Informe: Demostración de Convexidad de una Función

Jean Carlos William Huancoillo Rojas

30 de enero de 2025

1. Introducción

En este informe se analiza un programa en Python diseñado para verificar la convexidad de una función en un dominio dado. La convexidad es una propiedad importante en matemáticas y optimización, ya que garantiza que una función no tenga "hoyos.º "valles.en su gráfica. El programa utiliza la definición matemática de convexidad para realizar esta verificación.

2. Definición de Convexidad

Una función f es convexa en un dominio si, para cualquier par de puntos x y y en el dominio y cualquier $\lambda \in [0,1]$, se cumple la siguiente desigualdad:

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

Esta condición se conoce como la desigualdad de convexidad.

3. Implementación en Python

El programa implementa la verificación de convexidad utilizando la definición anterior. A continuación, se describe el código paso a paso.

3.1. Código Fuente

```
import numpy as np
import matplotlib.pyplot as plt

# Definir la funci n a evaluar
def f(x):
    return x**2 # Funci n cuadr tica (convexa)

# Verificar convexidad usando la definici n
```

```
g def es_convexa(f, dominio, num_puntos=1000):
      for _ in range(num_puntos):
          # Seleccionar dos puntos aleatorios en el dominio
11
          x = np.random.uniform(dominio[0], dominio[1])
12
          y = np.random.uniform(dominio[0], dominio[1])
          # Seleccionar un lambda aleatorio en [0, 1]
          lambda_ = np.random.uniform(0, 1)
          # Calcular la condici n de convexidad
          condicion = f(lambda_ * x + (1 - lambda_) * y)
          valor_esperado = lambda_* f(x) + (1 - lambda_) *
20
              f(y)
21
          # Si no se cumple la condici n , la funci n no es
              convexa
          if condicion > valor_esperado:
              return False
24
      return True
25
26
 # Dominio de la funci n
27
_{28} dominio = (-10, 10)
29
  # Verificar convexidad
  if es_convexa(f, dominio):
31
      print("La funci n es convexa en el dominio dado.")
32
33
      print("La funci n no es convexa en el dominio dado.")
34
35
36 # Graficar la funci n
x_vals = np.linspace(dominio[0], dominio[1], 400)
38 y_vals = f(x_vals)
39 plt.plot(x_vals, y_vals, label="f(x) = x")
40 plt.title("Gr fica de la funci n convexa")
41 plt.xlabel("x")
42 plt.ylabel("f(x)")
43 plt.legend()
44 plt.grid()
45 plt.show()
```

Listing 1: Código para verificar convexidad

3.2. Explicación del Código

- Función f(x): Se define la función $f(x) = x^2$, que es un ejemplo clásico de función convexa.
- Función es_convexa: Esta función verifica la convexidad de f(x) en un dominio dado. Utiliza un enfoque de muestreo aleatorio para seleccionar

puntos x y y, así como un valor λ en el intervalo [0,1].

- Condición de convexidad: Para cada par de puntos x y y, se verifica si se cumple la desigualdad de convexidad. Si en algún caso no se cumple, la función no es convexa.
- **Gráfica**: Se genera una gráfica de la función $f(x) = x^2$ para visualizar su comportamiento convexo.

4. Resultados

El programa imprime en la consola si la función es convexa o no en el dominio dado. Para la función $f(x) = x^2$, el resultado esperado es:

La función es convexa en el dominio dado.

Además, se genera una gráfica que muestra la forma parabólica de la función, lo cual es consistente con su convexidad.

5. Conclusión

El programa implementado demuestra de manera efectiva la convexidad de una función utilizando la definición matemática. Este enfoque puede extenderse a otras funciones y dominios para verificar sus propiedades de convexidad. La gráfica generada proporciona una visualización clara del comportamiento de la función.