

Physik für Infotronik (2)

Gerald Kupris 07.10.2015

Eindimensionale Bewegung

ı	

07.10.2015	Vorlesung 1	Messung und Maßeinheiten
07.10.2015	Vorlesung 2	Eindimensionale Bewegung
14.10.2015	Vorlesung 3	Bewegung in zwei und drei Dimensionen
14.10.2015	Vorlesung 4	Die Newtonschen Axiome
21.10.2015	Vorlesung 5	Anwendung der Newtonschen Axiome
21.10.2015	Vorlesung 6	Arbeit und kinetische Energie, Energieerhaltung
28.10.2015	Vorlesung 7	Der Impuls
28.10.2015	Vorlesung 8	Elastischer und inelastischer Stoß
04.11.2015	Vorlesung 9	Drehbewegungen
04.11.2015	Vorlesung 10	Drehimpuls
11.11.2015	Vorlesung 11	Harmonische Schwingungen und Resonanz
11.11.2015	Vorlesung 12	Wellenausbreitung und Doppler-Effekt
18.11.2015	erweitertes Tuto	rium

Kinematik der Punktmassen

Die Kinematik (gr.: kinema, Bewegung) ist die Lehre der Bewegung von Punkten und Körpern im Raum, beschrieben durch die Größen Weg s (Änderung der Ortskoordinate), Geschwindigkeit v und Beschleunigung a, ohne die Ursachen einer Bewegung (Kräfte) zu betrachten.

Ihr Gegenstück ist die Dynamik, die sich mit der Bewegung von Körpern unter Einwirkung von Kräften beschäftigt. Kinematik und Dynamik sind Teilgebiete der Mechanik.

Eine Punktmasse hat keine (oder unendlich kleine) räumliche Ausdehnung, und eine wohldefinierte Masse. Sie wird auch als Massenpunkt bezeichnet. Diese Modellvorstellung ist einfach zu handhaben und in vielen Fällen völlig ausreichend.

Gleichförmige Lineare Bewegung: Laufzeitmessung

Höhenkontrolle von Schüttgütern für automatisierten Abwurf (Ibeo, Finger)

Daten einer Füllstandsmessung eines Erzbunkers (LASE)

Verschiebung, Geschwindigkeit und Geschwindigkeitsbetrag

$$\Delta x = x_E - x_A$$
 Verschiebung = Ortsänderung (Endort minus Anfangsort)

Die Verschiebung entspricht nicht zwangsweise der zurückgelegten Strecke!

Die zurückgelegte Strecke ist eine skalare Größe und ist immer positiv.

Die Verschiebung dagegen ist die Ortsänderung und damit richtungsabhängig. Sie kann positiv oder negativ sein.

Mittlere Geschwindigkeit

Der mittlere Geschwindigkeitsbetrag ist der Quotient aus Gesamtstrecke und der Gesamtzeit vom Anfang bis zum Ende.

$$<$$
u $> = <$ v $> = \frac{Gesamtstrecke}{Gesamtzeit} = \frac{\Delta s}{\Delta t}$

Da sowohl die Gesamtstrecke als auch die Gesamtzeit immer positiv sind, ist der mittlere Geschwindigkeitsbetrag ebenfalls immer positiv.

Die mittlere Geschwindigkeit ist der Quotient aus der Gesamtverschiebung Δx und dem Zeitintervall Δt .

$$\langle v_x \rangle = \frac{\Delta x}{\Delta t} = \frac{x_E - x_A}{t_E - t_A}$$

Momentangeschwindigkeit

Die Momentangeschwindigkeit v_x (t) ist der Grenzwert des Quotienten Δx / Δt für Δt gegen null.

$$v_x(t) = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}$$

Dieser Grenzwert wird auch als Ableitung bezeichnet.

$$v_x(t) = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt} = x$$

Momentangeschwindigkeit als Ableitung der Verschiebung

Beschleunigung

Die Beschleunigung ist die zeitliche Änderungsrate der Geschwindigkeit.

Die mittlere Beschleunigung für ein bestimmtes Zeitintervall Δt ist als Quotient aus der Geschwindigkeitsänderung Δv_x und dem Zeitintervall definiert.

$$\langle a_x \rangle = \frac{\Delta v_x}{\Delta t} = \frac{v_{Ex} - v_{Ax}}{t_F - t_A}$$

Momentanbeschleunigung

Die Momentangbeschleunigung a_x (t) ist der Grenzwert des Quotienten $\Delta v_x / \Delta t$ für Δt gegen null.

$$a_x(t) = \lim_{\Delta t \to 0} \frac{\Delta v_x}{\Delta t}$$

Dieser Grenzwert wird auch als zweite Ableitung bezeichnet.

$$a_x(t) = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{d(dx/dt)}{dt} = \frac{d^2x}{dt^2} = x''$$

Gleichförmig beschleunigte Bewegung

Gleichförmig beschleunigte Bewegungen sind in der Natur häufig anzutreffen. Zum Beispiel fallen in der Nähe der Erdoberfläche alle nicht festgehaltenen Körper nahezu gleichförmig beschleunigt senkrecht zu Boden.

$$V_x = V_{0,x} + \Delta V_x = V_{0,x} + \langle a_x \rangle \Delta t$$

Die Momentanbeschleunigung und die mittlere Beschleunigung einer Punktmasse, die mit konstanter Beschleunigung beschleunigt wird, sind gleich:

$$a_x = \langle a_x \rangle$$

Gleichförmig beschleunigte Bewegung

$$v_x = v_{0,x} + a_x t$$
 (bei a_x konstant)

Dies ist die Gleichung einer Gerade in einem v_x - t - Diagramm. Die Verschiebung Δx entspricht dem Flächeninhalt unter der Kurve.

$$\Delta x = v_{1,x} \Delta t + \frac{1}{2} a_x (\Delta t)^2$$

Mit $t_1 = 0$ und $t_2 = t$ ergibt sich:

$$x - x_0 = v_{0,x} t + \frac{1}{2} a_x t^2$$

Bei einer gleichförmig beschleunigten Bewegung ist die mittlere Geschwindigkeit der Mittelwert zwischen Anfangs- und Endgeschwindigkeit.

$$\left\langle v_{x}\right\rangle = \frac{1}{2} \left(v_{1,x} + v_{2,x}\right)$$

Gleichförmig beschleunigte Bewegung

$$v_x = v_{0,x} + a_x \cdot \Delta t$$
 $(a_x = const.)$

$$\Delta t = \frac{v_x - v_{0,x}}{a_x}$$

$$\Delta x = v_{0,x} \cdot \Delta t + \frac{1}{2} a_x (\Delta t)^2$$

$$t_1 = 0 \qquad t_2 = t$$

$$x - x_0 = v_{0,x} \cdot t + \frac{1}{2} a_x t^2$$

$$\Delta x = v_{0,x} \cdot \frac{v_x - v_{0,x}}{a_x} + \frac{1}{2} a_x \left(\frac{v_x - v_{0,x}}{a_x} \right)^2$$

$$2a_x \Delta x = 2v_{0,x}(v_x - v_{0,x}) + (v_x - v_{0,x})^2$$

$$v_x^2 = v_{0,x}^2 + 2a_x \Delta x$$

Der freie Fall

Ein Sonderfall der gleichförmig beschleunigten Bewegung ist der freie Fall.

$$a = g = 9.81 \text{ m/s}^2$$

Meist wird die nach unten weisende Richtung als +y Richtung oder -h Richtung bezeichnet. Dann gilt:

$$a_y = +1 g$$
 $a_h = -1 g$

Nach oben weisende Richtung:

$$a_y = -1 g$$
 $a_h = +1 g$

Der freie Fall

$$x - x_0 = v_{0,x} \cdot t + \frac{1}{2} a_x \cdot t^2$$

wenn: x = h

und: a = -g

und: $v_0 = 0$

dann: $h(t) - h_0 = -\frac{1}{2} g \cdot t^2$

 $h(t) = h_0 - \frac{1}{2} g \cdot t^2$

 $t^2 = \frac{2 \cdot h_0}{g}$

 $t = \sqrt{2 \cdot \frac{h_0}{g}}$

die zurückgelegte Strecke beträgt:

 $s(t) = h_0 - h(t) = -\frac{1}{2} g \cdot t^2$

$$v = v_0 + g \cdot \Delta t$$

Der freie Fall

Alle frei fallenden Körper mit der gleichen Anfangsgeschwindigkeit bewegen sich in der gleichen Weise.

Ein Apfel und eine Feder, die gleichzeitig losgelassen wurden, fallen in einer Vakuumkammer mit der gleichen Beschleunigung.

Zeit und Geschwindigkeit bei verschiedenen Fallhöhen

Höhe h (m)	Zeit t (s)	Geschwindigke v (m/s)	eit v (km/h)
1	0,45	4,41	15,88
2	0,64	6,28	22,61
3	0,78	7,65	27,54
5	1,00	9,81	35,32
10	1,43	14,03	50,51
15	1,75	17,17	61,80

Hammer vs. Feather - Physics on the Moon: Galileo and Apollo 15

Berechnen Sie die Fallbeschleunigung auf dem Mond!

Aufgabe: Eine flinke Katze

Der Gepard kann in nur 2,0 s von 0 km/h auf 96 km/h beschleunigen, während die Corvette, eines der leistungsstärksten Autos, immerhin 4,5 s benötigt.

Berechnen Sie die mittlere Beschleunigung für den Gepard und für die Corvette und vergleichen Sie sie mit der Erdbeschleunigung g, die an der Erdoberfläche 9,81 m/s² beträgt.

Felix Baumgartner will aus 36 km Höhe abspringen

Der österreichische Fallschirmspringer Felix Baumgartner will als erster Mensch die Schallmauer im freien Fall durchbrechen: im freien Flug durch die Stratosphäre, durch einen Sprung aus 120.000 Fuß Höhe (36.576 m).

Dazu wird er mit einem Heliumballon auf diese Höhe aufsteigen. An dem Ballon ist eine Kapsel befestigt, aus welcher der Extremsportler dann abspringt.

Die Schallgeschwindigkeit beträgt in dieser Höhe etwa 1100 km/h.

Im freien Fall benötigt Baumgartner ca. 40 Sekunden, um auf diese Geschwindigkeit zu kommen. Wie groß ist die Beschleunigung?

Aufgabe: Crashtest

Bei einem Crashtest trifft ein Auto mit 100 km/h auf eine fest stehende Betonmauer.

Wie groß ist die Bremsbeschleunigung beim Aufprall (in 2 Einheiten)?

Aufgabe: die fliegende Mütze

Ein Student kurz vor der Prüfung wirft seine Mütze senkrecht nach oben in die Luft. Diese enthält dabei eine Anfangsgeschwindigkeit von 14,7 m/s. Es wirkt die nach unten gerichtete Fallbeschleunigung von 9,81 m/s², während der Luftwiderstand zu vernachlässigen ist.

- a) Wie lange dauert es, bis die Mütze ihren höchsten Punkt erreicht?
- b) Wie groß ist der Abstand zu diesem höchsten Punkt?
- c) Wie lange fliegt die Mütze insgesamt, wenn sie in der gleichen Höhe aufgefangen wird, in der sie abgeworfen wurde?

Aufgabe: Jagd auf den Raser

Ein Auto durchquert die verkehrsberuhigte Zone vor der Schule mit 25 m/s. Ein Polizeiwagen beginnt mit konstant 5,0 m/s² zu beschleunigen, als der Raser an ihm vorüberfährt.

- a) Wie groß ist die Geschwindigkeit des Rasers in km/h?
- b) Wann holt die Polizei den Raser ein?

c) Wie schnell fährt der Polizeiwagen in dem Moment, in dem er den Raser überholt?

Aufgabe: Jagd auf den Raser (2)

d) Wie schnell f\u00e4hrt der Polizeiwagen, wenn er noch 25 m hinter dem Raser ist?

Gleichförmige Kreisbewegung

Analogien zur Linearen Bewegung

	neare hleunigte Bewegung	Gleichmäßig beschleunigte Kreisbewegung	
Weg	$s(t) = s_0 + v_0 \cdot t + \frac{a}{2} \cdot t^2$	Winkel	$\varphi(t) = \varphi_0 + \omega_0 \cdot t + \frac{\alpha}{2} \cdot t^2$
Geschwindigkeit	$v(t) = v_0 + a \cdot t$	Winkel- geschwindigkeit	$\omega(t) = \omega_0 + \alpha \cdot t$
Beschleunigung	a(t) = const.	Winkel- beschleunigung	$\alpha(t) = const.$

Aufgaben

- 1. Ein LKW, der mit der konstanten Geschwindigkeit von 70 km/h fährt, wird von einem PKW mit der konstanten Geschwindigkeit von 100 km/h überholt. Der LKW ist 7 m lang, der PKW 4 m lang. Wie lange dauert der Überholvorgang, wenn der gegenseitige Abstand vor und nach dem Überholen 15 m beträgt?
- 2. Ein Radfahrer fährt mit konstanter Geschwindigkeit v1 = 9 km/h bergauf und dieselbe Strecke mit v2 = 36 km/h zurück. Wie groß ist seine mittlere Geschwindigkeit (Angabe in km/h)?
- 3. Ein Freizeit-Sportler lässt sich vom 10m-Turm fallen.
 - a) Mit welcher Geschwindigkeit taucht er in das Wasser ein (Angabe in km/h)?
 - b) Wie lange ist er in der Luft?

Literatur und Quellen

Paul A. Tipler, Gene Mosca: Physik für Wissenschaftler und Ingenieure, Spektrum Akademischer Verlag, August 2009

http://de.wikipedia.org/

TECHNISCHE HOCHSCHULE DEGENDORF

Technische Hochschule Deggendorf – Edlmairstr. 6 und 8 – 94469 Deggendorf