Homework 4

Systems of linear equations

O Consider a particular species of wildflower in which each plant has several stems, leaves and flowers, and for each plant let S = the average stem length (in cm)

L = the average leaf width (in cm)

F = the number of flowers.

Four plants are examined, and the information is tabulated

in the following matrix:

For these four plants, determine whether or not there exists a linear relationship between S, L and F. In other words, do there exist constants do, d,, d, d, see such that $d_0 + d_1 + d_2 + d_3 + d_4 + d_5 + d_6 +$

2 Determine which of the following sets of vectors are linearly independent. For those sets that are linearly dependent, write one of the vectors as a linear combination of the others.

$$a)$$
 $\{(1,2,3), (a,1,0), (1,5,9)\}$

d)
$$\{(2,2,2,2),(2,2,0,2),(2,0,2,2)\}$$

 $= \{(2,2,2,2),(2,2,0,2),(2,0,2,2)\}$

Vector spaces

- (3) Which of the following are vector spaces? In each case, explain why / why not. And if it is a vector space, give the dimension and a basis. a) the set R of real numbers
 - b) the set of solutions (x_1, x_2) to the equations $5x_1 + 2x_2 = 0$ $3x_1 - 2x_2 = 2$
 - c) the set of solutions (x_1, x_2) to the equation $x_1x_2 = 0$
 - d) the span of the vectors (2,3,4), (-1,-1-4) and (0,1,-4)
 - e) the set of auti-symmetric 4×4 matrices (recall: a matrix A is antisymmetric if $A^{T} = -A$)

Bases

4) Determine the dimension of the space spanned by the set

$$S = \left\{ \begin{pmatrix} 1 \\ 2 \\ -1 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 8 \\ -4 \\ 8 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 3 \\ 0 \\ 6 \end{pmatrix} \right\}$$

Determine whether or not the set $B = \{(2, 3, 2), (1, 1, -1)\}$

is a basis for the space spanned by the set $A = \{(1, 2, 3), (5, 8, 7), (3, 4, 1)\}$

- @ How many different bases are there for the 3-dimensional space F2 ?
- (7) Let $A = \begin{pmatrix} 2 & 2 & 5 & 0 & 1 \\ 3 & 4 & 8 & 1 & 2 \\ 1 & 6 & 5 & 5 & 3 \end{pmatrix}, \vec{y} = \begin{pmatrix} \vec{1} & 0 \\ 0 & 3 \\ -\vec{p} \end{pmatrix}.$

Verify that $\vec{v} \in N(A)$.
Then extend $\vec{z} \vec{v} \vec{s}$ to a basis for N(A). (That is, find a basis for N(A) that includes v.)

Inner products and orthogonality

- (8) a) Find two different unit vectors (i.e., length-one vectors) that are orthogonal to $\vec{x} = \begin{pmatrix} 3 \\ -2 \end{pmatrix} \in \mathbb{R}^2$. b) Give a basis for the orthogonal complement $Span((-\frac{3}{2}))^{\frac{3}{2}} \subseteq \mathbb{R}^{3}$
- (9) a) Prove the "parallelogram law": $\|\vec{x} + \vec{y}\|^2 + \|\vec{x} - \vec{y}\|^2 = 2(\|\vec{x}\|^2 + \|\vec{y}\|^2).$
 - b) Show the implications:

 \vec{x} is orthogonal to \vec{y} $|\vec{x} + \vec{y}|^2 = |\vec{x}|^2 + ||\vec{y}||^2$ have the same length

(10) What is the projection of b=(2,1,2) onto the plane spanned by (0,1,0) and (0,1,1)?