Formale Grundlagen der Informatik II 1. Hausübung

Fachbereich Mathematik Prof. Dr. Martin Otto SoSe 2015 3. Juni 2015

Julian Bitterlich, Felix Canavoi, Kord Eickmeyer, Daniel Günzel

Aufgabe H1 (AL-Spezifikationen)

(12 Punkte)

(a) Geben Sie für jedes $n \in \mathbb{N}$ eine aussagenlogische Formel $\varphi(x_0, \ldots, x_n, y_0, \ldots, y_n, z_0, \ldots, z_n)$, die genau dann wahr ist, wenn die Summe der in \bar{x} und \bar{y} kodierten Binärzahlen gleich der in \bar{z} kodierten Binärzahl ist. Dabei kodiere \bar{x} die Zahl $\sum_i x_i 2^i$.

(Hinweis: Für ein transparentes Vorgehen per Induktion über n überlege man sich zunächst geeignete Hilfsformeln.)

- (b) Gibt es möglicherweise unendliche aussagenlogische Formelmengen $\Phi_1, \Phi_2, \Phi_3 \subseteq AL(\mathcal{V})$ mit $\mathcal{V} = \{p_1, p_2, \ldots\}$ derart, dass für Belegungen \Im gilt
 - i. $\mathfrak{I}\models\Phi_1$ genau dann, wenn $\mathfrak I$ höchstens zwei Variablen mit 1 belegt,
 - ii. $\mathfrak{I} \models \Phi_2$ genau dann, wenn \mathfrak{I} genau zwei Variablen mit 1 belegt, und
 - iii. $\mathfrak{I} \models \Phi_3$ genau dann, wenn \mathfrak{I} mindestens zwei Variablen mit 1 belegt.

Lösung:

(a) Wir benutzen geeignete Hilfsformeln φ_n^c und φ_n^p . Die von φ_n^c genutzten Variablen sind $x_0, \dots, x_n, y_0, \dots, y_n$ und φ_n^c soll genau dann wahr sein, wenn die Addition von den von \bar{x} und \bar{y} kodierten Zahlen einen Übertrag in der höchsten Stelle hat, d.h.,

$$\varphi_n^c = 1 \text{ gdw. } \sum_{i=0}^n x_i 2^i + \sum_{i=0}^n y_i 2^i \ge 2^{n+1}.$$

Die von φ_n^p genutzten Variablen sind $x_0, \ldots, x_n, y_0, \ldots, y_n, z_0, \ldots, z_n$ und φ_n^p soll genau dann wahr sein, wenn die Addition von den von \bar{x} und \bar{y} kodierten Zahlen gleich der von \bar{z} kodierten Zahl ist, sofern der Übertrag in der höchsten Stelle ignoriert wird, d.h.,

$$\varphi_n^p = 1 \text{ gdw. } \sum_{i=0}^n x_i 2^i + \sum_{i=0}^n y_i 2^i = \sum_{i=0}^n z_i 2^i \mod 2^{n+1}.$$

Wenn wir diese Formeln definiert haben, können wir $\varphi_n = \neg \varphi_n^C(\bar{x}, \bar{y}) \land \varphi_n^P(\bar{x}, \bar{y}, \bar{z})$ setzen, da $\sum_{i=0}^n z_i 2^i \le 2^{n+1} - 1$. Nun zur Induktiven Definition von φ_n^C und φ_n^P :

$$\varphi_0^c = x_0 \wedge y_0$$

$$\varphi_{n+1}^c = (\neg \varphi_n^c \to (x_{n+1} \wedge y_{n+1})) \wedge (\varphi_n^c \to (x_{n+1} \vee y_{n+1}))$$

$$\varphi_0^p = \neg (x_0 \oplus y_0 \oplus z_0)$$

$$\varphi_{n+1}^p = \varphi_n^p \wedge \neg (x_{n+1} \oplus y_{n+1} \oplus \varphi_n^c \oplus z_{n+1})$$

Die Operateion \oplus wurde in der zweiten Aufgabe des zweiten Übungsblattes definiert. Zur Argumentation der Richtigkeit von φ_n^p ist zu sagen, dass \oplus die Addition modulo 2 beschreibt. Somit haben wir für φ_0^p :

$$\varphi_0^p = 1 \Longleftrightarrow x_0 + y_0 + z_0 \neq 1 \mod 2 \Longleftrightarrow x_0 + y_0 + z_0 = 0 \mod 2 \Longleftrightarrow x_0 + y_0 = z_0 \mod 2.$$

Und für φ_{n+1}^p :

$$\begin{split} \varphi_{n+1}^p &= 1 \Longleftrightarrow \sum_{i=0}^n x_i 2^i + \sum_{i=0}^n y_i 2^i = \sum_{i=0}^n z_i 2^i \mod 2^{n+1} \ \& \ x_{n+1} \oplus y_{n+1} \oplus \varphi_n^c \oplus z_{n+1} = 0 \\ & \Longleftrightarrow \sum_{i=0}^n x_i 2^i + \sum_{i=0}^n y_i 2^i = \sum_{i=0}^n z_i 2^i + c 2^{n+1} \ \& \ x_{n+1} + y_{n+1} = c + z_{n+1} \mod 2 \\ & \Longleftrightarrow \sum_{i=0}^n x_i 2^i + \sum_{i=0}^n y_i 2^i = \sum_{i=0}^n z_i 2^i + c 2^{n+1} \ \& \ 2^{n+1} x_{n+1} + 2^{n+1} y_{n+1} = 2^{n+1} c + 2^{n+1} z_{n+1} \mod 2^{n+2} \\ & \Longleftrightarrow \sum_{i=0}^{n+1} x_i 2^i + \sum_{i=0}^{n+1} y_i 2^i = \sum_{i=0}^{n+1} z_i 2^i \mod 2^{n+2}. \end{split}$$

Man überlege sich jede Äquivalenz im Detail.

- (b) i. Setze $\Phi_1 := \{ \neg (p_i \land p_k \land p_\ell) : i, k, \ell \in \mathbb{N}, i \neq k, i \neq \ell, k \neq \ell \}$, dann hat Φ die gewünschte Eigenschaft.
 - ii. Angenommen es gäbe eine Formelmenge Φ_2 wie in (ii) beschrieben. Sei \mathfrak{I}_0 die konstante 0-Interpretation. Da nach Voraussetzung $\mathfrak{I}_0 \not\models \Phi_2$ gilt, gibt es eine Formel φ in Φ_2 mit $\mathfrak{I}_0 \not\models \varphi$. Da φ nur endlich viele Variablen enthält, gibt voneinander verschiedene k und ℓ , so dass die Variablen p_k und p_ℓ nicht in der Variablenmenge von φ sind. Ist \mathfrak{I} nun eine Belegung gemäß $\mathfrak{I}(p_i) = 1 : \iff i = k$ oder $i = \ell$, dann muss nach Voraussetzung $\mathfrak{I} \models \varphi$ gelten, aber auch, da $\varphi^{\mathfrak{I}_0} = \varphi^{\mathfrak{I}}, \mathfrak{I} \not\models \varphi$ gelten. Widerspruch.
 - iii. Angenommen es gäbe eine Formelmenge Φ_3 mit der Eigenschaft aus (iii), dann hätte $\Phi_1 \cup \Phi_3$ die Eigenschaft aus (ii). Widerspruch.

Aufgabe H2 (Vollständige Systeme von Junktoren)

(12 Punkte)

Für jede der folgenden Junktorenmengen beweisen oder widerlegen Sie, dass sie vollständige Systeme von Junktoren sind.

- (a) $\{\neg, \rightarrow\}$
- (b) $\{\to, 0\}$
- (c) $\{\longleftrightarrow\}$
- (d) $\{\land,\lor\}$

Lösung:

- (a) Wir wissen $\phi \lor \psi \equiv \neg \phi \to \psi$. Also kann man mit den Junktoren \to und \neg die Junktoren \neg und \lor (die ein schon bekanntes vollständiges System bilden) ausdrücken, d.h. $\{\to, \neg\}$ ist vollständig.
- (b) Man beachtet $\neg \phi \equiv \phi \rightarrow 0$. Also wegen der obigen Teilaufgabe können wir mit den Junktoren \rightarrow und 0 die Junktoren \neg und \lor ausdrücken, d.h. $\{\rightarrow,0\}$ ist vollständig.
- (c) Sei \mathfrak{I}_1 die Belegung, die jeder Variable den Wahrheitswert 1 zuordnet. Wir zeigen durch Induktion, dass Formeln, die nur den Junktor \longleftrightarrow benutzen unter \mathfrak{I}_1 zu 1 auswerten.
 - Wenn $\phi = p$, wobei p eine Variable ist, ist es klar.
 - Nehmen wir an, dass $\phi = \phi_0 \longleftrightarrow \phi_1$ und dass die Aussage für die kleineren Formeln ϕ_0 und ϕ_1 gilt. Dann ist $\mathfrak{I}_1(\phi_0) = 1 = \mathfrak{I}_1(\phi_1)$ und somit der Wahrheitswert von ϕ auch 1 für \mathfrak{I}_1 .

Also gilt für alle Formeln ϕ , die nur den Junktor \leftrightarrow benutzt, $\mathfrak{I}_1(\phi) = 1$, insbesondere ist ϕ nicht äquivalent zu der atomaren Formel 0. Die Menge $\{\leftarrow\}$ ist also nicht vollständig.

(d) Auch $\{\land, \lor\}$ ist nicht vollständig. Dies kann man zeigen wie in (c).

Aufgabe H3 (Resolution)

(12 Punkte)

(a) Überprüfen Sie mit Hilfe der Resolutionsmethode, ob die folgende Formel unerfüllbar ist:

$$(q \lor s) \land (p \lor \neg s) \land (p \lor \neg q \lor r \lor s) \land (q \to (r \to s)) \land (r \lor s) \land ((p \land s) \to r) \land (\neg p \lor \neg r)$$

(b) Weisen Sie mit Hilfe der Resolutionsmethode die folgende Folgerungsbeziehung nach:

$$(p \vee \neg q \vee r) \wedge (\neg p \vee q \vee r) \models (\neg p \wedge q \wedge r) \vee (\neg p \wedge \neg q) \vee (\neg p \rightarrow 0)$$

(c) Bestimmen Sie das minimale Modell der folgenden Horn-Formelmenge:

$$H_0 = \{(p \land t) \rightarrow s, \quad r, \quad (q \land r) \rightarrow s, \quad t \rightarrow p, \quad t\}$$

Lösung:

(a) Klauseln:

$$\{q,s\}, \{p,\neg s\}, \{p,\neg q,r,s\}, \{\neg q,\neg r,s\}, \{r,s\}, \{\neg p,r,\neg s\}, \{\neg p,\neg r\}$$

Da □ aus den Klauseln ableitbar ist, ist die Formel unerfüllbar.

(b) Wir zeigen die Unerfüllbarkeit von $((p \lor \neg q \lor r) \land (\neg p \lor q \lor r)) \land \neg ((\neg p \land q \land r) \lor (\neg p \land \neg q) \lor p)$. Die Umwandlung dieser Formel in KNF ergibt die folgenden Klauseln:

$$\{p, \neg q, r\}, \{\neg p, q, r\}, \{p, \neg q, \neg r\}, \{p, q\}, \{\neg p\}$$

Wir zeigen jetzt die Unerfüllbarkeit durch Ableitung von □:

(c) Die Hornklauselmenge H_0 enthält keine negativen Hornklauseln, daher gibt es nach Lemma 5.12 (FGdI Skript zur Aussagenlogik) ein minimales Modell \mathfrak{I}_0 der Variablen in H_0 . Wir verfahren wie im (konstruktiven) Beweis des Lemmas, konstruieren also schrittweise die Mengen \mathcal{X}_i :

$$\mathcal{X}_0 = \emptyset, \quad \mathcal{X}_1 = \mathcal{X}_0 \cup \{r, t\}, \quad \mathcal{X}_2 = \mathcal{X}_1 \cup \{p\}, \quad \mathcal{X}_\infty = \mathcal{X}_3 = \mathcal{X}_2 \cup \{s\}.$$

Das minimale Modell \mathfrak{I}_0 ist demnach geben durch

$$\mathfrak{I}_0(r) = \mathfrak{I}_0(t) = \mathfrak{I}_0(p) = \mathfrak{I}_0(s) = 1$$
 und $\mathfrak{I}_0(q) = 0$.

Aufgabe H4 (Untere Schranken für Formelgrößen)

(12 Punkte)

Für $n \ge 1$ sei

$$\varphi_n(p_1,\ldots,p_{2n}) := \bigwedge_{i=1}^n \neg (p_{2i-1} \longleftrightarrow p_{2i})$$

(siehe Beispiel 3.9 im Skript). Zeigen Sie, dass

- (a) φ_n genau 2^n verschiedene Modelle hat;
- (b) φ_n äquivalent zu einer Formel in KNF ist, welche 2n Konjunktionsglieder besitzt;
- (a) jede zu φ_n äquivalente Formel in DNF mindestens 2^n Disjunktionsglieder hat.

Lösung:

- (a) Für jedes $i \le n$, muss genau eine der Variablen p_{2i-1} und p_{2i} wahr sein. Es gibt also genau so viele Modelle, wie es Funktionen $\{1, \ldots, n\} \to \{1, 2\}$ gibt. Dies sind 2^n .
- (b) $\varphi_n \equiv \bigwedge_{i=1}^n [(\neg p_{2i-1} \lor \neg p_{2i}) \land (p_{2i-1} \lor p_{2i})]$
- (c) Angenommen, es gibt eine Formel $\bigvee_{i=1}^m \psi_i$ in DNF mit $m < 2^n$ Disjunktionsgliedern. Für jedes Modell \Im von φ_n muss es ein Disjunktionsglied ψ_k geben mit $\Im \models \psi_k$. Somit existiert mindestens ein Disjunktionsglied ψ_k mit mehr als einem Modell.

Da ψ_k mehr als ein Modell hat, gibt es mindestens eine Variable p_i , so daß weder p_i noch $\neg p_i$ in ψ_k vorkommen. Sei p_i der "Partner" von p_i , d. h., j = i + 1, wenn i ungerade ist, und j = i - 1, falls i gerade ist.

Wir wählen ein Modell \Im von ψ_k . Sei \Im' die Interpretation mit $\Im'(p_i) = \Im(p_j)$ und $\Im'(p_l) = \Im(p_l)$, für alle $l \neq i$. Dann folgt, dass $\Im' \models \psi_k$ und somit $\Im' \models \varphi_n$. Dies ist aber unmöglich, da $\Im' \models p_i \longleftrightarrow p_i$.

Aufgabe H5 (Folgerungen aus dem Kompaktheitssatz)

(12 Punkte)

(a) Für — möglicherweise unendliche — Formelmengen Φ und Ψ schreiben wir

$$\bigwedge \Phi \models \bigvee \Psi$$
,

wenn jede Interpretation, die alle Formeln $\varphi \in \Phi$ wahr macht, auch mindestens eine Formel $\psi \in \Psi$ wahr macht. Zeigen Sie, dass $\bigwedge \Phi \models \bigvee \Psi$ impliziert, dass es endliche Teilmengen $\Phi_0 \subseteq \Phi$ und $\Psi_0 \subseteq \Psi$ gibt, so dass $\bigwedge \Phi_0 \models \bigvee \Psi_0$.

(b) Sei $\mathcal{V} = \{p_1, p_2, p_3, \ldots\}$. Eine Interpretation $\mathfrak{I}: \mathcal{V} \to \mathbb{B}$ kann aufgefasst werden als die unendliche Bit-Sequenz $\mathfrak{I}(p_1)\mathfrak{I}(p_2)\mathfrak{I}(p_3)\ldots$

P sei irgendeine Teilmenge aller solchen Sequenzen, so dass sowohl P als auch das Komplement \overline{P} durch (unendliche) AL-Formelmengen spezifiziert werden können, in dem Sinne, dass

$$P = \{\mathfrak{I} : \mathfrak{I} \models \Phi\}$$

$$\overline{P} = \{\mathfrak{I} : \mathfrak{I} \models \Psi\}$$

für geeignete $\Phi, \Psi \subseteq AL(\mathcal{V})$.

Zeigen Sie, dass dann sowohl P als auch \overline{P} jeweils schon durch eine einzelne AL-Formel spezifiziert werden können (und also nur von endlichen Abschnitten der Sequenzen abhängen können).

Lösung:

- (a) Wenn $\bigwedge \Phi \models \bigvee \Psi$ gilt, dann hat die Menge $\Phi \cup \neg \Psi$ keine Modelle, wobei $\neg \Psi = \{ \neg \psi : \psi \in \Psi \}$. Der Kompaktheitssatz impliziert dann, dass schon eine endliche Teilmenge $\Gamma_0 \subseteq \Phi \cup \neg \Psi$ keine Modelle hat. Setzen wir $\Phi_0 = \{ \varphi \in \Phi : \varphi \in \Gamma_0 \}$ und $\Psi_0 = \{ \psi \in \Psi : \neg \psi \in \Gamma_0 \}$, dann heißt das, dass $\Gamma_0 = \Phi_0 \cup \neg \Psi_0$ keine Modelle hat, also $\bigwedge \Phi_0 \models \bigvee \Psi_0$.
- (b) Da P und \overline{P} disjunkt sind, gilt $\bigwedge \Phi \models \bigvee \neg \Psi$. Nach Aufgabenteil (a) gibt es also endliche $\Phi_0 \subseteq \Phi$ und $\Psi_0 \subseteq \Psi$, so dass $\bigwedge \Phi_0 \models \bigvee \neg \Psi_0$. Wir behaupten, dass $P = \{\mathfrak{I} : \mathfrak{I} \models \bigwedge \Phi_0\}$. $P \subseteq \{\mathfrak{I} : \mathfrak{I} \models \bigwedge \Phi_0\}$ ist klar nach Definition von P, also zeigen wir die andere Richtung: $\mathfrak{I} \models \bigwedge \Phi_0 \Rightarrow \mathfrak{I} \models \bigvee \neg \Psi_0 \Rightarrow \exists \psi \in \Psi \ \mathfrak{I} \models \neg \psi \Rightarrow \mathfrak{I} \notin \overline{P} \Rightarrow \mathfrak{I} \in P$.

Ein analoges Argument mit vertauschten Rollen von Φ uns Ψ liefert eine Formel $\bigwedge \Psi_0$, die \overline{P} definiert.

Aufgabe H6 (Sequenzenkalkül)

(12 Punkte)

Finden Sie mittels Beweissuche im Sequenzenkalkül \mathcal{SK} für folgende Formeln bzw. Sequenzen entweder eine Herleitung oder eine nicht-erfüllende Belegung.

(a)
$$\vdash (p \land q) \lor \neg (q \lor r) \lor r \lor \neg p$$

(b)
$$p, q \lor r \vdash (p \land q) \lor (p \land r)$$

(c)
$$\vdash \neg (\neg (p \land q) \land r) \lor (q \land r)$$

Lösung:

(a)

$$\frac{q,p\vdash p,r}{q,p\vdash p,r} \overset{\text{(Ax)}}{(Ax)} \frac{q,p\vdash q,r}{r,p\vdash p\land q,r} \overset{\text{(Ax)}}{(\land R)} \frac{q \lor r,p\vdash p\land q,r}{r,p\vdash p\land q,r} \overset{\text{(} \land R)}{(\lor L)} \frac{\frac{q\lor r,p\vdash p\land q,r}{q\lor r\vdash p\land q,r,\lnot p}}{r\vdash p\land q,\lnot (q\lor r),r,\lnot p} \overset{\text{(} \lnot R)}{(\lor R)} \frac{\frac{r}{r} \lor r \lor r,r}{r} \overset{\text{(} \lnot R)}{r} \overset{\text{(} \lnot R)$$

(b)

$$\frac{\frac{p,q\vdash p,p\land r}{p,q\vdash p,\land q,p\land r}}{\frac{p,q\vdash p\land q,p\land r}{p,q\vdash p\land q,p\land r}}(\land R)}\frac{(\land R)}{\frac{p,r\vdash p\land q,p}{p,r\vdash p\land q,p\land r}}}{(\land R)}\frac{\frac{p,q\vdash p\land q,p\land r}{p,r\vdash p\land q,p\land r}}{p,q\lor r\vdash p\land q,p\land r}}(\lor L)}{\frac{p,q\lor r\vdash p\land q,p\land r}{p,q\lor r\vdash (p\land q)\lor (p\land r)}}(\lor R)}$$

(c)

$$\frac{r \vdash q, q \qquad r \vdash q, p}{r \vdash q, p \land q} (\land R) \qquad \frac{r \vdash r, p \land q}{r \vdash r, p \land q} (\land R)$$

$$\frac{\frac{r \vdash q \land r, p \land q}{\neg (p \land q), r \vdash q \land r} (\neg L)}{\frac{\neg (p \land q) \land r \vdash q \land r}{\vdash \neg (\neg (p \land q) \land r) \lor (q \land r)} (\neg R)}{\frac{\vdash \neg (\neg (p \land q) \land r) \lor (q \land r)}{\vdash \neg (\neg (p \land q) \land r) \lor (q \land r)}} (\lor R)$$

Eine nicht erfüllende Belegung ist z.B. $r \mapsto 1$ und $q, p \mapsto 0$.

Aufgabe H7 (Sequenzregeln)

(12 Punkte)

Zeigen Sie semantisch, dass die folgenden Regeln korrekt sind.

(a)
$$\frac{\Gamma, \varphi \vdash \Delta}{\Gamma \vdash \Delta, \neg \varphi}$$

(b)
$$\frac{\Gamma \vdash (\varphi \to \psi) \to \varphi, \Delta}{\Gamma \vdash \varphi, \Delta}$$

(c)
$$\frac{\Gamma \vdash \Delta, \varphi \qquad \Gamma, \psi \vdash \Delta}{\Gamma, \varphi \to \psi \vdash \Delta}$$

Lösung: Um zu zeigen, dass die drei Regeln korrekt sind, müssen wir nachweisen, dass sie Allgemeingültigkeit erhalten.

- (a) Angenommen die Prämisse sei allgemeingültig. Sei $\mathfrak I$ eine Interpretation mit $\mathfrak I \models \bigwedge \Gamma$. Im Fall $\mathfrak I \not\models \varphi$ folgt direkt $\mathfrak I \models \bigvee \Delta \vee \neg \varphi$ und wir sind fertig. Im Fall $\mathfrak I \models \varphi$ folgt, da die Prämisse allgemeingültig ist, $\mathfrak I \models \bigvee \Delta$. Somit gilt in jedem Fall $\mathfrak I \models \bigvee \Delta \vee \neg \varphi$.
- (b) Angenommen die Prämisse sei allgemeingültig. Sei \Im eine Interpretation mit $\Im \models \bigwedge \Gamma$. Im Fall $\Im \models \varphi$ sind wir sofort fertig. Im Fall $\Im \nvDash \varphi$ gilt $\Im \models (\varphi \to \psi)$ und damit $\Im \nvDash (\varphi \to \psi) \to \varphi$. Da die Prämisse allgemeingültig ist, folgt nun jedoch $\Im \models \bigvee \Delta$. Somit gilt in jedem Fall $\Im \models \varphi \lor \bigvee \Delta$.

(c) Angenommen die Prämissen seien allgemeingültig. Sei \Im eine Interpretation mit $\Im \models \bigwedge \Gamma \land (\varphi \to \psi)$. Mit der Allgemeingültigkeit der linken Prämisse folgt $\Im \models \bigvee \Delta \lor \varphi$. Im Fall $\Im \models \bigvee \Delta$ sind wir fertig. Angenommen es gilt $\Im \nvDash \bigvee \Delta$. Daraus folgt nun $\Im \models \varphi$, was aufgrund von $\Im \models \varphi \to \psi$ auch $\Im \models \psi$ impliziert. Da die rechte Prämisse allgemeingültig ist, folgt $\Im \models \bigvee \Delta$, was jedoch im Widerspruch zur Annahme steht. Also muss $\Im \models \bigvee \Delta$ gelten, womit gezeigt ist, dass die Konklusion allgemeingültig ist.