UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS.

FUNDAMENTOS DE BASES DE DATOS.

TAREA 04 ÁLGEBRA RELACIONAL

EQUIPO: CHIQUESSQL

IVANA IX CHEL BONILLA NEGRETE 315131994

Dylan Enrique Juarez Martinez 422117180

> Daniel Rojo Mata 314297967

PROFESOR:

Gerardo Áviles Rosas

AYUDANTES DE TEORÍA:

GERARDO URIEL SOTO MIRANDA Valeria Fernanda Manjarrez Angeles

AYUDANTES DE LABORATORIO:

RICARDO BADILLO MACÍAS Rocío Aylin Huerta González

I. CARDINALIDAD DE LA CONSULTA

Considerando las relaciones R y S.

A	В
1	X
2	У
2	Z
3	х
9	a

\mathbf{B}	\mathbf{C}	\mathbf{D}	
X	0	3	
у	2	1	
у	3	3	
W	3	0	
у	4	2	

Relación R

Relación S

Para las siguientes expresiones de álgebra relacional, completa la tabla con el número de tuplas que cada una de ellas produce utilizando las relaciones R y S. Deberás indicar las tablas resultantes en cada caso.

OBSERVACIÓN: No se pudo encontrar la forma en que se pudiera escribir el *leftjoin* y el *rightjoin*, por lo que se adoptó la siguiente notación:

- $\blacksquare \triangleleft := leftjoin \text{ (punto 3)}$
- ightharpoonup > := rightjoin (punto 4)
- $\blacksquare \Leftrightarrow := full \ outer \ join \ (punto \ 10)$

Expresión	Cardinalidad
R × S	25
$\mathbb{R} \bowtie_{D>A} \mathtt{S}$	7
R ⊲ S	6
R ⊳ S	7
$\mathbb{R} \bowtie_{A=D} \mathbb{S}$	5
$ ho$ C \leftarrow A (R) \Join S	1
π B (R) $ \pi$ B (σ C \geq 3 (S))	3
π A (R) \cap ρ A \leftarrow D (π D (S))	3
π D (S) ⋈ R	20
γ A ; count (B) $ ightarrow$ t (R $ ightharpoons$ S)	5, 5

Solución:

Se muestran las tablas resultantes para cada caso.

 $1. R \times S$

R.A	R.B	S.B	S.C	S.D
1	X	X	0	3
1	x	У	2	1
1	X	У	3	3
1	x	y y w	3	0
1	x	у	4	2
2	У		0 2	3
2	у	У	2	1
2	у	У	3	3
2	y y	y y w	3	$\begin{bmatrix} 3 \\ 0 \end{bmatrix}$
2	У	у	4	2
2	Z		0	3
2	z	У	2	1
2	z	y y w	3 3	3
2	z	w		0
2	z	у	4	2
3	X	X	0	3
3	x	У	2	1
3	x	У	3	3
3	x	y w	3	0
3	x	у	4	2
9	a	X	0	3
9	a	У	2	1
9	a		3	3
9	a	y w y	3	0
9	a	у	4	2

2. R $\bowtie_{D>A}$ S

R.A	R.B	S.B	S.C	S.D
1	X	X	0	3
1	x	У	3	3
1	x	у	4	2
$\begin{bmatrix} 2 \\ 2 \end{bmatrix}$	у	X	0	3
2	у	у	3	3
2	Z	X	0	3
2	z	у	3	3

3. R ⊲ S

R.A	R.B	S.C	S.D
1	X	0	3
2	у	2	1
2	У	3	3
2	У	4	2
2	z	null	null
3	X	0	3
9	a	null	null

4. R ⊳ S

R.A	S.B	S.C	S.D
1	X	0	3
3	x	0	3
2	У	2	1
2	У	3	3
null	w	3	0
2	У	4	2

 $5.~{\rm R}~\bowtie_{A=D}~{\rm S}$

R.A	R.B	S.B	S.C	S.D
1	X	У	2	1
2	y	У	4	2
2	z	У	4	2
3	X	X	0	3
3	x	У	3	3

6. ρ C \leftarrow A (R) \bowtie S

R.C	R.B	S.D
2	V	1

7. π B (R) - π B (σ C \geq 3 (S))

R.B
X
\mathbf{z}
a

8. π A (R) \cap ρ A \leftarrow D (π D (S))

R.A
1
2
3

 $9.~\pi$ D (S) \bowtie R

S.D	R.A	R.B
3	1	X
3	2	у
3	2	z
3	3	x
3	9	a
1	1	X
1	2	у
1	2	Z
1	3	x
1	9	a
0	1	X
0 0	~ 2	у
0	2	z
0	3	x
0	9	a
2	1	X
2	2	у
2	2	z
2	3	x
2	9	a

$10.~\gamma$ A ; count (B) \rightarrow t (R \triangleright S)

En este caso tanto la tabla R como la tabla S tienen una columna llamada "B", por lo que cuando se solicita count(B), no se sabe a cuál de las dos columnas se hace mención. Así pues, se hace ambos casos.

lacksquare γ A ; count (R.B) ightarrow t (R hd S)

R.A	t
1	1
2	4
3	1
9	1
null	0

lacksquare γ A ; count (S.B) ightarrow t (R ho S)

R.A	t
1	1
2	3
3	1
9	0
null	1

II. TIENDA DE PRODUCTOS EN LÍNEA

a. Obtener toda la información de los clientes que viven en New York o en Washington, que pertenezcan al segmento consumer que hayan solicitado una orden en el tercer trimestre de 2016. Mostrar la información ordenada por la cantidad solicitada.

• Expresion:

```
z = \sigma orderdate \geq date('2016-07-01') \wedge orderdate \leq date('2016-09-30')(orders) s = \sigma (state = 'New York' \vee state = 'Washington') \wedge segment = 'Consumer' (customer) o = \tau quantity asc, [2] desc (s \bowtie z) \Pi customerid, customername, segment, state, orderdate, quantity(o)
```

tomer.customername	customer.segment	customer.state	orders.orderdate	orders.quantit
'Ted Butterfield'	'Consumer'	'New York'	2016-08-27	1
'Patrick OBrill'	'Consumer'	'New York'	2016-09-18	1
'Pamela Stobb'	'Consumer'	'Washington'	2016-09-29	1
'Henry MacAllister'	'Consumer'	'New York'	2016-09-18	1
Christopher Conant'	'Consumer'	'New York'	2016-07-07	1
'Sanjit Engle'	'Consumer'	'New York'	2016-09-08	2
'Rob Haberlin'	'Consumer'	'New York'	2016-07-14	2
'Patrick OBrill'	'Consumer'	'New York'	2016-08-30	2
'Mary ORourke'	'Consumer'	'New York'	2016-09-06	2
Christopher Conant'	'Consumer'	'New York'	2016-08-15	2

b. Obtener una relación de los productos que pertenecen a la categoría Technology con precio mayor de \$400 y menor de \$850, pero que no hayan sido solicitados en ninguna orden.

• Expresion:

$$s=\sigma$$
 price > 400 \wedge price < 850 \wedge category = 'Technology'(products)
 Π productid (s) Π productid (orders)

products.productid
'TEC-PH-10004080'
'TEC-MA-10004086'

c. Obtener el nombre de todos los clientes que vivan en la región South y hayan solicitados productos de las subcategorías Bookcases o Chairs o Appliances o Copiers. El pedido debió de solicitarse el primer o tercer trimestre de 2015 y el modo de envío debe ser Standard Class.

• Expresion:

```
z=\sigma subcategory = 'Bookcases' \vee subcategory = 'Chairs' \vee subcategory = 'Appliances' \vee subcategory = 'Copiers' (orders \bowtie products) s=\sigma \text{ region} = \text{'South' (orders }\bowtie \text{ customer}) p=\sigma \text{ (orderdate } \geq \text{ date('2015-01-01')} \wedge \text{ orderdate } \leq \text{ date('2015-03-31')}) \vee \text{ (orderdate } \geq \text{ date('2015-04-01')} \wedge \text{ orderdate} \leq \text{ date('2015-06-30')}) \wedge \text{ shipmode} = \text{'Standard Class' } (z \bowtie s) \Pi customername (p)
```

customer.customername
'Victoria Wilson'
'Sue Ann Reed'
'Dennis Pardue'
'Sarah Foster'
'Tamara Manning'
'Michael Oakman'
'Tony Chapman'
'Lycoris Saunders'
'Ivan Liston'
'Bill Tyler'

d. Toda la información de los clientes del segmento Consumer que realizaron una orden con modo de envío Second Class y que no viven en Nevada.

• Expresion:

$$s = \sigma$$
segment = 'Consumer' $\land \neg (\text{state} = \text{'Nevada'})$ (customer)

$$r = \sigma$$
 shipmode = 'Second Class' (orders)

 Π customerid, customername, segment, country, city, state, postal code, region (s \bowtie r)

customer.customerid	customer.customername	customer.segment	customer.country	customer.city	customer.state	customer.postalcode	customer.region
'CG-12520'	'Claire Gute'	'Consumer'	'United States'	'Henderson'	'Kentucky'	'42420'	'South'
'IM-15070'	'Irene Maddox'	'Consumer'	'United States'	'Seattle'	'Washington'	'98103'	'West'
'PK-19075'	'Pete Kriz'	'Consumer'	'United States'	'Madison'	'Wisconsin'	'53711'	'Central'
'AG-10270'	'Alejandro Grove'	'Consumer'	'United States'	'West Jordan'	'Utah'	'84084'	'West'
'ZD-21925'	'Zuschuss Donatelli'	'Consumer'	'United States'	'San Francisco'	'California'	'94109'	'West'
'SF-20065'	'Sandra Flanagan'	'Consumer'	'United States'	'Philadelphia'	'Pennsylvania'	'19140'	'East'
'EH-13945'	'Eric Hoffmann'	'Consumer'	'United States'	'Los Angeles'	'California'	'90049'	'West'
'TB-21520'	'Tracy Blumstein'	'Consumer'	'United States'	'Philadelphia'	'Pennsylvania'	'19140'	'East'
'PO-18865'	'Patrick ODonnell'	'Consumer'	'United States'	'Westland'	'Michigan'	'48185'	'Central'
'LH-16900'	'Lena Hernandez'	'Consumer'	'United States'	'Dover'	'Delaware'	'19901'	'East'

e. Obtener el estado, segmento y el total de clientes que no han solicitado ninguna orden.

• Expresion:

 $s=\Pi$ state, segment,customerid (customer) — Π state, segment,customerid(customer \bowtie orders)

 $(\gamma \text{ segment,state; count(state)} \rightarrow \text{clientesSinPedido (s))}$

customer.segment	customer.state	clientesSinPedido
'Consumer'	'California'	3
'Home Office'	'Illinois'	1
'Corporate'	'Ohio'	1
'Corporate'	'New York'	3
'Home Office'	'Texas'	1
'Corporate'	'Delaware'	2
'Corporate'	'Tennessee'	1
'Corporate'	'California'	1
'Corporate'	'Pennsylvania'	1
'Home Office'	'Minnesota'	1

f. Una lista que muestre la región, el estado y el total de clientes que se tienen, considerando que los clientes deben haber realizado órdenes con al menos 6 productos durante 2016 o 2017. Ordenar la información por región y estado.

• Expresion:

 $s=\sigma$ (orderdate \geq date ('2016-01-01') \wedge orderdate \leq date ('2016-12-31')) \wedge quantity \geq 6 (customer \bowtie orders)

 $r=\sigma$ (orderdate \geq date ('2017-01-01') \wedge orderdate \leq date ('2017-12-31')) \wedge quantity \geq 6 (customer \bowtie orders)

 $z = \gamma$ region,
state; count(state) \rightarrow Total Clientes (
s \cup r)

Ordenar por region:

 τ region asc, [2] desc (z)

Ordenar estado:

 τ state asc, [2] desc (z)

• Resultado en calculadora RelaX:

customer.region	customer.state	TotalClientes
'Central'	'Wisconsin'	10
'Central'	'Texas'	56
'Central'	'Oklahoma'	4
'Central'	'Nebraska'	6
'Central'	'Missouri'	4
'Central'	'Minnesota'	9
'Central'	'Michigan'	12
'Central'	'lowa'	6
'Central'	'Indiana'	10
'Central'	'Illinois'	40

region

customer.region	customer.state	TotalClientes
'South'	'Alabama'	3
'West'	'Arizona'	13
'South'	'Arkansas'	1
'West'	'California'	124
'West'	'Colorado'	13
'East'	'Connecticut'	3
'East'	'Delaware'	4
'South'	'Florida'	23
'South'	'Georgia'	11
'Central'	'Illinois'	40

(b) orden por estado

g. Obtener el modo de envío y categoría que más productos ha vendido.

• Expresion:

Obtener categoria que mas productos ha vendido:

 $\gamma \text{ category; NumProductosVendidos} \leftarrow \max(\text{quantity}) \text{ (products } \bowtie \text{ orders)}$

Obtener modo de envio que mas productos a vendido:

 γ shipmode; NumProductosVendidos \leftarrow max(quantity) (products \bowtie orders)

orders.shipmode	NumProductosVendidos
'Second Class'	14
'Standard Class'	14
'First Class'	14
'Same Day'	11

products.category	NumProductosVendidos
'Furniture'	14
'Office Supplies'	14
'Technology'	14

⁽a) modo de envio que mas productos han vendido

⁽b) categoria que mas ha vendido

h. Una lista con la venta promedio, venta total, mayor venta, menor venta, y total de órdenes, por región, estado y ciudad. La venta promedio debe estar entre \$900 y \$1,500.

• Expresion:

```
s = \gamma \text{ customerid, productid; sum(quantity)} \rightarrow \text{Productos Vendidos (orders)} \\ y = \gamma \text{ customerid; count(orderid)} \rightarrow \text{Ordenes XCliente (orders)} \\ z = \Pi \text{ customerid, productid, price, Productos Vendidos, Venta XProducto} \leftarrow (\text{price*Productos Vendidos}) \\ (s \bowtie \text{products}) \\ \text{venta Promedio} = \gamma \text{ region, state, city; avg}(\text{Venta XProducto}) \rightarrow \text{venta Promedio } (z \bowtie \text{customer}) \\ \text{venta Total} = \gamma \text{ region, state, city; sum}(\text{Venta XProducto}) \rightarrow \text{venta Total } (z \bowtie \text{customer}) \\ \text{venta Max} = \gamma \text{ region, state, city; max}(\text{Venta XProducto}) \rightarrow \text{venta Maxima } (z \bowtie \text{customer}) \\ \text{venta Min} = \gamma \text{ region, state, city; min}(\text{Venta XProducto}) \rightarrow \text{venta Min } (z \bowtie \text{customer}) \\ \text{ordenes} = \gamma \text{ region, state, city; sum}(\text{Ordenes XCliente}) \rightarrow \text{Total De Ordenes} (y \bowtie \text{customer}) \\ \text{Para estado, cuidad y region usamos la siguente expresion para poder visualizar los datos:} \\ \\
```

 $\sigma(ventaPromedio \leq 1500 \land ventaPromedio \geq 900)ventaPromedio$

 $\bowtie ventaMax \bowtie ventaMin \bowtie ventaTotal \bowtie ordenes$

customer.region	customer.state	customer.city	ventaPromedio	ventaMaxima	ventaMin	ventaTotal	TotalDeOrdenes
'West'	'Utah'	'West Jordan'	1060.48	2009.96	111	2120.96	2
'Central'	'Illinois'	'Naperville'	1280.587857142857	7457.400000000001	19	17928.23	14
'Central'	'Michigan'	'Westland'	967.7714285714286	2591.56	69.84	6774.400000000001	7
'East'	'New York'	'Troy'	923.7524137931034	6179.700000000001	3.64	26788.82	29
'South'	'Virginia'	'Springfield'	967.5568627450978	5567.5	2.16	49345.39999999999	51
'Central'	'Minnesota'	'Saint Paul'	1237.655882352941	8647.8	5.37	21040.14999999998	17
'Central'	'lowa'	'Urbandale'	911.6435714285716	9179.94	11.78	12763.010000000002	14
'East'	'Ohio'	'Columbus'	1000.9640740740738	16529.4	5.04	108104.11999999997	109
'Central'	'Illinois'	'Bloomington'	1152.45	7807.36	11.950000000000001	16134.3	14
'West'	'Arizona'	'Phoenix'	962.081555555557	13579.65	5.58	43293.670000000006	45

i. El estado que ha realizado la menor cantidad de órdenes. Se debe mostrar también el total de ordenes que haya entregado.

• Expresion:

```
s = \gamma \text{ customerid; count(orderid)} \rightarrow \text{OrdenesXCliente (orders)} z = \gamma \text{ state; sum(OrdenesXCliente)} \rightarrow \text{TotalDeOrdenes (s \bowtie customer)} z \bowtie (\gamma; \min(\text{TotalDeOrdenes}) \rightarrow \text{TotalDeOrdenes }(z))
```

customer.state	TotalDeOrdenes
'District of Columbia'	4

j. La información del cliente que más órdenes haya efectuado. Mostrar el número de órdenes que ha realizado.

■ Expresion:

```
s = \gamma customerid; count(orderid) \rightarrow OrdenesXCliente (orders)
```

 $z = s \bowtie (\gamma ; \max(\text{OrdenesXCliente}) \rightarrow \text{OrdenesXCliente} \ (s))$

 Π customerid, customername,segment,country,city,state,postalcode,region,OrdenesXCliente ($z\bowtie$ customer)

orders.customerid	customer.customername	customer.segment	customer.country	customer.city	customer.state	customer.postalcode	customer.region	OrdenesXCliente
'BM-11650'	'Brian Moss'	'Corporate'	'United States'	'Quincy'	'Illinois'	'62301'	'Central'	28

- III. OPERACIONES DE MANTENIMIENTO DE DATOS: BORRADO, INSERCIÓN Y ACTUALIZACIÓN
 - 1. Borrar toda la información del cliente Paul Stevenson.
 - Expresion:

Primero visualizamos la informacion del cliente Paul Stevenson: infoCliente = σ customername = 'Paul Stevenson' (customer)

Ahora realizamos el borrado de toda su informacion:

s = customer - infoCliente

 σ customername = 'Paul Stevenson' (s)

• Resultado en calculadora RelaX:

- 2. Borrar todas las órdenes de la ciudad Utah que tengan artículos de la subctegoría Tables.
 - Expresion:

Primero obtenemos todas las ordenes con la subcategoria 'Tables':

 $s = \sigma$ subcategory = 'Tables' (orders \bowtie products)

Ahora hacemos una proyeccion solo con las columnas orderid, customerid y subcategory: $z = \Pi$ orderid, customerid, subcategory (s)

Ahora solo queremos las ordenes que sean del estado 'Utah':

 $k=\Pi$ orderid,
customerid (σ state = 'Utah' (z \bowtie customer)))

Ahora borramos las ordenes del estado de 'Utah':

 Π orderid, customerid (orders) -k

si buscamos la orderid CA-2015-106320 en nuestra relacion anterior no parecera.

• Resultado en calculadora RelaX:

- 3. Aumentar los precios de productos de la subcategoría Phones en un 8 %.
 - Expresion:

Ubicamos la tuplas a actualizar:

```
s = \sigma subcategory = 'Phones' (products)
```

Eliminamos las tuplas:

$$K = \text{products} - \text{s}$$

Insertarmos las tuplas modificadas:

$$t = K \cup (\Pi \text{ productid,category,subcategory } (s) \times \Pi \text{ price} \leftarrow ((\text{price} * 0.08) + \text{price}) (s))$$

Consultamos la nueva informacion:

 σ subcategory = 'Phones' (t)

• Resultado en calculadora RelaX:

products.productid	products.category	products.subcategory	products.price	products.productid	products.category	products.subcategory	products.price
TEC-PH-10002275*	Technology	'Phones'	907.15	'TEC-PH-10002275'	'Technology'	'Phones'	979.722
TEC-PH-10002022		'Phones'	511.42	'TEC-PH-10002275'	'Technology'	'Phones'	984.3335999999999
	'Technology'			'TEC-PH-10002275'	'Technology'	'Phones'	230.55839999999998
TEC-PH-10001545*	"Technology"	'Phones'	213.48	'TEC-PH-10002275'	'Technology'	'Phones'	31.8276
TEC-PH-10004977	'Technology'	'Phones'	25.47				
TEC-PH-10000486	'Technology'	'Phones'	212.06	'TEC-PH-10002275'	'Technology'	'Phones'	229.0248
TEC-PH-10004093'	"Technology"	'Phones'	371.17	'TEC-PH-10002275'	'Technology'	'Phones'	400.8636
TEC-PH-10003988'	'Technology'	'Phones'	45	'TEC-PH-10002275'	'Technology'	'Phones'	48.6
TEC-PH-10002447*	'Technology'	'Phones'	15.26	'TEC-PH-10002275'	'Technology'	'Phones'	16.4808
TEC-PH-10002726*	'Technology'	'Phones'	213.12	'TEC-PH-10002275'	'Technology'	'Phones'	230.1696
TEC-PH-10002844*	'Technology'	'Phones'	102.26	'TEC-PH-10002275'	'Technology'	'Phones'	110.5488

(a) Antes de actualizar

- (b) Después de actualizar
- 4. Disminuir 8% los precios de los productos de la categoría Furniture cuyo precio sea de \$600 a \$900. Aumentar en un 5% los precios de los productos de la categoría Technology y subcategoría Machines.

Expresion:

Primero ubicamos la informacion de la categoria Furniture en el intervalo de precio dado: $s = \sigma$ (price $\geq 600 \vee \text{price} \leq 900$) \land category = 'Furniture' (products)

Ahora Eliminamos esas tuplas de la tabla products:

$$k = \text{products} - s$$

Ahora insertamos la nueva informacion:

$$t = k \cup (\Pi \text{ productid,category,subcategory } (s) \times \Pi \text{ price} \leftarrow (\text{price} - (\text{price} *0.08)) (s))$$

Primero ubicamos la información de la categoria Technology:

$$f = \sigma$$
 category = 'Technology' (t)

Ahora eliminamos esas tuplas de la tabla products:

$$w = t - f$$

Ahora insertamos la nueva informacion:

$$u = w \cup (\Pi \text{ productid,category,subcategory } (f) \times \Pi \text{ price} \leftarrow (\text{price} + (\text{price} * 0.05)) (f))$$

Primero ubicamos la informacion de la subcategoria Machines:

 $o = \sigma$ subcategory = 'Machines' (u)

Ahora Eliminamos esas tuplas de la tabla products:

p = u - o

Ahora insertamos la nueva informacion:

 $l = p \cup (\Pi \text{ productid,category,subcategory } (o) \text{ X } \Pi \text{ price} \leftarrow (\text{price} + (\text{price} * 0.05)) (o)).$

• Resultado en calculadora RelaX:

products.productid	products.category	products.subcategory	products.price	products.productid	products.category	products.subcategory	products.price
'FUR-BO-10001798'	'Furniture'	'Bookcases'	241.0032	'TEC-PH-10002275'	'Technology'	'Phones'	952.5074999999999
'FUR-BO-10001798'	'Furniture'	'Bookcases'	673.3848	'TEC-PH-10002275'	'Technology'	'Phones'	956.991
'FUR-BO-10001798'	'Furniture'	'Bookcases'	880.9736	'TEC-PH-10002275'	'Technology'	'Phones'	224.154
'FUR-BO-10001798'	'Furniture'	'Bookcases'	44.9512	'TEC-PH-10002275'	'Technology'	'Phones'	12.2325
'FUR-BO-10001798'	'Furniture'	'Bookcases'	1569.6856	'TEC-PH-10002275'	'Technology'	'Phones'	30.9435
'FUR-BO-10001798'	'Furniture'	'Bookcases'	65.66040000000001	'TEC-PH-10002275'	'Technology'	'Phones'	222.663
'FUR-BO-10001798'	'Furniture'	'Bookcases'	83.3244	'TEC-PH-10002275'	'Technology'	'Phones'	389.7285
'FUR-BO-10001798'	'Furniture'	'Bookcases'	8.85039999999999	'TEC-PH-10002275'	'Technology'	'Phones'	100.40100000000001
'FUR-BO-10001798'	'Furniture'	'Bookcases'	1009.736799999999	'TEC-PH-10002275'	'Technology'	'Phones'	222.55800000000002
'FUR-BO-10001798'	'Furniture'	'Bookcases'	104.2636	'TEC-PH-10002275'	'Technology'	'Phones'	47.25

(a) precio de la categoria Furniture con la disminución (b) precio de la categoria Technology con el aumento del $8\,\%$

products.productid	products.category	products.subcategory	products.price
'TEC-MA-10000822'	'Technology'	'Machines'	6.9615
'TEC-MA-10000822'	'Technology'	'Machines'	229.6875
'TEC-MA-10000822'	'Technology'	'Machines'	138.57899999999998
'TEC-MA-10000822'	'Technology'	'Machines'	12.2745
'TEC-MA-10000822'	'Technology'	'Machines'	241.8675
'TEC-MA-10000822'	'Technology'	'Machines'	7.938
'TEC-MA-10000822'	'Technology'	'Machines'	88.179
'TEC-MA-10000822'	'Technology'	'Machines'	1889.9685
'TEC-MA-10000822'	'Technology'	'Machines'	493.899
'TEC-MA-10000822'	'Technology'	'Machines'	192.1395

(c) precio de la subcategoria Machines con el aumento del 5 %