```
In [1]: import numpy as np
    import pandas as pd
    from sklearn.metrics import classification_report, confusion_matrix
    from sklearn.model_selection import train_test_split
    from sklearn.svm import SVC
    from sklearn.metrics import f1_score
    import matplotlib.pyplot as plt
    %matplotlib inline

In [2]: df=pd.read_csv('prefinaloutput.csv')
In [3]: df.head(50)
```

Out[3]:

ut[3]:		amount	oldbalanceOrg	oldbalanceDest	isFraud	isFlaggedFraud for Operations	Time	Instrument or Mode_CREDIT- CARD
	0	0.000121	0.000864	0.000000	0	0	0.939583	1
	1	0.000930	0.001620	0.000000	0	1	0.918056	1
	2	0.055328	0.019373	0.358175	0	1	0.203472	0
	3	0.013412	0.552665	0.846995	0	1	0.530556	0
	4	0.000895	0.001013	0.000000	0	1	0.322917	1
	5	0.000243	0.000427	0.000000	0	0	0.354167	1
	6	0.001011	0.004672	0.000000	0	1	0.791667	1
	7	0.000022	0.007654	0.000000	0	0	0.984722	1
	8	0.010432	0.019373	0.010583	0	1	0.386806	0
	9	0.062700	0.019373	0.247145	0	1	0.856250	0
	10	0.018434	0.245232	0.508086	0	1	0.461806	0
	11	0.008400	0.325994	1.000000	0	1	0.483333	0
	12	0.011435	0.019373	0.023937	0	1	0.268056	0
	13	0.014191	0.019373	0.568306	0	1	0.084722	0
	14	0.002054	0.000939	0.000000	0	1	0.593750	1
	15	0.002112	0.001364	0.005596	0	1	0.695139	0
	16	0.007724	0.000077	0.025762	0	1	0.904167	0
	17	0.000008	0.001629	0.000000	0	0	0.293750	1
	18	0.000783	0.001140	0.000000	0	1	0.611806	1
	19	0.027621	0.531522	0.017031	0	1	0.856944	0
	20	0.000504	0.001821	0.000000	0	1	0.457639	1
	21	0.001168	0.000076	0.000000	0	1	0.024306	1
	22	0.012354	0.945736	0.013058	0	1	0.551389	0
	23	0.020224	0.527536	0.013042	0	1	0.526389	0
	24	0.002420	0.003227	0.000000	0	1	0.290278	1
	25	0.000698	0.000794	0.000000	0	1	0.600000	1
	26	0.000287	0.000011	0.000000	0	0	0.132639	1
	27	0.005498	0.001646	0.002396	0	1	0.340972	0
	28	0.026164	0.019373	0.325268	0	1	0.960417	0
	29	0.001251	0.019373	0.000000	0	1	0.002083	1
	30	0.003738	0.001610	0.003891	0	1	0.276389	0

2 of 7

	amount	oldbalanceOrg	oldbalanceDest	isFraud	isFlaggedFraud for Operations	Time	Instrument or Mode_CREDIT- CARD	N
31	0.052143	0.019373	0.085251	0	1	0.809028	0	
32	0.000403	0.000463	0.000000	0	0	0.370833	1	
33	0.000019	0.002400	0.000000	0	0	0.174306	1	
34	0.000048	0.000168	0.000000	0	0	0.689583	1	
35	0.002425	0.000465	0.000000	0	1	0.918056	1	
36	0.011753	0.687853	0.016835	0	1	0.538889	0	
37	0.023077	0.706116	0.026484	0	1	0.475000	0	
38	0.000336	0.000693	0.000000	0	0	0.450694	1	
39	0.003391	0.017888	0.562842	0	1	0.631250	0	
40	0.001476	0.019373	0.000000	0	1	0.031250	1	
41	0.011776	0.626915	0.014575	0	1	0.863889	0	
42	0.005056	0.000004	0.000000	0	1	0.644444	0	
43	0.005074	0.019373	0.000000	0	1	0.918750	1	
44	0.038094	0.194751	0.253290	0	1	0.519444	0	
45	0.000013	0.000020	0.000000	0	0	0.230556	1	
46	0.000403	0.002252	0.000000	0	0	0.678472	1	
47	0.002363	0.354576	0.016878	0	1	0.015278	0	
48	0.017088	0.002429	0.000000	0	1	0.227083	0	
49	0.023968	0.013110	0.573770	0	1	0.177778	0	

In [4]: X=df.drop('isFraud',axis=1)

In [5]: X

3 of 7

Out[5]:		amount	oldbalanceOrg	oldbalanceDest	isFlaggedFraud for Operations	Time	Instrument or Mode_CREDIT- CARD	Instrun Mode_DE C/
	0	0.000121	0.000864	0.000000	0	0.939583	1	
	1	0.000930	0.001620	0.000000	1	0.918056	1	
	2	0.055328	0.019373	0.358175	1	0.203472	0	
	3	0.013412	0.552665	0.846995	1	0.530556	0	
	4	0.000895	0.001013	0.000000	1	0.322917	1	
	994	0.000877	0.004998	0.000000	1	0.056250	1	
	995	0.013326	0.193793	0.003701	1	0.050694	0	
	996	0.002676	0.002068	0.005572	1	0.995833	0	
	997	0.003723	0.010631	0.298527	1	0.349306	0	
	998	0.006072	0.004700	0.000000	1	0.605556	0	
In [7]: In [8]:	pca pca	= PCA(n_	.decomposition					
	X_pc	a	transform(X)					
Out[8]:	arra		6201235, -0.4 0178484, -0.0	7023336, -0.558 691864],	869341,, -	0.392516	03,	
		[-0.7 0.0	1830703, -0.54 5670094, 0.90	4848174, 0.180 0673605],				
		_	3026908, -0.86 8450099, -0.0!	586877 , 0.73 5824472],	396292,, -	0.338598	12,	
		[1.0 0.0	9642013, 0.03					
		0.0 [1.3	1982057, -0.03	5403993, 0.20				
In [9]:	plt.	xlabel('	ge(1, pca.n_co Principal Com Explained Var), pca.explair	ned_varia	nce_ratio_)	


```
In [10]: X_train, X_test, y_train, y_test = train_test_split(X, y,stratify=y, test_size = 0.
    svclassifier = SVC(C=1000.0,kernel='poly',gamma= 1,degree=2)
    svclassifier.fit(X_train, y_train)
    y_pred = svclassifier.predict(X_test)
    print(confusion_matrix(y_test,y_pred))
    print(classification_report(y_test,y_pred))
```

[[228 12] [4 6]]				
-	precision	recall	f1-score	support
0	0.98	0.95	0.97	240
1	0.33	0.60	0.43	10
accuracy			0.94	250
macro avg	0.66	0.77	0.70	250
weighted avg	0.96	0.94	0.94	250

```
In [11]: cresult=[]
ci=[]
for j in range(50):
    X_train, X_test, y_train, y_test = train_test_split(X, y,stratify=y, test_size
    svclassifier = SVC(C=1000.0,kernel='poly',gamma= 1,degree=2)
    svclassifier.fit(X_train, y_train)
    y_pred = svclassifier.predict(X_test)
    cresult.append(f1_score(y_test,y_pred))
    ci.append(j)

print("average of f1 score "+str(np.mean(cresult)))
plt.figure().set_figwidth(30)
plt.plot(cresult, linestyle = 'dotted')
plt.xticks(range(len(ci)), ci)
plt.xlabel("C parameter", labelpad=7)
plt.show()
```

average of f1 score 0.37744301091588744

[[238

21


```
In [12]: X_train, X_test, y_train, y_test = train_test_split(X_pca, y,stratify=y, test_size
    svclassifier = SVC(C=1000.0,kernel='poly',gamma= 1,degree=2)
    svclassifier.fit(X_train, y_train)
    y_pred = svclassifier.predict(X_test)
    print(confusion_matrix(y_test,y_pred))
    print(classification_report(y_test,y_pred))
```

support	f1-score	recall	precision	[7 3]]
240 10	0.98 0.40	0.99 0.30	0.97 0.60	0 1
250 250 250	0.96 0.69 0.96	0.65 0.96	0.79 0.96	accuracy macro avg weighted avg

```
In [13]: cresult=[]
         ci=[]
         for j in range(50):
             X_train, X_test, y_train, y_test = train_test_split(X_pca, y,stratify=y, test_s
             svclassifier = SVC(C=1000.0, kernel='poly', gamma= 1, degree=2)
             svclassifier.fit(X_train, y_train)
             print(j,end=" ")
             y_pred = svclassifier.predict(X_test)
             cresult.append(f1_score(y_test,y_pred))
             ci.append(j)
         print("average of f1 score "+str(np.mean(cresult)))
         plt.figure().set_figwidth(30)
         plt.plot(cresult, linestyle = 'dotted')
         plt.xticks(range(len(ci)), ci)
         plt.xlabel("C parameter", labelpad=7)
         plt.show()
```

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 average of f1 score 0.1875 7616222786502

In []:

7 of 7