110550108 施柏江

1. Method

1.1 Laplacian filter in spatial domain

首先讀取一張灰階圖像,並將其像素值範圍限制到0至1之間。接著使用 laplacian_kernel()函數取得 kernel。最後將圖像和 kernel 傳遞給 convolution()函數,做完 padding(補0)後進行卷積,從而得到銳化後的圖像。

1.2 Laplacian filter in frequency domain

首先讀取一張灰階圖像,並將其像素值範圍限制到O至1之間。 使用傅立葉變換將原始圖像轉換為頻率域,並進行移位以將原點移 至圖像的中心。接著使用laplacian_filter()函數取得拉普拉斯濾波器 的頻率域,並將其應用於原始圖像的頻率域。然後使用傅立葉逆變 換將經過濾波後的頻率域轉換回空間域。最後將圖像正規化,像素 值調整到O到1之間。將原始圖像減去經過正規化處理的圖像,得到 銳化後的圖像。

2. Result

Original

Spatial domain (kernel 1)

Frequency domain

Spatial domain (kernel 2)

Original

Spatial domain (kernel 1)

Frequency domain

Spatial domain (kernel 2)

3. Feedback

在這次的作業中,我學會了如何在空間域計算卷積,也學會了使用OpenCV和Numpy對灰階圖像應用傅立葉變換,學到了如何對圖片增強細節。我在途中遇到了很多次輸出為一片雜訊或是全白,這讓我也學會了注意溢位的問題。