Tema 4 Especificación basada en modelos Lenguaje Z

Introducción

Características lenguaje Z

- Lenguaje de especificación formal
 - Propuesto por Jean-Raymond a finales de los 80
 - Desarrollado en la universidad de Oxford
- Basado en elementos matemáticos
 - Proposiciones y predicados lógicos
 - Conjuntos, relaciones y funciones
- Se considera un lenguaje declarativo
- La estructura más importante son los esquemas:
 - Similar a los subprogramas de los lenguajes imperativos
 - Muy útil para la especificación incremental

- Representación gráfica de las especificaciones
 - Permite descomponer una especificación en piezas más sencillas
 - Se usan para describir
 - Aspectos estáticos del sistema
 - Estado
 - Invariante
 - Aspectos dinámicos del sistema
 - Las operaciones
 - Relaciones entre sus entradas y salidas
 - Cambios que ocurren en el estado

- Estructura de un esquema
 - Parte declarativa (schema signature)
 - Declaraciones locales de variables
 - Tipos, constantes y esquemas
 - Parte predicativa (schema predicate)
 - Requisitos que han de satisfacer los valores de las variables

Nombre

Parte declarativa

Parte predicativa

- Ejemplo 1: Container
 - Definición parcial de un contenedor que puede almacenar una cantidad discreta de algo

- Nombre
 - Sirve para referenciarlo en otras partes de la especificación
- Signature
 - Dos variables de estado
 - Contents → modelada por un número natural

- Ejemplo 1: Container
 - Definición parcial de un contenedor que puede almacenar una cantidad discreta de algo

Predicado

- Relaciones entre las entidades definidas en la signature
 - La cantidad almacenada en el contenedor debe ser menor que su capacidad
 - La especificación no dice nada sobre la capacidad de contenedor, ni sobre lo que contiene

- Ejemplo 2: Indicator
 - Otro esquema básico
 - Se puede asociar con Container para proporcionar información sobre su contenido

```
Indicator
light: {off, on}
reading: N
danger_level: N
light = on ⇔ reading ≤ danger_level
```

- Signature
 - 1ight → modelada por los valores {on, off}
 - reading → modelada por un número natural
 - danger level → modelada por un número natural

Ejemplo 2: Indicator

```
Indicator

light: {off, on}

reading: N

danger_level: N

light = on ⇔ reading ≤ danger_level
```

- Predicado
 - ⇔ → sí y sólo si
 - La luz estará encendida, sí y sólo si, reading es menor o igual que danger level
 - danger level no está definido

- Ejemplo 3: Storage tank
 - Combinando esquemas
 - Se combinan Indicator y Container para definir un tanque de almacenamiento con cierta capacidad y un indicador luminoso

```
Storage_tank —
Container
Indicator

reading = contents
capacity = 5000
danger_level = 50
```

- La nueva especificación incluye todas las variables y predicados definidos en las especificaciones incluidas
 - Se combinan con cualquier signature o predicado nuevo
 - Los predicados se combinan mediante and → todos verdaderos

- Ejemplo 3: Storage tank
 - Predicados nuevos
 - Restricciones sobre las variables de estado introducidas en los esquemas Container e Indicator
 - Los predicados se escriben en líneas separadas
 - Se entienden que están combinados mediante and

 reading igual a contents y capacity igual a 5000 y danger level igual a 50

Ejemplo 3: Storage tank

Incluir esquemas en otro esquema es equivalente a mezclar

los esquemas

```
Storage_tank
contents: N
capacity: N
reading: N
danger_level: N
light: {off, on}

contents ≤ capacity
light = on ⇔ reading ≤ danger_level
reading = contents
capacity = 5000
danger_level = 50
```


Operaciones

- Se pueden especificar usando esquemas
- Se define el efecto que tienen sobre el estado del sistema
 - Se indica el estado después de la operación en términos del estado antes de la operación y de los parámetros de la operación

Convenciones

- Si una variable N va seguida de ', N' representa el estado de la variable N después de una operación
 - Decoración con dash
- Si el nombre de un esquema es decorado con un ', el ' se aplica a todas las variables definidas, junto con el invariante

Convenciones

- Si una variable N es decorada con signo !, significa que N es una variable de salida
 - message!
- Si una variable N es decorada con signo ?, significa que N es una variable de entrada
 - amount?
- ◆ Si el nombre de un esquema va precedido por la letra Ξ, significa que las versiones ' de las variables son las mismas que sin '
 - El estado de las variables no cambia con la operación
 - EStorage_tank

Convenciones

 \bullet Si el nombre de un esquema va precedido por la letra Δ , implica que el valor de una o más variables del esquema van a cambiar al realizarse la operación

```
Fill-OK _____
\Delta Storage_tank
amount?: N
contents + amount? ≤ capacity
contents' = contents + amount?
```

OverFill - ∑ Storage-tank amount?: N r!: seq CHAR capacity < contents + amount? r! = "Insufficient tank capacity - Fill cancelled"

- Ejemplo 4: operación Fill-OK
 - Operación que añade una cantidad a un tanque
 - El Δ indica que la operación cambia el estado de Storage_tank
 - La cantidad a añadir (amount?) es una entrada
 - El estado cambia si hay suficiente capacidad en el tanque

```
Fill-OK
Δ Storage_tank
amount?: N

contents + amount? ≤ capacity
contents' = contents + amount?
```


Ejemplo 4: operación Fill-OK

```
__Fill-OK ______ Δ Storage_tank amount?: N

contents + amount? ≤ capacity contents' = contents + amount?
```

- El predicado especifica que después de la operación
 - contents ' es igual al contenido anterior a la operación más la cantidad añadida
 - Esto se cumple, si la cantidad no excede la capacidad
 - Si la cantidad supera la capacidad del tanque → no definido

- Ejemplo 5: operación OverFill
 - En Z las operaciones se especifican por parte
 - Un primer esquema define la operación "correcta"
 - Los siguientes esquemas definen lo que ocurriría en situaciones excepcionales
 - Los esquemas se combinan mediante una disyunción para especificar la operación completa

```
OverFill

E Storage-tank

amount?: N

r!: seq CHAR

capacity < contents + amount?

r! = "Insufficient tank capacity - Fill cancelled"
```


- Ejemplo 5: operación OverFill
 - Especifica que pasaría si añadiéramos una cantidad que excediera la capacidad del tanque
 - No se añade nada
 - Se muestra un mensaje de aviso
 - El uso del esquema indica que las variables de estado no cambiarán su valor
 - El predicado asociado será verdad cuando la capacidad sea menor que el contenido actual + la cantidad a añadir

```
OverFill

E Storage-tank
amount?: N
r!: seq CHAR

capacity < contents + amount?
r! = "Insufficient tank capacity - Fill cancelled"
```


- Ejemplo 6: operación Fill
 - Los esquemas Fill-OK y OverFill se combinan mediante una disyunción para especificar la operación completa
 - Las signaturas se mezclan
 - Los predicados son independientes y están separados por el operador v.
 - Uno de los dos será verdad.

Fill-OK v OverFill

Proceso de especificación Z

- Especificación formal de un sistema
 - Proceso incremental
 - Descripción individual de componente
 - Composición de los componente individuales

Definición de tipos

- Tipos en Z
 - Definidos como conjuntos
- Clases de tipos
 - Incorporados
 - IN, ℤ, IR
 - Tipos dados
 - Definiciones parciales
 - Sólo se define el nombre
 - Dependen de los conjuntos utilizados en las aplicaciones que se modelen
 - > [NAME, DATE]
 - [Libro, Persona, Autor, Tema]

Definición de tipos

Clase de tipos

- Definidos explícitamente
 - En forma de signature

```
> x:t
```

Con una restricción

```
\rightarrow x: t \mid x \in s
```

- Tipos libres: enumeraciones
 - Mensaje ::= Ok | yaMatriculado | sinSitio | noMatriculado
 - sem_model_types = {relation, entity, attribute}

Definición de tipos

- Un esquema puede definir un nuevo tipo
 - Similar a una estructura en C
 - Para referirnos a un componente del esquema usamos el operador ".",
 - Como si se accediera a un campo de una estructura

Month::=jan | feb | mar | apr | may | jun | jul | aug | sep | oct | nov |dec

Date

month:Month day:1..31

month \subseteq {sep,apr,jun,nov} \Rightarrow day \le 30 month = feb \Rightarrow day \le 29

- En una especificación formal necesitamos establecer relaciones entre objetos
 - Conexiones entre pares de objetos
- Definición
 - Conjunto de pares ordenados.
 - Subconjunto del producto cartesiano
 - X ↔ Y
 - X e Y dos conjuntos cualesquiera
 - $X \leftrightarrow Y == P(X \times Y)$
 - Para indicar uno de los elementos de la relación
 - (x,y) o x →y

Ejemplo

Las relaciones se definen como los axiomas

```
Conductores == {elena,indra,jaime,cati}
Coche == {alfa,escarabajo,ford,renault}
```

```
_conduce_:Conductores ↔ Coches
```

conduce = {elena → escarabajo, indra →alfa, jaime → escarabajo, cati → ford}

- Obtener información de las relaciones
 - Dominio de una relación
 - dom R = $\{x:X,y:Y \mid x \mapsto y \in R \cdot x\}$
 - dom conduce = {elena, indra, jaime,cati}
 - Rango de una relación
 - ran R = $\{x:X,y:Y \mid x \mapsto y \in R \cdot y\}$
 - ran conduce = {alfa, escarabajo, ford}
 - Restricción de dominio, dado un conjunto A ⊆ X
 - A \triangleleft R = {x:X, y:Y | x \mapsto y \in R \land x \in A x \mapsto y}
 - > {jaime, cati} < conduce = {jaime → escarabajo, cati → ford}</p>
 - Restricción de rango, dado un conjunto B ⊆ X
 - $R \triangleright B = \{x:X, y:Y \mid x \mapsto y \in R \land y \in B \bullet x \mapsto y\}$
 - > conduce ▷ {alfa,renault} = {indra →alfa}

- Obtener información de las relaciones
 - ◆ Substracción de dominio, equivalente a (X\A) < R
 - A \triangleleft R = {x:X, y:Y | x \mapsto y \in R \land x \notin A x \mapsto y}
 - Substracción de rango
 - $R \triangleright B = \{x:X, y:Y \mid x \mapsto y \in R \land y \notin B \bullet x \mapsto y\}$
 - > conduce ▷ {escarabajo} = {indra → alfa, cati → ford}
 - Imagen relacional
 - R (|A|) = ran (A \triangleleft R)
 - > conduce({jaime,cati}) = {escarabajo,ford}

- Obtener información de las relaciones
 - Inversa de una relación
 - Dada una relación R de tipo X ↔ Y
 - X → origen
 - Y → destino
 - La operación inversa (~) intercambia dichos conjuntos
 - $\forall x:X, y:Y \bullet x \mapsto y \in R \Rightarrow y \mapsto x \in R \sim$
 - Ejemplo
 - Conduce ~ = {escarabajo → elena, alfa → indra, escarabajo → jaime, ford → cati}

- Composición de relaciones
 - Se puede construir una relación a partir de otras dos
 - Sintaxis: R; S
 - Dadas R de tipo X ↔ Y y S de tipo Y ↔ Z

 $\Rightarrow x \mapsto z \in R; S \Leftrightarrow \exists y : Y \bullet x \mapsto y \in R \land y \mapsto z \in S$

Funciones

- Tipo especial de relaciones
 - Cada objeto origen tiene como máximo una imagen

- Funciones parciales
 - $f \in S \nrightarrow T \Leftrightarrow f \in S \leftrightarrow T \land \forall a: S, b:T, b':T \mid a \mapsto b \in f \land a \mapsto b' \in f \bullet b = b'$
- Funciones totales
 - $f \in S \rightarrow T \Leftrightarrow f \in S \nrightarrow T \land \forall a:S \bullet \exists b:T \bullet a \mapsto b$

Funciones

Operadores sobre funciones

- Los mismos que se definieron para las relaciones
- Sobrecarga de funciones (⊕)
 - Añade y/o actualiza un x →y a los pares de la función (F)
 - F ⊕ x →y
 - Si x ∉ dom (F) → añade x →y a F
 - > Si x ∈ dom(F) \rightarrow actualiza el valor de y en F
- Aplicación de una función
 - F(a)
 - Nos da el único objeto que es imagen de a

- Colección ordenada de objetos
 - A veces es relevante guardar el orden de los objetos
 - Los objetos son referenciados por la posición que ocupan
 - S(1) → primer elemento de la secuencia S
 - S(5) → quinto elemento de la secuencia S
 - Puede verse como una función donde el domino está formado por números naturales consecutivos

Notación

- Secuencia vacía: <>
- Otras secuencias: <a,b,c>

Operadores

- Concatenación
 - $< a,b,c >^{<} < d,e > = < a,b,c,d,e >$
- Inversa
 - rev <a,b,c> = <c,b,a>
- Cardinalidad
 - # <a,b,c> =3

- Operadores (descomposición de secuencias)
 - + Head:
 - Primer elemento de la secuencia
 - head <a,b,c> = a
 - Last
 - Último elemento de la secuencia
 - > *last* <*a*,*b*,*c*> = *c*
 - Tail
 - Secuencia sin el primer elemento
 - > *tail* <*a*,*b*,*c*> = <*b*,*c*>
 - Front
 - Secuencia sin el último elemento
 - front <a,b,c> <a,b>

Operadores

- Filtro (S 1 U)
 - Extrae una secuencia que contiene únicamente los elementos de S que pertenecen al subconjunto U

```
\rightarrow \langle a,b,c,d,e,d,c,b,a \rangle \(\begin{array}{ll} \{a,d\} &= \langle a,d,d,a \rangle \\\ \end{array}
```

- Extraccion (V 1 S)
 - Extrae una secuencia que contiene los elementos de S que ocupan las posiciones indicadas por V
 - > {1,3,5} 1 {a,b,c,d,e,d,c,b,a} = {a,c,e}

Operadores

- Concatenación distribuida ^/
 - Si q es una secuencia de secuencias ^/q es el resultado de concatenar todos los elementos de q, uno tras otro
 - $^{\flat}$ $^{\land}/<< a,b,c>,< d,e>,< f,g>> = < a,b,c,d,e,f,g>$

Bolsas

- Si se desea reflejar multiplicidad pero no orden, se deben utilizar bolsas
- Notación
 - [a,a,b,b,c,c] es la misma bolsa que [a,b,c,a,b,c]
 - [] bolsa vacía
- Operadores
 - count
 - Devuelve para cada elemento, el nº de veces que aparece
 - > Count [a,a,b,b,c,c] = {a \mapsto 2, b \mapsto 2, c \mapsto 2}

Bolsas

Operadores

- ◆ B#x
 - Número de veces que un elemento aparece en la bolsa
 - \rightarrow [a,a,b,b,c,c] # c = 2
- Pertenencia a una bolsa $(x \in B)$
 - x pertenece a B si aparece en la bolsa una o más veces
 - \succ b ∈ [a,a,b,b,c,c] \rightarrow verdadero
 - \rightarrow d \in [a,a,b,b,c,c] \rightarrow falso
- Sub-bolsa (B ⊆ C)
 - B es una sub-bolsa de C si cada elemento aparece menos veces en B que en C

Bolsas

Operadores

- Unión de bolsas (B∪+C)
 - Cada elemento aparece un numero de veces igual a la suma de las veces que aparece en B y en C
- ◆ Diferencia de bolsas (B ∪- C)
 - Cada elemento aparece un numero de veces igual al número de veces que aparece en B menos el número de veces que aparece en C (0 si es negativo)
- Items
 - Transforma una secuencia en bolsa

Operaciones sobre esquemas

Conjunción

- Modo más simple de combinar dos esquemas
- S ∧ T
 - Unión de las variables de los dos esquemas
 - Conjunción de los predicados de los mismos

 Si una misma variable está en los dos esquemas debe tener el mismo tipo

Operaciones sobre esquemas

Disyunción

- Permite definir alternativas en el comportamiento del sistema
- ◆ S ∨ T
 - Unión de las variables de los dos esquemas
 - Disyunción de los predicados de los mismos
- Si una misma variable está en los dos esquemas debe tener el mismo tipo

Operaciones sobre esquemas

Composición

- Dados dos esquemas que describan operaciones, la composición de los mismos describe el cambio de estado que se produce cuando la segunda operación se realiza a continuación de la primera
- Para que esté definida los dos esquemas deben referirse al mismo estado
- Notación
 - OpOne; OpTwo

