Suites Numériques I

1. Définition et notation

Une suite est une fonction u de $\mathbb{N} \to \mathbb{R}$. $u: n \to u_n$

Formule explicite d'une suite

La formule explicite d'une suite est l'expression de u_n en fonction de n.

Exemple:

Pour tout $n \in \mathbb{N}$, $u_n = n^2 - 5n + 2$

Formule par récurrence d'une suite

La formule par récurrence d'une suite est l'expression de u_n en fonction d'un ou de plusieurs termes précédents.

Exemple:

$$\forall n \in \mathbb{N}, u_{n+1} = 2u_n - 5; \ u_0 = 1$$

2. Démonstration par récurrence

On cherche à démontrer que $\forall n \geq p$, la propriété P_n est vraie

Structure d'une démonstration par récurrence

- <u>Initialisation</u>: on démontre que la propriété est vraie au rang p
- <u>Hérédité</u>: on suppose que P_k est vraie et on démontre que P_{k+1} est vraie.
- Conclusion : P_n est vraie $\forall n \geq p$

Exemple : soit (u_n) définie par $u_0 = 2$ et $\forall n \in \mathbb{N}, u_{n+1} = 2u_n - 3$

Montrons par récurrence que $\forall n$, $u_n = -2^n + 3$.

Initialisation : $u_0 = 2 = -2^0 + 3$

Donc P_0 est vraie.

Hérédité : on suppose que P_k est vraie $\Leftrightarrow u_k = -2^k + 3$ et on essaye de démontrer que P_{k+1} est vraie.

$$u_{k+1} = 2u_k - 3 = 2(-2^k + 3) - 3 = -2^{k+1} + 3$$

Donc P_{k+1} est vraie.

Conclusion: $\forall n \in \mathbb{N}, u_n = -2^n + 3.$

3. Variations des suites

Suite croissante / décroissante

 (u_n) est croissante $\Leftrightarrow \forall n \geq p, u_{n+1} \geq u_n$

 (u_n) est décroissante $\Leftrightarrow \forall n \geq p, u_{n+1} \leq u_n$

Méthode : Étudier les variations d'une suite

Il y'a plusieurs méthodes possibles :

- Étudier le signe de $u_{n+1} u_n$. Méthode la plus commune
- Si la suite est toujours <u>strictement</u> positive, on étudie si $\forall n, \frac{u_{n+1}}{u_n}$ est supérieur ou inférieur à 1.
- Si la suite est définie de façon explicite : $u_n = f(n)$, on étudie les variations de la fonction f.
- Si la suite est définie par récurrence : $u_{n+1} = f(u_n)$, et si f est croissante, on peut faire une démonstration par récurrence.

h4. Suites majorées, minorées et bornées

Définitions

Une suite (u_n) est majorée $\Leftrightarrow \ni M \ / \ \forall n \in \mathbb{N}, \ u_n \leq M$ Une suite (u_n) est minorée $\Leftrightarrow \ni m \ / \ \forall n \in \mathbb{N}, \ u_n \geq m$ Une suite (u_n) est bornée $\Leftrightarrow \ni m, M \ / \ \forall n \in \mathbb{N}, \ m \leq u_n \leq M$

Méthode

Pour montrer qu'une suite est majorée, minorée ou bornée :

• On peut utiliser des inégalités ou des inéquations.

Exp. Si
$$u_n = \frac{u_n^2}{u_n^2 + 1}$$
 , on a $\forall n, 0 \le u_n \le 1$

• Si la suite est définie par récurrence on peut faire une démonstration par récurrence.

Suites numériques II

2. Limite et convergence d'une suite

Limite d'une suite vers un réel

On dit que (u_n) tend vers $l \in \mathbb{R}$ quand n tend vers $+\infty$ si pour tout intervalle ouvert (aussi petit qu'on le veut) contenant l, \ni un rang n_0 , à partir duquel tous les éléments de la suite seront dans cette intervalle.

$$\forall \varepsilon > 0, \ \ni n_0 \ tq \ \forall n > n_0, \ u_n \in \]l - \varepsilon; l + \varepsilon [\iff \mid u_n - l \mid < \varepsilon$$

N ici représente n_0

Unicité de la limite

Si $\lim_{n\to+\infty} u_n = l$ alors l est unique.

Limite d'une suite vers +∞

On dit que (u_n) tend vers $+\infty$ si pour tout A > 0 (aussi grand que l'on veut), il existe un rang n_0 à partir duquel tous les éléments de la suite sont supérieurs à A.

$$\forall A > 0, \ni n_0 \ tq \ \forall n > n_0, \ u_n > A$$

Limite d'une suite vers −∞

On dit que (u_n) tend vers $-\infty$ si pour tout A < 0, il existe un rang n_0 à partir duquel tous les éléments de la suite sont inférieurs à A.

$$\forall A < 0, \ni n_0 \ tq \ \forall n > n_0, \ u_n < A$$

Limites des suites usuelles

On note $k \in N^*$

$$\lim_{n \to +\infty} n = +\infty \qquad \qquad \lim_{n \to +\infty} n^2 = +\infty \qquad \qquad \lim_{n \to +\infty} \sqrt{n} = +\infty$$

$$\lim_{n \to +\infty} n^k = +\infty \qquad \lim_{n \to +\infty} \frac{1}{n} = 0 \qquad \lim_{n \to +\infty} \frac{1}{n^k} = 0$$

3. Opérations sur les limites

Limite de sommes de suites

$\lim_{n\to\infty}u_n$	l	l	l	+∞	-∞	+∞
$\lim_{n\to\infty}v_n$	l'	+∞	-∞	+∞	-∞	-∞
$\lim_{n\to\infty}u_n+v_n$	l + l'	+∞	-∞	+∞	-∞	F.I

Limite de produits de suites

$\lim_{n\to\infty}u_n$	l	$l \neq 0$	$l \neq 0$	±∞	0
$\lim_{n\to\infty}v_n$	l'	+∞	$-\infty$	±∞	±8
$\lim_{n\to\infty}u_n\times v_n$	$l \times l'$	(le signe dépend du signe de l)	(le signe dépend du signe de l)	±∞ (le signe dépend du signe du produit des signes	F.I

Limite de quotients de suites

$\lim_{n\to\infty}u_n$	l	l	$l \neq 0$	±∞	0	±∞
$\lim_{n\to\infty} v_n$	$l' \neq 0$	±8	0	$l' \neq 0$	0	±∞
$\lim_{n\to+\infty}\frac{u_n}{v_n}$	$\frac{l}{l'}$	0	±∞ (le signe dépend du signe de l et du 0)	±∞ (le signe dépend du signe de l et de celui de ∞)	F.I	F.I

Méthode: Lever l'indétermination

- Mettre en facteur le/les termes prépondérants
- Simplifiez
- Cherchez les limites séparément

4. Limite et comparaison

Propriété

Soient (u_n) et (v_n) sont deux suites telles que $u_n \le v_n$ à partir d'un rang N, si (u_n) converge vers l et (v_n) converge vers l', alors $l \le l'$

Théorème de comparaison

Soient (u_n) et (v_n) sont deux suites telles que $u_n \le v_n$ à partir d'un rang N.

$$\lim_{n \to +\infty} u_n = +\infty \implies \lim_{n \to +\infty} v_n = +\infty$$

$$\lim_{n \to +\infty} v_n = -\infty \implies \lim_{n \to +\infty} u_n = -\infty$$

Théorème des gendarmes

Soient (u_n) , (v_n) et (w_n) trois suites telles que $u_n \le v_n \le w_n$ à partir d'un rang N, et $l \in \mathbb{R}$.

$$\operatorname{Si}_{n \to +\infty} u_n = l \text{ et } \lim_{n \to +\infty} w_n = l \text{ alors } \lim_{n \to +\infty} v_n = l$$

5. Monotonie et convergence

Propriété

- Si (u_n) est croissante et converge vers $l \in \mathbb{R}$, alors $\forall n \in \mathbb{N}, u_n \leq l$
- Si (u_n) est décroissante et converge vers $l \in \mathbb{R}$, Alors $\forall n \in \mathbb{N}, u_n \geq l$

Théorème de convergence monotone

Une suite croissante est :

- Soit majorée et convergente vers une limite $l \in \mathbb{R}$
- Soit non majorée et diverge vers +∞

Une suite décroissante est :

- Soit minorée et convergente vers une limite $l \in \mathbb{R}$
- Soit non minorée et diverge vers -∞

Théorème de convergence des suites géométriques

- Si q > 1 alors la suite (q^n) diverge vers $+\infty$
- Si q = 1 alors la suite (q^n) est constante
- Si -1 < q < 1 alors la suite (q^n) converge vers 0
- Si $q \le -1$ alors la suite (q^n) diverge et n'admet pas de limite

Suites Arithméticogéometriques

1. Definition

 (u_n) est une suite arithmetico-géometrique si elle est définie par un premier terme et la relation de récurrence : $u_{n+1}=au_n+b$

si $a=1,b\neq 0$ alors (u_n) est une suite arithmétique de raison b

 $si a \neq 0$ et b = 0 alors (u_n) est une suite géometrique de raison a

2. Thèoréme

 (u_n) est une suite arithmetico-géometrique définie par : $u_{n+1} = au_n + b$

soit
$$K \operatorname{tq} K = aK + b$$

Alors la suite (v_n) définie par $v_n = u_n - K$ est une suite géométrique de raison a

Démonstration :

$$\begin{cases} u_{n+1} = au_n + b \\ K = aK + b \end{cases} \implies u_{n+1} - K = a(u_n - K)$$

Théorème

 (u_n) est une suite arithmetico-géometrique définie par : $u_{n+1} = au_n + b \,$

soit
$$K \operatorname{tq} K = aK + b$$

alors la forme explicite de u_n est : $u_n = (u_0 - K) \times a^n + K$

démonstration

(u_n) – K est une suite géométrique de raison a

donc
$$\forall$$
n, $u_n - K = (u_0 - K) \times a^n$

donc
$$u_n = (u_0 - K) \times a^n + K$$