История развития искусственного интеллекта. Интерактивный курс

Урок 31

Искусственные нейронные сети

Развитие, архитектуры, способы обучения

Входные нейроны

Выходные нейроны

Пример нейросети глубинного обучения

Этапы работы с нейронными сетями

- Подготовка данных и обучение нейронной сети
- Решение задачи

Решаемые задачи

- 1. Классификация или распознавание образов
- 2. Кластеризация
- 3. Аппроксимация
- 4. Прогнозирование
- 5. Сжатие данных
- 6. Анализ данных
- 7. Оптимизация

Два способа обучения нейронной сети

Обучение с учителем

Обучение без учителя

Обучение с учителем

Демонстрация нейронной сети множества примеров типа «стимул — реакция»

Обучение без учителя

Нейронная сеть самостоятельно обучается решать поставленную задачу без вмешательства извне

Два метода настройки весовых коэффициентов нейросети

Метод коррекции ошибки

Метод коррекции ошибки

Фрэнк Розенблатт

Вес связей в перцептроне не изменяется до тех пор, пока текущая реакция перцептрона остается правильной

$$E = \frac{1}{2} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

- \hat{y}_i ответ і-го нейрона
- у_i истинное значение

Этапы решаемых задач

- 1. Сбор данных для обучения
- 2. Подготовка и нормализация данных
- 3. Выбор архитектуры нейросети
- 4. Экспериментальный подбор характеристик нейросети

- 5. Экспериментальный подбор параметров обучения
- 6. Обучение
- 7. Проверка адекватности обучения
- 8. Корректировка параметров и окончательное обучение
- 9. Вербализация нейросети

Сбор данных для обучения

Данные должны быть репрезентативны и непротиворечивы

Нормализация данных

Данные должны иметь одинаковую размерность

Выбор архитектуры нейросети

- 1. Обучение с учителем ⇒ многослойный перцептрон
- 2. Обучение без учителя ⇒ сеть Хопфилда или карта Кохонена

Подбор характеристик нейросети

Подбор параметров обучения

Обучение нейронной сети

Проблемы при обучении:

- 1. Паралич сети
- 2. Залипание в локальном экстремуме
- 3. Переобучение

Тестирование качества обучения

Проверка качества обучения проводится на примерах, которые не участвовали в обучении

На следующем занятии:

- Эволюционные алгоритмы
- Генетические алгоритмы
- Нейроэволюция

Оставайтесь с нами

До новых встреч

