3: Random Variables

Spring 2021

Matthew Blackwell

Gov 2002 (Harvard)

• Up to now: probability of abstract events, but data is numeric!

- · Up to now: probability of abstract events, but data is numeric!
- Connection between probability and data: random variables.

- Up to now: probability of abstract events, but data is numeric!
- · Connection between probability and data: random variables.
- Long-term goal: inferring the data generating process of this variable.

- · Up to now: probability of abstract events, but data is numeric!
- · Connection between probability and data: random variables.
- Long-term goal: inferring the data generating process of this variable.
 - What is the true Biden approval rate in the US?

- Up to now: probability of abstract events, but data is numeric!
- Connection between probability and data: random variables.
- Long-term goal: inferring the data generating process of this variable.
 - What is the true Biden approval rate in the US?
- Today: given a probability distribution, what data is likely?

- Up to now: probability of abstract events, but data is numeric!
- · Connection between probability and data: random variables.
- Long-term goal: inferring the data generating process of this variable.
 - What is the true Biden approval rate in the US?
- · Today: given a probability distribution, what data is likely?
 - If we knew the true Biden approval, what samples are likely?

Roadmap

- 1. Random Variables
- 2. Famous distributions
- 3. Cumulative Distribution Functions
- 4. Functions of random variables
- 5. Independent random variables

1/ Random Variables

What are random variables?

Definition

A **random variable (r.v.)** is a function that maps from the sample space of an experiment to the real line or $X : \Omega \to \mathbb{R}$.

• Numeric representation of uncertain events → we can use math!

What are random variables?

Definition

A **random variable (r.v.)** is a function that maps from the sample space of an experiment to the real line or $X : \Omega \to \mathbb{R}$.

- The r.v. is X and the numerical value for some outcome ω is $X(\omega)$.

What are random variables?

Definition

A **random variable (r.v.)** is a function that maps from the sample space of an experiment to the real line or $X : \Omega \to \mathbb{R}$.

- Numeric representation of uncertain events → we can use math!
- The r.v. is X and the numerical value for some outcome ω is $X(\omega)$.
- · Randomness comes from the randomness of the experiment.

• For any experiment, there can be many random variables.

- For any experiment, there can be many random variables.
- Randomly sample 2 senators \rightsquigarrow 4 outcomes: $\Omega = \{DD, RD, DR, RR\}$.

- · For any experiment, there can be many random variables.
- Randomly sample 2 senators \rightsquigarrow 4 outcomes: $\Omega = \{DD, RD, DR, RR\}$.
 - X = number of Democrats in the two draws.

- · For any experiment, there can be many random variables.
- Randomly sample 2 senators \rightsquigarrow 4 outcomes: $\Omega = \{DD, RD, DR, RR\}$.
 - X = number of Democrats in the two draws.
 - X(DD) = 2, X(RD) = X(DR) = 1, X(RR) = 0

- · For any experiment, there can be many random variables.
- Randomly sample 2 senators \rightsquigarrow 4 outcomes: $\Omega = \{DD, RD, DR, RR\}$.
 - X = number of Democrats in the two draws.
 - X(DD) = 2, X(RD) = X(DR) = 1, X(RR) = 0
 - Another r.v. Y = number of Republicans in the two draws, Y = 2 X

- For any experiment, there can be many random variables.
- Randomly sample 2 senators \rightsquigarrow 4 outcomes: $\Omega = \{DD, RD, DR, RR\}$.
 - X = number of Democrats in the two draws.
 - X(DD) = 2, X(RD) = X(DR) = 1, X(RR) = 0
 - Another r.v. Y = number of Republicans in the two draws, Y = 2 X
 - Z = 1 if draw is two Democrats (*DD*), 0 otherwise.

- For any experiment, there can be many random variables.
- Randomly sample 2 senators \rightsquigarrow 4 outcomes: $\Omega = \{DD, RD, DR, RR\}$.
 - X = number of Democrats in the two draws.
 - X(DD) = 2, X(RD) = X(DR) = 1, X(RR) = 0
 - Another r.v. Y = number of Republicans in the two draws, Y = 2 X
 - Z = 1 if draw is two Democrats (DD), 0 otherwise.
- Usually abstract away from the underlying sample space fairly quickly.

Types of r.v.s

• Two main types of r.v.s: discrete and continuous. Focus on discrete now.

Definition

A r.v., X, is **discrete** the values it takes with positive probability is finite $(X \in \{x_1, ..., x_k\})$ or countably infinite $(X \in \{x_1, x_2, ...\})$.

Types of r.v.s

• Two main types of r.v.s: discrete and continuous. Focus on discrete now.

Definition

A r.v., X, is **discrete** the values it takes with positive probability is finite $(X \in \{x_1, \dots, x_k\})$ or countably infinite $(X \in \{x_1, x_2, \dots\})$.

• The **support** of *X* is the values *x* such that $\mathbb{P}(X = x) > 0$.

How are r.v.s random?

- How are r.v.s random?
 - Uncertainty over $\Omega \leadsto$ uncertainty over value of X.

- How are r.v.s random?
 - Uncertainty over $\Omega \leadsto$ uncertainty over value of X.
 - We'll use probability to formalize this uncertainty.

- How are r.v.s random?
 - Uncertainty over $\Omega \leadsto$ uncertainty over value of X.
 - We'll use probability to formalize this uncertainty.
- The **distribution** of a r.v. describes its behavior in terms of probability.

- How are r.v.s random?
 - Uncertainty over $\Omega \leadsto$ uncertainty over value of X.
 - We'll use probability to formalize this uncertainty.
- The **distribution** of a r.v. describes its behavior in terms of probability.
 - · Specifies probabilities of all possible events of the r.v.

- How are r.v.s random?
 - Uncertainty over $\Omega \leadsto$ uncertainty over value of X.
 - We'll use probability to formalize this uncertainty.
- The **distribution** of a r.v. describes its behavior in terms of probability.
 - · Specifies probabilities of all possible events of the r.v.
 - X = number of times a randomly gave a campaign contribution in 2020.

- How are r.v.s random?
 - Uncertainty over $\Omega \leadsto$ uncertainty over value of X.
 - We'll use probability to formalize this uncertainty.
- The **distribution** of a r.v. describes its behavior in terms of probability.
 - · Specifies probabilities of all possible events of the r.v.
 - X = number of times a randomly gave a campaign contribution in 2020.
 - What's the $\mathbb{P}(X > 5)$? $\mathbb{P}(X = 0)$?

- How are r.v.s random?
 - Uncertainty over $\Omega \rightsquigarrow$ uncertainty over value of X.
 - We'll use probability to formalize this uncertainty.
- The **distribution** of a r.v. describes its behavior in terms of probability.
 - · Specifies probabilities of all possible events of the r.v.
 - X = number of times a randomly gave a campaign contribution in 2020.
 - What's the $\mathbb{P}(X > 5)$? $\mathbb{P}(X = 0)$?
- · Often there are many ways to express a distribution.

ω	$\mathbb{P}(\{\omega\})$	$X(\omega)$
TT	1/4	0
HT	1/4	1
TH	1/4	1
НН	1/4	2

ω	$\mathbb{P}(\{\omega\})$	$X(\omega)$
TT	1/4	0
HT	1/4	1
TH	1/4	1
НН	1/4	2

$$X \mid \mathbb{P}(X = x)$$

ω	$\mathbb{P}(\{\omega\})$	$X(\omega)$
TT	1/4	0
HT	1/4	1
TH	1/4	1
НН	1/4	2

$$\begin{array}{c|c} x & \mathbb{P}(X=x) \\ \hline 0 & 1/4 \end{array}$$

ω	$\mathbb{P}(\{\omega\})$	$X(\omega)$
TT	1/4	0
HT	1/4	1
TH	1/4	1
НН	1/4	2

$$\begin{array}{c|cc}
x & \mathbb{P}(X = x) \\
\hline
0 & 1/4 \\
1 & 1/2
\end{array}$$

ω	$\mathbb{P}(\{\omega\})$	$X(\omega)$
TT	1/4	0
HT	1/4	1
TH	1/4	1
НН	1/4	2

X	$\mathbb{P}(X=x)$
0	1/4
1	1/2
2	1/4

2/ Famous distributions

Definition

An r.v. X has a **Bernoulli distribution** with parameter p if $\mathbb{P}(X=1)=p$ and P(X=0)=1-p and this is written as $X\sim \mathrm{Bern}(p)$.

Definition

An r.v. X has a **Bernoulli distribution** with parameter p if $\mathbb{P}(X=1)=p$ and P(X=0)=1-p and this is written as $X\sim \mathrm{Bern}(p)$.

 Story: indicator of success in some trial with either success or failure.

Definition

An r.v. X has a **Bernoulli distribution** with parameter p if $\mathbb{P}(X=1)=p$ and P(X=0)=1-p and this is written as $X\sim \mathrm{Bern}(p)$.

- Story: indicator of success in some trial with either success or failure.
- Actually a **family** of distributions indexed by p.

Definition

An r.v. X has a **Bernoulli distribution** with parameter p if $\mathbb{P}(X=1)=p$ and P(X=0)=1-p and this is written as $X\sim \mathrm{Bern}(p)$.

- Story: indicator of success in some trial with either success or failure.
- Actually a family of distributions indexed by p.
- Any event A has an associated Bernoulli r.v.: indicator variable:

$$\mathbb{I}(A) \sim \mathsf{Bern}(p) \text{ with } p = \mathbb{P}(A)$$

Definition

Let X be the number of successes in n independent Bernoulli trials all with success probability p. Then X follows the **binomial distribution** with parameters n and p, which is written $X \sim \text{Bin}(n,p)$.

• Definition is based on a **story**: helps pattern match to our data.

Definition

Let X be the number of successes in n independent Bernoulli trials all with success probability p. Then X follows the **binomial distribution** with parameters n and p, which is written $X \sim \text{Bin}(n,p)$.

- Definition is based on a **story**: helps pattern match to our data.
- · Also helps draw immediate connections:

Definition

Let X be the number of successes in n independent Bernoulli trials all with success probability p. Then X follows the **binomial distribution** with parameters n and p, which is written $X \sim \text{Bin}(n,p)$.

- Definition is based on a **story**: helps pattern match to our data.
- · Also helps draw immediate connections:
 - $Bin(1, p) \sim Bern(p)$.

Definition

Let X be the number of successes in n independent Bernoulli trials all with success probability p. Then X follows the **binomial distribution** with parameters n and p, which is written $X \sim \text{Bin}(n,p)$.

- Definition is based on a **story**: helps pattern match to our data.
- · Also helps draw immediate connections:
 - $Bin(1, p) \sim Bern(p)$.
 - If $X \sim \text{Bin}(n, p)$, then $n X \sim \text{Bin}(n, 1 p)$.

• In addition to stories, there are other ways to represent a distribution.

- In addition to stories, there are other ways to represent a distribution.
- Probability mass function (p.m.f.): $p_X(x) = \mathbb{P}(X = x)$

- In addition to stories, there are other ways to represent a distribution.
- Probability mass function (p.m.f.): $p_X(x) = \mathbb{P}(X = x)$
 - Careful: $\mathbb{P}(X = x)$ makes sense b/c $\{X = x\}$ is an event.

- In addition to stories, there are other ways to represent a distribution.
- Probability mass function (p.m.f.): $p_X(x) = \mathbb{P}(X = x)$
 - Careful: $\mathbb{P}(X = x)$ makes sense b/c $\{X = x\}$ is an event.
 - $\mathbb{P}(X)$ doesn't make any sense since X is just a mapping.

- In addition to stories, there are other ways to represent a distribution.
- Probability mass function (p.m.f.): $p_X(x) = \mathbb{P}(X = x)$
 - Careful: $\mathbb{P}(X = x)$ makes sense b/c $\{X = x\}$ is an event.
 - $\mathbb{P}(X)$ doesn't make any sense since X is just a mapping.
- Binomial p.m.f.:

$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

- In addition to stories, there are other ways to represent a distribution.
- Probability mass function (p.m.f.): $p_X(x) = \mathbb{P}(X = x)$
 - Careful: $\mathbb{P}(X = x)$ makes sense b/c $\{X = x\}$ is an event.
 - $\mathbb{P}(X)$ doesn't make any sense since X is just a mapping.
- · Binomial p.m.f.:

$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

• Some properties of valid p.m.f. of a discrete r.v. X with support $x_1, x_2, ...$:

- In addition to stories, there are other ways to represent a distribution.
- Probability mass function (p.m.f.): $p_X(x) = \mathbb{P}(X = x)$
 - Careful: $\mathbb{P}(X = x)$ makes sense b/c $\{X = x\}$ is an event.
 - $\mathbb{P}(X)$ doesn't make any sense since X is just a mapping.
- · Binomial p.m.f.:

$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

- Some properties of valid p.m.f. of a discrete r.v. X with support $x_1, x_2, ...$:
 - Nonnegative: $p_X(x) > 0$ if $x \in x_1, x_2, ...$ and $p_X(x) = 0$ otherwise.

- In addition to stories, there are other ways to represent a distribution.
- Probability mass function (p.m.f.): $p_X(x) = \mathbb{P}(X = x)$
 - Careful: $\mathbb{P}(X = x)$ makes sense b/c $\{X = x\}$ is an event.
 - $\mathbb{P}(X)$ doesn't make any sense since X is just a mapping.
- Binomial p.m.f.:

$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

- Some properties of valid p.m.f. of a discrete r.v. X with support $x_1, x_2, ...$:
 - Nonnegative: $p_X(x) > 0$ if $x \in x_1, x_2, ...$ and $p_X(x) = 0$ otherwise.
 - Sums to 1: $\sum_{j=1}^{\infty} \rho_X(x) = 1$.

- In addition to stories, there are other ways to represent a distribution.
- Probability mass function (p.m.f.): $p_X(x) = \mathbb{P}(X = x)$
 - Careful: $\mathbb{P}(X = x)$ makes sense b/c $\{X = x\}$ is an event.
 - $\mathbb{P}(X)$ doesn't make any sense since X is just a mapping.
- Binomial p.m.f.:

$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

- Some properties of valid p.m.f. of a discrete r.v. X with support $x_1, x_2, ...$:
 - Nonnegative: $p_X(x) > 0$ if $x \in x_1, x_2, ...$ and $p_X(x) = 0$ otherwise.
 - Sums to 1: $\sum_{i=1}^{\infty} p_X(x) = 1$.
- Probability of a set of values $S \subset \{x_1, x_2, ...\}$:

$$\mathbb{P}(X \in S) = \sum_{x \in S} p_X(x)$$

• You want to run a randomized control trial on 3 people.

- You want to run a randomized control trial on 3 people.
- Use the following procedure:

- You want to run a randomized control trial on 3 people.
- · Use the following procedure:
 - · Flip independent fair coins for each unit

- You want to run a randomized control trial on 3 people.
- · Use the following procedure:
 - · Flip independent fair coins for each unit
 - Heads assigned to Control (C), tails to Treatment (T)

- You want to run a randomized control trial on 3 people.
- · Use the following procedure:
 - · Flip independent fair coins for each unit
 - Heads assigned to Control (C), tails to Treatment (T)
- Let X be the number of treated units:

$$X = \begin{cases} 0 & \text{if } (C, C, C) \\ 1 & \text{if } (T, C, C) \text{ or } (C, T, C) \text{ or } (C, C, T) \\ 2 & \text{if } (T, T, C) \text{ or } (C, T, T) \text{ or } (T, C, T) \\ 3 & \text{if } (T, T, T) \end{cases}$$

- You want to run a randomized control trial on 3 people.
- · Use the following procedure:
 - · Flip independent fair coins for each unit
 - Heads assigned to Control (C), tails to Treatment (T)
- Let X be the number of treated units:

$$X = \begin{cases} 0 & \text{if } (C, C, C) \\ 1 & \text{if } (T, C, C) \text{ or } (C, T, C) \text{ or } (C, C, T) \\ 2 & \text{if } (T, T, C) \text{ or } (C, T, T) \text{ or } (T, C, T) \\ 3 & \text{if } (T, T, T) \end{cases}$$

· Use independence and fair coins:

$$\mathbb{P}(C,T,C) = \mathbb{P}(C)\mathbb{P}(T)\mathbb{P}(C) = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{8}$$

 $f_X(0)$

$$f_X(0) = \mathbb{P}(X = 0)$$

$$f_X(0) = \mathbb{P}(X=0) = \mathbb{P}(C,C,C)$$

$$f_X(0) = \mathbb{P}(X = 0) = \mathbb{P}(C, C, C) = \frac{1}{8}$$

$$f_X(0) = \mathbb{P}(X = 0) = \mathbb{P}(C, C, C) = \frac{1}{8}$$

 $f_X(1) = \mathbb{P}(X = 1) =$

$$f_X(0) = \mathbb{P}(X = 0) = \mathbb{P}(C, C, C) = \frac{1}{8}$$

 $f_X(1) = \mathbb{P}(X = 1) = \mathbb{P}(T, C, C)$

$$f_X(0) = \mathbb{P}(X = 0) = \mathbb{P}(C, C, C) = \frac{1}{8}$$

 $f_X(1) = \mathbb{P}(X = 1) = \mathbb{P}(T, C, C) + \mathbb{P}(C, T, C)$

$$f_X(0) = \mathbb{P}(X = 0) = \mathbb{P}(C, C, C) = \frac{1}{8}$$

 $f_X(1) = \mathbb{P}(X = 1) = \mathbb{P}(T, C, C) + \mathbb{P}(C, T, C) + \mathbb{P}(C, C, T)$

$$f_X(0) = \mathbb{P}(X = 0) = \mathbb{P}(C, C, C) = \frac{1}{8}$$

$$f_X(1) = \mathbb{P}(X = 1) = \mathbb{P}(T, C, C) + \mathbb{P}(C, T, C) + \mathbb{P}(C, C, T) = \frac{3}{8}$$

$$f_X(0) = \mathbb{P}(X = 0) = \mathbb{P}(C, C, C) = \frac{1}{8}$$

$$f_X(1) = \mathbb{P}(X = 1) = \mathbb{P}(T, C, C) + \mathbb{P}(C, T, C) + \mathbb{P}(C, C, T) = \frac{3}{8}$$

$$f_X(2) = \mathbb{P}(X = 2) =$$

$$f_X(0) = \mathbb{P}(X = 0) = \mathbb{P}(C, C, C) = \frac{1}{8}$$

$$f_X(1) = \mathbb{P}(X = 1) = \mathbb{P}(T, C, C) + \mathbb{P}(C, T, C) + \mathbb{P}(C, C, T) = \frac{3}{8}$$

$$f_X(2) = \mathbb{P}(X = 2) = \mathbb{P}(T, T, C) + \mathbb{P}(C, T, T) + \mathbb{P}(T, C, T)$$

$$f_X(0) = \mathbb{P}(X = 0) = \mathbb{P}(C, C, C) = \frac{1}{8}$$

$$f_X(1) = \mathbb{P}(X = 1) = \mathbb{P}(T, C, C) + \mathbb{P}(C, T, C) + \mathbb{P}(C, C, T) = \frac{3}{8}$$

$$f_X(2) = \mathbb{P}(X = 2) = \mathbb{P}(T, T, C) + \mathbb{P}(C, T, T) + \mathbb{P}(T, C, T) = \frac{3}{8}$$

$$\begin{split} f_X(0) &= \mathbb{P}(X=0) = \mathbb{P}(C,C,C) = \frac{1}{8} \\ f_X(1) &= \mathbb{P}(X=1) = \mathbb{P}(T,C,C) + \mathbb{P}(C,T,C) + \mathbb{P}(C,C,T) = \frac{3}{8} \\ f_X(2) &= \mathbb{P}(X=2) = \mathbb{P}(T,T,C) + \mathbb{P}(C,T,T) + \mathbb{P}(T,C,T) = \frac{3}{8} \\ f_X(3) &= \mathbb{P}(X=3) \end{split}$$

Calculating the p.m.f.

$$\begin{split} f_X(0) &= \mathbb{P}(X=0) = \mathbb{P}(C,C,C) = \frac{1}{8} \\ f_X(1) &= \mathbb{P}(X=1) = \mathbb{P}(T,C,C) + \mathbb{P}(C,T,C) + \mathbb{P}(C,C,T) = \frac{3}{8} \\ f_X(2) &= \mathbb{P}(X=2) = \mathbb{P}(T,T,C) + \mathbb{P}(C,T,T) + \mathbb{P}(T,C,T) = \frac{3}{8} \\ f_X(3) &= \mathbb{P}(X=3) = \mathbb{P}(T,T,T) = \frac{1}{8} \end{split}$$

Calculating the p.m.f.

$$\begin{split} f_X(0) &= \mathbb{P}(X=0) = \mathbb{P}(C,C,C) = \frac{1}{8} \\ f_X(1) &= \mathbb{P}(X=1) = \mathbb{P}(T,C,C) + \mathbb{P}(C,T,C) + \mathbb{P}(C,C,T) = \frac{3}{8} \\ f_X(2) &= \mathbb{P}(X=2) = \mathbb{P}(T,T,C) + \mathbb{P}(C,T,T) + \mathbb{P}(T,C,T) = \frac{3}{8} \\ f_X(3) &= \mathbb{P}(X=3) = \mathbb{P}(T,T,T) = \frac{1}{8} \end{split}$$

• What's $\mathbb{P}(X=4)$?

Calculating the p.m.f.

$$\begin{split} f_X(0) &= \mathbb{P}(X=0) = \mathbb{P}(C,C,C) = \frac{1}{8} \\ f_X(1) &= \mathbb{P}(X=1) = \mathbb{P}(T,C,C) + \mathbb{P}(C,T,C) + \mathbb{P}(C,C,T) = \frac{3}{8} \\ f_X(2) &= \mathbb{P}(X=2) = \mathbb{P}(T,T,C) + \mathbb{P}(C,T,T) + \mathbb{P}(T,C,T) = \frac{3}{8} \\ f_X(3) &= \mathbb{P}(X=3) = \mathbb{P}(T,T,T) = \frac{1}{8} \end{split}$$

• What's P(X = 4)? 0!

Plotting the p.m.f.

• We could plot this p.m.f. using R:

Plotting the p.m.f.

• We could plot this p.m.f. using R:

• **Question**: Does this seem like a good way to assign treatment? What is one major problem with it?

Other binomials

Discrete uniform distribution

Definition

Let \mathcal{C} be a finite, nonempty set of numbers. If \mathcal{X} is the number chosen randomly with all values equally likely, we say it follows the **discrete uniform** distribution.

• p.m.f. for a discrete uniform r.v.:

$$p_X(x) = \begin{cases} 1/|C| & \text{for } x \in C \\ 0 & \text{otherwise} \end{cases}$$

3/ Cumulative Distribution Functions

Cumulative distribution functions

Definition

The **cumulative distribution function (c.d.f.)** is a function $F_X(x)$ that returns the probability is that a variable is less than a particular value:

$$F_X(x) \equiv \mathbb{P}(X \leq x).$$

Cumulative distribution functions

Definition

The **cumulative distribution function (c.d.f.)** is a function $F_X(x)$ that returns the probability is that a variable is less than a particular value:

$$F_X(x) \equiv \mathbb{P}(X \le x).$$

• Useful for all r.v.s since p.m.f. are unique to discrete r.v.s

Cumulative distribution functions

Definition

The **cumulative distribution function (c.d.f.)** is a function $F_X(x)$ that returns the probability is that a variable is less than a particular value:

$$F_X(x) \equiv \mathbb{P}(X \le x).$$

- Useful for all r.v.s since p.m.f. are unique to discrete r.v.s
- For discrete r.v.: $F_X(x) = \sum_{x_j \le x} p_X(x_j)$

• Remember example where *X* is the number of treated units:

X	$\mathbb{P}(X=x)$
0	1/8
1	3/8
2	3/8
3	1/8

• Remember example where *X* is the number of treated units:

$$\begin{array}{c|c} x & \mathbb{P}(X = x) \\ \hline 0 & 1/8 \\ 1 & 3/8 \\ 2 & 3/8 \\ 3 & 1/8 \end{array}$$

• Remember example where *X* is the number of treated units:

$$\begin{array}{c|c} x & \mathbb{P}(X = x) \\ \hline 0 & 1/8 \\ 1 & 3/8 \\ 2 & 3/8 \\ 3 & 1/8 \end{array}$$

$$F_X(x) =$$

• Remember example where *X* is the number of treated units:

$$\begin{array}{c|c} x & \mathbb{P}(X = x) \\ \hline 0 & 1/8 \\ 1 & 3/8 \\ 2 & 3/8 \\ 3 & 1/8 \\ \end{array}$$

$$F_X(x) = \begin{cases} 0 & x < 0 \\ \end{cases}$$

• Remember example where *X* is the number of treated units:

$$\begin{array}{c|cc}
x & \mathbb{P}(X = x) \\
\hline
0 & 1/8 \\
1 & 3/8 \\
2 & 3/8 \\
3 & 1/8
\end{array}$$

$$F_X(x) = \begin{cases} 0 & x < 0 \\ 1/8 & 0 \le x < 1 \end{cases}$$

• Remember example where *X* is the number of treated units:

$$\begin{array}{c|cc}
x & \mathbb{P}(X = x) \\
\hline
0 & 1/8 \\
1 & 3/8 \\
2 & 3/8 \\
3 & 1/8
\end{array}$$

$$F_X(x) = \begin{cases} 0 & x < 0 \\ 1/8 & 0 \le x < 1 \\ 1/2 & 1 \le x < 2 \end{cases}$$

• Remember example where *X* is the number of treated units:

$$\begin{array}{c|cc}
x & \mathbb{P}(X = x) \\
\hline
0 & 1/8 \\
1 & 3/8 \\
2 & 3/8 \\
3 & 1/8
\end{array}$$

$$F_X(x) = \begin{cases} 0 & x < 0 \\ 1/8 & 0 \le x < 1 \\ 1/2 & 1 \le x < 2 \\ 7/8 & 2 \le x < 3 \end{cases}$$

Remember example where X is the number of treated units:

$$\begin{array}{c|cc}
x & \mathbb{P}(X = x) \\
\hline
0 & 1/8 \\
1 & 3/8 \\
2 & 3/8 \\
3 & 1/8
\end{array}$$

• Let's calculate the c.d.f., $F_X(x) = \mathbb{P}(X \le x)$ for this:

$$F_X(x) = \begin{cases} 0 & x < 0 \\ 1/8 & 0 \le x < 1 \\ 1/2 & 1 \le x < 2 \\ 7/8 & 2 \le x < 3 \\ 1 & x \ge 3 \end{cases}$$

• What is $F_X(1.4)$ here?

• Remember example where *X* is the number of treated units:

$$\begin{array}{c|c} x & \mathbb{P}(X = x) \\ \hline 0 & 1/8 \\ 1 & 3/8 \\ 2 & 3/8 \\ 3 & 1/8 \\ \end{array}$$

• Let's calculate the c.d.f., $F_X(x) = \mathbb{P}(X \le x)$ for this:

$$F_X(x) = \begin{cases} 0 & x < 0 \\ 1/8 & 0 \le x < 1 \\ 1/2 & 1 \le x < 2 \\ 7/8 & 2 \le x < 3 \\ 1 & x \ge 3 \end{cases}$$

• What is $F_X(1.4)$ here? 0.5

Graph of discrete c.d.f.

• Finding the probability of any region:

• Finding the probability of any region:

•
$$\mathbb{P}(a < X \leq b) = F_X(b) - F_X(a)$$
.

• Finding the probability of any region:

•
$$P(a < X \le b) = F_X(b) - F_X(a)$$
.

•
$$\mathbb{P}(X > a) = 1 - F_X(a)$$

• Finding the probability of any region:

•
$$\mathbb{P}(a < X \le b) = F_X(b) - F_X(a)$$
.

•
$$P(X > a) = 1 - F_X(a)$$

• Properties of F_X :

· Finding the probability of any region:

•
$$\mathbb{P}(a < X \le b) = F_X(b) - F_X(a)$$
.

•
$$\mathbb{P}(X > a) = 1 - F_X(a)$$

- Properties of F_X :
- 1. **Increasing**: if $x_1 \le x_2$ then $F_X(x_1) \le F_X(x_2)$.

- Finding the probability of any region:
 - $\mathbb{P}(a < X \le b) = F_X(b) F_X(a)$.
 - $P(X > a) = 1 F_X(a)$
- Properties of F_X :
- 1. **Increasing**: if $x_1 \le x_2$ then $F_X(x_1) \le F_X(x_2)$.
 - Proof: the event $X < x_1$ includes the event $X < x_2$ so $\mathbb{P}(X < x_2)$ can't be smaller than $\mathbb{P}(X < x_1)$.

- Finding the probability of any region:
 - $\mathbb{P}(a < X \le b) = F_X(b) F_X(a)$.
 - $P(X > a) = 1 F_X(a)$
- Properties of F_X :
- 1. **Increasing**: if $x_1 \le x_2$ then $F_X(x_1) \le F_X(x_2)$.
 - Proof: the event $X < x_1$ includes the event $X < x_2$ so $\mathbb{P}(X < x_2)$ can't be smaller than $\mathbb{P}(X < x_1)$.
- 2. Converges to 0 and 1: $\lim_{x\to -\infty} F_X(x)=0$ and $\lim_{x\to \infty} F_X(x)=1$.

- Finding the probability of any region:
 - $\mathbb{P}(a < X \le b) = F_X(b) F_X(a)$.
 - $\mathbb{P}(X > a) = 1 F_X(a)$
- Properties of F_X :
- 1. **Increasing**: if $x_1 \le x_2$ then $F_X(x_1) \le F_X(x_2)$.
 - Proof: the event $X < x_1$ includes the event $X < x_2$ so $\mathbb{P}(X < x_2)$ can't be smaller than $\mathbb{P}(X < x_1)$.
- 2. Converges to 0 and 1: $\lim_{x\to -\infty} F_X(x)=0$ and $\lim_{x\to \infty} F_X(x)=1$.
- 3. **Right continuous**: no jumps when we approach a point from the right:

$$F(a) = \lim_{x \to a^+} F(x)$$

• Any function of a random variable is a also a random variable.

- Any function of a random variable is a also a random variable.
- Y = g(X) where $g(): \mathbb{R} \to \mathbb{R}$ is the function that maps from the sample space to $\omega: g(X(\omega))$

- Any function of a random variable is a also a random variable.
- Y = g(X) where $g(): \mathbb{R} \to \mathbb{R}$ is the function that maps from the sample space to $\omega: g(X(\omega))$
- If g() is one-to-one, easy to determine the p.m.f. of Y:

$$\mathbb{P}(Y = g(x)) = \mathbb{P}(g(X) = x) = \mathbb{P}(X = x)$$

- · Any function of a random variable is a also a random variable.
- Y = g(X) where $g(): \mathbb{R} \to \mathbb{R}$ is the function that maps from the sample space to $\omega: g(X(\omega))$
- If g() is one-to-one, easy to determine the p.m.f. of Y:

$$\mathbb{P}(Y = g(x)) = \mathbb{P}(g(X) = x) = \mathbb{P}(X = x)$$

• More generally, for all y in the support of g(X), we have:

$$\mathbb{P}(g(X) = y) = \sum_{s:g(x) = y} \mathbb{P}(X = x)$$

Sum vs mean vs any

• $X \sim \text{Bin}(n, p)$: number of successes.

Χ	$\mathbb{P}(X=x)$
0	1/8
1	3/8
2	3/8
3	1/8

Sum vs mean vs any

- $X \sim \text{Bin}(n, p)$: number of successes.
- Y = X/n: proportion of successes (one-to-one)

$\mathbb{P}(X=x)$
1/8
3/8
3/8
1/8

У	$\mathbb{P}(Y=y)$
0	1/8
1/3	3/8
2/3	3/8
1	1/8

Sum vs mean vs any

- $X \sim Bin(n, p)$: number of successes.
- Y = X/n: proportion of successes (one-to-one)
- $Z = \mathbb{I}(X > 0)$: any successes (not one-to-one)

X	$\mathbb{P}(X=x)$
0	1/8
1	3/8
2	3/8
3	1/8

У	P(Y = y)
0	1/8
1/3	3/8
2/3	3/8
1	1/8

Z	$\mathbb{P}(Z=z)$
0	1/8
1	3/8 + 3/8 + 1/8 = 7/8
	'

• Easy to confuse r.v.s, their distribution, events, and values the r.v.s take.

- Easy to confuse r.v.s, their distribution, events, and values the r.v.s take.
- · A few common examples:

- Easy to confuse r.v.s, their distribution, events, and values the r.v.s take.
- · A few common examples:
 - If X and Y have the same distribution $\Rightarrow \mathbb{P}(X = Y) = 1$

- Easy to confuse r.v.s, their distribution, events, and values the r.v.s take.
- · A few common examples:
 - If X and Y have the same distribution $\Rightarrow \mathbb{P}(X = Y) = 1$
 - Scaling an r.v., 2X doesn't scale the p.m.f. $2p_X(x)$

- Easy to confuse r.v.s, their distribution, events, and values the r.v.s take.
- · A few common examples:
 - If X and Y have the same distribution $\Rightarrow \mathbb{P}(X = Y) = 1$
 - Scaling an r.v., 2X doesn't scale the p.m.f. $2p_X(x)$
- · Distributions are like

5/ Independent random

variables

• Two r.v.s are **independent** if

$$\mathbb{P}(X \leq x, \, Y \leq y) = \mathbb{P}(X \leq x) \mathbb{P}(Y \leq y)$$

· Two r.v.s are independent if

$$\mathbb{P}(X \le x, Y \le y) = \mathbb{P}(X \le x)\mathbb{P}(Y \le y)$$

• For many r.v.s:

$$\mathbb{P}(X_1 \leq x_1, \dots, X_n \leq x_n) = \mathbb{P}(X_1 \leq x_1) \cdots \mathbb{P}(X_n \leq x_n)$$

· Two r.v.s are independent if

$$\mathbb{P}(X \le x, Y \le y) = \mathbb{P}(X \le x)\mathbb{P}(Y \le y)$$

· For many r.v.s:

$$\mathbb{P}(X_1 \leq x_1, \dots, X_n \leq x_n) = \mathbb{P}(X_1 \leq x_1) \cdots \mathbb{P}(X_n \leq x_n)$$

• Remember: X_1, \dots, X_n independent \implies pairwise independent, but not vice versa.

Two r.v.s are independent if

$$\mathbb{P}(X \le x, Y \le y) = \mathbb{P}(X \le x)\mathbb{P}(Y \le y)$$

For many r.v.s:

$$\mathbb{P}(X_1 \leq x_1, \dots, X_n \leq x_n) = \mathbb{P}(X_1 \leq x_1) \cdots \mathbb{P}(X_n \leq x_n)$$

- Remember: X_1, \dots, X_n independent \implies pairwise independent, but not vice versa.
- For discrete r.v.s (not continuous), we can write this as:

$$\mathbb{P}(X = x, Y = y) = \mathbb{P}(X = x)\mathbb{P}(Y = y)$$

• Independent and identically distributed (i.i.d.) X_1, \dots, X_n

- Independent and identically distributed (i.i.d.) X_1, \dots, X_n
 - Identically distributed: all have the same p.m.f./c.d.f.

- Independent and identically distributed (i.i.d.) X_1, \dots, X_n
 - Identically distributed: all have the same p.m.f./c.d.f.
 - · Extremely common data assumption

- Independent and identically distributed (i.i.d.) X_1, \dots, X_n
 - · Identically distributed: all have the same p.m.f./c.d.f.
 - · Extremely common data assumption
- Story of the binomial: if $X \sim \text{Bin}(n, p)$, we can write it as $X = X_1 + \cdots + X_n$ where X_i are i.i.d. Bern(p).

- Independent and identically distributed (i.i.d.) X_1, \dots, X_n
 - Identically distributed: all have the same p.m.f./c.d.f.
 - · Extremely common data assumption
- Story of the binomial: if $X \sim \text{Bin}(n, p)$, we can write it as $X = X_1 + \cdots + X_n$ where X_i are i.i.d. Bern(p).
- **Theorem:** If $X \sim \text{Bin}(n, p)$ and $Y \sim \text{Bin}(m, p)$ with X and Y independent, then $X + Y \sim \text{Bin}(n + m, p)$.

• Statistical modeling in a nutshell:

- · Statistical modeling in a nutshell:
 - 1. Assume the data, $X_1, X_2, ...$, are i.i.d. with p.m.f. $p(x; \theta)$ within a family of distributions (Bernoulli, binomial, etc) with parameter θ .

- · Statistical modeling in a nutshell:
 - 1. Assume the data, $X_1, X_2, ...$, are i.i.d. with p.m.f. $p(x; \theta)$ within a family of distributions (Bernoulli, binomial, etc) with parameter θ .
 - 2. Use a function of the observed data to **estimate** the value of the θ : $\hat{\theta}(X_1, X_2, ...)$

- · Statistical modeling in a nutshell:
 - 1. Assume the data, $X_1, X_2, ...$, are i.i.d. with p.m.f. $p(x; \theta)$ within a family of distributions (Bernoulli, binomial, etc) with parameter θ .
 - 2. Use a function of the observed data to **estimate** the value of the θ : $\hat{\theta}(X_1, X_2, ...)$
- Example:

- · Statistical modeling in a nutshell:
 - 1. Assume the data, $X_1, X_2, ...$, are i.i.d. with p.m.f. $p(x; \theta)$ within a family of distributions (Bernoulli, binomial, etc) with parameter θ .
 - 2. Use a function of the observed data to **estimate** the value of the θ : $\hat{\theta}(X_1, X_2, ...)$
- · Example:
 - Sample *n* respondents from population with replacement.

- · Statistical modeling in a nutshell:
 - 1. Assume the data, $X_1, X_2, ...$, are i.i.d. with p.m.f. $p(x; \theta)$ within a family of distributions (Bernoulli, binomial, etc) with parameter θ .
 - 2. Use a function of the observed data to **estimate** the value of the θ : $\hat{\theta}(X_1, X_2, ...)$
- · Example:
 - Sample *n* respondents from population with replacement.
 - X_1, X_2, \dots, X_n : independent Bernoulli r.v.s indicating Biden approval.

- · Statistical modeling in a nutshell:
 - 1. Assume the data, $X_1, X_2, ...$, are i.i.d. with p.m.f. $p(x; \theta)$ within a family of distributions (Bernoulli, binomial, etc) with parameter θ .
 - 2. Use a function of the observed data to **estimate** the value of the θ : $\hat{\theta}(X_1, X_2, ...)$
- · Example:
 - Sample *n* respondents from population with replacement.
 - X_1, X_2, \dots, X_n : independent Bernoulli r.v.s indicating Biden approval.
 - p is the Biden approval rate in the population.

- · Statistical modeling in a nutshell:
 - 1. Assume the data, $X_1, X_2, ...$, are i.i.d. with p.m.f. $p_(x; \theta)$ within a family of distributions (Bernoulli, binomial, etc.) with parameter θ .
 - 2. Use a function of the observed data to **estimate** the value of the θ : $\hat{\theta}(X_1, X_2, ...)$
- · Example:
 - Sample *n* respondents from population with replacement.
 - X_1, X_2, \dots, X_n : independent Bernoulli r.v.s indicating Biden approval.
 - p is the Biden approval rate in the population.
 - $\overline{X} = (1/n) \sum_{i} X_{i}$ is our estimate of p. Properties?