UNIVERSIDADE FEDERAL DE SANTA CATARINA CAMPUS BLUMENAU

LABORATÓRIO 09

EDUARDO MAFRA PEREIRA (15102929)

PROFESSOR LEONARDO MEJIA RINCON
PROFESSOR MARCOS VINICIUS MATSUO
Visão Computacional em Robótica

BLUMENAU 2019

INTRODUÇÃO

Conforme solicitado na atividade do Laboratório 09, foi implementada no Matlab uma função que realiza o cálculo de disparidade entre duas imagens. As imagens utilizadas neste relatório são apresentadas nas figuras 1(a) e 1(b).

Figura 1

DESENVOLVIMENTO

Na implementação do algoritmo inicialmente foram extraídas as imagens em escala RGB através da função "iread", e transformadas para escala de cinzas utilizando a média aritmética entre suas camadas. Na sequência são definidos os restantes dos parâmetros de entrada da função, são eles: a distância mínima entre a posição inicial do pixel tratado na segunda imagem e a posição onde inicia-se o "template matching", a distância máxima entre a posição inicial do pixel tratado na segunda imagem e a posição onde é finalizado o "template matching", e por fim a dimensão da janela de comparação.

Figura 2

```
clc;clear all;
close all;

left1 = iread('left.png','double');
right1 = iread('right.png','double');

tic

left = (left1(:,:,1) + left1(:,:,2) + left1(:,:,3))/3;
right = (right1(:,:,1) + right1(:,:,2) + right1(:,:,3))/3;

larg = 3; % Largura da janela
xmin = 0; % distância entre o inicio do tamplete e o pixel da imagem right
xmax = 50; % distância entre o fim do tamplete e o pixel da imagem right
result = disparidade(left,right,xmin,xmax,larg);
idisp(result);
toc
```

Com os parâmetros definidos é possível tratar a função desenvolvida para o cálculo da disparidade entre duas imagens em escala de cinza. Nesta função utiliza-se 3 laços de repetição. Com os dois primeiros laços percorre-se a imagem da esquerda aplicando sobre ela a janela definida, criando assim uma nova imagem

com as dimensões da janela, e sua posição central do pixel é definida pelas variáveis destes laços (linha e coluna). No laço mais interno é aplicado a técnica de "template matching SAD" entre a janela aplicada na imagem da direita e a nova imagem obtida nos laços anteriores. Vale ressaltar que este laço inicia-se de um ponto deslocado na imagem da direita em relação a posição tratada na imagem da esquerda, este deslocamento é reduzido a cada laço.

Os valores do "template matching" são atribuídos a um vetor, e a posição do menor valor atribuido a este vetor representará a distância entre os pontos similares das duas imagens. Todas as distâncias calculadas são atribuídas a uma imagem "Not-a-Number" que foi criada no ínicio da função, construíndo assim a imagem de disparidade esperada.

Figura 3

```
end
  dist = find(dispa == min(dispa));
  minimo = min(dist);
  Disparidade(i,j) = minimo + xmin;
  end
end
result = Disparidade(:,:);
```

Figura 4

RESULTADO

O resultado é apresentado na Figura 5, e demonstra que a construção da função foi realizada com sucesso pelo aluno.

Figura 5 - Resultado obtido

REFERÊNCIAS

{Mejia} RINCON, Leonardo Mejia. Visão Computacional em Robótica
: Notas de aula. Blumenau, SC, 2019.
{Vinicius} MATSUO, Marcos Vinicius Matsuo. Visão Computacional em Robótica
: Notas de aula. Blumenau, SC, 2019.