Lesson 5

Chapter 4 Vector Spaces

- Vector Spaces and Subspaces
- ► Null Spaces, Column Space and Linear Transformations
- ▶ The Dimension of a Vector Space
- → Rank
 - → Change of Basis

A: $n \times n$ matix

Determinant: det A = |A|

Cofactor:
$$C_{ij} = (-1)^{i+j} \cdot det A_{ij}$$

Cofactor:
$$C_{ij} = (-1)^{i+j} \cdot \det A_{ij}$$
 Sign $(-1)^{i+j}$:
$$\begin{bmatrix} + & - & + & \cdots \\ - & + & - & \cdots \\ + & - & + & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

$$\det A = \begin{vmatrix} a_{11} \ a_{12} \cdots a_{1n} \\ a_{21} \ a_{22} \cdots a_{2n} \\ \vdots \ \vdots \ \vdots \ \vdots \\ a_{n1} \ a_{n2} \cdots a_{nn} \end{vmatrix} = \begin{cases} \sum_{j=1}^{n} (-1)^{i+j} \ a_{ij} \cdot \det A_{ij} = \sum_{j=1}^{n} a_{ij} \cdot C_{ij} & \text{Row (i) expansion} \\ \sum_{j=1}^{n} (-1)^{i+j} \ a_{ij} \cdot \det A_{ij} = \sum_{i=1}^{n} a_{ij} \cdot C_{ij} & \text{Column (j) expansion} \end{cases}$$

Row operations

Let A be a square matrix

- ▶ If a multiple of one row of A is added to another row to produce a matrix B, then detB=detA.
- If two rows of A are interchanged to produce B, then detB=-detA.
- ▶ If one row of A is multiplied by k to produce B, then $\det B = k \cdot \det A$.

A square matrix A is invertible $\Leftrightarrow det A \neq 0$

If A is a square matrix: $det A^T = det A$

If A and B are $n \times n$ matrices: $det AB = det A \cdot det B$

OBS: But det

4.1 Vector Spaces and Subspaces

Vektorrum

A vector space is a nonempty set V of objects, called *vectors*, on which are defined two operations called: *addition* and *multiplication* by scalars (real numbers), subject to the ten axioms (or rules) listed below. The axioms must hold for all vectors \mathbf{u} , \mathbf{v} and \mathbf{w} in V and for all scalars c and d.

- 1. The sum of **u** and **v**, denoted by $\mathbf{u} + \mathbf{v}$ is in $V \rightarrow Closed$ under addition
- 2. u + v = v + u.
- 3. (u + v) + w = v + (u + w).
- 4. There is a zero vector in V such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$. \rightarrow Neutral element
- 5. For each u in V there is a vector $-\mathbf{u}$ in V such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0} \rightarrow Inverse$ element
- 6. The scalar multiple of \mathbf{u} by c, denoted by $c\mathbf{u}$, is in V. \rightarrow Closed under multiplication
- 7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$.
- 8. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$.
- 9. c(du) = (cd)u.
- 10. $1\mathbf{u} = \mathbf{u}$. \rightarrow Neutral element

$$\mathbb{R}^2$$
 vector space? $\boldsymbol{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \in \mathbb{R}^2$ $\boldsymbol{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \in \mathbb{R}^2$

$$\boldsymbol{v} = \begin{vmatrix} v_1 \\ v_2 \end{vmatrix} \in \mathbb{R}^2$$

Vector spaces - Examples

$$\mathbb{R} \xrightarrow{0} \mathbf{u} = u$$

$$\mathbb{R}^2 \longrightarrow \mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

$$\mathbb{R}^3 \longrightarrow \mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$

$$\mathbb{R}^4 \longrightarrow \mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix}$$

<u>Vector spaces - Examples</u>

S: Discrete-time signals $\{y_k\} = (\cdots, y_{-2}, y_{-1}, y_0, y_1, y_2, \cdots)$

$$\{y_k\} + \{z_k\} = (\cdots, y_{-2} + z_{-2}, y_{-1} + z_{-1}, y_0 + z_0, y_1 + z_1, y_2 + z_2, \cdots) = \{y_k + z_k\}$$
$$\{cy_k\} = (\cdots, cy_{-2}, cy_{-1}, cy_0, cy_1, cy_2, \cdots) = c\{y_k\}$$

$$\{0\} = (\cdots, 0, 0, 0, 0, 0, 0, \cdots)$$

 \mathbb{P}_n : Polynomials of degree $\leq n$ $p(t) = a_0 + a_1t + a_2t^2 + \cdots + a_nt^n$

$$p(t) + q(t) = (a_0 + b_0) + (a_1 + b_1)t + \dots + (a_n + b_n)t^n = (p + q)(t)$$

$$c\mathbf{p}(t) = ca_0 + ca_1t + ca_2t^2 + \dots + ca_nt^n = (c\mathbf{p})(t)$$

$$\mathbf{0}(t) = 0 + 0t + 0t^2 + \dots + 0t^n = 0$$

Definition

Underrum

A subspace of a vector space V is a subset H of V that has three properties:

- 1. The zero vector from V is in H.
- 2. H is closed under vector addition. That is, for each \mathbf{u} and \mathbf{v} in H, the sum $\mathbf{u} + \mathbf{v}$ is in H.
- 3. H is closed under multiplication by scalars. That is, for each \mathbf{u} in H and each scalar c, the vector $c\mathbf{u}$ is in H.

A subspace forms a vector space by itself.

Ex 2 Subspaces

- {**0**} subspace of \mathbb{V} → Zero-subspace
- \mathbb{P}_n subspace of \mathbb{P} (the vector space of all polynomials)
- $c \cdot v$ (straight line through 0) subspace of \mathbb{R}^2 , \mathbb{R}^3 , ... \mathbb{R}^n , ...

- $c_1 \cdot v_1 + c_2 \cdot v_2$ $(v_1 \neq c \cdot v_2)$ (plane through 0) subspace of \mathbb{R}^3 , \mathbb{R}^4 , ... \mathbb{R}^n , ... v_2
- ightharpoonup BUT: $\mathbb R$ is NOT a subspace of $\mathbb R^2$, $\mathbb R^2$ is NOT a subspace of $\mathbb R^3$, etc.

•
$$\boldsymbol{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \in \mathbb{R}^2$$
; $\boldsymbol{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \in \mathbb{R}^3$; $\boldsymbol{u} \notin \mathbb{R}^3$

•
$$\mathbf{w} = \begin{bmatrix} u_1 \\ u_2 \\ 0 \end{bmatrix} \in \mathbb{R}^3$$
 is a subspace of \mathbb{R}^3 , but: $\mathbf{w} \notin \mathbb{R}^2$

 $\underline{\mathsf{Ex}\,3} \qquad v_1 \in \mathbb{V} \qquad v_2 \in \mathbb{V} \qquad u,v \in \mathbb{H} = \mathrm{Span}\{v_1,v_2\} \underbrace{\qquad \ \ \, \text{Subspace spanned} \ \ \, \text{by } v_1 \text{ and } v_2}_{\text{by } v_1 \text{ and } v_2}$

Theorem 4.1

If $\mathbf{v}_1, \ldots, \mathbf{v}_p$ are in a vector space V, then $\text{span}\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ is a subspace of V.

Important subspaces

4.2 Null Spaces, Column Space and Linear Transformations

Definition

The null space of a $m \times n$ matrix A, written as Nul A, is the set of all solutions of the homogeneous equation $A\mathbf{x} = \mathbf{0}$.

Nul
$$A = \{ \mathbf{x} | \mathbf{x} \in \mathbb{R}^n \text{ and } A\mathbf{x} = \mathbf{0} \}$$

Theorem 4.2

The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^n .

Proof of Theorem 4.2 Let: $v_1, v_2 \in Nul A \iff Av_1 = Av_2 = 0$

$$\mathbf{Ex 4} \qquad A = \begin{bmatrix} 1 & -3 & -2 \\ -5 & 9 & 1 \end{bmatrix}$$

$$\underbrace{\mathsf{Ex}\; \mathsf{4}} \qquad A = \begin{bmatrix} 1 & -3 & -2 \\ -5 & 9 & 1 \end{bmatrix} \qquad \mathbf{x}_1 = \begin{bmatrix} -3 \\ 2 \\ 4 \end{bmatrix} \in \mathit{Nul}\; A ? \qquad \mathbf{x}_2 = \begin{bmatrix} -10 \\ -6 \\ 4 \end{bmatrix} \in \mathit{Nul}\; A ?$$

$$\underline{\mathsf{Ex}\,\mathsf{5}} \quad A = \begin{bmatrix} 1 & -3 & -2 \\ -5 & 9 & 1 \end{bmatrix}$$

Find all vectors x in Nul A!

$$Ax = \mathbf{0} \rightarrow \begin{bmatrix} 1 & -3 & -2 & 0 \\ -5 & 9 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & -2 & 0 \\ 0 & -6 & -9 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 5/2 & 0 \\ 0 & 1 & 3/2 & 0 \end{bmatrix}$$

$$\rightarrow \begin{cases} x_1 + \frac{5}{2}x_3 = 0 \\ x_2 + \frac{3}{2}x_3 = 0 \end{cases} \rightarrow \mathbf{x} = \begin{bmatrix} -\frac{5}{2}x_3 \\ -\frac{3}{2}x_3 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} -\frac{5}{2} \\ -\frac{3}{2} \\ 1 \end{bmatrix} = t \cdot \begin{bmatrix} 5 \\ 3 \\ -2 \end{bmatrix} = t \cdot \mathbf{v}; \quad t \in \mathbb{R}$$

- ightarrow Straight line in \mathbb{R}^3
- $\rightarrow Nul \ A = Span\{v\}$

Definition

Søjle-rum

The column space of an $m \times n$ matrix A, written as Col A, is the set of all linear combinations of the columns of A. If $A = [\mathbf{a}_1 \dots \mathbf{a}_n]$, then

Col
$$A = \operatorname{span} \{\mathbf{a}_1, \dots \mathbf{a}_n\}$$

This can also be written as

Col
$$A = \{\mathbf{b} | \mathbf{b} = A\mathbf{x} \text{ for all } \mathbf{x} \in \mathbb{R}^n\} \rightarrow Range \text{ of } A\mathbf{x}$$

Theorem 4.3: Col A of a $m \times n$ matrix A is a subspace of \mathbb{R}^m .

Ex 6
$$A = \begin{bmatrix} 1 & -3 & -2 \\ -5 & 9 & 1 \end{bmatrix} = [\boldsymbol{u}_1 \ \boldsymbol{u}_2 \ \boldsymbol{u}_3]$$

$$Col\ A = span\left(\begin{bmatrix} 1 \\ -5 \end{bmatrix}, \begin{bmatrix} -3 \\ 9 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \end{bmatrix}\right) = x_1 \boldsymbol{u}_1 + x_2 \boldsymbol{u}_2 + x_3 \boldsymbol{u}_3 = \begin{bmatrix} x_1 - 3x_2 - 2x_3 \\ -5x_1 + 9x_2 + x_3 \end{bmatrix} \ \epsilon \ \mathbb{R}^2$$

 \rightarrow Subspace of \mathbb{R}^2

$$\boldsymbol{v}$$
 in Col A ? $\rightarrow \boldsymbol{v} \in span\left(\begin{bmatrix} 1 \\ -5 \end{bmatrix}, \begin{bmatrix} -3 \\ 9 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \end{bmatrix}\right) \rightarrow x_1\boldsymbol{u}_1 + x_2\boldsymbol{u}_2 + x_3\boldsymbol{u}_3 = \boldsymbol{v}$

$$\rightarrow \begin{bmatrix} x_1 - 3x_2 - 2x_3 \\ -5x_1 + 9x_2 + x_3 \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$
 have a solution (x_1, x_2, x_3)

 $\rightarrow [A|v]$ have a solution (no pivot in the last column)

Definition

A linear transformation from a vector space V to a vector space W is a rule that assigns to each vector \mathbf{x} in V a unique vector $T(\mathbf{x})$ in W such that

$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$
 for all \mathbf{u} , \mathbf{v} in V (1)

$$T(c\mathbf{u}) = cT(\mathbf{u})$$
 for all \mathbf{u} in V and all scalars c (2)

Kernel/Null space $x \in V$:

$$T(x) = 0$$

Range/Column space $b \in W$:

$$T(x) = b$$

$$\underline{\mathsf{Ex}\; 7} \qquad T\big(p(t)\big) = \frac{dp}{dt} + 2p; \qquad p(t)\; \epsilon\; \mathbb{V} \; \text{(all real functions on [a,b])}$$

T a linear transfomation?

Todays words and concepts

Vector space

Subspace

Closed under addition

Col A

Inverse element

Null space

Column space

Nul A

Linear Transfomation

Closed under multiplication

Neutral element