## **LLM Project Report Template**

### 1. Student Information

• Student Name: Rahul Kolarkar

Student ID (optional): 223742152

Date Submitted: 11<sup>th</sup> May 2025

### 2. Project Introduction

- Title of the Project:
  - Fine Tune LLM's for Enterprise Applications
- What is the project about?
  - This project explores how large language models (LLMs), can be fine-tuned using parameter efficient technique – QLoRA to classify sentiment in real world drugreviews. It involves building a robust sentiment analysis system that predicts if a patient's review is positive, negative or neutral and includes a user-interface for real-time prediction and feedback collection.
- Why is this project important or useful?
  - Understanding patient feedback is vital for improving healthcare outcomes. This
    project demonstrates how fine-tuned LLMs like LLaMA-2 can accurately classify
    drug review sentiment, enabling healthcare providers and enterprises to extract
    insights from large-scale patient data efficiently and cost-effectively.

## 3. API/Token Setup — Step-by-Step

Objective: Show how you obtained and securely used an API token for LLM access.

#### Instructions:

- 1. Specify which provider you're using:
  - o Hugging Face
- 2. List the **steps you followed** to generate the token:
  - Step 1: Created account at <a href="https://huggingface.co/join">https://huggingface.co/join</a>
  - Step 2: Navigated to the Access token section
  - o Step 3: Clicked on "Create new key"
  - Step 4: Copied the key and securely saved it
- 3. Screenshot or terminal output (required):

(Blur/redact the actual key)



### 4. Secure Loading of Token in Code:

Avoid hardcoding tokens — use os.environ or .env files.

**Code: Load Token Securely** 

```
from huggingface_hub import login
import os

# Load token from environment variable
hf_token = os.environ.get("HUGGINGFACE_TOKEN")
|
# Login using token
login(hf_token)
```

## 4. Environment Setup

- Development Platform:
  - o Google Colab
  - GPU Available? [ ✓ ] Yes [] No
  - o GPU Type (if applicable): A100
- Python Version: 3.11.2

**Code: Environment & GPU Check** 

```
[ ] import torch
    print("GPU available:", torch.cuda.is_available())

    GPU available: True
```

### 5. LLM Setup

- Model Name (e.g., GPT-3.5, LLaMA 2, Falcon, etc.): LLaMA-2 7B base
- Provider (OpenAI, Hugging Face, etc.): Hugging Face
- Key Libraries & Dependencies (with versions):
  - o bitsandbytes==0.45.5
  - o datasets==3.6.0
  - o gradio==5.29.0
  - o gradio\_client==1.10.0
  - o peft==0.15.2
  - o scikit-learn==1.6.1
  - o sentence-transformers==3.4.1
  - o tensorflow-datasets==4.9.8
  - o torch @ https://download.pytorch.org/whl/cu124/torch-2.6.0%2Bcu124-cp311-cp311-linux\_x86\_64.whl
  - o torchaudio @ https://download.pytorch.org/whl/cu124/torchaudio-2.6.0%2Bcu124-cp311-cp311-linux\_x86\_64.whl
  - o torchsummary==1.5.1
  - o torchvision @ https://download.pytorch.org/whl/cu124/torchvision-0.21.0%2Bcu124-cp311-cp311-linux\_x86\_64.whl
  - o transformers==4.48.3
  - o vega-datasets==0.9.0
- Libraries and Dependencies Required:

(Include all relevant Python packages. Provide requirements.txt if available.)

Code: Install & Import

```
requirements = """
    bitsandbytes==0.45.5
    datasets==3.6.0
    gradio==5.29.0
    gradio_client==1.10.0
    peft==0.15.2
    scikit-learn==1.6.1
    sentence-transformers==3.4.1
    tensorflow-datasets==4.9.8
    torch @ https://download.pytorch.org/whl/cu124/torc
    torchaudio @ https://download.pytorch.org/whl/cu124
    torchsummary==1.5.1
    torchvision @ https://download.pytorch.org/whl/cu12
    transformers==4.48.3
    vega-datasets==0.9.0
    with open("requirements.txt", "w") as f:
         f.write(requirements.strip())
[10] !pip install -r requirements.txt
```

### 6. Dataset Description

- Dataset Name & Source: DrugsCom Reviews dataset from Hugging Face datasets.
- Access Link (if public): https://huggingface.co/datasets/Zakia/drugscom\_reviews
- Feature Dictionary / Variable Description:
  - o drugName: The name of the drug reviewed.
  - o condition: The condition for which the drug was prescribed.
  - o review: The text of the review by the patient.
  - o rating: A patient satisfaction rating out of 10.
  - o date: The date when the review was posted.
  - o usefulCount: The number of users who found the review useful.
- Was preprocessing done? If yes, describe:
  - Mapped numerical rating values into three sentiment classes: negative (1-4), neutral (5-6), and positive (7-10).
  - Created a structured prompt column combining the review text with "Sentiment:" to guide the language model during inference.
  - Generated a target column to store the expected sentiment label for evaluation and fine-tuning tasks.

**Code: Load & Preprocess Dataset** 

```
# Load dataset
dataset = load_dataset("Zakia/drugscom_reviews")
train_df = pd.DataFrame(dataset["train"])
test_df = pd.DataFrame(dataset["test"])
```

```
# ============= 2. Preprocessing ======== #

def map_sentiment(rating):
    if rating <= 4:
        return "negative"
    elif rating <= 6:
        return "neutral"
    else:
        return "positive"

| for df in [train_df, test_df]:
    df['sentiment'] = df['rating'].apply(map_sentiment)
    df['prompt'] = "Review: " + df['review'].astype(str) + "\nSentiment:"
    df['target'] = df['sentiment']</pre>
```

## 7. Improving LLM Performance

Describe each improvement step (e.g., zero-shot  $\rightarrow$  few-shot  $\rightarrow$  tuned prompts  $\rightarrow$  fine-tuning). Include before and after scores and your code for each step.

**Zero-Shot Prompt:** The base LLaMA-2 model was prompted to classify sentiment using only the review text and a direct question without any examples.

**Few-Shot Prompt:** Three manually curated examples (positive, neutral, negative) were added before the test review to guide the model's understanding.

**Grid Search Hyper Parameter Tuning:** Grid search was applied over temperature, top-p, and max tokens to optimize few-shot prompt-based inference.

**Fine-Tuning with QLoRA:** The LLaMA-2 7B model was fine-tuned using QLoRA with LoRA adapters and 4-bit NF4 quantization. Hyperparameter tuning included batch size and learning rate.

| Step<br># | Method                                | Description                                                                    | Result Metric (e.g.,<br>Accuracy) |
|-----------|---------------------------------------|--------------------------------------------------------------------------------|-----------------------------------|
| 1         | Zero-shot Prompt                      | No examples                                                                    | 1%                                |
| 2         | Few-shot Prompt                       | 3 examples added                                                               | 66%                               |
| 3         | Grid Search Hyper-Parameter<br>Tuning | 'temperature': 0.9,  'top_p': 0.8,  'max_new_tokens': 3.0,  'accuracy': 66.93% | 64%                               |
| 4         | Fine-tuning                           | batch_size=2, learning_rate=3e-5,<br>epochs=2                                  | 67.93%                            |

#### **Code Snippets for Each Step**

### 1. Zero-Shot Prompt

```
[ ] # =========== 6.1 Inference and Evaluation - Zero-shot ======== #
     # Measure runtime
    start_time = time.time()
latencies = []
    predictions = []
     for review in tqdm(sample_df['review']):
         t0 = time.time()
         raw_pred = generate_sentiment_zeroshot(review)
clean_pred = extract_sentiment(raw_pred)
         t1 = time.time()
         latencies.append(t1 - t0)
         predictions.append(clean pred)
    end_time = time.time()
    sample_df["predicted_sentiment"] = predictions
    # Classification Metrics
    true_labels = sample_df['target'].str.lower()
pred_labels = sample_df['predicted_sentiment']
     pred_labels_cleaned = pred_labels.apply(lambda x: next((s for s in ["negative", "neutral", "positive"] if s in x), "unknown"))
→ 100%| 1500/1500 [07:55<00:00, 3.15it/s]
```

### 2. Few-Shot Prompt

```
# ========== 5.2 Few-Shot Prompting ======= #

few_shot = """

Review: I love this medication. It really helped me sleep and improved my mood.

Sentiment: positive

Review: This drug made me feel worse. I had terrible side effects and had to stop taking it.

Sentiment: negative

Review: It worked okay, but I still experienced some side effects. Not great, not terrible.

Sentiment: neutral

"""
```

## 3. Hyper-Parameter Tuning using Grid Search

```
[ ] temp_list = [0.5, 0.7, 0.9]
  top_p_list = [0.8, 0.9]
  max_tokens_list = [3, 5]

# Track results
  grid_results = []
```

### 4. Fine-Tune with QLoRA with Grid Search

```
from pathlib import Path
    import json
    # ====== CONFIGURATION =======
    bnb_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_use_double_quant=True,
        bnb 4bit quant type="nf4",
        bnb_4bit_compute_dtype=torch.float16
    lora_config = LoraConfig(
        r=8,
        lora_alpha=16,
        target_modules=["q_proj", "v_proj"],
        lora_dropout=0.05,
        bias="none",
        task_type="CAUSAL_LM"
    )
    # ======= GRID SETUP =======
    batch_sizes = [2]
    learning_rates = [1e-5, 2e-5, 3e-5]
    epochs = [2]
    results = []
```

# 8. Benchmarking & Evaluation

## **Required Components:**

- Metrics Used (e.g., Accuracy, F1, BLEU, etc.): Accuracy, F1-Score, Precision, Recall and Confusion Matrix
- Why those metrics?
  - These metrics were chosen because they are standard and effective for multiclass classification problems like sentiment analysis. In particular:
  - o Macro-averaged F1 ensures fairness across imbalanced classes.
  - Confusion matrix highlights specific weaknesses in model understanding (e.g., misclassifying neutral as positive).

**Benchmark Dataset & Sample Size:** I used 1500 samples of drugscom\_reviews from HuggingFace for benchmarking. After each step of fine-tuning the model on each training dataset, I tested the model on each benchmark dataset and made comparisons.

## **Code: Metric Calculation**

1. Zero-Shot Prompt

```
# ============ #
# Measure runtime
start_time = time.time()
latencies = []
predictions = []

for review in tqdm(sample_df['review']):
    t0 = time.time()
    raw_pred = generate_sentiment_zeroshot(review)
    clean_pred = extract_sentiment(raw_pred)
    t1 = time.time()
    latencies.append(t1 - t0)
    predictions.append(clean_pred)

end_time = time.time()

sample_df["predicted_sentiment"] = predictions

# Classification Metrics
true_labels = sample_df['target'].str.lower()
pred_labels = sample_df['predicted_sentiment']
pred_labels_cleaned = pred_labels.apply(lambda x: next((s for s in ["negative", "neutral", "positive"] if s in x), "unknown"))
```

Accuracy: 0.01

Precision (Macro): 0.4 Recall (Macro): 0.0075 F1-Score (Macro): 0.0146

### Per-Class Metrics:

|                                            | precision                    | recall                       | f1-score                     | support                |
|--------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------|
| negative<br>neutral<br>positive<br>unknown | 0.60<br>0.50<br>0.50<br>0.00 | 0.02<br>0.00<br>0.01<br>0.00 | 0.03<br>0.00<br>0.02<br>0.00 | 500<br>500<br>500<br>0 |
| accuracy<br>macro avg<br>weighted avg      | 0.40<br>0.53                 | 0.01<br>0.01                 | 0.01<br>0.01<br>0.02         | 1500<br>1500<br>1500   |

=========== Runtime Performance ===========

Total Samples Processed: 1500

Total Inference Time: 475.64 seconds

. . .

95th Percentile Latency: 0.3392 sec 99th Percentile Latency: 0.3755 sec

Throughput: 3.15 samples/sec Memory Usage (RSS): 2768.17 MB



### 2. Few-Shot Prompt

```
import numpy as np
   import psutil
   print("Accuracy:", round(accuracy_score(true_labels, pred_labels_cleaned), 4))
   report = classification_report(true_labels, pred_labels_cleaned, output_dict=True)
   macro = report['macro avg']
   print("Precision (Macro):", round(macro['precision'], 4))
   print("Recall (Macro):", round(macro['recall'], 4))
   print("F1-Score (Macro):", round(macro['f1-score'], 4))
   print("\nPer-Class Metrics:")
   print(classification_report(true_labels, pred_labels_cleaned))
   # Runtime Performance
   total_time = end_time - start_time
   avg_latency = np.mean(latencies)
   percentile_95 = np.percentile(latencies, 95)
   percentile_99 = np.percentile(latencies, 99)
   throughput = len(sample_df) / total_time
   memory_usage = psutil.Process().memory_info().rss / (1024 * 1024) # in MB
   print(f"Total Samples Processed: {len(sample_df)}")
   print(f"Total Inference Time: {total_time:.2f} seconds")
   print("...")
   print(f"95th Percentile Latency: {percentile_95:.4f} sec")
   print(f"99th Percentile Latency: {percentile_99:.4f} sec")
   print(f"Throughput: {throughput:.2f} samples/sec")
   print(f"Memory Usage (RSS): {memory_usage:.2f} MB")
```

Accuracy: 0.6607

Precision (Macro): 0.6484 Recall (Macro): 0.6607 F1-Score (Macro): 0.6225

### Per-Class Metrics:

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| negative     | 0.66      | 0.83   | 0.73     | 500     |
| neutral      | 0.61      | 0.26   | 0.36     | 500     |
| positive     | 0.68      | 0.90   | 0.77     | 500     |
| accuracy     |           |        | 0.66     | 1500    |
| macro avg    | 0.65      | 0.66   | 0.62     | 1500    |
| weighted avg | 0.65      | 0.66   | 0.62     | 1500    |

Total Samples Processed: 1500

Total Inference Time: 523.03 seconds

. . .

95th Percentile Latency: 0.3883 sec 99th Percentile Latency: 0.3914 sec

Throughput: 2.87 samples/sec Memory Usage (RSS): 2772.43 MB



## 3. Hyper-Parameter Tuning using Grid Search

```
print("Accuracy:", round(accuracy_score(true_labels, pred_labels_cleaned), 4))
    report = classification_report(true_labels, pred_labels_cleaned, output_dict=True)
    macro = report['macro avg']
    print("Precision (Macro):", round(macro['precision'], 4))
   print("Recall (Macro):", round(macro['recall'], 4))
print("F1-Score (Macro):", round(macro['f1-score'], 4))
    print("\nPer-Class Metrics:")
    print(classification_report(true_labels, pred_labels_cleaned))
    # Runtime Performance
    total_time = end_time - start_time
    avg_latency = np.mean(latencies)
    percentile_95 = np.percentile(latencies, 95)
    percentile_99 = np.percentile(latencies, 99)
    throughput = len(sample_df) / total_time
    memory_usage = psutil.Process().memory_info().rss / (1024 * 1024) # in MB
   print("\n=========== Runtime Performance ========")
    print(f"Total Samples Processed: {len(sample_df)}")
    print(f"Total Inference Time: {total_time:.2f} seconds")
    print("...")
   print(f"95th Percentile Latency: {percentile_95:.4f} sec")
    print(f"99th Percentile Latency: {percentile_99:.4f} sec")
    print(f"Throughput: {throughput:.2f} samples/sec")
    print(f"Memory Usage (RSS): {memory_usage:.2f} MB")
```

Accuracy: 0.64

Precision (Macro): 0.6153 Recall (Macro): 0.64 F1-Score (Macro): 0.6058

### Per-Class Metrics:

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| negative     | 0.64      | 0.79   | 0.71     | 500     |
| neutral      | 0.52      | 0.25   | 0.34     | 500     |
| positive     | 0.68      | 0.88   | 0.77     | 500     |
| accuracy     |           |        | 0.64     | 1500    |
| macro avg    | 0.62      | 0.64   | 0.61     | 1500    |
| weighted avg | 0.62      | 0.64   | 0.61     | 1500    |

Total Samples Processed: 1500

Total Inference Time: 522.77 seconds

• • •

95th Percentile Latency: 0.3883 sec 99th Percentile Latency: 0.3918 sec Throughput: 2.87 samples/sec

Throughput: 2.87 samples/sec Memory Usage (RSS): 2805.12 MB



## 4. Fine-Tune with QLoRA with Grid Search

```
import numpy as np
                             == Classification Metrics ===
    print("\n" + "="*22, "Classification Metrics", "="*22)
    acc = round(accuracy_score(true_labels, pred_labels), 4)
    report = classification\_report(true\_labels, pred\_labels, output\_dict= \\ True, zero\_division=0)
    macro = report["macro avg"]
    print("Accuracy:", acc)
    print("Precision (Macro):", round(macro["precision"], 4))
    print("Recall (Macro):", round(macro["recall"], 4))
print("F1-Score (Macro):", round(macro["f1-score"], 4))
    print("\nPer-Class Metrics:")
    \label{print} {\tt print}({\tt classification\_report}({\tt true\_labels},\ {\tt pred\_labels},\ {\tt zero\_division=0}))
    # ======== Runtime Performance ======== print("\n" + "="*22, "Runtime Performance", "="*22)
    total_time = end_time - start_time
    avg_latency = np.mean(latencies)
    percentile_95 = np.percentile(latencies, 95)
    percentile_99 = np.percentile(latencies, 99)
    throughput = len(sample_df) / total_time
    memory_usage = psutil.Process().memory_info().rss / (1024 * 1024)
    print(f"Total Samples Processed: {len(sample_df)}")
    print(f"Total Inference Time: {total_time:.2f} seconds")
    print(f"Average Latency: {avg_latency:.4f} sec")
    print(f"95th Percentile Latency: {percentile_95:.4f} sec")
    print(f"99th Percentile Latency: {percentile_99:.4f} sec")
    print(f"Throughput: {throughput:.2f} samples/sec")
    print(f"Memory Usage (RSS): {memory_usage:.2f} MB")
```

Accuracy: 0.6793

Precision (Macro): 0.6776 Recall (Macro): 0.6793 F1-Score (Macro): 0.6783

### Per-Class Metrics:

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| negative     | 0.66      | 0.68   | 0.67     | 500     |
| neutral      | 0.56      | 0.54   | 0.55     | 500     |
| positive     | 0.82      | 0.83   | 0.82     | 500     |
| accuracy     |           |        | 0.68     | 1500    |
| macro avg    | 0.68      | 0.68   | 0.68     | 1500    |
| weighted avg | 0.68      | 0.68   | 0.68     | 1500    |

========== Runtime Performance ============

Total Samples Processed: 1500

Total Inference Time: 499.31 seconds

Average Latency: 0.3307 sec

95th Percentile Latency: 0.4021 sec 99th Percentile Latency: 0.4361 sec

Throughput: 3.00 samples/sec Memory Usage (RSS): 3076.50 MB



**Plot Results** 



### Interpretation:

- 1. Zero-Shot: The model performs extremely poorly with almost no accuracy (~1%). This is expected since no context or examples are provided.
- 2. Few-Shot Prompting: Accuracy jumps to ~66% a massive improvement. The model benefits significantly from being shown a few labelled examples before prediction.
- 3. Hyper-Parameter Tuning: Accuracy dips slightly to ~64%. This suggests that adjusting parameters like temperature and top-p helped explore the configuration space, but didn't surpass the initial few-shot setup possibly due to limits of prompt-only inference.
- 4. Fine-Tuning: Accuracy climbs to its highest value at ~67.9%, indicating that actually training the model weights (even partially, via LoRA) produces the best performance overall.

### **Key Insights:**

- Biggest Gain: From Zero-Shot → Few-Shot, a ~65% jump showing how powerful contextual examples are.
- Improvement Tapers Off: Between Few-Shot → Hyperparameter Tuning → Fine-Tuning, gains are marginal (~1–3%), indicating diminishing returns.

# 9. UI Integration

- Tool Used (e.g., Gradio, Streamlit): Gradio
- Key Features of the Interface:
  - Built using Gradio for fast, user-friendly deployment in Colab and browser environments.
  - Multi-tab Layout with:
    - Sentiment Prediction Tab: Users enter a drug review and receive sentiment output as positive, neutral, or negative.

- Feedback Submission Tab: Users can flag incorrect predictions and submit corrected labels for potential future improvement.
- Explain Prediction Tab (in progress): Integrates LIME to highlight which words influenced the model's sentiment decision.
- o Real-time Inference powered by the fine-tuned LLaMA-2 model.
- Secure Deployment using Hugging Face token management via environment variables.
- o Interactive Widgets like textboxes, radio buttons, and HTML output make it intuitive and visually clear for non-technical users.
- Include 2+ Screenshots of Working UI:



| Predict Sentiment                | Submit Feedback         | ter a drug review and receive its predicted sentiment.    Explain Prediction |
|----------------------------------|-------------------------|------------------------------------------------------------------------------|
|                                  |                         |                                                                              |
|                                  | ediction was incorrect  | or misleading, flag it below.                                                |
| Review text  This medication com | npletely changed my lif | e. My symptoms have improved drastically with no side effects.               |
|                                  |                         |                                                                              |
| Why are you flagging t           | his?                    |                                                                              |
| should be positive b             | ut flagged negative     |                                                                              |
|                                  |                         | Submit Feedback                                                              |
|                                  |                         |                                                                              |
|                                  |                         |                                                                              |

**Code: UI Implementation** 

```
    import gradio as gr

     with gr.Blocks(title="LLM Drug Review Sentiment Analyzer") as demo:
         gr.Markdown("# Drug Review Sentiment Analyzer")
         gr.Markdown("Powered by fine-tuned LLaMA-2 using QLoRA. Enter a drug review and receive its predicted sentiment.")
         with gr.Tab(" Predict Sentiment"):
              with gr.Row():
                   review_input = gr.Textbox(lines=6, label="Enter your drug review here")
                   sentiment_output = gr.Radio(
    ["Positive", "Neutral", "Negative", "Unknown"],
                         label="Predicted Sentiment",
                        \verb|interactive=False|
              predict_btn = gr.Button("Analyze")
              predict_btn.click(
                   fn=predict_sentiment_ui,
                   inputs=review_input,
                   outputs=sentiment_output
         with gr.Tab("Submit Feedback"):
              gr.Markdown("If you think the model prediction was incorrect or misleading, flag it below.")
               flagged_review = gr.Textbox(lines=4, label="Review text")
feedback_reason = gr.Textbox(lines=2, label="Why are you flagging this?")
               flag_button = gr.Button("Submit Feedback")
               def flag_callback(text, reason):
                   # Save flagged text and reason to a log file or database
with open("flagged_feedback.txt", "a") as f:
    f.write(f"Review: {text}\nReason: {reason}\n---\n")
                   return "Thanks! Your feedback has been recorded."
               flag_output = gr.Textbox(label="", interactive=False)
               flag_button.click(fn=flag_callback, inputs=[flagged_review, feedback_reason], outputs=flag_output)
         with gr.Tab(" Explain Prediction"):
            gr.Markdown("Use LIME to explain why the model predicted a certain sentiment.")
lime_input = gr.Textbox(lines=4, label="Enter a review to explain")
```