# Universidade de São Paulo ICMC - Instituto de Ciências Matemáticas e Computação

SME0823 - Modelos de Regressão e Aprendizado Supervisionado II

Brenno Hissao Serikawa - 11296697 Caio Assumpção Rezzadori - 11810481 Vitor Beneti Martins - 11877635

Prof. Dr. Mário de Castro

# Enunciado

Selecione um conjunto de dados de uma base de dados pública (Reddit, Kaggle, UCI Machine Learning, etc) relacionado a um problema de classificação.

Proponha um modelo de classificação e avalie sua capacidade preditiva. Variáveis explicativas podem ser selecionadas utilizando critérios como GAIC e IV.

# 1 Introdução

A base de dados escolhida foi retirada do site "Kaggle" [1] e traz dados de diagnóstico de câncer de mama do estado de Wisconsin (EUA), a qual será utilizada para propor o modelo de classificação.

A variável resposta, dada por "diagnosis" assume os valores "B" (tumor benigno) e "M" (tumor maligno), as quais possuem 357 e 212 observações respectivamente, totalizando 569 observações. Seus valores categóricos foram convertidos para 0 e 1, respectivamente. Além disso, desconsiderando colunas vazias, há 31 variáveis explicativas, coletadas por meio de imagens médicas.

# 2 Metodologia

#### 2.1 Calculo do valor da informação

A seleção de variáveis inicial para o modelo será feita por meio da métrica IV (valor de informação), dada por:

$$IV_{x} = \sum_{j}^{r} (p_{j} - q_{j}) WoE(j)$$

$$WoE_{x}(j) = \begin{cases} \ln\left(\frac{p_{j}}{q_{j}}\right), \text{ caso } p_{j} \neq 0 \text{ e } q_{j} \neq 0 \\ 0, \text{ caso contrário} \end{cases}$$

$$(1)$$

Em que:

- x é a variável numérica sendo analisada;
- ullet r é a quantidade de divisões em intervalos igualmente espaçados dos valores que x pode assumir;
- $\bullet$  j representa o j-ésimo intervalo que a variável numérica x está sendo dividida;
- $p_j$  é a porcentagem de observações da categoria 1 cujo valor de x está no intervalo j em relação ao total de observações da categoria 1 (212 observações). Pode ser vista como uma probabilidade empírica da categoria 1 estar no intervalo j;
- $q_j$  é a porcentagem de observações da categoria 0 cujo valor de x está no intervalo j em relação ao total de observações da categoria 0 (357 observações). Pode ser vista como uma probabilidade empírica da categoria 0 estar no intervalo j.

WoE é a abreviação de "Weight of Evidence", e a definição que está sendo feita aqui foi adaptada sobre as definições normalmente encontradas, pois os dados escolhidos possuem intervalos onde não há observações de uma classe ou outra, o que faz com que existam j tais que  $p_j=0$  ou  $q_j=0$ , e como  $\ln(0)$  e  $\ln(p_j/0)$  não estão definidos, decidimos retirar tais intervalos da soma total atribuindo 0 à função WoE quando avaliada sobre estes j. Um outro jeito de contornar este problema é escolher r de tal forma que não existam intervalos sem observações de 0 e 1, mas dado o alto número de variáveis, julgamos necessário fazer esta adaptação para evitar possíveis problemas sobre o cálculo de IV.

A seleção de variáveis será feita seguindo a tabela abaixo.

| IV         | Poder preditivo |
|------------|-----------------|
| < 0.02     | Desprezível     |
| 0.02 - 0.1 | Fraco           |
| 0.1 - 0.3  | Médio           |
| 0.3 - 0.5  | Forte           |
| > 0.5      | Muito forte     |

Uma vez com as métricas IV calculadas, será feita uma seleção de variáveis iniciais para ajustar múltiplos modelos de regressão logística para a classificação binária. Após isso, tais modelos serão comparados pela métrica GAIC (Generalized Akaike information criterion) com o intuito de encontrar o conjunto de variáveis que reduz a perda de informação dos dados. Outros critérios serão utilizados para avaliar os modelos e serão apresentados em breve.

#### 2.2 Regressão Logistica

A regressão logística é um método estatístico utilizado para modelar a relação entre uma variável dependente binária (que assume dois valores, como 0 ou 1) e uma ou mais variáveis independentes. Ela é amplamente utilizada em análises de dados onde a variável de interesse é categórica e as respostas não podem ser representadas adequadamente por um modelo de regressão linear.

#### Formulação

Isso posto, uma forma de desenvolver um modelo preditivo para respostas binárias é por meio da estimação dos parâmetros da função logística/curva sigmoide, dada por:

$$f_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^T \boldsymbol{x}}}$$

onde  $x, \theta \in \mathbb{R}^p$ , sendo x o vetor de p variáveis preditoras e  $\theta$  o vetor dos p parâmetros que se deseja estimar.

Ao proceder com a estimação dos parâmetros da função logística para construir um modelo preditivo, é imperativo incorporar a consideração da independência das observações. Este requisito fundamental assegura que cada observação no conjunto de dados seja independente das demais, evitando potenciais vieses nas estimativas dos parâmetros. Outra consideração essencial é a ausência de multicolinearidade entre as variáveis preditoras. A multicolinearidade, indicada por elevada correlação entre variáveis independentes, pode impactar negativamente a interpretação dos coeficientes estimados.

Tal estimação fornecerá, na verdade, a função de densidade de probabilidade do evento ser a resposta 1, dadas as variáveis que se tem controle. Ou seja, será estimada f(x) = P(Y = 1|X = x),

onde Y é a variável resposta (variável que será predita) e X ao vetor de variáveis preditoras (variáveis controláveis).

Uma vez com a função de probabilidade estimada, será utilizado o seguinte critério de classificação para novas predições:

$$C(x) = \begin{cases} 1, \text{ se } f_{\theta}(x) > 0.5\\ 0, \text{ caso contrário} \end{cases}$$
 (2)

#### 2.3 Métricas de avaliação

A avaliação adequada do desempenho de um classificador é fundamental para compreender sua eficácia em tarefas específicas. Neste contexto, várias métricas são empregadas para medir diferentes aspectos do desempenho de um modelo. Neste trabalho, nos concentraremos em quatro métricas essenciais: acurácia, precisão, recall e F1-score.

#### Divisão do Dataset

Para a construção de todos os modelos criados, será utilizada a divisão **70-30**, em que o *dataset* é dividido em **70**% para treino (ajuste dos modelos) e **30**% para teste (calcular as métricas de avaliação). Isso é necessário para que o modelo treinado realize os testes sobre dados desconhecidos.

#### Acurácia

A acurácia é uma métrica amplamente utilizada que mensura a proporção de predições corretas em relação ao total de predições. Representada como uma porcentagem, a acurácia oferece uma visão geral do quão bem o modelo está realizando suas previsões. Sua formulação é dada por:

$$Acc = \frac{TN + TP}{TN + TP + FN + FP}$$

Onde TP representa Verdadeiros Positivos, TN representa Verdadeiros Negativos, FP são Falsos Positivos e FN são Falsos Negativos.

#### Precisão

A precisão focaliza na qualidade das predições positivas do modelo. Sua formulação é dada por:

$$Precision = \frac{TP}{TP + FP} \tag{3}$$

#### Recall

O recall, também conhecido como revocação, mede a capacidade do modelo em identificar todas as instâncias positivas presentes nos dados. Sua formulação é dada por:

$$Recall = \frac{TP}{TP + FN}$$

#### F1-score

O F1-score é uma métrica que combina precisão e recall em uma única medida, representanda a média harmônica entre essas duas métricas.

$$F1 = 2 \times \frac{P \times R}{P + R}$$

Onde P representa Precisão e R é o Recall.

# 3 Resultados

Ao calcular o valor da informação, obtemos o resultado disposto na Tabela 2. Percebe-se que a única variável que teve IV desprezível foi a variável de identificação "id", o que é de se esperar, uma vez que a identificação do paciente deve ser independente de seu diagnóstico. Todavia, nenhuma outra variável teve IV abaixo de 0.02 e ser considerado desprezível. Uma possível justificativa para isso é a baixa quantidade de observações da base de dados utilizada.

#### Modelo 1

O resultado do primeiro ajuste está disposto na Tabela 3. A acurácia do modelo foi de 94,15%. O modelo não retornou um valor para GAIC. Os valores para a **Precisão**, **Recall** e **F1-score** foram:

| Classe | Precisão | Recall | F1-score |
|--------|----------|--------|----------|
| 0      | 0.962    | 0.944  | 0.953    |
| 1      | 0.908    | 0.937  | 0.922    |

Claramente, o ajuste não foi bom. Percebe-se que tanto a estimação dos valores dos coeficientes quanto seus intervalos de confiança explodiram, exibindo a instabilidade do modelo.

Ao investigar as causas disso, encontrou-se a matriz de correlações disposta na Figura 1. Percebe-se que existe um problema de multicolinearidade no modelo, i.e, há muitos pares de variáveis explicativas fortemente correlacionadas, o que explica a imprecisão e instabilidade da estimação do modelo, por exemplo, as variáveis "radius\_mean" com as variáveis "area\_mean" e "perimeter\_mean" com correlações de aproximadamente 99%.

#### Modelo 2: Modelo 1 sem variáveis fortemente correlacionadas

Uma vez com o problema identificado, geramos a Tabela 4 dos pares de variáveis com mais de 85% de correlação, juntamente com seus IV's. A tabela está ordenada pela coluna "Correlação" e depois pela coluna "IV Max", este último sendo o IV máximo entre as duas variáveis analisadas.

Assim, para cada par com fortes correlações listadas na Tabela 4, foram removidas as variáveis com menor IV: "perimeter\_mean", "perimeter\_worst", "radius\_mean", "area\_mean", "area\_worst", "perimeter\_se", "radius\_se", "concave points\_mean", "texture\_worst", "compactness\_worst", "concavity\_worst" e "concave points\_worst".

O ajuste do modelo é disposto na Tabela 5. A acurácia do modelo foi novamente de 94,15% e seu GAIC de 73.63. Os valores para a **Precisão**, **Recall** e **F1-score** foram:

| Classe | Precisão | Recall | F1-score |
|--------|----------|--------|----------|
| 0      | 0.962    | 0.944  | 0.953    |
| 1      | 0.908    | 0.937  | 0.922    |

Nota-se agora que os coeficientes tiveram muito mais estabilidade em suas estimações. Além disso, muitos deles foram estatisticamente significativos com p-valores abaixo de 5%, rejeitando a hipótese nula de que sejam iguais a zero.

#### Modelo 3: Modelo 2 com apenas variáveis significativas

Adaptando o modelo anterior e mantendo apenas as variáveis com significância estatística, obtemos o modelo disposto na Tabela 6.

Após tal remoção, a acurácia aumentou para 94,74% e GAIC de 157.21. Os valores para a **Precisão**, **Recall** e **F1-score** foram:

| Classe | 9 | Precisão | Recall | F1-score |
|--------|---|----------|--------|----------|
| 0      |   | 0.971    | 0.944  | 0.958    |
| 1      |   | 0.909    | 0.952  | 0.930    |

Novamente, foi encontrado um coeficiente sem significância estatística: "area\_se". Todavia, ao ajustar o modelo sem esta variável, tanto as estimativas dos coeficientes quanto as métricas de acurácia e GAIC diferiram muito pouco do modelo com a variável. Isso posto, achamos que não seria interessante colocá-lo no trabalho.

#### Modelo 4: Modelo 1 com as variáveis que foram retiradas no Modelo 2

Com o intuito de analisar o conjunto de variáveis retiradas no Modelo 1.1, foi também ajustado o modelo com apenas tais preditoras. O resultado está disposto na Tabela 7.

A acurácia foi de 96,49% e GAIC 76.95. Os valores para a **Precisão**, **Recall** e **F1-score** foram:

| Classe | Precisão | Recall | F1-score |
|--------|----------|--------|----------|
| 0      | 0.964    | 0.981  | 0.972    |
| 1      | 0.967    | 0.937  | 0.952    |

#### Modelo 5: Modelo 4 com apenas variáveis significativas

Percebe-se que a acurácia do Modelo 4 foi superior às demais. Todavia, ao ajustar o modelo novamente apenas com as variáveis com significância estatística, obtemos o ajuste da Tabela 8, cuja acurácia foi de 88,3% e GAIC 326.74. Os valores para a **Precisão**, **Recall** e **F1-score** foram:

| Classe | Precisão | Recall | F1-score |
|--------|----------|--------|----------|
| 0      | 0.907    | 0.907  | 0.907    |
| 1      | 0.841    | 0.841  | 0.841    |

# 4 Discussão

A Tabela 1 resume os resultados de acurácia e GAIC, obtidos para cada um dos modelos.

| Modelos | GAIC   | Acurácia |
|---------|--------|----------|
| 1       | -      | 94,15%   |
| 2       | 73,63  | 94,15%   |
| 3       | 157,21 | 94,74%   |
| 4       | 76,95  | 96,49%   |
| 5       | 326,74 | 88,3%    |

Tabela 1: Acurácia e GAIC separada por modelo

Nota-se que o ajuste com menor GAIC foi o do Modelo 2, o que indica que seu conjuto de variáveis explicativas foi o melhor para explicar a variabilidade da resposta e evitar perdas de informação.

Percebe-se, todavia, que o modelo com maior poder preditivo foi o 4, justamente o que foi ajustado com variáveis muito correlacionadas entre si. Uma possível explicação para tal acurácia foi a redundância de informação sobre as variáveis preditoras, o que pode ter acrescentado um "peso" sobre a estimação da probabilidade para certos valores, impactando na classificação. Notase porém que seu GAIC foi levemente maior que do Modelo 2, indicando que houve um pouco mais de perda de informação.

A maior diferença surge ao se retirarem as variáveis sem significância estatística destes modelos. Enquanto o Modelo 3 tem um súbito aumento de 0,59% em sua capacidade preditiva e um aumento de 105,36% em seu GAIC quando comparado com o Modelo 2, o Modelo 5 tem uma queda de aproximadamente 8% em sua acurácia e seu GAIC sofre um aumento de 324,61% comparado ao Modelo 4.

Retirar variáveis sem significância estatística é algo muito importante para a interpretabilidade do modelo. Isso posto, a análise feita aqui neste trabalho indica que os modelos 2 e 3 são superiores aos demais modelos quando procura-se um ajuste para propósitos explicativos. Para propósitos preditivos, contudo, o Modelo 4 indica ser o mais adequado.

Comparando o ajuste dos cinco modelos, é evidente que a seleção das váriaveis preditoras é fundamental. A persistência de variáveis não significativas, como "area\_se" no Modelo 3 destaca a importância de considerar não apenas a estatística de significância, mas também o contexto do problema. Pode ser necessário explorar abordagens mais avançadas, como regularização, para lidar com variáveis redundantes.

Em resumo, a análise sistemática da multicolinearidade e a seleção cuidadosa de variáveis foram essenciais para a construção dos ajustes estáveis e eficazes. O comprometimento entre a precisão preditiva e a interpretabilidade do modelo deve ser considerado para obter resultados confiáveis na análise estatística dependendo do propósito buscado.

# Tabelas e figuras

| Variáveis                   | IV     |
|-----------------------------|--------|
| concavity_mean              | 3.7192 |
| $concavity\_worst$          | 3.4629 |
| concave points_worst        | 3.2601 |
| $radius\_worst$             | 3.0726 |
| ${ m radius\_mean}$         | 2.9331 |
| $area\_worst$               | 2.8103 |
| perimeter_worst             | 2.5524 |
| concave points_mean         | 2.5109 |
| perimeter_mean              | 2.3499 |
| area_mean                   | 2.311  |
| $compactness\_mean$         | 2.0527 |
| $area\_se$                  | 1.9285 |
| $compactness\_worst$        | 1.8023 |
| $radius\_se$                | 1.5861 |
| $perimeter\_se$             | 1.5432 |
| concave points_se           | 1.2189 |
| $texture\_mean$             | 1.2098 |
| $texture\_worst$            | 1.0322 |
| $smoothness\_worst$         | 0.8697 |
| $smoothness\_mean$          | 0.6999 |
| $symmetry\_worst$           | 0.6525 |
| $compactness\_se$           | 0.6125 |
| $symmetry\_mean$            | 0.5195 |
| $fractal\_dimension\_worst$ | 0.4924 |
| $concavity\_se$             | 0.3755 |
| $fractal\_dimension\_se$    | 0.188  |
| $fractal\_dimension\_mean$  | 0.162  |
| $symmetry\_se$              | 0.104  |
| $texture\_se$               | 0.0861 |
| $smoothness\_se$            | 0.0747 |
| $\operatorname{id}$         | 0.0029 |

Tabela 2: Resultados IV

| Dep. Variable:           | diagnos      | eie                      | No. Obs             | 569                                    |             |            |
|--------------------------|--------------|--------------------------|---------------------|----------------------------------------|-------------|------------|
| Model:                   | GLM          |                          | Df Residuals:       |                                        |             | 539        |
| Model Family:            | Binomi       |                          | Df Mode             |                                        |             | 29         |
|                          |              |                          |                     |                                        |             |            |
| Link Function:           | Logit        |                          | Scale:              |                                        |             | 1.0000     |
| Method:                  | IRLS         |                          | Log-Like            | elihood                                | :           | nan        |
| Date:                    | Mon, 13 No   | v 2023                   | Devianc             | e:                                     |             | 1.0371e-08 |
| Time:                    | 03:43:0      | )1                       | Pearson             | chi2:                                  |             | 5.19e-09   |
| No. Iterations:          | 34           |                          | Pseudo R-squ. (CS): |                                        |             | nan        |
| Covariance Type:         | nonrobi      | ust                      |                     |                                        |             |            |
|                          | coef         | $\operatorname{std}$ err | z                   | $\mathbf{P}{>}\left \mathbf{z}\right $ | [0.025]     | 0.975]     |
| radius_mean              | -4198.5057   | 4.21e+06                 | -0.001              | 0.999                                  | -8.25e+06   |            |
| $texture\_mean$          | 90.9265      | $3.26\mathrm{e}{+05}$    | 0.000               | 1.000                                  | -6.39e + 05 |            |
| perimeter_mean           | 130.5049     | 3.56e + 05               | 0.000               | 1.000                                  | -6.97e + 05 | 6.98e + 05 |
| area_mean                | 31.1840      | 2.27e+04                 | 0.001               | 0.999                                  | -4.45e+04   | 4.45e+04   |
| $smoothness\_mean$       | 3.136e+04    | 2.82e+07                 | 0.001               | 0.999                                  | -5.53e+07   | 5.54e+07   |
| compactness_mean         | -3.816e + 04 | 2.39e+07                 | -0.002              | 0.999                                  | -4.69e + 07 | 4.68e + 07 |
| concavity_mean           | 2.063e + 04  | 2.16e+07                 | 0.001               | 0.999                                  | -4.22e+07   | 4.23e+07   |
| concave points_mean      | 2.033e+04    | 2.95e+07                 | 0.001               | 0.999                                  | -5.77e + 07 | 5.78e + 07 |
| symmetry_mean            | -1.461e+04   | 9.88e + 06               | -0.001              | 0.999                                  | -1.94e + 07 | 1.93e+07   |
| fractal_dimension_mean   | 4.746e + 04  | 2.88e + 07               | 0.002               | 0.999                                  | -5.65e + 07 | 5.66e + 07 |
| radius_se                | 2429.3183    | 4.6e + 06                | 0.001               | 1.000                                  | -9.01e+06   | 9.02e+06   |
| texture_se               | -189.8907    | 3.41e + 06               | -5.56e-05           | 1.000                                  | -6.69e + 06 | 6.69e + 06 |
| perimeter_se             | -808.9518    | 4.68e + 05               | -0.002              | 0.999                                  | -9.19e + 05 | 9.17e + 05 |
| area_se                  | 72.5097      | 4.46e+04                 | 0.002               | 0.999                                  | -8.73e+04   | 8.74e+04   |
| $smoothness\_se$         | -7.361e+04   | 3.32e+08                 | -0.000              | 1.000                                  | -6.52e + 08 | 6.52e + 08 |
| compactness_se           | 6.53e + 04   | 3.41e+07                 | 0.002               | 0.998                                  | -6.67e + 07 | 6.68e + 07 |
| concavity_se             | -5.354e+04   | 2.12e+07                 | -0.003              | 0.998                                  | -4.16e+07   | 4.15e+07   |
| concave points_se        | 2.118e + 05  | 2.88e + 08               | 0.001               | 0.999                                  | -5.63e + 08 | 5.64e + 08 |
| symmetry_se              | -6.71e + 04  | 6.22e+07                 | -0.001              | 0.999                                  | -1.22e+08   | 1.22e+08   |
| $fractal\_dimension\_se$ | -5.014e+05   | 4.41e+08                 | -0.001              | 0.999                                  | -8.66e + 08 | 8.65e + 08 |
| radius_worst             | 1101.4212    | 1.15e+06                 | 0.001               | 0.999                                  | -2.25e+06   | 2.25e+06   |
| texture_worst            | 40.8056      | 3.46e + 05               | 0.000               | 1.000                                  | -6.77e + 05 | 6.77e + 05 |
| perimeter_worst          | 39.0208      | 7.24e+04                 | 0.001               | 1.000                                  | -1.42e+05   | 1.42e + 05 |
| area_worst               | -7.2847      | 1.06e + 04               | -0.001              | 0.999                                  | -2.08e+04   | 2.08e+04   |
| $smoothness\_worst$      | -3280.5012   | 2.95e+07                 | -0.000              | 1.000                                  | -5.79e + 07 | 5.79e+07   |
| compactness_worst        | -5159.2425   | 1.16e+07                 | -0.000              | 1.000                                  | -2.28e+07   | 2.28e+07   |
| concavity_worst          | 4222.7058    | 6.24e + 06               | 0.001               | 0.999                                  | -1.22e+07   | 1.22e+07   |
| concave points_worst     | 4729.4242    | 3.95e + 07               | 0.000               | 1.000                                  | -7.74e + 07 | 7.74e+07   |
| symmetry_worst           | 1.472e + 04  | 5.86e + 06               | 0.003               | 0.998                                  | -1.15e+07   | 1.15e+07   |
| fractal_dimension_worst  | 3.674e + 04  | $3.95\mathrm{e}{+07}$    | 0.001               | 0.999                                  | -7.74e + 07 | 7.74e+07   |

Tabela 3: Ajuste do Modelo 1



Figura 1: Correlação das variáveis

|    | Variavel 1           | Variavel 2           | Correlação | IV 1 | IV 2 | IV Max |
|----|----------------------|----------------------|------------|------|------|--------|
| 0  | radius_mean          | perimeter_mean       | 1.00       | 2.93 | 2.35 | 2.93   |
| 24 | radius_worst         | perimeter_worst      | 0.99       | 3.07 | 2.55 | 3.07   |
| 1  | radius_mean          | area_mean            | 0.99       | 2.93 | 2.31 | 2.93   |
| 6  | perimeter_mean       | area_mean            | 0.99       | 2.35 | 2.31 | 2.35   |
| 25 | radius_worst         | area_worst           | 0.98       | 3.07 | 2.81 | 3.07   |
| 26 | perimeter_worst      | area_worst           | 0.98       | 2.55 | 2.81 | 2.81   |
| 21 | radius_se            | perimeter_se         | 0.97       | 1.59 | 1.54 | 1.59   |
| 9  | perimeter_mean       | perimeter_worst      | 0.97       | 2.35 | 2.55 | 2.55   |
| 2  | radius_mean          | radius_worst         | 0.97       | 2.93 | 3.07 | 3.07   |
| 8  | perimeter_mean       | radius_worst         | 0.97       | 2.35 | 3.07 | 3.07   |
| 3  | radius_mean          | perimeter_worst      | 0.97       | 2.93 | 2.55 | 2.93   |
| 11 | area_mean            | radius_worst         | 0.96       | 2.31 | 3.07 | 3.07   |
| 13 | area_mean            | area_worst           | 0.96       | 2.31 | 2.81 | 2.81   |
| 12 | area_mean            | perimeter_worst      | 0.96       | 2.31 | 2.55 | 2.55   |
| 22 | radius_se            | area_se              | 0.95       | 1.59 | 1.93 | 1.93   |
| 10 | perimeter_mean       | area_worst           | 0.94       | 2.35 | 2.81 | 2.81   |
| 4  | radius_mean          | area_worst           | 0.94       | 2.93 | 2.81 | 2.93   |
| 23 | perimeter_se         | area_se              | 0.94       | 1.54 | 1.93 | 1.93   |
| 16 | concavity_mean       | concave points_mean  | 0.92       | 3.72 | 2.51 | 3.72   |
| 5  | texture_mean         | texture_worst        | 0.91       | 1.21 | 1.03 | 1.21   |
| 20 | concave points_mean  | concave points_worst | 0.91       | 2.51 | 3.26 | 3.26   |
| 27 | $compactness\_worst$ | concavity_worst      | 0.89       | 1.80 | 3.46 | 3.46   |
| 17 | concavity_mean       | concavity_worst      | 0.88       | 3.72 | 3.46 | 3.72   |
| 14 | compactness_mean     | concavity_mean       | 0.88       | 2.05 | 3.72 | 3.72   |
| 15 | compactness_mean     | compactness_worst    | 0.87       | 2.05 | 1.80 | 2.05   |
| 18 | concavity_mean       | concave points_worst | 0.86       | 3.72 | 3.26 | 3.72   |
| 19 | concave points_mean  | perimeter_worst      | 0.86       | 2.51 | 2.55 | 2.55   |
| 28 | concavity_worst      | concave points_worst | 0.86       | 3.46 | 3.26 | 3.46   |
| 7  | perimeter_mean       | concave points_mean  | 0.85       | 2.35 | 2.51 | 2.51   |

Tabela 4: Pares de variáveis com correlações superiores à 85%

| Dep. Variable:           | diagnos       | is      | No. O               | bservat | ions:     | 398     |
|--------------------------|---------------|---------|---------------------|---------|-----------|---------|
| Model:                   | GLM           |         | Df Residuals:       |         |           | 380     |
| Model Family:            | Binomial      |         | Df Model:           |         |           | 17      |
| Link Function:           | Logit         |         | Scale:              |         |           | 1.0000  |
| Method:                  | IRLS          |         | Log-Li              | kelihoo | d:        | -18.815 |
| Date:                    | Mon, 13 Nov   | 2023    | Devia               |         |           | 37.630  |
| Time:                    | 18:16:3       |         | Pearso              | n chi2: |           | 39.6    |
| No. Iterations:          | 12            | ~       | Pseudo              | n R-sar | (CS)      | 0.7071  |
| Covariance Type:         | nonrobu       | st      | Pseudo R-squ. (CS): |         |           | 0.1011  |
|                          | coef          | std err | z                   | P> z    | [0.025    | 0.975]  |
| texture_mean             | 0.4847        | 0.182   | 2.660               | 0.008   | 0.128     | 0.842   |
| $smoothness\_mean$       | -74.0803      | 126.943 | -0.584              | 0.560   | -322.885  | 174.724 |
| compactness_mean         | -0.8916       | 45.358  | -0.020              | 0.984   | -89.791   | 88.008  |
| concavity_mean           | 151.6342      | 53.402  | 2.839               | 0.005   | 46.967    | 256.301 |
| $symmetry_mean$          | -7.0137       | 39.217  | -0.179              | 0.858   | -83.878   | 69.850  |
| fractal_dimension_mean   | n -474.4851   | 236.308 | -2.008              | 0.045   | -937.639  | -11.331 |
| $texture\_se$            | -1.1385       | 1.733   | -0.657              | 0.511   | -4.534    | 2.257   |
| area_se                  | 0.4088        | 0.141   | 2.893               | 0.004   | 0.132     | 0.686   |
| $smoothness\_se$         | -293.3957     | 548.559 | -0.535              | 0.593   | -1368.551 | 781.760 |
| $compactness\_se$        | -297.3398     | 155.236 | -1.915              | 0.055   | -601.597  | 6.917   |
| concavity_se             | -76.5417      | 62.842  | -1.218              | 0.223   | -199.710  | 46.626  |
| concave points_se        | 434.4955      | 243.599 | 1.784               | 0.074   | -42.949   | 911.940 |
| $symmetry\_se$           | -462.2580     | 281.336 | -1.643              | 0.100   | -1013.666 | 89.150  |
| $fractal\_dimension\_se$ | -494.2920     | 707.883 | -0.698              | 0.485   | -1881.717 | 893.133 |
| $radius\_worst$          | -0.9179 0.458 |         | -2.006              | 0.045   | -1.815    | -0.021  |
| $smoothness\_worst$      | 41.4971       | 82.708  | 0.502               | 0.616   | -120.607  | 203.601 |
| $symmetry\_worst$        | 65.4475       | 34.895  | 1.876               | 0.061   | -2.945    | 133.840 |
| fractal_dimension_wors   | t 138.6463    | 129.306 | 1.072               | 0.284   | -114.789  | 392.082 |

Tabela 5: Ajuste do Modelo 2

| Dep. Variable:         | diagnos             | sis     | No. Observations:   |          |          | 398      |
|------------------------|---------------------|---------|---------------------|----------|----------|----------|
| Model:                 | GLM                 |         | Df Residuals:       |          |          | 393      |
| Model Family:          | Binomial            |         | Df Mo               | del:     |          | 4        |
| Link Function:         | Logit               |         | Scale:              |          |          | 1.0000   |
| Method:                | IRLS                |         | Log-L               | ikelihoo | d:       | -73.609  |
| Date:                  | Mon, 13 Nov 2023    |         | Deviance:           |          |          | 147.22   |
| Time:                  | 18:37:09            |         | Pearson chi2:       |          |          | 355.     |
| No. Iterations:        | 8                   |         | Pseudo R-squ. (CS): |          |          | 0.6143   |
| Covariance Type:       | nonrobu             | ıst     |                     |          |          |          |
|                        | coef                | std err | z                   | P> z     | [0.025]  | 0.975]   |
| texture_mean           | 0.1428              | 0.050   | 2.884               | 0.004    | 0.046    | 0.240    |
| concavity_mean         | 45.1542 6.159       |         | 7.331               | 0.000    | 33.083   | 57.226   |
| fractal_dimension_mean | an -229.1148 30.222 |         | -7.581              | 0.000    | -288.349 | -169.881 |
| area_se                | 0.0221              | 0.016   | 1.393               | 0.164    | -0.009   | 0.053    |
| $radius\_worst$        | 0.4046              | 0.090   | 4.475               | 0.000    | 0.227    | 0.582    |

Tabela 6: Ajuste do Modelo 3

| Dep. Variable:       | diagnosis                 |         | No. C               | 398     |         |         |
|----------------------|---------------------------|---------|---------------------|---------|---------|---------|
| Model:               | $\overline{\mathrm{GLM}}$ |         | Df Re               | 386     |         |         |
| Model Family:        | Binomial                  |         | Df Me               | 11      |         |         |
| Link Function:       | Logit                     |         | Scale:              | 1.0000  |         |         |
| Method:              | IRLS                      |         | Log-L               | -26.478 |         |         |
| Date:                | Mon, 13 Nov 2023          |         | Devia               | 52.956  |         |         |
| Time:                | 19:34:06                  |         | Pears               | 76.0    |         |         |
| No. Iterations:      | 11                        |         | Pseudo R-squ. (CS): |         |         | 0.6956  |
| Covariance Type:     | nonrobust                 |         |                     | _       |         |         |
|                      | coef                      | std err | $\mathbf{z}$        | P> z    | [0.025] | 0.975]  |
| perimeter_mean       | -0.1632                   | 0.688   | -0.237              | 0.812   | -1.511  | 1.185   |
| $perimeter\_worst$   | -0.1707                   | 0.220   | -0.775              | 0.438   | -0.602  | 0.261   |
| radius_mean          | -2.3656                   | 4.340   | -0.545              | 0.586   | -10.872 | 6.141   |
| area_mean            | 0.0163                    | 0.018   | 0.926               | 0.355   | -0.018  | 0.051   |
| $area\_worst$        | 0.0397                    | 0.018   | 2.267               | 0.023   | 0.005   | 0.074   |
| $perimeter\_se$      | 1.8185                    | 1.122   | 1.620               | 0.105   | -0.381  | 4.018   |
| $radius\_se$         | -0.0193                   | 6.465   | -0.003              | 0.998   | -12.691 | 12.653  |
| concave points_mean  | 33.0427                   | 51.265  | 0.645               | 0.519   | -67.434 | 133.519 |
| $texture\_worst$     | 0.3835                    | 0.104   | 3.682               | 0.000   | 0.179   | 0.588   |
| $compactness\_worst$ | 3.6488                    | 9.217   | 0.396               | 0.692   | -14.417 | 21.715  |
| $concavity\_worst$   | -3.7208                   | 3.686   | -1.010              | 0.313   | -10.945 | 3.503   |
| concave points_worst | 64.5548                   | 27.492  | 2.348               | 0.019   | 10.672  | 118.437 |

Tabela 7: Ajuste do Modelo 4

| Dep. Variable:           | diagnosis                 |         | No. Observations: |        |         | 398     |
|--------------------------|---------------------------|---------|-------------------|--------|---------|---------|
| Model:                   | $\overline{\mathrm{GLM}}$ |         | Df Residuals:     |        |         | 395     |
| Model Family:            | Binomial                  |         | Df Model:         |        |         | 2       |
| Link Function:           | Logit                     |         | Scale:            |        |         | 1.0000  |
| Method:                  | IRLS                      |         | Log-Likelihood:   |        |         | -160.37 |
| Date:                    | Mon, 13 Nov 2023          |         | Deviance:         |        |         | 320.75  |
| Time:                    | 20:50:14                  |         | Pearson chi2:     |        |         | 370.    |
| No. Iterations:          | 6                         |         | Pseudo            | R-squ. | (CS):   | 0.4034  |
| Covariance Type:         | nonrobust                 |         |                   |        |         |         |
|                          | coef                      | std err | z                 | P> z   | [0.025] | 0.975]  |
| area_worst               | 0.0028                    | 0.001   | 5.538             | 0.000  | 0.002   | 0.004   |
| $texture\_worst$         | -0.2060                   | 0.020   | -10.095           | 0.000  | -0.246  | -0.166  |
| $concave\ points\_worst$ | 22.7077                   | 3.694   | 6.147             | 0.000  | 15.468  | 29.948  |

Tabela 8: Ajuste do Modelo 5

# Código

Para a confecção dos resultados do trabalho, foi utilizado a linguagem de programação *Python* no ambiente do **Google Colab**. Para manipulações numéricas e de dados gerais foram utilizadas essencialmente as bibliotecas *numpy* e *pandas*. Já para os ajustes dos modelos foram feitos com a biblioteca *statsmodels*. Para as métricas de desempenho e divisão dos dados em treino e teste, foi utilizada a biblioteca *sklearn*.

O código pode ser acessado em sua integra através do link https://bit.ly/TrabRegressao2

### Implementação de IV

```
def iv_woe(data, target, bins=10, show_woe=False):
2
      #Dataframes novos
3
      newDF, woeDF = pd.DataFrame(), pd.DataFrame()
4
      #Colunas dos dados
6
      cols = data.columns
      #Calculando WoE e IV para todas as variaveis preditoras
9
      for ivars in cols[~cols.isin([target])]:
10
          if (data[ivars].dtype.kind in 'bifc') and (len(np.unique(data[ivars]))>10):
11
              binned_x = pd.cut(data[ivars], bins, duplicates='drop') # Divisao em
12
      subintervalos
              d0 = pd.DataFrame({'x': binned_x, 'y': data[target]})
13
14
          else:
              d0 = pd.DataFrame({'x': data[ivars], 'y': data[target]})
          d = d0.groupby("x", as_index=False).agg({"y": ["count", "sum"]})
16
          d.columns = ['Cutoff', 'N', 'Events']
          d['% of Events'] = d['Events'] / d['Events'].sum() # p_j
          d['Non-Events'] = d['N'] - d['Events']
19
          d['% of Non-Events'] = d['Non-Events'] / d['Non-Events'].sum() # q_j
20
          d = d.loc[(d['Events'] > 0) & (d['Non-Events'] > 0)] # Retirando intervalos
21
      sem observcoes das categorias
          d['WoE'] = np.log(d['% of Events']/d['% of Non-Events'])
          d['IV'] = d['WoE'] * (d['% of Events'] - d['% of Non-Events'])
24
          d.insert(loc=0, column='Variable', value=ivars)
25
          temp =pd.DataFrame({"Variable" : [ivars], "IV" : [d['IV'].sum()]}, columns =
       ["Variable", "IV"])
          newDF=pd.concat([newDF,temp], axis=0)
27
          woeDF=pd.concat([woeDF,d], axis=0)
28
29
          # Exibindo tabela de WoE
30
31
          if show_woe == True:
              print(d)
32
      return newDF, woeDF
```

#### Implementação da métrica de acurácia

```
df.loc[df.probabilidade > 0.5, 'predicao'] = 1
acuracia = df[df['diagnosis'] == df['predicao']].shape[0]/df.shape[0]
return acuracia, df
```

# Referências

[1] Kaggle. Breast cancer wisconsin (diagnostic) data set https://www.kaggle.com/datasets/uciml/breast-cancer-wisconsin-data. 2016.