Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/000779

International filing date: 21 January 2005 (21.01.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-017423

Filing date: 26 January 2004 (26.01.2004)

Date of receipt at the International Bureau: 17 March 2005 (17.03.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

日本国特許庁 24.1.2005 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2004年 1月26日

出 願 番 号 Application Number:

特願2004-017423

[ST. 10/C]:

[JP2004-017423]

出 願 人
Applicant(s):

浜松ホトニクス株式会社

特許庁長官 Commissioner, Japan Patent Office 2005年 3月 3日

特許願 【書類名】 2003-0906 【整理番号】 平成16年 1月26日 【提出日】 特許庁長官殿 【あて先】 H01L 27/146 【国際特許分類】 【発明者】 浜松ホトニクス株式会社 静岡県浜松市市野町1126番地の1 【住所又は居所】 内 鈴木 保博 【氏名】 【発明者】 浜松ホトニクス株式会社 静岡県浜松市市野町1126番地の1 【住所又は居所】 内 溝口 真規 【氏名】 【発明者】 浜松ホトニクス株式会社 静岡県浜松市市野町1126番地の1 【住所又は居所】 内 水野 誠一郎 【氏名】 【特許出願人】 000236436 【識別番号】 浜松ホトニクス株式会社 【氏名又は名称】 【代理人】 100088155 【識別番号】 【弁理士】 長谷川 芳樹 【氏名又は名称】 【選任した代理人】 【識別番号】 100092657 【弁理士】 寺崎 史朗 【氏名又は名称】 【選任した代理人】 【識別番号】 100124291 【弁理士】 石田 悟 【氏名又は名称】 【選任した代理人】 100110582 【識別番号】 【弁理士】 柴田 昌聰 【氏名又は名称】 【手数料の表示】 【予納台帳番号】 014708 21.000円 【納付金額】 【提出物件の目録】 特許請求の範囲 1 【物件名】 明細書 1 【物件名】 図面 1 【物件名】

要約書 1

【物件名】

【書類名】特許請求の範囲

【請求項1】

フォトダイオードおよびスイッチを各々含む複数の画素がM行N列に2次元配列され、 第n列の各画素のフォトダイオードがスイッチを介して配線Lnに接続されている光検出 部と、

前記光検出部の第1行または第M行の側に配置され、N個の読出回路 $R_1 \sim R_N$ および N個のスイッチ $SW_1 \sim SW_N$ を含み、各配線 L_n を経て流入する電荷を読出回路 R_n 内に蓄積し、その蓄積した電荷の量に応じた電圧値を読出回路 R_n からスイッチ SW_n を介して出力する出力部と、

前記光検出部の第1行または第M行の側に配置され、前記光検出部の第m行の各画素のスイッチの開閉を指示する行選択信号SA,mを出力する行選択部と、

前記光検出部の第1行または第M行の側に配置され、前記出力部のスイッチSW』の開閉を指示する列選択信号SB」』を出力する列選択部と、

前記光検出部のM行のうち前記行選択部からの距離が所定距離より長い各行について、前記行選択部から出力される行選択信号 S A,m の波形を整形して、その整形後の行選択信号 S'A,m を前記光検出部の第m行の各画素のスイッチに入力させる波形整形手段と、

を備えることを特徴とする固体撮像装置(ただし、M, Nは2以上の整数、mは1以上 M以下の任意の整数、nは1以上N以下の任意の整数)。

【請求項2】

前記波形整形手段が、前記光検出部の全ての行それぞれについて、前記行選択部から出力される行選択信号 S_{A,m} の波形を整形して、その整形後の行選択信号 S'_{A,m} を前記光検出部の第m行の各画素のスイッチに入力させる、ことを特徴とする請求項 1 記載の固体撮像装置。

【請求項3】

前記波形整形手段が、前記光検出部の行毎に該行の画素配列方向の一方の側に配置されている、ことを特徴とする請求項1記載の固体撮像装置。

【請求項4】

前記波形整形手段が、前記光検出部の行毎に該行の画素配列方向の双方の側に配置されている、ことを特徴とする請求項1記載の固体撮像装置。

【請求項5】

前記波形整形手段が、前記行選択部から出力される行選択信号 SA,mを入力して、その入力した行選択信号 SA,mのレベルに応じた論理信号を波形整形後の行選択信号 S'A,m として出力する論理回路を含む、ことを特徴とする請求項 1 記載の固体撮像装置。

【書類名】明細書

【発明の名称】固体撮像装置

【技術分野】

$[0\ 0\ 0\ 1]$

本発明は、フォトダイオードを各々含む複数の画素がM行N列に2次元配列された光検 出部を備える固体撮像装置に関するものである。

【背景技術】

[0002]

固体撮像装置は、フォトダイオードを各々含む複数の画素がM行N列に2次元配列され た光検出部と、この光検出部の各行を選択する行選択信号を出力する行選択部と、この光 検出部の各列を選択する列選択信号を出力する列選択部と、を備えている。そして、行選 択部および列選択部により、光検出部の各画素のフォトダイオードで発生した電荷が順次 に読み出される。このような固体撮像装置において、一般に、矩形領域内に光検出部が配 置され、該矩形の第1辺の側(光検出部の第1行または第M行の側)に列選択部が配置さ れ、該矩形の第2辺(第1辺に垂直な辺)の側に行選択部が配置されている。

[0003]

これに対して、特許文献1に開示された固体撮像装置においては、光検出部が配置され る矩形の第1辺の側に列選択部が配置され、該矩形の第1辺または第3辺(第1辺に平行 な対向する辺)の側に行選択部が配置されている。このような配置とすることで、固体撮 像装置を半導体基板上に形成したときに該固体撮像装置を小型化することができ、また、 複数の固体撮像装置を並列配置したときに各々の光検出部の間の不感領域(光入射を検知 することができない領域)を小さくすることができる。

【特許文献1】特開平3-27684号公報

【発明の開示】

【発明が解決しようとする課題】

[0004]

しかしながら、上記特許文献1に開示された固体撮像装置は以下のような問題点を有し ていることを本願発明者は見出した。すなわち、行選択部から光検出部の各行の画素へ送 られる行選択信号の配線長は行によって異なる。行選択部から光検出部の或る行の画素へ 至るまでの行選択信号の配線長が長いと、その配線の抵抗値および容量値が大きく、それ 故、その行の画素へ入力する行選択信号の波形が劣化する。このことから、光検出部の各 画素のフォトダイオードで発生した電荷の読み出しは行によって異なり、正確な撮像結果 を得ることができない。

[0005]

本発明は、上記問題点を解消する為になされたものであり、並列配置したときに不感領 域を小さくすることが可能であって、より正確な撮像結果を得ることができる固体撮像装 置を提供することを目的とする。

【課題を解決するための手段】

[0006]

本発明に係る固体撮像装置は、(1) フォトダイオードおよびスイッチを各々含む複数の 画素がM行N列に2次元配列され、第n列の各画素のフォトダイオードがスイッチを介し て配線Lnに接続されている光検出部と、(2) 光検出部の第1行または第M行の側に配置 され、N個の読出回路 $R_1 \sim R_N$ およびN個のスイッチ $SW_1 \sim SW_N$ を含み、各配線Ln を経て流入する電荷を読出回路Rn内に蓄積し、その蓄積した電荷の量に応じた電圧値 を読出回路RnからスイッチSWnを介して出力する出力部と、(3)光検出部の第1行ま たは第M行の側に配置され、光検出部の第m行の各画素のスイッチの開閉を指示する行選 択信号 S A , m を出力する行選択部と、(4) 光検出部の第1行または第M行の側に配置さ れ、出力部のスイッチSW п の開閉を指示する列選択信号SB, п を出力する列選択部と 、(5) 光検出部のM行のうち行選択部からの距離が所定距離より長い各行について、行選 択部から出力される行選択信号SA,mの波形を整形して、その整形後の行選択信号S'A

特願2004-017423

, m を光検出部の第m行の各画素のスイッチに入力させる波形整形手段と、を備えること を特徴とする。ただし、M,Nは2以上の整数であり、mは1以上M以下の任意の整数で あり、nは1以上N以下の任意の整数である。

[0007]

この固体撮像装置では、光検出部においてM行N列に2次元配列された複数の画素それ ぞれのフォトダイオードで発生した電荷は、行選択部から出力される行選択信号および列 選択部から出力される列選択信号により、該画素のスイッチおよび配線Lnを経て、出力 部の読出回路Rn内に蓄積され、その蓄積された電荷の量に応じた電圧値が読出回路Rn からスイッチSWnを介して順次に出力される。出力部、行選択部および列選択部それぞ れは、光検出部の第1行または第M行の側に配置されている。したがって、行選択部から 出力された行選択信号S_{A,m}が第m行の各画素に到達するまでの配線長は行によって相 違する。

[0008]

仮に波形整形手段を設けないとすれば、各画素に入力する行選択信号の波形が劣化して 、光検出部の各画素のフォトダイオードで発生した電荷の読み出しは行によって異なり、 正確な撮像結果を得ることができない。しかし、本発明では、光検出部のM行のうち行選 択部からの距離が所定距離より長い各行について、行選択部から出力される行選択信号S A,mの波形を整形する波形整形手段を設けて、その整形後の行選択信号S'A,m を光検 出部の第m行の各画素に入力させることにより、より正確な撮像結果を得ることができる

[0009]

波形整形手段は、光検出部のM行のうち行選択部からの距離が所定距離より長い各行に ついてのみ設けられてもよい。しかし、波形整形手段は、光検出部の全ての行それぞれに ついて設けられてもよい。

[0010]

また、波形整形手段は、光検出部の行毎に該行の画素配列方向の一方の側に配置されて いるのが好適であり、或いは、光検出部の行毎に該行の画素配列方向の双方の側に配置さ れているのも好適である。

$[0\ 0\ 1\ 1]$

また、波形整形手段は、行選択部から出力される行選択信号SA,mを入力して、その 入力した行選択信号SA,mのレベルに応じた論理信号を波形整形後の行選択信号S'A, m として出力する論理回路を含むのが好適である。

【発明の効果】

[0012]

本発明に係る固体撮像装置は、並列配置したときに不感領域を小さくすることが可能で あって、より正確な撮像結果を得ることができる。

【発明を実施するための最良の形態】

[0013]

以下、添付図面を参照して、本発明を実施するための最良の形態を詳細に説明する。な お、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。

[0014]

(第1実施形態)

先ず、本発明に係る固体撮像装置の第1実施形態について説明する。図1は、第1実施 形態に係る固体撮像装置1の構成図である。この図に示される固体撮像装置1は、光検出 部11、出力部20、行選択部30および列選択部40を備える。

[0015]

光検出部11は、フォトダイオードおよびスイッチを各々含むM×N個の画素 Pm,n がM行N列に2次元配列されたものである。第n列のM個の画素Pュ, п ~Pм, п それぞ れのフォトダイオードは、該画素のスイッチを介して共通の配線Lnに接続されている。 なお、M, Nは2以上の整数であり、mは1以上M以下の任意の整数であり、nは1以上

[0016]

出力部20は、光検出部11の第M行の側に配置され、N個の読出回路R₁ ~R_N およ 内に蓄積し、その蓄積した電荷の量に応じた電圧値を読出回路RnからスイッチSWnを 介して出力する。

[0017]

行選択部30は、光検出部11の第1行の側に配置され、光検出部11の第m行のN個 の画素 $P_{m,1} \sim P_{m,N}$ それぞれのスイッチの開閉を指示する行選択信号 $S_{A,m}$ を出力 する。列選択部40は、光検出部11の第M行の側に配置され、出力部20のスイッチS Wnの開閉を指示する列選択信号SB,nを出力する。行選択部30および列選択部40 それぞれはシフトレジスタ回路を含み、このシフトレジスタ回路の各段の信号を行選択信 号または列選択信号として出力する。

[0018]

光検出部11、出力部20、行選択部30および列選択部40は、半導体基板上に集積 化されている。そして、その集積化時のレイアウトにおいて、出力部20,行選択部30 および列選択部40それぞれは、光検出部11の各行の画素配列方向(図で横方向)につ いて光検出部11の内側に配置される。

[0019]

また、固体撮像装置1は、行選択信号の波形を整形する波形整形手段として、M個の波 形整形回路W_{1,1} ~W_{1,M} を更に備えている。各波形整形回路W_{1,m} は、光検出部 1 1の第m行の画素配列方向の一方の側に配置されており、行選択部30から出力される行 選択信号SA,mの波形を整形して、その整形後の行選択信号S'A,mを、光検出部11 の第 $_{
m m}$ 行の $_{
m N}$ 個の画素 $_{
m P_{m,1}}\sim P_{
m m,N}$ それぞれのスイッチに入力させる。各波形整形回 路 $W_{1,m}$ は、入力した行選択信号 $S_{A,m}$ のレベルに応じた論理信号を波形整形後の行選 択信号S'A,m として出力する論理回路を含むのが好適である。

[0020]

図2は、第1実施形態に係る固体撮像装置1の画素 P m , n 、読出回路 R n 、スイッチ SW_n および波形整形回路 $W_{1,m}$ それぞれの回路図である。ここでは、第m行第n列に ある画素 Pm,nを中心にして各回路を説明する。

[0021]

画素 P m, n は、フォトダイオード P D およびスイッチ S W を含む。画素 P m, n 内のフ ォトダイオードPDのアノード端子は接地され、フォトダイオードPDのカソード端子は スイッチSWを介して配線Lnと接続されている。画素Pm,n内のスイッチSWは、波 形整形回路W_{1,m} から波形整形されて出力される行選択信号S'A,m により開閉が制御 される。

[0022]

読出回路 R_n は、アンプA、容量素子CおよびスイッチSWを含む。読出回路 R_n 内の アンプAの入力端子は配線Lnと接続されており、アンプAの出力端子はスイッチSWn と接続されている。容量素子CおよびスイッチSWは、互いに並列接続されていて、アン プAの入出力端子間に設けられている。スイッチSWnは、読出回路Rn内のアンプAの 出力端子と接続されており、列選択部40から出力される列選択信号SB,nにより開閉 が制御される。

[0023]

読出回路Rn内のスイッチSWが閉じることにより、容量素子Cが放電され、読出回路 Rnからの出力電圧値が初期化される。読出回路Rn内のスイッチSWが開いている期間 に、各配線Lnを経て流入する電荷が容量素子Cに蓄積され、その蓄積した電荷の量に応 じた電圧値が読出回路R、から出力される。スイッチSW、が閉じている期間に、読出回 路Rnからの出力電圧値はスイッチSWnを介して出力される。

[0024]

波形整形回路 $W_{I,m}$ は、行選択部 30 から出力される行選択信号 $S_{A,m}$ を入力するとともに G_{a} t e 信号をも入力して、行選択信号 $S_{A,m}$ と G_{a} t e 信号との論理積を表す信号を波形整形後の行選択信号 $S'_{A,m}$ として出力する。

[0025]

図3は、第1実施形態に係る固体撮像装置1の動作を説明するタイミングチャートである。この図には、波形整形回路 $W_{1,m}$ に入力するときの行選択信号 $S_{A,m}$ の波形、波形整形回路 $W_{1,m}$ に入力する $G_{1,m}$ なときの行選択信号 $S_{A,m}$ の波形、それぞれが示されている。

[0026]

行選択部30から出力されるM個の行選択信号 $S_{A,1}\sim S_{A,M}$ は、順次にハイレベルになる。行選択部30から出力されるときの行選択信号 $S_{A,m}$ の波形がきれいな矩形のパルス波形であったとしても、行選択部30から波形整形回路 $W_{1,m}$ に至るまでの配線の抵抗および容量に因り、波形整形回路 $W_{1,m}$ に入力するときの行選択信号 $S_{A,m}$ の波形は劣化する場合がある。

[0027]

波形整形回路W₁,mに入力するGate信号は一定周期の矩形のパルス波形である。行選択部30から出力されるM個の行選択信号S_A,1~S_A,Mの何れかがハイレベルであるときに、Gate信号はハイレベルとなる。したがって、行選択信号S_A,mおよびGate信号を入力する波形整形回路W₁,mは、双方の入力信号のレベルが或る閾値を超えるときに、出力信号がハイレベルとなる。すなわち、波形整形回路W₁,mから出力して画素P_m,n内のスイッチSWに入力する行選択信号S'A,mは波形整形されたものとなる。なお、各行の画素P_m,n内のスイッチSWに入力する行選択信号S'A,mは、そのパルス幅が一定であるのが好ましい。

[0028]

画素 $P_{m,n}$ 内のスイッチ S Wに入力する行選択信号 $S'_{A,m}$ がハイレベルである期間、そのスイッチ S Wが閉じて、画素 $P_{m,n}$ 内のフォトダイオード P D で発生した電荷は、配線 L_n を経て読出回路 R_n に流入し、その読出回路 R_n 内の容量素子 C に蓄積される。そして、N 個の列選択信号 $S_{B,1} \sim S_{B,N}$ が順次にハイレベルとなることにより、N 個のスイッチ S $W_1 \sim S$ W_N が順次に閉じて、読出回路 R_n 内の容量素子 C に蓄積した電荷の量に応じた電圧値がスイッチ S W_n を介して順次に出力される。

[0029]

図4は、複数の固体撮像装置1a~1eが並列配置されてなる固体撮像装置アレイ100の構成図である。固体撮像装置1a~1eそれぞれは、上述した固体撮像装置1と同様の構成のものである。この固体撮像装置アレイ100では、固体撮像装置1a~1eぞれぞれの光検出部11の第m行の画素が一直線上に並ぶように固体撮像装置1a~1eが並列配置されている。換言すれば、或る固体撮像装置の光検出部11の第1列と、他の固体撮像装置の光検出部11の第N列とは、互いに隣接している。固体撮像装置1,1a~1eでは、光検出部11の第1行の側に行選択部30を配置するとともに、光検出部11の第M行の側に出力部20および列選択部40を配置したので、固体撮像装置アレイ100のように固体撮像装置1a~1eを並列配置したときに、隣接する2つの固体撮像装置の不感領域を小さくすることが可能である。

[0030]

しかも、各行について波形整形回路を設けて、各行を選択するための行選択信号 S_{A} , m の波形を整形することとしたので、より正確な撮像結果を得ることができる。なお、波形整形回路 $W_{1,m}$ の回路規模は小さく占有面積は小さいので、波形整形回路 $W_{1,m}$ を設けたことに因り生ずる不感領域は小さい。

[0031]

(第2実施形態)

次に、本発明に係る固体撮像装置の第2実施形態について説明する。図5は、第2実施 出証特2005-3017610 形態に係る固体撮像装置2の構成図である。この図に示される固体撮像装置2は、光検出 部12、出力部20、行選択部30および列選択部40を備える。

[0032]

この第2実施形態に係る固体撮像装置2の出力部20、行選択部30および列選択部4 0 それぞれは、前述の第1実施形態に係る固体撮像装置1の同名の要素と同一の構成を有 している。

[0033]

第2実施形態に係る固体撮像装置2の光検出部12は、前述の第1実施形態に係る固体 撮像装置1の光検出部11と同様に、フォトダイオードおよびスイッチを各々含むM×N 個の画素 $P_{m,n}$ がM行N列に2次元配列されたものであり、第n列のM個の画素 $P_{1,n}$ ~ P M , n それぞれのフォトダイオードが該画素のスイッチを介して共通の配線 L n に接 続されている。

[0034]

固体撮像装置2は、行選択信号の波形を整形する波形整形手段として、M個より少ない 個数の波形整形回路 $W_{1,m,1} \sim W_{1,M}$ を更に備えている。各波形整形回路 $W_{1,m}$ (こ こではmはm1以上M以下の整数)は、光検出部12の第m行の画素配列方向の一方の側 に配置されており、行選択部30から出力される行選択信号SA,mの波形を整形して、 その整形後の行選択信号S'A,mを、光検出部12の第m行のN個の画素Pm,1~Pm, $_{
m N}$ それぞれのスイッチに入力させる。各波形整形回路 ${
m W}_{
m 1,m}$ は、入力した行選択信号 ${
m S}$ A,mのレベルに応じた論理信号を波形整形後の行選択信号S'A,m として出力する論理 回路を含むのが好適である。このように、第2実施形態では、光検出部12のM行のうち 行選択部30からの距離が所定距離より長い第m1行~第M行それぞれについてのみ、行 選択部30から出力される行選択信号SA,mの波形を整形する波形整形手段が設けられ ている。

[0035]

この第2実施形態に係る固体撮像装置2は、前述の第1実施形態に係る固体撮像装置1 と略同様に動作する。ただし、光検出部 12 の第 1 行~第(m1-1) 行それぞれについて は、行選択部30から出力された各行選択信号 SA,mは、波形整形回路を経ることなく 、光検出部12の第 m 行の N 個の画素 P_{m , l \sim P_{m} , N それぞれのスイッチに入力する。 光検出部 12 の第 1 行~第 (m1-1) 行それぞれについては、行選択部 30 からの距離が 短く、各画素のスイッチに入力するときの行選択信号SA,mの波形の劣化が小さい。し たがって、この第2実施形態に係る固体撮像装置2は、前述の第1実施形態に係る固体撮 像装置1と同様の効果を奏することができる。

[0036]

(第3実施形態)

次に、本発明に係る固体撮像装置の第3実施形態について説明する。図6は、第3実施 形態に係る固体撮像装置3の構成図である。この図に示される固体撮像装置3は、光検出 部13、出力部20、行選択部30および列選択部40を備える。

[0037]

この第3実施形態に係る固体撮像装置3の出力部20、行選択部30および列選択部4 0 それぞれは、前述の第1実施形態に係る固体撮像装置1の同名の要素と同一の構成を有 している。

[0038]

第3実施形態に係る固体撮像装置3の光検出部13は、前述の第1実施形態に係る固体 撮像装置1の光検出部11と同様に、フォトダイオードおよびスイッチを各々含むM×N 個の画素 $P_{m,n}$ がM行N列に2次元配列されたものであり、第n列のM個の画素 $P_{1,n}$ \sim P M , n それぞれのフォトダイオードが該画素のスイッチを介して共通の配線 L n に接 続されている。

[0039]

固体撮像装置3は、行選択信号の波形を整形する波形整形手段として、2 M個の波形整

形回路 $W_{1,1}\sim W_{1,M}$, $W_{2,1}\sim W_{2,M}$ を更に備えている。各波形整形回路 $W_{1,m}$ は、光検出部13の第m行の画素配列方向の一方の側に配置されており、各波形整形回路 W_{2,m} は、光検出部13の第m行の画素配列方向の他方の側に配置されている。波形整 形回路W_{1,m}と波形整形回路W_{2,m}とは同一タイミングで動作する。各波形整形回路W 1,m, W_{2,m}は、行選択部30から出力される行選択信号S_{A,m}の波形を整形して、 その整形後の行選択信号S'A,m を、光検出部12の第m行のN個の画素Pm,1~Pm, $_{
m N}$ それぞれのスイッチに入力させる。各波形整形回路 $_{
m I}$ $_{
m I}$ 択信号SA,mのレベルに応じた論理信号を波形整形後の行選択信号S'A,m として出力 する論理回路を含むのが好適である。

[0040]

この第3実施形態に係る固体撮像装置3は、前述の第1実施形態に係る固体撮像装置1 と略同様に動作して同様の効果を奏することができる。ただし、第3実施形態では、光検 出部13の行毎に該行の画素配列方向の双方の側に波形整形回路が配置されているので、 各画素のスイッチに入力する行選択信号の波形は更にきれいな矩形のパルス波形となり、 更に正確な撮像結果を得ることができる。

[0041]

(第4実施形態)

次に、本発明に係る固体撮像装置の第4実施形態について説明する。図7は、第4実施 形態に係る固体撮像装置4の構成図である。この図に示される固体撮像装置4は、光検出 部14、出力部20、行選択部30および列選択部40を備える。

[0042]

この第4実施形態に係る固体撮像装置4の出力部20、行選択部30および列選択部4 0 それぞれは、前述の第1実施形態に係る固体撮像装置1の同名の要素と同一の構成を有 している。

[0043]

第4実施形態に係る固体撮像装置4の光検出部14は、前述の第1実施形態に係る固体 撮像装置1の光検出部11と同様に、フォトダイオードおよびスイッチを各々含むM×N 個の画素 $P_{m,n}$ がM行N列に2次元配列されたものであり、第n列のM個の画素 $P_{1,n}$ ~PM,nそれぞれのフォトダイオードが該画素のスイッチを介して共通の配線Lnに接 続されている。

[0044]

固体撮像装置4は、行選択信号の波形を整形する波形整形手段として、2M個より少な い個数の波形整形回路 $W_{1,m,1}\sim W_{1,M}$, $W_{2,m,1}\sim W_{2,M}$ を更に備えている。各波 形整形回路W_{1,m} (ここではmはm1以上M以下の整数) は、光検出部14の第m行の 画素配列方向の一方の側に配置されており、各波形整形回路W2,mは、光検出部14の 第m行の画素配列方向の他方の側に配置されている。波形整形回路W1,mと波形整形回 路W_{2,m}とは同一タイミングで動作する。各波形整形回路W_{1,m}, W_{2,m}は、行選択 部30から出力される行選択信号SА, m の波形を整形して、その整形後の行選択信号S′ A,m を、光検出部 1 4 の第m行の N 個の画素 $P_{m,1} \sim P_{m,N}$ それぞれのスイッチに入 力させる。各波形整形回路W1,m, W2,mは、入力した行選択信号SA,mのレベルに 応じた論理信号を波形整形後の行選択信号S'A,m として出力する論理回路を含むのが好 適である。このように、第4実施形態では、光検出部14のM行のうち行選択部30から の距離が所定距離より長い第m1行~第M行それぞれについてのみ、行選択部30から出 力される行選択信号SA,mの波形を整形する波形整形手段が設けられている。

[0045]

この第4実施形態に係る固体撮像装置4は、前述の第2実施形態に係る固体撮像装置2 と略同様に動作して同様の効果を奏することができる。ただし、第4実施形態では、光検 出部14の第m1行~第M行それぞれについて該行の画素配列方向の双方の側に波形整形 回路が配置されているので、各画素のスイッチに入力する行選択信号の波形は更にきれい な矩形のパルス波形となり、更に正確な撮像結果を得ることができる。

[0046]

(変形例)

本発明は、上記実施形態に限定されるものではなく、種々の変形が可能である。

[0047]

各波形整形回路は、上記実施形態では論理積(AND)演算して出力する論理回路であ ったが、NOR演算して出力する論理回路であってもよいし、他の論理演算回路であって もよい。

[0048]

上記の各実施形態の固体撮像装置は、光検出部の第1行の側に行選択部が配置され、光 検出部の第M行の側に出力部および列選択部が配置されたものであった。しかし、行選択 部、出力部および列選択部それぞれは、光検出部の第1行および第M行の何れの側に配置 されていてもよい。例えば、図8に概略構成が示されるように、出力部20、行選択部3 0 および列選択部40の全てが光検出部15の第M行の側に配置されていてもよい。なお 、図8では、波形整形回路、行選択信号線、列選択信号線およびGate信号線等の図示 が省略されている。

[0049]

この図8に示される概略構成において、波形整形回路は、光検出部15の全ての行それ ぞれについて設けられてもよいし、光検出部15のM行のうち行選択部30からの距離が 所定距離より長い各行について設けられてもよい。また、波形整形回路は、光検出部15 の行毎に該行の画素配列方向の一方の側に配置されていてもよいし、光検出部15の行毎 に該行の画素配列方向の双方の側に配置されていてもよい。

[0050]

また、図9は、複数の固体撮像装置5a~5fが並列配置されてなる固体撮像装置アレ イ 5 0 0 の構成図である。固体撮像装置 5 a ~ 5 f それぞれは、上述した固体撮像装置 5 と同様の構成のものである。この固体撮像装置アレイ500では、固体撮像装置5a~5 c それぞれの光検出部 1 5 の第m行の画素が一直線上に並ぶように固体撮像装置 5 a ~ 5 c が並列配置されている。固体撮像装置 5 d ~ 5 f それぞれの光検出部 1 5 の第m行の画 素が一直線上に並ぶように固体撮像装置 5 d ~ 5 f が並列配置されている。固体撮像装置 5 a の光検出部 1 5 の第 1 行と、固体撮像装置 5 d の光検出部 1 5 の第 1 行とは、互いに 隣接している。固体撮像装置 5 b の光検出部 1 5 の第 1 行と、固体撮像装置 5 e の光検出 部15の第1行とは、互いに隣接している。また、固体撮像装置5cの光検出部15の第 1行と、固体撮像装置 5 f の光検出部 1 5 の第 1 行とは、互いに隣接している。

[0051]

固体撮像装置5,5a~5fでは、光検出部15の第M行の側に出力部20,行選択部 30および列選択部40を配置したので、固体撮像装置アレイ500のように固体撮像装 置5a~5fを並列配置したときに、隣接する2つの固体撮像装置の間の不感領域を小さ くすることが可能である。しかも、各行について波形整形回路を設けて、各行を選択する ための行選択信号SA,mの波形を整形することとしたので、より正確な撮像結果を得る ことができる。

【図面の簡単な説明】

[0052]

- 【図1】第1実施形態に係る固体撮像装置1の構成図である。
- 【図2】第1実施形態に係る固体撮像装置1の画素 P m , n 、読出回路 R n 、スイッ FSW_n および波形整形回路 $W_{1,m}$ それぞれの回路図である。
- 【図3】第1実施形態に係る固体撮像装置1の動作を説明するタイミングチャートで ある。
- 【図4】複数の固体撮像装置1 a~1 e が並列配置されてなる固体撮像装置アレイ1 00の構成図である。
- 【図5】第2実施形態に係る固体撮像装置2の構成図である。
- 【図6】第3実施形態に係る固体撮像装置3の構成図である。

- 【図7】第4実施形態に係る固体撮像装置4の構成図である。
- 【図8】変形例の固体撮像装置5の概略構成図である。
- 【図9】複数の固体撮像装置 $5a\sim 5f$ が並列配置されてなる固体撮像装置アレイ 500 の構成図である。

【符号の説明】

[0053]

 $1 \sim 5$ …固体撮像装置、 $11 \sim 15$ …光検出部、20 …出力部、30 …行選択部、40 …列選択部、 $P_{1,1} \sim P_{M,N}$ …画素、 $R_{1} \sim R_{N}$ …読出回路、 $W_{1,1} \sim W_{1,M}$, $W_{2,1} \sim W_{2,M}$ …波形整形回路。

【図2】

【図3】

【図4】

【図5】

【図7】

【図8】

5

【図9】

【要約】

【課題】 並列配置したときに不感領域を小さくすることが可能であって、より正確な撮 像結果を得ることができる固体撮像装置を提供する。

【解決手段】 固体撮像装置1は、光検出部11、出力部20、行選択部30および列選 択部40を備え、行選択信号の波形を整形する波形整形手段としてM個の波形整形回路W $_{1,1}\sim$ $\mathrm{W}_{1,M}$ を更に備えている。行選択部30から出力された行選択信号 $\mathrm{S}_{A,m}$ は、 波形整形回路W_{1,m}により波形整形された後に、光検出部11の第m行のN個の画素P $_{\text{m,1}} \sim P_{\text{m,N}}$ それぞれに入力する。

【選択図】 図1

特願2004-017423

出願人履歴情報

識別番号

[000236436]

1. 変更年月日 [変更理由] 住 所 氏 名

1990年 8月10日 新規登録 静岡県浜松市市野町1126番地の1 浜松ホトニクス株式会社