SYSTEMS OF LINEAR EQUATIONS

ELECTRONIC VERSION OF LECTURE

HoChiMinh City University of Technology Faculty of Applied Science, Department of Applied Mathematics

HCMC — 2021.

OUTLINE

- DEFINITION
- 2 Non-homogeneous linear system
- 3 HOMOGENEOUS SYSTEM OF LINEAR EQUATIONS
- MATLAB

Linear systems in two unknowns arise in connection with intersections of lines.

EXAMPLE 1.1

Consider the linear system

$$\begin{cases} a_1x + b_1y = c_1 \\ a_2x + b_2y = c_2 \end{cases}$$

in which the graphs of the equations are lines in the xy-plane. Each solution (x, y) of this system corresponds to a point of intersection of the lines.

 The lines may be parallel and distinct, in which case there is no intersection and consequently no solution.

- The lines may be parallel and distinct, in which case there is **no** intersection and consequently **no** solution.
- The lines may intersect at only one point, in which case the system has exactly one solution.

- The lines may be parallel and distinct, in which case there is no intersection and consequently no solution.
- The lines may intersect at only one point, in which case the system has exactly one solution.
- The lines may coincide, in which case there are infinitely many points of intersection and consequently infinitely many solutions.

Infinitely many solutions (coincident lines)

LINEAR SYSTEMS IN THREE UNKNOWNS

Unique solution

Infinitely many solutions

No solution

A general linear system of m equations in the n unknowns can be written as:

A general linear system of m equations in the n unknowns can be written as:

$$\begin{array}{rcl}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1j}x_j + \dots + a_{1n}x_n & = b_1 \\
\dots & \dots & \dots \\
a_{i1}x_1 + a_{i2}x_2 + \dots + a_{ij}x_j + \dots + a_{in}x_n & = b_i \\
\dots & \dots & \dots \\
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mj}x_j + \dots + a_{mn}x_n & = b_m
\end{array}$$

$$(1)$$

where a_{ij} are the **coefficients** of the system, b_i are **constants** of the system, i = 1, 2, ..., m; j = 1, 2, ..., n; $x_1, x_2, ..., x_n$ are the **unknowns**.

The double subscripting on the coefficients of the unknowns is a useful device that is used to specify the location of the coefficient in the system.

• The first subscript on the coefficient a_{ij} indicates the equation in which the coefficient occurs,

The double subscripting on the coefficients of the unknowns is a useful device that is used to specify the location of the coefficient in the system.

- The first subscript on the coefficient a_{ij} indicates the equation in which the coefficient occurs,
- and the second subscript indicates which unknown it multiplies.

A solution of the system (1) is a sequence of n numbers $(s_1, s_2, ..., s_n)$ such that the equations of the system (1) are satisfied when we substitute $x_1 = s_1, x_2 = s_2, ..., x_n = s_n$.

Matrix $A = (a_{ij})_{m \times n}$ is called the coefficient matrix of the system (1).

Matrix $A = (a_{ij})_{m \times n}$ is called the coefficient matrix of the system (1).

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{i1} & a_{i2} & \dots & a_{ij} & \dots & a_{in} \\ \dots & \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mj} & \dots & a_{mn} \end{pmatrix}_{m \times n}$$

Matrix

$$A_{B} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1n} & b_{1} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_{i1} & a_{i2} & \dots & a_{ij} & \dots & a_{in} & b_{i} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mj} & \dots & a_{mn} & b_{m} \end{pmatrix}_{m \times (n+1)}$$

is called the augmented matrix for the system (1), which is obtained by adjoining column B to matrix A as the last column.

If we let
$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 and $B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$ then the

system (1) can be written in the matrix form

$$\begin{bmatrix} a_{11}x_1 & + & a_{12}x_2 & + & \dots & + & a_{1n}x_n \\ a_{21}x_1 & + & a_{22}x_2 & + & \dots & + & a_{2n}x_n \\ \vdots & & \vdots & & & \vdots \\ a_{m1}x_1 & + & a_{m2}x_2 & + & \dots & + & a_{mn}x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

$$A_{m\times n}X_{n\times 1}=B_{m\times 1}.$$

The system (1) is called a homogeneous if $B = 0_{m \times 1}$ and a nonhomogeneous if $B \neq 0_{m \times 1}$.

no solution

- no solution
- unique solution

- no solution
- unique solution
- infinitely many solutions

- no solution
- unique solution
- infinitely many solutions

DEFINITION 2.1

A linear system is **consistent** if it has at least one solution (unique solution or infinitely many solutions) and **inconsistent** if it has no solutions.

SOLVING SYSTEM OF LINEAR EQUATIONS

• In this section we shall develop a systematic procedure for solving systems of linear equations.

SOLVING SYSTEM OF LINEAR EQUATIONS

- In this section we shall develop a systematic procedure for solving systems of linear equations.
- The procedure is based on the idea of reducing the augmented matrix of a system to another augmented matrix that is simple enough that the solution of the system can be found by inspection.

Consider the system of linear equations

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1j}x_j + \dots + a_{1n}x_n &= b_1 \\
\dots & \dots & \dots \\
a_{i1}x_1 + a_{i2}x_2 + \dots + a_{ij}x_j + \dots + a_{in}x_n &= b_i \\
\dots & \dots & \dots \\
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mj}x_j + \dots + a_{mn}x_n &= b_m
\end{cases}$$

If, by a sequence of elementary row operations, the augmented matrix for a system of linear equations is put in reduced row-echelon form, then the solution set of the system will be evident by inspection or after a few simple steps.

If we perform the following elementary row operations on the system (1):

• Interchange two equations $(r_i \leftrightarrow r_j)$

If we perform the following elementary row operations on the system (1):

- Interchange two equations $(r_i \leftrightarrow r_j)$
- Multiply an equation through by a nonzero constant $\lambda \neq 0 (r_i \rightarrow \lambda r_i)$.

21/41

If we perform the following elementary row operations on the system (1):

- Interchange two equations $(r_i \leftrightarrow r_j)$
- Multiply an equation through by a nonzero constant $\lambda \neq 0 (r_i \rightarrow \lambda r_i)$.
- Add a constant times one equation to another $(r_i \rightarrow r_i + \lambda r_i)$

21/41

If we perform the following elementary row operations on the system (1):

- Interchange two equations $(r_i \leftrightarrow r_i)$
- Multiply an equation through by a nonzero constant $\lambda \neq 0 (r_i \rightarrow \lambda r_i)$.
- Add a constant times one equation to another $(r_i \rightarrow r_i + \lambda r_i)$

then we obtain a new system that has the same solution set but is easier to solve.

EXAMPLE 2.1

Solve the system by Gaussian elimination

$$\begin{cases} x_1 + 2x_2 + 3x_3 = 7 \\ 2x_1 + x_2 + 2x_3 = 6 \\ 3x_1 + 2x_2 + x_3 = 7 \end{cases}$$

22/41

EXAMPLE 2.1

Solve the system by Gaussian elimination

$$\begin{cases} x_1 + 2x_2 + 3x_3 = 7 \\ 2x_1 + x_2 + 2x_3 = 6 \\ 3x_1 + 2x_2 + x_3 = 7 \end{cases}$$

$$\begin{pmatrix} 1 & 2 & 3 & 7 \\ 2 & 1 & 2 & 6 \\ 3 & 2 & 1 & 7 \end{pmatrix} \xrightarrow{r_2 \to r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 3 & 7 \\ 0 & -3 & -4 & -8 \\ 0 & -4 & -8 & -14 \end{pmatrix}$$

$$\frac{r_2 \rightarrow r_2 - r_3}{} \begin{pmatrix} 1 & 2 & 3 & 7 \\ 0 & 1 & 4 & 6 \\ 0 & -4 & -8 & -14 \end{pmatrix} \xrightarrow{r_3 \rightarrow r_3 + 4r_2} \\
\begin{pmatrix} 1 & 2 & 3 & 7 \\ 0 & 1 & 4 & 6 \\ 0 & 0 & 8 & 10 \end{pmatrix}$$

The system corresponding to this matrix is

$$\begin{cases} x_1 + 2x_2 + 3x_3 &= 7 \\ x_2 + 4x_3 &= 6 \\ 8x_3 &= 10 \end{cases}$$

24 / 41

The system corresponding to this matrix is

$$\begin{cases} x_1 + 2x_2 + 3x_3 = 7 \\ x_2 + 4x_3 = 6 \\ 8x_3 = 10 \end{cases} \Leftrightarrow \begin{cases} x_1 = \frac{5}{4} \\ x_2 = 1 \\ x_3 = \frac{5}{4} \end{cases}$$

Thus the system has unique solution

$$(x_1, x_2, x_3)^T = \left(\frac{5}{4}, 1, \frac{5}{4}\right)^T$$

Solve the system by Gaussian elimination

$$\begin{cases} x_1 + 2x_2 - 3x_3 = 1 \\ x_1 + 3x_2 - 13x_3 = -1 \\ 3x_1 + 5x_2 + x_3 = 5 \end{cases}$$

Solve the system by Gaussian elimination

$$\begin{cases} x_1 + 2x_2 - 3x_3 = 1 \\ x_1 + 3x_2 - 13x_3 = -1 \\ 3x_1 + 5x_2 + x_3 = 5 \end{cases}$$

$$\begin{pmatrix} 1 & 2 & -3 & | & 1 \\ 1 & 3 & -13 & | & -1 \\ 3 & 5 & 1 & | & 5 \end{pmatrix} \xrightarrow{r_2 \to r_2 - r_1} \begin{pmatrix} 1 & 2 & -3 & | & 1 \\ 0 & 1 & -10 & | & -2 \\ 0 & -1 & 10 & | & 2 \end{pmatrix}$$

$$\xrightarrow{r_3 \to r_3 + r_2} \left(\begin{array}{ccc|c} 1 & 2 & -3 & 1 \\ 0 & 1 & -10 & -2 \\ 0 & 0 & 0 & 0 \end{array} \right).$$

$$\xrightarrow{r_3 \to r_3 + r_2} \left(\begin{array}{ccc|c} 1 & 2 & -3 & 1 \\ 0 & 1 & -10 & -2 \\ 0 & 0 & 0 & 0 \end{array} \right).$$

The system corresponding to this matrix is

$$\begin{cases} x_1 + 2x_2 - 3x_3 = 1 \\ x_2 - 10x_3 = -2 \end{cases}$$

$$\xrightarrow{r_3 \to r_3 + r_2} \left(\begin{array}{ccc|c} 1 & 2 & -3 & 1 \\ 0 & 1 & -10 & -2 \\ 0 & 0 & 0 & 0 \end{array} \right).$$

The system corresponding to this matrix is

$$\begin{cases} x_1 + 2x_2 - 3x_3 = 1 \\ x_2 - 10x_3 = -2 \end{cases}$$

Solving for the leading variables, we obtain

$$\begin{cases} x_1 = 1 - 2x_2 + 3x_3 \\ x_2 = -2 + 10x_3 \end{cases}$$

Finally, we express the general solution of the system parametrically by assigning the free variables x_3 arbitrary value α . This means that $x_3 = \alpha$, where $\alpha \in \mathbb{R}$, we can find

$$\begin{cases} x_2 = -2 + 10x_3 = -2 + 10\alpha \\ x_1 = 1 - 2x_2 + 3x_3 = 5 - 17\alpha \end{cases}$$

Finally, we express the general solution of the system parametrically by assigning the free variables x_3 arbitrary value α . This means that $x_3 = \alpha$, where $\alpha \in \mathbb{R}$, we can find

$$\begin{cases} x_2 = -2 + 10x_3 = -2 + 10\alpha \\ x_1 = 1 - 2x_2 + 3x_3 = 5 - 17\alpha \end{cases}$$

So the system has infinitely many solutions $(x_1, x_2, x_3)^T = (5 - 17\alpha, -2 + 10\alpha, \alpha)^T$, where $\alpha \in \mathbb{R}$ is arbitrary number.

Solve the system by Gaussian elimination

$$\begin{cases} x_1 & -2x_2 & +3x_3 = 2\\ 3x_1 & +3x_2 & = -3\\ 3x_1 & +3x_3 = 8 \end{cases}$$

Solve the system by Gaussian elimination

$$\begin{cases} x_1 & -2x_2 & +3x_3 = 2 \\ 3x_1 & +3x_2 & = -3 \\ 3x_1 & +3x_3 = 8 \end{cases}$$

$$\begin{pmatrix} 1 & -2 & 3 & 2 \\ 3 & 3 & 0 & -3 \\ 3 & 0 & 3 & 8 \end{pmatrix} \xrightarrow{r_2 \to r_2 - 3r_1} \xrightarrow{r_3 \to r_3 - 3r_1}$$

Solve the system by Gaussian elimination

$$\begin{cases} x_1 & -2x_2 & +3x_3 = 2 \\ 3x_1 & +3x_2 & = -3 \\ 3x_1 & +3x_3 = 8 \end{cases}$$

$$\begin{pmatrix} 1 & -2 & 3 & 2 \\ 3 & 3 & 0 & -3 \\ 3 & 0 & 3 & 8 \end{pmatrix} \xrightarrow{r_2 \to r_2 - 3r_1} \begin{pmatrix} 1 & -2 & 3 & 2 \\ 0 & 9 & -9 & -9 \\ 0 & 6 & -6 & 2 \end{pmatrix}$$

$$\xrightarrow{r_2 \leftrightarrow r_2/9} \begin{pmatrix} 1 & -2 & 3 & 2 \\ 0 & 1 & -1 & -1 \\ 0 & 6 & -6 & 2 \end{pmatrix} \xrightarrow{r_3 \to r_3 - 6r_2}$$

$$\frac{r_2 \leftrightarrow r_2/9}{} \begin{pmatrix}
1 & -2 & 3 & 2 \\
0 & 1 & -1 & -1 \\
0 & 6 & -6 & 2
\end{pmatrix}
\xrightarrow{r_3 \to r_3 - 6r_2}$$

$$\begin{pmatrix}
1 & -2 & 3 & 2 \\
0 & 1 & -1 & -1 \\
0 & 0 & 0 & 8
\end{pmatrix}$$

The system corresponding to this matrix is

$$\begin{cases} x_1 - 2x_2 + 3x_3 = 2 \\ x_2 - x_3 = -1 \\ 0 = 8 \end{cases}$$

This system has no solution.

DEFINITION 3.1

A system of linear equations is said to be homogeneous if the constant terms are all zero.

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1j}x_j + \dots + a_{1n}x_n = 0$$

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{ij}x_j + \dots + a_{in}x_n = 0$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mj}x_j + \dots + a_{mn}x_n = 0$$

• The trivial solution is $X = (0 \ 0 \ \dots \ 0)^T$.

- The trivial solution is $X = (0 \ 0 \ \dots \ 0)^T$.
- The nontrivial solution is $X \neq (0 \ 0 \ \dots \ 0)^T$.

- The trivial solution is $X = (0 \ 0 \ \dots \ 0)^T$.
- The nontrivial solution is $X \neq (0 \ 0 \ \dots \ 0)^T$.

HOMOGENEOUS LINEAR SYSTEM ALWAYS HAS:

• only the trivial solution.

- The trivial solution is $X = (0 \ 0 \ \dots \ 0)^T$.
- The nontrivial solution is $X \neq (0 \ 0 \ \dots \ 0)^T$.

HOMOGENEOUS LINEAR SYSTEM ALWAYS HAS:

- only the trivial solution.
- or infinitely many solutions in addition to the trivial solution, i.e. nontrivial solutions

THEOREM 3.1

A homogeneous linear system (2) has non-trivial solutions if and only if

$$r(A) < n$$
,

where n is the number of unknowns.

THEOREM 3.1

A homogeneous linear system (2) has non-trivial solutions if and only if

$$r(A) < n$$
,

where n is the number of unknowns.

Indeed, if r(A) = n, then the system (2) has only trivial solution X = 0.

THEOREM 3.1

A homogeneous linear system (2) has non-trivial solutions if and only if

$$r(A) < n$$
,

where n is the number of unknowns.

Indeed, if r(A) = n, then the system (2) has only trivial solution X = 0.

If r(A) < n, then the system (2) has infinitely many solutions or non-trivial solutions.

If r(A) = r < n, then the system (2) has general solution:

$$\begin{cases} x_{1} = \varphi_{1}(t_{1}, t_{2}, ..., t_{n-r}) \\ x_{2} = \varphi_{2}(t_{1}, t_{2}, ..., t_{n-r}) \\ ... \\ x_{r} = \varphi_{r}(t_{1}, t_{2}, ..., t_{n-r}) \\ x_{r+1} = t_{1} \\ ... \\ x_{n} = t_{n-r} \end{cases}$$
(3)

where $t_1, ..., t_{n-r}$ are arbitrary numbers,

which are called free variables.

EXAMPLE 3.1

Solve the system by Gaussian elimination

$$\begin{cases} x_1 + 3x_2 + 3x_3 + 2x_4 + 4x_5 &= 0 \\ x_1 + 4x_2 + 5x_3 + 3x_4 + 7x_5 &= 0 \\ 2x_1 + 5x_2 + 4x_3 + x_4 + 5x_5 &= 0 \\ x_1 + 5x_2 + 7x_3 + 6x_4 + 10x_5 &= 0 \end{cases}$$

EXAMPLE 3.1

Solve the system by Gaussian elimination

$$\begin{cases} x_1 + 3x_2 + 3x_3 + 2x_4 + 4x_5 &= 0 \\ x_1 + 4x_2 + 5x_3 + 3x_4 + 7x_5 &= 0 \\ 2x_1 + 5x_2 + 4x_3 + x_4 + 5x_5 &= 0 \\ x_1 + 5x_2 + 7x_3 + 6x_4 + 10x_5 &= 0 \end{cases}$$

Solution.
$$\begin{pmatrix} 1 & 3 & 3 & 2 & 4 \\ 1 & 4 & 5 & 3 & 7 \\ 2 & 5 & 4 & 1 & 5 \\ 1 & 5 & 7 & 6 & 10 \end{pmatrix} \xrightarrow{\substack{r_2 \to r_2 - r_1 \\ r_3 \to r_3 - 2r_1 \\ r_4 \to r_4 - r_1}}$$

$$\begin{pmatrix}
1 & 3 & 3 & 2 & 4 \\
0 & 1 & 2 & 1 & 3 \\
0 & -1 & -2 & -3 & -3 \\
0 & 2 & 4 & 4 & 6
\end{pmatrix}
\xrightarrow{r_3 \to r_3 + r_2} \xrightarrow{r_4 \to r_4 - 2r_2}$$

$$r_3 \rightarrow r_3 + r_2$$

$$r_4 \rightarrow r_4 - 2r_2$$

$$\begin{pmatrix} 1 & 3 & 3 & 2 & 4 \\ 0 & 1 & 2 & 1 & 3 \\ 0 & -1 & -2 & -3 & -3 \\ 0 & 2 & 4 & 4 & 6 \end{pmatrix} \xrightarrow{r_3 \to r_3 + r_2} \frac{r_3 \to r_3 + r_2}{r_4 \to r_4 - 2r_2}$$

$$\begin{pmatrix} 1 & 3 & 3 & 2 & 4 \\ 0 & 1 & 2 & 1 & 3 \\ 0 & 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 2 & 0 \end{pmatrix} \xrightarrow{r_4 \to r_4 + r_3} \begin{pmatrix} 1 & 3 & 3 & 2 & 4 \\ 0 & 1 & 2 & 1 & 3 \\ 0 & 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 3 & 2 & 4 \\
0 & 1 & 2 & 1 & 3 \\
0 & -1 & -2 & -3 & -3 \\
0 & 2 & 4 & 4 & 6
\end{pmatrix}
\xrightarrow{r_3 \to r_3 + r_2} \xrightarrow{r_4 \to r_4 - 2r_2}$$

$$\begin{pmatrix}
1 & 3 & 3 & 2 & 4 \\
0 & 1 & 2 & 1 & 3 \\
0 & 0 & 0 & -2 & 0 \\
0 & 0 & 0 & 2 & 0
\end{pmatrix}
\xrightarrow{r_4 \to r_4 + r_3}
\begin{pmatrix}
1 & 3 & 3 & 2 & 4 \\
0 & 1 & 2 & 1 & 3 \\
0 & 0 & 0 & -2 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

Free variables: x_3 , x_5

The system corresponding to this matrix is

$$\begin{cases} x_1 + 3x_2 + 3x_3 + 2x_4 + 4x_5 &= 0 \\ x_2 + 2x_3 + x_4 + 3x_5 &= 0 \\ -2x_4 &= 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x_2 = -2x_3 - 3x_5 \\ x_1 = 3x_3 + 5x_5 \\ x_4 = 0 \end{cases}$$

Let $x_3 = t_1$, $x_5 = t_2$. The general solution of this system is

$$X(t_1, t_2) = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 3t_1 + 5t_2 \\ -2t_1 - 3t_2 \\ t_1 \\ 0 \\ t_2 \end{pmatrix}$$

where t_1 , t_2 are arbitrary numbers.

MATLAB

- Gauss-Jordan Elimination: rref([A B])
- General solution of homogeneous system AX = 0: null(A, 'r')

$$A = \begin{pmatrix} 1 & 3 & 3 & 2 & 4 \\ 1 & 4 & 5 & 3 & 7 \\ 2 & 5 & 4 & 1 & 5 \\ 1 & 5 & 7 & 6 & 10 \end{pmatrix}$$

$$>> null(A, 'r')$$

$$ans = \begin{pmatrix} 3 & 5 \\ -2 & -3 \\ 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}$$

THANK YOU FOR YOUR ATTENTION

