8a) If
$$G=\langle S \rangle$$
 then the homomorphism ϕ is completely determined by $\{\phi(s): s \in S\}$. In other words, if $\tilde{\phi}: G \rightarrow H$ is any homomorphism with $\tilde{\phi}(s)=\phi(s)$, $\forall s \in S$, then $\tilde{\phi}=\phi$.

Pf: Suppose $\tilde{\phi}: G \rightarrow H$ is a hom. with $\tilde{\phi}(s)=\phi(s)$, $\forall s \in S$.

Then
$$\forall g \in G$$
, $\exists n \in \mathbb{N}$, $g_1, ..., g_n \in S$, and $u_1, ..., u_n \in \{\pm 1\}$
s.t. $g = g_1^{u_1} g_2^{u_2} ... g_n^{u_n}$. Then
$$\widetilde{\phi}(q) = \widetilde{\phi}(g_1)^{u_1} \widetilde{\phi}(g_2)^{u_2} ... \widetilde{\phi}(g_n)^{u_n}$$

$$= \phi(q_1)^{u_1} \phi(q_2)^{u_2} \cdots \phi(q_n)^{u_n} = \phi(q). \quad \square$$

Important: When defining a hom. $\phi:G \to H$, just choosing values for $\phi(s)$, for $s \in S$, doesn't guarantee that ϕ will actually extend to a hom. on all of G. $\frac{see}{examples}$

Exs:

1) Find all homomorphisms
$$\phi: \mathbb{Z}/8\mathbb{Z} \to \mathbb{C}_6$$
.

Write
$$C_6 = \langle x \rangle = \{e, x, x^2, x^3, x^4, x^5\}.$$

is determined $\phi(1)$. There are six choices to consider:

· If
$$\phi(1)=e$$
 then for ϕ to be a hom. we must have,

$$\forall 0 \le k \le 7$$
, $\phi(k) = \phi(\underbrace{1 + 1 + \dots + 1}) = \underbrace{\phi(1) \cdot \phi(1) \dots \phi(1)}_{k-times} = e^k = e$.

This does define a hom., the trivial hom.

- Can't have $\phi(1)=x$:
 - If ϕ is a hom. then $|\phi(1)||$ | | | | (property 5a) But |1|=8, |x|=6, and 648.
 - Another way to see this: If ϕ were a hom.

 where $\phi(i) = x$ then $\phi(k) = \phi(i)^k = x^k$, $\forall k \in \mathbb{Z}$.
 - But 1=9 mod 8, so $\phi(9) = \phi(1) = x \neq x^9$. • Similarly, can't have $\phi(1) = x^2, x^4, \text{ or } x^5$

 $|x^2| = \frac{6}{(2,6)} = 3$, $|x^4| = \frac{6}{(4,6)} = 3$, $|x^5| = \frac{6}{(5,6)} = 6$.

• If ϕ were a hom. with $\phi(1) = x^3$ then it would force $\phi(k) = \phi(1)^k = x^{3k}$, $0 \le k \le 7$: $\frac{k}{\phi(k)} = x^3 = x^3 = x^3 = x^3$

This does define a (non-trivial) hom.

So, there are 2 homs. from $\frac{72}{872}$ to C_6 : the trivial hom., and the hom. determined by the rule $1 \mapsto x^3$.

```
2) Find all homs. \phi: S_3 \rightarrow C_6.
 Write S_3 = \langle (12), (123) \rangle, C_6 = \langle x \rangle = \{e, x, x^2, x^3, x^4, x^5\}.

order 3 order 2
Any hom. \phi: S_3 \rightarrow C_6 is determined by \phi((121)) and \phi((123))
Since 10(9)//19/ must have:
  \phi((12)) = e or x^3 and \phi((123)) = e, x^2, or x^4. (6 possibilities)
   · Can't have | $((12)) = 2 and | $((123)) = 3:
      Since \phi(S_3) \leq C_6, by Lagrange's thm. |\phi(S_3)| = 1, 2, 3, \text{ or } 6.
      If |\phi(S_3)|=6 then \phi would be an isomorphism. However,
       C6 is Abelian and S3 is not, so this can't happen,
       which means that |\phi(S_3)| = 1, 2, or 3.
      Finally \forall q \in S_3, we have |\phi(q)| |\phi(S_3)|.
      Therefore we can't have |\phi((12))|=2 and |\phi((123))|=3.
 · Suppose \phi((121) = \phi((123)) = e.
```

Then \$\phi\$ extends to the trivial hom. from Sz to C6.

· Suppose $\phi((12)) = \chi^3$, $\phi((123)) = e$.

If ϕ extends to a hom. Then it must be given by: $\frac{\sigma}{\phi(\sigma)} = \frac{(123)(132)}{(12)(23)} = \frac{(13)}{(13)}$ $\frac{\sigma}{\phi(\sigma)} = \frac{(123)(132)}{(12)(23)} = \frac{(13)}{(13)}$

Scratch work: $(123)^{e} = (132) \Rightarrow \phi((132)) = \phi((123))^{e} = e^{e} = e$

 $(12)(123)=(23) \Rightarrow \phi((23))=\phi((12))\phi((123))=\chi^{3}\cdot e=\chi^{3}$

 $(15)(153)^{2} = (15)(135) = (13) \Rightarrow \phi((13)) = \phi((15))\phi((153))^{2} = \chi^{3} \cdot e^{2} = \chi^{3}$

Note: This map can also be defined by

 $\phi(\sigma) = \begin{cases} x^3 & \text{if } \sigma \text{ is odd}, \\ e & \text{if } \sigma \text{ is even}. \end{cases}$

From this, it is easy to see that it is a homomorphism.

· Suppose φ(((2)) = e, φ(((23)) = x2.

If ϕ extends to a hom. Then it must be given by:

$$\sigma$$
 e (123) (132) (12) (23) (13) $\phi(\sigma)$ e χ^{2} χ^{4} e χ^{2} χ^{4}

Scratch work: $\phi((132)) = \phi((123))^2 = \chi^4$

$$\phi((23)) = \phi((12))\phi((123)) = \chi^2$$

$$\phi((12)) = \phi((12))\phi((122))_{z} = \chi_{A}$$

Problem: $(23)^2 = e_1$ so $e = \phi((23)^2) \neq \phi((23))^2 = x^4$.

So this choice does not extend to a hom.

· Suppose φ(((2)) = e, φ(((23)) = x4.

If ϕ extends to a hom. Then it must be given by: $\frac{\sigma}{\phi(\sigma)} = \frac{(123)(132)(12)(23)(13)}{\chi^4 \chi^2} = \chi^4 \chi^2$

But $e = \phi((23)^2) \neq \phi((23))^2 = \chi^8 = \chi^2$.

So this choice does not extend to a hom.

So, there are 2 homs. from S_3 to C_6 : the trivial hom., and the hom. determined by the rule $(|z)\mapsto x^3$, $(|z|)\mapsto e$.

8b) Suppose that $G = \langle S \rangle$, that $\phi : S \rightarrow H$, and that any relation satisfied by elements $s_1, ..., s_n \in S$ is also satisfied with these replaced by $\phi(s_1), ..., \phi(s_n)$.

Then ϕ extends uniquely to a homomorphism from G to H.

Note: When a presentation for G is given (i.e. using generators and relations), you only need to check the above condition for the relations in the presentation.

Let $\phi(r) = (1 \ z \ s), \ \phi(s) = (1z).$ Then:

$$\cdot L_3 = 6$$
 and $(1 \cdot 2 \cdot 2)_3 = 6$

$$(13)$$

$$(13)$$

$$(13)$$

$$(13)$$

$$(13)$$

$$(13)$$

$$(13)$$

Therefore, ϕ extends to a hom. $\phi: D_6 \rightarrow S_3$. But $3 = |\phi(r)| |\phi(D_6)|$ and $z = |\phi(s)| |\phi(D_6)|$ $\Rightarrow |\phi(D_6)| = 6 \Rightarrow \phi$ is bijective, therefore it is an isomorphism.