Übungsblatt 7: p-adische Zahlen, projektiver Limes

In den folgenden Übungen sind alle Ringe kommutativ mit Eins.

Übung 7.1. (wird benotet, auf 3 Punkten) Sei $(X_i)_{i \in I}$ eine Familie von Mengen. Beweisen Sie, dass die disjunkte Vereinigung $\bigsqcup_{i \in I} X_i$ über die folgende Eigenschaft verfügt: Für jede Menge Y ist die folgende Abbildung eine Bijektion

$$f \in \operatorname{Hom}_{\operatorname{Set}} \left(\bigsqcup_{i \in I} X_i, Y \right) \quad \mapsto \quad (f \circ \iota_i)_{i \in I} \in \prod_{i \in I} \operatorname{Hom}_{\operatorname{Set}}(X_i, Y),$$

wobei ι_i die Inklusion von X_i in die disjunkte Vereinigung bezeichnet.

Umformulierung. Die disjunkte Vereinigung entspricht also dem Koprodukt in der Kategorie Set.

Übung 7.2. (wird benotet, auf 2 Punkten) Sei $I = \{1, 2, 3, 4\}$ halbgeordnet durch Teilbarkeit. Betrachten Sie das folgende projektive System von R-Moduln:

$$M_4 = M \xrightarrow{f} M_2 = N$$

$$\downarrow^{id_N}$$

$$M_3 = M \xrightarrow{g} M_1 = N$$

Berechnen Sie den projektiven Limes $\lim_{i \in I} M_i$.

Übung 7.3. Sei $p \in \mathbb{N}$ eine Primzahl. Beweisen Sie, dass der Ring \mathbb{Z}_p der p-adischen Zahlen ein Hauptidealring ist. Beweisen Sie zudem, dass die Idealen von \mathbb{Z}_p der folgenden Form sind:

(0),
$$\mathbb{Z}_n$$
, $\iota(p^k)\mathbb{Z}_n$ für $k \geq 1$,

wobei ι die Einbettung $\mathbb{Z} \to \mathbb{Z}_p$ bezeichnet.

Übung 7.4. Sei $(\mathbb{N}, |)$ die Menge der positiven ganzen Zahlen, halbgeordnet durch Teilbarkeit. Sei $\hat{\mathbb{Z}}$ der projektive Limes des projektiven Systems $(\mathbb{Z}/n\mathbb{Z})_{n\in\mathbb{N}}$ mit Ringhomomorphismen $f_{nm}: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ wenn $m \mid n$. Beweisen Sie, dass

$$\hat{\mathbb{Z}} \cong \prod_{p \text{ Primzahl}} \mathbb{Z}_p,$$

wobei \mathbb{Z}_p den Ring der *p*-adischen Zahlen bezeichnet.

Erinnerung. Hier ist $\mathbb{N} = \mathbb{Z}_{\geq 1}$.