Preliminary Examination

Joe Camilleri

Virginia Tech

prelim exam

Dirac equation and charge conjugation

$$\mathcal{L} = rac{i}{2} \left[\ \overline{\psi} \gamma^{\mu} \left(\partial_{\mu} \psi
ight)
ight. \ \left. - \left(\partial_{\mu} \overline{\psi}
ight) \gamma^{\mu} \psi
ight] - \left(\overline{m} \overline{\psi} \psi
ight)$$

$$e^{-} \iff e^{+}$$

$$\hat{\psi} \to \hat{\psi}^{C} = C\gamma^{0}\hat{\psi}^{*}$$

$$C = \begin{pmatrix} i\sigma_{2} & 0\\ 0 & -i\sigma_{2} \end{pmatrix}$$

$$(i\partial - m)\psi = 0$$
$$\psi = \begin{pmatrix} \varphi \\ \chi \end{pmatrix}$$

The Quantum Theory of the Electron,

By P. A. M. Dmac, St. John's College, Cambridge.

(Communicated by R. H. Fowler, F.R.S.—Received January 2, 1928.)

The new quantum mechanics, when applied to the problem of the structure of the atom with point-charge electrons, does not give results in agreement with experiment. The discrepancies consist of "duplexity" phenoment, he observed number of stationary states for an electron in an atom being twice the number given by the theory. To sense the difficulty, colondaria and Othersheet have introduced the idea of an electron with a spin angular momentum of half a quantum and a naguetic moment do one Both rangeston. This model for the electron has been fitted into the new mechanics by Pauli,* and Darwin,† working with an equivalent theory, has shown that it gives results in agreement.

Majorana fermions and neutrinos

- Majorana fermions can be seen as solutions to the Dirac equation with an extra constraint
- $\psi = \psi^{C}$
- implies these fermions are chargeless, and their own anti-particles

The left and right handed components of the spinor are no longer independent

$$\Psi_{majorana} = \psi_L + \psi_R$$

mass terms:

$$egin{aligned} \left(\overline{\hat{\psi^C}}_L \hat{\psi}_L + \overline{\hat{\psi}}_L \hat{\psi}_L^C
ight)_{Majorana} \ \left(\overline{\hat{\psi}}_L \hat{\psi}_R + \overline{\hat{\psi}}_R \hat{\psi}_L
ight)_{Dirac} \end{aligned}$$

why is it still unknown if neutrinos are Dirac or Majorana fermions?

- Both types of fermions are compatible with observed features of neutrinos, including neutrino oscillations. majorana neutrinos and their anti-matter partners are only distinguishable by their chirality.
- In the ultra-relativistic limit, helicity and chirality (lepton number). we can never boost into a frame where the neutrino has right handed helicity. (does the goldhaber experiment measure helicity or chirality? chirality is the sign of the phase of the wavefunction for the dirac fermion. it describes which path
- it takes in the complex plane.

 expand the fermionic propagator
 in the limit are and the

The left and right handed components of the spinor are no longer independent

$$\Psi_{majorana} = \psi_L + \psi_R$$

mass terms:

$$egin{aligned} \left(\overline{\hat{\psi}^{\mathsf{C}}}_{\mathsf{L}} \hat{\psi}_{\mathsf{L}} + \overline{\hat{\psi}}_{\mathsf{L}} \hat{\psi}^{\mathsf{C}}_{\mathsf{L}}
ight)_{\mathsf{Majorana}} \ & \left(\overline{\hat{\psi}}_{\mathsf{L}} \hat{\psi}_{\mathsf{R}} + \overline{\hat{\psi}}_{\mathsf{R}} \hat{\psi}_{\mathsf{L}}
ight)_{\mathsf{Dirac}} \end{aligned}$$

SM and BSM double-beta decay

 $2\nu\beta\beta$: the neutrinos are Dirac fermions, and have distinct anti-particles ν , $\overline{\nu}$

extremely rare process, observed in direct detection experiments (CUORE-0, GERDA, XENON, EXO, NEMO) $T_{1/2}^{2\nu\beta\beta}\sim 10^{19}-10^{24}yr$

 $\mathbf{0} \boldsymbol{\nu} \boldsymbol{\beta} \boldsymbol{\beta}$: the neutrinos are Majorana fermions and are absorbed as virtual particles

Never before observed in any experiment: $T_{1/2}^{0
u\beta\beta}>10^{26}yr$ (Lepton number violation)

experimental signature and detection

- mono-energetic peak with 2 electrons leaving the reaction.
- tomography of electron tracks can help reduced backgrounds, except for the $2\nu\beta\beta$ irreducible background
- experimental goal is to measure $T_{1/2}^{0
 uetaeta}$ to constrain the effective neutrino mass m_{etaeta} .
- this measurement complements measurements of Σ and m_β from cosmology and kinematic experiments, respectively.

neutrino mass and oscillations

- Homestake Mine and the solar neutrino anomaly $^{37}Cl + \nu_e \rightarrow ^{37}Ar + e^-$ observes factor of 3 discrepancy in ν_e flux.
- Sudbury Neutrino Observatory (SNO) measures total neutrino flux: ν_{μ}, ν_{τ} account for ν_{e} deficit.
- KAMLAND, a reactor neutrino experiment shows survival probability of electron neutrinos $P = 1 \sin^2(2\theta)\sin^2(\Delta m^2L/4E)$

neutrino mass and the β -spectrum

- Tritium (3H) is a viable isotope for directly probing the neutrino mass low Q value (decays in region $E_0 E$ scale with $(E_0 E)^3/Q^3$ and short-life to reduce line broadening.....?
- Measure deviation from the mass-less spectrum's linearity at large energies.
- This method is most-direct and model independent probe of the neutrino's mass. Constructing a sensitive experiment is very challenging (KATRIN may be last of its kind)

mass scale

- Physicists believed neutrinos to be massless for decades, due to Standard Model predictions (Higgs mechanism for leptons) and experimental data
- Neutrinos are orders of magnitude lighter than any other fundamental particle. This in addition to them being chargeless, makes it hard to measure their presence in experiments.
- The common model for describing BSM neutrino mass states is the light-neutrino mixing model (3 mass eigenstates)

neutrino mixing

A given flavor eigenstate is a linear combination of mass eigenstates (PMNS-matrix)

$$\begin{bmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{bmatrix} = U \begin{bmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{bmatrix}$$

parameters: angles $\theta_{12}, \theta_{13}, \theta_{23}$ CP-violating phases $\delta_{CP}, \alpha_1, \alpha_2$, and neutrino masses m_1, m_2, m_3

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{CP}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{CP}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{CP}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{CP}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{CP}} & c_{23}c_{13} \end{pmatrix}$$

$$\times \begin{pmatrix} e^{i\alpha_{1}/2} & 0 & 0 \\ 0 & e^{i\alpha_{2}/2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

mass hierarchy

Neutrino oscillation experiments are sensitive to $\Delta m_{ij}^2 = m_i^2 - m_j^2$ This, coupled with the neutrinos' very small mass scale, leads to ambiguity in their ordering. **normal ordering** $\implies m_3^2 > m_2^2 > m_1^2$ **inverted ordering** $\implies m_2^2 > m_1^2 > m_2^2$

effective Majorana neutrino mass

zero neutrino half-life

complementary limits

- $\begin{tabular}{ll} $\tt Limits on the effective $0\nu\beta\beta$ \\ halflife are also constrained by kinematic and cosmological searches \\ \end{tabular}$
- $m_{\beta} = \sqrt{U_{ei}^2 m_i^2} \text{ and }$ $\Sigma = m_1 + m_2 + m_3$
- $m_{eta} < 1.1 \mathrm{eV}$ $\Sigma < 0.3 \mathrm{eV}$

inverted normal

designing a direct-detection experiment

0.187 7.8 8.73 2.8 9.63	24.81 2.36 10.16 20.58	826.2 49.6 198.1
8.73 2.8 9.63	10.16 20.58	198.1
2.8 9.63	20.58	
9.63		242.7
		342.7
	15.92	254.5
11.72	4.82	70.0
7.49	16.70	230.1
5.79	9.04	116.5
31.69	0.59	7.4
33.8	14.22	174.8
8.9	14.58	171.4
5.76	10.10	109.1
5.64	63.03	671.7
22.7	3.02	31.3
21.96	9.56	95.5
21.00	7.56	61.0
	21.86	

Rate
$$(\mathcal{O}_{majorana}) \propto rac{m_{
u}^2}{Q_{etaeta}}$$

$$T_{1/2}^{0
uetaeta} = \left(G|\mathcal{M}|^2\langle m_{etaeta}
ight)^{-1}$$
 $F_{0
u} = au_{1/2}^{bkg.fluct.} = \ln(2)N_{etaeta}\epsilonrac{t}{n_{bkg}}$ $F_{0
u} = ln(2) imes rac{N_A}{W} \left[a\epsilon\sqrt{rac{Mt}{b\Delta}}
ight]$

backgrounds

- Primordial radioisotopes: ^{238}U and ^{232}Th generate chain of β, γ impinging on region of interest
 - Uranium and Thorium are ubiquitous in detector materials: copper, ptfe, ...
 - Uranium daughter Radon-222 exists in a gaseous phase and is present in ambient air
- the intrinsically irreducible background $2\nu\beta\beta$: $\Gamma_{2\nu\beta\beta}$ is negligible in some isotopes (130 Te), but not others (100 Mo)

goal: $B.I. = 0.1 counts / (FWHM \cdot tonne \cdot year)$

far reaching consequences of observing $0\nu\beta\beta$

- baryogenesis through leptogenesis
- charge parity violating process in the standard model
- lepton number conservation (accidental symmetry of the standard model)

$$m_{
u} = U egin{pmatrix} m_1 & 0 & 0 \ 0 & m_2 & 0 \ 0 & 0 & m_3 \end{pmatrix} U^T$$

$$\langle m_{\beta\beta} \rangle = |U_{ij}^2 m_j|$$

$0\nu\beta\beta$ half-life and sensitivity

 direct detection experiments typically characterize the half-life in terms of the effective neutrino mass m_{ββ}

$$T_{1/2}^{0
uetaeta} = \left(G|\mathcal{M}|^2\langle m_{etaeta}
ight)^{-1}$$
 $\simeq 10^{27-28}\left(rac{0.01~{
m eV}}{\langle m_{etaeta}
angle}
ight)^2$ years

$$F_{0
u} = au_{1/2}^{ extit{bkg.fluct.}} = \ln(2) extit{N}_{etaeta} \epsilon rac{t}{n_B}$$

$0\nu\beta\beta$ half-life and sensitivity

to probe

$$egin{aligned} T_{1/2}^{0
uetaeta} &= \left(G|\mathcal{M}|^2\langle m_{etaeta}
angle
ight)^{-1} \ &\simeq 10^{27-28}\left(rac{0.01~{
m eV}}{\langle m_{etaeta}
angle}
ight)^2 {
m years} \ &T_{1/2}^{0
uetaeta} \sim ~\epsilon\sqrt{rac{M_{iso}\,t}{b\Delta E}} \end{aligned}$$