In terms of τ :

$$x\text{-component} \quad \rho \left(\frac{\partial v_x}{\partial t} + v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} + v_z \frac{\partial v_x}{\partial z} \right) = -\frac{\partial p}{\partial x}$$

$$- \left(\frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} \right) + \rho g_x \quad (A)$$

$$y\text{-component} \quad \rho \left(\frac{\partial v_y}{\partial t} + v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} + v_z \frac{\partial v_y}{\partial z} \right) = -\frac{\partial p}{\partial y}$$

$$- \left(\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \tau_{yy}}{\partial y} + \frac{\partial \tau_{zy}}{\partial z} \right) + \rho g_y \quad (B)$$

$$z\text{-component} \quad \rho \left(\frac{\partial v_z}{\partial t} + v_x \frac{\partial v_z}{\partial x} + v_y \frac{\partial v_z}{\partial y} + v_z \frac{\partial v_z}{\partial z} \right) = -\frac{\partial p}{\partial z}$$

$$- \left(\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \tau_{zz}}{\partial z} \right) + \rho g_z \quad (C)$$

In terms of velocity gradients for a Newtonian fluid with constant ρ and μ :

$$x\text{-component} \quad \rho \left(\frac{\partial v_x}{\partial t} + v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} + v_z \frac{\partial v_x}{\partial z} \right) = -\frac{\partial \rho}{\partial x}$$

$$+ \mu \left(\frac{\partial^2 v_x}{\partial x^2} + \frac{\partial^2 v_x}{\partial y^2} + \frac{\partial^2 v_x}{\partial z^2} \right) + \rho g_x \quad (D)$$

$$y\text{-component} \quad \rho \left(\frac{\partial v_y}{\partial t} + v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} + v_z \frac{\partial v_y}{\partial z} \right) = -\frac{\partial \rho}{\partial y}$$

$$+ \mu \left(\frac{\partial^2 v_y}{\partial x^2} + \frac{\partial^2 v_y}{\partial y^2} + \frac{\partial^2 v_y}{\partial z^2} \right) + \rho g_y \quad (E)$$

$$z\text{-component} \quad \rho \left(\frac{\partial v_z}{\partial t} + v_x \frac{\partial v_z}{\partial x} + v_y \frac{\partial v_z}{\partial y} + v_z \frac{\partial v_z}{\partial z} \right) = -\frac{\partial \rho}{\partial z}$$

$$+ \mu \left(\frac{\partial^2 v_z}{\partial x^2} + \frac{\partial^2 v_z}{\partial y^2} + \frac{\partial^2 v_z}{\partial z^2} \right) + \rho g_z \quad (F)$$

The three fundamental equations of conservation

	I	I	ш	IY	1	图 Boundary condition	
EQUATION OF CONSERVATION OF:	Local change	. Change by convection	Change by diffusion	Change by production	. 0 !		
MASS	<u>8c</u> 8t	ν <u>θς</u>	$D \frac{\partial^2 c}{\partial x^2}$	 	= 0	Mass transfer ≈ k _m ø Δ c	
ENERGY	$c_p \rho \frac{\partial T}{\partial t}$	c _p p _v $\frac{\partial T}{\partial x}$	$\lambda \frac{\partial^2 T}{\partial x^2}$;	= 0	Heat transfer ≈ ha∆T	
MOMENTUM	$\rho \frac{\partial v}{\partial t}$	pv <u>ðv</u>	$\eta \frac{\partial^2 v}{\partial x^2}$	 	= 0	Shear force = Ta Surface tension force = 7(

CORRESPONDING QUANTITIES (per unit of volume)	Unit	Diffusive transport	Production	Boundary transfer	
MASS	c	O	,	k _m ∆c	
ENERGY	cppT	λ	ġ	hΔT	
MOMENTUM	ρν	η	f	T or 71-1	

System of dimensionless groups (numerics)

Ratio of terms in table 3 · 1	m: I	IV: I	A : I	II : III	IA: II	V : II	<u>г</u> : Ш	A : M	™ : ™
Mass	Dt L ²	<u>rt</u>	kyn t L	VL BO	rL Dal	km Me	rL ² Dall	km L Sh	<u>r L</u> lawc
Energy	λt FO	ġt c _P ρΤ	ht c _p pL	cpρνL Pe	d c _p ρτ	h St	$\frac{\dot{q}L^2}{\lambda T}$ Do IV	hL Nu	åL hT
Momentum	<u>ητ</u> ρL ²	ft pv	Tt pvL	ρνL Re η	<u>fL</u> We ρν²	$\frac{\tau}{\rho v^2}$ Fa	fL ² PO	TL BM	fL T

MEANING OF SYMBOLS

- a = surface per unit of volume
- c = concentration
- $c_D = \text{specific heat}$
- D = diffusivity
- θ = electric charge
- E = modulus of elasticity
- fel = electric field per unit of volume
- g = gravitational acceleration
- h = heat transfer coefficient
- k = reaction rate constant
- $k_{\rm m}$ = mass transfer coefficient
- l = length per unit of volume
- L = characteristic length
- p = pressure
- t = time
- T = temperature
- v = velocity
- x = length coordinate

- / = surface tension
- $\eta = viscosity$
- λ = heat conductivity
- $\rho = density$
- τ = shear stress
- ω = angular frequency
- r = reaction rate per unit of volume first order r = kc
 - second order $r = kc^2$ etc.
- \hat{q} = heat production rate per unit of volume
- f = force per unit of volume
 - gravitational f=gp
 - centrifugal $f = \omega^2 L \rho$
 - pressure gradient $f = \Delta p/L$
 - elastic f = E/L
 - surface tension $f = \gamma/L^2$
 - electric f= ofel

NUMERICS (see Gen. Ref.)

- Bm = Bingham
- Bo = Bodenstein
- Da = Damköhler
- Fa = Fanning
- Fo = Fourier
- Me = Merkel
- Nu = Nusselt
- Pe = Péclet
- Po * Poiseuille
- Re = Reynolds
- Sh = Sherwood
- St = Stanton
- We = Weber

Couette (drag) flow

(simple shearing (ba)

$$\rho \left[\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right] = -\frac{\partial P}{\partial x} + u \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial u}{\partial y^2} \right)$$

$$\frac{d^2u}{dy^2} = 0 \longrightarrow \frac{du}{dy} = C_1 \longrightarrow u(y) = C_1 y + C_2$$

$$C_{\infty} = \frac{F}{A} = \mu S_{\infty} = \mu \left(\frac{\partial u}{\partial u}\right)_{\infty} = \mu \frac{V}{A}$$

Temporature posite

$$C\left(\frac{\partial T}{\partial k} + u \frac{\partial T}{\partial y} + v \frac{\partial T}{\partial y}\right) = Q + k\left(\frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial y^2}\right)$$

$$\frac{d^2 T}{dy^2} = -\frac{Q}{k} = \frac{-k}{k}\left(\frac{V}{H}\right)^2 \rightarrow \frac{dT}{dy} = -\frac{Q}{k}y + C_1$$

$$T(y) = -\frac{Q}{k}y^2 + C_1y + C_2$$

Forced (Disichlot) b.c.: T(0)=Ti, T(H)=Te Material (Cauchy) b.c.: T(0)=Ti

Temperature distribution in drag flow

- > restart: with (DEtools):
- > ode:=diff(T(y),y,y)=-Q/k;

$$ode := \frac{\partial^2}{\partial y^2} T(y) = -\frac{Q}{k}$$

Forced ("Dirichlet") boundary conditions:

> T_f:=simplify(dsolve({ode,T(0)=0,T(1)=0},T(y)));

$$T_f := T(y) = -\frac{1}{2} \frac{Qy(y-1)}{k}$$

> Digits:=4:k:=1:Q:=1:eq1:=rhs(T_f):

Natural ("Cauchy") boundary conditions

> T_n:=simplify(dsolve({ode,T(0)=0},T(y)));

$$T_n := T(y) = -\frac{1}{2}y^2 + CIy$$

> bc_n:=subs(y=1,diff(rhs(T_n),y))=-subs(y=1,rhs(T_n));

$$bc_n := -1 + _C1 = \frac{1}{2} - _C1$$

> solve(subs(Q=1,bc_n),_C1);

3

- > C1:=3/4:eq2:=rhs(T n):
- > plot({eq1,eq2},y=0..1,thickness=3);

Advective transport

1-D heat transport by diffusion and advection

- > restart:with(DEtools):
- > ode:= Pe*diff(T(x),x)=diff(T(x),x,x);

ode :=
$$Pe\left(\frac{\partial}{\partial x}T(x)\right) = \frac{\partial^2}{\partial x^2}T(x)$$

> TT:=simplify(dsolve({ode,T(0)=0,T(1)=1},T(x)));

$$TT := T(x) = \frac{-1 + e^{(Pex)}}{-1 + e^{Pe}}$$

- > eq1:=subs(Pe=1,rhs(TT)):eq5:=subs(Pe=5,rhs(TT)):eq10:=subs(Pe=10,r
 hs(TT)):
- > plot({eq1,eq5,eq10},x=0..1,thickness=3);

