Title

D. Zack Garza

Saturday 19th September, 2020

Contents

1	Tues	sday, September 15
	1.1	Setup 1
		Review Last Time
	1.3	Upcoming
	1.4	Three steps to gluing theorem

1 | Tuesday, September 15

1.1 Setup

- (M, ω) a symplectic manifold, $H \in ?$ a Hamiltonian, X_H its ?
- $\int_{S^2} u^* \omega = \sigma_1$ where $u \in C^{\infty}(S^2, W)$.
- $\langle c_1(TW), \ \pi_2(TW) \rangle = 0$?
- $C_k(H) := \mathbb{Z}/2\mathbb{Z}[S]$ where S is the set of periodic orbits of X_H of Maslov index k.
- x, y critical points of \mathcal{A}_H with $\mathcal{M}(x, y)$ the moduli space of contractible solutions of finite energy connecting x, y.

1.2 Review Last Time

- $\mathbb{R} \curvearrowright \mathcal{M}_{x,y}$, so we quotient to define $\mathcal{L}(x,y) := \mathcal{M}_{x,y}/\mathbb{R}$ with the quotient topology.
- Topology defined by when sequences converge:

$$\tilde{u}_n \stackrel{n \to \infty}{\to} \tilde{u} \iff \exists \{s_n\} \subseteq \mathbb{R} \text{ such that } u_n(s_n + s, \cdot) \stackrel{n \to \infty}{\to} u(s, \cdot).$$

Proposition 1.1(?).

 $\mathcal{L}(x,y)$ is Hausdorff.

• Want to show $\mathcal{L}(x,y)$ is a compact 0-dimensional manifold.

• Have a differential

$$\partial: C_k(H) \longrightarrow C_{k-1}(H)$$

$$\partial(x) = \sum_{\text{Ind}(y)=k-1} n(x,y)y.$$

with n(x,y) the number (mod 2) of trajectories of grad \mathcal{A}_H connecting x,y, i.e solutions to the Floer equation.

• Want to prove that the following is a 1-dimensional manifold:

$$M := \overline{\mathcal{L}}(x,z) = \mathcal{L}(x,z) \cup_{\mu(y)=\mu(x)+1} \mathcal{L}(x,y) \times \mathcal{L}(y,z).$$

and show that M is compact with ∂M equal to the last union.

- Last time: closure of space of trajectories connecting x, y contains "broken" trajectories.
- Last time: toward proving that M is compact

1.3 Upcoming

- Wanted to compactify $\mathcal{L}(x,y)$, needed to go to space of broken trajectories.
- Main theorem of chapter 9: 9.2.1.

Theorem 1.2(9.2.1).

Let (H, J) be a regular pair with H nondegenerate.

Let x, z be two periodic trajectories of H such that $\mu(x) = \mu(z) + 2$.

Then $\overline{\mathcal{L}}(x,y)$ is a compact 1-manifold with boundary satisfying

$$\partial \overline{\mathcal{L}}(x,y) = \bigcup_{\mu(x) < \mu(y) < \mu(z)} \mathcal{L}(x,y) \times \mathcal{L}(y,z).$$

As a corollary, $\partial^2 = 0$.

- Know $\overline{\mathcal{L}}(x,y)$ is compact and $\mathcal{L}(x,y)$ is a 1-manifold
- Now suffices to study in a neighborhood of boundary points ("gluing theorem")

1.4 Three steps to gluing theorem

- 1. Pre-gluing: Get a function w_p which interpolates between u and v (not exactly a solution itself, but will be approximated by one later).
- 2. Constructing ψ a "true solution" from w_p using the Newton-Picard method. We'll have

$$\psi(p) = \exp_{w_p}(\gamma(p))$$
 $\gamma(p) \in W^{1,p}(w_p^*TW) = T_{w_p}\mathcal{P}(x,z).$

where $\mathcal{P} = ?$.

3. Get a lift $\hat{\psi} = \pi \circ \psi$ where $\pi = ?$ satisfying

- $\begin{array}{ll} \bullet & \widehat{\psi}(p) \stackrel{n \to \infty}{\to} (\widehat{u}, \widehat{v}) \\ \bullet & \widehat{\varphi} \text{ is an embedding} \\ \bullet & \widehat{\psi} \text{ is unique in the following sense (the last point)} \end{array}$

Theorem 1.3(9.2.3 (Gluing Theorem)).

Let x, y, z be critical points of the action functional \mathcal{A}_H such that $\mu(x) = \mu(y) + 1 = \mu(z) + 2$. Let $(u, v) \in \mathcal{M}(x, y) \times \mathcal{M}(y, z)$ be trajectories, inducing $(\bar{u}, \bar{v}) \in \mathcal{L}(x, y) \times \mathcal{L}(y, z)$.

- There exist a differentiable map $\psi:(\rho_0,\infty)\to\mathcal{M}(x,z)$ for some $\rho>0$ such that

- π ∘ ψ : (ρ₀, ∞) → L(x, z) is an embedding
 ψ̂ ^{ρ→∞} (ū, v̄) ∈ L(x, z).
 If ℓ_n ∈ L(x, z) with ℓ_n ^{n→∞} (ū, v̄), then for n ≫ 1 we have ℓ ∈ ℑ(ψ̂).