Arithmétique: Examen du 17 décembre 2020

Master Sciences et Technologies, mention Mathématiques ou Informatique, parcours Cryptologie et Sécurité informatique

Responsable : Gilles Zémor

Durée : 3h. Sans document. Les exercices sont indépendants.

- EXERCICE 1. Soit A l'anneau $\mathbb{F}_3[X]/((X-1)^3)$. Combien A contient-il d'éléments?
 - a) Combien y a-t-il de polynômes unitaires de degré 1 sur \mathbb{F}_3 qui n'ont pas 1 comme racine?
 - b) En déduire le nombre de polynômes réductibles unitaires de degré 2 sur \mathbb{F}_3 qui n'ont pas 1 comme racine.
 - c) Combien y a-t-il de polynômes irréductibles unitaires de degré 2 sur F₃?
- \wedge d) En déduire le nombre d'éléments de l'anneau des inversibles A^{\times} de A.
- Montrer que pour tout élément α de A^{\times} on a $\alpha^3 \in \mathbb{F}_3$ et $\alpha^6 = 1$. Vérifier que le cardinal de A^{\times} que vous avez trouvé précédemment est bien un multiple de 6.

- EXERCICE 2.

- a) Combien y a-t-il de polynômes irréductibles de degré 5 sur \mathbb{F}_2 ? (Justifier).
- b) Utiliser la factorisation dans $\mathbb{F}_2[X]$ de $X^{64} + X$ pour compter le nombre de polynômes irréductibles de degré 6 sur \mathbb{F}_2 . Combien de ces polynômes sont primitifs?

- EXERCICE 3.

- a) Montrer que le polynôme $X^2 X 1$ est irréductible primitif sur \mathbb{F}_3 .
- b) Soit α une racine de X^2-X-1 dans \mathbb{F}_9 . Quelle est la factorisation de X^8-1 en polynômes irréductibles unitaires sur \mathbb{F}_9 ? Quelle est la factorisation de X^8-1 en polynômes irréductibles unitaires sur \mathbb{F}_3 ?
- c) Quels sont les polynômes irréductibles primitifs unitaires de degré 2 dans $\mathbb{F}_3[X]$?
- EXERCICE 4. Combien de facteurs irréductibles sur \mathbb{F}_2 a le polynôme $X^{19}+1$?
- EXERCICE 5. Soit $g(X) = X^5 + X^4 + 1 = (X^2 + X + 1)(X^3 + X + 1) \in \mathbb{F}_2[X]$. Quelle est la plus petite longueur n d'un code cyclique de polynôme générateur g(X)?

– Exercice 6. On considère les suites binaires (a_i) données par la récurrence linéaire sur \mathbb{F}_2 :

 $a_i = a_{i-2} + a_{i-4} + a_{i-5} + a_{i-6}. (1)$

- a) Quel est le polynôme de rétroaction h(X) de la récurrence? Montrer que h(X) est irréductible.
- b) Soit K le corps $K = \mathbb{F}_2[X]/(h)$. Soit α la classe de X, en d'autres termes une racine de h(X) dans K. Quel est l'ordre multiplicatif de α ?
- c) Montrer que la suite binaire $(b_i)_{i\geqslant 0}$ définie par $a_i = \text{Tr}(\alpha^i)$ vérifie la récurrence (1). Tr() désigne l'application trace de K sur \mathbb{F}_2 .
- d) Quelle est la période n de cette dernière suite (b_i) ?
- e) Montrer que toutes les suites non nulles solutions de la récurrence (1) ont pour période n.
- f) Combien y a-t-il de suites solutions de la récurrence (1)? Montrer que l'ensemble de ces suites, tronquées sur une période n, forme un code cyclique C de longueur n. Quel est sa dimension? Pouvez-vous donner un polynôme générateur g(X) de ce code cyclique?
- g) Donner les racines de g(X) en fonction de α ou de α^{-1} . En déduire que la distance minimale d de C vérifie $d \ge 6$.
- h) Montrer qu'il suffit d'examiner 3 multiples de g(X) dans $\mathbb{F}_2[X]/(X^n+1)$ pour connaître tous les poids des mots de C.
- i) Quels sont les différents poids des mots de C? Quelle est la distance minimale de C?