Prof. Dr. Emílio Carlos Nelli Silva

Departamento de Engenharia Mecatrônica e Sistemas Escola Politécnica da USP Mecânicos

Máquinas de transformação de energia, como o (tendo em vista uma aplicação), o que implica energia disponível para uma forma utilizável próprio nome sugere, modificam o tipo de em perdas

Classificação (forma como se realiza trabalho)

- Máquinas de Fluxo
- Máquinas volumétricas
- Máquinas especiais

· Máquinas volumétricas:

- A transferência de energia é feita por variações de volume que ocorrem devido ao movimento da fronteira na qual o fluido está confinado.
- Estas podem ser rotativas como a bomba de engrenagens ou alternativas como o compressor de pistão.

Máquinas de Fluxo:

- Dispositivos fluidomecânicos que direcionam o fluxo com lâminas ou pás fixadas num elemento rotativo.
- Em contraste com as máquinas de deslocamento positivo não há volume confinado numa turbomáquina.
- Funcionam cedendo ou recebendo energia de um fluido em constante movimento.

Máquinas Especiais:

Não se adequam às definições anteriores

Exemplos:

Máquinas de fluxo:

Exemplos:

Máquinas volumétricas:

(a) bomba deencher pneus, (b)coração humano,(c) bomba deengrenagens

Exemplos:

Máquinas especiais:

Rodas d'água de carregamento superior (acoplada a bomba, no caso)

Rodas d'água de carregamento inferior

Exemplos de máquinas de fluxo + fluidos de trabalho:

Fluido de trabalho	Maquina de fluxo
Líquido	turbina hidráulica e bomba centrífuga
Gás (neutro)	ventilador, turbocompressor
Vapor (água, freon, etc.)	turbina a vapor, turbocompressor frigorífico
Gás de combustão	turbina a gás, motor de reação
Exemplos de máquinas volur de tra	uinas volumétricas + respectivos fluidos de trabalho:

Fluido de trabalho	Maquina volumétrica
Líquido	bomba de engrenagens, de cavidade progressiva, de parafuso
Gás (neutro)	compressor alternativo, compressor rotativo
Vapor (freon, amônia, etc.)	compressor alternativo, compressor rotativo
Gás de combustão	motor alternativo de pistão

Vantagens das máquinas de fluxo sobre as

volumétricas:

- Construção simples
- Elevada concentração de potência
- considerável do custo de funcionamento e manutenção Modesto consumo de lubrificantes → redução

Vantagens das volumétricas sobre as máquinas de

fluxo:

- Possibilidade de trabalhar em altas pressões e baixas vazões
- Possibilidade de trabalhar com fluidos de viscosidade elevada (acima de 10⁻³ m²/s, 1000 vezes a viscosidade cinemática da água)

Histórico: fonte de energia e técnica disponível

Fonte	Técnica de aproveitamento	Forma Social de aproveitamento	Época
	Rodas d'água	Artesãos nas cidades	História antiga
	Moinhos de vento		Do século 8 ao 21
	Máquina a vapor (WATT)	Industrialização	Séculos 18 e 19
	Motor a combustão interna	Desenvolvimento da sociedade industrializada	Século 20 e 21
	Usinas térmicas	Grupos empresariais	À partir de 1960

Pode-se separá-las em 2 grupos:

• Geradores: máquinas que transformam a energia recebida através de um eixo de uma fonte externa (elétrica, explosão) em energia mecânica, transferida a um fluido por intermédio de um rotor ou pistão, para realização de trabalho ou transporte

• Motores: máquinas que transformam a energia mecânica (potencial e/ou cinética) fornecida por fluido em escoamento a um rotor ou pistão, que por sua vez transfere a um eixo com o objetivo de realização de trabalho

Exemplos considerando-se as duas classificações:

	Fluxo	Volumétricas	Especiais
Motor	Turbinas Hidráulicas, a vapor, a gás, eólicas	Motores de automóveis	Rodas d'água
Gerador	Bombas Centrífugas, Ventiladores	Bombas alternativas (ex: coração artificial)	Ejetores

Areas de aplicação: pode haver superposição. Ex

- Para a compressão de gases são usados compressores de êmbolo e turbocompressores;
- para a elevação de água servem as bombas de êmbolo e as bombas rotativas;
- a turbina a gás faz concorrência com o motor de combustão interna;
 - trabalho mecânico tanto através de uma turbina a vapor quanto através o vapor produzido em uma caldeira pode ser usado para fornecer de uma máquina a vapor de êmbolo.

Desempate:

Vazão volumétrica	Potência
Máquinas de fluxo: vantajosas em grandes vazões	Altas potências: máquinas de fluxo (campo limitado inferiormente, em potência)
Máquinas Volumétricas: geralmente preferidas em pequenas vazões	Baixas potências: máquinas volumétricas

Características Construtivas:

- Pequeno número de partes componentes na máquina > simplificação da produção
- Realização de trabalho concentrada num único órgão, o rotor, na maioria dos casos único na máquina simplifica operação
- Pequeno número de órgãos componentes e simplicidade → manutenção simples (exceção: turbinas de grande porte ~ 10m de diâmetro e mais de 400 toneladas)
- Portanto, sempre representam a primeira hipótese aventada no projeto de qualquer instalação

Princípio de operação:

 Trabalho envolvido, recebido ou cedido: conseqüência da variação de direção do escoamento relativo, provocada por pás adequadamente posicionadas no rotor da máquina 🗲 variação do momento da quantidade de movimento

Turbina Pelton:

Aspersor de jardim:

Exemplos:

- Turbinas hidráulicas
- Ventiladores
- Bombas Centrífugas
- Turbinas a vapor
- Turbocompressores
- Turbinas a gás
- Turbinas eólicas

Aplicações:

Turbinas (Motor):

- movimentar um outro equipamento mecânico rotativo:
- bomba, compressor ou ventilador
- gerar de eletricidade: nesse caso, são ligadas a um gerador
- propulsão naval, ou aeronáutica.

Bombas (Gerador):

- transferência de fluidos líquidos de um local a outro:
- saneamento básico
- irrigação
- edifícios residenciais
- indústria em geral

Aplicações:

Turbinas a gás para propulsão de aviões (Motor):

- Operam segundo ciclo Brayton (ciclo ideal).
- Fabricantes: GE, Rolls-Royce...
- Vantagem: densidade de potência elevada com relação a motores de combustão interna
- Características: compressor de ar, câmara de combustão e turbina
- Gás: fluido de trabalho (não é o combustível)
- configuração 1: eixo movimentado pela turbina aciona compressor; propulsão: empuxo causado pelos gases resultantes da combustão
 - configuração 2: eixo movimentado pela turbina acoplado a hélices

turbina Rolls Royce (otimizada para Airbus A350 XWB family, civil)

Grandezas associadas a máquinas de fluxo:

- Dimensionamento de máquinas de fluxo parte das condições de operação
- Grandezas associadas às maquinas de fluxo: relacionadas às condições de operação

Aplicação					Quaisquer fluidos	Fluidos incompressíveis	Quaisquer fluidos	Quaisquer fluidos (reservada para máquinas térmicas)	Quaisquer fluidos	Fluidos incompressíveis		(SI - Exceção)Prof. Dr. Emilio C. Nelli Silva
					Quai	Fluic		Quai máq	Quai	Fluic		
Unidade	kg	٤	S	エ	J/kg	Σ	kg/ms ²	J/kg	Kg/s	m ₃ /s	rad/s	rot/min
Grandeza	Massa	Comprimento	Tempo	Temperatura	Trabalho Específico	Carga	Pressão	Entalpia	Vazão mássica	Vazão em volume	Velocidade angular	Rotação
Símbolo	m	Т	t	L	Y	Н	þ	$h_{\rm u}$	m	0	0	n
Obs.: SI	Unidades de Base				Grandezas	Principais						

Máquinas de Fluxo: Elementos Construtivos¹⁹

 Em todas as máquinas de fluxo → elementos construtivos fundamentais = fenômenos

fluidomecânicos essenciais.

- Isolados ou em grupos
- São eles:
- Sistema Diretor
- Rotor
- Na literatura de Máquinas de Fluxo, propõe-se também a seguinte divisão:
- Injetores
- Difusores
- Pás
- Utilizaremos a primeira divisão

Máquinas de Fluxo: Elementos Construtivos²⁰

Rotor (impeller ou runner ou wheel):

- energia mecânica em energia de fluido (bomba, compressor, etc.), ou energia de fluido em energia mecânica (turbina) Elemento construtivo onde ocorre a transformação de
- Orgão principal de uma máquina de fluxo
- Constituído de um certo número de pás giratórias (blades)
- Pás:
- Dividem o espaço em canais, por onde circula o fluido de trabalho
- Interagem com o fluido
- um eixo, o qual atravessa o órgão de contenção da máquina, O rotor é um elemento móvel que vem sempre acoplado a on carcaça

Máquinas de Fluxo: Elementos Construtivos¹

Rotores - exemplos:

Sistema diretor:

- Funções:
- coletar o fluido e dirigi-lo para um caminho determinado, reduzindo efeitos de choques
- auxiliar na transformação de energia
- Formado pelas pás diretrizes e, via de regra, caixas espirais, dentre outros componentes

· Caixas espirais:

- funcionam como difusores: essencialmente é um duto construído de tal modo que a pressão cresce no sentido do escoamento, reduzindo-se a energia cinética (e as perdas) - bombas
- funcionam como injetores: o contrário dos difusores no que se refere ao seu funcionamento - turbinas
- muito do tipo de máquina de fluxo (algumas máquinas nem o Portanto: o funcionamento do sistema diretor depende possuem, como ventiladores comuns)

Sistema diretor – exemplos:

Em turbinas:

Classificação:

- Segundo direção de conversão de energia (motor
- = turbina e gerador = bomba)
- (máquinas de ação e máquinas de reação) Segundo a forma da energia aproveitada
- Segundo a trajetória do fluido no rotor (radial, axial, misto)
- Primeira classificação: já vista
- ex: motor Turbinas hidráulicas, turbinas a vapor, turbinas a gás, turbinas eólicas.
 - ex: gerador Bombas centrífugas, ventiladores,

compressores centrífugos

Segundo direção de conversão de energia: Exemplos

Turbinas (Motor):

Turbina Kaplan

Turbina Francis

Turbina à vapor

Turbina a gás

Prof. Dr. Emilio C. Nelli Silva Turbinas eólicas

Segundo direção de conversão de energia: Exemplos

Bombas (Gerador):

Bombas centrífugas

Ventiladores axiais

Prof. Dr. Emilio C. Nelli Silva

Segundo a forma da energia aproveitada

Máquinas de fluxo de ação:

- Máquinas em que o trabalho não está associado à variação de pressão no rotor, não ocorrendo (a variação) na máquina
- ação na qual o fluxo de água incide sob a forma de jato sobre o Exemplo: turbina Pelton: segundo norma NBR 6445, turbina de rotor que possui pás em forma de duas conchas.

Máquinas de fluxo de reação:

- Máquinas em que o trabalho está associado à variação de pressão no rotor
- reação na qual o fluxo de água penetra radialmente no distribuidor Exemplo: turbina Francis: segundo norma NBR 6445, turbina de e no rotor, no qual as pás são fixas.
- Outros: turbinas Kaplan e todas as bombas hidráulicas de fluxo
- obs.: em ambos os casos, ocorre variação da energia cinética!!

- Segundo a forma da energia aproveitada
- Máquinas de fluxo de ação: exemplo

 observação: as máquinas especiais citadas no início podem ser classificadas ou caracterizadas como máquinas de ação

- Segundo a forma da energia aproveitada
- Máquinas de fluxo de reação: exemplo

Turbina Kaplan

Bomba centrífuga

Segundo a trajetória do fluido no rotor

Máquinas de fluxo Radial

- O escoamento do fluido através do rotor percorre uma trajetória predominantemente radial (perpendicular ao eixo do rotor).
- Bombas centrífugas, ventiladores centrífugos e a turbina Francis

Máquinas de fluxo Axial

- O escoamento do fluido através do rotor ocorre numa direção paralela ao eixo do rotor
- Bombas axiais, ventiladores axiais e a turbinas hidráulicas do tipo Hélice e Kaplan

Máquinas de fluxo Diagonal, ou de fluxo Misto

- Quando o escoamento não é axial nem radial -> fluxo misto, com as partículas de fluido percorrendo o rotor numa trajetória situada sobre uma superfície aproximadamente cônica
- Turbina Francis rápida e a turbina hidráulica Dériaz.

Máquinas de Fluxo Tangencial

 O jato líquido proveniente do injetor incide tangencialmente sobre o rotor - turbina Pelton

Segundo a trajetória do fluido no motor

Maquinas de fluxo radial

Turbina Francis Lenta

Máquinas de Fluxo: Resumo

- Máquinas de fluxo:
- Motor energia oferecida pela natureza → trabalho mecânico (ex: turbina)
- Gerador trabalho mecânico → energia a um fluido → transporte (ex: bomba)
- Componentes principais: rotor e sistema diretor
- Classificação:
- Motor e Gerador
- Máquinas de ação e reação
- Máquinas de fluxo radial, axial, misto e tangencial

Máquinas de Fluxo: Próximas Aulas

- Equações Fundamentais das máquinas de fluxo:
- Equações de energia e trabalho
- Perdas e rendimentos em máquinas de fluxo
- Definições dos rendimentos e utilização
- Teoria de Semelhança aplicada as máquinas de
- Finalidade, hipóteses e utilização
- 4. Cavitação
- Explicação do fenômeno e ações para minimização dos seus efeitos
- Turbinas hidráulicas (Francis, Kaplan, Pelton)
- Descrição detalhada dos tipos de turbina e suas peculiaridades

Máquinas de Fluxo: Próximas Aulas

Prof. Dr. Emilio C. Nelli Silva

6. Sistemas de Recalque

- Definição e características funcionais
- . Cálculo de Turbinas
- Parâmetros utilizados e exemplo
- 8. Seleção de Bombas
- Parâmetros utilizados e exemplo

Máquinas de Fluxo: Fabricantes

- Fabricantes de bombas
- Schneider: http://www.schneider.ind.br
- Sulzer: http://www.sulzer.com (Suíça) (tem no **Brasil**)
- Grundfos: http://www.grundfos.com (tem no Brasil)
- PACO: http://www.paco-pumps.com
- KSB: http://www.ksb.com (tem no Brasil)
- GUSHER: http://www.gusher.com/ (EUA)
- Muitas auxiliam na escolha das bombas, com softwares, métodos descritos nos sites...

Máquinas de Fluxo: Fabricantes

- Fabricantes de turbinas
- Betta: http://www.bettahidroturbinas.com.br
- Alstom: http://www.alstom.com (França Brasil)
- Grupo Cemig: http://www.cemig.com.br
- Dedini: www.codistil.com.br
- Andritz: http://www.andritz.com (Austria)
- Voith: http://www.saopaulo.voith.com (Alemanha -

Brasil)

- Hitachi: http://www.hitachipowersystems.us (steam turbines)
- Toshiba: http://www3.toshiba.co.ip (hidráulicas, gás)
- Rolls-Royce: http://www.rolls-royce.com (gás –

aviões, helicópteros, etc.)

Máquinas de Fluxo: Fabricantes

- Fabricantes de outros dispositivos
- ventiladores industriais:
- http://www.otam.com.br/
- http://www.aircontrolindustries.com/
- http://www.canadianblower.com/
- http://www.robinsonfans.com/
- turbinas eólicas:
- http://www.wobben.com.br/
- http://www.alstom.com
- obs.: www.schulz.com.br/, compressores maquinas volumétricas