QUESTION 1:

Consider the database for a banking enterprise. Write the queries for the below questions.

(i) Create the following tables

Table	Attributes
Customer	cid,cname,loc,sex,dob
Bank_brn	bcode,bloc,bsate
Deposit	Dacno,dtype,ddate,damt
Loan	Lacno,ltype,ldate,lamt
Accounts_in	Bcode,cid
Depositor	cid,dacno
Borrower	cid,lacno

- (ii) Include necessary constraints.
- (iii) Tables are created under the database 'bank'
- (iv) Display all the tables in bank database
- (v) Describe the structure of all tables
- (vi) Delete tables

SCRIPTS

```
(i, ii, iii) Query:
 CREATE DATABASE bank;
 CREATE TABLE customer(
         cid int primary key,
         cname varchar(20),
         loc varchar(20),
         sex varchar(20),
         dob varchar(20));
 CREATE TABLE bank_branch(
         bcode varchar(10) primary key,
         bloc varchar(20),
         bstate varchar(20));
 CREATE TABLE deposit(
         dacno int primary key,
         dtype varchar(20),
         ddate varchar(20),
         damt varchar(20));
 CREATE TABLE loan(
         lacno int primary key,
         Itype varchar(20),
         Idate varchar(20),
         lamt float(20));
```

```
CREATE TABLE accounts in(
 bcode varchar(20),
 cid int,
 FOREIGN KEY (bcode) REFERENCES bank_branch(bcode) ON DELETE CASCADE,
 FOREIGN KEY (cid) REFERENCES customer(cid) ON DELETE CASCADE);
 CREATE TABLE Depositor(
 cid int,
 dacno int,
 FOREIGN KEY (dacno) REFERENCES deposit(dacno) ON DELETE CASCADE,
 FOREIGN KEY (cid) REFERENCES customer(cid) ON DELETE CASCADE);
 CREATE TABLE Borrower(
 cid int,
 lacno int,
 FOREIGN KEY (lacno) REFERENCES loan(lacno) ON DELETE CASCADE,
 FOREIGN KEY (cid) REFERENCES customer(cid) ON DELETE CASCADE);
(iv) Query:
 USE bank;
 SHOW TABLES;
(v) Query:
 DESCRIBE customer;
 DESCRIBE bank_branch;
 DESCRIBE deposit;
 DESCRIBE loan;
 DESCRIBE accounts_in;
 DESCRIBE Depositor;
 DESCRIBE Borrower;
(vi) Query:
 DROP TABLE customer;
 DROP TABLE bank_branch;
 DROP TABLE deposit;
 DROP TABLE loan;
 DROP TABLE accounts in;
 DROP TABLE Depositor;
 DROP TABLE Borrower;
```

OUTPUT

Output of (i,ii,iii)

Output of (iv)

Output of (v)

customer

bank_branch

deposit

	Field	Type	Null	Key	Default	Extra
•	dacno	int(11)	NO	PRI	NULL	
	dtype	varchar(20)	YES		NULL	
	ddate	varchar(20)	YES		NULL	
	damt	varchar(20)	YES		NULL	

Loan

	Field	Туре	Null	Key	Default	Extra
•	lacno	int(11)	NO	PRI	NULL	
	Itype	varchar(20)	YES		NULL	
	Idate	varchar(20)	YES		NULL	
	lamt	float	YES		NULL	

accounts_in

	Field	Туре	Null	Key	Default	Extra
•	bcode	varchar(20)	YES	MUL	NULL	
	cid	int(11)	YES	MUL	NULL	

Depositor

	Field	Туре	Null	Key	Default	Extra
•	cid	int(11)	YES	MUL	NULL	
	dacno	int(11)	YES	MUL	NULL	

Borrower

	Field	Type	Null	Key	Default	Extra
•	cid	int(11)	YES	MUL	NULL	
	lacno	int(11)	YES	MUL	NULL	

Output of (vi)

QUESTION 2:

Consider the database for a college. Write the query for the following.

- (i) Insert at least 5 tuples into each table.
- (ii) List the details of students in the ascending order of date of birth
- (iii) Display the details of students from computer department
- (iv) List the faculties in the descending order of salary
- (v) Display the total number of students in each department
- (vi) Display the total number of faculties in each department with salary greater than 25000

Answers

```
Creating required tables
```

```
CREATE TABLE dept(
id int primary key,
name varchar(20));

CREATE TABLE student(
id int primary key,
name varchar(20),
dept_id int ,
dob date,
FOREIGN KEY (dept_id) REFERENCES dept(id) ON DELETE CASCADE);

CREATE TABLE faculty(
name varchar(20),
id int primary key,
salary double,
dept_id int,
FOREIGN KEY (dept_id) REFERENCES dept(id) ON DELETE CASCADE);
```

(i) Query:

INSERT INTO dept VALUES(1,'CS');

```
INSERT INTO dept VALUES(2,'ECE');
INSERT INTO dept VALUES(3,'Physics');
INSERT INTO dept VALUES(4,'Chemistry');
INSERT INTO dept VALUES(5,'Maths');

INSERT INTO student VALUES(10,'Marvin',1,'2001-01-01');
INSERT INTO student VALUES(11,'Shibili',1,'2000-01-02');
INSERT INTO student VALUES(12,'Soni',3,'2002-01-03');
INSERT INTO student VALUES(13,'Joyal',4,'1999-01-04');
INSERT INTO student VALUES(14,'Jeslin',2,'1998-01-05');
```

```
INSERT INTO faculty VALUES('Mike',101,12000,1);
INSERT INTO faculty VALUES('Sam',102,23000,1);
INSERT INTO faculty VALUES('Ethan',103,45000,3);
INSERT INTO faculty VALUES('Ross',104,50000,2);
INSERT INTO faculty VALUES('Rachel',105,120000,4);
```

(ii) Query:

SELECT *
FROM student
ORDER BY dob;

(iii) Query:

SELECT *
FROM student s JOIN dept d
ON s.dept_id=d.id
WHERE d.name="CS";

(iv) Query:

SELECT *
FROM faculty
ORDER BY salary DESC;

(v) Query:

SELECT d.name, count(s.id) 'student'
FROM student s JOIN dept d
ON s.dept_id=d.id
GROUP BY d.id;

(vi) Query:

SELECT d.name,count(f.id) 'faculty'
FROM faculty f JOIN dept d
ON f.dept_id=d.id
where f.salary>25000

OUTPUT

Output of table creation

Output of (i)

Output of (ii)

	id	name	dept_id	dob
•	14	Jeslin	2	1998-01-05
	13	Joyal	4	1999-01-04
	11	Shibili	1	2000-01-02
	10	Marvin	1	2001-01-01
	12	Soni	3	2002-01-03
	NULL	NULL	NULL	NULL

Output of (iii)

	id	name	dept_id	dob	id	name
•	10	Marvin	1	2001-01-01	1	CS
	11	Shibili	1	2000-01-02	1	CS

Output of (iv)

	name	id	salary	dept_id
•	Rachel	105	120000	4
	Ross	104	50000	2
	Ethan	103	45000	3
	Sam	102	23000	1
	Mike	101	12000	1
	NULL	NULL	NULL	NULL

Output of (v)

name	student
▶ CS	2
ECE	1
Physics	1
Chemistry	1

Output of (vi)

	name	faculty
•	ECE	1
	Physics	1
	Chemistry	1

QUESTION 3:

Queries using aggregate functions(COUNT,AVG,MIN,MAX,SUM),Group by,Order by,Having.

E_ID	E_NAME	AGE	SALARY
101	ANU	22	9000
102	Shane	29	8000
103	Rohan	34	6000
104	Scott	44	10000
105	Tiger	35	8000
106	Alex	27	7000
107	Abhi	29	8000

- (i) Create Employee table containing all Records.
- (ii) Count number of employee names from employee table.
- (iii) Find the Maximum age from employee table
- (iv) Find the Minimum age from employee table.
- (v) Display the Sum of age employee table.
- (vi) Display the Average of age from Employee table
- (vii) Create a View for age in employee table
- (viii) Display views
- (ix) Find grouped salaries of employees.
- (x) Find salaries of employee in Ascending Order
- (xi) Find salaries of employee in Descending Order

Script:

(i) Query:

CREATE DATABASE EMPLOYEE;
USE EMPLOYEE;
CREATE TABLE Employee(
E_ID INT(25),
E_NAME VARCHAR(25),
AGE INT(10),
SALARY FLOAT(10),
PRIMARY KEY(E_ID));

```
Inserting rows:
 INSERT INTO Employee VALUES (101,"ANU",22,9000);
 INSERT INTO Employee VALUES (102, "SHANE", 29,8000);
 INSERT INTO Employee VALUES (103, "ROHAN", 34,6000);
 INSERT INTO Employee VALUES (104, "SCOTT", 44, 10000);
 INSERT INTO Employee VALUES (105,"TIGER",35,8000);
 INSERT INTO Employee VALUES (106,"ALEX",27,7000);
 INSERT INTO Employee VALUES (107,"ABHI",29,8000);
(ii) Query:
 SELECT COUNT(E_NAME) FROM Employee;
(iii) Query:
 SELECT MAX(AGE) FROM Employee;
(iv) Query:
 SELECT MIN(AGE) FROM Employee;
(v) Query:
 SELECT SUM(AGE) FROM Employee;
(vi) Query:
 SELECT AVG(AGE) FROM Employee;
(vii) Query:
 CREATE VIEW E_AGE AS
 SELECT E_NAME, AGE FROM Employee;
(viii) Query:
 SELECT * FROM E AGE;
```

SELECT E_NAME, SALARY FROM Employee GROUP BY E_NAME;

(ix) Query:

(x) Query:

SELECT SALARY FROM Employee ORDER BY SALARY ASC;

(xi) Query:

SELECT SALARY FROM Employee ORDER BY SALARY DESC;

OUTPUT

Output of (i)

Output of (ii)

Output of (iii)

Output of (iv)

Output of (v)

Output of (vi)

Output of (vii)

Output of (viii)

Output of (ix)

Output of (x)

Output of (xi)

	SALARY
•	10000
	9000
	8000
	8000
	8000
	7000
	6000