Discussões Projeto 2

1 Tarefa a

Era esperado que os valores fossem convergir para $\langle x^n \rangle = 0$, pois o $x \in [0,1]$. O programa retornou para n=4:

$$< x^{1} >: 0.500$$

 $< x^{2} >: 0.334$
 $< x^{3} >: 0.250$
 $< x^{4} >: 0.199$

Entretanto, se usarmos um n=2500, é possível notar que o programa se comporta como esperado, onde $< x^{2500} >: 0.000$

2 Tarefa b1

Foi obtido uma curva gaussiana para o histograma do bêbado, conforme a figura 1 abaixo:

Figura 1: Distribuição da quantidade de bêbados por sua posição

Para os valores de: M=100000000; N=1000; p=q=0.5, obteve-se: $< x^2 >= 1003035.500; < x >= 1001.058$

3 Tarefa b2

Aplicando o mesmo método acima para os valores de: M=1000000; N=1000, obteve-se os valores descritos na tabela 1 abaixo:

\overline{p}	$< x^2 >$	< x >
1/3	446437.656	667.632
1/4	251671.703	501.007
1/5	161392.781	400.989

Tabela 1: Valores de < $x^2 >$, < x > em função de p, dados M, N.

Figura 2: Distribuição da quantidade de bêbados por sua posição, para p=1/3

Figura 3: Distribuição da quantidade de bêbados por sua posição, para p=1/4

Figura 4: Distribuição da quantidade de bêbados por sua posição, para p=1/5

Com isso temos a forma analítica de:

$$\langle X \rangle = \sum_{i=1}^{N} x_i = 0$$

 $\langle X^2 \rangle = \sum_{i=1}^{N} x_i^2 = N$

$$< X^2 > = \sum_{i=1}^{N} x_i^2 = N$$