The Egyptian Tangram

© Carlos Luna-Mota

mmaca

January 18, 2022

The Egyptian Tangram

The Egyptian Tangram

A square dissection firstly proposed as a tangram in:

Luna-Mota, C. (2019) "El tangram egipci: diari de disseny" Nou Biaix, 44

The Egyptian Tangram inspiration comes from the study of two other 5-piece tangrams...

The "Five Triangles" & "Greek-Cross" tangrams

...and their underlying grids

The "Five Triangles" & "Greek-Cross" underlying grids

This simple *cut* let us build five interesting figures...

...so it looked like a good starting point for our heuristic incremental design process:

Take a square and keep adding "the most interesting straight cut" until you have a dissection with five or more pieces.

Straight cuts simplify creating an Egyptian Tangram from a square:

- 1. Connect the lower midpoint with the upper corners
- 2. Connect the left midpoint with the top right corner

- Just five pieces
- All pieces are different
- All pieces are asymmetric
- Areas are integer and not too different
- All sides are multiples of 1 or $\sqrt{5}$
- All angles are linear combinations of 90° and $\alpha = \arctan(\frac{1}{2}) \approx 26,565^{\circ}$

Name	Area	Sides	Angles
T1	1	1, 2, $\sqrt{5}$	90, α , 90 – α
T4	4	2, 4, $2\sqrt{5}$	90, α , 90 – α
Т5	5	$\sqrt{5}$, $2\sqrt{5}$, 5	90, α , 90- α
Т6	6	3, 4, 5	90, $90-2\alpha$, 2α
Q4	4	1, 3, $\sqrt{5}$, $\sqrt{5}$	90, $90-\alpha$, 90 , $90+\alpha$

Although all pieces are asymmetric and different, they often combine to make symmetric shapes

This means that it is rare for an Egyptian Tangram figure to have a unique solution

There are three different solutions for the square and, in all three cases, two corners of the square are built as a sum of acute angles!

The asymmetry of the pieces also implies that each solution belongs to one of these equivalence classes:

You cannot transform one of these figures into another without flipping a piece

Historical precedents

It turns out that this figure is not new...

Detemple, D. & Harold, S. (1996) "A Round-Up of Square Problems"

...but, to the best of our knowledge, nobody used it before as a tangram

Historical precedents

The name is not new either...

This dissection is often called "Egyptian Puzzle" or "Egyptian Tangram"

...but there is a good reason to consider our dissection the real "Egyptian Tangram"

(even if it was designed in Catalonia)

Why we called it the Egyptian Tangram?

The smallest pieces of the Chinese and Greek-Cross tangrams can be used to build all the other pieces...

...but you cannot do the same with the Egyptian Tangram because of T6

Why we called it the *Egyptian* Tangram?

Initially, T6 was considered as the leftover piece that results from cutting all these $1:2:\sqrt{5}$ triangles from the borders of the square.

But it turned out to be a very well known triangle...

...an **Egyptian** Triangle (3:4:5) and, hence, the name of this tangram

Puzzles & Activities

Realistic figures

Use all five pieces to make these figures:

Lightning

Sailing ship

Bow tie

Wooden hut

Caltrop

Snowmobile

Candle

Viking hat

Diamond

Moses basket

3D brick

Witch hat

Arrow Sign

Sailboat

Realistic figures

Remote control symbols

Use all five pieces to make these symbols:

Volume

Use all five pieces to make these figures:

Complete the path moving just one or two pieces at a time

All of these figures, but one, have multiple solutions:

Could you find which is the only figure with unique solution?

All the figures from the previous page, but one, can be drawn with their vertices lying on this lattice.

Moreover, they can be drawn with the vertices of all 5 pieces lying on the same lattice.

These conditions simplify the task of finding perimeters and areas.

Could you find which is the only figure that requires a finer-grained lattice?

Pythagorean Theorem:

Top
$$= \sqrt{1^2 + 2^2} = \sqrt{5}$$

Left $= \sqrt{3^2 + 4^2} = \sqrt{25} = 5$
Right $= \sqrt{5^2 + 0^2} = \sqrt{25} = 5$
Bottom $= \sqrt{3^2 + 6^2} = \sqrt{45} = 3\sqrt{5}$
Perimeter $= 10 + 4\sqrt{5}$

Could you use the Pythagorean theorem to compute the perimeter of these figures?

Pick's Theorem:

lattice points on the boundary =10

Area = interior +
$$\frac{\text{boundary}}{2}$$
 - 1
= $16 + \frac{10}{2} - 1 = 20$

Could you use Pick's theorem to compute the area of these figures?

Triangles

Could you prove that there are just 10 triangles you can make with one or more pieces of the Egyptian Tangram?

How many solutions could you find for each figure?

Top row areas: 20, 16, 9, 5, 4, 1 Bottom row areas: 15, 10, 10, 6

Could you prove that there are just 11 **complex quadrilaterals** you can make with all five pieces of the Egyptian Tangram?

Simple quadrilaterals: Not self-intersecting

All simple quadrilaterals tile the plane!

Convex quadrilaterals: All internal angles are smaller than π

Law of Cosines: $p^2q^2 = a^2c^2 + b^2d^2 - 2abcd\cos(\alpha + \gamma)$

Trapeziums (UK) / Trapezoids (US): One pair of parallel sides

 $Trapezium/Trapezoid \Leftrightarrow Diagonals cut each other in the same ratio$

Parallelograms: Two pairs of parallel sides

Parallelogram \Leftrightarrow Diagonals bisect each other \Leftrightarrow $a^2 + b^2 + c^2 + d^2 = p^2 + q^2$

Cyclic quadrilaterals: All vertices lie on a circle

Tangential quadrilaterals: All sides are tangent to a circle

 $\overline{\mathsf{Tangential}} \quad \Leftrightarrow \quad \overline{a+c} = b+d$

Isosceles Trapezoids: Two pairs of adjacent angles are equal

Isosceles trapezoids \Leftrightarrow Cyclic quadrilaterals with equal diagonals

Darts & Kites: Two pairs of adjacent sides are equal

 $Darts/Kites \Leftrightarrow Tangential\ quadrilaterals\ with\ perpendicular\ diagonals$

Rhombi: All sides are equal

 $Rhombi \Leftrightarrow Parallelograms \ with \ perpendicular \ diagonals$

Quadrilaterals

Rectangles: All angles are equal

Rectangles \Leftrightarrow Parallelograms with equal diagonals

Quadrilaterals

Squares: Regular quadrilaterals

Among all quadrilaterals, squares maximize the Area: Perimeter ratio

The three solutions of the square

Could you prove that there are just three different solutions for the square?

What is the area of this square? What is its perimeter? How many times do you find $\sqrt{5}$ in the Egyptian Tangram pieces?

Figures with seven solutions

Could you find seven different solutions for each of these figures?

Figures with unique solutions

Could you prove that there is only one solution for each of these figures?

Both figures use all 5 pieces...

Both figures use all 5 pieces...

Both figures use all 5 pieces...

Both figures use all 5 pieces...

Both figures use all 5 pieces...

Both figures use all 5 pieces...

Both figures use all 5 pieces...

Both figures use all 5 pieces...

Both figures use all 5 pieces...

Both figures use all 5 pieces...

Both figures use all 5 pieces...

Both figures use all 5 pieces...

Both figures use all 5 pieces...

Missing rectangle paradox

Both figures use all 5 pieces...

Missing rectangle paradox

Both figures use all 5 pieces...

Missing rectangle paradox

Both figures use all 5 pieces...

Missing square paradox

Both figures use all 5 pieces...

Where is the missing square?

Missing square paradox

Both figures use all 5 pieces...

Where is the missing square?

Missing square paradox

Both figures use all 5 pieces...

Where is the missing square?

Sum of similar figures

Use all 5 pieces to make the single figure in the LHS, then use them to make the two figures on the RHS

In both equations, the figures are similar and areas are in ratio 5:4:1

The dashed rectangle proportions are $1:\varphi$

where $\phi = \frac{1+\sqrt{5}}{2}$ is the golden ratio

The dashed rectangle proportions are $1:\varphi$

where $\phi=\frac{1+\sqrt{5}}{2}$ is the golden ratio

The dashed rectangle proportions are $1:\phi$

where $\overline{\phi}=rac{1+\sqrt{5}}{2}$ is the golden ratio

The dashed rectangles proportions are $1:\phi$

where $\phi = \frac{1+\sqrt{5}}{2}$ is the golden ratio

There are 4 golden rectangles hidden in this figure

Could you spot them?

There are 4 golden rectangles hidden in this figure

Could you spot them?

Golden Rectangles

There are 4 golden rectangles hidden in this figure

Could you spot them?

Golden Rectangles

There are 5 golden rectangles hidden in this figure

Could you spot them?

Golden Rectangles

You can find golden rectangles of 14 different types

Туре	Proportions	Туре	Proportions	
Α	$3-\sqrt{5}$: $2\sqrt{5}-4$	н	$2\sqrt{5} : 5-\sqrt{5}$	
В	$\sqrt{5} - 1 : 3 - \sqrt{5}$	I	$3+\sqrt{5}$: $1+\sqrt{5}$	
С	2 : $\sqrt{5}-1$	J	$6 : 3\sqrt{5}-3$	
D	$2\sqrt{5}-2 : 6-2\sqrt{5}$	K	$2+2\sqrt{5}$: 4	
Е	$5 - \sqrt{5}$: $3\sqrt{5} - 5$	L	$5+\sqrt{5}$: $2\sqrt{5}$	
F	$1+\sqrt{5}$: 2	M	$1+3\sqrt{5}$: $7-\sqrt{5}$	
G	4 : $2\sqrt{5}-2$	Ν	$4+2\sqrt{5}$: $3+\sqrt{5}$	

Could you build an example of each type?

Simplified Tangrams

T1, T4, T5 & T6 appear naturally when you fold a 2:1 rectangle

You can use this figure to prove these identities:

$$sin(\alpha + \beta) = sin \alpha cos \beta + cos \alpha sin \beta$$
$$cos(\alpha + \beta) = cos \alpha cos \beta - sin \alpha sin \beta$$

You can use this figure to prove these identities:

$$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$$
$$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

You can use these figures to prove these identities:

$$\tan(\alpha+\beta) = \frac{\tan\alpha + \tan\beta}{1-\tan\alpha\tan\beta} \qquad \tan(\alpha-\beta) = \frac{\tan\alpha - \tan\beta}{1+\tan\alpha\tan\beta}$$

You can make 12 quadrilaterals using T1, T4, T5 & T6

You can make 23 convex figures using T1, T4, T5 & T6

You can find golden rectangles of 7 different types using just T1, T4, T5 & T6

Type	Proportions			
Α	$3 - \sqrt{5}$		$2\sqrt{5}-4$	
C	2		$\sqrt{5} - 1$	
F	$1 + \sqrt{5}$		2	
G	4		$2\sqrt{5}-2$	
Н	$2\sqrt{5}$		$5 - \sqrt{5}$	
K	$2+2\sqrt{5}$		4	
L	$5 + \sqrt{5}$		$2\sqrt{5}$	

Could you build an example of each type?

The Egyptian Three-Triangle-Tangram

Given any right triangle with sides: $a \le b \le c$

you can draw three similar triangles: (a, b, c), (x, h, a) & (h, y, b)

and use them to prove the **Altitude Theorem**: $h^2 = x \cdot y$ and the **Leg Theorems**: $a^2 = x \cdot c$ & $b^2 = y \cdot c$

(T1, T4 & T5 verify this relationship for: $a = \sqrt{5}$, $b = 2\sqrt{5}$ & c = 5)

The Egyptian Three-Triangle-Tangram

Since $\frac{a}{\sqrt{ab}} = \frac{\sqrt{ab}}{b}$, these three right triangles are similar...

...and you can use this figure to prove the AM-GM Inequality:

$$\frac{a+b}{2} \ge \sqrt{ab}$$

(T1, T4 & T5 verify this relationship for: a = 1 & b = 4)

The Egyptian Three–Triangle–Tangram

Given any right triangle with sides: $a \le b \le c$

you can make a rectangle with three similar triangles: $(a^2, ab, ac), (ab, b^2, bc) \& (ac, bc, c^2)$

and compare the top (a^2+b^2) and the bottom (c^2) sides of the rectangle to prove the **Pythagorean Theorem**

(T1, T4 & T5 verify this relationship for: a = 1, b = 2 & $c = \sqrt{5}$)

The Egyptian Three-Triangle-Tangram

Since
$$area(T1) + area(T4) = area(T5)$$
 ...

...you can verify 3 cases of the **Pythagorean Theorem** (and these particular cases turn out to be the T1, T4 & T5 right triangles!)

The Egyptian Three–Triangle–Tangram

You can make 15 quadrilaterals using just T1, T4 & T5

See also: Brügner, G. (1984) "Three-Triangle-Tangram", Bit, 24

The Egyptian Three-Triangle-Tangram

You can make 11 convex figures using just T1, T4 & T5

See also: Brügner, G. (1984) "Three-Triangle-Tangram", Bit, 24

The Egyptian Three–Triangle–Tangram

You can find golden rectangles of 5 different types using just T1, T4 & T5

Туре	Proportions				
С	2	:	$\sqrt{5} - 1$		
F	$1 + \sqrt{5}$		2		
G	4		$2\sqrt{5}-2$		
Н	$2\sqrt{5}$		$5-\sqrt{5}$		
K	$2+2\sqrt{5}$		4		

Could you build an example of each type?

A Four Q4 Puzzle

It is easy to make each of these figures with four copies of Q4:

But... Could you make two squares **simultaneously**? Could you make two golden rectangles **simultaneously**?

See also: Make a Square puzzle by Interlocking Puzzles LLC

A Four T4 Puzzle

It is easy to make each of these figures with four copies of T4:

But... Could you make two squares **simultaneously**? Could you make two golden rectangles **simultaneously**?

See also: Four Triangles by Don Steward

A Four T4 Puzzle

You could also build many other figures with four T4s...

...including 13 different quadrilaterals!

See also: Four Triangles by Don Steward

A Five T6 Puzzle

Could you make a symmetrical figure with five copies T6?

See also: Curious and Interesting Triangles by Donald Bell

Matchsticks Puzzles

Since all T6's side lengths are integer...

...you could draw it using matchsticks

Matchsticks Puzzles

With 4 matchsticks, it is easy to divide T6 into two polygons with integer side lengths and equal area

But, could you do it using just 2 or 3 matchsticks?

Matchsticks Puzzles

With 5 matchsticks, it is easy to divide T6 into three polygons with integer side lengths and equal area

But, could you do it using just 4 matchsticks?

Properties

Mathematical

ϕ and $\sqrt{5}$ are irrational

This is a **golden rectangle**, which means that $\frac{base}{height} = \varphi$ is the **golden ratio**.

If we remove a square, what remains is also a golden rectangle: $\frac{\text{height}}{\text{base-height}} = \phi$

If we assume that $\varphi = \frac{b}{h}$, with b and h coprime integers, then $\varphi = \frac{h}{b-h}$ is an equivalent fraction, with a smaller integer numerator and a smaller integer denominator, which is absurd. Therefore, our initial assumption must be false.

And, since $\phi = \frac{1+\sqrt{5}}{2}$ is irrational, $2\phi - 1 = \sqrt{5}$ must be irrational too.

arctan(1/2) is irrational

 $\arctan(\frac{1}{2})$ is not a rational multiple of π .

If it were, then for some integer n > 0, we would have $(2+i)^n \in \mathbb{R}$.

But if we look at the imaginary part of these numbers, $a_n = \text{Im}((2+i)^n)$, we can prove that this sequence satisfies the recurrence relation:

$$a_{n+2}=4a_{n+1}-5a_n \qquad \forall \ n>0$$

But $a_1 = 1$, $a_2 = 4$ and, by induction:

$$a_n \equiv \begin{cases} 1 \pmod{5} & \forall \text{ odd } n > 0 \\ 4 \pmod{5} & \forall \text{ even } n > 0 \end{cases}$$

therefore, $(2+i)^n \notin \mathbb{R} \quad \forall n > 0$.

The $1:2:\sqrt{5}$ incenter

If the inradius of a 1:2: $\sqrt{5}$ triangle is 1...

...its shorter leg measures $\varphi + 1 = \varphi^2 = \frac{3+\sqrt{5}}{2}$

The 3:4:5 incenter

If we overlay T6 and T1 as shown in the figure...

...a T1 vertex lies on the incenter of T6

You can use this dissection of T6 to prove that...

$$\pi = \arctan(1) + \arctan(2) + \arctan(3)$$

(consider the sum of the angles touching the incenter of T6 and divide by 2)

You can use this dissection of T6 to prove that...

$$rac{\pi}{2} = \arctanig(rac{1}{1}ig) + \arctanig(rac{1}{2}ig) + \arctanig(rac{1}{3}ig)$$

(consider the sum of the angles touching the vertices of T6 and divide by 2)

You can dissect a 3:4:5 triangle into...

...a 3:4:5 triangle and two congruent 1:2: $\sqrt{5}$ triangles

Iterating this dissection of T6 you can prove that...

$$\sum_{n=1}^{\infty} \frac{18}{4^n} = 6$$
 or, equivalently,

$$\sum_{n=1}^{\infty} \frac{1}{4^n} = \frac{1}{3}$$

Dissecting $1:2:\sqrt{5}$

You can dissect a $1:2:\sqrt{5}$ triangle into...

...a 3:4:5 triangle and two congruent 1:2: $\sqrt{5}$ triangles

Dissecting $1:2:\sqrt{5}$

Removing the 3:4:5 triangle and iterating this dissection...

...produces a variant of the Koch curve fractal

You can dissect a $1:2:\sqrt{5}$ triangle into...

...a 3:4:5 triangle and two different 1:2: $\sqrt{5}$ triangles

Removing the 3:4:5 triangle and iterating this dissection...

...produces a variant of the Minkowski sausage fractal

You can dissect a $1:2:\sqrt{5}$ triangle into...

...five congruent $1:2:\sqrt{5}$ triangles and iterate to get the **Pinwheel tiling** of the plane

You can dissect a $1:2:\sqrt{5}$ triangle into...

...five congruent $1:2:\sqrt{5}$ triangles, remove the central one and iterate to get the **Pinwheel fractal**

Q4 tilings

Two copies of Q4 form a pentagon that can be used...

...to make this variant of the Cairo Tiling of the plane

Q4 tilings

You can use this Pythagorean Tiling to verify...

...that T4 satisfies the Pythagorean Theorem

The angles of Q4

The angles $90-\alpha$ and $90+\alpha$ that appear in Q4 also appear in the **Golden Rhombus**

(a rhombus whose diagonals are in proportion $1:\phi$, with $\phi=\frac{1+\sqrt{5}}{2}$)

The faces of the **rhombic triacontahedron** and the **rhombic hexecontahedron** are Golden Rhombi

The angles of Q4

Even though they are NOT similar figures...

 $\overline{\ldots}$ the same angles appear in Q4 and T5 \cup T6

The perimeter of Q4

These three perimeters are in a geometric progression...

$$\frac{2\sqrt{5}+4}{\sqrt{5}+3} = \frac{3\sqrt{5}+7}{2\sqrt{5}+4} = \phi = \frac{1+\sqrt{5}}{2}$$

The circumcircles

Since opposite angles add to π ...

...C(Q4) and $C(T5 \cup T6)$ are cyclic quadrilaterals

The circumcircles

All circumcircles pass through a common point...

...and $C(T5 \, \cup \, T6)$ passes through the center of C(Q4) and C(T4)

The circumcircles

These circumcircles intersect at the square's center...

...which happens to be T6's incenter

These three points are aligned...

...and these two circles are tangent

The line is tangent to this circle...

...and the right triangle below is an Egyptian Triangle

The circumcircle of that Egyptian Triangle...
...is tangent to the top side of the square

And it is also the circumcircle of this $1:2:\sqrt{5}$ triangle

The radius of these three circles are in ratio $1:\varphi^2:\varphi^4$

where $\phi=\frac{1+\sqrt{5}}{2}$ is the golden ratio

The radius of these four circles are in ratio $1:\varphi:\varphi^2:\varphi^3$

where $\phi = \frac{1+\sqrt{5}}{2}$ is the golden ratio

The radius of these two circles are in ratio $1:\varphi^2$

where $\phi = \frac{1+\sqrt{5}}{2}$ is the golden ratio

The radius of these two circles are in ratio $1:\varphi^2$

where $\phi=\frac{1+\sqrt{5}}{2}$ is the golden ratio

Using the intersection point of the Egyptian Tangram...

...you can divide the square into 5×5 smaller squares!

Using the intersection points of this figure...

...you can divide the square into:

 2×2 , 3×3 , 4×4 or 5×5 smaller squares!

There are 32 egyptian triangles in this figure...

...they come in 4 sizes and there are 8 of each kind

There are 24 1:2: $\sqrt{5}$ triangles in this figure...

...they come in 3 sizes and there are 8 of each kind

There are 24 other triangles in this figure...

...of 3 different kinds (one of them comes in 2 sizes)

The relative sizes of these polygons are...

Small Triangles: 1 Small Kites: 3 Big Triangles: 6

Big Kites: 8

Whole Square: 120

Octagon: 20

Since Area(BLUE) = Area(YELLOW)...

 $...\mathsf{Area}(\mathsf{BLUE}\mathsf{-}\mathsf{GREEN}) = \mathsf{Area}(\mathsf{YELLOW}\mathsf{-}\mathsf{GREEN})$

Since Area(BLUE) = Area(YELLOW)...

Since Area(BLUE) = Area(YELLOW)...

Egyptian Tangram

Divulgation of the

Wooden prototype for MMACA's exhibitions (2019)

Design diary at Nou Biaix magazine 44 (2019)

El tangram egipci: diari de disseny

Carlos Luna-Mota

Museu de Matemàtiques de Catalunya, MMACA carlosJuna@mmaca.cat

Què és un tangram?

El tangram que tots coneixem és un trencaclosques d'origen xinès format per set peces planes, cinc triangles i dos quadrilàters, amb les quals es poden crear un gran nombre de figures (Gardner, 1988).

Figura 1. Tangram xinès

En la seva vessant més lúdica, el tangram s'acompanya d'un llibret on apareixen les siluetes de diverses figures, i el repte consisteix a recobrir completament cadascuna de les siluetes fent servir les set peces sense que sobresurtin de la figura o s'encavalquin entre elles. Sovint. les floures representen objectes o persones amb gran realisme, cosa sorprenent si tenim en compte la simplicitat geomètrica de les peces del tangram [Loyd, 2007].

Parlem de tangrams!

De la Xina a Egipte passant per Cornellà...

⊚⊕s⊚ Carlos Luna-Mota 29 de gener de 2020

mmaca

Talk at MMACA (2020)

3D printer prototype (2020)

Print-&-play flyer for families affected by Covid-19 (2020)

The Egyptian Tangram as a high school learning activity (2020)

First commercial edition (2021)

El Tangram Egipcio

On-line talks for FUNDAPROMAT and MMACA's 7th anniversary (2021)

Ideas? Suggestions? Use examples?

carlos.luna@mmaca.cat

References

- Brunés, T. "The Secrets of Ancient Geometry" (1967)
- Barr, S. "Mathematical Brain Benders" (1969)
- Bankoff, L. & Trigg, C. W. "The Ubiquitous 3:4:5 Triangle" (1974)
- Fujimura, K. "The Tokyo Puzzles" (1978)
- Brügner, G. "Three-Triangle-Tangram" (1984)
- Detemple, D. & Harold, S. "A Round-Up of Square Problems" (1996)
- Alsina, C. & Nelsen, R. B. "Icons of Mathematics" (2011)
- Bogomolny, A. "Cut The Knot" (1996–2018)
- Luna-Mota, C. "El tangram egipci: diari de disseny" (2019)
- Rajput, C. "A Classical Geometric Relationship That Reveals
 The Golden Link in Nature" (2019)