Diskrete Strukturen (WS 2023-24) - Halbserie 11

11.1

Sei $\phi: A \to B$ ein Homomorphismus zwischen kommutativen Gruppen. Sei $\ker(\phi) \subset A$ wie folgt definiert: $\ker(\phi) := \{x \in A : \phi(x) = 0_B\}$. Zeigen Sie dass $\ker(\phi)$ ist eine Untergruppe von A. (D.h. Sie müssen zeigen dass a) $0_A \in \ker(\phi)$, b) wenn $x \in \ker(\phi)$ dann auch $-x \in \ker(\phi)$, und c) wenn $x, y \in \ker(\phi)$ dann auch $x + y \in \ker(\phi)$.

 $(\ker(\phi) \text{ heißt auch "kern von } \phi")$

 $11.2 ag{4}$

Zeigen Sie dass ein Homomorphismus $\phi \colon A \to B$ injektiv ist gdw. $\ker(\phi) = \{0_A\}$

11.3

Seien (M, +) and (N, +) zwei kommutative Gruppen. Sei $\phi \colon M \to N$ eine Abbildung mit der Eigenschaft dass $\forall x, y \in M$ haben wir $\phi(x + y) = \phi(x) + \phi(y)$. Zeigen Sie dass $\phi(0_M) = 0_N$ und $\forall x \in M$ $\phi(-x) = -\phi(x)$.

- **11.4** Seien A, B, C kommutative Gruppen und seien $\alpha \colon A \to B, \beta \colon B \to C$ homomorphismen. Zeigen Sie dass $\alpha; \beta \colon A \to C$ auch ein homomorphismus ist.
- 11.5 Beweisen oder widerlegen Sie folgende Aussage:

Jeder distributive Verband ist komplementiert.

- **11.6** Wir sagen, dass eine Boolesche Algebra (M, \leq) dicht ist, wenn für alle $x, y \in M$ mit x < y ein Element z mit x < z < y existiert. Zeigen Sie, dass eine Boolesche Algebra, die dicht ist, keine Atome hat.
- 11.7 Zeigen Sie, dass eine Boolesche Algebra dann und nur dann dicht ist, wenn sie keine Atome hat.

(Tipp: eine Implikation ist die vorherige Übung, für die andere denken Sie an ein Beispiel mit zwei Mengen A und B mit $A \subseteq B$, und versuchen Sie, eine Menge zu konstruieren,

die zwischen A und B liegt, indem Sie nur die Standardoperationen der Mengenlehre verwenden).

11.8 Zeigen Sie ein Beispiel von einer dichten Booleschen Algebra (M, \leq) .

(Die schwerste Aufgabe im Modul - bitte in der Übungseinheiten nicht besprechen, evtl. nach dem dass die Lösung ercheint können Interessante persönlich mit Übungsleitern die Lösung besprechen)

11.9 Seien (A, \leq) und (A', \leq') zwei Boolesche Algebren. Definieren Sie in Analogie zur disjunkten Vereinigung von Mengen eine Ordnung auf $A \times A'$, die diese Menge zu einer booleschen Algebra macht. (es ist einfach, aber mühsam, alle Voraussetzungen zu prüfen - daher bitte nicht in den Übungseinheiten nicht besprechen)