Übung 8 (Säure/Base/Fällung)

1. Prüfungsaufgabe W2013

a) Vervollständigen Sie die folgende Tabelle, indem Sie die fehlenden Werte für wässrige Lösungen bei 25°C berechnen:

c (H ⁺)	c (OH¯)	pН	рОН	Sauer / basisch?
$7.5 \cdot 10^{-3} \mathrm{M}$				
			5.70	

- b) Am Gefrierpunkt von Wasser (0°C) ist $K_w = 1.2 \cdot 10^{-15}$. Berechnen Sie c (H⁺) und c (OH⁻) in einer neutralen Lösung bei dieser Temperatur.
- c) Um welchen Faktor verändert sich c (H⁺) bei einer Veränderung des pH um 2.00 bzw. 0.50?
- d) Berechnen Sie die pH-Werte der folgenden Lösungen sehr starker Säuren:
 - i) 8.5 · 10⁻³ M HBr
 - ii) eine Mischung aus 10.0 mL HBr (0.100 M) und 20.0 mL HCl (0.200 M).
- 2. Sagen Sie voraus, ob die wässrigen Lösungen der folgenden Verbindungen sauer, basisch oder neutral sind. Welche der Zuordnungen ist falsch?

KNO₃; neutral

NaC₂H₃O₂; basisch

KClO; sauer

NaCN; basisch

 \square Co(NO₃)₂; sauer

3. Prüfungsaufgabe S2014

Die Abbildung zeigt die Titrationskurve von 10 ml Oxalsäure HOOC-COOH (0.1 M) gegen Natronlauge (0.1 M).

Bestimmen Sie den p K_{a2} der Oxalsäure (Genauigkeit $\pm\,0.2$) sowie die pH-Werte der Salze NaOOC-COOH und NaOOC-COONa (Genauigkeit $\pm\,0.5$). Es ist keine Rechnung notwendig.

 $pK_{a2}(H_2C_2O_4)$:

pH (NaHC₂O₄):

pH $(Na_2C_2O_4)$:

4. Prüfungsaufgabe S2012

Bei der Titration von 50 mL HClO-Lösung (0.03 M) mit einer NaOH-Lösung wird folgende Titrationskurve erhalten.

- i) Bestimmen Sie aus der Kurve den pKa-Wert der Säure.
- ii) Welches Volumen NaOH wird bis zum Erreichen des Äquivalenzpunktes benötigt?
- iii) Berechnen Sie die Konzentration der verwendeten NaOH-Lösung.

5. Prüfungsaufgabe W2016

- a) Berechnen Sie die pH-Werte der drei folgenden wässrigen Lösungen (CH₃COOH: $pK_a = 4.75$)
 - i) 0.15 M CH₃COOH (aq)
 - ii) 0.15 M CH₃COONa (aq)
 - iii) Eine wässrige Lösung, die bezüglich CH₃COOH (aq) 0.10 M und bezüglich CH₃COONa (aq) 0.20 M ist.

b) Betrachten Sie die beiden folgenden Säure-Base-Gleichgewichte.

$$NH_3 + H_3O^+ \implies NH_4^+ + H_2O$$
 (I)

$$PH_3 + H_3O^+ \implies PH_4^+ + H_2O$$
 (II)

$$NH_4^+$$
: $pK_a = 9.25$; PH_4^+ : $pK_a = -12$; H_3O^+ : $pK_a = 0$

Auf welcher Seite liegt jeweils das Gleichgewicht? (Lösungen ankreuzen)

	links	rechts
Gleichgewicht I		
Gleichgewicht II		

c) Wird Magnesiumhydroxid $Mg(OH)_2$ ausgefällt, wenn in einer wässrigen Lösung von Magnesiumnitrat mit c ($Mg(NO_3)_2$) = 0.001 M der pH-Wert auf 9.0 eingestellt wird?

$$Mg(OH)_2 \implies Mg^{2+} + 2OH^ L = 5.6 \cdot 10^{-12}$$

6. **Prüfungsaufgabe S2015**

a) Betrachten Sie die Titration einer Probe von 35.0 mL HBr (0.175 M) mit 0.200 M KOH.

HBr ist eine starke Säure.

- i) Berechnen Sie den pH-Wert der verwendeten Säure.
- ii) Geben Sie den pH-Wert am Äquivalenzpunkt an.
- ii) Berechnen Sie den pH-Wert der Lösung nach Zugabe von 10 mL KOH-Lösung.
- iv) Berechnen Sie das benötigte Volumen KOH-Lösung bis zum Äquivalenzpunkt.

b) Bestimmen Sie, ob die folgenden schwerlöslichen Salze in 0.1 M Salpetersäure HNO₃ besser löslich sind als in reinem Wasser. Ergänzen Sie dazu die folgende Tabelle. Kreuzen Sie die richtige Lösung an.

Salz	Besser löslich in HNO ₃ als in Wasser	Nicht besser löslich
BaCO ₃		۵
AgCl		۵
PbI_2	•	
CuS	D	

Gegeben sind folgende p K_a -Werte:

$$HC1: -6 \quad HI: -9 \quad HS^-: 17 \quad HCO_3^-: 10.3 \quad HNO_3: -1.3$$

7. Prüfungsaufgabe W2013

- a) Die molare Löslichkeit von Ag_2CrO_4 beträgt bei 25°C $c(Ag_2CrO_4) = 7.8 \cdot 10^{-5}$ M. Berechnen Sie den Wert des Löslichkeitsproduktes $L(Ag_2CrO_4)$ bei dieser Temperatur.
- b) Berechnen Sie die molare Löslichkeit von AgBr in einer 0.10 M NaBr-Lösung.

$$L \text{ (AgBr)} = 4.0 \cdot 10^{-13}$$

8. Prüfungsaufgabe W2012

Eine Lösung enthält $2 \cdot 10^{-4}$ mol/L Ag^{+} und $1.5 \cdot 10^{-3}$ mol/L Pb^{2+} . Bildet sich bei Zugabe von NaI-Lösung zuerst AgI oder PbI_{2} ? Berechnen Sie für beide Salze die Iodid-Konzentration, ab der sich ein Niederschlag bildet.

$$L(AgI) = 8.3 \cdot 10^{-17}$$

 $L(PbI_2) = 7.9 \cdot 10^{-9}$

9. **Prüfungsaufgabe S2012**

Eine Lösung mit pH = 0.5 enthält 0.15 M Ni²⁺, 0.10 M Co²⁺ und 0.5 M Cd²⁺. Die Lösung wird mit H₂S gesättigt (0.1 M). Fällt aus dieser Lösung NiS, CoS oder CdS aus?

$$L \text{ (NiS)} = 3 \cdot 10^{-21} \text{ ; } L \text{ (CoS)} = 5 \cdot 10^{-22} \text{ ; } L \text{ (CdS)} = 1 \cdot 10^{-28} \text{ ; } H_2\text{S: } pK_{a1} = 7 \text{ ; } pK_{a2} = 14$$