72939 Software Systems Engineering M

a.a. 2018-2019 Bologna

https://www.unibo.it/en/teaching/course-unit-catalogue/course-unit/2018/385373

72939 (ISS) Goal

Learn how to build in a concrete way ...

... working individually or in a team ...

... following agile (model-centered) methodologies

a software distributed system ...

.. that must satisfy a set of pre-defined requirements ...

... running on a heterogeneous set of nodes

for IOT (WOT) applications

72939 (ISS) Overview

Software Systems

Components

Interaction

Behavior

Design Patterns / (Software) Architectures / Platforms

Programming Languages

Software production Methodologies, Methods and Tools

IOT / WOT Application Domains

Using proper tools (Download / Install)

Components

Hardware

- Processing unit
 - Arduino (Genuino Uno)
 - RaspberryPi3
 - Android
- Sensor
 - Sonar HC-SR04

Software (see Languages)

- Function
- Object
- Process
- Thread
- Actor
- Coroutine

– ...

Interaction

Common memory

Shared spaces

Distributed

- Message
 - Fire and forget
 - Request-response
- Event

Behavior

Control based

- Proactive
- Reactive
- Finite State Machine

Message / Event driven

•

Languages / Styles

Languages

- C++
- Java
- Kotlin
- JavaScript / NodeJs
- Prolog

Styles

- Imperative, object
- Imperative, object
- Imperative, functional, object
- Functional
- Logical

Software production

Bottom-Up

Components/ Technology first

Top-Down

Problem Analysis / Project first

Methodology

Model-based

- Beyond UML
- Custom metamodel (based on Xtext)

Agile

- KANBAN
- SCRUM

MIXED

Architecture / Platform

Layered

Web (RestFul)

Microservice A Microservice B User Experience (UX) Layer User Experience (UX) Layer API Interface **API Interface** (REST/Message/Binary **Business Logic Layer Business Logic Layer** (Service Component) (Service Component) **Data Access Layer Data Access Layer** (DAO Component) (DAO Component) Container The Internet Web Server Client Page Web page

Hexagonal (Port/Adapter)

TOOLS

- GIT
- Gradle
- Intellij
- Eclipse
- XText

Application Domains

IOT

WOT

Dowload / Install

- Gradle
- NodeJs
- Eclipse DSL / IntelliJ IDEA
- Android Studio
- MQTT-Mosquitto
- OPTIONALLY
 - Docker

Material

Lectures and Course site:

http://infolab.ingce.unibo.it/iss2018/it.unibo.issMaterial/issdocs/ Material/LectureBologna1819.html

MANUALS and BOOKS (see the site)

- GIT HUB
 - Lab Code:
 - http://github.com/anatali/issLab2019.git

Assessment

- Criteria: see https://www.unibo.it/en/teaching/course-unit-catalogue/course-unit/2018/385373
- Final task examples
 - Bologna2017-2018
 - Cesena 2018-2019

FIRST APPLICATION: BLS system

- Design and build a ButtonLed software system (BLS) in which a Led starts / stops blinking each time a Button is pressed (by an human user).
- The system should run (at the moment) on a single computational support, e.g. a Conventional PC, a RaspberryPi or Arduino.
- The Led / Button devices can be real or virtual

WORK TO DO

- Prepare a personal PC to be used in the Lab
- Write a document not longer than two pages hat describes the architecture of the proposed solution to the BLS problem and includes
 - Name, badge number, and foto (card) of the author
- Printed on a SINGLE PAGE
- To be delivered to the teacher on Feb 26st