and pumping lemma

formal definition: nondeterministic finite automaton (nfa) M:

$$M = (Z, A, \delta, z_s, Z_A)$$

- A finite input/tape alphabet
- Z finite set of states
- set valued transition function

$$\delta: Z \times A \rightarrow 2^Z$$

recall

$$2^Z = \{A : A \subseteq Z\}$$

- $z_0 \in Z$ initial state
- $Z_A \subseteq Z$ set of accepting states

1 Step:

• if automaton is in state s and reads input $a \in A$ and $s' \in \delta(s, a)$, then it can go to state s' and it moves the head 1 field to the right.

formal definition: nondeterministic finite automaton (nfa) M:

$$M = (Z, A, \delta, z_s, Z_A)$$

- A finite input/tape alphabet
- Z finite set of states
- set valued transition function

$$\delta: Z \times A \rightarrow 2^Z$$

recall

$$2^Z = \{A : A \subseteq Z\}$$

- $z_0 \in Z$ initial state
- $Z_A \subseteq Z$ set of accepting states

1 Step:

• if automaton is in state s and reads input $a \in A$ and $s' \in \delta(s, a)$, then it can go to state s' and it moves the head 1 field to the right.

have you seen this?

where?

formal definition: nondeterministic finite automaton (nfa) M:

$$M = (Z, A, \delta, z_s, Z_A)$$

- A finite input/tape alphabet
- Z finite set of states
- set valued transition function

$$\delta: Z \times A \rightarrow 2^Z$$

recall

$$2^Z = \{A : A \subseteq Z\}$$

- $z_0 \in Z$ initial state
- $Z_A \subseteq Z$ set of accepting states

1 Step:

• if automaton is in state s and reads input $a \in A$ and $s' \in \delta(s, a)$, then it can go to state s' and it moves the head 1 field to the right.

have you seen this?

where?

hardware lab OS support:

MIPS + disk ISA

I2OS: C0 + disk

formal definition: nondeterministic finite automaton (nfa) M:

$$M = (Z, A, \delta, z_s, Z_A)$$

- A finite input/tape alphabet
- Z finite set of states
- set valued transition function

$$\delta: Z \times A \rightarrow 2^Z$$

recall

$$2^Z = \{A : A \subseteq Z\}$$

- $z_0 \in Z$ initial state
- $Z_A \subseteq Z$ set of accepting states

1 Step:

• if automaton is in state s and reads input $a \in A$ and $s' \in \delta(s, a)$, then it can go to state s' and it moves the head 1 field to the right.

• if automaton is in state s and reads input $a \in A$ and $s' \in \delta(s, a)$, then it can go to state s' and it moves the head 1 field to the right.

Figure 5: Example of an nda. With input 1¹⁴ it has accepting and rejecting computations. It accepts this input.

• set of configurations

$$K = S \times A^*$$

where for $(s, w) \in K$

s: current state , w: remaining input

• transition relation $\vdash \subseteq K \times K$ (in general not a function)

 $k \vdash k' : k'$ is a successor configuration of k

Let

$$k = (z, w_1 \dots w_n)$$
 , $k' = (z', w_2 \dots w_n)$

then

$$k \vdash k' \quad \leftrightarrow \quad z' \in \delta(z, w_1)$$

• set of configurations

$$K = S \times A^*$$

where for $(s, w) \in K$

s: current state , w: remaining input

• transition relation $\vdash \subseteq K \times K$ (in general not a function)

 $k \vdash k' : k'$ is a successor configuration of k

Let

$$k = (z, w_1 ... w_n)$$
 , $k' = (z', w_2 ... w_n)$

then

$$k \vdash k' \quad \leftrightarrow \quad z' \in \delta(z, w_1)$$

• a computation of M started with $w \in A^n$: this is a computation (k^0, k^1, \dots, k^n) started with

$$k^0 = (z_0, w)$$

and ending with

$$k^n = (z', \varepsilon)$$

The computations is accepting if $z' \in Z_A$, otherwise it is rejecting

$(0,k^1,\ldots,k^n)$		
ng.		

• set of configurations

$$K = S \times A^*$$

where for $(s, w) \in K$

s: current state , w: remaining input

• transition relation $\vdash \subseteq K \times K$ (in general not a function)

 $k \vdash k' : k'$ is a successor configuration of k

Let

$$k = (z, w_1 \dots w_n)$$
 , $k' = (z', w_2 \dots w_n)$

then

$$k \vdash k' \quad \leftrightarrow \quad z' \in \delta(z, w_1)$$

• a computation of M started with $w \in A^n$: this is a computation (k^0, k^1, \dots, k^n) started with

$$k^0 = (z_0, w)$$

and ending with

$$k^n = (z', \varepsilon)$$

The computations is accepting if $z' \in Z_A$, otherwise it is rejecting.

- *M* accepts *w* if there exists an accepting computation of *M* with input *w*.
- language L(M) accepted by M

$$L(M) = \{w : M \text{ accepts } w\} \subseteq A^*$$

• set of configurations

$$K = S \times A^*$$

where for $(s, w) \in K$

s: current state , w: remaining input

• transition relation $\vdash \subseteq K \times K$ (in general not a function)

 $k \vdash k' : k'$ is a successor configuration of k

Let

$$k = (z, w_1 \dots w_n)$$
 , $k' = (z', w_2 \dots w_n)$

then

$$k \vdash k' \quad \leftrightarrow \quad z' \in \delta(z, w_1)$$

• a computation of M started with $w \in A^n$: this is a computation (k^0, k^1, \dots, k^n) started with

$$k^0 = (z_0, w)$$

and ending with

$$k^n = (z', \varepsilon)$$

The computations is accepting if $z' \in Z_A$, otherwise it is rejecting.

- *M* accepts *w* if there exists an accepting computation of *M* with input *w*.
- language L(M) accepted by M

$$L(M) = \{w : M \text{ accepts } w\} \subseteq A^*$$

Figure 5: Example of an nda. With input 1¹⁴ it has accepting and rejecting computations. It accepts this input.

eliminating nondeterminism (at a price)

Lemma 3. For every $nfa\ M$ there exists a $dfa\ M'$ which accepts the same language

$$L(M) = L(M')$$

eliminating nondeterminism (at a price)

Lemma 3. For every nfa M there exists a dfa M' which accepts the same language

$$L(M) = L(M')$$

• Given nondeterministic finite automaton

$$M = (Z, A, \delta, z_0, Z_A)$$

we construct deterministic finite automaton

$$M = (Z', A, \delta', z'_0, Z'_A)$$

such that

$$L(M) = L(M')$$

eliminating nondeterminism (at a price)

Lemma 3. For every nfa M there exists a dfa M' which accepts the same language

$$L(M) = L(M')$$

• Given nondeterministic finite automaton

$$M = (Z, A, \delta, z_0, Z_A)$$

we construct deterministic finite automaton

$$M = (Z', A, \delta', z'_0, Z'_A)$$

such that

$$L(M) = L(M')$$

• 'power set construction'

$$Z' = 2^{Z}$$

$$z'_{0} = \{z_{0}\}$$

$$\delta(Y,a) = \bigcup_{z \in Y} \delta(z,a)$$

$$Z'_{A} = \{Y : Y \cap Z_{a} \neq \emptyset\}$$

Lemma 3. For every nfa M there exists a dfa M' which accepts the same language

$$L(M) = L(M')$$

• Given nondeterministic finite automaton

$$M = (Z, A, \delta, z_0, Z_A)$$

we construct deterministic finite automaton

$$M = (Z', A, \delta', z'_0, Z'_A)$$

such that

$$L(M) = L(M')$$

• 'power set construction'

$$Z' = 2^{Z}$$

$$z'_{0} = \{z_{0}\}$$

$$\delta(Y,a) = \bigcup_{z \in Y} \delta(z,a)$$

$$Z'_{A} = \{Y : Y \cap Z_{a} \neq \emptyset\}$$

correctness:

• define $k \vdash^n k'$ meaning: k' is a possible successor configuration of k after n steps.

$$k \vdash^{0} k' \leftrightarrow k = k'$$
$$k \vdash^{n+1} k' \quad \leftrightarrow \quad \exists k'' . \ k \vdash^{n} k'' \vdash k'$$

also for all future models of computation

Lemma 3. For every nfa M there exists a dfa M' which accepts the same language

$$L(M) = L(M')$$

Given nondeterministic finite automaton

$$M = (Z, A, \delta, z_0, Z_A)$$

we construct deterministic finite automaton

$$M = (Z', A, \delta', z'_0, Z'_A)$$

such that

$$L(M) = L(M')$$

• 'power set construction'

$$Z' = 2^{Z}$$

$$z'_{0} = \{z_{0}\}$$

$$\delta(Y,a) = \bigcup_{z \in Y} \delta(z,a)$$

$$Z'_{A} = \{Y : Y \cap Z_{a} \neq \emptyset\}$$

correctness:

• define $k \vdash^n k'$ meaning: k' is a possible successor configuration of k after n steps.

$$k \vdash^{0} k' \leftrightarrow k = k'$$
$$k \vdash^{n+1} k' \quad \leftrightarrow \quad \exists k'' . \ k \vdash^{n} k'' \vdash k'$$

• Claim: if

$$(z'_0, w) \vdash_{M'}^n (Y, w')$$

then

$$Y = \{z \in Z : (z_0, w) \vdash_M^n (z, w')\}$$

The state Y after n steps of deterministic computation is the set of all states reachable by n steps of nondeterministic computation. Note: if $w = w_1 \dots w_n w_{n+1} \dots w_s$ then $w' = w_{n+1} \dots w_s$. Proof by induction on n

Lemma 3. For every nfa M there exists a dfa M' which accepts the same language

$$L(M) = L(M')$$

Given nondeterministic finite automaton

$$M = (Z, A, \delta, z_0, Z_A)$$

we construct deterministic finite automaton

$$M = (Z', A, \delta', z'_0, Z'_A)$$

such that

$$L(M) = L(M')$$

• 'power set construction'

$$Z' = 2^{Z}$$

$$z'_{0} = \{z_{0}\}$$

$$\delta(Y,a) = \bigcup_{z \in Y} \delta(z,a)$$

$$Z'_{A} = \{Y : Y \cap Z_{a} \neq \emptyset\}$$

correctness:

• define $k \vdash^n k'$ meaning: k' is a possible successor configuration of k after n steps.

$$k \vdash^{0} k' \leftrightarrow k = k'$$
$$k \vdash^{n+1} k' \quad \leftrightarrow \quad \exists k'' . \ k \vdash^{n} k'' \vdash k'$$

• Claim: if

$$(z'_0, w) \vdash_{M'}^n (Y, w')$$

then

$$Y = \{z \in Z : (z_0, w) \vdash_M^n (z, w')\}$$

The state Y after n steps of deterministic computation is the set of all states reachable by n steps of nondeterministic computation. Note: if $w = w_1 \dots w_n w_{n+1} \dots w_s$ then $w' = w_{n+1} \dots w_s$. Proof by induction on n

• n = 0 trivial

$$L(M) = L(M')$$

• Given nondeterministic finite automaton

$$M = (Z, A, \delta, z_0, Z_A)$$

we construct deterministic finite automaton

$$M = (Z', A, \delta', z'_0, Z'_A)$$

such that

$$L(M) = L(M')$$

• 'power set construction'

$$Z' = 2^{Z}$$

$$z'_{0} = \{z_{0}\}$$

$$\delta(Y,a) = \bigcup_{z \in Y} \delta(z,a)$$

$$Z'_{A} = \{Y : Y \cap Z_{a} \neq \emptyset\}$$

correctness:

• $n \rightarrow n+1$

$$(z'_0, w) \vdash_{M'}^n (Y, w_{n+1} \dots w_s) \vdash_{M'} (Y', w_{n+2} \dots w_s)$$

IH:
$$Y = \{z \in Z : (z_0, w) \vdash_M^n (z, w_{n+1} \dots w_s)$$

Figure 6: illustration of the power set construction

$$Y^* = \bigcup_{z \in Y} \delta(z, w_{n+1}) \quad \text{(construction of } \delta')$$

$$= \{ z \in Z : (z_0, w) \vdash_M^{n+1} (z, w_{n+2} \dots w_s) \} \quad \text{(definition of } \vdash^{n+1})$$

so far: A finite input/tape alphabet, Z finite set of states, set valued transition fuction

$$\delta: Z \times A \rightarrow 2^Z$$

now:

$$A_{\varepsilon} = A \cup \{\varepsilon\}, \ \delta : Z \times A_{\varepsilon} \to 2^{Z}$$

ε-moves

$$z' \in \delta(z, \varepsilon)$$

z' can be reached from z by reading nothing, i.e. the head on the input tape is not advanced.

so far: A finite input/tape alphabet, Z finite set of states, set valued transition fuction

$$\delta: Z \times A \rightarrow 2^Z$$

now:

$$A_{\varepsilon} = A \cup \{\varepsilon\}, \ \delta : Z \times A_{\varepsilon} \to 2^{Z}$$

 ε -moves

$$z' \in \delta(z, \varepsilon)$$

z' can be reached from z by reading nothing, i.e. the head on the input tape is not advanced.

semantics:

• so far successor configurations consume an input symbol

$$k = (z, w)$$
 , $k' = (z', tail(w))$

then

$$k \vdash k' \quad \leftrightarrow \quad z' \in \delta(z, hd(w))$$

• now also:

$$k = (z, \underline{w})$$
 , $k' = (z', \underline{w})$

then

$$k \vdash k' \quad \leftrightarrow \quad z' \in \delta(z, \underline{\varepsilon})$$

so far: A finite input/tape alphabet, Z finite set of states, set valued transition fuction

$$\delta: Z \times A \rightarrow 2^Z$$

now:

$$A_{\varepsilon} = A \cup \{\varepsilon\}, \ \delta : Z \times A_{\varepsilon} \to 2^{Z}$$

ε-moves

$$z' \in \delta(z, \varepsilon)$$

z' can be reached from z by reading nothing, i.e. the head on the input tape is not advanced.

semantics:

• so far successor configurations consume an input symbol

$$k = (z, w)$$
 , $k' = (z', tail(w))$

then

$$k \vdash k' \quad \leftrightarrow \quad z' \in \delta(z, hd(w))$$

now also:

$$k = (z, \underline{w})$$
 , $k' = (z', \underline{w})$

then

$$k \vdash k' \quad \leftrightarrow \quad z' \in \delta(z, \varepsilon)$$

simulation of nfa's by fa's becomes harder: in power set construction we had

$$z'_0 = \{z_0\}$$
 , $\delta(Y, a) = \bigcup_{q \in Y} \delta(q, a)$

so far: A finite input/tape alphabet, Z finite set of states, set valued transition fuction

$$\delta: Z \times A \rightarrow 2^Z$$

now:

$$A_{\varepsilon} = A \cup \{\varepsilon\}, \ \delta: Z \times A_{\varepsilon} \to 2^{Z}$$

 ε -moves

$$z' \in \delta(z, \varepsilon)$$

z' can be reached from z by reading nothing, i.e. the head on the input tape is not advanced.

semantics:

• so far successor configurations consume an input symbol

$$k = (z, w)$$
 , $k' = (z', tail(w))$

then

$$k \vdash k' \quad \leftrightarrow \quad z' \in \delta(z, hd(w))$$

• now also:

$$k = (z, \underline{w})$$
 , $k' = (z', \underline{w})$

then

$$k \vdash k' \quad \leftrightarrow \quad z' \in \delta(z, \underline{\varepsilon})$$

simulation of nfa's by fa's becomes harder: in power set construction we had

$$z'_0 = \{z_0\}$$
 , $\delta(Y, a) = \bigcup_{q \in Y} \delta(q, a)$

• must be augmented by states reachable by ε -moves. For $Q \subset Z$ define

$$E_0(Q) = Q (1)$$

$$E_{i+1}(Q) = \bigcup_{q \in E_i(Q)} \delta(q, \varepsilon)$$
 (2)

$$E(Q) = \bigcup_{i=0}^{|Z|-1} E_i(Q) \tag{3}$$

(4)

new initial state and next state in deterministic simulation

$$z'_0 = E(\lbrace z_0 \rbrace)$$
 , $\delta(Y, a) = E(\bigcup_{a \in Y} \delta(q, a))$

so far: A finite input/tape alphabet, Z finite set of states, set valued transition fuction

$$\delta: Z \times A \rightarrow 2^Z$$

now:

$$A_{\varepsilon} = A \cup \{\varepsilon\}, \ \delta: Z \times A_{\varepsilon} \to 2^{Z}$$

 ε -moves

$$z' \in \delta(z, \varepsilon)$$

z' can be reached from z by reading nothing, i.e. the head on the input tape is not advanced.

semantics:

• so far successor configurations consume an input symbol

$$k = (z, w)$$
 , $k' = (z', tail(w))$

then

$$k \vdash k' \quad \leftrightarrow \quad z' \in \delta(z, hd(w))$$

• now also:

$$k = (z, \underline{w})$$
 , $k' = (z', \underline{w})$

then

$$k \vdash k' \quad \leftrightarrow \quad z' \in \delta(z, \underline{\varepsilon})$$

simulation of nfa's by fa's becomes harder: in power set construction we had

$$z'_0 = \{z_0\}$$
 , $\delta(Y, a) = \bigcup_{q \in Y} \delta(q, a)$

• must be augmented by states reachable by ε -moves. For $Q \subset Z$ define

$$E_0(Q) = Q (1)$$

$$E_{i+1}(Q) = \bigcup_{q \in E_i(Q)} \delta(q, \varepsilon) \tag{2}$$

$$E(Q) = \bigcup_{i=0}^{|Z|-1} E_i(Q) \tag{3}$$

(4)

new initial state and next state in deterministic simulation

$$z'_0 = E(\lbrace z_0 \rbrace)$$
 , $\delta(Y, a) = E(\bigcup_{q \in Y} \delta(q, a))$

so far: A finite input/tape alphabet, Z finite set of states, set valued transition fuction

$$\delta: Z \times A \rightarrow 2^Z$$

now:

$$A_{\varepsilon} = A \cup \{\varepsilon\}, \ \delta: Z \times A_{\varepsilon} \to 2^{Z}$$

 ε -moves

$$z' \in \delta(z, \varepsilon)$$

z' can be reached from z by reading nothing, i.e. the head on the input tape is not advanced.

semantics:

• so far successor configurations consume an input symbol

$$k = (z, w)$$
 , $k' = (z', tail(w))$

then

$$k \vdash k' \quad \leftrightarrow \quad z' \in \delta(z, hd(w))$$

• now also:

$$k = (z, \underline{w})$$
 , $k' = (z', \underline{w})$

then

$$k \vdash k' \quad \leftrightarrow \quad z' \in \delta(z, \varepsilon)$$

simulation of nfa's by fa's becomes harder: in power set construction we had

$$z'_0 = \{z_0\}$$
 , $\delta(Y, a) = \bigcup_{q \in Y} \delta(q, a)$

• must be augmented by states reachable by ε -moves. For $Q \subset Z$ define

$$E_0(Q) = Q (1)$$

$$E_{i+1}(Q) = \bigcup_{q \in E_i(Q)} \delta(q, \varepsilon)$$
 (2)

$$E(Q) = \bigcup_{i=0}^{|Z|-1} E_i(Q) \tag{3}$$

(4)

new initial state and next state in deterministic simulation

$$z'_0 = E(\lbrace z_0 \rbrace)$$
 , $\delta(Y, a) = E(\bigcup_{a \in Y} \delta(q, a))$

looks like great abstract nonsense...wait and see

so far: A finite input/tape alphabet, Z finite set of states, set valued transition fuction

$$\delta: Z \times A \rightarrow 2^Z$$

now:

$$A_{\varepsilon} = A \cup \{\varepsilon\}, \ \delta: Z \times A_{\varepsilon} \to 2^{Z}$$

 ε -moves

$$z' \in \delta(z, \varepsilon)$$

z' can be reached from z by reading nothing, i.e. the head on the input tape is not advanced.

semantics:

• so far successor configurations consume an input symbol

$$k = (z, w)$$
 , $k' = (z', tail(w))$

then

$$k \vdash k' \quad \leftrightarrow \quad z' \in \delta(z, hd(w))$$

• now also:

$$k = (z, \underline{w})$$
 , $k' = (z', \underline{w})$

then

$$k \vdash k' \quad \leftrightarrow \quad z' \in \delta(z, \varepsilon)$$

simulation of nfa's by fa's becomes harder: in power set construction we had

$$z'_0 = \{z_0\}$$
 , $\delta(Y, a) = \bigcup_{q \in Y} \delta(q, a)$

• must be augmented by states reachable by ε -moves. For $Q \subset Z$ define

$$E_0(Q) = Q (1)$$

$$E_{i+1}(Q) = \bigcup_{q \in E_i(Q)} \delta(q, \varepsilon)$$
 (2)

$$E(Q) = \bigcup_{i=0}^{|Z|-1} E_i(Q) \tag{3}$$

(4)

new initial state and next state in deterministic simulation

$$z'_0 = E(\lbrace z_0 \rbrace)$$
 , $\delta(Y, a) = E(\bigcup_{a \in Y} \delta(q, a))$

looks like great abstract nonsense...wait and see

OR: have you seen it already?

deterministic and nondeterministic models of computation

always

- K: set of configurations
- E: set of inputs

determinism:

- $k \in K$ and $e \in E$ uniquely determine next configuration k'
- model by transition function

$$\delta: K \times E \to K$$

• examples: hardware, MIPS, C0

graphical representation

$$k \to^e k' \leftrightarrow k' = \delta(k, e)$$
.

k' is the next configuration after k with input e

nondeterminism:

$$k \rightarrow^e k'$$

k' is a possible next configuration after k with input e

example: ISA + disk

• processor step: $d \rightarrow^{eev} \delta(d, eev)$

• disk step: $d \to \eta(d)$

consumes no external interrupt signal ϵ -move!

Lemma 4. For every regular language $L \in R(A)$ there is an nfa M which accepts L:

$$L(M) = L$$

Lemma 4. For every regular language $L \in R(A)$ there is an nfa M which accepts L:

$$L(M) = L$$

Proof by induction over the structure of regular expressions:

• base case: $L = \{\varepsilon\}$ or $L = \{a\}$

Lemma 4. For every regular language expression $L \in R(A)$ there is an nfa M which accepts L:

$$L(M) = L$$

Proof by induction over the structure of regular expressions:

• base case: $L = \{\varepsilon\}$ or $L = \{a\}$

• $L(M'') = L \circ L'$:

Figure 8: Automata for regular languages: $L \circ L'$

$$Z'' = Z \cup Z'$$

$$z''_0 = z_0$$

$$Z''_A = Z'_A$$

$$\delta''(x,a) = \begin{cases} \delta(x,a) & x \in Z \setminus Z_A \\ \delta(x,a) \cup \{z'_0\} & x \in Z_A, a = \varepsilon \\ \delta'(x,a) & \text{otherwise} \end{cases}$$

Lemma 4. For every regular language expression $L \in R(A)$ there is an nfa M which accepts L:

$$L(M) = L$$

Proof by induction over the structure of regular expressions:

• base case: $L = \{\varepsilon\}$ or $L = \{a\}$

•
$$L(M'') = L \cup L'$$

Figure 9: Automata for regular languages: $L \cup L'$

$$Z = Z \cup Z' \cup \{z_0''\} \text{ (new start state)}$$

$$\delta(x,a) = \begin{cases} \delta(x,a) & x \in Z \\ \delta'(x,a) & x \in Z' \\ \{z_0, z_0'\} & x = z_0'', a = \varepsilon \end{cases}$$

$$Z_a'' = Z_A \cup Z_A'$$

Lemma 4. For every regular language expression $L \in R(A)$ there is an nfa M which accepts L:

$$L(M) = L$$

Proof by induction over the structure of regular expressions:

• base case: $L = \{\varepsilon\}$ or $L = \{a\}$

•
$$L(M'') = L \cup L'$$

Figure 9: Automata for regular languages: $L \cup L'$

$$Z = Z \cup Z' \cup \{z_0''\} \text{ (new start state)}$$

$$\delta(x,a) = \begin{cases} \delta(x,a) & x \in Z \\ \delta'(x,a) & x \in Z' \\ \{z_0, z_0'\} & x = z_0'', a = \varepsilon \end{cases}$$

$$Z_a'' = Z_A \cup Z_A'$$

•
$$L(M'') = L^*$$
: exercise

7 Pumping lemma

Lemma 5. Let $L \in R(A)$ be a regular language. Then there is a constant N such that all words $w \in L$ which are longer than N, i.e.

$$|w| = n > N$$

can be decomposed as

$$w = uvx$$

such that

$$v \geq 1$$

$$|uv| \leq N$$

you can pump on v: $\forall i \in \mathbb{N}_0$. $uv^i w \in L$

7 Pumping lemma

Lemma 5. Let $L \in R(A)$ be a regular language. Then there is a constant N such that all words $w \in L$ which are longer than N, i.e.

$$|w| = n > N$$

can be decomposed as

$$w = uvx$$

such that

$$\begin{array}{ccc} v & \geq & 1 \\ |uv| & \leq & N \end{array}$$

you can pump on v: $\forall i \in \mathbb{N}_0$. $uv^i w \in L$

Hence

Lemma 6.

$$\{a^nb^n: n \in \mathbb{N}\}$$
 is not regular

7 Pumping lemma

Lemma 5. Let $L \in R(A)$ be a regular language. Then there is a constant N such that all words $w \in L$ which are longer than N, i.e.

$$|w| = n > N$$

can be decomposed as

$$w = uvx$$

such that

$$\begin{array}{ccc} v & \geq & 1 \\ |uv| & \leq & N \end{array}$$

you can pump on v: $\forall i \in \mathbb{N}_0$. $uv^i w \in L$

Hence

Lemma 6.

$$\{a^nb^n: n \in \mathbb{N}\}$$
 is not regular

proof of lemma 5:

Let N = number of states of dfa M accepting L and let n = |w| > N. Consider computation of M started with w

$$(k_0,k_1,\ldots,k_n)$$

$$k_i = (z_i, w_{i+1} \dots w_n)$$

Lemma 5. Let $L \in R(A)$ be a regular language. Then there is a constant N such that all words $w \in L$ which are longer than N, i.e.

$$|w| = n > N$$

can be decomposed as

$$w = uvx$$

such that

$$\begin{aligned} v &\geq 1 \\ |uv| &\leq N \\ \forall i \in \mathbb{N}_0. \quad uv^i w &\in L \end{aligned}$$

you can pump on v:

Hence

Lemma 6.

 $\{a^nb^n: n \in \mathbb{N}\}$ is not regular

ping lemma

proof of lemma 5:

Let N = number of states of dfa M accepting L and let n = |w| > N. Consider computation of M started with w

$$(k_0,k_1,\ldots,k_n)$$

$$k_i = (z_i, w_{i+1} \dots w_n)$$

Pidgeon hole argument:

$$n > N \rightarrow \exists i, j > i. z_i = z_j$$

Figure 10: proof of puming lemma for regular languages