Differential and Complex Algebraic Geometry

Preston Malen January 2024

Introduction

First and foremost I want to clarify that by no means am I an expert on the presented topics or any topics in mathematics for that matter. I have wanted to study complex geometry for quite some time but was unable take a course or do research in the area. So this is me exploring complex geometry and some of the topics that are parallel. As it happens, this requires a full course on differential geometry and Lie groups. I'm taking these notes from 3-4 books as well as supplemental notes found online. Of course these will all be cited at the end. The end goal is to prepare myself for spectral/noncommutative geometry. However, the functional analysis side of things would be a novel on it's own. Some functional analysis will pop up here and there in these notes but only in the context of geometry. I am not going to go too deep into operator algebras or anything like that. Most of this information is new to me at the time of writing. Also worth noting, I am writing this with a VERY casual approach so my language and verbiage may not be as formal or precise, I'm writing what my brain is thinking. I am documenting my journey of learning geometry and whatever may branch off of it that interests me.

Contents

1	The Matrix Exponential	4
	1.1 The Exponential Map and Matrix Groups	4

1 The Matrix Exponential

1.1 The Exponential Map and Matrix Groups

Given an $n \times n$ matrix A, we want to find a way to find e^A . We can actually just do this with the usual power series:

$$e^A = I_n + \sum_{p \ge 1} \frac{A^p}{p!} = \sum_{p \ge 0} \frac{A^p}{p!}$$
 (1)

Using an inductive proof, we can show that this is well defined. But we won't write it out here.

contents

how to cite thm in title

Theorem 1.1. uhhh

contents

nothing here yet

Example 1.1. temp

contents

this means something

Definition 1.1. temp