高中数学必修 4 知识点

第一章 三角函数

「正角:按逆时针方向旋转形成的角

1、任意角 负角:按顺时针方向旋转形成的角

零角:不作任何旋转形成的角

2、象限的角:在直角坐标系内,顶点与原点重合,始边与 x 轴的非负半轴重合,角的终边落在第几象限,就是第几象限的角;角的终边落在坐标轴上,这个角不属于任何象限,叫做轴线角。

第一象限角的集合为 $\left\{\alpha \middle| k \cdot 360^{\circ} < \alpha < k \cdot 360^{\circ} + 90^{\circ}, k \in Z\right\}$

第二象限角的集合为 $\left\{\alpha \left| k \cdot 360^{\circ} + 90^{\circ} < k \cdot 360^{\circ} + 180^{\circ}, k \in \mathbb{Z}\right\}\right\}$

第三象限角的集合为 $\left\{\alpha \middle| k \cdot 360^{\circ} + 180^{\circ} < \alpha < k \cdot 360^{\circ} + 270^{\circ}, k \in Z\right\}$

第四象限角的集合为 $\left\{\alpha \left| k \cdot 360^{\circ} + 270^{\circ} < \alpha < k \cdot 360^{\circ} + 360^{\circ}, k \in Z\right\}\right\}$

终边在x轴上的角的集合为 $\left\{\alpha \middle| \alpha = k \cdot 180^{\circ}, k \in Z\right\}$

终边在 y 轴上的角的集合为 $\left\{\alpha \middle| \alpha = k \cdot 180^{\circ} + 90^{\circ}, k \in Z\right\}$

终边在坐标轴上的角的集合为 $\left\{ \alpha \middle| \alpha = k \cdot 90^{\circ}, k \in \mathbb{Z} \right\}$

- 3、与角 α 终边相同的角,连同角 α 在内,都可以表示为集合 $\{\beta \mid \beta = \alpha + k \cdot 360^{\circ}, k \in Z\}$
- 4、弧度制:
 - (1) 定义: 等于半径的弧所对的圆心角叫做 1 弧度的角, 用弧度做单位叫弧度制。

半径为r的圆的圆心角 α 所对弧的长为l,则角 α 的弧度数的绝对值是 $|\alpha| = \frac{l}{r}$.

- (2) 度数与弧度数的换算: $360^{\circ} = 2\pi$, $180^{\circ} = \pi$ rad, $1 \text{ rad} = (\frac{180}{\pi})^{\circ} \approx 57.30^{\circ} = 57^{\circ}18^{\circ}$
- 注:角度与弧度的相互转化:设一个角的角度为 n° ,弧度为 α ;

①角度化为弧度: $n^o = n^o \cdot \frac{\pi}{180^o} = \frac{n\pi}{180}$, ②弧度化为角度: $\alpha = \alpha \cdot \frac{180^o}{\pi} = \left(\frac{180\alpha}{\pi}\right)^o$

(3) 若扇形的圆心角为 α (α 是角的弧度数), 半径为r, 则:

孤长公式: $0l = \frac{n\pi}{180}$ (用度表示的), $0l = \alpha r$ (用弧度表示的);

扇形面积: ① $S_{\text{\tiny B}} = \frac{n\pi r^2}{360}$ (用度表示的) ② $S_{\text{\tiny B}} = \frac{1}{2} |\alpha| r^2 = \frac{1}{2} lr$ (用弧度表示的)

5、三角函数:

(1) 定义①:设
$$\alpha$$
是一个任意大小的角, α 的终边上任意一点 P 的坐标

是
$$(x,y)$$
, 它与原点的距离是 $r(|OP|=r=\sqrt{x^2+y^2}>0)$,

$$\mathbb{M}\sin\alpha = \frac{y}{r}, \quad \cos\alpha = \frac{x}{r}, \quad \tan\alpha = \frac{y}{x}(x \neq 0)$$

定义②: 设 a是一个任意角,它的终边与单位圆交于点 P(x,y),那么 v 叫做 a的正弦,记作 $\sin a$,即 $\sin a = y$; u 叫做 a的余弦,记作 $\cos a$,即 $\cos a = x$; 当 a 的终边不在 y 轴上时,

口诀:第一象限全为正; 二正三切四余弦. \overrightarrow{x}

P(x,y)

(3) 特殊角的三角函数值

01 11/2/5/11	714 - 7	× 1							
α 的角度	0°	30°	45°	60°	90°	120°	135°	150°	180°
α 的弧度	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1
$\tan lpha$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	不存在	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0
α 的角度	210°	225°	240°	270°	300°	315°	330°	360°	
α 的弧度	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$	$\frac{11\pi}{6}$	2π	
$\sin \alpha$	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	
$\cos \alpha$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	
$\tan \alpha$	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	不存在	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0	

(4) 三角函数线:如下图

(5) 同角三角函数基本关系式

(1) 平方关系:
$$\sin^2 \alpha + \cos^2 \alpha = 1$$
 (2) 商数关系: $\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$

6、三角函数的诱导公式:

 $(1)\sin(2k\pi+\alpha)=\sin\alpha$, $\cos(2k\pi+\alpha)=\cos\alpha$, $\tan(2k\pi+\alpha)=\tan\alpha(k\in \mathbb{Z})$. 口诀: 终边相同的角的同一三角函数值相等.

 $(2)\sin(-\alpha) = -\sin\alpha$, $\cos(-\alpha) = \cos\alpha$, $\tan(-\alpha) = -\tan\alpha$.

$$(3)\sin(\pi-\alpha) = \sin\alpha$$
, $\cos(\pi-\alpha) = -\cos\alpha$, $\tan(\pi-\alpha) = -\tan\alpha$.

$$(4)\sin(\pi+\alpha) = -\sin\alpha$$
, $\cos(\pi+\alpha) = -\cos\alpha$, $\tan(\pi+\alpha) = \tan\alpha$.

 $(5)\sin(2\pi-\alpha) = -\sin\alpha$, $\cos(2\pi-\alpha) = \cos\alpha$, $\tan(2\pi-\alpha) = -\tan\alpha$.

口诀:函数名称不变,正负看象限.

$$(6)\sin\left(\frac{\pi}{2}-\alpha\right)=\cos\alpha$$
, $\cos\left(\frac{\pi}{2}-\alpha\right)=\sin\alpha$, $\tan\left(\frac{\pi}{2}-\alpha\right)=\cot\alpha$.

$$(7)\sin\left(\frac{\pi}{2}+\alpha\right)=\cos\alpha$$
, $\cos\left(\frac{\pi}{2}+\alpha\right)=-\sin\alpha$, $\tan\left(\frac{\pi}{2}+\alpha\right)=-\cot\alpha$.

口诀:正弦与余弦互换,正负看象限.

诱导公式记忆口诀:"奇变偶不变,符号看象限"。即将括号里面的角拆成 $\beta=k\cdot\frac{\pi}{2}+\alpha$ 的形式。

7、正弦函数、余弦函数和正切函数的图象与性质:

_/\	7、止弦函数、余弦函数和止切函数的图象与性质:									
函数	$y = \sin x$	$y = \cos x$	$y = \tan x$							
图象	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
定义域	R	R	$\left\{ x \middle x \neq k\pi + \frac{\pi}{2}, k \in \mathbf{Z} \right\}$							
值	值域: $\begin{bmatrix} -1,1 \end{bmatrix}$ 当 $x = 2k\pi + \frac{\pi}{2} (k \in \mathbb{Z})$ 时,	值域: $[-1,1]$	值域: R 既无最大值也无最小值							
域	$y_{\text{max}} = 1$; 当 $x = 2k\pi - \frac{\pi}{2}$ $(k \in \mathbb{Z})$ 时, $y_{\text{min}} = -1$.	$y_{\text{max}} = 1$; 当 $x = 2k\pi + \pi$ $(k \in \mathbb{Z})$ 时, $y_{\text{min}} = -1$.								
周期性	$y = \sin x$ 是周期函数; 周期为 $T = 2k\pi, k \in \mathbb{Z}$ 且 $k \neq 0$; 最小正周期为 2π	$y = \cos x$ 是周期函数; 周期 为 $T = 2k\pi, k \in \mathbb{Z}$ 且 $k \neq 0$; 最小正周期为 2π	$y = \tan x$ 是周期函数; 周期 为 $T = k\pi, k \in \mathbb{Z}$ 且 $k \neq 0$; 最小正周期为 π							
奇偶性	奇函数	偶函数	奇函数							
单调性	在 $\left[2k\pi - \frac{\pi}{2}, 2k\pi + \frac{\pi}{2}\right]$ $\left(k \in \mathbb{Z}\right)$ 上是增函数;在 $\left[2k\pi + \frac{\pi}{2}, 2k\pi + \frac{3\pi}{2}\right]$ $\left(k \in \mathbb{Z}\right)$ 上是滅函数.	在 $[2k\pi - \pi, 2k\pi](k \in \mathbb{Z})$ 上 是增函数;在 $[2k\pi, 2k\pi + \pi]$ $(k \in \mathbb{Z})$ 上是减函数.	在 $\left(k\pi-\frac{\pi}{2},k\pi+\frac{\pi}{2}\right)$ $\left(k\in\mathbb{Z}\right)$ 上是增函数.							
对称性	对称中心 $(k\pi,0)(k\in \mathbb{Z})$ 对称轴 $x=k\pi+\frac{\pi}{2}(k\in \mathbb{Z})$	对称中心 $ \left(k\pi + \frac{\pi}{2}, 0\right) (k \in \mathbb{Z}) $ 对称轴 $x = k\pi (k \in \mathbb{Z})$	対称中心 $ \left(\frac{k\pi}{2},0\right) (k \in \mathbb{Z}) $ 无对称轴							

8、(1) $y = A\sin(\omega x + \varphi) + b$ 的图象与 $y = \sin x$ 图像的关系:

③相位变换:
$$y = \sin x$$
 图象整体向左($\varphi > 0$)或向右($\varphi < 0$)平移 $|\varphi|$ 个单位 $y = \sin(x + \varphi)$

④平移变换:
$$y = A\sin(\omega x + \varphi)$$
 图象整体向上 $(b > 0)$ 或向下 $(b < 0)$ 平移 $|b|$ 个单位 $y = A\sin(\omega x + \varphi) + b$

注:函数 $y = \sin x$ 的图象怎样变换得到函数 $y = A\sin(\omega x + \varphi) + B$ 的图象:(两种方法) ① 先平移后伸缩:

② 先伸缩后平移:

(2) 函数 $y = A\sin(\omega x + \varphi) + b$ $(A > 0, \omega > 0)$ 的性质:

①振幅: A; ②周期: $T = \frac{2\pi}{\omega}$; ③频率: $f = \frac{1}{T} = \frac{\omega}{2\pi}$; ④相位: $\omega x + \varphi$; ⑤初相: φ .

定义域: R

值域: [-A+b,A+b]

当
$$\omega x + \varphi = 2k\pi + \frac{\pi}{2}(k \in \mathbb{Z})$$
时, $y_{\text{max}} = A + b$;

当
$$\omega x + \varphi = 2k\pi - \frac{\pi}{2} \left(k \in \mathbb{Z} \right)$$
 时, $y_{\min} = -A + b$.

周期性: 函数 $y = A\sin(\omega x + \varphi) + b$ $(A > 0, \omega > 0)$ 是周期函数; 周期为 $T = \frac{2\pi}{\omega}$

单调性:
$$\omega x + \varphi \, a \left[2k\pi - \frac{\pi}{2}, 2k\pi + \frac{\pi}{2} \right] (k \in \mathbb{Z})$$
上时是增函数;

$$\omega x + \varphi \, a \left[2k\pi + \frac{\pi}{2}, 2k\pi + \frac{3\pi}{2} \right] (k \in \mathbb{Z})$$
上时是滅函数.

对称性: 对称中心为
$$\left(\frac{k\pi-\varphi}{\omega},0\right)$$
 $\left(k\in\mathbb{Z}\right)$; 对称轴为 $\omega x+\varphi=k\pi+\frac{\pi}{2}\left(k\in\mathbb{Z}\right)$

第二章 平面向量

- 1、向量定义: 既有大小又有方向的量叫做向量, 向量都可用同一平面内的有向线段表示.
- 2、零向量:长度为0的向量叫零向量,记作0;零向量的方向是任意的.
- \vec{a} 3、单位向量:长度等于1个单位长度的向量叫单位向量;与向量 \vec{a} 平行的单位向量: $\vec{e}=\pm\frac{\vec{a}}{|\vec{a}|}$.
- 4、平行向量 (共线向量): 方向相同或相反的非零向量叫平行向量也叫共线向量,记作 \vec{a}/\vec{b} ;

5、相等向量:长度相同且方向相同的向量叫相等向量,零向量与零向量相等.

注意:任意两个相等的非零向量, 都可以用同一条有向线段来表 示,并且与有向线段的起点无关。

- 6、向量加法运算:
- (1)三角形法则的特点: 首尾相接
- (2)平行四边形法则的特点: 起点相同

$$\vec{a} + \vec{b} = \overrightarrow{\mathsf{AB}} + \overrightarrow{\mathsf{BC}} = \overrightarrow{\mathsf{AC}}$$

(3)运算性质:

①交换律: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$;

②结合律:
$$(\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c})$$
; ③ $\vec{a}+\vec{0}=\vec{0}+\vec{a}=\vec{a}$.

(4)坐标运算: 设
$$\vec{a} = (x_1, y_1)$$
, $\vec{b} = (x_2, y_2)$, 则 $\vec{a} + \vec{b} = (x_1 + x_2, y_1 + y_2)$.

7、向量减法运算:

(1)三角形法则的特点: 共起点, 连终点, 方向指向被减向量.

(2)坐标运算:设
$$\vec{a} = (x_1, y_1), \vec{b} = (x_2, y_2),$$
则

$$\vec{a} - \vec{b} = (x_1 - x_2, y_1 - y_2).$$

设A、B两点的坐标分别为 (x_1,y_1) , (x_2,y_2) , 则

$$\overrightarrow{AB} = (x_2 - x_1, y_2 - y_1).$$

8、向量数乘运算:

(1)实数 λ 与向量 \vec{a} 的积是一个向量的运算叫做向量的数乘,记作 $\lambda \vec{a}$.

 $\textcircled{1}|\lambda \vec{a}| = |\lambda||\vec{a}|;$

②当 $\lambda>0$ 时, $\lambda \vec{a}$ 的方向与 \vec{a} 的方向相同; 当 $\lambda<0$ 时, $\lambda \vec{a}$ 的方向与 \vec{a} 的方向相反; 当 $\lambda=0$ 时, $\lambda \vec{a}=\vec{0}$.

(2)运算律: ①
$$\lambda(\mu\vec{a}) = (\lambda\mu)\vec{a}$$
; ② $(\lambda+\mu)\vec{a} = \lambda\vec{a} + \mu\vec{a}$; ③ $\lambda(\vec{a}+\vec{b}) = \lambda\vec{a} + \lambda\vec{b}$.

(3)坐标运算: 设 $\vec{a} = (x, y)$, 则 $\lambda \vec{a} = \lambda(x, y) = (\lambda x, \lambda y)$.

9、向量共线定理: 向量 $\vec{a}\left(\vec{a}\neq\vec{0}\right)$ 与 \vec{b} 共线, 当且仅当有唯一一个实数 λ , 使 $\vec{b}=\lambda\vec{a}$.

设 $\vec{a} = (x_1, y_1)$, $\vec{b} = (x_2, y_2)$, 其中 $\vec{b} \neq \vec{0}$, 则当且仅当 $x_1 y_2 - x_2 y_1 = 0$ 时,向量 \vec{a} 、 $\vec{b} \left(\vec{b} \neq \vec{0} \right)$ 共线.

10、平面向量基本定理: 如果 $\overrightarrow{e_1}$ 、 $\overrightarrow{e_2}$ 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量 \overrightarrow{a} ,有且只有一对实数 λ_1 、 λ_2 ,使 $\overrightarrow{a}=\lambda_1\overrightarrow{e_1}+\lambda_2\overrightarrow{e_2}$. (不共线的向量 $\overrightarrow{e_1}$ 、 $\overrightarrow{e_2}$ 作为这一平面内所有向量的一组基底)

11、分点坐标公式:设点P是线段 P_1P_2 上的一点, P_1 、 P_2 的坐标分别是 (x_1,y_1) , (x_2,y_2) ,

当
$$\overrightarrow{\mathbf{P_1P}} = \lambda \overrightarrow{\mathbf{PP_2}}$$
 时, 点 \mathbf{P} 的坐标是 $\left(\frac{x_1 + \lambda x_2}{1 + \lambda}, \frac{y_1 + \lambda y_2}{1 + \lambda}\right)$.

12、平面向量的数量积:

(1)定义: $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta (\vec{a} \neq \vec{0}, \vec{b} \neq \vec{0}, 0^{\circ} \leq \theta \leq 180^{\circ})$. 零向量与任一向量的数量积为 0.

(2)性质: 设 \vec{a} 和 \vec{b} 都是非零向量,则① $\vec{a} \perp \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b} = 0$. ②当 \vec{a} 与 \vec{b} 同向时, $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}|$;

当 \vec{a} 与 \vec{b} 反向时, $\vec{a} \cdot \vec{b} = -|\vec{a}| |\vec{b}|$; $\vec{a} \cdot \vec{a} = \vec{a}^2 = |\vec{a}|^2$ 或 $|\vec{a}| = \sqrt{\vec{a} \cdot \vec{a}}$. ③ $|\vec{a} \cdot \vec{b}| \le |\vec{a}| |\vec{b}|$.

(3)运算律: ① $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$; ② $\left(\lambda \vec{a}\right) \cdot \vec{b} = \lambda \left(\vec{a} \cdot \vec{b}\right) = \vec{a} \cdot \left(\lambda \vec{b}\right)$; ③ $\left(\vec{a} + \vec{b}\right) \cdot \vec{c} = \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c}$.

(4)坐标运算: 设两个非零向量 $\vec{a} = (x_1, y_1)$, $\vec{b} = (x_2, y_2)$, 则 $\vec{a} \cdot \vec{b} = x_1 x_2 + y_1 y_2$.

若
$$\vec{a} = (x, y)$$
,则 $|\vec{a}|^2 = x^2 + y^2$,或 $|\vec{a}| = \sqrt{x^2 + y^2}$.

设 $\vec{a} = (x_1, y_1), \vec{b} = (x_2, y_2), \text{则} \vec{a} \perp \vec{b} \Leftrightarrow x_1 x_2 + y_1 y_2 = 0.$

设 \vec{a} 、 \vec{b} 都是非零向量, $\vec{a} = (x_1, y_1)$, $\vec{b} = (x_2, y_2)$, θ 是 \vec{a} 与 \vec{b} 的夹角, 则

$$\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} = \frac{x_1 x_2 + y_1 y_2}{\sqrt{x_1^2 + y_1^2} \sqrt{x_2^2 + y_2^2}}.$$

第三章 三角恒等变形

- 1、同角三角函数基本关系式

 - (1) 平方关系: $\sin^2 \alpha + \cos^2 \alpha = 1$ (2) 商数关系: $\tan \alpha = \frac{\sin \alpha}{2}$
 - (3) 倒数关系: $\tan \alpha \cot \alpha = 1$

$$\sin^2 \alpha = \frac{\tan^2 \alpha}{1 + \tan^2 \alpha}$$
; $\cos^2 \alpha = \frac{1}{1 + \tan^2 \alpha}$

 $\sin \alpha, \cos \alpha, \tan \alpha$ 按照以上公式可以"知一求二"

2、两角和与差的正弦、余弦、正切

$$S_{(\alpha+\beta)}$$
: $\sin(\alpha+\beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$

$$S_{(\alpha-\beta)}$$
: $\sin(\alpha-\beta) = \sin\alpha\cos\beta - \cos\alpha\sin\beta$

$$C_{(\alpha+\beta)}$$
: $\cos(a+\beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$

$$C_{(\alpha-\beta)}$$
: $\cos(a-\beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$

$$T_{(\alpha+\beta)}: \tan(\alpha+\beta) = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha \tan\beta}$$

$$T_{(\alpha-\beta)}$$
: $\tan(\alpha-\beta) = \frac{\tan\alpha - \tan\beta}{1 + \tan\alpha \tan\beta}$

正切和公式: $\tan \alpha + \tan \beta = \tan(\alpha + \beta) \cdot (1 - \tan \alpha \tan \beta)$

3、辅助角公式:
$$a \sin x + b \cos x = \sqrt{a^2 + b^2} \left(\frac{a}{\sqrt{a^2 + b^2}} \sin x + \frac{b}{\sqrt{a^2 + b^2}} \cos x \right)$$

$$= \sqrt{a^2 + b^2} (\sin x \cdot \cos \varphi + \cos x \cdot \sin \varphi) = \sqrt{a^2 + b^2} \cdot \sin(x + \varphi)$$

(其中 φ 称为辅助角, φ 的终边过点(a,b), $\tan \varphi = \frac{b}{a}$)

4、二倍角的正弦、余弦和正切公式:

 $S_{2\alpha}$: $\sin 2\alpha = 2\sin \alpha \cos \alpha$

$$C_{2\alpha}$$
: $\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 1 - 2\sin^2 \alpha = 2\cos^2 \alpha - 1$

$$T_{2\alpha}$$
: $\tan 2\alpha = \frac{2\tan \alpha}{1-\tan^2 \alpha}$

*二倍角公式的常用变形: ①、 $\sqrt{1-\cos2\alpha}=\sqrt{2}\mid\sin\alpha\mid$, $\sqrt{1+\cos2\alpha}=\sqrt{2}\mid\cos\alpha\mid$;

②,
$$\sqrt{\frac{1}{2} - \frac{1}{2}\cos 2\alpha} = |\sin \alpha|$$
, $\sqrt{\frac{1}{2} + \frac{1}{2}\cos 2\alpha} = |\cos \alpha|$

(3)
$$\sin^4 \alpha + \cos^4 \alpha = 1 - 2\sin^2 \alpha \cos^2 \alpha = 1 - \frac{\sin^2 2\alpha}{2}$$
;

$$\cos^4 \alpha - \sin^4 \alpha = \cos 2\alpha ;$$

*降次公式:
$$\sin \alpha \cos \alpha = \frac{1}{2} \sin 2\alpha$$
 $\sin^2 \alpha = \frac{1 - \cos 2\alpha}{2} = -\frac{1}{2} \cos 2\alpha + \frac{1}{2}$ $\cos^2 \alpha = \frac{1 + \cos 2\alpha}{2} = \frac{1}{2} \cos 2\alpha + \frac{1}{2}$

5、*半角的正弦、余弦和正切公式:

$$\sin\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{2}}$$
 ; $\cos\frac{\alpha}{2} = \pm\sqrt{\frac{1+\cos\alpha}{2}}$,

$$\tan\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}} = \frac{1-\cos\alpha}{\sin\alpha} = \frac{\sin\alpha}{1+\cos\alpha}$$

6、同角三角函数的常见变形: (活用"1")

①
$$\sin^2 \alpha = 1 - \cos^2 \alpha$$
; $\sin \alpha = \pm \sqrt{1 - \cos^2 \alpha}$;

$$\cos^2 \alpha = 1 - \sin^2 \alpha$$
; $\cos \alpha = \pm \sqrt{1 - \sin^2 \alpha}$;

$$2 \tan \theta + \cot \theta = \frac{\cos^2 \theta + \sin^2 \theta}{\sin \theta \cos \theta} = \frac{2}{\sin 2\theta},$$

$$\cot \theta - \tan \theta = \frac{\cos^2 \alpha - \sin^2 \alpha}{\sin \alpha \cos \alpha} = \frac{2\cos 2\alpha}{\sin 2\alpha} = 2\cot 2\alpha$$

 $(\sin \alpha \pm \cos \alpha)^2 = 1 \pm 2 \sin \alpha \cos \alpha = 1 \pm \sin 2\alpha ; \quad \sqrt{1 \pm \sin 2\alpha} = \sin \alpha \pm \cos \alpha$

7、补充公式: *①万能公式

$$\sin \alpha = \frac{2 \tan \frac{\alpha}{2}}{1 + \tan^2 \frac{\alpha}{2}} ; \quad \cos \alpha = \frac{1 - \tan^2 \frac{\alpha}{2}}{1 + \tan^2 \frac{\alpha}{2}} ; \quad \tan \alpha = \frac{2 \tan \frac{\alpha}{2}}{1 - \tan^2 \frac{\alpha}{2}}$$

*②积化和差公式

$$\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)]$$

$$\cos \alpha \sin \beta = \frac{1}{2} [\sin(\alpha + \beta) - \sin(\alpha - \beta)]$$

$$\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha + \beta) + \cos(\alpha - \beta)]$$

$$\sin \alpha \sin \beta = -\frac{1}{2} [\cos(\alpha + \beta) - \cos(\alpha - \beta)]$$

*③和差化积公式

$$\sin \alpha + \sin \beta = 2\sin \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}; \quad \sin \alpha - \sin \beta = 2\cos \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2}$$

$$\cos \alpha + \cos \beta = 2\cos \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}; \quad \cos \alpha - \cos \beta = -2\sin \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2}$$

注: 带*号的公式表示了解,没带*公式为必记公式