

#### POLITECHNIKA WARSZAWSKA

Wydział Elektroniki i Technik Informacyjnych Instytut Telekomunikacji

# PRACA DYPLOMOWA INŻYNIERSKA

#### Marcin Maciorowski

# Tworzenie narzędzi wspomagających projektowanie BPEL w architekturze SOA

Praca wykonana pod kierunkiem dra inż. Andrzeja Ratkowskiego

| Ocena pracy                     |
|---------------------------------|
|                                 |
|                                 |
| Podpis Przewodniczacego Komisii |

Warszawa, 2014

# Życiorys

Urodziłem się 22 września 1988 roku w Radzyniu Podlaskim. W 2004 roku rozpocząłem naukę w I Liceum Ogólnokształcącym w Radzyniu Podlaskim, gdzie uczęszczałem do klasy o profilu matematyczno-fizyczno-informatycznym. Po uzyskaniu świadectwa dojrzałości w 2007 roku, rozpocząłem studia na Politechnice Warszawskiej na Wydziale Elektroniki i Technik Informacyjnych. W trakcie studiów wybrałem specjalizację Systemy informacyjno-decyzyjne prowadzoną przez Instytut Automatyki i Informatyki Stosowanej.

Marcin Maciorowski

## Streszczenie

BPEL.

## **Abstract**

Implementation of .... (Font TNRoman 12 Normal). This thesis includes the design and testing procedure of .....

# Spis treści.

| 1.  | Wstęp                                                                | 5  |
|-----|----------------------------------------------------------------------|----|
| 2.  | Cel pracy                                                            |    |
| 3.  | Układ pracy                                                          |    |
| 4.  | Opis języka BPEL.                                                    |    |
|     | 4.1. Bla bla bla                                                     |    |
|     | 4.2. Bla bla bla                                                     |    |
|     | 4.3. Bla bla bla                                                     |    |
| 5.  | Wtyczka Eclipse BPEL Designer                                        | 8  |
|     | 5.1. Opis interfejsu użytkownika                                     | 8  |
|     | 5.2. Przykładowy proces BPEL                                         | 10 |
| 6.  | Wtyczka generująca instrukcje kopiujące w blokach przepisania danych | 13 |
|     | 6.1. Konfiguracja wtyczki (PDE).                                     | 13 |
|     | 6.2. Transformacja procesu z postaci EMF do postaci grafu            | 13 |
|     | 6.3. Analizator grafu procesu.                                       | 13 |
|     | 6.4. Graficzny interfejs użytkownika.                                |    |
| 7.  | Testy.                                                               | 14 |
| 8.  | Podsumowanie                                                         | 15 |
|     | 8.1. Napotkane problemy                                              |    |
|     | 8.2. Możliwości rozwoju                                              |    |
| 9.  | Bibliografia.                                                        | 16 |
| 10. | Załączniki                                                           | 17 |
|     | 10.1. Płyta CD                                                       | 17 |
|     | 10.2. Instrukcia instalacii wtyczki BPEL ag (BPEL assign generator)  | 17 |

## 1. Wstęp.

We wstępie znajdzie się ogólne rozwinięcie streszczenia, czego praca dotyczy, z czym czytelnik się zetknie w kolejnych rozdziałach. Opisany układ dokumentu.

\_\_\_\_\_\_

## 2. Cel pracy.

Celem pracy jest napisanie wtyczki do zintegrowanego środowiska programistycznego jakim jest Eclipse, która umożliwi automatyczne uzupełnienie zaprojektowanego procesu BPEL o instrukcje kopiujące dane. Wtyczka ma za zadanie dokonać analizy procesu oraz na postawie wyników analizy wygenerować instrukcje kopiujące. Analizowany proces BPEL oraz uczęstniczące w procesie usługi wykorzystują tę samą konwencje nazewnicze.

## 3. Układ pracy

Opis układu pracy. Powstanie na końcu, gdy zostaną napisane już wszystkie rozdziały.

| 4.          | Opis języka BPEL.  Wstępny opis języka BPEL wprowadzający czytelnika w aspekty języka, których dotyc niniejsza praca dyplomowa. Na pewno będą to: Struktura procesu, bloki assign, invo |                                        |      |  |  |  |  |  |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------|--|--|--|--|--|
|             |                                                                                                                                                                                         |                                        |      |  |  |  |  |  |
| <b>4.</b> 1 | ======<br>  .Bla bla                                                                                                                                                                    | bla.                                   |      |  |  |  |  |  |
|             | ==<br>Bla                                                                                                                                                                               | bla                                    | bla. |  |  |  |  |  |
| 4.2         | =====<br>2.Bla bla l                                                                                                                                                                    | ====================================== |      |  |  |  |  |  |
|             | ==<br>Bla                                                                                                                                                                               | bla                                    | bla. |  |  |  |  |  |
| 4.3         | =====<br>3.Bla bla l                                                                                                                                                                    | ====================================== |      |  |  |  |  |  |
|             | ==<br>Bla                                                                                                                                                                               | bla                                    | bla. |  |  |  |  |  |

## 5. Wtyczka Eclipse BPEL Designer.

Eclipse BPEL Designer jest wtyczką rozszerzającą zintegrowane środowisko programistyczne (ang. Integrated Development Environment – IDE) Eclipse, która wspiera definiowanie, edytowanie, instalację oraz testowanie i debuggowanie procesów WS-BPEL 2.0, czyli języka do definiowania procesów biznesowych opartego o usługi sieciowe, dostarczonego przez konsorcjum OASIS. Główne cechy wtyczki:

- Designer edytor graficzny (oparty o GEF Graphical Editing Framework)
   wprowadzający graficzne oznaczenia elementów procesu BPEL.
- Model reprezentacja modelu BPEL (specyfikacja WS-BPEL 2.0) reprezentowana przez model oparty o EMF (Eclipse Modelling Framework).
- Validation operujący na modelu EMF walidator informujący o błędach i ostrzeżeniach dotyczących procesu BPEL, wynikających ze specyfikacji.
- Runtime Framework zestaw narzędzi umożliwiających instalację oraz wykonanie procesu BPEL.
- Debug zestaw narzędzi umożliwiający śledzenie kolejnych kroków wykonywanego procesu oraz dostarczających obsługę przerwań wywołania.

W niniejszej pracy wykorzystywana jest wtyczka Eclipse BPEL Designer w wersji 1.0.3.

### 5.1. Opis interfejsu użytkownika.

Elementy graficznego interfejsu użytkownika i funkcje poszczególnych elementów.









## 5.2. Przykładowy proces BPEL.

Na Rys. 5.1 przedstawiony został przykładowy proces BPEL utworzony przy użyciu Eclipse BPEL Designera, na podstawie procesu rezerwacji wycieczki [2]. W momencie wywołania procesu rezerwacji, zostają mu przekazane informacje dotyczące karty kredytowej, celu oraz okresie podróży. Poprzez wywołanie zewnętrznych usług następuje najpierw sprawdzenie dostępności srodków – na karcie kredytowej, następnie równolegle rezerwacja lotu, hotelu oraz samochodu. Po zakończeniu równoległych przebiegów

do konsumenta usługi trafia żądanie potwierdzenia rezerwacji, po którym zostaje wysłana informacja o poprawnym zakończeniu procesu.



Rys. 5.1 Przykładowy proces BPEL utworzony w Eclipse BPEL Designer – travelBooking

W przedstawionym procesie występują trzy bloki przepisania danych (Assign):

- dataMap1 zawiera instrukcje kopiujące odpowiednie wartości wejściowe procesu do zmiennych będących elementami parametru wywołania usługi checkCreditCard.
- dataMap2 analogicznie do dataMap1 dla usługi checkFlightReservation.
- *dataMap3* analogicznie do *dataMap1* dla usługi *checkHotelReservation*.
- *dataMap4* analogicznie do *dataMap1* dla usługi *checkCarReservation*.

Na Rys. X przedstawiona została konfiguracja instrukcji kopiujących dane na przykładzie bloku przepisywania danych *dataMap1*. Sekcja zawiera listę instrukcji kopiujących opisanych jako para typów (elementu źródłowego oraz elementu docelowego dla instrukcji kopiowania) oraz dwie listy zmiennych o zasięgu nie mniejszym niż aktualnie konfigurowany blok *Assign*. W obu listach *From* oraz *To* zaznaczono zmienne odpowiednio źródłowa i docelowa.



Rys. 3. Sekcja *Properties* bloku przepisywania danych *dataMap1*, zakładka z listą instrukcji kopiujących.

Na Rys. 4. Przedstawiono wygenerowany przez Eclipse BPEL Designer kod w języku BPEL odpowiadający konfiguracji przedstawionej na Rys. 3. dla bloku *dataMap1*.

```
69⊝
            <bpel:assign validate="no" name="dataMap1">
70<u>0</u>
                 <bpel:copy>
71⊝
                     <bpel:from part="input" variable="input">
72⊖
                         <bpel:query queryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0">
73
                             <![CDATA[tns:cardNumber]]>
74
                         </bpel:query>
75
                     </bpel:from>
76⊝
                     <bpel:to part="request" variable="creditCardPLRequest">
                         <bpel:query queryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0">
77⊝
78
                              <![CDATA[ns0:cardNumber]]>
79
                         </brel:query>
                     </bpel:to>
80
81
                 </bpel:copy>
82<sup>©</sup>
                 <bpel:copv>
83<sub>9</sub>
                     <bpel:from part="input" variable="input">
84⊝
                         <bpel:query queryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0">
85
                             <![CDATA[tns:cardType]]>
86
                         </breal:query>
87
                     </bpel:from>
889
                     <bpel:to part="request" variable="creditCardPLRequest">
89⊝
                         <bre><bre>cype1:query queryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0">
90
                              <![CDATA[ns0:cardType]]>
91
                         </bre>
92
                     </bpel:to>
93
                 </bpel:copy>
            </bpel:assign>
```

Rys. 4. Kod BPEL bloku dataMap1.

| υ.          | w tyczka generująca instrukcje kopiujące w biokach przepisania danych. |                    |               |                   |              |         |         |          |         |            |          |                   |
|-------------|------------------------------------------------------------------------|--------------------|---------------|-------------------|--------------|---------|---------|----------|---------|------------|----------|-------------------|
|             | Wprov                                                                  |                    |               |                   |              |         |         | •        |         |            | -        | –<br>rojektowi.   |
| 6.1         | .Kon                                                                   | figuracj           | a wty         | yczki (l          | PDE).        | •       |         |          |         | ======     |          |                   |
|             | Opis                                                                   |                    | acji v        | wtyczki           | pod          | plugin  | Eclipse | e BPEL   | Des     | •          | extensio | ==<br>on points.  |
| 6.2         | ====<br>Trar.                                                          | nsforma            | cja p         | rocesu            | z pos        | staci E | MF d    | o posta  | ci gra  | afu.       |          |                   |
|             | Opis                                                                   |                    | ansfo         | rmacji p          | rocesu       | ı z pos | taci EM | IF do po | staci į | grafu goto | owego d  | ==<br>lo analizy. |
| 6.3         | ====<br>3.Ana                                                          | <br>lizator g      | rafu          | proces            | u.           |         |         |          |         |            |          |                   |
|             | Opis                                                                   |                    |               |                   |              |         |         |          |         | sformacj   |          | ==<br>taci EMF.   |
| <b>6.</b> 4 | ====<br>Graf                                                           | =====<br>ficzny in | ====<br>terfe | =====<br>ejs użyt | ====<br>kowr |         | =====   |          | ====    |            | ==       |                   |
|             | Opis                                                                   | element            |               | •                 | _            | interfe | ejsu u  | iżytkown | ika     |            | nonego   | ==<br>pluginu.    |

| 7. | Testy. |                  |         |           | _            |
|----|--------|------------------|---------|-----------|--------------|
|    | Opis   | przeprowadzonych | testów: | przebieg, | -<br>wyniki. |

| 8.          | Podsumow        | anie.   |         |               |        |         |               |                    |
|-------------|-----------------|---------|---------|---------------|--------|---------|---------------|--------------------|
|             | Ogólne          |         |         | podsum        | owanie |         |               | ==<br>projektu.    |
| <b>8.</b> 1 | <br>l.Napotkan  | e prob  | olemy.  |               |        |         |               |                    |
|             | Problemy,       | z       | którymi | stykano       | się    | podczas | realizacji    | ===<br>projektu.   |
| 8.2         | <br>2.Możliwośc | ci rozv | voju.   |               |        |         |               |                    |
|             | Dalsze pers     | ektyw   |         | projektu, jak |        |         | aąć, co można | ===<br>a ulepszyć. |

# 9. Bibliografia.

- [1] http://www.eclipse.org/bpel/
- $\label{lem:com/infocenter/adiehelp/v5r1m1/index.jsp?topic=\%2Fcom.ibm.etools. \\ ctc.bpel.doc\%2Fsamples\%2Ftravelbooking\%2FtravelBooking.html$

#### 10.Załączniki.

Bla bla bla.

## 10.1. Płyta CD.

Bla bla bla.

Dołączona płyta CD zawiera:

- Zestaw testowy przeznaczony dla kodera/dekodera
- o \*.v pliki poszczególnych modułów kodera/dekodera (Verilog)
- o \*.mif pliki inicjacyjne pamięci ROM modułów kodera/dekodera
- o ldcelp\_encoder\_tester.qar archiwum projektu Quartus II zawierające zestaw testowy kodera
- o ldcelp\_decoder\_tester.qar archiwum projektu Quartus II zawierające zestaw testowy dekodera
- o EncoderUSBReader.java moduł programowy testera kodera odczytujący dane z portu USB i zapisujący je do pliku (Java)
- o DecoderUSBReader.java moduł programowy testera dekodera odczytujący dane z portu USB i zapisujący je
- o do pliku (Java)
- o jd2xx.jar biblioteka procedur komunikacji z układem FT245BM (Java)
- Zestaw wektorów testowych wraz ze stanami wewnętrznymi
- Elektroniczną wersję pracy dyplomowej magisterskiej

#### 10.2. Instrukcja instalacji wtyczki BPELag (BPEL assign generator).

Instrukcja