Geometria różniczkowa Lista 7

- 1. Niech $f \colon M \to \mathbf{R}$ będzie funkcją gładką taką, że $D_p f = 0$ dla pewnego $p \in M$. Zaproponuj definicję hessianu $f \le p$ tak aby dostać symetryczne dwuliniowe odwzorowanie $H_p f \colon T_p M \times T_p M \to \mathbf{R}$. Przedyskutuj poprawność tej definicji i konieczność założenia, że $D_p f = 0$.
- 2. Pokaż, że w klasie homotopii zamkniętej krzywej w zwartej rozmaitości riemannowskiej istnieje krzywa najkrótsza.
- 3. Udowodnij tw. Synge'a: orientowalna parzystowymiarowa rozmaitość o dodatniej krzywiżnie sekcyjnej jest jednospójna.
 - (a) Załóż nie wprost, że istnieje nieściągalna krzywa zamknięta; weż homotopijną z nią zamkniętą geodezyjną γ o najmniejszej możliwej długości.
 - (b) Uzasadnij, że przesunięcie równoległe P_{γ} dookoła γ jest zachowującym orientację i iloczyn skalarny automorfizmem $T_{\gamma(0)}M$.
 - (c) Uzasadnij, że istnieje wektor $w \in T_{\gamma(0)}M$ prostopadły do $\gamma'(0)$, taki że $P_{\gamma}(w) = w$.
 - (d) Rozszerz w do pola wektorowego W wzdłuż γ , które jest równoległe ($\nabla_t W = 0$). Uzasadnij, że W jest wszędzie prostopadłe do γ' , oraz że jest gładkie w $\gamma(0) = \gamma(1)$.
 - (e) Użyj drugiej formuły wariacyjnej by pokazać, że deformacja γ w kierunku W zmniejsza energię, a więc też długość. Rozważ kwestię założenia o zerowaniu się wariacji na końcach.
- 4. Znajdź nieparzystowymiarowe kontrprzykłady na tw. Synge'a.
- 5. Niech γ będzie geodezyjną na okrągłej sferze łączącą dwa punkty antypodyczne. Napisz wzorem wariację γ przez geodezyjne i znajdź stowarzyszone z tą wariacją pole Jacobiego.