4th Help Session for Mathematical Finance

Leifu Zhang

February 13, 2019

The Fundamental Theorem of Asset Pricing

Definition

A stochastic process ($\bar{Z}_t, t \geq 0$) is a state price density (SPD) if (i) $\bar{Z}_0 = 1$, (ii) $\bar{Z}_t > 0, \forall t \geq 0$, and (iii) $\forall s < t, \mathbb{E}_s[\bar{Z}_t P_t] = \bar{Z}_s P_s$, where $(P_t, t \geq 0)$ is the price process of an arbitrary asset in this economy.

Theorem (FTAP)

If the market is complete and there is no arbitrage, then there exists a unique SPD $(\bar{Z}_t, t \geq 0)$.

4th Help Session 2 / 17 Leifu Zhang (Finance)

Deriving the SPD

Proposition

In the environment of Chapter 2, the unique SPD is

$$\bar{Z}_t = e^{-(r+\theta^2/2)t-\theta W_t}.$$

Proof.

The FTAP implies there exists a unique SPD $(\bar{Z}_t, t \geq 0)$. By the martingale representation theorem, we can assume

$$\frac{d\bar{Z}_t}{\bar{Z}_t} = \mu(t)dt + \sigma(t)dW_t. \tag{1}$$

Let B_t be the price of the risk-free bond at time t and define $X_t := Z_t B_t$. Note that $dB_t/B_t = rdt$, then by Itô's lemma, $dX_t/X_t = [\mu(t) + r]dt + \sigma(t)dW_t$. By the definition of SPD, $(X_t, t \ge 0)$ is a local martingale. Hence, $\mu(t) = -r$. Define $Y_t := \bar{Z}_t S_t$, then use the same trick (left as an exercise), we have $\sigma(t) = -(\mu - r)/\sigma := -\theta$. With the boundary condition $\bar{Z}_0 = 1$, we can solve (1), which yields $\bar{Z}_t = e^{-(r+\theta^2/2)t-\theta W_t}$ (left as another exercise).

Deriving the Static Budget Constraint

Itô's lemma implies

$$d\left[\int_0^t \bar{Z}_s c_s ds + Z_t X_t\right] = \bar{Z}_t (\pi_t \sigma - \theta X_t) dW_t.$$

ullet $\left(\int_0^t ar{Z}_s c_s ds + ar{Z}_t X_t, t \geq 0
ight)$ is a martingale means that

$$\int_0^t \bar{Z}_s c_s ds + \bar{Z}_t X_t = \mathbb{E}_t \left[\int_0^T \bar{Z}_s c_s ds + \bar{Z}_T X_T \right].$$

• Set t = 0, then we get the static budget constraint

$$\mathbb{E}\left[\int_0^T \bar{Z}_s c_s ds + \bar{Z}_T X_T\right] = X_0.$$

The Envelope Theorem

Theorem (for Unconstrained Problems)

Consider the following differentiable maximization problem:

$$\max_{x} f(x,q),$$

where q is a parameter. Let $x^*(q)$ be a solution to this problem. We define the value function

$$f^*(q) := f(x^*(q), q).$$

We fix $q = q_0$. If $x^*(q)$ is differentiable at q_0 , then

$$\left. \frac{\partial f^*}{\partial q} \right|_{q=q_0} = \left. \frac{\partial f}{\partial q} \right|_{(x,q)=(x^*(q_0),q_0)}.$$

Proof.

Leifu Zhang (Finance)

Left as an exercise. (Hint: Use the chain rule.)

The Envelope Theorem

An example: $f(x, q) = q - 2(x - q)^2$.

- First year calculus: $x^*(q) = q$.
- The value function $f^*(q) = q$.
 - $\frac{\partial f^*}{\partial q} = 1.$

Why is it called the **Envelope** Theorem?

The Envelope Theorem

An example: $f(x, q) = q - 2(x - q)^2$.

- First year calculus: $x^*(q) = q$.
- The value function $f^*(q) = q$.
 - $\frac{\partial f^*}{\partial q} = 1.$
 - $\frac{\partial q}{\partial q}|_{(x,q)=(x^*(q),q)} = 1 + 4(x^*(q) q) = 1.$

Why is it called the **Envelope** Theorem?

Consider a standard optimization problem (P):

$$\max_{x \in \mathbb{R}^n} f(x)$$

such that

$$h(x)=0.$$

- Suppose $X := \{x | h(x) = 0\} \neq \emptyset$.
- Let x^* be a solution to P and define $P^* := f(x^*)$.
- \bullet The Lagrangian to P is

$$\mathfrak{L}(x,\lambda) := f(x) + \lambda h(x),$$

and we call λ the Lagrange multiplier.

Then we can define the Lagrangian dual function

$$g(\lambda) := \sup_{x} \mathfrak{L}(x,\lambda).$$

- I claim $g(\lambda) \geq P^*$, i.e., $g(\lambda)$ is a upper bound on optimal value.
 - ▶ To see this, consider an arbitrary $x' \in X$. Then

$$\mathfrak{L}(x',\lambda) = f(x') + \lambda h(x') = f(x').$$

▶ Hence, $\forall x' \in X$,

$$g(\lambda) = \sup_{x} \mathfrak{L}(x,\lambda) \ge \mathfrak{L}(x',\lambda) = f(x').$$

▶ Then we have $g(\lambda) \ge P^*$.

• The Lagrange dual problem (D) to P is

$$\min_{\lambda} g(\lambda).$$

- *D* gives us the best upper bound.
- Let $D^* := \min_{\lambda} g(\lambda)$.
- By the upper bound property in the previous slide, we have

$$D^* = \min_{\lambda} g(\lambda) \ge P^*,$$

which is the so-called weak duality.

If

$$D^* = P^*$$
,

we say the strong duality holds.

- Then we can solve primal by solving dual.
- The strong duality does not always hold...
- But in this class we are fine...
- Ref: Luenberger, D.G., 1997. Optimization by vector space methods. John Wiley & Sons.

10 / 17

• You will learn optimization theory as well as functional analysis...

• The investor's problem at time t:

$$\max_{(c_s,\pi_s)_{s\geq t}} \mathbb{E}_t \left[\int_t^T e^{-\beta(s-t)} u_1(c_s) ds + e^{-\beta(T-t)} u_2(X_T) \right]$$

such that

$$\mathbb{E}_t \left[\int_t^T \bar{Z}_s c_s ds + \bar{Z}_T X_T \right] = \bar{Z}_t x_t. \tag{2}$$

11 / 17

• A fact (I will use it without proof) is that instead of choosing $(c_s, \pi_s)_{s \geq t}$, the investor can directly choose $(c_s)_{s \geq t}$ and X_T subject to (2) to maximize the objective function.

• Set up the Lagrangian

$$\mathfrak{L}(c_s, X_T, \lambda) = \mathbb{E}_t \left[\int_t^T e^{-\beta(s-t)} u_1(c_s) ds + e^{-\beta(T-t)} u_2(X_T) \right]$$
$$+ \lambda \left\{ \bar{Z}_t x_t - \mathbb{E}_t \left[\int_t^T \bar{Z}_s c_s ds + \bar{Z}_T X_T \right] \right\}.$$

• The first-order conditions (FOCs) are

$$\begin{split} \frac{\partial \mathfrak{L}}{\partial c_s} &= 0 \Rightarrow u_1'(\hat{c}_s) = \lambda e^{\beta(s-t)} \bar{Z}_s, \\ \frac{\partial \mathfrak{L}}{\partial X_T} &= 0 \Rightarrow u_2'(\hat{X}_T) = \lambda e^{\beta(T-t)} \bar{Z}_T. \end{split}$$

Then

$$\hat{c}_s = (u_1')^{-1} (\lambda e^{\beta(s-t)} \bar{Z}_s),$$

$$\hat{X}_T = (u_2')^{-1} (\lambda e^{\beta(T-t)} \bar{Z}_T).$$

• Then we can use (2) to solve $\lambda, (\hat{c}_s)_{s \geq t}$ and \hat{X}_T . Done?! But...

- The Lagrange dual function is $\max_{c_s, X_T} \mathfrak{L}(c_s, X_T, \lambda) = \mathfrak{L}(\hat{c}_s, \hat{X}_T, \lambda)$.
- The Lagrange dual problem is

$$\min_{\lambda} \mathfrak{L}(\hat{c}_s, \hat{X}_T, \lambda).$$

• If the strong duality holds, then

$$\min_{\lambda} \mathfrak{L}(\hat{c}_s, \hat{X}_T, \lambda) = V(t, x).$$

Note that

$$\begin{split} \mathfrak{L}(\hat{c}_s, \hat{X}_T, \lambda) &= \mathbb{E}_t \bigg\{ \int_t^T e^{-\beta(s-t)} [u_1(\hat{c}_s) - \lambda e^{\beta(s-t)} \bar{Z}_s \hat{c}_s] ds \\ &+ e^{-\beta(T-t)} [u_2(\hat{X}_T) - \lambda e^{\beta(T-t)} \bar{Z}_T \hat{X}_T] \bigg\} + \lambda \bar{Z}_t X_t. \end{split}$$

We define

$$\hat{Z}_s := \lambda e^{\beta(s-t)} \bar{Z}_s,$$
 $\tilde{u}_1(z) := \max_c \{u_1(c) - zc\},$
 $\tilde{u}_2(z) := \max_x \{u_2(c) - zx\}.$

Then

$$\mathfrak{L}(\hat{c}_s, \hat{X}_T, \lambda) = \mathbb{E}_t \left[\int_t^T e^{-\beta(s-t)} \tilde{u}_1(\hat{Z}_s) ds + e^{-\beta(T-t)} \tilde{u}_2(\hat{Z}_T) \right] + \lambda \bar{Z}_t X_t$$

= $\tilde{V}(t, z) + \lambda \bar{Z}_t X_t$,

where

$$ilde{V}(t,z) := \mathbb{E}_t \left[\int_t^T e^{-eta(s-t)} ilde{u}_1(\hat{Z}_s) ds + e^{-eta(T-t)} ilde{u}_2(\hat{Z}_T) \middle| \hat{Z}_t = z
ight].$$

Leifu Zhang (Finance) 4th Help Session 14 / 17

- Again $e^{-\beta t} \tilde{V}(t,z) + \int_0^t e^{-\beta s} \tilde{u}_1(\hat{Z}_s) ds$ is a martingale.
- Itô's lemma implies $d\hat{Z}_t = -(r-\beta)\hat{Z}_t dt \theta \hat{Z}_t dW_t$.
- Then (see HW4)

$$d\left[e^{-\beta t}\tilde{V}(t,z) + \int_0^t e^{-\beta s}\tilde{u}_1(\hat{Z}_s)ds\right] = e^{-\beta t}[\tilde{V}_t - \beta\tilde{V} + \tilde{u}_1(z) + \theta^2 z^2\tilde{V}_{zz}/2 - (r - \beta)z\tilde{V}_z]dt - e^{-\beta t}\theta z\tilde{V}_z dW_t.$$

The dual HJB equation is

$$\tilde{V}_t + \frac{1}{2}\theta^2 z^2 \tilde{V}_{zz} - (r - \beta)z \tilde{V}_z - \beta \tilde{V} + \tilde{u}_1(z) = 0,$$

15 / 17

with the terminal condition $\tilde{V}(T,z) = \tilde{u}_2(z)$.

Leifu Zhang (Finance) 4th Help Session

• Recall the strong duality, then

$$V(t,x) = \min_{\lambda} \mathfrak{L}(\hat{c}_s, \hat{X}_T, \lambda)$$

$$= \min_{\lambda} [\tilde{V}(t,z) + \lambda \bar{Z}_t X_t]$$

$$= \min_{z} [\tilde{V}(t,z) + zx].$$

ullet The FOC of $\min_z [ilde{V}(t,z)+zx]$ is $ilde{V}_z+x=0 \Rightarrow$

$$\hat{X}_t = -\tilde{V}_z(t,\hat{Z}_t).$$

• By Itô's lemma,

$$d\hat{X}_t = \left[(r - \beta)\hat{Z}_t \tilde{V}_{zz} - \tilde{V}_{zt} - \frac{1}{2}\theta^2 \hat{Z}_t^2 \tilde{V}_{zzz} \right] dt + \theta \hat{Z}_t \tilde{V}_{zz} dW_t.$$

• Recall the dynamic budget constraint

$$dX_t = [rX_t + \pi_t(\mu - r) - c_t]dt + \pi_t \sigma dW_t.$$

• Compare the diffusion terms, then we have

$$\hat{\pi}_t = \frac{\theta \hat{Z}_t \tilde{V}_{zz}}{\sigma}.$$