Leveraging Social Media to Map Natural Disasters

Presented by Grace Powell, Andrea Yoss, Dimitri Kisten

Problem Statement

Social media, specifically Twitter, can be leveraged to accurately detect and map various types of natural disasters. We used Twitter combined with the Open FEMA dataset identify legitimate Floods using Natural Language Processing.

Why FEMA?

- FEMA Disaster Declarations Summary is a dataset that stated all federally declared disasters.
- Dataset contained information on the location, disaster type, begin date and declaration date.
- Used FEMA data compare to the twitter dates scrapped that contained titles "Severe Flood" to verify whether the tweets were accurate

Most Common Natural Disaster in Each State

Data Acquisition and EDA Process

- GetOldTweets3 Scraper
 - lowa, Wisconsin, Texas
 - o <2015
 - Two distinct time periods
- Supervised Learning Problem
- NLP

Model Selection

Model	Vectorizer	Training Score	Testing Score	Sensitivity	Specificity	ROC AUC Score
Baseline Model	None	None	0.571	1	0	0.5
Logistic Regression	CountVectorizer	0.94	0.86	0.871	0.847	0.932
K Nearest Neighbors	CountVectorizer	0.873	0.851	0.866	0.831	0.904
Multinomial Naïve Bayes	CountVectorizer	0.849	0.844	0.796	0.907	0.903
DecisionTreeClassifier	CountVectorizer	0.973	0.849	0.878	0.812	0.857
Bagging Classifier	CountVectorizer	0.977	0.844	0.868	0.812	0.909
Random Forest Classifier	CountVectorizer	0.982	0.855	0.885	0.815	0.924
Logistic Regression	TfidfVectorizer	0.882	0.864	0.854	0.879	0.924
K Nearest Neighbors	TfidfVectorizer	0.89	0.845	0.844	0.847	0.913
Multinomial Naïve Bayes	TfidfVectorizer	0.852	0.849	0.806	0.907	0.907
DecisionTreeClassifier	TfidfVectorizer	0.981	0.837	0.878	0.783	0.846
Bagging Classifier	TfidfVectorizer	0.978	0.862	0.861	0.863	0.921
Random Forest Classifier	TfidfVectorizer	0.979	0.849	0.842	0.859	0.93

ROC / AUC Curve

Conclusion

- State by state models vs nationwide performance.
- False positives vs. False negative.

Limitations and Next Steps

- Floods are isolated to specific regions
- Twitter scraper limitations on location data
- Limited # of users who tweet about natural disasters.
- Limited availability of user data
- Potential Fixes:
 - Using available associate or 'friend' as a fix.
 - NLP on tweets/likes of a user