(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2005年9月29日(29.09.2005)

PCT

(10) 国際公開番号 WO 2005/091073 A1

(51) 国際特許分類7: C08G 77/16, G03F 7/075, H01L 21/027

G03F 7/038.

(21) 国際出願番号:

PCT/JP2005/004326

(22) 国際出願日:

2005年3月11日(11.03.2005)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2004-080481

2004年3月19日(19.03.2004)

(71) 出願人 (米国を除く全ての指定国について): 東 京応化工業株式会社 (TOKYO OHKA KOGYO CO., LTD.) [JP/JP]; 〒2110012 神奈川県川崎市中原区中丸 子 1 5 0 番地 Kanagawa (JP).

- (72) 発明者; および
- (75) 発明者/出願人(米国についてのみ): 安藤 友之(ANDO、 Tomoyuki) [JP/JP]; 〒2110012 神奈川県川崎市中原区 中丸子 1 5 0番地 東京応化工業株式会社内 Kanagawa
- (74) 代理人: 棚井 澄雄 , 外(TANAI, Sumio et al.); 〒 1048453 東京都中央区八重洲 2 丁目 3 番 1 号 Tokyo
- (81) 指定国(表示のない限り、全ての種類の国内保護が 可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU.

[続葉有]

(54) Title: NEGATIVE RESIST COMPOSITION

(54) 発明の名称: ネガ型レジスト組成物

[B]

(1)

[C]

(2)

(D)

(57) Abstract: Disclosed is a negative resist composition containing a silsesquioxane resin (A) having a constitutional unit (a1) represented by the general formula (I) below and a constitutional unit (a2) represented by the general formula (II) below, an acid generator component (B) which generates an acid when exposed to light, and a crosslinking agent component (C). (In the above formula, R1 represents a straight or branched chain alkylene group having 1-5 carbon atoms.)

(57) 要約: 本発明のネガ型レジスト組成物は、下記一般式 (I) で表される構成単位 (a 1) と、下記一般式 (II) で表 される構成単位(a2)とを有するシルセスキオキサン樹脂 (A)と、露光により酸を発生する酸発生剤成分(B)と、架 橋剤成分(C)とを含む。 【化1】

(式中、R¹は炭素数1~5の直鎖状または分 岐状のアルキレン基を表す。) 【化2】

ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国 (表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU,

IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

一 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

PCT/JP2005/004326

10/593004

明細書

ネガ型レジスト組成物

技術分野

[0001] 本発明は、ネガ型レジスト組成物に関する。

本願は、2004年3月19日に日本国特許庁に出願された特願2004-80481号に基づく優先権を主張し、その内容をここに援用する。

背景技術

- [0002] 近年、半導体素子や液晶表示素子の製造においては、リソグラフィー技術の進歩により急速に微細化が進んでいる。微細な寸法のパターンを再現可能な高解像性の条件を満たすレジスト材料の1つとして、酸の作用によりアルカリ可溶性が変化するベース樹脂と、露光により酸を発生する酸発生剤を含有する化学増幅型レジスト組成物が知られている。化学増幅型レジスト組成物には、酸発生剤と架橋剤とベース樹脂であるアルカリ可溶性樹脂とを含有するネガ型と、酸発生剤と酸の作用によりアルカリ可溶性が増大する樹脂を含有するポジ型とがある。
- [0003] 下記特許文献1は、化学増幅型のネガ型ホトレジスト組成物に関するもので、[0048]の例には、ポリ(ヒドロキシベンジルシルセスキオキサン)を含有する樹脂組成物を、ハードベークしたジアゾキノン・ノボラック樹脂の層上に成膜してレジスト層を形成する方法が記載されている。

特許文献1:特開平5-249676号公報

発明の開示

発明が解決しようとする課題

[0004] レジストパターンの微細化に関して、例えば、磁気記録媒体の分野では、磁気記録 媒体の記録密度向上のために、磁気ヘッドの微細化を達成することが要求されてい る。かかる磁気ヘッドの微細化のためには、アスペクト比の高い孤立ラインパターンや アイランドパターン等の孤立パターンを含む微細なレジストパターンを形成し、これに より微細な磁性膜パターンを形成する技術が必要とされる。

レジストパターンの微細化に対応するために、例えば、二層レジスト法、リフトオフ法

、電子線リソグラフィー法等が提案されているが、アスペクト比が高い微細なレジストパターン、特に微細でアスペクト比の高い孤立パターンを安定して形成できるようにするには、好適なレジスト特性を有するホトレジストの開発が望まれていた。

- [0005] 上記特許文献1に記載のネガ型レジストは、未露光部分のアルカリ可溶性および露光部のアルカリ不溶性が劣り、溶解コントラストが不十分であるという問題や、レジストパターンの現像時の膨潤が生じたり、レジストパターンの膜減りが起こるという問題があり、微細加工には不向きであった。
- [0006] 本発明は、上記の課題を解決するためになされたものであって、高アスペクト比でかつ膜減りの無い微細なレジストパターンを形成できるネガ型レジスト組成物を提供することを目的とする。

課題を解決するための手段

[0007] 前記課題は、下記一般式(I)で表される構成単位(a1)と、下記一般式(II)で表される構成単位(a2)とを有するシルセスキオキサン樹脂(A)と、露光により酸を発生する酸発生剤成分(B)と、架橋剤成分(C)とを含むことを特徴とするネガ型レジスト組成物によって解決できる。

[0008] [化1]

(式中、R¹は炭素数1~5の直鎖状または分岐状のアルキレン基を表す。)

[0009] [化2]

[0010] なお本発明において、「構成単位」とは、重合体を構成するモノマー単位を意味する。

また、「電子線による選択的露光」にはマスクを介して電子線を照射する形態の他に、マスクを用いず直接描画する形態も含まれる。

発明の効果

[0011] 本発明のネガ型レジスト組成物を用いることにより、高アスペクト比でかつ膜減りの 無い微細なレジストパターンを形成することができる。

図面の簡単な説明

[0012] [図1A]図1Aは磁性膜パターンを形成する方法の第1の実施形態を工程順に示した模式図である。

[図1B]図1Bは磁性膜パターンを形成する方法の第1の実施形態を工程順に示した 模式図である。

[図1C]図1Cは磁性膜パターンを形成する方法の第1の実施形態を工程順に示した模式図である。

[図1D]図1Dは磁性膜パターンを形成する方法の第1の実施形態を工程順に示した模式図である。

[図1E]図1Eは磁性膜パターンを形成する方法の第1の実施形態を工程順に示した模式図である。

[図2A]図2Aは磁性膜パターンを形成する方法の第2の実施形態を工程順に示した 模式図である。

[図2B]図2Bは磁性膜パターンを形成する方法の第2の実施形態を工程順に示した模式図である。

[図2C]図2Cは磁性膜パターンを形成する方法の第2の実施形態を工程順に示した

模式図である。

[図2D]図2Dは磁性膜パターンを形成する方法の第2の実施形態を工程順に示した模式図である。

符号の説明

[0013] 1、1、…基板、

2'、11'…磁性膜、

2、11…磁性膜パターン、

3、12…下地膜パターン、

3'、12'…下地膜、

4'、14'…レジスト膜、

4、14…レジストパターン、

5…リフトオフ用パターン、

6…電極膜、

10…磁気ヘッド(リード部)。

発明を実施するための最良の形態

[0014] 以下、本発明をより詳細に説明する。

本発明のネガ型レジスト組成物は、シルセスキオキサン樹脂(A)(以下、(A)成分ということがある)と、露光により酸を発生する酸発生剤成分(B)(以下、(B)成分ということがある)と、架橋剤成分(C)とを含む。

かかるネガ型レジスト組成物にあっては、露光により(B)成分から酸が発生すると、 前記酸が作用し、(A)成分と(C)成分との間で架橋が起こり、露光された部分がアル カリ不溶性となる。

[0015] <(A)成分>

シルセスキオキサン樹脂(A)は、前記一般式(I)で表される構成単位(a1)と、前記一般式(II)で表される構成単位(a2)とを有する。

[0016] 構成単位(a1)において、R¹としては樹脂合成上の点から、炭素数1~5の直鎖状 又は分岐状の低級アルキレン基であり、さらには炭素数1~3の直鎖状又は分岐状 のアルキレン基が好ましく、中でもメチレン基がより好ましい。水酸基の位置はo位、m 位、又はp位のいずれでもよいが、p位が工業的には好ましい。

[0017] また、シルセスキオキサン樹脂(A)は、前記構成単位(a1)、(a2)の他に、下記一般式(III)で表される構成単位(a3)を有していてもよい。

[0018] [化3]

[0019] 本発明において、構成単位(a3)は必須ではないが、これを含有させることにより、 解像性を向上させることができる。この構成単位(a3)は、構成単位(a1)の出発原料 と同じであるから、アルコキシ基の解離度を抑制することにより簡単に導入することが できる。

上記一般式(III)中、R²としては、R¹と同様に樹脂合成上の点から、炭素数1~5の直鎖状または分岐状のアルキレン基であり、さらには炭素数1~3の直鎖状または分岐状のアルキレン基がより好ましい。R³としては、炭素数1~5の直鎖状または分岐状の低級アルキル基、中でもメチル基が最も好ましい。また、一〇R³の結合位置は、o位、m位及びp位のいずれでもよいが、工業的にはp位が好ましい。

- [0020] これらの構成単位の含有割合は、構成単位(a1)は50~95モル%、好ましくは60~80モル%、構成単位(a2)は5~40モル%、好ましくは10~35モル%、構成単位(a3)は0~20モル%、好ましくは1~10モル%の範囲内で選ばれることが好ましい。
- [0021] (A)成分の質量平均分子量(Mw)は、特に限定するものではないが、1000以上15000以下の範囲にあるものが好ましい。より好ましい範囲は2000以上10000以下である。前記Mwが大き過ぎると有機溶剤や現像液への溶解性が悪くなり、小さ過ぎるとシジストパターン断面形状が悪くなるおそれがある。

また、質量平均分子量(Mw)を数平均分子量(Mn)で除した値で表される分散度Mw/Mnは、特に限定するものではないが、好ましくは1.0~6.0、さらに好ましく

は1.0~2.0である。この範囲よりも大きいと解像度、パターン形状が劣化するおそれがある。

[0022] <(B)成分>

本発明において、(B)成分は、従来の化学増幅型レジスト組成物において使用されている公知の酸発生剤から特に限定せずに用いることができる。このような酸発生剤としては、これまで、ヨードニウム塩やスルホニウム塩などのオニウム塩系酸発生剤、オキシムスルホネート系酸発生剤、ビスアルキルまたはビスアリールスルホニルジアゾメタン類、ポリ(ビススルホニル)ジアゾメタン類などのジアゾメタン系酸発生剤、イミノスルホネート系酸発生剤、ジスルホン系酸発生剤など多種のものが知られている。

- [0023] オニウム塩系酸発生剤の具体例としては、ジフェニルヨードニウムのトリフルオロメタンスルホネートまたはノナフルオロブタンスルホネート、ビス(4-tertープチルフェニル)ヨードニウムのトリフルオロメタンスルホネートまたはノナフルオロブタンスルホネート、トリフェニルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、トリ(4-メチルフェニル)スルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、ジメチル(4-ヒドロキシナフチル)スルホニウムのトリフルオロブタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、モノフェニルジメチルスルホニウムのトリフルオロンメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、ジフェニルモノメチルスルホニウムのトリフルオロブタンスルホネート、ジフェニルモノメチルスルホニウムのトリフルオロブタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネートなどが挙げられる。これらのなかでもフッ素化アルキルスルホン酸イオンをアニオンとするオニウム塩が好ましい。
- [0024] オキシムスルホネート系酸発生剤の具体例としては、αー(メチルスルホニルオキシイミノ)ーフェニルアセトニトリル、αー(メチルスルホニルオキシイミノ)ーpーメトキシフェニルアセトニトリル、αー(トリフルオロメチルスルホニルオキシイミノ)ーフェニルアセトニトリル、αー(トリフルオロメチルスルホニルオキシイミノ)ーpーメトキシフェニルアセトニトリル、αー(エチルスルホニルオキシイミノ)ーpーメトキシフェニルアセトニトリル、αー(

7

プロピルスルホニルオキシイミノ)-p-メチルフェニルアセトニトリル、 α -(メチルスルホニルオキシイミノ)-p-ブロモフェニルアセトニトリル、ビス-O-(n-ブチルスルホニル) $-\alpha$ -ジメチルグリオキシムなどが挙げられる。

これらの中で、 α -(メチルスルホニルオキシイミノ)-p-メトキシフェニルアセトニトリル、ビス-O-(n-ブチルスルホニル)- α -ジメチルグリオキシムが好ましい。

[0025] ジアゾメタン系酸発生剤のうち、ビスアルキルまたはビスアリールスルホニルジアゾメ タン類の具体例としては、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(pートルエ ンスルホニル)ジアゾメタン、ビス(1, 1ージメチルエチルスルホニル)ジアゾメタン、ビ ス(シクロヘキシルスルホニル)ジアゾメタン、ビス(2, 4ージメチルフェニルスルホニル)ジアゾメタン等が挙げられる。

また、ポリ(ビススルホニル)ジアゾメタン類としては、例えば、以下に示す構造をもつ 1、3ービス(フェニルスルホニルジアゾメチルスルホニル)プロパン(化合物A、分解点 135°C)、1、4ービス(フェニルスルホニルジアゾメチルスルホニル)ブタン(化合物B、分解点147°C)、1、6ービス(フェニルスルホニルジアゾメチルスルホニル)へキサン(・化合物C、融点132°C、分解点145°C)、1、10ービス(フェニルスルホニルジアゾメチルスルホニル)デカン(化合物D、分解点147°C)、1、2ービス(シクロヘキシルスルホニルジアゾメチルスルホニル)デカン(化合物D、分解点147°C)、1、2ービス(シクロヘキシルスルホニルジアゾメチルスルホニル)プロパン(化合物F、分解点153°C)、1、6ービス(シクロヘキシルスルホニルジアゾメチルスルホニル)のキサン(化合物G、融点109°C、分解点122°C)、1、10ービス(シクロヘキシルスルホニルジアゾメチルスルホニル)へキサン(化合物G、融点109°C、分解点122°C)、1、10ービス(シクロヘキシルスルホニルジアゾメチルスルホニルジアゾメチルスルホニルジアゾメチルスルホニルジアゾメチルスルホニルジアゾメチルスルホニルジアゾメチルスルホニルジアグメチルスルホニルジアグメチルスルホニルジアグメチルスルホニル)デカン(化合物H、分解点116°C)などを挙げることができる。

[0026] [化4]

[0027] (B)成分としては、1種の酸発生剤を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。

(B)成分の含有量は、(A)成分100質量部に対し、0.5~30質量部、好ましくは1

~15質量部とされる。上記範囲より少ないとパターン形成が十分に行われないおそれがあり、上記範囲を超えると均一な溶液が得られにくく、保存安定性が低下する原因となるおそれがある。

[0028] オキシムスルホネート系酸発生剤とジアゾメタン系の酸発生剤とを組み合わせて用いる場合、質量比で60:40~95:5の範囲で混合して用いると解像性やレジストパターン形状が良好となるため好ましく、特に80:20~95:5の範囲で混合して用いることが最も好ましい。

[0029] <(C)成分>

架橋剤成分(C)としては、公知の化学増幅型のネガ型ホトレジストの架橋剤として 通常使用されているもの、例えばヒドロキシアルキル基及び低級アルコキシアルキル 基から選ばれる少なくとも1個の架橋形成基を有するものの中から任意に選ぶことが でき、特に制限はない。

このような架橋剤としては、例えばメラミン、アセトグアナミン、ベンゾグアナミン、尿素、エチレン尿素、プロピレン尿素、グリコールウリルなどのアミノ基含有化合物にホルムアルデヒド又はホルムアルデヒドと低級アルコールを反応させ、前記アミノ基の水素原子をヒドロキシメチル基又は低級アルコキシメチル基で置換した化合物、具体的にはヘキサメトキシメチルメラミン、ビスメトキシメチル尿素、ビスメトキシメチルビスメトキシエチレン尿素、テトラキスメトキシメチルグリコールウリル、テトラキスブトキシメチルグリコールウリルなどを挙げることができる。

これらの中でも、尿素にホルムアルデヒド又はホルムアルデヒドと低級アルコール、特に炭素数1~4の低級アルコールを反応させ、前記アミノ基の水素原子をヒドロキシメチル基又は低級アルコキシメチル基、特にアルコキシ基の炭素数が1~4の低級アルコキシメチル基で置換した化合物、例えばビスメトキシメチル尿素は、配合量に大きく左右されず良好なパターンが形成され、ネガ型ホトレジスト組成物の調製がし、やすく特に好適に用いられる。

- (C)成分は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
- [0030] (C)成分の含有量は、(A)成分100質量部当り、3~50質量部が好ましく、より好ましくは5~20質量部である。(C)成分の量がこれよりも少ないと、架橋形成が十分に

進行せず、良好なレジストパターンが得られない。(C)成分が上記の範囲より多いと レジスト組成物の保管中にパーティクルが発生するなど保存安定性や感度が経時的 に劣化するおそれがある。

[0031] (B)成分と(C)成分との特に好ましい組合せは、(B)フッ素化アルキルスルホン酸イオンをアニオンとするオニウム塩と(C)グリコールウリル系又はメラミン系の架橋剤との組合せ、又は(B)オキシムスルホネート系酸発生剤と(C)エチレン尿素系の架橋剤との組合せ、又は(B)オキシムスルホネート系酸発生剤とジアゾメタン系酸発生剤の混合物と(C)エチレン尿素系の架橋剤との組合せである。上記特定の(B)成分と(C)成分とを組み合わせることで、レジストパターンの膜減りがなく、微細なパターンが形成できる。

[0032] <(D)成分>

本発明のネガ型レジスト組成物には、レジストパターン形状、引き置き経時安定性(post exposure stability of the latent image formed by the pattern wise exposure of the resist layer)などを向上させるために、さらに任意の成分として、含窒素有機化合物(D)(以下、(D)成分という)を配合させることができる。

この(D)成分は、既に多種多様なものが提案されているので、公知のものから任意 に用いれば良いが、アミン、特に第2級脂肪族アミンや第3級脂肪族アミンが好ましい

(D) 成分の具体例としては、トリメチルアミン、ジエチルアミン、トリエチルアミン、ジーnープロピルアミン、トリーnープロピルアミン、トリーnープロピルアミン、トリーnーへプチルアミン、トリーnーペプチルアミン、トリーnーオクチルアミン、ジーnーオクチルアミン、トリーnードデシルアミン等のアルキルアミン、ジエタノールアミン、トリエタノールアミン、ジイソプロパノールアミン、トリイソプロパノールアミン、ジーnーオクタノールアミン、トリーnーオクタノールアミン等のアルキルアルコールのアミンが挙げられる。これらのうち、炭素数7~15のアルキル基を有する第2級または第3級の脂肪族アミンが好ましい。炭素数が7~15のアルキル基を有することによって、前記脂肪族アミンが、形成されたレジストパターン中で拡散しにくいため均等に分布できる。本発明において、特にトリーnーオクチルアミン、トリーnードデシルアミンのようなアルキルアミンが好ましい。

これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。

(D成分)は、(A)成分100質量部に対して、通常0.01~5.0質量部の範囲で用いられる。

[0033] <(E)成分>

また、前記(D) 成分との配合による感度劣化を防ぎ、またレジストパターン形状、引き置き経時安定性 (post exposure stability of the latent image formed by the pattern wise exposure of the resist layer) 等の向上の目的で、さらに任意の成分として、有機カルボン酸又はリンのオキン酸若しくはその誘導体 (E) (以下、(E) 成分という)を含有させることができる。なお、(D) 成分と(E) 成分は併用することもできるし、いずれか1種を用いることもできる。

有機カルボン酸としては、例えば、マロン酸、クエン酸、リンゴ酸、コハク酸、安息香酸、サリチル酸などが好適である。

リンのオキソ酸若しくはその誘導体としては、リン酸、リン酸ジーnーブチルエステル、 リン酸ジフェニルエステルなどのリン酸又はそれらのエステルのような誘導体、ホスホン酸、ホスホン酸ジメチルエステル、ホスホン酸ージーnーブチルエステル、フェニルホスホン酸、ホスホン酸ジフェニルエステル、ホスホン酸ジベンジルエステルなどのホスホン酸及びそれらのエステルのような誘導体、ホスフィン酸、フェニルホスフィン酸などのホスフィン酸及びそれらのエステルのような誘導体が挙げられ、これらの中で特にホスホン酸が好ましい。

(E)成分は、(A)成分100質量部当90.01~5.0質量部の割合で用いられる。

[0034] <その他の任意成分>

本発明のネガ型レジスト組成物には、さらに所望により混和性のある添加剤、例えばレジスト膜の性能を改良するための付加的樹脂、塗布性を向上させるための界面活性剤、可塑剤、安定剤、着色剤、ハレーション防止剤などを適宜、添加含有させることができる。

[0035] <有機溶剤>

本発明のネガ型レジスト組成物は、上述の(A)成分、(B)成分、(C)成分等の材料を有機溶剤に溶解させて製造することができる。

有機溶剤としては、使用する各成分を溶解し、均一な溶液とすることができるものであればよく、従来、化学増幅型レジストの溶剤として公知のものの中から任意のものを1種または2種以上適宜選択して用いることができる。

有機溶媒としては、例えば、γーブチロラクトン、アセトン、メチルエチルケトン、シクロヘキサノン、メチルイソアミルケトン、2ーヘプタノンなどのケトン類や、エチレングリコール、エチレングリコールモノアセテート、ジエチレングリコール、ジエチレングリコール、ジェチレングリコール、ジェチレングリコール、プロピレングリコール・アセテート、ジプロピレングリコールまたはジプロピレングリコールモノアセテートのモノメチルエーテル、モノエチルエーテル、モノプロピルエーテル、モノブチルエーテルまたはモノフェニルエーテルなどの多価アルコール類およびその誘導体や、ジオキサンのような環式エーテル類や、乳酸メチル、乳酸エチル(EL)、酢酸メチル、酢酸エチル、酢酸ブチル、ピルビン酸メチル、ピルビン酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸エチルなどのエステル類などを挙げることができる。

これらの有機溶剤は単独で用いてもよく、2種以上の混合溶剤として用いてもよい。

- [0036] 有機溶剤の使用量は、特に限定されず、基板等に塗布可能な濃度で、塗布膜厚に応じて適宜設定されるものであるが、一般的にはレジスト組成物の固形分濃度が2 ~20質量%、好ましくは5~15質量%の範囲内となる量とされる。
- [0037] 本発明のネガ型ホトレジスト組成物は、二層レジスト法用として好適に用いることができる。すなわち、支持体上に有機層を設け、前記有機層上にレジスト層を設ける工程と、前記レジスト層をパターニングして上部レジストパターンを形成する工程と、前記上部レジストパターンをマスクとしてドライエッチングを行うことによって前記有機層をパターニングして下部レジストパターンを形成する工程と、前記上部レジストパターンおよび下部レジストパターンをマスクとしてエッチングを行うことによって前記支持体にパターン(微細パターン)を形成する工程とを有する二層レジスト法における、前記レジスト層の材料として本発明のネガ型レジスト組成物を好適に用いることができる。

本発明のネガ型レジスト組成物によれば、二層レジスト法により微細パターンを形成するのに好適なレジスト特性が得られ、膜減りを防止しつつ、微細な孤立パターンを安定して形成することができる。

[0038] また本発明のネガ型レジスト組成物は、磁性膜上に形成されたレジストパターンをマスクとしてイオン性エッチングを行うことにより前記磁性膜をパターニングする工程を有する磁性膜パターン形成方法用として好適に用いることができる。前記磁性膜パターン形成方法としては、イオン性エッチング時に、磁性膜上に直接レジストパターンが形成されている方法や、磁性膜とレジストパターンとの間に下地膜パターンが介在している方法(リフトオフ法等)があるが、本発明のネガ型レジスト組成物はいずれにも好適に用いることができる。なお、前者の方法は磁気ヘッドのライト部(書込用磁気ヘッド)の製造に好適であり、後者の方法はリード部(読出用磁気ヘッド)の製造に好適である。

そして本発明のネガ型レジスト組成物は、微細な孤立ラインパターンを安定して形成するのに好適なレジスト特性を有するとともに、イオン性エッチング時における磁性膜とのエッチングレートに適度な差がある為、膜減りを防止しつつ、高アスペクト比のレジストパターンを形成することができる。従って、磁性膜パターンの微細化を実現することができる。

[0039] 本発明のネガ型ホトレジスト組成物は、248nmに感度を有するのでKrFエキシマレーザーで露光できるとともに、電子線にも感度を有しており、電子線リソグラフィにも好適に用いられる。すなわち本発明のネガ型ホトレジスト組成物は、レジスト層に対して電子線による選択的露光を行う工程を有するレジストパターン形成方法用として好適に用いることができる。

電子線リソグラフィには、加速電圧2~5kV程度の低加速電子線リソグラフィと、加速電圧30~100kV程度の高加速電子線リソグラフィがあり、それぞれマスクを介して電子線を照射する方法と、マスクを用いずに直接描画する方法がある。本発明のネガ型ホトレジスト組成物はいずれにも好適に用いることができる。

[0040] 本発明のネガ型レジスト組成物を用い、選択的露光に電子線を用いることにより、 微細な孤立ラインパターンやアイランドパターン等の孤立パターンを効率良く、安定 して形成することができる。すなわち、ポジ型レジストを用いて孤立パターンを形成し ようとすると、前記孤立パターンの形成部位の周辺部全域に対して電子線描画を行う 必要があるのに対して、ネガ型レジストを用いる場合は、孤立パターンの形成部位に のみ電子線描画を行えばよいので、描画に要する時間が短くて済む。これにより製造工程のスループットを向上させることができる。

また、高加速電子線リソグラフィーを用いる場合には、レジスト膜を透過して蓄積された電子の影響(バックスキャタリング)により、現像時に不溶であるべき部位まで電子線照射を受けた状態となることがある。

この場合、ポジ型レジストにあっては溶解特性が不安定になり、レジストパターンの 膜減り等が生じることがあるが、本発明のネガ型レジスト組成物にあっては、電子線が 照射された部分は不溶化されるので、かかるバックスキャタリングによるレジストパター ンの膜減り等の不都合を回避できる。

本発明のネガ型ホトレジスト組成物によれば、これらネガ型としての利点を損なうことなく、良好なレジスト特性が得られ、レジストパターンの微細化を達成することができる。かかる効果が得られるのは、ベース樹脂となる(A)成分を、前記(a1)単位と前記(a2)単位を有するコポリマーで構成したことによるものと考えられる。

[0041] <二層レジスト法>

以下、本発明のネガ型レジスト組成物を用い、二層レジスト法によりレジストパターンを形成する方法の実施形態を説明する。

まず、支持体上に、有機層を形成する。

支持体としては、特に限定されず、従来公知のものを用いることができ、例えば、電子部品用の基板や、これに所定の配線パターンが形成されたものなどを例示することができる。基板としては、例えばシリコンウェーハ、銅、クロム、鉄、アルミニウムなどの金属製の基板や、ガラス基板などが挙げられる。配線パターンの材料としては、例えば銅、アルミニウム、ニッケル、金などが使用可能である。

[0042] 有機層は、露光後の現像の際に用いられるアルカリ現像液に対して不溶性であり、 且つ従来のドライエッチング法でエッチング可能な有機膜からなる。

有機層を形成するための有機膜材料は、その上に形成されるレジスト層のような感光性を必ずしも必要とするものではない。半導体素子や液晶表示素子の製造において、下地材として一般的に用いられている、レジスト材料や樹脂材料を用いればよい

[0043] また前記有機層は、酸素プラズマによるエッチングが可能な材料であることが好ましい。

このような材料としては、酸素プラズマによるエッチングを行いやすいと同時に、後 工程でシリコン基板等のエッチングに用いられているフッ化炭素系ガスに対する耐性 が強いことなどから、ノボラック樹脂、アクリル樹脂及び可溶性ポリイミドからなる群か ら選択される少なくとも一種を主成分とするものが好ましく用いられる。これらの中でも 、ノボラック樹脂、及び側鎖に脂環式部位又は芳香族環を有するアクリル樹脂は、安 価で汎用的に用いられ、後工程のドライエッチング耐性に優れるので、好ましく用い られる。

- [0044] ノボラック樹脂としては、市販されているものを使用することもできるが、特に質量平均分子量(Mw)が5000~50000、好ましくは8000~30000であり、かつ分子量500以下、好ましくは200以下の低核体(low molecular weight components)の含有量が、ゲルパーミエーションクロマトグラフィー法において1質量%以下、好ましくは0.8質量%以下であるノボラック樹脂が好ましい。低核体の含有量は、少ないほど好ましく、望ましくは0質量%である。
- [0045] ここで「分子量500以下の低核体」とは、ポリスチレンを標準としてGPC法により分析した際に分子量500以下の低分子フラクションとして検出されるものである。「分子量500以下の低核体」には、重合しなかったモノマーや、重合度の低いもの、例えば、分子量によっても異なるが、フェノール類2~5分子がアルデヒド類と縮合したものなどが含まれる。

分子量500以下の低核体の含有量(質量%)は、このGPC法による分析結果を、 横軸にフラクション番号、縦軸に濃度をとってグラフとし、全曲線下面積に対する、分 子量500以下の低分子フラクションの曲線下面積の割合(%)を求めることにより測定 される。

[0046] 前記有機膜材料としてのノボラック樹脂のMwを50000以下とすることにより、微細な凹凸を有する基板に対する良好な埋め込み特性が優れ、また、Mwを5000以上とすることにより、フッ化炭素系ガス等に対するエッチング耐性が優れるので好ましい。また、分子量500以下の低核体の含有量が1質量%以下であることにより、微細な

凹凸を有する基板に対する埋め込み特性が良好になる。低核体の含有量が低減されていることにより埋め込み特性が良好になる理由は明らかではないが、分散度が小さくなるためと推測される。

- [0047] 前記有機膜を形成するアクリル樹脂としては、ホトレジスト組成物に一般的に用いられているものが使用可能であり、例えば、エーテル結合を有する重合性化合物から誘導された構成単位と、カルボキシル基を有する重合性化合物から誘導された構成単位を含有するアクリル樹脂を挙げることができる。
- [0048] 前記有機膜を形成する可溶性ポリイミドとは、上述のような有機溶剤により液状にできるポリイミドである。
- [0049] 前記有機層は、これを形成する材料の溶液を、スピンナーなどで塗布し、好ましくは200~300℃、30~300秒間、好ましくは60~180秒間の加熱条件でベーク処理して形成することができる。
- [0050] 次に、有機層上に、本発明のネガ型レジスト組成物をスピンナーなどで塗布し、70 ~150℃の温度条件下、好ましくは80~140℃で、プレベークを0.5~60分間程度 、好ましくは40~180秒間、さらに好ましくは60~90秒間施し、レジスト層を形成して 、レジスト積層体を得る。

前記レジスト積層体における、上部のレジスト層及び下部の有機層の厚さは、目的とするレジストパターンのアスペクト比と有機層のドライエッチングに要する時間を考慮したスループットのバランスから、トータルとして、好ましくは15μm以下、より好ましくは6μm以下である。トータルの下限値は特に限定されないが、好ましくは0.3μm以上、より好ましくは0.35μm以上である。

上部のレジスト層の厚さは、好ましくは30~500nm、より好ましくは50~300nmである。レジスト層の厚さをこの範囲内とすることにより、レジストパターンを高解像度で形成できる、ドライエッチングに対する十分な耐性が得られる等の効果がある。

下部の有機層の厚さは、好ましくは100nm〜14000nm、より好ましくは300〜50 00nmである。有機層の厚さをこの範囲内とすることにより、高アスペクト比のレジストパターンが形成できる、基板エッチング時に十分なエッチング耐性が確保できる等の効果がある。

なお、有機層とレジスト層の間に、有機系または無機系の反射防止膜を設けてもよい。

電子線を用いる場合は、特に、低加速電子線を用いることが好ましく、具体的には、マスクを用いる低加速電圧電子ビーム方式の等倍リングラフィ(LEEPL:Low Energy Electron beam Projection Lithography)等に好適に用いることができる。

[0052] 次いで、選択的露光後、PEB(露光後加熱)を、70~130℃の温度条件下、40~180秒間、好ましくは60~90秒間施す。

続いて、これをアルカリ現像液、例えば0.05~10質量%、好ましくは0.05~3質量%のテトラメチルアンモニウムヒドロキシド水溶液を用いて現像処理する。その後、リンス処理、乾燥処理等を適宜行うことによって、上部のレジスト層をパターニングして、上部レジストパターンを形成する。

[0053] 次に、得られた上部レジストパターンをマスクパターンとして、有機層のドライエッチングを行い、前記有機層に下部レジストパターンを形成する。

ドライエッチングの方法としては、ダウンフローエッチングやケミカルドライエッチング等の化学的エッチング;スパッタエッチングやイオンビームエッチング等の物理的エッチング;RIE(反応性イオンエッチング)等の化学的・物理的エッチングなどの公知の方法を用いることができる。

[0054] 最も一般的なドライエッチングは、平行平板型RIEである。この方法では、まず、RI E装置のチャンバーにレジスト積層体を入れ、必要なエッチングガスを導入する。チャンバー内の、上部電極と平行に置かれたレジスト積層体のホルダーに高周波電圧を加えると、ガスがプラズマ化される。プラズマ中では正・負のイオンや電子などの電荷粒子、中性活性種などが存在している。これらのエッチング種が下部有機層に吸着すると、化学反応が生じ、反応生成物が表面から離脱して外部へ排気され、エッチングが進行する。

エッチングガスとしては、酸素、二酸化硫黄等があるが、酸素プラズマによるエッチングは解像度が高いこと、本発明の(A)成分が酸素プラズマに対する耐エッチング性が高いこと、汎用的に用いられている等の理由で、好ましくは酸素が用いられる。

[0055] このようにして上部レジストパターンと下部レジストパターンが積層されたレジストパターンが得られるので、これをマスクとしてエッチングを行うことによって支持体に微細パターンを形成する。

このときのエッチング法としてはハロゲン系ガスを用いたエッチング法を好ましく用いることができる。

[0056] かかるレジストパターン形成方法によれば、まず、通常のホトリソグラフィーにより上部のレジスト層のみ露光・アルカリ現像して、上部レジストパターンを形成した後、前記上部レジストパターンをマスクとして有機層をドライエッチングすることによって、有機層にレジスト層のパターン(上部レジストパターン)が転写される。その結果、パターン倒れを生じることなく、高アスペクト比のレジストパターンを形成することができる。また、下部の有機層と上部のレジスト層が積層された積層体を用いてレジストパターンを形成するので、アスペクト比が高いパターンを形成する場合でもレジスト層を薄膜化することができる。一般的に、レジスト層を薄膜化することによって解像性が向上する一方で、ラインエッジラフネスやホールパターンのエッジラフネス(まとめてエッジラフネスというときがある)が顕著となる傾向があるが、特に本発明におけるレジスト層を構成しているレジスト組成物は、薄膜化した場合にも好適なアルカリ溶解性を得ることができるので、エッジラフネスの発生を低減させることができる。

[0057] <磁性膜パターン形成方法(1)>

以下、本発明のネガ型レジスト組成物を用いて磁性膜パターンを形成する方法の第1の実施形態として、リフトオフ法を用いて磁気ヘッドのリード部を形成する方法を図1A〜図1Eを参照しながら説明する。

[0058] まず、図1Aに示すように、基板1の上に磁性膜2'を積層し、さらにその上に下地膜3'を形成する。

基板1は特に限定されず、シリコンウェーハ等が用いられる。基板1には、例えばヘキサメチルジシラザン(HMDS)等のシランカップリング剤を用いて表面改質処理を

行ってもよい。

基板1上の磁性膜2'に用いられる磁性体としては、公知慣用のものでよいが、例えば、Ni, Co, Cr, Pt等の元素を含むものが用いられ、単独で用いても良いし、数種の磁性体を基板上に積層させて用いても良い。磁性膜2'の膜厚は、好ましくは100~1000nm程度に形成される。

磁性膜2'上の下地膜を形成する材料は特に限定されない。その中で、アルカリ可溶性の材料として例えばシプレー社製のポリメチルグルタルイミド(

polymethylglutarimide 以下PMGIと略す)からなる塗布液等が挙げられる。アルカリ不溶性の材料として、従来、下層反射防止膜(BARC)として用いられている材料からなる塗布液や、前述した露光後の現像の際に用いられるアルカリ現像液に対して不溶性であり、且つ従来のドライエッチング法でエッチング可能な有機膜等を用いることができる。前記材料からなる塗布液をスピンコーターによって塗布し、乾燥して下地膜3'を形成する。下地膜3'の厚さは300~14000nm、好ましくは400~5000nm程度が好適である。

- [0059] 次いで、下地膜3'上に、本発明のネガ型レジスト組成物をスピンナーなどで塗布した後、プレベーク(PAB処理)することによってレジスト膜4'を形成する。プレベーク条件は、組成物中の各成分の種類、配合割合、塗布膜厚などによって異なるが、通常は70~150℃の条件下で、好ましくは80~140℃で、0.5~60分間程度、好ましくは40~180秒間、さらに好ましくは60~90秒間である。レジスト膜4'の厚さは30のm以下、好ましくは、50~200nm程度が好適である。
- [0060] 次いで、レジスト膜4'に対して、マスクパターンを介して選択的露光を行う。露光に使用する光源としては、微細化を達成するためには電子線が有効であるが、KrFエキシマレーザー、ArFエキシマレーザー、F₂エキシマレーザー、EUV(極紫外線)、VUV(真空紫外線)、X線、軟X線などの放射線も適用できる。
- [0061] 次いで、選択的露光後、PEB(露光後加熱)を施す。前記PEB工程における加熱条件は、組成物中の各成分の種類、配合割合、塗布膜厚などによっても異なるが、70~130℃、好ましくは80~120℃で、40~180秒間、好ましくは60~90秒間程度である。

[0062] 続いて、これをアルカリ現像液、例えば0.05~10質量%、好ましくは0.05~3質量%のテトラメチルアンモニウムヒドロキシド水溶液を用いて現像処理する。その後、リンス処理、乾燥処理等を適宜行うことによって、レジスト膜4'の未露光部がアルカリ現像により除去されて、レジストパターン4が得られる。このとき、アルカリ可溶性の下地膜を用いた場合、レジスト膜4'のアルカリ現像された部分の下に位置する下地膜3'も同時にアルカリ現像液によって現像されるが、前記下地膜3'は、レジスト膜4'よりアルカリ可溶性が高いため、アルカリ現像の結果、図1Bに示した様な幅の狭い下地膜3'のパターン(下地膜パターン)3と、これより幅広のレジスト膜4'のレジストパターン4からなる断面羽子板状のリフトオフ用のパターン5が得られる。現像時間は、所望のレジストパターン形状が得られるように設定することができるが、短すぎるとパターンが裾引きとなったり、未露光部やその他の部分で溶け残りが起きたりするし、長すぎると膜減りが起こるので、好ましくは25~180秒間の範囲内とするのが好ましく、最も好ましいのは30~120秒間の範囲内とするのが良い。

また、アルカリ不溶性の下地膜を用いた場合は、レジストパターン4をマスクとして、 下地膜3'をオーバーエッチングすることで、図1Bに示した様な幅の狭い下地膜3' のパターン(下地膜パターン)3と、これより幅広のレジスト膜4'のレジストパターン4か らなる断面羽子板状のリフトオフ用のパターン5が得られる。

[0063] こうして得られるリフトオフ用のパターン5をマスクとしてイオン性エッチングを行う。これにより、図1Cに示した様に、パターン5の周囲の磁性膜2'がエッチングされ、パターン5の下と、その周囲に磁性膜パターン2が形成される。イオン性エッチングとしてはイオンミリング (ion milling) が好適に用いられる。

続いて、スパッタリングを行うことにより、図1Dに示したように、パターン5の上と、磁性膜パターン2の周囲の基板1の上に電極膜6が形成される。

この後、アルカリ可溶性の下地膜を用いた場合は、再度アルカリ現像液を用いて、 下地膜パターン3を溶解する。アルカリ不溶性の下地膜を用いた場合は、磁性膜に 悪影響を与えない方法であれば特に限定されないが、剥離液や酸素プラズマアッシ ングなどの公知の方法を用いることができる。これにより、レジスト膜4'のレジストパタ ーン4が除去され、図1Eに示した様に基板1とその上に形成された所定の幅の磁性 膜パターン2と、その周囲に形成された電極膜6とからなる磁気ヘッドのリード部10が 得られる。

[0064] 本実施形態によれば、本発明のネガ型レジスト組成物を用いることにより、現像時に好ましい溶解特性が得られ、下地膜とのエッチングの選択比がとれることから、レジスト膜を薄膜化することができ、微細なリフトオフ用パターンを形成することができる。また、このようにして得られるリフトオフ用パターンは、レジストパターン部分の断面形状が矩形性の高い良好なものであり、パターン倒れも生じにくく、解像性に優れている。

特に本発明のネガ型レジスト組成物は、選択的露光に電子線を用いて、微細な孤立ラインパターンを形成するのに好適であり、電子線を用いた露光工程におけるスループットも良好である。したがって、磁気ヘッドのリード部の微細化に好適に対応することができ、磁気記録媒体の高密度化に寄与できる。

[0065] <磁性膜パターン形成方法(2)>

以下、本発明のネガ型レジスト組成物を用いて磁性膜パターンを形成する方法の第2の実施形態として、二層レジスト法を用いて磁気ヘッドのライト部を形成する方法を図2A〜図2Dを参照しながら説明する。

まず、図2Aに示す様に、基板1'の上に磁性膜11'を積層する。

基板1'および磁性膜11'は、上記磁性膜パターン形成方法(1)と同様である。

- [0066] 次いで、磁性膜11'上に、磁性膜パターン形成方法(1)に記載のアルカリ不溶性 の材料からなる塗布液をスピンコーターによって塗布し、乾燥して下地膜12'を形成 する。下地膜12'の厚さは100~14000nm、好ましくは300~5000nm程度が好 適である。
- [0067] 次いで、下地膜12'上に、本発明のネガ型レジスト組成物をスピンナーなどで塗布 した後、プレベーク(PAB処理)することによってレジスト膜14'を形成する。プレベー ク条件は、上記磁性膜パターン形成方法(1)と同様である。

レジスト膜14'の厚さは30~500nm、好ましくは、50~300nm程度が好適である

[0068] 次いで、レジスト膜14'に対して、マスクパターンを介して選択的露光を行う。露光

に使用する光源としては、微細化を達成するためには電子線が有効であるが、KrFエキシマレーザー、ArFエキシマレーザー、F₂エキシマレーザー、EUV(極紫外線)、VUV(真空紫外線)、X線、軟X線などの放射線も適用できる。電子線を用いる場合は、特に、高加速電子線を用いることが好ましい。

[0069] 次いで、選択的露光後、PEB(露光後加熱)、およびアルカリ現像処理を行い、さらにリンス処理、乾燥処理等を適宜行う。これにより、図2Bに示すように、レジスト膜14 、の未露光部がアルカリ現像により除去されて、レジストパターン14が得られる。

現像時間は、所望のレジストパターン形状が得られるように設定することができるが、短すぎるとパターンが裾引きとなったり、未露光部やその他の部分で溶け残りが起きたりするし、長すぎると膜減りが起こることがあるので、好ましくは25~180秒間の範囲内とするのが好ましく、最も好ましいのは30~120秒間の範囲内とするのが良い

[0070] こうして得られるレジストパターン14をマスクとして、下地膜12'をエッチングし、図2 Cに示す様に下地膜パターン12を形成する。次にレジストパターン14と下地膜パタ ーン12との積層体をマスクとして、イオン性エッチングを行うことで、磁性膜11'のパ ターニングを行い、レジストパターン14と下地膜パターン12を剥離液や酸素プラズマ アッシングなどの公知の方法を用いて除去することで、図2Dに示す様に磁性膜パタ ーン11を得る。イオン性エッチングとしてはイオンミリング (ion milling) が好適に用い られる。

下地膜12'をエッチングする際に、その上層のレジストパターン14と下地膜12'とでエッチングの選択比が取れることから、レジストパターン14と下地膜パターン12との積層体からなるパターンのアスペクト比を高くすることができる。

特に、イオン性エッチング時における、レジストパターン14と下地膜パターン12とのエッチングレートと、磁性膜11'のエッチングレートとに適切な差を設けることによって、図2Dに示すように、微細で且つアスペクト比の高い磁性膜パターン11を形成することが可能である。前記微細で且つアスペクト比の高い磁性膜パターンを用いることで、磁記記録の高密度化を図ることができ好ましい。

以上のようにして、基板1'とその上に形成された所定の幅の磁性膜パターン11と

23

からなる磁気ヘッドのライト部が得られる。

[0071] 本実施形態によれば、本発明のネガ型レジスト組成物を用いることにより、微細で 且つアスペクト比の高い磁性膜パターンを形成することができる。

また本発明のネガ型レジスト組成物は、選択的露光に電子線を用いて、微細な孤立ラインパターンを形成するのに好適であり、電子線を用いた露光工程におけるスループットも良好である。したがって、磁気ヘッドのライト部の微細化に好適に対応することができ、磁気記録媒体の高密度化に寄与できる。

[0072] なお、上記実施形態では一般的な磁気ヘッドの製造について説明したが、本発明にかかるネガ型レジスト組成物は、MRAM (Magnetic Random Access Memory)、M EMS (Micro Electro Mechanical Systems)、垂直磁気ヘッド等の製造にも好適に用いることができる。

実施例

- [0073] 以下、実施例を示して本発明をより詳細に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。
- [0074] <シルセスキオキサン樹脂の合成例>

合成例1

かきまぜ機、還流冷却器、滴下漏斗及び温度計を備えた500ml三つロフラスコに、炭酸水素ナトリウム1.00モル(84.0g)と水400mlを投入し、次いで滴下漏斗から pーメトキシベンジルトリクロロシラン0.36モル(92.0g)とフェニルトリクロロシラン0.14モル(29.6g)とをジエチルエーテル100mlに溶かして2時間にわたってかきまぜながら滴下したのち、1時間還流した。反応終了後、反応生成物をジエチルエーテルで抽出し、抽出液からジエチルエーテルを減圧下に留去した。

このようにして得た加水分解生成物に10質量%-水酸化カリウム水溶液を加え、2 00℃で2時間加熱することにより、p-メトキシベンジルシルセスキオキサン72モル% とフェニルシルセスキオキサン28モル%からなる共重合体A₁(64.4g)を製造した。

[0075] 次に、この共重合体A₁をアセトニトリル150mlに溶解し、これにトリメチルシリルヨード0.4モル(80.0g)を加え、還流下で24時間かきまぜたのち、水50mlを加え、さらに12時間還流下でかきまぜて反応させた。冷却後、亜硫酸水素ナトリウム水溶液で

遊離のヨウ素を還元したのち、有機層を分離し、溶媒を留去した。残留物をアセトンとnーヘキサンで再沈し、滅圧加熱乾燥することにより、pーヒドロキシベンジルシルセスキオキサン70モル%とフェニルシルセスキオキサン30モル%からなる共重合体 A_2 (39.0g)を製造した。これをシルセスキオキサン樹脂(X1)とする。前記(X1)は下記化学式(IV)で表される。式中のx:y=30モル%:70モル%であり、質量平均分子量は10000、分散度(Mw/Mn)は約1.5であった。

[0076] [化5]

$$\begin{array}{c}
OH \\
\downarrow \\
CH_2 \\
+SiO_{3/2})_{\times}
\end{array}$$

$$\cdots (IV)$$

[0077] 合成例2

合成例1において、フェニルトリクロロシランを用いなかったこと以外は、同様な方法を用いて行い、下記化学式(V)で表されるポリーpーヒドロキシベンジルシルセスキオキサンを製造した。質量平均分子量は3000、分散度(Mw/Mn)は約1.5であった。

[0078] [化6]

$$\begin{array}{c}
\text{OH} \\
\downarrow \\
\text{CH}_2 \\
+ \text{SiO}_{3/2} \\
\end{pmatrix}_{100} \\
\cdots \text{(V)}$$

[0079] (実施例1:二層レジスト法)

下記の(A)成分、(B)成分、(C)成分、(D)成分、および(E)成分をプロピレングリコールモノメチルエーテルアセテートに均一に溶解し(固形分濃度3.5質量%)、ネガ型ホトレジスト組成物を調製した。

- [0080] (A)成分としては、前記合成例1で得たシルセスキオキサン樹脂(X1)100質量部を用いた。
 - (B)成分としては、トリフェニルスルホニウムトリフルオロメタンスルホネートを10質量 部用いた。
 - (C)成分としては、下記化学式(1)で表される架橋剤を10質量部、
 - (D)成分としては、トリオクチルアミンを0.8質量部、
 - (E)成分として、サリチル酸を0.32質量部を用いた。

[0081] [化7]

(式中、Meはメチル基を示す。)

[0082] 8インチシリコン基板上に、下部の有機層材料として、ノボラック樹脂(製品名:TBL C-100、東京応化工業株式会社製)をスピンナーを用いて塗布し、230℃で90秒 間ベーク処理して膜厚420nmの有機層(下地膜)を形成した。

前記有機層上に、先に調製したネガ型レジスト組成物をスピンナーを用いて塗布し、90℃で90秒間プリベーク処理(以下PABと記載することもある)し、乾燥することによりレジスト層を形成し、レジスト積層体を形成した。上部のレジスト層の厚さが50nmのものと、100nmのものの2種類を作製した。

次いで、前記レジスト層に対し、電子線描画装置(製品名:HL-800D、HITACH I社製)を加速電圧70kVの設定で用い、描画を行った。

次いで、110℃、90秒間の条件で露光後過熱処理(以下PEBと記載することもある

)し、さらに23℃にて2.38質量%テトラメチルアンモニウムハイドロオキサイド水溶液で60秒間現像処理した。この後、純水にて30秒リンスし、振り切り乾燥を行った後、100℃、60秒間の加熱乾燥を行うことによって、上部レジストパターンを形成した。

この上部レジストパターンをマスクとして、高真空RIE装置(東京応化工業社製)を 用いて、酸素プラズマによるドライエッチングを行うことによって、下部有機層をパター ニングして下部パターンを形成した。

上部レジスト層の厚さが50nm、100nmのいずれの場合も、ラインアンドスペースパターン(L/S)における解像度は50nmであり、孤立ラインパターン(Iso-Line)における解像度は70nmであった。また、レジストパターンの膜減りも無かった。

なお、膜厚50nm/100nmの際、固形分濃度がそれぞれ3.5質量%/5質量%となるように調節した。

[0083] (実施例2:単層レジスト)

予め、HMDSで表面改質処理された8インチシリコンウェーハ上に、実施例1と同じネガ型レジスト組成物をスピンナーを用いて塗布し、90℃で90秒間PAB処理し、乾燥することによりレジスト層を形成した。レジスト層の厚さが100nmのものと、200nmのものの2種類を作製した。

次いで、前記レジスト層に対し、電子線描画装置(製品名:HL-800D、HITACH I社製)を加速電圧70kVの設定で用い、描画を行った。

しかる後、実施例1と同様にして、PEB処理、現像処理、リンス、振り切り乾燥、および加熱乾燥を行って、レジストパターンを形成した。

レジスト層の厚さが100nm、200nmのいずれの場合も、ラインアンドスペースパタ ーンにおける解像度は50nmであり、孤立ラインパターンにおける解像度は70nmで あった。また、レジストパターンの膜減りも無かった。

なお、膜厚100nm/200nmの際、固形分濃度がそれぞれ5質量%/15質量%となるように調節した。

[0084] 実施例3~24、比較例1

下記表1に示すように、ネガ型レジスト組成物を調製し、実施例3、5、7、9、11、13、15、17、19、21及び23は実施例1と同様な方法を用いて行った。また、実施例4、

6、8、10、12、14、16、18、20、22、24及び比較例1は実施例2と同様な方法を用いて行った。実施例1~24の条件および評価結果を表2、3に示す。

また、表には記載していないが、実施例1〜24において、レジストパターンの膜減り は無かった。

[0085] なお、表1において、PAG1は、トリフェニルスルホニウムトリフルオロメタンスルホネートを示し、PAG2は、トリフェニルスルホニウムノナフルオロブタンスルホネートを示し、PAG3は、ビスー〇ー(nーブチルスルホニル)ーαージメチルグリオキシムを示し、PAG4は、ビス(シクロヘキシルスルホニル)ジアゾメタンを示し、化学式(1)ー(3)は、上記[化7]の化学式(1)ー(3)で表される化合物をそれぞれ示し、PMは、プロピレングリコールモノメチルエーテルアセテートを示し、PEは、プロピレングリコールモノメチルエーテルを示す。

また、表2,3において、L/Sはラインアンドスペースパターンにおける解像度を示し、Iso-Lineは孤立ラインパターンにおける解像度を示す。

[0086] [表1]

	(A)梅脂	(B)酸発生剤	(C)架橋剤	有機溶剤	(D)含窒素 有機化合物	(E)有機加小プン酸
実施例1~2	樹脂1 (130質量部)	PAG1 (10質量部)	化砂式(1) (10質量部)	PM	トリオクチルアミン (0.8質量部)	サリチル酸 (0.32質量部)
実施例3~4	極脂1 (130質量部)	PAG1 (10質量部)	化学式(2) (7.3質量部)	PM/PE=3/7	トノオクチルアミン (0.8質量部)	サリチル酸 (0.32質量部)
実施例5~6	/動脂1 (100質量部)	PAG1 (10質量部)	化学式(3) (10質量部)	PM	トノオクチルアミン (0.8質量部)	サノチル数 (0.32質量部)
実施例7~8	極脂1 (100質量部)	PAG2 (10質量部)	化学式(1) (10質量部)	PM	ドノオクチルアミン (0.8質量部)	サリチル酸 (0.32質量部)
実施倒9~10	樹脂1 (100質量部)	PAG2 (10質 健 部)	化学式(2) (7.3質量部)	PM/PE=3/7	トリオクチルアミン (0.8質量部)	サリチル酸 (0.32 質量部)
実施例11~12	極脂1 (100質量部)	PAG2 (10質量部)	化学式(3) (10質量部)	PM	トリオクチルアミン(0.8質量部)	サリチル酸 (0.32質量部)
実施例13~14	樹脂1 (100質量部)	PAG3 (10質量部)	化学式(1) (12質量部)	ЬМ	トリオクチルアミン(0.8質量部)	寸リチル酸 (0.32質量部)
実施例15~16	極肥1 (100質量部)	PAG3 (10質量部)	化学式(2) (7.3質量部)	PM/PE=3/7	トリオクチルアミン(0.8質量部)	サリチル酸 (0.32質量部)
実施例17~18	極肥1 (100類射部)	PAG3 (10質量部)	化学式(3) (10質量部)	PM	トンオクチルアニン(0.8風間部)	サリチル酸 (0.32質量部)
実施例19~20	極脳1 (100質量部)	PAG3:PAG4 =95:5(10質量部)	化学式(1) (10質量部)	PM/PE=3/7	トリオクチルアミン(0.8質量部)	サリチル酸 (0.32質量部)
実施例21∼22	樹脂1 (100質霉部)	PAG3:PAG4 =95:5(10質量部)	化学式(2) (7.3質量部)	PM/PE=3/7	トリオクチルアミン(0.8質量部)	サリチル酸 (0.32質量部)
実施例23~24	被指1 (100種制部)	PAG3:PAG4 =95:5(10質盎部)	化学式(3) (10 質量 部)	PM/PE=3/7	ドリオクチルアミン(0.8質量部)	サリチル酸 (0.32質量部)
比較例1	樹脂2 (100質量部)	PAG3 (10質量部)	化学式(2) (7.3質量部)	PM/PE=3/7	トリオクチルアミン (0.8質量部)	サリチル酸 (0.32質量部)

[0087] [表2]

	基板	下 超 膜 (nm)	レジスト膜厚 (nm)	PAB	PEB	1/3	!so-Line
実施例1	8インチ シリコウエーハ	420nm	100/200	金06/206	110℃/30秒	50nm	70nm
実施例2	8インチ シリンウェーハ	-	50/100	金06/206	1105/2011	50₁m	70nm
実施例3	8インチ シリコンウェーハ	420nm	100/200	碌06/206	1105/2011	50nm	70nm
実施例4	8インチ シリンウェーハ	_	50/100	№ 06/2,06	110℃/90秒	50nm	70nm
実施例5	8インチ シリコンウェーハ	420nm	100/200	@£06/2,06	110℃/90秒	50nm	70nm
実施例6	8インチ シリコンウェーハ	•	50/100	@ 06/2,C6	110℃/90秒	50nm	70nm .
実施例7	8インチシリンウェーハ	420nm	100/200	90℃/90 tb	110℃/2011	50nm	70nm
実施例8	8インチ ハーエウンロレビ	I	50/100	倒 06/2,06	110℃/90秒	50nm	70nm
実施例9	8インチ シリコウエーハ	420nm	100/200	例の2/206	110℃/90秒	50nm	70nm
実施例10	8インチ シリコウエーハ	1	50/100	@¥06/2,06	110℃/90秒	50nm	70nm
実施例11	8インチ シリンウェーハ	420nm	100/200	@106/206	110℃/90秒	50nm	70nm
実施例12	8インチ シリンウェーハ	-	50/100	90°C/90₽∌	110℃/90秒	50nm	70nm
実施例13	8インチ シリコウフェー/ \	420nm	100/200	€¥ 06/2,06	110℃/90秒	50nm	70nm

[0088] [表3]

Iso-Line	70nm	70nm	70nm	70nm	70nm	70nm	70nm	70nm	70nm	70nm	70nm	解像するが、バターン膜減 リが大すぎる為、使用不可
S/7	50nm	50nm	50nm	50nm	50nm	50nm	50nm	50nm	50nm	50rim	50nm	解像するがしが大すぎ
РЕВ	110℃/90秒	110℃/90秒	110℃/90秒	110℃/90秒	110℃/90秒	110℃/30秒	110℃/30秒	110°C/90 #9	110℃/301	110℃/90秒	110℃/90秒	110℃/20秒
PAB	健06/2,06	06/2,06	06√2,06	90℃/30¢	録06/206	90℃/30秒	90℃/90秒	90℃/90秒	90℃/30秒	90℃/90秒	例06/206	@406/⊃.06
フジスト膜厚 (nm)	50/100	100/200	50/100	100/200	50/100	100/200	50/100	100/200	50/100	100/200	50/100	001
下 國 膜 (nm)	ı	420nm	ı	420nm	1	420nm	l	420rm	f	420nm	ı	1
奉板	8インチ	8インチンコンウェーハ	8インチンコンプロングエーハ	Bインサ いしいひはー/	8インチンコンロンコンウェーハ	8インサ シコンウェーハ	B インサ ツコンロドーハ	8インチン・コーン・	8インチンコンウェーハ	8インチンコンウェーハ	8インサント・	8インチ リンプロンエーハ
	一种格倒14	東施例15	実施例16	東施例17	事瓶盈18	宇筱鱼19	財務 620	州を座21	東海側22	₩ 冤室23	冊を盛りる	比較例1

[0089] これらの実施例の結果より、本発明にかかるネガ型ホトレジストによれば、微細なレジストパターン、特に微細な孤立ラインパターンを形成できることが認められた。したがって、本発明にかかるネガ型ホトレジスト組成物を、上述した磁性膜パターン形成方法に用いて、微細な磁性膜パターンを形成することから、磁気ヘッドを微細化することができる。

産業上の利用可能性

[0090] 本発明のネガ型レジスト組成物は、高アスペクト比でかつ膜減りの無い微細なレジストパターンの形成に適用することができる。

.

4

請求の範囲

[1] 下記一般式(I) [化1]

(式中、 R^1 は炭素数1~5の直鎖状または分岐状のアルキレン基を表す。)で表される構成単位(a1)と、下記一般式(II)

[化2]

$$(\pi)$$
 (π)

で表される構成単位(a2)とを有するシルセスキオキサン樹脂(A)と、露光により酸を発生する酸発生剤成分(B)と、架橋剤成分(C)とを含むことを特徴とするネガ型レジスト組成物。

[2] 前記シルセスキオキサン樹脂(A)が、さらに下記一般式(III) [化3]

$$OR^3$$

$$\cdots (III)$$

$$+SiO_{3/2}$$

(式中、R²は炭素数1~5の直鎖状または分岐状のアルキレン基を表し、R³は炭素数1~5の直鎖状または分岐状のアルキル基を表す。)で表される構成単位(a3)を有する請求項1記載のネガ型レジスト組成物。

- [3] 前記シルセスキオキサン樹脂(A)が、前記構成単位(a1)50~95モル%、前記構成単位(a2)5~40モル%、および前記構成単位(a3)0~20モル%を有する請求 項1に記載のネガ型レジスト組成物。
- [4] 前記シルセスキオキサン樹脂(A)の質量平均分子量(Mw)が1000以上15000以下である請求項1に記載のネガ型レジスト組成物。
- [5] さらに、含窒素有機化合物(D)を含有する請求項1に記載のネガ型レジスト組成物
- [6] 支持体上に有機層を設け、前記有機層上にレジスト層を設ける工程と、前記レジスト層をパターニングして上部レジストパターンを形成する工程と、前記上部レジストパターンをマスクとしてドライエッチングを行うことによって前記有機層をパターニングして下部レジストパターンを形成する工程と、前記上部レジストパターンおよび下部レジストパターンをマスクとしてエッチングを行うことによって前記支持体にパターンを形成する工程とを有する二層レジスト法に用いられる請求項1に記載のネガ型レジスト組成物。
- [7] 磁性膜上に形成されたレジストパターンをマスクとしてイオン性エッチングを行うことにより前記磁性膜をパターニングする工程を有する磁性膜パターン形成方法に用いられる請求項1に記載のネガ型レジスト組成物。

1

- [8] 磁性膜上に形成された下地膜パターンと、前記下地膜パターン上に形成されたレジストパターンからなるリフトオフパターンをマスクとしてイオン性エッチングを行うことにより前記磁性膜をパターニングする工程を有する磁性膜パターン形成方法に用いられる請求項1に記載のネガ型レジスト組成物。
- [9] レジスト層に対して電子線による選択的露光を行う工程を有するレジストパターン形成方法に用いられる請求項1に記載のネガ型レジスト組成物。

		0.00
	ē.	
		1
		•
		•
		*
		and the state of t
		c
· ·		
		•
		•
	-	

[図1A]

[図1B]

[図1C]

[図1D]

[図1E]

	(a)	
		4

[図2A]

[図2B]

[図2C]

[図2D]

í

INTERNATIONAL SEARCH REPORT

International application No.

		FC1/012	003/001320	
A. CLASSIFIC Int.Cl	CATION OF SUBJECT MATTER G03F7/038, C08G77/16, G03F7/0	075, H01L21/027		
According to Int	ternational Patent Classification (IPC) or to both national	I classification and IPC		
B. FIELDS SE				
Minimum docum	nentation searched (classification system followed by class G03F7/004-7/18, C08G77/16, G0	assification symbols) 03F7/075, H01L21/027		
Jitsuyo Kokai J	itsuyo Shinan Koho 1971-2005 To	tsuyo Shinan Toroku Koho roku Jitsuyo Shinan Koho	1996-2005 1994-2005	
Electronic data t	pase consulted during the international search (name of d	lata base and, where practicable, search te	rms used)	
C. DOCUMEN	NTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where ap		Relevant to claim No.	
X Y	JP 5-323609 A (Tokyo Ohka Ko 07 December, 1993 (07.12.93), Full text (Family: none)		1,3-9 2	
X Y	JP 2004-38143 A (SHIPLEY CO. 05 February, 2004 (05.02.04), Claim 17; Par. Nos. [0014], [0074] to [0081], [0090] & US 2003/0219676 A1		1,3-9 2	
X Y	WO 2002/091083 A1 (SHIPLEY Constitution of the		1,3-9 2	
× Further do	coments are listed in the continuation of Box C.	See patent family annex.		
* Special categories of cited documents: A" document defining the general state of the art which is not considered to be of particular relevance E" earlier application or patent but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search		"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family		
Name and maili	e, 2005 (02.06.05) ng address of the ISA/	21 June, 2005 (21.6 Authorized officer	06.05)	
	se Patent Office			
Facsimile No.		Telephone No.		

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2005/004326

		.003/001320
C (Continuation).	DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	JP 2001-51422 A (Tokyo Ohka Kogyo Co., Ltd.), 23 February, 2001 (23.02.01), Claims; Par. Nos. [0032], [0033] (Family: none)	2
Y	JP 2002-55452 A (Tokyo Ohka Kogyo Co., Ltd.), 20 February, 2002 (20.02.02), Claims; Par. Nos. [0062] to [0064] & US 2002/0025495 A1	2
А	JP 2001-5185 A (Fujitsu Ltd.), 12 January, 2001 (12.01.01), Claims 13, 14; Par. Nos. [0001], [0066] (Family: none)	7,8
P,X	WO 2004/051376 Al (Tokyo Ohka Kogyo Co., Ltd.), 17 June, 2004 (17.06.04), Full text (Family: none)	1-4,6-9
P,Y	WO 2004/111734 A1 (Tokyo Ohka Kogyo Co., Ltd.), 23 December, 2004 (23.12.04), Full text (Family: none)	1-9

Form PCT/ISA/210 (continuation of second sheet) (January 2004)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2005/004326

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons: 1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows: The invention of claim 1 is not novel. Consequently, there is no technical feature common to all the claims. Since there is no technical relationship involving one or more of the same or corresponding special technical features, the inventions of this application are not considered so linked as to form a single general inventive concept.
 As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims. X As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

発明の属する分野の分類(国際特許分類(IPC)) Int.Cl.7 G03F7/038, C08G77/16, G03F7/075, H01L21/027

調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int.Cl.⁷ G03F7/004-7/18, C08G77/16, G03F7/075, H01L21/027

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

ţ

1922-1996年

日本国公開実用新案公報

1971-2005年

日本国実用新案登録公報

1996-2005年

日本国登録実用新案公報

1994-2005年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

関連すると認められる文献 引用文献の 関連する カテゴリー* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 X JP 5-323609 A (東京応化工業株式会社) 1993.12.07, 全文 1, 3-9Y (ファミリーなし) 2 X IP 2004-38143 A (シップレーカンパニー エル エル シー) 1, 3-9Y 2004. 02. 05, 請求項 17, [0014], [0046]-[0049], [0074]-[0081], [0090]& US 2003/0219676 A1 X WO 2002/091083 A1 (SHIPLEY COMPANY, L. L. C.) 2002. 11. 14. 1.3-9Y 請求項 25-30, 29 & EP 1407324 A1 & JP 2005-507087 A1

C欄の続きにも文献が列挙されている。

「パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用す る文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 」 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査報告の発送日 21.6。2005 国際調査を完了した日 02.06.2005 9515 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 2H日本国特許庁 (ISA/JP) 伊藤 裕美 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 電話番号 03-3581-1101 内線 3231

	国际侧重 + K 口		
C (続き) .	関連すると認められる文献	関連する	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の	
у — <u>У</u>	JP 2001-51422 A (東京応化工業株式会社) 2001.02.23 特許請求の範囲,[0032],[0033] (ファミリーなし)	2	
Y	JP 2002-55452 A(東京応化工業株式会社)2002.02.20,特許請求の 範囲,[0062]-[0064] & US 2002/0025495 A1	2	
A	JP 2001-5185 A(富士通株式会社)2001.01.12 請求項 13,14,[0001],[0066](ファミリーなし)	7,8	
PX	WO 2004/051376 A1 (東京応化工業株式会社) 2004.06.17, 全文 (ファミリーなし)	1-4, 6-9	
PY	WO 2004/111734 A1 (東京応化工業株式会社) 2004.12.23, 全文 (ファミリーなし)	1-9	Į.,
			()
	·		

第Ⅱ欄 謂求の範囲の一部の調査ができないときの意見(第1ページの2の続き)
法第8条第3項(PCT17条(2)(a)) の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。
1. 「 請求の範囲 は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、
2. 「 請求の範囲
3. 「 請求の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。
第Ⅲ欄 発明の単一性が欠如しているときの意見(第1ページの3の続き)
次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。 請求の範囲1に係る発明は新規ではない。 そのため全ての請求の範囲に共通する事項はない。 したがって、一又は二以上の同一又は対応する特別な技術的特徴を含む技術的な関係にないから、単一の一般的発明概念を形成するように連関しているものとは認められない。
1. 「 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求の範囲について作成した。
2. 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。
3. 「 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
4. 「 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。
追加調査手数料の異議の申立てに関する注意

□ 追加調査手数料の納付と共に出願人から異議申立てがあった。□ 追加調査手数料の納付と共に出願人から異議申立てがなかった。

THIS PAGE BLANK (USPTO)