

ANDREY MARKOV (1856-1922)

RUSSIAN MATHEMATICIAN

WORKED ON STOCHASTIC PROCESSES

PRIMARY ON MARKOV CHAINS &

MARKOV PROCESS

Markov Chain Definition

• A sequence of discrete random variables $\{C_t : t \in \mathbb{N}\}$ is said to be a (discrete-time) **Markov chain** (MC) if, for all $t \in \mathbb{N}$, it satisfies the **Markov property**

$$P(C_{t+1} | C_t, ..., C_1) = P(C_{t+1} | C_t).$$

Transition Probability

• Let S be a finite set and $\gamma(i,j)$ a transition function for S. Let $\pi_0(i)$ be a probability distribution on S. Then the Markov chain corresponding to initial distribution π_0 and transition probabilities $\gamma(i,j)$ is the stochastic process C_n such that

$$P(C_0 = i) = \pi_0(i),$$

$$P(C_{n+1} = i_{n+1} | C_n = i_n, C_{n-1} = i_{n-1}, ..., C_2 = i_2, C_1 = i_1) = \gamma(i_n, i_{n+1})$$

Which implies

$$P(C_{n+1} = i_{n+1} | C_n = i_n) = \gamma(i_n, i_{n+1})$$

Important Quantities

• Transition Probability Matrix (One step transition matrix)

$$\Gamma = \begin{pmatrix} \gamma_{11} & \cdots & \gamma_{1m} \\ \vdots & \ddots & \vdots \\ \gamma_{m1} & \cdots & \gamma_{mm} \end{pmatrix}$$

• We can also consider the transition probabilities for longer times (m step).

Let
$$\gamma^m(i,j) = P(C_{n+m} = j \mid C_n = i)$$

Important Quantities

• If these probabilities are homogenous, then they satisfy (Chapman-Kolmogorov equations)

$$\gamma^{t+u}(i,j) = \sum_{k} \gamma^{t} (i,k) \gamma^{u}(k,j)$$

In Matrix form,

$$\Gamma(t+u) = \Gamma(t)\Gamma(u)$$

Important Quantities

Unconditional Probabilities

$$u_i(t) = P(C_t = i)$$

$$u(t) = (P(C_t = 1), ..., P(C_t = m)), \qquad t \in \mathbb{N}.$$

$$u(t+1) = u(t)\Gamma.$$

Joint Probability

• $P(x_0 = i_0, ..., x_n = i_n)$ = $P(x_0 = i_0)P(x_1 = i_1 \mid x_0 = i_0)P(x_2 = i_2 \mid x_1 = i_1, x_0 = i_0) ...$ $P(x_n = i_n \mid x_{n-1} = i_{n-1}, x_{n-2} = i_{n-2}, ...)$ = $P(x_0 = i_0)P(x_1 = i_1 \mid x_0 = i_0)P(x_2 = i_2 \mid x_1 = i_1) ... P(x_n = i_n \mid x_{n-1} = i_{n-1})$ = $\pi_0 P(i_0, i_1)P(i_1, i_2) ... P(i_{n-1}, i_n)$

Stationary Distribution

A Markov chain with transition probability matrix Γ is said to have <u>stationary</u> distribution δ (a row vector with non-negative elements) if

$$\delta\Gamma = \delta$$
 and $\delta 1 = 1$

A Markov chain started from its stationary distribution will continue to have that distribution at all subsequent time points, and we shall refer to such a process as a stationary Markov chain .

Definition

A hidden Markov model $\{X_t : t \in N\}$ is a particular kind of dependent mixture. With $X^{(t)}$ and $C^{(t)}$ representing the histories from time 1 to time t, one can summarize the simplest model of this kind by:

$$P(C_t | C^{(t-1)}) = P(C_t | C_{t-1}), t = 2, 3, ...$$

 $P(X_t | X^{(t-1)}, C^{(t)}) = P(X_t | C_t), t \in N$

Notation

{Ct} unobserved process, satisfied Markov Property

{Xt} state-dependent process, Xt only depend on current state Ct.

If {Ct} has m state, {Xt} is m-state HMM.

X: hidden states

Y: possible observations

a: transition probability

b: emission probability

Initial state probability: π_1 What's $P(X_1 = winter, X_2 = casual, C_1 = mild, C_2 = hot)$?

Transition probability:

	Hot	Mild	Cold
Hot	0.6	0.3	0.1
Mild	0.4	0.3	0.2
Cold	0.1	0.4	0.3

$$P(X_1 = winter, X_2 = casual, C_1 = mild, C_2 = hot)$$

= $P(C_1 = mild)P(X_1 = winter | C_1 = mild)$
 $P(C_2 = hot | C_1 = mild)P(X_2 = casual | C_2 = hot)$
= $0.3 * 0.2 * 0.3 * 0.8 = 0.0144$

Emission probability:

	Hot	Mild	Cold
Casual	0.8	0.19	0.01
Semi-Casual	0.5	0.4	0.1
Winter	0.01	0.2	0.79

i.e.
$$P(X_1 = winter | C_1 = mild)$$

= 0.2
 $P(X_2 = casual | C_2 = hot)$
= 0.8

Joint Distribution

```
\begin{split} &P(X_1, X_2, \dots, X_t, C_1, C_2, \dots, C_t) \\ &= P(C_1) P(X_1 | C_1) P(X_2, \dots, X_t, C_2, \dots, C_t) \\ &= P(C_1) P(X_1 | C_1) P(C_2 | C_1) P(X_2 | C_2) \dots P(C_t | C_{t-1}) P(X_t | C_t) \\ &= P(C_1) P(X_1 | C_1) \prod_{t=2}^t P(C_t | C_{t-1}) P(X_t | C_t) \end{split}
```

• Marginal distribution of X_t - Univariate Distributions

$$\begin{split} &P(X_t = x) \\ &= \sum_{i=1}^m P(X_t = x, C_t = i) \\ &= \sum_{i=1}^m P(C_t = i) P(X_t = x | C_t = i) \\ &= \sum_{i=1}^m u_i(t) P_i(x) \\ &= \left(u_1(t) \quad ... \quad u_m(t)\right) \begin{pmatrix} P_1(t) & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & P_m(t) \end{pmatrix} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \\ &= u(t) P(x) 1' \\ &= u(1) \Gamma^{t-1} P(x) 1' \\ &= \delta P(x) 1' \end{split}$$

• Marginal distribution of X_t - Bivariate Distributions

```
\begin{split} &P(X_{t}=v,X_{t+k}=w)\\ &=\sum_{i=1}^{m}\sum_{j=1}^{m}P(X_{t}=v,X_{t+k}=w,C_{t}=i,C_{t+k}=j)\\ &=\sum_{i=1}^{m}\sum_{j=1}^{m}P(C_{t}=i)P(X_{t}=v|C_{t}=i)P(C_{t+k}=j|C_{t}=i)P(X_{t+k}=w|C_{t+k}=j)\\ &=\sum_{i=1}^{m}\sum_{j=1}^{m}u_{i}(t)P_{i}(v)\gamma_{ij}(k)P_{j}(w)\\ &=u(t)P(v)\Gamma^{k}P(w)1'\\ &=\delta P(v)\Gamma^{k}P(w)1' \end{split}
```

Likelihood:

The likelihood is given by

$$L_T = \delta P(x_1) \Gamma P(x_2) \dots \Gamma P(x_T) 1'$$

If δ , the distribution of C_1 , is the stationary distribution of the Markov Chain, then in addition

$$L_T = \delta \Gamma P(x_1) \Gamma P(x_2) \dots \Gamma P(x_T) 1'$$

Expectation Maximization (EM) Algorithm

$$P(X_{i}|b) = \frac{1}{\sqrt{2\pi\sigma_{b}}} \exp\left(-\frac{(X_{i}-\mu_{b})^{2}}{2\sigma_{b}^{2}}\right)$$

$$b_{i} = P(b|X_{i}) = \frac{P(X_{i}|b)P(b)}{P(X_{i}|b)P(b) + P(X_{i}|a)P(a)}$$

$$a_{i} = P(a|X_{i}) = 1 - b_{i}$$

$$\mu_{b} = \frac{b_{1}X_{1} + b_{2}X_{2} + \dots + b_{n}X_{n}}{b_{1} + b_{2} + \dots + b_{n}}$$

$$\sigma_{b}^{2} = \frac{b_{1}(X_{1}-\mu_{1})^{2} + \dots + b_{n}(X_{n}-\mu_{n})^{2}}{b_{1} + b_{2} + \dots + b_{n}}$$

$$\mu_{a} = \frac{a_{1}X_{1} + a_{2}X_{2} + \dots + a_{n}X_{n}}{a_{1} + a_{2} + \dots + a_{n}}$$

$$\sigma_{a}^{2} = \frac{a_{1}(X_{1}-\mu_{1})^{2} + \dots + a_{n}(X_{n}-\mu_{n})^{2}}{a_{1} + a_{2} + \dots + a_{n}}$$

Central Issues in HMM

- 1. Evaluation Problem: $P(X_t|C_t)$
- 2. Decoding Problem: $P(C_t|X_t)$ Posterior Probability
- 3. Learning Problem: Expectation Maximization / Baum-Welch Algorithm
 - Transition probability
 - Emission probability
 - Distribution of observation process

Hidden Markov Models for Regime Detection

Packages Used:

depmixS4

quantmod

TTR

forecast

Simulated Data

k=5 (Each of the k regimes will be bullish or bearish)

 N_k (days of returns) \in [50,150]

Bull market is distributed as N(0.1,0.1)

Bear market is distributed as N(-0.05,0.2)

Reference

Lavrenko, V. (2014, January 19). Expectation Maximization: How it works. Retrieved from https://www.youtube.com/watch?v=iQoXFmbXRJA

(n.d.). Hidden Markov Models for Regime Detection using R. Retrieved from https://www.quantstart.com/articles/hidden-markov-models-for-regime-detection-using-r?fbclid=IwAR2-

<u>IcYOtnBwZvxBY164wzOzXcWoPcxML8NiFowCQD693I5xQURr0w6J_p8</u>