Mixture of Topic-based Distributional Semantic and Affective Models

Fenia Christopoulou, Eleftheria Briakou, Elias Iosif, Alexandros Potamianos

School of Electrical and Computer Engineering National Technical University of Athens, Greece

February 2, 2018

Overview

- 1 Introduction
- 2 Topic-based DSMs
- 3 Similarity Computation
- 4 Affect Estimation
 - Existing Work
 - Affective Mixture Model
- **5** Experiments
 - Word-level Semantic Similarity
 - Sentence-level Affect Estimation
- 6 Conclusions

Goal - Motivation

- Goal: Tackle word sense ambiguity in
 - Word-level semantic similarity computation (with/without context information)
 - 2 Sentence-level affect estimation

Motivation:

- Topic domain of sentences influences the meaning of words
 - Limitations of traditional DSMs: One semantic representation \rightarrow flattened senses

Prior Work:

- Sense-agnostic representations [Reisinger and Mooney, 2010]
- Extended SkipGram word2vec [Neelakantan et al., 2014]
- Mixture models [Xiang et al., 2014]
- Latent Dirichlet Allocation (LDA) [Liu et al., 2015]
- Knowledge bases [Liu et al., 2015; Pilehvar and Collier, 2016]
- Joint NN Learning [Lin and He, 2009; Zheng et al., 2017]

Overview

- 1 Introduction
- 2 Topic-based DSMs
- 3 Similarity Computation
- 4 Affect Estimation
 - Existing Work
 - Affective Mixture Model
- **5** Experiments
 - Word-level Semantic Similarity
 - Sentence-level Affect Estimation
- 6 Conclusions

Proposed Approach - Overview

Model Overview

- 1 Train a probabilistic topic model (LDA)
 - Generic domain documents (corpus)
- 2 Apply trained model to the same corpus
 - Sentence-wise (assumption: one sentence contains one topic)
- 3 Classify corpus sentences into Topic-specific subcorpora
 - Topic-based posterior probabilities thresholding
- 4 Train topic-specific DSMs on subcorpora
- 5 Estimate pairwise word similarities
 - Mixture of semantic word similarities

Topic Modeling

Introduction

Latent Dirichlet Allocation (LDA) algorithm [Blei et al., 2003]:

- Generative process
- Topic resembles thematic domain
- Document collection as a probabilistic mixture of topics
- Topic as a distribution over words in the collection

Introduction

1 Construct sub-corpora using probability-based threshold

- 2 Train multiple topic-specific DSMs
 - Different topic-based semantic spaces

Overview

- 1 Introduction
- 2 Topic-based DSMs
- 3 Similarity Computation
- 4 Affect Estimation
 - Existing Work
 - Affective Mixture Model
- **5** Experiments
 - Word-level Semantic Similarity
 - Sentence-level Affect Estimation
- 6 Conclusions

Context-independent metrics

Assumption: All topics contribute equally

$$S_{\text{AvgSim}}(w_i, w_j; L_T) = \frac{1}{T} \sum_{t=1}^{|T|} S_t(w_i, w_j; \lambda_t)$$

$$S_{\mathsf{MaxSim}}(w_i, w_j; L_T) = \max_{t \in T} \{S_t(w_i, w_j; \lambda_t)\}$$

where

- \blacksquare L_T set of T topic-specific DSMs
- $S_t(w_i, w_i; \lambda_t)$ semantic similarity of w_i and w_i from λ_t DSM

Context-dependent metrics

Assumption: Topics are weighted with posteriors when context is present

$$S_{\mathsf{AvgSimC}}(w_i, w_j; L_T) = \frac{\sum_{t=1}^{|K(c)|} p(t|c) S_t(w_i, w_j; \lambda_t)}{\sum_{t=1}^{|K(c)|} p(t|c)}$$
$$S_{\mathsf{MaxSimC}}(w_i, w_j; L_T) = S_{\hat{t}}(w_i, w_j; \lambda_{\hat{t}})$$
$$\hat{t} = \underset{t \in K(c)}{\operatorname{argmax}} \{p(t|c)\}$$

where

- L_T : set of T topic-specific DSMs
- $S_t(w_i, w_j; \lambda_t)$: semantic similarity of w_i and w_j from λ_t DSM
- $c = c(w_i) \oplus c(w_j)$: shared context of word pair
- p(t|c): posterior probability of topic t for context c
- $K(c) \leq T$: candidate topics with posterior probability > 0.01

Fusion of Topic Models

Motivation:

- Combine information from multiple topic models trained on different number of topics
- Actual number of word senses can be better approached

Assumption: Document collection contains multiple topic distributions

$$S_{\mathsf{Fuse}}(w_i, w_j) = \max_{L_T \in G} \{ S_{\mathsf{*Sim}}(w_i, w_j; L_T) \}$$

where

- $S_{*Sim}(w_i, w_i; L_T)$: w_i, w_i pair similarity
- *G*: group of DSM sets to be fused

Linear combination of topic similarities

Motivation: Learn a linear combination of topic-similarities

Assumption: Document collection contains single topic distribution

Expectation: Better estimation of pairwise similarities compared to un-weighted average

$$S_{LR}(w_i, w_j; L_T) = \beta_0 + \sum_{t=1}^{|T|} \beta_t S_t(w_i, w_j; \lambda_t)$$

where

- β_t : learned weight for topic t
- lacksquare β_0 : bias weight
- $S_t(w_i, w_i; \lambda_t)$: similarity of w_i , w_i pair from λ_t DSM

Overview

- 1 Introduction
- 2 Topic-based DSMs
- 3 Similarity Computation
- 4 Affect Estimation
 - Existing Work
 - Affective Mixture Model
- **5** Experiments
 - Word-level Semantic Similarity
 - Sentence-level Affect Estimation
- 6 Conclusions

Semantic similarity implies affective similarity

- Affective space: valence
- Affective lexicon: seed words
- DSM: general-purpose corpus
- Semantic-affective mapping [Malandrakis et al., 2011]

$$v(w_j) = \alpha_0 + \sum_{n=1}^{N} \alpha_i \ v(s_i) \ S(s_i, w_j; \lambda)$$

where

- $\mathbf{v}(w_i)$: valence score of unknown word w_i
- $\mathbf{v}(s_i)$: valence score of seed word s_i
- $S(s_i, w_i; \lambda)$: semantic similarity from λ DSM
- α_i/α_0 : weight of seed word s_i /bias weight

Affective Mixture Model

Two-step process:

- 1 Select topics for each sentence
- 2 Compute adapted affective scores

$$v_{\text{adapt}}(w_j) = \alpha_0 + \sum_{n=1}^{N} \alpha_i \ v(s_i) \ S_{\text{AvgSimC}}(s_i, w_j; L_T)$$

where

- $\mathbf{v}(s_i)$: valence score of seed word s_i
- α_i/α_0 : weight of seed word s_i /bias weight
- \blacksquare $S_{\text{AvgSimC}}(s_i, w_i; L_T)$: adapted semantic similarity
- $\mathbf{v}_{\text{adapt}}(w_i)$: final adapted valence score for a sentence word

Overview

- 1 Introduction
- 2 Topic-based DSMs
- 3 Similarity Computation
- 4 Affect Estimation
 - Existing Work
 - Affective Mixture Model
- **5** Experiments
 - Word-level Semantic Similarity
 - Sentence-level Affect Estimation
- 6 Conclusions

Data

Introduction

- Corpora: Web Corpus [losif and Potamianos, 2015], Wikipedia¹
- Affective Lexica: ANEW [Bradley and Lang, 1999]
- Datasets:
 - Word-level Semantic Similarity

Dataset	Pairs	Туре
MEN [Bruni et al., 2014]	3000	out-of-context
WS-353 [Finkelstein et al., 2001	.] 353	out-of-context
SCWS [Huang et al., 2012]	2003	in-context

Sentence-level affect estimation

Dataset	Sentences	Valence	
SemEval 2007 Task 14	1000	[-1,1]	
[Strapparava and Mihalcea, 2007]	1000	[-1,1]	

¹https://dumps.wikimedia.org/enwiki/20160720/

Tools & Parameters

- LDA: Gensim Toolbox [Řehůřek and Sojka, 2010]
 - Up to 100 topics
- DSMs: Continuous Bag-of-Words (CBOW) word2vec²
 - Corpora: Web corpus, Wikipedia
 - Dimensionality: 300 (Web corpus), 500 (Wikipedia)
 - Context window size: 5
- Semantic similarity metric: cosine
- **E** Evaluation Metric: Spearman's ρ correlation coefficient

²https://code.google.com/archive/p/word2vec/

Semantic Similarity Results I

Introduction

Performance comparison in terms of Spearman's ρ correlation.

	Out-of-Context		In-Context			
Approach	WS-353	MEN	SCWS			
			MaxSimC	AvgSim	AvgSimC	
lacobacci et al. [2015]	0.779	0.805	0.589	-	0.624	
Pilehvar and Collier [2016]	_	0.786	_	0.708	0.715	
Amiri et al. [2016]	_	_	_	_	0.709	
Web Corpus						
TDSMs	0.722	0.800	0.678	0.678	0.702	
TDSMs-Fuse	_	_	0.674	0.676	0.705	
TDSMs-LR	0.727	0.838	_	_	_	
No Topics	0.703	0.773	0.659			
Wikipedia Corpus						
TDSMs	0.698	0.753	0.683	0.696	0.701	
TDSMs-Fuse	_	_	0.681	0.685	0.707	
TDSMs-LR	0.695	0.796	_	_	_	
No Topics	0.644	0.731		0.669		

Experiments

Semantic Similarity Results II

Spearman's ρ correlation for **SCWS dataset** using the **TDSMs** as a function of the number of topics, for Web-Corpus.

Similarity Computation

Introduction

Semantic Similarity Results III

Spearman's ρ correlation for **SCWS dataset** using **TDSMs** as a function of the number of topics, for **Wikipedia**.

Affect Estimation Results

Spearman's ρ correlation for sentence affective score estimation on the SemEval 2007 Task 14 dataset.

Number of Topics	Linear Fusion	Weighted Fusion	Max Fusion
1	0.614	0.627	0.543
10	0.637	0.595	0.563
20	0.626	0.639	0.572
30	0.646	0.650	0.603
40	0.614	0.617	0.551
50	0.641	0.634	0.586
60	0.605	0.608	0.544

Overview

- 1 Introduction
- 2 Topic-based DSMs
- 3 Similarity Computation
- 4 Affect Estimation
 - Existing Work
 - Affective Mixture Model
- **5** Experiments
 - Word-level Semantic Similarity
 - Sentence-level Affect Estimation
- 6 Conclusions

Conclusions

- Topic-based adaptation of semantic similarities
- Sub-corpora: words of interest have topic-related senses
- Linear combination of topic-specific similarities: state-of-the-art results on MEN dataset (0.838 Spearman correlation 3.3% improvement over the state-of-the-art)
- Affect estimation with TDSMs: baseline (single DSM) improvement almost 4%
- Future Work
 - Optimal number of topics using semantically-driven criteria
 - Normalization, fusion of generic and topic-specific word embeddings
 - Corpora and evaluation datasets in other languages

Thank you