

Discrete Structures and Theory (Spring 2023) Homework 1

Deadline: 27/01/2023

Total: 9 POINTS

- 1. (3 POINTS) Write each of these statements in the form "if p, then q" in English.
 - a) It is sufficient to leave Accra at 6:00AM to get to campus by 8:00AM.

SOLUTION

(1/2 POINT)

If we leave Accra at 6:00AM, then we will get to campus by 8:00am

b) Willy gets caught whenever he cheats.

SOLUTION

(1/2 POINT)

If Willy cheats, then he gets caught.

c) You can access the website only if you pay a subscription fee.

SOLUTION

(1/2 POINT)

If you can access the website, then you paid a subscription fee.

d) Getting elected follows from knowing the right people.

SOLUTION

(1/2 POINT)

If you know the right people, then you will get elected.

e) Winds from the south imply a spring thaw.

SOLUTION

(1/2 POINT)

If there are winds from the south, then there's a spring thaw.

f) Abena will go to Accra unless she missed the bus.

SOLUTION

(1/2 POINT)

If Abena does not miss the bus, then she will go to accra.

2. (3 POINTS) Construct a truth table for each of these compound propositions:

a) $p \oplus p$

SOLUTION (1 POINT)

<u> </u>				
p	$p \oplus p$			
T	F			
F	F			

b) $(p \oplus q) \lor (p \oplus \neg q)$

SOLUTION (2 POINTS)

p	q	$\neg q$	p⊕q	$p \oplus \neg q$	$(p \oplus q) \lor (p \oplus \neg q)$
T	T	F	F	T	T
T	F	T	T	F	T
\overline{F}	T	F	T	F	T
\overline{F}	F	T	F	T	T

3. (3 POINTS) Use logical equivalences to show that $[\neg p \land (p \lor q)] \rightarrow q$ is a tautology.

<u>Steps</u> <u>Reasons</u>

$$[\neg p \land (p \lor q)] \rightarrow q \equiv \neg [\neg p \land (p \lor q)] \lor q$$
 Conditional-disjunction equivalence (1/4 POINT)

$$\equiv (\neg \neg p \lor \neg (p \lor q)) \lor q$$
 1ST De Morgan's Law (1/4 POINT)

$$\equiv (p \lor (\neg p \land \neg q)) \lor q$$
 Double negation law & 2nd De Morgans Law (1 POINT)

$$\equiv$$
 (($p \lor \neg p$) \land ($p \lor \neg q$)) $\lor q$ 1st Distributive Law (1/4 POINT)

$$\equiv$$
 (T \land (p $\lor \neg q$)) \lor q 1st negation law (1/4 POINT)

$$\equiv (p \lor \neg q) \lor q$$
 1st Identity law (1/4 POINT)

$$\equiv p \vee (\neg q \vee q)$$

$$\equiv (p \vee T)$$

$$\equiv T$$
1st associative law (1/4 POINT)
$$\equiv T$$
1st negation law (1/4 POINT)
$$\equiv T$$

OR

$$[\neg p \land (p \lor q)] \rightarrow q \equiv \neg [\neg p \land (p \lor q)] \lor q$$
 Conditional-disjunction equivalence (1/2 POINT)
$$\equiv \neg \neg p \lor \neg (p \lor q) \lor q$$

$$1^{ST} \text{ De Morgan's Law (1/2 POINT)}$$

$$\equiv (p \lor q) \lor \neg (p \lor q)$$
 Double negation law & 1st Commutative law (1 POINT)
$$\equiv T$$

$$1^{st} \text{ Negation law (1 POINT)}$$