

(15)
$$y' = \frac{\cos x}{\sin x} = \cot x$$

(15) $y' = \frac{1}{\sqrt{x}} \cdot \frac{x}{\sqrt{x}}$

(16) $y' = \frac{1}{\sqrt{1-(x_0)^2}} \cdot \frac{1}{\sqrt{x}} = \frac{1}{\sqrt{x}}$

(17) $y' = \frac{1}{\sqrt{x}} \cdot \frac{x}{\sqrt{x}}$

(18) $y' = [\exp(\frac{1}{x} \ln x)]' = \frac{x^{\frac{1}{2}}}{\sqrt{x}} \cdot (\frac{1}{x^2}(1-\ln x)) = x^{\frac{1}{2}-2}(1-\ln x)$

(18) $y' = [\exp(\frac{1}{x} \ln x)]' = \frac{x^{\frac{1}{2}}}{\sqrt{x}} \cdot (\frac{1}{x^2}(1-\ln x)) = x^{\frac{1}{2}-2}(1-\ln x)$

(19) $y' = [\exp(\frac{1}{x} \ln x)]' = \frac{x^{\frac{1}{2}}}{\sqrt{x}} \cdot (\frac{1}{x^2}(1-\ln x)) = x^{\frac{1}{2}-2}(1-\ln x)$

(19) $y' = [\exp(\frac{1}{x} \ln x)]' = x^{\frac{1}{2}} \cdot (\frac{1}{x^2}(1-\ln x)) = x^{\frac{1}{2}-2}(1-\ln x)$

(10) $y' = [\exp(\frac{1}{x} \ln x)]' = x^{\frac{1}{2}} \cdot (\frac{1}{x^2}(1-\ln x)) = x^{\frac{1}{2}-2}(1-\ln x)$

(117) $y' = [\exp(\frac{1}{x} \ln x)]' = x^{\frac{1}{2}} \cdot (\frac{1}{x^2}(1-\ln x)) = x^{\frac{1}{2}-2}(1-\ln x)$

(18) $y' = [\exp(\frac{1}{x} \ln x)]' = x^{\frac{1}{2}} \cdot (\frac{1}{x^2}(1-\ln x)) = x^{\frac{1}{2}-2}(1-\ln x)$

(19) $y' = [\exp(\frac{1}{x} \ln x)]' = x^{\frac{1}{2}} \cdot (\frac{1}{x^2}(1-\ln x)) = x^{\frac{1}{2}-2}(1-\ln x)$

(20) $(\frac{1}{x})' = \frac{1}{x^2} \cdot (\frac{1}{x^2}(1-\ln x)) = x^{\frac{1}{2}-2}(1-\ln x)$

(21) $\frac{1}{x^2} \cdot \frac{1}{x^2} \cdot \frac{1}{$

$$\Rightarrow g(x) = (1-x)^{-2} \left((n+1) x^{n} (x-1) - (x^{n+1}-1) \right)$$

$$= (1-x)^{-2} \left(nx^{n+1} - (n+1)x^{n} + 1 \right)$$

$$= (x+2x) - y(x), dy = y' \Big|_{x=2}. dx$$

20. $f(x) = \sum_{k=0}^{\infty} x^k$ $g(x) = \sum_{k=1}^{\infty} kx^{k-1}$. If $f(x) = \frac{1-x^{m}}{1-x}$ g(x) = f'(x)

$$\Delta x = 1$$
: $\Delta y = 1$? $\Delta y = 12$.
$$\Delta x = 0.1 \cdot \Delta y = 1.761. \quad \Delta y = 1.72$$

$$\Delta X = 0.01$$
: $\Delta y = 0.170601$. $dy = 0.12$
 ZZ . (1) $dy = -\frac{1}{X^2} dX$. (2) $dy = Sin 2X dX$

22. (1)
$$dy = -\frac{1}{x^2} dx$$
. (2) $dy = \sin 2x dx$
(3). $dy = (x+1)e^{x} dx$ (4). $dy = 5x^{5x}$. (lnx+1) dx.

73. (1)
$$\triangle X = 0.0$$
, $e^{1.01} \approx e^{1} + e^{1} \cdot \Delta X = 2.7455$

$$23. (1) \quad \Delta X = 0.0 \ \ \ e^{-1} \approx e^{-1} + e^{-1} \cdot \Delta X = 2.7455$$

$$(2) \quad \Delta X = |^{\circ} \quad \omega_{1}|_{5}^{\circ} \approx \omega_{5} + e^{-1} \cdot \Delta X = 2.7455$$

(2).
$$\Delta X = 1^{\circ}$$
. $COS |SI^{\circ} \approx COS \frac{1}{5}\pi - SIN \frac{1}{5}\pi - OS \frac{1}{4}$

$$= -\frac{13}{2} - \frac{1}{2} \cdot \frac{7}{186} = -6.874$$

$$S = 472 \cdot dS = S_{r}^{1} \cdot dS = 8740 \cdot 6$$

$$= -\frac{13}{2} - \frac{1}{2} \cdot \frac{7}{180} = -0.8747$$

$$V = 4\pi^{2} \cdot dS = S_{r}^{1} \cdot dr = 8\pi \Delta r.$$