	Page:
	Differaction to a manufacture of the manufacture of
× ① × ②	French's Half Poilod zone Zone plate
✓ ③ ✓ ④	Fraunhofen is differentian by single slit
✓⑤ ✓⑥ ✓甲	Theory of plane transmission grating. width of principal maxima. Rayleigth is criteria of limit of presolution
7 (8) ~ (9)	Repolving power of prism
✓ (i)	Huygen's principle function suice (2)
1201231	to sop of the second suited to the second suited
#	Huygen's Poincible to According to Huygen's worke
	Fach point on a luminous source vibrates simple
3	If emits wave in all idistection on which is
Œ	vibrating in same phase is called a unversiont) Propagation of light means propagation of wavefronts
	maining true prairies program by the state of the state o

Date:

		Page :
井	Diffource Hun Interf	ounce and Diffraction-
-	Interference	Diffraction 1
1	Interference is due to superposition of secondary wavelets from two different wavefronts (from two source)	Diffraction is caused by superingition of secondary wovelets from two different clements of same wove front.
@	Two Coherent sousices	2 just a single source
3	Fringe width (B) is some i.e. maxima/min.	3 B is unequally spaces. generally B goes on decreasing as we move away from centre of pattern.
(A)	All bright fringes have some intensity	All bright fringes donot have same intensity.
(S)	Minima are portectly.	Minima are not porfectly
6	The contrast blush maxima and minima is very good.	6 Not a good contrast b/wh maxima and minima.

@ Effect of increasing number of slits i The number of ships is sucreased, interference maxima became more interpret and share. number increased more & more, interforence by maxima becomes should lines separated by stondary maxima of neglisible intensity.

	000: [[] [] [] [] [] [] [] [] []
#	Difference blut single slit and Double slit Diffraction
	single slit
0	Diffraction pattorn Consist of Diffraction pattern consist of bright and minima of equally spaced interference
-144	entensity decreasing maxima and minima with the central maxima.
2	Intensity - (2) Intensity - (2) $I = Io \left(\frac{\sinh x}{x}\right)^2$ $I = Io \left(\frac{\sinh x}{x}\right)^2$ $I = 4Io \left(\frac{\sinh x}{x}\right)^2$
3 0	$A = \frac{\pi e \sin \theta}{\lambda}$ $B = \frac{\pi (e + d) \sin \theta}{\lambda}$
A line	entral maxima - 196 Central maxima
(S) on	T=Io III III III III III III III III III
Com	e closes to central but finge spacing remain
	100 = 4
	Stock Will prairies Mit John Story

	Date: Fage:
#	width of Central Maxima:
	Let distance b/wh secondary minimum from centre of principal Maximum = x width of central Maxima = 2x
	Let distance b/ω^n slit and screen = D Tano = $\sin 0 = x$ D
	for first minimum x = ± 2D
- L-1	Fix join length of lens, $D = F$ (lens is very close to slit) $x = \pm \lambda F$
XX	width of central Maxima = 22f
⊙ ≠ ②	width $\propto \lambda$ - (7) switched to the second width $\propto \frac{1}{\text{slit width (e)}}$
6) =	e Toes, width hoes Jose 2= constant hence max & min lie voiry close to each other
(b) I	hende diffraction maxima and minima are quite distinct.

6 Principal Maxima ! T will max'm when sint ->0, sint Sin $\phi = 0$ $\phi = n\pi$ $n = 0, \pm 1, \pm 2, \dots$ ** (a+b) sind = n2 At principal maxima, Sinh = N T= AN I= A2 N2 _ and N is large \Rightarrow IXN² \Rightarrow The maxima are very intense (7) secondary Minima = Sin N = 0 NA= mTT (where m +nW) M(atb)sino = m)

also depend on N, there is large number of minima on both side of principal maxima.

0

(8) secondary Maxima ! Those an be (N-2) secondary Maxima in blush two successive principal maxima. position of secondary maxima > desired AsinN+ =0 SINH! Solving -N Tan + = Tan N+ (2) Intensity Distribution Curice !-Due to diffraction at M slits, secondary maxima= N-2 secondary minima = N-1

Diffraction Greating - It is a device used to dispose a beam of light into its complituent wavelengths. A slit width is of widow of A (light used) A Good quality grating must have—

(i) High enough lines per inch say 20000

(ii) The lines should have squal transparencies

blish them throughout. * lab Greating = 15000 lines por inch. * Greating element. = a+b light pus (opacity) (Traspovency) Sleeden award sames & weeklight his

Highest onder of Principal Maximum i $(a+b)\sin\theta = n\lambda$ max value of 0 = 90° If (atb) lie blor 2 and (22)
i.e (atb) <22 y frost order is seen. If (att) < 39 only first two orders are visible