【答案】

		输出	=====			
选通	地址			数据	和N CC	
EN	A_2	A_1	A_0	D _i	Y	\overline{Y}
1	×	×	×	×	0	1
0	0	0	0	D ₀ ~D ₇	D_0	$\overline{D_0}$
0	0	0	1	D ₀ ~D ₇	D_1	$\overline{D_{\mathfrak{l}}}$
0	0	1	0	D ₀ ∼D ₇	D_2	$\overline{D_2}$
0	0	1	1	D ₀ ~D ₇	D ₃	$\overline{D_3}$
0	1	0	0	$D_0 \sim D_7$	D4	$\overline{D_4}$

0	1	0	1	$D_0 \sim D_7$	D_5	$\overline{D_5}$
0	1	1	0	$D_0\sim D_7$	D_6	$\overline{D_6}$
0	1	1	1	$D_0\sim D_7$	D ₇	$\overline{D_7}$
F=A'B'C	'+A'BC'+AB'	CLARG			Dį	D_{7}

F=A'B'C+A'BC'+AB'C'+ABC

图 A4.2.2-5 【题】4.2.2-11 的电路实现

三、(15分)组合逻辑电路,在答题纸上作答。

可以采用优先权编码器(priority encoder)和数据选择器(multiplexer),将二进制定点数转换为二进制浮点数,如图 2 以 4-bit 的二进制无符号整数输入为例,用 74148 优先权编码器和 74153 双四选一数据选择器芯片,配合必要的反相器门电路实现的例子。(74148 和 74153 的功能表分别如表 1 和表 2 所示。)

请解决如下问题:

- (1) 例如:输入的无符号整数 $U_3U_2U_1U_0$ 为(0101)₂,则输出的数字信号 $F_0F_{-1}F_{-2}F_{-3}$ 和 P_1P_0 分别为什么数值?
- (2) 图 2 中的椭圆虚线框中所示的 74148 的 $\overline{I_0}$ 端为什么直接接地? (接地相当于逻辑"0")
- (3) 假设采购不到 74148 芯片,则仅依靠 74153 芯片和反相器,如何实现图 2 中的方形虚线框中电路的功能?请给出设计方案,并绘制这部分功能电路的原理图。

图 2 将 4-bit 的二进制无符号整数转换为二进制浮点数

答:

(1) 如果输入的无符号整数 $U_1U_2U_1U_0$ 为(0101)₂,则输出的数字信号 $F_0F_{-1}F_{-2}F_{-3}$ 为(1010)₂, P_1P_0 为(10)₂; 电路中的数值如下图所示(学生作答时可以不画电路图)。 评阅细则:本小问 5 分,只要写出值即可算对。 $1.01*2^2$, $1.01*10^2$.

(2) 中的 74148 芯片的 $\overline{I_0}$ 端直接接地,相当于接逻辑 "0", 这是因为不论输入为 $(0001)_2$ 还是

 $(0000)_2$,幂指数均应显示为 $(00)_2$,所以使 $\overline{I_0}=0$,不论 U_0 是否为 1。

评阅细则:本小问5分,只要写出合适理由即可算对。

(3) 以 74148 为核心的电路功能是:

(逻辑取值,学生作答时可以不列出逻辑取值);

11.		10000			
1	U ₂	U_1	U_0	A_1	Ao
0	×	×	×	1	1
0		×	×	1	0
0	0	1	×	0	1
/ Ym Arr -t- t-	0	0	1	0	0

(逻辑表达式):

$$A_1 = U_3 + \overline{U_3} \cdot U_2 = U_3 + U_3$$

$$A_0 = U_3 + \overline{U_3} \cdot \overline{U_2} \cdot U_1 = U_3 + \overline{U_2} \cdot U_1$$

可以分别用"四选一"实现 A_1 和 A_0 的组合逻辑函数。"四选一"的逻辑表达式为:

$$Y_{i} = [(\overline{A_{1}} \cdot \overline{A_{0}}) \cdot D_{i0} + (\overline{A_{1}} \cdot A_{0}) \cdot D_{i1} + (A_{1} \cdot \overline{A_{0}}) \cdot D_{i2} + (A_{1} \cdot A_{0}) \cdot D_{i3}] \cdot S_{i},$$
 为了避免和逻辑表

达式混淆,可以将 74153 的地址输入端添加角标 "MUX",即:

$$Y_i = [(\overline{A_{1,\text{MUX}}} \cdot \overline{A_{0,\text{MUX}}}) \cdot D_{i0} + (\overline{A_{1,\text{MUX}}} \cdot A_{0,\text{MUX}}) \cdot D_{i1} + (A_{1,\text{MUX}} \cdot \overline{A_{0,\text{MUX}}}) \cdot D_{i2} + (A_{1,\text{MUX}} \cdot A_{0,\text{MUX}}) \cdot D_{i3}] \cdot S_i$$
可以取:

$$\begin{cases} A_{1,\text{MUX}} = U_3 \\ A_{0,\text{MUX}} = U_2 \\ D_{10} = 0 \\ D_{11} = D_{12} = D_{13} = 1 \\ Y_1 = A_1 \\ S_1 = 1 \end{cases}$$
 , 使得:

$$A_1 = U_3 + U_2 = \overline{U_3} \cdot \overline{U_2} \cdot 0 + \overline{U_3} \cdot U_2 \cdot 1 + U_3 \cdot \overline{U_2} \cdot 1 + U_3 \cdot U_2 \cdot 1$$

$$\left\{egin{aligned} A_{1, ext{MUX}} &= U_3 \ A_{0, ext{MUX}} &= U_2 \ D_{20} &= U_1 \ D_{21} &= 0 \ D_{22} &= D_{23} &= 1 \ Y_2 &= A_0 \ S_2 &= 1 \ \end{aligned}
ight.$$
,使得:

$$A_2 = U_3 + \overline{U_2} \cdot U_1 = \overline{U_3} \cdot \overline{U_2} \cdot U_1 + \overline{U_3} \cdot U_2 \cdot 0 + U_3 \cdot \overline{U_2} \cdot 1 + U_3 \cdot U_2 \cdot 1$$

绘制电路图

评阅细则:本小问5分,能有初步思路,写出合理的逻辑表达式,即可得3分,4选1多路器信号连接正确得2分。如果逻辑表达式错误,但根据逻辑表达式绘制的4选1多路器的连接与逻辑表达式一致,可以得到绘图的2分。

修改后的完整的电路图 (学生作答时可以不画此图)

4.

例 5.2.1-3 图 5.2.1-6 (a) 电路的输入波形如图 5.2.1-6 (b) 所示,试画出 Q_1 、 Q_2 的输出波形。设 Q_1 、 Q_2 的初始状态均为 0。(★浙江工业大学 2000)

图 5.2.1-6 例 5.2.1-3 的电路及输入波形

解:由图 5.2.1-6 (a) 电路可见,触发器 1 是一个 T' 触受器,其时钟脉冲是 A 波形,上升边触发;触发器 2 是一个 D 触发器,其输入是 Q_1 ,其时钟脉冲是 B 波形,下降边触发。由此可知触发器的输出波形如图 5.2.1-7 所示:

图 5.2.1-7 例 5.2.1-3 电路的输出波形

- ① $t \leq t_0$ 时, $Q_1 = Q_2 = 0$,处于初始状态。
- ② $t < t_1$ 时,因 A 波形没有上升边, Q_1 继续为 0 状态; 因为 $Q_1 = 0$, Q_2 也保持 0 状态。
- ③ $t=t_1$ 时,A 上升边到达,由于 $Q_2=0$, Q_1 不复位。触发器 1 翻转为 1 状态;因 $t=t_1$ 时 $Q_1=0$,故 Q_2 仍为 0 状态。
- $@t=t_2$ 时,B波形下降边到达,触发器 1 的 1 状态被移入触发器 2 中, $Q_2=1$,同时将触发器 1 复位为 $Q_1=0$ 。
- ⑤ $t=t_1$ 时,B波形下降边又到达,因此时 $Q_1=0$, Q_2 变为 0 状态:而触发器 1 因没有时钟脉冲上升边保持 0 状态。以下类同。

提示与点评: 本题构思巧妙, 画波形图时要分时段逐段画出, 切忌操之过急。

- 5、采用上升沿触发的 D 触发器设计一种进制可控的同步加法计数器,按照自然二进制编码进行加法计数;当输入 A=0 时,为七进制计数器;当 A=1 时,为五进制计数器;要求具有自启动功能。(20 分)
 - (1) 分析设计要求, 绘出状态转换图和状态转换表;
 - (2) 求出最简的驱动方程;
 - (3) 进行自启动检查: 如果必要,对设计进行修正,使之能够自启动;
 - (4) 绘制设计的电路图。

解答:

状态转换表 (形式1):

状态转	换表(形式	1):				Q_0^{n+1}
A	Q_2	Q_1	Q_0	Q_2^{n+1}	Q_1^{n+1}	
А	£.			0	0	1
0	0	0	0	0	1	0
0	0	0	1		1	1
0	0	1	0	0	0	0
0	0	1	1	1	0	1
0	1	0	0	1		0
0	1	0	1	1	1	0
	<u> </u>	1	0	0	0	
0		1	1	×	×	X
0		0	0	0	0	1
1	0	0	1	0	1	0
1	0		0	0	1	1
1	0			1	0	0
1	0	11	1	1	0	0
1	1	0	0	0		0 (或×)
1	1	0	1	0 (或×)	0 (或×)	
1	1	1	0	0 (或×)	0 (或×)	0 (或×)
1	1	1	1	×	×	×

[&]quot;0 (或×)"——参见本答案的说明。

状态转换表 (形式 2):

输入	ा अंधे- भाग क्ले		电路状态		
A	计数顺序	Q_2	Q_1	Q_0	
0	0	0	0	0	4
0	1	0	0	1	1
0	2	0	1	0	}
0	3	0	1	1	1
0	4	1	0	0	1
0	5	1	0	1	Ì
0	6	1	1	0	1
0	7	0	0	0	

- ,	0	0	0	0	I
- 1	1	0	0	1	1
1	0	1	0	2	1
į	1	1	0	3	1
	'n	0	1	4	1
	0	0	0	5	1
	U				

(2)

由 D 触发器的特性方程, $Q_i^{n+1} = D_i$,则:

$$D_2 = \overline{A}Q_2\,\overline{Q_1} + Q_1Q_0$$

$$D_1 = \overline{A} \cdot \overline{Q_1} \cdot Q_0 + \overline{Q_2} \cdot \overline{Q_1} \cdot Q_0 + \overline{Q_2} Q_1 \overline{Q_0}$$

$$D_0 = \overline{A} \cdot \overline{Q_1} \cdot \overline{Q_0} + \overline{Q_2} \cdot \overline{Q_0}$$

(3)

经过自启动检查,无关状态"111";在(2)的驱动下,不论 A 为 0 还是 1,次态均转换到 100;补全状态转换图如下:

结论:可以自启动。

(4)

(此为彩色线条版,用于电子文档阅读)

- 6、采用脉冲触发的主从 J-K 触发器和容量为 16×8 的 PROM 组成时序逻辑电路,如图 7-1 所示。(10 分)
 - (1) 求电路的驱动方程、状态方程, 绘制状态转换图;
 - (2) 设($Q_3Q_2Q_1Q_0$)=(0000)为状态 S_0 , 经过状态 S_1,S_2,\ldots,S_{n-1} , 循环回到 S_0 ; 通过 $Y_3Y_2Y_1Y_0$ 对应输出各状态序号的自然二进制编码,如图 7-2 所示;请在图 7-1 中用 PROM 实现该并行输出功能。

图 7-2

解答:

驱动方程:

$$\begin{cases} J_3 = \sum m(4,8,9,10,11,12) \\ K_3 = \overline{J_3} \end{cases} \begin{cases} J_2 = \sum m(0,4,10,14) \\ K_2 = \overline{J_2} \end{cases}$$

$$\begin{cases} J_1 = \sum m(2,6,9,10,11,14) \\ K_1 = \overline{J_1} \end{cases} \begin{cases} J_0 = \sum m(2,3,8,9) \\ K_0 = \overline{J_0} \end{cases}$$

相当于D触发器

$$\begin{cases} J_3 = \overline{Q_3} Q_2 \overline{Q_1} \cdot \overline{Q_0} + Q_3 \overline{Q_2} \cdot \overline{Q_1} \cdot \overline{Q_0} + Q_3 \overline{Q_2} \cdot \overline{Q_1} Q_0 + Q_3 \overline{Q_2} Q_1 \overline{Q_0} + Q_3 \overline{Q_2} Q_1 \overline{Q_0} + Q_3 \overline{Q_2} Q_1 \overline{Q_0} + Q_3 \overline{Q_2} \overline{Q_1} \cdot \overline{Q_0} \\ K_3 = \overline{Q_3} Q_2 \overline{Q_1} \cdot \overline{Q_0} + Q_3 \overline{Q_2} \cdot \overline{Q_1} \cdot \overline{Q_0} + Q_3 \overline{Q_2} \cdot \overline{Q_1} Q_0 + Q_3 \overline{Q_2} Q_1 \overline{Q_0} + Q_3 \overline{Q_2} \overline{Q_1} Q_0 + Q_3 \overline{Q_2} \overline{Q_1} \cdot \overline{Q_0} \end{cases}$$

$$\begin{cases} J_2 = \underline{\overline{Q_3}} \cdot \underline{Q_2} \cdot \underline{Q_1} \cdot \underline{Q_0} + \underline{Q_3} \underline{Q_2} \underline{Q_1} \cdot \underline{Q_0} + \underline{Q_3} \underline{Q_2} \underline{Q_1} \underline{Q_0} + \underline{Q_3} \underline{Q_2} \underline{Q_1} \underline{Q_0} \\ K_2 = \underline{\overline{Q_3}} \cdot \underline{\overline{Q_2}} \cdot \underline{\overline{Q_1}} \cdot \underline{\overline{Q_0}} + \underline{\overline{Q_3}} \underline{Q_2} \underline{Q_1} \cdot \underline{\overline{Q_0}} + \underline{Q_3} \underline{Q_2} \underline{Q_1} \underline{\overline{Q_0}} + \underline{Q_3} \underline{Q_2} \underline{Q_1} \underline{\overline{Q_0}} \end{cases}$$

$$\begin{cases} J_1 = \overline{Q_3} \cdot \overline{Q_2} Q_1 \overline{Q_0} + \overline{Q_3} Q_2 Q_1 \overline{Q_0} + Q_3 \overline{Q_2} \cdot \overline{Q_1} Q_0 + Q_3 \overline{Q_2} Q_1 \overline{Q_0} \\ K_1 = \overline{Q_3} \cdot \overline{Q_2} Q_1 \overline{Q_0} + \overline{Q_3} Q_2 Q_1 \overline{Q_0} + Q_3 \overline{Q_2} \cdot \overline{Q_1} Q_0 + Q_3 \overline{Q_2} Q_1 \overline{Q_0} \end{cases}$$

$$\begin{cases} J_0 = \overline{Q_3} \cdot \overline{Q_2} Q_1 \overline{Q_0} + \overline{Q_3} \cdot \overline{Q_2} Q_1 Q_0 + Q_3 \overline{Q_2} \cdot \overline{Q_1} \cdot \overline{Q_0} + Q_3 \overline{Q_2} \cdot \overline{Q_1} Q_0 \\ K_0 = \overline{Q_3} \cdot \overline{Q_2} Q_1 \overline{Q_0} + \overline{Q_3} \cdot \overline{Q_2} Q_1 Q_0 + Q_3 \overline{Q_2} \cdot \overline{Q_1} \cdot \overline{Q_0} + Q_3 \overline{Q_2} \cdot \overline{Q_1} Q_0 \end{cases}$$

状态方程:

$$Q_3^{n+1} = \overline{Q_3}Q_2\overline{Q_1} \cdot \overline{Q_0} + Q_3\overline{Q_2} \cdot \overline{Q_1} \cdot \overline{Q_0} + Q_3\overline{Q_2} \cdot \overline{Q_1}Q_0 + Q_3\overline{Q_2}Q_1\overline{Q_0} + Q_3\overline{Q_2}Q_1\overline{Q_0} + Q_3\overline{Q_2}Q_1Q_0 + Q_3Q_2\overline{Q_1} \cdot \overline{Q_0}$$

$$Q_2^{n+1} = \overline{Q_3} \cdot \overline{Q_2} \cdot \overline{Q_1} \cdot \overline{Q_0} + \overline{Q_3} Q_2 \overline{Q_1} \cdot \overline{Q_0} + Q_3 \overline{Q_2} Q_1 \overline{Q_0} + Q_3 Q_2 Q_1 \overline{Q_0}$$

$$Q_1^{n+1} = \overline{Q_3} \cdot \overline{Q_2} Q_1 \overline{Q_0} + \overline{Q_3} Q_2 Q_1 \overline{Q_0} + Q_3 \overline{Q_2} \cdot \overline{Q_1} Q_0 + Q_3 \overline{Q_2} Q_1 \overline{Q_0} + Q_3 \overline{Q_0} Q_1 \overline{Q_0} + Q_3 \overline{Q_0$$

$$Q_0^{n+1} = \overline{Q_3} \cdot \overline{Q_2} Q_1 \overline{Q_0} + \overline{Q_3} \cdot \overline{Q_2} Q_1 Q_0 + Q_3 \overline{Q_2} \cdot \overline{Q_1} \cdot \overline{Q_0} + Q_3 \overline{Q_2} \cdot \overline{Q_1} Q_0$$

状态转换表(此表题中未要求,这里给出以核对解题过程)

Q ₃	Q_2	Q_1	Q_0	Q_3^{n+1}	Q_2^{n+1}	$Q_{\rm l}^{n+1}$	Q_0^{n+1}
0	0	0	0		1		
0	0	0	1				
0	0	1	0			11	<u>l</u>
0	0	1	1				1
0	1	0	0	1	11		
0	1	0	1		. :		
0	1	1	0				
0	1	1	1				<u> </u>
1	0	0	0	1		1	$\frac{}{1}$
1	0	0	1	1			
1	0	1	0	1	1		
1	0	1	1	1		1	
1	1	0	0	1			
1	1	0	1				
1	1	1	0		1	1	
1	1	1	1				

状态转换图:

(2)

对照状态图,可知译码对应关系(此表题中未要求,这里给出以核对解题过程)

状态		并行	输出		状态详码所	提示
排序	Y3	Y_2	Y_1	Y_0	选通的字线	4.10.64.66
So	0	0	0	0	W_0	对 Wo 字线编程
Sı	0	0	0	1	W4	对 1/4 字线编程
S ₂	0	0	1	0	W_{12}	对 1/12 字线编程
S ₃	0	0	1	1	W_8	对形。字线编程
S ₄	0	1	0	0	W_9	对形。字线编程
Ss	0	1	0	1	W_{11}	对Wir字线编程
S ₆	0	1	1	0	W_{10}	对 Pio 字线编程
S ₇	0	1	1	1	W ₁₄	对 Wia 字线编程
S_8	1	0	0	0	W ₆	对 W6字线编程
So	1	0	0	1	W ₂	对 W2 字线编程
S10	1	0	1	0	W_3	对 W3 字线编程
S_{11}	1	0	1	1	W_1	对 Wi 字线编程

PROM 编程:

7 由基本逻辑门组成的电路如图 1 所示,采用 PROM 对其进行逻辑设计,请在图 2 中绘制出图 1 所示逻辑的点阵状态。

解:

根据图 1 所示电路原理图,可得: Y0= A+B= A'BC'+A'BC+AB'C'+AB'C+ABC'+ABC Y1= A'C'+B'C'= A'B'C'+A'BC'+AB'C'

因此,补全的 PROM 结构如下:

