Отладочная плата MotorControlBoard4

Руководство по эксплуатации

ів. аримен.				Содержание	
19U	1	Обозначения	и сокраще	ения	4
	2	Описание и ра	абота изде	елия	5
Щ	3	Использовани	е по назн	ачению	19
	4	Техническое о	обслужива	ание	20
	5	Электробезоп	асность		21
No	6	Текущий ремо			22
Справ.	7	_		ранение	23
	8	Утилизация			
й Подп. и дата					
Инв. № дибл.					
Взам. инв. №					
Подп. и дата		T	 		V 2 / 50 22
'/	Изм. Лист	№ докум. Подп.	Дата	ВКФП.42124	3.47UPJ
№ подл.	изм. Рист Разраб Пров.	го и и и и и и и и и и и и и и и и и и и	дини	Отладочная плата MotorControlBoard4	Num Nucm Nucmob 2 23
NHB. N	Н.контр. Утв.	Подзорова Анучин	H	Руководство по эксплуатации	000 "НПФ ВЕКТОР"

Настоящее руководство по эксплуатации распространяется на отладочную плату MotorControlBoard4 (MCB4) ВКФП.421243.470 (далее изделие)

Руководство по эксплуатации описывает назначение, устройство и принцип работы изделия. Руководство предназначено для персонала, осуществляющего монтаж и обслуживание изделия.

Приведенные в настоящем руководстве технические параметры изделия гарантируются предприятием-изготовителем.

Подпод		
IA TITLE NG		
Door		
Потит 11 типоп		
ВКФП.421243.470 F	93	Лист 3

1 Обозначения и сокращения

В настоящем руководстве по эксплуатации применены следующие сокращения:

- CAN Controller Area Network (Сеть контроллеров);
- GPIO General-Purpose Input/Output (Интерфейс ввода/вывода общего назначения);
- JTAG Joint Test Action Group;
- MCB Motor Control Board (Плата управления двигателями);
- McBSP Multichannel Buffered Serial Port (Многоканальный буферированный последовательный порт);
- SPI Serial Peripheral Interface (Последовательный периферийный интерфейс);
- UART Universal Asynchronous Receiver-Transmitter (Универсальный асинхронный приёмопередатчик);
- АЦП Аналого-цифровой преобразователь;
- ОИ Одноплатный инвертор;
- ПО Программное обеспечение;
- ШИМ Широтно-импульсная модуляция;
- ЧРВ Часы реального времени.

LAHT II HATA DAMI IIIIN MA

Изм. Лист № докцм. Подп. Дата

2 Описание и работа изделия

2.1 Назначение изделия

Отладочная плата MotorControlBoard4 является удобный средством для начальной разработки программного обеспечения (ПО), создания прототипов оборудования и оценки возможностей китайского микроконтроллера, который функциональным является полным аналогом популярного микроконтроллера TMS320F2810 (Texas Instruments, США). Контроллер изготовлен в виде втычной платы для установки в разъемы типа PBD. На плате реализованы узлы тактирования и питания, защиты аналоговых входов встроенного АЦП микроконтроллера, выведен интерфейс JTAG для программирования и отладки на отдельный разъем. Также присутствует светодиодная индикация питания. Также для обеспечения режима отладки контроллер содержит гальванически развязанный интерфейс САN.

Для работы с контроллером подходит JTAG-программатор-отладчик XDS100-V2, XDS510 или их аналоги.

2.2 Технические характеристики

2.2.1 Технические характеристики изделия приведены в таблице 2.1

Таблица 2.1

Наименование параметра	Ед. изм.	Значение параметра			
Микроконтроллер (функциональный аналог TMS320F2810)					
Частота работы ядра		150			

Изм. Лист № докум. Подп. Дата

Продолжение таблицы 2.1

Наименование параметра	Ед. изм.	Значение параметра
Входная частота тактирования	МГц	20
Питание контроллера		
Напряжение контроллера	=B	5,0±0,5
Ток потребления, не более	A	0,5
Аналоговые входы		
Формат (0-3,3) В	шт.	16
Дискретные входы/выходы общего назн	начения	
Выходной ток, не более	мА	4
Входное напряжение низкого уровня в диапазоне	В	0-0,8
Входное напряжение высокого уровня в диапазоне	В	2,0-3,3
Индикация и кнопки		
Светодиодная индикация питания	шт.	3
Программируемые светодиоды	шт.	2
Программируемые кнопки управления	шт.	2
Интерфейс связи CAN		
Кол-во интерфейсов	шт.	1
Скорость работы, не более	Мбит/с	2
Гальваническая изоляция интерфейса	В	1000
Интерфейс USB-UART		
Кол-во интерфейсов	шт.	1
Скорость работы, не более	Мбит/с	2
Гальваническая изоляция интерфейса	В	1000
Климатическое исполнение		
Степень защищенности		IP00
Температура окружающей среды	°C	0-55

Изм.	Лист	№ докцм.	Подп.	Дата

Изм. Лист № докцм. Подп. Дата

ВКФП.421243.470 РЭ

Лист

Рисунок 2.2 – Функциональная схема изделия

2.4 Разъемы

2.4.1 Разъем X1 – цифровой разъем (PLHD-80)

Таблица 2.2

Door

Попп

№ контакта	Сигнал	№ контакта	Сигнал
1	/C2TRIP – GPIOA14	2	/C3TRIP – GPIOA15
3	/C1TRIP – GPIOA13	4	/C4TRIP – GPIOB13
5	TDIRA – GPIOA11	6	TCLLINA – GPIOA12
7	XINT2 – ADCSOC – GPIOE1	8	NC
9	GND(D)	10	GND(D)

Изм	Лист	№ даким.	Ппдп	Пата

Продолжение таблицы 2.2

Сигнал

№ контакта

11	PWM1 – GPIOA0	12	PWM2 – GPIOA1
13	PWM3 – GPIOA2	14	PWM4 – GPIOA3
15	PWM5 – GPIOA4	16	PWM6 – GPIOA5
17	PWM7 – GPIOB0	18	PWM8 – GPIOB1
19	PWM9 – GPIOB2	20	PWM10 – GPIOB3
21	PWM11 – GPIOB4	22	PWM12 – GPIOB5
23	T1PWM – GPIOA6	24	T2PWM – GPIOA7
25	T3PWM – GPIOB6	26	T4PWM – GPIOB7
27	TDIRB – GPIOB11	28	TCLKINB – GPIOB12
29	GND(D)	30	GND(D)
31	/T1CTRIP_PDPINTA - GPIOD0	32	/T2TRIP/EVASOC – GPIOD1
33	/T3CTRIP_PDPINTB - GPIOD5	34	/T4CTRIP/EVBSOC – GPIOD6
35	/C5TRIP – GPIOB14	36	/C6TRIP – GPIOB15
37	GND(D)	38	GND(D)
39	CAP1_QEP1 – GPIOA8	40	CAP2_QEP2 – GPIOA9
41	CAP3_QEPI1 – GPIOA10	42	NC
43	GND(D)	44	CAP4_QEP4 – GPIOB8
45	CAP5_QEP5 – GPIOB9	46	CAP6_QEPI2 – GPIOB10
47	GND(D)	48	GND(D)
49	CANTXA – GPIOF6*	50	CANRXA – GPIOF7*

№ контакта

Сигнал

Изм.	Лист	№ докцм.	Подп.	Дата

Продолжение таблицы 2.2

№ контакта	Сигнал	№ контакта	Сигнал
51	GND(D)	52	GND(D)
53	MDXA – GPIOF12	54	MDRA – GPIOF13
55	MCLKRA – GPIOF9	56	MFSXA – GPIOF10
57	NC	58	NC
59	NC	60	NC
61	SCITXDA – GPIOF4	62	SCIRXDA – GPIOF5
63	GND(D)	64	GND(D)
65	XNMI_XINT13 – GPIOE2	66	XF_PLL_DIS – GPIOF14
67	XINT1_XBIO – GPIOE0	68	NC
69	NC	70	NC
71	MCLKXA – GPIOF8	72	MFSRA – GPIOF11
73	NC	74	NC
75	NC	76	NC
77	GND(D)	78	GND(D)
79	+5V(D)	80	+5V(D)

^{*} Выводы работаю только при замыкании JP7, JP9, см. п.2.4.6.4

ľ					
L					
	Изм.	Лист	№ докцм.	Подп.	Дата

2.4.2 Разъем X2 - Aналоговые входы (0 - 3,3)B (PLHD-24)

Таблица 2.3

№ контакта	Сигнал	№ контакта	Сигнал
1	ADCINA0	2	GND(A)
3	ADCINA1	4	GND(A)
5	ADCINA2	6	GND(A)
7	ADCINA3	8	GND(A)
9	ADCINA4	10	GND(A)
11	ADCINA5	12	GND(A)
13	ADCINA6	14	GND(A)
15	ADCINA7	16	GND(A)
17	ADCINB0	18	GND(A)
19	ADCINB1	20	GND(A)
21	ADCINB2	22	GND(A)
23	ADCINB3	24	GND(A)

2.4.3 Разъем X3 - Aналоговые входы (0 - 3,3) В (PLHS-12)

Таблица 2.4

Изм.	Лист	№ дакум.	Подп.	Дата

№ контакта	Сигнал	№ контакта	Сигнал
1	ADCINB4	2	ADCINB5
3	ADCINB6	4	ADCINB7
5	GND(A)	6	GND(A)
7	GND(A)	8	GND(A)
9	GND(A)	10	GND(A)
11	GND(A)	12	GND(A)

2.4.4 Разъем X4 – Интерфейс JTAG (PLD-14)

Таблица 2.5

№ контакта	Сигнал	№ контакта	Сигнал
1	JTAG_TMS	2	JTAG_/TRST
3	JTAG_TDI	4	GND(D)
5	+3,3V(D)	6	NC
7	JTAG_TDO	8	GND(D)
9	JTAG_TCK	10	GND(D)
11	JTAG_TCK	12	GND(D)
13	JTAG_EMU0	14	JTAG_EMU1

Изм.	Лист	№ докцм.	Подп.	Дата

2.4.5 Разъем X5 – Интерфейс CAN (PLS-3)

Таблица 2.6

№ контакта	Сигнал
1	CAN_H
2	CAN_L
3	CAN(GND)

2.4.6 Замыкатели

2.4.6.1 Замыкатель JP1 (PLS-2)

Переключатель устанавливает терминальное сопротивление 120 Ом в линии CAN при подключении контроллера крайним узлом сети.

2.4.6.2 23амыкатель JP2 – JP5 (PLS-3)

Переключатели JP2 – JP5 задают состояния выводов «BOOT_MODE_1», «BOOT_MODE_2», «BOOT_MODE_3», «BOOT_MODE_4».

Таблица 2.7

Вывод	Замыкатель
BOOT_MODE_1	JP2
BOOT_MODE_2	JP3
BOOT_MODE_3	JP4
BOOT_MODE_4	JP5

Для корректной работы с демонстрационным ПО необходимо установить режим загрузки из основной Flash-памяти. Первый вывод обозначен треугольником.

Изм.	Лист	№ докцм.	Подп.	Дата

При отсутствии замыкателей ПО загружается с адреса Flash-памяти 0x3F 7FF6.

Рисунок 2.3 — Состояния вывода, в зависимости от расположения замыкателя Т а б л и ц а 2.8

Режим загрузки	BOOT _MODE_1	BOOT _MODE_2	BOOT _MODE_3	BOOT _MODE_4
Переход к адресу Flash- памяти 0x3F 7FF6	1	X	X	X
Загрузка с энергонезависимой памяти SPI	0	1	X	X
Загрузка из SCI-A	0	0	1	1
Переход к адресу Н0 SARAM 0x3F 8000	0	0	1	0
Переход к ОТР к адресу 0x3D 7800	0	0	0	1
Загрузка с порта GPIO В	0	0	0	0

ŗ	
Понн и	
Νς	
Urrn	
תזזזז	
Door mm	
LAHH WHORD	
1.1	
Плян	
NG	
E	

Изм.	Лист	№ докум.	Подп.	Дата

2.4.6.3 Замыкатели JP6, JP8 (PLS-2)

Замыкатели JP6, JP8 предназначен для подачи питания 5В для интерфейса USB-UART.

Рисунок 2.3 – Подключение джамперов для работы с интерфейсом USB-UART

2.4.6.4 Замыкатели JP7, JP9 (PLS-3)

Замыкатели JP7 и JP9 предназначены для выбора режима работы портов микроконтроллера интерфейса CAN.

При замыкании первого и второго вывода замыкателей JP7, JP9, порты микроконтроллера CANTXA и CANRXA используются для гальванически развязанного интерфейса CAN (разъем X5), расположенного на отладочной плате MCB4. В таком случае для работы с контроллером можно использовать USB-CAN переходник.

При замыкании второго и третьего вывода замыкателей JP7, JP9В порты CANTXA и CANRXA микроконтроллера выводятся без какой-либо обработки на разъём X1 (выводы 49 и 50). В данном случае они не могут работать в качестве CAN интерфейса без использования специализированного драйвера.

Изм. Лист № докцм. Подп. Дата

Рисунок 2.4 — Режим работы портов CAN в зависимости от расположения замыкателей JP7, JP9

2.5 Светодиоды

Таблица 2.9

Позиционное обозначение	Цвет светодиода	Детектируемый сигнал
VD2	Зеленый	+5B(D)
VD3	Красный	+3,3B(D)
VD4	Желтый	+5B(CAN)
VD6	Красный	Управляется дискретным портом GPIOF14 микроконтроллера
VD7	Желтый	Управляется дискретным портом GPIOE0 микроконтроллера
VD25	Красный	Ошибка USB-UART
VD26	Зеленый	Нормальна работа USB- UART

Изм.	Лист	№ докцм.	Подп.	Дата

Таблица 2.10

Название	Сигнал
SB1	Сброс микронтроллера (DD1)
SB2	Сброс микросхемы USB-UART (DD10)

2.7 Контрольные точки

Таблица 2.11

Контрольная точка	Сигнал	Контрольная точка	Сигнал
TP1	+5(D)	TP5	GND(D)
TP2	+1,9(D)	TP6	+5(USB)
TP3	+3,3(A)	TP7	+3,3(USB)
TP4	GND(A)	TP8	GND(USB)

2.8 Маркировка

- 2.8.1 Маркировка наносится на изделие и содержит:
 - название предприятия-изготовителя;
 - шифр изделия;
 - индивидуальный номер изделия.
- 2.8.2 Транспортная маркировка груза наносится на упаковку и должна соответствует требованиям ГОСТ 14192-96.

			·	
Изм.	Лист	№ докцм.	Подп.	Дата

2.8.3 Транспортная маркировка содержит:

- а) основные надписи:
 - 1) наименование грузополучателя;
 - 2) наименование пункта назначения;
 - 3) количество грузовых мест в партии и порядковый номер места внутри (при необходимости);
- б) информационные надписи:
 - 1) наименование продукции и комплектность поставки;
 - 2) краткие технические характеристики;
 - 3) масса брутто и нетто грузового места в килограммах;
- в) манипуляционные знаки:
 - 1) «Хрупкое. Осторожно».

Пони и попо	
אלה מייז אל	
Door mm	
Попи и попо	
אלי מייז אל	По

3 Использование по назначению

3.1 Эксплуатационные ограничения

Несоблюдение требований, приведенных в таблице 2.1, может привести к выходу из строя изделия и/или оборудования, с которым используется изделие.

3.2 Подготовка изделия к использованию

Отладочная плата MCB4 может служить самостоятельным изделием или подключаться к другому электротехническому изделию через разъемы PBD. Ошибочное подключение может привести к необратимому выходу из строя изделия и/или оборудования, с которым используется изделие.

Перед установкой изделия на штатное место необходимо произвести его внешний осмотр. Внешнее покрытие не должно иметь повреждений. Контакты разъемов не должны быть загрязнены и/или иметь повреждения.

Плата поставляется с предустановленным тестовым ПО. В случае необходимости пользователь может перепрограммировать изделие с использование штатных средств.

MA ITAHH II HAHA IIII MA ITAHH II I

Изм.	Лист	№ докцм.	Подп.	Дата

4 Техническое обслуживание

Раз в 10 лет вне зависимости от условий эксплуатации необходимо перепрограммировать флеш-память изделия. Пометку о проведенном техническом обслуживании сделать в соответствующем разделе паспорта изделия.

4.1 Меры безопасности

Эксплуатация изделия должна производиться в соответствии с «Правилами техники безопасности при эксплуатации электроустановок», «Правилами устройства электроустановок», а также настоящим руководством по эксплуатации согласно ГОСТ 12.2.007.0-75.

Любые подключения и техническое обслуживание необходимо производить только при отключенном питании.

Не допускается попадание влаги на контакты контроллера.

Пони и попо	
TArra Ma	
Door mm Him	
Пони и нопо	

Изм.	Лист	№ докцм.	Подп.	Дата

5 Электробезопасность

- 5.1 Монтаж и обслуживание должны проводиться в соответствии с настоящим руководством по технической эксплуатации.
- 5.2 При монтаже и обслуживании необходимо соблюдать Правила по охране труда при эксплуатации электроустановок (утверждены приказом № 328н от 24.07.2013 г, Министерство труда и социальной защиты Российской Федерации), Правила устройства электроустановок (ПУЭ, 7-е издание).
- 5.3 Обслуживающий электротехнический персонал должен иметь квалификационную группу по электробезопасности не ниже третьей.

ЗАПРЕЩАЕТСЯ!

СОЕДИНЯТЬ И РАЗЪЕДИНЯТЬ ЭЛЕКТРИЧЕСКИЕ РАЗЪЕМЫ ПОД НАПРЯЖЕНИЕМ!

ПИТАТЬ ИЗДЕЛИЕ ОТ НЕИЗОЛИРОВАННОГО ИСТОЧНИКА!

LA TLANT IN TOTAL TOTAL TOTAL TATES NA TLANT IN TOTAL

Изм. Лист Nº докум. Подп. Дата

ВКФП.421243.470 РЭ

Лист

6 Текущий ремонт

Текущий ремонт изделия может быть осуществлен только на предприятии-изготовителе. При выявлении дефектов в его работе составляется рекламация. Оперативный ремонт изделия на месте эксплуатации не предусмотрен.

В случае возникновения неисправностей по вине предприятия-изготовителя восстановление исправного состояния изделия, комплектности или замена дефектных изделий на новые, в период действия гарантийных обязательств при соблюдении условий эксплуатации, хранения и транспортирования осуществляет предприятие-изготовитель безвозмездно и в кратчайшие сроки.

Время в пределах действия гарантийных обязательств, в течение которого изделия не могли быть использованы потребителем в связи с отказом из-за наличия дефектов, в гарантийный срок не засчитывают. В этом случае гарантийный срок изделия продлевается на время, в течение которого изделие не могло использоваться из-за обнаружения в нем дефектов.

Ремонт изделия с неисправностями, возникшими не по причине предприятия-изготовителя, оговаривается в каждом случае отдельно.

Изм. Лист № докум. Подп. Дата

7 Транспортирование и хранение

Изделие, упакованное в тару изготовителя, допускает транспортирование:

- железнодорожным транспортом без ограничения скорости и расстояния;
 - водным транспортом без ограничения скорости и расстояния;
- воздушным транспортом в герметичных отсеках без ограничения продолжительности и высоты полёта.

8 Утилизация

В целях ресурсосбережения, утилизацию изделия проводить по ГОСТ Р 55102-2012.

No Tour warm Done with Ma Hour warm

Изм.	Лист	№ докцм.	Подп.	Дата