Assignment 9

Solutions

There are total 22 points in this assignment. 19 points is considered 100%. If you go over 19 points, you will get over 100% for this homework and it will count towards your course grade (up to 115%).

Your solutions should contain full proofs. Bare answers will not earn you much. This assignment covers section 5.1, 5.2, and partially 5.3 in Bartle–Sherbert.

(1) [2pt] (5.1.7+) (Local separation from zero) Let $A \subseteq \mathbb{R}$, $c \in A$, $f: A \to \mathbb{R}$ be continuous at c and let f(c) > 0. Show that for any $\alpha \in \mathbb{R}$ such that $0 < \alpha < f(c)$, there exists a neighborhood $V_{\delta}(c)$ of c such that if $x \in V_{\delta}(c) \cap A$, then $f(x) > \alpha$.

 \triangleright Put $\varepsilon = f(x) - \alpha > 0$ in the definition of continuity of f at c, get the required δ .

(2) [3pt] (5.1.13) Define $g: \mathbb{R} \to \mathbb{R}$ by g(x) = 2x for $x \in \mathbb{Q}$ and g(x) = x + 3 for $x \notin \mathbb{Q}$. Find all points at which g is continuous.

ightharpoonup Note that for each $c \in \mathbb{R}$, there is a sequence (x_n) in \mathbb{Q} s.t. $(x_n) \to c$, and a sequence (y_n) in $\mathbb{R} \setminus \mathbb{Q}$ s.t. $(y_n) \to c$. Then $\lim(g(x_n)) = 2c$ and $\lim(g(y_n)) = c + 3$, so by the sequential criterion, if $2c \neq c + 3$, then g is not continuous at c. 2c = c + 3 if and only if c = 3, so g is not continuous at all points $c \neq 3$.

This leaves us to check whether g is continuous at c=3. Note that at c=3, $|g(x)-g(c)| \leq \max\{|2x-2c|, |x+3-(c+3)|\}$, because |g(x)-g(c)| equals to one of the latter two numbers. So, given $\varepsilon>0$, put $\delta=\varepsilon/2$, get that for all $|x-c|<\delta$, we have $|g(x)-g(c)|<\max\{2\delta,\delta\}=\varepsilon$, so g(x) is continuous at c=3 by the definition of continuity. (Instead of the definition, we could also use the squeeze theorem for a limit of a function.)

(3) [2pt] (Exercise 5.2.5) Let g be defined on \mathbb{R} and by g(1)=0, and g(x)=2 if $x\neq 1$, and let f(x)=x+1 for all $x\in \mathbb{R}$. Show that $\lim_{x\to 0}g\circ f\neq (g\circ f)(0)$. Why doesn't this contradict Composition of Continuous Functions Theorem (Theorem 5.2.6)?

 \triangleright The composition is given by

$$(g \circ f)(x) = g(f(x)) = g(x+1) = \begin{cases} 0 & \text{if } x = 0, \\ 2 & \text{if } x \neq 0. \end{cases}$$

Then g(f(0)) = 0 and $\lim_{x\to 0} (g(f(x))) = \lim_{x\to 0} 2 = 2$. This does not contradict the composition of continuous functions theo-

This does not contradict the composition of continuous functions theorem (this theorem would assert that those two values must be the same), since the function g is not continuous at the point f(0).

(4) [3pt] (5.2.6) Let f, g be defined on \mathbb{R} and let $c \in \mathbb{R}$. suppose that $\lim_{x \to c} f = b$ and that g is continuous at b. Show that $\lim_{x \to c} g(f(x)) = g(b)$.

(*Hint:* (Re)define f to be b at c, apply composition of continuous functions.) NOTE. This statement says that \lim and a *continuous* function can be swapped: $\lim_{x\to c}g(f(x))=g(\lim_{x\to c}f(x))$. The previous exercise shows that continuity of g is essential.

 $ightharpoonup \operatorname{Redefine} f$ at c to be equal to $b = \lim_{x \to c} f(x)$. With an abuse of notation, we denote the new function by the same letter f. Then f is continuous at c and g is continuous at b, so $g \circ f$ is continuous at c, i.e. $\lim_{x \to c} g(f(x)) = g(b)$, as required.

- \triangleright Another solution can be done using the Sequential Criteria for limit and for continuity. Let (x_n) be a sequence converging to $c, x_n \neq c$. Then by the sequential criterion for limit of a function, $(f(x_n)) \to b$. But then by the sequential criterion for continuity, $g(f(x_n)) \to g(b)$. Therefore, by the sequential criterion for limit of a function, $\lim_{x\to c} g(f(x)) = g(b)$.
- \triangleright Finally, you can use the ε - δ definitions of limits and continuity to get a solution similar to the one above (or to the proof of composition of continuous functions theorem).
- (5) [2pt] (5.2.7) Give an example of a function $f:[0,1] \to \mathbb{R}$ that is discontinuous at every point of [0,1] but such that |f| is continuous on [0,1].
 - \triangleright For example, f which is 1 at rational points and -1 at irrational points.
- (6) (a) [2pt] (Exercise 5.1.12) Suppose f: R→R is continuous on R and that f(r) = 0 for every rational number r. Show that f(x) = 0 at every point x ∈ R.
 ▷ By the sequential criterion, for any c∈ R if lim f exists, it is equal to 0 (we used Density theorem to get a sequence of rational numbers (r_n) that approaches c). Since f is continuous all such limits exist and are equal to value of f at respective points: lim f = f(c). Then as we showed, for all c∈ R, lim f = 0, therefore for all c∈ R, f(c) = 0.
 - (b) [2pt] (Exercise 5.2.8) Let f, g be continuous from \mathbb{R} to \mathbb{R} , and suppose that f(r) = g(r) for all rational numbers r. Prove that f(x) = g(x) for all $x \in \mathbb{R}$. (Hint: Consider f g.) \triangleright Apply item (a) to the function f g. (Note that there is no point in repeating the argument, you can just use item (a) to conclude f g = 0, so f = g.)
- (7) [2pt] (5.3.1) Let I = [a, b] and let $f : I \to \mathbb{R}$ be a continuous on I function such that f(x) > 0 for all $x \in I$. Prove that there is a number $\alpha > 0$ such that $f(x) \ge \alpha$ for all $x \in I$.
 - \triangleright Note that by the Maximum-Minimum theorem, f attains its minimum on I at some point $c \in I$. Then put $\alpha = f(c) > 0$. Then since c is a point of absolute minimum, $f(x) \ge f(c) = \alpha > 0$ for all $x \in I$.
- (8) [4pt] (5.3.13) Suppose that $f: \mathbb{R} \to \mathbb{R}$ is continuous on \mathbb{R} and that $\lim_{x \to -\infty} f = \lim_{x \to +\infty} f = 0$. Prove that f is bounded on \mathbb{R} and attains either a maximum or a minimum on \mathbb{R} . Give an example to show that both a maximum and a minimum need not be attained. (*Hint:* Pick M large enough and inspect how f behaves on the interval [-M, M], and on $\mathbb{R} \setminus [-M, M]$.)
 - ightharpoonup Assume for definiteness that there is $a \in \mathbb{R}$ such that f(a) > 0. Since $\lim_{x \to \infty} f = 0$, there is $M_1 > 0$ such that |f(x)| < f(a) on (M_1, ∞) . Since $\lim_{x \to -\infty} f = 0$, there $M_2 > 0$ such that |f(x)| < f(a) on $(-\infty, -M_2)$. Note that in particular, these conditions mean that a is neither in $(-\infty, -M_2)$, nor in (M_1, ∞) , because if it were, we would have |f(a)| < f(a).

By the Maximum-Minimum theorem, f attains its maximum on $[-M_2, M_1]$ at some point c. Note that the value f(x) of that maximum is at least f(a) because, as mentioned above, $a \in [-M_2, M_1]$. That means $f(c) \geq f(x)$ for any $x \in \mathbb{R}$, i.e. c is a point of absolute maximum of f.

(If we only have points with f(a) < 0, we can repeat the argument with minimum instead of maximum.)

Note that both maximum and minimum need not be achieved. For example $f(x) = 1/(x^2 + 1)$ is continuous on \mathbb{R} , goes to 0 at $\pm \infty$, and is > 0 for all x, so it does not attain its infimum.