

DESIGN AND ANALYSIS OF A TURBOPUMP FOR A CONCEPTUAL EXPANDER CYCLE UPPER-STAGE ENGINE

D. Dorney, J. Rothermel, L. Griffin, R. Thornton, J. Forbes, S. Skelley NASA Marshall Space Flight Center MSFC, AL

> F. Huber Riverbend Design Services Palm Beach Garden, FL

Symposium on Advances in Numerical Modeling of Aerodynamics and Hydrodynamics in Turbomachinery

Outline

- Motivation
- · Numerical method
- Numerical simulations
 - vaneless diffuser
 - vaned diffuser
- Conclusions

Motivation

- Develop technologies to be applied to CLV/CEV engine programs
 - analytical tools ightarrow 1D meanline analysis and 3D CFD
 - mechanical design
 - water flow tests
- Design a conceptual expander-cycle upper stage engine
- . Demonstrate the design using water flow testing

Symposium on Advances in Numerical Modeling of Aerodynamics and Hydrodynamics in Turbomachinery

Numerical Methods - I

- Meanline analysis and geometry generation
- Pump Design
 - Concepts NREC design suite
 - Agile Engineering Design System©, PUMPAL©, CCAD©
- Diffuser design
 - Riverbend Design Services pump design code

Numerical Methods - II

- PHANTOM CFD code
- Three-dimensional, unsteady N-S equations
- · Generalized Equation Set formulation
 - Handles liquids and gases
 - Incompressible, compressible and supersonic flow
 - Preconditioning for incompressible flows
- · Implicit, time marching, finite difference scheme
- · 3rd order spatially, 2nd order temporally accurate
- Modified Baldwin-Lomax turbulence model
- Overlaid O- and H-grids

Symposium on Advances in Numerical Modeling of Aerodynamics and Hydrodynamics in Turbomachinery

Numerical Methods - III

- · MPI for parallel simulations
- · Fluid property routines
 - Perfect gas
 - Real fluid property routines for xenon, N₂, H₂, H₂O, O₂, RP, CH₄, CO, N₂H₄, MMH and N₂O₄
 - Two types of real fluid property routines
 - Routines provided by J. Oefelein of Sandia Labs liquid and gas
 - Solve equations of state, etc.
 - Routines derived from the NIST tables liquid and gas
 - Surfaces generated from splines of data

Design Requirements for Water Flow Rig

- · Operate in existing water flow facility
- · 977 gpm flow rate
- Rotational speed of 3600 RPM
- · 70% flow coefficient throttling capability
- Diffuser vane/volute radius and passage constraints due to rig requirements
 - vanes must accommodate 17 bolts
- Actual engine was designed to have two stages, but the water flow model designed to have one stage

Conclusions

- Inlet guide vane, impeller and diffuser designed for a conceptual expander cycle upper stage engine
- Meanline analysis and three-dimensional unsteady CFD show that the design meets the requirements and constraints
- Water flow testing of the design should begin late summer 2006