STUDIENUMMER NAAM Han Rots

Antwoordformulier

UITWERKINGEN Concept

CTB2210 Constructiemechanica 3

Maak alle opgaven op dit antwoordformulier. Lever dit formulier in.

Kladpapier wordt niet ingenomen. Het nietje mag niet verwijderd worden.

Zet op alle bladen uw naam en studienummer.

Bladen zonder naam en studienummer worden niet geaccepteerd.

Relevante berekeningen vermelden.

Antwoorden zonder berekening/motivering worden niet gehonoreerd. Gebruik zo nodig de onbedrukte zijden van het antwoordformulier. Tenzij anders vermeld, wordt het eigen gewicht van een constructie buiten beschouwing gelaten.

Aantal opgaven: 6.

De opgaven hebben verschillende weging. Een schatting van het gewicht is in tijd weergegeven.

Relevante formulebladen zijn bijgevoegd.

Toegestane hulpmiddelen en bronnen tijdens tentamen:

Rekenmachine, grafische rekenmachine, tekenmaterialen waaronder passer. Vanwege Covid mogen dit keer het boek Statisch onbepaalde constructies en de dictaten Stabiliteit en Elasticiteitsleer worden gebruikt. Verder niets.

Niet toegestane hulpmiddelen en bronnen tijdens tentamen:

Aantekeningen, andere formulebladen, woordenboeken, computer, mobiele telefoon, smart phone of apparaten met vergelijkbare functies. Zoals gemeld op Brightspace.

Mobiel UIT en opbergen in tas.

Elk vermoeden van fraude wordt gemeld bij de examencommissie.

on-campus en on-line, met varianten

Opgave 2 (ongeveer 25 minuten)

Gegeven: onderstaande portalen I en II hebben dezelfde afmetingen, dezelfde buigstijfheden en worden op dezelfde wijze belast door drie puntlasten op beide regels waarvan er twee op de uiteinden en één in het midden aangrijpt, zoals aangegeven.

De portalen zijn scharnierend opgelegd.

De stijlen zijn momentvast verbonden met de regels, met uitzondering van de verbinding bij de bovenste regel in portaal II, daar bevinden zich scharnieren als aangegeven.

Alle regels zijn oneindig buigstijf.

De stijlen hebben een buigstijfheid als aangegeven.

Houd voor de berekening aan: l = 6 m, $h_1 = 4$ m, $h_2 = 3$ m, $EI_1 = 20000$ kNm², $EI_2 = 4000$ kNm². Reken met $\pi^2 = 10$.

Gevraagd:

a. De waarde $F = F_k$ waarbij portaal I bezwijkt door instabiliteit. Laat duidelijk uw berekeningen zien en controles voor meerdere knikmogelijkheden.

Tentamen CTB2210 Constructiemechanica 3 26 januari 2022 van 13.30-16.30 uur

NAAM

tweede mogelijkhord:

onderste kolommen knikken

ongeschoord, lk=2h, $3 = \pi^2 E I_1 = 10.20000$ $(2.4)^2$

FK=1042 KN

laagste van de twee maatgevend: Fr=1042kN onderste kolommen

b. Een schets van de bijbehorende (maatgevende) knikvorm voor portaal I.

zie och bover

c. De waarde $F = F_k$ waarbij portaal II bezwijkt door instabiliteit. Laat duidelijk uw berekeningen zien en controles voor meerdere knikmogelijkheden.

Mu: boverste madgoverd, Fr=741KN

d. Een schets van de bijbehorende (maatgevende) knikvorm voor portaal II.

Opgave 3 (ongeveer 35 minuten)

Gegeven: onderstaande constructie, met twee kolommen belast door een verticale puntlast F. Kolom BC is momentvast verbonden met ligger BA en met de doorgaande schuine ligger CDE. Kolom GE is een pendel. Let goed op de posities van scharnieren. Staaf BG is star. De overige staven hebben buigstijfheid EI. De lengtematen zijn aangegeven. Normaalkrachtvervorming wordt verwaarloosd. Een blad met relevante formules is toegevoegd aan dit antwoordformulier. Houd voor de numerieke uitwerking aan: $EI = 16000 \text{ kNm}^2$.

Extra gegeven: de relatie tussen rotatie φ en koppel T voor onderstaande statisch onbepaalde ligger is gegeven, zie figuur.

Gevraagd:

a. Schets bovenaan de volgende pagina de globale, maatgevende knikvorm voor deze constructie. Geef duidelijk aan welke delen buigen en geef indicatief aan waar een buigpunt in het op druk belaste deel te verwachten is. 26 januari 2022 van 13.30-16.30 uur

b. Geef een schets van het model waarmee de globale kniklast van deze constructie kan worden bepaald. Geef daarbij aan hoe u met de puntlasten in dit rekenmodel omgaat. Let op aspecten als rotatieveren, geschoord/ongeschoord, pendels.

c. Bereken de grootte van F waarbij knik optreedt. Laat duidelijk alle stappen in uw berekening

Zien.

$$\rho_1 = \frac{kr_1 \cdot l_{BC}}{EI} = \frac{EI \cdot l_{BC}}{EI} = 8$$
 $- r_1 = 4 + \frac{l_D}{\rho_1} = 4 + \frac{l_D}{\rho_2} = 5, 2r$
 $\rho_2 = \frac{kr_2 \cdot l_{BC}}{EI} = \frac{0.686EI \cdot l_{BC}}{EI} = 5, 4g$
 $h_2 = 4 + \frac{l_D}{\rho_2} = 4 + \frac{l_D}{\rho_2} = 5, 82$
 $\frac{l_D}{EI} = \frac{(n_1 + n_2)^2}{(n_1 + n_2 - 4)} \cdot \frac{11^2 EI}{l_{BC}}$
 $= \frac{(5, 25 + 582)}{5, 25 \cdot 5, 82 \cdot (5, 25 + 5, 82 - 4)} \cdot \frac{17^2 EI}{P^2}$
 $= \frac{0.0874 EI}{5} \cdot \frac{1.399 kV}{1.399 kV}$

Voor deze gehele constructie, met aanpendelende

belasting: $5 \cdot F = 1.399 kV$
 $\Rightarrow F = 280 kV$

dan treedt knih von de

constructie op

d. Controleer of de gevonden knikkracht zich bevindt tussen twee mogelijke extremen die u voor dit geval zou kunnen bedenken.

12

e. Er is ook een lokale, partiële knikvorm. Toon aan dat deze locale knik niet maatgevend is, en verklaar dat tevens op basis van geschetste kniklengtes.

pendel 6E kan knikhen

$$T_k = T^2 E T = 10.16000 = 40000 \, kV$$
 $f_k = \frac{10^2 E T}{6E} = \frac{10.16000}{2^2} = \frac{400000 \, kV}{2^2}$

Neet mand governd.

f. Stel: de constructie wordt belast door een horizontale kracht in knoop G, en de bijbehorende eerste-orde uitwijking bij deze horizontale kracht is 50 mm. Gevraagd: bepaal de tweede-orde uitwijking in knoop G voor het geval dat F = 120 kN.

$$n = \frac{T_K}{T} = \frac{280}{120} = \frac{2}{33}$$

 $U_{\text{tweedearde}} = \frac{1}{120} \cdot U_{\text{deardearde}} = \frac{2}{33} \cdot \frac{33}{33-1} \cdot \frac{50}{120} = \frac{88}{120} \cdot \frac{1}{120} = \frac{1}{120} \frac{1$

TU Delft
Faculteit CiTG
Tentamen CTB2210 Constructiemechanica:
26 januari 2022 van 13.30-16.30 uur

Opgave 6

(ongeveer 20 minuten)

Gegeven: onderstaande doorgaande ligger waarvan het linkerveld buigstijfheid EI heeft en het rechterveld buigstijfheid nEI, als aangegeven. Het linkerveld wordt belast door een puntlast F in het midden.

Gevraagd:

a. Inleidende theorievraag: Beschrijf waarom de krachtsverdeling in een statisch onbepaalde constructie doorgaans gevoelig is voor stijfheidsverschillen, en de krachtsverdeling in een statisch bepaalde constructie niet. Gebruik maximaal 8 regels tekst met desgewenst een schetsje.

Statisch bépaald: M-lein puur bepaald door evenwicht.

Niet afhahelijh von rhithoden.

"Voelt niet wat de EI's zijn".

altijd

Statisch enbepaald: Vaast evenwicht ook vormverenderingsvoorwaarde nodig. Via v.v.v. konen de
stijfheden en het spel.

bijv.

A Staddrand

b. Bepaal het steunpuntmoment M_B , uitgedrukt in n, F en l. Relevante vergeet-me-nietjes zijn toegevoegd aan dit antwoordformulier.

$$= \frac{3}{8} + \frac{3}{3} = \frac{3}{16} + \frac{3}{16} = \frac{3}{16}$$

Tiveld = 15 TR + 47R

c. Schets onderstaand de momentenlijn voor de constructie, voor het geval dat n=2. Schets in dezelfde figuur ook de twee extreme gevallen voor de momentenlijn, voor $n \neq 0$ en n =oneindig. Geef buigtekens en markante waarden aan.

N=2-3 HG=3.57 n=0 => Mg=0 n=00=> 118=3= Fl Mueld= 2.3 Fl+4 Fl =(3+8) FR = 5 Fl =0,16 Fl

FORMULEBLAD (scheur dit deel los van het werk)

vrij opgelegde ligger (statisch bepaald)

vergeet-mij-nietjes

statisch onbepaalde ligger (tweezijdig ingeklemd) statisch onbepaalde ligger (enkelzijdig ingeklemd)

(b)	3	(10)	9	8)	9
* T.	₹ 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1	→ M ₁	7 P	7 A	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
2		3 F 2	9 W ₃ P ₃	3 F	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		25 Z 3	72	22	7 5
$\theta_3 = \frac{1}{16} \frac{T\ell}{EI};$ $M_1 = M_2 = \frac{1}{2}$	$v_3 = \frac{1}{384} \frac{q\ell^4}{EI}$ $M_1 = M_2 = -$	$v_3 = \frac{1}{192} \frac{F\ell^3}{EI}$ $M_1 = M_2 = \frac{1}{8}$	$\theta_1 = \frac{1}{48} \frac{g\ell^3}{EI},$ $M_1 = \frac{1}{8} g\ell^2;$	$\theta_2 = \frac{1}{32} \frac{F\ell^2}{EI}$ $M_1 = \frac{3}{16} F\ell;$	$\theta_2 = \frac{1}{4} \frac{T\ell}{El}; w_2 = \frac{1}{32} \frac{T\ell^2}{El}$ $M_1 = \frac{1}{2} T; V_1 = V_2 = \frac{3}{2}$
w ₃ = 0	$\frac{1}{2}q\ell^2$: V_1		$w_3 = \frac{1}{192}$ $V_1 = \frac{5}{8}qt;$	- 5 ·	$w_5 = \frac{1}{32} \frac{T\ell^2}{EI}$ $V_1 = V_2 = \frac{3}{2} \frac{T}{\ell}$
$\dot{z} = \frac{3T}{2\ell}$	$=V_2=\frac{1}{2}$	$V_2 = \frac{1}{2}F$	$\frac{q\ell^4}{EI}$ $V_2 = \frac{3}{8}q$	$\frac{F\ell^3}{8EI}$ $V_2 = \frac{5}{16}F$	41 11 2
	$\begin{pmatrix} M_1 & Q_2 & T & M_2 & B_3 = \\ M_1 & M_2 & M_3 & M_4 & M_5 & M_6 & M_$		$\begin{array}{c c} M_1 & & & \\ M_2 & & & \\ M_3 & & & \\ M_4 & & & \\ M_4 & & & \\ M_5 & & & \\ M_7 & & \\ M_7 & & \\ M_7 & & \\ M_7 & & & \\ M_7 & & \\ M$		$M_{1} \qquad \qquad M_{2} \qquad \qquad M_{3} \qquad \qquad M_{4} = \frac{1}{32} \frac{F\ell^{2}}{EI}, w_{5} = \frac{7}{768} \frac{F\ell^{3}}{EI}$ $M_{1} \qquad \qquad M_{2} \qquad \qquad M_{3} = \frac{3}{16} F\ell; V_{1} = \frac{11}{16} F; V_{2} = \frac{1}{16} F; V_{3} = \frac{1}{16} F; V_{4} = \frac{11}{16} F; V_{5} = \frac{1}{16} F; V_{5} = \frac{1}{16} F; V_{7} = \frac{11}{16} F; V_{7} = \frac{1}{16} F; V_{7} = \frac{1}{16} F; V_{7} = \frac{1}{16} \frac{g\ell^{3}}{EI}, w_{1} = \frac{1}{16} \frac{g\ell^{3}}{EI}, w_{1} = \frac{1}{8} g\ell; V_{2} = \frac{1}{2} \frac{g\ell^{3}}{EI}, W_{1} = W_{2} = \frac{1}{12} \frac{g\ell^{3}}{EI}, W_{1} = W_{2} = \frac{3}{2} \frac{7}{2} \frac$

Spanningen en rekken:
$$\begin{cases} \varepsilon_{xx} = \frac{1}{E} \left(\sigma_{xx} - v \sigma_{yy} \right) \\ \varepsilon_{yy} = \frac{1}{E} \left(\sigma_{yy} - v \sigma_{xx} \right) \text{ of } \end{cases} \begin{cases} \sigma_{xx} = \frac{E}{1 - v^2} \left(\varepsilon_{xx} + v \varepsilon_{yy} \right) \\ \sigma_{yy} = \frac{E}{1 - v^2} \left(\varepsilon_{yy} + v \varepsilon_{xx} \right) \text{ met } G = \frac{E}{2(1 + v)} \end{cases} \qquad \varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial j} + \frac{\partial u_j}{\partial i} \right) \quad \text{voor } i, j = x, y$$

$$\sigma_{yy} = \sigma_{xy} \qquad \qquad \sigma_{xy} = \sigma_{xy} \qquad$$

von Mises : $\frac{1}{6} \left[\left(\sigma_1 - \sigma_2 \right)^2 + \left(\sigma_2 - \sigma_3 \right)^2 + \left(\sigma_3 - \sigma_1 \right)^2 \right] \leq \frac{1}{3} f_y^2$

Tresca

: straal van de maatgevende cirkel van Mohr is bepalend

FORMULEBLAD (vervolg)

$$\begin{array}{c} \text{(c)} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array}$$

Tensortransformatic formules in x-y assenstelsel:

$$\begin{split} k_{\overline{xx}} &= \frac{1}{2}(k_{xx} + k_{yy}) + \frac{1}{2}(k_{xx} - k_{yy})\cos 2\alpha + k_{xy}\sin 2\alpha \\ k_{\overline{yy}} &= \frac{1}{2}(k_{xx} + k_{yy}) - \frac{1}{2}(k_{xx} - k_{yy})\cos 2\alpha - k_{xy}\sin 2\alpha \\ k_{\overline{xy}} &= -\frac{1}{2}(k_{xx} - k_{yy})\sin 2\alpha + k_{xy}\cos 2\alpha \end{split}$$

Hoofdwaarden en hoofdrichtingen:

$$\tan 2\alpha = \frac{2k_{xy}}{(k_{xx} - k_{yy})}; \quad k_1, k_2 = \frac{1}{2} \left(k_{xx} + k_{yy} \right) \pm \sqrt{\left[\frac{1}{2} \left(k_{xx} - k_{yy} \right) \right]^2 + k_{xy}^2}$$

FORMULEBLAD (vervolg)

********* Eulerse knikvergelijking:

$$F_k = \frac{\pi^2 EI}{l_k^2}$$

Enkelzijdig verend ingeklemde knikstaaf:

$$\frac{1}{F_{k}} = \frac{1}{r} + \frac{1}{\frac{\pi^{2}EI}{4l^{2}}} \Rightarrow l_{k} = l\sqrt{4 + \frac{10}{\rho}}$$

$$met: \rho = \frac{rl}{EI}$$

Mechanica relaties:

$$\varphi = -\frac{dw}{dx}$$
 $\kappa = \frac{d\varphi}{dx}$ $M = EI\kappa$

Differentiaalvergelijkingen:

$$w'' + \alpha^2 w = 0$$
 met: $\alpha^2 = \frac{F}{EI}$

$$w(x) = C_1 \cos \alpha x + C_2 \sin \alpha x$$
Of:

$$w'''' + \alpha^2 w'' = 0$$
 met: $\alpha^2 = \frac{F}{EI}$
en $S_z(x) = M' - Fw'$
algemene oplossing:

en
$$S_z(x) = M' - Fw'$$

$$w(x) = C_1 + C_2 x + C_3 \cos \alpha x + C_4 \sin \alpha x$$

$$\varphi(x) = -C_2 + C_3 \alpha \sin \alpha x - C_4 \alpha \cos \alpha x$$

$$M(x) = EI \times \left[C_3 \alpha^2 \cos \alpha x + C_4 \alpha^2 \sin \alpha x \right]$$

$$S_{\varepsilon}(x) = -F \times C_2$$

η-formule: twee zijden verend ingeklemde knikstaaf

$$F_{k} = \frac{(\eta_{1} + \eta_{2})^{2}}{\eta_{1}\eta_{2}(\eta_{1} + \eta_{2} - 4)} \times \frac{\pi^{2}EI}{l^{2}} \quad \text{met} : \begin{aligned} \eta_{1} &= 4 + \frac{10}{\rho_{1}}; \ \rho_{1} &= \frac{r_{1}l}{EI} \\ \eta_{2} &= 4 + \frac{10}{\rho_{2}}; \ \rho_{2} &= \frac{r_{2}l}{EI} \end{aligned}$$

ρ-formule: twee zijden verend ingeklemde knikstaaf

$$F_k = \frac{(5+2\rho_1)(5+2\rho_2)}{(5+\rho_1)(5+\rho_2)} \cdot \frac{\pi^2 EI}{l^2}$$

met:
$$\rho_1 = \frac{r_1 l}{EI}$$
 $\rho_2 = \frac{r_2 l}{EI}$

Regel van Merchant:

$$\frac{F_c}{F_k} + \frac{H_c}{H_p} = 1$$

Kromming t.g.v temperatuursgradient:

"Vrije" kromming t.g.v lineair temperatuursverloop over de hoogte h van de doorsnede:

$$\kappa^T = \frac{\alpha \, \Delta T}{h}$$