

ARQUITETURA DE UM **BLOCKCHAIN**

ARQUITETURA DE UM **BLOCKCHAIN**

PROF. DANILO CURVELO ARQUITETURA DE UM BLOCKCHAIN

Carteira (wallet)

Conceito abstrato para coleção de chaves privadas e públicas.

2023.2 Prof. **Danilo Curvelo**

Chave privada (no contexto do Bitcoin)

Uma chave secreta que permite que você "gaste" bitcoins da sua carteira.

2023.2 Prof. **Danilo Curvelo**

Chave pública (no contexto do Bitcoin)

Uma chave compartilhada publicamente utilizada para receber bitcoins.

2023.2 PROF. **DANILO CURVELO**

Endereço Bitcoin

SHA256

Gera um hash de 256 bits

RIPEMD

Gera um hash de 160 bits

Base58Check

Codificação em base 58

123456789ABCDEFGHJKLMNPQRSTUVWXYZ abcdefghijkmnopqrstuvwxyz

Exclui 0, 0, I, I

Base58

Base	Caracteres
2 (binário)	01
10 (decimal)	0123456789
16 (hexadecimal)	0123456789abcdef
58	123456789ABCDEFGH JKLMN PQRSTUVWXYZabcdefghijk mnopqrstuvwxyz

Base58Check

Endereço Bitcoin

Тіро	Prefixo da versão (hex)	Prefixo resultante em Base58
Endereço Bitcoin	0x00	1
Endereço Bitcoin (testnet)	0x6F	m ou n

* existem ainda outros prefixos. Ex: P2SH

Chave privada(256 bits / 32 bytes):

9B680320758E0E26BEBA32C9576F5D5A99ABB8D899A8B17F405AE96C09B476F8

Chave pública (520 bits / 65 bytes):

0416173A8EE74D83AFCE5C5AFE08CEEE4CFBCA60D719CF4155BDD429FD937EE81 858B28C5A5515EEE06461923B45C1579E29ACF423D9F526D2057D4B6512877B04

SHA256 da chave pública (256 bits / 32 bytes):

FADD7E4B37C823886E1ECD9EDCD17FD5802D0B11850C293E9F777E1CFA24FF03

RIPE160 do SHA256 da chave pública (160 bits / 20 bytes):

D04193B453D5AD087AD1967818DF25922D5C8D13

Endereço bitcoin (Base58Check):

1KzA7GaFQ63u5J5rUHcrn5rGxWAtNyd2FM

ARQUITETURA DE UM BLOCKCHAIN

Formas de representação da chave privada

Tipo	Prefixo	Descrição
Raw	Nenhum	32 bytes
Hex	Nenhum	64 dígitos hex
WIF	5	Codificação Base58Check: Base58 com prefixo de versão 128 (0x80) e checksum de 4 bytes (32 bits)
WIF-compressed	K ou L	Igual a de cima, adicionando o sufixo 0x01 antes de codificar

Uma chave privada WIF é apenas outra maneira de representar sua chave privada original. Se você tiver uma chave privada WIF, sempre poderá convertê-la de volta ao formato original.

2023.2 Prof. **Danilo Curvelo**

Formas de representação da chave privada

Tipo	Exemplo
Raw	1101101001000110101101010110010111110010000
Hex	DA46B559F21B3E955BB1925C964AC5C3B3D72FE1BF37476A104B0E7396027B65
WIF	5KUR9tz4iDTpW2xQkNvJDKyGHYWT9q8LriTLH29Tv8Thiyqvy9A
WIF-compressed	L4Y1cGSsNv1Nf9dZpTkEyQjLU24zRyRQeRyE5i4MoVvrjrr15Koy

As chaves privadas e públicas podem ser representadas em vários formatos diferentes.

Todas essas representações codificam o mesmo número!

PROF. DANILO CURVELO

Carteiras

Para garantir nossa **identidade**, precisamos proteger nossa **chave privada**

Como gerenciamos todas as nossas chaves? com **CARTEIRAS** ou **WALLETS**

ENDEREÇO:

1JJQmRbU9JT9mfxjp756Y MuxV6yksKtbk5

CHAVE PRIVADA:

L1fm3iAFdDHwSD3CZuZmWp54G XpQ6QzUjmrACVfKKE8BkggW99u3

Carteiras

O que carteiras fazem?

Mantém registro de sua chave privada

Armazenam, enviam, recebem e listam transações

Opcionalmente alguma outra funcionalidade

Carteiras

Carteiras não contém bitcoins

Carteiras contém chaves (pares de chaves privada/pública)

Tipos de carteiras:

Não determinísticas

Determinísticas

Tipos de carteiras

Não determinística (tipo 0)

Cada chave é gerada independentemente e aleatoriamente

As chaves não tem nenhuma relação

Carteira também chamada de JBOK (*Just a Bunch Of Keys*)

número aleatório \Rightarrow chave privada \Rightarrow chave pública \Rightarrow endereço

Tipos de carteiras

Determinística baseada em seed (tipo 1)

Contém chaves privadas que derivam de uma semente (seed) comum através de uma função hash

A semente é gerada aleatoriamente, e a partir dela combinada com outros dados são derivadas as chaves privadas

 $seed \Rightarrow chave mestre \Rightarrow chave(s) privada(s) \Rightarrow chave(s) pública(s) \Rightarrow endereço(s)$

A semente é suficiente para recuperar todas as chaves derivadas

Fácil de exportar e importar a carteira

PROF. DANILO CURVELO

Tipos de carteiras

Determinística do tipo HD (tipo 2)

HD = Hierarchical Deterministic

Facilita a derivação das chaves a partir da semente comum (determinística)

Organizadas em formato de árvore (hierárquica)

PROF. **Danilo Curvelo**

HD Wallets: como funcionam?

1. Semente (seed)

Gerar 64 bytes aleatórios

EXEMPLO:

2f9159acc5566abd10925ee1623f433d2c9f6e3aa385c021d6a1022ad06dcd11 f162f3ccab192d4fcd5fea3823a2ed2a9c7f9fffe11bab49be5b28deb7805707

2023.2 Prof. **Danilo Curvelo**

HD Wallets: como funcionam?

2. Chave privada mestra (master private key)

A chave mestra é gerada passando a semente em um função hash (HMAC-SHA512)

EXEMPLO:

2f9159acc5566abd10925ee1623f433d2c9f6e3aa385c021d6a1022ad06dcd11 f162f3ccab192d4fcd5fea3823a2ed2a9c7f9fffe11bab49be5b28deb7805707

PROF. DANILO CURVELO

HD Wallets: como funcionam?

3. Chaves filhas (child keys)

Novas chaves privadas filhas são geradas a partir da HMAC da chave privada estendida

Um índice (*index*) também é incluído cada vez que o processo é repetido, para conseguir criar múltiplas chaves filhas a partir de uma única chave

chave privada: c3752635e82648576fefa4f7a84aa12f1869c2f1ec582fd40551dbf85861a2db

HD Wallets

Formas de carteiras

apps

web-wallets

paper wallets

hardware wallets

brain wallet

Formas de carteiras: apps e webwallets

Smartphone

Desktop

Web

hot wallet

2023.2 Prof. **Danilo Curvelo**

Formas de carteiras: paper wallets

Your public key is: 15tccJdFg2vPWLfoXkfKPd9yEoZi5kNai4
Receive bitcoin to your wallet using your PUBLIC key.

Formas de carteiras: hardware

Hardware

Formas de carteiras: brain wallets

Simplesmente memorize sua chave privada! (em qualquer formato)

L2Skyj3pJK3nc7wgr9afokGL89dPWV3iHQJvZiy2zEwvXDQReAgg

PROF. DANILO CURVELO

Sementes mnemônicas

Comumente seeds são gerada a partir de uma **mnemônica**, ou uma coleção de palavras/frases

Maneira conveniente de memorizar sua chave privada

Não tão seguro pois humanos não são tão aleatórios como pensamos

Existe uma documentação para geração das palavras (BIP-39)

https://github.com/bitcoin/bips/blob/master/bip-0039/english.txt

https://github.com/bitcoin/bips/blob/master/bip-0039/portuguese.txt

hope mouse focus family animal near chest february pipe access sudden please

2023.2 PROF. **Danilo curvelo**

Sementes mnemônicas

hope mouse focus family animal near chest february pipe access sudden please

7f662bb1013a72f20e0c4c3f5320b31b2ea9e836a64f06daa322c10a20d89a4f

Sementes mnemônicas - BIP39

PROF. **DANILO CURVELO**

Carteiras

Melhor prática: não reutilizar endereços

Por que?

Para ninguém conseguir determinar quanto BTC você tem

Comprometer uma chave é independente das outras

Chaves são facilmente (computacionalmente falando) geradas

Software da carteira vai fazer isso!

2023.2 Prof. **Danilo Curvelo**

Endereços em Python

```
@staticmethod
def getWifCompressedPrivateKey(private_key=None):
    # Retorna a chave privada no formato WIF-compressed da chave privada hex.
    if private_key is None:
        private_key = bitcoinlib.random_key()
    return bitcoinlib.encode_privkey(bitcoinlib.decode_privkey((private_key + '01'), 'hex'), 'wif')

@staticmethod
def getBitcoinAddressFromWifCompressed(wif_pkey):
    # Retorna o endereço Bitcoin da chave privada WIF-compressed.
    return bitcoinlib.pubtoaddr(bitcoinlib.privkey_to_pubkey(wif_pkey))
```

