

Présenté par : El Ghayati Loubna

Ghommat Khadija

PLAN

01

INTRODUCTION

02

INERTIE

03

04

AXES PRINCIPAUX ET COMPOSANTES PRINCIPALES

U4

ETUDE DES INDIVIDUS

05

VISUALISATION DES INDIVIDUS

06

INTERPRÉTATION DES INDIVIDUS ET DES VARIABLES

07

ÉVALUATION ET QUALITÉ DE REPRESENTATION

INTRODUCTION

Objectifs

- Compréhension Approfondie de la variabilité des individus.
- Identification des Individus Atypiques ou Influents.
- Projection dans un Espace de Dimensions Réduites.

INTRODUCTION

Étapes:

- Standardisation des Données
- Calcul de la Matrice d'inertie
- Calcul des Vecteurs et Valeurs Propres
- Choix des Composantes Principales
- Visualisation et interpretation

soit
$$N = \{x1, ..., xi, ..., xn\}$$

Nuage de points associé aux données

Centre de gravité du nuage N:

$$g = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$

représente la dispersion du nuage d'individus par rapport à son centre de gravité.

La formule mathématique : $I = \sum mi \cdot ||GMi||^2$, i=1....n où :

- mi : le poids d' individu,
- GMi: la distance entre chaque individu et le centre G.

La matrice d'inertie:

$$M = \sum_{i=1}^{i=n} m_i GM_i \cdot GM_i'$$

GMi: représente le vecteur de position de chaque individu par rapport G

Lorsque les variables sont centrées:

$$I = \sum_{j=1}^{j=p} V(X_j)$$

le produit $GM_i \cdot GM_i$ s'exprime par la relation:

$$GM_{i} \cdot GM_{i}^{'} = \begin{pmatrix} x_{i1}^{2} & x_{i1}x_{i2} & \cdots & x_{i1}x_{ip} \\ x_{i2}x_{i1} & x_{i2}^{2} & \cdots & x_{i2}x_{ip} \\ \vdots & \vdots & & \vdots \\ x_{ip}x_{i1} & \cdots & \cdots & x_{ip}^{2} \end{pmatrix}$$

$$\sum_{i=1}^{i=n} m_i G M_i \cdot G M_i' = \sum_{i=1}^{i=n} m_i \begin{pmatrix} x_{i1}^2 & x_{i1} x_{i2} & \cdots & x_{i1} x_{ip} \\ x_{i2} x_{i1} & x_{i2}^2 & \cdots & x_{i2} x_{ip} \\ \vdots & \vdots & \ddots & \vdots \\ x_{ip} x_{i1} & \cdots & \cdots & x_{ip}^2 \end{pmatrix} = \begin{pmatrix} V(X_1) & \sum_{i=1}^{i=n} m_i x_{i1} x_{i2} & \cdots & \sum_{i=1}^{i=n} m_i x_{i1} x_{ip} \\ \sum_{i=1}^{i=n} m_i x_{i2} x_{i1} & V(X_2) & \cdots & \sum_{i=1}^{i=n} m_i x_{i2} x_{ip} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{i=1}^{i=n} m_i x_{ip} x_{i1} & \cdots & \cdots & V(X_p) \end{pmatrix}$$

Nous constatons que la trace de cette matrice est égale à l'inertie de système :

$$Tr(M) = \sum_{j=1}^{p} V(X_j)$$

or que La trace d'une matrice est égale à la somme des valeurs propres de la matrice:

$$Tr(M) = \sum_{j=1}^{p} V(X_j) = I = \sum_{j=1}^{p} \lambda_j$$

l'inertie est une generalisation de la notion de variance

• les points sont proches les unes des autres. Cela signifie qu'il y a une faible inertie.

 moyenne inertie :
les points sont éloignés mais pas de manière excessive.

Positionnement des individus:

Principe : Construire un système de représentation de dimension réduite (q << p) qui préserve les distances entre les individus.

• Le choix de la distance entre individus :

la distance euclidienne entre deux individus s'écrit:

$$d^{2}(i,i') = \sum_{j=1}^{p} (x_{ij} - x_{i'j})^{2}$$

Un critère global: la somme des distances entre l'ensemble des individus pris deux à deux.

• Inertie totale : mesure la dispersion totale des données.

mesure la quantité d'information disponible dans les données.

$$I_p = \frac{1}{n} \sum_{i=1}^n d^2(i,G)$$

si les données sont centrées réduites :

$$N^* = \{x_1^*, ..., x_i^*, ..., x_n^*\}$$

où **p** est le nombre de variables.

Centre de gravité : $g^* = 0$

Inertie totale : $I(N^*, 0) = p$

• Les valeurs propres d'une matrice sont des mesures de l'importance des directions dans lesquelles les données sont projetées.

• Rangeons celles-ci par ordre décroissant et sélectionnons les plus fortes.

$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p$$

• Le taux de restitution de l'information dans un plan: $\tau = \frac{\lambda_1 + \lambda_2}{\sum \lambda_i} \cdot 100$

Premier axe principal:

1. On cherche l'axe PC1 passant le mieux possible au milieu du nuage N*:

on minimisant l'inertie du nuage N* par rapport à l'axe PC1

$$I(N, \Delta_1) = \frac{1}{n} \sum_{i=1}^n d^2(x_i, y_i)$$

Premier axe principal:

2. On cherche l'allongementdu nuage N*:

maximisant l'inertie du nuage N * projeté sur l'axe PC1 :

$$I(\{y_1,...,y_n\},0) = \frac{1}{n} \sum_{i=1}^n d^2(y_i,0)$$

Premier axe principal:

d'après le théorème de Pythagore

$$d^{2}(x_{i},0) = d^{2}(y_{i},0) + d^{2}(x_{i},y_{i})$$

$$\frac{1}{n}\sum_{i=1}^{n}d^{2}(x_{i},0) = \frac{1}{n}\sum_{i=1}^{n}d^{2}(y_{i},0) + \frac{1}{n}\sum_{i=1}^{n}d^{2}(x_{i},y_{i})$$

Inertie totale = p

Inertie expliquée par PC1

Maximiser

Inertie résiduelle

Minimiser

Premier axe principal:

coordonnée de y (i) sur l axe PC1:

produit scalaire entre les vecteurs Xi * et u1.

Premier axe principal:

- L'axe PC1 traverse le centre de gravité 0 du nuage de points N.
- L'axe PC1 est engendré par le vecteur normé u1, vecteur propre de la matrice d'Inertie associé à la plus grande valeur propre λ1.
- L'inertie du nuage projeté est égale à λ1.
- La part d'inertie expliquée par le premier axe principal PC1 est égale à λ1 / Ip.

Deuxième axe principal:

- On recherche le deuxième axe principal orthogonal à PC1 et passant le mieux possible au milieu du nuage.
- Il est engendré par le vecteur normé u2.

- La part d'inertie expliquée par le deuxième axe principal PC2 est égale à λ2/Ip.
- la part de variance expliquée par les deux premières composantes principales = $(\lambda 1 + \lambda 2)/Ip$.

COMPOSANTES PRINCIPALES

• Lorsque le plan est défini, il reste à donner les diverses coordonnées. Pour cela, on utilise les relations:

• abscisse
$$\alpha_i = GM_i \cdot u_1$$

• ordonnée $\beta_i = GM_i' \cdot u_2$

Patient	Humidity	Temperature	Step count	Stress Level
John	1394	11.57	80.57	66
Jane	353	21.63	90.63	115
Alice	1334	16.12	85.12	66
Bob	906	15.32	84.32	77
Mary	1290	11.65	80.65	74
Michael	1274	23.97	92.97	165
Emily	939	18.19	87.19	0
David	1732	19.95	88.95	99
Olivia	65	24.52	93.52	149
Daniel	1047	16.23	85.23	77
Sophia	56	17.39	86.39	11
Ethan	1033	10.32	79.32	32
Ava	1467	27.42	96.42	155
Noah	584	16.95	85.95	58
Mia	374	28.29	97.29	171

Positionnement des individus (2 variables):

Quelles sont les individus qui se ressemblent?

Quelles sont les individus qui se dissemblent?

Patient	Temperature	Stress Level
John	11.57	66
Jane	21.63	115
Alice	16.12	66
Bob	15.32	77
Mary	11.65	74
Michael	23.97	165
Emily	18.19	0
David	19.95	99
Olivia	24.52	149
Daniel	16.23	77
Sophia	17.39	11
Ethan	10.32	32
Ava	27.42	155
Noah	16.95	58
Mia	28.29	171

Positionnement des individus (2 variables):

Ethan	10.32	32
Mia	28.29	171
John	11.57	66
Mary	11.65	74

- Les variables niveau de Stress et Temperature sont liées.
- «John » et « Mary » ont le même profil .
- « Ethan » et « Mia » ont des profils opposés.

Positionnement des individus (p>3):

- Quelles sont les individus qui se ressemblent?
- Quelles sont les individus qui se dissemblent?

- Impossible de créer un nuage à « p » dimensions
- On pourrait croiser les variables 2 à 2
- Très difficile de surveiller plusieurs cadrans en même temps
- Ce type de représentation n'est utile que pour effectuer un diagnostic rapide et repérer les points atypiques.
- Ex: Ava a un niveau d'humidité élevé, une température très élevée, un nombre de pas très élevé et un niveau de stress très élevé.
- Emily a un niveau d'humidité moyen, une température modérée, un nombre de pas élevé et un niveau de stress très bas.

Standardisation des données:

	Moyenne	Ecart-type
Humidity	923.2	524.824
Temperature	18.634667	5.604331
Step count	87.634667	5.604331
Stress Level	87.666667	54.110557

Patient	Humidity	Temperature	Step count	Stress Level
John	0.897	-1.261	-1.261	-0.400
Jane	-1.086	0.534	0.534	0.505
Alice	0.783	-0.449	-0.449	-0.400
Bob	-0.033	-0.591	-0.591	-0.197
Mary	0.699	-1.246	-1.246	-0.253
Michael	0.668	0.952	0.952	1.429
Emily	0.030	-0.079	-0.079	-1.620
David	1.541	0.235	0.235	0.209
Olivia	-1.635	1.050	1.050	1.133
Daniel	0.236	-0.429	-0.429	-0.197
Sophia	-1.652	-0.222	-0.222	-1.417
Ethan	0.209	-1.484	-1.484	-1.029
Ava	1.036	1.568	1.568	1.244
Noah	-0.646	-0.301	-0.301	-0.548
Mia	-1.046	1.723	1.723	1.540

Matrice d'inertie :

	0.93333	-0.24432	-0.24432	0.00639
T /\T Zala\\ /\T Zala\\	-0.24432	0.93333	0.93333	0.72057
I = (X*)'(X*) =	-0.24432	0.93333	0.93333	0.72057
	0.00639	0.72057	0.72057	0.93333

Vecteurs et Valeurs propres :

-0.174	0.946	-0.274	0.000
0.591	-0.003	-0.388	0.707
0.591	-0.003	-0.388	-0.707
0.520	0.325	0.790	0.000

Valeurs propres	Variance	Variance cumulée
2.572	68.88	68.88
0.942	25.10	93.98
0.224	6,01	99.99
0.00	0.01	100

Les Axes principales :

on tri les valeurs propres par ordre décroissant

$$\lambda_1 > \lambda_2 > \lambda_3 > \lambda_4$$

Le taux de restitution:

$$\tau = \frac{\lambda_1 + \lambda_2}{\sum \lambda} = 93.95\%$$

$$I = V(X1) + V(X2) + V(X3) + V(X4) = \lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 = 3,74 \quad (4).$$

- la projection de deux dimension que l'on va créer représente bien le nuage de points.
- Si le taux de restitution est insuffisant, on ajoute un axe ou on réduit le nombre de variables que l'on soumet à l'analyse. Nous comprenons mieux la nécessité d'étudier les diverses corrélations entre les variables.

25

Les Axes principales :

• La première composante explique environ 68.9% de la variance totale.

$$\frac{\lambda_1}{I_p} = 68,88\%$$

• La deuxième composante explique environ 25.1% de la variance totale

$$\frac{\lambda_2}{I_p} = 25.10\%$$

• L'inertie résiduelle représente 6.0% de la variance totale.

Les scores des individus:

• Les scores des individus sont les valeurs des composantes principales sur les individus :

- Les patients avec des scores F1 positifs sont similaires entre eux selon la première composante principale, et ils sont différents des patients avec des scores F1 négatifs.
- les patients avec des scores F2 positifs sont similaires entre eux selon la deuxième composante principale.

Patient	F1	F2
John	-1.856	0.727
Jane	1.084	-0.867
Alice	-0.875	0.613
Bob	-0.796	-0.091
Mary	-1.727	0.587
Michael	1.752	1.090
Emily	-0.941	-0.497
David	0.118	1.524
Olivia	2.116	-1.185
Daniel	-0.651	0.162
Sophia	-0.711	-2.022
Ethan	-2.326	-0.127
Ava	2.320	1.374
Noah	-0.528	-0.787
Mia	3.021	-0.501

Visualisation et interpretation:

- John et Mary sont bien representé par la première composante et ont des caractéristiques communes.
- Ava et David ont la plus grande influence sur la deuxième composante, tandis que Mia et Ethan ont une plus grande influence sur la première composante.

Contributions des individus:

La contribution relative d'un individu **i** à la formation de la composante principale **k**:

$$CTR_{ik} = \frac{F_{ik}^{2}}{n \times \lambda_{k}}; \sum_{i=1}^{n} CTR_{ik} = 1$$

- certains individus ont une grande influence sur la variance totale expliquée par la PC1.
- D'autres individus ont une grande influence sur la variance totale expliquée par la PC2.
- Ces individus ont des caractéristiques ou des comportements qui les distinguent des autres.

Patient	Contribution PC1 (%)	Contribution PC2 (%)
John	8.93	3.76
Jane	3.05	5.35
Alice	1.99	2.67
Bob	1.64	0.06
Mary	7.73	2.45
Michael	7.96	8.45
Emily	2.29	1.76
David	0.04	16.52
Olivia	11.61	9.99
Daniel	1.10	0.19
Sophia	1.31	29.07
Ethan	14.02	0.11
Ava	13.96	13.43
Noah	0.72	4.41
Mia	23.65	1.78

Qualités de la représentation des individus:

• La qualité de la représentation d'un individu i par la composante principale k :

$$QLT(S_{i}, CP_{k}) = \frac{(Score de S_{i} selon CP_{k})^{2}}{\sum_{i} (Score de S_{i} selon CP_{i})^{2}} = \frac{(Score de S_{i} selon CP_{k})^{2}}{Inertie(S_{i})}$$

• Les qualités de représentation sont additives. Par exemple, la qualité de représentation d'un individu i par le plan (CP1, CP2) est donnée par :

$$QLT(S_{i}, CP_{1}; CP_{2}) = \frac{(Score de S_{i} selon CP_{1})^{2} + (Score de S_{i} selon CP_{2})^{2}}{\sum_{l} (Score de S_{i} selon CP_{l})^{2}}$$

Qualités de la représentation des individus:

QLT(S1,CP1) =
$$\frac{(-1.856)^2}{(-1.856)^2 + (0.727)^2}$$

$$QLT(S1,CP1) = 0.867$$

• Plus la valeur est proche de 1, meilleure est la qualité de représentation.

QLT(S1,CP1;CP2) =
$$\frac{(-1.856)^2 + (0.727)^2}{(-1.856)^2 + (0.727)^2}$$

$$QLT(S1,CP1;CP2) = 1$$

Patient	F1	F2
John	-1.856	0.727
Jane	1.084	-0.867
Alice	-0.875	0.613
Bob	-0.796	-0.091
Mary	-1.727	0.587
Michael	1.752	1.090
Emily	-0.941	-0.497
David	0.118	1.524
Olivia	2.116	-1.185
Daniel	-0.651	0.162
Sophia	-0.711	-2.022
Ethan	-2.326	-0.127
Ava	2.320	1.374
Noah	-0.528	-0.787
Mia	3.021	-0.501

Qualités de la représentation des individus:

• la plupart des individus sont bien représentés par la PC1, tandis que quelques individus (David, Sophia, et Noah) sont mieux représentés par la PC2.

• la PC1 capture une variabilité générale qui est commune à la plupart des individus, tandis que la PC2 capture une variabilité spécifique qui n'est pertinente que pour certains individus.

Patient	PC1	PC2
John	0.867	0.133
Jane	0.609	0.390
Alice	0.670	0.329
Bob	0.987	0.012
Mary	0.896	0.103
Michael	0.720	0.279
Emily	0.781	0.218
David	0.005	0.994
Olivia	0.761	0.238
Daniel	0.941	0.058
Sophia	0.110	0.889
Ethan	0.997	0.002
Ava	0.740	0.259
Noah	0.309	0.690
Mia	0.973	0.0267

Étude de variable

L'objectif d'étudier les variables c'est interpréter les relations entre les variables.

Rappel des études des variables par ACP

- Standardisation des Données
- Calcul de la Matrice de Covariance ou de Corrélation
- Calcul des Vecteurs et Valeurs Propres
- Choix des Composantes Principales
- Projection des Données sur les Composantes Principales

Cercle de corrélation

la cercle de corrélation est un outil graphique utilisé en Analyse en Composantes Principales (ACP) qui peut fournir une interprétation visuelle des relations entre les variables.

Critéres d'interprétations du cercle

- 1.Position des Variables par rapport aux axe des composantes
- 2. Position des variables entre eux
- 3.Orientation des flèches des variables
- 4 la longeur des fléches des variables

Cercle de corrélation

Cas 3

cp1

pas de corrélations

les variables ne sont pas bien présentées

Cas 1

Forte corrélation positive

forte corrélation positive entre les variables et 1ere composantes principales

forte corrélation positive entre les deux variables

corrélations faible

les variables sont bien présentées

forte corrélation négative forte corrélatios faible entre les deux variables

forte corrélatios entre la variable bleu et la 1ere composantes principale

Cercle de corrélation

intérprétations: individus et variables

Corrélation entre les variables et les CP

- x1 et x2 : forte corrélation positive avec F1
- x3 et x4 : forte corrélation négative avec F1
- Forte corrélation négative entre x3 et F2

Corrélation entre les variables

- forte corrélation positive entre x1 et x2
- forte corrélation négative entre x1 et x4
- Nulle corrélation entre x1 et x3

les résultats de 15 enfants âgés de 10 ans ont été regroupés à partir de 6 sous-tests du WISC (scores de 0 à 5). Les variables examinées comprennent

• WISC : Échelle d'intelligence de Wechsler pour enfants

CUB: CubesPUZ: PuzzlesCAL: Calcul

• MEM : Mémoire

COM : CompréhensionVOC : Vocabulaire

CUB	PUZ	CAL	MEM	СОМ	VOC	ID
1.604	2.135	1.155	-2.521	-0.866	-0.722	1.0
0.935	0.743	0.514	-0.42	0.0	-0.722	2.0
-0.401	-0.65	-0.128	0.63	0.0	0.181	3.0
1.604	0.743	1.797	0.63	1.732	1.083	4.0
0.935	1.439	0.514	-0.42	0.866	0.181	5.0
-0.401	-1.346	-0.77	0.63	-0.866	-0.722	6.0
0.267	0.743	1.155	-0.42	1.732	1.986	7.0
-1.069	0.046	-0.77	1.68	0.866	1.083	8.0
-1.737	-0.65	-1.412	0.63	-0.866	-1.625	9.0
-0.401	-1.346	-0.77	0.63	-0.866	-1.625	10.0
-1.069	0.046	-0.77	-1.47	-1.732	-0.722	11.0
0.935	0.046	1.155	-0.42	-0.866	0.181	12.0
0.267	0.046	0.514	0.63	0.0	1.083	13.0
-1.069	-1.346	-1.412	0.63	0.0	0.181	14.0
-0.401	-0.65	-0.77	-0.42	0.866	0.181	15.0

WISC	CUB	PUZ	CAL	MEM	COM	VOC
Il	5	5	4	0	1	1
I2	4	3	3	2	2	1
I3	2	1	2	3	2	2
I4	5	3	5	3	4	3
I 5	4	4	3	2	3	2
I6	2	0	1	3	1	1
I 7	3	3	4	2	4	4
18	1	2	1	4	3	3
19	0	1	0	3	1	0
I10	2	0	1	3	1	0
I11	1	2	1	1	0	1
I12	4	2	4	2	1	2
I13	3	2	3	3	2	3
I14	1	0	0	3	2	2
I15	2	1	1	2	3	2

En appliquant ACP:

Matrice de corrélation :

	Cub	Puz	Cal	Mem	Com	Voc
Cub	1.000	0.732	0.920	-0.449	0.308	0.273
Puz	0.732	1.000	0.750	-0.614	0.281	0.285
Cal	0.920	0.750	1.000	-0.368	0.407	0.486
Mem	-0.449	-0.614	-0.368	1.000	0.303	0.202
com	0.308	0.281	0.407	0.303	1.000	0.782
Voc	0.273	0.285	0.486	0.202	0.781	1.000

on choisit les 2 valeurs propres pour déterminer les composantes principales car elles expliquent 84% de la variance des données

Vecteurs propres et leur variance expliqué

	Val. propr	% Total	Cumul	Cumul
		variance	Val. propr	%
1	3,2581	54,3020	3,2581	54,3020
2	1,8372	30,6194	5,0953	84,9214
3	0,4430	7,3831	5,5383	92,3044
4	0,2538	4,2292	5,7920	96,5337
5	0,1679	2,7990	5,9600	99,3327
6	0,0400	0,6673	6,0000	100,0000

On fait la projection des variables sur le nouveau plan composée par la 1^{re} et la 2éme composante.

Tableau de corrélation entre les variables

	CUB	PUZ	CAL	MEM	COM	VOC
CUB	1,0000	0,7320	0,9207	-0,4491	0,3086	0,2735
PUZ	0,7320	1,0000	0,7510	-0,6143	0,2814	0,2850
CAL	0,9207	0,7510	1,0000	-0,3685	0,4077	0,4869
MEM	-0,4491	-0,6143	-0,3685	1,0000	0,3032	0,2023
COM	0,3086	0,2814	0,4077	0,3032	1,0000	0,7819
VOC	0,2735	0,2850	0,4869	0,2023	0,7819	1,0000

CUB, PUZ et CAL sont fortement corrélées entre elles.

la résolution de problèmes visuellement.

Les variables COM et VOC sont fortement corrélées entre elles

la compréhension du langage et le vocabulaire.

MEM est négativement corrélée à CUB, PUZ et CAL

Saturations des variables

il s'agit dcoefficients de corrélation entre les vriables et les composantes principales.

Tableau de saturation entre les variables:

	Saturation Fact. 1	Saturation Fact. 2
CUB	-0,8970	0,2018
PUZ	-0,8652	0,2883
CAL	-0,9458	0,0390
MEM	0,4449	-0,7861
COM	-0,5382	-0,7627
VOC	-0,5683	-0,7156

- PUZ et cub et cal sont corrélées négativement avec la 2e F2
- faible corrélation positive entre Mem et F2
- Mem , Voc et Mem sont corrélés négativement avec F1

Visualisation des individus

tableau des scores des individus

	ID	PC1	PC2
0	1.0	-2.562	3.057
1	2.0	-0.966	0.937
2	3.0	0.676	-0.662
3	4.0	-2.797	-1.464
4	5.0	-1.842	0.121
5	6.0	1.889	0.135
6	7.0	-2.34	-1.549
7	8.0	0.728	-2.205
8	9.0	2.84	0.542
9	10.0	2.173	0.612
10	11.0	1.294	2.037
11	12.0	-0.995	0.818
12	13.0	-0.61	-0.873
13	14.0	2.015	-0.947
14	15.0	0.496	-0.559

- la résolution de problèmes visuellement.
- la compréhension du langage et le vocabulaire.
- grandes capacité de mémorisation

Évaluation et Qualité de Représentation

Contribution

La contribution des variables se réfère à l'impact ou à l'influence de chaque variable sur la formation des composantes principales.

Tableau de contribution les variables:

	Contribution	Contribution	
	Fact.1	Fact.2	
CUB	0,25	0,02	
PUZ	0,23	0,05	
CAL	0,27	0,00	
MEM	0,06	0,34	
COM	0,09	0,32	
VOC	0,10	0,28	

- Plus la contribution est élevée, plus la variable est importante pour la formation de cette composante principale.
- "cub" avec une contribution de 0.25 à F1 et 0.02 à F2, cela signifie que le "cub" a un impact relativement fort sur la direction de F1 par rapport à F2.

Évaluation et Qualité de Représentation

Visualisation des individus

tableau des scores et contributions des individus

	Score	Score	Contribution	Contribution
	Fact. 1	Fact. 2	Fact.1	Fact.2
Il	-2,5616	3,0568	13,43	33,91
I2	-0,9661	0,9370	1,91	3,19
I3	0,6765	-0,6624	0,94	1,59
I4	-2,7969	-1,4636	16,01	7,77
I5	-1,8423	0,1211	6,95	0,05
I6	1,8891	0,1350	7,30	0,07
I7	-2,3396	-1,5487	11,20	8,70
I8	0,7275	-2,2054	1,08	17,65
I9	2,8400	0,5423	16,50	1,07
I10	2,1733	0,6117	9,66	1,36
I11	1,2940	2,0373	3,43	15,06
I12	-0,9947	0,8181	2,02	2,43
I13	-0,6099	-0,8730	0,76	2,77
I14	2,0150	-0,9470	8,31	3,25
I15	0,4957	-0,5591	0,50	1,13

- Les individus proches du centre de cercle présentent une contribution faible sur les composantes.(15,3,13)
- Les individus loins de cercle présentent une contribution fortes sur les composantes.(1,11)
- les individus qui ont une forte valeurs pour une variables qui est fortement corrélé avec une cp , ont une contribution élevé à cette composantes(4 et 7)

Évaluation et Qualité de Représentation

Qualités de représentions des globales

c'est la part de l'inertie totale Ig qui est expliquée par les axes principaux qui ont été retenus. Elle permet de mesurer la précision et la pertinence de l'ACP.

Qualités de représentions des individus

La dispersion des points dans le nuage peut indiquer la variabilité des données représentées par les composantes principales. Si les points sont dispersés sur un large spectre, cela suggère que les individus sont bien représentés par les composantes principales, capturant ainsi la variabilité des données.

