Содержание

1	Вве	едение	1
2	Постановка задачи		
	2.1	Описание данных и постановка задачи	2
	2.2	Способ представления агностической неронной сети	2
		2.2.1 WANN №1	3
		2.2.2 WANN Nº2	3
3	Me	грики	3
	3.1	Эталонные метрики	3
	3.2	Структурные метрики	4
	3.3	Методы сравнения метрик	5
4	Ген	етический алгоритм и его модификации	6
	4.1	Общие понятия	6
		4.1.1 WANN 1	7
		4.1.2 WANN 2	7
	4.2	Классический генетический алгоритм	7
	4.3	Детектирование стогнаций с помощью метрики	8
	4.4	Детектирование стогнаций по значению ошибок	8
	4.5	Генетический алгоритм с кластеризацией	Ö

Аннотация

В работе исследуется задача аппроксимации неизвестной зависимости с помощью агностических нейронных сетей. На множестве агностический нейронных сетей вводится структурная метрика. Предлагается ряд эталонных метрик, а так же методы сравнения метрик друг с другом. На искусственно сгенерированных данных производится сравнение метрик указанными способами. Рассматриваются три вариации генетического алгоритма, используемые для генерации агностических нейронных сетей.

Ключевые слова: WANN, структрное обучение, метрика, генетический алгоритм.

1 Введение

Актуальность темы. Во многих прикладных задачах требуется восстановить неизвестную зависимость, содержащуюся в данных. Одну из основных сложностей составляет именно отыскание наилучшей модели.

Цель работы. Ввести структурную метрику на множестве агностических нейронных сетей, предложить модификацию генетического алгоритма для генерации агностических нейронных сетей.

Методы исследования. Весь необходимый для вычислительного эксперимента код был написан на языке Python, в качестве примера были взяты

данные из датасета Boston Housing.

Научная новизна.

- Предложены методы сравнения метрик, заданных на конечных множествах.
- Рассмотрена структурная метрика на множестве агностических нейронных сетей.
- Изучены две модификации классического генетического алгоритма для генерации агностических нейронных сетей.

Практическая ценность. Написан класс агностических нейронных сетей, реализованы модификации генетических алгоритмов.

Обзор литературы. Одним из методов восстановления функциональной зависимости по имеющимся данным является символьная регрессия [1].

2 Постановка задачи

2.1 Описание данных и постановка задачи

Задана пара $(X,y), X \in \mathbb{R}^{n \times m}, y \in \mathbb{R}^{n \times k}$, строки матриц X и y находятся в некоторой неизвестной функциональной зависимости. Задано множество порождающих функций $\mathfrak{G}.\mathfrak{F}_{\mathfrak{G}}$ - множество агностических нейронных сетей, у которых функции активации содержатся в \mathfrak{G} .

Требуется найти оптимальную модель $f: \mathbb{W} \times \mathbb{X} \longrightarrow \mathbb{R}^{n \times k}, f \in \mathfrak{F}_{\mathfrak{G}}, \mathbb{W}$ - множество параметров модели (в случае агностической нейронной сети состоит из одного элемента).

Более формально, если задана функция ошибки $S(y_{pred},y_{true})$, то необходимо найти $f\in\mathfrak{F}_{\mathfrak{G}}$ и $w\in\mathbb{W}$, минимизирующие значение функции S:

$$(f, w) = \arg\min_{(f, w) \in \mathfrak{F}_{\mathfrak{G}} \times \mathbb{W}} S(f^w(x), y)$$

Здесь и далее запись $f^w(x)$ эквивалентна f(w,x).

В качестве функции ошибки используется среднее квадратов регрессионных остатков:

$$S(y_{pred}, y_{true}) = \frac{1}{n} ||y_{pred} - y_{true}||_2^2$$

2.2 Способ представления агностической неронной сети

В данной работе рассмотриваются два способа представления агностических нейронных сетей. В дальнейшем нейросети, представленные первом способом, мы будем для краткости называть WANN №1, нейросети, представленные вторым способом - WANN №2. Если номер не указывается, это означает, что сказанное не зависит от способа представления агностической неронной сети.

2.2.1 WANN №1

Агностическая нейронная сеть в данном подходе представляется n слоями, причем могут быть соединены между собой только нейроны соседних слоев. В каждом слое обязательно присутствует bias. Иными словами, рассматривается неполносвязная сеть прямого распространения, у которой все параметры равны между собой.

2.2.2 WANN №2

У агностической нейронной сети в данном подходе присутствуют только входной и выходной слои. Остальные нейроны могут соединяться между собой в произвольном порядке, единственное требование - в графе конфигураций не должно быть направленных циклов.

3 Метрики

3.1 Эталонные метрики

Напомним основополагающее определение.

Definition 3.1. Метрикой на множестве X называется функция, удовлетворяющая следующим свойствам:

В общем случае эталонной метрикой на множестве X будем называть метрику, котороя постулируется исходя из каких-то эмпирических соображений. Такие метрики нужны для того, чтобы сравнивая с ними другие метрики понимать, насколько последние близки к нашим ожиданиям.

Важно отметить, что для эталонной метрики допустимо невыполнение первого свойства ($\mu(x,y)=0\longleftrightarrow x=y$). В таком случае мы просто считаем, что метрика отождествляет x и y, для нее они неразличимы. Можно еще сказать, что метрика разбивает наше множество на классы эквивалентности и мы отныне работаем только с их представлителями.

Ниже приведен список метрик, которые в данной статье считаются эталонными для множества агностических нейронных сетей:

1)
$$\mu_1(f_1, f_2) = \frac{1}{n|W|} \sum_{w \in W} \sum_{i=1}^n ||f_1^w(x_i) - f_2^w(x_i)||_2$$

2)
$$\mu_2(f_1, f_2) = \max_{w_1, w_2 \in W} \frac{1}{n} \sum_{i=1}^n \|(f_1^{w_1}(x_i) - f_2^{w_2}(x_i))\|_2$$

Здесь $x_i, x_j \in X, X \subset \mathbb{R}^n$ - некоторый конечный набор точек, \mathbb{W} - конечное множество параметров. Заметим, что эти метрики определены для агностических нейронных сетей, чьи входные и выходные размерности совпадают.

Lemma 3.1. Все предложенные функции являются метриками.

Доказательство. Выполнение всех свойств, кроме неравенства треугольника, очевидно. Докажем, что и последнее тоже выполнено.

- 1) Следует из того, что для каждого фиксированного w неравенство выполнено, так как при фиксированном w имеем не что иное как сумму евклидовых норм.
- 2) Пусть максимум для (f_1, f_3) достигается на (w_1', w_2') . Тогда $\sum_{i=1}^n \|(f_1^{w_1'}(x_i) f_2^{w_2'}(x_i))\|_2 \le ($ по свойствам евклидовой метрики $) \le \sum_{i=1}^n \|(f_1^{w_1'}(x_i) f_2^{w_2'}(x_i))\|_2 + \sum_{i=1}^n \|(f_2^{w_1'}(x_i) f_3^{w_2'}(x_i))\|_2 \le \max_{w_1, w_2 \in W} \sum_{i=1}^n \|(f_1^{w_1}(x_i) f_2^{w_2}(x_i))\|_2 + \sum_{i=1}^n \|(f_2^{w_1}(x_i) f_3^{w_2}(x_i))\|_2$

3.2 Структурные метрики

Структурной метрикой мы будем называть метрику, которая определена на множестве агностических нейронных сетей и зависит только от их структуры. Важно подчеркнуть, что, вообще говоря, вводится не метрика, а мера близости, метрикой мы ее будем называть лишь для лаконичности изложения. Из свойств метрики можно гарантировать лишь неотрицательность и симметричность. $\mu(x,y)=0\longleftrightarrow x$ изоморфен y - означало бы решить задачу проверки графов на изоморфизм, принадлежность которой классу P до сих пор не доказана. $\mu(x,y)=0\longleftrightarrow x$ и y ведут себя одинаково, как функции - означало бы решить задачу SAT, которая является NP-полной.

Напомним, что $\mathfrak G$ - множество примитивных функций. Каждой агностической нейронной сети мы поставим в соответствие матрицу размера $(|\mathfrak G|+ar(f))\times |\mathfrak G|$, где ar(f) - арность функции, или, что то же самое, размер входного слоя сети. Строкам соответствуют все функции из $\mathfrak G$, а так же $x_1,...,x_{ar(f)}$, столбцам - только функции из $\mathfrak G$.

В ячейке с координатами (i,j) стоит число, равную количеству направленных ребер в агностической нейронной сети, ведущих из нейрона с функцией активации соответствующей i-ой строке в нейрон с функцией активации, соответвующей j-ому столбцу (определение аналогично для $x_1, ..., x_{ar(f)}$).

Например, пусть нейросеть имеет следующий вид:

Тогда ей соответствует матрица

$$\begin{bmatrix} & sin & cos & exp \\ sin & 0 & 1 & 0 \\ cos & 2 & 0 & 2 \\ exp & 0 & 1 & 0 \\ x_1 & 0 & 1 & 0 \\ x_2 & 0 & 1 & 0 \end{bmatrix}$$

Первый способ измерять расстояние между двумя агностическими нейронными сетями по построенным матрицам - вытягивать матрицы в вектор и брать евклидову норму разности этих двух получившихся векторов.

Второй способ - подавать модуль разности векторов на вход нейронной сети, предварительно обученной предсказывать одну из эталонных метрик.

3.3 Методы сравнения метрик

В данном разделе вводятся три способа сравнения метрик. Неформально говоря, мы хотим, чтобы структурная метрика была в некотором роде близка к эталонной.

Более строго, пусть дано фиксированное конечное множество T (в нашем конкретном случае $T \subset \mathfrak{F}_{\mathfrak{G}}$). Необходимо ввести функцию $\gamma(\mu_1, \mu_2)$, по значению которой можно было бы понять, насколько согласуются между собой метрики на данном множестве.

1 способ. Посчитать обычную корреляцию.

$$corr(\mu_1, \mu_2) = \frac{\overline{\mu_1 \mu_2} - \overline{\mu_1} \cdot \overline{\mu_2}}{(\overline{\mu_1^2} - \overline{\mu_1}^2)(\overline{\mu_2^2} - \overline{\mu_2}^2)}$$

Здесь
$$\overline{\mu_i} = \frac{1}{n(n-1)} \sum\limits_{t_1,t_2 \in T} \mu_i(t_1,t_2)$$

2 способ. $\nu(\mu(f_1,f_2)<\mu(f_1,f_3)\wedge\eta(f_1,f_2)>\eta(f_1,f_3)),\,\nu$ - частота события **3 способ.** Напомним определение эквивалентных метрик.

Definition 3.2. Метрики μ и ν называются эквивалентными, если

$$\exists \alpha, \beta \quad \forall x, y \quad \alpha \nu(x, y) \leq \mu(x, y) \leq \beta \nu(x, y).$$

В дальнейшем, говоря про α и β , мы имеем в виду наибольшее среди всех α , удовлетворяющих данному неравенству, и наименьшее среди всех таких β .

На конечных множествах все метрики эквивалентны. Хотим рассмотреть $g(\alpha,\beta)$, которая, с одной стороны, показывала бы, насколько α и β близки друг к другу (это и определяет меру близости наших метрик), с другой стороны, была бы устойчива к масштабированию метрик (т.е. не менялась бы при умножении метрик на константу). Одной из таких функций является $\frac{\alpha}{\beta}$, ее и будем рассматривать. Две метрики тем ближе, чем ближе значение этой функции к единице.

4 способ. Пусть для множества T заданы матрицы попарных расстояний D_1 , D_2 для метрик μ_1 и μ_2 соответственно. Нормализуем эти матрицы (эквивалентно делению каждого элемента на диаметр множества T), вытянем каждую матрицу в вектор и будем смотреть на евклидово расстояние между этими векторами.

4 Генетический алгоритм и его модификации

4.1 Общие понятия

Напомним, что нашей исходной задачей являлось отыскание пары (f,w), т.ч.

$$(f, w) = \arg\min_{(f, w) \in \mathfrak{F}_{\mathfrak{G}} \times \mathbb{W}} S(f^{w}(x), y)$$

Хотя размерность пространства параметров в агностических нейронных сетях и так снижена до 1, все равно перебор по сетке может занимать слишком много времени. Поэтому мы рассмотрим три подхода к данной проблеме. 1 подход. На каждой итерации генетического алгоритма рассматривается усредненное значение ошибки по разреженной сетке (в данной работе -2, -1, -0.5, 0.5, 1, 2). Таким образом ищется нейросеть, именно структура которой хорошо подходит под решение задачи, а параметр слабо влияет на результат.

2 подход. На каждой итерации генетического алгоритма рассматривается максимальное значение ошибки по разреженной сетке. Цель та же, что и у предыдущего подхода. **3 подход.** На каждой итерации генетического алгоритма рассматривается минимальное значение ошибки по разреженной сетке. Такой подход ближе в первоначальной постановке задачи.

4.1.1 WANN 1

Мутация. Операция мутации производит 3 возможных действия:

- Удаляет случайно выбранный слой, соседние с ним слои соединяет между собой произвольным образом.
- Заменяет случайно выбранный слой на новый, соединяет с соседними слоями произвольным образом.
- В случайное место добавляет новый сгенерированный слой, соединяет с соседними слоями произвольным образом.

Скрещиванье. Операция скрещиванья:

- 1. Случайным образом выбирает в первой сети и второй сети по одному слою.
- 2. Все слои, которые шли в первой сети после выбранного в ней слоя, заменяет на слои второй сети, начиная с выбранного.

В следующем примере продемонстрирована работа алгоритма скрещиванья:

$$L_1^1L_2^1...L_k^1...L_s^1,\ L_1^2L_2^2...L_m^2...L_r^2 \longrightarrow L_1^1...L_k^1L_m^2...L_r^2$$

Здесь L_i^j - i-й слой j-й нейросети.

4.1.2 WANN 2

Мутация. Операция мутации производит 3 возможных действия:

- Добавляет новое ребро.
- Добавляет новый нейрон на уже существующее ребро.
- Изменяет функцию активации у уже существующего нейрона.

Скрещиванье. Отсутствует.

4.2 Классический генетический алгоритм

В классической вариации генетического алгоритма ведется ненаправленный поиск оптимальной структуры нейросети с помощью применения к популяции описанных ранее операциях скрещивания и мутации.

```
Result: WANN
generate_population();
while error > ε or iteration < max_iterations do

mutate();
crossover();
//for WANN №1;
select();
end
return population[0];
Algorithm 1: Классический генетический алгоритм
```

4.3 Детектирование стогнаций с помощью метрики

В статье Кулунчакова предложено детектировать стогнации в работе генетического алгоритма с помощью метрики: если диаметр популяции (как множества) не превосходит некоторого ε , то мы считаем, что алгоритм застогнировался и меняем половину худших деревьев в популяции на совершенно случайные.

```
Result: WANN generate_population(); while error > \varepsilon or iteration < max_iterations do \mid \text{mutate}(); crossover(); \mid //\text{for WANN N} \cdot 1; select(); if diam(population) \le \delta then \mid \text{for } wann \text{ in } population[\frac{n}{2}:] do \mid \text{regenerate}(\text{wann}); end end return population[0];
```

Algorithm 2: Генетический алгоритм с детектированием стогнаций с помощью метрики

4.4 Детектирование стогнаций по значению ошибок

Если лучшее значение ошибки в популяции перестает существенно меняться, то мы считаем это стогнацией и действуем аналогично предыдущему пункту, т.е. заменяем половину худших деревьев в популяции на совершенно случайные.

Algorithm 3: Генетический алгоритм с детектированием стогнаций по значению ошибки

4.5 Генетический алгоритм с кластеризацией

В этой вариации генетического алгоритма, если ошибка перестает изменяться, то множество нейросетей в популяции кластеризуется по структурной метрике, а потом в каждом кластере все нейросети, кроме той, у которой ошибка среди них минимальна, заменяются на заново сгенерированные. Тем самым мы избавляемся от похожих нейросетей в популяции.

```
Result: WANN
generate population();
while error > \varepsilon or iteration < max\_iterations do
    mutate();
    crossover();
    //for WANN №1;
    select();
    if \frac{error[iteration-l]}{error[iteration]} \ge \delta then
        clusters := cluster(population);
        for cluster in clusters do
            for wann in cluster \setminus \{best \ in \ cluster\}\ do
              wann.regenerate();
            end
        end
    end
end
return population[0];
```

Algorithm 4: Генетический алгоритм с кластеризацией