Případová studie

Návrh relační databáze

Mgr. Petr Kozák

Obsah

1	Zad	lání a	prerekvizity	3
2	Ider	ntifika	ace entitních typů	4
3	Ider	ntifika	ace vztahových typů	5
	3.1	Urč	ení kardinality a parciality vztahů pomocí diagramu výskytu vztahů	5
4	Urč	ení at	tributů jednotlivých entitních typů	8
	4.1	Date	ové typy a integritní omezení	8
5	E-R	mod	el	. 10
	5.1	Line	ární zápis E-R modelu před dekompozicí	. 10
	5.2	Line	arní zápis E-R modelu po dekompozici	. 10
	5.3	E-R	diagram	. 10
6	Vytv	vořer	ıí databáze	. 12
	6.1	DDL	SQL a terminálový monitor	. 12
	6.2	SQL	CREATE Script	. 13
	6.2.	.1	SQL CREATE skript a terminálový monitor	. 14
	6.2.	.2	SQL CREATE skript a phpMyAdmin	. 14
7	Visu	ual St	udio Code	. 16

1 Zadání a prerekvizity

Navrhni databázi evidence vzdělávacích kurzů pro veřejnost, ve kterých školitelé školí frekventanty kurzu, a to v těchto krocích:

- identifikace entitních typů
- identifikace vztahových typů
- určení kardinality a parciality vztahů pomocí diagramu výskytu vztahů
- určení atributů jednotlivých entitních typů
- datové typy a integritní omezení
- lineární zápis E-R modelu
- E-R diagram
- vytvoření databáze

Předpokládané znalosti a dovednosti:

- znalost základní terminologie a principů tvorby relačních databází
- základní znalost jazyka SQL
- ovládání správy databází pomocí rozhraní, např. phpMyAdmin
- základní ovládání nástroje MySQL Workbench pro návrh a modelování relačních databází

Doporučený software:

2 Identifikace entitních typů

Z hlediska zadání potřebujeme evidovat údaje o vzdělávacích kurzech, lektorech, kteří tyto kurzy vedou, a frekventantech, kteří je absolvují. Identifikovali jsme tedy tři entitní typy: *lektor*, *kurz* a *frekventant*.

Obrázek 1 - entitní typy lektor, kurz a frekventant

Pro lepší pochopení je níže zobrazena tabulka reprezentující záznamy entitního typu *lektor*. Každý řádek (záznam, n-tice, entita) představuje informaci o jednom konkrétním lektorovi v tabulce *lektor*. Každý sloupec představuje jednu vlastnost (atribut) všech lektorů popsanou v záhlaví tabulky, např. firstname.

	lektor	
id	firstname	lastname
1	Jan	Novák
2	Petr	Kolečko
3	Iva	Horáková
4	Marta	Kašk ová
5	Jiří	Horák

Obrázek 2 - tabulka reprezentující záznamy entitního typu lektor

Stejným způsobem jsou zobrazeny tabulky frekventant a kurz.

	frekvente	ant
id	firstname	lastname
1	Josef	Horáček
2	Ludmila	Malá
3	Karel	Vyskočil
4	Michal	Bobek
5	Lukáš	Vytlačil

A Marine	Kura	
id	name	description
1	CHAT	CHAT essentials
2	Aı	Al principles
3	IoT	IoT essentials
4	Wearables	W. for experts
5	VolP	VoIP essentials

Obrázek 3 - tabulka frekventantů

Obrázek 4 - tabulka kurzů

3 Identifikace vztahových typů

Při identifikaci entitních typů jsme mimoděk identifikovali také vztahové typy *lektoři vedou kurzy* a *frekventanti absolvují kurzy*. Pro popis vztahového typu používáme většinou sloveso vyjadřující vztah mezi entitními typy.

Obrázek 6 - Vztah "frekventant absolvuje kurz"

3.1 Určení kardinality a parciality vztahů pomocí diagramu výskytu vztahů

Diagram výskytu vztahů pomáhá pochopit, jaké vztahy mohou nastat z hlediska četnosti (*kardinality*) a povinnosti (*parciality*). Z diagramu níže vyplívá, že z hlediska kardinality je každý kurz veden jedním lektorem a současně každý lektor vede více kurzů. Jedná se tedy o vztah 1:N. V případě parciality nemusí lektor vést žádný kurz (nepovinný vztah), ale každý kurz musí být veden lektorem (povinný vztah).

Obrázek 7 - diagram výskytů vztahu lektor vede kurz

Znázornění vztahu z hlediska *kardinality* a *parciality* je zobrazeno níže pomocí *diagramu*. Způsoby vyjádření se mohou lišit podle použité *notace* (standardizované metody zobrazení).

Obrázek 8 - popis vztahu "lektor vede kurz" z hlediska kardinality a parciality

Kardinalita a parcialita vztahů								
vztah kardinalita		parcialita						
# -∞<	1 _ N	doleva povinný (1), doprava nepovinný (0N)						
>○	M N	doleva nepovinný (O.N), doprava nepovinný (O.N)						

Obrázek 9 - popis grafického vyjádření vztahů z hlediska kardinality a parciality

Jak si představit konkrétní vyjádření vztahů *lektor vede kurz* pomocí tabulky? Budeme-li vycházet z diagramu výskytů vztahu *lektor vede kurz* jako modelového případu, vztahy budou zajištěny přidáním atributu *id_lektor* (*cizí klíč*, odkazující se na *primární klíč id* v tabulce *lektor*) tak, jak to znázorňuje tabulka níže.

		kurz				lektor	
id	name	description	id_lektor		id	firstname	lastname
1	CHAT	CHAT essentials	1		1	Jan	Novák
2	Aı	Al principles	2		2	Petr	Kolečko
3	IoT	IoT essentials	3	4	3	Iva	Horáková
4	Wearables	W. for experts	2	//	4	Marta	Kašková
5	VolP	VoIP essentials	4		5	Jiří	Horák

Obrázek 10 - znázornění příkladu vztahu "lektor vede kurz" pomocí relačních tabulek

Diagram výskytu vztahů níže ukazuje, že z hlediska kardinality každý frekventant absolvuje 0, 1 nebo více kurzů a současně každý kurz je absolvován 0, 1 nebo více frekventanty. Jedná se tedy o vztah M:N. V případě parciality nemusí frekventant absolvovat žádný kurz (nepovinný vztah) a kurz nemusí být absolvován žádným frekventantem (nepovinný vztah).

Obrázek 11 – diagram výskytu vztahů "frekventant absolvuje kurz"

Znázornění vztahu z hlediska kardinality a parciality je opět vyjádřeno níže pomocí diagramu.

Obrázek 12 - popis vztahu "frekventant absolvuje kurz" z hlediska kardinality a parciality

Protože se jedná o vztah typu M:N, je nyní nutné provést dekompozici tohoto vztahu na dva vztahy 1:N.

Obrázek 13 - dekompozice vztahu "frekventant absolvuje kurz"

Obrázek 14 - dekompozice vztahu "frekventant absolvuje kurz" s popisem relací

Pro lepší názornost vyjádříme tyto dva vztahy pomocí relačních tabulek. Vztahy budou zajištěny přidáním relační tabulky *kurzy_frekventantu*. Tato relační tabulka obsahuje dva atributy (*id_kurz*, *id_frekventant*), které společně tvoří tzv. *složený primární klíč*. Tento složený primární klíč zajistí, že záznam o kurzu frekventanta bude v tabulce *kurzy_frekventantu* nejvýše jednou.

kurz					kurzy_frekventantu			Frekventant			
id	name	description	id_lektor		id_kurz	id_frekventant		id	firstname	lastname	
1	CHAT	CHAT essentials	1		1	1		1	Josef	Horáček	
2	Aı	AI principles	2		3	2	7	2	Ludmila	Malá	
3	loT	loT essentials	3	_	3	3	+	3	Karel	Vyskočil	
4	Wearables	W. for experts	2		4	2	//	4	Michal	Bobek	
5	VolP	VolP essentials	4	\	4	4		5	Lukaš	Vytlačil	

Obrázek 15 - znázornění příkladu vztahu "frekventant absolvuje kurz" pomocí relačních tabulek

Z grafického znázornění výše je patrné, že pomocí relační tabulky $kurzy_frekventantu$ je propojen kurz s id = 3 (zelené šrafování) s frekventantem, který má id = 2 (fialové šrafování), tedy že kurz IoT absolvuje $Ludmila\ Mala$. Červeně jsou zvýrazněny primární a cizí klíče.

4 Určení atributů jednotlivých entitních typů

Atributem entitního typu je jeho vlastnost, která je pojmenována, např. vlastností lektora je jeho příjmení – atribut lastname. Hodnoty této vlastnosti jsou zaznamenány v relační tabulce lektor ve sloupci lastname.

Obrázek 16 - atributy entitních typů

4.1 Datové typy a integritní omezení

Každý *atribut* má definován *datový typ* a stanovena *integritní omezení* tak, jak to pro každou tabulku znázorňují obrázky níže. Popis jednotlivých přepínačů integritních omezení:

- PK primární klíč, jedinečný identifikátor každého záznamu
- NN hodnota atributu nesmí být prázdná (pozn.: hodnota 0 není prázdná hodnota)
- UQ unikátní atribut hodnoty atributu se nesmí ve sloupci opakovat
- B binární data
- UN bezznaménkový datový typ (nezáporná čísla)
- **ZF** doplnění numerického atributu nulami zleva na stejný počet cifer
- AI automatická inkrementace atributu při přidávání záznamů
- G generovaný sloupec hodnoty se počítají z výrazu zahrnutého v definici sloupce

V tabulce *lektor* jsou tři atributy. Atribut *id* je datového typu *INT* (celé číslo), jedná se o primární klíč (*PK*), hodnota atributu nesmí být prázdná (*NN*), jde o bezznaménkový datový typ (*UN*) s aktivní automatickou inkrementací (*AI*). Atribut *id* je jedinečným identifikátorem záznamů v tabulce *lektor* a je využíván při vytváření vztahů mezi tabulkami.

Atribut *firstname* je textový řetězec s proměnnou délkou o maximálním počtu 45 znaků nezávisle na použitém kódování (*VARCHAR*(45)). Hodnotami atributu budou křestní jména lektorů), hodnota atributu nesmí být prázdná (*NN*). Také atribut *lastname* je textový řetězec s proměnnou délkou o maximálním počtu 45 znaků nezávisle na použitém kódování (*VARCHAR*(45)). Hodnotami atributu budou příjmení lektorů, hodnota atributu nesmí být prázdná (*NN*).

Atribut *name* tabulky *kurz* je unikátní (*UQ*), protože předpokládáme, že název kurzu jedinečný, tedy že různé kurzy nebudou mít stejný název. Atribut *description* je typu *TEXT* o maximálně 1024 znacích. Atribut *id_lektor* je cizí klíč, který se odkazuje na primární klíč *id* z tabulky *lektor*. Oba tyto klíče musí být stejného datového typu.

Obrázek 18 - atributy tabulky "kurz" (MySQL Workbench)

Atributy tabulky frekventant jsou z hlediska datových typů a integritních omezení identické s atributy v tabulce lektor.

	Table Name:	frekventant	rekventant				Schema: mydb					\Rightarrow
Column Name		Datatype	PK	NN	UQ	В	UN	ZF	ΑI	G	Default/Expression	
🕴 id		INT	\sim	\sim			\checkmark		\checkmark			.
firstname		VARCHAR(45)		$[\checkmark]$								
lastname		VARCHAR(45)		$\langle \checkmark \rangle$								

Obrázek 19 - atributy tabulky "frekventant"

frekventant_has_kurz je pomocná tabulka, která slouží k propojení záznamů v tabulkách frekventant a kurz a je prostředkem pro dekompozici vztahu M:N mezi oběma tabulkami na dva vztahy 1:N. Tabulka frekventant_has_kurz obsahuje dva cizí klíče, z nichž id_frekventant se odkazuje na primární klíč id z tabulky frekventant a id_kurz se odkazuje na primární klíč id z tabulky kurz. Společně atributy v tabulce frekventant_has_kurz tvoří tzv. složený primární klíč.

Obrázek 20 - atributy tabulky "frekventant_has_kurz"

5 E-R model

Entitně-vztahový model (E-R model) se používá pro abstraktní a konceptuální znázornění dat. Entity-relationship diagramy (ER diagramy, ERD) jsou vizuálním znázorněním E-R modelu. Existuje více konvencí pro tvorbu diagramů, my v tomto konkrétním případě používáme notaci *Crow's Foot*.

V naší případové studii je cílem vytvořit *konceptuální model dat pro databázi vzdělávacích kurzů pro veřejnost*. Již jsme identifikovali entitní typy, vztahové typy, kardinalitu a prarcialitu vztahů, provedli dekompozici vztahu M:N, definovali atributy, jejich datové typy a integritní omezení.

5.1 Lineární zápis E-R modelu před dekompozicí

Pro lepší názornost lze to podstatné, co jsme doposud určili, zapsat tzv. *lineárním zápisem E-R modelu*, který popisuje entitní typy a jejich atributy a vztahové typy. Z lineárního zápisu však nejsou patrné informace o kardinalitě a parcialitě vztahů, datové typy a integritní omezení.

Před provedením dekompozice vztahu M:N vypadá lineární zápis následovně:

E: lektor(<u>id</u>, firstname, lastname); frekventant(<u>id</u>, firstname, lastname); kurz(<u>id</u>, firstname, lastname,id_lektor).
R: vede(lektor, kurz); absolvuje(frekventant, kurz).

Obrázek 21 - lineární zápis E-R modelu před dekompozicí

5.2 Lineární zápis E-R modelu po dekompozici

Po provedení dekompozice vztahu M:N vypadá lineární zápis takto:

E: lektor(<u>id</u>, firstname, lastname); frekventant(<u>id</u>, firstname, lastname); kurz(<u>id</u>, firstname, lastname,id_lektor); kurzy_frekventantu(<u>id_kurz</u>, <u>id_frekventant</u>).
R: vede(lektor, kurz); absolvuje(frekventant, kurzy_frekventantu); je_absolvovan(kurzy_frekventantu, kurz).

Obrázek 22 - lineární zápis E-R modelu po dekompozici

5.3 E-R diagram

Následující náčrt E-R diagramu znázorňuje entitní typy *lektor*, *kurz*, *frekventant_has_kurz* a *frekventant* a jejich atribut. Vztahové typy jsou vyjádřeny pomocí notace *Crow's Foot*. Mezi tabulkami *lektor* a *kurz* je vztah *1:N*, mezi tabulkami *kurz* a *frekventant* je vztah *M:N* rozdělený dekompozicí na dva vztahy 1:N s využitím pomocné tabulky *kurzy_frekventantu*.

Obrázek 23 – náčrt E-R diagramu návrhu databáze

Takto vypadá konceptuální model dat pro databázi vzdělávacích kurzů pro veřejnost v podobě ERD navržený pomocí nástroje MySQL Workbench. V návrhu jsou patrné entitní typy lektor, kurz, frekventant_has_kurz a frekventant a jejich atributy včetně datových typů. Vztahové typy jsou vyjádřeny pomocí notace Crow's Foot stejně jako v náčrtu.

Obrázek 24 - E-R diagram návrhu databáze pomocí nástroje MySQL Workbench

6 Vytvoření databáze

Možností, jak postupovat při vytváření databáze je mnoho, zde jsou uvedeny některé z nich:

- použití jazyka DDL SQL (Data Definition Language) v MySQL/MyariaDB terminálovém monitoru nutná znalost syntaxe jazyka DDL SQL a ovládání terminálového monitoru
- použití jazyka *DDL SQL* ve vybraném nástroji pro správu DB serveru, např. *phpMyAdmin* nutná znalost syntaxe jazyka *DDL SQL* a rozhraní *phpMyAdmin*
- využití rozhraní nástroje phpMyAdmin a jeho funkcí pro tvorbu databází nutná znalost rozhraní phpMyAdmin
- využití forward engineeringu v nástroji MySQL Workbench a exportování SQL CREATE skriptu s jeho následným importem přes phpMyAdmin nebo terminálový monitor problém s kompatibilitou generovaného skriptu pro různé verze SQL serveru

6.1 DDL SQL a terminálový monitor

Přihlášení přes terminálový monitor se provádí příkazem mysql. Přepínač $-u < u\dot{z}ivatel > u$ rčuje u $\dot{z}ivatel > u$ rčuje u $\dot{z}ivatel$

```
C:\xampp\mysql\bin>mysql -u root -p_
```

Obrázek 25 - spuštění terminálového monitoru

Pro vytvoření databáze je nutné znát syntaxi jazyka DDL SQL. Následující dotaz vytvoří databázi *skoleni* s defaultní znakovou sadou *utf8*. V případě, že již tato databáze existuje, dotaz nebude proveden.

```
■ Příkazový řádek - mysql -uroot -p

MariaDB [(none)]> CREATE SCHEMA IF NOT EXISTS `skoleni` DEFAULT CHARACTER SET utf8;
```

Obrázek 26 - vytvoření databáze pomocí SQL dotazu v terminálovém monitoru

Chceme-li nad konkrétní databází v terminálovém monitoru provádět dotazy, je vhodné nejprve změnit aktivní databázi pomocí dotazu *USE <databáze>*. Aktivní databáze se zobrazuje v promptu monitoru.

```
MariaDB [(none)]> USE `skoleni`;
Database changed
MariaDB [skoleni]>
```

Obrázek 27 - změna aktivní databáze pomocí terminálového monitoru

Po vytvoření celé databáze je např. možné provést zobrazení všech jejích tabulek pomocí dotazu SHOW TABLES.

Obrázek 28 - zobrazení tabulek vybrané databáze pomocí terminálového monitoru

Zobrazení obsahu tabulky můžeme provést např. dotazem SELECT * FROM <tabulka>. Níže je zobrazen obsah tabulky kurz včetně názvů jednotlivých atributů.

	CELECT # EDOM \\			-	0)
R [skoteut]:	> SELECT * FROM Kurz ;	L				
name	description	id_lektor				
CHAT	CHAT essentials	1				
AI	AI principles	2				
IoT	IoT essentials	3				
Wearables	Wearables for experts	2				
VoIP	VoIP essentials	4				
						
	name CHAT AI IoT Wearables	B [skoleni]> SELECT * FROM `kurz`; name description CHAT CHAT essentials AI AI principles IoT IoT essentials Wearables Wearables for experts	B [skoleni]> SELECT * FROM `kurz`; name description id_lektor CHAT CHAT essentials 1 AI AI principles 2 IoT IoT essentials 3 Wearables Wearables for experts 2	B [skoleni] > SELECT * FROM `kurz`; name	B [skoleni] > SELECT * FROM `kurz`;	B [skoleni] > SELECT * FROM `kurz`;

Obrázek 29 - zobrazení záznamů tabulky "kurz" pomocí SQL dotazu v terminálovém monitoru

6.2 SQL CREATE Script

Vytvoření databáze lze provést importováním SQL CREATE skriptu (*File – Export – Forward Engineer SQL CREATE Script*) generovaného z *MySQL Workbench* pomocí forward engineeringu. Níže je uveden upravený zdrojový kód generovaného SQL skriptu pro server *MariaDB*.

```
`description` TEXT(1024) NULL,
  `id lektor` INT UNSIGNED NOT NULL,
 PRIMARY KEY ('id'),
 INDEX `fk kurz lektor1 idx` (`id lektor` ASC),
 UNIQUE INDEX `name UNIQUE` (`name` ASC),
 CONSTRAINT `fk kurz lektor1`
   FOREIGN KEY ('id lektor')
   REFERENCES `skoleni`.`lektor` (`id`)
   ON DELETE NO ACTION
   ON UPDATE NO ACTION)
ENGINE = InnoDB;
  Table `skoleni`.`frekventant
CREATE TABLE IF NOT EXISTS `skoleni`.`frekventant` (
  `id` INT UNSIGNED NOT NULL AUTO INCREMENT,
  `firstname` VARCHAR(45) NOT NULL,
  `lastname` VARCHAR(45) NOT NULL,
 PRIMARY KEY ('id'))
ENGINE = InnoDB;
-- Table `skoleni`.`frekventant has kurz`
__ ______
CREATE TABLE IF NOT EXISTS `skoleni`.`frekventant has kurz` (
  `id frekventant` INT UNSIGNED NOT NULL,
  `id kurz` INT UNSIGNED NOT NULL,
 PRIMARY KEY ('id kurz', 'id frekventant'),
 INDEX `fk_frekventant_has_kurz_kurz1_idx` (`id_kurz` ASC),
 INDEX `fk_frekventant_has_kurz_frekventant_idx` (`id_frekventant` ASC),
 CONSTRAINT `fk_frekventant_has_kurz_frekventant`
   FOREIGN KEY (`id frekventant`)
   REFERENCES `skoleni`.`frekventant` (`id`)
   ON DELETE NO ACTION
   ON UPDATE NO ACTION,
 CONSTRAINT `fk frekventant has kurz kurz1`
   FOREIGN KEY (`id kurz`)
   REFERENCES `skoleni`.`kurz` (`id`)
   ON DELETE NO ACTION
   ON UPDATE NO ACTION)
ENGINE = InnoDB;
```

6.2.1 SQL CREATE skript a terminálový monitor

Ukázka vytvoření databáze pomocí terminálového monitoru je zobrazena na obrázku níže. Pomocí symbolu < je po přihlášení do terminálového monitoru provedeno přesměrování *SQL skriptu* na jeho vstup.

```
C:\xampp\mysql\bin>mysql -u root -p < create_script.sql
```

Obrázek 30 - přesměrování SQL skriptu na vstup terminálového monitoru

6.2.2 SQL CREATE skript a phpMyAdmin

phpMyAdmin je bezplatný softwarový nástroj napsaný v jazyce PHP, určený ke správě MySQL serveru přes webové rozhraní. phpMyAdmin podporuje širokou škálu operací nad servery MySQL a MariaDB. Často používané operace (správa databází, tabulek, sloupců, vztahů, indexů, uživatelů, oprávnění atd.) lze provádět prostřednictvím grafického uživatelského rozhraní, přičemž je zde stále možnost přímo spouštět jakýkoli dotaz SQL.

Obrázek 31 - náhled seznamu tabulek databáze "skoleni" v phpMyAdmin

Import *SQL CREATE skriptu* je možné v *phpMyAdmin* provést dvěma základními způsoby. Na záložce *SQL* lze vložit zkopírovaný text skriptu a dotazy potvrdit tlačítkem *Proved*′.

Obrázek 32 - vytvoření databáze zkopírováním SQL CREATE skriptu do SQL formuláře v phpMyAdmin

Vhodnějším způsobem je import SQL CREATE skriptu na záložce Import.

Importuji na aktuální server

Soubor pro importování:						
Soubor může být komprimovaný (gzip, bzip2) nebo nekomprimovaný. Název komprimovaného souboru musí končit na .[formát].[komprese] . Například: .sql.zip						
Procházeť váš počítač: (Maximální velikost: 40MiB)						
Vybrat soubor skoleni.sql						
Můžete také přetáhnout a pustit soubor na libovolné stránce.						
Znaková sada souboru:						
utf-8	~					

Obrázek 33 - Import SQL CREATE skriptu v phpMyAdmin

7 Visual Studio Code

VS Code je free software. Jedná se o výkonný editor zdrojového kódu a je k dispozici pro OS Windows, MacOS a Linux. Má bohatý ekosystém rozšíření pro další jazyky a moduly runtime, mezi které patří také podpora práce s databázovými servery MySQL. V náhledu níže je Visual Studio Code pomocí rozšíření MySQL připojen k databázovému serveru na adrese 127.0.0.1 a portu 3306. Náhled zobrazuje výběr lektorů kurzů v databázi skoleni.

Obrázek 34 - zobrazení výběru lektorů kurzů pomocí SQL dotazu v rozšíření MySQL ve VS Code

Následující ukázka zobrazuje výběr kurzu s *id=4* a jeho absolventů pomocí SQL dotazu v rozšíření MySQL ve VS Code.

Obrázek 35 - výběr kurzu s id=4 a jeho absolventů pomocí SQL dotazu v rozšíření MySQL ve VS Code

Výhodou využití rozšíření *MySQL* ve *VS Code* je možnost vývoje aplikací bez nutnosti používání různých rozhraní a vývojových prostředí (All-in-One).