Treillis $(E, \preceq, \land, \lor)$

Définitions

- \triangleright (E, \preceq) ensemble ordonné
- \triangleright \vee : $E \times E \rightarrow E$ \wedge : $E \times E \rightarrow E$
- ightharpoonup pour tout $x, y \in E$:
 - \triangleright $x \land y$ minorant de x et y

$$x \land y \leq x$$
 et $x \land y \leq y$

 \triangleright $x \land y$ le plus grand des minorants

$$\forall m \in E \quad m \leq x \text{ et } m \leq y \quad \Rightarrow \quad m \leq x \wedge y$$

 \triangleright $x \lor y$ majorant de x et y

$$x \leq x \vee y$$
 et $y \leq x \vee y$

 \triangleright $x \lor y$ le plus petit des majorants

$$\forall M \in E \quad x \leq M \text{ et } y \leq M \quad \Rightarrow \quad x \vee y \leq M$$

Exemple 1

Ensemble ordonné mais pas treillis car :

Exemple 1

Ensemble ordonné mais pas treillis car : $a \lor b$ n'existe pas (c et d majorants mais pas de plus petit)

Exemple 1

Ensemble ordonné mais pas treillis car : $a \wedge b$ n'existe pas

Exemple 1

Ensemble ordonné mais pas treillis car : $c \lor d$ n'existe pas

Définitions

Exemple 1

C'est bien un treillis!

(après ajout de 3 éléments)

Définitions

Exemple 2

$$(\mathcal{P}(E),\subseteq,\quad,\quad)$$
 treillis

(avec E ensemble)

Définitions

Exemple 2

$$(\mathcal{P}(E),\subseteq,\cap,)$$
 treillis

(avec E ensemble)

Définitions

Exemple 2 $(\mathcal{P}(E), \subseteq, \cap, \cup)$ treillis

(avec E ensemble)

Définitions

Exemple 3

 $(\mathbb{N}, \mid , \mathsf{pgcd}, \mathsf{ppcm})$ treillis

▶ a|b : \Leftrightarrow $\exists k \in \mathbb{N}$ ak = b

- ordre partiel
- ightharpoonup pgcd(a, b): plus grand diviseur commun de a et b

ex.
$$pgcd(7938; 1260) = pgcd(2^1.3^4.7^2; 2^2.3^2.5^1.7^1)$$

= $2^1.3^2.7^1 = 126$
 $7938 = 126 \times 3^2.7 = 126 \times 63$
 $1260 = 126 \times 2^1.5^1 = 126 \times 10$

ightharpoonup ppcm(a, b): plus petit multiple commun de a et b

ex.
$$\operatorname{ppcm}(7938; 1260) = \operatorname{ppcm}(2^1.3^4.7^2; 2^2.3^2.5^1.7^1)$$

= $2^2.3^4.5^1.7^2 = 79380$
 $7938 \times 2^1.5^1 = 7938 \times 10 = 79380$
 $1260 \times 3^2.7^1 = 1260 \times 63 = 79380$

Définitions

Soit (E, \preceq) ensemble ordonné et $A \subseteq E$

Borne inférieure d'une partie

ightharpoonup <math>A minorant

$$\forall x \in A \quad \bigwedge A \leq x$$

 \triangleright $\bigwedge A$ le plus grand des minorants

$$\forall m \in E \quad (\forall x \in A \quad m \leq x) \quad \Rightarrow \quad m \leq \bigwedge A$$

Exemples

- ightharpoonup exemple 1 : $\bigwedge \{f, g, h\} = b$
- exemple 2 : $\bigwedge \{\{a, d\}, \{b, d\}, \{c, d\}\} = \{d\}$
- exemple $3: \Lambda \{30, 45, 60\} = 15$

Attention $\bigwedge A$ n'existe pas toujours

Dans (\mathbb{Z}, \leq) pour A ensemble des nombres pairs $\bigwedge A$ n'existe pas

Définitions

Soit (E, \preceq) ensemble ordonné et $A \subseteq E$

Borne supérieure d'une partie

► \ \ A majorant

$$\forall x \in A \quad x \leq \bigvee A$$

► ∨ A le plus petit des majorants

$$\forall M \in E \ (\forall x \in A \ x \leq M) \Rightarrow \bigvee A \leq M$$

Exemples

- \blacktriangleright exemple 1 : $\bigvee \{f, g, h\} = d$
- exemple 2 : $\bigvee \{\{a,d\},\{b,d\},\{c,d\}\} = \{a,b,c,d\}$
- \triangleright exemple 3 : $\bigvee \{30, 45, 60\} = 180$

Attention $\bigvee A$ n'existe pas toujours

Dans (\mathbb{Z}, \leq) pour A ensemble des nombres pairs $\bigvee A$ n'existe pas

Définitions

Attention

Ne pas confondre $\bigvee A$ et $\bigwedge A$ avec maximum et minimum de A

Pour (
$$\mathbb{N}$$
, $|$) et $A := \mathbb{N} \setminus \{0\}$:

- ► A n'a pas de maximum
- $\triangleright \bigvee A = 0 \text{ mais } \mathbf{0} \not\in \mathbf{A}$

Propriété

Si (E, \leq, \wedge, \vee) treillis et E fini alors $\bigvee A$ et $\bigwedge A$ existent toujours

Idée de preuve

Soit $A \subseteq E$.

Comme E fini alors $E = \{e_1, e_2, \dots, e_n\}$ et $A = \{e_{i_1}, e_{i_2}, \dots, e_{i_k}\}$

Donc $\bigvee A = e_{i_1} \vee e_{i_2} \vee \ldots \vee e_{i_k}$ et $\bigwedge A = e_{i_1} \wedge e_{i_2} \wedge \ldots \wedge e_{i_k}$

Définitions

$$(E, \preceq)$$
 ensemble ordonné

$$\top$$
 (top)

$$\top := \bigvee E$$

(si $\bigvee E$ existe)

$$\perp$$
 (bottom)

$$\perp := \bigwedge E$$

(si $\bigwedge E$ existe)

Exemples

► exemple 1 :

Définitions

$$(E, \preceq)$$
 ensemble ordonné

$$\top$$
 (top)

$$\top := \bigvee E$$

(si $\bigvee E$ existe)

$$\perp$$
 (bottom)

$$\perp := \bigwedge E$$

(si $\bigwedge E$ existe)

Exemples

▶ exemple
$$1 : \top = c \lor d$$
 $\bot = a \land b$

$$\perp = a \wedge b$$

(éléments ajoutés)

exemple 2 :

Définitions

(E, \preceq) ensemble ordonné

$$\top$$
 (top)

$$\top := \bigvee E$$

(si $\bigvee E$ existe)

$$\perp$$
 (bottom)

$$\perp := \bigwedge E$$

(si $\bigwedge E$ existe)

Exemples

$$ightharpoonup$$
 exemple 1 : $\top = c \lor d$ $\bot = a \land b$

$$\perp = a \wedge b$$

(éléments ajoutés)

• exemple 2 :
$$\top = \{a, b, c, d\}$$
 $\bot = \emptyset$

$$\perp = 0$$

exemple 3 :

Définitions

(E, \preceq) ensemble ordonné

$$\top$$
 (top)

$$\top := \bigvee E$$

(si $\bigvee E$ existe)

$$\perp$$
 (bottom)

$$\perp := \bigwedge E$$

(si $\bigwedge E$ existe)

Exemples

$$ightharpoonup$$
 exemple $1: \top = c \lor d$ $\bot = a \land b$

$$\perp = a \wedge b$$

▶ exemple 2 :
$$\top = \{a, b, c, d\}$$
 $\bot = \emptyset$

$$\perp = \emptyset$$

$$ightharpoonup$$
 exemple $3: \top = 0$ $\bot = 1$

$$\perp = 1$$

Propriétés

Commutativité
$$a \lor b = b \lor a$$

 $a \land b = b \land a$
Associativité $a \lor (b \lor c) = (a \lor b) \lor c$
 $a \land (b \land c) = (a \land b) \land c$
Idempotence $a \lor a = a$
 $a \land a = a$
Neutre $a \lor \bot = a$
 $a \land \top = a$
Absorption $a \lor \top = \top$
 $a \land \bot = \bot$

Algèbre de Boole

Définition

Algèbre de Boole $(E, \leq, \wedge, \vee, \perp, \top, -)$

- ▶ (E, \leq, \land, \lor) treillis avec $|E| \geq 2$
- $ightharpoonup \perp = \bigwedge E \qquad \top = \bigvee E \qquad \overline{} : E \to E$
- **>** pour tout $a, b, c \in E$:

Distributivité
$$a \lor (b \land c) = (a \lor b) \land (a \lor c)$$

 $a \land (b \lor c) = (a \land b) \lor (a \land c)$

Complémentaire
$$a \lor \overline{a} = \top$$

 $a \land \overline{a} = \bot$

Exemples

- $(\{0,1\},\leq,\cdot,\dot{+},0,1,\overset{-}{})$ avec \cdot , $\dot{+}$, $\overset{-}{}$ les « et », « ou » et « non » logiques
- ▶ $(\mathcal{P}(A), \subseteq, \cap, \cup, \emptyset, A, \mathcal{C}_A)$ avec $|A| \ge 1$

Dualité

Propositions

- 1. (E, \preceq) ensemble ordonné $\Rightarrow (E, \succeq)$ ensemble ordonné
- 2. (E, \leq, \wedge, \vee) treillis $\Rightarrow (E, \geq, \vee, \wedge)$ treillis
- 3. $(E, \preceq, \land, \lor, \bot, \top, \overline{})$ algèbre de Boole $\Rightarrow (E, \succeq, \lor, \land, \top, \bot, \overline{})$ algèbre de Boole

Ces structures sont appelées les duales

Dualité

Propriété duale

À toute propriété faisant intervenir \preceq , \wedge , \vee , \bot et \top est associée une propriété duale où les symboles sont remplacés (resp.) par \succeq , \vee , \wedge , \top et \bot .

Exemple

$$\forall a, b \in E \quad \overline{a \lor b} = \overline{a} \land \overline{b}$$

et

$$\forall a, b \in E \quad \overline{a \wedge b} = \overline{a} \vee \overline{b}$$

sont duales

Principe de dualité

Une propriété valide entraîne la validité de sa propriété duale