Criven data points:

$$\chi^{(1)} = (2.8)$$
, $\chi^{(2)} = (2.5)$, $\chi^{(3)} = (1.2)$, $\chi^{(4)} = (5.8)$, $\chi^{(5)} = (7.3)$, $\chi^{(6)} = (6.4)$ $\chi^{(7)} = (8.4)$, $\chi^{(8)} = (4.7)$

Distance Matrix:

	χ ⁽²⁾	7(2)	7(3)	7(4)	3K(2)	χ(6 <i>)</i>	χ ⁽⁷⁾	N(8)
X(1)		3.0000	6.0828	3.0000	7.0711	5.6569	721(1	2.2361
x(2)	3.0000		3.1623	4.2426	5. 3 852	4.1231	6.0828	2.8284
x(3)	6.0828	3.1623		7.2111	60828	5.3852	7.2801	5.8310
×(4)	3.00.00	4.2426	7.2111		5.3852	4.1231	5,0000	1.4142
7×(5)	7.0711	5. 3852	6.0828	5.3852	0	14192	14142	5.0000
x(c)	5.6569	4.1231	5. 3852	4.1231	1.4142		2.0006	3.6056
(F)	7. 2111	6.0828	7.2801	5.0000	1.4142	2.0000	ָ ֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֓֞֞֞֞֞	5.0000
N (8)	2. 2361	2.8284	5. 8310	1.4142	5. 0000	3.6056	5,6000	

Initial point:
$$\mu^{(1)} = \chi^{(3)}$$

$$\mu^{(2)} = \chi^{(4)}$$

$$\mu^{(3)} = \chi^{(6)}$$

Compute closest centroids:

$$C^{(1)} = C^{(4)} = C^{(8)} = 2$$

$$C^{(2)} = C^{(8)} = 1$$

$$C^{(5)} = C^{(6)} = C^{(7)} = 3$$

Move centroids:

$$\mu^{(1)} = \frac{1}{2} \left(\chi^{(2)} + \chi^{(3)} \right) = \begin{pmatrix} 1.5 \\ 3.5 \end{pmatrix}$$

$$\mu^{(2)} = \frac{1}{3} \left(\chi^{(3)} + \chi^{(4)} + \chi^{(8)} \right) = \begin{pmatrix} 3.67 \\ 7.67 \end{pmatrix}$$

$$\mu^{(3)} = \frac{1}{3} \left(\chi^{(5)} + \chi^{(6)} + \chi^{(7)} \right)$$

$$= \begin{pmatrix} 7 \\ 3.67 \end{pmatrix}$$

Loss function.

For,
$$\chi^{(2)}$$
 and $\chi^{(3)}$. $M_c = (1.5, 3.5)$
So, $\|\chi^{(2)} - M_c\|^2 + \|\chi^{(3)} - M_c\|^2$
 $= 2.5 + 2.5$

For
$$\chi^{(1)}$$
, $\chi^{(4)}$ and $\chi^{(8)}$, $\mu_{c} = (3.67, 7.67)$
So, $\|\chi^{(1)} - M_{c}\|^{2} + \|\chi^{(4)} - M_{c}\|^{2} + \|\chi^{(8)} - M_{c}\|^{2}$
= 2.8978 + 1.8778 + 0.5578
= 5.3334

For,
$$\chi(5)$$
, $\chi(6)$ and $\chi(7)$, $M_{c} = (7,3.67)$
So, $11 \chi(5) - M_{c} |_{r}^{r} + 11 \chi(6) - M_{c} |_{r}^{r} + 11 \chi(7) - M_{c} |_{r}^{r}$
= $0.4489 + 1.1089 + 1.1089$
= 2.6667 .

$$J_1 = 5 + 5.3334 + 2.6667$$
= 13.0001

2nd Itenation:

Now,

$$M^{(3)} = (3.67, 3.5)$$

$$M^{(2)} = (3.67, 7.67)$$

$$M^{(3)} = (7, 3.67)$$

	μ(1)	M(2)	M(3)
X(1)	4.52	1.70	6.61
×(2)	1.58	3.15	5. 17
×(3)	1.58	6.27	6.23
×(4)	5.70	1.37	4.77
N (S)	5.52	5.74	0.67
x(6)	4.52	4.35	1.65
7(⁽⁷⁾	6.52	5.68	1.05
N(8)	4.30	0.74	4.48

Closest centroids:

$$C^{(2)} = C^{(3)} = 1$$

$$C^{(4)} = C^{(4)} = C^{(4)} = 2$$

$$C^{(5)} = C^{(6)} = C^{(7)} = 3$$

Centroid points are unchanged.
So, loss is also unchanged. Jz = 13.0001.