Тема: Линейные пространства. Линейные операторы. Квадратичные формы

Задача 1.

Является ли линейным пространством множество всех целых чисел с естественными операциями сложения элементов и умножения элемента на действительное число?

Задача 2.

Является ли линейным пространством множество всех плоских векторов, исходящих из начала координат и принадлежащих первой четверти, с естественными операциями сложения элементов и умножения элемента на лействительное число?

Задача 3.

Является ли линейным пространством множество всех векторов, сумма координат которых равна 0, с естественными операциями сложения элементов и умножения элемента на действительное число?

Задача 4.

Является ли линейным пространством множество всех векторов, имеющих равные координаты, с естественными операциями сложения элементов и умножения элемента на действительное число?

Задача 5.

Является ли линейным пространством множество всех четных функций f(x), заданных на \mathbf{R} , с естественными операциями сложения элементов и умножения элемента на действительное число?

Задача 6.

Показать, что множество положительных действительных чисел

$$L = \{\bar{x} = x \colon x > 0\},$$

в котором операции сложения элементов и умножения элемента на действительное число α определены правилами

$$\bar{x} + \bar{y} = xy$$
; $\alpha \times \bar{x} = x^{\alpha}$,

является линейным пространством.

Задача 7.

Доказать критерий линейной зависимости системы элементов линейного пространства: система элементов линейно зависима тогда и только тогда, когда хотя бы один из них является линейной комбинацией остальных.

Задача 8.

Являются ли линейно зависимыми функции $y_1 = \cos^2 x$, $y_2 = \cos 2x$, $y_3 = 1$?

Задача 9.

Являются ли линейно зависимыми функции $y_1 = (1-x)^3, \ y_2 = x^3, \ y_3 = x^2 - x, \ y_4 = 1?$

Задача 10.

Определить размерность и привести пример базиса линейного пространства

симметрических матриц 3-го порядка, т.е. матриц вида
$$\begin{pmatrix} \alpha_1 & \alpha_2 & \alpha_3 \\ \alpha_2 & \alpha_4 & \alpha_5 \\ \alpha_3 & \alpha_5 & \alpha_6 \end{pmatrix}$$
, где

$\alpha_i \in \mathbf{R}$.

Задача 11.

Найти координаты элемента $y = 5x - x^3 + 2x^5$ в базисе $y_1 = 2x + x^5$, $y_2 = x^3 - x^5$, $y_3 = x + x^3$.

Задача 12.

Доказать, что линейная оболочка заданных элементов линейного пространства L является линейным подпространством линейного пространства L.

Задача 13.

Даны векторы $\overline{x_1} = (1; 2; 0; 6)$, $\overline{x_2} = (2; 0; 3; 1)$, $\overline{x_3} = (3; 2; 3; 7)$, $\overline{x_4} = (6; 0; 9; 3)$ в \mathbf{R}^4 . Является ли вектор $\overline{x_4}$ элементом линейной оболочки $\langle \overline{x_1}; \overline{x_2}; \overline{x_3} \rangle$?

Задача 14.

Доказать, что сумма подпространств линейного пространства L также является подпространством линейного пространства L.

Задача 15.

Пусть L — множество свободных векторов в пространстве. Является ли линейным оператор $f(\bar{x}) = \bar{x} + \vec{a}$, где $\vec{a} \neq \vec{0}$ - фиксированный вектор (f - оператор сложения с фиксированным вектором \vec{a})?

Задача 16.

Пусть L — множество свободных векторов в пространстве. Является ли линейным оператор $f(\bar{x}) = (\bar{x} \cdot \vec{e})\vec{e}$, где \vec{e} - фиксированный единичный вектор, $(\bar{x} \cdot \vec{e})$ - скалярное произведение векторов \bar{x} и \vec{e} (f - оператор проектирования на ось вектора \vec{e})?

Задача 17.

Пусть L — множество свободных векторов в пространстве. Является ли линейным оператор $f(\bar{x}) = \bar{x} \times \vec{a}$, где $\vec{a} = 2\vec{i} + \vec{j} - \vec{k}$?

Задача 18.

Показать, что сумма двух линейных операторов является линейным оператором.

Задача 19.

Показать, что произведение линейного оператора на число является линейным оператором.

Задача 20.

Показать, что произведение двух линейных операторов является линейным оператором.

Задача 21.

Доказать, что множество собственных векторов данного линейного оператора, соответствующих одному и тому же собственному числу, вместе с нулевым элементом образуют подпространство линейного пространства.

Задача 22.

Доказать, что если \bar{x}_1 и \bar{x}_2 - собственные векторы линейного оператора f, соответствующие собственным значениям λ_1 и λ_2 , $\lambda_1 \neq \lambda_2$, то \bar{x}_1 и \bar{x}_2 линейно независимы.

Задача 23.

Пусть \bar{x} - собственный вектор линейного оператора f, соответствующий собственному значению λ . Доказать, что \bar{x} является также собственным вектором оператора f^3 . Чему равно соответствующее собственное значение? Задача 24.

Найти собственные значения и собственные векторы линейного оператора f,

имеющего в некотором базисе матрицу $A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}$. Каков

геометрический смысл этого оператора?

Задача 25.

Показать, что в пространстве \mathbf{R}^2 операция $\bar{x} \circ \bar{y} = x_1 y_1 - x_1 y_2 - x_2 y_1 + 2 x_2 y_2$, где $\bar{x} = (x_1; x_2)$, $\bar{y} = (y_1; y_2)$, удовлетворяет всем четырем аксиомам скалярного произведения.

Задача 26.

Пусть $L = V^3$ (множество векторов в пространстве). Проверить, удовлетворяет ли аксиомам скалярного произведения операция $\bar{x} \circ \bar{y} = |\bar{x}| \cdot |\bar{y}| \cdot \sin(\bar{x}; \bar{y})$, где \bar{x} , $\bar{y} \in V^3$.

Задача 27.

Доказать неравенство треугольника для элементов евклидова пространства.

Запача 28

В евклидовом пространстве найти $\|4\overline{x}+\overline{y}\|$, если $\|\overline{x}\|=2$, $\|\overline{y}\|=1$ и $\|\overline{x}-3\overline{y}\|=4$.

Задача 29.

Исследовать знакоопределенность квадратичной формы $2px^2 + (2p+8)xy + (p+1)y^2$ в зависимости от параметра p.

Задача 30.

С помощью критерия Сильвестра знакоопределенности квадратичных форм доказать, что $-11x^2-6y^2-6z^2+12xy-12xz+6yz\leq 0$ при любых x,y,z.