- Digvijay
- Arjun

Practice Set 2.1 Algebra 9th Std Maths Part 1 Answers Chapter 2 Real Numbers

Question 1.

Classify the decimal form of the given rational numbers into terminating and non-terminating recurring type.

i.
$$\frac{13}{5}$$

ii.
$$\frac{2}{1}$$

iii.
$$\frac{29}{16}$$

iv.
$$\frac{17}{125}$$

v.
$$\frac{11}{6}$$

Solution:

i. Denominator = $5 = 1 \times 5$

Since, 5 is the only prime factor denominator.

the decimal form of the rational number 135 will be terminating type.

ii. Denominator = $11 = 1 \times 11$

Since, the denominator is other than prime factors 2 or 5.

: the decimal form of the rational number 211 will be non-terminating recurring type.

iii. Denominator = 16

$$= 2 \times 2 \times 2 \times 2$$

Since, 2 is the only prime factor in the denominator.

: the decimal form of the rational number 2916 will be terminating type.

iv. Denominator = 125

$$= 5 \times 5 \times 5$$

Since, 5 is the only prime factor in the denominator.

the decimal form of the rational number 17125 will be terminating type.

v. Denominator = 6

$$= 2 \times 3$$

Since, the denominator is other than prime factors 2 or 5.

: the decimal form of the rational number 116 will be non-terminating recurring type.

Question 2.

Write the following rational numbers in decimal form.

i.
$$\frac{127}{200}$$

- Digvijay Arjun
- $\frac{25}{99}$ ii.
- iii.
- iv.
- v.

Solution:

i. -57

$$\begin{array}{r}
0.714285...\\
7)5.000000\\
-0\\
50\\
-49\\
10\\
-7\\
30\\
-28\\
20\\
-14\\
60\\
-56\\
40\\
-35
\end{array}$$

- Digvijay Arjun

ii. 911

$$\begin{array}{c|c}
0.81....\\
11 \hline
9.00\\
-0\\
90\\
-88\\
\hline
20\\
-11\\
9
\end{array}$$

$$\therefore \frac{9}{11} = 0.\overline{81}$$

iii. √5

		2.2360679	
	2	5.0000000000000	ō
+	2	-4	
-	42	100	
+	2	- 84	
- Auditorian	443	1600	
+	3	- 1329	
-	4466	27100	
+	6	- 26796	
	44720	30400	
+	0	- 0	
	447206	3040000	10000
+	6	- 2683236	
dispersions	4472127	35676400	1000
+	7	- 31304889	
	44721349	437151100)
+	9	- 40249214	1
	44721358	34658959	9
		1	

$$\therefore$$
 $\sqrt{5} = 2.2360679....$

- Digvijay
- Arjun

iv. 12113

$$\therefore \frac{121}{13} = 9.\overline{307692}$$

v. 298

$$\therefore \frac{29}{8} = 3.625$$

Question 3.

Write the following rational numbers in pq form.

i. 0.6

ii. 0.37

iii. 3.17

- iv. 15.89
- v. 2.514

- Digvijay
- Arjun

Solution:

i. Let x = 0.6' ...(i)

x = 0.666...

Since, one number i.e. 6 is repeating after the decimal point.

Thus, multiplying both sides by 10,

10x = 6.666...

∴ 10 x 6.6 ...(ii)

Subtracting (i) from (ii),

$$10x - x = 6.6 - 0.6$$

 $\therefore 9x = 6$

$$\therefore x = \frac{6}{9} = \frac{3 \times 2}{3 \times 3}$$

$$\therefore \qquad x = \frac{2}{3}$$

$$\therefore 0.6 = \frac{2}{3}$$

ii. Let x = 0.37---

x = 0.3737...

Since, two numbers i.e. 3 and 7 are repeating after the decimal point.

Thus, multiplying both sides by 100,

100x = 37.3737...

$$\therefore 100x = 37.37^{---}$$
(ii)

Subtracting (i) from (ii),

$$100x - x = 37.37 - 0.37 - 0.37$$

$$\therefore 99x = 37$$

$$\therefore x = \frac{37}{99}$$

$$\therefore \quad 0.\overline{37} = \frac{37}{99}$$

iii. Letx =
$$3.17^{---}$$
 ...(i)

$$\therefore x = 3.1717...$$

Since, two numbers i.e. 1 and 7 are repeating after the decimal point.

Thus, multiplying both sides by 100,

$$100x = 317.1717...$$

Subtracting (i) from (ii),

$$100x - x = 317.17 - 3.17 - 3.17$$

$$... 99x = 314$$

$$\therefore x = \frac{314}{99}$$

$$\therefore 3.\overline{17} = \frac{314}{99}$$

iv. Let
$$x = 15.89$$
--- (i)

$$\therefore x = 15.8989...$$

Since, two numbers i.e. 8 and 9 are repeating after the decimal point.

Thus, multiplying both sides by 100,

100x= 1589.8989...

$$100x = 1589.89$$
 ...(ii)

Subtracting (i) from (ii),

$$100x - x = 1589.89 - - 15.89 - -$$

$$\therefore 99x = 1574$$

$$\therefore \qquad x = \frac{1574}{99}$$

$$\therefore 15.\overline{89} = \frac{1574}{99}$$

v. Let
$$x = 2.514$$

$$\therefore x = 2.514514...$$

Since, three numbers i.e. 5, 1 and 4 are repeating after the decimal point.

Thus, multiplying both sides by 1000,

1000x = 2514.514514...

$$1000x = 2514.514$$
-----(ii)

Subtracting (i) from (ii),

$$1000x - x = 2514.514$$
 $-- -2.514$ $---$

$$\therefore 999x = 2512$$

$$\therefore x = \frac{2512}{999}$$

$$\therefore 2.\overline{514} = \frac{2512}{999}$$

Question 1.

How to convert 2.43 in pq form ? (Textbook pg. no. 20)

Solution:

Let
$$x = 2.43$$

In 2.43, the number 4 on the right side of the decimal point is not recurring.

- Digvijay
- Arjun

So, in order to get only recurring digits on the right side of the decimal point, we will multiply 2.43 by 10.

$$\therefore 10x = 24.3 ...(i)$$

$$\therefore$$
 10x = 24.333...

Here, digit 3 is the only recurring digit. Thus, by multiplying both sides by 10, 100x = 243.333...

Subtracting (i) from (ii),

$$100x - 10x = 243.3 - 24.3$$

$$... 90x = 219$$

$$\therefore x = \frac{219}{90} = \frac{3 \times 73}{3 \times 30} = \frac{73}{30}$$

$$\therefore$$
 2.43 = $\frac{73}{30}$

Practice Set 2.2 Algebra 9th Std Maths Part 1 Answers Chapter 2 Real Numbers

Question 1.

Show that 4√2 is an irrational number.

Solution:

Let us assume that $4\sqrt{2}$ is a rational number.

So, we can find co-prime integers 'a' and 'b' (b \neq 0) such that

$$4\sqrt{2} = ab$$

$$\therefore \sqrt{2} = a4b$$

- Digvijay
- Arjun

Since, a and b are integers, a4b is a rational number and so $\sqrt{2}$ is a rational number.

Alternate Proof:

Let us assume that $4\sqrt{2}$ is a rational number.

So, we can find co-prime integers 'a' and 'b' (b \neq 0) such that

$$4\sqrt{2} = \frac{a}{b}$$

$$\therefore b(4\sqrt{2}) = a$$

$$\therefore$$
 32b² = a² ... (i) [Squaring both the sides]

$$\therefore b^2 = \frac{a^2}{32}$$

Since, 32 divides a², so 32 divides 'a' as well.

So, we write a = 32c, where c is an integer.

$$\therefore$$
 a² = (32c)² ... [Squaring both the sides]

$$\therefore 32b^2 = 32 \times 32c^2 \dots [From(i)]$$

$$\therefore b^2 = 32c^2$$

$$\therefore c^2 = b_2 32$$

Since, 32 divides b², so 32 divides 'b'.

∴ 32 divides both a and b.

a and b have at least 32 as a common factor.

But this contradicts the fact that a and b have no common factor other than 1.

- \therefore Our assumption that $4\sqrt{2}$ is a rational number is wrong.
- \therefore 4 $\sqrt{2}$ is an irrational number.

Question 2.

Prove that $3 + \sqrt{5}$ is an irrational number.

Solution:

Let us assume that $3 + \sqrt{5}$ is a rational number.

So, we can find co-prime integers 'a' and 'b' (b \neq 0) such that

$$3+\sqrt{5}=\frac{a}{b}$$

$$\therefore \qquad \sqrt{5} = \frac{a}{b} - 3$$

Since, a and b are integers, ab – 3 is a rational

number and so √5 is a rational number.

But this contradicts the fact that $\sqrt{5}$ is an irrational number.

- Digvijay
- Arjun
- \therefore Our assumption that 3 $\sqrt{5}$ is a rational number is wrong.
- $3 + \sqrt{5}$ is an irrational number.

Question 3.

Represent the numbers $\sqrt{5}$ and $\sqrt{10}$ on a number line.

Solution:

i. Draw a number line and take point A at 2.

Draw AB perpendicular to the number line such that AB = 1 unit.

In ΔOAB, m∠OAB = 90°

$$\therefore$$
 (OB)² = (OA)² + (AB)² ... [Pythagoras theorem]

$$= (2)^2 + (1)^2$$

∴
$$(OB)^2 = 5$$

 \therefore OB = $\sqrt{5}$ units. ... [Taking square root of both sides]

With O as centre and radius equal to OB, draw an arc to intersect the number line at C.

The coordinate of the point C is $\sqrt{5}$.

ii. Draw a number line and take point Pat 3.

Draw PR perpendicular to the number line such that PR = 1 unit.

In ΔOPR, m∠OPR = 90°

$$\therefore$$
 (OR)² = (OP)² + (PR)² ... [Pythagoras theorem]

$$= (3)^2 + (1)^2$$

$$\therefore (OR)^2 = 10$$

∴ OR= √10units. ... [Taking square root of both sides]

With O as centre and radius equal to OR, draw an arc to intersect the number line at Q.

9

The coordinate of the point Q is $\sqrt{10}$.

- Digvijay
- Arjun

Question 4.

Write any three rational numbers between the two numbers given below.

i.
$$0.3$$
 and -0.5

iii. 5.2 and 5.3

iv.
$$-4.5$$
 and -4.6

Solution:

i.
$$0.3 = 0.30$$
 and $-0.5 = -0.50$

We know that,

$$0.30 > 0.29 > \dots > 0.10 > \dots > -0.30 > \dots > -0.50$$

: the three rational numbers between 0.3 and -0.5 are -0.3, -0.1 and 0.1.

Alternate Method:

A rational number between two rational numbers a and b

$$= \frac{a+b}{2}$$

$$\frac{0.3 + (-0.5)}{2} = \frac{0.3 - 0.5}{2}$$

$$= \frac{-0.2}{2}$$

$$= -0.1$$

$$\frac{0.3 + (-0.1)}{2} = \frac{0.3 - 0.1}{2}$$

$$= \frac{0.2}{2}$$

$$= 0.1$$

$$\frac{-0.1 + (-0.5)}{2} = \frac{-0.1 - 0.5}{2}$$

$$= \frac{-0.6}{2}$$

: the three rational numbers between 0.3 and -0.5 are -0.3, -0.1 and 0.1.

ii.
$$-2.3 = -2.300$$
 and $-2.33 = -2.330$

We know that,

 \therefore the three rational numbers between -2.3 and -2.33 are -2.310, -2.320 and -2.325.

- Digvijay
- Arjun

iii.
$$5.2 = 5.20$$
 and $5.3 = 5.30$

We know that,

: the three rational numbers between 5.2 and 5.3 are 5.21, 5.22 and 5.23.

iv.
$$-4.5 = -4.50$$
 and $-4.6 = -4.60$ We know that,

 \therefore the three rational numbers between -4.5 and -4.6 are -4.51, -4.52 and -4.55.

Practice Set 2.3 Algebra 9th Std Maths Part 1 Answers Chapter 2 Real Numbers

Question 1.

State the order of the surds given below.

iv.
$$\sqrt{39}$$

Answer:

Question 2.

State which of the following are surds Justify. [2 Marks each]

iv.
$$\sqrt{256}$$

vi.
$$\sqrt{\frac{22}{7}}$$

Answer:

i. $51--\sqrt{3}$ is a surd because 51 is a positive rational number, 3 is a positive integer greater than 1 and $51--\sqrt{3}$ is irrational.

- Digvijay
- Arjun

ii. $16--\sqrt{4}$ is not a surd because

$$\sqrt[4]{16} = (16)^{\frac{1}{4}}$$
$$= (2^4)^{\frac{1}{4}}$$

= 2, which is not an irrational number.

iii. $81--\sqrt{5}$ is a surd because 81 is a positive rational number, 5 is a positive integer greater than 1 and $81 - \sqrt{5}$ is irrational.

iv. $256---\sqrt{}$ is not a surd because

$$\sqrt{256} = (256)^{\frac{1}{2}}$$
$$= (16^2)^{\frac{1}{2}}$$

= 16, which is not an irrational number.

v. $64 - -\sqrt{3}$ is not a surd because

$$\sqrt[3]{64} = (64)^{\frac{1}{3}}$$
$$= (4^3)^{\frac{1}{3}}$$

= 4, which is not an irrational number.

vi. 227— $-\sqrt{}$ is a surd because 227 is a positive rational number, 2 is a positive integer greater than 1 and $227--\sqrt{}$ is irrational.

Question 3.

Classify the given pair of surds into like surds and unlike surds. [2 Marks each1

i.
$$\sqrt{52}$$
, $5\sqrt{13}$

ii.
$$\sqrt{68}.5\sqrt{3}$$

iii.
$$4\sqrt{18}$$
, $7\sqrt{2}$

$$\sqrt{52}$$
, $5\sqrt{13}$ ii. $\sqrt{68}$, $5\sqrt{3}$ $4\sqrt{18}$, $7\sqrt{2}$ iv. $19\sqrt{12}$, $6\sqrt{3}$

v.
$$5\sqrt{22}$$
, $7\sqrt{33}$

vi.
$$5\sqrt{5}$$
, $\sqrt{75}$

Solution:

If the order of the surds and the radicands are same, then the surds are like surds.

$$\sqrt{52}, 5\sqrt{13}$$

$$\sqrt{52} = \sqrt{4 \times 13}$$

$$= \sqrt{4} \times \sqrt{13}$$

$$= 2\sqrt{13}$$

Here, the order of $213--\sqrt{1}$ and $513--\sqrt{1}$ is same and their radicands are

- Digvijay

- Arjun

also same.

 \therefore 52-- $\sqrt{ }$ and 513-- $\sqrt{ }$ are like surds.

ii.
$$\sqrt{68}, 5\sqrt{3}$$

$$\sqrt{68} = \sqrt{4 \times 17}$$

$$= \sqrt{4} \times \sqrt{17}$$

$$= 2\sqrt{17}$$

Here, the order of $217--\sqrt{1}$ and $53-\sqrt{1}$ is same but their radicands are not. $68--\sqrt{1}$ and $63-\sqrt{1}$ are unlike surds.

iii.
$$4\sqrt{18}$$
, $7\sqrt{2}$
 $4\sqrt{18} = 4 \times \sqrt{9 \times 2}$
 $= 4 \times \sqrt{9} \times \sqrt{2}$
 $= 4 \times 3\sqrt{2}$
 $= 12\sqrt{2}$

Here, the order of $122-\sqrt{12}$ and $72-\sqrt{12}$ is same and their radicands are also same.

 \therefore 418-- $\sqrt{ }$ and 72- $\sqrt{ }$ are like surds.

iv.
$$19\sqrt{12}, 6\sqrt{3}$$
$$19\sqrt{12} = 19 \times \sqrt{4 \times 3}$$
$$= 19 \times \sqrt{4} \times \sqrt{3}$$
$$= 19 \times 2\sqrt{3}$$
$$= 38\sqrt{3}$$

Here, the order of $383-\sqrt{1}$ and $63-\sqrt{1}$ is same and their radicands are also same.

∴ 1912 –
$$\sqrt{}$$
 and 63– $\sqrt{}$ are like surds.

v.
$$522 - -\sqrt{733} - \sqrt{232}$$

Here, the order of $522--\sqrt{1}$ and $733--\sqrt{1}$ is same but their radicands are not.

 \therefore 522-- $\sqrt{ }$ and 733-- $\sqrt{ }$ are unlike surds.

vi.
$$5\sqrt{5}$$
, $\sqrt{75}$
 $\sqrt{75} = \sqrt{25 \times 3}$
 $= \sqrt{25} \times \sqrt{3}$
 $= 5\sqrt{3}$

Here, the order of $5\sqrt{5}$ and $5\sqrt{3}$ is same but their radicands are not.

 \therefore 5√5 and √75 are unlike surds.

- Digvijay
- Arjun

Question 4.

Simplify the following surds.

- i. √27
- ii. √50
- iii. √250

- iv. √112
- v. $\sqrt{168}$

Solution:

i.
$$\sqrt{27} = \sqrt{9 \times 3}$$
 ii. $\sqrt{50} = \sqrt{25 \times 2}$
 $= \sqrt{9} \times \sqrt{3}$ $= \sqrt{25} \times \sqrt{2}$
 $= 3\sqrt{3}$ $= 5\sqrt{2}$

iii.
$$\sqrt{250} = \sqrt{25 \times 10}$$
 iv. $\sqrt{112} = \sqrt{16 \times 7}$
 $= \sqrt{25} \times \sqrt{10}$ $= \sqrt{16} \times \sqrt{7}$
 $= 5\sqrt{10}$ $= 4\sqrt{7}$

v.
$$\sqrt{168} = \sqrt{4 \times 42}$$
$$= \sqrt{4} \times \sqrt{42}$$
$$= 2\sqrt{42}$$

Question 5.

Compare_the following pair of surds.

- i. $7\sqrt{2}$, $5\sqrt{3}$
- ii. $\sqrt{247}$, $\sqrt{274}$
- iii. $2\sqrt{7}$, $\sqrt{28}$
- iv. $5\sqrt{5}$, $7\sqrt{2}$
- v. $4\sqrt{42}$, $9\sqrt{2}$
- vi. $5\sqrt{3}$, 9
- vii. 7, $2\sqrt{5}$

Solution:

- Digvijay
- Arjun

i.
$$7\sqrt{2} = \sqrt{49} \times \sqrt{2} = \sqrt{98}$$

 $5\sqrt{3} = \sqrt{25} \times \sqrt{3} = \sqrt{75}$

Since, 98 > 75

- ∴ √98 > √75
- $\therefore 7\sqrt{2} > 5\sqrt{3}$
- ii. Since, 247 < 274
- $\therefore \quad \sqrt{247} < \sqrt{274}$

iii.
$$2\sqrt{7} = \sqrt{4} \times \sqrt{7} = \sqrt{28}$$

Since, 28 = 28

- $\therefore \quad \sqrt{28} = \sqrt{28}$
- $\therefore \quad 2\sqrt{7} = \sqrt{28}$

iv.
$$5\sqrt{5} = \sqrt{25} \times \sqrt{5} = \sqrt{125}$$

$$7\sqrt{2} = \sqrt{49} \times \sqrt{2} = \sqrt{98}$$

Since, 125 > 98

- $1. \sqrt{125} > \sqrt{98}$
- $\therefore 5\sqrt{5} > 7\sqrt{2}$

- Digvijay
- Arjun

v.
$$4\sqrt{42} = \sqrt{16} \times \sqrt{42} = \sqrt{672}$$

 $9\sqrt{2} = \sqrt{81} \times \sqrt{2} = \sqrt{162}$

$$\therefore \qquad \sqrt{672} > \sqrt{162}$$

$$\therefore \quad 4\sqrt{42} > 9\sqrt{2}$$

vi.
$$5\sqrt{3} = \sqrt{25} \times \sqrt{3} = \sqrt{75}$$

 $9 = \sqrt{81}$

$$\therefore \quad \sqrt{75} < \sqrt{81}$$

$$\therefore 5\sqrt{3} < 9$$

vii.
$$7 = \sqrt{49}$$

 $2\sqrt{5} = \sqrt{4} \times \sqrt{5} = \sqrt{20}$
Since, $49 > 20$

$$\therefore \quad \sqrt{49} > \sqrt{20}$$

Question 6.

Simplify.

i.
$$5\sqrt{3} + 8\sqrt{3}$$

ii.
$$9\sqrt{5} - 4\sqrt{5} + \sqrt{125}$$

iii.
$$7\sqrt{48} - \sqrt{27} - \sqrt{3}$$

iv.
$$\sqrt{7} - \frac{3}{5}\sqrt{7} + 2\sqrt{7}$$

- Digvijay
- Arjun

Solution:

i.
$$5\sqrt{3} + 8\sqrt{3} = (5+8)\sqrt{3} = 13\sqrt{3}$$

$$5\sqrt{3} + 8\sqrt{3} = 13\sqrt{3}$$

ii.
$$9\sqrt{5} - 4\sqrt{5} + \sqrt{125}$$

 $= 9\sqrt{5} - 4\sqrt{5} + \sqrt{25 \times 5}$
 $= 9\sqrt{5} - 4\sqrt{5} + \sqrt{25} \times \sqrt{5}$
 $= 9\sqrt{5} - 4\sqrt{5} + 5\sqrt{5}$
 $= (9 - 4 + 5)\sqrt{5}$
 $= 10\sqrt{5}$

$$\therefore 9\sqrt{5} - 4\sqrt{5} + \sqrt{125} = 10\sqrt{5}$$

iii.
$$7\sqrt{48} - \sqrt{27} - \sqrt{3}$$

 $7\sqrt{16 \times 3} - \sqrt{9 \times 3} - \sqrt{3}$
 $= 7 \times \sqrt{16} \times \sqrt{3} - \sqrt{9} \times \sqrt{3} - \sqrt{3}$
 $= 7 \times 4\sqrt{3} - 3\sqrt{3} - \sqrt{3}$
 $= 28\sqrt{3} - 3\sqrt{3} - \sqrt{3}$
 $= (28 - 3 - 1)\sqrt{3}$
 $= 24\sqrt{3}$

$$\therefore 7\sqrt{48} - \sqrt{27} - \sqrt{3} = 24\sqrt{3}$$

iv.
$$\sqrt{7} - \frac{3}{5}\sqrt{7} + 2\sqrt{7}$$

$$= \left(1 - \frac{3}{5} + 2\right)\sqrt{7}$$

$$= \left(3 - \frac{3}{5}\right)\sqrt{7}$$

$$= \left(\frac{15 - 3}{5}\right)\sqrt{7}$$

$$= \frac{12\sqrt{7}}{5}$$

$$\therefore \sqrt{7} - \frac{3}{5}\sqrt{7} + 2\sqrt{7} = \frac{12\sqrt{7}}{5}$$

- Digvijay
- Arjun

Question 7.

Multiply and write the answer in the simplest form.

- i. $3\sqrt{12} \times \sqrt{18}$
- ii. $3\sqrt{12} \times 7\sqrt{15}$
- iii. $3\sqrt{8} \times \sqrt{5}$
- iv. $5\sqrt{8} \times 2\sqrt{8}$

Solution:

i.
$$3\sqrt{12} \times \sqrt{18} = 3 \times \sqrt{4 \times 3} \times \sqrt{9 \times 2}$$
$$= 3 \times 2\sqrt{3} \times 3\sqrt{2}$$
$$= 3 \times 2 \times 3 \times \sqrt{3} \times \sqrt{2}$$
$$= 18\sqrt{6}$$

$$3\sqrt{12} \times \sqrt{18} = 18\sqrt{6}$$

ii.
$$3\sqrt{12} \times 7\sqrt{15} = 3 \times \sqrt{4 \times 3} \times 7 \times \sqrt{5 \times 3}$$
$$= 3 \times 2\sqrt{3} \times 7\sqrt{5} \times \sqrt{3}$$
$$= 3 \times 2 \times 7 \times \sqrt{3} \times \sqrt{3} \times \sqrt{5}$$
$$= 42 \times 3 \times \sqrt{5}$$
$$= 126\sqrt{5}$$

$$\therefore \quad 3\sqrt{12} \times 7\sqrt{15} = 126\sqrt{5}$$

iii.
$$3\sqrt{8} \times \sqrt{5} = 3 \times \sqrt{4 \times 2} \times \sqrt{5}$$

= $3 \times 2\sqrt{2} \times \sqrt{5}$
= $6\sqrt{10}$

$$\therefore \quad 3\sqrt{8} \times \sqrt{5} = 6\sqrt{10}$$

iv.
$$5\sqrt{8} \times 2\sqrt{8} = 5 \times 2 \times \sqrt{8} \times \sqrt{8}$$

= $5 \times 2 \times 8$

$$\therefore 5\sqrt{8} \times 2\sqrt{8} = 80$$

Question 8.

Divide and write form.

- Digvijay

i.
$$\sqrt{98} \div \sqrt{2}$$

ii.
$$\sqrt{125} \div \sqrt{50}$$

iii.
$$\sqrt{54} \div \sqrt{27}$$

iv.
$$\sqrt{310} \div \sqrt{5}$$

Solution:

i.
$$\frac{\sqrt{98}}{\sqrt{2}} = \sqrt{\frac{98}{2}} = \sqrt{49} = 7$$

ii.
$$\frac{\sqrt{125}}{\sqrt{50}} = \sqrt{\frac{125}{50}} = \sqrt{\frac{25 \times 5}{25 \times 2}} = \sqrt{\frac{5}{2}}$$

iii.
$$\frac{\sqrt{54}}{\sqrt{27}} = \sqrt{\frac{54}{27}} = \sqrt{2}$$

iv.
$$\frac{\sqrt{310}}{\sqrt{5}} = \sqrt{\frac{310}{5}} = \sqrt{\frac{5 \times 62}{5}} = \sqrt{62}$$

Question 9.

Rationalize the denominator.

i.
$$\frac{3}{\sqrt{5}}$$

ii.
$$\frac{1}{\sqrt{14}}$$

iii.
$$\frac{5}{\sqrt{7}}$$

iv.
$$\frac{6}{9\sqrt{3}}$$

v.
$$\frac{11}{\sqrt{3}}$$

Solution:

- Digvijay

i.
$$\frac{3}{\sqrt{5}} = \frac{3}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}$$

...[Multiplying the numerator and

denominator by $\sqrt{5}$]

$$=\frac{3\times\sqrt{5}}{\sqrt{5}\times\sqrt{5}}=\frac{3\sqrt{5}}{5}$$

$$\therefore \frac{3}{\sqrt{5}} = \frac{3\sqrt{5}}{5}$$

ii.
$$\frac{1}{\sqrt{14}} = \frac{1}{\sqrt{14}} \times \frac{\sqrt{14}}{\sqrt{14}}$$

...[Multiplying the numerator and

denominator by $\sqrt{14}$]

$$=\frac{1\times\sqrt{14}}{\sqrt{14}\times\sqrt{14}}=\frac{\sqrt{14}}{14}$$

$$\therefore \frac{1}{\sqrt{14}} = \frac{\sqrt{14}}{14}$$

iii.
$$\frac{5}{\sqrt{7}} = \frac{5}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}}$$

...[Multiplying the numerator and

denominator by $\sqrt{7}$]

$$=\frac{5\times\sqrt{7}}{\sqrt{7}\times\sqrt{7}}=\frac{5\sqrt{7}}{7}$$

$$\therefore \frac{5}{\sqrt{7}} = \frac{5\sqrt{7}}{7}$$

- Digvijay

iv.
$$\frac{6}{9\sqrt{3}} = \frac{6}{9\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$$

...[Multiplying the numerator and

denominator by $\sqrt{3}$]

$$= \frac{6 \times \sqrt{3}}{9\sqrt{3} \times \sqrt{3}}$$
$$= \frac{6\sqrt{3}}{9 \times 3} = \frac{2\sqrt{3}}{9}$$

$$\therefore \qquad \frac{6}{9\sqrt{3}} = \frac{2\sqrt{3}}{9}$$

$$v. \qquad \frac{11}{\sqrt{3}} = \frac{11}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$$

...[Multiplying the numerator and

denominator by $\sqrt{3}$]

$$=\frac{11\times\sqrt{3}}{\sqrt{3}\times\sqrt{3}}=\frac{11\sqrt{3}}{3}$$

$$\therefore \frac{11}{\sqrt{3}} = \frac{11\sqrt{3}}{3}$$

Question 1.

$$9+16----\sqrt{2}+9-\sqrt{4}+16--\sqrt{4}$$
 (Texbookpg. no. 28)

Solution:

$$\sqrt{9+16} = \sqrt{25} = 5$$

$$\sqrt{9} + \sqrt{16} = 3 + 4 = 7$$

$$\sqrt{9+16} \neq \sqrt{9} + \sqrt{16}$$

Question 2.

$$100+36------\sqrt{2}$$
? $100---\sqrt{2}+36-\sqrt{2}$ (Textbook pg. no. 28)

Solution:

$$\sqrt{100 + 36} = \sqrt{136} = 2\sqrt{34}$$

$$\sqrt{100} + \sqrt{36} = 10 + 6 = 16$$

$$\sqrt{100 + 36} \neq \sqrt{100} + \sqrt{36}$$

From the above examples,

$$\sqrt{a+b} \neq \sqrt{a} + \sqrt{b}$$

- Digvijay
- Arjun

Question 3.

Follow the arrows and complete the chart by doing the operations given.

Solution:

Question 4.

There are some real numbers written on a card sheet. Use these numbers and construct two examples each of addition, subtraction, multiplication and division. Solve these examples. (Textbook pg. no. 34)

- Digvijay
- Arjun

Solution:

i.
$$9\sqrt{2} + (-3\sqrt{2}) = 9\sqrt{2} - 3\sqrt{2} = 6\sqrt{2}$$

ii.
$$12 - 2\sqrt{5} = 2(6 - \sqrt{5})$$

iii.
$$2\sqrt{5} \times 3\sqrt{11} = 6\sqrt{55}$$

iv.
$$\frac{2\sqrt{5}}{9\sqrt{2}} = \frac{2\sqrt{5}}{9\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{2\sqrt{10}}{9\times 2} = \frac{\sqrt{10}}{9}$$

Practice Set 2.4 Algebra 9th Std Maths Part 1 Answers Chapter 2 Real Numbers

Question 1.

Multiply.

i.
$$\sqrt{3}(\sqrt{7}-\sqrt{3})$$

ii.
$$(\sqrt{5}-\sqrt{7})\sqrt{2}$$

iii.
$$(3\sqrt{2} - \sqrt{3})(4\sqrt{3} - \sqrt{2})$$

- Digvijay
- Arjun

Solution:

i.
$$\sqrt{3}(\sqrt{7} - \sqrt{3}) = \sqrt{3} \times \sqrt{7} - \sqrt{3} \times \sqrt{3}$$
$$= \sqrt{3 \times 7} - \sqrt{3 \times 3}$$

$$\therefore \qquad \sqrt{3}\left(\sqrt{7}-\sqrt{3}\right)=\sqrt{21}-3$$

ii.
$$(\sqrt{5} - \sqrt{7})\sqrt{2} = \sqrt{5} \times \sqrt{2} - \sqrt{7} \times \sqrt{2}$$
$$= \sqrt{5 \times 2} - \sqrt{7 \times 2}$$

$$\therefore \quad \left(\sqrt{5} - \sqrt{7}\right)\sqrt{2} = \sqrt{10} - \sqrt{14}$$

iii.
$$(3\sqrt{2} - \sqrt{3})(4\sqrt{3} - \sqrt{2})$$

= $3\sqrt{2}(4\sqrt{3} - \sqrt{2}) - \sqrt{3}(4\sqrt{3} - \sqrt{2})$
= $3\sqrt{2} \times 4\sqrt{3} - 3\sqrt{2} \times \sqrt{2}$
 $-\sqrt{3} \times 4\sqrt{3} + \sqrt{3} \times \sqrt{2}$

$$= 12\sqrt{2\times3} - 3\sqrt{2\times2} - 4\sqrt{3\times3} + \sqrt{3\times2}$$

$$= 12\sqrt{6} - (3\times2) - (4\times3) + \sqrt{6}$$

$$= 12\sqrt{6} - 6 - 12 + \sqrt{6}$$

$$= (12+1)\sqrt{6} - 6 - 12$$

$$= 13\sqrt{6} - 18$$

$$(3\sqrt{2}-\sqrt{3})(4\sqrt{3}-\sqrt{2})=13\sqrt{6}-18$$

Question 2.

Rationalize the denominator.

i.
$$\frac{1}{\sqrt{7} + \sqrt{2}}$$

ii.
$$\frac{3}{2\sqrt{5}-3\sqrt{2}}$$

iii.
$$\frac{4}{7+4\sqrt{3}}$$

iv.
$$\frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}$$

Solution:

- Digvijay
- Arjun

i.
$$\frac{1}{\sqrt{7} + \sqrt{2}} = \frac{1}{\left(\sqrt{7} + \sqrt{2}\right)} \times \frac{\left(\sqrt{7} - \sqrt{2}\right)}{\left(\sqrt{7} - \sqrt{2}\right)}$$

...[Multiplying the numerator and

denominator by
$$(\sqrt{7} - \sqrt{2})$$

$$= \frac{\sqrt{7} - \sqrt{2}}{\left(\sqrt{7}\right)^2 - \left(\sqrt{2}\right)^2}$$
...[: (a - b)(a + b) = a^2 - b^2]
$$= \frac{\sqrt{7} - \sqrt{2}}{7 - 2}$$

$$\therefore \frac{1}{\sqrt{7}+\sqrt{2}}=\frac{\sqrt{7}-\sqrt{2}}{5}$$

ii.
$$\frac{3}{2\sqrt{5} - 3\sqrt{2}} = \frac{3}{\left(2\sqrt{5} - 3\sqrt{2}\right)} \times \frac{\left(2\sqrt{5} + 3\sqrt{2}\right)}{\left(2\sqrt{5} + 3\sqrt{2}\right)}$$

...[Multiplying the numerator and

denominator by
$$(2\sqrt{5} + 3\sqrt{2})$$
]

$$= \frac{3(2\sqrt{5} + 3\sqrt{2})}{(2\sqrt{5})^2 - (3\sqrt{2})^2}$$

$$...[: (a - b)(a + b) = a^2 - b^2]$$

$$= \frac{3(2\sqrt{5} + 3\sqrt{2})}{(4\times5) - (9\times2)}$$

$$= \frac{3(2\sqrt{5} + 3\sqrt{2})}{(4\times5) - (9\times2)}$$

$$\vdots \frac{3}{2\sqrt{5} - 3\sqrt{2}} = \frac{3(2\sqrt{5} + 3\sqrt{2})}{2}$$

$$\vdots$$

- Digvijay
- Arjun

iii.
$$\frac{4}{7+4\sqrt{3}} = \frac{4}{(7+4\sqrt{3})} \times \frac{(7-4\sqrt{3})}{(7-4\sqrt{3})}$$

...[Multiplying the numerator and denominator by $(7-4\sqrt{3})$]

$$= \frac{4(7-4\sqrt{3})}{(7)^2 - (4\sqrt{3})^2}$$
...[: (a - b)(a + b) = a^2 - b^2]
$$= \frac{4(7-4\sqrt{3})}{49 - (16 \times 3)}$$

$$= \frac{4(7-4\sqrt{3})}{49-48} = \frac{4(7-4\sqrt{3})}{1}$$

$$\therefore \frac{4}{7+4\sqrt{3}} = 28 - 16\sqrt{3}$$

iv.
$$\frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}} = \frac{\left(\sqrt{5} - \sqrt{3}\right)}{\left(\sqrt{5} + \sqrt{3}\right)} \times \frac{\left(\sqrt{5} - \sqrt{3}\right)}{\left(\sqrt{5} - \sqrt{3}\right)}$$

...[Multiplying the numerator and

denominator by $(\sqrt{5} - \sqrt{3})$]

- Digvijay

- Arjun

$$= \frac{\left(\sqrt{5} - \sqrt{3}\right)^{2}}{\left(\sqrt{5}\right)^{2} - \left(\sqrt{3}\right)^{2}}$$

$$...[\because (a - b)(a + b) = a^{2} - b^{2}]$$

$$= \frac{\left(\sqrt{5}\right)^{2} - 2 \times \sqrt{5} \times \sqrt{3} + \left(\sqrt{3}\right)^{2}}{5 - 3}$$

$$...[\because (a - b)^{2} = a^{2} - 2ab + b^{2}]$$

$$= \frac{5 - 2\sqrt{15} + 3}{2}$$

$$= \frac{8 - 2\sqrt{15}}{2}$$

$$= \frac{8 - 2\sqrt{15}}{2}$$

$$= \frac{2\left(4 - \sqrt{15}\right)}{2} = 4 - \sqrt{15}$$

$$\therefore \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}} = 4 - \sqrt{15}$$

Practice Set 2.5 Algebra 9th Std Maths Part 1 Answers Chapter 2 Real Numbers

Question 1.

Find the value.

Solution:

i.
$$|15 - 2| = |13| = 13$$

ii.
$$|4 - 9| = |-5| = 5$$

iii.
$$|7| \times |-4| = 7 \times 4 = 28$$

Question 2.

Solve.

- Digvijay
- Arjun
- |3x 5| = 1i.
- ii. |7-2x|=5
- $\left|\frac{8-x}{2}\right| = 5$
- iv. $\left| 5 + \frac{x}{4} \right| = 5$

Solution:

- i. |3x 5| = 1
- 3x 5 = 1 or 3x 5 = -1
- $\therefore 3x = 1 + 5 \text{ or } 3x = -1 + 5$
- $\therefore 3x = 6 \text{ or } 3x = 4$
- $\therefore x = \frac{6}{3} \qquad \text{or} \quad x = \frac{4}{3}$
- \therefore x=2 or $x=\frac{4}{3}$

ii.
$$|7 - 2x| = 5$$

- $\therefore 7 2x = 5 \text{ or } 7 2x = -5$
- $\therefore 7 5 = 2x \text{ or } 7 + 5 = 2x$
- $\therefore 2x = 2 \text{ or } 2x = 12$
- x = 22 or x = 122
- $\therefore x = 1 \text{ or } x = 6$
- iii. $\left| \frac{8-x}{2} \right| = 5$
- $\frac{8-x}{2} = 5$ or $\frac{8-x}{2} = -5$
- \therefore 8 x = 10 or 8 x = -10 .. [Multiplying both the sides by 2]
- $\therefore 8 10 = x \text{ or } 8 + 10 = x$
- x = -2 or x = 18

iv.
$$\left| 5 + \frac{x}{4} \right| = 5$$

- \therefore 5 + $\frac{x}{4}$ = 5 or 5 + $\frac{x}{4}$ = -5
- $\therefore \frac{x}{4} = 5 5$ or $\frac{x}{4} = -5 5$
- $\therefore \quad \frac{x}{4} = 0 \qquad \text{or} \qquad \frac{x}{4} = -10$
- $\therefore x = 0$
- or x = -40

...[Multiplying both the sides by 4]

- Digvijay
- Arjun

Problem Set 2 Algebra 9th Std Maths Part 1 Answers Chapter 2 Real Numbers

Question 1.

Choose the correct alternative answer for the questions given below. [1 Mark each]

i. Which one of the following is an irrational number?

- (A) $\sqrt{\frac{16}{25}}$
- (B) $\sqrt{5}$

(C) $\frac{3}{9}$

(D) √196

Answer:

 $\sqrt{5}$

ii. Which of the following is an irrational number?

- (A) 0.17
- (B) 1.513----
- (C) 0.2746
- (D) 0.101001000......

Answer:

(D) 0.101001000......

iii. Decimal expansion of which of the following is non-terminating recurring?

(A) $\frac{2}{5}$ (B) $\frac{3}{16}$ (C) $\frac{3}{11}$ (D) $\frac{137}{25}$

Answer:

- (C) 311
- iv. Every point on the number line represents which of the following numbers?
- (A) Natural numbers
- (B) Irrational numbers
- (C) Rational numbers
- (D) Real numbers

Answer:

(D) Real numbers

v. The number [/latex]0.\dot { 4 }[/latex] in pq form is

(A) $\frac{4}{9}$

- (B) $\frac{40}{9}$
- (C) $\frac{3.6}{9}$
- (D) $\frac{36}{9}$

Answer:

(A) 49

- Digvijay
- Arjun

vi. What is \sqrt{n} , if n is not a perfect square number?

- (A) Natural number
- (B) Rational number
- (C) Irrational number
- (D) Options A, B, C all are correct.

Answer:

(C) Irrational number

vii. Which of the following is not a surd?

- (A) √7
- (B) ³√17
- (C) ³√64
- (D) √193

Answer:

(C)
$$64 - \sqrt{---\sqrt{3}}$$

viii. What is the order of the surd $5-\sqrt{---\sqrt{3}}$?

- (A) 3
- (B) 2
- (C) 6
- (D) 5

Answer:

(C) 6

ix. Which one is the conjugate pair of $2\sqrt{5} + \sqrt{3}$?

- (A) $-2\sqrt{5} + \sqrt{3}$
- (B) $-2\sqrt{5} \sqrt{3}$
- (C) $2\sqrt{3} \sqrt{5}$
- (D) $\sqrt{3} + 2\sqrt{5}$

Answer:

(A)
$$-2\sqrt{5} + \sqrt{3}$$

x. The value of $|12 - (13 + 7) \times 4|$ is _____.

- (A) 68
- (B) 68
- (C) 32
- (D) 32

Answer:

(B) 68

Hints:

ii. Since the decimal expansion is neither terminating nor recurring, 0.101001000.... is an irrational number.

iii. 311

Denominator $=11 = 1 \times 11$

Since, the denominator is other than prime factors 2 or 5.

- : the decimal expansion of 311 will be non terminating recurring.
- v. Let $x = [/latex]0.\langle dot \{ 4 \} [/latex]$
- $\therefore 10 \text{ x} = [/latex]0. \text{dot } \{4\}[/latex]$

- Digvijay
- Arjun
- $10 x = [/latex]4. dot { 4 } [/latex] [/latex]0. dot { 4 } [/latex]$
- ∴9x = 4
- $\therefore x = 49$
- vii. $61 \sqrt{3} = 4$, which is not an irrational number.

viii.
$$5 - \sqrt{---\sqrt{3}} = 5 - \sqrt{3} \times 2 = 5 - \sqrt{6}$$

- \therefore Order = 6
- ix. The conjugate of $2\sqrt{5} + \sqrt{3}$ is $2\sqrt{5} \sqrt{3}$ or $-2\sqrt{5} + \sqrt{3}$

$$|x| |12 - (13+7) |x| |4| = |12 - 20 |x| |4|$$

- = |12 80|
- = |-68|
- = 68

Ouestion 2.

Write the following numbers in pq form.

- i. 0.555
- ii. 29.568-----
- iii. 9.315315.....
- iv. 357.417417.....
- v . 30.219----

Solution:

i.
$$0.555 = \frac{0.555 \times 1000}{1 \times 1000} = \frac{555}{1000} = \frac{5 \times 111}{5 \times 200} = \frac{111}{200}$$

ii. Let
$$x = 29.568$$
——…(i)

$$x = 29.568568...$$

Since, three numbers i.e. 5, 6 and 8 are repeating after the decimal point.

Thus, multiplying both sides by 1000,

1000x = 29568.568568...

$$1000 \text{ x} = 29568.568$$
 ...(ii)

Subtracting (i) from (ii),

$$1000x - x = 29568.568$$
 $----- - 29.568$

$$\therefore 999x = 29539$$

$$\therefore x = \frac{29539}{999}$$

$$\therefore$$
 29. $\overline{568} = \frac{29539}{999}$

iii. Let
$$x = 9.315315 \dots = 9.315$$
———…(i)

Since, three numbers i.e. 3, 1 and 5 are repeating after the decimal point.

Thus, multiplying both sides by 1000,

1000x = 9315.315315...

$$...1000x = 9315.315 ---- ...(ii)$$

Subtracting (i) from (ii),

$$1000x - x = 9315.315$$
 $---- 9.315$

$$3999x = 9306$$

$$\therefore x = \frac{9306}{999} = \frac{9 \times 1034}{9 \times 111} = \frac{1034}{111}$$

$$\therefore$$
 9.315315... = $\frac{1034}{111}$

iv. Let
$$x = 357.417417... = 357.417$$
...(i)

Since, three numbers i.e. 4, 1 and 7 are repeating after the decimal point.

Thus, multiplying both sides by 1000,

$$1000x = 357417.417417...$$

$$\therefore 1000x = 357417.417...(ii)$$

Subtracting (i) from (ii),

$$1000x - x = 357417.417$$

$$399x = 357060$$

$$\therefore \quad x = \frac{357060}{999} = \frac{3 \times 119020}{3 \times 333}$$

$$\therefore 357.417417... = \frac{119020}{333}$$

v. Let
$$x = 30.219$$
 ...(i)

$$x = 30.219219$$

Since, three numbers i.e. 2, 1 and 9 are repeating after the decimal point.

Thus, multiplying both sides by 1000,

1000x= 30219.219219...

$$1000x = 30219.219$$
...(ii)

Subtracting (i) from (ii),

$$1000x - x = 30219.219$$
 -30.219

$$\therefore 999x = 30189$$

$$\therefore x = \frac{30189}{999} = \frac{3 \times 10063}{3 \times 333}$$

$$\therefore 30.\overline{219} = \frac{10063}{333}$$

Question 3.

Write the following numbers in its decimal form.

- Digvijay Arjun
- i.
- 9 11 ii.
- $\sqrt{5}$ iii.
- $\frac{121}{13}$ iv.
- v.

Solution:

i. -57

$$\begin{array}{r}
0.714285...\\
7)5.000000\\
-0\\
50\\
-49\\
10\\
-7\\
30\\
-28\\
20\\
-14\\
60\\
-56\\
40\\
-35\\
5
\end{array}$$

$$\therefore \frac{-5}{7} = -0.\overline{714285}$$

- Digvijay Arjun
- ii. 911

$$\begin{array}{r}
0.81....\\
11) 9.00\\
-0\\
90\\
-88\\
20\\
-11\\
9
\end{array}$$

- $\therefore \frac{9}{11} = 0.\overline{81}$
- iii. √5

		2.2360679		
	2	5.000000000000000		
+	2	-4		
	42	100		
+	2	- 84		
-	443	1600		
+	3	- 1329		
	4466	27100		
+	6	- 26796		
	44720	30400		
+	0	- 0		
	447206	3040000		
+	6	- 2683236		
	4472127	35676400		
+	7	- 31304889		
	44721349	437151100		
+	9	- 402492141		
OSCIONAL CON	44721358	34658959		

 \therefore $\sqrt{5} = 2.2360679....$

- Digvijay
- Arjun

iv. 12113

$$\therefore \frac{121}{13} = 9.\overline{307692}$$

v. 298

$$\therefore \frac{29}{8} = 3.625$$

Question 4.

Show that $5 + \sqrt{7}$ is an irrational number. [3 Marks]

Solution:

Let us assume that $5 + \sqrt{7}$ is a rational number. So, we can find co-prime integers 'a' and 'b' $(b \neq 0)$ such that

- Digvijay

$$5+\sqrt{7}=\frac{a}{b}$$

$$\therefore \qquad \sqrt{7} = \frac{a}{b} - 5$$

Since, 'a' and 'b' are integers, $b\sqrt{a}-5$ is a rational number and so $\sqrt{7}$ is a rational number.

 \therefore But this contradicts the fact that $\sqrt{7}$ is an irrational number.

Our assumption that $5 + \sqrt{7}$ is a rational number is wrong.

 \therefore 5 + $\sqrt{7}$ is an irrational number.

Question 5.

Write the following surds in simplest form.

i.
$$\frac{3}{4}\sqrt{8}$$

ii.
$$-\frac{5}{9}\sqrt{45}$$

Solution:

i.
$$\frac{3}{4}\sqrt{8} = \frac{3}{4} \times \sqrt{4 \times 2}$$
$$= \frac{3}{4} \times 2\sqrt{2}$$

$$\therefore \frac{3}{4}\sqrt{8} = \frac{3}{2}\sqrt{2}$$

ii.
$$-\frac{5}{9}\sqrt{45} = -\frac{5}{9} \times \sqrt{9 \times 5}$$
$$= -\frac{5}{9} \times 3\sqrt{5}$$

$$\therefore$$
 *, $-\frac{5}{9}\sqrt{45} = \frac{-5}{3}\sqrt{5}$

Question 6.

Write the simplest form of rationalising factor for the given surds.

i.
$$\sqrt{32}$$

iv.
$$\frac{3}{5}\sqrt{10}$$

Solution:

i.
$$\sqrt{32} = \sqrt{16 \times 2} = 4\sqrt{2}$$

Now, $4\sqrt{2} \times \sqrt{2} = 4 \times 2 = 8$, which is a rational number.

 $\div \sqrt{2}$ is the simplest form of the rationalising factor of $\sqrt{3}2$.

ii.
$$\sqrt{50} = \sqrt{25 \times 2} = 5\sqrt{2}$$

Now, $5\sqrt{2} \times \sqrt{2} = 5 \times 2 = 10$, which is a rational number.

 $\div \sqrt{2}$ is the simplest form of the rationalising factor of $\sqrt{50}$.

iii.
$$\sqrt{27} = \sqrt{9 \times 3} = 3\sqrt{3}$$

- Digvijay

Now, $3\sqrt{3} \times \sqrt{3} = 3 \times 3 = 9$, which is a rational number.

 $\therefore \sqrt{3}$ is the simplest form of the rationalising factor of $\sqrt{27}$.

iv.
$$\frac{3}{5}\sqrt{10}$$
$$\frac{3}{5}\sqrt{10} \times \sqrt{10}$$
$$=\frac{3}{5}\times 10$$
$$=3\times 2$$

= 6, which is a rational number.

 $\therefore \sqrt{10}$ is the simplest form of the rationalising factor of $5-\sqrt{3}\sqrt{10}$.

v.
$$3\sqrt{72} = 3\sqrt{36 \times 2} = 3 \times 6\sqrt{2} = 18\sqrt{2}$$

Now, $18\sqrt{2}$ x $\sqrt{2} = 18$ x 2 = 36, which is a rational number.

 $\therefore \sqrt{2}$ is the simplest form of the rationalising factor of $3\sqrt{72}$. vi. $4\sqrt{11}$

 $4\sqrt{11} \times \sqrt{11} = 4 \times 11 = 44$, which is a rational number.

 $\therefore \sqrt{11}$ is the simplest form of the rationalising factor of $4\sqrt{11}$.

Question 7.

Simplify.

i.
$$\frac{4}{7}\sqrt{147} + \frac{3}{8}\sqrt{192} - \frac{1}{5}\sqrt{75}$$

ii.
$$5\sqrt{3} + 2\sqrt{27} + \frac{1}{\sqrt{3}}$$

iii.
$$\sqrt{216} - 5\sqrt{6} + \sqrt{294} - \frac{3}{\sqrt{6}}$$

iv.
$$4\sqrt{12} - \sqrt{75} - 7\sqrt{48}$$

v.
$$2\sqrt{48} - \sqrt{75} - \frac{1}{\sqrt{3}}$$

Solution:

- Digvijay
- Arjun

i.
$$\frac{4}{7}\sqrt{147} + \frac{3}{8}\sqrt{192} - \frac{1}{5}\sqrt{75}$$

$$= \frac{4}{7}\sqrt{49 \times 3} + \frac{3}{8}\sqrt{64 \times 3} - \frac{1}{5}\sqrt{25 \times 3}$$

$$= \frac{4}{7} \times 7\sqrt{3} + \frac{3}{8} \times 8\sqrt{3} - \frac{1}{5} \times 5\sqrt{3}$$

$$= 4\sqrt{3} + 3\sqrt{3} - \sqrt{3}$$

$$= (4+3-1)\sqrt{3}$$

$$= 6\sqrt{3}$$

$$\therefore \frac{4}{7}\sqrt{147} + \frac{3}{8}\sqrt{192} - \frac{1}{5}\sqrt{75} = 6\sqrt{3}$$

- Digvijay

ii.
$$5\sqrt{3} + 2\sqrt{27} + \frac{1}{\sqrt{3}}$$

$$= 5\sqrt{3} + 2\sqrt{9 \times 3} + \frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$$

$$= 5\sqrt{3} + 2 \times 3\sqrt{3} + \frac{\sqrt{3}}{3}$$

$$= 5\sqrt{3} + 6\sqrt{3} + \frac{\sqrt{3}}{3}$$

$$= \left(5 + 6 + \frac{1}{3}\right)\sqrt{3}$$

$$= \left(11 + \frac{1}{3}\right)\sqrt{3} = \left(\frac{33 + 1}{3}\right)\sqrt{3} = \frac{34}{3}\sqrt{3}$$

$$\therefore 5\sqrt{3} + 2\sqrt{27} + \frac{1}{\sqrt{3}} = \frac{34}{3}\sqrt{3}$$

iii.
$$\sqrt{216} - 5\sqrt{6} + \sqrt{294} - \frac{3}{\sqrt{6}}$$

$$= \sqrt{36 \times 6} - 5\sqrt{6} + \sqrt{49 \times 6} - \frac{3}{\sqrt{6}} \times \frac{\sqrt{6}}{\sqrt{6}}$$

$$= 6\sqrt{6} - 5\sqrt{6} + 7\sqrt{6} - \frac{3\sqrt{6}}{6}$$

$$\stackrel{?}{=} 6\sqrt{6} - 5\sqrt{6} + 7\sqrt{6} - \frac{1}{2}\sqrt{6}$$

$$= \left(6 - 5 + 7 - \frac{1}{2}\right)\sqrt{6}$$

$$= \left(8 - \frac{1}{2}\right)\sqrt{6} = \left(\frac{16 - 1}{2}\right)\sqrt{6} = \frac{15}{2}\sqrt{6}$$

$$\therefore \sqrt{216} - 5\sqrt{6} + \sqrt{294} - \frac{3}{\sqrt{6}} = \frac{15}{2}\sqrt{6}$$

- Digvijay
- Arjun

iv.
$$4\sqrt{12} - \sqrt{75} - 7\sqrt{48}$$

 $= 4\sqrt{4 \times 3} - \sqrt{25 \times 3} - 7\sqrt{16 \times 3}$
 $= 4 \times 2\sqrt{3} - 5\sqrt{3} - 7 \times 4\sqrt{3}$
 $= 8\sqrt{3} - 5\sqrt{3} - 28\sqrt{3}$
 $= (8 - 5 - 28)\sqrt{3}$
 $= (-25)\sqrt{3}$

$$4\sqrt{12} - \sqrt{75} - 7\sqrt{48} = -25\sqrt{3}$$

v.
$$2\sqrt{48} - \sqrt{75} - \frac{1}{\sqrt{3}}$$

 $= 2\sqrt{16 \times 3} - \sqrt{25 \times 3} - \frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$
 $= 2 \times 4\sqrt{3} - 5\sqrt{3} - \frac{1}{3}\sqrt{3}$
 $= 8\sqrt{3} - 5\sqrt{3} - \frac{1}{3}\sqrt{3}$
 $= \left(8 - 5 - \frac{1}{3}\right)\sqrt{3}$
 $= \left(3 - \frac{1}{3}\right)\sqrt{3}$
 $= \left(\frac{9 - 1}{3}\right)\sqrt{3}$
 $= \frac{8}{3}\sqrt{3}$

$$2\sqrt{48} - \sqrt{75} - \frac{1}{\sqrt{3}} = \frac{8}{3}\sqrt{3}$$

Question 8.

Rationalize the denominator.

- Digvijay
- Arjun
- i. $\frac{1}{\sqrt{5}}$
- ii. $\frac{2}{3\sqrt{7}}$
- iii. $\frac{1}{\sqrt{3}-\sqrt{2}}$
- iv. $\frac{1}{3\sqrt{5} + 2\sqrt{2}}$
- $v. \qquad \frac{12}{4\sqrt{3}-\sqrt{2}}$

Solution:

i.
$$\frac{1}{\sqrt{5}} = \frac{1}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}$$

...[Multiplying the numerator

and denominator by
$$\sqrt{5}$$
]

$$=\frac{1\times\sqrt{5}}{\sqrt{5}\times\sqrt{5}}$$

$$\therefore \frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{5}$$

ii.
$$\frac{2}{3\sqrt{7}} = \frac{2}{3\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}}$$

...[Multiplying the numerator

and denominator by $\sqrt{7}$]

$$=\frac{2\times\sqrt{7}}{3\sqrt{7}\times\sqrt{7}}=\frac{2\sqrt{7}}{3\times7}$$

$$\therefore \frac{2}{3\sqrt{7}} = \frac{2\sqrt{7}}{21}$$

iii.
$$\frac{1}{\sqrt{3}-\sqrt{2}} = \frac{1}{\left(\sqrt{3}-\sqrt{2}\right)} \times \frac{\left(\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}+\sqrt{2}\right)}$$

...[Multiplying the numerator and

denominator by $(\sqrt{3} + \sqrt{2})$]

$$=\frac{1\times\left(\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}$$

- Digvijay

$$= \frac{\sqrt{3} + \sqrt{2}}{\left(\sqrt{3}\right)^2 - \left(\sqrt{2}\right)^2}$$
...[: (a + b)(a - b) = a^2 - b^2]
$$= \frac{\sqrt{3} + \sqrt{2}}{3 - 2} = \frac{\sqrt{3} + \sqrt{2}}{1}$$

$$\therefore \frac{1}{\sqrt{3}-\sqrt{2}}=\sqrt{3}+\sqrt{2}$$

iv.
$$\frac{1}{3\sqrt{5} + 2\sqrt{2}} = \frac{1}{\left(3\sqrt{5} + 2\sqrt{2}\right)} \times \frac{\left(3\sqrt{5} - 2\sqrt{2}\right)}{\left(3\sqrt{5} - 2\sqrt{2}\right)}$$

...[Multiplying the numerator and

denominator by $(3\sqrt{5} - 2\sqrt{2})$

$$= \frac{1 \times (3\sqrt{5} - 2\sqrt{2})}{(3\sqrt{5} + 2\sqrt{2})(3\sqrt{5} - 2\sqrt{2})}$$
$$= \frac{3\sqrt{5} - 2\sqrt{2}}{(3\sqrt{5})^2 - (2\sqrt{2})^2}$$

...[:
$$(a+b)(a-b) = a^2 - b^2$$
]

$$= \frac{3\sqrt{5} - 2\sqrt{2}}{(9\times5) - (4\times2)}$$

- Digvijay

$$=\frac{3\sqrt{5}-2\sqrt{2}}{45-8}$$

$$\therefore \qquad \frac{1}{3\sqrt{5}+2\sqrt{2}} = \frac{3\sqrt{5}-2\sqrt{2}}{37}$$

v.
$$\frac{12}{4\sqrt{3}-\sqrt{2}} = \frac{12}{\left(4\sqrt{3}-\sqrt{2}\right)} \times \frac{\left(4\sqrt{3}+\sqrt{2}\right)}{\left(4\sqrt{3}+\sqrt{2}\right)}$$

...[Multiplying the numerator and

denominator by
$$(4\sqrt{3} + \sqrt{2})$$

$$= \frac{12(4\sqrt{3} + \sqrt{2})}{(4\sqrt{3} - \sqrt{2})(4\sqrt{3} + \sqrt{2})}$$

$$= \frac{12(4\sqrt{3} + \sqrt{2})}{(4\sqrt{3})^2 - (\sqrt{2})^2}$$
...[: $(a + b)(a - b) = a^2 - b^2$]
$$= \frac{12(4\sqrt{3} + \sqrt{2})}{(16 \times 3) - 2} = \frac{12(4\sqrt{3} + \sqrt{2})}{48 - 2}$$

$$= \frac{12(4\sqrt{3} + \sqrt{2})}{46}$$

$$\therefore \frac{12}{4\sqrt{3}-\sqrt{2}}=\frac{6(4\sqrt{3}+\sqrt{2})}{23}$$

Question 1.

Draw three or four circles of different radii on a card board. Cut these circles. Take a thread and measure the length of circumference and diameter of each of the circles. Note down the readings in the given table. (Textbook pg.no.23)

No.	radius (r)	diameter (d)	Circum- ference (c)	Ratio = $\frac{c}{d}$
i.	7 cm			
ii.	8 cm			
iii.	5.5 cm			

Solution:

i. 14,44,3.1

- Digvijay
- Arjun
- ii. 16,50.3,3.1
- iii. 11,34.6,3.1

From table, we observe that the ratio $d - -\sqrt{c}$ is nearly 3.1 which is constant. This ratio is denoted by π (pi).

Question 2.

To find the approximate value of π , take the wire of length 11 cm, 22 cm and 33 cm each. Make a circle from the wire. Measure the diameter and complete the following table.

Circle No.	Circum- ference (c)	Diameter (d)	Ratio of (c) to (d)
i.	11 cm		
ii.	22 cm		
iii.	33 cm		

Verify that the ratio of circumference to the diameter of a circle is approximately $7-\sqrt{22}$. (Textbook pg. no. 24)

Solution:

i. 3.5,
$$7 - \sqrt{22}$$

ii. 7,
$$7 - \sqrt{22}$$

iii. 10.5,
$$7 - \sqrt{22}$$

 \therefore The ratio of circumference to the diameter of each circle is $7-\sqrt{22}$.