2022 METŲ PAKARTOTINĖS SESIJOS MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO KANDIDATŲ DARBŲ VERTINIMO INSTRUKCIJA

I dalis

Užd. Nr.	1	2	3	4	5	6	7	8	9	10
Ats.	В	C	C	В	C	A	D	В	C	D

II dalis

11.	8
12.	$x \in (-3, 2] \text{ (arba } (-3, 2])$
13.	8
14.1	$\angle ACB = 140^{\circ} \text{ (arba } 140^{\circ}\text{)}$
14.2	$\angle ADB = 100^{\circ} \text{ (arba } 100^{\circ}\text{)}$
15.	60
16.1	$ \vec{a} = 7 \text{ (arba 7)}$
16.2	m = 2 (arba 2)
17.	P(X = 1) = 0.9 (arba 0.9)
18.	y-x
19.	$\frac{1}{9}$ (arba 0, (1))
20.	f(1) = -2 (arba -2)

 $^{^{\}hbox{\scriptsize (C)}}$ Nacionalinė švietimo agentūra, 2021 m.

III dalis

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
21		2	
	$S - \text{pasiskolinta suma,}$ $16872,96 = S\left(1 + \frac{4}{100}\right)^3,$	1	Už teisingai sudarytą lygtį.
	$S = \frac{16872,96}{1,04^3} = 15000.$ Ats.: 15000 Eur (arba 15000).	1	Už gautą teisingą atsakymą.

Pastaba. Taškai skiriami ir už teisingą kandidato 21 uždavinio sprendimą, taikant paprastąsias palūkanas

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
22		4	
22.1		2	
	$S_{\S{on}} = \pi Rl = \pi \cdot 6 \cdot 10 = 60\pi,$	1	Už teisingai apskaičiuotą kūgio šoninio paviršiaus plotą.
	$S_{pav} = S_{\S{on}} + S_{pagr} = 60 \pi + \pi \cdot 6^2 = 96\pi.$	1	Už gautą teisingą atsakymą.
	Ats.: 96π.		
22.2		2	
	$H = \sqrt{l^2 - R^2} = \sqrt{10^2 - 6^2} = 8,$	1	Už teisingai apskaičiuotą kūgio aukštinės ilgį.
	$V = \frac{1}{3} S_{pagr} \cdot H = \frac{1}{3} \cdot 36\pi \cdot 8 = 96\pi.$	1	Už gautą teisingą atsakymą.
	Ats.: 96π.		

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
23		5	
23.1		1	
	$f(-1) = 2^{1-3} = 2^{-2} = \frac{1}{4}$	1	Už teisingą atsakymą.
	Ats.: $\frac{1}{4}$ (arba 0,25).		
23.2		2	
	$f'(x) = 2^{1-3x^2} \cdot \ln 2 \cdot (-6x),$	1	Už teisingą funkcijos $f(x)$ išvestinę.
	$f'(1) = 2^{1-3} \cdot \ln 2 \cdot (-6) = -1.5 \ln 2.$	1	Už gautą teisingą atsakymą.
	$Ats.: -1,5 \ln 2.$		
23.3		2	
	$g(f(x)) = \log_2 2^{1-3x^2} = 1 - 3x^2.$	1	Už surastą teisingą $g(f(x))$ išraišką.
	I būdas Funkcijos $g(f(x))$ grafikas yra parabolė, kurios šakos nukreiptos žemyn, nes $a=-3 < 0$, o viršūnės koordinatės yra $(0; 1)$. $E_{g(f(x))} = (-\infty; 1]$. Ats.: $E_{g(f(x))} = (-\infty; 1]$. II būdas $x^2 \ge 0$, $-3x^2 \le 0$, $1-3x^2 \le 1$, $E_{g(f(x))} = (-\infty; 1]$. Ats.: $E_{g(f(x))} = (-\infty; 1]$.		Už gautą teisingą atsakymą.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
24	Spichumas ii atsakymas	9	v Ci tilillias
24.1		1	
27.1	$-x^2 + 2x + 3 = 0$.	1	Už gautą teisingą atsakymą.
	$x_1 = -1, x_2 = 3.$	1	Oz gadią teisnigą atsakynią.
	$x_1 - x_2 - 3$.		
	Ats.: $x_1 = -1, x_2 = 3.$		
24.2		1	
	f'(x) = -2x + 2,	1	Už teisingą parodymą.
	f'(2) = -4 + 2 = -2.		
24.3		1	
	$f(2) = -2^2 + 2 \cdot 2 + 3 = 3,$		
	y = -2(x - 2) + 3 = -2x + 7.	1	Už teisingą parodymą.
24.4		2	
	A(0;7), B(3,5;0),	1	Už teisingą taško A ordinatę ir
			teisingą taško B abscisę.
	$S_{AOB} = \frac{1}{2}OA \cdot OB = \frac{1}{2} \cdot 7 \cdot 3,5 = 12,25.$	1	Už gautą teisingą atsakymą.
	$Ats.: S_{AOB} = 12,25 \text{ (arba 12,25)}.$		
24.5		4	
	3 3 3 3 3	1	Už teisingą reiškinį figūros plotui
	$S_1 = \int_0^3 (-x^2 + 2x + 3) \mathrm{d}x =$		S_1 apskaičiuoti.
	$\left = \left(-\frac{x^3}{3} + x^2 + 3x \right) \right _0^3 =$	1	Už teisingą pirmykštę funkciją.
	= 9.	1	Už teisingai apskaičiuotą figūros plotą S_1 .
	$\frac{S_{\Delta AOB}}{S_1} = \frac{12,25}{9} = \frac{49}{36} = \left(\frac{7}{6}\right)^2.$	1	Už teisingą pagrindimą.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
25		5	
25.1		2	
	2-3x=16,	1	Už teisingą tiesinę lygtį.
	$x = -4\frac{2}{3}.$	1	Už gautą teisingą atsakymą.
	Ats.: $x = -4\frac{2}{3} (arba - 4\frac{2}{3})$.		
25.2		3	
	$4\cos^{2}x - 8\cos x + 3 = 0,$ $m = \cos x,$ $4m^{2} - 8m + 3 = 0,$ $m = \frac{3}{2} \text{ arba } m = \frac{1}{2}.$	1	Už teisingus kvadratinės lygties sprendinius.
	Lygtis $\cos x = \frac{3}{2}$ sprendinių neturi.	1	Už teisingai išspręstą lygtį $\cos x = \frac{3}{2}$.
	$\cos x = \frac{1}{2},$ $x = \pm \frac{\pi}{3} + 2\pi k, k \in \mathbf{Z}.$ $Ats.: x = \pm \frac{\pi}{3} + 2\pi k, k \in \mathbf{Z}.$	1	Už gautą teisingą atsakymą.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
26		5	
26.1		3	
	$b^{2} = a^{2} + c^{2} - 2ac \cdot \cos 120^{\circ} =$ $= a^{2} + c^{2} + ac,$	1	Už kosinusų teoremos taikymą trikampiui <i>ABC</i> .
	$a^{2} + c^{2} + ac = 2a^{2} + c^{2},$ $ac = a^{2},$	1	Už teisingai sudarytą lygybę su dviem nežinomaisiais.
	$ac - a^2 = 0$, a(c - a) = 0, a = 0 (net.), $c = a$, todėl trikampis <i>ABC</i> yra lygiašonis.	1	Už teisingą argumentavimą.
26.2		2	
	$\begin{vmatrix} b^2 = 3a^2 = 27, \\ \vec{b} = 3\sqrt{3}, \end{vmatrix}$	1	Už apskaičiuotą teisingą vektoriaus \vec{b} ilgį.
	$\overrightarrow{AB} \cdot \overrightarrow{CA} = 3 \cdot 3\sqrt{3} \cdot \cos 150^{\circ} = -13,5.$ $Ats.: \overrightarrow{AB} \cdot \overrightarrow{CA} = -13,5 \text{ (arba } -13,5).$	1	Už gautą teisingą atsakymą.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
27	·	4	
27.1		2	
	Įvykiui <i>A</i> palankios baigtys yra: 111; 222; 333; 444; 555; 666.	1	Už įvykiui A palankias baigtis.
	$\mathbf{P}(A) = \frac{6}{6 \cdot 6 \cdot 6} = \frac{6}{216} = \frac{1}{36}.$	1	Už teisingą įvykio A tikimybę.
	$Ats.: \mathbf{P}(A) = \frac{1}{36} (arba \frac{1}{36}).$		
27.2		2	
	I būdas	1	Už skaičių baigčių, kai dviejų
	$6 \cdot 1 \cdot 5 = 30,$		konkrečių spalvų kauliukai atvirs tuo pačiu akučių skaičiumi.
	$\mathbf{P}(B) = \frac{30.3}{216} = \frac{5}{12}.$	1	Už gautą teisingą įvykio <i>B</i> tikimybę.
	Ats.: $P(B) = \frac{5}{12} (arba \frac{5}{12}).$		
	II būdas	1	Už skaičių baigčių, kai visi trys
	$6 \cdot 5 \cdot 4 = 120,$		kauliukai atvirs skirtingu akučių skaičiumi.
	$\mathbf{P}(B) = \frac{216 - 120 - 6}{216} = \frac{5}{12}.$	1	Už gautą teisingą įvykio <i>B</i> tikimybę.
	Ats.: $P(B) = \frac{5}{12} (arba \frac{5}{12}).$		
		1	

2021 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pakartotinė sesija

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
28	·	4	
	I būdas	1	Už teisingai sudarytą lygčių sistemą.
	$ \begin{cases} v_1 t - 10v_1 = 5v_2, \\ v_2 t - 16v_2 = 8v_1; \\ \left(\frac{t-10}{5} = \frac{v_2}{v_1}, \\ \frac{v_2}{v_1} = \frac{8}{t-16}; \end{cases} $	1	Už pasirinktą teisingą lygčių sistemos sprendimo būdą (išreikštas v_1 arba v_2 , arba jų santykis).
	$\frac{t-10}{5} = \frac{8}{t-16},$	1	Už gautą vieno nežinomojo lygtį.
	$t^2 - 26t + 120 = 0,$ t = 6 (net.), nes t > 8 $arba \ t = 20$	1	Už gautą teisingą atsakymą.
	Ats.: 20 min.		
	II būdas $\begin{cases} v_1t + v_2t = s, \\ 2v_1(t-5) + v_2(t-5) = s, \\ v_1(t-8) + 2v_2(t-8) = s. \end{cases}$	1	Už sudarytą teisingą lygčių sistemą.
	$\begin{split} \frac{\frac{s}{t-5} &= 2v_1 + v_2, \\ \frac{s}{t-8} &= v_1 + 2v_2, \\ \frac{\frac{s}{t-5} + \frac{s}{t-8} &= 3v_1 + 3v_2, \end{split}$	1	Už pasirinktą teisingą lygčių sistemos sprendimo būdą (dviejų lygčių sudėtis).
	$\frac{\frac{s}{t-5} + \frac{s}{t-8} = 3(v_1 + v_2) = 3 \cdot \frac{s}{t}}{\frac{1}{t-5} + \frac{1}{t-8} = \frac{3}{t}},$	1	Už gautą vieno nežinomojo lygtį.
	$t^2 - 26t + 120 = 0,$ t = 6 (net.), nes t > 8 $arba \ t = 20.$	1	Už gautą teisingą atsakymą.
	Ats.: 20 min.		