

- A traveling disturbance
- Carries energy from place to place
- When a boat makes a wave,
 - the water itself does not get up and move
 - the water pushes a little, then moves back
 - energy is transferred in the wave and is what you feel

- Transverse
 - Up and down disturbance
 - Wave travels left or right
 - Disturbance is perpendicular to direction of travel
 - Examples:
 - Radio waves, light waves, microwaves, stringed instruments

- Longitudinal Waves
 - Disturbance is left and right
 - Direction of travel is left or right
 - Disturbance and direction of travel are parallel
 - Series of compressed and stretched regions
 - Example:
 - Sound

- Other
 - Water waves are a combination
 - Water at the surface of a water wave travels in small circles

- Periodic → pattern is regularly repeated
- Cycle → one unit of pattern

- Wavelength $(\lambda) \rightarrow$ Distance of one cycle
- Amplitude (A) → height from equilibrium to crest

(b) At a particular location

- Period $(T) \rightarrow$ time it takes for one cycle
 - Unit: s
- Frequency (f) \rightarrow # of cycles per second
 - Unit: 1/s = 1 hertz (Hz)

•
$$f = \frac{1}{T}$$

•
$$v = \frac{\lambda}{T} = f \cdot \lambda$$

• WAUS operates at a frequency of 90.7 MHz. These waves travel at 2.99 \times 10⁸ m/s. What is the wavelength and period of these radio waves?

- $\lambda = 3.30 \text{ m}$
- T = 1.10×10^{-8} s

• You are sitting on the beach and notice that a duck floating on the water moves up and down 15 times in 1 minute. What is the frequency of the water waves?

•
$$f = 0.25 \text{ Hz}$$

