Linear Algebra

주재걸 고려대학교 컴퓨터학과

Orthogonal Projection Perspective

• Back to the case of invertible $C = A^T A$, consider the orthogonal , b 性好 62 化对性红蓝

projection of **b** onto Col A as

$$\hat{\mathbf{b}} = f(\mathbf{b}) = A\hat{\mathbf{x}} = A(A^T A)^{-1} A^T \mathbf{b}$$

$$Co[Arl < M=452 me]$$

$$b = A >$$

$$= A \cdot ((A \cdot A)^{\dagger} A \cdot b)$$

Orthogonal and Orthonormal Sets

• Definition: A set of vectors $\{\mathbf{u}_1,...,\mathbf{u}_p\}$ in \mathbb{R}^n is an orthogonal set if each pair of distinct vectors from the set is orthogonal That is, if $\mathbf{u}_i \cdot \mathbf{u}_i = 0$ whenever $i \neq j$.

• **Definition**: A set of vectors $\{\mathbf u_1,...,\mathbf u_p\}$ in $\mathbb R^n$ is an **orthonormal** set if it is an orthogonal set of unit vectors vectors

 Is an orthogonal (or orthonormal) set also a linearly independent set? What about its converse?

对于全卫首告

Orthogonal and Orthonormal Basis

- Consider basis $\{\mathbf v_1, ..., \mathbf v_p\}$ of a p-dimensional subspace W in $\mathbb R^n$.
- Can we make it as an orthogonal (or orthonormal) basis?
 - 2は キャン インシャー(メジェー)

 Yes, it can be done by Gram—Schmidt process. → QR factorization.

 (orthogralization)
- Given the orthogonal basis $\{\mathbf{u}_1, ..., \mathbf{u}_p\}$ of W, let's compute the orthogonal projection of $\mathbf{y} \in \mathbb{R}^n$ onto W.

Orthogonal Projection \hat{y} of y onto Line

• Consider the orthogonal projection $\hat{\mathbf{y}}$ of \mathbf{y} onto one-dimensional

• If u is a unit vector,

$$\hat{\mathbf{y}} = \operatorname{proj}_L \mathbf{y} = (\mathbf{y} \cdot \mathbf{u})\mathbf{u}$$

3)
$$y \cdot u = \frac{1-2+6}{16} = \frac{5}{8}$$

$$\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

Orthogonal Projection ŷ of y onto Plane

• Consider the orthogonal projection \hat{y} of y onto two-dimensional subspace \hat{W}

•
$$\hat{\mathbf{y}} = \operatorname{proj}_L \mathbf{y} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2$$

If u₁ and u₂ are unit vectors,

$$\hat{\mathbf{y}} = \text{proj}_L \mathbf{y} = (\mathbf{y} \cdot \mathbf{u}_1)\mathbf{u}_1 + (\mathbf{y} \cdot \mathbf{u}_2)\mathbf{u}_2$$

 Projection is done independently on each orthogonal basis vector.

Orthogonal Projection when $y \in W$

• Consider the orthogonal projection \hat{y} of y onto two-dimensional subspace W, where $y \in W$

•
$$\hat{\mathbf{y}} = \operatorname{proj}_L \mathbf{y} = \mathbf{y} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2$$

- If \mathbf{u}_1 and \mathbf{u}_2 are unit vectors, $\hat{\mathbf{y}} = \mathbf{y} = (\mathbf{y} \cdot \mathbf{u}_1)\mathbf{u}_1 + (\mathbf{y} \cdot \mathbf{u}_2)\mathbf{u}_2$
- The solution is the same as before.
 Why?

Transformation: Orthogonal Projection

• Consider a transformation of orthogonal projection $\hat{\mathbf{b}}$ of \mathbf{b} , given orthonormal basis $\{\mathbf{u}_1, \mathbf{u}_2\}$ of a subspace W: $\hat{\mathbf{b}} = f(\mathbf{b}) = (\mathbf{b} \cdot \mathbf{u}_1)\mathbf{u}_1 + (\mathbf{b} \cdot \mathbf{u}_2)\mathbf{u}_2 \iff \mathbf{u}_1 \cdot \mathbf{v}_2 \cdot \mathbf{v}_3 \cdot \mathbf{v}_4 + \mathbf{v}_4 \cdot \mathbf{v}$

$$\hat{\mathbf{b}} = f(\mathbf{b}) = (\mathbf{b} \cdot \mathbf{u}_1)\mathbf{u}_1 + (\mathbf{b} \cdot \mathbf{u}_2)\mathbf{u}_2 \rightarrow \mathbf{u}_1, \mathbf{u}_2 \in \mathbf{b} \cdot \mathbf{u}_1 \mathbf{u}_1 + (\mathbf{u}_2^T \mathbf{b})\mathbf{u}_2 \rightarrow \mathbf{u}_1(\mathbf{u}_1^T \mathbf{b}) + \mathbf{u}_2(\mathbf{u}_2^T \mathbf{b}) \rightarrow \mathbf{u}_1(\mathbf{u}_2^T \mathbf{b}) \rightarrow \mathbf{u}_1(\mathbf{u}_2^T \mathbf{b}) \rightarrow \mathbf{u}_1(\mathbf{u}_2^T \mathbf{b}) \rightarrow \mathbf{u}_2(\mathbf{u}_2^T \mathbf{b}) \rightarrow \mathbf{u}_1(\mathbf{u}_2^T \mathbf{b}) \rightarrow \mathbf{u}_1(\mathbf{u}_2^T$$

$$= (\mathbf{u}_1 \mathbf{u}_1^T + \mathbf{u}_2 \mathbf{u}_2^T) \mathbf{b}$$

$$= \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 \end{bmatrix} \begin{bmatrix} \mathbf{u}_1^T \\ \mathbf{u}_2^T \end{bmatrix} \mathbf{b} = UU^T \mathbf{b} \Rightarrow \text{linear transformation!}$$

Orthogonal Projection Perspective

• Let's verify the following, when $A = U = [\mathbf{u}_1 \quad \mathbf{u}_2]$ has orthonormal columns:

Back to the case of invertible $C = A^T A$, consider the orthogonal projection of **b** onto Col A as

$$\hat{\mathbf{b}} = A\hat{\mathbf{x}} = A(A^TA)^{-1}A^T\mathbf{b} = f(\mathbf{b})$$

•
$$C = A^T A = \begin{bmatrix} \mathbf{u}_1^T \\ \mathbf{u}_2^T \end{bmatrix} [\mathbf{u}_1 \quad \mathbf{u}_2] = I$$
. Thus,

$$\hat{\mathbf{b}} = A\hat{\mathbf{x}} = A(A^T A)^{-1} A^T \mathbf{b} = A(I)^{-1} A^T \mathbf{b} = AA^T \mathbf{b} = UU^T \mathbf{b}$$