Université de Ziguinchor

Chapitre 5: Technologies des LAN

Licence 3 MIO

Département d'Informatique

Année 2019-2020

Université Assane Seck de Ziguinchor

Cours 2: Architecture Physiques des LAN

 Objectifs général est d'étudier les technologies des LAN et WLAN

Spécifications et Technologies

- Ethernet
- **Token Ring**
- **Token Bus**

- Wifi
- Bluetooth

Y. FAYE

Technologies des Couches 1 et 2

- Beaucoup de protocoles sur les couches 1 et 2 sont standardisés par différents organismes dont IEEE (Institute Electrical and Electronic Engineers)
- Le projet 802 de IEEE se charge de la standardisation des LAN, divise la couche 2 de OSI en deux sous-couches
 - MAC (Medium Access Control): contrôle d'accès au médium
 - Propre à chaque type de réseau
 - LLC (Logical Link Control): contrôle de la liaison logique
 - Indépendante du type de réseau
 - Standardisé comme 802.2

Introduction La Transmission dans les LANs Filaires Architectures Physiques LANs Spécifications et Technologies

Technologies des Couches 1 et 2

Y. FAYE

Introduction La Transmission dans les LANs Architectures Physiques LANs Spécifications et Technologies

Technologies des Couches 1 et 2

COUCHE	LLC	LLC (IEEE 802.2)						
	MAC	802.3 CSMA/CD	802.3 CSMA/CD	802.4 Token Bus	802.5 Token Ring	802.11 Sans fil		
COUCHE PHYSIQUE		Physique Bus	Physique Etoile	Physique Bus	Physique Anneau	Avec ou sans point d'accès		
			Concentrator/Hub					

Ethernet et IEEE 802.3

- Le protocole Ethernet est issu des travaux de DEC, Intel et Xerox
- Standardisé dans la norme IEEE 802.3
- 802.3 couvre la couche physique et une partie de la couche liaison
 - Offre différentes options de la couche physique basées sur:
 - Débit
 - Le support
 - Le type de signal
 - la longueur de segment

Ethernet et IEEE 802.3

- Dénomination utilisée
- Exemple : X baseY
 - X=débit en Mbits/s
 - Base = bande de base ou (large bande)
 - Y= Longueur maximum d'un segment en multiple de 100m

Ethernet 10 base 2 ou Thin-net ou cheap-net

- 10 base 2
 - Câble coaxial fin (RG58) 5mm de diamètre
 - Topologie en bus
 - Débit de 10Mbps
 - Signal numérique
 - Longueur maximum d'un segment 200m (185 mètres à cause du facteur d'atténuation)
 - Nombre maximum de stations par segment=30
 - 5 segment maximum avec des répéteurs à chaque extrémité de segment(925 mètres)

Ethernet 10 base 5 ou Thick-net

- 10 base 5
 - Câble coaxial épais(RG11)10mm de diamètre
 - Topologie en bus
 - Débit de 10Mbps
 - Signal numérique
 - Longueur maximum d'un segment 500m
 - Nombre maximum de stations par segment=30
 - 5 segment maximum avec des répéteurs à chaque extrémités d'un segment(2500 mètres)

Ethernet Standard

- 10 base T
 - Câble en paires torsadées (Twished pair)
 - Topologie en étoile
 - Débit de 10Mbps
 - Signal numérique
 - Longueur maximum d'un segment 100m

Fast Ethernet

- 100 base TX
 - Câble en paires torsadées (Twished pair) catégorie 5
 - Topologie en étoile
 - Débit de 100Mbps
 - Signal numérique codé en 4B/5B
 - Longueur maximum d'un segment 100m
- 100 base FX
 - Fibre optique multimode
 - Topologie en étoile
 - Débit de 100Mbps
 - Signal lumineux
 - Longueur maximum d'un segment 2km

Gigabit Ethernet

- Ethernet 1000 base T ou TX
 - Câble en paires torsadées (Twished pair) cat 5e
 - Topologie en étoile (commutateur)
 - Débit de 1Gbps
 - Signal numérique
 - Longueur maximum d'un segment 100m
- Ethernet 1000 base SX (Short Wave)
 - Fibre optique multimode sur de courtes distances
 - Topologie en étoile ou bus
 - Débit de 1000Mbps
 - Longueur 550m
- Ethernet 1000 base LX (long Wave)
 - Fibre optique multimode ou monomode
 - Débit de 1000Mbps
 - Longueur 2 à 5 km maximum

Gigabit Ethernet (802.3z)

- **Ethernet 1000 base T** ou TX
 - Câble en paires torsadées (Twished pair) cat 5e
 - Topologie en étoile (commutateur)
 - Débit de 1Gbps
 - Signal numérique
 - Longueur maximum d'un segment 100m
- Ethernet 1000 base SX (Short Wave)
 - Fibre optique multimode sur de courtes distances
 - Topologie en étoile ou bus
 - Débit de 100Mbps
 - Longueur 550m
- Ethernet 1000 base LX (long Wave)
 - Fibre optique multimode ou monomode
 - Topologie....
 - Débit de 100Mbps
 - Longueur 2 à 5 km maximum

Y. FAYE

Introduction La Transmission dans les LANs Filaires Architectures Physiques LANs Spécifications et Technologies

Token Bus et IEEE 802.4

- Le protocole Token Bus est inspiré de MAP (Manufacturing Automation Protocol) de General motors, normalisé comme 802.4 par IEEE
- Topologie physique en Bus
- Topologie logique en anneau (jeton)
- Câble coaxial CATV
- Transmission par modulation de fréquence
- Débit 5 à 10Mbps
- Distance max 3,7 km

Introduction La Transmission dans les LANs Filaires Architectures Physiques LANs Spécifications et Technologies

Token Ring et IEEE 802.5

- Le protocole de LAN Token Ring est issu des travaux IBM
- Normalisé comme 802.5 par IEEE
- Son concurrent Ethernet à fini par le supplanter
- Topologie physique en étoile
 - Point central est un Multistation (ou Média) Access Unit (MAU)
- Topologie logique en anneau (jeton)
- Câble à paires torsadées blindées ou fibre multimode
- Débit jusqu'à 100Mbps
- Transmission en bande de base (Manchester differentiel)

Le sans Fil

Technologies sans fil de la couche 1

- Le standard d'origine de 802 de IEEE définit 3 couches physiques
 - 802.11 FHSS: Frequency Hopping Spread Spectrum, une technologie d'étalement de spectre avec sauts de fréquence, bande ISM
 - Modulation GFSK (Gaussian Frequency Shift Keying)
 - 802.11 DSSS:Direct Sequence Spread spectrum, une technologie d'étalement de spectre mais sur une séquence direct, bande ISM
 - Modulation de phase BPSK (Binary Phase Shift Keying) 1Mbit/s
 - Modulation de phase QPSK (Quadrature Phase Shift Keying) 2Mbit/s
 - **802.11 IR**: InfraRed, de type Infrarouge, bande ISM
- Viennent s'ajouter 3 nouvelles couches physiques
 - **802.11a** ou Wi-Fi5
 - **802.11b** ou Wi-Fi
 - **802.11g** nouveau standard

Technologies sans fil de la couche 1

- Chaque couche physique 802.11/a/b/g est divisée en deux sous-couches
- La sous-couche PMD (Physical Medium Dependent): gère l'encodage des données et effectue la modulation
- La sous-couche PLCP (Physical Layer Convergence Protocol) : s'occupe de l'écoute du support et fournit un CCA (Clear Channel Assessment) à la couche MAC pour lui signaler que le canal est libre.

Introduction La Transmission dans les LANs Filaires Architectures Physiques LANs Spécifications et Technologies

Technologies des Couches 1 et 2

- Le projet 802 divise la couche 2 de OSI en deux sous-couches
 - MAC (Medium Access Control): contrôle d'accès au médium
 - Propre à chaque type de réseau
 - LLC (Logical Link Control): contrôle de la liaison logique
 - Indépendante du type de réseau
 - Standardisé comme 802.2

COUCHE LIAISON	LLC (IEEE 802.2)							
	MAC	MAC	MAC	MAC	MAC	MAC		
COUCHE PHYSIQUE	IEEE 802.11a	IEEE 802.11	IEEE 802.11	IEEE 802.11b	IEEE 802.11a	IEEE 802.11g		
	FHSS	DSSS Incompatibles	IR	Wi-fi 2,4 GHz 11 Mbit/s	Wi-fi 5 5,4 GHz 54 Mbit/s	2,4 GHz 5 Mbit/s		

- 802.11a ou Wi-Fi 5 (septembre 1999): Orthogonal Frequency Division Multiplexing (OFDM)
 - Bande U-NII (Unlicenced-National Information Infrastructure) fréquence 5GHz
 - Largeur de bande 300MHz (5,15GHz-5,35GHz et 5,725GHz-5,825GHz)
 - Débit 54Mbps
 - Portée faible

- > 802.11b ou Wi-fi (septembre 1999): améliore DSSS
 - Bande ISM (Industrial, Scientific and Medical) fréquence 2,4 GHz,
 - Largeur de bande 83,5MH (2,4MHz-2,483MHz)
 - Débit 11Mbps,
 - Portée correcte

- ▶ 802.11g (juin 2003): OFDM
 - Bande ISM fréquence 2,4 GHz,
 - Largeur de bande 83,5MH (2,4GHz-2,4834GHz)
 - Débit 54Mbps,
 - Portée correcte

- 802.11n (2009)
 - Améliore 802.11a, 802.11b, 802.11g
 - Fréquence 2,4 (802.11b) et 5GHz (802.11a)
 - Débit jusqu'à 600Mbps
 - Portée bonne

▶802.11ac

- Fréquence 5GHz
- Débit jusqu'à 1300Mbps
- Portée bonne

- Pour permettre à plusieurs réseaux d'émettre sur une même cellule, il faut allouer à chacun d'eux des canaux appropriés, qui ne se recouvrent pas.
- Transmission sur un seul canal
 - Exemple: DSSS divise la bande de 83,5MHz en 14 canaux de 20 MHz
 - ▶ 3 réseaux Wi-fi peuvent émettre en même temps

Décomposition de la bande ISM en 14 anaux de 20 MHz

- Exemple: OFDM divise la bande de 300MHz en 8 canaux de 20 MHz, chaque canal divisé en 52 sous-canaux de 300KHz
- > 8 réseaux Wi-fi 5 peuvent émettre en même temps

Bluetooth et IEEE 802.15

- Lancé par Ericsson (1994),
- **8**02.15.1 (Juin 2002)
 - Débit 1Mbps
 - Fréquence 2,4 GHz
- **802.15.2**
 - Fréquence 2,4 GHz
- **802.15.3** (juin 2003)
 - Débit 20Mbps
 - Fréquence 2,4 GHz
- **8**02.15.4 (2006): ZigBee
 - Fréquence 868/915 MHz(20 à 40 Kbit/s)
 - 2,4 GHz (250 Kbps)

Y. FAYE