In the Specification

Please amend the first full paragraph on page 29 to read as follows:

The membrane-permeant antagonists 7-deaza-8-Br-cADPR and xestospongin C are powerful tools, but to achieve a sufficiently high intracellular effective concentration, a substantial preincubation period must be employed. To find out whether either lns(1,4,5) P_3 or cADPR or both play an essential role also at a later time point after TCR/CD3 stimulation, we stimulated the cells by OKT3, and, after development of Ca^{2+} signalling, microinjected a specific antagonist, e.g. inositol 1,4,6-triphosphorothioate (lns(1,4,6) P_3S_3), or 8-methoxy-cADPR, or a combination of both (Figure 3). Following the development of Ca^{2+} signalling stimulation by OKT3, microinjection of 8-methoxy-cADPR, a novel cADPR antagonist of similar potency as 8-NH₂-cADPR, significantly decreased the magnitude of further Ca^{2+} signals (Figure 3a, b, e), whereas microinjection of Ins(1,4,6) P_3 S_3 did not have a significant effect (Figure 3a, c, e). Combined microinjection of 8-methoxy-cADPR and $Ins(1,4,6)P_3$ S_3 resulted in a somewhat more pronounced inhibition as compared to 8-methoxy-cADPR alone (Figure 3e). These data confirm the concept of both an initial Ca^{2+} signalling phase for which $Ins(1,4,5)P_3$ is essential, and a sustained phase driven mainly by cADPR.