ITGS217 Discrete Structures

التراكيب المنفصلة

د. رضوان حسین

مواضيع المحاضرة

- المنطق الرقمي بت Bit
- التكافل Equivalence
- الوفاق Tautologies
- التناقض Contradictions

المنطق الرقمي وعمليات بت Logic and Bit Operations

- الحاسبات الرقمية مبنية على مبدأ نظام الترقيم الثنائي binary system
- الخانة الواحدة digit تسمى بت bit تحتوي على قيمة واحدة إما 0 أو 1
 - يمكن تمثيل قيم متغيرات المنطق صح و خطأ (true, false) بخانة بت

المنطق الرقمي					
قيمة خانة بت	قيمة الصدق				
Bit	Truth value				
1	صح				
0	خطأ				

المنطق الرقمي وعمليات بت Logic and Bit Operations

- المتغير البُولي Boolean Variable
- قيمته truth value أما صح و إما خطأ
- رقمياً, المتغير البولى قيمته إما 1 أو 0 في وحدة بت
- عمليات بت في الحاسبات الرقمية تمثل الروابط المنطقية logical connectives

		x OR y	x AND y	x XOR y
х	у	$x \vee y$	$x \wedge y$	$x \oplus y$
0	0	0	0	0
0	1	1	0	1
1	0	1	0	1
1	1	1	1	0

عملیات بت روابط منطقیة

الوتر الرقمي بت Bit String

- الوتر (نضيد أي مصطف) بت هو سلسة sequence من قيم بت 0 و 1
 - طول الوتر هو عدد قيم بت في الوتر
 - مثال:
 - وتر يحتوي على قيم بت 10101 0011 طول الوتر يكون 9 بت
 - وتر يحتوي على قيم بت 0000 0000 طول الوتر يكون 8 بت

• يتباعد بين قيم الأوتار لتكون مجموعات من أربع خانات ليسهل قراءتها

عملیات علی الوتر الرقمي بت Bit String Operations

- العمليات المنطقية تجرى على سلسلة الأوتار لإجراء الروابط المنطقية بينها
 - تسمى العمليات على الأوتار:
 - bitwise *OR*, bitwise *AND*, bitwise *XOR*
 - يمكن استخدام الرموز المنطقية أيضاً: ⊕, ∧, ∨
 - يشترط أن يكون الوترين من نفس الطول

عملیات علی الوتر الرقمي بت Bit String Operations

- مثال:
- أوجد ناتج العمليات المنطقية bitwise OR, bitwise AND, bitwise XOR على وترى بت X و Y
- bit string Y: 01 1011 0110 هـ هو طول الوتر x و ۲ و ۲ ا
- bit string Y: 11 0001 1101

11 1011 1111 bitwise *OR*

01 0001 0100 bitwise *AND*

10 1010 1011 bitwise *XOR*

التكافئ المنطقي Logical Equivalences

• الاقتراحات التي لها نفس قيم الصدق في جميع الحالات تسمى منطقياً متكافئة.

$$\neg (p \land q)$$

 $(\neg p) \lor (\neg q)$

р	q	(p \ q)	¬ (p ∧ q)	¬ p	¬ q	(¬ p) ∨ (¬ q)
T	T	T	F	F	F	F
T	F	F	Т	F	T	Т
F	T	F	Т	T	F	Т
F	F	F	T	T	T	T

تكافئ الاقتراحات Propositional Equivalences

• تكافئ الاقتراحات يعتبر مهماً في الحجج الرياضية Mathematical Arguments.

• يمكن تبديل عبارة ما بعبارة أخرى لها نفس قيمة الصدق truth value.

$$r: \neg (p \land q)$$

الاقتراح المركب r والاقتراح المركب ع يكونان متكافئين

s:
$$(\neg p) \lor (\neg q)$$

true حندما $r \leftrightarrow s$ دائماً نتیجتها صح

р	q	¬ (p ∧ q)	(¬ p) ∨ (¬ q)	$r\leftrightarrow s$
T	T	F	F	T
T	F	Т	Т	Τ
F	T	Т	Т	Τ
F	F	Т	Т	T

الوفاق والتناقض Tautology and Contradiction

- الاقتراحات المركبة التي دائماً صحيحة true مهما كانت قيم الصدق لمتغيراتها. تسمى " وفاق " tautology
- الاقتراحات المركبة التي دائماً خاطئة false مهما كانت قيم الصدق لمتغيراتها, تسمى " تناقض " contradiction
 - الاقتراحات المركبة التي ليست " وفاق " ولا " تناقض " تسمى محتملة الوقوع contingency

Contingency:

something that might possibly happen in the future, usually causing problems or making further arrangements necessary

الوفاق والتناقض Tautology and Contradiction

- مثال:
- باعتبار p اقتراحاً, و p نفي الاقتراح

Examples of a Tautology and a Contradiction						
p	$\neg p$	$p \vee \neg p$	$p \wedge \neg p$			
T F	F T	T T	F F			

- لأن الاقتراح المركب $p \lor p$ دائماً صح فهو يمسى وفاقاً
- لأن الاقتراح المركب $p \wedge \neg p$ دائماً خطأ فهو يسمى تناقضاً

تكافئ الاقتراحات Propositional Equivalences

tautology و عندما عندما $r \leftrightarrow s$ و الاقتراحان المركبان r و عندما عندما و الاقتراحان المركبان r

$$r: \neg (p \land q)$$

$$s: (\neg p) \lor (\neg q)$$

р	q	¬ (p ∧ q)	(¬ p) ∨ (¬ q)	$r\leftrightarrow s$
T	T	F	F	Т
T	F	Т	Т	Т
F	T	Т	Т	Т
F	F	Т	Т	Т

يمكن أن نستخدم جداول الصدق لإثبات تكافؤ الاقتراحات

ropositional Equivalences تكافئ الاقتراحات

- يرمز للتكافؤ بين اقتراحين p و p
- $p \equiv q$ •
- الرمز \equiv ليس رابط أو مشغل منطقي, والتعبير $p \equiv q$ ليس اقتراحاً مركب.
- tautology هي وفاق $p \leftrightarrow q$ التعبير $p \equiv q$ هي وفاق $p \equiv q$
 - الرمز ⇔قد يستخدم للدلالة على الكافؤ المنطقي بدلاً من الرمز ≡
 - $p \Leftrightarrow q$ •

De Morgan's Laws قوانین دي مورقن

- 1. نفي اقتراح الترابط AND بين متغيرين منطقيين يكافئ منطقياً اقتراح الانفصال OR بين نفي المتغير المنطقي الأول ونفي المتغير الثاني
 - $\neg (p \land q) \equiv \neg p \lor \neg q$
 - 2. نفي اقتراح الانفصال OR بين متغيرين منطقيين يكافئ منطقياً اقتراح الترابط AND بين نفي المتغير المنطقي الأول ونفي المتغير الثاني
 - $\neg (p \lor q) \equiv \neg p \land \neg q$

De Morgan's Laws قوانین دي مورقن

- مثال:
- إذا كان 4 ≥ x > 1-
- فإنه يعني العبارة 4 ≥ x AND x = 1-
 - وبناءً على قانون مورقن الأول
- $\neg (p \land q) \equiv \neg p \lor \neg q$
 - نفي العبارة 4 ≥ x AND x = 1-
 - يكافئ العبارة 4 < X OR x > 4

قوانین دي مورقن De Morgan's Laws

- مثال:
- إذا كان 4 ≥ x > 1-
- نفي نتيجة الاقتراح 4 ≥ x AND x
 - يكافئ الأقتراح 4 < N OR x > 4 •

p	q	(p \ q)	¬ (p ∧ q)	¬ p	¬ q	(¬ p) ∨ (¬ q)
T	T	٢	F	F	F	F
Т	F	F	Т	F	Т	Т
F	Т	F	Т	Т	F	Т
F	F	F	Т	Т	Т	Т

$$x = 2$$
 إذا كان

$$p:-1 < x \quad \bullet$$

$$q: x \leq 4$$
 •

$$\neg p:-1 \ge x$$
 •

$$\neg q: x > 4$$

تمرين

Logically Equivalent هما متكافان منطقياً $p \lor q$ و $p \lor q$ اثبت أن $p \to q$

• الحل: نكون جدول الصدق للاقتراحين المركبين

بما أن نتيجة الاقتراحين على وفاق tautology, إذن هما متكافئان

	Truth T	ables for	tautology		
p	q	$\neg p$	$\neg p \lor q$	$p \rightarrow q$	$(\neg p \lor q) \leftrightarrow (p \rightarrow q)$
T	T	F	Т	Т	Т
T	F	F	F	F	Т
F	T	T	T	T	T
F	F	T	T	T	T

تمرين

Logically Equivalent هما متكافان منطقياً $p \lor q) \land (p \lor r)$ هما متكافان منطقياً $p \lor (q \land r)$

• الحل: نكون جدول الصدق للاقتراحين المركبين

p	q	r	$q \wedge r$	$p\vee (q\wedge r)$	$p \lor q$	$p \lor r$	$(p\vee q)\wedge (p\vee r)$
T	T	T	T	T	T	T	T
T	T	F	F	T	T	T	T
T	F	T	F	T	T	T	T
T	F	F	F	T	T	T	T
F	T	T	T	T	T	T	T
F	T	F	F	F	T	F	F
F	F	T	F	F	F	T	F
F	F	F	F	F	F	F	F

قوانین التکافق Equivalence Laws

• T تعني اقتراح دائماً نتيجته صح (وفاق tautology) عني اقتراح دائماً نتيجته خطأ (تناقض contradiction) عني اقتراح دائماً نتيجته خطأ F

	Logical Equivale	ences
Equivalence	القانون التكافؤ	اسم القانون Name
$p \wedge \mathbf{T} \equiv p$ $p \vee \mathbf{F} \equiv p$		Identity laws التطابق
$p \vee \mathbf{T} \equiv \mathbf{T}$ $p \wedge \mathbf{F} \equiv \mathbf{F}$		Domination laws الهيمنة
$p \lor p \equiv p$ $p \land p \equiv p$		Idempotent laws الثبات آيدمبوتنت
$p \lor \neg p \equiv \mathbf{T}$ $p \land \neg p \equiv \mathbf{F}$		Negation laws النفي

قوانین التکافؤ Equivalence Laws

Logical Equivalences				
$\neg(\neg p) \equiv p$	النفي المزدوج Double Negation			
$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Commutative laws التبديل			
$(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$	Associative laws الترابط			
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive laws التوزيع			
$\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$	De Morgan's laws دي مورقن			
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Absorption laws الاختزال			

قوانين التكافؤ

• مثال:

$$\neg(\neg p \land q) \land (p \lor q) \equiv p$$
 اثبت أن: $p \lor q \land q \lor q$

• نأخذ الطرف الأيسر لإثبات تكافؤه مع الطرف الأيمن

$$\equiv (\neg(\neg p) \lor \neg q) \land (p \lor q)$$
 جاستخدام قانون دي مورقن

$$\equiv$$
 (p V ¬q) \land (p V q) \equiv (p V ¬q) \land (p V q) \equiv

$$\mathbf{p} \vee \mathbf{F}$$
 $\mathbf{p} \vee \mathbf{F}$ $\mathbf{q} \vee \mathbf{q} = \mathbf{F}$ قانون النفي

قوانين التكافؤ

• مثال:

باستخدام قوانين التكافؤ اثبت أن:

$$(p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r)$$

• قانون التوزيع

 $(q \wedge r)$ موزع على (p \rightarrow الشرط

نهاية المحاضرة, موضوعنا التالي:

دوال الاقتراحات المنطقية