Advanced

Outline

- 7.1 Vectors in 2-Space
- 7.2 Vectors in 3-Space
- 7.3 Dot Product
- 7.4 Cross Product
- 7.5 Lines and Planes in 3-Space
- 7.6 Vector Spaces
- 7.7 Gram–Schmidt Orthogonalization Process

Vectors in 2-Space

- A scalar is a real number or quantity that has a magnitude, such as length and temperature
- A **vector** has both magnitude and direction and it can be represented by a boldface symbol or a symbol under an arrow, \mathbf{v} or \overrightarrow{AB}

- Characteristics of vectors
 - The vector AB has an initial point at A and a terminal point at B
 - Equal vectors have the same magnitude and direction
 - Vectors are **free**, meaning they can be moved from one position to another provided magnitude and direction do not change
 - The negative of a vector has the same magnitude and opposite direction

- Characteristics of vectors (cont'd.)
 - If $k \neq 0$ is a scalar, the **scalar multiple** of a vector $k \overrightarrow{AB}$ is a vector that is |k| times as long as \overrightarrow{AB}
 - Two vectors are parallel if they are nonzero scalar multiples of each other

Addition and Subtraction of 2-space vectors

- A vector $\mathbf{a} = \langle a_1, a_2 \rangle$ is an ordered pair of real numbers where a_1 and a_2 are the **components** of the vector
 - Addition and subtraction of vectors, multiplication of vectors by scalars, and so on, are defined in terms of components

Definition 7.1.1 Addition, Scalar Multiplication, Equality

Let $\mathbf{a} = \langle a_1, a_2 \rangle$ and $\mathbf{b} = \langle b_1, b_2 \rangle$ be vectors in \mathbb{R}^2 .

(i) Addition:
$$\mathbf{a} + \mathbf{b} = \langle a_1 + b_1, a_2 + b_2 \rangle$$
 (1)

(ii) Scalar multiplication:
$$k = \langle ka_1, ka_2 \rangle$$
 (2)

(iii) Equality:
$$\mathbf{a} = \mathbf{b}$$
 if and only if $a_1 = b_1$, $a_2 = b_2$ (3)

 The component definition of a vector can be used to verify the following properties of vectors

Theorem 7.1.1 Properties of Vectors	
$(i) \mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$	← commutative law
(ii) $a + (b + c) = (a + b) + c$	← associative law
$(iii) \mathbf{a} + 0 = \mathbf{a}$	← additive identity
(iv) a + (-a) = 0	← additive inverse
(v) $k(\mathbf{a} + \mathbf{b}) = k\mathbf{a} + k\mathbf{b}$, k a scalar	
(vi) $(k_1 + k_2)\mathbf{a} = k_1\mathbf{a} + k_2\mathbf{a}$, k_1 and k_2 scalars	
(vii) $k_1(k_2\mathbf{a}) = (k_1k_2)\mathbf{a}$, k_1 and k_2 scalars	
(viii) 1a = a	
$(ix) 0 \mathbf{a} = 0$	← zero vector

- The magnitude, length, or norm of a vector **a** is denoted by $\|\mathbf{a}\| = \sqrt{a_1^2 + a_2^2}$
- A vector **u** with magnitude 1 is a **unit vector**
 - $-\mathbf{u} = (1/\|\mathbf{a}\|)\mathbf{a}$ is the normalization of \mathbf{a}
 - The unit vectors $\mathbf{i} = \langle 1, 0 \rangle$ and $\mathbf{j} = \langle 0, 1 \rangle$ are the standard basis for two-dimensional vectors

$$\mathbf{a} = \langle a_1, a_2 \rangle = a_1 \mathbf{i} + a_2 \mathbf{j}$$

where a_1 and a_2 are horizontal and vertical components of a, respectively

Vectors in 3-Space

• In three dimensions, or **3-space**, a rectangular coordinate system is constructed with three mutually orthogonal axes

• The distance between two points

$$d(P_1, P_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

 The coordinates of the midpoint of a line segment between two points

$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2}\right)$$

• A vector **a** in 3-space is any ordered triple of real numbers

$$\mathbf{a} = \langle a_1, a_2, a_3 \rangle$$

Definition 7.2.1 Component Definitions in 3-Space

Let $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$ be vectors in \mathbb{R}^3 .

- (i) Addition: $\mathbf{a} + \mathbf{b} = \langle a_1 + b_1, a_2 + b_2, a_3 + b_3 \rangle$
- (ii) Scalar multiplication: $ka = \langle ka_1, ka_2, ka_3 \rangle$
- (iii) Equality: $\mathbf{a} = \mathbf{b}$ if and only if $a_1 = b_1$, $a_2 = b_2$, $a_3 = b_3$
- (iv) Negative: $-\mathbf{b} = (-1)\mathbf{b} = \langle -b_1, -b_2, -b_3 \rangle$
- (v) Subtraction: $\mathbf{a} \mathbf{b} = \mathbf{a} + (-\mathbf{b}) = \langle a_1 b_1, a_2 b_2, a_3 b_3 \rangle$
- (vi) Zero vector: $0 = \langle 0, 0, 0 \rangle$
- (vii) Magnitude: $\|\mathbf{a}\| = \sqrt{a_1^2 + a_2^2 + a_3^2}$

• Any vector $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ can be expressed as a linear combination of the unit vectors

$$\mathbf{i} = \langle 1, 0, 0 \rangle$$
 $\mathbf{j} = \langle 0, 1, 0 \rangle$ $\mathbf{k} = \langle 0, 0, 1 \rangle$
 $\mathbf{a} = \langle a_1, a_2, a_3 \rangle = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$

Dot Product

- In 2-space, $\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2$
- In 3-space, $\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$

Properties of the Dot Product

- (i) $\mathbf{a} \cdot \mathbf{b} = 0$ if $\mathbf{a} = 0$ or $\mathbf{b} = 0$ (ii) $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$ (iii) $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$ (iv) $\mathbf{a} \cdot (k\mathbf{b}) = (k\mathbf{a}) \cdot \mathbf{b} = k(\mathbf{a} \cdot \mathbf{b}), \quad k \text{ a scalar}$ (v) $\mathbf{a} \cdot \mathbf{a} \ge 0$

• Alternative form of the dot product

$$\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos \theta$$

← commutative law ← distributive law

Dot Product (cont'd.)

- Two vectors are orthogonal if $\mathbf{a} \cdot \mathbf{b} = 0$
- The angle between two vectors is given by

$$\cos \theta = \frac{a_1 b_1 + a_2 b_2 + a_3 b_3}{\|\mathbf{a}\| \|\mathbf{b}\|}$$

• The component of a on b

$$comp_{\mathbf{b}}\mathbf{a} = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{b}\|}$$

• The projection of **a** on **b**

$$\operatorname{proj}_{\mathbf{b}} \mathbf{a} = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}}\right) \mathbf{b}$$

Cross Product

Recall determinants

$$\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1 \qquad \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}$$

The cross product of two vectors is given by

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

=
$$(a_2b_3 - a_3b_2)\mathbf{i} - (a_1b_3 - a_3b_1)\mathbf{j} + (a_1b_2 - a_2b_1)\mathbf{k}$$

Cross Product (cont'd.)

- a×b is orthogonal to the plane containing a
 and b
- The magnitude of the cross product is given by $\|\mathbf{a} \times \mathbf{b}\| = \|\mathbf{a}\| \|\mathbf{b}\| \sin \theta$
- Two nonzero vectors are parallel if $\mathbf{a} \times \mathbf{b} = 0$
- $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = 0$ if \mathbf{a} , \mathbf{b} , and \mathbf{c} are coplanar

Cross Product (cont'd.)

Theorem 7.4.1 Properties of the Cross Product

(i)
$$\mathbf{a} \times \mathbf{b} = 0$$
 if $\mathbf{a} = 0$ or $\mathbf{b} = 0$

(ii)
$$\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$$

(iii)
$$\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) + (\mathbf{a} \times \mathbf{c})$$

← distributive law

(iv)
$$(\mathbf{a} + \mathbf{b}) \times \mathbf{c} = (\mathbf{a} \times \mathbf{c}) + (\mathbf{b} \times \mathbf{c})$$

← distributive law

(v)
$$\mathbf{a} \times (k\mathbf{b}) = (k\mathbf{a}) \times \mathbf{b} = k(\mathbf{a} \times \mathbf{b}), \quad k \text{ a scalar}$$

$$(vi)$$
 a \times a = 0

$$(vii)$$
 $\mathbf{a} \cdot (\mathbf{a} \times \mathbf{b}) = 0$

$$(viii)$$
 $\mathbf{b} \cdot (\mathbf{a} \times \mathbf{b}) = 0$

Lines and Planes in 3-Space

- The **vector equation** for a line is $\mathbf{r} = \mathbf{r}_2 + t\mathbf{a}$
 - $-\mathbf{r}, \mathbf{r}_1, \mathbf{r}_2$ are vectors from the origin to points on the line
 - Scalar t is a parameter, nonzero vector a is a direction vector, components of a are direction numbers

in 3-space

Lines and Planes in 3-Space (cont'd.)

- The vector equation for a plane is $\mathbf{n} \cdot (\mathbf{r} \mathbf{r}_1) = 0$
 - Plane passes through a given point and has a specified normal vector n
 - \mathbf{r} and \mathbf{r}_1 are vectors from the origin to points on the plane

Vector Spaces

• The set of all vectors $\mathbf{a} = \langle a_1, a_2, \square, a_n \rangle$ in n-space is R^n , and the set is a **vector space** V if certain axioms are met

Definition 7.6.1 Vector Space

Let V be a set of elements on which two operations called vector addition and scalar multiplication are defined. Then V is said to be a vector space if the following 10 properties are satisfied.

Axioms for Vector Addition:

(i) If x and y are in V, then x + y is in V.

(ii) For all x, y in V, x + y = y + x.

(iii) For all x, y, z in V, x + (y + z) = (x + y) + z.

(iv) There is a unique vector 0 in V such that

0 + x = x + 0 = x.

(v) For each x in V, there exists a vector -x such that

$$x + (-x) = (-x) + x = 0.$$

← commutative law

← associative law

← zero vector

← negative of a vector

Axioms for Scalar Multiplication:

(vi) If k is any scalar and x is in V, then kx is in V.

(vii) $k(\mathbf{x} + \mathbf{y}) = k\mathbf{x} + k\mathbf{y}$

(viii) $(k_1 + k_2)\mathbf{x} = k_1\mathbf{x} + k_2\mathbf{x}$

(ix) $k_1(k_2x) = (k_1k_2)x$

(x) 1x = x

← distributive law

← distributive law

Vector Spaces (cont'd.)

- A set of vectors $B = \{\mathbf{x}_1, \mathbf{x}_2, \square, \mathbf{x}_n\}$ in a vector space V is a **basis** for V if
 - -B is linearly independent
 - Every vector in V can be expressed as a linear combination of these vectors
- A set of vectors $\{\mathbf{x}_1, \mathbf{x}_2, \square, \mathbf{x}_n\}$ is linearly independent if the only constants satisfying

$$k_1 \mathbf{x}_1 + k_2 \mathbf{x}_2 + \dots + k_n \mathbf{x}_n = 0$$
 are $k_1 = k_2 = \dots = k_n = 0$

Gram-Schmidt Orthogonalization Process

- If $B = \{\mathbf{w}_1, \mathbf{w}_2, \square, \mathbf{w}_n\}$ is an orthonormal basis for R^n and \mathbf{u} is any vector in R^n , then $\mathbf{u} = (\mathbf{u} \times \mathbf{w}_1) \mathbf{w}_1 + (\mathbf{u} \times \mathbf{w}_2) \mathbf{w}_2 + \dots + (\mathbf{u} \times \mathbf{w}_n) \mathbf{w}_n$
- A basis B of R^n can be converted into an orthonormal basis $B^{\emptyset} = \{\mathbf{v}_1, \mathbf{v}_2, \square, \mathbf{v}_n, \}$ then into $B^{\emptyset} = \{\mathbf{w}_1, \mathbf{w}_2, \square, \mathbf{w}_n\}$ by normalizing the vectors in B'
- The vectors \mathbf{v}_n and \mathbf{w}_n are mutually orthogonal and are unit vectors

Gram—Schmidt Orthogonalization Process (cont'd.)

• Example: Transform the set $B = \{\mathbf{u}_1, \mathbf{u}_2\}$ into an orthonormal bas $B'' = \{\mathbf{w}_1, \mathbf{w}_2\}$ (where $\mathbf{u}_1 = \langle 3, 1 \rangle$ and $\mathbf{u}_2 = \langle 1, 1 \rangle$)

- Choose $\mathbf{v}_1 = \mathbf{u}_1 = \langle 3, 1 \rangle$ and

$$\mathbf{v}_2 = \mathbf{u}_2 - \left(\frac{\mathbf{u}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1}\right) \mathbf{v}_1 = \langle 1, 1 \rangle - \frac{4}{10} \langle 3, 1 \rangle = \left\langle -\frac{1}{5}, \frac{3}{5} \right\rangle$$

- The set
$$B' = \left\{ \langle 3, 1 \rangle, \left\langle -\frac{1}{5}, \frac{3}{5} \right\rangle \right\}$$
 is an orthogonal basis for R^2

Gram—Schmidt Orthogonalization Process (cont'd.)

- Example (cont'd.):
 - Finish by normalizing the vectors \mathbf{v}_1 and \mathbf{v}_2

$$\mathbf{w}_{1} = \frac{1}{\|\mathbf{v}_{1}\|} \mathbf{v}_{1} = \left\langle \frac{3}{\sqrt{10}}, \frac{1}{\sqrt{10}} \right\rangle_{\text{and}} \mathbf{w}_{2} = \frac{1}{\|\mathbf{v}_{2}\|} \mathbf{v}_{2} = \left\langle -\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}} \right\rangle$$

- The new orthonormal basis is

$$B'' = \left\{ \mathbf{w}_1, \mathbf{w}_2 \right\} = \left\{ \left\langle \frac{3}{\sqrt{10}}, \frac{1}{\sqrt{10}} \right\rangle, \left\langle -\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}} \right\rangle \right\}$$