Artificial Intelligence

Lecture 04: Constraint Satisfaction Problems (AIMA C6)

Lecture Summary

- Constraint Satisfaction Problem (covered in previous lecture)
- Backtracking Search

Constraints

8 Queens

- Queens may not occupy the same row, column or diagonal
- How to place eight queens?

Constraint Problems

- If all constraints are satisfied, that is considered an optimal solution
- If multiple solutions exist, all correct solutions are considered equally valid

Map Colouring Problem

The Problem:

- There are regions present on a 2-dimensional surface.
- Each region may not share an adjacent edge with another region of the same colour.

Send More Money

Task: Make this 'sum' make sense Each letter represents a unique number.

Hidden 'rule'

S,
$$M \neq 0$$

$$M + C_4 = 0 + 0$$

While solving, elaborate the 'rules' you are making?

Send More Money

Task: Make this 'sum' make sense Each letter represents a unique number.

variables domain
$$\forall$$
 S, E, N, D, M, O, R, Y \in $\{0, 1, ..., 9\}$

constraints

Size of the naive search space: O(dⁿ)

Domain size: d = 10

Number of variables: n = 8

Varieties of Constraints

Unary:

- Involves a single variable
- WA ≠ blue

Binary Constraints:

- Involves pairs of variables
- WA ≠ QLD

Higher Order Constraints

Involve 3 or more variables

Preferences:

- Sometimes a constraint isn't a hard constraint, rather an optimisation
- E.g., maybe **red** is better than **blue**?
- Can be represented as a cost

Some types of CSPs

Discrete variables

- Finite domains;
 - Size of the naive search space: O(dⁿ)
 - Boolean CSPs, Boolean satisfiability (NP-Complete problem)
- Infinite domains; (strings, integers)
 - Job scheduling (variables are the start/end days for each job)
 - Need a constraint language (startJob₁
 + 5 < startJob₃ etc)

Continuous variables

- Start end times for Hubble Telescope observations
- Linear constraints are solvable in polynomial time via Linear Programming methods

Find a vector \mathbf{x} that maximizes $\mathbf{c}^{\mathsf{T}}\mathbf{x}$ subject to $A\mathbf{x} \leq \mathbf{b}$ and $\mathbf{x} \geq \mathbf{0}$.

Searching (Naïve)

The logic:

Initial:

{}

(empty)

Successor:

Add an unassigned value, check it

does not conflict

Goal:

Are we done?

All solutions appear at depth **n** with **n** variables

Some issues:

- This approach suffers from repetition
- The branching factor is large (7 * 3)
- In general, it is: (n − l) * d
 - (depth = I)
- Leaves = n!dⁿ (oh dear)

Which search would we start with?

BFS or DFS?

• DFS

Why?

None of the interim states are solutions

Searching (Optimising)

Searching (Optimising)

Approach #1

Pick a random state and expand from there

• BF is 7x3 = 21.

Approach #2

Pick a specific state, knowing that all states will eventually be picked.

• BF goes from 21 to 3.

Searching with Backtracking

Backtracking

- In these examples we go forward... until a constraint is violated
- Then we back track to a new branch and then continue...

5	3	1	2	7		8	9	4
6	2	4	1	9	5	2	1	
-	9	8					6	1
8	-	÷		6	1 100			3
4	-		8		3	1		1
7				2	-	1		6
	6			1		2	8	2
			4	1	9	-		5
		1		8	-	1	7	9

Backtracking example NT QLD WA SA NSW VIC TAS

Backtracking is pretty garbage... (naively)

What are some ways to improve backtracking search?

- Which variable should be assigned next?
 - Variables with many constraints are good candidates
- In what order should its values be tried?
 - Start with a restrictive (or least restrictive) one?
- Can we detect inevitable failure early?
 - Meta-rules (high level strategies/heuristics)
- Can we take advantage of the problem structure?

Where to start?

Minimal Remaining Values

- If we search through the remaining choices, and then go for the one with the fewest possible options
 - In Sudoku, this is often a cell with only one possible value
- Searching through all of the nodes will only be O(n)
 rather than O(n *??) so finding the 'most constrained' node is cheap.

Constraint (Least Constraining Choice)

Choosing QLD = red causes an immediate constraint issue for SA (2 options => 1 option)

Arc Consistency

A variable in a CSP is arc-consistent if every value in its domain satisfies the variable's binary constraints.

Example

For each possible value of **SA** {**B**}, is there a *possible* value for **NSW**?

- Yes, **NSW** -> {**R**}
- SA is arc-consistent w.r.t. NSW.

For each possible value of **NSW** {**R**, **B**}, is there a *possible* value for **SA**?

- No, if NSW is B, SA has no legal values, SA -> {}.
- NSW is NOT arc-consistent w.r.t. SA

Arc Consistency

Simplest form of propagation makes each **arc consistent**

X -> Y is consistent iff

For **every** value of x of X there is **some** allowed y

If SA is B, there is no allowed value for NT -> {}

Arc Consistency

Arc Consistencies can propagate

- If State X is value x_i... then State
 Y can't be value y_i
- If some other state denies X one of its potential values... say x_k, other nodes relying on x_k (i.e., adjacent nodes need to be rechecked)

Order: WA->QLD->NSW->SA->NT

AC-3

function AC-3 returns the CSP

```
inputs: csp, a binary CSP with variables {X<sub>1</sub>, X<sub>2</sub>, ...}
```

local: queue (list of arcs, initially all in the csp)

while queue is not empty do

 $(X_i, X_i) \le remove first$

if removeInconsistentValues(X_i, X_i) **then**

for each X_k in Neighbours[X_i] do

add(X_k, X_i) to queue

function removeInconsistentValues(X_i, X_i) **returns** true/false

removed <- false

for each x in DOMAIN[X_i] do

if no value y in DOMAIN[X_j] allows (x, y) to satisfy $X_i \leftrightarrow X_j$

then delete x from DOMAIN[X_i]; removed <- true

return removed

In Human-speak:

- 1. Make a queue of all edges
- 2. Go through one by one, looking for inconsistent values
- 3. Check each edge, checking each domain in turn
- 4. When an inconsistency arises, remove the domain (colour etc.) and then re-add any edges adjacent to the affected node (to propagate any inconsistencies)

Forward Checking

Forward Check: FAIL

Tree Structured CSPs

Problems with no loops have more efficient solutions:

• $O(n)xO(d^2) = (nd^2)$

This compares to normally

• $O(d^n)$ - size of the naive search space

Domain size: d

Number of variables: n Number of arcs: n - 1

Can you turn a problem into a tree?

Real World CSPs

- Timetabling (which class in which room?)
 - Constraint: You can't have two classes in the same room
- Transportation & Logistics
- Factory scheduling
- Floorplanning
- Assignment problems (who has what task?)
 - Constraint: One person cannot do two tasks simultaneously

Questions

What are your questions?