.

GATE 2019 CH: CHEMICAL ENGINEERING

AI25BTECH11023 - Pratik R

1) The expenditure on the project as follows: equipment Rs.20 lakhs, salaries Rs.12 lakhs, and contingency Rs.3 lakhs.						
	,,		(GATE CH 2019)			
a) break down	b) break	c) breaks down	d) breaks			
2) The search engine	e's business model	around the fulcrum	of trust. (GATE CH 2019)			
a) revolves	b) plays	c) sinks	d) bursts			
of the first car is 5		the second car is 60 kg	same direction. The speed m/h. The number of hours (GATE CH 2019)			
a) 1	b) 2	c) 3	d) 6			
•	not to contribute, each of		or their teacher. When two to pay Rs 150 more. The			
			(GATE CH 2019)			
a) 666	b) 3000	c) 6000	d) 12000			
5) A court is to a jud	dge as is to a te	eacher.	(CATE CH 2010)			
			(GATE CH 2019)			
a) a student	b) a punishment	c) a syllabus	d) a school			
6) The police arrested four criminals - P, Q, R and S. The criminals knew each other. They made the following statement:						
P says "Q committed the crime." Q says "S committed the crime" R says "I did not do it"						
Assume only one	Q said about me is false." of the arrested four comme. Who committed the cr	mitted the crime and o	only one of the statements			
111111111111111111111111111111111111111	c. The committee the ci		(GATE CH 2019)			

a) P	b) R	c) S	d) Q
administrators	-	the total number of the	researchers in the circle and e people, the percentage of (GATE CH 2019)
	2019 CH/Fig/7i.p	ong	
		Fig. 7	
a) 0 to 15	b) 16 to 30	c) 31 to 45	d) 46 to 60
			begging as a disease which a symptom. The underlying

8) "A recent High Court judgment has sought to dispel the idea of begging as a disease which leads to its stigmatization and criminalization and to regard it as a symptom. The underlying disease is the failure of the state to protect citizens who fall through the social security net." Which one of the following statements can be inferred from the given passage?

(GATE CH 2019)

- a) Beggars are lazy people who beg because they are unwilling to work
- b) Beggars are created because of the lack of social welfare schemes
- c) Begging is an offence that has to be dealt with firmly
- d) Begging has to be banned because it adversely affects the welfare of the state
- 9) In a college, there are three student clubs. Sixty students are only in the Drama club, 80 students are only in the Dance club, 30 students are only in the Maths club, 40 students are in both Drama and Dance clubs, 12 students are in both Dance and Maths clubs, 7 students are in both Drama and Maths clubs, and 2 students are in all the clubs. If 75% of the students in the college are not in any of these clubs, then the total number of students in the college is _____.

a) 1000

b) 975

c) 900

d) 225

10) Three of the five students allocated to a hostel put in special requests to the warden. Given the floor plan of the vacant rooms, select the allocation plan that will accommodate all their requests.

Request by X. Due to pollen allergy, I want to avoid a wing next to the garden.

Request by Y: I want to live as far from the washrooms as possible, since I am very sensitive to smell.

Request by Z: I believe in Vaastu and so want to stay in the South-west wing The shaded rooms are already occupied. WR is washroom.

Fig. 10

•	n homogeneous linear end only if the determination		unknowns will have non-trivial atrix is (GATE CH 2019)
a) 1	b) -1	c) 0	d) ∞
2) The value of	the expression $\lim_{x\to\frac{\pi}{2}} t $	$\frac{anx}{x}$ is	(GATE CH 2019)
a) ∞	b) 0	c) 1	d) -1

3) Consider a rigid, perfectly insulated, container partitioned into two unequal parts by a thin membrane (see figure). One part contains one mole of an ideal gas at pressure P_i and temperature T_i while the other part is evacuated. The membrane ruptures, the gas fills the entire volume and the equilibrium pressure is $P_f = P_i/4$. If C_p (molar specific heat capacity at constant pressure), C_p (molar specific heat capacity at constant volume) and R(universal gas constant) have the same units as molar entropy, the change in molar entropy $(S_f - S_i)$ is

(GATE CH 2019)

2019 CH/Fig/3.png

Fig. 3

- a) $C_p \ln 2 + R \ln 4$
- b) $-C_p \ln 2 + R \ln 4$
- c) Rln4
- d) $C_p \ln 2$
- 4) For a single component system, vapor (subscript g) and liquid (subscript f) coexist in mechanical, thermal and phase equilibrium when

(GATE CH 2019)

- a) $u_g = u_f$ (equality of specific internal energy)
- b) $h_g = h_f$ (equality of specific enthalpy)
- c) $s_g = s_f$ (equality of specific entropy)
- d) $g_g = g_f$ (equality of specific Gibbs free energy)
- 5) For a binary nonideal A-B mixture exhibiting a minimum boiling azeotrope, the activity coefficients, γ_i (i = A, B), must satisfy

a) $\gamma_A > 1$, $\gamma_B > 1$
b) $\gamma_A < 1$, $\gamma_B > 1$
c) $\gamma_A = 1$, $\gamma_B = 1$
d) $\gamma_A < 1$, $\gamma_B < 1$
For a fully-devel
thickness of the b
along the free-str

eloped turbulent hydrodynamic boundary layer for flow past a flat plate, the 6) boundary layer increases with distance x from the leading edge of the plate, tream flow direction, as

(GATE CH 2019)

a) $x^{0.5}$

b) $x^{1.5}$

c) $x^{0.4}$

d) $x^{0.8}$

7) Consider a cylinder (dimeter D and length D), a sphere (dimeter D) and a cube (side length D). Which of the following statements concerning the sphericity (Φ) of the above objects is true:

(GATE CH 2019)

a) $\phi_{sphere} > \phi_{cylinder} > \phi_{cube}$

c) $\phi_{sphere} < \phi_{cylinder} < \phi_{cube}$

b) $\phi_{sphere} = \phi_{cylinder} = \phi_{cube}$

d) $\phi_{sphere} > \phi_{cylinder} = \phi_{cube}$

8) Prandtl number signifies the ratio of

(GATE CH 2019)

Momentum diffusivityThermalDiffusivity MassDiffusivity $\overline{ThermalDiffusivity}$

Thermal DiffusivityMomentum diffusivity Thermal Diffusivity

Massdif fusivity

- 9) Pool boiling equipment operating above ambient temperature is usually designed to operate (GATE CH 2019)
 - a) far above the critical heat flux
- c) far above the Leidenfrost point

b) near the critical heat flux

d) near the Leidenfrost point

10)	The	desired	liquid-	-phase	reaction
-----	-----	---------	---------	--------	----------

$$D + E \xrightarrow{k_1} F \quad r_F = k_1 C_D^2 C_E^{0.3}$$

 $D + E \xrightarrow{k_1} F$ $r_F = k_1 C_D^2 C_E^{0.3}$ is accompanies by an undesired side reaction

$$D + E \xrightarrow{k_2} G \quad r_G = k_2 C_D^{0.4} C_E^{1.5}$$

 $D + E \xrightarrow{k_2}^{k_2} G$ $r_G = k_2 C_D^{0.4} C_E^{1.5}$ Four isothermal reactor schemes (CSTR: ideal Continuous-Stirred Tank Reactor; PFR: ideal Plug Flow Reactor) for processing equal molar feed rates of D and E are shown in the figure. Each scheme is designed for the same conversion. The scheme that gives the most favorable product distribution is:

(GATE CH 2019)

2019 CH/Fig/10.png

11)	For a first order reaction in a porous spherical catalyst pellet, diffusional effects are the mos
	likely to lower the observed rate of reaction for

(GATE CH 2019)

- a) slow reaction in a pellet of small diameter
- b) slow reaction in a pellet of large diameter
- c) fast reaction in a pellet of small diameter
- d) fast reaction in a pellet of large diameter
- 12) A thermocouple senses temperature based on the

(GATE CH 2019)

- a) Nernst Effect
- b) Maxwell Effect
- c) Seebeck Effect
- d) Peltier Effect
- 13) The correct expression for the Colburn j-factor for mass transfer that relates Sherwood number(Sh), Reynolds number(Re) and Schmidt number(Sc) is

(GATE CH 2019)

- a) $\frac{Sh}{(Re)(Sc)^{1/3}}$ b) $\frac{Sh}{(Re)^{1/2}(Sc)}$ c) $\frac{Sh}{(Re)^{1/2}(Sc)^{1/3}}$ d) $\frac{Sh}{(Re)(Sc)}$
- 14) In the drying of non-dissolving solids at constant drying conditions, the internal movement of moisture in the solid has a dominant effect on the drying rate during

(GATE CH 2019)

- a) the initial adjustment period only
- b) the constant rate period only
- c) the falling rate period only
- d) both the initial adjustment and constant rate periods
- 15) Three distillation schemes for separating an equimolar, constant relative volatility ABC mixture into nearly pure components are shown. The usual simplifying assumptions such as constant molal overflow, negligible heat loss, ideal trays are valid. All the schemes are designed for minimum total reboiler duty. Given that the relative volatilities are in the ratio $\alpha_A:\alpha_B:\alpha_C\equiv 8:2:1$, the correct option that arranges the optimally-designed schemes in ascending order of total reboiler duty is

Fig. 15

a) I,II,III b) III,I,II c) II,I,III d) III,II,I

16) Consider the two countercurrent heat exchanger designs for heating a cold stream from $t_i n$ to $t_o ut$ as shown in figure. The hot process stream available at $T_i n$ The inlet stream conditions and overall hest transfer coefficients are identical in both the designs. The heat transfer area in Design I and Design II are respectively A_{HX}^{I} and A_{HX}^{II}

2019 CH/Fig/16.png

Fig. 16

If heat losses are neglected, and if both the designs are feasible, which of the following statements holds true:

(GATE CH 2019)

- a) $A_{HX}^{I} > A_{HX}^{II}$ $T_{out}^{I} > T_{out}^{II}$ b) $A_{HX}^{I} = A_{HX}^{II}$ $T_{out}^{I} = T_{out}^{II}$ c) $A_{HX}^{I} < A_{HX}^{II}$ $T_{out}^{I} > T_{out}^{II}$ d) $A_{HX}^{I} < A_{HX}^{II}$ $T_{out}^{I} = T_{out}^{II}$
- 17) Producer gas is obtained by

(GATE CH 2019)

- a) passing air through red hote coke
- b) thermal cracking of naphtha
- c) passing steam through red hot coke
- d) passing air and steam through red hot coke
- 18) In Kraft process, the essential chemical reagents used in the digester are

(GATE CH 2019)

- a) caustic soda, mercaptans and ethylene oxide
- b) caustic soda, sodium sulphide and soda ash
- c) quick lime, salt cake and dimethyl sulphide
- d) baking soda, sodium sulphide and mercaptans
- 19) The most common catalyst used for oxidation of 0-xylene to pthalic anhydride is

- a) V_2O_5
- b) Pd
- c) Pt
- d) Ag
- 20) In petroleum refining operations, the process used for converting paraffins and naphthenes to aromatics is

(GATE CH 2019)

- a) alkylation
- b) catalytic reforming
- c) hydrocracking
- d) isomerization
- 21) The combination that correctly matches the polymer in Group-1 with the polymerization reaction type in Group-2 is

(GATE CH 2019)

Group1

- (A) Nylon 6
- (B) Polypropylene
- (C) Polyester
- a) A-II, B-I, C-III
- b) A-I, B-III, C-II

Group-2

- (I) Condensation
- (II) Ring opening polymerization
- (III) Addition polymerization
 - c) A-III, B-II, C-I
 - d) A-II, B-III, C-I
- 22) The product of the eigenvalues of the matrix $\begin{pmatrix} 2 & 3 \\ 0 & 7 \end{pmatrix}$ is ______ (rounded off to one decimal place).

(GATE CH 2019)

23) For a hydraulic lift with dimensions shown in figure, assuming $g = 10 \text{ m/s}^2$, the maximum diameter $D_l e f t$ (in m) that lifts a vehicle of mass 1000 kg using a force of 100 N is (rounded off to two decimal places).

(GATE CH 2019)

24) The liquid flow rate through an equal percentage control valve, when fully open, is 150 gal/min and the corresponding pressure drop is 50 psi. If the specific gravity of the liquid is

		pefficient, C_{ν} , in gal/(m	in $psi^{0.5}$) is (roun	nded off to two decimal			
	Consider a sealed rig Assume that the gas p phase in the bottle constant at the system fraction of CO_2 disse	(GATE CH 2019) donsider a sealed rigid bottle containing CO_2 and H_2O at 10 bar and ambient temperature. Assume that the gas phase in the bottle is pure CO_2 and follows the ideal gas law. The liquid hase in the bottle contains CO_2 dissolved in H_2O and is an ideal solution. The Henry's constant at the system pressure and temperature is $H_CO_2 = 1000$ bar. The equilibrium mole fraction of CO_2 dissolved in H_2O is (rounded off to three decimal places). (GATE CH 2019) the solution of the ordinary differential equation $\frac{dy}{dx} + 3y = 1$, subject to the initial condition					
	y = 1 at $x = 0$, is		<i>ux</i> -	(GATE CH 2019)			
	a) $\frac{1}{3} \left(1 + 2e^{-x/3} \right)$ b) $\frac{1}{3} \left(5 - 2e^{-x/3} \right)$		c) $\frac{1}{3} \left(5 - 2e^{-3x} \right)$ d) $\frac{1}{3} \left(1 + 2e^{-3x} \right)$				
27)	the value of the comp	plex number $i^{-1/2}$ (where	e $i = \sqrt{-1}$) is	(GATE CH 2019)			
	a) $\frac{1}{\sqrt{2}}(1-i)$	b) $-\frac{1}{\sqrt{2}}i$	c) $\frac{1}{\sqrt{2}}i$	d) $\frac{1}{\sqrt{2}}(1+i)$			
28)	28) An incompressible Newtonian fluid flows in a pipe of diameter D_1 at volumetric flow rate Q. Fluid with same properties flows in another pipe of diameter $D_2 = D_1/2$ at the same flow rate Q. The transition length required for achieving fully-developed flow is l_1 for the tube of diameter D_1 , while it is l_2 for the tube of diameter D_2 . Assuming steady laminar						
	flow in both cases, th	ie rado l_1/l_2 is:		(GATE CH 2019)			
	a) 1/4	b) 1	c) 2	d) 4			
29)	are performed in a lal speed of 600 rpm. The . The actual applicat a liquid viscosity of negligible. If the pow	b-scale model with a tunche liquid viscosity is 0.0 tion has a turbine dian 0.1Pa s and a liquid d	scale model is P_1 ; and t	n and a turbine impeller d density is $1000kg/m^3$ eller speed of 600rpm, The effect of gravity is			
	a) 10^3	b) 10 ⁴	c) 10^5	d) 10^6			

30) Consider two non-interacting tanks-in-series as shown in figure. Water enters TANK 1 at qcm^3/s and drains down to TANK 2 by gravity at a rate $k\sqrt{h_1}(cm^3/s)$. Similarly, water drains from TANK 2 by gravity at a rate of $k\sqrt{h_2}\left(cm^3/s\right)$ where h_1 and h_2 represent levels of TANK 1 and TANK 2, respectively (see figure). Drain valve constant $k=4cm^{2.5}/s$ and cross sectional areas of the two tanks are $A_1 = A_2 = 28cm^2$.

At steady state operation, the water inlet flow rate is $q_{ss} = 16cm^3/s$. The transfer function relating the deviation variables $\tilde{h}_2(cm)$ to flow rate $\tilde{q}(cm^3/s)$ is,

a)
$$\frac{2}{(56s+1)^2}$$

b)
$$\frac{2}{(62s+1)^2}$$

b)
$$\frac{2}{(62s+1)^2}$$
 c) $\frac{2}{(36s+1)^2}$

d)
$$\frac{2}{(49s+1)^2}$$

31) Choose the option that correctly matches the step response curves on the left with the appropriate transfer functions on the right. The step input change occurs at time t = O.

(GATE CH 2019)

(IV)
$$\frac{K(\xi s + 1)}{(\tau_1 s + 1)(\tau_2 s + 1)} \quad K > 0, \ \xi < 0$$
$$\tau_1 > 0, \ \tau_2 > 0$$

- a) A-III, B-IV, C-II, D-I
- b) A-III, B-I, C-IV, D-II

- c) A-IV, B-III, C-II, D-I
- d) A-III, B-II, C-IV, D-I

32)	32) 100 kg of a feed containing 50 wt.% of a solute C is contacted with 80 kg of a solvent containing 0.5 wt.% of C in a mixer-settler unit. From this operation, the resultant extract and raffinate phases contain 40 wt.% and 20 wt.% of C, respectively. If E and R denote the mass of the extract and raffinate phases, respectively, the ratio E/R is					
	mass of the extract an	id rannate phases,	respectively, the rat	10 L/K 13	(GATE CH 2019)	
	a) 1/4	b) 1/2	c) 2/3	d)	1	
33)	The combination that is	correctly matches	the process in Group	o-1 with the	entries in Group-2	
	13				(GATE CH 2019)	
]	A) Wulff process B) Sulfite process C) Solvay Process D) Frasch process		I) Sulfur mini II) Sods ash pi III) Acetylene p IV) Pulp produc	roduction production		
	a) A-II, B-IV, C-III, I b) A-III, B-IV, C-II, I		c) A-IV, B-I, 0 d) A-II, B-I, 0			
	34) If x,y and z are directions in a Cartesian coordinate system and i,j and k are the respective unit vectors, the directional derivative of the function $u(x, y, z) = x^2 - 3yz$ at the point $(2, 0, -4)$ in the direction $(i + j - 2k) / \sqrt{6}$ is (rounded off to two decimal places). (GATE CH 2019)					
33)	Two unbiased dice a probability that the su off to two decimal plants	im of the outcomes	_		4 is(rounded	
36)	The Newton-Raphson If the initial guess for	r the root is 0, the			•	
37)	off to three decimal p Carbon monoxide (Co 800 K and a constant	O) reacts with hyd) at a const	(GATE CH 2019) ant temperature of	
		CO + F	$H_2S \rightleftharpoons COS + H_2$			
	The Gibbs free energy $R = 8.314$ J/(mol K). initially only 4 mol of at equilibrium is	Both the reactants $f H_2 S$ and 1 mol of	and products can be CO are present, the	e assumed to extent of th	be ideal gases. If e reaction (in mol)	
38)	For a given binary s m^3/mol) is given by: fractions of compone m^3/mol) at $x_A = 0.5$ i	$v = 30x_A + 20x_B +$ ents A and B, resp	$x_A x_B (15x_A - 7x_B)$, ectively. The volum	where x_A and the change of	x_B are the mole	
	m $/moi)$ at $x_A = 0.5$ 1	5(TOUTIGEC	on to one decimal	pracej.	(GATE CH 2019)	

39) Consider a vessel containing steam at $180^{\circ}C$ The initial steam quality is 0.5 and the initial volume of the vessel is $1m^3$. The vessel loses heat at a constant rate q under isobaric conditions so that the quality of steam reduces to 0.1 after 10 hours. The thermodynamic properties of water at $180^{\circ}C$ are (subscript g: vapor phase; subscript f: liquid phase):

specific volume:
$$v_g = 0.19405m^3/kg$$
, $v_f = 0.001127m^3/kg$; specific internal energy: $u_g = 2583.7kJ/Kg$, $u_f = 762.08kJ/Kg$; specific enthalpy: $h_g = 2778.3kJ/Kg$, $h_f = 763.21kJ/Kg$.

The rate of heat loss q (in kJ/hour) is _____(rounded off to the nearest integer).

(GATE CH 2019)

40) A fractionator recovers 95 mol % n-propane as the distillate from an equimolar mixture of n-propane and n-butane. The condensate is a saturated liquid at 55 °C. The Antoine equation is of the form, $\ln\left(P^{sat}\left[inbar\right]\right) = A - \frac{B}{T[inK]+C}$, and the constants are provided below:

	A	В	С
n-propane	9.1058	1872.46	- 25.16
n- butane	9.0580	2154.90	-34.42

Assuming Raoult's law, the condenser pressure (in bar) is _____ (rounded off to one decimal place).

(GATE CH 2019)

41) A centrifugal pump is used to pump water (density $1000kg/m^3$) from an inlet pressure of 10^5 Pa to an exit pressure of $2*10^5$ Pa. The exit is at an elevation of 10 m above the pump. The average velocity of the fluid is 10 m/s. The cross-sectional area of the pipes at the pump inlet and outlet is $10^{-3}m^2$ and acceleration due to gravity is $g = 10m/s^2$. Neglecting losses in the system, the power (in Watts) delivered by the pump is ______(rounded off to the nearest integer).

(GATE CH 2019)

42) A solid sphere of radius 1 cm and initial temperature of $25^{\circ}C$ is exposed to a gas stream at $100^{\circ}C$. For the solid sphere, the density is $104kg/m^3$ and the specific heat capacity is 500J/(kgK). The density of the gas is $0.6kg/m^3$ and its specific heat capacity is $10^3J/(kgK)$. The solid sphere is approximated as a lumped system (*Biotnumber* \ll 1) and all specific heats are constant. If the heat transfer coefficient between the solid and gas is $50W/(m^2K)$, the time (in seconds) needed for the sphere to reach $95^{\circ}C$ is ______ (rounded off to the nearest integer).

(GATE CH 2019)

43) Stream A with specific heat capacity $C_{PA} = 2000J/(kgK)$ is cooled from 90°C to 45°C in a concentric double pipe counter current heat exchanger having a heat transfer area of $8m^2$. The cold stream B of specific heat capacity $C_{PB} = 1000J/(kgK)$ enters the exchanger at a flow rate 1 kg/s and 40°C. The overall heat transfer coefficient $U = 250W/(m^2K)$. Assume that the mean driving force is based on the arithmetic mean temperature difference, that is, $[\Delta T]_{AMTD} = \left(\frac{T_{A,in} + T_{A,out}}{2}\right) - \left(\frac{T_{B,in} + T_{B,out}}{2}\right)$ where $T_{i,in}$ and $T_{i,out}$ refer to the temperature of the i^{th} stream (i = A, B) at the inlet and exit, respectively. The mass flow rate of stream A (in kg/s), is _______(rounded off to two decimal places).

44)	4) A 20 cm diameter cylindrical solid pellet of a nuclear fuel with density $6000kg/m^3$ conductivity of 300 W/(m K) generates heat by nuclear fission at a spatially uniform of $10^4W/kg$. The heat from the fuel pellet is transferred to the surrounding coolant convection such that the pellet wall temperature remains constant at $300^{\circ}C$ Neglecting axial and azimuthal dependence, the maximum temperature (in °C) in the pellet at ste state is (rounded off to the nearest integer).					
45)	The elementary, irreversible, liquid-phase, parallel reactions, $2A \to D$ and $2A \to U$, place in an isothermal non-ideal reactor. The C-curve measured in a tracer experime shown in the figure, where $C(t)$ is the concentration of the tracer in g/m^3 at the reactor	take ent is				
	at time t (in min). (GATE CH 2	2019)				
	2019 CH/Fig/45.png					

Fig. 45

to the reactor at a concentration of	of 2 mol/Liter	. Using the segregated	d model, the p	percentage
conversion in the reactor is	(rounded	off to the nearest inte	ger).	
			(GATE	CH 2019)

46) A first-order irreversible liquid phase reaction $A \rightarrow B(k = 0.1 min^{-1})$ is carries out under isothermal, steady state conditions in the following reactor arrangement comprising an ideal CSTR(Continuous-Stirred Tank Reactor) and two ideal PFRs(Plug Flow Reactors). From the information in the figure, the volume of the CSTR(in Liters) is _____(rounded off to the nearest integer).

(GATE CH 2019)

47) The elementary liquid-phase irreversible reactions

$$A \xrightarrow{k_1=0.4min^{-1}} B \xrightarrow{k_1=0.1min^{-1}} C$$

take place in an isothermal ideal CSTR (Continuous-Stirred Tank Reactor). Pure A is fed to the reactor at a concentration of 2 mol/Liter. For the residence time that maximizes the exit concentration of B, the percentage yield of B, defined as $\left(\frac{netformationrateofB}{netformationrateofA} \times 100\right)$, is _____(rounded off to the nearest integer).

(GATE CH 2019)

48) The elementary irreversible gas-phase reaction $A \to B + C$ is carried out adiabatically in an ideal CSTR (Continuous-Stirred Tank Reactor) operating at 10 atm. Pure A enters the CSTR at a flow rate of 10 moles and a temperature of 450 K. Assume A, B and C to be ideal gases. The specific heat capacity at constant pressure (C_{pi}) and heat of formation (H_i^o) , of component i (i = A, B, C), are:

$$\begin{split} C_{PA} &= 30J/(molK) \quad C_{PB} = 10J(molK) \quad C_{PC}20J(molK) \\ H_A^o &= -90kJ/mol \quad H_B^o = -54kJ/mol \quad H_C^o = -45kJ/mol \end{split}$$

The reaction rate constant $k(persecond) = 0.133exp^{\frac{E}{R}(\frac{1}{450}-\frac{1}{T})}$, where E = 31.4 kJ/mol and universal gas constant R = 0.082Latm/(molK) = 8.314J/(molK). The shaft work may be neglected in the analysis, and specific heat capacities do not vary with temperature. All heats of formation are referenced to 273 K. The reactor volume (in Liters) for 75% conversion is _____(rounded off to the nearest integer).

49) For the closed loop system shown in figure, the phase margin (in degrees) is ______(rounded off to one decimal place).

(GATE CH 2019)

50) Two spherical camphor particles of radii 20 cm and 5 cm, far away from each other, are undergoing sublimation in a stream of air. The mass transfer coefficient is proportional to $1/\sqrt{r(t)}$, where r(t) is the radius of the sphere at time t. Assume that the partial pressure of camphor far away from the surface of the particle is zero. Also, assume quasi-steady state, identical ambient conditions, and negligible heat effects. If t_1 t_2 are the times required for complete sublimation of the 20 cm and 5 cm camphor particles, respectively, the ratio t_1/t_2 is ______(rounded off to one decimal place).

(GATE CH 2019)

51) A countercurrent absorption tower is designed to remove 95% of component A from an incoming binary gas mixture using pure solvent B. The mole ratio of A in the inlet gas is 0.02. The carrier gas flow rate is 50 kmol/h. The equilibrium relation is given by Y = 2X, where Y and X are the mole ratios of A in the gas and liquid phases, respectively. If the tower is operated at twice the minimum solvent flow rate, the mole ratio of A in the exit liquid stream is ______ (rounded off to three decimal places).

(GATE CH 2019)

52) A binary mixture with components A and B is to be separated in a distillation column to obtain 95 mol% A as the top product. The binary mixture has a constant relative volatility $\alpha_{AB} = 2$. The column feed is a saturated liquid containing 50 mol% A. Under the usual simplifying assumptions such as constant molal overflow, negligible heat loss, ideal trays, the minimum reflux ratio for this separation is ______(rounded off to one decimal place). (GATE CH 2019)

53) Consider the reactor-separator-recycle process operating under steady state conditions as shown in the figure. The reactor is an ideal Continuous-Stirred Tank Reactor (CSTR), where the reaction $A + B \rightarrow C$ occurs. Assume that there is no impurity in the product and recycle streams. Other relevant information are provided in the figure. The mole fraction of $B(x_B)$ in the reactor that minimizes the recycle rate is ______(rounded off to two decimal places).

(GATE CH 2019)

54) Consider two competing equipment A and B. For a compound interest rate of 10% per annum, in order for equipment B to be the economically cheaper option, its minimum life (in years) is _____(rounded off to the next higher integer).

(GATE CH 2019)

Equipment	Capital Cost	Yearly Operate	Equipment Life
	(Rs)	cost(Rs)	(Years)
A	80,000	20,000	4
В	1,60,000	15,000	?

55) A taxi-car is bought for Rs 10 lakhs. Its salvage value is zero. The expected yearly income after paying all expenses and applicable taxes is Rs 3 lakhs. The compound interest rate is % per annum. The discounted payback period (in years),is ______(rounded off to the next higher integer).

(GATE CH 2019)

END OF QUESTION PAPER