

Basic key exchange

Trusted 3rd parties

Key management

Problem: n users. Storing mutual secret keys is difficult

Total: O(n) keys per user

A better solution

Online Trusted 3rd Party (TTP)

Generating keys: a toy protocol

Alice wants a shared key with Bob. Eavesdropping security only.

Generating keys: a toy protocol

Alice wants a shared key with Bob. Eavesdropping security only.

```
Eavesdropper sees: E(k_A, "A, B" | k_{AB}); E(k_B, "A, B" | k_{AB})
```

(E,D) is CPA-secure \Rightarrow

eavesdropper learns nothing about k_{AB}

Note: TTP needed for every key exchange, knows all session keys.

(basis of Kerberos system)

Toy protocol: insecure against active attacks

Example: insecure against replay attacks

Attacker records session between Alice and merchant Bob

For example a book order

Attacker replays session to Bob

Bob thinks Alice is ordering another copy of book

Key question

Can we generate shared keys without an **online** trusted 3rd party?

Answer: yes!

Starting point of public-key cryptography:

• Merkle (1974), Diffie-Hellman (1976), RSA (1977)

More recently: ID-based enc. (BF 2001), Functional enc. (BSW 2011)

End of Segment

Basic key exchange

Merkle Puzzles

Key exchange without an online TTP?

Goal: Alice and Bob want shared key, unknown to eavesdropper

For now: security against eavesdropping only (no tampering)

Can this be done using generic symmetric crypto?

Merkle Puzzles (1974)

Answer: yes, but very inefficient

Main tool: puzzles

- Problems that can be solved with some effort
- Example: E(k,m) a symmetric cipher with $k \in \{0,1\}^{128}$
 - puzzle(P) = E(P, "message") where $P = 0^{96} \text{II } b_1 \dots b_{32}$
 - Goal: find P by trying all 2³² possibilities

Merkle puzzles

Alice: prepare 2³² puzzles

- For i=1, ..., 2^{32} choose random $P_i \subseteq \{0,1\}^{32}$ and $x_i, k_i \subseteq \{0,1\}^{128}$ set puzzle_i \leftarrow $E(0^{96} \parallel P_i, \text{"Puzzle # } x_i \text{" } \parallel k_i \text{ })$
- Send puzzle₁, ..., puzzle₂ to Bob

<u>Bob</u>: choose a random puzzle_j and solve it. Obtain (x_j, k_j) .

Send x_i to Alice

<u>Alice</u>: lookup puzzle with number x_i . Use k_i as shared secret

In a figure

Alice's work: O(n)

Bob's work: O(n)

(prepare n puzzles)

(solve one puzzle)

Eavesdropper's work:

 $O(n^2)$

(e.g. 2^{64} time)

Impossibility Result

Can we achieve a better gap using a general symmetric cipher?

Answer: unknown

But: roughly speaking,

quadratic gap is best possible if we treat cipher as

a black box oracle [IR'89, BM'09]

End of Segment

Basic key exchange

The Diffie-Hellman protocol

Key exchange without an online TTP?

Goal: Alice and Bob want shared secret, unknown to eavesdropper

For now: security against eavesdropping only (no tampering)

Can this be done with an exponential gap?

The Diffie-Hellman protocol (informally)

```
Fix a large prime p (e.g. 600 digits)

Fix an integer g in {1, ..., p}
```

Alice choose random **a** in $\{1,...,p-1\}$ choose random **b** in $\{1,...,p-1\}$ "Alice", $A \leftarrow g$ (mod p) "Bob", $B \leftarrow g^b$ (mod p)

$$B^{a} \pmod{p} = (g^{b})^{a} = k_{AB} = g^{ab} \pmod{p} = (g^{a})^{b} = A^{b} \pmod{p}$$

Security (much more on this later)

Eavesdropper sees: $p, g, A=g^a \pmod{p}$, and $B=g^b \pmod{p}$

Can she compute g^{ab} (mod p) ??

 $DH_{g}(g^{a}, g^{b}) = g^{ab} \quad (mod p)$ More generally: define

How hard is the DH function mod p?

How hard is the DH function mod p?

Suppose prime p is n bits long.

Best known algorithm (GNFS): run time exp($\tilde{O}(\sqrt[3]{n})$)

<u>cipher key size</u>	<u>modulus size</u>	Elliptic Curve <u>size</u>
80 bits	1024 bits	160 bits
128 bits	3072 bits	256 bits
256 bits (AES)	15360 bits	512 bits

As a result: slow transition away from (mod p) to elliptic curves

www.google.com

The identity of this website has been verified by Thawte SGC CA.

Certificate Information

Your connection to www.google.com is encrypted with 128-bit encryption.

The connection uses TLS 1.0.

The connection is encrypted using RC4_128, with SHA1 for message authentication and ECDHE_RSA as the key exchange mechanism.

Elliptic curve Diffie-Hellman

Insecure against man-in-the-middle

As described, the protocol is insecure against active attacks

Another look at DH

End of Segment

Basic key exchange

Public-key encryption

Establishing a shared secret

Goal: Alice and Bob want shared secret, unknown to eavesdropper

For now: security against eavesdropping only (no tampering)

This segment: a different approach

Public key encryption

Public key encryption

<u>Def</u>: a public-key encryption system is a triple of algs. (G, E, D)

- G(): randomized alg. outputs a key pair (pk, sk)
- E(pk, m): randomized alg. that takes $m \in M$ and outputs $c \in C$
- D(sk,c): det. alg. that takes $c \in C$ and outputs $m \in M$ or \bot

Consistency: \forall (pk, sk) output by G:

 $\forall m \in M$: D(sk, E(pk, m)) = m

Semantic Security

For b=0,1 define experiments EXP(0) and EXP(1) as:

Def: E = (G,E,D) is sem. secure (a.k.a IND-CPA) if for all efficient A:

$$Adv_{SS}[A,E] = Pr[EXP(0)=1] - Pr[EXP(1)=1] < negligible$$

Establishing a shared secret

Alice Bob $(pk, sk) \leftarrow G()$ "Alice", pk choose random $x \in \{0,1\}^{128}$ "Bob", C-E(PK,X) D/SK,C) -> X

X: Shared secret

Security (eavesdropping)

Adversary sees pk, E(pk, x) and wants $x \in M$

Semantic security ⇒

adversary cannot distinguish

{ pk, E(pk, x), x } from { pk, E(pk, x), rand∈M }

 \Rightarrow can derive session key from x.

Note: protocol is vulnerable to man-in-the-middle

Insecure against man in the middle

As described, the protocol is insecure against active attacks

Public key encryption: constructions

Constructions generally rely on hard problems from number theory and algebra

Next module:

Brief detour to catch up on the relevant background

Further readings

Merkle Puzzles are Optimal,
 B. Barak, M. Mahmoody-Ghidary, Crypto '09

On formal models of key exchange (sections 7-9)
 V. Shoup, 1999

End of Segment