

Model Compression Techniques & VAE

Gopi Kishan GCDSL, IISc

Overview

- 1. Knowledge Distillation (KD)
- 2. Auto Encoders
- Variational AutoEncoders (VAE)
- 4. Exploring other prior of VAE
- 5. Other Compression techniques
- 6. Micronet Challenge hosted at NeurIPS 2019

Distilling the Knowledge in a Neural Network

Neural networks typically produce class probabilities by using a "softmax" output layer that converts the logit, zi, computed for each class into a probability, qi, by comparing zi with the other logits.

$$q_i = \frac{exp(z_i/T)}{\sum_j exp(z_j/T)}$$

where T is a temperature that is normally set to 1. Using a higher value for T produces a softer probability distribution over classes.

Matching logits is a special case of distillation

The cross-entropy gradient, dC/dzi is given by:

$$\frac{\partial C}{\partial z_i} = \frac{1}{T} \left(q_i - p_i \right) = \frac{1}{T} \left(\frac{e^{z_i/T}}{\sum_j e^{z_j/T}} - \frac{e^{v_i/T}}{\sum_j e^{v_j/T}} \right)$$

If the temperature is high compared with the magnitude of the logits, we can approximate:

$$\frac{\partial C}{\partial z_i} \approx \frac{1}{T} \left(\frac{1 + z_i/T}{N + \sum_j z_j/T} - \frac{1 + v_i/T}{N + \sum_j v_j/T} \right)$$

If we now assume that the logits have been zero-meaned separa P tely for each transfer case so that $\sum_i z_j = \sum_i v_j = 0$

$$\frac{\partial C}{\partial z_i} \approx \frac{1}{NT^2} \left(z_i - v_i \right)$$

Knowledge Distillation on MNIST

Teacher Model

Layer (type)	Output Shape	Param #
input_2 (InputLayer)	[(None, 28, 28, 1)]	0
Conv1 (Conv2D)	(None, 26, 26, 32)	320
Conv2 (Conv2D)	(None, 24, 24, 64)	18496
MaxPool (MaxPooling2D)	(None, 12, 12, 64)	0
Dropout1 (Dropout)	(None, 12, 12, 64)	0
Flat (Flatten)	(None, 9216)	0
FC1 (Dense)	(None, 128)	1179776
Dropout2 (Dropout)	(None, 128)	0
logits (Dense)	(None, 10)	1290
Softmax (Activation)	(None, 10)	0

Total params: 1,199,882 Trainable params: 1,199,882 Non-trainable params: 0

Student Model

Layer (type)	Output Shape	Param #
input_2 (InputLayer)	(None, 28, 28, 1)	0
flatten (Flatten)	(None, 784)	0
FC1 (Dense)	(None, 128)	100480
FC2 (Dense)	(None, 128)	16512
logits (Dense)	(None, 10)	1290
Softmax (Activation)	(None, 10)	0

Total params: 118,282 Trainable params: 118,282 Non-trainable params: 0

Prediction over MNIST

All the models are trained for 10 epoches with batch size = 64

Models	Test Accuracy
Teacher Model	0.9924
Student Model	0.9871
Student Model without teacher guidance	0.9632

Probability distribution over number at Temperature value = 4

Unsoftened probabilities: [2.9399757e-23 7.7865502e-24 3.3027068e-24 6.2618165e-16 1.4026793e-27

7.1093457e-12 2.4744464e-21 3.6832551e-24 9.0432768e-20 5.3667499e-19]

Prediction based on unsoftened probability for: 5

Softened probabilities: [5.1947024e-09 3.7265848e-09 3.0074072e-09 3.5289850e-07 4.3173209e-10 3.6427730e-06 1.5734186e-08 3.0905281e-09 3.8686210e-08 6.0381318e-08]

Prediction based on Softened probability for: 5

AutoEncoders

The learning process is described simply as minimizing a loss function

$$L(\boldsymbol{x}, g(f(\boldsymbol{x})))$$

Where L is a loss function penalizing g(f(x)) for being dissimilar from x, such as the mean squared error is given by :

$$\min_{\mathbf{w}_1,\mathbf{w}_2} \|\mathbf{x}_i - g(f(\mathbf{x}_i;\mathbf{w}_1);\mathbf{w}_2)\|_2^2$$

Results on MNIST

Model description

Layer (type)	Output Shape	Param #
input_14 (InputLayer)	(None, 28, 28, 1)	0
conv2d_22 (Conv2D)	(None, 28, 28, 16)	160
max_pooling2d_10 (MaxPooling	(None, 14, 14, 16)	0
conv2d_23 (Conv2D)	(None, 14, 14, 8)	1160
max_pooling2d_11 (MaxPooling	(None, 7, 7, 8)	0
conv2d_24 (Conv2D)	(None, 7, 7, 8)	584
max_pooling2d_12 (MaxPooling	(None, 4, 4, 8)	0
conv2d_25 (Conv2D)	(None, 4, 4, 8)	584
up_sampling2d_10 (UpSampling	(None, 8, 8, 8)	0
conv2d_26 (Conv2D)	(None, 8, 8, 8)	584
up_sampling2d_11 (UpSampling	(None, 16, 16, 8)	0
conv2d_27 (Conv2D)	(None, 14, 14, 16)	1168
up_sampling2d_12 (UpSampling	(None, 28, 28, 16)	0
conv2d_28 (Conv2D)	(None, 28, 28, 1)	145

Total params: 4,385 Trainable params: 4,385 Non-trainable params: 0

Layer (type)	0utput	Shape	Param #
input_7 (InputLayer)	(None,	784)	0
dense_5 (Dense)	(None,	128)	100480
dense_6 (Dense)	(None,	784)	101136

Total params: 201,616

Trainable params: 201,616 Non-trainable params: 0

Loss = Cross_Entropy + alpha * MSE(Encoded_S - Endoded_T)*temp**2

At training temperature = 4 and alpha = 0.5

Models	Result
Teacher Model	2_
DNN	2
DNN with teacher guidance	2

MNIST Image sharpening with temp term

Recall

$$q_i = \frac{exp(z_i/T)}{\sum_j exp(z_j/T)}$$

Original Image	2	5
AE reconstructed Image	2	5
AE reconstruction using temp = 0.6	2	5

Maths review

Bayes' Theorem

$$\underbrace{P(A|B)}_{\text{posterior}} = \frac{P(B|A) \overbrace{P(A)}^{\text{prior}}}{P(B)}$$

KL Divergence

$$D_{KL}(Q||P) = \mathbb{E}_{x \sim Q}[\log \frac{Q(x)}{P(x)}]$$

Variational Autoencoder

Variational autoencoders (VAEs) are a deep learning technique for learning latent representations.

Let's define some notions:

- 1. X: data that we want to model
- 2. z: latent variable
- 3. P(X): probability distribution of the data
- 4. P(z): probability distribution of latent variable
- 5. P(X|z): distribution of generating data given latent variable

Goal: To compute the distribution P(z|X)

Alright, now let's say we want to infer P(z|X) using Q(z|X). The KL divergence then formulated as follows:

$$D_{KL}[Q(z|X)||P(z|X)] = \sum_{z} Q(z|X) \log \frac{Q(z|X)}{P(z|X)}$$

$$= E\left[\log \frac{Q(z|X)}{P(z|X)}\right] = E[\log Q(z|X) - \log P(z|X)]$$

Applying Bayes' rule:

$$D_{KL}[Q(z|X) || P(z|X)] = E\left[\log Q(z|X) - \log \frac{P(X|z)P(z)}{P(X)}\right]$$

$$D_{KL}[Q(z|X)||P(z|X)] - \log P(X) = E[\log Q(z|X) - \log P(X|z) - \log P(z)]$$
$$\log P(X) - D_{KL}[Q(z|X)||P(z|X)] = E[\log P(X|z)] - E[\log Q(z|X) - \log P(z)]$$

And this is it, the VAE objective function:

$$\log P(X) - D_{KL}[Q(z|X)||P(z|X)] = E[\log P(X|z)] - D_{KL}[Q(z|X)||P(z)]$$

At this point, what do we have? Let's enumerate:

- 1. Q(z|X) that project our data X into latent variable space
- 2. z, the latent variable
- 3. P(X|z) that generate data given latent variable.

Result on MNIST

Layer (type)	0utput	Shape	Param #
encoder_input (InputLayer)	(None,	784)	0
dense_1 (Dense)	(None,	512)	401920
z_mean (Dense)	(None,	2)	1026
z_log_var (Dense)	(None,	2)	1026
z (Lambda)	(None,	2)	0

Total params: 403,972 Trainable params: 403,972 Non-trainable params: 0

z = z_mean + sqrt(var) * epsilon

Where, epsilon = N(0,1)

Exploring other priors in VAE

Current prior: bernoulli distribution and Gaussian distribution.

Motivation: Image pixel values follow multinomial distribution. So none of the above priors are suitable.

$$\underbrace{P(A|B)}_{\text{posterior}} = \frac{P(B|A) \overbrace{P(A)}^{\text{prior}}}{P(B)}$$

Proposal: Dirichlet Distribution

Dirichlet Distribution

Dirichlet distribution is a multivariate distribution with parameters $\alpha = [\alpha 1, \alpha 2, ..., \alpha K]$, with the following probability density function

$$p(x; lpha) = rac{\Gamma(\sum_{k=1}^K lpha_k)}{\prod_{k=1}^K \Gamma(lpha_k)} \prod_{k=1}^K x_k^{lpha_k-1}$$

Beta distribution

$$f(\theta; \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

Dirichlet distribution

$$f(\theta_1, \dots, \theta_k; \alpha_1, \dots, \alpha_k) = \frac{\Gamma(\alpha_1 + \dots + \alpha_k)}{\Gamma(\alpha_1) \dots \Gamma(\alpha_k)} \theta_1^{\alpha_1} \dots \theta_k^{\alpha_k}$$

It is a multivariate form of Beta distribution and conjugate prior to multinomial distribution.

Beta

Dirichlet

Dirichlet VAE

Instead of using the standard Gaussian distribution, we use the Dirichlet distribution which is a conjugate prior distribution of the multinomial distribution.

$$\mathbf{z} \sim p(\mathbf{z}) = \text{Dirichlet}(\boldsymbol{\alpha}), \ \mathbf{x} \sim p_{\theta}(\mathbf{x}|\mathbf{z})$$

A paper with the same idea was submitted in ICML 2019, but unfortunately was not accepted. It proposes DirVAE advantages as :

- DirVAE models the latent representation result with the best log-likelihood compared to the baselines
- DirVAE produces more interpretable latent values with no collapsing issues which the baseline models suffer from.
- 3. Better performance on MNIST and OMNIGLOT compared to the baseline VAEs

Other Compression techniques:

1. Pruning

Deciding importance of neuron:

The ranking can be done according to the **L1/L2 mean of neuron weights**, their mean activations, the number of times a neuron wasn't zero on some validation set, and other creative methods .

2. Quantisation

Key Idea: The value distribution of neural network weight is of small range, which is very close to 0. With such value range in (-1.1), quantizing floating point is

With such value range in (-1,1), quantizing floating point is mapping FP32 to INT8 using

$$egin{aligned} x_{float} &= x_{scale} imes (x_{quantized} - x_{zero_point}) \ x_{float} &\in [x_{float}^{min}, x_{float}^{max}] \ x_{scale} &= rac{x_{float}^{max} - x_{float}^{min}}{x_{quantized}^{max} - x_{quantized}^{min}} \ x_{zero_point} &= x_{quantized}^{max} - x_{float}^{min} \div x_{scale} \ x_{quantized} &= x_{float} \div x_{scale} + x_{zero_point} \end{aligned}$$

where , x_float denotes the FP32 weight, x_quantized denotes the quantized INT8 weight, and x_scale is the mapping fractor (scaling factor).

Figure 8 shows weight distribution of 10 layers (layers that have most value points) of MobileNetV1.

3. Weight matrix factorization using SVD

Singular Value Decomposition of any matrix is

$$\mathbf{A}_{nxp} = \mathbf{U}_{nxn} \, \mathbf{S}_{nxp} \, \mathbf{V}^{\mathbf{T}}_{pxp}$$

where the columns of U are the left singular vectors, S has singular values and is diagonal, and V^T has rows that are the right singular vectors.

$$\mathbf{U}^{T}\mathbf{U} = \mathbf{I}_{nxn}$$

 $\mathbf{V}^{T}\mathbf{V} = \mathbf{I}_{pxp}$ (i.e. U and V are orthogonal)

For a weight matrix A, if we apply SVD on it, we get

$$A_{m\times n} = U_{m\times n} \sum_{n\times n} V_{n\times n}^T$$

where \sum is a diagonal matrix with A's singular values on the diagonal in the decreasing order.

$$A_{m\times n} = U_{m\times k} \sum_{k\times k} V_{k\times k}^T = U_{m\times k} N_{k\times k},$$

In this way we decompose matrix A into two smaller matrices U and N. For one single layer in a DNN model, we replace it with two layers, while the first one has no nonlinear function, and the second one does.

(a) One layer in original DNN model

$$A_{m\times n} = U_{m\times n} \sum_{n\times n} V_{n\times n}^T$$

b) Two corresponding layers in new DNN model

$$A_{m\times n} = U_{m\times k} \sum_{k\times k} V_{k\times k}^T = U_{m\times k} N_{k\times k},$$

Note: The number of parameters changes from mn to (m+n)k. We reduce the model size significantly if k is much smaller than n.

Illustration:

$$\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} = \begin{bmatrix} u_{11} & \cdots & u_{1n} \\ \vdots & \ddots & \vdots \\ u_{m1} & \cdots & u_{mn} \end{bmatrix} \cdot \begin{bmatrix} \epsilon_{11} & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & \epsilon_{kk} & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & \epsilon_{mn} \end{bmatrix} \cdot \begin{bmatrix} v_{11} & \cdots & v_{1n} \\ \vdots & \ddots & \vdots \\ v_{n1} & \cdots & v_{nn} \end{bmatrix}$$

$$\begin{split} & \approx \begin{bmatrix} u_{11} & \cdots & u_{1n} \\ \vdots & \ddots & \vdots \\ u_{m1} & \cdots & u_{mn} \end{bmatrix} \cdot \begin{bmatrix} \epsilon_{11} & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & \epsilon_{kk} & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 0 \end{bmatrix} \cdot \begin{bmatrix} v_{11} & \cdots & v_{1n} \\ \vdots & \ddots & \vdots \\ v_{n1} & \cdots & v_{nn} \end{bmatrix} \\ & = \begin{bmatrix} u_{11} & \cdots & u_{1k} \\ \vdots & \ddots & \vdots \\ u_{m1} & \cdots & u_{mk} \end{bmatrix} \cdot \begin{bmatrix} \epsilon_{11} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \epsilon_{kk} \end{bmatrix} \cdot \begin{bmatrix} v_{11} & \cdots & v_{1k} \\ \vdots & \ddots & \vdots \\ v_{k1} & \cdots & v_{kk} \end{bmatrix} \end{aligned}$$

$$= \begin{bmatrix} u_{11} & \cdots & u_{1k} \\ \vdots & \ddots & \vdots \\ u_{m1} & \cdots & u_{mk} \end{bmatrix} \cdot \begin{bmatrix} n_{11} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & n_{kk} \end{bmatrix}$$

What Next?

MicroNet Challenge Hosted at NeurIPS 2019

Competition Start: June 1st, 2019.

Submission Deadline: Midnight Pacific Time, September 30th, 2019.

Scoring

Two factors will be taken into account when scoring an entry:

- 1. **Parameter Storage**: A 16-bit parameter counts as one parameter. If quantization is performed, a parameter of less than 16-bits will be counted as a fraction of one parameter.
- 2. **Math Operations**: The mean number of arithmetic operations per example required to perform inference on the test set. Multiplies and additions count separately.

BaseLine: For ImageNet and CIFAR-100, parameter storage, and compute requirements will be normalized relative to MobileNetV2 with width 1.4 (6.9M parameters, 1170M math operations).

References

- G. Hinton, O. Vinyals and J. Dean. Distilling the Knowledge in a Neural Network. In NIPS 2014
- Carl Doersch. Tutorial on Variational Autoencoders. stat.ML 2016
- Song Han, Huizi Mao, William and J. Dally. Deep Compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. In ICLR 2016.
- J. Xue, J. Li, and Y. Gong. Restructuring of Deep Neural Network Acoustic Models with Singular Value Decomposition.
- W. Joo, W. Lee, S. Park & Il-Chul Moon. Dirichlet Variational Autoencoder.

Thank You