

https://github.com/KULeuven-Diepenbeek/res_mol_canids

Development of a statistics-based IDS for automotive security

Wouter Hellemans, Jo Vliegen, Nele Mentens

Q1: What do messages on the CAN-bus look like, and how can these be parsed with pandas in Python?

Q2: What kind of attacks can be performed on CAN networks?

Q3: Which statistical parameters can be derived from certain fields in network frames, to detect attacks on CAN?

Q4: How do you extract statistical parameters from a dataset?

Short overview of CAN-bus

... and the frames that use it

Short overview of CAN-bus

Modern cars can contain up to 150 Electronic Control Units (ECUs)

Controller Area Network (CAN): protocol for ECU-to-ECU communication

3 generations: CAN CC, CAN FD, and CAN XL

IP of Robert Bosch GmbH

... and the frames that use it

A message on the CAN bus is called a **frame**

A frame consists (mainly) of 3 fields

- The identifier (Identifier)
- Metadata concerning the length of the message (DLC)
- The actual data (Data)

Attacks on CAN

Hackers took control of a Tesla Model S and turned it off: cnb.cx/1Uqx6UV

11:11 p.m. · 6 aug. 2015

voertuigen te hacken. © HLN

CNN Business MONES @CNNBusiness · Follow

Recall Alert: Fiat Chrysler is recalling 1.4 million hackable vehicles. Check affected cars: cnnmon.ie/10rrqGv

De onderzoekers tonen hoe ze een speciale app maakten om milioenen

Miljoenen auto's waren te hacken met eenvoudige truc: "Traceren, ontgrendelen en starten"

CAN is vulnerable to cyberattacks such as: DoS, Fuzzing, Spoofing, Replay...

s Electric Cars

11:07 AM · Jan 3, 2023

1

wielen", zegt HLN-techexpert Kenneth Dée.

Kenneth Dee 27-09-24, 15:00 Laatste update: 28-09-24, 08:26

Datasets & analysis

Datasets

We'll be doing experiments on a **dataset** from HCRL (Hacking and Countermeasure Research Lab):

A "normal_data_set" is available in .txt format.

```
≡ normal run data.txt ×
hcrl > 
≡ normal run data.txt
         Timestamp: 1479121434.850202
                                               ID: 0350
                                                            000
                                                                   DLC: 8
                                                                             05 28 84 66 6d 00 00 a2
         Timestamp: 1479121434.850423
                                               ID: 02c0
                                                                   DLC: 8
                                                                             14 00 00 00 00 00 00 00
                                                           000
         Timestamp: 1479121434.850977
                                               ID: 0430
                                                                   DLC: 8
                                                           000
                                                                             00 00 00 00 00 00 00 00
         Timestamp: 1479121434.851215
                                               ID: 04b1
                                                            000
                                                                   DLC: 8
                                                                             00 00 00 00 00 00 00 00
```

Also "attacked" datasets can be found:

- DoS Attack : Injecting messages of '0000' CAN ID every 0.3 milliseconds. '0000' is the most dominant.
- Fuzzy Attack : Injecting messages of totally random CAN ID and DATA values every 0.5 milliseconds.
- 3. Spoofing Attack (RPM/gear) : Injecting messages of certain CAN ID related to RPM/gear information every 1 millisecond.

Datasets

We'll be doing experiments on a **dataset** from HCRL (Hacking and Countermeasure Research Lab).

The dataset can be downloaded from this URL:

https://drive.google.com/drive/folders/1ed2PlvcSu9ONt-8KK3sgG4Qw1Bp0ccOr?usp=sharing

Example – How to detect malicious frames?

Maybe the Hamming distance between 2 subsequent frames might be an indicator?

Hamming distance = number of positions in which two (equally sized) inputs differ. For example:

Hello Jim Hello Tim

Hamming distance: 1

31 = 0b01 111132 = 0b10 0000

Hamming distance: 6

Example – How to detect malicious frames?

Maybe the Hamming distance between 2 subsequent frames might be an indicator?

The two messages, in binary:

... and exored ...

... shows 21 bits of value '1', so the Hamming distance is 21

Example – How to detect malicious frames?

Maybe the Hamming distance between 2 subsequent frames might be an indicator?

... now you try

Can you find a statistical feature that <u>MIGHT</u> be an indication?

Example

Our "hypothesis" is that if the HD with the previous frame is < 10, the message is classified as "malicious"

When applied to the first 100 frames of the DoS dataset, two frames are marked as "malicious".

How to evaluate the <u>performance</u> of our IDS?

Evaluation

classified as malicious

malicious

The dataset comes with the "correct" answer, per frame

T: injected message

R: normal message

For every frame, the datasets also provides: ok / not ok

	Т	R
Ok	False negative	True negative
Not ok	True positive	False positive

Evaluation

classified as malicious

malicious

The dataset comes with the "correct" answer, per frame

	Т	R	
Ok	False negative	True negative	
Not ok	True positive	False positive	

Accuracy: how good are your decisions, overall?

Recall: how good did you cover all positives?

relevant elements

false negatives

true negatives

0

malicious

classified as malicious

If we experiment with different parameters:

HD	Accuracy	Precision	Recall
5	0.884785	0.882467	0.995365
10	0.873942	0.900210	0.955839
15	0.848938	0.907834	0.912773

... now you try

How do your hypotheses score?

Combined decision making

How would make a decision when multiple models are at work?

- Classify as malicious when 1 out of n models classifies as malicious
- Classify as malicious when <u>all n</u> models classify as malicious
- Classify as malicious when ≥ n/2 out of n models classify as malicious

Q&A

That's it

We hope you had fun (and have learned something:))

