 套废旧银行柜员机、车辆充电设备等整机自动化无损拆解装备,核心装备国产化率达到 100%,自动化率大于 90%,主要部件无损拆解破损良率大于 90%,关键元器件智能识别准确率大于 95%;铟综合回收率大于 90%,再生铟纯度大于 99.9%;废弃液晶无害化处理率大于 99.9%;漆

包线铜回收率大于 99.5%,处理烟气二噁英排放浓度小于 0.1ng-TEQ/Nm³,处理每吨漆包线能耗小于 45 公斤标准煤。建成万台级/年规模废旧服务终端自动化拆解示范工程 1-2 项;建成多来源废液晶面板处理及稀散金属回收示范工程 1 项,年处理量达到百万片级规模,铟生产成本不高于现有国内市场主流生产工艺;建成 5 万吨/年规模漆包线高效热处理示范工程 1 项;示范工程实现经济稳定运行。形成覆盖研究内容的技术专利与标准体系(申请发明专利 10 件以上,形成国家、行业或团体标准及规范征求意见稿 3 项以上),建立商业化推广创新模式。

6.4 废旧智能装备机电一体化再制造升级技术

研究内容: 针对废旧服务器、控制单元、电机等智能机电装备升级再制造需求,研究芯片关键数据挖掘、安全处置、逆向解析与系统修复技术,研究电控单元控制精度恢复与可靠性提升技术,开发多型号、多通讯协议兼容的综合检测装备,研究再制造产品服役过程健康状态在线监测技术,研究全生命周期综合效益测评方法与再制造服务模式,开展工程示范。

考核指标:形成废旧智能装备机电一体化再制造集成技术与装备4套,核心装备国产化率达到100%,其中服务器数据安全处置及综合高压检测装备兼容品牌数量大于10个,单机测试运行容量大于50台;控制单元(ECU/TCU)检测装备实现全品牌、全型号兼容,全部功能项检测速度大于40片/小时;电机综合检测装备可测试型号数量大于1500,兼容通讯协议数量大于10;在线监测技术对服役过程运行异常的检出率大于95%,滞

后时间小于1分钟。建成示范工程4项,其中大型服务器、典型机电产品控制单元(ECU/TCU)、电机、工业机器人再制造规模分别达到千台级/年、万片级/年、万台级/年、千台级/年,实现经济稳定运行,综合再制造率达到85%以上,再制造产品生产成本相比新品降低60%以上。形成覆盖研究内容的技术专利与标准体系(申请发明专利10件以上,形成国家、行业或团体标准及规范征求意见稿3项以上),建立商业化推广创新模式。

有关说明:企业牵头,产学研联合申报。

6.5 废杂塑料包装物绿色循环与高质利用技术

研究内容: 针对废杂塑料包装物循环利用需求, 研发废杂塑料智能识别与精细分选装备, 研究快递包装、一次性餐饮具清洁制备高品质再生塑料技术, 研究纸塑铝复合包装高选择性分质再生与污染控制技术, 研究聚酯包装材料高效解聚、分离、深度纯化技术与高值应用技术, 研究可循环塑料物流包装制造及集装化应用技术, 开展工程示范。

考核指标:建成分选能力大于 1.0 吨/小时样机 1-2 套,国产化率达到 95%,金属分辨尺寸达到 1mm,高分子材料分辨尺寸达到 4mm,实现至少 15 种不同材质高分子材料分选、同种颜色 PP 和 PE 分离;采用快递包装和一次性 PP 餐饮具回收制备 PP 专用料(以同一型号 PP 合成树脂对比)成本下降 15%以上;纸塑铝复合包装再生纸浆叩解度大于 85%原料纸,再生塑料颗粒灰分小于 3%;聚酯包装材料 PET 解聚率大于 99%,单体收率 90%,纯化产品杂质含量小于 0.1%,采用 PET 醇解单

体制备聚氨酯胶粘剂(与化工合成的新单体原料对比)成本下降 5%以上。针对 3 种废杂塑料包装物,分别建成万吨级/年规模示范工程各 1 项,建成万吨级/年规模可循环塑料物流包装制造及集装化应用示范工程 1 项,实现经济稳定运行。形成覆盖研究内容的技术专利与标准体系(申请发明专利 10 件以上,形成国家、行业或团体标准及规范征求意见稿 3 项以上),建立商业化推广创新模式。

有关说明:企业牵头,产学研联合申报。

6.6 废铅膏短程转化与清洁再生技术

研究内容: 针对废铅膏清洁再生需求,研发多元组份悬浮电解、固相电解直接制备粗铅技术及装备,研发高效浸出-电积精铅技术及装备,研究清洁转化再生电池材料技术,研究典型短程转化过程污染控制技术规范与产品质量保障体系,开展工程示范。

考核指标:形成废铅膏短程转化与清洁再生技术及装备 3-4 套;粗铅综合能耗小于 120 千克标准煤/吨,铅综合回收率大于 98%,悬浮电解残渣率小于 5%;固相电解粗铅纯度大于 97%;电积电流效率大于 95%,电解质循环利用率大于 90%,精铅产品达到国家标准 (GB/T 21181-2017);氧化铅纯度大于 99.9%。针对不同技术路线,建设千吨级/年规模工程示范 2-3 项,实现经济稳定运行,废铅膏处理成本不高于现有国内市场主流工艺。形成覆盖研究内容的技术专利与标准体系(申请发明专利10件以上,形成国家、行业或团体标准及规范征求意见稿 3 项

以上),建立商业化推广创新模式。

有关说明:企业牵头,产学研联合申报。

6.7 大宗金属铝/铜再生过程灰尘高效回收与污染控制技术

研究内容: 针对铜/铝大宗金属再生过程, 研究灰尘中多金属高效分离与提取技术, 研究高含量 UPOPs 灰尘低温高效分解技术, 研究氟、氯、镉等典型毒害元素高效富集与无害化处置技术, 开发成套化技术及装备, 研究回收处理全过程污染控制技术规范, 开展工程示范。

考核指标: 形成 2-3 套铝/铜再生过程灰尘高效回收技术及装备,核心装备国产化率达到 100%;多金属综合回收率大于98%,再生铜灰尘中 UPOPs 分解率大于95%;再生铝灰资源化率达到 99%;典型毒害元素无害化处置率达到 100%。建成 10 万吨级/年规模铝灰处理、万吨级/年规模铜灰处理示范工程 2-3 项,实现经济稳定运行,单位处理成本分别比现有国内市场主流工艺下降 10%以上。形成覆盖研究内容的技术专利与标准规范(申请发明专利 10 件以上,形成国家、行业或团体标准及规范征求意见稿 3 项以上),形成商业化创新推广模式。

7. 固废全过程精准管理与决策支撑技术

7.1 资源循环利用过程精准管理支撑技术与应用示范

研究内容: 针对资源循环利用过程精准管理需求, 研究战略性资源循环利用潜力测评技术, 研究区域资源循环利用过程关键数据测算统计方法, 研究支撑 "无废城市"建设的固废污染综合减控技术策略, 研究典型产业间固废协同处理技术规范

与园区化协同处理模式,构建以循环利用率为核心的跨尺度资源循环利用管理体系,依托典型区域开展应用示范。

考核指标: 形成战略性循环利用潜力测评技术 1 套, 定量描述我国 15 种以上典型战略性资源中长期供给路径; 构建区域资源循环利用过程关键数据测算统计方法 1 套, 包含 10 种以上大宗资源类别,被示范区域采纳应用; 提出区域固废污染综合减控技术策略 1 套, 在 1-2 个 "无废城市"建设中获得采纳应用; 形成典型产业间协同处理技术规范 3 套以上, 园区化协同处理模式 5 种以上, 在国家资源循环利用基地、大宗固体废弃物综合利用基地、工业资源综合利用基地获得采纳应用。形成覆盖研究内容的项目成果(申请软件著作权件 3 以上, 形成国家、行业或团体标准及规范征求意见稿 3 项以上, 每年编制 1-2 份战略咨询研究报告)。

有关说明:本项目申报内容须与国家循环经济发展综合管理部门推动落实《循环发展引领行动》、深化循环经济评价制度、以及国家资源循环利用基地、大宗固体废弃物综合利用基地、工业资源综合利用基地建设紧密结合,应用示范区域所在地政府应出具书面支持文件。

7.2 进口可用作原料固废环境风险评估及关联响应研究

研究内容: 研建典型进口可用作原料固废特征信息动态数据库与利用过程污染排放清单,研究典型进口固废属性鉴别与高效监管技术、研究典型进口可用作原料固废全过程环境影响与环境风险评估技术,研究典型固废全球流动足迹变迁及关联

产业响应机制,研究国际多边环境、贸易协定对我国进口固废的适用性及履约策略。

考核指标: 动态数据库覆盖近五年 90%以上的进口可用作原料固废品种,主流利用技术污染排放清单覆盖进口可用作原料固废 5 类以上; 形成典型进口固废属性鉴别与高效监管技术 3-5 项, 获得实际应用; 形成进口可用作原料固废环境风险评估技术指南 2-3 项; 典型固废全球流动足迹变迁覆盖代表性国家及地区 8-10 个, 建立关联产业响应模型 3-5 个; 制定我国相关国际履约行为技术导则 2-3 项。形成覆盖研究内容的项目成果(申请软件著作权 3 件以上, 形成国家、行业或团体标准及规范征求意见稿 3 项以上, 每年编制 1-2 份战略咨询研究报告)。

有关说明:本项目申报内容须与国家生态环境保护主管部门推动落实国家相关重大部署紧密结合;由生态环境保护部、 国家发展与改革委、商务部组织申报。

- 8. 系统性解决方案研发及集成示范
- 8.1 环渤海典型大城市多源固废综合解决方案及集成示范

研究内容: 针对环渤海典型大城市,研究典型固废产生特性、时空分布及生态环境关联影响,研究生活源、餐厨源、粪渣源、污泥源、海岸源、建筑源及油田源、冶金源、动力源等固废资源循环利用与安全处置集成技术,研究适合环渤海大城市的多源固废综合协同利用成套技术及二次污染控制,构建近海岸带滩涂垃圾监管-清理-收集-转运-处理智能管控体系,研究适合环渤海典型大城市的多源固废综合利用解决方案与商业适合环渤海典型大城市的多源固废综合利用解决方案与商业

化运行模式; 依托典型大城市开展集成示范。

考核指标:面向环渤海典型大城市,构建典型固废特性数据库及大数据管理平台,形成 3-5 套多源固废综合性处置成套技术与装备,涵盖生活源、餐厨源、粪渣源、污泥源、海岸源、建筑源及油田源、冶金源、动力源等多类典型固废处置技术。依托环渤海典型城市,建成 3-5 个综合性示范工程,形成 1-2 个综合性集成示范基地,总处理规模大于 4000 吨/天,最大单项示范工程规模不低于 2000 吨/天;集成示范基地综合处置固废 4 类以上,综合处置成本降低 15%以上,综合利用率提高20%,其中资源化回收率提高 15%以上,综合减容率大于 60%。形成覆盖研究内容的技术专利与标准体系(申请发明专利 10件以上,形成国家、行业或团体标准及规范征求意见稿 3 项以上);提出环渤海典型大城市多源固废利用处置综合性解决方案与商业化运行模式,在区域内实现推广应用,带动新增固废处理能力达到 150 万吨/年以上。

有关说明: 集成示范所在地政府需出具书面支持文件,承 诺协调落实相关政策和经费配套措施;产学研联合申报。

8.2 长江经济带大中城市多源有机固废园区化协同处置及 示范

研究内容: 针对长江中上游大中型城市, 研究城市及工业 多源有机固废物质流能量流特性、适合湿热特点的转化利用与 污染防控耦合机制; 研究基于园区协同利用的生活源与工业源 有机固废分质分类与物流模式; 研究园区化协同处理及生物质

能回收高附加值利用成套技术;构建精细监管-分类收集-协同转运-分质利用智能化管控平台;研究适合长江经济带中上游典型城市的多源有机固废协同处置全链条解决方案与商业化运行模式,依托典型城市开展集成示范。

考核指标: 形成适合长江经济带中上游典型城市特色的城市及工业多源有机固废园区化协同处置成套技术与装备 3-5 套,生活源、工业源有机废弃物资源化利用率分别不小于 75% 和 80%,协同处理 3 类以上工业有机废弃物,能耗较单一处理模式降低 30%以上;建设多源有机固废园区化协同处理综合性集成示范基地 1-2 个,包括生活源废物、工业源废物协同处置及利用示范工程 3-5 个,处理规模不小于 4000 吨/天,吨处理成本低于 200 元;建成城乡一体化有机废物生物质能回收利用基地 2-3 个,单体规模不小于 150 吨/天,吨处理成本低于 200 元。形成覆盖研究内容的技术专利与标准体系(申请发明专利 10 件以上,形成国家、行业或团体标准及规范征求意见稿 3 项以上);提出适合长江经济带中上游城市特色的多源有机固废园区化协同处置解决方案与商业化运行模式,在区域内实现推广应用,带动新增固废处理能力达到 100 万吨/年以上。

有关说明:集成示范所在地政府需出具书面支持文件,承诺协调落实相关政策和经费配套措施;企业牵头,产学研联合申报。

8.3 高寒高海拔生态脆弱区城市多源固废综合处置及集成示范

研究内容: 针对高寒高海拔生态脆弱区典型城市,研究低压缺氧环境下工业、农业、城市典型多源固废的产生特性、时空分布及能量转化与污染迁移特征,研究适宜当地环境特征的多源固废就地安全处置与集中处置模式及成套技术,构建多源固废处置利用区域性物联网监控系统和大数据管理平台,研究技术集成-工程示范-政策管理一体化的多源固废系统化解决方案与商业化运行模式,依托典型城市开展集成示范。

考核指标: 构建高寒高海拔生态脆弱区多源固废特征数据 库1套,建立低压缺氧环境下多源固废的能量转化与污染迁移 特征谱图,形成 2-3 套适合低压缺氧环境的多源固废生态化安 全处置成套技术及装备,实现就地处置与集中处置模式兼顾, 无害化率 90%以上,资源化率 80%以上,能量利用率达到 70% 以上,总体能量利用率达到50%以上。建成全链条综合处置工 程示范 2-3 处,形成 1-2 个综合性集成示范基地,固废处置利 用总规模达到 1000 吨/天以上,单体最大工程示范规模不小于 750 吨/天,农牧区工程示范多源固废循环利用技术处置能力达 3000 吨/年,实现经济稳定运行,吨固废处理成本降低不少于 10%, 集成示范基地综合效益提高 20%以上。形成覆盖研究内 容的技术专利与标准体系(申请发明专利10件以上,形成国 家、行业或团体标准及规范征求意见稿3项以上);提出高寒 高海拔生态脆弱区城市多源固废综合处置解决方案与商业化 运行模式,在区域内实现推广应用,带动新增固废处理能力达 到50万吨/年以上。

有关说明:集成示范所在地政府需出具书面支持文件,承 诺协调落实相关政策和经费配套措施;产学研联合申报。

8.4 "一带一路"有色金属产业聚集区固废综合利用及集 成示范

研究内容: 针对我国"一带一路"西南地区有色金属产业聚集区固废种类多、环境威胁大的问题,研究聚集区典型固废资源属性以及生态环境影响效应,研究锡铅锌铜铝等多行业固废源头减量与全过程控制集成技术及装备,研究存量及新增尾矿、冶金渣以及含砷汞渣尘资源化成套新技术,集成采选、冶炼、环保等多产业协同利用技术,研究多源危险废物无害化集中处置与污染控制技术,研究"一带一路"西南有色金属产业聚集区固废利用综合解决方案,开展技术集成并在核心聚集区进行工程示范。

考核指标:形成有色产业聚集区典型工业固废源头减量与综合利用成套技术 3-5 项,实现大宗锡尾矿有价金属作业回收率大于75%,二次尾渣100%充填利用;锡精炼砷铝渣减量99%,硫渣利用率大于98%,锡精炼渣减排大于98%;含砷汞尘泥利用率大于98%,石膏渣减排大于98%,成本降低50%以上。在"一带一路"西南有色金属产业核心聚集区开展集成示范,建成源头减量与综合利用工程示范 3-5 项,形成1-2 个综合性集成示范基地,涵盖5种以上典型工业固废,年消纳固废总量50万吨以上,单位固废利用及处置能耗降低20%以上,固废综合处理成本降低30%以上。形成覆盖研究内容的技术专利与标准

体系(申请发明专利10件以上,形成国家、行业或团体标准及规范征求意见稿3项以上);提出适合"一带一路"西南地区生态环境特色的典型固废综合利用解决方案及商业化运行模式,实现推广应用,辐射"一带一路"沿线地区,带动新增固废处理能力达到200万吨/年以上。

有关说明:集成示范所在地政府需出具书面支持文件,承 诺协调落实相关政策和经费配套措施;产学研联合申报。

8.5 大型煤电基地固废规模化利用成套技术及集成示范

研究内容: 针对中西部大型煤电基地煤基固废产生量巨大、综合利用率偏低的急迫问题, 开展多源煤基固废资源环境特性、物质迁移规律及生态环境影响效应研究; 研发典型大宗煤基固废规模化增值利用集成技术与产品体系; 研究煤基固废用于煤电基地生态治理成套技术; 研究煤炭、电力、化工等多产业固废协同利用产业链接技术, 研究大型煤电基地多源固废规模化利用与生态环境治理综合解决方案; 开展园区集成示范, 探索构建适合区域特征的商业化推广模式。

考核指标:面向中西部大型煤电基地,形成煤电化一体化典型工业园区煤基固废资源环境属性解析清单,获得4种以上关键物质的工程代谢路线及空间地理图集。形成大宗煤基固废规模化利用成套技术3-5套,涵盖4类以上典型大宗煤基固废;吨煤基固废处置/利用能耗降低20%以上,生产成本降低30%以上;煤基固废增值利用活性粉体28天活性指数大于75%,生态修复材料煤基固废掺量大于40%,产业链接煤基固废利用

率大于90%。采用上述不同成套技术,依托煤电化一体化典型工业园区建成综合性集成示范基地1-2个,集中建成工程示范3-5项,单项工程年消纳固废总量不低于10万吨,资源产出率提高30%以上,实现经济稳定运行,集成示范基地煤基固废综合利用率达到75%以上。形成覆盖研究内容的技术专利与标准体系(申请发明专利10件以上,形成国家、行业或团体标准及规范征求意见稿3项以上);提出面向大型煤电基地的煤基固废规模化利用综合性解决方案及商业化运行模式,实现推广应用,带动大型煤电基地新增固废处理能力达到500万吨/年以上。

有关说明:集成示范应依托国家级大型煤电基地,所在地政府需出具书面支持文件,承诺协调落实相关政策和经费配套措施;产学研联合申报。

8.6 大型矿产资源综合利用基地固废综合利用及集成示范

研究内容: 针对大型钢铁稀土矿产资源综合利用基地固废(尾矿、炉渣等)中有价共伴生元素丰富而有效利用不足、生态环境影响严重等问题,研究钢铁稀土产业固废资源属性、生态环境影响效应及稀土与各有价组分协同利用规律,研究典型重污染固废源头减量清洁工艺及污染全过程控制集成技术,研究共伴生稀土及有价组分高效提取与剩余物规模化制备高值材料成套技术及装备,研究适合区域生态环境特征的大型钢铁稀土矿产资源基地重污染固废综合利用解决方案,开展集成示范。

考核指标: 构建面向大型钢铁稀土矿产资源综合利用基地 的典型重污染固废资源属性、利用价值、生态环境影响综合评 价方法: 开发钢铁稀土固废源头减量、污染控制、综合利用成 套技术与装备 3-5 套, 形成 3-5 种固废清洁、综合、高值化利 用产品,达到行业中高端产品标准,重污染固废源头减量90% 以上,放射性元素实现100%安全有效处置;主要典型固废有 价组分综合回收率大于60%, 尾矿与炉渣资源化利用率大于 90%; 建成示范工程 1-2 项, 工程示范线 2-3 条, 形成综合性 集成示范基地 1-2 个, 年消纳固废总量大于 10 万吨 且实现经济 稳定运行,集成示范基地固废综合利用率达到 70%以上,综合 效益提升30%以上;形成覆盖研究内容的技术专利与标准体系 (申请发明专利10件以上,形成国家、行业或团体标准及规 范征求意见稿 3 项以上)。面向大型钢铁稀土矿产资源综合利 用基地,提出选矿-冶金-材料-生态环境相结合的固废综合性解 决方案及运行模式并推广应用,带动新增固废处理能力达到 100 万吨/年以上。

有关说明:集成示范应依托国家级大型钢铁稀土特色矿产资源综合利用基地,集成示范所在地政府需出具书面支持文件,承诺协调落实相关政策和经费配套措施;产学研联合申报。

8.7 长江经济带典型城市矿产基地技术升级与集成示范

研究内容: 针对长江中下游典型城市矿产基地, 研究城市 矿产类固废回收利用过程主要污染物迁移规律和生态环境影响, 研究不同价值城市矿产类固废利用处理全流程绿色化、智 能化升级技术,研究固废监测-环保服务-信息管理一体化技术;研究典型城市矿产基地整体优化升级综合解决技术方案,依托区域大城市开展集成示范。

考核指标:建立长江中下游典型城市矿产基地污染物排放 清单,解析5种以上主要污染物对基地及其周边水、土和空气 的影响机理。形成 3-5 套城市矿产利用处理绿色化、智能化升 级成套技术及装备,覆盖低中高不同价值典型城市矿产类型; 废玻璃等低值固废分选率大于99%,分选过程无废水排放;典 型废旧家电拆解环节自动化率大于70%,报废汽车拆解环节自 动化率大于50%, 拆解环节综合能耗下降不少于10%; 废旧零 部件等高值固废再制造率大于80%,再制造成本下降不少于 10%; 形成具有固废监测回收处理功能的环保管家服务模式, 覆盖基地主要固废品种90%以上。依托典型城市矿产基地、集 中建成不同种类城市矿产利用处理技术升级示范工程 3-5 项, 形成 1-2 个综合性集成示范基地, 固废利用总规模大于 50 万吨 /年,主要污染物排放降低20%以上,实现经济稳定运行,集成 示范基地综合效益提升20%以上。形成覆盖研究内容的技术专 利与标准体系(申请发明专利10件以上,形成国家、行业或 团体标准及规范征求意见稿3项以上);提出城市矿产基地技 术整体优化升级综合解决方案及商业化运行模式,在区域内实 现推广应用,带动新增固废处理能力达到200万吨/年以上。

有关说明: 集成示范所在地政府需出具书面支持文件,承 诺协调落实相关政策和经费配套措施,鼓励在国家级循环经济 示范试点所在地区开展集成示范, 产学研联合申报。

8.8 东南轻工建材特色产业集聚区固废综合利用集成示范

研究内容: 针对东南纺织服装、制革制鞋和石材加工等特色产业集聚区,研究典型多源固废特征识别及生态环境影响,研究纺织服装、制革制鞋、石材加工等特色产业固废高值利用、有价成分提取、协同耦合利用集成技术,研究轻工建材产业固废综合利用过程二次污染控制技术,研究东南特色轻工建材产业集聚区固废跨产业梯级利用综合解决方案,依托典型城市开展集成示范。

考核指标:建成纺织服装、制革制鞋、石材加工等特色多产业链固废物质代谢数据库及分析模型;形成适合东南轻工建材特色产业多源固废综合利用成套技术 3-5 套;纺织服装、制革制鞋和石材加工产业固废综合利用率分别大于70%、80%和90%。在不降低使用性能的条件下,生产免染再生彩纱原料中工业源废旧涤纶比例达到30%以上,生产废纺纤维增强绿色建材成本降低不少于10%。依托特色产业集聚区,集中建成示范工程 3-5 项,形成 1-2 个综合性集成示范基地,年消纳固废总量大于15 万吨,实现经济稳定运行,集成示范基地固废综合利用率大于75%。形成覆盖研究内容的技术专利与标准体系(申请发明专利10件以上,形成国家、行业或团体标准及规范征求意见稿3项以上);提出东南特色轻工建材产业集聚区固废跨产业综合利用解决方案及商业化运行模式,项目成果在特色产业集聚区典型城市实现推广应用,带动特色产业固废处理能

力100万吨/年以上。

有关说明:集成示范所在地政府需出具书面支持文件,承诺协调落实相关政策和经费配套措施;鼓励在国家生态文明试验区开展集成示范,产学研联合申报。

8.9 京津冀工农城固废跨产业跨区域协同利用及集成示范

研究内容: 针对京津冀工农城固废跨产业跨区域处理需求,研究固废产排特征及区域协同处置能力,研究废旧家具、园林及农业等有机固废协同处理能源化利用技术,研究建筑垃圾、尾矿、废渣等无机固废耦合建材化利用技术,研究冶金、建材等工业设施大比例消纳市政污泥、危险废物等有机/无机固废协同处置技术,研究京津冀多源固废协同利用机制与综合解决方案,依托典型城市开展集成示范。

考核指标:构建京津冀工农城固废产排特征图谱及区域协同利用处置数据库,覆盖典型固废6种以上。形成4-5套适合于京津冀地区的工农城固废协同利用成套技术及装备,废弃家具、园林及农业等有机固废综合利用率大于90%,能源转化率大于90%;建筑垃圾、尾矿、废渣等无机固废综合利用率大于90%,产品性能指标优于国家或行业相关标准,生产成本比市场同类产品降低不少于10%;工业设施消纳市政污泥、危险废物比例比现有国内主流工艺水平提高1倍以上;颗粒物、二氧化硫、氮氧化物排放浓度要分别不高于10mg/m³、30 mg/m³、50 mg/m³。依托京津冀地区典型城市,建成1-2 个综合性集成示范基地,集中建成工程示范4-5 项,覆盖典型固废6种以上,

年利用处置规模大于30万吨,实现经济稳定运行,集成示范基地固废协同处置综合效益提升30%以上。形成覆盖研究内容的技术专利与标准体系(申请发明专利10件以上,形成国家、行业或团体标准及规范征求意见稿3项以上);提出京津冀工农城固废跨产业跨区域协同利用综合解决方案及商业化运行模式,项目成果在京津冀核心区域实现推广应用,带动新增固废处理能力达到100万吨/年以上。

有关说明:集成示范所在地政府需出具书面支持文件,承诺协调落实相关政策和经费配套措施,鼓励在国家级循环经济示范试点所在地区开展集成示范,产学研联合申报。

8.10 长江中游典型城市群多源无机固废集约利用及示范 研究内容: 针对长江中游长株潭及周边地区典型城市群 "海绵城市"建设需求,研究工业尾矿、建筑垃圾、道路垃圾、冶炼废渣、花岗岩废料等典型多源无机固废产排特性及替代天 然砂石的资源属性; 研究典型多源无机固废与有机固废复合成型技术及有机粘接新材料; 研究多源无机固废高效分类回收-集约化处理-生态化建材利用集成技术,研究适合长江中游气候特点与生态环境保护要求的典型城市群多源无机固废综合利用解决方案与商业化运行模式; 依托典型城市开展集成示范。

考核指标:面向长江中游长株潭及周边地区典型城市群,提出工业尾矿、建筑垃圾、道路垃圾、冶炼废渣、花岗岩废料等典型多源无机固废物质流分布规律及资源化属性,形成适用于典型多源无机固废与有机固废复合成型的有机粘接新材料,

有机粘接新材料粘结强度大于 3MPa,断裂生长率达到 100%,建成 1 万吨/年的有机粘接新材料生产装置;形成 3-5 套多源固废综合性处置及生态化建材利用成套技术与装备,无机固废深加工利用率大于 98%;依托长株潭城市群及周边地区典型城市,建成 1 项百万吨/年多源无机固废再生利用示范工程,建成 3-5 个集成示范利用基地,多源无机固废代替天然砂石的海绵城市透水场地面积不低于 200 万平米,场地类型涵盖 4 类以上,工程成本降低不少于 10%。形成覆盖研究内容的技术专利与标准体系(申请发明专利 10 件以上,形成国家、行业或团体标准及规范征求意见稿 3 项以上);提出面向"海绵城市"建设的典型城市群多源无机固废集约化利用综合性解决方案与商业化运行模式,在区域内实现推广应用。

有关说明:集成示范应依托长株潭"两型社会"实验区及周边典型城市开展,所在地政府需出具省级书面支持文件,承诺协调落实相关政策和经费配套措施;鼓励在国家"海绵城市"试点城市开展集成示范;企业牵头、产学研联合申报。