2025 MX 暑期模拟赛 - ZJ

考试时间: 2025.07.27 8:00~12:30, 共 4.5 个小时,请选手注意时间安排。

题目名称	括号计数	不降序列	最优方案	排序计数
题目类型	传统型	传统型	传统型	传统型
目录	bracket	sequence	plan	sort
可执行文件名	bracket	sequence	plan	sort
输入文件名	bracket.in	sequence.in	plan.in	sort.in
输出文件名	bracket.out	sequence.out	plan.out	sort.out
每个测试点时限	1S	1S	1S	1S
内存限制	512MB	512MB	512MB	512MB
测试点数目	10	10	20	10
测试点是否等分	是	是	是	是

请选手注意赛时机器与评测时机器的环境差异,因环境差异造成的问题,由选手自己承担。

提交格式同 CCF 系列赛事,请选手注意代码存放位置。

编译选项: -std=c++14 -O2 -static。

括号计数 (bracket)

题目描述

有四种括号:圆括号()、方括号[]、花括号{}、尖括号<>。

我们称一个括号序列 A 是合法的, 当且仅当:

- *A* 是空的;
- A=pBq, 其中 B 是合法的括号序列,且 p,q 是同类型匹配的一对括号(p 是左括号,q 是右括号);
- A = BC, 其中 B, C 均是合法的括号序列。

现在 A_zjzj 有一个合法的括号序列,但是你只知道其中一些位置是什么,其余位置用?代替,你需要求出 A_zjzj 的合法括号序列有多少种可能。

输入格式

一行一个非空字符串S。

输出格式

一行一个整数表示答案。

样例

样例输入#1

1 ??

样例输出#1

1 4

样例解释#1

1 (),[],{},<>

样例输入#2

1 | ???) (?

样例输出#2

1 |8

样例解释#2

	1 / / / / / /				
1	()()()				
2	[]()()				
3	{}()()				
4	<>()()				
5	(())()				
6	([])()				
7	({})()				
8	(<>) ()				
	-				

数据范围

测试点编号	$ S \leq$	特殊性质
$1\sim 2$	4	无
$3\sim 4$	8	无
5	12	无
6	16	无
$7\sim 9$	20	A
10	30	 无

• 特殊性质 A: S中?的个数不超过7。

对于 100% 的数据, $1 \leq |S| \leq 30$,且S 仅由()[]{}<>?组成。

不降序列 (sequence)

题目描述

 A_z izi 有一个**实数**序列 a_1, a_2, \cdots, a_n ,你不知道每个 a_i 的值,但你知道每个 a_i 只会在 $[l_i, r_i]$ 中。请你求出, A_z izi 的这个序列**可能的**最长不降连续子序列。

输入格式

第一行一个正整数 n。

接下来n行,第i行两个整数 l_i,r_i 。

输出格式

一行一个整数表示答案。

样例

样例输入#1

```
1
5

2
-2

3
-3

4
-3

5
2

3
-2
```

样例输出#1

1 | 4

样例解释#1

1 | a=[-1.145, -0.14, 0.1, 2.4514, -1.14514]

样例#2

见下发文件 sequence/ex_sequence2.in、sequence/ex_sequence2.ans。

该样例满足 $n \le 500$, $-10 \le l_i \le r_i \le 10$ 。

数据范围

对于 10% 的数据, $n \leq 10$;

对于 30% 的数据, $n \leq 500$;

对于 40% 的数据, $n \leq 5 \times 10^3$;

对于另外 20% 的数据, $l_i=r_i$;

对于另外 20% 的数据, $-10 \le l_i \le r_i \le 10$;

对于 100% 的数据, $1 \le n \le 10^6$, $-10^9 \le l_i \le r_i \le 10^9$ 。

最优方案 (plan)

题目描述

A_zjzj 给你一棵 n 个节点的有根内向树(除了根每个点都有恰好一条出边的树),编号为 $1\sim n$,其中 1 为根。

同时,这棵树每个节点上都有一些人,其中节点i上有 a_i 个人。

初始,所有的边都是蓝色的,你可以将一个蓝色路径变换成一条红色的边。形式化地,当你选择 $k(k \geq 2)$ 个点 b_1, b_2, \dots, b_k 时,若对于每个 $i = 1, 2, \dots, k-1$,均满足存在一条 $b_{i+1} \rightarrow b_i$ 的颜色为**蓝色**的边,那么你可以删掉这 k-1 条边,加入一条**红色**的从 b_k 连向 b_1 的边。

你可以进行任意次上述操作(也可以什么都不做),那么你最后的**连接数**为满足如下条件的 (A,B) 对数:

- A, B 是两个人, 且处于不同的节点;
- A 能够通过若干条边走到 B 所在的节点。

由于疫情,A_zjzj 希望你找到一个最优方案使得连接数最小,输出这个最小的连接数。

输入格式

第一行一个正整数 n。

接下来一行 n-1 个正整数 p_2,p_3,\cdots,p_n ,其中 p_i 表示 i 在树上的父亲。**注意所有的边都是有向边。** 接下来一行 n 个整数 a_1,a_2,\cdots,a_n , a_i 表示节点 i 上的人数。

输出格式

一行一个整数表示最小的连接数。

样例

样例输入#1

```
1 5 2 1 1 3 1 3 1 3 1 4 5 2
```

样例输出#1

1 | 8

样例解释#1

第一次操作的b序列为[1,3,4]。

最后剩下的边有: 蓝边 $1 \rightarrow 2, 1 \rightarrow 5$, 红边 $1 \rightarrow 4$ 。

连接数为 $a_1a_2 + a_1a_5 + a_1a_4 = 8$ 。

样例#2

见下发文件 plan/ex_plan2.in、plan/ex_plan2.ans。

该样例满足 $n \leq 100$ 。

样例#3

见下发文件 plan/ex_plan3.in、plan/ex_plan3.ans。

该样例满足 $n \leq 5 \times 10^3$ 。

数据范围

测试点编号	$n \leq$	特殊性质
$1\sim 2$	5	无
$3\sim 4$	10	无
5	100	无
$6\sim7$	100	A
$8\sim 9$	500	无
10	500	A
$11\sim13$	$5 imes10^3$	无
$14\sim15$	$5 imes10^3$	A
16	$2 imes10^5$	В
17	$2 imes10^5$	С
$18\sim20$	$2 imes10^5$	无

- 特殊性质 A: 树上至多只有 10 个节点拥有不少于 2 个儿子。
- 特殊性质 B: $p_i = 1$;
- 特殊性质 $C: p_i = i 1$ 。

对于 100% 的数据, $2 \le n \le 2 \times 10^5$, $1 \le a_i \le 10^6$, $1 \le p_i \le n$,保证输入的是一棵合法的树。

排序求值(sort)

题目描述

给定正整数 n, 将 $1 \sim n$ 按照字典序 (无前导零) 排序, 第 i 个元素为 a_i , 求如下式子:

$$\left(\sum_{i=1}^n (i-a_i) \bmod 998244353\right) \bmod (10^9+7)$$

输入格式

一行一个正整数n。

输出格式

一行一个整数表示答案。

样例

样例输入1

1 | 3

样例输出1

1 0

样例输入2

1 | 11

样例输出2

1 996488699

样例输入3

1 100000000

样例输出3

1 919815479

数据范围与提示

共10个子任务,对于第i个子任务, $n < 10^{5+i}$ 。

对于 100% 的数据, $1 \le n < 10^{15}$ 。