ГОМОЛОГИЧЕСКАЯ АЛГЕБРА

Андрей Вячеславович Семёнов

КОНСПЕКТ ЗА АВТОРСТВОМ ПАВЛА ЦЫГАНЕНКО И ЛЬВА МУКОСЕЕВА

Содержание

1.	Кольца и модули	1
	1.1. Групповые алгебры	
	1.2. Радикал алгебры	2
	1.3. Радикал модуля	

1. Кольца и модули

1.1. Групповые алгебры

Определение 1: Групповая алгебра группы G над полем k:

$$kG = \langle \left\{ e_g \mid g \in G \right\} \rangle_k$$

То есть её элементы – формальные комбинации вида $\sum_{g\in G} \alpha_g g$, где ненулевых α конечное число. Сложение и умножение задаются следующим образом:

$$\sum_{g \in G} \alpha_g g + \sum_{g \in G} \beta_g g = \sum_{g \in G} \bigl(\alpha_g + \beta_g\bigr) g,$$

$$\left(\sum_{g \in G} \alpha_g g\right) \cdot \left(\sum_{g \in G} \beta_g g\right) = \sum_{g \in G} \left(\sum_{xy = g} \alpha_x \beta_y\right) g.$$

Пока я не разберусь как нормально писать $_{R}M$, буду писать M_{R} вне зависимости от того, правый модуль или левый.

Определение 2: Модуль M_R называется простым, если он не содержит нетривиальных собственных подмодулей.

Определение 3: Модуль M_R называется полупростым, если любой его подмодуль выделяется прямым слагаемым.

To есть $\forall N \leqslant M : \exists P \leqslant M : M = M \oplus N$.

Замечание:

1. M полупрост $\Longleftrightarrow M = \bigoplus_{i \in I} M_i$, где все M_i простые.

2. Кольцо называется полупростым, если оно полупросто как левый модуль над собой. Без доказательства скажем, что это эквивалентно тому, что любой левый R-модуль полупрост.

Следующую теорему вам должны были доказать в школьном курсе по некоммутативным кольцам.

Теорема 1 (Веддерберна — Артина): Если R артиново, то

$$R$$
 – полупростое $\Longleftrightarrow R = \prod_{j \in I} M_{n_j} ig(D_j ig), \quad D_j$ – тела.

То есть полупростое артиново кольцо разлагается в прямое произведение матричных колец над телами, и в предположении артиновости обратное тоже верно.

Теорема 2 (Машке): Пусть k – поле, $|G| < \infty$, char k = 0 или char $k \nmid |G|$. Тогда kG – полупростая алгебра.

Доказательство: Покажем, что произвольный модуль M над kG полупрост. Рассмотрим $N \leqslant M$ и стандартные отображения

$$N \rightarrowtail M \stackrel{\tilde{\pi}}{\twoheadrightarrow} N.$$

Определим усреднение $\tilde{\pi}$:

$$\pi(x) = \frac{1}{|G|} \sum_{g \in G} g \tilde{\pi}(g^{-1}x).$$

• $\pi - kG$ -линейный гомоморфизм. Действительно, для $h \in G$ проверим, что $\pi(hx)h\pi(x)$, а остальное и так понятно.

Обозначим $t = h^{-1}g$, тогда

$$\pi(hx) = \frac{1}{|G|} \sum_{g \in G} g\tilde{\pi}(g^{-1}hx) = \frac{1}{|G|} \sum_{t \in G} ht\tilde{\pi}(t^{-1}x) = h\pi(x).$$

• N неподвижен под действием π . Действительно, если $x\in N$, то $g^{-1}x\in N$ и $\tilde{\pi}(g^{-1}x)=g^{-1}x$, так что теперь всё ясно.

Тем самым, $M = N \oplus \operatorname{Ker} \pi$.

1.2. Радикал алгебры

Далее под A подразумевается конечномерная алгебра над полем k.

Определение 4: Paдикалом J(A) называется сумма всех двухсторонних нильпотентных идеалов.

Теорема 3:

- 1. J(A) нильпотентный идеал в A.
- 2. Любой нильпотентный идеал лежит в J(A).
- 3. J(A/J(A)) = 0

Доказательство:

1. Во-первых, сумма двух нильпотентных двухсторонних идеалов тоже нильпотентный двухсторонний идеал. Действительно, если $I_1^{n_1}=0$ и $I_2^{n_2}=0$, то $\left(I_1+I_2\right)^{n_1+n_2}$ порождается всеми произведениями длины n_1+n_2 элементов из I_1+I_2 , но раскрывая скобки получится либо не менее n_1 множителей из I_1 , либо не менее n_2 из I_1 , а значит $\left(I_1+I_2\right)^{n_1+n_2}=0$. Понятно, что вместо n_1+n_2 можно было взять $\max(n_1,n_2)$.

Во-вторых, можно считать, что в сумме из определения J(A) конечное число идеалов, потому что алгебра конечномерна.

2. Если идеал двухсторонний, то всё ясно. Допустим I – левый идеал и $I^k=0$. Тогда IA – двухсторонний. Покажем, что $IA\subseteq J(A)$ и так как алгебра с единицей, из этого будет следовать искомое.

$$(IA)^k = I(\underbrace{AI)...(AI)}_{k-1}A \subseteq I^kA = 0.$$

1. Рассмотрим двухсторонний нильпотентный идеал \overline{I} в A/J(A). Пусть $\overline{I}^k=0$. Тогда $I^k\subseteq J(A)$. По первому пункту теоремы J(A) нильпотентен, скажем, $J^n(A)=0$.

$$I^{kn} \subseteq J^n(A) = 0 \implies I^{kn} = 0.$$

По второму пункту I лежит в J(A), а значит $\overline{I}=0$.

 Φ акт: A полупроста $\iff J(A) = 0$.

1.3. Радикал модуля

Сейчас мы будем работать с модулями над конечномерной алгеброй над полем.

Определение 5: Paдикалом модуля M называется пересечение всех его максимальых подмодулей и обозначается как $\mathrm{Rad}\,M$.

Лемма 1: M полупрост $\Longrightarrow \operatorname{Rad} M = 0$.

Доказательство: Допустим существует $x\in \mathrm{Rad}\, M\setminus \{0\}$. Как и всякий подмодуль, Ax можно выделить в прямую сумму: $M=A\oplus U$. Если рассмотреть стандартный эпиморфизм $A\to Ax: 1\mapsto x$, то станет очевидно, что $Ax\cong A/\mathrm{ann}\, x$. Вложение ann x в максимальный идеал I, его содержащий, индуцирует эпиморфизм $A/\mathrm{ann}\, x \twoheadrightarrow A/I$, причём S:=A/I – простая алгебра. Имеем

$$M \stackrel{\pi}{\twoheadrightarrow} M/U \cong Ax \cong A/\operatorname{ann} x \stackrel{f}{\twoheadrightarrow} S,$$

так что будем считать, что $f\pi:M\to S$. Положим $N:=\mathrm{Ker}\, f\pi$, тогда так как $M/N\cong S$, то N – максимальный подмодуль. $U\subseteq N$ по построению и $x\in N$ по определению радикала. Тогда $M=Ax+U\subseteq N$. Противоречие.

<u>Замечание</u>: Мы не пользовались конечномерностью, так что на самом деле это верно для модулей над любым ассоциативным кольцом с единицей.

Перед тем как доказать следующую теорему, упомянем факт, который на лекции был дан как упражнение.

Предложение 1:
$$X \leqslant \operatorname{Rad} M \Longrightarrow \operatorname{Rad} \frac{M}{X} = \frac{\operatorname{Rad} M}{X}.$$

Доказательство:

Теорема 4: Rad M = J(A)M.

Доказательство: Допустим, что включение слева направо уже доказано. Рассмотрим $\overline{A} \coloneqq A/J(A)$ Бля щас бы...