MATH 3070 Lab Fall Project 2 Solutions

Pranav Rajan

September 10, 2020

Contents

Problem 1 (Verzani problem 2.4)
Problem 2 (Verzani problem 2.3)
Problem 3 (Verzani problem 2.25)
Problem 4 (Verzani problem 2.32)
Problem 5 (Verzani problem 2.34)
Remember: I expect to see commentary either in the text, in the code with comments created using #, or (preferably) both! Failing to do so may result in lost points!
Problem 1 (Verzani problem 2.4)
Create the following sequences, using :, seq(), or rep() as appropriate:
1. "a" "a" "a" "a" "a" "a"
<pre># Your solution here rep("a", 6)</pre>
[1] "a" "a" "a" "a" "a" "a" 2. 1 3 99 (the odd numbers)
Vanna and Addient house
<pre># Your solution here seq(1, 100, by=2)</pre>
[1] 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
[26] 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99
3. 1 1 1 2 2 2 3 3 3
<pre># Your solution here rep(c(1, 2, 3), times=c(3, 3, 3))</pre>
[1] 1 1 1 2 2 2 3 3 3

Problem 2 (Verzani problem 2.3)

Let our small data set be 2 5 4 10 8.

1. Enter this data into a data vector x.

```
# Your code here
x <- c(2, 5, 4, 10, 8)
```

2. Find the square of each number.

```
# Your code here
x^2
```

```
## [1] 4 25 16 100 64
```

3. Subtract 6 from each number.

```
# Your code here
x - 6
```

```
## [1] -4 -1 -2 4 2
```

4. Subtract 9 from each number and then square the answer.

```
# Your code here
(x - 9)^2
```

```
## [1] 49 16 25 1 1
```

Problem 3 (Verzani problem 2.25)

Write a function isprime() that checks if a number x is prime by dividing x by all the values in 2, ..., x-1 then checking to see if there is a remainder of 0. The expression a %% b returns the remainder of a divided by b.

```
# Your code here
isprime <- function(x) {
  y <- seq(2, x-1)
  for (value in y) {
    if (x %% value == 0)
        return("False")
  }
  return("True")
}</pre>
```

```
## [1] "True"
```

BONUS: You do not need to check all numbers from 2 to x-1 to see if a number is prime. What is the largest you would need to go for an arbitrary x? Create a new function, isprime2(), that implements this better (yet still slow) method.

Problem 4 (Verzani problem 2.32)

Fit a density estimate to the data set pi2000 (UsingR). Compare with the appropriate histogram. Why might you want to add an argument like breaks = 0:10-.5 to hist()? (Hint: read the documentation of hist() to see what setting this argument does.)

```
# Your code here
require("UsingR")
```

```
## Loading required package: UsingR
## Loading required package: MASS
## Loading required package: HistData
## Loading required package: Hmisc
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## Loading required package: ggplot2
##
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
##
##
       format.pval, units
## Attaching package: 'UsingR'
## The following object is masked from 'package:survival':
##
##
       cancer
# density plot
pi2000density <- density(pi2000)
# histogram plot
# the breaks parameter defines the spacing between bars or the number of bars
pi2000hist <- hist(pi2000, breaks= 0:10 - 0.5)
```

Histogram of pi2000

plot(pi2000density)

density.default(x = pi2000)

plot(pi2000hist)

Histogram of pi2000

Problem 5 (Verzani problem 2.34)

The data set DDT (MASS) contains independent measurements of the pesticide DDT on kale. Make a histogram and a boxplot of the data. From these, estimate the mean and standard deviation. Check your answers with the appropriate functions.

```
# Your code here
require("UsingR")
histogramChart <- hist(DDT)</pre>
```

Histogram of DDT

#plot(histogramChart)
boxplotChart <- boxplot(DDT, main="DDT Kale Data", ylab="kale mass")</pre>

DDT Kale Data


```
# Estimates
# Mean: 3.25 based on the boxplot
# SD: roughly 0.5 based on sorting the data since the points seem really close
# print(sort(DDT))
# Actual data summary
mean(DDT)
```

[1] 3.328

sd(DDT)

[1] 0.4371531