Lagrange Duality

Ye Shi

ShanghaiTech University

- 1 Lagrangian
- 2 Dual Function
- 3 Dual Problem
- 4 Weak and Strong Duality
- 5 KKT conditions

min fo(x)
st.
$$h_i(x) = 0$$

Special example
min $\chi^2 + y^2$
 χ, y
 $\chi = \chi^2 + y^2 + \lambda(1-\chi-y)$
 $P_{\chi}L(\chi, y) = 2\chi - \lambda = 0 \Rightarrow \chi = \frac{\lambda}{2}$
 $P_{\chi}L(\chi, y) = 2y - \lambda = 0 \Rightarrow y = \frac{\lambda}{2}$
If $\lambda = 2$, $\chi = 1$, $y = 1$, $\chi = 1$. Violation.
 $\chi + y = \frac{\lambda}{2} + \frac{\lambda}{2} = \lambda = 1$

$$\langle x \rangle \nabla_{\lambda} L(x,y,\lambda) = 1 - x - y = 0 \Rightarrow x + y = 1$$

 $L(x,y) = x^2 + y^2 + 6(1-x-y)^2$ $\nabla_x L(x,y) = 2x - 26(1-x-y) = 0$ $\nabla_y L(x,y) = 2y - 26(1-x-y) = 0$ Augmented Lagrangian

Win
$$f(x)$$

Sit. $C_{\epsilon}(x) = 0$.

Lagrangian:
$$L(x,\lambda) = f(x) + \xi \lambda_i C_i(x)$$

 $\nabla_x L(x,\lambda) = 0 \Rightarrow \nabla f(x) + \xi \lambda_i^* \nabla C_i(x^*) = 0$

Augmented Laprongian:

$$L_{a}(x,\lambda) = f(x) + \xi l_{i}C(x) + \frac{1}{2}6 \xi C(x)$$

$$\nabla_{x} L_{\alpha}(x,\lambda) = Pf(x) + \leq \lambda_{i} PC_{i}(x) + 6 \leq C_{i}(x) \cdot PC_{i}(\alpha)$$

$$= Pf(x) + \leq (\lambda_{i} + 6 C_{i}(x)) PC_{i}(x) = 0$$

$$\nabla_{x} L_{a}(x^{k+1}, \lambda^{k}) = 0 \Rightarrow \nabla_{f}(x^{k+1}) + \leq L \lambda_{i}^{k} + 6 C_{i} (x^{k+1})) P(i(x^{k+1}) + \delta_{i} C_{i} (x^{k+1})) P(i(x^{k+1}) + \delta_{i} C_{i} (x^{k+1}))$$

$$\lambda_{i}^{k+1} = \lambda_{i}^{k} + 6 C_{i} (x^{k+1})$$

Lagrangian

Consider an optimization problem in standard form (not necessarily convex)

minimize
$$f_0(\mathbf{x}) = f^*, \quad f_i(\mathbf{x}^*) \leq 0, \quad h_i(\mathbf{x}^*) = 0$$
 subject to $f_i(\mathbf{x}) \leq 0, \quad i = 1, \dots, m$ $h_i(\mathbf{x}) = 0, \quad i = 1, \dots, p$

with variable $x \in \mathbb{R}^n$, domain \mathcal{D} , and optimal value p^*

The Lagrangian is a function $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$, with $\operatorname{dom} L = \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p$, defined as

$$L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{
u}) = f_0(\boldsymbol{x}) + \sum_{i=1}^m \lambda_i f_i(\boldsymbol{x}) + \sum_{i=1}^p \nu_i h_i(\boldsymbol{x})$$

where λ_i is the Lagrange multiplier associated with $f_i(\mathbf{x}) \leq 0$ and ν_i is the Lagrange multiplier associated with $h_i(\mathbf{x}) = 0$.

- 1 Lagrangian
- 2 Dual Function
- 3 Dual Problem
- 4 Weak and Strong Duality
- 5 KKT conditions

Lagrange Dual Function I

The Lagrange dual function is defined as the infimum of the Lagrangian over $x: g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$,

$$g(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \inf_{\boldsymbol{x} \in \mathcal{D}} L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})$$

$$= \inf_{\boldsymbol{x} \in \mathcal{D}} \left(f_0(\boldsymbol{x}) + \sum_{i=1}^m \lambda_i f_i(\boldsymbol{x}) + \sum_{i=1}^p \nu_i h_i(\boldsymbol{x}) \right)$$
that

- **Observe that:**
 - the infimum is unconstrained (as opposed to the original constrained minimization problem)
 - g is concave regardless of original problem (infimum of affine functions)
 - g can be $-\infty$ for some λ, ν

$$g(\lambda) = \inf_{X} L(X, \lambda) \quad \text{con cave}$$

$$Proof: \quad g(\theta\lambda_1 + (H\theta)\lambda_2) = \inf_{X} L(X, \theta\lambda_1 + (H\theta)\lambda_2)$$

$$= \inf_{X} \left[\theta L(X,\lambda_1) + (H\theta) L(X,\lambda_2)\right]$$

$$\geq \inf_{X} \theta L(X,\lambda_1) + \inf_{X} (H\theta) L(X,\lambda_2)$$

$$= \theta g(\lambda_1) + (H\theta) g(\lambda_2)$$

$$Con cave !$$

Lagrange Dual Function II

Lower bound property: if $\lambda \succeq 0$, then $g(\lambda, \nu) \leq p^*$.

Proof.

Suppose \tilde{x} is feasible and $\lambda \succeq 0$. Then,

$$f_0(\tilde{\boldsymbol{x}}) \ge L(\tilde{\boldsymbol{x}}, \boldsymbol{\lambda}, \boldsymbol{\nu}) \ge \inf_{\boldsymbol{x} \in \mathcal{D}} L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = g(\boldsymbol{\lambda}, \boldsymbol{\nu})$$

Now choose minimizer of $f_0(\tilde{x})$ over all feasible \tilde{x} to get $p^* \geq g(\lambda, \nu)$.

We could try to find the best lower bound by maximizing $g(\lambda, \nu)$. This is in fact the dual problem.

- 1 Lagrangian
- 2 Dual Function
- 3 Dual Problem
- 4 Weak and Strong Duality
- 5 KKT conditions

Dual Problem

The Lagrange dual problem is defined as

maximize
$$g(\lambda, \nu)$$
 subject to $\lambda \succeq 0$

- This problem finds the best lower bound on p^* obtained from the dual function
- It is a convex optimization (maximization of a concave function and linear constraints)
- The optimal value is denoted d^*
- λ, ν are dual feasible if $\lambda \succeq 0$ and $(\lambda, \nu) \in \text{dom } g$ (the latter implicit constraints can be made explicit in problem formulation)

Example: Least-Norm Solution of Linear Equations I

Consider the problem

minimize
$$x^T x$$

subject to $Ax = b$
$$\Im(v) = \inf_{X} L(X, v)$$

The Lagrangian is

$$L(\boldsymbol{x}, \boldsymbol{\nu}) = \boldsymbol{x}^T \boldsymbol{x} + \boldsymbol{\nu}^T (\boldsymbol{A} \boldsymbol{x} - \boldsymbol{b})$$

To find the dual function, we need to solve an unconstrained minimization of the Lagrangian. We set the gradient equal to zero

$$\nabla_{\boldsymbol{x}} L(\boldsymbol{x}, \boldsymbol{\nu}) = 2\boldsymbol{x} + \boldsymbol{A}^T \boldsymbol{\nu} = \boldsymbol{0} \Longrightarrow \boldsymbol{x} = -\frac{1}{2} \boldsymbol{A}^T \boldsymbol{\nu}$$

Example: Least-Norm Solution of Linear Equations II

and we plug the solution in L to obtain g:

$$g(\boldsymbol{\nu}) = L(-\frac{1}{2}\boldsymbol{A}^T\boldsymbol{\nu}, \boldsymbol{\nu}) = -\frac{1}{4}\boldsymbol{\nu}^T\boldsymbol{A}\boldsymbol{A}^T\boldsymbol{\nu} - \boldsymbol{b}^T\boldsymbol{\nu}$$

- The function g is, as expected, a concave function of ν .
- From the lower bound property, we have

$$p^{\star} \geq -\frac{1}{4} \boldsymbol{\nu}^T \boldsymbol{A} \boldsymbol{A}^T \boldsymbol{\nu} - \boldsymbol{b}^T \boldsymbol{\nu}$$
 for all $\boldsymbol{\nu}$

The dual problem is the QP

$$\underset{\boldsymbol{\nu}}{\text{maximize}} \quad -\frac{1}{4}\boldsymbol{\nu}^T \boldsymbol{A} \boldsymbol{A}^T \boldsymbol{\nu} - \boldsymbol{b}^T \boldsymbol{\nu}$$

Example: Standard Form LP I

Consider the problem

$$egin{array}{ll} ext{minimize} & oldsymbol{c}^T oldsymbol{x} \ ext{subject to} & oldsymbol{A} oldsymbol{x} = oldsymbol{b}, & oldsymbol{x} \succeq oldsymbol{0} \ \end{array}$$

The Lagrangian is

$$L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = \boldsymbol{c}^T \boldsymbol{x} + \boldsymbol{\nu}^T (\boldsymbol{A} \boldsymbol{x} - \boldsymbol{b}) - \boldsymbol{\lambda}^T \boldsymbol{x}$$

= $(\boldsymbol{c} + \boldsymbol{A}^T \boldsymbol{\nu} - \boldsymbol{\lambda})^T \boldsymbol{x} - \boldsymbol{b}^T \boldsymbol{\nu}$

L is a linear function of x and it is unbounded if the term multiplying x is nonzero.

Example: Standard Form LP II

Hence, the dual function is

$$g(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \inf_{\boldsymbol{x}} L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = \begin{cases} -\boldsymbol{b}^T \boldsymbol{\nu} & c + \boldsymbol{A}^T \boldsymbol{\nu} - \boldsymbol{\lambda} = \boldsymbol{0} \\ -\infty & \text{otherwise} \end{cases}$$

- The function g is a concave function of (λ, ν) as it is linear on an affine domain.
- From the lower bound property, we have

$$p^{\star} \geq -\boldsymbol{b}^{T} \boldsymbol{\nu} \quad \text{if } \boldsymbol{c} + \boldsymbol{A}^{T} \boldsymbol{\nu} \succeq \boldsymbol{0}$$

The dual problem is the LP

$$egin{array}{ll} ext{maximize} & -oldsymbol{b}^T oldsymbol{
u} \ ext{subject to} & oldsymbol{c} + oldsymbol{A}^T oldsymbol{
u} \succeq oldsymbol{0} \ \end{aligned}$$

- 1 Lagrangian
- 2 Dual Function
- 3 Dual Problem
- 4 Weak and Strong Duality
- 5 KKT conditions

Weak and Strong Duality I

- From the lower bound property, we know that $g(\lambda, \nu) \leq p^*$ for feasible (λ, ν) . In particular, for a (λ, ν) that solves the dual problem.
- Hence, weak duality always holds (even for nonconvex problems):

$$d^{\star} \leq p^{\star}$$

- The difference $p^* d^*$ is called **duality gap**.
- Solving the dual problem may be used to find nontrivial lower bounds for difficult problems.
- Even more interesting is when equality is achieved in weak duality. This is called **strong duality**:

$$d^{\star} = p^{\star}$$

Weak and Strong Duality II

- Strong duality means that the duality gap is zero.
- Strong duality:
 - is very desirable (we can solve a difficult problem by solving the dual)
 - does not hold in general
 - usually holds for convex problems
 - conditions that guarantee strong duality in convex problems are called constraint qualifications.

Slater's Constraint Qualification I

- Slater's constraint qualification is a very simple condition that is satisfied in most cases and ensures strong duality for convex problems.
- Strong duality hold for a convex problem

minimize
$$f_0(m{x})$$
 subject to $f_i(m{x}) \leq 0$ $i=1,\cdots,m$ $m{A}m{x} = m{b}$

if it is strictly feasible, i.e.,

$$\exists x \in \text{int } \mathcal{D}: \quad f_i(x) < 0 \quad i = 1, \cdots, m, \quad Ax = b$$

There exist many other types of constraint qualifications.

Example: Inequality Form LP

Consider the problem

$$egin{array}{ll} ext{minimize} & oldsymbol{c}^T oldsymbol{x} \ ext{subject to} & oldsymbol{A} oldsymbol{x} \preceq oldsymbol{b} \ \end{array}$$

The dual problem is

maximize
$$-m{b}^T m{\lambda}$$
 subject to $m{A}^T m{\lambda} + m{c} = m{0}, \quad m{\lambda} \succeq m{0}$

- From Slater's condition: $p^* = d^*$ if $A\tilde{x} \prec b$ for some \tilde{x} .
- In this case, in fact, $p^* = d^*$ except when primal and dual are infeasible.

Example: Convex QP

ightharpoonup Consider the problem (assume $P \succeq 0$)

minimize
$$x^T P x$$
 subject to $Ax \leq b$

The dual problem is

maximize
$$-\frac{1}{4} \boldsymbol{\lambda}^T \boldsymbol{A} \boldsymbol{P}^{-1} \boldsymbol{A}^T \boldsymbol{\lambda} - \boldsymbol{b}^T \boldsymbol{\lambda}$$
 subject to
$$\boldsymbol{\lambda} \succeq \mathbf{0}$$

- From Slater's condition: $p^* = d^*$ if $A\tilde{x} \prec b$ for some \tilde{x} .
- In this case, in fact, $p^* = d^*$ always.

Complementary Slackness

Assume strong duality holds, x^* is primal optimal and (λ^*, ν^*) is dual optimal. Then

$$f_0(\boldsymbol{x}^*) = g(\boldsymbol{\lambda}^*, \boldsymbol{\nu}^*) = \inf_{\boldsymbol{x}} \left(f_0(\boldsymbol{x}) + \sum_{i=1}^m \lambda_i^* f_i(\boldsymbol{x}) + \sum_{i=1}^p \nu_i^* h_i(\boldsymbol{x}) \right)$$

$$\leq f_0(\boldsymbol{x}^*) + \sum_{i=1}^m \lambda_i^* f_i(\boldsymbol{x}^*) + \sum_{i=1}^p \nu_i^* h_i(\boldsymbol{x}^*)$$

$$\leq f_0(\boldsymbol{x}^*)$$

- Hence, the two inequalities must hold with equality. Implications:
 - \boldsymbol{x}^{\star} minimizes $L(\boldsymbol{x}, \boldsymbol{\lambda}^{\star}, \boldsymbol{\nu}^{\star})$
 - $\lambda_i^{\star} f_i(\boldsymbol{x}^{\star}) = 0$ for $i = 1, \dots, m$; this is called **complementary slackness**:

$$\lambda_i^{\star} > 0 \Longrightarrow f_i(\boldsymbol{x}^{\star}) = 0, \quad f_i(\boldsymbol{x}^{\star}) < 0 \Longrightarrow \lambda_i^{\star} = 0$$

- 1 Lagrangian
- 2 Dual Function
- 3 Dual Problem
- 4 Weak and Strong Duality
- 5 KKT conditions

Karush-Kuhn-Tucker (KKT) Conditions

KKT conditions (for differentiable f_i, h_i):

1 primal feasibility:

$$f_i(\mathbf{x}) \leq 0, \ i = 1, \dots, m, \ h_i(\mathbf{x}) = 0, \ i = 1, \dots, p$$

- 2 dual feasibility: $\lambda \succeq 0$
- 3 complementary slackness: $\lambda_i^{\star} f_i(\boldsymbol{x}^{\star}) = 0$ for $i = 1, \dots, m$
- \blacksquare zero gradient of Lagrangian with respect to x:

$$\nabla f_0(\boldsymbol{x}) + \sum_{i=1}^m \lambda_i \nabla f_i(\boldsymbol{x}) + \sum_{i=1}^p \nu_i \nabla h_i(\boldsymbol{x}) = \boldsymbol{0}$$

KKT condition

- We already known that if strong duality holds and x, λ, ν are optimal, then they must satisfy the KKT conditions.
- What about the opposite statement?
- If x, λ , ν satisfy the KKT conditions for a convex problem, then they are optimal.

Proof.

From complementary slackness, $f_0(\mathbf{x}) = L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})$ and, from 4th KKT condition and convexity, $g(\boldsymbol{\lambda}, \boldsymbol{\nu}) = L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})$. Hence, $f_0(\mathbf{x}) = g(\boldsymbol{\lambda}, \boldsymbol{\nu})$.

Theorem

If a problem is convex and Slater's condition is satisfied, then x is optimal if and only if there exists λ , ν that satisfy the KKT conditions.

Reference

Chapter 5 of:

Stephen Boyd and Lieven Vandenberghe, *Convex Optimization*. Cambridge, U.K.: Cambridge University Press, 2004.