

Universidad Simón Bolívar

Departamento de Computación y Estudios Tecnológicos Traductores e Interpretadores

Entrega 3: Análisis de Contexto para BRAINIAC

Autores:

Patricia Wilthew 09-10910 Leopoldo Pimentel 06-40095

Índice

1. Revisión Práctico-Teórica

 $\mathbf{2}$

1. Revisión Práctico-Teórica

- 1. Sea $G1_i$ la gramática recursiva-izquierda ({S}, {a}, {S} \to Sa, S \to \$\epsilon\$ \$\text{S}\$) y sea $G1_d$ la gramática recursiva-derecha ({S}, {a}, {S} \to aS, S \to \$\epsilon\$ \$\text{S}\$). Ambas generan el lenguaje denotado por la expresión regular a*, i.e. el lenguaje L(a*).
 - (a) Muestre que ambas gramáticas son LR(1) y construya sus analizadores sintácticos.
- (b) Compare la eficiencia de ambos analizadores en términos de espacio, i.e. los tama nos de sus tablas y la cantidad de pila utilizada para reconocer cada frase de L(a*), y de tiempo, i.e. cantidad de movimientos realizados por el autómata de pila para reconocer cada frase de L(a*). Nota: Un análisis serio de eficiencia debe hacerse en términos deórdenes de complejidad, e.g. mediante notación O.

Respuestas:

(a) Para $G1_i$

follow(S'): {\$}

follow(S): {a, \$}

El autómata queda así:

La respectiva tabla:

	a	\$	S'	S
I0	r2	r2		1
I1	S2	acepta		
I2	r1	r1		

Para $G1_d$

follow(S'): {\$}

follow(S): {\$}

El autómata queda así:

La respectiva tabla:

	a	\$	S'	S
I0	S2			1
I1		aceptar		
I2		r1		3

He aquí una de las corridas en frío realizadas con el analizador sintáctico para la palabra 'aaa':

Para $G1_i$

Estado	Pila	Acción
aaa\$	0	r2
aaa\$	0	goTo1
aaa\$	1,0	S2
aa\$	2,1,0	r1
aa\$	0	goTo1
aa\$	1,0	S2
a\$	2,1,0	r1
a\$	0	goTo1
a\$	1,0	S2
\$	2,1,0	r1
\$	0	goTo1
\$	1,0	aceptar

Para $G1_d$

Estado	Pila	Acción
aaa\$	0	S2
aa\$	2,0	S2
a\$	2,2,0	S2
\$	2,2,2,0	r2
\$	2,2,2,0	доТо3
\$	3,2,2,2,0	r1
\$	2,2,0	доТо3
\$	3,2,2,0	r1
\$	2,0	доТо3
\$	3,2,0	r1
\$	0	goTo1
\$	1,0	aceptar

(b) En términos de espacio, el tama no de la tabla del analizador $G1_i$ es una columna más grande que la tabla del analizador $G1_d$; además la pila del analizador $G1_i$ nunca superó 3 items y la pila del analizador $G1_d$ llegó a alcanzar hasta dos items más que el número de caracteres de la palabra. Por lo tanto si se trata de espacio es más eficiente $G1_i$.

En términos de tiempo de corrida, $G1_d$ y $G1_i$ demostraron el mismo comportamiento para palabras de tama no peque no y $G1_d$ demostró ser más rapida si se trata de palabras de tama no grande.

2. Sea G2 la gramática ({Instr}, {;, IS}, P, Instr), con P2 compuesto por:

 $\mathsf{Instr} \to \mathsf{Instr} \ ; \ \mathsf{Instr}$

 $Instr \rightarrow IS$

- (a) Muestre que G2 no es una gramática LR(1), intentando construir un analizador sintáctico LR(1) para ella y consiguiendo que tal analizador tendría un conflicto.
- (b) A pesar de que la gramática G2 no es LR(1), se puede construir un analizador sintáctico LR(1) con conflictos para ella (lo cual corresponde a un autómata de pila no determinístico). Construya tal analizador sintáctico, especificando cuál es el conflicto y de qué tipo (i.e. shift-reduce o reduce-reduce) es.
- (c) Considere las dos alternativas de eliminación del conflicto (i.e. en favor del shift o en favor del reduce en caso de un conflicto shift-reduce, o en favor de una producción o de otra en caso de un conflicto reduce-reduce). Muestre, para ambas alternativas de eliminación del conflicto, la secuencia de reconocimiento de la frase IS;IS;IS dando como salida la secuencia de producciones reducidas. ¿A qué corresponde cada una de las alternativas: a asociar el operador de secuenciación hacia la izquierda o hacia la derecha?
- (d) En la Etapa II se concluyó que era indiferente resolver esta ambiguedad hacia la izquierda o hacia la derecha. Compare ahora la eficiencia de ambas alternativas, en términos de la cantidad de pila y del tiempo que se utiliza para reconocer frases de la forma IS $(;IS)^n$ con n un número natural. ¿Cuál alternativa conviene entonces utilizar? Nota: Recuerde que un análisis serio de eficiencia debe hacerse en términos deórdenes de complejidad, e.g. mediante notación O

Respuestas:

- (a) (0) $S' \rightarrow Instr\$$
- (1) $Instr \rightarrow Instr; Instr$
- (2) $Instr \rightarrow IS$

 $follow(S'): \{\$\}$

follow(S): {; \$}

El autómata queda así:

El I4 tiene un conflicto shift-reduce.

(b) Analizador sintáctico:

	;	IS	\$	S'	Instr
I0		S1			2
I1	r2		r2		
I2	S3		aceptar		
I3		S1			4
I4	r1 / S3		r1		

En I4 hay un conflicto shift-reduce con el símbolo ';'

(c) Prevaleciendo reduce

Estado	Pila	Acción
IS;IS;IS\$	0	S1
;IS;IS\$	1,0	r2
;IS;IS\$	0	goTo2
;IS;IS\$	2,0	S3
IS;IS\$	3,2,0	S1
;IS\$	1,3,2,0	r2
;IS\$	3,2,0	goTo4
;IS\$	4,3,2,0	r1
;IS\$	0	goTo2
;IS\$	2,0	S3
IS\$	3,2,0	S1
\$	1,3,2,0	r2
\$	3,2,0	goTo4
\$	4,3,2,0	r1
\$	0	goTo2
\$	2,0	aceptar

Prevaleciendo shift

Estado	Pila	Acción
IS;IS;IS\$	0	S1
;IS;IS\$	1,0	r2
;IS;IS\$	0	goTo2
;IS;IS\$	2,0	S3
IS;IS\$	3,2,0	S1
;IS\$	1,3,2,0	r2
;IS\$	3,2,0	goTo4
;IS\$	4,3,2,0	S3
IS\$	3,4,3,2,0	S1
\$	1,3,4,3,2,0	r2
\$	3,4,3,2,0	goTo4
\$	4,3,4,3,2,0	r1
\$	3,2,0	goTo4
\$	4,3,2,0	r1
\$	0	goTo2
\$	2,0	aceptar

Favor de reduce	Favor de shift
Producciones obtenidas	Producciones obtenidas
$Instr \rightarrow Instr; Instr$	$Instr \rightarrow Instr; Instr$
Instr o IS	$Instr \rightarrow Instr; Instr$
$Instr \rightarrow Instr; Instr$	Instr o IS
$\text{Instr} \to \text{IS}$	Instr o IS
Instr o IS	Instr o IS

A favor del reduce en un caso shift-reduce se asocia a la izquierda. A favor del shift en un caso shift-reduce se asocia a la derecha.

(d) En cuestión de tiempo, como realizan las mismas acciones, es indiferente. Pero en cuestión de espacio utilizado en la pila, la derivación derecha es más eficiente.