SEMESTER III. MODULE 3

RELATIONS AND FUNCTIONS

UNIT NO:3.2

Relations

Cartesian product

Consider two arbitrary sets X and Y.

The set of all ordered pairs(x,y) where $x \in X$ and $y \in Y$ is called the **Cartesian product**, of X and Y.

it is denoted by $X \times Y$, which is read "X cross Y."

Definition

$$X \times Y = \{(x,y) \mid x \in X \text{ and } y \in Y\}$$

Definition: Relation

A **relation** from a set X to a set Y is any subset of the Cartesian product $X \times Y$

EXAMPLE

```
Let X = \{1, 2\} and Y = \{10, 15, 20\}.
R = \{(1,10) (2,20)\}
```

EXAMPLE

```
Let X = \{1, 2\} and Y = \{10, 15, 20\}. Then write X \times Y, Y \times X, X \times X
```

```
X \times Y
= \{(1,10), (1,15), (1,20), (2,10), (2,15), (2,20)\}
Y \times X
= \{(10,1), (15,1), (20,1), (10,2), (15,2), (20,2)\}
Also, X \times X = \{(1,1), (1,2), (2,1), (2,2)\}
```

NOTE

The first components in the ordered pairs is called the **domain** of the relation and the set of second ordered pairs is called the **range** of the relation.

Let $X = \{1, 2\}$ and $Y = \{10, 15, 20\}$.

 $R = \{(1,10)(2,20)\}$

Domain of $R = \{1, 2\}$

Range of $R = \{10,20\}$

NOTE

Suppose R is a relation from X to Y. Then R is a set of ordered pairs where each first element comes from X and each second element comes from Y. That is, for each pair $x \in X$ and $y \in Y$, exactly one of the following is true:

i. $(x, y) \in R$; we then say "x is R – related to y", written xRy.

ii. $(x,y) \notin R$; we then say "x is not R – related to y", written xRy

Definition: Inverse of R

Let R be any relation from a set A to set B.

The inverse of R, denoted by R^{-1} , is the relation from B to A which consists of those ordered pairs, when reversed, belong to R.

That is: $R^{-1} = \{(b, a) : (a, b) \in R\}$

REPRESENTATION OF RELATIONS: Matrices can be easily used to represent relation

If $R = \{(1,x)(2,x)(3,y)(3,z)\}$ then matrix of R is

	\boldsymbol{x}	\boldsymbol{y}	Z
1	1 1 0 0	0	0
2	1	0	0
3	0	1	1
4	0	0	0

REPRESENTATION OF RELATIONS: Another way of pictorial representation, known as **diagraph**.

 $R = \{(1, 2), (2, 2), (2, 4), (3, 2), (3, 4), (4, 1), (4, 3)\}$ Then, the diagraph of R is drawn as follows:

The directed graphs are very important data structures that have applications in Computer Science (in the area of networking).

Definition: Composite Relation

Let A, B and C be three sets.

Let R be a relation from A to B and S be a relation from B to C.

Then, composite relation ROS is a relation from A to C defined by,

 $\underline{a}(ROS)c$, if there is some $b \in B$, such that a R b and b S c.

Example: Let $A = \{1, 2, 3, 4\}$, $B = \{a, b, c, d\}$, $C = \{x, y, z\}$ and let $R = \{(1, a), (2, d), (3, a), (3, b), (3, d)\}$ and $S = \{(b, x), (b, z), (c, y), (d, z)\}$. Write ROS

R0S will be given as below.

$$R0S = \{(2, z), (3, x), (3, z)\}.$$

Definition: Reflexive Relation

Let A be a nonempty set, a relation R on A is said to be reflexive if for each $a \in A$, $(a; a) \in R$.

Example

Let $A = \{a, b, c, d\}$ and R be defined as follows:

 $R = \{(a, a), (a, c), (b, a), (b, b), (c, c), (d, c), (d, d)\}.$

Is R a reflexive relation?

YES

Definition: Symmetric Relation

Let A be a nonempty set, a relation R on A is said to be symmetric if for each pair of elements a; $b \in A$,

(a; b) \in R implies (b; a) \in R.

Example

Let $A = \{1, 2, 3, 4\}$ and R be defined as:

 $R = \{(1, 2), (2, 3), (2, 1), (3, 2), (3, 3)\},\$

Is R a symmetric relation?

YES

NOTE

If we draw a diagraph of a reflexive relation, then all the vertices will have a loop.

Also if we represent reflexive relation using a matrix, then all its diagonal entries will be 1.

Also if we represent symmetric relation using a matrix then the matrix will be symmetric matrix

Definition: Antisymmetric Relation

Let A be a nonempty set,

A relation R on A is said to be antisymmetric

if if for $a, b \in A$, if a R b and b R a, then a = b.

Thus, R is not anti-symmetric if there exists $a, b \in A$ such that a R b and b R a but $a \ne b$.

Example

```
Example1: Let A = \{a, b, c, d\}
```

R be defined as: $R = \{(a, b), (b, a), (a, c), (c, d), (d, b)\}.$

Check whether R is symmetric, anti-symmetric?

R is not symmetric, as a R c but c R a.

R is not anti-symmetric, because a R b and b R c, but $a \neq b$

Example2: The relation "less than or equal to (≤)", is an anti-symmetric relation

Definition: Transitive Relation

Let A be a nonempty set, a relation R on A is said to be transitive if for each triple of elements a, b, $c \in A$, (a, b), $(b, c) \in R$ imply $(a,c) \in R$.

Example

Relation "a divides b", on the set of integers, is a transitive relation.

The relation "less than or equal to (≤)", is a transitive relation.

Definition: Antisymmetric Relation

Let A be a nonempty set,

A relation R on A is said to be antisymmetric

if if for $a, b \in A$, if a R b and b R a, then a = b.

Thus, R is not anti-symmetric if there exists $a, b \in A$ such that a R b and b R a but $a \ne b$.

Definition: Equivalence relation

Let A be a nonempty set.

A relation R on set A is said to be equivalence relation if R is reflexive, symmetric and transitive

Example: Consider the set *L* of lines in the Euclidean plane. Two lines in the plane are said to be related, if they are parallel to each other.

Is this relation an equivalence relation?

Yes.

 $R = \{(L_1, L_2): L_1 \text{ is parallel to } L_2\}$

R is reflexive as any line L_1 is parallel to itself i.e., $(L_1, L_1) \in R$.

Now,

Let $(L_1, L_2) \in \mathbb{R}$.

- $\Rightarrow L_1$ is parallel to L_2 .
- $\Rightarrow L_2$ is parallel to L_1 .
- $\Rightarrow (L_2, L_1) \in \mathbb{R}$
- ∴ R is symmetric.

Now,

Let (L_1, L_2) , $(L_2, L_3) \in \mathbb{R}$.

- $\Rightarrow L_1$ is parallel to L_2 . Also, L_2 is parallel to L_3 .
- $\Rightarrow L_1$ is parallel to L_3 .
- ∴R is transitive.

Hence, R is an equivalence relation.

Example Determine whether the relation R on a set A is reflexive, symmetric, antisymmetric or transitive. A = set of all positive integers, a R b iff $|a - b| \le 2$

R is reflexive because |a-a|=0<2, $\forall a \in A$ R is symmetric because $|a-b| \le 2 \Rightarrow |b-a| \le 2$: $a R b \Rightarrow b R a$ R is not antisymmetric because $1R 2 \& 2R1 1R 2 \Rightarrow |1-2| \le 2 \& 2R1 \Rightarrow |2-1| \le 2$. But $1 \ne 2$

R is not transitive because 5 R 4, 4 R 2 but 5 R 2

Definition: Partition

A partition of a set A is a collection of nonempty subsets A_1, A_2, A_3, \ldots of A which are pairwise disjoint and whose union equals A

$$1. A_i \cap A_j = \Phi$$
 for $i \neq j$

$$2.\cup_n A_n = A$$

Example: Is P= {{1,2}{3,5}{4,5,6}} partition of A={1,2,34,5,6}?

Let
$$A = \{1, 2, 3, 4, 5, 6\}.$$

$$A_1 = \{1, 2\}; A_2 = \{3, 5\}; A_3 = \{4, 5, 6\}.$$

$$A = A_1 \cup A_2 \cup A_3$$
 but $A_2 \cap A_3 \neq \emptyset$..

P is not partition of A

Example:

Is $P = \{\{1,2\}\{3,5\}\{4\}\}$ partition of $A = \{1,2,3,4,5\}$?

$$A_1 = \{1, 2\}; A_2 = \{3, 5\}; A_3 = \{4\}.$$

$$A_1 \cap A_2 = \emptyset$$
, $A_1 \cap A_3 = \emptyset$, and $A_2 \cap A_3 = \emptyset$.

$$A = A_1 \cup A_2 \cup A_3$$

P is partition of A

Equivalence Class

Let R be an equivalence relation on a set A

Let $x \in A$

the set of elements of A related to x is called the equivalence class of x, represented [x]

 $[x] = \{y \in A \mid y Rx\}.$

The collection of equivalence classes, represented A/R

 $A/R = \{[x] | x \in A\}$, is called quotient set of A by R

Note: If R is an equivalence relation on A, then sets [a] or R(a) are called as equivalence classes of R.

Theorem

Let R be an equivalence relation on a set A.

Then A | R is a partition of A. Specifically:

- (i) For each a in A, we have $a \in [a]$.
- (ii) [a] = [b] if and only if $(a, b) \in R$.
- (iii) If $[a] \neq [b]$, then [a] and [b] are disjoint.

Example let A = $\{1, 2, ..., 8\}$. Let R be the equivalence relation defined by $x \equiv y \mod(4)$ Write R as a set of ordered pairs Find the partition of A induced by R.

$$R = \{(1,1), 1,5), (2,2), (2,6), (3,3), (3,7), (4,4), (4,8), (5,1), (5,5), (6,2), (6,6), (7,3), (7,7), (8,4), (8,8)\}$$

ii)
$$[1] = \{1, 5\}, [2] = \{2, 6\}, [3] = \{3,7\}, [4] = \{4,8\}$$

So, the following is the partition of A induced by R: $A|R = \{[1], [2], [3], [4]\}$

Note: If R is an equivalence relation on A, then sets [a] or R(a) are called as equivalence classes of R.

Example

Let $A = \{1, 2, 3, 4\}$ and

 $R = \{(1, 1), (1, 2), (2, 1), (2, 2), (3,4), (4, 3), (3, 3), (4, 4)\}.$

Show that R is an equivalence relation on A hence find partition of A induced by R

We observe that R(1) = R(2) and R(3) = R(4) and hence $P = \{ \{1, 2\}, \{3, 4\} \}.$

Construction of Z_n

```
Let A = Z (set of integers) and define R as
R = \{(a, b) \in A \times A : a \equiv b \pmod{5}\}. Then, we have,
R(1) = \{..., -14, -9, -4, 1, 6, 11, ...\}
R(2) = \{..., -13, -8, -3, 2, 7, 12, ...\}
R(3) = \{..., -12, -7, -2, 3, 8, 13, ...\}
R(4) = \{..., -11, -6, -1, 4, 9, 14, ...\}
R(5) = \{..., -10, -5, 0, 5, 10, 15, ....\}
R(1), R(2), R(3), R(4) and R(5) form partition on Z with respect to
given equivalence relation.
Z|R = \{R(1),R(2),R(3),R(4),R(5)\}
Z_{5=}\{\overline{1},\overline{2},\overline{3},\overline{4},\overline{5}\}
```

Definition: PARTIAL ORDER RELATION

A relation *R* on the set *A* is said to be *partial order relation*, if it is reflexive, anti-symmetric and transitive.

Example : Let $A = \{a, b, c, d, e\}$. Relation R, represented using following matrix

$$\begin{pmatrix}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}$$

Is R partial order relation?

ANS:Yes

Example: Let A be a set of natural numbers and relation R be "less than or equal to relation (\leq)". Then R is a partial order relation on A.

```
For any m, n, k \in N, n \le n (reflexive); if m \le n and n \le m, then m = n (anti-symmetric); lastly, if m \le n and n \le k, then m \le k (transitive)
```

```
Example 7.47: Let R and S are equivalence relation on A = \{1, 2, 3, 4\} given by
R = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 3), (3, 3), (4, 4)\}
S = \{(1, 1), (2, 2), (3, 3), (4, 4), (1, 3), (3, 1)\}
Determine partition of A induced by
                                                   (ii) R \cap S
(i) R^{-1}
                             R = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 3), (3, 3), (4, 4)\}
Solution: (i)
                             R^{-1} = \{(1, 1), (2, 1), (1, 2), (2, 2), (4, 3), (3, 4), (3, 3), (4, 4)\}
                             [1]_{p-1} = \{1, 2\}
                             [2]_{R^{-1}} = \{1, 2\}
                             [3]_{p-1} = \{3, 4\}
                             [4]_{p-1} = \{3, 4\}
                             [1]_{p-1} = [2]_{p-1} and [3]_{p-1} = [4]_{p-1}
     Here,
         Partition of A induced by R^{-1} = [\{1, 2\}, \{3, 4\}]
                                    R \cap S = \{(1, 1), (2, 2), (3, 3), (4, 4)\}
 (ii)
                                   [1]_{R \cap S} = \{1\}
                                   [2]_{R \cap S} = \{2\}
                                   [3]_{R \cap S} = \{3\}
                                   [4]_{R \cap S} = \{4\}
          Partition of A induced by R \cap S = [\{1\}, \{2\}, \{3\}, \{4\}]]
```