Change of order of integration

The integral $\iint f(x, y) dy dx$ is first integrated w.r.t. the variable 'y', then limit of y are substituted but if we want first integrate w.r.t. 'x' instead of y i.e. we want to change $\iint f(x, y) dy dx$ to $\iint f(x, y) dx dy$, then we have to find new limit of x as function of y. This method is called change of order.

We can do easily by graph

Q.1. The value of $\int_{0}^{1} \int_{x}^{1} \sin(y^2) dy dx$. **JAM – 2017**

(a)
$$\frac{1+\cos 1}{2}$$

(b)
$$1 - \cos 1$$

$$(c)1+cos1$$

$$(d) \frac{1-\cos 1}{2}$$

Q2. The value of the integral $\int_{y=0}^{1} \int_{x=0}^{1-y^2} y \sin(\pi (1-x)^2) dx dy$ is

JAM-2019

(a)
$$\frac{1}{2\pi}$$

(b) 2π

(c)
$$\pi/2$$

(d) $2/\pi$

Q.3. The value of integral $\int_{0}^{1} \int_{x}^{1} y^4 e^{xy^2} dy dx$ is **JAM – 2018**

(a)
$$\frac{e+1}{2}$$

(b)
$$\frac{e-1}{2}$$

$$(c)\frac{e-2}{3}$$

(d)
$$\frac{e+2}{3}$$

Q.4. The value of double integral $\int_{0}^{\pi} \int_{0}^{x} \frac{\sin y}{\pi - y} dy dx$. **JAM-2016**

(a) 0

(b) 1

(c) 2

(d) 2π

Q.5. The value of
$$\int_{0}^{4} \int_{\sqrt{4-x}}^{2} e^{y^3} dy dx$$
.

JAM-2012

(a)
$$e^8 + 1$$

(b)
$$e^8 - 1$$

(c)
$$\frac{e^8-1}{2}$$

(d)
$$\frac{e^8 - 1}{3}$$

Q.6. After the change of order of integration ,the double integral $\int_{0}^{8} \int_{x^{1/3}}^{2} dy dx$ becomes CUCET 2021

(a)
$$\int_{x^{1/3}}^{2} \int_{0}^{8} dx dy$$

(b)
$$\iint_{0}^{2} dx dy$$

(c)
$$\int_{8}^{0} \int_{2}^{x^{1/3}} dx dy$$

(d)
$$\int_{0}^{2} \int_{y^{3}}^{0} dx dy$$

Let $f: R \rightarrow R$ be continuous function and a > 0 then the Q.7. integral $\int_{0.0}^{a.x} \int_{0}^{x} f(y) dy dx$ equals

(a)
$$\int_{0}^{a} yf(y)dy$$

(b)
$$\int_{0}^{a} (a-y)f(y)dy$$

(a)
$$\int_{0}^{a} yf(y)dy$$
 (b)
$$\int_{0}^{a} (a-y)f(y)dy$$

(c)
$$\int_{0}^{a} (y-a)f(y)dy$$
 (d)
$$\int_{a}^{0} yf(y)dy$$