Task 2

Predictive Analytics

- 1. For this task, you'll likely need to use statistical software such as R, SAS, or Python.
- 2. Using the same transaction dataset, identify the annual salary for each customer
- 3. Explore correlations between annual salary and various customer attributes (e.g. age). These attributes could be those that are readily available in the data (e.g. age) or those that you construct or derive yourself (e.g. those relating to purchasing behaviour). Visualise any interesting correlations using a scatter plot.
- 4. Build a simple regression model to predict the annual salary for each customer using the attributes you identified above
- 5. How accurate is your model? Should ANZ use it to segment customers (for whom it does not have this data) into income brackets for reporting purposes?
- 6. For a challenge: build a decision-tree based model to predict salary. Does it perform better? How would you accurately test the performance of this model?

In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

df = pd.read_excel("ANZ synthesised transaction dataset.xlsx")
df.head()

Out[2]:

	status	card_present_flag	bpay_biller_code	account	currency	long_lat	txn_descri		
0	authorized	1.0	NaN	ACC- 1598451071	AUD	153.41 -27.95			
1	authorized	0.0	NaN	ACC- 1598451071	AUD	153.41 -27.95	SALES		
2	authorized	1.0	NaN	ACC- 1222300524	AUD	151.23 -33.94			
3	authorized	1.0	NaN	ACC- 1037050564	AUD	153.10 -27.66	SALES		
4	authorized	1.0	NaN	ACC- 1598451071	AUD	153.41 -27.95	SALES		
5 r	5 rows × 23 columns								

 \blacktriangleleft

.

In [3]:

```
df.tail()
```

Out[3]:

	status	card_present_flag	bpay_biller_code	account	currency	long_lat	txn_d
12038	authorized	0.0	NaN	ACC- 3021093232	AUD	149.83 -29.47	
12039	authorized	1.0	NaN	ACC- 1608363396	AUD	151.22 -33.87	S/
12040	authorized	1.0	NaN	ACC- 3827517394	AUD	151.12 -33.89	
12041	authorized	1.0	NaN	ACC- 2920611728	AUD	144.96 -37.76	Si
12042	authorized	1.0	NaN	ACC- 1443681913	AUD	150.92 -33.77	SA

5 rows × 23 columns

```
→
```

In [4]:

```
df.columns
```

Out[4]:

In [5]:

```
df.shape
```

Out[5]:

(12043, 23)

```
In [6]:
```

```
df['txn_description'].value_counts()
```

Out[6]:

SALES-POS 3934
POS 3783
PAYMENT 2600
PAY/SALARY 883
INTER BANK 742
PHONE BANK 101

Name: txn_description, dtype: int64

In [7]:

```
df['movement'].value_counts()
```

Out[7]:

debit 11160 credit 883

Name: movement, dtype: int64

In [8]:

```
salary_df = df[df['txn_description'] == 'PAY/SALARY']
salary_df.head()
```

Out[8]:

	status	card_present_flag	bpay_biller_code	account	currency	long_lat	txn_descript
50	posted	NaN	0	ACC- 588564840	AUD	151.27 -33.76	PAY/SALA
61	posted	NaN	0	ACC- 1650504218	AUD	145.01 -37.93	PAY/SALA
64	posted	NaN	0	ACC- 3326339947	AUD	151.18 -33.80	PAY/SALA
68	posted	NaN	0	ACC- 3541460373	AUD	145.00 -37.83	PAY/SALA
70	posted	NaN	0	ACC- 2776252858	AUD	144.95 -37.76	PAY/SALA

5 rows × 23 columns

◆

In [9]:

salary_df.shape

Out[9]:

(883, 23)

```
In [10]:
```

```
salary_df.movement.value_counts()
```

Out[10]:

credit 883

Name: movement, dtype: int64

In [11]:

```
salary df.iloc[1]
```

Out[11]:

status posted card present flag NaN bpay_biller_code 0 account ACC-1650504218 currency long_lat 145.01 -37.93 PAY/SALARY txn description merchant_id NaN merchant_code 0 first_name Marissa balance 2040.58 2018-08-01 00:00:00 date gender F 23 age merchant_suburb NaN merchant_state NaN extraction 2018-08-01T12:00:00.000+0000 amount 1626.48 transaction id 1822eb0e1bbe4c9e95ebbb0fa2cc4323 Australia country customer_id CUS-2500783281 merchant_long_lat NaN movement credit Name: 61, dtype: object

In [12]:

```
salary_df['gender'] = pd.get_dummies(salary_df['gender'], drop_first=True)
```

 $\label{lem:c:star} C:\Users\Jesus\Anaconda3\lib\site-packages\ipykernel_launcher.py:1: Setting \With Copy Warning:$

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy """Entry point for launching an IPython kernel.

In [13]:

```
salary_df['year'] = [i.year for i in salary_df['date']]
salary_df['month'] = [i.month for i in salary_df['date']]
salary_df['day'] = [i.day_name() for i in salary_df['date']]
```

C:\Users\Jesus\Anaconda3\lib\site-packages\ipykernel_launcher.py:1: Settin
gWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

"""Entry point for launching an IPython kernel.

C:\Users\Jesus\Anaconda3\lib\site-packages\ipykernel_launcher.py:2: Settin
gWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

C:\Users\Jesus\Anaconda3\lib\site-packages\ipykernel_launcher.py:3: Settin
gWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

This is separate from the ipykernel package so we can avoid doing import s until

In [14]:

```
salary_df.head()
```

Out[14]:

merchai	customer_id	country	transaction_id	amount	extraction
	CUS- 1462656821	Australia	9ca281650e5d482d9e53f85e959baa66	3903.95	2018-08- T11:00:00.000+0000
	CUS- 2500783281	Australia	1822eb0e1bbe4c9e95ebbb0fa2cc4323	1626.48	2018-08- Γ12:00:00.000+0000
	CUS- 326006476	Australia	bd62b1799a454cedbbb56364f7c40cbf	983.36	2018-08- Γ12:00:00.000+0000
	CUS- 1433879684	Australia	0d95c7c932bb48e5b44c2637bdd3efe9	1408.08	2018-08- F13:00:00.000+0000
	CUS- 4123612273	Australia	f50ccf1195214d14a0acbfcb5a265193	1068.04	2018-08- Г13:00:00.000+0000

```
In [15]:
```

```
salary_df.columns
```

Out[15]:

In [16]:

```
salary_df.iloc[1]
```

Out[16]:

```
status
                                                 posted
card_present_flag
                                                    NaN
bpay_biller_code
                                                      0
account
                                        ACC-1650504218
currency
long lat
                                         145.01 -37.93
                                             PAY/SALARY
txn_description
merchant_id
                                                    NaN
merchant_code
                                                      0
first name
                                                Marissa
                                                2040.58
balance
date
                                   2018-08-01 00:00:00
gender
                                                      0
                                                     23
age
merchant_suburb
                                                    NaN
merchant_state
                                                    NaN
extraction
                          2018-08-01T12:00:00.000+0000
amount
                                                1626.48
                      1822eb0e1bbe4c9e95ebbb0fa2cc4323
transaction id
country
                                              Australia
customer id
                                        CUS-2500783281
merchant_long_lat
                                                    NaN
                                                 credit
movement
                                                   2018
year
month
                                                      8
                                              Wednesday
day
Name: 61, dtype: object
```

In [17]:

Out[17]:

	age	gender	annual_amount	avg_weekly_amount	avg_monthly_amount	max_a
customer_id						
CUS- 1005756958	53.0	0	50464.44	970.47	4205.370000	4
CUS- 1117979751	21.0	1	100202.20	3578.65	8350.183333	10
CUS- 1140341822	28.0	1	45996.24	1916.51	3833.020000	3
CUS- 1147642491	34.0	0	88992.28	1711.39	7416.023333	8
CUS- 1196156254	34.0	0	109304.44	3903.73	9108.703333	11
4						

In [18]:

sns.pairplot(result_df)

Out[18]:

<seaborn.axisgrid.PairGrid at 0x1ef4aecb518>

In [19]:

```
corr = result_df.corr()
sns.heatmap(corr, annot=True)
```

Out[19]:

<matplotlib.axes._subplots.AxesSubplot at 0x1ef4b9f28d0>

Linear Regression

```
In [32]:
```

```
x = result_df.drop('annual_amount', axis = 1)
y = result_df['annual_amount'].values.reshape(-1,1)
```

In [33]:

```
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(x,y)
```

Out[33]:

In [34]:

```
y_pred = lr.predict(x)
```

In [35]:

```
from sklearn.metrics import r2_score, mean_squared_error
```

```
In [36]:
r2_score(y, y_pred)
Out[36]:
0.9863309958711153
In [37]:
mean_squared_error(y, y_pred) ** 0.5
Out[37]:
3136.933997533792
Decision Tree Regressor
In [38]:
from sklearn.tree import DecisionTreeRegressor
In [39]:
dt_reg = DecisionTreeRegressor()
In [40]:
dt_reg.fit(x, y)
Out[40]:
DecisionTreeRegressor(criterion='mse', max_depth=None, max_features=None,
           max_leaf_nodes=None, min_impurity_decrease=0.0,
           min_impurity_split=None, min_samples_leaf=1,
           min_samples_split=2, min_weight_fraction_leaf=0.0,
           presort=False, random_state=None, splitter='best')
In [41]:
y_pred = dt_reg.predict(x)
In [42]:
r2_score(y, y_pred)
Out[42]:
1.0
In [43]:
mean_squared_error(y, y_pred)
Out[43]:
0.0
```