## — HARP —

### Hierarchical Representation Learning for Networks





**ONE** Network Embedding

TWO Algorithm: HARP

THREE Experiment



### Network Embedding

- DeepWalk
- Line
- Node2vec

### DeepWalk



#### steps:

Network/graph ----->random walk ----->representation mapping-----> skip-gram model-- ----->output: representation

### Line



First-order proximity

$$p_1(v_i, v_j) = \frac{1}{1 + exp(-\vec{u}_i \cdot \vec{u}_j)}$$

Second-order proximity

$$p_1(v_j|v_i) = \frac{\exp(\vec{u}_j^{'T} \cdot \vec{u}_i)}{\sum_{k=1}^{|V|} \exp(\vec{u}_k^{'T} \cdot \vec{u}_i)}$$

### Node2vec



Figure 1: BFS and DFS search strategies from node  $u\ (k=3)$ .



DeepWalk: p=1 \ q=1



# Algorithm: HARP

The main idea

HARP Algorithm

- graph coarsening
- graph embedding
- representation refinement

### Main idea

#### problems:

- higher-order graph structural information is not modeled
- stochastic optimization can fall victim to poor initialization

#### methods:

- coalesces the nodes and edges ——>smaller graphs(original graph's global structure)
- G<sub>i</sub>'s representation—>G<sub>i-1</sub>'s initialization

#### output:

HARP(DW), HARP(LINE), HARP(N2V)

### Algorithm 1

#### **Algorithm 1** HARP(G, Embed())

#### **Input:**

```
graph G(V, E) arbitrary graph embedding algorithm EMBED()
```

**Output:** matrix of vertex representations  $\Phi \in \mathbb{R}^{|V| \times d}$ 

```
1: G_0, G_1, \cdots, G_L \leftarrow \mathsf{GRAPHCOARSENING}(G)
```

2: Initialize  $\Phi'_{G_L}$  by assigning zeros

```
3: \Phi_{G_L} \leftarrow \text{EMBED}(G_L, \Phi'_{G_L})
```

4: **for** 
$$i = L - 1$$
 to 0 **do**

5: 
$$\Phi'_{G_i} \leftarrow \text{Prolongate}(\Phi_{G_{i+1}}, G_{i+1}, G_i)$$

6: 
$$\Phi_{G_i} \leftarrow \text{EMBED}(G_i, \Phi'_{G_i})$$

7: end for

8: **return**  $\Phi_{G_0}$ 

#### steps:

- Graph Coarsening (line 1)
- Graph Embedding on the Coarsest
  Graph (line 2-3)
- Graph Representation Prolongation and Refinement (line 4-7)
- Graph Embedding of the Original G raph (line 8)

### Algorithm 2

#### **Algorithm 2** GraphCoarsening(G)

**Input:** graph G(V, E)

**Output:** Series of Coarsened Graphs  $G_0, G_1, \dots, G_L$ 

- 1:  $L \leftarrow 0$
- 2:  $G_0 \leftarrow G$
- 3: while  $|V_L| \ge threshold$  do
- 4:  $L \leftarrow L + 1$
- 5:  $G_L \leftarrow \text{EdgeCollapse}(\text{StarCollapse}(G))$
- 6: end while
- 7: **return**  $G_0, G_1, \cdots, G_L$

#### **Edge Collapsing:**

preserving first-order proximity

#### **Star Collapsing:**

preserving second-order proximity



(a) Edge Collapsing.



(b) Edge Collapsing fails to collapse stars.



(c) Star Collapsing.



# Experiment

- Datasets & Graph Coarsening
- Visualization

### Datasets& Graph Coarsening

| Name       | DBLP           | Blogcatalog    | CiteSeer       |
|------------|----------------|----------------|----------------|
| # Vertices | 29,199         | 10,312         | 3,312          |
| # Edges    | 133,664        | 333,983        | 4,732          |
| # Classes  | 4              | 39             | 6              |
| Task       | Classification | Classification | Classification |

**DBLP** 



Blogcatalog

CiteSeer

### Visualization



- HARP(LINE)
  - Level 7 —— smallest graph
  - Level 0 —— original graph.
  - Input—— force-direct graph drawing



### Multi-label Classification

| Algorithm       | Dataset      |                 |           |
|-----------------|--------------|-----------------|-----------|
| _               | DBLP         | BlogCatalog     | CiteSeer  |
| DeepWalk        | 57.29        | 24.88           | 42.72     |
| HARP(DW)        | 61.76*       | 25.90*          | 44.78*    |
| Gain of HARP[%] | <b>7.8</b>   | 4.0             | 4.8       |
| LINE            | 57.76        | 22.43           | 37.11     |
| HARP(LINE)      | $59.51^{*}$  | ${\bf 23.47}^*$ | $42.95^*$ |
| Gain of HARP[%] | 3.0          | 4.6             | 13.6      |
| Node2vec        | 62.64        | 23.55           | 44.84     |
| HARP(N2V)       | <b>62.80</b> | 24.66*          | 46.08*    |
| Gain of HARP[%] | 0.3          | 4.7             | 2.8       |



# -END-THANKYOU