FACULDADE DE ENGENHARIA SÃO PAULO FESP

SIMULAÇÕES COM PSIM ANÁLISE DE PARTIDA EM MOTORES DE INDUÇÃO ACIONAMENTOS CC CONVERSOR ABAIXADOR Lista de Exercícios

Diego Silva Viana -21480

Otávio Fiorentino - 21516

Beatriz Nudelman - 21670

SÃO PAULO

2019

Partida de motor de indução em vazio

Relação de corrente de fase com rotação do motor até atingir sua rotação nominal em vazio. Até que a corrente de linha atinja sua estabilização, a velocidade angular do motor cresce de maneira a atingir sua velocidade nominal, assim, estabilizando a corrente requerida ao motor.

Relações de torque e rotação para motor em vazio. O torque do motor em seu eixo de saída cresce a medida que a rotação também é acrescida a fim de vencer a inércia envolvida. Atingindo a rotação constante nominal, o torque retorna a zero, pois este não possui carga na sua saída.

Constante de tempo de acionamento CC

Measure		×
Time	2.4000000e-001	
V1	7.5849909e+002	
11	9.3212193e+001	

$$G_{(s)} = \frac{\frac{1}{k}}{s^2 * \tau_e * \tau_m + s * \tau_m + 1}$$

$$R_a = 0,37\Omega, \, \tau_e = 4,05ms, \, \tau_m = 11,7ms \,, \, E_a = k * \omega \,\,, \quad V_e = E_a - R_a * i_a$$

$$\tau_e = \frac{L_a}{R_a} \,, \qquad \qquad \tau_m = \frac{R_a * J}{k^2} \qquad La = R_a * \tau_e = 0,37 * 4,05 * 10^{-3} = 1,49mH$$

$$E_a = k * \omega_n$$

$$\omega_n = \frac{232,6rad}{s} = 2221rpm$$

$$E_{an} = 120 - 037 * 10 = 116,3$$

$$T_n = k * 10 = 5Nm$$

AC Sweep		2
Parameters Color		
AC sweep parameters	Help	
		Display
Name	ACSWEEP1	
Start Frequency	2	✓ •
End Frequency	230	▽
No. of Points	51	
Flag for Points	0	▼ •
Source Name	vsin1	
Start Amplitude	0.1	
End Amplitude	0.1	
Freq. for extra Points	23.1	

 $Gain = 2\pi/60$

Perda de transferência de potencia de acordo com a rotação.

Conversor CC-CC abaixador

para modo de condução continua, limite entre condução continua e descontinua.

$$I_{lb} = (Vd - V_o)D.\frac{T_s}{2L} = (1 - D)V_o.\frac{T_s}{2L} = 0.9A$$

$$= \frac{0.25.36.200.10^{-6}}{2.10^{-3}} = 0.9A$$

$$R_{lim} = \frac{36}{0.9} = 40\Omega$$

$$\Delta V = \frac{1}{1.10^{-3}}.0.9.100.10^{-6}$$

Relação da tensão de saída e chaveamento da tensão de entrada pelo IGBT, em comparação com as correntes no capacitor e indutor.

Observa-se que a carga estabelece um regime de limite entre condução contínua e descontínua. Conforme a carga R1 é diminuída, o regime permanece em condução contínua, variando a corrente média no indutor. Caso R1 ultrapasse o valor de 40 ohms, ele passa a ser descontínuo.

Average Value x			
Time	From	2.0000189e-001	
Time	То	2.0199988e-001	
V1		3.5945613e+001	
Vo		3.5918310e+001	
I(C1)		1.0159780e-003	
I(L1)		8.9897375e-001	

Relação de disparo do IGBT e comutação em sua base, bem como as correntes no indutor e capacitor correspondentes.

Com acrescimo da resistência R1, nota-se o início da distorção na tensão chaveada pelo IGBT, e a corrente média no indutor diminui, iniciando condução descontínua.

Lista de enercicios

3.1. Vin-424 D= 93 R= 24W f=4004Hz L=25pH

3.2

pera 12 ve a comente na conga ver a 0,95 A ou rejor, a comente mides na indutar coi.

3,3

 $R = \frac{(42.03)^2}{5556} = 28,57.02$

$$I_{1}=0,68A$$
 $L=\frac{V_{0}(1-1)}{\sqrt{2.5}}=19,3\mu H$ V_{0} I_{0} K

$$I_{1}=192A$$
 $L=4,43\mu H$ $T_{0}=20,71$ 10.7

$$15 0,39 44$$

3.6.
$$V_0 = D. V_0 = 0.3.40 = 12V$$
 $R = \frac{V^2}{P} = \frac{12^2}{5} = 24.8 - 12$

$$L_1 = \frac{12(1-0)}{\sqrt{2}I_0} = 18\mu H$$

$$L_2 = 273\mu H$$