

Dr. Adriano Cavalcanti

PhD MABE, MS EE, BSc CSc Computational Nanotechnology & Biomed Robotics

Office location: SAMU216D - Phone 509-963-2063 Email: adriano.cavalcanti@cwu.edu

Office hours:
Mon 1PM-2PM; Mon 2PM-3PM; Wed 1PM-2PM; Or by appointment

Activity

Activity

Applied Sci-Computing

									À		
	A	В	C D	E		F	G	Н	1		K
1	Pump curv	mp curve for Goulds GT10									
2		Grainger Catalog, Part Number 1N440 (Catalog 401, November 2010)									
3		http://www.grainger.com/Grainger/GOULDS-Centrifugal-Pump-1N440									
4											
5			60 —								
6	Q (GPM)	h (psi) $y = -1.1495E-04x^3 + 1.9462E-04x^2 - 2.8397E-01x + 5.0946E$								46E+01	
7	60	10		_			$R^2 = 9.9$	9822E-01			
8	56	15	50 🐃	-							
9	53	20			-	_					
10	47	25	40			-	_				
11	43	30	<u>(5</u>				-				
12	38	35	He ad (PSI)				-			Data	
13	29	40	<u> </u>							Data	
14	18	45	20					\		Cubic fit	
15	0	51									
16								~			
17			10								
18											
19			0 +	40	20	20		50			
20			0	10	20	30	40	50 6	50 70		
21		Flow rate (GPM)									
22											
23											
24		mial coefficients								ms.	
25		-1.1495E-04									
26		1.9462E-04								GODE	"OL
27	3									5	2
28	4	5.0946E+01								1	0.
29	R2	9.9822E-01								0 0	1
30										000	

Activity

Fitting a Pump Curve Using the discussed example, perform the following steps:

- 1) Demonstrate you setup the environment to run Sci-Comp using Spyder (3 points)
- 2) Demonstrate you also setup the environment to run Sci-Comp on PyCharm (3 points)
- 3) Fit the Pump Curve to the provided data, read it from a file. (4 points)