A. STRUCTURE OF A NEURON

The axon terminals can end at another neuron, a muscle (motor end plate) or a gland.

B. RESTING NEURONES AND FIRING NEURONES

- A neuron is prevented from firing an impulse by keeping the inside negative relative to the outside by 70 mV.
- So, when neurons are **resting** they have a **resting membrane potential** of **-70 mV**.
- To make a neuron fire an impulse, this value must be made more positive so that it reaches
 at least -55 mV.
- If we "zoom in" on the membrane of a neuron, you will see how both are achieved:

AT REST

The inside of the neurone membrane is negatively charged compared to the outside by 70 mV.

This prevents a neurone from firing an impulse.

- Voltage-gated Na+ channels are closed so Na+ cannot diffuse in.
- K+ leak channels are open so K+ diffuses out.
- The Na+/K+ ATP Pump moves 3Na+ out for every 2K+ moved in by active transport.

All work together to maintain the resting membrane potential of -70 mV

MEMBRANE POTENTIAL INCREASES: BECOMES MORE + (DEPOLARISATION)

At -55 mV, the neurone will FIRE an IMPULSE (= 'ACTION POTENTIAL')

C. AN OSCILLOSCOPE SHOWING AN ACTION POTENTIAL

 You are expected to know that the equipment used to show an action potential is called an oscilloscope.

D. FIRING AN ACTION POTENTIAL IS AN 'ALL-OR-NOTHING' RESPONSE

- The threshold potential of -55 mV must be reached for an action potential to be fired by a neuron.
- In other words, enough Na+ must enter to cause enough depolarization to trigger firing an action potential.
- If the threshold potential of -55 mV is not reached, the neuron stays at rest.

The **HEIGHT** of an **ACTION POTENTIAL** does **NOT CHANGE**.

The **STRENGTH** of a **STIMULUS** is conveyed by the **NUMBER OF ACTION POTENTIALS** produced in a **FIXED TIME**.

Accidentally hitting your thumb hard with a hammer will produce more action potentials in a fixed time than hitting it with a much lower pressure

E. PROPAGATION OF AN ACTION POTENTIAL

- Some neurons are wrapped in a fatty material called myelin.
- In **myelinated** neurons, the **action potentials** 'jump' **between** the **gaps** in the myelin sheath, called the **nodes of Ranvier**.
- This is because depolarisation only occurs at the nodes.
- This is called saltatory conduction: depolarisation at one node causes depolarisation at next node.
- This results in an increase in the speed of electrical transmission by up to 100x.

F. HOW AN IMPULSE TRAVELS ACROSS A SYNAPSE

- Synapses are the gaps that separate neurons from other cells, such as other neurons, muscle cells or gland cells.
- Neurons transmit information across synapses by converting the electrical signal into a chemical signal.

- Action potential arrives at the pre-synaptic neuron
- 2. to 5.

Ca²⁺ channels open so Ca²⁺ enters neurone This causes vesicles containing neurotransmitter to move to and fuse with the presynaptic membrane.

- 6. Vesicles empty the neurotransmitter into the synapse by exocytosis.
- 7. Neurotransmitter diffuses across the synapse and attaches to specific receptors on the post-synaptic neurone.
- This causes voltage-gated Na+ channels to open so Na+ enters, causing depolarisation.
 An action potential is then fired by the next neuron.

Post-synaptic neuron

G. NEUROTRANSMITTERS

- Different synapses can use different neurotransmitters.
- Synapses that use acetylcholine as the neurotransmitter are called cholinergic synapses.
- Other examples include: dopamine, serotonin, noradrenaline and GABA.
- Excitatory neurotransmitters open Na+ channels to cause depolarization and an action potential to be fired.
- Inhibitory neurotransmitters open CI- channels to causes repolarization and prevent an action potential from being fired.

H. HOW THIS IS "SWITCHED OFF"

- In synapses that use the neurotransmitter acetylcholine (Ach), an enzyme called acetylcholinesterase breaks down acetylcholine, attached to the receptor, into acetyl-coA and choline.
- Mitochondria make acetyl-coA in the neuron.
- The **choline** is **reabsorbed** at the **pre-synaptic membrane**, back into the **first** neuron, and used to **make** more **acetylcholine**.

I. NEONICOTINOID PESTICIDES

Overview

- Kill insects by binding to acetylcholine receptors.
- Human and insect acetylcholine receptors have a different structure, so they bind to those of insects much more strongly.
- They are therefore much **more toxic** to **insects** than to humans.

How they work

- Bind to acetylcholine (Ach) receptors
- (But) cannot be broken down by the enzyme acetylcholinesterase
- (So) block synaptic transmission / Na⁺ channels <u>cannot</u> open (as it is not Ach)
- (So) muscles cannot contract
- (So) death by paralysis

Many **MEDICAL DRUGS** exploit what happens naturally at the **SYNAPSE** to help treat the **SYMPTOMS** of a **DISORDER**

J. APPLYING WHAT YOU KNOW

Adifax

Adifax is a drug that can be used to affect people's eating habits.

A neurotransmitter molecule and an adifax molecule are shown below.

The diagram shows how these molecules affect a synapse.

Explain how the drug Adifax would affect a person's eating habits. [6 marks]

- Adifax is a similar shape/structure to the neurotransmitter
- (So) adifax binds to receptor X
- (So) neurotransmitter cannot bind to receptor X
- (So) neurotransmitter cannot be reabsorbed / stays bound to receptor Y
- (So) continuous impulses sent to appetite centre
- (So) person always feels full
 (Adifax is a diet pill)

Snake Venom

Venom from a certain species of snake contains molecules that have a similar structure to the neurotransmitter acetylcholine.

Explain how this venom can cause death by respiratory failure.

- (Venom molecules) bind to acetylcholine receptors
- (So) acetylcholine cannot bind to receptors
- (But) no depolarization / Na+ channels do not open (as it is not the real neurotransmitter)
- (So) no action potential/impulse fired
- (So) muscles cannot contract

If the intercostal muscles between the ribs cannot contract (stay relaxed), the ribcage cannot be moved, so a person will not be able to carry out ventilation