Учреждение образования «БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ»

Кафедра интеллектуальных информационных технологий

Отчет по лабораторной работе №2 по курсу «Модели решения задач в интеллектуальных системах» на тему «Реализация модели решения задачи на ОКМД архитектуре»

Выполнили студенты группы 821701:

Гонтарев И.В.

Зубрицкая В.Г.

Проверил: Крачковский Д. Я.

МИНСК

2020

Цель: реализовать и исследовать модель решения на ОКМД архитектуре задачи вычисления матрицы значений.

Дано: сгенерированные матрицы A, B, E, G заданных размерностей p x m, m x q, 1 x m, p x q соответственно со значениями в рекомендуемом диапазоне [-1;1].

$$c_{ij} = \tilde{\bigwedge}_{k} f_{ijk} * (3 * g_{ij} - 2) * g_{ij} + (\tilde{\bigvee}_{k} d_{ijk} + (4 * (\tilde{\bigwedge}_{k} f_{ijk} \circ \tilde{\bigvee}_{k} d_{ijk}) - 3 * \tilde{\bigvee}_{k} d_{ijk}) * g_{ij}) * (1 - g_{ij})$$

$$f_{ijk} = (a_{ik} \tilde{\to} b_{kj}) * (2 * e_{k} - 1) * e_{k} + (b_{kj} \tilde{\to} a_{ik}) * (1 + (4 * (a_{ik} \tilde{\to} b_{kj}) - 2) * e_{k}) * (1 - e_{k})$$

$$d_{ijk} = a_{ik} \tilde{\wedge} b_{kj}$$

Вариант индивидуального задания (номер 2):

2.
$$\tilde{\wedge}_{k} f_{ijk} = \prod_{k} f_{ijk}$$

$$\tilde{\vee}_{k} d_{ijk} = 1 - \prod_{k} (1 - d_{ijk})$$

$$\tilde{\wedge}_{k} f_{ijk} \tilde{\vee}_{k} d_{ijk} = \tilde{\wedge}_{k} f_{ijk} * \tilde{\vee}_{k} d_{ijk}$$

$$a_{ik} \tilde{\to} b_{kj} = \sup \left(\left\{ \delta \middle| (1 - a_{ik}) * \delta \leq b_{kj} \right\} \wedge (\delta \leq 1) \right\} \right)$$

$$b_{kj} \tilde{\to} a_{ik} = \sup \left(\left\{ \delta \middle| (1 - b_{kj}) * \delta \leq a_{ik} \right\} \wedge (\delta \leq 1) \right\} \right)$$

$$a_{ik} \tilde{\wedge} b_{ki} = a_{ik} * b_{ki}$$

Получить: C – матрицу значений соответствующей размерности $p \times q$.

Исходные данные:

- 1. p, m, q размерность матриц;
- 2. n количество процессорных элементов в системе;
- 3. t_i время выполнение i операции над элементами матриц.
- **4.** Матрицы A, B, E, G, заполненные случайными вещественными числами в диапазоне [-1;1]

Описание модели: В рамках данной лабораторной работы была реализована модель решения на ОКМД архитектуре задачи вычисления матрицы значений. Возможность самостоятельно устанавливать все

параметры размерности матриц и количество процессорных элементов позволяет детально исследовать разработанную модель и зависимости между вышеуказанными параметрами. Язык программирования, использованный для реализации модели: GO. Ресурс, использованный для визуализации графиков: Google Tables.

Пример (проверка работоспособности программы):

Исходные данные					
Время операции		Другие данные			
Сумма	2	m	2		
Разность	2	p	3		
Произведение	4	q	1		
Деление	6	Rоличество процессорных элементов(n)	3		

A (p x m)		B (m x q)
-0.454	0.497	0.327
-0.105	-0.379	0.295
-0.97	-0.366	
E (1 x m)		G (p x q)
0.316	0.875	-0.686
		0.844
		0.395

Полученные данные:					
time - время выполнения			268		
Ку - коэффициент ускорения			2.4925373134328357		
е - эффективность			0.8308457711442786		
D - коэффициент расхождения программы			12.846153846153847		
r - ранг программы			13		
C (p x q)					
1.627 -0.6	032	-3.664			

Программа работает верно.

Графики:

Семейства графиков, фиксируя п и г:

$$Ky(n,r) = \frac{T1}{T_n}, \ e(n,r) = \frac{K_y(n,r)}{n},$$
где:

Ky(n,r) – коэффициент ускорения;

e(n,r) – эффективность;

n- количество процессорных элементов в системе (совпадает с количеством этапов конвейера);

r – ранг задачи (количество объектов, которые в процессе решения задачи могли бы обрабатываться параллельно);

Графики строятся на одном наборе сгенерированных данных, постепенно уменьшая размеры матриц, в масштабе, отражающем характерные особенности соответствующих зависимостей.

1. $K_{\nu}(n,r)$ - коэффициент ускорения.

График 1. График зависимости коэффициента ускорения Ку от количества элементов n.

Асимптотой графика, исходя из значений графика, является прямая, параллельная оси абсцисс, то есть прямая, заданная при n=r. Точки перегиба соответствует условию r% n=0 (то есть r кратно n), при этом все процессорные элементы задействованы в вычислениях.

График 2. График зависимости коэффициента ускорения Ку от ранга задачи г.

Асимптотой графика, исходя из значений графика, является прямая, параллельная оси абсцисс, то есть при фиксированном значении процессорных элементов и при устремлении ранга задачи к бесконечности, ОКМД архитектура будет работать быстрее не более, чем в п раз по сравнению с последовательной системой. Точки перегиба можно объяснить тем, что в точках, в которых ранг задачи кратен количеству процессорных элементов, все процессорные элементы одновременно задействованы в вычислениях.

2. e(n,r) – эффективность.

График 3. График зависимости эффективности е от количества элементов п

Асимптотой графика, исходя из значений графика, является прямая, параллельная оси абсцисс, y = 0, то, так как задача с фиксированным рангом содержит фиксированное количество операций, которые необходимо выполнить, а эффективность показывает долю работы одного процессорного элемента, то при большом количестве процессорных элементов эффективность стремится к 0, что подтверждается вычислениями, произведенными выше.

График 4. График зависимости эффективности е от ранга задачи г.

Асимптотой графика, исходя из значений графика, является прямая, параллельная оси абсцисс, то есть при n=r. Точки перегиба можно объяснить тем, что в точках, в которых ранг задачи кратен количеству процессорных элементов, все процессорные элементы одновременно задействованы в вычислениях.

3. D(n,r) - коэффициент расхождения программы.

 Γ рафик 5. Γ рафик зависимости коэффициента расхождения программы D от количества элементов n

Асимптотой графика, исходя из значений графика, является прямая, параллельная оси абсцисс, то есть при n=r.

График 6. График зависимости коэффициента расхождения программы D от ранга задачи r

У графика отсутствуют асимптоты и точки и перегиба.

Спрогнозировать как изменится вид графиков при изменении параметров модели:

- $K_y(n)$: при увеличении количества пар элементов, возрастает значение коэффициента ускорения.
- $K_y(r)$: при увеличении количества процессорных элементов, возрастет значение коэффициента ускорения.
 - -e(r): при увеличении ранга, возрастает значение эффективности.
- e(n): при увеличении количества процессорных элементов, снижается значение эффективности.
- D(n): при увеличении количества процессорных элементов, возрастает коэффициент расхождения программы.
- D(n): при увеличении ранга задачи, снижается значение коэффициента расхождения программы.

Выводы:

В результате выполнения лабораторной работы была реализована и исследована ОКМД модель для решения задач вычисления матрицы значений. Реализованная модель была проверена на работоспособность и правильность получаемых результатов. Данная модель позволяет ускорить процесс вычисления результата для числовых векторов, по сравнению с последовательной системой. Были исследованы характеристики конвейерной архитектуры: коэффициент ускорения, коэффициент расхождения программы и эффективность.