MATH 311

Chapter 3

SECTION 3.2: DETERMINANTS AND MATRIX INVERSES

Contents

Product Rule	2
Matrix Inverses	4
Transpose and Determinants	6

Created by: Pierre-Olivier Parisé Spring 2024

PRODUCT RULE

EXAMPLE 1. Show that for any number a, b, c, d, we have the following identity

$$(a^2 + b^2)(c^2 + d^2) = (ac - bd)^2 + (ad + bc)^2.$$

SOLUTION.

THEOREM 1. If A and B are $n \times n$ matrices, then $\det(AB) = \det(A) \det(B).$

Facts:

- For three matrices, det(ABC) = det(A) det(B) det(C).
- For *n* matrices,

$$\det(A_1 A_2 \cdots A_n) = \det(A_1) \det(A_2) \cdots \det(A_n).$$

• For powers of a matrix, $det(A^k) = (det(A))^k$ (here, $k \ge 1$).

EXAMPLE 2. Assume that det(A) = 2, det(B) = 3, and det(C) = -2. Compute

$$\det(A^2BCBC^2).$$

SOLUTION.

Matrix Inverses

Recall that

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 is invertible $\iff \det(A) = ad - bc \neq 0$.

THEOREM 2. Let A be an $n \times n$ matrix. The matrix A is invertible if and only if $\det(A) \neq 0$. In this case, we have $\det(A^{-1}) = \frac{1}{\det(A)}$.

PROOF. See page 156 in the textbook for the complete proof.

EXAMPLE 3. For which real value(s) of c is the matrix $A = \begin{bmatrix} 0 & c & -c \\ -1 & 2 & 1 \\ c & -c & c \end{bmatrix}$ invertible?

SOLUTION.

Transpose and Determinants

EXAMPLE 4. Let $A = \begin{bmatrix} 5 & 1 & 3 \\ -1 & 2 & 3 \\ 1 & 4 & 8 \end{bmatrix}$. Find $\det(A)$ and $\det(A^{\top})$ and compare their values.

SOLUTION.

THEOREM 3. If A is an $n \times n$ matrix, then $\det(A) = \det(A^{\top})$.

EXAMPLE 5. Assume that det(A) = 2 and det(B) = 4. Find the value of $det(AA^T(B^T)^2)$.

SOLUTION.

EXAMPLE 6. A square matrix is called **orthogonal** if $A^{-1} = A^{\top}$. What are the possible values of $\det(A)$ if A is orthogonal? **SOLUTION.**