

Professora: Aline de Oliveira

Contagem, 2020

O MODELO ATÔMICO DE THOMSON

Tales de Mileto (VI a. C.)

Atrito da resina âmbar com tecido ou pelo animal: âmbar passava a atrair pequenos objetos

Tubo de Geissler (1854)

- 1 ddp
- ↓ pressão (gases em baixas pressão)

Aparecimento de uma luz (raios catódicos)

Tubo de Crookes (1875)

Ocorre com qualquer gás.

Raios catódicos: são negativos

Partícula subatômica:

<mark>elétron</mark>

O MODELO ATÔMICO DE THOMSON

Eugen Goldstein (1886)

Evidências dos **raios anódicos** ou **canais**. Esses raios são formados pelos "restos" dos átomos do gás que sobram após terem seus elétrons arrancados pela descarga elétrica.

Partícula subatômica:

<mark>próton</mark>

- Menor átomo: o hidrogênio;
- Próton apresenta carga positiva de valor igual a do elétrons;
- ☐ Thomson propôs um modelo atômico, em 1903, que tentava explicar as seguintes fenômenos:

Eletrização por atrito

Corrente elétrico

Formação de íons

Descarga elétricas em gases

O MODELO ATÔMICO DE THOMSON

O átomo é formado por uma "pasta" positiva "recheada" pelos elétrons de carga negativa, o que garantia a neutralidade elétrica da matéria.

(modelo do pudim de passas)

Elétrons de carga negativa incrustrados em uma massa de carga positiva.

Observação: a maior parte das partículas α atravessava a lâmina de ouro como se esta fosse uma peneira, apenas algumas partículas desviavam ou até mesmo retrocediam.

Rutherford (1911) concluiu que os átomos não são maciços, como pensaram Dalton e Thomson.

Os átomos são formados por núcleos, pequenos e densos e positivos, dispersos em grandes espaços vazios. Ao redor do núcleo estavam girando os elétrons pequenos e negativos.

James Chadwick (1932): no núcleo também se encontrava a partícula denominada de nêutron, sem carga elétrica e de massa praticamente igual à dos prótons.

Representação do núcleo.

Os neutros isolariam os prótons evitando suas repulsões e o consequente "desmoronamento" do núcleo.

Partícula	Massa	Carga elétrica
Próton	1	+1
Nêutron	1	0
Elétron	1/1836	-1

A eletrosfera tem volume praticamente igual ao volume do átomos

A identificação dos átomos

Número atômico (Z): é o número de prótons existentes no núcleo de um átomo.

O número de elétrons é igual ao número atômico em um elemento neutro.

Átomo neutro: #elétrons = #prótons

Número de massa (A): é a soma do número e prótons (Z) e de nêutrons (N) existente em um átomo.

$$A = Z + N$$

Elemento químico: é o conjunto de átomos com o mesmo número atômico

Portanto: o número atômico identifica o elemento químico.

$$Z = 11 \rightarrow Sódio (Na)$$
 $Z = 17 \rightarrow Cloro (Cl)$

$$Z = 17 \rightarrow Cloro(Cl)$$

$$Z = 26 \rightarrow Ferro (Fe)$$

Notação geral de um átomo

X = símbolo do elemento.

A = número de massa.

Z = número atômico.

²³Na ³⁵Cl ⁵⁶Fe

Íons

São átomos que ganharam ou perderam elétrons (X^{carga}).

Cátion: é um átomo que perdeu elétrons e consequentemente torna-se um íon positivo. Exemplos: Na^+ , Zn^{2+} , Al^{3+} .

Ânion: é um átomo que ganhou elétrons e consequentemente torna-se um íon negativo. Exemplos: Cl⁻, S²⁻, Br⁻.

Quando um átomo ganha elétrons, seu tamanho aumenta. Quando o átomo perde elétrons, diminui de tamanho. No entanto, em ambos os casos sua massa praticamente não se altera, pois a massa dos elétrons é desprezível.

$$S + 2e \rightarrow S^{2}$$

Massa de S = massa de S²-

S²- é maior do que S

Al
$$\rightarrow$$
 Al³⁺ + 3e-

Massa de Al = massa de Al $^{3+}$

Al³⁺ é menor do que Al

Análise de Z, N e A

Isótopos: são átomos com mesmo número de prótons (Z) e diferente número de massa (A). Exemplos:

$$Z=1$$
 1_1H 2_1H 3_1H (Isótopos do hidrogênio)

Deutério Trítio

 $Z=8$ $^{16}_{8}O$ $^{17}_{8}O$ $^{18}_{8}O$ (Isótopos do oxigênio)

Oxigênio-16 Oxigênio-17 Oxigênio-18

Praticamente todos os elementos químicos naturais são formados por mistura de isótopos. Exemplo: $75 \% ^{35}_{17}Cl$ e $25 \% ^{37}_{17}Cl$.

Isóbaros: são átomos de diferentes números de prótons (elementos diferentes), mas que possuem o mesmo número de massa (A).

$$A = 40$$
 $^{40}_{19}K$ $^{40}_{20}Ca$ $A = 42$ $^{42}_{21}Sc$ $^{42}_{22}Ti$

Isótonos: são átomos de diferentes números de prótons (elementos diferentes), diferentes números de massa, porém com o mesmo número de nêutrons (N).

$$N = 20$$
 $^{37}_{17}Cl$ $^{40}_{20}Ca$