Fitting Bayesian Knowledge Tracing Models for PSLC DataShop

Michael Yudelson

Human-Computer Interaction Institute
Carnegie Mellon University

Bayesian Knowledge Tracing (1)

- Goal: infer whether student knows a skill from the pattern of right/wrong applications of the skill
- A special case of Hidden Markov Model (HMM)
- Hidden states: skill known or not known
- Observations: skill applied (1) [in]correctly Observations

Bayesian Knowledge Tracing (2)

Parameters

- plnit (pL_0) a priori mastery of skill
- pLearn (pT) probability the skill will transition into "known" state
- pSlip (pS) probability known skill is applied incorrectly
- pGuess (pG) probability not known skill is applied correctly
- pKnown (pL) running estimate of skill mastery

Preparing Data

- Export data set with one of the KC models^{DataShop}
 - PSLC DataShop http://pslcdatashop.web.cmu.edu
- Open file in Excel and rearrange columns
 - 1st column is 'First attempt'
 - 2nd column is 'Anon Student Id'

Change 'correct' to 1, everything else to 2

- 3rd column is a concatenation of 'Problem Hierarchy', 'Problem Name', and 'Step Name'
- 4th column, is 'Knowledge Component'

Mark rows w/o KC's with dot '.'

- Remove column headers
- Save as tab-delimited text file Excel

Running Analysis (1)

Which solver configuration to use

		Solver		
		Baum-Welch Grad. Desc. Conj. Grad. Desc.		
Structure	by skill	1.1	1.2	1.3.1, 1.3.2, 1.3.2*
	by student	2.1	2.2	2.3.1, 2.3.2, 2.3.2
	•••			

x.3.1 - Polak-Ribiere, x.3.2 - Fletcher-Reeves, x.3.3 - Hestenes-Stiefel

- by skill + Baum-Welch is the traditional
- [Conjugate] Gradient Descent optimize loglikelihood directly and could produce a better fit

Running Analysis (2)

trainhmm executable terminal

```
./trainhmm.mac -s 1.1 ds76__Original_cropped.txt model.txt
```

Parameters in matrix form: π, A, B

π	
known	pLo
not known	1-pLo

A	to known	to not known
from known	1	0
from not known	рТ	1-pT

В	to correct	to incorrect
from known	1-pS	pS
from not known	pG	1-pG

Running Analysis (3)

Useful configurations

'-t 0.01' adjust fit tolerance

'-q 1' quiet mode with less output

'-m 1' print out fit metrics

'-p 1' write **p**redictions file (specify 3rd file name after model); note column 1 is probability of correct^{terminal, Finder}

Further Tweaking the Analysis (1)

• Parameters in matrix form: π , A, B

A	to known	to not known
from known	1	0
from not known	рТ 🔵	1-pT

В	to correct	to incorrect
from known	1-pS	pS
from not known	pG 🔵	1-pG

Adjusting initial values of parameters

'-0 0.5,1.0,0.4,0.8,0.2' - default setting

$$pLo = 0.5$$
, $pT = 0.4$, $pS = 0.2$, $pG = 0.2$

В	obs1	obs2	obsM-1	obsM
state1			···	
state2	-			
stateN-1			→	
stateN	4			

Further Tweaking the Analysis (2)

Adjusting parameter ranges
 '-I 0,0,1,0,0,0,0,0,0,0' – default lower boundary
 '-u 1,1,1,0,1,1,1,0.3,0.3,1' – default upper boundary

pForget = 0, pSlip & pGuess are capped at 0.3

В	to correct	to incorrect
from known	1-pS	pS
from not known	pG 🚄	→ 1-pG

Final Notes

- Number of observations can be >2
 - E.g. treat 'hint' instances separately
- Number of states can be >2
 - Via '-n <#states>' option
- Tour de force
- To download and try visit
 - http://sites.google.com/site/myudelson/projects/fitbktatscale