

Dr. rer. nat. Johannes Riesterer

Angewandte Mathematik

Einleitung Lean

Was ist Lean?

- Ein interaktiver Theorembeweiser und Programmiersprache.
- Wird verwendet, um mathematische Aussagen formal zu beweisen und zu verifizieren.
- Besitzt eine aktive und wachsende Community, insbesondere in der formalen Mathematik.

Curry Howard Isomorphismus

Basiert auf dem Curry-Howard-Isomorphismus. Der Curry-Howard-Isomorphismus besagt, dass logische Aussagen als Typen und Beweise als Programme betrachtet werden können. Mit anderen Worten:

- ullet Logische Aussagen \leftrightarrow Typen
- Beweise von Aussagen ↔ Programme, die zu diesen Typen gehören

Angewandte Mathematik

Einleitung Lean

Lean Installation

Lean mathlib mathlib lernen

Einleitung

Curry-Howard-Isomorphismus: Eine Beziehung zwischen Logik und Typentheorie.

Logische Aussagen entsprechen Typen, Beweise entsprechen Programmen.

- Konjunktion (∧) als Produkt-Typ
- Disjunktion (∨) als Summen-Typ
- Implikation (⇒) als Funktionstyp
- Allquantor (∀) als Produkttyp
- Existenzquantor (∃) als Summentyp

Konjunktion (\land) und Produkttyp

Definition

Die Konjunktion $A \wedge B$ entspricht einem Produkttyp $A \times B$. Ein Beweis für $A \wedge B$ ist ein Paar (a, b), wobei a ein Beweis für A und b ein Beweis für B ist.

LOGIK VS TYPES

$$A \wedge B \quad \leftrightarrow \quad A \times B$$

Beispiel:

Angenommen A = "gerade Zahl" und B = "größer als 2". Ein Beweis von $A \wedge B$ ist ein Paar aus einer geraden Zahl x und

der Eigenschaft x > 2.

Disjunktion (∨) und Summentyp

Definition

Die Disjunktion $A \lor B$ entspricht einem Summentyp A + B.

Ein Beweis für $A \lor B$ ist entweder ein Beweis für A oder ein Beweis für B.

LOGIK VS TYPES

$$A \vee B \leftrightarrow A + B$$

Beispiel:

Angenommen A = "gerade Zahl" und B = "ungerade Zahl".

Ein Beweis für $A \vee B$ ist entweder eine gerade oder eine ungerade Zahl.

Implikation (\Rightarrow) und Funktionstyp

Definition

Die Implikation $A \Rightarrow B$ entspricht einem Funktionstyp $A \rightarrow B$. Ein Beweis für $A \Rightarrow B$ ist eine Funktion, die aus einem Beweis für A einen Beweis für B konstruiert.

LOGIK VS TYPES

$$A \Rightarrow B \quad \leftrightarrow \quad A \rightarrow B$$

Beispiel:

Angenommen A = "gerade Zahl" und

B = "die Verdopplung ist auch gerade".

Ein Beweis für $A \Rightarrow B$ ist eine Funktion, die jede gerade Zahl n auf die Aussage abbildet, dass 2n auch gerade ist.

Allquantor (\forall) als Produkttyp

Definition

Der Allquantor $\forall x \in A . P(x)$ entspricht einem Produkttyp $\prod_{x:A} P(x)$.

Ein Beweis für $\forall x \in A$. P(x) ist eine Funktion, die jedem $x \in A$ einen Beweis für P(x) zuordnet.

LOGIK VS TYPES

$$\forall x \in A . P(x) \leftrightarrow \prod_{x \in A} P(x)$$

Beispiel:

"Für jede natürliche Zahl n ist $n \ge 0$ ":

$$\forall n \in \mathbb{N} . n \geq 0 \quad \Rightarrow \quad \prod_{n \in \mathbb{N}} (n \geq 0)$$

Existenzquantor (∃) als Summentyp

Definition

Der Existenzquantor $\exists x \in A . P(x)$ entspricht einem Summentyp $\sum_{x:A} P(x)$.

Ein Beweis für $\exists x \in A . P(x)$ ist ein Paar (x, Beweis für P(x)), wobei $x \in A$ und P(x) gilt.

LOGIK VS TYPES

$$\exists x \in A . P(x) \quad \leftrightarrow \quad \sum_{x \in A} P(x)$$

Beispiel:

"Es gibt eine natürliche Zahl n, die größer als 10 ist":

$$\exists n \in \mathbb{N} . n > 10 \quad \Rightarrow \quad \sum_{n \in \mathbb{N}} (n > 10)$$

