2025年6	月11日	22:3

Additue	Combinatorics
· lood one	MINONDAGE

(Meng Wu) meng.wu@oulu.fi

23/June

The Introduction to additive combinationics (basic notion, pollens, volcas) applications to fractal geometry (self-similar sets, fractal dimensions...) factal dimension of selfondar softs

Measure breony additive combinatoric,

Some references:

T. Tao & V. Vu Additive combinations, Cambridge dudies in

advanced math vol 105, 2006

B. Green Addithe comb, betweendes (online)

M. (Hochman). Selformilar sets, entropy and add comb, exposition article arxiv 1307.6389

Today: Basic objects in AC

Next neek: notroduction. Selfonular sets, fractal dimension, entropy.

Additure combinatorics

```
8130 of sunsets and the miverse problem
The sumset of A,B < IRd, A,B + p, is defined by
               At B := [ atb : aeA, beB]
  man topic in AC.
 Inverse problem If AHB vs 'small' (in cardinality, volume, dimensión)
   Compared to A and B, then what kind of Arutures ble sof A; B mud
    hove?
                      |AtB| < CIA, CIB,
     We shall see: If A+B is "small" compared to A and B, then A and
            B must have some form of algebraic and medic features
      A.BCRd, finde sets AHB= [a+b: ceA]= (AB) = (beB)
     Lomma If A, B < 1Rd are finite and non-entry, then
                 max [ |A| , |B| ] = |A+B| = |A||B| ( |A+b| = |A|)
           |AtB| \otimes = |\bigcup(Atb)| \leq \sum_{b \in R} |A+b| = |B| \times |A|
    Remark (1) |A+B| = (A| or |B) (=> A or B is a singleton ||||
    (2) |A+B|=|A||B| => every element in A+B is uniquely represented
```

E) if atb = a'+b' for a', a ∈ A, b', b ∈ B, then a=a' b=b'

e) if atb = a'tb' for a', a ∈ A, b', b ∈ B, then a=a' b=b'
A=[0,9,92,9n3] and B=[0,1,2,-,9+] q.nen
[A+B]= A B (Execuse) ([A+B]=@ A)
If he consider "random" subsets of (Zd), then one would expect
$ A+B \approx A B $ $ A+B \leqslant c A $
Example: If n is fixed, ABC[1, -in) and choose randomly such that each water. JE[1, -,n] is chosen with probability open.
Such that each water j = P1, n) is chosen with probability op <1
[A+B] > c (A(B)
for some constant coo occurs with high publishing
$\mathbb{P}\left(\omega = A_{\omega} + B_{\omega} \geq \mathbb{E}[A_{\omega} B_{\omega}]^{2} \geq 1 - \mathbb{E}(1)$
E = vovo (E II n)
What happens when A+B << IA B)
(IA+B) S C/A/, C/B/?
Minimal growth: Arikhnetic progression and Cauchy-Davenport
Classical result: Brunn-Himbowski meguality
The standard of the

Then If A,B = Rd are convex, then
(Vol (A+B)) = (Vol (A) + Vol (B) d)
Moreover, this is an equality (=) A and B are fromothetic
Vol (A+B) is somethal => A and B as sometar
Discrete analyse of a convex set is an arthmetic progression
Def. Any set $P \subset R $ of the form $P = \{ C, a+p, a+2p, \cdot , a+(k+1)p \} $ for some $P \in R $ and $k \in (M P)$ called an anthefretic projection (AP)
of gap p and length k. Moreover, an AP mi (Rd is any product of Ad AP in IR
AP mi IRd: P=[aatp, atk-1)p] PEIRd
Cauchy-Davenport we quality Them If A,BEIR are finite with $ A B > 2$, then $ A+B > A + B - 1$ Moreover, thirs is an equality of and only of A and B are APs of the same gap
Linear growth - Generalized APS and French & Ven

Linear growth . Generalizal APs and Freiman's Klim
Let's first A=B, A+A < c A >>?
Def We say a finite set ACIRd is small cloubing with a constate C>0 if $ A+A \leq c A $ AAA
$(A+A) \leq c(A)$ ATA
Note $C = A A+A \leq A ^2 = C A C = (0000)$
Example: If A is an AP, then by Candy-Davenport
1A+A = 2A -1 < 2 A
So A=5 small doubling with C=2 Movemen, in higher dimension of A CIRd=5 AP, then
Moreover, in higher dimension of A CIRd of AP, then
A+A < 2d A (Exercise)
Eg: if A= [1,1-,n]d CIRd then (A+A) = [12,3,-,2n]d
= 2d/A/

Sometimes, we do not have a set A, which is AP, but Boll satisfies $|A+A| \le 2^k |A|$ for some k > d. \rightarrow generalized AP

Dof (generalized AP)

A finite set A = IR is a generolised AP (GAP) of rank

H TIMBE Set A CIK IS a generoused ITT (QAP) of Tank KEIN of A= { a+ & kiPi: ki=0,1,..., n} for some gaps Pr>0 and Ni EN, NEW (A+A) < 2k/A) Fact: If Aisa GAP of rank k, then A+A < 2 /A (Exercise) Example: If A is small doubling with coo and A'cA Satisfying A) > P/A/ for some o < P SI. Then A is small daubling with constant C/p: $|A'+A'| \leq |A+A| \leq c|A| \leq \frac{c}{e}|A'|$