Corso di Laurea: Ingegneria Informatica

Esercizio 1

Figura 1:

Consideriamo il corpo rigido mostrato in figura: esso è costituito da due sbarre sottili (una di lunghezza $l=80\,\mathrm{cm}$ e una di lunghezza l/2) saldate fra loro come in figura nel punto mediano di \overline{AB} ; la massa complessiva del corpo è pari a $M=100\,\mathrm{kg}$. L'estremo A del corpo rigido è ancorato ad una parete verticale tramite una cerniera (che ne permette la libera rotazione in un piano verticale). Il sistema è mantenuto in equilibrio statico nella disposizione in figura tramite una fune orizzontale che connette l'estremo C della barretta più corta alla parete. Si noti che in tale disposizione la barretta più lunga è orizzontale. Determinare:

a) la tensione della corda:

$$|\vec{T}| = \dots;$$

b) il modulo della reazione della cerniera:

$$|\vec{F_c}| = \dots$$

Ad un certo istante la corda si spezza ed il corpo rigido inizia a cadere ruotando intorno al punto A. Determinare:

c) la velocità angolare del corpo rigido nell'istante in cui esso urta la parete verticale:

$$|\omega| = \dots \dots \dots$$

Soluzione

a) Il corpo è all'equilibrio, quindi il momento totale delle forze che agiscono su di esso è nullo. Se consideriamo come polo il punto A, i momenti delle forze $|\vec{M_T}|$ e $|\vec{M_P}|$, dovuti alla tesione della corda e alla forza peso del corpo, sono pari a:

$$|\vec{M_T}| = |\vec{T}| \cdot l/2$$

$$|\vec{M_P}| = Mg \cdot l/2$$

da cui si ottiene:

$$|\vec{M}_P| = |\vec{M}_T| \Longrightarrow |\vec{T}| = Mg = 981 \,\mathrm{N}.$$

b) Il corpo è all'equilibrio, quindi il forza totale che agisce su di esso è nulla:

$$M\vec{g} + \vec{T} + \vec{F_C} = 0 \Longrightarrow \vec{F_C} = -M\vec{g} - \vec{T}$$

dove $\vec{F_C}$ è la forza che la cerniera applica sul corpo rigido. Dato che la forza peso e la tensione della corda sono ortogonali abbiamo che:

$$|\vec{F_C}| = \sqrt{|Mg|^2 + |\vec{T}|^2} = \sqrt{2}Mg = 1387 \,\mathrm{N}$$

c) Non sono presenti forze dissipative, pertanto possiamo usare la conservazione dell'energia. La variazione di energia potenziale dell'asta orizzontale e verticale sarà data da:

$$\Delta U_{vert} = M/3 \cdot g[l/4 - (-l/2)] = 1/4 \,Mgl$$

$$\Delta U_{oriz} = 2/3 \cdot Mg[0 - (-l/2)] = 1/3 \,Mgl$$

$$\Delta U_{tot} = \Delta U_{vert} + \Delta U_{oriz} = 7/12 \,Mgl$$

Il momento d'inerzia delle due aste sarà pari a:

$$I_{vert} = 1/3 \cdot M/3 \cdot (l/2)^2 + M/3 (l/2)^2$$

$$I_{oriz} = 1/3 \cdot 2M/3 \cdot (l)^2$$

$$I_{tot} = I_{vert} + I_{oriz} = 1/3 Ml^2$$

Si può quindi calcolare ω :

$$\Delta U_{tot} = 1/2 I_{tot} \omega^2 \Longrightarrow \omega = \sqrt{(2\Delta U_{tot})/(I_{tot})} = \sqrt{7/2 g/l} = 6.55 \,\mathrm{rad/s}$$

Esercizio 2

Figura 2:

Un solenoide rettilineo costituito da $N=10^3$ spire di area $A=5\cdot 10^{-3}\,\mathrm{m}^2$, è chiuso su una resistenza $R=30\,\Omega$ e immerso in un campo magnetico \vec{B} uniforme e parallelo al suo asse. A partire dall'istante t=0 il campo magnetico diminuisce secondo la legge $B(t)=B_0-\alpha t^2$ e dopo un tempo $t_0=3\cdot 10^{-2}\,\mathrm{s}$ si annulla; in questo intervallo di tempo nella resistenza R fluisce una carica complessiva pari $q=10^{-4}\,\mathrm{C}$. Si trascurino gli effetti di auto-induzione. Determinare:

a) la legge $I = I(t, B_0)$ con cui varia la corrente nel circuito e il valore $I_0 = I(t = 0, B_0)$, entrambi espressi in funzione di B_0 :

$$I(t, B_0) = \dots I_0(B_0) = \dots ;$$

b) i valori di $B_0 \in \alpha$;

$$B_0 = \dots \alpha = \dots ;$$

c) l'energia W dissipata nel circuito nell'intervallo di tempo t_0 :

$$W = \dots$$

Soluzione

a) Dato che il campo magnetico si annulla dopo un tempo t_0 possiamo imporre:

$$0 = B(t = t_0) = B_0 - \alpha t_0^2 \Longrightarrow \alpha = \frac{B_0}{t_0^2} \Longrightarrow B(t) = B_0 \left[1 - \left(\frac{t}{t_0}\right)^2 \right]$$

Il flusso totale del campo magnetico che attraversa le spire del solenoide è pari a:

$$\Phi_B = N \cdot B(t) \cdot A = NAB_0 \left[1 - \left(\frac{t}{t_0}\right)^2 \right]$$

La forza elettromotrice indotta sarà quindi:

$$fem = -\frac{d\Phi_B}{dt} = NAB_0 \left[\frac{2t}{t_0^2} \right]$$

Da cui si trova:

$$I(t, B_0) = \frac{V(t)}{R} = \frac{NAB_0}{R} \frac{2t}{t_0^2} = (11.1 \text{ A/Ts}) \cdot B_0 t$$

b) La carica elettrica che attraversa la resistenza si può calcolare come:

$$q = \int_0^{t_0} I(t)dt = \int_0^{t_0} \frac{NAB_0}{R} \frac{2t}{t_0^2} dt = \left[\frac{NAB_0}{R} \frac{t^2}{t_0^2} \right]_0^{t_0} = \frac{NAB_0}{R}$$

$$\implies B_0 = \frac{qR}{NA} = 6 \cdot 10^{-4} \,\text{T} \implies \alpha = 0.66 \,\text{T/s}^2$$

c) L'energia dissipata è pari ha:

$$\int_0^{t_0} P_{diss} dt = \int_0^{t_0} RI(t)^2 dt = \int_0^{t_0} R\left(\frac{NAB_0}{R}\frac{2t}{t_0^2}\right)^2 dt = R\int_0^{t_0} \left(q\frac{2t}{t_0^2}\right)^2 dt = \frac{4}{3}\frac{Rq^2}{t_0} = 1.33 \cdot 10^{-5} \,\mathrm{J}$$

(punteggio: 1.a = 5 punti, 1.b = 5 punti, 1.c = 5 punti, 2.a = 5 punti, 2.b = 5 punti, 2.c = 5 punti)

3