Formális Nyelvek - 1. Előadás

Csuhaj Varjú Erzsébet

Algoritmusok és Alkalmazásaik Tanszék Informatikai Kar Eötvös Loránd Tudományegyetem H-1117 Budapest Pázmány Péter sétány 1/c

E-mail: csuhaj@inf.elte.hu

A kurzus célja, hogy megismerkedjünk a formális nyelvek és automaták elméletének, a számítástudomány egyik tradícionális ágának alapjaival.

Irodalom:

1. György E. Révész, Introduction to Formal Languages, McGraw-Hill Book Company, 1983.

További irodalom:

- 2. A. Salomaa, Formal Languages, Acedemic Press, 1973.
- 3. K. Krithivasan, Rama, R., Introduction to Formal Languages, Automata Theory and Computation, Pearson, 2009.
- 4. J. E. Hopcroft, Rajeev Motwani, J.D. Ullman, Introduction to Automata Theory, Languages, and Computation. Second Edition. Addison-Wesley (2001).

Magyar nyelvű irodalom:

- 1. Révész György, Bevezetés a formális nyelvek elméletébe, Tankönyv-kiadó, 1977.
- 2. Fülöp Zoltán, Formális nyelvek és szintaktikus elemzésük, Polygon, Szeged, 2004.

Tudnivalók

Az előadások alapjául az irodalomjegyzék [1], [2] és [3] eleme szolgál. Az előadásvázlatok (a slide-ok) minden lényeges információt tartalmaznak és kizárólag tanulási célokra használhatók.

A kurzus vizsgával zárul, a vizsga során az előadásokon elhangzott és az előadásvázlatokon szereplő anyagot kérem számon. Az előadásokon további információk is elhangozhatnak, ezek kiegészítő jellegűek.

A vizsga előtt három héttel részletes információt adok a számonkérés alapjául szolgáló anyagról és a számonkérés módjáról.

Az előadások látogatása nem kötelező, de ajánlott. A gyakorlatok látogatása kötelező, a lehetséges hiányzások számát a gyakorlatvezetők ismertetni fogják a gyakorlatokon. A gyakorlati jegy megszerzésének feltételeit is a gyakorlatvezetők fogják meghatározni és ismertetni.

Az előadásvázlatokat .pdf file formájában az előadások utáni pénteken felteszem a honlapomra (http://people.inf.elte.hu/csuhaj), és a pontos webcímet a Neptun rendszeren keresztül közölni fogom.

Minden szerdán de. 10-12 h között fogadóórám van a Déli tömb 2.511-es hivatali szobámban, ahol az érdeklődőket szeretettel várom. Ugyancsak keressenek meg emailben (csuhaj@inf.elte.hu) vagy a fogadóórán, ha bármilyen kérdésük felmerül a tantárggyal kapcsolatban.

Jó tanulást kívánok!

Budapest, 2013. február

Csuhaj Varjú Erzsébet

A kurzus tartalmának rövid leírása

- 1. Bevezetés, a formális nyelv fogalma: alapvető fogalmak és jelölések,szavak, nyelvek, grammatikák, a grammatikák Chomsky-féle hierarchiája.
- 2. Műveletek nyelveken: definíciók, nyelvosztályok zártsági tulajdonságai.
- 3. Környezetfüggetlen grammatikák és nyelvek: redukált grammatikák, a Chomsky normálforma, levezetési fa, lineáris grammatikák, reguláris grammatikák, reguláris nyelvek, reguláris kifejezések. A generált nyelvek és nyelvosztályok tulajdonságai.
- 4. Környezetfüggő- és mondatszerkezetű grammatikák: hossz-nemcsökkentő grammatikák, Kuroda normál forma, mondatszerkezetű grammatikák normálformái. A generált nyelvek és nyelvosztályok tulajdonságai. Nyelvosztályok Chomsky-féle hierarchiája.

A kurzus tartalmának rövid leírása - folytatás

- 1. **Automaták és nyelvek:** véges automaták, veremautomaták, kétvermű automata, lineárisan korlátolt automata, Turing gép. Az automaták tulajdonságai, a felismert nyelvosztályok, az automaták és a grammatikák kapcsolatai.
- 2. **Szintaktikai elemzés:** kapcsolat szintaxis és szemantika között; környezetfüggetlen grammatikák és nyelvek egyértelműsége; LL(k) és LR(k) grammatikák.

A formális nyelvek és automaták elmélete - a gyökerek

A nyelv **grammatikájának** fogalma már kb. időszámításunk előtt az V. században felmerült Indiában (Panini).

Fontosabb lépések:

- Axel Thue, Emil Post, matematika, a XX. század eleje.
- W. Mc Culloch, W. Pitts, 1943, az idegrendszer modellje a véges állapotú gép;
 - S.C. Kleene, 1956, neurális háló a véges automata.
- Noam Chomsky, 1959, matematikai model, az angol nyelv grammatikájának matematikai modellje.
- Programnyelvek, ALGOL 60, 1960

Mivel foglalkozik a formális nyelvek és automaták elmélete?

A formális nyelvek elmélete szimbólumsorozatok halmazaival foglalkozik.

Célja - többek között - véges, tömör leírását adni az ilyen halmazoknak.

Az elmélet módszereket ad formális nyelvek definiálására, a formális elemek nyelvhez való tartozásának eldöntésére, a nyelvi elemek struktúrájának felismerésére.

A szimbólum fogalmát alapfogalomnak tekintjük, ezért nem definiáljuk.

Milyen tudományágakhoz kapcsolódnak a formális nyelvek és automaták?

- A természetes nyelvek gépi feldolgozása, matematikai modellezése, matematikai nyelvészet,
- programozási nyelvek, fordítóprogramok elmélete,
- kódelmélet,
- képfeldolgozás,

Alapfogalmak és jelölések - I

Szimbólumok véges nemüres halmazát ábécének nevezzük.

Példa: $V = \{a, b, c\}$

Egy V ábécé elemeiből képzett véges sorozatokat V feletti **szavaknak** vagy **sztringeknek** mondunk.

Példa: Legyen az ábécé $V = \{a, b, c\}$ és akkor aaabbbccc egy szó.

A 0 hosszúságú sorozatot **üres szónak** nevezzük és ε -nal jelöljük.

A V ábécé feletti szavak halmazát (beleértve az üres szót is) V^* -gal, a nemüres szavak halmazát V^+ -szal jelöljük.

Alapfogalmak és jelölések - II

Legyen V egy ábécé és legyenek u, v V feletti szavak (azaz, legyen $u, v \in V^*$). Az uv szót az u és v szavak **konkatenáltjának** nevezzük.

Példa: Legyen az ábécé $V=\{a,b,c\}$, legyenek u=abb és v=cbb szavak. Akkor uv=abbcbb az u és v konkatenáltja.

A konkatenáció mint művelet asszociatív, de általában nem kommutatív.

Példa: Legyen u = ab, v = ba, akkor uv = abba és vu = baab.

Alapfogalmak és jelölések - II - folytatás

Legyen V egy ábécé. Megállapíthatjuk, hogy V^* **zárt a konkatenáció műveletére nézve** (azaz, bármely $u,v\in V^*$ esetén $uv\in V^*$ teljesül), továbbá a **konkatenáció egységelemes művelet**, ahol az egységelem ε (azaz, bármely $u\in V^*$ esetén $u\varepsilon\in V^*$ és $\varepsilon u\in V^*$).

Alapfogalmak és jelölések - III

Legyen i nemnegatív egész szám és legyen w a V ábécé feletti szó $(w \in V^*)$.

A w szó i-edik hatványa alatt a w szó i példányának konkatenálját értjük és w^i -vel jelöljük.

Példa: Legyen az ábécé $V=\{a,b,c\}$, és legyen w=abc. Akkor $w^3=abcabcabc$.

Konvenció alapján minden $w \in V^*$ szóra $w^0 = \varepsilon$.

Alapfogalmak és jelölések - IV

Legyen V egy ábécé és legyen w egy V feletti szó (azaz, legyen $w \in V^*$).

A w szó hosszán a w szót alkotó szimbólumok számát értjük (azaz, w mint sorozat hosszát) és |w|-vel jelöljük.

Példa: Legyen az ábécé $V = \{a, b, c\}$ és legyen w = abcccc. Akkor w hossza 6.

Az üres szó hossza - nyilvánvalóan - 0, azaz $|\varepsilon| = 0$.

Alapfogalmak és jelölések - V

Egy V ábécé feletti két u és v szót azonosnak nevezünk, ha mint szimbólumsorozatok egyenlőek (azaz, mint sorozatok elemről-elemre megegyeznek.)

Legyen V egy ábécé és legyenek u és v szavak V felett. Az u szót a v szó **részszavának** nevezzük, ha v=xuy teljesül valamely x és y V feletti szavakra.

Az u szót a v szó **valódi részszavának** mondjuk, ha x és y közül legalább az egyik nemüres, azaz, $xy \neq \varepsilon$.

Példa: Legyen $V=\{a,b,c\}$ ábécé és legyen v=aabbbcc szó. Az u=abbbc szó valódi részszava v-nek.

Ha $x=\varepsilon$, akkor u-t a v szó **prefixének**, ha $y=\varepsilon$, akkor u-t a v szó **szufixének** hívjuk.

Legyen v=aabbbcc szó. Az u=aabbb szó prefixe, a bbbcc szó szufixe v-nek.

Alapfogalmak és jelölések - VI

Legyen u egy V ábécé feletti szó. Az u szó **tükörképe** vagy **fordítottja** alatt azt a szót értjük, amelyet úgy kapunk, hogy u szimbólumait megfordított sorrendben írjuk. Az u szó tükörképét u^{-1} -gyel jelöljük.

Legyen $u = a_1 \dots a_n$, $a_i \in V$, $1 \le i \le n$. Ekkor $u^{-1} = a_n \dots a_1$.

Alapfogalmak és jelölések - VII

Legyen V egy ábécé és legyen L tetszőleges részhalmaza V^* -nak. Akkor L-et egy V feletti **nyelvnek** nevezzük.

Az **üres nyelv** - amely egyetlen szót sem tartalmaz - jelölése Ø.

Egy V ábécé feletti nyelvet **véges nyelvnek** mondunk, ha véges számú szót tartalmaz, ellenkező esetben **végtelen nyelvről** beszélünk.

Példák nyelvekre

Legyen $V = \{a, b\}$ ábécé.

Akkor $L_1 = \{a, b, \varepsilon\}$ véges nyelv, $L_2 = \{a^i b^i \mid 0 \le i\}$ végtelen nyelv.

Példa L_2 -beli szavakra: ab, aabb, aaabb, ...

Legyen $L_3 = \{uu^{-1} | u \in V^*\}.$

Példa L_3 -beli szavakra: $u = ababb, u^{-1} = bbaba$ és $uu^{-1} = ababbbbaba$.

Nyelvek sokféle módon előállíthatók, egyik mód a nyelvek generálása grammatikával.

Generatív grammatika - Definíció

Egy G generatív grammatikán (grammatikán vagy (generatív) nyelvtanon) egy (N,T,P,S) négyest értünk, ahol

- N és T diszjunkt ábécék, a nemterminális és a terminális szimbólumok ábécéi;
- $S \in N$ a **kezdőszimbólum** (axióma),
- P véges halmaza (x,y) rendezett pároknak, ahol $x,y \in (N \cup T)^*$ és x legalább egy nemterminális szimbólumot tartalmaz.

A *P* halmaz elemeit **átírási szabályoknak** (röviden szabályoknak) vagy **produkcióknak** nevezzük.

Az (x,y) jelölés helyett használhatjuk az $x \to y$ jelölést is, ahol a \to szimbólum nem eleme az $(N \cup T)$ halmaznak.

Példa Generativ Grammatikára

Legyen G = (N, T, P, S) egy generatív grammatika, ahol

 $N = \{S\}$ a nemterminálisok ábécéje,

 $T = \{a, b\}$ a terminálisok ábécéje, és

$$P = \{S \to aSb, \quad S \to ab, \\ S \to ba\}$$

a szabályok halmaza.

Közvetlen levezetési lépés - Definíció

Legyen G=(N,T,P,S) egy generatív grammatika és legyen $u,v\in (N\cup T)^*$.

Azt mondjuk, hogy a v szó **közvetlenül** vagy **egy lépésben levezet-hető** az u szóból G-ben és ezt

$$u \Longrightarrow_G v$$

módon jelöljük, ha $u=u_1xu_2$, $v=u_1yu_2$, $u_1,u_2\in (N\cup T)^*$ és $x\to y\in P$.

Példa közvetlen levezetésre

Legyen G=(N,T,P,S) egy generatív grammatika, ahol $N=\{S\}$ a nemterminálisok ábécéje, $T=\{a,b\}$ a terminálisok ábécéje és $P=\{S\to aSb,S\to ab,S\to ba\}$ a szabályok halmaza.

Legyen u = aaaSbbb.

Akkor v=aaaaSbbb közvetlenül (egy lépésben) levezethető u-ból, azaz

$$u \Longrightarrow_G v,$$

ugyanis $u_1 = aaa$, $u_2 = bbb$, x = S, y = aSb és $S \rightarrow aSb \in P$.

Levezetés - Definíció

Legyen G = (N, T, P, S) egy generatív grammatika és legyen $u, v \in (N \cup T)^*$.

Azt mondjuk, hogy a v szó k **lépésben levezethető** az u szóból G-ben, $k \geq 1$, ha létezik olyan $u_1, \ldots, u_{k+1} \in (N \cup T)^*$ szavakból álló sorozat, amelyre $u = u_1, \ v = u_{k+1}$, valamint $u_i \Longrightarrow_G u_{i+1}$, $1 \leq i \leq k$ teljesül.

A v szó **levezethető** az u szóból G-ben, ha vagy u=v, vagy létezik olyan $k\geq 1$ szám, hogy a v szó az u szóból k lépésben levezethető.

Levezetés

Legyen G = (N, T, P, S) egy tetszőleges generatív grammatika és legyen $u, v \in (N \cup T)^*$.

Azt mondjuk, hogy a v szó levezethető az u szóból G-ben és ezt

$$u \Longrightarrow_G^* v$$

módon jelöljük, ha vagy u=v vagy valamely $z\in (N\cup T)^*$ szóra fennáll, hogy $u\Longrightarrow_G^*z$ és $z\Longrightarrow_Gv$ teljesül.

⇒* a ⇒ reláció reflexív tranzitív lezártját jelöli.

A ⇒ reláció tranzítív lezártját ⇒ +-val jelöljük.

A kezdőszimbólumból levezethető sztringeket mondatformának nevezzük.

A generált nyelv - Definíció

Legyen G = (N, T, P, S) egy tetszőleges generatív grammatika. A G grammatika által generált L(G) nyelv alatt az

$$L(G) = \{w | S \Longrightarrow_G^* w, w \in T^*\}$$

szavakból álló halmazt értjük.

Azaz, a G grammatika által generált nyelv a T^{st} halmaz azon elemei, amelyek levezethetők a G grammatika S kezdőszimbólumából.

Példa

Legyen G=(N,T,P,S) egy generatív grammatika, ahol $N=\{S\}$, $T=\{a,b\}$ és $P=\{S\to aSb,S\to ab,S\to ba\}$.

Akkor $L(G) = \{a^n abb^n, a^n bab^n | n \ge 0\}.$

Példa egy levezetésre:

 $S \Longrightarrow_G aSb \Longrightarrow_G aaSbb \Longrightarrow_G aababb.$

Példa

Legyen G=(N,T,P,S) egy generatív grammatika, ahol $N=\{S,X,Y\}$, $T=\{a,b,c\}$. Legyen

$$P = \{S \to abc, \quad S \to aXbc, \\ Xb \to bX, \quad Xc \to Ybcc, \\ bY \to Yb, \quad aY \to aaX, \quad aY \to aa\}.$$

Akkor $L(G) = \{a^n b^n c^n | n \ge 1\}.$

Példa egy levezetésre:

$$S \Longrightarrow aXbc \Longrightarrow_G abXc \Longrightarrow_G abYbcc \Longrightarrow_G aYbbcc \Longrightarrow_G aabbcc.$$

Ekvivalens Grammatikák és Nyelvek

Két generatív grammatikát (gyengén) **ekvivalensnek** nevezünk, ha ugyanazt a nyelvet generálják.

Két nyelvet **gyengén ekvivalensnek** mondunk, ha legfeljebb az üres szóban különböznek.

A Chomsky-féle hierarchia

A G = (N, T, P, S) generatív grammatikát i-típusúnak mondjuk, i = 0, 1, 2, 3, ha P szabályhalmazára teljesülnek a következők:

- i = 0: Nincs korlátozás.
- i=1: P minden szabálya $u_1Au_2 \to u_1vu_2$ alakú, ahol $u_1,u_2,v \in (N \cup T)^*$, $A \in N$, és $v \neq \varepsilon$, kivéve az $S \to \varepsilon$ alakú szabályt, feltéve, hogy P-ben ilyen szabály létezik. Ha P tartalmazza az $S \to \varepsilon$ szabályt, akkor S nem fordul elő P egyetlen szabályának jobboldalán sem.
- i = 2: P minden szabálya $A \to v$ alakú, ahol $A \in N$ és $v \in (N \cup T)^*$.
- i= 3: P minden szabálya vagy $A\to uB$ vagy $A\to u$, alakú, ahol $A,B\in N$ és $u\in T^*.$

Példa

Legyen G=(N,T,P,S) egy generatív grammatika, ahol $N=\{S\}$, $T=\{a,b\}$ és $P=\{S\to aSb,S\to ab,S\to ba\}$.

Ez a grammatika 2-típusú (környezetfüggetlen).

A Chomsky-féle hierarchia - folytatás

Legyen i=0,1,2,3. Egy L nyelvet i-típusúnak mondunk, ha i-típusú grammatikával generálható.

Az i-típusú nyelvek osztályát \mathcal{L}_i -vel jelöljük.

A 0-típusú grammatikát **mondatszerkezetű grammatikának**, az 1-típusú grammatikát **környezetfüggő grammatikának**, a 2-típusú grammatikát **környezetfügget-len grammatikának** is nevezzük. A 3-típusú grammatikát **reguláris** vagy **véges állapotú** grammatikának is mondjuk.

A 0,1,2,3-típusú nyelvek osztályait rendre **rekurzíven felsorolható**, **környezetfüggő**, **környezetfüggetlen**, valamint **reguláris nyelvosztálynak** is mondjuk.

A Chomsky-féle hierarchia - folytatás

Nyilvánvaló, hogy $\mathcal{L}_3 \subseteq \mathcal{L}_2 \subseteq \mathcal{L}_0$ és $\mathcal{L}_1 \subseteq \mathcal{L}_0$.

A későbbiekben megmutatjuk, hogy

$$\mathcal{L}_3 \subset \mathcal{L}_2 \subset \mathcal{L}_1 \subset \mathcal{L}_0$$
.

Megjegyzés: Könnyen észrevehetjük, hogy a \mathcal{L}_2 és a \mathcal{L}_1 nyelvosztályok közötti, a tartalmazásra vonatkozó reláció nem azonnal látható a megfelelő grammatikák definíciójából.

Hivatkozás:

György E. Révész, Introduction to Formal Languages, McGraw-Hill Book Company, 1983, Chapter 1.