Database S2.2.1

Perovskites found from internet mining

Compound	Reference
Ag3InCl6	PhD Thesis Stephan Bremm, Uni Koln (2002)
AmVO3	Springer Materials
AuZnF3	arxiv 1606.03279v1
Ba2CoSbO6	Springer Materials
Ba2CrWO6	Comp. Mat. Sci. 92, 298-304 (2014)
Ba2CuNpO6	J. Alloys and Compounds, 177, 285-310 (1991)
Ba2CuWO6	J. Inorg Nucl Chem 27, 994-1003 (1965)
Ba2FeSnO6	Semicond. 40(11), 1261-1265 (2006)
Ba2LiNpO6	Inorg Nucl Chem Lett 77, 145-151 (1971)
Ba2MoPrO6	Inorg Chem. 10(5), 922 (1971)
Ba2MoTbO6	Inorg Chem. 10(5), 922 (1971)
Ba2NaNpO6	Inorg Nucl Chem Lett 77, 145-151 (1971)
Ba2NbAmO6	J. Inorg Nucl. Chem. 1965 27, 1253-1260
Ba2PaAmO6	Springer Materials
Ba2PbCeO6	Mat Res Bull 30(12) 1455-1462 (1995)
Ba2PbPrO6	Mat Res Bull 30(12) 1455-1462 (1995)
Ba2SbCeO6	Solid State Sci, 58, 64-69 (2016)
Ba2TiMoO6	Physica B 407(16), 3074-3077
Ba2TïZrO6	J. Supercond. and Nov. Magn. 26, 2459-2462 (2013)
Ba2VPrO6	J. Supercond. and Nove. Magn. 30(2), 545-554 (2017)
Ba2YWO6	arxiv.1304.3649v3
Ba2ZnNpO6	C.R. Chimie 10 (2007), 859-871

Ba3MoO6	Springer Materials
Ba3NpO6	J. Chem. Thermod. 17 (6), 561-573 (1985)
Ba3PuO6	J. Chem. Thermod. 17 (6), 561-573 (1985)
BaBiO3	ICSD
BaCfO3	J. Alloys and Comp. 200, 181-185 (1993)
BaCmO3	J. Alloys and Comp. 200, 181-185 (1993)
BaPaO3	ICSD
BaPtO3	Appl. Catalysis A, 138, 93-108 (1996)
BaSbO3	PRB 43(4),43 (1991)
BaTaO3	Physica C 227, 252-256 (1997)
BaUSe3	Inorg. Chem. 55(15), 7734-7738 (2016)
Bi2CrFeO6	Physica B Condens Matter 383 (1):9-12
Bi2FeMoO6	arxiv:1404.7058
Bi2FeNiO6	Physica B 2470-2473 (2010)
Bi2MnFeO6	APL Materials 5(3) 035601 (2017)
Bi2MnMoO6	J Alloys and Compounds 699, 463-467 (2017)
Bi2MnNiO6	Phase Transitions 81 (7-8), 729-749 (2008)
Bi2MnReO6	PRB 83, 024410 (2011)
Bi2NiReO6	PRB 83, 024410 (2011)
Bi2TiMnO6	arxiv:1610.00409 (2016)
Bi2TiNiO6	J. Appl. Phys. 113 (143514) (2013)
Bi2TiZnO6	Chem Mater 18(24), 5810-5810 (2006)
Bi2VZnO6	Chem Mater 27(6) 2012-2017 (2015)
BiGaO3	ICSD
BiIrO3	PRL 115, 037602 (2015)

BiLuO3	Proc. R. Soc. A. 467, 2271-2290 (2011)
BiNiO3	ICSD
BiScO3	ICSD
BiTiO3	Optik - International Journal for light and electron optics, 3(127), 1503-1506
BiTmO3	Acta Cryst. (2015). B71, 507-513
BiVO3	Ceramics International 39(5), 5963-5966 (2013)
BiYO3	Springer Materials
Ca2BiDyO6	Chemical Papers 67 (10) 1311-1316 (2013)
Ca2BiSmO6	J. Photochemistry and Photobiology A: Chemistry, 307-308, 1-8 (2015)
Ca2FeSnO6	Semiconductors, 40 (11), 1261-1265 (2006)
Ca2MoLaO6	Acta Chimica Iasi, 22(2), 145-154 (2014)
Ca2MoSmO6	Acta Cemica Iasi 22(2), 145-154 (2014)
Ca2NbCeO6	Physica B 407 (1) 84-89
Ca2ReIrO6	Mat Res Bul 13, 347-351 (1978)
Ca2ScOsO6	Inorg Chem 55(5), 2240-2245 (2016)
Ca2SrWO6	Prog Solid State Chem 197-233 (1993)
Ca2YNbO6	Springer Materials
Cd2GaNbO6	J. Opt Adv. Mater 6(4) 1311-1315 (2004)
Cd2NbInO6	J. Optoel. Adv. Mater 8(5), 1884-1888 (2006)
CdHfO3	Mat Res Bulletin 10(3) 187-192 (1975)
CdPbO3	Inorg Chem 52, 1032-1039 (2013)
CeLuO3	J Solid State Chem 19(1) 29-33 (1976)
CeMnO3	Angew. Chem. 49(42), 7723-7727 (2010)
CeRhO3	J. Alloys and Comp. 210 177-184 (1994)
CeTiO3	J. Magnetism and Magn. Materials 37, 315-321 (1983)

CeTmO3	J. Solid. State Chem. 19, 29-33 (1976)
CeYbO3	J. Solid. State Chem. 19, 29-33 (1976)
CoTiO3	Cryst Eng. Comm. 18, 868-871 (2016)
Cs2AgAuCl6	ICSD
Cs2AgBiBr6	J Phys Chem Lett 7(7) 1254-1259 (2016)
Cs2AgBiCl6	J Phys Chem Lett 7(7) 1254-1259 (2016)
Cs2AgBiI6	J Phys Chem Lett 7(7) 1254-1259 (2016)
Cs2AgInF6	Z. Anorg. Chem. 423 (2) 125-132 (1976)
Cs2CoRbF6	Mat Res Bull 8(12), 1371-1382 (1973)
Cs2CuRbF6	Z. Anorg. Allg. Chem. 519, 195-203 (1984)
Cs2FeTlF6	Z. Anorg. Chem. 407 (3), 305-312 (1974)
Cs2InTlF6	Z. Anorg. Chem. 423 (2), 125-132 (1976)
Cs2KAgF6	ICSD
Cs2KBiF6	ICSD
Cs2KCoF6	Z. Anorg. Alg. Chem. 407, 313-318 (1950)
Cs2KCuF6	Z. Anorg. Alg. Chem. 532, 17-22 (1950)
Cs2KEuBr6	Sandia Report SAND2012-9951: Doty et al.
Cs2KLaI6	Abstract Poster 31 (Martin, V. Wei, H., Zhuravleva, M., Melcher, C.L.) 2014 Symp Rad. Meas. and Appl
Cs2KMnF6	J Solid State Chem. 153 (2), 248-253 (2000)
Cs2KMoF6	Z. Anorg. Chem. 416 (3), 240-250 (1975)
Cs2KNiF6	Z. Anorg. Chem. 405 (2), 167-175 (1974)
Cs2KPdF6	J. Fluorine Chem. 29 (1-2), 39 (1985)
Cs2KRhF6	Z. Anorg. Chem. 414(1), 91-96 (1975)
Cs2KTiF6	Z. Anorg. Chem. 403(2), 127-136 (1974)
Cs2KTlF6	Z. Anorg. Alg. Chem. 361 (304), 113-224 (2004)

Cs2LiUCl6	Springer Materials
Cs2MoTlF6	Z. Anorg. Chem. 416(3), 240-250 (1975)
Cs2NaBiF6	Springer Materials
Cs2NaInF6	ICSD
Cs2NaLaI6	Sandia Report SAND2012-9951: Doty et al.
Cs2NaNdF6	Sandia Report SAND2012-9951: Doty et al.
Cs2NaPmCl6	J. Phys. Chem. A, 114 (19), pp 6055,Äi6062 (2010)
Cs2NaTlF6	Z. Anorg Chem. 376 (3), 268-276 (1970)
Cs2NaUBr6	Springer Materials
Cs2NaUCl6	ICSD
Cs2PdHgCl6	Z. Anorg. Chem. 603 (1), 69-76, (1991)
Cs2RbBiF6	Springer Materials
Cs2RbCeBr6	Sandia Report SAND2012-9951: Doty et al.
Cs2RbLaCl6	Thermochimica Acta 234,287-295 (1994)
Cs2RbPdF6	J. Fluorine chemistry 29 1-2 39 (1985)
Cs2RbYBr6	Sandia Report SAND2012-9951: Doty et al.
Cs2RbYCl6	Sandia Report SAND2012-9951: Doty et al.
Cs2TiRbF6	J. Phys. Soc. Japan 82(10), 104709 (2013)
Cs2TlBiCl6	ACS Energy Letters, 1, 949-955 (2016)
Cs2TlBiF6	Springer Materials
Cs2VTlF6	Z. Anorg. Chem. 412(2), 110-120 (1975)
Cs3CeCl6	J. Th. Anal. Cal. 67, 789-826 (2002)
Cs3CoF6	Springer Materials
Cs3CuF6	Z. Anorg. Allg. Chem. 519, 195-203 (1984)
Cs3DyCl6	Springer Materials

Cs3EuCl6	Springer Materials
Cs3GdCl6	Springer Materials
Cs3GdF6	Opt. Mater. 28, 77-84 (2006)
Cs3HoCl6	Handbook of Inorganic Substances, Walter de Gruyter GmbH & Co (2015), P. Villars, K. Cenzual, R. Gladyshevskii
Cs3LaBr6	Springer Materials
Cs3LaCl6	Springer Materials
Cs3LuBr6	Prog. in Nucl Sci and Technol. 1, 275-278 (2011)
Cs3LuCl6	Prog. in Nucl Sci and Technol. 1, 275-278 (2011)
Cs3NdBr6	Molten Salts and Ionic Liquids: Never the Twain? John Wiley and Sons (2012), M. Gaune-Escard & K. R. Seddon
Cs3NdCl6	Inorg. Chem. 46,6, 2299 (2007)
Cs3PrCl6	Springer Materials
Cs3ScF6	J. Molec. Sci, 143 17-20 (1986)
Cs3TbBr6	CALPHAD: Comp. Coupling of Phase Diagrams and Thermochemistry 37 (2012) 108-115
Cs3TbCl6	Springer Materials
Cs3TmCl6	Springer Materials
Cs3YbF6	Mat Res Bul 17, 1251-1263 (1982)
Cs3YCl6	Springer Materials
Cs3YF6	Springer Materials
CsAgCl3	ICSD
CsAgF3	ICSD
CsAuBr3	ICSD
CsBaF3	Acta Phys Polonica A, 128(1), 34 (2015)
CsCaI3	Springer Materials
CsEuI3	Chem Mater 9(12), 2990-2995 (1997)
CsPdF3	Z. Anorg. Chem. 408 (2): 115-120 (1974)

CsSrBr3	Phys. Chem. Chem. Phys. 18, 13196-13208 (2016)
CsTlCl3	Chem. Mater., 25 (20) 4071-4079 (2013)
CsTlF3	Chem. Mater., 25 (20) 4071-4079 (2013)
CsTmBr3	Z. Anorg. Chem. 633, 2537-2552 (2007)
CsTmI3	Z. Anorg. Chem. 633, 2537-2552 (2007)
Dy2MgTiO6	J. Molec. Struc. 1067, 205-209 (2014)
DyInO3	Jap. J. Appl. Phys 12, 1432 (1973)
DyRhO3	Springer Materials
DySbO3	Handbook of Inorganic Substances, Walter de Gruyter GmbH & Co (2015), P. Villars, K. Cenzual, R. Gladyshevskii
DyTiO3	Springer Materials
Er2MnCoO6	Solid State Phenomena, 257, 95-98 (2017)
ErGaO3	Springer Materials
ErRhO3	Springer Materials
ErScO3	J. Solid State Che. 23, 129-134 (1978)
ErTiO3	J. Magnetism and Magnetic Materials, 20(2), 165-170 (1980)
Eu2MnWO6	Inorg. Chem. 14(4), 775 (1975)
Eu3TaO6	ICSD
Eu3WO6	Springer Materials
EuCoO3	Catalysis Today, 117 (1-3), 329-336 (2006)
EuHfO3	Adv. Func. Mater. 23(15), 1864-1872 (2013)
EuInO3	J. Inorg. Nucl. Chem. 38(8), 1471-1475 (1976)
EuMoO3	Chem Mater. 24, 3746-3750 (2012)
EuNbO3	J. Solid State Chem. 239, 192-199 (2016)
EuNpO3	J Solid State Chem 17, 113-120 (1976)
EuUO3	J Solid State Chem 17, 113-120 (1976)

EuVO3	Mat Res Bull 9, 1279-1284 (1974)
FeTiO3	ICSD
Gd2MgTiO6	International Journal of Science and Nature 6(1), 56-62, (2015)
Gd2MgZrO6	J. Mater Res. 5(10), 2160-2164 (1990)
Gd2NiZrO6	Adv Sci Lett. 20(3-4), 828-830 (2014)
GdInO3	Jpn. J. Appl. Phys. 12, 1432 (1973)
GdRhO3	Russian Journal of Inorganic Chemistry 51(7), 1116-1121 (2006)
HgPbO3	J. Solid State Che. 6, 509-512 (1973)
Ho2CoZrO6	Mat Res. Bull 47(12) 4226-4232 (2012)
Ho2CuZrO6	Phys Scr. 84 015602 (2011)
Ho2MgZrO6	Solid State Sci, 14(1), 21-25 (2012)
Ho2MnFeO6	PRB 82(22), 224413 (2010)
Ho2NiZrO6	Adv. Sci. Lett. 22(2), 581:583 (2016)
Ho2TiCdO6	Bull. Mater. Sci 34(3), 455-462 (2011)
Ho2TiCuO6	J. Magnetism and Magnetic Materials 303 (2), e332-e334
Ho2TiNiO6	J. Mater. Sci, 45(24), 6757-6762
Ho2TiZnO6	Indian J. Pure & Appl. Phys. 49, 613-618 (2011)
Ho2ZnZrO6	Physica B 406, 2703-2708 (2011)
Ho2ZrCdO6	J. Electroceramics 29(2), 99-105 (2012)
HoMnO3	Inorg Chem. 40(5), 1020-1028 (2001)
HoRhO3	J. Phas. Equil and Diffusion, 33(6), 429-436 (2012)
HoTiO3	J. Appl. Phys. 110, 083912 (2011)
In2TiZnO6	Am. J. Mater. Sci. 4(4), 165-168 (2014)
K2CsEuI6	Sandia Report SAND2012-9951: Doty et al.
K2LiEuCl6	Sandia Report SAND2012-9951: Doty et al.

K2LiGdCl6	Sandia Report SAND2012-9951: Doty et al.
K2LiPdF6	Springer Materials
K2LiYCl6	Sandia Report SAND2012-9951: Doty et al.
K2NaCoF6	Mat Res Bull 8, 1371-1382 (1973)
K2NaCuF6	Z. Anorg. Chem. 376 (3), 268-276 (1970)
K2NaErBr6	Sandia Report SAND2012-9951: Doty et al.
K2NaErCl6	Sandia Report SAND2012-9951: Doty et al.
K2NaGdBr6	Sandia Report SAND2012-9951: Doty et al.
K2NaInF6	Z. Anorg. Chem. 376 (3), 268-276 (1970)
K2NaMnF6	ICSD
K2NaMoF6	Z. Anorg. Chem. 416(3) 240-250 (1975)
K2NaNiF6	Z. Anorg. Chem. 405(2) 167-175 (1974)
K2NaPdF6	Proc. Indian. Acad. Sci. (Chem. Sci.) 92(1) 1-26, 1983
K2NaRhF6	Z. Anorg. Chem. 414(1), 91-96 (1975)
K2NaTiF6	Acta Cryst B 25 161 (1969)
K2NaTlF6	Z. Anorg. Chem. 376(3) 268-276 (1970)
K2RbCeCl6	Sandia Report SAND2012-9951: Doty et al.
K2RbCeF6	Mat. Res. Bull. 8, 1371-1382 (1973)
K2RbEuBr6	Sandia Report SAND2012-9951: Doty et al.
K2RbEuCl6	Sandia Report SAND2012-9951: Doty et al.
K2RbEuI6	Sandia Report SAND2012-9951: Doty et al.
K2ScCsF6	Sandia Report SAND2012-9951: Doty et al.
K3CeBr6	J. Therm. Anal. Calorim. 101, 493-498 (2010)
K3CeCl6	Inorg. Chem. 46, 6, 2299 (2007)
K3CoF6	Springer Materials + icsd

K3CrF6	ICSD
K3CuF6	Z. Anorg. Allg. Chem. 519 195-203 (1984)
K3DyCl6	Springer Materials
K3DyF6	Springer Materials
K3ErF6	Mat Res Bull 8, 605-618 (1973)
K3EuCl6	Springer Materials
K3EuF6	Springer Materials
K3HoCl6	Handbook of Inorganic Substances, Walter de Gruyter GmbH & Co (2015), P. Villars, K. Cenzual, R. Gladyshevskii
K3GdCl6	Springer Materials
КЗНоF6	Springer Materials
K3InF6	ICSD
K3LuF6	Springer Materials
K3MoF6	ICSD
K3NdBr6	Molten Salts and Ionic Liquids: Never the Twain? John Wiley and Sons (2012), M. Gaune-Escard & K. R. Seddon
K3NdCl6	Springer Materials + icsd
K3NdI6	Molten Salts and Ionic Liquids: Never the Twain? John Wiley and Sons (2012), M. Gaune-Escard & K. R. Seddon
K3NiF6	Springer Materials + icsd
K3PdF6	Z. Anorg. Allg. Chem. 540/541 (1986) 291-299
K3PrCl6	Springer Materials
K3PrF6	Springer Materials
K3ScF6	J. Molec. Struct. 143, 17-20 (1986)
K3SmF6	Springer Materials
K3TbBr6	Molten Salts and Ionic Liquids: Never the Twain? John Wiley and Sons (2012), M. Gaune-Escard & K. R. Seddon
K3TbCl6	J. Solid State Chem. 115, 484-489 (1995)
K3TbF6	Springer Materials

K3T1F6	ICSD
K3TmCl6	Springer Materials
K3TmF6	Springer Materials
K3VF6	Polyhedron 30 (8), 1425-1429 (2011)
K3YbF6	Springer Materials
K3YCl6	Z. Anorg. Allg. Chem. 624, 342-348 (1998)
KBaF3	Optical Materials 30, 15-17 (2007)
KCaBr3	Optical Materials 48, 1-6 (2015)
KCaI3	Optical Materials 48, 1-6 (2015)
KDyBr3	Z Anorg Allg Chem 619, 1374-1378 (1993)
KGeF3	Phys Rev X,6, 041061, 2016
KPaO3	Acta Cryst B27, 731 (1971)
KSrF3	J. Luminesc. 11, 363-367 (1976)
La2CrMoO6	PRB, 80, 054415 (2009)
La2CrNiO6	Commun. Comp. Phys. 14(1), 174-185 (2013)
La2CrWO6	PRB, 80, 054415 (2009)
La2CuNbO6	PRB, 80, 054415 (2009)
La2FeMoO6	Appl. Phys. Lett. 100, 132404 (2012)
La2LiWO6	Mat Res Bull 21, 401-406 (1986)
La2NiReO6	J. Magnetism and Magnetic Materials 357, 7-12 (2014)
La2ScNiO6	Commun. Comput. Phys. 14, 174-185 (2013)
La2ScVO6	Commun. Comput. Phys. 14, 174-185 (2013)
La2TiSrO6	ECS Meeting Abstract http://ma.ecsdl.org/content/MA2015-01/1/215
La2VAgO6	PRB 80, 054415 (2009)
La2VCuO6	PRB 84, 115134 (2011)

La2VReO6	J. Magnetism and Magnetic Materials 323, 176-179 (2011)
La2VTcO6	PRB 80, 224418 (2009)
La2ZnOsO6	Status Report, Max Planck Institute for Chemical Physics of Solids, Sept 2012-Sept 2015
LaAgO3	J. Superconductivity 1(2), 175 (1988)
LaAuO3	PRB 89, 195121 (2014)
LaBiO3	Arxiv 1611.04543v1
LaCeO3	Chem. Rev. 114, 10292-10368 (2014)
LaGdO3	Appl. Phys. Lett. 102, 252905 (2013)
LaMoO3	Acta Physica Polonica A 125(2), 278 (2014)
LaTlO3	arxiv 1609.03456v1
LaUN3	theo J. Solid State. Chem. 233, 484-491 (2016)
Li3CoF6	JACS 82 (19), 5027-5030 (1960)
Li3FeF6	ECS Transactions 25(14) 9-18 (2010)
LiMgF3	Chem Coomun 2440-2441 (2003)
LiNiF3	Chem. Commun. 2440-2441 (2003)
LiWO3	J. Non-crystalline solids 218, 273-279 (1997)
LiZnF3	Solid State Commun. 104(1) 47-50 (1997)
LuScO3	Appl. Phys. Lett. 90, 192901 (2007)
LuTiO3	J. Phys. Condens. Mater., 17(46) 7395-7406 (2005)
MgReO3	PRB 90, 094108 (2014)
MgTiO3	ACS Appl. Mater. INterfaces 5,6615-6621 (2013)
Mn2FeNbO6	ICSD
Mn2FeTaO6	ICSD
Mn2ScSbO6	Dalton Transactions 44, 20441-20448 (2015)
Mn3ReO6	ICSD

MnFeO3	PhD Thesis Stefano Diodati Universita degli studi di Padova (2009)
MnPbO3	Springer Materials
MnSnO3	Phys. Chem. Miner. 18, 244 (1991)
Na2CoBaF6	Mat. Res. Bull, 27, 1115-1123 (1992)
Na2CsCeF6	Sandia Report SAND2012-9951: Doty et al.
Na2CsErCl6	Sandia Report SAND2012-9951: Doty et al.
Na2CsEuCl6	Chem. Mater. 16, 4063-4070 (2004)
Na2CsGdCl6	Sandia Report SAND2012-9951: Doty et al.
Na2CsLaCl6	Sandia Report SAND2012-9951: Doty et al.
Na2CsLaF6	Sandia Report SAND2012-9951: Doty et al.
Na2CsNdF6	Sandia Report SAND2012-9951: Doty et al.
Na2KGdCl6	Sandia Report SAND2012-9951: Doty et al.
Na2KLaCl6	Sandia Report SAND2012-9951: Doty et al.
Na2KTiF6	Mat Res Bull 8, 1371-1382 (1973)
Na2LiNdCl6	Sandia Report SAND2012-9951: Doty et al.
Na2NiBaF6	Mat Res Bull. 27, 1115-1123 (1982)
Na2RbErCl6	Sandia Report SAND2012-9951: Doty et al.
Na2RbGdCl6	Sandia Report SAND2012-9951: Doty et al.
Na2RbNdF6	Sandia Report SAND2012-9951: Doty et al.
Na2SbCsF6	Sandia Report SAND2012-9951: Doty et al.
Na2ScCsF6	Sandia Report SAND2012-9951: Doty et al.
Na2YCsF6	Sandia Report SAND2012-9951: Doty et al.
Na3CoF6	J. Solid State Chem 13, 208-214 (1975)
Na3CuF6	Springer Materials
Na3DyBr6	Springer Materials

Na3GdCl6	Z. Anorg. Allg. Chem. 554, 25-33 (1987)
Na3InF6	PhD Thesis Daniel Schiffbauer, Uni Koln (2003)
Na3LuCl6	Springer Materials
Na3TbBr6	Springer Materials
Na3TmBr6	Springer Materials
NaCaBr3	(theo) PRB 31(11) (1985)
NaCaF3	(theo) Superlattices and Microstructures 82, 525-537 (2015)
NaCdF3	PRB 69,033102 (2004)
NaOsO3	PRB 87, 115119 (2013)
NaPaO3	Acta Cryst B27, 731 (1971)
NaSrF3	J. Luminescence 11, 363-367 (1976)
Nd2MgRuO6	MRS Fall Meeting abstract (2014)
Nd2MnFeO6	arxiv:1612.04064v1
NdGdO3	J. Therma. Analysis and Calorimetry 103(1), 17-21 (2011)
NdLuO3	J. Solid State Chem. 11(4) 346-346 (1974)
NdSbO3	Springer Materials
NdYbO3	Physica 139 & 140 B 658-660 (1986)
Pb2CaWO6	book "High Pressure Phase Transformation A Handbook: Volume 3" by E Yu Tonkov, Gordon and Break Publishers, page 58
Pb2CoOsO6	APS March Meeting 2015 Abstract #T31.010
Pb2CrMoO6	Solid State Commun. 204, 1-4 (2015)
Pb2CrOsO6	J. Alloys and Compounds 547, 126-131 (2013)
Pb2CrReO6	Chem. Mater. 27(12), 4450-4458 (2015)
Pb2FeOsO6	Inorg Chem 55(19), 9816-9821 (2016)
Pb2FeSbO6	J. Siberian Federal University Mathematics & Physics 2013, 6(2), 227-336
Pb2LuTaO6	Crystallography Rep. 44(2), 247-249 (1999)

Solid State Sci 19, 94-98 (2013)
J. Mater Sci. 28(2), 1824-1831 (2017)
JACS 132, 14470-14480 (2010)
Inorg Chem 50(12), 5545-5557 (2011)
Institute Laue-Langevin data report http://doi.ill.fr/10.5291/ILL-DATA.5-31-2421
Solid State Sci. 19, 94-98 (2013)
SPIN 04, 1450001 (2014)
PRB 70, 014108 (2004)
(icsd)
Mineralogical Magazie, 39, 49-53 (1973)
Mater. Chem. Phys. 78, 432-436 (2002)
RSC Advances 6, 48009-48015 (2016)
Mater. Chem. Phys. 78, 432-436 (2002)
Book: Perovskite Oxide for Solid Oxide Fuel Cells, Springer, Editor: Tatsumi Ishihara, Chapter 1
J. Alloys Comp. 480 (2), 650-657 (2009)
Springer Materials
J. Phys. Condens. Matter 17, 6217-6234 (2005)
J. Alloys Comp. 480 (2), 650-657 (2009)
arxiv:1304.1631
J. Alloys and Compounds, 634, 246-252 (2015)
J. Mater Sci 27(4) 3845-3853 (2016)
J. Appl. Phys. 107(9), 09E305 (2010)
J. Alloys and Comp. 689, 617-624 (2016)
J. Solid State Che. 229, 97-102 (2015)
J. Mater. Sci. Materials in Electronics 24(11), 4399 (2013)

PrTiO3	J. Magnetism and Magnetic Materials 44, 299-303 (1984)
PrYbO3	J. Solid State Chem. 11(4), 346-346 (1974)
PrYO3	J. Europ. Ceram. Soc. 28, 2363-2388 (2008)
PuGaO3	J. Am. Ceramic. Soc. 85 (11) 2811-2816 (2002)
RaPbO3	Radiochemistry, 55(1) 41-45 (2013)
Rb2CsCeBr6	Sandia Report SAND2012-9951: Doty et al.
Rb2CsCeF6	Sandia Report SAND2012-9951: Doty et al.
Rb2CsErCl6	Sandia Report SAND2012-9951: Doty et al.
Rb2CsEuBr6	Sandia Report SAND2012-9951: Doty et al.
Rb2CsEuCl6	Sandia Report SAND2012-9951: Doty et al.
Rb2CsGdBr6	Sandia Report SAND2012-9951: Doty et al.
Rb2CsGdCl6	Sandia Report SAND2012-9951: Doty et al.
Rb2CsGdF6	Sandia Report SAND2012-9951: Doty et al.
Rb2CsGdI6	Sandia Report SAND2012-9951: Doty et al.
Rb2CsNdBr6	Sandia Report SAND2012-9951: Doty et al.
Rb2CsNdCl6	Sandia Report SAND2012-9951: Doty et al.
Rb2CsNdF6	Sandia Report SAND2012-9951: Doty et al.
Rb2CsNdI6	Sandia Report SAND2012-9951: Doty et al.
Rb2InCsF6	Z. Anorg. Chem. 423(2), 125-132 (1976)
Rb2InTlF6	Z. Anorg. Chem. 423(2), 125-132 (1976)
Rb2KCoF6	Z. Anorg. Chem. 407(3), 313-318 (1974)
Rb2KCuF6	Springer Materials
Rb2KEuI6	Sandia Report SAND2012-9951: Doty et al.
Rb2KLaCl6	Thermochimica Acta 234, 287-295 (1994)
Rb2KMnF6	Z. Anorg. Chem. 319(2), 117-125 (1972)

Rb2KMoF6	Z. Anorg. Chem. 416(3), 240-250 (1975)
Rb2KNdBr6	Sandia Report SAND2012-9951: Doty et al.
Rb2KNiF6	Z. Anorg. Chem. 405(2), 167-175 (1974)
Rb2KPdF6	Springer Materials
Rb2KRhF6	Z. Anorg. Chem. 414(1), 91-96 (1975)
Rb2KTiF6	Z. Anorg. Chem. 403(2), 127-136 (1974)
Rb2LiGdF6	Sandia Report SAND2012-9951: Doty et al.
Rb2LiNdF6	Sandia Report SAND2012-9951: Doty et al.
Rb2NaBiF6	(icsd)
Rb2NaCoF6	(icsd)
Rb2NaEuBr6	Sandia Report SAND2012-9951: Doty et al.
Rb2NaGdBr6	Sandia Report SAND2012-9951: Doty et al.
Rb2NaGdF6	J. Luminesc. 149, 374-384 (2014)
Rb2NaGdI6	Sandia Report SAND2012-9951: Doty et al.
Rb2NaInF6	Radiation effects and defects in solids Y., 135 (1-4) 137-141 (1995)
Rb2NaMnF6	Zeit. Anorg. Chem. 391(2), 117-125 (1972)
Rb2NaMoF6	Zeit. Anorg. Chem. 416(3), 240-250 (1975)
Rb2NaNiF6	Zeit. Anorg. Chem. 405(2), 167-175 (1974)
Rb2NaRhF6	Zeit. Anorg. Chem. 414(1), 91-96 (1975)
Rb2NaTiF6	Zeit. Anorg. Chem. 403(2), 127-136 (1974)
Rb2ScCsF6	Sandia Report SAND2012-9951: Doty et al.
Rb3CeBr6	J. Thermal Analysis and Calorimetry 2(101) DOI: 10.1007/s10973-010-0824-7
Rb3CeCl6	J. Th. Anal. Cal. 67, 789-826 (2002)
Rb3CoF6	Springer Materials
Rb3CuF6	Z. Anorg Allg. Chem. 519 (1984) 195-203

Rb3DyCl6	Springer Materials
Rb3EuCl6	Springer Materials
Rb3EuF6	Springer Materials
Rb3GdCl6	Springer Materials
Rb3GdF6	Springer Materials
Rb3HoCl6	Handbook of Inorganic Substances, Walter de Gruyter GmbH & Co (2015), P. Villars, K. Cenzual, R. Gladyshevskii
Rb3LaBr6	Springer Materials
Rb3LaCl6	Springer Materials
Rb3LaI6	Molten Salts and Ionic Liquids: Never the Twain? John Wiley and Sons (2012), M. Gaune-Escard & K. R. Seddon
Rb3NdBr6	Handbook of Inorganic Substances, Walter de Gruyter GmbH & Co (2015), P. Villars, K. Cenzual, R. Gladyshevskii
Rb3NdCl6	Inorg. Chem. 46, 6, 2299 (2007)
Rb3NdF6	Springer Materials
Rb3NdI6	Inorg. Chem. 46, 6, 2299 (2007)
Rb3PrCl6	Physico-Chemical Analysis of Molten Electrolytes, V. Danek, Elsevier, Science (2006)
Rb3PrF6	Springer Materials
Rb3ScF6	J. Molec. Struct 174 (1988) 449-454
Rb3SmBr6	J. Thermal Analysis 46, 1239-1249 (1996)
Rb3SmCl6	J. Thermal Analysis Calorimetry 67, 789-826 (2002)
Rb3TbBr6	Inorg. Chem. 46, 6, 2299 (2007)
Rb3TbCl6	Inorg. Chem. 46, 6, 2299 (2007)
Rb3TlF6	ICSD
Rb3TmCl6	Springer Materials
Rb3YbF6	Springer Materials
Rb3YCl6	Zeit. Anorg. Allg. Chem. 618 13-17 (1992)
Rb3YF6	ICSD

RbAgF3	Acta Cryst. B53, 44-66 (1997)
11011510	
RbBaF3	EPJB doi: 10.1140/epjb/e2015-60107-5 (2015)
RbBaI3	Chem. Mater. 28, 4259-4266 (2016)
RbBiO3	arxiv 1704.04211v2
RbCaBr3	J. Cryst. Growth 466 39-44 (2017)
RbCaI3	Inorg Chem. 45, 9901-9906 (2006)
RbCdI3	Springer Materials
RbEuCl3	Springer Materials
RbFeCl3	Springer Materials
RbPaO3	Acta Cryst B27, 731 (1971)
RbPbBr3	Bachelor Thesis Matthew Ronald Linaburg, Ohio State, 2015
RbPbCl3	Springer Materials
RbSrBr3	J. therm. Analysis 35, 585-593 (1989
RbSrCl3	Springer Materials
RbSrF3	J. Luminesc. 11, 363-367 (1976)
RbTlCl3	arxiv 1302.1785v1
RbTmCl3	J. Less Common Metals 93(2), 371-380
RbTmI3	Z. Allg. Chem. 622 (5), 759-765 (1996)
RbYbI3	J. Less. Common. Metals 127 219-224 (1987)
SbCoO3	Sci. Technol. Adv. Mater. 16(2), 024801 (2015)
ScCoO3	J. Sci. Tech. of Adv. Mater. 024801 (2015)
ScFeO3	JACS, 136 (43) 15291-15299 (2014)
ScMnO3	Inorg. Chem. 52(16) 9692-9697 (2013)
ScRhO3	Inorg. Chem. 52(20) 12005-12011 (2013)
Sm2MnFeO6	J. Magn. and Magnetic Mater. 320 (14), e114-e116 (2008)

SmGaO3	Mat. Res. Bull. 9(5), 637-644 (1974)
SmSbO3	Handbook of Inorganic Substances, Walter de Gruyter GmbH & Co (2015), P. Villars, K. Cenzual, R. Gladyshevskii
Sr2BaUO6	Russian Journal of Inorganic Chemistry 55(6), 904-912 (2010)
Sr2CoTcO6	Comp. Mater. Sci. 92, 63-68 (2014)
Sr2FeHfO6	J. Alloys Comp. 586, 289-294 (2014)
Sr2FeSnO6	JETP Letters 82(4) 220-223 (2005)
Sr2FeTcO6	Comp. Mater. Sci. 92, 63-68 (2014)
Sr2FeZrO6	JETP Letters 82(4) 220-223 (2005)
Sr2GeMoO6	J. Phys. Chem. Solids doi:j.jpcs.2016.03.003 (2016)
Sr2MnOsO6	Chem. Phys. Lett. 501, 324-329 (2011)
Sr2MoBaO6	Springer Materials
Sr2MoOsO6	J. Magnetism and Magnetic Mater. 345, 195-200 (2013)
Sr2NbCeO6	Physica B Condens Matter 406 (3) 624-627 (2011)
Sr2NbNdO6	Solid State Ionics 149, 236-246 (2002)
Sr2NbTmO6	ICSD
Sr2NiTcO6	Comp. Mater. Sci. 92, 63-68 (2014)
Sr2RhIrO6	PRB 85, 115105 (2015)
Sr2SbCeO6	Integrated Ferroelectrics 116(1), 113-118 (2010)
Sr2ScMoO6	J. Solid State Chem. 219, 148-151 (2014)
Sr2TiIrO6	(icsd)
Sr2VFeO6	J Struct Chem 49 (5), 781-787 (2008)
Sr2VOsO6	Chem. Phys. Lett. 501, 324-329 (2011) - theo
Sr2VReO6	PRB 80, 054415 (2009)
Sr3NpO6	J Chem Thermodynamics 17, 561-573 (1985)
Sr3PuO6	J Chem Thermodynamics 17, 561-573 (1985)

SrAmO3	J. Phys. Chem. Solids 67 1531-1536 (2006)
SrBiO3	ICSD
SrIrO3	J. Appl. Phys 103, 103706 (2008)
SrNpO3	Hyperfine Interactions 28, 585-588 (1986)
SrPaO3	J. Inorg. Nucl. Chem. 27, 321-327 (1965)
SrPdO3	PRB 89, 045104 (2014)
SrPtO3	Phys Chem Chem Phys 15,7526-7533 (2013)
SrPuO3	J. Nucl Mater. 422, 163-166 (2012)
SrReO3	Phys Chem Chem Phys 15,7526-7533 (2013)
SrRhO3	Physica B Condens Matter 323-333 part 2, 820-821 (2003)
SrTaO3	J Cryst Growth 223, 161-168 (2001)
SrUO3	J Alloy Comp. 635, 163-172 (2015)
TbGaO3	Springer Materials
TbInO3	J. Inorg Nucl. Chem. 38(8) 1471-1475(1976)
TbTiO3	Mat Res Bull 4, 251-256 (1969)
TiFeO3	Springer Materials (possibly FeTiO3)
TiPbO3	Springer Materials (may be PbTiO3)
Tl2AgInF6	Mat. Sci. Eng. 24, 81-151 (1998)
Tl2KCrF6	Springer Materials
Tl2KGaF6	Springer Materials
Tl2KMoF6	Z. Anorg. Allg. Chem. 416, 240-250 (1975)
Tl2LiGdCl6	J. Lumin. 164, 86-89 (2015)
Tl2LiYCl6	IEEE Trans. Nucl. Science. 63(6) (2016)
Tl2NaBiCl6	Phys Rev. Appl. 3(5), 054005 (2015)
Tl2NaGaF6	Springer Materials

Tl2NaMoF6	Z. Anorg. Allg. Chemie 416, 240-250 (1975)
Tl2NaRhF6	Springer Materials
Tl3ScF6	Springer Materials
Tl3ScF6	J. Molec. Struct 174, 449-454 (1988)
Tl3TiF6	ICSD
TlCaF3	Front. Mat. Sci., 3, doi:10.3389/fmats.2016.00019 (2016)
TlCoF3	Phys. Lett. 44A(3), 187 (1973)
TlFeO3	J Solid State Chem. 161, 197-204 (2001)
TlHgF3	Front. Mat. Sci., 3, doi:10.3389/fmats.2016.00019 (2016)
TlMgF3	thery arxiv:1606.03279v1
TlMnO3	Inorg. Chem. 53(18), 9800-9808 (2014)
TlScO3	Inorg Chem. 55(4), 1940-1945 (2016)
TlVCl3	Springer materials
TmGaO3	Sci Rep 6, 34667 (2016)
TmRhO3	Springer Materials
TmScO3	Springer Materials
TmTiO3	Mat Res Bull 4, 251-256 (1969)
Y2CrCoO6	AIP Conf. Proc. 1722, 290012 (2016)
Y2CrFeO6	J. Phys. D: Appl. Phys. 46 416303 (2013)
Y2MgTiO6	Springer Materials
Y2MnFeO6	Dalton Trans 43(4) 1691-1698 (2014)
Y2VTcO6	arxiv: 1104.2399
Yb2MnCoO6	Appl. Phys. Lett. 107 (1), 012902 (2015)
YbGaO3	Mat. Res Bull. 1(4) 247-255 (1966)
YBiO3	Sci Rep 3,1651 (2013)

YbRhO3	J. Phas Equil. 37(4), 503-509 (2016)
YbScO3	PRB 82, 064101 (2010)
YInO3	J. Inorg. Nucl. Chem vol 38 1471-1475 (1976)
YTiO3	Springer Materials
YGaO3	Springer Materials
YRhO3	Mat Res Bull. 20,6 619-627 (1985)
YSbO3	Springer Materials
ZnFeO3	PhD thesis Universita degli studi di Padova Stefano Diodati