Tests of Hypotheses Based on a Single Sample

8.3

Tests Concerning a Population Proportion

Tests Concerning a Population Proportion

Let *p* denote the proportion of individuals or objects in a population who possess a specified property (e.g., cars with manual transmissions or smokers who smoke a filter cigarette).

If an individual or object with the property is labeled a success (S), then p is the population proportion of successes.

Tests concerning p will be based on a random sample of size n from the population. Provided that n is small relative to the population size, X (the number of S's in the sample) has (approximately) a binomial distribution.

Tests Concerning a Population Proportion

Furthermore, if n itself is large $[np \ge 10 \text{ and } n(1-p) \ge 10]$, both X and the estimator $\hat{p} = X/n$ are approximately normally distributed.

We first consider large-sample tests based on this latter fact and then turn to the small sample case that directly uses the binomial distribution.

Large-sample tests concerning p are a special case of the more general large-sample procedures for a parameter θ .

Let $\hat{\theta}$ be an estimator of θ that is (at least approximately) unbiased and has approximately a normal distribution.

The null hypothesis has the form H_0 : $\theta = \theta_0$ where θ_0 denotes a number (the null value) appropriate to the problem context.

Suppose that when H_0 is true, the standard deviation of $\hat{\theta}$, $\sigma_{\hat{\theta}}$, involves no unknown parameters.

For example, if $\theta = \mu$ and $\hat{\theta} = \overline{X}$, $\sigma_{\hat{\theta}} = \sigma_{\overline{X}} = \sigma / \sqrt{n}$, which involves no unknown parameters only if the value of σ is known.

A large-sample test statistic results from standardizing $\hat{\theta}$ under the assumption that H_0 is true (so that $E(\hat{\theta}) = \theta_0$):

Test statistic:
$$Z = \frac{\hat{\theta} - \theta_0}{\sigma_{\hat{\theta}}}$$

If the alternative hypothesis is H_a : $\theta > \theta_0$, an upper-tailed test whose significance level is approximately α is specified by the rejection region $z \ge z_{\alpha}$.

The other two alternatives, H_a : $\theta < \theta_0$ and H_a : $\theta \neq \theta_0$, are tested using a lower-tailed z test and a two-tailed z test, respectively.

In the case $\theta = p$, $\sigma_{\hat{\theta}}$ will not involve any unknown parameters when H_0 is true, but this is atypical.

When $\sigma_{\hat{\theta}}$ does involve unknown parameters, it is often possible to use an estimated standard deviation $S_{\hat{\theta}}$ in place of $\sigma_{\hat{\theta}}$ and still have Z approximately normally distributed when H_0 is true (because when n is large, $S_{\hat{\theta}} \approx \sigma_{\hat{\theta}}$ for most samples).

The large-sample test we have seen earlier furnishes an example of this: Because σ is usually unknown, we use $s_{\hat{\theta}} = s_{\overline{X}} = s/\sqrt{n}$ in place of σ/\sqrt{n} in the denominator of z.

The estimator $\hat{p} = X/n$ is unbiased $(E(\hat{p}) = p)$, has approximately a normal distribution, and its standard deviation is $\sigma_{\hat{p}} = \sqrt{p(1-p)/n}$.

When H_0 is true, $E(\hat{p}) = p_0$ and $\sigma_{\hat{p}} = \sqrt{p_0(1-p_0)/n}$, so $\sigma_{\hat{p}}$ does not involve any unknown parameters. It then follows that when n is large and H_0 is true, the test statistic

$$Z = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}}$$

$$A Sample$$

has approximately a standard normal distribution.

If the alternative hypothesis is H_a : $p > p_0$ and the upper-tailed rejection region $z \ge z_\alpha$ is used, then

 $P(\text{type I error}) = P(H_0 \text{ is rejected when it is true})$

= $P(Z \ge z_{\alpha})$ when Z has approximately a standard normal distribution) $\approx \alpha$

Thus the desired level of significance α is attained by using the critical value that captures area α in the upper tail of the z curve.

Rejection regions for the other two alternative hypotheses, lower-tailed for H_a : $p < p_0$ and two-tailed for H_a : $p \neq p_0$, are justified in an analogous manner.

Null hypothesis:
$$H_0$$
: $p = p_0$

Test statistic value:
$$z = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}}$$

Alternative Hypothesis Rejection Region

$$H_a$$
: $p > p_0$ $z \ge z_\alpha$ (upper-tailed)

 H_a : $p < p_0$ $z \le -z_\alpha$ (lower-tailed)

 H_a : $p \ne p_0$ either $z \ge z_{\alpha/2}$ or $z \le -z_{\alpha/2}$ (two-tailed)

These test procedures are valid provided that $np_0 \ge 10$ and $n(1-p_0) \ge 10$.

Natural cork in wine bottles is subject to deterioration, and as a result wine in such bottles may experience contamination.

The article "Effects of Bottle Closure Type on Consumer Perceptions of Wine Quality" (*Amer. J. of Enology and Viticulture*, 2007: 182–191) reported that, in a tasting of commercial chardonnays, 16 of 91 bottles were considered spoiled to some extent by cork-associated characteristics.

Does this data provide strong evidence for concluding that more than 15% of all such bottles are contaminated in this way?

Let's carry out a test of hypotheses using a significance level of .10. ≤ ✓

- **1.** *p* = the true proportion of all commercial chardonnay bottles considered spoiled to some extent by cork-associated characteristics.
- **2.** The null hypothesis is H_0 : p = .15.
- **3.** The alternative hypothesis is H_a : p > .15, the assertion that the population percentage exceeds 15%. \propto $_{\sim}$?

4. Since $np_0 = 91(.15) = 13\underline{.65} > 10$ and $nq_0 = 91(.85) = 77.35 > 10$, the large-sample *z* test can be used. The test statistic value is

$$z = (\hat{p} - .15) / \sqrt{(.15)(.85)/n}.$$

- **5.** The form of H_a implies that an upper-tailed test is appropriate: Reject H_0 if $z \ge z_{.10} = 1.28$.
- 6. p = 16/91 = .1758, from which $z = (.1758 .15)/\sqrt{(.15)(.85)/91} = .0258/.0374 = .69$

7. Since .69 < 1.28, *z* is not in the rejection region. At significance level .10, the null hypothesis cannot be rejected.

Although the percentage of contaminated bottles in the sample somewhat exceeds 15%, the sample percentage

is not large enough to conclude that the population percentage exceeds 15%.

The difference between the sample proportion .1758 and the null value .15 can adequately be explained by sampling variability.

17

 β and Sample Size Determination When H_0 is true, the test statistic Z has approximately a standard normal distribution.

Now suppose that H_0 is *not* true and that p = p'. Then Z still has approximately a normal distribution (because it is a linear function of \hat{p}), but its mean value and variance are no longer 0 and 1, respectively. Instead,

$$E(Z) = \frac{p' - p_0}{\sqrt{p_0(1 - p_0)/n}} \qquad V(Z) = \frac{p'(1 - p')/n}{p_0(1 - p_0)/n}$$

The probability of a type II error for an upper-tailed test is $\beta(p') = P(Z > z_{\alpha} \text{ when } p = p')$.

This can be computed by using the given mean and variance to standardize and then referring to the standard normal cdf.

In addition, if it is desired that the level α test also have $\beta(p') = \beta$ for a specified value of β , this equation can be solved for the necessary n.

General expressions for $\beta(p')$ and n are given in the accompanying box.

Alternative Hypothesis

$$H_{\rm a}: p > p_0$$

$$H_{\rm a}$$
: $p < p_0$

$$H_a$$
: $p \neq p_0$

$\beta(p')$

$$\Phi \left[\frac{p_0 - p' + z_{\alpha} \sqrt{p_0 (1 - p_0)/n}}{\sqrt{p' (1 - p')/n}} \right]$$

$$1 - \Phi \left[\frac{p_0 - p' - z_\alpha \sqrt{p_0 (1 - p_0)/n}}{\sqrt{p' (1 - p')/n}} \right]$$

$$\Phi \left[\frac{p_0 - p' + z_{\alpha/2} \sqrt{p_0 (1 - p_0)/n}}{\sqrt{p'(1 - p')/n}} \right]$$

$$-\Phi \left[\frac{p_0 - p' - z_{\alpha/2} \sqrt{p_0 (1 - p_0)/n}}{\sqrt{p' (1 - p')/n}} \right]$$

The sample size n for which the level α test also satisfies $\beta(p') = \beta$ is

$$n = \begin{cases} \left[\frac{z_{\alpha} \sqrt{p_0 (1 - p_0)} + z_{\beta} \sqrt{p' (1 - p')}}{p' - p_0} \right]^2 \text{ one-tailed test} \\ \left[\frac{z_{\alpha/2} \sqrt{p_0 (1 - p_0)} + z_{\beta} \sqrt{p' (1 - p')}}{p' - p_0} \right]^2 \text{ two-tailed test (an approximate solution)} \end{cases}$$

A package-delivery service advertises that at least 90% of all packages brought to its office by 9 A.M. for delivery in the same city are delivered by noon that day.

Let p denote the true proportion of such packages that are delivered as advertised and consider the hypotheses H_0 : p = .9 versus H_a : p < .9.

If only 80% of the packages are delivered as advertised, how likely is it that a level .01 test based on n = 225 packages will detect such a departure from H_0 ? What should the sample size be to ensure that $\beta(.8) = .01$?

With $\alpha = .01$, $p_0 = .9$, p' = .8, and n = 225,

$$\beta(.8) = 1 - \Phi\left(\frac{.9 - .8 - 2.33\sqrt{(.9)(.1)/225}}{\sqrt{(.8)(.2)/225}}\right)$$
$$= 1 - \Phi(2.00) = .0228$$

Thus the probability that H_0 will be rejected using the test when p = .8 is .9772— roughly 98% of all samples will result in correct rejection of H_0 .

Using $z_{\alpha} = z_{\beta} = 2.33$ in the sample size formula yields

$$n = \left[\frac{2.33\sqrt{(.9)(.1)} + 2.33\sqrt{(.8)(.2)}}{.8 - .9}\right]^2 \approx 266$$