Stochastik

Hausaufgabenblatt 8

Patrick Gustav Blaneck

Letzte Änderung: 25. November 2021

- 1. In einem Beutel befinden sich 6 Münzen: eine 5-Cent-Münze, drei 2-Cent-Münzen und zwei 1-Cent-Münzen. Zufällig werden nacheinander ohne Zurücklegen 2 Münzen gezogen. X_1 gebe den Wert der ersten, X_2 den Wert der zweiten gezogenen Münzen an. Bestimmen Sie folgenden Werte:
 - (a) die zweidimensionale Wahrscheinlichkeitsfunktion $P(X_1 = i, X_2 = j)$ für $i, j \in \{1; 2; 5\}$.

Lösung:

Offensichtlich gilt:

X_1	1	2	5	$f_1(X_1)$
1	1/15	1/5	1/15	1/3
2	1/5	1/5	1/10	1/2
5	1/15	1/10	0	1/6
$f_2(X_2)$	1/3	1/2	1/6	1

(b) den Erwartungswert $E(X_i)$ und die Varianz $Var(X_i)$ (i = 1, 2).

Lösung:

Für X_1 gilt offensichtlich:

$$\mu_{X_1} = \mathrm{E}(X_1) = \sum_i i \cdot f_1(i) = \ldots = \frac{13}{6} \approx 2.1667$$

$$\sigma_{X_1}^2 = \text{Var}(X_1) = E((X_1 - \mu_{X_1})^2) = \sum_i f_1(i) \cdot (i - \mu_{X_1})^2 = \dots = \frac{65}{36} \approx 1.8056$$

In der Wahrscheinlichkeitsfunktion ist zu sehen, dass die Randverteilungen für beide Zufallsvariablen gleich sind. Damit gilt offensichtlich:

$$\mu_{X_2} = E(X_2) = \mu_{X_1} = \frac{13}{6} \approx 2.1667 \quad \land \quad \sigma_{X_2}^2 = Var(X_2) = \sigma_{X_1}^2 = \frac{65}{36} \approx 1.8056$$

Hausaufgabenblatt 8 Stochastik

(c) die Kovarianz Cov (X_1, X_2) sowie den Korrelationskoeffizient ρ_{X_1, X_2} .

Lösung:

Es gilt mit $i, j \in \{1, 2, 5\}$:

$$Cov(X_1, X_2) = E(X_1 X_2) - E(X_1) E(X_2) = \sum_{i} \sum_{j} i \cdot j \cdot f(i, j) - E(X_1) E(X_2)$$

$$= \left(\frac{1}{15} + \frac{2}{5} + \frac{1}{3} + \frac{2}{5} + \frac{4}{5} + 1 + \frac{1}{3} + 1 + 0\right) - \frac{13}{6} \cdot \frac{13}{6}$$

$$= \frac{13}{3} - \frac{169}{36} = -\frac{13}{36} \approx -0.3611$$

und

$$\rho_{X_1 X_2} = \frac{\text{Cov}(X_1, X_2)}{\sigma_{X_1} \cdot \sigma_{X_2}} = \frac{-\frac{13}{36}}{\sqrt{\frac{65}{36}} \cdot \sqrt{\frac{65}{36}}} = -\frac{1}{5} = -0.2$$

2. Zwei Würfel werden unabhängig voneinander geworfen. X_i gebe die Augenzahl des i-ten Würfels (i = 1, 2) an. Für

$$X = X_1 + X_2$$
 und $Y = X_1 \cdot X_2$

sollen folgende Kenngrößen berechnet werden:

(a) Erwartungswert

Lösung:

Offensichtlich gilt:

$$\mu = E(X_1) = E(X_2) = \frac{1}{6} \cdot \sum_{i=1}^{6} i = \frac{7}{2} = 3.5$$

$$\sigma^2 = \text{Var}(X_1) = \text{Var}(X_2) = E((X_1 - \mu)^2) = \frac{1}{6} \cdot \sum_{i=1}^{6} (i - 3.5)^2 = \frac{35}{12} \approx 2.9167$$

und damit:

$$\mu_X = E(X) = E(X_1) + E(X_2) = 7 \quad \land \quad \mu_Y = E(Y) = E(X_1) \cdot E(X_2) = \frac{49}{4} = 12.25$$

(b) Varianz

Lösung:

Offensichtlich gilt:

$$X_1, X_2$$
 stochastisch unabhängig \implies Cov $(X_1, X_2) = 0$

Und damit:

$$Var(X) = Var(X_1) + Var(X_2) + 2Cov(X_1, X_2) = \frac{35}{6} \approx 5.833$$

$$Var(Y) = E(X_1)^2 Var(X_2) + E(X_2)^2 Var(X_1) + Var(X_1) Var(X_2) = \frac{11515}{144} \approx 79.965$$

(c) Kovarianz Cov(X, Y)

Lösung:

Es gilt:

$$Cov(X,Y) = E(XY) - E(X) E(Y)$$

$$= E((X_1 + X_2)X_1X_2) - E(X) E(Y)$$

$$= E(X_1^2X_2 + X_1X_2^2) - E(X) E(Y)$$

$$= E(X_1^2) E(X_2) + E(X_1) E(X_2^2) - E(X) E(Y)$$

$$= \mu \left(E(X_1^2) + E(X_2^2)\right) - E(X) E(Y)$$

$$= \mu \left(2 E(X_1^2)\right) - E(X) E(Y)$$

$$= \mu \left(2 \sum_{i=1}^{6} i^2 \cdot f_1(i)\right) - E(X) E(Y)$$

$$= \frac{\mu}{3} \sum_{i=1}^{6} i^2 - E(X) E(Y)$$

$$= \frac{7}{6} \cdot 91 - 7 \cdot \frac{49}{4}$$

$$= \frac{245}{12} \approx 20.4167$$

(d) Korrelationskoeffizient ρ_{XY}

Lösung:

Es gilt:

$$\rho_{XY} = \frac{\text{Cov}(X, Y)}{\sigma_X \cdot \sigma_Y} = \frac{\frac{245}{12}}{\sqrt{\frac{35}{6}} \cdot \sqrt{\frac{11515}{144}}} = \frac{\sqrt{1974}}{47} \approx 0.9453$$

Hausaufgabenblatt 8 Stochastik

3. Bei einem Produktionsvorgang werden Zylinder in den ausgefrästen Kreis eines Metallsockels eingepasst. Die beiden Teile werden rein zufällig aus den bisher produzierten Zylindern bzw. ausgefrästen Metallplatten ausgewählt. Der Durchmesser des Zylinders ist (in mm) nach $N(24.9; (0.03)^2)$ -verteilt, der Durchmesser des in den Metallsockel eingefrästen Kreises ist nach $N(25; (0.04)^2)$ -verteilt. Der Zylinder kann noch eingepasst werden, falls die lichte Weite der Durchmessers (= Durchmesser des gefrästen Kreises - Durchmesser des Zylinders) nicht mehr als 0.2mm beträgt.

- (a) Berechnen Sie
 - i. den Erwartungswert

Lösung:

Es gilt:

$$X = \{\text{Durchmesser des Zylinders [mm]}\} \sim N(\mu_X, \sigma_X^2) = N(24.9, (0.03)^2)$$

 $Y = \{\text{Durchmesser des eingefrästen Kreises [mm]}\} \sim N(\mu_Y, \sigma_Y^2) = N(25, (0.04)^2)$

und wir definieren:

$$Z = Y - X$$

Damit gilt:

$$E(Z) = E(Y) - E(X) = \mu_Y - \mu_X = 0.1$$

ii. die Varianz

Lösung:

Da *X* und *Y* stochastisch unabhängig sind, gilt:

$$Var(Z) = Var(Y) + Var(X) - 2Cov(X, Y) = Var(Y) + Var(X) = (0.05)^{2}$$

iii. die Verteilung

Lösung:

$$Z \sim N(\mu_{Z}, \sigma_Z^2) = N(0.1, (0.05)^2)$$

der Zufallsvariablen "lichte Weite des Durchmessers".

Hausaufgabenblatt 8 Stochastik

(b) In wie viel Prozent aller Fälle lässt sich der Zylinder nicht in die Metallplatte einpassen?

Lösung:

Sei

$$u = \frac{x - \mu_Z}{\sigma_Z} = \frac{0.2 - 0.1}{0.05} = 2$$

Dann gilt damit:

$$P(X > 0.2) = 1 - P(X \le 0.2) = 1 - \Phi(u) = 1 - \Phi(2) = 1 - 0.97725 = 0.02275$$

4. Der Zufallsvektor (X, Y) habe die gemeinsame Dichte

$$f_{X,Y}(x,y) = \begin{cases} ky \cdot e^{-\lambda x} & \text{falls } 0 \le y \le 1; x \ge 0; \lambda > 0 \\ 0 & \text{sonst} \end{cases}$$

(a) Für welche *k*-Werte ist *f* eine Verteilungsdichte?

Lösung:

Es gilt:

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, \mathrm{d} y \, \mathrm{d} x = 1$$

$$\equiv \int_{0}^{\infty} \int_{0}^{1} ky \cdot e^{-\lambda x} \, \mathrm{d} y \, \mathrm{d} x = 1$$

$$\equiv \int_{0}^{\infty} e^{-\lambda x} \int_{0}^{1} y \, \mathrm{d} y \, \mathrm{d} x = \frac{1}{k}$$

$$\equiv \int_{0}^{\infty} e^{-\lambda x} \left[\frac{y^{2}}{2} \right]_{0}^{1} \, \mathrm{d} x = \frac{1}{k}$$

$$\equiv \int_{0}^{\infty} e^{-\lambda x} \, \mathrm{d} x = \frac{2}{k}$$

$$\equiv \left[\frac{-e^{-\lambda x}}{\lambda} \right]_{0}^{\infty} = \frac{2}{k}$$

$$\equiv \frac{1}{\lambda} = \frac{2}{k}$$

$$\equiv k = 2\lambda$$

(b) Berechnen Sie die Randverteilungen von *X* und *Y*.

Lösung:

Es gilt:

$$f_1(x) = \int_{-\infty}^{\infty} f(x, y) \, \mathrm{d} \, y = \int_0^1 2\lambda y \cdot e^{-\lambda x} \, \mathrm{d} \, y = \left[y^2 \lambda \cdot e^{-\lambda x} \right]_0^1 = \lambda \cdot e^{-\lambda x}$$
$$f_2(y) = \int_{-\infty}^{\infty} f(x, y) \, \mathrm{d} \, x = \int_0^{\infty} 2\lambda y \cdot e^{-\lambda x} \, \mathrm{d} \, x = \left[-2y \cdot e^{-\lambda x} \right]_0^{\infty} = 2y$$

(c) Untersuchen Sie X und Y auf Unabhängigkeit.

Lösung:

Offensichtlich gilt:

$$f(x,y) = f_1(x) \cdot f_2(y)$$

Damit sind die Zufallsvariablen X und Y stochastisch unabhängig.