Introduction to Communication Engineering SSY121, Lecture # 8

Fredrik Brännström
Fredrik.Brannstrom@chalmers.se

Communication Systems Group Department of Electrical Engineering Chalmers University of Technology Göteborg, Sweden

September 20, 2021

Outline

- Summary of Synchronization
 - Carrier Frequency synchronization
 - Carrier Phase synchronization
 - Symbol synchronization
 - Frame synchronization
- A Random Model for Communications and AWGN
 - Additive noise channels
 - Gaussian random variables
 - The AWGN channel
- ML and MAP Detection in AWGN Channels
 - MI detection
 - MAP detection

Part I

Summary of Synchronization

Synchronization in Rx

- Carrier frequency synchronization:
 - The local oscillators in Rx is not exactly f_c but $f_c + \Delta$
- Carrier phase synchronization:
 - The phase of the local oscillators in Rx is different than in Tx, i.e.,
 - $\cos(w_c t)$ and $\sin(w_c t)$ are $\cos(w_c t + \theta)$ and $\sin(w_c t + \theta)$
- Symbol synchronization:
 - The output of the MFs are taken at the wrong instant, e.g.,
 - $t = 0.0T_{\rm s}, 1.1T_{\rm s}, 2.2T_{\rm s}, \dots$ wrong sampling frequency
 - $t=0.1T_{\rm s}, 1.1T_{\rm s}, 2.1T_{\rm s}, \dots$ wrong timing
- Frame synchronization:
 - Locate where does the block of information bits start, i.e., where the beginning of the "sentence" starts.

Wrong frequency ⇒ a "rotating" constellation

Wrong phase \Rightarrow a "rotated" constellation

When the frame synchronization is incorrect... Hej Hej O 10010000110010101010 C Ho, I prefer C++

Part II

A Random Model for Communications and AWGN

The general problem

The problem

- ullet Given the observation y(t), guess what the transmitted message was
- \bullet The channel will modify the transmitted signal s(t) in a random fashion
- If there is no randomness, our guesses will be always correct \rightarrow problem solved \rightarrow no need to study communication theory
- We would like to minimize the number of errors:

$$\min \left\{ \mathbb{P} \left[\hat{m} \neq m \right] \right\},\,$$

or equivalently, $\max \{ \mathbb{P} \left[\hat{m} = m \right] \}$

Additive white Gaussian Noise

- We need a model for the randomness of the channel
- A very common one is the additive white Gaussian noise (AWGN):
 - It represents accurately "thermal noise," generated by movement of electrons at the receiver
 - It represents some cases of "atmospheric noise," caused by the weather
 - The sum of many small independent contributions is Gaussian ("central limit theorem")
 - It allows a simple analysis
- Are there other channel models?
 - Non-Gaussian noise
 - Poisson channels
 - Fading channels (multiplicative interference)
 - Noise from other users

Additive noise

It is additive noise because

$$y(t) = s(t) + n(t)$$

ullet The added noise n(t) does not depend on s(t)

White Noise

- If the noise has the following properties
 - $\mathbb{E}[n(t)] = 0$
 - $\mathbb{E}[n(t_1)n(t_2)] = \frac{N_0}{2}\delta(t_1-t_2)$ (uncorrelated for $t_1 \neq t_2$)
- The result is a constant ("white") spectrum

- Theoretically, the power of the noise is $\int_{-\infty}^{\infty} N(f) \, df = \infty$ [W] ...
- When observed over any finite BW, the noise has finite power (no explosions!)
- If the noise is flat over the frequencies of interest, it will still be white for our purposes

1D Gaussian random variables

- Gaussian distribution is equivalent to normal distribution
- ullet The mean value is μ and the variance is σ^2
- We use $\mathcal{N}(\mu, \sigma^2)$ to denote this random variable
- The probability density function (PDF) of $\mathcal{N}(\mu, \sigma^2)$ is

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

- The normalized Gaussian distribution is obtained when $\mu=0$ and $\sigma^2=1$
- ullet The probability density function of $\mathcal{N}(0,1)$ is

$$f_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$

Normalized Gaussian distribution

• The PDF of $\mathcal{N}(0,1)$ is

$$f_X(x) = \frac{1}{\sqrt{2\pi}} \exp(-x^2/2)$$

• The probability of X being larger than x_0 is

$$\mathbb{P}\left[X > x_0\right] = \int_{x_0}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx = \mathcal{Q}(x_0)$$

- Q(0) = 1/2
- $Q(-x_0) = 1 Q(x_0)$
- $1 Q(x_0)$ is tabulated in Mathematics Handbook
- $Q(x_0)$ is "qfunc (x_0) " in Matlab

Another Gaussian distribution ($\mu=2$ and $\sigma^2=4$)

The probability of $Y \sim \mathcal{N}(\mu, \sigma^2)$ being larger than y_0 is

$$\mathbb{P}\left[Y > y_0\right] = \mathcal{Q}\left(\frac{y_0 - \mu}{\sigma}\right)$$

2D Gaussian random variables

• N independent Gaussian random variables with the same variance σ^2 have a PDF given by:

$$f_{\mathsf{Z}}(\mathsf{z}) = \frac{1}{(2\pi\sigma^2)^{N/2}} \exp\left(-\frac{||\mathsf{z} - \boldsymbol{\mu}||^2}{2\sigma^2}\right)$$

• For the 2D case, the normalized Gaussian distribution is $Z=[X_1,X_2], \ \mu=[0,0], \ \sigma^2=1$ and the PDF is

$$f_{\mathsf{Z}}(\mathsf{z}) = \frac{1}{2\pi} \exp\left(-\frac{||\mathsf{z}||^2}{2}\right)$$

Definition (The AWGN channel)

If the noise is additive, white, and also Gaussian, we talk about an AWGN channel: y(t)=s(t)+n(t)

The AWGN channel in vector space

• Or in vectorial notation (L_4)

$$y = s + n$$
,

where
$$s = [s_1, \dots, s_N]$$

• The noise can be also represented using the basis functions $\phi_1(t), \ldots, \phi_N(t)$ plus other basis functions $\phi_{N+1}(t), \ldots, \phi_{N'}(t)$, i.e.,

$$n(t) = \sum_{i=1}^N \mathsf{n}_i \phi_i(t) + \sum_{i=N+1}^{N'} \mathsf{n}_i \phi_i(t)$$

- ullet More than N basis functions are needed
- ullet Only the N that span the signals $s_i(t)$ are relevant for detection (L_4)

The AWGN channel

The continuous time channel

$$y(t) = s(t) + n(t)$$

can then be replaced by a vectorial model

$$y = s + n$$
,

where
$$s = [s_1, ..., s_N]$$
, $n = [n_1, ..., n_N]$, $y = [y_1, ..., y_N]$

- Each component of the received vector is $y_i = s_i + n_i$
- If n(t) is AWGN with PSD $N_0/2$, what is the distribution of n?
 - $\mathbb{E}[\mathsf{n_i}] = 0$ for all i
 - $var[n_i] = N_0/2$ for all i
 - n_i and n_k are independent for $i \neq k$
- Note that
 - The proof is given in Sec. 2.5.3 of [Anderson]
 - The previous result is valid for any basis functions
 - PSD and variance are different entities, but have the same value

Summarizing...

In summary, the vectorial channel model is y = s + n, where

- ullet s is the transmitted symbol (a point in an N-dimensional Euclidean space)
- n is the noise (N independent and identically distributed (i.i.d.) $\mathcal{N}(0,N_0/2)$ components) independent of s
- ullet y is the received symbol (a point in an N-dimensional Euclidean space which is a "translated" version of s)
- The PDF of the 2D noise is (zero mean and variance $N_0/2$)

$$f_{N}(\mathbf{n}) = \frac{1}{\pi N_0} \exp\left(-\frac{||\mathbf{n}||^2}{N_0}\right)$$

• For a given transmitted $s = s_i$, the received signal y has a similar distribution as n, but centered at s_i

$$f_{\mathsf{Y}}(\mathsf{y}|\mathsf{s}_i) = \frac{1}{\pi N_0} \exp\left(-\frac{||\mathsf{y} - \mathsf{s}_i||^2}{N_0}\right)$$

Part III

ML and MAP Detection in AWGN Channels

The general problem

The fundamental problem

- At the Tx, one of the possible M symbols was transmitted (S = s).
- Given the observation of the random variable Y = y, the receiver must guess what the transmitted message was.
- We would like to minimize the number of errors,i.e.,

$$\min\left\{\mathbb{P}\left[\hat{\mathsf{s}}\neq\mathsf{s}\right]\right\}$$

• Equivalently, choose i ($\hat{s} = s_i$) which maximizes $\max \{ \mathbb{P} [S = s_i | Y = y] \}$

Bayes' rule

Bayes' rule tells us how to reverse conditional probabilities or PDFs:

$$f_{X|Y}(x|y) = \frac{f_X(x)}{f_Y(y)} f_{Y|X}(y|x),$$

using that the joint PDF can be factorized as

$$f_{X,Y}(x,y) = f_{X|Y}(x|y)f_Y(y) = f_{Y|X}(y|x)f_X(x)$$

The fundamental problem

Choose i ($\hat{s} = s_i$) which maximizes the conditional probabilities

$$\begin{aligned} \max_{i} \left\{ \mathbb{P} \left[\mathsf{S} = \mathsf{s}_{i} \middle| \mathsf{Y} = \mathsf{y} \right] \right\} &\equiv \max_{i} \left\{ \frac{\mathbb{P} \left[\mathsf{S} = \mathsf{s}_{i} \right]}{\mathbb{P} \left[\mathsf{Y} = \mathsf{y} \middle| \mathsf{S} = \mathsf{s}_{i} \right]} \right\} \\ &\equiv \max_{i} \left\{ \mathbb{P} \left[\mathsf{S} = \mathsf{s}_{i} \right] \mathbb{P} \left[\mathsf{Y} = \mathsf{y} \middle| \mathsf{S} = \mathsf{s}_{i} \right] \right\} \\ &\equiv \max_{i} \left\{ \mathbb{P} \left[\mathsf{Y} = \mathsf{y} \middle| \mathsf{S} = \mathsf{s}_{i} \right] \right\}, \end{aligned}$$

where in the last step we assume that the symbols are transmitted with equal probability, i.e., $\mathbb{P}\left[\mathsf{S}=\mathsf{s}_i\right]=\frac{1}{M}$

ML detection

In summary, minimizing the error probability is equivalent to maximizing the conditional probabilities (or PDFs)

$$\max_{i} \{ \mathbb{P} \left[\mathsf{Y} = \mathsf{y} | \mathsf{S} = \mathsf{s}_{i} \right] \},$$

which is called maximum likelihood (ML) detection.

ML for the AWGN channel

For the AWGN channel, the conditional PDF is

$$f_{Y|S}(y|s_i) = \frac{1}{(\pi N_0)^{N/2}} \exp\left(-\frac{||y - s_i||^2}{N_0}\right),$$

and therefore,

$$\max_i \left\{ \mathbb{P}\left[\mathsf{Y} = \mathsf{y} | \mathsf{S} = \mathsf{s}_i \right] \right\} \equiv \min_i \left\{ ||\mathsf{y} - \mathsf{s}_i|| \right\}$$

Does it look familiar?

Does the previous expression look familiar? See L₄

The Matched filter again

The matched filter (correlator) receiver is the optimal choice in two cases:

- Minimizing the error energy (L₂)
- Minimizing the error probability for AWGN channels (ML detection, previous slide)

Maximum a posteriori detection

- For ML detection, we assumed that all the symbols are equally likely
- If they are not, the problem is

$$\max_{i} \left\{ \mathbb{P}\left[\mathsf{S} = \mathsf{s}_{i} \middle| \mathsf{Y} = \mathsf{y} \right] \right\} \equiv \max_{i} \left\{ \mathbb{P}\left[\mathsf{S} = \mathsf{s}_{i} \right] \mathbb{P}\left[\mathsf{Y} = \mathsf{y} \middle| \mathsf{S} = \mathsf{s}_{i} \right] \right\}$$

• This is called **maximum a posteriori** (MAP) detection.

MAP detection for the AWGN channel

• If the channel is AWGN the MAP detection is

$$\begin{split} & \max_{i} \{ \mathbb{P} \left[\mathsf{S} = \mathsf{s}_{i} | \mathsf{Y} = \mathsf{y} \right] \} \\ & \equiv \max_{i} \left\{ \mathbb{P} \left[\mathsf{S} = \mathsf{s}_{i} \right] \frac{1}{(\pi N_{0})^{N/2}} \mathrm{exp} \left(-\frac{||\mathsf{y} - \mathsf{s}_{i}||^{2}}{N_{0}} \right) \right\} \\ & \equiv \max_{i} \left\{ \mathbb{P} \left[\mathsf{S} = \mathsf{s}_{i} \right] \mathrm{exp} \left(-\frac{||\mathsf{y} - \mathsf{s}_{i}||^{2}}{N_{0}} \right) \right\} \\ & \equiv \min \left\{ ||\mathsf{y} - \mathsf{s}_{i}||^{2} - N_{0} \log \mathbb{P} \left[\mathsf{S} = \mathsf{s}_{i} \right] \right\} \end{split}$$

-1.5

-1.5

-0.5

0.5

0

 a_k

8-PSK with equally likely (left) and non equally likely symbols (right)

1.5

-1.5

-1.5

-0.5

0.5

 a_k

1.5

Today's Summary

- Short summary of AWGN
- The MFR minimizes both the error energy and the error probability in AWGN channels
- Minimizing the error probability assuming the transmitted symbols are equally likely is called maximum likelihood (ML) detection
- Minimizing the error probability knowing the transmitted symbol probabilities is called maximum a posteriori (MAP) detection
- The decision regions for ML and MAP are different if the transmitted symbols are not equally likely