Task 1: Data Analysis and Insights Generation

Instructions:

- 1. Obtain a real-world dataset related to a specific domain (e.g., sales, marketing, customer behavior).
- 2. Perform exploratory data analysis using appropriate tools (Python, R, data visualization platforms).
- 3. Clean and preprocess the data, handling missing values, outliers, and inconsistent formats.
- 4. Conduct statistical analysis, applying measures like mean, median, standard deviation, and correlation coefficients.
- 5. Apply advanced analytical methods (regression analysis, clustering) to identify patterns and trends.
- 6. Use data visualization techniques to present findings effectively (charts, graphs).
- 7. Interpret results, providing actionable insights and recommendations aligned with business objectives.
- 8. Prepare a comprehensive report summarizing the analysis approach, key findings, and recommendations.

```
In [1]: import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
    plt.style.use('ggplot')
    import numpy as np

In [2]: data = pd.read_csv("Datasets/credit_approval/crx.data",header=None,na_values="?")

In [3]: # data.head()
    data.info()
    # data[0].value_counts()
    data.describe()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 690 entries, 0 to 689
Data columns (total 16 columns):
 # Column Non-Null Count Dtype

				<i>-</i> ,
0	0	678	non-null	object
1	1	678	non-null	float64
2	2	690	non-null	float64
3	3	684	non-null	object
4	4	684	non-null	object
5	5	681	non-null	object
6	6	681	non-null	object
7	7	690	non-null	float64
8	8	690	non-null	object
9	9	690	non-null	object
10	10	690	non-null	int64
11	11	690	non-null	object
12	12	690	non-null	object
13	13	677	non-null	float64
14	14	690	non-null	int64
15	15	690	non-null	object
dtvnes:		float64(4	.) int64(2).	object(

dtypes: float64(4), int64(2), object(10)

memory usage: 86.4+ KB

Out[3]:

	1	2	7	10	13	14
count	678.000000	690.000000	690.000000	690.00000	677.000000	690.000000
mean	31.568171	4.758725	2.223406	2.40000	184.014771	1017.385507
std	11.957862	4.978163	3.346513	4.86294	173.806768	5210.102598
min	13.750000	0.000000	0.000000	0.00000	0.000000	0.000000
25%	22.602500	1.000000	0.165000	0.00000	75.000000	0.000000
50%	28.460000	2.750000	1.000000	0.00000	160.000000	5.000000
75%	38.230000	7.207500	2.625000	3.00000	276.000000	395.500000
max	80.250000	28.000000	28.500000	67.00000	2000.000000	100000.000000

Dataset details:

- Male A1: b, a.
- Age A2: continuous.
- Debt A3: continuous.
- Married A4: u, y, l, t.
- BankCustomer A5: g, p, gg.
- EducationLevel A6: c, d, cc, i, j, k, m, r, q, w, x, e, aa, ff.
- Ethnicity A7: v, h, bb, j, n, z, dd, ff, o.
- YearsEmployed A8: continuous.
- PriorDefault A9: t, f.
- Employed A10: t, f.
- CreditScore A11: continuous.
- DriversLicense A12: t, f.
- Citizen A13: g, p, s.
- ZipCode A14: continuous.
- Income A15: continuous.
- Approved A16: +,- (class attribute)
- (from crx.names file, Source:https://archive.ics.uci.edu/dataset/27/credit+approval)
- (Column descriptions, Reference:http://rstudio-pubs-static.s3.amazonaws.com/73039_9946de135c0a49daa7a0a9eda4a67a72.html)

2. EDA

In [5]: numeric = [1, 2, 7, 10, 14]
#A14 is zip code. Should be treated as categorical rather than numeric "data[13]"

```
data num = data[numeric]
        data num.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 690 entries, 0 to 689
        Data columns (total 5 columns):
             Column Non-Null Count Dtype
                     678 non-null
                                     float64
         0
             1
             2
                     690 non-null
                                     float64
         1
                     690 non-null
                                     float64
         2
             7
                     690 non-null
                                     int64
             10
             14
                     690 non-null
                                     int64
         4
        dtypes: float64(3), int64(2)
        memory usage: 27.1 KB
        categorical = [0, 3, 4, 5, 6, 8, 9, 11, 12, 13]
In [6]:
        data cat = data[categorical]
        data cat.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 690 entries, 0 to 689
        Data columns (total 10 columns):
             Column Non-Null Count Dtype
         0
                     678 non-null
                                     object
                     684 non-null
                                     object
         1
             3
                                     object
                     684 non-null
         3
             5
                     681 non-null
                                     object
                     681 non-null
                                     object
         4
         5
                     690 non-null
                                     object
         6
             9
                     690 non-null
                                     object
                     690 non-null
                                     object
         7
             11
         8
             12
                     690 non-null
                                     object
             13
                     677 non-null
                                     float64
        dtypes: float64(1), object(9)
        memory usage: 54.0+ KB
        data_target = data[15].replace({'+':1, '-':0})
In [7]:
        data target.info()
```

3. Pre-processing

Data Pre-processing cleaning, missing values and outliers

- Taking mean for Age column in data_num
- Checking for outliers in Numerical columns and removing outliers
- Filling categorical columns with mode value of that column in data_cat
- Converting Categorical values to numerical by Label Encoder

```
# data num.info()
In [24]:
         data num = data num.fillna(data num.mean())
         # data num.head()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 690 entries, 0 to 689
         Data columns (total 5 columns):
              Column Non-Null Count Dtype
                      690 non-null
                                      float64
                      690 non-null
                                      float64
          1
                      690 non-null
                                      float64
                                      int64
          3
                      690 non-null
              10
                      690 non-null
              14
                                      int64
         dtypes: float64(3), int64(2)
         memory usage: 27.1 KB
         # numeric = [1,2,7,10,14]
 In [9]:
         plt.boxplot(np.log10(data_num[2]))
         data num[2].describe()
```

C:\Users\MAHAVIR\anaconda3\lib\site-packages\pandas\core\arraylike.py:397: RuntimeWarning: divide by zero encount
ered in log10
 result = getattr(ufunc, method)(*inputs, **kwargs)

```
Out[9]:
```

count 690.000000 4.758725 mean std 4.978163 min 0.000000 25% 1.000000 50% 2.750000 75% 7.207500 max 28.000000 Name: 2, dtype: float64

In [10]: sns.pairplot(data[[1,2,7,10,14]])

Out[10]: <seaborn.axisgrid.PairGrid at 0x2687c1d13a0>


```
In [25]:
         for column in data cat.columns:
           data cat[column] = data cat[column].fillna(data cat[column].value counts().index[0])
         # data cat.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 690 entries, 0 to 689
         Data columns (total 10 columns):
              Column Non-Null Count Dtype
                       690 non-null
                                       int32
           0
                      690 non-null
              3
                                       int32
                                       int32
                       690 non-null
                       690 non-null
                                       int32
                       690 non-null
                                       int32
           4
                                       int32
                       690 non-null
           5
                       690 non-null
                                       int32
          6
              11
                      690 non-null
                                       int32
          7
          8
              12
                       690 non-null
                                       int32
              13
                       690 non-null
                                       int64
         dtypes: int32(9), int64(1)
         memory usage: 29.8 KB
```

```
In [26]: from sklearn.preprocessing import LabelEncoder
    label_encoder = LabelEncoder()

for column in data_cat.columns:
    data_cat[column] = label_encoder.fit_transform(data_cat[column])

# data_cat.info()
# data_cat.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 690 entries, 0 to 689
Data columns (total 10 columns):
     Column Non-Null Count Dtype
 0
             690 non-null
                             int32
             690 non-null
                             int32
     3
 1
 2
             690 non-null
                             int32
     5
             690 non-null
                             int32
             690 non-null
                             int32
             690 non-null
                             int32
 6
     9
             690 non-null
                             int32
    11
             690 non-null
                             int32
     12
 8
             690 non-null
                             int32
             690 non-null
 9
     13
                             int64
dtypes: int32(9), int64(1)
memory usage: 29.8 KB
```

```
In [27]: data_cleaned = pd.concat([data_num,data_cat,data_target],axis=1)
# data_cleaned.info()
# data_cleaned.head()
```

		ˈpanda dex: 6							e'>							
	_	Lumns														
#			` Non-N				•	ype								
						_										
0	1		690 n	on-r	null		fl	oat	64							
1	2		690 n	on-r	null		fl	oat	64							
2	7		690 n	on-r	null		fl	oat	64							
3	10		690 n	on-r	null		in	t64								
4	14		690 n	on-r	null		in	t64								
5	0		690 n	on-r	null		in	t32								
6	3		690 n	on-r	null		in	t32								
7	4		690 n	on-r	null		in	t32								
8	5		690 n	on-r	null		in	t32								
9	6		690 n	on-r	null		in	t32								
1	0 8		690 n	on-r	null		in	t32								
	1 9		690 n	on-r	null		in	t32								
1	2 11		690 n	on-r	null		in [.]	t32								
	3 12		690 n					t32								
	4 13		690 n					t64								
	5 15		690 n					t64								
		float			nt32(9),	i	nt6	4(4))						
me	mory u	ısage:	62.1	KB												
	1	2	7	10	14	0	3	4	5	6	8	9	11	12	13	15
0	30.83	0.000	1.25	1	0	1	1	0	12	7	1	1	0	0	68	1
1	58.67	4.460	3.04	6	560	0	1	0	10	3	1	1	0	0	11	1
2	24.50	0.500	1.50	0	824	0	1	0	10	3	1	0	0	0	96	1
3	27.83	1.540	3.75	5	3	1	1	0	12	7	1	1	1	0	31	1
4	20.17	5.625	1.71	0	0	1	1	0	12	7	1	0	0	2	37	1

• Scaling the Data using MinMaxScaler and saving clean dataset for Predictive modelling and advance analytics

Out[27]:

```
scaler = MinMaxScaler(feature range=(0, 1))
          clean data = scaler.fit transform(data cleaned)
          clean data = pd.DataFrame(clean data)
In [28]:
          # clean data.head()
          clean data.to csv('Datasets/credit approval/clean data.data')
Out[28]:
                                                                                  10 11 12 13
                                                                                                        14 15 Cluster
                  0
                           1
                                                                          8
          0 0.256842 0.000000 0.043860 0.014925 0.00000 1.0 0.5 0.0 0.923077 0.875 1.0 1.0 0.0 0.0 0.402367 1.0
                                                                                                                    0
            0.675489 0.159286 0.106667 0.089552 0.00560 0.0 0.5 0.0 0.769231 0.375 1.0 1.0 0.0 0.0 0.065089 1.0
                                                                                                                    0
          2 0.161654 0.017857 0.052632 0.000000 0.00824 0.0 0.5 0.0 0.769231 0.375 1.0 0.0 0.0 0.0 0.568047 1.0
                                                                                                                    0
          3 0.211729 0.055000 0.131579 0.074627 0.00003 1.0 0.5 0.0 0.923077 0.875 1.0 1.0 1.0 0.0 0.183432 1.0
                                                                                                                    0
          4 0.096541 0.200893 0.060000 0.000000 0.000000 1.0 0.5 0.0 0.923077 0.875 1.0 0.0 0.0 1.0 0.218935 1.0
                                                                                                                    0
```

4. Statistical Analysis and 5. Advance Analytics

Performing Analysis of Data through plots

- Statistical analysis of dataset (mean, std, min, max)
- Performing Kmeans clustering on 2 principal components
- Generating Heatmap for checking correlation
- Checking correlation between target and each feature using scatter plots

```
In [16]: data_cleaned.describe()
```

	count	690.000000	690.000000	690.000000	690.00000	690.000000	690.000000	690.000000	690.000000	690.000000	690.000000	690.
	mean	31.568171	4.758725	2.223406	2.40000	1017.385507	0.695652	1.233333	0.475362	5.698551	5.098551	0.
	std	11.853273	4.978163	3.346513	4.86294	5210.102598	0.460464	0.430063	0.850238	4.285748	2.510731	0.
	min	13.750000	0.000000	0.000000	0.00000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.
	25%	22.670000	1.000000	0.165000	0.00000	0.000000	0.000000	1.000000	0.000000	1.000000	3.000000	0.
	50%	28.625000	2.750000	1.000000	0.00000	5.000000	1.000000	1.000000	0.000000	5.000000	7.000000	1.
	75%	37.707500	7.207500	2.625000	3.00000	395.500000	1.000000	1.000000	0.000000	10.000000	7.000000	1.
	max	80.250000	28.000000	28.500000	67.00000	100000.000000	1.000000	2.000000	2.000000	13.000000	8.000000	1.
4												>
In [17]: In [18]:	from sklearn.decomposition import PCA											

14

7 10

Out[16]:

C:\Users\MAHAVIR\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:1334: UserWarning: KMeans is known to hav e a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=3.

warnings.warn(

C:\Users\MAHAVIR\anaconda3\lib\site-packages\sklearn\utils\validation.py:1858: FutureWarning: Feature names only support names that are all strings. Got feature names with dtypes: ['int', 'str']. An error will be raised in 1. 2.

warnings.warn(

0.0

pca1

-0.5

0.5

• We can clearly see that the clusters can be separated easily based on pca1, there is high correlation between pca1 with Approval rate

1.0

```
In [19]: corr = data_cleaned.corr()
  plt.figure(figsize=(12,10))
  heat = sns.heatmap(data=corr)
  plt.title('Heatmap of Correlation')
```

Out[19]: Text(0.5, 1.0, 'Heatmap of Correlation')

-1.0

In [20]: ax1 = data_cleaned[data_cleaned[15] == 1].plot(kind='scatter', x=14, y=2, color='blue', alpha=0.5, figsize=(14, 1
data_cleaned[data_cleaned[15] == 0].plot(kind='scatter', x=14, y=2, color='red', alpha=0.5, figsize=(14, 10), ax=
plt.legend(labels=['Approved', 'Not Approved'])

```
plt.title('Relationship between Income and Debt', size=24)
plt.xlabel('Income', size=18)
plt.ylabel('Debt', size=18);
```

Relationship between Income and Debt

In [21]: ax1 = data_cleaned[data_cleaned[15] == 1].plot(kind='scatter', x=14, y=10, color='blue', alpha=0.5, figsize=(14, data_cleaned[data_cleaned[15] == 0].plot(kind='scatter', x=14, y=10, color='red', alpha=0.5, figsize=(14, 10), ax

```
plt.legend(labels=['Approved', 'Not Approved'])
plt.title('Relationship between Income and Credit-Score wrt. Approval', size=24)
plt.xlabel('Income', size=18)
plt.ylabel('Credit Score', size=18);
```

Relationship between Income and Credit-Score wrt. Approval

ax1 = data_cleaned[data_cleaned[15] == 1].plot(kind='scatter', x=14, y=7, color='blue', alpha=0.5, figsize=(14, 1 data_cleaned[data_cleaned[15] == 0].plot(kind='scatter', x=14, y=7, color='red', alpha=0.5, figsize=(14, 10), ax=

```
plt.legend(labels=['Approved', 'Not Approved'])
plt.title('Relationship between Income and Years Employed wrt. Approval', size=24)
plt.xlabel('Income', size=18)
plt.ylabel('Years Employed', size=18);
```

Relationship between Income and Years Employed wrt. Approval

Insights from Visualizations

- We can see that Credit Score, Income, Years-Employed, Debt have high correlation with Credit Card Approval
- Higher Income, Lower debt, More no. of Years of Employment and High Credit score gives High Approval rate
- Further Analysis is needed to arrive at actionable insights

7. Actionable insights and Recommendations

Recommendations

- Based upon the analysis done on the data, Credit score, Income, Years of Employment and Debt are high deciding factors on credit approval decision.
- However, it must be noted that Credit score and Debt indirectly depends on Credit card usage thus, business must focus more on Income and Employment years.