B. FLUSSO DEL CAMPO ELETTRICO, LEGGE DI GAUSS

a) CASO 1: Corice 9 interne elle superficie d 5.

Consideriano un elementino di superficie d'I ed indichiamo con du l'ANGOLO SOLIDO solto ai tale superficie d'E à viste dolle corice q.

, dove z à la distance de q , och superficie $d\Sigma$ Per definizione, l'ongolo solidadu è: $d\omega = \frac{d\Sigma'}{\sigma^2}$

Il flusso del veltore E attroverso l'elemento di superficie d'E è, per definizione:

$$d\Phi_{\Sigma}(\vec{E}) = \vec{E} \cdot \hat{A} d\Sigma = E \cos\theta d\Sigma = E d\Sigma'$$

poiché cosod = (d) poiché É à octogonale a d E ed m a d E a O à compresso tra É ed m.

Esprimiens ora É con la Legge di Coulomb e 121 con l'ANGOLO SOLIDO:

$$d\Phi_{\Sigma}(\vec{E}) = Ed\Sigma' = \frac{1}{4\pi\epsilon_0} \frac{9}{R} \cdot \chi' d\omega = \frac{9}{4\pi\epsilon_0} d\omega$$

Queste espressione NON DIPENDE de ? (distante delle corice) e NON DIPENDE doll'elemento di superficie d I, HK SOLO DALL'ANGOLO SOLIDO W.

Quindi:

Qualunque sie la forme della superficie considerate e le distance della carica interna dolla superficie, le FLUSSO del CAMPO ELETTRICO È attraverso la superficie d & he SEMPRE LO STESSO VALORE.

Calcaliamo il flusso totale integrando sull'angolo solido:

$$\Phi_{\Sigma}(\vec{E}) = \int d\Phi_{\Sigma}(\vec{E}) = \frac{9}{4\pi\epsilon_{o}} \int d\omega = \frac{9}{4\pi\epsilon_{o}} \cdot 4\pi = \boxed{\frac{9}{\epsilon_{o}}}$$

o dw = 411, poiché l'ANGOLO SOLIDO TOTALE sotto au à viste una superficie chiuse qualunque de un punto ell'interno è 40.

b) CASO 2: Corica 9 ESTERNA elle superficie chiuse

Se la CARICA à ESTERNA alla superficie, il FLUSSO TOTALE à ZERO, poiché le flusso infinitesimale dipendre solo dall'ongolo soliolo e mon dalle distance dalla corica (e dalla forme delle superficire infinitesimale), pertonto 14 FLUSSO che entre melle superficie

Perteuto, si ha:

$$d\Phi_1(\vec{E}) + d\Phi_2(\vec{E}) = 0$$

$$d\overline{\Sigma}_{2}(\overline{E}) = \overline{E} \cdot \hat{\mathbf{n}} d\Sigma_{2} = \frac{9}{4\pi\epsilon_{0}} d\omega = -d\overline{\Sigma}_{1}(\overline{E})$$

In conclusione, il flusso totale ascente de una superficire chiuse del compo elettrico generato de una CARICA PUNTIFORME ESTERNA alla superficire è scurpre mullo.

In generale, ste ho un sisteme discreto di m coriche DENTRO una superficie chiusa, il flusso totale è date dalla somme dei flussi qi generati de gni corice:

TEOREMA DI GAUSS
$$\longrightarrow$$
 $\Phi_{\Sigma}(\vec{E}) = \sum_{i} \frac{q_{i}}{\epsilon_{0}}$

Partiono doll'orgalo piono: rapporto tre orco di circonferenze S e raggio r.

:
$$d\theta = \frac{ds}{dr}$$

Si puo estendere ad un tratto des formante l'angolo & con de :

$$d\theta = \frac{ds}{\pi} = \frac{ds'\cos x}{\pi}$$

d è onche l'angolo formats tre la normalé a d's e la mormale a d's!

con
$$\phi \in [0, 2\pi]$$

$$\Theta \in [0, \pi]$$
In Coordinate Polari

L'ANGOLO SOLIDO INFINITESIMO d'Il à définite come segue: date une superficie $d\Sigma$ e la sua projetione $d\Sigma_0$ ortogonale al raggio uscente de un punto O e passonte per dZi si chieme ANGOLO SOLIDO la quantite:

$$d\Omega = \frac{d\Sigma \cos d}{r^2} = \frac{d\Sigma_{10}}{r^2}$$

Le superficie di d\(\int_0\) i un elemento di colotte sferice e le sue orce voile, mel sistema di coordinate polori:

poiché, per la définizione di orgolo piero: $d\theta = \frac{AB}{re}$ e $d\phi = \frac{AD}{o|A} = \frac{AD}{re sim \theta}$

Dunque, L'ANGOLO SOLIDO è:

$$d\Omega = \frac{d\Sigma_0}{\alpha^2} = \frac{\alpha^2 \sin \theta d\theta d\phi}{\alpha^2} = \frac{\sin \theta d\theta d\phi}{\cos \theta}$$

* de NON DIPENDE del reggio re.

Geometriconnente, così come l'angolo piono de una misura della porte di piono compresa tre 2 semirette ascenti de 0,

L'ANGOLO SOLIDO de una misura della PARTE DI SPAZIO Compresa entro un fescio di semiratte uscenti da O.

Per une superficie finite:

Se, con O costoute, si fe vorcione & de 0 e 211:

Se si fa voulore d' de 0 a TT (coordinate sferiche):

$$\Omega = \begin{cases} \sin \theta d\theta & \sin \theta d\theta = 2\pi \left[\cos(\theta) - \cos(\pi)\right] = 4\pi \end{cases}$$

$$\theta = 0 \qquad \phi = 0$$

Q=411 & Volido per OGNI SUPERFICIE CHIUSA CHE RACCHIUDA O

Cioè: l'ongolo solido sotto cui un punto interno e une superficie chiuse vede la superficie è sempre 4th, che è il volore massimo di 12.

· TEORERA DI GAUSS IN UN SISTEMA DI CARICHE:

Consideriono un sistema discreto di corriche puntiformi. Spruttonolo il PRINCIPIO DI SOVAMPROSIZIONE e la propriété odditive d'egli integrali, il Fausso di É generato de um sisteme discreto di coriche è doto da:

 $\overline{P}(\overline{E}) = \oint \overline{E} \cdot \hat{m} d\Sigma = \oint (\overline{\Sigma} \overline{E}_{i}) \cdot \hat{m} d\Sigma = \sum_{i} \oint \overline{E}_{i} \cdot \hat{m} d\Sigma$ $\overline{\Gamma} \text{ simpoli integrali } \oint \overline{E}_{i} \cdot \hat{m} d\Sigma \text{ hound 2 possibility: } \oint \overline{E} \cdot \hat{m} d\Sigma = \begin{cases} \underline{q}_{i} & \text{se } q_{i} \in \Sigma \\ 0 & \text{se } q_{i} \notin \Sigma \end{cases}$ $\Rightarrow \text{ Impluiscond of plusso } \overline{P}(\overline{E}) \text{ sold be could interne oble superficie } \Sigma, quindi:$

 $\vec{\Phi}\left(\vec{E}\right) = \sum_{i} \frac{(\mathbf{q}_{i})_{im}t}{\varepsilon_{o}}$

Se invece considerious une DISTRIBUZIONE CONTINUA di corriche, con densité spoziale p(x,y,z), si he:

 $\overline{\Phi}(\overline{E}) = \frac{1}{\varepsilon_o} \int P(x,y,\overline{x}) dx$

poiché la deusité spaziale à définite come $f(x,y,\pm) = \frac{dq}{dt}$, dave $dt \in l$ volume imfinitesimo reacchiuso de $d\Sigma$.

> (p(x,y,z) dr = Corice Totale contembre in)

• Il CAMPO ELETTRICO É le generato de tutte le corrèche (sie Interne che esterne),

Il Flusso di É, $\Phi(\vec{\epsilon})$ è dipendente solo dolle CARICHE INTERNÉ!

APPLICATION DI GAUSS CON SIMMETRIE

Divente utile per DETERHINARE il CAMPO ELETTRICO È se le distribuzione di corice che genera il compo ha una certa simuetria (sferio, cilindrica, piona). Si puo imdividuore facilmente la directione delle linee di forza a quindi trovore della SUPERFICI CHIUSE mei cui punti il compo è porollalo oppura ortogonale alla superficie stessa, per cui i contributi:

Se, inoltre, il compo elettrico È è costante in modulo melle Jone Im cui È // m:

$$\overline{\Phi}(\overline{E}) = \oint \overline{E} \cdot A d\Sigma = E / \Sigma = \frac{9}{\epsilon_0}$$

De cui si reicoire il modulo del compo:

$$E = \frac{9}{\varepsilon_0 n \Sigma}$$

dove 9 è le corice poste ALL'INTERNO delle SUPERFICIE CHIUSA I.

· Esempio 3.1 (Superficial Species):

Une corice qui distribuite con densité superficiele costente o su une superficie sferice di raggio R. Calcolore É all'interno e all'esterno delle superficie.

Colcoliono prime il compo all'esterno (re>R). Poiché or è uniforme e per le principio di sovrepposizione, il compo È mel punto P è RADIALE.

In quelsiesi eltro punto olle stesse distante di P (cisé a) ¿ la situación e le stesse.

> Il MODULO E à costreute su une superficir sferice di raggio r, à ortogonale alle superficire ed il verso dipende del segno delle carica:

$$\sigma = \frac{9}{4\pi R^2} \Rightarrow \boxed{9 = 4\pi R^2 \sigma}$$

$$\overline{\Phi}(\overline{E}) = \oint E(r) \widehat{M} \cdot \widehat{M} d\Sigma = E(r) \oint d\Sigma = E(r) \sum_{i=1}^{n} E(r) = \frac{q}{\epsilon_{0}}$$

$$= \frac{1}{\sqrt{2\pi r^2 \epsilon_0}} = \frac{\sqrt{2\pi r^2 \epsilon_0}}{\sqrt{2\pi r^2 \epsilon_0}} = \frac{\sqrt{2\pi r^2 \epsilon_0$$

- Il compo all'esterno è come se trette la corice fosse concentrate mel centro 0. Quindi mon dipende del reggio della distribuzione (R).
- Per (R < R), quindi all' INTERNO delle superficie sferice, il compo \vec{E} è sempre radiale ed ortegornele ad Σ , \underline{HA} (dovrebbe volere $E\Sigma'$ il flusso) All'INTERNO NON CI SONO CARICHE $\sum_{Thm. Gouss} \vec{\Phi}_{\Sigma'}(\vec{E}) = 0 \Rightarrow [\vec{E} = 0]$

Il POTENZIALE, si colcolo e portire de É:

· ESEMPIO 3.3 (Cilindro);

Une distributione spatiole di corice continue ed uniforme he forme cilindrice di raggio R. Colcolore il compo E che produce.

Le simuetrie delle figure, ci dice che il compo E è diretto ortogonalmente all'asse del cilindre corico.

Indhre i COSTANTE su agni superfiche cilindrice Coessiale di raggio re.

Considerious une scatole cilinatrice Si di raggio 2>R e oltetre h.

₱(Ē) lungo le besi di I è NUNO, in quouto Ē L m̂. Invece, lungo le superficie laterale do (E) = EdZ in agui punto, poiché Ellin.

$$\Rightarrow \quad \vec{\nabla}(\vec{E}) = \oint \vec{E} \cdot \hat{M} d\Sigma = \oint \vec{E} d\Sigma = \vec{E} \cdot 2\pi r \hat{M} = \frac{9}{\mathcal{E}_o}$$
Gauss

Le corice q contenute deutro
$$\Sigma$$
 è :
$$q = \int p(x_1y_1z) dx = p \pi R^2 h = \lambda h$$

Corcico contenute in un definendo le densite di corice λ come : $\lambda = \rho \pi R^2$ cilindro di raggio R a octetae h=1.

Quindi:
$$\Phi(\vec{E}) = 2\pi r h E = \frac{\lambda h}{\epsilon_0} \Rightarrow E = \frac{\lambda}{2\pi \epsilon_0 \tau} = \frac{\rho R^2}{2\epsilon_0 \tau}$$

· Un cilindres uniformemente corico genero oll'esterno un compo uguale a quello che generarabbe la stesse corice distribuite LINEARMENTE sull'asse del cilindre (UN FILO).

Per r<R: $\Phi_{\Sigma}(\vec{E}) = E\Sigma = 2\pi r h E = \frac{9}{\epsilon}$

dove 9' e' le corice contenute in un cilindro di reggio più piccolo del cilindro corico di reggio R: 9' = (pdV = pThr2 = pThR2 r2 = [\lambda h r2] $q' = \int \rho dV = \rho \pi h R^2 \frac{re^2}{R^2} = \left| \lambda h \frac{re^2}{R^2} \right|$

Per cui:
$$E = \frac{9!}{2\pi\epsilon_0 hR} = \frac{\rho\pi hR^2}{2\pi\epsilon_0 hR} = \frac{\rho R}{2\epsilon_0} = \frac{\lambda R}{2\pi\epsilon_0 R^2}$$

Il compo E cresce LINEARMENTE de O sull'esse del cilindre filmo e

DIER per re=R.

All'ESTERNO decresa come 1/2; imoltre è continuo per 2=R.

Per quauto riguarda le DIFFERENZA DI POTENZIALE:

$$V(n) - V(R) = \int_{R}^{R} E dn = \int_{R}^{R} \frac{\lambda n}{2\pi \varepsilon_0 R^2} dn = \frac{\lambda}{4\pi \varepsilon_0 R^2} \left(R^2 - \pi^2\right)$$

$$V(r_1) - V(r_2) = \int_{r_1}^{r_2} E dr = \int_{r_1}^{r_2} \frac{\lambda}{2\pi\epsilon_0 r} dr = \frac{\lambda}{2\pi\epsilon_0} \frac{\log\left(\frac{r_2}{r_{11}}\right)}{2\pi\epsilon_0}$$

Quinoli, riferite al bordo (Pres=R):

$$V(R) - V(r) = \frac{\lambda}{2\pi\epsilon_0} \log\left(\frac{r}{R}\right) \implies V(r) - V(R) = -\frac{\lambda}{2\pi\epsilon_0} \log\left(\frac{r}{R}\right)$$

- Log (r)

· Escupio 3.4 (Piono Corco):

Colcolore il compo È genesseto da une corice distribuite con deusete superficiele o su un piono indefinito.

Per simmetrie, il compo É à OATOGONALE al PIANO. Considerions une scatale cilindrice I attraversante il piemo.

Il Flusso sulle superfici Coterali è NULLO. reinane solo quello attraverso le BASI del cilindro, dave É/Á:

poiché $\sigma = \frac{9}{5!}$, obsiemo:

$$\underline{\overline{\Phi}}_{\Sigma}(\vec{E}) = 2E\Sigma = \frac{9}{\epsilon_0} = \frac{\sigma\Sigma}{\epsilon_0} \Rightarrow E = \frac{\sigma}{2\epsilon_0}$$

Dunque, sie l'assex déretto come m, si he:

$$\vec{E}(\times 70) = \frac{\sigma}{2E_0} \hat{m} = \vec{E_1}$$

$$\vec{E}(\times <0) = -\frac{\sigma}{2E_0} \hat{m} = \vec{E_2}$$

Si he quindi, attroversondo le superficie piene pe le DISCONTINUITA:

$$\vec{E}_4 - \vec{E}_2 = \left[\frac{\sigma}{2\varepsilon_0} - \left(-\frac{\sigma}{2\varepsilon_0} \right) \right] \hat{A} = \frac{\sigma}{\varepsilon_0} \hat{A}$$

Colcolions la differenze di potenziale:

$$V(x_1) - V(x_2) =$$

$$\begin{cases} x_2 \\ Ed_x = \frac{\sigma}{2\varepsilon_0} (x_2 - x_1) \end{cases}$$

· Il reiscultato DIPENDE solo de X, ció vuol dire che le superfici equipotentiali sono PIANI PARAZZEZI alla piestre carica.

LEGGE DI GAUSS DIFFERENZIALE (div E)

Abbiens introdotto mel sequente anodo la LEGGE DI GAUSS: $\overline{\mathbb{Z}}(\overline{E}) = \sum_{i} \frac{q_{i}}{E_{o}}$ oppura come $\overline{\mathbb{Z}}_{i}(\overline{E}) = \frac{1}{E_{o}} \int_{\Sigma} f(x_{i}y_{i}z) dV$

Considerions or un possible lepipedo infinitesimo di volume dV = dxdyolz che contiene <u>ALL'INTERNO</u> une corice $dq = p(x_1y_1z)dV$.

Te Flusso di E' attraverso A'B'c'D' è;

E'. Mx dydz = E'x dydz

dove E'x è la componente x di E'.

Il FLUSSO di É attroverso ABCD è: E · (-mx) dydz = - Ex dydz, poiché la NORMALE alla superficie verso l'esterno (dq à mel volume) è - mx.

= Complessivemente: $(E_X'-E_X)$ dydz = $\frac{\partial E_X}{\partial x}$ dxdyolz = $\frac{\partial E_X}{\partial x}$ dV i if flusso tree le superfici considerale.

Cioè, espresso come sviluppo in serie fino al l'ordine di Ex.

Facendo ragionamenti analoghi sulla altre coppie di feca, sommando tutti i contributi ottenuti, si ha:

$$d\Phi = \vec{E} \cdot \hat{\mathbf{m}} d\Sigma = \left(\frac{\partial E_{x}}{\partial x} + \frac{\partial E_{y}}{\partial y} + \frac{\partial E_{z}}{\partial z}\right) dx dy dz$$

Dolle LEGGE DI GAUSS:
$$d\overline{\Phi} = \frac{dq}{\varepsilon_0} = \frac{dV \cdot p(x_1 y_1 z)}{\varepsilon_0}$$

Quindi, Misolveudo l'equazione, ottenione la RELAZIONE LOCALE che cerchiamo:

$$d\Phi = \left(\frac{\partial E_{x}}{\partial x} + \frac{\partial E_{y}}{\partial y} + \frac{\partial E_{z}}{\partial z}\right) dV = \underbrace{dV}_{E_{o}} P(x_{i}y_{i}z)$$

$$\Rightarrow \nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_o}$$

Il compo È ha DIVERGENZA diversa da Zero, Solo

NEI PUNTI Im cui ESISTE UNA DENSITA DI

CARICA

In Sostouze:
$$\nabla \cdot \vec{E} = d\vec{\Phi}$$
 in un punto P dov'é sétucto un poroble le pipedo di volume dV. __ RELAZIONE LOCALE

· DIVERGENZA IN COORDINATE CILINDRICHE:

$$\nabla \cdot \vec{E} = \frac{1}{n!} \frac{\partial (nE_n)}{\partial n} + \frac{1}{n!} \frac{\partial E_0}{\partial \theta} + \frac{\partial E_k}{\partial x}$$

DIVERGENZA IN COORDINATE SFERICHE:

$$\nabla \cdot \vec{E} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 E_r \right) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} \left(E_{\theta} \sin \theta \right) + \frac{1}{r \sin \theta} \frac{\partial E_{\theta}}{\partial \theta}$$

Escupio 3.5:

Colcolore la DIVERGENZA del compo prodotto da una corice puntiforme 9

poste mell' sugime degli assi.

$$E(r) = \frac{9}{4\pi\epsilon_0 r^2} = \frac{9}{4\pi\epsilon_0} \frac{K}{(x^2+y^2+z^2)} = \frac{K}{rc^2}$$

$$\frac{1}{2\pi\epsilon_0 r^2} = \frac{9}{4\pi\epsilon_0 r^2} \left(\frac{x^2+y^2+z^2}{4\pi\epsilon_0 r^2}\right) = \frac{9}{4\pi\epsilon_0 r^2} \left(\frac{r^2-3x^2}{r^2}\right)$$

Amalogomente,
$$\frac{\partial E_y}{\partial y} = \frac{9}{4\pi\epsilon_0 \tau^5} \left(\tau^2 - \frac{9}{3}3y^2\right)$$

$$\frac{\partial E_z}{\partial z} = \frac{9}{4\pi\epsilon_0 \tau^5} \left(\tau^2 - 3z^2\right)$$

Il Colcolo è molto più scemplice sfeuttoudo le COORDINATE POLARI STERICHE:

$$\overrightarrow{E} = \frac{9}{4\pi\epsilon_0 \tau^2} \hat{m}_{R} \implies E_{R} = \frac{\kappa}{R^2}, E_0 = 0, E_{\beta} = 0$$

Quindi:
$$\nabla \cdot \vec{E} = \frac{1}{\pi^2} \frac{\partial}{\partial \tau} \left(\tau^2 \vec{E}_R \right) = \frac{1}{\tau^2} \frac{\partial}{\partial \tau} \left(\chi^2 \cdot \vec{K} \right) = \frac{1}{\tau^2} \frac{\partial \vec{K}}{\partial \tau} = 0$$

La DIVERGENZA è mubbe avanque, traume che per r=0 dove va all'infinito: se la corica q à contenute in un volume mullo, la densité à infinite.

• Se 9 fosse distribuite con densité uniforme p deutre une piccole sfère, si $E(r) = \frac{9}{4\pi\epsilon_0} \frac{rc}{R^3} = \frac{prc}{3\epsilon_0}$

Quindi:
$$\nabla \cdot \vec{E} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(\vec{r}^2 \cdot \frac{\rho r}{3\epsilon_0} \right) = \frac{1}{r^2} \cdot \frac{\rho z^2}{\epsilon_0} = \frac{\rho}{\epsilon_0}$$
 in accordo con il Teoreme

visto in precedence.

EQUAZIONI DI MAXWELL, POISSON E LAPLACE

Con gli operatori di ROTORE e DIVERGENZA, si puo' scrivere in monière sintetie il fatto che il campo È sie conservativo e che rispetta be LEGGE DI GAUSS:

Ma, poiché soppious che $\vec{E} = -\nabla V$, possions sostituire melle Legge di Genss:

$$\nabla \cdot \vec{E} = -\nabla \cdot \nabla V = -\nabla^2 V = P = E_0$$

Operando in Coordinate cortesione, si ottiene la seguente:

$$\nabla^2 V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial x^2} = -\frac{\rho}{\epsilon_0}$$
EQUAZIONE DI POISSON

Queste EQUAZIONE DIFFERENZIALE che lege il Potendole olle DENSITA di coricer.

Se la considerious mello SPAZIO VUOTO, divente:

$$\nabla^2 V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0$$
Equazione di Laplace

Se applichiones delle CONDIZIONI AL CONTORNO: il Potenziale all'infinito fe zero così come tutte le sue derivate (quindi auche Em=0);

Se p*(x',y',z') à une fissate distribuzione di corice volumetrice in (x',y',z') a se V(x,y,t) à le potenziale in (x,y,t): la Soluzione dell'Eq. di Poisson à:

IL LARLACIANO

L'operatore $\nabla^2 = \nabla \cdot \nabla$, che im coordinate contestane è:

$$\Delta_5 = \frac{9^{\times_5}}{9_5} + \frac{9^{\circ}}{9_5} + \frac{9^{\circ}}{9_5}$$

è chiamato LAPLACIANO. Applicato ad un compo SCALARE, de lugo ad un'eltre grandezza SCALARE.

· IN COORDINATE POLARI!

$$\nabla^2 = \frac{1}{\pi^2} \frac{\partial}{\partial \tau} \left(\frac{\sigma^2 \partial}{\partial \tau} \right) + \frac{1}{\pi^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\frac{\sin \theta}{\partial \theta} \frac{\partial}{\partial \theta} \right) + \frac{1}{\pi^2 \sin \theta} \frac{\partial^2}{\partial \phi^2}$$

· IN GOODDINATE CLINDRICHE;

$$\nabla^2 = \frac{1}{\sqrt{2}} \frac{\partial \mathcal{L}}{\partial \mathcal{L}} \left(\mathcal{L} \frac{\partial \mathcal{L}}{\partial \mathcal{L}} \right) + \frac{1}{\sqrt{2}} \frac{\partial \theta_2}{\partial \theta_2} + \frac{\partial \mathcal{L}}{\partial \theta_3}$$

Si puo' applicare auche ad un VETTORE $\vec{a} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k}$; in the caso; $\nabla^2 \vec{c} = (\nabla^2 a_x) \hat{i} + (\nabla^2 a_y) \hat{j} + (\nabla^2 a_z) \hat{k}$.

Il reisultato à un VETTORE che he come componenti i Caplacioni delle componenti.

Verificare che le potenziole di una corica puntiforme poste mell'origine soddisfi l'equatrione di deplece.

$$V(r) = \frac{9}{4\pi\epsilon_0 r^2} \quad \frac{C.Polari}{\delta r} \quad \frac{\partial V}{\partial r} = -\frac{9}{4\pi\epsilon_0 r^2} \quad \frac{\partial V}{\partial \theta} = 0 \quad \frac{\partial V}{\partial \theta} = 0$$

$$\Rightarrow \nabla^2 V(x) = \frac{1}{\pi^2} \frac{\partial}{\partial x} \left(\pi^2 \frac{\partial V(x)}{\partial x} \right) = \frac{1}{\pi^2} \frac{\partial}{\partial x} \left(\pi^2 \frac{\partial}{\partial x} \left(-\frac{q}{4\pi\epsilon_0} \chi^2 \right) \right) = -\frac{1}{\pi^2} \frac{\partial}{\partial x} \left(\frac{q}{4\pi\epsilon_0} \right) = 0$$

· t semplo 3.7 (Piani Porobbeti):

Tree due pioni indefiniti, destanti de corricti con densite uniforme to e - o, e poste una corrice distribuite in tutto la spesio con densite uniforme p.

Determinarce, nelle regione comprese ter i 2 pieni, il compo e il potendiare, essumendo che sia V=0 per X=d.

L'equezione di Poisson Olipende solo de x:

$$\Delta_s \Lambda = \frac{9x_s}{5\Lambda} = -\frac{\varepsilon^o}{b}$$

Risolveudo l'equazione differenziele, si ha:

$$V(x) = A + Bx - \frac{px^2}{2\varepsilon_o}$$

Abbience de Sprentore le sequenti comolizioni imiziali: | $V(x=0) = V_0$

$$V(0) = A = V_0$$

$$V(d) = A + Bd - \frac{pd^2}{2\varepsilon_0} = 0 \Rightarrow B = \frac{pd}{2\varepsilon_0} - \frac{V_0}{d}$$

Quindi:
$$\sqrt{(x)} = \sqrt{0} + \left(\frac{pd}{2\varepsilon_0} - \frac{\sqrt{0}}{d}\right)x - \frac{px^2}{2\varepsilon_0}$$

Spentrando
$$E = -\frac{\partial V(x)}{\partial x} \Rightarrow E(x) = \frac{V_0}{d} - \frac{\rho d}{2E_0} + \frac{2\rho x}{2E_0} = \frac{V_0}{d} + \frac{\rho}{2E_0}(2x-d)$$

Soppions pero che il CAMPO tre due premi couchi è: È = & mx, quindi:

$$E(0) = \frac{\sigma}{\varepsilon_0} - \frac{\rho d}{2\varepsilon_0}$$
, $E(d) = \frac{\sigma}{\varepsilon_0} + \frac{\rho d}{2\varepsilon_0}$

Si vede che, il contributo delle corice di volume con densite p è NEGATIVO per $0 \le x < d/z$, è NULLO per $x = 0 \mid$ ed à POSITIVO per $\frac{d}{2} < x \le d$. ou!!

