

• General Description

The AGM065N10F combines advanced trench MOSFET technology with a low resistance package to provide extremely low R_{DS(ON)}.

This device is ideal for load switch and battery protection applications.

Features

- Advance high cell density Trench technology
- Low R_{DS(ON)} to minimize conductive loss
- Low Gate Charge for fast switching
- Low Thermal resistance
- 100% Avalanche tested
- 100% DVDS tested

Application

- MB/VGA Vcore
- SMPS 2nd Synchronous Rectifier
- POL application
- BLDC Motor driver

Product Summary

BVDSS	RDSON	ID
100V	6.2mΩ	100A

TO-220F Pin Configuration

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
AGM065N10F	AGM065N10F	TO-220F			1000

Table 1. Absolute Maximum Ratings (TA=25℃)

Symbol	Parameter	Value	Unit
VDS	Drain-Source Voltage (VGS=0V)	100	V
VGS	Gate-Source Voltage (VDS=0V)	±20	V
ID	Drain Current-Continuous(Tc=25℃) (Note 1)	100	А
	Drain Current-Continuous(Tc=100℃)	63	А
IDM (pluse)	Drain Current-Pulsed (Note 2)	400	Α
PD	Maximum Power Dissipation(Tc=25℃)	128	W
	Maximum Power Dissipation(Tc=100℃)	51	w
EAS	Avalanche energy (Note 3)	380	mJ
TJ,TSTG	Operating Junction and Storage Temperature Range	-55 To 150	$^{\circ}$ C

Table 2. Thermal Characteristic

Symbol	Parameter	Тур	Max	Unit
RθJA	Thermal Resistance Junction-ambient (Steady State) ¹		66	°C/W
RθJC	Thermal Resistance Junction-Case ¹		0.97	°C/W

Table 3. Electrical Characteristics (TA=25 ℃ unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
On/Off Sta	ates					
BVDSS	Drain-Source Breakdown Voltage	VGS=0V ID=250μA	100			V
IDSS	Zero Gate Voltage Drain Current	VDS=100V,VGS=0V			1	μA
IGSS	Gate-Body Leakage Current	VGS=±20V,VDS=0V			±100	nA
VGS(th)	Gate Threshold Voltage	VDS=VGS,ID=250μA	1.2	1.6	2.2	V
gFS	Forward Transconductance	VDS=5V,ID=15A		33		S
RDS(on)	Drain-Source On-State Resistance	VGS=10V, ID=20A		6.2	7.6	mΩ
1.23(0.1)		VGS=4.5V, ID=15A		8.0	10.4	mΩ
Dynamic (Characteristics					
Ciss	Input Capacitance	VDS=40V,VGS=0V		3487		pF
Coss	Output Capacitance	,F=1MHZ		1037		pF
Crss	Reverse Transfer Capacitance			35		pF
Rg	Gate resistance	VGS=0V, VDS=0V,f=1.0MHz		1.2		Ω
Switching	Times					
td(on)	Turn-on Delay Time			24.6		nS
tr	Turn-on Rise Time	VGS=10V,VDS=50V,		31.1		nS
td(off)	Turn-Off Delay Time	ID=20A,RGEN=6Ω		64.5		nS
tf	Turn-Off Fall Time			93		nS
Qg	Total Gate Charge			39.5		nC
Qgs	Gate-Source Charge	VGS=10V, VDS=50V, ID=20A		4.4		nC
Qgd	Gate-Drain Charge	- 15 207		12.3		nC
Source-Dr	rain Diode Characteristics					
ISD	Source-Drain Current(Body Diode)				100	А
VsD	Forward on Voltage	VGS=0V,IS=20A		0.7	1.2	V
trr	Reverse Recovery Time	IF=20A ,VDD=50V				ns
Qrr	Reverse Recovery Charge	dl/dt=100A/µs , TJ=25℃				nc

Notes 1. The maximum current rating is package limited.

Notes 2.Repetitive Rating: Pulse width limited by maximum junction temperature

Notes 3.EAS condition: TJ=25 $^{\circ}$ C, VDD=50V,Vgs=10V,ID=39A,L=0.5mH,RG=25ohm

Fig.1 Continuous Drain Current vs. T_c

Fig.3 Normalized Vth vs. T_J

Fig.5 Normalized Transient Impedance

Fig.2 Normalized RDSON vs. T_J

Fig.4 Gate Charge Characteristics

Fig.6 Maximum Safe Operation Area

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Fig.7 Switching Time Waveform

Fig.8 Gate Charge Waveform

•Dimensions (TO-220F)

cvamor	MILLIMETER			
SYMBOL	MIN	NOM	MAX	
A	15.670	15. 870	16.070	
A1	2. 150	2, 350	2, 550	
A2	4.500	4. 700	4. 900	
A3	3. 100	3, 300	3, 500	
A4	12. 270	12.570	12. 87	
ь	0.770	0.800	0.830	
b2	1.200	1.300	1.400	
b3		1. 200BSC		
С	0.400	0.500	0.600	
c1	2. 440	2. 540	2. 640	
D	9.860	10. 160	10.46	
D1	6.900	7.000	7. 100	
Е	6. 480	6. 680	6, 880	
E1	8.990	9. 190	9. 390	
E2	7.100	7. 300	7. 500	
е		2. 540BSC		
e1		5. 080BSC		
L	13. 140	13. 340	13. 540	
R	3, 100	3, 300	3, 500	
R1		1.500REF.		
R2	1. 200REF.			
R3	1.500REF.			
Н	7.600	7.800	8, 000	
θ 1	4°	4.5°	5°	

R3

SYMBOL.		MILLIMETER		
SYMBOL	MIN	Typ.	MAX	
A	4. 500	4.700	4.900	
A1	2, 340	2.540	2.740	
A2	2, 560	2.760	2.960	
Ь	0.700	0.800	0.950	
b1	1. 180	1.280	1.430	
b2	1. 250	1.350	1.550	
С	0.400	0.500	0.650	
c1	1. 200	1.300	1.350	
D	15, 570	15. 870	16. 170	
Н		6.700 REF		
Е	9, 960	10. 160	10.360	
е		2.540 BSC		
e1		5.080 BSC		
L	12.680	12, 980	13. 280	
L1	2, 780	2.930	3, 080	
F3	3, 150	3, 300	3, 450	
Φ	3, 030	3.180	3, 450	
Ф3	3, 150	3.450	3, 650	

(注:全尺寸测量时c1不测)

TO-220F Marking Instructions:

Disclaimer:

The information provided in this document is believed to be accurate and reliable. However, Shenzhen Core Control Source Electronics Technology Co., Ltd. does not assume any responsibility for the following consequences. Do not consider the use of such information or use beyond its scope.

The information mentioned in this document may be changed at any time without notice.

The products and information provided in this document do not infringe patents. Shenzhen Core Control Source Electronics Technology Co., Ltd. assumes no responsibility for any infringement of any other rights of third parties. The result of using such products and information.

This document is the fourth version issued on April 10th, 2024. This document replaces all previously provided information.

It is a registered trademark of Shenzhen Core Control Source Electronics Technology Co., Ltd.

Copyright © 2017 Shenzhen Core Control Source Electronics Technology Co., Ltd. all rights reserved.