```
In [2]: !pip install pycaret

import pandas as pd
import pycaret
import seaborn as sns
import missingno as msno
import numpy as np
from pycaret.classification import *
sns.set()
sns.set_context("paper")
pd.set_option('display.max_colwidth', None)
import matplotlib.pyplot as plt
```

The system cannot find the path specified.

```
______
ValueError
                                        Traceback (most recent call last)
Cell In[2], line 3
      1 get ipython().system('pip install pycaret -q > /dev/null 2>&1')
----> 3 import pandas as pd
     4 import pycaret
     5 import seaborn as sns
File ~\AppData\Local\Programs\Python\Python311\Lib\site-packages\pandas\_init_.py:22
     19 del hard dependencies, dependency, missing dependencies
     21 # numpy compat
---> 22 from pandas.compat import is_numpy_dev as _is_numpy_dev # pyright: ignore # no
    24 try:
           from pandas. libs import hashtable as hashtable, lib as lib, tslib as ts
     25
lib
File ~\AppData\Local\Programs\Python\Python311\Lib\site-packages\pandas\compat\ init
_.py:18
     15 from typing import TYPE CHECKING
     17 from pandas._typing import F
---> 18 from pandas.compat.numpy import (
     19
           is_numpy_dev,
     20
           np_version_under1p21,
     21 )
     22 from pandas.compat.pyarrow import (
           pa version under1p01,
     23
     24
           pa version under2p0,
   (\ldots)
     31
           pa version under9p0,
     32 )
     34 if TYPE CHECKING:
File ~\AppData\Local\Programs\Python\Python311\Lib\site-packages\pandas\compat\numpy\
init__.py:4
     1 """ support numpy compatibility across versions """
      2 import numpy as np
----> 4 from pandas.util.version import Version
      6 # numpy versioning
      7 _np_version = np.__version__
File ~\AppData\Local\Programs\Python\Python311\Lib\site-packages\pandas\util\_init__.p
y:2
     1 # pyright: reportUnusedImport = false
----> 2 from pandas.util. decorators import ( # noga:F401
      3
           Appender,
     4
           Substitution,
     5
           cache_readonly,
     6)
     8 from pandas.core.util.hashing import ( # noqa:F401
     9
           hash array.
     10
           hash pandas object,
     11 )
     14 def __getattr__(name):
File ~\AppData\Local\Programs\Python\Python311\Lib\site-packages\pandas\util\_decorator
s.py:14
     6 from typing import (
     7
           Any,
     8
           Callable,
     9
           Mapping,
     10
           cast,
     11 )
```

```
12 import warnings
---> 14 from pandas._libs.properties import cache_readonly
     15 from pandas._typing import (
     16
            F,
     17
            Τ,
     18 )
     19 from pandas.util._exceptions import find_stack_level
File ~\AppData\Local\Programs\Python\Python311\Lib\site-packages\pandas\_libs\__init__.
py:13
      1 __all__ = [
      2
            "NaT",
      3
            "NaTType",
   (\ldots)
            "Interval",
     9
     10 ]
---> 13 from pandas._libs.interval import Interval
     14 from pandas._libs.tslibs import (
     15
            NaT,
     16
            NaTType,
   (\ldots)
     21
            iNaT,
     22 )
```

File ~\AppData\Local\Programs\Python\Python311\Lib\site-packages\pandas_libs\interval.
pyx:1, in init pandas._libs.interval()

ValueError: numpy.dtype size changed, may indicate binary incompatibility. Expected 96 from C header, got 88 from PyObject

```
In [ ]:
In [2]: df = pd.read_csv('../input/urinary-biomarkers-for-pancreatic-cancer/Debernardi et al 2020
print("The data has the shape: ",df.shape)

The data has the shape: (590, 13)
```

In [3]: sns.countplot(data = df, x = 'diagnosis')

Out[3]: <AxesSubplot: xlabel='diagnosis', ylabel='count'>

In [4]: df.sample(5).T

\cap	1115	⊢	1 /1	٠.
U	u	L	۲,	J •

sample_id	S143	S471	S33	S423	S409
patient_cohort	Cohort2	Cohort1	Cohort1	Cohort1	Cohort1
sample_origin	ВРТВ	LIV	ВРТВ	LIV	LIV
age	36	62	50	68	69
sex	F	F	М	М	F
diagnosis	1	3	1	3	3
stage	NaN	IIB	NaN	IIB	III
benign_sample_diagnosis	NaN	NaN	NaN	NaN	NaN
plasma_CA19_9	5.128234	318.0	3.53	91.0	556.0
creatinine	0.96135	1.36851	0.57681	2.30724	0.91611
LYVE1	0.019426	3.035614	0.535693	6.221869	7.494335
REG1B	47.254685	168.10784	17.93163	63.468804	77.32123
TFF1	19.42577	941.162229	139.494255	583.1935	1423.229437
REG1A	NaN	334.069	81.61	78.535	1232.933

In [5]: df.describe() Out[5]: diagnosis plasma_CA19_9 creatinine LYVE1 REG1B TFF1 RE age count 590.000000 590.000000 590.000000 590.000000 306.000 350.000000 590.000000 590.000000 2.027119 mean 59.079661 654.002944 0.855383 3.063530 111.774090 597.868722 735.281 std 13.109520 0.804873 2430.317642 0.639028 3.438796 196.267110 1010.477245 1477.247 26.000000 1.000000 0.000000 0.056550 0.000129 0.001104 0.005293 0.000 min 25% 50.000000 1.000000 8.000000 0.373230 0.167179 10.757216 43.961000 80.692 2.000000 50% 60.00000 26.500000 0.723840 1.649862 34.303353 259.873974 208.538 75% 69.000000 3.000000 294.000000 1.139482 5.205037 122.741013 742.736000 649.000 89.000000 3.000000 31000.000000 4.116840 1403.897600 13344.300000 13200.000 max 23.890323 df.describe(include = 'object') Out[6]: patient_cohort sample_origin sex stage benign_sample_diagnosis count 590 590 590 199 208 unique 2 4 2 8 52 F Cohort1 **BPTB** Ш **Pancreatitis** top 332 299 41 freq 409 76

4/ Features

	Detail
Unique string identifyir	ng each subjec
Cohort 1, previously used samples; Cohort 2, newly	added sample
BPTB: Barts Pancreas Tissue Bank, London, UK; ESP: Spanish National Ca Centre, Madrid, Spain; LIV: Liverpool University, UK; UCL: University Colle	
	Age in year
M = m	ale, F = femal
1 = control (no pancreatic disease), 2 = benign hepatobiliary disease (119 of what pancreatitis); 3 = Pancreatic ductal adenocarcinoma, i.e. par	
For those with pancratic cancer, what stage was it? One of IA, IB	, IIA, IIIB, III, I
For those with a benign, non-cancerous diagnosis, what was	the diagnosis
Blood plasma levels of CA 19–9 monoclonal antibody that is often elevated pancreatic cancer. Only assessed in 350 patients (one goal of the study various CA 19-9 cutpoints from a blood sample to the model developed	vas to compar
Urinary biomarker of	kidney functio
Urinary levels of Lymphatic vessel endothelial hyaluronan receptor 1, a protein role in tu	that may play mor metastasi
Urinary levels of a protein that may be associated with pancrea	s regeneratior
Urinary levels of Trefoil Factor 1, which may be related to regeneration a	nd repair of th urinary trad
Urinary levels of a protein that may be associated with pancreas regeneration. in 306 patients (one goal of the study was to assess REG	
· · · · · · · · · · · · · · · · · · ·	

5/ Missing values

```
In [8]: msno.matrix(df, color = (.5,0,.5))
```

Out[8]: <AxesSubplot: >

Notice that large numbers of values for 'stage' and 'benign_sample_diagnosis' appear to be missing. Only diagnosis 2 values are present in the 'benign_sample_diagnosis' feature (as the name suggests) whereas only diagnosis 3 values are present in the 'stage' feature.

These two features contain information **directly linked to the diagnosis target** and left in will **ruin** your model through **data leakage**. Many notebooks using this dataset make this mistake and achieve what seem to be highly accurate but ultimately unreliable models as a result.

```
In [11]: df.isnull().sum()
Out[11]: patient_cohort
                                        0
                                        0
          sample_origin
                                        0
          age
                                        0
          sex
          diagnosis
                                        0
                                      391
          stage
          benign_sample_diagnosis
                                      382
          plasma_CA19_9
                                       240
          creatinine
                                        0
                                         0
          LYVE1
          REG1B
                                        0
          TFF1
                                        0
          REG1A
                                       284
          dtype: int64
```

Also large numbers of values for 'plasma_CA19_9' and 'REG1A' are also missing, so we will need to choose a suitabel imputation strategy.

6/ Cohort

```
In [12]: sns.countplot(x = df.patient_cohort)
```

Out[12]: <AxesSubplot: xlabel='patient_cohort', ylabel='count'>

The two Cohorts consist of 'previously added samples' and 'newly added samples.' The Cohort feature is often left in models but should it be?

```
In [13]: df.groupby('diagnosis')['patient_cohort'].value_counts(normalize = True)
Out[13]: diagnosis
                    patient_cohort
                    Cohort2
                                       0.557377
         1
                     Cohort1
                                       0.442623
         2
                     Cohort2
                                       0.572115
                     Cohort1
                                       0.427885
         3
                     Cohort1
                                       0.814070
                     Cohort2
                                       0.185930
         Name: patient_cohort, dtype: float64
```

We can see from the above that 81% of patients diagnosed with cancer are in the Cohort1 group compared to only 19% in Cohort2. Any model using this feature would therefore assume that being in Cohort1 means that cancer is more likely and weight this feature accordingly,

However this feature should not be used because it will never appear in any future data and does not help us understand the impact of urinary biomarkers on diagnosis.

7/ Origin

```
In [14]: sns.countplot(x = df.sample_origin)
Out[14]: <AxesSubplot: xlabel='sample_origin', ylabel='count'>
```


Samples are drawn from four locations. Once again this feature is often used within models but perhaps should not be.

```
In [15]: df.groupby('sample_origin')['diagnosis'].value_counts(normalize = True)
Out[15]: sample_origin
                         diagnosis
          BPTB
                                       0.447433
                         1
                         2
                                       0.349633
                         3
                                       0.202934
                         3
          ESP
                                       0.793103
                         2
                                       0.206897
                         3
         LIV
                                       0.704545
                         2
                                       0.295455
         UCL
                         2
                                       1.000000
         Name: diagnosis, dtype: float64
```

We can see above each sample origin site has different diagnosis proportions. It turns out that UCL samples contain only benign patient diagnoses, for example, whereas 70% of Liverpool's patients have cancer. Clearly if the model learned these weights it would not be at all helpful in determining the impact of urinary biomarkers.

8/ Useful features

Average levels of biomarker features are much higher amongst the cancer patients.

```
groups = df.groupby('diagnosis').mean()
In [16]:
          groups.style.highlight_max()
Out[16]:
                                                           LYVE1
                           age plasma_CA19_9 creatinine
                                                                      REG1B
                                                                                   TFF1
                                                                                              REG1A
           diagnosis
                   1 56.333333
                                      8.749569
                                                0.797633 1.212887
                                                                   41.327901
                                                                              169.024140
                                                                                          227.871886
                   2 54.701923
                                     61.785741
                                                0.847929
                                                        2.084612
                                                                   64.174510
                                                                              448.256897
                                                                                          547.458092
                   3 66.180905
                                   1476.154733
                                                0.916281 5.788567 226.308587 1148.611527 1138.323721
```

Some biomarkers reach their highest levels as the cancer progresses.

```
In [17]: stage = df.groupby('stage').mean()
stage.drop(columns = 'diagnosis').style.highlight_max()
```

Out[17]:

	age	plasma_CA19_9	creatinine	LYVE1	REG1B	TFF1	REG1A
stage							
ı	81.000000	nan	0.565500	12.017150	431.422530	874.099700	nan
IA	56.666667	10.666667	0.882180	2.030466	87.426656	330.596590	182.727500
IB	68.083333	1486.866667	0.615453	3.069541	128.816342	564.475333	1811.717200
II	65.714286	nan	1.016284	9.979902	503.062302	1467.856400	1929.561250
IIA	64.818182	592.909091	0.643642	3.113806	206.682191	1607.506765	636.385556
IIB	67.838235	1345.557833	0.782386	5.294798	199.195550	1068.569260	764.179700
III	63.789474	1662.508308	1.074896	6.296259	221.185408	1118.929278	1148.339125
IV	69.904762	3430.300000	1.078759	7.348032	316.456271	1632.152213	4132.146000

Pancreatic cancer likelihood increases with age and seems to affect men more than women.

Several features have a strong correlation with diagnosis.

creatinine

All the biomarker features seem to be right-skewed.

0.074888

In [21]: df.drop(columns = ['diagnosis', 'age']).hist(figsize=(10,10), grid = True, color = 'purple
plt.tight_layout()

9/ Classification

In this section we treat diagnosis as a multiclass problem, aiming to sort the patients into the three categories above.

```
In [22]: features_to_ignore = ['patient_cohort', 'sample_origin','stage','benign_sample_diagnosis
```

In [23]: s = setup(df, target = 'diagnosis', experiment_name = 'pancreas', train_size = 0.8, sess:

	Description	Value
0	Session id	71
1	Target	diagnosis
2	Target type	Multiclass
3	Target mapping	1: 0, 2: 1, 3: 2
4	Original data shape	(590, 13)
5	Transformed data shape	(590, 9)
6	Transformed train set shape	(472, 9)
7	Transformed test set shape	(118, 9)
8	Ignore features	4
9	Numeric features	7
10	Categorical features	1
11	Rows with missing values	100.0%
12	Preprocess	True
13	Imputation type	simple
14	Numeric imputation	median
15	Categorical imputation	mode
16	Maximum one-hot encoding	25
17	Encoding method	None
18	Normalize	True
19	Normalize method	zscore
20	Fold Generator	StratifiedKFold
21	Fold Number	10
22	CPU Jobs	-1
23	Use GPU	False
24	Log Experiment	False
25	Experiment Name	pancreas
26	USI	ade5

In [24]: best = compare_models(n_select = 5,sort = 'Accuracy')

	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC	TT (Sec)
gbc	Gradient Boosting Classifier	0.7477	0.0000	0.7477	0.7521	0.7466	0.6211	0.6238	0.2670
xgboost	Extreme Gradient Boosting	0.7414	0.8815	0.7414	0.7459	0.7400	0.6118	0.6148	0.1350
catboost	CatBoost Classifier	0.7413	0.8869	0.7413	0.7483	0.7414	0.6115	0.6140	2.7880
rf	Random Forest Classifier	0.7138	0.8751	0.7138	0.7155	0.7111	0.5705	0.5734	0.1420
et	Extra Trees Classifier	0.7137	0.8582	0.7137	0.7203	0.7127	0.5701	0.5735	0.1180
lightgbm	Light Gradient Boosting Machine	0.7074	0.8753	0.7074	0.7138	0.7057	0.5608	0.5645	0.3390
ada	Ada Boost Classifier	0.6290	0.0000	0.6290	0.6486	0.6232	0.4413	0.4513	0.0890
dt	Decision Tree Classifier	0.6273	0.7194	0.6273	0.6358	0.6253	0.4401	0.4446	0.0420
lr	Logistic Regression	0.6098	0.0000	0.6098	0.6245	0.6095	0.4166	0.4220	0.4080
svm	SVM - Linear Kernel	0.5613	0.0000	0.5613	0.5721	0.5399	0.3424	0.3535	0.0400
lda	Linear Discriminant Analysis	0.5569	0.0000	0.5569	0.5696	0.5592	0.3359	0.3380	0.0360
ridge	Ridge Classifier	0.5548	0.0000	0.5548	0.5538	0.5497	0.3334	0.3366	0.0360
knn	K Neighbors Classifier	0.5445	0.7424	0.5445	0.5630	0.5427	0.3181	0.3240	0.0470
qda	Quadratic Discriminant Analysis	0.5167	0.0000	0.5167	0.5430	0.4802	0.2846	0.3172	0.0360
nb	Naive Bayes	0.4977	0.7298	0.4977	0.5171	0.4553	0.2572	0.2913	0.0400
dummy	Dummy Classifier	0.3517	0.5000	0.3517	0.1238	0.1831	0.0000	0.0000	0.0930

Processing: 0% | 0/73 [00:00<?, ?it/s]

In [25]: | tuned = tune_model(best[0])

	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC
Fold							
0	0.7917	0.0000	0.7917	0.7911	0.7862	0.6865	0.6906
1	0.7917	0.0000	0.7917	0.7903	0.7893	0.6865	0.6878
2	0.7234	0.0000	0.7234	0.7272	0.7248	0.5852	0.5856
3	0.7021	0.0000	0.7021	0.6996	0.6960	0.5521	0.5555
4	0.7021	0.0000	0.7021	0.7281	0.7070	0.5524	0.5597
5	0.7021	0.0000	0.7021	0.7171	0.7051	0.5539	0.5573
6	0.7447	0.0000	0.7447	0.7406	0.7382	0.6179	0.6217
7	0.7447	0.0000	0.7447	0.7489	0.7463	0.6155	0.6160
8	0.8085	0.0000	0.8085	0.8130	0.8102	0.7117	0.7121
9	0.8298	0.0000	0.8298	0.8338	0.8278	0.7451	0.7486
Mean	0.7541	0.0000	0.7541	0.7590	0.7531	0.6307	0.6335
Std	0.0455	0.0000	0.0455	0.0427	0.0447	0.0682	0.0676

Fitting 10 folds for each of 10 candidates, totalling 100 fits

Processing: 0% | 0/7 [00:00<?, ?it/s]

10/ Model understanding

In [26]: plot_model(tuned, plot = 'feature')

In [27]: plot_model(tuned, plot = 'error')

In [28]: plot_model(tuned, plot = 'confusion_matrix')

In [29]: plot_model(tuned, plot = 'auc')

The model appears to be very good at distinguishing class 2 (cancer) from the classes.

```
In [30]: plot_model(tuned, plot = 'boundary')
```


In [31]: preds = predict_model(tuned)

	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC
0	Gradient Boosting Classifier	0.7034	0.8412	0.7034	0.7061	0.7042	0.5549	0.5553

11/ Finalise model

We finalise the model by training on the whole dataset.

```
In [32]: final = finalize_model(tuned)
    save_model(final, 'pancreas_pipeline')
    preds = predict_model(final)
```

Transformation Pipeline and Model Successfully Saved

	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC
0	Gradient Boosting Classifier	0.9153	0.9770	0.9153	0.9175	0.9160	0.8727	0.8731

```
In [33]: tuned
```

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

12/ Conclusion

Several other notebooks using this dataset report accuracy values greater than 85%. In all cases they have done so by utilising features which lead to data leakage ('stage' and 'benign_sample_diagnosis') or features which may not be available in a future generalisable model ('cohort' and 'origin'). It would be great to see an accuracy score exceeding the one achieved here.