1.	(a) Express $\lim_{\delta x \to 0} \sum_{x=2.1}^{6.3} \frac{2}{x} \delta x$ as an integral.	(1)
	(b) Hence show that	
	$\lim_{\delta x \to 0} \sum_{x=2.1}^{6.3} \frac{2}{x} \delta x = \ln k$	
	where k is a constant to be found.	(2)

Figure 3

Figure 3 shows a sketch of the curve with equation $y = \sqrt{x}$

The point P(x, y) lies on the curve.

The rectangle, shown shaded on Figure 3, has height y and width δx .

Calculate

$$\lim_{\delta x \to 0} \sum_{x=4}^{9} \sqrt{x} \, \delta x$$

3.	Find $\int \frac{x^{\frac{1}{2}}(2x-5)}{3} \mathrm{d}x$	
	writing each term in simplest form.	(4)

(a) Find $\int x^2 e^x dx$.	(5)
	(0)
(b) Hence find the exact value of $\int_0^1 x^2 e^x dx$.	(2)

5. (a) Use integration to find		
	$\int \frac{1}{x^3} \ln x \mathrm{d}x$	
		(5)
(b) Hence calculate		
	$\int_{1}^{2} \frac{1}{x^{3}} \ln x \mathrm{d}x$	(2)
		(2)

6.	Given that a is a positive constant and $\int_{a}^{2a} \frac{t+1}{t} dt = \ln 7$	
	show that $a = \ln k$, where k is a constant to be found.	
		(4)

7.	In this question you must show all stages of your working.	
	Solutions relying on calculator technology are not acceptable.	
	Show that	
	$\int_1^{e^2} x^3 \ln x \mathrm{d}x = a \mathrm{e}^8 + b$	
	where a and b are rational constants to be found.	(5)

8.	$f(x) = \frac{1}{x(3x-1)^2} = \frac{A}{x} + \frac{B}{(3x-1)} + \frac{C}{(3x-1)^2}$	
	(a) Find the values of the constants A , B and C .	(4)
	(b) (i) Hence find $\int f(x) dx$.	
	(ii) Find $\int_{1}^{2} f(x) dx$, leaving your answer in the form $a + \ln b$, where a and b are constants.	
		(6)

9. (a) Given that	
$\frac{x^2 + 8x - 3}{x + 2} \equiv Ax + B + \frac{C}{x + 2} \qquad x \in \mathbb{R} \ x \neq -2$	
find the values of the constants A , B and C	(3)
(b) Hence, using algebraic integration, find the exact value of	· /
$\int_0^6 \frac{x^2 + 8x - 3}{x + 2} \mathrm{d}x$	
giving your answer in the form $a + b \ln 2$ where a and b are integers to be found.	(4)

10. (a) Given that	
$\frac{x^2 + 8x - 3}{x + 2} \equiv Ax + B + \frac{C}{x + 2} \qquad x \in \mathbb{R} x \neq -2$	
find the values of the constants A , B and C	(3)
(b) Hence, using algebraic integration, find the exact value of	、 ,
$\int_0^6 \frac{x^2 + 8x - 3}{x + 2} \mathrm{d}x$	
giving your answer in the form $a + b \ln 2$ where a and b are integers to be found.	(4)

11.	$f(x) = \frac{3kx - 18}{(x+4)(x-2)}$	where k is a positive constant	
(a) Express $f(x)$ in	n partial fractions in terms of	k.	(3)
(b) Hence find the	e exact value of k for which		
	$\int_{-3}^{1} f(x)$	dx = 21	
			(4)

2. (a) Use the substitution $x = u^2$, $u > 0$, to show that	
$\int \frac{1}{x(2\sqrt{x}-1)} dx = \int \frac{2}{u(2u-1)} du$	(3)
(b) Hence show that	
$\int_{1}^{9} \frac{1}{x(2\sqrt{x} - 1)} \mathrm{d}x = 2\ln\left(\frac{a}{b}\right)$	
where a and b are integers to be determined.	(7)

13. (a) Use the substitution $x = u^2 + 1$ to show that	
$\int_{5}^{10} \frac{3 dx}{(x-1)(3+2\sqrt{x-1})} = \int_{p}^{q} \frac{6 du}{u(3+2u)}$	
where p and q are positive constants to be found.	(4)
(b) Hence, using algebraic integration, show that	
$\int_{5}^{10} \frac{3 dx}{(x-1)(3+2\sqrt{x-1})} = \ln a$	
where a is a rational constant to be found.	(6)

$\int_0^4 \frac{1}{2 + \sqrt{(2x+1)}} \mathrm{d}x$
iving your answer in the form $A + 2 \ln B$, where A is an integer and B is a positive onstant.
(8)

15. (a) Use the substitution $u = 1 + \sqrt{x}$ to show that	
$\int_0^{16} \frac{x}{1 + \sqrt{x}} dx = \int_p^q \frac{2(u - 1)^3}{u} du$	
where p and q are constants to be found.	(3)
(b) Hence show that	. ,
$\int_0^{16} \frac{x}{1 + \sqrt{x}} \mathrm{d}x = A - B \ln 5$	
where A and B are constants to be found.	(4)

16. (i) Given that $y > 0$, find	
$\int \frac{3y-4}{y(3y+2)} \mathrm{d}y$	(6)
(ii) (a) Use the substitution $x = 4\sin^2\theta$ to show that	
$\int_0^3 \sqrt{\left(\frac{x}{4-x}\right)} \mathrm{d}x = \lambda \int_0^{\frac{\pi}{3}} \sin^2 \theta \mathrm{d}\theta$	
where λ is a constant to be determined.	(5)
(b) Hence use integration to find	
$\int_0^3 \sqrt{\left(\frac{x}{4-x}\right)} \mathrm{d}x$	
giving your answer in the form $a\pi + b$, where a and b are exact constants.	(4)

17. (a) Use the substitution $x = u^2 + 1$ to show that	
$\int_{5}^{10} \frac{3 dx}{(x-1)(3+2\sqrt{x-1})} = \int_{p}^{q} \frac{6 du}{u(3+2u)}$	
where p and q are positive constants to be found.	(4)
(b) Hence, using algebraic integration, show that	、 /
$\int_{5}^{10} \frac{3 dx}{(x-1)(3+2\sqrt{x-1})} = \ln a$	
where a is a rational constant to be found.	(6)

In this question you must show all stages of your working.	
Solutions relying entirely on calculator technology are not acceptable	<u>.</u> .
a) Find the first three terms, in ascending powers of x , of the binomial expansion of	•
$(3+x)^{-2}$	
writing each term in simplest form.	(4)
b) Using the answer to part (a) and using algebraic integration, estimate the value of	f
$\int_{0.2}^{0.4} \frac{6x}{(3+x)^2} \mathrm{d}x$	
giving your answer to 4 significant figures.	
c) Find, using algebraic integration, the exact value of	(4)
$\int_{0.2}^{0.4} \frac{6x}{(3+x)^2} \mathrm{d}x$	
giving your answer in the form $a \ln b + c$, where a, b and c are constants to	
be found.	(5)

Figure 1 shows a sketch of part of the curve with equation $y = x^2 \ln x$, $x \ge 1$

The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis and the line x = 2

The table below shows corresponding values of x and y for $y = x^2 \ln x$

x	1	1.2	1.4	1.6	1.8	2
у	0	0.2625		1.2032	1.9044	2.7726

(a) Complete the table above, giving the missing value of y to 4 decimal places.

(1)

(b) Use the trapezium rule with all the values of y in the completed table to obtain an estimate for the area of R, giving your answer to 3 decimal places.

(3)

(c) Use integration to find the exact value for the area of R.

(5)

Figure 1

Figure 1 shows a sketch of part of the curve with equation $y = \frac{6}{(e^x + 2)}$, $x \in \mathbb{R}$

The finite region R, shown shaded in Figure 1, is bounded by the curve, the y-axis, the x-axis and the line with equation x = 1

The table below shows corresponding values of x and y for $y = \frac{6}{(e^x + 2)}$

x	0	0.2	0.4	0.6	0.8	1
y	2		1.71830	1.56981	1.41994	1.27165

(a) Complete the table above by giving the missing value of y to 5 decimal places.

(1)

(b) Use the trapezium rule, with all the values of y in the completed table, to find an estimate for the area of R, giving your answer to 4 decimal places.

(3)

(c) Use the substitution $u = e^x$ to show that the area of R can be given by

$$\int_a^b \frac{6}{u(u+2)} \, \mathrm{d}u$$

where a and b are constants to be determined.

(2)

(d) Hence use calculus to find the exact area of *R*. [Solutions based entirely on graphical or numerical methods are not acceptable.]

(6)

Figure 1

Figure 1 shows a sketch of part of the curve with equation $y = 4x - xe^{\frac{1}{2}x}$, $x \ge 0$

The curve meets the x-axis at the origin O and cuts the x-axis at the point A.

(a) Find, in terms of $\ln 2$, the x coordinate of the point A.

(2)

(b) Find

$$\int x e^{\frac{1}{2}x} dx$$

(3)

The finite region R, shown shaded in Figure 1, is bounded by the x-axis and the curve with equation

$$y = 4x - xe^{\frac{1}{2}x}, \ x \geqslant 0$$

(c) Find, by integration, the exact value for the area of R. Give your answer in terms of $\ln 2$

Figure 2

Figure 2 shows a sketch of the curve with equation $y = \sqrt{(3-x)(x+1)}$, $0 \le x \le 3$

The finite region R, shown shaded in Figure 2, is bounded by the curve, the x-axis, and the y-axis.

(a) Use the substitution $x = 1 + 2\sin\theta$ to show that

$$\int_0^3 \sqrt{(3-x)(x+1)} \, dx = k \int_{-\frac{\pi}{6}}^{\frac{\pi}{2}} \cos^2 \theta \, d\theta$$

where k is a constant to be determined.

(5)

(b) Hence find, by integration, the exact area of R.

Figure 3

Figure 3 shows a sketch of part of the curve with equation $y = x^{\frac{1}{2}} \ln 2x$.

The finite region R, shown shaded in Figure 3, is bounded by the curve, the x-axis and the lines x = 1 and x = 4

(a) Use the trapezium rule, with 3 strips of equal width, to find an estimate for the area of R, giving your answer to 2 decimal places.

(4)

(b) Find $\int x^{\frac{1}{2}} \ln 2x \, dx$.

(4)

(c) Hence find the exact area of R, giving your answer in the form $a \ln 2 + b$, where a and b are exact constants.

24. (a) Find

$$\int (2x-1)^{\frac{3}{2}} \, \mathrm{d}x$$

giving your answer in its simplest form.

(2)

Figure 3

Figure 3 shows a sketch of part of the curve C with equation

$$y = (2x - 1)^{\frac{3}{4}}, \qquad x \geqslant \frac{1}{2}$$

The curve C cuts the line y = 8 at the point P with coordinates (k, 8), where k is a constant.

(b) Find the value of k.

(2)

The finite region S, shown shaded in Figure 3, is bounded by the curve C, the x-axis, the y-axis and the line y = 8.

(c) Find the exact value of the area of S.

(4)

Figure 2

The finite region S, shown shaded in Figure 2, is bounded by the y-axis, the x-axis, the line with equation $x = \ln 4$ and the curve with equation

$$y = e^x + 2e^{-x}, \quad x \geqslant 0$$

Use integration to find the exact value of the area of *S*. Give your answer in its simplest form.

[Solutions based entirely on graphical or numerical methods are not acceptable.]

(7)

Figure 3 shows a sketch of part of the curve C with equation

$$y = 3^{x}$$

The point P lies on C and has coordinates (2, 9).

The line l is a tangent to C at P. The line l cuts the x-axis at the point Q.

(a) Find the exact value of the x coordinate of Q.

(4)

The finite region R, shown shaded in Figure 3, is bounded by the curve C, the x-axis, the y-axis and the line l.

(b) Use integration to find the exact area of R.

(6)

Figure 2

Figure 2 shows a sketch of part of the curve with equation

$$y = \left(\ln x\right)^2 \qquad x > 0$$

The finite region R, shown shaded in Figure 2, is bounded by the curve, the line with equation x = 2, the x-axis and the line with equation x = 4

The table below shows corresponding values of x and y, with the values of y given to 4 decimal places.

x	2	2.5	3	3.5	4
У	0.4805	0.8396	1.2069	1.5694	1.9218

(a) Use the trapezium rule, with all the values of y in the table, to obtain an estimate for the area of R, giving your answer to 3 significant figures.

(3)

(b) Use algebraic integration to find the exact area of R, giving your answer in the form

$$y = a\left(\ln 2\right)^2 + b\ln 2 + c$$

where a, b and c are integers to be found.

(5)

28. The curve C with equation

$$y = \frac{p - 3x}{(2x - q)(x + 3)} \qquad x \in \mathbb{R}, x \neq -3, x \neq 2$$

where *p* and *q* are constants, passes through the point $\left(3, \frac{1}{2}\right)$ and has two vertical asymptotes with equations x = 2 and x = -3

(a) (i) Explain why you can deduce that q = 4

(ii) Show that
$$p = 15$$

 $y \uparrow$ C

(3)

Figure 4

Figure 4 shows a sketch of part of the curve C. The region R, shown shaded in Figure 4, is bounded by the curve C, the x-axis and the line with equation x = 3

3

(b) Show that the exact value of the area of R is $a \ln 2 + b \ln 3$, where a and b are rational constants to be found.

(8)