Assignment Project Exam Help

Basico Concepts

Add WeChat powcoder
Assembly Language

Computer Organization

Outline

- Assembly-, Machine-, and High-Level Languages
- 2 Assembly Language Program Examples
- Programmer's Miew/pow Codeputen System
- Pasic Computer Organization Wechair powcoder

Memory Devices

- Random-Access Memory (RAM)
 - Usually called the main memory

 - It can be read and written to Assignment Project Exam Help
 It does not store information permanently (Volatile, when it is powered off, the stored information are gone)
 - Information stored in it can be https://powwordedatecolitime periods (hence the name random access)
 - Information is accessed by an address that exect location of the piece of information in the RAM. the RAM.
 - DRAM = Dynamic RAM
 - 1-Transistor cell + trench capacitor
 - Dense but slow, must be refreshed
 - Typical choice for main memory
 - SRAM: Static RAM
 - 6-Transistor cell, faster but less dense than DRAM
 - Typical choice for cache memory

Memory Devices

ROM (Read-Only-Memory)

- A read-only-memory, non-volatile i.e. stores information perm
 Has random access of stored information perm
- Used to store the information required to startup the computer https://powcoder.com
- Many types: ROM, EPROM, EEPROM, and FLASH
- FLASH memory can be erased electrically inplocks oder

Cache

- A very fast type of RAM that is used to store information that is most frequently or recently used by the computer
- Recent computers have 2-levels or more levels of cache; the first level is faster but smaller in size (usually called internal cache), and the second level is slower but larger in size (external cache).

Processor-Memory Performance Gap

- 1980 No cache in microprocessor
- 1995 Two-level cache on microprocessor

SOURCE: RAY KURZWEIL, "THE SINGULARITY IS NEAR: WHEN HUMANS TRANSCEND BIOLOGY", P.67, THE VIKING PRESS, 2006. DATAPOINTS BETWEEN 2000 AND 2012 REPRESENT BCA ESTIMATES.

The Need for a Memory Hierarchy

- Widening speed gap between CPU and main memory
 - Processor operation takes less than 1 ns
 - Main memory requires more than 50 ns to access
- Each instruction involves at least one memory access
 - One memory access to retch the instruction
 - Additional memory weekshafqringtructions involving memory data access
- Memory bandwidth limits the instruction execution rate
- Cache memory can help bridge the CPU-memory gap
- Cache memory is small in size but fast

Typical Memory Hierarchy

- Registers are at the top of the hierarchy
 - Typical size < 1 KB
 - Access time < 0.5 ns Assignment Project Exami Helpessor
- - Access time: 0.5 1 ns
- L2 Cache (512KB 8MB) Add WeChat poweoder
 - Access time: 2 10 ns
- Main Memory (1 2 GB)
 - Access time: 50 70 ns
- Disk Storage (> 200 GB)
 - Access time: milliseconds

Magnetic Disk Storage

Example on Disk Access Time

- Given a magnetic disk with the following properties
 - Rotation speed = 7200 RPM (rotations per minute)
 - Average sacking monsetter je 512 bytes, Traff = 200 sectors
- Calculate
 - https://powcoder.com
 Time of one rotation (in milliseconds)
 - Average time to alcter about the contraction of the contr

Answer

- Rotations per second
- Rotation time in milliseconds
- Average rotational latency
- Time to transfer 32 sectors
- Average access time

$$= 7200/60 = 120 RPS$$

$$= 1000/120 = 8.33 \text{ ms}$$

$$= (32/200) * 8.33 = 1.33$$

$$\underline{m}$$
8 + 4.17 + 1.33 = 13.5 ms

Assignment Project Exam Help
Data Representation

Add Wechat powcoder

Outline

- Introduction
- Numbering Systems
- Binary & Hexadecimal Numbers

 Assignment Project Exam Help
- https://powcoder.com Base Conversions
- Integer Storage Sizes
- Add WeChat powcoder
- Binary and Hexadecimal Addition
- Signed Integers and 2's Complement Notation
- Binary and Hexadecimal subtraction
- Carry and Overflow
- Character Storage

Introduction

- Computers only deal with binary data (Os and 1s), hence all data manipulated by computers must be represented in binary format.
- Machine instructions managing many different feat data: Help
 - Numbers:
 - Integers: 33, +128, -2827 https://powcoder.com
 - Real numbers: 1.33, +9.55609, -6.76E12, +4.33E-03
 - Alphanumeric characters (letters, gumbers eighs control characters): examples: A, a, c, 1,3, ", +, Ctrl, Shift, etc.
 - Images (still or moving): Usually represented by numbers representing the Red, Green and Blue (RGB) colors of each pixel in an image,
 - Sounds: Numbers representing sound amplitudes sampled at a certain rate (usually 20kHz).
- So in general we have two major data types that need to be represented in computers; numbers and characters.

Numbering Systems

Numbering systems are characterized by their base number.

• In general a numbering system with a base r will have r different digits (including the 0) in its number set. These digits will range from 0 to r-https://powcoder.com

The most widely used numbering systems are listed in the table

below:

Numbering System	Base	Digits Set
Binary	2	10
Octal	8	76543210
Decimal	10	9876543210
Hexadecimal	16	FEDCBA9876543210

Binary Numbers

• Each digit (bit) is either 1 or 0

• Each bit represents a power of Project Exam Help

Table 1-3 Binary Bit Position Values.

Every bina

2 ⁿ	hetps://powo	oder.co)∭ Decimal Value
2 ⁰	1	2 ⁸	256
2^{1}	Add ² WeCha	t powc	oder 512
2^{2}	4	2 ¹⁰	1024
23	8	2 ¹¹	2048
24	16	2 ¹²	4096
2 ⁵	32	2 ¹³	8192
2 ⁶	64	2 ¹⁴	16384
27	128	2 ¹⁵	32768

Converting Binary to Decimal

• Weighted positional notation shows how to calculate the decimal walken of easth binar Exit Help

$$Decimal = (d_{n-1} \text{ https:})/\text{powcoder.com...} + (d_1 \times 2^1) + (d_0 \times 2^0)$$
 $d = binary digit$
Add WeChat powcoder

• binary 10101001 = decimal 169:

$$(1 \times 2^7) + (1 \times 2^5) + (1 \times 2^3) + (1 \times 2^0) =$$

128+32+8+1=169

Convert Unsigned Decimal to Binary

• Repeatedly divide the decimal integer by 2. Each remainder is a binary digit in the translated value:

Division	Quotient	Remainder	n Holn
37 / 2 A S S I			n Help least significant bit
18 / 2	https://pov	vcoder.com	n
9/2	4 A 11 XV - C	1	1
4/2	Add wet	hat powco	aer
2/2	1	0	
1/2	0	1 -	most significant bit
37 = 100)101	stop who quotient is	

Another Procedure for Converting from Decimal to Binary

- Start with a binary representation of all 0's
- Determine the highest possible power of two the number.
- Put a 1 in the bit position corresponding to the highest power of two found above.

 Add WeChat powcoder
- Subtract the highest power of two found above from the number.
- Repeat the process for the remaining number

Another Procedure for Converting from Decimal to Binary

Example: Converting 76d to Binary

- The highest power of 2 less or equal to 76 is 64, hence the seventh (MSB) bit is 1
- The highest power of 2 less or equal to 12 is 8, hence the fourth bit position is

 1 Add WeChat powcoder
- We subtract 8 from 12 and get 4.
- The highest power of 2 less or equal to 4 is 4, hence the third bit position is 1
- Subtracting 4 from 4 yield a zero, hence all the left bits are set to 0 to yield the final answer

Hexadecimal Integers

• Binary values are represented in hexadecimal.

Table 1-5 Binary, Decimal, and Hexadecimal Equivalents. ASSIGNMENT Project Exam Help

Binary	Decimal	Hexadecimal	Binary	Decimal	Hexadecimal
0000	_o htt	ps://powco	der _o com	8	8
0001	¹ A(ld WeChat	powcod	er 9	9
0010	2	2	1010	10	A
0011	3	3	1011	11	В
0100	4	4	1100	12	С
0101	5	5	1101	13	D
0110	6	6	1110	14	Е
0111	7	7	1111	15	F

Converting Binary to Hexadecimal

- Each hexadecimal digit corresponds to 4 binary bits.
- Example: Translate the binary integer 00010110101011110010100 to hexadecimal

1	Assign	nent Pro	ject Exan	ı Help	4
0001	⁰¹¹⁰ htt	os:%powo	coder.com	1001	0100

Add WeChat powcoder

M1023.swf

Converting Hexadecimal to Binary

• Each Hexadecimal digit can be replaced by its 4-bit binary number to

form the binary

Converting Hexadecimal to Decimal

Multiply each digit by its corresponding power of 16:

```
Decimal = (d3 × 16³) + (d2 A $6$) ghillent Project Exam Help

d = hexadecimal digit

https://powcoder.com
```

- Examples:
 - Hex $1234 = (1 \times 16^3) + (244) + (214) + (2$
 - Hex 3BA4 = (3×16^3) + $(11 * 16^2)$ + (10×16^1) + (4×16^0) = Decimal 15,268

Converting Decimal to Hexadecimal

Repeatedly divide the decimal integer by 16. Each remainder is a hex digit in the translated value:

Decimal 422 = 1A6 hexadecimal

Integer Storage Sizes

Standard sizes:

Assignment Project Exam Help

Table 1-4 Ranges of Unsigned Integers. https://powcoder.com

Storage Type A	de de la	Powers of 2
Unsigned byte	0 to 255	0 to $(2^8 - 1)$
Unsigned word	0 to 65,535	0 to $(2^{16} - 1)$
Unsigned doubleword	0 to 4,294,967,295	0 to $(2^{32} - 1)$
Unsigned quadword	0 to 18,446,744,073,709,551,615	0 to $(2^{64} - 1)$

What is the largest unsigned integer that may be stored in 20 bits?

Binary Addition

- Start with the least significant bit (rightmost bit)
- Add each pair of bits
- Include the sargy inether addition in the resent

https://powcoder.com

Hexadecimal Addition

• Divide the sum of two digits by the number base (16). The quotient becomes the carry value, and the remainder is the sum digit.

Important skill: Programmers frequently add and subtract the addresses of variables and instructions.

Signed Integers

- Several ways to represent a signed number
 - Sign-Magnitude
- Assignment Project Exam Help
- 1's complement
- 2's complement https://powcoder.com
- Divide the range of values into 2 equal parts Add WeChat powcoder
 - First part corresponds to the positive numbers (≥ 0)
 - Second part correspond to the negative numbers (< 0)
- Focus will be on the 2's complement representation
 - Has many advantages over other representations
 - Used widely in processors to represent signed integers

Two's Complement Representation

Positive numbers

Signed value = Unsigned value

Negative numbers

Signed value Assing meenta Reoject E

n = number of bits https://powcoder.

Negative weight for MSB

Another way to obtain the sentent and the sent is to assign a negative weight to mostsignificant bit

8-bit Binary value	Unsigne d value	Signed value
00000000	0	0
00000001 xam fel 00000010	1	+1
00000010	2	+2
com		
01111110	126	+126
COPP11	127	+127
10000000	128	-128
10000001	129	-127
11111110	254	-2
11111111	255	-1

Forming the Two's Complement

starting value	00100100 = +36
step1: reverse the bits (1's complement)	11011011
step 2: add 1 to the value from step:1 Assignment Project Exan	n'Help ¹
sum = 2's complement representation	11011100 = -36
https://powcoder.com	

Sum of an integer and its 2's complement must be zero:

Add WeChat powcoder

00100100 + 11011100 = 00000000 (8-bit sum) ⇒ Ignore Carry

The easiest way to obtain the 2's complement of a binary number is by starting at the LSB, leaving all the 0s unchanged, look for the first occurrence of a 1. Leave this 1 unchanged and complement all the bits after it.

Sign Bit

Highest bit indicates the sign. 1 = negative, 0 = positive

If highest digit of a hexadecimal is > 7, the value is negative

Examples: 8A and C5 are negative bytes

A21F and 9D03 are negative words

B1C42A00 is a negative double-word

Sign Extension

- Step 1: Move the number into the lower-significant bits
- Step 2: Fill all the remaining higher bits with the sign bit
- This will ensure that About magnit Repeated Figure 1
- Examples
 - Sign-Extend 10110011 to 16 bits
 - Sign-Extend 01100010 to 16 bits 01100010 = +98
- Infinite 0s can be added to the left of a positive number
- Infinite 1s can be added to the left of a negative number

Two's Complement of a Hexadecimal

- To form the two's complement of a hexadecimal
 - Subtract each hexadecimal digit from 15
 - Add 1 Assignment Project Exam Help
- Examples:

https://powcoder.com

- 2's complement of 6A3D = 95C3
- 2's complement of 92F0 = 6D10
- 2's complement of FFFF = 0001
- No need to convert hexadecimal to binary

Two's Complement of a Hexadecimal

- Start at the least significant digit, leaving all the 0s unchanged, look for the first occurrence of a non-zero digit.

 Assignment Project Exam Help

 • Subtract this digit from 16.
- Then subtract all remaining digits from 15.
- Examples:
 - 2's complement of 6A3D = 95C3
 - 2's complement of 92F0 = 6D10
 - 2's complement of FFFF = 0001

Add WeChat	powcoder	
	FFF16	F F 16
3D = 95C3	- 6 A 3 D	- 92 F (
TO /D40	95C3	6 D 1 0

Binary Subtraction

- When subtracting A B, convert B to its 2's complement
- Add A to (-B)

```
- 00001100 00001100

Assignment Project Exam Help

0000010 11111110 (2's complement)

00001010ttps://powsqder.com_(same result)
```

- Carry is ignored dbe that powcoder
 - Negative number is sign-extended with 1's
 - You can imagine infinite 1's to the left of a negative number
 - Adding the carry to the extended 1's produces extended zeros

Practice: Subtract 00100101 from 01101001.

Hexadecimal Subtraction

• When a borrow is required from the digit to the left, add 16 (decimal) to the current digit's value

Last Carry is ignored

Practice: The address of **var1** is 00400B20. The address of the next variable after var1 is 0040A06C. How many bytes are used by var1?

Ranges of Signed Integers

The unsigned range is divided into two signed ranges for positive and negative numbers

Storage Type	Range (low-high) nment Project Exam Hel -128 to +127	Powers of 2
Signed byte	-128 to +127	P_{-2^7} to $(2^7 - 1)$
Signed word ht	tps://powcoder.com	-2^{15} to $(2^{15}-1)$
Signed doubleword	-2,147,483,648 to 2,147,483,647 dd WeChat powcoder	-2^{31} to $(2^{31} - 1)$
Signed quadword	-9,223,372,036,854,775,808 to +9,223,372,036,854,775,807	-2^{63} to $(2^{63} - 1)$

Practice: What is the range of signed values that may be stored in 20 bits?

Carry and Overflow

- Carry is important when ...

 - Adding or subtracting unsigned integers
 Indicates that the unsigned sum is out of range
 - Either < 0 or > maximum unsigned *n*-bit value https://powcoder.com
- Overflow is important when ...
 - Adding or subtracting signed the sechat powcoder
 - Indicates that the signed sum is out of range
- Overflow occurs when
 - Adding two positive numbers and the sum is negative
 - Adding two negative numbers and the sum is positive
 - Can happen because of the fixed number of sum bits

Carry and Overflow Examples

- We can have carry without overflow and vice-versa
- Four cases are possible

Character Storage

- Character sets
 - Standard ASCII: 7-bit character codes (0 127)
 - Extended ASCII: 8-bit character codes (0 255)
 - Unicode: A6-bit character codes (0x-a65, 565)
 - Unicode standard represents a universal character set
 - Defines codes the sharp and the sharp and
 - Used in Windows-XP: each character is encoded as 16 bits
 - UTF-8: variable length encoting WERGHTHTML
 - Encodes all Unicode characters
 - Uses 1 byte for ASCII, but multiple bytes for other characters
- Null-terminated String
 - Array of characters followed by a NULL character

ASCII Codes

```
The Charcter set of the ASCII Code

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2 SP ! " Assignment Project Exam Help , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C | Pttps://poweoder.com J K L M N O

5 P Q R S T U V W X Y Z [ \ ] ^ _

6 ` a b c Adde We Chat poweoder

7 p q r s tdde We Chat poweoder

6 DEL
```

Examples:

- ASCII code for space character = 20 (hex) = 32 (decimal)
- ASCII code for 'A' = 41 (hex) = 65 (decimal)
- ASCII code for 'a' = 61 (hex) = 97 (decimal)

Control Characters

- The first 32 characters of ASCII table are used for control
- - Character 0 is the NULL characters: #posedtoderminate a string
 - Character 9 is the Horizontal Tab (HT) character
 - Character 0A (hex) = 10 (decimal) Is the that powereder
 - Character OD (hex) = 13 (decimal) is the Carriage Return (CR)
 - The LF and CR characters are used together
 - They advance the cursor to the beginning of next line
- One control character appears at end of ASCII table
 - Character 7F (hex) is the Delete (DEL) character

Parity Bit

- Data errors can occur during data transmission or storage/retrieval.
- The 8th bit in the ASCII code is used for error checking.
- This bit is usually referred to as the parity bit. Help
- There are two ways for het por drewkinger.com
 - Even Parity: Where the 8th bit is set such that the total number of 1s in the 8-bit code word is even. Add WeChat powcoder
 - Odd Parity: The 8th bit is set such that the total number of 1s in the 8-bit code word is odd.