

SQL

(Structured Query Language - Lenguaje de consulta estructurado)

Es el lenguaje por excelencia para crear y manipular bases de datos relacionales. Permite ser ejecutado directamente dentro de un entorno de trabajo, o puede ser incrustado dentro del código de un programa escrito en otro lenguaje.

Las sentencias SQL pueden ser clasificadas en dos grupos:

- DDL (Data Definition Languaje lenguaje de definición de datos): las sentencias DDL son aquellas utilizadas para la creación de una base de datos y todos sus componentes: tablas, índices, relaciones. Se utilizan para darle estructura a las tablas de la base de datos.
- DML (Data Manipulation Languaje lenguaje de manipulación de datos): las sentencias DML son aquellas utilizadas para insertar, borrar, modificar y consultar los datos de una base de datos.

Agencia de Aprendizaje

Big Data / Análisis de Datos SQL 1/11

Los tipos de datos SQL

Se clasifican en 13 tipos de datos primarios y de varios sinónimos válidos reconocidos por dichos tipos de datos. Los tipos de datos primarios son:

Tipo de Datos	Longitud	Descripción	
BINARY	1 byte	Para consultas sobre tabla adjunta de productos de bases de datos que definen un tipo de datos Binario.	
BIT	1 byte	Valores Si/No ó True/False	
BYTE	1 byte	Un valor entero entre 0 y 255.	
COUNTER	4 bytes	Un número incrementado automáticamente (de tipo Long)	
CURRENCY	8 bytes	Un entero escalable entre 922.337.203.685.477,5808 y 922.337.203.685.477,5807.	
DATETIME	8 bytes	Un valor de fecha u hora entre los años 100 y 9999.	
SINGLE	4 bytes	Un valor en punto flotante de precisión simple con un rango de - 3.402823*1038 a -1.401298*10-45 para valores negativos, 1.401298*10- 45 a 3.402823*1038 para valores positivos, y 0.	
DOUBLE	8 bytes	Un valor en punto flotante de doble precisión con un rango de - 1.79769313486232*10308 a - 4.94065645841247*10-324 para valores negativos, 4.94065645841247*10-324 a 1.79769313486232*10308 para valores positivos, y 0.	
SHORT	2 bytes	Un entero corto entre -32,768 y 32,767.	
LONG	4 bytes	Un entero largo entre -2,147,483,648 y 2,147,483,647.	
LONGTEXT	1 byte por carácter	De cero a un máximo de 1.2 gigabytes.	
LONGBINARY	Según se necesite	De cero 1 gigabyte. Utilizado para objetos OLE.z	
TEXT	1 byte por carácter	De cero a 255 caracteres.	

Big Data / Análisis de Datos SQL 2/11

· Codoa

La siguiente tabla recoge los sinónimos de los tipos de datos definidos:

	<u> </u>	
Tipo de Dato	Sinónimos	
BINARY	VARBINARY	
BIT />	BOOLEAN LOGICAL LOGICAL1 YESNO	
BYTE	INTEGER1	
COUNTER	AUTOINCREMENT	
CURRENCY COOL	MONEY	
DATETIME	DATE TIME TIMESTAMP	
SINGLE	FLOAT4 IEEESINGLE REAL	
DOUBLE	FLOAT FLOAT8 IEEEDOUBLE NUMBER NUMERIC	
SHORT	INTEGER2 SMALLINT	
LONG <	INT INTEGER INTEGER4	
LONGBINARY	GENERAL OLEOBJECT	
LONGTEXT	LONGCHAR MEMO NOTE	

Big Data / Análisis de Datos SQL 3/11

Primary key y Foreign key

Las claves primarias (**Primary Key**) son las columnas que contienen valores que identifican de manera única a cada fila o registro de una tabla, esto quiere decir que no se puede repetir. Por ejemplo: un DNI, un código de producto, etc.

Una clave foránea **(Foreign Key)** es un campo de una tabla "X" que sirve para enlazar o relacionar entre sí con otra tabla "Y" en la cual el campo de esta tabla es una llave primaria (Primary Key). Para que sea una clave foránea un campo, esta tiene que ser una llave primaria en otra tabla.

Por ejemplo, en la tabla clientes la columna cliente_nro es una primary key, pero en una tabla de pedidos representa a quién pertenece ese determinado pedido.

Agencia de Aprendizaje

de la vida

SQL: Instrucciones DDL

Creando la estructura de la base de datos

Crear Base de Datos:

CREATE {DATABASE | SCHEMA} [IF NOT EXISTS] db_name

Borrar Base de Datos:

DOP DATABASE db name

Foreign Key

Usar Base de Datos:

Printary Rey name

Crear Tabla

La sentencia CREATE TABLE crea una tabla con el nombre especificado.

Sintaxis:

```
CREATE TABLE nombre_tabla (
    nombre_columna1 [definición_columna][PRIMARY KEY],
    nombre_columna2 [definición_columna]...
    nombre_columnaN [definición_columna
    FOREIGN KEY(nombre_de_otra_tabla)
    nombre_de_otra_tabla(nombre_columna_pk_otra_tabla)
);
```

Parámetros opcionales:

- IF NOT EXISTS: Evita que se produzca un error si la tabla existe. Sin embargo, no se verifica que la tabla existente tenga una estructura idéntica a la indicada por el CREATE TABLE.
- LIKE: CREATE TABLE ... LIKE crea una tabla vacía basada en la definición de otra tabla, incluidos los atributos e índices de columna definidos en la tabla original: CREATE TABLE destino_tbl LIKE origen_tbl;
- NOT NULL | NULL: especifica si se acepta o no que el dato quede vacío. Si no se especifica NULL ni NOT NULL, la columna se trata como si se hubiera especificado NULL.
- DEFAULT: Especifica un valor predeterminado para una columna.
- AUTO_INCREMENT: El valor de la columna se imcrementa automáticamente a medida que se suman registros.

- PRIMARY KEY: se declara implícitamente como NOT NULL.
- UNIQUE: Un índice UNIQUE crea una restricción tal que todos los valores del índice deben ser distintos. Se produce un error si intenta agregar una nueva fila con un valor clave que coincide con una fila existente. Un índice UNIQUE sólo permite múltiples valores NULL para las columnas que pueden contener NULL.
- **FOREIGN KEY:** Permiten realizar referencias cruzadas de datos relacionados entre tablas, que ayudan a mantener la coherencia de estos datos dispersos.

Borrar Tabla

DROP TABLE [IF EXISTS] tbl_name

Modificar Tabla

Agregar o borrar columnas:

ALTER TABLE nombre_de_tabla ADD nombre_de_columna tipo_de_dato; ALTER TABLE nombre de tabla DROP COLUMN nombre de columna;

Ver la estructura de una tabla

DESCRIBE nombre_de_tabla;

SQL - DML(I)

Instrucciones para manipular datos en una tabla

1. Agregar datos

Insertar una fila en una tabla

INSERT INTO tabla(lista_de_columnas)
VALUES(lista_de_valores);

Insertar múltiples líneas en una tabla

INSERT INTO tabla(lista_de_columnas)
VALUES
(lista_de_valores),
(lista_de_valores)...;

2. Modificar datos

Actualizando datos de un registros de toda una columna

UPDATE tabla SET c1 = nuevo_valor

Actualizar los datos de la columna c1 y c2 que cumplan con una condición

UPDATE tabla

SET

c1 = nuevo_valor,

c2 = nuevo_valor WHERE condición;

3. Eliminar datos

Eliminar TODOS los datos de una tabla

DELETE FROM tabla;

Borrar una serie de datos

DELETE FROM tabla WHERE condición;

SQL - DML(II)

4. Búsquedas en la base de datos

Obtener los datos de las columnas c1 y c2 de una tabla

SELECT c1, c2 FROM tabla;

Obtener todas las filas y columnas de una tabla

SELECT * FROM tabla;

Obtener datos y filtrar filas con una condición

SELECT c1, c2 FROM tabla WHERE condición [AND/OR condición2];

Obtener filas distintas de una tabla (que no se repitan los datos)

SELECT DISTINCT c1 FROM tabla WHERE condición [AND/OR condición2];

Ordenar los resultados de forma ascendente o descendente

SELECT c1, c2 FROM tabla ORDER BY c1 ASC [DESC];

Obtener los primeros 10 registros de una tabla con la columna c1 ordenada en forma descendente

SELECT c1, c2 FROM tabla ORDER BY c1 DESC LIMIT 10;

Figure de béaquedes en méltiples tables. Complementer cen el apunto de

Ejemplo de búsquedas en múltiples tablas. Complementar con el apunte de JOIN. SELECT c1, c2 FROM tabla1 INNER JOIN tabla2 ON condición;

Big Data / Análisis de Datos SQL 7/11

SELECT c1, c2 FROM tabla1 LEFT JOIN tabla2 ON condición; SELECT c1, c2 FROM tabla1 RIGHT JOIN tabla2 ON condición;

Obtener todas las columnas de los registros cuya columna *variable1* tenga un valor entre *nro1* y *nro2*

SELECT * FROM tabla WHERE variable1 BETWEEN nro1 AND nro2;

Obtener todas las columnas de de los registros cuya columna *variable1* contenga la cadena *una cadena*

SELECT * FROM tabla WHERE variable1 [NOT] LIKE una_cadena;

Obtener todas las columnas de de los registros cuya columna variable1 contenga una cadena que contiene la letra 'm'

SELECT * FROM tabla WHERE variable1 LIKE '%m%';

Obtener todas las columnas de de los registros cuya columna *variable1* contenga una cadena que termina con 's'

SELECT * FROM tabla WHERE variable1 LIKE '%s';

Obtener todas las columnas de de los registros cuya columna variable1 contenga una cadena que comienza con 'A'

SELECT * FROM tabla WHERE variable1 LIKE 'A%';

SQL - Alias

Los alias se utilizan en SQL para asignarle un nombre temporal a una columna o a una tabla

Sirven para abreviar los nombres en sentencias muy extensas y para que el código sea más legible.

El alias se elimina en cuanto termina la consulta.

Para crear un alias, utilizamos la palabra clave AS.

Sintaxis:

SELECT nombre_columna AS alias_col FROM table_name

SELECT nombre_columna
FROM table_name AS alias_tabla

Big Data / Análisis de Datos SQL 8/11

Ejemplo:

TABLA_CLIENTES			
cliente_nro	nombre	apellido	
1	Sally	Thompson	
2	Sally	Henderson	
3	Harry	Henderson	
4	Sandra	Wellington	

TABLA_PEDIDOS				
nro_orden	empleado_nro	cliente_nro	proveedor	precio
1	1	42	Harrison	\$235,00
2	4	1	Ford	\$234,00
3	1	68	Jason	\$415,00
4	2	112	Statham	\$350,00
5	3	42	Dwayne	\$235,00
6	2	112	Johnson	\$350,00
7	2	42	Diesel	\$235,00

SELECT p.nro_orden, p.proveedor, c.nombre, c.apellido
FROM tabla_clientes AS c, tabla_pedidos AS p
WHERE c.nombre = 'Sally'
AND c.cliente_nro =p.cliente_nro

Sin alias:

SELECT tabla_pedidos.nro_orden, tabla_pedidos.proveedor, tabla_clientes.nombre, tabla_clientes.apellido
FROM tabla_clientes, tabla_pedidos
WHERE tabla_clientes.nombre = 'Sally'
AND tabla_clientes.cliente_nro =tabla_pedidos .cliente_nro

Funciones en SQL

1. COUNT()

Devuelve el número de filas que coincide con un criterio.

Sintaxis:

SELECT COUNT(nombre_columna)
FROM nombre_tabla
WHERE condición;

Big Data / Análisis de Datos SQL 9/11

> Agencia de Aprendizaje a lo largo

2. AVG()

Devuelve el valor promedio de una columna con valores numéricos que cumplan la condición.

Sintaxis:

SELECT AVG(nombre_columna)
FROM nombre_tabla
WHERE condición;

3. SUM()

Devuelve el valor de la suma de una columna, siempre y cuando cumplan con la condición.

Sintaxis:

SELECT SUM(nombre_columna)
FROM nombre_tabla
WHERE condición;

Ejemplo:

TABLA_CLIENTES			
cliente_nro	nombre	apellido	
1	Sally	Thompson	
2	Sally	Henderson	
3	Harry	Henderson	
4	Sandra	Wellington	

TABLA_PEDIDOS				
nro_orden	empleado_nro	cliente_nro	proveedor	precio
1	1	42	Harrison	\$235,00
2	4	1	Ford	\$234,00
3	1	68	Jason	\$415,00
4	2	112	Statham	\$350,00
5	3	42	Dwayne	\$235,00
6	2	112	Johnson	\$350,00
7	2	42	Diesel	\$235,00

SELECT COUNT(nombre)
FROM tabla_clientes
WHERE nombre = 'Sally';
SELECT AVG(precio)

Big Data / Análisis de Datos SQL 10/11

FROM tabla_pedidos
WHERE cliente_nro = 112;
SELECT SUM(precio)
FROM tabla_pedidos
WHERE empleado_nro = 2;

4. Otras funciones y operaciones

MIN() / MAX() devuelven el menor y mayor valor de una columna.

Además, pueden "agregarse" provisoriamente columnas calculadas a partir de las existentes.

Si quisiera, por ejemplo, agregar una columna a la tabla de pedidos, donde me mostrara el IVA y el precio final:

SELECT precio, precio*0.21, precio + (precio*0.21) FROM tabla_pedidos

El resultado de la búsqueda me devolverá una tabla de tres columnas: precio, iva y precio con iva.

La estructura de la tabla no se ve afectada. Como los alias, estas columnas se extinguen al terminar la consulta.

Podemos ponerle nombre a estas "nuevas columnas", utilizando alias. En el ejemplo anterior:

SELECT precio, precio*0.21 AS IVA, precio + (precio*0.21) AS Total FROM tabla_pedidos;

Pig Data / Apólicie do Dat

Big Data / Análisis de Datos SQL 11/11