

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT

GRADE 12/GRAAD 12

MATHEMATICS P2/WISKUNDE V2

NOVEMBER 2023

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

These marking guidelines consist of 23 pages./ Hierdie nasienriglyne bestaan uit 23 bladsye.

NSC/1955 – Warking Guidennes/Wasten

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
- Consistent accuracy applies in ALL aspects of the Marking Guidelines. Stop marking at the second calculation error.
- Assuming answers/values in order to solve a problem is NOT acceptable.

NOTA:

- As 'n kandidaat 'n vraag TWEE KEER beantwoord, merk slegs die EERSTE poging.
- As 'n kandidaat 'n antwoord van 'n vraag doodtrek en nie oordoen nie, merk die doodgetrekte poging.
- Volgehoue akkuraatheid word in ALLE aspekte van die Nasienriglyne toegepas. Hou op nasien by die tweede berekeningsfout.
- Aanvaar van antwoorde/waardes om 'n probleem op te los, word NIE toegelaat nie.

GEOM	GEOMETRY		
S	A mark for a correct statement (A statement mark is independent of a reason)		
	'n Punt vir 'n korrekte bewering ('n Punt vir 'n bewering is onafhanklik van die rede)		
R	A mark for the correct reason (A reason mark may only be awarded if the statement is correct)		
	'n Punt vir 'n korrekte rede ('n Punt word slegs vir die rede toegeken as die bewering korrek is)		
S/R	Award a mark if statement AND reason are both correct		
	Ken 'n punt toe as die bewering EN rede beide korrek is		

3

1.1	a = -23,846	✓ <i>a</i> = -23,846
	b = 0,227	✓ $b = 0,227$
	$\hat{y} = -23,85 + 0,23x$	✓ equation
		(3)
1.2	$\hat{y} = -23,85 + 0,23(550)$	✓ substitution of 550
	y = 102,65	✓ answer
		(2)
	OR	
	y = 101,02	$\checkmark \checkmark y = 101,02 \text{ (calculator)}$
		(2)
1.3	r = 0.98	✓ $r = 0.98$
		(1)
1.4	Very strong positive correlation	✓ strong positive
		(1)

1.5.1	$\overline{x} = \frac{1200}{8}$	✓ 1200
	$\frac{x}{x} = 150$	✓ answer
		(2)
	OR	(=)
	$\overline{x} = 150$	$\checkmark\checkmark \ \overline{x} = 150$
		(2)
1.5.2	$\sigma = 50,50$	$\checkmark \sigma = 50,50$
		(1)
1.5.3	$\overline{x} - \sigma$	
	=150-50,50	\checkmark calculation of $\bar{x} - \sigma$
	= 99,50	
	∴ 1 stop	✓ answer
		(2)
		[12]

NSC/NSS-Marking~Guidelines/Nasienriglyne

2.1		Number of glasses of water per day $0 \le x < 2$	Number of staff members	Cumulative frequency 5			
		$2 \le x < 4$ $4 \le x < 6$ $6 \le x < 8$ $8 \le x < 10$	15 13 5 2	20 33 38 40		✓ 5; 20✓ 40	(2)
2.2	40 staff m					✓ answer	(1)
2.3	33 staff m					✓ answer	(1)
2.4	_	$+65 + \frac{5k}{2} + 35$	$\frac{15}{40+k} + 18 = 160+4k$	$\left(\frac{k}{2}\right)$ + $\left(7\times5\right)$ + $\left(9$	9×2) = 4	answer $Q2.2 + 1$ $\checkmark \left(1 \times \left(5 + \frac{1}{3}\right)\right)$ $\checkmark \left(5 \times \left(13 + \frac{1}{3}\right)\right)$	$\left(\frac{k}{2}\right)$
	k = 8 OR					✓ answer	(4)
	$\overline{x} = \frac{(1 \times 5)^2}{2}$	$)+(15\times3)+(1$	$3\times5)+(5\times7)+$	(2×9)			
	$= 4.2$ $\overline{x}_{old} - \overline{x}_{curren}$ $\therefore 0.2 \times 40$ $= 8 \text{ teached}$					\checkmark 4,2 \checkmark \overline{x}_{old} −4 \checkmark differen \checkmark answer	ice
	o touch						(4) [8]

3.1	$SL = \sqrt{(x_S - x_L)^2 + (y_S - y_L)^2}$	
	$SL = \sqrt{(4-(-4))^2 + (5-1)^2}$	✓ substitution of S and L
	$SL = \sqrt{80} = 4\sqrt{5} = 8,94 \text{ units}$	into correct formula ✓ answer (2)
3.2	$m_{\rm SN} = \frac{5 - (-3)}{4 - (-2)}$	✓ substitution of S and N into correct formula
	$m_{\rm SN} = \frac{4}{3}$	✓ answer (2)
3.3	$m = \tan \theta = \frac{4}{3}$	$\checkmark \tan \theta = m_{\rm SN}$
	$\theta = 53,13^{\circ}$	✓ answer (2)
3.4	$m_{\rm LN} = \frac{1 - \left(-3\right)}{-4 - \left(-2\right)}$	
	$m_{\rm LN} = -2$	$\sqrt{m_{\rm LN}} = -2$
	LÂO = 116,565°	✓ size of LKO
	$L\hat{N}S = 116,565^{\circ} - 53,13^{\circ}$	
	$L\hat{N}S = 63,44^{\circ}$	✓ answer
		(3)

NSC/NSS-Marking~Guidelines/Nasienriglyne

	OR	
	SN = 10 units	\checkmark SN = 10 units
	$\sin L\hat{N}S = \frac{4\sqrt{5}}{10}$	✓ correct trig ratio
	$\hat{LNS} = 63,44^{\circ}$	✓ answer (3)
	OR	(6)
	$LN = 2\sqrt{5} \text{ units}$ $tan L\hat{N}S = \frac{4\sqrt{5}}{2\sqrt{5}}$ $L\hat{N}S = 63,44^{\circ}$	✓ LN = $2\sqrt{5}$ units ✓ correct trig ratio ✓ answer
	OR	(3)
	SN = 10 units $LN = 2\sqrt{5} \text{ units}$	✓ SN = 10 units and LN = $2\sqrt{5}$ units
	$\cos L\hat{N}S = \frac{2\sqrt{5}}{10}$ $L\hat{N}S = 63,44^{\circ}$	✓ correct trig ratio ✓ answer
	4	(3)
3.5	$m = \frac{4}{3}$ $1 = \frac{4}{3}(-4) + c$ OR $y - 1 = \frac{4}{3}(x - (-4))$	✓ m _{SN}
		✓ substitution of m_{SN} & L
	$c = \frac{19}{3}$ $y - 1 = \frac{4}{3}x + \frac{16}{3}$	
	$y = \frac{4}{3}x + \frac{19}{3}$ $y = \frac{4}{3}x + \frac{19}{3}$	✓ equation (3)
3.6	$SL = 4\sqrt{5}$	
	LN = $\sqrt{(-4-(-2))^2 + (1-(-3))^2}$ LN = $\sqrt{20} = 2\sqrt{5}$	$\checkmark LN = \sqrt{20} = 2\sqrt{5}$
	Area $\triangle LSN = \frac{1}{2} (4\sqrt{5})(2\sqrt{5})$ = 20 units ²	✓ substitution into formula ✓ answer
	OR	(3)

7

	SN = 10 units	
	$LN = \sqrt{(-4 - (-2))^2 + (1 - (-3))^2}$	$\sqrt{\text{LN}} = \sqrt{20} = 2\sqrt{5}$
	$LN = \sqrt{20} = 2\sqrt{5}$	LIV = V20 = 2V3
	Area $\triangle LSN = \frac{1}{2}(10)(2\sqrt{5})\sin 63,44^{\circ}$	✓ substitution into formula
		✓ answer
3.7	$= 20 \text{ units}^2$ $\hat{L} = 90^{\circ}$	(3)
3.7	SN is a diameter of circle S, L, N [chord subtends 90° OR converse ∠ in semi-circle]	✓ SN is a diameter of circle S, L, N
	Centre of circle = $P\left(\frac{4+(-2)}{2}; \frac{5+(-3)}{2}\right)$	
	= P(1;1)	✓ x-value ✓ y-value
	OR	(3)
	Let the coordinates of P be (a; b).	
	Then, PL = PN: $(-4-a)^2 + (1-b)^2 = (-2-a)^2 + (-3-b)^2$	
	$a-2b=-1 \dots \text{equation } 1$	
	If PS = PN, then: $4a + 2b = 6$ equation 2	✓ 2 correct linear equations
	Solving simultaneously yields: $a = 1$ and $b = 1$ and $P(1; 1)$	\checkmark x-value \checkmark y-value (3)
	OR	
	If PL = PN, then: $a-2b=-1$ equation 1	
	If PS = PL, then: $2a+b=3$ equation 2	✓ 2 correct linear equations
	Solving simultaneously yields: $a = 1$ and $b = 1$ and $P(1; 1)$	\checkmark x-value \checkmark y-value (3)
3.8	$L\hat{P}N = \theta = 53,13^{\circ} [alt \angle s; LP \parallel x - axis]$	✓ LPN
	∴ LPS = 126,87°	✓ answer
	OR	(2)
	$\hat{LNS} = 63,44^{\circ}$	/ LŶG
	$\therefore \hat{LPS} = 126,88^{\circ} \qquad [\angle \text{ at centre} = 2 \times \angle \text{ at circumference}]$	✓ LÑS ✓ answer
	OR	(2)
	$L\hat{S}N = 26,56^{\circ} \qquad [sum of \angle s \text{ in } \Delta]$	√ LŜN
	$\hat{SLP} = 26,56^{\circ}$ [\(\angle \text{s opp equal radii}\)]	V LSN
	$\therefore \hat{LPS} = 126,88^{\circ} \qquad [sum of \angle s in \Delta]$	√ onewor
	220,00 [20,000 00 00 00 00 00 00 00 00 00 00 00 0	✓ answer (2)
	OR	
	$\left(4\sqrt{5}\right)^2 = 5^2 + 5^2 - 2(5)(5)\cos LPS$	✓ correct substitution into cosine formula
	$\cos L\hat{P}S = -\frac{3}{5}$	
	5 ∴ LPS = 126,87°	✓ answer
		(2) [20]
		[20]

4.1	$D(p; -2)$ $x^{2} + y^{2} = 20$ $p^{2} + (-2)^{2} = 20$ $p^{2} = 16$ $p = \pm 4$		✓ substitution of point $D(p;-2)$ ✓ $p^2 = 16$
	p=4		(2)
4.2	$\frac{4+x_{\rm F}}{2}=6$	$\frac{-2+y_{\rm F}}{2}=2$	✓ method
	$x_{\rm F} = 8$ $F(8;6)$	$y_{\rm F} = 6$	\checkmark x-value \checkmark y-value (3)
	OR		
	$x_{\rm E} - x_{\rm D} = 6 - 4$ $= 2$	$y_{\rm E} - y_{\rm D} = 2 - (-2)$ = 4	✓ method
	$x_{\rm F} = 6 + 2 = 8$ F(8;6)	$y_F = 2 + 4 = 6$	\checkmark x-value \checkmark y-value (3)

4.3	$m_{\rm DE} = \frac{-2 - 2}{4 - 6}$		✓ correct substitution
	$m_{\rm DE}=2$		✓ gradient of DE, DF or EF
	-2 = 2(4) + c $c = -10$ OR	y+2=2x-8	✓ substitution of point D(4;-2) or E(6; 2) or F(8; 6)
	y = 2x - 10	y = 2x - 10	✓ answer (4)
	OR		(4)
	$m_{\text{OD}} = -\frac{2}{4} = -\frac{1}{2}$		✓ correct gradient of OD
	$\therefore m_{\rm DE} = 2$	$[tan \perp radius]$	✓ gradient of DE
	-2 = 2(4) + c $c = -10$ $y = 2x - 10$ OR	y-(-2)=2(x-4) $y+2=2x-8$ $y=2x-10$	✓ substitution of point D(4;-2) or E(6; 2) or F(8; 6) ✓ answer (4)
4.4	$m_{\rm DE} = 2$		(4)
	$m_{\text{DE}} = 2$ $\therefore m_{\text{GF}} = -\frac{1}{2}$	[tan ⊥ radius]	✓ correct gradient of GF
	$\frac{0-6}{t-8} = -\frac{1}{2}$		✓ substitution of F
	-(t-8)=2(-6)		√ answer
	t = 20		(3)
	OR		
	y = 2x - 10 $0 = 2x - 10$ $x = 5$		
	A(5;0)		\checkmark <i>x</i> -intercept of DF
	In $\triangle AFG$: FA \perp FG FA ² = $(6-0)^2 + (8-5)^2 = 45$ FG ² = $(t-8)^2 + (0-6)^2$ = $t^2 - 16t + 100$		
	$GA^2 = (t-5)^2$		
	$GA = (t-3)$ $= t^2 - 10t + 25$		
	$= t - 10t + 23$ $\therefore GA^2 = GF^2 + FA^2$		
	$t^2 - 10t + 25 = t^2 - 16t + 100 + 45$		✓ substitution into
	6t = 120 $t = 20$		Pythagoras ✓ answer
	i - 20		(3)

Total of the content of the conte	4.5	F(8;6)	
$(8-20)^{2} + (6-0)^{2} = r^{2}$ $r^{2} = 180$ $(x-20)^{2} + y^{2} = 180$ $x^{2} + y^{2} - 40x + 220 = 0$ $\sqrt{2} + \sqrt{2} +$	7.3		
$r^{2} = 180$ $(x-20)^{2} + y^{2} = 180$ $x^{2} + y^{2} - 40x + 220 = 0$ $\sqrt{4.6}$ Smaller circle $r = 2\sqrt{5}$ Larger circle $r = 6\sqrt{5}$ $G(20; 0)$ $k = 20 - (6\sqrt{5} - 2\sqrt{5}) \text{ or } k = 20 + (6\sqrt{5} - 2\sqrt{5})$ $= 20 - 4\sqrt{5}$ $= 11,06 \text{ units}$ $= 28,94 \text{ units}$ $\sqrt{7} = 2\sqrt{5}$		G(20,0)	
$r^{2} = 180$ $(x-20)^{2} + y^{2} = 180$ $x^{2} + y^{2} - 40x + 220 = 0$ $\sqrt{4.6}$ Smaller circle $r = 2\sqrt{5}$ Larger circle $r = 6\sqrt{5}$ $G(20; 0)$ $k = 20 - (6\sqrt{5} - 2\sqrt{5}) \text{ or } k = 20 + (6\sqrt{5} - 2\sqrt{5})$ $= 20 - 4\sqrt{5}$ $= 11,06 \text{ units}$ $= 28,94 \text{ units}$ $\sqrt{7} = 2\sqrt{5}$		$(8-20)^2 + (6-0)^2 = r^2$	✓ substitution of F and G
$(x-20)^2 + y^2 = 180$ $x^2 + y^2 - 40x + 220 = 0$ $\sqrt{2} + y^2 - 40x + 22$			
$x^{2} + y^{2} - 40x + 220 = 0$ $4.6 \text{Smaller circle } r = 2\sqrt{5}$ $\text{Larger circle } r = 6\sqrt{5}$ $G(20; 0)$ $k = 20 - (6\sqrt{5} - 2\sqrt{5}) \text{or } k = 20 + (6\sqrt{5} - 2\sqrt{5})$ $= 20 - 4\sqrt{5}$ $= 11,06 \text{ units}$ $= 28,94 \text{ units}$ OR $\text{Smaller circle } r = 2\sqrt{5}$ $k = 2\left(2\sqrt{5}\right) + 20 - 8\sqrt{5} \text{or } k = 2\left(6\sqrt{5}\right) + 20 - 8\sqrt{5}$ $= 11,06 \text{ units}$ $= 20 - 4\sqrt{5}$ $= 11,06 \text{ units}$ $= 28,94 \text{ units}$ OR $x^{2} + y^{2} - 40x + 220 = 0$ $y = 0$ $\therefore x^{2} - 40x + 220 = 0$ $\therefore x = 20 + 6\sqrt{5} \text{or } x = 20 - 6\sqrt{5} + \sqrt{20}$ $\therefore k = 20 + 4\sqrt{5}$ $\Rightarrow k = 20 + 4\sqrt{5}$ $\Rightarrow method$ $\Rightarrow x = x - x \text{ intercepts}$ $\Rightarrow x = x - x + x + x + x + x + x + x + x + x +$		7 -180	value of 7
$x^{2} + y^{2} - 40x + 220 = 0$ $4.6 \text{Smaller circle } r = 2\sqrt{5}$ $\text{Larger circle } r = 6\sqrt{5}$ $G(20; 0)$ $k = 20 - (6\sqrt{5} - 2\sqrt{5}) \text{or } k = 20 + (6\sqrt{5} - 2\sqrt{5})$ $= 20 - 4\sqrt{5}$ $= 11,06 \text{ units}$ $= 28,94 \text{ units}$ OR $\text{Smaller circle } r = 2\sqrt{5}$ $k = 2\left(2\sqrt{5}\right) + 20 - 8\sqrt{5} \text{or } k = 2\left(6\sqrt{5}\right) + 20 - 8\sqrt{5}$ $= 11,06 \text{ units}$ $= 20 - 4\sqrt{5}$ $= 11,06 \text{ units}$ $= 28,94 \text{ units}$ OR $x^{2} + y^{2} - 40x + 220 = 0$ $y = 0$ $\therefore x^{2} - 40x + 220 = 0$ $\therefore x = 20 + 6\sqrt{5} \text{or } x = 20 - 6\sqrt{5} + \sqrt{20}$ $\therefore k = 20 + 4\sqrt{5}$ $\Rightarrow k = 20 + 4\sqrt{5}$ $\Rightarrow method$ $\Rightarrow x = x - x \text{ intercepts}$ $\Rightarrow x = x - x + x + x + x + x + x + x + x + x +$		$(x-20)^2 + y^2 = 180$	✓ equation of circle
4.6 Smaller circle $r = 2\sqrt{5}$ Larger circle $r = 6\sqrt{5}$ $G(20:0)$ $k = 20 - (6\sqrt{5} - 2\sqrt{5})$ or $k = 20 + (6\sqrt{5} - 2\sqrt{5})$ $= 20 - 4\sqrt{5}$ $= 11,06$ units $= 28,94$ units OR Smaller circle $r = 2\sqrt{5}$ $k = 2\left(2\sqrt{5}\right) + 20 - 8\sqrt{5}$ or $k = 2\left(6\sqrt{5}\right) + 20 - 8\sqrt{5}$ $= 11,06$ units $= 20 + 4\sqrt{5}$ $= 11,06$ units $= 20 + 4\sqrt{5}$ $= 11,06$ units $= 28,94$ units OR $x^2 + y^2 - 40x + 220 = 0$ $\therefore x^2 - 40x + 220 = 0$ $\therefore x = 20 + 6\sqrt{5}$ or $x = 20 - 6\sqrt{5} + \sqrt{20}$ $\therefore k = 20 + 4\sqrt{5}$ $\therefore k = 20 + 45$			_
Larger circle $r = 2\sqrt{5}$ $G(20; 0)$ $k = 20 - (6\sqrt{5} - 2\sqrt{5})$ or $k = 20 + (6\sqrt{5} - 2\sqrt{5})$ $= 20 - 4\sqrt{5}$ $= 11,06$ units $= 28,94$ units OR Smaller circle $r = 2\sqrt{5}$ $k = 2\left(2\sqrt{5}\right) + 20 - 8\sqrt{5}$ or $k = 2\left(6\sqrt{5}\right) + 20 - 8\sqrt{5}$ $= 11,06$ units $= 28,94$ units OR $x^2 + y^2 - 40x + 220 = 0$ $x = 20 + 6\sqrt{5}$ or $x = 20 - 6\sqrt{5}$ $x = 20 + 6\sqrt{5}$ or $x = 20 - 6\sqrt{5}$ $x = 20 + 6\sqrt{5}$ or $x = 20 - 6\sqrt{5}$ $x = 20 + 4\sqrt{5}$ $x = 20 + 4\sqrt{5}$ $x = 20 + 6\sqrt{5}$ or $x = 20 - 6\sqrt{5}$ $x = 20 + 4\sqrt{5}$ $x = 20 + 4\sqrt$		100 T 220 0	
Larger circle $r = 6\sqrt{5}$ G(20; 0) $k = 20 - (6\sqrt{5} - 2\sqrt{5})$ or $k = 20 + (6\sqrt{5} - 2\sqrt{5})$ \checkmark method $= 20 - 4\sqrt{5}$ $= 20 + 4\sqrt{5}$ $= 11,06$ units $= 28,94$ units \checkmark answer \checkmark answer OR Smaller circle $r = 2\sqrt{5}$ \checkmark $r = 2\sqrt{5}$ \checkmark method $= 20 - 4\sqrt{5}$ $= 20 + 4\sqrt{5}$ $= 11,06$ units $= 28,94$ units \checkmark answer \checkmark answer OR $x^2 + y^2 - 40x + 220 = 0$ $\therefore x^2 - 40x + 220 = 0$ $\therefore x = 20 + 6\sqrt{5}$ or $x = 20 - 6\sqrt{5}$ \Rightarrow i. $x = 20 + 4\sqrt{5}$ \Rightarrow method \Rightarrow i. $x = 20 + 4\sqrt{5}$ \Rightarrow method \Rightarrow i. $x = 20 + 4\sqrt{5}$ \Rightarrow method \Rightarrow i. $x = 20 + 4\sqrt{5}$ \Rightarrow method \Rightarrow i. $x = 20 + 4\sqrt{5}$ \Rightarrow method \Rightarrow i. $x = 20 + 4\sqrt{5}$ \Rightarrow method \Rightarrow i. $x = 20 + 4\sqrt{5}$ \Rightarrow method \Rightarrow i. $x = 20 + 4\sqrt{5}$ \Rightarrow method \Rightarrow i. $x = 20 + 4\sqrt{5}$ \Rightarrow method \Rightarrow answer	4.6	Smaller circle $r = 2\sqrt{5}$	$\checkmark r = 2\sqrt{5}$
G(20; 0) $k = 20 - (6\sqrt{5} - 2\sqrt{5}) \text{ or } k = 20 + (6\sqrt{5} - 2\sqrt{5})$ $= 20 - 4\sqrt{5} = 20 + 4\sqrt{5}$ $= 11,06 \text{ units} = 28,94 \text{ units}$ $\sqrt{20} = 2\sqrt{5}$ $\sqrt{20}$		_	,
$k = 20 - (6\sqrt{5} - 2\sqrt{5}) \text{ or } k = 20 + (6\sqrt{5} - 2\sqrt{5})$ $= 20 - 4\sqrt{5} = 20 + 4\sqrt{5}$ $= 11,06 \text{ units} = 28,94 \text{ units}$ $\sqrt{8}$ Smaller circle $r = 2\sqrt{5}$ $k = 2(2\sqrt{5}) + 20 - 8\sqrt{5} \text{ or } k = 2(6\sqrt{5}) + 20 - 8\sqrt{5}$ $= 20 - 4\sqrt{5} = 20 + 4\sqrt{5}$ $= 11,06 \text{ units} = 28,94 \text{ units}$ $\sqrt{8}$ $\sqrt{8}$ $\sqrt{8}$ $\sqrt{8}$ $\sqrt{8}$ $\sqrt{9}$		Emger energy of	
		G(20; 0)	
		k = 20 (6 \overline{F} 2 \overline{F}) on k = 20 \(\cdot (6 \overline{F} 2 \overline{F})\)	√ method
OR Smaller circle $r = 2\sqrt{5}$ $k = 2(2\sqrt{5}) + 20 - 8\sqrt{5}$ or $k = 2(6\sqrt{5}) + 20 - 8\sqrt{5}$ $= 20 - 4\sqrt{5}$ $= 11,06 \text{ units}$ $= 28,94 \text{ units}$ ✓ $r = 2\sqrt{5}$ ✓ method OR $x^2 + y^2 - 40x + 220 = 0$ $\therefore x^2 - 40x + 220 = 0$ $\therefore x = 20 + 6\sqrt{5}$ or $x = 20 - 6\sqrt{5}$ $\therefore k = 20 + 6\sqrt{5} - \sqrt{20}$ or $k = 20 - 6\sqrt{5} + \sqrt{20}$ $\therefore k = 20 + 4\sqrt{5}$ $\therefore k = 20 + 4\sqrt{5}$ $\therefore k = 20 - 4\sqrt{5}$ $\therefore k = 20 + 4\sqrt{5}$ $\therefore k = 20 - 4\sqrt{5}$ $\Rightarrow 28,94 \text{ units}$ ✓ answer ✓ answer ✓ $x = x + x + y + y + y + y + z + z + z + z + z + z$, inclied
Smaller circle $r = 2\sqrt{5}$ $k = 2(2\sqrt{5}) + 20 - 8\sqrt{5}$ or $k = 2(6\sqrt{5}) + 20 - 8\sqrt{5}$ $= 20 - 4\sqrt{5}$ $= 11,06 \text{ units}$ OR $x^2 + y^2 - 40x + 220 = 0$ $\therefore x^2 - 40x + 220 = 0$ $\therefore x = 20 + 6\sqrt{5}$ or $x = 20 - 6\sqrt{5}$ $\therefore k = 20 + 6\sqrt{5} - \sqrt{20}$ or $k = 20 - 6\sqrt{5} + \sqrt{20}$ $\therefore k = 20 + 4\sqrt{5}$ $\Rightarrow 28,94 \text{ units}$ (4) $x = 20 + 6\sqrt{5} - \sqrt{20} = 0$ $\Rightarrow 20 - 6\sqrt{5} + \sqrt{20} =$,	(
Smaller circle $r = 2\sqrt{5}$ $k = 2(2\sqrt{5}) + 20 - 8\sqrt{5}$ or $k = 2(6\sqrt{5}) + 20 - 8\sqrt{5}$ $= 20 - 4\sqrt{5}$ $= 11,06 \text{ units}$ $= 28,94 \text{ units}$ OR $x^2 + y^2 - 40x + 220 = 0$ $\therefore x^2 - 40x + 220 = 0$ $\therefore x = 20 + 6\sqrt{5}$ or $x = 20 - 6\sqrt{5}$ $\therefore k = 20 + 6\sqrt{5} - \sqrt{20}$ or $k = 20 - 6\sqrt{5} + \sqrt{20}$ $\therefore k = 20 + 4\sqrt{5}$ $\therefore k = 20 - 4\sqrt{5}$ $= 11,06 \text{ units}$ $= 28,94 \text{ units}$ $\checkmark r = 2\sqrt{5}$ $\checkmark \text{ method}$ $\checkmark \text{ answer } \checkmark \text{ answer}$ $\checkmark \text{ where } \checkmark \text{ answer } \checkmark answer $		- 11,00 umts - 20,94 umts	
$k = 2(2\sqrt{5}) + 20 - 8\sqrt{5} \text{or} k = 2(6\sqrt{5}) + 20 - 8\sqrt{5}$ $= 20 - 4\sqrt{5} \qquad = 20 + 4\sqrt{5}$ $= 11,06 \text{ units} \qquad = 28,94 \text{ units}$ $\sqrt{\text{answer}} \sqrt{\text{answer}}$ $\sqrt{\text{answer}} \sqrt{\text{answer}}$ $\sqrt{\text{answer}} \sqrt{\text{answer}} \sqrt{\text{answer}}$ $\sqrt{\text{answer}} \sqrt{\text{answer}} \sqrt{\text{answer}}$ $\sqrt{\text{answer}} \sqrt{\text{answer}} \sqrt{\text{answer}}$ $\sqrt{\text{answer}} \sqrt{\text{answer}} \text{a$		OR	
$k = 2(2\sqrt{5}) + 20 - 8\sqrt{5} \text{or} k = 2(6\sqrt{5}) + 20 - 8\sqrt{5}$ $= 20 - 4\sqrt{5} \qquad = 20 + 4\sqrt{5}$ $= 11,06 \text{ units} \qquad = 28,94 \text{ units}$ $\sqrt{\text{answer}} \sqrt{\text{answer}}$ $\sqrt{\text{answer}} \sqrt{\text{answer}}$ $\sqrt{\text{answer}} \sqrt{\text{answer}} \sqrt{\text{answer}}$ $\sqrt{\text{answer}} \sqrt{\text{answer}} \sqrt{\text{answer}}$ $\sqrt{\text{answer}} \sqrt{\text{answer}} \sqrt{\text{answer}}$ $\sqrt{\text{answer}} \sqrt{\text{answer}} \text{a$			_
$= 20 - 4\sqrt{5} = 20 + 4\sqrt{5}$ $= 11,06 \text{ units} = 28,94 \text{ units}$ $x^{2} + y^{2} - 40x + 220 = 0$ $y = 0$ $x^{2} - 40x + 220 = 0$ $x = 20 + 6\sqrt{5} \text{ or } x = 20 - 6\sqrt{5}$ $k = 20 + 6\sqrt{5} - \sqrt{20} \text{ or } k = 20 - 6\sqrt{5} + \sqrt{20}$ $k = 20 + 4\sqrt{5}$ $11,06 \text{ units} = 28,94 \text{ units}$ $x = 20 + 4\sqrt{5}$ $20 + 4\sqrt{5}$ $30 + 20 + 4\sqrt{5}$ $40 + 20 + 4\sqrt{5}$ $40 + 20 + 4\sqrt{5}$ $40 + 20 + 4\sqrt{5}$ $50 + 20 + 4\sqrt{5}$ $60 + 20 + 4\sqrt{5}$ $70 + 20 + 4\sqrt{5}$ $80 + 20 + 4\sqrt{5}$ $90 + 20$		Smaller circle $r = 2\sqrt{5}$	$\checkmark r = 2\sqrt{5}$
$= 20 - 4\sqrt{5} = 20 + 4\sqrt{5}$ $= 11,06 \text{ units} = 28,94 \text{ units}$ $x^{2} + y^{2} - 40x + 220 = 0$ $y = 0$ $x^{2} - 40x + 220 = 0$ $x = 20 + 6\sqrt{5} \text{ or } x = 20 - 6\sqrt{5}$ $k = 20 + 6\sqrt{5} - \sqrt{20} \text{ or } k = 20 - 6\sqrt{5} + \sqrt{20}$ $k = 20 + 4\sqrt{5}$ $11,06 \text{ units} = 28,94 \text{ units}$ $x = 20 + 4\sqrt{5}$ $20 + 4\sqrt{5}$ $30 + 20 + 4\sqrt{5}$ $40 + 20 + 4\sqrt{5}$ $40 + 20 + 4\sqrt{5}$ $40 + 20 + 4\sqrt{5}$ $50 + 20 + 4\sqrt{5}$ $60 + 20 + 4\sqrt{5}$ $70 + 20 + 4\sqrt{5}$ $80 + 20 + 4\sqrt{5}$ $90 + 20$		$k = 2(2\sqrt{5}) + 20 - 8\sqrt{5}$ or $k = 2(6\sqrt{5}) + 20 - 8\sqrt{5}$	√ method
OR $x^{2} + y^{2} - 40x + 220 = 0$ $y = 0$ $x^{2} - 40x + 220 = 0$ $x = 20 + 6\sqrt{5} \text{ or } x = 20 - 6\sqrt{5}$ $k = 20 + 6\sqrt{5} - \sqrt{20} \text{ or } k = 20 - 6\sqrt{5} + \sqrt{20}$ $k = 20 + 4\sqrt{5}$ $11,06 \text{ units}$ $x^{2} + y^{2} - 40x + 220 = 0$ $x^{2} - 40x + $			
OR $x^{2} + y^{2} - 40x + 220 = 0$ $y = 0$ $x^{2} - 40x + 220 = 0$ $x = 20 + 6\sqrt{5} \text{ or } x = 20 - 6\sqrt{5}$ $k = 20 + 6\sqrt{5} - \sqrt{20} \text{ or } k = 20 - 6\sqrt{5} + \sqrt{20}$ $k = 20 + 4\sqrt{5}$ $11,06 \text{ units}$ $x^{2} + y^{2} - 40x + 220 = 0$ $x^{2} - 40x + $		= 11,06 units = 28,94 units	
$y = 0$ ∴ $x^2 - 40x + 220 = 0$ ∴ $x = 20 + 6\sqrt{5}$ or $x = 20 - 6\sqrt{5}$ ∴ $k = 20 + 6\sqrt{5} - \sqrt{20}$ or $k = 20 - 6\sqrt{5} + \sqrt{20}$ ∴ $k = 20 + 4\sqrt{5}$ ∴ $k = 20 - 4\sqrt{5}$ $= 11,06 \text{ units}$ $= 28,94 \text{ units}$ $x - intercepts$		OR	(4)
$y = 0$ ∴ $x^2 - 40x + 220 = 0$ ∴ $x = 20 + 6\sqrt{5}$ or $x = 20 - 6\sqrt{5}$ ∴ $k = 20 + 6\sqrt{5} - \sqrt{20}$ or $k = 20 - 6\sqrt{5} + \sqrt{20}$ ∴ $k = 20 + 4\sqrt{5}$ ∴ $k = 20 - 4\sqrt{5}$ $= 11,06 \text{ units}$ $= 28,94 \text{ units}$ $x - intercepts$		2 . 2 . 40 . 200 . 0	
$\therefore x = 20 + 6\sqrt{5} \text{or} x = 20 - 6\sqrt{5}$ $\therefore k = 20 + 6\sqrt{5} - \sqrt{20} \text{or} k = 20 - 6\sqrt{5} + \sqrt{20}$ $\therefore k = 20 + 4\sqrt{5} \therefore k = 20 - 4\sqrt{5}$ $= 11,06 \text{ units} \qquad = 28,94 \text{ units}$ $\checkmark \text{ x-intercepts}$ $\checkmark \text{ method}$ $\checkmark \text{ answer } \checkmark \text{ answer}$			
$\therefore k = 20 + 6\sqrt{5} - \sqrt{20} \text{or} k = 20 - 6\sqrt{5} + \sqrt{20}$ $\therefore k = 20 + 4\sqrt{5} \qquad \therefore k = 20 - 4\sqrt{5}$ $= 11,06 \text{ units} \qquad = 28,94 \text{ units}$ $\checkmark \text{ method}$ $\checkmark \text{ answer } \checkmark \text{ answer}$			✓ x-intercents
$\therefore k = 20 + 4\sqrt{5} \qquad \therefore k = 20 - 4\sqrt{5}$ $= 11,06 \text{ units} \qquad = 28,94 \text{ units}$ \(\sigma \text{ answer } \sqrt{ answer } \)		l '	*
= 11,06 units = 28,94 units		_	
			v answer v answer
[20]		- 11,00 units - 20,74 units	(4)
			[20]

5.1.1	$\sin \beta = \frac{1}{3} \qquad \beta \in (90^\circ; 270^\circ)$		
	$(-\sqrt{8};1) \qquad y \qquad \qquad y \qquad $	$\checkmark x^2 + y^2 = r^2$	
	$x = -\sqrt{8} = -2\sqrt{2}$	$\checkmark x = -2\sqrt{2}$	
	$\cos \beta = \frac{-2\sqrt{2}}{3}$	✓ answer	(3)
	OR . a 1		
	$\sin \beta = \frac{1}{3} \qquad \beta \in (90^{\circ}; 270^{\circ})$ $\cos^{2} \beta = 1 - \sin^{2} \beta$ $\cos^{2} \beta = 1 - \left(\frac{1}{3}\right)^{2}$	✓ square identity	
	$\cos^2 \beta = \frac{8}{9}$	$\checkmark \cos^2 \beta$	
	$\cos \beta = \frac{-\sqrt{8}}{3}$ $= \frac{-2\sqrt{2}}{3}$	✓ answer	(3)
5.1.2	$ sin 2\beta = 2 sin \beta cos \beta $	✓ double angle	
	$=2\left(\frac{1}{3}\right)\left(\frac{-\sqrt{8}}{3}\right)$	✓ substitution	
	$=\frac{-2\sqrt{8}}{9} \mathbf{OR} 2\left(\frac{-2\sqrt{2}}{9}\right)$		
	$=\frac{-4\sqrt{2}}{9}$	✓ answer	(3)
5.1.3	$\cos (450^{\circ} - \beta)$ $= \cos (90^{\circ} - \beta)$ $= \sin \beta$	✓ cos (90° − β) ✓ co-ratio	(*)
	$= \frac{1}{3}$ OR	✓ answer	(3)
-		i.	

NSC/NSS – Marking Guidelines/Nasienriglyne

	NSC/NSS – Marking Guidelines/Nasienriglyne	T	
	$\cos (450^{\circ} - \beta)$ $= \cos 450^{\circ} \cos \beta + \sin 450^{\circ} \sin \beta$	✓ expansion	
	$= \cos 90^{\circ} \cos \beta + \sin 90^{\circ} \sin \beta$ $= \cos 90^{\circ} \cos \beta + \sin 90^{\circ} \sin \beta$	✓ reduction	
	$= \sin \beta$		
	$=\frac{1}{3}$	✓ answer	(3)
	4, -:-22		(3)
5.2.1	$LHS = \frac{\cos x + \sin x \cdot \cos x}{1 + \sin x}$		
	$\cos^2 x \left(\cos^2 x + \sin^2 x\right)$	✓ factors	
	$=\frac{1+\sin x}{1+\sin x}$	$\sqrt{\sin^2 x + \cos^2 x} = 1$	
	$-1-\sin^2 x$	$\int \cos^2 x = 1 - \sin^2 x$	
	$=\frac{1+\sin x}{1+\sin x}$	$\cos x = 1 - \sin x$	
	$(1-\sin x)(1+\sin x)$	✓ factors	
	$=\frac{1+\sin x}{1+\sin x}$		
	$=1-\sin x$		
	= RHS		(4)
	OR		(+)
	$\lim_{x \to \infty} \cos^4 x + \sin^2 x \cdot \cos^2 x$		
	$LHS = \frac{\cos x + \sin x \cdot \cos x}{1 + \sin x}$		
	$\cos^4 x + \left(1 - \cos^2 x\right) \cos^2 x$	$\int \sin^2 x = 1 - \cos^2 x$	
	$=\frac{1+\sin x}{1+\sin x}$		
	$\cos^4 x + \cos^2 x - \cos^4 x$	✓ expansion	
	$=\frac{1+\sin x}{1+\sin x}$		
	$1-\sin^2 x$	$\int \cos^2 x = 1 - \sin^2 x$	
	$-\frac{1}{1+\sin x}$		
	$=\frac{(1-\sin x)(1+\sin x)}{1+\sin x}$	✓ factors	
	$1+\sin x$		
	$=1-\sin x$ $= RHS$		(4)
	OR		
	$RHS = 1 - \sin x$		
	$= (1 - \sin x) \times \frac{1 + \sin x}{1 + \sin x}$	$\checkmark \times \frac{1+\sin x}{1+\sin x}$	
		$1+\sin x$	
	$=\frac{1-\sin^2 x}{1-\sin^2 x}$	✓ product	
	$1+\sin x$		
	$=\frac{\cos^2 x}{\cos^2 x}$	$\int 1-\sin^2 x = \cos^2 x$	
	$1+\sin x$		
	$-\cos^2 x \left(\sin^2 x + \cos^2 x\right)$	$\int 1 = \cos^2 x + \sin^2 x$	
	$=\frac{1+\sin x}{1+\sin x}$		
	$\cos^4 x + \cos^2 x \cdot \sin^2 x$		
	$=\frac{1+\sin x}{1+\sin x}$		
	= LHS		(4)

NSC/NSS – Marking Guidelines/Nasienriglyne

	NSC/NSS – Marking Guidelines/Nasienriglyne	T
5.2.2	$\sin x + 1 = 0$ $\sin x = -1$	$\sqrt{\sin x} + 1 = 0$
	$\sin x = -1$ $\text{ref. } \angle = 90^{\circ}$	
	$x = 270^{\circ}$	$\checkmark x = 270^{\circ}$
		(2)
5.2.3	$y = \frac{\cos^4 x + \sin^2 x \cdot \cos^2 x}{\cos^2 x}$	
	$1+\sin x$	
	$y = 1 - \sin x$	
	. Minimum 0	// Minimum 0
	$\therefore Minimum = 0$	
5.3.1	$\sin (A - B)$	(2)
	$=\cos \left[90^{\circ}-(A-B)\right]$	✓ co-ratio
	$=\cos\left[(90^{\circ}-A)-(-B)\right]$	
	-	✓ compound angle
	$= \cos(90^{\circ} - A)\cos(-B) + \sin(90^{\circ} - A)\sin(-B)$	
	$= \sin A \cos B + \cos A (-\sin B)$	✓ reduction
	$= \sin A \cos B - \cos A \sin B$	(3)
	OR	, ,
	OR	
	$\sin (A - B)$	
	$=\cos\left[90^{\circ}-(A-B)\right]$	✓ co-ratio
	$=\cos\left[(90^\circ + B) - A\right]$	
	$= \cos(90^{\circ} + B)\cos A + \sin(90^{\circ} + B)\sin A$	✓ compound angle
	$=-\sin B\cos A+\cos B\sin A$	✓ reduction
	$= \sin A \cos B - \cos A \sin B$	(2)
5.3.2	$\sin 48^{\circ} \cos x - \cos 48^{\circ} \sin x = \cos 2x$	(3)
3.3.2	$\sin(48^\circ - x) = \cos 2x$ $\sin(48^\circ - x) = \cos 2x$	✓ compound angle
		compound angle
	$\sin(48^\circ - x) = \sin(90^\circ - 2x)$	✓ co-ratio
	$48^{\circ} - x = 90^{\circ} - 2x + k.360^{\circ}$ or	✓ both equations
	$48^{\circ} - x = 180^{\circ} - (90^{\circ} - 2x) + k.360^{\circ}$	(compand collection
	$x = 42^{\circ} + k.360^{\circ}$ $-3x = 42^{\circ} + k.360^{\circ}$	✓ general solution
	$x = -14^{\circ} - k.120^{\circ} \; ; k \in \mathbb{Z}$	\checkmark general solution; $k \in \mathbb{Z}$ (5)
		, ,
	$\sin 48^{\circ} \cos x - \cos 48^{\circ} \sin x = \cos 2x$	✓ compound angle
	$\sin(48^\circ - x) = \cos 2x$	
	$\cos\left(90^\circ - 48^\circ + x\right) = \cos 2x$	✓ co-ratio
	$\cos(42^{\circ} + x) = \cos 2x$	
	$42^{\circ} + x = 2x + k.360^{\circ}$ or $42^{\circ} + x = 360^{\circ} - 2x + k.360^{\circ}$	✓ both equations
	$-x = -42^{\circ} + k.360^{\circ}$ $3x = 318^{\circ} + k.360^{\circ}$	✓ general solution
	$x = 42^{\circ} - k.360^{\circ}$ $x = 106^{\circ} + k.120^{\circ}$; $k \in \mathbb{Z}$	✓ general solution; $k \in \mathbb{Z}$
		(5)

NSC/NSS-Marking~Guidelines/Nasienriglyne

5.4	$\sin 3x + \sin x$	
	$\frac{\cos 2x+1}{\cos 2x}$	
	$\sin(2x+x)+\sin(2x-x)$	$\checkmark 3x = (2x + x)$
	$=\frac{\cos 2x+1}{\cos 2x+1}$	
	$\sin 2x \cos x + \cos 2x \sin x + \sin 2x \cos x - \cos 2x \sin x$	✓ expansion
	$-\frac{2\cos^2 x - 1 + 1}{2\cos^2 x - 1}$	\checkmark double angle of $\cos 2x$
	$-\frac{2\sin 2x\cos x}{2\cos x}$	√ simplification
	$-2\cos^2 x$	
	$-\frac{2(2\sin x\cos x)\cos x}{(2\cos x)\cos x}$	$\checkmark \sin 2x = 2\sin x \cos x$
	$-\frac{1}{2\cos^2 x}$	
	$4\sin x \cos^2 x$	
	$-\frac{2\cos^2 x}{\cos^2 x}$	
	$=2\sin x$	✓ answer
		(6)
	OR	
	$\sin 3x + \sin x$	
	$\cos 2x + 1$	
	$-\sin(2x+x) + \sin x$	$\checkmark 3x = (2x + x)$
	$-\frac{2\cos^2 x - 1 + 1}{\cos^2 x - 1 + 1}$	\checkmark double angle of $\cos 2x$
	$\sin 2x \cos x + \cos 2x \sin x + \sin x$	✓ expansion
	$=\frac{2\cos^2 x}$	Capansion
	$-2\sin x\cos x\cos x + \cos 2x\sin x + \sin x$	$\checkmark \sin 2x = 2\sin x \cos x$
	$-\frac{1}{2\cos^2 x}$	
	$-\frac{\sin x \left(2\cos^2 x + \cos 2x + 1\right)}{2}$	✓ common factor
	$={2\cos^2 x}$	
	$\sin x \left(2\cos^2 x + 2\cos^2 x - 1 + 1\right)$	
	$=\frac{3\pi x(268 \times 268 \times 1 + 1)}{2\cos^2 x}$	
	$= 2\sin x$	(6)
		✓ answer (6) [31]
		[31]

6.1	$Period = 180^{\circ}$	✓ 180°
		(1)
6.2	$y \in \left[-\frac{\sqrt{2}}{2}; 1 \right]$ OR $y \in \left[-0.71; 1 \right]$ OR $-\frac{\sqrt{2}}{2} \le y \le 1$	$\sqrt{-\frac{\sqrt{2}}{2}}$
		$\checkmark y \in \left[-\frac{\sqrt{2}}{2} ; 1 \right]$
		(2)
6.3.1	$x \in (45^{\circ}; 90^{\circ})$ OR $45^{\circ} < x < 90^{\circ}$	$\checkmark \checkmark x \in (45^\circ; 90^\circ)$
		(2)
6.3.2	$f(x)+1\leq 0$	
	$f(x) \leq -1$	
	$x \in [105^{\circ}; 165^{\circ}]$ OR $105^{\circ} \le x \le 165^{\circ}$	$\checkmark \checkmark x \in [105^\circ; 165^\circ]$
	$\chi \in [105]$ OK $105 \le \chi \le 105$	(2)
6.4	$n(y) = 2\sin 2y$	✓ reading off
0.1	$p(x) = -2\sin 2x$	f(x) = 1 or
	$-2\sin 2x = -1 \mathbf{OR} 2\sin 2x = 1$	-f(x) = -1
	$k = 15^{\circ}$ or $k = 75^{\circ}$	✓ 15° ✓ 75°
		(3)
6.5	$g(x) = -\cos(x + 45^\circ)$	
	$h(x) = -\cos(x + 90^\circ)$	$\sqrt{-\cos(x+90^\circ)}$
	$h(x) = \sin x$	✓ answer
		(2)
		[12]

7.1 (av.)	
7.1 Area $\Delta STK = \frac{1}{2} p(SK) \sin \alpha$	
$q = \frac{1}{2} p(SK) \sin \alpha$	✓ substitution into the correct formula
$SK = \frac{q}{\frac{1}{2} p \sin \alpha}$	✓ answer
$=\frac{2q}{p\sin\alpha}$	
	(2)
7.2 $\hat{RKS} = \beta$	\checkmark RKS= β
$\frac{RS}{SK} = \tan \beta$	✓ correct trig ratio
$RS = \frac{2q \tan \beta}{p \sin \alpha}$	(2)
OR	
RS SK	
$\frac{RS}{\sin\beta} = \frac{SK}{\sin(90^\circ - \beta)}$	\checkmark R $\hat{\mathbf{K}}\mathbf{S} = \boldsymbol{\beta}$
$RS\cos\beta = SK\sin\beta$	
$RS = SK \tan \beta$	$\checkmark \tan \beta = \frac{\sin \beta}{\cos \beta}$
$RS = \frac{2q \tan \beta}{\cdot}$	(2)
$\frac{RS - p\sin\alpha}{p\sin\alpha}$	(2)
7.3 $70 = \frac{2(2500)\tan 42^{\circ}}{80\sin \alpha}$	✓ correct substitution
$\sqrt{0} = \frac{1}{80 \sin \alpha}$	of values into RS
$\sin \alpha = \frac{25}{28} \tan 42^{\circ}$ OR $\sin \alpha = 0.80$	\checkmark value of $\sin \alpha$
$\alpha = 53,51^{\circ}$	✓ answer
	(3)
	[7]

8.1

8.1	Construction: Draw KO prod	luced	✓ construction
	$\hat{O}_1 = \hat{K}_1 + \hat{T}$	$[\operatorname{ext} \angle \operatorname{of} \Delta]$	
	But $\hat{\mathbf{K}}_1 = \hat{\mathbf{T}}$	[∠s opp equal sides]	✓ S/R
	$\therefore \hat{\mathbf{O}}_1 = 2\hat{\mathbf{K}}_1$		✓ S
	2		
	$\hat{\mathbf{O}}_2 = \hat{\mathbf{K}}_2 + \mathbf{P}$	$[\operatorname{ext} \angle \operatorname{of} \Delta]$	
	But $\hat{\mathbf{K}}_2 = \mathbf{P}$	[∠s opp equal sides]	
	$\therefore \hat{\mathbf{O}}_2 = 2\hat{\mathbf{K}}_2$		✓ S
	$\therefore \hat{O}_1 + \hat{O}_2 = 2\hat{K}_1 + 2\hat{K}_2$		✓ S
	$=2\left(\hat{\mathbf{K}}_{1}+\hat{\mathbf{K}}_{2}\right)$		
	∴ TÔP = 2TKP		(5)
	OR		

8.1

18

8.1	Construction: Draw KO		✓ construction
	$\hat{T} = \hat{K}_{1}$ $\therefore K\hat{O}T = 180^{\circ} - 2\hat{K}_{1}$ $\hat{P} = \hat{K}_{2}$ $\therefore K\hat{O}P = 180^{\circ} - 2\hat{K}_{2}$ $T\hat{O}P = 360^{\circ} - (K\hat{O}T + K\hat{O}P)$	[\angle s opp. equal sides] [sum of \angle s of Δ KOT] [\angle s opp. equal sides] [sum of \angle s of Δ KOP]	✓ S/R ✓ S ✓ S
	$= 360^{\circ} - (KO1 + KOP)$ $= 360^{\circ} - (180^{\circ} - 2\hat{K}_{1} + 180^{\circ} - 2\hat{K}_{2})$ $= 2\hat{K}_{1} + 2\hat{K}_{2}$ $= 2(\hat{K}_{1} + \hat{K}_{2})$ $\therefore T\hat{OP} = 2T\hat{K}P$	[∠s around a point]	✓ S
			(5)

 $NSC/NSS-Marking\ Guidelines/Nasienriglyne$

8.2

8.2	$\hat{O}_1 = 4x + 100^{\circ}$	[given]	
		[\angle at centre = 2 × \angle at circumference] [opp \angle s of cyclic quad]	\checkmark S \checkmark R \checkmark S \checkmark R \checkmark answer (5)
	$\hat{O}_{2} = 2x + 68^{\circ}$ $4x + 100^{\circ} + 2x + 68^{\circ} = 360^{\circ}$ $6x = 192^{\circ}$ $x = 32^{\circ}$ OR	[\angle at centre = 2 × \angle at circumference] [\angle s round a pt]	\checkmark S \checkmark R \checkmark S \checkmark R \checkmark answer (5)
	$\hat{O}_{2} = -4x + 260^{\circ}$ $2\hat{C} = -4x + 260^{\circ}$ $\hat{C} = -2x + 130^{\circ}$ $x + 34^{\circ} = -2x + 130^{\circ}$ $3x = 96^{\circ}$ $x = 32^{\circ}$	[\angle s round a pt] [\angle at centre = 2 × \angle at circumference]	\checkmark S \checkmark R \checkmark S \checkmark R \checkmark answer (5)

 $NSC/NSS-Marking\ Guidelines/Nasienriglyne$

8.3

8.3.1	$\hat{OMB} = 90^{\circ}$	[∠ in semi circle]	✓ S ✓ R	
				(2)
8.3.2	$AB = \sqrt{300} = 10\sqrt{3}$			
	$\therefore MB = 5\sqrt{3}$	[line from centre \perp to chord]	✓ S ✓ R	
	$OB^2 = OM^2 + MB^2$	[Pythagoras]		
	$OB^2 = 5^2 + (5\sqrt{3})^2$		✓ S	
	OB = 10 units		✓ answer	
				(4)
				[16]

9.1	$\frac{FB}{EB} = \frac{DA}{EA}$ [pro	op theorem; DC AB] OR [line one side of Δ]	✓ S ✓ R	
	$FB = \frac{4p \times 21}{7p}$			
	FB = 12 units		✓ answer	(3)
9.2	In ΔEDF and ΔEA	B:		
	Ê is common		✓ S	
	$\hat{EDF} = \hat{A}$	[corresp \angle s; EA \parallel CB]	✓ S/R	
	$ \hat{EFD} = \hat{EBA} \\ \Delta EDF \parallel \Delta EAB $	[corresp \angle s; DC AB] [\angle ; \angle ; \angle]	✓ S OR R	(3)
9.3	$\frac{DF}{AB} = \frac{ED}{EA}$	$[\Delta s]$	✓ S	(-)
	$DF = \frac{3p \times 14}{7p}$			
	DF = 6 units		✓ DF = 6	
	FC = 8 units	$[DC = AB = 14 \text{ units; opp sides of } ^{m}]$	✓ FC = 14 – DF	(2)
	OR			(3)
	$\Delta EDF \Delta BCF$	[∠;∠;∠]	✓ ∆EDF ∆BCF	
	$\frac{ED}{BC} = \frac{DF}{CF}$	$[\Delta s]$		
	$\frac{3}{4} = \frac{14 - FC}{FC}$	[BC = AD; opp sides of $\ ^m$]	$\checkmark \frac{3}{4} = \frac{14 - FC}{FC}$	
	3FC = 56 – 4FC			
	FC = 8		✓ answer	(3)
				[9]

10.1	$\hat{S}_3 = P\hat{Q}R$	[ext ∠ of cyclic quad]	✓ S ✓ R	
	$\hat{R}_3 = P\hat{Q}R$	[∠s opp equal sides]	✓ S/R	
	$\therefore \hat{\mathbf{S}}_3 = \hat{\mathbf{R}}_3$			
	But $\hat{\mathbf{S}}_4 = \hat{\mathbf{R}}_3$	[∠s in the same seg]	✓ S ✓ R	(5)
	$\therefore \hat{\mathbf{S}}_3 = \hat{\mathbf{S}}_4$			(5)
10.2	$\hat{R}_1 + \hat{R}_2 = P\hat{Q}R$	[tan chord theorem]	✓ S ✓ R	
	$\hat{S}_4 = P\hat{Q}R$	[proved in 10.1]		
	$\therefore \hat{\mathbf{S}}_4 = \hat{\mathbf{R}}_1 + \hat{\mathbf{R}}_2$		✓ S	
	SMRC is a cyclic quad	[converse ext \angle of cyclic quad]	✓ R	(4)
				(4)
10.3	$\hat{\mathbf{S}}_3 = \hat{\mathbf{R}}_2 + \hat{\mathbf{P}}_2$	$[\operatorname{ext} \angle \operatorname{of} \Delta]$	✓ S ✓ R	
	$\hat{\mathbf{S}}_4 = \hat{\mathbf{P}}_1 + \hat{\mathbf{A}}_2$	$[\operatorname{ext} \angle \operatorname{of} \Delta]$	✓ S	
	$\therefore \hat{\mathbf{R}}_2 + \hat{\mathbf{P}}_2 = \hat{\mathbf{A}}_2 + \hat{\mathbf{P}}_1$			
	But $\hat{P}_1 = \hat{R}_2$	[tan chord theorem]	✓ S ✓ R	
	$\therefore \hat{\mathbf{P}}_2 = \hat{\mathbf{A}}_2$			
	RP is a tangent to the circle	[converse tan chord theorem]	✓ R	
		OR		
		[∠ between line and chord]		
		OR		
		[converse alt seg theorem]		(6)
	OR			

In ΔMSP and ΔMPA			
$\hat{\mathbf{M}}_2$ is common		✓ S	
AR = AP	[tans from same point]	✓ S/R	
$\hat{\mathbf{R}}_1 + \hat{\mathbf{R}}_2 = \hat{\mathbf{P}}_1 + \hat{\mathbf{P}}_2$	[∠s opp equal sides]	✓ S	
$\hat{\mathbf{S}}_4 = \hat{\mathbf{R}}_1 + \hat{\mathbf{R}}_2$	[proved in 10.2]		
		✓ S	
$\therefore \hat{\mathbf{P}}_2 = \hat{\mathbf{A}}_2$	[sum of \angle s in Δ]	✓ S	
RP is a tangent to the circle	[converse tan chord theorem]	✓ R	
			(6)
			[15]

TOTAL/TOTAAL: 150