MAE 5776

ANÁLISE MULTIVARIADA

Júlia M Pavan Soler

pavan@ime.usp.br

Análise Multivariada

$$Y_{n\times p} = (Y_{ij}) \in \Re^{n\times p}$$

- ✓ Estatísticas descritivas multivariadas, Episóides de Concentração, Boxplot Bivariado
- ✓ Distribuição N_p, Distribuições Amostrais (T² e W_p)

 Decomposições: SS_T e Y_{nxp}
- \checkmark N_p(μ_g ; Σ_g): Inferências sobre μ_g (T², MANOVA, ICS, Correções para Múltiplos testes

Técnicas Multivariadas:

- √ 1. Análise de Componentes Principais (CP)
- ✓ 2. Escalonamento Multidimensional (CoP)
- ✓ 3. Análise de Correspondência
- ✓ 4. Análise Fatorial (Fatores Comuns e Específicos)

Quais são os critérios de otimização nessas reduções de dimensionalidade (não supervisionada)?

5. Análise Discriminante (MANOVA)

- Análise de Agrupamento
- Análise de Correlação Canônica

✓ Regra Discriminante Linear de Fisher (Caso G=2, Caso G>2)

$$Y_{n\times p}; n = \sum\nolimits_{g=1}^G n_g; \quad Y_{ig\ p\times 1} \overset{iid}{\sim} \left(\mu_g, \Sigma\right) \Longrightarrow X_i = l'Y_{ig} \text{ "próximo" ao valor de seu escore}$$

Critério de Maximização:
$$l = \arg\max\frac{l'\Sigma_B l}{l'\Sigma l}; \ \lambda_j = \frac{l_j'\Sigma_B l_j}{l_j'\Sigma l_j}, \ l_j'\Sigma l_j = 1 \text{ G=2: solução explícita para le solução exp$$

em geral, obtidas da MANOVA

Métodos Probabilísticos de Análise Discriminante:

Regra de Classificação de Bayes

Regressão Logística

MANOVA – Um fator em G níveis

$$\begin{split} Y_{ig} &= \mu + \tau_g + e_{ig}; \quad \sum_{g=1}^{G} \tau_g = 0; \quad e_{ig} \stackrel{iid}{\sim} N_p \left(\mu_g, \Sigma \right) \\ H_0 &: \quad \mu_1 = \mu_2 = \dots = \mu_G = \mu_{p \times 1} \end{split} \qquad Y_{ig} \stackrel{p \times 1}{\rightarrow} = \overline{Y} + \left(\overline{Y}_g - \overline{Y} \right) + \left(Y_{ig} - \overline{Y}_g \right) \end{split}$$

F.V.	g.l.	Matriz de SQPC
Grupo	G-1	$H_{p \times p} = S_B = \sum_{g=1}^G n_g \left(\overline{Y}_g - \overline{Y}\right) \left(\overline{Y}_g - \overline{Y}\right)' = \text{B estimador de } \Sigma_B$
Resíduo	n-G	$E_{p\times p} = S_W = \sum_{g=1}^G \sum_{i=1}^{n_g} \left(Y_{ig} - \overline{Y}_g\right) \left(Y_{ig} - \overline{Y}_g\right)' \Rightarrow S_c = S_W / (n-G)$ estimador de Σ sob homocedastcidade

TOTAL n-1
$$T = H + E = S_T = \sum_{g=1}^{G} \sum_{i=1}^{n_g} (Y_{ig} - \overline{Y}) (Y_{ig} - \overline{Y})' \implies S_u = S_T / (n-1)$$

MANOVA - Fontes de Variação

Dados simulados: Delineamento com População Estratificada em Muitos Grupos (G=15) e p=2

$$Y_{n \times p}; Y_{ig} \sim N_p(\mu_g; \Sigma)$$

⇒ Delineamento com um Fator (Grupo, Tratamento) em 15 níveis

$$S_{T} = S_{B} + S_{W}$$

S_B: Fonte de Variabilidade Entre grupos (elipse maior)

S_w: Fonte de Variabilidade Dentro de grupos (elipses menores)

Situação ideal para a AD:

- Efeito de Tratamento: "S_B>S_W"
- Poder da análise Multivariada:
 altas covariâncias e de sinais
 opostos nos componentes de variação S_B e S_W

Maximização de Formas Quadráticas

✓ Critério de Maximização em Análise de CP (Uma forma Quadrática)

 $m \le min(n,p)$

$$Y_i^{iid}(\mu, \Sigma) \Rightarrow X_i = l'Y_i; \quad l_{p \times 1} = \arg\max \frac{l'S_u l}{l'l}; \quad \lambda_j = \frac{l_j'S_u l_j}{l_j' l_j}, \quad l_j' l_j = 1$$

Obter os autovalores e autovetores solução de:

$$\lambda; |S_u - \lambda I_p| = 0, \quad l; S_u l = \lambda l$$

✓ Critério de Maximização em AD de Fisher (Duas formas Quadráticas)

 $m \le min(n,p,G-1)$

$$Y_{ig} \overset{iid}{\sim} (\mu_{g}, \Sigma), n = \sum_{g=1}^{G} n_{g} \Rightarrow X_{i} = l'Y_{i}; \quad l_{p \times 1} = \arg\max \frac{l'Bl}{l'S_{c}l}; \quad \lambda_{j} = \frac{l_{j}'Bl_{j}}{l_{j}'S_{c}l_{j}}, \quad l_{j}'S_{c}l_{j} = 1$$

Obter os autovalores e autovetores solução de:

$$\lambda; |B - \lambda S_c| = 0 \Rightarrow |S_c^{-1}B - \lambda I_p| = 0, \quad l; \quad S_c^{-1}Bl = \lambda l$$

$$l? \Rightarrow |S_c^{-1/2}BS_c^{-1/2} - \lambda I_p| = 0, \quad l_s; \quad S_c^{-1/2}BS_c^{-1/2}l_s = \lambda l_s; \quad l = S_c^{-1/2}l_s$$

Delineamento Tabela de MANOVA Aleatorizado com estrutura en com Completamente estrutura Fatorial de Grupos <u>(G</u>≥_{axb) e r} réplicas (balanceado)

F.V. g.l.

Matriz de SSCP

Fator 1

$$HF1 = B_1 = \sum_{j=1}^{a} br \left(\overline{Y}_{j.} - \overline{Y}\right) \left(\overline{Y}_{j.} - \overline{Y}\right)'$$

Fator 2

$$HF2 = B_2 = \sum_{k=1}^{b} ar \left(\overline{Y}_{.k} - \overline{Y} \right) \left(\overline{Y}_{.k} - \overline{Y} \right)'$$

Interação (a-1)(b-1)

$$HInt = B_{12} = \sum_{i=1}^{a} \sum_{k=1}^{b} r \left(\overline{Y}_{jk} - \overline{Y}_{j.} - \overline{Y}_{.k} + \overline{Y} \right) \left(\overline{Y}_{jk} - \overline{Y}_{j.} - \overline{Y}_{.k} + \overline{Y} \right)'$$

Resíduo

$$E = \sum_{i=1}^{a} \sum_{k=1}^{b} \sum_{i=1}^{r} (Y_{ijk} - \overline{Y}_{jk}) (Y_{ijk} - \overline{Y}_{jk})'$$

TOTAL

$$HF1 + HF2 + HInt + E = \sum_{i=1}^{a} \sum_{k=1}^{b} \sum_{i=1}^{r} (Y_{ijk} - \overline{Y}) (Y_{ijk} - \overline{Y})'$$

AD-Fisher e MANOVA

Análise Discriminante (Linear de Fisher) para G grupos

Obter as direções ótimas para discriminar os G grupos

Explorar a flexibilidade do Delineamento Fatorial axb (=G grupos)

Decomposição da Soma de Quadrados e Produtos Cruzados (ortogonalidade):

$$B = B_1 + B_2 + B_{12}$$

Decomposição equivalente do número de graus de liberdade:

$$G-1 = (a-1) + (b-1) + (a-1)*(b-1)$$

componentes da "Covariância" ENTRE os G grupos

observações, mais do que na
cão

cão

cão

ciassificação de vetores reducionistas

Problema Geral de Classificação

Caso de Duas Populações (G=2)

Suposição: Uma população está estratificada em 2 subpopulações, τ 1 e τ 2, e de cada subpopulação é retirada uma amostra aleatória de tamanho n1 e n2, respectivamente.

Com base na amostra, para **encontrar uma regra de discriminação** de observações de cada população, uma alternativa é particionar o espaço amostral Ω em duas regiões, R1 e R2, que favoreçam às populações τ 1 e τ 2, respectivamente, tal que, para uma observação Y_0 tem-se que, se

$$Y_0 \in R_1 \Rightarrow$$
 a observação é de τ 1

$$Y_0 \in R_2 \Rightarrow$$
 a observação é de $\tau 2$

Problema Geral de Discriminação/Classificação - Solução Probabilística

Caso de Duas Populações

Probabilidades a priori:
$$\tau_1 \Rightarrow p_1(y)$$
 $\tau_2 \Rightarrow p_2(y)$ $p_1 + p_2 = 1$

Função densidade de probabilidades:
$$\tau_1 \Rightarrow f_1(y)$$
 $\tau_2 \Rightarrow f_2(y)$

Probabilidade de Classificação Errada:
$$\begin{cases} P(2\,|\,1) = P(Y_i \in R_2\,|\,\tau_1) = \int\limits_{R_2 = \Omega - R_1} f_1(y)\,dy \\ P(1\,|\,2) = P(Y_i \in R_1\,|\,\tau_2) = \int\limits_{R_1 = \Omega - R_2} f_2(y)\,dy \end{cases}$$

$$P(1|2) = P(Y_i \in R_1 | \tau_2) = \int_{R_1 = \Omega - R_2} f_2(y) dy$$

$$P(1|1) = P(Y_i \in R_1 | \tau_1) = \int_{R_1 = \Omega - R_2} f_1(y) dy$$

Probabilidade de Classificação Correta:
$$\begin{cases} P(1|1) = P(Y_i \in R_1 \mid \tau_1) = \int\limits_{R_1 = \Omega - R_2} f_1(y) \, dy \\ P(2|2) = P(Y_i \in R_2 \mid \tau_2) = \int\limits_{R_2 = \Omega - R_1} f_2(y) \, dy \end{cases}$$

Problema Geral de Classificação - Caso de Duas Populações

<u>Notação</u>

Probabilidades de Classificação

Custo de Classificação

	Predito			
Verdade	τ_1	τ_2		
τ_1	0	c(2 1)		
τ_2	c(1 2)	0		

$$P(1,1) = P(1|1)p_1$$
 $P(2,1) = P(2|1)p_1$

$$P(1,2) = P(1|2)p_2$$
 $P(2,2) = P(2|2)p_2$

Logo, o custo esperado de classificação errada (*CECE*) é dado por:

$$CECE = c(2|1)P(2,1) + c(1|2)P(1,2)$$

= $c(2|1)P(2|1)p_1 + c(1|2)P(1|2)p_2$

Problema Geral de Classificação - Caso de Duas Populações

Minimizar o custo esperado de classificação errada:

$$CECE = c(2|1) P(2|1) p_1 + c(1|2) P(1|2) p_2$$

$$= c(2|1) p_1 \int_{R_2} f_1(y) dy + c(1|2) p_2 \int_{R_1} f_2(y) dy$$

$$= c(2|1) p_1 + \int_{R_1} [c(1|2) p_2 f_2(y) - c(2|1) p_1 f_1(y)] dy$$

$$\leq 0 \Rightarrow \text{mínimo } CECE$$
Somando e subtraindo
$$c(2|1) p_1 \int_{R_1} f_1(y) dy \text{ tem-se:}$$

R1 e R2 são conjuntos de valores Y ∈ ℜ^p para os quais:

$$R_1: \frac{f_1(y)}{f_2(y)} \ge \frac{c(1|2)p_2}{c(2|1)p_1} \qquad R_2: \frac{f_1(y)}{f_2(y)} < \frac{c(1|2)p_2}{c(2|1)p_1}$$

Discriminação sob Estimação

Caso de Duas Populações Normais Problema Geral de Classificação 🗲

Função densidade de probabilidades:

✓ heterocedasticidade

$$\tau_{g} \Rightarrow f_{g}(y) = \frac{1}{(2\pi)^{p/2} |\Sigma_{g}|^{1/2}} \exp\left\{-\frac{1}{2} (Y - \mu_{g})' \Sigma_{g}^{-1} (Y - \mu_{g})\right\}; \quad g = 1, 2; Y \in \Re^{p}$$

Classificar uma observação em $\tau 1$ se $Y \in \Re^p$ pertencer à região R1 dada por:

$$R_{1}: -\frac{1}{2}Y'(\Sigma_{1}^{-1}-\Sigma_{2}^{-1})Y + (\mu_{1}'\Sigma_{1}^{-1}-\mu_{2}'\Sigma_{2}^{-1})Y - c \ge \ln\left[\frac{c(1|2)p_{2}}{c(2|1)p_{1}}\right]$$

em que,
$$c = \frac{1}{2} \ln \left(\frac{\left| \Sigma_1 \right|}{\left| \Sigma_2 \right|} \right) + \frac{1}{2} \left(\mu_1' \Sigma_1^{-1} \mu_1 - \mu_2' \Sigma_2^{-1} \mu_2 \right)$$
 R2 é dada pelo complementar de R1 em Ω ("<").

Sob Heterocedasticidade ⇒ Função Discriminante é Quadrática (em Y ∈ ℜÞ)

<u>Problema Geral de Classificação - Caso de Duas Populações Normais</u>

Regra de classificação: (os parâmetros são substituídos por suas estimativas)

Alocar
$$Y_0$$
 em $\tau 1$ se
$$X_0^Q$$

$$-\frac{1}{2}Y_0'(S_1^{-1}-S_2^{-1})Y_0 + (\overline{X}_1'S_1^{-1}-\overline{X}_2'S_2^{-1})Y_0 - \hat{c}_Q \ge \ln\left[\frac{c(1\mid 2)p_2}{c(2\mid 1)p_1}\right]$$

Alocar Y₀ em τ2 caso contrário

em que,
$$\hat{c}_Q = \frac{1}{2} \ln \left(\frac{\left| S_1 \right|}{\left| S_2 \right|} \right) + \frac{1}{2} \left(\overline{Y_1}' S_1^{-1} \overline{Y_1}' - \overline{Y_2}' S_2^{-1} \overline{Y_2}' \right)$$

Função discriminante quadrática

> Critério flexível: permite heterocedasticidade. custos e prioris diferentes

Problema Geral de Classificação - Caso de Duas Populações Normais

$$Y_i \in \tau_k ; Y_i \stackrel{iid}{\sim} N_p(\mu_g; \Sigma_g) \quad g = 1,2$$

 \Rightarrow **Suposição:** $\Sigma_1 = \Sigma_2 = \Sigma$

homocedasticidade

Regra de classificação:

Alocar
$$Y_0$$
 em $\tau 1$ se
$$X_0^L \qquad \hat{c}$$

$$\left(\overline{Y_1} - \overline{Y_2}' S_c^{-1} Y_0 - \frac{1}{2} (\overline{Y_1} - \overline{Y_2}' S_c^{-1} (\overline{Y_1} + \overline{Y_2}) \ge \ln \left[\frac{c(1 \mid 2) p_2}{c(2 \mid 1) p_1} \right]$$

Alocar Y₀ em τ2 caso contrário

 \Rightarrow Note que a função discriminante X_0^L é linear em Y_0

Problema Geral de Classificação - Caso de Duas Populações Normais

$$Y_i \in \tau_k ; Y_i \stackrel{iid}{\sim} N_p(\mu_g; \Sigma) \quad g = 1,2$$

⇒ Função Discriminante Linear

homocedasticidade

Alocar Y_0 em $\tau 1$ se

$$X_{0} - \hat{c} \ge \ln \left[\frac{c(1|2)p_{2}}{c(2|1)p_{1}} \right]$$

Alocar Y₀ em τ2 caso contrário

- Se os custos e as prioris são iguais ⇒ Função Discriminante Linear de Fisher
- Se c(2|1) > c(1|2) e $p_1 = p_2 \Rightarrow$ o limite "c" é deslocado para a esquerda
- Se $p_1 < p_2$ e $c(2|1)=c(1|2) \Rightarrow$ o limite "c" é deslocado para a direita

Banco	Condição	Y1	Y2	Y3	Y4
B1	1	0,8888	0,7391	1,0255	0,3938
B2	1	1,6655	0,7268	0,878	0,0004
В3	1	2,2111	0,9166	0,9492	0,342
B4	1	1,4351	0,9133	0,9577	0,2325
B5	1	2,1414	0,002	1,0245	0,3966
B6	1	1,192	0,4972	1,034	0,3095
B7	1	1,5895	0,2593	1,0453	0,557
B8	1	1,3272	0,4126	1,0448	0,3482
B9	1	1,8847	0,388	0,9864	0,0337
B10	1	0,5229	0,9473	1,1244	0,118
n		10	10	10	10
Média		1,4852	0,5802	1,007	0,2732
D.P.		0,533	0,319	0,0674	0,1762
B11	2	0,4922	0,3166	1,1127	0,1628
B12	2	1,4427	0,0589	0,9019	0,1355
B13	2	0,5438	0,5358	1,03	0,1481
B14	2	0,1904	0,7087	0,9917	0,2625
B15	2	0,1102	0,7378	1,528	0,0783
B16	2	2,006	0,014	1,0321	0,0816
B17	2	0,2321	0,9234	0,9753	0,0045
B18	2	0,9019	0,1634	1,1414	0,5485
B19	2	1,9757	0,3395	0,9997	0,0751
B20	2	0,7276	0,3139	1,1077	0,2957
n		10	10	10	10
Média		0,862	0,4112	1,0821	0,1793
D.P.		0,712	0,3055	0,1726	0,1567

Condição:

1: Com problemas

2: Sem problemas

Objetivo:

Obter uma função de discriminação (classificação) com base nas 4 variáveis de indicadores econômicos

- ⇒ Obtenha a função discriminante linear e quadrática
- ⇒ Quais suposições estão implícitas em cada caso?

Dados dos Bancos

$$\overline{Y}_{g=1} = \begin{pmatrix} 1,486\\0,580\\1,007\\0,273 \end{pmatrix}$$

$$\overline{Y}_{g=1} = \begin{pmatrix} 1,486 \\ 0,580 \\ 1,007 \\ 0,273 \end{pmatrix} \qquad S_{g=1} = \begin{pmatrix} 0,284 \\ -0,070 & 0,102 \\ -0,021 & -0,004 & 0,005 \\ 0,008 & -0,022 & 0,004 & 0,031 \end{pmatrix}$$

$$\overline{Y}_{g=2} = \begin{pmatrix} 0,862 \\ 0,414 \\ 1,082 \\ 0,179 \end{pmatrix}$$

$$\overline{Y}_{g=2} = \begin{pmatrix} 0,862 \\ 0,414 \\ 1,082 \\ 0,179 \end{pmatrix} \qquad S_{g=2} = \begin{pmatrix} 0,505 \\ -0,164 & 0,091 \\ -0,051 & 0,014 & 0,030 \\ -0,012 & -0,016 & 0,002 & 0,025 \end{pmatrix} \qquad \begin{array}{c} \text{Usar o teste M de Box a del sticidadel of the para verificar a homocedasticidadel of$$

$$S_c = \begin{pmatrix} 0,395 \\ -0,117 & 0,096 \\ -0,036 & 0,005 & 0,017 \\ -0,002 & -0,019 & 0,003 & 0,028 \end{pmatrix}$$

Dados dos Bancos

homocedasticidade

Suposição:

$$Y_i \in \tau_g ; Y_i \stackrel{iid}{\sim} N_p(\mu_g; \Sigma_g) \quad g = 1,2 \qquad \Sigma_1 = \Sigma_2 = \Sigma$$

Custos de classificação Errada e Prioris iguais para as populações

⇒ Função Discriminante Linear de Fisher

$$X_0 - c \ge \ln \left[\frac{c(1|2)p_2}{c(2|1)p_1} \right] \implies X_0 - c - \ln \left[\frac{c(1|2)p_2}{c(2|1)p_1} \right] \ge 0$$

$$\underbrace{\left(\overline{Y}_{1} - \overline{Y}_{2}\right)' S_{c}^{-1} Y_{0}}_{C} - \underbrace{\frac{1}{2} \left(\overline{Y}_{1} - \overline{Y}_{2}\right)' S_{c}^{-1} \left(\overline{Y}_{1} + \overline{Y}_{2}\right) - \ln \left[\frac{c(1 \mid 2) p_{2}}{c(2 \mid 1) p_{1}}\right]}_{C}$$

$$= 0$$

$$l'Y - c = 4.36Y1 + 8.91Y2 + 0.52Y3 + 9.71Y4 - 12.27$$

Dados dos Bancos

Suposição:

$$Y_i \in \tau_g ; Y_i \stackrel{iid}{\sim} N_p(\mu_g; \Sigma_g) \quad g = 1,2$$
 heterocedasticidade

Custos de classificação Errada e Probabilidades a Priori iguais para as populações

⇒ Função Discriminante Quadrática

$$\underbrace{-\frac{1}{2}Y_{0}'(S_{1}^{-1}-S_{2}^{-1})Y_{0} + \left(\overline{Y}_{1}'S_{1}^{-1}-\overline{Y}_{2}'S_{2}^{-1}\right)Y_{0}}_{=Q} + \widehat{c}_{Q} \ge \ln\left[\frac{c(1\mid 2)p_{2}}{c(2\mid 1)p_{1}}\right]$$

$$= 0$$

$$-0.214Y_1^2 + 14.535Y_2^2 - 204.116Y_3^2 + 14.038Y_4^2 +9.332Y_1Y_2 + -38.603Y_1Y_3 + 16.846Y_1Y_4 - 35.125Y_2Y_3 + 31.732Y_2Y_4 + 43.362Y_3Y_4 +38.194Y_1 + 17.076Y_2 + 478.004Y_3 - 73.415Y_4 - 273.776$$

Dados dos Bancos - Avaliação empírica da Regra de Classificação

Banco	Condição	Regra	Regra Linear		uadrática
	_	Х	Grupo	Х	Grupo
B1	1	3,336	1	6,329	1
B2	1	2,701	1	4,108	1
B3	1	10,223	1	27,94	1
B4	1	5,825	1	13,043	1
B5	1	1,403	1	2,861	1
B6	1	1,425	1	3,046	1
B7	1	3,146	1	6,822	1
B8	1	1,539	1	3,359	1
B9	1	0,635	1	1,247	1
B10	1	1,222	1	1,151	1
B11	2	-4,74	2	-1,808	2
B12	2	-3,57	2	-5,13	2
B13	2	-2,514	2	-2,313	2
B14	2	-1,223	2	-4,802	2
B15	2	-2,862	2	-39,071	2
B16	2	-1,862	2	-1,397	2
B17	2	-1,4	2	-3,083	2
B18	2	-0,792	2	0,713	1
B19	2	0,945	1	1,411	1
B20	2	-2,484	2	-1,175	2

Regra Linear:						
Predi	to					
1	2					
10	0					
1	9					
	Predi					

Regra Quadrática:						
redi	to					
1	2					
10	0					
2	8					
	redi 1 10	redito 1 2 10 0				

Função linear classifica melhor!

Testar a igualdade das matrizes de covariância (Teste de Box). Decidir pela função linear (de Fisher) no caso da não rejeição de H_0 : $\Sigma_1 = \Sigma_2$.

Problema Geral de Classificação - Caso de Muitas Populações

As Regiões de Classificação que minimizam *CEEC* são definidas por **alocar Y₀ à população** τ_k , k=1,2,...,G, que atinge o mínimo erro de classificação, dado por:

$$\sum_{\substack{g=1\\g\neq k}}^{G} p_g f_g(y) c(k \mid g)$$

Logo, se todos os custos são iguais, devemos alocar Y_0 à população τ_k se:

$$p_k f_k(y) > p_g f_g(y)$$
 $g = 1,...,G; g \neq k$

ou, equivalentemente: $\ln p_k f_k(y) > \ln p_g f_g(y)$ $g = 1,...,G; g \neq k$

Problema Geral de Classificação – Caso de Muitas Populações

Alocar
$$Y_0$$
 a τ_k se: $\ln p_k f_k(y) > \ln p_g f_g(y)$ $g = 1,...,G; g \neq k$

Caso Especial (N_p):
$$Y_i^{iid} \sim N_p(\mu_g; \Sigma_g)$$
 heterocedasticidade

$$f_{g}(y) = \frac{1}{(2\pi)^{p/2} |\Sigma_{g}|^{1/2}} \exp\left\{-\frac{1}{2} (Y - \mu_{g})' \Sigma_{g}^{-1} (Y - \mu_{g})\right\}, \quad g = 1, 2, ..., G$$

$$\ln p_{k} f_{k}(y) = \ln p_{k} - \frac{1}{2} \ln |\Sigma_{k}| - \frac{1}{2} (Y - \mu_{k})' \Sigma_{k}^{-1} (Y - \mu_{k})$$

Classificar no grupo que maximiza o escore discriminante!

Define-se <u>Escore Discriminante Quadrático</u> (de Y∈ R^p) para a g-ésima população:

$$d_{g}^{Q}(y) = -\frac{1}{2} \ln \left| \Sigma_{g} \right| - \frac{1}{2} (Y - \mu_{g})' \Sigma_{g}^{-1} (Y - \mu_{g}) + \ln p_{g} \quad g = 1, ..., G$$

Problema Geral de Classificação – Caso de Muitas Populações

$$\ln p_k f_k(y) > \ln p_g f_g(y)$$
 $g = 1,...,G; g \neq k$

heterocedasticidade

 $Y_i \stackrel{iid}{\sim} N_n(\mu_{\sigma}; \Sigma_{\sigma}) \Rightarrow$ Alocar Y a τ_k se o <u>escore quadrático</u> $d_k^{\mathcal{Q}}(y)$ é maior que os demais

em que,
$$d_k^Q(y) = -\frac{1}{2} \ln |\Sigma_k| - \frac{1}{2} (Y - \mu_k)' \Sigma_k^{-1} (Y - \mu_k) + \ln p_k$$
 $k = 1,...,G$

Se
$$Y_i \sim N_p \left(\mu_g; \Sigma\right)$$
 , isto é, $\Sigma_1 = \ldots = \Sigma_g$ homocedasticidade

$$d_k^{\mathcal{Q}}(y) \implies d_k(y) = \mu_k' \sum_{k=1}^{-1} Y - \frac{1}{2} \mu_k' \sum_{k=1}^{-1} \mu_k + \ln p_k \quad k = 1, ..., G$$
Escore discriminante linear para a popular

Escore discriminante linear para a população τ_k

<u>Problema Geral de Classificação – Caso de Muitas Populações</u>

$$Y_i \stackrel{iid}{\sim} N_p(\mu_g; \Sigma_g)$$

escore discriminante quadrático máximo

$$-\frac{1}{2}\ln\left|\Sigma_{k}\right| - \frac{1}{2}\left(Y - \mu_{k}\right)'\Sigma_{k}^{-1}\left(Y - \mu_{k}\right) + \ln p_{k}$$

$$Y_{i}^{iid} \sim N_{p} \left(\mu_{g}; \Sigma\right)$$
 escore discriminante linear máximo
$$d_{k}\left(y\right)$$

$$\mu_{k}' \; \Sigma^{-1}Y - \frac{1}{2}\mu_{k}' \; \Sigma^{-1}\mu_{k} + \ln \, p_{k}$$

O Escore Discriminante linear pode ser comparado para duas populações, de tal modo que, a condição " $d_k(y)$ é maior " para a população k, fica equivalente a:

$$0 \le d_k(y) - d_g(y) = (\mu_k - \mu_g)' \Sigma^{-1} Y - \frac{1}{2} (\mu_k - \mu_g)' \Sigma^{-1} (\mu_k + \mu_g) + \ln \left(\frac{p_k}{p_g}\right)$$

Alocar Y a
$$\tau_k$$
 se:
$$\left[\left(\mu_k - \mu_g \right)' \Sigma^{-1} Y + \frac{1}{2} \left(\mu_k - \mu_g \right)' \Sigma^{-1} \left(\mu_k + \mu_g \right) \right] \geq \ln \left(\frac{p_g}{p_k} \right)$$
 Função de Fisher c

Validação Empírica de um Algoritmo de Classificação Amostral

Métricas de validação via a Matriz de Classificação

Já vimos [©]

Matriz de Classificação (ou de Confusão)

	Pred		
Verdade	τ ₁ +	τ ₂ -	
τ ₁ +	n _{1c} v+	n _{1M} F-	n_1
τ_2 -	n _{2M} F+	n _{2c} V-	n_2

Taxa de Erro Aparente (proporção de itens mal classificados):

$$TxErro = \frac{n_{1M} + n_{2M}}{n_1 + n_2} = \frac{F_+ + F_-}{n}$$
 Estima Pr(classificação errada)

• Acurácia:
$$Acurácia = \frac{n_{1C} + n_{2C}}{n_1 + n_2} = \frac{V_+ + V_-}{n}$$
 Estima Pr(classificação correta)

Métricas de Validação via a Matriz de Classificação

	Pred		
Verdade	τ ₁ +	τ ₂ -	_
+ τ ₁	n _{1c} v +	n _{1M} F-	n ₁
<u></u> τ ₂	n _{2M} F+	n _{2c} V-	n_2

Matriz de Classificação (ou de Confusão)

■ Sensibilidade =
$$\frac{V_{+}}{V_{+} + F_{-}}$$
 = Pr(classificação + | +)

Poder Preditivo via a Curva ROC: Sensibilidade x (1-Especificidade)

■ Especificidade =
$$\frac{V_{-}}{F_{+} + V_{-}}$$
 = Pr(classificação - | -)

• Escore G = $\sqrt{\text{Sensibilidade} * \text{Especificidade}}$

Média geométrica da P(V+) e P(V-)

■ Preditivo Positivo =
$$\frac{V_{+}}{F_{+} + V_{+}}$$
 Preditivo Negativo = $\frac{V_{-}}{F_{-} + V_{-}}$

■ Escore F1 =
$$2 \frac{\Pr{ecis\~ao} * Sensibilidade}{\Pr{ecis\~ao} + Sensibilidade}$$

Média harmônica da precisão e sensibilidade

Validação de um Algoritmo de Classificação

Matriz de Classificação (ou de Confusão)

	Pred		
Verdade	τ_1	τ_2	
τ_1	n _{1c} v ₊	n _{1M} F+	n_1
τ_2	n _{2M} F-	n _{2c} v-	n_2

TxErro subestima a Probabilidade de erro de classificação (populacional), assim como as demais métricas:

$$TxErro = \frac{n_{1M} + n_{2M}}{n_1 + n_2} = \frac{F_+ + F_-}{n} \rightarrow p_1 \int_{R_2} f_1(y) dy + p_2 \int_{R_1} f_2(y) dy$$

- NO INDIVIDUAL OF THE PROPERTY OF THE PROPERTY
- Método de Particionamento (Data Split): particiona os dados em Amostra de Treinamento e Amostra de Validação (Teste)
- Método de "Validação Cruzada" (Cross-validation)

Validação de um Algoritmo de Classificação Amostral

Validação Cruzada pelo método Leave-One-Out (Fold=N)

- Inicie com as observações de τ₁. Omita uma obs deste grupo e obtenha a função de classificação baseada nos remanescentes N-1=(n1-1)+n2 observações (supondo G=2)
- Classifique a obs omitida usando a função calculada no passo 1
- 3. Repetir os passos 1 e 2 até que todas as obs de τ_1 tenham sido classificadas. Calcule o número de erros de classificação neste grupo
- 4. Repita os passos de 1 a 3 para as observações do grupo 2.

Taxa de Erro de Classificação esperada é dada por:

$$TxErro = \frac{n_{1M}^{Cross} + n_{2M}^{Cross}}{n_1 + n_2}$$

Algoritmos de CV podem usar *Fold*=k

Análise Discriminante Normalização de Variáveis

				Variáve	is		
Uni	dades Amostrais	1	2		j	р	
	1	Y ₁₁₁	Y ₁₁₂		Y _{11j}	Y _{11p}	, <u>-</u>
0.4	2	Y ₁₂₁	Y ₁₂₂		Y_{12j}	Y _{12p}	$\overline{Y}_{1p\times 1}$ $(S_{1p\times p})$
G1							Pid
	n ₁	Y _{1n11}	Y _{1n12}		Y _{1n1j}	Y_{1n1p}	
	1	Y ₂₁₁	Y ₂₁₂		Y _{21j}	Y _{21p}	_ ~~
G2	2	Y ₂₂₁	Y ₂₂₂		Y_{22j}	Y_{22p}	$\overline{Y}_{2p\times 1}$ ($S_{2p\times p}$
	•••						
	n ₂	Y_{2n21}	Y_{2n22}		Y_{2n2j}	Y_{2n2p}	

Na AD a normalização das variáveis é usada com a finalidade de facilitar a interpretação dos pesos das variáveis na função discriminante e no cálculo de "c". O lda do R adota a "normalização" das variáveis para calcular as funções discriminantes, mas o linda não. A normalização da variável j avaliada no indivíduo i do grupo g é dada por:

$$Y_{gij}^* = \left(\begin{array}{c} Y_{gij} - \overline{Y_j} \\ \hline (S_{gj}) \end{array} \right)$$
 Média: para cada j independente de grupo Variância: para cada cada grupo g e

Média: para cada j independente

cada grupo g e variável i

$$\overline{Y}_{j} = \frac{1}{n_{1} + n_{2}} \sum_{g=1}^{2} \sum_{i=1}^{n_{g}} Y_{gij}$$

 $\overline{Y}_j = \frac{1}{n_1 + n_2} \sum_{g=1}^{2} \sum_{i=1}^{n_g} Y_{gij}$ Média da variável j (j=1,...,p), independente de grupo

$$S_{gj} = \frac{1}{n_g - 1} \sum_{g=1}^{2} (Y_{gij} - \overline{Y}_{gj})^2 \text{ Variância da variável j}$$
 no grupo g

Dados dos Bancos - Funções Discriminantes Lineares - Classes Preditas

- Dados originais (linDA), prioris iguais
 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
- Dados normalizados (lda), prioris amostrais
 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 2
- Dados normalizados (lda), prioris iguais
 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 2
- Dados normalizados (lda), prioris proporcionais: p1=2p2, p1+p2=1
 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 2
- Dados normalizados (lda), prioris iguais, CV (Leave-One-Out)
 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 1 1 2
- Dados normalizados, prioris iguais, Data Split: 70% Treinamento, 30%
 Teste (set.seed(1314):obs preditas 3,4,6,14,16,19)
 1 1 1 2 1 1

Dados dos Bancos - Função Discriminante Quadrática - Classes Preditas

Dados normalizados (lda), prioris iguais
1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 1 1 2

Considere os dados (hipotéticos) a seguir em que duas variáveis foram observadas em três indivíduos do grupo 1 e em três indivíduos do grupo 2:

$$G_1 = \begin{pmatrix} 2 & 4 & 3 \\ 12 & 10 & 8 \end{pmatrix} \qquad G_2 = \begin{pmatrix} 5 & 3 & 4 \\ 7 & 9 & 5 \end{pmatrix}$$

- 1. Calcule a função discriminante de Fisher para a diferença entre os grupos. Qual é a regra de classificação de observações? Que suposições são feitas?
- 2. Calcule também o escore discriminante para cada grupo via o método geral de classificação. Suponha que *p1=p2*. E se *p1=2p2*?
- 3. Calcule a taxa observada de erro de classificação. Classifique a observação (4,7).
- 4. Calcule a taxa de erro de classificação via validação cruzada.
- 5. Obtenha a função discriminante para os dados "normalizados".

Diferentes formulações da função discriminante linear.

					Grupo 1	Grupo 2	
Grupo	Y1	Y2	X=-0,33Y1+0,67Y2	X* + 0,33Y1+0,67Y2-4,54	X1‡7,33Y1+4,33Y2-32,67	X2=7,67Y1+3,67Y2-28,17	Grupo Pred
1	2	12	7,38	2,84	33,95	31,21	1
1	4	10	5,38	0,84	39,95	39,21	1
1	3	8	4,37	-0,17	23,96	24,2	2
2	5	7	3,04	-1,5	34,29	35,87	2
2	3	9	5,04	0,5	28,29	27,87	1
2	4	5	2,03	-2,51	18,3	20,86	2
			c=4.54	Ţ			الاحتاجات

c=4,54

Solução usando pacote lda do R: valores Y estão normalizados para ter variância 1

$$\begin{split} X &= 0.2182179 \ Y1^* - 0.4364358 \ Y2^* \\ LD1 &= X-c; \ c = ((-3.7097) + (-2.1821))/2 = -2.946 \\ LD1 &<= 0 \ grupo1, \ cc \ grupo2 \\ &> \text{fit.values} \\ \text{class} \\ \text{[1] 1 1 2 2 1 2} \end{split}$$

1 -1.8548521 alocar G1 2 -0.5455447 alocar G1 3 0.1091089 alocar G2 4 0.9819805 alocar G2 5 -0.3273268 alocar G1 6 1.6366342 alocar G2

LD1

Assim, tem-se as seguintes formulações da função discriminante linear (G=2):

$$X = \left(\overline{Y}_k - \overline{Y}_g\right)' S_c^{-1} Y; \qquad c = \frac{1}{2} \left(\overline{Y}_k - \overline{Y}_g\right)' S_c^{-1} \left(\overline{Y}_k + \overline{Y}_g\right) \text{ Ponto de corte \'e o valor "c"}$$

$$X^* = (\overline{Y_k} - \overline{Y_g})' S_c^{-1} Y - C$$
 Ponto de corte é o valor "0"

$$X_{gi} = \overline{Y}'_g S_c^{-1} Y_i - \frac{1}{2} \overline{Y}'_g S_c^{-1} \overline{Y}_g = d_g(y_i) \quad \text{Alocar no grupo que maximiza o escore}$$

Note que, sob normalidade e homocedasticidade, $Y \mid \tau_g \sim N_p(\mu_g; \Sigma)$, g = 1, 2:

$$X_{c} = (\mu_{1} - \mu_{2})' \Sigma^{-1} (Y - \mu); \qquad \mu = \frac{1}{2} (\mu_{1} + \mu_{2})$$

$$X_c \mid Y \in \tau_1 \sim N\left(\frac{1}{2}d_M^2; d_M^2\right),$$

$$X_c \mid Y \in \tau_2 \sim N\left(-\frac{1}{2}d_M^2; d_M^2\right); \quad d_M^2 = (\mu_1 - \mu_2)'\Sigma^{-1}(\mu_1 - \mu_2)$$

Assim, a probabilidade de classificação errada é,

$$P(Y \text{ alocado em } \tau_1 \mid Y \in \tau_2) = P(X_c(y) > 0 \mid Y \in \tau_2) = P(Z > \frac{1}{2}d_M) = \Phi(-\frac{1}{2}d_M)$$

```
##Comandos R
#Análise discriminante
dat<-matrix(c(2,4,3,5,3,4,12,10,8,7,9,5,1,1,1,2,2,2),6,3)
xbar<-colMeans(dat[,1:2])
xbar1<-colMeans(dat[1:3,1:2])
xbar2<-colMeans(dat[4:6,1:2])
cov1<-cov(dat[1:3,1:2])
cov2<-cov(dat[4:6,1:2])
library(biotools)
mt < -boxM(dat[,-3],dat[,3])
library(DiscriMiner)
fitIda<-linDA(dat[,-3],dat[,3])
library(MASS) ##outra alternativa de analise
fit < - Ida(dat[,3] \sim dat[,1] + dat[,2], prior = c(1,1)/2)
\#fit<- \|da(dat[,3] \sim dat[,1] + dat[,2], prior = c(2,1)/3); <math>\#p1=2p2, p1+p2=1
fit.values <- predict(fit, data.frame(dat[,1:2]))
fit.values$x
fit.values$class
ct <- table(dat[,3],fit.values$class) #tabela com as classificações
diag(prop.table(ct, 1)) # % de classif correta
sum(diag(prop.table(ct)))
fit$svd # (SSB-\lambda SSW)a=0
mv<-aggregate(fit.values$x, data.frame(dat[,3]), FUN=mean)
colMeans(mv[2])
```

Análise Discriminante via Modelo de Regressão Logística Dicotômica

 $Y_i = 1$: se o indivíduo é do grupo G=1; $Y_i = 0$ se o indivíduo é do grupo G=2

$$E(Y | X, \beta) = P(Y = 1 | X, \beta) = p(X) = \frac{e^{\beta_0 + \sum_{j=1}^{p} X_{ij} \beta_j}}{1 + e^{\beta_0 + \sum_{j=1}^{p} X_{ij} \beta_j}}$$

$$Odds = \frac{p(X)}{1 - p(X)}$$

$$\ln(odds) = \beta_0 + \sum_{j=1}^{p} X_{ij} \beta_j$$

$$\ln(odds) = \beta_0 + \sum_{j=1}^{p} X_{ij} \beta_j$$

$$odds = \frac{p(X)}{1 - p(X)}$$

$$\ln(odds) = \beta_0 + \sum_{j=1}^{p} X_{ij} \beta_j$$

Estimação do vetor β via Máxima Verossimilhança:

$$L(\beta) = \prod_{i=1}^{n} p(X_i)^{Y_i} (1 - p(X))^{1 - Y_i} \rightarrow \hat{\beta}$$

Outros valores podem ser adotados Regra de classificação:

$$\hat{p}(X) = \frac{e^{\hat{\beta}_0 + \sum_{j=1}^p X_{ij}\hat{\beta}_j}}{1 + e^{\hat{\beta}_0 + \sum_{j=1}^p X_{ij}\hat{\beta}_j}} \begin{cases} \geq 0.5 \\ < 0.5 \end{cases} \rightarrow \text{classificar em G=1} \\ < 0.5 \end{cases}$$

Pode ser estendido para regressão Politômica (G>2)

Análise Discriminante via Modelo de Regressão Logística Dicotômica

Banco	Condição	Y1	Y2	Y3	Y4
B1	1	0,8888	0,7391	1,0255	0,3938
B2	1	1,6655	0,7268	0,878	0,0004
B3	1	2,2111	0,9166	0,9492	0,342
B4	1	1,4351	0,9133	0,9577	0,2325
B5	1	2,1414	0,002	1,0245	0,3966
B6	1	1,192	0,4972	1,034	0,3095
B7	1	1,5895	0,2593	1,0453	0,557
B8	1	1,3272	0,4126	1,0448	0,3482
B9	1	1,8847	0,388	0,9864	0,0337
B10	1	0,5229	0,9473	1,1244	0,118
n		10	10	10	10
Média		1,4852	0,5802	1,007	0,2732
D.P.		0,533	0,319	0,0674	0,1762
B11	2	0,4922	0,3166	1,1127	0,1628
B12	2	1,4427	0,0589	0,9019	0,1355
B13	2	0,5438	0,5358	1,03	0,1481
B14	2	0,1904	0,7087	0,9917	0,2625
B15	2	0,1102	0,7378	1,528	0,0783
B16	2	2,006	0,014	1,0321	0,0816
B17	2	0,2321	0,9234	0,9753	0,0045
B18	2	0,9019	0,1634	1,1414	0,5485
B19	2	1,9757	0,3395	0,9997	0,0751
B20	2	0,7276	0,3139	1,1077	0,2957
n		10	10	10	10
Média		0,862	0,4112	1,0821	0,1793
D.P.		0,712	0,3055	0,1726	0.1567

Matriz de classificação

	p<0.5	p≥0.5
1	9	1
2	1	9

18/20=90% classificações corretas