SYLLABUS / FIŞA DISCIPLINEI

1. Information on the study programme / Date despre programul de studii

1. Information on the study programme / Date despre programm de studi				
1.1. Institution / Instituția de învățământ	Universitatea de Vest din Timișoara			
superior				
1.2. Faculty / Facultatea	Matematică și Informatică			
1.3. Department / Departamentul	Computer Science (Informatică)			
1.4. Study program field	Computer Science (Informatică)			
1.5. Study cycle/ Ciclul de studii	Bachelor / licență			
1.6. Study programme / Programul de	Computer Science / Informatică în limba engleză / Database			
studii / calificarea*	administration / Administrator baze de date - 252101;			
	Computer network administration / Administrator de retea de			
	calculatoare - 252301; Analyst / Analist - 251201; Research			
	assistant in computer science / Asistent de cercetare în			
	informatica - 214918; Teacher in secondary schools / Profesor			
	în învatamântul gimnazial - 233002; Programmer /			
	Programator - 251202; Software systems designers /			
	Proiectant sisteme informatice - 251101			

2. Information on the course / Date despre disciplină

2.1. Title of the course	e / Denumirea	For	mal Languages and Autor	nata	1 Theory		
disciplinei							
2.2. Teacher in charge of the course /			Madalina Erascu				
Titularul activităților de cur	rs ·						
2.3. Teacher in charge of	f the seminar /	Ma	dalina Erascu				
Titularul activităților de ser	ninar						
2.4. Study year / 1	2.5. Semester /	2	2.6. Examination type	Е	2.7. Course ty	pe /	M
Anul de studii	Semestrul		/ Tipul de evaluare:		Regimul discip	linei:	
			E(xam)/C(olloquim)		M(andatory)/ E(lec	tive)/	
					F(acultative)		

3. Estimated study time (number of hours per semester) /Timpul total estimat (ore pe semestru al activităților didactice)

3.1. Attendance hours per week /	4	out of which / din	2	3.3. seminar/laborator	2
Număr de ore pe săptămână		care: 3.2 lecture/			
		curs			
3.4. Attendance hours per semester /	56	out of which: 3.5	28	3.6. seminar/laborator	28
Total ore din planul de învățământ		lecture / curs			
Distribution of the allocated amount of time / Distribuţia fondului de timp*					hours/
				ore	
Individual study /Studiu după manual, suport de curs, bibliografie și notițe			36		

**	at library or using electronic repositories / Documentare	30	
1	tformele electronice de specialitate		
Preparing for laboratories, home	work, reports etc. /Pregătire seminarii/laboratoare, teme, referate,	30	
portofolii și eseuri			
Exams / Examinări		2	
Tutoring / Tutorat			
3.7. Total number of hours of	80		
individual study / Total ore			
studiu individual			
3.8. Total number of hours per	160		
semester / Total ore pe			
semestru			
3.9. Number of credits (ECTS)	6		
/ Număr de credite			

4. Prerequisites (if it is the case) / Precondiții (acolo unde e cazul)

4.1. curriculum / de curriculum	Not the case
4.2. skills / de competențe	Basic mathematical knowledge, problem solving and programming skills

5. Requirements (if it is the case) / Condiții (acolo unde e cazul)

5.1. for the lecture / de desfășurare a cursului	Classroom with blackboard and video projector
5.2. for the seminar, laboratory / de desfășurare	Classroom with blackboard, computers and video
a seminarului/laboratorului	projector

6. Acquired skills / Competente specifice acumulate

Professional skills / Competenţe profesionale	Introduce concepts in automata theory and theory of computation: • Identify different formal language classes and their relationships • Design grammars and recognizers for different formal languages • Prove or disprove theorems in automata theory using their properties • Determine the decidability and intractability of computational problems
Transversal skills / Competențe transversale	The ability to communicate knowledge about different notions from formal languages and automata theory and their usage.

7. Objectives of the course / Obiectivele disciplinei (reieşind din grila competențelor specifice

acumulate)

7.1. General objective / Obiectivul general al disciplinei	Knowledge and understanding of basic notions from the formal languages theory: grammars and automata
7.2. Specfic objectives / Obiectivele specifice	Knowledge objectives: (1) Identify different formal language classes and their relationships (2) Design grammars and recognizers for different formal languages Habilitation objectives: (1) Prove or disprove theorems in automata theory using its properties (2) Determine the decidability and intractability of computational problems Attitudinal objectives: (1) to argue the importance of formal languages, automata, decidability results to an IT specialist.

8. Content / Continuturi*

8.1. Lecture / Curs	Teaching strategies /	Remarks, details / Observații
C1. (2h) Course overview. Introduction to Automata Theory & Formal Languages	Metode de predare Lecture, conversation, illustration	References: 1. M. Erascu - slides 2. Introduction to automata theory, languages and computation - Authors: JE Hopcroft, R Motwani and JD Ullman, Publisher:Addison Wesley/Pearson; 2 rd Edition
C2. (2h) Finite Automata	Lecture, conversation, illustration	Same as above
C3. (2h) Regular Expressions	Lecture, conversation, illustration	Same as above
C4. (2h) Regular Language Properties	Lecture, conversation, illustration	Same as above
C5. (2h) Context Free Grammars and Languages	Lecture, conversation, illustration	Same as above
C6. (2h) Pushdown Automata	Lecture, conversation, illustration	Same as above
C7. (2h) Midterm		
C8-9. (4h) Context-Free Language Properties	Lecture, conversation, illustration	Same as above

C10-11. (2h) Turing Machines	Lecture, conversation,	Same as above
	illustration	
C12-C13. (4h) Undecidability	Lecture, conversation,	Same as above
	illustration	
C14. (2h) Course & Finals Review	Lecture, conversation,	Same as above
	illustration	

Recommended bibliography / Bibliografie:

- [1] JE Hopcroft, R Motwani and JD Ullman. Introduction to automata theory, languages and computation Addison Wesley/Pearson; 3rd Edition
- [2] Dexter C. Kozen. Automata and Computability (Undergraduate Texts in Computer Science). Springer (August 1997)
- Azadeh Farzan. Introduction Computation. [3] Theory of Lecture notes. https://www.cs.toronto.edu/~azadeh/teaching/teaching.html

8.2. Seminar, lab / Seminar, laborator	Teaching/learning strategies / Metode de predare/ invățare	Remarks, details / Observații
S1-2. (4h) Detect the language generated by a grammar; detect the grammar which generates a given language.	Questioning, dialogue, collaborative learning	Based on the notions presented in the lecture, the students will be able to access the homework from the course website (https://merascu.github.io/links/FLAT.html). They have to prepare it. It will then will be discussed in the class.
S3-4. (4h) Design of Finite Automaton: deterministic finite automaton (DFA) or nondeterministic finite automaton (NFA).	Same as above	Same as above
S5-6. (4h) Construction of regular expressions and of regular languages generated by then. Construction of eps-NFA.	Same as above	Same as above
S7-8. (4h) Usage of Pumping lemma	Same as above	Same as above
S9-10. (4h) Design of Context Free Grammars from given languages		
S11-12. (4h) Design of Pushdown Automata	Same as above	Same as above

S13-14. (4h) Turing Machines and	Same as above	Same as above
Undecidability		

Remarks: Students could also choose projects from the list below (this list is subject to change - the actual list of subjects will be listed on the course website):

- 1. Evaluation of arithmetical expressions using two stacks.
- 2. Generation and evaluation of arithmetical expressions using polish notation
- 3. Simulation of an DFA
- 4. Evaluation of regular expressions and construction of an DFA equivalent
- 5. DFA minimization
- 6. Conversion to Chomsky normal form
- 7. Simulation deterministic pushdown automata.

Students who decide to work on a project must announce the lecturer on the chosen topic. The project consists of a program solving the problem as well as documentation. The lecturer must be consulted on what the documentation must contain. Projects are presented to the lecturer.

Recommended bibliography / Bibliografie

- [1] JE Hopcroft, R Motwani and JD Ullman. Introduction to automata theory, languages and computation Addison Wesley/Pearson; 3rd Edition
- [2] Dexter C. Kozen. Automata and Computability (Undergraduate Texts in Computer Science). Springer (August 1997)
- [3] Azadeh Farzan. Introduction to Theory of Computation. Lecture notes. https://www.cs.toronto.edu/~azadeh/teaching/teaching.html

9. Correlations between the content of the course and the requirements of the IT field / Coroborarea conținuturilor disciplinei cu așteptările reprezentanților comunității epistemice, asociațiilor profesionale și angajatorilor reprezentativi din domeniul aferent programului

The content of the lecture is consistent with the one of similar courses from other universities. It covers the fundamental aspects necessary for the familiarity with issues of formal languages and automata. The content is not very useful for ordinary IT companies, but students can train their algorithmic thinking and programming languages through the proposed projects. Nevertheless, the lecture trains the ability of thinking and problem solving, tasks which are indispensables for a programmer.

10. Evaluation / Evaluare*

Activity / Tip de	10.1. Evaluation criteria / Criterii de	10.2. Evaluation	10.3. Weight in
activitate	evaluare**	methods / Metode de	the averaged
		evaluare***	mark / Pondere
			din nota finală
10.4. Lecture /	Knowledge and application of	Midterm	30%
Curs	notions from C1-C7.		
	Knowledge and application of	Written exam in the	40%

	notions from C1-C14.	exam session	
10.5. Seminar/ lab	The ability to learn and apply	Homeworks and	20%
	concepts presented during the	activity (oral	
	lectures.	examination)	
10.6. Presentation	The ability to either implement an		10%
	algorithm in a certain programing		
	language for certain notions		
	presented during the lecture (from a		
	project list which will be posted		
	after the first week on the website)		
	or to a more theoretical topic with		
	algorithmic solution. These must be		
	presented in oral form (15 minutes		
	presentation + 5 minutes questions)		
	in front of your colleagues.		

10.6. Minimal knowledge for passing / Standard minim de performanță

Minimal knowledge for passing (grade 5): acquiring fundamental understanding of the knowledge of automata theory and formal languages.

Criteria for the maximal grade, that is 10, is to fulfill 10.6. 1-2 weeks before the actual presentation you must discuss it with your teacher.

The final grade is computed as a weighted average of the grades given for the components specified in 10.4 and 10.5. 10.6 contributes to the final grade, however it does not have negative impact on the grade if this activity is not fulfilled. The exam is passed if the average is equal or greater than 4.1 (not necessary as each note to be greater than 4.1). The start at Midterms and Final Exam is 0. If the grade is greater than equal to 4.1 means 5, greater than equal to 5.1 means 6, ..., greater than equal to 9.1 means 10.

At each exam sessions (including reexamination and improvements), the score is computed by the same rule. Midterm can not be retaken.

There is no mandatory presence requirement, however, note that your seminar grade is based on your activity during the semester (solving exercises at the whiteboard, tests, etc).

Note: Students may attend office hours (2 modules / week according to the schedule set out at the beginning of the semester) where the lecturer (course/seminar) answers questions students and provides further explanations related to course content, applications from seminary themes.

Date/ Data completării

Signature (lecture) /
Semnătura titularului de curs
Madalina Erascu

Signature (seminar) Semnătura titularului de seminar

Madalina Erascu

16.02.2019

Signature (director of the department) Semnătura directorului de departament Conf.dr. Victoria Iordan