Prof. Dr. Leandro Alves Neves

Pós-graduação em Ciência da Computação

Processamento de Imagens Digitais

Aula 01

^a Sumário

Áreas de PDI e Relações

Fundamentos de uma Imagem Digital

Bibliografia

^E Introdução

- O principal desafio:
 - Desenvolver sistemas autônomos para reproduzir as capacidades do sistema visual humano
 - Devem ser capazes de:
 - Reagir a estímulos visuais de forma adequada ao contexto de investigação
- Necessidade de compreender o funcionamento do sistema visual dos seres humanos:
 - Capacidade de aprendizagem
 - Habilidade em realizar inferências
 - Ações baseadas em estímulos visuais

Introdução

Interação entre as diversas áreas com a mineração em banco de dados, a Visão de Computacional e a Inteligência Artificial.

^E Introdução

Etapas de um Sistema de PDI

Sistema Visual

Visão

 Responsável por aproximadamente 70% das informações recebidas pelo ser humano

Onda eletromagnética, luz:

Responsável pela sensibilização do sistema

§ Sistema Visual

- ➤ Luz: onda eletromagnética
 - >A cor definida pelo comprimento de onda

- Quanto menor o comprimento: luz mais azul
- Quanto maior o comprimento: luz mais vermelha

- Os seres humanos não podem detectar todo espectro de luz
 - Apenas Luz visível

Sistema Visual

- Percepção
 - Luz cromática
 - Envolve o espectro de energia eletromagnética visível

Valores aproximados: Azul: 380 nm; Verde: 540 nm; Vermelho: 780 nm

Sistema Visual

Percepção

- 1931
 - Comissão Internacional de Iluminação (CIE, do francês Commission Internationale de l'Eclairage)
 - Padronização do Sistema de representação do espaço de cores – Cores primárias de luz
 - Cores nas faixas vermelha, verde e azul do espectro visível.
 - □ Valores específicos como comprimentos de onda das três cores primárias

Azul: 380 nm

Verde: 540 nm

Vermelho: 780 nm

Detecção de Objeto

➤A detecção de um objeto envolve:

Líquido transparente e gelatinoso

O olho humano é um sistema de imagem completo e complexo.

http://optometriabrasilinfo.blogspot.com.br/2016/07/definicao-para-que-imagem-fique-nitida.html

Acomodação: Processo no qual a lente muda de forma para focar objetos

Retina:

- Membrana que reveste a parede mais interna do olho;
 - Detecta e decodifica as informações em sinais neurais
 - Centro da retina existe a fóvea: capacidade de discriminação de detalhes finos – visão nítida.

Composição da Retina

Cones: de 6 a 7 milhões

Localizados na fóvea, sensíveis a luz

•Cada cone está conectado ao seu nervo final (discriminação de

detalhes finos).

•Bastonetes: de 75 a 150 milhões

- Distribuídos sobre a superfície da retina
- •Conectados via um único nervo (reduz discriminação de detalhes)
- •Visão geral da imagem, sensíveis aos baixos níveis de iluminação.

Sistema Visual

Bastonetes são em maior número e ocupam a maior parte da retina

FIGURE 2.2 Distribution of rods and cones in the retina.

- □ Cones (6 a 7 milhões, três principais categorias):
- □ Sensíveis ao vermelho (65%), Verde (33%) e Azul (2%).

Cores primárias de luz

Combinação dos componentes primários: outras cores

Percepção Visual:

- Lentes convexas para produzir uma imagem no fundo do olho;
- •Imagem do objeto produzida do lado oposto da lente:
- Invertida e inversamente proporcional à distância entre o objeto e o olho

•Percepção Visual:

FIGURE 2.3
Graphical representation of the eye looking at a palm tree. Point *C* is the optical center of the lens.

$$\frac{15}{100} = \frac{x}{17}$$

$$x = 2,55 \, mm$$

PID

Sistema Visual: Percepção x Interpretação

Padrões

Definidos a partir de informações incompletas ou ambíguas

 Sistema Visual e Cérebro: Busca estabelecer e reconhecer Padrões

Identificação de padrões familiares nas

imagens

 Proximidade, Similaridade e Continuidade

c. Continuidade

Figura ou fundo?

Jovem ou velha?

As linhas estão perfeitamente alinhadas? Sim.

Campo ou face?

Estático ou dinâmico

Pessoas ou animais?

Idosos ou pessoas em um ambiente?

Exercícios

- 1. Uma imagem de 1,5m está localizada a uma distância de 400m do olho humano (ponto C). Para visualização, o centro focal C deveria ser ajustado em 14 mm:
 - Caso 1: O indivíduo teve a imagem projetada antes da retina (12 mm) em razão de uma patologia. Determine o tamanho da imagem real e quanto de distorção aproximada o objeto têm a partir da condição exposta;
 - Caso 2: O indivíduo teve a imagem projetada após a retina, cerca de 16 mm. Determine o tamanho da imagem real e quanto de distorção aproximada o objeto têm a partir da condição exposta.

•

Algumas Referências

González, R. C., Woods, R. E. Processamento de Imagens Digitais. São Paulo: Edgard Blücher Itda, 2000.

Leitura: capítulo 1; capítulo 2 até o tópico 2.1.2

 Conci, A., Azevedo, E., Leta, F. R. Computação Gráfica: Teoria e Prática. Rio de Janeiro: Elsevier, vol. 2, 2008.

Material de apoio