Lecture 1: Sample spaces and events: Larson & Marx, 2.2; Sept 26, 2018

1.1 Sample spaces

The sample space Ω is the set of all possible outcomes of an experiment.

One and only one outcome can occur.

1.2 Examples

- (i) Child is boy or girl: $\Omega = \{\text{boy, girl}\}\$
- (ii) Toss of one die: $\Omega = \{1, 2, 3, 4, 5, 6\}$
- (iii) Number of traffic accidents: $\Omega = \{0, 1, 2, 3, 4,\} = \{0\} \cup \mathcal{Z}_+$.
- (iv) Time waiting for the bus: $\Omega = (0, \infty) = \Re_+$, the positive half line.

1.3 Events

Any subset E of Ω is a *event*.

(The book says this: it is OK for countable sample spaces, but an oversimplification for a space like \Re_+ .)

1.4 Combining events

- (i) If E is an event, not-E (the complement of E: written E^c) is an event.
- (ii) If E is an event and F is an event, then "E and/or F" is an event. "E and/or F" is written $E \cup F$.
- (iii) If $E_1, E_2, ...$ are events then $E_1 \cup E_2 \cup E_3...$ is an event. (Countable unions.)
- (iv) If E is an event and F is an event, then "E and F" is an event. "E and F" is written $E \cap F$.
- (v) If E_1, E_2, \ldots are events then $E_1 \cap E_2 \cap E_3 \ldots$ is an event. (Countable intersections.)

1.5 More events:

(i) The empty set Φ is an event: so $\Omega = \Phi^c$ is an event.

If $E \cap F = \Phi$, E and F are disjoint also known as mutually exclusive.

- (ii) E and E^c are disjoint events: $E \cup E^c = \Omega$, $E \cap E^c = \Phi$.
- (iii) Events E_1 , E_2 E_k are mutually exclusive if $E_i \cap E_j = \Phi$ for all pairs (i, j) $(i, j = 1, ..., k, i \neq j)$.
- (iv) Events E_1, E_2, \dots, E_k are exhaustive if $E_1 \cup E_2 \cup \dots \cup E_k = \Omega$.
- (v) If Ω is discrete, the elements of Ω are a set of mutually exclusive and exhaustive events.

1.6 A genetic example: The ABO blood types.

We can be blood type A, B, AB or O.

Let our "experiment" be finding the blood types of two children in a family.

Then
$$\Omega = \{(i, j); i, j = A, B, AB, O\}.$$

Let E_1 be the first child is type A.

Let E_2 be the first child is type O.

Let E_3 be the second child is type B.

Let E_4 be at least one child is type A.

Let E_5 be at most one child is type A.

Let E_6 be the two children have the same blood type.

Let E_7 be the two children have different blood types.

Which pairs of events are *complements*?

Which pairs of events are disjoint?

Which pair of events is mutually exclusive and exhaustive?

What is the intersection of E_4 and E_5 ?

Lecture 2: Probabilities of Events: Larson & Marx 2.3; Sept 28,2018 (a)

2.1 Probability axioms

For each event E we assume we can assign a number P(E) which satisfies the following three axioms:

- (i) $P(E) \ge 0$ for every event E.
- (ii) $P(\Omega) = 1$
- (iii) If $E_1, E_2, ...$ are mutually exclusive $P(E_1 \cup E_2 \cup E_3 \cup ...) = P(E_1) + P(E_2) + P(E_3) + ...$

Note: for a countable sample space, each outcome (element of Ω) has a probability, and each event is a union of outcomes, with probability the sum of the probabilities of the outcomes.

2.2 Probability interpretation as a limiting frequency

A useful interpretation of P(E) is that it is the proportion of times an outcome in E occurs in a large number of repetitions of the same experiment with outcomes in the sample space Ω .

Example: Sampling an individual from a very large population.

$$\Omega = \{A, B, AB, O\}.$$

P(A) can be interpreted as the proportion of A blood-type individuals in the population. If we repeat the sampling of an individual again, and again, the proportion of times we observe the individual to have blood type A is P(A).

For the USA population, roughly, P(A) = 0.41, P(B) = 0.16, P(AB) = 0.07, and P(O) = 0.36.

 $P(\text{antigen A on red blood cells}) = P(\{A\} \cup \{AB\}) = P(A) + P(AB) = 0.48 \text{ for this example.}$

2.3 Basic probability formulae

(i) $\Omega = E \cup E^c$, $E \cap E^c = \Phi$, so $P(E^c) + P(E) = P(\Omega) = 1$, or $P(E^c) = 1 - P(E)$.

This also shows $P(E) \le 1$, since all probabilities are non-negative.

- (ii) If $E \subset F$, $F = E \cup (F \cap E^c)$; $P(F) = P(E) + P(F \cap E^c) \ge P(E)$.
- (iii) $E \cup F = E \cup (E^c \cap F)$, so $P(E \cup F) = P(E) + P(E^c \cap F)$.

So
$$P(E \cup F) + P(E \cap F) = P(E) + P(E^c \cap F) + P(E \cap F) = P(E) + P(F)$$
,

or
$$P(E \cup F) = P(E) + P(F) - P(E \cap F)$$
. Note: $P(E \cup F) \leq P(E) + P(F)$ always.

2.4 Two important probability formulae

(i) Law of total probability

Suppose $E_1, E_2,$, form a partition of Ω . That is, $E_1, E_2, ...$ are mutually exclusive and exhaustive.

That is,
$$E_i \cap E_j = \Phi$$
 (disjoint), and $\Omega = E_1 \cup E_2 \cup ...$

Then for any event $F, F = \bigcup_i (F \cap E_i), P(F) = \sum_i P(F \cap E_i).$

Special case: if e_i is *i*th outcome in a countable Ω , and $E_i = \{e_i\}$,

$$F \cap E_i = E_i \text{ or } F \cap E_i = \Phi, \text{ and } P(F) = \sum_{e_i \in F} P(E_i).$$

(ii) The inclusion and exclusion formula

$$P(D \cup E) = P(D) + P(E) - P(D \cap E).$$

$$P(C \cup D \cup E) = P(C) + P(D) + P(E) - P(C \cap D) - P(D \cap E) - P(C \cap E) + P(C \cap D \cap E).$$

$$P(E_1 \cup E_2 \cup ... \cup E_k) = P(E_1) + P(E_2) + ... + P(E_k)$$

$$-P(E_1 \cap E_2) - \text{all the other 2-way}$$

$$+P(E_1 \cap E_2 \cap E_3) + \text{all the other 4-way} \pm P(E_1 \cap E_2 \cap \cap E_k).$$

Note: This sum of positive and negative terms may not be well defined as $k \to \infty$: see 4.3

Lecture 3: Permutations and combinations: Larson & Marx 2.6; Sept 28,2018 (b)

3.1 Basic principle of counting

If an experiment has k steps, and if earlier choices do NOT limit later ones, then if step-1 can be done in n_1 ways, step-2 in n_2 ways, ... step-k in n_k ways,

then there are $n_1 \times n_2 \times ... \times n_k$ possible outcomes for (step-1, ..., step-k).

Corollary: There are 2^k subsets of a set size k.

Proof: Each element i, i = 1, ..., k can be chosen, or not: $n_i = 2, i = 1, ..., k$.

So total possible is $2 \times 2 \times \times 2 = 2^k$.

Note: for proper (not Ω), non-empty (not Φ) subsets, there are $2^k - 2$.

3.2 Permutations and combinations

- (i) The number of ways of ordering n distinct objects is n(n-1)(n-2)....3.2.1 = n! (n-factorial).
- (ii) The number of ways of choosing k distinct objects, in order, from n is n(n-1)...(n-k+1) = n!/(n-k)!.
- (iii) If we do not care about the order in which the k objects are selected, there are k! selections that give the same combination.

That is there are n!/((n-k)!k!) distinct *combinations*: this is often written ${}_{n}C_{k}$ or $\binom{n}{k}$.

(iv) A useful formula: (L & M, P.88)
$$\left(\begin{array}{c} n \\ k \end{array} \right) \ = \ \left(\begin{array}{c} n-1 \\ k-1 \end{array} \right) \ + \ \left(\begin{array}{c} n-1 \\ k \end{array} \right)$$

Consider the number of choices that do and do not contain the particular object "Fred".

3.3 The binomial theorem; L&M 2.6 P.87

$$(x+y)^n = \sum_{k=0}^n {n \choose k} x^k y^{n-k}$$

Note in each bracket we choose x or y. There are 2^n sequences.

The number of sequences in which there are k choices of x is $\binom{n}{k}$, and each has value $x^k y^{n-k}$.

The case x=y=1 gives $\left(\begin{array}{c} n \\ k \end{array}\right)$ as the number of sizs-k subsets of n objects.

The case of 4.4 (ii) (next page) is a special case with $x = y = \frac{1}{2}$.

3.4 Multinomial combinations; L & M Theorem 2.6.2, P.86

Number of ways of arranging n_1 objects type-1, n_2 objects type-2, ... n_k objects type-k,

where
$$n_1 + n_2 + ... + n_k = n$$
:

Choose the
$$n_1$$
 positions for type 1: $\binom{n}{n_1} = n!/(n_1!(n-n_1)!)$.

Now out of the remaining $(n - n_1)$ positions choose n_2 for type-2:

number of ways =
$$\binom{n-n_1}{n_2} = (n-n_1)!/(n_2!(n-n_1-n_2)!)$$
. etc. ...

Total number of ways is

$$\frac{n!}{n_1!(n-n_1)!}\frac{(n-n_1)!}{n_2!(n-n_1-n_2)!}\frac{(n-n_1-n_2)!}{n_3!(n-n_1-n_2-n_3)!}...\frac{(n-n_1-n_2-...-n_{k-1})!}{n_k!0!} \ = \ \frac{n!}{n_1!}\frac{n_1!}{n_2!....n_k!}$$

Example: Twelve students go to donate blood: 5 are type A, 2 are type B, one is AB, and 4 are type O. How many different orderings of the types of blood in the 12 blood donation tubes are there?

Answer:
$$12!/(5! \times 2! \times 1! \times 4!) = (12.11.10.9.8.7.6)/(2.4.3.2) = 12.11.10.9.7 = 914,760.$$

4: Some additional notes on sets, probabilities, and combinatorics

4.1 The collection of all events

For (finite or) countable Ω , events are all subsets of Ω , but this does not work for $\Omega = \Re$.

More generally, Ω is event, E an event $\Rightarrow E^c$ an event, and E_1, E_2, \dots events $\Rightarrow \bigcup_{i=1}^{\infty} E_i$ an event.

(Such collections, closed under complements and countable unions, are called σ -fields.)

Note $\Phi = \Omega^c$ is an event, and $\bigcap E_i = (\bigcup E_i^c)^c$ are then also events.

4.2 Increasing and decreasing sequences of events

- (i) A_1, A_2, A_3, \ldots are nested increasing sets if $A_1 \subset A_2 \subset A_3 \subset \ldots$ Then $\bigcup_{i=1}^n A_i = A_i$ and $\bigcap_{i=1}^n A_i = A_i$.
- (ii) A_1, A_2, A_3, \ldots are nested decreasing sets if $A_1 \supset A_2 \supset A_3 \supset \ldots$. Then $\bigcup_{i=1}^n A_i = A_1$ and $\bigcap_{i=1}^n A_i = A_n$.

Example: In a sequence of tries (maybe not independent), let A_n be event of no successes in n tries, a decreasing sequence. So $\lim_{n\to\infty} A_n$ is event of no success ever: $D_n = A_n^c$ (success by try n) is increasing.

4.3 Nested sets Theorem: Let A_1, A_2, \ldots be any events in Ω .

- (i) If $A_1 \subset A_2 \subset A_3 \subset$, $P(A_1 \bigcup A_2 \bigcup A_3....) = \lim_{n \to \infty} P(A_n)$.
- (ii) If $A_1 \supset A_2 \supset A_3 \supset \dots$, $P(A_1 \cap A_2 \cap A_3 \dots) = \lim_{n \to \infty} P(A_n)$.

Proof: (i) Let $B_i = A_i \cap A_{i-1}^c$; Then B_i are disjoint and $B_1 \cup B_2 \cup ... \cup B_n = A_1 \cup A_2 \cup ... \cup A_n = A_n$, so $P(A_1 \cup A_2 \cup A_3....) = P(B_1 \cup B_2 \cup B_3....) = \sum_{i=1}^{\infty} P(B_i) = \lim_{n \to \infty} (\sum_{i=1}^{n} P(B_i))$ $=\lim_{n\to\infty} P(B_1 \cup B_2 \cup ... \cup B_n) = \lim_{n\to\infty} P(A_n).$

(ii) Let
$$D_i = A_i^c$$
, so from (i) $P(D_1 \cup D_2 \cup D_3....) = \lim_{n \to \infty} P(D_n)$.

But
$$P(D_1 \cup D_2 \cup D_3....) = P((A_1 \cap A_2 \cap ...)^c) = 1 - P(A_1 \cap A_2 \cap ...).$$

So
$$P(A_1 \cap A_2 \cap) = 1 - P(D_1 \cup D_2 \cup D_3.....) = \lim_{n \to \infty} (1 - P(D_n)) = \lim_{n \to \infty} P(A_n).$$

Continuing above example: In a sequence of trials, let $A_n = \{$ no success by trial $n \}$ and $D_n = A_n^c$.

- (i) If trials are **independent**, with constant probability of success p > 0,
- $P(A_n) = (1-p)^n \longrightarrow 0$. Eventually, with probability 1, a success occurs.

(ii) Suppose the probability of success on try k is p_k . Then $P(D_n) \leq \sum_{k=1}^n p_k$. If p_k decreases fast (e.g. $p_k = 0.1/k^2$) then $\lim P(D_n) < 1$; eventual success is not certain.

4.4 Binomial counts and Stirling's formula L&M 2.6, P. 76-77

(i) Suppose there are N equiprobable outcomes in Ω .

Suppose event E is true for R of these outcomes. Then P(E) = R/N.

(ii) An AB parent and an O parent can have an A child or a B child.

Suppose they have n children: there are 2^n possible sequences of A and B children.

Assume these are equiprobable. (In fact, they are.)

$$\binom{n}{k}$$
 of these sequences have k A children. $P(k \text{ A children out of } n) = \binom{n}{k}/2^n$.

(iii)
$$n!$$
 can be approximated for large n by $\sqrt{2\pi}n^{n+\frac{1}{2}}e^{-n}$. Also $\binom{n}{k}$ is largest when $k\approx n/2$. Then, for large n ,
$$\binom{n}{n/2} \ = \ \frac{n!}{(n/2)!(n/2)!} \approx \ \frac{\sqrt{2\pi}n^{n+\frac{1}{2}}e^{-n}}{\sqrt{2\pi}(n/2)^{(n/2)+\frac{1}{2}}e^{-(n/2)}\times\sqrt{2\pi}(n/2)^{(n/2)+\frac{1}{2}}e^{-(n/2)}} = (1/\sqrt{2\pi})2^{n+1}n^{n+\frac{1}{2}-(n/2)-\frac{1}{2}} = (1/\sqrt{2\pi})(2/\sqrt{n})2^n$$

Or
$$P((n/2) \ A \text{ children out of } n) = {n \choose n/2} (\frac{1}{2})^n \approx 1/\sqrt{2\pi(n/4)}$$

This result will come back in approximating Binomial probabilities by the Normal probability distribution.