## **Subject : Engineering Mathematics**

DPP-04

**Chapter: Vector Calculus** 

## Topic : Line, surface & Volume Integral, Stokes, Green & Gauss Divergence Theorem

- 1. The line integral  $\int \overline{V} \cdot d\overline{r}$  of the vector  $\vec{V} = 2xyz\hat{i} + x^2z\hat{j} + x^2y\hat{k}$  from the origin of the point (1,
  - 1, 1)
  - (a) is 1
  - (b) is zero
  - (c) is -1
  - (d) cannot be determined without specifying the path
- 2. Value of the integral  $\oint_c (xy \, dy y^2 dx)$ , where *C* is the square cut from the first quadrant by the lines x = 1 and y = 1 will be (use Green's theorem to change the line integral into double integral)
  - (a) 1/2
- (b) 1
- (c) 3/2
- (d) 5/3
- 3. Consider points P and Q in the x-y plane, with P = (1,0) and Q = (0, 1). The line integral  $2\int_{P}^{Q} (xdx + ydy)$  along the semicircle with the line segment PQ as its diameter
  - (a) is -1
  - (b) is 0
  - (c) is 1
  - (d) depends on the direction (clockwise or anticlockwise of the semi-circle)
- **4.** If  $\overline{r}$  is the position vector of any point on a closed surface S that encloses the volume V then  $\iint_{S} (\overline{r} \cdot d\overline{s})$  is equal to
  - (a)  $\frac{1}{2}V$
- (b) V

- (c) 2V
- (d) 3V
- 5.  $F(x, y) = (x^2 + xy)\hat{a}_x + (y^2 + xy)\hat{a}_y$ . It's line integral over the straight line from (x, y) = (0,2) to (2,0) evaluate to
  - (a) -8
- (b) 4
- (c) 8
- (d) 0
- **6.** A path AB in the form of one quarter of a circle of unit radius is shown in the figure. Integration of  $(x + y)^2$  on path AB traversed in counter-clockwise sense is



- (a)  $\frac{\pi}{2}$
- (b)  $\frac{\pi}{2} + 1$
- (c)  $\frac{\pi}{2}$
- (d) 1
- 7. If  $\vec{A} = xy\hat{a}_x + x^2\hat{a}_y$ ,  $\oint_C \vec{A} \cdot \vec{dl}$  over the path shown in the figure is



- (a) 0
- (c) 1
- (d)  $2\sqrt{3}$
- The line integral of the vector function  $\vec{F} = 2x\hat{i} + x^2\hat{j}$ along the x-axis from x = 1 to x = 2 is
  - (a) 0
- (b) 2.33
- (c) 3
- (d) 5.33
- The line integral  $\int_{P_1}^{P_2} (y dx + x dy)$  from  $P_1(x_1, y_1)$  to 9.

 $P_2(x_2, y_2)$  along the semi-circle  $P_1P_2$  shown in the figure is



- (a)  $x_2 y_2 x_1 y_1$  (b)  $(y_2^2 y_1^2) + (x_2^2 x_1^2)$ (c)  $(x_2 x_1) (y_2 y_1)$  (d)  $(y_2 y_1)^2 + (x_2 x_1)^2$

10. The area of the triangle formed by the tips of vectors  $\overline{a}$ ,  $\overline{b}$  and  $\overline{c}$  is

(a) 
$$\frac{1}{2}(a-b)\cdot(a-c)$$

(b) 
$$\frac{1}{2}|(a-b)\times(a-c)|$$

(c) 
$$\frac{1}{2} |a \times b \times c|$$

(d) 
$$\frac{1}{2}(a \times b) \cdot c$$

- 11. Consider a close surface S surrounding volume V. If  $\vec{r}$ is the position vector of a point inside S, with  $\hat{n}$  the unit normal on *S* the value of the integral  $\iint_S 5\vec{r} \cdot \hat{n} \, dS$  is
  - 3 V (a)
- (b) 5 V
- (c) 10 V
- (d) 15 V
- 12. The line integral of function  $F = yz\hat{\imath}$ , in the counter clockwise direction, along the circle  $x^2 + y^2 = 1$  at z = 1
  - (a)  $-2\pi$
- (b)  $-\pi$
- (c) π
- (d)  $2\pi$

## **Answer Key**

1. (a)

2. (c)

**3.** (b)

4. (d)

5. (d)

**6. (b)** 

7. (c)

8. (c)

9. (a)

**10.** (b)

11. (d)

12. (b)





Any issue with DPP, please report by clicking here:  $\frac{https://forms.gle/t2SzQVvQcs638c4r5}{https://smart.link/sdfez8ejd80if}$  For more questions, kindly visit the library section: Link for web:  $\frac{https://smart.link/sdfez8ejd80if}{https://smart.link/sdfez8ejd80if}$ 



PW Mobile APP: <a href="https://smart.link/7wwosivoicgd4">https://smart.link/7wwosivoicgd4</a>