1 (a) In the following list, underline all units that are SI base units.

ampere degree Celsius kilogram newton [1]

(b) Fig. 1.1 shows a horizontal beam clamped at one end with a block attached to the other end.

Fig. 1.1

The block is made to oscillate vertically.

The Young modulus *E* of the material of the beam is given by

$$E = \frac{kM}{T^2}$$

where *M* is the mass of the block,

T is the period of the oscillations

and k is a constant.

A student determines the values and percentage uncertainties of k, M and T. Table 1.1 lists the percentage uncertainties.

Table 1.1

quantity	percentage uncertainty
k	±2.1%
М	±0.6%
Т	±1.5%

The student uses the values of k, M and T to calculate the value of E as $8.245 \times 10^9 \, \mathrm{Pa}$.

(i) Calculate the percentage uncertainty in the value of *E*.

(ii)	Use your answer in (b)(i) to determine the value of <i>E</i> , with its absolute uncertainty, to an appropriate number of significant figures.
	$E = (\pm) \times 10^9 Pa$ [2]
	[Total: 5]