- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

17 luglio 2018

(Cognome)									-			(No	me)			=	ume	ro d	i ma	trice	ola)				

1	0	0	0	0	0
2	0	0	0	0	0
3	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
7	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
9	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
10					\circ

1. Sia y la soluzione di $y'(x) = \cos(\log(y(x)))$ con y(1) = 1, allora y'(1) vale A: N.A. B: 0 C: N.E. D: 1 E: $\sin(\log(y(x)))$

2. Modulo e argomento del numero complesso $z = (3+3i)^{-2}$ sono A: N.A. B: $(1/3, -\pi/2)$ C: $(1/9, \pi/4)$ D: $(1/(2\sqrt{2}), \pi)$ E: $(1/18, \pi/2)$

3. Dire per quali valori di $\beta \in \mathbb{R}$ la seguente equazione ha due soluzioni distinte

$$e^{-x^4 - x^2} = \beta$$

A: Nessun valore di β B: $\beta \in]0,1[$ C: N.A. D: $\beta \in (0,+\infty)$ E: $\beta \in \mathbb{R}$

4. Il raggio di convergenza della serie di potenze

$$\sum_{n=3}^{+\infty} \left(\log(n)\right)^{\log(n)} (x-1)^n$$

vale

A: e B: 1/e C: N.A. D: $+\infty$ E: 0

5. L'integrale

$$\int_{0}^{3} |1 - x^{2}| \, dx$$

vale

A: 2/3 B: N.A. C: 6 D: 22/3 E: 0

6. Dire quanto vale il seguente limite

$$\lim_{x \to +\infty} x(2^{\frac{x}{x-3}} - 2)$$

A: $-\log(64)$ B: N.E. C: 3e D: 0 E: $6\log(2)$

7. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : \log(x^4) > 0\}$$

valgono

A: $\{-1, -1, +\infty., N.E\}$ B: N.A. C: $\{-\infty, N.E., 1, N.E.\}$ D: $\{-\infty, N.E, +\infty, N.E.\}$ E: $\{-1, N.E, 1., N.E\}$

8. Sia data la funzione $g: \mathbb{R} \to \mathbb{R}$ definita da $g(x) = \begin{cases} b & \text{per } x=2, \ x=3 \\ 1 & \text{per } x \neq 2, 3. \end{cases}$

Allora i valori di $b \in \mathbb{R}$ per cui $f(x) = \cos(\pi x/8) + \int_0^x \cos(g(t)) dt$ è continua sono

A: $b \in \mathbb{R}$ B: N.A. C: $b \le 1$ D: b = 1 E: $|b| \le 1$

9. La retta tangente al grafico di $y(x) = \sin(\pi \log(x))$ nel punto $x_0 = \mathrm{e}$ vale

A:
$$\frac{\sin(\log(x))}{x}$$
 B: N.A. C: $-\frac{\pi(x-e)}{e}$ D: $1+x$ E: x

10. Data $f(x) = |x|^{|\log(x)|}$. Allora f'(e) è uguale a

A: $3e^3$ B: 2 C: log(2e) D: 1 E: N.A.

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

17 luglio 2018

(Cognome)												(No	me)			(N	ume	ro di	ma	trico	ola)				

1	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
3	0	\bigcirc	0	0	\bigcirc	
4	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6	0	\bigcirc	0	0	\bigcirc	
7	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
8	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
9	0	0	0	0	\bigcirc	
10	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	

1. Dire per quali valori di $\beta \in \mathbb{R}$ la seguente equazione ha due soluzioni distinte

$$e^{-x^4 - x^2} = \beta$$

A: Nessun valore di β B: N.A. C: $\beta \in \mathbb{R}$ D: $\beta \in]0,1[$ E: $\beta \in (0,+\infty)$

2. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : \log(x^4) > 0\}$$

valgono

A: N.A. B:
$$\{-1, -1, +\infty., N.E\}$$
 C: $\{-\infty, N.E., 1, N.E.\}$ D: $\{-\infty, N.E, +\infty, N.E.\}$ E: $\{-1, N.E, 1., N.E\}$

3. Dire quanto vale il seguente limite

$$\lim_{x \to +\infty} x(2^{\frac{x}{x-3}} - 2)$$

A: 3e B: N.E. C: $6 \log(2)$ D: $-\log(64)$ E: 0

4. L'integrale

$$\int_{0}^{3} |1 - x^{2}| \, dx$$

vale

A: 2/3 B: N.A. C: 22/3 D: 6 E: 0

5. Modulo e argomento del numero complesso $z = \left(3 + 3i\right)^{-2}$ sono A: $(1/3, -\pi/2)$ B: $(1/(2\sqrt{2}), \pi)$ C: $(1/9, \pi/4)$ D: N.A. E: $(1/18, \pi/2)$

6. La retta tangente al grafico di $y(x) = \sin(\pi \log(x))$ nel punto $x_0 =$ e vale

A: N.A. B:
$$-\frac{\pi(x-e)}{e}$$
 C: $\frac{\sin(\log(x))}{x}$ D: $1+x$ E: x

7. Sia data la funzione $g: \mathbb{R} \to \mathbb{R}$ definita da $g(x) = \begin{cases} b & \text{per } x = 2, \ x = 3 \\ 1 & \text{per } x \neq 2, 3. \end{cases}$ Allora i valori di $h \in \mathbb{R}$ per qui $f(x) = \cos(-x/2) + \int_{-x}^{x} f(x) dx$

Allora i valori di $b \in \mathbb{R}$ per cui $f(x) = \cos(\pi x/8) + \int_0^x \cos(g(t)) dt$ è continua sono

A:
$$b = 1$$
 B: $b \in \mathbb{R}$ C: $b \le 1$ D: N.A. E: $|b| \le 1$

8. Sia y la soluzione di $y'(x) = \cos(\log(y(x)))$ con y(1) = 1, allora y'(1) vale

A: N.E. B: N.A. C: $\sin(\log(y(x)))$ D: 1 E: 0

9. Data $f(x) = |x|^{|\log(x)|}.$ Allora $f'(\mathbf{e})$ è uguale a

A:
$$\log(2e)$$
 B: N.A. C: 1 D: 2 E: $3e^3$

10. Il raggio di convergenza della serie di potenze

$$\sum_{n=3}^{+\infty} \left(\log(n)\right)^{\log(n)} (x-1)^n$$

vale

A: e B: N.A. C: 0 D: $+\infty$ E: 1/e

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

17 luglio 2018

(Cognome)									_			(No	me)			-	(N:	ume	ro di	ma	trico	la)				

1	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3	0	0	\bigcirc	0	0
4	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6	0	0	\bigcirc	0	\bigcirc
7	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8	0	0	\bigcirc	0	\bigcirc
9	0	0	\bigcirc	0	\bigcirc
10	0	\bigcirc	\bigcirc	\bigcirc	\circ

- 1. Sia data la funzione $g: \mathbb{R} \to \mathbb{R}$ definita da $g(x) = \begin{cases} b & \text{per } x = 2, \ x = 3 \\ 1 & \text{per } x \neq 2, 3. \end{cases}$ Allora i valori di $b \in \mathbb{R}$ per cui $f(x) = \cos(\pi x/8) + \int_0^x \cos(g(t)) \, dt$ è continua sono A: $b \leq 1$ B: b = 1 C: $|b| \leq 1$ D: $b \in \mathbb{R}$ E: N.A.
- 2. Modulo e argomento del numero complesso $z = (3+3i)^{-2}$ sono A: $(1/(2\sqrt{2}), \pi)$ B: $(1/3, -\pi/2)$ C: N.A. D: $(1/9, \pi/4)$ E: $(1/18, \pi/2)$
- 3. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : \log(x^4) > 0\}$$

valgono

A: N.A. B:
$$\{-\infty, N.E., 1, N.E.\}$$
 C: $\{-1, N.E, 1., N.E\}$ D: $\{-\infty, N.E, +\infty, N.E.\}$ E: $\{-1, -1, +\infty, N.E\}$

4. Dire per quali valori di $\beta \in \mathbb{R}$ la seguente equazione ha due soluzioni distinte

$$e^{-x^4 - x^2} = \beta$$

- A: Nessun valore di β B: N.A. C: $\beta \in]0,1[$ D: $\beta \in \mathbb{R}$ E: $\beta \in (0,+\infty)$
- 5. Sia y la soluzione di $y'(x) = \cos(\log(y(x)))$ con y(1) = 1, allora y'(1) vale A: 1 B: N.A. C: N.E. D: 0 E: $\sin(\log(y(x)))$
- 6. Dire quanto vale il seguente limite

$$\lim_{x \to +\infty} x(2^{\frac{x}{x-3}} - 2)$$

- A: $-\log(64)$ B: $6\log(2)$ C: 0 D: N.E. E: 3e
- 7. Data $f(x) = |x|^{|\log(x)|}$. Allora f'(e) è uguale a A: $\log(2e)$ B: 1 C: 2 D: N.A. E: $3e^3$
- 8. Il raggio di convergenza della serie di potenze

$$\sum_{n=3}^{+\infty} \left(\log(n)\right)^{\log(n)} (x-1)^n$$

vale

A: e B:
$$+\infty$$
 C: $1/e$ D: N.A. E: 0

- 9. La retta tangente al grafico di $y(x) = \sin(\pi \log(x))$ nel punto $x_0 = e$ vale A: 1 + x B: x C: $-\frac{\pi(x e)}{e}$ D: N.A. E: $\frac{\sin(\log(x))}{x}$
- 10. L'integrale

$$\int_0^3 |1 - x^2| \, dx$$

vale

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

17 luglio 2018

(Cognome)												(No	me)			(N	ume	ro di	ma	trico	ola)				

1	0	\bigcirc	\bigcirc	\bigcirc	0	
2	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
3	0	0	0	0	0	
4	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6	0	0	0	0	0	
7	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
8	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
9	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
10		\bigcirc	\bigcirc	\bigcirc	\bigcirc	

- 1. Data $f(x) = |x|^{|\log(x)|}$. Allora f'(e) è uguale a A: 2 B: $\log(2e)$ C: $3e^3$ D: N.A. E: 1
- 2. Sia data la funzione $g: \mathbb{R} \to \mathbb{R}$ definita da $g(x) = \begin{cases} b & \text{per } x = 2, \ x = 3 \\ 1 & \text{per } x \neq 2, 3. \end{cases}$ Allora i valori di $b \in \mathbb{R}$ per cui $f(x) = \cos(\pi x/8) + \int_0^x \cos(g(t)) \, dt$ è continua sono A: N.A. B: b = 1 C: $b \leq 1$ D: $b \in \mathbb{R}$ E: $|b| \leq 1$
- 3. Dire per quali valori di $\beta \in \mathbb{R}$ la seguente equazione ha due soluzioni distinte

$$e^{-x^4 - x^2} = \beta$$

- A: Nessun valore di β B: $\beta \in]0,1[$ C: $\beta \in (0,+\infty)$ D: $\beta \in \mathbb{R}$ E: N.A.
- 4. Modulo e argomento del numero complesso $z = \left(3 + 3i\right)^{-2}$ sono A: $(1/3, -\pi/2)$ B: N.A. C: $(1/(2\sqrt{2}), \pi)$ D: $(1/18, \pi/2)$ E: $(1/9, \pi/4)$
- 5. Sia y la soluzione di $y'(x) = \cos(\log(y(x)))$ con y(1) = 1, allora y'(1) vale A: 1 B: N.A. C: 0 D: $\sin(\log(y(x)))$ E: N.E.
- 6. Il raggio di convergenza della serie di potenze

$$\sum_{n=3}^{+\infty} \left(\log(n)\right)^{\log(n)} (x-1)^n$$

vale

A: 0 B: N.A. C:
$$+\infty$$
 D: e E: $1/e$

7. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : \log(x^4) > 0\}$$

valgono

A:
$$\{-\infty, N.E., 1, N.E.\}$$
 B: $\{-1, N.E, 1., N.E\}$ C: $\{-1, -1, +\infty., N.E\}$ D: $\{-\infty, N.E, +\infty, N.E.\}$ E: N.A.

8. L'integrale

$$\int_0^3 |1-x^2| \, dx$$

vale

9. La retta tangente al grafico di $y(x) = \sin(\pi \log(x))$ nel punto $x_0 = e$ vale

A:
$$-\frac{\pi(x-e)}{e}$$
 B: $1+x$ C: N.A. D: $\frac{\sin(\log(x))}{x}$ E: x

10. Dire quanto vale il seguente limite

$$\lim_{x \to +\infty} x(2^{\frac{x}{x-3}} - 2)$$

A:
$$-\log(64)$$
 B: $6\log(2)$ C: N.E. D: 0 E: 3e

17 luglio 2018

															L				
			(Co	gnor	me)						(No	me)				ume		trice	ola)

1	0	\bigcirc	\bigcirc	•	\bigcirc	
2	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
3	0		\bigcirc	\bigcirc	\bigcirc	
4	0	\bigcirc	•	\bigcirc	\bigcirc	
5	0	\bigcirc	\bigcirc	•	\bigcirc	
6	0	\bigcirc	\bigcirc	\bigcirc		
7	0	\bigcirc	\bigcirc	•	\bigcirc	
8	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
9	0	\bigcirc	•	\bigcirc	\bigcirc	
10						

17 luglio 2018

															L				
			(Co	gnor	me)						(No	me)				ume		trice	ola)

1	0	\bigcirc	\bigcirc	•	\bigcirc	
2	0	\bigcirc	\bigcirc	•	\bigcirc	
3	0	\bigcirc	•	\bigcirc	\bigcirc	
4	0	\bigcirc	•	\bigcirc	\bigcirc	
5	0	\bigcirc	\bigcirc	•	\bigcirc	
6	0	•	0	0	\bigcirc	
7	0		\bigcirc	\bigcirc	\bigcirc	
8	0	\bigcirc	\bigcirc	•	\bigcirc	
9	0	\bigcirc	\bigcirc	•	\bigcirc	
10	0		\bigcirc	\bigcirc	\bigcirc	

17 luglio 2018

(Cognome)											(No	me)				ume		trice	ola)						

0	\bigcirc	\bigcirc	•	\bigcirc	
0	\bigcirc	•	\bigcirc	\bigcirc	
0	\bigcirc	\bigcirc	•	\bigcirc	
0	\bigcirc	•	\bigcirc	\bigcirc	
•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
0	•	\bigcirc	\bigcirc	\bigcirc	
0	\bigcirc	•	\bigcirc	\bigcirc	
0	\bigcirc	\bigcirc	•	\bigcirc	
0	\bigcirc	•	0	\bigcirc	
0	\bigcirc	\bigcirc	\bigcirc		

17 luglio 2018

(Cognome)									-	(Nome)									=	(Numero di matricola)											

1	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2	0	\bigcirc	\bigcirc	•	\bigcirc
3	0	•	\bigcirc	\bigcirc	\bigcirc
4	0	•	\bigcirc	\bigcirc	\bigcirc
5	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6	0	•	\bigcirc	\bigcirc	\bigcirc
7	0	\bigcirc	0	•	0
8	0	\bigcirc	•	\bigcirc	\bigcirc
9	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc
10	0	•	\bigcirc	\bigcirc	\bigcirc

17 luglio 2018

PARTE B

1. Si consideri la funzione

$$f(t) = \frac{1+t^p}{(1+t)^p}$$
 $p > 1$.

Cercare eventuali massimi e minimi di f(t) per $t \ge 0$ e tracciare grafico qualitativo.

Soluzione. Calcolando la derivata prima si ha

$$f'(t) = \frac{p(t^{p-1} - 1)}{(t+1)^{p+1}}$$

e quindi $f'(t) \ge 0$ per $t \ge 1$, dato che p > 1. Pertanto t = 1 risulta punto di minimo relativo e $f(1) = 1/2^{p-1}$. Dato che f(0) = 1 e $\lim_{t \to +\infty} f(t) = 1$ si ha massimo assoluto uguale a 1 per t = 0 e minimo assoluto in t = 1.

Figura 1: Grafico di f(t) per p=4

2. Studiare, al variare di $\alpha \in \mathbb{R}$ la convergenza dell'integrale

$$\int_0^{+\infty} \frac{2 + \cos(x)}{x^{\alpha}} \, dx$$

Soluzione. Osserviamo che la convergenza va studiata sia vicino a zero, dato che la funzione diverge a $+\infty$ per $x\to 0$, sia per il fatto che il dominio non è limitato . Va studiata –separatamente– la convergenza dei due integrali

$$\int_0^1 \frac{2 + \cos(x)}{x^{\alpha}} dx \qquad e \qquad \int_1^{+\infty} \frac{2 + \cos(x)}{x^{\alpha}} dx$$

Si ha subito che $1 \le 2 + \cos(x) \le 3$, quindi

$$\frac{1}{x^{\alpha}} \le \frac{2 + \cos(x)}{x^{\alpha}} \le \frac{3}{x^{\alpha}}$$

e per il criterio del confronto asintotico è sufficiente studiare la convergenza di

$$\int_0^1 \frac{1}{x^{\alpha}} dx \qquad e \qquad \int_1^{+\infty} \frac{1}{x^{\alpha}} dx.$$

Il primo integral converge per $\alpha < 1$, mentre il secondo per $\alpha > 1$, quindi l'integrale di partenza non converge per nessuna scelta di $\alpha \in \mathbb{R}$.

3. Risolvere il problema di Cauchy

$$\begin{cases} y'(x) = y(x) - x(y(x))^2 \\ y(0) = 1 \end{cases}$$

dividendo per y^2 ed effettuando la sostituzione z(x) = 1/y(x)

Soluzione. Dividendo per y^2 otteniamo

$$\frac{y'(x)}{y^2(x)} = \frac{1}{y(x)} - x$$

e osservando che $z'(x) = -\frac{y'(x)}{y^2(x)}$ si ottiene

$$\begin{cases} z'(x) + z(x) = x \\ z(0) = 1 \end{cases}$$

che è lineare e a coefficienti costanti. Risolvendola si ottiene

$$z(x) = 2e^{-x} + x - 1.$$

e quindi

$$y(x) = \frac{1}{2e^{-x} + x - 1}.$$

4. Dimostrare che se $f: \mathbb{R} \to \mathbb{R}$ é una funzione continua tale che

$$\int_{a}^{b} f(x) \, dx = 0$$

con a < b, allora esiste $z \in (a, b)$ tale che f(z) = 0. La stessa affermazione è ancora vera se f è solo integrabile secondo Riemann?

Soluzione. Usando il teorema della media integrale per funzioni continue si ha che esiste almeno uno $z \in [a,b]$ tale che

$$f(z) = \frac{1}{b-a} \int_{a}^{b} f(x) dx = 0,$$

e quindi la tesi.

Nel caso di funzioni solo integrabili l'affermazione non è necessariamente vera, come si vede per esempio considerando la funzione $f(x): [-1,1] \to \mathbb{R}$

$$f(x) = \begin{cases} -1 & \text{per } x \in [-1, 0] \\ 1 & \text{per } x \in]0, 1]. \end{cases}$$

Si ha $\int_{-1}^{1} f(x) dx = 0$, ma $f(x) \neq 0$.