

Background

Airbnb has seen a major decline in revenue during covid time.

Now that the restrictions have started lifting and people have started to travel more, Airbnb wants to make sure that it is fully prepared for

The different leaders at Airbnb want to understand some important insights based on various attributes in the dataset so as to increase the revenue.

Objectives

Understanding key insights from the pre covid data

Post covid business Analysis and Growth opportunities

Identify customer preferences and patterns.

1.Data Overview and Fixing columns

#Importing Libraries												
imp imp	import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns											
#Reading the data nyc = pd.read_csv('AB_NYC_2019.csv') nyc.head()												
_	id	name	host_id	host_name	neighbourhood_group	neighbourhood	latitude	longitude	room_type	price	minimum_nights	number_of_revie
0	2539	Clean & quiet apt home by the park	2787	John	Brooklyn	Kensington	40.64749	-73.97237	Private room	149	1	
1	2595	Skylit Midtown Castle	2845	Jennifer	Manhattan	Midtown	40.75362	-73.98377	Entire home/apt	225	1	
2	3647	THE VILLAGE OF HARLEMNEW YORK!	4632	Elisabeth	Manhattan	Harlem	40.80902	-73.94190	Private room	150	3	
3	3831	Cozy Entire Floor of Brownstone	4869	LisaRoxanne	Brooklyn	Clinton Hill	40.68514	-73.95976	Entire home/apt	89	1	:
4	5022	Entire Apt: Spacious Studio/Loft by central park	7192	Laura	Manhattan	East Harlem	40.79851	-73.94399	Entire home/apt	80	10	

- Imported and Read the data set
- Checked the data types and found that last_review should be date type. Hence, converted the same to date.

```
nyc.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 48895 entries, 0 to 48894
Data columns (total 19 columns):
                                     Non-Null Count
     Column
                                                    Dtype
     id
                                     48895 non-null int64
                                     48879 non-null
                                                    object
     name
     host id
                                     48895 non-null int64
     host name
                                     48874 non-null object
     neighbourhood group
                                     48895 non-null
                                                    object
     neighbourhood
                                                    obiect
                                     48895 non-null
     latitude
                                     48895 non-null float64
     longitude
                                     48895 non-null float64
     room type
                                     48895 non-null object
     price
                                     48895 non-null
                                                    int64
     minimum nights
                                     48895 non-null int64
     number_of_reviews
                                     48895 non-null int64
     last review
                                     38843 non-null
                                                    object
     reviews_per_month
                                     38843 non-null float64
     calculated_host_listings_count
                                    48895 non-null int64
     availability_365
                                     48895 non-null int64
     availability_365_categories
                                     48895 non-null
                                                    object
     minimum_night_categories
                                     48895 non-null object
 17
     number_of_reviews_categories
                                     48895 non-null object
dtypes: float64(3), int64(7), object(9)
memory usage: 7.1+ MB
```

2) Categorization of columns

```
def availability_365_cat(n):
    if n <= 1:
        return 'very Low'
    elif n <= 100:
        return 'Low'
    elif n <= 200 :
        return 'Medium'
    elif (n <= 300):
        return 'High'
    else:
        return 'very High'</pre>
```

```
def minimum_night_cat(n):
    if n <= 1:
        return 'very Low'
    elif n <= 3:
        return 'Low'
    elif n <= 5 :
        return 'Medium'
    elif (n <= 7):
        return 'High'
    else:
        return 'very High'</pre>
```

```
def number_of_reviews_cat(n):
    if n <= 1:
        return 'very Low'
    elif n <= 5:
        return 'Low'
    elif n <= 10 :
        return 'Medium'
    elif (n <= 30):
        return 'High'
    else:
        return 'very High'</pre>
```

We have done the categorization of few features so that we can better understand the relationships and better communicate our findings.

3) Data types

*1 * * *

4.2 Numerical

We have 3 data types: Categorical, Numerical and date type.

4.3 Coordinates and date

```
cdate = nyc.columns[[6,12]]
nyc[cdate]
```

.

last_review	latitude	
2018-10-19	40.64749	0
2019-05-21	40.75362	1
NaT	40.80902	2
2019-05-07	40.68514	3
2018-11-19	40.79851	4

4) Missing Values

```
# Percentage of missing values
round((nyc.isnull().sum()/len(nyc))*100,2)
id
                                     0.00
name
                                     0.03
host id
                                     0.00
                                     0.04
host name
neighbourhood_group
                                     0.00
neighbourhood
                                     0.00
latitude
                                     0.00
longitude
                                     0.00
room type
                                     0.00
price
                                     0.00
minimum nights
                                     0.00
number_of_reviews
                                    0.00
last_review
                                    20.56
                                    20.56
reviews per month
calculated host listings count
                                    0.00
availability 365
                                     0.00
availability_365_categories
                                     0.00
minimum night categories
                                     0.00
number_of_reviews_categories
                                     0.00
dtype: float64
```

- Two columns (last_review , reviews_per_month) has around 20.56% missing values. name and host_name has 0.3% and 0.4 % missing values
- We need to see if the values are, MCAR: It stands for Missing completely at random.
- If the analysis is primarily for storytelling and no predictive model is being created, imputing missing values may not be necessary. In such cases, the missing data itself can tell an important story, such as:
- 1)Why are higher-priced listings less reviews? 2)Why are shared rooms getting fewer reviews?
- -Imputing values in this scenario might obscure these insights. Instead, you could focus on explaining the reasons behind the missing data and what it indicates about customer behavior. Highlighting the missing data can provide valuable context for decision-making rather than trying to fill it in.

Missing Value Analysis- "Last_Review"

- Each neighbourhood_group has about 19 % missing values in 'last review' feature.
- Shared room' has the highest missing value percentage (27 %) for 'last_review' feature while to other room types has only about 20 %

Mean and Median of prices with last_review feature missing

Mean = 192.9190210903303

Median = 120.0

Mean and Median of prices with last_review feature not missing

Mean = 142.317946605566

Median = 101.0

- Higher prices are linked to missing last_review values, indicating that highpriced listings are less likely to receive reviews.
- Shared rooms tend to have fewer reviews, which contributes to the missing last_review data for these room types.
- As prices increase, the likelihood of receiving reviews decreases, possibly due to fewer bookings or higher customer expectations.
- The missing values in last_review are not random but influenced by factors like price and room type.
- This suggests the missing data is not MAR (Missing at Random), where missingness depends on observable features.

Univariate Analysis

Neighbourhood Groups

- Michael is the top host
- Minimum Nights offered by hosts for Properties are either very low or low.
- Manhattan and Brooklyn has highest listing properties

Bivariate Analysis

COLI_IIIaCLIX								
	id	host_id	price	minimum_nights	number_of_reviews	reviews_per_month	calculated_host_listings_count	availability_365
id	1.000000	0.588290	0.010619	0.013224	0.319760	0.291828	0.133272	0.085468
host_id	0.588290	1.000000	0.015309	0.017364	0.140106	0.296417	0.154950	0.203492
price	0.010619	0.015309	1.000000	0.042799	0.047954	0.030608	0.057472	0.081829
minimum_nights	0.013224	0.017364	0.042799	1.000000	0.080116	0.121702	0.127960	0.144303
number_of_reviews	0.319760	0.140106	0.047954	0.080116	1.000000	0.549868	0.072376	0.172028
reviews_per_month	0.291828	0.296417	0.030608	0.121702	0.549868	1.000000	0.009421	0.185791
ulated_host_listings_count	0.133272	0.154950	0.057472	0.127960	0.072376	0.009421	1.000000	0.225701
availability_365	0.085468	0.203492	0.081829	0.144303	0.172028	0.185791	0.225701	1.000000

```
plt.figure(figsize=(5,5))
sns.boxplot(x = nyc.number_of_reviews_categories , y = nyc.price)
```

<Axes: xlabel='number of reviews categories', ylabel='price'>

 The total price for 'Low' or 'very Low' number_of_reviews_categories are high.

Distribution of Neighbourhood Group and Types of Rooms in NYC

- ☐ From the scatterplots of latitude vs. longitude, we can infer that there are **very few shared rooms** throughout NYC compared to private rooms and entire homes/apartments.
- **95% of Airbnb listings** are either **private rooms** or **entire homes/apartments**, with only a small number of guests opting for shared rooms. Additionally, guests generally prefer these room types when booking on Airbnb, as our previous analysis indicated.

Tableau Visualiation-Dashboards

- 85% of listings are Manhattan and Brooklyn Neighbourhood Groups
- The low number of listings in Staten island but high prices indicates an untapped market.
- Manhattan and Brooklyn has the highest number of reviews for room types with Entire home/apt ranging to nearly 200000+, followed by Private room.
- Sonder has the highest number of properties in Manhattan
- Maximum Number of reviews is provided for either entire home/apt or Private rooms in Manhattan and Brooklyn

Max Properties listed Neighbourhood Group

Host having maximum properties

Most Preffered Room Type in Neighbourhood Groups

Host having max properties in Manhattan

Average Price for Neighbourhood Groups

Tableau Visualisations

- ❖ High Price listings have lower number of reviews and minimum nights is low/very low provided by hosts.
- Availability is low in Brooklyn and Manhattan, making it customer preferrable
- Private Rooms in Staten Island are most available
- Airbnb could launch targeted marketing campaigns to promote the benefits of private rooms in Staten, showcasing the scenic beauty of the island.

Neighbourhood Gr..

Room Type Availability

<u>Customer preferences</u> <u>based on Minimum Nights</u>

Average Price of Neighbourhood Properties

Recommendations and Conclusion:

High Missing values in "last_Review " column:

 Take customer feedback before the check out so that the facilities can be improved in case of customer dissatisfaction.

Optimize Pricing in High-Demand Areas:

- •Implement dynamic pricing in Brooklyn and Manhattan.
- Use promotions during off-peak times and adjust rates based on demand

Host from Manhattan has the highest contribution towards adding the revenue:

Promote Staten Island's Unique Selling Points:

Highlight Staten Island's attractions, such as scenic views and cultural sites, in marketing materials.

APPENDIX-DATA DICTIONARY

Note: The price column contains the price/night.

Column	Description				
id	listing ID				
name	name of the listing				
host_id	host ID				
host_name	name of the host				
neighbourhood_group	location				
neighbourhood	area				
latitude	latitude coordinates				
longitude	longitude coordinates				
room_type	listing space type				
price					
minimum_nights	amount of nights minimum				
number_of_reviews	number of reviews				
last_review	latest review				
reviews_per_month	number of reviews per month				
calculated_host_listings_count	amount of listing per host				
availability_365	number of days when listing is available for booking				
Dataset Description					

APPENDIX-DATA METHODOLOGY

- Understanding the business problem
- Reading the dataset in Python
- Categorisation of features for easy analysis
- Data Wrangling:
- □ Checking the Duplicates
- ☐ Verifying the data types: Numerical, categorical, date and time
- Missing values analysis
- Univariate analysis
- Bivariate analysis
- Using processed data to visualize further in Tableau.
- Please find attached the document for the methodology: