Program Offered: M. Tech / Data Science¶

Course Title: Machine Learning Supervised Classification (MLSC)

Group Number: 16

Name of the Project Members

- Tania Khan
- Vinod A
- Sandeep Ram
- Emmanuel Pradeep Aloysius
- 1. Libraries Required
 - a. import numpy as np
 - b. import pandas as pd
 - c. import random
 - d. pd.options.display.max_rows = None
 - e. import seaborn as sns
 - f. from sklearn.model selection import train test split
 - g. from sklearn.linear_model import LogisticRegression
 - h. from datetime import datetime
 - i. import matplotlib.pyplot as plt
 - j. from warnings import filterwarnings
 - k. filterwarnings('ignore')
 - I. from sklearn.utils import resample
 - m. from sklearn.metrics import accuracy_score,precision_score, recall_score, f1_score, roc_auc_score, roc_curve, confusion_matrix, ConfusionMatrixDisplay
 - n. from imblearn.over_sampling import SMOTE
- 2. Data Preparation
 - 2.1 Read the Data

data = pd.read_csv("Rainfall_prediction_data.csv")

2.2 Check the Data Type

data.dtypes

2.3 Remove Insignificant Variables, if its applicable.

data.drop(['Date'],axis=1,inplace=True)

2.4 Distribution of variable

A. using DistPlot (numerical independent)

C. using histplot(Dependent)

Distribution of 'RainTomorrow'

0.75

0.50

0.25

0.00

2

2.5 Missing Value Treatment Before Treatment

a. Impute the Categorical Variables with mode

b. imputation of numerical variables using KNN Imputer

After Treatment

2.6 Dummy encoding the categorical Variables

- a. Separating Dependent and Independent variables into separate datasets
- b. Encode the each categorical variable and create (n-1) dummy variables for n categories of the variable.
- c. Balancing of dependent variable

2.7 Scale the Data

- a. Using Standard scaler scaled the data
- b. Checking the corelation between vaiables and removing the 'Day' from the dataset, as it is least corelated with dependent

2.8 Train-test split

a. the dataset is been splited with 80:20 ratio and with random_state=42

3. Logistic Regression

import statsmodels.api as sm
logreg = sm.Logit(np.array(ytrain),np.array(xtrain)).fit()
print(logreg.summary())

Warning: Maximum number of iterations has been exceeded.

Current function value: 0.348321

Iterations: 35

Logit Regression Results

===

Dep. Variable: y No. Observations: 1326 Model: Logit Df Residuals: 1213 Method: MLE Df Model: 112

 Date:
 Sun, 07 May 2023 Pseudo R-squ.:
 0.4975

 Time:
 20:57:39 Log-Likelihood:
 -461.87

 converged:
 False LL-Null:
 -919.11

Covariance Type: nonrobust LLR p-value: 4.821e-126

===

	coef std	l err	z P> z	2 [0.0	25 0.97	5]
x1	0.4049	0.131	3.098	0.002	0.149	0.661
x2	-0.1507	0.356	-0.424	0.672	-0.848	0.546
х3	-0.3264	0.640	-0.510	0.610	-1.581	0.928
x4	-0.1603	0.105	-1.527	0.127	-0.366	0.045
x5	-0.0411	0.143	-0.287	0.774	-0.322	0.240
x6	-0.2941	0.194	-1.519	0.129	-0.674	0.085
x7	1.2655	0.190	6.674	0.000	0.894	1.637
x8	-0.2609	0.152	-1.713	0.087	-0.559	0.038
x9	0.0512	0.158	0.323	0.746	-0.259	0.361
x10	-0.0603	0.203	-0.297	0.767	-0.459	0.338
	2.2683					
x12	1.5606	0.497	3.143	0.002	0.587	2.534
x13	-2.2727	0.505	-4.497	0.000	-3.263	-1.282
x14	-0.1775	0.169	-1.047	0.295	-0.510	0.155
x15	0.4780	0.173	2.767	0.006	0.139	0.817
x16	-0.9003	0.500	-1.801	0.072	-1.880	0.079
x17	1.1825	0.716	1.652	0.099	-0.221	2.586
x18	0.0463	0.099	0.468	0.640	-0.148	0.240
x19	0.0221	0.104	0.213	0.831	-0.181	0.225
x20	0.0004	0.000	1.320	0.187	-0.000	0.001
x21	0.6371	0.838	0.760	0.447	-1.006	2.280
x22	-1.2252	1.007	-1.216	0.224	-3.200	0.749
x23	2.6853	0.966	2.780	0.005	0.792	4.578
x24	1.0263	0.817	1.256	0.209	-0.576	2.628
x25	-0.5248	1.026	-0.512	0.609	-2.535	1.486
x26	-2.6556	1.156	-2.298	0.022	-4.921	-0.391
x27	1.8453	0.916	2.015	0.044	0.051	3.6
x28	2.4529	0.953	2.573	0.010	0.584	4.322
x29	-1.3607	1.137	-1.197	0.231	-3.589	0.867
x30	-26.7526	7.2e+0	5 -3.71e-	05 1.0	00 -1.41	+06 1.4
x31	-0.8837	0.968	-0.913	0.361	-2.781	1.013
x32	-0.1175	0.869	-0.135	0.892	-1.822	1.587
x33	-0.7692	0.922	-0.834	0.404	-2.576	1.038
x34	-1.1980	1.137	-1.054	0.292	-3.426	1.030

x35	-1.5167	0.903	-1.679	0.093	-3.287	0.253
x36	-0.0628	1.111	-0.057	0.955	-2.240	2.114
x37	-1.0554	0.859	-1.229	0.219	-2.739	0.628
x38	-0.5653	0.939	-0.602	0.547	-2.406	1.275
x39	0.3300	0.914	0.361	0.718	-1.461	2.121
x40	2.2425	0.876	2.559	0.010	0.525	3.960
x41	0.4876	0.937	0.521	0.603	-1.348	2.324
x42	-1.3408	0.907	-1.479	0.139	-3.118	0.436
x43	-0.2029	0.970	-0.209	0.834	-2.103	1.697
x44	-1.1687	1.044	-1.119	0.263	-3.216	0.878
x45	-1.3001	1.600	-0.813	0.416	-4.436	1.836
x46	-0.4915	0.869	-0.566	0.572	-2.194	1.211
x47	1.3011	0.801	1.624	0.104	-0.269	2.872
x48	1.5506	0.840	1.847	0.065	-0.095	3.196
x49	-1.8323	1.992	-0.920	0.358	-5.738	2.073
x50	1.2107	0.920	1.316	0.188	-0.593	3.014
x51	2.5072	0.800	3.136	0.002	0.940	4.074
x52	-0.9130	1.109	-0.823	0.410	-3.087	1.261
x53	-0.7286	0.924	-0.788	0.430	-2.540	1.083
x54	-0.0768	0.862	-0.089	0.929	-1.766	1.613
x55	-0.4695	0.890	-0.527	0.598	-2.214	1.275
x56	0.6405	0.844	0.759	0.448	-1.013	2.294
x57	0.5933	0.833	0.713	0.476	-1.039	2.225
x58	0.9895	0.956	1.035	0.301	-0.884	2.863
x59	-4.1224	2.133	-1.933	0.053	-8.302	0.057
x60	-1.3403	0.786	-1.705	0.088	-2.881	0.200
x61	0.9224	1.766	0.522	0.601	-2.539	4.383
x62	1.7723	0.802	2.209	0.027	0.200	3.345
x63	0.5159	0.799	0.646	0.518	-1.050	2.082
x64	0.1935	0.813	0.238	0.812	-1.400	1.787
x65	2.3950	0.918	2.608	0.009	0.595	4.195
x66	0.7526	0.806	0.934	0.351	-0.827	2.333
x67	-0.7743	0.913	-0.848	0.396	-2.564	1.015
x68	-0.6037	1.153	-0.523	0.601	-2.864	1.657
x69	-0.8581	0.679	-1.264	0.206	-2.189	0.472
x70	-0.2147	0.656	-0.327	0.743	-1.500	1.071
x71	0.1970	0.666	0.296	0.767	-1.108	1.502
x72	-0.4639	0.743	-0.624	0.533	-1.921	0.993
x73	-0.9122	0.663	-1.376	0.169	-2.212	0.387
x74	-0.2825	0.713	-0.396	0.692	-1.680	1.115
x75	-0.6084	0.743	-0.819	0.413	-2.065	0.848
x76	0.7848	0.640	1.227	0.220	-0.469	2.038
x77	0.7655	0.619	1.237	0.216	-0.448	1.979
x78	0.5312	0.683	0.778	0.436	-0.807	1.869
x79	-1.6236	0.777	-2.089	0.037	-3.147	-0.100
x80	-0.0190	0.691	-0.027	0.978	-1.373	1.335
x81	0.0744	0.628	0.118	0.906	-1.157	1.306

x82	0.4503	0.671	0.672	0.502	-0.864	1.765
x83	-0.8790	0.747	-1.177	0.239	-2.342	0.584
x84	0.2239	0.665	0.337	0.736	-1.079	1.527
x85	-0.9208	0.720	-1.279	0.201	-2.331	0.490
x86	0.3361	0.593	0.567	0.571	-0.826	1.498
x87	0.4091	0.633	0.646	0.518	-0.832	1.650
x88	-0.0009	0.693	-0.001	0.999	-1.359	1.357
x89	-0.0734	0.691	-0.106	0.915	-1.428	1.281
x90	0.5566	0.663	0.840	0.401	-0.743	1.856
x91	1.5638	0.685	2.282	0.023	0.220	2.907
x92	1.1755	0.623	1.886	0.059	-0.046	2.397
x93	0.1661	0.664	0.250	0.802	-1.135	1.467
x94	0.2549	0.701	0.363	0.716	-1.120	1.630
x95	0.4092	0.694	0.590	0.555	-0.951	1.769
x96	0.5999	0.681	0.880	0.379	-0.736	1.935
x97	0.2968	0.655	0.453	0.650	-0.987	1.581
x98	-0.2081	0.803	-0.259	0.795	-1.782	1.366
x99	0.0889	0.576	0.154	0.877	-1.039	1.217
x100	-0.3004	0.560	-0.537	0.592	-1.398	0.797
x101	-0.7291	0.662	-1.102	0.271	-2.026	0.568
x102	-0.0648	0.604	-0.107	0.915	-1.248	1.118
x103	-0.7074	0.706	-1.001	0.317	-2.092	0.677
x104	0.2237	0.676	0.331	0.741	-1.101	1.549
x105	0.3858	0.618	0.624	0.532	-0.825	1.597
x106	-1.2011	0.634	-1.893	0.058	-2.444	0.042
x107	-1.8833	0.575	-3.275	0.001	-3.010	-0.756
x108	-0.6979	0.601	-1.162	0.245	-1.875	0.480
x109	-0.2618	0.640	-0.409	0.683	-1.517	0.993
x110	-1.5697	0.676	-2.321	0.020	-2.895	-0.244
x111	-1.0074	0.641	-1.572	0.116	-2.263	0.248
x112	-2.1776	0.646	-3.372	0.001	-3.443	-0.912
x113	-0.9763	0.677	-1.443	0.149	-2.303	0.350

Interpret the odds for each variable

- 1. RainToday = 0.4, it implies that the odds of getting rain tomorrow in creases by a factor of 0.4 due to one unit increase inRainToday, keepin g other variables constant
- 2. MinTemp = -0.15, it implies that the odds of getting rain tomorrow in creases by a factor of -0.15 due to one unit increase inMinTemp, keepin g other variables constant
- 3. ${\tt MaxTemp} = -0.33$, it implies that the odds of getting rain tomorrow in creases by a factor of -0.33 due to one unit increase inMaxTemp, keepin g other variables constant

- 4. Rainfall = -0.16, it implies that the odds of getting rain tomorrow i ncreases by a factor of -0.16 due to one unit increase inRainfall, keep ing other variables constant
- 5. Evaporation = -0.04, it implies that the odds of getting rain tomorro w increases by a factor of -0.04 due to one unit increase in Evaporation , keeping other variables constant
- 6. Sunshine = -0.29, it implies that the odds of getting rain tomorrow i ncreases by a factor of -0.29 due to one unit increase inSunshine, keep ing other variables constant
- 7. WindGustSpeed = 1.27, it implies that the odds of getting rain tomorr ow increases by a factor of 1.27 due to one unit increase inWindGustSpe ed, keeping other variables constant
- 8. WindSpeed9am = -0.26, it implies that the odds of getting rain tomorr ow increases by a factor of -0.26 due to one unit increase inWindSpeed9 am, keeping other variables constant
- 9. WindSpeed3pm = 0.05, it implies that the odds of getting rain tomorro w increases by a factor of 0.05 due to one unit increase inWindSpeed3pm, keeping other variables constant
- 10. Humidity9am = -0.06, it implies that the odds of getting rain tomorr ow increases by a factor of -0.06 due to one unit increase inHumidity9a m, keeping other variables constant
- 11. Humidity3pm = 2.27,it implies that the odds of getting rain tomorro w increases by a factor of 2.27 due to one unit increase inHumidity3pm, keeping other variables constant
- 12. Pressure9am = 1.56, it implies that the odds of getting rain tomorro w increases by a factor of 1.56 due to one unit increase inPressure9am, keeping other variables constant
- 13. Pressure3pm = -2.27, it implies that the odds of getting rain tomorr ow increases by a factor of -2.27 due to one unit increase inPressure3p m, keeping other variables constant
- 14. Cloud9am = -0.18, it implies that the odds of getting rain tomorrow increases by a factor of -0.18 due to one unit increase inCloud9am, kee ping other variables constant
- 15. Cloud3pm = 0.48, it implies that the odds of getting rain tomorrow i ncreases by a factor of 0.48 due to one unit increase inCloud3pm, keeping other variables constant
- 16. Temp9am = -0.9, it implies that the odds of getting rain tomorrow in creases by a factor of -0.9 due to one unit increase inTemp9am, keeping other variables constant
- 17. Temp3pm = 1.18, it implies that the odds of getting rain tomorrow in creases by a factor of 1.18 due to one unit increase inTemp3pm, keeping other variables constant

- 18. Year = 0.05, it implies that the odds of getting rain tomorrow incre ases by a factor of 0.05 due to one unit increase in Year, keeping other variables constant
- 19. Month = 0.02, it implies that the odds of getting rain tomorrow increases by a factor of 0.02 due to one unit increase inMonth, keeping oth er variables constant
- 20. index = 0.0, it implies that the odds of getting rain tomorrow incre ases by a factor of 0.0 due to one unit increase inindex, keeping other variables constant
- 21. Location_Albany = 0.64, it implies that the odds of getting rain tom orrow increases by a factor of 0.64 due to one unit increase inLocation Albany, keeping other variables constant
- 22. Location_Albury = -1.23, it implies that the odds of getting rain to morrow increases by a factor of -1.23 due to one unit increase inLocati on Albury, keeping other variables constant
- 23. Location_AliceSprings = 2.69,it implies that the odds of getting ra in tomorrow increases by a factor of 2.69 due to one unit increase inLo cation AliceSprings, keeping other variables constant
- 24. Location_BadgerysCreek = 1.03, it implies that the odds of getting r ain tomorrow increases by a factor of 1.03 due to one unit increase inL ocation BadgerysCreek, keeping other variables constant
- 25. Location_Ballarat = -0.52, it implies that the odds of getting rain tomorrow increases by a factor of -0.52 due to one unit increase inLocation_Ballarat, keeping other variables constant
- 26. Location_Bendigo = -2.66, it implies that the odds of getting rain t omorrow increases by a factor of -2.66 due to one unit increase inLocat ion Bendigo, keeping other variables constant
- 27. Location_Brisbane = 1.85, it implies that the odds of getting rain t omorrow increases by a factor of 1.85 due to one unit increase inLocati on Brisbane, keeping other variables constant
- 28. Location_Cairns = 2.45,it implies that the odds of getting rain tom orrow increases by a factor of 2.45 due to one unit increase inLocation Cairns, keeping other variables constant
- 29. Location_Canberra = -1.36, it implies that the odds of getting rain tomorrow increases by a factor of -1.36 due to one unit increase inLocation Canberra, keeping other variables constant
- 30. Location_Cobar = -26.75, it implies that the odds of getting rain to morrow increases by a factor of -26.75 due to one unit increase inLocat ion_Cobar, keeping other variables constant
- 31. Location_CoffsHarbour = -0.88, it implies that the odds of getting r ain tomorrow increases by a factor of -0.88 due to one unit increase in Location CoffsHarbour, keeping other variables constant

- 32. Location_Dartmoor = -0.12, it implies that the odds of getting rain tomorrow increases by a factor of -0.12 due to one unit increase inLocation Dartmoor, keeping other variables constant
- 33. Location_Darwin = -0.77, it implies that the odds of getting rain to morrow increases by a factor of -0.77 due to one unit increase inLocati on Darwin, keeping other variables constant
- 34. Location_GoldCoast = -1.2, it implies that the odds of getting rain tomorrow increases by a factor of -1.2 due to one unit increase inLocat ion GoldCoast, keeping other variables constant
- 35. Location_Hobart = -1.52, it implies that the odds of getting rain to morrow increases by a factor of -1.52 due to one unit increase inLocati on Hobart, keeping other variables constant
- 36. Location_Katherine = -0.06, it implies that the odds of getting rain tomorrow increases by a factor of -0.06 due to one unit increase inLoca tion Katherine, keeping other variables constant
- 37. Location_Launceston = -1.06, it implies that the odds of getting rai n tomorrow increases by a factor of -1.06 due to one unit increase inLo cation Launceston, keeping other variables constant
- 38. Location_Melbourne = -0.57, it implies that the odds of getting rain tomorrow increases by a factor of -0.57 due to one unit increase inLoca tion Melbourne, keeping other variables constant
- 39. Location_MelbourneAirport = 0.33,it implies that the odds of gettin g rain tomorrow increases by a factor of 0.33 due to one unit increase inLocation_MelbourneAirport, keeping other variables constant
- 40. Location_Mildura = 2.24, it implies that the odds of getting rain to morrow increases by a factor of 2.24 due to one unit increase inLocatio n Mildura, keeping other variables constant
- 41. Location_Moree = 0.49, it implies that the odds of getting rain tomo rrow increases by a factor of 0.49 due to one unit increase inLocation_Moree, keeping other variables constant
- 42. Location_MountGambier = -1.34, it implies that the odds of getting r ain tomorrow increases by a factor of -1.34 due to one unit increase in Location MountGambier, keeping other variables constant
- 43. Location_MountGinini = -0.2, it implies that the odds of getting rai n tomorrow increases by a factor of -0.2 due to one unit increase inLoc ation MountGinini, keeping other variables constant
- 44. Location_Newcastle = -1.17, it implies that the odds of getting rain tomorrow increases by a factor of -1.17 due to one unit increase inLocation Newcastle, keeping other variables constant
- 45. Location_Nhil = -1.3, it implies that the odds of getting rain tomor row increases by a factor of -1.3 due to one unit increase inLocation_N hil, keeping other variables constant

- 46. Location_NorahHead = -0.49, it implies that the odds of getting rain tomorrow increases by a factor of -0.49 due to one unit increase inLocation NorahHead, keeping other variables constant
- 47. Location_NorfolkIsland = 1.3,it implies that the odds of getting ra in tomorrow increases by a factor of 1.3 due to one unit increase inLoc ation NorfolkIsland, keeping other variables constant
- 48. Location_Nuriootpa = 1.55, it implies that the odds of getting rain tomorrow increases by a factor of 1.55 due to one unit increase inLocat ion Nuriootpa, keeping other variables constant
- 49. Location_PearceRAAF = -1.83, it implies that the odds of getting rai n tomorrow increases by a factor of -1.83 due to one unit increase inLo cation PearceRAAF, keeping other variables constant
- 50. Location_Penrith = 1.21,it implies that the odds of getting rain to morrow increases by a factor of 1.21 due to one unit increase inLocation Penrith, keeping other variables constant
- 51. Location_Perth = 2.51, it implies that the odds of getting rain tomo rrow increases by a factor of 2.51 due to one unit increase inLocation_Perth, keeping other variables constant
- 52. Location_PerthAirport = -0.91, it implies that the odds of getting r ain tomorrow increases by a factor of -0.91 due to one unit increase in Location PerthAirport, keeping other variables constant
- 53. Location_Portland = -0.73, it implies that the odds of getting rain tomorrow increases by a factor of -0.73 due to one unit increase inLocation_Portland, keeping other variables constant
- 54. Location_Richmond = -0.08, it implies that the odds of getting rain tomorrow increases by a factor of -0.08 due to one unit increase inLoca tion Richmond, keeping other variables constant
- 55. Location_Sale = -0.47, it implies that the odds of getting rain tomo rrow increases by a factor of -0.47 due to one unit increase inLocation _Sale, keeping other variables constant
- 56. Location_SalmonGums = 0.64,it implies that the odds of getting rain tomorrow increases by a factor of 0.64 due to one unit increase inLocat ion SalmonGums, keeping other variables constant
- 57. Location_Sydney = 0.59, it implies that the odds of getting rain tom orrow increases by a factor of 0.59 due to one unit increase inLocation Sydney, keeping other variables constant
- 58. Location_SydneyAirport = 0.99, it implies that the odds of getting r ain tomorrow increases by a factor of 0.99 due to one unit increase inL ocation_SydneyAirport, keeping other variables constant
- 59. Location_Townsville = -4.12, it implies that the odds of getting rai n tomorrow increases by a factor of -4.12 due to one unit increase inLo cation Townsville, keeping other variables constant

- 60. Location_Tuggeranong = -1.34, it implies that the odds of getting ra in tomorrow increases by a factor of -1.34 due to one unit increase inL ocation Tuggeranong, keeping other variables constant
- 61. Location_Uluru = 0.92, it implies that the odds of getting rain tomo rrow increases by a factor of 0.92 due to one unit increase inLocation_Uluru, keeping other variables constant
- 62. Location_WaggaWagga = 1.77, it implies that the odds of getting rain tomorrow increases by a factor of 1.77 due to one unit increase inLocat ion WaggaWagga, keeping other variables constant
- 63. Location_Walpole = 0.52, it implies that the odds of getting rain to morrow increases by a factor of 0.52 due to one unit increase inLocation Walpole, keeping other variables constant
- 64. Location_Watsonia = 0.19, it implies that the odds of getting rain t omorrow increases by a factor of 0.19 due to one unit increase inLocati on Watsonia, keeping other variables constant
- 65. Location_Williamtown = 2.39, it implies that the odds of getting rai n tomorrow increases by a factor of 2.39 due to one unit increase inLocation Williamtown, keeping other variables constant
- 66. Location_Witchcliffe = 0.75, it implies that the odds of getting rai n tomorrow increases by a factor of 0.75 due to one unit increase inLoc ation Witchcliffe, keeping other variables constant
- 67. Location_Wollongong = -0.77, it implies that the odds of getting rai n tomorrow increases by a factor of -0.77 due to one unit increase inLo cation Wollongong, keeping other variables constant
- 68. Location_Woomera = -0.6, it implies that the odds of getting rain to morrow increases by a factor of -0.6 due to one unit increase inLocatio n Woomera, keeping other variables constant
- 69. WindGustDir_ENE = -0.86, it implies that the odds of getting rain to morrow increases by a factor of -0.86 due to one unit increase inWindGu stDir ENE, keeping other variables constant
- 70. WindGustDir_ESE = -0.21, it implies that the odds of getting rain to morrow increases by a factor of -0.21 due to one unit increase inWindGu stDir ESE, keeping other variables constant
- 71. WindGustDir_N = 0.2, it implies that the odds of getting rain tomorr ow increases by a factor of 0.2 due to one unit increase inWindGustDir_N, keeping other variables constant
- 72. WindGustDir_NE = -0.46, it implies that the odds of getting rain tom orrow increases by a factor of -0.46 due to one unit increase inWindGus tDir_NE, keeping other variables constant
- 73. WindGustDir_NNE = -0.91, it implies that the odds of getting rain to morrow increases by a factor of -0.91 due to one unit increase inWindGu stDir NNE, keeping other variables constant

- 74. WindGustDir_NNW = -0.28, it implies that the odds of getting rain to morrow increases by a factor of -0.28 due to one unit increase inWindGu stDir NNW, keeping other variables constant
- 75. WindGustDir_NW = -0.61, it implies that the odds of getting rain tom orrow increases by a factor of -0.61 due to one unit increase inWindGus tDir NW, keeping other variables constant
- 76. WindGustDir_S = 0.78, it implies that the odds of getting rain tomor row increases by a factor of 0.78 due to one unit increase inWindGustDir S, keeping other variables constant
- 77. WindGustDir_SE = 0.77, it implies that the odds of getting rain tomo rrow increases by a factor of 0.77 due to one unit increase inWindGustD ir SE, keeping other variables constant
- 78. WindGustDir_SSE = 0.53, it implies that the odds of getting rain tom orrow increases by a factor of 0.53 due to one unit increase inWindGust Dir SSE, keeping other variables constant
- 79. WindGustDir_SSW = -1.62, it implies that the odds of getting rain to morrow increases by a factor of -1.62 due to one unit increase inWindGu stDir SSW, keeping other variables constant
- 80. WindGustDir_SW = -0.02, it implies that the odds of getting rain tom orrow increases by a factor of -0.02 due to one unit increase inWindGus tDir SW, keeping other variables constant
- 81. WindGustDir_W = 0.07, it implies that the odds of getting rain tomor row increases by a factor of 0.07 due to one unit increase inWindGustDi r_W, keeping other variables constant
- 82. WindGustDir_WNW = 0.45, it implies that the odds of getting rain tom orrow increases by a factor of 0.45 due to one unit increase inWindGust Dir WNW, keeping other variables constant
- 83. WindGustDir_WSW = -0.88, it implies that the odds of getting rain to morrow increases by a factor of -0.88 due to one unit increase inWindGu stDir WSW, keeping other variables constant
- 84. WindDir9am_ENE = 0.22, it implies that the odds of getting rain tomo rrow increases by a factor of 0.22 due to one unit increase inWindDir9a m ENE, keeping other variables constant
- 85. WindDir9am_ESE = -0.92, it implies that the odds of getting rain tom orrow increases by a factor of -0.92 due to one unit increase inWindDir 9am ESE, keeping other variables constant
- 86. WindDir9am_N = 0.34, it implies that the odds of getting rain tomorr ow increases by a factor of 0.34 due to one unit increase inWindDir9am_N, keeping other variables constant
- 87. WindDir9am_NE = 0.41, it implies that the odds of getting rain tomor row increases by a factor of 0.41 due to one unit increase inWindDir9am NE, keeping other variables constant

- 88. WindDir9am_NNE = -0.0, it implies that the odds of getting rain tomo rrow increases by a factor of -0.0 due to one unit increase inWindDir9a m NNE, keeping other variables constant
- 89. WindDir9am_NNW = -0.07, it implies that the odds of getting rain tom orrow increases by a factor of -0.07 due to one unit increase inWindDir 9am NNW, keeping other variables constant
- 90. WindDir9am_NW = 0.56, it implies that the odds of getting rain tomor row increases by a factor of 0.56 due to one unit increase inWindDir9am $_{\rm NW}$, keeping other variables constant
- 91. WindDir9am_S = 1.56, it implies that the odds of getting rain tomorr ow increases by a factor of 1.56 due to one unit increase inWindDir9am_S, keeping other variables constant
- 92. WindDir9am_SE = 1.18, it implies that the odds of getting rain tomor row increases by a factor of 1.18 due to one unit increase inWindDir9am SE, keeping other variables constant
- 93. WindDir9am_SSE = 0.17, it implies that the odds of getting rain tomo rrow increases by a factor of 0.17 due to one unit increase inWindDir9a m SSE, keeping other variables constant
- 94. WindDir9am_SSW = 0.25, it implies that the odds of getting rain tomo rrow increases by a factor of 0.25 due to one unit increase inWindDir9a m SSW, keeping other variables constant
- 95. WindDir9am_SW = 0.41, it implies that the odds of getting rain tomor row increases by a factor of 0.41 due to one unit increase inWindDir9am $_$ SW, keeping other variables constant
- 96. WindDir9am_W = 0.6, it implies that the odds of getting rain tomorro w increases by a factor of 0.6 due to one unit increase inWindDir9am_W, keeping other variables constant
- 97. WindDir9am_WNW = 0.3, it implies that the odds of getting rain tomor row increases by a factor of 0.3 due to one unit increase inWindDir9am_WNW, keeping other variables constant
- 98. WindDir9am_WSW = -0.21, it implies that the odds of getting rain tom orrow increases by a factor of -0.21 due to one unit increase inWindDir 9am WSW, keeping other variables constant
- 99. WindDir3pm_ENE = 0.09, it implies that the odds of getting rain tomo rrow increases by a factor of 0.09 due to one unit increase inWindDir3p m ENE, keeping other variables constant
- 100. WindDir3pm_ESE = -0.3, it implies that the odds of getting rain tom orrow increases by a factor of -0.3 due to one unit increase inWindDir3 pm_ESE, keeping other variables constant
- 101. WindDir3pm_N = -0.73, it implies that the odds of getting rain tomo rrow increases by a factor of -0.73 due to one unit increase inWindDir3 pm N, keeping other variables constant

- 102. WindDir3pm_NE = -0.06, it implies that the odds of getting rain tom orrow increases by a factor of -0.06 due to one unit increase inWindDir 3pm NE, keeping other variables constant
- 103. WindDir3pm_NNE = -0.71, it implies that the odds of getting rain to morrow increases by a factor of -0.71 due to one unit increase inWindDi r3pm NNE, keeping other variables constant
- 104. WindDir3pm_NNW = 0.22, it implies that the odds of getting rain tom orrow increases by a factor of 0.22 due to one unit increase inWindDir3 pm NNW, keeping other variables constant
- 105. WindDir3pm_NW = 0.39, it implies that the odds of getting rain tomo rrow increases by a factor of 0.39 due to one unit increase inWindDir3p m NW, keeping other variables constant
- 106. WindDir3pm_S = -1.2, it implies that the odds of getting rain tomor row increases by a factor of -1.2 due to one unit increase inWindDir3pm S, keeping other variables constant
- 107. WindDir3pm_SE = -1.88, it implies that the odds of getting rain tom orrow increases by a factor of -1.88 due to one unit increase inWindDir 3pm SE, keeping other variables constant
- 108. WindDir3pm_SSE = -0.7, it implies that the odds of getting rain tom orrow increases by a factor of -0.7 due to one unit increase inWindDir3 pm SSE, keeping other variables constant
- 109. WindDir3pm_SSW = -0.26, it implies that the odds of getting rain to morrow increases by a factor of -0.26 due to one unit increase inWindDir3pm_SSW, keeping other variables constant
- 110. WindDir3pm_SW = -1.57, it implies that the odds of getting rain tom orrow increases by a factor of -1.57 due to one unit increase inWindDir 3pm SW, keeping other variables constant
- 111. WindDir3pm_W = -1.01, it implies that the odds of getting rain tomo rrow increases by a factor of -1.01 due to one unit increase inWindDir3 pm_W, keeping other variables constant
- 112. WindDir $3pm_WNW = -2.18$, it implies that the odds of getting rain to morrow increases by a factor of -2.18 due to one unit increase inWindDi r $3pm_WNW$, keeping other variables constant
- 113. WindDir3pm_WSW = -0.98, it implies that the odds of getting rain to morrow increases by a factor of -0.98 due to one unit increase inWindDir3pm_WSW, keeping other variables constant

Compute various performance metrics.

Precision: 0.83
Recall: 0.87
Specificity: 0.83
F1_Score: 0.85
Accuracy: 0.85
Kappa Score: 0.7

AUC: 0.91

ROC_AUC score

3.1 Identify the Best Cut-off Value

Interpretation: From the above output, write your inference.

- The model achieved an overall accuracy of 0.85, which means that it correctly predicted the class labels of 85% of the instances in the dataset.
- Looking at the precision and recall values, we can see that the model performed similarly for both classes.
- For class 0, the precision is 0.89 and the recall is 0.80, meaning that 89% of the instances classified as 0 were actually 0, and the model correctly identified 80% of all instances that were actually 0.
- For class 1, the precision is 0.82 and the recall is 0.90, meaning that 82% of the instances classified as 1 were actually 1, and the model correctly identified 90% of all instances that were actually 1.
- The f1-score gives an overall measure of the model's performance. The f1-score for class 0 is 0.84, and for class 1 is 0.86, indicating that the model has a similar overall performance for both classes

Using the threshold value of 0.44 calculated by Youden's Index method, Class 1 F1_Score of the model increased from 82% to 86% and Class 0 F1_Score of the model increased from 82% to 84%