Exercise 1F

In questions **1** to **9**, prove the statements by contradiction.

- **1** For all $n \in \mathbb{Z}$, if n^2 is odd then n is also odd.
- 2 $\sqrt{3}$ is irrational.
- 3 $\sqrt[5]{2}$ is irrational.
- **4** For all $p, q \in \mathbb{Z}$, $p^2 8q 11 \neq 0$.
- **5** For all $a, b \in \mathbb{Z}$, $12a^2 6b^2 \neq 0$.
- **6** If a, b, $c \in \mathbb{Z}$, where c is an odd number and $a^2 + b^2 = c^2$, then either a or b is an even number
- 7 If $n, k \in \mathbb{Z}$, then $n^2 + 2 \neq 4k$.
- **8** If p is an irrational number and q is a rational number, then p + q is also irrational.

- **9** Given that *m* and *n* are positive integers, it follows that $m^2 n^2 \neq 1$.
- **10** Show by a counterexample that the following statements are not true in general:
 - **a** $(m+n)^2 \neq m^2 + n^2$
 - **b** If a positive integer is divisible by a prime number, then the number is not prime.
 - **c** $2^n 1$ is a prime number for all $n \in \mathbb{N}$.
 - **d** $2^n 1$ is a prime number for all $n \in \mathbb{Z}^+$.
 - **e** The sum of three consecutive positive integers is always divisible by 4.
 - **f** The sum of four consecutive positive integers is always divisible by 4.

1) Assume that if n is even then no is odd

$$n = \lambda k, k \in Z^+$$

: Hence, if n is even , then n^2 is even . This show

contradiction with the initial assumption.

2) Assume
$$\sqrt{3} = \frac{P}{q}$$
; $P, q \in \mathbb{Z}, q \neq 0$, $P \neq Q$ can't have common factors,

$$\int_{3}^{3} = \frac{\rho}{q}$$

$$3 = \frac{\rho^{2}}{q^{2}}$$

$$3\varrho^2 = \rho^2 \Rightarrow \rho = 3k$$
; p is divisible by 3

$$q^2 = 3k^2 \Rightarrow q^2$$
 is divisible by 3; q is divisible by 3

.. p and q are both divisible by 3. Hence they have 3 as their common factor.

This contradicts with the initial assumption. Is is indeed inventional

3) Assume that 5/2 is rational,

$$5\sqrt{12} = \frac{9}{9}$$
; P, $9 \in \mathbb{Z}$, $9 \neq 0$, p and q can't have a common factor

$$5\sqrt{2} = \frac{p}{q}$$

$$\lambda = \frac{1}{q^5}$$

$$q^5 = 16k^5 \Rightarrow q = 16m$$
; q is divisible by 16

16 and 2 have 2 as their common factor. Thus, p and 2

have has their common factor. This contradicts the

intial assumption. 5,12 is indeed irrational.

4) Assume that
$$p^2 - 8q - 11 = 0$$
; p.q $\in \mathbb{Z}$

$$(2k+1)^2 = 89 + 11$$

:. Uts is an even number but RHS is a old number

contradiction happens. hence $p^2 - 8q - 11 \neq 0$

5) Assume that
$$12a^2 - 6b^2 = 0$$
; $a.b \in 7101$

: Contradiotion occurs. J2 is irrational.

$$\lambda a^2 = b^2$$

Hence 12a2-662 \$6

$$\beta = \frac{Q_0}{P_3}$$

$$\sqrt{2} = \frac{6}{9}$$

6) Assume that $a^2 + b^2 = C^2$ where a or b is even when c is odd,

case (i)

a + b = c = C

case D

 $a^2 + b^2 = c^2$

 $(2p)^{2}+(2q+1)^{2}=(2r)^{2}$

 $(2p+1)^{2}+(2q+1)^{2}=(2r)^{2}$

 $4p^2 + 4q^2 + 4q + 1 = 4r^2$

4p2+4p+1+4q2+4q+1=4n2

 $4p^2 + 4q^2 - 4r^2 + 4q = -1$

4p2+4p+4q2+4q-4v2=-2

2(202+292-202+29)=-1

2p2+2p+2q2+2q-2r2=-1

2(p2+ p +q2+q-r2) = -1

.. For both cases, LHs is even but RHS is old. Contradiction.

7) Assume that $n^2 + \lambda = 4k$; $n,k \in \mathbb{Z}$

 $N^2 + \lambda = 4k$

n2 = 4k-2

 $n^2 = \lambda(2k-1) \Rightarrow n$ is even; $n = \lambda k$

 $(2k)^2 = 2(2k-1)$

262 = 26-1

.. LHS is even but RHS is odd. Contradiction.

12 + 2 + 4k

8) Assume that
$$P+Q = \frac{a}{b}$$
; $a,b \in \mathcal{F}$, $p \in Q$ and $q \in \bar{Q}$

$$P + Q = \frac{Q}{b}$$

$$\frac{c}{d} + q = \frac{a}{b}$$
; $c, d \in \mathbb{Z}$

$$q = \frac{a}{b} - \frac{c}{d}$$

$$q = \frac{ad - cb}{bd}$$

:. 9 was assumed to be irrational but we got 9 as rational.

Contradiction occurs.

9) Assume that $m^2 - n^2 = 1$; $m, n \in \mathbb{Z}^+$

 $(m-n)(m+n)=1 \Rightarrow (m-n)$, (m+n) could only be 1 or -1 at a time

case 0,	cuse 2,	
m-h = - m+n = -	M-n:1 M+h = 1	" N = 0 , N = -1
M = h - 1 M = -h - 1	m = n+1	Contradiction
h-1 = -h-1	h+1 = 1 - n	
2n = 0	Jr = -J	
h = 0	h a -]	

(a)
$$(m+n)^2 \neq m^2+n^2$$

LHS =
$$(1+0)^2$$
 RHS = $1^2 + 0^2$

:. By counterexample:
$$m = 1$$
, $n = 0$

the statement is NOT TRUE

prime number = 3

$$\frac{3}{3} = 1$$

.. Positive integer which is 3 is divisible by a prime

humber 3. But 3 (the positive integer) is a prime

number too. Hence, the Statement is NOT TRUE.

:. When n = 4, 2n-1 is 15 which is not a prime

humber. Hence the statement is NOT TRUE.

.. When n = 4, 2 n-1 is 15 which is not a prime

humber. Hence the statement is NOT TRUE.

$$= 3k + 3$$

$$3(2) + 3$$

let k = 1,

4(1)+6 : not divisible by 4