Capítulo 5

Normalización

Metas de la normalización

- Decidir si un esquema R está en "buena" forma.
- En el caso en que R no está en "buena" forma, decomponerlo en un conjunto de esquemas $\{R_1, R_2, ..., R_n\}$ tal que:
 - Cada esquema está en buena forma
 - La descomposición es de reunión sin pérdida
- La teoría se basa en las dependencias funcionales.

Metas de la normalización

- Cuando descomponemos un esquema R con un conjunto de DFs F en R_1 , R_2 ,..., R_n queremos
 - Descomposición de reunión sin pérdida: de otro modo la descomposición va a tener pérdida de información.
 - No redundancia de información: Los esquemas R_i preferentemente deben estar en forma normal de Boyce-Codd o en Tercera forma Normal.
 - Preservación de las dependencias: Sea F_i el conjunto de DF de F^+ que incluye solo atributos en R_i .
 - Preferentemente la descomposición debe conservar las dependencias, esto es, $(F_1 \cup F_2 \cup ... \cup F_n)^+ = F^+$
 - ➤ De otro modo, chequear actualizaciones para violaciones de las DFs va a requerir computar reuniones naturales lo cual es costoso.

 Cuando R, F tiene redundancia de datos hay DF no trivial tal que su parte izquierda no determina R.

Hay DF no trivial tal que su parte izquierda no determina *R*.

- $(\Leftrightarrow) \exists \alpha : \alpha \text{ no es superclave de R } \land \alpha^+ \neq \alpha.$
- (\Leftrightarrow) \uparrow $(\forall \alpha \subseteq R: \alpha \text{ es superclave de } R \lor \alpha^+ = \alpha).$
- (\Leftrightarrow) $_{1}(\forall \alpha \subseteq R: \alpha \text{ es superclave de } R V$
 - $(\forall \beta \subseteq R: \alpha \rightarrow \beta \in F^+ \Longrightarrow \beta \subseteq \alpha)).$
- (\Leftrightarrow) γ $(\forall \alpha, \beta \subseteq R: \alpha \rightarrow \beta \in F^+ \Longrightarrow$

(α es superclave de R $\vee \beta \subseteq \alpha$)).

- **Definición**: Un esquema R está en **BCNF** con respecto a un conjunto F de DFs si para todas las DFs en F⁺ de la forma $\alpha \to \beta$, donde $\alpha \subseteq R$ y $\beta \subseteq R$, al menos una de las siguientes propiedades se cumple:
 - $\alpha \rightarrow \beta$ es trivial (i.e., $\beta \subseteq \alpha$)
 - α es una superclave de R (i.e. $\alpha \to R \in F^+$).

Proposición: Para comprobar si R_U, F, R_U esquema universal está en FNBC, basta con comprobar las dependencias de F.

• **Ejemplo**: Sea *R* = (*A*, *B*, *C*) esquema con DFs:

$$F = \{A \rightarrow B, B \rightarrow C\}.$$

- {A} es clave candidata de R
- R no está en FNBC
- Sea la descomposición de R: $R_1 = (A, B)$, $R_2 = (B, C)$
- Esta descomposición está en FNBC, es de reunión sin pérdida y preserva las dependencias.

- Usar sólo F es incorrecto cuando se prueba un esquema en una descomposición de R.
 - Si $R_{\rm U}$ está descompuesto, hay que comprobar dependencias de F^{+} en los miembros de la descomposición.

- **Ejemplo**: Sea el esquema relacional R = (A, B, C, D) con DFs: $F = \{A \rightarrow B, B \rightarrow C\}$.
 - {A,D} es clave candidata.
 - R no está en FNBC
 - Sea la descomposición de R: R_1 = (A, B), R_2 = (A, C, D)
 - Esta descomposición no está en FNBC, porque no lo está R_2 .

- Comprobación de FNBC: Sea R_U universal, con DFs F y sea R_i que forma parte de descomposición de R; para probar que R_i está en FNBC se puede hacer la siguiente comprobación:
- Supongamos que R_i está en FNBC y $_{7}R_i \subseteq \alpha^+$:
 - toda $\alpha \rightarrow \beta$ en F^+ con atributos en R_i es trivial.
 - Esto equivale a $\beta \cap (R_i \alpha) = \phi$
 - Luego: $\alpha^+ \cap (R_i \alpha) = \phi$ (tomo $\beta = \alpha^+$)

- **Ejercicio**: Sea *F* dado por:
 - 1. nomBib → calle, numero
 - 2. calle, numero → nomBib
 - 3. ISBN \rightarrow título, editorial, autores, edición
 - 4. nomBib, numInv \rightarrow ISBN
- Sea la descomposición:
 - BibLibs = (nomBib, numInv, ISBN)
 - Biblioteca = (nomBib, calle, número)
 - Libro = (ISBN, título, editorial, autores, edición)
- Comprobar que Biblioteca, Libro están en FNBC.

• Observación: Si $\alpha \subseteq R_i$ viola la condición:

$$\forall \alpha \subseteq R_i : \alpha^+ \cap (R_i - \alpha) = \varphi \vee R_i \subseteq \alpha^+$$

entonces la siguiente DF es testigo:

- $-\alpha \rightarrow \alpha^+ \cap (R_i \alpha)$.
- Notar que por teoría de conjuntos:

$$\alpha^+ \cap (R_i - \alpha) = (\alpha^+ - \alpha) \cap (R_i - \alpha) = (\alpha^+ - \alpha) \cap R_i$$

- − Luego α → $(\alpha^+$ $\alpha)$ ∩ R_i es testigo.
- Esta DF muestra que R_i viola la FNBC.

```
result := {R};

done := false;

compute F^+;

while (not done) do

if (there is a schema R_i in result that is not in BCNF)

then begin

let \alpha \to \beta be a nontrivial functional dependency in F_i

such that \alpha \to R_i is not in F^+, and \alpha \cap \beta = \emptyset;

result := (result - R_i) \cup (R_i - \beta) \cup (\alpha, \beta);

end

else done := true;
```

- Probamos que luego de cada paso de iteración obtenemos una descomposición de reunión sin pérdida.
- Luego del primer paso de iteración obtenemos la descomposición: $\{(R_i \beta), (\alpha, \beta)\}$
 - − Observar que $(R_i \beta) \cap (\alpha, \beta) = \alpha$
 - Por aumentatividad $\alpha \rightarrow \alpha \beta \in F^+$
 - Por lo tanto $\{(R_i \beta), (\alpha, \beta)\}$ es descomposición de reunión sin pérdida (por proposición del capítulo anterior).

• Asumimos que al terminar el paso de iteración k tenemos una descomposición $R_1,...,R_{k+1}$ de reunión sin pérdida. O sea, para toda r(R) legal con respecto a F:

$$r = \Pi_R \left(\Pi_{R1}(r) \bowtie \Pi_{R2}(r) \bowtie ... \bowtie \Pi_{Rn}(r) \right)$$
.

- Asumimos que en el paso k+1 para algún j se descompone R_i en $\{R_i \delta, (\gamma, \delta)\}$.
 - Observamos que R_i δ ∩ (γ, δ) = γ
 - − Por aumentatividad $\gamma \rightarrow \gamma \delta \in F_j^+$
 - Luego $\{R_j \delta, (\gamma, \delta)\}$ es de reunión sin pérdida
 - $s = \prod_{R_j \delta}(s) \bowtie \prod_{(\gamma, \delta)}(s)$ para todo s legal en F_j

```
Sea r(R) legal bajo F.
= {luego de paso k descomposición de reunión sin pérdida}
   \Pi_R (\Pi_{R_1}(r) \bowtie ... \bowtie \Pi_{R_i}(r) \bowtie ... \bowtie \Pi_{R_{k+1}}(r))
= \{\{R_i - \delta, (\gamma, \delta)\}\} de reunión sin pérdida\}
   \Pi_R \left( \Pi_{R_i}(r) \bowtie ... \bowtie \Pi_{R_i - \delta} \left( \Pi_{R_i}(r) \right) \bowtie \Pi_{(\gamma, \delta)} \left( \Pi_{R_i}(r) \right) \bowtie ... \bowtie \Pi_{R_{k+1}}(r) \right)
= \{\Pi_A (\Pi_B(s) = \Pi_A(s) \text{ cuando } A \subseteq B\}
   \Pi_R ( \Pi_{R_1}(r) \bowtie ... \bowtie \Pi_{R_{i-1}}(r) \bowtie \Pi_{(\vee, \delta)}(r) \bowtie ... \bowtie \Pi_{R_{k+1}}(r))
Por lo tanto, luego del paso de iteración k+1 se obtiene una
descomposición de reunión sin pérdida.
```

• **Ejercicio**: Aplicar el algoritmo de normalización en FNBC a:

$$\blacksquare$$
 R = (A, B, C, D, E, F)

■
$$F = \{A \rightarrow CB, E \rightarrow FA\}$$

• **Ejercicio**: Sea el esquema universal:

BibLibs = (nomBib, calle, número, numInv, ISBN, título, editorial, autores, edición)

Sea F dado por:

- nomBib → calle, número
- calle, número → nomBib
- ISBN → título, editorial, autores, edición
- nomBib, numInv → ISBN

Aplicar el algoritmo de normalización en FNBC.

FNBC y preservación de dependencias

- No es siempre posible obtener una descomposición en FNBC que preserva las dependencias.
- Ejemplo:
 - R = (J, K, L) $F = \{JK \rightarrow L, L \rightarrow K\}$ Hay dos claves candidatas: JK y JL
 - R no está en FNBC.
 - Toda descomposición de *R* falla en preservar:

$$JK \rightarrow L$$

- Problema: Hay algunas situaciones donde
 - usar FNBC no preserva las dependencias, y
 - el chequeo eficiente de violaciones de DFs en actualizaciones es importante.
- Solución: definir una forma normal más débil, llamada tercera forma normal.
 - Permite alguna redundancia de información.
 - Pero las DFs pueden ser chequeadas en relaciones individuales sin computar reuniones naturales.
 - Hay siempre una descomposición en 3FN que es de reunión sin pérdida y que preserva las dependencias.

Definición: Un esquema R está en tercera forma normal (3FN) si para todas las DF:

$$\alpha \rightarrow \beta \in F^+$$

al menos una de las siguientes condiciones se cumple:

- \circ $\alpha \to \beta$ es trivial (i.e., $\beta \subseteq \alpha$)
- o α es superclave para R (i.e. $\alpha \rightarrow R \in F^+$).
- O Cada **atributo** A en $\beta \alpha$ está contenido en una clave candidata de R.

- Nota: cada atributo puede estar en una clave candidata diferente
- Nota: γ clave candidata de R si y solo si
 - \circ $\gamma \to R \in F^+$, y
 - \circ \forall $C \in \gamma : \neg (\gamma \{C\}) \rightarrow R \in F^+$
- Si un esquema está en FNBC, entonces está en 3FN.
- La tercera condición es una relajación mínima de FNBC para garantizar preservación de las dependencias.

• **Ejercicio**: Sea el esquema relacional *R* = (J,K,L) con DFs:

$$F = \{JK \rightarrow L, L \rightarrow K\}.$$

Probar que R está en 3FN.

• Se permite redundancia de información:

J	K	L
j ₁	I ₁	k_1
j ₂	I ₁	k_1
j ₃	I ₁	k_1
null	l ₂	k ₂

- Repetición de la información
 - Ejemplo: relación l₁, k₁
- Necesidad de usar valores nulos
 - Ejemplo: para representar la relación l_{2} , k_{2} , donde no hay un valor correspondiente para j).

• **Ejercicio**: Sea R = (I, S, C, D, A, O), con las DFs:

$$F = \{S \rightarrow D; I \rightarrow A; IS \rightarrow C; A \rightarrow O\}$$

- $Sea R_1 = (I, S, C, D),$
- ¿está R_1 en 3FN? Justifique su respuesta.

- Proposición: Para comprobar si R_U, F, R_U esquema universal está en 3FN, basta con comprobar las DFs de F.
 - Además se pueden descomponer las DFs de F de modo que sus lados derechos consistan solo de atributos sencillos y utilizar el conjunto resultante en lugar de F.

- Usar clausuras de atributos para chequear para cada DF $\alpha \rightarrow \beta$, si α es una superclave.
- Si α no es una superclave, tenemos que verificar si cada atributo en β está contenido en una clave candidata de R
 - Esta prueba es bastante más cara, porque involucra encontrar claves candidatas.
 - Probar 3FN ha sido probado que es NP-hard.
 - Sin embargo, la descomposición en 3FN puede ser hecha en tiempo polinomial.

```
Let F_c be a canonical cover for F;
i := 0;
for each functional dependency \alpha \rightarrow \beta in F_c do
      if none of the schemas R_i, 1 \le j \le i contains \alpha \beta
                then begin
                                   i := i + 1:
                                   R_i := \alpha \beta
                          end
if none of the schemas R_i, 1 \le i \le i contains a candidate key for R
      then begin
                          i := i + 1;
                          R_i:= any candidate key for R;
                end
return (R_1, R_2, ..., R_i)
```

- **Ejercicio**: Sea el esquema universal:
 - BibLibs = (nomBib, calle, número, numInv, ISBN, título, editorial, autores, edición)

Sea *F* dado por:

- 1. nomBib \rightarrow calle, numero
- 2. calle, numero → nomBib
- 3. ISBN \rightarrow título, editorial, autores, edición
- 4. nomBib, numInv → ISBN

Descomponer BibLibs en 3FN.

- El algoritmo de descomposición en 3FN garantiza la preservación de las dependencias,
 - debido a que hay un esquema para cada DF en F_c.
- La descomposición obtenida es de reunión sin pérdida.
 - Una clave candidata está en uno de los esquemas R_i de la descomposición.
 - Ejercicio de la práctica.

- Si un esquema R_i está en la descomposición generada por el algoritmo anterior, entonces R_i satisface 3FN.
 - o Sea R_i generado por la DF α →β
 - Sea $\gamma \to B$ una DF no trivial en R_i . (Necesitamos solo considerar DFs cuya partes derechas tienen un solo atributo)
 - o B puede estar en β o α pero no en ambos.
 - Consideramos cada caso por separado.

Caso 1: Si B ∈ β:

- If γ is a superkey, the 2nd condition of 3NF is satisfied
- Otherwise α must contain some attribute not in γ
- Since $\gamma \to B$ is in F⁺ it must be derivable from F_c, by using attribute closure on γ .
- Attribute closure not have used α →β if it had been used, α must be contained in the attribute closure of γ, which is not possible, since we assumed γ is not a superkey.
- Now, using α → (β- {B}) and γ → B, we can derive α →B (since $\gamma \subseteq \alpha$ β, and B $\notin \gamma$ since γ → B is non-trivial)
- Then, *B* is extraneous in the right-hand side of α →β; which is not possible since α →β is in F_c.
- Thus, if B is in β then γ must be a superkey, and the second condition of 3NF must be satisfied.

Caso 2: $B \in \alpha$.

- Debido a que α es una clave candidata, se satisface trivialmente la tercera alternativa en la definición de 3FN.
- De hecho, no podemos probar que γ es una superclave.
- Esto muestra exactamente porqué la tercera alternativa está presente en la definición de la 3FN.

Q.E.D.

Comparison of BCNF and 3NF

- Es siempre posible descomponer un esquema en esquemas en 3FN y
 - La descomposición es de reunión sin pérdida.
 - Las dependencias son preservadas.
- Es siempre posible descomponer un esquema en FNBC y
 - La descomposición es de reunión sin pérdida.
 - Puede no ser posible preservar las dependencias.