Eine Woche, ein Beispiel 6.19 idempotent algebras

This document want to discuss some basic contents of the course "https://people.mpim-bonn.mpg.de/scholze/Complex.pdf", Lecture 5. For me I've never noticed about this special structure before. Hope that you enjoy this small magic.

This can be a perfect series of exam questions for the Algebra III in USTC. (better if they have learned computations on tensor products)

Q: Find all (reduced)
$$\mathbb{Z}$$
-algebra A s.t. $A \otimes_{\mathbb{Z}} A \cong A$ as a \mathbb{Z} -alg iso.

A crash recap on [Vakil 9.2] Skip if you know fiber product of schemes!

$$E_{x}$$
. $C \in CRing$, $A, B \in C - Alg$ $\Rightarrow A \otimes_{c} B$ is $C - Alg$, and $A \otimes_{c} B \longleftarrow A$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad B \longleftarrow C$$

is a pushout.

Let
$$\phi: B \to A$$
 be a ring homomorphism. $I \triangleleft B$ S multiplicative set $9.2.A.$ (Adding an extra variable) $A \otimes_B B[t] \cong A[t]$ $9.2.B.$ (Quotient) $A \otimes_B B/I \cong A/\phi(I)$ $A \otimes_B S^{-1}B \cong [\phi(S)]^{-1}A$

Ex. Compute
$$\mathbb{C}\otimes_{\mathbb{R}}\mathbb{C}$$

Compute fibers of Spec $\mathbb{Z}[i] \longrightarrow \operatorname{Spec} \mathbb{Z}$

Definition and some cases

Def. Let $R \in Ring$. $A \in R - Alg$ is called idempotent R - algebra if $A \otimes_R A \cong A$ induced by $A \cong R \otimes_R A \longrightarrow A \otimes_R A$ as an R - alg iso.

Ex. Verify that $\mathbb{Z}[t]$, \mathbb{F}_p , \mathbb{Q} are idempotent \mathbb{Z} -algebras. Is \mathbb{F}_{p^2} idempotent? Is $\mathbb{Z}/p^2\mathbb{Z}$ idempotent? Is \mathbb{Z}_p idempotent?

A new topology on Spec A

Def. (Constructable topology) $X \subseteq Spec A$ is called constructable closed if $\exists f. Spec B \rightarrow Spec A$ Imf = X

Ex. Find all constructable closed subset of Spec \mathbb{Z} Ex. Find all constructable closed subset of Spec $\mathbb{C}[X]$ Ex. $\{Zariski\ closed/open\ subset\}$ \subseteq $\{Constructable\ closed\ set\}$

Lem A. A' are idem R-algs. Then # Morr-alg (A, A') = 1.

Proof. $R \longrightarrow A \xrightarrow{f} A' \cong R \otimes_R A' \longrightarrow A \otimes_R A'$ $-\otimes_R A'$. $R \otimes_R A' \longrightarrow A \otimes_R A' \xrightarrow{f \otimes_R A'} A' \otimes_R A' \cong R \otimes_R A' \otimes_R A' \longrightarrow A \otimes_R A' \otimes_R A'$ $A' \qquad \qquad A' \qquad \qquad A' \otimes_R A' \cong A'$ $A \otimes_R A' \cong A' \qquad doesn't depend on <math>f$, so f given by $A \longrightarrow A \otimes_R A' \cong A'$ is unique.

Cor. Sidem R-algs } is a poset.

Fact. This order is compatible with constructable topology

(Only consider reduced algs. R is Noetherian.)