DINÁMICA MOLECULAR

"Regida por el paso temporal"

SS - G9 - TP4 - 2022

Oscilador Amortiguado

OSCILADOR AMORTIGUADO

COMPARACIÓN CON SOLUCIÓN ANALÍTICA

Algoritmo	ECM (m ²)
Verlet Original	4.89 * 10 ⁻⁶
Beeman	3.30 * 10 ⁻¹⁰
Gear Predictor-Corrector Orden 5	2.96 * 10 ⁻²²

 $dt = 1*10^{-3}s$

OSCILADOR AMORTIGUADO ERROR CUADRÁTICO MEDIO

Introducción

INTRODUCCIÓN

SISTEMA

Sistema de cuerpos atraídos entre sí por fuerzas gravitacionales.

INTRODUCCIÓN

MODELO

- N partículas.
- Choques no instantáneos.
- Simulación regida por paso temporal.
- Interacción mediante fuerzas dependiente de distancia, según:

$$F_{ij} = G \frac{m_i m_j}{r_{ij}^2} e_{ij}$$

Donde:

• $G = 6.693 * 10^{-11} \text{ m}^{3}/$ $kg*s^{2}$.

INTRODUCCIÓN

MODELO

Fuerza de interacción

Donde:

$$e_x^n = \frac{(x_j - x_i)}{|r_j - r_i|}$$

$$e_y^n = \frac{(y_j - y_i)}{|r_j - r_i|}$$

INTRODUCCIÓN MODELO

Energía potencial gravitatoria

$$E_{ij}^{pot} = -G \frac{m_i m_j}{r_{ij}}$$

Sistema conservativo.

Energía cinética

$$E_{c_i} = \frac{1}{2} m_i v_i^2$$

Implementación

IMPLEMENTACIÓN LENGUAJE

- Motor de simulación: Java.
- Post procesamiento: Python.

IMPLEMENTACIÓN CLASES DESTACADAS

IMPLEMENTACIÓN FLUJO DE EJECUCIÓN

Simulaciones

PARÁMETROS E INPUTS

Parámetros

- m_{sol}= 1.989 x 10³⁰ kg.
- $R_{Sol} = 6.96 \times 10^5 \text{ km}.$
- $m_{Tierra} = 5.97 \times 10^{24} \text{ kg.}$
- R_{Tierra}= 6371.01 km.
- m_{Venus}= 48.69 x 10²³ kg.
- R_{Venus}= 6051.84 km.
- $m_{\text{Nave}} = 2 \times 10^5 \text{ kg.}$
- V_{Despegue}= 8 km/s.
- V_{Est. Espacial}= 7.12 km/s.
- $D = 1500 \, \text{km}$.

Inputs

- (X_0, Y_0) planetas.
 - (V_x, V_y) planetas.

Outputs

- (X, Y)
- (V_×, V_Y)

SIMULACIÓN OBSERVABLES

- Mínima distancia al planeta destino.
- Tiempo de viaje.
- Energía de la nave.
- Velocidad relativa de la nave respecto al planeta destino al arribar.
- Evolución temporal del módulo de la velocidad de la nave.

ANÁLISIS: FECHA DE DESPEGUE

- Fecha de despegue que asegure arribo a Venus.
 - o Misión exitosa: alcanzar órbita (distancia menor a 1500 km) en menos de un año.
- Análisis 1: despegue cada 1 día en intervalo [23/09/2022 23/09/2023] (1 año).
- Análisis 2: despegue cada 30 minutos centrado en fecha óptima del análisis 1.
- Análisis 3: despegues cada 5 minutos en fecha óptima del análisis 2.
- Paso temporal: dt = 300 s (5 minutos).
- Fecha óptima: arribar Venus en menor cantidad de días.

ANÁLISIS: VARIACIÓN DE LA VELOCIDAD DE DESPEGUE

- Variación velocidad de despegue en intervalo [4, 12] km/s.
- **Objetivo:** optimizar tiempo de viaje.

ANÁLISIS: FECHA DE REGRESO A LA TIERRA

- Fecha de despegue que asegure regreso a la Tierra.
 - o **Misión exitosa:** alcanzar órbita (distancia menor a 1500 km) en menos de un año.
- Análisis 1: despegue cada 1 día en intervalo [18/07/2023 16/02/2025] (2 años).
- Análisis 2: despegue cada 30 minutos centrado en fecha óptima del análisis 1.
- Análisis 3: despegues cada 5 minutos en fecha óptima del análisis 2.
- Paso temporal: dt = 300 s (5 minutos).
- Estación espacial a 1500 km de Venus (dirección contraria al sol).
- V_{Despeque} = 4.4 km/s.
- $V_{Est. Espacial} = 5.8 \text{ km/s}.$

SIMULACIÓN CRITERIOS DE CORTE

- Tiempo arbitrario de simulación (365 días de viaje).
- Choque con planeta destino.

Resultados

RESULTADOS | FECHA ÓPTIMA DESPEGUE A VENUS ANIMACIÓN

- Fecha de salida: 12-05-2023 11:15 hs.
- dt = 300 s.
- Tiempo de viaje: 66 días.

RESULTADOS | ENERGÍA DEL SISTEMA VARIACIÓN ENERGÍA NAVE

RESULTADOS | DESPEGUE A VENUS ANÁLISIS FECHA ÓPTIMA

- Despegues cada 1 día.
- Mínimos:
 - o 12-05-2023 (66 días).
 - o 16-08-2023 (251 días).
- dt = 300 s.

RESULTADOS | DESPEGUE A VENUS ANÁLISIS FECHA ÓPTIMA

- Despegues cada 30 minutos.
- Mínimo: [10:00, 12:00] hs.
- dt = 300 s.

RESULTADOS | DESPEGUE A VENUS ANÁLISIS FECHA ÓPTIMA

- Despegues cada 5 minutos.
- Fecha de salida: 12-05-2023 11:15 hs.
- dt = 300 s.
- Tiempo de viaje: 66 días

RESULTADOS | FECHA ÓPTIMA DESPEGUE A VENUS EVOLUCIÓN DEL MÓDULO DE VELOCIDAD

- Fecha de salida: 12-05-2023 11:15 hs.
- dt = 300 s.
- Tiempo de viaje: 66 días.
- Velocidad relativa a Venus 26.34 km/s.
- Impacta contra la superficie.

RESULTADOS

VARIACIÓN DE LA VELOCIDAD DE DESPEGUE

Vt = 0.1 km/s

 $Vt = 0.001 \, \text{km/s}$

RESULTADOS | FECHA REGRESO A LA TIERRA ANIMACIÓN

- dt = 300 s.
- Tiempo de viaje: 114 días.

RESULTADOS | DESPEGUE REGRESO A TIERRA ANÁLISIS FECHA

- Despegues cada 1 dia.
- Mínimos:
 - o 05-01-2025 (114 días).
 - o 31-01-2025 (227 días).
- dt = 300 s.

RESULTADOS | DESPEGUE REGRESO A TIERRA ANÁLISIS FECHA DESPEGUE

- Despegues cada 30 minutos.
- Mínimo: 20:00 hs.
- dt = 300 s.

RESULTADOS | DESPEGUE REGRESO A TIERRA ANÁLISIS FECHA DESPEGUE

- Despegues cada 5 minutos.
- Fecha de salida: 04-01-2025 20:10 hs.
- dt = 300 s.
- Tiempo de viaje: 114 días.

RESULTADOS | FECHA REGRESO A LA TIERRA EVOLUCIÓN DEL MÓDULO DE VELOCIDAD

- Fecha de salida: 04-01-2025 20:10 hs.
- dt = 300 s.
- Tiempo de viaje: 114 días.
- Velocidad relativa a Tierra 16.73 km/s.
- Impacta contra la superficie.

RESULTADOS

VARIACIÓN DE LA VELOCIDAD DE DESPEGUE

Vt = 0.1 km/s

 $Vt = 0.001 \, km/s$

Conclusiones

CONCLUSIONES

- Existe instante de despegue de la Tierra que asegura llegada a Venus dadas las condiciones iniciales.
- Existe instante de despegue de Venus que asegura la vuelta a la Tierra variando velocidad de salida de las condiciones iniciales.
- 3. Manteniendo condiciones iniciales variando velocidad de despegue, se asegura llegar a destino ante variaciones pequeñas.
- 4. Para fecha óptima de ida y regreso, módulo de velocidad disminuye al llegar a destino.

FIN ¡GRACIAS!

