Sentencias Concurrentes

- Ahora es necesario, dado un programa concurrente, saber que secciones del código son concurrentes y cuáles no, además es indispensable especificarlo en un lenguaje de programación.
- No todas las sentencias son concurrentes, consideremos el siguiente fragmento del programa:
 - S1: x:=x+1
 - S2: y:=x+2
 - En este caso las instrucciones no pueden ejecutarse de forma independiente.

Sentencias Concurrentes

- Consideremos ahora:
 - □ x:=1
 - □ y:=2
 - □ z:=3
- Cada una de las sentencias se pueden ejecutar concurrentemente puesto que el orden en que se ejecuten no afecta el resultado final.
- Si se tuvieran 3 procesadores en cada uno se colocaría cada instrucción.
- Aunque la intuición nos indique cuando ejecutar concurrentemente
 Bernstein definió condiciones para garantizar la concurrencia.

Condiciones de Bernstein

- Para determinar si dos conjuntos de instrucciones se pueden ejecutar de forma concurrente se definen:
 - L(S_k)={a₁,a₂,...,a_n} conjunto de lectura del conjunto de instrucciones S_k, formado por todas las variables cuyos valores son leídos (referenciados) durante la ejecución de las instrucciones en S_k.
 - □ $E(S_k) = \{b_1, b_2, ..., b_n\}$ conjunto de escritura del conjunto de instrucciones S_k , formado por todas las variables cuyos valores son actualizados (se escriben) durante la ejecución de las instrucciones en S_k .

Condiciones de Bernstein

Para que dos conjuntos de instrucciones S_i y S_j, i≠j, i<j se puedan ejecutar concurrentemente se tiene que cumplir que:

1.
$$L(S_i) \cap E(S_i) = \emptyset$$

2.
$$E(S_i) \cap L(S_i) = \emptyset$$

3.
$$E(S_i) \cap E(S_j) = \emptyset$$

Ejemplo de Condiciones de Bernstein

Sean:

$$S_1 \rightarrow a:=x+y;$$

$$S_2 \rightarrow b := z-1;$$

$$S_3 \rightarrow c:=a-b;$$

$$S_{4} \rightarrow w:=c+1;$$

$$L(S_1)=\{x,y\}$$

 $E(S_1)=\{a\}$

$$L(S_2)=\{z\}$$

 $E(S_2)=\{b\}$

□
$$L(S_3)=\{a,b\}$$

 $E(S_3)=\{c\}$

$$L(S_4) = \{c\}$$

$$E(S_4) = \{w\}$$

Ejemplo de Condiciones de Bernstein

Sean:

$$L(S_1) = \{x, y\}$$

$$E(S_1)=\{a\}$$

$$L(S_2)=\{z\}$$

$$E(S_2) = \{b\}$$

$$L(S_3)=\{a,b\}$$

$$E(S_3) = \{c\}$$

$$L(S_4)=\{c\}$$

$$E(S_4)=\{w\}$$

2. Aplicando las condiciones de Bernstein

Entre S₁ y S₂

1.
$$L(S_1) \cap E(S_2) = \emptyset$$

2.
$$E(S_1) \cap L(S_2) = \emptyset$$

3.
$$E(S_1) \cap E(S_2) = \emptyset$$

Entre S₁ y S₃

1.
$$L(S_1) \cap E(S_3) = \emptyset$$

2.
$$E(S_1) \cap L(S_3) = \{a\} \neq \emptyset$$

3.
$$E(S_1) \cap E(S_3) = \emptyset$$

Entre S₁ y S₄

1.
$$L(S_1) \cap E(S_4) = \emptyset$$

2.
$$E(S_1) \cap L(S_4) = \emptyset$$

3.
$$E(S_1) \cap E(S_4) = \emptyset$$

Ejemplo de Condiciones de Bernstein

Sean:

$$L(S_1) = \{x, y\}$$

$$E(S_1)=\{a\}$$

$$L(S_2)=\{z\}$$

$$E(S_2) = \{b\}$$

$$L(S_3) = \{a,b\}$$

$$E(S_3)=\{c\}$$

$$L(S_4)=\{c\}$$

$$E(S_4)=\{w\}$$

2.Aplicando las condiciones de Bernstein

Entre S₂ y S₃

1.
$$L(S_2) \cap E(S_3) = \emptyset$$

2.
$$E(S_2) \cap L(S_3) = \{b\} \neq \emptyset$$

3.
$$E(S_2) \cap E(S_3) = \emptyset$$

Entre S₂ y S₄

1.
$$L(S_2) \cap E(S_4) = \emptyset$$

2.
$$E(S_2) \cap L(S_4) = \emptyset$$

3.
$$E(S_2) \cap E(S_4) = \emptyset$$

Entre S₃ y S₄

1.
$$L(S_3) \cap E(S_4) = \emptyset$$

2.
$$E(S_3) \cap L(S_4) = \{c\} \neq \emptyset$$

3.
$$E(S_3) \cap E(S_4) = \emptyset$$

Tabla resultante al aplicar las condiciones de Bernstein

 En este caso se indica que sentencias se pueden ejecutar concurrentemente y cuales no

	S ₁	S ₂	S ₃	S ₄
S ₁		Si	No	Si
S_2			No	Si
S_3				No
S ₄				