Memo No.		
Date	1	1

[1.1] 一片片层为维 (可解出) (1) / (1)

 $\int p = \varphi(x) = \int y = f(x, \varphi(x))$

 $\begin{array}{ccc} e, g & y = (y')^2 - \chi y' + \sum^2 & \xrightarrow{\chi} & y' = -\chi \\ \boxed{\bigcirc \hat{S}} & y' = P \\ \boxed{\searrow} & y = P^2 - \chi P + \sum^2 & & & \end{array}$

	Мо	Tu	We	Th	Fr	Sa	Su

Memo No.			_
Data	1	1	

③ 河端街: P=2p, dP-1P+X1. 2)+X

AJP和X加程

2p - x = 2p - x dx

 $2p - x - \frac{1}{2}$ $(2p - x) \left(\frac{df}{dx} - 1\right) = 0$ $\Rightarrow 2p = x, \quad p = \frac{x}{2}, \quad 2p = x + C$ $\Rightarrow y = \frac{x^2 + x^2}{2} + \frac{x^2}{2} = \frac{x^2}{4} \quad 3p = (x + c)^2 - (x + c)^2$ $= \frac{x^2}{2} + (0x + c^2)$

国代!

可以南平出 X X=TIY.yリ

2y'=p, $x=f(y_1p)$ the x sat y so with y_2 y_3 y_4 y_5 y_5 >p=4(y) [gft'

 $-4xyy' + 8y^2 = 0$ $(y')^3 + 8y^2$

図では	
Mo Tu Wo Th Fr Sa Su	Memo No
	Date / /
112 一件管道程	F(x, y, y') =0 (0 9=f(x,y')
	before LEC @x=f(y,y")
	为是y=p,两端键
①不至含y F(x,y')=0	2
F(x, y) =0	力, 齿线
2 y'=p F(x,p)=0 /	(Xop上的由线
$\int X = \varphi(t)$	14,
8 dx (r = 4 (t)	至是野村/
1 A	dy= y'dx, y'= 5x
P = y' $dy = y dx$	
	$dx = x'dt = \varphi'(t)dt$
=> dx=x'd+=4'(+)	(t
7	(= & p x'dt = p(t) q'(t)dt
两边同时外	2 = J& W(t) & (t) dt +C
$\int X = \varphi(t)$	
$y = \int \psi(t) \psi'(t) dt + C$	" 考表 方经砂计的通解
	1
Eq. $\chi^{3}_{+}(y)^{3}_{-}3xy'=0$	_
Eg. $\chi^{3}+(y')^{3}-3xy'=0$ $x^{3}+p^{3}-3xp'$	$=0$ $\begin{cases} X=Y(t) \end{cases}$
3 1 = 1 - 20	P= 7/(+)

$$\gamma = \frac{3t}{3 + t^3}$$

$$\begin{cases}
X = \frac{3t}{1+t^{2}} = \ell(t) \\
P = Xt = \frac{3t^{2}}{1+t^{3}} = \ell(t)
\end{cases}$$

$$\Rightarrow y = \int \psi(t) \varphi'(t) Jt + C$$

$$\psi'(t) = \left(\frac{3t}{1+t^{3}}\right)' = \frac{3+3+3-9+3}{(1+t^{3})^{2}}$$

$$5y = \int \frac{3t^{2}}{1+t^{3}} + \frac{3-3t^{3}}{(1+t^{3})^{2}} dt + C$$

$$= \int \frac{9t^{2}(1-2t^{3})}{(1+t^{3})^{3}} dt + C$$

$$= \int \frac{3(1-2u)}{(1+u)^3} du + C$$

$$= 3 \int (\frac{1}{1+u_{1}^{3}} - \frac{2u}{1+u_{1}^{3}}) du + C$$

Ifuzti dus

Memo No.		
Data	1	/

 $y^{2}(p-1)-(2-p)^{2}=0$ $(p+1)-(2+p)^{2}=0$ $y^{2}(p-1)-(2-p)^{2}=0$ $y^{2}=0$ y^{2

 $y = \frac{1-t^2}{t} = \frac{1}{1+t}$

 $\chi = \int \frac{\varphi'(t)}{\psi(t)} dt = \int \frac{-t^2 - t}{1 + t^2} dt + c$

 $= \int -\frac{1}{4\pi} dt + C$

 $=\frac{1}{t}+c$

 $\begin{cases} x = \frac{1}{t} + c \\ y = \frac{1}{t} - t \end{cases} = y = x - c - x - c$ $\begin{cases} y = \frac{1}{t} + c \\ y = x - c - x - c \end{cases}$