

Eötvös Loránd Tudományegyetem Informatikai Kar Numerikus Analízis Tanszék

I. éves Programtervező informatikus

Analízis 1

Kovács Sándor gyakorlata

(Csütörtök, $8^{15} - 9^{45}$: DT-0.220) (Csütörtök, $12^{15} - 13^{45}$: DT-0.311)

2023. tavasz

Tudnivalók

I. A tárgy követelményrendszere

II. Segédanyagok:

- A görög ábécé és a fraktúra
- Valós-valós függvények határértéke
- Hiperbolikus függvények és inverzeik
- MacTutor History of Mathematics archive

III. Ajánlott olvasmányok:

- Kovács Sándor: Matematikai alapozás (https://numanal.inf.elte.hu/~alex/MatAlapKonyvtar/SzintrehozKS.pdf), ill. https://numanal.inf.elte.hu/~alex/hu/matalap.html)
- Schipp Ferenc: Analízis I. (https://numanal.inf.elte.hu/~schipp/Jegyzetek/Anal_1.pdf)
- Simon Péter: Bevezetés az analízisbe I., egyetemi jegyzet, ELTE Eötvös Kiadó, 2016. (http://numanal.inf.elte.hu/~simon/cimlapanal1.pdf)
- Szili László: Analízis feladatokban I. (http://numanal.inf.elte.hu/~szili/Okt_anyag/an_fel_I_2008_2016.pdf)

IV. A félév gyakorlatainak tematikája:

"MintaZh" megoldások

- **1. gyakorlat** (2023. 03. 02.): **Egyenlőtlenségek:** háromszög-egyenlőtlenségek, a Bernoulli-egyenlőtlenség, a mértani és a számtani közép közötti egyenlőtlenség, alkalmazások.
- 2. gyakorlat (2023. 03. 09.): Számhalmazok korlátossága: korlátos számhalmazok, számhalmaz maximuma és minimuma, a szuprémum elv, zámhalmaz szuprémumának és infimumának a meghatározása.
- **3. gyakorlat** (2023. 03. 16.): **Függvények:** halmaz függvény által létesített képe és ősképe; függvény invertálhatóságának fogalma és az inverz függvény meghatározása; függvények kompozíciója.
- **4. gyakorlat** (2023. 03. 23.): **Valós sorozatok 1.:** sorozatok divergenciája és konvergenciája; a határérték kiszámítása a definíció alapján.
- **5. gyakorlat** (2023. 03. 30.): **Valós sorozatok 2.:** sorozatok konvergenciájának igazolása a műveletekre vonatkozó tételek és a nevezetes sorozatok határértékére vonatkozó állítások alapján.

6. gyakorlat (2023. 04. 06.): **Valós sorozatok 3.:** az Euler-féle szám, rekurzív sorozatok kvalitatív vizsgálata (konvergencia, monotonitás, határérték).

- **Az 1. zárthelyi feladatai** (2023. 04. 14.)
- **7. gyakorlat** (2023. 04. 13.): **Numerikus sorok 1.:** numerikus sorok összegének kiszámitása (mértani és teleszkopikus sorok); számok p-adikus tört alakja, az Euler-féle szám approximációja.
- **8. gyakorlat** (2023. 04. 20.): **Numerikus sorok 2.:** A végtelen sorokra vonatkozó Cauchy-kritérium. Az öszehasonlító kritériumok (minoráns- és majoránskritérium) alkalmazása. A Cauchy-féle gyök- és a D'Alembert-féle hányadoskritérium; a Leibniz-kritérium. A kondenzációs elv.
- 9. gyakorlat (2023. 04. 27.): Numerikus sorok 3.: hatványsorok konvergenciahalmazának meghatározása; függvények hatványsörbe fojtása/ hatványsírba fejtése (előállítása hatványsor összegeként).
- **10.** gyakorlat (2023. 05. 04.): Valós függvények határértéke és folytonossága 1.: a határérték kiszámítása a definíció alapján, a határértékekre vonatkozó tételek.
- **11. gyakorlat** (2023. 05. 11.): **Valós függvények határértéke és folytonossága 2.:** kritikus határértékek, a folytonosság fogalma, a folytonosságra vonatkozó alapvető tételek.
- **12.** gyakorlat (2023. 05. 18.): Valós függvények határértéke és folytonossága 3.: A szakadási helyek osztályozása. Intervallumon folytonos függvények tulajdonságai, egyenletesen folytonos függvények.
- **13. gyakorlat** (2023. 05. 25.): **Informatikai alkalmazások** (generátorfüggvények, leképezések fixpontja).
- "14. gyakorlat" Az első zárthelyi feladatainak megoldása
- A Függelék
- B Függelék

A MintaZh-k feladatainak megoldása

Az 1. MntaZh feladatai

1. Vizsgálja a

$$\mathcal{H} := \left\{ \frac{x^2 + 9}{3x^2 + 9} \in \mathbb{R} : x \in (-\infty, 3) \right\}$$

halmazt korlátosság szempontjából! **Határozza meg** \mathcal{H} infimumát és szuprémumát! Van-e a \mathcal{H} halmaznak legkisebb, ill. legnagyobb eleme?

2. **Tekintse** az alábbi függvényeket!

$$f(x) := \frac{2}{|x+1|} \quad (-1 \neq x \in \mathbb{R}), \qquad g(x) := x^2 - 2x - 4 \quad (0 \leq x \in \mathbb{R}).$$

- (a) Állapítsa meg, hogy invertálható-e az f függvény!
- (b) Határozza meg az f ∘ g függvényt!
- (c) **Számítsa ki** a [-4,4] halmaz g által létesített ősképét!

3. A határérték definíciója alapján lássa be, hogy fennáll a

$$\lim_{n\to +\infty} \left(\frac{3n^3-n^2+3}{2n^2-n+1}\right) = +\infty$$

egyenlőség!

4. Számítsa ki az alábbi határértékeket!

(a)
$$\lim_{n\to+\infty}\left(\frac{\sqrt{n^3+1}-\sqrt{n^3-n^2}}{\sqrt{4n+1}}\right);$$

(b)
$$\lim_{n \to +\infty} \left(\sqrt[n]{5^{n+1} + n^2 3^n} \right);$$

(c)
$$\lim_{n \to +\infty} \left(\left(\frac{n+5}{2n} \right)^{3n+1} \right)$$
.

5. **Mutassa meg**, hogy az

$$x_0 := 5,$$
 $x_{n+1} := \frac{x_n^2 + 2x_n}{10}$ $(n \in \mathbb{N}_0)$

sorozat konvergens, és számítsa ki a határértékét!

Útm.

1. • Világos, hogy minden $x \in (-\infty, 3)$ esetén

$$(*) \quad \frac{x^2+9}{3x^2+9} = \frac{1}{3} \cdot \frac{3x^2+27}{3x^2+9} = \frac{1}{3} \cdot \frac{3x^2+9+18}{3x^2+9} = \frac{1}{3} \cdot \left(1+\frac{6}{x^2+3}\right) = \frac{1}{3} + \frac{2}{x^2+3}.$$

• Mivel bármely $x \in (-\infty, 3)$ esetén

$$\frac{2}{x^2+3} > 0$$
,

ezért

$$\mathcal{H} \ni \frac{x^2 + 9}{3x^2 + 9} > \frac{1}{3},$$

azaz $\frac{1}{3}$ alsó korlátja \mathcal{H} -nak. Látható, hogy a

$$\frac{2}{x^2+3}$$

tört az x^2 nagy értékeire igen közel van 0-hoz, ezért a \mathcal{H} halmaz elemei az ilyen x-ekre $\frac{1}{3}$ -hoz közeli értékeket vesznek fel. Sejthető tehát, hogy \mathcal{H} -nak nincsen $\frac{1}{3}$ -nál nagyobb korlátja:

$$\forall \, \varepsilon > 0 \, \exists \, \mathbf{x} \in (-\infty, 3) : \qquad \mathcal{H} \ni \frac{1}{3} + \frac{2}{\mathbf{x}^2 + 3} < \frac{1}{3} + \varepsilon.$$

Megmutatjuk, hogy $\frac{1}{3}$ a legnagyobb alsó korlát: $\inf(\mathcal{H}) = \frac{1}{3}$. Mivel

$$\frac{1}{3} + \frac{2}{x^2 + 3} < \frac{1}{3} + \varepsilon \qquad \iff \qquad x^2 > \frac{2}{\varepsilon} - 3,$$

ezért van ilyen ilyen $x\in(-\infty,3)$ szám, hiszen ha $x\in\left(-\infty,-\sqrt{\frac{2}{\epsilon}}\right)$, akkor

$$x^2 > \frac{2}{\varepsilon} > \frac{2}{\varepsilon} - 3.$$

Mivel $\frac{1}{3} \notin \mathcal{H}$, ezért \mathcal{H} -nak nincsen legkisebb eleme.

 A (*) felbontásból az is látható, hogy bármely $\mathbf{x} \in (-\infty,3)$ esetén

$$\mathcal{H} \ni \frac{1}{3} + \frac{2}{x^2 + 3} \le \frac{1}{3} + \frac{2}{0^2 + 3}.$$

Ez azt jelenti, hogy $sup(\mathcal{H}) = max(\mathcal{H}) = 1$.

5

Összefoglalva: a \mathcal{H} halmaz alulról és felülről is korlátos,

$$\inf(\mathcal{H}) = \frac{1}{3}, \quad \nexists \min(\mathcal{H}), \qquad \sup(\mathcal{H}) = \max(\mathcal{H}) = 1.$$

- 2. (a) Mivel f(1) = 1 = f(-3), ezért f nem invertálható.
 - (b) Világos, hogy

$$\begin{array}{ll} \mathcal{D}_{f\circ g} & = & \{x\in\mathcal{D}_g: \; g(x)\in\mathcal{D}_f\} = \left\{x\in[0,+\infty): \; x^2-2x-4\neq -1\right\} = \\ \\ & = & \left\{x\in[0,+\infty): \; x^2-2x-3\neq 0\right\}. \end{array}$$

Mivel

$$x^2 - 2x - 3 = 0$$
 \implies $x_{\pm} = 1 \pm \sqrt{1 + 3} = 1 \pm 2 \in \{-1, 3\},\$

ezért

$$\mathcal{D}_{f \circ g} = \{x \in [0, +\infty) : (x+1)(x-3) \neq 0\} = [0, +\infty) \setminus \{3\}.$$

Tehát bármely $3 \neq x \in [0, +\infty)$ esetén

$$(f \circ g)(x) = f(g(x)) = \frac{2}{|x^2 - 2x - 3|}.$$

Az f és a g függvény kompozíciója így az

$$(f \circ g)(x) := \frac{2}{|x^2 - 2x - 3|}$$
 $(3 \neq x \in [0, +\infty))$

függvény.

(c) Világos, hogy

$$\begin{split} g^{-1}\left[[-4,4]\right] &= \left\{x \in [0,+\infty): \ x^2 - 2x - 4 \in [-4,4]\right\} = \\ &= \left\{x \in [0,+\infty): \ -4 \le (x-1)^2 - 5 \le 4\right\} = \\ &= \left\{x \in [0,+\infty): \ 1 \le (x-1)^2 \le 9\right\} = \left\{x \in [0,+\infty): \ 1 \le |x-1| \le 3\right\} = \\ &= \left\{x \in [0,+\infty): \ 1 \le x - 1 \le 3\right\} \cup \left\{x \in [0,+\infty): \ -3 \le x - 1 \le -1\right\} = \\ &= [2,4] \cup \{0\}. \end{split}$$

3. Azt kell megmutatni, hogy az

$$x_n := \frac{3n^3 - n^2 + 3}{2n^2 - n + 1}$$
 $(n \in \mathbb{N}_0)$

sorozatra

$$\forall \omega \in \mathbb{R} \ \exists N \in \mathbb{N}_0 \ \forall n \in \mathbb{N}_0 : \qquad (n \ge N \implies x_n > \omega)$$

teljesül. Valóban, ha $0<\omega\in\mathbb{R}$, akkor bármely $\mathfrak{n}\in\mathbb{N}$ esetén

$$\begin{split} \frac{3n^3-n^2+3}{2n^2-n+1} &> & \frac{3n^3-n^2}{2n^2+1} = \frac{2n^3+n^3-n^2}{2n^2+1} = \frac{2n^3+n^2(n-1)}{2n^2+1} \geq \\ &\overset{n\geq 1}{\geq} & \frac{2n^3}{2n^2+n^2} = \frac{2n^3}{3n^2} = \frac{2n}{3} > \omega &\iff & n>\frac{3\omega}{2}, \end{split}$$

így

$$N := \max \left\{ 1, \left\lceil \frac{3\omega}{2} \right\rceil + 1 \right\} = \left\lceil \frac{3\omega}{2} \right\rceil + 1.$$

4. (a) Látható, hogy bármely $n \in \mathbb{N}$ indexre

$$\begin{split} \frac{\sqrt{n^3+1}-\sqrt{n^3-n^2}}{\sqrt{4n+1}} &= \left(\frac{\sqrt{n^3+1}-\sqrt{n^3-n^2}}{\sqrt{4n+1}}\right) \cdot \frac{\sqrt{n^3+1}+\sqrt{n^3-n^2}}{\sqrt{n^3+1}+\sqrt{n^3-n^2}} = \\ &= \frac{n^2+1}{\sqrt{4n+1}\left(\sqrt{n^3+1}+\sqrt{n^3-n^2}\right)} = \\ &= \frac{1+\frac{1}{n^2}}{\sqrt{4+\frac{1}{n}}\left(\sqrt{1+\frac{1}{n^3}}+\sqrt{1-\frac{1}{n}}\right)} \longrightarrow \frac{1}{\sqrt{4}\cdot\left(\sqrt{1}+\sqrt{1}\right)} = \\ &= \frac{1}{4} \quad (n\to\infty). \end{split}$$

(b) Mivel tetszőleges $n \in \mathbb{N}$ indexre

$$\sqrt[n]{5^{n+1} + n^2 3^n} = 5 \cdot \sqrt[n]{5 + n^2 \left(\frac{3}{5}\right)^n}$$

és az

$$x_n := 5 + n^2 \left(\frac{3}{5}\right)^n \qquad (n \in \mathbb{N})$$

sorozatra

$$\lim_{n \to \infty} (x_n) = 5 + 0 = 5 > 0,$$

ezért

$$\lim_{n \to \infty} \left(\sqrt[n]{5^{n+1} + n^2 3^n} \right) = 5 \cdot \lim_{n \to \infty} \left(\sqrt[n]{x_n} \right) = 5 \cdot 1 = 5.$$

(c) Az $n \to \infty$ határátmenetben

$$\left(\frac{n+5}{2n}\right)^{3n+1} = \left(\frac{1}{2}\right)^{3n+1} \cdot \left(\frac{n+5}{n}\right)^{3n+1} =$$

$$= \left(\frac{1}{2}\right)^{3n+1} \cdot \left[\left(1+\frac{5}{n}\right)^n\right]^3 \cdot \left(1+\frac{5}{n}\right) \longrightarrow \frac{1}{2} \cdot 0 \cdot [e^5]^3 \cdot 1 = 0.$$

5. **1. lépés.** Ha az (x_n) sorozat konvergens, és $\alpha := \lim(x_n)$, akkor $\lim(x_{n+1}) = \alpha$, és így

$$\alpha = \frac{\alpha^2 + 2\alpha}{10} \implies \alpha^2 - 8\alpha = 0 \implies \alpha \in \{0, 8\}.$$

2. lépés. Mivel a kezdőtag: $x_0 = 5$, kézenfekvőnek tűnik belátni azt, hogy

$$x_n \in (0,8)$$
 $(n \in \mathbb{N}_0)$.

Valóban,

- n = 0 esetén $x_0 = 5 \in (0, 8)$;
- $\bullet \,$ ha valamely $n \in \mathbb{N}_0$ esetén $x_n \in (0,8),$ akkor

$$x_{n+1} = \frac{x_n^2 + 2x_n}{10} \in \left(0, \frac{64 + 16}{10}\right) = (0, 8).$$

3. lépés. Megmutatjuk, hogy az (x_n) sorozat szigorúan monoton csökkenő. Valóban, bármely $n \in \mathbb{N}_0$ esetén

$$x_{n+1} - x_n = \frac{x_n^2 + 2x_n}{10} - x_n = \frac{x_n^2 - 8x_n}{10} = \frac{x_n(x_n - 8)}{10} < 0.$$

4. lépés. Mivel a sorozat (szigorúan) monoton csökkenő és alulról korlátos, ezért konvergens. A fentiek következtáben tehát (x_n) konvergens és

$$\lim(x_n) = 0$$
.

A 2. MintaZh feladatai

1. Konvergens-e a

$$\sum_{n=1} \left(\frac{(-3)^n + (-2)^{2n}}{5^{n+1}} \right)$$

végtelen sor? Ha igen, számítsa ki összegét!

2. Döntse el, hogy konvergensek-e az alábbi sorok!

a)
$$\sum_{n=2} \left(\frac{1}{\sqrt[n]{2n^2+1}} \right)$$
, b) $\sum_{n=1} \left(\frac{n^3 \cdot 3^n}{(3n)!} \right)$, c) $\sum_{n=0} \left(\frac{\sqrt{n^4+1}}{n^4+n^2+1} \right)$.

3. Határozza meg a

$$\sum_{n=1} \left(\frac{2^n}{n(4^n - 1)} \cdot (x - 1)^n \right) \qquad (x \in \mathbb{R})$$

hatványsor konvergenciasugarát és konvergenciahalmazát!

4. Számítsa ki az alábbi határértékeket!

a)
$$\lim_{x\to 0} \frac{x\cdot\sin(x)}{1-\sqrt{\cos(2x)}}$$
, b) $\lim_{x\to 1} \frac{\sqrt{\alpha x^2-\alpha+1}-1}{x^3-1}$ $(\alpha\in[0,1])$.

5. Határozza meg az

$$f: \mathbb{R} \to \mathbb{R}, \qquad f(x) := \begin{cases} \frac{x}{x^2 - x - 6} & (x < -2), \\ \frac{e^{2x} - e^x}{2x} & (-2 \le x < 10), \\ 1 & (x = 0), \\ \frac{\sqrt{x^2 + 1} - 1}{x^2} & (x > 0). \end{cases}$$

függvény folytonossági és szakadási helyeit, valamint a szakadási helyek típusát!

Útm.

1. Mivel bármely $n \in \mathbb{N}$ esetén

$$\frac{(-3)^n + (-2)^{2n}}{5^{n+1}} = \frac{1}{5} \cdot \left\{ \left(-\frac{3}{5} \right)^n + \left(\frac{4}{5} \right)^n \right\}$$

és

$$\left|-\frac{3}{5}\right| < 1,$$
 ill. $\left|\frac{4}{5}\right| < 1,$

ezért konvergens geometriai sorról van szó, amelynek összege

$$\sum_{n=1}^{\infty} \frac{(-3)^n + (-2)^{2n}}{5^{n+1}} = \frac{1}{5} \cdot \left\{ \sum_{n=1}^{\infty} \left(-\frac{3}{5} \right)^n + \sum_{n=1}^{\infty} \left(\frac{4}{5} \right)^n \right\} = \frac{1}{5} \cdot \left\{ \frac{-\frac{3}{5}}{1 + \frac{3}{5}} + \frac{\frac{4}{5}}{1 - \frac{4}{5}} \right\} =$$

$$= \frac{1}{5} \cdot \left\{ -\frac{3}{8} + 4 \right\} = \frac{29}{40}.$$

2. (a) Mivel

$$\sqrt[n]{2n^2} \le \sqrt[n]{2n^2 + 1} \le \sqrt[n]{2n^2 + n^2} \le \sqrt[n]{3n^2} \qquad (2 \le n \in \mathbb{N})$$

és

$$\sqrt[n]{2n^2} = \sqrt[n]{2} \cdot (\sqrt[n]{n})^2 \stackrel{(n \to \infty)}{\longrightarrow} 1 \cdot 1^2 = 1 = 1 \cdot 1^2 \stackrel{(n \to \infty)}{\longleftarrow} \sqrt[n]{3} \cdot (\sqrt[n]{n})^2 = \sqrt[n]{3n^2},$$

ezért a Sandwich-tétel felhasználásával azt kapjuk, hogy

$$\lim_{n\to\infty}\left(\frac{1}{\sqrt[n]{2n^2+1}}\right)=\frac{1}{\lim\limits_{n\to\infty}(\sqrt[n]{2n^2+1})}=\frac{1}{1}=1\neq 0.$$

Következésképpen a

$$\sum_{n=2} \left(\frac{1}{\sqrt[n]{2n^2 + 1}} \right)$$

sor divergens. **Megjegyezzük**, hogy tetszőleges $2 \leq n \in \mathbb{N}$ indexre

$$\frac{1}{\sqrt[n]{2n^2+1}} = \frac{1}{\sqrt[n]{n^2} \cdot \sqrt[n]{2+\frac{1}{n^2}}} \longrightarrow \frac{1}{1 \cdot 1} = 1 \qquad (n \to \infty),$$

hiszen

$$x_n := 2 + \frac{1}{n^2} \longrightarrow 2 > 0 \quad (n \to \infty) \qquad \Longrightarrow \qquad \sqrt[n]{x_n} \longrightarrow 1 \quad (n \to \infty).$$

(b) Ha

$$x_n := \frac{n^3 \cdot 3^n}{(3n)!} \qquad (n \in \mathbb{N}),$$

akkor

$$\left|\frac{x_{n+1}}{x_n}\right| = \frac{(n+1)^3 \cdot 3^{n+1}}{(3n+3)!} \cdot \frac{(3n)!}{n^3 \cdot 3^n} = \frac{3(n+1)^3}{n^3(3n+1)(3n+2)(3n+3)} \longrightarrow 0 < 1 \qquad (n \to \infty).$$

Így a hányadoskritérium következtében a

$$\sum_{n=1} \left(\frac{n^3 \cdot 3^n}{(3n)!} \right)$$

sor konvergens.

(c) Mivel nagy $n \in \mathbb{N}$ indexre

$$\frac{\sqrt{n^4+1}}{n^4+n^2+1} = \frac{\sqrt{1+\frac{1}{n^4}}}{n^2+1+\frac{1}{n^2}} \approx \frac{1}{n^2+1} \qquad \text{és} \qquad \sum_{n=1}^{\infty} \left(\frac{1}{n^2+1}\right) \quad \text{konvergens,}$$

ezért a majoránskritériumot kíséreljük meg alkalmazni. Mivel

$$\frac{\sqrt{n^4+1}}{n^4+n^2+1} \leq \frac{\sqrt{n^4+3n^4}}{n^4} = \frac{2n^2}{n^4} = \frac{2}{n^2} \qquad (n \in \mathbb{N})$$

és a

$$\sum_{n=1} \left(\frac{2}{n^2}\right) = 2 \cdot \sum_{n=1} \left(\frac{1}{n^2}\right)$$

sor konvergens, ezért a

$$\sum_{n=0} \left(\frac{\sqrt{n^4+1}}{n^4+n^2+1} \right)$$

sor a majoránskritérium alapján konvergens.

3. Világos, hogy c := 1 középpontú és

$$\alpha_n := \frac{2^n}{n(4^n-1)} \qquad (n \in \mathbb{N})$$

együtthatójú hatványsorról van szó. Mivel az $n \to \infty$ határesetben

$$\left|\frac{a_n}{a_{n+1}}\right| = \frac{2^n}{n(4^n-1)} \cdot \frac{(n+1)(4^{n+1}-1)}{2^{n+1}} = \frac{n+1}{2n} \cdot \frac{4^{n+1}-1}{4^n-1} = \frac{n+1}{2n} \cdot \frac{4-\frac{1}{4^n}}{1-\frac{1}{4^n}} \longrightarrow \frac{1}{2} \cdot 4 = 2,$$

ezért a hatványsor konvergenciasugara 2. Mivel

$$|x-1| < 2$$
 \iff $-2 < x-1 < 2$ \iff $-1 < x < 3$

ezért a hatványsor $x \in (1,3)$ esetén konvergens, $x \in \mathbb{R} \setminus [-1,3]$ esetén pedig divergens. Ha x=-1, akkor a

$$\sum_{n=1} \left((-1)^n \cdot \frac{4^n}{n(4^n-1)} \right)$$

sor a Lebniz-kritérium következtében konvergens, hiszen

$$\frac{4^n}{n(4^n-1)} = \frac{1}{n} \cdot \frac{1}{1-\frac{1}{4^n}} \searrow 0 \qquad (n \to \infty).$$

Ha x = 3, akkor a

$$\sum_{n=1} \left(\frac{4^n}{n(4^n - 1)} \right)$$

sor divergens, hiszen

$$\frac{4^n}{4^n-1}>1 \qquad (n\in \mathbb{N})$$

következtében

$$\frac{4^n}{n(4^n-1)}>\frac{1}{n}>0 \qquad (n\in\mathbb{N}),$$

és így a

$$\sum_{n=1}^{\infty} \left(\frac{1}{n} \right)$$

harmonikus sor divergens minoránsa.

4. (a) Bármely $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ esetén

$$\frac{x \cdot \sin(x)}{1 - \sqrt{\cos(2x)}} = \frac{x \cdot \sin(x)}{1 - \sqrt{\cos(2x)}} \cdot \frac{1 + \sqrt{\cos(2x)}}{1 + \sqrt{\cos(2x)}} = \frac{x \cdot \sin(x) \cdot \left(1 + \sqrt{\cos(2x)}\right)}{1 - \cos(2x)} =$$

$$= \frac{x \cdot \sin(x) \cdot \left(1 + \sqrt{\cos(2x)}\right)}{2 \cdot \sin^2(x)} = \frac{1 + \sqrt{\cos(2x)}}{2 \cdot \frac{\sin(x)}{2}} \longrightarrow \frac{1 + 1}{2 \cdot 1} = 1 \quad (x \to 0).$$

(b) Mivel alkalmas r > 0, illetve $1 \neq x \in (1 - r, 1 + r)$ esetén

$$\frac{\sqrt{\alpha x^2 - \alpha + 1} - 1}{x^3 - 1} = \frac{\sqrt{\alpha x^2 - \alpha + 1} - 1}{x^3 - 1} \cdot \frac{\sqrt{\alpha x^2 - \alpha + 1} + 1}{\sqrt{\alpha x^2 - \alpha + 1} + 1} =$$

$$= \frac{\alpha \cdot (x^2 - 1)}{(x^3 - 1) \cdot (\sqrt{\alpha x^2 - \alpha + 1} + 1)} =$$

$$= \frac{\alpha \cdot (x - 1) \cdot (x + 1)}{(x - 1) \cdot (x^2 + x + 1) \cdot (\sqrt{\alpha x^2 - \alpha + 1} + 1)} =$$

$$= \frac{\alpha \cdot (x + 1)}{(x^2 + x + 1) \cdot (\sqrt{\alpha x^2 - \alpha + 1} + 1)},$$

ezért

$$\lim_{x\to 1}\frac{\sqrt{\alpha x^2-\alpha+1}-1}{x^3-1}=\frac{\alpha\cdot 2}{3\cdot \left(\sqrt{1}+1\right)}=\frac{\alpha}{3}.$$

- 5. A folytonosság és a műveletek kapcsolatára vonatkozó tételek alapjány nyilvánvaló, hogy f folytonos a $(-\infty, -2)$, (-2, 0), $(0, +\infty)$ intervallumok mindegyikén. Látható továbbá, hogy
 - f-nek másodfajú szakadása van az a := -2 pontban, hiszen

$$\lim_{-2-0} f = \lim_{x \to 2-0} \frac{x}{(x+2)(x-3)} = \left(\lim_{x \to 2-0} \frac{x}{x-3}\right) \cdot \left(\lim_{x \to 2-0} \frac{1}{x+2}\right) = \frac{2}{5} \cdot (+\infty) = +\infty;$$

• f-nek megszüntethető szakadása van az α := 0 pontban, hiszen (vö. 284., ill. 286. oldal)

$$\lim_{0 \to 0} f = \lim_{x \to 0 \to 0} \frac{e^{2x} - e^x}{2x} = \frac{2 - 1}{2} = \frac{1}{2}$$

és

$$\lim_{0 \to 0} f = \lim_{x \to 0 \to 0} \frac{\sqrt{x^2 + 1} - 1}{x^2} = \lim_{x \to 0 \to 0} \frac{\sqrt{x^2 + 1} - 1}{x^2} \cdot \frac{\sqrt{x^2 + 1} + 1}{\sqrt{x^2 + 1} + 1} =$$

$$= \lim_{x \to 0 \to 0} \frac{x^2}{x^2 \cdot \left(\sqrt{x^2 + 1} + 1\right)} = \lim_{x \to 0 \to 0} \frac{1}{\sqrt{x^2 + 1} + 1} = \frac{1}{2}.$$

Mindez azt jelenti, hogy

$$\lim_{0} f = \frac{1}{2} \in \mathbb{R}, \quad de \quad f(0) = 1 \neq \frac{1}{2}.$$

1. gyakorlat (2023. 03. 02.)

Emlékeztető. Az $x \in \mathbb{R}$ szám abszolútértékén, ill. előjelén az

$$|x|:=\left\{\begin{array}{ll} x & (x\geq 0),\\ -x & (x<0) \end{array}\right., \qquad \text{ill.} \qquad \text{sgn}(x):=\left\{\begin{array}{ll} 0 & (x=0),\\ \\ \frac{x}{|x|} & (x\neq 0) \end{array}\right.$$

valós számot értjük.

Nyilván igaz, hogy

$$sgn(x) = \begin{cases} -1 & (x < 0), \\ 0 & (x = 0), \\ 1 & (x > 0) \end{cases} (x \in \mathbb{R}).$$

Tétel. Bármely $x, y \in \mathbb{R}$ esetén

1.
$$|x| \ge 0$$
 és $|x| = 0$ \iff $x = 0$;

2.
$$|x| = |-x|$$
;

3.
$$|x \cdot y| = |x| \cdot |y|$$
, ill. ha $y \neq 0$, úgy $\left| \frac{1}{y} \right| = \frac{1}{|y|}$;

4. ha $a \ge 0$, akkor

$$|x| \le a \iff -a \le x \le a,$$
 ill. $|x| \ge a \iff (x \le -a \text{ vagy } x \ge a);$

- 5. $|x \pm y| \le |x| + |y|$ (háromszög-egyenlőtlenség);
- 6. $|x \pm y| \ge \left| |x| |y| \right|$ (háromszög-egyenlőtlenség).

Biz.

- **1. lépés.** Mivel az első négy állítás közvetelenül adódik az abszolút érték definíciójából, ill. a szorzás előjel szabályából, ezért ezek bizonyítását nem részletezzük.
- **2. lépés.** Az |x| értelmezése alapján az x szám |x|-kel vagy -|x|-kel egyenlő. Következésképpen bármely

 $x, y \in \mathbb{R}$ számpárra

$$-|x| \le x \le |x|$$
, $-|y| \le y \le |y|$.

Innen, összeadva az egyenlőtlenségeket

$$-(|x| + |y|) \le x + y \le |x| + |y|$$

következik, ami az első és a negyedik tulajdonság alapján éppen avval egyenértékű, hogy

$$|x + y| \le |x| + |y|.$$

A második tulajdonság következménye az

$$|x - y| \le |x| + |y|$$

egyenlőtlenség.

3. lépés. Az ötödik $_+$ egyenlőtlenség alapján $|x|=|(x-y)+y|\leq |x-y|+|y|$, azaz

$$|x| - |y| \le |x - y| \tag{1},$$

ill. $|\mathbf{y}| = |(\mathbf{y} - \mathbf{x}) + \mathbf{x}| \le |\mathbf{y} - \mathbf{x}| + |\mathbf{x}| = |\mathbf{x} - \mathbf{y}| + |\mathbf{x}|,$ azaz

$$|y| - |x| \le |x - y|,\tag{2}$$

ahonnan a (2) egyenlőtlenségnek (-1)-gyel való szorzása után a

$$-|x - y| \le |x| - |y| \le |x - y|$$

adódik. Ez az első és a negyedik tulajdonság alapján a bizonyítandó

$$|x - y| > ||x| - |y||$$

egyenlőtlenséggel egyenértékű.

4. lépés. Az ötödik_ egyenlőtlenség alapján $|x|=|(x+y)-y|\leq |x+y|+|y|$, azaz

$$|x| - |y| \le |x + y|,\tag{3}$$

ill. $|y| = |(y + x) - x| \le |y + x| + |x| = |x + y| + |x|$, azaz

$$|y| - |x| \le |x + y|,\tag{4}$$

ahonnan a (4) egyenlőtlenségnek (-1)-gyel való szorzása után a

$$-|x+y| \le |x| - |y| \le |x+y|$$

adódik. Ez az első és a negyedik tulajdonság alapján a bizonyítandó

$$|x + y| > ||x| - |y||$$

egyenlőtlenséggel egyenértékű.

Tétel (a teljes indukció elve.) Legyen $m \in \mathbb{Z}$ rögzített egész szám, és tegyük fel, hogy $\mathcal{A}(n)$ az $m \le n \in \mathbb{Z}$ (m-nél nem kisebb egész) számokra vonatkozó olyan állítás, amelyre:

- (a) A(m) igaz, és
- (b) ha valamely $m \le n \in \mathbb{Z}$ esetén $\mathcal{A}(n)$ igaz, akkor $\mathcal{A}(n+1)$ is igaz.

Ekkor $\mathcal{A}(n)$ igaz minden $m \leq n \in \mathbb{Z}$ számra.

A teljes indukció módszerével (is) könnyen belátható a

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2} \tag{1}$$

állítás. Valóban, ha

• n = 1, akkor

$$\sum_{k=1}^{1} k = 1 = \frac{1 \cdot (1+1)}{2} . \checkmark$$

• valamely $n \in \mathbb{N}$ esetén fennáll a (1) állítás, akkor

$$\sum_{k=1}^{n+1} k = \sum_{k=1}^{n} k + (n+1) = \frac{n(n+1)}{2} + (n+1) = \frac{(n+1)(n+2)}{2}.\checkmark$$

Feladat. Igazoljuk, hogy bármely $n \in \mathbb{N}$ számra fennáll a

$$2\sqrt{n+1}-2<\sum_{k=1}^n\frac{1}{\sqrt{k}}$$

egyenlőtlenség!

Útm. Teljes indukcióval igazoljuk a fenti egyenlőtlenséget.

• Ha n = 1, akkor az állítás nyilvánvalóan igaz, ui.

$$\sum_{k=1}^{1} \frac{1}{\sqrt{k}} = 1 > 2\sqrt{1+1} - 2 \iff 3 > 2\sqrt{2} \iff 9 > 8.\checkmark$$

ullet Tegyük fel, hogy valamely $\mathfrak{n} \in \mathbb{N}$ esetén

$$\sum_{k=1}^{n} \frac{1}{\sqrt{k}} > 2\sqrt{n+1} - 2$$

teljesül (indukciós feltevés). Mivel

$$\sum_{k=1}^{n+1} \frac{1}{\sqrt{k}} = \sum_{k=1}^{n} \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{n+1}},$$

ezért ha belátjuk, hogy

$$2\sqrt{n+1}-2+\frac{1}{\sqrt{n+1}}>2\sqrt{n+1+1}-2,$$

akkor igazoltuk az állítást. A fenti egyenlőtlenség pontosan akkor teljesül, ha

$$2\sqrt{n+1} + \frac{1}{\sqrt{n+1}} > 2\sqrt{n+2} \qquad \Longleftrightarrow \qquad 2(n+1) + 1 > 2\sqrt{n+2}\sqrt{n+1}.$$

Ez utóbbi pedig nem más, mint

$$2n+3 > 2\sqrt{n^2+3n+2}$$
 \iff $4n^2+12n+9 > 4n^2+12n+8$ \iff $9 > 8$,

ami igaz.

Emlékeztető. Legyen $n \in \mathbb{N}$. Ekkor tetszőleges $a, b \in \mathbb{R}$ esetén fennáll az

$$a^{n} - b^{n} = (a - b) \left(a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1} \right) = (a - b) \sum_{k=1}^{n} a^{n-k}b^{k-1}$$
 (2)

egyenlőség.

Következmény. Tetszőleges $x \in \mathbb{R}$ számra $x^n - 1 = x^n - 1^n = (x - 1)(x^{n-1} + x^{n-2} + \dots + x + 1)$.

Tétel (Barrow-Bernoulli-egyenlőtlenség). Ha $n \in \mathbb{N}_0$ és $h \in [-2, +\infty)$, akkor

$$(1+h)^n \ge 1 + nh, \tag{3}$$

és egyenlőség pontosan akkor van, ha h = 0 vagy $n \in \{0, 1\}$.

Biz.

0. lépés. Világos, hogy ha n = 0, akkor igaz az egyenlőtlenség: egyenlőség áll fenn, ui.

$$(1+h)^0 = 1 = 1 + 0 \cdot h.$$

A továbbiakban feltehetjük tehát, hogy $1 \le n \in \mathbb{N}_0$, azaz $n \in \mathbb{N}$.

- **1. lépés.** Legyen h=-2. Ekkor a $(-1)^n \ge 1-2n$ egyenlőtlenséget kell bebizonyítanunk. Ez nyilvánvalóan teljesül, ui. n=1 esetén $(-1)^1=1-2\cdot 1$, ill. ha $2\le n\in \mathbb{N}$, akkor 1-2n<-1, hiszen ez a 2<2n egyenlőtlenséggel egyenértékű.
- **2. lépés.** Legyen $h \in (-2, -1)$. Világos, hogy ha n = 1, akkor teljesül a becslés, sőt egyenlőség van. Ha $2 \le n \in \mathbb{N}$, akkor legyen

$$h := -\epsilon - 1$$
 $(\epsilon \in (0, 1)).$

Így

$$(1+h)^{\mathfrak{n}}=(-\varepsilon)^{\mathfrak{n}}>-1>1-\mathfrak{n}-\mathfrak{n}\varepsilon=1+\mathfrak{n}(-1-\varepsilon)=1+\mathfrak{n}h.$$

- **3.** lépés. Legyen $h \in [-1, +\infty)$.
 - **1. módszer.** Ha x := 1 + h, akkor

$$x^{n} - 1 - n(x - 1) = (x - 1)(x^{n-1} + x^{n-2} + ... + x + 1) - n(x - 1) =$$

$$= (x - 1)(x^{n-1} + x^{n-2} + ... + x + 1 - n),$$

ezért, ha

• $h \ge 0$, azaz $x \ge 1$, akkor

$$x-1 > 0$$
 és $x^{n-1} + x^{n-2} + ... + x + 1 > n$

• ha pedig $-1 \le h \le 0$, azaz $0 \le x \le 1$, akkor

$$x - 1 \le 0$$
 és $x^{n-1} + x^{n-2} + ... + x + 1 \le n$.

Ennélfogva

$$x^n - 1 - n(x - 1) \ge 0$$
, azaz $(1 + h)^n \ge 1 + nh$.

- 2. módszer. Teljes indukcióval bizonyítunk. Ha
 - n = 1, akkor $(1 + h)^1 = 1 + h = 1 + n \cdot h. \checkmark$
 - valamely $n \in \mathbb{N}$ esetén fennáll a (3) egyenlőtlenség, akkor

$$(1+h)^{n+1} = (1+h)^n \cdot (1+h) \stackrel{1+h \ge 0 \& (3)}{\ge} (1+nh) \cdot (1+h) =$$

$$= 1+nh+h+nh^2 = 1+(n+1)h+nh^2 \stackrel{nh^2 \ge 0}{\ge} 1+(n+1)h.\checkmark$$

4. lépés. Ha h=0 vagy n=1 esetén nyilván teljesül az egyenlőség. Tegyük fel, hogy alkalmas $2 \le n \in \mathbb{N}$ esetén

$$(1+h)^n = 1 + nh.$$

Ekkor h = 0, ugyanis a (2) azonosságot felhasználva azt kapjuk, hogy

$$(1+h)^n = 1 + nh \quad \Longleftrightarrow \quad (1+h)^n - 1^n = nh \quad \Longleftrightarrow \quad h \cdot \sum_{k=1}^n (1+h)^{n-k} = h \cdot n$$

miatt sem h > 0 sem pedig h < 0 nem lehetséges, mert különben

$$\sum_{k=1}^n (1+h)^{n-k} > n, \qquad \text{ill.} \qquad 0 \le \sum_{k=1}^n (1+h)^{n-k} < n$$

teljesülne, ami nyilvánvalóan nem igaz. ■

Megjegyzések.

1. A Bernoulli-egyenlőtlenségről Jakob Bernoulli egy könyvéből latinul (1670), és Isaac Barrow-tól angolul (1669) olvashatunk.

- 2. Megmutatható, hogy a h < -2 esetben már nem igaz az egyenlőtlenség.
- 3. Alkalmazás: az

$$f(x) := (1 + x)^n$$
 $(-2 \le x \in \mathbb{R}; n \in \mathbb{N})$

függvény grafikonja nem megy a 0-beli érintője alá, ui. az alsó becslés következtében

$$y = f(0) + f'(0)(x - 0) = 1 + n(1 + 0)^{n-1}x = 1 + nx \le (1 + x)^n = f(x).$$

Definíció. Adott $n \in \mathbb{N}$ esetén

1. az $x_1, \ldots, x_n \in \mathbb{R}$ számok **számtani** vagy **aritmetikai közep**ét az alábbi módon értelmezzük:

$$A_n := \frac{x_1 + \ldots + x_n}{n} = \frac{1}{n} \sum_{k=1}^n x_k;$$

2. az $x_1, \ldots, x_n \in \mathbb{R}$ számok **négyzetes** vagy **kvadratikus közep**ét így értelmezzük:

$$Q_n := \sqrt{\frac{x_1^2 + \ldots + x_n^2}{n}} = \sqrt{\frac{1}{n} \sum_{k=1}^n x_k^2};$$

3. a $0 \le x_1, \dots, x_n \in \mathbb{R}$ számok **mértani** vagy **geometriai közep**ét az alábbi módon értelmezzük:

$$G_n := \sqrt[n]{x_1 \cdot \ldots \cdot x_n} = \sqrt[n]{\prod_{k=1}^n x_k};$$

4. a $0 < x_1, \dots, x_n \in \mathbb{R}$ számok **harmonikus közep**ét így értelmezzük:

$$H_n := \frac{n}{\frac{1}{x_1} + \ldots + \frac{1}{x_n}} = \frac{n}{\sum_{k=1}^n \frac{1}{x_k}}.$$

Megjegyezzük, hogy

1. a fenti definícióban a közép elnevezés jogos, hiszen egyszerű becsléssel belátható, hogy ha $n \in \mathbb{N}$ és

(a)
$$x_1, \ldots, x_n \in \mathbb{R}$$
, akkor

$$\min\{x_1,\ldots,x_n\} \leq A_n \leq \max\{x_1,\ldots,x_n\};$$

(b)
$$0 \le x_1, \dots, x_n \in \mathbb{R}$$
, akkor

$$\min\{x_1,\ldots,x_n\} \leq Q_n \leq \max\{x_1,\ldots,x_n\};$$

(c)
$$0 \le x_1, \ldots, x_n \in \mathbb{R}$$
, akkor

$$\min\{x_1,\ldots,x_n\} \leq G_n \leq \max\{x_1,\ldots,x_n\};$$

(d)
$$0 < x_1, \ldots, x_n \in \mathbb{R}$$
, akkor

$$\min\{x_1,\ldots,x_n\} \leq H_n \leq \max\{x_1,\ldots,x_n\}.$$

2. $0 < x_1, \dots, x_n \in \mathbb{R}$, akkor igaz a

$$H_n \leq G_n \leq A_n \quad \Leftrightarrow \quad H_n^n \leq G_n^n \leq A_n^n \quad \Leftrightarrow \quad \left(\frac{n}{\frac{1}{x_1} + \ldots + \frac{1}{x_n}}\right)^n \leq x_1 \cdot \ldots \cdot x_n \leq \left(\frac{x_1 + \ldots + x_n}{n}\right)^n$$

ekvivalencia-lánc.

Tétel (a mértani közép és a számtani közép közötti egyenlőtlenség).

Bármely $n \in \mathbb{N}$, ill. $0 \le x_1, \dots, x_n \in \mathbb{R}$ esetén

$$x_1 \cdot \ldots \cdot x_n = \left[\prod_{k=1}^n x_k \le \left(\frac{1}{n} \sum_{k=1}^n x_k \right)^n \right] = \left(\frac{x_1 + \ldots + x_n}{n} \right)^n,$$

és egyenlőség pontosan az $x_1 = \ldots = x_n$ esetben teljesül.

Biz. Több lépésben bizonyítunk.

0. lépés. Ha n=1, akkor az egyenlőtlenség nyilvánvalóan teljesül, sőt egyenlőség van. Ha pedig n=2, akkor

$$\sqrt{x_1x_2} \le \frac{x_1 + x_2}{2} \qquad \iff \qquad 0 \le \left(\frac{x_1 + x_2}{2}\right)^2 - x_1x_2 = \frac{x_1^2 - 2x_1x_2 + x_2^2}{4} = \left(\frac{x_1 - x_2}{2}\right)^2,$$

és egyenlőség pontosan az $x_1 = x_2$ esetben áll fenn.

1. lépés. Legyen $2 \le n \in \mathbb{N}$. Ha valamely $k \in \{1, ..., n\}$ esetén $x_k = 0$, akkor az egyenlőtlenség triviálisan teljesül. Tegyük fel tehát, hogy bármely $k \in \{1, ..., n\}$ esetén $x_k > 0$. Mivel

$$\frac{A_n}{A_{n-1}} > 0,$$
 azaz $\frac{A_n}{A_{n-1}} - 1 > -1,$

ezért alkalmazható a Bernoulli-egyenlőtlenség:

$$\left(\frac{A_{n}}{A_{n-1}}\right)^{n} = \left(1 + \underbrace{\frac{A_{n}}{A_{n-1}} - 1}_{:=h}\right)^{n} \ge 1 + n\left(\frac{A_{n}}{A_{n-1}} - 1\right) = \frac{A_{n-1} + nA_{n} - nA_{n-1}}{A_{n-1}} = \frac{nA_{n} - (n-1)A_{n-1}}{A_{n-1}} = \frac{x_{n}}{A_{n-1}},$$

azaz

$$A_n^n \geq x_n \cdot A_{n-1}^{n-1}.$$

Így

$$A_n^n \geq x_n \cdot A_{n-1}^{n-1} \geq x_n \cdot x_{n-1} \cdot A_{n-2}^{n-2} \geq \ldots \geq x_n \cdot x_{n-1} \cdot \ldots \cdot x_2 \cdot A_1^1 = x_n \cdot x_{n-1} \cdot \ldots \cdot x_2 \cdot x_1 = G_n^n.$$

2. lépés. Nyilvánvaló, hogy ha $x_1 = \ldots = x_n$, akkor $A_n = G_n$. Ha $2 \le n \in \mathbb{N}$ és bizonyos $0 \le x_1, \ldots, x_n \in \mathbb{R}$ esetén fennáll az $A_n = G_n$ egyenlőség, továbbá az x_1, \ldots, x_n számok nem mind egyenlők egymással, azaz van közöttük legalább két különböző:

$$\exists i, j \in \{1, \ldots, n\}: \quad x_i \neq x_i,$$

akkor az 1. lépésben belátottak alapján

$$\sqrt{x_i x_j} < \frac{x_i + x_j}{2}, \qquad \text{azaz} \qquad x_i x_j < \left(\frac{x_i + x_j}{2}\right)^2.$$

Ezért

$$\mathbf{G_n} \ = \ \sqrt[n]{\prod_{k=1}^n x_k} < \sqrt[n]{\frac{x_i + x_j}{2} \cdot \frac{x_i + x_j}{2} \prod_{\substack{k=1 \\ k \notin \{i,j\}}}^n x_k} \le$$

$$\leq \frac{1}{n} \left(\frac{x_i + x_j}{2} + \frac{x_i + x_j}{2} + \sum_{\substack{k=1 \\ k \notin \{i,j\}}}^{n} x_k \right) = \frac{1}{n} \sum_{k=1}^{n} x_k = A_n,$$

ami ellentmond az $A_n = G_n$ feltételnek.

Tétel (a harmonikus közép és a mértani közép közötti egyenlőtlenség).

Tetszőleges $n \in \mathbb{N}$, ill. $0 < x_1, \ldots, x_n \in \mathbb{R}$ esetén

$$x_1 \cdot \ldots \cdot x_n = \left[\prod_{k=1}^n x_k \ge \left(\frac{n}{\sum_{k=1}^n \frac{1}{x_k}} \right)^n \right] = \left(\frac{n}{\frac{1}{x_1} + \ldots + \frac{1}{x_n}} \right)^n,$$

és egyenlőség pontosan az $x_1 = \ldots = x_n$ esetben van.

Biz. A mértani közép és a számtani közép közötti egyenlőtlenséget felhasználásával azt kapjuk, hogy

$$H_n^n = \left(\frac{n}{\sum_{k=1}^n \frac{1}{x_k}}\right)^n = \left(\frac{1}{\frac{1}{n}\sum_{k=1}^n \frac{1}{x_k}}\right)^n = \frac{1}{\left(\frac{1}{n}\sum_{k=1}^n \frac{1}{x_k}\right)^n} \le \frac{1}{\prod_{k=1}^n \frac{1}{x_k}} = \prod_{k=1}^n x_k = G_n^n,$$

és egyenlőség pontosan akkor van, ha $\frac{1}{x_1}=\ldots=\frac{1}{x_n}$, azaz ha $x_1=\ldots=x_n$ teljesül.

Megjegyzés. A

mértani és a számtani közép közötti egyenlőtlenséget kifejező állítás tehát a következő: bármely n ∈ N,
 ill. 0 ≤ x₁,..., x_n ∈ R esetén

$$G_n \leq A_n, \qquad \text{azaz} \qquad \sqrt[n]{x_1 \cdot \ldots \cdot x_n} \leq \frac{x_1 + \ldots + x_n}{n},$$

és egyenlőség pontosan az $x_1 = \dots = x_n$ esetben áll fenn. Ha tehát az x_1, \dots, x_n számok nem mind egyenlők egymással, akkor

$$G_n < A_n,$$
 azaz $\sqrt[n]{x_1 \cdot \ldots \cdot x_n} < \frac{x_1 + \ldots + x_n}{n},$

• harmonikus és a mértani közép közötti egyenlőtlenséget kifejező állítás tehát a következő: bármely $n \in \mathbb{N}$, ill. $0 < x_1, \dots, x_n \in \mathbb{R}$ esetén

$$H_n \leq G_n,$$
 azaz $\frac{n}{\frac{1}{x_1} + \ldots + \frac{1}{x_n}} \leq \sqrt[n]{x_1 \cdot \ldots \cdot x_n},$

és egyenlőség pontosan az $x_1 = \dots = x_n$ esetben áll fenn. Ha tehát az x_1, \dots, x_n számok nem mind egyenlők egymással, akkor

$$H_n < G_n,$$
 azaz $\frac{n}{\frac{1}{x_1} + \ldots + \frac{1}{x_n}} < \sqrt[n]{x_1 \cdot \ldots \cdot x_n}.$

Feladat. Bizonyítsuk be, hogy minden $-\frac{1}{2} \le a \in \mathbb{R}$ esetén fennáll az

$$(1-\alpha)^5(1+\alpha)(1+2\alpha)^2 \leq 1$$

egyenlőtlenség! Mely esetben van itt egyenlőség?

Útm.

1. lépés. Ha $a \ge 1$, akkor

$$(1-\alpha)^5(1+\alpha)(1+2\alpha)^2 \le 0 \le 1.$$

2. lépés. Ha $\alpha \in \left[-\frac{1}{2}, 1\right]$, és $\alpha \neq 0$, akkor

$$1-\alpha$$
, $1+\alpha$, ill. $1+2\alpha$

különböző nem-negatív számok, ha pedig $\alpha=0$, akkor egyenlőség áll fenn: 1=1. Így $0 \neq \alpha \in \left[-\frac{1}{2},1\right]$ esetén

$$(1-\alpha)^5(1+\alpha)(1+2\alpha)^2 < \left(\frac{5(1-\alpha)+1+\alpha+2(1+2\alpha)}{8}\right)^8 = \left(\frac{8}{8}\right)^8 = 1. \quad \blacksquare$$

Házi feladatok

Feladat. Mutassuk meg, hogy tetszőleges $a, b \in \mathbb{R}$: a > b > 0, $n \in \mathbb{N}$ esetén fennáll az

$$a^{n} [a - (n+1)(a-b)] < b^{n+1}$$

egyenlőtlenség!

Útm. Mivel 0 < b < a, így a - b > 0, ill. (2) felhasználásával azt kapjuk, hogy

$$a^{n+1} - b^{n+1} = (a - b)(a^n + a^{n-1}b + \dots + ab^{n-1} + b^n) <$$

$$< (a - b)(a^n + a^{n-1}a + \dots + aa^{n-1} + a^n) = (a - b)(n + 1)a^n,$$

ezért

$$a^{n+1} - a^{n}(n+1)(a-b) < b^{n+1}$$

amiből pedig kiemeléssel a kívánt egyenlőtlenséget kapjuk. ■

Feladat. Igazoljuk, hogy minden $n \in \mathbb{N}$ esetén fennállnak az

1.
$$\left(1 + \frac{1}{n}\right)^n < \left(1 + \frac{1}{n+1}\right)^{n+1}$$
 2. $2 \le \left(1 + \frac{1}{n}\right)^n < 4$

egyenlőtlenségek!

Útm.

1. Legyen

$$\alpha:=1+\frac{1}{n}, \qquad \text{ill.} \qquad b:=1+\frac{1}{n+1}.$$

Ekkor a > b > 0, így az előző feladat alapján

$$\left(1+\frac{1}{n}\right)^{n}\underbrace{\left(1+\frac{1}{n}-(n+1)\left(1+\frac{1}{n}-1-\frac{1}{n+1}\right)\right)}_{-1}<\left(1+\frac{1}{n+1}\right)^{n+1}.$$

A bal oldalon a második tényező 1, így a kívánt egyenlőtlenséget kapjuk.

2. 1. lépés. n = 1 esetén

$$\left(1+\frac{1}{1}\right)^1=2,$$

és az előző egyenlőtlenség alapján minden $2 < n \in \mathbb{N}$ számra

$$2<\left(1+\frac{1}{n}\right)^n.$$

2. lépés. Legyen

$$a := 1 + \frac{1}{2n}$$
 és $b := 1$.

Ekkor a > b > 0, ezért az előző feladat alapján

$$\left(1 + \frac{1}{2n}\right)^{n} \underbrace{\left(1 + \frac{1}{2n} - (n+1)\left(1 + \frac{1}{2n} - 1\right)\right)}_{=\frac{1}{n}} < 1.$$

A bal oldalon a második tényező $\frac{1}{2}$. Kettővel szorozva és négyzetre emelve

$$\left(1+\frac{1}{2n}\right)^{2n}<4$$

adódik. Az első feladat miatt minden $n \in \mathbb{N}$ esetén

$$\left(1+\frac{1}{2n-1}\right)^{2n-1}<\left(1+\frac{1}{2n}\right)^{2n}<4$$

teljesül. Ebből pedig már következik a bizonyítandó egyenlőtlenség.

Emlékeztető (binomiális tétel). Legyen $n \in \mathbb{N}_0$. Ekkor bármely $a, b \in \mathbb{R}$ szám esetén

$$(a+b)^{n} = \binom{n}{0}a^{n} + \binom{n}{1}a^{n-1}b + \dots + \binom{n}{n-1}ab^{n-1} + \binom{n}{n}b^{n} = \sum_{k=0}^{n} \binom{n}{k}a^{n-k}b^{k}.$$
 (4)

Megjegyzés. Az is könnyen belátható, hogy

$$\left(1+\frac{1}{n}\right)^n<3\qquad (n\in\mathbb{N}),$$

ui. a binomiális tétel felhasználásával azt kapjuk, hogy

Feladat. Döntsük el, hogy melyik szám nagyobb!

1.
$$(1,000001)^{1000000}$$
 vagy 2

Útm. Mivel

$$2 \leq \left(1 + \frac{1}{n}\right)^n < 3 \quad (n \in \mathbb{N}) \qquad \text{\'es} \qquad 2 = \left(1 + \frac{1}{n}\right)^n \quad \Longleftrightarrow \quad n = 1,$$

ezért

$$(1,000001)^{1000000} = \left(1 + \frac{1}{10^6}\right)^{10^6} > 2$$

ill.

$$1001^{999} = \frac{1001^{999}}{1000^{1000}} \cdot 1000^{1000} = \left(\frac{1001}{1000}\right)^{1000} \cdot \frac{1000^{1000}}{1001} = \left(1 + \frac{1}{1000}\right)^{1000} \cdot \frac{1000^{1000}}{1001} < \frac$$

Feladat. Alkalmazzuk a mértani és a számtani közép közötti egyenlőtlenséget az alábbi számokra!

1.
$$x_k := 1 + \frac{1}{n}$$
 $(k \in \{1, ..., n\}),$ $x_{n+1} := 1;$

2.
$$x_k := 1 + \frac{1}{n}$$
 $(k \in \{1, ..., n\}),$ $x_{n+1} := x_{n+2} := \frac{1}{2}.$

Útm. Ha $n \in \mathbb{N}$,

1. akkor

$$\left(1+\frac{1}{n}\right)^{n} = \left(1+\frac{1}{n}\right)^{n} \cdot 1 < \left(\frac{n \cdot \left(1+\frac{1}{n}\right)+1}{n+1}\right)^{n+1} = \left(\frac{n+1+1}{n+1}\right)^{n+1} = \left(1+\frac{1}{n+1}\right)^{n+1}.$$

2. akkor

$$\left(1+\frac{1}{n}\right)^n = 4\cdot\left(1+\frac{1}{n}\right)^n\cdot\frac{1}{2}\cdot\frac{1}{2}<4\cdot\left(\frac{n\cdot\left(1+\frac{1}{n}\right)+\frac{1}{2}+\frac{1}{2}}{n+2}\right)^{n+2} = 4\cdot\left(\frac{n+1+1}{n+2}\right)^{n+2} = 4.$$

A következő feladatbeli egyenlőtlenségek fontos szerepet játszanak az

$$x_n:=\sqrt[n]{\alpha}\quad (n\in\mathbb{N},\ \alpha\in(0,+\infty)),\qquad \text{ill. az}\qquad x_n:=\sqrt[n]{n}\quad (n\in\mathbb{N})$$

sorozat konvergenciájának tárgyalásakor.

Feladat. Mutassuk meg, hogy ha

1. $n \in \mathbb{N}$ és $\alpha \in (1, +\infty)$, akkor

$$\frac{\alpha-1}{\alpha n} \leq \sqrt[n]{\alpha}-1 \leq \frac{\alpha-1}{n};$$

28

2. $n \in \mathbb{N}$ és $\alpha \in (0, 1)$, akkor

$$\left[\frac{1-\alpha}{n} \le 1 - \sqrt[n]{\alpha} \le \frac{1-\alpha}{\alpha n}\right];$$

3. $n \in \mathbb{N}$, akkor

$$\boxed{1 \leq \sqrt[n]{n} \leq 1 + 2 \cdot \frac{\sqrt{n} - 1}{n}}.$$

teljesül!

Útm.

1. Felhasználva a mértani közép és a számtani közép, ill. a harmonikus közép és a mértani közép közötti egyenlőtlenséget azt kapjuk, hogy

$$\sqrt[n]{\alpha} = \sqrt[n]{1 \cdots 1 \cdot \alpha} \le \frac{(n-1) \cdot 1 + \alpha}{n} = 1 + \frac{\alpha - 1}{n}$$

és

$$\sqrt[n]{\alpha} = \sqrt[n]{1 \cdots 1 \cdot \alpha} \ge \frac{n}{(n-1) \cdot \frac{1}{1} + \frac{1}{\alpha}} = \frac{\alpha n}{\alpha n - \alpha + 1} = \frac{\alpha n - \alpha + 1 + \alpha - 1}{\alpha n - \alpha + 1} = \frac{1 + \frac{\alpha - 1}{\alpha n - \alpha + 1}}{\alpha n - \alpha + 1} = \frac{1 + \frac{\alpha - 1}{\alpha n - \alpha + 1}}{\alpha n - \alpha + 1} = \frac{n}{\alpha n - \alpha +$$

2. Ha $\alpha \in (0,1)$, akkor

$$\frac{1}{\alpha} \in (1, +\infty),$$

így az 1. felhasználásával adódik a két becslés.

3. Az első egyenlőtlenség triviális. A második:

$$\sqrt[n]{n} = \sqrt[n]{\sqrt{n} \cdot \sqrt{n} \cdot 1 \cdot \ldots \cdot 1} \leq \frac{2\sqrt{n} + (n-2) \cdot 1}{n} = 1 + 2 \cdot \frac{\sqrt{n} - 1}{n}. \quad \blacksquare$$

Feladat. Igazoljuk, hogy ha $a, b \in [0, +\infty)$: $a \le b$, akkor fennáll a

$$\sqrt{\frac{a}{b+1}} + \sqrt{\frac{b}{a+1}} < \frac{a+b+1}{a+1}$$

egyenlőtlenség!

Útm. A mértani éls a számtani közép közötti egyenlőtlenség következményeként azt kapjuk, hogy bármely $x \in [0, +\infty)$: $x \neq 1$ számra

$$\sqrt{x} = \sqrt{x \cdot 1} < \frac{1}{2}(x+1).$$

Mivel

$$0 \le a \le b$$
 \Longrightarrow $0 \le \frac{a}{b+1} < 1$,

ezért

$$\sqrt{\frac{a}{b+1}} + \sqrt{\frac{b}{a+1}} < \frac{1}{2}\left(1 + \frac{a}{b+1}\right) + \frac{1}{2}\left(1 + \frac{b}{a+1}\right) = 1 + \frac{1}{2}\left(\frac{a}{b+1} + \frac{b}{a+1}\right).$$

Világos, hogy

$$0 \le a \le b$$
 \iff $\frac{a}{b+1} \le \frac{b}{a+1}$,

ennélfogva

$$\sqrt{\frac{a}{b+1}} + \sqrt{\frac{b}{a+1}} < 1 + \frac{1}{2} \left(\frac{a}{b+1} + \frac{b}{a+1} \right) \le 1 + \frac{1}{2} \left(\frac{b}{a+1} + \frac{b}{a+1} \right) = \frac{a+b+1}{a+1}. \quad \blacksquare$$

Feladatok.

- 1. Feladatok teljes indukcióra (59-65. old.)
- 2. Bizonyítsuk be, hogy bármely $n \in \mathbb{N}$ esetén fennállnak az alábbi egyenlőtlenségek!

$$\text{(a)} \ \left(1+\frac{3}{n}\right)^n < \left(1+\frac{3}{n+1}\right)^{n+1}; \qquad \text{(b)} \ \left(1+\frac{3}{n}\right)^n < 27 \cdot \left(1+\frac{1}{n+3}\right)^{n+3}.$$

3. Igazoljuk, hogy bármely $2 \leq n \in \mathbb{N}$ esetén fennáll a

$$2^n > 1 + n\sqrt{2^{n-1}}$$

egyenlőtlenség!

4. Legyen

$$x \in [-1, +\infty)$$
, ill. $r \in \mathbb{Q}$.

Igazoljuk, hogy ha

(a)
$$0 \le r \le 1$$
, úgy

$$(1+x)^{r} \leq 1 + rx;$$

(b)
$$r \ge 1$$
, úgy

$$(1+x)^r \ge 1 + rx.$$

5. Igazoljuk, hogy fennállnak az alábbi egyenlőtlenségek!

(a)
$$\frac{1}{2} \le \left(1 - \frac{1}{2n}\right)^n < \frac{2}{3} \quad (n \in \mathbb{N});$$

$$\text{(b) } \mathfrak{n}^{\mathfrak{n}} > (\mathfrak{n}+1)^{\mathfrak{n}-1} \quad \ (2 \leq \mathfrak{n} \in \mathbb{N});$$

$$(c)\ \sqrt[n]{(n!)^3}\leq \frac{n(n+1)^2}{4}\quad (n\in\mathbb{N}).$$

6. Lássuk be, hogy bármely $a,b,c\in(0,+\infty)$ fennáll az

$$\left(a + \frac{1}{b}\right)\left(b + \frac{1}{c}\right)\left(c + \frac{1}{a}\right) > 7$$

becslés!

Útm.

- 1. Vö. 59-65. old.
- 2. (a) 1. módszer Legyen

$$a := 1 + \frac{3}{n}$$
, ill. $b := 1 + \frac{3}{n+1}$.

Ekkor a > b > 0, így az

$$a^{n} [a - (n+1)(a-b)] < b^{n+1}$$

egyenlőtlenség felhasználásával azt kapjuk, hogy

$$\left(1+\frac{3}{n}\right)^{n}\underbrace{\left(1+\frac{3}{n}-(n+1)\left(1+\frac{3}{n}-1-\frac{3}{n+1}\right)\right)}_{=1}<\left(1+\frac{3}{n+1}\right)^{n+1}.$$

A bal oldalon a második tényező 1, így a kívánt egyenlőtlenséget kapjuk.

2. módszer A mértani és a számtani közép közötti egyenlőtlenséget alkalmazva

$$\left(1 + \frac{3}{n}\right)^{n} = 1 \cdot \left(1 + \frac{3}{n}\right)^{n} < \left(\frac{1 + n\left(1 + \frac{3}{n}\right)}{n+1}\right)^{n+1} = \left(\frac{1 + n + 3}{n+1}\right)^{n+1} = \left(1 + \frac{3}{n+1}\right)^{n+1}.$$

(b) A mértani és a számtani közép közötti egyenlőtlenséget alkalmazva azt kapjuk, hogy

$$\left(1 + \frac{3}{n}\right)^{n} = 27 \cdot \frac{1}{27} \cdot \left(1 + \frac{3}{n}\right)^{n} = 27 \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \left(1 + \frac{3}{n}\right) \cdot \dots \cdot \left(1 + \frac{3}{n}\right) <$$

$$< 27 \cdot \left(\frac{\frac{1}{3} + \frac{1}{3} + \frac{1}{3} + n \cdot \left(1 + \frac{3}{n}\right)}{n + 3}\right)^{n+3} = 27 \cdot \left(\frac{1 + n + 3}{n + 3}\right)^{n+3} =$$

$$= 27 \cdot \left(1 + \frac{1}{n + 3}\right)^{n+3}.$$

- 3. Kétféleképpen is belátjuk az egyenlőtlenség fennállását.
 - 1. módszer. A mértani közép és a számtani közép közötti egyenlőtlenséget felhasználva azt

kapjuk, hogy

$$\frac{2^n-1}{n} = \frac{2^{n-1}+2^{n-2}+\ldots+4+2+1}{n} > \sqrt[n]{2^{n(n-1)/2}} = \sqrt{2^{n-1}},$$

ahonnan átrendezéssel

$$2^n > 1 + n\sqrt{2^{n-1}}$$

adódik.

2. módszer. (Teljes indukcióval.)

• Ha n = 2, akkor

$$2^2 = 4 > 1 + 2\sqrt{2} \qquad \Longleftrightarrow \qquad 3 > 2\sqrt{2} \qquad \Longleftrightarrow \qquad 9 > 8.$$

• Ha valamely $2 \le n \in \mathbb{N}$ esetén

$$2^n > 1 + n\sqrt{2^{n-1}},$$

akkor

$$2^{n+1} = 2 \cdot 2^n > 2(1 + n\sqrt{2^{n-1}}).$$

Ha belátjuk, hogy

$$2(1+n\sqrt{2^{n-1}})>1+(n+1)\sqrt{2^n},$$

akkor igazoltuk az állítást. Mivel a

$$2(1+n\sqrt{2^{n-1}})>1+(n+1)\sqrt{2^n}$$

egyenlőtlenség a

$$2 + 2n\sqrt{2^{n-1}} = 2 + \sqrt{2}n\sqrt{2^n} > 1 + (n+1)\sqrt{2^n},$$

azaz a

(*)
$$1 + \sqrt{2}n\sqrt{2^n} > (n+1)\sqrt{2^n}$$

egyenlőtlenséggel egyenértékű, és az iménti egyenlőtlenségben $\sqrt{2^n}$ együtthatóira:

$$\sqrt{2}n > n+1 \qquad \Longleftrightarrow \qquad (\sqrt{2}-1)n > 1,$$

azaz

$$n > \frac{1}{\sqrt{2}-1} = \frac{1}{\sqrt{2}-1} \cdot \frac{\sqrt{2}+1}{\sqrt{2}+1} = \sqrt{2}+1,$$

ezért a (*) egyenlőtlenség minden $3 \le n \in \mathbb{N}$ szám esetén fennáll. Ha pedig n=2, akkor

$$1 + \sqrt{2} \cdot 2\sqrt{2^2} > 3 \cdot \sqrt{2^2} \qquad \Longleftrightarrow \qquad 4 \cdot \sqrt{2} > 5 \qquad \Longleftrightarrow \qquad 32 > 25.$$

4. A $0 \le r \le 1$ eset bizonyítása. Mivel $r \in \mathbb{Q}$, ezért alkalmas $p, q \in \mathbb{N}$, $p \le q$ esetén $r = \frac{p}{q}$. Tekintsük az

$$\underbrace{1,\ldots,1}_{q-p \text{ darab}},\underbrace{(1+x),\ldots,(1+x)}_{p \text{ darab}}$$

q-darab valós számot. Ezeknek a számoknak a mértani közepe, ill. számtani közepe:

$$(1+x)^{p/q}$$
, ill. $1+\frac{p}{q}x$.

Így tehát

$$(1+x)^{p/q} \le 1 + \frac{p}{q}x, \qquad \text{azaz} \qquad (1+x)^r \le 1 + rx.$$

Az $r \ge 1$ eset bizonyítása. Mivel $x \in [-1, +\infty)$, ezért a $0 \le r \le 1$ esetben

$$(1+x)^r \le 1+rx \qquad \Longleftrightarrow \qquad 1+x \le \left(1+\frac{p}{q}x\right)^{q/p}.$$

Ha most $y:=\frac{p}{q}x$, akkor $x\geq -1$ következtében $y\geq -\frac{p}{q}\geq -1$. Innen $x=\frac{q}{p}y$, ill.

$$1 + \frac{q}{p}y \le (1+y)^{q/p}$$

következik. Mivel s := $\frac{q}{\mathfrak{p}} \geq 1$, ezért a fentiek következtében

$$(1+y)^s \ge 1 + sy.$$

- 5. (a) Külön-külön igazoljuk az alsó, ill. a felső becslést.
 - Az alsó becslés a következő módon látható be. Mivel minden $n \in \mathbb{N}$ esetén $-\frac{1}{2n} \ge -2$,

ezért Bernoulli-egyenlőtlenségből

$$\left(1-\frac{1}{2n}\right)^n \ge 1-\frac{n}{2n} = 1-\frac{1}{2} = \frac{1}{2}$$

következik.

• A felső becsléshez azt használjuk fel, hogy bármely $n \in \mathbb{N}$ esetén

$$\left(1 - \frac{1}{2n}\right)^n = \left(\frac{2n-1}{2n}\right)^n = \frac{1}{\left(\frac{2n}{2n-1}\right)^n} = \frac{1}{\left(\frac{2n-1+1}{2n-1}\right)^n} = \frac{1}{\left(1 + \frac{1}{2n-1}\right)^n},$$

továbbá $\frac{1}{2n-1} \ge -2$, így a Bernoulli-egyenlőtlenséget felhasználva azt kapjuk, hogy

$$\frac{1}{\left(1+\frac{1}{2n-1}\right)^n} \le \frac{1}{1+\frac{n}{2n-1}} = \frac{2n-1}{3n-1} < \frac{2}{3} \qquad \iff \qquad 6n-3 < 6n-2.$$

(b) Világos, hogy bármely $2 \le n \in \mathbb{N}$ esetén

$$n^n > (n+1)^{n-1} \qquad \Longleftrightarrow \frac{n^n}{(n+1)^n} > \frac{1}{n+1}.$$

Így a nyilvánvaló

$$\frac{n^{n}}{(n+1)^{n}} = \left(\frac{n}{n+1}\right)^{n} = \left(\frac{n+1-1}{n+1}\right)^{n} = \left(1 - \frac{1}{n+1}\right)^{n}$$

állítást és a Bernoulli-egyenlőtlenséget felhasználva azt kapjuk, hogy

$$\left(1-\frac{1}{n+1}\right)^n > 1-\frac{n}{n+1} = \frac{1}{n+1},$$

azaz igaz az állítás.

(c) Az egyenlőtlenség a mértani közép és a számtani közép közötti egyenlőtlenség, ill. a ??/3. gyakorló feladat triviális következménye:

$$\sqrt[n]{(n!)^3} = \sqrt[n]{(1 \cdot \ldots \cdot n)^3} = \sqrt[n]{1^3 \cdot \ldots \cdot n^3} \leq \frac{1^2 + \ldots + n^3}{n} = \frac{n^2(n+1)^2}{4n} = \frac{n(n+1)^2}{4}.$$

Jól látható, hogy egyenlőség csak az n = 1 esetben van.

Megjegyzés. Ha

$$\alpha_n:=\frac{n^n(n+1)^{2n}}{4^n(n!)^3}\qquad (n\in\mathbb{N}),$$

akkor az (a_n) sorozatra tetszőleges $n\in\mathbb{N}$ esetén $a_n\geq 1$ teljesül, hiszen $a_1=1$, továbbá az

$$\begin{split} \frac{a_{n+1}}{a_n} &= \frac{(n+1)^{n+1}(n+2)^{2n+2}}{4^{n+1}[(n+1)!]^3} \cdot \frac{4^n(n!)^3}{n^n(n+1)^{2n}} = \frac{1}{4} \left(\frac{n+2}{n+1}\right) \left(\frac{n+2}{n}\right)^n \left(\frac{n+2}{n+1}\right)^{n+1} \\ &= \frac{1}{4} \cdot \left(\frac{n+2}{n+1}\right) \left(1 + \frac{2}{n}\right)^n \left(1 + \frac{1}{n+1}\right)^{n+1} \end{split}$$

egyenlőségből, ill. a Bernoulli-egyenlőtlenség felhasználásából

$$\frac{1}{4} \cdot \left(\frac{n+2}{n+1}\right) \left(1 + \frac{2}{n}\right)^n \left(1 + \frac{1}{n+1}\right)^{n+1} \ge \frac{1}{4} \cdot \left(\frac{n+2}{n+1}\right) (1+2)(1+1) =$$

$$= \frac{6}{4} \cdot \frac{n+2}{n+1} > \frac{6}{4} = \frac{3}{2} > 1$$

következik, ami azt jelenti, hogy az (a_n) sorozat monoton növekedő. Látható, hogy

$$a_2 = \frac{81}{32} > \left(\frac{3}{2}\right)^2,$$

sőt teljes indukcióval az is megmutatható (Házi feladat.), hogy

$$a_n > \left(\frac{3}{2}\right)^n$$
 $(2 \le n \in \mathbb{N}).$

6. A mértani és a számtani közép közötti egyenlőtlenség következménye, hogy bármely $a,b,c\in(0,+\infty)$ számra

$$\alpha + \frac{1}{b} \geq 2\sqrt{\alpha \cdot \frac{1}{b}}, \qquad b + \frac{1}{c} \geq 2\sqrt{b \cdot \frac{1}{c}}, \qquad c + \frac{1}{a} \geq 2\sqrt{c \cdot \frac{1}{a}}.$$

Így $\left(a + \frac{1}{b}\right)\left(b + \frac{1}{c}\right)\left(c + \frac{1}{a}\right) \ge 8\sqrt{a \cdot \frac{1}{b} \cdot b \cdot \frac{1}{c} \cdot c \cdot \frac{1}{a}} = 8 > 7. \quad \blacksquare$

2. gyakorlat (2023. 03. 09.)

Emlékeztető. Legyen $\emptyset \neq \mathcal{H} \subset \mathbb{R}$. Azt mondtuk, hogy

- 1. a \mathcal{H} halmaz **alulról korlátos**, ha van olyan $k \in \mathbb{R}$, hogy bármely $x \in \mathcal{H}$ esetén $x \geq k$. Az ilyen k számot a \mathcal{H} halmaz **alsó korlát**jának neveztük.
- 2. a \mathcal{H} halmaz **felülről korlátos**, ha van olyan $K \in \mathbb{R}$, hogy bármely $x \in \mathcal{H}$ esetén $x \leq K$. Az ilyen K számot a \mathcal{H} halmaz **felső korlát**jának neveztük.
- 3. a \mathcal{H} halmaz **korlátos**, ha alulról és felülről is korlátos.

Megjegyzések.

- 1. Valamely számhalmazt megadó kifejezésből az esetek többségében nehéz látni a halmaz szerkezetét, ezért a korlátosságának vizsgálata általában nem egyszerű feladat. Ennek megoldásához gyakran használhatjuk a következő ötletet: valamilyen "alkalmas" módon átalakítjuk a szóban forgó kifejezést (ilyen átalakításokra példákat fogunk mutatni). Ezután már számos esetben könnyen megfogalmazható sejtés az alsó, ill. a felső korlátokra vonatkozóan. Ezek bizonyításához (sokszor triviális) egyenlőtlenségek fennállását kell majd belátnunk.
- 2. Sok esetben hasznos lehet halmazok szerkezetének feltárására az alábbi átalakítás ismerete: bármely $(a,b,c,d,x\in\mathbb{R}:c\neq 0,x\neq -d/c)$ esetén

$$\frac{ax+b}{cx+d} = \frac{a}{c} \cdot \frac{x+\frac{b}{a}}{x+\frac{d}{c}} = \frac{a}{c} \cdot \frac{x+\frac{d}{c}+\frac{b}{a}-\frac{d}{c}}{x+\frac{d}{c}} = \frac{a}{c} \cdot \left[1+\frac{\frac{bc-ad}{ac}}{x+\frac{d}{c}}\right] = \frac{a}{c} + \frac{\frac{bc-ad}{c^2}}{x+\frac{d}{c}} = \frac{a}{c} + \frac{\frac{bc-ad}{c}}{cx+d} = \frac{a}{c} + \frac{bc-ad}{c} \cdot \frac{1}{cx+d}$$

vagy

$$\frac{ax+b}{cx+d} = \frac{a}{c} \cdot \frac{acx+bc}{acx+ad} = \frac{a}{c} \cdot \frac{acx+ad+bc-ad}{acx+ad} = \frac{a}{c} \cdot \left(1 + \frac{bc-ad}{acx+ad}\right) =$$

$$= \frac{a}{c} + \frac{1}{c} \cdot \frac{bc-ad}{cx+d} = \frac{a}{c} + \frac{bc-ad}{c} \cdot \frac{1}{cx+d}.$$

Példák.

1. A

$$\mathcal{H} := \left\{ \frac{1}{n} \in \mathbb{R} : \ n \in \mathbb{N}
ight\}$$

halmaz alulról is és felülről is korlátos, ui. a 0, ill. az 1 alsó, ill. felső korlátja \mathcal{H} -nak:

$$0<\frac{1}{n}\leq 1 \qquad (n\in \mathbb{N}).$$

2. A

$$\mathcal{H}:=\left\{\left(1+\frac{1}{n}\right)^n\in\mathbb{R}:\;n\in\mathbb{N}\right\}$$

halmaz alulról is és felülről is korlátos, ui. a 2, ill. a 3 alsó, ill. felső korlátja \mathcal{H} -nak:

$$2 \le \left(1 + \frac{1}{n}\right)^n < 3 \qquad (n \in \mathbb{N}).$$

3. A

$$\mathcal{H}:=\left\{\alpha+\frac{1}{\alpha}\in\mathbb{R}:\ 0<\alpha\in\mathbb{R}\right\}$$

halmaz alulról korlátos, ui. csak pozitív számokat tartalmaz. A 2 is alsó korlátja \mathcal{H} -nak:

$$\alpha + \frac{1}{\alpha} = 2 \cdot \frac{\alpha + \frac{1}{\alpha}}{2} \ge 2 \cdot \sqrt{\alpha \cdot \frac{1}{\alpha}} = 2 \qquad (0 < \alpha \in \mathbb{R}).$$

4. A

$$\mathcal{H} := \left\{ \left| \frac{a}{b} + \frac{b}{a} \right| \in \mathbb{R} : a, b \in \mathbb{R} \setminus \{0\} \right\}$$

halmaz alulról korlátos, ui. 2 alsó korlátja \mathcal{H} -nak: ha ab>0, akkor $\frac{a}{b}, \frac{b}{a}>0$, így

$$\frac{a}{b} = \frac{1}{\frac{b}{a}} \qquad \Longrightarrow \qquad \frac{a}{b} + \frac{b}{a} \ge 2;$$

ha pedig ab < 0, akkor $\frac{a}{b}$, $\frac{b}{a} < 0$, így

$$\frac{a}{b} = \frac{1}{\frac{b}{a}} \qquad \Longrightarrow \qquad \frac{a}{b} + \frac{b}{a} \le -2.$$

5. A

$$\mathcal{H} := \left\{ \left| \frac{x+1}{x-1} \right| + \left| \frac{x-1}{x+1} \right| \in \mathbb{R} : x \in \mathbb{R} \setminus \{-1, 1\} \right\}$$

halmaz alulról korlátos, ui. 2 alsó korlátja H-nak: az

$$a := |x + 1|,$$
 ill. $b := |x - 1|$

helyettesítéssel látható, hogy bármely $x \in \mathbb{R} \setminus \{-1, 1\}$ esetén

$$\left|\frac{x+1}{x-1}\right| + \left|\frac{x-1}{x+1}\right| = \frac{a}{b} + \frac{b}{a} \ge 2.$$

6. A

$$\mathcal{H} := \left\{ \operatorname{tg}(\alpha) + \operatorname{ctg}(\alpha) \in \mathbb{R} : \ \alpha \in \left(0, \frac{\pi}{2}\right) \right\}$$

halmaz alulról korlátos, ui. 2 alsó korlátja H-nak:

$$tg(\alpha)+ctg(\alpha)=tg(\alpha)+\frac{1}{tg(\alpha)}\geq 2 \qquad \left(\alpha\in\left(0,\frac{\pi}{2}\right)\right).$$

7. A

$$\mathcal{H} := \left\{ \frac{x^2 + 2}{\sqrt{x^2 + 1}} \in \mathbb{R} : x \in \mathbb{R} \right\}$$

halmaz alulról korlátos, ui. a 2 alsó korlátja \mathcal{H} -nak:

1. módszer. tetszőleges $x \in \mathbb{R}$ esetén

$$\frac{x^2+2}{\sqrt{x^2+1}} = \frac{x^2+1+1}{\sqrt{x^2+1}} = \sqrt{x^2+1} + \frac{1}{\sqrt{x^2+1}} \ge 2;$$

2. módszer. bármely $x \in \mathbb{R}$ esetén

$$\frac{x^2+2}{\sqrt{x^2+1}} \ge 2 \qquad \Longleftrightarrow \qquad x^2+1+1 \ge 2\sqrt{x^2+1} \qquad \Longleftrightarrow \qquad \left(\sqrt{x^2+1}-1\right)^2 \ge 0.$$

8. A

$$\mathcal{H}:=\left\{\frac{x^2}{1+x^4}\in\mathbb{R}:\;x\in\mathbb{R}\right\}$$

halmaz felülről korlátos, ui. az $\frac{1}{2}$ felső korlátja \mathcal{H} -nak:

1. módszer. ha x = 0, akkor az egyenlőtlenség triviálisan teljesül, ha pedig pedig $0 \neq x \in \mathbb{R}$, akkor

$$\frac{x^2}{1+x^4} = \frac{1}{\frac{1}{x^2} + x^2} \le \frac{1}{2};$$

2. módszer. minden $x \in \mathbb{R}$ számra

$$\frac{x^2}{1+x^4} \le \frac{1}{2} \qquad \Longleftrightarrow \qquad 2x^2 \le 1+x^4 \qquad \Longleftrightarrow \qquad \left(x^2-1\right)^2 \ge 0.$$

9. A

$$\mathcal{H} := \{2x^4 - 2x^3 - x^2 + 1 \in \mathbb{R} : x \in \mathbb{R}\}$$

halmaz alulról korlátos, ui. a 0 alsó korlátja H-nak:

$$2x^4 - 2x^3 - x^2 + 1 \ge 0$$
 \iff $(x^2 - 1)^2 + (x^2 - x)^2 \ge 0$ $(x \in \mathbb{R}).$

10. A

$$\mathcal{H} := \{ a + b - ab \in \mathbb{R} : a, b \in \mathbb{R} \}$$

halmaz alulról is és felülről is korlátos, ui. a 0, ill. az 1 alsó, ill. felső korlátja \mathcal{H} -nak, hiszen ha $b \in (0,1)$, akkor 1-b>0, így bármely $a \in (0,1)$ esetén

$$0 < a(1-b) < 1-b$$
 \iff $0 < a+b-ab < 1$.

11. A

$$\mathcal{H}:=\left\{ab-5a^2-3b^2\in\mathbb{R}:\ a,b\in\mathbb{R}\right\}$$

halmaz felülről korlátos, ui. a 0 felső korlátja \mathcal{H} -nak:

$$ab - 5a^2 - 3b^2 \le 0$$
 \iff $-ab - 4a^2 - 4b^2 - (a - b)^2 \le 0$ $(a, b \in \mathbb{R}).$

12. A

$$\mathcal{H}:=\left\{\alpha^2+b^2-\alpha b-\alpha-b+1\in\mathbb{R}:\ \alpha,b\in\mathbb{R}\right\}$$

halmaz felülről alulról, ui. a 0 alsó korlátja \mathcal{H} -nak:

$$\alpha^2+b^2-\alpha b-\alpha-b+1\geq 0 \qquad \Longleftrightarrow \qquad (\alpha-b)^2+(\alpha-1)^2+(b-1)^2\geq 0 \qquad (\alpha,b\in\mathbb{R}).$$

13. A

$$\mathcal{H} := \left\{ rac{(a+b)(b+c)(a+c)}{abc} \in \mathbb{R}: \ 0 < a,b,c \in \mathbb{R}
ight\}$$

halmaz alulról korlátos, ui. a $\frac{128}{65}$ alsó korlátja \mathcal{H} -nak:

$$\frac{(a+b)(b+c)(a+c)}{abc} = \frac{a+b}{a} \cdot \frac{b+c}{b} \cdot \frac{a+c}{c} = \left(1 + \frac{b}{a}\right) \left(1 + \frac{c}{b}\right) \left(1 + \frac{a}{c}\right) =$$

$$= \left(1 + \frac{b}{a} + \frac{c}{b} + \frac{c}{a}\right) \left(1 + \frac{a}{c}\right) = 1 + \frac{b}{a} + \frac{c}{b} + \frac{c}{a} + \frac{a}{c} + \frac{b}{c} + \frac{a}{b} + 1 =$$

$$= 2 + \underbrace{\frac{a}{b} + \frac{b}{a}}_{\geq 2} + \underbrace{\frac{b}{c} + \frac{c}{b}}_{\geq 2} + \underbrace{\frac{c}{c} + \frac{c}{a}}_{\geq 2} \ge 8,$$

és

$$8 \geq \frac{128}{65} \qquad \Longleftrightarrow \qquad 520 \geq 128.$$

14. A

$$\mathcal{H} := \left\{ \left(1 + \frac{x}{y}\right)^2 + \left(1 + \frac{y}{z}\right)^2 + \left(1 + \frac{z}{x}\right)^2 \in \mathbb{R} : \ 0 < x, y, z \in \mathbb{R} \right\}$$

halmaz alulról korlátos, ui. a 12 alsó korlátja \mathcal{H} -nak: bármely $a, b \in (0, +\infty)$ esetén

$$\frac{1+\frac{a}{b}}{2} \ge \sqrt{\frac{a}{b}},$$

ezért

$$\left(1+\frac{a}{b}\right)^2 \geq 4 \cdot \frac{a}{b}$$
.

A mértani és a számtani közép közötti egyenlőtlnség felhasználásával így azt kapjuk, hogy

$$\left(1+\frac{x}{y}\right)^2+\left(1+\frac{y}{z}\right)^2+\left(1+\frac{z}{x}\right)^2\geq 4\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)\geq 4\cdot 3\cdot \sqrt[3]{\frac{x}{y}\cdot\frac{y}{z}\cdot\frac{z}{x}}=12.\quad\blacksquare$$

Feladat. Fogalmazzuk meg pozitív állítás formájában azt, hogy a $\mathcal{H} \subset \mathbb{R}$ halmaz alulról, ill. felülről nem korlátos!

Útm. A definíció szerint valamely $\emptyset \neq \mathcal{H} \subset \mathbb{R}$ halmaz

• alulról nem korlátos, ha

$$\neg (\exists k \in \mathbb{R} \quad \forall x \in \mathcal{H}: \qquad x > k) \qquad \Longleftrightarrow \qquad (\forall k \in \mathbb{R} \quad \exists x \in \mathcal{H}: \qquad x < k);$$

• felülről nem korlátos, ha

$$\neg \left(\exists \, K \in \mathbb{R} \quad \forall \, x \in \mathcal{H} : \qquad x \leq K \right) \qquad \Longleftrightarrow \qquad \left(\forall \, K \in \mathbb{R} \quad \exists \, x \in \mathcal{H} : \qquad x > K \right).$$

41

Feladat. Igazoljuk, hogy a

$$\mathcal{H} := \left\{ \frac{x^2 + 2x + 3}{x + 1} \in \mathbb{R} : \ 1 \le x \in \mathbb{R} \right\}$$

halmaz felülről nem korlátos!

Útm. Mivel bármely $1 \le x \in \mathbb{R}$ esetén

$$\frac{x^2 + 2x + 3}{x + 1} \ge \frac{x \ge 1}{x + 1} \ge \frac{x^2}{x + 1} \ge \frac{x^2}{x + x} = \frac{x^2}{2x} = \frac{x}{2},$$

ezért tetszőleges $0 < K \in \mathbb{R}$ esetén igaz az

$$\frac{x}{2} > K$$
 \Longrightarrow $\frac{x^2 + 2x + 3}{x + 1} > K$

implikáció. Következésképpen az

$$x := 2K + 1 \in [1, +\infty)$$

jó választás. ■

Emlékeztető. Legyen $\emptyset \neq \mathcal{H} \subset \mathbb{R}$. Azt mondtuk, hogy a \mathcal{H} halmaznak **van**

• maximuma, ha

$$\exists \alpha \in \mathcal{H} \ \forall \ x \in \mathcal{H}: \qquad x \leq \alpha.$$

Ekkor α -t a H halmaz **maximumának** nevezzük és a max(\mathcal{H}) szimbólummal jelöljük.

• minimuma, ha

$$\exists \beta \in \mathcal{H} \ \forall x \in \mathcal{H}: \qquad x \geq \beta.$$

Ekkor β -t a \mathcal{H} halmaz **minimumának** nevezzük és a $min(\mathcal{H})$ szimbólummal jelöljük.

Megjegyzések.

- 1. Ha a \mathcal{H} halmaznak van maximuma, akkor max(\mathcal{H}) egyben felső korlátja \mathcal{H} -nak.
- 2. Ha a \mathcal{H} halmaznak van minimuma, akkor min (\mathcal{H}) egyben alsó korlátja \mathcal{H} -nak.
- 3. A \mathcal{H} halmaznak pontosan akkor **nincsen maximuma**, ha bármely \mathcal{H} -beli eleménél van nagyobb \mathcal{H} -beli elem:

$$\forall \alpha \in \mathcal{H} \ \exists x \in \mathcal{H} : x > \alpha.$$

4. A \mathcal{H} halmaznak pontosan akkor **nincsen minimuma**, ha bármely \mathcal{H} -beli eleménél van kisebb \mathcal{H} -beli elem:

$$\forall \beta \in \mathcal{H} \ \exists x \in \mathcal{H} : x < \beta.$$

Példák.

1. A

$$\mathcal{H} := \left\{ \frac{1}{n} \in \mathbb{R} : \ n \in \mathbb{N} \right\}$$

halmazn esetén max(H)=1, ui. $1\in\mathcal{H}$ (n=1) és bármely $n\in\mathbb{N}$ esetén $\frac{1}{n}\leq 1.$ A \mathcal{H} halmaznak nincsen minimuma, hiszen bármely $n\in\mathbb{N}$ esetén (n+1)-re

$$\mathcal{H} \ni \frac{1}{n} > \frac{1}{n+1} \in \mathcal{H}$$
 (ui. \iff $n+1 > n$).

2. A

$$\mathcal{H} := \left\{1 - \frac{1}{n} \in \mathbb{R} : n \in \mathbb{N}\right\}$$

halmaz esetén $min(\mathcal{H})=0$, ui. $0\in\mathcal{H}$ (n=1) és bármely $n\in\mathbb{N}$ esetén $0\leq 1-\frac{1}{n}$. A \mathcal{H} halmaznak nincsen maximuma, hiszen bármely $n\in\mathbb{N}$ esetén (n+1)-re

$$\mathcal{H} \ni 1 - \frac{1}{n+1} > 1 - \frac{1}{n} \in \mathcal{H}$$
 (ui. \iff $n+1 > n$).

A következő, alapvető fontosságú tétel azt mondja ki, hogy minden (nem-üres)

- felülről korlátos halmaz felső korlátai között van legkisebb, azaz a felső korlátok halmazának van minimuma;
- alulról korlátos halmaz alsó korlátai között van legnagyobb, azaz az alsó korlátok halmazának van maximuma.

Tétel. Legyen $\emptyset \neq \mathcal{H} \subset \mathbb{R}$. Ha a \mathcal{H} halmaz

1. felülről korlátos, akkor, akkor felső korlátai között van legkisebb: az

$$\mathcal{F} := \{ K \in \mathbb{R} : K \text{ felső korlátja } \mathcal{H}\text{-nak} \}$$

halmaznak van minimuma.

2. alulról korlátos, akkor, akkor alsó korlátai között van legnagyobb: az

$$\mathcal{A} := \{k \in \mathbb{R} : k \text{ alsó korlátja } \mathcal{H}\text{-nak}\}$$

halmaznak van maximuma.

Definíció.

- 1. A felülről korlátos $\emptyset \neq \mathcal{H} \subset \mathbb{R}$ számhalmaz legkisebb felső korlátját a számhalmaz **felső** határának, más szóval szuprémumának vagy lényeges felső korlátjának nevezzük és a sup (\mathcal{H}) szimbólummal jelöljük: sup $(\mathcal{H}) := \min(\mathcal{F}) \in \mathbb{R}$.
- 2. Az alulról korlátos $\emptyset \neq \mathcal{H} \subset \mathbb{R}$ számhalmaz legnagyobb alsó korlátját a számhalmaz **alsó** határának, más szóval **infimum**ának vagy **lényeges alsó korlát**jának nevezzük és az inf (\mathcal{H}) szimbólummal jelöljük: inf $(\mathcal{H}) := \max(\mathcal{A}) \in \mathbb{R}$.

Példák.

1. A $\mathcal{H} := [-1, 1]$ halmaz esetében

$$\inf(\mathcal{H}) = \min(\mathcal{H}) = -1, \quad \sup(\mathcal{H}) = \max(\mathcal{H}) = 1;$$

2. A H := (-1, 1] halmaz esetében

$$\inf(\mathcal{H}) = -1, \ \nexists \min(\mathcal{H}), \qquad \sup(\mathcal{H}) = \max(\mathcal{H}) = 1.$$

Megjegyezzük, hogy a $\nexists \min(\mathcal{H})$ állítás a következőképpen látható be. Ha lenne \mathcal{H} -nak minimuma: $\xi \in \mathcal{H} \in (-1, 1]$, akkor az

$$\eta := \frac{-1+\xi}{2} < \xi$$

számra $\eta \in (-1, 1] = \mathcal{H}$ teljesülne, ami nem lehetséges.

Megjegyzések.

- 1. Világos, hogy
 - (a) $\exists \min(\mathcal{H}) \iff \inf(\mathcal{H}) \in \mathcal{H}$. Ebben az esetben $\inf(\mathcal{H}) = \min(\mathcal{H})$.
 - (b) $\exists \max(\mathcal{H}) \iff \sup(\mathcal{H}) \in \mathcal{H}$. Ebben az esetben $\sup(\mathcal{H}) = \max(\mathcal{H})$.
- 2. Az $\inf(\mathcal{H}) = \alpha$ állítás azt jelenti, hogy
 - α a \mathcal{H} halmaz alsó korlátja:

$$\forall x \in \mathcal{H}: \quad x \geq \alpha,$$

• bármely α -nál nagyobb szám már nem alsó korlátja \mathcal{H} -nak:

$$\forall \alpha > \alpha \; \exists x \in \mathcal{H} : \quad x < \alpha) \qquad \Longleftrightarrow \qquad (\forall \varepsilon > 0 \; \exists x \in \mathcal{H} : \quad x < \alpha + \varepsilon).$$

$$\exists x \in \mathcal{H}$$

$$\alpha \qquad x \; \alpha + \varepsilon \; \mathbb{R}$$

- 3. A $\sup(\mathcal{H}) = \beta$ állítás azt jelenti, hogy
 - β a \mathcal{H} halmaz ferlső korlátja:

$$\forall x \in \mathcal{H} \qquad x \leq \beta,$$

• bármely β -nál kisebb szám \mathcal{H} -nak már nem felső korlátja:

$$(\forall b < \beta \ \exists x \in \mathcal{H}: \quad x > b) \qquad \Longleftrightarrow \qquad (\forall \epsilon > 0 \ \exists x \in \mathcal{H}: \quad x > \beta - \epsilon).$$

$$\exists x \in \mathcal{H}$$

$$\beta - \epsilon \qquad x \qquad \beta \qquad \mathbb{R}$$

Feladat. Vizsgáljuk az \mathcal{H} halmazt korlátosság szempontjából! Határozzuk meg inf \mathcal{H} -t és sup \mathcal{H} -t! Van-e a ${\cal H}$ halmaznak legkisebb, ill. legnagyobb eleme?

1.
$$\mathcal{H} := \left\{ \frac{1}{x} \in \mathbb{R} : x \in (0, 1] \right\};$$

2.
$$\mathcal{H}:=\left\{\frac{5n+3}{8n+1}\in\mathbb{R}:\ n\in\mathbb{N}_0\right\};$$

3.
$$\mathcal{H}:=\left\{\frac{x+1}{2x+3}\in\mathbb{R}:\ 0\leq x\in\mathbb{R}\right\};$$
 4. $\mathcal{H}:=\left\{\frac{2x+3}{3x+1}\in\mathbb{R}:\ x\in\mathbb{Z}\right\};$

4.
$$\mathcal{H} := \left\{ \frac{2x+3}{3x+1} \in \mathbb{R} : x \in \mathbb{Z} \right\};$$

$$5. \ \mathcal{H}:=\left\{\frac{2|x|+3}{3|x|+1}\in\mathbb{R}: \ -2\leq x\in\mathbb{R}\right\}; \qquad 6. \ \mathcal{H}:=\left\{\sqrt{x+1}-\sqrt{x}\in\mathbb{R}: \ 0\leq x\in\mathbb{R}\right\}.$$

6.
$$\mathcal{H} := \left\{ \sqrt{x+1} - \sqrt{x} \in \mathbb{R} : 0 \le x \in \mathbb{R} \right\}$$

Útm.

• \mathcal{H} alulról korlátos, ugyanis 0 nyilván alsó korlátja \mathcal{H} -nak, sőt minden $x \in (0, 1]$ esetén 1.

$$\frac{1}{x} \geq \frac{1}{1} = 1,$$

ezért 1 is alsó korlátja \mathcal{H} -nak. Mivel x = 1 esetén

$$\frac{1}{x} = \frac{1}{1} = 1 \in \mathcal{H},$$

ezért *H*-nak van legkisebb eleme (minimuma):

$$\min \mathcal{H} = 1$$
, igy $\inf \mathcal{H} = \min \mathcal{H} = 1$.

• Ha x elég közel van 0-hoz, akkor $\frac{1}{x}$ értéke igen nagy. Így sejthető, hogy a \mathcal{H} halmaz felülről nem korlátos. Ennek megmutatásához azt kell belátni, hogy

$$\forall K \in \mathbb{R}$$
-hoz $\exists x \in (0,1]$: $\frac{1}{x} > K$.

Legyen K > 0 tetszőlegesen rögzített szám. Ekkor

$$\frac{1}{x} > K$$
, ha $0 < x < \frac{1}{K}$.

Így pl. az $x:=\frac{1}{K+1}<1$ megfelelő, ami azt mutatja, hogy a $\mathcal H$ halmaz felülről nem korlátos.

Megjegyzés. A kapott eredmények az $\frac{1}{x}$ (x > 0) függvény grafikonjáról is leolvashatók:

Összefoglalva: a \mathcal{H} halmaz alulról korlátos, felülről nem,

$$\inf \mathcal{H} = \min \mathcal{H} = 1$$
, $\sup \mathcal{H} = +\infty$.

2. A \mathcal{H} halmaz szerkezetének feltárásához először az

$$\frac{5n+3}{8n+1}$$

törtet a gyakorlat elején leírt módon átalakítjuk. Világos, hogy bármely $\mathfrak{n} \in \mathbb{N}_0$ esetén

$$\frac{5n+3}{8n+1} = \frac{5}{8} \cdot \frac{n+\frac{3}{5}}{n+\frac{1}{8}} = \frac{5}{8} \cdot \frac{n+\frac{1}{8}+\frac{3}{5}-\frac{1}{8}}{n+\frac{1}{8}} = \frac{5}{8} + \frac{5}{8} \cdot \frac{19}{40} \cdot \frac{1}{n+\frac{1}{8}} = \frac{5}{8} + \frac{19}{8} \cdot \frac{1}{8n+1} > \frac{5}{8}$$

vagy

$$\frac{5n+3}{8n+1} = \frac{5}{8} \cdot \frac{40n+24}{40n+5} = \frac{5}{8} \cdot \frac{40n+5+19}{40n+5} = \frac{5}{8} \cdot \left(1 + \frac{19}{40n+5}\right) =$$
$$= \frac{5}{8} + \frac{5}{8} \cdot \frac{19}{40n+5} = \frac{5}{8} + \frac{19}{8} \cdot \frac{1}{8n+1} > \frac{5}{8}.$$

• Mivel bármely $n \in \mathbb{N}_0$ esetén

$$\frac{5n+3}{8n+1} = \frac{5}{8} + \frac{19}{8} \cdot \frac{1}{8n+1} \le \frac{5}{8} + \frac{19}{8} \cdot \frac{1}{8 \cdot 0 + 1} = 3,$$

ezért

$$\max \mathcal{H} = \sup \mathcal{H} = 3$$
,

ui. 3 felső korlát és $3 \in \mathcal{H}$.

• inf $\mathcal{H}=\frac{5}{8},$ ui. $\frac{5}{8}$ alsó korlát és minden $\epsilon>0$ -hoz van olyan $N\in\mathbb{N}_0,$ hogy

$$\frac{5}{8} + \frac{19}{8} \cdot \frac{1}{8N+1} < \frac{5}{8} + \epsilon \qquad \iff \qquad N > \frac{1}{8} \left(\frac{19}{8\epsilon} - 1 \right)$$

és

$$N := \max \left\{ 0, \left[\left(\frac{19}{8\epsilon} - 1 \right) \frac{1}{8} \right] + 1 \right\}$$

ilyen. Világos, hogy ∄ min H, mivel

$$\forall \alpha \in \mathcal{H}: \quad \alpha > \inf \mathcal{H} = \frac{5}{8}.$$

Összefoglalva: a \mathcal{H} halmaz alulról korlátos, felülről nem,

$$\inf \mathcal{H} = \frac{5}{8}, \quad \min \mathcal{H} = 1, \qquad \max \mathcal{H} = \sup \mathcal{H} = 3.$$

3. • Világos, hogy bármely $0 \le x \in \mathbb{R}$ esetén

$$\frac{x+1}{2x+3} = \frac{1}{2} \cdot \frac{2x+2}{2x+3} = \frac{1}{2} \cdot \frac{2x+3-1}{2x+3} = \frac{1}{2} \cdot \left(1 - \frac{1}{2x+3}\right) = \frac{1}{2} - \frac{1}{2} \cdot \frac{1}{2x+3}.$$

• Mivel

$$\mathcal{H}\ni\frac{x+1}{2x+3}=\frac{1}{2}-\frac{1}{2}\cdot\frac{1}{2x+3}\geq\frac{1}{2}-\frac{1}{4\cdot0+6}=\frac{1}{2}-\frac{1}{6}=\frac{1}{3},$$

ezért

$$\inf(\mathcal{H}) = \min(\mathcal{H}) = \frac{1}{3}.$$

• Mivel bármely $0 \le x \in \mathbb{R}$ esetén

$$\frac{1}{2x+3}>0,$$

ezért

$$\mathcal{H} \ni \frac{x+1}{2x+3} = \frac{1}{2} - \frac{1}{2} \cdot \frac{1}{2x+3} < \frac{1}{2},$$

azaz $\frac{1}{2}$ felső korlátja \mathcal{H} -nak.

• Mivel nagy x-ekre $\frac{1}{2x+3}$ igen kicsi, ezért sejthető, hogy \mathcal{H} -nak nincsen $\frac{1}{2}$ -nél kisebb felső korlátja:

$$\forall \, \varepsilon > 0 \, \exists \, x \in [0, +\infty) : \qquad \mathcal{H} \ni \frac{x+1}{2x+3} = \frac{1}{2} - \frac{1}{2} \cdot \frac{1}{2x+3} > \frac{1}{2} - \varepsilon.$$

48

Ez azzal egyenértékű, hogy $\frac{1}{4x+6} < \varepsilon$, azaz hogy $\frac{1}{\varepsilon} - 6 < 4x$. Ilyen $x \ge 0$ nyilván létezik. Következésképpen $\sup(\mathcal{H}) = \frac{1}{2}$. Világos, hogy $\nexists \max(\mathcal{H})$, mivel $\frac{1}{2} \notin \mathcal{H}$.

Összefoglalva: a \mathcal{H} halmaz alulról és felülről is korlátos,

$$\inf(\mathcal{H}) = \min(\mathcal{H}) = \frac{1}{3}, \qquad \sup(\mathcal{H}) = \frac{1}{2}, \quad \nexists \max(\mathcal{H}).$$

4. • Világos, hogy bármely $x \in \mathbb{Z}$ esetén

$$\frac{2x+3}{3x+1} = \frac{2}{3} \cdot \frac{6x+9}{6x+2} = \frac{2}{3} \cdot \frac{6x+2+7}{6x+2} = \frac{2}{3} \cdot \left(1 + \frac{7}{6x+2}\right) = \frac{2}{3} + \frac{2}{3} \cdot \frac{7}{6x+2} = \frac{2}{3} + \frac{7}{3} \cdot \frac{1}{3x+1}.$$

• Ha x < 0, akkor $\frac{7}{3} \cdot \frac{1}{3x+1} < 0$, míg $x \ge 0$ esetén

$$0 \leq \frac{7}{3} \cdot \frac{1}{3x+1} \leq \frac{7}{3}.$$

Ezért

$$\frac{2x+3}{3x+1} \le \frac{2}{3} + \frac{7}{3} = 3$$

és x = 0-ra

$$\frac{2 \cdot 0 + 3}{3 \cdot 0 + 1} = 3.$$

Tehát a \mathcal{H} halmaznak van maximuma és $\max(\mathcal{H}) = 3$, következésképpen $\sup(\mathcal{H}) = 3$.

• Ha x = -1, akkor

$$\frac{2(-1)+3}{3(-1)+1}=-\frac{1}{2}.$$

Lássuk be, hogy

$$\frac{2x+3}{3x+1} \ge -\frac{1}{2} \qquad (x \in \mathbb{Z})$$

teljesül. Ui. ez azzal ekvivalens, hogy

$$\frac{2x+3}{3x+1} + \frac{1}{2} = 7 \cdot \frac{x+1}{3x+1} \ge 0 \quad (x \in \mathbb{Z}),$$

ami igaz. Tehát

$$\min(\mathcal{H}) = \inf(\mathcal{H}) = -1/2$$
.

Összefoglalva: a \mathcal{H} halmaz alulról és felülről is korlátos,

$$\inf(\mathcal{H}) = \min(\mathcal{H}) = -\frac{1}{2}, \quad \sup(\mathcal{H}) = \max(\mathcal{H}) = 3.$$

5. • Világos, hogy bármely $-2 \le x \in \mathbb{R}$ esetén

$$\frac{2|x|+3}{3|x|+1} = \frac{2}{3} \cdot \frac{6|x|+9}{6|x|+2} = \frac{2}{3} \cdot \frac{6|x|+2+7}{6|x|+2} = \frac{2}{3} \left(1 + \frac{7}{6|x|+2}\right) = \frac{2}{3} + \frac{7}{3} \cdot \frac{1}{3|x|+1}.$$

• Mivel tetszőleges $-2 \le x \in \mathbb{R}$ esetén

$$\frac{7}{3} \cdot \frac{1}{3|x|+1} > 0$$

ezért

$$\mathcal{H} \ni \frac{2|x|+3}{3|x|+1} = \frac{2}{3} + \frac{7}{3} \cdot \frac{1}{3|x|+1} > \frac{2}{3},$$

azaz a \mathcal{H} halmaz alulról korlátos, és $\frac{2}{3}$ alsó korlátja \mathcal{H} -nak.

• Látható, hogy az

$$\frac{1}{3|x|+1}$$

tört az x nagy értékeire igen közel van 0-hoz, ezért a \mathcal{H} halmaz elemei nagy x-ekre $\frac{2}{3}$ -hoz közeli értékeket vesznek fel. Sejthető tehát, hogy \mathcal{H} -nak nincsen $\frac{2}{3}$ -nál nagyobb alsó korlátja:

$$\forall \, \varepsilon > 0 \, \exists \, x \in [-2, +\infty): \qquad \mathcal{H} \ni \frac{2}{3} + \frac{7}{3} \cdot \frac{1}{3|x|+1} < \frac{2}{3} + \varepsilon.$$

Valóban, a tetszőleges $x \in [-2, +\infty)$ esetén fennálló

$$\frac{2}{3} + \frac{7}{3} \cdot \frac{1}{3|x|+1} < \frac{2}{3} + \varepsilon \quad \Longleftrightarrow \quad \frac{7}{3} \cdot \frac{1}{3|x|+1} < \varepsilon \quad \Longleftrightarrow \quad \frac{7}{\varepsilon} < 9|x|+3 \quad \Longleftrightarrow \quad |x| > \frac{7}{9\varepsilon} - \frac{1}{3}$$

ekvivalencia-lánc következtében tetszőleges $\epsilon>0$ számhoz van olyan $h\in\mathcal{H},$ amelyre

$$h < \frac{2}{3} + \varepsilon$$
.

Így

$$\inf(\mathcal{H}) = \frac{2}{3}$$
 és $\nexists \min(\mathcal{H})$, ui. $\frac{2}{3} \notin \mathcal{H}$.

• Mivel bármely $x \in [-2, +\infty)$ esetén

$$\mathcal{H}\ni \frac{2|x|+3}{3|x|+1}=\frac{2}{3}+\frac{7}{3}\cdot\frac{1}{3|x|+1}\leq \frac{2}{3}+\frac{7}{3}\cdot\frac{1}{3|0|+1}=\frac{2|0|+3}{3|0|+1}=\frac{3}{1},$$

ezért \mathcal{H} -nak van legnagyobb eleme: max $(\mathcal{H}) = 3$. Következésképpen

$$\sup(\mathcal{H}) = \max(\mathcal{H}) = 3.$$

Összefoglalva: a \mathcal{H} halmaz alulról és felülről is korlátos,

$$\inf(\mathcal{H}) = \frac{2}{3}, \quad \nexists \min(\mathcal{H}), \qquad \sup(\mathcal{H}) = \max(\mathcal{H}) = 3.$$

Megjegyezzük, hogy az y := |x| helyettesítéssel jól látható, hogy

$$\left\{\frac{2|x|+3}{3|x|+1}\in\mathbb{R}:\;-2\leq x\in\mathbb{R}\right\}=\left\{\frac{2y+3}{3y+1}\in\mathbb{R}:\;0\leq y\in\mathbb{R}\right\}$$

ami némileg egyszerúsíti a megoldást.

6. • Mivel bármely $0 \le x \in \mathbb{R}$ esetén

$$\sqrt{x+1} - \sqrt{x} = \left(\sqrt{x+1} - \sqrt{x}\right) \cdot 1 = \left(\sqrt{x+1} - \sqrt{x}\right) \cdot \frac{\sqrt{x+1} + \sqrt{x}}{\sqrt{x+1} + \sqrt{x}} = \frac{1}{\sqrt{x+1} + \sqrt{x}}$$

és

$$\sqrt{x+1} + \sqrt{x} \ge 1 \qquad (0 \le x \in \mathbb{R}),$$

ezért

$$0 < \sqrt{x+1} - \sqrt{x} = \frac{1}{\sqrt{x+1} + \sqrt{x}} \le 1$$
 $(0 \le x \in \mathbb{R}).$

Ez azt jelenti, hogy a \mathcal{H} halmaz korlátos, továbbá 0, ill. 1 alsó, ill. felső korlátja \mathcal{H} -nak.

- Mivel x=0 esetén $\sqrt{x+1}-\sqrt{x}=1$ ezért $1\in\mathcal{H}$, következésképpen $\max(\mathcal{H})=1$, és így $\sup(\mathcal{H})=1$.
- Látható, hogy ha x elég nagy, akkor

$$\frac{1}{\sqrt{x+1}+\sqrt{x}}$$

igen kicsi. Sejthető tehát, hogy \mathcal{H} -nak nincsen 0-nál nagyobb alsó korlátja:

$$\forall\, \epsilon>0 \ \exists\, x\in [0,+\infty): \qquad \mathcal{H}\ni \sqrt{x+1}-\sqrt{x}<0+\epsilon=\epsilon.$$

Mivel tetszőleges $0 \le x \in \mathbb{R}$ esetén

$$\frac{1}{\sqrt{x+1}+\sqrt{x}} \leq \frac{1}{\sqrt{x}+\sqrt{x}} = \frac{1}{2\sqrt{x}} < \varepsilon \qquad \iff \qquad x > \frac{1}{4\varepsilon^2},$$

ezért $\inf(\mathcal{H}) = 0$. Mivel $0 \notin \mathcal{H}$, ezért \mathcal{H} -nak nincsen legkisebb eleme.

Összefoglalva: a \mathcal{H} halmaz alulról és felülről is korlátos,

$$\inf(\mathcal{H}) = 0$$
, $\#\min(\mathcal{H})$, $\sup(\mathcal{H}) = \max(\mathcal{H}) = 1$.

Házi feladat. Van-e a

$$\mathcal{H} := \left\{ 2 - \frac{1}{n} \in \mathbb{R} : n \in \mathbb{N} \right\}$$

halmaznak maximuma, ill. minimuma?

Útm.

1. lépés. Megmutatjuk, hogy

$$\sup \mathcal{H} = 2 \qquad \text{\'es} \qquad \inf \mathcal{H} = \min \mathcal{H} = 1.$$

Valóban,

• a 2 szám felső korlátja \mathcal{H} -nak, hiszen bármely $n \in \mathbb{N}$ esetén $2 - \frac{1}{n} < 2$. A 2 a legisebb felső korlát, ui. ha $\varepsilon > 0$, akkor van a $2 - \varepsilon$ számnál nagyobb H-beli elem, azaz alkalmas $n \in \mathbb{N}$ esetén

$$2 - \frac{1}{n} > 2 - \varepsilon$$
 \iff $\frac{1}{\varepsilon} < n$.

Ez pedig igaz, hiszen ℕ felülről nem korlátos.

• az 1 szám alsó korlátja H-nak, hiszen bármely $n \in \mathbb{N}$ esetén

$$1 \le 2 - \frac{1}{n}$$
 \iff $0 \le 1 - \frac{1}{n}$ \iff $\frac{1}{n} \le 1$.

Mivel $1 \in H$ (hiszen n = 1 esetén $2 - \frac{1}{1} = 2 - 1 = 1$), ezért

$$\inf \mathcal{H} = \min \mathcal{H} = 1$$
.

2. lépés. Mivel $2 \notin \mathcal{H}$ (nincsen olyan $n \in \mathbb{N}$, amelyre

$$2-\frac{1}{n}=2$$

volna), ezért H-nak nincsen maximuma.

Megjegyezzük, hogy ez így is belátható: ha $h \in \mathcal{H}$ tetszőleges, akkor van olyan $n \in \mathbb{N}$, hogy

$$h=2-\frac{1}{n}.$$

Ha most m := n + 1 akkor a $k := 2 - \frac{1}{m} \in \mathcal{H}$ elemre

$$k = 2 - \frac{1}{m} > 2 - \frac{1}{n} = h.$$

Gyakorló feladat. Vizsgáljuk az \mathcal{H} halmazt korlátosság szempontjából! Határozzuk meg inf \mathcal{H} -t és $\sup \mathcal{H}$ -t! Van-e a \mathcal{H} halmaznak legkisebb, ill. legnagyobb eleme?

1.
$$\mathcal{H} := \left\{ \frac{x^2 + 1}{4x^2 + 3} \in \mathbb{R} : x \in [2, +\infty) \right\};$$
 2. $\mathcal{H} := \left\{ \frac{5 \cdot 5^n + 1}{2 \cdot 5^n + 3} \in \mathbb{R} : n \in \mathbb{N} \right\};$

$$2. \ \mathcal{H}:=\left\{\frac{5\cdot 5^n+1}{2\cdot 5^n+3}\in\mathbb{R}:\ n\in\mathbb{N}\right\};$$

3.
$$\mathcal{H} := \left\{ \frac{\sqrt{x} - 1}{5\sqrt{x} + 2} \in \mathbb{R} : x \in [4, +\infty) \right\}$$

$$3. \ \mathcal{H}:=\left\{\frac{\sqrt{x}-1}{5\sqrt{x}+2}\in\mathbb{R}: \ x\in[4,+\infty)\right\}; \qquad 4. \ \mathcal{H}:=\left\{\frac{x}{y}\in\mathbb{R}: \ x\in(0,1), y\in(0,x)\right\};$$

5.
$$\mathcal{H} := \left\{ \frac{2 + \sqrt{x}}{3\sqrt{x} + 1} \in \mathbb{R} : \ x \in [1/9, +\infty) \right\}.$$
 6. $\mathcal{H} := \left\{ \frac{5x - 1}{2x + 3} \in \mathbb{R} : \ x \in [3, +\infty) \right\}.$

6.
$$\mathcal{H} := \left\{ \frac{5x-1}{2x+3} \in \mathbb{R} : x \in [3, +\infty) \right\}.$$

Útm.

1. • Mivel minden $x \in [2, +\infty)$ esetén

$$(*) \quad \frac{x^2+1}{4x^2+3} = \frac{1}{4} \cdot \frac{4x^2+4}{4x^2+3} = \frac{1}{4} \cdot \frac{4x^2+3+1}{4x^2+3} = \frac{1}{4} \cdot \left(1 + \frac{1}{4x^2+3}\right) = \frac{1}{4} + \frac{1}{16x^2+12}$$

és

$$\frac{1}{16x^2 + 12} > 0,$$

ezért

$$\mathcal{H}\ni \frac{x^2+1}{4x^2+3}>\frac{1}{4},$$

azaz $\frac{1}{4}$ alsó korlátja \mathcal{H} -nak.

• Megmutatjuk, hogy $\frac{1}{4}$ a legnagyobb alsó korlát: $\inf(\mathcal{H}) = \frac{1}{4}$. Valóban, bármely $\varepsilon > 0$ szám esetén pontosan akkor van olyan $h \in \mathcal{H}$, hogy $h < \frac{1}{4} + \varepsilon$, ha alkalmas $x \in [2, +\infty)$ számra

$$\frac{1}{4} + \varepsilon > h := \frac{1}{4} + \frac{1}{16x^2 + 12} \iff \varepsilon > \frac{1}{16x^2 + 12} \iff x^2 > \frac{1}{16\varepsilon} - \frac{3}{4}.$$

Világos, hogy pl. az

$$x:=\sqrt{\frac{1}{16\epsilon}}+2=\frac{1}{4\sqrt{\epsilon}}+2>2$$

szám ilyen.

- Mivel $\frac{1}{4} \notin \mathcal{H}$, ezért \mathcal{H} -nak nincsen legkisebb eleme.
- A (*) felbontásból az is látható, hogy bármely $x \in [2, +\infty)$ esetén

$$\frac{1}{4} + \frac{1}{16x^2 + 12} \le \frac{1}{4} + \frac{1}{16 \cdot 2^2 + 12} = \frac{5}{19} \in \mathcal{H}.$$

Ez azt jelenti, hogy $\sup(\mathcal{H}) = \max(\mathcal{H}) = \frac{5}{19}$.

Összefoglalva: a \mathcal{H} halmaz alulról és felülről is korlátos,

$$\inf(\mathcal{H}) = \frac{1}{4}, \quad \not\exists \min(\mathcal{H}), \qquad \sup(\mathcal{H}) = \max(\mathcal{H}) = \frac{5}{19}.$$

2.

• Mivel minden
$$n \in \mathbb{N}$$
 esetén
$$\frac{5 \cdot 5^n + 1}{2 \cdot 5^n + 3} = \frac{5}{2} \cdot \frac{10 \cdot 5^n + 2}{10 \cdot 5^n + 15} = \frac{5}{2} \cdot \frac{10 \cdot 5^n + 15 - 13}{10 \cdot 5^n + 15} = \frac{5}{2} \cdot \left(1 - \frac{13}{10 \cdot 5^n + 15}\right) = \frac{5}{2} - \frac{13}{4 \cdot 5^n + 6}$$

és

$$\frac{13}{4 \cdot 5^n + 6} > 0,$$

ezért

$$\frac{5\cdot 5^n+1}{2\cdot 5^n+3}<\frac{5}{2},$$

azaz $\frac{5}{2}$ felső korlátja \mathcal{H} -nak.

• Megmutatjuk, hogy $\frac{5}{2}$ a legkisebb felső korlát: $\sup(\mathcal{H}) = \frac{5}{2}$. Valóban, bármely $\epsilon > 0$ szám esetén pontosan akkor van olyan $h \in \mathcal{H}$, hogy $h > \frac{5}{2} - \epsilon$, ha alkalmas $n \in \mathbb{N}$ számra

$$\frac{5}{2}-\epsilon < \alpha := \frac{5}{2}-\frac{13}{4\cdot 5^n+6} \quad \Longleftrightarrow \quad \epsilon > \frac{13}{4\cdot 5^n+6} \quad \Longleftrightarrow \quad 5^n > \frac{13}{4\epsilon}-\frac{6}{4}.$$

Nem nehéz belátni, hogy van ilyen n.

- Mivel $\frac{5}{2} \notin \mathcal{H}$, ezért \mathcal{H} -nak nincsen legnagyobb eleme.
- A (*) felbontásból az is látható, hogy bármely $n \in \mathbb{N}_0$ esetén

$$\frac{5}{2} - \frac{13}{4 \cdot 5^{n} + 6} \ge \frac{5}{2} - \frac{13}{4 \cdot 5^{0} + 6} = \frac{6}{5} \in \mathcal{H}.$$

Ez azt jelenti, hogy $\inf(\mathcal{H}) = \min(\mathcal{H}) = \frac{6}{5}$.

Összefoglalva: a \mathcal{H} halmaz alulról és felülről is korlátos,

$$\inf(\mathcal{H}) = \min(\mathcal{H}) = \frac{6}{5}, \qquad \sup(\mathcal{H}) = \frac{5}{2}, \quad \nexists \max(\mathcal{H}).$$

3. • Mivel minden $x \in [4, +\infty)$ esetén

$$(*) \quad \frac{\sqrt{x}-1}{5\sqrt{x}+2} = \frac{1}{5} \cdot \frac{5\sqrt{x}-5}{5\sqrt{x}+2} = \frac{1}{5} \cdot \frac{5\sqrt{x}+2-7}{5\sqrt{x}+2} = \frac{1}{5} \cdot \left(1-\frac{7}{5\sqrt{x}+2}\right) = \frac{1}{5} - \frac{7}{25\sqrt{x}+10} = \frac{7}{25\sqrt{x}$$

és

$$\frac{7}{25\sqrt{x} + 10} > 0,$$

ezért

$$\frac{\sqrt{x}-1}{5\sqrt{x}+2}<\frac{1}{5},$$

azaz $\frac{1}{5}$ felső korlátja \mathcal{H} -nak.

• Megmutatjuk, hogy $\frac{1}{5}$ a legkisebb felső korlát: $\sup(\mathcal{H}) = \frac{1}{5}$. Valóban, bármely $\epsilon > 0$ szám

esetén pontosan akkor van olyan $h \in \mathcal{H}$, hogy $h > \frac{1}{5} - \varepsilon$, ha alkalmas $x \in [4, +\infty)$ számra

$$\frac{1}{5}-\epsilon < h := \frac{1}{5} - \frac{7}{25\sqrt{x}+10} \quad \Longleftrightarrow \quad \epsilon > \frac{7}{25\sqrt{x}+10} \quad \Longleftrightarrow \quad \sqrt{x} > \frac{7}{25\epsilon} - \frac{2}{5}.$$

Világos, hogy pl. az

$$x := \left(\frac{7}{25\epsilon}\right)^2 + 4 = \frac{49}{225\epsilon^2} + 4 > 4$$

szám ilyen.

- Mivel $\frac{1}{5} \notin \mathcal{H}$, ezért \mathcal{H} -nak nincsen legnagyobb eleme.
- A (*) felbontásból az is látható, hogy bármely $x \in [4, +\infty)$ esetén

$$\frac{1}{5} - \frac{7}{25\sqrt{x} + 10} \ge \frac{1}{5} - \frac{7}{25\sqrt{4} + 10} = \frac{1}{12} \in \mathcal{H}.$$

Ez azt jelenti, hogy $\inf(\mathcal{H}) = \min(\mathcal{H}) = \frac{1}{12}$.

Összefoglalva: a \mathcal{H} halmaz alulról és felülről is korlátos,

$$\inf(\mathcal{H}) = \min(\mathcal{H}) = \frac{1}{12}, \qquad \sup(\mathcal{H}) = \frac{1}{5}, \quad \nexists \max(\mathcal{H}).$$

4. • A \mathcal{H} halmaz felülről nem korlátos, ugyanis tetszőleges $K \ge 1$ számhoz van olyan $h \in \mathcal{H}$, hogy h > K, hiszen $h := \frac{x}{y}$:

$$x:=\frac{1}{2},\quad y\in\left(0,\frac{1}{2K}\right)\qquad\text{eset\'en}\qquad h=\frac{\frac{1}{2}}{y}>\frac{\frac{1}{2}}{\frac{1}{2K}}=K.$$

Ezért

$$\sup(\mathcal{H}) = +\infty$$
, ill. $\nexists \max(\mathcal{H})$.

- A \mathcal{H} halmaz alulról korlátos, ugyanis 0 alsó korlátja, sőt minden $x \in (0,1)$ esetén $\frac{x}{y} > \frac{x}{x} = 1$, ezért az 1 is alsó korlát.
- $\inf(\mathcal{H})=1$, ugyanis minden $\epsilon>0$ -hoz van olyan $x\in(0,1),y\in(0,x)$, hogy $\frac{x}{y}<1+\epsilon$, hiszen

$$\frac{x}{y} < 1 + \varepsilon \iff y > \frac{x}{1 + \varepsilon}$$

és $\frac{x}{1+\epsilon} < x$, ezért tetszőleges $x \in (0,1)$ esetén y legyen olyan, hogy $\frac{x}{1+\epsilon} < y < x$.

• $\nexists \min(\mathcal{H})$, mivel $\inf(\mathcal{H}) = 1 \notin \mathcal{H}$.

Összefoglalva: a \mathcal{H} halmaz alulról korlátos, felülről nem korlátos,

$$\inf(\mathcal{H}) = 1, \quad \nexists \min(\mathcal{H}), \quad \sup(\mathcal{H}) = +\infty.$$

5. • Mivel minden $x \in [1/9, +\infty)$ esetén

$$(*) \quad \frac{2+\sqrt{x}}{3\sqrt{x}+1} = \frac{1}{3} \cdot \frac{3\sqrt{x}+6}{3\sqrt{x}+1} = \frac{1}{3} \cdot \frac{3\sqrt{x}+1+5}{3\sqrt{x}+1} = \frac{1}{3} \cdot \left(1+\frac{5}{3\sqrt{x}+1}\right) = \frac{1}{3} + \frac{5}{9\sqrt{x}+3}$$

és

$$\frac{5}{9\sqrt{x}+3}>0,$$

ezért

$$\frac{2+\sqrt{x}}{3\sqrt{x}+1} > \frac{1}{3},$$

azaz $\frac{1}{3}$ alsó korlátja \mathcal{H} -nak.

• Megmutatjuk, hogy $\frac{1}{3}$ a legnagyobb alsó korlát: $\inf(\mathcal{H}) = \frac{1}{3}$. Valóban, bármely $\epsilon > 0$ szám esetén pontosan akkor van olyan $h \in \mathcal{H}$, hogy $\alpha < \frac{1}{3} + \epsilon$, ha alkalmas $x \in [1/9, +\infty)$ számra

$$\frac{1}{3} + \epsilon > h := \frac{1}{3} + \frac{5}{9\sqrt{x} + 3} \quad \Longleftrightarrow \quad \epsilon > \frac{5}{9\sqrt{x} + 3} \quad \Longleftrightarrow \quad \sqrt{x} > \frac{1}{9} \left(\frac{5}{\epsilon} - 3 \right) = \frac{5}{9\epsilon} - \frac{1}{3}.$$

Világos, hogy pl. az

$$x:=\frac{25}{81\epsilon^2}+\frac{1}{9}$$

szám ilyen.

- Mivel $\frac{1}{3} \notin \mathcal{H}$, ezért \mathcal{H} -nak nincsen legkisebb eleme.
- A (*) felbontásból az is látható, hogy bármely $x \in [1/9, +\infty)$ esetén

$$\frac{1}{3} + \frac{5}{9\sqrt{x} + 3} \le \frac{1}{3} + \frac{5}{9\sqrt{1/9} + 3} = \frac{1}{3} + \frac{5}{6} = \frac{7}{6} \in A.$$

Ez azt jelenti, hogy

$$\sup(\mathcal{H}) = \max(\mathcal{H}) = \frac{7}{6}.$$

Összefoglalva: a \mathcal{H} halmaz alulról és felülről is korlátos,

$$\inf(\mathcal{H}) = \frac{1}{3}, \quad \nexists \min(\mathcal{H}), \qquad \sup(\mathcal{H}) = \max(\mathcal{H}) = \frac{7}{6}.$$

6. • Világos, hogy bármely $3 \le x \in \mathbb{R}$ esetén

$$\frac{5x-1}{2x+3} = \frac{5}{2} \cdot \frac{10x-2}{10x+15} = \frac{5}{2} \cdot \frac{10x+15-17}{10x+15} = \frac{5}{2} \cdot \left(1 - \frac{17}{10x+15}\right) = \frac{5}{2} - \frac{17}{2} \cdot \frac{1}{2x+3}.$$

• Mivel tetszőleges $3 \le x \in \mathbb{R}$ esetén

$$\frac{14}{9} = \frac{5}{2} - \frac{17}{2} \cdot \frac{1}{2 \cdot 3 + 3} \le \frac{5}{2} - \frac{17}{2} \cdot \frac{1}{2x + 3},$$

ezért

$$\inf(A) = \min(A) = \frac{14}{9}.$$

• Látható, hogy $\frac{5}{2}$ felső korlát. Belátjuk, hogy $\sup(A) = \frac{5}{2}$. Ehhez azt kell megmutatni, hogy

$$\forall \, \varepsilon > 0 \, \exists \, x \in [3, +\infty): \quad \frac{5}{2} - \frac{17}{2} \cdot \frac{1}{2x+3} > \frac{5}{2} - \varepsilon.$$

Ez azzal egyenértékű, hogy

$$\frac{17}{2} \cdot \frac{1}{2x+3} < \varepsilon$$
, azaz hogy $\frac{17}{2\varepsilon} - 3 < 2x$.

Ilyen $x \in \mathcal{H} := [3, +\infty)$ nyilván létezik, hiszen \mathcal{H} felülrőlnem korlátos.

• $\exists \max(A), \text{ mivel } \frac{5}{2} \notin A.$

Összefoglalva: a ${\mathcal H}$ halmaz alulról és felülről is korlátos,

$$\inf(\mathcal{H}) = \inf(\mathcal{H}) = \frac{14}{9}, \quad \sup(\mathcal{H}) = \frac{5}{2}, \quad \nexists \max(\mathcal{H}) = . \quad \blacksquare$$

3. gyakorlat (2023. 03. 16.)

Emlékeztető.

 Ha ∅ ≠ A, B halmaz, akkor az A halmazból a B halmazba leképező függvényt úgy adunk meg, hogy A bizonyos elemeihez hozzárendeljük a B valamelyik elemét. Jelölés: f ∈ A → B. Például

$$\sqrt{\mathbf{n}} \in \mathbb{R} \to \mathbb{R}, \qquad \sin \in \mathbb{R} \to \mathbb{R}.$$

• Az f függvény értelmezési tartományán, ill. értékkészletén: a

$$\mathcal{D}_f := \{ x \in A : \exists y \in B : y = f(x) \}, \quad \text{ill. az} \quad \mathcal{R}_f := \{ y \in B : \exists x \in A : y = f(x) \}$$

halmazt értjük. B neve: **képhalmaz**. Ha $\mathcal{D}_f = A$, akkor azt írjuk, hogy $f : A \to B$. Valamely $x \in \mathcal{D}_f$ esetén az f(x) elemet az f függvény x helyen felvett **helyettesítési érték**ének nevezzük.

• Ha f és g függvény, akkor

$$\mathsf{f} = \mathsf{g} \qquad :\Longleftrightarrow \qquad (\mathcal{D}_\mathsf{f} = \mathcal{D}_\mathsf{g} =: \mathcal{D} \qquad \text{\'es} \qquad \mathsf{f}(\mathsf{x}) = \mathsf{g}(\mathsf{x}) \quad (\mathsf{x} \in \mathcal{D})) \,.$$

Példa.

$$\mathcal{D}_{\sqrt{}}=[0,+\infty), \qquad \mathcal{R}_{\sqrt{}}=[0,+\infty), \qquad \mathcal{D}_{sin}=\mathbb{R}, \qquad \mathcal{R}_{sin}=[-1,1].$$

Definíció. Legyen A, B, C halmaz, $C \subset A$, továbbá $f: A \to B$ és $g: C \to B$ olyan függvények, amelyekre

$$f(x) = g(x) \qquad (x \in C).$$

Ekkor azt mondjuk, hogy a g függvény az f függvény C halmazra való **leszűkítés**e. Jelben: $g =: f|_{C}$.

Emlékeztető. Valamely $f \in A \rightarrow B$ függvény

• és $\mathcal{H} \subset A$ halmaz esetén a \mathcal{H} halmaz f által létesített **kép**én az

$$f[\mathcal{H}] := \{f(x) \in B : x \in \mathcal{H}\} = \{y \in B \mid \exists x \in \mathcal{H} : y = f(x)\}\$$

halmazt értettük (speciálisan $f[\emptyset] := \emptyset$).

ullet és ${\cal H}\subset {\sf B}$ halmaz esetén a ${\cal H}$ halmaz f által létesített **őskép**én az

$$f^{-1}[\mathcal{H}] := \{ x \in \mathcal{D}_f : \ f(x) \in \mathcal{H} \}$$

halmazt értettük (speciálisan $f^{-1}[\emptyset] := \emptyset$).

Megjegyezések.

- 1. Szóhasználat:
 - $f[\mathcal{H}]$ az a B-beli halmaz, amelyet az f(x) függvényértékek "befutnak", ha x "befutja" a \mathcal{H} halmaz elemeit;
 - az $f[\mathcal{H}]$ a B azon y elemeit tartalmazza, amelyekhez van olyan $x \in \mathcal{H}$, hogy y = f(x).
- 2. Az f függvény értékkészlete értelmezási tartománynak f által létesített képe és f értelmezési tartományna az értékkészletének f által létesített ősképe:

$$f[\mathcal{D}_f] = \mathcal{R}_f \qquad \text{\'es} \qquad f^{-1}[\mathcal{R}_f] = \mathcal{D}_f.$$

3. Adott $f \in A \rightarrow B$ függvény és $b \in B$ esetén az

$$f(x) = b \quad (x \in A) \tag{5}$$

egyenlet megoldásainak nevezzük az f^{-1} [$\{b\}$] halmaz elemeit. Azt mondjuk továbbá, hogy

- a (5) egyenletnek nincsen megoldása ((5) nem oldható meg), ha $f^{-1}[\{b\}] = \emptyset$;
- (5) megoldása egyértelmű, ha f⁻¹ [{b}] egyelemű halmaz.

Példa. Meghatározzuk a $\mathcal{H} := [1, 2]$ halmaz

$$f(x) := x^2 \qquad (x \in \mathbb{R})$$

függvény által létesített képét. Az ábrából sejthető, hogy

$$f[1,2] = [1,4].$$

Biz. A definíció alapján

$$f\big[[1,2]\big] = \big\{ x^2 \in \mathbb{R} \mid 1 \le x \le 2 \big\} = \big\{ y \in \mathbb{R} \mid \exists x \in [1,2] : y = x^2 \big\}.$$

Azt kell tehát meghatározni, hogy x^2 milyen értékek vesz fel, ha x "befutja" az [1,2] intervallum pontjait. Mivel

$$1 \le x \le 2$$
 \Longrightarrow $1 \le x^2 \le 4$, azaz $x^2 \in [1,4]$,

ezért

$$f[[1,2]] \subset [1,4].$$
 (6)

A kérdés ezek után az, hogy az x^2 függvényértékek vajon teljesen "befutják-e" az egész [1,4] intervallumot, ha x "befutja" az [1,2] intervallum pontjait, vagyis igaz-e a fordított irányú

$$[1,4] \subset f[1,2] \tag{7}$$

tartalmazás is. Az előzőek alapján ez azzal egyenértékű, hogy

$$\forall y \in [1, 4] \text{ számhoz } \exists x \in [1, 2]: \quad \text{hogy} \quad y = x^2.$$
 (8)

Ennek az egyenletnek a megoldása $x_{\pm} = \pm \sqrt{y}$. Mivel $1 \le y \le 4$, ezért $1 \le \sqrt{y} \le 2$, így $x_{+} \in [1, 2]$. Ez pedig azt jelenti, hogy a (8) állítás, tehát a vele egyenértékű (7) tartalmazás is igaz. (6) és (7) alapján a két halmaz egyenlő, azaz f[1, 2] = [1, 4].

Példa. Meghatározzuk a $\mathcal{H} := [1, 4]$ halmaz

$$f(x) := x^2 \qquad (x \in \mathbb{R})$$

függvény által létesített ősképét. Az ábrából sejthető, hogy $f^{-1}[[1,4]] = [-2,-1] \cup [1,2]$.

Biz. A definíció alapján

 $f^{-1}\big[[1,4]\big] = \big\{x \in \mathbb{R} \mid x^2 \in [1,4]\big\} = \big\{x \in \mathbb{R} \mid 1 \le x^2 \le 4\big\}.$

Így

 $f^{-1}\big\lceil [1,4] \big\rceil$ az $1 \leq x^2 \leq 4$ egyenlőtlenségrendszer megoldáshalmaza. Mivel

$$1 \le x^2 \le 4$$
 \iff $1 \le |x| \le 2$ \iff $1 \le x \le 2$ vagy $-2 \le x \le -1$ \iff $x \in [-2, -1] \cup [1, 2],$

ezért beláttuk azt, hogy

$$f^{-1}[[1,4]] = [-2,-1] \cup [1,2].$$

Példa. Az

$$f(x) := 3 + 2x - x^2 \qquad (x \in \mathbb{R})$$

függvény és a $\mathcal{H}:=\{0\}$ halmaz esetében meghatározzuk az $f[\mathcal{H}]$ és az $f^{-1}[\mathcal{H}]$ halmazt. Mivel $0\in\mathcal{D}_f=\mathbb{R}$, ezért

$$f[\{0\}] = \left\{3 + 2x - x^2 \in \mathbb{R}: \ x \in \{0\}\right\} = \left\{3 + 2x - x^2 \in \mathbb{R}: \ x = 0\right\} = \{3\},$$

továbbá

$$f^{-1}[\{0\}] = \left\{ x \in \mathbb{R} : \ 3 + 2x - x^2 \in \{0\} \right\} = \left\{ x \in \mathbb{R} : \ 3 + 2x - x^2 = 0 \right\} = \{-1; 3\},$$

hiszen

$$3 + 2x - x^2 = 0$$
 \iff $x = 1 \pm \sqrt{1+3}$.

1. ábra. Az $\mathbb{R} \ni x \mapsto 3 + 2x - x^2$ függvény grafikonja.

Feladat. Határozzuk meg a $\mathcal{H} := [-2, 2]$ halmaz

$$f(x) := 3 + 2x - x^2 \qquad (x \in \mathbb{R})$$

függvény által létesített képét!

Útm. A definíció alapján

$$f\big[[-2,2] \big] = \big\{ 3 + 2x - x^2 \mid x \in [-2,2] \big\} = \big\{ y \in \mathbb{R} \mid \exists x \in [-2,2] \colon y = 3 + 2x - x^2 \big\}.$$

Mivel bármely $x \in \mathbb{R}$ esetén

$$f(x) = 3 + 2x - x^2 = -(x - 1)^2 + 4$$

továbbá

$$-2 \le x \le 2 \implies -3 \le x - 1 \le 1 \implies 0 \le (x - 1)^2 \le 9 \implies -9 \le -(x - 1)^2 \le 0 \implies$$
$$\implies -5 \le -(x - 1)^2 + 4 \le 4,$$

ezért tetszőleges $x \in [-2, 2]$ esetén $-(x - 1)^2 + 4 \in [-5, 4]$, azaz

$$f[[-2,2]] \subset [-5,4].$$
 (9)

Megmutajuk, hogy a fordított irányú

$$[-5,4] \subset f[-2,2] \tag{10}$$

tartalmazás is igaz, azaz

$$y \in [-5, 4] \implies \exists x \in [-2, 2] : y = -(x - 1)^2 + 4.$$
 (11)

Ennek az egyenletnek a megoldása

$$x_{-} = 1 - \sqrt{4 - y}$$
 és $x_{+} = 1 + \sqrt{4 - y}$.

Mivel

$$y \in [-5,4] \iff -5 \le y \le 4 \iff -4 \le -y \le 5 \iff 0 \le 4 - y \le 9 \iff$$
 $\iff 0 \le \sqrt{4 - y} \le 3,$

ezért

$$-2 = 1 - 3 \le x_{-} = 1 - \sqrt{4 - y} \le 1 + 0 = 1$$
 \iff $x_{-} \in [-2, 1] \subset [-2, 2].$

Így a (11) állítást, következésképpen a (10) tartalmazást bebizonyítottuk. (Ezek után az x_+ megoldással már nem is kell foglalkoznunk. Ennek ellenére megjegyezzük, hogy az előzőekhez hasonlóan adódik az, hogy $x_+ \in [1,4]$, ha $y \in [-5,4]$, de $x_+ \in [-2,2]$ is igaz, ha $y \in [3,4]$.) (9) és (10) alapján a szóban forgó halmazok egyenlők, így beláttuk, hogy

$$f[[-2,2]] = [-5,4].$$

A megoldást szemlélteti a mellékelt ábra:

Feladat. Határozzuk meg a $\mathcal{H} := [1, 2]$ halmaz

$$f(x) := |x - 1| - 1 \qquad (x \in \mathbb{R})$$

függvény által létesített ősképét!

Útm. Mivel

$$f^{-1}[[1,2]] = \{x \in \mathbb{R} : |x-1|-1 \in [1,2]\} = \{x \in \mathbb{R} : 1 \le |x-1|-1 \le 2\} =$$
$$= \{x \in \mathbb{R} : 2 < |x-1| < 3\},$$

ezért a

$$2 \le |x - 1| \le 3 \tag{12}$$

egyenlőtlenség-rendszer megoldáshalmazának meghatározása a feladat.

• A ≤ megoldása. Mivel

$$2 \le |x-1| \quad \Longleftrightarrow \quad (x-1 \ge 2 \text{ vagy } x-1 \le -2) \quad \Longleftrightarrow \quad \quad (x \ge 3 \quad \text{vagy} \quad x \le -1) \,,$$

ezért

$$2 \le |x-1| \iff x \in (-\infty, -1] \cup [3, +\infty) =: \mathcal{B}$$

• A ≤ megoldása. Mivel

$$|x-1| \le 3 \iff -3 \le x-1 \le 3 \iff -2 \le x \le 4 \iff x \in [-2,4] =: \mathcal{J}.$$

Az (12) egyenlőtlenség megoldáshalmaza és egyben a keresett őskép:

$$f^{-1}[[1,2]] = \mathcal{B} \cap \mathcal{J} = \{(-\infty, -1] \cup [3, +\infty)\} \cap [-2, 4] =$$

$$= \{(-\infty, -1] \cap [-2, 4]\} \cup \{[3, +\infty) \cap [-2, 4]\} = [-2, -1] \cup [3, 4]. \quad \blacksquare$$

$$-2 \quad -1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4$$

A megoldást szemlélteti az alábbi ábra.

65

Emlékeztető. Valamely $f \in A \rightarrow B$ függvény

• invertálható (injektív vagy egy-egyértelmű), ha

$$\forall x,y \in \mathcal{D}_f \colon \qquad (x \neq y \quad \Longrightarrow \quad f(x) \neq f(y)) \,.$$

Ekkor az

$$f^{-1}:\mathcal{R}_f\to\mathcal{D}_f,\quad f^{-1}(y)=x:\quad f(x)=y$$

függvényt f inverzének nevezzük.

- szürjektív, ha $\mathcal{R}_f = B$.
- bijektív vagy kölcsönösen egyértelmű, ha injektív és szürjektív.

Példa. Az ábrán látható

$$f := \{(a,j), (b,h), (c,i)\}$$

függvény invertálható, és inverze az

$$f^{-1} := \{(j, a), (h, b), (i, c)\}$$

függvény, de az $f : A \rightarrow B$ függvény nem bijektív.

Egy $f: A \to B$ bijektív leképezés párba állítja az A és B halmaz elemeit: a két halmaz elemszáma megegyezik. Ekkor

azt mondjuk, hogy az A és B halmaz azonos számosságú.

A fenti ábra bal oldala példa injektív függvényre, a jobb oldalán lévő f pedig nem injektív.

Megjegyzések.

1. f pontosan akkor invertálható, ha

$$\forall x,y \in \mathcal{D}_f \colon \qquad (f(x) = f(y) \quad \Longrightarrow \quad x = y),$$

ill. ha minden $y \in \mathcal{R}_f$ -hez pontosan egy olyan $x \in \mathcal{D}_f$ van, amelyre f(x) = y.

- 2. Ha alkamas $u, v \in \mathcal{D}_f$, $u \neq v$ esetén f(u) = f(v), akkor f nem invertálható (nem injektív).
- 3. Ha \mathcal{D}_f nem egyelemű, viszont \mathcal{R}_f egyelemű (valódi konstans függvény), akkor f nem invertálható, hiszen

$$\exists x, y \in \mathcal{D}_f, x \neq y: f(x) = f(y).$$

4. A definícióból látható, hogy

$$\mathcal{D}_{f^{-1}} = \mathcal{R}_f \qquad \text{\'es} \qquad \mathcal{R}_{f^{-1}} = \mathcal{D}_f.$$

5. Ha az $f:(a,b)\to\mathbb{R}$ szigorúan monoton (növekvő/csökkenő), akkor invertálható, és f^{-1} is szigorúan monoton (növekvő/csökkenő). Mindez fordítva nem igaz, ui. pl. az

$$f:[0,1] \to \mathbb{R}, \qquad f(x) := \left\{ egin{array}{ll} x & \left(x \in \left[0, rac{1}{2}
ight)
ight), \ & \ rac{3}{2} - x & \left(x \in \left[rac{1}{2}, 1
ight)
ight) \end{array}
ight.$$

függvény ugyan injektív, de nem szigorúan monoton.

6. Ha $f \in \mathbb{R} \to \mathbb{R}$ invertálható függvény, akkor f és az f^{-1} grafikonjai egymásnak az y = x egyenletű egyenesre való tükörképei (vö. (2). ábra), hiszen ha valamely $(x, y) \in \mathbb{R}$ pont rajta van f grafikonján:

$$(x,y) \in graph \{(u,v) \in \mathbb{R}^2 : u \in \mathcal{D}_f, v = f(u)\},\$$

akkor az (y, x) pont rajta van az f^{-1} inverz grafikonján, és ha egy \mathbb{R}^2 -beli pont két koordinátáját felcseréljük, akkor a pontot az y = x egyenesre tükrözzük.

2. ábra. Az

 $x \mapsto \sqrt{x}, x, x$

függvények grafikonjai.

7. Felhívjuk a figyelmet egy, a jelölésekkel kapcsolatos látszólagos következetlenségre. Az $f^{-1}[\mathcal{H}]$ szimbólum tetszőleges f függvény esetén a \mathcal{H} halmaz f által létesített ősképét jelölte. Azonban, ha f invertálható függvény, akkor ugyanezzel jelöltük – a fogalmilag igencsak különböző dolgot, nevezetesen – a \mathcal{H} halmaz f^{-1} inverz függvény által létesített képét. Ez azért nem vezet félreértéshez – sőt némiképp egyszerűsíti a bevezetett jelelöléseket –, mert minden invertálható f függvény és minden $\mathcal{H} \subset \mathcal{R}_f$ esetén a \mathcal{H} halmaz f által létesített ősképe – azaz az $\{x \in \mathcal{D}_f : f(x) \in \mathcal{H}\}$ halmaz – megegyezik a \mathcal{H} halmaz f^{-1} inverz függvény által létesített képével – azaz az

$$\left\{f^{-1}(y)\in\mathcal{R}_{f^{-1}}:\,y\in\mathcal{H}\right\}$$

halmazzal.

Megjegyezzük, hogy "átlátszó" papír felhasznállásával a tükrözés elkerülhető. Az f grafikonjának megrajzolása után rögtön láthatóvá válik inverzének grafikonja is, ha először elforgatjuk a papírt 90 fokkal az óramutató járásával megegyező irányban, majd függőlegesen megforgatjuk a papírt. Az az ábra, ami a papíron át látható, pont az f⁻¹ inverz grafikonja.

Példa. Megmutatjuk, hogy az

$$f(x) := \frac{3x+2}{x-1} \qquad (1 \neq x \in \mathbb{R})$$

függvény injektív, majd kiszámítjuk inverzét. Mivel minden $1 \neq x \in \mathbb{R}$ esetén

$$f(x) = 3 \cdot \frac{3x + 2}{3x - 3} = 3 \cdot \frac{3x - 3 + 5}{3x - 3} = 3 \cdot \left(1 + \frac{5}{3x - 3}\right) = 3 + \frac{5}{x - 1},\tag{13}$$

ezért

$$f(x) = f(y)$$
 \iff $3 + \frac{5}{x-1} = 3 + \frac{5}{y-1}$ \iff $x = y$,

azaz f invertálható. Az inverz függvény meghatározásához f értékkészletét kell megállapítani. (13) alapján sejthető, hogy

$$\mathcal{R}_f = \mathbb{R} \setminus \{3\}.$$

Biz.:

- $\bullet \ \ \ \text{Világos, hogy 3} \notin \mathcal{R}_f, \text{hiszen bármely 1} \neq x \in \mathbb{R} \text{ esetén } \frac{5}{x-1} \neq 0, \text{igy (13) alapján } \mathcal{R}_f \subset \mathbb{R} \setminus \{3\}.$
- Most megmutatjuk, hogy $\mathcal{R}_f \supset \mathbb{R}\setminus\{3\}$, azaz bármely $y \in \mathbb{R}\setminus\{3\}$ esetén van olyan $x \in \mathcal{D}_f = \mathbb{R}\setminus\{1\}$, hogy f(x) = y. Valóban, ha $y \in \mathbb{R}\setminus\{3\}$, akkor

$$f(x) = y$$
 \iff $3 + \frac{5}{x - 1} = y$ \iff $x = 1 + \frac{5}{y - 3} = \frac{y + 2}{y - 3}$

és $x \neq 1$ miatt $x \in \mathcal{D}_f$.

Tehát

$$f^{-1}: \mathbb{R}\setminus\{3\} \to \mathbb{R}\setminus\{1\}, \qquad f^{-1}(y):=\frac{y+2}{y-3}.$$

Feladat. Döntsük el, hogy az alábbi függvények közül melyek invertálhatók!

1.
$$f(x) := 3x + 2 (x \in \mathbb{R});$$

2.
$$f(x) := x^2 (x \in \mathbb{R});$$

3.
$$f(x) := \sqrt{9 - x^2}$$
 $(x \in [-3, 3]);$

4.
$$f(x) := \left(\frac{x-1}{1+x}\right)^2 - 1 \ (x \in (-1,1)).$$

Útm.

1. f invertálható, hiszen szigorúan monoton (növekedő):

$$\forall \, u,v \in \mathbb{R}, \, \, u < v: \qquad 3u < 3v \quad \Longleftrightarrow \quad 3u+2 < 3u+2 \quad \Longleftrightarrow \quad f(u) < f(v).$$

- 2. f nem invertálható, hiszen $f(-1) = (-1)^2 = 1^2 = f(1)$.
- 3. f nem invertálható, hiszen $f(-3) = \sqrt{9 (-3)^2} = \sqrt{9 3^2} = f(3)$. **Megjegyzés.** Ha f (nemtrivi) páros függvény, akkor f nyilvánvalóan nem invertálható.
- 4. f invertálható, hiszen tetszőleges $x, y \in (-1, 1)$ esetén

$$f(x) = f(y) \quad \Longleftrightarrow \quad \left(\frac{x-1}{1+x}\right)^2 - 1 = \left(\frac{y-1}{1+y}\right)^2 - 1 \iff \quad \underbrace{\left(\frac{x-1}{1+x}\right)^2 - \left(\frac{y-1}{1+y}\right)^2}_{} = 0$$

1

$$\left[\frac{x-1}{1+x} - \frac{y-1}{1+y} \right] \cdot \left[\frac{x-1}{1+x} + \frac{y-1}{1+y} \right] = 0$$

és
$$\frac{x-1}{1+x} - \frac{y-1}{1+y} = \frac{(x-1)(1+y) - (y-1)(1+x)}{(1+x)(1+y)} = \frac{2(x-y)}{(1+x)(1+y)}$$

ill.
$$\frac{x-1}{1+x} + \frac{y-1}{1+y} = \frac{(x-1)(1+y) + (y-1)(1+x)}{(1+x)(1+y)} = \frac{2(xy-1)}{(1+x)(1+y)} \neq 0,$$

így

$$f(x) = f(y)$$
 \iff $x = y$.

Feladat. Invertálhatóak-e az alábbi fügvények? Ha igen, akkor számítsuk ki f^{-1} -et!

1.
$$f(x) := \frac{1}{1 + |x - 1|}$$
 $(x \in \mathbb{R});$

2.
$$a, b \in \mathbb{R}, f(x) := ax + b \quad (x \in \mathbb{R});$$

3.
$$f(x) := \frac{x+1}{x-2}$$
 $(2 \neq x \in \mathbb{R});$

4.
$$f(x) := \left(\frac{x-1}{x+1}\right)^2 - 1 \quad (x \in (-1,1)).$$

Útm.

1. Az f függvény nem injektív, ui.

$$0 \neq 2$$
 és $f(0) = \frac{1}{1 + |0 - 1|} = \frac{1}{2} = \frac{1}{1 + |2 - 1|} = f(2).$

- 2. Ha
 - a = 0, akkor $\mathcal{R}_f = \{b\}$, de $\mathcal{D}_f = \mathbb{R}$, így f nem invertálható.
 - $\bullet \ \ \alpha \neq 0,$ akkor nyilván $\mathcal{R}_f = \mathbb{R}$ és

$$f(x) = f(y)$$
 \iff $ax + b = ay + b$ \iff $x = y$,

azaz f invertálható és

$$f^{-1}: \mathbb{R} \to \mathbb{R}, \qquad f^{-1}(x) = \frac{x-b}{a},$$

hiszen

$$ax + b = y$$
 \iff $x = \frac{y - b}{a}$.

3. Mivel minden $2 \neq x \in \mathbb{R}$ esetén

$$f(x) = \frac{x-2+3}{x-2} = 1 + \frac{3}{x-2},$$

ezért

$$f(x) = f(y)$$
 \iff $1 + \frac{3}{x-2} = 1 + \frac{3}{11-2}$ \iff $x = y$,

azaz f invertálható. Az inverz függvény meghatározásához f értékkészletét kell megállapítani.

(*) alapján sejthető, hogy

$$\mathcal{R}_f = \mathbb{R} \setminus \{1\}.$$

Biz.:

• Világos, hogy $1 \notin \mathcal{R}_f$, hiszen bármely $2 \neq x \in \mathbb{R}$ esetén $\frac{3}{x-2} \neq 0$, így (*) alapján

$$\mathcal{R}_f \subset \mathbb{R} \setminus \{1\}.$$

• Most megmutatjuk, hogy $\mathcal{R}_f \supset \mathbb{R} \setminus \{1\}$, azaz bármely $y \in \mathbb{R} \setminus \{1\}$ esetén van olyan $x \in \mathcal{D}_f = \mathbb{R} \setminus \{2\}$, hogy f(x) = y. Valóban, ha $y \in \mathbb{R} \setminus \{1\}$, akkor

$$f(x) = y$$
 \iff $1 + \frac{3}{x - 2} = y$ \iff $x = 2 + \frac{3}{y - 1} = \frac{2y + 1}{y - 1}$

és $x \neq 2$ miatt $x \in \mathcal{D}_f$.

Tehát

$$f^{-1}: \mathbb{R}\setminus\{1\} \to \mathbb{R}\setminus\{2\}, \qquad f^{-1}(y):=\frac{2y+1}{y-1}.$$

4. Korábbról tudjuk, hogy f invertálható. Világos, hogy bármely $x \in (-1, 1)$ estén f(x) > -1, azaz

$$\mathcal{R}_{f} \subset (-1, +\infty). \tag{14}$$

Mivel f(x) a (-1)-hez közeli x pontokban tetszőlegesen nagy értéket felvesz, ezért sejthető, hogy a fordított irányú

$$\mathcal{R}_{f}\supset(-1,+\infty). \tag{15}$$

tartalmazás is igaz, azaz

$$\forall y \in (-1, +\infty) \ \exists x \in (-1, 1): \ f(x) = \left(\frac{x-1}{x+1}\right)^2 - 1 = y.$$

Ha tehát $y \in (-1, +\infty)$, akkor

$$f(x) = y \iff \left(\frac{x-1}{x+1}\right)^2 - 1 = y \iff \left|\frac{x-1}{x+1}\right| = \sqrt{y+1} \iff x = \frac{1-\sqrt{y+1}}{1+\sqrt{y+1}}.$$

Mivel $y \in (-1, +\infty)$, ezért

$$-1 < x = \frac{1 - \sqrt{y+1}}{1 + \sqrt{y+1}} < 1 \qquad \Longleftrightarrow \qquad -1 - \sqrt{y+1} < 1 - \sqrt{y+1} < 1 + \sqrt{y+1},$$

ez utóbbi egyenlőtlenség-rendszer pedig nyilvánvaló. Így (14), ill. (15) alapján $\mathcal{R}_f = (-1, +\infty)$. Így $x = f^{-1}(y)$ következtében az inverz függvény:

$$f^{-1}(y) = \frac{1 - \sqrt{y+1}}{1 + \sqrt{y+1}}$$
 $(y \in (-1, +\infty))$.

Emlékeztető. Legyen $f \in A \rightarrow B$, $g \in C \rightarrow D$, ill.

$$\mathcal{H} := \{x \in \mathcal{D}_g: g(x) \in \mathcal{D}_f\} \neq \emptyset.$$

Ekkor az f (külső) és a g (belső) függvény **összetett függvény**nek (**kompozíció**jának) nevezzük az alábbi függvényt:

$$f \circ g : \mathcal{H} \to B$$
, $(f \circ g)(x) := f(g(x))$.

Megjegyzések.

- 1. A definícióból nyilvánvaló, hogy $\mathcal{D}_{f\circ g}=g^{-1}\left[\mathcal{R}_g\cap\mathcal{D}_f\right]$, illetve $\mathcal{R}_g\subset\mathcal{D}_f$ esetén $\mathcal{D}_{f\circ g}=\mathcal{D}_g$.
- 2. Ha $f \in \mathbb{R} \to \mathbb{R}$ invertálható függvény, akkor

$$\left(f^{-1}\circ f\right)(x)=x \qquad (x\in \mathcal{D}_f), \qquad \qquad \left(f\circ f^{-1}\right)(y)=y \qquad (y\in \mathcal{R}_f).$$

3. Ha f, $g \in \mathbb{R} \to \mathbb{R}$ olyan invertálható függvények, amelyekre $\mathcal{R}_g = \mathcal{D}_f$ és $\mathcal{R}_f = \mathcal{D}_g$ teljesül, akkor $f \circ g$ is invertálható és

$$(f \circ g)^{-1} = g^{-1} \circ f^{-1}$$
.

4. A kompozíció-képzés nem kommutatív, hiszen pl. az

$$f(x) := \sqrt{1-x} \quad (x \in (-\infty, 1]) \qquad \text{és a} \qquad g(x) := x^2 \quad (x \in \mathbb{R})$$

függvények esetében f \circ g \neq g \circ f. Valóban,

a

$$\mathcal{D}_{f \circ g} = \left\{x \in \mathcal{D}_g: \ g(x) \in \mathcal{D}_f\right\} = \left\{x \in \mathbb{R}: \ x^2 \in (-\infty, 1]\right\} = [-1, 1] \neq \emptyset$$

halmazzal, ha $x \in \mathcal{D}_{f \circ g}$, akkor

$$(f \circ g)(x) = (f(g(x)) = \sqrt{1 - g(x)} = \sqrt{1 - x^2},$$

azaz az f és a g kompizíciója:

$$f \circ g : [-1, 1] \to \mathbb{R}, \qquad (f \circ g)(x) = \sqrt{1 - x^2};$$

• a

$$\mathcal{D}_{g \circ f} = \{x \in \mathcal{D}_f: \ f(x) \in \mathcal{D}_g\} = \left\{x \in (-\infty,1]: \ \sqrt{1-x} \in \mathbb{R}\right\} = (-\infty,1] \neq \emptyset$$

halmazzal, ha $x \in \mathcal{D}_{g \circ f}$, akkor

$$(g \circ f)(x) = (g(f(x))) = g(\sqrt{1-x}) = (\sqrt{1-x})^2 = 1-x,$$

azaz a g és az f függvény kompozíciója pedig

$$g \circ f : (-\infty, 1] \to \mathbb{R}, \qquad (g \circ f)(x) = 1 - x.$$

Feladat. Írjuk fel az f ∘ g kompozíciót a következő függvények esetében, amennyiben az képezhető!

1.
$$f(x) := \sqrt{x+1} \ (-1 \le x \in \mathbb{R}), \ g(x) := x^2 - 3x + 1 \ (x \in \mathbb{R});$$

2.
$$f(x) := \frac{1}{2x+1} \left(-\frac{1}{2} \neq x \in \mathbb{R} \right), \quad g(x) := x^2 + 3x + \frac{3}{2} (x \in \mathbb{R}).$$

Útm.

1. Világos, hogy

$$\begin{array}{lcl} \mathcal{D}_{f\circ g} & = & \{x\in\mathcal{D}_g: \ g(x)\in\mathcal{D}_f\} = \left\{x\in\mathbb{R}: \ x^2-3x+1\in[-1,+\infty)\right\} = \\ \\ & = & \left\{x\in\mathbb{R}: \ x^2-3x+1\geq -1\right\} = \left\{x\in\mathbb{R}: \ x^2-3x+2\geq 0\right\}. \end{array}$$

Mivel

$$x^2 - 3x + 2 \qquad \Longrightarrow \qquad x_{\pm} = \frac{3 \pm \sqrt{(-3)^2 - 4 \cdot 2}}{2} = \frac{3 \pm 1}{2} \in \{1; 2\},$$

ezért

$$x^2 - 3x + 2 \ge 0 \qquad \Longleftrightarrow \qquad (x - 1)(x - 2) \ge 0 \qquad \Longleftrightarrow \qquad x \in (-\infty, 1] \cup [2, +\infty).$$

Tehát

$$\mathcal{D}_{\text{fog}} = (-\infty, 1] \cup [2, +\infty),$$

és bármely $x \in \mathcal{D}_{f \circ g}$ esetén

$$(f \circ g)(x) = f(g(x)) = \sqrt{g(x) + 1} = \sqrt{(x^2 - 3x + 1) + 1} = \sqrt{x^2 - 3x + 2}.$$

Az f és a g függvény kompozíciója így az

$$(f \circ g)(x) := \sqrt{x^2 - 3x + 2}$$
 $(x \in (-\infty, 1] \cup [2, +\infty))$

függvény.

2. Látható, hogy

$$\begin{split} \mathcal{D}_{f \circ g} &= \{ x \in \mathcal{D}_g : \ g(x) \in \mathcal{D}_f \} = \left\{ x \in \mathbb{R} : \ x^2 + 3x + \frac{3}{2} \in \mathbb{R} \setminus \{-1/2\} \right\} = \\ &= \left\{ x \in \mathbb{R} : \ x^2 + 3x + \frac{3}{2} \neq -\frac{1}{2} \right\} = \left\{ x \in \mathbb{R} : \ x^2 + 3x + 2 \neq 0 \right\} = \\ &= \{ x \in \mathbb{R} : \ (x+1)(x+2) \neq 0 \} = \mathbb{R} \setminus \{-1; -2\}. \end{split}$$

Így tetszőleges $x \in \mathcal{D}_{f \circ g}$ esetén

$$(f \circ g)(x) = f(g(x)) = \frac{1}{2g(x) + 1} = \frac{1}{2(x^2 + 3x + \frac{3}{2}) + 1} = \frac{1}{2} \cdot \frac{1}{x^2 + 3x + 2}.$$

Mindez azt jelenti, hogy az f és a q függvény kompozíciója így az

$$(f \circ g)(x) := \frac{1}{2} \cdot \frac{1}{x^2 + 3x + 2}$$
 $(x \in \mathbb{R} \setminus \{-1; -2\})$

függvény. ■

Feladat. Írjuk fel az $f \circ g$ és a $g \circ f$ kompozíciót a következő függvények esetében, amennyiben az képezhető!

1.
$$f(x) := \sqrt{2x+1} \left(\frac{1}{2} \le x \in \mathbb{R}\right), g(x) := \frac{1}{x^2-2} (2 < x \in \mathbb{R});$$

2.
$$f(x) := 1 - x^2 \ (x \in \mathbb{R}), \ g(x) := \sqrt{x} \ (0 \le x \in \mathbb{R});$$

3.
$$f(x) := x^2 (x \in \mathbb{R}), g(x) := 2^x (x \in \mathbb{R});$$

4.
$$f(x) := -x^2 \ (0 < x \in \mathbb{R}), \ g(x) := \frac{1}{x^2} \ (0 < x \in \mathbb{R}).$$

Útm.

1. Mivel

$$\left\{x\in\mathcal{D}_g:\;g(x)\in\mathcal{D}_f\right\}=\left\{x\in(2,+\infty):\;\frac{1}{x^2-2}\geq\frac{1}{2}\right\}=\emptyset,$$

ui. $x \in (2, +\infty)$ következtében $x^2 - 2 > 0$, így

$$\frac{1}{x^2-2} \ge \frac{1}{2} \qquad \Longrightarrow \qquad 2 \ge x^2-2 \qquad \Longrightarrow \qquad 4 \ge x^2 \qquad \Longrightarrow \qquad |x| < 2.$$

Ez azt jelenti, hogy

f ∘ q nem képezhető.

Mivel

$$\begin{split} \mathcal{D}_{g\circ f} &= \{x \in \mathcal{D}_f : \ f(x) \in \mathcal{D}_g\} = \left\{x \in \left[\frac{1}{2}, +\infty\right) : \ \sqrt{2x+1} \in (2, +\infty)\right\} = \\ &= \left\{x \in \left[\frac{1}{2}, +\infty\right) : \ 2x+1 \in (4, +\infty)\right\} = \left\{x \in \left[\frac{1}{2}, +\infty\right) : \ x \in \left(\frac{3}{2}, +\infty\right)\right\} = \\ &= \left(\frac{3}{2}, +\infty\right) \neq \emptyset, \end{split}$$

ezért tetszőleges $x \in \mathcal{D}_{\mathsf{qof}}$ esetén

$$(g \circ f)(x) = g(f(x)) = \frac{1}{f^2(x) - 2} = \frac{1}{(\sqrt{2x + 1})^2 - 2} = \frac{1}{2x - 1}.$$

Mindez azt jelenti, hogy a g és az f függvény kompozíciója így a

$$(g \circ f)(x) := \frac{1}{2x - 1}$$
 $\left(x \in \left(\frac{3}{2}, +\infty\right)\right)$

függvény.

2. Mivel

$$\mathcal{D}_{f\circ g} = \{x \in \mathcal{D}_g: \ g(x) \in \mathcal{D}_f\} = \left\{x \in [0,+\infty): \ \sqrt{x} \in \mathbb{R}\right\} = [0,+\infty),$$

ill.

$$\mathcal{D}_{q\circ f}=\{x\in\mathcal{D}_f:\ f(x)\in\mathcal{D}_q\}=\big\{x\in\mathbb{R}:\ 1-x^2\in[0,+\infty)\big\}=[-1,1],$$

ezért

$$f \circ g : [0, +\infty) \to \mathbb{R}, \qquad (f \circ g)(x) = f(g(x)) = 1 - (g(x))^2 = 1 - (\sqrt{x})^2 = 1 - x,$$

ill.

$$g\circ f:[-1,1]\to\mathbb{R}, \qquad (g\circ f)(x)=g(f(x))=\sqrt{f(x)}=\sqrt{1-x^2}.$$

3. Mivel

$$\mathcal{D}_{f \circ g} = \{x \in \mathcal{D}_g: \ g(x) \in \mathcal{D}_f\} = \{x \in \mathbb{R}: \ 2^x \in \mathbb{R}\} = \mathbb{R},$$

ill.

$$\{x\in\mathcal{D}_f:\;f(x)\in\mathcal{D}_g\}=\left\{x\in\mathbb{R}:\;x^2\in\mathbb{R}\right\}=\mathbb{R},$$

ezért

$$f \circ g : \mathbb{R} \to \mathbb{R}, \qquad (f \circ g)(x) = f(g(x)) = (g(x)))^2 = (2^x)^2 = 2^{2x};$$

ill.

$$g\circ f:\mathbb{R}\to\mathbb{R}, \qquad (g\circ f)(x)=g(f(x))=2^{f(x)}=2^{x^2}.$$

4. Mivel

$$\mathcal{D}_{f \circ g} = \left\{x \in \mathcal{D}_g: \ g(x) \in \mathcal{D}_f\right\} = \left\{x \in (0, +\infty): \ \frac{1}{x^2} \in (0, +\infty)\right\} = (0, +\infty),$$

ill.

$$\mathcal{D}_{g\circ f} = \{x \in \mathcal{D}_f: \ f(x) \in \mathcal{D}_g\} = \left\{x \in (0,+\infty): \ -x^2 \in (0,+\infty)\right\} = \emptyset,$$

ezért

$$f \circ g : (0, +\infty) \to \mathbb{R}, \qquad (f \circ g)(x) = f(g(x)) = -\frac{1}{(f(x))^2} = -\frac{1}{x^4},$$

ill.

g ∘ f nem képezhető.

Gyakorló feladat. Az

$$f(x) := 3x^2 - 2 \qquad (x \in \mathbb{R})$$

függvény és a $\mathcal{H} := [0, 1]$ halmaz esetén határozzuk meg az $f[\mathcal{H}]$ és az $f^{-1}[\mathcal{H}]$ halmazokat! Milyen A halmaz esetén áll fenn az $f[A] = \emptyset$ vagy az $f^{-1}[A] = \emptyset$ egyenlőség?

Útm.

• Világos, hogy

$$f[\mathcal{H}] = \{3x^2 - 2 \in \mathbb{R} | x \in [0, 1]\}.$$

Mivel minden $x \in [0, 1]$ számra

$$3 \cdot 0^2 - 2 = -2 \le 3x^2 - 2 \le 3 \cdot 1^2 - 2 = 1$$

ezért

$${3x^2 - 2 \in \mathbb{R} | x \in [0,1]} \subset [-2,1],$$

azaz

$$f[\mathcal{H}] \subset [-2,1]$$
.

Tegyük fel, hogy $y \in [-2,1]$. Ekkor $3x^2-2=y$, ha $x=\pm\sqrt{\frac{y+2}{3}}$. Mivel

$$\sqrt{\frac{y+2}{3}} \in [0,1]$$
 és $f\left(\sqrt{\frac{y+2}{3}}\right) = y$,

ezért $y \in f[\mathcal{H}]$, azaz

$$[-2,1] \subset f[\mathcal{H}].$$

Megjegyzés. Mivel

$$f[\mathcal{H}] = \left\{ 3x^2 - 2 \in \mathbb{R} \middle| x \in [0, 1] \right\} = 3 \cdot \left\{ x^2 \in \mathbb{R} \middle| x \in [0, 1] \right\} - 2,$$

78

és nem nehéz megmutatni, hogy

$$\{x^2 \in \mathbb{R} | x \in [0,1]\} = [0,1],$$

ezért

$$f[\mathcal{H}] = [-2, 1].$$

• Világos, hogy

$$f^{-1}[\mathcal{H}] = \left\{ x \in \mathbb{R} | 3x^2 - 2 \in [0, 1] \right\}.$$

 $Az f^{-1}[\mathcal{H}]$ halmaz tehát a

$$0 \le 3x^2 - 2 \le 1 \quad \Longleftrightarrow \quad \frac{2}{3} \le x^2 \le 1 \qquad (x \in \mathbb{R})$$

egyenlőtlenség-rendszer megoldáshalmaza, ezért

$$f^{-1}[\mathcal{H}] = \left(\left(-\infty, -\sqrt{\frac{2}{3}} \right] \cup \left[\sqrt{\frac{2}{3}}, +\infty \right) \right) \cap [-1, 1] =$$

$$= \left(\left(-\infty, -\sqrt{\frac{2}{3}} \right] \cap [-1, 1] \right) \cup \left(\left[\sqrt{\frac{2}{3}}, +\infty \right) \cap [-1, 1] \right) =$$

$$= \left[-1, -\sqrt{\frac{2}{3}} \right] \cup \left[\sqrt{\frac{2}{3}}, 1 \right].$$

• A definíció alapján világos, hogy

$$f[A] = \emptyset \quad \Longleftrightarrow \quad A \cap \mathbb{R} = \emptyset \qquad \text{\'es} \qquad f^{-1}[A] = \emptyset \quad \Longleftrightarrow \quad A \cap [-2, +\infty) = \emptyset. \quad \blacksquare$$

Gyakorló feladat. Invertálhatóak-e az alábbi függvények?

1.
$$f(x) := |x - 1| + |x + 2| \quad (x \in \mathbb{R});$$

2.
$$f(x) := x^3 + 6x^2 + 12x$$
 $(x \in \mathbb{R});$

3.
$$f(x) := x^3 - 3x^2 + 3x + 4$$
 $(x \in \mathbb{R})$.

Útm.

1. Mivel

$$f(x) = \begin{cases} 1 - x - x - 2 = -1 - 2x & (x \in (-\infty, -2)), \\ 1 - x + x + 2 = 3 & (x \in [-2, 1)), \\ x - 1 + x + 2 = 2x + 1 & (x \in [1, +\infty)), \end{cases}$$

ezért f nem invertálható.

2. Mivel bármely $x \in \mathbb{R}$ esetén

$$f(x) = x^3 + 6x^2 + 12x + 2^3 - 6 = (x+2)^3 - 8$$

ezért f szigorúan monoton növekedő, következésképpen invertálható. Sőt, az is könnyen megmutatható, hogy $\mathcal{R}_f = \mathbb{R}$, hiszen bármely $y \in \mathbb{R}$ esetén van olyan $x \in \mathcal{D}_f = \mathbb{R}$, hogy

$$f(x) = y$$
 \iff $(x+2)^3 - 8 = y$ \iff $x = \sqrt[3]{y+8} - 2$.

Az f inverze:

$$f^{-1}: \mathbb{R} \to \mathbb{R}, \qquad f^{-1}(y) := \sqrt[3]{y+8} - 2$$

3. Mivel bármely $x \in \mathbb{R}$ esetén

$$f(x) = x^3 - 3x^2 + 3x - 1 + 5 = (x - 1)^3 + 5,$$

ezért f szigorúan monoton növekedő, következésképpen invertálható. Sőt, az is könnyen megmutatható, hogy $\mathcal{R}_f=\mathbb{R}$, hiszen bármely $y\in\mathbb{R}$ esetén van olyan $x\in\mathcal{D}_f=\mathbb{R}$, hogy

$$f(x) = y$$
 \iff $(x-1)^3 + 5 = y$ \iff $x = \sqrt[3]{y-5} + 1$.

Az f inverze:

$$f^{-1}: \mathbb{R} \to \mathbb{R}, \qquad f^{-1}(y) := \sqrt[3]{y-5} + 1.$$

80

Gyakorló feladat. Invertálható-e az

$$f(x) := \frac{3x+2}{x-1} \qquad (1 \neq x \in \mathbb{R})$$

függvény? Ha igen, akkor számítsuk ki f⁻¹-et!

Útm. Mivel minden $1 \neq x \in \mathbb{R}$ esetén

(*)
$$f(x) = 3 \cdot \frac{3x+2}{3x-3} = 3 \cdot \frac{3x-3+5}{3x-3} = 3 \cdot \left(1 + \frac{5}{3x-3}\right) = 3 + \frac{5}{x-1},$$

ezért

$$f(x) = f(y)$$
 \iff $3 + \frac{5}{x-1} = 3 + \frac{5}{y-1}$ \iff $x = y$,

azaz f invertálható. Az inverz függvény meghatározásához f értékkészletét kell megállapítani. (*) alapján sejthető, hogy

$$\mathcal{R}_f = \mathbb{R} \setminus \{3\}.$$

Biz.:

• Világos, hogy $3 \notin \mathcal{R}_f$, hiszen bármely $1 \neq x \in \mathbb{R}$ esetén $\frac{5}{x-1} \neq 0$, így (*) alapján

$$\mathcal{R}_f \subset \mathbb{R} \setminus \{3\}.$$

• Most megmutatjuk, hogy $\mathcal{R}_f \supset \mathbb{R}\setminus \{3\}$, azaz bármely $y \in \mathbb{R}\setminus \{3\}$ esetén van olyan $x \in \mathcal{D}_f = \mathbb{R}\setminus \{1\}$, hogy f(x) = y. Valóban, ha $y \in \mathbb{R}\setminus \{3\}$, akkor

$$f(x) = y$$
 \iff $3 + \frac{5}{x-1} = y$ \iff $x = 1 + \frac{5}{y-3} = \frac{y+2}{y-3}$

és $x \neq 1$ miatt $x \in \mathcal{D}_f$.

Tehát

$$f^{-1}: \mathbb{R}\setminus \{3\} \to \mathbb{R}\setminus \{1\}, \qquad f^{-1}(y) := \frac{y+2}{y-3}.$$

Gyakorló feladatok.

1. Írjuk fel az $f \circ g$ és a $g \circ f$ kompozíciót az

$$f(x) := \sqrt{1-x}$$
 $(c \in (-\infty, 1]),$ $g(x) := x^2$ $(x \in \mathbb{R})$

függvények esetében!

2. Írjuk fel az f o g kompozíciót a következő függvények esetében!

(a)
$$f(x) := 2x + 1 \ (x \in \mathbb{R}), \ g(x) := x^2 - 3x + 2 \ (x \in \mathbb{R});$$

(b)
$$f(x) := \begin{cases} 0 & (-\infty < x \le 0) \\ x & (0 < x < +\infty), \end{cases}$$
 $g(x) := \begin{cases} 0 & (-\infty < x \le 0) \\ -x^2 & (0 < x < +\infty); \end{cases}$

(c)
$$f(x) := \frac{1}{2x+1} (-1/2 \neq x \in \mathbb{R}), g(x) := x^2 + 3x - 10 (x \in \mathbb{R}).$$

3. Tekintsük az alábbi függvényeket!

$$f(x) := \sqrt{\frac{1-x}{x+2}} \quad (x \in [0,1]), \qquad g(x) := -x^2 - 4x - 3 \quad (x \in \mathbb{R}).$$

- (a) Határozzuk meg az f ∘ g függvény!
- (b) Invertálható-e az f függvény? Ha igen, akkor határozzuk meg az f⁻¹ inverzet!

Útm.

1. Mivel

$$\{x\in\mathcal{D}_g:\ g(x)\in\mathcal{D}_f\}=\left\{x\in\mathbb{R}:\ x^2\in(-\infty,1]\right\}=[-1,1]$$

ill.

$$\{x\in\mathcal{D}_f:\ f(x)\in\mathcal{D}_g\}=\left\{x\in(-\infty,1]:\ \sqrt{1-x}\in\mathbb{R}\right\}=(-\infty,1],$$

ezért

$$f \circ g : [-1,1] \to \mathbb{R}, \qquad (f \circ g)(x) = f(g(x)) = \sqrt{1-x^2};$$

ill.

$$g \circ f: (-\infty, 1] \to \mathbb{R}, \qquad (g \circ f)(x) = g(f(x)) = (\sqrt{1-x})^2 = 1-x.$$

2. (a) Világos, hogy

$$\mathcal{D}_{f \circ g} = \left\{x \in \mathcal{D}_g: \ g(x) \in \mathcal{D}_f\right\} = \left\{x \in \mathbb{R}: \ x^2 - 3x + 2 \in \mathbb{R}\right\} = \mathbb{R},$$

továbbá

$$(f \circ g)(x) = f(g(x)) = 2(x^2 - 3x + 2) + 1 = 2x^2 - 6x + 5$$
 $(x \in \mathbb{R}).$

(b) Világos, hogy

$$\mathcal{D}_{f \circ g} = \{x \in \mathcal{D}_g: \ g(x) \in \mathcal{D}_f\} = \{x \in \mathbb{R}: \ g(x) \in \mathbb{R}\} = \mathbb{R},$$

továbbá

$$(f \circ g)(x) = f(g(x)) = \begin{cases} 0 & (-\infty < g(x) \le 0), \\ g(x) & (0 < g(x) < +\infty). \end{cases}$$

Mivel bármely $x \in \mathcal{D}_g$ esetén $-\infty < g(x) \le 0$, ezért

$$(f \circ g)(x) = 0$$
 $(x \in \mathbb{R}).$

(c) Világos, hogy

$$\begin{split} \mathcal{D}_{f\circ g} = & \{x \in \mathcal{D}_g: \ g(x) \in \mathcal{D}_f\} = \left\{x \in \mathbb{R}: \ x^2 + 3x - 10 \in \mathbb{R} \backslash \{-1/2\}\right\} = \\ \mathbb{R} \backslash \left\{\frac{-3 - \sqrt{47}}{2}, \frac{-3 + \sqrt{47}}{2}\right\}, \end{split}$$

továbbá

$$(f \circ g)(x) = \frac{1}{2(x^2 + 3x - 10) + 1} = \frac{1}{2x^2 + 6x - 19}$$
 $(x \in \mathcal{D}_{f \circ g}).$

3. (a) Mivel tetszőleges $x \in \mathbb{R}$ esetén

$$g(x) = 0$$
 \iff $x = -2 \pm \sqrt{(-2)^2 - 3} \in \{-1; -3\},$

ezért

$$g(x) = -(x+1)(x+3) \qquad (x \in \mathbb{R})$$

(vö. 3. ábra). Így

$$\{x \in \mathcal{D}_g: g(x) \in \mathcal{D}_f\} = \{x \in \mathbb{R}: -(x+1)(x+3) \in [0,1]\} = [-3,-1] \neq \emptyset$$

következtében

$$f \circ g : [-3, -1] \rightarrow \mathbb{R},$$

3. ábra. A g függvény grafikonja.

$$(f \circ g)(x) = f(g(x)) = \sqrt{\frac{1+x^2+4x+3}{-x^2-4x-3+2}} = \sqrt{\frac{x^2+4x+4}{-x^2-4x-1}} = \sqrt{\frac{(x+2)^2}{3-(x^2+4x+4)}} = \frac{|x+2|}{\sqrt{3-(x+2)^2}}.$$

(b) Mivel

(*)
$$\frac{1-x}{x+2} = -\frac{x-1}{x+2} = -\frac{x+2-3}{x+2} = -1 + \frac{3}{x+2} \qquad (x \in [0,1]),$$

ezért bármely $x, y \in [0, 1]$ esetén

$$f(x) = f(y) \implies \sqrt{-1 + \frac{3}{x+2}} = \sqrt{-1 + \frac{3}{y+2}} \implies \dots \implies x = y.$$

Mindez azt jelenti, hogy f invertálható. Az inverz függvény meghatározásához f értékkészletét kell megállapítani. (*) alapján sejthető, hogy

$$\mathcal{R}_f = [f(1), f(0)] = \left[0, \frac{1}{\sqrt{2}}\right].$$

Biz.:

• $\mathcal{R}_f \subset [f(1), f(0)]$, ui. bármely $x \in [0, 1]$ esetén

$$x + 2 \in [2, 3] \implies \frac{1}{x + 2} \in \left[\frac{1}{3}, \frac{1}{2}\right] \implies \frac{3}{x + 2} \in \left[1, \frac{3}{2}\right] \implies -1 + \frac{3}{x + 2} \in \left[0, \frac{1}{2}\right]$$
$$\implies f(x) = \sqrt{-1 + \frac{3}{x + 2}} \in \left[0, \frac{1}{\sqrt{2}}\right].$$

• $[f(1), f(0)] \subset \mathcal{R}_f$, hiszen bármely $y \in [f(1), f(0)]$ van olyan $x \in \mathcal{D}_f = [0, 1]$, hogy f(x) = y, ui.

$$f(x) = y \iff \sqrt{-1 + \frac{3}{x+2}} = y \iff x+2 = \frac{3}{y^2+1} \iff x = \frac{3}{y^2+1} - 2 = \frac{1-2y^2}{y^2+1}$$

és

$$0 \le \frac{1 - 2y^2}{y^2 + 1} = -\frac{2y^2 - 1}{y^2 + 1} = -2 \cdot \frac{2y^2 - 1}{2y^2 + 2} = -2 \cdot \frac{2y^2 + 2 - 3}{2y^2 + 2} = -2 + \frac{3}{y^2 + 1} \le 1$$

 $\text{miatt } x \in [0,1] = \mathcal{D}_f.$

Tehát f invertálható és inverzére

$$f^{-1}: \left[0, \frac{1}{\sqrt{2}}\right] \to \mathbb{R}, \qquad f^{-1}(y) := \frac{1 - 2y^2}{y^2 + 1}.$$

4. gyakorlat (2023. 03. 23.)

Az alábbiakban a természetes számok halmazán értelmezett függvényekkel: sorozatokkal foglalkozunk.

Definíció. Legyen $\mathcal{H} \neq \emptyset$. Ekkor az

$$x: \mathbb{N}_0 \to \mathcal{H}$$

függvényt H-beli sorozatnak nevezzük. Ha

$$\mathcal{H} = \mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}, \quad \text{ill.} \quad \mathcal{H} = \{f: f \in \mathbb{R} \to \mathbb{R}\}$$

akkor valós vagy komplex számsorozatról, illetve valós-valós függvények sorozatáról beszélünk.

Megjegyzések.

- 1. Az x(n) helyettesítési értéket az x sorozat n-edik tagjának vagy n-indexű tagjának nevezzük.
- 2. Az

$$x(n) =: x_n \qquad (n \in \mathbb{N}_0)$$

indexes jelölés bevezetésével az x sorozatra az alábbi jelölések használatosak:

$$x=:(x_n,\ n\in\mathbb{N}_0),\qquad x_n\quad (n\in\mathbb{N}_0),\qquad x=:(x_n)_{n\in\mathbb{N}_0},\qquad (x_n)\,,$$

ill.

$$x =: (x_0, x_1, x_2, ...)$$
.

3. Sok esetben tetszőlegesen rögzített $k \in \mathbb{N}_0$ szám esetén az

$$x: \mathbb{N}_{k} \to \mathcal{H}$$

függvény is sorozatnak tekintendő, ahol

$$\mathbb{N}_k := \{ n \in \mathbb{N}_0 : n \ge k \}$$
 $/\mathbb{N}_1 = \mathbb{N}/.$

- 4. A továbbiakban csak valós számsorozatokkal foglalkozunk, azaz feltesszük, hogy $\mathcal{H} = \mathbb{R}$.
- 5. A függvények közötti összeadás, ill. a függvények számmal való szorzására vonatkozóan a sorozatok vektorteret (lineáris teret) alkotnak, melynek nulleleme a

$$\theta := (0, 0, 0, \dots)$$

sorozat. A számsorozatok lineáris terét az S szimbólummal fogjuk jelölni.

Példák.

1. Legyen $c \in \mathbb{R}$, $x_n := c \ (n \in \mathbb{N}_0)$ (konstans sorozat vagy állandó sorozat),

$$x_0 = c$$
, $x_1 = c$, $x_2 = c$, $x_3 = c$, $x_4 = c$, ...

2. $x_n := n \ (n \in \mathbb{N}_0)$ (identikus sorozat),

$$x_0 = 0$$
, $x_1 = 1$, $x_2 = 2$, $x_3 = 3$, $x_4 = 4$, ...

3. $x_n := \frac{1}{n} (n \in \mathbb{N})$ (harmonikus sorozat),

$$x_1 = \frac{1}{1} = 1$$
, $x_2 = \frac{1}{2}$, $x_3 = \frac{1}{3}$, $x_4 = \frac{1}{4}$, $x_5 = \frac{1}{5}$, ...

A név eredete:

$$x_n = \frac{2}{\frac{1}{x_{n-1}} + \frac{1}{x_{n+1}}}$$
 $(2 \le n \in \mathbb{N}),$

ui. tetszőleges $2 \leq n \in \mathbb{N}$ esetén

$$\frac{2}{\frac{1}{x_{n-1}} + \frac{1}{x_{n+1}}} = \frac{2}{n-1+n+1} = \frac{2}{2n} = \frac{1}{n} = x_n.$$

4. $x_n := \alpha + nd \ (n \in \mathbb{N}_0)$, ahol $\alpha, d \in \mathbb{R}$ (számtani sorozat),

$$x_0 = \alpha$$
, $x_1 = \alpha + d$, $x_2 = \alpha + 2d$, $x_3 = \alpha + 3d$, $x_4 = \alpha + 4d$, ...

A név eredete:

$$x_n = \frac{x_{n-1} + x_{n+1}}{2} \qquad (n \in \mathbb{N}),$$

ui. tetszőleges $n \in \mathbb{N}$ esetén

$$\frac{x_{n-1} + x_{n+1}}{2} = \frac{\alpha + (n-1)d + \alpha + (n+1)d}{2} = \frac{2\alpha + 2nd}{2} = \alpha + nd = x_n.$$

5. $x_n := \beta q^n \ (n \in \mathbb{N}_0)$, ahol $\beta, q \in \mathbb{R}$ (mértani sorozat),

$$x_0 = \beta$$
, $x_1 = \beta q$, $x_2 = \beta q^2$, $x_3 = \beta q^3$, $x_4 = \beta q^4$, ...

A név eredete: ha β , q > 0, akkor

$$x_n = \sqrt{x_{n-1} \cdot x_{n+1}}$$
 $(n \in \mathbb{N}),$

ui. tetszőleges $2 \le n \in \mathbb{N}$ esetén

$$\sqrt{x_{n-1}\cdot x_{n+1}} = \sqrt{\beta\cdot q^{n-1}\cdot \beta\cdot q^{n+1}} = \sqrt{\beta^2\cdot q^{2n}} = \beta\cdot q^n = x_n.$$

6.
$$x_n := (-1)^n \frac{4n^2 + 2n + 1}{3n^3 + 6}$$
 $(n \in \mathbb{N}_0),$

$$x_0 = \frac{1}{6}$$
, $x_1 = -\frac{7}{9}$, $x_2 = \frac{21}{30}$, $x_3 = -\frac{43}{87}$, $x_4 = \frac{73}{198}$, $x_5 = -\frac{211}{381}$, ...

7.
$$x_n := \left(1 + \frac{1}{n}\right)^n (n \in \mathbb{N}),$$

$$x_1 = \left(1 + \frac{1}{1}\right)^1 = 2$$
, $x_2 = \left(1 + \frac{1}{2}\right)^2$, $x_3 = \left(1 + \frac{1}{3}\right)^3$, $x_4 = \left(1 + \frac{1}{4}\right)^4$, ...

8.
$$x_n := \sum_{k=1}^n \frac{1}{k} (n \in \mathbb{N})$$
 (harmonikus sor),

$$x_1 = 1$$
, $x_2 = 1 + \frac{1}{2}$, $x_3 = 1 + \frac{1}{2} + \frac{1}{3}$, $x_4 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4}$, ...

9.
$$x_n := \sum_{k=1}^n (-1)^k \frac{1}{k} \ (n \in \mathbb{N})$$
 (alternáló harmonikus sor),

$$x_1 = -1$$
, $x_2 = -1 + \frac{1}{2}$, $x_3 = -1 + \frac{1}{2} - \frac{1}{3}$, $x_4 = -1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4}$, ...

10.
$$x_n := \sum_{k=0}^n q^k \ (n \in \mathbb{N}_0)$$
 (mértani sor), ahol $q \in \mathbb{R}$,

$$x_0 = 1$$
, $x_1 = 1 + q$, $x_2 = 1 + q + q^2$, $x_3 = 1 + q + q^2 + q^3$, ...

11.
$$x_n := \sum_{k=1}^n \frac{1}{k^2} (n \in \mathbb{N})$$

$$x_1 = 1$$
, $x_2 = 1 + \frac{1}{4}$, $x_3 = 1 + \frac{1}{4} + \frac{1}{9}$, $x_4 = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16}$, ...

12.
$$x_n := \sum_{k=0}^n \frac{1}{k!} (n \in \mathbb{N}_0)$$

$$x_0 = 1$$
, $x_1 = 1 + 1$, $x_2 = 1 + 1 + \frac{1}{2}$, $x_3 = 1 + 1 + \frac{1}{2} + \frac{1}{6}$, $x_4 = 1 + 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24}$, ...

13.
$$x_0 := c$$
,

$$x_{n+1} := \frac{1}{2} \left(x_n + \frac{2}{x_n} \right) \qquad (n \in \mathbb{N}_0),$$

ahol $0 < c \in \mathbb{R}$. Ha c = 2, akkor

$$x_1 = 1.5,$$
 $x_2 \approx 1.416$ és $(x_2)^2 \approx 2.$

A valós számsorozatokat kétféle módon is szemléltethetjük. Mivel ezek speciális valós-valós függvények, ezért a különálló pontokból álló grafikonjukat ábrázolhatjuk a koordináta-rendszerben. Másrészt a sorozat tagjait – értékei szerint – elhelyezhetjük a számegyenesen. Mindkét személtetési módot megmutatjuk az

$$x_n := \frac{(-1)^n}{n} \qquad (n \in \mathbb{N})$$

sorozat esetében:

Számegyenesen

Koordináta-rendszerben

A matematikai analízis egyik legfontosabb fogalma a határérték. A következőkben a határérték legegyszerűbb típusával, a sorozatok határértékével foglalkozunk. Elsőként ábrázoljuk a számegyenesen a következő sorozatokat:

A fenti három animációból jól látható, hogy

- az (x_n) sorozat a következő tulajdonsággal rendelkezik: tagjai a 0 körül "sűrűsödnek", azaz a 0 szám bármely K_{ϵ} sugarú környezetén kívül a sorozatnak véges számú (legfeljebb $[1/\epsilon]^1$) tagja van.
- az (y_n) sorozat a következő tulajdonsággal rendelkezik: a tagok egy része –1 körül, a másik része pedig 1 körül "sűrűsödik", továbbá bármely számnak van olyan környezete, amelyen kívül a sorozatnak végtelen sok tagja van.
- a (z_n) sorozat esetében egyetlen valós szám sincsen, amely körül "sűrűsüdne". Itt is elmondható, hogy bármely számnak van olyan környezete, amelyen kívül a sorozatnak végtelen sok tagja van. Viszont igaz, hogy a +∞ bármely K_ε sugarú környezetén kívül a sorozatnak véges számú (legfeljebb [1/ε]) tagja van.

 $^{^1}$ Valamely $x\in\mathbb{R}$ szám **egészrész**ének nevezzük az $[x]:=\max\{m\in\mathbb{Z}:\ m\leq x\}$ számot.

Definíció. Legyen $x = (x_n) : \mathbb{N} \to \mathbb{R}$. Ekkor

• az (x_n) sorozat **konvergens** (jelben $(x_n) \in \mathfrak{c}$), ha

$$\exists\, A\in\mathbb{R}\ \forall \epsilon>0\ \exists\, N\in\mathbb{N}\ \forall\, n\in\mathbb{N}:\qquad (n\geq N\quad\Longrightarrow\quad |x_n-A|<\epsilon)\,;$$

Ekkor az A számot az (x_n) sorozat határértékének vagy limeszének nevezzük és az

$$A =: lim(x) =: lim(x_n) := \lim_{n \to \infty} (x_n) \qquad \text{vagy az} \qquad x_n \longrightarrow A \quad (n \to \infty)$$

jelölést használjuk.

• az (x_n) sorozat **divergens**, ha nem konvergens, azaz

$$\forall A \in \mathbb{R} \ \exists \varepsilon > 0 \ \forall N \in \mathbb{N} \ \exists n \in \mathbb{N} : \qquad (n \ge N \quad \land \quad |x_n - A| \ge \varepsilon);$$

• az (x_n) sorozat határértéke $+\infty$ $(\lim(x_n) = +\infty)$, ha

$$\forall \omega \in \mathbb{R} \exists N \in \mathbb{N} \forall n \in \mathbb{N} : (n \ge N \implies x_n > \omega);$$

• az (x_n) sorozat **határértéke** $-\infty$ $(\lim(x_n) = -\infty)$, ha

$$\forall \alpha \in \mathbb{R} \exists N \in \mathbb{N} \forall n \in \mathbb{N}: (n \geq N \implies x_n < \alpha);$$

• az (x_n) sorozatnak **van határértéke** $(\lim(x_n) \in \overline{\mathbb{R}})$, ha

$$(x_n)$$
 konvergens VAGY $\lim(x_n) \in \{-\infty, +\infty\}$.

Példák.

1. Legyen $c \in \mathbb{R}$. Az

$$x_n := c$$
 $(n \in \mathbb{N}_0)$

sorozat konvergens és $\lim(x_n) = c$, hiszen ha $\varepsilon > 0$, akkor

$$|x_n - c| = |c - c| = 0 < \varepsilon \quad (n \in \mathbb{N}_0)$$

következtében minden $N \in \mathbb{N}_0$ esetén

$$|x_n-c|<\varepsilon$$
 $(N\leq n\in\mathbb{N}_0).$

2. Tetszőleges $k \in \mathbb{N}$ esetén az

$$x_n := \frac{1}{n^k}$$
 $(n \in \mathbb{N})$

sorozat konvergens és $\lim(x_n) = 0$, hiszen ha $\varepsilon > 0$, akkor

$$|x_n - 0| = |x_n| = \frac{1}{n^k} < \varepsilon \qquad \iff \qquad \frac{1}{\sqrt[k]{\varepsilon}} < n$$

következtében az

$$N := \left\lceil \frac{1}{\sqrt[k]{\epsilon}} \right\rceil + 1$$

választás² megfelelő: bármely $N \leq n \in \mathbb{N}$ esetén $|x_n - 0| < \epsilon.$

3. Ha ha $q \in (-1, 1]$, akkor az

$$x_n := q^n \qquad (n \in \mathbb{N})$$

sorozat konvergens, és fennáll a

$$lim(x_n) = \left\{ \begin{array}{ll} 0 & \quad (q \in (-1,1) & \iff \quad |q| < 1), \\ \\ 1 & \quad (q = 1) \end{array} \right.$$

határérték-reláció, hiszen

- ha q = 1, akkor $x_n = 1 \ (n \in \mathbb{N})$;
- ha q = 0, akkor $x_n = 0 \ (n \in \mathbb{N});$
- ha q \neq 0, |q| < 1, akkor $\frac{1}{|q|}$ > 1, következésképpen alkalmas van olyan 0 \in \mathbb{R} számmal

$$\frac{1}{|q|}=1+p,$$

ahonnan a Bernoulli-egyenlőtlenség felhasználásával tetszőleges $n \in \mathbb{N}$ esetén

$$\frac{1}{|q|^n} = (1+p)^n \ge 1 + np > np,$$
 azaz $|q|^n < \frac{1}{np}$

adódik. Így, ha $\varepsilon > 0$, akkor

$$N := \left[\frac{1}{\epsilon p}\right] + 1 > \frac{1}{\epsilon p}$$

 $^{^2}$ Valamely $x\in\mathbb{R}$ szám **egészrész**ének nevezzük az $[x]:=\max\{m\in\mathbb{Z}:\ m\leq x\}$ számot.

mellett az $n \in \mathbb{N}_0, \, n \geq N$ egyenlőtlenségből

$$|x_n - 0| = |q^n - 0| = |q|^n < \frac{1}{np} < \varepsilon$$

következik.

Megjegyzések.

1. Mivel

$$|x_n - A| < \epsilon \quad \Longleftrightarrow \quad -\epsilon < x_n - A < \epsilon \quad \Longleftrightarrow \quad A - \epsilon < x_n < A + \epsilon,$$

ezért a konvergencia fogalma pl. az alábiakkal egyenértékű:

• $\exists A \in \mathbb{R} \ \forall \, \epsilon > 0 \ \exists \, N \in \mathbb{N}_0$:

$$N=max\{n\in\mathbb{N}_0:\ x_n\notin K_\epsilon(A)\}.$$

- $\exists \ A \in \mathbb{R} \ \forall \varepsilon > 0$: $\{n \in \mathbb{N}_0 : \ x_n \notin K_{\varepsilon}(A)\}$ (legfeljebb) véges halmaz (minden $\varepsilon > 0$ esetén a sorozatnak csak véges sok tagja esik a $K_{\varepsilon}(A)$ környezeten kívülre).
- $\exists A \in \mathbb{R} \ \forall \epsilon > 0 \ \exists N \in \mathbb{N}_0 \ \forall n \in \mathbb{N}_0$:

$$(n \ge N \implies x_n \in K_{\varepsilon}(A))$$
.

A határérték fogalmát szemléltetik az alábbi ábrák:

A N indexet szokás küszöbindexnek is nevezni.

2. Ha az (x_n) sorozat konvergens, akkor nyilván tetszőleges $k \in \mathbb{Z}$ esetén az

$$y_n := x_{n+k} \quad (n \in \mathbb{N}_0)$$

ún. **elcsúsztatott sorozat** is konvergens, és $\lim(y_n) = \lim(x_n)$.

- 3. Mit jelent az, hogy (x_n) divergens? Pl.:
 - $\forall A \in \mathbb{R} \ \exists \epsilon > 0 \ \forall N \in \mathbb{N} \ \exists n \in \mathbb{N}$:

$$(n \ge N \land x_n \notin K_{\varepsilon}(A)),$$

azaz minden $A \in \mathbb{R}$ számnak van olyan $K_{\epsilon}(A)$ környezete, hogy a sorozat tetszőlegesen nagy N indexű tagjánál van olyan nagyobb n indexű tag, amelyik nincsen benne a $K_{\epsilon}(A)$ környezetben.

• $\forall A \in \mathbb{R} \ \exists \, \epsilon > 0$: $\{n \in \mathbb{N} : \, x_n \notin K_{\epsilon}(A)\}$ végtelen halmaz.

Példa. Az

$$x_n := (-1)^n \qquad (n \in \mathbb{N}_0)$$

sorozat divergens, hiszen, ha $A \in \mathbb{R}$, akkor az

$$\varepsilon := \max\{|A + 1|, |A - 1|\}$$

pozitív valós számmal $K_{\epsilon}(A)$ -n kívülre végtelen sok tagja esik a sorozatnak, ui. tetszőleges $N \in \mathbb{N}_0$ esetén

- $\bullet \ \ \epsilon = |A-1|, \ n := 2N > N \quad \Longrightarrow \quad |(-1)^n A| = |1-A| = |A-1| \ge \epsilon;$
- $\varepsilon = |A + 1|, n := 2N + 1 > N \implies |(-1)^n A| = |-1 A| = |A + 1| \ge \varepsilon$.
- 4. A fentiek következtében elmondható, hogy ha egy sorozat véges sok tagját megváltoztatjuk, akkor a konvergencia minősége nem változik: a konvergens sorozat konvergens, a divergens sorozat pedig divergens marad.
- 5. A mértani sor konvergenciája. Ha $q \in (-1, 1)$, akkor az

$$x_n := \sum_{k=0}^n q^k \qquad (n \in \mathbb{N}_0)$$

sorozat konvergens és

$$\lim(x_n) = \frac{1}{1-q},$$

hiszen a tetszőleges $a, b \in \mathbb{R}$, ill. $n \in \mathbb{N}$ esetén fennálló

$$a^{n} - b^{n} = (a - b)(a^{n-1} + a^{n-2}b + ... + ab^{n-2} + b^{n-1})$$

egyenlőségől

$$1-q^{n+1}=1^{n+1}-q^{n+1}=(1-q)(1+q+q^2+\ldots+q^n), \qquad \text{azaz} \qquad 1+q+q^2+\ldots+q^n=\frac{1-q^{n+1}}{1-q}$$

következik, ennélfogva

$$x_n = \frac{1 - q^{n+1}}{1 - q} \longrightarrow \frac{1 - 0}{1 - q} = \frac{1}{1 - q} \qquad (n \to \infty).$$

Feladat. Sejtsük meg az alábbi sorozatok határértékét, majd a definíció alapján igazoljuk sejtésünket!

1.
$$x_n := \frac{3n+4}{2n-1}$$
 $(n \in \mathbb{N});$

$$2. \ x_n := \frac{n}{2n-3} \quad (n \in \mathbb{N});$$

3.
$$x_n := \frac{1}{n^2 - 3}$$
 $(n \in \mathbb{N});$

4.
$$x_n := \sqrt{n^2 + 1} - n \quad (n \in \mathbb{N}_0);$$

5.
$$x_n := \frac{1 + n^2}{2 + n + 2n^2}$$
 $(n \in \mathbb{N});$

6.
$$x_n := \sqrt{n+3} - \sqrt{n+1}$$
 $(n \in \mathbb{N}_0);$

7.
$$x_n := \frac{3n^2 - 1}{2n^2 + n + 3}$$
 $(n \in \mathbb{N}_0)$.

Útm.

1. Mivel bármely $n \in \mathbb{N}$ esetén

$$\frac{3n+4}{2n-1} = \frac{3+\frac{4}{n}}{2-\frac{1}{n}}$$

és "igen nagy n esetén $\frac{1}{n}$ igen kicsi", ezért azt sejtjük, hogy

$$\lim(x_n) = \frac{3-0}{2-0} = \frac{3}{2}.$$

Valóban, ha $n \in \mathbb{N}$, akkor

$$\left|\frac{3n+4}{2n-1}-\frac{3}{2}\right|=\frac{11}{4n-2}<\frac{11}{n}<\epsilon\qquad\iff\qquad\frac{11}{\epsilon}< n,$$

ezért tetszőleges $\varepsilon > 0$ esetén a

$$N := \left[\frac{11}{\varepsilon}\right] + 1$$

választás megfelelő.

2. Mivel bármely $n \in \mathbb{N}$ esetén

$$\frac{n}{2n-3} = \frac{1}{2-\frac{3}{n}}$$

és "igen nagy n esetén $\frac{1}{n}$ igen kicsi", ezért azt sejtjük, hogy

$$\lim(x_n) = \frac{1}{2-0} = \frac{1}{2}.$$

Valóban, ha $6 < n \in \mathbb{N}_0$, akkor

$$\left|\frac{n}{2n-3} - \frac{1}{2}\right| = \frac{3}{4n-6} < \frac{3}{3n} = \frac{1}{n} < \varepsilon \qquad \iff \qquad n > \frac{1}{\varepsilon},$$

hiszen

$$4n-6>3n \iff n>6.$$

Ezért tetszőleges $\varepsilon > 0$ esetén az

$$N := \max\left\{7, \left[\frac{1}{\varepsilon}\right] + 1\right\}$$

választás megfelelő.

3. Mivel bármely $n \in \mathbb{N}$ esetén x_n "igen nagy n esetén igen kicsi", ezért azt sejtjük, hogy

$$\lim(x_n)=0.$$

Valóban, ha $3 \le n \in \mathbb{N}$, akkor

$$\left|\frac{1}{n^2-3}-0\right| = \frac{1}{n^2-3} < \frac{1}{n} < \varepsilon \qquad \iff \qquad n > \frac{1}{\varepsilon},$$

hiszen ekkor

$$\frac{1}{n^2 - 3} < \frac{1}{n} \qquad \iff \qquad n < n^2 - 3$$

és

$$n^2 - 3 - n = n^2 - n - 3 = n(n-1) - 3 > 0$$
 \iff $n \ge 3$.

Ezért tetszőleges $\varepsilon > 0$ esetén az

$$N := \max\left\{3, \left[\frac{1}{\varepsilon}\right] + 1\right\}$$

választás megfelelő.

4. Mivel bármely $n \in \mathbb{N}_0$ esetén

$$\sqrt{n^2+1}-n=\left(\sqrt{n^2+1}-n\right)\cdot \frac{\sqrt{n^2+1}+n}{\sqrt{n^2+1}+n}=\frac{1}{\sqrt{n^2+1}+n}$$

és az utóbbi tört számlálója korlátos, nevezője edig nem, ezért azt sejtjük, hogy $\lim(x_n)=0$. Valóban, ha $n\in\mathbb{N}$, akkor

$$\left|\sqrt{n^2+1}-n-0\right|=\frac{1}{\sqrt{n^2+1}+n}<\frac{1}{n}<\epsilon\qquad\iff\qquad n>\frac{1}{\epsilon},$$

ezért tetszőleges $\varepsilon > 0$ esetén

$$N:=\left\lceil\frac{1}{\varepsilon}\right\rceil+1.\quad\blacksquare$$

5. Mivel bármely $n \in \mathbb{N}$ esetén

$$\frac{1+n^2}{2+n+2n^2} = \frac{\frac{1+n^2}{n^2}}{\frac{2+n+2n^2}{n^2}} = \frac{\frac{1}{n}+1}{\frac{2}{n^2}+\frac{1}{n}+2},$$

és "igen nagy n esetén $\frac{1}{n^k}$ igen kicsi, ahol k $\in \{1; 2\}$ ", ezért azt sejtjük, hogy

$$\lim(x_n) = \frac{1+0}{0+0+2} = \frac{1}{2}.$$

Valóban,

$$\left|\frac{1+n^2}{2+n+2n^2}-\frac{1}{2}\right|=\frac{|-n|}{2(2n^2+n+2)}<\frac{n}{4n^2}=\frac{1}{4n}<\epsilon\quad\iff\quad\frac{1}{4\epsilon}< n,$$

ezért tetszőleges $\varepsilon > 0$ esetén

$$N:=\left\lceil\frac{1}{4\varepsilon}\right\rceil+1.$$

6. Mivel bármely $n \in \mathbb{N}_0$ esetén

$$\sqrt{n+3} - \sqrt{n+1} = \left(\sqrt{n+3} - \sqrt{n+1}\right) \cdot \frac{\sqrt{n+3} + \sqrt{n+1}}{\sqrt{n+3} + \sqrt{n+1}} = \frac{2}{\sqrt{n+3} + \sqrt{n+1}}$$

és az utóbbi tört számlálója korlátos, nevezője edig nem, ezért azt sejtjük, hogy $\lim(x_n)=0$. Valóban, ha $n\in\mathbb{N}$, akkor

$$\left|\sqrt{n+3}-\sqrt{n+1}-0\right| = \frac{2}{\sqrt{n+3}+\sqrt{n+1}} < \frac{2}{\sqrt{n}+\sqrt{n}} = \frac{1}{\sqrt{n}} < \epsilon \qquad \iff \qquad n > \frac{1}{\sqrt{\epsilon}},$$

ezért tetszőleges $\varepsilon > 0$ esetén az

$$N := \left[\frac{1}{\sqrt{\varepsilon}}\right] + 1$$

választás megfelelő.

7. Mivel bármely $n \in \mathbb{N}$ esetén

$$\frac{3n^2 - 1}{2n^2 + n + 3} = \frac{\frac{3n^2 - 1}{n^2}}{\frac{2n^2 + n + 3}{n^2}} = \frac{3 - \frac{1}{n^2}}{2 + \frac{1}{n} + \frac{3}{n^2}},$$

és "igen nagy n esetén $\frac{1}{n^k}$ igen kicsi, ahol k \in {1; 2}", ezért azt sejtjük, hogy

$$\lim(x_n) = \frac{3-0}{2+0+0} = \frac{3}{2}.$$

Valóban,

$$\left|\frac{3n^2-1}{2n^2+n+3}-\frac{3}{2}\right| = \frac{|-3n-11|}{4n^2+2n+6} < \frac{3n+11}{4n^2} < \frac{14n}{4n^2} = \frac{7}{2n} < \epsilon \quad \Longleftrightarrow \quad \frac{7}{2\epsilon} < n,$$

ezért tetszőleges $\varepsilon > 0$ esetén az

$$N := \left\lceil \frac{7}{2\epsilon} \right\rceil + 1$$

választás megfelelő. ■

Feladat. A határérték definíciója alapján lássuk be, hogy igaz a

$$\lim_{n \to \infty} \left(\frac{2n^2 + 14n + 19}{1 + (n+3)^2} \right) = 2$$

állítás!

Útm. Ha $n \in \mathbb{N}$, akkor

$$\left|\frac{2n^2+14n+19}{1+(n+3)^2}-2\right| = \left|\frac{2n^2+14n+19}{n^2+6n+10} - \frac{2(n^2+6n+10)}{n^2+6n+10}\right| = \frac{2n-1}{1+(n+3)^2} \leq \frac{2n}{n^2} = \frac{2}{n},$$

és

$$\frac{2}{n} < \varepsilon \qquad \iff \qquad \frac{2}{\varepsilon} < n,$$

ezért tetszőleges $\varepsilon > 0$ esetén, ha

$$N:=\left\lceil\frac{2}{\varepsilon}\right\rceil+1,$$

akkor elmondható, hogy bármely $N \leq n \in \mathbb{N}$ indexre

$$\left| \frac{2n^2 + 14n + 19}{1 + (n+3)^2} - 2 \right| < \varepsilon, \qquad \text{azaz} \qquad \lim \left(\frac{2n^2 + 14n + 19}{1 + (n+3)^2} \right) = 2. \quad \blacksquare$$

Feladat. Konvergens-e az $(x_n) : \mathbb{N} \to \mathbb{R}$ sorozat, ha

1. $\exists A \in \mathbb{R} \ \exists \varepsilon > 0 \ \forall n \in \mathbb{N} : \ |x_n - A| < \varepsilon$;

2. $\exists A \in \mathbb{R} \ \forall \epsilon > 0 \ \exists N \in \mathbb{N} : \ |x_N - A| < \epsilon;$

3. $\exists A \in \mathbb{R} \ \exists N \in \mathbb{N} \ \forall N \le n \in \mathbb{N} \ \forall \epsilon > 0$: $|x_n - A| < \epsilon$.

Útm.

1. Nem, ui. az

$$x_n := (-1)^n \quad (n \in \mathbb{N}), \qquad A := 0, \qquad \varepsilon := 2$$

választással tetszőleges $n \in \mathbb{N}$ esetén $|x_n - A| < \epsilon$, de (x_n) divergens. Az állításból csak annyi következik, hogy (x_n) korlátos, ui. a feltétel szerint

$$\exists A \in \mathbb{R} \ \exists \epsilon > 0: \qquad A - \epsilon < x_n < A + \epsilon \quad (n \in \mathbb{N}).$$

2. Nem, hiszen a megadott feltételeknek minden sorozat eleget tesz, ui. válaszzuk meg az A valós számot úgy, hogy

$$A \in \{x_n \in \mathbb{N} : n \in \mathbb{N}\}$$

teljesüljön. Ekkor ui. alkalmas $N \in \mathbb{N}$ insdexre $x_N - A = 0$.

3. Igen, ui. ez a felétel azt jelenti, hogy az (x_n) sorozat **kvázikonstans**: egy bizonyos indextől kezdve tagjai egyenlők. \blacksquare .

Feladat. Mutassuk meg, hogy ha az (x_n) sorozat konvergens és $A := \lim (x_n) \in \mathbb{R}$, akkor $(|x_n|)$ is konvergens és fennáll a

$$\lim (|x_n|) = |A|$$

határérték-reláció!

Útm. Mivel

$$\lim (x_n) = A,$$

ezért tetszőleges $\epsilon>0$ számhoz van olyan $N\in\mathbb{N}$ index, hogy minden $N\leq n\in\mathbb{N}_0$ indexre $|x_n-A|<\epsilon$, ahonnan

$$0 \le ||x_n| - |A|| \le |x_n - A| < \varepsilon,$$

következik. Mindez azt jelenti, hogy

$$\lim \left(|x_n| - |A| \right) = 0, \qquad \text{azaz} \qquad \lim \left(|x_n| \right) = |A|. \quad \blacksquare$$

Megjegyezzük, hogy

1. a fenti feladatbeli állítás megfordítása nem igaz:

$$(1) \in \mathfrak{c}$$
, de $((-1)^n) \notin \mathfrak{c}$.

2. ha c₀ jelöli a nullsorozatok halmazát, akkor igaz az

$$(x_n) \in \mathfrak{c}_0 \iff (|x_n|) \in \mathfrak{c}_0$$

ekvivalelcia, hiszen

$$||x_n| - 0| = |x_n - 0|$$
 $(n \in \mathbb{N}_0)$.

Feladat. Legyen

$$x_n \in [0, +\infty)$$
 $(n \in \mathbb{N}_0)$

konvergens sorozat. Mutassuk meg, hogy ekkor igazak az alábbi állítások.

- 1. $\lim(x_n) =: A \in [0, +\infty);$
- 2. $(\sqrt{x_n})$ konvergens és $\lim(\sqrt{x_n}) = \sqrt{A}$.

Útm.

1. A határérték és a rendezés kapcsolatáról szóló tétel (vö. EA) következtében

$$\lim(x_n) =: A \in [0, +\infty).$$

2. Ha

• A = 0, akkor tetszőleges $\epsilon > 0$ számhoz van olyan N $\in \mathbb{N}$ index, hogy minden N $\leq n \in \mathbb{N}_0$ indexre

$$|\mathbf{x}_{n}-\mathbf{0}|<\varepsilon^{2},$$

azaz a sorozat nemnegativitása következtében

$$x_n < \varepsilon^2$$
, ill. $\sqrt{x_n} < \varepsilon$,

ahonnan

$$|\sqrt{x_n} - 0| = \sqrt{x_n} < \varepsilon$$

következik. Mindez azt jelenti, hogy $\lim(\sqrt{x_n}) = 0$.

• A > 0, akkor tetszőleges ϵ > 0 számhoz van olyan N \in N index, hogy minden N \leq n \in N₀ indexre

$$|x_n - A| < \varepsilon \sqrt{A}$$

ahonnan

$$\left| \sqrt{x_n} - \sqrt{A} \right| = \left| \sqrt{x_n} - \sqrt{A} \right| \cdot \frac{\sqrt{x_n} + \sqrt{A}}{\sqrt{x_n} + \sqrt{A}} = \frac{|x_n - A|}{\sqrt{x_n} + \sqrt{A}} \le \frac{|x_n - A|}{\sqrt{A}} < \frac{\varepsilon\sqrt{A}}{\sqrt{A}} = \varepsilon$$

következik, ami azt jelenti, hogy

$$\lim(\sqrt{x_n}) = \sqrt{A}. \quad \blacksquare$$

Megjegyezzük, hogy ha $2 \le k \in \mathbb{N}$, akkor hasonló mondható el a $(\sqrt[k]{x_n})$ sorozat határértékéről; a bizonyítás második fele egy kicsit összetettebb számolás:

$$\left| \sqrt[k]{x_n} - \sqrt[k]{A} \right| = \left| \sqrt[k]{x_n} - \sqrt[k]{A} \right| \cdot \frac{\sum\limits_{i=1}^k \sqrt[k]{x_n^{k-i} \cdot A^{i-1}}}{\sum\limits_{i=1}^k \sqrt[k]{x_n^{k-i} \cdot A^{i-1}}} = \frac{|x_n - A|}{\sum\limits_{i=1}^k \sqrt[k]{x_n^{k-i} \cdot A^{i-1}}} \leq \frac{|x_n - A|}{\sqrt[k]{A^{k-1}}}.$$

Feladat. A definíció a alapján lássa be, hogy igazak az alábbi határéreték-relációk!

2.
$$\lim_{n \to \infty} (n^2 + 3) = +\infty$$

2.
$$\lim_{n \to \infty} (n^2 + 3) = +\infty$$
 2. $\lim_{n \to \infty} \frac{n^2 + 3n + 1}{n + 3} = +\infty$ 3. $\lim_{n \to \infty} \frac{2 - 3n^2}{n + 1} = -\infty$.

3.
$$\lim_{n \to \infty} \frac{2 - 3n^2}{n + 1} = -\infty$$
.

1. Azt kell megmutatni, hogy az

$$x_n := n^2 + 3 \qquad (n \in \mathbb{N}_0)$$

sorozatra

$$\forall \omega \in \mathbb{R} \ \exists N \in \mathbb{N}_0 \ \forall n \in \mathbb{N}_0 : \qquad (n \ge N \implies x_n > \omega)$$

teljesül. Valóban, ha $3 \leq \omega \in \mathbb{R}$, akkor

$$n^2 + 3 = x_n > \omega$$
 \iff $n^2 > \omega - 3$.

Így az

$$N := \left[\sqrt{\omega - 3}\right] + 1$$

választás megfelelő.

2. Azt kell megmutatni, hogy az

$$x_n := \frac{n^2 + 3n + 1}{n + 3} \qquad (n \in \mathbb{N}_0)$$

sorozatra

$$\forall \omega \in \mathbb{R} \; \exists N \in \mathbb{N}_0 \; \forall n \in \mathbb{N}_0 : \qquad (n \geq N \quad \Longrightarrow \quad x_n > \omega)$$

teljesül. Valóban, ha $0<\omega\in\mathbb{R}$, akkor bármely $\mathfrak{n}\in\mathbb{N}$ esetén

$$\frac{n^2+3n+1}{n+3} > \frac{n^2}{n+3} \stackrel{n\geq 1}{\geq} \frac{n^2}{n+3n} = \frac{n}{4} > \omega \qquad \iff \qquad n>4\omega,$$

így

$$N := \max\{1, [4\omega] + 1\} = 4[\omega] + 1.$$

3. Azt kell megmutatni, hogy az

$$x_n:=\frac{2-3n^2}{n+1} \qquad (n\in\mathbb{N}_0)$$

sorozatra

$$\forall \alpha \in \mathbb{R} \ \exists N \in \mathbb{N}_0 \ \forall n \in \mathbb{N}_0 : \qquad (n \ge N \implies x_n < \alpha)$$

teljesül. Valóban, ha $0 > \alpha \in \mathbb{R}$, akkor bármely $n \in \mathbb{N}_0$ esetén

$$\frac{2-3n^2}{n+1} < \alpha \qquad \Longleftrightarrow \qquad \frac{3n^2-2}{n+1} > -\alpha,$$

így tetszőleges $2 \le n \in \mathbb{N}$ indexre

$$\frac{3n^2-2}{n+1} = \frac{2n^2+(n^2-2)}{n+1} \geq \frac{2n^2}{n+n} = \frac{2n^2}{2n} = n$$

következtében

$$N := \max\{2, [-\alpha] + 1\}.$$

Feladat. Lássuk be, hogy ha bármely $n \in \mathbb{N}$ esetén $x_n \in (0, +\infty)$, akkor igaz a

$$\lim(x_n) = 0$$
 \Longrightarrow $\lim\left(\frac{1}{x_n}\right) = +\infty$

implikáció!

Útm. Mivel

$$lim(x_n) = 0 \qquad \Longrightarrow \qquad \forall \epsilon > 0 \; \exists N \in \mathbb{N}_0 \; \forall N \leq n \in \mathbb{N}_0 : \quad x_n = |x_n| = |x_n - 0| < \epsilon$$

és

$$x_n < \varepsilon \implies \frac{1}{x_n} > \frac{1}{\varepsilon} =: \omega,$$

ezért elmondható, hogy tetszőleges $0<\omega\in\mathbb{R}$ számhoz van olyan $N\in\mathbb{N}_0$ (küszöb)index, hogy bármely $N\leq n\in\mathbb{N}_0$ indxre

$$\frac{1}{x_n} > \omega,$$
 azaz $\lim \left(\frac{1}{x_n}\right) = +\infty.$

Feladat. Igaz-e, hogy az $(x_n): \mathbb{N} \to \mathbb{R}$ sorozatra $\lim(x_n) = +\infty$, ha

$$\exists \, \omega \in \mathbb{R} \, \exists \, N \in \mathbb{N} \, \forall \, n \in \mathbb{N} : \quad (n \ge N \quad \Longrightarrow \quad x_n > \omega) \tag{16}$$

teljesül?

Útm. Nem, ui. pl. az

$$x_n := 1$$
 $(n \in \mathbb{N})$

sorozat teljesíti az (16) feltételt, de határértéke nem $+\infty$.

Feladat. Igazoljuk hogy ha $d \in \mathbb{N}, a_1, \dots, a_d \in \mathbb{R}$, továbbá

$$p(x) := a_0 + a_1 x + \ldots + a_{n-1} x^{n-1} + a_d x^d = \sum_{k=0}^d a_k x^k \qquad (x \in \mathbb{R}),$$

103

akkor igaz az alábbi állítás!

$$lim(p(n)) = \left\{ \begin{array}{ll} +\infty & (\alpha_d > 0), \\ -\infty & (\alpha_d < 0). \end{array} \right.$$

Útm. Világos, hogy bármely $n \in \mathbb{N}$ esetén

$$\begin{array}{ll} p(n) & = & a_0 + a_1 n + \ldots + a_{d-1} n^{d-1} + a_d n^d = n^d \cdot \left(\frac{\alpha_0}{n^d} + \frac{\alpha_1}{n^{d-1}} + \ldots + \frac{\alpha_{d-1}}{n} + a_d\right) \longrightarrow \\ & \stackrel{(n \to \infty)}{\longrightarrow} & (+\infty)^d \cdot (0 + 0 + \ldots + 0 + a_d) = \\ & = & (+\infty) \cdot \text{sgn}(\alpha_d) = \left\{ \begin{array}{ll} +\infty & (\alpha_d > 0), \\ -\infty & (\alpha_d < 0). \end{array} \right. \end{array}$$

Házi feladatok.

1. A határérték definíciója alapján mutassuk meg, hogy fennáll a

$$\lim (2 - n^3) = -\infty$$

határérték-reláció!

2. Sejtsük meg az

$$x_n := \frac{n^4 + 2n^2 + 1}{n^2 + 1}$$
 $(n \in \mathbb{N}_0)$

sorozat határértékét, majd a definíció alapján bizonyítsa be sejtését!

3. Lássuk be, hogy ha bármely $n \in \mathbb{N}$ esetén $x_n \in (-\infty, 0)$, akkor igaz a

$$\lim(x_n) = 0$$
 \Longrightarrow $\lim\left(\frac{1}{x_n}\right) = -\infty$

implikáció!

Útm.

1. Azt kell megmutatni, hogy az

$$x_n := 2 - n^3 \qquad (n \in \mathbb{N}_0)$$

sorozatra

$$\forall \alpha \in \mathbb{R} \ \exists N \in \mathbb{N}_0 \ \forall n \in \mathbb{N}_0 : \qquad (n \ge N \implies x_n < \alpha)$$

teljesül. Valóban, ha $3 \leq \alpha \in \mathbb{R}$, akkor

$$2-n^3 < \alpha \qquad \Longleftrightarrow \qquad 2-\alpha < n^3.$$

Így az

$$N := \max\left\{0, [\sqrt[3]{2-\alpha}] + 1\right\}$$

választás megfelelő.

2. Az órán megmutattuk, hogy $\lim(x_n)=+\infty$. Valóban, ha $0<\omega\in\mathbb{R}$, akkor bármely $n\in\mathbb{N}$ esetén

$$\frac{n^4 + 2n^2 + 1}{n^2 + 1} > \frac{n^4}{n^2 + 1} \ge \frac{n^4}{n^2 + n^2} = \frac{n^4}{2n^2} = \frac{n^2}{2} > \omega \qquad \iff \qquad n > \sqrt{2\omega},$$

így

$$N:=\max\left\{1,\left[\sqrt{2\omega}\right]+1\right\}=\left[\sqrt{2\omega}\right]+1.$$

Megjegyezzük, hogy bármely $n \in \mathbb{N}_0$ indexre

$$\frac{n^4 + 2n^2 + 1}{n^2 + 1} = \frac{(n^2 + 1)^2}{n^2 + 1} = n^2 + 1 > n^2 > \omega \qquad \iff \qquad n > \sqrt{\omega}.$$

3. Mivel

$$lim(x_n) = 0 \qquad \Longrightarrow \qquad \forall \epsilon > 0 \; \exists N \in \mathbb{N}_0 \; \forall N \leq n \in \mathbb{N}_0 : \quad -x_n = |x_n| = |x_n - 0| < \epsilon$$

és

$$-x_n < \varepsilon \implies \frac{1}{x_n} < -\frac{1}{\varepsilon} =: \alpha,$$

ezért elmondható, hogy tetszőleges $0>\alpha\in\mathbb{R}$ számhoz van olyan $N\in\mathbb{N}_0$ (küszöb)index, hogy bármely $N\leq n\in\mathbb{N}_0$ indxre

$$\frac{1}{x_n} < \alpha$$
, azaz $\lim \left(\frac{1}{x_n}\right) = -\infty$.

5. gyakorlat (2023. 03. 30.)

Emlékeztető. Az alábbi nevezetes határéertékeket ismertnek tételezzük fel.

1. Ha $k \in \mathbb{N}$ tetszőlegesen rögzített, akkor

2. Ha $m \in \mathbb{N}$ és az $x_n \in [0, +\infty)$ $(n \in \mathbb{N})$ sorozat konvergens, továbbá $\lim(x_n) =: A$, akkor

$$\lim \left(\sqrt[m]{\chi_n} \right) = \sqrt[m]{A}$$
.

3. Ha $q \in \mathbb{R}$, akkor

$$\lim_{n \to \infty} \begin{cases} = 0 & (|q| < 1), \\ = 1 & (q = 1), \\ = +\infty & (q > 1), \end{cases}$$

$$(q \le -1).$$

 $\text{4. Ha } 0<\alpha\in\mathbb{R}\text{, illetve } x_n\in[0,+\infty)\;(n\in\mathbb{N})\text{ olyan sorozat, amelyre } \lim(x_n)\in(0,+\infty),$ akkor

(a)
$$\lim_{n \to \infty} \left(\sqrt[n]{\alpha} \right) = 1$$
,

(a)
$$\lim \left(\sqrt[n]{\alpha}\right) = 1$$
, (b) $\lim \left(\sqrt[n]{n}\right) = 1$, (c) $\lim \left(\sqrt[n]{x_n}\right) = 1$.

(c)
$$\lim \left(\sqrt[n]{x_n} \right) = 1$$
.

5. Ha $x \in \mathbb{Q}$, akkor

$$\lim\left(\left(1+\frac{x}{n}\right)^n\right)=e^x.$$

6. További nevezetes nullsorozatok:

$$\begin{array}{ll} \text{(a)} \ \ x_n := \frac{n^k}{\alpha^n} & \text{($n \in \mathbb{N}, \ \alpha \in (1, +\infty)$);} \\ \\ \text{(b)} \ \ x_n := \frac{\alpha^n}{n!} & \text{($n \in \mathbb{N}, \ \alpha \in \mathbb{R}$);} \end{array}$$

(b)
$$x_n := \frac{a^n}{n!}$$
 $(n \in \mathbb{N}, a \in \mathbb{R})$

(c)
$$x_n := \frac{n!}{n^n}$$
 $(n \in \mathbb{N}, a \in (1, +\infty)).$

Emlékeztető. A határértékszámítás során felhasználható eredmények.

1. A műveletek és a határéerték kapcsolata. Tegyük fel, hogy az

$$\mathbf{x} := (\mathbf{x}_n), \mathbf{y} := (\mathbf{y}_n) : \mathbb{N} \to \mathbb{R}$$

sorozatoknak van határértéke. Ha

$$* \in \{+, -, \cdot, /\}$$
 és $\lim(x_n) * \lim(y_n) \in \overline{\mathbb{R}},$

akkor az x * y sorozatnak is van határértéke és

$$\lim(x*y) = \lim(x_n) * \lim(y_n).$$

- 2. **Sandwich-tétel.** Tegyük fel, hogy az $u, v, w : \mathbb{N} \to \mathbb{R}$ sorozatokra teljesülnek a következők:
 - (i) van olyan $N \in \mathbb{N}$, hogy bármely $N \leq n \in \mathbb{N}$ index $u_n \leq v_n \leq w_n$;
 - (ii) $\exists \lim(\mathfrak{u}_n) = \lim(\mathfrak{w}_n) =: A \in \overline{\mathbb{R}}.$

Ekkor a közrefogott (ν_n) sorozatnak is van határértéke: $\lim(\nu_n)=A$.

3. A határéreték és a rendezés közötti kapcsolat. Tegyük fel, hogy az (u_n) , (v_n) sorozatoknak van határértékük és

$$\lim(u_n) =: A \in \overline{\mathbb{R}}, \qquad \lim(v_n) =: B \in \overline{\mathbb{R}}.$$

- $(1) \ \ \text{Ha} \ A>B \text{, akkor} \ \exists \ N\in\mathbb{N}: \ \ \forall \ N\leq n\in\mathbb{N}\text{-re} \ \ \mathfrak{u}_n>\nu_n.$
- (2) Ha $\exists N \in \mathbb{N}: \ \forall N \leq n \in \mathbb{N}$ -re $u_n \geq v_n$, akkor $A \geq B$.
- 4. **Monoton sorozatok határértéke (mozgólépcső-elv).** Minden monoton sorozatnak van határértéke. Ha
 - (x_n) \nearrow , akkor $lim(x_n) = sup(x_n)$;
 - $(x_n) \setminus$, akkor $\lim(x_n) = \inf(x_n)$.

Megjegyezzük, hogy a határértékekre vonatkozó tételek és műveleti szabályok nagy része a tágabb értelemben vett határértékekre is érvényes. Ezek egyszerű megfogalmazásához kiterjesztjük az algebrai műveleteket az $\overline{\mathbb{R}}$ számhalmazra az alábbiak szerint:

$$a + (-\infty) := (-\infty) + a := -\infty \quad (a \in [-\infty, +\infty)),$$

$$a + (+\infty) := (+\infty) + a := +\infty \quad (a \in (-\infty, +\infty]),$$

$$a \cdot (+\infty) := (+\infty) \cdot a := +\infty \quad (a \in (0, +\infty]),$$

$$\alpha\cdot (+\infty):=(+\infty)\cdot \alpha:=-\infty \qquad (\alpha\in [-\infty,0)),$$

$$a \cdot (-\infty) := (-\infty) \cdot a := -\infty \qquad (a \in (0, +\infty]),$$

$$a \cdot (-\infty) := (-\infty) \cdot a := +\infty \qquad (a \in [-\infty, 0)),$$

$$\frac{a}{+\infty} := \frac{a}{-\infty} := 0 \qquad (a \in (-\infty, +\infty)),$$

$$\frac{a}{b} := a \cdot \frac{1}{b} \qquad \qquad ((a,b) \in (-\infty,+\infty) \times \{-\infty,+\infty\} \cup [-\infty,+\infty] \times (\mathbb{R} \setminus \{0\})).$$

Nem értelmezzük

- $a + \infty$ és $a \infty$, ill. $a \infty$ és $a + \infty$ elemek összegét,
- a 0-nak a $+\infty$ -nel és a $-\infty$ -nel való szorzatát,
- az a/b hányadost, ha b = 0, vagy, ha $a, b \in \{-\infty, +\infty\}$.

összeg	a > 0	a = 0	a < 0	$a = +\infty$	$a = -\infty$
b > 0				$+\infty$	$-\infty$
b = 0		a + b		$+\infty$	$-\infty$
b < 0				+∞	$-\infty$
$\mathfrak{b}=+\infty$	+∞	+∞	$+\infty$	$+\infty$	
$b = -\infty$	$-\infty$	$-\infty$	$-\infty$		$-\infty$

szorzat	a > 0	a = 0	a < 0	$a = +\infty$	$a = -\infty$	
b > 0				$+\infty$	$-\infty$	
b = 0		$a \cdot b$				
b < 0				$-\infty$	+∞	
$b = +\infty$	$+\infty$		$-\infty$	$+\infty$	$-\infty$	
$b = -\infty$	$-\infty$		+∞	$-\infty$	+∞	

hányados	a > 0	a = 0	a < 0	$a = +\infty$	$a = -\infty$	
b > 0		a/b		$+\infty$	$-\infty$	
b = 0						
b < 0		a/b		$-\infty$	$+\infty$	
$b = +\infty$		0				
$b = -\infty$		0				

Számítsuk ki az (x_n) sorozat határértékét!

$$1. \ x_n := \frac{n^3 - 3n^2 + n - 1}{1 - 2n^3 + n} \quad (n \in \mathbb{N}) \ ; \qquad \quad 2. \ x_n := \frac{(2 - n)^7 + (2 + n)^7}{(n^2 + n + 1)(2n + 1)^5} \quad (n \in \mathbb{N});$$

3.
$$x_n := \frac{2n^2 - n + 2}{1 - n^2} \quad (n \in \mathbb{N});$$
 4. $x_n := \frac{n^2 + 1}{2n + 1} - \frac{3n^2}{6n - 1} \quad (n \in \mathbb{N}).$

Útm. Ha a sorozat n-edik tagja két, n pokinomjának hányadosaként írható fel, akkor a törtet érdemes úgy átalakítani, hogy a számlálóból és a nevezőből kiemeljük az n legmagasabbb kitevjű hatványait.

1. Világos, hogy tetszőleges $n \in \mathbb{N}$ esetén

$$x_n = \frac{n^3 \cdot \left(1 - \frac{3}{n} + \frac{1}{n^2} - \frac{1}{n^3}\right)}{n^3 \cdot \left(\frac{1}{n^3} - 2 + \frac{1}{n^2}\right)} = \frac{1 - \frac{3}{n} + \frac{1}{n^2} - \frac{1}{n^3}}{\frac{1}{n^3} - 2 + \frac{1}{n^2}} \longrightarrow \frac{1 - 0 + 0 - 0}{0 - 2 + 0} = -\frac{1}{2} \qquad (n \to \infty).$$

2. Bármely $n \in \mathbb{N}$ indexre az $n \to \infty$ határátmenetben

$$x_n = \frac{n^7}{n^7} \cdot \frac{\frac{(2-n)^7 + (2+n)^7}{n^7}}{\frac{(n^2 + n + 1)(2n + 1)^5}{n^7}} = \frac{\left(\frac{2}{n} - 1\right)^7 + \left(\frac{2}{n} + 1\right)^7}{\left(1 + \frac{1}{n} + \frac{1}{n^2}\right) \cdot \left(2 + \frac{1}{n}\right)^5} \longrightarrow \frac{(0-1)^7 + (0+1)^7}{(1+0+0) \cdot (2+0)^5} = 0.$$

3. Tetszőleges $n \in \mathbb{N}$ indexre az $n \to \infty$ határátmenetben

$$x_n = \frac{n^2}{n^2} \cdot \frac{2 - \frac{1}{n} + \frac{2}{n^2}}{\frac{1}{n^2} - 1} = \frac{2 - \frac{1}{n} + \frac{2}{n^2}}{\frac{1}{n^2} - 1} \longrightarrow \frac{2 - 0 + 0}{0 - 1} = -2.$$

4. Közös nvezőre hozva, majd az imént alkalmazott technikát alkalmazva azt kapjuk, hogy minden $n \in \mathbb{N}$ indexre az $n \to \infty$ határátmenetben

$$x_n = \frac{(n^2+1)(6n-1)-3n^2(2n+1)}{(2n+1)(6n-1)} = \frac{-4n^2+6n-1}{12n^2+4n-1} =$$

$$= \frac{n^2}{n^2} \cdot \frac{-4 + \frac{6}{n} - \frac{1}{n^2}}{12 + \frac{4}{n} - \frac{1}{n^2}} = \frac{-4 + \frac{6}{n} - \frac{1}{n^2}}{12 + \frac{4}{n} - \frac{1}{n^2}} \longrightarrow \frac{-4}{12} = -\frac{1}{3}. \quad \blacksquare$$

Feladat. Számítsuk ki a következő határértékeket!

1.
$$\lim \left(\frac{1}{n^2} \cdot \sum_{k=1}^n k\right)$$
; 2. $\lim \left(\frac{P(n)}{Q(n)}\right)$, ahol P, Q polinom.

Útm.

$$1. \ \frac{1}{n^2} \cdot \sum_{k=1}^n k = \frac{1}{n^2} \cdot \frac{n(n+1)}{2} = \frac{n+1}{2n} = \frac{1+1/n}{2} \longrightarrow \frac{1}{2} \quad (n \to \infty).$$

2. Legyen

$$P(x) := \sum_{i=0}^k \alpha_i x^i, \quad Q(x) := \sum_{j=0}^l \beta_j x^j \qquad (x \in \mathbb{R}),$$

ahol

$$\alpha_i, \beta_j \in \mathbb{R} \quad (i \in \{0, 1, \dots, k\}; \ j \in \{0, 1, \dots, l\}): \qquad \alpha_k \cdot \beta_l \neq 0.$$

Legyen

$$x_n:=\frac{P(n)}{Q(n)}=\frac{\alpha_k n^k+\alpha_{k-1} n^{k-1}+\ldots+\alpha_1 n+\alpha_0}{\beta_1 n^l+\beta_{l-1} n^{l-1}+\ldots+\beta_1 n+\beta_0}=\frac{n^k}{n^l}\cdot\frac{\alpha_k+\frac{\alpha_{k-1}}{n}+\ldots+\frac{\alpha_0}{n^k}}{\beta_l+\frac{\beta_{l-1}}{n}+\ldots+\frac{\beta_0}{n^l}}\qquad (n\in\mathbb{N}),$$

$$y_n := n^{k-l} \quad \text{és} \quad z_n := \frac{\alpha_k + \frac{\alpha_{k-1}}{n} + \ldots + \frac{\alpha_0}{n^k}}{\beta_l + \frac{\beta_{l-1}}{n} + \ldots + \frac{\beta_0}{n^l}} \qquad (n \in \mathbb{N}).$$

Ekkor

$$\lim \left(z_n\right) = \frac{\alpha_k}{\beta_l} \qquad \text{\'es} \qquad \lim \left(y_n\right) = \begin{cases} & 1 & (k=l) \\ & +\infty & (k>l) \end{cases}$$

$$0 & (k$$

Így

$$\lim \left(x_n\right) = \left\{ \begin{array}{cc} \frac{\alpha_k}{\beta_l} & (k=l), \\ \\ 0 & (kl). \end{array} \right.$$

Számítsuk ki az (x_n) sorozat határértékét!

$$1. \ x_n := \frac{n^4 + n^2 + n + 1}{2n^5 + n - 4} \quad (n \in \mathbb{N});$$

2.
$$x_n := \frac{n^4 - 2n^3 + n + 1}{n^3 - 4n + 3}$$
 $(n \in \mathbb{N});$

3.
$$x_n := \frac{n^7 + n - 12}{1 - n^2 + 3n}$$
 $(n \in \mathbb{N}).$

Útm. A fentiek következtében

1.
$$\lim(x_n) = 0$$
:

2.
$$\lim(x_n) = +\infty$$

1.
$$\lim(x_n) = 0$$
; 2. $\lim(x_n) = +\infty$; 3. $\lim(x_n) = -\infty$.

Emlékeztető. Tudjuk, hogy tetszőleges $0 < a, b \in \mathbb{R}$ esetén

$$\sqrt{a} - \sqrt{b} = \left(\sqrt{a} - \sqrt{b}\right) \cdot 1 = \left(\sqrt{a} - \sqrt{b}\right) \cdot \frac{\sqrt{a} + \sqrt{b}}{\sqrt{a} + \sqrt{b}} = \frac{a - b}{\sqrt{a} + \sqrt{b}},$$

ill.

$$\sqrt{a} - b = (\sqrt{a} - b) \cdot 1 = (\sqrt{a} - b) \cdot \frac{\sqrt{a} + b}{\sqrt{a} + b} = \frac{a - b^2}{\sqrt{a} + b},$$

továbbá

$$\sqrt[3]{a} - \sqrt[3]{b} = \left(\sqrt[3]{a} - \sqrt[3]{b}\right) \cdot 1 = \left(\sqrt[3]{a} - \sqrt[3]{b}\right) \cdot \frac{\sqrt[3]{a^2} + \sqrt[3]{ab} + \sqrt[3]{b^2}}{\sqrt[3]{a^2} + \sqrt[3]{ab} + \sqrt[3]{b^2}} = \frac{a - b}{\sqrt[3]{a^2} + \sqrt[3]{ab} + \sqrt[3]{b^2}}.$$

Feladat. Számítsuk ki az lábbi sorozatok határértékét!

1.
$$x_n := n^2 \cdot \left(n - \sqrt{n^2 + 1}\right)$$
 $(n \in \mathbb{N}_0);$

$$2. \ x_n := \sqrt{n^2 + 2n + 3} - \sqrt{n^2 - n + 1} \qquad (n \in \mathbb{N}_0);$$

$$3. \ x_n:=\sqrt{\alpha\cdot n^2+2n+1}-2n \qquad (n\in\mathbb{N}_0,\,\alpha\in[0,+\infty));$$

$$4. \ x_n := \sqrt{n^2 + n + 1} - \alpha n \qquad (n \in \mathbb{N}_0, \ \alpha \in \mathbb{R});$$

5.
$$x_n := \sqrt[3]{n+2} - \sqrt[3]{n}$$
 $(n \in \mathbb{N}_0)$.

Útm.

1. Ha $n \in \mathbb{N}$, akkor

$$x_n \ = \ n^2 \cdot \left(n - \sqrt{n^2 + 1}\right) \cdot \frac{n + \sqrt{n^2 + 1}}{n + \sqrt{n^2 + 1}} = n^2 \cdot \frac{n^2 - (n^2 + 1)}{n + \sqrt{n^2 + 1}} =$$

$$= \ \frac{-n^2}{n+\sqrt{n^2+1}} = \frac{-n}{0+\sqrt{0+\frac{1}{n^2}}} \longrightarrow \frac{-\infty}{1+\sqrt{1+0}} = \frac{-\infty}{2} = -\infty \quad (n\to\infty).$$

2. Ha $n \in \mathbb{N}$, akkor

$$\begin{array}{ll} x_n & = & \left(\sqrt{n^2+2n+3}-\sqrt{n^2-n+1}\right) \cdot \frac{\sqrt{n^2+2n+3}+\sqrt{n^2-n+1}}{\sqrt{n^2+2n+3}+\sqrt{n^2-n+1}} = \\ & = & \frac{(n^2+2n+3)-(n^2-n+1)}{\sqrt{n^2+2n+3}+\sqrt{n^2-n+1}} = \frac{3n+2}{\sqrt{n^2+2n+3}+\sqrt{n^2-n+1}} = \\ & = & \frac{\frac{3n+2}{n}}{\frac{\sqrt{n^2+2n+3}+\sqrt{n^2-n+1}}{n}} = \frac{3+\frac{2}{n}}{\sqrt{1+\frac{2}{n}+\frac{3}{n^2}}+\sqrt{1-\frac{1}{n}+\frac{1}{n^2}}} \longrightarrow \\ & \longrightarrow \frac{3+0}{\sqrt{1+0+0}+\sqrt{1-0+0}} = \frac{3}{2} \quad (n\to\infty). \quad \blacksquare \end{array}$$

3. Látható, hogy bármely $n \in \mathbb{N}$ indexre

$$x_n \ = \ \left(\sqrt{\alpha \cdot n^2 + 2n + 1} - 2n\right) \cdot \frac{\sqrt{\alpha \cdot n^2 + 2n + 1} + 2n}{\sqrt{\alpha \cdot n^2 + 2n + 1} + 2n} =$$

$$= \frac{(\alpha - 4)n^2 + 2n + 1}{\sqrt{\alpha \cdot n^2 + 2n + 1} + 2n} = \frac{\frac{(\alpha - 4)n^2 + 2n + 1}{n}}{\frac{\sqrt{\alpha \cdot n^2 + 2n + 1} + 2n}{n}} = \frac{(\alpha - 4)n + 2 + \frac{1}{n}}{\sqrt{\alpha + \frac{2}{n} + \frac{1}{n^2}} + 2}.$$

Világos, hogy

$$\alpha - 4 = 0$$
 \iff $\alpha = 4$.

Következésképpen

• $0 \le \alpha < 4$ esetén

$$\lim \left(\sqrt{\alpha \cdot n^2 + 2n + 1} - 2n \right) = \frac{(-\infty) + 2 + 0}{\sqrt{\alpha + 0 + 0} + 2} = -\infty;$$

• $\alpha = 4$ esetén $\lim \left(\sqrt{\alpha \cdot n^2 + 2n + 1} - 2n \right) = \frac{2 + 0}{\sqrt{4 + 0 + 0} + 2} = \frac{1}{2};$

• $\alpha > 4$ esetén

$$\lim \left(\sqrt{\alpha \cdot n^2 + 2n + 1} - 2n \right) = \frac{(+\infty) + 2 + 0}{\sqrt{\alpha + 0 + 0} + 2} = +\infty.$$

- 4. Világos, hogy
 - α < 0 esetén

$$\lim(x_n) = (+\infty) - \alpha \cdot (+\infty) = (+\infty) - (-\infty) = +\infty.$$

• $\alpha = 0$ esetén

$$\lim(x_n) = \lim(\sqrt{n^2 + n + 1}) = +\infty.$$

Ha viszont $\alpha > 0$, akkor

$$x_n \ = \ \left(\sqrt{n^2 + n + 1} - \alpha n\right) \cdot \frac{\sqrt{n^2 + n + 1} + \alpha n}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} =$$

$$= \frac{(1-\alpha^2)n^2+n+1}{\sqrt{n^2+n+1}+\alpha n} = \frac{\frac{(1-\alpha^2)n^2+n+1}{n}}{\frac{\sqrt{n^2+n+1}+\alpha n}} = \frac{(1-\alpha^2)n+1+\frac{1}{n}}{\sqrt{1+\frac{1}{n}+\frac{1}{n^2}}+\alpha}.$$

Világos, hogy ekkor

$$1-\alpha^2=0$$
 \iff $\alpha=1.$

Következésképpen

• $0 < \alpha < 1$ esetén

$$\lim(x_n) = \frac{(+\infty) + 1 + 0}{\sqrt{1 + 0 + 0} + \alpha} = +\infty;$$

• $\alpha = 1$ esetén bármely $n \in \mathbb{N}$ indexre

$$\lim(x_n) = \frac{1 + \frac{1}{n}}{\sqrt{1 + \frac{1}{n} + \frac{1}{n^2} + 1}} = \frac{1 + 0}{\sqrt{1 + 0 + 0} + 1} = \frac{1}{2}.$$

• $\alpha > 1$ esetén

$$\lim(x_n) = \frac{(-\infty) + 1 + 0}{\sqrt{1 + 0 + 0} + \alpha} = -\infty.$$

2023. 04. 20.

5. Ha $n \in \mathbb{N}$, akkor

$$0 \ < \ \chi_n = \left(\sqrt[3]{n+2} - \sqrt[3]{n}\right) \cdot \frac{\sqrt[3]{(n+2)^2} + \sqrt[3]{(n+2)n} + \sqrt[3]{n^2}}{\sqrt[3]{(n+2)^2} + \sqrt[3]{(n+2)n} + \sqrt[3]{n^2}} =$$

$$= \ \frac{2}{\sqrt[3]{(n+2)^2} + \sqrt[3]{(n+2)n} + \sqrt[3]{n^2}} < \frac{2}{\sqrt[3]{n^2}} < \frac{2}{3\sqrt{n}}.$$

Így a Sandwich-tétel értelmében $\lim(x_n) = 0$.

Feladat. Igazoljuk, hogy fennáll a

$$\left(1-\frac{1}{n^2}\right)^n\longrightarrow 1 \quad (n\to\infty).$$

hatrérték-reláció!

Útm. A Bernoulli-egyenlőtlenség felhasználásával

$$1 - \frac{1}{n} = 1 - n \cdot \frac{1}{n^2} \le \left(1 - \frac{1}{n^2}\right)^n \le 1$$
 $(n \in \mathbb{N})$

adódik, így a Sandwich-tétel következtében az igazolandó állítást kapjuk.

Feladat. Legyen $(x_n): \mathbb{N} \to [0, +\infty)$ olyan sorozat, amelyre $\lim(x_n) \in (0, +\infty)$. Mutassuk meg, hogy ekkor fennáll a

$$lim\left(\sqrt[n]{x_n}\right)=1$$

határérték-reláció!

Útm. Legyen

$$\lim(x_n) =: \alpha \in (0, +\infty).$$

Ekkor

$$\exists N \in \mathbb{N} \ \forall N \leq n \in \mathbb{N}: \quad |x_n - \alpha| < \frac{\alpha}{2}.$$

Igy

$$|x_n - \alpha| < \frac{\alpha}{2} \qquad \Longleftrightarrow \qquad -\frac{\alpha}{2} < x_n - \alpha < \frac{\alpha}{2} \qquad \Longleftrightarrow \qquad \frac{\alpha}{2} < x_n < \frac{3\alpha}{2}$$

következtében, ha $n \in \mathbb{N}$, $n \ge N$, akkor

$$\sqrt[n]{\frac{\alpha}{2}} < \sqrt[n]{x_n} < \sqrt[n]{\frac{3\alpha}{2}},$$

tehát a Sandwich-tétel értelmében

$$\lim \left(\sqrt[n]{x_n}\right) = 1. \quad \blacksquare$$

Feladat. Legyen $0 < a, b \in \mathbb{R}$. Számítsuk ki az alábbi sorozatok határértékét!

1.
$$x_n := \sqrt[n]{3n^5 + 2n + 1} \quad (n \in \mathbb{N});$$

1.
$$x_n := \sqrt[n]{3n^5 + 2n + 1} \quad (n \in \mathbb{N});$$
 2. $x_n := \sqrt[n]{\frac{n+1}{2n+3}} \quad (n \in \mathbb{N});$

3.
$$x_n := \sqrt[n]{\frac{3^n}{n!} + 2^n} \quad (n \in \mathbb{N});$$
 4. $x_n := \sqrt[n]{a^n + b^n} \quad (n \in \mathbb{N});$

4.
$$x_n := \sqrt[n]{a^n + b^n} \quad (n \in \mathbb{N});$$

5.
$$x_n := \sqrt[n]{1 + 3^{2n}} \quad (n \in \mathbb{N}).$$

Útm.

1. Mivel

$$\sqrt[n]{3n^5} \leq \sqrt[n]{3n^5 + 2n + 1} \leq \sqrt[n]{3n^5 + 2n^5 + n^5} = \sqrt[n]{6n^5} \qquad (n \in \mathbb{N})$$

és

$$\sqrt[n]{3n^5} = \sqrt[n]{3} \cdot (\sqrt[n]{n})^5 \stackrel{(n \to \infty)}{\longrightarrow} 1 \cdot 1^5 = 1 = 1 \cdot 1^5 \stackrel{(n \to \infty)}{\longleftarrow} \sqrt[n]{6} \cdot (\sqrt[n]{n})^5,$$

ezért a Sandwich-tétel felhasználásával azt kapjuk, hogy

$$\lim(x_n)=1$$
.

Megjegyzés. Tetszőleges $n \in \mathbb{N}$ indexre

$$x_n = \sqrt[n]{3n^5 + 2n + 1} = \sqrt[n]{n^5 \left(3 + \frac{2}{n^4} + \frac{1}{n^5}\right)} =$$

$$= \left(\sqrt[n]{n}\right)^5 \cdot \sqrt[n]{3 + \frac{2}{n^4} + \frac{1}{n^5}} \stackrel{(n \to \infty)}{\longrightarrow} 1^5 \cdot 1 = 1,$$

hiszen

$$\lim \left(3 + \frac{2}{n^4} + \frac{1}{n^5}\right) = 3 + 0 + 0 = 3 \in (0, +\infty).$$

2. Világos, hogy

$$\sqrt[n]{\frac{1}{5}} = \sqrt[n]{\frac{n}{5n}} = \sqrt[n]{\frac{n}{2n+3n}} \le \sqrt[n]{\frac{n+1}{2n+3}} \le \sqrt[n]{\frac{n+n}{2n}} = \sqrt[n]{1},$$

így

$$\lim \left(\sqrt[n]{\frac{1}{5}}\right) = 1 = \lim \left(\sqrt[n]{1}\right)$$

következtében

$$\lim (x_n) = 1$$
.

Megjegyzés. Tetszőleges $n \in \mathbb{N}$ indexre

$$\lim \left(\frac{n+1}{2n+3}\right) = \frac{1}{2},$$

így (vö. fenti feladat)

$$\lim (x_n) = 1.$$

3. Mivel lim $\left(\frac{3^n}{n!}\right)=0$, ezért van olyan $N\in\mathbb{N}$, hogy bármely $N\leq n\in\mathbb{N}$ indexre $\frac{3^n}{n!}<1$, így az ilyen n-ekre

$$2 = \sqrt[n]{2^n} \le \sqrt[n]{\frac{3^n}{n!} + 2^n} \le \sqrt[n]{1 + 2^n} \le \sqrt[n]{2^n + 2^n} = \sqrt[n]{2} \cdot \sqrt[n]{2^n} = 2 \cdot \sqrt[n]{2}.$$

Ennélfogva

$$\lim\left(\sqrt[n]{2}\right) = 1$$

következtében

$$\lim (x_n) = 2$$
.

Megjegyzés. Mivel tetszőleges $n \in \mathbb{N}$ indexre

$$x_n = 2 \cdot \sqrt[n]{\frac{(3/2)^n}{n!} + 1}$$

és

$$\lim \left(\frac{(3/2)^n}{n!} + 1\right) = 0 + 1 = 1 > 0,$$

ezért (vö. korábbi feladat)

$$\lim(x_n) = 2 \cdot 1 = 2$$
.

117

4. Mivel bármely $n \in \mathbb{N}$ esetén

$$\max\{\alpha,b\} = \sqrt[n]{\max\{\alpha,b\}^n} \le \sqrt[n]{\alpha^n + b^n} \le \sqrt[n]{2 \cdot \max\{\alpha,b\}^n} = \sqrt[n]{2} \cdot \max\{\alpha,b\}$$

és

$$\sqrt[n]{2} \longrightarrow 1 \qquad (n \to \infty),$$

ezért a Sandwich-tétel felhasználásával azt kapjuk, hogy

$$\lim (x_n) = \max\{a, b\}.$$

5. Mivel

$$9 = \sqrt[n]{3^{2n}} \le \sqrt[n]{1 + 3^{2n}} \le \sqrt[n]{3^{2n} + 3^{2n}} = \sqrt[n]{2} \cdot 9$$

és

$$\lim \left(\sqrt[n]{2}\right) = 1,$$

ezért a Sandwich-tétel felhasználásával azt kapjuk, hogy

$$\lim \left(\sqrt[n]{1+3^{2n}}\right) = 9. \quad \blacksquare$$

A a későbbiek szempontjából is nagyon fontos az alábbi

Tétel. Tegyük fel, hogy az

$$x_n \in (0, +\infty)$$
 $(n \in \mathbb{N}_0)$

sorozat esetében

$$0 \leq \lim \left(\frac{x_{n+1}}{x_n}\right) < 1 \qquad \text{vagy} \qquad 0 \leq \lim \left(\sqrt[n]{x_n}\right) < 1$$

teljesül. Ekkor fennál a

$$\lim (x_n) = 0$$

határérték-reláció.

Biz.

1. lépés. Legyen

$$\alpha := \lim \left(\frac{x_{n+1}}{x_n} \right)$$
.

Ekkor $0 \le \alpha < 1$. Legyen

$$q \in (\alpha, 1)$$
 és $\epsilon := q - \alpha$.

Ekkor $\epsilon>0$, így a konvergencia következtében van olyan $N\in\mathbb{N}$, hogy minden $N\leq n\in\mathbb{N}_0$ esetén

$$\left|\frac{x_{n+1}}{x_n}-\alpha\right|<\epsilon\qquad\Longrightarrow\qquad -\epsilon<\frac{x_{n+1}}{x_n}-\alpha<\epsilon\qquad\Longrightarrow\qquad 0<\frac{x_{n+1}}{x_n}<\epsilon+\alpha=q.$$

Ezért

$$0 < \frac{x_{n+1}}{x_N} = \prod_{k=N}^n \frac{x_{k+1}}{x_k} = \frac{x_{N+1}}{x_N} \cdot \frac{x_{N+2}}{x_{N+1}} \cdot \ldots \cdot \frac{x_n}{x_{n-1}} \cdot \frac{x_{n+1}}{x_n} < q^{n-N+1} \qquad (N \le n \in \mathbb{N}),$$

azaz

$$0 < x_{n+1} < x_N \cdot q^{n-N+1}$$
 .

Mivel

$$lim\left(x_{N}\cdot q^{n-N+1}\right)=x_{N}\cdot lim\left(q^{n-N+1}\right)=0,$$

ezért a Sandwich-tétel következtében $\lim (x_n) = 0$.

2. lépés. Legyen

$$\beta := \lim \left(\sqrt[n]{\chi_n} \right)$$
.

Ekkor $0 \le \beta < 1$. Legyen

$$q \in (\beta, 1)$$
 és $\epsilon := q - \beta$.

Ekkor $\epsilon>0$, így a konvergencia következtében van olyan $N\in\mathbb{N}$, hogy minden $N\leq n\in\mathbb{N}_0$ esetén

$$|\sqrt[n]{x_n} - \beta| < \epsilon \qquad \Longrightarrow \qquad -\epsilon < \sqrt[n]{x_n} - \beta < \epsilon \qquad \Longrightarrow \qquad 0 < \sqrt[n]{x_n} < \beta + \epsilon = \mathfrak{q}.$$

Ezért

$$0 < x_n < q^n$$
 $(N \le n \in \mathbb{N}_0),$

ahonnan a Sandwich-tétel felhasználásával $\lim (x_n) = 0$ adódik.

Példák.

1. Ha $k \in \mathbb{N}$, $q \in (-1, 1)$, azaz |q| < 1 és

$$x_n := n^k \cdot q^n \qquad (n \in \mathbb{N}_0),$$

akkor az

$$(y_n) := (|x_n|)$$

sorozatra

$$0 < \sqrt[n]{y_n} = (\sqrt[n]{n})^k \cdot |q| \longrightarrow 1^k \cdot |q| = |q| < 1 \qquad (n \to \infty).$$

Kövezkezésképpen

$$\lim(y_n) = 0$$
, igy $\lim(n^k \cdot q^n) = \lim(x_n) = 0$.

2. Ha $\alpha \in \mathbb{R}$ és

$$x_n := \frac{a^n}{n!}$$
 $(n \in \mathbb{N}_0),$

akkor az

$$(y_n) := (|x_n|)$$

sorozatra $a \neq 0$ esetén

$$\frac{y_{n+1}}{y_n} = \frac{|a|^{n+1}}{(n+1)!} : \frac{|a|^n}{n!} = \frac{|a|^{n+1}}{(n+1)!} \cdot \frac{n!}{|a|^n} = \frac{|a|}{n+1} \longrightarrow 0 < 1 \qquad (n \to \infty).$$

Kövezkezésképpen (a = 0 esetén meg különösképp)

$$\lim(y_n) = 0,$$
 fgy $\lim\left(\frac{a^n}{n!}\right) = \lim(x_n) = 0.$

Feladat. Számítsuk ki az alábbi sorozatok határértékét!

1.
$$x_n := \frac{5^{n+1} + 2^n}{3 \cdot 5^n - 5^{-n}} \quad (n \in \mathbb{N});$$
 2. $x_n := \frac{n^2 \cdot 3^n + 2^{2n}}{4^{n+1} + 2^n} \quad (n \in \mathbb{N});$

2.
$$x_n := \frac{n^2 \cdot 3^n + 2^{2n}}{4^{n+1} + 2^n} \quad (n \in \mathbb{N});$$

3.
$$x_n := \sqrt{\frac{(-5)^n + 7^n}{7^{n+1} + n^7}}$$
 $(n \in \mathbb{N});$ 4. $x_n := \frac{(-2)^n + n}{n! + 3^n}$ $(n \in \mathbb{N}).$

4.
$$x_n := \frac{(-2)^n + n}{n! + 3^n} \quad (n \in \mathbb{N}).$$

Útm.

1. Az 5ⁿ számmal egyszerűsítve azt kapjuk, hogy

$$x_n = \frac{5^{n+1} + 2^n}{3 \cdot 5^n - 5^{-n}} = \frac{5 + (2/5)^n}{3 - (25)^{-n}} \longrightarrow \frac{5 + 0}{3 - 0} = \frac{5}{3} \qquad (n \to \infty).$$

2. A 4ⁿ számmal egyszerűsítve azt kapjuk, hogy

$$x_n = \frac{n^2 \cdot 3^n + 2^{2n}}{4^{n+1} + 2^n} = \frac{n^2 \cdot (3/4)^n + 1}{4 + (1/2)^n} \longrightarrow \frac{0+1}{4+0} = \frac{1}{4} \qquad (n \to \infty).$$

3. A 7ⁿ számmal egyszerűsítve azt kapjuk, hogy

$$x_n = \sqrt{\frac{(-5)^n + 7^n}{7^{n+1} + n^7}} = \sqrt{\frac{(-5/7)^n + 1}{7 + n^7 (1/7)^n}} \longrightarrow \sqrt{\frac{0+1}{7+0}} = \frac{1}{\sqrt{7}} \qquad (n \to \infty).$$

4. Az n! számmal egyszerűsítve azt kapjuk, hogy

$$x_n = \frac{(-2)^n + n}{n! + 3^n} = \frac{\frac{(-2)^n}{n!} + \frac{1}{(n-1)!}}{1 + \frac{3^n}{n!}} \longrightarrow \frac{0+0}{1+0} = 0 \qquad (n \to \infty). \quad \blacksquare$$

Házi feladat. Legyen $n \in \mathbb{N}$. Számítsuk ki $\lim(x_n)$ -et az alábbi esetekben!

1.
$$x_n := \frac{\sqrt{n^2 + 1} + \sqrt{n}}{\sqrt[4]{n^3 + n} - n};$$

2.
$$x_n := \sqrt{n^3 + 1} - n;$$

3.
$$x_n := \sqrt[3]{(n+1)^2} - \sqrt[3]{(n-1)^2}$$
;

4.
$$x_n := \frac{\sqrt{n^2 + 1} - \sqrt[3]{n^2 + 1}}{\sqrt[4]{n^4 + 1} - \sqrt[5]{n^4 + 1}};$$

5.
$$x_n := \frac{\sqrt[5]{n^7 + 3} + \sqrt[4]{2n^3 - 1}}{\sqrt[6]{n^8 + n^7 + 1} - n};$$

6.
$$x_n := \frac{\sqrt[3]{n^4 + 3} - \sqrt[5]{n^3 + 4}}{\sqrt[3]{n^7 + 1}};$$

7.
$$x_n := \frac{\sqrt{n^2 + 1} - \sqrt[3]{n^2 + 1}}{\sqrt[4]{n^4 + 1} - \sqrt[5]{n^4 + 1}};$$

8.
$$x_n := \frac{(n+1)^{10} + (n+2)^{10} + \ldots + (n+100)^{10}}{n^{10} + 10^{10}};$$

121

9.
$$x_n := \sqrt{n^2 - 2n - 1} - \sqrt{n^2 - 7n + 3}$$

$$\textbf{9.} \ \, x_n := \sqrt{n^2 - 2n - 1} - \sqrt{n^2 - 7n + 3}; \quad \, \textbf{10.} \ \, x_n := \varphi(n) \cdot \left(\sqrt{n + 1} + \sqrt{n - 1} - 2\sqrt{n}\right), \\ \varphi(n) \in \left\{\sqrt[3]{n^2}, \sqrt{n^3}\right\};$$

11.
$$x_n := n^3 \cdot \left(\sqrt{n^2 + \sqrt{n^4 + 1}} - n\sqrt{2} \right);$$
 12. $x_n := \sqrt{n + \sqrt{n}} - \sqrt{n - \sqrt{n}};$

12.
$$x_n := \sqrt{n + \sqrt{n}} - \sqrt{n - \sqrt{n}};$$

13.
$$x_n := \sqrt[3]{x^2} \cdot \left(\sqrt{n^3 + 1} - \sqrt{n^3 - 1}\right);$$
 14. $x_n := \frac{\sqrt[3]{n + 1} - 1}{n}.$

14.
$$x_n := \frac{\sqrt[3]{n+1}-1}{n}$$
.

Útm.

$$x_n = \frac{\sqrt{1 + \frac{1}{n^2}} + \sqrt{\frac{1}{n}}}{\sqrt[4]{\frac{1}{n} + \frac{1}{n^3}} - 1} \longrightarrow \frac{\sqrt{1 + 0} + 0}{\sqrt[4]{0 + 0} - 1} = -1 \qquad (n \to \infty).$$

2. Tetszőleges $n \in \mathbb{N}$ esetén

$$x_n \ = \ \left(\sqrt{n^3+1}-n\right) \cdot \frac{\sqrt{n^3+1}+n}{\sqrt{n^3+1}+n} = \frac{n^3+1-n}{\sqrt{n^3+1}+n} = \frac{n^3\left(1+\frac{1}{n^3}-\frac{1}{n}\right)}{n^{3/2} \cdot \left(\sqrt{1+\frac{1}{n^3}}+\sqrt{\frac{1}{n}}\right)} = \frac{n^3\left(1+\frac{1}{n^3}-\frac{1}{n}\right)}{n^3} = \frac{n^3\left(1+\frac{1}{n^3}-\frac{1}{n^3}-\frac{1}{n^3}\right)}{n^3} = \frac{n^3\left(1+\frac{1}{n^3}-\frac{1}{n^3}-\frac{1}{n^3}\right)$$

$$= n^{3/2} \cdot \frac{1 + \frac{1}{n^3} - \frac{1}{n}}{\sqrt{1 + \frac{1}{n^3}} + \sqrt{\frac{1}{n}}} \longrightarrow +\infty \cdot 1 = +\infty \quad (n \to \infty).$$

3. Tetszőleges $n \in \mathbb{N}$ esetén

$$\begin{split} x_n &= \left(\sqrt[3]{(n+1)^2} - \sqrt[3]{(n-1)^2}\right) \cdot \frac{\sqrt[3]{(n+1)^4} + \sqrt[3]{(n+1)^2(n-1)^2} + \sqrt[3]{(n-1)^4}}{\sqrt[3]{(n+1)^4} + \sqrt[3]{(n+1)^2(n-1)^2} + \sqrt[3]{(n-1)^4}} = \\ &= \frac{(n+1)^2 - (n-1)^2}{\sqrt[3]{(n+1)^4} + \sqrt[3]{(n+1)^2(n-1)^2} + \sqrt[3]{(n-1)^4}} = \\ &= \frac{4n}{\sqrt[3]{(n+1)^4} + \sqrt[3]{(n+1)^2(n-1)^2} + \sqrt[3]{(n-1)^4}} = \\ &= \frac{4n}{n^{4/3} \cdot \left\{\sqrt[3]{\left(1 + \frac{1}{n}\right)^4} + \sqrt[3]{\left(1 - \frac{1}{n^2}\right)^2} + \sqrt[3]{\left(1 - \frac{1}{n}\right)^4}\right\}} = \\ &= \frac{1}{\sqrt[3]{n}} \cdot \frac{4}{\sqrt[3]{\left(1 + \frac{1}{n}\right)^4} + \sqrt[3]{\left(1 - \frac{1}{n^2}\right)^2} + \sqrt[3]{\left(1 - \frac{1}{n}\right)^4}} \longrightarrow 0 \cdot \frac{4}{3} = 0 \quad (n \to \infty). \end{split}$$

$$x_n = \frac{n \cdot \left(\sqrt{1 + \frac{1}{n^2}} - \sqrt[3]{\frac{1}{n} + \frac{1}{n^3}}\right)}{n \cdot \left(\sqrt[4]{1 + \frac{1}{n^4}} - \sqrt[5]{\frac{1}{n} + \frac{1}{n^5}}\right)} = = \frac{\sqrt{1 + \frac{1}{n^2}} - \sqrt[3]{\frac{1}{n} + \frac{1}{n^3}}}{\sqrt[4]{1 + \frac{1}{n^4}} - \sqrt[5]{\frac{1}{n} + \frac{1}{n^5}}} \longrightarrow \frac{1 - 0}{1 - 0} = 1 \quad (n \to \infty).$$

5. Tetszőleges $n \in \mathbb{N}$ esetén az $n \to \infty$ határátmenetben

$$x_n = \frac{n^{7/5} \cdot \left(\sqrt[5]{1 + \frac{3}{n^7}} + \sqrt[4]{\frac{2}{n^{13/5}} - \frac{1}{n^{21/5}}}\right)}{n^{4/3} \cdot \left(\sqrt[6]{1 + \frac{1}{n} + \frac{1}{n^8}} - \frac{1}{n^{1/3}}\right)} = \frac{\sqrt[5]{1 + \frac{3}{n^7}} + \sqrt[4]{\frac{2}{n^{13/5}} - \frac{1}{n^{21/5}}}}{\sqrt[6]{1 + \frac{1}{n} + \frac{1}{n^8}} - \frac{1}{n^{1/3}}} \longrightarrow (+\infty) \cdot \frac{1 + 0}{1 - 0} = +\infty.$$

6. Tetszőleges $n \in \mathbb{N}$ esetén az $n \to \infty$ határátmenetben

$$x_n = \frac{n^{4/3} \cdot \left(\sqrt[3]{1 + \frac{3}{n^4}} - \sqrt[5]{\frac{1}{n^{11/3}} + \frac{4}{n^{20/3}}}\right)}{n^{7/3} \cdot \left(\sqrt[3]{1 + \frac{1}{n^7}}\right)} = \frac{\sqrt[3]{1 + \frac{3}{n^4}} - \sqrt[5]{\frac{1}{n^{11/3}} + \frac{4}{n^{20/3}}}}{\sqrt[3]{1 + \frac{1}{n^7}}} \longrightarrow 0 \cdot \frac{1 - 0}{1} = 0.$$

7. Tetszőleges $n \in \mathbb{N}$ esetén

$$x_n = \frac{n \cdot \left(\sqrt{1 + \frac{1}{n^2}} - \sqrt[3]{\frac{1}{n} + \frac{1}{n^3}}\right)}{n \cdot \left(\sqrt[4]{1 + \frac{1}{n^4}} - \sqrt[5]{\frac{1}{n} + \frac{1}{n^5}}\right)} = \frac{\sqrt{1 + \frac{1}{n^2}} - \sqrt[3]{\frac{1}{n} + \frac{1}{n^3}}}{\sqrt[4]{1 + \frac{1}{n^4}} - \sqrt[5]{\frac{1}{n} + \frac{1}{n^5}}} \longrightarrow \frac{1 - 0}{1 - 0} = 1 \quad (n \to \infty).$$

8. Tetszőleges $n \in \mathbb{N}$ esetén

$$x_n = \frac{\left(1 + \frac{1}{n}\right)^{10} + \left(1 + \frac{2}{n}\right)^{10} + \ldots + \left(1 + \frac{100}{n}\right)^{10}}{1 + \left(\frac{10}{n}\right)^{10}} \longrightarrow \frac{100 \cdot 1}{1 + 0} = 100 \quad (n \to \infty).$$

$$\begin{split} x_n &= \left(\sqrt{n^2 - 2n - 1} - \sqrt{n^2 - 7n + 3}\right) \cdot \frac{\sqrt{n^2 - 2n - 1} + \sqrt{n^2 - 7n + 3}}{\sqrt{n^2 - 2n - 1} + \sqrt{n^2 - 7n + 3}} = \\ &= \frac{n^2 - 2n - 1 - n^2 + 7n - 3}{\sqrt{n^2 - 2n - 1} + \sqrt{n^2 - 7n + 3}} = \frac{5n - 4}{\sqrt{n^2 - 2n - 1} + \sqrt{n^2 - 7n + 3}} = \\ &= \frac{5 - \frac{4}{n}}{\sqrt{1 - \frac{2}{n} - \frac{1}{n^2}} + \sqrt{1 - \frac{7}{n} + \frac{3}{n^2}}} \longrightarrow \frac{5 - 0}{1 + 1} = \frac{5}{2} \quad (n \to \infty). \end{split}$$

10. Tetszőleges $n \in \mathbb{N}$ esetén

$$\begin{split} x_n &= & \varphi(n) \cdot \left(\sqrt{n+1} - \sqrt{n} + \sqrt{n-1} - \sqrt{n} \right) = \\ \\ &= & \varphi(n) \cdot \left(\frac{n+1-n}{\sqrt{n+1} + \sqrt{n}} + \frac{n-1-n}{\sqrt{n-1} + \sqrt{n}} \right) = \\ \\ &= & \varphi(n) \cdot \frac{\sqrt{n-1} + \sqrt{n} - \sqrt{n+1} - \sqrt{n}}{\left(\sqrt{n+1} + \sqrt{n} \right) \cdot \left(\sqrt{n-1} + \sqrt{n} \right)} = \\ \\ &= & \varphi(n) \cdot \frac{\sqrt{n-1} - \sqrt{n+1}}{\left(\sqrt{n+1} + \sqrt{n} \right) \cdot \left(\sqrt{n-1} + \sqrt{n} \right)} \cdot \frac{\sqrt{n-1} + \sqrt{n+1}}{\sqrt{n-1} + \sqrt{n+1}} = \\ \\ &= & \varphi(n) \cdot \frac{n-1-n-1}{\left(\sqrt{n+1} + \sqrt{n} \right) \cdot \left(\sqrt{n-1} + \sqrt{n} \right) \cdot \left(\sqrt{n-1} + \sqrt{n+1} \right)}. \end{split}$$

Ha

• $\varphi(n) = \sqrt[3]{n^2}$, akkor az $n \to \infty$ határátmenetben

$$\begin{array}{lll} x_n & = & \frac{-2n^{2/3}}{n^{3/2} \cdot \left(\sqrt{1 + \frac{1}{n}} + 1\right) \cdot \left(\sqrt{1 - \frac{1}{n}} + 1\right) \cdot \left(\sqrt{1 - \frac{1}{n}} + \sqrt{1 + \frac{1}{n}}\right)} = \\ \\ & = & n^{-5/6} \cdot \frac{-2}{\left(\sqrt{1 + \frac{1}{n}} + 1\right) \cdot \left(\sqrt{1 - \frac{1}{n}} + 1\right) \cdot \left(\sqrt{1 - \frac{1}{n}} + \sqrt{1 + \frac{1}{n}}\right)} \longrightarrow \\ \\ & \longrightarrow & 0 \cdot \frac{-2}{8} = 0; \end{array}$$

• $\phi(n) = \sqrt{n^3}$, akkor az $n \to \infty$ határátmenetben

$$\begin{array}{lll} x_n & = & \frac{-2n^{3/2}}{n^{3/2} \cdot \left(\sqrt{1 + \frac{1}{n}} + 1\right) \cdot \left(\sqrt{1 - \frac{1}{n}} + 1\right) \cdot \left(\sqrt{1 - \frac{1}{n}} + \sqrt{1 + \frac{1}{n}}\right)} = \\ & = & \frac{-2}{\left(\sqrt{1 + \frac{1}{n}} + 1\right) \cdot \left(\sqrt{1 - \frac{1}{n}} + 1\right) \cdot \left(\sqrt{1 - \frac{1}{n}} + \sqrt{1 + \frac{1}{n}}\right)} \longrightarrow \\ & \longrightarrow & \frac{-2}{(1 + 1)(1 + 1)(1 + 1)} = -\frac{1}{4}. \end{array}$$

11. Tetszőleges $n \in \mathbb{N}$ esetén az $n \to \infty$ határátmenetben

$$\begin{split} x_n &= n^3 \cdot \left(\sqrt{n^2 + \sqrt{n^4 + 1}} - n\sqrt{2} \right) \cdot \frac{\sqrt{n^2 + \sqrt{n^4 + 1}} + n\sqrt{2}}{\sqrt{n^2 + \sqrt{n^4 + 1}} + n\sqrt{2}} = \\ &= n^3 \cdot \frac{n^2 + \sqrt{n^4 + 1} - 2n^2}{\sqrt{n^2 + \sqrt{n^4 + 1}} + n\sqrt{2}} = n^3 \cdot \frac{\sqrt{n^4 + 1} - n^2}{\sqrt{n^2 + \sqrt{n^4 + 1}} + n\sqrt{2}} \cdot \frac{\sqrt{n^4 + 1} + n^2}{\sqrt{n^4 + 1} + n^2} = \\ &= n^3 \cdot \frac{n^4 + 1 - n^4}{\left(\sqrt{n^2 + \sqrt{n^4 + 1}} + n\sqrt{2} \right) \left(\sqrt{n^4 + 1} + n^2 \right)} = \\ &= \frac{n^3}{n^3 \cdot \left(\sqrt{1 + \sqrt{1 + \frac{1}{n^4}}} + \sqrt{2} \right) \left(\sqrt{1 + \frac{1}{n^4}} + 1 \right)} \longrightarrow \frac{1}{\left(\sqrt{2} + \sqrt{2} \right) (1 + 1)} = \frac{1}{4\sqrt{2}}. \end{split}$$

12. Tetszőleges $n \in \mathbb{N}$ esetén

$$x_n \ = \ \left(\sqrt{n+\sqrt{n}}-\sqrt{n-\sqrt{n}}\right) \cdot \frac{\sqrt{n+\sqrt{n}}+\sqrt{n-\sqrt{n}}}{\sqrt{n+\sqrt{n}}+\sqrt{n-\sqrt{n}}} = \frac{n+\sqrt{n}-n+\sqrt{n}}{\sqrt{n+\sqrt{n}}+\sqrt{n-\sqrt{n}}} = \frac{n+\sqrt{n}-n+\sqrt{n}}{\sqrt{n+\sqrt{n}}+\sqrt{n-\sqrt{n}}} = \frac{n+\sqrt{n}-n+\sqrt{n}}{\sqrt{n+\sqrt{n}}+\sqrt{n}-\sqrt{n}} = \frac{n+\sqrt{n}-n+\sqrt{n}}{\sqrt{n}+\sqrt{n}-\sqrt{n}} = \frac{n+\sqrt{n}-n+\sqrt{n}}{\sqrt{n}+\sqrt{n}-n+\sqrt{n}} = \frac{n+\sqrt{n}-n+\sqrt{n}}{\sqrt{n}+\sqrt{n}+\sqrt{n}-n+\sqrt{n}} = \frac{n+\sqrt{n}-n+\sqrt{n}}{\sqrt{n}+\sqrt{n}-n+\sqrt{n}} = \frac{n+\sqrt{n}-n+\sqrt{n}}{\sqrt{n}+\sqrt{n}-n+\sqrt{n}} = \frac{n+\sqrt{n}-n+\sqrt{n}}{\sqrt{n}+\sqrt{n}-n+\sqrt{n}} = \frac{n+\sqrt{n}-n+\sqrt{n}}{\sqrt{n}+\sqrt{n}-n+\sqrt{n}} = \frac{n+\sqrt{n}-n+\sqrt{n}}{\sqrt{n}+\sqrt{n}+\sqrt{n}-n+\sqrt{n}} = \frac{n+\sqrt{n}-n+\sqrt{n}}{\sqrt{n}+\sqrt{n}-n+\sqrt{n}} = \frac{n+\sqrt{n}-n+\sqrt{n}}{\sqrt{n}+\sqrt{n}-n+\sqrt{n}} = \frac$$

$$= \frac{2}{\sqrt{1+\frac{1}{\sqrt{n}}}+\sqrt{1-\frac{1}{\sqrt{n}}}} \longrightarrow \frac{2}{1+1} = 1 \qquad (n \to \infty).$$

13. Tetszőleges $n \in \mathbb{N}$ esetén

$$\begin{split} x_n &= \sqrt[3]{n^2} \cdot \left(\sqrt{n^3 + 1} - \sqrt{n^3 - 1}\right) \cdot \frac{\sqrt{n^3 + 1} + \sqrt{n^3 - 1}}{\sqrt{n^3 + 1} + \sqrt{n^3 - 1}} = \sqrt[3]{n^2} \cdot \frac{n^3 + 1 - n^3 + 1}{\sqrt{n^3 + 1} + \sqrt{n^3 - 1}} = \\ &= \sqrt[3]{n^2} \cdot \frac{2}{n^{3/2} \cdot \left(\sqrt{1 + \frac{1}{n^3}} + \sqrt{1 - \frac{1}{n^3}}\right)} = \frac{2}{n^{5/6} \cdot \left(\sqrt{1 + \frac{1}{n^3}} + \sqrt{1 - \frac{1}{n^3}}\right)} \longrightarrow \end{split}$$

$$\longrightarrow \frac{2}{(+\infty)\cdot(1+1)}=0 \quad (n\to\infty).$$

$$x_n = \sqrt[3]{\frac{1}{n^3} + \frac{1}{n^2} - \frac{1}{n}} \longrightarrow 0 - 0 = 0 \quad (n \to \infty).$$

Házi feladatok.

1. Számítsuk ki az alábbi sorozatok határértékét!

$$\text{(a)} \ \ x_n := \frac{n^3 - 2n - 1}{-3n^3 + n + 3} \quad (n \in \mathbb{N}_0); \qquad \quad \text{(b)} \ \ x_n := \frac{(n+1)^3 + (n-1)^3}{n^3 + 1} \quad (n \in \mathbb{N}_0).$$

2. Konvergensek-e a következő sorozatok? Ha igen, akkor mi a határértékük?

$$\text{(a)} \ \ x_n:=\sqrt{n^2+3n+1}-2n \quad (n\in\mathbb{N}_0); \qquad \text{(b)} \ \ x_n:=n\cdot\left(n-\sqrt{n^2+1}\right) \quad (n\in\mathbb{N}_0).$$

3. Számítsuk ki az alábbi sorozatok határértékét!

(a)
$$x_n := \sqrt[n]{n^2 + 100}$$
 $(n \in \mathbb{N});$ (b) $x_n := \sqrt[n]{2 \cdot 5^n + 7^n}$ $(n \in \mathbb{N}).$

4. Számítsuk ki az

$$x_n := \frac{n}{n^2+1} + \frac{n}{n^2+2} + \frac{n}{n^2+3} + \ldots + \frac{n}{n^2+n} \qquad (n \in \mathbb{N})$$

sorozat határértékét!

5. Számítsuk ki az alábbi sorozatok határértékét!

(a)
$$x_n := \sqrt{\frac{n^2 + n + 1}{n^2 + 2}}$$
 $(n \in \mathbb{N}_0);$ (b) $x_n := \frac{n - \sqrt{n} - 1}{n + \sqrt{n} + 1}$ $(n \in \mathbb{N}_0)$

$$\text{(c)} \ \ x_n := \frac{2^n + 2^{-n}}{2^{-n} + 3^n} \quad (n \in \mathbb{N}_0); \qquad \qquad \text{(d)} \ \ x_n := \frac{n \cdot 2^{n+1} + 3^{2n}}{9^{n-1} + 3^n} \quad (n \in \mathbb{N}_0)$$

$$\text{(e)} \ \ x_n := \sqrt{\frac{(-2)^n + 5^n}{5^{n+1} + n^5}} \quad (n \in \mathbb{N}_0); \qquad \quad \text{(f)} \ \ x_n := \frac{(-3)^n + n^3}{n! + 5^n} \quad (n \in \mathbb{N}_0).$$

Útm.

1. (a) Világos, hogy tetszőlegs $n \in \mathbb{N}$ esetén

$$x_n = \frac{n^3 - 2n - 1}{-3n^3 + n + 3} = \frac{\frac{n^3 - 2n - 1}{n^3}}{\frac{-3n^3 + n + 3}{n^3}} = \frac{1 - \frac{2}{n^2} - \frac{1}{n^3}}{-3 + \frac{1}{n^2} + \frac{3}{n^3}} \longrightarrow \frac{1 - 0 - 0}{-3 + 0 + 0} = -\frac{1}{3} \quad (n \to \infty).$$

(b) Bármely $n \in \mathbb{N}$ indexre

$$x_n \ = \ \frac{(n+1)^3 + (n-1)^3}{n^3 + 1} = \frac{\frac{(n+1)^3 + (n-1)^3}{n^3}}{\frac{n^3 + 1}{n^3}} = \frac{\left(1 + \frac{1}{n}\right)^3 + \left(1 - \frac{1}{n}\right)^3}{1 + \frac{1}{n^3}} \longrightarrow$$

$$\longrightarrow \frac{(1+0)^3+(1-0)^3}{1+0}=\frac{2}{1}=2 \quad (n\to\infty).$$

2. (a) Ha $n \in \mathbb{N}$, akkor

$$x_n \ = \ (\sqrt{n^2 + 3n + 1} - 2n) \cdot \frac{\sqrt{n^2 + 3n + 1} + 2n}{\sqrt{n^2 + 3n + 1} + 2n} = \frac{-3n^2 + 3n + 1}{\sqrt{n^2 + 3n + 1} + 2n} =$$

$$= \frac{\frac{-3n^2+3n+1}{n}}{\frac{\sqrt{n^2+3n+1}+2n}{n}} = \frac{-3n+3+\frac{1}{n}}{\sqrt{1+\frac{3}{n}+\frac{1}{n^2}}+2} \longrightarrow \frac{(-\infty)+3+0}{\sqrt{1+0+0}+2} = -\infty \qquad (n\to\infty).$$

(b) Ha $n \in \mathbb{N}$, akkor

$$x_n = n \cdot \left(n - \sqrt{n^2 + 1}\right) \cdot \frac{n + \sqrt{n^2 + 1}}{n + \sqrt{n^2 + 1}} = n \cdot \frac{-1}{n + \sqrt{n^2 + 1}} =$$

$$= \frac{-1}{1 + \sqrt{1 + \frac{1}{n^2}}} \longrightarrow \frac{-1}{1 + \sqrt{1 + 0}} = -\frac{1}{2} \qquad (n \to \infty).$$

3. (a) Mivel

$$(\sqrt[n]{n})^2 = \sqrt[n]{n^2} \leq \sqrt[n]{n^2 + 100} \leq \sqrt[n]{n^2 + 100n^2} = \sqrt[n]{101n^2} = \sqrt[n]{101} \cdot (\sqrt[n]{n})^2 \quad (n \in \mathbb{N})$$

és

$$\sqrt[n]{n} \stackrel{(n \to \infty)}{\longrightarrow} 1 = 1 \stackrel{(n \to \infty)}{\longleftarrow} \sqrt[n]{101}$$

ezért a Sandwich-tétel felhasználásával azt kapjuk, hogy

$$\lim(x_n)=1$$
.

(b) Mivel

$$7 = \sqrt[n]{7^n} \le \sqrt[n]{2 \cdot 5^n + 7^n} \le \sqrt[n]{2 \cdot 7^n + 7^n} = \sqrt[n]{3 \cdot 7^n} = \sqrt[n]{3} \cdot 7 \quad (n \in \mathbb{N})$$

és

$$\sqrt[n]{3} \longrightarrow 1 \qquad (n \to \infty),$$

ezért a Sandwich-tétel felhasználásával azt kapjuk, hogy

$$\lim(x_n) = 7$$
.

4. Az x_n -beli összeg minden tagját alulról, ill. felülről becsülhetjük az összeg legkisebb, ill. legnagyobb tagjával, azaz tetszőleges n indexre

$$\frac{n}{n^2+n}+\frac{n}{n^2+n}+\frac{n}{n^2+n}+\ldots+\frac{n}{n^2+n}\leq x_n\leq \frac{n}{n^2+1}+\frac{n}{n^2+1}+\frac{n}{n^2+1}+\ldots+\frac{n}{n^2+1}.$$

Mivel

$$\frac{n}{n^2+n}+\frac{n}{n^2+n}+\frac{n}{n^2+n}+\ldots+\frac{n}{n^2+n}=n\cdot\frac{n}{n^2+n}=\frac{n^2}{n^2+n}\longrightarrow 1 \quad (n\to\infty)$$

és

$$\frac{n}{n^2+1} + \frac{n}{n^2+1} + \frac{n}{n^2+1} + \ldots + \frac{n}{n^2+1} = n \cdot \frac{n}{n^2+1} = \frac{n^2}{n^2+1} \longrightarrow 1 \quad (n \to \infty),$$

ezért a Sandwich-tétel felhasználásával azt kapjuk, hogy $\lim(x_n) = 1$.

$$x_n = \sqrt{\frac{n^2 + n + 1}{n^2 + 2}} = \sqrt{\frac{\frac{n^2 + n + 1}{n^2}}{\frac{n^2 + 2}{n^2}}} = \sqrt{\frac{\frac{n^2 + n + 1}{n^2}}{\frac{n^2 + 2}{n^2}}} =$$

$$= \sqrt{\frac{1 + \frac{1}{n} + \frac{2}{n^2}}{1 + \frac{2}{n^2}}} \longrightarrow \sqrt{\frac{1 + 0 + 0}{1 + 0}} = \sqrt{1} = 1 \qquad (n \to \infty).$$

(b) Bármely $n \in \mathbb{N}$ indexre

$$x_n = \frac{n - \sqrt{n} - 1}{n + \sqrt{n} + 1} = \frac{\frac{n - \sqrt{n} - 1}{n}}{\frac{n + \sqrt{n} + 1}{n}} = \frac{1 - \frac{1}{\sqrt{n}} - \frac{1}{n}}{1 + \frac{1}{\sqrt{n}} + \frac{1}{n}} \longrightarrow \frac{1 - 0 - 0}{1 + 0 + 0} = 1 \qquad (n \to \infty).$$

(c) A 3ⁿ számmal egyszeűsítve

$$x_n = \frac{\left(\frac{2}{3}\right)^n + \left(\frac{1}{6}\right)^n}{\left(\frac{1}{6}\right)^n + 1} \longrightarrow \frac{0+0}{0+1} = 0 \qquad (n \to \infty).$$

(d) A 9ⁿ számmal egyszeűsítve

$$x_n = \frac{n \cdot 2^{n+1} + 3^{2n}}{9^{n-1} + 3^n} = \frac{2n \cdot 2^n + 9^n}{\frac{9^n}{9} + 3^n} = \frac{2n \cdot \left(\frac{2}{9}\right)^n + 1}{\frac{1}{9} + \left(\frac{1}{3}\right)^n} \longrightarrow \frac{0+1}{\frac{1}{9} + 0} = 9 \qquad (n \to \infty).$$

(e) Az 5ⁿ számmal egyszeűsítve

$$x_n = \sqrt{\frac{(-2)^n + 5^n}{5^{n+1} + n^5}} = \sqrt{\frac{\left(\frac{-2}{5}\right)^n + 1}{5 + \frac{n^5}{5n}}} \longrightarrow \sqrt{\frac{0+1}{5+0}} = \sqrt{\frac{1}{5}} \qquad (n \to \infty).$$

(f) Az n! számmal egyszeűsítve

$$x_n = \frac{(-3)^n + n^3}{n! + 5^n} = \frac{\frac{(-3)^n}{n!} + \frac{n^3}{n!}}{1 + \frac{5^n}{n!}} = \frac{\frac{(-3)^n}{n!} + \frac{n^2}{(n-1)\cdot(n-2)\cdot...\cdot2\cdot1}}{1 + \frac{5^n}{n!}} \longrightarrow \frac{0+0}{1+0} = 0 \qquad (n \to \infty). \quad \blacksquare$$

6. gyakorlat (2023, 04, 06.)

Az analízisben alapvető jelentőségű az az állítás, miszerint "egymásba skatulyázott kompakt intervallumok³ közös része nem üres." Ezt pontosítja a következő tételben megfogalmazott állítás.

Emlékeztető (Cantor-tétel). Minden $n \in \mathbb{N}$ szám esetén legyenek adottak az $[a_n, b_n] \subset \mathbb{R}$ (kompakt) intervallumok, és tegyük fel, hogy

$$[a_{n+1}, b_{n+1}] \subset [a_n, b_n]$$
 $(n \in \mathbb{N}).$

Ekkor

$$\bigcap_{n=1}^{\infty} [a_n, b_n] := \bigcap_{n \in \mathbb{N}} [a_n, b_n] \neq \emptyset,$$

sőt az is igaz, hogy

$$\exists !\, c \in [a_n,b_n] \qquad (n \in \mathbb{N}).$$

Példa. Tetszőleges $n \in \mathbb{N}$ esetén legyen

$$\alpha_n := \left(1 + \frac{1}{n}\right)^n, \qquad \text{ill.} \qquad b_n := \left(1 + \frac{1}{n}\right)^{n+1} = \left(\frac{n+1}{n}\right)^{n+1}.$$

Ekkor az (a_n) és a (b_n) sorozat teljesíti teljesítik a Cantor-féle közöspont-tétel feltételeit, hiszen

• bármely $n \in \mathbb{N}$ indxre $a_{n+1} - a_n > 0$, $b_{n+1} - b_n < 0$, ui. egyrészt (a_n) monoton növekedő (vö. 1. $\boxed{\textbf{GY}}$), másrészt pedig minden $n \in \mathbb{N}$ indexre a mértani és a számtani közép közötti egyenlőtlenség következtében

$$\frac{1}{b_n} = 1 \cdot \left(\frac{n}{n+1}\right)^{n+1} < \left(\frac{1 + (n+1) \cdot \frac{n}{n+1}}{n+2}\right)^{n+2} = \left(\frac{1+n}{n+2}\right)^{n+2} = \left(\frac{n+1}{n+2}\right)^{n+2} = \frac{1}{b_{n+1}}.$$

$$\mathbf{a_n} = \left(1 + \frac{1}{n}\right)^n < \left(1 + \frac{1}{n}\right)^n \cdot \left(1 + \frac{1}{n}\right) = \left(1 + \frac{1}{n}\right)^{n+1} = \mathbf{b_n};$$

 $^{{}^3}$ Ha valamely $a,b\in\mathbb{R}$ esetén $a\le b$, akkor az $[a,b]:=\{x\in\mathbb{R}:\ a\le x\le b\}$ számhalmazt szokás **kompakt intervallum**nak vagy **korlátos és zárt intervallum**nak nevezni.

• ha $\epsilon \in \mathbb{R}$ tetszőleges és $n \in \mathbb{N}$ olyan, hogy $n > \frac{3}{\epsilon}$, akkor

$$b_n - a_n = \left(1 + \frac{1}{n}\right)^{n+1} - \left(1 + \frac{1}{n}\right)^n = \left(1 + \frac{1}{n}\right)^n \left(1 + \frac{1}{n} - 1\right) = \left(1 + \frac{1}{n}\right)^n \frac{1}{n} < \frac{3}{n} < \epsilon.$$

Így

$$\exists ! \ e \in \mathbb{R}: \qquad \left(1+\frac{1}{n}\right)^n < e < \left(1+\frac{1}{n}\right)^{n+1} \quad (n \in \mathbb{N}).$$

Megjegyezzük, hogy

1. mivel bármely $n \in \mathbb{N}$ indexre $\alpha_n < e < b_n$, azaz tetszőleges $n \in \mathbb{N}$ index esetén

$$\left(1+\frac{1}{n}\right)^n < e < \left(1+\frac{1}{n}\right)^{n+1},$$

ezért

$$2 \le \left(1 + \frac{1}{n}\right)^n < e < \left(1 + \frac{1}{6}\right)^7 = \frac{823543}{279936} < 3;$$

2. az e szám⁴ bevezetése nem így szokásos, hanem a mozgólépcső-elv felasználásával:

$$\left(1+\frac{1}{n}\right)^n\nearrow e\qquad (n\to\infty).$$

3. az

$$e_n := \left(1 + \frac{1}{n}\right)^n \qquad (n \in \mathbb{N})$$

sorozat első néhány tagja:

$$e_1 = 2;$$
 $e_2 = \frac{9}{4} = 2,25;$ $e_3 = \frac{64}{27} = 2,370;$ $e_4 = \frac{625}{256} = 2,44140625.$

Később látni fogjuk, hogy

4. nagy hiba lenne arra gondolni, hogy mivel

$$1+rac{1}{n}\longrightarrow 1 \quad (n\to\infty), \qquad \text{ez\'ert} \qquad \left(1+rac{1}{n}
ight)^n\longrightarrow 1^n=1 \quad (n\to\infty),$$

hiszen egyrészt a határérték független n-től, másrészt pedig a szorzás művelet és a határérték kapcso-

⁴A e-t Leonhard Euler (1707-1783) tiszteletére Euler-számnak is nevezik.

latára vonatkozó tétel nem használható, hiszen az

$$\left(1 + \frac{1}{n}\right)^n = \underbrace{\left(1 + \frac{1}{n}\right) \cdot \left(1 + \frac{1}{n}\right) \cdot \ldots \cdot \left(1 + \frac{1}{n}\right) \cdot \left(1 + \frac{1}{n}\right)}_{\text{n-szer}}$$

szorzatban a tényezők száma nem állandó, függ n-től.

5. belátható (később megmutatjuk), hogy e irracionális, sőt transzcendens szám.⁵

Feladat. Számítsuk ki az alábbi sorozatok határértékét!

$$1. \ \, x_n := \left(1 + \frac{1}{n}\right)^{n+1} \ \, (n \in \mathbb{N}); \quad 2. \ \, x_n := \left(1 - \frac{1}{n}\right)^n \ \, (n \in \mathbb{N}); \qquad 3. \ \, x_n := \left(1 + \frac{1}{n^2}\right)^n \ \, (n \in \mathbb{N});$$

$$4. \ x_n:=\left(1+\frac{1}{\sqrt{n}}\right)^n \ (n\in\mathbb{N}); \ 5. \ x_n:=\left(1-\frac{1}{\sqrt{n}}\right)^n \ (n\in\mathbb{N}).$$

Útm.

$$1. \ x_n = \left(1 + \frac{1}{n}\right)^n \cdot \left(1 + \frac{1}{n}\right) \longrightarrow e \cdot 1 = e \ (n \to \infty).$$

2. Világos, hogy

$$x_n \ = \ \left(\frac{n-1}{n}\right)^n = \frac{1}{\left(\frac{n}{n-1}\right)^n} = \frac{1}{\left(\frac{n-1+1}{n-1}\right)^n} = \frac{1}{\left(1+\frac{1}{n-1}\right)^n} =$$

$$= \frac{1}{\left(1+\frac{1}{n-1}\right)^{n-1}\cdot\left(1+\frac{1}{n-1}\right)} \longrightarrow \frac{1}{e\cdot 1} = \frac{1}{e} \quad (n\to\infty).$$

3. Mivel

$$\left(1+\frac{1}{n^2}\right)^{n^2}\longrightarrow e>0 \qquad (n\to\infty),$$

ezért

$$\left(1+\frac{1}{n^2}\right)^n=\sqrt[n]{\left(1+\frac{1}{n^2}\right)^{n^2}}\longrightarrow 1 \qquad (n\to\infty).$$

⁵Ez azt jelenti, hogy nincs olyan egész együtthatós polinom, aminek ez a szám gyöke lenne. A $\sqrt{2}$ például irracionális, de nem transzcendens, mert $\sqrt{2}$ megoldása az $x^2-2=0$ egyenletnek. Azokat a valós számokat, amelyek valamely egész együtthatós polinomnak a gyökei **algebrai számnak** nevezzük ($\sqrt{2}$ tehát algebrai szám).

4. A Bernoulli-egyenlőtlenséget alkalmazva azt kapjuk, hogy

$$\left(1+\frac{1}{\sqrt{n}}\right)^n \geq 1+\frac{n}{\sqrt{n}} = 1+\sqrt{n} \longrightarrow +\infty \quad (n\to\infty).$$

Innen a Sandwich-tétel felhasználásával $\lim(x_n) = +\infty$ következik.

5. Tetszőleges $2 \le n \in \mathbb{N}$ indexre

$$\begin{array}{ll} 0 & \leq & x_n = \left(\frac{\sqrt{n}-1}{\sqrt{n}}\right)^n = \frac{1}{\left(\frac{\sqrt{n}}{\sqrt{n}-1}\right)^n} = \frac{1}{\left(\frac{\sqrt{n}-1+1}{\sqrt{n}-1}\right)^n} = \frac{1}{\left(1+\frac{1}{\sqrt{n}-1}\right)^n} \overset{\text{Bernoulli}}{\leq} \\ & \leq & \frac{1}{1+\frac{n}{\sqrt{n}-1}} = \frac{1}{1+\frac{\sqrt{n}}{1-\frac{1}{1-\sqrt{n}}}} \longrightarrow 0 \quad (n\to\infty). \end{array}$$

Így a Sandwich-tétel következtében azt kapjuk, hogy $\lim(x_n) = 0$.

Tétel. Legyen (x_n) olyan sorozat, amelyre $\lim(x_n) \in \{-\infty, +\infty\}$. Ekkor fennáll a

$$\left(1+\frac{1}{\chi_n}\right)^{\chi_n}\longrightarrow e \qquad (n\to\infty).$$

határérték-reláció.

Biz.

1. lépés. Ha $x_n > 0 \quad (n \in \mathbb{N})$, akkor legyen

$$\mathcal{N} := \{ n \in \mathbb{N} : x_n > 1 \}$$
 és $y_n := [x_n]$ $(n \in \mathcal{N}).$

Ekkor $\lim(y_n) = +\infty$ és

$$y_n \le x_n \le y_n + 1$$
, ill. $\frac{1}{y_n} \ge \frac{1}{x_n} \ge \frac{1}{y_n + 1}$,

azaz

$$e \longleftarrow \left(1 + \frac{1}{y_n}\right)^{y_n} \cdot \left(1 + \frac{1}{y_n}\right) = \left(1 + \frac{1}{y_n}\right)^{y_n+1} \ge \left(1 + \frac{1}{x_n}\right)^{x_n} \ge \left(1 + \frac{1}{y_n+1}\right)^{y_n} =$$

$$= \left(1 + \frac{1}{y_n+1}\right)^{y_n+1} \cdot \left(1 + \frac{1}{y_n+1}\right)^{-1} \longrightarrow e$$

2. lépés. Ha $x_n < 0 \ (n \in \mathbb{N})$, akkor legyen

$$y_n := -x_n - 1$$
 $(n \in \mathbb{N}).$

Ekkor az $n \to \infty$ határátmenetben

$$\left(1+\frac{1}{x_n}\right)^{x_n}=\left(1-\frac{1}{y_n+1}\right)^{-y_n-1}=\left(\frac{y_n+1}{y_n}\right)^{y_n+1}=\left(1+\frac{1}{y_n}\right)^{y_n}\cdot\left(1+\frac{1}{y_n}\right)\longrightarrow e.\quad\blacksquare$$

Tétel. Legyen $A \in \mathbb{R}$, (x_n) olyan sorozat, amelyre $\lim(x_n) = +\infty$. Ekkor fennáll a

$$\left(1+\frac{A}{x_n}\right)^{x_n}\longrightarrow e^A \qquad (n\to\infty).$$

határérték-reláció.

Biz. Ha

- A = 0, akkor a tétel nyilvánvalóan igaz.
- Ha $A \neq 0$, akkor minden olyan $n \in \mathbb{N}$ esetén, amelyre $x_n > |A|$, fennáll az $1 + \frac{A}{x_n} > 0$ becslés, és így

$$\left(1+\frac{A}{x_n}\right)^{x_n}=\left[\left(1+\frac{1}{\frac{x_n}{A}}\right)^{\frac{x_n}{A}}\right]^A\longrightarrow e^A\quad (n\to\infty).\quad\blacksquare$$

Megjegyezzük, hogy az

$$\lim_{n \to +\infty} \left(1 + \frac{x}{n} \right)^n = e^x \qquad (x \in \mathbb{R})$$

határérték-relációnak fontos pénzügyi alkalmazása is van. Ha T forintot (kezdőtőkét) évi p%-os kamatra helyezünk el a bankban, akkor egy év után

$$T \cdot \left(1 + \frac{p}{100}\right)$$

forintot tőkénk lesz. Ha havi kamattal számítjuk az évi p%-os kamatot, akkor a tőke nagysága

$$T \cdot \left(1 + \frac{p}{12 \cdot 100}\right)^{12}$$

forint lesz egy év után. Megpróbálhatunk napi kamattal számolni, vagy akár még jobban növelni a kamatfizetési gyakoriságot. Ha a betett összegünk egy évben egyenletesen n-szer kamatozik p%-os évi kamattal,

akkor az év végén

$$T \cdot \left(1 + \frac{p}{n \cdot 100}\right)^n$$

forintot kapunk vissza. Elég nagy n esetén az előbbi képlet helyet használhatjuk az

$$T \cdot e^{p/100}$$

képletet, ami a sorozat határértéke. Ez olyan, mint ha a kamatfizetés technikailag minden időpillanatban történne. Ezért ezt **folytonos kamatozásnak** nevezik.

Feladat. Számítsuk ki az alábbi sorozatok határértékét!

1.
$$x_n := \left(\frac{6n-7}{6n+4}\right)^{3n+2} \quad (n \in \mathbb{N}_0);$$
 2. $x_n := \left(\frac{4n+3}{5n}\right)^{5n} \quad (n \in \mathbb{N});$

3.
$$x_n := \left(\frac{3n+1}{n+2}\right)^{2n+3} \quad (n \in \mathbb{N}_0).$$
 4. $x_n := \left(\frac{2n^2+3}{2n^2-2}\right)^{n^2-1} \quad (n \in \mathbb{N}).$

Útm.

1. Világos, hogy

$$x_n = \left(\frac{6n+4-11}{6n+4}\right)^{3n+2} = \left(1-\frac{11}{6n+4}\right)^{3n+2} = \sqrt{\left(1+\frac{-11}{6n+4}\right)^{6n+4}} \longrightarrow \sqrt{\frac{1}{e^{11}}} \quad (n\to\infty).$$

2. Mivel bármely $n \in \mathbb{N}$ esetén

$$\left(\frac{4n+3}{5n}\right)^n = \left(\frac{4}{5}\right)^n \cdot \left(\frac{n+3/4}{n}\right)^n,$$

ezért

$$x_n \longrightarrow 0 \cdot e^{3/4} = 0 \qquad (n \to \infty).$$

3. Mivel

$$\frac{3n+1}{n+2} \longrightarrow 3$$
 $(n \to \infty),$

ezért az $\epsilon:=1$ számhoz van olyan $N\in\mathbb{N}$ (küszöb)index, hogy bármely $N\leq n\in\mathbb{N}$ indexre

$$\frac{3n+1}{n+2}>2.$$

Következésképpen az ilyen n-ekre

$$x_n = \left(\frac{3n+1}{n+2}\right)^{2n+3} > 2^{2n+3} \longrightarrow +\infty \qquad (n \to \infty),$$

$$\lim(x_n) = +\infty$$

következik.

4. Világos, hogy az $n \to \infty$ határátmenetben

$$x_n = \left(\frac{2n^2 - 2 + 5}{2n^2 - 2}\right)^{n^2 - 1} = \left(1 + \frac{5}{2n^2 - 2}\right)^{n^2 - 1} = \sqrt{\left(1 + \frac{5}{2n^2 - 2}\right)^{2n^2 - 2}} \longrightarrow \sqrt{e^5}. \quad \blacksquare$$

A matematika egyes ágaiban (diszkrét matematika, differenciaegyenletek), de az informatikában is nagy jelentőséggel bírnak az olyan sorozatok, amelyek tagjait az "előttük lévő" tag(ok) ismeretében értelmezzük. Az ilyen sorozatokat szokás **rekurzív megadású sorozat**oknak nevezni.

Példák.

1. A legenda szerint Hanoiban egy kolostorban a lámák egy falapból felfelé kiálló három rudacska egyikére fűzve n = 64 darab különböző méretű, közepén lyukas korongot kaptak Buddhától. Legalul volt a legnagyobb, felette a többi, egyre kisebb és kisebb (vö. 4. ábra).

4. ábra. Buddha korongjai

Azt a feladatot adta nekik, hogy juttassák a korngokat valamelyik másik rudacskára úgy, hogy közben csak egyet tehetnek át és semelyiket sem szabad nála kisebbre helyezni. Mire befejezik eljön a világ vége.

Feladat. Határozzuk meg azoknak a lépéseknek a minimális l_n számát, amelyek n korong $(n \in \mathbb{N})$ átrakásához szükségesek!

Útm. Ha n = 1, akkor nyilván l_1 = 1. Ha n = 2, akkor ahhoz, hogy az első korongot átrakhassuk az első rudacskáról a másikra, előbb a felső korongot át kell tenni egy harmadikra. Ezután átrakhatjuk az első korongot a második rúdra és a tetejére a másik korongot. Eszerint tehát l_2 = 3. Hasonló módon három korong közül a legalsó átrakásához előbb a két felsőt kell áttenni a harmadik rúdra, amihez az előbbi gondolatmenet alapján l_2 = 3 áthelyezést kell végrehajtanunk. Ezután átrakhatjuk a legalsó korongot a második rúdra, majd ismét két korongot kell áthoznunk a harmadik rúdról a másodikra, újabb l_2 = 3 lépésben. Látható tehát, hogy

$$l_3 = 2 \cdot l_2 + 1 = 7$$
.

Ugyanilyen módon látható be, hogy

$$l_4 = 2 \cdot l_3 + 1 = 15,$$
 $l_5 = 2 \cdot l_4 + 1 = 31,$

és általában

$$l_n = 2 \cdot l_{n-1} + 1 \qquad (2 \le n \in \mathbb{N}). \tag{17}$$

Az (l_n) sorozat első néhány tagjának felírásával nem nehéz megsejteni, majd teljes indukcióval igazolni, hogy

$$l_n = 2^n - 1$$
 $(n \in \mathbb{N}).$

Így tehát

$$l_{64} = 18446744073709551615 > 1.8 \cdot 10^{19}$$

lépés szükséges 64 korongnak a fenti feltételek mellett az egyik rúdról a másikra való átpakolásához. Ha meggondoljuk, hogy l₆₄ másodperc 585 milliárd év körül van, és a Naprendszer kb. 4, 6 milliárd éves, akkor a világvégével kapcsolatos jóslat nem is annyira elképzelhetetlen.

Játék: Hanoi tornyai

 Leonardo Pisano – ismert nevén Fibonacci – olasz matematikusnak 1202-ben megjelent Liber Abaci című könyvében szerepel a következő

Feladat. Egy ivarérett nyúlpár minden hónapban egy új nyúlpárnak ad életet: egy hímnek és egy nősténynek. A nyulak két hónapos korukra válnak ivaréretté. Egy ivarérett nyúlpártól származó nemzetségnek mekkora lesz a létszáma egy év múlva?

5. ábra. Fibonacci nyulai

Útm. Kezdjük az összeszámlálást egy újszülött nyúlpárból kiindulva és tételezzük fel, hogy közben egyetlen nyúl sem pusztul el. Az első hónapban egyetlen pár nyulunk van, a másodikban szintén. A harmadik hónapban már nyilván két pár nyulunk lesz: az eredeti pár és ezeknek két hónapos korukban született újszülött párja. A negyedik hónapban az eredeti nyúlpár újabb nyúlpárnak ad életet, az elsőszülött ivadékaik még nem szülnek, így három nyúlpárunk lesz összesen. Az ötödik hónapban meglesz a negyedik hónap három nyúlpárja, valamint az újszülöttek, és ezek pontosan annyian lesznek, ahány nyúlpár a harmadik hónapban volt, hiszen a negyedik hónap újszülöttei még nem szülnek, de a harmadik hónap újszülöttei (az öregekkel együtt) már igen. E gondolatsort folytatva az n -edik hónapban lévő nyúlpárok F_n száma adódik egyrészt az (n-1)-edik hónapban meglévő nyúlpárok F_{n-1} számából, másrészt az újszülöttekből. Az újszülöttek száma viszont megegyezik az (n-2)-dik hónapban levő nyúlpárok számával, ugyanis pontosan azok fognak az n-edik hónapban szülni, amelyek (akár öreg, akár újszülött nyulak) az (n-2)-dik hónapban megvoltak.

A létszám alakulását a következő áblázat mutatja:

hónap	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.
megszületett párok:	0	1	1	2	3	5	8	13	21	34	55	89	144

Megjegyzések.

(a) Az F_n számokat **Fibonacci-számok**nak, az

$$F_0 := 0, \quad F_1 := 1, \quad F_n = F_{n-1} + F_{n-2} \qquad (2 \le n \in \mathbb{N}_0)$$
 (18)

rekurzív sorozatot **Fibonacci-sorozat**nak nevezzük. Az (F_n) sorozat tagjainak explicit alakja:

$$F_{n} = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^{n} - \left(\frac{1-\sqrt{5}}{2} \right)^{n} \right) \qquad (n \in \mathbb{N}_{0}).$$

(b) **Aranymetszés**nek nevezzük egy szakasz olyan kettéosztását, ahol a nagyobbik rész hossza úgy aránylik a kisebbik rész hosszához, mint a szakasz hossza a nagyobbik rész hosszához. Könnyen megmutatható, hogy egységnyi hosszú szakasz esetében ez az arány nem más, mint a

$$\lim \left(\frac{F_{n+1}}{F_n}\right)$$

határérték. Ha ui. ha a nagyobbik rész x, akkor egységnyi hosszú szakaszra:

$$\frac{1}{x} = \frac{x}{1-x}, \quad \text{amib\'ol} \quad x^2 + x - 1 = 0,$$

és ennek az egyenletnek egyetlen pozitív gyöke van:

$$x=\frac{-1+\sqrt{5}}{2},$$

amire

$$\frac{1}{x} = \frac{2}{\sqrt{5} - 1} = \frac{2}{\sqrt{5} - 1} \cdot \frac{\sqrt{5} + 1}{\sqrt{5} + 1} = \frac{2(\sqrt{5} + 1)}{4} = \frac{\sqrt{5} + 1}{2}.$$

Αz

$$u := \frac{1+\sqrt{5}}{2}, \quad \text{ill.} \quad v := \frac{1-\sqrt{5}}{2}$$

számokkal

$$\frac{F_{n+1}}{F_n} = \frac{u^{n+1} - v^{n+1}}{u^n - v^n} = \frac{u - v \cdot \left(\frac{v}{u}\right)^n}{1 - \left(\frac{v}{u}\right)^n} \longrightarrow \frac{u - 0}{1 - 0} = u \qquad (n \to \infty).6$$

3. Ha $\alpha, \alpha, \beta \in \mathbb{R}$, akkor az

$$x_1 := \alpha, \quad x_{n+1} := \alpha x_n + \beta \qquad (n \in \mathbb{N})$$
 (19)

⁶**HF**. Mutassuk meg, hogy fennáll a |v/u| < 1 egyenlőtlenség!

sorozat $\alpha = 1$ esetén **számtani sorozat**:

$$x_1 := a, \quad x_{n+1} := x_n + \beta \qquad (n \in \mathbb{N})$$

 $\beta = 0$ esetén pedig **mértani sorozat**:

$$x_1 := \alpha, \quad x_{n+1} := \alpha x_n \quad (n \in \mathbb{N}).$$

4. A Mézga-család a bankban az n = 0 időpontban K összegű kölcsönt vesz fel, amit időszakosan (havi vagy negyedéves vagy éppen éves időszakonként) törleszt. A törlesztés egy része a kamat, másik része a K tőkét csökkenti. Jelölje t_n az n-edik fizetés utáni tőketartozás nagyságát, az n-edik alkalommal befizetett összeget pedig jelölje b_n . Tegyük fel, hogy az egy periódusra eső p% kamatláb rögzített. Ekkor az (n+1)-edik periódus elteltével, azaz az (n+1)-edik fizetés megtörténte után a fennmaradó t_{n+1} tőketartozás összetevődik az n-edik periódus utáni t_n tőketartozásból, annak $t_n p/100$ egységkamatából, csökkentve ezek összegét a befizetett b_n összeggel:

$$t_{n+1} = t_n + t_n \cdot \frac{p}{100} - b_n,$$
 vagyis $t_{n+1} = \left(1 + \frac{p}{100}\right) \cdot t_n - b_n,$ $t_0 = K.$

Adott $k \in \mathbb{N}$ esetén k-lépéses rekurzióról beszélünk, ha a sorozat tagjait az előtte lévő k tag függvényében adjuk meg. Egylépéses rekurzó pl. a (17)-beli és a (19)-beli sorozat, kétlépéses rekurzió pl. a (18)-beli Fibonacci-sorozat. Az egylépéses rekurzió esetében a fentiket pontosítja a következő

Definíció. Legyen valamely $\mathcal{H} \neq \emptyset$ halmaz esetén adott az $f: \mathcal{H} \to \mathcal{H}$ függvény az $\alpha \in \mathcal{H}$ elem. Ekkor az

$$x_0 := a,$$
 $x_{n+1} := f(x_n)$ $(n \in \mathbb{N}_0)$

rekurzív összefüggésnek eleget tévő $(x_n): \mathbb{N}_0 \to \mathcal{H}$ sorozatot a **kezdőtagú rekurzív megadású sorozat**nak nevezzük.

Felmerül a kérdés, hogy adott $a \in \mathcal{H}$ pont, ill. $f : \mathcal{H} \to \mathcal{H}$ függvény esetén van-e ilyen sorozat. Teljes indukcióval belátható, hogy a válasz: igen, sőt pontosan egy ilyen sorozat van (vö. A Függelék).

Példa. Legyen $2 \le m \in \mathbb{N}$, $0 < A \in \mathbb{R}$, továbbá

$$\mathcal{H}:=(0,+\infty), \qquad f(t):=\frac{1}{m}\left((m-1)t+\frac{A}{t^{m-1}}\right) \quad (t\in\mathcal{H}).$$

Látható, hogy $f: \mathcal{H} \to \mathcal{H}$, ui. a mértani és a számtani közép közötti egyenlőtlenség következtében bármely

 $t \in \mathcal{H}$ esetén

$$f(t) = \frac{\underbrace{\overset{1}{t} + \ldots + \overset{m-1}{t} + \overset{A}{t}}_{t} + \underbrace{\overset{A}{t^{m-1}}}_{t}}_{m} \ge \sqrt[m]{\underbrace{\overset{1}{t} \cdot \ldots \cdot \overset{m-1}{t}}_{t} \cdot \frac{A}{t^{m-1}}} = \sqrt[m]{t^{m-1} \cdot \overset{A}{t}_{m-1}} = \sqrt[m]{A} > 0,$$

azaz f(t)>0. Tehát tetszőleges $\alpha,A\in(0,+\infty)$ esetén pontosan egy olyan $(x_n):\mathbb{N}_0\to(0,+\infty)$ sorozat van, amelyre

$$x_0 = \alpha,$$
 $x_{n+1} = f(x_n) = \frac{1}{m} \left((m-1)x_n + \frac{A}{x_n^{m-1}} \right) \quad (n \in \mathbb{N}_0).$ (20)

Az alábbi feladatban megmutatjuk, hogy a (20) sorozat konvergens.

Feladat. Igazoljuk, hogy ha $0 < A \in \mathbb{R}$, akkor a (20)-beli sorozat konvergens, majd számítsuk ki határértékét!

Útm.

- **1. lépés.** A sorozat értelmezéséből teljes indukcióval következik (**HF**), hogy bármely $n \in \mathbb{N}_0$ indexre $x_n > 0$.
- **2. lépés.** Megmutatjuk, hogy a sorozat kvázi-monoton fogyó. Valóban, bármely $n \in \mathbb{N}_0$ indexre

$$\frac{x_{n+1}}{x_n} = \frac{1}{m} \cdot \left(m - 1 + \frac{A}{x_n^m}\right) = 1 - \frac{1}{m} + \frac{1}{m} \cdot \frac{A}{x_n^m} = 1 - \frac{1}{m} \cdot \left(1 - \frac{A}{x_n^m}\right),$$

így az

$$\frac{x_{n+1}}{x_n} \le 1 \quad \Longleftrightarrow \quad A \le x_n^m \qquad (n \in \mathbb{N})$$

ekvivalencia igaz voltát, illetve a mértani és a számtani közép közötti egyenlőtlenséget kihasználva azt kapjuk, hogy

$$x_{n+1}^m = \left(\frac{\overset{1}{\overset{}\overset{}\smile}{x_n} + \ldots + \overset{\overset{m-1}{\overset{}\smile}{x_n}} + \frac{A}{x_n^{m-1}}}{m}\right)^m \geq \overset{1}{\overset{}\smile}{x_n} \cdot \ldots \cdot \overset{\overset{m-1}{\overset{}\smile}{x_n}}{\overset{}\smile} \cdot \frac{A}{x_n^{m-1}} = A \qquad (n \in \mathbb{N}_0).$$

3. lépés. A fentiek azt jelentik, hogy (x_n) konvergens. Legyen $\beta := \lim(x_n)$. Ekkor a fentiek következtében $0 < A \le \beta^m$, és így $\beta > 0$. Az is igaz továbbá, hogy

$$\beta = \lim_{n \to \infty} (x_n) = \lim_{n \to \infty} (x_{n+1}) = \lim_{n \to \infty} \left(\frac{1}{m} \left((m-1)x_n + \frac{A}{x_n^{m-1}} \right) \right) = \frac{1}{m} \left((m-1)\beta + \frac{A}{\beta^{m-1}} \right),$$

azaz

$$m\beta = m\beta - \beta + \frac{A}{\beta^{m-1}}$$

Innen áterendezéssel azt kapjuk, hogy $\beta^m = A$.

Rekurzív sorozatok határértékét sok esetben bizonyos leképezések fixpontjaként kaphatjuk meg. Ezzel kapcsolatban utalunk a numerikus matematikában igen fontos szerepet játszó fogalmakra, ill. tételekre (vö. B Függelék).

Megjegyzzük, hogy az m := 2, A := 2, ill. $x_0 := 2$ esetben a (20) rekurzió

$$x_0 := 2,$$
 $x_{n+1} := \frac{1}{2} \cdot \left(x_n + \frac{2}{x_n} \right)$ $(n \in \mathbb{N}_0)$

alakú. Ezt a sorozatot szokás Heron-féle vagy babiloni gyökkeresési algoritmusnak nevezni.

Feladat. Vizsgáljuk meg a következő sorozatokat konvergencia szempontjából!

1.
$$a \in \mathbb{R}, x_0 := a, x_{n+1} := \frac{2x_n}{n+1} (n \in \mathbb{N}_0);$$

2.
$$x_0 := 2$$
, $x_{n+1} := \frac{2x_n}{x_n + 1}$ $(n \in \mathbb{N}_0)$;

3.
$$x_0 := 6$$
, $x_{n+1} := 5 - \frac{6}{x_n}$ $(n \in \mathbb{N}_0)$;

4.
$$x_0 := 0$$
, $x_{n+1} := \frac{1 + x_n^2}{2}$ $(n \in \mathbb{N}_0)$;

5.
$$x_n := \sqrt{2\sqrt{2\sqrt{2\dots}}} \ (n \in \mathbb{N})$$
 és itt n darab gyökvonás szerepel;

7.
$$\alpha \in [0, +\infty)$$
, $x_1 := 0$, $x_{n+1} := \sqrt{\alpha + x_n}$ $(n \in \mathbb{N})$;

8.
$$x_0 := 0$$
, $x_{n+1} := \alpha + x_n^2$ $(n \in \mathbb{N}_0; 0 \le \alpha \in \mathbb{R})$;

9.
$$x_0 := 3$$
, $x_{n+1} := 3 - \frac{2}{x_n}$ $(n \in \mathbb{N}_0)$;

10.
$$x_0 := 0$$
, $x_{n+1} := \frac{2}{1 + x_n}$ $(n \in \mathbb{N}_0)$.

Útm.

1. A rekurziót "kibontva" könnyen megsejthető, hogy

$$x_n = \frac{2^n}{n!} \cdot \alpha$$
 $(n \in \mathbb{N}_0),$

hiszen

$$x_1 = \frac{2\alpha}{1}, \quad x_2 = \frac{4\alpha}{1 \cdot 2}, \quad x_3 = \frac{8\alpha}{1 \cdot 2 \cdot 3}, \quad x_4 = \frac{16\alpha}{1 \cdot 2 \cdot 3 \cdot 4}, \quad x_5 = \frac{32\alpha}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}.$$

Ezután ezt az összefüggést a következőképpen igazoljuk. Ha

- (a) a = 0, akkor tetszőleges $n \in \mathbb{N}_0$ esetén $x_n = 0$, hiszen
 - n = 0 esetén $x_0 = 0$, továbbá
 - $\bullet \,$ ha valamely $n \in \mathbb{N}_0$ esetén $x_n = 0,$ akkor

$$x_{n+1} = \frac{2x_n}{n+1} = \frac{2 \cdot 0}{n+1} = 0.$$

(b) $a \neq 0$, akkor persze bármely $n \in \mathbb{N}_0$ esetén $x_n \neq 0$ (**HF.** teljes indukcióval igazolni!), és így

$$\frac{x_{n+1}}{x_n} = \frac{\frac{2^{n+1}}{(n+1)!} \cdot \alpha}{\frac{2^n}{n!} \cdot \alpha} = \frac{2}{n+1}, \quad \text{azaz} \quad x_{n+1} = \frac{2x_n}{n+1} \quad (n \in \mathbb{N}_0).$$

Tudjuk, hogy $0 \neq a \in \mathbb{R}$ esetén

$$\lim \left(\frac{|x_{n+1}|}{|x_n|}\right) = \lim \left(\frac{2}{n+1}\right) = 0 < 1,$$

következésképpen (vö. 5. GY)

$$\lim (x_n) = \lim (|x_n|) = 0.$$

2. Világos (**HF.** teljes indukcióval igazolni!), hogy

$$x_n > 0$$
 $(n \in \mathbb{N}_0)$.

A sorozat első néhány tagja:

$$x_0 = 2$$
, $x_1 = \frac{4}{3} = 1.3$, $x_2 = \frac{8}{7} = 1.142857$.

Az (x_n) sorozat pontosan akkor monoton csökkenő, ha

$$x_n - x_{n+1} = x_n - \frac{2x_n}{x_n + 1} = x_n \cdot \frac{x_n - 1}{x_n + 1} \ge 0$$
 $(n \in \mathbb{N}_0),$

azaz, ha fennáll az

$$x_n \ge 1$$
 $(n \in \mathbb{N}_0)$

egyenlőtlenség. Ez viszont igaz, ui.

- $x_0 = 2 \ge 1$;
- ha valamely $n \in \mathbb{N}_0$ esetén $x_n \ge 1$, akkor

$$x_{n+1} = \frac{2x_n}{x_n + 1} = \frac{2}{1 + \frac{1}{x_n}} \ge \frac{2}{1 + \frac{1}{1}} = 1$$
 $(n \in \mathbb{N}_0).$

Az (x_n) sorozat tehát monoton csökkenő, alulról korlátos, így konvergens is. Legyen $A := \lim(x_n)$. Az

$$x_{n+1} := \frac{2x_n}{x_n + 1} \qquad (n \in \mathbb{N}_0)$$

rekurzív összefüggésben az $n \to \infty$ határátmenet elvégzése után azt kapjuk, hogy

$$A = \frac{2A}{A+1}$$
, azaz $A(A-1) = 0$.

Világos, hogy A = 0 nem lehet a sorozat határértéke, ezért A = 1.

3. **1. lépés.** Ha az (x_n) sorozat konvergens, és $A := \lim(x_n)$, akkor $\lim(x_{n+1}) = A$, és így

$$A = 5 - \frac{6}{A}$$
 \implies $A^2 - 5A + 6 = 0$ \implies $A = \frac{5 \pm \sqrt{25 - 24}}{2} \in \{2, 3\}.$

2. lépés. Mivel a kezdőtag: $x_0 = 6$, kézenfekvőnek tűnik belátni azt, hogy

$$x_n > 3$$
 $(n \in \mathbb{N}_0)$.

Valóban,

- n = 0 esetén $x_0 = 6 > 3$;
- ha valamely $n \in \mathbb{N}_0$ esetén $x_n > 3$, akkor

$$x_{n+1} = 5 - \frac{6}{x_n} > 5 - \frac{6}{3} = 5 - 2 = 3.$$

3. lépés. Megmutatjuk, hogy az (x_n) sorozat szigorúan monoton csökkenő. Ezt teljes is indukcióval

igazoljuk. Világos, hogy

• n = 0 esetén

$$x_0 = 6 > 4 = x_1$$
;

• ha valamely $n \in \mathbb{N}_0$ esetén $3 < x_{n+1} < x_n$, akkor

$$x_{n+2} = 5 - \frac{6}{x_{n+1}} > 5 - \frac{6}{x_n} = x_{n+1}.$$

4. lépés. Mivel a sorozat (szigorúan) monoton csökkenő és alulról korlátos, ezért konvergens. A fentiek következtáben tehát (x_n) konvergens és

$$\lim(x_n)=3$$
.

4. A sorozat első néhány tagját meghatározva –

$$x_0 = 0,$$
 $x_1 = \frac{1}{2},$ $x_2 = \frac{5}{8}$

- az a "gyanúnk" támad, hogy az (x_n) sorozat szigorúan monoton növekedő. Ezt teljes indukcióval igazoljuk. Mivel

$$x_0 = 0 < \frac{1}{2} = x_1,$$

ezért csak azt kell megmutatnunk, hogy ha valamilyen $n \in \mathbb{N}_0$ mellett

$$0 < \chi_n < \chi_{n+1}$$

akkor 0 $\leq x_{n+1} < x_{n+2}$ is igaz. Valóban, 0 $\leq x_n < x_{n+1}$ -ből $x_n^2 < x_{n+1}^2$, és így

$$1 + x_n^2 < 1 + x_{n+1}^2$$
, azaz $x_{n+1} = \frac{1 + x_n^2}{2} < \frac{1 + x_{n+1}^2}{2} = x_{n+2}$

következik. Tudjuk, hogy ha egy monoton növekedő sorozat felülről korlátos, akkor konvergens és

$$lim(x_n)=sup\{x_n\in\mathbb{R}:\ n\in\mathbb{N}_0\}.$$

Azt kellene tehát belátni, hogy egy alkalmas $A \in \mathbb{R}$ számmal $x_n \leq A$ ($n \in \mathbb{N}_0$). Egy ilyen A "megsejtésére" a következő gondolatmenetet alkalmazhatjuk: ha $x_n \leq A$ ($n \in \mathbb{N}_0$) valamilyen A-ra fenáll, akkor A helyébe $\lim(x_n)$ is írható. Tegyük fel tehát, hogy (x_n) konvergens és legyen $A := \lim(x_n)$; ekkor $\lim(x_{n+1}) = A$, így

$$\lim\left(\frac{1+x_n^2}{2}\right)=\frac{1+A^2}{2}.$$

Következésképpen az (x_n) -et meghatározó rekurzív összefüggés miatt

$$A = \frac{1+A^2}{2}$$
 \iff $A^2 - 2A + 1 = 0$ \iff $(A-1)^2 = 0$,

amiből A=1 adódik. Lássuk be tehát, hogy fennáll az $x_n \leq 1$ $(n \in \mathbb{N}_0)$ becslés. Ezt újból teljes indukcióval bizonyítjuk: $x_0=0 \leq 1$ triviálisan igaz; ha pedig $x_n \leq 1$ fennáll valamilyen $\mathbb{N}_0 \ni n$ -re, akkor

$$x_{n+1} = \frac{1 + x_n^2}{2} \le 1.$$

Összefoglalva tehát, az (x_n) sorozat konvergens és $\lim(x_n) = 1$.

5. A sorozat első néhány tagját meghatározva:

$$x_1 = \sqrt{2},$$
 $x_2 = \sqrt{2\sqrt{2}} = \sqrt[4]{2}\sqrt{2},$ $x_3 = \sqrt{2\sqrt{2\sqrt{2}}}$

látható, hogy

$$x_n = \sqrt{\ldots \sqrt{2\sqrt{2\sqrt{2}}}} \qquad (n \in \mathbb{N}),$$

azaz

$$x_1:=\sqrt{2}, \qquad x_{n+1}:=\sqrt{2x_n} \quad (n\in\mathbb{N}).$$

Az a "gyanúnk" támad, hogy az (x_n) sorozat szigorúan monoton növekedő. Ezt teljes indukcióval igazoljuk. Mivel

$$x_1 = \sqrt{2} < \sqrt[4]{2}\sqrt{2} = x_2,$$

ezért csak azt kell megmutatnunk, hogy ha valamilyen $n \in \mathbb{N}$ mellett

$$0 < x_n < x_{n+1}$$
, akkor $0 < x_{n+1} < x_{n+2}$

is igaz. Valóban, a 0 < $x_n < x_{n+1}$ egyenlőtlenségpárból $2x_n < 2x_{n+1}$ és így

$$\sqrt{2x_n} < \sqrt{2x_{n+1}},$$
 azaz $x_{n+1} = \sqrt{2x_n} < \sqrt{2x_{n+1}} = x_{n+2}$

következik. Tudjuk, hogy ha egy monoton növekedő sorozat felülről korlátos, akkor konvergens és

$$\lim(x_n) = \sup\{x_n \in \mathbb{R} : n \in \mathbb{N}\}.$$

Azt kellene tehát belátni, hogy egy alkalmas $A \in \mathbb{R}$ számmal $x_n \leq A$ ($n \in \mathbb{N}$). Egy ilyen A "megsejtésére" a következő gondolatmenetet alkalmazhatjuk: ha $x_n \leq A$ valamilyen A-ra fenáll, akkor A helyébe $\lim(x_n)$ is írható. Tegyük fel tehát, hogy (x_n) konvergens és legyen $A := \lim(x_n)$;

ekkor

$$\lim(x_{n+1}) = A, \qquad \lim(\sqrt{2x_n}) = \sqrt{2A}.$$

Következésképpen az (x_n) -et meghatározó rekurzív összefüggés miatt $A = \sqrt{2A}$, amiből $A \in \{0; 2\}$ adódik. Mivel $0 < x_n$ $(n \in \mathbb{N})$ és (x_n) szigorúan monoton növekedő, ezért az A = 0 eset nem lehetséges, legfeljebb csak A = 2. Lássuk be tehát, hogy ezzel az A-val teljesül az

$$x_n \le A$$
 $(n \in \mathbb{N})$

becslés. Ezt újból teljes indukcióval bizonyítjuk: $x_1 = \sqrt{2} \le 2 = A$ triviálisan igaz; ha pedig $x_n \le A$ fennáll valamilyen $\mathbb{N} \ni n$ -re, akkor

$$x_{n+1} = \sqrt{2x_n} \le \sqrt{2A} = A.$$

Összefoglalva tehát, az (x_n) sorozat konvergens és $\lim(x_n) = 2$. Megjegyzések.

(a) A sorozat első néhány

$$\begin{aligned} x_1 &= \sqrt{2} = 2^{\frac{1}{2}} = 2^{1-\frac{1}{2}}, \qquad x_2 &= \sqrt{2\sqrt{2}} = \sqrt{\sqrt{8}} = \sqrt[4]{8} = 2^{\frac{3}{4}} = 2^{1-\frac{1}{4}}, \\ x_3 &= \sqrt{2\sqrt{2\sqrt{2}}} = \sqrt{2\sqrt[4]{8}} = \sqrt[8]{128} = 2^{\frac{7}{8}} = 2^{1-\frac{1}{8}} \end{aligned}$$

tagjának meghatározásával sejthető, hogy

$$x_n=2^{1-\frac{1}{2^n}} \qquad (n\in \mathbb{N}),$$

a mi teljes inducióval könnyen igazolható. Valóban,

• n = 1 esetén

$$x_1 = \sqrt{2} = 2^{\frac{1}{2}} = 2^{1 - \frac{1}{2^1}};$$

• ha pedig valamely $n \in \mathbb{N}$ esetén

$$x_n = 2^{1-\frac{1}{2^n}},$$

akkor

$$x_{n+1} = \sqrt{2x_n} = \sqrt{2 \cdot 2^{1 - \frac{1}{2^n}}} = 2^{\frac{2 - \frac{1}{2^n}}{2}} = 2^{1 - \frac{1}{2^{n+1}}}.$$

(b) Mivel

$$\lim \left(\sqrt[2^n]{\frac{1}{2}}\right) = \lim \left(\sqrt[n]{\frac{1}{2}}\right) = 1,$$

ezért

$$x_n = 2^{1-\frac{1}{2^n}} = 2 \cdot \sqrt[2^n]{\frac{1}{2}} \longrightarrow 2 \cdot 1 = 2 \qquad (n \to \infty)$$

6. A sorozat első néhány tagját meghatározva:

$$x_1 = \sqrt{2}, \qquad x_2 = \sqrt{2 + \sqrt{2}}, \qquad x_3 = \sqrt{2 + \sqrt{2 + \sqrt{2}}}$$

látható, hogy

$$x_n = \sqrt{\ldots \sqrt{2 + \sqrt{2 + \sqrt{2}}}} \qquad (n \in \mathbb{N}),$$

azaz

$$x_1:=\sqrt{2}, \qquad x_{n+1}:=\sqrt{2+x_n} \quad (n\in\mathbb{N}).$$

Az a "gyanúnk" támad, hogy az (x_n) sorozat szigorúan monoton növekedő. Ezt teljes indukcióval igazoljuk. Mivel

$$\sqrt{2} < \sqrt{2 + \sqrt{2}} \qquad \Longleftrightarrow \qquad 2 < 2 + \sqrt{2},$$

így

$$x_1=\sqrt{2}<\sqrt{2+\sqrt{2}}=x_2,$$

ezért csak azt kell megmutatnunk, hogy ha valamilyen $\mathfrak{n} \in \mathbb{N}$ mellett

$$0 < x_n < x_{n+1}$$
, akkor $0 < x_{n+1} < x_{n+2}$

is igaz. Valóban, az $0 < x_n < x_{n+1}$ egyenlőtlenségpárból $2 + x_n < 2 + x_{n+1}$ és így

$$\sqrt{2+x_n} < \sqrt{2+x_{n+1}},$$
 azaz $x_{n+1} = \sqrt{2+x_n} < \sqrt{2+x_{n+1}} = x_{n+2}$

következik. Tudjuk, hogy ha egy monoton növekedő sorozat felülről korlátos, akkor konvergens és

$$\lim(x_n) = \sup\{x_n \in \mathbb{R} : n \in \mathbb{N}\}.$$

Azt kellene tehát belátni, hogy egy alkalmas $A \in \mathbb{R}$ számmal $x_n \leq A$ ($n \in \mathbb{N}$). Egy ilyen A "megsejtésére" a következő gondolatmenetet alkalmazhatjuk: ha $x_n \leq A$ valamilyen A-ra fenáll, akkor A helyébe $\lim(x_n)$ is írható. Tegyük fel tehát, hogy (x_n) konvergens és legyen $A := \lim(x_n)$; ekkor

$$\lim(x_{n+1}) = A, \qquad \lim(\sqrt{2 + x_n}) = \sqrt{2 + A}.$$

Következésképpen az (x_n) -et meghatározó rekurzív összefüggés miatt $A = \sqrt{2+A}$, amiből $A \in \{-1; 2\}$ adódik. Mivel $0 < x_n \ (n \in \mathbb{N})$ és (x_n) szigorúan monoton növekedő, ezért az A = -1

eset nem lehetséges, legfeljebb csak A = 2. Lássuk be tehát, hogy ezzel az A-val teljesül az

$$x_n \leq A$$
 $(n \in \mathbb{N})$

becslés. Ezt újból teljes indukcióval bizonyítjuk: $x_1 = \sqrt{2} \le 2 = A$ triviálisan igaz; ha pedig $x_n \le A$ fennáll valamilyen $\mathbb{N} \ni n$ -re, akkor

$$x_{n+1} = \sqrt{2 + x_n} \le \sqrt{2 + A} = A.$$

Összefoglalva tehát, az (x_n) sorozat konvergens és $\lim(x_n) = 2$.

Megjegyzések.

(a) Ha tudnánk, mi a cos, ill. a π jelentése, akkor elmondhatnánk, hogy

$$x_1 = \sqrt{2} \qquad \qquad = 2\cos\left(\frac{\pi}{4}\right),$$

$$x_2 = \sqrt{2+x_1} = \sqrt{2+2\cos\left(\frac{\pi}{4}\right)} = \sqrt{2\left[1+\cos\left(\frac{\pi}{4}\right)\right]} = 2\cos\left(\frac{\pi}{8}\right),$$

$$x_3 = \sqrt{2+x_1} = \sqrt{2+2\cos\left(\frac{\pi}{8}\right)} = \sqrt{2\left[1+\cos\left(\frac{\pi}{8}\right)\right]} = 2\cos\left(\frac{\pi}{16}\right),$$

hiszen

$$\forall \alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] : \qquad \boxed{1 + \cos(\alpha)} = 1 + \cos\left(2 \cdot \frac{\alpha}{2}\right) = \boxed{2\cos^2\left(\frac{\alpha}{2}\right)}.$$

Így, ha valamely $2 \le n \in \mathbb{N}$ esetén

$$x_{n-1}=2\cos\left(\frac{\pi}{2^n}\right),\,$$

akkor

$$\boxed{\mathbf{x}_{n}} = \sqrt{2 + \mathbf{x}_{n-1}} = \sqrt{2 + 2\cos\left(\frac{\pi}{2^{n}}\right)} = \boxed{2\cos\left(\frac{\pi}{2^{n+1}}\right)} \qquad (n \in \mathbb{N}).$$

(b) Ha tudnánk, hogy a cos függvény folytonos, és ismernénk az átviteli elvet, akkor a következő kijelentést tehetnénk:

$$\lim_{n\to\infty}(x_n)=2\cos\left(\lim_{n\to\infty}\frac{\pi}{2^{n+1}}\right)=2\cos(0)=2\cdot 1=2.$$

7. Világos (**HF.** teljes indukcióval igazolni!), hogy $\alpha=0$ esetén $x_n=0$ ($n\in\mathbb{N}$), így $\lim (x_n)=0$.

Tegyük fel most, hogy $\alpha > 0$ és határozzuk meg a sorozat első néhány tagját! Mivel

$$0<\sqrt{\alpha}<\sqrt{\alpha+\sqrt{\alpha}}, \qquad \text{azaz} \qquad x_1< x_2< x_3,$$

így az a "gyanúnk" támad, hogy az (x_n) sorozat szigorúan monoton nővekedő. Ezt teljes indukcióval igazoljuk. Lévén, hogy $x_1=0<\sqrt{\alpha}=x_2$, ezért csak azt kell megmutatnunk, hogy ha valamilyen $n\in\mathbb{N}$ mellett $x_n< x_{n+1}$, akkor $x_{n+1}< x_{n+2}$ is igaz. Valóban, $x_n< x_{n+1}$ -ből $\alpha+x_n<\alpha+x_{n+1}$ és így

$$x_{n+1} = \sqrt{\alpha + x_n} < \sqrt{\alpha + x_{n+1}} = x_{n+2}$$

következik. Tudjuk, hogy ha egy monoton növekedő sorozat felülről korlátos, akkor konvergens. Teljes indukcióval igazoljuk, hogy (x_n) felülről korlátos. Olyan $K \in \mathbb{R}$ számot kellene keresni, amelyre $x_1 < K$ és

$$x_n < K \quad \Longrightarrow \quad x_{n+1} < K \qquad (n \in \mathbb{N})$$

teljesül. Ehhez az

$$x_{n+1} = \sqrt{\alpha + x_n} < \sqrt{\alpha + K}$$

egyenlőtlenség alapján – elég, ha

$$\sqrt{\alpha + K} < K$$

fennáll. Ez a feltétel az

$$\alpha + K < K^2$$
, azaz az $\alpha < K^2 - K$

alakba írható, így a

$$K := 1 + \sqrt{\alpha}$$

választás megfelelő. A sorozat tehát konvergens. Legyen $A := \lim(x_n)$, ekkor

$$\alpha = \lim(x_{n+1}) = \sqrt{\alpha + A}$$
,

ahonnan $\alpha > 0$ miatt

$$A = \frac{1 + \sqrt{1 + 4\alpha}}{2}$$

következik.

Megjegyzés. A sorozat n-edik tagjának és határértékének eltérésére a következő, ún. hibabecslést

kapjuk:

$$\begin{aligned} \left| x_{n} - A \right| &= \left| \sqrt{\alpha + x_{n-1}} - \sqrt{\alpha + A} \right| = \left| \sqrt{\alpha + x_{n-1}} - \sqrt{\alpha + A} \right| \cdot \frac{\sqrt{\alpha + x_{n-1}} + \sqrt{\alpha + A}}{\sqrt{\alpha + x_{n-1}} + \sqrt{\alpha + A}} = \\ &= \frac{\left| x_{n-1} - A \right|}{\sqrt{\alpha + x_{n-1}} + \sqrt{\alpha + A}} < \frac{\left| x_{n-1} - A \right|}{\sqrt{\alpha + A}} = \frac{\left| x_{n-1} - A \right|}{A} < \\ &< \frac{\left| x_{n-2} - A \right|}{A^{2}} < \dots < \frac{\left| x_{1} - A \right|}{A^{n}} = \frac{1}{A^{n-1}}. \end{aligned}$$

8. Világos (**HF.** teljes indukcióval igazolni!), hogy ha $\alpha = 0$, akkor bármel $n \in \mathbb{N}_0$ indexre $x_n = 0$, így $\lim (x_n) = 0$. Tegyük fel, hogy $\alpha > 0$. A sorozat első néhány tagját meghatározva:

$$x_1 = \alpha < \alpha + \alpha^2 = x_2$$

az a "gyanúnk" támad, hogy az (x_n) sorozat szigorúan monoton növekedő. Ezt teljes indukcióval igazoljuk. Mivel $x_0=0<\alpha=x_1$, ezért csak azt kell megmutatnunk, hogy ha valamilyen $n\in\mathbb{N}_0$ mellett $0< x_n < x_{n+1}$, akkor $x_{n+1} < x_{n+2}$ is igaz. Valóban, $x_n < x_{n+1}$ -ből

$$0 < x_n^2 < x_{n+1}^2$$
 és így $x_{n+1} = \alpha + x_n^2 < \alpha + x_{n+1}^2 = x_{n+2}$

következik. Tudjuk, hogy ha egy monoton növekedő sorozat felülről korlátos, akkor konvergens és

$$\lim(x_n) = \sup\{x_n \in \mathbb{R} : n \in \mathbb{N}_0\}.$$

Azt kellene tehát belátni, hogy egy alkalmas $A \in \mathbb{R}$ számmal $x_n < A$ ($n \in \mathbb{N}_0$). Egy ilyen A "megsejtésére" a következő gondolatmenetet alkalmazhatjuk: ha $x_n < A$ ($n \in \mathbb{N}_0$) valamilyen A-ra fenáll, akkor A helyébe $\lim(x_n)$ is írható. Tegyük fel tehát, hogy (x_n) konvergens és legyen $A := \lim(x_n)$; ekkor

$$\lim(x_{n+1}) = A$$
, $\lim(\alpha + x_n^2) = \alpha + A^2$.

Következésképpen az (x_n) -et meghatározó rekurzív összefüggés miatt

$$A = \alpha + A^2$$
,

amiből A-ra

$$A=\frac{1\pm\sqrt{1-4\alpha}}{2}$$

adódik. Nyilvánvaló, hogy

$$A \in \mathbb{R} \qquad \Longleftrightarrow \qquad \alpha \leq \frac{1}{4}.$$

Mivel (x_n) szigorúan monoton növekedő és $\lim(x_n)$ az

$$\{x_n \in \mathbb{R} : n \in \mathbb{N}_0\}$$

halmaz legkisebb felső korlátja, ezért a fenti A-k esetén csak az

$$A = \frac{1 - \sqrt{1 - 4\alpha}}{2}$$

érték jön szóba. Lássuk be tehát, hogy ezzel az A-val teljesül az $x_n \le A$ $(n \in \mathbb{N}_0)$ becslés. Ezt újból teljes indukcióval bizonyítjuk:

$$x_0 = 0 < \frac{1 - \sqrt{1 - 4\alpha}}{2} = A$$

triviálisan igaz. Ha pedig $x_n \leq A$ fennáll valamilyen $\mathbb{N}_0 \ni n$ -re, akkor

$$x_{n+1} = \alpha + x_n^2 \le \alpha + A^2 = A$$
.

Összefoglalva tehát, $\alpha \leq \frac{1}{4}$ esetén az (x_n) sorozat konvergens és

$$lim(x_n) = \frac{1 - \sqrt{1 - 4\alpha}}{2}.$$

Megjegyezzük, hogy az $\alpha \in \left(\frac{1}{4}, +\infty\right)$ esetben (x_n) nem kornvergens, így (szigorú) monotonitása miatt nem is korlátos, következésképen $\lim(x_n) = +\infty$.

9. **1. lépés.** Ha az (x_n) sorozat konvergens, és $\alpha:=\lim(x_n)$, akkor $\lim(x_{n+1})=\alpha$, és így

$$\alpha = 3 - \frac{2}{\alpha}$$
 \Longrightarrow $\alpha^2 - 3\alpha + 2 = 0$ \Longrightarrow $\alpha = \frac{3 \pm \sqrt{9 - 8}}{2} \in \{2, 1\}.$

2. lépés. Mivel a kezdőtag: $x_0 = 3$, kézenfekvőnek tűnik belátni azt, hogy

$$x_n > 2$$
 $(n \in \mathbb{N}_0)$.

Valóban,

- n = 0 esetén $x_0 = 3 > 2$;
- ha valamely $n \in \mathbb{N}_0$ esetén $x_n > 2$, akkor

$$x_{n+1} = 3 - \frac{2}{x_n} > 3 - \frac{2}{2} = 3 - 1 = 2.$$

3. lépés. Megmutatjuk, hogy az (x_n) sorozat szigorúan monoton csökkenő. Ezt teljes is indukcióval igazoljuk. Világos, hogy

•
$$n = 0$$
 esetén

$$x_0 = 3 > \frac{7}{3} = x_1;$$

• ha valamely $n \in \mathbb{N}_0$ esetén $2 < x_{n+1} < x_n$, akkor

$$x_{n+2} = 3 - \frac{2}{x_{n+1}} > 3 - \frac{2}{x_n} = x_{n+1}.$$

4. lépés. Mivel a sorozat (szigorúan) monoton csökkenő és alulról korlátos, ezért konvergens. A fentiek következtáben tehát (a_n) konvergens és

$$\lim(x_n)=2$$
.

Megjegyzés. A sorozat első néhány

$$x_1 = 3 - \frac{2}{3} = \frac{7}{3}, \quad x_2 = 3 - \frac{2}{\frac{7}{3}} = \frac{15}{7}, \quad x_3 = 3 - \frac{2}{\frac{15}{7}} = \frac{31}{15}, \quad x_4 = 3 - \frac{2}{\frac{31}{15}} = \frac{63}{31}, \quad x_5 = 3 - \frac{2}{\frac{63}{31}} = \frac{127}{63}.$$

tagjának meghatározásával sejthető, hogy

$$x_n = \frac{2^{n+2}-1}{2^{n+1}-1}$$
 $(n \in \mathbb{N}_0),$

ami teljes indukcióval könnyen igazolható. Valóban,

• n = 0 esetén

$$x_0 = 3 = \frac{4-1}{2-1} = \frac{2^{0+2}-1}{2^{0+1}-1};$$

• ha pedig valamely $n \in \mathbb{N}_0$ esetén

$$x_n = \frac{2^{n+2} - 1}{2^{n+1} - 1},$$

akkor

$$x_{n+1} = 3 - \frac{2}{x_n} = 3 - 2 \cdot \frac{2^{n+1} - 1}{2^{n+2} - 1} = \frac{3 \cdot 2^{n+2} - 3 - 2^{n+2} + 2}{2^{n+2} - 1} = \frac{2 \cdot 2^{n+2} - 1}{2^{n+2} - 1} = \frac{2^{n+3} - 1}{2^{n+2} - 1}.$$

10. A sorozat első néhány tagját meghatározva –

$$x_0 = 0,$$
 $x_1 = 2,$ $x_2 = \frac{2}{1+2} = \frac{2}{3} = 0, \dot{6},$ $x_3 = \frac{2}{1+\frac{2}{3}} = \frac{6}{5} = 1, 2.$

–látható, hogy (x_n) nem monoton. További tagokat kiszámítva –

$$x_4 = \frac{2}{1+\frac{6}{5}} = \frac{10}{11} = 0, \dot{9}\dot{0},$$

$$x_5 = \frac{2}{1+\frac{10}{11}} = \frac{22}{21} \approx 1,0476,$$

$$x_6 = \frac{2}{1+\frac{22}{21}} = \frac{42}{43} \approx 0,9767,$$

$$x_7 = \frac{2}{1+\frac{42}{43}} = \frac{86}{85} \approx 1,0118,$$

$$x_8 = \frac{2}{1+\frac{86}{85}} = \frac{170}{171} \approx 0,9942,$$

$$x_9 = \frac{2}{1+\frac{170}{171}} = \frac{342}{341} \approx 1,0029$$

- sejthető, hogy

1° a páros indexű tagok 1-nél kisebbek, a páratlan indexűek pedig 1-nél nagyobbak:

$$x_n = x_{2k} < 1$$
 és $x_n = x_{2k+1} > 1$ $(k \in \mathbb{N});$

 2° a páros indexű (x_{2k}) részsorozata szigorúan monoton növekedő, a páratlan indexű (x_{2k+1}) részsorozat pedig szigorúan monoton csökkenő:

$$(x_{2k}) \uparrow \text{ és } (x_{2k+1}) \downarrow$$
.

Biz. Mivel bármely $n \in \mathbb{N}$ indexre

$$x_{n+2} = \frac{2}{1 + x_{n+1}} = \frac{2}{1 + \frac{2}{1 + x_n}} = 2 \cdot \frac{x_n + 1}{x_n + 3},\tag{21}$$

ezért

$$x_{n+2} - x_n = 2 \cdot \frac{x_n + 1}{x_n + 3} - x_n = \frac{(x_n + 2)(1 - x_n)}{x_n + 3}.$$

Ha tehát

• n páros: n=2k, akkor (21) következtében $1-x_{2k}>0$, tehát

$$(x_{2k})$$
 \uparrow és felülről korlátos \Longrightarrow konvergens; $A := \lim(x_{2k})$;

• n páratlan: n = 2k + 1, akkor (21) következtében $1 - x_{2k+1} < 0$, tehát

$$(x_{2k+1}) \downarrow$$
 és alulról korlátos \Longrightarrow konvergens; $B := \lim(x_{2k+1})$.

Mindez azt jelenti (vö. (21)), hogy

$$A = 2 \cdot \frac{A+1}{A+3}$$
 és $B = 2 \cdot \frac{B+1}{B+3}$.

Mivel valamely $\xi \in \mathbb{R}$ számra

$$\xi=2\cdot\frac{\xi+1}{\xi+3}\quad\Longleftrightarrow\quad \xi^2+3\xi=2\xi+2\quad\Longleftrightarrow\quad \xi^2+\xi-2=0\quad\Longleftrightarrow\quad \xi_\pm=\frac{-1\pm\sqrt{1+8}}{2}\in\{-2;1\}$$

és (x_n) nemnegatív tagú sorozat (**HF**. bizonyítani teljes indukcióval), ezért A = B = 1, azaz (x_n) konvergens és $\lim(x_n) = 1$.

Házi feladatok.

1. Számítsuk ki az alábbi sorozatok határértékét!

(a)
$$x_n := \left(\frac{3n+1}{3n+2}\right)^{6n+5} \quad (n \in \mathbb{N});$$
 (b) $x_n := \left(\frac{2n+3}{3n+1}\right)^{n-5} \quad (n \in \mathbb{N}_0);$

(b)
$$x_n := \left(\frac{2n+3}{3n+1}\right)^{n-5} \quad (n \in \mathbb{N}_0);$$

(c)
$$x_n := \left(\frac{3n+3}{2n+4}\right)^n \quad (n \in \mathbb{N});$$

(d)
$$x_n := \left(\frac{2n+3}{3n+4}\right)^n \quad (n \in \mathbb{N}_0);$$

(e)
$$x_n := \left(\frac{n+1}{\sqrt{n^2+2n}}\right)^{2n^2+4n}$$
 $(n \in \mathbb{N});$ $(f) \ x_n := \left(1+\frac{1}{2^n-1}\right)^{2^{n+2}+3}$ $(n \in \mathbb{N}_0).$

(f)
$$x_n := \left(1 + \frac{1}{2^n - 1}\right)^{2^{n+2} + 3}$$
 $(n \in \mathbb{N}_0).$

2. Számítsuk ki az alábbi sorozatok határértékét!

(a)
$$x_0 := \sqrt{3}$$
, $x_{n+1} := \sqrt{3 + 2x_n}$ $(n \in \mathbb{N}_0)$;

(b)
$$x_0 := 0$$
, $x_{n+1} := \frac{x_n^3 + 1}{2}$ $(n \in \mathbb{N}_0)$.

3. Igazoljuk, hogy bármely $\alpha \in [0, 1]$ esetén az

$$x_0:=\frac{\alpha}{2}, \qquad x_{n+1}:=\frac{x_n^2+\alpha}{2} \quad (n\in\mathbb{N}_0)$$

sorozat konvergens, majd számítsuk ki a határértékét!

Útm.

1. (a) Ha $n \in \mathbb{N}$, akkor az $n \to \infty$ határátmenetben

$$\begin{split} x_n &= \left(\frac{3n+1}{3n+2}\right)^{6n+5} = \left(\frac{3n+1}{3n+2}\right)^{6n+4+1} = \\ &= \left(\frac{3n+1}{3n+2}\right)^{6n+4} \cdot \left(\frac{3n+1}{3n+2}\right) = \left(\left(\frac{3n+1}{3n+2}\right)^{3n+2}\right)^2 \cdot \left(\frac{3n+1}{3n+2}\right) = \\ &= \left(\left(\frac{3n+2-1}{3n+2}\right)^{3n+2}\right)^2 \cdot \left(\frac{3n+1}{3n+2}\right) = \left(\left(1+\frac{-1}{3n+2}\right)^{3n+2}\right)^2 \cdot \left(\frac{3n+1}{3n+2}\right) \longrightarrow \\ &\longrightarrow \frac{1}{e^2} \cdot 1 = \frac{1}{e^2}. \end{split}$$

(b) Mivel az $n \to \infty$ határátmenetben

$$\begin{split} \left(\frac{2n+3}{3n+1}\right)^n &= \left(\frac{2}{3}\right)^n \cdot \left(\frac{n+\frac{3}{2}}{n+\frac{1}{3}}\right)^n = \left(\frac{2}{3}\right)^n \cdot \left(\frac{n+\frac{1}{3}+\frac{3}{2}-\frac{1}{3}}{n+\frac{1}{3}}\right)^n = \\ &= \left(\frac{2}{3}\right)^n \cdot \left(\frac{n+\frac{1}{3}+\frac{7}{6}}{n+\frac{1}{3}}\right)^n = \left(\frac{2}{3}\right)^n \cdot \left(1+\frac{7}{6n+2}\right)^n = \\ &= \left(\frac{2}{3}\right)^n \cdot \sqrt[6]{\left(1+\frac{7}{6n+2}\right)^{6n+2}} \cdot \left(1+\frac{7}{6n+2}\right)^{-2} \longrightarrow 0 \cdot \sqrt[6]{e^{7} \cdot 1^{-2}} = 0 \end{split}$$
 és
$$\left(\frac{2n+3}{3n+1}\right)^{-5} \longrightarrow \left(\frac{2}{3}\right)^{-5} \qquad (n \to \infty),$$
 ezért
$$\lim(x_n) = 0 \cdot \left(\frac{2}{3}\right)^{-5} = 0.$$

(c) Tetszőleges $n \in \mathbb{N}$ indexre

$$x_n = \left(\frac{3n+3}{2n+4}\right)^n = \left(\frac{3}{2}\right)^n \left(\frac{n+1}{n+2}\right)^n =$$

$$= \left(\frac{3}{2}\right)^n \left(1 - \frac{1}{n+2}\right)^{n+2} \left(1 - \frac{1}{n+2}\right)^{-2} \longrightarrow +\infty \qquad (n \to \infty).$$

(d) Minden n indexre

$$x_{n} = \left(\frac{2n+3}{3n+4}\right)^{n} = \left(\frac{2}{3}\right)^{n} \left(\frac{n+3/2}{n+4/3}\right)^{n} =$$

$$= \left(\frac{2}{3}\right)^{n} \left(1 + \frac{1/6}{n+4/3}\right)^{n+4/3} \left(1 + \frac{1/6}{n+4/3}\right)^{-4/3} \longrightarrow 0 \qquad (n \to \infty).$$

(e) Bármely $n \in \mathbb{N}$ esetén

$$x_{n} = \left(\frac{n+1}{\sqrt{n^{2}+2n}}\right)^{2n^{2}+4n} = \left(\frac{(n+1)^{2}}{n^{2}+2n}\right)^{n^{2}+2n} =$$

$$= \left(\frac{n^{2}+2n+1}{n^{2}+2n}\right)^{n^{2}+2n} = \left(1+\frac{1}{n^{2}+2n}\right)^{n^{2}+2n} \longrightarrow e \qquad (n \to \infty)$$

(f) Mivel tetszőleges $n \in \mathbb{N}$ indexre

$$2^{n+2} + 3 = 2^2 \cdot 2^n + 3 = 4 \cdot 2^n - 4 + 7 = 4 \cdot (2^n - 1) + 7$$

ezért

$$x_{n} = \left(1 + \frac{1}{2^{n} - 1}\right)^{2^{n+2} + 3} = \left(\left(1 + \frac{1}{2^{n} - 1}\right)^{2^{n} - 1}\right)^{4} \cdot \left(1 + \frac{1}{2^{n} - 1}\right)^{7} \longrightarrow e^{4} \cdot 1^{7} \quad (n \to \infty).$$

2. (a) **1. lépés.** A sorozat első két tagját meghatározva:

$$x_0 = \sqrt{3} < \sqrt{3 + 2\sqrt{3}} = x_1,$$

az a "gyanúnk" támad, hogy az (x_n) sorozat szigorúan monoton növekedő. Ezt teljes

indukcióval igazoljuk. Az iméntiek miatt elég azt igazolnunk, hogy ha valamilyen $n \in \mathbb{N}_0$ mellett $x_n < x_{n+1}$, akkor $x_{n+1} < x_{n+2}$ is teljesül. Valóban $x_n < x_{n+1}$ -ből

$$3 + 2x_n < 3 + 2x_{n+1}$$
, azaz $x_{n+1} = \sqrt{3 + 2x_n} < \sqrt{3 + 2x_{n+1}} = x_{n+2}$

következik.

2. lépés. Ha az (x_n) sorozat konvergens, akkor $A := \lim(x_n)$ határértékére $\lim(x_{n+1}) = A$, és így

$$A = \sqrt{3+2A}$$
 \Longrightarrow $A^2 - 2A - 3 = 0$ \Longrightarrow $A = 1 + \sqrt{1+3} = 3$.

- 3. lépés. Mivel (xn) szigorúan monoton növekedő, ezért ha felülről korlátos, akkor a 3 egy felső korlátja is. Világos, hogy
 - n = 0 esetén $x_0 = \sqrt{3} < 3$;
 - $\bullet\,$ ha valamely $n\in\mathbb{N}_0$ esetén $x_n<3,$ akkor

$$x_{n+1} = \sqrt{3 + 2x_n} < \sqrt{3 + 2 \cdot 3} = \sqrt{9} = 3.$$

- **4. lépés.** Midez azt jelenti, hogy az (x_n) sorozat konvergens és $\lim(x_n) = 3$.
- (b) 1. lépés. A sorozat első néhány tagját meghatározva:

$$x_0 = 0,$$
 $x_1 = \frac{1}{2},$ $x_2 = \frac{9}{16}$

az a "gyanúnk" támad, hogy az (x_n) sorozat szigorúan monoton növekedő. Ezt teljes indukcióval igazoljuk. Mivel

$$x_0 < \frac{1}{2} = x_1,$$

ezért elég azt igazolnunk, hogy ha valamilyen $n \in \mathbb{N}_0$ mellett $x_n < x_{n+1}$, akkor $x_{n+1} < x_{n+2}$ is teljesül. Valóban $x_n < x_{n+1}$ -ből

$$x_{n+1} = \frac{x_n^3 + 1}{2} < \frac{x_{n+1}^3 + 1}{2} = x_{n+2}$$

következik.

2. lépés. Ha az (x_n) sorozat konvergens, akkor $A := \lim(x_n)$ határértékére $\lim(x_{n+1}) = A$, és így

$$A = \frac{A^3 + 1}{2} \qquad \Longleftrightarrow \qquad A^3 - 2A + 1 = 0.$$

Felhazsnálva az 1. gyakorlaton tetszőleges $a, b \in \mathbb{R}$, ill. $n \in \mathbb{N}$ számokra bizonyított (2)

azonosság

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

speciális esetét, azt kapjuk, hogy

$$A^3 - 2A + 1 = A^3 - 1 - 2A + 2 = A^3 - 1^3 - 2(A - 1) =$$

$$= (A-1)(A^2+A+1)-2(A-1)=(A-1)(A^2+A-1),$$

következésképpen

$$A = \frac{A^3 + 1}{2} \qquad \Longleftrightarrow \qquad A^3 - 2A + 1 = 0 \qquad \Longleftrightarrow \qquad A \in \left\{1, \frac{-1 \pm \sqrt{5}}{2}\right\}.$$

Mivel $x_0 = 0$ és (x_n) szigorúan monoton növekedő, ezért a $\frac{-1-\sqrt{5}}{2}$ szám nem lehet (x_n) határértéke.

3. lépés. Mivel (x_n) szigorúan monoton növekedő és $\lim(x_n)$ az

$$\{x_n \in \mathbb{R} : n \in \mathbb{N}_0\}$$

halmaz legkisebb felső korlátja, ezért az

$$A = 1$$
 és $A = \frac{-1 + \sqrt{5}}{2}$

értékek közül

$$\frac{-1+\sqrt{5}}{2}<1$$

miatt csak az

$$A = \frac{-1 + \sqrt{5}}{2}$$

érték jöhet szóba. Lássuk be tehát, hogy ezzel az A-val teljesül az $x_n \le A$ $(n \in \mathbb{N}_0)$ becslés. Ezt újból teljes indukcióval bizonyítjuk:

$$x_0 = 0 < \frac{-1 + \sqrt{5}}{2} = A$$

triviálisan igaz. Ha pedig $x_n \leq A$ fennáll valamilyen $\mathbb{N}_0 \ni n$ -re, akkor

$$x_{n+1} = \frac{x_n^3 + 1}{2} \le \frac{A^3 + 1}{2} = A.$$

4. lépés. Összefoglalva tehát, az (x_n) sorozat konvergens és

$$lim(x_n) = \frac{-1 + \sqrt{5}}{2}.$$

3. 1. lépés. Mivel

$$x_1 = \frac{1}{2}\left(\frac{\alpha^2}{4} + \alpha\right) = \frac{\alpha^2 + 4\alpha}{8} > \frac{4\alpha}{8} = \frac{\alpha}{2} = x_0,$$

ezért sejthető, hogy (x_n) szigorúan monoton növekedő. Az iméntiek miatt elég belátni, hogy ha valamely $n \in \mathbb{N}_0$ esetén $0 < x_n < x_{n+1}$, akkor $0 < x_{n+1} < x_{n+2}$. Valóban, ha valamely $n \in \mathbb{N}_0$ esetén $0 < x_n < x_{n+1}$, akkor

$$0 < x_{n+1} = \frac{x_n^2 + \alpha}{2} < \frac{x_{n+1}^2 + \alpha}{2} = x_{n+2}.$$

2. lépés. Ha az (x_n) sorozat konvergens, akkor $A := \lim(x_n)$ határértékére $\lim(x_{n+1}) = A$, és így

$$A = \frac{A^2 + \alpha}{2}$$
 \iff $A^2 - 2A + \alpha = 0$ \iff $A = A_{\pm} := 1 \pm \sqrt{1 - \alpha}$.

3. lépés. Mivel (x_n) szigorúan monoton növekedő és $\lim(x_n)$ az

$$\{x_n \in \mathbb{R} : n \in \mathbb{N}_0\}$$

halmaz legkisebb felső korlátja, ezért az A_+ és A_- értékek közül $0 \le A_- \le A_+$ miatt miatt csak az

$$A_{-}=1-\sqrt{1-\alpha}$$

érték jöhet szóba ($\alpha = 1$ esetén persze $A_- = A_+$). Világos, hogy

• n = 0 esetén

$$x_0 = \frac{\alpha}{2} \le \frac{\alpha + A_-^2}{2} = A_-;$$

• ha valamely $n \in \mathbb{N}_0$ esetén $x_n \leq A_-$, akkor

$$x_{n+1} = \frac{x_n^2 + \alpha}{2} \le \frac{(A_-)^2 + \alpha}{2} = A_-.$$

Következésképpen (x_n) felülről korlátos.

4. lépés. Összefoglalva tehát, az (x_n) sorozat konvergens és

$$\lim(x_n) = 1 - \sqrt{1 - \alpha}. \quad \blacksquare$$

Az 1. zárthelyi feladatainak megoldása

1. Feladat. Vizsgálja a

$$\mathcal{H}:=\left\{rac{3n+2}{2n+1}\in\mathbb{R}:\ n\in\mathbb{N}_0
ight\}$$

halmazt korlátosság szempontjából! **Határozza meg** \mathcal{H} infimumát és szuprémumát! Van-e a \mathcal{H} halmaznak legkisebb, ill. legnagyobb eleme?

Útm.

• Világos, hogy minden $n \in \mathbb{N}_0$ esetén

$$(*) \quad \frac{3n+2}{2n+1} = \frac{3}{2} \cdot \frac{6n+4}{6n+3} = \frac{3}{2} \cdot \frac{6n+3+1}{6n+3} = \frac{3}{2} \cdot \left(1 + \frac{1}{6n+3}\right) = \frac{3}{2} + \frac{1}{4n+2}.$$

• Mivel bármely $n \in \mathbb{N}_0$ esetén

$$\frac{1}{4n+2} > 0$$
,

ezért

$$\mathcal{H}\ni\frac{3n+2}{2n+1}>\frac{3}{2},$$

azaz $\frac{3}{2}$ alsó korlátja \mathcal{H} -nak. Látható, hogy a

$$\frac{1}{4n+2}$$

tört az n nagy értékeire igen közel van 0-hoz, ezért a \mathcal{H} halmaz elemei az ilyen n-ekre $\frac{3}{2}$ -hez közeli értékeket vesznek fel. Sejthető tehát, hogy \mathcal{H} -nak nincsen $\frac{3}{2}$ -nél nagyobb korlátja:

$$\forall\, \epsilon>0 \ \exists\, n\in\mathbb{N}_0: \qquad \mathcal{H}\ni \frac{3n+2}{2n+1}=\frac{3}{2}+\frac{1}{4n+2}<\frac{3}{2}+\epsilon.$$

Megmutatjuk, hogy $\frac{3}{2}$ a legnagyobb alsó korlát: $\inf(\mathcal{H}) = \frac{3}{2}.$ Mivel

$$\frac{3}{2} + \frac{1}{4n+2} < \frac{3}{2} + \epsilon \qquad \iff \qquad 2n > \frac{1}{2\epsilon} - 1,$$

ezért van ilyen ilyen $n\in\mathbb{N}_0$ szám, hiszen ha $n\in\mathbb{N}_0$ olyan, amelyre $n>\left[\frac{1}{4\epsilon}\right]+1$, akkor

$$2n > \left\lceil \frac{1}{2\varepsilon} \right\rceil + 2 > \frac{1}{2\varepsilon} - 1.$$

Mivel $\frac{3}{2} \notin \mathcal{H}$, ezért \mathcal{H} -nak nincsen legkisebb eleme.

• A (*) felbontásból az is látható, hogy bármely $n \in \mathbb{N}_0$ esetén

$$\mathcal{H} \ni \frac{3}{2} + \frac{1}{4n+2} \le \frac{3}{2} + \frac{1}{4 \cdot 0 + 2} = \frac{4}{2} = 2.$$

Ez azt jelenti, hogy $sup(\mathcal{H}) = max(\mathcal{H}) = 2$.

Összefoglalva: a \mathcal{H} halmaz alulról és felülről is korlátos,

$$\inf(\mathcal{H}) = \frac{3}{2}, \quad \nexists \min(\mathcal{H}), \qquad \sup(\mathcal{H}) = \max(\mathcal{H}) = 2.$$

2. Feladat. Tekintse az alábbi függvényeket!

$$f(x) := \frac{x^2}{x^2 - 9}$$
 $(x \in (-3, 3)),$ $g(x) := \sqrt{x + 4}$ $(0 \le x \in \mathbb{R}).$

- 1. **Határozza meg** az f ∘ g függvényt!
- 2. **Igazolja**, hogy g invertálható, és **határozza meg** az inverzét!

Útm.

- 1. Mivel f(1) = 1 = f(-3), ezért f nem invertálható.
- 2. Világos, hogy

$$\mathcal{D}_{f\circ g} \ = \ \left\{x\in \mathcal{D}_g: \ g(x)\in \mathcal{D}_f\right\} = \left\{x\in [0,+\infty): \ x^2-2x-4\neq -1\right\} =$$

$$= \{x \in [0, +\infty) : x^2 - 2x - 3 \neq 0\}.$$

Mivel

$$x^2 - 2x - 3 = 0$$
 \implies $x_{\pm} = 1 \pm \sqrt{1 + 3} = 1 \pm 2 \in \{-1, 3\},$

ezért

$$\mathcal{D}_{f \circ g} = \{x \in [0, +\infty): \ (x+1)(x-3) \neq 0\} = [0, +\infty) \setminus \{3\}.$$

Tehát bármely $3 \neq x \in [0, +\infty)$ esetén

$$(f \circ g)(x) = f(g(x)) = \frac{2}{|x^2 - 2x - 3|}.$$

Az f és a g függvény kompozíciója így az

$$(f \circ g)(x) := \frac{2}{|x^2 - 2x - 3|}$$
 $(3 \neq x \in [0, +\infty))$

függvény.

3. Világos, hogy

$$g^{-1} [[-4,4]] = \{x \in [0,+\infty) : x^2 - 2x - 4 \in [-4,4]\} =$$

$$= \{x \in [0,+\infty) : -4 \le (x-1)^2 - 5 \le 4\} =$$

$$= \{x \in [0,+\infty) : 1 \le (x-1)^2 \le 9\} = \{x \in [0,+\infty) : 1 \le |x-1| \le 3\} =$$

$$= \{x \in [0,+\infty) : 1 \le x - 1 \le 3\} \cup \{x \in [0,+\infty) : -3 \le x - 1 \le -1\} =$$

$$= [2,4] \cup \{0\}.$$

3. Feladat. Számítsa ki a

$$\lim_{x\to 0} \frac{1-\cos^3(x)}{4\arctan(\cos(x)) - \pi}$$

határértéket!

Útm. Mivel

$$\lim_{x \to 0} (1 - \cos^3(x)) = 1 - 1 = 0 = 4 \cdot \frac{\pi}{4} - \pi = \lim_{x \to 0} (4 \arctan(\cos(x)) - \pi),$$

ezért megkíséreljük alkalmazni a Bernoulli-L'Hospital-szabályt. Így

$$\frac{1-\cos^3(x)}{4\arctan(\cos(x))-\pi}\sim\frac{3\cos^2(x)\sin(x)}{\frac{-4\sin(x)}{1+\cos^2(x)}}=\frac{-3\cos^2(x)(1+\cos^2(x))}{4}\longrightarrow\frac{-3}{2}\qquad (x\to0)$$

következtében

$$\lim_{x \to 0} \frac{1 - \cos^3(x)}{4 \arctan(\cos(x)) - \pi} = -\frac{3}{2}.$$

4. Feladat. Írja fel az

$$f(x) := \sqrt[3]{2x - 1} \qquad \left(\frac{1}{2} < x \in \mathbb{R}\right)$$

függvény a := 1 pont körüli második Taylor-polinomját!

Útm. Mivel bármely $x \in \mathcal{D}_f$ esetén

$$f'(x) = \frac{2}{3\sqrt[3]{(2x-1)^2}}, \qquad f''(x) = \frac{-8}{9\sqrt[3]{(2x-1)^5}},$$

ill.

$$f(1) = 1,$$
 $f'(1) = \frac{2}{3},$ $f''(x) = -\frac{8}{9},$

ezért

$$T_2(x) = 1 + \frac{2}{3}(x-1) - \frac{4}{9}(x-2)^2$$
 $(x \in \mathbb{R})$.

5. Feladat. Végezze el az

$$f(x) := (x-3) \cdot e^x$$
 $(x \in \mathbb{R})$

függvény teljes vizsgálatát!

Útm.

1. lépés (kezdeti vizsgálatok). Világos, hogy $f \in \mathfrak{D}^{\infty}$, továbbá

$$f(x) = 0 \quad \Longleftrightarrow \quad x = 3,$$

és így

	$(-\infty,3)$	3	$(3,+\infty)$
f	_	0	+

2. lépés (határérték, aszimptota). Világos, hogy

$$\lim_{-\infty} f = \lim_{x \to -\infty} \frac{x-3}{e^{-x}} \stackrel{\text{BL}}{=} \lim_{x \to -\infty} \frac{1}{-e^{-x}} = \frac{1}{-\infty} = 0, \qquad \text{ill.} \qquad \lim_{+\infty} f = (+\infty) \cdot (+\infty) = +\infty.$$

Következésképpen a

$$\varphi(x) := 0 \qquad (x \in \mathbb{R})$$

lineáris függvény aszimptotája f-nek a $(-\infty)$ -ben. Mivel bármely $0 < x \in \mathbb{R}$ esetén

$$\frac{f(x)}{x} = \left(1 - \frac{3}{x}\right) \cdot e^x \longrightarrow +\infty,$$

ezért f-nek nincsen aszimptotája a $(+\infty)$ -ben.

3. lépés (monotonitás, lokális szélsőérték). Mivel tetszőleges $x \in \mathcal{D}_f$ esetén

$$f'(x) = e^x + (x-3) \cdot e^x = e^x \cdot (x-2)$$
,

ezért

	$(-\infty,2)$	2	$(2,+\infty)$
f'	_	0	+
f	<u> </u>	lok. min.	↑

4. lépés (görbület, inflexió). Mivel bármely $x \in \mathcal{D}_f$ esetén

$$f''(x) = e^x \cdot (x-2) + e^x = e^x \cdot (x-1)$$

ezért

	$(-\infty,1)$	1	$(1,+\infty)$
f"	_	0	+
f		inflexió)

5. lépés (**grafikon**). Az f függvény grafikonját a ??. ábra szemlélteti.

2023. 04. 20.

7. gyakorlat (2023. 04. 13.)

Feladat. Egy labdát $\alpha > 0$ méter magasból a földre ejtünk. Tudjuk, hogy ha a labdát h > 0 magasságból ejtjük le, akkor rh magasságig pattan vissza, ahol 0 < r < 1. Határozzuk meg a labda által megtett teljes függőleges irányú távolságot!

Útm. Az első visszapattanásig a labda tömegközéppontja a függőleges irányú távolságot, a másodikig a + ra függőleges irányú távolságot, a harmadikig, a + ra + r 2 a függőleges irányú távolságot, ill. az n-edig visszapattanásig a labda

$$s_n := \alpha + 2\alpha r + 2\alpha r^2 + \ldots + 2\alpha r^{n-1}$$

függőleges irányú távolságot tesz meg. Mivel

$$s_n = \alpha + 2\alpha \cdot \left(1 + r + r^2 + \ldots + r^{n-1}\right) \overset{\text{4. GY}}{=} \alpha + 2\alpha \cdot \frac{r^n - 1}{r - 1} \qquad (n \in \mathbb{N}),$$

ezért az (s_n) sorozat konvergens, így labda által megtett teljes függőleges irányú távolság:

$$\lim(s_n) = a + 2a \cdot \frac{r}{1-r} = a \cdot \frac{1+r}{1-r}.$$

Az összeadást eddig véges sok tag esetén értelmeztük. Mint ahogy azt a fenti feladatok is mutatják, célszerű mindkét műveletet kiterjeszteni végtelen sok tagra. A követezőkben – a határérték fogalmára támaszkodva – elvégezzük ezt a kiterjesztést, bevezetve a végtelen sor fogalmát, és megvizsgáljuk, hogy a véges összegekre ismert számolási szabályok igazak-e a kiterjesztett esetekben.

A végtelen fogalma és ehhez kapcsolódva a végtelen összegek problémaköre hosszú időn át épült be a matematikába. Végtelen összegek már az ókori görögöknél is megjelentek, pl.

- Zénón (i.e. 490 430) híres paradoxonjai:
 - 1. a fának hajított kő:

2. Akhilleusz és a teknős:

• Archimédesz (i.e. 287-252) összegzett először végtelen sort a matematika történetében. Az alábbi ábrán a piros színnel megjelölt négyzetek területének összege:

$$\frac{1}{4} + \frac{1}{16} + \frac{1}{64} + \frac{1}{256} + \dots,$$

aminek eredményeképp az

$$\frac{\frac{1}{4}}{1 - \frac{1}{4}} = \frac{\frac{1}{4}}{\frac{3}{4}} = \frac{1}{4} \cdot \frac{4}{3} = \frac{1}{3}$$

értéket kapta.

Emlékeztető.

 $1^{\circ} \ \ Adott \ (x_n): \mathbb{N}_0 \to \mathbb{R} \ sorozat \ eset\'{e}n \ az$

$$s_n := \sum_{k=0}^n x_k \qquad (n \in \mathbb{N}_0),$$

azaz az

$$s_0 := x_0,$$
 $s_1 := x_0 + x_1,$
 $s_2 := x_0 + x_1 + x_2,$
 \vdots
 $s_n := x_0 + x_1 + x_2 + \ldots + x_{n-2} + x_{n-1} + x_n \quad (n \in \mathbb{N}_0)$

sorozatot **végtelen numerikus sor**nak vagy végtelen számsornak (röviden: **végtelen sor**nak vagy egyszerűen csak **sor**nak) neveztük, és a $\sum_{n=0} (x_n) := \sum_{n=0} (x_n) := (s_n)$ szimbólummal jelöltük. Az s_n a $\sum_{n=0} (x_n)$ végtelen sor n**-edik részletösszeg**e, x_n pedig a $\sum_{n=0} (x_n)$ végtelen sor n**-edik tag**ja.

 2° Azt mondtuk, hogy a $\sum (x_n)$ konvergens, ha részletösszegeinek a sorozata konvergens, azaz

$$\sum_{n=0}^{\infty} x_n := \lim(s_n) = A \in \mathbb{R}.$$

Az A számot a $\sum (x_n)$ végtelen sor összegének neveztük.

3° Ha $\sum (x_n)$ divergens, azaz (s_n) divergens, akkor $\lim (s_n) \in \{-\infty, +\infty\}$ esetén azt mondtuk, hogy a $\sum (x_n)$ végtelen sor összege $+\infty$, ill. $-\infty$, és erre a

$$\sum_{n=0}^{\infty} x_n := +\infty, \qquad \text{ill. a} \qquad \sum_{n=0}^{\infty} x_n := -\infty$$

jelölést használtuk.

Feladat. Számítsuk ki az alábbi sorösszegeket, amennyiben azok léteznek!

1.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
; 2. $\sum_{n=1}^{\infty} \frac{1}{4n^2-1}$;

2.
$$\sum_{n=1}^{\infty} \frac{1}{4n^2-1}$$
;

3.
$$\sum_{n=1}^{\infty} \frac{1}{9n^2 - 3n - 2};$$

4.
$$\sum_{n=1}^{\infty} \frac{2n+1}{n^2(n+1)^2}$$
; 5. $\sum_{n=1}^{\infty} \frac{n}{(n+1)!}$;

5.
$$\sum_{n=1}^{\infty} \frac{n}{(n+1)!}$$
;

6.
$$\sum_{n=1}^{\infty} \frac{1}{n^3 + 3n^2 + 2n};$$

7.
$$\sum_{n=1}^{\infty} (\sqrt{n+1} - \sqrt{n});$$

7.
$$\sum_{n=1}^{\infty} (\sqrt{n+1} - \sqrt{n});$$
 8. $\sum_{n=1}^{\infty} (\sqrt{n+2} - 2\sqrt{n+1} + \sqrt{n});$ 9. $\sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n(n+1)}};$

9.
$$\sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n(n+1)}};$$

10.
$$\sum_{n=1}^{\infty} (-1)^n \frac{2n+1}{n(n+1)};$$

$$10. \ \ \sum_{n=1}^{\infty} (-1)^n \frac{2n+1}{n(n+1)}; \qquad 11. \ \ \sum_{n=1}^{\infty} \frac{1}{(\sqrt{n+1}+\sqrt{n})\sqrt{n(n+1)}}. \quad 12. \ \ \sum_{n=5}^{\infty} \frac{3}{4-5n+n^2};$$

12.
$$\sum_{n=5}^{\infty} \frac{3}{4 - 5n + n^2};$$

13.
$$\sum_{n=0}^{\infty} \frac{2^n}{(2^n+1)(2^{n+1}+1)}; \quad 14. \quad \sum_{n=1}^{\infty} \frac{2n-2}{n(n+1)(n+2)};$$

14.
$$\sum_{n=1}^{\infty} \frac{2n-2}{n(n+1)(n+2)};$$

15.
$$\sum_{n=2}^{\infty} \frac{n^2 - n - 1}{n!}$$
.

Útm.

1. Mivel

$$\frac{1}{k(k+1)} = \frac{k+1-k}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1},$$

ezért

$$s_n \ = \ \sum_{k=1}^n \frac{1}{k(k+1)} = \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+1}\right) =$$

$$= \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \ldots + \left(\frac{1}{n-1} - \frac{1}{n}\right) + \left(\frac{1}{n} - \frac{1}{n+1}\right) =$$

$$= 1 - \frac{1}{n+1} \longrightarrow 1 \quad (n \to \infty).$$

Így

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1.$$

2. Mivel

$$\begin{split} \frac{1}{4k^2-1} &= \frac{1}{(2k-1)(2k+1)} = \frac{1}{2} \cdot \frac{2}{(2k-1)(2k+1)} = \frac{1}{2} \cdot \frac{(2k+1)-(2k-1)}{(2k-1)(2k+1)} = \\ &= \frac{1}{2} \cdot \left(\frac{1}{2k-1} - \frac{1}{2k+1}\right), \end{split}$$

ezért

$$\begin{split} s_n &= \sum_{k=1}^n \frac{1}{4k^2 - 1} = \frac{1}{2} \sum_{k=1}^n \left(\frac{1}{2k - 1} - \frac{1}{2k + 1} \right) = \\ &= \frac{1}{2} \left\{ \left(1 - \frac{1}{3} \right) + \left(\frac{1}{3} - \frac{1}{5} \right) + \ldots + \left(\frac{1}{2n - 3} - \frac{1}{2n - 1} \right) + \left(\frac{1}{2n - 1} - \frac{1}{2n + 1} \right) \right\} = \\ &= \frac{1}{2} \left\{ 1 - \frac{1}{2n + 1} \right\} \longrightarrow \frac{1}{2} \cdot 1 = \frac{1}{2} \quad (n \to \infty). \end{split}$$

Így

$$\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1} = \frac{1}{2}.$$

3. Mivel

$$\frac{1}{9k^2-3k-2} = \frac{1}{(3k-2)(3k+1)} = \frac{1}{3} \cdot \frac{(3k+1)-(3k-2)}{(3k-2)(3k+1)} = \frac{1}{3} \cdot \left(\frac{1}{3k-2} - \frac{1}{3k+1}\right),$$

ezért

$$s_n = \sum_{k=1}^n \frac{1}{9k^2 - 3k - 2} = \frac{1}{3} \sum_{k=1}^n \left(\frac{1}{3k - 2} - \frac{1}{3k + 1} \right) =$$

$$= \frac{1}{3} \left\{ \left(1 - \frac{1}{4} \right) + \left(\frac{1}{4} - \frac{1}{7} \right) + \ldots + \left(\frac{1}{3n - 5} - \frac{1}{3n - 2} \right) + \ldots + \left(\frac{1}{3n - 2} - \frac{1}{3n - 2} \right) + \ldots + \left(\frac{1}{3n - 2} - \frac{1}{3n - 2} \right) + \ldots + \left(\frac{1}{3n - 2} - \frac{1}{3n - 2} - \frac{1}{3n - 2} \right) + \ldots + \left(\frac{1}{3n - 2} - \frac{1}{3n - 2} - \frac{1}{3n - 2} - \frac{1}{3n - 2} \right) + \ldots + \left(\frac{1}{3n - 2} - \frac{1}{3n$$

$$+\left(\frac{1}{3n-2}-\frac{1}{3n+1}\right)\right\}=\frac{1}{3}\left\{1-\frac{1}{3n+1}\right\}\longrightarrow\frac{1}{3}\quad(n\to\infty).$$

Így

$$\sum_{n=1}^{\infty} \frac{1}{9n^2 - 3n - 2} = \frac{1}{3}.$$

4. Mivel

$$\frac{2k+1}{k^2(k+1)^2} = \frac{(k+1)^2 - k^2}{k^2(k+1)^2} = \frac{1}{k^2} - \frac{1}{(k+1)^2},$$

ezért

$$s_n \ = \ \sum_{k=1}^n \frac{2k+1}{k^2(k+1)^2} = \sum_{k=1}^n \left(\frac{1}{k^2} - \frac{1}{(k+1)^2} \right) =$$

$$= \left(1 - \frac{1}{4}\right) + \left(\frac{1}{4} - \frac{1}{9}\right) + \ldots + \left(\frac{1}{(n-1)^2} - \frac{1}{n^2}\right) + \left(\frac{1}{n^2} - \frac{1}{(n+1)^2}\right) =$$

$$= 1 - \frac{1}{(n+1)^2} \longrightarrow 1 \quad (n \to \infty).$$

Így

$$\sum_{n=1}^{\infty} \frac{2n+1}{n^2(n+1)^2} = 1.$$

5. Mivel

$$\frac{k}{(k+1)!} = \frac{k+1-1}{(k+1)!} = \frac{1}{k!} - \frac{1}{(k+1)!},$$

ezért

$$s_{n} = \sum_{k=1}^{n} \frac{k}{(k+1)!} = \sum_{k=1}^{n} \left(\frac{1}{k!} - \frac{1}{(k+1)!} \right) =$$

$$= \left(1 - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{6} \right) + \dots + \left(\frac{1}{(n-1)!} - \frac{1}{n!} \right) + \left(\frac{1}{n!} - \frac{1}{(n+1)!} \right) =$$

$$= 1 - \frac{1}{(n+1)!} \longrightarrow 1 \quad (n \to \infty).$$

Így

$$\sum_{n=1}^{\infty} \frac{n}{(n+1)!} = 1.$$

6. Mivel

$$\frac{1}{k^3+3k^2+2k} \ = \ \frac{1}{k(k^2+3k+2)} = \frac{1}{k(k+1)(k+2)} = \frac{1}{2} \cdot \frac{k+2-k}{k(k+1)(k+2)} =$$

$$=\ \frac{1}{2}\cdot \left(\frac{1}{k(k+1)}-\frac{1}{(k+1)(k+2)}\right),$$

ezért

$$s_{n} = \sum_{k=1}^{n} \frac{1}{k^{3} + 3k^{2} + 2k} = \frac{1}{2} \cdot \sum_{k=1}^{n} \left(\frac{1}{k(k+1)} - \frac{1}{(k+1)(k+2)} \right) =$$

$$= \frac{1}{2} \cdot \left\{ \left(\frac{1}{1 \cdot 2} - \frac{1}{2 \cdot 3} \right) + \left(\frac{1}{2 \cdot 3} - \frac{1}{3 \cdot 4} \right) + \dots + \right.$$

$$+ \left(\frac{1}{(n-1)n} - \frac{1}{n(n+1)} \right) + \left(\frac{1}{n(n+1)} - \frac{1}{(n+1)(n+2)} \right) \right\} =$$

$$= \frac{1}{2} \cdot \left\{ \frac{1}{1 \cdot 2} - \frac{1}{(n+1)(n+2)} \right\} \longrightarrow \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4} \quad (n \to \infty).$$

Így

$$\sum_{n=1}^{\infty} \frac{1}{n^3 + 3n^2 + 2n} = \frac{1}{4}.$$

7. Világos, hogy

$$s_n = \sum_{k=1}^n \left(\sqrt{k+1} - \sqrt{k}\right) = (\sqrt{2} - \sqrt{1}) + (\sqrt{3} - \sqrt{2}) + (\sqrt{4} - \sqrt{3}) + \dots + \sqrt{4}$$

$$+(\sqrt{n-1}-\sqrt{n-2})+(\sqrt{n}-\sqrt{n-1})+(\sqrt{n+1}-\sqrt{n}) =$$

$$\stackrel{\text{HF}}{=} \sqrt{n+1} - 1 \longrightarrow +\infty \quad (n \to \infty),$$

így a sor divergens, pontosabban

$$\sum_{n=1}^{\infty} (\sqrt{n+1} - \sqrt{n}) = \lim(s_n) = +\infty.$$

8. Nem nehéz belátni, hogy

$$s_n = \sum_{k=1}^n \left(\sqrt{k+2} - 2\sqrt{k+1} + \sqrt{k} \right) =$$

$$= (\sqrt{3} - 2\sqrt{2} + \sqrt{1}) + (\sqrt{4} - 2\sqrt{3} + \sqrt{2}) + (\sqrt{5} - 2\sqrt{4} + \sqrt{3}) + \ldots +$$

$$+(\sqrt{n}-2\sqrt{n-1}+\sqrt{n-2})+(\sqrt{n+1}-2\sqrt{n}+\sqrt{n-1})+(\sqrt{n+2}-2\sqrt{n+1}+\sqrt{n})=$$

$$\stackrel{\textbf{HF}}{=} 1 - \sqrt{2} + \sqrt{n+2} - \sqrt{n+1} \quad (n \in \mathbb{N})$$

és tetszőleges $\mathfrak{n} \in \mathbb{N}$ esetén

$$\sqrt{n+2} - \sqrt{n+1} = (\sqrt{n+2} - \sqrt{n+1}) \cdot \frac{\sqrt{n+2} + \sqrt{n+1}}{\sqrt{n+2} + \sqrt{n+1}} = \frac{1}{\sqrt{n+2} + \sqrt{n+1}},$$

így a sor konvergens:

$$\sum_{n=1}^{\infty} \left(\sqrt{n+2} - 2\sqrt{n+1} + \sqrt{n} \right) = \lim(s_n) = 1 - \sqrt{2} + 0 = 1 - \sqrt{2}.$$

9. Mivel

$$\frac{\sqrt{k+1} - \sqrt{k}}{\sqrt{k^2 + k}} = \frac{\sqrt{k+1} - \sqrt{k}}{\sqrt{k(k+1)}} = \frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k+1}},$$

ezért

$$s_n \ = \ \sum_{k=1}^n \frac{\sqrt{k+1} - \sqrt{k}}{\sqrt{k^2 + k}} = \sum_{k=1}^n \left(\frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k+1}} \right) =$$

$$= \left(1 - \frac{1}{\sqrt{2}}\right) + \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}}\right) + \ldots + \left(\frac{1}{\sqrt{n-1}} - \frac{1}{\sqrt{n}}\right) + \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}}\right) =$$

$$\stackrel{\mathbf{HF}}{=} 1 - \frac{1}{\sqrt{n+1}} \longrightarrow 1 \quad (n \to \infty).$$

Így

$$\sum_{n=1}^{\infty} \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n^2+n}} = 1.$$

10. Mivel

$$(-1)^k \frac{2k+1}{k(k+1)} = (-1)^k \frac{k+(k+1)}{k(k+1)} = (-1)^k \left(\frac{1}{k+1} + \frac{1}{k}\right),$$

ezért

$$\begin{split} s_n &= \sum_{k=1}^n (-1)^k \frac{2k+1}{k(k+1)} = \sum_{k=1}^n (-1)^k \left(\frac{1}{k+1} + \frac{1}{k} \right) = \\ &= -\left(\frac{1}{2} + 1 \right) + \left(\frac{1}{3} + \frac{1}{2} \right) + \ldots + (-1)^{n-1} \left(\frac{1}{n} + \frac{1}{n-1} \right) + (-1)^n \left(\frac{1}{n+1} + \frac{1}{n} \right) = \end{split}$$

$$\stackrel{\mathbf{HF}}{=} -1 + \frac{(-1)^n}{n+1} \longrightarrow -1 \quad (n \to \infty).$$

Így

$$\sum_{n=1}^{\infty} (-1)^n \frac{2n+1}{n(n+1)} = -1.$$

11. Mivel

$$\frac{1}{(\sqrt{k+1} + \sqrt{k})\sqrt{k(k+1)}} = \frac{1}{(\sqrt{k+1} + \sqrt{k})\sqrt{k(k+1)}} \cdot \frac{\sqrt{k+1} - \sqrt{k}}{\sqrt{k+1} - \sqrt{k}} =$$
$$= \frac{\sqrt{k+1} - \sqrt{k}}{\sqrt{k(k+1)}} = \frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k+1}},$$

ezért

$$s_{n} = \sum_{k=1}^{n} \frac{1}{(\sqrt{k+1} + \sqrt{k})\sqrt{k(k+1)}} = \sum_{k=1}^{n} \left(\frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k+1}}\right) =$$

$$= \left(1 - \frac{1}{\sqrt{2}}\right) + \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}}\right) + \dots + \left(\frac{1}{\sqrt{n-1}} - \frac{1}{\sqrt{n}}\right) + \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}}\right) =$$

$$\stackrel{\text{HF}}{=} 1 - \frac{1}{\sqrt{n+1}} \longrightarrow 1 \qquad (n \to \infty).$$

Így

$$\sum_{n=1}^{\infty}\frac{1}{(\sqrt{n+1}+\sqrt{n})\sqrt{n(n+1)}}=1.$$

12. Mivel

$$\frac{3}{4-5k+k^2} = \frac{3}{(k-1)(k-4)} = \frac{(k-1)-(k-4)}{(k-1)(k-4)} = \frac{1}{k-4} - \frac{1}{k-1},$$

ezért

$$\begin{split} s_n &= = \sum_{k=5}^n \frac{3}{4 - 5k + k^2} = \sum_{k=5}^n \left(\frac{1}{k - 4} - \frac{1}{k - 1} \right) = \\ &= \left(\frac{1}{1} - \frac{1}{4} \right) + \left(\frac{1}{2} - \frac{1}{5} \right) + \left(\frac{1}{3} - \frac{1}{6} \right) + \left(\frac{1}{4} - \frac{1}{7} \right) + \dots + \\ &= \left(\frac{1}{n - 6} - \frac{1}{n - 3} \right) + \left(\frac{1}{n - 5} - \frac{1}{n - 2} \right) + \left(\frac{1}{n - 4} - \frac{1}{n - 1} \right) = \\ &= 1 + \frac{1}{2} + \frac{1}{3} - \frac{1}{n - 3} - \frac{1}{n - 2} - \frac{1}{n - 1} \longrightarrow 1 + \frac{1}{2} + \frac{1}{3} \quad (n \to \infty). \end{split}$$

Így

$$\sum_{n=5}^{\infty} \frac{3}{4 - 5n + n^2} = 1 + \frac{1}{2} + \frac{1}{3}.$$

13. Ha $2^k =: x$, akkor

$$\frac{2^k}{(2^k+1)(2^{k+1}+1)} = \frac{x}{(x+1)(2x+1)} = \frac{(2x+1)-(x+1)}{(x+1)(2x+1)} = \frac{1}{x+1} - \frac{1}{2x+1},$$

ezért

$$\frac{2^k}{(2^k+1)(2^{k+1}+1)} = \frac{1}{2^k+1} - \frac{1}{2^{k+1}+1}.$$

Így

$$\begin{split} s_n &= \sum_{k=0}^n \frac{2^k}{(2^k+1)(2^{k+1}+1)} = \sum_{k=0}^n \left(\frac{1}{2^k+1} - \frac{1}{2^{k+1}+1}\right) = \\ &= \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{5}\right) + \left(\frac{1}{5} - \frac{1}{9}\right) + \dots + \\ &+ \left(\frac{1}{2^{n-2}+1} - \frac{1}{2^{n-1}+1}\right) + \left(\frac{1}{2^{n-1}+1} - \frac{1}{2^n+1}\right) + \left(\frac{1}{2^n+1} - \frac{1}{2^{n+1}+1}\right) = \\ &= \frac{1}{2} - \frac{1}{2^{n+1}+1} \longrightarrow \frac{1}{2} \quad (n \to \infty), \end{split}$$

ahonnan

$$\sum_{n=0}^{\infty} \frac{2^n}{(2^n+1)(2^{n+1}+1)} = \frac{1}{2}$$

következik.

14. Mivel

$$\frac{2k-2}{k(k+1)(k+2)} \ = \ \frac{2 \cdot \{(k+1)-(k+2)+k\}}{k(k+1)(k+2)} = \frac{2}{k(k+2)} - \frac{2}{k(k+1)} + \frac{2}{(k+1)(k+2)} = \frac{2}{k(k+1)(k+2)} = \frac{2}{k(k+2)} - \frac{2}{k(k+1)(k+2)} = \frac{2}{k(k+1)(k+2$$

$$= \frac{1}{k} - \frac{1}{k+2} - \frac{2}{k} + \frac{2}{k+1} + \frac{2}{k+1} - \frac{2}{k+2} = -\frac{1}{k} + \frac{4}{k+1} - \frac{3}{k+2},$$

ezért

$$s_n = \sum_{k=1}^n \frac{2k-2}{k(k+1)(k+2)} = \sum_{k=1}^n \left(-\frac{1}{k} + \frac{4}{k+1} - \frac{3}{k+2}\right) \stackrel{\text{HF}}{=} \frac{n^2-n}{2(n+1)(n+2)} \longrightarrow \frac{1}{2} \quad (n\to\infty),$$

ahonnan

$$\sum_{n=1}^{\infty} \frac{2n-2}{n(n+1)(n+2)} = \frac{1}{2}$$

következik.

15. Mivel

$$\frac{k^2 - k - 1}{k!} = \frac{k(k - 1) - 1}{k!} = \frac{1}{(k - 2)!} - \frac{1}{k!},$$

ezért

$$\begin{split} s_n &= \sum_{k=2}^n \frac{k^2 - k - 1}{k!} = \sum_{k=2}^n \left(\frac{1}{(k-2)!} - \frac{1}{k!} \right) = \\ &= \left(\frac{1}{0!} - \frac{1}{2!} \right) + \left(\frac{1}{1!} - \frac{1}{3!} \right) + \left(\frac{1}{2!} - \frac{1}{4!} \right) + \left(\frac{1}{3!} - \frac{1}{5!} \right) + \dots + \\ &+ \left(\frac{1}{(k-4)!} - \frac{1}{(k-2)!} \right) + \left(\frac{1}{(k-3)!} - \frac{1}{(k-1)!} \right) + \left(\frac{1}{(k-2)!} - \frac{1}{k!} \right) = \\ &= \frac{1}{0!} + \frac{1}{1!} - \frac{1}{(k-1)!} - \frac{1}{k!} \longrightarrow 1 + 1 \quad (n \to \infty), \end{split}$$

ahonnan

$$\sum_{n=2}^{\infty} \frac{n^2 - n - 1}{n!} = 2$$

következik.

Megjegyezzük, hogy a fenti feladatok megoldása során többször alkalmaztuk a parciális törtekre való bontás módszerének alábbi speciális esetét: adott A, a, $b \in \mathbb{R}$, $a \neq b$ számokhoz meghatároztunk olyan p, $q \in \mathbb{R}$ számokhoz, hogy bármely $x \in \mathbb{R} \setminus \{a, b\}$ estén

$$\frac{A}{(x-a)(x-b)} = \frac{p}{x-a} + \frac{q}{x-b}$$

teljesül. Ez többféleképpen is megtehető:

1. módszer. Mivel

$$(x-a)-(x-b)=b-a,$$

ezért bármely $x \in \mathbb{R} \setminus \{a, b\}$ estén

$$\frac{A}{(x-a)(x-b)} = \frac{A}{b-a} \cdot \frac{b-a}{(x-a)(x-b)} = \frac{A}{b-a} \cdot \frac{(x-a)-(x-b)}{(x-a)(x-b)} = \frac{A}{b-a} \cdot \left\{ \frac{1}{x-b} - \frac{1}{x-a} \right\},$$

tehát

$$p := -\frac{A}{b-a} = \frac{A}{a-b}$$
, ill. $q := \frac{A}{b-a}$

jó választás. Ez a módszernek előnyei közé sorolható az, hogy lényegesen kevesebb számolással jár, kisebb az esélye a számolási hibának, továbbá néhány példa megoldása után igen könnyű arra rájönni, hogy a felbontást hogyan lehet akár számolás nélkül "ránézésre" elvégezni.

2. módszer. Bármely $x \in \mathbb{R} \setminus \{a, b\}$ estén

$$\frac{A}{(x-a)(x-b)} =: \frac{p}{x-a} + \frac{q}{x-b} = \frac{p(x-b) + q(x-a)}{(x-a)(x-b)} = \frac{(p+q)x - pb - qa}{(x-a)(x-b)},$$

így

$$0 = p + q$$
 és $A = -pb - qa$, azaz $p = \frac{A}{a - b}$, $q = \frac{A}{b - a}$.

Emlékeztető. Ha $\alpha, q \in \mathbb{R}$, úgy

• a

$$\sum_{n=0} (a \cdot q^n)$$

sor pontosan akkor konvergens, ha |q| < 1 vagy $\alpha = 0$:

$$\sum_{n=0}^{\infty}\alpha\cdot q^n\in\mathbb{R}\qquad\Longleftrightarrow\qquad (q\in(-1,1)\quad \text{vagy}\quad \alpha=0)\,,$$

• |q| < 1 vagy a = 0 esetén

$$\sum_{n=0}^{\infty} a \cdot q^n = a \cdot \sum_{n=0}^{\infty} q^n = a \cdot \frac{1}{1-q},$$

hiszen az

$$s_n := \sum_{k=0}^n \alpha \cdot q^k = \alpha + \alpha q + \alpha q^2 + \ldots + \alpha q^{n-1} + \alpha q^n = \alpha \left(1 + q + q^2 + \ldots + q^{n-1} + q^n \right) \qquad (n \in \mathbb{N}_0)$$

sorozatra (vö. 4. GY)

$$s_n = a \cdot \frac{1 - q^{n+1}}{1 - q} \longrightarrow \frac{a}{1 - q} \qquad (n \to \infty).$$

Megjegyzés. Ha $q \in (-1, 1)$, akkor bármely $m \in \mathbb{N}_0$ esetén

$$\sum_{n=m}^{\infty} q^n = q^m + q^{m+1} + q^{m+2} + \ldots = q^m (1 + q + q^2 + \ldots) = q^m \cdot \sum_{n=0}^{\infty} q^n = q^m \cdot \frac{1}{1-q} = \boxed{\frac{q^m}{1-q}}.$$

Emlékeztető. Tegyük fel, hogy

$$\sum_{n=0}^{\infty} x_n =: A \in \overline{\mathbb{R}} \qquad \text{\'es} \qquad \sum_{n=0}^{\infty} y_n =: B \in \overline{\mathbb{R}}.$$

Ha az α , $\beta \in \mathbb{R}$ számokra $\alpha A + \beta B \in \overline{\mathbb{R}}$, akkor

$$\sum_{n=0}^{\infty} (\alpha x_n + \beta y_n) = \alpha A + \beta B.$$

Feladat. Igazoljuk, hogy a következő sorok konvergensek és határozzuk meg az összegüket!

1.
$$\sum_{n=0}^{\infty} \left(\frac{(-3)^{n+2}}{2^{3n-1}} \right)$$
;

1.
$$\sum_{n=0}^{\infty} \left(\frac{(-3)^{n+2}}{2^{3n-1}} \right);$$
 2. $\sum_{n=1}^{\infty} \left(\frac{(-3)^n + 4}{5^n} \right);$ 3. $\sum_{n=1}^{\infty} \left(\frac{1}{2^n} + \frac{1}{3^n} \right);$

3.
$$\sum_{n=1}^{\infty} \left(\frac{1}{2^n} + \frac{1}{3^n} \right)$$
;

4.
$$\sum_{n=1}^{\infty} \left(\frac{(-1)^n}{2^n} \right)$$
;

4.
$$\sum_{n=1}^{\infty} \left(\frac{(-1)^n}{2^n} \right);$$
 5. $\sum_{n=1}^{\infty} \left(\frac{((-1)^n + 2^n)^2}{5^{n+2}} \right);$ 6. $\sum_{n=2}^{\infty} \left(\frac{(-5)^n}{3^{2n}} \right).$

6.
$$\sum_{n=2}^{\infty} \left(\frac{(-5)^n}{3^{2n}} \right)$$
.

Útm.

1. Mivel

$$\sum_{n=0} \left(\frac{(-3)^{n+2}}{2^{3n-1}} \right) = 18 \cdot \sum_{n=0} \left(\left(\frac{-3}{8} \right)^n \right),$$

ezért konvergens geometriai sorról van szó:

$$\sum_{n=0}^{\infty} \frac{(-3)^{n+2}}{2^{3n-1}} = \frac{18}{1+\frac{3}{8}} = \frac{8 \cdot 18}{11}.$$

2. Mivel

$$\sum_{n=1}^{\infty} \left(\frac{(-3)^n + 4}{5^n} \right) = \sum_{n=1}^{\infty} \left(\left(\frac{-3}{5} \right)^n \right) + 4 \cdot \sum_{n=1}^{\infty} \left(\left(\frac{1}{5} \right)^n \right),$$

ezért a sor konvergens:

$$\sum_{n=1}^{\infty} \frac{(-3)^n + 4}{5^n} = \frac{\frac{-3}{5}}{1 + \frac{3}{5}} + 4 \cdot \frac{\frac{1}{5}}{1 - \frac{1}{5}} = -\frac{3}{8} + 1 = \frac{5}{8}.$$

3. Világos, hogy

$$\sum_{n=1}^{\infty} \left(\frac{1}{2^n} + \frac{1}{3^n} \right) = \sum_{n=1}^{\infty} \frac{1}{2^n} + \sum_{n=1}^{\infty} \frac{1}{3^n} = \frac{1/2}{1 - 1/2} + \frac{1/3}{1 - 1/3} = \frac{1}{2 - 1} + \frac{1}{3 - 1} = \frac{3}{2}.$$

4. Látható, hogy

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{2^n} = \sum_{n=1}^{\infty} \left(-\frac{1}{2} \right)^n = \frac{-1/2}{1+1/2} = -\frac{1}{3}.$$

5. Világos, hogy

$$\sum_{n=10}^{\infty} \frac{((-1)^n + 2^n)^2}{5^{n+2}} \ = \ \sum_{n=10}^{\infty} \frac{1 + 2 \cdot (-2)^n + 4^n}{5^{n+2}} =$$

$$= \sum_{n=10}^{\infty} \left\{ \frac{1}{25} \cdot \left(\frac{1}{5} \right)^n + \frac{2}{25} \cdot \left(-\frac{2}{5} \right)^n + \frac{1}{25} \cdot \left(\frac{4}{5} \right)^n \right\} =$$

$$= \ \frac{1}{25} \cdot \sum_{n=10}^{\infty} \left(\frac{1}{5}\right)^n + \frac{2}{25} \cdot \sum_{n=10}^{\infty} \left(-\frac{2}{5}\right)^n + \frac{1}{25} \cdot \sum_{n=10}^{\infty} \left(\frac{4}{5}\right)^n =$$

$$= \frac{1}{25} \cdot \frac{(1/5)^{10}}{1 - 1/5} + \frac{2}{25} \cdot \frac{(-2/5)^{10}}{1 + 2/5} + \frac{1}{25} \cdot \frac{(4/5)^{10}}{1 - 4/5} =$$

$$= \left(\frac{1}{5}\right)^{12} \cdot \left\{\frac{5}{4} + 2048 \cdot \frac{5}{7} + 4^{10} \cdot 5\right\} = \left(\frac{1}{5}\right)^{11} \cdot \frac{7 + 2^{13} + 4^{11} \cdot 7}{28}.$$

6. Mivel

$$\sum_{n=2} \left(\frac{(-5)^n}{3^{2n}} \right) = \sum_{n=2} \left(\left(-\frac{5}{9} \right)^n \right),$$

ezért konvergens geometriai sorról van szó:

$$\sum_{n=2}^{\infty} \frac{(-5)^n}{3^{2n}} = \frac{\left(-\frac{5}{9}\right)^2}{1 + \frac{5}{9}} = \frac{5^2}{9^2} \cdot \frac{9}{14} = \frac{25}{126}. \quad \blacksquare$$

Feladat. Mely $x \in \mathbb{R}$ esetén konvergens a $\sum (x_n)$ sor?

1.
$$x_n := \left(\frac{\sqrt{x}}{2} - 1\right)^n \quad (n \in \mathbb{N}_0; \ 0 \le x \in \mathbb{R});$$

$$2. \ x_n := \left(\ln(x) \right)^n \quad (n \in \mathbb{N}; \ 0 < x \in \mathbb{R});$$

3.
$$x_n := \left(\frac{x^2+1}{3}\right)^n \quad (n \in \mathbb{N}_0; x \in \mathbb{R});$$

4.
$$x_n := \frac{x}{(1+x)^n}$$
 $(n \in \mathbb{N}_0; -1 \neq x \in \mathbb{R});$

5.
$$x_n := (x^n - x^{n-1})(x^n + x^{n-1}) \quad (n \in \mathbb{N}; \ x \in \mathbb{R});$$

6.
$$x_n := \frac{(x+1)^{n+1}}{(x-1)^n}$$
 $(n \in \mathbb{N}_0; 1 \neq x \in \mathbb{R});$

7.
$$x_n := \frac{x^{2n}}{(1+x^2)^{n-1}}$$
 $(n \in \mathbb{N}; x \in \mathbb{R}).$

Útm.

1. A $\sum_{n=0}^{\infty} (x_n)$ sor pontosan akkor konvergens, ha

$$\left|\frac{\sqrt{x}}{2}-1\right|<1\qquad\Longleftrightarrow\qquad x\in(0,16),$$

és minden $x \in (0, 16)$ esetén

$$\sum_{n=0}^{\infty} x_n = \frac{1}{1 - \left(\frac{\sqrt{x}}{2} - 1\right)} = \frac{1}{2 - \frac{\sqrt{x}}{2}} = \frac{2}{4 - \sqrt{x}}.$$

2. A $\sum_{n=1}^{\infty} (x_n)$ sor pontosan akkor konvergens, ha

$$|\ln(x)| < 1 \qquad \Longleftrightarrow \qquad x \in \left(\frac{1}{e}, e\right),$$

és minden $x \in \left(\frac{1}{e}, e\right)$ esetén

$$\sum_{n=1}^{\infty} x_n = \frac{\ln(x)}{1 - \ln(x)}.$$

3. A $\sum_{n=0}^{\infty} (x_n)$ sor pontosan akkor konvergens, ha

$$\left|\frac{x^2+1}{3}\right| < 1 \qquad \Longleftrightarrow \qquad x \in (-\sqrt{2}, \sqrt{2})$$

és minden $x \in (-\sqrt{2}, \sqrt{2})$ esetén

$$\sum_{n=0}^{\infty} x_n = \frac{1}{1 - \frac{x^2 + 1}{3}} = \frac{3}{2 - x^2}.$$

4. A $\sum (x_n)$ sor pontosan akkor konvergens, ha x=0 vagy

$$\frac{1}{|1+x|} < 1 \qquad \Longleftrightarrow \qquad x \in (-\infty, -2) \cup (0, +\infty).$$

A sor összege pedig:

$$\sum_{n=0}^{\infty} \frac{x}{(1+x)^n} = \begin{cases} 0 & (x=0), \\ \\ x \cdot \frac{1}{1-\frac{1}{1+x}} = x+1 & (x \in (-\infty, -2) \cup (0, +\infty)). \end{cases}$$

5. Világos, hogy x=0 esetén a sor konvergens. Legyen most $x\neq 0$, így

$$(x^{n} - x^{n-1})(x^{n} + x^{n-1}) = x^{n} \left(1 - \frac{1}{x}\right) \left(1 + \frac{1}{x}\right),$$

tehát a sor pontosan akkor konvergens, ha |x| < 1 és ekkor

$$\sum_{n=1}^{\infty} x_n = \begin{cases} \frac{x}{1-x} \left(1 - \frac{1}{x}\right) \left(1 + \frac{1}{x}\right) = -\left(1 + \frac{1}{x}\right) & (x \neq 0), \\ -1 & (x = 0). \end{cases}$$

6. Mivel bármely $1 \neq x \in \mathbb{R}$, ill. $n \in \mathbb{N}_0$ esetén

$$\frac{(x+1)^{n+1}}{(x-1)^n} = (x+1) \cdot \left(\frac{x+1}{x-1}\right)^n,$$

ezért a $\sum (x_n)$ sor pontosan akkor konvergens, ha x = -1 vagy

$$\left|\frac{x+1}{x-1}\right| < 1 \qquad \Longleftrightarrow \qquad x \in (-\infty,0).$$

Tetszőleges $x \in (-\infty, 0)$ esetén a sor összege:

$$\sum_{n=1}^{\infty} \frac{(x+1)^{n+1}}{(x-1)^n} = (x+1) \cdot \sum_{n=1}^{\infty} \left(\frac{x+1}{x-1}\right)^n = (x+1) \cdot \frac{1}{1 - \frac{x+1}{x-1}} = \frac{1-x^2}{2}.$$

7. Minden $x \in \mathbb{R}$ esetén

$$\sum_{n=1}^{\infty} \left(\frac{x^{2n}}{(1+x^2)^{n-1}} \right) = (1+x^2) \cdot \sum_{n=1}^{\infty} \left(\left(\frac{x^2}{1+x^2} \right)^n \right)$$

konvergens mértani sor, továbbá

$$\sum_{n=1}^{\infty} \frac{x^{2n}}{(1+x^2)^{n-1}} = (1+x^2) \cdot \frac{\frac{x^2}{1+x^2}}{1-\frac{x^2}{1+x^2}} = x^2 \cdot (1+x^2) \qquad (x \in \mathbb{R}). \quad \blacksquare$$

Feladat. Tetszőleges $q \in (-1, 1)$ esetén határozzuk meg a $\sum_{n=1}^{\infty} n \cdot q^n$ sorösszeget!

Útm. Legyen $q \in (-1, 1)$ és

$$s_n := \sum_{k=1}^n k \cdot q^k = q + 2 \cdot q^2 + 3 \cdot q^3 + \ldots + n \cdot q^n \qquad (n \in \mathbb{N}).$$

Ekkor

$$\underline{s_n - q \cdot s_n} = \sum_{k=1}^n k \cdot q^k - \sum_{k=1}^n k \cdot q^{k+1} =$$

$$= (q + 2 \cdot q^2 + 3 \cdot q^3 + \ldots + n \cdot q^n) - (q^2 + 2 \cdot q^3 + \ldots + (n-1) \cdot q^n - n \cdot q^{n+1}) =$$

$$= q + q^{2} + q^{3} + \ldots + q^{n} - n \cdot q^{n+1} = \sum_{k=1}^{n} q^{k} - n \cdot q^{n+1} = q \cdot \frac{1 - q^{n}}{1 - q} - n \cdot q^{n+1},$$

ahonnan

$$s_n = q \cdot \frac{1 - q^n}{(1 - q)^2} - \frac{n}{1 - q} \cdot q^{n+1} \longrightarrow \frac{q}{(1 - q)^2} \qquad (n \to \infty),$$

$$\lim(q^n)=0=\lim(n\cdot q^n).$$

Igaz tehát a

$$q \in (-1,1)$$
 \Longrightarrow $\left| \sum_{n=1}^{\infty} n \cdot q^n = \frac{q}{(1-q)^2} \right|$

implikáció. ■

Például.

1.
$$\sum_{n=1}^{\infty} \frac{n}{3^n} = \sum_{n=1}^{\infty} n \cdot \left(\frac{1}{3}\right)^n = \frac{\frac{1}{3}}{\left(1 - \frac{1}{3}\right)^2} = \frac{\frac{1}{3}}{\frac{4}{9}} = \frac{1}{3} \cdot \frac{4}{9} = \frac{3}{4}.$$

$$2. \sum_{n=1}^{\infty} \frac{2n+1}{(-3)^n} = 2 \cdot \sum_{n=1}^{\infty} n \left(-\frac{1}{3}\right)^n + \sum_{n=1}^{\infty} \left(-\frac{1}{3}\right)^n = 2 \cdot \frac{-\frac{1}{3}}{\left(1+\frac{1}{3}\right)^2} + \frac{\frac{1}{3}}{1+\frac{1}{3}} = -\frac{3}{8} + \frac{1}{4} = -\frac{1}{8}.$$

2023. 04. 20.

Feladat. Igazoljuk, hogy ha $2 \le p \in \mathbb{N}$ és $\alpha \in [0, 1]$, akkor van olyan

$$x_n \in \{0, 1, \dots, p-1\}$$
 $(n \in \mathbb{N})$

(együttható)sorozat, hogy

$$\alpha = \sum_{n=1}^{\infty} \frac{x_n}{p^n} =: (0, x_1 x_2 \dots)_p,$$
 (22)

teljesül!

Útm. Ha

• $\alpha = 1$, akkor az $x_n := p - 1$ $(n \in \mathbb{N}_0)$ választás megfelelő:

$$\sum_{p=1}^{\infty} \frac{p-1}{p^n} = (p-1) \cdot \sum_{p=1}^{\infty} \frac{1}{p^n} = (p-1) \cdot \frac{\frac{1}{p}}{1-\frac{1}{p}} = \frac{p-1}{p} \cdot \frac{p}{p-1} = 1.$$

• $\alpha \in [0, 1)$, akkor pl. az

$$x_1 := [p\alpha], \ldots, x_{n+1} := [p^{n+1}\alpha - (p^nx_1 + \ldots + px_n)]$$
 $(n \in \mathbb{N})$

rekurzív megadású sorozatra:

$$\sum_{n=1}^{\infty} \frac{x_n}{p^n} = \alpha.$$

Biz. Ha $x_1:=[p\alpha]$, akkor $x_1\in\{0,\ldots,p-1\}$ és a $x_1\leq p\alpha < x_1+1$ egyenlőtlenségrendszerből

$$\frac{x_1}{p} \le \alpha < \frac{x_1 + 1}{p};$$

ha pedig $x_2:=[p^2\alpha-px_1]$, akkor $x_2\in\{0,\ldots,p-1\}$ és a $x_2\leq p^2\alpha-px_1< x_2+1$ egyenlőtlenségrendszerből

$$\frac{x_1}{p} + \frac{x_2}{p^2} \le \alpha < \frac{x_1}{p} + \frac{x_2 + 1}{p^2};$$

így az eljárást folytatva, ha az $x_n \in \{0, \dots, p-1\}$ számot meghatároztuk, úgy legyen

$$x_{n+1} := \left[p^{n+1} \alpha - p^n x_1 - \ldots - p x_n \right].$$

Ekkor $x_{n+1} \in \{0, ..., p-1\}$ és

$$s_n := \frac{x_1}{p} + \frac{x_2}{p^2} + \ldots + \frac{x_n}{p^n} \le \alpha < \frac{x_1}{p} + \ldots + \frac{x_{n-1}}{p^{n-1}} + \frac{x_n + 1}{p^n},$$

2023. 04. 20.

azaz

$$0 \le \alpha - s_n \le \frac{1}{p^n}$$
 $(n \in \mathbb{N}),$

ahonnan

$$\lim(s_n) = \alpha,$$
 ill. $\sum_{n=1}^{\infty} \frac{x_n}{p^n} = \alpha$

következik.

Példa. A $(0, 1\dot{2}\dot{4})_{10}$ sor reprezentálta szám tehát nem más, mint

$$(0, 1\dot{2}\dot{4})_{10} = 0, 1 + 0,024 + 0,00024 + 0,0000024 + \dots =$$

$$= 0, 1 + 0,024 \cdot \left(1 + \frac{1}{100} + \frac{1}{(100)^2} + \dots\right) = \frac{1}{10} + \frac{24}{1000} \cdot \frac{1}{1 - \frac{1}{100}} = \frac{123}{990}.$$

Definíció. A p := 2, a p := 3, ill. a p := 10 esetben a (22) előállítást az x szám **diadikus tört**, **triadikus tört**, ill. **tizedes tört** alakjának nevezzük.

Megjegyezzük, hogy

- 1. a padikus törteket a következőképpen szokás osztályozni: az $(0, x_1x_2...)_p$
 - véges p-adikus tört, ha alkalmas $M \in \mathbb{N}$ esetén minden $M \leq n \in \mathbb{N}$ inxere $x_n = 0$;
 - szakaszos végtelen p-adikus tört, ha alkalmas M, k ∈ N esetén minden M ≤ n ∈ N inxere x_{n+k} = x_n:

$$(0, a_1 a_2 \dots a_M b_1 b_2 \dots b_k b_1 b_2 \dots b_k b_1 b_2 \dots b_k \dots)_p =: (0, a_1 a_2 \dots a_M \dot{b}_1 b_2 \dots \dot{b}_k)_p.$$

$$Pl. \ 1/3 = (0, \dot{3})_{10}$$

- nemszakaszos végtelen p-adikus tört, ha végtelen, de nem szakaszos p-adikus tört.
- 2. Az $\alpha \in (0,1)$ szám pontosan akkor racionális, ha p-adikus tör alakja (véges vagy) végtelen szakaszos.
- 3. A diadikus törtek fontos szerepet játszanak az informatikában, például a **lebegőpontos számábrázo- lás**nál. Ennek lényege, hogy a számot egyértelműen felírjuk

$$e \cdot M \cdot 2^k$$

alakban, ahol e a szám előjele, $1/2 \le M < 1$ és $k \in \mathbb{Z}$. Az M számot (**mantisszá**t) úgy tároljuk, hogy a diadikus tört alakjából vesszük az első néhány bitet a legmagasabb helyérték kivételével, mert az

úgyis 1. A tárolt bitek száma függ az alkalmazott pontosságtól. Ezzel általában csak egy M-hez közeli diadikus racionális számot tudunk tárolni. Például az 1/10 számot nem tudjuk pontosan tárolni.

4. ha $a \in \mathbb{N}_0$, $b \in \mathbb{N}$ olyan számok, amelyre a < b, akkor az

$$\frac{a}{b} = \sum_{n=1}^{\infty} \frac{x_n}{p^n} \tag{23}$$

előállítás a következő algoritmus alkalmazásával könnyen megkapható:

1. lépés. Legyen $x_1 := \left[p \cdot \frac{a}{b}\right]$. Ekkor

$$p \cdot \frac{a}{b} = x_1 + \frac{m_1}{b}$$

(pa-ban a b megvan x_1 -szer és marad m_1).

2. lépés. Legyen $x_2 := \left[p \cdot \frac{m_1}{b}\right]$. Ekkor

$$p \cdot \frac{m_1}{b} = x_2 + \frac{m_2}{b}$$

 $(pm_1$ -ben a b megvan x_2 -ször és marad m_2).

3. lépés. Legyen $x_3 := \left[p \cdot \frac{m_2}{b} \right]$. Ekkor

$$p \cdot \frac{m_2}{b} = x_3 + \frac{m_3}{b}$$

 $(pm_2$ -ben a b megvan x_3 -szor és marad m_3).

:

n. lépés. Legyen $x_n := \left[p \cdot \frac{m_{n-1}}{b}\right]$. Ekkor

$$p \cdot \frac{m_{n-1}}{h} = x_n + \frac{m_n}{h}$$

 $(pm_{n-1}$ -ben a b megvan x_n -szer és marad m_n).

Ha mind az n egyenlőséget rendre az

$$\frac{1}{p}, \frac{1}{p^2}, \dots \frac{1}{p^n}$$

számokkal szorozzuk, majd az elsőhöz adjuk, akkor azt kapjuk, hogy

$$\frac{a}{b} = \frac{x_1}{p} + \frac{x_2}{p^2} + \frac{x_3}{p^3} + \dots + \frac{x_n}{p^n} + \frac{m_n}{p^n b}$$

2023. 04. 20.

Mivel minden $n \in \mathbb{N}$ indexre $1 \leq m_n \leq b,$ ezért

$$\lim_{n\to\infty}\left(\frac{m_n}{p^nb}\right)=0, \qquad \text{azaz} \qquad \frac{\alpha}{b}=\sum_{n=1}^\infty\frac{x_n}{p^n}.$$

Példák.

1.
$$\frac{1}{7} = (0, 001)_2$$
, ui.

$$\frac{1}{7} \xrightarrow{\times 2} \frac{2}{7} < 1 \ (\mathbf{x_1} := \mathbf{0}) \xrightarrow{\times 2} \frac{4}{7} < 1 \ (\mathbf{x_2} := \mathbf{0}) \xrightarrow{\times 2} \frac{8}{7} = 1 + \frac{1}{7} \ (\mathbf{x_3} := \mathbf{1}) \longrightarrow \frac{1}{7} \ (\text{ism\'etl\'es}).$$

Megjegyezzük, hogy

$$(0,001)_2 = \left(\frac{0}{2} + \frac{0}{2^2} + \frac{1}{2^3}\right) + \left(\frac{0}{2^4} + \frac{0}{2^5} + \frac{1}{2^6}\right) + \left(\frac{0}{2^7} + \frac{0}{2^8} + \frac{1}{2^9}\right) + \dots =$$

$$= \frac{1}{2^3} + \frac{1}{2^6} + \frac{1}{2^9} + \dots = \sum_{n=1}^{\infty} \left(\frac{1}{2^3}\right)^n = \frac{\frac{1}{8}}{1 - \frac{1}{8}} = \frac{1}{8} \cdot \frac{8}{7} = \frac{1}{7}.$$

2.
$$\frac{2}{3} = (0, 20)_3$$
, ui.

$$\frac{2}{3} \xrightarrow{\times 3} \frac{6}{3} = 2 + 0 \ (\mathbf{x_1} := \mathbf{2}) \xrightarrow{\times 3} 0 \ (\mathbf{x_2} := \mathbf{0}) \xrightarrow{\times 3} 0 \ (\text{ism\'etl\'es}).$$

Megjegyezzük, hogy

$$(0,2\dot{0})_3 = \frac{2}{3} + \frac{0}{3^2} + \frac{0}{2^4} + \frac{0}{2^5} + \ldots = \frac{2}{3}.$$

3.
$$\frac{2}{11} = (0, \dot{1}\dot{8})_{10}$$
, ui.

$$\frac{2}{11} \xrightarrow{\times 10} \frac{20}{11} = 1 + \frac{9}{11} \ (\mathbf{x_1} := \mathbf{1}) \ \xrightarrow{\times 10} \ \frac{90}{11} = 8 + \frac{2}{11} \ (\mathbf{x_2} := \mathbf{8}) \ \longrightarrow \ \frac{2}{11} \ (\text{ism\'etl\'es}).$$

Megjegyezzük, hogy

$$(0, \dot{1}\dot{8})_{10} = \left(\frac{1}{10} + \frac{8}{10^2}\right) + \left(\frac{1}{10^3} + \frac{8}{10^4}\right) + \left(\frac{1}{10^5} + \frac{8}{10^6}\right) + \dots =$$

$$= \frac{18}{10^2} + \frac{18}{10^4} + \frac{18}{10^6} + \dots = 18 \cdot \sum_{n=1}^{\infty} \left(\frac{1}{10^2}\right)^n = 18 \cdot \frac{\frac{1}{10^2}}{1 - \frac{1}{10^2}} =$$

$$= 18 \cdot \frac{1}{10^2} \cdot \frac{10^2}{99} = \frac{18}{99} = \frac{2}{11}.$$

Feladat. Adjuk meg a $(0, 14)_6$ szám diadikus tört alakját!

Útm. Mivel

$$(0,14)_6 = \frac{1}{6} + \frac{4}{6^2} + \frac{4}{6^3} + \frac{4}{6^4} + \dots = \frac{1}{6} + \frac{4}{6^2} \cdot \left(1 + \frac{1}{6} + \frac{1}{6^2} + \frac{1}{6^3} + \dots\right) =$$

$$= \frac{1}{6} + \frac{4}{6^2} \cdot \frac{1}{1 - \frac{1}{6}} = \frac{1}{6} + \frac{4}{6^2} \cdot \frac{6}{5} = \frac{1}{6} + \frac{4}{30} = \frac{90}{30} = \frac{3}{10},$$

és

$$\frac{3}{10} \stackrel{\times 2}{\longrightarrow} \frac{6}{10} = \frac{3}{5} < 1 \ (\mathbf{x_1} := \mathbf{0}) \stackrel{\times 2}{\longrightarrow} \frac{6}{5} = 1 + \frac{1}{5} \ (\mathbf{x_2} := \mathbf{1}) \stackrel{\times 2}{\longrightarrow} \frac{2}{5} < 1 \ (\mathbf{x_3} := \mathbf{0}) \stackrel{\times 2}{\longrightarrow}$$

$$\stackrel{\times 2}{\longrightarrow} \quad \frac{4}{5} < 1 \ (\mathbf{x_4} := \mathbf{0}) \quad \stackrel{\times 2}{\longrightarrow} \quad \frac{8}{5} = 1 + \frac{3}{5} \ (\mathbf{x_5} := \mathbf{1}) \ (\text{ism\'etl\'es}),$$

ezért

$$(0,1\dot{4})_6 = (0,0\dot{1}00\dot{1})_2.$$

Emlékeztető. Tegyük fel, hogy bármely $n \in \mathbb{N}$ esetén $x_n \in (0, +\infty)$. Ekkor igaz az

$$\sum (x_n)$$
 konvergens \iff (s_n) korlátos

ekvivalencia, hiszen ebben az esetben (s_n) szigorúan monoton növekedő:

$$s_{n+1}-s_n=\sum_{k=1}^{n+1}x_k-\sum_{k=1}^nx_k=x_{n+1}>0$$
 $(n\in\mathbb{N}).$

Következésképpen

• a

$$\sum_{n=1} \left(\frac{1}{n} \right)$$

harmonikus sor divergens, hiszen, ha $\nu_n:=2^n\ (n\in\mathbb{N}),$ akkor

$$s_{\nu_n} \ = \ s_{2^n} = 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \ldots + \frac{1}{8}\right) + \ldots + \left(\frac{1}{2^{n-1}+1} + \ldots + \frac{1}{2^n}\right) \geq$$

$$\geq 1 + \frac{1}{2} + 2 \cdot \frac{1}{4} + 4 \cdot \frac{1}{8} + \ldots + 2^{n-1} \cdot \frac{1}{2^n} = 1 + n \cdot \frac{1}{2} = \frac{2+n}{2},$$

azaz a részletösszegek

$$s_n = \sum_{k=1}^n \frac{1}{k}$$
 $(n \in \mathbb{N})$

sorozata nem korlátos.

a

$$\sum_{n=0} \left(\frac{1}{n!} \right)$$

sor konvergens, hiszen a részletösszegek

$$s_n := \sum_{k=0}^n \frac{1}{k!} \qquad (n \in \mathbb{N})$$

sorozata (vö. 4. **GY**) korlátos:

$$2 \leq s_n < 3 \qquad (n \in \mathbb{N}_0).$$

2023. 04. 20.

Feladat. Legyen $\alpha \in \mathbb{R}$. Igazoljuk, hogy ha

1. $\alpha > 1$, akkor bármely $n \in \mathbb{N}$ esetén

$$\boxed{\sum_{k=1}^{n} \frac{1}{n^{\alpha}}} = 1 + \frac{1}{2^{\alpha}} + \ldots + \frac{1}{(n-1)^{\alpha}} + \frac{1}{n^{\alpha}} \boxed{<} \frac{2^{\alpha-1}}{2^{\alpha-1} - 1} = \boxed{\frac{2^{\alpha}}{2^{\alpha} - 2}};$$

2. $\alpha \leq 1$, akkor bármely $c \in \mathbb{R}$ számhoz van olyan $n \in \mathbb{N}$, hogy igaz a

$$\sum_{k=1}^{n} \frac{1}{n^{\alpha}} = 1 + \frac{1}{2^{\alpha}} + \ldots + \frac{1}{(n-1)^{\alpha}} + \frac{1}{n^{\alpha}} > c$$

becslés!

Útm.

1. Legyen $\mathfrak{m} \in \mathbb{N}$. Ha $\mathfrak{n} \in \mathbb{N}$: $\mathfrak{n} < 2^{\mathfrak{m}+1}$, akkor

$$\begin{split} \sum_{k=1}^{n} \frac{1}{k^{\alpha}} & \leq 1 + \left(\frac{1}{2^{\alpha}} + \frac{1}{3^{\alpha}}\right) + \left(\frac{1}{4^{\alpha}} + \frac{1}{5^{\alpha}} + \frac{1}{6^{\alpha}} + \frac{1}{7^{\alpha}}\right) + \dots + \\ & + \left(\frac{1}{(2^{m})^{\alpha}} + \frac{1}{(2^{m} + 1)^{\alpha}} + \dots + \frac{1}{(2^{m+1} - 1)^{\alpha}}\right) < \\ & < 1 + \left(\frac{1}{2^{\alpha}} + \frac{1}{2^{\alpha}}\right) + \left(\frac{1}{4^{\alpha}} + \frac{1}{4^{\alpha}} + \frac{1}{4^{\alpha}} + \frac{1}{4^{\alpha}}\right) + \dots + \\ & + \left(\frac{1}{(2^{m})^{\alpha}} + \frac{1}{(2^{m})^{\alpha}} + \dots + \frac{1}{(2^{m})^{\alpha}}\right) = \end{split}$$

$$= 1 + \frac{1}{2^{\alpha-1}} + \frac{1}{4^{\alpha-1}} + \ldots + \frac{1}{(2^{m})^{\alpha-1}} =$$

$$= 1 + \frac{1}{2^{\alpha - 1}} + \left(\frac{1}{2^{\alpha - 1}}\right)^2 + \ldots + \left(\frac{1}{2^{\alpha - 1}}\right)^m = \frac{1 - \left(\frac{1}{2^{\alpha - 1}}\right)^{m+1}}{1 - \frac{1}{2^{\alpha - 1}}} =$$

$$= \frac{2^{\alpha-1}}{2^{\alpha-1}-1}\left\{1-\left(\frac{1}{2^{\alpha-1}}\right)^{m+1}\right\} < \frac{2^{\alpha-1}}{2^{\alpha-1}-1}.$$

Mivel bármely $n \in \mathbb{N}$ esetén van olyan $m \in \mathbb{N}$, hogy $n < 2^{m+1}$, ezért

$$\sum_{k=1}^n \frac{1}{n^{\alpha}} = 1 + \frac{1}{2^{\alpha}} + \ldots + \frac{1}{(n-1)^{\alpha}} + \frac{1}{n^{\alpha}} < \frac{2^{\alpha-1}}{2^{\alpha-1}-1}.$$

2. Ha $N \in \mathbb{N}$ és $n := 2^{2N+1}$, akkor

$$\sum_{k=1}^{n} \frac{1}{k^{\alpha}} = 1 + \frac{1}{2^{\alpha}} + \left(\frac{1}{3^{\alpha}} + \frac{1}{4^{\alpha}}\right) + \left(\frac{1}{5^{\alpha}} + \frac{1}{6^{\alpha}} + \frac{1}{7^{\alpha}} + \frac{1}{8^{\alpha}}\right) + \dots + \left(\frac{1}{(2^{N} + 1)^{\alpha}} + \frac{1}{(2^{N} + 1)^{\alpha}} + \dots + \frac{1}{(2^{N+1})^{\alpha}}\right) \ge$$

$$\geq 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \dots +$$

$$+ \left(\frac{1}{2^N+1} + \frac{1}{2^N+1} + \ldots + \frac{1}{2^{N+1}} \right) \geq$$

$$\geq 1 + \frac{1}{2} + \left\{ 2 \cdot \frac{1}{4} + 4 \cdot \frac{1}{8} + \ldots + 2^N \cdot \frac{1}{2^{N+1}} \right\} = \frac{3}{2} + \frac{N}{2} = \frac{3+N}{2}.$$

Ez azt jelenti, hogy ha $c \in \mathbb{R}$ tetszőleges, akkor van olyan N, ill. $\mathfrak{n} := 2^{2N+1}$, hogy

$$\sum_{k=1}^{n} \frac{1}{n^{\alpha}} = 1 + \frac{1}{2^{\alpha}} + \ldots + \frac{1}{(n-1)^{\alpha}} + \frac{1}{n^{\alpha}} > \frac{3+N}{2} > c. \quad \blacksquare$$

2023. 04. 20.

Mivel $\frac{1}{n^{\alpha}} > 0$, ezért igaz az

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \in \mathbb{R} \qquad \Longleftrightarrow \qquad \alpha > 1.$$

ekvivalencia (pozitív tagú sorozat generálta sor pontosan akkor konvergens, ha a részletösszegek sorozata korlátos).

Feladat. Bizonyítsuk be, hogy a $\sum_{k=0}^{\infty} \left(\frac{1}{k!}\right)$ konvergens sor összegére

$$\sum_{k=0}^{\infty} \frac{1}{k!} = \lim_{n \to \infty} \sum_{k=0}^{n} \frac{1}{k!} = \sup \left\{ \sum_{k=0}^{n} \frac{1}{k!} \in \mathbb{R} : n \in \mathbb{N} \right\} = e$$

teljesül!

Útm.

1. lépés. Tudjuk, hogy a

$$s_n:=\sum_{k=0}^n\frac{1}{k!}\quad (n\in\mathbb{N}_0)\qquad \text{\'es}\qquad e_n:=\left(1+\frac{1}{n}\right)^n\quad (n\in\mathbb{N}).$$

sorozatok konvergensek és $\lim(e_n) = e$.

2. lépés. Világos, hogy

$$\mathbf{e_1} = \left(1 + \frac{1}{1}\right)^1 = 2 = 1 + 1 = \mathbf{s_1}, \qquad \mathbf{e_2} = \left(1 + \frac{1}{2}\right)^2 = \frac{9}{4} < \frac{10}{4} = \frac{5}{2} = 1 + 1 + \frac{1}{2} = \mathbf{s_2},$$

továbbá tetszőleges $3 \le n \in \mathbb{N}$ esetén és a binomiális tétel felhasználásával azt kapjuk, hogy

$$\mathbf{e_n} = \sum_{k=0}^{n} \binom{n}{k} \cdot 1^{n-k} \cdot \frac{1}{n^k} = \sum_{k=0}^{n} \binom{n}{k} \frac{1}{n^k} = 1 + 1 + \sum_{k=2}^{n} \binom{n}{k} \cdot \frac{1}{n^k} = 1 + 1 + \sum_{k=0}^{n} \binom{n}{k} = 1 + 1 + 1 + \sum_{k=0}^{n} \binom{n}{k} = 1 + 1$$

$$= 2 + \sum_{k=2}^{n} \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{k!} \cdot \frac{1}{n^{k}} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = \frac{1}{n!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = \frac{1}{n!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = \frac{1}{n!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = \frac{1}{n!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = \frac{1}{n!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = \frac{1}{n!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = \frac{1}{n!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = \frac{1}{n!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = \frac{1}{n!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = \frac{1}{n!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = \frac{1}{n!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = \frac{1}{n!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = \frac{1}{n!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = \frac{1}{n!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = \frac{1}{n!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = \frac{1}{n!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = \frac{1}{n!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = \frac{1}{n!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = \frac{1}{n!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = \frac{1}{n!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = \frac{1}{n!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = \frac{1}{n!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = \frac{1}{n!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = \frac{1}{n!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = \frac{1}{n!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot (n-(k-1))} = \frac{1}{n!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot (n-(k-1))} = \frac{1}{n!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot (n-(k-1))} = \frac{1}{n!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot (n-(k-1))} = \frac{1}{n!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot (n-(k-1))} = \frac{1}{n!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot (n-(k-1))} = \frac{1}{n!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot (n-(k-1))} = \frac{1}{n!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot (n-(k-1))} = \frac{1}{n!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot (n-(k-1))} = \frac{1}{n!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot (n-(k-1$$

$$= 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{ 1 \cdot \left(1 - \frac{1}{n}\right) \cdot \ldots \cdot \left(1 - \frac{k-1}{n}\right) \right\} < 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot$$

$$= 2 + \sum_{k=2}^{n} \frac{1}{k!} = \sum_{k=0}^{n} \frac{1}{k!} = \mathbf{s_n},$$

ezért

$$e_n \leq s_n$$
 $(n \in \mathbb{N}),$

ahonnan

$$e = \lim (e_n) \le \lim (s_n)$$

következik.

3. lépés. Ha $m, n \in \mathbb{N}$: $2 \le m < n$, akkor

$$e_n = 2 + \sum_{k=2}^n \frac{1}{k!} \cdot \prod_{i=1}^{k-1} \left(1 - \frac{j}{n}\right) > 2 + \sum_{k=2}^m \frac{1}{k!} \cdot \prod_{j=1}^{k-1} \left(1 - \frac{j}{n}\right) \stackrel{n \to \infty}{\longrightarrow}$$

$$\stackrel{n\to\infty}{\longrightarrow} 2+\sum_{k=2}^m\frac{1}{k!}\cdot\prod_{i=1}^{k-1}\lim_{n\to\infty}\left(1-\frac{j}{n}\right)=2+\sum_{k=2}^m\frac{1}{k!}\cdot\prod_{i=1}^{k-1}1=\sum_{k=0}^m\frac{1}{k!}=s_m,$$

így a fentiek figyelembevételével azt kapjuk, hogy tetszőleges $\mathfrak{m} \in \mathbb{N}$ esetén $e > e_\mathfrak{n} \ge s_\mathfrak{m}$, ahonnan

$$e \ge \lim_{m \to \infty} (s_m)$$

következik. Ez pedig a korábbiak fényében azt jelenti, hogy

$$\sum_{k=0}^{\infty} \frac{1}{k!} = \lim(s_n) = e. \quad \blacksquare$$

Feladat. Igazoljuk, hogy $e \notin \mathbb{Q}$, továbbá fennáll a

becslés!

Útm.

1. lépés. Világos, hogy ha

$$s_n := \sum_{k=0}^n \frac{1}{k!} \qquad (n \in \mathbb{N}_0),$$

akkor bármely $n \in \mathbb{N}_0$ esetén

$$\begin{split} e - s_n &= e - \sum_{k=0}^n \frac{1}{k!} = \sum_{k=0}^\infty \frac{1}{k!} - \sum_{k=0}^n \frac{1}{k!} = \sum_{k=n+1}^\infty \frac{1}{k!} = \frac{1}{(n+1)!} \cdot \sum_{k=n+1}^\infty \frac{(n+1)!}{k!} = \\ &= \frac{1}{(n+1)!} \cdot \left(1 + \sum_{k=n+2}^\infty \frac{(n+1)!}{k!} \right) = \frac{1}{(n+1)!} \cdot \left(1 + \sum_{k=n+2}^\infty \prod_{j=n+2}^k \frac{1}{j} \right) \le \\ &\le \frac{1}{(n+1)!} \cdot \left(1 + \sum_{k=n+2}^\infty \prod_{j=n+2}^k \frac{1}{n+2} \right) = \frac{1}{(n+1)!} \cdot \left\{ 1 + \sum_{k=n+2}^\infty \left(\frac{1}{n+2} \right)^{k-n-1} \right\} = \\ &= \frac{1}{(n+1)!} \cdot \sum_{k=n+1}^\infty \left(\frac{1}{n+2} \right)^{k-(n+1)} = \frac{1}{(n+1)!} \cdot \sum_{k=0}^\infty \left(\frac{1}{n+2} \right)^k = \frac{1}{(n+1)!} \cdot \frac{1}{1 - \frac{1}{n+2}} = \end{split}$$

$$= \frac{n+2}{(n+1)\cdot(n+1)!}.$$

Így

$$0<\theta_n:=n\cdot n!\cdot \left(e-\sum_{k=0}^n\frac{1}{k!}\right)\leq \frac{(n+2)\cdot n\cdot n!}{(n+1)\cdot (n+1)!}=\frac{(n+2)\cdot n}{(n+1)^2}=\frac{n^2+2n}{n^2+2n+1}<1\quad (n\in\mathbb{N}),$$

ahonnan

$$e - \sum_{k=0}^{n} \frac{1}{k!} < \frac{1}{n \cdot n!} \qquad (n \in \mathbb{N})$$

következik.

2. lépés. Ha $e \in \mathbb{Q}$, akkor alkalmas $m, n \in \mathbb{N}$ számokkal $e = \frac{m}{n}$. Így a fentiek alapján van olyan

$$0 < \theta_n < 1$$
,

hogy

$$\frac{m}{n} - \sum_{k=0}^{n} \frac{1}{k!} = \frac{\theta_n}{n \cdot n!}.$$

Innen

$$\theta_{n} = \frac{m \cdot n \cdot n!}{n} - \sum_{k=0}^{n} \frac{n \cdot n!}{k!} = m \cdot n! - n \cdot \sum_{k=0}^{n} \prod_{j=k+1}^{n} j \in \mathbb{Z}$$

ami nem lehetséges. Következésképpen $e \notin \mathbb{Q}$.

3. lépés. Az n = 7 esetben

$$0 < e - s_7 < \frac{1}{7 \cdot 7!} = \frac{1}{7 \cdot 5040} < 0.00003,$$

azaz

$$s_7 < e < s_7 + 0,00003.$$

Mivel

$$s_7 = \sum_{k=0}^{7} \frac{1}{k!} = 1 + 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \frac{1}{720} + \frac{1}{5040} =$$

$$= \frac{5040 + 5040 + 2520 + 840 + 210 + 42 + 7 + 1}{5040} = \frac{13700}{5040} = \frac{685}{252} = 2.71825...$$

így

$$2.71825 < s_7 < e < s_7 + 0.00003 < 2.71826 + 0.00003 = 2.71829$$
. ■

2023. 04. 20.

Feladat. Igazoljuk, hogy a

$$\sum_{n=0} \left(\frac{n^2 + 3n}{(n+2)!} \right)$$

sor konvergens, majd számítsuk ki összegét!

Útm. Mivel

$$n^2 + 3n = n^2 + 3n + 2 - 2 = (n+1)(n+2) - 2$$
 $(n \in \mathbb{N}_0),$

ezért

$$\frac{n^2+3n}{(n+2)!}=\frac{(n+1)(n+2)-2}{(n+2)!}=\frac{1}{n!}-\frac{2}{(n+2)!} \qquad (n\in\mathbb{N}_0).$$

Következésképpen

$$\sum_{n=0}^{\infty} \frac{n^2 + 3n}{(n+2)!} = \sum_{n=0}^{\infty} \frac{1}{n!} - 2 \cdot \sum_{n=0}^{\infty} \frac{1}{(n+2)!} = e - 2 \cdot \left(\sum_{n=0}^{\infty} \frac{1}{n!} - \frac{1}{0!} - \frac{1}{1!}\right) = e - 2 \cdot (e-2) = 4 - e. \quad \blacksquare$$

Házi feladat. Igazoljuk, hogy az alábbi sorok konvergensek, és határozzuk meg összegüket!

1.
$$\sum_{n=10} \left(\frac{5}{2^n} + \frac{1}{3^{2n}} \right);$$
 2. $\sum_{n=1} \left(\frac{2 \cdot (-1)^n + 2^{n+1}}{3^{2n+1}} \right);$ 3. $\sum_{n=1} \left(\frac{1}{n^2 + 4n + 3} \right).$

Útm.

1. Mivel

$$\left|\frac{1}{2}\right| < 1 \qquad \text{\'es} \qquad \left|\frac{1}{3^2}\right| = \left|\frac{1}{9}\right| < 1,$$

ezért konvergens geometriai sorról van szó, melynek összeg:

$$\sum_{n=10}^{\infty} \left(\frac{5}{2^n} + \frac{1}{3^{2n}} \right) = \sum_{n=10}^{\infty} \frac{5}{2^n} + \sum_{n=10}^{\infty} \frac{1}{3^{2n}} = 5 \cdot \sum_{n=10}^{\infty} \left(\frac{1}{2} \right)^n + \sum_{n=10}^{\infty} \left(\frac{1}{9} \right)^n =$$

$$= 5 \cdot \frac{(1/2)^{10}}{1 - 1/2} + \frac{(1/9)^{10}}{1 - 1/9} = \frac{5}{2^9} + \frac{1}{8 \cdot 9^9}.$$

2. Mivel

$$\sum_{n=1} \left(\frac{2 \cdot (-1)^n + 2^{n+1}}{3^{2n+1}} \right) = \frac{2}{3} \cdot \sum_{n=1} \left(\left(\frac{-1}{9} \right)^n \right) + \frac{2}{3} \cdot \sum_{n=1} \left(\left(\frac{2}{9} \right)^n \right)$$

és

$$\left|-\frac{1}{9}\right| < 1,$$
 ill. $\left|\frac{2}{9}\right| < 1,$

ezért konvergens geometriai sorról van szó, melynek összege:

$$\sum_{n=1}^{\infty} \frac{2 \cdot (-1)^n + 2^{n+1}}{3^{2n+1}} = \frac{2}{3} \cdot \frac{-1/9}{1 + \frac{1}{9}} + \frac{2}{3} \cdot \frac{2/9}{1 - \frac{2}{9}} = -\frac{2}{30} + \frac{4}{21} = \frac{13}{105}.$$

3. Ha

$$s_n \ = \ \sum_{k=1}^n \frac{1}{k^2 + 4k + 3} = \sum_{k=1}^n \frac{1}{(k+1)(k+3)} = \frac{1}{2} \cdot \sum_{k=1}^n \frac{(k+3) - (k+1)}{(k+1)(k+3)} =$$

$$=$$
 $\frac{1}{2} \cdot \sum_{k=1}^{n} \left(\frac{1}{k+1} - \frac{1}{k+3} \right) =$

$$= \frac{1}{2} \cdot \left\{ \left(\frac{1}{2} - \frac{1}{4} \right) + \left(\frac{1}{3} - \frac{1}{5} \right) + \left(\frac{1}{4} - \frac{1}{6} \right) + \dots + \right.$$

$$+\left(\frac{1}{n-1}-\frac{1}{n+1}\right)+\left(\frac{1}{n}-\frac{1}{n+2}\right)+\left(\frac{1}{n+1}-\frac{1}{n+3}\right)$$

$$= \frac{1}{2} \cdot \left\{ \frac{1}{2} + \frac{1}{3} - \frac{1}{n+2} - \frac{1}{n+3} \right\} \quad (n \in \mathbb{N}),$$

akkor

$$\sum_{n=1}^{\infty} \left(\frac{1}{n^2 + 4n + 3} \right) = (s_n),$$

így $\sum_{n=1}^{\infty} \left(\frac{1}{n^2 + 4n + 3} \right)$ konvergens, továbbá

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 4n + 3} = \lim(s_n) = \frac{1}{2} \cdot \left\{ \frac{1}{2} + \frac{1}{3} - 0 - 0 \right\} = \frac{5}{12}. \quad \blacksquare$$

8. gyakorlat (2023. 04. 20.)

Emlékeztető (végtelen sorokra vonatkozó Cauchy-kritérium. A $\sum (x_n)$ sor pontosan akkor konverens, ha

$$\forall \, \epsilon > 0 \, \exists \, N \in \mathbb{N} \, \forall \, m, n \in \mathbb{N} : \qquad \left(m > n \geq N \quad \Longrightarrow \quad |s_m - s_n| = \left| \sum_{k=n+1}^m x_k \right| < \epsilon \right).$$

Példák.

1. Az

$$s_n := \sum_{k=1}^n \frac{1}{k^2} \qquad (n \in \mathbb{N})$$

sorozat esetében ha $m, n \in \mathbb{N}$: m > n, akkor

$$|\mathbf{s_m} - \mathbf{s_n}| = \left| \sum_{k=1}^m \frac{1}{k^2} - \sum_{k=1}^n \frac{1}{k^2} \right| = \sum_{k=n+1}^m \frac{1}{k^2} < \sum_{k=n+1}^m \frac{1}{k(k-1)} = \sum_{k=n+1}^m \left(\frac{1}{k-1} - \frac{1}{k} \right) = \sum_{k=n+1}^m \frac{1}{k^2} < \sum_{k=n+1}^m \frac{1}{k(k-1)} = \sum_{k=$$

$$= \left(\frac{1}{n} - \frac{1}{n+1}\right) + \left(\frac{1}{n+1} - \frac{1}{n+2}\right) + \ldots + \left(\frac{1}{m-2} - \frac{1}{m-1}\right) + \left(\frac{1}{m-1} - \frac{1}{m}\right) =$$

$$=\frac{1}{n}-\frac{1}{m}<\frac{1}{n}.$$

Így tetszőleges $\epsilon>0$ esetén van olyan $N\in\mathbb{N}$ $/N:=\left[\frac{1}{\epsilon}\right]+1$, hogy ha $m,n\in\mathbb{N}$: $m,n\geq N$, akkor $|s_m-s_n|<\epsilon$, azaz (x_n) Cauchy-féle. Következésképpen a

$$\sum_{n=1} \left(\frac{1}{n^2} \right)$$

sor konvergens.

2. Az

$$s_n := \sum_{k=1}^n \frac{1}{k}$$
 $(n \in \mathbb{N})$

sorozat esetében

$$|s_{2n}-s_n|=\left|\sum_{k=1}^{2n}\frac{1}{k}-\sum_{k=1}^{n}\frac{1}{k}\right|=\sum_{k=n+1}^{2n}\frac{1}{k}=\frac{1}{n+1}+\ldots+\frac{1}{2n}\geq n\cdot\frac{1}{2n}=\frac{1}{2},$$

így, ha $\epsilon:=\frac{1}{2},$ akkor minden $N\in\mathbb{N}$ esetén van olyan m, n $\in\mathbb{N}$: m, n $\geq N,$ hogy

$$|s_{\mathfrak{m}}-s_{\mathfrak{n}}|\geq \frac{1}{2}.$$

Ez azt jelenti, hogy (sn) nem Cauchy-féle. Következésképpen az

$$\sum \left(\frac{1}{n}\right)$$

sor divergens.

Feladat. A Cauchy-kritériumban alkalmazásával vizsgáljuk az alábbi sorok konvergenciáját!

1.
$$\sum_{n=1}^{\infty} \left(\frac{n-1}{n!}\right)$$
;

2.
$$\sum_{n=1}^{\infty} \left(\frac{2n-1}{(2n)!} \right);$$

3.
$$\sum_{n=1} \left(\frac{1}{\sqrt{n}} \right).$$

Útm.

1. Ha $m, n \in \mathbb{N}$, m > n, akkor

$$\frac{k-1}{k!} = \frac{1}{(k-1)!} - \frac{1}{k!} \qquad (k \in \mathbb{N})$$

következtében

$$|s_m - s_n| = \left| \sum_{k=n+1}^m \frac{k-1}{k!} \right| = \left| \sum_{k=n+1}^m \left(\frac{1}{(k-1)!} - \frac{1}{k!} \right) \right| = \left| \frac{1}{n!} - \frac{1}{m!} \right| < \frac{1}{n!}.$$

Ezért

$$|s_{\mathfrak{m}}-s_{\mathfrak{n}}|<\epsilon\qquad\iff\qquad \mathfrak{n}!>\frac{1}{\epsilon},$$

tehát (s_n) Cauchy-féle, így a $\sum_{n=1}^{\infty} \left(\frac{n-1}{n!}\right)$ sor konvergens.

2. Ha m, $n \in \mathbb{N}$, m > n, akkor

$$\frac{2k-1}{(2k)!} = \frac{1}{(2k-1)!} - \frac{1}{(2k)!} \qquad (k \in \mathbb{N})$$

következtében

$$|s_{\mathfrak{m}} - s_{\mathfrak{n}}| = \left| \sum_{k=n+1}^{\mathfrak{m}} \frac{2k-1}{(2k)!} \right| = \left| \sum_{k=n+1}^{\mathfrak{m}} \left(\frac{1}{(2k-1)!} - \frac{1}{(2k)!} \right) \right| < \frac{1}{(2n+1)!}.$$

Ezért

$$|s_{\mathfrak{m}} - s_{\mathfrak{n}}| < \varepsilon \qquad \Longleftrightarrow \qquad (2n+1)! > \frac{1}{\varepsilon},$$

tehát (s_n) Cauchy-féle, így a $\sum_{n=1}^{\infty} \left(\frac{2n-1}{(2n)!}\right)$ sor konvergens.

3. Mivel bármely $k,n\in\mathbb{N}$ esetén $\sqrt{n+1}< n+k,$ így $\frac{1}{\sqrt{n+1}}>\frac{1}{n+k},$ és ha m:=2n>n, akkor tetszőleges $N\in\mathbb{N},$ illetve $N\leq n\in\mathbb{N}$ esetén

$$|s_{2n}-s_n| = \left|\frac{1}{\sqrt{n+1}+\ldots+\frac{1}{\sqrt{2n}}}\right| > \left|\frac{1}{n+1+\ldots+\frac{1}{2n}}\right| > \frac{1}{2}.$$

Következésképpen (s_n) nem Cauchy-féle, így a $\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n}}\right)$ sor divergens.

Megjegyezzük, hogy ha a Cauchy-kritériumban n := m-1 akkor azt kapjuk, hogy $|s_m - s_n| = |x_m|$. Így a $\sum (x_n)$ sor konvergenciájának szükséges feltételét kapjuk:

$$\sum (x_n)$$
 konvergens \Longrightarrow $\lim (x_n) = 0$

vagy

$$(x_n)$$
 nem nullsorozat $\Longrightarrow \sum (x_n)$ divergens.

Megjegyezzük, hogy ez csak szükséges, de nem ekégséges feltétele a konvergenciának, azaz abból, hogy $\lim (x_n) = 0$ nem következik, hogy $\sum (x_n)$ konvergens:

$$\lim \left(\frac{1}{n}\right) = 0,$$
 de $\sum_{n=1}^{\infty} \frac{1}{n} = +\infty.$

2023. 04. 20.

Feladat. Mutassuk meg, hogy az alábbi sorok divergensek!

$$1. \ \sum_{n=1} \left(\frac{n}{3n-1}\right); \qquad 2. \ \sum_{n=1} \left(\sqrt[n]{a}\right) \quad (a \in (0,+\infty)); \qquad 3. \ \sum_{n=1} \left(\frac{4^n n!}{n^n}\right);$$

4.
$$\sum_{n=1}^{\infty} \left(\frac{(-1)^n}{\sqrt[n]{n}} \right);$$
 5. $\sum_{n=1}^{\infty} \left(\frac{n}{a^n} \right)$ $(0 < |a| \le 1);$ 6. $\sum_{n=1}^{\infty} \left(\left(1 - \frac{1}{n} \right)^{n+2} \right).$

Útm.

- 1. $\lim \left(\frac{n}{3n-1}\right) = \frac{1}{3} \neq 0$, így a kérdéses sor divergens.
- 2. $\lim(\sqrt[n]{a}) = 1 \neq 0$, így a kérdéses sor divergens.
- 3. Mivel

$$\frac{(n+1)^n}{n^n} = \left(1 + \frac{1}{n}\right)^n < 4 \quad (n \in \mathbb{N}) \qquad \Longleftrightarrow \qquad \frac{1}{n^n} < \frac{4}{(n+1)^n} \quad (n \in \mathbb{N}),$$

ezért az

$$x_n := \frac{4^n n!}{n^n} \qquad (n \in \mathbb{N})$$

sorozatra tetszőleges $\mathfrak{n} \in \mathbb{N}$ esetén

$$x_n = 4^n \cdot n! \cdot \frac{1}{n^n} < \frac{4 \cdot 4^n \cdot n!}{(n+1)^n} = \frac{4^{n+1} n! \cdot (n+1)}{(n+1)^n \cdot (n+1)} = \frac{4^{n+1} \cdot (n+1)!}{(n+1)^{n+1}} = x_{n+1},$$

tehát (x_n) pozitív tagú, szigorúan monoton növekedő sorozat, következésképpen nem nullsorozat. Így a kérdéses sor divergens.

4. Az

$$(x_n) := \left(\frac{(-1)^n}{\sqrt[n]{n}}\right)$$

sorozat nem nullasorozat, sőt nem is konvergens, hiszen

• ha n = 2k, akkor

$$x_{2k} = \frac{1}{\sqrt[2k]{2k}} \longrightarrow 1 \qquad (k \to \infty),$$

• ha n = 2k + 1, akkor

$$x_{2k+1} = \frac{-1}{2k+1} \longrightarrow -1 \qquad (k \to \infty).$$

Ez az jelenti, hogy a kérdéses sor divergens.

5. Mivel

$$\frac{n}{|a|^n} \ge 1 \qquad (n \in \mathbb{N}),$$

ezért

$$\left(\frac{n}{|\mathfrak{a}|^n}\right)$$

nem nullsorozat, tehát a kérdéses sor divergens.

6. Világos, hogy

$$\left(1-\frac{1}{n}\right)^{n+2} = \left(1-\frac{1}{n}\right)^n \cdot \left(1-\frac{1}{n}\right)^2 \longrightarrow \frac{1}{e} \neq 0 \qquad (n \to \infty),$$

tehát a kérdéses sor divergens. ■

Emlékeztető (öszehasonlító kritérium). Legyen $x, y : \mathbb{N}_0 \to \mathbb{R}$.

• Ha majdnem minden $n \in \mathbb{N}_0$ esetén $|x_n| \le y_n$ és a $\sum_{n=0}^\infty (y_n)$ sor konvergens, akkor $\sum_{n=0}^\infty (x_n)$ abszolút konvergens (**majoránskritérium**), továbbá

$$0 \le \sum_{n=0}^{\infty} |x_n| \le \sum_{n=0}^{\infty} y_n.$$

• Ha majdnem minden $n \in \mathbb{N}_0$ esetén $0 \le y_n \le x_n$ és a $\sum (y_n)$ sor divergens, akkor $\sum (x_n)$ is divergens (**minoránskritérium**).

Példák.

1. Mivel bármely $n \in \mathbb{N}$ esetén

$$2n+1 \le 2n+n = 3n$$
, azaz $\frac{1}{3n} < \frac{1}{2n+1}$

ezért a $\sum \left(\frac{1}{3n}\right) = \frac{1}{3} \cdot \sum \left(\frac{1}{n}\right)$ sor a $\sum \left(\frac{1}{2n+1}\right)$ sornak divergens minoránsa.

2. Mivel

$$n^2-n+1 \overset{\mathbf{n} \in \mathbb{N}}{\geq} n^2-n \overset{\mathbf{2} \leq \mathbf{n} \in \mathbb{N}}{\geq} \frac{n^2}{2}, \qquad \text{azaz} \qquad \frac{1}{n^2-n+1} < \frac{2}{n^2},$$

ezért a $\sum \left(\frac{2}{n^2}\right) = \text{sor a } \sum \left(\frac{1}{n^2 - n + 1}\right)$ sornak konvergens majoránsa.

Feladat. Az összehasonlító kritérium segítségével döntsük el, hogy konvergensek-e a következő sorok!

1.
$$\sum_{n=1}^{\infty} \left(\frac{n^2}{n^3 + 1} \right);$$

2.
$$\sum_{n=1}^{\infty} \left(\frac{2n^3 - 16}{n^5 + n} \right)$$
;

3.
$$\sum_{n=1}^{\infty} \left(\frac{\sqrt{n+1} - \sqrt{n}}{n} \right);$$

4.
$$\sum_{n=1}^{\infty} \left(\frac{\sqrt{n+1} + \sqrt{n-1}}{n} \right);$$
 5. $\sum_{n=0}^{\infty} \left(\frac{2^n + 4^n}{3^n + 5^n} \right);$

5.
$$\sum_{n=0}^{\infty} \left(\frac{2^n + 4^n}{3^n + 5^n} \right)$$
;

6.
$$\sum_{n=1}^{\infty} \left(\frac{n+2}{\sqrt{n^4+3n^2+2}} \right);$$

7.
$$\sum_{n=1} \left(\frac{1}{\sqrt{n(n+1)}} \right);$$

8.
$$\sum_{n=1} \left(\frac{1}{\sqrt{n(n^2+1)}} \right).$$

8.
$$\sum_{n=1} \left(\frac{1}{\sqrt{n(n^2+1)}} \right)$$
. 9. $\sum_{n=1} \left(\frac{n+1}{\sqrt{n^3+n+7}} \right)$.

Útm.

1. Mivel nagy $n \in \mathbb{N}$ indexekre

$$\frac{n^2}{n^3+1} = \frac{1}{n+\frac{1}{n^2}} \approx \frac{1}{n} \qquad \text{\'es} \qquad \sum_{n=1}^{\infty} \left(\frac{1}{n}\right) \quad \text{divergens,}$$

ezért a minoránskritériumot kíséreljük meg alkalmazni. Mivel tetszőleges $n \in \mathbb{N}$ indexre

$$\frac{n^2}{n^3+1} \ge \frac{n^2}{n^3+n^3} = \frac{1}{2n}$$

és a

$$\sum_{n=1} \left(\frac{1}{2n} \right) = \frac{1}{2} \cdot \sum_{n=1} \left(\frac{1}{n} \right)$$

sor divergens, ezért a kérdéses sor a minoránskritérium alapján divergens.

2. Mivel nagy $n \in \mathbb{N}$ indexekre

$$\frac{2n^3 - 16}{n^5 + n} = \frac{1 - \frac{16}{n^3}}{n^2 + \frac{1}{n^2}} \approx \frac{1}{n^2} \qquad \text{és} \qquad \sum_{n=1} \left(\frac{1}{n^2}\right) \quad \text{konvergens,}$$

ezért a majoránskritériumot kíséreljük meg alkalmazni. Mivel minden $n \in \mathbb{N}$ esetén

$$\frac{2n^3-16}{n^5+n}<\frac{2n^3}{n^5+n}<\frac{2n^3}{n^5}=\frac{2}{n^2}$$

és a

$$\sum_{n=1} \left(\frac{2}{n^2} \right) = 2 \cdot \sum_{n=1} \left(\frac{1}{n^2} \right)$$

sor konvergens, ezért a kérdéses sor a majoránskritérium alapján konvergens.

3. Mivel minden $n \in \mathbb{N}$ esetén

$$\frac{\sqrt{n+1}-\sqrt{n}}{n} = \frac{1}{n(\sqrt{n+1}+\sqrt{n})} < \frac{1}{n(\sqrt{n}+\sqrt{n})} = \frac{1}{2n^{3/2}}$$

és a

$$\sum_{n=1} \left(\frac{1}{2n^{3/2}} \right) = \frac{1}{2} \cdot \sum_{n=1} \left(\frac{1}{n^{3/2}} \right)$$

sor konvergens, ezért a kérdéses sor a majoránskritérium alapján konvergens.

4. Mivel nagy $n \in \mathbb{N}$ indexekre

$$\frac{\sqrt{n+1}+\sqrt{n-1}}{n} = \frac{\sqrt{1+\frac{1}{n}}+\sqrt{1-\frac{1}{n}}}{\sqrt{n}} \approx \frac{2}{\sqrt{n}}$$

ezért a minoránskritériumot kíséreljük meg alkalmazni (vö. hiperharmonikus sor konvergenciakérdése). Mivel minden $n \in \mathbb{N}$ esetén

$$\frac{\sqrt{n+1} + \sqrt{n-1}}{n} = \frac{2}{n(\sqrt{n+1} - \sqrt{n-1})} > \frac{1}{n} \iff 2 > \sqrt{n+1} - \sqrt{n-1},$$

és ez utóbbi igaz, hiszen

$$\sqrt{n+1} - \sqrt{n-1} = \frac{2}{\sqrt{n+1} + \sqrt{n-1}} < \frac{2}{1} = 2$$
 $(n \in \mathbb{N}),$

így a kérdéses sor a minoránskritérium alapján divergens.

5. Mivel minden $n \in \mathbb{N}$ esetén

$$\frac{2^n + 4^n}{3^n + 5^n} < \frac{4^n + 4^n}{5^n} = 2\left(\frac{4}{5}\right)^n,$$

így a kérdéses sor a majoránskritérium alapján konvergens.

6. Mivel minden $n \in \mathbb{N}$ esetén

$$\frac{n+2}{\sqrt{n^4+3n^2+2}} > \frac{n+2}{\sqrt{(n+2)^4}} = \frac{1}{n+2},$$

így a kérdéses sor a minoránskritérium alapján divergens.

7. Mivel minden $n \in \mathbb{N}$ esetén

$$\frac{1}{\sqrt{n(n+1)}} > \frac{1}{\sqrt{n(n+n)}} = \frac{1}{\sqrt{2}} \cdot \frac{1}{n},$$

így a kérdéses sor a minoránskritérium alapján divergens.

8. Mivel minden $n \in \mathbb{N}$ esetén

$$\frac{1}{\sqrt{n(n^2+1)}} < \frac{1}{\sqrt{n^3}} = \frac{1}{n^{3/2}},$$

így a kérdéses sor a majoránskritérium alapján konvergens.

9. Tetszőleges $n \in \mathbb{N}$ indexre

$$\frac{n+1}{\sqrt{n^3+n+7}} > \frac{n}{\sqrt{n^3+n+7}} \geq \frac{n}{\sqrt{n^3+n^3+7n^3}} = \frac{n}{\sqrt{9n^3}} = \frac{1}{3\sqrt{n}} \geq \frac{1}{3n},$$

ezért a harmonikus sor a kérdéses sor divergens minoránsa.

Emlékeztető (Leibniz-kritérium). Legyen

$$0 \le x_n \in \mathbb{R} \quad (n \in \mathbb{N}_0), \qquad (x_n) \searrow .$$

Ekkor

1. igaz a

$$\sum_{n=0}^{\infty} (-1)^n x_n \in \mathbb{R} \qquad \Longleftrightarrow \qquad \lim(x_n) = 0$$

ekvivalencia;

2. $a \lim(x_n) = 0$ esetben

$$\sum_{n=0}^{2q-1} (-1)^n x_n \leq \sum_{n=0}^{\infty} (-1)^n x_n \leq \sum_{n=0}^{2p} (-1)^n x_n \qquad (p,q \in \mathbb{N});$$

és fennáll a

$$\left|\sum_{n=m}^{\infty} (-1)^n x_n\right| \leq x_m \qquad (m \in \mathbb{N}_0).$$

hibabecslés.

Feladat. A Leibniz-kritérium segítségével vizsgáljuk az alábbi sorok konvergenciáját!

1.
$$\sum_{n=0}^{\infty} \left((-1)^{n+1} \cdot \frac{n}{n^2 + 1} \right);$$
 2. $\sum_{n=0}^{\infty} \left((-1)^n \cdot \frac{n}{5n - 2} \right).$

Útm.

1. Ha

$$x_n := \frac{n}{n^2 + 1} \qquad (n \in \mathbb{N}_0),$$

akkor (**HF**) bármely $n \in \mathbb{N}$ esetén $0 \le x_{n+1} < x_n$ és nyilván $\lim(x_n) = 0$, így a $\sum(x_n)$ sor konvergens.

2. Ha

$$x_n := \frac{n}{5n-2} \qquad (n \in \mathbb{N}_0),$$

akkor (**HF**) bármely $n \in \mathbb{N}$ esetén $0 \le x_{n+1} < x_n$, de $\lim (x_n) = \frac{1}{5} \ne 0$, így a $\sum (x_n)$ sor divergens.

Emlkékeztető. Tekintsük az $(x_n) : \mathbb{N} \to \mathbb{R}$ sorozatot.

1. Ha valamely $K \in \mathbb{R}$ és $q \in [0, 1)$ esetén majdnem minden $n \in \mathbb{N}$ indexre

$$|x_n| \leq K \cdot q^n$$

akkor a $\sum (x_n)$ sor abszolút konvergens, következésképpen konvergens (**Cauchy-féle gyökkri-térium**).

2. Ha majdnem minden $n\in\mathbb{N}$ indexre $x_n\neq 0$ és alkalmas $q\in (0,1)$ esetén majdnem minden $n\in\mathbb{N}$ indexre

$$\left|\frac{x_{n+1}}{x_n}\right| \leq q,$$

akkor a $\sum (x_n)$ sor abszolút konvergens, következésképpen konvergens (**D'Alembert-féle hányadoskritérium**).

Megjegyezzük, hogy

1. a gyök-, ill. hánydoskritérium kiegészítéseként elmondható, hogy ha alkalmas K>0, ill. $q\geq 1$ számok, illetve $N\in\mathbb{N}$ index esetén

$$|x_n| \ge Kq^n \quad (N \le n \in \mathbb{N}) \qquad \text{vagy} \qquad \left| \frac{x_{n+1}}{x_n} \right| \ge 1 \quad (N \le n \in \mathbb{N}),$$

akkor a $\sum (x_n)$ sor divergens.

2. sok helyütt gyök-, ill. hányadoskritériumon az alábbi erősebb feltételt szokás érteni. Ha

$$A:=lim(\sqrt[n]{|x_n|})\in\overline{\mathbb{R}}, \qquad ill. \qquad A:=lim\left(\left|\frac{x_{n+1}}{x_n}\right|\right)\in\overline{\mathbb{R}},$$

úgy

- $\bullet \ \ A>1 \ \text{eset\'en} \ a \ \textstyle \sum (x_n) \ \text{sor divergens}.$

Feladat. Vizsgáljuk az alábbi sorok konvergenciáját!

1.
$$\sum_{n=1}^{\infty} \left(\frac{1}{3^n} \left(\frac{n+1}{n} \right)^{2n} \right);$$

2.
$$\sum_{n=1}^{\infty} \left(\frac{n^2}{2^n} \right);$$

3.
$$\sum_{n=1} \left(\left(\frac{1}{2} + \frac{1}{n} \right)^n \right);$$

4.
$$\sum_{n=1}^{\infty} \left(\frac{n^2}{2^n + 3^n} \right)$$
;

5.
$$\sum_{n=1}^{\infty} \left(\left(\frac{n}{n+1} \right)^{n^2 + n + 1} \right)$$

6.
$$\sum_{n=1} \left(\frac{1}{n!} \left(\frac{n}{e-1} \right)^n \right);$$

7.
$$\sum_{n=1}^{\infty} \left(\frac{n!}{2^n + 1} \right);$$

8.
$$\sum_{n=1}^{\infty} \left(\frac{(-1)^n \cdot n!}{3n+2} \right);$$

9.
$$\sum_{n=1}^{\infty} \left(\frac{2n+1}{(-3)^n} \right)$$
.

10.
$$\sum_{n=0}^{\infty} \left(\frac{(2n+1)!}{3^{n^2}} \right);$$

11.
$$\sum_{n=0}^{\infty} \left(\left(\frac{3n+4}{3n+3} \right)^{n^2+1} \right)$$
;

12.
$$\sum_{n=1}^{\infty} (n! \cdot 2^{1-n});$$

13.
$$\sum_{n=1}^{\infty} \left(\frac{2^{n-1}}{(3n+4) \cdot 5^n} \right);$$

14.
$$\sum_{n=1}^{\infty} \left(\left(\frac{n+1}{3n} \right)^n \right)$$
;

15.
$$\sum_{n=1}^{\infty} \left(\left(\frac{2n+1}{3n+1} \right)^{4n+1} \right)$$
;

16.
$$\sum_{n=1}^{\infty} \left(\frac{(2n)!}{n^n} \right);$$

17.
$$\sum_{n=1}^{\infty} (n^{2022} \cdot 2^{-2n});$$

18.
$$\sum_{n=1}^{\infty} \left(\frac{3^n}{n^n} \right);$$

$$19. \ \sum_{n=1} \left(\frac{1}{n \cdot 3^n} \right).$$

Útm.

1. Legyen

$$x_n := \frac{1}{3^n} \left(\frac{n+1}{n} \right)^{2n} \qquad (n \in \mathbb{N}).$$

Ekkor

$$\lim \left(\sqrt[n]{|x_n|}\right) = \frac{1}{3} \cdot \lim \left(\left(\frac{n+1}{n}\right)^2\right) = \frac{1}{3} < 1,$$

így a gyökkritérium szerint a $\sum (x_n)$ sor konvergens.

2. Legyen

$$x_n := \frac{n^2}{2^n}$$
 $(n \in \mathbb{N}).$

Ekkor

1. módszer a hányadoskritérium következtében a kérdéses sor konvergens, hiszen

$$\left|\frac{x_{n+1}}{x_n}\right| = \frac{(n+1)^2}{2^{n+1}} \cdot \frac{2^n}{n^2} = \frac{1}{2} \cdot \left(\frac{n+1}{n}\right)^2 \longrightarrow \frac{1}{2} < 1 \qquad (n \to \infty).$$

2. módszer a gyökkritérium következtében a kérdéses sor konvergens, hiszen

$$\sqrt[n]{|x_n|} = \frac{(\sqrt[n]{n})^2}{2} \longrightarrow \frac{1}{2} < 1 \qquad (n \to \infty).$$

3. Mivel

$$\lim \left(\sqrt[n]{\left| \left(\frac{1}{2} + \frac{1}{n} \right)^n \right|} \right) = \lim \left(\frac{1}{2} + \frac{1}{n} \right) = \frac{1}{2} < 1,$$

ezért a $\sum (x_n)$ sor konvergens.

4. Mivel

$$\lim \left(\sqrt[n]{\frac{n^2}{2^n + 3^n}} \right) = \lim \left(\frac{\sqrt[n]{n^2}}{\sqrt[n]{2^n + 3^n}} \right) = \frac{1^2}{\max\{2, 3\}} = \frac{1}{3} < 1,$$

ezért a $\sum (x_n)$ sor konvergens.

5. Mivel

$$\sqrt[n]{\left|\left(\frac{n}{n+1}\right)^{n^2+n+1}\right|} \ = \ \left(\frac{n}{n+1}\right)^{\frac{n^2+n+1}{n}} = \left(\frac{n}{n+1}\right)^n \cdot \left(\frac{n}{n+1}\right)^1 \cdot \left(\frac{n}{n+1}\right)^{1/n} = \left(\frac{n}{n+1}\right)^{\frac{n^2+n+1}{n}}$$

$$= \ \frac{1}{\left(\frac{n+1}{n}\right)^n} \cdot \frac{n}{n\left(1+\frac{1}{n}\right)} \cdot \sqrt[n]{\frac{n}{n+1}} \longrightarrow \frac{1}{e} \cdot 1 \cdot 1 = \frac{1}{e} < 1 \quad (n \to \infty),$$

ezért a $\sum (x_n)$ sor (abszolút) konvergens.

6. Ha

$$x_n := \frac{1}{n!} \left(\frac{n}{e-1} \right)^n \qquad (n \in \mathbb{N}),$$

akkor

$$\lim \left(\left| \frac{x_{n+1}}{x_n} \right| \right) = \frac{1}{e-1} \lim \left(\left(\frac{n+1}{n} \right)^n \right) = \frac{e}{e-1} > 1,$$

így a hányadoskritérium szerint a $\sum (x_n)$ sor divergens.

7. Ha

$$x_n := \frac{n!}{2^n + 1} \qquad (n \in \mathbb{N}),$$

akkor

$$\lim \left(\left| \frac{x_{n+1}}{x_n} \right| \right) = \lim \left((n+1) \frac{2^n + 1}{2^{n+1} + 1} \right) = \lim \left((n+1) \frac{1 + \frac{1}{2^n}}{2 + \frac{1}{2^n}} \right) = +\infty,$$

így a hányadoskritérium szerint a $\sum (x_n)$ sor divergens.

8. Legyen

$$x_n := \frac{(-1)^n \cdot n!}{3n+2} \qquad (n \in \mathbb{N}_0).$$

Ekkor

$$\left|\frac{x_{n+1}}{x_n}\right| = \frac{(n+1)!}{3(n+1)+2} \cdot \frac{3n+2}{n!} = \frac{(n+1)(3n+2)}{3n+2} = n+1 > 1,$$

így a hányadoskritérium szerint a $\sum (x_n)$ sor divergens.

9. Ha

$$x_n := \frac{2n+1}{(-3)^n} \qquad (n \in \mathbb{N}),$$

akkor

$$\left|\frac{x_{n+1}}{x_n}\right| = \frac{2(n+1)+1}{3^{n+1}} \cdot \frac{3^n}{2n+1} = \frac{1}{3} \cdot \frac{2n+3}{2n+1} \longrightarrow \frac{1}{3} \quad (n \to \infty).$$

Így a hányadoskritérium szerint a $\sum (x_n)$ sor (abszolút) konvergens.

10. Az

$$x_n:=\frac{(2n+1)!}{3^{n^2}} \qquad (n\in\mathbb{N}_0)$$

sorozatra

$$\begin{vmatrix} \frac{x_{n+1}}{x_n} \end{vmatrix} = \frac{(2(n+1)+1)!}{3^{(n+1)^2}} : \frac{(2n+1)!}{3^{n^2}} = \frac{(2n+3)!}{(2n+1)!} \cdot \frac{3^{n^2}}{3^{n^2+2n+1}} =$$

$$= \frac{(2n+3)(2n+2)}{3^{2n+1}} = \frac{1}{3} \cdot n^2 \cdot \left(\frac{1}{9}\right)^n \cdot \left(2 + \frac{3}{n}\right) \cdot \left(2 + \frac{2}{n}\right) \longrightarrow$$

$$\longrightarrow \frac{1}{3} \cdot 0 \cdot (2+0) \cdot (2+0) = 0 \quad (n \to \infty).$$

Mindez a hányadoskritérium következtében azt jelenti, hogy a $\sum (x_n)$ sor (abszolút) konvergens.

11. Legyen

$$x_n := \left(\frac{3n+4}{3n+3}\right)^{n^2+1} \qquad (n \in \mathbb{N}).$$

Ekkor

$$\sqrt[n]{|x_n|} = \left(\frac{3n+4}{3n+3}\right)^{n+\frac{1}{n}} = \left(\frac{3n+4}{3n+3}\right)^n \cdot \sqrt[n]{\frac{3n+4}{3n+3}} \longrightarrow \sqrt[3]{e} \cdot 1 = \sqrt[3]{e} > 1 \qquad (n \to \infty),$$

hiszen

• egyrészt az $n \to \infty$ határátmenetben

$$\left(\frac{3n+4}{3n+3}\right)^{n} = \left(\frac{3n+3+1}{3n+3}\right)^{n} = \sqrt[3]{\left(1+\frac{1}{3n+3}\right)^{3n+3} \cdot \left(1+\frac{1}{3n+3}\right)^{-3}} \longrightarrow \sqrt[3]{e \cdot 1}$$

• másrészt pedig

$$\lim \left(\frac{3n+4}{3n+3}\right) = 1 > 0 \qquad \text{igy} \qquad \lim \left(\sqrt[n]{\frac{3n+4}{3n+3}}\right) = 1.$$

Ezért a gyökkritérium következtében a $\sum (x_n)$ sor divergens.

Megjegyezzük, hogy bármely $n \in \mathbb{N}$ indexre

$$\frac{3n+4}{3n+3} = \frac{3n+3+1}{3n+3} = 1 + \frac{1}{3n+3} > 1, \quad \text{igy} \quad x_n > 1,$$

ezért $(x_n) \notin c_0$, következésképpen a $\sum (x_n)$ sor divergens.

12. Ha

$$x_n:=n!\cdot 2^{1-n}=2\cdot \frac{n!}{2^n} \qquad (n\in \mathbb{N}),$$

akkor a sorozatokra vonatkozó hányadoskritérium (vö. 5. GY) következtében

$$\lim \left(\frac{1}{x_n}\right) = 0,$$
 így $\lim (x_n) = +\infty.$

Mindez azt jelenti, hogy a $\sum (x_n)$ sor divergens.

13. Ha

$$x_n := \frac{2^{n-1}}{(3n+4)\cdot 5^n} \qquad (n \in \mathbb{N}),$$

akkor

$$\sqrt[n]{|x_n|} = \frac{2}{5 \cdot \sqrt[n]{2}} \cdot \frac{1}{\sqrt[n]{3n+4}} \longrightarrow \frac{2}{5} < 1 \qquad (n \to \infty),$$

hiszen

$$\sqrt[n]{3} \cdot \sqrt[n]{n} \le \sqrt[n]{3n+4} \le \sqrt[n]{3n+4n} = \sqrt[n]{7} \cdot \sqrt[n]{n} \qquad (n \in \mathbb{N})$$

következtében

$$\lim(\sqrt[n]{|x_n|}) = \frac{1}{5} < 1.$$

Ez a gyökkritérium következtében azt jelenti, hogy a $\sum (x_n)$ sor (abszolút) konvergens.

14. Ha

$$x_n := \left(\frac{n+1}{3n}\right)^n \qquad (n \in \mathbb{N}),$$

akkor

$$\sqrt[n]{|x_n|} = \frac{n+1}{3n} \longrightarrow \frac{1}{3} < 1 \qquad (n \to \infty).$$

Következésképpen a $\sum (x_n)$ sor (abszolút) konvergens.

15. Ha

$$x_n := \left(\frac{2n+1}{3n+1}\right)^{4n+1} = \left(\frac{2}{3}\right)^{4n} \cdot \left(\frac{n+1/2}{n+1/3}\right)^{4n} \cdot \left(\frac{2n+1}{3n+1}\right) \qquad (n \in \mathbb{N}),$$

akkor az $n \to \infty$ határátmenetben

$$\sqrt[n]{|x_n|} = \left(\frac{2}{3}\right)^4 \cdot \left(\frac{n+1/3+1/6}{n+1/3}\right)^4 \cdot \sqrt[n]{\frac{2n+1}{3n+1}} \longrightarrow \left(\frac{2}{3}\right)^4 \cdot 1 \cdot 1 = \left(\frac{2}{3}\right)^4 < 1.$$

Ez azt jelenti, hogy a $\sum (x_n)$ sor (abszolút) konvergens.

16. Ha

$$x_n := \frac{(2n)!}{n^n}$$
 $(n \in \mathbb{N}),$

akkor az $n \to \infty$ határátmenetben

$$\left|\frac{x_{n+1}}{x_n}\right| = \frac{(2n+2)!}{(n+1)^{n+1}} \cdot \frac{n^n}{(2n)!} = \frac{(2n+1)\cdot(2n+2)}{n+1} \cdot \left(\frac{n}{n+1}\right)^n \longrightarrow (+\infty) \cdot \frac{1}{e} = +\infty > 1.$$

Következésképpen a $\sum (x_n)$ sor divergens.

17. Ha

$$x_n := n^{2022} \cdot 2^{-2n} = n^{2022} \cdot \left(\frac{1}{4}\right)^n \qquad (n \in \mathbb{N}),$$

akkor

$$\sqrt[n]{|x_n|} = \left(\sqrt[n]{n}\right)^{100} \cdot \frac{1}{4} \longrightarrow \frac{1}{4} < 1 \qquad (n \to \infty).$$

A $\sum (x_n)$ sor tehát a gyökkritérium szerint (abszolút) konvergens.

18. Ha

$$x_n := \frac{3^n}{n^n}$$
 $(n \in \mathbb{N}),$

akkor

$$\sqrt[n]{|x_n|} = \frac{3}{n} \longrightarrow 0 < 1 \qquad (n \to \infty).$$

Így a gyökkritérium szerint a $\sum (x_n)$ sor (abszolút) konvergens.

19. Ha

$$x_n := \frac{1}{n \cdot 3^n}$$
 $(n \in \mathbb{N}),$

akkor

$$\sqrt[n]{|x_n|} = \frac{1}{\sqrt[n]{n} \cdot 3} \longrightarrow \frac{1}{3} < 1 \qquad (n \to \infty).$$

Így a gyökkritérium szerint a $\sum (x_n)$ sor (abszolút) konvergens.

Feladat. Mely $\alpha \in \mathbb{R}$ esetén konvergens a $\sum (x_n)$ sor?

1.
$$x_n := \frac{\alpha^n n!}{n^n}$$
 $(n \in \mathbb{N}; \ \alpha \in \mathbb{R} \setminus \{-e; e\});$

2.
$$x_n := \frac{(\alpha - 2)^n}{n + \sqrt{n}}$$
 $(n \in \mathbb{N}; \ \alpha \in \mathbb{R});$

$$3. \ x_n:=\frac{n\cdot 2^n}{n+1}\cdot \frac{1}{(3\alpha^2+8\alpha+6)^n} \quad (n\in \mathbb{N}_0; \ \alpha\in \mathbb{R});$$

$$4. \ x_n:=\frac{(-1)^n}{2n-1}\left(\frac{2-\alpha}{2+\alpha}\right)^n \quad (n\in\mathbb{N}; \ -2\neq\alpha\in\mathbb{R});$$

5.
$$x_n := \frac{\alpha^{2n}}{1 + \alpha^{4n}} \quad (n \in \mathbb{N}; \ \alpha \in \mathbb{R}).$$

Útm.

1. Legyen

$$x_n := \frac{\alpha^n n!}{n^n}$$
 $(n \in \mathbb{N}).$

Ekkor az $\alpha = 0$ esetén a sor nyilván konvergens, sőt összege: 0. Ha $\alpha \neq 0$, akkor

$$\lim \left(\left| \frac{x_{n+1}}{x_n} \right| \right) = |\alpha| \cdot \lim \left(\left(\frac{n}{n+1} \right)^n \right) = \frac{|\alpha|}{e}.$$

így a hányadoskritérium erősebb változata szerint a $\sum (x_n)$ sor

- $|\alpha| < e$, azaz $\alpha \in (-e, e)$ esetén konvergens,
- $|\alpha| > e$, azaz $\alpha \in (-\infty, -e) \cup (e, +\infty)$ esetén divergens.
- 2. Világos, hogy $\alpha=2$ esetén a sor konvergens és összege 0. Legyen most $2\neq\alpha\in\mathbb{R}$. Ekkor az $n\longrightarrow\infty$ határesetben

$$\left| \frac{(\alpha - 2)^{n+1}}{n+1 + \sqrt{n+1}} \cdot \frac{n + \sqrt{n}}{(\alpha - 2)^n} \right| = |\alpha - 2| \cdot \frac{n + \sqrt{n}}{n+1 + \sqrt{n+1}} =$$

$$= |\alpha - 2| \cdot \frac{1 + \sqrt{\frac{1}{n}}}{1 + \frac{1}{n} + \sqrt{\frac{1}{n} + \frac{1}{n^2}}} \longrightarrow |\alpha - 2|.$$

Mivel

$$|\alpha - 2| < 1$$
 \iff $-1 < \alpha - 2 < 1$ \iff $1 < \alpha < 3$

ezért $\alpha \in (1,3)$ esetén a sor konvergens és $\alpha \in \mathbb{R} \setminus [1,3]$ esetén pedig divergens. Az $\alpha = 3$ esetén a sor minorálható a

$$\sum_{n=1} \left(\frac{1}{2n} \right)$$

divergens sorral, hiszen

$$\frac{(3-2)^n}{n+\sqrt{n}} = \frac{1}{n+\sqrt{n}} \ge \frac{1}{n+n} = \frac{1}{2n} \qquad (n \in \mathbb{N}),$$

így a sor divergens. Az $\alpha = 1$ esetben pedig a sor a Leibniz-tétel miatt konvergens, hiszen

$$\frac{(1-2)^n}{n+\sqrt{n}} = \frac{(-1)^n}{n+\sqrt{n}} \qquad \text{\'es} \qquad \frac{1}{n+\sqrt{n}} \searrow 0 \quad (n\to\infty).$$

A sor tehát pontosan az $\alpha \in [1,3)$ esetben konvergens.

3. Világos, hogy

$$\sqrt[n]{|x_n|} = \frac{2\sqrt[n]{n}}{\sqrt[n]{n+1}} \cdot \frac{1}{|3\alpha^2 + 8\alpha + 6|} \longrightarrow \frac{2}{|3\alpha^2 + 8\alpha + 6|} \qquad (n \to \infty)$$

és

$$\frac{2}{|3\alpha^2 + 8\alpha + 6|} < 1 \qquad \Longleftrightarrow \qquad \alpha \in (-\infty, -2) \cup (-2/3, +\infty).$$

Ha $\alpha \in \{-2, -2/3\}$, akkor

$$\sum (x_n) = \sum \left(\frac{n2^n}{n+1} \cdot \frac{1}{2^n}\right) = \sum \left(\frac{n}{n+1}\right),$$

ami divergens. Tehát $\sum (x_n)$ pontosan akkor konvergens, ha $\alpha \in (-\infty, -2) \cup (-2/3, +\infty)$.

4. Ha $\alpha = 2$, akkor a sor konvergens. Ha $\alpha \neq 2$, akkor

$$\lim \left(\left| \frac{(-1)^{n+1}}{2n+1} \cdot \left(\frac{2-\alpha}{2+\alpha} \right)^{n+1} \right| \cdot \left| \frac{2n-1}{(-1)^n} \cdot \left(\frac{2+\alpha}{2-\alpha} \right)^n \right| \right) = \left| \frac{2-\alpha}{2+\alpha} \right| \lim \left(\frac{2n-1}{2n+1} \right) = \left| \frac{2-\alpha}{2+\alpha} \right|.$$

Ha

$$\left|\frac{2-\alpha}{2+\alpha}\right|<1\qquad\Longleftrightarrow\qquad -1<\frac{2-\alpha}{2+\alpha}<1\qquad\Longleftrightarrow\qquad 0<\frac{4}{2+\alpha}<2\qquad\Longleftrightarrow\qquad \alpha>0,$$

akkor a sor abszolút konvergens. Ha

$$\left|\frac{2-\alpha}{2+\alpha}\right| > 1,$$
 azaz $\alpha \in (-\infty, -2) \cup (-2, 0),$

akkor a sor divergens. Ha

$$\left|\frac{2-\alpha}{2+\alpha}\right|=1,$$
 azaz $\alpha=0,$

a

$$\sum_{n=1}^{\infty} \left(\frac{(-1)^n}{2n-1} \right)$$

Leibniz-sort kapjuk, amely konvergens.

5. A konvergencia vizsgálatát a gyökkritérium segítségével végezzük. Mivel bármely $\alpha \in \mathbb{R}$ esetén

$$\sqrt[n]{\left|\frac{\alpha^{2n}}{1+\alpha^{4n}}\right|} = \frac{|\alpha|^2}{\sqrt[n]{|1+\alpha^{4n}|}} \leq \frac{|\alpha|^2}{\sqrt[n]{1}} = |\alpha|^2,$$

így

$$\lim \left(\sqrt[n]{\left| \frac{\alpha^{2n}}{1 + \alpha^{4n}} \right|} \right) \leq |\alpha|^2 < 1,$$

ha $|\alpha| < 1$. Tehát $|\alpha| < 1$ esetén a sor abszolút konvergens. Legyen most $|\alpha| > 1$, és alakítsuk át a

törtet a következőképpen:

$$\sqrt[n]{\left|\frac{\alpha^{2n}}{1+\alpha^{4n}}\right|} = \sqrt[n]{\frac{\frac{1}{|\alpha|^{2n}}}{\left|\frac{1}{\alpha^{4n}}+1\right|}} = \frac{\frac{1}{|\alpha|^2}}{\sqrt[n]{\left|\frac{1}{\alpha^{4n}}+1\right|}} < \frac{\frac{1}{|\alpha|^2}}{\sqrt[n]{1}} = \frac{1}{|\alpha|^2} < 1,$$

így $|\alpha| > 1$ esetén is

$$\lim \left(\sqrt[n]{\left| \frac{\alpha^{2n}}{1 + \alpha^{4n}} \right|} \right) < 1,$$

azaz a sor abszolút konvergens. Ha $|\alpha|=1$, akkor $\alpha=1$, ill. $\alpha=-1$. Ebben az esetben a sor nem más mint

 $\sum_{n=1}^{\infty} \left(\frac{1}{2}\right),$

ami divergens.

Feladat. Mutassuk meg, hogy ha

$$x_n, y_n \in (0, +\infty)$$
 $(n \in \mathbb{N})$ és $\left(\frac{x_n}{y_n}\right)$ korlátos,

akkor igazak az alábbi implikációk!

- 1. $\sum (y_n)$ konvergens $\implies \sum (x_n)$ konvergens;
- 2. $\sum (x_n)$ divergens $\implies \sum (y_n)$ divergens.

Útm. Az

$$\left(\frac{x_n}{y_n}\right)$$

sorozat korlátossága azt jelenti, hogy van olyan k>0, hogy minden $n\in\mathbb{N}$ esetén $x_n\le ky_n$, így az összehasonlító-kritérium alapján adódik az állítás.

Megjegyzés. Ez a helyzet, ha

$$\frac{x_{n+1}}{x_n}<\frac{y_{n+1}}{y_n}\qquad (\text{mm. } n\in\mathbb{N}),$$

ugyanis ekkor

$$\frac{x_{n+1}}{y_{n+1}}<\frac{x_n}{y_n}\qquad (\text{mm. } n\in\mathbb{N}),$$

és így

$$\frac{x_n}{y_n} < \frac{x_0}{y_0}$$
 (m.m. $n \in \mathbb{N}$),

azaz $\left(\frac{x_n}{y_n}\right)$ korlátos. Így pl., ha

• $1 < \alpha \in \mathbb{R}$ és

$$\boxed{\frac{x_{n+1}}{x_n} \leq \left(\frac{n}{n+1}\right)^{\alpha} \quad (mm. \ n \in \mathbb{N})},$$

akkor $\sum (x_n)$ konvergens, míg

• $\alpha \le 1$ és

$$\boxed{\frac{y_{n+1}}{y_n} \geq \left(\frac{n}{n+1}\right)^{\alpha} \pmod{n \in \mathbb{N}}}$$

esetén $\sum (y_n)$ divergens.

Tétel. Ha

$$0 \le x_{n+1} \le x_n \qquad (n \in \mathbb{N}),$$

akkor a

$$\sum_{n=1}^{\infty} (x_n)$$
 és a $\sum_{n=0}^{\infty} (2^n x_{2^n})$

sorok ekvikonvergensek: egyszerre konvergensek, ill. divergensek (Cauchy-féle kondenzációs elv).

Biz. Legyen

$$s_n := \sum_{k=1}^n x_k \qquad (n \in \mathbb{N})$$

és

$$t_n:=\sum_{k=0}^n 2^k x_{2^k} \quad (n\in \mathbb{N}_0), \qquad \text{ill.} \qquad S:=\text{lim}(s_n)=\sum_{n=1}^\infty x_n$$

és

$$T := \lim(t_n) = \sum_{n=0}^{\infty} 2^n x_{2^n},$$

továbbá m, $n \in \mathbb{N}_0$: m > 1. Ha

• $n < 2^m$, akkor

$$s_n \leq x_1 + (x_2 + x_3) + \ldots + (x_{2^m} + x_{2^{m+1}} + \ldots + x_{2^{m+1}-1}) \leq x_1 + 2a_2 + \ldots + 2^m x_{2^m} = t_m,$$

• míg $n \ge 2^m$ esetén

$$s_n \geq x_1 + x_2 + (x_3 + x_4) + \ldots + (x_{2^{m-1}+1} + x_{2^{m-1}+2} + \cdots + a_{2^m}) \geq$$

$$\geq x_1 + x_2 + 2x_4 + \cdots + 2^{m-1}x_{2^m} = \frac{1}{2}(x_1 + t_m).$$

Ebből következik, hogy (s_n) és (t_n) ekvikorlátos. Mivel mindkét sorozat monoton növekvő, ezért ekvikonvergensek. \blacksquare

Megjegyzések.

1. Konvergencia esetén

$$S \le T \le 2S - x_1$$
 ill. $\frac{1}{2}(T + y_1) \le S \le T$.

2. $\alpha > 0$ esetén a

$$\sum_{n=1} \left(\frac{1}{n^{\alpha}} \right)$$

hiperharmonikus sor konvergenciáját vizsgálhatjuk ezzel a kritériumal, ui.

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} < +\infty \quad \Longleftrightarrow \quad \sum_{n=0}^{\infty} \frac{2^n}{(2^n)^{\alpha}} < +\infty \quad \Longleftrightarrow \quad \sum_{n=0}^{\infty} 2^{n(1-\alpha)} < +\infty \quad \Longleftrightarrow \quad \Longrightarrow$$

$$\iff \sum_{n=0}^{\infty} (2^{1-\alpha})^n < +\infty \qquad \iff \qquad 2^{1-\alpha} < 1 \qquad \iff \qquad \alpha > 1.$$

Ez esetben

$$T = \sum_{n=0}^{\infty} (2^{1-\alpha})^n = \frac{1}{1-2^{1-\alpha}} = \frac{1}{1-\frac{1}{2^{\alpha-1}}} = \frac{2^{\alpha}}{2^{\alpha}-2},$$

így

$$\frac{1}{2}(T+1) = \frac{1}{2}(T+1) \cdot \frac{2^{\alpha-1} + 2^{\alpha-1} - 1}{2^{\alpha-1} - 1} = \frac{2^{\alpha} - 1}{2^{\alpha} - 2}.$$

Tehát

$$\boxed{\frac{2^{\alpha}-1}{2^{\alpha}-2}\leq \sum_{n=1}^{\infty}\frac{1}{n^{\alpha}}\leq \frac{2^{\alpha}}{2^{\alpha}-2}} \quad (\alpha>1).$$

Ez $\alpha \to +\infty$ esetén egyre szűkülő intervallumot jelent:

•
$$\alpha = 2$$
 esetén $\frac{3}{2} \le \sum_{n=1}^{\infty} \frac{1}{n^2} \le 2$ (hiba $\le \frac{1}{2}$),

•
$$\alpha = 3$$
 esetén $\frac{7}{6} \le \sum_{n=1}^{\infty} \frac{1}{n^3} \le \frac{4}{3} = \frac{8}{6}$ (hiba $\le \frac{1}{6}$).

A

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
, $\sum_{n=1}^{\infty} \frac{1}{n^4}$, ill. a $\sum_{n=1}^{\infty} \frac{1}{n^6}$

stb. sor összege ismert⁷, de a

$$\sum_{n=1}^{\infty} \frac{1}{n^3}$$

sor összege nem ismeretes. Az 1978-ban Helsinkiben tartott Matematikai Kongresszuson R. Apéry megmutatta, hogy ez az összeg irracionális.

Megjegyezzük, hogy véges összegeket úgy szorzunk össze, hogy az egyik tényező minden tagját megszorozzuk a másik minden tagjával és a kapott szorzatokat összeadjuk:

$$(x_0 + \ldots + x_n) \cdot (y_0 + \ldots + y_m) = x_0 y_0 + x_0 y_1 + \ldots + x_0 y_m + x_1 y_0 + \ldots + x_n y_m.$$

$$7\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}, \sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}, \sum_{n=1}^{\infty} \frac{1}{n^6} = \frac{\pi^6}{945}.$$

Emlékeztető.

 $\bullet \,$ (Binomiális tétel.) Legyen $a,b\in \mathbb{R}.$ Ekkor minden $n\in \mathbb{N}_0$ esetén

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k},$$

ahol $0^0 := 1$.

A

$$\sum_{n=0}^{\infty} (a_n) \quad \text{és a} \quad \sum_{n=0}^{\infty} (b_n)$$

sorok Cauchy-szorzatának vagy diszkrét konvolúciójának nevezzük a

$$\sum_{n=0}(c_n)=:\sum_{n=0}(\alpha_n)\times\sum_{n=0}(b_n)$$

sort, ahol

$$c_n := \sum_{k=0}^n a_k b_{n-k} \qquad (n \in \mathbb{N}_0).$$

Példák.

1. Ha $z \in \mathbb{R}$: |z| < 1, akkor

$$\frac{1}{1-2z+z^2} = \frac{1}{(1-z)^2} = \left(\frac{1}{1-z}\right)^2 = \left(\sum_{n=0}^{\infty} z^n\right)^2 = \sum_{n=0}^{\infty} \sum_{k=0}^{n} z^k z^{n-k} =$$

$$= \sum_{n=0}^{\infty} z^n \sum_{k=0}^{n} 1 = \sum_{n=0}^{\infty} (n+1)z^n.$$

Megjegyezzük, hogy ha $z \in \mathbb{R}$: |z| < 1, akkor

$$\sum_{n=0}^{\infty} nz^{n} = \sum_{n=0}^{\infty} (n+1-1)z^{n} = \sum_{n=0}^{\infty} (n+1)z^{n} - \sum_{n=0}^{\infty} z^{n} =$$

$$= \left(\sum_{n=0}^{\infty} z^n\right)^2 - \sum_{n=0}^{\infty} z^n = \frac{1}{(1-z)^2} - \frac{1}{1-z} = \frac{z}{(1-z)^2}.$$

2. Világos, hogy

$$e \cdot \frac{1}{e} \ = \ \left(\sum_{n=0}^{\infty} \frac{1}{n!} \right) \cdot \left(\sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \right) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{(-1)^k}{k!} \cdot \frac{1}{(n-k)!} =$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k=0}^{n} (-1)^k \binom{n}{k} = \sum_{n=0}^{\infty} \frac{(-1+1)^n}{n!} = 1.$$

3. Megmutatjuk, hogy

$$\frac{3}{2} \cdot 2 = 3.$$

Valóban

$$\frac{3}{2} \cdot 2 = \left(\sum_{n=0}^{\infty} \left(\frac{1}{3}\right)^n\right) \cdot \left(\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n\right) = \sum_{n=0}^{\infty} \sum_{k=0}^n \left(\frac{1}{3}\right)^k \left(\frac{1}{2}\right)^{n-k} =$$

$$= \sum_{n=0}^{\infty} \frac{1}{2^n} \sum_{k=0}^{n} \left(\frac{2}{3}\right)^n = \sum_{n=0}^{\infty} \frac{1}{2^n} \frac{1 - \left(\frac{2}{3}\right)^{n+1}}{1 - \frac{2}{3}} = \sum_{n=0}^{\infty} \frac{1}{2^n} \left[3 - \frac{2^{n+1}}{3^n}\right] =$$

$$= 3 \cdot \sum_{n=0}^{\infty} \frac{1}{2^n} - 2 \cdot \sum_{k=0}^{\infty} \left(\frac{2}{3}\right)^k = 3 \cdot 2 - 2 \cdot \frac{3}{2},$$

következésképpen

$$2 \cdot 2 \cdot \frac{3}{2} = 3 \cdot 2 \qquad \Longleftrightarrow \qquad 2 \cdot \frac{3}{2} = 3.$$

Tétel (Mertens). Ha a $\sum (x_n)$, $\sum (y_n)$ konvergens sorok:

$$A:=\sum_{n=0}^\infty x_n, \qquad B:=\sum_{n=0}^\infty y_n,$$

továbbá valamelyikük abszolút konvergens, akkor Cauchy-szorzatuk is konvergens, és

$$\sum_{n=0}^{\infty}\sum_{k=0}^{n}x_{k}y_{n-k}=A\cdot B=\left(\sum_{n=0}^{\infty}x_{n}\right)\cdot\left(\sum_{n=0}^{\infty}y_{n}\right).$$

Biz. Legyen

$$A_n:=\sum_{i=0}^n x_i=\sum_{i=0}^n x_{n-i}\quad \text{\'es}\quad B_n:=\sum_{i=0}^n y_i \qquad (n\in\mathbb{N}_0),$$

továbbá

$$c_{\mathfrak{i}}:=\sum_{k=0}^{\mathfrak{i}}x_{k}y_{\mathfrak{i}-k}\quad (\mathfrak{i}\in\mathbb{N}_{0}),\qquad \text{ill.}\qquad C_{\mathfrak{n}}:=\sum_{\mathfrak{i}=0}^{\mathfrak{n}}c_{\mathfrak{i}}\quad (\mathfrak{n}\in\mathbb{N}_{0}).$$

Ekkor

$$\begin{split} &C_n = c_0 + c_1 + c_2 + \ldots + c_n = \\ &= (x_0 y_0) + (x_0 y_1 + x_1 y_0) + (x_0 y_2 + x_1 y_1 + x_2 y_0) + \ldots + (x_0 y_n + x_1 y_{n-1} + \ldots + x_n y_0) = \\ &= x_0 (y_0 + y_1 + y_2 + \ldots + y_n) + x_1 (y_0 + y_1 + y_2 + \ldots + y_{n-1}) + \ldots + x_n y_0 = \\ &= x_0 B_n + x_1 B_{n-1} + \ldots + x_n B_0 = \sum_{i=0}^n x_{n-i} \cdot B_i = \sum_{i=0}^n x_{n-i} \cdot (B_i - B) + A_n \cdot B. \end{split}$$

Tegyük fel, hogy $\sum (x_n)$ abszolút konvergens: $\sum_{n=0}^{\infty} |x_n| \in \mathbb{R}$. Ekkor

- 1. $\lim(B_n) = B$ következtében
 - a) tetszőleges $\varepsilon > 0$ számhoz van olyan $L \in \mathbb{N}_0$, hogy bármely $L \le n \in \mathbb{N}_0$ esetén

$$|B_n - B| < \frac{\varepsilon/3}{\sum_{p=0}^{\infty} |x_p| + 1};$$
 (24)

b) a (B_n) sorozat korlátos, azaz alkalmas K>0 számra, ill. tetszőleges $n\in\mathbb{N}_0$ indexre

$$B_n, B \in (-K, K); \tag{25}$$

2. a $\sum (x_n)$ sor abszolút konvergenciája folytán alkalmas $M \in \mathbb{N}_0$, ill. tetszőleges $M \leq \mathfrak{p}, \mathfrak{q} \in \mathbb{N}_0$ indexre

$$\sum_{n=p}^{q} |x_l| < \frac{\varepsilon/3}{2K}; \tag{26}$$

3. $lim(A_{\mathfrak{n}})=A$ miatt van olyan $N\in\mathbb{N}_{0},$ hogy bármely $N\leq\mathfrak{n}\in\mathbb{N}$ indexre

$$|A_n - A| < \frac{\varepsilon/3}{|B| + 1}. (27)$$

Így ha $n \in \mathbb{N}_0$ olyan index, amelyre $n \ge \max\{N, L + M\}$, akkor

$$\begin{split} |C_n - AB| &= \left| \sum_{i=0}^n x_{n-i} (B_i - B) + A_n B - AB \right| \leq \\ &\leq \sum_{i=0}^{L-1} |x_{n-i}| \cdot |B_i - B| + \sum_{i=L}^n |x_{n-i}| \cdot |B_i - B| + |A_n - A| \cdot |B| \leq \\ &\leq \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} \leq \varepsilon, \end{split}$$

ui.

• a (25), (26), ill.

$$n-i \geq n-(L-1) \geq (L+M)-(L-1) \geq M$$

becslések következtében

$$\sum_{i=0}^{L-1} |x_{n-i}| \cdot |B_i - B| \le 2K \cdot \sum_{i=0}^{L-1} |x_{n-i}| \le 2K \cdot \frac{\varepsilon/3}{2K} = \frac{\varepsilon}{3},$$

• a (24) becslés következtében

$$\sum_{i=L}^n |x_{n-i}| \cdot |B_i - B| \leq \sum_{i=L}^n |x_{n-i}| \cdot \frac{\epsilon/3}{\sum\limits_{p=0}^\infty |x_p| + 1} \leq \frac{\epsilon}{3},$$

a (26) becslés következtében

$$|A_n - A| \cdot |B| \le \frac{\varepsilon}{3}$$
.

Megjegyezzük, hogy ha a két sor közül egyik sem abszolút konvergens, akkor a Cauchy-szorzat nem

feltétlenül lesz konvergens. Divergens sorok Cauchy-szorzata is lehet konvergens, mint ahogy azt az alábbi feladat megoldása mutatja.

Feladat. Mutassuk meg, hogy

1. a $\sum_{n=0}^{\infty} \left(\frac{(-1)^n}{\sqrt{n+1}} \right)$ sor konvergens, viszont önmagával vett Cauchy-szorzata divergens;

2. az
$$1 - \sum_{n=1}^{\infty} \left(\left(\frac{3}{2} \right)^n \right)$$
 és az $1 + \sum_{n=1}^{\infty} \left(\left(\frac{3}{2} \right)^{n-1} \left(2^n + \frac{1}{2^{n+1}} \right) \right)$ sorok divergensek, de Cauchyszorzatuk konvergens!

Útm.

1. A $\sum_{n=0}^{\infty} \left(\frac{(-1)^n}{\sqrt{n+1}} \right)$ sor a Leibniz-kritérium következtében konvergens, továbbá

$$\begin{split} \sum_{n=0} \left(\frac{(-1)^n}{\sqrt{n+1}} \right) \times \sum_{n=0} \left(\frac{(-1)^n}{\sqrt{n+1}} \right) &= \sum_{n=0} \left(\sum_{k=0}^n \frac{(-1)^k}{\sqrt{k+1}} \frac{(-1)^{n-k}}{\sqrt{n-k+1}} \right) =: \\ &=: \sum_{n=0} \left((-1)^n c_n \right) \end{split}$$

folytán

$$\begin{split} c_n &= \sum_{k=0}^n \frac{1}{\sqrt{k+1}\sqrt{n-k+1}} = \sum_{k=0}^n \frac{1}{\sqrt{(k+1)(n-k+1)}} \geq \\ &\geq \sum_{k=0}^n \frac{2}{n+2} = \frac{2(n+1)}{n+2} \longrightarrow 2 \neq 0 \quad (n \to \infty). \end{split}$$

2. Világos, hogy a feladatbeli két sor Cauchy-szorzatára $\sum_{n=1}^{\infty} \left(\left(\frac{3}{2} \right)^{n-1} c_n \right)$, ahol

$$\begin{split} c_n &= \left(2^n + \frac{1}{2^{n+1}}\right) - \left(2^{n-1} + \frac{1}{2^n}\right) - \ldots - \left(2 + \frac{1}{2^2}\right) - \frac{3}{2} = \\ &= 2^n + \frac{1}{2^{n+1}} - \left(1 + 2 + \ldots + 2^{n-1}\right) - \left(\frac{1}{2} + \frac{1}{2^2} + \ldots + \frac{1}{2^n}\right) = \\ &= 2^n + \frac{1}{2^{n+1}} - (2^n - 1) - \left(1 - \frac{1}{2^n}\right) = \\ &= \frac{1}{2^{n+1}} + \frac{1}{2^n} = \frac{3}{2^{n+1}}, \end{split}$$

azaz

$$\sum_{n=0} \left(\left(\frac{3}{2}\right)^{n-1} c_n \right) = \sum_{n=0} \left(\left(\frac{3}{4}\right)^n \right). \quad \blacksquare$$

Gyakorló (házi) feladat. Vizsgáljuk meg az alábbi sorokat konvergencia szempontjából!

(a)
$$\sum_{n=1}^{\infty} \left(\frac{n^2 - 1}{3n^2 + 1} \right)$$
;

(b)
$$\sum_{n=1}^{\infty} \left(\left(\frac{n+2}{n+1} \right)^{n-1} \right)$$
;

(b)
$$\sum_{n=1} \left(\left(\frac{n+2}{n+1} \right)^{n-1} \right);$$
 (c) $\sum_{n=1} \left(\frac{n^2+n+1}{\sqrt{n^4+1}+n^5} \right);$

(d)
$$\sum_{n=1}^{\infty} \left(\frac{1}{n^{1+1/n}} \right)$$
;

(e)
$$\sum_{n=1}^{\infty} \left(\frac{100^n}{n!} \right)$$
;

(f)
$$\sum_{n=1} \left(\frac{(n!)^2}{2^{n^2}} \right);$$

(g)
$$\sum_{n=1} \left(\frac{3^n \cdot (n+2)!}{(n+1)^n} \right);$$
 (h) $\sum_{n=1} \left(\frac{2+(-1)^n}{\sqrt{n}} \right).$

(h)
$$\sum_{n=1} \left(\frac{2 + (-1)^n}{\sqrt{n}} \right).$$

Útm.

1. Mivel

$$\lim\left(\frac{n^2-1}{3n^2+1}\right)=\frac{1}{3}\neq 0,$$

ezért a

$$\sum_{n=1} \left(\frac{n^2 - 1}{3n^2 + 1} \right)$$

sor divergens.

2. Mivel

$$\left(\frac{n+2}{n+1}\right)^{n-1} = \left(\frac{n+1+1}{n+1}\right)^{n-1} = \left(1 + \frac{1}{n+1}\right)^{n+1} \cdot \left(1 + \frac{1}{n+1}\right)^{-2} \longrightarrow$$

$$\longrightarrow e \cdot \frac{1}{(1+0)^2} = e \neq (n \to \infty),$$

ezért a

$$\sum_{n=1}^{\infty} \left(\left(\frac{n+2}{n+1} \right)^{n-1} \right)$$

sor divergens.

3. Mivel nagy $n \in \mathbb{N}$ indexekre

$$\frac{n^2+n+1}{\sqrt{n^4+1}+n^5} = \frac{\frac{n^2+n+1}{n^2}}{\frac{\sqrt{n^4+1}+n^5}{n^2}} = \frac{1+\frac{1}{n}+\frac{1}{n^2}}{\sqrt{1+\frac{1}{n^4}+n^3}} \approx \frac{1}{n^3}$$

és a

$$\sum_{n=1} \left(\frac{1}{n^3} \right)$$

sor konvergens, ezért a majoránskritériumot kíséreljük meg alkalmazni. Mivel tetszőleges $n \in \mathbb{N}$ indexre

$$\frac{n^2 + n + 1}{\sqrt{n^4 + 1} + n^5} \le \frac{3n^2}{n^5} = \frac{3}{n^3}$$

és a

$$\sum_{n=1} \left(\frac{3}{n^3} \right)$$

sor konvergens, ezért a kérdéses sor a majoránskritérium alapján konvergens.

4. Mivel $\lim_{n \to \infty} (\sqrt[n]{n}) = 1$, ezért alkalmas $N \in \mathbb{N}$ indexre

$$\sqrt[n]{n} \le 2$$
 $(N \le n \in \mathbb{N}).$

Következésképpen

$$\frac{1}{n^{1+1/n}} = \frac{1}{n} \cdot \frac{1}{\sqrt[n]{n}} \geq \frac{1}{n} \cdot \frac{1}{2},$$

így a minoránskritérium alkalmazásával látható, hogy a kérdéses sor divergens.

5. Ha

$$x_n := \frac{100^n}{n!} \qquad (n \in \mathbb{N}_0),$$

akkor

$$\left|\frac{x_{n+1}}{x_n}\right| = \frac{100^{n+1}}{(n+1)!} \cdot \frac{n!}{100^n} = \frac{100}{n+1} \longrightarrow 0 < 1 \qquad (n \to \infty),$$

így a hányadoskritérium következményeként a kérdéses sor konvergens.

6. Legyen

$$x_n := \frac{(n!)^2}{2^{n^2}} \qquad (n \in \mathbb{N}).$$

Ekkor hányadoskritérium következtében a kérdéses sor konvergens, hiszen az $n \to \infty$ határátmenetben

$$\left|\frac{x_{n+1}}{x_n}\right| = \frac{((n+1)!)^2}{2^{(n+1)^2}} \cdot \frac{2^{n^2}}{(n!)^2} = \frac{(n+1)^2}{2^{2n+1}} = \frac{1}{2} \cdot (n^2 + 2n + 1) \cdot \left(\frac{1}{4}\right)^n \longrightarrow 0 + 0 + 0 = 0 < 1.$$

7. Legyen

$$x_n := \frac{3^n \cdot (n+2)!}{(n+1)^n} \qquad (n \in \mathbb{N}).$$

Ekkor hányadoskritérium következtében a kérdéses sor divergens, hiszen

$$\frac{x_{n+1}}{x_n} = \frac{3^{n+1} \cdot (n+3)!}{(n+2)^{n+1}} \cdot \frac{(n+1)^n}{3^n \cdot (n+2)!} = 3 \cdot \frac{n+3}{n+2} \cdot \left(\frac{n+1}{n+2}\right)^n =$$

$$=$$
 $3 \cdot \frac{n+3}{n+2} \cdot \left(\frac{n+2-1}{n+2}\right)^n =$

$$= 3 \cdot \frac{n+3}{n+2} \cdot \left(1 - \frac{1}{n+2}\right)^{n+2} \cdot \left(1 - \frac{1}{n+2}\right)^{-2} \longrightarrow 3 \cdot 1 \cdot e^{-1} \cdot 1^{-2} = \frac{3}{e} > 1.$$

8. Mivel bármely $n \in \mathbb{N}$ esetén

$$\frac{2+(-1)^n}{\sqrt{n}} \geq \frac{1}{\sqrt{n}},$$

ezért a kérdéses sor a minoránskritérium következtében divergens.

Gyakorló (házi) feladatok.

1. Mely $\alpha \in \mathbb{R}$ esetén konvergens a

$$\sum_{n=1}^{\infty} \left(\frac{(\alpha-2)^n}{n} \right)$$

sor?

2. Igazoljuk, hogy fennáll a

$$\left(\sum_{n=0}^{\infty} \frac{2^n}{n!}\right) \cdot \left(\sum_{n=0}^{\infty} \frac{1}{2^n n!}\right) = \sum_{n=0}^{\infty} \left(\frac{5}{2}\right)^n \cdot \frac{1}{n!}$$

egyenlőség!

3. Számítsuk ki a

$$\sum_{n=0}^{\infty} \frac{2^n}{n!} \times \sum_{n=0}^{\infty} (-1)^n \frac{2^n}{n!}$$

Cauchy-szorzatot, majd annak összegét!

4. Adjunk becslést a

$$\left| \sum_{k=1}^{\infty} x_k - \sum_{k=1}^{n} x_k \right| \qquad (n \in \mathbb{N})$$

maradékra!

1.
$$x_k := \frac{1}{k(k+1)}$$
 $(k \in \mathbb{N});$ 2. $x_k := \frac{1}{k^2}$ $(k \in \mathbb{N}).$

Útm.

1. Ha $\alpha=2$, akkor a sor nyilvánvalóan konvergens, és az összege 0. Legyen $2\neq\alpha\in\mathbb{R}$ és

$$x_n := \frac{(\alpha - 2)^n}{n}$$
 $(n \in \mathbb{N}).$

Ekkor

$$\lim \left(\left| \frac{x_{n+1}}{x_n} \right| \right) = \lim \left(\left| \frac{(\alpha - 2)^{n+1}}{n+1} \cdot \frac{n}{(\alpha - 2)^n} \right| \right) = |\alpha - 2| \cdot \lim \left(\frac{n}{n+1} \right) = |\alpha - 2|.$$

Mindez azt jelenti, hogy a sor

$$|\alpha-2|<1 \qquad \Longleftrightarrow \qquad -1<\alpha-2<1 \qquad \Longleftrightarrow \qquad x\in(1,3)$$

esetén konvergens,

$$|\alpha-2|>1 \qquad \Longleftrightarrow \qquad \alpha \in (-\infty,1) \cup (3,+\infty)$$

esetén pedig divergens. Ha $|\alpha-2|=1$, azaz $\alpha\in\{1;3\}$, akkor a következőképpen járunk el:

• $\alpha = 1$ esetén a

$$\sum_{n=1} \left(\frac{(\alpha - 2)^n}{n} \right) = \sum_{n=1} \left(\frac{(-1)^n}{n} \right)$$

sor nem más, mint az alternáló harmonikus sor (vö. 4. **GY**), így a Lebniz-kritérium (vö. 10. **GY**) következtében konvergens;

• x = 3 esetén a

$$\sum_{n=1} \left(\frac{(\alpha - 2)^n}{n} \right) = \sum_{n=1} \left(\frac{1}{n} \right)$$

sor nem más, mint a harmonikus sor (vö. 4. GY), így divergens.

Következésképpen a kérdéses sor pontosan az $\alpha \in [1,3)$ esetben konvergens.

2. Világos, hogy

$$\begin{split} \left(\sum_{n=0}^{\infty} \frac{2^n}{n!}\right) \cdot \left(\sum_{n=0}^{\infty} \frac{1}{2^n n!}\right) &= \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{2^k}{k!} \cdot \frac{1}{2^{n-k}(n-k)!} = \sum_{n=0}^{\infty} \frac{1}{2^n} \sum_{k=0}^{n} \frac{2^{2k}}{k!(n-k)!} = \\ &= \sum_{n=0}^{\infty} \frac{1}{2^n} \cdot \frac{1}{n!} \cdot \sum_{k=0}^{n} \frac{n!}{k! \cdot (n-k)!} \cdot 4^k = \\ &= \sum_{n=0}^{\infty} \frac{1}{2^n} \cdot \frac{1}{n!} \cdot \sum_{k=0}^{n} \binom{n}{k} 4^k = \sum_{n=0}^{\infty} \frac{1}{2^n} \cdot \frac{1}{n!} \cdot (1+4)^n = \\ &= \sum_{n=0}^{\infty} \frac{(5/2)^n}{n!} = \sqrt{e^5}. \end{split}$$

3. A Mertens-tétel következtében elmondható, hogy

$$\begin{split} \left(\sum_{n=0}^{\infty} \frac{2^n}{n!}\right) \cdot \left(\sum_{n=0}^{\infty} (-1)^n \frac{2^n}{n!}\right) &=& \sum_{n=0}^{\infty} \frac{2^k}{k!} \cdot \sum_{k=0}^n (-1)^{n-k} \frac{2^{n-k}}{(n-k)!} = \\ &=& \sum_{n=0}^{\infty} 2^n \sum_{k=0}^n (-1)^{n-k} \frac{1}{k!(n-k)!} = \\ &=& \sum_{n=0}^{\infty} \frac{2^n}{n!} \sum_{k=0}^n (-1)^{n-k} \frac{n!}{k!(n-k)!} = \end{split}$$

$$= \sum_{n=0}^{\infty} \frac{2^n}{n!} \sum_{k=0}^n (-1)^{n-k} \binom{n}{k} = \sum_{n=0}^{\infty} \frac{2^n}{n!} (-1+1)^n = 1.$$

4. (a)
$$\left|\sum_{k=1}^{\infty} x_k - \sum_{k=1}^{n} x_k\right| = \left|\sum_{k=n+1}^{\infty} x_k\right| = \sum_{k=n+1}^{\infty} \frac{1}{k(k+1)} = \sum_{k=n+1}^{\infty} \left(\frac{1}{k} - \frac{1}{k+1}\right) = \frac{1}{n+1};$$

(b)
$$\left|\sum_{k=1}^{\infty} x_k - \sum_{k=1}^{n} x_k\right| = \left|\sum_{k=n+1}^{\infty} x_k\right| = \sum_{k=n+1}^{\infty} \frac{1}{k^2} < \sum_{k=n+1}^{\infty} \frac{1}{k(k+1)} = \frac{1}{n+1}.$$

A Függelék

Tétel (Rekurziótétel: Dedekind (1888)). Legyen H tetszőleges (nem-üres) halmaz, $h \in H$, $f: H \to H$. Ekkor pontosan egy olyan $\varphi: \mathbb{N}_0 \to H$ függvény (**sorozat**) van, amelyre

- (i) $\varphi(0) = h$;
- (ii) bármely $n \in \mathbb{N}_0$ esetén $\varphi(n+1) = f(\varphi(n))$.

Biz.

- **1. lépés.** Tegyük fel, hogy $\phi, \psi : \mathbb{N}_0 \to H$ rendelkezik a fenti tulajdonsággal. Ekkor $\phi = \psi$, ui.
 - n = 0 esetén

$$\varphi(0) = h = \psi(0);$$

• ha valamely $n \in \mathbb{N}_0$ esetén $\varphi(n) = \psi(n)$, akkor

$$\phi(n+1) = f(\phi(n)) = f(\psi(n)) = \psi(n+1).$$

2. lépés. Legyen

$$\mathcal{H}:=\left\{A\subset\mathbb{N}_0\times H:\ \textbf{i)}\,(0,h)\in A,\ \textbf{ii}\right\}\forall\,n\in\mathbb{N}_0\,\forall k\in H:\ (n,k)\in A\ \Rightarrow\ (n+1,f(k))\in A\right\}.$$

Ekkor nyilvánvalóan $\mathbb{N}_0 \times H \in \mathcal{H}$ és bármely $B \in \mathcal{H}$ esetén $(0, h) \in B$, ezért

$$\mathsf{D} := \bigcap_{\mathsf{A} \in \mathcal{H}} \mathsf{A}$$

- a legszűkebb $\mathbb{N}_0 \times H$ -beli halmaz, amelyre **i**) és **ii**) teljesül. Ekkor
 - 1. bármely $n \in \mathbb{N}_0$ indexhez pontosan egy olyan $b \in H$ van, hogy $(n, b) \in D$ teljesül, ui.
 - n = 0 esetén (0, h) ∈ D, továbbá ha valamely h ≠ c ∈ H esetén (0, c) ∈ D, akkor D\{(0, c)} még mindig rendelkezik az i) és ii) tulajdonsággal, ami ellentmond annak, hogy D a legszűkebb ilyen halmaz.
 - ha valamely $n \in \mathbb{N}_0$ esetén pontosan egy olyan $b \in H$ van, amelyre $(n,b) \in D$, akkor az **ii**) tulajdonság következtében $(n+1,f(b)) \in D$. Ha valamely $d \neq f(b) \in H$ esetén $(n+1,d) \in D$ volna, akkor $D \setminus \{(n+1,d)\}$ rendelkezne az **ii**) tulajdonsággal, ami ellentmondana annak, hogy D a legszűkebb ilyen.

2. a fentiek következtében pontosan egy olyan $\phi:\mathbb{N}_0\to H$ függvény van, hogy

graph
$$(\phi) = \{(n, m) \in \mathbb{N}_0 \times H : m = \phi(n)\} = D.$$

Ekkor

- az i) azt jelenti, hogy $\varphi(0) = h$;
- a ii) tulajdonság pedig azt, hogy $(n + 1, f(\varphi(n)) \in D$, azaz

$$\varphi(n+1) = f(\varphi(n))$$
 $(n \in \mathbb{N}_0)$.

Megjegyzés. Általánosítás. Legyen H halmaz, $h \in H$, $k \in \mathbb{N}$, $f: H^k \to H$. Ekkor pontosan egy olyan $\phi: \mathbb{N}_0 \to H$ függvény (**sorozat**) van, amelyre

- (i) $\varphi(0) = h$;
- (ii) bármely $\mathfrak{n} \in \mathbb{N}_0$ esetén $\phi(\mathfrak{n}+k) = f(\phi(1), \ldots, \phi(\mathfrak{n})).$

B Függelék

Definíció. Azt mondjuk, hogy a $H \subset \mathbb{R}$ halmaz

- 1. **zárt**, ha $H = \emptyset$ vagy $H \neq \emptyset$ és tetszőleges konvergens $(x_n) : \mathbb{N}_0 \to H$ sorozatra $\lim(x_n) \in H$.
- 2. **nyílt**, ha $H^c := \mathbb{R} \setminus H$ komplementere zárt.
- 3. **kompakt**, ha bármely $(x_n): \mathbb{N}_0 \to H$ sorozat esetén van olyan $v \in \mathcal{I}$ indexsorozat, hogy $\lim (x_{v_n}) \in H$, azaz bármely H-beli sorozatnak van H-ban konvergens részsorozata.

Megjegyezzük, hogy bármely $a,b \in \mathbb{R}$: $a \le b$ esetén az [a,b] intervallum zárt halmaz (ez indokolja a "zárt" intervallum elnevezést), ugyanakkor a (0,1) (nyílt) intervallum nem zárt halmaz. Hasonlóan zárt maga az \mathbb{R} halmaz vagy pl. bármely $a \in \mathbb{R}$ esetén az

$$[a, +\infty)$$
, ill. a $(-\infty, a]$

"félegyenes".

Definíció. Valamely $\emptyset \neq H \subset \mathbb{R}$ halmaz esetén az $f: H \to H$ függvényt **kontrakció**nak nevezzük, ha alkalmas $q \in [0,1)$ számmal

$$|f(u) - f(v)| < q \cdot |u - v|$$
 $(u, v \in H)$.

A q szám neve kontrakciós állandó.

Példák.

1. Ha H := $[1, +\infty)$ és

$$f(t):=\frac{t}{2}+\frac{1}{t}\qquad (t\in H),$$

akkor f kontrakció, ui.

• bármely t ∈ H esetén (a mértani és számtani közép közötti egyenlőtlenség következtében)

$$[f(t)]^2 = 4 \cdot \frac{[f(t)]^2}{4} = 4 \cdot \left(\frac{\frac{t}{2} + \frac{1}{t}}{2}\right)^2 \ge 4 \cdot \frac{t}{2} \cdot \frac{1}{t} = \frac{4}{2} = 2 \qquad (1 \le t \in \mathbb{R}),$$

azaz (f(t) > 0 miatt) $f(t) \ge \sqrt{2} > 1$;

tetszőleges u, v ∈ H esetén

$$|f(u) - f(v)| = \left| \frac{u}{2} + \frac{1}{u} - \frac{v}{2} - \frac{1}{v} \right| = |u - v| \cdot \left| \frac{1}{2} - \frac{1}{uv} \right| < \frac{1}{2} \cdot |u - v|,$$

azaz (pl.) q := 1/2 kontrakció állandó.

2. Ha
$$H := \left[0, \frac{1}{3}\right]$$
 és

$$f(t) := t^2 + \frac{1}{8}$$
 $(t \in H),$

akkor f kontrakció, ui.

ullet bármely $t \in H$ esetén

$$0 \le f(t) = t^2 + \frac{1}{8} \le \frac{1}{9} + \frac{1}{8} = \frac{17}{72} < \frac{24}{72} = \frac{1}{3},$$

azaz $f(t) \in H$;

• bármely $u, v \in H$ esetén

$$|f(u) - f(v)| = |u^2 - v^2| = |u + v| \cdot |u - v| \le \frac{2}{3} \cdot |u - v|.$$

Kontrakciók fontos szerepet játszanak pl. a közelítő számításokban (ld. **numerikus analízis**). Az alábbi tétel mintegy alapját képezi az említett alkalmazásoknak.

Tétel (**fixponttétel**). Tegyük fel, hogy $\emptyset \neq H \subset \mathbb{R}$ zárt halmaz és $f: H \to H$ kontrakció a $q \in [0, 1)$ kontrakciós állandóval. Ekkor

- 1. pontosan egy olyan $\alpha \in H$ szám van, amelyre $f(\alpha) = \alpha$;
- 2. bármely $u \in H$ esetén az

$$x_0 := u,$$
 $x_{n+1} := f(x_n)$ $(n \in \mathbb{N}_0)$

rekurzióval definiált (x_n) sorozat konvergens és $\lim(x_n) = \alpha$;

3. az iménti (x_n) sorozatra fennáll az

$$|x_n - \alpha| \le \frac{q^n}{1-q} \cdot |x_1 - x_0| \qquad (n \in \mathbb{N}_0)$$

egyenlőtlenség (hibabecslés).

Biz.

1. lépés A $0^0 := 1$ megállapodással megmutatjuk, hogy fennáll az

$$|x_{n+1} - x_n| \le q^n \cdot |x_1 - x_0| \qquad (n \in \mathbb{N}_0)$$
 (28)

becslés. Valóban,

- az n = 0 esetben az állítás nyilvánvaló.
- ha valamely $n \in \mathbb{N}_0$ esetén fennáll az (28) egyenlőtlenség, akkor

$$|x_{n+2} - x_{n+1}| = |f(x_{n+1}) - f(x_n)| \le q \cdot |x_{n+1} - x_n| \le q \cdot q^n \cdot |x_1 - x_0| = q^{n+1} \cdot |x_1 - x_0|.$$

2. lépés Megmutatjuk, hogy az (x_n) sorozat Cauchy-féle. Ha $m, n \in \mathbb{N}_0$ és (pl.) m > n, akkor

$$\begin{split} |\mathbf{x}_m - \mathbf{x}_n| &= |(x_m - x_{m-1}) + (x_{m-1} - x_{m-2}) + \ldots + (x_{n+2} - x_{n+1}) + (x_{n+1} - x_n)| \leq \\ &\leq |x_m - x_{m-1}| + |x_{m-1} - x_{m-2}| + \ldots + |x_{n+2} - x_{n+1}| + |x_{n+1} - x_n| \leq \\ &\leq q^{m-1} \cdot |x_1 - x_0| + q^{m-2} \cdot |x_1 - x_0| + \ldots + q^{n+1} \cdot |x_1 - x_0| + q^n \cdot |x_1 - x_0| = \\ &= (q^{m-1} + q^{m-2} + \ldots + q^{n+1} + q^n) \cdot |x_1 - x_0| = \\ &= q^n \cdot (q^{m-n-1} + q^{m-n-2} + \ldots + q + 1) \cdot |x_1 - x_0| = \\ &= q^n \cdot \frac{1 - q^{m-n}}{1 - q} \cdot |x_1 - x_0| \leq \frac{q^n}{1 - q} \cdot |x_1 - x_0|. \end{split}$$

Mivel (q^n) nullsorozat, ezért tetszőleges $\epsilon>0$ számhoz van olyan $N\in\mathbb{N}_0$ index, hogy bármely $N\leq n\in\mathbb{N}_0$ indexre

$$q^n < \frac{(1-q)\varepsilon}{|x_1-x_0|}.$$

Következésképpen bármely $N \leq m, n \in \mathbb{N}_0$ indexre $|x_m - x_n| < \epsilon$, azaz (x_n) Cauchy-féle.

3. lépés A Cauchy-féle konvergenciakritérium következtében az (x_n) sorozat konvergens is. Legyen

 $\alpha := \lim(x_n)$. Mivel H zárt halmaz, ezért $\alpha \in H$. Belátjuk, hogy $f(\alpha) = \alpha$. Valóban,

$$\begin{split} 0 &\leq |f(\alpha) - \alpha| = |(f(\alpha) - f(x_n)) + (f(x_n) - \alpha)| \leq |f(\alpha) - f(x_n)| + |f(x_n) - \alpha| = \\ &= |f(\alpha) - f(x_n)| + |x_{n+1} - \alpha| \leq q \cdot |x_n - \alpha| + |x_{n+1} - \alpha| \longrightarrow 0 \quad (n \to \infty) \end{split}$$

csak úgy teljesülhet, ha $f(\alpha) - \alpha = 0$, azaz $f(\alpha) = \alpha$.

4. lépés Tegyük fel, hogy valamely $\beta \in H$ számra $f(\beta) = \beta$. Ekkor

$$|\alpha - \beta| = |f(\alpha) - f(\beta)| \le q \cdot |\alpha - \beta| \qquad \iff \qquad (1 - q) \cdot |\alpha - \beta| \le 0.$$

Mivel $0 \le q < 1$ ezért innen $(0 \le) |\alpha - \beta| \le 0$, azaz $|\alpha - \beta| = 0$ következik. Tehát $\alpha = \beta$.

5. lépés A 2. lépésbeli

$$|x_m - x_n| \le \frac{q^n}{1 - q} \cdot |x_1 - x_0|$$
 $(m, n \in \mathbb{N}_0, m > n)$

becslés, ill a tetszőleges $n \in \mathbb{N}_0$ indexre fennálló

$$\lim_{m\to\infty}(x_m-x_n)=\alpha-x_n,\qquad\Longrightarrow\qquad \lim_{m\to\infty}(|x_m-x_n|)=|\alpha-x_n|$$

határértékreláció figyelembevételével az

$$|x_n - \alpha| \le \frac{q^n}{1-q} \cdot |x_1 - x_0| \qquad (n \in \mathbb{N}_0)$$

hibabecslés adódik. ■

A fenti tételben szereplő α számot a tételbeli f függvény **fixpontj**ának, magát a tételt **fixponttétel**nek nevezzük. Az α fixpont tehát az

$$f(x) = x$$
 $(x \in H)$

egyenletnek a megoldása. Éppen ezért a fixponttétel a közelítő számítások, módszerek (ld. numerikus analízis) egyik legfontosabb eszköze.

Példa. Egy korábbi példában szereplő

$$f(t) := \frac{t}{2} + \frac{1}{t} \qquad (1 \le t \in \mathbb{R})$$

kontrakció esetében az f(x) = x egyenlet

$$\frac{x}{2} + \frac{1}{x} = x \qquad (1 \le t \in \mathbb{R})$$

alakú. Könnyű ellenőrizni, hogy ennek az egyenletnek egyetlen α gyöke van az $[1,+\infty)$ halmazban, nevezetesen $\alpha=\sqrt{2}$, hiszen bármely $x\in[1,+\infty)$ esetén

$$\frac{x}{2} + \frac{1}{x} = x$$
 \iff $x^2 + 2 = 2x^2$ \iff $2 = x^2$ \iff $x = \sqrt{2}$.

Ha a fixponttételt au u := 2 "kezdőértékkel" alkalmazzuk, akkor az

$$x_0 := 2,$$
 $x_{n+1} := \frac{x_n}{2} + \frac{1}{x_n} = \frac{1}{2} \cdot \left(x_n + \frac{2}{x_n}\right)$ $(n \in \mathbb{N}_0)$

sorozatot kapjuk (**Heron-féle** vagy **babiloni gyökkeresési algoritmus**). A fixponntétel következtében tehát az (x_n) sorozat konvergens és $\lim(x_n)=\sqrt{2}$, továbbá a q:=1/2 kontrakciós állandóval

$$\left|x_n - \sqrt{2}\right| \le \frac{(1/2)^n}{1 - 1/2} \cdot |x_0 - x_1| = \frac{|2 - 3/2|}{2^{n-1}} = \frac{1}{2^n}$$
 $(n \in \mathbb{N}_0).$