

UNIVERSITY EXAMINATIONS

SECOND SEMESTER, 2018/2019 ACADEMIC YEAR

EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE AND BSC IN **COMPUTER SCIENCE**

MATH 121 CALCULUS II

STREAM: Y2S1 TIME: 2.00-4.00PM

EXAMINATION SESSION: JAN-APRIL DATE: 1/04/2019

Instructions to candidates:

Answer question **ONE** and any other **TWO** questions.

QUESTION ONE (30 marks)

a) Find
$$\int_0^\infty (1+2x)e^{-x} dx$$
 (4 marks)

b) Evaluate
$$\int \frac{2x^3 - x^2 + 3x - 1}{\sqrt[3]{x}} dx$$

(4 marks)

c) Using $\sin \theta$ substitution

(i) Find
$$\int \frac{1}{\sqrt{a^2 - x^2}} dx$$
 (4 marks)

(ii) Hence evaluate
$$\int_0^2 \frac{1}{\sqrt{4-x^2}} dx$$

(3 marks)

d) The average value of a complex voltage waveform is given by:

$$V_{AV} = \frac{1}{\pi} \int_0^{\pi} (10\sin t + 3\sin 3t + 2\sin 5t) d(t).$$
 Evaluate V_{AV} correct to 2 decimal places. (4 marks)

e) Find
$$\int \sin^5 x \, dx$$

f) Show that the volume of solid of revolution produced when the area enclosed by the curves $y=x^2$ and $y^2=8x$ is rotated 360° about x-axis is 9.6π cubic units. (6 marks)

QUESTION TWO (20 MARKS)

a) Find

$$(i) \qquad \int \frac{4}{x^2 + 5x - 14} dx$$

(3 marks)

(ii)
$$\int_{1}^{3} 2x^{2} \ln 2x \, dx$$

(4 marks)

b) Evaluate
$$\int \frac{6x^2 + 3x}{x^2 + 2x - 8} dx$$

(4 marks)

c) Show that $\int_0^1 \frac{4t^2 + 9t + 8}{(t+2)(t+1)^2} dt = 2.546$, correct to 4 significant figures.

(5 marks)

d) The velocity in Km/h of a pipe cub aircraft travelling due west is recorded every minute during the first ten minutes after takeoff. Using Simpson's third rule, estimate the distance travelled. (4 marks)

Time(min)	0	1	2	3	4	5	6	7	8	9	10
V(t) Km/h	0	80	100	128	144	160	152	136	128	120	136

QUESTION THREE (20 MARKS)

a) Find
$$\int \frac{d\theta}{2\cos\theta}$$

(4 marks)

b) Determine
$$-\frac{1}{2}\int \frac{d\theta}{1-\sin\theta}$$

(6 marks)

c) Evaluate $\int_0^1 2e^{3x} \sin 2x \, dx$ correct to four significant figures

(6 marks)

d) Find the area enclosed by the curve $y = 10x - x^2$ and the line $y = x^2$ (4 marks)

QUESTION FOUR (20 MARKS)

- a) Determine
 - (i) $\int_{-1}^{0} (3x 7)^4 dx$

(4 marks)

(4 marks)

- (ii) $\int_0^1 2x e^{6x^2 1} dx$
- b) Evaluate $\int \sin 5t \cos 2t \, dt$ (4 marks)
- c) Evaluate $\int_0^1 \tan^{-1} x \, dx$ (3 marks)
- d) The electrostatic potential on all parts of aconducting circular disc of radius r is given $V = 2\pi\rho \int_0^9 \frac{R}{\sqrt{R^2 + r^2}} dR$. Show by solving the equation that its volume is given by $V = 2\pi\rho \left\{ \sqrt{\left(9^2 + r^2\right)} - r \right\}.$

(5 marks)

QUESTION FIVE (20 MARKS)

- a) Evaluate the following integrals
 - (i) $\int x^2 \sin(4-2x^3) dx$

(3 marks)

(ii)
$$\int_{-\infty}^{1} \sqrt{6-y} \, dy$$

(3 marks)

b) Find the integral $\int \cos^2 x \sin^3 x \, dx$

(5 marks)

c) Let $f(x) = (2x-3)^2$, find the number c that certify the conditions of the Mean value theorem on the interval $\begin{bmatrix} -3, 0 \end{bmatrix}$

(4 marks)

Find f(x) if $f''(x)=6x^2+3x-2$ with the conditions f'(1)=4 and f(2)=1(5 marks)