EE6506 - COMPUTATIONAL ELECTROMAGNETICS ASSIGNMENT - 1 - SRIVENKATIA EE18B038 I have discussed with these people: Sockar Sii R, Charlan Bhat A. Sriental - 23/02/21 1) a) Grown's 1st identity: $\int \varphi \, \partial \psi \, ds = \int \varphi \, \nabla^2 \psi \, dV + \int \nabla \varphi \cdot \nabla \psi \, dV$ V: volume of a bound ragion with surface S. at any point on S, define outword normal: n targent to surface: t LHS = $\oint \varphi \frac{\partial \psi}{\partial n} ds = \oint \varphi \left(\frac{\partial \psi}{\partial n} \hat{n} \cdot d\hat{s} \right)$ $\frac{\partial \psi \hat{n} \cdot d\hat{s}}{\partial n} = \left(\frac{\partial \psi \hat{n} + \partial \psi \hat{f}}{\partial t}\right) \cdot d\hat{s}$ ds: small area element = dsn. as the 2" dot product gives O.

- LHS= $\frac{1}{2}$ $\frac{1}{2}$ from Graus Divergence thoron, & A.ds = ((P.A) dV for any vector field A. V: vol. enclosed by S here, the vector field $\vec{A} \triangleq P \nabla \psi$ $\frac{1}{2} \oint (\varphi \nabla \psi) \cdot d\hat{s} = \int \nabla \cdot (\varphi \nabla \psi) dV$ from std. thorows of vector adulus, $\rightarrow \nabla \cdot (\vec{p} \vec{A}) = \vec{p}(\nabla \cdot \vec{A}) + \vec{A} \cdot \nabla \vec{p}$ for a vector field \vec{A} here, $\vec{A} \stackrel{?}{=} \nabla \psi$. $\nabla \cdot (\phi \nabla \psi) = \phi(\nabla \cdot \nabla \psi)$ → V. (V4) = V24, by defn-of scalar Laplacian operator $\frac{1}{s} \frac{\partial \varphi}{\partial v} ds = \int (\varphi \nabla^2 \psi) dv + \int (\nabla \varphi) \varphi(\nabla \psi) dv.$ Green's 2" identity: $\oint (\varphi \partial \psi - \psi \partial \varphi) ds = \iint (\varphi \nabla^2 \psi - \psi \nabla^2 \varphi) dv$

proof: as a corollary of the 1st identity, \$ P D W ds = S[P D W + (D P · D W)] dV $\oint_{S} \frac{\varphi}{\partial n} ds = \iint_{V} \left[\frac{\varphi}{V} \nabla^{2} \varphi + (\nabla \varphi \cdot \nabla \varphi) \right] dV.$ on subtracting the above two agas, $\oint_{S} \left(\varphi \frac{\partial \psi}{\partial n} - \psi \frac{\partial \varphi}{\partial n} \right) ds = \int_{V} \left(\varphi \nabla^{2} \psi - \psi \nabla^{2} \varphi \right) dV$ 2) given conditions about the madium: source free, homogenous, intropic & linear E : constant all through the madium (isotropic) $P \cdot \bar{D} = f_{0}, \qquad E \nabla \cdot \bar{E} = 0. \qquad \nabla \cdot \bar{E} = 0$ $\vec{E} = \left[d(x+y) \hat{x} + \beta(x-y) \hat{y} \right] \sin(\omega t).$ $= \nabla \cdot \vec{E} = d d(x+y) + B d(x-y) = 0.$ $\frac{\partial x}{\partial x} = \frac{\partial y}{\partial x}$ $\frac{\partial x}{\partial x} = \frac{\partial y}{\partial x} = \frac{\partial x}{\partial x} =$

4)	the MATLAB code is added in the appendix. The plots are also added in the appendix along with the code the meshgrid function is used to form the 2D array of x,y coordinates. hill is constructed using the gaussian function: Z=onp(-(x-5)^2-4(y-3)^2)
0	the outward normal is calculated as $\nabla(g)$ where $g(x,y,z) = z - f(x,y)$. $f(x,y) = \exp(-(x-5)^2 - 4(y-3)^2)$
	the results are validated against the inbuilt MATLAB function, surfnorm
5)	The modium is assured to be intropic. " 4: constant throughout the modium of homogenous.
	: from Maxwell's equations, $\nabla \times \bar{E} = -\partial \bar{B}$
	as the fields are time harmonic, $\frac{\partial \vec{B}}{\partial t} = y \partial \vec{H} = j w y \vec{H}$
	$-: \nabla x \tilde{E} = -j \omega_{Y} \tilde{H}. \qquad \qquad \tilde{H} = j (\bar{\nabla} x \tilde{E}). $
	Vx E is computed symbolically in terms of x, y, Z.
	for $\vec{E} = (x \sin z, y^2, z^3x)$, obtained $\vec{H} = j$ $(0, x \cos(z) - z^3, 0)$

	all the field torms have an implicit e'ut-Yz torm attached.
	assering modium is non magnetic, 4 = 40
	as the dependence on t , Z : uniform for all field components, $\frac{\partial(\cdot)}{\partial t} = j \omega(\cdot). \frac{\partial(\cdot)}{\partial z} = -\gamma(\cdot)$
	as $\nabla \times \bar{E} = -4 \partial \bar{H}$, => $\left(\frac{\partial E_z}{\partial y} - \frac{\partial E_z}{\partial z} - \frac{\partial E_z}{\partial z$
	as $\nabla x \bar{H} = \mathcal{E} \partial \bar{\mathcal{E}}$, \Rightarrow $\left(\frac{\partial H_z}{\partial y} - \frac{\partial H_y}{\partial z}, \frac{\partial H_x}{\partial z} - \frac{\partial H_z}{\partial x}, \frac{\partial H_y}{\partial x} - \frac{\partial H_z}{\partial y}\right)$ $= \partial w \mathcal{E} \left(\mathcal{E}_x, \mathcal{E}_y, \mathcal{E}_z\right)$
	$\frac{\partial E_z + \gamma E_y = -j \omega_y H_x}{\partial y} = -j \omega_z E_x - (iv)$
100	$\frac{-\gamma E_{x} - \partial E_{z} = -j\omega_{y} H_{y}}{\overline{\partial_{x}}} - \frac{(ii)}{\overline{\partial_{x}}} - \frac{(ii)}{\partial_{x$
	$\frac{\partial E_{y} - \partial E_{x} = -j\omega_{y}H_{z} - (vi)}{\partial x} \frac{\partial H_{y} - \partial H_{x}}{\partial x} = j\omega_{z}E_{z} - (vi).$
	those 6 equations are valid even for any arbitrary E(x, x).
	solve this system of agas to represent Ex, Ey, Hx, Hy in terms of Ez, Hz
1	

as
$$\frac{1}{2}(\cdot) = -\frac{1}{2}(\cdot)$$
, $\frac{1}{2}(\cdot) \stackrel{\triangle}{=} \left(\frac{\partial^2}{\partial x} + \frac{\partial^2}{\partial y} + \frac{y^2}{2}\right)(\cdot)$

define $h^2 = Y^2 + \omega^2 q \mathcal{E}$. reta: h^2 : ret

 $\frac{\partial^{2}H_{z} + \partial^{2}H_{z} + h^{2}H_{z} = -\frac{\partial}{\partial y}\psi_{0}\left(\frac{\partial H_{z}}{\partial y}\frac{\partial \varepsilon}{\partial y}\frac{\partial x}{\partial x}\frac{\partial x}{\partial x}\right)}{h^{2}}$ $\frac{\partial^{2}H_{z} + \partial^{2}H_{z} + h^{2}H_{z} = -\frac{\partial}{\partial y}\psi_{0}\left(\frac{\partial H_{z}}{\partial y}\frac{\partial \varepsilon}{\partial y}\frac{\partial x}{\partial x}\frac{\partial x}{\partial x}\right)}{h^{2}}$ $\frac{\partial^{2}H_{z} + \omega^{2}\psi_{0}\varepsilon}{\nabla^{2}H_{z} + \kappa^{2}H_{z} = -\frac{\partial}{\partial y}\psi_{0}\left(\frac{\partial H_{z}}{\partial y}\frac{\partial \varepsilon}{\partial x}\frac{\partial x}{\partial x}\right)}$ $\frac{\partial^{2}H_{z} + \omega^{2}\psi_{0}\varepsilon}{\nabla^{2}H_{z} + \kappa^{2}H_{z} = -\frac{\partial}{\partial y}\psi_{0}\left(\frac{\partial H_{z}}{\partial y}\frac{\partial x}{\partial x}\frac{\partial x}{\partial x}\right)}$ $\frac{\partial^{2}H_{z} + \omega^{2}\psi_{0}\varepsilon}{\nabla^{2}H_{z} + \kappa^{2}H_{z} = -\frac{\partial}{\partial y}\psi_{0}\left(\frac{\partial H_{z}}{\partial y}\frac{\partial x}{\partial x}\frac{\partial x}{\partial x}\right)}$ $\frac{\partial^{2}H_{z} + \omega^{2}\psi_{0}\varepsilon}{\nabla^{2}H_{z} + \kappa^{2}H_{z} = -\frac{\partial}{\partial y}\psi_{0}\left(\frac{\partial H_{z}}{\partial y}\frac{\partial x}{\partial x}\frac{\partial x}{\partial x}\right)}$ $\frac{\partial^{2}H_{z} + \omega^{2}\psi_{0}\varepsilon}{\nabla^{2}H_{z} + \kappa^{2}H_{z} = -\frac{\partial}{\partial y}\psi_{0}\left(\frac{\partial H_{z}}{\partial y}\frac{\partial x}{\partial x}\frac{\partial x}{\partial x}\right)}$ $\frac{\partial^{2}H_{z} + \omega^{2}\psi_{0}\varepsilon}{\nabla^{2}H_{z} + \kappa^{2}H_{z} = -\frac{\partial}{\partial y}\psi_{0}\left(\frac{\partial H_{z}}{\partial y}\frac{\partial x}{\partial x}\frac{\partial x}{\partial x}\right)}$ $\frac{\partial^{2}H_{z} + \omega^{2}\psi_{0}\varepsilon}{\nabla^{2}H_{z} + \kappa^{2}H_{z} = -\frac{\partial}{\partial y}\psi_{0}\left(\frac{\partial H_{z}}{\partial y}\frac{\partial x}{\partial x}\frac{\partial x}{\partial x}\right)}$ $\frac{\partial^{2}H_{z} + \omega^{2}\psi_{0}\varepsilon}{\nabla^{2}H_{z} + \kappa^{2}H_{z} = -\frac{\partial}{\partial y}\psi_{0}\left(\frac{\partial H_{z}}{\partial y}\frac{\partial x}{\partial x}\frac{\partial x}{\partial x}\right)}$ $\frac{\partial^{2}H_{z} + \omega^{2}\psi_{0}\varepsilon}{\nabla^{2}H_{z} + \kappa^{2}H_{z} = -\frac{\partial}{\partial y}\psi_{0}\left(\frac{\partial H_{z}}{\partial y}\frac{\partial x}{\partial x}\frac{\partial x}{\partial x}\right)}$ $\frac{\partial^{2}H_{z} + \omega^{2}\psi_{0}\varepsilon}{\nabla^{2}H_{z} + \kappa^{2}H_{z} = -\frac{\partial}{\partial y}\psi_{0}\left(\frac{\partial H_{z}}{\partial y}\frac{\partial x}{\partial x}\frac{\partial x}{\partial x}\right)}$ $\frac{\partial^{2}H_{z} + \omega^{2}\psi_{0}\varepsilon}{\nabla^{2}H_{z} + \kappa^{2}H_{z} = -\frac{\partial}{\partial y}\psi_{0}\left(\frac{\partial H_{z}}{\partial y}\frac{\partial x}{\partial x}\frac{\partial x}{\partial x}\right)}$ $\frac{\partial^{2}H_{z} + \omega^{2}\psi_{0}\varepsilon}{\partial y}\varepsilon}$ $\frac{\partial^{2}H_{z} + \omega^{2}\psi_{0}\varepsilon}{\partial y}\varepsilon}$

Appendix

1 Question 4

The plots are attached below:

Figure 1: Hill constructed using 2D gaussian function

Figure 2: Normals plotted at the contour

Figure 3: Zoomed in view to see the normals

Figure 4: Top View to see the equispaced contours

Note: I have used the external function, **curvspace** in MATLAB to analytically compute equispaced points on the chosen contour and then plot normals at those points. ref: Curvspace in MATLAB file exchange

1.1 Code used

```
w = 0.05;
               %discretisation parameter
2 x = 2:w:8;
               %range for x and y
    = 0:w:6;
  [X,Y] = meshgrid(x,y);
7 Z = \exp(-(X-5).^2 - 4.*(Y-3).^2);
                                        %construct 2d gaussian hill
z_{max} = max(max(Z));
9 z_contour = z_max/2;
                           %find contour at half the height
10
11 figure(1);
12 surf(X,Y,Z);
                   %plotting the 2d gaussian hill
13 title("Hill with 2D Gaussian function");
14 hold on;
15 [~,H] = contour3(X,Y,Z,[z_contour,z_contour]);
                                                      %marking contour
       at half the height
16 H.LineWidth = 8;
17 axis equal;
18 hold off;
19
20 figure(2);
                  %plotting the 2d gaussian hill
21 surf(X,Y,Z);
22 title("Normals at the contour");
23 hold on;
```

```
25 H.LineWidth = 8;
P = C(:,2:101);
28 Eq_P = curvspace(P,25)'; %find equispaced points on the contour
                                  %defined function to calculate
30 [nx,ny,nz] = find_normal(Z,w);
     normal
31 filter = filterxy(X,Y,Eq_P);
32 quiver3(X, Y, Z, nx .* filter, ny .* filter, nz .* filter);
     plotting normals at equispaced points
33 axis equal;
34 hold off;
35
36 %{
37 % Validation for finding the normal done using the inbuilt
     surfnorm function
38 figure (3);
39 surf(X,Y,Z);
40 title("Validation: Normals found from surfnom");
41 hold on;
42 [~, C] = contour3(X,Y,Z,[z_contour,z_contour]);
43 C.LineWidth = 8;
44 [U,V,W] = surfnorm(X,Y,Z);
45 quiver3(X,Y,Z,U,V,W);
46 axis equal;
47 hold off;
48 %}
49
function filter = filterxy(X,Y,q)
                                     %to overlay equispaced points
      on the predefined mesh
      tol = 0.026;
51
52
      filter = zeros(size(X));
     %calculate nearest points on the mesh for each one of the
     equispaced
      %points. then do elementwise OR for individual filters to get
     net filter
     for i=1:size(q')
55
          temp_filter = X < (q(1,i) + tol) & X > (q(1,i) - tol) & Y
56
     < (q(2,i) + tol) & Y > (q(2,i) - tol);
         filter = filter | temp_filter;
57
58
59 end
function [nx,ny,nz] = find_normal(g,w)
                                            %to find normal for a
     surface g
      %g = z - f(x,y), \quad normal(g) = 1 - grad(f)
62
      [nx,ny] = gradient(g .* (-1/w));
63
      nz = ones([1 + (6/w), 1 + (6/w)]);
64
65 end
```

2 Question 5

Explanation mentioned in handwritten solution. Obtained expression for H is

$$\vec{H} = \frac{j}{\omega \mu} (x(\cos(z) - z^3)\hat{y} \tag{1}$$

2.1 Code used

```
syms x y z w mu; %define symbols for x,y,z, permiability
3 E = [x * sin(z), y^2, z^3 * x]; %give input electric field
     expression here
4 \% mu = 4*pi*(10^(-7));
                         %give permeability value here
6 H = symbolic_H_finder(E, mu)
8 function H = symbolic_H_finder(E, mu)
      syms x y z w;
10
     Ex = E(1); Ey = E(2); Ez = E(3); %define x,y,z components
11
     %curl(E) = -jwu*H,
                          H = (j/wu) * curl(E)
     Hx = (diff(Ez,y) - diff(Ey,z)) * 1i / (w * mu);
                                                           %assign
     corresponding curl elements to components of H
     Hy = (diff(Ex,z) - diff(Ez,x)) * 1i / (w * mu);
14
     Hz = (diff(Ey,x) - diff(Ex,y)) * 1i / (w * mu);
15
17
      H = [Hx, Hy, Hz];
18 end
```