第一章 习题参考解答

1. (1)
$$x = 2t$$
, $y = 19 - 2t^2$, $y = 19 - \frac{x^2}{2}$

(2)
$$\vec{v} = \frac{\Delta \dot{r}}{\Delta t}$$
, $\vec{r} = 2t\dot{i} + (19 - 2t^2)\dot{j}$, $\vec{r}(2) = 4\dot{i} + 11\dot{j}$, $\vec{r}(1) = 2\dot{i} + 17\dot{j}$, $\Delta \dot{r} = 2\dot{i} - 6\dot{j}$,

$$\vec{v}=2i-6j$$
 m/s; 即大小为 $v=2\sqrt{10}$ m/s; 与 x 正向夹角 $\theta=arctg(-3)$

(3)
$$\vec{v} = \frac{dr}{dt} = 2\vec{i} - 4t\vec{j}$$
, $\vec{v}(1) = 2\vec{i} - 4\vec{j}$ (m/s), $\vec{v}(2) = 2\vec{i} - 8\vec{j}$ (m/s)
(4) $\vec{a} = -4\vec{j}$ (m/s2)

(5)
$$\vec{r} \cdot \vec{v} = 0$$
, $\vec{r} \cdot \vec{v} = 4t - 4t(19 - 2t^2) = 0$, 得 t=0, t=3s

3. (1)
$$v = \frac{dx}{dt} = 5 + 12t - 3t^2$$
, $v(0) = 5 \text{ m/s}$

$$\frac{dt}{dt} = \frac{12-6t}{2} = \frac{3t}{2}, \ t(0) = \frac{3t}{2} = \frac{3t}{2}$$

(2)
$$a = \frac{dv}{dt} = 12 - 6t$$
, $a = 0$, $t = 2s$ $v(2) = 17$ m/s

$$a = \frac{dv}{dt} = 12 - 6t$$
, $a = 0$, $t = 2s$ $v(2) = 17 m/s$

$$a = \frac{dV}{dt} = 12 - 6t$$
, a=0, t=2s $v(2) = 17 \text{ m/s}$

$$a = \frac{1}{dt} = 12 - 6t, a = 0, t = 25$$

$$at = 2 \pi mt - 2\pi t - \pi t = x = 500 ta \theta$$

5.
$$\theta = \omega t = 2\pi nt = \frac{2\pi}{60}t = \frac{\pi}{30}t$$
, $x = 500tg\theta$,

$$-\frac{50}{30}\pi \sec^2\theta - 69.8 \text{ m/s} (\theta - 30^\circ)$$

$$=\frac{50}{2}\pi \sec^2\theta = 69.8 \text{ m/s} (\theta=30^\circ)$$

$$v = \frac{dx}{dt} = \frac{50}{3}\pi \sec^2 \theta = 69.8 \text{ m/s} (\theta = 30^\circ)$$

$$=\frac{dx}{dt} = \frac{50}{3}\pi \sec^2\theta = 69.8 \text{ m/s} (\theta=30^\circ)$$

$$\frac{d}{dt} = \frac{1}{3}\pi \sec \theta = 09.8 \text{ m/s} \quad (\theta = 30)$$

7.
$$\int_{v_0}^{v} dv = \int_{0}^{t} a dt, \quad v = v_0 - A\omega \sin \omega t, \quad v = \frac{dx}{dt}, \quad \int_{A}^{z} dx = \int_{0}^{t} v dt, \quad x = v_0 t + A\cos \omega t$$

9.
$$\frac{dv}{dt} = \frac{dv}{dx} \cdot \frac{dx}{dt} = -kv^2$$
, $\frac{dv}{dx} = -kv$, $\int_{v_0}^{v} \frac{dv}{v} = \int_{0}^{x} -kdx$, $v = v_0 e^{-kx}$ [Fig.

11.
$$\bar{a} = \frac{d\dot{v}}{dt}$$
, $\int \bar{a}dt = \int_{0}^{t} 4t dt \, \bar{i} = \int_{0}^{v} d\bar{v}$, $v - 2j = 2t^{2}i$, $v = 2t^{2}i + 2j$

$$t\overline{j}$$

$$\vec{v} = \frac{d\vec{r}}{dt}, \quad \int_0^r d\vec{r} = \vec{r} = \int_0^r \vec{v} dt = \frac{2}{3}t^3\vec{i} + 2t\vec{j}$$

$$13. \quad a = \frac{dv}{dt} = \frac{dv}{dy} \cdot \frac{dy}{dt} = \frac{dv}{dy}v = -ky, \quad \int_0^r v dv = \int_0^r -ky dy, \quad v^2 = v_0^2 - ky^2 + ky_0^2$$

15.
$$a_i = \frac{dv}{dt}$$
, $\int_{1}^{v} dv = \int_{1}^{t} a_i dt$, $v = 3t$, $v(1) = 3m/s$, $a_i = \sqrt{a_i^2 + a_i^2}$, $a_k = \frac{v^2}{R} = 3t^2$,

$$a_i = 3m/s^2$$
, $a(1) = 3\sqrt{2} m/s^2$

(2) $v_z = v_{0z} = 15\sqrt{3} \text{ m/s}$, $v_y = v_{0y} - gt$, $v = \sqrt{v_{0z}^2 + (v_{0y} - gt)^2}$ 切向加速度 $a_i = \frac{dv}{dt} = \frac{-(v_0, -gt)g}{\sqrt{v_0^2 + (v_0 - gt)^2}}; t = 3 \text{ s H}, a_i = 5 \text{ m/s}^2,$

第二章 习题参考解答 2、质点作直线运动: $3+2t=m\frac{dv}{dt}$, $\int_{1}^{1} dv = \int_{1}^{1} \frac{3+2t}{m} dt$, $v = \frac{1}{2}(3t+t^{2})$, t=1,

重力加速度g=10 m/s², 得v₀=30 m/s

v(1) = 2m/s

法向加速度 $a_s = \sqrt{g^2 - a_s^2} = \sqrt{100 - 25} = \sqrt{75} = 8.66 \text{ m/s}^2$

17 \ $v = \frac{dS}{dt} = ct^2$, $S = \int_0^t v dt = \frac{1}{3}ct^3$, $a_i = \frac{dv}{dt} = 2ct$, $a_k = \frac{v^2}{R} = \frac{c^2t^4}{R}$

19 \ (1) $\Delta x = v_{0x}t = v_0 \frac{\sqrt{3}}{2}t = 60\sqrt{3}$, $t = \frac{120}{v}$; $\Delta y = v_0 + t - \frac{1}{2}gt^2$, $(\frac{1}{4}) - \frac{120}{v}$, Eq.

6、根据牛顿第二定律得 f=- <u>k²</u> =m <u>dv</u> =m <u>dv dx</u> =mv <u>dv</u> $\int_{0}^{\pi} v dv = -\int_{0}^{AA} \frac{k}{mv^{2}} dx \frac{1}{2}v^{2} = \frac{k}{m} \left(\frac{4}{4} - \frac{1}{4}\right) \therefore v = \sqrt{6k/mA}$

8 \cdot $m_1g - T = m_1(a_r - a)$, $T - m_2g = m_2(a_r + a)$, $a_r = \frac{(m_1 - m_2)(g + a)}{m_1 + m_2}$ 10、因绳子质量不计,所以环受到的摩擦力在数值上等于绳子张力 T,设 m₂相 对地面的加速度为 a。',

取向上为正; m』相对地面的加速度为 a』(即绳子的加速度),取向下为正。

 $m_1g - T = m_1a_1$ $T - m_2g = m_2a_1$, $a_2' = a_1 - a_2$ 得 $a_1 = \frac{(m_1 - m_2)g + m_2 a_2}{m_1 + m_2}$, $a_2' = \frac{(m_1 - m_2)g - m_1 a_2}{m_1 + m_2}$, $T = \frac{(2g - a_2)m_1 m_2}{m_1 + m_2}$

 $F_{\mu} - \mu m_2 g = m_2 a_s = 0$; 当撤去外力 F 后, 弹力不变, 对物体 A: $-F_{\mu} - \mu m_1 g = m_1 a_s$

对物体 B, $F_{34} - \mu m_2 g = m_2 a_3 = 0$,因此物体 A 的加速度 $a_A = -\mu \frac{m_1 + m_2}{m_1} g$, a_A 与 运动方向相反。物体 B 的加速度 $a_s=0$ 。

第三章 习题参考解答

14、 当两物体作匀速直线运动时,对 A: $F - F_{\#} - \mu m_1 g = m_1 a_4 = 0$; 对 B:

2.
$$\vec{r} = 5t\vec{i} + 0.5t^2\vec{j}$$
, $\vec{v} = \frac{d\vec{r}}{dt}$, $\vec{a} = \frac{d\vec{v}}{dt} = \vec{j}$, $\vec{F} = m\vec{a}$, $A = \int \vec{F} \cdot d\vec{r} = \int_2^4 0.5t dt = 3J$

4.
$$\vec{F} = F_0(x\vec{i} + y\vec{j})$$
, $\vec{r} = x\vec{i} + y\vec{j}$, $d\vec{r} = dx\vec{i} + dy\vec{j}$,

$$A = \int \vec{F} \cdot d\vec{r} = \int_0^0 F_0 x dx + \int_0^{2R} F_0 y dy = 2F_0 R^2$$

$$\int_{0}^{\infty} F \cdot ar = \int_{0}^{\infty} F_{0}x \, ax + \int_{0}^{\infty} F_{0}y \, ay = 2F_{0}R$$

$$x = ct^2$$
 $f = -kx^2$, $A_{SE} = \int_{0}^{1} f dx = -2kc$

6. $x = ct^2$ $f = -kv^2$, $A_{\text{IE}} = \int_{0}^{1} f dx = -2kc$

$$c = ct^2$$
 $f = -kv^2$, $A_{\mathbb{E}} = \int_0^\infty f dx = -2kc$

$$A_{\mathbb{H}} = \int_{0}^{\infty} Jdx = -2KC$$

$$=ct^2 \quad f = -kv^2 \quad , \quad A_{\text{ML}} = \int_0^\infty f dx = -2kc$$

$$\int_{0}^{4} (10 + 6x^{2}) dx = 168 I; \quad A = \frac{1}{2} mv^{2}$$

$$0 + 6x^2$$
) $dx = 168 J; A = \frac{1}{2}mv$

8.
$$A = \int_{0}^{4} F dx = \int_{0}^{4} (10 + 6x^{2}) dx = 168 J;$$
 $A = \frac{1}{2} mv^{2}, v = 13 \text{ m/s}$

$$f = -\kappa v$$
 , $A_{\text{M}} = \int_{0}^{4} j dx = -2\kappa c$

(2) $E_p(x)|_{x=0} = E_p(0) = (\frac{1}{2}kx^2 - \frac{1}{2}kx_0^2) = -\frac{1}{2}kx_0^2$

$$A_{\mathbb{H}} = \int_{0}^{\infty} Jdx = -2KC$$

$$ko^2$$
, $A_{\text{HL}} = \int_0^1 f dx = -2kc$

$$A_{\text{EE}} = \int_{0}^{1} f dx = -2kc$$

10、 $A_{\mathbb{H}} = \frac{1}{2} m v_0^2 = f \cdot l$,设摩擦力大小不变,当木板厚度为 2l 时, $f \cdot 2l = \frac{1}{2} m v^2$,

14、(1)按保守力的功: $A_{\underline{a}} = \int_{0}^{\infty} -kxdx = \frac{1}{2}kx_{1}^{2} - \frac{1}{2}kx_{2}^{2} = E_{p}(x_{1}) - E_{p}(x_{2}),$

令 $\mathbf{x}_1 = \mathbf{x}_0$ 为势能零点 $E_p(\mathbf{x}_0) = 0$,且 $\mathbf{x}_2 = \mathbf{x}$,所以 $E_p(\mathbf{x}) = \frac{1}{2} k \mathbf{x}^2 - \frac{1}{2} k \mathbf{x}_0^2$

得: $v_1 = M \sqrt{\frac{2G}{(M+m)d}}$, $v_2 = -m \sqrt{\frac{2G}{(M+m)d}}$, 相对速度 $u = |v_1 - v_2| = \sqrt{\frac{2G(M+m)}{d}}$

22、动量守恒 $mv_1 + Mv_2 = 0$; 机械能守恒: $\frac{1}{2}mv_1^2 + \frac{1}{2}Mv_2^2 - G\frac{Mm}{a} = 0$ 解方程

第四章 习题参考解答

6. v=kx, $a = \frac{dv}{dt} = k\frac{dx}{dt} = kv$, $F = Ma = Mkv = Mk^2x$; $v = \frac{dx}{dt} = kx$, $\int \frac{dx}{x} = \int kdt$,

8、设小船质量 M、人的质量 m,人与船两者水平方向上动量守恒: $Mv_1 + mv_2 = 0$,

人与船运动方向相反; $M\int v_1dt=-m\int v_2dt$; 设 $x_1=\int v_1dt$, $x_2=\int v_2dt=3m$, 按题

意人相对于船走过 $x_2-x_1=4m$, $x_1=-1m$; $Mx_1=-mx_2$,M=3m=180kg

机械能守恒: $\frac{1}{2}mv_0^2 = \frac{1}{2}(m+M)v^2 + mgh$ 解方程得: $h = \frac{Mv_0^2}{2(m+M)\sigma}$

10、物体到达最高点时物体与槽相对速度等于零,动量守恒: mv。=(m+M)v

20、(1) 摩擦力的功 $A_{\text{p}} = \frac{1}{2}m(\frac{v_0}{2})^2 - \frac{1}{2}mv_0^2 = -\frac{3}{6}mv_0^2$

2、 最大静摩擦力 $f = \mu_0 N = \mu_0 mg = 1.96 N$ 。当 t=1s 时,外力 F 大于静摩擦力,

物体开始运动。滑动摩擦力 $f = \mu N = \mu m g = 1.568 N$,合力

 $F_1 = t + 0.96 - \mu mg = t - 0.608$, $I = \int_0^2 (t - 0.608) dt = 0.892 Ns$, $I = m\Delta v = mv$, t = 2s

时物体的速度v = 0.892m/s

 $\ln \frac{x_1}{x} = k(t_1 - t_0) = k\Delta t$, $\Delta t = \frac{1}{k} \ln \frac{x_1}{x}$

(3) $-\mu m g \cdot 2\pi R \cdot N = -\frac{1}{2} m v_0^2$, 转过的圈数 $N = \frac{4}{2}$ rev

(2) $A_{\overline{R}} = -\mu mg \cdot 2\pi R$, $\mu = \frac{3v_0^2}{16\pi R\sigma}$

(1)

12、(1)行李包下滑到最低点过程中,机械能守恒: $\frac{1}{2}mv_0^2 + mgh = \frac{1}{2}mv_1^2$,行李

包的速度 $v_1 = \sqrt{21} = 4.58m/s$; 当行李包与车相对运动直至两者速度相同整个过

(2) 行李包装上车以后受摩擦力作用,根据动量定理: $-\mu mgt = m(v_1 - v_1)$, t=0.19s

16、动量定理 $I = \int_{0}^{1} F dt = mv$, $I = \int_{0}^{10} F dt = 200 = mv$. t=10, v=40m/s ; 由

18、 (1)以小物体和半圆槽为系统,水平方向动量守恒。设小物体对小圆槽的速

程中,动量守恒: $mv_1 = (M+m)v_2$, $v_2 = \frac{mv_1}{M+m} = 3.82m/s$

$$\frac{1}{2}m(v\sin\theta - V)^{2}$$
(1)、(2) 式得 $V = \frac{m}{\Lambda}$

动能定理 F的功 A = $rac{1}{2}$ m v^2 = 4000J

槽对地的速度为 V,则 $m(v \sin \theta - V) - MV = 0$ 以小物体、半圆槽、地球为系统, 机械能守恒, $\frac{1}{2}m(v\sin\theta - V)^2 + \frac{1}{2}m(v\cos\theta)^2 + \frac{1}{2}MV^2 = mgR\sin\theta$ (2) 解 (1)、(2) 式得 $V = \frac{m \sin \theta}{M+m} \sqrt{\frac{(M+m)2gR \sin \theta}{(M+m)-m \sin^2 \theta}}$

 $v = \sqrt{\frac{(M+m)2gR \sin \theta}{(M+m) - m \sin^2 \theta}}$

(2) 设小物对地在水平方向的速度分量为火,

则 $mv_z - MV = 0$, 即 $V = \frac{m}{M}v_z$, 两边积分 $\int_0^t V dt = \frac{m}{M}\int_0^t v_z dt$

式中 $\int_0^t V dt = s_1$ 为槽移动的距离, $\int_0^t v_z dt = s_2$ 为物对地移动的距离,故 $s_1 = \frac{m}{M} s_2$ 当小物体滑到 B 点时相对的移动的距离 $s_0 = R - s_1$,

所以 $s_1 = \frac{m}{M}(R - s_1)$, 得 $s_1 = \frac{m}{m+M}R$

L = mvr, $v = \frac{L}{mr}$, 动能 $E_K = \frac{1}{2}mv^2 = \frac{L^2}{2mv^2}$, 势能 $E_F = -\frac{GMm}{v} = -mv^2 = -\frac{L^2}{mv^2}$, 总能量 $E = E_{\kappa} + E_{\rho} = -\frac{L^2}{2mr^2}$ (总能量为负值)

第五章 习题参考解答 2、杆两端受到的重力矩方向相反: $M=2mg\frac{l}{2}-mg\frac{l}{2}=mg\frac{l}{2}$;角加速度 $\alpha=\frac{M}{\tau}$,

 $T_1R = J_1\beta_1$ \oplus ; $T_2r - T_1r = J_2\beta_2$ \oplus ; $mg - T_2 = ma$ \oplus $a = r\beta_2 = R\beta_1$ \oplus $v^2 = 2ah$ ⑤; 联立上述等式,解得 $a = \frac{mg}{\frac{M_1}{2} + \frac{M_2}{2} + m} = 4m/s^2$,

$$M_1$$
 $O \longrightarrow T_1$
 T_1
 T_2
 T_2
 T_2
 T_2
 T_2

转运协贯里 $J = m(\frac{l}{2})^2 + 2m(\frac{l}{2})^2 = 3m(\frac{l}{2})^2 = \frac{3}{4}ml^2$, $\alpha = \frac{2g}{3J}$

画受力图。

 $v = \sqrt{2ah} = 2m/s$

6、(1)受力图如图所示:

(2) $T_1 = \frac{M_1}{2}a = 48N$, $T_2 = m(g - a) = 58N$

设物体 B 向下 物体 A 向上运动,列方程:
$$T_2r'-T_1r=J\beta$$
 \oplus ; $T_1-mg=ma_1$ \oplus ; $mg-T_2=ma_2$ \oplus ; $a_1=r\beta$ \oplus ; $a_2=r'\beta$ \oplus ; 解方程得: $\beta=\frac{mgr}{\frac{19}{2}mr^2}=\frac{2g}{19r}$; 组合轮的角加速度 $\beta=10.3rad\cdot s^{-2}$;

(2) 组合轮转过的角度 θ 与物体 A 上升的高度 h 的关系: $h=r\theta$, $\omega^2=2\beta\theta$,

组合轮的角速度 $\omega = \sqrt{2\beta \frac{h}{r}} = 9.08 rad \cdot s^{-1}$

8、在r处的宽度为 dr 的环带面积上摩擦力矩为 $dM = df \cdot r$, $df = \mu dmg$,

 $dm = \frac{m}{\pi R^2} \cdot 2\pi r dr$, $dM = \mu \frac{mg}{\pi R^2} \cdot 2\pi r \cdot r \cdot dr$ 。 总摩擦力矩 $M = \int_0^x dM = \frac{2}{3} \mu mgR$, 故平板角加速度 $\beta = M/J$,设停止前转数为 n ,则转过的角度 $\theta = 2\pi n$ 由于

10、解: (1) 角加速度与初角速度方向相反,物体 m 先升高后下降。mg - T = ma ; $TR = J\beta$; $a = R\beta$, $\beta = mgR / (mR^2 + J)$, $\beta = \frac{mgR}{mR^2 + \frac{1}{2}MR^2} = \frac{2mg}{(2m + M)R} = \frac{2mg}{mR^2 + \frac{1}{2}MR^2}$

角加速度
$$\beta$$
方向垂直纸面向外。
(2) $\omega^2=\omega_0^2-2eta heta$,当 $\omega=0$ 时,

81.7 rad/s2 ,

$$\theta = \frac{\omega_0^2}{2\beta} = 0.612 \text{ rad}$$
,物体上升的高度 $h = R\theta = 6.12 \times 10^{-2} \text{ m}$

14、解:取转台和落下的砂粒为系统.由分析可知系统在转动平面内的角动里守恒. t 时刻,落下砂粒的质量为 m = kt, k = 0.001 kg/s

由角动量守恒,得: $J\omega_0 = (J + mr^2)\omega$

$$t = \frac{J(\omega_0 - \omega)}{h^2 \omega} = 5 \text{ s}$$

12、杆与小球角动里守恒: $2mvL=(\frac{1}{2}mL^2+2mL^2)\omega$, $\omega=\frac{6v}{2T}$

16、(1)当 A 和 B 轮相连时无外力矩,因此两轮组成的系统对转轴角动里守恒。 $J_{_A}\omega_{_0}=(J_{_A}+J_{_B})\omega$,按题意 $J_{_A}=10$ kgm^2 , $J_{_B}=20$ kgm^2 ,得转速m=200rev/min;

(2) 冲量矩 $\int Mdt = J\omega - J\omega_o$, $\omega = \frac{2\pi}{T} = 2\pi n$,n 转速 (单位: rev/s);对 A 轮,受

到的冲里矩等于 J_a(ω – ω_o) = –419 Nms; 对 B 轮,受到的冲里矩等于 J_s(ω – 0) = 419 Nms

18

阻力矩与滑轮转动方向相反。设 m_1 向下、 m_2 向上运动: $I_{i'} - I_{2'} - M_{i'} = Jeta$ Φ ;

$$m_1g - T_1 = ma$$
 Q ; $T_2 - m_2g = m_2a$ Θ ; $a = r\beta$ Φ 得: $a = \frac{(m_1 - m_2)g - \frac{M_f}{r}}{m_1 + m_2 + \frac{m_2}{2}}$,

$$a = 2m/s^2$$
; $T_1 = m_1(g-a) = 156N$; $T_2 = m_2(g+a) = 118N$

20、设质心距两运动员分别为
$$I_A,I_B$$
 , 则 $I_A+I_B=I$,且 $M_AI_A=M_BI_B$,可得 $I_A=0.808\,\mathrm{m},\ I_B=0.692\,\mathrm{m}$

(1)系統的总角动量
$$L=M_{_A}I_{_A}v_{_A}+M_{_B}I_{_B}v_{_B}=630~{
m kg\cdot m^2/s}$$

(2)系統対质心的转动惯量
$$J=M_{_A}I_{_A}^2+M_{_B}I_{_B}^2=72.7~{
m kg\cdot m^2}$$

由角动量守恒定律,
$$J\omega=M_{_A}l_{_A}v_{_A}+M_{_B}l_{_B}v_{_B}$$

得
$$\omega = \frac{M_A l_A v_A + M_B l_B v_B}{I} = 8.67 \text{ rad/s}$$

(3) 拉手前总动能
$$E_k = \frac{1}{2} M_A V_A^2 + \frac{1}{2} M_B V_B^2 = 2.73 \times 10^3 \text{ J}$$

和对质心轴的外力矩作功.所以能量守恒

 $ω_0 = \sqrt{\frac{3g}{I}}$; 设细杆和物体碰撞后细杆的角速度和物体的速度分别为 $ω_1$ η $ν_1$, 整

22、细杆落下来过程中机械能守恒: $mg\frac{L}{2}=rac{1}{2}J\omega_0^2$, 细杆的转动惯里 $J=rac{1}{3}mL^2$,

拉手后总动能 $E_s = \frac{1}{2}J\omega^2 = 2.73 \times 10^3$ 」 对两人系统,在拉手过程中,因无外力

由动能定理: $-\mu mgs = 0 - \frac{1}{2}mv_i^2$, $v_i = \sqrt{2\mu gs}$, $\omega_i = \omega_0 - \frac{3v_i}{T}$ 细杆碰后继续转动,设转到最高点时中点 A到平面距离为 h,根据机械能守恒: $\frac{1}{2}J\omega_i^2 = mg(h - \frac{L}{2})$, 化简得: $h = L + 3\mu S - \sqrt{6\mu SL}$

个碰撞过程系统角动里守恒: $J\omega_0 = J\omega_1 + mv_1 L$

第六章 习题参考解答

解上式得 $\sin^2 \omega r_2 = 0.1875$,相应位移为 $x = A\cos \omega r_1 = \pm A\sqrt{1-\sin^2 \omega r_2} = \pm 10.8$ cm

 $N_1 - mg = ma_1 = -m4\omega^2$ fight: $N_2 = m(g - A\omega^2) = 6.64 \text{ N}$

 $N_{r} - mg = ma_{r} = mA\omega^{2}$ fig.: $N_{r} = m(g + A\omega^{2}) = 12.96 \,\text{N}$

解以上两式 得 $\omega = \frac{4}{\sqrt{5}}$; $\therefore T = \frac{2\pi}{\omega} = \frac{\sqrt{3}}{2}\pi = 2.72 \text{ s}$

4、(见图) $\Delta \phi = \frac{3}{2}\pi$,或 $\Delta \phi = \frac{\pi}{2}$

8、取坐标向上为正.

即:

两种情况都行 1, 4; 2, 3 象限都行。

6、由矢量图很容易得到如下条件的初相位:

(1) $x_0 = -A$, $v_0 = 0$; $\varphi = \pm \pi$. $x = A \cos(\omega t + \pi)$ (SI);

(2) $x_0 = 0$, $v_0 = v_{max} > 0$; $\varphi = -\pi/2$. $x = A\cos(\omega t - \pi/2)$ (SI);

(3) $x_0 = \frac{A}{2}$, $v_0 < 0$; $\varphi = \pi/3$. $x = A\cos(\omega x + \pi/3)$ (SI); (4) $x_0 = \frac{A}{\sqrt{2}}$, $v_0 > 0$; $\varphi = -\pi/4$. $x = A\cos(\omega x - \pi/4)$ (SI).

(1) 物体处于正方向位移最大时,所受合力方向向下.

当物体处于负方向位移最大时,所受合力方向向上.

可见: 物体处于正方向位移最大时,所受支持力最小。

(2) N₁ = 0 时,物体可跳离平板.即: -mg = -md.6 所以, A = 💆 = 0.062 m

物体对平板的正压力 N,' = -N, N,' = -N,

2、设振动方程为 x = Acos ωτ,则 v = 🚾 = - Aω sin ωτ A=12cm

在 x=6cm, v=24cm/s状态下有: 6=12 cos ωτ; 24 = -12ωsin ωτ

(2) 设对应 v=12cm/s的时间为t₂,则由v=-Awsinat得12 = -12 · 4/5 sin ωt₂

10、设振动方程为 x = A cos(ωt + φ) 。则由曲线可知 A=10cm,t=0 时 x, = -5 = 10 cos φ, ν。= -10ωsinφ<0。可解得φ= 2π

再由图可知近地点由位移
$$x_0 = -5 \text{ cm} \cdot v_0 < 0$$
的状态到 $x = 0 \cdot v_0 > 0$ 的状态所需

时间为 t=25,代入振动方程得 0 = 10 cos $\left(2\omega + \frac{2\pi}{3}\right)$ $2\omega + \frac{2\pi}{3} = \frac{3\pi}{2}$ $\therefore \omega = \frac{5}{12}\pi$

故所求振动方程为
$$x = 0.10\cos\left(\frac{5}{12}\pi t + \frac{2}{3}\pi\right)$$
 (SI)
 $x = A\cos(\alpha t + \phi)$ (1)

12、(1)设振子运动方程为 x = A cos(at + φ)

动能和势能分别为
$$E_{\kappa} = \frac{1}{2} m v^2 = \frac{1}{2} m A^2 \omega^2 \sin^2(\omega t + \varphi)$$
、

$$E_{\tau} = \frac{1}{2}kx^2 - \frac{1}{2}mA^2\omega^2\cos^2(\omega t + \varphi)$$
 (2)

$$E_r = \frac{1}{2}kx^2 = \frac{1}{2}mA^2\omega^2\cos^2(\omega x + \phi)$$
 (2)
中部和熱的知答和至明之有 $\tan^2(\omega x + \phi) = 1$: 即

立
动能和势能相等时,有
$$\tan^2(\omega t + \varphi) = 1$$
; 即 $(\omega t + \varphi) = (K + \frac{1}{2})\frac{\pi}{2}$ $K = 0,1,2,\cdots$ (3)

$$x = \pm \frac{\sqrt{2}}{2}A = \pm 0.14 \text{ m}$$

或: 动能和势能相等时,有
$$E_0 = \frac{1}{2}E$$
; 即 $\frac{1}{2}kx^2 = \frac{1}{2}(\frac{1}{2}kA^2)$ 得解同 4 式.

(2)由题意可知
$$x_0=A$$
, $v_0=0$, 得 $\varphi=0$; 系统的固有角频率 $\varphi=\sqrt{\frac{k}{m}}$

由(3)式可得,一个周期内达到动、
$$t = (K + \frac{1}{2}) \frac{K}{m} = (K + \frac{1}{2})$$

田(3)式 可得,一个周期内还到动、 努能相等所需的的

$$t = (K + \frac{1}{2})\frac{\pi}{2\omega} = (K + \frac{1}{2})\sqrt{\frac{\pi}{k}}\frac{\pi}{2} = (K + \frac{1}{2})\frac{\pi}{4}$$
 $K = 0,1,2,3$

$$t = (K + \frac{1}{2})\frac{\pi}{2\omega} = (K + \frac{1}{2})\sqrt{\frac{m}{k}}\frac{\pi}{2} =$$

$$\pi 3\pi 5\pi 7\pi$$

$$t = (K + \frac{1}{2})\frac{1}{2\omega} = (K + \frac{1}{2})\sqrt{\frac{1}{K}}\frac{1}{2} = (K$$

$$t = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \frac{7\pi}{2}$$

$$t = \frac{\pi}{8}, \frac{3\pi}{8}, \frac{5\pi}{8}, \frac{7\pi}{8}$$

$$t = \frac{\pi}{8}, \frac{3\pi}{8}, \frac{5\pi}{8}, \frac{7\pi}{8}$$

$$\mathbb{P} \qquad t = \frac{\pi}{8}, \frac{3\pi}{8}, \frac{3\pi}{8}, \frac{7\pi}{8}$$

$$14 \cdot (1) \quad E = E_{K} + E_{p} = 0.2 + 0.6 = 0.8J, \quad E = \frac{1}{2}kA^{2} = 0.8J,$$

$$14 \cdot (1) \quad E = E_{K} + E_{p}$$

$$A = \sqrt{0.064} = 0.253m$$

2)
$$E_{E} = E_{p} = \frac{1}{2}$$

(2) $E_K = E_p = \frac{1}{2} \left(\frac{1}{2} kA^2 \right), \quad x = \pm \frac{A}{\sqrt{5}} = \pm 0.178 m$ (3) $x = \frac{A}{2}$, $E_p = \frac{1}{2}kx^2 = \frac{1}{2}k\left(\frac{A}{2}\right)^2 = \frac{1}{4}\left(\frac{1}{2}kA^2\right) = 0.2J$

16、据题中谐振动曲线可得两个谐振动方程为:

$$x_1 = 0.08\cos\left(\pi t - \frac{\pi}{2}\right)$$
(SI), $x_2 = 0.04\cos\left(\pi t + \frac{\pi}{2}\right)$ (SI) $(\omega = \frac{2\pi}{T} - \frac{2\pi}{2} = \pi \text{ rad/s})$
据合振动的振幅及初相位公式可得 $A = \sqrt{8^2 + 4^2 + 64\cos\pi} = 4$

描言振幻的振伸成例相立公式问得
$$A = \sqrt{8^2 + 4^2 + 04\cos\pi} = 4$$

$$\varphi = \arctan \frac{8\sin\left(-\frac{\pi}{2}\right) + 4\sin\frac{\pi}{2}}{(\pi) + \pi} = -\frac{\pi}{2}$$

 $\varphi = \arctan \frac{8\sin \left(-\frac{\pi}{2}\right) + 4\sin \frac{\pi}{2}}{8\cos \left(-\frac{\pi}{2}\right) + 4\cos \frac{\pi}{2}} = -\frac{\pi}{2}$

$$\frac{\sin\frac{\pi}{2}}{\cos\frac{\pi}{2}} = -\frac{\pi}{2}$$

$$+x_2 = 0.04 \cos \left(\pi t - \frac{\pi}{2}\right) (SI)$$

故合振动方程为 $x=x_1+x_2=0.04\cos\left(\pi t-\frac{\pi}{2}\right)$ (SI)

$$+x_2 = 0.04\cos\left(\pi t - \frac{\pi}{2}\right)(SI)$$

第十章 习题参考解答

2、(1) 取
$$x > 0.2$$
,位相落后 $\frac{2\pi}{\lambda}(x - 0.2) = \frac{\omega}{u}(x - 0.2)$,波动方程

$$y = 0.2\cos\left(20\pi t + \frac{\pi}{2} - \frac{\omega}{u}(x - 0.2)\right)$$
, 将 $\omega = 20\pi$, $u = 5m/s$ 代入得:

$$y = 0.2\cos\left(20\pi t - 4\pi x + \frac{13\pi}{10}\right) \text{ (m)}$$

(2)
$$t=5s$$
, x 轴上任一点位移
 $y=0.2\cos(100\pi-4\pi x+\frac{13\pi}{2})=0.2\cos(4\pi x)$

$$y = 0.2\cos\left(100\pi - 4\pi x + \frac{13\pi}{10}\right) = 0.2\cos\left(4\pi x - \frac{13\pi}{10}\right)(m);$$

加速度 $a = \frac{\partial^2 y}{\partial t^2}$ $= -A \left(\frac{2\pi u}{\lambda}\right)^2 \cos \frac{2\pi (ut - x)}{\lambda} = 6.17 \times 10^3 \,\text{m/s}^2$

6、取 x > -1,位相超前 $\Delta \varphi = 2\pi \frac{\Delta x}{2} = \frac{2\pi}{2} [x - (-1)] = \frac{2\pi}{2} (x + 1) = \frac{\omega}{x} (x + 1)$,

x 轴上任一点的速度
$$v = \frac{dy}{dt} = -4\pi \sin\left(20\pi t - 4\pi x + \frac{13\pi}{10}\right)$$
 , $t = 5s$,

$$v = -4\pi \sin\left(100\pi - 4\pi x + \frac{13\pi}{10}\right)$$

$$v = -4\pi \sin\left(100\pi - 4\pi x + \frac{1}{10}\right)$$

(3) $x = -0.2m$,代入波动方程得 $y = 0.2\cos\left(20\pi t + 0.8\pi + \frac{13\pi}{10}\right)$ (m)

波动表达式为: $y = A\cos\left(\omega t + \varphi + \frac{\omega}{u}(x+1)\right)$

(3)
$$x = -0.2m$$
,代入波动方程得 y
(4) 两点的位相差 $\Delta \phi = 2\pi \frac{\Delta x}{2} = \frac{8}{5}\pi$

则 t=0.1s、x=2m 处质点振动位移
$$y = A \cos \frac{\partial y}{\partial t}$$
 速度 $y = A \cos \frac{\partial y}{\partial t}$ = $-A \frac{2\pi u}{\lambda} \sin \frac{2\pi (ut - x)}{\lambda} = 0$

 Φ质点的振动方程为 y₀ = Alcos(500πt + π/4) (SI) 波动方程为 $y = A\cos \left[2\pi \left(250t + \frac{x}{200}\right) + \frac{\pi}{4}\right]$ (SI) (2) 距 0 点 100m 处质点振动方程是 $y_{100} = A \cos \left(500 \pi t + \frac{5\pi}{4} \right)$ (SI) 振动速度表达式是v = -500 πA sin (500 πt + $\frac{5}{4}$ π)

对原点 O 处质点,t=0 时, $y_0=A\cos\varphi=\frac{\sqrt{2}}{2}A$, $v_0=-A\omega\sin\varphi<0$,所以 $\varphi=\frac{\pi}{4}$,

8、(1) 由 P 点的运动方向,可判定该波向左传播。

 $\therefore 2\pi u' + \varphi = \frac{\pi}{2}$, $\varphi = \frac{\pi}{2} - 2\pi u'$ x = 0处振动方程为 $y = A\cos\left[2\pi v(t-t') + \frac{\pi}{2}\right]$

$$y/m$$
 y/m y/m

 $t = \frac{T}{4}$,波向前移动 $\frac{\lambda}{4}$,相应的波形图向右移 $\frac{\lambda}{4}$,或原点向

$$=\frac{T}{4}$$
,波向前移动 $\frac{\lambda}{4}$,

$$rac{1}{4}$$
,波向前移动 $rac{\lambda}{4}$,相应 $otag$

$$3\frac{\lambda}{4}$$

左移
$$\frac{\lambda}{4}$$
。

(2) $y = 0.1\cos\left[2\pi\left(5t - \frac{x}{20}\right) - \frac{\pi}{2}\right]$ (m), $t = \frac{T}{4}$,波向左移

动 $rac{\lambda}{4}$,相应的波形图向左移 $rac{\lambda}{4}$,或原点向右移 $rac{\lambda}{4}$ 。

x < 0 波动方程 $y = 0.1 \cos \left[2\pi \left(5t + \frac{x}{20} \right) + \frac{\pi}{2} \right]$ (m)

(3) 由图得到 0 点的振动方程 $y = 0.1\cos\left[10\pi t + \frac{\pi}{2}\right]$ (m)

x > 0 ,波动方程 $y = 0.1 \cos \left[2\pi \left(5t - \frac{x}{20} \right) + \frac{\pi}{2} \right]$ (m)

习题13-1

习题13-2

由图t = 0, $y = -\frac{A}{2}$, 速度向下 $v_0 < 0$, 初相 $\phi = \frac{2}{3}\pi$, $y_{z=1} = 0.02\cos\left(10\pi t + \frac{2}{3}\pi\right)$; 从图 7.6.8(b)可看到波长 $\lambda=2$ (m),波速 $u=\lambda v=10m/s$,x=1处的质元向下运 动,所以波是沿×轴正向传播的,因此波动方程

$$y = 0.02\cos\left(10\pi t + \frac{2}{3}\pi - \frac{2\pi}{\lambda}(x-1)\right) = 0.02\cos\left(10\pi t - \pi x - \frac{\pi}{3}\right)$$

16、(1)波中的平均能量密度: $\overline{w} = \frac{I}{u} = \frac{9.0 \times 10^{-3}}{300} = 3.0 \times 10^{-5} \text{J/m}^3$
最大能量密度: $w_n = 2\overline{w} = 6.0 \times 10^{-5} \text{J/m}^3$

14、设 x=1 的振动方程 $y = A\cos(\omega t + \varphi)$, A = 2 (cm) $T = \frac{1}{5}$ (s), $\omega = \frac{2\pi}{T} = 10\pi$,

(2) 每两个相邻的、相位差为
$$2\pi$$
 的同相面间的能量: $W = \pi V = \pi \lambda S = \pi u \frac{1}{\nu} \pi r^2$ =4.62×10⁻⁷J
18、(1)波的平均能流密度为 $I = \frac{1}{2} \rho A^2 \omega^2 u = \frac{1}{2} \times 800 \times 10^{-2} \times (2\pi \times 10^2)^2 \times 10^2 = 1.58 \times 10^3$

(2) 1 分钟内垂直通过面积 S=4×10⁴ m²的总能量为 $W = IS\Delta t = 1.58 \times 10^{5} \times 4 \times 10^{-6} \times 60 = 3.79 \times 10^{3}$ 20、在 P 点最大限度地减弱,即两振动反相,现两个波源是反相的相干波源,故

要求因传播路径不同而引起的位相差应等于
$$\pm 2k\pi (k=1,2,\cdots)$$
 由图 $\overline{AP}=50~{\rm cm}$, $\pm 2\pi (50-40)/\lambda=2k\pi$,即 $\lambda=\frac{10}{5}~{\rm cm}$ 。当 $k=1~{\rm bh}$, $\lambda_{mm}=10~{\rm cm}$ 。

22、(1) B 点的振动方程 y ,= 0.01 cos(100 πt + φ);

2、(1) B 点的振动方程
$$V_B = 0.01\cos(100\pi t + \phi + \pi)$$

C 点的振动方程 $V_C = 0.01\cos(100\pi t + \phi + \pi)$

(2) B 为波源发出的波:

(3) 因干涉而静止的点:两列波在该点引起的分振动的位相相反。设x是B、C

 $y_1 = 0.01\cos\left(100\pi t + \varphi - \frac{2\pi}{2}x\right) = 0.01\cos\left(100\pi t + \varphi - \frac{\pi}{9}x\right)$

$$y_t = 0.01\cos\left(100\pi t + \varphi - \frac{2\pi}{\lambda}x\right)$$

$$y_t = 0.01\cos\left(100\pi t + \varphi - \frac{2\pi}{\lambda}\right)$$

$$y_t = 0.01\cos\left(100\pi t + \varphi - \frac{2\pi}{\lambda}x\right)$$

$$y_t = 0.01\cos\left(100\pi t + \varphi - \frac{2\pi}{\lambda}x\right)$$

$$y_1 = 0.01005 \left(100 M + \psi - \frac{1}{\lambda} \right)$$

c 为波源发出的波:
$$y_2 = 0.01 \cos \left(100 \pi t + \varphi + \frac{5\pi}{4} + \frac{\pi}{8} x \right)$$

之间的某一点,位相差
$$\Delta \Phi = \frac{5\pi}{4} + \frac{\pi}{8} \cdot 2x = (2k+1)\pi$$
,得 $x = 8k-1$, $k = 1,2,3$,

$$RDx = 7, 15, 23$$

(1) 最大振幅点的位置处,最大合振幅 A_{max} ,要求 $\left|2A\cos(2\pi\frac{x}{s})\right|=1$

(2) 最小振幅点的位置处,最小合振幅
$$A_{min}$$
 要求 $\left|2A\cos(2\pi\frac{x}{\lambda})\right|=0$

所以 $(2\pi \frac{x}{2}) = k\pi$, 即 $x = \frac{k\lambda}{2}$; $(k = 0,\pm 1,\pm 2...)$

25、两列波形成驻波为 $y = 2A\cos(2\pi \frac{x}{s})\cos(2\pi ut)$

所以 $(2\pi \frac{x}{2}) = \frac{(2k+1)}{2}\pi$, 即 $x = \frac{(2k+1)\lambda}{4}$; $(k = 0,\pm 1,\pm 2\cdots)$ 26、(1) λ=2m, 入射波和反射波在 x 处的位相差

$$26$$
、(1) $\lambda = 2m$,人射波和反射波在 × 处的位相差
$$\Delta \Phi = \frac{2\pi}{\lambda} (5-x) \times 2 + \pi$$
,反射波方程
$$\Delta \Phi = \frac{2\pi}{\lambda} (5-x) \times 2 + \pi$$
,反射波方程
$$\Delta \Phi = \frac{2\pi}{\lambda} (5-x) \times 2 + \pi$$

$$\Delta \Phi = \frac{1}{\lambda} (3-x) \times 2 + \pi$$
 ,反射波力程
 $y = 0.01\cos\left(4t - \pi x - \frac{\pi}{2} - \frac{4\pi}{\lambda}(5-x) + \pi\right) = 0.01\cos\left(4t + \pi x + \frac{\pi}{2}\right)$

$$(2) \quad y = y_{\lambda} + y_{\Xi} = 0.02\cos\left(\pi x + \frac{\pi}{2}\right)\cos 4t$$

(3) 波腹:
$$\pi x + \frac{\pi}{2} = k\pi$$
, $x = k - \frac{1}{2}$, $k \le 5$ 或 $(k = \cdots -2, -1, 0, 1, 2, 3, 4, 5)$

波节: $\pi x + \frac{\pi}{2} = (2k+1)\frac{\pi}{2}$, x = k, $k \le 5$ 或 (k = -2, -1, 0, 1, 2, 3, 4, 5)

波节:
$$\pi x + \frac{\pi}{2} = (2k+1)\frac{\pi}{2}$$
, $x = k$, $k \le 5$ 或 $(k = -2, -1, -1)$

28、已知:声速 μ = 340 m/s,波源(汽笛)频率 ν, = 500 Hz;

波源(火车)速度 $v_s = \frac{90 \times 10^2}{3600} = 25 \text{ m/s}$, 观察者(汽车)速度 $v_s = \frac{54 \times 10^2}{2600} = 15 \text{ m/s}$.

源(火车速度
$$v_s = \frac{90 \times 10^2}{3600} = 25 \text{ m/s}$$
 观察者
由多普勒频率公式 $v_s = \frac{u + v_s}{2} v_s$

由多普勒频率公式 $v_s = \frac{u + v_s}{v - v} v_s$

(1) 观察者不动 vg = 0,火车向着观察者运动, vg > 0.

观察者接受到的频率为 $v_1 = \left(\frac{u}{u-v_1}\right)v_2 = \left(\frac{340}{340-25}\right) \times 500 = 540 \text{ Hz}$

当 火 车 离 观 察 者 而 去 时 , v₂ <0. 则 观 察 者 接 受 到 的 频 率 为

 $v_2 = \left(\frac{340}{340 + 25}\right) \times 500 = 466 \text{ Hz}$ 频率变化为: $\Delta v = v_1 - v_2 = 74 \text{ Hz}$ (2) 观察者和波源相向运动时,vx>0,vx>0.

观察者接受到的频率为 $v = \frac{u + v_s}{u - v_s} v_s = \frac{340 + 15}{340 - 25} \times 500 = 563.5 \text{ Hz}$