

머신러님시작하기

02 데이터 전 처리하기

- 01. 머신러닝을 위한 데이터 전 처리 이해하기
- 02. 범주형 자료 전 처리
- 03. 수치형 자료 전 처리
- 04. 데이터 정제 및 분리하기

머신러닝을 위한 데이터 전 처리 이해하기

❷ 머신러닝 과정 이해하기

수집한 데이터를 분석하고 머신러닝에 사용할 형태로 전 처리

학습된 머신러닝 모델을 평가용데이터를 사용하여 평가

❷ 데이터 전 처리의 역할

- 1) 머신러닝의 입력 형태로 데이터 변환 (특성 엔지니어링)
- 2) 결측값 및 이상치를 처리하여 데이터 정제
- 3) 학습용 및 평가용 데이터 분리

대부분의 머신러닝 모델은 숫자 데이터를 입력 받는다

일반적으로 행렬 형태 입력

실제 데이터는 다양한 형태로 존재

이미지 데이터

자연어 데이터

시계열 데이터

실제 데이터는 머신러닝 모델이 이해할 수 없는 형태로 되어 있음

실제 데이터 set

머신러닝 모델

전 처리를 통하여 머신러닝 모델이 이해할 수 있는 수치형 자료로 변환

실제 데이터 set

전 처리를 통하여 데이터의 결측값 및 이상치를 처리

결측값과 이상치가 있는 데이터

Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
22.0	1	0	A/5 21171	7.2500	NaN	S
38.0	1	0	PC 17599	71.2833	C85	С
26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
35.0	1	0	113803	53.1000	C123	S
35.3	0	0	373450	8.0500	NaN	S

머신러닝 모델

전 처리를 통하여 학습용과 평가용 데이터를 분리

원본 데이터 (150 샘플)

	꽃받침 길이	꽃받침 넓이	꽃잎 길이	꽃잎 넓이	클래스
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0
145	6.7	3.0	5.2	2.3	2
146	6.3	2.5	5.0	1.9	2
147	6.5	3.0	5.2	2.0	2
148	6.2	3.4	5.4	2.3	2
149	5.9	3.0	5.1	1.8	2

150 rows × 5 columns

학습용 데이터 (100 샘플)

	꽃받침 길이	꽃받침 넓이	꽃잎 길이	꽃잎 넓이	클래스
96	5.7	2.9	4.2	1.3	1
105	7.6	3.0	6.6	2.1	2
66	5.6	3.0	4.5	1.5	1
71	6.1	2.8	4.0	1.3	1
106	4.9	2.5	4.5	1.7	2
14	5.8	4.0	1.2	0.2	0

100 rows × 5 columns

평가용 데이터 (50 샘플)

	꽃받침 길이	꽃받침 넓이	꽃잎 길이	꽃잎 넓이	클래스
73	6.1	2.8	4.7	1.2	1
18	5.7	3.8	1.7	0.3	0
118	7.7	2.6	6.9	2.3	2
19	5.1	3.8	1.5	0.3	0
56	6.3	3.3	4.7	1.6	1
104	6.5	3.0	5.8	2.2	2

50 rows × 5 columns

범주형 자료 전 처리

Confidential all rights reserved

❷ 타이타닉 생존자 데이터 살펴보기

< 타이타닉 생존자 데이터 변수 확인 >

변수 명	변수 설명
Passengerld	각 승객의 고유 번호
Survived	생존 여부 (0: 사망, 1: 생존)
Pclass	객실 등급 (1st: Upper, 2nd: Middle, 3rd: Lower)
Name	이름
Sex	성별
Age	나이
SibSp	동반한 형제자매와 배우자의 수
Parch	동반한 부모, 자식의 수
Ticket	티켓의 고유 번호
Fare	티켓의 요금
Cabin	객실 번호
Embarked	승선한 항(C: Cherbourg, Q: Queenstown, S: Southampton)

02 범주형 자료 전 처리

❷ 범주형 자료 살펴보기

범주형 데이터는 몇 개의 범주로 나누어진 자료

< 타이타닉 생존자 데이터 >

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

02 범주형 자료 전 처리

❷ 범주형 자료 살펴보기

범주의 크기가 의미 없다면 명목형 자료 크기가 의미 있다면 순서형 자료

< 타이타닉 생존자 데이터 >

	Passengerid	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	s
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	s
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	s
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	s

명목형 자료 순서형 자료

❷ 범주형 자료 변환 방식

대표적인 범주형 자료 변환 방식

명목형 자료:

- 수치 맵핑 방식
- 더미(Dummy) 기법

순서형 자료:

• 수치 맵핑 방식

❷ 범주형 자료 변환하기

- 1) 명목형 자료 변환하기 수치 맵핑 변환
- 일반적으로 범주를 0, 1로 맵핑
- (-1, 1), (0, 100) 등 다양한 케이스가 있지만 모델에 따라 성능이 달라질 수 있음

< 성별(Sex) 데이터 변환 예 >

Sex	Age	SibSp
male	22.0	1
female	38.0	1
female	26.0	0
female	35.0	1
male	35.0	0

변환 전

Sex	Age	SibSp
0	22.0	1
1	38.0	1
1	26.0	0
1	35.0	1
0	35.0	0

male -> 0, female-> 1 변환 후

❷ 범주형 자료 변환하기

- 1) 명목형 자료 변환하기 수치 맵핑 변환
- 3개 이상인 경우, 수치의 크기 간격을 같게 하여 수치 맵핑 ex) (0,1,2,3,...)

< Embarked 데이터 변환 예 >

Fare	Cabin	Embarked
7.2500	NaN	S
71.2833	C85	С
7.9250	NaN	s
53.1000	C123	S
8.0500	NaN	S
90.0	C78	Q

Fare	Cabin	Embarked
7.2500	NaN	0.0
71.2833	C85	2.0
7.9250	NaN	0.0
53.1000	C123	0.0
8.0500	NaN	0.0
90.0	C78	1.0

변환 전

S->0, Q->1, C->2 변환 후

❷ 범주형 자료 변환하기

- 2) 명목형 자료 변환하기 더미(Dummy) 기법
- 더미 기법을 사용하여 각 범주를 0 or 1로 변환

< 더미 변환 예 >

0 22.0 3 1 0 7.2500 0 1 38.0 1 1 0 71.2833 1 2 26.0 3 0 0 7.9250 1	1 0 0	0 1 0	0	0
	0	1 0		0
2 26.0 3 0 0 7.9250 1		0		
			0	1
3 35.0 1 1 0 53.1000 1	0	0	0	1
4 35.0 3 0 0 8.0500 0	1	0	0	1
885 39.0 3 0 5 29.1250 1	0	0	1	0
886 27.0 2 0 0 13.0000 0	1	0	0	1
887 19.0 1 0 0 30.0000 1	0	0	0	1
889 26.0 1 0 0 30.0000 0	1	1	0	0
890 32.0 3 0 0 7.7500 0	1	0	1	0

♥ 범주형 자료 변환하기

- 3) 순서형 자료 변환하기 수치 맵핑 변환
- 수치에 맵핑하여 변환하지만, 수치 간 크기 차이는 커스텀 가능
- 크기 차이가 머신러닝 결과에 영향을 끼칠 수 있음

< 순서형 자료 변환 예 >

	feature_1	feature_2	feature_3
0	1.2	2	매우 많음
1	0.1	1	없음
2	-0.1	3	조금 많음

변환 전

	feature_1	feature_2	feature_3
0	1.2	2.0	10.0
1	0.1	1.0	0.0
2	-0.1	3.0	4.0

없음->0, 조금 많음->4, 매우 많음->10 변환 후

수치형 자료 전 처리

Confidential all rights reserved

03 수치형 자료 전 처리

❷ 수치형 자료 살펴보기

크기를 갖는 수치형 값으로 이루어진 데이터

< 타이타닉 생존자 데이터 >

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

♥ 수치형 자료 살펴보기

머신러닝의 입력으로 바로 사용할 수 있으나, 모델의 성능을 높이기 위해서 데이터 변환이 필요

대표적인 수치형 자료 변환 방식

- 1) 스케일링(Scaling) 정규화(Normalization), 표준화(Standardization)
- 2) 범주화

❷ 수치형 자료 변환하기 – 정규화 방식

스케일링(Scaling)

- 변수 값의 범위 및 크기를 변환하는 방식
- 변수(feature) 간의 범위가 차이가 나면 사용

1) 정규화(Normalization)

변수 X 를 정규화한 값 X'

$$X' = \frac{X - X_{min}}{X_{max} - X_{min}}$$

03 수치형 자료 전 처리

❷ 정규화를 적용한 데이터 예시

1) 정규화(Normalization)

	feature_1	feature_2	feature_3
0	1.280187	-1.156924	-81.977837
1	0.519024	0.277231	-78.493732
2	-1.340744	0.564647	51.682415
3	0.880929	1.037069	45.883654
4	-1.260126	1.257954	15.080874
5	0.401379	-1.310234	90.150390
6	-1.142048	0.243710	57.606259
7	0.566775	-0.396015	64.846291
8	-0.724533	-0.510327	-5.383149
9	-1.615751	-0.056775	130.638733
10	-0.721374	-0.627100	108.228715

변환 전

	feature_1	feature_2	feature_3
0	1.280187	-1.156924	0.000000
1	0.519024	0.277231	0.016387
2	-1.340744	0.564647	0.628645
3	0.880929	1.037069	0.601371
4	-1.260126	1.257954	0.456496
5	0.401379	-1.310234	0.809571
6	-1.142048	0.243710	0.656506
7	0.566775	-0.396015	0.690558
8	-0.724533	-0.510327	0.360248
9	-1.615751	-0.056775	1.000000
10	-0.721374	-0.627100	0.894599

정규화 변환 후

❷ 수치형 자료 변환하기 – 표준화 방식

스케일링(Scaling)

- 변수 값의 범위 및 크기를 변환하는 방식
- 변수(feature) 간의 범위가 차이가 나면 사용

2) 표준화(Standardization)

변수 X 를 표준화한 값 X'

$$X' = \frac{X - \mu}{\sigma}$$

03 수치형 자료 전 처리

☑ 표준화를 적용한 데이터 예시

2) 표준화(Standardization)

	feature_1	feature_2	feature_3
0	1.280187	-1.156924	-81.977837
1	0.519024	0.277231	-78.493732
2	-1.340744	0.564647	51.682415
3	0.880929	1.037069	45.883654
4	-1.260126	1.257954	15.080874
5	0.401379	-1.310234	90.150390
6	-1.142048	0.243710	57.606259
7	0.566775	-0.396015	64.846291
8	-0.724533	-0.510327	-5.383149
9	-1.615751	-0.056775	130.638733
10	-0.721374	-0.627100	108.228715

변환 전

	feature_1	feature_2	feature_3
0	1.280187	-1.156924	-1.707156
1	0.519024	0.277231	-1.656828
2	-1.340744	0.564647	0.223561
3	0.880929	1.037069	0.139798
4	-1.260126	1.257954	-0.305147
5	0.401379	-1.310234	0.779229
6	-1.142048	0.243710	0.309130
7	0.566775	-0.396015	0.413712
8	-0.724533	-0.510327	-0.600749
9	-1.615751	-0.056775	1.364081
10	-0.721374	-0.627100	1.040369

표준화 변환 후

♥ 수치형 자료 변환하기 - 범주화

범주화

• 변수의 값보다 범주가 중요한 경우 사용

	시험 점수
0	12
1	100
2	20
3	35
4	92
5	53
6	62
7	78
8	5
9	90
10	54

평균 : 54.63 평균 이상 -> 1 평균 이하 -> 0

0	0
1	1
2	0
3	0
4	1
5	0
6	1
7	1
8	0
9	1
10	0

시험 점수

데이터정제및분리하기

Confidential all rights reserved

❷ 결측값(Missing data) 처리하기

일반적인 머신러닝 모델의 입력 값으로 결측값을 사용할 수 없음 따라서 Null, None, NaN 등의 결측값을 처리 해야함

대표적인 결측값 처리 방식

- 1) 결측값이 존재하는 샘플 삭제
- 2) 결측값이 많이 존재하는 변수 삭제
- 3) 결측값을 다른 값으로 대체

❷ 이상치(Outlier) 처리하기

이상치가 있으면, 모델의 성능을 저하할 수 있음 이상치는 일반적으로 전 처리 과정에서 제거하며, 어떤 값이 이상치 인지 판단하는 기준이 중요함

이상치 판단 기준 방법

- 1) 통계 지표(카이제곱 검정, IQR 지표 등)를 사용하여 판단
- 2) 데이터 분포를 보고 직접 판단
- 3) 머신러닝 기법을 사용하여 이상치 분류

❷ 데이터 분리는 왜 필요할까?

머신러닝 모델을 **평가**하기 위해서는 **학습에 사용하지 않은 평가용 데이터**가 필요약 7:3~8:2 비율로 학습용 평가용 데이터를 분리함

학습용 평가용 데이터

☑ 지도학습 데이터 분리

지도학습의 경우 feature 데이터와 label 데이터를 분리하여 저장합니다.

Feature 데이터: label을 예측하기 위한 입력 값

Label 데이터: 예측해야 할 대상이 되는 데이터

☑ 지도학습 데이터 분리

타이타닉 데이터를 바탕으로 생존자를 예측한다면?

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

☑ 지도학습 데이터 분리

Feature 데이터: 승객 나이, 가족 정보, 표 가격 등등

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

Label 데이터: 생존 여부

	Survived
0	0
1	1
2	1
3	1
4	0

크레딧

/* elice */

코스 매니저 이해솔

콘텐츠 제작자 이해솔

강사 이해솔

감수자 임승연

디자이너 강혜정

연락처

TEL

070-4633-2015

WEB

https://elice.io

E-MAIL

contact@elice.io

