```
# Importing the required libraries
import pandas as pd
import numpy as np
import seaborn as sns #visualisation
import matplotlib.pyplot as plt #visualisation
%matplotlib inline
sns.set# Importing the required libraries
import pandas as pd
import numpy as np
import seaborn as sns #visualisation
import matplotlib.pyplot as plt #visualisation
%matplotlib inline
sns.set(color_codes=True)
                   אסטער אוובארען אידען די אידען די אידען איר
```

Loading the CSV file into a pandas dataframe. df = pd.read_csv("CARS.csv") df.head(5)

	Make	Model	Туре	Origin	DriveTrain	MSRP	Invoice	EngineSize	Cylinders	Horsepower	MPG_Cit
0	Acura	MDX	SUV	Asia	All	\$36,945	\$33,337	3.5	6.0	265	1
1	Acura	RSX Type S 2dr	Sedan	Asia	Front	\$23,820	\$21,761	2.0	4.0	200	2
2	Acura	TSX 4dr	Sedan	Asia	Front	\$26,990	\$24,647	2.4	4.0	200	2
ر ∧∟	.دم, ۵۰	,TJ.			۰,۰۰۰, ۱۳۰۰,۰۰۰ ۱۳۰۰, ۱۳۰۰, ۱۳۰۰,۰۰۰				οριτιια του. -	070	^

Removing irrelevant features df = df.drop(['Model','DriveTrain','Invoice', 'Origin', 'Type'], axis=1) df.head(5)

	Make	MSRP	EngineSize	Cylinders	Horsepower	MPG_City	MPG_Highway	Weight	Wheelbase	Length
0	Acura	\$36,945	3.5	6.0	265	17	23	4451	106	189
1	Acura	\$23,820	2.0	4.0	200	24	31	2778	101	172
2	Acura	\$26,990	2.4	4.0	200	22	29	3230	105	183
3	Acura	\$33,195	3.2	6.0	270	20	28	3575	108	186
4	Acura	\$43,755	3.5	6.0	225	18	24	3880	115	197

outo Codon Acia Boon "#22 A1E" "#20 611" 2 6 21E 10 24 220E 10E 177\nlowe CC 200

To identify the type of data df.info()

> RangeIndex: 428 entries, 0 to 427 Data columns (total 10 columns): # Column Non-Null Count Dtype ---0 Make 1 MSRP 428 non-null object 428 non-null object 2 EngineSize 428 non-null 3 Cylinders 426 non-null 4 Horsepower 428 non-null float64 float64 int64 5 MPG_City 428 non-null 6 MPG_Highway 428 non-null 7 Weight 428 non-null int64 428 non-null int64 428 non-null int64 8 Wheelbase 428 non-null int64 Length 428 non-null int64 dtypes: float64(2), int64(6), object(2)

<class 'pandas.core.frame.DataFrame'>

memory usage: 33.6+ KB

7dn Chanta Acia Baan "47E 103" "472 70E" 1 0 A 1A7 72 70 7007 00 1EC AMarda BV 0 Ada

Getting the number of instances and features df.shape

(428, 10)

Getting the dimensions of the data frame df.ndim

```
df = df.drop_duplicates(subset='MSRP', keep='first')
df.count()
    Make
                   410
    MSRP
                    410
    EngineSize
                    410
    Cylinders
                    408
    Horsepower
                    410
                    410
    MPG_City
    MPG_Highway
                    410
    Weight
                    410
    Wheelbase
                    410
    Length
                    410
    dtype: int64
# Finding the null values
print(df.isnull().sum())
    Make
                    0
    MSRP
                    0
    EngineSize
Cylinders
                    0
                    2
    Horsepower
                    0
    MPG_City
                    0
    MPG_Highway
                    0
                    0
    Weight
    Wheelbase
                    0
    Length
    dtype: int64
df.Horsepower.max()
    500
# Printing the null value rows
df[240:242]
```

 Make
 MSRP
 EngineSize
 Cylinders
 Horsepower
 MPG_City
 MPG_Highway
 Weight
 W

 247
 Mazda
 \$25,700
 1.3
 NaN
 197
 18
 25
 3053

 248
 Mazda
 \$27,200
 1.3
 NaN
 238
 18
 24
 3029

sns.FacetGrid(df, hue='MSRP', height=5).map(plt.bar, 'EngineSize', 'Horsepower').add_legend()

₽


```
# Filling the rows with the mean of the column
val = df['Cylinders'].mean()
df['Cylinders'][247] = round(val)
val = df['Cylinders'].mean()
df['Cylinders'][248]= round(val)
      <ipython-input-19-d9e0250049dd>:5: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-cc">https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-cc</a>
        df['Cylinders'][248]= round(val)
                                                          75000
# Removing the formatting
df['MSRP'] = [x.replace('$', '') for x in df['MSRP']]
df['MSRP'] = [x.replace(',', '') for x in df['MSRP']]
df['MSRP']=pd.to_numeric(df['MSRP'],errors='coerce')
                                                            84165
sns.boxplot(x=df['MSRP'])
     <matplotlib.axes._subplots.AxesSubplot at 0x7f90de5d4df0>
          25000 50000 75000 100000125000150000175000200000
Q1 = df.quantile(0.25)
Q3 = df.quantile(0.75)
IQR = Q3 - Q1
print(IQR)
     MSRP
                       19086.50
     EngineSize
                            1.55
                            2.00
     Cylinders
                           85.00
     Horsepower
     MPG\_City
                            4.00
                            5.00
     MPG_Highway
     Weight
                         872,25
     Wheelbase
                           9.00
     Length
                           16.00
     dtype: float64
sns.boxplot(x=df['MSRP'])
      <matplotlib.axes. subplots.AxesSubplot at 0x7f90de44ebe0>
```


25000 50000 75000 100000125000150000175000200000

MSRI

	MSRP	EngineSize	Cylinders	Horsepower	MPG_City	MPG_Highway	Weight	Wheelbas
count	410.000000	410.000000	410.000000	410.000000	410.000000	410.000000	410.000000	410.00000
mean	32919.021951	3.200976	5.824390	216.007317	20.039024	26.792683	3581.221951	108.16829
std	19628.241002	1.115264	1.556873	72.330689	5.280720	5.790004	766.396651	8.36563
min	10280.000000	1.300000	3.000000	73.000000	10.000000	12.000000	1850.000000	89.00000
25%	20324.750000	2.325000	4.000000	165.000000	17.000000	24.000000	3102.000000	103.00000
50%	27807.500000	3.000000	6.000000	210.000000	19.000000	26.000000	3476.000000	107.00000
75%	39411.250000	3.875000	6.000000	250.000000	21.000000	29.000000	3974.250000	112.00000
max	192465.000000	8.300000	12.000000	500.000000	60.000000	66.000000	7190.000000	144.00000

```
# Plotting a heat map
plt.figure(figsize=(10,5))
c= df.corr()
sns.heatmap(c,cmap="BrBG",annot=True)
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f90de5d4fa0>

MSRP	1	0.57	0.65	0.83	-0.47	-0.44	0.45	0.15	0.17
EngineSize	0.57	1	0.9	0.79	-0.71	-0.72	0.81	0.63	0.63
Cylinders	0.65	0.9	1	0.81	-0.69	-0.68	0.74	0.54	0.54
Horsepower	0.83	0.79	0.81	1	-0.67	-0.65	0.63	0.39	0.38
MPG_City	-0.47	-0.71	-0.69	-0.67	1	0.94	-0.73	-0.51	-0.5
MPG_Highway	-0.44	-0.72	-0.68	-0.65	0.94	1	-0.79	-0.53	-0.47
Weight	0.45	0.81	0.74	0.63	-0.73	-0.79	1	0.76	0.69
Wheelbase	0.15	0.63	0.54	0.39	-0.51	-0.53	0.76	1	0.89
Length	0.17	0.63	0.54	0.38	-0.5	-0.47	0.69	0.89	1
	MSRP	EngineSize	Cylinders	Horsepower	MPG_City	PG_Highway	Weight	Wheelbase	Length


```
# Plotting a scatter plot
fig, ax = plt.subplots(figsize=(5,5))
ax.scatter(df['Horsepower'], df['MSRP'])
plt.title('Scatter plot between MSRP and Horsepower')
ax.set_xlabel('Horsepower')
ax.set_ylabel('MSRP')
plt.show()
```


<seaborn.axisgrid.JointGrid at 0x7f90d9b91940>

 $\verb|sns.violinplot(x='EngineSize', y='MSRP', data=df, height=6)|\\$

EngineSize

sns.pairplot(df, hue='MSRP', height=2)

df.boxplot(by='MSRP', figsize=(12, 6))

✓ 12s completed at 10:41 PM