

基础博弈论

主讲: 李林静 研究员

中国科学院自动化研究所 多模态人工智能系统全国重点实验室 互联网大数据与安全信息学研究中心(iBASIC) 中国科学院大学人工智能学院

> 北京·雁栖湖 2023-4-4

课程内容

- ■博弈案例
 - □智猪博弈、公地悲剧、田忌赛马
 - □拍卖
- ■博弈论
 - □ 选择与效用
 - □完全信息静态、完全信息动态
 - □ 不完全信息静态、不完全信息动态
- ■博弈论与人工智能

课程内容

- 博弈案例
 - □智猪博弈、公地悲剧、田忌赛马
 - □拍卖
- ■博弈论
 - □ 选择与效用
 - □完全信息静态、完全信息动态
 - □ 不完全信息静态、不完全信息动态
- ■博弈论与人工智能

非合作博弈

- ■普适解概念:均衡(Equilibrium)
- 基本思路:
 - □各参与方的策略构成一种状态
 - □ 在此状态下任何一方都没有单方面改变 现有策略的意愿

某研究所设计了一种验证智能是如何产生的装置

按钮发光时,按下按钮自动在食槽投放10个单位的食物大猪按钮,小猪得4个单位,大猪得6个单位,小猪按钮,大猪得9个单位,小猪得1个单位一起按钮,大猪得7个单位,小猪得3个单位

按钮及相应的跑动会消耗2个单位

		小猪	
		等待	按钮
大	等待		
猪	按钮		

		小猪	
		等待	按钮
大	等待	0, 0	
猪	按钮		

		小猪	
		等待	按钮
大	等待	0, 0	9, 1
猪	按钮		

		小猪	
		等待	按钮
大	等待	0, 0	9, -1
大 猪	按钮		

		小猪	
		等待	按钮
大	等待	0, 0	9, -1
大 猪	按钮	6, 4	

		小猪	
		等待	按钮
大	等待	0, 0	9, -1
大 猪	按钮	4, 4	

		小猪	
		等待	按钮
大	等待	0, 0	9, -1
大 猪	按钮	4, 4	7, 3

		小猪	
		等待	按钮
大	等待	0, 0	9, -1
大 猪	按钮	4, 4	5, 1

- 优势策略(dominant strategy)

		小猪	
		等待	按钮
大	等待	0, 0	9, -1
大 猪	按钮	4, <mark>4</mark>	5, 1

- "等待"是小猪的优势策略
- "按钮"是小猪的劣势策略在博弈中, 劣势策略不应该被使用

■简化的博弈矩阵

		小猪
		等待
大	等待	0, 0
大 猪	按钮	4, 4

状态 (按钮,等待)构成智猪博弈的一个"均衡"

■ 均衡的含义?

		小猪	
	等待		按钮
大	等待	0, 0	9, -1
大 猪	按钮	4, 4	5, 1

- 状态: (按钮,等待)
 - □ 给定大猪去"按钮",小猪的最优策略是"等待"
 - □ 给定小猪只"等待",大猪的最优策略是"按钮"
 - □ 大猪、小猪 均不会改变自己的策略

■均衡的含义?

		小猪	
		等待	按钮
大	等待	0, 0	9, -1
大 猪	按钮	4, 4	5, 1

- 状态: (等待, 等待)
 - □ 给定大猪只"等待",小猪的最优策略是"等待"
 - □ 给定小猪只"等待",大猪的最优策略是"按钮"
 - □ 大猪将自己的策略从"等待"改变为"按钮"

■均衡的含义?

		小猪	
		等待	按钮
大	等待	0, 0	
大 猪	按钮	4, 4	5, 1

- 状态: (等待,按钮)
 - □ 给定大猪只"等待",小猪的最优策略是"等待"
 - □ 给定小猪去"按钮",大猪的最优策略是"等待"
 - □ 小猪将自己的策略从"按钮"改变为"等待"

■均衡的含义?

		小猪	
		等待	按钮
大	等待	0, 0	— _↑ 9, -1
大 猪	按钮	4, 4 ←	— ¹ 5, 1

- 状态: (按钮,按钮)
 - □ 给定大猪去"按钮",小猪的最优策略是"等待"
 - □ 给定小猪去"按钮",大猪的最优策略是"等待"
 - □ 大小猪都将自己的策略从"按钮"改变为"等待"

■ 最优反应(Best response)

		小猪	
		等待	按钮
大	等待	0, 0	— ↑ 9, -1
大 猪	按钮	4, 4 ←	— ¹ 5, 1

- □ BR(按钮,等待) = (按钮,等待)
- □ BR(按钮,按钮) = (等待,等待)
- □ BR(等待,等待) = (<mark>按钮</mark>,等待)
- □ BR(等待,按钮) = (等待,等待)

均衡 (状态、点) 是最优反应的不动点

例: 公地悲剧

N个牧民,共同拥有一块草场,可自由放牧。

除牧草外,养一只羊的额外成本为c = 4。

羊的价格跟该草场上羊的总数s相关,p(s)=100-s。

每个牧民应饲养多少只羊?

N=1(垄断经营)

收益: v(s) = p(s)s - cs

最优条件: v'(s) = p(s) + p'(s) s - c = 100 - 2s - 4 = 0

最优牧羊量: $s^* = 48$

最大收益: $v(s^*) = (100 - 48 - 4) \times 48 = 2304$

Garrett Hardin, *The tragedy of the commons*, Science (New Series), Vol. 162, No. 3859, pp. 1243-1248, Dec. 1968.

两牧民分别养 s_1 和 s_2 只羊,草场上总羊数 $s_1 + s_2$

				牧	吴2		
			1	2	3	4	• • •
	0	0,0					
	1						
牧 民	2						
1	3						
	4						
	:						

两牧民分别养 s_1 和 s_2 只羊,草场上总羊数 $s_1 + s_2$ 收益:

$$v_1(s_1, s_2) = p(s_1 + s_2) s_1 - cs_1$$

 $v_2(s_1, s_2) = p(s_1 + s_2) s_2 - cs_2$

最优条件:

$$p(s_1 + s_2) + p'(s_1 + s_2) s_1 - c = 0$$

$$p(s_1 + s_2) + p'(s_1 + s_2) s_2 - c = 0$$

$$100 - (s_1 + s_2) - s_1 - 4 = 0, 100 - (s_1 + s_2) - s_2 - 4 = 0$$

$$2s_1^* + s_2^* = 96$$

$$s_1^* + 2s_2^* = 96$$

$$(s_1^*, s_2^*) = (32, 32)$$

$$(s_1^*, s_2^*) = (32, 32)$$

牧民1

$$100 - (s_1 + s_2) - s_1 - 4 = 0$$

$$100 - (s_1 + 32) - s_1 - 4 = 0$$

$$s_1^* = 32$$

牧民2

$$100 - (s_1 + s_2) - s_2 - 4 = 0$$
$$100 - (32 + s_2) - s_2 - 4 = 0$$
$$s_2^* = 32$$

牧民1,牧民2都不会单方面改变牧羊的数量 草场上总羊数64>48

两牧民总收益 $v(64) = (100 - 64 - 4) \times 64 = 2048 < 2304$

$$(s_1, s_2) = (40, 26)$$

牧民1

$$100 - (s_1 + s_2) - s_1 - 4 = 0$$

$$100 - (s_1 + 26) - s_1 - 4 = 0$$

$$s_1^* = 35$$

牧民2

$$100 - (s_1 + s_2) - s_2 - 4 = 0$$
$$100 - (40 + s_2) - s_2 - 4 = 0$$
$$s_2^* = 28$$

牧民1,牧民2都会改变牧羊的数量

$$(s_1, s_2) = (35, 28)$$

牧民1

$$100 - (s_1 + s_2) - s_1 - 4 = 0$$

$$100 - (s_1 + 28) - s_1 - 4 = 0$$

$$s_1^* = 34$$

牧民2

$$100 - (s_1 + s_2) - s_2 - 4 = 0$$

$$100 - (35 + s_2) - s_2 - 4 = 0$$

$$s_2 * = 30.5$$

最优反应

S_2	32	26	28	s_1	32	40	35
			34				

$$100 - (s_1 + s_2) - s_1 - 4 = 0$$

$$s_1$$
* = $(96-s_2)/2 = 48 - s_2/2$

$$100 - (s_1 + s_2) - s_2 - 4 = 0$$

$$s_2$$
* = $(96-s_1)/2 = 48 - s_1/2$

$$(s_1^*, s_2^*) = (48, 48) - (s_1, s_2)/2$$

$$(32, 32) = (48, 48) - (32, 32)/2$$

均衡(状态、点)是最优反应的不动点

例:公地悲剧(一般情形)

收益:
$$v_i(s_1, s_2, \dots, s_N) = p(s_1 + s_2 + \dots + s_N) s_i - cs_i$$

最优条件:

$$p(s_1^* + s_2^* + \dots + s_N^*) + p'(s_1^* + s_2^* + \dots + s_N^*) s_i^* - c = 0$$

$$100 - (s_1^* + s_2^* + \dots + s_N^*) - s_i^* - 4 = 0$$

$$(N+1)s_i^* = 96$$

均衡牧羊量:

$$s_1^* + s_2^* + \dots + s_N^* = 96 \times \frac{N}{N+1}$$

$$s_i^* = \frac{96}{N+1}$$

N	1	2	5	95	∞
牧羊数	48(48)	64(32)	80(16)	95(1)	96
总收益	2304 (2304)	2048 (1024)	1280 (256)	95 (1)	0

齐将田忌善而客待之。

忌数与齐诸公子驰逐重射。

孙子见其马足不甚相远, 马有上、中、下辈。

於是孙子谓田忌曰: "君弟重射,臣能令君胜。"

田忌信然之,与王及诸公子逐射千金。

及临质,孙子曰:"<u>今以君之下驷与彼上驷,</u>

<u>取君上驷与彼中驷,取君中驷与彼下驷</u>。"

既驰三辈毕,而田忌一不胜而再胜,卒得王千金。

於是忌进孙子於威王。

威王问兵法,遂以为师。

史记·卷六十五 七十列传·孙子吴起列传第五

				田	忌		
		abc	acb	bac	bca	cab	cba
	ABC	3, -3	1, -1	1, -1	1, -1	-1, 1	1, -1
	ACB						
齐 威 王	BAC						
五	BCA						
	CAB						
	СВА						

				田	忌		
		abc	acb	bac	bca	cab	cba
	ABC	<u>3, -3</u>	1, -1	1, -1	1, -1	<u>-1, 1</u>	1, -1
	ACB	1, -1	<u>3, -3</u>	1, -1	1, -1	1, -1	<u>-1, 1</u>
齐	BAC	1, -1	<u>-1, 1</u>	<u>3, -3</u>	1, -1	1, -1	1, -1
威 王	BCA	<u>-1, 1</u>	1, -1	1, -1	<u>3, -3</u>	1, -1	1, -1
	CAB	1, -1	1, -1	1, -1	<u>-1, 1</u>	<u>3, -3</u>	1, -1
	СВА	1, -1	1, -1	<u>-1, 1</u>	1, -1	1, -1	<u>3, -3</u>

田忌

			q_1	q_2	q_3	q_4	q_5	q_6
			abc	acb	bac	bca	cab	cba
	p_1	ABC	<u>3, -3</u>	1, -1	1, -1	1, -1	<u>-1, 1</u>	1, -1
	p_2	ACB	1, -1	<u>3, -3</u>	1, -1	1, -1	1, -1	<u>-1, 1</u>
	p_3	BAC	1, -1	<u>-1, 1</u>	<u>3, -3</u>	1, -1	1, -1	1, -1
	p_4	BCA	<u>-1, 1</u>	1, -1	1, -1	<u>3, -3</u>	1, -1	1, -1
	p_5	CAB	1, -1	1, -1	1, -1	<u>-1, 1</u>	<u>3, -3</u>	1, -1
	p_6	СВА	1, -1	1, -1	<u>-1, 1</u>	1, -1	1, -1	<u>3, -3</u>

$$q_1 = q_2 = q_3 = q_4 = q_5 = q_6 = 1/6$$

 $p_1 = p_2 = p_3 = p_4 = p_5 = p_6 = 1/6$

齐

威

王

田忌

		q_1	q_2	q_3	q_4	q_5	q_6
		abc	acb	bac	bca	cab	cba
p_1	ABC	<u>3, -3</u>	1, -1	1, -1	1, -1	<u>-1, 1</u>	1, -1
p_2	ACB	1, -1	<u>3, -3</u>	1, -1	1, -1	1, -1	<u>-1, 1</u>
p_3	BAC	1, -1	<u>-1, 1</u>	<u>3, -3</u>	1, -1	1, -1	1, -1
p_4	BCA	<u>-1, 1</u>	1, -1	1, -1	<u>3, -3</u>	1, -1	1, -1
p_5	CAB	1, -1	1, -1	1, -1	<u>-1, 1</u>	<u>3, -3</u>	1, -1
p_6	CBA	1, -1	1, -1	<u>-1, 1</u>	1, -1	1, -1	<u>3, -3</u>

$$\mathbb{E}_{w}[\boldsymbol{p},\boldsymbol{q}] = \boldsymbol{p}^{T}\mathbf{A}\boldsymbol{q} \qquad \qquad \mathbb{E}_{t}[\boldsymbol{p},\boldsymbol{q}] = \boldsymbol{q}^{T}\boldsymbol{B}^{T}\boldsymbol{p}$$

Ш	
Щ	涇

		q_1	q_2	q_3	q_4	q_5	q_6
		abc	acb	bac	bca	cab	cba
p_1	ABC	<u>3, -3</u>	1, -1	1, -1	1, -1	<u>-1, 1</u>	1, -1
p_2	ACB	1, -1	<u>3, -3</u>	1, -1	1, -1	1, -1	<u>-1, 1</u>
p_3	BAC	1, -1	<u>-1, 1</u>	<u>3, -3</u>	1, -1	1, -1	1, -1
p_4	BCA	<u>-1, 1</u>	1, -1	1, -1	<u>3, -3</u>	1, -1	1, -1
p_5	CAB	1, -1	1, -1	1, -1	<u>-1, 1</u>	<u>3, -3</u>	1, -1
p_6	СВА	1, -1	1, -1	<u>-1, 1</u>	1, -1	1, -1	<u>3, -3</u>

$$\mathbb{E}_w[\boldsymbol{p},\boldsymbol{q}] = \boldsymbol{p}^T \mathbf{A} \boldsymbol{q}$$
$$\mathbb{E}_t[\boldsymbol{p},\boldsymbol{q}] = \boldsymbol{q}^T \boldsymbol{B}^T \boldsymbol{p}$$

$$\max_{p} \qquad p^{T} \mathbf{A} \mathbf{q}$$
s. t.
$$\mathbf{1}^{T} \mathbf{p} = 1, \mathbf{p} \ge \mathbf{0}$$

$$\mathbf{1}^{T} \mathbf{q} = 1, \mathbf{q} \ge \mathbf{0}$$

 $\max_{q} \quad q^{T} B^{T} p$ s. t. $\mathbf{1}^{T} p = 1, p \ge 0$ $\mathbf{1}^{T} q = 1, q \ge 0$

齐威

干

田忌

		q_1	q_2	q_3	q_4	q_5	q_6
		abc	acb	bac	bca	cab	cba
p_1	ABC	<u>3, -3</u>	1, -1	1, -1	1, -1	<u>-1, 1</u>	1, -1
p_2	ACB	1, -1	<u>3, -3</u>	1, -1	1, -1	1, -1	<u>-1, 1</u>
p_3	BAC	1, -1	<u>-1, 1</u>	<u>3, -3</u>	1, -1	1, -1	1, -1
p_4	BCA	<u>-1, 1</u>	1, -1	1, -1	<u>3, -3</u>	1, -1	1, -1
p_5	CAB	1, -1	1, -1	1, -1	<u>-1, 1</u>	<u>3, -3</u>	1, -1
p_6	CBA	1, -1	1, -1	<u>-1, 1</u>	1, -1	1, -1	<u>3, -3</u>

$$\begin{split} \mathbb{E}_{w}[\mathsf{ABC}, \boldsymbol{q}] &= 3q_1 + q_2 + q_3 + q_4 - q_5 + q_6 = 2q_1 + q_1 + q_2 + q_3 + q_4 + q_5 + q_6 - 2q_5 = 2(q_1 - q_5) + 1 \\ \mathbb{E}_{w}[\mathsf{ACB}, \boldsymbol{q}] &= q_1 + 3q_2 + q_3 + q_4 + q_5 - q_6 = 2(q_2 - q_6) + 1 \\ \mathbb{E}_{w}[\mathsf{BAC}, \boldsymbol{q}] &= q_1 - q_2 + 3q_3 + q_4 + q_5 + q_6 = 2(q_3 - q_2) + 1 \\ \mathbb{E}_{w}[\mathsf{BCA}, \boldsymbol{q}] &= -q_1 + q_2 + q_3 + 3q_4 + q_5 + q_6 = 2(q_4 - q_1) + 1 \\ \mathbb{E}_{w}[\mathsf{CAB}, \boldsymbol{q}] &= q_1 + q_2 + q_3 - q_4 + 3q_5 + q_6 = 2(q_5 - q_4) + 1 \end{split}$$

 $\mathbb{E}_{w}[CBA, \mathbf{q}] = q_1 + q_2 - q_3 + q_4 + q_5 + 3q_6 = 2(q_6 - q_3) + 1$

齐威

干

田忌

		q_1	q_2	q_3	q_4	q_5	q_6
		abc	acb	bac	bca	cab	cba
p_1	ABC	<u>3, -3</u>	1, -1	1, -1	1, -1	<u>-1, 1</u>	1, -1
p_2	ACB	1, -1	<u>3, -3</u>	1, -1	1, -1	1, -1	<u>-1, 1</u>
p_3	BAC	1, -1	<u>-1, 1</u>	<u>3, -3</u>	1, -1	1, -1	1, -1
p_4	BCA	<u>-1, 1</u>	1, -1	1, -1	<u>3, -3</u>	1, -1	1, -1
p_5	CAB	1, -1	1, -1	1, -1	<u>-1, 1</u>	<u>3, -3</u>	1, -1
p_6	CBA	1, -1	1, -1	<u>-1, 1</u>	1, -1	1, -1	<u>3, -3</u>

$$\mathbb{E}_{w}[ABC, \boldsymbol{q}] = 3q_{1} + q_{2} + q_{3} + q_{4} - q_{5} + q_{6} = 2q_{1} + q_{1} + q_{2} + q_{3} + q_{4} + q_{5} + q_{6} - 2q_{5} = 2(q_{1} - q_{5}) + 1$$

$$\mathbb{E}_{w}[ACB, \boldsymbol{q}] = q_{1} + 3q_{2} + q_{3} + q_{4} + q_{5} - q_{6} = 2(q_{2} - q_{6}) + 1$$

$$\mathbb{E}_{w}[BAC, \boldsymbol{q}] = q_{1} - q_{2} + 3q_{3} + q_{4} + q_{5} + q_{6} = 2(q_{3} - q_{2}) + 1$$

$$\mathbb{E}_{w}[BCA, \boldsymbol{q}] = -q_{1} + q_{2} + q_{3} + 3q_{4} + q_{5} + q_{6} = 2(q_{4} - q_{1}) + 1$$

$$\mathbb{E}_{w}[CAB, \boldsymbol{q}] = q_{1} + q_{2} + q_{3} - q_{4} + 3q_{5} + q_{6} = 2(q_{5} - q_{4}) + 1$$

 $\mathbb{E}_{w}[CBA, \mathbf{q}] = q_1 + q_2 - q_3 + q_4 + q_5 + 3q_6 = 2(q_6 - q_3) + 1$

例: 田忌赛马

齐威

干

田忌

		q_1	q_2	q_3	q_4	q_5	q_6
		abc	acb	bac	bca	cab	cba
p_1	ABC	<u>3, -3</u>	1, -1	1, -1	1, -1	<u>-1, 1</u>	1, -1
p_2	ACB	1, -1	<u>3, -3</u>	1, -1	1, -1	1, -1	<u>-1, 1</u>
p_3	BAC	1, -1	<u>-1, 1</u>	<u>3, -3</u>	1, -1	1, -1	1, -1
p_4	BCA	<u>-1, 1</u>	1, -1	1, -1	<u>3, -3</u>	1, -1	1, -1
p_5	CAB	1, -1	1, -1	1, -1	<u>-1, 1</u>	<u>3, -3</u>	1, -1
p_6	CBA	1, -1	1, -1	<u>-1, 1</u>	1, -1	1, -1	<u>3, -3</u>

$$\mathbb{E}_{w}[ABC, \mathbf{q}] = 3q_{1} + q_{2} + q_{3} + q_{4} - q_{5} + q_{6} = 2q_{1} + q_{1} + q_{2} + q_{3} + q_{4} + q_{5} + q_{6} - 2q_{5} = 2(q_{1} - q_{5}) + 1$$

$$\mathbb{E}_{w}[ACB, \mathbf{q}] = q_{1} + 3q_{2} + q_{3} + q_{4} + q_{5} - q_{6} = 2(q_{2} - q_{6}) + 1$$

$$\mathbb{E}_{w}[BAC, \mathbf{q}] = q_{1} - q_{2} + 3q_{3} + q_{4} + q_{5} + q_{6} = 2(q_{3} - q_{2}) + 1$$

$$\mathbb{E}_{w}[BCA, \mathbf{q}] = -q_{1} + q_{2} + q_{3} + 3q_{4} + q_{5} + q_{6} = 2(q_{4} - q_{1}) + 1$$

$$\mathbb{E}_{w}[CAB, \mathbf{q}] = q_{1} + q_{2} + q_{3} - q_{4} + 3q_{5} + q_{6} = 2(q_{5} - q_{4}) + 1$$

$$\mathbb{E}_{w}[CBA, \mathbf{q}] = q_{1} + q_{2} - q_{3} + q_{4} + q_{5} + 3q_{6} = 2(q_{6} - q_{3}) + 1$$

例:田忌赛马

齐威

干

田忌

		q_1	q_2	q_3	q_4	q_5	q_6
		abc	acb	bac	bca	cab	cba
p_1	ABC	<u>3, -3</u>	1, -1	1, -1	1, -1	<u>-1, 1</u>	1, -1
p_2	ACB	1, -1	<u>3, -3</u>	1, -1	1, -1	1, -1	<u>-1, 1</u>
p_3	BAC	1, -1	<u>-1, 1</u>	<u>3, -3</u>	1, -1	1, -1	1, -1
p_4	BCA	<u>-1, 1</u>	1, -1	1, -1	<u>3, -3</u>	1, -1	1, -1
p_5	CAB	1, -1	1, -1	1, -1	<u>-1, 1</u>	<u>3, -3</u>	1, -1
p_6	CBA	1, -1	1, -1	<u>-1, 1</u>	1, -1	1, -1	<u>3, -3</u>

$$\mathbb{E}_{w}[ABC, \boldsymbol{q}] = 3q_{1} + q_{2} + q_{3} + q_{4} - q_{5} + q_{6} = 2q_{1} + q_{1} + q_{2} + q_{3} + q_{4} + q_{5} + q_{6} - 2q_{5} = 2(q_{1} - q_{5}) + 1$$

$$\mathbb{E}_{w}[ACB, \boldsymbol{q}] = q_{1} + 3q_{2} + q_{3} + q_{4} + q_{5} - q_{6} = 2(q_{2} - q_{6}) + 1$$

$$\mathbb{E}_{w}[BAC, \boldsymbol{q}] = q_{1} - q_{2} + 3q_{3} + q_{4} + q_{5} + q_{6} = 2(q_{3} - q_{2}) + 1$$

$$\mathbb{E}_{w}[BCA, \boldsymbol{q}] = -q_{1} + q_{2} + q_{3} + 3q_{4} + q_{5} + q_{6} = 2(q_{4} - q_{1}) + 1$$

$$\mathbb{E}_{w}[CAB, \boldsymbol{q}] = q_{1} + q_{2} + q_{3} - q_{4} + 3q_{5} + q_{6} = 2(q_{5} - q_{4}) + 1$$

$$\mathbb{E}_{w}[CBA, \boldsymbol{q}] = q_{1} + q_{2} - q_{3} + q_{4} + q_{5} + 3q_{6} = 2(q_{6} - q_{3}) + 1$$

$$p_{1} = p_{2} = p_{3} = p_{4} = p_{5} = p_{6} = 1/6$$

例: 田忌赛马

- [1/6, 1/6]是均衡?
 - □ 若田忌按1/6等概率选择策略
 - 此时齐威王的收益与其策略无关
 - 即: 齐威王任何两个策略的期望收益相等
 - 故齐威王没有单方面改变策略的意愿
 - □ 若齐威王按1/6等概率选择策略
 - 此时田忌的收益与其策略无关
 - 即:田忌任何两个策略的期望收益相等
 - 故田忌没有单方面改变策略的意愿

[1/6, 1/6] 是田忌赛马的一个混合策略均衡

■ 纯策略 vs 纯策略

■ 纯策略 vs 纯策略

		q_1	q_2	q_3	q_4	q_5	q_6
		abc	acb	bac	bca	cab	cba
p_1	ABC	3, -3	1, -1	1, -1	1, -1	-1, 1	1, -1
p_2	ACB	1, -1	3, -3	1, -1	1, -1	1, -1	-1, 1
p_3	BAC	1, -1	-1, 1	3, -3	1, -1	1, -1	1, -1
p_4	BCA	-1, 1	1, -1	1, -1	3, -3	1, -1	1, -1
p_5	CAB	1, -1	1, -1	1, -1	-1, 1	3, -3	1, -1
p_6	CBA	1, -1	1, -1	-1, 1	1, -1	1, -1	3, -3

- 纯策略 vs 纯策略

		q_1	q_2	q_3	q_4	q_5	q_6
		abc	acb	bac	bca	cab	cba
p_1	ABC	3, -3	1, -1	1, -1	1, -1	-1, 1	1, -1
p_2	ACB	1, -1	3, -3	1, -1	1, -1	1, -1	-1, 1
p_3	BAC	1, -1	-1, 1	3, -3	1, -1	1, -1	1, -1
p_4	BCA	-1, 1	1, -1	1, -1	3, -3	1, -1	1, -1
p_5	CAB	1, -1	1, -1	1, -1	-1, 1	3, -3	1, -1
p_6	CBA	1, -1	1, -1	-1, 1	1, -1	1, -1	3, -3

■ 纯策略 vs 纯策略

		q_1	q_2	q_3	q_4	q_5	q_6
		abc	acb	bac	bca	cab	cba
p_1	ABC	3, -3	1, -1	1, -1	1, -1	-1, 1	1, -1
p_2	ACB	1, -1	3, -3	1, -1	1, -1	1, -1	-1, 1
p_3	BAC	1, -1	-1, 1	3, -3	1, -1	1, -1	1, -1
p_4	BCA	-1, 1	1, -1	1, -1	3, -3	1, -1	1, -1
p_5	CAB	1, -1	1, -1	1, -1	-1, 1	3, -3	1, -1
p_6	CBA	1, -1	1, -1	-1, 1	1, -1	1, -1	3, -3

■ 纯策略 vs 纯策略

		q_1	q_2	q_3	q_4	q_5	q_6
		abc	acb	bac	bca	cab	cba
p_1	ABC	3, -3	1, -1	1, -1	1, -1	-1, 1	1, -1
p_2	ACB	1, -1	3, -3	1, -1	1, -1	1, -1	-1, 1
p_3	BAC	1, -1	-1, 1	3, -3	1, -1	1, -1	1, -1
p_4	BCA	-1, 1	1, -1	1, -1	3, -3	1, -1	1, -1
p_5	CAB	1, -1	1, -1	1, -1	-1, 1	3, -3	1, -1
p_6	CBA	1, -1	1, -1	-1, 1	1, -1	1, -1	3, -3

■ 混合策略 vs 混合策略

		q_1	q_2	q_3	q_4	q_5	q_6
		abc	acb	bac	bca	cab	cba
<i>p</i> ₁	ABC	3, -3	1, -1	1, -1	1, -1	-1, 1	1, -1
p_2	ACB	1, -1	3, -3	1, -1	1, -1	1, -1	-1, 1
p_3	BAC	1, -1	-1, 1	3, -3	1, -1	1, -1	1, -1
p_4	BCA	-1, 1	1, -1	1, -1	3, -3	1, -1	1, -1
p_5	CAB	1, -1	1, -1	1, -1	-1, 1	3, -3	1, -1
p_6	CBA	1, -1	1, -1	-1, 1	1, -1	1, -1	3, -3

■ 混合策略 vs 混合策略

		q_1	q_2	q_3	q_4	q_5	q_6
		abc	acb	bac	bca	cab	cba
<i>p</i> ₁	ABC	3, -3	1, -1	1, -1	1, -1	-1, 1	1, -1
p_2	ACB	1, -1	3, -3	1, -1	1, -1	1, -1	-1, 1
p_3	BAC	1, -1	-1, 1	3, -3	1, -1	1, -1	1, -1
p_4	BCA	-1, 1	1, -1	1, -1	3, -3	1, -1	1, -1
p_5	CAB	1, -1	1, -1	1, -1	-1, 1	3, -3	1, -1
p_6	CBA	1, -1	1, -1	-1, 1	1, -1	1, -1	3, -3

竞价拍卖English, 升价。
Dutch, 降价。一場价格
一場价格

- 四种机制期望收益等价
- 暗标二价,出价=真实估价 (Truth-telling)

- 暗标二价Truth-telling (Weakly dominant)
 - \square 某投标人对拍卖品的估价为 ν ,报价x
 - □ 设其余投标人的最高报价为*b*

报价	<i>v>b</i>	v=b	v <b< th=""></b<>
x>v			
x=v			
<i>x</i> < <i>v</i>			

- 暗标二价Truth-telling (Weakly dominant)
 - □ 某投标人对拍卖品的估价为*v*,报价*x*
 - □ 设其余投标人的最高报价为*b*

报价	<i>v>b</i>	v=b	v <b< th=""></b<>
x>v			
x=v	v-b	0	0
<i>x</i> < <i>v</i>			

- 暗标二价Truth-telling (Weakly dominant)
 - \square 某投标人对拍卖品的估价为 ν ,报价x
 - □ 设其余投标人的最高报价为*b*

报价	<i>v>b</i>	v=b	v <b< th=""></b<>
x>v	v-b	0	
x=v	v-b	0	0
<i>x</i> < <i>v</i>			

- 暗标二价Truth-telling (Weakly dominant)
 - 」某投标人对拍卖品的估价为 ν ,报价x
 - □ 设其余投标人的最高报价为*b*

报价	<i>v>b</i>	v=b	v <b< th=""></b<>
			v < x < b
x>v	c>v $v-b$ 0	v < x = b	
			<i>v</i> < <i>b</i> < <i>x</i>
x=v	v-b	0	0
x < v			

- 暗标二价Truth-telling (Weakly dominant)
 - \blacksquare 某投标人对拍卖品的估价为 ν ,报价x
 - □ 设其余投标人的最高报价为*b*

报价	<i>v>b</i>	v=b	v <b< th=""></b<>		
			v < x < b, 0		
x>v	v-b	0	v < x = b		
			<i>v</i> < <i>b</i> < <i>x</i>		
x=v	v-b	0	0		
<i>x</i> < <i>v</i>					

- 暗标二价Truth-telling (Weakly dominant)
 - 」某投标人对拍卖品的估价为 ν ,报价x
 - □ 设其余投标人的最高报价为*b*

报价	<i>v>b</i>	<i>v=b</i>	v <b< th=""></b<>
			<i>v</i> < <i>x</i> < <i>b</i> , 0
x>v	v-b	0	$v < x = b, 0/v - b, \le 0$
			<i>v</i> < <i>b</i> < <i>x</i>
x=v	v-b	0	0
<i>x</i> < <i>v</i>			

- 暗标二价Truth-telling (Weakly dominant)
 - 」某投标人对拍卖品的估价为 ν ,报价x
 - □ 设其余投标人的最高报价为*b*

报价	<i>v>b</i>	<i>v=b</i>	v <b< th=""></b<>				
			v < x < b, 0				
x>v	v-b	0	$v < x = b, 0/v - b, \le 0$				
			<i>v</i> < <i>b</i> < <i>x</i> , <i>v</i> - <i>b</i> <0				
x=v	v-b	0	0				
<i>x</i> < <i>v</i>							

- 暗标二价Truth-telling (Weakly dominant)
 - \square 某投标人对拍卖品的估价为 ν ,报价x
 - □ 设其余投标人的最高报价为*b*

报价	<i>v>b</i>	<i>v=b</i>	v <b< th=""></b<>		
			<i>v</i> < <i>x</i> < <i>b</i> , 0		
x>v	v-b	0	$v < x = b, 0/v - b, \le 0$		
			<i>v</i> < <i>b</i> < <i>x</i> , <i>v</i> - <i>b</i> <0		
x=v	v-b	0	0		
<i>x</i> < <i>v</i>		0	0		

- 暗标二价Truth-telling (Weakly dominant)
 - \square 某投标人对拍卖品的估价为 ν ,报价x
 - □ 设其余投标人的最高报价为*b*

报价	<i>v>b</i>	v= b	v <b< th=""></b<>			
		0	v < x < b, 0			
x>v	v-b		$v < x = b, 0/v - b, \le 0$			
			<i>v</i> < <i>b</i> < <i>x</i> , <i>v</i> - <i>b</i> <0			
x=v	v-b	0	0			
	v>x>b	0				
<i>x</i> < <i>v</i>	v>x=b		0			
	v>b>x					

- 暗标二价Truth-telling (Weakly dominant)
 - 」某投标人对拍卖品的估价为 ν ,报价x
 - □ 设其余投标人的最高报价为*b*

报价	<i>v>b</i>	v=b	v <b< th=""></b<>			
			v < x < b, 0			
x>v	v-b	0	$v < x = b, 0/v - b, \le 0$			
			<i>v</i> < <i>b</i> < <i>x</i> , <i>v</i> - <i>b</i> <0			
x=v	v-b	0	0			
	v>x>b, $v-b$	0				
<i>x</i> < <i>v</i>	v>x=b		0			
	v>b>x					

- 暗标二价Truth-telling (Weakly dominant)
 - 」某投标人对拍卖品的估价为 ν ,报价x
 - □ 设其余投标人的最高报价为*b*

报价	<i>v>b</i>	v=b	v <b< th=""></b<>				
		0	v < x < b, 0				
x>v	v-b		$v < x = b, 0/v - b, \le 0$				
			<i>v</i> < <i>b</i> < <i>x</i> , <i>v</i> - <i>b</i> <0				
x=v	v-b	0	0				
	<i>v>x>b</i> , <i>v-b</i>	0					
<i>x</i> < <i>v</i>	$v>x=b$, $0/v-b$, $\leq v-b$		0				
	v>b>x						

- 暗标二价Truth-telling (Weakly dominant)
 - 」某投标人对拍卖品的估价为 ν ,报价x
 - □ 设其余投标人的最高报价为*b*

报价	<i>v>b</i>	v=b	v <b< th=""></b<>				
			v < x < b, 0				
x>v	v-b	0	$v < x = b, 0/v - b, \le 0$				
			<i>v</i> < <i>b</i> < <i>x</i> , <i>v</i> - <i>b</i> <0				
x=v	v-b	0	0				
	<i>v>x>b</i> , <i>v-b</i>	0					
$x \le v$	$v>x=b$, $0/v-b$, $\leq v-b$		0				
	v>b>x, 0						

概念总结

- ■均衡
- ■博弈矩阵
- 优势策略、劣势策略
- ■混合策略
- ■最优反应
- ■证明某策略组合是均衡的方法
- 计算混合策略的方法

作业

I	ı	ı	ł	,	(c	c	ł	ϵ	?
T		2		4		3		5		0
T	0		2		1		0		3	
D		7		4		5		0		8
В	1		0		4		1		0	

