1. Relation and Partitions

Updated at Oct 17, 2018

Relation

Definition

A relation between set S and T is a subset of $S \times T$. Whether (s,t) has such "relationship" depends on if the pair is in this subset. Hence we have the definition

$$R = \{(s,t) \mid s \mathrel{R} t\}$$

Properties

A relation can have some properties. For example,

- if $\forall s \in S : s \ R \ s$, then R is *reflexive* (if all elements are related to themselves)
- ullet if $s\ R\ t\Rightarrow t\ R\ s$, then R is symmetric (if the relation "goes both ways")
- if $s R t, t R u \Rightarrow s R u$, then R is *transitive* (if the relation propagates)

Equivalence

Equivalence relation

If R is reflexive, symmetric, and transitive, then R is called an equivalence relation.

Equivalence class

An equivalence class of s ($s \in S$) about R (R is on S) is the set in which all elements are equal to s.

$$B_R(s) = \{t \mid s \mathrel{R} t\}$$

where $t \in S$.

Partition

Definition

A partition π of S is the set containing all possible equivalence classes of S about some relation. That is

$$\pi=\{B_lpha\}$$

(where α is the index), such that

$$lpha
eq eta \Rightarrow B_{lpha} \cap B_{eta} = \emptyset \ \cup \{B_{lpha}\} = S$$

In other words, π is an **unambiguous**, **complete** division of S.

Block notations

If s and t are in the same block of π , we denote this as

$$s \equiv t \; (\pi)$$

Note here t (π) is not a functional application. The parenthesis is read as "concerns π ".

Obviously,

$$s \equiv t \; (\pi) \Leftrightarrow B_{\pi}(s) = B_{\pi}(t)$$

Also, if R defines π , then

$$s R t \Leftrightarrow s \equiv t (\pi)$$

That is, if s is R-equivalent to t, they are in the same partition block. Conversely, if s, t are in the same partition block, they must equal under some relation R.

Partition comparison

Definition

We say that $\pi_1 \leq \pi_2$ if and only if for all B_{π_1} , there exists (and can only exists) one B_{π_2} such that $B_{\pi_1} \subseteq B_{\pi_2}$.

Lemma 1.1: $\pi_1 \leq \pi_2$ if and only if $B_{\pi_1}(r) \subseteq B_{\pi_2}(r)$ for all r

Theorem 1.1: $\pi_1 \leq \pi_2$ if and only if $s \equiv t(\pi_1) \Rightarrow s \equiv t(\pi_2)$

Corollary 1.1: \leq : $\pi_1 o \pi_2$ is a surjective function