Intensified Response Particles to Assertions and Polar Questions: The Case of Hebrew *legamrey*

Yael Greenberg - Bar Ilan University (yaelgree@gmail.com)

and Lavi Wolf -The Hebrew university and Ben Gurion University (wolf.lavi@gmail.com)
NELS 49 7.10.2017 Cornell University

A. The story in short

- Response particles cross-linguistically got much attention in the literature:
- \square **A**: John is(n't) home **B**. Yes (he is(n't)) **B':** No (he is(n't))
- What about 'intensified response' particles?
- \square A: John is(n't) home
- **B**: Sure! / Absolutely! (he is(n't)) **B':** No way! / Hell no! (he is(n't))
- These are very common, but did not get much attention:
- No compositional analysis of such responses 🕾
- No integration within general theories of response particles 🖾

<u>Goal</u>: Contribute to this issue by examining one 'Intensified Response' particle: Hebrew *legamrey*_{resp} (≈absolutely / absolut)

- We will deal with two challenges:
- First challenge: Giving a compositional analysis of $legamrey_{resp}$ unified with another use of $legamrey_{prop}$ ($\approx completely$)
- Second challenge: understand_legamrey_{resp} vs. two other response particles in Hebrew: $Ken \ (\approx ja) \ / \ Naxon \ (\approx right)$
- Main claims:
- legamrey_{resp} is a degree modifier of gradable speech act operator ASSERT (Greenberg & Wolf 2018)
- ➤ It maximizes the degree of credence the speaker has towards the asserted proposition.
- The asserted proposition is anaphoric to a previously asserted / questioned proposition (Krifka 2013)
- ❖ In contrast, *ken* and *naxon* are anaphoric to a proposition and a speech act, respectively ((≈ *ja* and *right* in Krifka 2013)

B. Challenge (I): Unifying two uses of legamrey

Data

- leegmarey_{prop} is the default intensifying degree modifier in Hebrew (-completely), modifying only upper-closed predicates:
- □ ha-agartal legamrey male / #yakar / #nafal
- "The vase (is) completely full / #expensive / #fell down"
- $\Box [legamrey_{prop}]] = \lambda G. \lambda x. \exists d [d=max(S_G) \land G(d)(x)]$ (cf. Kennedy & McNally 2005 on *completely*)
- "The degree d the entity x has on the scale associated with the gradable predicate G is at the maximal endpoint on the scale":
- ➤ Only felicitous with upper-closed adjectives: since only they are associated with scales with maximal endpoints.
- But *legamrey* can be also used as a response particle *legamery*_{resp.}
- Crucially, it is felicitous even when responding to assertions / questions with relative / non-gradable predicates (3):
- ☐ A: ha-agartal male / yakar / nafal (?)
- ("The vase (is) full / expensive / fell down" OR
- ("Is / did the vase full / expensive / fall down?")
- B: legamery_{resp} ("absolutely")
- "I am completely sure that the vase is full / expensive / fell down"
- The challenge: Both uses of legamrey intensify / maximize.
- ➤ How to capture that? Can we model *lemgarey*_{resp.} as a degree modifier too? But what gradable predicate does it modify?

Proposal: It modifies the gradable speech act operator *ASSERT!*

C. Background: The speech act operator ASSERT - independently analyzed as gradable (Greenberg & wolf (G&W) 2018)

- G&W follow ideas about graded epistemic modality (e.g. Yalcin 2007, Lassiter 2015. 2017), and ideas in Pinon 2006 and Wolf 2015, and propose three moves:
- First move: Supplement existing entries of ASSERT with a credence degree argument
- Second move: Analyze Modal Adverbs as overt degree modifiers of ASSERT,
- > Third move: Take apparently unmodified assertions, to be modified by a covert POS

An illustration:

- Assume a Krifka 2014 style dynamic entry for ASSERT:
- \square [[ASSERT]] $_{\langle\langle s,t\rangle,\langle c,c\rangle\rangle} = \lambda p.\lambda c.\ ic':\ c'=\langle c_{sp(eaker)},\ c_{h(earer)},\ c_{v}\ C_{w} \cap \{w:\ ASSERT(p)(c)\}\}$ i.e. ASSERT combines with a proposition p and a context c and yields the context c' where the CG is updated with Assert (p)(c).
- \triangleright Assert (p)(c) holds in w iff the speaker believes in w that p at time c_t,

First move: Supplementing ASSERT with a degree argument

- $\square \ [[ASSERT]]_{\langle s,t\rangle,\langle\underline{d},\langle c,c\rangle\rangle\rangle} = \lambda p \underline{.\lambda d}. \lambda c. \ \iota c': \ c'=\langle c_{sp}, \ c_h, \ c_r, \ C_w \cap \{w: \underline{Assert \ (p)(\underline{d})(c)}\} \rangle$
- \triangleright Assert (p)(d)(c) holds iff the speaker believes in w p to a credence degree d,

Second move: Taking MADVs to function as overt degree modifiers over ASSERT

- **6**. [[Possibly]]: λ G. $\lambda p.\lambda d. \lambda c. \iota c'$: $c' = \langle c_{sp}, c_h, c_t, c_w \cap \{w: \exists d \not a > 0 \land G(p)(d)(c)\} \rangle$
- 7. [[Probably]]: λG . λp . λd . λc . $\iota c'$: $c' = \langle c_{sp}, c_h, c_v, C_w \cap \{w: \exists d \ d > 0.5 \ \land G(p)(d)(c)\} \rangle$
- 8. [[definitely]]: λG . λp . λd . λc . $\iota c'$: $c' = \langle c_{sp}, c_h, c_v, C_w \cap \{w: \exists d \frac{d=1}{d} \land G(p)(d)(c)\} \rangle$ For example:
- 14. John is probably a thief [Probably(Assert)] (John is a thief) (c) $c': c'= \langle c_{sp}, c_h, c_t, C_w \cap \{w: \exists d \ d > 0.5 \land ASSERT(John is a thief)(d)(c)\} \rangle$
- "…the speaker believes in w that John is a thief to a degree which is higher than 0.5"

Third move: Take apparently unmodified assertions to be modified by a covert *POS* \square [[POS]]: λG . λp . λc . $\iota c'$: $c' = \langle c_{sp}, c_h, c_v, C_w \cap \{w: \exists d \mid d \geq stand(G,C) \mid \wedge G(p)(d)(c)\} \rangle$ For example:

- \square a. Asserting John is a thief b. [POS (Assert)] (John is a thief) (c)
- $\square ic': c'= < c_{sp}, c_h, c_t, C_w \cap \{w: \exists d \ d \geq stand \ (ASSERT, C) \land Assert \ (John \ is \ a \ thief)(d)(c)\}>$
- "…the speaker believes in w that John is a thief to a degree which is at least as high as the standard of credence for assertions in the context
- This 'semanticizes' ideas in e.g. Potts 2006 Davis et al 2007 that the 'quality threshold' / degree of credence with assertions is not necessarily 1, and can vary in context.

D. Proposal: $legamrey_{resp}$ as an anaphoric degree modifier of ASSERT, maximizing a credence degree

- legamrey_{resp} acts as a <u>degree modifier of gradable ASSERT</u> (Greenberg & Wolf)
- the asserted proposition is anaphoric to a proposition asserted / questioned in a previous turn in the discourse (Krifka 2013)
- It (re)asserts this proposition with a maximal degree of credence (cf. definitely):
- For example:
- ☐ A: John is a thief
 [POS (ASSERT)] (John is a thief)
 A's degree of credence in "John is a thief

B: legmarey! [legmarey(ASSERT)] (John is a thief) B's degree of credence in John is a thief

is at least as the context standard of credence is maximal

Meeting challenge I:

We capture both <u>similarities</u> and <u>differences</u> between *legamrey* and *legamrey* and *legamrey* and

- Similarities: In both its uses *legamrey* is a degree modifier of a gradable expression
- In both it indicates that the degree of the measured entity is at the maximal endpoint
- <u>Differences:</u>
- <u>legamrey</u> modifies upper closed **adjectives** and maximizes degrees of an **individual** on an e.g. a **fullness** / **cleanness** / **dryness** scale
- <u>Legamrey_{resp}</u> modifies a **covert ASSERT** operator and maximizes the degree of **the asserted proposition** on a scale of **credence** (the degree the speaker believes it)
- **Moreover**: The proposal explains why *legmarey*_{resp} is felicitous even with relative / non-gradable predicates: The credence scale is **upper closed** (cf. Lassiter 2017)

E. Challenge II: $legamrey_{resp}$ vs. $ken (\approx ja)$ and $naxon (\approx right)$

Data

- . A: John is home B. a. legamrey (maximal credence) b. ken/naxon (maximal credence)
- 2. A: John is not home B: a. legamrey (he isn't): a. ken (he isn't) c. naxon. (he isn't)
- 3. A: John is not home B: a. legamrey (he is): a. ken (he is) c. naxon. (he is)
- 4. **A;** Is John home? **B**: a. legamrey b. ken c.#naxon
- 4. A: John is home B. If #legamrey / ken/ #naxon, we better call him

	legamrey _{resp}	Ken (≈ ja)	naxon (≈ right)
1. Intensified / 'maximal credence' interpretation	+		
2. Negative reactions to negative assertions	+	+	+
3. Positive reactions to negative assertions	+	+	-
4. Felicity in responding to polar questions	+	+	_
5. Felicity in conditional antecedents	_	+	_

F. Proposal: $legamrey_{resp}$ within an anaphoric theory of responses

- \triangleright legamrey_{resp} A degree modifier of *ASSERT*, anaphoric to a previous proposition (see above)
- > ken is anaphoric to a previous proposition ($\approx ja$ in Krifka 2013)
- ➤ *Namon* is anaphoric to a previous speech act (≈ *right* in Krifka 2013)

Meeting the second challenge ©

1. Intensified / 'maximal credence' interpretation:

- Found with the maximizing degree modifier <u>legamrey</u>_{resp}
- Not with ken and naxon which keep the same degree of credence as in the original assertion

2. Negative reactions to negative assertions

- Fine with *legamrey*_{resp} and *ken* which can pick the negative proposition
- <u>Fine with naxon</u> which repeats the whole assertion (of the negative proposition)

3. Positive reactions to negative assertions:

- Fine with *legamrey_{resp} / ken*—can pick the embedded positive proposition (cf. Krifka 2013)
- Bad with naxon which repeats the whole assertion speech act (of negative proposition)

4. Felicity in responding to polar questions:

- Fine with letamrey_{resp} which inherently returns an assertion and with ken which CAN be used to assert the antecedent proposition both are natural reactions to polar questions.
 - Less good with *naxon*: It repeats the whole speech act (in this case the whole polar question) ending up with "This is indeed an appropriate question to ask" effect (cf. Wiltchko 2017)

5. Felicity in conditional antecedents

- With *legamrey*_{resp} naxon we end up with a speech act (ActP) infelicitous in this position
- With ken we can end up with a proposition fine in this position

VI. Conclusion and directions for further research

- **Conclusion:** We proposed a compositional analysis of the intensified response *legamrey*_{resp}, which captures similarities and differences between it and (a) the more standard degree modifier *legamrey*_{prop} and (b) two other response particles in Hebrew.
- **❖** Directions:
- Our proposal applied to other means to increase / decrease credence?
 - ➤ Other intensified response particles? / syntactic and intonational means to increase and decrease credence? / What about differences between *legmarey* and similar particles, e.g. discourse *totally* (Beltrama 2018)?
- Other theories of response particles on 'intensified responses'? E.g. A feature-based theory (Roelofsen & Farkas 2015) / An ellipsis-based theory (e.g. Kramer & Rawlins (2009, Holmberg (2016)? / A 'hybrid' theory (Goodhue & Wagner 2018)