4.2 特征值与特征向量

已知方阵A,求 λ 和 $\xi \neq \theta$,满足 $A\xi = \lambda \xi$,称为特征值问题.

几何变换与特征值问题

用
$$A = \begin{pmatrix} 5/4 & 3/4 \\ 3/4 & 5/4 \end{pmatrix}$$
 表示图形几何变换 $\begin{cases} x' = \frac{5}{4}x + \frac{3}{4}y, \\ y' = \frac{3}{4}x + \frac{5}{4}y. \end{cases}$ 则效果为 u,v 方向上的拉伸。

则效果为u,v方向上的拉伸。

当用 u,v坐标时,变换为 $\begin{cases} u'=2u, \\ v'=0.5v. \end{cases}$ 即 $\begin{pmatrix} 2 & 0 \\ 0 & 0.5 \end{pmatrix}$ u,v这两个拉伸方向用向量 ξ,η 表示时,将满足 $A\xi=2\xi,A\eta=0.5\eta$,拉 伸倍数2和0.5为A的特征值,对应拉伸方向 $\xi=(1,1)^{T}$ 和 $\eta=(-1,1)^{T}$ 为A的 属于2和0.5的特征向量。

相似变换与特征值问题

从相似矩阵这一节内容中,我们看到,若有 $A=P\Lambda P^{-1}$,或者 $P^{-1}AP=\Lambda$,其中 Λ 为对角矩阵,则 A^m 就很容易求出,为 $A^m=P\Lambda^mP^{-1}$.

考虑斐波那契(Finonacci)数列:

递推公式为:
$$F_1=F_2=1$$
, $F_{n+2}=F_{n+1}+F_n$, $n=1,2,3,\ldots$.

利用矩阵发现该数列有如下关系

$$\begin{pmatrix} F_{n+2} & F_{n+1} \\ F_{n+1} & F_n \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix},$$

故有
$$\begin{pmatrix} F_{n+2} & F_{n+1} \\ F_{n+1} & F_n \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n-1} \begin{pmatrix} F_3 & F_2 \\ F_2 & F_1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n+1}, \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n.$$

为求
$$A^n$$
,需求矩阵 P 使得: $A = P \Lambda P^{-1} = P \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} P^{-1}$,其中 $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$.

 $将A=P\Lambda P^{-1}$, 改写成: $AP=P\Lambda$, 再令 $P=(\xi,\eta)$, 于是有: $(A\xi, A\eta) = (\xi, \eta)\Lambda = (\lambda_1\xi, \lambda_2\eta),$

即: $A\xi = \lambda_1 \xi$, $A\eta = \lambda_2 \eta$. λ_1 , λ_2 为特征值, ξ , η 为特征向量.

如何计算特征值、特征向量?

计算 $A\xi = \lambda \xi \Leftrightarrow (\lambda E - A)\xi = \theta \Leftrightarrow |\lambda E - A)| = 0$.

计算前述几何变换矩阵 A 的特征值问题:

(1) 求特征值 λ : 计算 $|\lambda E - A| = 0$.

$$|\lambda E - A| = \begin{vmatrix} \lambda - 5/4 & -3/4 \\ -3/4 & \lambda - 5/4 \end{vmatrix} = \begin{vmatrix} \lambda - 2 & \lambda - 2 \\ -3/4 & \lambda - 5/4 \end{vmatrix} = (\lambda - 2)(\lambda - 1/2) = 0.$$

得特征值 $\lambda=2$ 和 $\lambda=1/2$.

(2) 求特征向量 ξ : 解齐次方程组(λE -A) ξ = θ .

 $\lambda=2$ 时,解得 $(2E-A)\xi=\theta$ 的解为 $\xi=k_1(1,1)^T$.

 $\lambda = 1/2$ 时,解得 $(0.5E-A)\eta = \theta$ 的解为 $\eta = k_2(-1,1)^{\mathrm{T}}$.

计算前述斐波那契数列相关矩阵 A 的特征值问题:

(1) 求特征值 λ : 计算 $|\lambda E - A| = 0$.

$$|\lambda E - A| = \begin{vmatrix} \lambda - 1 & -1 \\ -1 & \lambda \end{vmatrix} = (\lambda^2 - \lambda - 1) = 0.$$
 解得特征值: $\lambda_1 = \frac{1 + \sqrt{5}}{2}$, $\lambda_2 = \frac{1 - \sqrt{5}}{2}$.

(2) 求特征向量 ξ : 解齐次方程组($\lambda E - A$) $\xi = \theta$.

 $\lambda_1 = (1 + \sqrt{5})/2$ 时,解得 $(\lambda_1 E - A) \xi = \theta$ 的解为 $\xi = k_1 (\lambda_1, 1)^T$. $\lambda_2 = (1 - \sqrt{5})/2$ 时,解得 $(\lambda_2 E - A) \eta = \theta$ 的解为 $\eta = k_2 (\lambda_2, 1)^T$.

特征值、特征向量一些概念

定义4.2.1 (特征值、特征向量) 设 A 是实数域R或复数域C上的一个方阵, $\lambda \in \mathbb{C}$,若存在非零向量 ξ 使得 $A\xi = \lambda \xi$,则称 λ 为矩阵 A 的特征值,称 ξ 为A 的属于特征值 λ 的特征向量 .

定理4.2.1 设方阵 A 有特征值 λ , ξ_1 , ξ_2 为属于 λ 的特征向量,则它们的任意不等于零向量的线性组合 $\eta = k_1 \xi_1 + k_2 \xi_2 (k_1, k_2 \in \mathbf{R})$ 仍是属于 λ 的特征向量.

证明: 直接验证 $A\eta = k_1 A \xi_1 + k_2 A \xi_2 = k_1 \lambda \xi_1 + k_2 \lambda \xi_2 = \lambda \eta$.

定义4.2.2 (特征多项式、特征方程、特征矩阵) $|\lambda E-A|$ 称为A的特征多项式; $|\lambda E-A|=0$ 称为A的特征方程. 方程 $|\lambda E-A|=0$ 的解称为A的特征根,而 $\lambda E-A$ 称为A的特征矩阵.

*A的特征根与A的特征值相同,以后看成等价概念,不再区分.

求特征值、特征向量的步骤

求矩阵A的全部特征值和特征向量的计算步骤:

- (1) 计算行列式 $|\lambda E-A|$,并求出 $|\lambda E-A|=0$ 的全部根,即A的特征值;
- (2) 对于每个特征值 λ_i ,求齐次线性方程组 $(\lambda_i E A)x = \theta$ 的一个基础解系 α_1 , α_2 , . . . , α_{si} ;
- (3) 写出A属于 λ_i 的全部特征向量为: $k_1\alpha_1+k_2\alpha_2+...+k_{si}\alpha_{si}$,其中 $k_1,k_2,...,k_{si}$ 为不全为零的任意常数。

注: 4.3节有结论: 对于重特征值 λ ,所属的无关特征向量个数 $\leq \lambda$ 的重数。 上述是求特征值的<mark>常规步骤</mark>,有时需要直接解 $Ax=\lambda x$,如 $A=\alpha \beta^{\mathrm{T}}$ (例4.2.4) 例4.2.1 求矩阵A的全部特征值和特征向量,其中 $A = \begin{bmatrix} 5 & -2 & 1 \\ 0 & 4 & 0 \\ 1 & -2 & 5 \end{bmatrix}$.

解由 $|\lambda E - A| = \begin{vmatrix} \lambda - 5 & 2 & -1 \\ 0 & \lambda - 4 & 0 \\ -1 & 2 & \lambda - 5 \end{vmatrix} = \begin{vmatrix} \lambda - 6 & 2 & -1 \\ 0 & \lambda - 4 & 0 \\ \lambda - 6 & 2 & \lambda - 5 \end{vmatrix} = (\lambda - 6)(\lambda - 4)^2$

得A的两个特征值为: $\lambda=6,4$ (二重).

对于 $\lambda=6$,解齐次方程组 $(6E-A)x=\theta$,由

$$\begin{pmatrix} 1 & 2 & -1 \\ 0 & 2 & 0 \\ -1 & 2 & 1 \end{pmatrix} \xrightarrow{r_3 + r_1 - 2r_2} \begin{pmatrix} 1 & 2 & -1 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{r_1 - r_2} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

求得该齐次方程组的一个基础解系为: $\alpha_1 = (1,0,1)^T$. 故属于特征值6的全部特征向量为: $k_1\alpha_1$,其中 k_1 为任意非零常数.

対于λ=4,解齐次方程组 (4*E*-*A*) $x=\theta$,由 $\begin{pmatrix} -1 & 2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & -1 \end{pmatrix}$ $\begin{pmatrix} 1 & -2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

求得该齐次方程组的一个基础解系为: $\alpha_2 = (2,1,0)^T$, $\alpha_3 = (-1,0,1)^T$. 故属于特征值4的全部特征向量为: $k_2\alpha_2 + k_3\alpha_3$, 其中 k_2,k_3 为不全为零的任意常数.

例4.2.2 求矩阵A的全部特征值和特征向量,其中 $A = \begin{pmatrix} 3 & 0 & 1 \\ 2 & 0 & 2 \\ 3 & -4 & 5 \end{pmatrix}$.

解由

$$\begin{vmatrix} \lambda E - A \end{vmatrix} = \begin{vmatrix} \lambda - 3 & 0 & -1 \\ -2 & \lambda & -2 \\ -3 & 4 & \lambda - 5 \end{vmatrix} = \begin{vmatrix} \lambda - 4 & 0 & -1 \\ \lambda - 4 & \lambda & -2 \\ \lambda - 4 & 4 & \lambda - 5 \end{vmatrix} = (\lambda - 4)(\lambda - 2)^2$$

得A的两个特征值为: $\lambda=4,2$ (二重).

対于 λ =4, 解齐次方程组 (4*E*-A)x= θ , 由 $\begin{pmatrix} 1 & 0 & -1 \\ -2 & 4 & -2 \\ -3 & 4 & -1 \end{pmatrix}$ \rightarrow $\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$

求得该齐次方程组的一个基础解系为: $\alpha_1 = (1,1,1)^T$. 故属于特征值4的全部特征向量为: $k_1\alpha_1$,其中 k_1 为任意非零常数.

対于 λ =2,解齐次方程组 (2*E*-*A*)x= θ ,由 $\begin{pmatrix} -1 & 0 & -1 \\ -2 & 2 & -2 \\ -3 & 4 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

求得该齐次方程组的一个基础解系为: $\alpha_2 = (-1,0,1)^T$. 故属于特征值2的全部特征向量为: $k_2\alpha_2$, 其中 k_2 为任意非零常数.

例4.2.3 求矩阵A的全部特征值和特征向量,其中 $A = \begin{pmatrix} 2 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & -1 & 2 \end{pmatrix}$. 解由 $\begin{vmatrix} \lambda - 2 & 1 & -1 \\ -1 & \lambda - 1 & -1 \\ -1 & 1 & \lambda - 2 \end{vmatrix} = (\lambda - 1)(\lambda^2 - 4\lambda + 5)$

得A的两个特征值为: $\lambda=1,2\pm i$. 对于 $\lambda=1$,解齐次方程组 $(E-A)x=\theta$,由 $\begin{pmatrix} -1 & 1 & -1 \\ -1 & 0 & -1 \\ -1 & 1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

求得该齐次方程组的一个基础解系为: α_1 =(-1,0,1)^T. 故属于特征值1的全部特征向量为: $k_1\alpha_1$,其中 k_1 为任意非零实常数.

对于 $\lambda=2+i$,解齐次方程组((2+i)E-A) $x=\theta$,由

$$\begin{pmatrix} i & 1 & -1 \\ -1 & 1+i & -1 \\ -1 & 1 & i \end{pmatrix} \xrightarrow{r_2-ir_1} \begin{pmatrix} 1 & -i & i \\ 0 & 1 & -1+i \\ 0 & 1-i & 2i \end{pmatrix} \xrightarrow{r_1+ir_2} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1+i \\ 0 & 0 & 0 \end{pmatrix}$$

求得该齐次方程组的一个基础解系为: $\alpha_2 = (1,1-i,1)^T$.

故属于特征值2+i 的全部特征向量为: $k_2\alpha_2$, 其中 k_2 为任意非零复常数.

对于 $\lambda=2-i$,对刚得到的结果 $((2+i)E-A)\alpha_2=\theta$ 两边取共轭得 $((2-i)E-A)\bar{a}_2=\theta$. 故 $\bar{a}_2=(1,1+i,1)^T$ 是 $((2-i)E-A)x=\theta$ 的一个非零解. 又易知 $\mathbf{r}((2-i)E-A)=2$,故 \bar{a}_2 是 $((2-i)E-A)x=\theta$ 的一个基础解系. 从而属于特征值2-*i*的 全部特征向量为: $k_3\bar{a}_2$,其中 k_3 为任意非零复常数.

有时需要使用非常规步骤来求特征值与特征向量.

例4.2.4 求 $E+xy^T$ 的特征值与特征向量,其中E为n 阶单位矩阵, $x=(x_1,\ldots,x_n)^T$, $y=(y_1,\ldots,y_n)^T$.

求解思路:

简化问题: $(xy^T)\xi = \lambda\xi$ \Leftrightarrow $(E+xy^T)\xi = (\lambda+1)\xi$; $(\xi \neq \theta)$

讨论 (xy^T) $\xi = \lambda \xi$, $(x \neq \theta, y \neq \theta)$: 即 $(y^T \xi)$ $x = \lambda \xi$, 分 $y^T \xi = 0$ 和 $y^T \xi \neq 0$;

当 $y^{\mathrm{T}}\xi=0$ 时, $\lambda=0$,于是解方程组 $y^{\mathrm{T}}\xi=0$ 求得 ξ ;

当 $y^{\mathrm{T}}\xi \neq 0$ 时, $x = (\lambda/y^{\mathrm{T}}\xi)\xi$, $\lambda \neq 0$,可取 $\xi = x$ 并保证 $\lambda = y^{\mathrm{T}}\xi \neq 0$.

解: 当 $x = \theta$ 或 $y = \theta$ 时, $E + xy^T = E$,故特征值为 $\lambda = 1$ (n重),属于该特征值的特征向量为 $k_1e_1 + \ldots + k_ne_n, k_1, \ldots, k_n$ 不全为零.

当 $x \neq \theta, y \neq \theta$ 时,由于 (xy^T) $\xi = \lambda \xi$ 等价于($E + xy^T$) $\xi = (\lambda + 1) \xi$,所以我们先考虑矩阵 $A = xy^T$ 的特征值与特征向量.

考虑: $(xy^T)\xi=\lambda\xi$, $\xi\neq\theta$, 此即 $(y^T\xi)x=\lambda\xi$, $x\neq\theta,\xi\neq\theta$.

当 $y^T\xi=0$ 时, 有 $\lambda\xi=\theta$, 故 $\lambda=0$. 因为 $y\neq\theta$,故r(y^T)=1,解方程组 $y^T\xi=0$ 得基础解系 $\xi_1,\xi_2,\ldots,\xi_{n-1}$,易知为 $(xy^T)\xi=\lambda\xi$ 的属于 $\lambda=0$ 的极大无关特征向量组.

当 $y^T\xi\neq 0$ 时,有 $x=(\lambda/y^T\xi)\xi$,故 $\lambda\neq 0$. 可取 $\xi=x$ 代入(xy^T) $\xi=\lambda\xi$ 得 $\lambda=y^Tx=y^T\xi\neq 0$. 若 $y^Tx=0$,则没有满足 $y^T\xi\neq 0$ 的特征向量 ξ 和非零特征值 λ . 否则若 $y^Tx\neq 0$,则有非零特征值 $\lambda=y^Tx$ 和特征向量 $\xi=x$.

综上可得, $E+xy^T=E+A$ 的特征值与特征向量为: 当 $x=\theta$ 或 $y=\theta$ 时,特征值为 $\lambda=1$ (n重),属于该特征值的特征向量为 $k_1e_1+\ldots+k_ne_n$, k_1,\ldots,k_n 不全为零.

当 $x \neq \theta, y \neq \theta$ 且 $y^Tx \neq 0$ 时,特征值为 $\lambda=1+y^Tx$ (单重)和 $\lambda=1$ (n-1重),其中属于 $\lambda=1+y^Tx$ 的特征向量为 $kx,k \neq 0$,而属于 $\lambda=1$ 的特征向量为 $k_1\xi_1+\ldots+k_{n-1}\xi_{n-1}$,其中 ξ_1,\ldots,ξ_{n-1} 为 $y^T\xi=0$ 的基础解系, k_1,\ldots,k_{n-1} 不全为零.

当 $x \neq \theta, y \neq \theta$ 且 $y^Tx = 0$ 时,特征值为 $\lambda = 1$ (n重),对应的特征向量为 $k_1\xi_1 + \dots + k_{n-1}\xi_{n-1}$, k_1, \dots, k_{n-1} 不全为零 .

例4.2.5 设矩阵
$$A = \begin{pmatrix} 1 & 1 & 1 \\ -2 & 1 & 2 \\ 2 & 1 & 0 \end{pmatrix}$$
.

求A的全部特征值和B=5A的全部特征值.

解由
$$|\lambda E - A| = \begin{vmatrix} \lambda - 1 & -1 & -1 \\ 2 & \lambda - 1 & -2 \\ -2 & -1 & \lambda \end{vmatrix} = \begin{vmatrix} \lambda - 2 & -1 & -1 \\ 0 & \lambda - 1 & -2 \\ \lambda - 2 & -1 & \lambda \end{vmatrix} = (\lambda^2 - 1)(\lambda - 2)$$

得A的特征值为: 1,-1,2.

$$B = 5A = \begin{pmatrix} 5 & 5 & 5 \\ -10 & 5 & 10 \\ 10 & 5 & 0 \end{pmatrix}, \quad \blacksquare$$

$$|\lambda E - B| = \begin{vmatrix} \lambda - 5 & -5 & -5 \\ 10 & \lambda - 5 & -10 \\ -10 & -5 & \lambda \end{vmatrix} = \begin{vmatrix} \lambda - 10 & -5 & -5 \\ 0 & \lambda - 5 & -10 \\ \lambda - 10 & -5 & \lambda \end{vmatrix} = (\lambda^2 - 25)(\lambda - 10)$$

得B的特征值为: 5,-5,10.

由上例看到B=5A,而B的特征值也正好是A的特征值的5倍. 其实我们有下列定理说明矩阵特征值的关系正好是矩阵的关系.

定理4.2.2 若 f(x)为x的多项式,矩阵A有特征值 λ ,则f(A)有特征值 $f(\lambda)$.

证明 设 $f(x)=a_m x^m+a_{m-1} x^{m-1}+\ldots+a_1 x+a_0$, ξ 为A的属于特征值 λ 的特征 向量,则有 $A\xi=\lambda\xi$,于是有

$$\begin{split} f(A) \ \xi &= (a_m A^m + a_{m-1} A^{m-1} + \ldots + a_1 A + a_0 E \) \ \xi \\ &= a_m A^m \xi + a_{m-1} A^{m-1} \xi + \ldots + a_1 A \xi + a_0 \xi \\ &= a_m \lambda^m \xi + a_{m-1} \lambda^{m-1} \xi + \ldots + a_1 \lambda \xi + a_0 \xi \\ &= (a_m \lambda^m + a_{m-1} \lambda^{m-1} + \ldots + a_1 \lambda + a_0 \) \ \xi = f(\lambda) \xi \ . \end{split}$$

故 $f(\lambda)$ 为f(A) 的特征值,且 ξ 也是f(A)的属于 $f(\lambda)$ 的特征向量.

- 注1 若定理4.2.2中矩阵A的所有特征值为 $\lambda_1, \lambda_2, ..., \lambda_n$ (包括相同的特征值),则f(A)的所有特征值为 $f(\lambda_1), f(\lambda_2), ..., f(\lambda_n)$. 结论的证明见后面若尔当标准形和奇异值分解一节.
- 注2 若n阶可逆方阵A的所有特征值为 $\lambda_1, \lambda_2, ..., \lambda_n$ (包括相同的特征值),则 $\lambda_i \neq 0, i=1,2,...,n$,且矩阵 A^{-1} 的所有特征值为 λ_1^{-1} , $\lambda_2^{-1},...,\lambda_n^{-1}$.
- 注3 不可逆方阵A必有0特征值.

说明 注2: $A\xi_i = \lambda_i \xi_i \ (\xi_i \neq \theta) => \xi_i = \lambda_i A^{-1} \xi_i => \lambda_i \neq 0$. 注3: $|A|=0 => Ax = \theta$ 有非零解 $\xi \neq \theta$,即 $A\xi = 0\xi$.

例4.2.6 已知矩阵
$$A = \begin{pmatrix} 1 & 1 & 1 \\ -2 & 1 & 2 \\ 2 & 1 & 0 \end{pmatrix}$$
.

的特征值为 1,-1,2, 求 $B=A^2+2A+E$ 和 $C=A^2$ 的全部特征值.

解 显然 1,-1,2 是A的全部特征值,由定理4.2.2知, $B=f(A)=A^2+2A+E$ 有特征值 $f(\lambda)=\lambda^2+2\lambda+1$,因为 f(1)=4,f(-1)=0,f(2)=9,故 4 , 0 , 9 为B 的特征值,且是B的全部特征值.

同样,1²,(-1)²,2²,即1(二重)和4也是C的全部特征值.

矩阵关系与特征值关系的相关内容还有:

定理4.2.3 相似矩阵具有相同的特征多项式,从而它们具有相同的特征值.

证明 若 $A \sim B$,则存在可逆矩阵P,使 $P^{-1}AP = B$,于是 $|\lambda E - B| = |\lambda P^{-1}P - P^{-1}AP| = |P^{-1}(\lambda E - A)P| = |P^{-1}||\lambda E - A||P| = |\lambda E - A|$. 即B = A有相同的特征多项式,它们当然有相同的特征值.

注意:特征多项式相同 $\neq>$ 矩阵相似,见 $E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. 特征多项式均为 $(\lambda-1)^2$,但不相似 $(P^{-1}EP = E \neq B)$.

定义4.2.3(迹) 定义 $\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}$ 为矩阵 $A = (a_{ij})_{n \times n}$ 的迹.

定理**4.2.4** 若n阶矩阵A的特征值为 $\lambda_1, \lambda_2, ..., \lambda_n$,则有 $\operatorname{tr}(A) = \sum_{i=1}^n \lambda_i$, $|A| = \prod_{i=1}^n \lambda_i$.

证明 因为 $|\lambda E-A|=(\lambda-\lambda_1)(\lambda-\lambda_2)...(\lambda-\lambda_n)=\lambda^n-(\lambda_1+\lambda_2+...+\lambda_n)$ $\lambda^{n-1}+...+(-1)^n\Pi\lambda_i$,取 $\lambda=0$ 可得 $|-A|=(-1)^n\Pi\lambda_i$,即 $|A|=\Pi\lambda_i$. 进一步比较上式两边 λ 的n-1次项系数,由于

$$|\lambda E - A| = \begin{vmatrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & \lambda - a_{nn} \end{vmatrix}$$

$$= (\lambda - a_{11}) \begin{vmatrix} \lambda - a_{22} & -a_{23} & \cdots & -a_{2n} \\ -a_{32} & \lambda - a_{33} & \cdots & -a_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n2} & -a_{n3} & \cdots & \lambda - a_{nn} \end{vmatrix} - (-a_{12}) \begin{vmatrix} -a_{21} & -a_{23} & \cdots & -a_{2n} \\ -a_{31} & \lambda - a_{33} & \cdots & -a_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n3} & \cdots & \lambda - a_{nn} \end{vmatrix} + (-a_{13}) \begin{vmatrix} -a_{21} & \lambda - a_{22} & \cdots & -a_{2n} \\ -a_{31} & \lambda - a_{32} & \cdots & -a_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & \lambda - a_{nn} \end{vmatrix} + \cdots$$

$$= (\lambda - a_{11}) \begin{vmatrix} \lambda - a_{22} & -a_{23} & \cdots & -a_{2n} \\ -a_{32} & \lambda - a_{33} & \cdots & -a_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n2} & -a_{n3} & \cdots & \lambda - a_{nn} \end{vmatrix} + \begin{vmatrix} P_{n-2}(\lambda) \\ P_{n-2}(\lambda) \\ -a_{11}(\lambda - a_{22}) \end{vmatrix} = (\lambda - a_{11})(\lambda - a_{22}) \begin{vmatrix} \lambda - a_{33} & -a_{34} & \cdots & -a_{3n} \\ -a_{43} & \lambda - a_{44} & \cdots & -a_{4n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n3} & -a_{n4} & \cdots & \lambda - a_{nn} \end{vmatrix} + (\lambda - a_{11})P_{n-3}(\lambda) + P_{n-2}(\lambda).$$

故有 $|\lambda E - A| = (\lambda - a_{11})(\lambda - a_{22})...(\lambda - a_{nn}) + P'_{n-2}(\lambda) = \lambda^n - (a_{11} + a_{22} + ... + a_{nn}) \lambda^{n-1} + ...$,于是 $\lambda_1 + \lambda_2 + ... + \lambda_n = a_{11} + a_{22} + ... + a_{nn}$,即 $\operatorname{tr}(A) = \Sigma \lambda_i$.

推论4.2.5 相似矩阵有相同的迹和相同的行列式.

证明 由定理4.2.3知相似矩阵有相同的特征值,设为 $\lambda_1, \lambda_2, ..., \lambda_n$,再由定理4.2.4知它们的迹和行列式分别为 $\Sigma \lambda_i$ 和 $\Pi \lambda_i$.

例4.2.7 设
$$\begin{pmatrix} 3 & 2 & 2 \\ 2 & a & -1 \\ b & 3 & 1 \end{pmatrix}$$
与 $\begin{pmatrix} -2 & -8 & 6 \\ 10 & 12 & -3 \\ 5 & 10 & -5 \end{pmatrix}$ 相似,求 a , b 的值.

解 由于相似矩阵有相同的迹和行列式,故由3+a+1=-2+12+(-5) 可得a=1. 将 a=1 代入矩阵,再由行列式相等,得

$$\begin{vmatrix} 3 & 2 & 2 \\ 2 & a & -1 \\ b & 3 & 1 \end{vmatrix} = \begin{vmatrix} -2 & -8 & 6 \\ 10 & 12 & -3 \\ 5 & 10 & -5 \end{vmatrix} = 20,$$

即有 4(5-b)=20,解得 b=0.故有 a=1, b=0.

例4.2.8 设 A^* 为3阶矩阵A的伴随矩阵, A^* 的特征值为-1,2,-2,求A+E的特征值.

解 设A*的特征值为 λ_1 =-1, λ_2 =2, λ_3 =-2,由 A^*A = AA^* =|A|E 可知 $|A^*||A|$ =|A|E= $|A|^3$,故有 $|A^*|$ = $|A|^2$ = $\lambda_1\lambda_2$ λ_3 =4,从而 |A|= ± 2. 设 ξ_1 , ξ_2 , ξ_3 分别为A*的属于 λ_1 , λ_2 , λ_3 的特征向量,则有 $A^*\xi_i$ = $\lambda_i\xi_i$, i=1,2,3,左乘A得 $|A|\xi_i$ = $\lambda_iA\xi_i$,即 $A\xi_i$ =($|A|/\lambda_i$) ξ_i ,故 (A+E) ξ_i =($|A|/\lambda_i$) ξ_i + ξ_i =(1+ $|A|/\lambda_i$) ξ_i , i=1,2,3,

从而 A+E 的特征值为 -1, 2, 0 或 3, 0, 2.

例4.2.9 设A为3阶矩阵, ξ_1 , ξ_2 , ξ_3 为3个线性无关的向量,且有关系: $A\xi_1=-3\xi_1+2\xi_2-\xi_3$, $A\xi_2=6\xi_1+\xi_2+2\xi_3$, $A=\xi_1+\xi_2+3\xi_3$,求矩阵A的特征值与特征向量.

解 设
$$P=(\xi_1, \xi_2, \xi_3)$$
, 则有
$$AP=(-3\xi_1+2\xi_2-\xi_3, 6\xi_1+\xi_2+2\xi_3, \xi_1+\xi_2+3\xi_3)=(\xi_1, \xi_2, \xi_3)\begin{pmatrix} -3 & 6 & 1 \\ 2 & 1 & 1 \\ -1 & 2 & 3 \end{pmatrix}=PB.$$

又因为 ξ_1, ξ_2, ξ_3 线性无关,故P可逆,于是有 $P^{-1}AP=B$,即 $A\sim B$.

现在求B特征值特征向量。由
$$\begin{vmatrix} \lambda+3 & -6 & -1 \\ |\lambda E-B| = \begin{vmatrix} \lambda-2 & \lambda-1 & -1 \\ 1 & -2 & \lambda-3 \end{vmatrix} = \begin{vmatrix} \lambda+3 & -6 & -1 \\ -\lambda-5 & \lambda+5 & 0 \\ 1 & -2 & \lambda-3 \end{vmatrix} = (\lambda+5)(\lambda-2)(\lambda-4) = 0$$

解得特征值为: $\lambda = -5,2,4$.

対
$$\lambda$$
=-5, 由 $\begin{pmatrix} -2 & -6 & -1 \\ -2 & -6 & -1 \\ 1 & -2 & -8 \end{pmatrix}$ \rightarrow $\begin{pmatrix} 1 & 0 & -4.6 \\ 0 & 1 & 1.7 \\ 0 & 0 & 0 \end{pmatrix}$ 得特征向量 α_1 = $\begin{pmatrix} 46 \\ -17 \\ 10 \end{pmatrix}$.
対 λ =2, 由 $\begin{pmatrix} 5 & -6 & -1 \\ -2 & 1 & -1 \\ 1 & -2 & -1 \end{pmatrix}$ \rightarrow $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ 得特征向量 α_2 = $\begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$.
対 λ =4, 由 $\begin{pmatrix} 7 & -6 & -1 \\ -2 & 3 & -1 \\ 1 & -2 & 1 \end{pmatrix}$ \rightarrow $\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$ 得特征向量 α_3 = $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

因为由 $B\alpha=\lambda\alpha$ 可得 $AP\alpha=PB\alpha=\lambda P\alpha$,故A有特征值 $\lambda=-5,2,4$,对应特征向量 $P\alpha_1,P\alpha_2,P\alpha_3$.

定理4.2.6 设A是一个块对角矩阵

$$A = \begin{pmatrix} A_1 & & & & & \\ & A_2 & & & & \\ & & \ddots & & & \\ & & & A_m \end{pmatrix}$$

则A的特征多项式是 A_1, A_2, \ldots, A_m 的特征多项式的乘积,于是 A_1, A_2, \ldots, A_m 的所有特征值就是A的所有特征值.

证明 将单位矩阵E按分块形式写成

$$E = \begin{pmatrix} E_1 & & & & & \\ & E_2 & & & & \\ & & \ddots & & & \\ & & & E_m \end{pmatrix}$$

则

$$\lambda E - A = egin{pmatrix} \lambda E_1 - A_1 & & & & \\ & \lambda E_2 - A_2 & & & \\ & & \ddots & & \\ & & & \lambda E_m - A_m \end{pmatrix}$$

因此

$$|\lambda E - A| = |\lambda E_1 - A_1| |\lambda E_2 - A_2| \dots |\lambda E_m - A_m|.$$

例4.2.10 设 $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times m}$, 证明 $\lambda^n |E_m - AB| = m |E_n - BA|$.

证明 容易验证
$$\begin{pmatrix} E_m & -A \\ O & E_n \end{pmatrix} \begin{pmatrix} AB & O \\ B & O \end{pmatrix} = \begin{pmatrix} O & O \\ B & BA \end{pmatrix} \begin{pmatrix} E_m & -A \\ O & E_n \end{pmatrix}.$$

因
$$\begin{pmatrix} E_m & -A \\ O & E_n \end{pmatrix}$$
可逆,由上式可知 $\begin{pmatrix} AB & O \\ B & O \end{pmatrix}$ 和 $\begin{pmatrix} O & O \\ B & BA \end{pmatrix}$ 相似,从而有

$$\begin{vmatrix} \lambda E_{m+n} - \begin{pmatrix} AB & O \\ B & O \end{pmatrix} = \begin{vmatrix} \lambda E_{m+n} - \begin{pmatrix} O & O \\ B & BA \end{pmatrix},$$

$$\begin{vmatrix} \lambda E_m - AB & O \\ -B & \lambda E_n \end{vmatrix} = \begin{vmatrix} \lambda E_m & O \\ -B & \lambda E_n - BA \end{vmatrix},$$

故
$$\lambda^n |\lambda E_m - AB| = \lambda^m |\lambda E_n - BA|$$
.

由例4.2.10 可知,AB与BA有相同的非零特征值,且tr(AB)=tr(BA).

因为: $\lambda^n |\lambda E_m - AB| = \lambda^m |\lambda E_n - BA| = \lambda^k g(\lambda)$, 则 $|\lambda E_m - AB| = \lambda^{k-n} g(\lambda)$, $|\lambda E_n - BA| = \lambda^{k-m} g(\lambda)$.