IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:

Juliane SUERMANN

Serial No.

Filed

: August 4, 2003

For

: LIQUID-CRYSTALLINE MEDIUM AND LIQUID-CRYSTAL DISPLAY

HAVING HIGH TWIST

SUBMISSION OF PRIORITY DOCUMENT(S)

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Sir:

Submitted herewith is a certified copy of each of the below-identified document(s), benefit of priority of each of which is claimed under 35 U.S.C. § 119:

COUNTRY	APPLICATION NO.	FILING DATE
Germany	102 35 558.4	03 AUG 2002
,		

Acknowledgment of the receipt of the above document(s) is requested.

No fee is believed to be due in association with this filing, however, the Commissioner is hereby authorized to charge fees under 37 C.F.R. §§ 1.16 and 1.17 which may be required to facilitate this filing, or credit any overpayment to Deposit Account No. 13-3402.

Respectfully submitted,

John A. Søpp, Reg. No. 33,103

Attorney for Applicants

MILLEN, WHITE, ZELANO & BRANIGAN, P.C.
Arlington Courthouse Plaza I 2200 Clarendon Blvd. Suite 1400 Arlington, Virginia 22201 Telephone: (703) 243-6333 Facsimile: (703) 243-6410

Attorney Docket No.: MERCK-2730

Date: August 4, 2003

K:\Merck\2730\Submission of Priority Documents.doc

BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

102 35 558.4

Anmeldetag:

03. August 2002

Anmelder/Inhaber:

Merck Patent GmbH,

Darmstadt/DE

Bezeichnung:

Flüssigkristallines Medium und Flüssigkristallanzeige

mit hoher Verdrillung

IPC:

C 09 K, G 02 F

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

> München, den 12. Juni 2003 Deutsches Patent- und Markenamt Der Präsident

> > Im Auftrag

Hoiß

M rck Patent G sellschaft mit beschränkter Haftung 64271 Darmstadt

Flüssigkristallines Medium und Flüssigkristallanzeige mit hoher Verdrillung

Flüssigkristallines Medium und Flüssigkristallanzeige mit hoh r Verdrillung

- Die vorliegende Erfindung betrifft ein flüssigkristallines Medium mit hoher Verdrillung, seine Verwendung für elektrooptische Zwecke und dieses Medium enthaltende Anzeigen.
- Flüssigkristallanzeigen sind aus dem Stand der Technik bekannt. Die gebräuchlichsten Anzeigevorrichtungen beruhen auf dem Schadt-HelfrichEffekt und enthalten ein Flüssigkristallmedium mit verdrillt nematischer Struktur, wie beispielsweise TN-Zellen ("twisted nematic") mit Verdrillungswinkeln von typischerweise 90° und STN-Zellen ("supertwisted nematic") mit Verdrillungswinkeln von typischerweise 180 bis 270°. Ferner sind ferroelektrische Flüssigkristallanzeigen bekannt, die ein Flüssigkristallmedium mit verdrillt smektischer Struktur enthalten. Die verdrillte Struktur wird in diesen Anzeigen üblicherweise durch Zusatz eines oder mehrerer chiraler Dotierstoffe zu einem nematischen oder smektischen Flüssigkristallmedium erzielt.
- Darüber hinaus sind Flüssigkristallanzeigen bekannt, die Flüssigkristall-(FK-) medien mit chiral nematischer oder cholesterischer Struktur enthalten. Diese Medien weisen im Vergleich zu den Medien aus TN- und STN-Zellen eine deutlich höhere Verdrillung auf.
- Cholesterische Flüssigkristalle zeigen Selektivreflektion von zirkular polarisiertem Licht, wobei der Drehsinn des Lichtvektors dem Drehsinn der cholesterischen Helix entspricht. Die Reflektionswellenlänge λ ergibt sich aus der Ganghöhe (engl. "pitch") p der cholesterischen Helix und der mittleren Doppelbrechung n des cholesterischen Flüssigkristalls gemäß Gleichung (1):

$$\lambda = \mathbf{n} \cdot \mathbf{p} \tag{1}$$

Die Begriffe "chiral nematisch" und "cholesterisch" werden im Stand der Technik nebeneinander verwendet. "Chiral nematisch" bezeichnet oft FK-Materialien bestehend aus einer nematischen Wirtsmischung, die mit einer

optisch aktiven Komponente dotiert ist, welche eine helikal verdrillte Überstruktur induziert. Dagegen bezeichnet "cholesterisch" oft chirale FK-Materialien, zum Beispiel Cholesterylderivate, die eine "natürliche" cholesterische Phase mit helikaler Verdrillung aufweisen. Beide Begriffe werden auch parallel zur Bezeichnung desselben Gegenstandes verwendet. In der vorliegenden Anmeldung wird für beide oben genannten Typen von FK-Materialien der Begriff "cholesterisch" verwendet, wobei dieser Begriff die jeweils weitestgehende Bedeutung von "chiral nematisch" und "cholesterisch" umfassen soll.

10

15

20

5

Beispiele für gebräuchliche cholesterische Flüssigkristall- (CFK-)Anzeigen sind die sogenannten SSCT- (engl. "surface stabilized cholesteric texture") und PSCT- (engl. "polymer stabilized cholesteric texture") Anzeigen. SSCT- und PSCT-Anzeigen enthalten üblicherweise ein CFK-Medium, welches zum Beispiel im Ausgangszustand eine planare, Licht einer bestimmten Wellenlänge reflektierende Struktur aufweist, und durch Anlegen eines elektrischen Wechselspannungspulses in eine fokal konische, Licht streuende Struktur geschaltet werden kann, oder umgekehrt. Bei Anlegen eines stärkeren Spannungspulses wird das CFK-Medium in einen homöotropen, transparenten Zustand überführt, von wo aus es nach schnellem Ausschalten der Spannung in den planaren, bzw. nach langsamem Ausschalten in den fokal konischen Zustand relaxiert.

3 25

Die planare Orientierung des CFK-Mediums im Ausgangszustand, d.h. vor Anlegen einer Spannung, wird in SSCT-Anzeigen beispielsweise durch Oberflächenbehandlung der Zellwände erreicht. In PSCT-Anzeigen enthält das CFK-Medium zusätzlich ein phasensepariertes Polymer oder Polymernetzwerk, das die Struktur des CFK-Mediums im jeweils angesteuerten Zustand stabilisiert.

30

35

SSCT- und PSCT-Anzeigen benötigen im Allgemeinen keine Hintergrundbeleuchtung. Das CFK-Medium in einem Bildpunkt zeigt im planaren Zustand selektive Lichtreflektion einer bestimmten Wellenlänge gemäß obenstehender Gleichung (1), so daß der Bildpunkt z.B. vor einem schwarzen Hintergrund in der entsprechenden Reflektionsfarbe erscheint.

10

15

20

25

30

35

ز_

Die Reflektionsfarbe verschwindet beim Wechsel in den fokal-konischen, streuenden oder homöotropen, transparenten Zustand.

SSCT- und PSCT-Anzeigen sind bistabil, d.h. nach Abschalten des elektrischen Feldes bleibt der jeweilige Zustand erhalten und wird erst durch Anlegen eines erneuten Feldes wieder in den Ausgangszustand überführt. Zur Erzeugung eines Bildpunktes genügt daher ein kurzer Spannungspuls, im Gegensatz z.B. zu elektrooptischen TN- oder STN-Anzeigen, in welchen das FK-Medium in einem angesteuerten Bildpunkt nach Abschalten des elektrischen Feldes sofort in den Ausgangszustand zurückkehrt, so daß zur dauerhaften Erzeugung eines Bildpunkts eine Aufrechterhaltung der Ansteuerungsspannung nötig ist.

Aus den oben genannten Gründen weisen CFK-Anzeigen im Vergleich zu TN- oder STN-Anzeigen einen deutlich geringeren Stromverbrauch auf. Darüber hinaus zeigen sie im streuenden Zustand keine oder nur geringe Blickwinkelabhängigkeit. Außerdem benötigen sie keine Aktivmatrix-Ansteuerung wie bei TN-Anzeigen, sondern können im einfacheren Multiplex oder Passivmatrix-Verfahren betrieben werden.

WO 92/19695 und US 5,384,067 beschreiben zum Beispiel eine PSCT-Anzeige enthaltend ein CFK-Medium mit positiver dielektrischer Anisotropie und bis zu 10 Gew. % eines phasenseparierten Polymernetzwerks, das in dem Flüssigkristallmaterial dispergiert ist. US 5,453,863 beschreibt beispielsweise eine SSCT-Anzeige enthaltend ein polymerfreies CFK-Medium mit positiver dielektrischer Anisotropie.

Weitere aus dem Stand der Technik bekannte Anzeigen, in denen CFK-Materialien verwendet werden, sind die sogenannten flexoelektrischen Anzeigen, insbesondere solche, die im "uniformly lying helix mode" (ULH mode) betrieben werden. Der flexoelektrische Effekt und CFK-Materialien, die diesen Effekt zeigen, sind z.B. von Chandrasekhar in "Liquid Crystals", 2. Auflage, Cambrige University Press (1992), P.G. deGennes et al. in "The Physics of Liquid Crystals", 2. Auflage, Oxford Science Publications (1995), Patel und Meyer, Phys. Rev. Lett. 58 (15), 1538-1540 (1987) und Rudquist et al., Liq. Cryst. 22 (4), 445-449 (1997) beschrieben worden.

10

Flexoelektrische CFK-Materialien besitzen typischerweise eine asymmetrische Molekülstruktur und ein starkes Dipolmoment. Bei Anlegen eines elektrischen Feldes senkrecht zur cholesterischen Helixachse werden die permanenten Dipole in Richtung des Feldes orientiert. Gleichzeitig wird der FK-Direktor aufgrund der asymmetrischen Molekülstruktur verzerrt, während die Orientierung der cholesterischen . Helixachse unverändert bleibt. Dies führt zu einer makroskopischen Polarisation des CFK-Materials in Feldrichtung, und zu einer Verschiebung der optischen Achse relativ zur Helixachse.

Flexolektrische Anzeigen werden üblicherweise im sogenannten "uniformly lying helix" (ULH) mode betrieben, wie z.B. in P. Rudquist et al., Liq. Cryst. 23 (4), 503 (1997) beschrieben. Hierzu wird eine Schicht eines 15 flexoelektrischen CFK-Materials mit hoher Verdrillung und kurzer Helixganghöhe, typischerweise im Bereich von $0.2 \mu m$ bis $1.0 \mu m$, insbesondere kleiner als $0.5 \mu m$, zwischen zwei transparenten parallelen Elektroden so orientiert, daß die cholesterische Helixachse parallel zu den Elektroden ausgerichtet ist und die CFK-Schicht eine makroskopisch 20 einheitliche Orientierung aufweist. Bei Anlegen eines elektrischen Feldes an die Zelle senkrecht zur CFK-Schicht rotiert der FK-Direktor und damit die optische Achse der Probe in der Schichtebene. Wenn die CFK-Schicht zwischen zwei Linearpolarisatoren gebracht wird, führt dies zu einer Änderung der Transmission des linear polarisierten Licht im CFK-Material, 25 die in elektrooptischen Anzeigen ausgenutzt werden kann. Der flexoelektrische Effekt zeichnet sich u.a. durch sehr schnelle Schaltzeiten. typischerweise von 6 μ s bis 100 μ s, sowie durch guten Kontrast bei einer hohen Zahl von Graustufen aus.

Flexoelektrische Anzeigen können als transmissive oder reflektive Anzeigen, mit Aktivmatrix-Ansteuerung oder im Multiplex- oder Passivmatrix-Verfahren betrieben werden.

CFK-Materialien mit hoher Verdrillung zur Verwendung in flexoelektrischen
Anzeigen werden z.B. in EP 0 971 016 und GB 2 356 629 beschrieben. EP
0 971 016 schlägt hierfür chiral flüssigkristalline Estradiolderivate vor, GB 2

356 629 die sogenannte bimesogene Verbindungen enthaltend zwei durch flexible Kohlenwasserstoffketten verbundene mesogene Gruppen in Kombination mit chiralen Dotierstoffen.

Ein CFK-Medium für die oben genannten Anzeigen kann beispielsweise durch Dotierung einer nematischen FK-Mischung mit einem hochverdrillenden chiralen Dotierstoff hergestellt werden. Die Ganghöhe p der induzierten cholesterischen Helix ergibt sich dann aus der Konzentration c und dem Verdrillungsvermögen HTP (engl. "helical twisting power") des chiralen Dotierstoffes gemäß Gleichung (2):

$$p = (HTP \cdot c)^{-1}$$
 (2)

Es ist auch möglich, zwei oder mehrere Dotierstoffe zu verwenden,
beispielsweise um die Temperaturabhängigkeit der HTP der einzelnen
Dotierstoffe zu kompensieren und somit eine geringe Temperaturabhängigkeit
der Helixganghöhe und der Reflektionswellenlänge des CFK-Mediums zu
erreichen.

Für eine Verwendung in den oben genannten Anzeigen sollten die chiralen Dotierstoffe ein möglichst hohes Verdrillungsvermögen mit geringer Temperaturabhängigkeit, hohe Stabilität und gute Löslichkeit in der flüssigkristallinen Wirtsphase aufweisen. Außerdem sollten sie die flüssigkristallinen und elektrooptischen Eigenschaften der

hohes Verdrillungsvermögen der Dotierstoffe ist unter anderem zur

flüssigkristallinen Wirtsphase möglichst nicht negativ beeinflussen. Ein

- Erzielung von kleinen Ganghöhen z.B. in cholesterischen Anzeigen erwünscht, aber auch, um die Konzentration des Dotierstoffes senken zu können. Dadurch wird einerseits eine mögliche Beeinträchtigung der Eigenschaften des Flüssigkristallmediums durch den Dotierstoff verringert, und andererseits der Spielraum hinsichtlich der Löslichkeit des Dotierstoffs vergrößert, so daß z.B. auch Dotierstoffe mit geringerer Löslichkeit
- Zur Verwendung in flexoelektrischen Anzeigen sollten CFK-Materialien außerdem einen ausreichend starken flexoelektrischen Effekt aufweisen.

verwendet werden können.

Generell müssen CFK-Materialien für die Verwendung in den oben genannten Anzeigen eine gute chemische und thermische Stabilität und eine gute Stabilität gegenüber elektrischen Feldern und elektromagnetischer Strahlung besitzen. Ferner sollten die Flüssigkristallmaterialien eine breite cholesterische Flüssigkristallphase mit hohem Klärpunkt, eine ausreichend hohe Doppelbrechung, hohe positive dielektrische Anisotropie und niedrige Rotationsviskosität besitzen.

Die CFK-Materialien sollten außerdem so beschaffen sein, daß durch einfache und gezielte Variation unterschiedliche Reflektionswellenlängen insbesondere im sichtbaren Bereich realisiert werden können. Ferner sollten sie eine niedrige Temperaturabhängigkeit der Reflektionswellenlänge aufweisen.

15

20

5

Da Flüssigkristalle in der Regel als Mischungen mehrerer Komponenten zur Anwendung gelangen, ist es wichtig, daß die Komponenten untereinander gut mischbar sind. Weitere Eigenschaften, wie die dielektrische Anisotropie und die optische Anisotropie, müssen je nach Zellentyp unterschiedlichen Anforderungen genügen.

Mit den aus dem Stand der Technik zur Verfügung stehenden Medien ist es jedoch nicht möglich, günstige Werte für alle oben genannten Parameter zu realisieren.

25

EP 0 450 025 beschreibt beispielsweise eine cholesterische Flüssigkristallmischung bestehend aus einem nematischen Flüssigkristall mit zwei oder mehr chiralen Dotierstoffen. Die darin gezeigten Mischungen besitzen jedoch nur niedrige Klärpunkte. Außerdem enthalten sie einen hohen Anteil von 26 % an chiralen Dotierstoffen. Hohe Konzentrationen an Dotierstoff führen jedoch im Allgemeinen zu einer Beeinträchtigung der flüssigkristallinen und elektrooptischen Eigenschaften des CFK-Mediums.

35

30

Die aus dem Stand der Technik bekannten Materialien für flexoelektrische und CFK-Anzeigen besitzen oft keine ausreichend breiten FK-Phasen, ausreichend niedrige Viskositätswerte und ausreichend hohe Werte der

35

dielektrischen Anisotropie. Außerdem benötigen sie hohe Schaltspannungen und besitzen oft keine an die erforderlichen FK-Schichtdicke angepaßten Doppelbrechungswerte.

- So ist z.B. für viele CFK-Anzeigen ein CFK-Medium mit hoher
 Doppelbrechung Δn erforderlich um eine hohe Reflektivität zu erzielen,
 während andere CFK-Anzeigen, z.B. Anzeigen deren Priorität eine hohe
 Farbsättigung ist (Multicolour-CFK-Anzeigen), niedrige Wert von Δn
 benötigen. Es hat sich jedoch gezeigt, daß eine Senkung der
 Doppelbrechung unter gleichzeitiger Beibehaltung der hohen Polarität des
 CFK-Mediums, welche für niedrige Schaltspannungen notwendig ist, mit
 den aus dem Stand der Technik bekannten CFK-Medien nicht in
 ausreichendem Maße realisiert werden konnte.
- 15 Es besteht somit ein großer Bedarf nach CFK-Medien mit hoher Verdrillung, großem Arbeitstemperaturbereich, kurzen Schaltzeiten, niedriger Schwellenspannung, geringer Temperaturabhängigkeit der Reflektionswellenlänge, und insbesondere niedrige Werte der Doppelbrechung, die die Nachteile der aus dem Stand der Technik bekannten Medien nicht oder nur in geringerem Maße aufweisen.
 - Der Erfindung liegt die Aufgabe zugrunde, CFK-Medien bereitzustellen, insbesondere zur Verwendung in flexoelektrischen Anzeigen, CFK-Anzeigen wie SSCT- und PSCT-Anzeigen und anderen bistabilen CFK-Anzeigen, welche die oben genannten geforderten Eigenschaften aufweisen und die Nachteile der aus dem Stand der Technik bekannten Medien nicht oder nur in geringerem Maße besitzen.
- Es wurde gefunden, daß diese Aufgabe gelöst werden kann, wenn man solchen Anzeigen erfindungsgemäße Medien verwendet.
 - Gegenstand der Erfindung ist ein flüssigkristallines Medium mit helikal verdrillter Struktur enthaltend eine nematische Komponente und eine optisch aktive Komponente, dadurch gekennzeichnet daß die optisch aktive Komponente eine oder mehrere chirale Verbindungen enthält, deren Verdrillungsvermögen und Konzentration so gewählt sind, daß die

3 25

30

Helixganghöhe des Mediums \leq 1 μ m ist, und das Medium eine Doppelbrechung Δ n \leq 0.16 aufweist.

Besonders bevorzugt sind CFK-Medien mit Doppelbrechungswerten $\Delta n \leq 0,15$, insbesondere von 0,08 bis 0,15, ganz besonders bevorzugt von 0,09 bis 0,14, sowie CFK-Medien mit einer dielektrischen Anisotropie $\Delta \epsilon \geq 5$, insbesondere ≥ 10 , ganz besonders bevorzugt ≥ 15 .

Ein weiterer Gegenstand der Erfindung ist ein flüssigkristallines Medium mit helikal verdrillter Struktur enthaltend eine nematische Komponente und eine optisch aktive Komponente, dadurch gekennzeichnet daß

die optisch aktive Komponente eine oder mehrere chirale Verbindungen enthält, deren Verdrillungsvermögen und Konzentration so gewählt sind, daß die Helixganghöhe des Mediums \leq 1 μ m ist, und

die nematische Komponente eine oder mehrere Verbindungen der Formel I

$$R = \begin{bmatrix} A^2 \\ A^2 \end{bmatrix}_a A^1 - Z^1 = \begin{bmatrix} C \\ C \end{bmatrix}_2$$

und eine oder mehrere Verbindungen der Formel II

$$R^0$$
 H O X^0 II

enthält, worin

R und R⁰ jeweils unabhängig voneinander H, einen unsubstituierten, einen einfach durch CN oder CF₃ oder einen mindestens

einfach durch Halogen substituierten Alkyl- oder Alkenylrest mit 1 bis 15 C-Atomen, wobei in diesen Resten auch eine oder mehrere CH₂-Gruppen jeweils unabhängig voneinander durch —————, -O-, -S-, -CO-, -CO-O-, -O-CO-O-

5

oder -C≡C- so ersetzt sein können, daß O-Atome nicht direkt miteinander verknüpft sind,

10

und

jeweils unabhängig voneinander

 $- \underbrace{H} - \text{oder} - \underbrace{O}_{L^5}^{L^5}$

15

L¹ bis L⁶ jeweils unabhängig voneinander H oder F,

 Z^1

-COO- oder, falls mindestens einer der Reste A¹ und A² trans-1,4-Cyclohexylen bedeutet, auch -CH₂CH₂- oder eine Einfachbindung,

20

Y1 und Y2 jeweils unabhängig voneinander H oder F,

F 25

X⁰ F, Cl, CN, halogeniertes Alkyl, Alkenyl oder Alkoxy mit 1 bis 6 C-Atomen, und

a und b jeweils unabhängig voneinander 0 oder 1

bedeuten.

30

Ein weiterer Gegenstand der Erfindung ist die Verwendung der erfindungsgemäßen CFK-Medien für elektrooptische Zwecke, insbesondere in bistabilen CFK-Anzeigen, CFK-Anzeigen wie SSCT- und PSCT-Anzeigen, und in flexoelektrischen Anzeigen.

35

Ein weiterer Gegenstand der Erfindung ist eine elektrooptische Anzeige, insbesondere eine bistabile, CFK-, SSCT-, PSCT- oder flexoelektrische

Anzeige, mit zwei planparallelen Trägerplatten, die mit einer Umrandung eine Zelle bilden, und einem in der Zelle befindlichen CFK-Medium, wobei das CFK-Medium ein Medium nach Anspruch 1 ist.

- Überraschend wurde gefunden, daß es möglich ist, ein CFK-Medium entsprechend der vorliegenden Erfindung mit einer Reflektionswellenlänge im sichtbaren Bereich und/oder einer cholesterischen Phase bei Raumtemperatur bereitzustellen, welches mittlere bis niedrige Werte der Doppelbrechung und gleichzeitig ausreichend hohe Werte der dielektrischen Anisotropie Δε aufweist. Dies wird in den erfindungsgemäßen CFK-Medien insbesondere durch Verwendung von Verbindungen der Formel I und II, zusammen mit hochverdrillenden chiralen Dotierstoffen wie unten beschrieben, erreicht.
- So führt die Verwendung der Verbindungen der Formel I und II in den Mischungen für erfindungsgemäße CFK-Anzeigen zu einer hohen Polarität, d.h. niedrigen Schwellenspannungen. Die erfindungsgemäßen CFK-Medien zeigen außerdem durch den Zusatz von Verbindungen der Formel II bei Verwendung in CFK-Anzeigen hervorragende Eigenschaften bezüglich der Farbsättigung und der UV-Stabilität. Dabei wird überraschenderweise das Erreichen der hohen Polarität, welche für akzeptable Schaltspannungen notwendig ist, nicht negativ beeinflußt.
- Weiterhin zeichnen sich die erfindungsgemäßen Mischungen durch folgende Vorzüge aus
 - sie besitzen einen breiten cholesterischen Phasenbereich insbesondere bei tiefen Temperaturen und einen hohen Klärpunkt,
 - sie besitzen eine hohe UV-Stabilität.
 - Die Verbindungen der Formeln I, II und III besitzen einen breiten
 Anwendungsbereich. In Abhängigkeit von der Auswahl der Substituenten
 können diese Verbindungen als Basismaterialien dienen, aus denen
 flüssigkristalline Medien zum überwiegenden Teil zusammengesetzt sind;
 es können aber auch Verbindungen der Formeln I und II flüssigkristallinen
 Basismaterialien aus anderen Verbindungsklassen zugesetzt werden, um

10 .

15

20

25

30

beispielsweise die dielektrische und/oder optische Anisotropie eines solchen Dielektrikums zu beeinflussen und/oder um dessen Schwellenspannung und/oder dessen Viskosität zu optimieren. Die Verbindungen der Formeln I, II und III sind in reinem Zustand farblos und bilden flüssigkristalline Mesophasen in einem für die elektrooptische Verwendung günstig gelegenen Temperaturbereich. Chemisch, thermisch und gegen Licht sind sie stabil.

Besonders bevorzugt sind Verbindungen der Formel I, worin mindestens einer der Reste A¹ und A² trans-1,4-Cyclohexylen und/oder Z¹ -COO-bedeutet.

Die Verbindungen der Formel I sind vorzugsweise ausgewählt aus folgenden Formeln

$$R - H - O - CN$$

la

 $R \longrightarrow COO \longrightarrow COO$ Ib

$$R - \left(\begin{array}{c} L^1 \\ O \\ L^2 \end{array} \right)$$
 Ic

$$R \longrightarrow H \longrightarrow CH_2CH_2 \longrightarrow CN$$

$$L^2$$
Id

15

20

25

$$R - \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \right) - COO - \left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right) - CN \qquad \text{le}$$

$$R \longrightarrow H \longrightarrow COO \longrightarrow CN \qquad If$$

worin R eine der in Formel I angegebenen Bedeutungen besitzt und L¹ und L² jeweils unabhängig voneinander H oder F bedeuten. R bedeutet in diesen Verbindungen besonders bevorzugt Alkyl oder Alkoxy mit 1 bis 8 C-Atomen.

Besonders bevorzugt sind Mischungen, die eine oder mehrere Verbindungen der Formeln Ia, Ib oder Ie, enthalten, insbesondere solche, worin L¹ und/oder L² F bedeuten.

Weiterhin bevorzugt sind Mischungen, die eine oder mehrere Verbindungen der Formel If enthalten, worin L² H und L¹ H oder F, insbesondere F, bedeutet.

Die Verbindungen der Formel II sind vorzugsweise ausgewählt aus folgenden Formeln

$$R^0 \longrightarrow H \longrightarrow H \longrightarrow X^0$$
 IIa

35

$$R^0$$
 H O X^0 Y^1 Y^0

worin R⁰ und X⁰ die in Formel II angegebene Bedeutung haben, R⁰ besonders bevorzugt n-Alkyl mit 1 bis 8 C-Atomen oder Alkenyl mit 2 bis 7 C-Atomen und X⁰ besonders bevorzugt F, Cl, CF₃, OCF₃ oder OCHF₂ bedeuten;

*

Besonders bevorzugt sind Verbindungen der Formel IIa, insbesondere solche, worin X⁰ F bedeutet und Y¹ und Y² H oder F, insbesondere beide F bedeuten.

15

10

Die erfindungsgemäßen Mischungen enthalten neben den Verbindungen der Formeln I und II vorzugsweise eine oder mehrere Alkenylverbindungen ausgewählt aus den Formeln III1 und III2

20

€25

$$R^3$$
 H O $Q-Y$ III2

30

A³ 1,4-Phenylen oder trans-1,4-Cyclohexylen,

c 0 oder 1,

worin

35

R³ eine Alkenylgruppe mit 2 bis 7 C-Atomen,

10

eine Alkyl-, Alkoxy- oder Alkenylgruppe mit 1 bis 12 C-Atomen, wobei auch ein oder zwei nicht benachbarte CH₂-Gruppen durch -O-, -CH=CH-, -C≡C-, -CO-, -OCO- oder -COO- so ersetzt sein können, daß O-Atome nicht direkt miteinander verknüpft sind,

Q CF₂, OCF₂, CFH, OCFH oder eine Einfachbindung,

Y F oder Cl, und

bedeuten.

L¹ und L² jeweils unabhängig voneinander H oder F

15 Besonders bevorzugt sind Verbindungen der Formel III1, worin c 1 bedeutet. Weitere bevorzugte Verbindungen der Formel III1 sind ausgewählt aus den folgenden Formeln

20 R^{3a} H H R^{4a} III1a

 R^{3a} H H R^{4a} III1b

 R^{3a} H H R^{4a}

30 R^{3a} H H alkyl

 R^{3a} H H alkyl III1e

35

25

25

35

worin R^{3a} und R^{4a} jeweils unabhängig voneinander H, CH_3 , C_2H_5 oder n- C_3H_7 und alkyl eine Alkylgruppe mit 1 bis 8 C-Atomen bedeuten.

Besonders bevorzugt sind Verbindungen der Formel III1a, insbesondere solche worin R^{3a} und R^{4a} CH₃ bedeuten, Verbindungen der Formel III1e, insbesondere solche, worin R^{3a} H bedeutet, sowie Verbindungen der Formeln III1f, III1g, III1h und III1i, insbesondere solche worin R^{3a} H oder CH₃ bedeutet.

Besonders bevorzugte Verbindungen der Formel III2 sind solche, worin L¹ und/oder L² F und Q-Y F oder OCF₃ bedeuten. Weitere bevorzugte Verbindungen der Formel III2 sind solche, worin R³ 1E-alkenyl oder 3E-alkenyl mit 2 bis 7, insbesondere 2, 3 oder 4 C-Atomen bedeutet. Weitere bevorzugte Verbindungen der Formel III2 sind solche der Formel III2a

worin R^{3a} H, CH_3 , C_2H_5 oder $n\text{-}C_3H_7$, insbesondere H oder CH_3 bedeutet.

Die Verwendung von Verbindungen der Formel III1 und III2 führt in den erfindungsgemäßen Flüssigkristallmischungen zu besonders niedrigen Werten der Rotationsviskosität und zu CFK-Anzeigen mit schnellen Schaltzeiten insbesondere bei niedrigen Temperaturen.

5

Bevorzugte Flüssigkristallmischungen enthalten neben den Verbindungen der Formeln I und II vorzugsweise eine oder mehrere Verbindungen ausgewählt aus der Gruppe bestehend aus den Zweiringverbindungen der folgenden Formeln

10

IV1

15

$$R^1 \longrightarrow H \longrightarrow O \longrightarrow R^2$$

IV2

$$R^1$$
 — CH_2CH_2 — O — R

IV3

20

$$R^1 \longrightarrow R^2$$

IV4

● ½5

$$R^1 \longrightarrow R^2$$

IV5

$$R^1 \longrightarrow H \longrightarrow R^2$$

IV6

30

$$R^1$$
 H $-CH_2CH_2$ H $-R^2$

IV7

35

$$R^1 - \left(H \right) - COO - \left(O \right) - R^2$$

IV8

35

$$R^1$$
 — CH=CH — H — R^2 IV9

und/oder eine oder mehrere Verbindungen ausgewählt aus der Gruppe bestehend aus den Dreiringverbindungen der folgenden Formeln

$$R^1 \longrightarrow H \longrightarrow O \longrightarrow H \longrightarrow R^2$$
 IV10

10 $R^1 - \left(H \right) - CH_2CH_2 - \left(O \right) - \left(H \right) - R^2$ IV11

 $R^1 \longrightarrow H \longrightarrow O \longrightarrow R^2$ IV12

$$R^1 \longrightarrow O \longrightarrow O \longrightarrow R^2$$
 IV13

 R^1 H CH_2CH_2 O R^2 IV14

$$R^1 \longrightarrow H \longrightarrow O \longrightarrow CH_2CH_2 \longrightarrow O \longrightarrow R^2$$
 IV15

 $R^1 \longrightarrow H \longrightarrow O \longrightarrow R^2$ IV16

$$R^1 \longrightarrow R^2 \longrightarrow R^2$$
 IV17

$$R^1 - \left\langle H \right\rangle - CH_2CH_2 - \left\langle O \right\rangle - R^2$$
 IV18

35

und/oder eine oder mehrere Verbindungen ausgewählt aus der Gruppe bestehend aus den Vierringverbindungen der folgenden Formeln

$$R^1 - H - O - H - R^2$$
 IV25

30

35

worin R¹ und R² die in Formel II angegebene Bedeutung haben, und vorzugsweise jeweils unabhängig voneinander eine Alkyl-, Alkoxy- oder Alkenylgruppe mit 1 bis 12 C-Atomen bedeuten, wobei auch ein oder zwei nicht benachbarte CH₂-Gruppen durch -O-, -CH=CH-, -C≡C-, -CO-, -OCO- oder -COO- so ersetzt sein können, daß O-Atome nicht direkt miteinander verknüpft sind, und L¹ H oder F bedeutet.

Die 1,4-Phenylengruppen in IV10 bis IV19 und IV23 bis IV 32 können jeweils unabhängig voneinander auch durch Fluor ein- oder mehrfach substituiert sein.

Besonders bevorzugt sind Verbindungen der Formeln IV 25 bis IV 31, worin R¹ Alkyl und R² Alkyl oder Alkoxy, insbesondere Alkoxy, jeweils mit 1 bis 7 C-Atomen, bedeutet. Ferner bevorzugt sind Verbindungen der

15

30

35

Formel IV 25 und IV 31, worin L¹ F bedeutet. Ganz besonders bevorzugt sind Verbindungen der Formeln IV25 und IV27.

R¹ und R² in den Verbindungen der Formeln IV1 bis IV30 bedeuten besonders bevorzugt geradkettiges Alkyl oder Alkoxy mit 1 bis 12 C-Atomen.

In einer weiteren bevorzugten Ausführungsform enthalten die erfindungsgemäßen Mischungen neben den Verbindungen der Formeln I und II vorzugsweise eine oder mehrere Verbindungen der Formel V1 und/oder V2

 $R^5 - H - A^4 - O - CN$ V1

 $R^{5} \longrightarrow H \longrightarrow A^{4} \longrightarrow Q-Y$ V2

worin

1,4-Phenylen, welches auch in 3- und/oder 5-Position fluoriert sein kann oder in Formel V2 auch trans-1,4-Cyclohexylen,

eine Alkyl-, Alkoxy- oder Alkenylgruppe mit 1 bis 12 C-Atomen, wobei auch ein oder zwei nicht benachbarte CH₂-Gruppen durch -O-, -CH=CH-, -C≡C-, -CO-, -OCO- oder -COO- so ersetzt sein können, daß O-Atome nicht direkt miteinander verknüpft sind,

Q CF₂, OCF₂, CFH, OCFH oder eine Einfachbindung,

Y F oder Cl, und

L¹ und L² jeweils unabhängig voneinander H oder F

bedeuten.

5

Besonders bevorzugt sind Verbindungen der Formel V1 und V2, worin A⁴ 1,4-Phenylen bedeutet.

Weitere bevorzugte Verbindungen der Formel V1 und V2 sind ausgewählt aus den folgenden Formeln

$$R^5 \longrightarrow H \longrightarrow O \longrightarrow CN$$

15

10

$$R^5$$
 H O F $V2a$

V1a

20

$$R^5$$
 H O O F $V2b$

5 25

30

35

$$R^5$$
 H O O F $V2c$

worin R⁵ die oben angegebene Bedeutung hat und vorzugsweise Alkyl oder Alkoxy mit 1 bis 8 C-Atomen bedeutet.

Besonders bevorzugt sind Verbindungen der Formel V1a und V2b.

Die optisch aktive Komponente enthält einen oder mehrere chirale Dotierstoffe, deren Verdrillungsvermögen und Konzentration so gewählt sind, daß die Helixganghöhe des FK-Mediums kleiner oder gleich 1 µm ist.

20

D 25

30

Die Helixganghöhe des Mediums beträgt vorzugsweise von 130nm bis 1000nm, insbesondere von 200nm bis 750nm, besonders bevorzugt von 300nm bis 450nm.

Vorzugsweise ist die Helixganghöhe so gewählt, daß das Medium Licht im sichtbaren Wellenlängenbereich reflektiert. Der Begriff "sichtbarer Wellenlängenbereich" bzw. "sichtbares Spektrum" umfaßt typischerweise den Bereich der Wellenlängen von 400 bis 800 nm. Im Vor- und Nachstehenden soll dieser Begriff jedoch auch den Bereich der
 Wellenlängen von 200 bis 1200 nm einschließlich des UV- und Infrarot (IR)-Bereichs sowie des fernen UV- und fernen IR-Bereichs umfassen.

Die Reflektionswellenlänge des erfindungsgemäßen FK-Mediums ist vorzugsweise im Bereich von 200 bis 1500 nm, insbesondere 300 bis 1200 nm, besonders bevorzugt von 350 bis 900 nm, ganz besonders bevorzugt von 400 bis 800 nm. Weiterhin bevorzugt sind FK-Medien mit einer Reflektionswellenlänge von 400 bis 700, insbesondere 400 bis 600 nm.

Die vor- und nachstehend angegebenen Wellenlängenwerte beziehen sich auf die Halbwertsbreite der Reflektionsbande, falls nicht anders angegeben.

Das Verhältnis d/p zwischen Schichtdicke der Flüssigkristallzelle d (Abstand der Trägerplatten) in einer erfindungsgemäßen CFK-Anzeige und natürlicher Helixganghöhe p des FK-Mediums ist vorzugsweise größer 1, insbesondere im Bereich von 2 bis 20, besonders bevorzugt von 3 bis 15, ganz besonders bevorzugt von 4 bis 10.

Der Anteil der optisch aktiven Komponente im erfindungsgemäßen FK-Medium beträgt vorzugsweise ≤ 20 %, insbesondere ≤ 10 %, besonders bevorzugt von 0.01 bis 7 %, ganz besonders bevorzugt von 0.1 bis 5 %. Die optisch aktive Komponente enthält vorzugsweise 1 bis 6, insbesondere 1, 2, 3 oder 4 chirale Verbindungen.

Die chiralen Dotierstoffe sollten vorzugsweise ein hohes Verdrillungsvermögen ("helical twisting power", HTP) mit geringer

10

15

20

Temperaturabhängigkeit aufweisen. Ferner sollten sie eine gute Löslichkeit in der nematischen Komponente besitzen und die flüssigkristallinen Eigenschaften des FK-Mediums nicht oder nur in geringem Maße beeinträchtigen. Sie können gleichen oder entgegengesetzten Drehsinn und gleiche oder entgegengesetzte Temperaturabhängigkeit der Verdrillung aufweisen.

Besonders bevorzugt sind Dotierstoffe mit einer HTP von 20 μm^{-1} oder mehr, insbesondere von 40 μm^{-1} oder mehr, besonders bevorzugt von 70 μm^{-1} oder mehr.

Für die optisch aktive Komponente stehen dem Fachmann eine Vielzahl zum Teil kommerziell erhältlicher chiraler Dotierstoffe zur Verfügung, wie z.B. Cholesterylnonanoat, R/S-811, R/S-1011, R/S-2011 oder CB15 (Merck KGaA, Darmstadt).

Besonders geeignete Dotierstoffe sind Verbindungen, die einen oder mehrere chirale Reste und eine oder mehrere mesogene Gruppen, oder eine oder mehrere aromatische oder alicyclische Gruppen, die mit dem chiralen Rest eine mesogene Gruppe bilden, aufweisen.

Geeignete chirale Reste sind beispielsweise chirale verzweigte Kohlenwasserstoffreste, chirale Ethandiole, Binaphthole oder Dioxolane, rerner ein- oder mehrbindige chirale Reste ausgewählt aus der Gruppe enthaltend Zuckerderivate, Zuckeralkohole, Zuckersäuren, Milchsäuren, chirale substituierte Glykole, Steroidderivate, Terpenderivate, Aminosäuren oder Sequenzen von wenigen, vorzugsweise 1-5, Aminosäuren.

Bevorzugte chirale Reste sind Zuckerderivate wie Glucose, Mannose, Galactose, Fructose, Arabinose, Dextrose; Zuckeralkohole wie beispielsweise Sorbitol, Mannitol, Iditol, Galactitol oder deren Anhydroderivate, insbesondere Dianhydrohexite wie Dianhydrosorbid (1,4:3,6-Dianhydro-D-sorbid, Isosorbid), Dianhydromannit (Isosorbit) oder Dianhydroidit (Isoidit); Zuckersäuren wie beispielsweise Gluconsäure, Gulonsäure, Ketogulonsäure; chirale substituierte Glykolreste wie

20

30

beispielsweise Mono- oder Oligoethylen- oder propylenglykole, worin eine oder mehrere CH₂-Gruppen durch Alkyl oder Alkoxy substituiert sind; Aminosäuren wie beispielsweise Alanin, Valin, Phenylglycin oder Phenylalanin, oder Sequenzen von 1 bis 5 dieser Aminosäuren; Steroidderivate wie beispielsweise Cholesteryl- oder Cholsäurereste; Terpenderivate wie beispielsweise Menthyl, Neomenthyl, Campheyl, Pineyl, Terpineyl, Isolongifolyl, Fenchyl, Carreyl, Myrthenyl, Nopyl, Geraniyl, Linaloyl, Neryl, Citronellyl oder Dihydrocitronellyl.

- Geeignete chirale Reste und mesogene chirale Verbindungen sind beispielsweise in DE 34 25 503, DE 35 34 777, DE 35 34 778, DE 35 34 779 und DE 35 34 780, DE-A-43 42 280, EP-A-1 038 941 und DE-A-195 41 820 beschrieben.
- 15 Bevorzugte Dotierstoffe sind ausgewählt aus Formel VII bis IX,

$$C_6H_{13}$$
 H $COO-COO-CH-C_2H_5$ VII (R/S-811)

$$C_3H_7$$
 H
 O
 F
 O -CH- C_6H_{13}
 F
 $(R/S-2011)$

Derivate des Isosorbid, Isomannit oder Isoidit, insbesondere Dianhydrosorbidderivate der Formel X,

10

15

25

$$R^{0} \underbrace{F} Z^{0} \underbrace{E} COO \underbrace{H}_{0} O C \underbrace{E} Z^{0} \underbrace{F}_{V} R^{0}$$

$$(R,S) H OOC \underbrace{E} Z^{0} \underbrace{F}_{V} R^{0}$$

sowie chirale Ethandiole wie z.B. Diphenylethandiol (Hydrobenzoin), insbesondere mesogene Hydrobenzoinderivate der Formel XI

einschließlich der jeweils nicht gezeigten (R,S), (S,R), (R,R) und (S,S) Enantiomere,

20 worin

E und F jeweils unabhängig voneinander 1,4-Phenylen, welches auch durch L mono-, di- oder trisubstituiert sein kann, oder 1,4-Cyclohexylen,

L H, F, Cl, CN oder optional halogeniertes Alkyl, Alkoxy, Alkylcarbonyl, Alkoxycarbonyl oder Alkoxycarbonyloxy mit 1-7 C-Atomen,

30 v 0 oder 1,

Z⁰ -COO-, -OCO-, -CH₂CH₂- oder eine Einfachbindung, und

R Alkyl, Alkoxy, Alkylcarbonyl, Alkoxycarbonyl oder
Alkylcarbonyloxy mit 1-12 C-Atomen

bedeuten.

Die Verbindungen der Formel X sind in WO 98/00428 beschrieben. Die Verbindungen der Formel XI sind in GB-A-2 328 207 beschrieben.

5

Besonders bevorzugte Dotierstoffe sind chirale Binapthylderivate wie in EP 01111954.2 beschrieben, chirale Binaphthol-Acetalderivate wie in EP 00122844.4, EP 00123385.7 und EP 01104842.8 beschrieben, chirale TADDOL-Derivate wie in WO 02/06265, sowie chirale Dotierstoffe mit mindestens einer fluorierten Brückengruppe und einer endständigen oder zentralen chiralen Gruppe wie in WO 02/06196 und WO 02/06195 beschrieben.

Die chiralen Binaphthylderivate der EP01111954.2 entsprechen Formel XII

15

10

$$(Y^{31})_{y1}$$
 B
 U^{1}
 V^{1}
 W^{11}
 U^{2}
 V^{32}
 U^{32}
 U^{32}
 U^{32}
 U^{32}
 U^{33}
 U^{32}
 U^{33}
 U^{32}
 U^{33}
 $U^$

20

25 worin die einzelnen Reste unabhängig voneinander folgende Bedeutung haben

30

X³¹, X³², Y³¹ und Y³² jeweils unabhängig voneinander H, F, Cl, Br, I, CN, SCN, SF₅, geradkettiges oder verzweigtes Alkyl mit bis zu 25 C-Atomen, welches unsubstituiert oder mit F, Cl, Br, I oder CN mono- oder polysubstituiert sein kann, und worin auch eine oder mehrere nicht benachbarte CH₂-Gruppen jeweils unabhängig voneinander durch -O-, -S-, -NH-, -NR⁰⁰-, -CO-, -COO-, -OCO-, -OCO-, -CO-S-, -CH=CH- oder -C≡C- so ersetzt sein können, daß O- und/oder S-Atome nicht direkt miteinander verknüpft sind, eine polymerisierbare Gruppe, oder Cycloalkyl

35

oder Aryl mit bis zu 20 C-Atomen welche auch mit L oder einer polymerisierbaren Gruppe mono- oder polysubstituiert sein können,

5 R⁰⁰

H oder Alkyl mit 1 bis 4 C-Atomen,

 x^1 und x^2

jeweils unabhängig voneinander 0, 1 oder 2,

 v^1 und v^2

jeweils unabhängig voneinander 0, 1, 2, 3 oder 4,

10

B und C

jeweils unabhängig voneinander einen aromatischen oder teilweise oder vollständig gesättigten aliphatischen sechsgliedrigen Ring, worin eine oder mehrere CH-Gruppen durch N und eine oder mehrere CH₂-Gruppen durch O und/oder S ersetzt sein können,

15

einer der Reste W¹¹ und W²² ist -Z¹¹-A¹¹-(Z²²-A²²)_m-R³¹ und der andere R³² oder A³³, oder beide Reste W¹¹ und W²² sind -Z¹¹-A¹¹-(Z²²-A²²)_m-R³¹, wobei W¹ und W² nicht gleichzeitig H sind, oder

20

$$V_{W^{22}}^{11}$$
 ist $Z^{11}-A^{11}-(Z^{22}-A^{22})_{m}-R^{3}$

25

U¹ und U²

oder

jeweils unabhängig voneinander CH₂, O, S, CO oder CS,

 Z^{11} - A^{11} - $(Z^{22}$ - $A^{22})_m$ - R^{31}

30

35

V¹ und V²

jeweils unabhängig voneinander (CH₂)_n, worin bis zu vier nicht benachbarte CH₂-Gruppen durch O und/oder S ersetzt sein können, und einer der Reste V¹ und V² oder, falls

$$W^{11}$$
 $Z^{11}-A^{11}-(Z^{22}-A^{22})_m-R^{31}$

bedeutet, einer oder beide Reste V¹ und V² auch eine Einfachbindung,

n eine ganze Zahl von 1 bis 7,

5

10

15

Z¹¹ und Z²² jeweils unabhängig voneinander -O-, -S-, -CO-, -COO-, -OCO-, -O-COO-, -CO-NR⁰⁰-, -NR⁰⁰-CO-, -OCH₂-, -CH₂O-, -SCH₂-, -CH₂S-, -CF₂O-, -OCF₂-, -CF₂S-, -SCF₂-, -CH₂CH₂-, -CF₂CH₂-, -CH₂CF₂-, -CF₂CF₂-, -CH=CH-, -CH=N-, -N=CH-, -N=N-, -CF=CH-, -CH=CF-, -CF=CF-, -C=C-, -CH=CH-COO-, -OCO-CH=CH-oder eine Einfachbindung,

•

A¹¹, A²² und A³³ jeweils unabhängig voneinander 1,4-Phenylen, worin auch eine oder mehrere CH-Gruppen durch N ersetzt sein können, 1,4-Cyclohexylen, worin auch eine oder mehrere nich benachbarte CH₂-Gruppen durch O und/oder S ersetzt sein können, 1,3-Dioxolan-4,5-diyl, 1,4-Cyclohexenylen, 1,4-Bicyclo-(2,2,2)-octylen, Piperidin-1,4-diyl, Naphthalin-2,6-diyl, Decahydronaphthalin-2,6-diyl, oder 1,2,3,4-Tetrahydronaphthalin-2,6-diyl, wobei alle diese Gruppen unsubstituiert oder mit L mono- oder polysubstituiert sein können, A¹¹ auch eine Einfachbindung,

20

Halogen, CN, NO₂ oder eine Alkyl-, Alkoxy-, Alkylcarbonyloder Alkoxycarbonylgruppe mit 1 bis 7 C-Atomen, worin ein oder mehrere H-Atome durch F oder CI ersetzt sein können.

25

L

m

jeweils unabhängig voneinander 0, 1, 2 oder 3, und

30

R³¹ und R³² jeweils unabhängig voneinander H, F, Cl, Br, I, CN, SCN, OH, SF₅, geradkettiges oder verzweigtes Alkyl mit bis zu 25 C-Atomen, welches unsubstituiert oder mit F, Cl, Br, I oder CN mono- oder polysubstituiert sein kann, und worin auch eine oder mehrere nicht benachbarte CH₂-Gruppen jeweils unabhängig voneinander durch -O-, -S-, -NH-, -NR⁰⁰-, -CO-, -

35

COO-, -OCO-, -OCO-O-, -S-CO-, -CO-S-, -CH=CH- oder - C=C- so ersetzt sein können, daß O- und/oder S-Atome nicht direkt miteinander verknüpft sind, oder eine polymerisierbare Gruppe.

5

Besonders bevorzugt sind Verbindungen der Formel XII worin

- mindestens einer, vorzugsweise beide Reste B und C einen aromatischen Ring bedeuten,
- mindestens einer, vorzugsweise beide Reste B und C zwei gesättigte C-Atome enthalten,
 - mindestens einer, vorzugsweise beide Reste B und C vier gesättigte C-Atome enthalten,
 - mindestens einer. vorzugsweise beide Reste U¹ und U² O bedeuten,
 - V¹ und V² (CH₂)_n, worin n 1, 2, 3 oder 4 ist, bedeuten, und vorzugsweise einer der Reste V¹ und V² CH₂ und der andere CH₂ oder (CH₂)₂ bedeuten,
 - einer der Reste V¹ und V² CH₂ und der andere eine Einfachbindung bedeuten,
 - mindestens einer der Reste Z¹¹ und Z²² -CF₂O-, -OCF₂- oder -CF₂CF₂- bedeuten,
 - Z¹¹ eine Einfachbindung bedeutet,
 - mindestens einer der Reste Z¹¹ und Z²² -CF₂O-, -OCF₂-, -CF₂CF₂- oder -CF=CF- und die anderen -COO-, -OCO-, -CH₂-CH₂- oder eine Einfachbindung bedeuten,
 - mindestens einer der Reste Z¹¹ und Z²² -C≡C- bedeutet,

30

35

20

25

15

20

35

und m 0 oder 1, insbesondere 0 bedeuten, vorzugsweise ist m 0 und A¹ eine Einfachbindung,

- W¹¹ R³² oder A³³, insbesondere H oder F, und W²² Z¹¹-A¹¹-(Z²²-A²²)_m-R³¹ bedeuten, worin m 1 oder 2 ist,
- x¹ und x² 1 bedeuten.
- y¹ und y² 1 bedeuten,
- x^1 , x^2 , y^1 und y^2 0 bedeuten.
- mindestens einer, vorzugsweise einer oder zwei der Reste X³¹, X³², Y³¹ und Y³² eine polymerisierbare Gruppe bedeuten oder enthalten,
 - R³¹ eine polymerisierbare Gruppe bedeutet,
 - R³¹ geradkettiges Alkyl mit 1 bis 12 C-Atomen, worin auch ein oder mehrere H-Atome durch F oder CN ersetzt sein können, und worin auch eine oder mehrere nicht benachbarte CH₂-Gruppen jeweils unabhängig voneinander durch -O-, -S-, -NH-, -N(CH₃)-, -CO-, -COO-, -OCO-, -OCO-O-, -S-CO-, -CO-S-, -CH=CH- oder -C≡C- so ersetzt sein können, daß O- und/oder S-Atome nicht direkt miteinander verknüpft sind, besonderes bevorzugt Alkyl oder Alkoxy mit 1 bis 12 C-Atomen bedeutet,
 - X³¹, X³², Y³¹, Y³² und R³² ausgewählt sind aus H, F und geradkettigem Alkyl mit 1 bis 12 C-Atomen, worin auch ein oder mehrere H-Atome durch F oder CN ersetzt sein können, und worin auch eine oder mehrere nicht benachbarte CH₂-Gruppen jeweils unabhängig voneinander durch O-, -S-, -NH-, -N(CH₃)-, -CO-, -COO-, -OCO-, -OCO-O-, -S-CO-, -CO-S-, -CH=CH- oder -C≡C- so ersetzt sein können, daß O- und/oder S-Atome nicht direkt miteinander verknüpft sind, und besonders bevorzugt H, F oder Alkyl oder Alkoxy mit 1 bis 12 C-Atomen bedeuten,
- X³¹, X³², Y³¹ und Y³² ausgewählt sind aus Aryl, vorzugsweise Phenyl, welches unsubstituiert oder mit L mono- oder polysubstituiert, vorzugsweise in 4-Position monosubstituiert ist, bedeutet,
 - L F, Cl, CN oder optional fluoriertes Alkyl, Alkoxy, Alkylcarbonyl oder Alkoxycarbonyl mit 1 bis 7 C-Atomen bedeutet,

- L F, CI, CN, NO₂, CH₃, C₂H₅, OCH₃, OC₂H₅, COCH₃, COC₂H₅, CF₃, CHF₂, CH₂F, OCF₃ OCHF₂, OCH₂F oder OC₂F₅ bedeutet,
- A³³ 1,4-Phenylen oder 1,4-Cyclohexylen bedeutet, welches auch mit bis zu 5, vorzugsweise mit 1, 2 oder 3 F- oder Cl-Atomen, CN- oder, NO₂-Gruppen oder Alkyl-, Alkoxy-, Alkylcarbonyl- oder Alkoxycarbonylgruppen mit 1 bis 4 C-Atomen, worin auch ein oder mehrere H-Atome durch F oder Cl ersetzt sein können, substituiert sein kann,
- A¹¹ und A²² ausgewählt sind aus 1,4-Phenylen und trans-1,4-Cyclohexylen, welche unsubstituiert oder mit bis zu 4 Resten L substituiert sein können,
 - die mesogene Gruppe Z¹¹-A¹¹-(Z²²-A²²)_m einen, zwei oder drei fünf- oder sechsgliedrige Ringe beinhaltet,
- die mesogene Gruppe Z¹¹-A¹¹-(Z²²-A²²)_m Bicyclohexyl, Biphenyl,
 Phenylcyclohexyl, Cyclohexylphenyl oder Biphenylcyclohexyl bedeutet,
 worin die Phenylringe auch mit ein oder zwei F-Atomen substituiert sein können,
- Die mesogene Gruppe -Z¹¹-A¹¹-(Z²²-A²²)_m in Formel XII ist vorzugsweise ausgewählt aus den folgenden Teilformeln oder deren Spiegelbildern.

 Darin bedeuten Phe 1,4-Phenylen, welches gegebenenfalls durch eine oder mehrere Gruppen L substituiert ist, und Cyc 1,4-Cyclohexylen. Z hat jeweils unabhängig eine der oben für Z¹¹ angegebenen Bedeutungen.

-Phe-

-Cyc-

-Phe-Z-Phe-

-Phe-Z-Cyc-

30 -Cyc-Z-Cyc-

35

-Phe-Z-Phe-Z-Phe-

-Phe-Z-Phe-Z-Cyc-

-Phe-Z-Cyc-Z-Phe-

-Cyc-Z-Phe-Z-Cyc-

-Cyc-Z-Cyc-Z-Phe-

-Cyc-Z-Cyc-Z-Cyc-

L ist vorzugsweise F, Cl, CN, NO₂, CH₃, C₂H₅, OCH₃, OC₂H₅, COCH₃, COC₂H₅, CF₃, CHF₂, CH₂F, OCF₃ OCHF₂, OCH₂F, OC₂F₅, insbesondere F, Cl, CN, CH₃, CHF₂, C₂H₅, OCH₃, OCHF₂, CF₃ oder OCF₃, ganz besonderes bevorzugt F, CH₃, CF₃, OCH₃, OCHF₂ oder OCF₃.

Die polymerisierbare Gruppe ist vorzugsweise ausgewählt aus der Formel P-Sp-X, worin

10

5

P $CH_2=CW^1-COO_-$, $W^2HC - CH_-$, $W^2 - (CH_2)_{k1}-O_-$, $CH_2=CW^2-(O)_{k1}-$, $CH_3-CH=CH-O_-$, $HO-CW^2W^3-$, $HS-CW^2W^3-$, HW^2N- , $HO-CW^2W^3-NH-$, $CH_2=CW^1-CO-NH-$, $CH_2=CH-(COO)_{k1}-Phe-(O)_{k2}-$

15

20

- Sp eine Spacergruppe mit 1 bis 25 C-Atomen oder eine Einfachbindung,
- X -O-, -S-, -OCH₂-, -CH₂O-, -CO-, -COO-, -OCO-, -CO-O-, -CO-N(\mathbb{R}^{00})-, -N(\mathbb{R}^{00})-CO-, -OCH₂-, -CH₂O-, -SCH₂-, -CH₂S-, -CH=CH-COO-, -OOC-CH=CH- oder eine Einfachbindung, und

W¹ H, Cl, CN, Phenyl oder Alkyl mit 1 bis 5 C-Atomen, insbesondere H, Cl oder CH₃,

W² und W³ unabhängig voneinander H oder Alkyl mit 1 bis 5 C-Atomen, insbesondere Methyl, Ethyl oder n-Propyl,

W⁴, W⁵ und W⁶ unabhängig voneinander Cl, Oxaalkyl oder Oxacarbonylalkyl mit 1 bis 5 C-Atomen,

30

Phe 1,4-Phenylen,

k1 und k2 unabhängig voneinander 0 oder 1, und

35 R⁰⁰ H oder Alkyl mit 1 bis 4 C-Atomen bedeuten.

P ist vorzugsweise eine Vinyl-, Acrylat-, Methacrylat-, Propenylether- oder Epoxygruppe, insbesondere eine Acrylat- oder Methacrylatgruppe.

Sp ist vorzugsweise chirales oder achirales, geradkettiges oder verzweigtes Alkylen mit 1 bis 20, vorzugsweise 1 bis 12 C-Atomen, worin auch eine oder mehrere nicht benachbarte CH₂-Gruppen durch -O-, -S-, -NH-, -N(CH₃)-, -CO-, -O-CO-, -S-CO-, -O-COO-, -CO-S-, -CO-O-, -CH(halogen)-, -CH(CN)-, -CH=CH- oder -C≡C- so ersetzt sein können, daß O-Atome nicht direkt miteinander verknüpft sind.

10

Typische Spacergruppen sind beispielsweise $-(CH_2)_p$ -, $-(CH_2CH_2O)_r$ - CH_2CH_2 -, $-CH_2CH_2$ -Oder $-CH_2CH_2$ -NH- $-CH_2CH_2$ -, worin p eine ganze Zahl von 2 bis 12 und r eine ganze Zahl von 1 bis 3 bedeuten.

Bevorzugte Spacergruppen sind beispielsweise Ethylen, Propylen,
Butylen, Pentylen, Hexylen, Heptylen, Octylen, Nonylen, Decylen,
Undecylen, Dodecylen, Octadecylen, Ethylenoxyethylen,
Methylenoxybutylen, Ethylenthioethylen, Ethylen-N-methyl-iminoethylen, 1Methylalkylen, Ethenylen, Propenylen und Butenylen.

20

Besonders bevorzugte Verbindungen der Formel XII sind folgende

35

$$\begin{array}{c|c}
 & L^1 & L^2 \\
\hline
 & R^1 & Z^1 & R
\end{array}$$
XIIh

$$\begin{array}{c|c}
 & L^1 \\
 & C \\
 & R^1 \\
 & C \\
 &$$

5

$$R^{1}$$
 R^{1}
 R^{2}
 R^{2}

15
$$R'$$
 R'
 R'
 R'
 R'
 R'

worin Z¹ eine der Bedeutungen von Z¹¹ in Formel XII besitzt, R, R', R" und R¹ eine der Bedeutungen von R³¹ in Formel XII besitzen, und L¹ und L² H bedeuten oder eine der für L in Formel XII angegebenen Bedeutungen besitzen.

In diesen bevorzugten Formeln bedeuten vorzugsweise L¹ und L² H oder F, R¹ H oder F, R' und R" H, F, Alkyl oder Alkoxy mit 1 bis 12 C-Atomen oder P-Sp-X-, R" ist besonders bevorzugt CH₃.

Ganz besonders bevorzugt sind Verbindungen der folgenden Formeln

worin R, X, Sp und P die oben angegebene Bedeutung besitzen.

Die chiralen Binaphthol-Acetalderivate der EP 00122844.4, EP 00123385.7 und EP 01104842.8 entsprechen Formel XIII

worin die einzelnen Reste folgende Bedeutung haben

35 Y¹¹ und Y²² bedeuten jeweils unabhängig voneinander H, F, Cl, Br, I, CN, SCN, SF₅, oder chirales oder achirales Alkyl mit bis zu 30 C-

10

20

30

35

Atomen, welches unsubstituiert, oder mit F, Cl, Br, I oder CN mono- oder polysubstituiert sein kann, und worin eine oder mehrere nicht benachbarte CH₂-Gruppen jeweils unabhängig voneinander durch -O-, -S-, -NH-, -N(CH₃)-, -CO-, -COO-, -OCO-, -COO-, -CO-S-, -CH=CH- oder -C≡C- so ersetzt sein können, daß O-Atome nicht direkt miteinander verknüpft sind, oder eine polymerisierbare Gruppe,

einer der Reste W¹ und W² ist -Z¹¹-A¹¹-(Z²²-A²²)_m-R¹¹ und der andere ist H, R²² oder A³³, oder beide Reste W¹ und W² sind -Z¹-A¹-(Z²-A²)_m-R, wobei W¹ und W² nicht gleichzeitig H bedeuten, oder

 $\bigvee_{15}^{W^1}$

ist
$$Z^{11}-A^{11}-(Z^{22}-A^{22})_m-R^{11}$$

Z¹¹ und Z²² bedeuten jeweils unabhängig voneinander -O-, -S-, -CO-, -COO-, -OCO-, -O-COO-, -CO-N(R⁰⁰)-, -N(R⁰⁰)-CO-, -OCH₂-, -CH₂O-, -SCH₂-, -CH₂S-, -CF₂O-, -OCF₂-, -CF₂S-, -SCF₂-, -CH₂CH₂-, -CF₂CH₂-, -CH₂CF₂-, -CH₂CH₂-, -CH₂CH₂-, -CF₂CH₂-, -CF₂

25 R⁰⁰ ist H oder Alkyl mit 1 bis 4 C-Atomen,

A¹¹, A²² und A³³ bedeuten jeweils unabhängig voneinander 1,4-Phenylen, worin auch eine oder mehrere CH-Gruppen durch N ersetzt sein können, 1,4-Cyclohexylen, worin auch eine oder mehrere nicht benachbarte CH₂-Gruppen durch O und/oder S ersetzt sein können, 1,3-Dioxolan-4,5-diyl, 1,4-Cyclohexenylen, 1,4-Bicyclo-(2,2,2)-octylen, Piperidin-1,4-diyl, Naphthalin-2,6-diyl, Decahydronaphthalin-2,6-diyl, oder 1,2,3,4-Tetrahydronaphthalin-2,6-diyl, wobei alle diese Gruppen unsubstituiert oder durch Halogen, CN oder NO₂ oder Alkyl, Alkoxy, Alkylcarbonyl oder Alkoxycarbonyl mit 1

bis 7 C-Atomen, worin ein oder mehrere H-Atome durch F oder CI ersetzt sein können, mono- oder polysubstituiert sind, A¹¹ auch eine Einfachbindung,

5 m ist 0, 1, 2 oder 3, und

R¹¹ und R²² besitzen jeweils unabhängig voneinander eine der Bedeutungen von Y¹¹.

- 10 Besonders bevorzugt sind Verbindungen der Formel XIII, worin
 - Y¹¹ und Y²² H bedeuten.
 - mindestens einer der Reste Z¹¹ und Z²² -CF₂O-, -OCF₂- oder -CF₂CF₂- bedeutet.
- einer der Reste Z¹¹ und Z²² -CF₂O-, -OCF₂-, -CF₂CF₂- oder -CF=CFund der andere -COO-, -OCO-, -CH₂-CH₂- oder eine Einfachbindung bedeutet,

20 -
$$Z^{11}-A^{11}-(Z^{22}-A^{22})_m-R^{11}$$
 bedeutet, und

m 0 oder 1, insbesondere 0 ist,

- m 0 ist und A¹¹ eine Einfachbindung bedeutet,
- W¹ H, R²² oder A³³ und W² -Z¹¹-A¹¹-(Z²²-A²²)_m-R¹¹ und m 1 oder 2 bedeuten.

-Z¹¹-A¹¹-(Z²²-A²²)_m in Formel XIII ist vorzugsweise eine mesogene Gruppe ausgewählt aus den folgenden Teilformeln oder deren Spiegelbildern.

Darin bedeuten Phe 1,4-Phenylen, welches gegebenenfalls durch eine oder mehrere Gruppen L substituiert ist, und Cyc 1,4-Cyclohexylen. Z hat jeweils unabhängig eine der oben für Z¹¹ angegebenen Bedeutungen. L ist F, Cl, CN oder optional fluoriertes Alkyl, Alkoxy, Alkylcarbonyl oder

Alkoxycarbonyl mit 1 bis 4 C -Atomen.

35 -Phe-

- -Cyc-
- -Phe-Z-Phe-
- -Phe-Z-Cyc-
- -Cyc-Z-Cyc-
- 5 -Phe-Z-Phe-Z-Phe-
 - -Phe-Z-Phe-Z-Cvc-
 - -Phe-Z-Cyc-Z-Phe-
 - -Cyc-Z-Phe-Z-Cyc-
 - -Cyc-Z-Cyc-Z-Phe-
- 10 -Cyc-Z-Cyc-Z-Cyc-

L ist vorzugsweise F, Cl, CN, NO₂, CH₃, C₂H₅, OCH₃, OC₂H₅, COCH₃, COC₂H₅, CF₃, CHF₂, CH₂F, OCF₃ OCHF₂, OCH₂F, OC₂F₅, insbesondere F, Cl, CN, CH₃, CHF₂, C₂H₅, OCH₃, OCHF₂, CF₃ oder OCF₃, ganz besonderes

bevorzugt F, CH₃, CF₃, OCH₃, OCHF₂ oder OCF₃.

In einer weiteren bevorzugten Ausführungsform bedeuten Y¹, Y² und/oder R¹¹ in Formel XII eine polymerisierbare Gruppe P-Sp-X, worin

- P CH₂=CW-COO-, WCH=CH-(O)_k-, WHC—CH—oder CH₂=CH-Phenyl-(O)_k-, W H, CH₃ oder Cl und k 0 oder 1,
 - Sp eine Spacergruppe mit 1 bis 25 C-Atomen oder eine Einfachbindung,
- 25
- X -O-, -S-, -OCH₂-, -CH₂O-, -CO-, -COO-, -OCO-, -OCO-O-, -CO-N(\mathbb{R}^{00})-, -N(\mathbb{R}^{00})-CO-, -OCH₂-, -CH₂O-, -SCH₂-, -CH₂S-, -CH=CH-COO-, -OOC-CH=CH- oder eine Einfachbindung, und
- 30 R⁰⁰ H oder Alkyl mit 1 bis 4 C-Atomen bedeuten.

P ist vorzugsweise eine Vinyl-, Acrylat-, Methacrylat-, Propenylether- oder Epoxygruppe, insbesondere eine Acrylat- oder Methacrylatgruppe.

Sp ist vorzugsweise chirales oder achirales, geradkettiges oder verzweigtes Alkylen mit 1 bis 20, vorzugsweise 1 bis 12 C-Atomen, worin

auch eine oder mehrere nicht benachbarte CH_2 -Gruppen durch -O-, -S-, -NH-, -N(CH_3)-, -CO-, -O-CO-, -S-CO-, -O-COO-, -CO-S-, -CO-O-, -CH(halogen)-, -CH(CN)-, -CH=CH- oder -C=C- so ersetzt sein können, daß O-Atome nicht direkt miteinander verknüpft sind.

5

Typische Spacergruppen sind beispielsweise - $(CH_2)_p$ -, - $(CH_2CH_2O)_r$ - CH_2CH_2 -, - CH_2CH_2 -S- CH_2CH_2 - oder - CH_2CH_2 -NH- CH_2CH_2 -, worin p eine ganze Zahl von 2 bis 12 und r eine ganze Zahl von 1 bis 3 bedeuten.

10 Bevorzugte Spacergruppen sind beispielsweise Ethylen, Propylen,
Butylen, Pentylen, Hexylen, Heptylen, Octylen, Nonylen, Decylen,
Undecylen, Dodecylen, Octadecylen, Ethylenoxyethylen,
Methylenoxybutylen, Ethylenthioethylen, Ethylen-N-methyl-iminoethylen, 1Methylalkylen, Ethenylen, Propenylen und Butenylen.

15

Besonders bevorzugte Verbindungen der Formel XIII sind folgende

25

30

$$C_2F_4$$
 XIIIc

5

$$L^1$$
 L^1
 L^2
 L^1
 L^2
 L^1
 L^2
 L^1
 L^2
 L^2
 L^1
 L^2
 L^2

5

$$L^{1}$$
 L^{2}
 L^{2}

XIIIo

35

10

20

30

worin R eine der für R¹¹ in Formel XIII angegebenen Bedeutungen hat, L¹
und L² H oder F bedeuten, und W H, F, Alkyl oder Alkoxy mit 1 bis 12 CAtomen, Cyclohexyl oder Phenyl, welches auch ein- bis vierfach mit L wie
oben definiert substituiert sein kann. Besonders bevorzugt sind
Verbindungen der oben angegeben Formeln worin W H oder F,
insbesondere H ist.

Die chiralen TADDOL-Derivate der WO 02/06265 entsprechen Formel XIV

worin

X¹ und X² H bedeuten, oder zusammen einen bivalenten Rest ausgewählt aus der Gruppe enthaltend -CH₂-, -CHR¹¹-, -CR¹¹₂-, -SiR¹¹₂- und 1,1-Cycloalkyliden bilden,

35 X³ und X⁴ eine der für X¹ und X² angegebenen Bedeutungen besitzen,

10

15

25

30

35

Y¹, Y², Y³ und Y⁴ gleich oder verschieden sein können und jeweils unabhängig voneinander R¹¹, A oder M-R²² bedeuten,

- A eine cyclische Gruppe,
- M eine mesogene Gruppe, und
 - R¹¹ und R²² jeweils unabhängig voneinander H, F, Cl, Br, CN, SCN, SF₅, oder chirales oder achirales Alkyl mit bis zu 30 C-Atomen, welches unsubstituiert, oder mit F, Cl, Br, I oder CN monooder polysubstituiert sein kann, und worin eine oder mehrere nicht benachbarte CH₂-Gruppen jeweils unabhängig voneinander durch -O-, -S-, -NH-, -N(CH₃)-, -CO-, -COO-, -OCO-, -S-CO-, -CO-S-, -CH=CH- oder -C≡C- so ersetzt sein können, daß O-Atome nicht direkt miteinander verknüpft sind, oder eine polymerisierbare Gruppe bedeuten,

wobei mindestens einer der Reste Y¹, Y², Y³ und Y⁴ M-R²² bedeutet.

- 20 Besonders bevorzugt sind Verbindungen der Formel XIV, worin
 - Y¹, Y², Y³ und Y⁴ gleiche Reste bedeuten,
 - $Y^1 = Y^3$ und $Y^2 = Y^4$,
 - einer, zwei, drei oder vier der Reste Y¹, Y², Y³ und Y⁴ M-R²² bedeuten, insbesondere solche, worin alle Reste Y¹ bis Y⁴ M-R²² bedeuten, und solche, worin Y¹ und Y³ M-R²² und Y² und Y⁴ A bedeuten,
 - X¹ und X² zusammen einen bivalenten Rest -CH₂-, -CHR¹¹- oder -CR¹¹₂bedeuten, worin R¹¹ vorzugsweise Alkyl mit 1 bis 8 C-Atomen,
 insbesondere Methyl, Ethyl oder Propyl bedeutet,
 - X¹ und X² zusammen einen 1,1-Cycloalkylidenrest, insbesondere 1,1-Cyclopentyliden oder 1,1-Cyclohexyliden bedeuten,
 - X³ und X⁴ H bedeuten,
 - R²² von H verschieden ist.

10

35

Die cyclische Gruppe A in Formel XIV ist vorzugsweise Phenyl, worin auch ein oder mehrere CH-Gruppen durch N ersetzt sein können, Cyclohexyl, worin auch eine oder zwei nicht benachbarte CH₂-Gruppen durch O und/oder S ersetzt sein können, 1,3-Dioxolan-2-yl, Cyclohexenyl, Bicyclo-(2,2,2)-octylen, Piperidin-1- oder 4-yl, Naphthalin-2- oder 6-yl, Decahydronaphthalin-2- oder 6-yl, oder 1,2,3,4-Tetrahydronaphthalin-2- oder 6-yl, wobei alle diese Gruppen unsubstituiert oder durch Halogen, CN oder NO₂ oder Alkyl, Alkoxy, Alkylcarbonyl oder Alkoxycarbonyl mit 1 bis 7 C-Atomen, worin ein oder mehrere H-Atome durch F oder Cl ersetzt sein können, mono- oder polysubstituiert sind, besonders bevorzugt Phenyl oder Cyclohexyl.

Die mesogene Gruppe M ist vorzugsweise

15
$$-A^{11}-(Z^{11}-A^{22})_m$$

worin

A¹¹ und A²² ieweils unabhängig voneinander 1,4-Phenylen worin auch ein 20 oder mehrere CH-Gruppen durch N ersetzt sein können, 1,4-Cyclohexylen worin auch eine oder zwei nicht benachbarte CH₂-Gruppen durch O und/oder S ersetzt sein können, 1,3-Dioxolan-4,5-diyl, Cyclohexenylen, Bicyclo-(2,2,2)-octylen, Piperidin-1,4diyl, Naphthalin-2,6-diyl, Decahydronaphthalin-2,6-diyl, oder 25 1,2,3,4-Tetrahydronaphthalin-2,6-diyl, wobei alle diese Gruppen unsubstituiert oder durch Halogen, CN oder NO2 oder Alkyl, Alkoxy, Alkylcarbonyl oder Alkoxycarbonyl mit 1 bis 7 C-Atomen, worin ein oder mehrere H-Atome durch F oder Cl ersetzt sein können, mono- oder polysubstituiert sind, 30 Z^{11} ieweils unabhängig voneinander -O-, -S-, -CO-, -COO-, -OCO-, -O-COO-, -CO-N(R⁰⁰)-, -N(R⁰⁰)-CO-, -OCH₂-, -CH₂O-, -SCH₂-, -CH₂S-, -CF₂O-, -OCF₂-, -CF₂S-, -SCF₂-, -CH₂CH₂-, -CF₂CH₂-, -CH₂CF₂-,

-CF₂CF₂-, -CH=CH-, -CF=CH-, -CH=CF-, -CF=CF-,

-C≡C-, -CH=CH-COO-, -OCO-CH=CH- oder eine Einfachbindung,

R⁰⁰

H oder Alkyl mit 1 bis 4 C-Atomen, und

5

10

m 1, 2, 3 oder 4 bedeuten.

M in Formel XIV ist vorzugsweise eine mesogene Gruppe ausgewählt aus den folgenden Teilformeln. Darin bedeuten Phe 1,4-Phenylen, welches gegebenenfalls durch eine oder mehrere Gruppen L substituiert ist, und Cyc 1,4-Cyclohexylen. Z hat jeweils unabhängig eine der oben für Z¹¹ angegebenen Bedeutungen. L ist F, Cl, CN oder optional fluoriertes Alkyl, Alkylcarbonyl oder Alkoxycarbonyl mit 1 bis 4 C -Atomen.

- 15 -Phe-Z-Phe-
 - -Phe-Z-Cyc-
 - -Cyc-Z-Cyc-
 - -Phe-Z-Phe-Z-Phe-
 - -Phe-Z-Phe-Z-Cyc-
- 20 -Phe-Z-Cyc-Z-Phe-
 - -Cyc-Z-Phe-Z-Cyc-
 - -Cyc-Z-Cyc-Z-Phe-
 - -Cyc-Z-Cyc-Z-Cyc-
- L ist vorzugsweise F, Cl, CN, NO₂, CH₃, C₂H₅, OCH₃, OC₂H₅, COCH₃, COC₂H₅, CF₃, CHF₂, CH₂F, OCF₃ OCHF₂, OCH₂F, OC₂F₅, insbesondere F, Cl, CN, CH₃, C₂H₅, OCH₃, CF₃ oder OCF₃, besonders bevorzugt F, CH₃, CF₃, OCH₃ oder OCF₃.
 - In einer weiteren bevorzugten Ausführungsform bedeuten Y¹, Y² oder R in Formel XIV eine polymerisierbare Gruppe P-Sp-X wie oben angegeben.
 - Besonders bevorzugte Verbindungen der Formel XIV sind folgende

20

$$R^{22}-M^{1}$$
 $M^{1}-R^{22}$ OH XIV-1

$$R^{22}-M^{1}$$
 $M^{2}-R^{22}$
OH XIV-2
 $R^{22}-M^{1}$ $M^{2}-R^{22}$

worin R²² eine der in Formel XIV angegebene Bedeutung besitzt und M¹ und M² verschiedene mesogene Gruppen mit einer der für M wie oben angegebenen Bedeutungen sind.

Besonders bevorzugte Verbindungen der Formel XIV sowie der bevorzugten Unterformeln sind solche, worin M¹-R²² und M²-R²² eine Gruppe ausgewählt aus den folgenden Formeln bedeuten

$$R^{22}$$

worin R²² eine der in Formel XIV angegebenen Bedeutungen besitzt und die Phenylringe auch durch L wie oben definiert ein- bis vierfach substituiert sein können.

10

Die chiralen Dotierstoffe mit einer fluorierten Brückengruppe und einer endständigen chiralen Gruppe der WO 02/06196 entsprechen Formel XV

$$R^{11}-X^{11}-A^{11}-(Z^{11}-A^{22})_m-X^{22}-R^{22}$$
 XV

15

worin

20

20

25

2E

R¹¹ und R²² jeweils unabhängig voneinander H, F, CI, Br, CN, SCN, SF₅, oder chirales oder achirales Alkyl mit bis zu 30 C-Atomen, welches unsubstituiert, oder mit F, CI, Br, I oder CN mono- oder polysubstituiert sein kann, und worin eine oder mehrere nicht benachbarte CH₂-Gruppen jeweils unabhängig voneinander durch -O-, -S-, -NH-, -N(CH₃)-, -CO-, -COO-, -OCO-, -OCO-O-, -S-CO-, -CO-S-, -CH=CH- oder -C≡C- so ersetzt sein können, daß O-Atome nicht direkt miteinander verknüpft sind, einen chiralen Rest enthaltend eine oder mehrere aromatischen oder aliphatischen Ringgruppen, die auch kondensierte oder spiroverknüpfte Ringe sowie ein oder mehrere Heteroatome aufweisen können, oder eine polymerisierbare Gruppe,

30

 X^{11} und X^{22} jeweils unabhängig voneinander -CF₂O-, -OCF₂-, -CF₂S-, -SCF₂-, -CF₂CH₂-, -CH₂CF₂-, -CF=CH-, -CH=CF-, -CF=CF- oder eine Einfachbindung,

35

 Z^{11}

jeweils unabhängig voneinander -O-, -S-, -CO-, -COO-, -OCO-, -O-COO-, -CO-N(R⁰⁰)-, -N(R⁰⁰)-CO-, -OCH₂-, -CH₂O-, -SCH₂-,

-CH₂S-, -CF₂O-, -OCF₂-, -CF₂S-, -SCF₂-, -CH₂CH₂-, -CF₂CH₂-, -CH₂CF₂-, -CF₂CF₂-, -CH=CH-, -CF=CH-, -CH=CF-, -CF=CF-, -C=C-, -CH=CH-COO-, -OCO-CH=CH- oder eine Einfachbindung,

5

R⁰⁰ H oder Alkyl mit 1 bis 4 C-Atomen,

10

jeweils unabhängig voneinander 1,4-Phenylen worin auch ein A¹¹ und A²² oder mehrere CH-Gruppen durch N ersetzt sein können. 1.4-Cyclohexylen worin auch eine oder zwei nicht benachbarte CH₂-Gruppen durch O und/oder S ersetzt sein können, 1,3-Dioxolan-4,5-diyl, Cyclohexenylen, Bicyclo-(2,2,2)-octylen, Piperidin-1,4diyl, Naphthalin-2,6-diyl, Decahydronaphthalin-2,6-diyl, oder 1,2,3,4-Tetrahydronaphthalin-2,6-diyl, wobei alle diese Gruppen unsubstituiert oder durch Halogen, CN oder NO2 oder Alkyl, Alkoxy, Alkylcarbonyl oder Alkoxycarbonyl mit 1 bis 7 C-Atomen, worin ein oder mehrere H-Atome durch F oder CI ersetzt sein können, mono- oder polysubstituiert sind, und

15

20 1, 2, 3, 4 oder 5 bedeuten, m

worin mindestens einer der Reste X¹¹, X²² und Z¹¹ -CF₂O-, -OCF₂-, -CF₂S-, -SCF₂-, -CF₂CH₂-, -CF₂CF₂-, -CF=CH- oder -CF=CF- und mindestens einer der Reste R¹¹ und R²² eine chirale Gruppe bedeutet.

25

Falls R¹¹ oder R²² in Formel XV eine chirale Gruppe bedeuten, sind sie vorzugsweise ausgewählt aus der folgenden Formel

30

worin

35

 Q^1 Alkylen oder Alkylenoxy mit 1 bis 9 C-Atomen oder eine Einfachbindung,

- Q² unsubstituiertes oder durch F, Cl, Br oder CN mono- oder polysubstituiertes Alkyl oder Alkoxy mit 1 bis 10 C-Atomen, worin auch eine oder mehrere nicht benachbarte CH₂-Gruppen jeweils unabhängig voneinander durch -C≡C-, -CH=CH-, -O-, -S-, -NH-, -N(CH₃)-, -CO-, -COO-, -OCO-, -OCO-O-, -S-CO- oder -CO-S- so ersetzt sein können, daß O-Atome nicht direkt miteinander verknüpft sind,
- 10 Q³ F, Cl, Br, CN oder Alkyl oder Alkoxy wie für Q² definiert, aber von Q² verschieden, bedeuten.
 - Falls Q¹ Alkylenoxy bedeutet, ist das O-Atom vorzugsweise benachbart zum chiralen C-Atom.
 - Bevorzugte chirale Gruppen sind 2-Alkyl, 2-Alkoxy, 2-Methylalkyl, 2-Methylalkoxy, 2-Fluoroalkyl, 2-Fluoroalkoxy, 2-(2-Ethin)-alkyl, 2-(2-Ethin)-alkoxy, 1,1,1-Trifluoro-2-alkyl und 1,1,1-Trifluoro-2-alkoxy.
- Besonders bevorzugte chirale Gruppen sind 2-Butyl (=1-Methylpropyl), 2-Methylbutyl, 2-Methylpentyl, 3-Methylpentyl, 2-Ethylhexyl, 2-Propylpentyl, insbesondere 2-Methylbutyl, 2-Methylbutoxy, 2-Methylpentoxy, 3-Methylpentoxy, 2-Ethylhexoxy, 1-Methylhexoxy, 2-Octyloxy, 2-Oxa-3-methylbutyl, 3-Oxa-4-methylpentyl, 4-Methylhexyl, 2-Hexyl, 2-Octyl, 2-
- Nonyl, 2-Decyl, 2-Dodecyl, 6-Methoxyoctoxy, 6-Methyloctoxy, 6-Methyloctanoyloxy, 5-Methylheptyloxycarbonyl, 2-Methylbutyryloxy, 3-Methylvaleroyloxy, 4-Methylhexanoyloxy, 2-Chlorpropionyloxy, 2-Chloro-3-methylbutyryloxy, 2-Chloro-4-methylvaleryloxy, 2-Chloro-3-methylvaleryloxy, 2-Methyl-3-oxapentyl, 2-Methyl-3-oxahexyl, 1-
 - Methoxypropyl-2-oxy, 1-Ethoxypropyl-2-oxy, 1-Propoxypropyl-2-oxy, 1-Butoxypropyl-2-oxy, 2-Fluorooctyloxy, 2-Fluorodecyloxy, 1,1,1-Trifluoro-2-octyl, 2-Fluoromethyloctyloxy. Besonders bevorzugt sind 2-Hexyl, 2-Octyl, 2-Octyloxy, 1,1,1-Trifluoro-2-hexyl, 1,1,1-Trifluoro-2-octyl und 1,1,1-Trifluoro-2-octyloxy.

10

20

30

35

In einer bevorzugten Ausführungsform bedeuten R¹¹ oder R²² einen chiralen Rest enthaltend eine oder mehrere aromatischen oder aliphatischen Ringgruppen, die auch kondensierte oder spiroverknüpfte Ringe sowie ein oder mehrere Heteroatome aufweisen können, insbesondere N- und/oder O-Atome.

Bevorzugte chirale Reste dieses Typs sind beispielsweise Cholesteryl, Terpenoidreste wie beispielsweise in WO 96/17901 beschrieben, vorzugsweise ausgewählt aus Menthyl, Neomenthyl, Campheyl, Pineyl, Terpineyl, Isolongifolyl, Fenchyl, Carreyl, Myrthenyl, Nopyl, Geraniyl, Linaloyl, Neryl, Citronellyl und Dihydrocitronellyl, insbesondere Menthyl, Menthonderivate wie beispielsweise

oder endständige chirale Zuckerderivate enthaltend mono- oder bicyclische Pyranose- oder Furanosegruppen, wie zum Beispiel in WO 95/16007 beschrieben.

Besonders bevorzugte Verbindungen der Formel XV sind folgende

$$R \longrightarrow CF_2O-R^*$$
 XV-1

 $R \longrightarrow CF_2O-R^*$ XV-2

 $R^*-OCF_2 \longrightarrow CF_2O-R^*$ XV-3

$$R^*-OCF_2 \longrightarrow CF_2O-R^* \qquad XV-4$$

$$R^*-OCF_2 \longrightarrow CF_2O-R^* \qquad XV-5$$

$$R^*-OCF_2 \longrightarrow CF_2O-R^* \qquad XV-6$$

$$R^*-OCF_2 \longrightarrow COO \longrightarrow CF_2O-R^* \qquad XV-7$$

$$R^*-OCF_2 \longrightarrow COO \longrightarrow CF_2O-R^* \qquad XV-8$$

$$R^*-OCF_2 \longrightarrow COO \longrightarrow CF_2O-R^* \qquad XV-9$$

10

$$R - CF_2O-R^* XV-10$$

$$R \longrightarrow CF_2O-R^*$$
 XV-11

$$R \longrightarrow Z^{00} \longrightarrow CF_2O \longrightarrow R^*$$

$$15$$

$$XV-12$$

$$R - CF_2CF_2 - CF_2O - R^* \qquad XV-15$$

$$R \longrightarrow CF_{2}O \longrightarrow R^{*}$$

$$10 \qquad R \longrightarrow CF_{2}O \longrightarrow R^{*}$$

$$15 \qquad R \longrightarrow CF_{2}O \longrightarrow R^{*}$$

$$20 \qquad R \longrightarrow CF_{2}O \longrightarrow R^{*}$$

10

15

25

35

$$R \longrightarrow CF_2O \longrightarrow L^1$$
 R^*
 L^2
 $XV-22$

 $R \longrightarrow CF_2O \longrightarrow L^3 \longrightarrow L^1$ $\downarrow L^4 \longrightarrow R^* \qquad XV-23$

$$R \longrightarrow CF_2O \longrightarrow R^* \qquad XV-24$$

worin

20 R eine der für R¹¹ in Formel XV angegebenen Bedeutungen besitzt,

R* eine chirale Gruppe mit einer der für R¹¹ in Formel XV oder einer der oben angegebenen bevorzugten Bedeutungen ist,

 Y^{00} F, Cl, CN, CF₃, CHF₂, CH₂F, OCF₃, OCHF₂, OCH₂F, C₂F₅ or OC₂F₅,

 Z^{00} -COO-, -OCO-, -CH₂CH₂-, -CF₂CF₂-, -CF₂O- or -OCF₂-, und

30 L¹, L², L³, L⁴, L⁵ und L⁶ jeweils unabhängig voneinander H oder F bedeuten.

Besonders bevorzugt sind Verbindungen worin mindestens einer, vorzugsweise beide Reste L¹ und L² F bedeuten. R ist vorzugsweise eine achirale Gruppe. R* ist vorzugsweise

$$-(O)_{o}$$
 \star
 $C_{n}H_{2n+1}$
 CH_{3}
 CH_{3}
 CH_{3}
 CO_{o}
 \star
 CH_{3}
 CH_{3}

- worin o 0 oder 1 ist, und o 0 ist falls R* benachbart zu einer CF₂O Gruppe ist, und n eine ganze Zahl von 2 bis 12, vorzugsweise von 3 bis 8, besonders bevorzugt 4, 5 oder 6 bedeutet. * bezeichnet ein chirales C-Atom.
- Die chiralen Dotierstoffe mit einer fluorierten Brückengruppe und einer zentralen chiralen Gruppe der WO 02/06195 entsprechen Formel XVI

$$R^{11}-X^{33}-(A^{11}-Z^{11})_m-G-(Z^{22}-A^{22})_n-X^{44}-R^{22}$$
 XVI

15 worin

- R¹¹ und R²² jeweils unabhängig voneinander H, F, Cl, Br, CN, SCN, SF₅, oder chirales oder achirales Alkyl mit bis zu 30 C-Atomen, welches unsubstituiert, oder mit F, Cl, Br, I oder CN mono- oder polysubstituiert sein kann, und worin eine oder mehrere nicht benachbarte CH₂-Gruppen jeweils unabhängig voneinander durch -O-, -S-, -NH-, -N(CH₃)-, -CO-, -COO-, -OCO-, -OCO-O-, -S-CO-, -CO-S-, -CH=CH- oder -C≡C- so ersetzt sein können, daß O-Atome nicht direkt miteinander verknüpft sind, oder eine polymerisierbare Gruppe,
 - $X^{33}, X^{44}, Z^{11} \ \text{und} \ Z^{22} \ \text{jeweils unabhängig voneinander -O-, -S-, -CO-, } \\ -\text{COO-, -OCO-, -O-COO-, -CO-N}(R^{00})\text{-, -N}(R^{00})\text{-CO-, } \\ -\text{OCH}_2\text{-, -CH}_2\text{O-, -SCH}_2\text{-, -CH}_2\text{S-, -CF}_2\text{O-, -OCF}_2\text{-, } \\ -\text{CF}_2\text{S-, -SCF}_2\text{-, -CH}_2\text{CH}_2\text{-, -CF}_2\text{CH}_2\text{-, -CH}_2\text{CF}_2\text{-, } \\ -\text{CF}_2\text{CF}_2\text{-, -CH=CH-, -CF=CH-, -CH=CF-, -CF=CF-, } \\ -\text{C=C-, -CH=CH-COO-, -OCO-CH=CH- oder eine} \\ \text{Einfachbindung,}$
 - 35 R⁰⁰ H oder Alkyl mit 1 bis 4 C-Atomen,

10

25

35

A¹¹ und A²² jeweils unabhängig voneinander 1,4-Phenylen worin auch ein oder mehrere CH-Gruppen durch N ersetzt sein können, 1,4-Cyclohexylen worin auch eine oder zwei nicht benachbarte CH₂-Gruppen durch O und/oder S ersetzt sein können, 1,3-Dioxolan-4,5-diyl, Cyclohexenylen, Bicyclo-(2,2,2)-octylen, Piperidin-1,4-diyl, Naphthalin-2,6-diyl, Decahydronaphthalin-2,6-diyl, oder 1,2,3,4-Tetrahydronaphthalin-2,6-diyl, wobei alle diese Gruppen unsubstituiert oder durch Halogen, CN oder NO₂ oder Alkyl, Alkoxy, Alkylcarbonyl oder Alkoxycarbonyl mit 1 bis 7 C-Atomen, worin ein oder mehrere H-Atome durch F oder Cl ersetzt sein können, mono- oder polysubstituiert sind,

m und n jeweils unabhängig voneinander 1, 2, 3 oder 4, und

15 G eine bivalente chirale Gruppe bedeuten,

worin mindestens einer der Reste X^{33} , X^{44} , Z^{11} und Z^{22} -CF₂O-, -OCF₂-, -CF₂S-, -SCF₂-, -CF₂CH₂-, -CF₂CF₂-, -CF=CH- oder -CF=CF- bedeutet.

G in Formel XVI ist vorzugsweise eine chirale bivalente Gruppe aus der Gruppe enthaltend Zuckerderivate, Binaphthylderivate und optisch aktive Glycole, insbesondere Alkyl- oder Arylethan-1,2-diole. Unter den Zuckerderivaten sind mono- und bicyclische Pentose- und Hexosegruppen besonders bevorzugt.

Besonders bevorzugt sind folgende Gruppen G

10

worin Phe die oben angegebene Bedeutung besitzt, R⁴⁴ F oder optional fluoriertes Alkyl mit 1bis 4 C-Atomen und Y¹¹, Y²², Y³³ und Y⁴⁴ eine der für R¹ in Formel XV angegebenen Bedeutungen besitzen.

G ist vorzugsweise Dianhydrohexitol, insbesondere

besonders bevorzugt Dianhydrosorbitol,

substituiertes Ethandiol wie

10

35

worin R⁴⁴ F, CH₃ oder CF₃ ist,

oder optional substituiertes Binaphthyl

worin Y¹¹, Y²², Y³³ und Y⁴⁴ H, F oder optional fluoriertes Alkyl mit 1 bis 8 C-Atomen bedeuten.

Besonders bevorzugte Verbindungen der Formel XVI sind folgende

20
$$R \longrightarrow CF_{2}O \longrightarrow COO$$

$$OOC \longrightarrow OCF_{2} \longrightarrow R$$
25

$$R \leftarrow CF_{2}CF_{2} \leftarrow COO$$

$$OOC \leftarrow CF_{2}CF_{2} \leftarrow R$$

$$XVI-2$$

$$R \longrightarrow CF_{2}CF_{2} \longrightarrow COO \longrightarrow OCF_{2} \longrightarrow R$$

$$10 \qquad R \longrightarrow CF_{2}O \longrightarrow COO \longrightarrow OCF_{2} \longrightarrow R$$

$$15 \qquad R \longrightarrow CF_{2}CF_{2} \longrightarrow COO \longrightarrow OCF_{2} \longrightarrow R$$

$$20 \qquad R \longrightarrow CF_{2}O \longrightarrow OCF_{2} \longrightarrow R$$

$$25 \qquad XVI-6$$

$$30 \qquad XVI-7$$

$$30 \qquad CF_{2} \longrightarrow R$$

$$35 \qquad XVI-8$$

35

worin R eine der für R¹¹ in Formel XVI angegebenen Bedeutungen besitzt, und die Phenylringe auch ein- bis vierfach durch L wie oben definiert substituiert sein können.

Insbesondere die Dotierstoffe der oben genannten Formeln X, XI, XII, XIII, XIV, XV und XVI zeigen eine gute Löslichkeit in der nematischen Komponente, und induzieren eine cholesterische Struktur mit hoher Verdrillung und geringer Temperaturabhängigkeit der Helixganghöhe und der Reflektionswellenlänge. Dadurch können selbst bei Verwendung nur

eines dieser Dotierstoffe in geringen Mengen erfindungsgemäße CFK-Medien mit Reflektionsfarben im sichtbaren Wellenlängenbereich von hoher Brillanz und geringer Temperaturabhägigkeit erzielt werden, die sich vor allem für den Einsatz in SSCT- und PSCT-Anzeigen eignen.

5

Dies ist ein bedeutender Vorteil gegenüber den CFK-Medien aus dem Stand der Technik, in denen üblicherweise mindestens zwei Dotierstoffe mit entgegengesetzter Temperaturabhängigkeit der Verdrillung benötigt werden (zum Beispiel ein Dotierstoff mit positiver Temperaturabhängigkeit, d.h. Zunahme der Verdrillung mit steigender Temperatur, und ein Dotierstoff mit negativer Temperaturabhängigkeit), um eine Temperaturkompensation der Reflektionswellenlänge zu erzielen. Außerem werden in den bekannten CFK-Medien häufig große Mengen an Dotierstoffen benötigt, um Reflektion im sichtbaren Bereich zu erzielen.

15

20

10

Eine besonders bevorzugte Ausführungsform der Erfindung betrifft daher ein CFK-Medium, sowie eine CFK-Anzeige enthaltend dieses Medium, wie vor- und nachstehend beschrieben, worin die chirale Komponente nicht mehr als eine chirale Verbindung enthält, vorzugsweise in einer Menge von 15 % oder weniger, insbesondere 10 % oder weniger, besonders bevorzugt 5 % oder weniger. Die chirale Verbindung in diesen Medien ist besonders bevorzugt ausgewählt aus den Formeln X, XI, XII, XIII, XIV, XV und XVI einschließlich deren bevorzugte Unterformeln. Ein CFK-Medium dieser bevorzugten Ausführungsform besitzt eine geringe Abhängigkeit der Reflektionswellenlänge λ von der Temperatur T über einen weiten Temperaturbereich.

25

Besonders bevorzugt sind erfindungsgemäße CFK-Medien mit einer Temperaturabhängigkeit dλ/dT von 0.6 nm/°C oder weniger, insbesondere 0.3 nm/°C oder weniger, ganz besonders bevorzugt 0.15 nm/°C oder weniger, vorzugsweise im Bereich zwischen 0 und 50 °C, insbesondere zwischen - 20 und 60 °C, besonders bevorzugt zwischen - 20 und 70 °C, ganz besonders bevorzugt im Bereich von - 20 °C bis zu einer Temperatur von 10 °C, insbesondere 5 °C, unterhalb des Klärpunktes.

20

25

Soweit nicht anders angegeben, bedeutet $d\lambda/dT$ die lokale Steigung der Funktion $\lambda(T)$, wobei eine nichtlineare Funktion $\lambda(T)$ näherungsweise durch ein Polynom 2. oder 3. Grades beschrieben wird.

Eine weitere bevorzugte Ausführungsform bezieht sich auf ein erfindungsgemäßes CFK-Medium, welches eine oder mehrere Verbindungen mit mindestens einer polymerisierbaren Gruppe enthält.
 Solche CFK-Medien eignen sich besonders für einen Einsatz zum Beispiel in Polymer-Gel- oder PSCT-Anzeigen. Die polymerisierbaren
 Verbindungen können Bestandteil der nematischen und/oder chiralen Komponente sein oder eine zusätzliche Komponente des Mediums bilden.

Geeignete polymerisierbare Verbindungen sind dem Fachmann bekannt und im Stand der Technik beschrieben. Besonders geeignet sind beispielsweise Verbindungen mit einer Gruppe P wie unter Formel XII beschrieben, insbesondere Alkyl- oder Arylacrylate, -methacrylate und -epoxide. Die polymerisierbaren Verbindungen können zusätzlich auch mesogen oder flüssigkristallin sein. Sie können eine oder mehrere, vorzugsweise zwei polymerisierbare Gruppen enthalten. Typische Beispiele für nicht-mesogene Verbindungen mit zwei polymerisierbaren Gruppen sind Alkyldiacrylate oder Alkyldimethacrylate mit Alkylgruppen mit 1 bis 20 C-Atomen. Typische Beispiele für nicht-mesogene Verbindungen mit mehr als zwei polymerisierbaren Gruppen sind Trimethylolpropantrimethacrylat oder Pentaerythritoltetraacrylat.

Bevorzugte chirale polymerisierbare mesogene Verbindungen sind Verbindungen der Formeln XII bis XVI enthaltend einen oder mehrere Reste mit einer Gruppe P wie unter Formel XII definiert.

Weitere geeignete polymerisierbare Verbindungen sind zum Beispiel in WO 93/22397, EP 0 261 712, DE 195 04 224, WO 95/22586 und WO 97/00600 beschrieben. Typische Beispiele für geeignete polymerisierbare mesogene Verbindungen finden sich in der folgenden Liste, die den Gegenstand der vorliegenden Erfindung weiter veranschaulichen soll, ohne ihn einzuschränken:

$$P-(CH_{2})_{x}O \longrightarrow COO \longrightarrow Y^{0}$$

$$P-(CH_{2})_{x}O \longrightarrow Y^{0$$

$$P-(CH_2)_{x}O - COO - COO - CH_2CH(CH_3)C_2H_5$$
 (XVIIg)

 $P-(CH_2)_xO \longrightarrow COO \longrightarrow CH_2CH(CH_3)C_2H_5$ (XVIIh)

$$P-(CH_2)_xO$$
 COO-Ter (XVIII)

$$P-(CH_2)_xO$$
 — COO-Chol (XVIIk)

$$P(CH_{2})_{x}O \longrightarrow COO \longrightarrow COO \longrightarrow O(CH_{2})_{y}P$$

$$10 \qquad P(CH_{2})_{x}O \longrightarrow CH_{2}CH_{2} \longrightarrow CH_{2}CH_{2} \longrightarrow O(CH_{2})_{y}P$$

$$15 \qquad P(CH_{2})_{x}O \longrightarrow CH=CHCOO \longrightarrow O(CH_{2})_{y}P$$

$$15 \qquad P(CH_{2})_{x}O \longrightarrow CH=CHCOO \longrightarrow O(CH_{2})_{y}P$$

$$16 \qquad P(CH_{2})_{x}O \longrightarrow CH=CHCOO \longrightarrow O(CH_{2})_{y}P$$

$$17 \qquad P(CH_{2})_{x}O \longrightarrow CH=CHCOO \longrightarrow O(CH_{2})_{y}P$$

$$18 \qquad P(CH_{2})_{x}O \longrightarrow CH=CHCOO \longrightarrow O(CH_{2})_{y}P$$

$$19 \qquad P(CH_{2})_{x}O \longrightarrow CH=CHCOO \longrightarrow O(CH_{2})_{y}P$$

$$19 \qquad P(CH_{2})_{x}O \longrightarrow O(CH_{2})_{y}P$$

$$10 \qquad P(CH_{2})_{x}O \longrightarrow O(CH_{2})_{y}P$$

$$11 \qquad P(CH_{2})_{x}O \longrightarrow O(CH_{2})_{y}P$$

$$12 \qquad P(CH_{2})_{x}O \longrightarrow O(CH_{2})_{y}P$$

$$13 \qquad P(CH_{2})_{x}O \longrightarrow O(CH_{2})_{y}P$$

$$14 \qquad OOCCH=CH \longrightarrow O(CH_{2})_{y}P$$

$$15 \qquad P(CH_{2})_{x}O \longrightarrow O(CH_{2})_{y}P$$

$$16 \qquad P(CH_{2})_{x}O \longrightarrow O(CH_{2})_{y}P$$

$$17 \qquad P(CH_{2})_{x}O \longrightarrow O(CH_{2})_{y}P$$

$$18 \qquad P(CH_{2})_{x}O \longrightarrow O(CH_{2})_{y}P$$

$$19 \qquad P(CH_{2})_{x}O \longrightarrow O(CH_{2})_{y}P$$

$$19 \qquad P(CH_{2})_{x}O \longrightarrow O(CH_{2})_{y}P$$

$$10 \qquad P(CH_{2})_{y}O \longrightarrow O(CH_{2})_{y}P$$

$$10 \qquad P(CH_{2})_{y}O \longrightarrow O(CH_{2})_{y}P$$

Darin bedeuten P eine polymerisierbare Gruppe wie in Formel XII definiert, x und y gleiche oder verschiedene ganze Zahlen von 1 bis 12, C und D 1,4-Phenylen oder 1,4-Cyclohexylen, v 0 oder 1, Y⁰ eine polare Gruppe, R⁵ eine unpolare Alkyl- oder Alkoxyguppe, Ter einen Terpenoidrest wie zum Beispiel Menthyl, Chol einen Cholesterylrest, L¹ und L² jeweils unabhängig voneinander H, F, Cl, CN, OH, NO₂ oder optional halogeniertes Alkyl, Alkoxy, Alkylcarbonyl oder Alkoxycarbonyl mit 1 bis 7 C-Atomen.

(XVIIr)

15

20

25

30

35

Die polare Gruppe Y⁰ ist vorzugsweise CN, NO₂, Halogen, OCH₃, OCN, SCN, COR⁶, COOR⁶ oder mono- oligo- oder polyfluoriertes Alkyl oder Alkoxy mit 1 bis 4 C-Atomen. R⁶ ist optional fluoriertes Alkyl mit 1 bis 4. vorzugsweise 1, 2 oder 3 C-Atomen. Y⁰ ist besonders bevorzugt F, Cl, CN, NO₂, OCH₃, COCH₃, COC₂H₅, COOCH₃, COOC₂H₅, CF₃, C₂F₅, OCF₃, OCHF₂ oder OC₂F₅, insbesondere F, Cl, CN, OCH₃ oder OCF₃.

Die unpolare Gruppe R⁵ ist vorzugsweise Alkyl mit 1 oder mehr. insbesondere 1 bis 15 C-Atomen oder Alkoxy mit 2 oder mehr,

10 insbesondere 2 bis 15 C-Atomen.

> Die oben genannten polymerisierbaren Verbindungen können durch an sich bekannte Methoden hergestellt werden, die in Standardwerken der organischen Chemie wie beispielsweise Houben-Weyl, Methoden der organischen Chemie, Thieme-Verlag, Stuttgart beschrieben sind.

In den oben genannten Formeln I bis XVII bedeutet der Begriff "fluoriertes Alkyl oder Alkoxy mit 1 bis 3 C-Atomen" vorzugsweise CF₃, OCF₃, CFH₂, OCFH₂, CF₂H, OCF₂H, C₂F₅, OC₂F₅, CFHCF₃, CFHCF₂H, CFHCFH₂, CH₂CF₃, CH₂CF₂H, CH₂CFH₂, CF₂CF₂H, CF₂CFH₂, OCFHCF₃, OCFHCF₂H, OCFHCFH₂, OCH₂CF₃, OCH₂CF₂H, OCH₂CFH₂, OCF₂CF₂H, OCF₂CFH₂, C₃F₇ oder OC₃F₇, insbesondere CF₃, OCF₃, CF₂H, OCF₂H, C₂F₅, OC₂F₅, CFHCF₃, CFHCF₂H, CFHCFH₂, CF₂CF₂H, CF₂CFH₂, OCFHCF₃, OCFHCF₂H, OCFHCFH₂, OCF₂CF₂H, OCF₂CFH₂, C₃F₇ oder OC₃F₇, besonders bevorzugt OCF₃ oder OCF₂H.

Der Ausdruck "Alkyl" umfaßt geradkettige und verzweigte Alkylgruppen mit 1-7 Kohlenstoffatomen, insbesondere die geradkettigen Gruppen Methyl, Ethyl, Propyl, Butyl, Pentyl, Hexyl und Heptyl. Gruppen mit 2-5 Kohlenstoffatomen sind im allgemeinen bevorzugt.

Der Ausdruck "Alkenyl" umfaßt geradkettige und verzweigte Alkenylgruppen mit 2-7 Kohlenstoffatomen, insbesondere die geradkettigen Gruppen. Besonders bevorzugte Alkenylgruppen sind C₂-C₇-1E-Alkenyl, C₄-C₇-3E-Alkenyl, C₅-C₇-4-Alkenyl, C₆-C₇-5-Alkenyl und C₇-6-Alkenyl, insbesondere C₂-C₇-1E-Alkenyl, C₄-C₇-3E-Alkenyl, und C₅-C₇-4-Alkenyl. Beispiele

10

15

30

35

bevorzugter Alkenylgruppen sind Vinyl, 1E-Propenyl, 1E-Butenyl, 1E-Pentenyl, 1E-Hexenyl, 1E-Heptenyl, 3-Butenyl, 3E-Pentenyl, 3E-Hexenyl, 3E-Hexenyl, 4-Pentenyl, 4Z-Hexenyl, 4E-Hexenyl, 4Z-Hexenyl, 5-Hexenyl, 6-Heptenyl und dergleichen. Gruppen mit bis zu 5 Kohlenstoffatomen sind im allgemeinen bevorzugt.

Der Ausdruck "Fluoralkyl" umfaßt vorzugsweise geradkettige Gruppen mit endständigem Fluor, d.h. Fluormethyl, 2-Fluorethyl, 3-Fluorpropyl, 4-Fluorbutyl, 5-Fluorpentyl, 6-Fluorhexyl und 7-Fluorheptyl. Andere Positionen des Fluors sind jedoch nicht ausgeschlossen.

Der Ausdruck "Oxaalkyl" umfaßt vorzugsweise geradkettige Reste der Formel C_nH_{2n+1} -O- $(CH_2)_m$, worin n und m jeweils unabhängig voneinander 1 bis 6 bedeuten. Vorzugsweise ist n = 1 und m 1 bis 6.

Halogen bedeutet vorzugsweise F oder Cl, insbesondere F.

Falls einer der oben genannten Reste einen Alkylrest und/oder einen Alkoxyrest bedeutet, so kann dieser geradkettig oder verzweigt sein.

Vorzugsweise ist er geradkettig, hat 2, 3, 4, 5, 6 oder 7 C-Atome und bedeutet demnach bevorzugt Ethyl, Propyl, Butyl, Pentyl, Hexyl, Heptyl, Ethoxy, Propoxy, Butoxy, Pentoxy, Hexoxy oder Heptoxy, ferner Methyl, Octyl, Nonyl, Decyl, Undecyl, Dodecyl, Tridecyl, Tetradecyl, Pentadecyl, Methoxy, Octoxy, Nonoxy, Decoxy, Undecoxy, Dodecoxy, Tridecoxy oder Tetradecoxy.

Oxaalkyl bedeutet vorzugsweise geradkettiges 2-Oxapropyl (= Methoxymethyl), 2- (= Ethoxymethyl) oder 3-Oxabutyl (= 2-Methoxyethyl), 2-, 3-oder 4-Oxapentyl, 2-, 3-, 4- oder 5-Oxahexyl, 2-, 3-, 4-, 5- oder 6-Oxaheptyl, 2-, 3-, 4-, 5-, 6- oder 7-Oxaoctyl, 2-, 3-, 4-, 5-, 6-, 7- oder 8-Oxanonyl, 2-, 3-, 4-, 5-, 6-, 7-, 8- oder 9-Oxadecyl.

Falls einer der oben genannten Reste einen Alkylrest bedeutet, in dem eine CH₂-Gruppe durch -CH=CH- ersetzt ist, so kann dieser geradkettig oder verzweigt sein. Vorzugsweise ist er geradkettig und hat 2 bis 10 C-Atome. Er bedeutet demnach besonders Vinyl, Prop-1-, oder Prop-2-enyl, But-1-,

2- oder But-3-enyl, Pent-1-, 2-, 3- oder Pent-4-enyl, Hex-1-, 2-, 3-, 4- oder Hex-5-enyl, Hept-1-, 2-, 3-, 4-, 5- oder Hept-6-enyl, Oct-1-, 2-, 3-, 4-, 5-, 6- oder Oct-7-enyl, Non-1-, 2-, 3-, 4-, 5-, 6-, 7- oder Non-8-enyl, Dec-1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- oder Dec-9-enyl.

5

Falls einer der oben genannten Reste einen Alkylrest bedeutet, in dem eine CH₂-Gruppe durch -O- und eine durch -CO- ersetzt ist, so sind diese bevorzugt benachbart. Somit beinhalten diese eine Acyloxygruppe -CO-O-oder eine Oxycarbonylgruppe -O-CO-. Vorzugsweise sind diese geradkettig und haben 2 bis 6 C-Atome.

10

15

Sie bedeuten demnach besonders Acetyloxy, Propionyloxy, Butyryloxy, Pentanoyloxy, Hexanoyloxy, Acetyloxymethyl, Propionyloxymethyl, Butyryloxymethyl, Pentanoyloxymethyl, 2-Acetyloxyethyl, 2-Propionyloxyethyl, 2-Butyryloxyethyl, 3-Acetyloxypropyl, 3-Propionyloxypropyl, 4-Acetyloxybutyl, Methoxycarbonyl, Ethoxycarbonyl, Propoxycarbonyl, Butoxycarbonyl, Pentoxycarbonyl, Methoxycarbonylmethyl, Ethoxycarbonylmethyl, Propoxycarbonylmethyl, Butoxycarbonylmethyl, 2-(Methoxycarbonyl)ethyl, 2-(Ethoxycarbonyl)ethyl, 2-(Propoxy-

carbonyl)ethyl, 3-(Methoxycarbonyl)propyl, 3-(Ethoxycarbonyl)propyl,

20

25

4-(Methoxycarbonyl)-butyl.

Falls einer der oben genannten Reste einen Alkylrest bedeutet, in dem eine CH₂-Gruppe durch unsubstituiertes oder substituiertes -CH=CH- und eine benachbarte CH₂-Gruppe durch CO oder CO-O oder O-CO ersetzt ist, so kann dieser geradkettig oder verzweigt sein. Vorzugsweise ist er geradkettig und hat 4 bis 13 C-Atome. Er bedeutet demnach besonders Acryloyloxymethyl, 2-Acryloyloxyethyl, 3-Acryloyloxypropyl, 4-Acryloyloxybutyl, 5-Acryloyloxypentyl, 6-Acryloyloxyhexyl,

30

7-Acryloyloxyheptyl, 8-Acryloyloxyoctyl, 9-Acryloyloxynonyl, 10-Acryloyloxydecyl, Methacryloyloxymethyl, 2-Methacryloyloxyethyl, 3-Methacryloyloxypropyl, 4-Methacryloyloxybutyl, 5-Methacryloyl--oxypentyl, 6-Methacryloyloxyhexyl, 7-Methacryloyloxyheptyl, 8-Methacryloyloxynonyl.

Falls einer der oben genannten Reste einen einfach durch CN oder CF₃ substituierten Alkyl- oder Alkenylrest bedeutet, so ist dieser Rest vorzugsweise geradkettig. Die Substitution durch CN oder CF₃ ist in beliebiger Position.

5

10

Falls einer der oben genannten Reste einen mindestens einfach durch Halogen substituierten Alkyl- oder Alkenylrest bedeutet, so ist dieser Rest vorzugsweise geradkettig und Halogen ist vorzugsweise F oder Cl. Bei Mehrfachsubstitution ist Halogen vorzugsweise F. Die resultierenden Reste schließen auch perfluorierte Reste ein. Bei Einfachsubstitution kann der Fluor- oder Chlorsubstituent in beliebiger Position sein, vorzugsweise jedoch in ω -Position.

15

Verbindungen mit verzweigten Flügelgruppen können gelegentlich wegen einer besseren Löslichkeit in den üblichen flüssigkristallinen Basismaterialien von Bedeutung sein. Sie können aber insbesondere als chirale Dotierstoffe geeignet sein, wenn sie optisch aktiv sind.

20

Verzweigte Gruppen dieser Art enthalten in der Regel nicht mehr als eine Kettenverzweigung. Bevorzugte verzweigte Reste sind Isopropyl, 2-Butyl (= 1-Methylpropyl), Isobutyl (= 2-Methylpropyl), 2-Methylbutyl, Isopentyl (= 3-Methylbutyl), 2-Methylpentyl, 3-Methylpentyl, 2-Ethylhexyl, 2-Propylpentyl, Isopropoxy, 2-Methylpropoxy, 2-Methylbutoxy, 3-Methylbutoxy, 2-Methylpentoxy, 3-Methylpentoxy, 2-Ethylhexoxy, 1-Methylhexoxy, 1-Methylhexoxy, 1-Methylhexoxy.

25

30

35

Falls einer der oben genannten Reste einen Alkylrest darstellt, in dem zwei oder mehr CH₂-Gruppen durch -O- und/oder -CO-O- ersetzt sind, so kann dieser geradkettig oder verzweigt sein. Vorzugsweise ist er verzweigt und hat 3 bis 12 C-Atome. Er bedeutet demnach besonders Bis-carboxymethyl, 2,2-Bis-carboxy-ethyl, 3,3-Bis-carboxy-propyl, 4,4-Bis-carboxy-butyl, 5,5-Bis-carboxy-pentyl, 6,6-Bis-carboxy-hexyl, 7,7-Bis-carboxy-heptyl, 8,8-Bis-carboxy-octyl, 9,9-Bis-carboxy-nonyl, 10,10-Bis-carboxy-decyl, Bis-(methoxycarbonyl)-methyl, 2,2-Bis-(methoxycarbonyl)-ethyl, 3,3-Bis-(methoxycarbonyl)-propyl, 4,4-Bis-(methoxycarbonyl)-butyl, 5,5-Bis-(methoxycarbonyl)-pentyl, 6,6-Bis-(methoxycarbonyl)-hexyl,

7,7-Bis-(methoxycarbonyl)-heptyl, 8,8-Bis-(methoxycarbonyl)-octyl, Bis-(ethoxycarbonyl)-methyl, 2,2-Bis-(ethoxycarbonyl)-ethyl, 3,3-Bis-(ethoxycarbonyl)-propyl, 4,4-Bis-(ethoxycarbonyl)-butyl, 5,5-Bis-(ethoxycarbonyl)-hexyl.

5

Ein weiterer Gegenstand der Erfindung ist die Verwendung der erfindungsgemäßen CFK-Medien für elektrooptische Zwecke.

Ein weiterer Gegenstand der Erfindung ist auch eine elektrooptische
Anzeige enthaltend erfindungsgemäße FK-Medien, insbesondere eine
SSCT- oder PSCT-Anzeigen mit zwei planparallelen Trägerplatten, die mit
einer Umrandung eine Zelle bilden, und einer in der Zelle befindlichen
cholesterischen Flüssigkristallmischung.

Der Aufbau von bistabilen SSCT- und PSCT-Zellen ist beispielsweise in WO 92/19695, WO 93/23496, US 5,453,863 or US 5,493,430 beschrieben.

Die erfindungsgemäßen Flüssigkristallmischungen ermöglichen eine bedeutende Erweiterung des zur Verfügung stehenden Parameterraumes.
So übertreffen die erzielbaren Kombinationen aus Reflektionswellenlänge,
Doppelbrechung, Klärpunkt, Viskosität, thermischer und UV-Stabilität und
dielektrischer Anisotropie bei weitem bisherige Materialien aus dem Stand
der Technik und machen die erfindungsgemäßen Medien besonders
geeignet für einen Einsatz in CFK-Anzeigen.

30

35

Die erfindungsgemäßen Flüssigkristallmischungen besitzen vorzugsweise eine cholesterische Phase bis -20 °C und bevorzugt bis -30 °C, besonders bevorzugt bis -40 °C, und Klärpunkte oberhalb 70 °C, vorzugsweise oberhalb 90 °C, besonders bevorzugt oberhalb 110 °C. Die dielektrische Anisotropie $\Delta \varepsilon$ ist vorzugsweise ≥ 5 , insbesondere ≥ 10 , ganz besonders bevorzugt ≥ 15 . Die Doppelbrechung Δn ist vorzugsweise $\ge 0,08$, insbesondere $\ge 0,09$, und vorzugsweise $\le 0,3$, insbesondere $\le 0,16$, besonders bevorzugt $\le 0,15$, ganz besonders bevorzugt $\le 0,14$, und vorzugsweise zwischen 0,09 und 0,14.

20

Gleichzeitig besitzen die erfindungsgemäßen Flüssigkristallmischungen niedrige Werte für die Viskosität und hohe Werte für den spezifischen Widerstand, wodurch hervorragende CFK-Anzeigen erzielt werden können. Insbesondere sind die Mischungen durch kleine

5 Operationsspannungen gekennzeichnet.

Es versteht sich, daß durch geeignete Wahl der Komponenten der erfindungsgemäßen Mischungen auch höhere Klärpunkte (z.B. oberhalb 120 °C) bei höheren Schwellenspannungen oder niedrigere Klärpunkte bei niedrigeren Schwellenspannungen unter Erhalt der anderen vorteilhaften Eigenschaften realisiert werden können. Ebenso können bei entsprechend wenig erhöhten Viskositäten Mischungen mit größerem Δε und somit geringeren Schwellen erhalten werden.

Die Breite des cholesterische Phasenbereichs beträgt vorzugsweise mindestens 90° C, insbesondere mindestens 100° C. Vorzugsweise erstreckt sich dieser Bereich mindestens von -20° bis +60°C, besonders bevorzugt mindestens von -20° bis +70°C, ganz besonders bevorzugt mindestens von -20° bis +80° C.

Auch die UV-Stabilität der erfindungsgemäßen Mischungen ist erheblich besser, d. h. sie zeigen eine deutlich kleinere Änderung der Reflektionswellenlänge und Operationsspannung unter UV-Belastung.

- Die einzelnen Verbindungen der nachfolgenden Formeln und deren Unterformeln, die in den erfindungsgemäßen Medien verwendet werden können, sind entweder bekannt, oder sie können analog zu den bekannten Verbindungen hergestellt werden.
 - In besonders bevorzugten Ausführungsformen enthalten die Mischungen
 - eine oder mehrere Verbindungen der Formeln la, Ib und/oder le, insbesondere solche, worin L¹ und/oder L² F bedeuten,
 - 1 bis 9, insbesondere 1 bis 6 Verbindungen der Formel I,

- 7% bis 80%, insbesondere 40% bis 70 % einer oder mehrerer Verbindungen der Formel I,
- eine oder mehrere Verbindungen der Formel IIa, insbesondere
 solche, worin X⁰, Y¹ und Y² F bedeuten,
 - 5 bis 50 %, insbesondere 10% bis 30 %, besonders bevorzugt 15 bis 25 % einer oder mehrerer Verbindungen der Formel II,
- 10 30 bis 65 % einer oder mehrerer Verbindungen der Formel I und 5 bis 40 % einer oder mehrerer Verbindungen der Formel II,
- eine oder mehrere Alkenylverbindungen der Formel III1 und/oder III2, vorzugsweise der Formeln III1e, III1f und III2a, insbesondere solche, worin R^{3a} H bedeutet. Der Anteil dieser Verbindungen in den Flüssigkristallmischungen liegt vorzugsweise bei 0% bis 50 %, insbesondere bei 5% bis 25 %,
- eine oder mehrere Verbindungen der Formel IV25 und/oder IV27,
 wobei L in Formel IV 25 H oder F, besonders bevorzugt F bedeutet.

 Der Anteil dieser Verbindungen in den Flüssigkristallmischungen liegt vorzugsweise bei 0% bis 50 %, insbesondere bei 5% bis 15 %,
 - insgesamt 15 bis 80 % an Verbindungen der Formeln II und III2,
 - einen oder mehrere Dotierstoffe ausgewählt aus den Formeln VII, VIII und IX,
 - einen oder mehrere Dotierstoffe ausgewählt aus den Formeln X und XI,
 - einen oder mehrere Dotierstoffe ausgewählt aus den Formeln XII, XIII, XIV, XV und XVI,
- nicht mehr als einen Dotierstoff, vorzugsweise ausgewählt aus den
 Formeln XII, XIII, XIV, XV und XVI,

15

35

- 10 % oder weniger, insbesondere 0.01 bis 7 % der optisch aktiven Komponente,
- eine nematische Komponente, die im wesentlichen aus
 Verbindungen ausgewählt aus den Formeln I bis VI2 besteht.

Durch geeignete Wahl der terminalen Reste R¹, R², R³, R⁴, R⁵, X⁰ und Q-Y in den Verbindungen der Formeln I bis VI2 können die Ansprechzeiten, die Schwellenspannung und weitere Eigenschaften in gewünschter Weise modifiziert werden. Beispielsweise führen 1E-Alkenylreste, 3E-Alkenylreste, 2E-Alkenyloxyreste und dergleichen in der Regel zu kürzeren Ansprechzeiten, verbesserten nematischen Tendenzen und einem höheren Verhältnis der elastischen Konstanten K₃ (bend) und K₁ (splay) im Vergleich zu Alkyl- bzw. Alkoxyresten. 4-Alkenylreste, 3-Alkenylreste und dergleichen ergeben im allgemeinen tiefere Schwellenspannungen und kleinere Werte von K₃/K₁ im Vergleich zu Alkyl- und Alkoxyresten.

Bei den Brückengliedern Z¹, Z² und Z³ führt eine -CH₂CH₂-Gruppe im
Allgemeinen zu höheren Werten von K₃/K₁ im Vergleich zu einer
einfachen Kovalenzbindung. Höhere Werte von K₃/K₁ ermöglichen z.B.
eine kürzere Reflektionswellenlänge ohne Veränderung der
Dotierstoffkonzentration aufgrund der höheren HTP.

Das optimale Mengenverhältnis der Verbindungen der Formeln I bis V2 hängt weitgehend von den gewünschten Eigenschaften, von der Wahl der Komponenten der Formeln I bis V2 und von der Wahl weiterer gegebenenfalls vorhandener Komponenten ab. Geeignete Mengenverhältnisse innerhalb des oben angegebenen Bereichs können von Fall zu Fall leicht ermittelt werden.

Die Gesamtmenge an Verbindungen der Formeln I bis V2 in den erfindungsgemäßen Gemischen ist nicht kritisch. Die Gemische können daher eine oder mehrere weitere Komponenten enthalten zwecks Optimierung verschiedener Eigenschaften. Der beobachtete Effekt auf die Ansprech-

10

15

20

zeiten und die Schwellenspannung ist jedoch in der Regel umso größer je höher die Gesamtkonzentration an Verbindungen der Formeln I bis V2 ist.

Die Herstellung der erfindungsgemäß verwendbaren Flüssigkristallmischungen erfolgt in an sich üblicher Weise. In der Regel wird die gewünschte Menge der in geringerer Menge verwendeten Komponenten in
der den Hauptbestandteil ausmachenden Komponenten gelöst, zweckmäßig bei erhöhter Temperatur. Es ist auch möglich, Lösungen der Komponenten in einem organischen Lösungsmittel, z.B. in Aceton, Chloroform
oder Methanol, zu mischen und das Lösungsmittel nach Durchmischung
wieder zu entfernen, beispielsweise durch Destillation.

Die erfindungsgemäßen Flüssigkristallmischungen können auch weitere Zusätze wie beispielsweise einen oder mehrere Stabilisatoren oder Antioxidantien enthalten.

In der vorliegenden Anmeldung und in den folgenden Beispielen sind die Strukturen der Flüssigkristallverbindungen durch Acronyme angegeben, wobei die Transformation in chemische Formeln gemäß folgender Tabellen A und B erfolgt. Alle Reste C_nH_{2n+1} und C_mH_{2m+1} sind geradkettige Alkylreste mit n bzw. m C-Atomen. Die Codierung gemäß Tabelle B versteht sich von selbst. In Tabelle A ist nur das Acronym für den Grundkörper angegeben. Im Einzelfall folgt getrennt vom Acronym für den Grundkörper mit einem Strich ein Code für die Substituenten R¹, R², L¹ L² und L³:

L³ R^2 1 12 Code für R¹, R¹ R^2 , L^1 , L^2 , L^3 Н C_nH_{2n+1} C_mH_{2m+1} Н Н nm nOm C_nH_{2n+1} C_mH_{2m+1} Н Н H 30 OC_mH_{2m+1} Н Н nO.m C_nH_{2n+1} Н C_nH_{2n+1} Н Н CN Η n nN.F C_nH_{2n+1} Н F CN Н C_nH_{2n+1} Н F F nN.F.F CN 35 nF C_nH_{2n+1} F H Н Н nOF OC_nH_{2n+1} Н Н Н

	nF.F	C_nH_{2n+1}	F	Н	Н	F
	nmF	C_nH_{2n+1}	C_mH_{2m+1}	F	Н	Н
	nOCF ₃ / nOT	C_nH_{2n+1}	OCF3	Н	Н	Н
5	n-Vm	C_nH_{2n+1}	-CH=CH-C _m H _{2m+1}	Н	Н	Н
	nV-Vm	C_nH_{2n+1} -CH=CH-	-CH=CH-C _m H _{2m+1}	Н	Н	Н

ME HP 5 os D 10 PDX PYP 15 K3[·]n CE 20 HD CBC CCPC 30 CPTP PTP 35

CM 45

35

CM 44

10

20

$$C_8H_{17}$$
 C_8H_{17}
 C_8H_{18}
 C_8H_{19}
 C_8H

$$C_3H_7$$
 H H O O

R/S 3011

25 <u>Tabelle D</u>

Geeignete Stabilisatoren und Antioxidantien für flüssigkristalline Mischungen sind nachfolgend genannt (n = 0 - 10, endständige Methylgruppen sind nicht gezeigt):

35

$$C_nH_{2n+1}$$
 O OH

5

$$C_nH_{2n+1}$$
 H O OH

10

15

20

25

Die folgenden Beispiele sollen die Erfindung erläutern, ohne sie zu begrenzen.

Vor- und nachstehend bedeuten Prozentangaben Gewichtsprozent. Alle
Temperaturen sind in Grad Celsius angegeben. Fp. bedeutet
Schmelzpunkt, Kp. = Klärpunkt. Ferner bedeuten K = kristalliner Zustand,
S = smektische Phase, N = nematische Phase, Ch = cholesterische Phase
und I = isotrope Phase. Die Angaben zwischen diesen Symbolen stellen
die Übergangstemperaturen dar.

35

Ferner werden folgende Abkürzungen verwendet

Δn optische Anisotropie bei 589 nm und 20 °C

ne außerordentlicher Brechungsindex bei 589 nm und 20 °C

Δε dielektrische Anisotropie bei 20 °C

5 ε_{||} Dielektrizitätskonstante parallel zu den Moleküllängsachsen

 γ_1 Rotationsviskosität [mPa · sec], soweit nicht anders angegeben bei 20 °C

λ Reflektionswellenlänge [nm], soweit nicht anders angegeben bei 20 °C

Δλ maximale Schwankung der Reflektionswellenlänge [nm] im angegebenen Temperaturbereich, soweit nicht anders angegeben zwischen -20 und +70 °C

Das Verdrillungsvermögen HTP (engl. "helical twisting power") einer chiralen Verbindung, die in einer flüssigkristallinen Mischung eine helikal verdrillte Überstruktur erzeugt, ist gegeben durch die Gleichung HTP = (p·c)⁻¹ [μm⁻¹]. Darin bedeutet p die Helixganghöhe der helikal verdrillten Phase in μm und c die Konzentration der chiralen Verbindung (ein Wert von 0,01 für c entspricht beispielsweise einer Konzentration von 1 Gew.%). Sofern nicht anders angegeben, beziehen sich vor- und nachstehende HTP-Werte auf eine Temperatur von 20 °C und die kommerziell erhältliche neutrale nematische TN-host-Mischung MLC-6260 (Merck KGaA, Darmstadt).

Beispiel 1

Eine cholesterische Mischung enthält 97.53 % einer nematischen Komponente A bestehend aus

	PCH-3N.F.F	13.0 %	Kp.	89,5
	ME2N.F	10.0 %	Δn	0,1293
30	ME3N.F	10.0 %	n _e	1.6241
	ME4N.F	13.0 %	Δε	
	HP-3N.F	5.0 %	·	
	HP-4N.F	5.0 %		
	HP-5N.F	5.0 %		
35	CCP-2F.F.F	7.0 %		
	CCP-3F.F.F	7.0 %		

	CCP-5F.F.F	6.0 %
	CCG-V-F	3.0 %
	CCPC-33	5.5 %
	CCPC-34	5.5 %
5	CCPC-35	5.0 %

und 2.47 % einer chiralen Verbindung der Formel

und besitzt ein λ von 457 nm und $\Delta\lambda$ von 43 nm.

20

25

30

20

25

35

Patentansprüche

- Flüssigkristallines Medium mit helikal verdrillter Struktur enthaltend eine nematische Komponente und eine optisch aktive Komponente, dadurch gekennzeichnet daß die optisch aktive Komponente eine oder mehrere chirale Verbindungen enthält, deren Verdrillungsvermögen und Konzentration so gewählt sind, daß die Helixganghöhe des Mediums ≤ 1 μm ist, und das Medium eine Doppelbrechung Δn ≤ 0,16 aufweist
 - 2. Flüssigkristallines Medium mit helikal verdrillter Struktur enthaltend eine nematische Komponente und eine optisch aktive Komponente, dadurch gekennzeichnet daß

die optisch aktive Komponente eine oder mehrere chirale Verbindungen enthält, deren Verdrillungsvermögen und Konzentration so gewählt sind, daß die Helixganghöhe des Mediums ≤ 1 μm ist, und

die nematische Komponente eine oder mehrere Verbindungen der Formel I

$$R - \left\{ A^{1} \right\}_{a} A^{2} - Z^{1} - \left\{ O \right\}_{L^{2}}^{L^{1}} CN$$

30 und eine oder mehrere Verbindungen der Formel II

$$R^0 \longrightarrow H \longrightarrow O \longrightarrow X^0$$

enthält, worin

R und R⁰

jeweils unabhängig voneinander H, einen

5

unsubstituierten, einen einfach durch CN oder CF3 oder einen mindestens einfach durch Halogen substituierten Alkyl- oder Alkenylrest mit 1 bis 15 C-Atomen, wobei in diesen Resten auch eine oder mehrere CH₂-Gruppen jeweils unabhängig voneinander durch -O-, -S-,

-, -CO-, -CO-O-, -O-CO-, -O-CO-O- oder

10

-C≡C- so ersetzt sein können, daß O-Atome nicht direkt

miteinander verknüpft sind,

jeweils unabhängig voneinander

15

$$- \underbrace{H} \quad \text{oder} \quad - \underbrace{O}_{L^6}^{5}$$

20

L¹ bis L⁶

jeweils unabhängig voneinander H oder F,

 Z^1

-COO- oder, falls mindestens einer der Reste A¹ und A² trans-1,4-Cyclohexylen bedeutet, auch -CH2CH2- oder

eine Einfachbindung,

25

Y1 und Y2

jeweils unabhängig voneinander H oder F,

 X^0

F, CI, CN, halogeniertes Alkyl, Alkenyl oder Alkoxy mit 1

bis 6 C-Atomen, und

30

a und b

jeweils unabhängig voneinander 0 oder 1

bedeuten.

3. Medium nach Anspruch 2, dadurch gekennzeichnet, daß es zusätzlich eine oder mehrere Alkenylverbindungen ausgewählt aus den folgenden Formeln enthält:

5

10

$$R^3$$
 H O $Q-Y$ III2

15

worin

 A^4

1,4-Phenylen oder trans-1,4-Cyclohexylen,

d

0 oder 1,

20

R³ eine Alkenylgruppe mit 2 bis 7 C-Atomen,

25

eine Alkyl-, Alkoxy- oder Alkenylgruppe mit 1 bis 12 C-Atomen, wobei auch ein oder zwei nicht benachbarte CH2-Gruppen durch -O-, -CH=CH-, -CO-, -OCO- oder -COO- so ersetzt sein können, daß O-Atome nicht direkt miteinander verknüpft sind,

Q

CF₂, OCF₂, CFH, OCFH oder eine Einfachbindung,

30

Y F oder Cl, und

 L^1 und L^2 jeweils unabhängig voneinander H oder F

35 bedeuten.

4. Medium nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß es zusätzlich eine oder mehrere Verbindungen ausgewählt aus den folgenden Formeln enthält:

5

10

15

worin R¹ und R² eine der für R in Formel I angegebenen Bedeutungen haben und L H oder F bedeutet.

- 5. Medium nach mindestens einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß der Anteil an Verbindungen der Formel I im Gesamtgemisch 7 bis 80 Gew.-% beträgt.
- 6. Medium nach mindestens einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, daß der Anteil an Verbindungen der Formel II im Gesamtgemisch 5 bis 50 Gew.-% beträgt.

2 25

- Medium nach mindestens einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, daß der Anteil der optisch aktiven Komponente 0.01 bis 7 % beträgt.
- 8. Medium nach mindestens einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, daß es eine Reflektionswellenlänge im Bereich von 400 bis 800 nm aufweist.

30

9. Medium nach mindestens einem der Ansprüche 2 bis 8, dadurch gekennzeichnet, daß es eine Doppelbrechung $\Delta n < 0,16$ aufweist.

35

 Verwendung eines flüssigkristallinen Mediums nach mindestens einem der Ansprüche 1 bis 9 für elektrooptische Zwecke.

- 11. Elektrooptische Flüssigkristallanzeige enthaltend ein flüssigkristallines Medium nach mindestens einem der Ansprüche 1 bis 9.
- 5 12. Elektrooptische Flüssigkristallanzeige nach Anspruch 10, dadurch gekennzeichnet, daß es eine cholesterische, SSCT-, PSCT- oder flexoelektrische Anzeige ist.

15

20

A POE

30

Zusammenfassung

Die vorliegende Erfindung betrifft ein flüssigkristallines Medium mit hoher Verdrillung, seine Verwendung für elektrooptische Zwecke und dieses Medium enthaltende Anzeigen.