

ECOLE NORMALE SUPÉRIEURE DE L'ENSEIGNEMENT TECHNIQUE MOHAMMEDIA DÉPARTEMENT MATHÉMATIQUES ET INFORMATIQUE

24/04/2022

Compte rendu

Des travaux pratique de la chapitre 7

La technique d'heritage

PRÉPARÉE POUR TAFFAH ACHRAF

ENCADRÉ PAR PR. KHALIFA MANSOURI

TABLE DES MATIERES

introduction	2
Partie pratique	3
1.Exemples de cour :	3
REMARQUE :	3
Exemple 1:	3
Exemple 2 :	4
resultat :	5
Exemple 2 :	5
resultat :	6
conclusion	E

INTRODUCTION

L'HERITAGE ETABLIT UNE RELATION DE <u>GENERALISATION</u><u>SPECIALISATION</u> QUI PERMET D'HERITER DANS

LA <u>DECLARATION</u> D'UNE NOUVELLE <u>CLASSE</u> (APPELEE CLASSE
DERIVEE, CLASSE FILLE, CLASSE ENFANT OU SOUS-CLASSE) DES
CARACTERISTIQUES (<u>PROPRIETES</u> ET <u>METHODES</u>) DE LA
DECLARATION D'UNE AUTRE CLASSE (APPELEE CLASSE DE BASE,
CLASSE MERE, CLASSE PARENT OU SUPER-CLASSE).

PARTIE PRATIQUE

1. Exemples de cour :

REMARQUE:

Le concept de l'héritage constitue l'un des fondements de la programmation orientée objets. Il est la base des possibilités de réutilisation des composants logiciels.

Mise en œuvre de la technique de l'héritage en c++

EXEMPLE 1:

```
1 #include<iostream>
    #include<conio.h>
    using namespace std;
4 ☐ class point{
 5
        int x,y;
 6
         public:
7 白
             void initialise(int abs, int ord){
 8
                 x=abs;
 9
                 y=ord;
10
11 🖨
             void deplace(int dx,int dy){
12
                 x=x+dx;
13
                 y=y+dy;
14
14 |
15 |
             void affiche(){
                 cout << "Le point en " << x << " " << y << "\n";
16
17
  t );
18
19 ☐ class pointcol : public point {
20
        short couleur;
21
         public:
22 🖨
             void colore(short c){
23
                 couleur=c;
24
25 [ };
26  int main(){
```

```
26  int main(){
27     pointcol p;
28     p.initialise(10,20);
29     p.colore(5);
30     p.affiche();
31     p.deplace(2,4);
32     p.affiche();
33     return 0;
34  }
```

```
C:\Users\taffa\OneDrive\Bureau\C++\Achraf-TAFFAH-GLSID1-2022-CHAPITRET\Cour && Exercices\exemple 1.exe

Le point en 10 20
Le point en 12 24

Process exited after 0.3702 seconds with return value 0

Appuyez sur une touche pour continuer...
```

Utilisation, dans une classe dérivée, des membres de la classe de base

EXEMPLE 2:

```
1 #include<iostream>
    using namespace std;
3 ☐ class point{
4
        int x,y;
5
        public:
 6 🛱
             void initialise(int abs,int ord){
7
                x=abs;
 8
                y=ord;
 9
10 🖨
             void deplace(int dx,int dy){
11
                x=x+dx;
                y=y+dy;
12
13
14 🖨
            void affiche(){
15
                cout << "Le point en " << x << " " << y << "\n";
16
17 | };
18 ☐ class pointcol : public point{
19
        short couleur;
        public:
20
21 🗐
             void colore(short cl){
22
               couleur=cl;
23
24
            void affiche();
            void initialise(int,int,short);
25
26 };
27 □ void pointcol::affiche(){
        point::affiche();
        cout << "Couleur : "<< couleur << "\n";
29
30 L }
31 # void pointcol::initialise(int abs,int ord,short cl){
35 H int main(){
```

```
31 ☐ void pointcol::initialise(int abs,int ord,short cl){
32
         point::initialise(abs,ord);
33
         couleur=cl;
34 L }
35 ☐ int main(){
36
         pointcol p;
37
         p.initialise(10,20,5);
38
         p.affiche();
39
         p.point :: affiche();
         p.deplace(2,4);
40
41
         p.affiche();
42
         p.colore(2);
43
         p.affiche();
44
         return 0;
45
```

RESULTAT:

```
C:\Users\taffa\OneDrive\Bureau\C++\Achraf-TAFFAH-GLSID1-2022-CHAPITRET\Cour && Exercices\exemple2.exe

Le point en 10 20

Couleur: 5

Le point en 12 24

Couleur: 5

Le point en 12 24

Couleur: 2

Process exited after 0.6746 seconds with return value 0

Appuyez sur une touche pour continuer...
```

Appel des constructeurs et des destructeurs

EXEMPLE 2:

```
#include<iostream>
    #include<conio.h>
     using namespace std:
 4 □ class point{
 5
         int x,y;
         public:
7 🗖
             point(int abs=0,int ord=0){
 8
                 cout<<"++const.point:"<<abs<<" "<<ord<<"\n";
 9
                  x=abs;
10
                 y=ord;
11
12 🖨
             ~point(){
                 cout <<"-- Destr. point: "<< x << " "<< y << " \n";
13
14 <del>|</del> 15 };
16 ☐ class pointcol:public point{
17
         short couleur;
18
         public:
             pointcol(int,int,short);
19
             pointcol()[
cout<<"--dest.pointcol couleur:"<< couleur << "\n";</pre>
20 🖨
21
22 };
24 ☐ pointcol::pointcol(int abs=0,int ord=0,short cl=1) :point(abs,ord){
25
         cout<<"++const.point:"<< abs<<" "<<ord<<" "<<cl<<"\n";
26 }
         couleur=cl;
28 int main(){
```

```
28 ☐ int main(){
29
         pointcol a(10,15,3);
30
         pointcol(2,3);
31
         pointcol c(12);
         pointcol d;
32
         pointcol * adr;
33
34
         adr=new pointcol(12,25);
35
         delete adr;
36
         return 0;
37 L }
```

RESULTAT:

```
C:\Users\taffa\OneDrive\Bureau\C++\Achraf-TAFFAH-GLSID1-2022-CHAPITRE7\Cour && Exercices\exer
++const.point:10 15
++const.point:10 15 3
++const.point:2 3
++const.point:2 3 1
--dest.pointcol couleur:1
--Destr.point:2 3
+const.point:12 0
++const.point:12 0 1
++const.point:0 0
++const.point:0 0 1
++const.point:12 25
+const.point:12 25 1
-dest.pointcol couleur:1
-Destr.point:12 25
 -dest.pointcol couleur:1
 -Destr.point:0 0
 -dest.pointcol couleur:1
-Destr.point:12 0
 -dest.pointcol couleur:3
 -Destr.point:10 15
```

CONCLUSION

EN <u>PROGRAMMATION ORIENTEE OBJET</u>, L'HERITAGE PERMET DONC DE REUTILISER (DECOMPOSER UN SYSTEME EN COMPOSANTS) ET D'ADAPTER LES <u>OBJETS</u> GRACE AU <u>POLYMORPHISME</u>.