17.4 变换群与置换群

- 变换群
 - 变换群的定义
 - 变换群的实例
- n元置换群
 - 置换的表示
 - 置换的乘法和求逆运算
 - 置换群中元素的阶与子群
 - 置换群的实例

变换群

■ 变换群的定义

A 上的变换: $f:A \rightarrow A$

A 上的一一变换: 双射 $f:A \rightarrow A$

A 上的一一变换群: $E(A)=\{f|f:A\rightarrow A\}$ 为双射}

关于变换合成构成群

A 上的变换群G: $G \subseteq E(A)$

实例:

G 为群, $a \in G$,令 $f_a: G \to G$, $f_a(x) = ax$,则 f_a 为一一变换.

 $H=\{f_a \mid a \in G\}$ 关于变换乘法构成G 上的变换群.

 $H \leq E(G)$

变

变换群的实例

例如 $G=\{e, a, b, c\}$, $f_e=\{\langle e, e \rangle, \langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle\}$ $f_a=\{\langle e, a \rangle, \langle a, e \rangle, \langle b, c \rangle, \langle c, b \rangle\}$ $f_b=\{\langle e, b \rangle, \langle a, c \rangle, \langle b, e \rangle, \langle c, a \rangle\}$ $f_c=\{\langle e, c \rangle, \langle a, b \rangle, \langle b, a \rangle, \langle c, e \rangle\}$ $H=\{f_e, f_a, f_b, f_c\}$

思考: 怎样证明H 同构于G

与独异点的表示定理进行比较

n元置换的表示

A 上的n 元置换: |A| = n 时A 上的一一变换

表示法

置换的表示法: $\Diamond A = \{1, 2, ..., n\},$

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}$$

如: 集合 $S = \{a,b,c,d\}$,将a映射到b,b映射到d,c映射到a,d 映射到c.这个置换可以表示为

$$\sigma = \begin{pmatrix} a & b & c & d \\ b & d & a & c \end{pmatrix}$$

k阶轮换

■ 定义 设 σ 是S={1,2,...,n}上的n元置换。若

$$\sigma(i_1)=i_2, \sigma(i_2)=i_3,...,\sigma(i_{k-1})=i_k, \sigma(i_k)=i_1$$

且保持S中的其他元素对应关系不变,则称 σ 为S上的k阶轮换,记作($i_1i_2...i_k$).

■ 存在性: 对于任何S上的n元置换 σ 一定存在着一个有限序列 $i_1,i_2,...,i_k,k\geq 1$,使得

$$\sigma(i_1)=i_2, \sigma(i_2)=i_3, \dots, \sigma(i_{k-1})=i_k, \sigma(i_k)=i_1$$

■ 不相交: 设 $\sigma(i_1i_2...i_k)$ 和 $\tau(j_1j_2...j_s)$ 是两个轮换,若 $\{i_1i_2...i_k\} \cap \{i_1i_2...i_k\} = \emptyset$,则称 σ 和 τ 是不相交的.

不交轮换的分解式

- $\phi_{\sigma_1} = (i_1 i_2 ... i_k)$,它是从 σ 中分解出来的第一个轮换.
- 根据函数的复合定义可将 σ 写作 $\sigma_1\sigma'$,其中 σ' 作用于 S- $\{i_1,i_2,...,i_k\}$ 上的元素。
- 继续对 σ '进行类似的分解。由于S中只有n个元素,经过有限步以后,必得到 σ 的轮换分解式 $\sigma = \sigma_1 \sigma_2 ... \sigma_t$
- 在上述分解中,任何两个轮换都是不交的.即 任何n元置换都可以表示成不交的轮换之积。

n元置换的分解式(举例)

例如5元置换

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \qquad \tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$$

分别是4阶和2阶轮换

 $\sigma = (1234), \tau = (13), 其中 \tau 也叫做对换。$

n元置换的对换分解方法

■ 设 $S=\{1,2,...,n\}, \sigma=(i_1i_2...i_k)$ 是S上的k阶轮换,那么 σ 可以进一步表成对换之积,即 $(i_1i_2...i_k)=(i_1i_k)...(i_1i_3)(i_1i_2)$

回顾关于n元置换的轮换表示,任何n元置换都可以唯一地表示成不相交的轮换之积,而任何轮换 又可以进一步表示成对换之积,所以任何n元置 换都可以表成对换之积。

举例

例 设*S*={1,2,...,8},

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 3 & 6 & 4 & 2 & 1 & 8 & 7 \end{pmatrix} \quad \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 1 & 4 & 2 & 6 & 7 & 5 & 3 \end{pmatrix}$$

是8元置换。

解 两个置换的分解式为

$$\sigma = (1 \ 5 \ 2 \ 3 \ 6)(4)(7 \ 8)$$

$$\tau = (1 \ 8 \ 3 \ 4 \ 2)(5 \ 6 \ 7)$$

其对换表示式分别为

$$\sigma = (1 \ 5 \ 2 \ 3 \ 6)(7 \ 8) = (1 \ 6)(1 \ 3)(1 \ 2)(1 \ 5)(7 \ 8)$$

$$\tau = (1 \ 8 \ 3 \ 4 \ 2)(5 \ 6 \ 7) = (1 \ 2)(1 \ 4)(1 \ 3)(1 \ 8)(5 \ 7)(5 \ 6)$$

n元置换的轮换表示

定理1 任何n 元置换都可以表成不交的轮换之积,并且表法是唯一的. 即:

$$\sigma = \sigma_1 \sigma_2 \cdots \sigma_t, \sigma = \tau_1 \tau_2 \cdots \tau_1 \Longrightarrow \{\sigma_1 \sigma_2 \cdots \sigma_t\} = \{\tau_1 \tau_2 \cdots \tau_1\}$$

证明思路:

(1) σ可以表成不交的轮换之积. 归纳证明.

(2) 唯一性. 假设
$$\sigma = \sigma_1 \sigma_2 \cdots \sigma_t$$
, $\sigma = \tau_1 \tau_2 \cdots \tau_1$

任取
$$\sigma_{j} \in X$$
, $\sigma_{j} = \{i_{1}i_{2}\cdots i_{m}\}$, $m > 1$,

证明 $\exists \tau_s$ 使得 , ϕ 从而 $X \subseteq Y$. 同理 $Y \subseteq X$.

n元置换的轮换指数

轮换指数: $1^{C_1(\sigma)} 1^{C_2(\sigma)} ... 1^{C_n(\sigma)}$

 $C_k(\sigma)$: k-轮换的个数

指数为 $1^32^13^14^05^06^07^08^0 = 1^32^13^1$

轮换指数的性质

不同指数的个数是如下方程的非负整数解的个数

$$x_1 + 2x_2 + \ldots + nx_n = n$$

例如:

A={1,2,3}上的置换 (1),(1 2),(1 3),(2 3),(1 2 3),(1 3 2)

轮换指数为 1^3 : σ_1 ; 1^12^1 : $\sigma_2,\sigma_3,\sigma_4$; 3^1 : σ_5,σ_6

不同指数的个数为3,

 $x_1 + 2x_2 + 3x_3 = 3$ 的非负整数解个数为3.

n元置换的对换表示

■ 任意轮换都可以表成对换之积:

对换可以有交,且表法不唯一,

但是对换个数的奇偶性不变

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 2 & 3 & 8 & 7 & 6 & 1 & 4 \end{pmatrix} = (1 5 7)(4 8)$$

$$= (1 7)(1 5)(4 8) = (5 7)(1 7)(4 8)$$

■ 奇置换、偶置换:

奇置换:表成奇数个对换之积

偶置换:表成偶数个对换之积

■ 奇置换与偶置换之间存在一一对应,因此各有n!/2 个

置换的乘法与求逆

■ 置换的乘法: 函数的合成

如:8元置换
$$\sigma$$
=(132)(5648), τ =(18246573),则 $\sigma\tau$ = (1)(28734) (5)(6) =(28734)

- 置換求逆: 求反函数 $\sigma=(132)(5648)$, $\sigma^{-1}=(8465)(231)$,
- $\Diamond S_n$ 为 $\{1,2,...,n\}$ 上所有n 元置换的集合. S_n 关于置换乘法构成群,称为n元对称群. S_n 的子群称为n元置换群.
- 例 3 元对称群 S₃={(1),(12),(13),(23),(123),(132)} 3 元交代群 A₃={(1),(123),(132)}

置换群中元素的阶与子群

元素的阶

k 阶轮换 $(i_1 i_2...i_k)$ 的阶为k

$$\sigma = \tau_1 \tau_2 \cdots \tau_r$$
 是不交轮换的分解式,则

$$|\sigma| = [|\tau_1|, |\tau_2|, \cdots, |\tau_l|]$$

子群

$$\{(1)\}, S_n, n$$
 元交代群 A_n <(12)>(

例如 S_3 的子群有6个

$$A_3 = <(123)>$$

置换群的实例

Cayley 定理 每个群G都与一个变换群同构. 推论 每个有限群都与一个置换群同构 D_4 , 4×4 的方格图形,在空间旋转、翻转.

4	3
1	2

$$D_4$$
={ (1), (1234), (13)(24), (1432), (12)(34), (14)(23), (13)(2)(4), (24)(1)(3) } $D_4 \le S_4$

17.5 群的分解

- 陪集及其性质
- Lagrange定理
- Lagrange定理的应用
- 共轭关系与共轭类
- 群的分类方程

陪集定义及其实例

```
陪集定义 G 为群, H \leq G, a \in G,
  右陪集 Ha = \{ ha \mid h \in H \}
  Ha 中的a 称为该陪集的代表元素
实例:
  S_3, H=\{ (1), (12)\}, H(1)=H(12)
  H(13) = H(123) = \{(13), (123)\}
  H(23)=H(132)=\{(23),(132)\}
V = \langle Z_6, +_6 \rangle, H = \{0, 2, 4\}
H0=H2=H4=H
H1=H3=H5={1,3,5}
```

陪集的性质

- 定理 G 为群,H 是G 的子群,则
 - (1) He=H; (2) $a \in Ha$; (3) $Ha \approx H$;
 - $(4) b \in Ha \Leftrightarrow Ha = Hb \Leftrightarrow ba^{-1} \in H$
 - (5) 在G 上定义二元关系R, $aRb \Leftrightarrow ba^{-1} \in H$,则R 为等价关系,且 $[a]_R = Ha$
 - (6) a,b∈G, Ha∩Hb= \emptyset $\vec{y}Ha$ =Hb, $\cup Ha$ =G
- 说明 定义左陪集 $aH = \{ah \mid h \in H\}$ 性质类似 $b \in aH \Leftrightarrow aH = bH \Leftrightarrow a^{-1}b \in H$

陪集性质的证明

 $(4) b = Ha \Leftrightarrow Ha = Hb$

证必要性. $b \in Ha \Leftrightarrow b=h'a \Leftrightarrow a=h'^{-1}b$ $ha \in Ha \Rightarrow ha=h'^{-1}hb \in Hb$ $hb \in Hb \Rightarrow hb=hh'a \in Ha$ 充分性略.

(5) R是等价关系, Ha=[a]

证 $b \in [a] \Leftrightarrow aRb \Leftrightarrow ab^{-1} \in H$

 \Leftrightarrow $Ha=Hb \Leftrightarrow b \in Ha$

右陪集

左陪集

H的右陪集定义,即

$$Ha = \{ha|h \in H\}, a \in G$$

右陪集的性质:

$$1.He=H$$

$$2.\forall a \in G, a \in Ha$$

$$3. \forall a,b \in G, b \in Ha \Leftrightarrow ba^{-1} \in H$$

$$\Leftrightarrow Ha = Hb$$

4.若在G上定义二元关系R,

$$\forall a,b \in G, \langle a,b \rangle \in R \Leftrightarrow ba^{-1} \in H$$

则R是G上的等价关系,

且
$$[a]_{\mathbb{R}}=Ha$$
。

$$5. \forall a \in G, H \approx Ha$$
.

H的左陪集定义,即

$$aH = \{ah | h \in H\}, a \in G$$

左陪集的性质:

$$1.eH=H$$

$$2.\forall a \in G, a \in aH$$

$$3. \forall a,b \in G, b \in aH \Leftrightarrow a^{-1}b \in H$$

$$\Leftrightarrow aH = bH$$

4.若在G上定义二元关系R,

$$\forall a,b \in G, \langle a,b \rangle \in R \Leftrightarrow a^{-1}b \in H$$

则R是G上的等价关系,

且
$$[a]_R = aH$$
。

$$5. \forall a \in G, H \approx aH$$
.

Lagrange定理的引理

引理 H的左陪集数和右陪集数相等。

【分析】令 $S=\{Hx|x\in G\},T=\{xH|x\in G\},$ 只需证明S \approx T.

步骤: (1) 构造函数 $f: T \rightarrow S, f(Ha) = a^{-1}H,$

(2) f 的良定义性(单射性)

 $Ha=Hb \Leftrightarrow ab^{-1} \in H \Leftrightarrow (a^{-1})^{-1}b^{-1} \in H$

 $\Leftrightarrow a^{-1}H=b^{-1}H \Leftrightarrow f(Ha)=f(Hb)$

(3) f 的双射性.

注意: H 在G 中的指数[G:H]=|S|=|T|

H在G中的右(或者左)陪集数

Lagrange定理及其推论

lagrange 定理: |G| = |H| [G:H]

证明: 令G 的不同的陪集为 $Ha_1, Ha_2, ..., Ha_r$

$$|G| = |Ha_1| + |Ha_2| + ... + |Ha_r| = |H| r = |H| [G:H]$$

说明:适用于有限群,逆不一定为真.

推论

(1) 群的元素的阶是群的阶的因子.

证明: $\forall a \in G, \langle a \rangle$ 是G的子群,且 $|\langle a \rangle| = |a|$.

(2) 素数阶群一定是循环群.

证明: |G| = p, p > 1, 存在非单位元a,

|a| 的阶是p 的因子,只能是 |a|=p.

故G=<a>.

Lagrange定理的应用

- 例1 6阶群必含3 阶元.
 - 证 由拉格朗日定理可知元素只能是1阶、2阶、3阶或6阶元。
 - 1) 若存在a, |a|=6, 则 a^2 为3 阶元.
 - 2) 假若没有6 阶元.假设没有3阶元,则 $\forall a \in G$, $a^2 = e$, 则G为Abel群。取G中两个不同的2阶元a和b,令 $H=\{a,b,ab,e\}$,则H是子群,但|H|=4,

|G|=6,与Lagrange 定理矛盾.

故一定存在3阶元。

Lagrange定理的应用(续)

例26阶群在同构意义上只有2个.

证明思路:

若G含6 阶元,是循环群.

若不含6 阶元,则含3 阶元a,

取 $c \notin \{e, a, a^2\}$,则 c, ac, a^2c 两两不等(消去律).

可以证明 $G = \{e, a, a^2, c, ac, a^2c\}$ 同构于 S_3 .

先考察c, ca, ac, 证明都是2阶元

构造运算表

推广

p是质数,2p 阶群在同构意义下只有2个.

如10 阶群只有2个,4 阶群只有2个: 循环群和Klein四元群.

Lagrange定理的应用(续)

例3证明6阶可交换群是循环群。

思路: 寻找其生成元, 即G=<a>, |a|=|G|=6。

证明 设<G,*>是6阶可交换群,由例题1可知,存在 $a \in G$,且|a|=3。

因为<G,*>是偶数阶群,所以G中必存在2阶元,

设2阶元为b, |b|=2。

因为2和3互质,且a*b=b*a,

所以|a*b|=6,且G=<a*b>,即<G,*>是循环群。

Lagrange定理的应用(续)

例4 证明阶小于6的群都是阿贝尔群。

证明 1阶群是平凡的,显然是阿贝尔群。

2阶,3阶和5阶群都是素数阶群,由拉格朗日定理的推论2可知都是循环群,也是阿贝尔群。

设G是4阶群,则G可能含有1阶,2阶或4阶元。

若G中含有4阶元a,则 $G=\langle a\rangle$,G是阿贝尔群。

若G中不含4阶元,G中只含1阶和2阶元。

即 $\forall x \in G$, $x^2=e$ 。则< G,*>也是阿贝尔群。

共轭关系与共轭类

■ 定义 设G 为群,定义G 上二元关系R,

 $aRb \Leftrightarrow \exists x(x \in G, b=x^{-1}ax)$

称R 为G 上的共轭关系

可以证明共轭关系是G 上等价关系,等价类为共轭类

- 共轭类的性质:
 - $a \in C \Leftrightarrow \bar{a} = \{a\}$,C是G的中心
 - $|\bar{a}| = [G:N(a)]$, 其中

a的正规化子: $N(a)=\{x \mid x \in G, xa=ax\}$ 是G的子群

证明见教材

群的分类方程

群的分类方程

```
G 为群,C 为中心,G 中至少含两个元素的
共轭类有k个,a_1, a_2, ..., a_k为代表元素,则
|G| = |C| + [G:N(a_1)] + [G:N(a_2)] + ... + [G:N(a_k)]
证明: |C|=l, C=\{a_{k+1}, a_{k+2}, ..., a_{k+l}\}
      a_{k+p} = \{a_{k+p}\}, p = 1, 2, \dots, l
G = a_1 \cup a_2 \cup \cdots \cup a_k \cup \{a_{k+1}\} \cup \{a_{k+2}\} \cup \cdots \cup \{a_{k+l}\}
|G|=[G:N(a_1)]+[G:N(a_2)]+...+[G:N(a_k)]+|C|
注意: N(a_i) < G,
```

群分类方程的应用

例3 $|G|=p^s, p$ 为素数,则p||C|. 证明 $|G| = |C| + [G:N(a_1)] + [G:N(a_2)] + ... + [G:N(a_k)]$ 对于i=1,2,...,k, $[G:N(a_i)]$ 是|G|的因子, $|G|=p^s$ $[G:N(a_i)] = p^t$ 或者 $[G:N(a_i)] = 1$ $[G:N(a_i)]=1\Rightarrow \bar{a}_i=\{a_i\}\Rightarrow a_i\in C$,矛盾 $p \mid [G:N(a_i)] \Rightarrow p \mid |C|$

作业

- 复习要点 陪集定义 陪集有哪些性质? Lagrange定理及其推论的内容 Lagrange定理的应用 与共轭关系相关的有哪些结果? 了解群分类方程
- 书面作业: 习题十七,27,30,32.