

EBIMU24GV5 SPECIFICATION

2.4GHz Wireless AHRS

REV 1.1 (F/W v5.07)

E2BOX COMPANY http://www.e2box.co.kr

IN D E X

1.	FEATURE ·····	• 3
2.	HARDWARE ·····	• 4
3.	RF COMMUNICATION PROTOCOL SEQUENCE	. 6
4.	AXIS ASSIGNMENT	. 8
5 .	COMMUNICATION PROTOCOL DESCRIPTIONS	11
6.	COMMUNICATION DETAILS	16
7.	ELECTRICAL CHARACTERISTICS	27
8.	SENSOR SPECIFICATIONS	28
9.	DIMENSIONS	30
10.	주의사항	31
11.	Revision History	32

1. FEATURE

2.4GHz 무선 AHRS모듈 (3축 자이로스코프, 3축 가속도센서, 3축 지자기센서 내장)

향상된 온도 안정성

향상된 센서 정밀도, 향상된 센서 캘리브레이션 기능

- RAA(Robust Attitude Algorithm) 적용
- RHA(Robust Heading Algorithm) 적용
- AGC(Auto Gyroscope Calibration) 적용
- AVC(Active Vibration Cancellation) 적용
- 정밀한 보정이 가능한 가속도센서/지자기센서 캘리브레이션 명령어 지원

내부 자세 데이터 갱신 속도 1000Hz

자세 데이터 출력

- Euler angles, Quaternion

자이로, 가속도, 지자기센서의 Calibrated raw data 출력

단시간 센서 위치추적(Short-Term Position Tracking)

- x,y,z축 Local, Global 위치/속도 데이터 출력
- Position Tracking Filter

자세 offset설정 기능

중력성분이 제거된 선형 가속도 출력

센서 온도 데이타 출력

사용 환경에 따른 옵션 설정 기능

- Digital Low Pass Filter : [gyro] 12Hz ~ 532Hz, [accel] 1Hz ~ 280Hz
- 자이로 Sensitivity: 125dps ~ 2000dps
- 가속도 Sensitivity: 3g ~ 24g
- Sensor Filter Factor : $1 \sim 50$
- Position Filter Parameters

지자기센서 활성/비활성 모드

사용자 센서 캘리브레이션 기능

무선 명령어를 통한 센서 설정

1Cell 리튬폴리머배터리 충전회로 내장 (충전전류 CC=130mA)

MicroUSB를 통한 배터리 충전

저전력 - Normal. 40mA

초소형 사이즈 - 32mm x 24mm

2. HARDWARE

2-1. 구성

2-2. 구성 설명

2-2-1. 상태 LED

NAME	DESCRIPTION		
	PowerOn : 1초에 1번씩 깜박임		
	무선데이타 수신시 : 1초에 2번씩 깜박임		
무선데이타상태LED	배터리 잔량이 30미만이 경우 : 0.3초 마다 1번씩 깜박임		
	* 사용자 명령 <sled0>에 의해 LED를 OFF할 수 있습니다.</sled0>		
	(Low Battery Alarm은 OFF되지 않습니다.)		
춰ᄮᆐᅚᇚ	충전중 : LED ON		
충전상태LED	충전완료 : LED OFF		

2-2-2. MicroUSB커넥터

NAME	DESCRIPTION
	센서모듈의 전원과 배터리 충전용 커넥터입니다.
	충전전류 CC = 130mA
MicroUSB커넥터	전원ON시 모듈의 전원사용과 충전이 동시에 됩니다. (충전시 전원을 OFF할 필요 없습니다.)
	배터리가 연결되어 있지 않더라도 동작 가능합니다.

2-2-3. 전원스위치

NAME	DESCRIPTION	
전원스위치	센서모듈의 전원 On/Off	
LE=TIM	*전원 On/Off상태와 관계없이 USB커넥터를 통해 충전가능	

2-2-4. 배터리 단자

NAME	DESCRIPTION	
배터리 커넥터	Molex 53261-02 커넥터 (Molex 51021-02 와 연결 가능합니다.)	
BAT+	1Cell LIPO 배터리 + 단자 연결	
BAT-	1Cell LIPO 배터리 - 단자 연결	

2-2-5. 설정 초기화 단자

NAME	DESCRIPTION		
설정 초기화 단자	두 단자를 핀셋 등으로 연결한 후 전원을 ON하면 LED가		
	깜박인 후 모든 설정이 출고상태로 복귀됩니다.		

3. RF COMMUNICATION PROTOCOL SEQUENCE

- (1) 무선센서수가 1개일 경우 1ms(1000Hz)데이터 출력이 가능합니다.
- (2) 무선센서 내부적으로 연산되는 자세데이터 갱신속도는 항상 1000Hz입니다.

3-2. Commnd Operations

3-2-1. Receiver Command Operation

(3) cmd는 EBRCV24GV5(수신기) 설정 명령어 입니다.

3-2-2. Wireless Sensor Command Operation

- (1) id는 EBIMU24GV5(무선센서)의 두자리 ID입니다.
- (2) cmd는 EBIMU24GV5(무선센서) 설정 명령어 입니다.

4. AXIS ASSIGNMENT

4-1. Euler Angles Axis

4-2. Compass / Heading(Euler Angle)

4-3. Gyroscope Axis

4-4. Accelerometer Axis

4-5. Magnetometer Axis

4-6. Velocity Axis (Local)

4-7. Distance Axis (Local)

5. COMMUNICATION PROTOCOL DESCRIPTIONS

5-1. OUTPUT DATA FORMAT

센서의 데이터는 무선수신기를 통해서만 받을 수 있습니다. 무선수신기의 데이터 출력 포맷은 무선수신기 매뉴얼 "EBRCV24GV5 Specification"의 "5. COMMUNICATION PROTOCOL DESCRIPTIONS" 을 참조하시기 바랍니다.

5-2. COMMAND & RESPONESE FORMAT

COMMNAD FORMAT

STX	ID	COMMAND	DATA	ETX
<	ID	CMD	DATA	>

STX : '<' (3C)hex

ID : 두자리 센서ID

"??"입력시 broadcast명령어로 모든 센서에 명령이 전달됩니다.

CMD: **COMMAND**

DATA: DATA

ETX : '>' (3E)hex

DATA 항목은 명령어에 따라 없을 수도 있습니다.

RESPONSE FORMAT

STX	COMMAND	DATA	ETX
<	CMD	DATA	>

ex) command : <01sem0> 1번 ID를 가진 센서의 지자기센서를 off로 변경

<00sid3> 0번 ID를 가진 센서의 ID를 3으로 변경 <??sem1> 모든 센서의 지자기센서를 on으로 변경

response : <ok> 정상 처리 완료

5-3. COMMAND CODE LIST

5-3-1. Sensor Command

COMMAND		DATA	Description
SET ENABLE MAGNETO	sem	0 : Magnetometer OFF 1 : Magnetometer ON 2 : Magnetometer ON 2	Magnetometer On/Off 설정 (default : 2)
SET SENS GYRO	ssg	1 : 125dps 2 : 250dps 3 : 500dps 4 : 1000dps 5 : 2000dps	자이로센서의 감도 설정 (default : 5)
SET SENS ACCELERO	ssa	1:3g 2:6g 3:12g 4:24g	가속도센서의 감도 설정 (default : 3)
SET Low Pass Filter Gyroscope	lpfg	0: 12Hz (ODR 100Hz) 1: 23Hz (ODR 200Hz) 2: 32Hz (ODR 100Hz) 3: 47Hz (ODR 400Hz) 4: 64Hz (ODR 200Hz) 5: 116Hz (ODR 1000Hz) 6: 230Hz (ODR 1000Hz) 7: 532Hz (ODR 1000Hz)	자이로센서 Digital Low Pass Filter 설정 (default : 3)
SET Low Pass Filter Accelerometer	lpfa	0: 1Hz (ODR 12.5Hz) 1: 3Hz (ODR 25Hz) 2: 5Hz (ODR 50Hz) 3: 10Hz (ODR 100Hz) 4: 20Hz (ODR 200Hz) 5: 40Hz (ODR 400Hz) 6: 80Hz (ODR 800Hz) 7: 145Hz (ODR 1000Hz) 8: 234Hz (ODR 1000Hz) 9: 280Hz (ODR 1000Hz)	가속도센서 Digital Low Pass Filter 설정 (default : 5)
SET Filter Factor	sff sffa sffm	1 ~ 50	Sensor Filter Factor 설정 sff: 가속도센서, 지자기센서의 Filter Factor설정 sffa: 가속도센서 Filter Factor설정 sffm: 지자기센서 Filter Factor설정 (default: 10)

5-3-1. Sensor Command (continued)

COMMAND		DATA	Description
Robust Attitude Algorithm Parameters	raa_l raa_t	0.00 ~ 100.00 0 ~ 200000000	RAA Level (default : 0.2) RAA Timeout (default : 10000)
Robust Heading Algorithm Parameters	rha_l rha_t	0.00 ~ 100.00 0 ~ 200000000	RHA Level (default : 0.1) RHA Timeout (default : 10000)
Auto Gyroscope Calibration Parameters	agc_e agc_t agc_d	0, 1 0.00 ~ 100.00 0.00 ~ 10.00	AGC Enable (default : 1) AGC Threshold(default : 0.8) AGC Drift (default : 0.5)
Active Vibration Cancellation Parameters	avcg_e avca_e	0, 1 0, 1	자이로센서 AVC ON/OFF 설정 (default : 0) 가속도센서 AVC ON/OFF 설정 (default : 0)
Position Filter Parameters	posf_sl posf_st posf_sr posf_ar	0.0000 ~ 1.0000 0 ~ 1000 0.0000 ~ 1.0000 0.0000 ~ 1.0000	(default : 0.02) (default : 0) (default : 0) (default : 1)
Position Zero	posz	NONE	누적된 속도, 거리를 0으로 설정

5-3-2. Calibration Command

COMMAND		DATA	Description
CALIBRATION GYRO	cg	NONE	자이로센서 캘리브레이션
CALIBRATION ACCELERO FREE	caf	NONE	가속도센서의 XYZ축 정밀 캘리브레이션
CALIBRATION ACCELERO SIMPLE	cas	NONE	가속도센서의 XYZ축 캘리브레이션
CALIBRATION MAGNETO FREE	cmf	NONE	지자기센서의 XYZ축 캘리브레이션
CALIBRATION MAGNETO XY	cnxy +cnxy	NONE	지자기센서의 XY축 캘리브레이션 cnxy : 지자기센서 xy축 캘리브레이션 +cnxy : cmf보정값 사용 + cnxy
CALIBRATION MAGNETO Z	cnz +cnz	NONE	지자기센서의 Z축 캘리브레이션 cnz : 지자기세서 z축 캘리브레이션 +cnz : cmf보정값 사용 + cnz
SET MOTION OFFSET	cmo cmox cmoy cmoz cmoxy	NONE	전방위 자세 offset 설정 roll 축 offset 설정 pitch 축 offset 설정 yaw 축 offset 설정 roll, pitch 축 offset 설정
CLEAR MOTION OFFSET	cmco	NONE	자세 OFFSET 제거

5-3-3. RF & ETC Command

COMMAND		DATA	Description
RF SET CHANNEL sch		0 ~ 125	RF 채널 설정 0~125 채널 설정가능 (default : 100)
RF SET ID	sid	0 ~ 99	RF ID 설정 0~99 ID 설정가능 (default : 0)
SET LED	sled	0 : LED OFF 1 : RF 상태 표시 LED 활성	RF 상태 표시 LED 설정 (default : 1)
CONFIGURATION	cfg	NONE	센서 설정 사항 출력
LOAD FACTORY SETTINGS	lf	NONE	초기 설정치 Load
RESET	reset	NONE	센서 reset
VERSION CHECK	ver	NONE	Version 표시

5-4. RESPONSE CODE LIST

STATUS LIST		DESCRIPTION	
OK ok		정상처리 완료.	
ERROR	er	Error 발생	

6. COMMUNICATION DETAILS

- * 모든 명령 형식에서 id항목은 명령어를 전송할 센서의 두자리 id입니다.
- * id가 "??" 일 경우 모든센서에 명령어가 전송됩니다.

6-1. SENSOR COMMAND

6-1-1. SET ENABLE MAGNETO

지자기센서의 On/Off를 설정 합니다.

지자기센서의 경우 주변환경의 영향을 많이 받습니다.

지자기센서의 오동작이 큰 환경이나 Roll/Pitch만 사용하려는 경우 지자기센서를 OFF 하는 것이 좋습니다.

지자기센서를 OFF로 설정하면 자동으로 3축 자이로센서와 3축 가속도센서만으로 Roll/Pitch/Yaw 자세연산을 합니다. 이때 Yaw축에 대해선 시간이 지남에 따라 누적 오차가 발생하게 됩니다.

sem2 로 설정할 경우 능동적인 자기장 왜곡방지 기능이 활성화됩니다.

<ok> 응답 이후 설정된 값으로 동작합니다.

설정된 내용은 내부 비휘발성 메모리에 자동 저장 됩니다.

STX	ID	COMMAND	DATA	ETX
'<'	id	"sem"	data	'>'

data:

- '0' Magnetometer OFF
- '1' Magnetometer ON
- '2' 능동형 Magnetometer ON (default)
- * 지자기센서 ON시 오차가 크다면 센서가 장착되어 사용되는 환경에서 지자기센서 캘리브레이션을 다시 하는 것이 좋습니다.

6-1-2. SET SENS GYRO

자이로센서의 감도를 설정 합니다.

125dps, 250dps, 500dps, 1000dps, 2000dps 로 설정할 수 있습니다.

단위는 degree/second 입니다.

값이 클수록 빠른 움직임을 놓치지 않고 자세에 반영 할 수 있습니다. 대신 정밀도 는 떨어집니다. 반대로 값이 작을수록 정밀도는 좋으나 빠른 움직임 시 drift오차가 발생할 수 있습니다. 사용 환경 및 목적에 맞게 설정 하십시오.

<ok> 응답 이후 설정된 값으로 동작합니다.

설정된 내용은 내부 비휘발성 메모리에 자동 저장 됩니다.

STX	ID	COMMAND	DATA	ETX
'<'	id	"ssg"	data	' >'

data:

- '1' 125dps
- '2' 250dps
- '3' 500dps
- '4' 1000dps
- '5' 2000dps (default)

6-1-3. SET SENS ACCELERO

가속도센서의 감도를 설정 합니다.

최대로 감지할 수 있는 가속도 값을 의미 합니다.

단위는 중력가속도 g 입니다.

사용 환경 및 목적에 맞게 설정 하십시오.

<ok> 응답 이후 설정된 값으로 동작합니다.

설정된 내용은 내부 비휘발성 메모리에 자동 저장 됩니다.

STX	ID	COMMAND	DATA	ETX
'<'	id	"ssa"	data	'>'

data: '1' 3g

'2' 6g

'3' 12g (default)

'4' 24g

6-1-4. SET LOW PASS FILTER Gyroscope

자이로센서의 Digital Low Pass Filter를 설정합니다.

LPF 설정을 통해 진동환경에서도 정밀한 데이터를 출력할 수 있습니다.

lpfg 설정에 따라 자이로데이터 최대 출력 속도(ODR)가 달라집니다.

<ok> 응답 이후 설정된 값으로 동작합니다.

설정된 내용은 내부 비휘발성 메모리에 자동 저장 됩니다.

STX	ID	COMMAND	DATA	ETX
'<'	id	"lpfg"	data	'>'

data:

- '0' 12Hz ODR 100Hz
- '1' 23Hz ODR 200Hz
- '2' 32Hz ODR 100Hz
- '3' 47Hz ODR 400Hz (default)
- '4' 64Hz ODR 200Hz
- '5' 116Hz ODR 1000Hz
- '6' 230Hz ODR 1000Hz
- '7' 532Hz ODR 1000Hz

6-1-5. SET LOW PASS FILTER Accelerometer

가속도센서의 Digital Low Pass Filter를 설정합니다.

LPF 설정을 통해 진동환경에서도 정밀한 데이터를 출력할 수 있습니다.

lpfa 설정에 따라 가속도데이터 최대 출력 속도(ODR)가 달라집니다.

<ok> 응답 이후 설정된 값으로 동작합니다.

설정된 내용은 내부 비휘발성 메모리에 자동 저장 됩니다.

STX	ID	COMMAND	DATA	ETX
'<'	id	"lpfa"	data	'>'

data:

- '0' 1Hz ODR 12.5Hz
- '1' 3Hz ODR 25Hz
- '2' 5Hz ODR 50Hz
- '3' 10Hz ODR 100Hz
- '4' 20Hz ODR 200Hz
- '5' 40Hz ODR 4000Hz (default)
- '6' 80Hz ODR 800Hz
- '7' 145Hz ODR 1000Hz
- '8' 234Hz ODR 1000Hz
- '9' 280Hz ODR 1000Hz

6-1-6. SET FILTER FACTOR

Sensor Filter Factor를 설정합니다.

센서 측정 범위를 벗어난 동작의 경우 발생한 오차를 다시 보정하는 속도를 결정합니다. 값이 클수록 보정속도가 빨라집니다.

보정속도가 빨라지면 전체적인 정밀도는 떨어집니다.

sff: 가속도센서, 지자기센서의 Filter Factor를 설정합니다.

sffa: 가속도센서의 Filter Factor를 설정합니다.

sffm: 지자기센서의 Filter Factor를 설정합니다.

<ok> 응답 이후 설정된 값으로 동작합니다.

설정된 내용은 내부 비휘발성 메모리에 자동 저장 됩니다.

STX	ID	COMMAND	DATA	ETX
'<'	id	"sff" "sffa" "sffm"	data	'>'

data: '1' ~ "50" (default: '10')

6-1-7. Robust Attitude Algorithm Timeout

RAA는 센서의 가감속에 따른 자세(roll,pitch) 오차를 보정하는 알고리즘입니다.

설정된 시간(RAA Timeout) 이상으로 오차 발생시 자세를 재 보정 합니다.

RAA Timeout 설정 단위는 ms(milli-second)입니다.

RAA Timeout은 센서의 최대 가/감속 시간보다 크게 설정하는 것이 좋습니다.

RAA Timeout을 0으로 설정할 경우 RAA는 off 됩니다.

<ok> 응답 이후 설정된 값으로 동작합니다.

설정된 내용은 내부 비휘발성 메모리에 자동 저장 됩니다.

STX	ID	COMMAND	DATA	ETX
'<'	id	"raa_t"	data	'>'

data: '0' ~ "2000000000" (default: '10000', 10초)

6-1-8. Robust Heading Algorithm Timeout

RHA는 센서 사용 환경의 자기장 간섭에 따른 heading(yaw) 오차를 보정하는 알고리즘입니다.

설정된 시간(RHA Timeout) 이상으로 오차 발생시 자세를 재 보정 합니다.

RHA Timeout 설정 단위는 ms(milli-second)입니다.

RHA Timeout은 최대 자기장 간섭 시간보다 크게 설정하는 것이 좋습니다.

RHA Timeout을 0으로 설정할 경우 RHA는 off 됩니다.

<ok> 응답 이후 설정된 값으로 동작합니다.

설정된 내용은 내부 비휘발성 메모리에 자동 저장 됩니다.

STX	ID	COMMAND	DATA	ETX
'<'	id	"rha_t"	data	' >'

data: '0' ~ "2000000000" (default: '10000', 10초)

6-1-9. Auto Gyroscope Calibration Enable

AGC는 실시간으로 자이로센서를 보정하는 기능합니다.

AGC Enable은 AGC의 활성/비활성을 설정합니다.

<ok> 응답 이후 설정된 값으로 동작합니다.

설정된 내용은 내부 비휘발성 메모리에 자동 저장 됩니다.

STX	ID	COMMAND	DATA	ETX
'<'	id	"agc_e"	data	' >'

data: '0' AGC OFF

'1' AGC ON (default)

6-1-10. Active Vibration Cancellation Enable

AVC는 능동적으로 진동성분을 제거하는 기능입니다.

AVC는 LPF보다 뛰어난 진동제거 능력을 가지고 있습니다.

센서를 진동이 심한 환경에서 사용할 경우 AVC를 활성화하시기 바랍니다.

<ok> 응답 이후 설정된 값으로 동작합니다.

설정된 내용은 내부 비휘발성 메모리에 자동 저장 됩니다.

avcg_e: 자이로센서 AVC 활성 설정 avca_e: 가속도센서 AVC 활성 설정

STX	ID	COMMAND	DATA	ETX
1,-1	id	"avcg_e"	cg_e" data	'_'
	IU.	"avca_e"	uata	

data: '0' AVC OFF (default)

'1' AVC ON

6-1-11. POSITION FILTER PARAMETERS

센서의 속도, 거리를 연산하는 position filter의 SL,ST,SR,AR parameter를 설정합니다.

<ok> 응답 이후 설정된 값으로 동작합니다.

설정된 내용은 내부 비휘발성 메모리에 자동 저장 됩니다.

"posf_sl" data_sl	
'<' id "posf_sr" data_sr "posf_sr" data_sr "posf_ar" data_sr data_sr	'>'

data_sl: "0.0000" ~ "1.0000" (default: "0.02")

0 설정시 position filter 비활성

data_st : '0' ~ "1000" (default : "0")

0 설정시 기능 비활성

data_sr: "0.0000" ~ "1.0000" (default: "0")

0 설정시 기능 비활성

data_ar: "0.0000" ~ "1.0000" (default: "1")

1 설정시 기능 비활성

6-1-12. POSITION ZERO

누적된 속도, 거리(위치)를 0으로 설정합니다. <ok> 응답 이후 설정된 값으로 동작합니다.

STX	ID	COMMAND	ETX
'<'	id	"posz"	'>'

6-2. CALIBRATION COMMAND

6-2-1. CALIBRATION GYRO

자이로센서 x,y,z축 캘리브레이션을 합니다.

캘리브레이션시 센서는 반드시 움직임이 없는 정지 상태에 있어야 합니다.

[설정순서]

- (1) 센서를 방향/자세에 상관없이 움직임이 없는 상태로 놓습니다.
- (2) "<IDcg>" 명령어 입력 후 <ok>응답까지 (2초정도)대기합니다.

<ok> 응답 이후 설정된 값으로 동작합니다.

설정된 내용은 내부 비휘발성 메모리에 자동 저장 됩니다.

STX	ID	COMMAND	ETX
'<'	id	"cg"	'>'

6-2-2. CALIBRATION ACCELERO FREE

가속도센서의 XYZ축 캘리브레이션을 정밀하게 할 수 있는 명령입니다.

[설정순서]

- (1) "<IDcaf>"명령어를 입력합니다.
- (2) 센서는 움직임이 없을 경우 LED(파란색)를 깜박이고 해당 자세에 대해 보정합니다.
- (3) 센서를 조금씩 움직여 여러 회전각도에서 LED(파란색)를 깜박이게 합니다.
 - * 센서를 직육면체로 봤을때 6개의 면과 12개의 모서리, 8개의 꼭지점이 각각 바닥 (중력방향)으로 향하도록 하여 LED를 깜박이게 하면 보다 정밀한 보정이 됩니다.

(4) '>' 를 입력 후 <ok>응답까지 (1초정도)대기합니다.

<ok> 응답 이후 설정된 값으로 동작합니다.

설정된 내용은 내부 비휘발성 메모리에 자동 저장 됩니다.

STX	ID	COMMAND	ETX		ETX
'<'	id	"caf"	'>'	•••••	'>'

6-2-3. CALIBRATION ACCELERO SIMPLE

가속도센서 XYZ축 캘리브레이션을 간단히 할 수 있는 명령입니다.

센서를 지표면과 수평이 되도록 유지한 정지 상태에서 명령어를 입력합니다.

명령어 입력시 센서의 수평을 정확하게 유지할수록 캘리브레이션 정밀도는 높아집니다. <ok> 응답 이후 설정된 값으로 동작합니다.

설정된 내용은 내부 비휘발성 메모리에 자동 저장 됩니다.

STX	ID	COMMAND	ETX
'<'	id	"cas"	'>'

6-2-4. CALIBRATION MAGNETO FREE

지자기센서의 XYZ축 캘리브레이션을 한번에 쉽게 할 수 있는 명령입니다.

이 명령으로 지자기센서의 캘리브레이션을 할 경우 다른 지자기 캘리브레이션 명령 어(cnxy,cnz)는 실행할 필요가 없습니다.

[설정순서]

- (1) 주변에 자기장의 간섭을 일으킬만한 대상이 없어야 합니다. 지자기외란이 없는 정상 사용 환경이어야 합니다.
- (2) "<IDcmf>"명령 후 센서를 전방위로 자유롭게 회전시킵니다. 회전에 대한 방향 이나 시간제약 없이 충분히 회전시킵니다.

(회전되는 동안 센서는 주변의 지자기 데이터를 수집하여 가장 적합한 보정계수 를 찾아냅니다.)

(3) '>' 를 입력 후 <ok> 응답까지 (1초정도)대기합니다.

<ok> 응답 이후 설정된 값으로 동작합니다.

설정된 내용은 내부 비휘발성 메모리에 자동 저장 됩니다.

STX	ID	COMMAND	ETX		ETX
'<'	id	"cmf"	'>'	•••••	'>'

* 센서의 오차가 크다면 센서가 장착되어 사용되는 환경에서 지자기센서 캘리브레이션을 다시 하는 것이 좋습니다.

6-2-5. CALIBRATION MAGNETO XY

지자기센서의 XY축에 대한 캘리브레이션 합니다.

cnxy명령을 사용할 경우 cmf로 설정된 캘리브레이션 데이터는 삭제됩니다.

+cnxy명령을 사용할 경우 cmf로 설정된 캘리브레이션 데이터와 함께 적용됩니다.

지자기센서의 축방향은 "4-5. Magnetometer Axis"를 참조하시기 바랍니다.

[설정순서]

- (1) 주변에 자기장의 간섭을 일으킬만한 대상이 없어야 합니다. 지자기외란이 없는 정상 사용 환경이어야 합니다.
- (2) 지자기센서의 z(z+z-상관없음)축이 위쪽(하늘)을 향하도록 위치시킵니다.
- (3) "<IDcnxy>"또는"<ID+cnxy>" 명령 후 1초정도 대기합니다.
- (4) z축을 고정한 그대로 센서를 가로방향으로 180도 회전 시킵니다.
- (5) '>'전송 후 <ok> 응답이 나올때 까지 기다립니다.

<ok> 응답 이후 설정된 값으로 동작합니다.

설정된 내용은 내부 비휘발성 메모리에 자동 저장 됩니다.

STX	ID	COMMAND	ETX		ETX
1/1	id	"cnxy"	'_'		1_1
	IU	"+cnxy"		•••••	

* 센서의 오차가 크다면 센서가 장착되어 사용되는 환경에서 지자기센서 캘리브레이션을 다시 하는 것이 좋습니다.

E 2 B O X 22

ETX

'>'

6-2-6. CALIBRATION MAGNETO Z

지자기센서의 Z축에 대한 캘리브레이션을 합니다. cnz명령을 사용할 경우 cmf로 설정된 캘리브레이션 데이터는 삭제됩니다. +cnz명령을 사용할 경우 cmf로 설정된 캘리브레이션 데이터와 함께 적용됩니다. 지자기센서의 축방향은 "4-5. Magnetometer Axis"를 참조하시기 바랍니다. [설정순서]

- (1) 주변에 자기장의 간섭을 일으킬만한 대상이 없어야 합니다. 지자기외란이 없는 정상 사용 환경이어야 합니다.
- (3) "<Dcnz>"또는"<D+cnz>"명령 후 1초정도 대기합니다.
- (4) y축을 고정한 그대로 센서를 가로방향으로 180도 회전 시킵니다.
- (5) '>'전송 후 <ok> 응답이 나올때 까지 기다립니다.
- <ok> 응답 이후 설정된 값으로 동작합니다.

설정된 내용은 내부 비휘발성 메모리에 자동 저장 됩니다.

STX	ID	COMMAND	ETX	
1_1	id	"cnz"	1_1	
_	Iu	"+cnz"		•••••

* 센서의 오차가 크다면 센서가 장착되어 사용되는 환경에서 지자기센서에 대한 캘리브레이션을 다시 하는 것이 좋습니다.

6-2-7. SET MOTION OFFSET

센서의 전방위 자세 OFFSET을 설정합니다.

회전축의 방향변경과 자세 원점설정이 가능합니다.

다음과 같이 설정할 수 있습니다.

[설정방법]

(1) 센서위치를 원점상태로 만듭니다.

Roll, Pitch, Yaw값이 모두 0이 되도록(0에 가깝게) 센서를 위치 시킵니다.

(Roll,Pitch는 수평이되고 Yaw축은 자북방향을 가리키는 상태입니다.)

(이때 센서와 직교한 방향이 원래의 회전축입니다.)

- (2) 센서의 새로운 원점상태로 만들고 싶은 자세로 회전 시킵니다.
- (3) <cmo> 명령을 전송합니다.

('<'입력이 되는 순간의 자세가 원점으로 설정됩니다.)

ex)원점상태에서 roll을 90도 회전시킨값을 offset으로 설정하면 센서가 세워진 상태가 원점이 됩니다.

cmo : 전방위(roll, pitch, yaw 축) offset 설정

cmox : roll offset 축 설정 cmoy : pitch 축 offset 설정 cmoz : yaw 축 offset 설정

cmoxy : roll, pitch 축 offset 설정

<ok> 응답 이후 설정된 값으로 동작합니다.

설정된 내용은 내부 비휘발성 메모리에 자동 저장 됩니다.

STX	ID	COMMAND	ETX
		"cmo"	
		"cmox"	
'<'	id	"cmoy"	'>'
		"cmoz"	
		"cmoxy"	

6-2-8. CLEAR MOTION OFFSET

센서의 전방위 자세 OFFSET을 제거 합니다.

<ok> 응답 이후 설정된 값으로 동작합니다.

설정된 내용은 내부 비휘발성 메모리에 자동 저장 됩니다.

STX	ID	COMMAND	ETX
'<'	id	"cmco"	'>'

6-3. RF & ETC COMMAND

6-3-1. RF SET CHANNEL

RF 채널을 설정합니다.

0~125 채널을 설정 할 수 있습니다.

무선 수신기와 동일한 채널이 설정되어야 합니다.

두개 이상의 수신기를 사용할 경우 채널간격이 충분히 넓어야 채널간섭이 줄어듭니다.

<ok> 응답 이후 설정된 값으로 동작합니다.

설정된 내용은 내부 비휘발성 메모리에 자동 저장 됩니다.

STX	ID	COMMAND	DATA	ETX
'<'	id	"sch"	data	'>'

data : '0' ~ "125" (default : '100')

6-3-2. RF SET ID

RF 채널의 ID를 설정합니다.

0~99 ID를 설정 할 수 있습니다.(총 100개의 ID)

하나의 채널에 중복된 Ⅲ가 있을 경우 데이터 충돌이 발생 합니다.

<ok> 응답 이후 설정된 값으로 동작합니다.

설정된 내용은 내부 비휘발성 메모리에 자동 저장 됩니다.

STX	ID	COMMAND	DATA	ETX
'<'	id	"sid"	data	' >'

data: '0' ~ "99" (default: '0')

6-3-3. SET LED

RF 상태 표시 LED 활성화 여부를 설정합니다.

<ok> 응답 이후 설정된 모드로 동작합니다.

설정된 내용은 내부 비휘발성 메모리에 자동 저장 됩니다.

STX	ID	COMMAND	DATA	ETX
'<'	id	"sled"	data	'>'

data: '0' LED OFF

'1' RF 상태표시 LED 활성화 (default)

6-3-4. CONFIGURATION

센서의 설정 사항들을 명령어별로 출력합니다.

'>' 입력 전 까지 정지상태로 있습니다.

STX	ID	COMMAND	ETX
'<'	id	"cfg"	'>'

..... | ETX

6-3-5. LOAD FACTORY SETTINGS

제품 출하시 설정값으로 모두 복원 합니다.

<ok> 응답 이후 설정된 값으로 동작합니다.

설정된 내용은 내부 비휘발성 메모리에 자동 저장 됩니다.

STX	ID	COMMAND	ETX
'<'	id	" F "	'>'

6-3-6. RESET

센서를 reset합니다. 전원을 재인가 한 것과 동일한 동작을 합니다.

STX	ID	COMMAND	ETX
'<'	id	"reset"	'>'

6-3-7. VERSION CHECK

Version 정보를 표시합니다.

다른 명령과 달리 <ok> 응답을 하지 않습니다.

STX	ID	COMMAND	ETX
'<'	id	"ver"	'>'

응답 예) "<imu24gv500>"

7. ELECTRICAL CHARACTERISTICS

7-1. Absolute Maximum Ratings

Parameter	Maximum Value	Unit
USB Supply Voltage	-0.3 to +6.5	V
Storage Temperature	-40 to +125	℃
Operation Temperature	-10 to +70	°C
Acceleration (any axis,unpower)	10000 for 0.2ms 2000 for 1.0ms	g
Free fall shock	1.8	m
ESD (human body model) ESD (charge device model)	2000 250	v

7-2. DC Electrical Characteristics

Parameter	Min	Тур	Max	Unit
USB Supply voltage	3.5	5.0	6.0	V
Operating Current		40		mA
Battery Charge Current(CC)		130mA		mA
Battery Charge Termination(CV)		4.2		V
Battery run-time(240mAh)		4		hour

7-3. RF Characteristics

Parameter	Min	Тур	Max	Unit
Operating frequency	2400		2525	MHz
Frequency deviation		+-320		KHz
Air Data rate		2000		Kbps
Channel spacing		1		MHz
Output Power		+4		dBm

8. SENSOR SPECIFICATIONS

8-1. Attitude & Heading

Parameter		Value	Unit
Static accura	ncy (roll/pitch)	< 0.2	deg
	ncy (roll/pitch) ometer OFF	< 0.02	deg
Static acc	uracy (yaw)	< 0.5	deg
Dynamic ac	curacy (RMS)	< 1.5	deg
	curacy (RMS) ometer OFF	< 0.5	deg
Angular	resolution	0.01	deg
	roll	-180 ~ +180	
Output Ragne	pitch	-90 ~ +90	deg
	yaw	-180 ~ +180	
Output	data rate	1Hz ~ 1000Hz	Hz

8-2. Gyroscope output

Parameter		Value	Unit
Measurer	nent range	-2000 ~ +2000	dps
	125 dps	3.8	
	250 dps	7.6	
Sensitivity	500 dps	15.3	mdps
	1000 dps	30.5	
	2000 dps	61.0	
Band	lwidth	1000	Hz
Sensitivity change vs. Temperature		-0.03 ~ +0.03	%/° C

8-3. Accelerometer output

Para	nmeter	Value	Unit
Measure	ment range	-24 ~ +24	g
	3g	0.091	
C 41. 4	6g	0.183	
Sensitivity	12g	0.366	– mg
	24g	0.733	
Bane	dwidth	1000	Hz
Sensitivity change vs. Temperature		-0.002 +0.002	%/°C

8-4. Magnetometer output

Parameter	Value	Unit
Measurement range	$XY -1300 \sim +1300$ $Z -2500 \sim +2500$	uT
Sensitivity	0.3	uT
Bandwidth	100	Hz

9. DIMENSIONS

24.0(W) * 32.0(H) * 4.5(D) mm

10. 주의사항

10-1. 정전기 주의

- 회로부가 노출되어 있는 센서 모듈은 정전기에 민감합니다. 정전기는 회로 손상을 일으킬 수 있습니다.
- 센서 모듈 접촉 전에 반드시 접지된 금속 등에 먼저 접촉하여 인체 등에 대전되어 있는 정전기를 방전시키십시오.
- 정전기를 제거하지 않은 상태로 센서모듈을 취급할 경우 파손의 가능성이 있습니다.

10-2. 센서모듈 취급주의

- 센서모듈의 부품 면에 압력이 가해지면 출고 시 설정된 보정 데이터가 틀어질 수 있습니다. 센서 부품 면에 압력이 가해지지 않도록 닿는 물체가 없어야 합니다.
- 센서모듈이 Storage Temperature보다 높은 온도에 노출 되었을 경우 보정 데이터가 틀어질 수 있습니다.
- 센서모듈에 Absolute Maximum Ratings에 정의된 Acceleration 보다 큰 충격이 가해 질 경우 센서가 손상될 수 있습니다.

10-3. 리튬폴리머 배터리 취급주의

- 제공되는 리튬폴리머 배터리는 방전이 되어 있는 상태이기 때문에 만충전을 한 후 사용 하시기 바랍니다.
- 고온에 두거나, 단자간 단락(쇼트) 시킬 경우 화재의 위험이 있습니다.
- 임의로 분해라지 마십시오.
- 사용온도가 내려가면 배터리의 성능이 저하 될 수 있습니다.

Revision History

V1.0	Initial release
V1.0a	raa_t, rha_t 최대 설정값 200000000으로 변경
V1.1	USB 포트 최대 입력 전압 6V로 변경

이투박스

 $homepage: \underline{www.e2box.co.kr}$

e-mail: e2b@e2box.co.kr