

CS 343
Map Reduce
Diane Horton and Renee Miller

Adapted from Suciu & Balazinska

2

- Intra-operator parallelism
 - An operator runs on multiple processors
 - For both OLTP and Decision Support
 - Main parallelism used in Parallel DBMS since 1980's
- We have discussed how to use data partitioning to parallelize main database operations like join and group by

Parallel DBMS

- Parallel query plan: tree of parallel operators
 - Data streams from one operator to the next
 - Typically all cluster nodes process all operators
 - but only on a subset (partition) of data
- Can run multiple queries at the same time
 - Queries will share the nodes in the cluster
- Notice that user does not need to know how his/her SQL query was processed

Cluster Computing

- 4
- Large number of commodity servers, connected by high speed, commodity network
- Rack: holds a small number of servers
- Data center: holds many racks
- Massive parallelism
 - 100s, or 1000s, or 10000s servers

Commodity Clusters

- Web data sets can be very large
 - Tens to hundreds of petabytes
- Cannot analyze on a single server
- Standard architecture
 - Cluster of commodity Linux nodes
 - Gigabit ethernet interconnect
- How to organize computations on this architecture?
 - Shared-nothing Parallel DBMS, right?
 - New performance issue: fault-tolerance
 - Mask issues such as hardware failure

Cluster Architecture

6

2-10 Gbps backbone between racks 1 Gbps between Switch any pair of nodes in a rack Switch Switch **CPU CPU CPU CPU** Mem Mem Mem Disk Disk **Disk Disk**

Each rack contains 16-64 nodes

Node architecture same as in shared nothing parallel DBMS

Distributed File System

- For very large files: TBs, PBs
 - Each file is partitioned into chunks, typically 64MB
- □ Each chunk is replicated several times (≥3), on different racks, for fault tolerance
- Implementations:
 - Google's DFS: GFS, proprietary
 - Hadoop's DFS: HDFS, open source
- Typical usage pattern
 - Data is rarely updated in place
 - Reads and appends are common

Map-Reduce

- Google paper published 2004
 - Free variant: Hadoop
- Map-reduce = high-level programming model and implementation for largescale parallel data processing

Data Model

- Based on file processing
- A file = a bag of (key, value) pairs
- A map-reduce program
 - Input: a bag of (inputkey, value) pairs
 - Output: a bag of (outputkey, value) pairs

- User provides the MAP-function:
 - Input: (input key, value)
 - Output: bag of (intermediate key, value)
- System applies the map function in parallel to all (input key, value) pairs in the input file
 - Each mapper takes care one chunk of the file

Reduce

- User provides a REDUCE function:
 - □ Input: (intermediate key, bag of values)
 - Output: bag of output (values)
 - System groups all pairs with the same intermediate key, and passes the bag of values to the REDUCE function

Example: Word Count

SELECT word, count(*) FROM Doc **GROUP BY word**

- We have a large file of words, one word to a line
- Count the number of times each distinct word appears in the file
- Each Document Doc(did, word)
 - The key = document id (did)
 - The value = list of words (word)

```
map(String key, String value):
 // key: document name
 // value: document contents
for each word w in value:
  Emit(w, "1");
```

```
reduce(String key, Iterator values):
 // key: a word
 // values: a list of counts
int result = 0;
for each v in values:
 result += ParseInt(v);
Emit(result);
```


MapReduce: The Map Step

MapReduce: The Reduce Step

File System

- All data transfer between workers occurs through distributed file system
 - Support for partitioned files
 - Workers perform local writes
 - Each map worker performs local or remote read of one or more input partitions
 - Each **reduce** worker performs remote read of multiple intermediate partitions
 - Output is left in as many partitions as reduce workers

Data Partitioning

- Data partitioned (split) by hash on key
- Each worker responsible for certain hash bucket(s)
- How many workers/splits?
 - Best to have multiple splits per worker
 - Improves load balance
 - If worker fails, splits could be re-distributed across multiple other workers
 - Best to assign splits to "nearby" workers
 - Rules apply to both map and reduce workers

Implementation

- There is one master node
- Master partitions input file into M splits, by key
- Master assigns workers (=servers) to the M
 map tasks, keeps track of their progress
- Workers write their output to local disk,
 partition into R regions (or intermediate splits)
- Master assigns workers to the R reduce tasks
- Reduce workers read regions from the map workers' local disks

Fault Tolerance

- Worker failure
 - Master pings workers periodically
 - If down then reassigns the task to another worker
 - Map/reduce tasks committed through master
- Master failure
 - Not covered in original implementation
 - Could be detected by user program or monitor
 - Could recover persistent state from disk

Performance

- Straggler = a machine that takes unusually long time to complete one of the last tasks. E.g.:
 - □ Bad disk forces frequent correctable errors (30MB/s
 → → IMB/s)
 - The cluster scheduler has scheduled other tasks on that machine
- Stragglers are a main reason for slowdown
 - Solution: pre-emptive backup execution of the last few remaining in-progress tasks

Map-Reduce Summary

- Hides scheduling, fault recovery, and parallelization details
- Scales well, way beyond thousands of machines and terabytes of data
- Flexibility to handle heterogeneous unstructured data
- General enough for expressing many practical problems

Map-Reduce Summary

- One-input two-phase data flow rigid, hard to adapt
 - No stateful multiple-step processing of records
 - Difficult to write more complex queries
 - Need multiple map-reduce jobs
- Procedural programming model requires (often repetitive) code for even the simplest operations (e.g., projection, filtering)
- Opaque nature of the map and reduce functions impedes optimization
- Solution: declarative query language!
 - Have been (are being) added

Parallel DBMS vs MR

22

- □ ParallelDBMS faster
 - Indexing
 - Physical tuning
 - Can stream data from one op. to the next without blocking
- MapReduce fault-tolerant
 - Can easily add nodes to the cluster (no need to even restart)
 - Uses less memory since processes one key-group at a time
 - Intra-query fault-tolerance thanks to results on disk
 - Handles adverse conditions: e.g., stragglers
 - Arguably more scalable... but also needs more nodes!