

Winter 2018/19, Term 2

Due Date: Thursday, 31 January 2019

Timm Treskatis

Homework Assignment 4: Model Answers (Analytical Flavour)

Please submit the following files as indicated below: 🐼 source code 🔼 PDF file 🚨 image file 🖻 video file

Question 1 | **1 mark** | \triangle Let $u \in C^3(\bar{\Omega})$ with a bounded domain Ω . For simplicity and with no real loss of generality we assume that $\Omega \subset \mathbb{R}$ (because even in higher dimensions the partial derivatives are just ordinary 1D directional derivatives).

In Lemma 2.2.6 we showed that the one-sided difference quotients

$$\partial^{+h}u(x) = \frac{u(x+h) - u(x)}{h}$$
 and $\partial^{-h}u(x) = \frac{u(x) - u(x-h)}{h}$

are a first-order consistent approximation of u'(x). Use the same Taylor-series technique to show that these difference quotients actually approximate u'(x) - Du''(x) "better", namely with second-order consistency, than they approximate u'(x). Here $D \in \mathbb{R}$ is a certain number which may depend on h.

Let $x \in \Omega$ and h > 0 such that $[x - h, x + h] \subset \overline{\Omega}$. Taylor expansion yields

$$u(x \pm h) = u(x) \pm hu'(x) + \frac{h^2}{2}u''(x) \pm \frac{h^3}{6}u'''(\xi_{\pm})$$

where $\xi_+ \in]x, x + h[$ and $\xi_- \in]x - h, x[$.

We now obtain

$$\left| \partial^{\pm h} u(x) - (u'(x) - Du''(x)) \right| = \left| u'(x) \pm \frac{h}{2} u''(x) + \frac{h^2}{6} u'''(\xi_{\pm}) - (u'(x) - Du''(x)) \right| \le \frac{h^2}{6} \max_{|x - h, x + h|} |u'''|$$

with $D = \mp \frac{h}{2}$.

Important conclusion: Approximating an advection term with a downwind difference quotient introduces artificial anti-diffusion (uh oh - that sounds like trouble!!!), an approximation with an upwind difference quotient introduces artificial diffusion (unphysical smoothing / smearing, which is also undesirable, see Q2(d) of the applied version of this assignment).

Question 2 | 4 marks | \triangle Let $\Omega \subset \mathbb{R}^d$ be a bounded domain and $L: C^2(\Omega) \cap C(\bar{\Omega}) \to C(\Omega)$ a linear second-order elliptic operator. If—using the notation from the notes—its zeroth-order coefficient $c \geq 0$, then the operator is nonnegativity-preserving

$$Lu \ge 0 \text{ in } \Omega \quad \wedge \quad u \ge 0 \text{ on } \partial\Omega \qquad \Rightarrow \qquad u \ge 0 \text{ in } \Omega$$
 (1)

(in class we only discussed the case c = 0).

For a matrix $A \in \mathbb{R}^{n \times n}$, we have shown that the analogous algebraic property, namely monotonicity

$$Ax \ge 0 \qquad \Rightarrow \qquad x \ge 0,$$
 (2)

is equivalent to A being nonsingular and inverse-nonnegative. We then proved the (sufficient) monotonicity criterion that every weakly chained diagonally dominant L-matrix is monotone. Hence, a discretisation scheme that turns operators L with the property (1) into weakly chained diagonally dominant L-matrices preserves very important structure of the problem.

In this assignment, I would like you to refine these results to highlight another characteristic feature of elliptic operators¹. In fact, elliptic operators of the above form have strictly positive Green's functions in the interior of Ω , so in addition to (1) they also have the property

$$Lu \ge 0 \text{ in } \Omega \quad \wedge \quad \exists x \in \Omega : (Lu)(x) > 0 \quad \wedge \quad u \ge 0 \text{ on } \partial\Omega \quad \Rightarrow \quad u > 0 \text{ in } \Omega.$$

(a) Formulate the corresponding stronger monotonicity property of matrices and show that it is equivalent to nonsingularity and inverse-positivity.

A matrix $A \in \mathbb{R}^{n \times n}$ satisfies (2) and additionally

$$Ax \ge 0 \quad \land \quad \exists i \in \{1, \dots, n\} : (Ax)_i > 0 \qquad \Rightarrow \qquad x > 0$$
 (3)

if and only if it is nonsingular and inverse-positive.

Proof. If the matrix satisfies (2) and (3) then it is nonsingular (Lemma 2.2.16) and from $A(A^{-1})_i = e_i$ we conclude $(A^{-1})_i > 0$ for all columns $i \in \{1, ..., n\}$.

Conversely, if A is nonsingular and inverse-positive, then (2) follows from Lemma 2.2.16. If $x \in \mathbb{R}^n$ is a vector such that $Ax \ge 0$ with $(Ax)_i > 0$ for one $i \in \{1, ..., n\}$, then $A^{-1} > 0$ yields, for all $j \in \{1, ..., n\}$

$$x_j = (A^{-1}Ax)_j = \sum_{k=1}^n (A^{-1})_{jk} (Ax)_k \ge (A^{-1})_{ji} (Ax)_i > 0,$$

which shows (3).

¹Even a hyperbolic operator like $L = a \cdot \nabla$ preserves nonnegativity and also satisfies a similar maximum principle. What we look at in this question is a feature of elliptic operators only, but not of hyperbolic operators.

(b) Can you also find and prove a sufficient criterion in the style of the M-criterion from Lemma 2.2.19 that implies this stronger form of monotonicity?

Every irreducibly diagonally dominant L-matrix satisfies the monotonicity properties (2) and (3).

Proof. Since every irreducibly diagonally dominant matrix is also weakly chained diagonally dominant, we have (2) due to Lemma 2.2.19.

Let $A \in \mathbb{R}^{n \times n}$ be an irreducibly diagonally dominant L-matrix. Let $x \in \mathbb{R}^n$ be such that $Ax \ge 0$ and $(Ax)_i > 0$ for some $i \in \{1, ..., n\}$, i.e. due to the L-matrix property and $x \ge 0$

$$\sum_{j=1}^{n} a_{ij} x_{j} > 0$$

$$\Leftrightarrow \qquad \qquad a_{ii} x_{i} > \sum_{j \neq i} |a_{ij}| x_{j} = \sum_{j \in \mathcal{S}_{i}^{\circ}} |a_{ij}| x_{j}$$

$$\Leftrightarrow \qquad \qquad x_{i} > \sum_{j \in \mathcal{S}_{i}^{\circ}} \frac{|a_{ij}|}{a_{ii}} x_{j} \geq 0$$

$$\tag{4}$$

Assume that there exists $i_0 \in \{1, \ldots, n\}$ for which $x_{i_0} = 0$. Then the same re-arrangement leads to

$$0 = x_{i_0} \ge \sum_{j \in \mathcal{S}_{i_0}^{\circ}} \frac{|a_{i_0 j}|}{a_{i_0 i_0}} x_j \tag{5}$$

which is only possible if all $x_j = 0, j \in \mathcal{S}_{i_0}^{\circ}$.

Let $i_0 \to i_1 \to \cdots \to i_s = i$ be a chain of indices such that $a_{i_{l-1},i_l} \neq 0$, $l = 1, \ldots, s$. Since $i_1 \in \mathcal{S}_{i_0}^{\circ}$, we also have $x_{i_1} = 0$. Applying (5) to row i_1 instead of row i_0 gives $x_{i_2} = 0$ and we continue with this argument until we find that $x_{i_s} = x_i = 0$, which is a contradiction to (4). Hence x > 0.

Your Learning Progress 0 marks, but -1 mark if unanswered D V you have learnt from this assignment?	What is the one most important thing that
What is the most substantial new insight that you have gained from thi	s course this week? Any aha moment?