

Оптические устройства. Элементы фотометрии.

ЛЕКЦИЯ 2

Увеличение тонкой линзы

Увеличение:

$$\frac{y'}{y} = \frac{b}{a}$$

$$\frac{y'}{y} = \frac{b - F}{F}$$

a — расстояние от линзы до предмета;

b – расстояние от линзы до изображения.

Оптические устройства: лупа

Изображение расположено на расстояние ясного зрения L от лупы

Линейное увеличение:

$$\gamma = -\frac{y'}{y} = \frac{L}{F} + 1$$

Угловое увеличение:

$$\Gamma = \frac{\varphi}{\varphi_0} = \gamma,$$

$$\varphi = y'/L$$
,

 $\varphi_0 = y/L$ - угловой размер предмета, видимый без лупы на расстоянии ясного зрения.

Угловое увеличение лупы

Угловое увеличение:

$$\Gamma = \frac{\varphi}{\varphi_0} = \frac{L}{F}$$

$$\varphi = y'/L$$
, $\varphi_0 = y/L$ - угловой размер предмета, видимый без лупы на расстоянии ясного зрения.

Оптические устройства: очки

Близорукость:

Оптическая сила очков:

$$D = \frac{1}{F} = -\frac{1}{L_m}$$

$$D = \frac{1}{F} = \frac{1}{L} - \frac{1}{L_d}$$

Оптические устройства: телескоп

Объектив и окуляр имеют общую фокальную плоскость.

Отношение диаметров входного и выходного пучка:

$$\frac{D}{D_0} = \frac{F_1}{F_2}$$

Увеличение телескопа

Угловое увеличение:

$$\Gamma = \frac{\varphi}{\varphi_0} = \frac{F_1}{F_2}$$

$$|BO| = F_1 \varphi_0 = F_2 \varphi$$

Оптические устройства: подзорная труба

Объектив и окуляр имеют общую заднюю фокальную плоскость.

Отношение диаметров $\frac{D}{D_0} = \frac{F_1}{F_2}$.

Преимущества:

- 1) Прямое (неперевернутое) изображение
- 2) Более компактные размеры

Увеличение подзорной трубы

Угловое увеличение:

$$\Gamma = \frac{\varphi}{\varphi_0} = \frac{F_1}{F_2}$$

$$|BO| = F_1 \varphi_0 = F_2 \varphi$$

Оптические устройства: микроскоп

Две настройки микроскопа:

- 1) Изображение в окуляре располагается на расстоянии ясного зрения L.
 - Изображение после объектива попадает в передний фокус окуляра, тогда изображение в окуляре стремиться к —∞, а его угловой размер остается постоянным.

Увеличение микроскопа

Угловое увеличение (настройка 2):

$$\Gamma = \frac{\varphi}{\varphi_0}$$

$$\varphi = \frac{\gamma_1 y}{F_2}, \quad \varphi_0 = \frac{y}{L},$$

$$\gamma_1 = \frac{b - F_1}{F_1}, \quad b = l - F_2$$

Сложные оптические системы: толстая линза (без вывода)

Сложные оптические системы: построение изображения

Линейное увеличение:

$$\frac{y'}{v} = \frac{F}{X} = \frac{X'}{F}$$

Положение изображения:

$$XX' = F^2$$

Фотометрия: Спектральная чувствительность глаза для дневного света

Фотометрия: Световой поток. Освещенность

Световой поток Ф:

Принцип суперпозиции:

$$\Phi = \Phi_1 + \Phi_2 + \Phi_3 + ...$$

$$\Phi = \int_0^\infty V(\lambda) \varphi_{\lambda}(\lambda) \, d\lambda$$

 $V(\lambda)$ - спектральная чувствительность глаза,

 $arphi_{\lambda}(\lambda)$ - спектральная плотность энергии

$$[\Phi]=$$
1 люмен (лм); 1 лм=0.0016 Вт для $\lambda=$ 555 Нм

Освещенность E:

$$E = \frac{d\Phi}{ds}$$

$$[E] = 1$$
 люкс (лм); 1 лм = $\frac{1}{M^2}$

Фотометрия: Сила света. Яркость.

Точечный источник света: Сила света I

[I] = 1 кандела (кд) (1 свеча=1.005 кд)

Протяженный источник света:

Ламбертовый источник: Яркость B не зависит от угла heta

$$[B] = \frac{1 \, \text{кд}}{\text{M}^2}$$

Яркость изображения

Световой поток:
$$\Phi = Bs\Omega = B's'\Omega'$$

$$\begin{cases} \frac{s'}{s} = \frac{b^2}{a^2} \\ \frac{\Omega'}{\Omega} = \frac{a^2}{b^2} \end{cases}$$

$$\Rightarrow s\Omega = s'\Omega'$$

Яркость изображения = яркость предмета: B' = B

$$B' = B$$

Зрительное ощущение яркости

Световой поток: $\Phi = Bs\Omega$

$$\Phi = Bs\Omega$$

Освещенность изображения: $E = \Phi/s' = Bs\Omega/s'$

Освещенность изображения на сетчатке глаза:

$$E = B\Omega_{\rm 3p}$$

"Яркость" изображения в телескопе

Без телескопа: световой поток Φ_0 , площадь изображения s_0 , его освещенность $E_0 = \Phi_0/s_0$.

С телескопом:

световой поток: $\Phi = \Phi_0 \Gamma^2$, площадь изображения: $s = s_0 \Gamma^2$, $\Gamma = F_1/F_2$ - увеличение телескопа.

Освещенность изображения:

$$E = \Phi/s = \Phi_0/s_0 \Rightarrow E = E_0$$

Условие: $\Gamma d \leq D$ (или $\Gamma \leq D/d$), где D - диаметр объектива, d - диаметр зрачка.

Нормальное увеличение телескопа

Нормальное увеличение: $\Gamma_N = D/d$

Нормальное увеличение — это максимальное увеличение $\Gamma = \Gamma_N$, при котором освещенность изображения на сетчатке (зрительная яркость) не уменьшается и равна $E = E_0$

Увеличение телескопа больше нормального

Увеличение телескопа: $\Gamma > \Gamma_N = D/d$

При $\Gamma > \Gamma_N$:

световой поток: $\Phi = \Phi_0 \frac{D^2}{d^2} = \Phi_0 \Gamma_N^2$, площадь изображения: $\mathbf{s} = s_0 \Gamma^2$.

Освещенность изображения:

$$E = \frac{\Phi}{s} = \frac{\Phi_0}{s_0} \frac{\Gamma_N^2}{\Gamma^2} \implies E = E_0 \left(\frac{\Gamma_N}{\Gamma}\right)^2$$

"Яркость" изображения падает с ростом увеличения

"Яркость" изображения в микроскопе

При нормальном увеличении ($\Gamma = \Gamma_N$)

диаметр выходного пучка равен диаметру D = D = D

зрачка
$$d$$
, т.е. $\frac{D}{d} = \frac{b}{F_2}$.

Увеличение микроскопа $\Gamma = \frac{b}{a} \frac{L}{F_2}$. Тогда:

$$\Gamma_N = \frac{LD}{ad} \approx \frac{LD}{F_1 d}$$

Освещенность изображения на сетчатке глаза:

$$E = \begin{cases} E_0 & \text{при } \Gamma \leq \Gamma_N \\ E_0(\Gamma_N/\Gamma)^2 & \text{при } \Gamma > \Gamma_N \end{cases}$$