GPU平行運算與財務工程實作班

Heston模型應用於結構商品之開發設計

希奇資本 技術長 董夢雲 博士

Part I Heston 模型與結構商品設計開發(15hrs)

案例一 一、Heston 模型介紹

二、蒙地卡羅模擬法 案例二

三、CPU 多線程的實作 案例三

四、結構商品的實例 案例四

五、結構商品的程式實作 案例五

Part II GPU 架構下的結構商品開發(15hrs)

六、GPU與CUDA介紹 案例六

七、C#與 CUDA 的整合開發 案例七

八、CUDA 的變量與記憶體管理 案例八

九、CUDA 下的模擬與 cuRand 程式庫 案例九

十、GPU 版的結構商品模擬 案例十 金融研訓院 特約講師 證券暨投資分析人員合格(CSIA) 希奇資本 技術長(CTO)

董

夢

雲財務博士

Mobil: (Taiwan)0988-065-751 (China)1508-919-2872

EMail: dongmy@ms5.hinet.net

Line ID/WeChat ID: andydong3137

專長

GPU 平行運算與財務工程,C#、.Net Framework、CUDA、OpenCL、C、C++。 外匯與利率結構商品評價實務,股權與債權及衍生商品評價實務。 風險管理理論與實務,資本配置與額度規劃。

經歷

中國信託商業銀行交易室研發科主管 凱基證券風險管理部主管兼亞洲區風險管理主管 中華開發金控、工業銀行風險管理處處長 永豐金控、商業銀行風險管理處處長 永豐商業銀行結構商品開發部副總經理

著作

金融選擇權:市場、評價與策略,第二版,1997,新陸書局。 財務工程與 Excel VBA 的應用:選擇權評價理論之實作,2005,證券暨期貨發展基金會。

翻譯

衍生性金融商品與內部稽核,2003,金融研訓院。

Part I Heston 模型與結構商品

設計開發

主題一 Heston 模型介紹

- 一、古典資產模型
- 二、市場匯率行為
- 三、Heston 模型與解析解
- 四、避險參數
- 五、實作案例一

一、古典資產模型

- (一)Black-Scholes 對資產行為的假設
- ◆ Black-Scholes 模型之下股票價格變化的程序
 - ▶ 金融資產價格的假設是它遵行著所謂的擴散程序(diffusion process)

$$\frac{dS}{S} = \mu \cdot dt + \sigma \cdot dZ$$

- $\checkmark \frac{dS}{S} = \frac{S_{t+dt} S_t}{S_t} = \text{a} \text{ a} \text{ b} \text{ a} \text{ b} \text{ a} \text{ b} \text{ a} \text{ b},$
- ✓ dt =單位時間,
- ✓ µ=單位時間內預期金融資產的報酬率,
- ✓ σ=單位時間內預期金融資產的標準差。
- ◆ Z=—隨機變數,為平均數為零,變異數為 t 之常態分配,Z~Φ(0,t)。
 - ▶ Z稱之為韋恩程序。
 - \triangleright dZ = 單位時間內, Z 的變動量, 為一期望值為零, 變異數為 <math>dt 之常態分配, $dZ \sim \Phi(0, dt)$ 。

(二)解析解

以 Plain Vanilla 之歐式外幣選擇權買、賣權為例,定價公式如下

$$C = Se^{-yT}N(d_1) - Ke^{-rT}N(d_2)$$

$$P = Ke^{-rT}N(-d_2) - Se^{-yT}N(-d_1)$$
(1.2)

$$d_1 = \frac{\ln(\frac{S}{K}) + (r - y + \frac{\sigma^2}{2})T}{\sigma\sqrt{T}}$$

$$d_{2} = \frac{\ln(S/K) + (r - y - \sigma^{2}/2)T}{\sigma\sqrt{T}} = d_{1} - \sigma\sqrt{T}$$

- ▶ N(x)表標準常態累積機率密度函數(CDF)在 x 的值。
- ▶ S = 即期匯率, K = 執行匯率, r = 本國貨幣資金成本,
- \triangleright V = 外國貨幣持有收益, T = 到期日的時間, σ = 匯率之波動性。

二、市場匯率行為

(一)外匯市場報價資訊

- 外匯選擇權市場的流動性很高,即使長天期的契約亦是如此,下面資訊可由市場取得。
 - ➤ At-The-Money, ATM, 的波動性,
 - ▶ 25 △ Call 與 Put 的 Risk Reversal, RR,
 - ▶ 25 △ Wings 的 Vega-Weighted Butterfly, VWB。
- ▶ 由上面資訊,我們可推導出三個基本的隱含波動性,
 - ▶ 使用這三個波動性,我們可建構出整個 Smile。
- ◆ 市場資訊可分別如下取得,
 - Currency Volatility Quote: Bloomberg: XOPT
 - ▶ 美元 LIBOR: RT: LIBOR01
 - ➤ NDF Swap Point: RT: TRADNDF

Currency Volatility Quote: Bloomberg: XOPT

XOPT

P167c CurncyOVDV

Currency Volatility Surface														
Save Send			Download	d Optio	ons _ 3	D Graph	* Bloomberg (BGN) USDCNY							
Curre	encies:	USD-	-CNY		Date:	5/ 7/0	8		•		·			
USD	Calls/	'Puts	Delt	as					Format: 1 RR/BF					
				Ca	lendar:	3 Weeke	ends	Side: 1 Bid/Ask						
EXP	P ATM(50D)			25D	RR	250	BF	10D	RR	10D BF				
	Bio	Bid Ask		Bid Ask		Bid	Ask	Bid	Ask	Bid	Ask			
1W	2.05	0 4	. 155	-2.170	0.545	-0.930	1.175	-4.140	1.120	-0.625	1.475			
2W	2.36	60 3.	.980	-1.845	0.210	-0.645	0.965	-3.475	0.430	-0.255	1.355			
3W	2.57	70 3.	.970	-1.715	0.055	-0.525	0.870	-3.200	0.125	-0.100	1.295			
1M	3.24	15 3.	.745	-1.150	-0.520	-0.070	0.425	-2.130	-0.985	0.365	0.865			
2M	3.48	30 3.	.980	-1.215	-0.590	-0.050	0.445	-2.260	-1.115	0.440	0.940			
3M	3.78	35 4.	. 135	-1.160	-0.725	0.040	0.390	-2.135	-1.335	0.550	0.900			
4M	4.06	60 4.	.470	-1.295	-0.785	0.015	0.420	-2.320	-1.395	0.525	0.935			
6M	4.55	55 4.	.980	-1.465	-0.930	0.005	0.430	-2.455	-1.485	0.515	0.940			
9M	4.94	Ю 5.	.320	-1.510	-1.035	0.055	0.435	-2.580	-1.720	0.595	0.970			
1Y	5.42	0 5	.720	-1.440	-1.060	0.110	0.410	-2.610	-1.930	0.665	0.965			
18M	5.79	0 6.	. 255	-1.580	-1.000	0.045	0.505	-2.810	-1.755	0.685	1.150			
2Y	6.76		.260	-1.770	-1.140	0.015	0.515	-3.025	-1.885	0.790	1.290			
5Y	7.87	0 9.	.620	-2.825	-0.625	-0.565	1.180	-4.905		0.430	2.175			
5.157.														
5.17														
"Dafe	7			DD UC	n Call	HCD D								

*Default RR = USD Call - USD Put

Australia 61 2 9777 8600 Brazil 5511 3048 4500 Europe 44 20 7330 7500 Germany 49 69 9204 1210 Hong Kong 852 2977 6000

Japan 81 3 3201 8900 Singapore 65 6212 1000 U.S. 1 212 318 2000 Copyright 2008 Bloomberg Finance L.P.

H169-403-0 07-May-2008 15:11:59

(二)Surface(USDJPY, 2007/7/11)

◆ 將不同時點的 Smile Curve 畫在同一立體圖上,形成一個曲面。

	0.083	0.104	0.125	0.146	0.167	0.188	0.208	0.229	0.250	0.271	0.292	0.313	0.333	0.354	0.375	0.396	0.417	0.438	0.458	0.479	0.500
116.28	0.095	0.094	0.094	0.093	0.092	0.091	0.091	0.090	0.089	0.089	0.088	0.087	0.087	0.086	0.085	0.085	0.084	0.084	0.083	0.083	0.082
116.89	0.099	0.096	0.094	0.092	0.091	0.090	0.089	0.089	0.088	0.087	0.086	0.085	0.085	0.084	0.083	0.083	0.082	0.082	0.081	0.081	0.080
117.50	0.099	0.095	0.093	0.091	0.090	0.089	0.088	0.087	0.086	0.085	0.084	0.084	0.083	0.082	0.082	0.081	0.081	0.080	0.080	0.079	0.079
118.11	0.097	0.093	0.091	0.089	0.088	0.087	0.086	0.085	0.084	0.083	0.082	0.082	0.081	0.080	0.080	0.079	0.079	0.078	0.078	0.077	0.077
118.72	0.093	0.090	0.088	0.087	0.085	0.084	0.083	0.082	0.082	0.081	0.080	0.079	0.079	0.078	0.078	0.077	0.077	0.076	0.076	0.076	0.075
119.32	0.088	0.086	0.085	0.084	0.083	0.082	0.081	0.080	0.079	0.078	0.078	0.077	0.077	0.076	0.076	0.075	0.075	0.074	0.074	0.074	0.073
119.93	0.083	0.082	0.081	0.080	0.079	0.079	0.078	0.077	0.076	0.076	0.075	0.075	0.074	0.074	0.074	0.073	0.073	0.073	0.072	0.072	0.072
120.54	0.078	0.078	0.078	0.077	0.076	0.076	0.075	0.074	0.074	0.073	0.073	0.073	0.072	0.072	0.072	0.071	0.071	0.071	0.071	0.070	0.070
121.15	0.074	0.075	0.074	0.074	0.073	0.073	0.072	0.072	0.072	0.071	0.071	0.071	0.070	0.070	0.070	0.070	0.070	0.069	0.069	0.069	0.069
121.76	0.071	0.071	0.071	0.071	0.071	0.070	0.070	0.070	0.070	0.069	0.069	0.069	0.069	0.069	0.068	0.068	0.068	0.068	0.068	0.068	0.068
122.37	0.069	0.069	0.069	0.069	0.069	0.068	0.068	0.068	0.068	0.068	0.068	0.068	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067
122.98	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066
123.59	0.067	0.067	0.067	0.067	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066
124.20	0.068	0.067	0.067	0.067	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066
124.80	0.072	0.070	0.068	0.068	0.067	0.067	0.067	0.067	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066
125.41	0.078	0.074	0.071	0.070	0.069	0.068	0.068	0.067	0.067	0.067	0.067	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066
126.02	0.085	0.078	0.075	0.073	0.071	0.070	0.069	0.069	0.068	0.068	0.067	0.067	0.067	0.067	0.066	0.066	0.066	0.066	0.066	0.066	0.066
126.63	0.091	0.083	0.078	0.075	0.073	0.072	0.071	0.070	0.069	0.068	0.068	0.068	0.067	0.067	0.067	0.066	0.066	0.066	0.066	0.066	0.066
127.24	0.093	0.085	0.080	0.077	0.074	0.072	0.071	0.070	0.069	0.069	0.068	0.068	0.067	0.067	0.067	0.067	0.066	0.066	0.066	0.066	0.066
127.85	0.089	0.083	0.079	0.076	0.073	0.072	0.071	0.070	0.069	0.068	0.068	0.067	0.067	0.067	0.067	0.066	0.066	0.066	0.066	0.066	0.066

三、Heston 模型與解析解

(一)資產價格行為

◆ Steven Heston(1993)提出下面模型,

$$dS_{t} = \mu S_{t} dt + \sqrt{V_{t}} S_{t} dW_{t}^{1}$$

$$dV_{t} = \kappa (\theta - V_{t}) dt + \sigma \sqrt{V_{t}} dW_{t}^{2}$$

$$dW_{t}^{1} dW_{t}^{2} = \rho \cdot dt$$

$$(3.1)$$

- ▶ 其中{S_t}_{t≥0}表價格過程,{V_t}_{t≥0}表波動性過程。
- ▶ 以P測度表示此真實世界下的機率測量。
- ▶ {W_t¹}_{t≥0}與{W_t²}_{t≥0}表真實世界中兩相關的布朗運動過程,相關係數為ρ。
- \triangleright $\{V_{i}\}_{i=0}$ 為一平方根均數回覆過程,長期平均為 θ ,回覆速率為 κ , σ 稱之為波動性之波動性。
- μ、ρ、θ、κ、σ均為常數。

◆ 在 Q 測度下, (3.1)、(3.2)、(3.3)式成為,

$$dS_t = rS_t dt + \sqrt{V_t} S_t dZ_t^1$$
(3.4)

$$dV_t = \kappa^* (\theta^* - V_t) dt + \sigma \sqrt{V_t} dZ_t^2$$
(3.5)

$$dZ_t^1 dZ_t^2 = \rho \cdot dt \tag{3.6}$$

- ightharpoonup $\sharp \, \psi \, , \, \kappa^* = \kappa + \lambda \, , \, \theta^* = \frac{\kappa \theta}{\kappa + \lambda} \, .$
- ▶ 由於我們所在意的為評價問題,因此所處理的測度為Q測度。
 - ✓ 後面的市場校準也是求得Q測度下的參數。
 - ✓ 參數 λ ,的數值並不是重要的,因為已經吸收在 κ *與 θ *中,沒有明白的出現在(3.4)、(3.5)、(3.6)。
- \triangleright 使用非線性最適化方法,校準出五個模型參數, V_0 、 κ^* 、 θ^* 、 ρ 、 σ 。
 - ✓ QunatLib、Intel MKL、IMSL、Centerspace NMath 程式庫皆有內建最適化模組。
 - ✓ Nelder-Mead 與 Levenberg-Marquardt 演算法是較為被採用的方法。
 - ✓ 此部分因只要執行一次, CPU 端程式執行即可。

(二)Vanilla Call 解析解

◆ 封閉解公式

▶ 對不發放股利的歐式買權,Heston 模型的封閉解為,

$$C(S_t, V_t, t, T) = S_t P_1 - K e^{-r(T-t)} P_2$$
(3.7)

$$P_{j}(x_{t}, V_{t}, T, K) = \frac{1}{2} + \frac{1}{\pi} \int_{0}^{\infty} \text{Re}\left(\frac{e^{i\phi \ln(K)} f_{j}(x_{t}, V_{t}, T, \phi)}{i\phi}\right) d\phi \qquad (3.8)$$

$$x_t = \ln(S_t) , \tau = T - t ,$$

$$f_{j}(x_{t}, V_{t}, \tau, \phi) = \exp\{C(\tau, \phi) + D(\tau, \phi)V_{t} + i\phi x_{t}\}$$
(3.9)

$$C(\tau,\phi) = r\phi i \tau + \frac{a}{\sigma^2} \left[(b_j - \rho \sigma \phi i + d)\tau - 2\ln\left(\frac{1 - ge^{d\tau}}{1 - g}\right) \right]$$
(3.10)

$$D(\tau,\phi) = \frac{b_j - \rho\sigma\phi i}{\sigma^2} \left(\frac{1 - e^{d\tau}}{1 - ge^{d\tau}}\right) \tag{3.11}$$

$$g = \frac{b_j - \rho \sigma \phi i + d}{b_j - \rho \sigma \phi i - d} \tag{3.12}$$

$$d = \sqrt{(\rho \sigma \phi \mathbf{i} - b_j) - \sigma^2 (2u_j \phi \mathbf{i} - \phi^2)}$$
(3.13)

$$j = 1,2$$

✓ 其中

$$u_1 = \frac{1}{2}$$
, $u_2 = -\frac{1}{2}$

$$a = k * \theta * , b_1 = k * - \rho \sigma , b_2 = k *$$

(三)複數運算

◆ 前面(3.8)~(3.13)式中,涉及複數的運算,下面簡單摘要其規則。

$$z = x + iy$$
, $i = \sqrt{-1}$, $Re(z) = x$, $Im(z) = y$.
 $z = (x, y)$
 $z_1 = x_1 + iy_1 = (x_1, y_1)$, $z_2 = x_2 + iy_2 = (x_2, y_2)$

◆ 四則運算

$$z_{1} + z_{2} = (x_{1} + x_{2}) + i(y_{1} + y_{2}) = (x_{1} + x_{2}, y_{1} + y_{2})$$

$$z_{1} - z_{2} = (x_{1} - x_{2}) + i(y_{1} - y_{2}) = (x_{1} - x_{2}, y_{1} - y_{2})$$

$$z_{1} \times z_{2} = (x_{1}x_{2} - y_{1}y_{2}) + i(x_{1}y_{2} + x_{2}y_{1}) = (x_{1}x_{2} - y_{1}y_{2}, x_{1}y_{2} + x_{2}y_{1})$$

$$z_{1} / z_{2} = \frac{(x_{1} + iy_{1})}{(x_{2} + iy_{2})} \times \frac{(x_{2} - iy_{2})}{(x_{2} - iy_{2})} = \frac{(x_{1}x_{2} + y_{1}y_{2})}{x_{2}^{2} + y_{2}^{2}} - i\frac{(x_{2}y_{1} - x_{1}y_{2})}{x_{2}^{2} + y_{2}^{2}}$$

◆ 極座標、冪次與根

$$z = x + iy = r(\cos\theta + i\sin\theta) , r = \sqrt{x^2 + y^2} , \theta = \arctan\frac{y}{x} = \arg z ,$$

$$x = r\cos\theta , y = r\sin\theta ,$$

$$\overline{z} = x - iy , |z| = \sqrt{z\overline{z}} = r$$

$$z^n = r^n(\cos n\theta + i\sin n\theta)$$

$$\sqrt[n]{z} = \sqrt[n]{r} \left(\cos\left(\frac{\theta + 2k\pi}{n}\right) + i\sin\left(\frac{\theta + 2k\pi}{n}\right)\right) , k = 0,1,...,n-1$$

◆ 指數函數、尤拉公式與對數函數

$$z = x + iy = r(\cos\theta + i\sin\theta) , r = \sqrt{x^2 + y^2} , \theta = \arctan\frac{y}{x} = \arg z ,$$

$$\exp(z) = \exp(x + iy) = \exp(x) \cdot \exp(iy) = \exp(x) \cdot (\cos y + i\sin y)$$

$$\exp(i\theta) = \cos\theta + i\sin\theta$$

$$\ln(z) = \ln(x + iy) = \ln(r(\cos\theta + i\sin\theta)) = \ln(r) + i\theta$$

(四)數值積分 Gauss-Laguerre 求值法

- ◆ (3.8)式的計算涉及半無限區間的積分,可使用 Gauss-Laguerre 法計算,以加速計算效率,
 - > 令積分運算式如下式,

$$G = \int_{0}^{\infty} f(x) dx$$

▶ 令 n 點 Gauss-Laguerre 求值公式為

$$G = \int_{0}^{\infty} f(x)dx = \sum_{i=0}^{n-1} \lambda_{i} f(x_{i})$$
(3.14)

ightarrow 其中 X_i 為下面 n 階 Laguerre 多項式的 n 個零點, λ_i 為求積係數。

$$L_n(x) = e^x \frac{d^n}{dx^n} (x^n e^{-x}) , \ 0 \le x \le +\infty$$
 (3.15)

▶ 當 n=5,5 階 Gauss-Laguerre 求積公式的結點為,

 $x_0 = 0.26355990$, $x_1 = 1.41340290$, $x_2 = 3.59642600$, $x_3 = 7.08580990$, $x_4 = 12.64080000$ \circ

▶ 相對應的求積係數為,

 $\lambda_0 = 0.6790941054 \;\; , \;\; \lambda_1 = 1.638487956 \;\; , \;\; \lambda_2 = 2.769426772 \;\; , \;\; \lambda_3 = 4.315944000 \;\; , \;\; \lambda_4 = 7.104896230 \;\; .$

(五)特徵函數

◆ (3.8)積分式中 Integrand 對 Phi 的作圖。

FIGURE 5.4 Convergence of Functions Used in Integration

◆ 在不同相關係數下(ρ=-0.5,ρ=+0.5),(3.7)式 Call 價格與 Black-Scholes 計算之 Call 價格的差距, H_C-BS_C。

FIGURE 5.8 Plots of Call Price Differences with Varying Correlation

四、避險參數

(一)Delta 與 Gamma

◆ 使用 Center Difference 的方法,以減少誤差。

$$\Delta = \frac{\partial C}{\partial S} = \frac{C(S+h) - C(S-h)}{2h} \tag{4.1}$$

$$\Gamma = \frac{\partial^2 C}{\partial S^2} \approx \frac{C(S+h) - 2C(S) + C(S-h)}{h^2}$$
(4.2)

- ▶ 使用同一組亂數可使估計誤差較小。
- C(S, σ, r, t, h), C(S-h), C(S+h), 三個值。

(二)Vega、Theta 與 Rho

◆ 類似差分,

$$Vega = \frac{\partial C}{\partial \sigma} = \frac{C(\sigma + h) - C(\sigma)}{h}$$
(4.3)

$$Theta = \frac{\partial C}{\partial t} = \frac{C(t-h) - C(t)}{h} \tag{4.4}$$

$$delta = \frac{\partial C}{\partial r} \approx \frac{C(r+h) - C(r)}{h} \tag{4.5}$$

- ➤ Theta 日數減少。
- ightharpoonup C(S, σ , r, t, h),C(σ +h),C(t-h),C(r+h),四個值。
- ▶ 全部六個值,便足夠了。