

STEPS

1. The program will determine the quantity of the main reinforcement of each beam

$$Qty_{Cont(TOP)} = Qty_{\underline{Midspan}} + Qty_{\underline{Midspan}}$$

$$Qty_{Cont(Bott)} = \frac{Qty_{Exterior} + Qty_{Exterior} + Qty_{Interior} + Qty_{Interior}}{2}$$

Example

BEAM ROW						•
Beam Name	Quantity	Length	Clear Length	Support		A
B-2	1	3000	2775	1	¥	
B-3	1	7000	6475	1	¥	
B-3	2	7000	6400	2	¥	
	7				¥	
	7				¥	
1	7				₹	▼

• Ref 1

			N S	Dia	35	Qty.	5	Qty.	5	Qty.	5	Dia.		12	Dia.
	450	700		-	25	Qty.	5	Qty.		Qty.	5	1	0	50	16
B-2	450	700		Dia	25	Qty.		Qty.	5	Qty.			0		Qty.
				Dia.	25	Qty.	5	Qty.	5	Qty.	5	Rest	@	75	2

$$Qty_{Cont(TOP)} = Qty_{\mbox{\scriptsize Midspan}} + Qty_{\mbox{\scriptsize Midspan}}$$

$$Qty_{Cont(TOP)} = 5 + 0$$

$$Qty_{Cont(TOP)} = \mathbf{5}$$

$$Qty_{Cont(BOTT)} = \frac{Qty_{Exterior} + Qty_{Exterior} + Qty_{Interior} + Qty_{Interior}}{2}$$

$$Qty_{Cont(BOTT)} = \frac{0+5+0+5}{2}$$

$$Qty_{Cont(BOTT)} = 5$$

• Ref 2

			N N	Di	2 05	Qty.	6	Qty.	6	Qty.	6	Dia.		12	Dia.
	450		,		25	Qty.	3	Qty.		Qty.	3	1	@	50	16
B-3	450	700		T Ini	25	Qty.		Qty.		Qty.		14	0	100	Qty.
				101	1. 25	Qty.	6	Qty.	6	Qty.	6	Rest	@	200	2

$$Qty_{Cont(TOP)} = Qty_{\underline{Midspan}} + Qty_{\underline{Midspan}}$$

$$Qty_{Cont(TOP)} = 6 + 0$$

$$Qty_{Cont(TOP)} = \mathbf{6}$$

$$Qty_{Cont(BOTT)} = \frac{Qty_{Exterior} + Qty_{Exterior} + Qty_{Interior} + Qty_{Interior}}{2}$$

$$Qty_{Cont(BOTT)} = \frac{0+6+0+6}{2}$$

$$Qty_{Cont(BOTT)} = \mathbf{6}$$

Ref 3

			N - 2	П	ia. 21	Qty.	6	Qty.	6	Qty.	6	Dia.	12	Dia.
				wĽ	//a. 2:	Qty	. 3	Qty.		Qty.	3	1	@ 50	16
B-3	450	700		T	ia. 25	Qty		Qty.		Qty.		14	@ 100	Qty.
				٦	/10. 2.	Qty	. 6	Qty.	6	Qty.	6	Rest	@ 200	2

$$Qty_{Cont(TOP)} = Qty_{Midspan} + Qty_{Midspan}$$

$$Qty_{Cont(TOP)} = 6 + 0$$

$$Qty_{Cont(TOP)} = \mathbf{6}$$

$$Qty_{Cont(BOTT)} = \frac{Qty_{Exterior} + Qty_{Exterior} + Qty_{Interior} + Qty_{Interior}}{2}$$

$$Qty_{Cont(BOTT)} = \frac{0+6+0+6}{2}$$

$$Qty_{Cont(BOTT)} = \mathbf{6}$$

Ref 4

			R=2		Dia	25	Qty.	6	Qty.	6	Qty.	6	Dia.		12	Dia.
				_	Dia.	25	Qty.	3	Qty.		Qty.	3	1	(6)	50	16
B-3	450	700		▼	Dia	25	Qty.		Qty.		Qty.		14	@	100	Qty.
1					Dia.	23	Qty.	6	Qty.	6	Qty.	6	Rest	0	200	2

$$Qty_{Cont(TOP)} = Qty_{\underline{Midspan}} + Qty_{\underline{Midspan}}$$

$$Qty_{Cont(TOP)} = 6 + 0$$

$$Qty_{Cont(TOP)} = \mathbf{6}$$

$$Qty_{Cont(BOTT)} = \frac{Qty_{Exterior} + Qty_{Exterior} + Qty_{Interior} + Qty_{Interior}}{2}$$

$$Qty_{Cont(BOTT)} = \frac{0+6+0+6}{2}$$

$$Qty_{Cont(BOTT)} = \mathbf{6}$$

2. The program will determine the quantity of the extra reinforcement of each beam. (*Must be round up to whole number*)

$$Qty_{Extra(TOP)A} = Qty_{Exterior} + Qty_{Exterior} - Qty_{Cont(TOP)}$$

$$Qty_{Extra(TOP)B} = Qty_{Interior} + Qty_{Interior} - Qty_{Cont(TOP)}$$

$$Qty_{Extra(BOTT)} = Qty_{Midspan} + Qty_{Midspan} - Qty_{Cont(Bott)}$$

Example

BEAM ROV	V						+
Beam Nan	ne	Quantity	Length	Clear Length	Support		lack
B-2	V	1	3000	2775	1	¥	
B-3	¥	1	7000	6475	1	¥	
B-3	¥	2	7000	6400	2	¥	П
	Ţ					¥	ll
	¥				·	₹	ll
	₹					₹	₹

Ref 1

				N -	Dia		Qty.	5	Qty.	5	Qty.	5	Dia.		12	Dia.
-	р 2	450	700		-	25	Qty.	5	Qty.		Qty.	5	1	ø	50	16
١	B-2	450	/00	ШШ	Dia	25	Qty.		Qty.	5	Qty.			@		Qty.
- 1	1				Dia.	23	Otv.	7	Otv.	7	Otv.	7	Rost	Ð	75	2

$$Qty_{Extra(TOP)A} = Qty_{Exterior} + Qty_{Exterior} - Qty_{Cont(TOP)}$$

$$Qty_{Extra(TOP)A} = 5 + 5 - 5$$

$$Qty_{Extra(TOP)A} = \mathbf{5}$$

$$Qty_{Extra(TOP)B} = Qty_{Interior} + Qty_{Interior} - Qty_{Cont(TOP)}$$

$$Qty_{Extra(TOP)B} = 5 + 5 - 5$$

$$Qty_{Extra(TOP)B} = 5$$

$$Qty_{Extra(BOTT)} = Qty_{\underline{Midspan}} + Qty_{\underline{Midspan}} - Qty_{Cont(Bott)}$$

$$Qty_{Extra(BOTT)} = 5 + 5 - 5$$

$$Qty_{Extra(BOTT)} = 5$$

Ref 2

					Otv.	6	Otv.	6	Otv.	6	Dia.		12	Dia
			Dia.	25	Otv.	3	Otv.	-	Otv.	3	1	@	50	16
B-3	450	700	▼		Qty.		Qty.		Qty.		14	@	100	Qty.
1			Dia.	25	Qtv.	6	Qtv.	6	Qtv.	6	Rest	_	200	2

$$Qty_{Extra(TOP)A} = Qty_{Exterior} + Qty_{Exterior} - Qty_{Cont(TOP)}$$

$$Qty_{Extra(TOP)A} = 6 + 3 - 6$$

$$Qty_{Extra(TOP)A} = \mathbf{3}$$

$$Qty_{Extra(TOP)B} = Qty_{Interior} + Qty_{Interior} - Qty_{Cont(TOP)}$$

$$Qty_{Extra(TOP)B} = 6 + 3 - 6$$

$$Qty_{Extra(TOP)B} = 3$$

$$Qty_{Extra(BOTT)} = Qty_{\underline{Midspan}} + Qty_{\underline{Midspan}} - Qty_{Cont(Bott)}$$

$$Qty_{Extra(BOTT)} = 0 + 6 - 6$$

$$Qty_{Extra(BOTT)} = \mathbf{0}$$

Ref 3

			N A	n	ia lar	Qty.	6	Qty.	6	Qty.	6	Dia.		12	Dia.
	450				10. 25	Qty.	3	Qty.		Qty.	3	1	@	50	16
B-3	450	700		▼ n	ia 25	Qty.		Qty.		Qty.		14	0	100	Qty.
					18. 25	Qty.	6	Qty.	6	Qty.	6	Rest	@	200	2

$$Qty_{Extra(TOP)A} = Qty_{Exterior} + Qty_{Exterior} - Qty_{Cont(TOP)}$$

$$Qty_{Extra(TOP)A} = 6 + 3 - 6$$

$$Qty_{Extra(TOP)A} = 3$$

$$Qty_{Extra(TOP)B} = Qty_{Interior} + Qty_{Interior} - Qty_{Cont(TOP)}$$

$$Qty_{Extra(TOP)B} = 6 + 3 - 6$$

$$Qty_{Extra(TOP)B} = 3$$

$$Qty_{Extra(BOTT)} = Qty_{Midspan} + Qty_{Midspan} - Qty_{Cont(Bott)}$$

$$Qty_{Extra(BOTT)} = 0 + 6 - 6$$

$$Qty_{Extra(BOTT)} = \mathbf{0}$$

Ref 4

			87		Dia	25	Qty.	6	Qty.	6	Qty.	6	Dia.		12	Dia.
				_	Dia.	25	Qty.	3	Qty.		Qty.	3	1	0	50	16
B-3	450	700		•	ij	25	Qty.		Qty.		Qty.		14	0	100	Qty.
					Dia.	25	Qty.	6	Qty.	6	Qty.	6	Rest	0	200	2

$$Qty_{Extra(TOP)A} = Qty_{Exterior} + Qty_{Exterior} - Qty_{Cont(TOP)}$$

$$Qty_{Extra(TOP)A} = 6 + 3 - 6$$

$$Qty_{Extra(TOP)A} = 3$$

$$Qty_{Extra(TOP)B} = Qty_{Interior} + Qty_{Interior} - Qty_{Cont(TOP)}$$

$$Qty_{Extra(TOP)B} = 6 + 3 - 6$$

 $Qty_{Extra(TOP)B} = 3$

$$Qty_{Extra(BOTT)} = Qty_{Midspan} + Qty_{Midspan} - Qty_{Cont(Bott)}$$

$$Qty_{Extra(BOTT)} = 0 + 6 - 6$$

$$Qty_{Extra(BOTT)} = \mathbf{0}$$

3. The program will determine the clear length each beam

Example:

BEAM ROW	/						•
Beam Nam	e	Quantity	Length	Clear Length	Support		lack
B-2	¥	1	3000	2775	1	₹	
B-3	•	1	7000	6475	1	₹	
B-3	¥	2	7000	6400	2	₹	
	¥					¥	ll
1	¥					¥	ll
	¥					₹	¥

Ref (1)

$$L_C=2775$$

Ref (2)

$$L_C = 6475$$

Ref (3)

$$L_C = 6400$$

Ref (4)

$$L_C = 6400$$

- 4. The program will determine the Concrete Cover (CC_S) of the Beam Row
 - Case 1: Beam Type is "Footing Tie Beam" or "Grade Beam"

$$CC_S = |$$
 BEAMS EXPOSED ON EARTH

• Case 2: Beam Type is "Suspended Beam" or "Roof Beam"

Example

 $CC_S = 40$

- 5. The program will determine the Splice Length (S_L) .
 - Case 1: Splice Type is "Mechanical" or "Welded Splice (Butt)"

$$S_L = 0$$

• Case 2: Splice Type is "Lapped Splice" or "Welded Splice (Lapped)"

 $S_L = Based on the Parameters (Tension)$

Example:

 $f'c=4000\,psi\to 27.6$

BEAM ROV	٧						•
Beam Nan	ne	Quantity	Length	Clear Length	Support		▲
B-2	¥	1	3000	2775	1	¥	
B-3	¥	1	7000	6475	1	₹	
B-3	¥	2	7000	6400	2	¥	Г
	¥					¥	
	¥					¥	
	¥					₹	V

Ref (1)

			N-1-4		Dia	35	Qty.	5	Qty.	5	Qty.	5	Dia.		12	Dia.
	450	700		_	Dia.	25	Qty.	5	Qty.		Qty.	5	1	0	50	16
B-2	450	700		▼[Dia	25	Qty.		Qty.	5	Qty.			0		Qty.
					Dia.	25	Qty.	5	Qty.	5	Qty.	5	Rest	0	75	2

$$d_{B(MR-TOP)} = 25 : Thus, S_{L(TOP)} = 750$$

 $d_{B(MR-BOTT)} = 25 : Thus, S_{L(BOTT)} = 750$

Ref (2)

			N N		Dia	25	Qty.	6	Qty.	6	Qty.	6	Dia.		12	Dia.
				_	Dia.	25	Qty.	3	Qty.		Qty.	3	1	0	50	16
B-3	450	700		Ŧ	Din	25	Qty.		Qty.		Qty.		14	@	100	Qty.
					Dia.	25	Qty.	6	Qty.	6	Qty.	6	Rest	9	200	2

$$d_{B(MR-TOP)} = 25 : Thus, S_{L(TOP)} = 750$$

 $d_{B(MR-BOTT)} = 25 : Thus, S_{L(BOTT)} = 750$

Ref (3)

			N .		Dia	25	Qty.	6	Qty.	6	Qty.	6	Dia.		12	Dia.
				w l	Dia.	25	Qty.	3	Qty.		Qty.	3	1	0	50	16
B-3	450	700		▼[Dia	25	Qty.		Qty.		Qty.		14	@	100	Qty.
				ľ	DIA.	25	Qty.	6	Qty.	6	Qty.	6	Rest	9	200	2

$$d_{B(MR-TOP)} = 25 : Thus, S_{L(TOP)} = 750$$

 $d_{B(MR-BOTT)} = 25 : Thus, S_{L(BOTT)} = 750$

Ref (4)

			N -	Dia	25	Qty.	6	Qty.	6	Qty.	6	Dia.	12	Dia.
			,	-	25	Qty.	3	Qty.		Qty.	3	1	@ 50	16
B-3	450	700		Dia	25	Qty.		Qty.		Qty.		14	@ 100	Qty.
				Dia.	25	Otv	6	Otv	6	Otv	6	Rost	@ 200	2

$$\begin{aligned} d_{B(MR-TOP)} &= 25 \vdots Thus, S_{L(TOP)} &= 750 \\ d_{B(MR-BOTT)} &= 25 \vdots Thus, S_{L(BOTT)} &= 750 \end{aligned}$$

6. The program will determine the length of the main reinforcement of each beam. (must be converted to meters)

Case 1: $n_{Last} > 1$

• If Support = "1 - End Support"

$$L_B ext{ of } Qty_{Cont} = L + H_L + 0.5S_L - CC_S$$

- If Support = "2 End Support"
 - a) If n = 1 or $n = n_{Last}$

$$L_B \ of \ Qty_{Cont} = 1.5L + H_L + 0.5S_L - 0.5L_C - CC_S$$

b) Else,

$$L_B ext{ of } Qty_{Cont} = L + S_L$$

Case 2: $n_{Last} = 1$

- If Support = "1 End Support"
 - $L_B ext{ of } Qty_{Cont} = 2(L + H_L CC_S) L_C$

• If Support = "2 - End Support"

$$L_B ext{ of } Qty_{Cont} = 2(L + H_L - CC_S) - L_C$$

Where;

 $H_L = Hook \ Length \ based \ in \ the \ Prameters$

Example:

BEAM RO							•
Beam Nar	me	Quantity	Length	Clear Length	Support		4
B-2	₹	1	3000	2775	1	¥	
B-3	₹	1	7000	6475	1	¥	
B-3	₹	2	7000	6400	2	¥	П
	₹					₹	
	₹					₹	
	₹					¥	V

$$n_{Last} = 4 :: n_{Last} > 1$$

Ref (1) Support = "1 - End Support" & n = 1

Ľ.	I			 ·· I-	I	-									
					Dia	35	Qty.	5	Qty.	5	Qty.	5	Dia.	12	Dia.
		450	700	_	Dia.	25	Qty.	5	Qty.		Qty.	5	1	@ 50	16
	B-2	450	700	▼	Dia.	25	Qty.		Qty.	5	Qty.			0	Qty.
					Dia.	1	Qty.	5	Qty.	5	Qty.	5	Rest	@ 75	2

$$d_{B(MR-TOP)} = 25 : Thus, H_{L(TOP)} = 450$$

$$d_{B(MR-BOTT)}=25: Thus, H_{L(BOTT)}=450$$

$$L_B ext{ of } Qty_{Cont(TOP)} = L + H_{L(TOP)} + 0.5S_{L(TOP)} - CC_S$$

$$L_B \ of \ Qty_{Cont(TOP)} = 3000 + 450 + 0.5(750) - 40$$

$$L_B \ of \ Qty_{Cont(TOP)} = 3785 \ mm \rightarrow 3.785 \ m$$

$$L_B ext{ of } Qty_{Cont(BOTT)} = L + H_{L(BOTT)} + 0.5S_{L(BOTT)} - CC_S$$

$$L_B \ of \ Qty_{Cont(BOTT)} = 3000 + 450 + 0.5(750) - 40$$

$$L_B \ of \ Qty_{Cont(BOTT)} = 3785 \ mm \rightarrow 3.785 \ m$$

Ref (2) Support = "2 - End Support" & n = 2

			N S		Dia	25	Qty.	6	Qty.	6	Qty.	6	Dia.		12	Dia.
				_	Dia.	25	Qty.	3	Qty.		Qty.	3	1	@	50	16
B-3	450	700		Ŧ	Dia	25	Qty.		Qty.		Qty.		14	0	100	Qty.
					Dia.	25	Qty.	6	Qty.	6	Qty.	6	Rest	@	200	2

$$L_B \ of \ Qty_{Cont(TOP)} = L + S_{L(TOP)}$$

$$L_B of Qty_{Cont(TOP)} = 7000 + 750$$

$$L_B \ of \ Qty_{Cont(TOP)} = 7750 \ mm \rightarrow 7.75 \ m$$

$$L_B ext{ of } Qty_{Cont(BOTT)} = L + S_{L(BOTT)}$$

$$L_B of Qty_{Cont(BOTT)} = 7000 + 750$$

$$L_B \ of \ Qty_{Cont(BOTT)} = 7750 \ mm \rightarrow 7.75 \ m$$

Ref (3)
$$Support = "2 - End Support" \& n = 3$$

			N 2		Dia		Qty.	6	Qty.	6	Qty.	6	Dia.		12	Dia.
				_	Dia.	25	Qty.	3	Qty.		Qty.	ĸ	1	ø	50	16
B-3	450	700		▼	Din	25	Qty.		Qty.		Qty.		14	@	100	Qty.
					Dia.	25	Qty.	6	Qty.	6	Qty.	6	Rest	@	200	2

$$L_B ext{ of } Qty_{Cont(TOP)} = L + S_{L(TOP)}$$

$$L_B\ of\ Qty_{Cont(TOP)}=7000+750$$

$$L_B ext{ of } Qty_{Cont(TOP)} = 7750 \text{ } mm \rightarrow \textbf{7.75 } \textbf{m}$$

$$L_B ext{ of } Qty_{Cont(BOTT)} = L + S_{L(BOTT)}$$

$$L_B ext{ of } Qty_{Cont(BOTT)} = 7000 + 750$$

$$L_B \ of \ Qty_{Cont(BOTT)} = 7750 \ mm \rightarrow 7.75 \ m$$

Ref (4) Support = "2 - End Support" & $n = 4 = n_{Last}$

			No.		Dia	25	Qty.	6	Qty.	6	Qty.	6	Dia.		12	Dia.
				_	Dia.	25	Qty.	3	Qty.		Qty.	3	1	@	50	16
B-3	450	700		₹	Dia	25	Qty.		Qty.		Qty.		14	@	100	Qty.
					Dia.	25	Qty.	6	Qty.	6	Qty.	6	Rest	@	200	2

$$d_{B(MR-TOP)}=25 \vdots Thus, H_{L(TOP)}=450$$

$$d_{B(MR-BOTT)} = 25$$
: Thus, $H_{L(BOTT)} = 450$

$$L_B \ of \ Qty_{Cont(TOP)} = 1.5L + H_{L(TOP)} + 0.5S_{L(TOP)} - 0.5L_C - CC_S$$

$$L_B \ of \ Qty_{Cont(TOP)} = 1.5(7000) + 450 + 0.5(750) - 0.5(6400) - 40$$

$$L_B \ of \ Qty_{Cont(TOP)} = 8085 \ mm \rightarrow \mathbf{8.085} \ \mathbf{m}$$

$$L_B ext{ of } Qty_{Cont(BOTT)} = 1.5L + H_{L(BOTT)} + 0.5S_{L(BOTT)} - 0.5L_C - CC_S$$

$$L_B \ of \ Qty_{Cont(BOTT)} = 1.5(7000) + 450 + 0.5(750) - 0.5(6400) - 40$$

$$L_B \ of \ Qty_{Cont(BOTT)} = 8085 \ mm \rightarrow 8.085 \ m$$

7. The program will determine the length of the extra reinforcement

I. For L_B of Qty_{Extra} (TOP)

Case 1: $n_{Last} > 1$

• If Support = "1 - End Support"

$$L_B ext{ of } Qty_{Extra(TOP)A} = 0$$

$$L_B ext{ of } Qty_{Extra(TOP)B} = (x-1)L_C + L$$

• If
$$Support = "2 - End Support"$$

a) If
$$n = 1$$
 or $n = n_{Last}$

$$L_B ext{ of } Qty_{Extra(TOP)A} = L + H_L + (x - 1)L_C - CC_S$$
$$L_B ext{ of } Qty_{Extra(TOP)B} = 0.5L + (x - 0.5)L_C$$

b) Else,

$$L_B ext{ of } Qty_{Extra(TOP)A} = 0.5L + (x - 0.5)L_C$$

 $L_B ext{ of } Qty_{Extra(TOP)B} = 0.5L + (x - 0.5)L_C$

Case 2:
$$n_{Last} = 1$$

• If Support = "1 - End Support"

$$L_B \ of \ Qty_{Extra(TOP)A} = 0$$

$$L_B ext{ of } Qty_{Extra(TOP)B} = 2L + H_L + (x-2)L_C - CC_S$$

• If Support = "2 - End Support"

$$L_B of Qty_{Extra(TOP)A} = 2(L + H_L - CC_S) - L_C$$

$$L_B of Qty_{Extra(TOP)B} = 2(L + H_L - CC_S) - L_C$$

Where;

 $H_L = Hook \ Length \ based \ in the \ Prameters$

II. For L_B of Qty_{Extra} (BOTT)

Case 1: Support = "1 - End Support"

$$L_B ext{ of } Qty_{Extra(BOTT)} = 0$$

$$L_B ext{ of } Qty_{Extra} (BOTT) = L_C (1 - 2y)$$

Example

$$x = \frac{1}{3} \& y = \frac{1}{5}$$

ı	BEAM ROV	٧				1		•
	Beam Nan	ne	Quantity	Length	Clear Length	Support		▲
	B-2	Y	1	3000	2775	1	¥	
	B-3	¥	1	7000	6475	1	¥	
	B-3	Y	2	7000	6400	2	¥	Н
		Y					¥	
		V					¥	
		V					¥	V

 $n_{Last} = 4$, Thus $n_{Last} > 1$

Ref (1) Support = "1 - End Support" & n = 1

ſ				N 4	Dia	35	Qty.	5	Qty.	5	Qty.	5	Dia.		12	Dia.
1		450	700		-	25	Qty.	5	Qty.		Qty.	5	1	@	50	16
1	B-2	450	700		l Inis	25	Qty.		Qty.	5	Qty.			0		Qty.
ı					Dia.	23	Qty.	5	Qty.	5	Qty.	5	Rest	0	75	2

 $L_B ext{ of } Qty_{Extra(TOP)A} = \mathbf{0}$

$$L_B ext{ of } Qty_{Extra(TOP)B} = (x-1)L_C + L$$

$$L_B \ of \ Qty_{Extra(TOP)B} = \left(\frac{1}{3} - 1\right)(2775) + (3000)$$

$$L_B$$
 of $Qty_{Extra(TOP)B} = 1150 \ mm \rightarrow 1.15 \ m$

 $L_B \ of \ Qty_{Extra\ (BOTT)} = \mathbf{0}$

Ref (2) Support = "2 - End Support" & n = 2

				_													
			N 1		Dia.	25	Qty.	6	Qty.	6	Qty.	6	Dia.		12	Dia.]
				_	5	25	Qty.	3	Qty.		Qty.	3	1	0	50	16]
B-3	450	700		▼	Dia	25	Qty.		Qty.		Qty.		14	@	100	Qty.]
					Dia.	23	Qty.	6	Qty.	6	Qty.	6	Rest	@	200	2	Ì

$$L_B \ of \ Qty_{Extra(TOP)A} = 0.5L + (x - 0.5)L_C$$

$$L_B \ of \ Qty_{Extra(TOP)A} = 0.5(7000) + \left(\frac{1}{3} - 0.5\right)(6475)$$

$$L_B \ of \ Qty_{Extra(TOP)A} = 2420.83 \ mm \rightarrow 2.421 \ m$$

$$L_B \ of \ Qty_{Extra(TOP)B} = 0.5L + (x - 0.5)L_C$$

$$L_B \ of \ Qty_{Extra(TOP)B} = 0.5(7000) + \left(\frac{1}{3} - 0.5\right)(6475)$$

$$L_B$$
 of $Qty_{Extra(TOP)B} = 2420.83 \ mm \rightarrow \mathbf{2.421} \ \mathbf{m}$

$$L_B ext{ of } Qty_{Extra} (BOTT) = L_C (1 - 2y)$$

$$L_B \ of \ Qty_{Extra} \left(_{BOTT} \right) = 6475 \left(1 - 2 \left(\frac{1}{5} \right) \right)$$

$$L_B \ of \ Qty_{Extra\ (BOTT)} = 3885 \ mm \rightarrow 3.885 \ m$$

Ref (3) Support = "2 - End Support" & n = 3

			N A	Dia	25	Qty.	6	Qty.	6	Qty.	6	Dia.		12	Dia.
	450	700		-	25	Qty.	3	Qty.		Qty.	3	1	@	50	16
B-3	450	700		Dia.	25	Qty.		Qty.		Qty.		14	0	100	Qty.
				Dia.	23	Qty.	6	Qty.	6	Qty.	6	Rest	0	200	2

$$L_B \ of \ Qty_{Extra(TOP)A} = 0.5L + (x - 0.5)L_C$$

$$L_B ext{ of } Qty_{Extra(TOP)A} = 0.5(7000) + \left(\frac{1}{3} - 0.5\right)(6400)$$

$$L_B \ of \ Qty_{Extra(TOP)A} = 2433.33 \ mm \rightarrow \mathbf{2.434} \ \mathbf{m}$$

$$L_B ext{ of } Qty_{Extra(TOP)B} = 0.5L + (x - 0.5)L_C$$

$$L_B \ of \ Qty_{Extra(TOP)B} = 0.5(7000) + \left(\frac{1}{3} - 0.5\right)(6400)$$

$$L_B \ of \ Qty_{Extra(TOP)B} = 2433.33 \ mm \rightarrow \mathbf{2.434} \ \mathbf{m}$$

$$L_B ext{ of } Qty_{Extra} (BOTT) = L_C (1 - 2y)$$

$$L_B \ of \ Qty_{Extra} \left(_{BOTT} \right) = 6400 \left(1 - 2 \left(\frac{1}{5} \right) \right)$$

 $L_B \ of \ Qty_{Extra\ (BOTT)} = 3840 \ mm \rightarrow \mathbf{3.84} \ \mathbf{m}$

Ref (4) $Support = "2 - End Support" \& n = 4 = n_{Last}$

										Busi						
			N 1		Dia.	25	Qty.	6	Qty.	6	Qty.	6	Dia.		12	Dia.
				_	Dia.	25	Qty.	3	Qty.		Qty.	3	1	0	50	16
B-3	450	700		▼	Dia	25	Qty.		Qty.		Qty.		14	<u>@</u>	100	Qty.
					Dia.	23	Qty.	6	Qty.	6	Qty.	6	Rest	0	200	2

$$L_B ext{ of } Qty_{Extra(TOP)A} = L + H_L + (x - 1)L_C - CC_S$$

$$L_B \ of \ Qty_{Extra(TOP)A} = 7000 + 450 + \left(\frac{1}{3} - 1\right)(6400) - 40$$

$$L_B \ of \ Qty_{Extra(TOP)A} = 3143.33 \ mm \rightarrow 3.144 \ m$$

$$L_B ext{ of } Qty_{Extra(TOP)B} = 0.5L + (x - 0.5)L_C$$

$$L_B \ of \ Qty_{Extra(TOP)B} = 0.5(7000) + \left(\frac{1}{3} - 0.5\right)(6400)$$

$$L_B$$
 of $Qty_{Extra(TOP)B} = 2433.33 \ mm \rightarrow 2.434 \ m$

$$L_B ext{ of } Qty_{Extra} (BOTT) = L_C (1 - 2y)$$

$$L_{B} \ of \ Qty_{Extra} \left(BOTT\right) = 6400 \left(1 - 2\left(\frac{1}{5}\right)\right)$$

$$L_B \ of \ Qty_{Extra\ (BOTT)} = 3840 \ mm \rightarrow 3.84 \ m$$

8. The program will determine the manufactured length and its corresponding manufacture quantity

LEGEND:

 $Qty_P = no. of pcs. produced$

 $L_M = Available Manufactured Reinforcement Length$

 $L_W = Wastage\ Length$

 $Qty_M = no. of manufactured pcs.$

 $Qty_{BR} = Quantity \ of \ Beam \ Row$

 $L_E = Excess manufactured$ bar length

• For L_B of Qty_{Cont}

I. Case 1: $d_{B(MR-TOP)} = d_{B(MR-BOTT)}$

$$Qty_{Pn} = \frac{L_M}{L_B \ of \ Qty_{Cont(TOP)}}$$

 $L_W = [Qty_P - Qty_P \text{ (round down into whole number)}] \times L_B$

$$Qty_{Mn} = m \cdot \frac{Qty_{Cont(TOP)} + Qty_{Cont(BOTT)}}{Qty_{Pn}} \cdot Qty_{BR}$$

 $L_E(m) = [Qty_M(round\ up\ to\ whole\ number) - Qty_M] \times L_M$

And

Total Wastage = $L_E + L_W[Qty_{Mn} (round down to whole number)]$

Then the program will choose the manufactured bar length with the lowest Total wastage

II. Case 2: $d_{B(MR-TOP)} \neq d_{B(MR-BOTT)}$

$$Qty_P = \frac{L_M}{L_B \ of \ Qty_{Cont}(_)}$$

 $L_W = [Qty_P - Qty_P \text{ (round down into whole number)}] \times L_B$

$$Qty_{M} = \frac{Qty_{Cont}(\underline{})}{Qty_{P}} \cdot Qty_{BR}$$

 $L_E(m) = [Qty_M(round\ up\ to\ whole\ number) - Qty_M] \times L_M$

And

Total Wastage = $L_E + L_W[Qty_{Mn} \text{ (round down to whole number)}]$

Then the program will choose the manufactured bar length with the lowest Total wastage

- For L_B of $Qty_{Extra(TOP)}$
 - I. Case 1: L_B of $Qty_{Extra(TOP)A} = L_B$ of $Qty_{Extra(TOP)B}$

$$Qty_P = \frac{L_M}{L_B \ of \ Qty_{Extra(TOP)A}}$$

 $L_W = [Qty_P - Qty_P \text{ (round down into whole number)}] \times L_B$

$$Qty_{M} = \frac{Qty_{Extra(TOP)A} + Qty_{Extra(TOP)B}}{Qty_{P}} \cdot Qty_{BR}$$

 $L_E(m) = [Qty_M(round\ up\ to\ whole\ number) - Qty_M] \times L_M$

And

Total Wastage = $L_E + L_W[Qty_{Mn} (round down to whole number)]$

Then the program will choose the manufactured bar length with the lowest Total wastage

II. Case 2: L_B of $Qty_{Extra(TOP)A} \neq L_B$ of $Qty_{Extra(TOP)B}$

$$Qty_P = \frac{L_M}{L_B \ of \ Qty_{Extra(TOP)}}$$

 $L_W = [Qty_P - Qty_P \text{ (round down into whole number)}] \times L_B$

$$Qty_{M} = \frac{Qty_{Extra(TOP)}}{Qty_{P}} \cdot Qty_{BR}$$

 $L_E(m) = [Qty_M(round up to whole number) - Qty_M] \times L_M$

And

 $Total\ Wastage\ = L_E + L_W[Qty_{Mn}\ (round\ down\ to\ whole\ number)]$

Then the program will choose the manufactured bar length with the lowest Total wastage

• For L_B of $Qty_{Extra(BOTT)}$

$$Qty_P = \frac{L_M}{L_B \ of \ Qty_{Extra\ (BOTT)}}$$

 $L_W = [Qty_P - Qty_P \text{ (round down into whole number)}] \times L_B$

$$Qty_{M} = \frac{L_{B} \ of \ Qty_{Extra} \ (BOTT)}{Qty_{Pn}} \cdot Qty_{BR}$$

 $L_E(m) = [Qty_M(round up to whole number) - Qty_M] \times L_M$

And

Total Wastage = $L_E + L_W[Qty_{Mn} (round down to whole number)]$

Then the program will choose the manufactured bar length with the lowest Total wastage

Example

$$Qty_{BR} = 0$$

Ref (1)

			N		Dia.	35	Qty.	5	Qty.	5	Qty.	5	Dia.		12	Dia.
	450	700			Dia.	25	Qty.	5	Qty.		Qty.	5	1	0	50	16
B-2	450	700	ШШ	▼	Dia.	25	Qty.		Qty.	5	Qty.			@		Qty.
					Dia.	1	Qty.	5	Qty.	5	Qty.	5	Rest	0	75	2

• For L_B of Qty_{Cont}

$$d_{B(MR-TOP)} = 25 \& d_{B(MR-BOTT)} = 25$$

$$d_{B(MR-TOP)} = d_{B(MR-BOTT)}$$

 $L_B \ of \ Qty_{Cont(TOP)} = 3.785 \ m$

 $Qty_{Total} = Qty_{Extra(TOP)A} + Qty_{Extra(TOP)B} = 5 + 5 = 10$

L [M]	Qty [Total]	L [B]	Qty (B eam R ow)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6				1.59	1	40	40	2.215	0	88.600
7.5	40	0.705	4	1.98	1	40	40	3.715	0	148.600
9	10	3.785	4	2.38	2	20	20	1.430	0	28.600
12				3.17	3	13.33	14	0.645	8	16.385

$$L_M = 12 m \& Qty_M = 14$$

• For L_B of $Qty_{Extra\ (TOP)}$

$$L_{B} \; of \; Qty_{Extra\; (TOP)A} = 0 \; m$$

$$L_{B} \ of \ Qty_{Extra\ (TOP)B} = 1.15 \ m \ \& \ Qty_{Extra\ (TOP)B} = 5$$

 $L_{B} \ of \ Qty_{Extra} (TOP)A \neq L_{B} \ of \ Qty_{Extra} (TOP)B$

 $L_{B} \ of \ Qty_{Extra\ (TOP)A} = 0 \ m \ \& \ Qty_{Extra\ (TOP)A} = 5$

L [M]	Qty [Total]	L [B]	Qty (B eam R ow)	Qty	[,] [P]	Qty	[M]	L [W]	L [E]	Total Waste
6				#DIV/0!	#DIV/0!	#####	#####	#DIV/0!	#DIV/0!	#DIV/0!
7.5	5	0	4	#DIV/0!	#DIV/0!	#####	#####	#DIV/0!	#DIV/0!	#DIV/0!
9	5	U	4	#DIV/0!	#DIV/0!	#####	#####	#DIV/0!	#DIV/0!	#DIV/0!
12				#DIV/0!	#DIV/0!	#####	#####	#DIV/0!	#DIV/0!	#DIV/0!

$$L_M = \mathbf{0} \ \mathbf{m} \ \& \ Qty_{Mn} = \mathbf{0}$$

 $L_B \ of \ Qty_{Extra\ (TOP)B} = 1.15 \ m$ & $Qty_{Extra\ (TOP)B} = 5$

L [M]	Qty [Total]	L [B]	Qty (B eam R ow)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6				5.22	5	4.00	4	0.25	0	1.000
7.5	5	1.15	4	6.52	6	3.33	4	0.60	5	6.800
9	3	1.15	4	7.83	7	2.86	3	0.95	1.29	3.186
12				10.43	10	2.00	2	0.50	0	1.000

$$L_M = 6 m \& Qty_{Mn} = 4$$

• L_B of $Qty_{Extra(BOTT)}$

 $L_B \ of \ Qty_{Extra\ (BOTT)} = 0 \ m \ \& \ Qty_{Extra\ (BOTT)} = 5$

L [M]	Qty [Total]	L [B]	Qty (B eam R ow)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6				#DIV/0!	#DIV/0!	#####	#####	#DIV/0!	#DIV/0!	#DIV/0!
7.5	E	0	4	#DIV/0!	#DIV/0!	#####	#####	#DIV/0!	#DIV/0!	#DIV/0!
9	5	U	4	#DIV/0!	#DIV/0!	#####	#####	#DIV/0!	#DIV/0!	#DIV/0!
12				#DIV/0!	#DIV/0!	#####	#####	#DIV/0!	#DIV/0!	#DIV/0!

$$L_M = \mathbf{0} \; \mathbf{m} \; \; \& \; \; Qty_{Mn} = \mathbf{0}$$

Ref (2)

			No.		Dia	25	Qty.	6	Qty.	6	Qty.	6	Dia.		12	Dia.
	450			_	Dia.	25	Qty.	3	Qty.		Qty.	3	1	0	50	16
B-3	450	700		•	Dia	25	Qty.		Qty.		Qty.		14	@	100	Qty.
					Dia.	23	Qty.	6	Qty.	6	Qty.	6	Rest	0	200	2

• L_B of Qty_{Cont}

$$d_{B(MR-TOP)} = 25 \& d_{B(MR-BOTT)} = 25$$

 $d_{B(MR-TOP)} = d_{B(MR-BOTT)}$

$$\begin{split} L_B \ of \ Qty_{Cont(TOP)} &= 7.75 \ m \\ Qty_{Total} &= Qty_{Cont(TOP)} + Qty_{Cont(BOTT)} = 6 + 6 = 12 \end{split}$$

L [M]	Qty [Total]	L [B]	Qty (B eam R ow)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6				0.77	0	#####	#####	0.00	#DIV/0!	#DIV/0!
7.5	40	7 75	4	0.97	0	#####	#####	0.00	#DIV/0!	#DIV/0!
9	12	7.75	4	1.16	1	48.00	48	1.25	0.00	60.000
12				1.55	1	48.00	48	4.25	0	204.000

$$L_M = 9 m \& Qty_{Mn} = 48$$

• $L_B ext{ of } Qty_{Extra(TOP)}$

$$L_B$$
 of $Qty_{Extra(TOP)A} = 2.421 m$
 L_B of $Qty_{Extra(TOP)B} = 2.421 m$

$$L_B \ of \ Qty_{Extra(TOP)A} = L_B \ of \ Qty_{Extra(TOP)B}$$

 L_B of $Qty_{Extra(TOP)A} = 2.421 m$

$$Qty_{Total} = Qty_{Extra(TOP)A} + Qty_{Extra(TOP)B} = 3 + 3 = 6 \label{eq:qty_total}$$

L [M]	Qty [Total]	L [B]	Qty (B eam R ow)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6				2.68	2	12.00	12	1.52	0	18.216
7.5	0	0.044	4	3.35	3	8.00	8	0.78	0	6.216
9	6	2.241	4	4.02	4	6.00	6	0.04	0.00	0.216
12			·	5.35	5	4.80	5	0.80	2.4	5.580

$$L_M = 9 m \& Qty_{Mn} = 6$$

•
$$L_B \ of \ Qty_{Extra\ (BOTT)}$$

 $L_B \ of \ Qty_{Extra\ (BOTT)} = 3.885 \ m \ \& \ Qty_{Extra\ (BOTT)} = 0$

L [M]	Qty [Total]	L [B]	Qty (B eam R ow)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6				1.54	1	0.00	0	2.12	0	0.000
7.5	0	2.005	4	1.93	1	0.00	0	3.62	0	0.000
9	0	3.885	4	2.32	2	0.00	0	1.23	0	0.000
12				3.09	3	0.00	0	0.35	0	0.000

$$L_M = 12 m \& Qty_{Mn} = 0$$

Ref (3)

			No.		Dia		Qty.	6	Qty.	6	Qty.	6	Dia.		12	Dia.
				_	Dia.	25	Qty.	3	Qty.		Qty.	3	1	@	50	16
B-3	450	700		₹	Dia	25	Qty.		Qty.		Qty.		14	@	100	Qty.
					Dia.	25	Qty.	6	Qty.	6	Qty.	6	Rest	@	200	2

• L_B of Qty_{Cont}

$$\begin{aligned} d_{B(MR-TOP)} &= 25 &\& d_{B(MR-BOTT)} &= 25 \\ d_{B(MR-TOP)} &= d_{B(MR-BOTT)} \end{aligned}$$

 $L_B \ of \ Qty_{Cont(TOP)} = 7.75 \ m$

$$Qty_{Total} = Qty_{Cont(TOP)} + Qty_{Cont(BOTT)} = 6 + 6 = 12$$

L	[M]	Qty [Total]	L [B]	Qty (B eam R ow	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
	6				0.77	0	#####	#####	0.00	#DIV/0!	#DIV/0!
7	7.5	40	7 75	<u> </u>	0.97	0	#####	#####	0.00	#DIV/0!	#DIV/0!
	9	12	7.75	4	1.16	1	48.00	48	1.25	0	60.000
	12				1.55	1	48.00	48	4.25	0	204.000

$$L_M = 9 m \& Qty_{Mn} = 48$$

• $L_B ext{ of } Qty_{Extra} ext{ } (TOP)$

$$L_B$$
 of $Qty_{Extra(TOP)A} = 2.434 m$
 L_B of $Qty_{Extra(TOP)B} = 2.434 m$

 $L_B ext{ of } Qty_{Extra(TOP)A} = L_B ext{ of } Qty_{Extra(TOP)A}$

 $L_B \ of \ Qty_{Extra(TOP)A} = 2.434 \ m$

 $Qty_{Total} = Qty_{Extra(TOP)A} + Qty_{Extra(TOP)B} = 3 + 3 = 6$

L [M]	Qty [Total]	L [B]	Qty (B eam R ow)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6				2.47	2	12.00	12	1.13	0	13.584
7.5	6	2.434	,	3.08	3	8.00	8	0.20	0	1.584
9	O	2.434	4	3.70	3	8.00	8	1.70	0.00	13.584
12			l	4.93	4	6.00	6	2.26	0	13.584

$$L_M = 7.5 \, m \, \& \, Qty_{Mn} = 8$$

• $L_B \ of \ Qty_{Extra} (BOTT)$

 $L_B \ of \ Qty_{Extra\ (BOTT)} = 3.84 \ m \ \& \ Qty_{Extra\ (BOTT)} = 0$

L [M]	Qty [Total]	L [B]	Qty (B eam R ow)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6				1.56	1	0.00	0	2.16	0	0.000
7.5	0	2.04	4	1.95	1	0.00	0	3.66	0	0.000
9	0	3.84	4	2.34	2	0.00	0	1.32	0	0.000
12				3.13	3	0.00	0	0.48	0	0.000

$$L_M = 12 m \& Qty_{Mn} = 0$$

Ref (4)

	P 2 450 700	N N		Dia	25	Qty.	6	Qty.	6	Qty.	6	Dia.		12	Dia.	
			_	Dia.	25	Qty.	3	Qty.		Qty.	3	1	0	50	16	
	450	700		Ŧ	Din	25	Qty.		Qty.		Qty.		14	@	100	Qty.
					Dia.	25	Qty.	6	Qty.	6	Qty.	6	Rest	9	200	2

• L_B of Qty_{Cont}

$$d_{B(MR-TOP)} = 25 \& d_{B(MR-BOTT)} = 25$$

 $d_{B(MR-TOP)} = d_{B(MR-BOTT)}$

 $L_B ext{ of } Qty_{Cont(TOP)} = 8.085 m$

 $Qty_{Total} = Qty_{Cont(TOP)} + Qty_{Cont(BOTT)} = 6 + 6 = 12$

L [M]	Qty [Total]	L [B]	Qty (B eam R ow)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6				0.74	0	#####	#####	0.00	#DIV/0!	#DIV/0!
7.5	12	8.085	4	0.93	0	#####	#####	0.00	#DIV/0!	#DIV/0!
9	12	6.063	4	1.11	1	48.00	48	0.91	0.00	43.920
12				1.48	1	48.00	48	3.92	0	187.920

$$L_M = 9 m \& Qty_{Mn} = 48$$

• $L_B \ of \ Qty_{Extra\ (TOP)}$

$$L_B \ of \ Qty_{Extra(TOP)A} = 3.144 \ m$$

$$L_B \ of \ Qty_{Extra(TOP)B} = 2.434 \ m$$

 $L_B \ of \ Qty_{Extra(TOP)A} \neq L_B \ of \ Qty_{Extra(TOP)B}$

 $L_B \ of \ Qty_{Extra(TOP)A} = 3.144 \ m \ \& \ Qty_{Extra(TOP)A} = 3$

L [M]	Qty [Total]	L [B]	Qty (BeamRow)	Qty [P]	Qty [M]	L [W]	L [E]	Total Waste	
-------	----------------	-------	------------------	---------	---------	-------	-------	----------------	--

6				1.91	1	12.00	12	2.86	0	34.272
7.5	2	3.144	4	2.39	2	6.00	6	1.21	0	7.272
9		3.144	4	2.86	2	6.00	6	2.71	0.00	16.272
12				3.82	3	4.00	4	2.57	0	10.272

$$L_M = 7.5 \, m \, \& \, Qty_{Mn} = 6$$

 $L_B \, of \, Qty_{Extra(TOP)B} = 2.434 \, m \, \& \, Qty_{Extra(TOP)B} = 3$

L [M]	Qty [Total]	L [B]	Qty (B eam R ow)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6				2.47	2	6.00	6	1.13	0	6.792
7.5	3	2.434	4	3.08	3	4.00	4	0.20	0	0.792
9	3	2.434	4	3.70	3	4.00	4	1.70	0.00	6.792
12				4.93	4	3.00	3	2.26	0	6.792

$$L_M = 7.5 \, m \, \& \, Qty_{Mn} = 4$$

• $L_B ext{ of } Qty_{Extra} ext{ } (BOTT)$

 $L_{B} \; of \; \; Qty_{Extra \; (BOTT)} = 3.84 \; m \; \; \& \; \; \; Qty_{Extra \; (BOTT)} = 0$

L [M]	Qty [Total]	L [B]	Qty (B eam R ow)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6				1.54	1	0.00	0	2.12	0	0.000
7.5	0	2.04	4	1.93	1	0.00	0	3.62	0	0.000
9	0	3.84	4	2.32	2	0.00	0	1.23	0	0.000
12				3.09	3	0.00	0	0.35	0	0.000

$$L_M = 12 m \& Qty_{Mn} = 0$$

9. The program will determine the price of each beam

$$Price_{Beam} = \sum Qty_{M}Price_{M}$$

Where:

 $Price_{M} = Price \ of \ the \ steel \ reinforcement \ based \ on \ Pricing$

= Sorted through Reinforcement Grade, diameter, and Manufactured Length

Example:

Ref (1)

			8112		Dia	35	Qty.	5	Qty.	5	Qty.	5	Dia.		12	Dia.
	450	700			Dia.	25	Qty.	5	Qty.		Qty.	5	1	@	50	16
B-2	B-2 450 700		₹	Din	25	Qty.		Qty.	5	Qty.			0		Qty.	
1				Dia.	25	Qty.	5	Qty.	5	Qέγ.	5	Rest	(75	2	

$$d_{B(MR-TOP)} = 25 \& d_{B(MR-BOTT)} = 25$$

Rebar GRADE 60 (ø25mm) [6m]**- P 1040.31**

Rebar GRADE 60 (Ø25mm) [7.5m]- P 1300.39

Rebar GRADE 60 (Ø25mm) [9m]- P 1560.47

Rebar GRADE 60 (Ø25mm) [10.5m]- P 1820.54

Rebar GRADE 60 (Ø25mm) [12m]- P 2080.62

• L_B of Qty_{Cont}

$$L_M = 12 m \& Qty_M = 14$$

 $Price_M = P 2080.62$

$$Qty_M Price_M = 14(2080.62) =$$
 29128.68

• $L_B \ of \ Qty_{Extra\ (TOP)}$

a)
$$L_M = 0 m \& Qty_{Mn} = 0$$

 $Price_M = P 0.00$

$$Qty_M Price_M = 0(0.00) =$$
 0.00

b)
$$L_M = 6 m \& Qty_{Mn} = 4$$

 $Price_M = \mathbb{P} 1040.31$

$$Qty_M Price_M = 4(1040.31) =$$
 4161.24

• L_B of $Qty_{Extra(BOTT)}$

$$L_M = 0 m \& Qty_{Mn} = 0$$
$$Price_M = 0.00$$

$$Qty_M Price_M = 0(0.00) =$$
 0.00

• TOTAL

$$\begin{aligned} &Price_{Beam} = \sum Qty_{M}Price_{M} \\ &Price_{Beam} = 29128.68 + 0 + 1040.31 + 0 \\ &Price_{Beam} = \mathbb{P} \ \textbf{33289.92} \end{aligned}$$

Ref (2)

	3 450 700		N 4		Dia	25	Qty.	6	Qty.	6	Qty.	6	Dia.		12	Dia.
		450 1 700 11 11		_	Dia.	25	Qty.	3	Qty.		Qty.	3	1	0	50	16
B-3	B-3 450 70			▼[Dia	25	Qty.		Qty.		Qty.		14	0	100	Qty.
1				'	Dia.	2	Qty.	6	Qty.	9	Qty.	6	Rest	(6)	200	2

$$d_{B(MR-TOP)} = 25 \& d_{B(MR-BOTT)} = 25$$

Rebar GRADE 60 (ø25mm) [6m]**- P 1040.31**

Rebar GRADE 60 (Ø25mm) [7.5m]- P 1300.39

Rebar GRADE 60 (Ø25mm) [9m]- P 1560.47

Rebar GRADE 60 (Ø25mm) [10.5m]- P 1820.54

Rebar GRADE 60 (Ø25mm) [12m]- P 2080.62

• L_B of Qty_{Cont}

$$L_M = 9 m \& Qty_{Mn} = 48$$

 $Price_M = P 1560.47$

$$Qty_M Price_M = 48(1560.47) =$$
 74902.56

• L_B of $Qty_{Extra(TOP)}$

$$L_M = 9 m \& Qty_{Mn} = 6$$
$$Price_M = 1560.47$$

$$Qty_M Price_M = 6(1560.47) =$$
 9362.82

• L_B of $Qty_{Extra(BOTT)}$

$$L_M = 12 m \& Qty_{Mn} = 0$$
$$Price_M = \mathbb{P} 2080.62$$

$$Qty_M Price_M = 0(2080.62) = \mathbb{P} 0.00$$

TOTAL

$$Price_{Beam} = \sum_{M} Qty_{M} Price_{M}$$

$$Price_{Ream} = 74902.56 + 9362.82 + 0$$

$$Price_{Beam} = \mathbb{P} 84265.38$$

Ref (3)

			N -		Dia	ar.	Qty.	6	Qty.	6	Qty.	6	Dia.		12	Dia.
	n 2 450 700		_	Dia.	25	Qty.	3	Qty.		Qty.	3	1	0	50	16	
B-3 450	700		•	Dia	25	Qty.		Qty.		Qty.		14	0	100	Qty.	
					DIa.	25	Qty.	6	Qty.	6	Qty.	6	Rest	(0)	200	2

$$d_{B(MR-TOP)} = 25 \& d_{B(MR-BOTT)} = 25$$

Rebar GRADE 60 (Ø25mm) [6m]- P 1040.31

Rebar GRADE 60 (Ø25mm) [7.5m]- P 1300.39

Rebar GRADE 60 (Ø25mm) [9m]- P 1560.47

Rebar GRADE 60 (Ø25mm) [10.5m]- P 1820.54

Rebar GRADE 60 (Ø25mm) [12m]- P 2080.62

• L_B of Qty_{Cont}

$$L_M = 9 m \& Qty_{Mn} = 48$$

 $Price_{M} =$ ₹ 1560.47

$$Qty_M Price_M = 48(1560.47) =$$
 74902.56

• L_B of $Qty_{Extra(TOP)}$

$$L_M = 7.5 m \& Qty_{Mn} = 8$$

$$Price_{M} = \mathbb{P} 1300.39$$

$$Qty_M Price_M = 8(1300.39) =$$
 10403.12

• $L_B \ of \ Qty_{Extra\ (BOTT)}$

$$L_M = 12 m \& Qty_{Mn} = 0$$

$$Price_M =$$
 $\raise 2080.62$

$$Qty_M Price_M = 0(2080.62) =$$
 0.00

• TOTAL

$$Price_{Beam} = \sum Qty_{M}Price_{M}$$

$$Price_{Beam} = 74902.56 + 10403.12 + 0$$

$$Price_{Beam} =$$
 85305. **68**

Ref (4)

			N 4	Dia	25	Qty.	6	Qty.	6	Qty.	6	Dia.	12		Dia.
	B-3 450 700		700	-	25	Qty.	3	Qty.		Qty.	3	1	@ 5	0	16
B-3		700		Dia	25	Qty.		Qty.		Qty.		14	@ 10	Ö	Qty.
				Dia.	23	Qty.	6	Qty.	6	Qty.	9	Rest	@ 20	Ö	2

$$d_{B(MR-TOP)} = 25 \& d_{B(MR-BOTT)} = 25$$

Rebar GRADE 60 (Ø25mm) [6m]- P 1040.31

Rebar GRADE 60 (Ø25mm) [7.5m]- P 1300.39

Rebar GRADE 60 (Ø25mm) [9m]- P 1560.47

Rebar GRADE 60 (Ø25mm) [10.5m]- P 1820.54

Rebar GRADE 60 (Ø25mm) [12m]- P 2080.62

• L_B of Qty_{Cont}

$$L_M = 9 m \& Qty_{Mn} = 48$$

$$Price_{M} =$$
 ₹ 1560.47

$$Qty_M Price_M = 48(1560.47) =$$
 74902.56

• L_B of Qty_{Extra} (TOP)

a)
$$L_M = 7.5 m \& Qty_{Mn} = 6$$

$$Price_M =$$
 1300.39

$$Qty_M Price_M = 6(1300.39) =$$
 7802.34

b)
$$L_M = 7.5 m \& Qty_{Mn} = 4$$

$$Price_{M} =$$
 ₹ 1300.39

$$Qty_M Price_M = 4(1300.39) =$$
 5201.56

 $Qty_M Price_M = 0(2080.62) =$ 0.00

 L_B of Qty_{Extra} (BOTT)

$$L_M = 12 m & Qty_{Mn} = 0$$

$$Price_M = \mathbb{P} \ 2080.62$$

TOTAL

$$Price_{Beam} = \sum_{M} Qty_{M} Price_{M}$$

$$Price_{Beam} = 74902.56 + 7802.34 + 5201.56 + 0$$

$$Price_{Beam} = \mathbb{P} 87906.46$$

10. The program will determine the total price of the beam row

$$Price_{Total} = \sum Price_{Beam}$$

Example

$$Price_{Total} = \sum Price_{Beam}$$

$$Price_{Total} = 33289.92 + 84265.38 + 85305.68 + 87906.46$$

$$Price_{Total} =$$
 290767.44

- 11. The program will determine the weight of each beam
 - For L_B of Qty_{Cont}

a) If
$$d_{B(MR-TOP)} = d_{B(MR-BOTT)}$$

$$L_M Q t y_M W_{D(TOP)}$$

b) If
$$d_{B(MR-TOP)} \neq d_{B(MR-BOTT)}$$

$$L_{M(TOP)}Qty_{M(TOP)}W_{D(TOP)} + L_{M(BOTT)}Qty_{M(BOTT)}W_{D(BOTT)}$$

For L_B of $Qty_{Extra\ (TOP)}$

$$L_M Q t y_M W_{D(TOP)}$$

For L_B of $Qty_{Extra(BOTT)}$

$$L_M Q t y_M W_{D(BOTT)}$$

Then

$$W_{Beam} = \sum L_M Q t y_M W_D$$

Where:

 W_D = Weight based of the cdiameter of the main reinforcement.

Example

WEIGHT —	
BAR SIZE (Diameter)	kg/m
6 mm	0.222
8 mm	0.395
10 mm	0.616
12 mm	0.888
16 mm	1.597
20 mm	2.466
25 mm	3.854
28 mm	4.833
32 mm	6.313
36 mm	7.991
40 mm	9.864
44 mm	11.926
50 mm	15.413
56 mm	19.318

Ref (1)

	B-2 450 700		Dia	35	Qty.	5	Qty.	5	Qty.	5	Dia.	12	Dia.	
			_	Dia.	125	Qty.	5	Qty.		Qty.	5	1	@ 50	16
B-2		700	▼	Din	25	Qty.		Qty.	5	Qty.			@	Qty.
				Dia.	25	Qty.	5	Qty.	5	Qty.	5	Rest	@ 75	2

$$d_{B(MR-TOP)} = 25 \& d_{B(MR-BOTT)} = 25$$

 $W_{D(TOP)} = 3.854 kg/m$

$$W_{D(BOTT)} = 3.854 \, kg/m$$

 L_B of Qty_{Cont}

$$L_M = 12 m \& Qty_M = 14$$

$$L_M Q t y_M W_D = 12(14)(3.854) = 647.472 \, kg$$

• L_B of $Qty_{Extra(TOP)}$

$$L_M = 0 m \& Qty_{Mn} = 0$$

$$L_M = 6 m \& Qty_{Mn} = 4$$

$$L_M Q t y_M W_{D(TOP)} = [0(0) + 6(4)](3.854) = 92.496 kg$$

• $L_B ext{ of } Qty_{Extra} ext{ } (BOTT)$

$$L_M = 0 m \& Qty_{Mn} = 0$$

$$L_M Q t y_M W_{D(BOTT)} = 0(0)(3.854) = 0 kg$$

TOTAL

$$W_{Beam} = \sum L_M Q t y_M W_D = 647.472 + 92.496 + 0 = 739.968 \, kg$$

Ref (2)

			777 ,		Dia	25	Qty.	6	Qty.	6	Qty.	6	Dia.	12	Dia.
B-3	450	700		wľ	Dia.	25	Qty.	3	Qty.		Qty.	3	1	@ 50	16
				▼ [Dia	25	Qty.		Qty.		Qty.		14	@ 10	Qty.
				ı,	Dia.		Qty.	6	Qty.	9	Qty.	6	Rest	@ 20) 2

$$d_{B(MR-TOP)} = 25 \ \& \ d_{B(MR-BOTT)} = 25$$

$$W_{D(TOP)} = 3.854 \ kg/m$$

$$W_{D(BOTT)} = 3.854 \ kg/m$$

• L_B of Qty_{Cont}

$$L_M = 9 m \& Qty_{Mn} = 48$$

$$L_M Q t y_M W_D = 9(48)(3.854) = 1664.928 kg$$

• L_B of $Qty_{Extra(TOP)}$

$$L_M = 9 m \& Qty_{Mn} = 6$$

$$L_M Qty_M W_{D(TOP)} = 9(6)(3.854) = 208.116 kg$$

• $L_B ext{ of } Qty_{Extra} ext{ } (BOTT)$

$$L_M = 12 \ m \ \& \ Qty_{Mn} = 0$$

$$L_M Q t y_M W_{D(BOTT)} = 12(0)(3.854) = 0 kg$$

TOTAL

$$W_{Beam} = \sum L_M Q t y_M W_D = 1664.928 + 208.116 + 0 = 1873.044 kg$$

Ref (3)

								-		_			_		
	B-3 450 7		S 1 4	Dia	0.5	Qty.	6	Qty.	6	Qty.	6	Dia.		12	Dia.
B-3				-	25	Qty.	3	Qty.		Qty.	3	1	(0)	50	16
		700		Dia	25	Qty.		Qty.		Qty.		14	@	100	Qty.
					123	Qty.	6	Qty.	6	Qty.	6	Rest	@	200	2

$$d_{B(MR-TOP)} = 25 \ \& \ d_{B(MR-BOTT)} = 25$$
 $W_{D(TOP)} = 3.854 \ kg/m$ $W_{D(BOTT)} = 3.854 \ kg/m$

• L_B of Qty_{Cont}

$$L_M = 9 m \& Qty_{Mn} = 48$$

$$L_M Q t y_M W_D = 9(48)(3.854) = 1664.928 kg$$

• L_B of $Qty_{Extra(TOP)}$

$$L_M = 7.5 m \& Qty_{Mn} = 8$$

$$L_M Q t y_M W_{D(TOP)} = 7.5(8)(3.854) = 231.24 \ kg$$

• L_B of $Qty_{Extra\ (BOTT)}$

$$L_M = 12 m \& Qty_{Mn} = 0$$

$$L_M Q t y_M W_{D(BOTT)} = 12(0)(3.854) = 0 kg$$

• TOTAL

$$W_{Beam} = \sum L_M Q t y_M W_D = 1664.928 + 231.24 + 0 = 1896.168 kg$$

			S. E. Z.		Di-		Qty.	6	Qty.	6	Qty.	6	Dia.		12	Dia.
	B-3 450 7	700		_	Dia.	25	Qty.	3	Qty.		Qty.	3	1	@	50	16
B-3				▼	Dia.	25	Qty.		Qty.		Qty.		14	@	100	Qty.
							Qty.	6	Qty.	6	Qty.	6	Rest	@	200	2

$$d_{B(MR-TOP)} = 25 \& d_{B(MR-BOTT)} = 25$$

 $W_{D(TOP)} = 3.854 \ kg/m$
 $W_{D(BOTT)} = 3.854 \ kg/m$

• L_B of Qty_{Cont}

$$L_M = 9 m \& Qty_{Mn} = 48$$

$$L_M Q t y_M W_D = 9(48)(3.854) = 1664.928 kg$$

• L_B of $Qty_{Extra(TOP)}$

$$L_M = 7.5 m \& Qty_{Mn} = 6$$

$$L_M = 7.5 m \& Qty_{Mn} = 4$$

$$L_M Q t y_M W_{D(TOP)} = [7.5(6) + 7.5(4)](3.854) = 289.05 kg$$

• $L_B ext{ of } Qty_{Extra} ext{ (BOTT)}$

$$L_M = 12 m \& Qty_{Mn} = 0$$

$$L_M Q t y_M W_{D(BOTT)} = 12(0)(3.854) = 0 kg$$

• TOTAL

$$W_{Beam} = \sum L_M Q t y_M W_D = 1664.928 + 289.05 + 0 = 1953.978 \, kg$$

12. The program will determine the total weight of the beam row

$$W_{BR} = \sum W_{Beam}$$

Example:

$$W_{BR} = \sum_{i} W_{Beam}$$

$$W_{BR} = 739.968 + 1873.044 + 1896.168 + 1953.978$$

$$W_{BR} = 6463.158 \, kg$$

13. The program will determine the labor price of the beam row

$$Price_{Labor} = W_{BR} \cdot L_R$$

Where:

 $L_R = Labor Rate in Footing based in the Pricing$

CATEGORY: LABOR RATE (REBAR PER KG) - 9 items

FOOTING [KG]- P 17

WALL FOOTING [KG]- P 17

COLUMN [KG]- P 15

STAIRS [KG]- P 15

BEAM [KG]- P 16

FOOTING TIE BEAM [KG] - P 16

SLAB ON GRADE [KG]- P 17

SUSPENDED SLAB [KG]- P 18

WALLS [KG]- P 16

Example:

$$L_R = \mathbb{P} 16$$

 $Price_{Labor} = W_{BR} \cdot L_R$

 $Price_{Labor} = 6463.158(16)$

 $Price_{Labor} =$ **103419**. **528**