CNN Basics

Shubhra Aich s.aich.72@gmail.com

January 17, 2018

Outline

RGB image basics ANN vs CNN Operations in CNN Convolution Pooling Rectification Dropout

RGB image basics

RGB image consists of 3 channels or planes, namely Red, Green and Blue.

We see the combined effect of these channels.

Artifical vs Convolutional NN

Operations in CNN

- Convolution
- Rectification
- Pooling
- Dropout

Convolution ...(1)

Convolution ...(2)

Convolution ...(3)

Convolution ...(4)

Convolution ...(5)

Convolution ...(6)

Equations of Convolution

```
w_i = \text{weights of the filter}

x_i = \text{outputs of the previous layer}

z = \sum_i w_i x_i + b = w.x + b \equiv w * x + b

a = f(z)

f = \text{activation/ rectification / squashing function}
```

Pooling

- Max-pooling.
- Average pooling.

Pooling

- Max-pooling.
- Average pooling.
- Min-pooling

Pooling

- Max-pooling.
- Average pooling.
- Min-pooling <a>2

Why do we use Convolution and Pooling? ...(1)

CNN combines 3 architectural ideas to deal with shift, scale and distortion.

- Local receptive fields/filters
 - The idea of local filters dates back to Hubel-Wiesel's discovery of locally sensitive, orientation selective neurons in the cat's visual cortex.
 - ▶ It helps to extract elementary visual features, such as edges, corners, end-points etc.
- Shared weights
 - Distortions or shifts of the input causes the position of salient features to vary.
 - ► Elementary feature detectors that are useful on one region of the image are likely to be useful across the entire image.
 - This knowledge can be applied by forcing a set of units, whose receptive fields are located at different places on the to be identical.
 - ► These features are combined by subsequent layers to detect more meaningful features.

Why do we use Convolution and Pooling? ...(2)

- Sub-sampling/Pooling
 - Once a feature is detected, its exact location becomes less important, only approximate position relative to other features is relevant.
 - This precise position is even harmful they vary from image to image.
 - ► The simplest way to reduce this precision is sub-sampling or pooling.

Rectification

- ▶ Linear neuron, y = wx + b
- Rectified linear neuron (ReLU), $y = \begin{cases} wx + b, & \text{if } x > 0 \\ 0, & \text{otherwise} \end{cases}$
- ► Sigmoid/logistic neuron, $y = \frac{1}{1 + exp(-\alpha(wx+b))}$

Choice of Recitification Functions

- Backpropagation is the most popular learning algorithm for a network comprising real-valued units.
- ► This learning algorithm adjusts the weights in each iteration in proportion to the derivative of the final error function w.r.t. the weights.
- ➤ To facilitate learning, rectification functions are expected to have more or less smooth derivatives.
- ▶ Linear neurons can map only linear input-output relationships.
- Linear neurons are unbounded both below and above.
- Sigmoid activation works well for simple ANN. However, in deeper models like CNN, tiny error-gradients of sigmoid units make learning horrendously slow.

Dropout

- In each iteration of learning, we randomly omit each hidden unit with a prespecified probability.
- Using dropout, for a network comprising single hidden layer with H hidden units, in each iteration, we randomly sample from 2^H different architectures.
- All architectures share weights.
- Dropout prevents overfitting.
- ► In test time, the full network is used with parameter values halved.