Practice Questions (week 7)

Semester 2, 2019

These questions are all about linear algebra – linear (in)dependence, eigenvalues, and eigenvectors.

- 1. Determine, with reasons, whether the following statements are (A) always true, (B) always false, or (C) might be true or false.
 - (a) If $\mathbf{v}_1, ..., \mathbf{v}_5 \in \mathbb{R}^5$ and $\mathbf{v}_1 = \mathbf{v}_2 + \mathbf{v}_3$, then the set $\{\mathbf{v}_1, ..., \mathbf{v}_5\}$ is linearly dependent.
 - (b) If \mathbf{v}_1 and $\mathbf{v}_2 \in \mathbb{R}^2$ lie on the same straight line through the origin, then the set $\{\mathbf{v}_1, \mathbf{v}_2\}$ is linearly dependent.
 - (c) If $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly dependent, then so is $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$.
 - (d) If $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly dependent, then so is $\{\mathbf{v}_1, \mathbf{v}_2\}$.
 - (e) If $\{\mathbf{v}_1, \mathbf{v}_2\}$ is linearly independent, then so is $\{\mathbf{v}_1 + \mathbf{v}_2, \mathbf{v}_1 \mathbf{v}_2\}$.
 - (f) There is a set $\{\mathbf{v}_1, \dots, \mathbf{v}_5\}$ of linearly independent vectors in \mathbb{R}^4 .
- 2. Consider the vectors $\mathbf{u} = (2, 1, 4, 3)$, $\mathbf{v} = (3, 4, 1, 2)$, $\mathbf{w} = (1, 2, -1, 0)$ in \mathbb{R}^4 .
 - (a) Are the vectors **u**, **v**, **w** linearly independent?
 - (b) Are the vectors \mathbf{v} , \mathbf{w} linearly independent?
 - (c) Are the vectors **v**, **w**, **0** linearly independent?
 - (d) Are the vectors \mathbf{u} , \mathbf{w} , $5\mathbf{u} 3\mathbf{w}$ linearly independent?
- 3. Which of the following sets of vectors are linearly independent?
 - (a) $\{(3,4), (4,3)\}$
 - (b) $\{(2,1,-3,6), (5,3,7,8), (1,1,13,-4)\}$
 - (c) $\{(2,1,3), (2,-2,-5), (7,3,9)\}$
 - (d) $\{\mathbf{e}_1, \mathbf{e}_1 + 2\mathbf{e}_2, \mathbf{e}_1 + 2\mathbf{e}_2 + 3\mathbf{e}_3, \dots, \mathbf{e}_1 + 2\mathbf{e}_2 + 3\mathbf{e}_3 + \dots + n\mathbf{e}_n\}$ where $\mathbf{e}_i \in \mathbb{R}^n$ is the vector which has 1 in the *i*-th place and 0 everywhere else.
- 4. For which value(s) of d are the following sets of vectors linearly dependent? Justify your answers.
 - (a) $\{(1,-1,4),(3,-5,5),(-1,5,d)\}$
 - (b) $\{(3,7,-2),(-6,d,4),(9,1,-4)\}$
- 5. * Let $A = \begin{bmatrix} 1 & 5 & 2 \\ -1 & 9 & 5 \\ 1 & 3 & 1 \end{bmatrix}$ and let W be the set of all linear combinations of the columns of A.

- (a) Show that (4,10,2) is in W (you should be able to do this by inspection, that is, without any row operations).
- (b) Solve the homogeneous system with augmented matrix $[A|\mathbf{0}]$.
- (c) Given that (1, 2, -1) is a solution of the linear system $[A|\mathbf{b}]$, what is the vector \mathbf{b} ?
- (d) Write down the general solution of $[A|\mathbf{b}]$ (with the vector \mathbf{b} from part (c)), without directly solving this system.
- 6. Let \mathbf{u} , \mathbf{v} and \mathbf{w} be vectors in \mathbb{R}^n . Prove that \mathbf{w} is a linear combination of $\mathbf{u} \mathbf{v}$, $\mathbf{v} \mathbf{w}$ and \mathbf{u} . (Another way of saying this is that \mathbf{w} is in the span of $\mathbf{u} \mathbf{v}$, $\mathbf{v} \mathbf{w}$ and \mathbf{u} , $\mathbf{w} \in \operatorname{span}\{\mathbf{u}, \mathbf{u} \mathbf{v}, \mathbf{v} \mathbf{w}\}$.)
- 7. Let A be an $n \times n$ matrix.
 - (a) Define what it means for $\mathbf{x} \in \mathbb{R}^n$ to be an eigenvector of A with eigenvalue λ .
 - (b) Define the characteristic polynomial of A.
- 8. Find all eigenvalues and eigenvectors for the following matrices.

(a)
$$A_1 = \begin{bmatrix} 0 & 3 \\ 6 & -3 \end{bmatrix}$$

(b)
$$A_2 = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 3 & 1 \\ 0 & 1 & 2 \end{bmatrix}$$

(c)
$$A_3 = \begin{bmatrix} 1 & 5 & 5 \\ 0 & 3 & 2 \\ 0 & 2 & 3 \end{bmatrix}$$

- 9. Show that if A has eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$ then
 - (a) cA has eigenvalues $c\lambda_1, c\lambda_2, \ldots, c\lambda_n$ for any constant $c \in \mathbb{R}$.
 - (b) If A^{-1} exists, then A^{-1} has eigenvalues $1/\lambda_1, 1/\lambda_2, \dots, 1/\lambda_n$
 - (c) A^m has eigenvalues $\lambda_1^m, \lambda_2^m, \ldots, \lambda_n^m$ for $m = 1, 2, 3, \ldots$
- 10. (a) Show that $\lambda=0$ is an eigenvalue of A if and only if A is not invertible.
 - (b) Without calculation find one eigenvalue and two linearly independent eigenvectors of

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}.$$

11. Suppose that for some 3×3 matrix A, we have

$$A \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \quad \text{and} \quad A \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 2 \end{bmatrix}$$

- (a) Give one eigenvalue of A.
- (b) Explain why $\begin{bmatrix} 0\\1\\0 \end{bmatrix}$ is an eigenvector for this eigenvalue and hence find $A\begin{bmatrix}0\\1\\0 \end{bmatrix}$.
- (c) If det(A)=12, then what is the multiplicity of the eigenvalue from (a)?
- 12. Consider the matrices

$$A_{1} = \begin{bmatrix} -12 & 7 \\ -7 & 2 \end{bmatrix}$$

$$A_{2} = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{bmatrix}$$

$$A_{3} = \begin{bmatrix} -1 & 3 & 9 \\ 0 & -7 & -18 \\ 0 & 2 & 5 \end{bmatrix}.$$

For each matrix A_i above

- (a) Determine the eigenvalues and eigenvectors.
- (b) For each eigenvalue, state its multiplicity and give the dimension of its associated eigenspace.
- (c) Hence determine whether the matrix A_i is diagonalisable, stating the reason for your answer.
- (d) For each diagonalisable matrix A_i , determine a matrix P such that $P^{-1}A_iP = D$, where D is a diagonal matrix. What is D? (For the purposes of this exercise, order your eigenvalues from smallest to largest i.e. $\lambda_1 \leq \lambda_2 \ldots \leq \lambda_n$.)
- (e) Determine if each matrix A_i is invertible and, where possible, use your results from (d) to write the inverse matrix A_i^{-1} in the form $P\Delta P^{-1}$, where Δ is a diagonal matrix. (You do not need to find A^{-1} if not possible by this method.)
- 13. Let $A = \begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix}$.
 - (a) Verify that $\mathbf{v_1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector of A. What is the corresponding eigenvalue λ_1 ?
 - (b) Use the trace of A to find a second eigenvalue λ_2 .

3

(c) Find the eigenspace for λ_2 .

- (d) Write down an invertible matrix P such that $P^{-1}AP = D$, where $D = \operatorname{diag}(\lambda_1, \lambda_2)$.
- 14. Show that the matrix $A=\begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 2 \end{bmatrix}$ is not diagonalizable.