БИБЛИОТЕКА АЛГОРИТМОВ СИЛЬНОГО ИИ.

Алгоритмов автономного оценивания и прогнозирования состояния сложных объектов и процессов на основе интеллектуальной обработки событий в условиях неопределенности и недостоверности данных (промежуточный) RU.CHAБ.00837-01 33 YY

Термины и сокращения

Сложный (технический) объект (сокр. СлО) — искусственно созданный объект, который имеет внутренне присущую ему структуру, может быть разделен на компоненты (элементы), которые связаны друг с другом большим количеством связей различных типов, выполняет несколько функций и функционирование которого связано с внутренней циркуляцией информационных потоков.

Cложный процесс (сокр. Cл Π) – процесс выполнения сложным объектом функций по своему предназначению.

Состояние (сложного объекта или процесса) — совокупность значений характеристик, которыми обладает сложный объект или процесс, в данный момент времени. Характеристики могут быть количественными (параметры) и качественными.

Оценивание состояния — последовательность действий, целью которой является определение значений характеристик сложного объекта или процесса в текущий или в прошедшие моменты времени с требуемыми точностью и достоверностью.

Прогнозирование состояния — последовательность действий, целью которой является определение значений характеристик сложного объекта или процесса в будущие моменты времени с требуемыми точностью и достоверностью.

Автономное оценивание (прогнозирование) состояния — процедура оценивания (прогнозирования) состояния, выполняемая с максимальным отсутствием вмешательства человека.

ИИ – Искусственный интеллект

Компонент АОПССОП — Компонент автономного оценивания и прогнозирования состояния сложных объектов и процессов

Алгоритм ПОСНД – Алгоритм предварительной обработки сырых и нечетких данных

Алгоритм ИЗСНД — Алгоритм извлечения знаний из собираемых наборов данных

Алгоритм АОТССОП — Алгоритм автономного оценивания текущего состояния сложных объектов и процессов

Алгоритм АПССОП — Алгоритм автономного прогнозирования состояний сложных объектов и процессов

Модуль АОТССОП — Модуль автономного оценивания текущего состояния сложных объектов и процессов

 $Modyль\ A\Pi CCO\Pi-$ Модуль автономного прогнозирования состояний сложных объектов и процессов

HC – нейронная сеть
OC – Операционная система
СлОП – Сложный объект или процесс

1 ОБЩИЕ СВЕДЕНИЯ

Компонент Алгоритмы автономного оценивания и прогнозирования текущего состояния сложных объектов и процессов (сокр. ААОиПТССОиП) библиотеки алгоритмов сильного ИИ RU.CHAБ.00837-01 13 YY разработан в соответствии с мероприятием по выполнении п. 3.9 ТЗ программы ИЦИИ «Сильный ИИ в промышленности» в рамках федерального проекта «Искусственный интеллект».

Он предназначен для определения значений характеристик СлО в текущий, прошедшие и будущие моменты времени с требуемыми точностью и достоверностью.

Компонент разработан на языке Python (версия не ниже 3.8) с использованием следующих библиотек: data_classes, gzip, keraskeras, matplotlib,numpy, os, pandas, pickle, sklearn, tensorflow.

Компонент размещен в репозитории по адресу https://github.com/labcomsec/aopssop_lib.

Для его использования необходим интерпретатор Python (версия не ниже 3.8).

2 НАЗНАЧЕНИЕ И УСЛОВИЯ ПРИМЕНЕНИЯ

2.1 Назначение программного компонента

В состав компонента входят 4 алгоритма, реализующие функции сильного ИИ, а именно следующие:

- 1) Алгоритм ПОСНД в части улучшения качества предоставляемых данных и может быть задействован на подготовительной стадии оценивания и прогнозирования состояния;
- 2) Алгоритм ИЗСНД в части построения модели СлО, основанной на знаниях. Алгоритм позволяет извлечь множество знаний, описывающих связи между свойствами СлО и его состояниями;
- 3) Алгоритм АОТССОП в части наличия возможности автоматического извлечения высокоуровневых представлений исходных данных и взаимосвязей между ними. Наличие большого числа гиперпараметров и настраиваемых весов, свойственных для глубоких НС, позволяет с достаточно высокой точностью выявлять закономерности между признаками обрабатываемого объекта и оцениваемой меткой его класса;
- 4) Алгоритм АПССОП в части выполнения автономного прогнозирования состояний СлОП. Наличие большого числа гиперпараметров и настраиваемых весов, свойственных для глубоких нейронных сетей, позволяет с достаточно высоким качеством выявлять закономерности между признаками состояния системы и прогнозировать последующие состояния за заданный отрезок времени.

2.2 Область применения

К направлениям применения интеллектуальных средств оценки и прогнозирования сложных технических объектов и процессов можно отнести различные программы модернизации инфраструктуры предприятия, совершенствования промышленных установок, повышения срока их службы и снижения вероятности возникновения инцидентов на них.

Представленные интеллектуальные автономные алгоритмы позволят на основе имеющихся исторических и статистических данных бизнес-процессов выявлять их некорректные состояния и переходы, связанные в том числе со следующими событиями:

- неправильная настройка оборудования;
- износ отдельных деталей;
- ошибки и неправильное использование различного технического оборудования персоналом;
- злонамеренными воздействиями со стороны внешних или внутренних нарушителей информационной безопасности.

Кроме того, использованием таких алгоритмов будет способствовать определению основных закономерностей и тенденций в дальнейшем ходе индустриальных процессов и прогнозирования дальнейших состояний технических объектов и особенностей, а также характеристик проистекающих в них процессов.

2.3 Функциональные условия применения

Экспериментально обоснованные функциональные условия применения алгоритмов компонента сильного ИИ являются следующими:

- 1) для алгоритма ПОСНД:
- экспериментальный набор данных должен быть разделен на признаки (значения, типы данных, названия) и метки (значения, типы данных, названия);
- экспериментальный набор данных должен содержать только численные данные, т.е. отдельные наборы данных требуют предварительной подготовки для корректной работы алгоритма.
 - 2) для алгоритма ИЗСНД:
- экспериментальный набор данных должен быть разделен на признаки (значения, типы данных, названия) и метки (значения, типы данных, названия);
- экспериментальный набор данных должен содержать только численные данные, т.е. отдельные наборы данных требуют предварительной подготовки для корректной работы алгоритма;
 - 3) для алгоритма АОТССОП:
- оцениваются только числовые параметры состояний СлОП; работа с категориальными характеристиками не поддерживается, если они не были предварительно закодированы в числовые значения;

- для обучения модели используется фиксированный вектор характеристик для каждого состояния СлОП, длина и последовательность характеристик должна быть неизменной для состояния СЛоП в каждый момент времени;
- оценивание с использованием обученной модели осуществляется только для фиксированного вектора характеристик, заложенного в обученную модель;

4) для алгоритма АПССОП:

- прогнозируются только числовые параметры состояний СлОП; работа с категориальными характеристиками не поддерживается, если они не были предварительно закодированы в числовые значения;
- для обучения модели используется фиксированный вектор характеристик для каждого состояния СлОП, длина и последовательность характеристик должна быть неизменной для состояния СЛоП в каждый момент времени;
- прогнозирование с использованием обученной модели осуществляется только для фиксированного вектора характеристик, заложенного в обученную модель;
- прогнозирование с использованием обученной модели осуществляется только на основе текущей или смоделированной последовательности состояний СлОП за промежуток времени, равный длине исторической последовательности, заложенной в обученную модель.

2.4 Технические условия применения

Для использования компонента необходим интерпретатор Python (версия не ниже 3.8) без привязки к ОС.

Техническими средствами являются электронно-вычислительные машины и устройства, которые используются при работе программы, должны иметь минимально необходимые характеристики, представленные в Табл. 4.1.

Таблица 2.4.1 — Минимально необходимые характеристики электронновычислительных машин и устройств для выполнения программы

Тип компьюте ра	Кол-во СРИ х кол-во ядер	Тактовая частота СРU, ГГц	Кол-во GPU х кол-во ядер	Тактовая частота GPU, ГГц	Оператив ная память, Гб	Дисковая память, Гб
Рабочая станция	1 x 8	3.8	1 x 3584	5.505	32	2000

3 ОПИСАНИЕ ПРИКЛАДНЫХ ЗАДАЧ

3.1 Классы решаемых задач

Компонент может быть использован для решения следующих задач (для соответствующих областей):

– для нефтегазовой отрасли: производит оценивание и прогнозирование состояния оборудования для разведки запасов углеводородов, их добычи,

очистки и переработки, логистики и транспортировки нефтепродуктов с использованием магистральных трубопроводов и др.;

- для энергетического сектора: оценивание показателей энергогенерации, стоимостных, аварийности и пр.;
- для транспорта: оценивание логистических процессов с учетом больших объемов накопленных статистических данных и моделирования;
- для промышленного производства снижение сбоев конвейера и вовлеченности персонала в производство;
- для торговли: оценивание и прогнозирование спроса и оборота товаров и услуг;
 - и др.

3.2 Примеры решения задач

Примеры применения конкретных задач с помощью компонента являются следующие.

Пример задачи № 1. Нарастающее прогнозирование тестовой выборки.

Постановка задачи:

В рамках данного примера решается задача прогнозирования на основе данных от системы паровых турбин и гидроаккумулирующих электростанций (набор данных НАІ), а также для данных, описывающих функционирование сервера мостового крана при движении по L-образному пути с различными нагрузками (набор данных DSC). Для прогнозирования берется последний пакет обучающей выборки. Каждый прогнозируемый образец становится элементом нового пакета для последующего прогнозирования. Графическое представление отражено на рисунке 3.2.1. Спрогнозированные образцы обозначаются апострофом ('), последовательный процесс прогнозирования образцов – нисходящей зеленой стрелкой. Добавление нового образца к пакету для прогнозирования обозначается серой стрелкой. Прогнозируемый на каждом этапе образец выделен зеленым. В результате полученная спрогнозированная выборка сравнивается с исходной тестовой выборкой.

Рисунок 3.2.1 – Нарастающее прогнозирование тестовой выборки

Показатели эффективности прогнозирования основаны на вычислении значениями образца (X)длиной N и разницы между реальными (X'). ошибок прогнозируемыми значениями образца Значение прогнозирования должно стремится к 0. Используются следующие показатели – среднеквадратичная ошибка (mean squared error, MSE) и средняя абсолютная ошибка (mean absolute error. MAE):

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (X_i - X_i')^2, \tag{3.2.1}$$

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (X_i - X_i')^2,$$

$$MAE = \frac{1}{N} \sum_{i=1}^{N} (X_i - X_i').$$
(3.2.1)

Показатель точности прогнозирования определяется как:

$$P = 1 - MAE. \tag{3.2.3}$$

Исходные данные:

Для оценки предложенной модели прогнозирования состояний использовались наборы данных:

- DSC (Driving Smart Crane with Various Loads) набор данных содержит данные, собранные с сервера мостового крана при движении по Lобразному пути с различными нагрузками (0 кг, 120 кг, 500 кг и 1000 кг). Прикладная задача: оценка работоспособности и надежности системы, выявление неисправностей. Размер: 3,66 МБ. Количество экземпляров: 31 304. Количество признаков: 12.
- HAI (HIL-based Augmented ICS) Security (2022 г.) набор собран на испытательном стенде реалистичной промышленной системы управления,

дополненной симулятором аппаратного обеспечения в контуре, который имитирует выработку электроэнергии с помощью паровых турбин и гидроаккумулирующих электростанций. Прикладная задача: оценка кибербезопасности, выявление атак и аномалий. Размер: 730 МБ. Количество экземпляров: 1 365 602. Количество признаков: 86.

Решение задачи:

Для каждого из экспериментальных наборов данных проводилась следующая предобработка:

- 1) разделении набора на тренировочную и тестовую выборки с соотношением 9:1;
- 2) нормализации выборок с использованием масштабирования значений признаков на отрезок [0, 1];
 - 3) формировании генератора временных рядов.

Модель прогнозирования представляет собой глубокую нейронную сеть с тремя слоями LSTM. Функция активации скрытых слоев — ReLU. Функция активации выходного слоя — сигмоида (sigmoid). Функция оптимизации — adam. Длина исторической последовательности для всех наборов данных и экспериментов составляет 10 образцов.

Результаты решения и их интерпретация:

Для набора данных DSC прогнозирование осуществляет для каждого рабочего цикла отдельно. В таблице 3.2.1 представлены значения показателей эффективности для прогнозирования параметров состояний каждого цикла в результате эксперимента. На рисунке 3.2.2 отображен график прогнозирования значений признаков для цикла 1. Зеленым цветом обозначены реальные значения признаков, оранжевым – прогнозируемые.

Таблица 3.2.1 – Показатели эффективности прогнозирования для

каждого цикла DSC (нарастающее прогнозирование)

№ цикла	Число образцов	Размер обучающих данных	Размер тестовых данных	MSE	MAE	P
1	2490	2241	249	0,035	0,109	0,891
2	3709	3338	371	0,104	0,211	0,789
3	2754	2479	275	0,171	0,255	0,745
4	3671	3304	367	0,035	0,102	0,898
5	4115	3704	411	0,131	0,208	0,792
6	7189	6470	719	0,129	0,204	0,796
7	3213	2892	321	0,148	0,236	0,764
8	4162	3746	416	0,160	0,274	0,726
		Средняя точно	сть прогнозиро	вания по вс	ем циклам	0,800

Рисунок 3.2.2 – Признаки тестовой выборки для цикла 1 DSC (нарастающее прогнозирование)

Средняя точность прогнозирования по всем циклам составляет 80%. Так как в экспериментах используется масштабирование признаков на отрезок [0, 1], то и значение ошибок прогнозирования лежит в этом же отрезке, где минимальное значение ошибки 0, а максимальное – 1. Эксперимент показывает более высокие значения ошибок, так как из-за характера эксперимента ошибка прогнозирования накапливается с каждым новым зависимости прогнозирования этапом образца из-за нового При прогнозирования предыдущих. этом самую высокую прогнозирования имеют признаки BridgePosition, TrolleyPosition, LoadTare и HoistPosition.

Размер обучающей выборки для набора данных НАІ составляет 903 962 образца, тестовой выборки – 100 440 образца. Результаты общей оценки эффективности на тестовой выборке составили: MSE = 0.228, MAE = 0.339; P= 0,66. По сравнению с предыдущим, набор данных НАІ имеет большее количество признаков, общую что влияет на оценку прогнозирования. При этом большая длина прогнозируемых увеличивает накопление ошибки прогнозирования.

Пример задачи № 2. Поэтапное прогнозирование тестовой выборки.<u>Постановка задачи:</u>

В рамках данного примера решается задача поэтапного данных от системы паровых турбин и прогнозирования на основе гидроаккумулирующих электростанций (набор данных НАІ), а также для данных, описывающих функционирование сервера мостового крана при движении по L-образному пути с различными нагрузками (набор данных DSC). Для прогнозирования первого образца берется последний пакет обучающей выборки. Далее на каждом этапе к пакету добавляется образец тестовой выборки. Графическое представление отражено на рисунке 3.2.3. рисунку аналогичны Ошибки прогнозирования Обозначения 3.2.1.

определяются как для каждого признака отдельно, так и в целом для всей последовательности образцов.

Рисунок 3.2.3 – Поэтапное прогнозирование тестовой выборки

Исходные данные:

Аналогичны данным в примере № 1.

Решение задачи:

Параметры модели прогнозирования аналогичны модели в примере №1. В эксперименте образцы прогнозируются независимо друг от друга.

Результаты решения и их интерпретация:

Для набора данных DSC прогнозирование осуществляет для каждого рабочего цикла отдельно. В таблице 3.2.2 представлены значения показателей эффективности для прогнозирования параметров состояний каждого цикла в результате эксперимента. В таблице 3.2.3 представлены значения показателей для прогнозирования каждого признака. На рисунке 3.2.4 отображен график прогнозирования значений признаков для цикла 1. Зеленым цветом обозначены реальные значения признаков, оранжевым – прогнозируемые.

Средняя точность прогнозирования по всем циклам составляет 93,7%. Также можно отметить, что признак LoadTare имеет самую низкую точность прогнозирования. Остальные 11 признаков прогнозируются с точностью выше 90%. Можно отметить, что большое количество значений ошибок прогнозирования близких к 0 и высокая точность прогнозирования, говорит об эффективности алгоритма прогнозирования на наборе данных DSC.

Таблица 3.2.2 – Показатели эффективности прогнозирования для

каждого цикла DSC (поэтапное прогнозирование)

№ цикла	Число образцов	Размер обучающих данных	Размер тестовых данных	MSE	MAE	P
1	2490	2241	249	0,027	0,091	0,909
2	3709	3338	371	0,012	0,076	0,924
3	2754	2479	275	0,006	0,050	0,95
4	3671	3304	367	0,005	0,046	0,954
5	4115	3704	411	0,005	0,048	0,952
6	7189	6470	719	0,026	0,086	0,914
7	3213	2892	321	0,007	0,058	0,942
8	4162	3746	416	0,007	0,052	0,948
	Средн	яя точность пр	огнозирован	ия по всем	и циклам	0,937

Таблица 3.2.3 – Показатели эффективности прогнозирования каждого признака DSC (поэтапное прогнозирование)

						На	азвание	призна	ка				
№ цикла	Показатель	BridgeSpeedFeedback	HoistMotorTorque	BridgePosition	BridgeRopeAngle	BridgeMotorTorque	HoistSpeedFeedback	LoadTare	HoistPosition	TrolleyMotorTorque	TrolleySpeedFeedback	TrolleyPosition	TrolleyRopeAngle
	MSE	0,003	0,018	0,001	0,027	0,015	0,013	0,213	0,004	0,011	0,006	0,002	0,006
1	MAE	0,041	0,098	0,022	0,113	0,096	0,078	0,371	0,046	0,088	0,043	0,038	0,052
	P	0,959	0,902	0,978	0,887	0,904	0,922	0,629	0,954	0,912	0,957	0,962	0,948
	MSE	0,002	0,011	0,002	0,013	0,015	0,004	0,043	0,011	0,008	0,001	0	0,036
2	MAE	0,025	0,092	0,036	0,102	0,073	0,058	0,178	0,092	0,062	0,018	0,01	0,164
	P	0,975	0,908	0,964	0,898	0,927	0,942	0,822	0,908	0,938	0,982	0,99	0,836
	MSE	0,006	0,004	0,003	0,01	0,012	0,004	0,004	0,002	0,008	0,004	0,002	0,012
3	MAE	0,068	0,035	0,051	0,065	0,074	0,037	0,042	0,034	0,054	0,032	0,037	0,074
	P	0,932	0,965	0,949	0,935	0,926	0,963	0,958	0,966	0,946	0,968	0,963	0,926
	MSE	0,001	0,009	0,001	0,004	0,005	0,003	0,031	0,002	0,004	0,0004	0,0002	0,005
4	MAE	0,022	0,086	0,02	0,035	0,057	0,039	0,152	0,025	0,042	0,016	0,014	0,039
	P	0,978	0,914	0,98	0,965	0,943	0,961	0,848	0,975	0,958	0,984	0,986	0,961
_	MSE	0,003	0,006	0,002	0,008	0,012	0,001	0,006	0,003	0,013	0,002	0,001	0,009
5	MAE	0,044	0,045	0,037	0,062	0,082	0,02	0,046	0,038	0,079	0,031	0,02	0,068
	P	0,956	0,955	0,963	0,938	0,918	0,98	0,954	0,962	0,921	0,969	0,98	0,932
	MSE	0,004	0,011	0,003	0,016	0,012	0,022	0,006	0,199	0,013	0,014	0,006	0,009
6	MAE	0,041	0,067	0,045	0,104	0,06	0,069	0,047	0,307	0,089	0,08	0,055	0,069
-	P	0,959	0,933	0,955	0,896	0,94	0,931	0,953	0,693	0,911	0,92	0,945	0,931
_	MSE	0,008	0,006	0,004	0,017	0,014	0,003	0,006	0,006	0,005	0,001	0,003	0,014
7	MAE	0,054	0,06	0,042	0,094	0,072	0,043	0,058	0,07	0,042	0,026	0,033	0,096
	P	0,946	0,94	0,958	0,906	0,928	0,957	0,942	0,93	0,958	0,974	0,967	0,904
	MSE	0,002	0,006	0,001	0,017	0,011	0,002	0,013	0,001	0,008	0,004	0,001	0,021
8	MAE	0,033	0,049	0,024	0,092	0,06	0,027	0,084	0,025	0,048	0,054	0,023	0,104
	P	0,967	0,951	0,976	0,908	0,94	0,973	0,916	0,975	0,952	0,946	0,977	0,896
TOT	Средняя иность по м циклам	0,959	0,933	0,965	0,916	0,928	0,953	0,877	0,920	0,937	0,962	0,971	0,917

Рисунок 3.2.4 – Признаки тестовой выборки для цикла 1 DSC (поэтапное прогнозирование)

Размер обучающей выборки для набора данных НАІ составляет 903 962 образца, тестовой выборки — $100\,440\,$ образца. Результаты общей оценки эффективности на тестовой выборке: MSE=0,147, MAE=0,238, P=0,762. В таблице $3.2.4\,$ можно отметить, что значение точности прогнозирования для разных признаков лежит в диапазоне от 55% до 100%.

Таблица 3.2.4 – Показатели эффективности прогнозирования каждого признака HAI (поэтапное прогнозирование)

Признак	MSE	MAE	P	Признак	MSE	MAE	P
P1_B2004	0,353	0,448	0,552	P1_TIT03	0,105	0,254	0,746
P1_B2016	0,114	0,268	0,732	P2_24Vdc	0,133	0,292	0,708
P1_B3004	0,172	0,313	0,687	P2_ATSW_Lamp	0,015	0,024	0,976
P1 B3005	0,272	0,411	0,589	P2_AutoGO	0,006	0,014	0,986
P1_B4002	0,276	0,404	0,596	P2_AutoSD	0,137	0,269	0,731
P1_B4005	0,379	0,459	0,541	P2_Emerg	0,000001	0,0005	1,000
P1_B400B	0,359	0,437	0,563	P2_MASW	0,014	0,023	0,977
P1_B4022	0,172	0,315	0,685	P2_MASW_Lamp	0,011	0,019	0,981
P1_FCV01D	0,284	0,419	0,581	P2_ManualGO	0,012	0,021	0,979
P1_FCV01Z	0,282	0,417	0,583	P2_ManualSD	0,221	0,439	0,561
P1_FCV02D	0,191	0,227	0,773	P2_OnOff	0,000001	0,00047	1,000
P1_FCV02Z	0,355	0,413	0,587	P2_RTR	0,000001	0,00048	1,000
P1_FCV03D	0,151	0,293	0,707	P2_SCO	0,423	0,482	0,518
P1_FCV03Z	0,150	0,291	0,709	P2_SCST	0,099	0,250	0,750
P1_FT01	0,150	0,276	0,724	P2_SIT01	0,231	0,320	0,680
P1_FT01Z	0,146	0,285	0,715	P2_TripEx	0,000001	0,00048	1,000
P1_FT02	0,364	0,434	0,566	P2_VIBTR01	0,154	0,319	0,681
P1_FT02Z	0,362	0,440	0,560	P2_VIBTR02	0,143	0,306	0,694
P1_FT03	0,231	0,381	0,619	P2_VIBTR03	0,153	0,317	0,683
P1_FT03Z	0,229	0,373	0,627	P2_VIBTR04	0,128	0,289	0,711
P1_LCV01D	0,128	0,278	0,722	P2_VT01	0,152	0,317	0,683
P1_LCV01Z	0,126	0,277	0,723	P2_VTR01	0,000001	0,000482	1,000
P1_LIT01	0,147	0,289	0,711	P2_VTR02	0,000001	0,000483	1,000
P1_PCV01D	0,132	0,313	0,687	P2_VTR03	0,000001	0,000472	1,000
P1_PCV01Z	0,133	0,319	0,681	P2_VTR04	0,000001	0,000482	1,000
P1_PCV02D	0,000001	0,0005	1,000	P3_FIT01	0,035	0,096	0,904
P1_PCV02Z	0,112	0,147	0,853	P3_LCP01D	0,115	0,219	0,781
P1_PIT01	0,126	0,269	0,731	P3_LCV01D	0,212	0,361	0,639
P1_PIT01_HH	0,000	0,000	1,000	P3_LH01	0,456	0,498	0,502
P1_PIT02	0,109	0,181	0,819	P3_LIT01	0,182	0,360	0,640
P1_PP01AD	0,000001	0,00048	1,000	P3_LL01	0,457	0,498	0,502
P1_PP01AR	0,000001	0,00048	1,000	P3_PIT01	0,058	0,107	0,893
P1_PP01BD	0,000001	0,00048	1,000	P4_HT_FD	0,131	0,272	0,728
P1_PP01BR	0,000001	0,00048	1,000	P4_HT_PO	0,218	0,368	0,632
P1_PP02D	0,000001	0,00047	1,000	P4_HT_PS	0,141	0,217	0,783
P1_PP02R	0,000001	0,00048	1,000	P4_LD	0,138	0,293	0,707
P1_PP04	0,442	0,493	0,507	P4_ST_FD	0,161	0,303	0,697
P1_PP04SP	0,294	0,438	0,562	P4_ST_GOV	0,197	0,344	0,656
P1_SOL01D	0,000001	0,000486	1,000	P4_ST_LD	0,198	0,349	0,651
P1_SOL03D	0,000001	0,000484	1,000	P4_ST_PO	0,188	0,335	0,665
P1_STSP	0,000001	0,000486	1,000	P4_ST_PS	0,308	0,464	0,536
P1_TIT01	0,120	0,265	0,735	P4_ST_PT01	0,124	0,266	0,734
P1_TIT02	0,203	0,355	0,645	P4_ST_TT01	0,120	0,265	0,735

Пример задачи № 3. Оценивание тестовой выборки.

В рамках данного примера решается задача оценивания текущего состояния на основе данных от системы паровых турбин и гидроаккумулирующих электростанций (набор данных HAI), а также для данных, описывающих функционирование сервера мостового крана при движении по L-образному пути с различными нагрузками (набор данных DSC).

Постановка задачи:

Для оценки данного алгоритма использовались два набора данных в системе управления паровыми турбинами и движение мостового крана при различных нагрузках.

Исходные данные.

Для оценки предложенной модели прогнозирования состояний использовались наборы данных:

- HAI (HIL-based Augmented ICS) Security (2022 г.) набор собран на испытательном стенде реалистичной промышленной системы управления, дополненной симулятором аппаратного обеспечения в контуре, который имитирует выработку электроэнергии с помощью паровых турбин и гидроаккумулирующих электростанций.
- DSC (Driving Smart Crane with Various Loads) набор данных содержит данные, собранные с сервера мостового крана при движении по L-образному пути с различными нагрузками (0 кг, 120 кг, 500 кг и 1000 кг).

Решение задачи.

Для каждого из экспериментальных наборов данных проводилась следующая предобработка:

- 1) разделении набора на тренировочную и тестовую выборки с соотношением 8:2;
- 2) нормализации выборок с использованием min-max-преобразования. Результаты решения и их интерпретация.

В таблице 3.2.5 представлены показатели точности для алгоритма АОТССОП. Отметим, что значение этого показателя, вычисленное для обучающей выборки, превосходит значение этого же показателя для тестовой выборки.

Таблица 3.2.5 – Показатели точности для алгоритма АОТССОП

Набор данных (фа	йл)	Количество	Выборка	Значение точности
		классов		(accuracy)
HAI	(hai-	2	Обучающая (80%)	99.36%
20.07/test1.csv.gz)				
HAI	(hai-	2	Тестовая (20%)	99.33%
20.07/test1.csv.gz)				
HAI	(hai-	2	Обучающая (80%)	99.57%
21.03/test1.csv.gz)				
HAI	(hai-	2	Тестовая (20%)	99.49%
21.03/test1.csv.gz)				
DSC (combined.csv	7)	8	Обучающая (80%)	81.96%
DSC (combined.csv	<i>I</i>)	8	Тестовая (20%)	81.28%

На рисунках 3.2.5 - 3.2.7 представлены графики, отражающие зависимость точности определения класса объекта от номера эпохи обучения для разных наборов данных.

0.995

Рис. 3.2.5 — Точность обучения НС на наборе данных НАІ (hai-20.07/test1.csv.gz)

Рис. 3.2.6 — Точность обучения НС на наборе данных НАІ (hai-21.03/test1.csv.gz)

Рис. 3.2.7 – Точность обучения НС на наборе данных DSC (combined.csv)

Пример задачи № 4.

Постановка задачи:

В рамках данного примера решается задача прогнозирования на основе предобработанных алгоритмом ИЗСНД данных от системы паровых турбин и гидроаккумулирующих электростанций (набор данных HAI), а также для данных, описывающих функционирование сервера мостового крана при движении по L-образному пути с различными нагрузками (набор данных DSC). Для прогнозирования берется последний пакет обучающей выборки. Далее на каждом этапе к пакету добавляется образец тестовой выборки.

Исходные данные:

Аналогичны данным в примерах № 1 и № 2.

Решение задачи:

Перед обучением модели и перед прогнозированием данные проходят дополнительную предобработку с использованием алгоритма ИЗСНД. Параметры модели прогнозирования аналогичны модели в примерах №1 и №2. В эксперименте образцы прогнозируются как независимо друг от друга оценка), так путем нарастающего прогнозирования (априорная И (апостериорная оценка). Производится оценка потерь обучения модели МSE (формула 3.2.1), оценка качества прогнозирования путем вычисления MSE, МАЕ, Р (формулы 3.2.1-3.2.3), а также оценка ресурсопотребления в виде вычисления временных затрат (Т), средней доли загрузки процессора (СРU) и средняя загрузка памяти (RAM). Оценка ресурсопотребления проводилась при следующих параметрах системы: процессор – Intel(R) Core(TM) i5-8250U, CPU 1.60GHz, 4 ядра; оперативная память -8,00 ГБ.

Результаты решения и их интерпретация:

Для набора данных DSC прогнозирование осуществляет для каждого рабочего цикла отдельно. В таблице 3.2.6 представлено сравнение результатов оценки качества прогнозирования параметров состояний каждого цикла DSC в результате эксперимента без использования алгоритма ИЗСНД и с использованием данного алгоритма. Обозначения для алгоритма ИЗСНД:

красный шрифт — оценка параметра ухудшилась, зеленый шрифт — оценка параметра улучшилась.

Таблица 3.2.6 – Показатели оценки комбинированного применения

алгоритмов ИЗСНД и АППСОП для каждого цикла DSC

		изсид і	ı AIIIIC	Эн дл	ı					
Экспе	№	Размер	Число	ИЗС	Оце	нка каче	ства			ребления
римен	цик-	т азмер данных	призна-	нас НД	MSE	MAE	1-MAE	Время	CPU	RAM
T	ла	Aumen	ков			1,1112	1 1/1112	(сек)	ср., %	ср., Мб
	1	2241	12	_	0,0203	_	_	71,054	28,448	397,895
-	1	22-11	10	+	0,0227	_	_	59,336	27,601	430,416
НИУ	2	3338	12	_	0,0145	_	_	90,645	28,053	464,089
Обучение модели прогнозирования		3336	10	+	0,0113	_	_	124,66	25,976	468,629
ирс	3	3304	12	_	0,0087	_	_	72,69178	26,836	476,184
103	J	3304	10	+	0,005	_	_	66,251	26,864	472,858
OLI	4	3671	12	_	0,0104	_	_	87,022	27,387	433,419
dп	4	3071	10	+	0,0753	_	_	87,407	26,48	438,342
эли	5	3704	12	_	0,0075	_	_	96,970	27,148	442,113
оде	3	3704	10	+	0,0028	ı	_	96,484	26,939	468,105
W W	(6470	12	_	0,0059	_	_	169,7033	27,779	470,072
ние	6	6470	10	+	0,0054	_	_	167,98	27,377	478,016
/че	7	2002	12	_	0,0079	_	_	76,362	27,48	473,832
)6y	7	2892	10	+	0,0082	_	_	75,537	27,608	506,011
	0	27.46	12	_	0,009	_	-	98,522	28,055	500,94
	8	3746	10	+	0,0007	_	_	100,87	27,486	505,997
			12	_	0,0266	0,0933	0,9067	11,273	13,58	368,36
ပ	1	249	10	+	0,038	0,038	0,962	10,962	13,278	434,453
Априорная оценка модели прогнозирования на тестовой выборке			12	_	0,0146	0,0896	0,9104	33,345	11,892	405,854
1 516c	2	371	10	+	0,0081	0,0081	0,9919	25,426	11,693	415,93
ели і́ вы			12	_	0,0059	0,0490	0,951	11,604	13,283	421,201
10Д Воў	3	275	10	+	0,0046	0,0046	0,9954	11,717	13,263	416,677
a N			12		0,0052	0,0486	0,9513	16,006	13,318	435,27
Априорная оценка модели эзирования на тестовой вы	4	367	10	+	0,1771	0,1771	0,8229	15,366	13,284	440,149
оцо			12		0,0059	0,0491	0,9509	17,361	13,067	438,092
пая	5	411	10	+	0,0032	0,0022	0,9978	17,896	13,272	427,209
эрн			12		0,0295	0,0918	0,9082	30,759	13,198	441,597
риоп	6	719	10	+	0,0240	0,0240	0,9062	30,146	13,024	461,722
Ап			12	_	0,0240	0,0580	0,9419	13,485	13,193	472,854
РГН	7	321	10	+	0,0071	0,0380	0,9419	13,483	13,193	472,834
прс			12		0,0037	0,0592	0,9407	19,348		484,581
	8	416	10				0,9407	17,598	13,453	485,061
				+	0,0006	0,0006			13,411	
	1	249	12		0,0412	0,13	0,87	10,280	12,995	381,935
эке			10	+	0,038	0,038	0,9620	10,354	13,188	404,376
Апостериорная оценка модели прогнозирования на тестовой выборке	2	371	12 10		0,1080	0,2043	0,7957	39,794	12,065	419,013
Апостериорная оценка модели нозирования на тестовой выбо				+	0,0081	0,0081	0,9919	15,96	13,076	426,117
МО	3	275	12		0,1213	0,2224	0,7775	11,296	13,029	430,552
нка гов			10	+	0,0046	0,0046	0,9954	11,171	13,46	399,583
LICE	4	367	12	_	0,124	0,1980	0,8019	15,495	13,661	401,438
я о			10	+	0,1771	0,1771	0,8229	15,185	13,544	421,591
)на: 1я г	5	411	12	_	0,1414	0,2339	0,7661	17,004	13,521	427,549
пор	="		10	+	0,0022	0,0022	0,9978	17,045	13,585	429,621
cpi	6	719	12	_	0,1239	0,1900	0,81	29,154	13,345	444,546
ост 3иŗ		, 17	10	+	0,0240	0,0240	0,976	29,120	13,269	450,244
Ап	7	321	12	_	0,0637	0,1413	0,8587	13,233	13,206	480,621
Iod	,	221	10	+	0,0057	0,0057	0,9943	13,173	13,244	473,754
	8	416	12	_	0,0563	0,1366	0,8634	17,093	13,3	483,439
	J	710	10	+	0,0006	0,0006	0,9993	17,406	13,396	487,892

В таблице 3.2.7 представлено сравнение результатов оценки качества прогнозирования параметров состояний на наборе данных НАІ в результате эксперимента без использования алгоритма ИЗСНД и с использованием данного алгоритма.

Таблица 3.2.7 — Показатели оценки комбинированного применения алгоритмов ИЗСНД и АППСОП для НАI

	Danson	Число	ИЗС	Оце	нка каче	ства	Оценка р	есурсопот	ребления
Эксперимент	Размер данных	призна- ков	нд	MSE	MAE	1-MAE	Время (сек)	CPU cp., %	RAM ср., Мб
Обучение модели	74520	86	-	0,0035	I	_	2602,34	33,808	166,525
прогнозирова- ния	74320	82	+	0,0021	-	-	2727,34	34,912	213,998
Априорная оценка модели прогнозирова-	1000	86	-	0,0036	0,0352	0,9648	61,73	13,74	264,44
ния на тестовой выборке		82	+	0,0122	0,0122	0,9878	60,81	13,824	446,71
Апостериор- ная оценка модели	1000	86	_	0,0626	0,129	0,871	66,91	13,343	314,685
прогнозирова- ния на тестовой выборке		82	+	0,0122	0,0122	0,9878	55,93	14,046	470,343

Точность прогнозирования в большинстве случаев возрастает, в особенности для апостериорной оценки прогнозирования. Также использование алгоритма ИЗСНД часто приводит к уменьшению времени на обучение/прогнозирование, но при этом затрачиваемые ресурсы процессора и памяти могут возрастать.

4 ХАРАКТЕРИСТИКИ ПРОГРАММЫ

4.1 Режимы работы ключевых алгоритмов

Эксперименты по проверке работоспособности и устойчивости результатов работы алгоритмов компонента сильного ИИ приведены далее.

4.1.1 Алгоритм ПОСНД

Для оценки работоспособности и устойчивости алгоритма ПОСНД использовался набор данных — Titanic. Это стандартный набор данных для применения алгоритмов машинного обучения и искусственного интеллекта, позволяющий предсказать выживание пассажира Титаника. Формат данных — csv. Размер файла — 93.08 Кб. Всего 890 строк данных.

В ходе эксперимента выполнялись следующие шаги:

- 1) данные передавались в формате, понятном алгоритму ПОСНД (признаки и метки отдельно, разбиение на значения, названия и типы данных, передача известной информации о типах данных);
- 2) подключался словарь наименований признаков, для которых известен тип данных категориальный или численный;
- 3) выставлялся вес выводов о типах данных признаков в зависимости от задействованного метода;
- 4) выставлялись настройки кластеризации: метод, количество кластеров и итераций;
- 5) выставлялись пороговые значения при анализе информативности;
- б) выставлялись пороговые значения при анализе мультиколлинеарности;
- 7) выставлялись настройки журналирования данных;
- 8) запускался алгоритм коррекции типов данных;
- 9) запускался алгоритм устранения неполноты данных;
- 10) запускался алгоритм анализа информативности признаков;
- 11) запускался алгоритм устранения мультиколлинеарности данных.

При анализе типов данных было установлено:

- тип данных признака «PassengerId» был указан некорректно, изменен с категориального на численный;
- тип данных признака «SibSp» не был указан, изменен на категориальный;
- тип данных признака «Parch» не был указан, изменен на категориальный;
- тип данных признака «LABEL_type» не был указана, изменен на численный.

При устранении неполноты данных было заполнено 177 пустых значений. На это ушло 2 итерации процесса кластеризации.

Неинформативных признаков не было обнаружено.

В результате анализа мультиколлинеарности было обнаружено:

- признак «SibSp» коррелирует с признаком «PassengerId»;
- признак «Age» коррелирует с признаком «Pclass».

Рекомендовано удалить признаки «SibSp» и «Age».

4.1.2 Алгоритм ИЗСНД

Для оценки работоспособности и устойчивости алгоритма ИЗСНД использовались наборы данных:

— DSC (Driving Smart Crane with Various Loads) — набор данных содержит данные, собранные с сервера мостового крана при движении по Lобразному пути с различными нагрузками (0 кг, 120 кг, 500 кг и 1000 кг). Прикладная задача: оценка работоспособности и надежности системы,

выявление неисправностей. Размер: 3,66 МБ. Количество экземпляров: 31 304. Количество признаков: 12.

— HAI (HIL-based Augmented ICS) Security (2022 г.) — набор собран на испытательном стенде реалистичной промышленной системы управления, дополненной симулятором аппаратного обеспечения в контуре, который имитирует выработку электроэнергии с помощью паровых турбин и гидроаккумулирующих электростанций. Прикладная задача: оценка кибербезопасности, выявление атак и аномалий. Размер: 730 МБ. Количество экземпляров: 1 365 602. Количество признаков: 86.

В ходе эксперимента для каждого из наборов данных выполнялись следующие шаги:

- 1) определение размера набора данных в оперативной памяти до применения алгоритма ИЗСНД;
- 2) предобработка набора с помощью алгоритма ИЗСНД;
- 3) определение размера набора данных в оперативной памяти после применения алгоритма ИЗСНД;
- 4) разбиение предобработанных и не предобработанных версий набора на обучающие и тренировочные подвыборки в соотношении 70 к 30;
- 5) обучение классификатора на основе случайного леса на тренировочной подвыборке не предобработанной версии набора;
- 6) расчет времени обучения классификатора на основе случайного леса на тренировочной подвыборке не предобработанной версии набора;
- 7) обучение классификатора на основе случайного леса на тренировочной подвыборке предобработанной версии набора;
- 8) расчет времени обучения классификатора на основе случайного леса на тренировочной подвыборке предобработанной версии набора.

Результаты экспериментов представлены в таблицах 4.1.2.1 и 4.1.2.2.

Таблица 4.1.2.1 – Оценка работоспособности и устойчивости алгоритма ИЗСНД с помощью случайного леса на наборе данных DSC

TIME THE STEEL STEEL STEEL	mere men ma maeepe Aus	1112111 2 0 0
	Размер набора в	Время обучения
	оперативной памяти, МВ	классификатора, мс
RandomForestClassifier	3.3	5.96
RandomForestClassifier +	1.6	5.01
IZDAP preprocessing	1.0	3.01

Таблица 4.1.2.2 – Оценка работоспособности и устойчивости алгоритма ИЗСНД с помощью случайного леса на наборе данных НАІ

	Размер набора в оперативной памяти, МВ	Время обучения классификатора, мс
RandomForestClassifier	55.6+	13.6
RandomForestClassifier + IZDAP preprocessing	7.1+	1.2

Согласно результатам, представленным в Таблицах 4.1.2.1 и 4.2.3.2, практические эксперименты на типовом ПК для рассмотренных примеров

данных показывают оптимизацию объема вычислительных ресурсов, необходимых для обучения классификаторов при применении ИЗСНД. Таким образом, данный алгоритм может иметь практическое применение и для реальных задач.

4.1.3 Алгоритм АОТССОП

Эксперимент № 1.

Исходные данные:

Для оценки предложенной модели прогнозирования состояний использовались наборы данных:

- HAI (HIL-based Augmented ICS) Security (2022 г.) набор собран на испытательном стенде реалистичной промышленной системы управления, дополненной симулятором аппаратного обеспечения в контуре, который имитирует выработку электроэнергии с помощью паровых турбин и гидроаккумулирующих электростанций.
- DSC (Driving Smart Crane with Various Loads) набор данных содержит данные, собранные с сервера мостового крана при движении по Lобразному пути с различными нагрузками (0 кг, 120 кг, 500 кг и 1000 кг).

Оценка устойчивости данного алгоритма выполняется следующим образом. К признакам набора данных случайным образом добавляется шум, величина которого не превышает 30% от величины размаха в значениях признаков. Сгенерированной записи присваивается метка класса, которая соответствует исходной записи (до добавления искажений).

Результаты эксперимента:

Результаты оценки устойчивости алгоритма оценки состояния на наборе HAI составляют 96.56%, а на наборе данных DSC 96.84%. При этом максимальное потребление памяти составляет 208 МБ (оценка этого показателя ресурсопотребления выполнялась при помощи пакета tracemalloc).

Результаты экспериментальных исследований алгоритма сильного ИИ АОТССОП для наборы данных НАІ и DSC, характеризующие его ресурсопотребление, представлены в Таблице 4.1.4.1. Эксперименты проводились на CPU Intel(R) Core(TM) i5-3210M (2.50GHz) с 4 ядрами и 4 Гб памяти.

Согласно результатам эксперимента (см. Таблицу 4.1.3.1) практические эксперименты на типовом ПК для рассмотренных примеров данных показывают удовлетворительные значения ресурсопотребления. Таким образом, данный алгоритм может иметь практическое применение и для реальных задач.

Таблица 4.1.3.1 – Ресурсопотребление алгоритма АОТССОП

Набор данных	Эксперимент	Размер	Процесс	Время (сек)	CPU	CPU	CPU	RAM	RAM	RAM
11аоор данных	Эксперимент	данных	процесс		min, %	mean, %	max, %	min, Mb	mean, Mb	max, Mb
			Загрузка набора данных	21.580719	0.0	20.87	242.68	389.26	1158.82	2170.45
			Подготовка модели	0.13265	0.0	6.28	12.55	481.18	491.21	501.24
	Обучение		Обучение	125.365428	0.0	42.97	722.73	639.61	854.14	875.72
			Сериализация	0.0	0.0	0.0	0.0	771.37	771.37	771.37
		233280	Всего	147.896896	0.0	41.79	722.73	389.26	879.63	2170.45
	A	233260	Загрузка набора данных	20.362066	0.0	26.6	217.03	388.74	1177.99	2133.68
	Априорная оценка на		Подготовка модели	0.101993	47.12	98.14	149.15	528.68	532.88	537.09
HAI	обучающей		Десериализация	0.0	13.32	13.32	13.32	727.07	727.07	727.07
	выборке		Тестирование	12.850455	0.0	31.45	432.3	727.08	905.57	987.61
	выоорке		Всего	34.905482	0.0	36.12	432.3	388.74	1012.83	2133.68
			Загрузка набора данных	20.807359	0.0	26.91	265.98	382.59	1170.25	2216.57
	Апостериорная оценка на тестовой выборке	58320	Подготовка модели	0.219451	10.88	12.95	15.97	491.64	501.63	509.36
			Десериализация	0.0	14.28	14.28	14.28	704.24	704.24	704.24
			Тестирование	3.956152	0.0	30.07	181.32	704.25	757.79	769.44
			Всего	26.417068	0.0	34.47	265.98	382.59	1030.34	2216.57
			Загрузка набора данных	0.475079	0.0	17.92	48.77	388.63	398.35	412.95
			Подготовка модели	0.0	0.0	0.0	0.0	396.78	396.78	396.78
	Обучение		Обучение	14.754938	0.0	57.48	783.12	417.95	457.76	463.24
			Сериализация	0.0	35.55	35.55	35.55	460.42	460.42	460.42
		25042	Всего	15.741302	0.0	33.84	783.12	283.5	455.58	463.24
	A ====================================	23042	Загрузка набора данных	0.472925	20.3	59.55	175.15	393.5	406.18	427.61
	Априорная		Подготовка модели	0.0	10.07	10.07	10.07	402.12	402.12	402.12
DSC	оценка на обучающей		Десериализация	0.0	44.35	44.35	44.35	436.11	436.11	436.11
	выборке		Тестирование	1.674084	0.0	51.15	347.35	436.11	447.74	459.6
	выооркс		Всего	2.780305	0.0	15.56	347.35	393.5	436.82	459.6
			Загрузка набора данных	0.458326	0.0	7.36	16.7	392.38	403.69	422.37
	Апостериорная		Подготовка модели	0.0	0.0	0.0	0.0	401.2	401.2	401.2
	оценка на	6261	Десериализация	0.0	16.85	16.85	16.85	435.0	435.0	435.0
	тестовой выборке		Тестирование	0.528282	0.0	22.99	28.43	435.01	441.85	446.99
			Всего	1.532124	0.0	23.23	38.33	392.38	426.82	446.99

4.1.4 Алгоритм АПССОП

Эксперимент № 1.

Исходные данные:

Для оценки предложенной модели прогнозирования состояний использовались наборы данных:

- DSC (Driving Smart Crane with Various Loads) набор данных содержит данные, собранные с сервера мостового крана при движении по Lобразному пути с различными нагрузками (0 кг, 120 кг, 500 кг и 1000 кг). Размер: 3,66 МБ. Количество экземпляров: 31 304. Количество признаков: 12.
- HAI (HIL-based Augmented ICS) Security (2022 г.) набор собран на испытательном стенде реалистичной промышленной системы управления, дополненной симулятором аппаратного обеспечения в контуре, который имитирует выработку электроэнергии с помощью паровых турбин и гидроаккумулирующих электростанций. Размер: 730 МБ. Количество экземпляров: 1 365 602. Количество признаков: 86.

Оценка устойчивости алгоритма прогнозирования. К исходным данным добавляется случайный шум, не превосходящий 30% от величины размаха в значениях признаков. Полученную последовательность обозначим *Z*. Для прогнозирования первого образца берется последний пакет обучающей выборки. Далее на каждом этапе к пакету добавляется образец тестовой выборки. Образцы прогнозируются независимо друг от друга.

Пусть результат прогнозирования входной последовательности -X, а результат прогнозирования зашумленной последовательности -Z. Показатель устойчивости определяется следующим образом:

$$S = 1 - \frac{1}{N} \sum_{i=1}^{N} (X_i' - Z_i'). \tag{4.1.4.1}$$

Результаты эксперимента:

Результаты оценки устойчивости алгоритма прогнозирования на наборе DSC представлены в таблице 4.1.4.1.

Оценка устойчивости алгоритма прогнозирования на НАІ продемонстрировала показатель устойчивости в 89,6%. На рисунке 4.1.4.1 показана разница между средней абсолютной ошибкой прогнозирования (МАЕ) для признаков набора данных НАІ для входных данных (initial, синий) и зашумленных данных (noised, оранжевый).

Интерпретация результатов:

На наборе данных DSC получены значения показателя устойчивости выше 95,9%. На наборе данных HAI устойчивость составила 89,6%. Соответственно, алгоритм прогнозирования демонстрирует высокую устойчивость к зашумлению данных

Таблица 4.1.4.1 – Оценка устойчивости алгоритма прогнозирования на DSC

Призиом				№ ци	кла			
Признак	1	2	3	4	5	6	7	8
BridgeSpeedFeedback	0,990	0,989	0,982	0,984	0,977	0,978	0,976	0,995
HoistMotorTorque	0,996	0,991	0,996	0,984	0,966	0,945	0,974	0,993
BridgePosition	0,986	0,984	0,973	0,995	0,974	0,970	0,968	0,997
BridgeRopeAngle	0,998	0,990	0,996	0,984	0,991	0,961	0,996	0,997
BridgeMotorTorque	0,992	0,985	0,988	0,986	0,984	0,981	0,984	0,998
HoistSpeedFeedback	0,989	0,983	0,994	0,992	0,987	0,983	0,986	0,998
LoadTare	0,986	0,990	0,988	0,872	0,977	0,913	0,970	0,992
HoistPosition	0,983	0,978	0,987	0,950	0,980	0,904	0,956	0,995
TrolleyMotorTorque	0,994	0,993	0,987	0,993	0,973	0,973	0,980	0,997
TrolleySpeedFeedback	0,994	0,994	0,987	0,977	0,981	0,973	0,982	0,996
TrolleyPosition	0,997	0,997	0,994	0,994	0,987	0,973	0,988	0,998
TrolleyRopeAngle	0,999	0,997	0,996	0,981	0,995	0,956	0,991	0,997
Общая оценка	0,992	0,989	0,989	0,974	0,981	0,959	0,979	0,996

Рисунок 4.1.4.1 – Ошибка прогнозирования для входных и зашумленных данных

Эксперимент № 2.

Исходные данные:

HAI (HIL-based Augmented ICS) Security (2022 г.) — набор собран на испытательном стенде реалистичной промышленной системы управления, дополненной симулятором аппаратного обеспечения в контуре, который имитирует выработку электроэнергии с помощью паровых турбин и гидроаккумулирующих электростанций. Размер: 730 МБ. Количество экземпляров: 1 365 602. Количество признаков: 86.

В эксперименте рассчитывается оценка влияния длины исторической последовательности (L) на качество прогнозирования. Значение длины варьировалось в промежутке от 10 до 60 секунд с шагом в 1 секунду.

Результаты эксперимента:

На рисунке 4.1.4.2 показан график зависимости между длины исторической последовательности и среднеквадратической ошибкой при обучении модели прогнозирования (loss = MSE).

Рисунок 4.1.4.2 — Зависимость длины исторической последовательности на прогнозирование

Интерпретация результатов:

Можно отметить, что с ростом длины исторической последовательности возрастает значение ошибки прогнозирования, следовательно, уменьшается точность. Оптимальное значение данного параметра может быть выбрано как экспериментально, так и экспертно, при этом отдавая предпочтение малым значениям.

Результаты экспериментальных исследований алгоритма сильного ИИ АПССОП для наборы данных НАІ и DSC, характеризующие его ресурсопотребление, представлены в Таблице 4.1.4.1. Эксперименты проводились на CPU Intel(R) Core(TM) i5-8250U (1.60GHz) с 4 ядрами и 8 Гб памяти.

Согласно результатам эксперимента (см. Таблицу 4.1.4.2) практические эксперименты на типовом ПК для рассмотренных примеров данных показывают удовлетворительные значения ресурсопотребления. Таким образом, данный алгоритм может иметь практическое применение и для реальных задач.

Таблица 4.1.4.2 – Ресурсопотребление алгоритма АПССОП

Набор		Размер	Произво		CPU	CPU	CPU	RAM	RAM	RAM
данных	Эксперимент	данных	Процесс	Время (сек)	min, %	mean, %	max, %	min, Mb	mean, Mb	max, Mb
			Предобработка	16.719511	0.0	4.538	36.62	430.83	843.491	1632.25
			Нормализация	2.54774	0.0	6.99	36.62	770.95	1201.933	1713.73
	Обучение		Подготовка модели	0.886559	0.0	3.271	14.55	966.88	990.601	1011.51
			Обучение	17160.40042	0.0	19.408	130.21	789.75	1151.858	1429.19
		903 962	Всего	17180.82408	0.0	19.392	130.21	430.83	1151.566	1713.73
		903 902	Предобработка	18.448307	0.0	8.303	18.9	463.22	954.106	1611.06
	A		Нормализация	3.807075	0.0	7.344	26.18	320.22	798.48	1505.45
	Априорная оценка на обучающей выборке		Подготовка модели	1.22841	0.0	2.051	12.43	1047.46	1074.234	1096.5
	обучающей выборке		Прогнозирование	41999.65319	0.0	8.212	104.16	397.42	986.191	3324.39
HAI			Всего	42029.95966	0.0	8.211	104.16	320.22	986.281	3324.39
паі			Предобработка	18.347647	8.88	12.342	14.34	310.29	804.836	1979.23
	A		Нормализация	1.502499	12.43	12.499	12.54	1188.11	1723.589	2051.38
	Априорная оценка на	100 440	Подготовка модели	206.736952	4.78	15.177	50.35	1454.59	1776.846	3466.7
	тестовой выборке		Прогнозирование	5024.11777	0.0	13.39	37.29	25.69	308.007	818.32
			Всего	5344.648196	0.0	13.386	50.35	25.69	310.446	3466.7
	Апостериорная оценка на тестовой выборке		Предобработка	18.335562	0.0	12.289	24.41	376.83	870.611	1991.75
			Нормализация	1.108996	0.0	6.028	14.06	1045.7	1687.96	2226.15
			Подготовка модели	297.478142	0.0	5.619	12.54	52.07	1960.586	5029.42
			Прогнозирование	4299.914898	0.0	7.847	104.16	58.65	377.946	851.34
			Всего	4617.821497	0.0	7.864	104.16	52.07	380.635	5029.42
			Подготовка модели	0.231863	5.36	10.097	12.5	293.9	299.913	303.19
	Обучение		Обучение	72.044263	6.24	28.319	51.96	310.91	391.27	396.6
		2241	Всего	73.150629	5.36	28.21	51.96	283.5	390.684	396.6
	A ====================================	2241	Подготовка модели	0.222437	8.96	11.31	12.54	400.63	400.727	400.92
	Априорная оценка на обучающей выборке		Прогнозирование	111.524251	0.0	13.13	26.88	371.39	380.882	412.22
DSC	обучающей выборке		Всего	112.18374	0.0	13.11	26.88	371.39	380.968	412.22
(цикл 1)	A ====================================		Подготовка модели	0.351068	0.0	10.71	12.6	380.11	380.627	381.72
	Априорная оценка на тестовой выборке		Прогнозирование	12.498611	0.0	7.337	36.62	381.95	385.726	387.05
	тестовой выборке	249	Всего	13.073106	0.0	7.482	36.62	371.95	385.487	387.05
	A —	249	Подготовка модели	0.218415	0.0	4.168	12.54	388.34	388.373	388.39
	Апостериорная оценка		Прогнозирование	11.071393	0.0	4.818	26.88	382.91	387.392	393.14
	на тестовой выборке		Всего	11.514294	0.0	4.793	26.88	382.91	387.417	393.14
Dec			Подготовка модели	0.221013	0.0	6.947	12.6	388.36	388.399	388.43
DSC (цикл 2)	Обучение	3338	Обучение	107.427979	0.0	19.425	104.16	388.43	440.977	446.48
(цикл 2)			Всего	107.810892	0.0	19.382	104.16	382.98	440.808	446.48

	Априорная оценка на		Подготовка модели	0.110705	8.96	10.73	12.5	445.82	445.825	445.83
	обучающей выборке		Прогнозирование	196.027847	0.82	13.319	25.09	336.01	365.998	450.42
			Всего	196.466187	0.82	13.312	25.09	336.01	366.185	458.97
	Априорная оценка на	371	Подготовка модели	0.353088	12.4	12.481	12.6	346.08	347.286	350.21
	тестовой выборке		Прогнозирование	16.376506	0.0	6.783	25.09	350.31	351.377	352.09
			Всего	16.936009	0.0	6.96	25.09	339.16	351.257	355.49
	Апостериорная оценка		Подготовка модели	0.296208	0.0	7.973	12.53	352.34	352.644	353.3
	на тестовой выборке		Прогнозирование	16.047045	0.0	4.586	23.3	334.46	340.012	358.46
			Всего	16.568689	0.0	4.679	23.3	334.46	340.403	365.05
	Обучение	2479	Подготовка модели	0.110738	0.0	9.996	13.03	342.67	342.75	342.77
			Обучение	67.637323	0.0	20.1	104.16	342.77	390.432	392.74
			Всего	67.942355	0.0	20.057	104.16	334.61	390.253	392.74
	Априорная оценка на		Подготовка модели	0.219449	9.3	12.211	13.03	392.1	392.112	392.17
	обучающей выборке		Прогнозирование	111.222651	0.0	7.401	73.24	361.56	372.603	403.53
DSC			Всего	111.568874	0.0	7.413	73.24	361.56	372.673	404.71
(цикл 3)	Априорная оценка на	275	Подготовка модели	0.293217	0.0	8.061	13.03	367.39	368.141	370.7
	тестовой выборке		Прогнозирование	12.98918	0.0	5.691	39.06	349.85	351.869	372.29
			Всего	13.390073	0.0	5.76	39.06	349.85	352.432	377.53
	Апостериорная оценка	1	Подготовка модели	0.24734	0.0	6.704	12.6	357.06	357.408	361.18
	на тестовой выборке		Прогнозирование	11.970286	0.0	4.919	48.83	361.64	364.222	365.66
			Всего	12.366468	0.0	4.975	48.83	350.0	364.076	366.62
	Обучение	3304	Подготовка модели	0.170579	0.0	7.181	13.03	367.39	367.446	367.46
			Обучение	89.950966	0.0	8.076	104.16	344.01	398.343	399.67
			Всего	90.276374	0.0	8.071	104.16	344.01	398.24	399.67
	Априорная оценка на		Подготовка модели	0.115688	12.43	12.485	12.54	400.0	400.0	400.0
	обучающей выборке		Прогнозирование	156.313028	6.25	13.509	26.88	361.07	364.847	402.31
DSC			Всего	156.645599	6.25	13.511	26.88	361.07	364.921	402.31
(цикл 4)	Априорная оценка на	367	Подготовка модели	0.273271	12.4	12.487	12.6	371.64	372.353	374.99
	тестовой выборке		Прогнозирование	16.128807	0.0	13.41	52.09	375.01	376.42	376.58
			Всего	16.564678	0.0	13.385	52.09	364.04	376.309	379.8
	Апостериорная оценка		Подготовка модели	0.273269	0.0	9.763	13.03	377.44	377.48	377.56
	на тестовой выборке		Прогнозирование	16.081275	0.0	8.29	37.8	377.34	377.627	377.93
			Всего	16.576854	0.0	8.349	37.8	376.42	377.657	386.86
	Обучение	3704	Подготовка модели	0.141615	0.0	6.282	12.6	378.93	378.93	378.93
DSC			Обучение	98.791869	0.0	14.142	81.9	379.17	413.783	415.4
			Всего	99.123015	0.0	14.118	81.9	377.77	413.668	415.4
(цикл 5)	Априорная оценка на		Подготовка модели	0.110668	10.94	11.74	12.54	415.66	415.66	415.66
	обучающей выборке		Прогнозирование	157.502556	8.88	13.394	33.74	385.54	386.611	416.22

			Всего	157.844018	1.77	13.383	33.74	385.54	386.672	416.22
	Априорная оценка на	411	Подготовка модели	0.262154	0.0	10.452	13.03	393.07	394.603	397.58
	тестовой выборке		Прогнозирование	17.929182	0.0	6.755	23.3	396.96	397.295	397.43
			Всего	18.461601	0.0	6.876	23.3	387.03	397.218	398.2
	Апостериорная оценка		Подготовка модели	0.341088	0.0	8.775	13.03	383.02	384.612	388.64
	на тестовой выборке		Прогнозирование	17.395246	0.0	4.649	26.04	386.45	387.192	387.34
			Всего	18.075718	0.0	4.76	26.04	373.5	387.093	388.64
	Обучение	6470	Подготовка модели	0.109741	0.0	3.121	12.54	388.27	388.27	388.27
			Обучение	170.064471	0.0	11.658	104.16	388.51	426.966	427.55
			Всего	170.3906	0.0	11.645	104.16	387.22	426.909	427.55
	Априорная оценка на		Подготовка модели	0.221448	0.0	7.091	14.34	427.75	428.194	428.25
	обучающей выборке		Прогнозирование	286.366801	0.0	6.985	78.12	396.91	397.644	428.66
DSC			Всего	286.743021	0.0	6.986	78.12	396.91	397.684	433.89
(цикл 6)	Априорная оценка на	719	Подготовка модели	0.577899	0.0	8.88	13.03	392.99	403.006	409.07
	тестовой выборке		Прогнозирование	32.938589	0.0	4.735	61.04	390.62	391.652	391.86
			Всего	33.730019	0.0	4.813	61.04	390.62	391.855	415.96
	Апостериорная оценка	1	Подготовка модели	0.337103	0.0	4.162	12.6	397.29	397.432	397.62
	на тестовой выборке		Прогнозирование	31.308252	0.0	3.709	39.06	397.61	397.941	398.36
	_		Всего	31.848806	0.0	3.714	39.06	391.94	397.96	407.27
	Обучение	2892	Подготовка модели	0.112697	0.0	6.251	12.6	399.48	399.48	399.48
			Обучение	79.502049	0.0	12.079	104.16	399.48	429.731	430.66
			Всего	79.787331	0.0	12.062	104.16	398.09	429.651	430.66
	Априорная оценка на	1	Подготовка модели	0.234375	0.0	5.274	13.03	429.58	429.626	429.8
	обучающей выборке		Прогнозирование	133.90869	0.0	6.092	85.45	418.84	421.566	436.18
DSC			Всего	134.303804	0.0	6.09	85.45	418.84	421.594	439.76
(цикл 7)	Априорная оценка на	321	Подготовка модели	0.237734	0.0	4.912	26.04	424.62	424.9	425.03
	тестовой выборке		Прогнозирование	15.566209	0.0	4.858	73.24	426.77	427.549	427.71
			Всего	16.000951	0.0	4.856	73.24	405.05	427.419	436.14
	Апостериорная оценка	1	Подготовка модели	0.290435	0.0	4.514	13.03	411.82	412.448	415.27
	на тестовой выборке		Прогнозирование	14.290129	0.0	4.678	48.83	415.84	416.892	417.05
	_		Всего	14.739181	0.0	4.675	48.83	405.07	416.788	423.13
	Обучение	3746	Подготовка модели	0.174565	0.0	3.754	13.03	416.57	416.665	416.75
			Обучение	102.980489	0.0	6.042	104.16	416.8	438.662	439.21
Dag			Всего	103.290781	0.0	6.036	104.16	416.57	438.61	439.21
DSC	Априорная оценка на]	Подготовка модели	0.224365	12.43	12.503	12.54	441.02	441.02	441.02
(цикл 8)	обучающей выборке		Прогнозирование	159.164251	8.88	13.376	26.88	422.15	425.755	441.56
	_		Всего	159.608056	8.88	13.375	26.88	422.15	425.796	441.56
		416	Подготовка модели	0.295175	12.4	15.07	27.9	429.89	430.84	432.87

Априорная оценка на	Прогнозирование	18.151904	0.0	6.779	25.09	430.08	430.297	430.42
тестовой выборке	Всего	18.677427	0.0	6.961	27.9	425.5	430.325	441.12
Апостериорная оценка	Подготовка модели	0.261376	0.0	7.833	13.03	431.57	431.794	432.42
на тестовой выборке	Прогнозирование	17.608337	0.0	9.473	61.04	430.75	430.849	430.98
	Всего	18.024324	0.0	9.438	61.04	430.28	430.878	434.55

4.2 Порядок оценки качества алгоритмов

Эксперименты по априорной и апостериорной оценке качества работы алгоритмов компонента сильного ИИ приведены далее.

4.2.1 Алгоритм ПОСНД

Для оценки работоспособности и устойчивости алгоритма ПОСНД использовался набор данных — Titanic. Это стандартный набор данных для применения алгоритмов машинного обучения и искусственного интеллекта, позволяющий предсказать выживание пассажира Титаника. Формат данных — csv. Размер файла — 93.08 Кб. Всего 890 строк данных.

В ходе эксперимента выполнялись следующие шаги:

- 1) данные передавались в формате, понятном алгоритму ПОСНД (признаки и метки отдельно, разбиение на значения, названия и типы данных, передача известной информации о типах данных);
- 2) подключался словарь наименований признаков, для которых известен тип данных категориальный или численный;
- 3) выставлялся вес выводов о типах данных признаков в зависимости от задействованного метода;
- 4) выставлялись настройки кластеризации: метод, количество кластеров и итераций;
- 5) выставлялись пороговые значения при анализе информативности;
- б) выставлялись пороговые значения при анализе мультиколлинеарности;
- 7) выставлялись настройки журналирования данных;
- 8) запускался алгоритм коррекции типов данных;
- 9) запускался алгоритм устранения неполноты данных;
- 10) запускался алгоритм анализа информативности признаков;
- 11) запускался алгоритм устранения мультиколлинеарности данных. При анализе типов данных было установлено:
 - тип данных признака «PassengerId» был указан некорректно, изменен с категориального на численный;
 - тип данных признака «SibSp» не был указан, изменен на категориальный;
 - тип данных признака «Parch» не был указан, изменен на категориальный;
 - тип данных признака «LABEL_type» не был указана, изменен на численный.

При устранении неполноты данных было заполнено 177 пустых значений. На это ушло 2 итерации процесса кластеризации.

Неинформативных признаков не было обнаружено.

В результате анализа мультиколлинеарности было обнаружено:

- признак «SibSp» коррелирует с признаком «PassengerId»;
- признак «Age» коррелирует с признаком «Pclass».

Рекомендовано удалить признаки «SibSp» и «Age».

4.2.2 Алгоритм ИЗСНД

Для оценки алгоритма ИЗСНД использовались наборы данных:

- DSC (Driving Smart Crane with Various Loads) набор данных содержит данные, собранные с сервера мостового крана при движении по Lобразному пути с различными нагрузками (0 кг, 120 кг, 500 кг и 1000 кг). Прикладная задача: оценка работоспособности и надежности системы, выявление неисправностей. Размер: 3,66 МБ. Количество экземпляров: 31 304. Количество признаков: 12.
- HAI (HIL-based Augmented ICS) Security (2022 г.) набор собран на испытательном стенде реалистичной промышленной системы управления, дополненной симулятором аппаратного обеспечения в контуре, который имитирует выработку электроэнергии с помощью паровых турбин и гидроаккумулирующих электростанций. Прикладная задача: оценка кибербезопасности, выявление атак и аномалий. Размер: 730 МБ. Количество экземпляров: 1 365 602. Количество признаков: 86.

В ходе эксперимента для каждого из наборов данных выполнялись следующие шаги:

- 1) предобработка набора с помощью алгоритма ИЗСНД;
- 2) разбиение набора на обучающие и тренировочные подвыборки в соотношении 70 к 30.;
- 3) обучение классификатора на основе случайного леса на тренировочной подвыборке;
- 4) расчет метрик качества (аккуратность, точность, полнота, F-мера) на тренировочной подвыборке.

Результаты экспериментов представлены в таблицах 4.2.2.1 и 4.2.2.2.

Таблица 4.2.2.1 – Априорная и апостериорная оценки алгоритма ИЗСНД с помощью случайного леса на наборе данных DSC

media on in mose de Aminiana 2 2 2							
	Точность	Полнота	F -мера	Аккуратность	ROC-AUC		
RandomForestClassifier	0.476583	0.497822	0.486971	0.949207	0.439478		
RandomForestClassifier	0.476680	0.50	0.488061	0.953360	0.5		
+ IZDAP preprocessing	0.470080	0.50	0.466001	0.933300	0.5		

Таблица 4.2.2.2 – Априорная и апостериорная оценки алгоритма ИЗСНД с помощью случайного леса на наборе данных НАІ

	Точность	Полнота	F -мера	Аккуратность	ROC-AUC
RandomForestClassifier	0.552254	0.504592	0.498865	0.949799	0.433413
RandomForestClassifier + IZDAP preprocessing	0.546849	0.507378	0.504924	0.947424	0.477919

Согласно результатам, представленным в таблицах 4.2.2.1 и 4.2.2.2, практические эксперименты на типовом ПК для рассмотренных примеров данных показывают прирост точности классификатора на описанных наборах данных при использовании алгоритма ИЗСНД. Таким образом, данный алгоритм может иметь практическое применение и для реальных задач.

4.2.3 Алгоритм АОТССОП

В таблице 4.2.3.1 представлены результаты оценки алгоритма АОТССОП. Априорная оценка выполнялась на обучающей выборке, что представляло собой 80% выборку от исходного набора данных. Апостериорная оценка выполнялась на тестовой выборке, включающей оставшуюся выборку.

Таблица 4 2 3 1 — 4	Априорная и апостериорная оценки алгоритма	$AOTCCO\Pi$
\mathbf{I} aominina \mathbf{T} . \mathbf{J} . $\mathbf{I} = \mathbf{I}$	ининовная и апостсоиовная опсики алговитма	лотссоп

Набор данных (файл)	Количество классов	Оценка	Значение точности (ассигасу)
HAI (hai-20.07/test1.csv.gz)	2	Априорная	99.36%
HAI (hai-20.07/test1.csv.gz)	2	Апостериорная	99.33%
HAI (hai-21.03/test1.csv.gz)	2	Априорная	99.57%
HAI (hai-21.03/test1.csv.gz)	2	Апостериорная	99.49%
DSC (combined.csv)	8	Априорная	81.96%
DSC (combined.csv)	8	Апостериорная	81.28%

4.2.4 Алгоритм АПССОП

Эксперимент по априорной оценке № 1.

Используемые метрики оценки и их обоснование:

В процессе априорной оценки не оказывается значительное внешнее воздействие на процесс прогнозирования, а лишь осуществляется наблюдение за ним. Все вектора значений признаков прогнозируются независимо друг от друга. После окончания прогнозируемого периода сопоставляются значения спрогнозированных показателей и параметров с полученными в действительности.

Для оценки алгоритма АПССОП используются следующие показатели качества: (1) среднеквадратичная ошибка прогнозирования MSE (формула 3.2.1), (2) средняя абсолютная ошибка прогнозирования МАЕ (формула 3.2.2), (3) точность прогнозирования P (формула 3.2.3). Выбор данных показателей обоснован тем, что они позволяют оценить отклонение прогнозируемых реальных. Так экспериментах используется значений ОТ как В масштабирование признаков на отрезок [0, 1], то и значение ошибок прогнозирования лежит в этом же отрезке, где минимальное значение ошибки 0, а максимальное -1.

Шаги методики оценки:

- 1) загрузка обученных моделей прогнозирования и нормализации данных;
- 2) разделение исходного набора данных на тренировочную и тестовую выборки с соотношением 9:1;
- 3) нормализации выборок с использованием масштабирования значений признаков на отрезок [0, 1];

- 4) формирование генератора временных рядов на основе тренировочной выборки;
- 5) извлечение последнего пакета данных из генератора временных рядов;
- б) прогнозирование векторов признаков последовательности, равной длине тестовой выборки, при ЭТОМ ДЛЯ каждого последующего прогнозируемого вектора к пакету добавляется вектор тестовой выборки;
 - 7) вычисление показателей качества алгоритма.

Пример подобной оценки и ее результаты представлены в разделе 3.2, пример задачи №2 алгоритма АПССОП.

```
Программный код оценки:
from apssop import *
from data_classes import AopssopData as PDATA
data = DataLoaderAndPreprocessor(dataset_name, mode=mode, suf=suf)
PDATA.features_names = data.features_names
PDATA.forecasting_model_path = data.forecasting_model_path
PDATA.normalization_model_path = data.normalization_model_path
train, test = data.train_test_split(train_size=train_size)
normalization_model =
DataScaler(scaler_path=PDATA.normalization_model_path,
                   open=True)
scaled_train = normalization_model.transform(train)
scaled_test = normalization_model.transform(test)
forecasting_model =
AIForecaster(model_path=PDATA.forecasting_model_path,
                   open=True)
train_generator = forecasting_model.data_to_generator(scaled_train)
PDATA.forecasting_time_window = len(scaled_test)
current_batch = forecasting_model.get_batch(train_generator, -1)
predictions = []
for i in range(PDATA.forecasting_time_window):
  sys.stdout.write('\r\x1b[K' + 'Forecasting: {0}/{1}'.format(i,
            PDATA.forecasting_time_window - 1))
  sys.stdout.flush()
```

Эксперимент по апостериорной оценке № 2.

Используемые метрики оценки и их обоснование:

Примером влияния на ход развития событий может являться, в частности, корректировка на основании ожидаемых спрогнозированных значений. В процессе апостериорной оценки вектора значений признаков прогнозируются в зависимости от ранее спрогнозированных значений. После окончания прогнозируемого периода сопоставляются значения спрогнозированных показателей и параметров с полученными в действительности.

Для оценки алгоритма АПССОП используются следующие показатели качества: (1) среднеквадратичная ошибка прогнозирования MSE (формула 3.2.1), (2) средняя абсолютная ошибка прогнозирования *MAE* (формула 3.2.2), (3) точность прогнозирования P (формула 3.2.3). Выбор данных показателей обоснован тем, что они позволяют оценить отклонение прогнозируемых значений реальных. Так экспериментах используется OT как В масштабирование признаков на отрезок [0, 1], то и значение ошибок прогнозирования лежит в этом же отрезке, где минимальное значение ошибки 0, а максимальное -1.

Шаги методики оценки:

- 1) загрузка обученных моделей прогнозирования и нормализации данных;
- 2) разделение исходного набора данных на тренировочную и тестовую выборки с соотношением 9:1;
- 3) нормализации выборок с использованием масштабирования значений признаков на отрезок [0, 1];

- 4) формирование генератора временных рядов на основе тренировочной выборки;
- 5) извлечение последнего пакета данных из генератора временных рядов;
- 6) прогнозирование векторов признаков последовательности, равной длине тестовой выборки, при этом для каждого последующего прогнозируемого вектора к пакету добавляется ранее спрогнозированный вектор признаков;
 - 7) вычисление показателей качества алгоритма.

Пример подобной оценки и ее результаты представлены в разделе 3.2, пример задачи №1 алгоритма АПССОП.

```
Программный код оценки:
```

from apssop import *

from data_classes import AopssopData as PDATA

LOG = Logger(dataset_name + suf + '_forecasting_test_dependently.log')

data = DataLoaderAndPreprocessor(dataset_name, mode=mode, suf=suf) PDATA.features_names = data.features_names

PDATA.forecasting_model_path = data.forecasting_model_path PDATA.normalization_model_path = data.normalization_model_path

train, test = data.train_test_split(train_size=train_size)

normalization_model =

DataScaler(scaler_path=PDATA.normalization_model_path, open=True)

scaled_train = normalization_model.transform(train)
scaled_test = normalization_model.transform(test)

forecasting_model =

AIForecaster(model_path=PDATA.forecasting_model_path, open=True)

train_generator = forecasting_model.data_to_generator(scaled_train)

PDATA.forecasting_time_window = len(scaled_test)
last_batch = forecasting_model.get_batch(train_generator, -1)

pred = forecasting_model.forecasting(last_batch,

forecasting_data_length=PDATA.forecasting_time_window)
PDATA.forecasting_results = normalization_model.inverse(pred)

```
estimator = ForecastEstimator()
PDATA.forecasting_quality = estimator.estimate(true=scaled_test,
pred=pred,
feature_names=PDATA.features_names)
estimator.save(file_name=dataset_name + suf + 'test_dependently')
print(PDATA.forecasting_quality)
print('Done')
```

5 ОБРАЩЕНИЕ К ПРОГРАММЕ

5.1 Точки входа в программу

Обращение к программе происходит путем создания объектов классов и вызова их них необходимых функций.

5.1.1 Алгоритм ПОСНД

Основными обращениям к программе через вызовы функций модуля ПОСНД являются следующие:

- а) из состава класса *CheckDataTypes*:
 - 1) <u>__determite_type_by_substring__</u> определение типа данных по названию признака;
 - 2) <u>__determite_type_by_unique__</u> определение типа данных на основе анализа количества уникальных значений признака;
 - 3) __determite_type_by_float__ определение типа данных на основе анализа наличия float значений у признака;
 - 4) <u>__calculate_by_priority__</u> принятие решение о типе данных признака на основе веса решений отдельных алгоритмов;
 - 5) *correct_types* алгоритм, объединяющий предыдущие в единый процесс работы с признаками данных;
- б) из состава класса ClusterFilling:
 - 1) __fill_with_centroids__ кластеризация на основе центройдов;
 - 2) __fill_with_stats__ кластеризация на основе расчета статистик;
 - 3) fill алгоритм, применяющий один из предыдущих на основе решения пользователя или значения по умолчанию;
- в) из состава класса *Informativity*:
 - 1) calculate_informativity алгоритм анализа информативности признаков данных;
- г) из состава класса *MultiCollinear*:
 - 1) remove_uninformative_features алгоритм устранения мультиколлинеарности данных.

5.1.2 Алгоритм ИЗСНД

Основными обращениям к программе через вызовы функций модуля ИЗСНД являются следующие:

- а) из состава класса *IzdapAlgo*:
- 1) конструктор инициализация модели алгоритма ИЗСНД путем указания порога для построения предикатов;
 - 2) fit() обучение модели алогоритма;
- 3) *get_rules()* вывод построенных правил в консоль в строковом виде;
- 4) *transform()* преобразование набора данных с использованием построенных правил к бинарный формат.

5.1.3 Алгоритм АОТССОП

Обращение к программе происходит путем создания объектов классов и вызова их них необходимых функций. Основными обращениям к программе через вызовы функций модуля АОТССОП являются следующие:

- б) из состава класса SAIClassifier:
- 5) конструктор инициализация модели классификатора путем указания типа классификаторов, конфигурации искусственной нейронной сети и количества эпох обучения;
 - 6) fit() обучение модели классификатора;
- 7) *predict()* определение класса объектов при помощи модели классификатора;
 - 8) *load()* десериализация модели классификатора;
 - 9) *save()* сериализация модели классификатора;
 - в) из состава класса FormatDetector:
- 1) конструктор инициализация класса для определения типа файла с обрабатываемым набором данных путем указания типа пути к этому файлу;
 - г) из состава класса DataLoader:
- 1) конструктор инициализация класса путем указания пути к файлу с набором данных и формате данных;
 - д) из состава класса ClsEstimator:
 - 2) конструктор инициализация класса для оценки параметров эффективности классификаторов путем указания признаков, метод классов и классификаторов;
 - 3) estimate() оценка параметров эффективности классификаторов;

5.1.4 Алгоритм АПССОП

Обращение к программе происходит путем создания объектов классов и вызова их них необходимых функций. Основными обращениям к программе через вызовы функций модуля АОТССОП являются следующие:

1) класс *AIForecaster* – элемент для прогнозирования СлОП: Атрибуты класса:

- а) model нейросетевая модель прогнозирования (объект keras.models.Sequential),
- б) *time_window_length* длина исторической последовательности (целое число),
 - в) $n_{features}$ количество признаков (целое число),
- г) *model_path* путь для внешнего сохранения модели прогнозирования (текстовая строка),
- д) epochs количество эпох для обучения модели прогнозирования (целое число),
 - e) batch_size размер пакетов для обучения (целое число),
 - ж) early_stop объект EarlyStopping (библиотека keras).

Методы класса:

- a) def __init__(self, time_window_length=0, n_features=0, model_path=", n_epochs=1, open=False) конструктор класса для базовой инициализации параметров, где open указатель на необходимость загрузить существующую модель (булевая переменная);
- б) def train(self, train_generator, validation_generator=None, save=True) обучение и валидация модели нейронной сети на данных, train_generator генератор временных рядов обучающих данных (объект keras TimeseriesGenerator), validation_generator генератор временных рядов данных валидации (объект keras TimeseriesGenerator); save указатель на необходимость сохранить модель во внешний файл (булевая переменная);
- в) def forecasting(self, current_batch, forecasting_data_length, verbose=True) прогнозирование значений, где current_batch исходный пакет данных для прогнозирования (многомерный массив), forecasting_data_length длина прогнозируемой последовательности (целое число), verbose указать на необходимость отображать процесс прогнозирования в командной строке (булевая переменная);
- Γ) def $save_model(self)$ coxpanenue модели прогнозирования во внешний файл;
- ∂) $defopen_model(self)$ загрузка модели прогнозирования из внешнего файла;
- e) def data_to_generator(self, data) преобразование массива данных в генератор временных рядов, где data исходные данные (многомерный массив);
- ж) def get_batch(self, generator, current_batch_id) извлечение отдельного пакета из генератора временных рядов, где generator генератор временных рядов (объект keras TimeseriesGenerator), current_batch_id порядковый номер извлекаемого пакета (целое число).
 - 2) класс *DataScaler* элемент для нормализации данных: Атрибуты класса:
 - a) scaler объект модели нормализации (объект MinMaxScaler),
- б) *scaler_path* путь для внешнего сохранения модели нормализации (текстовая строка).

Методы класса:

- а) $def\ fit(self,\ data,\ save=True)$ обучение модели нормализации, где data исходные данные (многомерный массив), save указатель на необходимость сохранить модель нормализации во внешний файл (булевая переменная);
 - б) def save(self) сохранение модели нормализации во внешний файл;
 - в) def open(self) загрузка модели нормализации из внешнего файла;
 - г) def transform(self, data) нормализация данных,
- д) def inverse(self, data) обратное преобразование нормализованных данных.
- 3) класс ForecastEstimator элемент для оценки качества модели прогнозирования:

Атрибут класса: *quality* – матрица результатов оценки качества (объект pandas DataFrame).

Методы класса:

- a) def estimate(self, true, pred, feature_names=[]) оценка качества модели прогнозирования, где true фактические значения (многомерный массив), pred прогнозируемые значения (многомерный массив), feature_names имена признаков (список);
- б) def save(self, file_name) сохранение результатов оценки во внешний файл, где file_name путь к внешнему файлу (текстовая строка).

5.2 Базовые функции

Модуль ПОСНД

Начало работы с набором данных

data = Data()

titanic_path = '../datasets/titanic.csv'

titanic = pd.read_csv(titanic_path)

data.features_names = ["PassengerId", "Pclass", "Age", "SibSp", "Parch"]

data.labels_names = ["Survived", "Fare"]

data.features_matrix = np.array(titanic[data.features_names])

data.labels_matrix = np.array(titanic[data.labels_names])

data.features_types = ["cat", "cat", "num", None, None]

data.labels_types = ["cat", None]

Подключение журналирования

__Verbose__.PrintLog.instance().set_print_mode(True)

__Verbose__.PrintLog.instance().set_severity_level("status")

Запуск алгоритмов модуля

CheckDataTypes.CheckDataTypes.correct_types(data)

ClusterFilling.ClusterFilling.fill(data)

 $Informativity. Informativity. calculate_informativity (data)\\$

 $Multicolinear. MultiCollinear. remove_uninformative_features (data)$

Модуль ИЗСНД

Создание объекта IzdapAlgo

algo = IzdapAlgo(0.1)

Обучение модели

algo.fit(test_data, class_column = class_column, positive_class_label = positive_class_label)

Модуль АОТССОП

Создание объекта SAIClassifier

SAIClassifier('neural_network', 10, 1)

Создание объекта FormatDetector

FormatDetector('../hai/hai-20.07/test1.csv.gz')

Создание объекта DataLoader

DataLoader('../hai/hai-20.07/test1.csv.gz', 64, ',')

Создание объекта ClsEstimator

classifiers = [SAIClassifier(c, in_size, out_size, plot=False) for c in classifier_types]

 $xor_ds = \{ \text{'features': np.array}([[0, 0], [0, 1], [1, 0], [1, 1]]), \text{'labels': np.array}([[0], [1], [0]]) \}$

ClsEstimator(xor_ds['features'], xor_ds['labels'], xor_ds['labels'], [classifier]

Модуль АПССОП

Создание объекта AlForecaster

forecasting_model = AIForecaster(n_epochs=3, time_window_length = 10, n_features = len(features_names), model path = ".../forecasting model)

Создание существующей модели для объекта AIForecaster

forecasting_model = AIForecaster (model_path = ".../forecasting_model, open = True)

Формирование генератора временных рядов

 $generatorX = forecasting_model.data_to_generator(trainX)$

Обучение модели объекта AIForecaster

forecasting_model.train(generatorX)

<u>Прогнозирование с использованием модели объекта AIForecaster</u> prediction = forecasting_model.forecasting(current_batch = batch, forecasting_data_length = 1000)

Создание объекта DataScaler

scaler = DataScaler(scaler path = "scaler.pkl")

Открытие существующей модели для объекта DataScaler scaler = DataScaler(scaler path = "scaler.pkl", open=True)

Обучение модели объекта DataScaler

scaler.fit(data = trainX, save = True)

Нормализация данных с использованием DataScaler

scaled_trainX = scaler.transform(trainX)

Создание объекта ForecastEstimator

estimator = ForecastEstimator()

Оценка эффективности прогнозирования

quality = estimator.estimate(true = scaled_testX, pred = prediction)

6 ПРОВЕРКА ПРОГРАММЫ

6.1 Модульные и интеграционные тесты

Модульные и интеграционные тесты всех модулей компонента приведены далее.

6.1.1 Модуль ПОСНД

Модульный тест №1. test_check_data_types

<u>Задача модуля</u>: проверка корректности исправления типов данных Исходный код:

expected_features_types = ['cat', 'num', 'cat', 'cat', 'num']

 $Check Data Types. Check Data Types. correct_types (data)$

self.assertEqual(data.features_types, expected_features_types)

Модульный тест №2. test_cluster_filling

Задача модуля: проверка корректности устранения неполноты данных Исходный код:

expected_features_matrix = np.array(list(zip(*[

```
3, 3, 3, 3, 3],
 [1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 
1, 2, 3, 1, 2],
3, 3, 3, 3, 3]
])))
ClusterFilling.ClusterFilling.fill(data)
self.assertTrue(np.array equal(data.features matrix,
expected_features_matrix))
```

Модульный mecm №3. test_informativity

Задача модуля: проверка корректности анализа информативности признаков данных

Исходный код:

expected_features_matrix = np.array(list(zip(*[2, 2, 2, 2, 2], 3, 3, 3, 3, 3], [1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 1, 1, 2, 3,1, 2, 3, 1, 2]]))) Informativity.Informativity.calculate informativity(data) self.assertTrue(np.array_equal(data.features_matrix,

Modyльный mecm №4. test_multicolinearity

Задача модуля: проверка корректности устранения мультиколлинеарности признаков данных

Исходный код:

expected_features_matrix))

expected_features_matrix = np.array(list(zip(*[2, 2, 2, 2, 2], [1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 1, 1, 2, 3,1, 2, 3, 1, 2]]))) Multicolinear.MultiCollinear.remove uninformative features(data)

self.assertTrue(np.array equal(data.features matrix, expected_features_matrix))

```
6.1.2 Модуль ИЗСНД
```

Модульный mecm №1: test_regression_coefficient

<u>Задача модуля:</u> проверка корректности подсчета коэффициента регрессии

Исходный код:

print(inspect.stack()[0][3])

message = 'The regression coefficient is calculated incorrectly' self.assertEqual(round(IzdapAlgo().calculate_regression_coefficient(nA=20 0, nB=200, nAB=100, N=1000), 3), 0.375, message)

Modyльный mecm №2: test_klosgen_measure

Задача модуля: проверка корректности подсчета меры Клозгена

Исходный код:

print(inspect.stack()[0][3])

message = 'The klosgen measure is calculated incorrectly'

self.assertEqual(round(IzdapAlgo().calculate_klosgen_measure(nA=200, nB=200, nAB=100, N=1000), 3), 0.134, message)

Modyльный mecm №3: test_string_column

<u>Задача модуля</u>: проверка корректности определения алгоритмом строковых признаком в данных

Исходный код:

print(inspect.stack()[0][3])

message = 'String columns were identified incorrectly'

data = make_classification(n_samples=200, n_features=4, n_informative=2, n_classes=2,

random_state=42)

df = pd.DataFrame(data[0], columns = ['col1','col2','col3','col4',])

df['class'] = pd.Series(data[1])

algo = IzdapAlgo(0.2)

algo.fit(df, class_column = "class", positive_class_label = '1')

self.assertEqual(len(algo.string_columns), 0, message)

Модульный тест №4: test_number_column

<u>Задача модуля</u>: проверка корректности определения алгоритмом числовых признаков в данных

Исходный код:

print(inspect.stack()[0][3])

message = 'String columns were identified incorrectly'

data = make_classification(n_samples=200, n_features=4, n_informative=2, n_classes=2, random_state=42)

```
df = pd.DataFrame(data[0], columns = ['col1','col2','col3','col4',])
      df['class'] = pd.Series(data[1])
      algo = IzdapAlgo(0.2)
      algo.fit(df, class_column = "class", positive_class_label = '1')
      self.assertEqual(len(algo.number_columns), 4, message)
      Модульный тест №5: test_class_stats
      Задача модуля: проверка корректности расчета статистик класса
      Исходный код:
      print(inspect.stack()[0][3])
      message = 'Class stats was calculated incorrectly'
      data = make_classification(n_samples=200, n_features=4,
                           n_informative=2, n_classes=2,
                           random_state=42)
      df = pd.DataFrame(data[0], columns = ['col1','col2','col3','col4',])
           df['class'] = pd.Series(data[1])
           algo = IzdapAlgo(0.2)
           algo.fit(df, class_column = "class", positive_class_label = 1)
      self.assertEqual(algo.class_stats[1], df['class'].value_counts()[1], message)
      Модульный тест №6: test data stats
      Задача модуля: проверка корректности расчета статистик значений
признаков
      Исходный код:
      print(inspect.stack()[0][3])
      message = 'Data stats was calculated incorrectly'
      data = make_classification(n_samples=200, n_features=4,
                           n_informative=2, n_classes=2,
                           random state=42)
      df = pd.DataFrame(data[0], columns = ['col1','col2','col3','col4',])
      df['class'] = pd.Series(data[1])
      algo = IzdapAlgo(0.2)
      algo.fit(df, class_column = "class", positive_class_label = 1)
      self.assertEqual(len(algo.data stats), 4, message)
      Модульный тест №7: test_rules
      Задача модуля: проверка корректности извлечения правил из данных
      Исходный код:
      print(inspect.stack()[0][3])
      message = 'Rules were extracted incorrectly incorrectly'
```

```
data = make_classification(n_samples=200, n_features=4,
                            n_informative=2, n_classes=2,
                            random_state=42)
      df = pd.DataFrame(data[0], columns = ['col1','col2','col3','col4',])
      df['class'] = pd.Series(data[1])
      algo = IzdapAlgo(0.2)
      algo.fit(df, class_column = "class", positive_class_label = 1)
      rule = "if col1 in [Interval(1.032, 1.661, closed='right'), Interval(0.404,
1.032, closed='right'), Interval(-0.224, 0.404, closed='right'), Interval(1.661, 2.289,
closed='right'), Interval(2.289, 2.917, closed='right')] then 1
(regression_coef=0.759)"
      self.assertEqual(algo.get_rules()[0], rule, message)
      Модульный mecm №8: test_predicates
      Задача модуля: проверка корректности построения предикатов
      Исходный код:
      print(inspect.stack()[0][3])
      message = 'Predicates is not chacking data correctly'
      data = make_classification(n_samples=200, n_features=4,
                            n informative=2, n classes=2,
                            random state=42)
      df = pd.DataFrame(data[0], columns = ['col1','col2','col3','col4',])
      df['class'] = pd.Series(data[1])
      algo = IzdapAlgo(0.2)
      algo.fit(df, class_column = "class", positive_class_label = 1)
      predicate = algo.predicates[0]
      row = df[0]
      self.assertEqual(predicate.is_true(df[:1]).iloc[0], 1, message)
```

6.1.3 Модуль АОТССОП

Модульный тест №1. test_sc_is_not_none

<u>Задача модуля:</u> Проверка того, что модель оценивания создана корректно.

Исходный код:

self.assertFalse(SAIClassifier('neural_network', 10, 1) is None, 'The object of class SAIClassifier could not be created')

Модульный mecm №2. test sc type is correct

<u>Задача модуля:</u> Проверка того, что тип модели оценивания корректно проинициализирована.

Исходный код:

```
classifier_types = ['decision_tree', 'naive_bayes', 'logistic_regression',
'neural_network']
      for c in classifier_types:
           classifier = SAIClassifier(c, 10, 1, plot=False)
           self.assertTrue(classifier.cls_type in classifier_types, 'The classifier
type is not correct')
      Модульный тест №3. test_sc_fit
      Задача модуля: Проверка того, что модель оценивания обучена
```

корректно.

Исходный код:

```
classifier_types = ['decision_tree', 'naive_bayes', 'logistic_regression',
'neural_network']
      in_size = np.shape(self.xor_ds['features'])[1]
      out_size = np.shape(self.xor_ds['labels'])[1]
      for c in classifier_types:
           classifier = SAIClassifier(c, in size, out size, plot=False)
              classifier.fit(self.xor_ds['features'], self.xor_ds['labels'])
           except:
              self.assertTrue(False, 'Error while calling fit')
```

Модульный mecm №4. test_sc_predict

Задача модуля: Проверка того, что модель оценивания корректно выполнила оценку тестового набора данных.

Исходный код:

```
classifier_types = ['decision_tree', 'naive_bayes', 'logistic_regression',
'neural network']
      in_size = np.shape(self.xor_ds['features'])[1]
      out_size = np.shape(self.xor_ds['labels'])[1]
      for c in classifier_types:
           classifier = SAIClassifier(c, in_size, out_size, plot=False)
           classifier.fit(self.xor_ds['features'], self.xor_ds['labels'])
           try:
              classifier.predict(self.xor_ds['features'])
           except:
              self.assertTrue(False, 'Error while calling predict')
```

Модульный тест №5. test sc save

Задача модуля: Проверка того, что модель оценивания корректно сохранилась в файл.

Исходный код:

```
classifier_types = ['decision_tree', 'naive_bayes', 'logistic_regression',
'neural_network']
      in_size = np.shape(self.xor_ds['features'])[1]
```

```
out_size = np.shape(self.xor_ds['labels'])[1]
      for c in classifier_types:
           classifier = SAIClassifier(c, in size, out size, plot=False)
           classifier.fit(self.xor_ds['features'], self.xor_ds['labels'])
           f = './' + c + '.bin'
      if os.path.isfile(f):
      os.remove(f)
      classifier.save(f)
      self.assertTrue(os.path.isfile(f) or os.path.isfile(f + '.index'), 'The classifier
could not be saved into the file')
      Модульный тест №6. test_sc_load
      Задача модуля: Проверка того, что модель оценивания корректно
создана из файла.
      Исходный код:
      classifier_types = ['decision_tree', 'naive_bayes', 'logistic_regression',
'neural network']
      in_size = np.shape(self.xor_ds['features'])[1]
      out_size = np.shape(self.xor_ds['labels'])[1]
      for c in classifier types:
           classifier = SAIClassifier(c, in_size, out_size, plot=False)
           f = './' + c + '.bin'
           classifier.save(f)
           try:
             classifier.load(f)
           except:
             self.assertTrue(False, 'Error while calling load')
      Модульный mecm №7. test fd is not none
      Задача модуля: Проверка того, что объект определителя разделителя
полей данных корректно проинициализирован.
      Исходный код:
      f = '.../hai/hai-20.07/test1.csv.gz'
      if os.path.isfile(f):
           self.assertFalse(FormatDetector(f) is None, 'The object of class
FormatDetector could not be created')
      Модульный mecm №8. test fd file exists
      Задача модуля: Проверка того, что загружаемый файл существует.
      Исходный код:
      tmp_file = tempfile.NamedTemporaryFile()
      try:
```

self.assertTrue(False, 'Error: file "{}" must exist'.format(tmp_file))

FormatDetector(tmp_file.name)

except:

Модульный mecm №9. test fd delimiter is correct

Задача модуля: Проверка корректности разделителя в наборе данных.

Исходный код:

f = '.../hai/hai-20.07/test1.csv.gz'

if os.path.isfile(f):

fd = FormatDetector(f)

self.assertTrue(fd.d in [';', ','], 'The delimiter is not correct')

Модульный тест №10. test dl is not none

<u>Задача модуля:</u> Проверка того, что объект загрузки данных корректно проинициализирован.

Исходный код:

f = '../hai/hai-20.07/test1.csv.gz'

class DataLoaderExample(DataLoader):

def load(self, file):

pass

if os.path.isfile(f):

self.assertFalse(DataLoaderExample(f, 0, 0) is None, 'The object of class DataLoaderExample could not be created')

Модульный тест №11. test ce is not none

<u>Задача модуля:</u> Проверка того, что объект вычисления показателей эффективности классификации данных корректно проинициализирован.

Исходный код:

classifier_types = ['decision_tree', 'naive_bayes', 'logistic_regression',
'neural_network']

in_size = np.shape(self.xor_ds['features'])[1]

out_size = np.shape(self.xor_ds['labels'])[1]

classifiers = [SAIClassifier(c, in_size, out_size, plot=False) for c in classifier_types]

for classifier in classifiers:

self.assertFalse(ClsEstimator(self.xor_ds['features'],

self.xor_ds['labels'], self.xor_ds['labels'], [classifier]) is None,

'The object of class ClsEstimator could not be created')

Модульный тест №12. test_ce_estimate

<u>Задача модуля:</u> Проверка того, что вычисление показателей эффективности классификации данных выполнено корректно.

Исходный код:

classifier_types = ['decision_tree', 'naive_bayes', 'logistic_regression',
'neural_network']

in_size = np.shape(self.xor_ds['features'])[1]

out_size = np.shape(self.xor_ds['labels'])[1]

```
classifiers = [SAIClassifier(c, in_size, out_size, plot=False) for c in
classifier_types]
    for classifier in classifiers:
        classifier.fit(self.xor_ds['features'], self.xor_ds['labels'])
        try:
        ClsEstimator(self.xor_ds['features'], self.xor_ds['labels'],
        self.xor_ds['labels'], classifiers).estimate()
        except:
        self.assertTrue(False, 'Error while calling estimate')
```

6.1.4 Модуль АПССОП

Модульный mecm №1. test_forecasting_model_is_not_none

Задача модуля: Проверить, что модель прогнозирования создана.

Исходный код:

message = 'The object of class AIForecaster could not be created' self.assertIsNotNone(AIForecaster(10, 10), message)

Модульный mecm №2. test_forecasting_model_save

<u>Задача модуля:</u> Проверить, что модель прогнозирования сохранена во внешний файл.

Исходный код:

AIForecaster(10, 10).save_model('model.h5')

message = 'The forecasting model could not be saved into the file'
self.assertTrue(os.path.isfile('model.h5'), message)

Модульный mecm №3. test_forecasting_model_open

<u>Задача модуля:</u> Проверка, что модель прогнозирования загружена из внешнего файла.

Исходный код:

message = 'File with forecasting model does not exist' self.assertIsNotNone(AIForecaster(10, 10).open_model('model.h5'), message)

Модульный mecm №4. test_generator_create

Задача модуля: Проверка, что генератор временных рядов создан.

Исходный код:

data = range(0, 1000)

message = 'The object of class TimeseriesGenerator could not be created' self.assertIsNotNone(AIForecaster(10, 10).data_to_generator(data),

message)

print()

Модульный mecm №5. test_data_load

Задача модуля: Проверка, что набор данных загружен.

Исходный код:

message = 'The dataset name is not correct'

for dataset_name in ['hai', 'alarms', 'edge-iiotset', 'test']:

 $self. assert Is Not None (Data Loader And Preprocessor (dataset_name). data, \\ message)$

Модульный mecm №6. test_dataframe_split

<u>Задача модуля:</u> Проверка, что набор данных разделен на обучающую и тестовую выборки.

Исходный код:

message = 'Data split failed'

for i in [0.1, 0.25, 0.5, 0.8, 0.99]:

 $self. assert Is Not (Data Loader And Preprocessor ('test'). train_test_split(i), \\ (None, None), message)$

Модульный mecm №7. test_normalization_model_is_not_none

Задача модуля: Проверить, что модель нормализации создана.

Исходный код:

message = 'The object of class DataScaler could not be created' self.assertIsNotNone(DataScaler(scaler_path='scaler.pkl'), message)

Модульный mecm №8. test_normalization_model_save

<u>Задача модуля:</u> Проверить, что модель нормализации сохранена во внешний файл.

Исходный код:

message = 'The normalization model could not be saved into the file'

DataScaler(scaler_path='scaler.pkl').save()

self.assertTrue(os.path.isfile('scaler.pkl'), message)

Модульный mecm №9. test_normalization_model_open

Задача модуля: Проверка, что модель нормализации загружена из внешнего файла.

Исходный код:

message = 'File with normalization model does not exist' self.assertIsNone(DataScaler('scaler.pkl').open(), message)

Модульный mecm №10. test_estimator_mae_results

<u>Задача модуля:</u> Проверка, что средняя абсолютная ошибка считается корректно.

Исходный код:

message = 'Forecasting quality evaluation failed in MAE'

true = [0, 0, 1, 0, 2, 1, 1, 0, 0, 1]

pred = [0, 1, 1, 0, 0, 0, 1, 0, 1, 1]

result = ForecastEstimator().estimate(true, pred)

self.assertEqual(result.loc['ALL_FEATURES', 'MAE'], 0.5, message)

Модульный mecm №11. test_estimator_mse_results

<u>Задача модуля:</u> Проверка, что среднеквадратичная ошибка считается корректно.

Исходный код:

message = 'Forecasting quality evaluation failed in MSE'
true = [0, 0, 1, 0, 2, 1, 1, 0, 0, 1]
pred = [0, 1, 1, 0, 0, 0, 1, 0, 1, 1]
result = ForecastEstimator().estimate(true, pred)

self.assertEqual(result.loc['ALL_FEATURES', 'MSE'], 0.7, message)

Модульный тест №12. test_estimator

<u>Задача модуля:</u> Проверка, что входные данные для оценки качества имею одинаковую длину.

Исходный код:

message = 'Forecasting quality evaluation failed in MSE' true = [0, 0, 1, 0, 2, 1, 1, 0, 0, 1] pred = [0, 1, 1, 0, 0, 0] result = ForecastEstimator().estimate(true, pred) self.assertTrue(result.empty, message)

6.1.5 Интеграционный тест

Описание теста:

В данном тесте представлена интеграция алгоритмов ИЗСНД и АПССОП. Перед обучением модели и для прогнозирования используются данные, предобработанные алгоритмом ИЗСНД на основе правил.

Исходный код:

```
from aopssop import DataScaler, AIForecaster, ForecastEstimator from aopssop import IzdapAlgo from aopssop import AopssopData as PDATA

# loading data data = PDATA.features_matrix

algo = IzdapAlgo(probability_threshold)

algo.fit(data, class_column='Attack', positive_class_label=1)

transformed_data = algo.transform(data)

train, test = train_test_split(transformed_data, train_size=0.9)

forecasting_model = AIForecaster(n_epochs=3,
```

time_window_length=PDATA.time_window_length,

```
n_features= transformed_data.shape[1],
             model_path=PDATA.forecasting_model_path,
train generator = forecasting model.data to generator(train)
loss = forecasting model.train(train generator)
current batch = forecasting model.get batch(train generator, -1)
predictions = []
for i in range(PDATA.forecasting_time_window):
      current_pred = forecasting_model.forecasting(current_batch,
                       forecasting data length=1,
                       verbose=False)
predictions.append(current_pred[0])
new event = test[i]
current_batch = np.append(current_batch[:, 1:, :], [[new_event]], axis=1)
predictions = pd.DataFrame(predictions).values
      PDATA.forecasting_results =
normalization model.inverse(predictions)
```

6.2 Контрольные примеры

Контрольные примеры для демонстрации работы алгоритмов компонента сильного ИИ приведены далее.

6.2.1 Алгоритм ПОСНД

Контрольный пример №1.

Описание: Обработка набора данных Titanic.

```
Входные данные
```

```
data = Data()

titanic_path = '../datasets/titanic.csv'

titanic = pd.read_csv(titanic_path)

data.features_names = ["PassengerId", "Pclass", "Age", "SibSp", "Parch"]

data.labels_names = ["Survived", "Fare"]

data.features_matrix = np.array(titanic[data.features_names])

data.labels_matrix = np.array(titanic[data.labels_names])

data.features_types = ["cat", "cat", "num", None, None]

data.labels_types = ["cat", None]
```

Настройка алгоритма

 $data.n_jobs = 2$

```
data.feature_names_substrings = {
    "num": ["age", "id"],
    "cat": ["surv", "tick", "cabin"]
data.feature \max cat = 10
data.types_priority = {
    "manual": 0.5,
    "substring": 1,
    "unique": 1,
    "float": 0.3
}
data.fill_method = "mean_mode"
data.n\_clusters = 10
data.cluster_max_iter = 5
data.thresholds_correlation_with_label = {
    "num_num": [0.2] * len(data.labels_names),
    "cat_cat": [0.1] * len(data.labels_names),
    "num_cat": [0.2] * len(data.labels_names)
data.thresholds_min_number_of_predicted_labels = [1] *
len(data.features_names)
data.thresholds multicolinear = {
    "num_num": 0.9,
    "cat cat": 0.7,
    "num_cat": 0.8
}
Обработка
CheckDataTypes.CheckDataTypes.correct_types(data)
ClusterFilling.ClusterFilling.fill(data)
Informativity.Informativity.calculate_informativity(data)
Multicolinear.MultiCollinear.remove_uninformative_features(data)
Выходные данные
START ANALYSIS OF DATA TYPES (N of substr[num,cat]=[2,3],
max_cat=10, priority[manual,substring,unique,float]=[0.5,1,1,0.3])
  PassengerId with FEATURE type=cat is incorrect. Changing to num
(num=1.0,cat=0.8).
  SibSp with FEATURE type=None is incorrect. Changing to cat
(num=0.0,cat=1.3).
  Parch with FEATURE_type=None is incorrect. Changing to cat
(num=0.0,cat=1.3).
  Fare with LABEL_type=None is incorrect. Changing to
num(num=1.0,cat=0.3).
ANALYSIS OF DATA TYPES IS COMPLETE
```

```
START CLUSTER FILLING (fill_method=mean_mode, n_clusters=10, max_iter=5)
    iteration 0, fill 177 NaNs
    iteration 1, fill 177 NaNs
    iteration 2, fill 177 NaNs
    iteration 3, fill 177 NaNs
    => conversged on iteration 3

DONE CLUSTER FILLING
START INFORMATIVITY ANALYSIS
NO UNINFORMATIVE FEATURES
START MULTICOLINEARITY ANALYSIS
    delete feature=SibSp as it correlates with feature=PassengerId
    delete feature=Age as it correlates with feature=Pclass
```

6.2.2 Алгоритм ИЗСНД

Контрольный пример №1.

<u>Описание</u>: применение алгоритма ИЗСНД совместно с алгоритмом Random Forest на наборе данных IEEE Smart Crane.

REMOVE MILTICOLINEAR FEATURES: [Age, SibSp]

```
Входные данные
```

```
DATA_PATH = "../datasets/IEEE_smart_crane.csv" ieee_data = pd.read_csv(DATA_PATH)
```

Обработка Random Forest

```
X_train, X_test, y_train, y_test = train_test_split
(ieee_data.drop(columns=['Alarm']), ieee_data.Alarm, test_size = 0.3,
shuffle = False)
clf = RandomForestClassifier(random_state=5)
clf.fit(X_train, y_train)
y_test_pred = clf.predict(X_test)
y_test_proba = clf.predict_proba(X_test)
```

Обработка с ИЗСНД + Random Forest

```
algo = IzdapAlgo(0.1)
algo.fit(ieee_data, class_column = "Alarm", positive_class_label = 1)
transformed_data = algo.transform(ieee_data)
X_train, X_test, y_train, y_test = train_test_split
(transformed_data.drop(columns=['Alarm']), transformed_data.Alarm,
test_size = 0.3, shuffle = False)
clf.fit(X_train, y_train)
y_test_pred = clf.predict(X_test)
y_test_proba = clf.predict_proba(X_test)
```

Выходные данные

Random forest without IZSND preprocessing

memory usage: 3.3 MB

ROC-AUC: 0.439477698605656 Accuracy: 0.9492066872537536

Random forest with IZSND preprocessing

memory usage: 2.9+ MB

ROC-AUC: 0.5

Accuracy: 0.9533595996166543

6.2.3 Алгоритм АОТССОП

Контрольный пример №1.

<u>Описание:</u> Загрузка набора данных. Для загрузки данных используются вспомогательные классы FormatDetector и DataLoader, которые осуществляют определение типа разделителя полей и загрузку набора данных.

```
import numpy as np
      import pandas as pd
      from collections import OrderedDict
      from sklearn.utils import shuffle
      from aossop import SAIClassifier, FormatDetector, DataLoader,
      ClsEstimator
      class DataLoaderHai(DataLoader):
        def init (self, file, n, d):
                DataLoader.__init__(self, file, n, d)
        def load(self, file):
                n, d = self.n, self.d
                if n in [64, 84]:
       self.features = np.genfromtxt(file, delimiter=d, dtype=float, skip_header=1,
usecols=range(1,n-4)
       attacks = np.genfromtxt(file, delimiter=d, dtype=float, skip_header=1,
usecols=range(n-4,n)
       self.labels = np.array([[0] if sum(a) == 0 else [1] for a in attacks])
       self.num labels = self.labels
     elif n == 88:
       self.features = np.genfromtxt(file, delimiter=d, dtype=float, skip header=1,
usecols=range(1,n-1))
       self.labels = np.genfromtxt(file, delimiter=d, dtype=float, skip_header=1,
usecols=range(n-1,n)
       if len(np.shape(self.labels)) == 1:
          self.labels = np.array([[e] for e in self.labels])
       self.num labels = self.labels
```

```
class DataLoaderEdgeIIoTSet(DataLoader):
  def __init__(self, file, n, d):
    DataLoader. init (self, file, n, d)
  def load(self, file):
     df = pd.read csv(file, low memory=False, sep=self.d)
    drop_columns = ["frame.time", "ip.src_host", "ip.dst_host",
"arp.src.proto_ipv4", "arp.dst.proto_ipv4",
               "http.request.method", "http.file_data", "http.referer",
"http.request.full uri", "http.request.version",
               "icmp.transmit_timestamp", "http.request.uri.query", "tcp.options",
"tcp.payload", "tcp.srcport",
               "tcp.dstport", "udp.port", "dns.qry.name", "dns.qry.name.len",
"dns.qry.qu",
               "mqtt.conack.flags", "mqtt.msg", "mqtt.protoname", "mqtt.topic",
"Attack label"]
     df.drop(drop_columns, axis=1, inplace=True)
     df.dropna(axis=0, how='any', inplace=True)
     df.drop duplicates(subset=None, keep="first", inplace=True)
     df = shuffle(df)
     str labels = df.iloc[:,-1].tolist()
     self.features = np.array(df.iloc[:,:-1].values.tolist())
     unique labels = list(OrderedDict.fromkeys(str labels))
    labels = list(map(lambda x: unique_labels.index(x), str_labels))
     self.labels = np.array([np.zeros(len(unique_labels))] * len(labels))
    for i in range(len(labels)): # one-hot encoding
       self.labels[i][labels[i]] = 1
     self.num_labels = labels
class DataLoaderDataPort(DataLoader):
  def __init__(self, file, n, d):
    DataLoader.__init__(self, file, n, d)
  def load(self, file):
     self.features = np.genfromtxt(file, delimiter=self.d, dtype=float,
skip header=1, usecols=range(1,self.n-1))
    labels = np.genfromtxt(file, delimiter=self.d, dtype=float, skip_header=1,
usecols=range(self.n-1,self.n))
     self.labels = np.array([np.zeros(len(set(labels)))] * len(labels))
    for i in range(len(labels)): # one-hot encoding
       self.labels[i][int(labels[i]) - 1] = 1
     self.num_labels = labels
fd = FormatDetector(file)
```

```
dl = None
if dataset == 'hai':
    dl = DataLoaderHai(file, fd.n, fd.d)
elif dataset == 'edge-iiotset':
    dl = DataLoaderEdgeIIoTSet(file, fd.n, fd.d)
elif dataset == 'dataport':
    dl = DataLoaderDataPort(file, fd.n, fd.d)
else:
    assert(False)
```

<u>Входные данные</u>: file — название набора данных (текстовая строка) Выходные данные: dl — объект, содержащий загруженный набор данных.

Контрольный пример №2.

<u>Описание:</u> Обучение и тестирование модели оценивания. Предварительно должны быть созданы объекты fd и dl классов FormatDetector и DataLoader.

<u>Входные данные</u>: fd и dl — объекты классов FormatDetector и DataLoader <u>Выходные данные</u>: r — объект, содержащий результаты оценивания экземпляров обучающей и тестовой выборок.

6.2.4 Алгоритм АПССОП

Контрольный пример №1.

<u>Описание:</u> Обучение модели прогнозирования. Для загрузки данных используется вспомогательный класс DataLoaderAndPreprocessor, который осуществляет загрузку и предобработку набора данных.

```
from apssop import *
from data_classes import AopssopData as PDATA
```

```
data = DataLoaderAndPreprocessor(dataset_name, mode=mode, suf=suf) PDATA.features_names = data.features_names
```

train_generator = forecasting_model.data_to_generator(scaled_train) loss = forecasting_model.train(train_generator)

<u>Входные данные</u>: $dataset_name$ — название набора данных (текстовая строка), suf — суффикс-метка для сохранения внешний файлов (текстовая строка), mode — вспомогательная переменная, режим загрузки данных (целое число).

<u>Выходные данные:</u> loss — значение потерь (среднеквадратическая ошибка) на всех эпохах обучения (список).

Контрольный пример №2.

<u>Описание:</u> Прогнозирование данных с использованием обученной модели прогнозирования. Прогнозируется последовательность длиной 100. Для загрузки данных используется вспомогательный класс DataLoaderAndPreprocessor, который осуществляет загрузку и предобработку набора данных.

```
from apssop import *
from data_classes import AopssopData as PDATA
```

```
data = DataLoaderAndPreprocessor(dataset_name, mode=mode, suf=suf) PDATA.features_names = data.features_names
```

PDATA.forecasting_model_path = data.forecasting_model_path PDATA.normalization_model_path = data.normalization_model_path

generator = forecasting_model.data_to_generator(scaled_data)

```
PDATA.forecasting_time_window = 100
last_batch = forecasting_model.get_batch(generator, -1)
```

open=True)

forecasting_results = forecasting_model.forecasting(last_batch, forecasting_data_length=PDATA.forecasting_time_window)

PDATA.forecasting_results = normalization_model.inverse(pred) print(**'Done'**)

<u>Входные данные</u>: $dataset_name$ — название набора данных (текстовая строка), suf — суффикс-метка для сохранения внешний файлов (текстовая строка), mode — вспомогательная переменная, режим загрузки данных (целое число).

<u>Выходные данные:</u> *forecasting_results* – последовательность прогнозируемых значений (многомерный массив).

7 ВХОДНЫЕ И ВЫХОДНЫЕ ДАННЫЕ

7.1 Входные данные

7.1.1 Состав и структура входных данных

Модуль ПОСНД

Входными данными для модуля ПОСНД являются следующие (имеющие определенный формат):

- 1) features_matrix (numpy.array) двумерный массив (только численные значения), состоящий из объектов и их признаков;
- 2) features_types (numpy.array) одномерный массив (возможные значения элементов ["num", "cat", None]), длина которого соответствует количеству признаков;
- 3) features_names (numpy.array): одномерный массив (только строковые значения), длина которого соответствует количеству признаков;
- 4) *labels_matrix* (*numpy.array*) двумерный массив (только численные значения), состоящий из объектов и их меток;

- 5) *labels_types* (*numpy.array*) одномерный массив (возможные значения элементов ["num", "cat", None]), длина которого соответствует количеству меток;
- 6) *labels_names (питру.array)* одномерный массив (только строковые значения), длина которого соответствует количеству меток.

Модуль ИЗСНД

Входными данными для модуля ИЗСНД являются следующие (имеющие определенный формат):

- 1) data признаки и метки обучающей выборки (многомерный массив);
- 2) class_column имя признака, содержащего метки обучающей выборки, в виде строки;
- 3) positive_class_label метка положительного класса;
- 4) rule_metric метрика оценки правил (название в строковом формате);
- 5) probability_threshold вероятность, задающая порог отсечения значений для построения предикатов.

Модуль АОТССОП

Входными данными для модуля АОТССОП являются следующие (имеющие определенный формат):

- 1) x_train признаки обучающей выборки (многомерный массив);
- 2) *y_train* метки обучающей выборки (многомерный массив);
- 3) x_test признаки тестовой выборки (многомерный массив);
- 4) *y_test* метки тестовой выборки (многомерный массив);
- 5) x объект для определения класса с помощью глубокой нейронной сети (многомерный массив);
- 6) saved_file путь к файлу для сериализации модели (текстовая строка);
- 7) *loaded_file* путь к файлу для десериализации модели (текстовая строка);
- 8) file путь к файлу для определения его типа и загрузки данных (текстовая строка);
 - 9) features признаки данных сложного объекта (массив с данными);
- 10) labels(num_labels) метки данных сложного объекта (массив с данными);
- 11) classifiers выбранные ранее классификаторы (программный объект).

Модуль АПССОП

Входными данными для модуля АПССОП являются следующие:

- 1) *model_path* путь к модели прогнозирования (текстовая строка);
- 2) scaler_path путь к модели нормализации (текстовая строка);
- 3) *time_window_length* размер временного окна при обучении, длина источеской последовательности (число);

- 4) forecast_len размер временного окна для прогнозирования (число),
- 5) data матрица признаков исходного набора данных (многомерный массив);

7.1.2 Подготовка входных данных

Предшествующая алгоритмам оценивания и прогнозирования дополнительная предобработка входных данных не является обязательной. В общем случае потребность в предобработке данных обуславливается конкретными исходными данными и их особенностями.

Модуль ПОСНД

Данные для работы модуля ПОСНД передаются в виде пути к файлу, содержащему данные, нуждающиеся в предобработке. При этом необходимо отделить признаки данных от их меток.

Модуль ИЗСНД

Данные для работы модуля ИЗСНД передаются в виде пути к файлу, содержащему обучающие данные.

Модуль АОТССОП

Модель десериализуется из внещнего файла – loader_file; файл имеет бинарный формат, реализованный в библиотеке pickle.

Входной набор данных для определения типа и загрузки загружается из файла по пути к нему – file; файл имеет текстовый формат в виде набора строк, элементы которых разделяются символами ',' или ';' (также, он может быть запакован с помощью gzip).

Модуль АПССОП

Модель прогнозирования загружается из файла по пути к нему – model_path; файл имеет бинарный формат, реализованный в библиотеке keras.models.

Модель нормализации загружается из файла по пути к нему – scaler_path; файл имеет бинарный формат, реализованный в библиотеке pickle.

7.2 Выходные данные

7.2.1 Состав и структура выходных данных

Модуль ПОСНД

Выходными данными для модуля ПОСНД являются следующие (имеющие определенный формат):

- 1) Вывод в консоль результатов анализа корректности типов данных.
- 2) Вывод в консоль результатов устранения неполноты данных.
- 3) Вывод в консоль результатов анализа информативности признаков.
- 4) Вывод в консоль результатов анализа мультиколлинеарности.

Модуль ИЗСНД

Выходными данными для модуля ИЗСНД являются следующие (имеющие определенный формат):

- 1) Вывод в консоль построенных ассоциативных правил класса.
- 2) Возврат преобразованных данных в формате pandas.DataFrame (функция transform).

Модуль АОТССОП

Выходными данными для модуля АОТССОП являются следующие (имеющие определенный формат):

- 1) оцениваемые значения (числовые значения);
- 2) показатели качества оценивания (числовые значения);
- 3) вывод обученной модели по некоторому датасету (программный формат модели).

Модуль АПССОП

Выходными данными для модуля АПССОП являются следующие:

- 1) прогнозируемые значения (числовые значения);
- 2) показатели качества прогнозирования (числовые значения);
- 3) вывод обученной модели прогнозирования по некоторому датасету (программный формат модели);
- 4) вывод обученной модели нормализации по некоторому датасету (программный формат модели).

7.2.2 Интерпретация выходных данных

Дополнительной постобработки выходные данные не требуют, однако модули компонента сохраняют часть данных во внешние файлы следующим образом.

Модуль ПОСНД

Модуль ПОСНД не сохраняет выходные данные во внешние файлы.

Модуль ИЗСНД

Модуль ИЗСНД не сохраняет выходные данные во внешние файлы.

Модуль АОТССОП

Модель сериализуется во внешний файл — saved_file; файл имеет бинарный формат, реализованный в библиотеке pickle. Результаты оценки сохраняются в виде объекта python-словаря.

Модуль АПССОП

Модель прогнозирования сериализуется во внешний файл – model_path; файл имеет бинарный формат, реализованный в библиотеке keras. Модель нормализации сериализуется во внешний файл – scaler_path; файл имеет

бинарный формат, реализованный в библиотеке pickle. Результаты оценки прогнозирования сохраняются во внешний файл формата CSV – file_name.

8 СООБЩЕНИЯ

Компонент выводит следующие сообщения.

No	Текст сообщение	Значение сообщения
		Сообщение содержит информацию
1	PassengerId with FEATURE_type=cat is	о проверке корректности типа
	incorrect. Changing to num (num=1.0,cat=0.8).	данных признака
2	iteration 2, fill 177 NaNs	Сообщение содержит информацию
		о процессе устранения неполноты
		данных, а именно – об итерации
		процесса кластеризации и
		количестве заполненных пустых
		значений
3	price is uninformative, can predict 1, while required 3	Сообщение содержит информацию
		о процессе анализа
		информативности признаков,
		неинформативные признаки
		рекомендуется удалить
4	delete feature=SibSp as it correlates with feature=PassengerId	Сообщение содержит информацию
		о процессе устранения
		мультиколлинеарности данных, а
-		именно рекомендацию об удалении
		признака, если он коррелирует с
		другим признаком
	"Test accuracy: N", где N – дробное число до 3-го знака	Сообщение содержит информацию
5		о точности обучения модели
		оценивания состояния сложного
	((2.21) ((2.21) ((2.21)	объекта.
	"{MN} of {CN} on {N} sample ({L}	
	instances): {M}", где MN – имя метрики	
	(precision/accuracy – точность, recall –	Сообщение содержит информацию
6	полнота, fscore – F-метрика); CN – имя	о точности обучения и
	классификатора; N – тип процесса для	тестирования модели оценивания
	вычисления метод (training – обучение,	состояния сложного объекта.
	testing – тестирование); L – число меток; M –	
	значение метрики	Сообщение сигнализирует об
7	"File with forecasting model does not exist"	отсутствии модели предсказания по
'		заданному пути.
	"Too many values for categorical feature '{F}'.	Сообщение сигнализирует о
8	Delete feature from data", где F – число	превышении допустимого числа
	признаков	признаков.
	"The proportion of the training sample is not in the interval (0, 1)"	Сообщение сигнализирует о том,
9		что доля обучающей выборки не
		входит в интервал от 0 до 1.
10	"File with normalization model does not exist"	Сообщение сигнализирует об
		отсутствии модели нормализации
		по заданному пути.
		no suguinomy mytri.

11	"The length of the samples is not equal"	Сообщение сигнализирует о том, что длина реальных и спрогнозированных данных не совпадают.
12	"{FC}", где FC – показатели качества предсказания	Сообщение содержит показатели качества проведенного предсказания.
13	"Done"	Сообщение сигнализирует о завершении процесса тестирования.