Baze de date-Anul 2 Laborator 1

1. Introducere

- 1. Ce este o bază de date ? Dar un sistem de gestiune a bazelor de date? Daţi exemple.
 - Baza de date este un ansamblu structurat de date coerente, fără redundanță inutilă, care pot fi accesate în mod concurent de către mai mulți utilizatori.
 - Un sistem de gestiune a bazelor de date (SGBD) este un produs software care asigură interacţiunea cu o bază de date, permiţând definirea, consultarea şi actualizarea datelor din baza de date.

2. Ce este SQL?

- **SQL** (Structured Query Language) este un **limbaj** neprocedural pentru interogarea si prelucrarea informatiilor din baza de date.
 - Compilatorul limbajului SQL generează automat o procedură care accesează baza de date şi execută comanda dorită.
 - > SQL permite:
 - o definirea datelor (LDD)
 - prelucrarea şi interogarea datelor (LMD)
 - o controlul accesului la date (LCD).
 - Comenzile SQL pot fi integrate în programe scrise în alte limbaje, de exemplu Cobol, C, C++, Java etc.
- 3. Ce este SQL*Plus? Comenzile SQL*Plus accesează baza de date?
 - **SQL*Plus** este un **utilitar** Oracle, având comenzi proprii specifice, care recunoaşte instrucţiunile SQL şi le trimite server-ului Oracle pentru execuţie.
 - ➤ Dintre funcționalitățile mediului *SQL*Plus*, se pot enumera:
 - editarea, executarea, salvarea şi regăsirea instrucţiunilor SQL şi a blocurilor PL/SQL;
 - o calculul, stocarea şi afişarea rezultatelor furnizate de cereri;
 - o listarea structurii tabelelor.
 - ➤ Tabelul următor evidenţiază diferenţele dintre instrucţiunile SQL şi cele SQL*Plus:

SQL	SQL*Plus
Este un limbaj de comunicare cu	Recunoaște instrucțiunile SQL și le transferă
server-ul Oracle pentru accesarea	server-ului Oracle.
datelor.	
Se bazează pe standardul ANSI	Este o interfață specifică sistemului Oracle
pentru SQL.	pentru execuţia instrucţiunilor SQL.
Prelucrează date și definește obiecte	Nu permite prelucrarea informaţiilor din baza
din baza de date.	de date.
Utilizează funcții pentru a efectua	Utilizează comenzi pentru a efectua formatări.
formatări.	
Instrucţiunile nu pot fi abreviate.	Comenzile pot fi abreviate.
Nu are un caracter de continuare a	Acceptă "-" drept caracter de continuare
instructiunilor scrise pe mai multe linii.	pentru comenzile scrise pe mai multe linii.
Caracterul de terminare a unei	Nu necesită caracter de terminare a unei
comenzi este ";"	comenzi.

- **4.** Comenzile SQL*Plus acceptă abrevieri? Este necesar vreun caracter de încheiere a comenzii? (vezi tabelul de mai sus)
- Care sunt limbajele SQL?
 - În funcție de tipul acțiunii pe care o realizează, instrucțiunile SQL se împart în mai multe categorii. Datorită importanței pe care o au comenzile componente, unele dintre aceste categorii sunt evidențiate ca limbaje în cadrul SQL, și anume:
 - limbajul de definire a datelor (LDD) comenzile CREATE, ALTER, DROP;
 - limbajul de prelucrare a datelor (LMD) comenzile INSERT, UPDATE, DELETE, SELECT;
 - limbajul de control al datelor (LCD) comenzile COMMIT, ROLLBACK, SAVEPOINT.
 - Pe lângă instructiunile care alcătuiesc aceste limbaje, SQL cuprinde si alte tipuri de instructiuni:
 - > instrucţiuni pentru controlul sesiunii;
 - > instrucțiuni pentru controlul sistemului;
 - instrucţiuni SQL încapsulate.
- 6. Analizaţi sintaxa simplificată a comenzii SELECT:

Un element din lista_campuri are forma: expresie [AS] alias.

Care dintre clauze sunt obligatorii?

7. Care sunt regulile de scriere a comenzilor SQL (acceptă abrevieri, e nevoie de caracter de terminare)? In instructiunea urmatoare sunt 3 erori. Care sunt acestea?

```
SQL> SELECT employee_id, last_name
```

- 2 salary x 12 ANNUAL SALARY
- 3 FROM employees;

Obs: ANNUAL SALARY este un alias pentru câmpul reprezentând salariul anual.

- Dacă un alias conţine blank-uri, el va fi scris obligatoriu între ghilimele. Altfel, ghilimelele pot fi omise.
- Alias-ul apare în rezultat, ca şi cap de coloană pentru expresia respectivă. Doar cele specificate între ghilimele sunt case-sensitive, celelalte fiind scrise implicit cu majuscule.

2. Exercitii

1. a) Consultaţi diagrama exemplu *HR* (Human Resources) pentru lucrul în cadrul laboratoarelor de baze de date.

- b) Identificaţi cheile primare şi cele externe ale tabelelor existente în schemă, precum şi tipul relaţiilor dintre aceste tabele.
- 2. Să se iniţieze o sesiune *SQL*Plus / SQL Developer* folosind informaţiile de conectare indicate.
- Să se listeze structura tabelelor din schema HR (EMPLOYEES, DEPARTMENTS, JOBS, JOB_HISTORY, LOCATIONS, COUNTRIES, REGIONS), observând tipurile de date ale coloanelor.

Obs: Se va utiliza comanda DESC[RIBE] nume tabel.

4. Să se listeze **conţinutul** tabelelor din schema considerată, afişând valorile tuturor câmpurilor.

Obs: SELECT * FROM nume_tabel;

5. Să se obtină încă o dată rezultatul cererii precedente, fără a rescrie cererea.

Obs: Ultima cerere SQL lansată de către client este păstrată în buffer-ul SQL. Pentru rularea *buffer*-ului, se executa comanda:

SQL>/

sau

SQL> RUN

- 6. Listaţi structura tabelului *EMPLOYEES* (*DESC employees*) şi apoi daţi comanda *RUN* (sau "/"). Ce observaţi? Comenzile *SQL*Plus* sunt păstrate în *buffer*?
- 7. Să se afișeze codul angajatului, numele, codul job-ului, data angajarii. Ce fel de operație este aceasta (selecție sau proiecție)? Salvați instrucțiunea *SQL* într-un fișier *p7l1.sql*.

Obs: Se utilizează comanda SAVE pentru salvarea buffer-ului într-un fișier.

SQL> SELECT employee_id, last_name, job_id, hire_date

FROM employees;

SQL> SAVE d:\...\p7l1.sql

Precizarea extensiei .sql a fișierului nu este obligatorie.

8. a) Executaţi cererea din fişierul p7l1.sql.

SQL> START d:\...\p7l1.sql

sau

SQL> @ d:\...\p7l1.sql

b) Editaţi fişierul *p7l1.sql*, astfel încât, la rulare, capetele coloanelor să aibă numele *cod*, *nume*, *cod job*, *data angajarii*.

 $SQL > EDIT d: \... \p711.sql$

Cererea modificată va fi:

SELECT employee_id cod, last_name nume, job_id "cod job", hire_date "data angajarii" FROM employees;

9. Să se listeze, cu și fără duplicate, codurile job-urilor din tabelul *EMPLOYEES*.

SQL> SELECT job_id FROM employees;

SQL> SELECT DISTINCT job_id FROM employees;

10. Să se afişeze numele concatenat cu job_id-ul, separate prin virgula și spatiu. Etichetați coloana "Angajat si titlu".

Obs: Operatorul de concatenare este "||". Şirurile de caractere se specifică între apostrofuri (NU ghilimele, caz în care ar fi interpretate ca *alias*-uri).

SQL> SELECT last_name|| ', ' || job_id "Angajat si titlu"

FROM employees;

11. Creați o cerere prin care să se afișeze toate datele din tabelul *EMPLOYEES* pe o singură coloană. Separați fiecare coloană printr-o virgulă. Etichetati coloana "Informatii complete".

12. Sa se listeze numele si salariul angajaților care câștigă mai mult de 2850.

SQL> SELECT last_name, salary
FROM employees
WHERE salary > 2850;
SQL> SAVE p12I1.sql
SQL> @p12I1.sql sau START p12I1.sql

- 13. Să se creeze o cerere pentru a afișa numele angajatului și numărul departamentului pentru angajatul având codul 104.
- 14. Să se modifice cererea de la problema 12 pentru a afișa numele și salariul angajaţilor al căror salariu nu se află în intervalul [1500, 2850].

Obs: Pentru testarea apartenenței la un domeniu de valori se poate utiliza operatorul [NOT] BETWEEN valoare1 AND valoare2.

15. Să se afișeze numele, job-ul și data la care au început lucrul salariații angajați între 20 Februarie 1987 și 1 Mai 1989. Rezultatul va fi ordonat crescător după data de început.

```
SQL> SELECT ___, ___, __
FROM __
WHERE __ BETWEEN '20-FEB-1987' ___ '1-MAY-1989'
ORDER BY ___;
```

16. Să se afișeze numele salariaților și codul departamentelor pentru toti angajații din departamentele 10 și 30 în ordine alfabetică a numelor.

```
SQL> SELECT ___, __
FROM ___
___ department_id IN (10, 30)
____;
```

Obs: Apartenența la o mulțime finită de valori se poate testa prin intermediul operatorului *IN*, urmat de lista valorilor (specificate între paranteze și separate prin virgule): expresie *IN* (valoare 1, valoare 2, ..., valoare n)

- 17. Să se modifice cererea de la problema 14 pentru a lista numele şi salariile angajatilor care câştigă mai mult de 1500 şi lucrează în departamentul 10 sau 30. Se vor eticheta coloanele drept *Angajat* si *Salariu lunar*.
- 18. Care este data curentă? Afișați diferite formate ale acesteia.

Obs:

Functia care returnează data curentă este SYSDATE. Pentru completarea sintaxei obligatorii a comenzii SELECT, se utilizează tabelul DUAL:

SQL> SELECT SYSDATE

FROM dual;

Datele calendaristice pot fi formatate cu ajutorul funcţiei TO_CHAR(data, format), unde formatul poate fi alcătuit dintr-o combinaţie a următoarelor elemente:

Element	Semnificație
D	Numărul zilei din săptămâna (duminica=1;
	luni=2;sâmbătă=6)
DD	Numărul zilei din lună.
DDD	Numărul zilei din an.
DY	Numele zilei din săptămână, printr-o
	abreviere de 3 litere (MON, THU etc.)
DAY	Numele zilei din săptămână, scris în
	întregime.
MM	Numărul lunii din an.
MON	Numele lunii din an, printr-o abreviere de 3
	litere (JAN, FEB etc.)
MONTH	Numele lunii din an, scris în întregime.
Υ	Ultima cifră din an
YY, YYY, YYYY	Ultimele 2, 3, respectiv 4 cifre din an.

YEAR	Anul, scris în litere (ex: two thousand four).
HH12, HH24	Orele din zi, între 0-12, respectiv 0-24.
MI	Minutele din oră.
SS	Secundele din minut.
SSSSS	Secundele trecute de la miezul nopţii.

19. Să se afișeze numele și data angajării pentru fiecare salariat care a fost angajat în 1987. Se cer 2 soluții: una în care se lucrează cu formatul implicit al datei și alta prin care se formatează data.

varianta1:
WHERE hire_date LIKE ('%87%'); Varianta 2:
WHERE TO_CHAR(hire_date, 'YYYY')='1987';
Sunt obligatorii ghilimelele de la şirul '1987'? Ce observaţi?
20. Să se afişeze numele şi job-ul pentru toţi angajaţii care nu au manager.
SQL> SELECT, FROM WHERE manager_id IS NULL;
21. Să se afișeze numele, salariul și comisionul pentru toti salariații care câștigă comision. Să se sorteze datele în ordine descrescătoare a salariilor și comisioanelor.
SQL> SELECT,, FROM WHERE ORDER BY salary DESC, commission_pct DESC;

- 22. Eliminaţi clauza *WHERE* din cererea anterioară. Unde sunt plasate valorile *NULL* în ordinea descrescătoare?
- 23. Să se listeze numele tuturor angajatilor care au a treia literă din nume 'A'.

Obs: Pentru compararea şirurilor de caractere, împreună cu operatorul *LIKE* se utilizează caracterele *wildcard*:

- > % reprezentând orice şir de caractere, inclusiv şirul vid;
- _ (underscore) reprezentând un singur caracter şi numai unul.
- 24. Să se listeze numele tuturor angajatilor care au 2 litere 'L' in nume şi lucrează în departamentul 30 sau managerul lor este 102.
- 25. Să se afiseze numele, job-ul si salariul pentru toti salariatii al caror job conţine şirul "CLERK" sau "REP" şi salariul nu este egal cu 1000, 2000 sau 3000. (operatorul NOT IN)
- 26. Să se afișeze numele departamentelor care nu au manager.