TD 1

RobuROC 6 : plate-forme d'exploration tout terrain ★ – Corrigé

Concours Commun Mines Ponts 2009.

C1-05

C2-08

Mise en situation

Question 1 Justifier la forme de la matrice d'inertie de l'ensemble Σ au point C_1 dans la base $(\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$.

Correction

Question 2 En appliquant le théorème du moment dynamique à la plate-forme PF en mouvement par rapport au référentiel galiléen \mathcal{R}_0 en I_1 en projection sur $\overrightarrow{x_L}$, déterminer l'expression littérale de la somme des efforts normaux de contact $Z_{2d} + Z_{2g}$, entre les roues arrière et le sol. Réaliser l'application numérique et comparer la valeur obtenue à la somme des efforts normaux s'exerçant sur les roues arrière lorsque la plate-forme est immobile en appui sur ses six roues sur un sol plan, à savoir $(Z_{2d} + Z_{2g})_{\text{Repos}} = (m_2 + 2m_r) g$ avec $m_2 = 52 \, \text{kg}$ la masse du pode arrière 2.

L'objectif est dans un second temps de valider l'aptitude des moteurs à suivre la loi de vitesse en lacet exigée. Il est proposé de déterminer l'expression du couple moteur C_m par une approche énergétique.

Question 3 Déterminer l'énergie cinétique galiléenne de l'ensemble des solides en mouvement. Le résultat sera mis sous la forme $\frac{1}{2}J\dot{\varphi}^2$ où J est à exprimer sous forme littérale en fonction des données du problème.

Correction

Question 4 Mettre en œuvre le théorème de l'énergie cinétique afin de déterminer l'expression du couple moteur. Vous donnerez le résultat sous la forme $C_m = k_2 \left(J \ddot{\varphi} + k_1 \left(T_{2\text{d}} + T_{2\text{g}} \right) \right)$ où k_1 et k_2 sont à exprimer sous forme littérale en fonction des données du problème. Vous veillerez à bien faire apparaître les différentes étapes de votre raisonnement et à fournir des expressions littérales.

Correction

Pour la question suivante, vous prendrez $J = 34 \text{ kg m}^2$, $k_1 = 0.65 \text{ m}$ et $k_2 = 1.3 \times 10^{-2}$ sans unité.

Question 5 Calculer le couple moteur maximal : C_m maxi. À partir du graphe de fonctionnement du moteur, conclure quand à l'aptitude de la motorisation à générer le mouvement de lacet désiré.

Correction

