Departamento de Análisis Matemático

1º de Matemáticas. Examen de Cálculo, septiembre 2001

Problema 1. Calcular los límites siguientes:

(a)
$$\lim_{x\to 0} \left(\frac{3 \lg x - 3x}{x^3} \right)^{1/x^2}$$

(b)
$$\lim \frac{e + e^{1/2} + e^{1/3} + \dots + e^{1/n} - n}{\log n}$$

Problema 2. Calcular un número $\lambda > 0$ tal que para todo x > 0 se verifique que $\lambda^{x/\lambda} \ge x$. Deducir que si $0 < a < b \le e$, entonces $a^b < b^a$, y si $e \le a < b$, entonces $a^b > b^a$.

Problema 3. Se construye un cono circular recto a partir de un sector circular de radio R fijo y ángulo central variable θ (medido en radianes). Calcular para qué valor de θ el volumen del cono obtenido es máximo.

Problema 4. (a) Sea z = f(x, y) donde $x = s^4 + r^4$, $y = 2rs^2$. Calcular $\frac{\partial z}{\partial x}(2, 2)$ y $\frac{\partial z}{\partial y}(2, 2)$ Sabiendo que $\frac{\partial z}{\partial r}(1, 1) = -2$ y $\frac{\partial z}{\partial s}(1, 1) = 3$.

(b) Encuentre los puntos sobre la esfera $x^2 + y^2 + z^2 = 1$ donde el plano tangente es paralelo al plano de ecuación 2x + y - 3z = 2.

Problema 5. Calcular y clasificar los puntos críticos de la función z = z(x,y) definida implícitamente por la igualdad $2x^2 + 2y^2 + z^2 + 8xz - z + 8 = 0$.

Problema 6. (a) Calcular la integral $\iiint_A \sqrt{x^2 + y^2 + z^2} e^{-(x^2 + y^2 + z^2)} d(x, y, z)$

donde
$$A = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 1\}.$$

(b) Calcular $\iint_D e^{x+y} d(x,y)$, donde D es el cuadrado de vértices (0,1), (1,0), (0,-1), (-1,0), es decir, $D = \{(x,y) \in \mathbb{R}^2 : |x| + |y| \le 1\}$.

Granada, 11 de septiembre de 2001.