174: Lecture 13 w/ Chapter 11

Hashing!

Contents

Preface xiii

I Foundations

Introduction 3

- The Role of Algorithms in Computing 5
 - 1.1 Algorithms 5
 - 1.2 Algorithms as a technology 11
- 2 Getting Started 16
 - 2.1 Insertion sort 16
 - 2.2 Analyzing algorithms 23
 - 2.3 Designing algorithms 29
- 3 Growth of Functions 43
 - 3.1 Asymptotic notation 43
 - 3.2 Standard notations and common functions 53
- 4 Divide-and-Conquer 65
 - 4.1 The maximum-subarray problem 68
 - 4.2 Strassen's algorithm for matrix multiplication 75
 - 4.3 The substitution method for solving recurrences 83
 - 4.4 The recursion-tree method for solving recurrences 88
 - 4.5 The master method for solving recurrences 93
- ★ 4.6 Proof of the master theorem 97
- 5 Probabilistic Analysis and Randomized Algorithms 114
 - 5.1 The hiring problem 114
 - 5.2 Indicator random variables 118
 - 5.3 Randomized algorithms 122
 - 5.4 Probabilistic analysis and further uses of indicator random variables 130

c Contents

30 Polynomials and the FFT 898

- 30.1 Representing polynomials 900
- 30.2 The DFT and FFT 906
- 30.3 Efficient FFT implementations 915

31 Number-Theoretic Algorithms 926

- 31.1 Elementary number-theoretic notions 927
- 31.2 Greatest common divisor 933
- 31.3 Modular arithmetic 939
- 31.4 Solving modular linear equations 946
- 31.5 The Chinese remainder theorem 950
- 31.6 Powers of an element 954
- 31.7 The RSA public-key cryptosystem 958
- 31.8 Primality testing 965
- ★ 31.9 Integer factorization 975

32 String Matching 985

- 32.1 The naive string-matching algorithm 988
- 32.2 The Rabin-Karp algorithm 990
- 32.3 String matching with finite automata 995
- 32.4 The Knuth-Morris-Pratt algorithm 1002

33 Computational Geometry 1014

- 33.1 Line-segment properties 1015
- 33.2 Determining whether any pair of segments intersects 1021
- 33.3 Finding the convex hull 1029
- 33.4 Finding the closest pair of points 1039

34 NP-Completeness 1040

- 34.1 Polynomial time 1053
- 34.2 Polynomial-time verification 1061
- 34.3 NP-completeness and reducibility 1067
- 34.4 NP-completeness proofs 1078
- 34.5 NP-complete problems 1086

35 Approximation Algorithms 1106

- 35.1 The vertex-cover problem 1108
- 35.2 The traveling-salesman problem 1111
- 35.3 The set-covering problem 1117
- 35.4 Randomization and linear programming 1123
- 35.5 The subset-sum problem 1128

Chapter 11

III Data Structures

	Introduction 229	
10	Elementary Data Structures 232	
	10.1 Stacks and queues 232	
	10.2 Linked lists 236	
	10.3 Implementing pointers and objects 241	
	10.4 Representing rooted trees 246	
n	Hash Tables 253	
	11.1 Direct-address tables 254	
	11.2 Hash tables 256	
	11.3 Hash functions 262	
	11.4 Open addressing 269	
*	11.5 Perfect hashing 277	

Dictionary Operations

Insert item

Search: Find item

· Delete: Delete an item

Hash Tables are great w/ Dictionaries

- Look @ Analysis of Hashing!
- First : Revisit Hashing!
 - If you've seen it before (in another context), Then the Text description should flow more easily
 - Opportunity to measure current understanding

Dictionary w/ Python

```
>>> OED = {}
>>> OED["Algorithm"]="2. Math. and Computing. A procedure or set of rules used i
n calculation and problem-solving; (in later use spec.) a precisely defined set
of mathematical or logical operations for the performance of a particular task."
```

Insert item: O(1)

```
>>> print OED["Algorithm"]
2. Math. and Computing. A procedure or set o
```

- 2. Math. and Computing. A procedure or set of rules used in calculation and prob lem-solving; (in later use spec.) a precisely defined set of mathematical or log ical operations for the performance of a particular task.
 - Find item: O(1)

Direct Addressing versus Hashing

- Ordinary array uses direct addressing:
 - Offsetting by an integer index into a fixed length area of memory.
- Hash Table generalizes direct addressing:
 - Key range is large relative to the number of keys stored.
 - Hash tables use space proportional to the number of keys (not key range).
- Perfect Hashing can support searches in O(1) worst-case time
 - where the set of keys being stored is static

Direct Addressing

• Search, Insert, Delete: O(1)!

Hash Tables w/ Hash Function: h(k)

Hash Tables w/ Collisions

Hash Tables w/ Chaining!

How good is Hashing w/ Chaining ??

How well does hashing perform w/ chaining ??

How long to search for element w/ given key ??

Analyzing Hashing

- Hash Table T w/ m slots and n elements!
- Load factor α for T as n/m
 - average number of elements stored in a chain
 - Analysis in terms of α
 - Which can be less than, equal to, or greater than 1
- Worst-Case behavior Horrible w/ Hashing!
 - $-\Theta(n)$ + time to produce Hash
- Average Performance depends on how well the hash spreads out the keys!

Analyzing Average w/ Hashing

- Average Performance depends on how well the hash spreads out the keys!
 - But for now ignore this!
- Assume any given element is equally likely to hash into any of the m slots!
 - Simple Uniform Hashing!

Chains w/ Expected Length

- Our performance will depend on the length of the chains hanging off the m slots!
- $n_j = len(T[j])$ for j = 0, 1, ..., m 1 denote the length of the chain hanging off slot j

• What is the expected value of n_j under our Simple Uniform Hashing assumption ??

Chains w/ Expected Length

- What is the expected value of n_j under our Simple Uniform Hashing assumption ??
- $E[n_j] = \alpha = n/m$
- Now our questions is given an element :
 - What's the TIME to FIND it?
- Two cases to consider :
 - 1. In the first case, we fail to find it..
 - It's not IN the Hash table!
 - 2. In the second case, we find it!
 - In this case, the key is IN the Hash table!

- In a Hash Table, In which Collisions are Resolved by Chaining...
- An Unsuccessful Search takes average-case Time $\Theta(1 + \alpha)$,
 - UNDER the assumption of SIMPLE UNIFORM HASHING!

Theorem 11.1 w/ THE PROOF!

- Under our Uniform Hashing Assumption, h(k) is equally likely to send k to any of the m slots!
- So, the time needed to search unsuccessfully for k, is the Time needed to search to the end of the list at T(h(k)).
- The expected length of the list at T(h(k)) is

$$\mathrm{E}[n_{h(k)}] = \alpha$$

- Thus the total time required is α plus 1, $\Theta(1 + \alpha)$
 - 1 required to compute h(k)

- In a Hash Table, In which Collisions are Resolved by Chaining...
- Successful Searches take average-case Time $\Theta(1 + \alpha)$
 - UNDER the Uniform Hashing Assumption

- The item being searched for is equally likely to be any of the n elements stored in the table.
- Items are inserted into Hash Table chains at the top.
 - So the number of items examined before finding out item is the number of items inserted into its slot after our item.

- x_i denotes the *i*th element inserted into the table, for i = 1, 2, ..., n
- $k_i = x_i . key$
- Indicator Random Variables
 - Key to simplifying calculating expected values!
- Define indicator random variable :

$$X_{ij} = I\{h(k_i) = h(k_j)\}$$

- True: if two keys Hash to the same Slot!
- Under our assumption:

$$\Pr(\{h(k_i) = h(k_j)\} = 1/m$$

 $E[X_{ij}] = 1/m$

$$E\left[\frac{1}{n}\sum_{i=1}^{n}(1+\#Added\ to\ slot\ with\ x_{i}after\ x_{i})\right]$$

$$E\left[\frac{1}{n}\sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n}X_{ij}\right)\right]$$

• X_{ij} is 1 when x_i and x_j has to same slot!

$$E\left[\frac{1}{n}\sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n}X_{ij}\right)\right]$$

By Linearity of Expectation!

$$= \frac{1}{n} \sum_{i=1}^{n} \left(1 + \sum_{j=i+1}^{n} E[X_{ij}] \right)$$

By Linearity of Expectation!

$$= \frac{1}{n} \sum_{i=1}^{n} \left(1 + \sum_{j=i+1}^{n} E[X_{ij}] \right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left(1 + \sum_{j=i+1}^{n} \frac{1}{m} \right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} (1) + \frac{1}{n} \frac{1}{m} \sum_{i=1}^{n} \left(\sum_{j=i+1}^{n} 1 \right)$$

$$= 1 + \frac{1}{nm} \sum_{i=1}^{n} (n-i)$$

$$= 1 + \frac{1}{nm} \sum_{i=1}^{n} (n-i)$$

$$= 1 + \frac{1}{nm} \left(\sum_{i=1}^{n} n - \sum_{i=1}^{n} i \right)$$

$$= 1 + \frac{1}{nm} \left(n^2 - \frac{n(n+1)}{2} \right)$$

$$= 1 + \frac{n-1}{2m}$$

$$= 1 + \frac{\alpha}{2} - \frac{\alpha}{2n}$$

$$=1+\frac{\alpha}{2}-\frac{\alpha}{2n}$$

• $\Theta(2 + \alpha/2 - \alpha/2n) = \Theta(1 + \alpha)$

 w/ 11.1 & 11.2 We can conclude our average time performance as long as the number of items is proportional to the number of slots

$$-\alpha = n/m = O(m)/m = O(1)$$

Hash Functions

- You can probably guess some of what's on our Hashing wish list?
- KEY: Each key is equally likely to Hash to any of the m slots
 - Independently of where any other keys has hashed to!

 We usually do not know enough about the distribution of the keys!

Hash Functions w/ Known Distribution

- IF we know the distribution of keys:
 - LIKE: keys are random real numbers independent and uniformly distribution in the range:

$$0 \le k < 1$$

 SO, in this case the condition of simple uniform hashing is satisfied by :

$$h(k) = \lfloor km \rfloor$$

First Assumption: Keys are Natural Numbers!

- If keys are really NOT naturals, we just try to find a way to look at them as natural!
- For Example: Character String
 - Assume characters in string are represented by ASCII code.
 - Treat string of characters a big int each each characters representing a digit in a radix-128 integer.
- "David" = $68 * 128^{4} + 97 * 128^{3} + 118 * 128^{2} + 105 * 128 + 100$ $* 128^{0}$ = 18458981604

Division Method

- Basic method for mapping keys from natural numbers into some m fixed number of slots
 - $-h(k) = k \mod m$
- Put some constraints on our choice of *m* to improve hash:
 - Do not use Power of 2!
 - Mod'ing to the power of 2 amounts to grabbing last bits
 - Many cases low-order bits not randomly distributed
 - Like function to operate on all bits
 - Permuting characters mod (radix-1) does not change value!

Permuting characters mod (radix-1) does not change value!

- h("David") = 18458981604 % (128-1) = 107
- h("avidD") = 26287436356 % (128-1) = 107
- h("vidDa") = 31897231969 % (128-1) = 107

```
h=lambda x : sum([ord(x[i])*128**(len(x)-i-1) for i in range(len(x))])%127
```

- You can prove this!
 - Exercise: 11.3-3
- A prime not too close to an exact power of 2 is often a good choice for m.

Hashing w/ Multiplication Method

- Here we introduce A, a number between 0 and 1.
- We'll multiply our key k by A giving us a real number.
- We'll mod that with one, getting the fractional part of kA.
 - A=0.25
 - $-(105*A) \mod 1 = 0.25$
 - $(106*A) \mod 1 = 0.5$
 - $-(107*A) \mod 1 = 0.75$
- mA gives a value between 0 and m-1

Hashing w/

Maltiplication Mathed

```
Very Python 2.7.5 Shell
<u>File Edit Shell Debug Options Windows Help</u>
Python 2.7.5 (default, May 15 2013, 22:43:36) [MSC v.1500 32 bit (Intel)] on win
32
Type "copyright", "credits" or "license()" for more information.
>>> A=0.25
>>> 105*A
26.25
>>> (105*A) % 1
0.25
>>>
```

Hashing w/ Multiplication Method

Chapter 11 Hash Tables 264 w bits $s = A \cdot 2^w$ X r_1 r_0 extract p bits h(k)

- Now m doesn't matter:
 - Use $m=2^p$ for some p.
- Value of A does matter:
 - Knuth recommends $(\sqrt{5} 1)/2 = 0.6280339887...$

Hashing w/ Multiplication Method

- Use m=2^p for some p
 p=7 so 2^p=128
- Use $A=(\sqrt{5}-1)/2=0.6280339887...$

- h("David") = 128*(18458981604*A%1) = 125
- h("avidD") = 128*(26287436356*A%1) = 13
- h("vidDa") = 128*(31897231969*A%1) = 112

Improving Worst-Case w/ Universal Hashing

- In the worst-case, bad luck (or malicious adversary) conspire to provide the worst possible sequence of keys to hash.
 - All keys hash to same slot!
- Whenever the hash function is unchanging, then this is always a possibility!
- Only effective defense is to select the hash function randomly and independent from keys!
- Universal Hashing is one approach!

Universal Hashing w/ Universal Collection of Hash Functions

- Assume we have :
 - two distinct keys k, l
 - A collection of hash function mapping to a range
 0..m-1
- Our collection of hash functions is universal IF:
 - The size of the collection of all hash functions that map both k, l to the same slot is $(1/m)^{th}$ of the total number of functions in the collection.

Universal Collection Gives Good Performance!

- We know Hash Table performance depend on the length of the chains hanging off the m slots!
- Let $n_j = len(T[j])$ for j = 0, 1, ..., m 1 denote the length of the chain hanging off slot j

• What is the expected value of n_j if we choose hash function h from a Universal Collection ??

Universal Collection Gives Good Performance!

- Theorem 11.3:
 - If k is not in Hash table : $E[n_{h(k)}] \le \alpha = (n/m)$
 - If k is NOT in Hash table : $E[n_{h(k)}] \le 1 + \alpha$
- Note this behavior does not depend upon any assumptions about the distribution keys!

Universal Collection Gives Good Performance! THE PROOF

- Theorem 11.3:
 - If k is not in Hash table : $E[n_{h(k)}] \le \alpha = (n/m)$
 - If k is NOT in Hash table : $E[n_{h(k)}] \le 1 + \alpha$
- Note this behavior does not depend upon any assumptions about the distribution keys!

Key Tool: Indicator Variables

• For each pair of distinct keys k & l:

$$X_{kl} = I\{h(k) = h(l)\}$$

$$\Pr\{h(k) = h(l)\} \le \frac{1}{m}$$

Therefore: $E[X_{kl}] \leq \frac{1}{m}$

Random Variable: Y_k

• For each key k, Y_k is the number of keys other than k that hash to the same slot:

$$Y_k = \sum_{\substack{l \in T \\ l \neq k}} X_{kl}$$

Thus:

$$E[Y_k] = E\left[\sum_{\substack{l \in T \\ l \neq k}} X_{kl}\right] = \sum_{\substack{l \in T \\ l \neq k}} E[X_{kl}]$$

E[N_{h(k)}] How long is list in slot h(k)?

• If k is NOT in the hash table, then $n_{h(k)} = Y_k$

$$-E[n_{h(k)}] = E[Y_k] \le \frac{n}{m} = \alpha$$

• If k is IN the hash table, then \boldsymbol{Y}_k does not include k, so

$$-n_{h(k)} = Y_k + 1 = (n-1/m) + 1$$

$$-(n/m) - (1/m) + 1 \le \alpha + 1$$

Corollary 11.4 w/ Theorem 11.3

- Corollary 11.4 uses 11.3 to show that :
 - Search operation with **n** total Inserts & Searches &
 Deletes
 - but O(m) Inserts out of total
- is O(1) for each search,
- so w/ Linearity of Expectation is O(n) for the collection of operations.

Universal Class of Hash Functions w/ a little number theory

- We'll return to this w/ RSA Encryption
- Choose prime number p so all keys are in range 0..p-1 inclusive!
- Now Define:
 - $-\mathbb{Z}_p=\{0, 1, ..., p-1\}$ More on this set later!
 - $-\mathbb{Z}_{p}^{*}=\{1, ..., p-1\}$
- Now we can define a whole collection of hash functions as:
 - $-h_{ab}(k)=((ak+b) \mod p) \mod m$
 - $-\mathcal{H}_{pm}$ ={h_{ab}: a∈ \mathbb{Z}_p^* , b∈ \mathbb{Z}_p } which contains p(p-1) functions

Theorem 11.5: Class $\mathcal{H}_{\rm pm}$ is Universal!

- Take our two distinct keys $k \& l \text{ w}/k \neq l$
- Given our hash function h_{ab}
 - $-r = (ak + b) \mod p$
 - $-s = (al + b) \mod p$
- r and s cannot be equal because
 - p is prime
 - and r-s \equiv a(k-l) (mod p)
 - r-s cannot be 0
- p is the prime number covering the range of original key!
 - Since p is prime,
 - and a and k-l are non-zero modulo p
 - THEN the product a(k-l) is non zero modulo p.
- SO: mod p level has no collisions
 - Remember: Hash is w/ mod m!

mod p level has no collisions

- SO: Each possible pair (a,b) yields a different resulting pair (r,s).
- There are p(p-1) possible choices for (a,b)
- So picking (a,b) uniformly at random means the resulting pair (r,s) is equally likely to be any pair of distinct values mod p.
- SO: the probability of two keys colliding is the same as the probability of $r \equiv s \mod m$

mod p level has no collisions

- The number of choices for s from the total (p-1):
 - once an r value is chosen
 - where r and s are not equal
 - but r and s are equal mod m
 - is at most :

$$\lceil p/m \rceil - 1 \le (p-1)/m$$

• SO: The probability of choosing on of these is:

$$\frac{\left(\frac{p-1}{m}\right)}{(p-1)} = \frac{1}{m}$$

• SO!!! : \mathcal{H}_{pm} IS UNIVERSAL!!!

Universal Hashing

- Now a given our large prime number p
- We have a large class of hash functions to choose from
 - -p*p-1

Open Addressing

- Currently we have dealt with keys colliding at same slots w/ chains!
 - Chains hang off hash table!
- Open Addressing is an alternative w/ all elements kept IN hash table!
- Slots in Hash Table are examined systematically until item is found or deemed absent!
- All slots can get "filled up" w/ Open Addressing

Open Addressing w/ NO POINTERS!!

- Could keep chain in Hash Table, but we don't
- Freeing pointers provides more storage space.
 - Just use empty space in hash table!
- Insert key by probing slots until finding an empty one to put key in!
- Slots probed are ordered based on the inserted key!

Probing Slots

- Probe sequence is determined by expanding Hash function
- Hash function includes additional parameter
 Probe Number (starting w/ 0)

$$h: U \times \{0, 1, ..., m-1\} \rightarrow \{0, 1, ..., m-1\}$$

 Our probe sequence must be a permutation of the set of slots (so all slots get probed!):

```
<h(k,0), h(k,1), ..., h(k, m-1)>
```

= Permutation (<0, 1, ..., m-1>)

Inserting & Finding

```
HASH-INSERT(T, k)
  i = 0
   repeat
      j = h(k, i)
       if T[j] == NIL
           T[j] = k
           return j
       else i = i + 1
   until i == m
   error "hash table overflow"
```

```
HASH-SEARCH(T, k)

1  i = 0

2  repeat

3  j = h(k, i)

4  if T[j] == k

5  return j

6  i = i + 1

7  until T[j] == NIL or i == m

8  return NIL
```

- Finding follows same probe sequence as Inserting.
- Removal can be tricky!

Open Addressing w/ Key Deletion

- Cannot just remove the item, marking it nil
 - May not know to continue probing sequence while searching
- Instead, mark item DELETED.
 - Insertion treats slots deleted as empty.
 - Search walks over deleted slots
- BUT, w/ deleted items:
 - searching no longer depends on load factor n/m!
 - Since slots with deleted items still potentially searched.
 - Frequently avoided when deletion needed!

Probing Techniques w/ Open Addressing

- Linear Probing
- Quadratic Probing
- Double Hashing!

- BUT: None satisfy assumptions of Uniform Hashing
 - Limited in the number of probe sequences generated
 - m² versus m!
 - Double Hashing generating the most probe sequences

Linear Probing

Auxiliary Hash Function:

$$h': U \to \{0, 1, ..., m-1\}$$

Hash Function

$$h(k,i)$$
: $(h'(k) + i) \mod m$

How many distinct probes??

Linear Probing

Auxiliary Hash Function:

$$h': U \to \{0, 1, ..., m-1\}$$

Hash Function

$$h(k,i)$$
: $(h'(k) + i) \mod m$

- How many distinct probes?? m
- Suffers from Primary Clustering
 - Long runs of occupied slots
 - Increased search time

Quadratic Probing

$$h(k,i)$$
: $(h'(k) + c_1i + c_2i^2) \mod m$

c₁, c₂, and m are constrained

- Still suffers from clustering (secondary clustering).
- Still just m distinct probes.

11.4 Open addressing

Double Hashing

One of the best for Open Addressing

$$h(k,i)$$
: $(h_1(k) + ih_2(k)) \mod m$

- $h_1(k) = k \mod 13$
- $h_2(k) = 1 + (k \mod 11)$
- k=14
 - h(14,0) = 1
 - -h(14,1) = 1 + (1+3) = 5
 - -h(14,2) = 1 + 2*(1+3) = 9

Double Hashing

One approach is:

$$h_1(k) = k \mod m$$

$$h_2(k) = 1 + (k \mod m')$$

- Where
 - m = Prime Number
 - -m' = is slightly less, like (m-1)
- Double hashing provides for m² probe sequences
 - $-h_1(k)$ and $h_2(k)$ yield distinct probe sequences!

Perfect Hashing

- So far we've seen Hashing has GREAT averagecase performance.
- But did you know...???
 - Hashing can also provide excellent worst-case performance...
 - IF: Keys are static!
 - Once stored the set of keys never changes!

Perfect Hashing

- Perfect Hashing uses Universal Hash Function initially
 - like hashing with chaining
- BUT: Instead of Chaining, a second hash function is used!
- TWO Levels of hashing combine to provide O(1) worst-case behavior!

The size of the second level hash table is:

$$S_j$$
 is $m_j = n_j^2$

- No collisions occur with secondary hashing!
- The hash function for secondary hashing for each hash table is h_j and is chosen from a set of universal hash functions!

Theorem 11.9

• If we store n keys in a hash table of size $m=n^2$ then the probability of ANY collisions is $\frac{1}{2}$!

- This is a great result!
- BUT, in some cases n^2 is too large for our table size.

Theorem 11.9 w/ Proof

• If we store n keys in a hash table of size $m=n^2$ then the probability of ANY collisions is $\frac{1}{2}$!

Potential Collisions =
$$\binom{n}{2}$$

- With our universal hashing functions the probability of each collision is 1/m.
- We choose $m = n^2$
- SO w/ X as the random variable counting the number of collsions:

$$E(X) = {n \choose 2} * \frac{1}{m} = {n \choose 2} * \frac{1}{n^2}$$

Theorem 11.9 w/ Proof

$$E[X] = \binom{n}{2} \cdot \frac{1}{n^2}$$

$$= \frac{n^2 - n}{2} \cdot \frac{1}{n^2}$$

$$< 1/2.$$

- $P\{X \ge 1\} \le E[X]$
 - Markov Inequality
 - Similar to Birthday Paradox Analysis

Theorem 11.9

• If we store n keys in a hash table of size $m=n^2$ then the probability of ANY collisions is $\frac{1}{2}$!

- SO: chances are that the probability of any collisions with $m=n^2$ is very low.
 - Trial and error should find one given a fixed set of keys with NO collisions!

Perfect Hashing w/ Too Many Keys

- Unfortunately, in some cases n^2 size table is TOO large!
- In these cases, the two level hashing is brought to bear upon the problem!

 NOW issue is to show that the quadratic space requirement is avoided!

Theorem 11.10

- If we store n keys in a hash table size m=n,
- THEN we are going to need second level hash tables of size $n_i^{\ 2}$
 - Here n_j is the number of keys that hash to slot j.
- THEN we want the Expected sum of all of these second level hash tables to be less than 2n!!

Theorem 11.10

Suppose that we store n keys in a hash table of size m = n using a hash function h randomly chosen from a universal class of hash functions. Then, we have

$$\mathrm{E}\left[\sum_{j=0}^{m-1} n_j^2\right] < 2n \; ,$$

where n_j is the number of keys hashing to slot j.

$$a^2 = a + 2 \begin{pmatrix} a \\ 2 \end{pmatrix}. \tag{11.6}$$

We have

$$E\left[\sum_{j=0}^{m-1} n_j^2\right]$$

$$= E\left[\sum_{j=0}^{m-1} \left(n_j + 2\binom{n_j}{2}\right)\right] \qquad \text{(by equation (11.6))}$$

$$= E\left[\sum_{j=0}^{m-1} n_j\right] + 2E\left[\sum_{j=0}^{m-1} \binom{n_j}{2}\right] \qquad \text{(by linearity of expectation)}$$

$$= E[n] + 2E\left[\sum_{j=0}^{m-1} \binom{n_j}{2}\right] \qquad \text{(by equation (11.1))}$$

$$a^{2} = a + 2 \binom{a}{2}.$$
We have
$$E\left[\sum_{j=0}^{m-1} n_{j}^{2}\right]$$

$$= E\left[\sum_{j=0}^{m-1} n_{j}\right] + 2E\left[\sum_{j=0}^{m-1} \binom{n_{j}}{2}\right]$$
 (by equation (11.6))
$$= E\left[n\right] + 2E\left[\sum_{j=0}^{m-1} \binom{n_{j}}{2}\right]$$
 (by equation (11.1))

$$a^2 = a + 2 \begin{pmatrix} a \\ 2 \end{pmatrix}. \tag{11.6}$$

We have

$$\mathbf{E}\left[\sum_{j=0}^{m-1} n_j^2\right]$$

$$= \mathbb{E}\left[\sum_{j=0}^{m-1} \left(n_j + 2\binom{n_j}{2}\right)\right]$$

$$= \mathbb{E}\left[\sum_{j=0}^{m-1} n_j\right] + 2\mathbb{E}\left[\sum_{j=0}^{m-1} \binom{n_j}{2}\right]$$

$$= \mathbb{E}[n] + 2\mathbb{E}\left[\sum_{j=0}^{m-1} \binom{n_j}{2}\right]$$

(by equation (11.6))

(by linearity of expectation)

Same as #colliding key pairs

$$\binom{n}{2} \frac{1}{m} = \frac{n(n-1)}{2m}$$
$$= \frac{n-1}{2},$$

Expected #colliding key pairs

since m = n. Thus,

$$E\left[\sum_{j=0}^{m-1} n_j^2\right] \leq n+2\frac{n-1}{2}$$

$$= 2n-1$$

$$< 2n.$$

Corollary 11.11

Suppose that we store n keys in a hash table of size m = n using a hash function h randomly chosen from a universal class of hash functions, and we set the size of each secondary hash table to $m_j = n_j^2$ for j = 0, 1, ..., m - 1. Then, the expected amount of storage required for all secondary hash tables in a perfect hashing scheme is less than 2n.

Proof Since
$$m_j = n_j^2$$
 for $j = 0, 1, ..., m - 1$, Theorem 11.10 gives

$$E\left[\sum_{j=0}^{m-1} m_j\right] = E\left[\sum_{j=0}^{m-1} n_j^2\right]$$
Space required by second level is LINEAR in number of key values.

which completes the proof.

in number of key values!

(11.7)

Corollary 11.12

Suppose that we store n keys in a hash table of size m = n using a hash function h randomly chosen from a universal class of hash functions, and we set the size of each secondary hash table to $m_j = n_j^2$ for j = 0, 1, ..., m - 1. Then, the probability is less than 1/2 that the total storage used for secondary hash tables equals or exceeds 4n.

 With probability less than ½ the total storage exceeds (or equals) 4n!

 Try a few random hash functions, and one is bound to give good performance!!!