DNA Storage Toolkit: A Modular End-to-End DNA Data Storage Codec and Simulator

<u>Puru</u> Sharma

Gary Goh Yipeng

Bin Gao

Longshen Ou

Dehui Lin

Deepak Sharma

Djordje Jevdjic

Why storing data in DNA molecules?

- 1. Incredible density
 - 6-7 orders of magnitude ahead of best alternatives!

- 2. Unmatched durability
 - Thousands/millions/billions of years (vs. 3-5 years for disks/flash)
- 3. Never obsolete: R/W interfaces will only improve with time
- 4. Efficient random access
- 5. Convenient for many data-parallel & near-data computations

Storage Density Projections*

^{*}Credit: Luis Ceze & Karin Strauss, Microsoft

Key Problems with DNA Storage

- 1. Expensive R/W interfaces
 - Writing cost: \$1K \$10K/MiB, reading cost: \$10 \$10K/MiB
 - → High cost also makes research very challenging

- Takes days to write DNA, hours (to days) to read (OK for archival storage)
- → But this delay slows down research
- 3. Extremely error-prone interfaces
 - Errors are very peculiar and hard to simulate
- 4. Requires expensive equipment and wetlab expertise
- 5. No complete open-source codec available

Our DNA Storage Pipeline

Outline

- Introduction
- DNA Storage Basics
- Our Toolkit
 - Encoding
 - Simulation
 - Clustering
 - Trace Reconstruction
 - Decoding
- Conclusion

DNA Molecules

4 nucleotides

Synthetic DNA molecule

- Artificially created string of nucleotides
- No biological meaning

 log_2 | {A, C, G, T}| = 2 bits of data per nucleotide

DNA Storage Pipeline

DNA Storage Pipeline

DNA Storage Pipeline – wetlab steps

Outline

- Introduction
- DNA Storage Basics
- Our Toolkit
 - Encoding
 - Simulation
 - Clustering
 - Trace Reconstruction
 - Decoding
- Conclusion

Encoding

3 encoding schemes provided.

- i) Baseline: Introduced by Organick et al. [1]
- ii) Gini: Introduced by Lin et al. [2]
- iii) DNAMapper: Introduced by Lin et al. [2]

ii) Gini										
I[0]	I[1]		I[d-1]	l[d]		I[d+E-1]				
D[0]	D[k+0]		D[(d-1)k+0]	R[0]		R[E-1]				
D[1]	D[k+1]		D[(d-1)k+1]	R[E+0]		R[2E-1]				
D[2]	D[k+2]		D[(d-1)k+2]	R[2E+0]		R[3E-1]				
D[k-3]	D[2k-3]		D[(d)k-3]	R[(k-3)E+0]		R[(k-2)E-1]				
D[k-2]	D[2k-2]		D[(d)k-2]	R[(k-2)E+0]		R[(k-1)E-1]				
D[k-1]	D[2k-1]		D[(d)k-1]	R[(k-1)E+0]		R[(k)E-1]				
iii) DNA Mapper										
I[0]	I[1]		I[d-1]	l[d]		I[d+E-1]				
P[d+0]	P[d+1]		P[2d-1]	R[0]		R[E-1]				
P[3d+0]	P[3d+1]		P[4d-1]	R[E+0]		R[2E-1]				
P[5d+0]	P[5d+1]		P[6d-1]	R[2E+0]		R[3E-1]				
P[4d+0]	P[4d+1]		P[5d-1]	R[(k-3)E+0]		R[(k-2)E-1]				
P[2d+0]	P[2d+1]		P[3d-1]	R[(k-2)E+0]		R[(k-1)E-1]				
P[0]	P[1]		P[d-1]	R[(k-1)E+0]		R[(k)E-1]				

Wetlab

Sequencing produces many (buggy) copies of each molecule:

Clustering

Clustering

- Using edit distance for clustering is too slow.
- We can approximate using q-gram binary signatures and Hamming distance.

	CT	GA	GT	
AC GT C GA AC	0	1	1	
AC GT CC GA AC	0	1	1	Low Hamming distance
AC GT C GA AC	0	1	1	
TACCTATTCC	1	0	0	High Hamming distance

Autotuning the threshold parameters

The threshold parameters for the binary signature Hamming distance need to be tuned based on dataset.

Take a tiny sample and plot the Hamming distance for them:

Hamming Distance

GTACCAGTCGAGTAAAGC
GCCGTGCGTAAGCT
GTACAATGTCGTGTAAC
GTCATGGTCAGTAAGC
GTACAGTCCGTAAAGC
TACGTGTATAGC
GATACAGCACGTGAAGC

What is the consensus?

GTACCAGTCGAGTAAAGC

GCCGTGCGTAAGCT

GTACAATGTCGTGTAAC

GTCATGGTCAGTAAGC

GTACAGTCCGTAAAGC

TACGTGTATAGC

GATACAGCACGTGAAGC

G

- GTACCAGTCGAGTAAAGC
- GCCGTGCGTAAGCT
- GTACAATGTCGTGTAAC
- GTCATGGTCAGTAAGC
- GTACAGTCCGTAAAGC
- -**T**ACGTGTATAGC
- GATACAGCACGTGAAGC

GT

Needleman-Wunsch

Decoding

Wetlab Simulation

Sequencing produces many (buggy) copies of each molecule:

synthesized CAGATCC

Simulator?

sequenced CAGATCC

CAGATC

AAGATCCA

AGATTCC

Wetlab Simulation

We evaluate the simulation by comparing how the Trace Reconstruction module performs on the simulated data.

Our Simulation

Sequence-to-sequence problem.

Model based on basic NMT model [3].

Attention based encoder-decoder.

[Hidden layer size = 128, Greedy sampling.]

Our Simulation

The performance of the reconstruction module on our simulated data is very similar to real data.

We can evaluate later modules of this pipeline using our simulated data!

Toolkit

https://github.com/prongs1996/DNAStorageToolkit/

Conclusion

- First open end-to-end DNA storage toolkit
- Very accurate simulator for wetlab steps

Repository: https://github.com/prongs1996/DNAStorageToolkit/

Thank you! Questions?

<u>Puru</u> Sharma

Gary Goh Yipeng

Bin Gao

Longshen Ou

Dehui Lin

Deepak Sharma

Djordje Jevdjic

