Estrutura a termo da taxa de juros

March 1, 2021

Neste exercício iremos fazer a previsão da curva de juros brasileira utilizando os dados históricos do Di-pré entre os meses de outubro de 2015 e janeiro de 2020. Será analisado a capacidade de previsão do modelo dentro e fora da amostra. Para tal andaremos 12 passos para trás, faremos a previsão e compararemos com o valor real. O modelo segue uma estrutra de analise dos componentes principais baseada em Nelson-Siegel.

1 Leitura dos dados

```
[1]: jurosm1=read.table("Di.txt",header=T)
    dim(jurosm1)
```

1.642.19

Curva de Juros Brasileira

1.1 Preparando os dados para analisar o PCA

```
[3]: K=12  # 12 passos atrás
T=dim(yields)[1]
yieldsm=yields[1:(T-K),]

covy=cov(yieldsm)  # matrix de covariância amostral

eg=eigen(covy)  # decomposição autovalor e autovetor

cumsum(eg$values)/sum(eg$values)  # Proporção acumulativa (2 ou 3 fatores,

# já explicam a dinâmica da curva)
```

- $1. \quad 0.941598872263433 \quad 2. \quad 0.997139069178269 \quad 3. \quad 0.999258122636374 \quad 4. \quad 0.999760948443083$
- $5. \quad 0.999841256121635 \quad 6. \quad 0.999898899668293 \quad 7. \quad 0.99992408087912 \quad 8. \quad 0.999937489437781$
- $9. \quad 0.99995065072051 \quad 10. \quad 0.999960335475431 \quad 11. \quad 0.999968446781131 \quad 12. \quad 0.999975742215549$
- $13. \ \ 0.999981859866767 \ \ 14. \ \ 0.999986794779225 \ \ 15. \ \ 0.999991074087654 \ \ 16. \ \ 0.999994733031077 \ \ 17. \ \ 0.999997457256175 \ \ 18. \ 1$

Como visto, três componentes já são responsáveis pela explicação de 99,9% da curva de juros

1.2 Construção do PCA

```
[4]: pca=yieldsm%*%eg$vectors

par(mfrow=c(3,1))
  ts.plot(pca[,1], main = "Nível")  # Nível é a média da curva
  ts.plot(pca[,2], main = "Inclinação") # Curva longa - Curva curta
  ts.plot(pca[,3], main = "Curvatura")  # Parâmetro de curvatura
```


1.2.1 Comparação entre a rotação dos componentes principais

```
[5]: par(mfrow=c(3,2))
  elevel=apply(yields,1,mean)
  ts.plot(elevel)
  ts.plot(-pca[,1])

  eslope=yields[,18]-yields[,1]
  ts.plot(eslope)
  ts.plot(pca[,2])

  ecurve=2*yields[,9]-(yields[,1]+yields[,18])
  ts.plot(ecurve)
```

ts.plot(-pca[,3])

2 Previsão

Será realizado uma estimação do Modelo Nelson-Siegel Dinâmico em dois passos (2 - STEP DNS)

2.1 Análise dentro da amostra

Ao realizar a análise dos dados dentro da amostra será feito a análise dos erros das estimativas como medida de fit

2.2 Análise fora da amostra

Para realizar a análise fora da amostra, foi analisada um conjunto de maturidades de taxa de juros, sendo de 1, 9, 15, 36, 120 meses de maturidade e seguimos o procedimento abaixo para a estimação:

- 1) Foi retirado da amostra original os ultimos cinco meses observados.
- 2) Montamos a matrix de covariância amostral e a decomposição dos autovalores e autovetores
- 3) Construimos o PCA
- 4) Fazemos a previsão da curva de juros via dois passos:
- 4.1) Prever o PCA
- 4.2) Construir a curva
 - 5) As estimativas das taxas de juros para cada vértice foram confrontadas com os valores observados nos ultimos doze meses

```
[6]: suppressMessages(library(forecast))
```

Warning message:

"package 'forecast' was built under R version 3.6.3"

```
[7]: pc1=pca[,1]
    pc2=pca[,2]
    pc3=pca[,3]

fpc1=arima(pc1,order=c(1,0,0))
    fpc2=arima(pc2,order=c(1,0,0))
    fpc3=arima(pc3,order=c(1,0,0))

ppc1=forecast(fpc1,h=K)$mean
    ppc2=forecast(fpc2,h=K)$mean
    ppc3=forecast(fpc3,h=K)$mean

par(mfrow=c(3,1))
    plot(forecast(fpc1,h=12), main = "Forecast do nível")
    plot(forecast(fpc2,h=12), main = "Forecast da inclinação")
    plot(forecast(fpc3,h=12), main = "Forecast da curvatura")
```

Forecast do nível

Forecast da inclinação

Forecast da curvatura

2.3 Previsão da curva

```
[8]: loadings=coef(lm(yieldsm~pc1+pc2+pc3)) ## Qual a dependência de cada yield comu

→ os componentes
loadings=as.matrix(coef(lm(yieldsm~pc1+pc2+pc3)))

par(mfrow=c(2,2))
plot(vert,loadings[1,])
plot(vert,loadings[2,])
plot(vert,loadings[3,])
plot(vert,loadings[4,])
fitcurva=cbind(rep(1,length(pc1)),pc1,pc2,pc3)%*%loadings
```


2.3.1 Dentro da amostra

1 mês de maturidade

30

40

50

Time

20

120 meses de maturidade

Medidas de Fit

4

9

ω

ڡ

0

10

[10]: accuracy(yieldsm[,1],fitcurva[,1])
 accuracy(yieldsm[,4],fitcurva[,4])
 accuracy(yieldsm[,6],fitcurva[,6])
 accuracy(yieldsm[,11],fitcurva[,11])
 accuracy(yieldsm[,18],fitcurva[,18])

	ME	RMSE	MAE	MPE	MAPE
Test set	-1.400594e-15	0.1028933	0.08685193	0.03244489	1.070679
	ME	RMSE	MAE	MPE	MAPE
Test set	1.16147e-15	0.0997892	0.08177266	-0.03330599	1.068725

	ME	RMSE	MAE	MPE	MAPE
Test set	2.049645e-16	0.06203427	0.04484175	-0.000655105	68 0.5692642
	ME	RMSE	MAE	MPE	MAPE
Test set	2.28877e-15	0.1059366	0.08248054	0.0008229272	0.8311413
	ME	RMSE	MAE	MPE	MAPE
Test set	-1.263949e-15	0.0838239	1 0.0683755	3 -0.00529084	2 0.6480908

2.3.2 Fora da amostra

```
prevcurva=cbind(rep(1,length(ppc1)),ppc1,ppc2,ppc3)%*%loadings

par(mfrow = c(3,2))
  ts.plot(cbind(yields[(T-K+1):T,1],prevcurva[,1]),col=1:2,main = "1 mês de_\to \to maturidade")
  ts.plot(cbind(yields[(T-K+1):T,4],prevcurva[,4]),col=1:2,main = "9 meses de_\to \to maturidade")
  ts.plot(cbind(yields[(T-K+1):T,6],prevcurva[,6]),col=1:2,main = "15 meses de_\to \to maturidade")
  ts.plot(cbind(yields[(T-K+1):T,11],prevcurva[,11]),col=1:2,main = "36 meses de_\to \to maturidade")
  ts.plot(cbind(yields[(T-K+1):T,11],prevcurva[,11]),col=1:2,main = "36 meses de_\to \to maturidade")
  ts.plot(cbind(yields[(T-K+1):T,18],prevcurva[,18]),col=1:2,main = "120 meses de_\to \to maturidade")
```

1 mês de maturidade

9 meses de maturidade

15 meses de maturidade

36 meses de maturidade

120 meses de maturidade

Medidas de fit

	ME	RMSE	MAE	MPE	MAPE
Test set	2.04908	2.198518	2.04908	45.40486	45.40486
	ME	RMSE	MAE	MPE	MAPE
Test set	1.471025	1.577821	1.471025	35.61504	35.61504

	ME	RMSE	MAE	MPE	MAPE
Test set	1.193604	1.29295	1.193604	26.87794	26.87794
	ME			MPE	
Test set	0.5730352	0.720613	0.5731	322 9.607	145 9.608819
	ME	RMSE	MAE	MPE	MAPE
Test set	-0.5609468	0.81075	77 0.6919	512 -7.41	9292 9.093092

3 Referência.

Esse trabalho usou como base as notas de aula do professor Márcio P. Laurini.