Exaiptasia Gene Expression

Kirt Onthank

2023-10-30

Contents

1	loading R Libraries	1			
2	Reading and formatting data	1			
3	Two-way ANOVA	2			
4	Plots				
	.1 Heatmaps	3			
	.2 Other heatmap	6			
	.3 Interaction plots	9			

1 Loading R Libraries

```
library(xlsx)
library(tidyr)
library(dplyr)
library(knitr)
library(gplots)
library(car)
```

2 Reading and formatting data

```
exaip=read.xlsx("OA & BP3 data for stats sent to Kirt - 10-5-23 updated.xlsx", sheetIndex = 1, startRow =
exaip$Gene.ID[which(exaip$Gene.ID=="TPRA1-13")]="TRPA1"
exaip$Gene.ID[which(exaip$Gene.ID=="COL1A2-11")]="COL1A2"
exaip$Gene.ID[which(exaip$Gene.ID=="COL4A1-11")]="COL4A1"
exaip$Gene.ID[which(exaip$Gene.ID=="SLC31A2-1")]="SLC31A2"
exaip$Gene.ID[which(exaip$Gene.ID=="TNR-2")]="TNR"
```

Filling in the unfilled Gene.ID rows

```
for (i in 1:nrow(exaip)){
   if (is.na(exaip$Gene.ID[i])){exaip$Gene.ID[i]=exaip$Gene.ID[i-1]}
}
```

Removing MCT8

```
exaip=exaip[exaip$Gene.ID!="MCT8",]
```

Making some easier to work with column names

```
colnames(exaip)=c("Gene.ID","ctrl","oa","oa+bp3","bp3")
```

Converting data to long format

```
exaip=exaip %>%
gather(key = "treatment", value = "expression", -Gene.ID)
```

Changing data from just 4 treatments to the levels of the two different factors

```
exaip$oa=247
exaip$oa[grep1("oa",exaip$treatment)]=2045
exaip$bp3=0
exaip$bp3[grep1("bp3",exaip$treatment)]=1
exaip=exaip[,c(1,2,4,5,3)]
exaip$measure=rep(c("average","low","high"),nrow(exaip)/3)
exaip$bp3=as.factor(exaip$bp3)
exaip$oa=as.factor(exaip$oa)
```

3 Two-way ANOVA

For each gene, perform a two-way ANOVA to determine the significance of the main effects and interaction. I am putting the p-values into a matrix called "results".

```
assumptions=matrix(data = NA,nrow=length(unique(exaip$Gene.ID)),ncol=2) # to store assumptions tests fo
results=matrix(data = NA,nrow=length(unique(exaip$Gene.ID)),ncol=3) # to store results for each gene
rownames(results)=unique(exaip$Gene.ID)
colnames(results)=c("oa_pvalue","bp3_pvalue","interaction_pvalue")

row.no=1

for(gene in unique(exaip$Gene.ID)){
    subset_data <- exaip[exaip$Gene.ID == gene,]

    model.aov=aov(expression ~ oa * bp3, data = subset_data)

    results[row.no,1]=summary(model.aov)[[1]][["Pr(>F)"]][1]
    results[row.no,2]=summary(model.aov)[[1]][["Pr(>F)"]][2]
```

```
results[row.no,3]=summary(model.aov)[[1]][["Pr(>F)"]][3]
assumptions[row.no,1]=leveneTest(expression ~ oa * bp3,data=subset_data)$"Pr(>F)"[1]
assumptions[row.no,2]=shapiro.test(residuals(model.aov))$p.value
row.no=row.no+1
```

Next, I am adjusting the p-values using the Benjamini-Hochberg FDR correction.

```
results.adj=matrix(p.adjust(results, method = "BH"),nrow=length(unique(exaip$Gene.ID)),ncol=3)
rownames(results.adj)=unique(exaip$Gene.ID)
rownames(assumptions)=unique(exaip$Gene.ID)
colnames(results.adj)=c("oa_pvalue","bp3_pvalue","interaction_pvalue")
colnames(assumptions)=c("homoscedacity","normality")
write.csv(results.adj,"ptable.csv")
```

And, here is a table of the p-values rounded to four decimal places.

```
kable(format(round(results.adj,4),scientific=F))
```

	oa_pvalue	bp3_pvalue	interaction_pvalue
SLC39A14	0.0000	0.9353	0.0212
tadh	0.0000	0.0001	0.8276
TF	0.8580	0.0000	0.0000
FTH1	0.0000	0.0001	0.0000
2OG-Fe II	0.0161	0.3323	0.0003
TRPA1	0.0000	0.0098	0.0000
MYS	0.0000	0.0000	0.0000
TNR	0.3252	0.0000	0.9353
SLC8A3	0.0008	0.1233	0.0036
MCT10	0.0042	0.0002	0.1875
MCT3	0.0020	0.5023	0.0008
CYB561	0.0091	0.0182	0.0001
COL1A2	0.0087	0.0000	0.0000
COL4A1	0.0000	0.0000	0.0000
MCT2	0.0226	0.2441	0.6432
HSD14	0.0007	0.9442	0.0045
HSD12	0.0000	0.0239	0.0000
C3	0.0172	0.0001	0.0000
GLUL	0.0005	0.0055	0.0836
OAT	0.0000	0.0000	0.0000
Heph	0.0041	0.0041	0.0000
SLC31A2	0.0001	0.9745	0.0000

4 Plots

4.1 Heatmaps

First, I am creating a summary of gene expression by treatment for the heatmap

```
treatment.means=aggregate(expression~Gene.ID+treatment,data=exaip,FUN="mean")

exaip.sum=data.frame(
    ctrl=treatment.means$expression[treatment.means$treatment=="ctrl"],
    oa=treatment.means$expression[treatment.means$treatment=="oa"],
    bp3=treatment.means$expression[treatment.means$treatment=="bp3"],
    oabp3=treatment.means$expression[treatment.means$treatment=="oa+bp3"]
)

rownames(exaip.sum)=treatment.means$Gene.ID[1:nrow(exaip.sum)]
as.matrix(exaip.sum)
```

```
ctrl
                                            bp3
                                                    oabp3
                                  oa
## 20G-Fe II 2.147465e-08 1.7460149 0.9862086 0.3696282
## C3
             4.187748e-09 2.1075605 3.2761180 0.5106195
## COL1A2
             4.649250e-09 1.2786856 2.9939054 1.5530399
## COL4A1
             1.464910e-08 1.7450956 3.0927607 1.8081233
            -8.401964e-10 1.5278359 3.5343794 -0.1549002
## CYB561
## FTH1
             1.222599e-08 -0.4652507 0.6733691 -2.6813780
## GLUL
            -8.487186e-09 -1.2568233 -1.0624385 -1.5179017
## Heph
            1.440735e-04 -1.1883089 -0.8998036 -0.4349608
            -3.557313e-08 0.2060064 1.6646754 -2.0830148
## HSD12
## HSD14
            -1.189497e-08 -0.4443455 1.1410230 -1.5373993
## MCT10
             3.775663e-09 -0.6688099 -1.4382089 -2.8704141
## MCT2
             7.372022e-09 -0.7560393 -0.2513199 -1.3635444
## MCT3
             6.898728e-09 0.2478835 1.5933475 -1.8627504
## MYS
             4.034985e-10 0.4751199 0.5832316 -1.6874955
             2.041045e-08 -0.8274517 -0.4821181 -2.9681587
## OAT
            -1.539482e-04 1.2473341 2.3709450 -1.1373881
## SLC31A2
## SLC39A14 -1.914375e-09 -1.3002428 0.4615771 -1.7999299
## SLC8A3
             2.939900e-08 -0.4518700 2.1307036 -1.3338426
## tadh
             3.402575e-09 -2.8492133 -1.1542352 -4.0871836
             2.434349e-08 1.1534099 -0.4384518 -1.5526396
## TF
## TNR
            -8.394542e-09 -0.5554352 4.6971016 4.2494323
## TRPA1
             1.620831e-08 -0.3598976 0.4790754 -1.3934186
```

Then, I am making the groups for the heatmap

```
Fig4=c("SLC31A2", "SLC39A14", "SLC8A3", "MCT2", "MCT3", "MCT10")

Fig6=c("GLUL", "OAT", "COL1A2", "COL4A1", "CYB561", "20G-Fe II", "tadh", "SLC8A3", "TRPA1", "MCT10")

Fig7=c("COL1A2", "COL4A1", "CYB561", "20G-Fe II", "GLUL", "OAT", "SLC31A2")

Fig8=c("MYS", "TNR", "TF")

Fig9=c("FTH1", "Heph", "SLC31A2", "SLC39A14", "SLC8A3", "TF", "TRPA1")

Fig10=c("20G-Fe II", "HSD14", "HSD12", "COL1A2", "COL4A1", "CYB561", "Heph", "MCT2", "MCT3", "MCT8", "SLC8A3", "TRPA1")
```

```
exaip.groups=list(Fig4,Fig6,Fig7,Fig8,Fig9,Fig10,Fig11)
exaip.bound=lapply(exaip.groups,function(i) exaip.sum[rownames(exaip.sum) %in% i,])
exaip.heat=rbind(exaip.bound[[1]],exaip.bound[[2]],exaip.bound[[3]],exaip.bound[[4]],exaip.bound[[5]],exaip.bound[[4]],exaip.bound[[5]],exaip.bound[[4]],exaip.bound[[5]],exaip.bound[[1]])
for (i in 2:7){
   heat.breaks[i]=heat.breaks[i-1]+nrow(exaip.bound[[i]])
}
colnames(exaip.heat)=c("CTRL","OA","BP-3","OA+BP-3")
```

Fixing up gene names for the row labels.

```
row.lab=rownames(exaip.heat)
row.lab[grep("SLC31A2",row.lab)]="SLC31A2"
row.lab[grep("SLC39A14",row.lab)]="SLC39A14"
row.lab[grep("SLC8A3",row.lab)]="SLC8A3"
row.lab[grep("20G-Fe II",row.lab)]="20G-Fe (II)"
row.lab[grep("COL1A2",row.lab)]="COL1A2"
row.lab[grep("COL4A1",row.lab)]="COL4A1"
row.lab[grep("CYB561",row.lab)]="CYB561"
row.lab[grep("FTH1",row.lab)]="FTH1"
row.lab[grep("GLUL",row.lab)]="GLUL"
row.lab[grep("Heph",row.lab)]="Heph"
row.lab[grep("HSD12",row.lab)]="17 HSD12"
row.lab[grep("HSD14",row.lab)]="17 HSD14"
row.lab[grep("MCT10",row.lab)]="MCT10"
row.lab[grep("MCT2",row.lab)]="MCT2"
row.lab[grep("MCT3",row.lab)]="MCT3"
row.lab[grep("MYS",row.lab)]="MYS"
row.lab[grep("OAT",row.lab)]="OAT"
row.lab[grep("tadh",row.lab)]="TaDH"
row.lab[grep("TF",row.lab)]="TF"
row.lab[grep("TNR",row.lab)]="TNR"
row.lab[grep("TRPA1",row.lab)]="TRPA1"
```

Finally, I am making the heatmap

```
col=greenred(99),
density.info = "none",
trace="none",
Rowv = F,
Colv = F,
rowsep = heat.breaks,
cexRow=1.7,
cexCol=2.5,
margins=c(9,11),
lhei=c(0.4,4),
lwid=c(1.5,4.0),
key.cex=2,
key.title =expression("log"[2]*" fold change over mean control"),
key.par=list(mar=c(3, 0, 4, 12.3)),
key.xlab="",
srtCol = 60,
labRow = row.lab
```

```
## Warning in plot.window(...): "key.cex" is not a graphical parameter

## Warning in plot.xy(xy, type, ...): "key.cex" is not a graphical parameter

## Warning in title(...): "key.cex" is not a graphical parameter

## Warning in is.na(key.title): is.na() applied to non-(list or vector) of type

## 'expression'

## Warning in is.na(key.title): is.na() applied to non-(list or vector) of type

## 'expression'

#points(text.labels.x+0.7, text.labels.y, cex=3, pch=21, bg="purple")

text(text.labels.x, text.labels.y, c("G", "F", "E", "D", "C", "B", "A"), cex=3)

dev.off()

## pdf
```

Using cairosvg in bash to convert the SVG to a PNG

```
#cairosug heatmap.sug -o heatmap.png -d 300
```

Finally, using command line Inkscape to convert the svg to eps for publication.

```
inkscape $PWD/heatmap.svg -o $PWD/heatmap.eps --export-ignore-filters --export-ps-level=3
```

4.2 Other heatmap

2

Making a second heatmap that has each gene only once This first chunk is making the row labels.

Figure 1: heatmap for expression levels of genes examined grouped by functional categories. 7

```
row.lab2=rownames(exaip.sum)
row.lab2[grep("20G-Fe II",row.lab2)]="20G-Fe (II)"
row.lab2[grep("HSD12",row.lab2)]="17 HSD12"
row.lab2[grep("HSD14",row.lab2)]="17 HSD14"
row.lab2[grep("tadh",row.lab2)]="TaDH"
```

And next making the heatmap itself.

```
#svq("heatmap2.svq",width=5.00*1.5,height=7.00*1.5,pointsize=8*1.5)
png("heatmap2.png", width=5.00*1.5, height=7.00*1.5, units="in", res=300)
par(cex.main=1.7)
heat.plot=heatmap.2(as.matrix(exaip.sum)
          ,lmat=rbind(3:4,2:1)
          ,col=greenred(99)
          ,density.info = "none"
          ,trace="none"
          ,Colv = F
          ,cexRow=1.7
          , cexCol = 2.5,
          ,margins=c(9,11)
          ,lhei=c(0.8,4)
          , lwid=c(1.3,4.0)
          ,key.title =expression("log"[2]*" fold change over mean control")
          ,key.xlab=""
          ,key.par=list(mar=c(3, 0, 4, 12.3))
          ,labRow = row.lab2
          ,labCol=c("CTRL","OA","BP-3","OA+BP-3")
          ,srtCol=60
## Warning in heatmap.2(as.matrix(exaip.sum), lmat = rbind(3:4, 2:1), col =
## greenred(99), : Discrepancy: Colv is FALSE, while dendrogram is `both'.
## Omitting column dendogram.
## Warning in is.na(key.title): is.na() applied to non-(list or vector) of type
## 'expression'
## Warning in is.na(key.title): is.na() applied to non-(list or vector) of type
## 'expression'
dev.off()
## pdf
##
```

Converting the svg to a png using cairosvg in bash

```
#cairosug heatmap2.sug -o heatmap2.png -d 300
```

Finally, converting the svg to eps for publication with inkscape

4.3 Interaction plots

First off I am classifying each of the gene OA+BP-3 effects as antagonistic, synergistic or additive.

```
results.adj=results.adj[order(rownames(results.adj)),]

exaip.bp3=exaip.sum$bp3-exaip.sum$ctrl
exaip.oa=exaip.sum$oabp3-exaip.sum$oa
exaip.category=rep("antagonistic",nrow(exaip.sum))
exaip.category[exaip.bp3>0&exaip.oa>0&exaip.bp3<exaip.oa]="synergistic"
exaip.category[exaip.bp3<0&exaip.oa<0&exaip.bp3>exaip.oa]="synergistic"
exaip.category[results.adj[,3]>0.05]="additive"

table(exaip.category)
```

```
## exaip.category
## additive antagonistic synergistic
## 5 15 2
```

Next, I am reordering the data so that they plot together by category from the previous chunk.

```
exaip.reorder=order(exaip.category)
exaip.category=exaip.category[exaip.reorder]
exaip.sum=exaip.sum[exaip.reorder,]
```

Then, making an object for the gene names for labeling the plots.

```
interaction.labels=rownames(exaip.sum)
interaction.labels[grep("20G-Fe II",interaction.labels)]="20G-Fe (II)"
interaction.labels[grep("HSD12",interaction.labels)]="17 HSD12"
interaction.labels[grep("HSD14",interaction.labels)]="17 HSD14"
interaction.labels[grep("tadh",interaction.labels)]="TaDH"
```

Finally, I am making the interaction plots graph.

```
rows=6
columns=4
antagonistic.col="red"
additive.col="blue"
synergistic.col="darkgreen"
width=0.17
height=0.14
left.offset=0.05
bottom.offset=0.05
hcenters=seq(from=width+left.offset,to=1-width,length.out=columns)
vcenters=seq(from=height+bottom.offset,to=1-height,length.out=rows)
int=1
cat.col=rep(antagonistic.col,length(exaip.category))
```

log₂ fold change over mean control

Figure 2: heatmap for expression levels of genes. 10

```
cat.col[exaip.category=="additive"]=additive.col
cat.col[exaip.category=="synergistic"]=synergistic.col
svg("interaction_plots.svg", width = 8.5, height=11, pointsize = 10)
plot(c(0,1,0,1),type="n",axes=F,ylab="",xlab="")
mtext(expression("log"[2]*" fold change over mean control"), side=2, cex=2, line=1)
mtext("[Oxybenzone] (ppb)",side=1,cex=2,line=1)
for (i in 1:rows){
  for (j in 1:columns){
   par(fig=c(hcenters[j]-width,hcenters[j]+width,vcenters[i]-height,vcenters[i]+height),new=T)
   plot(c(exaip.sum trl[int], exaip.sum trl[int]) \sim (0,1), type = "1", ylim = c(-4,4), xlim = c(-0.15,1.15),
         axes=F,ylab="",xlab="",col=cat.col[int],lwd=1.5)
   lines(c(exaip.sum$oa[int],exaip.sum$oabp3[int])~c(0,1),lty=2,col=cat.col[int],lwd=1.5)
    #box(col="red", lwd=3)
    if (j==1)\{axis(2,at=c(-3,0,3),las=1,lwd=1.5)\}
   if (i==1)\{axis(1,at=c(0,1),labels = c(0,20),lwd=1.5)\}
    mtext(rownames(exaip.sum)[int],cex=1,side=1,line=-1,col=cat.col[int])
   text(-0.1,0,interaction.labels[int],srt=90,col=cat.col[int],cex=1.3)
    int=int+1
 }
}
line.start=0.05
line.stop=0.3
leg.line=seq(from=0.2,to=0.8,length.out=5)
text.x=((1-line.stop)/2)+line.stop
par(fig=c(hcenters[4]-width,hcenters[4]+width,vcenters[6]-height,vcenters[6]+height),new=T)
plot(c(0,1),c(0,1),type="n",axes=F,ylab="",xlab="")
box()
mtext("Legend",side=3)
lines(c(line.start,line.stop),c(leg.line[5],leg.line[5]),lwd=1.5)
lines(c(line.start,line.stop),c(leg.line[4],leg.line[4]),lty=2,lwd=1.5)
lines(c(line.start,line.stop),c(leg.line[3],leg.line[3]),col=synergistic.col,lwd=1.5)
lines(c(line.start,line.stop),c(leg.line[2],leg.line[2]),col=antagonistic.col,lwd=1.5)
lines(c(line.start,line.stop),c(leg.line[1],leg.line[1]),col=additive.col,lwd=1.5)
text(text.x,leg.line[5],expression("247"*mu*"atm pCO"[2]))
text(text.x,leg.line[4],expression("2045"*mu*"atm pCO"[2]))
text(text.x,leg.line[3],"Synergistic")
text(text.x,leg.line[2],"Antagonistic")
text(text.x,leg.line[1],"Additive")
dev.off()
## pdf
```

Converting the figure from svg to png with cairosvg.

##

```
cairosvg interaction_plots.svg -o interaction_plots.png -d 300
```

And finally converting the figure from svg to eps for publication with inkscape.

 $\verb|inkscape| \$PWD/interaction_plots.svg| -o \$PWD/interaction_plots.eps| --export-ignore-filters| --export-ps-lements --export$

Figure 3: Interaction plots for expression levels of the 22 genes examined.