WO 2005/087820 PCT/KR2005/000631

WHAT IS CLAIMED IS:

5

10

20

25

- 1. A method of preparing an ethylene polymerization catalyst, comprising:
- (a) (a1) reacting magnesium halide with alcohol in the presence of a hydrocarbon solvent,
 - (a2) reacting the resulting product solution from the step (a1) with dialkylmagnesium, and
 - (a3) reacting the resulting product from the step (a2) with alkyl halide or silane halide, to give a magnesium complex;
- (b) reacting the magnesium complex with a titanium compound, to give a magnesium-titanium complex; and
 - (c) reacting the magnesium-titanium complex with an electron donor.
- The method as set forth in claim 1, wherein the magnesium halide is a compound
 represented by a formula of MgX₂, in which X is a halogen element belonging to Group
 VII in the periodic table.
 - 3. The method as set forth in claim 1, wherein the alcohol is a compound represented by a formula of R^1OH , in which R^1 is an alkyl radical having 1 to 10 carbons.
 - 4. The method as set forth in claim 1, wherein the dialkylmagnesium is a compound represented by a formula of MgR²R³ or MgR²R³ (AlR⁴₃), in which R², R³ and R⁴, which are the same or different, respectively are an alkyl radical having 1 to 10 carbons.
 - 5. The method as set forth in claim 1, wherein the alkyl halide is a compound represented by a formula of R⁵X, in which R⁵ is an alkyl radical having 1 to 5 carbons, and

WO 2005/087820 PCT/KR2005/000631

X is a halogen element belonging to Group VII in the periodic table.

5

10

15

25

6. The method as set forth in claim 1, wherein the silane halide is a compound represented by a formula of R⁵_mSiX_{4-m}, in which R⁵ is an alkyl radical having 1 to 5 carbons, X is a halogen element belonging to Group VII in the periodic table, and m is an integer ranging from 0 to 3.

- 7. The method as set forth in claim 1, wherein the titanium compound is a compound represented by a formula of TiX₄, in which X is a halogen element belonging to Group VII in the periodic table, or an alkoxy radical selected from among OC₂H₅, OC₃H₇ and OC₄H₉.
- 8. The method as set forth in claim 1, wherein the electron donor is an organic acid ester compound represented by a formula of $R^6(COO)_nR^7_mR^8_{n-m}$, in which R^6 is saturated hydrocarbons, unsaturated hydrocarbons, alicyclic hydrocarbons or aromatic hydrocarbons having 1 to 18 carbons, R^7 and R^8 , which are the same or different, respectively are an alkyl radical having 1 to 18 carbons, and n and m, which are the same or different, respectively are an integer of 1 or 2 (m \leq n).
- 9. The method as set forth in claim 1, wherein the steps (a2) and (a3) are carried out at -30 to 100°C.
 - 10. The method as set forth in claim 1, wherein a molar ratio of the magnesium complex and the titanium compound ranges from 1:0.5 to 1:10, and the step (b) is carried out at -20 to 100°C.

WO 2005/087820 PCT/KR2005/000631

11. The method as set forth in claim 1, wherein a molar ratio of the magnesium complex and the electron donor ranges from 1:0.01 to 1:0.5.