Statistics 5350/7110 Forecasting

Lecture 8
Detrending

a.k.a., Manufacturing Stationarity

Professor Robert Stine

Admin Issues

- Questions
 - No office hours today
- Assignments
 - Assignment 2
 - Downloading data files from Canvas (in Assignments folder)
- Quick review
 - Multiple regression models for time series
 - Diagnostic plots
 - Seasonal patterns and spurious correlation
 - Software: dynlm for building regression models for time series in R

Text, §3.2

Today's Topics

- Time series regression
 - Finish regression modeling example from Lecture_7.Rmd
 - Comparing Im to dynlm
- Detrending a time series
 - Many procedures in forecasting presume stationarity (e.g. estimating autocovariances)
- Question: How to detrend?
 - Is there a deterministic trend (use regression) or is it a random walk (difference the data)
 - Does the choice matter? Yes!
 - Tradeoffs if we make the wrong choice
- Examples feature climate data
 - Global temperature

Finding the Stationary Process

Motivating model

Observed time series is the sum of a mean plus a zero-mean stationary process

$$X_t = \mu_t + Y_t$$
 or simpler

$$X_t = \mu_t + w_t$$

where $E(X_t) = \mu_{t'}\{Y_t\}$ is a stationary process, and $\{w_t\}$ is white noise.

- Analyze the otherwise hidden stationary process.
- Forecast: Extrapolate mean as "trend" and predict stationary process

Obvious choices to obtain stationarity

- Estimate a deterministic trend and subtract it from the data; analyze the residuals.
- Difference the data to remove a random walk.

What could go wrong?

- · Consider taking the wrong action
- Difference the data when the trend is non-stochastic
- Fit a deterministic trend when μ_t is a random walk

We'll do this modeling simultaneously later

Does the choice matter?

• Yes!

Does the choice matter?

- Yes!
 - Long term dependence in the residuals
 - Annual pattern in differences

Fitting a Deterministic Trend $X_t = \mu_t + Y_t$

$$X_t = \mu_t + Y_t$$

- Suppose the mean is deterministic
 - Example: a linear trend is correct model

$$\mu_t = \alpha + \beta t$$

- Estimate the model and subsequently work with residuals $\hat{Y}_t = X_t \hat{\mu}_t = Y_t + (\alpha \hat{\alpha}) + (\beta \hat{\beta}) t$
- Some of the trend "leaks" into the residuals (assuming this model is correct)
- If we care about β , then regression gives a very precise estimate (presuming assumptions)
- Simulation comparison
 - Simulate data with a trend
 - Estimates have same mean, but slope is less variable

Details in Rmd file $Var(avg diff) \approx (n/6) Var(b)$

Fitting a Deterministic Trend

$$X_t = \mu_t + Y_t$$

- Suppose the mean is deterministic
 - Example: a linear trend is correct model

$$\mu_t = \alpha + \beta t$$

- Estimate the model and subsequently work with residuals $\hat{Y}_t = X_t \hat{\mu}_t = Y_t + (\alpha \hat{\alpha}) + (\beta \hat{\beta}) t$
- Regression estimate of β is much more efficient than differencing (smaller SE by factor $1/\sqrt{n}$)
- Suppose we got it wrong
 - We model as a trend but the mean is a random walk...

$$\mu_t = \delta + \mu_{t-1} + w_t$$

• What happens if we fit a trend when the data is a random walk?

$$\widehat{Y}_t = X_t - \widehat{\mu}_t = Y_t + \left(\mu_t - \widehat{\alpha} - \widehat{\beta} t\right)$$

Residuals mix the stationary process Y_t with deviations of fitted trend from a random walk...

- Not a stationary process!
- Plus, our precise claims about the slope are wrong (LS regression inflates the precision)

Differencing

- Special notation for the backshift operator B
 - Define operator B as a time shift

$$BX_t = X_{t-1}$$

• Differencing in terms of B

$$\nabla X_t = X_t - X_{t-1} = (1 - B) X_t$$

- Powerful notation
 - Treat the operator B as an algebraic symbol, as it if represents a number
 - Second differences

$$\nabla^2 X_t = (1 - B)^2 X_t = (1 - 2B + B^2) X_t = X_t - 2X_{t-1} + X_{t-2}$$

• Differences of AR(1)

$$X_{t} = \phi X_{t-1} + w_{t} \implies (1 - \phi B)X_{t} = w_{t} \implies X_{t} = \frac{1}{1 - \phi B}w_{t}$$

If we assume that $|\phi|$ < 1 and treat B as if |B| = 1 then

$$\frac{1}{1 - \phi B} w_t = \left(1 + \phi B + (\phi B)^2 + \cdots\right) w_t = w_t + \phi w_{t-1} + \phi^2 w_{t-2} + \cdots$$

• Much more of this to come in our analysis of ARIMA models

This notation was popularized by Box and Jenkins in an influential book on time series analysis.

Differencing

$$X_t = \mu_t + Y_t$$

- Suppose the mean function is a random walk
 - Mean function has possible drift $\mu_t = \delta + \mu_{t-1} + w_t$
 - Differencing leaves a stationary process with "no estimation" needed

$$\nabla X_t = X_t - X_{t-1} = \mu_t + Y_t - (\mu_{t-1} + Y_{t-1}) = \delta + w_t + (Y_t - Y_{t-1}) = \delta + w_t + \nabla Y_t$$

- Differences ∇X_t form a stationary process (eqn 3.24)
 - If $\{Y_t\}$ is a stationary process, then $\{\,
 abla \, Y_t \}$ is a stationary process. If $\mathsf{u_t}$ = $\mathsf{y_t}$ $\mathsf{y_{t-1}}$, then

$$\mathrm{Cov}(U_{t+h},U_t) = \mathrm{Cov}(Y_{t+h} - Y_{t+h-1}, Y_t - Y_{t-1}) = 2\gamma_{\mathbf{y}}(h) - \gamma_{\mathbf{y}}(h+1) - \gamma_{\mathbf{y}}(h-1)$$

- Hence, we obtain a stationary process, but it's not Y_t.
- Suppose we difference when the mean is a deterministic linear trend
 - The differences are then $\nabla X_t = \nabla(\alpha + \beta t + Y_t) = \beta + \nabla Y_t$
 - We again don't directly observe Yt, but we again get a stationary process.
- Differencing is a more reliable means to obtaining a stationary process
 - At the cost of a less precise estimate of β than regression when μ_t is deterministic

Back to the example...

• Does this time series appear to have a linear trend?

Second Example: Global Temperature

- Global surface temperature deviations
 - Both appear stationary until post WWII economic expansion around 1945-1950.

Variability changes with changes in how these data are obtained.

Differenced Temperature

- Differences appear stationary
 - Changes in the drift are not very apparent
 - Changes in variation noticeable in the land temperatures

Huge literature on detecting a "change point" in a time series.

Autocorrelation in Differences

- Differences have autocorrelation
 - Structure of these autocorrelations is consistent with a simple model
 - Suppose $X_t = \mu_t + u_t$ where $\mu_t = \mu_{t-1} + w_t$ is a random walk and u_t is independent white noise.
 - Then the differences are $\nabla X_t = w_t + (u_t u_{t-1})$
 - Autocovariances of the differences are then $\gamma(1)=-\sigma_u^2$ and $\gamma(h)=0$ for 1 < |h|.

Similar ACF pre/post 1950.

Comparison of Differences

- Two-sample t-test
 - Test null hypothesis that means are same in two time periods
 - As if the observations of the differences were independent (we know they aren't)
- Results
 - Difference of average differences is about 0.02 degrees
 - Nowhere close to significance


```
t = 0.28394, df = 125.2, p-value = 0.7769
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
   -0.1183409    0.1579860
sample estimates:
   mean of x    mean of y
0.027297297    0.007474747
```

Different Analysis

- Fit a regression to the temperatures
 - Measure the slope since visually chosen change point
 - Use the usual regression test statistics: find larger 0.03 for growth post 1959
- Statistically significant?


```
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.292021  0.029418  -9.927  <2e-16 ***
recent_time  0.033025  0.001298  25.452  <2e-16 ***

---
Signif. codes:  0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error:  0.3297 on 172 degrees of freedom
Multiple R-squared:  0.7902,  Adjusted R-squared:  0.789
F-statistic: 647.8 on 1 and 172 DF, p-value: < 2.2e-16
```

This model forces continuous fit

Different Analysis, Enhanced

- Fit a regression to the temperatures
 - Measure the change in the slope at the visually chosen change point
 - Use the usual regression test statistics: again find about 0.03 for growth post 1959
- Statistically significant?


```
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -5.0619173 1.5823059 -3.199 0.00164 **

time(gtemp_land) 0.0024957 0.0008277 3.015 0.00296 **

recent_time 0.0277596 0.0021582 12.863 < 2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.3222 on 171 degrees of freedom

Multiple R-squared: 0.8008, Adjusted R-squared: 0.7985

F-statistic: 343.7 on 2 and 171 DF, p-value: < 2.2e-16
```

Residual Analysis

- Not much residual autocorrelation
 - Certainly not like residuals from a random walk.
- Implications?

Textbook §3.3

What's next?

- Smoothing data
 - Estimating a mean function non-parametrically
 - Shown in many diagnostic plots: regression diagnostics, scatterplot matrix
 - Applications in cross-sectional vs. time series

Example of a calibration plot Residuals on Fitted values

