GATE 2015 Examination-31st After Noon

EC: Electronics & Communications Engineering

Duration: 180 minutes Maximum Marks: 100

- 1. To login, enter your Registration Number and password provided to you. Kindly go through the various symbols used in the test and understand their meaning before you start the examination.
- 2. Once you login and after the start of the examination, you can view all the questions in the question paper, by clicking on the **View All Questions** button in the screen
- 3. This question paper consists of **2 sections**, General Aptitude (GA) for **15 marks** and the subject specific GATE paper for **85 marks**. Both these sections are compulsory. The GA section consists of **10** questions. Question numbers 1 to 5 are of 1-mark each, while question numbers 6 to 10 are of 2-mark each. The subject specific GATE paper section consists of **55** questions, out of which question numbers 1 to 25 are of 1-mark each, while question numbers 26 to 55 are of 2-mark each.
- 4. Depending upon the GATE paper, there may be useful common data that may be required for answering the questions. If the paper has such useful data, the same can be viewed by clicking on the **Useful Common Data** button that appears at the top, right hand side of the screen.
- 5. The computer allotted to you at the examination center runs specialized software that permits only one answer to be selected for multiple-choice questions using a mouse and to enter a suitable number for the numerical answer type questions using the virtual keyboard and mouse.
- 6. Your answers shall be updated and saved on a server periodically and also at the end of the examination. The examination will **stop automatically** at the end of **180 minutes**.
- 7. In each paper a candidate can answer a total of 65 questions carrying 100 marks.
- 8. The question paper may consist of questions of multiple choice type (MCQ) and numerical answer type.
- 9. Multiple choice type questions will have four choices against A, B, C, D, out of which only **ONE** is the correct answer. The candidate has to choose the correct answer by clicking on the bubble (()) placed before the choice.
- 10. 10. For numerical answer type questions, each question will have a numerical answer and there will not be any choices. For these questions, the answer should be entered by using the virtual keyboard that appears on the monitor and the mouse.
- 11. All questions that are not attempted will result in zero marks. However, wrong answers for multiple choice type questions (MCQ) will result in **NEGATIVE** marks. For all MCQ questions a wrong answer will result in deduction of 1/3 marks for a 1-mark question and 2/3 marks for a 2-mark question.
- 12. There is NO NEGATIVE MARKING for questions of NUMERICAL ANSWER TYPE
- 13. Non-programmable type Calculator is allowed. Charts, graph sheets, and mathematical tables are **NOT** allowed in the Examination Hall. You must use the Scribble pad provided to you at the examination centre for all your rough work. The Scribble Pad has to be returned at the end of the examination.

Declaration by the candidate:

"I have read and understood all the above instructions. I have also read and understood clearly the instructions given on the admit card and shall follow the same. I also understand that in case I am found to violate any of these instructions, my candidature is liable to be cancelled. I also confirm that at the start of the examination all the computer hardware allotted to me are in proper working condition".

GATE-2015 SET-A(31st After Noon)

GENERAL ABILITY

Q.1-Q.5 Carries 1 Marks eac	O.	.1-0.	5 Car	rries	1	Marks	eac
-----------------------------	----	-------	-------	-------	---	-------	-----

1.	What is the adverb for the given word below? Misogynous:					
	(A) Mis	ogynousn	ess (B) Misogynity	(C) Misogynously	(D) Misogynous	
Sol: (0	C) Misog	yny is a n	oun and its adjective is mis	ogynous and adverb	should be misogynously.	
2.	An elec	tric bus h	as onboard instruments tha	at report the total elec	etricity consumed since the start of	
	the trip	as well a	s the total distance covered	d. During a single da	ay of operation, the bus travels on	
	stretche	s M, N,	O, and P, in that order. Th	ne cumulative distanc	ces traveled and the corresponding	
	electrici	ty consun	nption are shown in the Tab	le below:		
		Stretch	Comulative distance (km)	Electricity used (kW	Vh)	
		M	20	12		
		N	45	25		
		O	75	45		
		P	100	57		
	The stre	tch where	e the electricity consumption	n per km is minimum	is	
	(A) M		· ·	(C) O	(D) P	
Sol:	(D)					
3.	Choose	the word	most similar in meaning to	the given word:		
	Awkwa	rd				
	(A) Inep	ot	(B) Graceful	(C) Suitable	(D) Dreadful	
Sol:	(A) Wor	d AWK w	ord means "Hard to deal w	ith" or person who c	auses inconvenience	
4.	Ram ar	nd Rames	sh appeared in an intervi	ew for two vacanci	es in the same department. The	
	probabil	lity of Ra	m's selection is 1/6 and that	t of Ramesh is 1/8. W	That is the probability that only one	
	of them	will be se	elected?			
	(A) 47/4	18	(B) 1/4	(C) 13/48	(D) 35/48	
Sol: (B)					
_	C1		1/1	1 6		
5.					n below, to complete the following	
			as well as the other team	n members of Indian	team, present on the	
	occasion		(D) was	(C) has	(D) have	
Col. ((A) wer	е	(B) was	(C) has	(D) have	
Sol: (D)					

Q.6-Q.10 Carries 2 Marks each

6. In the following sentence certain parts are underlined and marked P, Q, and r. One of the parts may contain certain error or may not be acceptable in standard written communication. Select the part containing an error. Choose D as your answer if there is no error.

The student corrected all the errors that the instructor marked on the answer book.

P

Q

R

(A) P

(B) O

(C) R

(D) No Error

Sol: (B)

7. A tiger is 50 leaps of its own behind a deer. The tiger takes 5 leaps per minute to the deer's 4. If the tiger and the deer cover 8 metre and 5 metre per leap respectively, what distance in metres will the tiger have to run before it catches the deer?

Sol: (800)

8. Lamenting the gradual sidelining of the arts in school curricula, a group of prominent artists wrote to the Chief Minister last year, asking him to allocate more funds to support arts education in schools. However, no such increase has been announced in this year's Budget. The artists expressed their deep anguish at their request not being approved, but many of them remain optimistic about funding in the future.

Which of the statement(s) below is/are logically valid and can be inferred from the above statements?

- (i) The artists expected funding for the arts to increase this year.
- (ii) The Chief Minister was receptive to the idea of increasing funding for the arts.
- (iii) The Chief Minister is a prominent artist.
- (iv) Schools are giving less importance to arts education nowadays.
- (A) (iii) and (iv)
- (B) (i) and (iv)
- (C) (i), (ii) and (iv)
- (D) (i) and (iii)

Sol: (B)

9. If $a^2 + b^2 + c^2 = 1$, then ab + bc + ac lies in the interval

(A)
$$[1, 2/3]$$

(B)
$$[-1/2,1]$$

(C)
$$[-1,1/2]$$

(D)
$$[2,-4]$$

Sol: (B)

$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab+bc+ac)$$

$$\Rightarrow (a+b+c)^2 = 1+2(ab+bc+ca)$$

$$\therefore (a+b+c)^2 > 0$$

So
$$(ab+bc+ca) > -1/2$$

using AM – GM in equality

(Delhi Based Institute, headed by IES Rank-03 & GATE -Topper)

$$\frac{a^2+b^2}{2} \ge \sqrt{a^2b^2}$$

$$\Rightarrow$$
 $a^2 + b^2 \ge 2ab$

Similarly
$$b^2 + c^2 \ge 2bc$$

$$c^2 + a^2 \ge 2ac$$

$$\Rightarrow$$
 $2(a^2+b^2+c^2) \ge 2(ab+bc+ca)$

$$\therefore \qquad (ab + bc + ca) \le 1$$

Here it will lie in range $\left[-\frac{1}{2}, 1\right]$

10. Given below are two statements followed by two conclusions. Assuming these statements to be true, decide which one logically follows.

Statements:

- I. All film stars are playback singers.
- II. All film directors are film stars.

Conclusions:

- I. All film directors are playback singers.
- II. Some film stars are film directors.
- (A) Only conclusion I follows.
- (C) Neither Conclusion follows
- (B) Only conclusion II follows.
- (D) Both Conclusion-I and II follows

Sol: (D)

GATE-2015 SET-A(31st After Noon)

ELECTRONICS AND COMMUNICATION ENGINEERING-EC

Q.1-Q.25 Carries 1 Marks each

1. The value of x for which all the Eigen-values of the matrix given below are real is

$$\begin{bmatrix} 10 & 5+j & 4 \\ x & 20 & 2 \\ 4 & 2 & -10 \end{bmatrix}$$
(A) $5+j$ (B) $5-j$ (C) $1-5j$ (D) $1+5j$

Sol: (B) Matrix should be Hermetian Matrix $A = (A^*)^T$

Ref: Mathematics Class Notes

Transpose conjugate of a Matrix
$$[A'']$$

$$A^{0} = (A') = (A)'$$
If $A = [aij]_{m \times n}$, then $A^{0} = aij [aji]_{n \times m}$

$$A^{0} \text{ for above } z \begin{bmatrix} -i & -2i \\ 3+2i & 5-2i \end{bmatrix}$$
1. Hernitian Matrix: Any matrix A is said to be Hernitian, if and only

- 2. In an 8085 microprocessor, which one of the following instructions changes the content of the accumulator?
 - (A) MOV B,M
- (B) PCHL
- (C) RNZ
- (D) SBI BEH

Sol: (D)

- 3. Let $f(z) = \frac{az+b}{cz+d}$. If $f(z_1) = f(z_2)$ for all $z_1 \neq z_2$, a = 2, b = 4 and c = 5, then d should be equal to Sol: (10)
- 4. A mod-n counter using a synchronous binary up-counter with synchronous clear input is shown in the figure. The value of n is _____.

Sol: (6)

Here $Q_DQ_CQ_BQ_A$ should be 0110 so it should be MOD-6 Counter

PANACEA PANACEA IES/GATE INSTITUTE (Delhi Based Institute, headed by IES Rank-03 & GATE -Topper)

5. The 2-port admittance matrix of the circuit shown is given by

Sol: (A)

Ref: PANACEA Network Class Notes Page No.111

- 6. Let the signal f(t) = 0 outside the interval $[T_1, T_2]$, where T_1 and T_2 are finite. Furthermore,
 - $|f(t)| < \infty$. The region of convergence (ROC) of the signal's bilateral Laplace transform F(s) is
 - (A) a parallel strip containing the $j\Omega$ axis
- (B) a parallel strip not containing the $j\Omega$ axis

(C) the entire s-plane

(D) a half plane containing the $i\Omega$ axis

Sol: (C)

Ref: PANACEA Signal System Class Notes Page No.230

Rules	for calculation of ROC		(A) NST
ROC è	& XIS) depends upon na	time of x (t) tu	e, it is assur
that	X(s) is the sational for	metion of s.	
The second second second second	does not contains any po		
4 2	elt) is a finite duration	o signal. Hum	ROC will be
	3-plane except possi		

- 7. The general solution of the differential equation $\frac{dy}{dx} = \frac{1 + \cos 2y}{1 \cos 2x}$ is
 - (A) $\tan y \cot x = c$ (c is a constant)
- (B) $\tan x \cot y = c$ (c is a constant)
- (C) $\tan y + \cot x = c$ (c is a constant)
- (D) $\tan x + \cot y = c$ (c is a constant)

Sol: (C)

$$\frac{dy}{dx} = \frac{1 + \cos 2y}{1 - \cos 2x} = \frac{\cos^2 y}{\sin^2 x}$$

$$\int \sec^2 y \, dy = \int \csc^2 x \, dx$$

$$\tan y = -\cot x + c$$

$$\Rightarrow \tan y + \cot x = c$$

Ref: Basic Question

8. In the circuit shown, $V_0 = V_{0A}$ for switch SW in position A and $V_0 = V_{0B}$ for SW in position B. Assume that the opamp is ideal. The value of $\frac{V_{0B}}{V_{0A}}$ is ______.

Sol: (1.5)

Ref: Exactly same type of Qs were discussed on Page No. 217 in Analog class notes

9. An n-type silicon sample is uniformly illuminated with light which generates 10²⁰ electron-hole pairs per cm³ per second. The minority carrier lifetime in the sample is 1 μs. In the steady state, the hole concentration in the sample is approximately 10^x, where x is an integer. The value of x is _____.

Sol: (14)
$$\frac{dp}{dt} = \frac{p - p_0}{\tau_p} \Rightarrow 10^{20} = \frac{10^x}{10^{-6}}$$
 so here x=14

Ref: On Page No. 41 in EDC class notes of PANACEA Notes

at t20; No temp. is increas	я.	
dt to		
: g = po	po 2 cone of holes in	
L Cp 1	n-type before	_
$\frac{dp}{dr} = \frac{p_0 - p}{\tau_p}$	Increasing the temp.	

10. If the circuit shown has to function as a clamping circuit, then which one of the following conditions should be satisfied for the sinusoidal signal of period T?

- (A) $RC \ll T$
- (B) RC = 0.35 T
- (C) $RC \approx T$
- (D) $RC \gg T$

(Delhi Based Institute, headed by IES Rank-03 & GATE -Topper)

Sol: (D) For a Clamper circuit RC values are designed in such a manner that it will not discharge for 5 time cycles.

Ref: On Page No. 163 in EDC class notes of PANACEA Notes

conect	R value is relect	ed in such a manner such that capacitor C
		atleast for 5 Time constants.
	Ven	· 340
	27 _m	A STEP
		NA STATE

11. In a source free region in vacuum, if the electrostatic potential $\varphi = 2x^2 + y^2 + cz^2$, the value of constant c must be

Sol: (-3)
$$\phi = 2x^2 + y^2 + cz^2$$

 $E = -\nabla \phi = -4x \vec{a}_x - 2y \vec{a}_y - 2cz \vec{a}_z$
 $\nabla \cdot \vec{E} = 0 \implies -4 - 2 - 2c = 0 \implies -2c = 6 \therefore (c = -3)$

Ref: Exact same concept Question on Page-17 of Electrometric Theory Class Notes

-	$\nabla \cdot \vec{E} = 0$, $\nabla \times \vec{E} = D$	
2)	$\nabla \cdot \vec{\epsilon} \neq 0$, $\nabla \times \vec{\epsilon} = 0$ \rightarrow	Electrostatic field is region with charge
3)	$\nabla \cdot \vec{B} = 0$, $\nabla \times \vec{B} \neq 0$ \rightarrow	Magnetostatic field in current carrying conductor.

12. In the circuit shown, the average value of the voltage V_{ab} (in Volts) in steady state condition is _____.

Sol: (5) In steady state 5 Volt DC will appear across capacitor and its average value will be 5 V only While in case of Average value across capacitor due to AC source will be zero hence it shd be 5 V only.

9

PANACEA PANACEA IES/GATE INSTITUTE (Delhi Based Institute, headed by IES Rank-03 & GATE -Topper)

13. In the figure shown, the output Y is required to be $Y = AB + \overline{CD}$. The gates G1 and G2 must be, respectively,

- (A) NOR, OR
- (B) OR, NAND
- (C) NAND, OR
- (D) AND, NAND

Sol: (A)

14. The signal $\cos\left(10\pi t + \frac{\pi}{4}\right)$ is ideally sampled at a sampling frequency of 15 Hz. The sampled signal

is passed through a filter with impulse response $\left(\frac{\sin\left(\pi t\right)}{\pi t}\right)\cos\left(40\pi t-\frac{\pi}{2}\right)$. The filter output is

(A) $\frac{15}{2}\cos\left(40\pi t - \frac{\pi}{4}\right)$

(B) $\frac{15}{2} \left(\frac{\sin(\pi t)}{\pi t} \right) \cos \left(10\pi t + \frac{\pi}{4} \right)$

(C) $\frac{15}{2}\cos\left(10\pi t - \frac{\pi}{4}\right)$

(D) $\frac{15}{2} \left(\frac{\sin(\pi t)}{\pi t} \right) \cos\left(40\pi t - \frac{\pi}{2} \right)$

Sol: (A)

Ref: Exact same concept Question on Page-165 of Communication Theory Class Notes

$S(t) = c(t) \cdot m(t)$	T. MOTIO
mlt) —	s(t) = m(t) c(t)
(U) —	
$\frac{s(t) = dt m(t) + 2d}{T_s}$	t m(t) $\left[C, \cos \left(\frac{2\pi t}{T_s} \right) + C_2 \cos \left(\frac{4\pi t}{T_s} \right) + \right]$
Slt) = dt mlt) + 2dt n	111) $(\cos(2\pi t) + 2dt m(t) = \cos(4\pi t)$ Ts
fm +	fs ± fm 24s ± fm

15. A unity negative feedback system has an open-loop transfer function $G(s) = \frac{k}{s(s+10)}$. The gain k

for the system to have a damping ratio of 0.25 is _____

Sol: (400)

$$G(s) = \frac{k}{s(s+10)}$$

$$1+G(s)=0 \implies s^2+10s+k=0$$

$$2\{\omega_n = 10 \implies \omega_n = 200$$

$$k = \omega_n^2 = 400$$

Ref: Exact many same concept questions discussed. Very easy question

16. For the signal flow graph shown in the figure, the value of $\frac{C(s)}{R(s)}$ is

$$\text{(A)} \ \frac{G_{1}G_{2}G_{3}G_{4}}{1 - G_{1}G_{2}H_{1} - G_{3}G_{4}H_{2} - G_{2}G_{3}H_{3} + G_{1}G_{2}G_{3}G_{4}H_{1}H_{2}}$$

(B)
$$\frac{G_1G_2G_3G_4}{1+G_1G_2H_1+G_3G_4H_2+G_2G_3H_3+G_1G_2G_3G_4H_1H_2}$$

(C)
$$\frac{1}{1 + G_1 G_2 H_1 + G_3 G_4 H_2 + G_2 G_3 H_3 + G_1 G_2 G_3 G_4 H_1 H_2}$$

(D)
$$\frac{1}{1 - G_1 G_2 H_1 - G_3 G_4 H_2 - G_2 G_3 H_3 + G_1 G_2 G_3 G_4 H_1 H_2}$$

Sol: (B)

17. The voltage (V_C) across the capacitor (in Volts) in the network shown is _____

Sol:
$$(-20)$$
 $(100)^2 = (80)^2 + (V_c - 40)^2$

ACEA IES/GATE INSTI

(Delhi Based Institute, headed by IES Rank-03 & GATE -Topper)

$$\Rightarrow$$
 $V_c = +100 \text{ or } -20$

But Capacitor will have opposite polarity voltage.

Ref: Exact same concept Question on Page-58 class notes of Network Theory

Calculation	of	veltage	in	RLC
-------------	----	---------	----	-----

VR)2+ (|VLI-1Vc|)2

18. By performing cascading and/or summing/differencing operations using transfer function blocks $G_1(s)$ and $G_2(s)$, one CANNOT realize a transfer function of the form

(A)
$$G_1(s)G_2(s)$$

(B)
$$\frac{G_1(s)}{G_2(s)}$$

(C)
$$G_1(s) \left(\frac{1}{G_1(s)} + G_2(s) \right)$$

(D)
$$G_1(s) \left(\frac{1}{G_1(s)} - G_2(s) \right)$$

Sol: (B)

The bilateral Laplace transform of a function $f(t) = \begin{cases} 1 & \text{if } a \le t \le b \\ 0 & \text{otherwise} \end{cases}$ is 19.

(A)
$$\frac{a-b}{s}$$

(B)
$$\frac{e^{s}(a-b)}{s}$$

(B)
$$\frac{e^{s}(a-b)}{c}$$
 (C) $\frac{e^{-as}-e^{-bs}}{c}$ (D) $\frac{e^{s(a-b)}}{c}$

(D)
$$\frac{e^{s(a-b)}}{s}$$

Sol: (C)

A piece of silicon is doped uniformly with phosphorous with a doping concentration of 10¹⁶ / cm³. 20. The expected value of mobility versus doping concentration for silicon assuming full dopant ionization is shown below. The charge of an electron is 1.6×10^{-19} C. The conductivity (in S cm⁻¹) of the silicon sample at 300K is

(Delhi Based Institute, headed by IES Rank-03 & GATE -Topper)

Sol: (1.92)

21. The electric field of a uniform plane electromagnetic wave is

$$\vec{E} = (\vec{a}_x + j4\vec{a}_y) \exp \left[j(2\pi \times 10^7 t - 0.2z) \right].$$

The polarization of the wave is

(A) right handed circular

(B) right handed elliptical

(C) left handed circular

(D) left handed elliptical

Sol: (D) Ref: Exactly same type of Question were discussed on Page No. 90&91 in EMT class notes

PANACEA IES/GATE INSTITUTE

(Delhi Based Institute, headed by IES Rank-03 & GATE -Topper)

22. Two causal discrete-time signals x[n] and y[n] are related as $y[n] = \sum_{m=0}^{n} x[m]$.

If the z-transform of y[n] is $\frac{2}{z(z-1)^2}$, the value of x[2] is ______.

Sol: (0)
$$X(z) = \frac{2}{z(z^2 - 1)^2}$$

 $X(z) = \frac{2}{z \cdot (z + 1)^2 (z - 1)^2} = \frac{2}{z \cdot z^4 (1 - z^{-2})^2} = \frac{2}{z^5} [1 - z^{-2}]^{-2}$
 $= \frac{2}{z^5} [1 + 2z^{-2} + \frac{(-2)(-3)}{2}(-z^{-2})^2 + \frac{-2x - 3x - 4}{3}(-z^2)^3 + \frac{-2x - 3x - 4x - 5}{4}(-z^2)^4 - \cdots]$

As no coefficient of z^{-2} exists so x[2] = 0.

Ref: Same concept Qs were discussed on Page-264 in Signal&System class notes

23. A sinusoidal signal of amplitude A is quantized by a uniform Quantizer. Assume that the signal utilizes all the representation levels of the Quantizer. If the signal to quantization noise ratio is 31.8 dB, the number of levels in the Quantizer is _____.

Sol: (32) $L = 32 \rightarrow It$ is not mentioned what type of message signal so assume that it is sinusoidal signal SNR(in dB) = 1.76 + 6n

$$\therefore n = 5 \rightarrow L = 2^5 = 32$$

(Delhi Based Institute, headed by IES Rank-03 & GATE -Topper)

Ref: Exact same concept Question on Page-196 class notes of Communication system.

24. The magnitude and phase of the complex Fourier series coefficients a_k of a periodic signal x(t) are shown in the figure. Choose the correct statement from the four choices given. Notation: C is the set of complex numbers, R is the set of purely real numbers, and P is the set of purely imaginary

numbers.

(A)
$$x(t) \in R$$

(B)
$$x(t) \in P$$

(C)
$$x(t) \in (C-R)$$
 (D) the information given is not sufficient to draw any conclusion about $x(t)$

Sol: (A)
$$x(t) = 2(3e^{-j\pi} + 2e^{-j\pi}) = 2$$
 which is real

25. In the bitable circuit shown, the ideal opamp has saturation levels of $\pm 5V$. The value of R_1 (in $k\Omega$) that gives a hysteresis width of 500 mV is _____.

Sol: (1)

$$V_{H} = \frac{2R_{2}V_{sat}}{R_{2} + R_{1}} \Rightarrow 0.5 = \frac{2R_{1} \times 5}{20 + R_{1}} \Rightarrow R_{1} = 1K$$

Ref: Exact same concept Question on Page-264 class notes of Analog electronics

PANACEA IES/GATE INSTITUTE

(Delhi Based Institute, headed by IES Rank-03 & GATE -Topper)

		W	nates effective	- MC			
ð	VH Z	UTP - L			PANAO	00	0
	z	2-62	. Vsat	100	Ven Sp	1	
		(R1+ R2	<u>,</u>	(8)	Delhi-16)	7 -	

Q.26-Q.55 Carries 2 Marks each

26. Consider the differential equation $\frac{dx}{dt} = 10 - 0.2x$ with initial condition x(0) = 1. The response x(t)

for t > 0 is

- (A) $2 e^{-0.2t}$
- (B) $2 e^{0.2t}$
- (C) $50-49e^{-0.2t}$
- (D) $50-49e^{0.2t}$

Sol: (C) Basic Q

27. An air-filled rectangular waveguide of internal dimensions $a \text{ cm} \times b \text{ cm}(a > b)$ has a cutoff frequency of 6 GHz for the dominant TE₁₀ mode. For the same waveguide, if the cutoff frequency of the TM₁₁ mode is 15 GHz, the cutoff frequency of the TE₀₁ mode in GHz is _____.

Sol: (13.75) Directly Formula based Q

28. Consider two real sequences with time-origin marked by the bold value,

$$x_1[n] = \{1, 2, 3, 0\}, x_2[n] = \{1, 3, 2, 1\}$$

Let $x_1(k)$ and $x_2(k)$ be 4-point DFTs of $x_1[n]$ and $x_2[n]$, respectively.

Another sequence $x_3[n]$ is derived by taking 4-point inverse DFT of $X_3(k) = X_1(k)X_2(k)$.

The value of $x_3[2]$ is _____.

Sol: (11) Ref: Exact same concept Question on Page-202 class notes of Signal system

CIRCULAR CONVOLUTION	*
$x[n] = \{1, 3, 2, -4, 6\},$ $w_{\mathbf{g}}[n] = \{5, 4, 3, 2, 1\}$	New Delhi-se)
$= \times (n) \otimes h(n) \longrightarrow \sum_{m=0}^{N-1} \times (m)$) h[n-m] meet N
z[m] = {1,3,2,-4,63	
h[-m] = 11, 2, 3, 4, 5 }	
of there are N points in AFT, than values in the output. y[0] = 5 x(m) h[0-m) mous	The same of the sa
h[0-m] mods = { 5, 1, 2, 3	5. 43
$h[1-m]_{most 5} = \{4, 5, 1, 2$	
h[2-m) mods = { 3, 4, 5, 1	
	##
(613-m), (62)	. 1 4
$h[3-m]_{mods} = \{2, 3, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,$	
$h[3-m]_{mods} = [2, 3, 4, 5]$ $h[4-m]_{mods} = [1, 2, 3, 4]$ y[0] = 24 $y[1] = 31$, 5 }

29. In the circuit shown, the initial voltages across the capacitors C_1 and C_2 are 1 V and 3 V, respectively. The switch is closed at time t = 0. The total energy dissipated (in Joules) in the resistor R until steady state is reached, is ______.

Sol: (1.5)

$$U_{i} = \frac{1}{2}C_{1}V_{1}^{2} + \frac{1}{2}C_{2}V_{2}^{2} = \frac{1}{2} \times 3 \times 1 + \frac{1}{2} \times 1 \times 9 = 6J$$

$$U_{f}-U_{i}=1.5$$

In steady both Capwill HaveV = $\frac{C_1V_1 + C_2V_2}{C_1 + C_2} = \frac{6}{4} = 1.5$

$$U_f = \frac{1}{2}C_1V^2 + \frac{1}{2}C_2V^2 = \frac{2.25}{2}(1+3) = 4.5$$

30. In a MOS capacitor with an oxide layer thickness of 10 nm, the maximum depletion layer thickness is 100 nm. The permittivities of the semiconductor and the oxide layer are ε_s and ε_{ox} respectively. Assuming $\varepsilon_s/\varepsilon_{ox}=3$, the ratio of the maximum capacitance to the minimum capacitance of this MOS capacitor is ______.

Sol: (4.33)
$$C_{ox}(max) = \frac{\varepsilon_{si02}}{t_{ox}}$$

$$C_{min} = C_{ox} \text{ series } C_{D} = \frac{\frac{\varepsilon_{si02}}{t_{ox}} \cdot \frac{\varepsilon_{si}}{d}}{\frac{\varepsilon_{si02}}{t_{ox}} + \frac{\varepsilon_{si}}{d}} \qquad C_{min} = \frac{\varepsilon_{sio2} \cdot \varepsilon_{si}}{d \varepsilon_{si02} + t_{ox} \cdot \varepsilon_{si}}$$

$$\frac{C_{\text{max}}}{C_{\text{min}}} = \frac{d \ \varepsilon_{\text{si}02} + t_{\text{ox}} \cdot \varepsilon_{\text{si}}}{\varepsilon_{\text{si}} \cdot t_{\text{ox}}} = \frac{d}{t_{\text{ox}}} \cdot \frac{\varepsilon_{\text{si}02}}{\varepsilon_{\text{si}}} + 1$$
$$= 1 + \frac{100}{10} \times \frac{1}{3} = \frac{130}{30} = \frac{13}{3} = (4.33)$$

(Delhi Based Institute, headed by IES Rank-03 & GATE -Topper)

Ref: Exactly same concept was discussed on Page No. 318 in EDC class notes

+ Accumulation > + Supletion -> + Inversion ----

Accumulation Mode: In this mode, only capacitance will be oxide capacitance with the oxide capacitance in this case.

Cg = Cox = 6sion to capacitance in this

Depletion mode: There is a formation of Depletion layer, so,

there will be exide capacitance and depletion capacitance.

and overall value of fox and Cd will be.

Cg = Cox Cd | | | | | | |

Cox + Cd | Cox Cd | | | | | |

31. Input x(t) and output y(t) of an LTI system are related by the differential equation y''(t)-y'(t)-6y(t)=x(t). If the system is neither causal nor stable, the impulse response h(t) of the system is

(A)
$$\frac{1}{5}e^{3t}u(-t)+\frac{1}{5}e^{-2t}u(-t)$$

(B)
$$-\frac{1}{5}e^{3t}u(-t)+\frac{1}{5}e^{-2t}u(-t)$$

(C)
$$\frac{1}{5}e^{3t}u(-t)-\frac{1}{5}e^{-2t}u(t)$$

(D)
$$-\frac{1}{5}e^{3t}u(-t)-\frac{1}{5}e^{-2t}u(t)$$

Sol: (B) $H(s) = \frac{1}{(s-3)(s+2)} = \frac{1}{5(s-3)} - \frac{1}{5(s+2)}$

Since it is neither causal nor stable so ROC can't be right of the right most pole and also does not include jw axis—so only possible ROC is $Re\{s\} < -2$

(Delhi Based Institute, headed by IES Rank-03 & GATE -Topper)

so
$$h(t) = -\frac{1}{5}e^{3t}u(-t) + \frac{1}{5}e^{-2t}u(-t)$$

32. If C denotes the counterclockwise unit circle, the value of the contour integral

$$\frac{1}{2\pi j} \! \oint_C \! Re \! \left\{ z \right\} \! dz$$

is _____

Sol: (0) $\mathbf{Re}\{\mathbf{z}\} = \frac{\mathbf{Z} + \mathbf{Z}}{2}$ which is not analytic function hence this value should be zero

33. A zero mean white Gaussian noise having power spectral density $\frac{N_0}{2}$ is passed through an LTI filter whose impulse response h(t) is shown in the figure. The variance of the filtered noise at t = 4 is

(A)
$$\frac{3}{2}$$
 A²N₀

(B)
$$\frac{3}{4}$$
A²N₀

(C)
$$A^2N_0$$

(D)
$$\frac{1}{2}A^2N_0$$

Sol: (A) $\delta_{xx} = \frac{N_0}{2} \& E[y] = E[x] . \int_{0}^{\infty} h(t) dt = 0$

$$R_{yy}(\tau) = R_{xx}(\tau) \otimes h(t) \otimes h(-t)$$

Here
$$R_{xx}(\tau) = \frac{N_0}{2}\delta(t)$$

$$z(t) = h(t) \otimes h(-t) = \int_{-\infty}^{\infty} h(\tau) h(-(t-\tau)) d\tau$$

Then
$$R_{yy}(\tau) = R_{xx}(\tau) \otimes h(t) \otimes h(-t)$$

$$z(0) = \int_{-\infty}^{\infty} (h(\tau)) d\tau = \int_{0}^{3} A^{2} d\tau \quad z(0) = A^{2} \times 3$$

$$R_{_{yy}}\left(0\right) = \frac{3}{2}A^2N_0 = E\left[Y^2\right] \qquad \qquad \sigma_{_{Y^2}} = E\left[Y^2\right] - \left[\bar{Y}\right]^2 = E\left[Y^2\right] = \frac{3}{2}A^2N_0$$

Ref: Exactly same concept Many Qs were discussed in Random Variable 35-40 class notes

(Delhi Based Institute, headed by IES Rank-03 & GATE -Topper)

$$E[Y(t)] = E[X(t)].$$
 | h(t) dt

$$R_{yy}(t) = R_{xx}(t) \otimes h(t) \otimes h(-t)$$

34. For the voltage regulator circuit shown, the input voltage (V_{in}) is $20V\pm20\%$ and the regulated output voltage (V_{out}) is 10 V. Assume the opamp to be ideal. For a load R_L drawing 200 mA, the maximum power dissipation in Q_1 (in Watts) is ______.

Sol: (2.66) $V_{max} = 24 \& V_0 = 10 \Rightarrow V_{CE} = 14$ here if you will take

 $P_D = V_{CE} \times I_L = 14 \times 0.2 = 2.8 \text{w}(Wrong \text{ answer})$

$$P_D = V_{CB} \times I_C = (14 - 0.7)V \times (200 + 0.4)mA = 2.6652W$$

Ref: Exactly same concept Qs Asked in GATE paper and discussed in class.

35. Let $X \in \{0,1\}$ and $Y \in \{0,1\}$ be two independent binary random variables. If P(X=0)=p and P(Y=0)=q, then $P(X+Y\ge 1)$ is equal to

(A)
$$pq + (1-p)(1-q)$$

(C)
$$p(1-q)$$

Sol: (D) $P\{X+Y \ge 1\} = 1 - P\{X+Y < 1\}$

only one case is left

$$X = 0 & Y = 0$$

So
$$P\{X+Y\} < 1 = pq$$

$$P\{X+Y\} \ge 1 = 1 - pq$$

Ref: Exactly same concept Qs Asked in Previous GATE paper and discussed in class.

(Delhi Based Institute, headed by IES Rank-03 & GATE -Topper)

36. The transfer function of a mass-spring-damper system is given by

$$G(s) = \frac{1}{Ms^2 + Bs + K}$$

The frequency response data for the system are given in the following table.

ω in rad/s	$ G(j\omega) $ in dB	$arg(G(j\omega))$ in deg
0.01	-18.5	-0.2
0.1	-18.5	-1.3
0.2	-18.4	-2.6
1	-16	-16.9
2	-11.4	-89.4
3	-21.5	-151
5	-32.8	-167
10	-45.3	-174.5

The unit step response of the system approaches a steady state value of _____

Sol: (0.398)
$$e_{ss} = \frac{1}{K} \text{ where } G(s) = \frac{1}{Ms^2 + Bs + K}$$

Value of K can be solved by using concept of Bode Plot:

37. Let the random variable X represent the number of times a fair coin needs to be tossed till two consecutive heads appear for the first time. The expectation of x is ______.

Sol: (1.5)
$$E[X] = \sum_{i=1}^{N} x_i p(x_i) = 1 \times 0.5 + 2 \times 0.5 = 1.5$$

38. The state variable representation of a system is given as

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix} \mathbf{x}; \ \mathbf{x}(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$y = \begin{bmatrix} 0 & 1 \end{bmatrix} x$$

The response y(t) is

- (A) sin(t)
- (B) $1 e^{t}$
- (C) $1-\cos(t)$
- (D) 0

Sol: (D)

39. An LC tank circuit consists of an ideal capacitor C connected in parallel with a coil of inductance L having an internal resistance R. The resonant frequency of the tank circuit is

(A)
$$\frac{1}{2\pi\sqrt{LC}}$$

(B)
$$\frac{1}{2\pi\sqrt{LC}}\sqrt{1-R^2\frac{C}{L}}$$

(C)
$$\frac{1}{2\pi\sqrt{LC}}\sqrt{1-\frac{L}{R^2C}}$$

(D)
$$\frac{1}{2\pi\sqrt{LC}}\left(1-R^2\frac{C}{L}\right)$$

ACEA IES/GATE INSTI

(Delhi Based Institute, headed by IES Rank-03 & GATE -Topper)

Sol: (B)

This Q can be solved by use of short trick method very easily.

Ref: Exactly same Os was discussed in class notes of Network Page No. 149

40. The electric field of a plane wave propagating in a lossless non-magnetic medium is given by the following expression

$$E(z,t) = a_x 5\cos(2\pi \times 10^9 t + \beta z) + a_y 3\cos(2\pi \times 10^9 t + \beta z - \frac{\pi}{2})$$

The type of the polarization is

(A) Right Hand Circular.

(B) Left Hand Elliptical.

(C) Right Hand Elliptical.

(D) Linear.

Sol : (B)

41. The output of a standard second-order system for a unit step input is given as

$$y(t) = 1 - \frac{2}{\sqrt{3}}e^{-t}\cos\left(\sqrt{3}t - \frac{\pi}{6}\right)$$
. The transfer function of the system is

(A)
$$\frac{2}{(s+2)(s+\sqrt{3})}$$
 (B) $\frac{1}{s^2+2s+1}$ (C) $\frac{3}{s^2+2s+3}$ (D) $\frac{4}{s^2+2s+4}$

(C)
$$\frac{3}{s^2 + 2s + 3}$$

(D)
$$\frac{4}{s^2 + 2s + 4}$$

(Delhi Based Institute, headed by IES Rank-03 & GATE -Topper)

Sol: (D)

Compare with equation

$$C(t) = 1 - \frac{e^{-\xi \omega_n t}}{\sqrt{1 - \xi^2}} \sin(\omega dt + \phi) = 1 - \frac{2}{\sqrt{3}} e^{-t} \sin\left(\sqrt{3}t + \frac{\pi}{3}\right)$$

$$w_{_d} = \sqrt{3} \qquad \qquad \phi = 60^o$$

$$\cos \phi = \xi \implies (\xi = 0.5)$$
 here $(\omega_n = 2)$

Second order transfer function is
$$\frac{{\omega_n}^2}{s^2 + 2\xi \omega_n s + {\omega_n}^2} = \frac{4}{s^2 + 2s + 4}$$

Ref: Based upon very basic equation of control system

42. Let x(t) = as(t) + s(-t) with $s(t) = \beta e^{-4t}u(t)$, where u(t) is unit step function. If the bilateral Laplace transform of x(t) is

$$X(s) = \frac{16}{s^2 - 16} - 4 < Re\{s\} < 4;$$

then the value of β is _____.

Sol: (-2)

43. The diode in the circuit given below has $V_{ON} = 0.7 \, \text{V}$ but is ideal otherwise. The current (in mA) in the $4 \, \text{k}\Omega$ resistor is

Sol: (0.6) Since it is Wheat stone bridge

$$I = \frac{1 \times 9}{9 + 6} = \frac{9}{15} = 0.6 \,\text{mA}$$

44. Two half-wave dipole antennas placed as shown in the figure are excited with sinusoidally varying currents of frequency 3 MHz and phase shift of $\pi/2$ between them (the element at the origin leads in phase). If the maximum radiated E-field at the point P in the x-y plane occurs at an azimuthal angle of 60°, the distance d (in meters) between the antennas is ______.

Sol: (50)
$$\psi = \beta d \cos \phi + \delta$$
 Here $0 = \frac{2\pi}{\lambda} d \cos 60 - \frac{\pi}{2} \Rightarrow d = \frac{\lambda}{2} = 50$ meter

Ref: Exact formula and concept was discussed on Page No. 166 in EMT class notes

Antenna anay is used to increase directivity in a desired direction. It is a set of 2 or more antenna which are combined to improve performance over single antenna.

Y = Bd cos \$\phi\$ + \$\frac{1}{2}\$

Y is the angle by Electric field

produced by antenna D and D.

\$\phi\$ = Angle from anay axis
\$\pri\$ = Requisive phase shift in \$\phi\$

45. A dc voltages of 10 V is applied across an n-type silicon bar having a rectangular cross-section and a length of 1 cm as shown in figure. The donor doping concentration N_D and the mobility of electrons μ_n are 10^{16} cm^{-3} and $1000 \text{cm}^2 \text{V}^{-1} \text{s}^{-1}$, respectively. The average time (in μ s) taken by the electrons to move from one end of the bar to other end is ______.

Sol: (100)
$$E = \frac{10}{10^{-2}} = 10^3 (v/m)$$

So
$$v = \mu E = \frac{1000 \text{ cm}^2}{\text{y/sec}} \times \frac{10^3 \text{y/}}{\text{meter}}$$
 $v = 10^4 \text{ cm/sec}$

$$d = v \cdot \tau \quad \Rightarrow \quad 1 \, cm = \frac{10^4 \, cm}{sec} \times \tau \qquad \tau = 10^{-4} \, sec = 100 \; \mu \, sec$$

Ref: Exactly same type of Q was discussed on Page No. 34 in EDC class notes

46. $\left\{X_n\right\}_{n=-\infty}^{n=\infty}$ is an independent and identically distributed (i.i.d.) random process with X_n equally likely to be +1 or $-1.\left\{Y_n\right\}_{n=-\infty}^{n=\infty}$ is another random process obtained as $Y_n = X_n + 0.5X_{n-1}$. The autocorrelation function of $\left\{Y_n\right\}_{n=-\infty}^{n=\infty}$, denoted by $R_Y[k]$ is

Sol: (C) Just calculate the value of Cross correlation by using concept of Convolution.

47. The figure shows a binary counter with synchronous clear input. With the decoding logic shown, the counter works as a

(Delhi Based Institute, headed by IES Rank-03 & GATE -Topper)

- (A) mod-2 counter
- (B) mod-4 counter
- (C) mod-5 counter
- (D) mod-6 counter

Sol: (B) Output of EX-NOR should be Zero and so $Q_3Q_2Q_1Q_0$ should be 0100 which is nothing but zero

In the ac equivalent circuit shown, the two BJTs are biased in active region and have identical 48. parameters with $\beta >> 1$. The open circuit small signal voltage gain is approximately _

Sol: (-1) Base and collector are connected so that it work like on diode.

$$v_o - 0 = -0.7$$
 \Rightarrow $v_o = -0.7$

$$v_i - 0 = 0.7$$
 \Rightarrow $v_i = 0.7$

So
$$\left(\frac{v_o}{v_i} = -1\right)$$

Ref: Questions on similar concept were given in test series.

49. A function of Boolean variables X, Y and Z is expressed in terms of the min-terms as $F(X,Y,Z) = \sum (1,2,5,6,7)$

Which one of the product of sums given below is equal to the function F(X, Y, Z)?

$$\text{(A)} \left(\overline{X} + \overline{Y} + \overline{Z} \right) \cdot \left(\overline{X} + Y + Z \right) \cdot \left(X + \overline{Y} + \overline{Z} \right)$$

(B)
$$(X+Y+Z)\cdot(X+\overline{Y}+\overline{Z})\cdot(\overline{X}+Y+Z)$$

$$(C) \left(\overline{X} + \overline{Y} + Z\right) \cdot \left(\overline{X} + Y + \overline{Z}\right) \cdot \left(X + \overline{Y} + Z\right) \cdot \left(X + Y + \overline{Z}\right) \cdot \left(X + Y + Z\right)$$

(D)
$$(X+Y+\overline{Z})\cdot(\overline{X}+Y+Z)\cdot(\overline{X}+Y+\overline{Z})\cdot(\overline{X}+\overline{Y}+Z)\cdot(\overline{X}+\overline{Y}+\overline{Z})$$

Sol: (B)

50. The energy band diagram and the electron density profile n(x) in a semiconductor are shown in the figures. Assume that $n(x) = 10^{15} e^{\left(\frac{qa\,x}{kT}\right)} cm^{-3}$, with a = 0.1 V/cm and x expressed in cm. Given $\frac{kT}{q} = 0.026\,V$, $D_n = 36\,cm^2s^{-1}$, and $\frac{D}{\mu} = \frac{kT}{q}$. The electron current density (in A/cm²) at x = 0 is

Sol: (B)

$$J_{n}(x) = qD_{n} \frac{dn}{dx} = 10^{15} \times qD_{n} \times \frac{qa}{kT} e^{\frac{qax}{kT}}$$

$$J_{n}(x=0) = -eD_{n}\frac{dn}{dx} = 10^{15} \times \frac{-eaD_{n}}{V_{T}} = 2.21 \times 10^{-2}$$

Here electron conc is increasing with distance so negative conc gradient

51. In the circuit shown, the Norton equivalent resistance (in Ω) across terminals a-b is _____.

Sol: (1.33)

CEA IES/GATE II

$$\frac{v-4I}{2} + \frac{v}{2} + \frac{v}{4} - 1 = 0$$

$$2(v-4I)+2v+v-4=0$$

$$5v - 8I - 4 = 0$$

$$I = v/4$$

$$5v - 8\left(\frac{v}{4}\right) = 4 \qquad 3v = 4$$

$$3v = 4$$

$$v = 4/3$$

$$V = 4/3$$
 $R_{Th} = \frac{4}{3}\Omega$

Ref: Many Qs on same concept were discussed on Page-87 in Network theory class notes

The value of the integral $\int_{-\infty}^{\infty} 12\cos(2\pi t) \frac{\sin(4\pi t)}{4\pi t} dt$ is _ 52.

Sol: (3)
$$I = \int_{-\infty}^{\infty} 12\cos 2\pi t \cdot \frac{\sin 4\pi t}{4\pi t} dt$$

$$I = \int_{-\infty}^{\infty} \frac{6}{4\pi t} \cdot \left(\sin 6\pi t + \sin 2\pi t\right) dt = 6\int_{-\infty}^{\infty} \frac{\sin 6\pi t}{4\pi t} dt + 6\int_{-\infty}^{\infty} \frac{\sin 2\pi t}{4\pi t} dt$$

$$=1.5\int_{-\infty}^{\infty} \frac{\sin 6\pi t}{\pi t} dt + 1.5\int_{-\infty}^{\infty} \frac{\sin 2\pi t}{\pi t} dt$$

But
$$\int_{-\infty}^{\infty} \frac{\sin x}{x} dx = \pi$$

$$6\pi t = x$$
 $dt = \frac{dx}{6\pi}$

So
$$\int_{-\infty}^{\infty} \frac{\sin x}{x} \times \cancel{6} \times \frac{dx}{\cancel{6}\pi}$$

So
$$I=3$$

Ref: Many Qs on same concept were discussed on Page-162 in Signal&System class notes

53. Consider a binary, digital communication system which uses pulses g(t) and -g(t) for transmitting bits over an AWGN channel. If the receiver uses a matched filter, which one of the following pulses will give the minimum probability of bit error?

Sol: (A) It will have maximum Signal To ratio at the output and that's why Probability of error will be minimum.

54. Assuming that the opamp in the circuit shown below is ideal, the output voltage V₀ (in volts) is

Sol: (12)

Since virtual ground concept is not valid here so there may be two cases either OP-AMP is Finite loop gain OP-AMP or there is no negative feed back. Here OPAMP is Ideal and hence there will be no effective negative feedback and hence $V_0 = +V_{sat} = 12 \text{ V}$

55. A 1-to-8 demultiplexer with data input D_{in} , address inputs S_0 , S_1 , S_2 (with S_0 as the LSB) and \overline{Y}_0 to \overline{Y}_7 as the eight demultiplexed outputs, is to be designed using two 2-to-4 decoders (with enable input \overline{E} and address inputs A_0 and A_1) as shown in the figure. D_{in} , S_0 , S_1 and S_2 are to be connected to P, Q, R and S, but not necessarily in this order. The respective input connections to P, Q, R, and s terminals should be

(Delhi Based Institute, headed by IES Rank-03 & GATE -Topper)

- (A) S_2, D_{in}, S_0, S_1
- (B) S_1, D_{in}, S_0, S_2
- (C) D_{in}, S_0, S_1, S_2
- (D) D_{in}, S_2, S_0, S_1

Sol: (D)