Точность сходимости итераций: epsilon = 1%

Дискритизация:
$$N_{dis} = \begin{vmatrix} N_{dis} = 41 \\ 20 \text{ if } N_{dis} < 20 \end{vmatrix} = 41$$

Частота дискритизации по высоте Л: (нечетное число)
$$N_r = \begin{bmatrix} N_r = 3 & = 3 \\ N_r = \begin{bmatrix} N_r \text{ if } mod(N_r, 2) = 1 \\ (N_r + 1) \text{ otherwise} \end{bmatrix}$$

$$\begin{pmatrix} OUTPUT \\ Adress \end{pmatrix} = \begin{pmatrix} 1 \\ ".\langle exports \rangle \end{pmatrix}$$

▼ Исходные данные

Высота движения (м): $H_{11} =$

Max движения (): $M_{\psi} =$

Реактивная тяга движения (H): $R_{\psi} = 80 \cdot 10^3$

Полная температура после КС (K): $T*_{KC3} = 1773$

Допустимая температура Π (K): $T_{\Pi, \text{Доп}} = 1373$

Допустимая температура деталей T(K): $T_{T,QO\Pi} = 1273$

Температура горючего (K): $T_{\text{гор}} = T_{\text{атм}} (H_{\text{U}}) + 40 = 328.1$

Подогрев охл. от КС (K): $\Delta T_{OXJKC} = 40$

Степень двухконтурности: m2 = 6

Горючее: Fuel = "Керосин"

Дискритизация: $i = 1..N_{dis}$

▲ Исходные данные

▼ Выбор схемы ГТД или ГТУ

$$N_{\text{HB}, I} = \begin{bmatrix} (50 + 100 + 20) \cdot 10^3 & = 170 \cdot 10^3 \\ 0 & \text{if } H_{\text{B}, I} = 0 \end{bmatrix}$$

$$P_{HBД} = \begin{bmatrix} 1 & = \\ 0 & \text{if } H_{BД} = 0 \end{bmatrix}$$

Мощность
$$H C Д (B T)$$
:
$$N_{HC Д} = \begin{bmatrix} 1100 \cdot 10^3 & = 0 \\ 0 & \text{if } H_{C Д} = 0 \end{bmatrix}$$

$$P_{HCД} = \begin{bmatrix} 1 & = \\ 0 & \text{if } H_{CД} = 0 \end{bmatrix}$$

$$N_{HHД} = \begin{bmatrix} 300 \cdot 10^3 & = 0.10^3 \\ 0 & \text{if } H_{HД} = 0 \end{bmatrix}$$

$$P_{HHД} = \begin{bmatrix} 1 & = 0 \\ 0 & \text{if } H_{HД} = 0 \end{bmatrix}$$

CT:
$$CT = 0$$

$$N_{HCT} = \begin{bmatrix} 32000 \cdot 10^3 & = 0.10 \\ 0 & \text{if } CT = 0 \end{bmatrix}$$

$$P_{HCT} = \begin{bmatrix} 0 & = 0 \\ 0 & \text{if } CT = 0 \end{bmatrix}$$

CM: CM = 0

Реактивное С II контура:

▲ Выбор схемы ГТД или ГТУ

Степень повышения полного давления КНД:

$$\begin{pmatrix}
\pi^* \text{КНДII}_i \\
\pi^* \text{КНДI}_i
\end{pmatrix} = \begin{bmatrix}
1.2 + \frac{(i-1)}{N_{\text{dis}} - 1} \cdot 0.8 \\
3.2
\end{bmatrix}$$

Степень повышения полного давления КСД:

$$\begin{bmatrix} \pi^* \text{КСДII}_i \\ \pi^* \text{КСДI}_i \end{bmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Степень повышения полного давления КВД:

$$\begin{pmatrix} \pi^* \text{КВДІІ}_i \\ \pi^* \text{КВДІ}_i \end{pmatrix} = \begin{pmatrix} 1 \\ 9 \end{pmatrix}$$

augment
$$\left(\pi^*_{\mathrm{KHДII}}, \pi^*_{\mathrm{KHДII}}\right)^{\mathrm{T}}$$

r [1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
= [1	1.20	1.22	1.24	1.26	1.28	1.30	1.32	1.34	1.36	1.38	1.40	1.42	1.44	1.46	1.48	1.50	1.52	1.54	1.56	1.58	1.60
	2	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20	

$$\operatorname{augment} \left(\pi^*_{\mathrm{KCДII}}, \pi^*_{\mathrm{KCДI}}\right)^{\mathrm{T}}$$

Т		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
=	1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	

augment
$$(\pi^*_{KBДII}, \pi^*_{KBДI})^T =$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
= [1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	2	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	

Сум марная степень повышения полного давления в І контуре:

$$\begin{pmatrix} \boldsymbol{\pi}^* \mathbf{K} \mathbf{I} \boldsymbol{\Sigma}_i \\ \boldsymbol{\pi}^* \mathbf{K} \mathbf{I} \boldsymbol{\Sigma}_i \end{pmatrix} = \begin{pmatrix} \boldsymbol{\pi}^* \mathbf{K} \mathbf{H} \boldsymbol{\Pi}_i \cdot \boldsymbol{\pi}^* \mathbf{K} \mathbf{C} \boldsymbol{\Pi}_i \cdot \boldsymbol{\pi}^* \mathbf{K} \mathbf{B} \boldsymbol{\Pi}_i \\ \boldsymbol{\pi}^* \mathbf{K} \mathbf{H} \boldsymbol{\Pi}_i \cdot \boldsymbol{\pi}^* \mathbf{K} \mathbf{C} \boldsymbol{\Pi}_i \cdot \boldsymbol{\pi}^* \mathbf{K} \mathbf{B} \boldsymbol{\Pi}_i \end{pmatrix}$$

Суммарная степень повышения полного давления в II контуре:

T		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
augment $(\pi^*_{KII\Sigma}, \pi^*_{KI\Sigma})^T = [$	1	1.20	1.22	1.24	1.26	1.28	1.30	1.32	1.34	1.36	1.38	1.40	1.42	1.44	1.46	1.48	1.50	1.52	1.54	1.56	1.58	1.60
,	2	28.80	28.80	28.80	28.80	28.80	28.80	28.80	28.80	28.80	28.80	28.80	28.80	28.80	28.80	28.80	28.80	28.80	28.80	28.80	28.80	

▼ КПД

Адиабат ные КПД К:
$$\begin{pmatrix} \eta^* \text{КНДII} \\ \eta^* \text{КНДII} \end{pmatrix} = \begin{pmatrix} 86 \\ 87 \end{pmatrix}.\%$$

$$\begin{pmatrix} \eta^* \text{КСДII} \\ \eta^* \text{КСДII} \end{pmatrix} = \begin{pmatrix} 88 \\ 88 \end{pmatrix}.\%$$

$$\begin{pmatrix} \eta^* \text{КВДII} \\ \eta^* \text{КВДII} \\ \eta^* \text{КВДII} \end{pmatrix} = \begin{pmatrix} 88 \\ 88 \end{pmatrix} \%$$

$$\begin{pmatrix} \eta^* \text{КВДII} \\ \eta^* \text{КВДII} \end{pmatrix} = \begin{pmatrix} 88 \\ 88 \end{pmatrix} \%$$

$$\begin{pmatrix} \eta^* \text{ТВД} \\ \eta^* \text{ТСД} \\ \eta^* \text{ТСД} \end{pmatrix} = \begin{pmatrix} 87 \\ 88 \\ 90 \end{pmatrix} \%$$

$$\begin{pmatrix} \eta^* \text{ТВД} \\ \eta^* \text{ТСД} \end{pmatrix} = \begin{pmatrix} 87 \\ 88 \\ 90 \end{pmatrix} \%$$

$$\eta^* \text{CT} = \begin{pmatrix} 91\% \\ 100\% \text{ if CT} = 0 \end{pmatrix} = 100.\%$$

Механический КПД:
$$\eta_{MEX} = 0.99 \qquad 0.99 \leq \eta_{MEX} \leq 0.995 = 1$$
КПДР вала КНД:
$$\eta_{PBHД} = \begin{vmatrix} 0.97 & = 1 \\ 1 & \text{if } P_{BHД} = 0 \end{vmatrix}$$
КПДР вала КСД:
$$\eta_{PBCД} = \begin{vmatrix} 0.97 & = 1 \\ 1 & \text{if } P_{BCД} = 0 \end{vmatrix}$$
КПДР вала КВД:
$$\eta_{PBBД} = \begin{vmatrix} 0.97 & = 1 \\ 1 & \text{if } P_{BBД} = 0 \end{vmatrix}$$
КПДР Н ВД:
$$\eta_{PHBД} = \begin{vmatrix} 0.97 & = 0.97 \\ 1 & \text{if } P_{HBД} = 0 \end{vmatrix}$$
КПДР Н СД:
$$\eta_{PHCД} = \begin{vmatrix} 0.97 & = 1 \\ 1 & \text{if } P_{HCД} = 0 \end{vmatrix}$$
КПДР Н НД:
$$\eta_{PHCД} = \begin{vmatrix} 0.97 & = 1 \\ 1 & \text{if } P_{HCД} = 0 \end{vmatrix}$$
КПДР Н СТ:
$$\eta_{PHCT} = \begin{vmatrix} 0.97 & = 1 \\ 1 & \text{if } P_{HCД} = 0 \end{vmatrix}$$

1 if $P_{HCT} = 0$

Коэф. сохранения полного давления на входе ():

Коэф. сохранения полного давления переходного канала Вл->СII ():

Коэф. сохранения полного давления переходного канала КНД->КСД():

Коэф. сохранения полного давления переходного канала КСД->КВД ():

Коэф. сохранения полного давления переходного канала КСД->КВД ():

Коэф. сохранения полного давления в КС ():

Коэф. сохранения полного давления охлаждения ():

Коэф. сохранения полного давления переходного канала КС->ТВД():

Коэф. сохранения полного давления переходного канала ТВД->ТСД():

Коэф. сохранения полного давления переходного канала ТСД->ТНД ():

Коэф. сохранения полного давления переходного канала ТНД->СТ ():

Коэф. сохранения полного давления переходного канала СТ->СІ():

Коэф сохранения полного давления в СМ ():

Коэф сохранения полного давления на выходе ():

 $\sigma_{\rm BX} = 0.985$

 $0.93 \le \sigma_{\rm BX} \le 0.99 = 1$

$$\begin{pmatrix}
\sigma_{\text{КНДІІ->КСДІІ}} \\
\sigma_{\text{КСДІІ->КВДІІ}} \\
\sigma_{\text{КВДІІ->}}
\end{pmatrix} = \begin{pmatrix}
0.98 \\
1 \\
1
\end{pmatrix}$$

$$\begin{pmatrix}
0.98 \\
1 \\
1
\end{pmatrix}$$

$$\begin{pmatrix}
1$$

$$\begin{pmatrix}
\sigma_{\text{КНДІ->КСДІ}} \\
\sigma_{\text{КСДІ->КВДІ}} \\
\sigma_{\text{КВДІ->КС}}
\end{pmatrix} = \begin{pmatrix}
0.99 \\
1 \\
1
\end{pmatrix}$$

 $\sigma_{KC} = 0.96$

 $0.96 \le \sigma_{KC} \le 0.97 = 1$

 $\sigma_{\rm OXJI} = 0.97$

 $\sigma_{KC} \le \sigma_{OXJ} =$

$$\sigma_{\text{ТНД->CT}} = \begin{bmatrix} 0.99 & \text{if CT} \neq 0 \\ 1 & \text{otherwise} \end{bmatrix} = 1$$

$$\sigma_{\text{CT->}} = \begin{bmatrix} 1 & \text{if CI} \neq \text{""} \vee \text{CM} \neq 0 = 1 \\ 1 & \text{otherwise} \end{bmatrix}$$

$$\sigma_{\text{CM}} = \begin{bmatrix} 0.9 & \text{if CM} = 1 \\ 1 & \text{otherwise} \end{bmatrix} = 1$$

$$\sigma_{\text{BMX}} = \begin{bmatrix} 0.98 & \text{if CI} = "" = 1 \\ 1 & \text{otherwise} \end{bmatrix}$$

 $0.98 \le \sigma_{\rm BMX} \le 0.99 = 0$

Коэф. скорости реактивного СІ(): Коэф. скорости реактивного СІІ():

$$\begin{pmatrix} \varphi_{\text{CI}} \\ \varphi_{\text{CII}} \end{pmatrix} = \begin{pmatrix} 0.993 \\ 0.990 \end{pmatrix}$$

$$0.975 \le \varphi_{\text{Срегулируемое}} \le 0.985$$

 $0.99 \le \varphi_{\text{Сурганируемое}} \le 0.995$

[1, c. 8]

Отношение массового расхода утечек к расходам на входе в соответствующий контур:

$$\begin{pmatrix} g_{yTBxII} & g_{yTKHДII} & g_{yTKCДII} & g_{yTKBДII} & g_{yTKCII} & g_{yTBыxII} \\ g_{yTBxI} & g_{yTKHДII} & g_{yTKCДII} & g_{yTKBДII} & g_{yTKCI} & g_{yTBыxI} \end{pmatrix} = \begin{pmatrix} 0 & 0.1 & 0 & 0 & 0 & 0 \\ 0 & 0.1 & 0 & 0.3 & 0 & 0 \end{pmatrix}. \%$$

$$(g_{yTTBД} g_{yTTCД} g_{yTTHД} g_{yTCT}) = (0.3 0 0.1 0).%$$

$$g_{\text{YTCM}} = \begin{bmatrix} 0.2\% & \text{if } CM = 1 \\ 0 & \text{otherwise} \end{bmatrix} = 0.000 \cdot \%$$

$$g_{\text{YTCI}} = \begin{bmatrix} 0.\% & \text{if CI} \neq "" = 0.000.\% \\ 0 & \text{otherwise} \end{bmatrix}$$

$$g_{\text{yTCII}} = \begin{cases} 0.\% & \text{if CII} \neq \text{""} = 0.000.\% \\ 0 & \text{otherwise} \end{cases}$$

Отношение суммарного массового расхода утечек контура к расходу на входе в соответствующий контур:

$$g_{\text{yTI}} = g_{\text{yTBxI}} + g_{\text{yTKI}} + g_{\text{yTKCI}} + g_{\text{yTTI}} + g_{\text{yTCI}} = 0.800 \cdot \%$$

$$0.5 \cdot \% \le g_{yTI} \le 1 \cdot \% = 1$$

$$g_{yTII} =$$
 $g_{yTBxII} + g_{yTKHДII} + g_{yTCII} = 0.100 \cdot \%$ $0 \text{ if } m2 = 0$

SyrKCI

 $g_{\text{УТКНДІ}} + g_{\text{УТКСДІ}} + g_{\text{УТКВДІ}}$

 $\left(\begin{array}{c} g_{\text{утКСI}} \\ g_{\text{утТВД}} + g_{\text{утТСД}} + g_{\text{утТНД}} + g_{\text{утСT}} \end{array}\right)$

$$g_{\text{yTII}} = 0$$
 if $m2 = 0$ = 0
0.5.% $\leq g_{\text{yTII}} \leq 1.\%$ otherwise

Начальное невозмущенное давление (Па):
$$\begin{pmatrix} P^*_H \\ P_H \end{pmatrix} = \begin{pmatrix} P_{aTM} (H_{\mathcal{U}}) \\ P_{aTM} (H_{\mathcal{U}}) \end{pmatrix} = \begin{pmatrix} 101.33 \\ 101.33 \end{pmatrix} \cdot 10^3$$

Начальная невозмущенная температура (К):
$$\begin{pmatrix} T^*_H \\ T_H \end{pmatrix} = \begin{pmatrix} T_{aTM}(H_{\mathcal{U}}) \\ T_{aTM}(H_{\mathcal{U}}) \end{pmatrix} = \begin{pmatrix} 288.15 \\ 288.15 \end{pmatrix}$$

Начальная невозмущенная плотность (кг/м³):
$$\begin{pmatrix} \rho^*_H \\ \rho_H \end{pmatrix} = \begin{pmatrix} \frac{P^*_H}{R_B \cdot T^*_H} \\ \frac{P^*_H}{R_B \cdot T^*_H} \end{pmatrix} = \begin{pmatrix} 1.2246 \\ 1.2246 \end{pmatrix}$$

Начальная невозмущенная темлоемкость (Дж/кг/К):
$$Cp_{H} = Cp_{BO3ДУX}(P_{H}, T_{H}) = 1002.6$$

Начальный невозмущенный показатель адиабаты:
$$k_{\rm H} = k_{\rm ad} ({\rm Cp_H}, {\rm R_B}) = 1.401$$

Скорость звука невозмущенного потока (м/c):
$$a_{\rm H} = \sqrt{k_{\rm H} \cdot R_{\rm B} \cdot T_{\rm H}} = 340.5$$

▼ Входное устройство

Скорость полета (м/с):
$$\upsilon = M_{\upsilon} \cdot a_H = 0$$

 $\upsilon \cdot 3.6 = 0$

Полное давление на входе (Па):
$$P^*_{BX} \,=\, P^*_{H} \cdot \left(1 + \frac{k_H - 1}{2} \cdot M_{\mathcal{O}}^{} 2\right)^{\frac{k_H}{k_H - 1}} \,=\, 101.3 \cdot 10^3$$

Полная температура на входе (K):
$$T^*_{BX} = T^*_{H} \cdot \left(1 + \frac{k_H - 1}{2} \cdot M_U^2\right) = 288.1$$

Полная плотность на входе (кг/м³):
$$\rho^*_{BX} = \frac{P^*_{BX}}{R_{B} \cdot T^*_{BX}} = 1.2246$$

Теплоем коть на входе (Дж/кг/К):
$$Cp_{BX} = Cp_{BO3ДУX}(P^*_{BX}, T^*_{BX}) = 1002.6$$

Показатель адиабаты на входе ():
$$k_{BX} = k_{AJ} (Cp_{BX}, R_{B}) = 1.401$$

Степень повышения полного давления на входе ():
$$\pi^*_{\ \ BX} = \frac{P^*_{\ \ BX}}{P^*_{\ \ H}} = 1.000$$

```
Т*кндіі Р*кндіі <sup>k</sup>кндіі <sup>Ср</sup>кндіі <sup>L</sup>кнді <sup>iteration</sup>кнді
 Т*КНДІІІ Р*КНДІІІ <sup>k</sup>КНДІІІ <sup>Cp</sup>КНДІІІ <sup>L</sup>КНДІІ <sup>iteration</sup>КНДІІ
 Т*КНДІЗ Р*КНДІЗ КНДІЗ СРКНДІЗ LKНД iterationКНДІ
Т*КНДІІЗ Р*КНДІІЗ КНДІІЗ СРКНДІІЗ LKHД iterationКНДІІ
 Т*КСДІІ Р*КСДІІ <sup>k</sup>КСДІІ <sup>C</sup>pкСДІІ <sup>L</sup>кСДІ <sup>iteration</sup>КСДІ
 ^{T*}КСДІІ ^{P*}КСДІІ ^{k}КСДІІ ^{Cp}КСДІІ ^{L}КСДІІ ^{iteration}КСДІІ
                                                                                                                                    = \int \text{for } i \in 1..N_{\text{dis}}
 T^*КСДІЗ P^*КСДІЗ kКСДІЗ CpКСДІЗ LКСД iterationКСДІ
                                                                                                                                                 trace(concat("i = ", num2str(i)))
Т*КСДІІЗ Р*КСДІІЗ <sup>k</sup>КСДІІЗ <sup>Cp</sup>КСДІІЗ <sup>L</sup>КСД <sup>iteration</sup>КСДІІ
                                                                                                                                                  trace(" КНД")
 Т*КВДІІ Р*КВДІІ <sup>k</sup>КВДІІ <sup>C</sup>pкВДІІ <sup>L</sup>кВДІ <sup>iteration</sup>кВДІ
                                                                                                                                                   (Т*<sub>КНДІ1</sub>
 Т*КВДІІ1 Р*КВДІІ1 <sup>k</sup>КВДІІ1 <sup>Cp</sup>КВДІІ1 <sup>L</sup>КВДІІ <sup>iteration</sup>КВДІІ
                                                                                                                                                    \left( T^*_{\text{КНДII1}_i} \right)^- \left( T^*_{\text{вх}} \right)
 Т*КВДІЗ Р*КВДІЗ КВДІЗ СРКВДІЗ LKВД iteration КВДІ

\begin{pmatrix}
P^*_{BX} \cdot \sigma_{BX} \\
P^*_{BX} \cdot \sigma_{BX} & \text{if } m2 \neq 0 \\
P^*_{H} & \text{otherwise}
\end{pmatrix}

                                                                                                                                                    (Р*КНДІ1<sub>і</sub>)
<sup>Т*</sup>КВДПЗ Р*КВДПЗ <sup>k</sup>КВДПЗ <sup>C</sup>pКВДПЗ <sup>L</sup>KВД <sup>iteration</sup>КВДП
                                                                                                                                                  \left( P^*КНДІІ_i \right)
                                                                                                                                                                          = \begin{pmatrix} k_{\text{ad}} \left( \text{Cp}_{\text{воздух}} \left( \text{P*}_{\text{КНДІ1}_{i}}, \text{T*}_{\text{КНДІ1}_{i}} \right), \text{R}_{\text{B}} \right) \\ k_{\text{ad}} \left( \text{Cp}_{\text{воздух}} \left( \text{P*}_{\text{КНДІ1}_{i}}, \text{T*}_{\text{КНДІ1}_{i}} \right), \text{R}_{\text{B}} \right) \end{pmatrix} 
                                                                                                                                                    <sup>k</sup>кндII1<sub>i</sub>
                                                                                                                                                  \left( \begin{array}{c} Cp_{KHДI1_i} \end{array} \right)
                                                                                                                                                                                    \left( \operatorname{Cp}_{\mathsf{воздуx}} \left( \operatorname{P*}_{\mathsf{KHДI1}_{\dot{\mathsf{I}}}}, \operatorname{T*}_{\mathsf{KHДI1}_{\dot{\mathsf{I}}}} \right) \right)
                                                                                                                                                    <sup>Ср</sup>КНДІІ1<sub>і</sub>
                                                                                                                                                                                   \left( {^{\mathrm{Cp}}}_{\mathrm{воздух}} \left( {^{\mathrm{P}}}^{*}_{\mathrm{КНДІІ1}_{\mathbf{i}}}, {^{\mathrm{T}}}^{*}_{\mathrm{КНДІІ1}_{\mathbf{i}}} \right) \right)
                                                                                                                                                  (iteration<sub>КНДІ</sub>;
                                                                                                                                                      Т*<sub>КНДІЗ</sub>і
                                                                                                                                                        Р*<sub>КНДІЗ</sub>і
                                                                                                                                                                                   = COMPRESSOR3 \left(\pi^*_{\text{KHДI}_i}, \eta^*_{\text{KHДI}_i}, k_{\text{KHДII}_i}, P^*_{\text{KHДII}_i}, T^*_{\text{KHДII}_i}\right)
                                                                                                                                                       СрКНДІЗі
                                                                                                                                                        <sup>k</sup>кндіз<sub>і</sub>
                                                                                                                                                   (iteration<sub>КНДІІ:</sub>
                                                                                                                                                       T*<sub>КНДІІЗ</sub>і
```

 $= \text{COMPRESSOR3} \left(\pi^*_{\text{КНДII}}, \eta^*_{\text{КНДII}}, k_{\text{КНДII1}}, P^*_{\text{КНДII1}}, T^*_{\text{КНДII1}} \right)$

```
Ср<sub>КНДІІЗ</sub>і
       <sup>k</sup>кндII3<sub>i</sub>
(L<sub>КНДІ</sub>
                                   ^{\text{Ср}_{\text{Воздух.cp}}} \left( P^* \text{КНДІ1}_{i}, P^* \text{КНДІ3}_{i}, T^* \text{КНДІ1}_{i}, T^* \text{КНДІ3}_{i} \right) \cdot \left( T^* \text{КНДІ3}_{i} - T^* \text{КНДІ1}_{i} \right)
                               ^{\text{Cp}_{\text{Воздух.cp}}\left(P^*КНДІІ_{i}, P^*КНДІІ_{i}, T^*КНДІІ_{i}, T^*КНДІІ_{i}) \left(T^*КНДІІ_{i} -T^*КНДІІ_{i})
 <sup>L</sup>КНДІІ<sub>і</sub>
L_{KHД_i} = -
trace(" КСД")
∫Т*<sub>КСДІ1</sup>і</sub>
                                     T*<sub>КНДІЗ</sub>
т*ксдпі<sub>і</sub>
                                   Т*<sub>КНДІІЗ</sub>
( P*ксдіі<sub>і</sub>
                                     P^*КНДІЗ_i-\sigmaКНДІ->КСДІ
 . <sup>Р*</sup>КСДІІ1<sub>і</sub>
                                   P^*кндііз_i·\sigmaкндіі->ксдіі
                                   k_{aд}(Cp_{BO3ДУX}(P^*_{KCДI1_i}, T^*_{KCДI1_i}), R_B)
<sup>k</sup>ксдп
 <sup>k</sup>КСДII1<sub>i</sub>
                                 \left( \mathbf{k}_{\mathrm{ad}} \left( \mathbf{Cp}_{\mathrm{воздух}} \left( \mathbf{P*}_{\mathrm{КСДII1}_{\mathrm{i}}}, \mathbf{T*}_{\mathrm{КСДII1}_{\mathrm{i}}} \right), \mathbf{R}_{\mathrm{B}} \right) \right)
Ср<sub>КСДІ1</sub>
                                     Cp_{BO3ДУX}(P*_{KCДI1_i}, T*_{KСДI1_i})
 Ср<sub>КСДІІ1</sub>
                                    (P^*_{BO3ДУX}(P^*_{KCДII1_i}, T^*_{KCДII1_i}))
(iteration<sub>КСДІ</sub>
    Т*<sub>КСДІЗ</sub>і
     Р*<sub>КСДІЗ</sub>
                                   = COMPRESSOR3 \left(\pi^*_{\text{КСДI}_i}, \eta^*_{\text{КСДI}_i}, k_{\text{КСДII}_i}, P^*_{\text{КСДII}_i}, T^*_{\text{КСДII}_i}\right)
    <sup>Ср</sup>КСДІЗ<sub>і</sub>
      <sup>k</sup>ксдіз<sub>і</sub>
(iteration<sub>КСДІІ,</sub>
    T^*КСДІІ3_i
     Р*<sub>КСДІІЗ</sub>
                                    = COMPRESSOR3 \left(\pi^*_{\text{КСДІІ}_i}, \eta^*_{\text{КСДІІ}_i}, k_{\text{КСДІІ}_i}, P^*_{\text{КСДІІ}_i}, T^*_{\text{КСДІІ}_i}\right)
     <sup>Ср</sup>КСДІІЗ<sub>і</sub>
      <sup>k</sup>ксдііз<sub>i</sub>
ſ L<sub>КСДІ</sub>
                                   ^{\mathrm{Cp}_{\mathrm{BO3ДУХ.cp}}\left(\mathrm{P^*KCДI1}_{\mathrm{i}},\mathrm{P^*KCДI3}_{\mathrm{i}},\mathrm{T^*KCДI1}_{\mathrm{i}},\mathrm{T^*KCДI3}_{\mathrm{i}}\right)\cdot\left(\mathrm{T^*KCДI3}_{\mathrm{i}}-\mathrm{T^*KCДI1}_{\mathrm{i}}\right)}
                              ^{\text{Ср}_{\text{Воздух.cp}}}(P^*\text{КСДІІ1}_{:}, P^*\text{КСДІІ3}_{:}, T^*\text{КСДІІ1}_{:}, T^*\text{КСДІІ3}_{:}) \cdot (T^*\text{КСДІІ3}_{:} - T^*\text{КСДІІ1}_{:})
```

```
1 \cdot LКСДІ_{i} + m2 \cdot LКСДІІ_{i}
      trace(" КВД")
       <sup>Т*</sup>квдіі<sub>і</sub>
                                               ´Т*<sub>КНДІЗі</sub>
       <sup>Т*</sup>квдіі1<sub>і</sub>
                                              Т*<sub>КНДІІЗ</sub>і
       Р*квди<sub>і</sub>
                                                P^*КСДІЗ_i-\sigmaКСДІ->КВДІ
       Р*<sub>КВДІІ1</sub>
                                              ^{P*}кСДІІЗ^{\cdot\sigma}КСДІІ->КВДІІ
                                              k_{\text{ад}} \left( Cp_{\text{воздух}} \left( P^*_{\text{КВДІ1}_i}, T^*_{\text{КВДІ1}_i} \right), R_{\text{в}} \right)
        <sup>′ k</sup>КВДП
                                           \left( {^{\mathrm{L}}}_{\mathrm{ad}} \left( {^{\mathrm{Cp}}}_{\mathrm{воздух}} \left( {^{\mathrm{P}*}}_{\mathrm{KBДII1}_{i}}, {^{\mathrm{T}*}}_{\mathrm{KBДII1}_{i}} \right), {^{\mathrm{R}}}_{\mathrm{B}} \right) 
        <sup>k</sup>квдII1<sub>i</sub>
       Ср<sub>КВДІ1</sub>
                                                ^{\mathrm{Cp}_{\mathrm{BO3ДУX}}\left(\mathrm{P*}_{\mathrm{KBДI1}_{\mathrm{i}}},\mathrm{T*}_{\mathrm{KBДI1}_{\mathrm{i}}}\right)}
                                              \left( {^{\mathrm{Cp}}_{\mathrm{BO3ДУX}}} \left( {^{\mathrm{P}*}}_{\mathrm{KBДII1}_{\mathrm{i}}}, {^{\mathrm{T}*}}_{\mathrm{KBДII1}_{\mathrm{i}}} \right) \right)
       Ср<sub>КВДІІ1</sub>
       (iteration<sub>КВДІ</sub>
           T^*КВДІ3_i
            Р*<sub>КВДІЗ</sub>і
                                              = COMPRESSOR3\left(\pi^*_{KBДI_i}, \eta^*_{KBДI}, k_{KBДII_i}, P^*_{KBДII_i}, T^*_{KBДII_i}\right)
            СрКВДІЗ
              <sup>k</sup>квдіз<sub>i</sub>
       (iteration<sub>КВДІІ,</sub>
           Т*<sub>КВДІІЗ</sub>і
            Р*квдиз<sub>і</sub>
                                               = COMPRESSOR3\left(\pi^*_{\text{КВДІІ}_i}, \eta^*_{\text{КВДІІ}_i}, k_{\text{КВДІІ}_i}, P^*_{\text{КВДІІ}_i}, T^*_{\text{КВДІІ}_i}\right)
            Ср<sub>КВДІІЗ</sub>і
               <sup>k</sup>квдII3<sub>i</sub>
                                             ^{\text{Cp}_{\text{воздух.cp}}\left(P^*\text{квді1}_i, P^*\text{квді3}_i, T^*\text{квді1}_i, T^*\text{квді3}_i\right) \cdot \left(T^*\text{квді3}_i - T^*\text{квді1}_i\right)}
      \left( \begin{array}{c} \mathbf{L}_{\mathrm{KBДII}_{\mathrm{i}}} \end{array} \right) = \left[ \begin{array}{c} \mathbf{Cp}_{\mathrm{BO3JYX.cp}} \left( \mathbf{P^*KBДII1}_{\mathrm{i}}, \mathbf{P^*KBДII3}_{\mathrm{i}}, \mathbf{T^*KBДII1}_{\mathrm{i}}, \mathbf{T^*KBДII3}_{\mathrm{i}} \right) \cdot \left( \mathbf{T^*KBДII3}_{\mathrm{i}} - \mathbf{T^*KBДII1}_{\mathrm{i}} \right) \end{array} \right]
     L_{KBД_{i}} = \frac{1 \cdot L_{KBДI_{i}} + m2 \cdot L_{KBДII_{i}}}{1 + m2}
Т*КНДІІ Р*КНДІІ <sup>k</sup>КНДІІ <sup>Ср</sup>КНДІІ <sup>L</sup>КНДІ iteration</sup>КНДІ
<sup>Т*</sup>КНДП1 <sup>Р*</sup>КНДП1 <sup>k</sup>КНДП1 <sup>Ср</sup>КНДП1 <sup>L</sup>КНДП <sup>iteration</sup>КНДП
```

Полная температура перед КНД (К):

T T		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$\operatorname{augment}(T^*_{KHДII1}, T^*_{KHДI1})^{-} = [$	1	288.1	288.1	288.1	288.1	288.1	288.1	288.1	288.1	288.1	288.1	288.1	288.1	288.1	288.1	288.1	288.1	288.1	288.1	288.1	288.1	288.1
, ,	2	288.1	288.1	288.1	288.1	288.1	288.1	288.1	288.1	288.1	288.1	288.1	288.1	288.1	288.1	288.1	288.1	288.1	288.1	288.1	288.1	

Температура после КНД (К):

Tri Tri)T		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
augment $(T*_{KHДII3}, T*_{KHДI3})^{\dagger} = [$	1	306.1	307.8	309.4	311.1	312.7	314.3	315.9	317.4	319.0	320.5	322.0	323.5	325.0	326.5	327.9	329.4	330.8	332.2	333.6	335.0	336.4
, ,	2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	

Полное давление перед КНД (Па):

(T		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	3
augment $(P^*_{KHДII}, P^*_{KHДIII})^T =$	1	99.81	99.81	99.81	99.81	99.81	99.81	99.81	99.81	99.81	99.81	99.81	99.81	99.81	99.81	99.81	99.81	99.81	99.81	99.81	99.81	99.81	103
,	2	99.81	99.81	99.81	99.81	99.81	99.81	99.81	99.81	99.81	99.81	99.81	99.81	99.81	99.81	99.81	99.81	99.81	99.81	99.81	99.81		

Полное давление после КНД (Па):

(- ·	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	3
augment $(P^*_{KHДII3}, P^*_{KHДI3})^T = \boxed{1}$	119.8	121.8	123.8	125.8	127.8	129.7	131.7	133.7	135.7	137.7	139.7	141.7	143.7	145.7	147.7	149.7	151.7	153.7	155.7	157.7	159.7	10
2	319.4	319.4	319.4	319.4	319.4	319.4	319.4	319.4	319.4	319.4	319.4	319.4	319.4	319.4	319.4	319.4	319.4	319.4	319.4	319.4		1

Показатель адиабаты перед КНД:

, T		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$augment(k_{KHДII1}, k_{KHДI1})^{T} =$	1	1.401	1.401	1.401	1.401	1.401	1.401	1.401	1.401	1.401	1.401	1.401	1.401	1.401	1.401	1.401	1.401	1.401	1.401	1.401	1.401	1.401
,	2	1.401	1.401	1.401	1.401	1.401	1.401	1.401	1.401	1.401	1.401	1.401	1.401	1.401	1.401	1.401	1.401	1.401	1.401	1.401	1.401	

Показатель адиабаты после КНД:

, T		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$augment(k_{KHДII3}, k_{KHДI3})^{T} =$	1	1.401	1.401	1.401	1.401	1.401	1.401	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.399
,	2	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	

Теплоем кость перед КНД (Дж/кг/К):

Теплоем кость после КНД (Дж/кг/К):

Количество итераций:

γ		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
augment (iteration _{KHДII} , iteration _{KHДI}) =	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
,	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	

$$\begin{aligned} \text{Cp. теплоемкость KHД (Дж/кг/K):} & \begin{pmatrix} \text{Cp}_{\text{KHДI}_i} \\ \text{Cp}_{\text{KHДII}_i} \end{pmatrix} = \begin{pmatrix} \text{Cp}_{\text{Воздух.cp}} \left(\text{P*KHДII}_i, \text{P*KHДI3}_i, \text{T*KHДI3}_i, \text{T*KHДI3}_i \right) \\ \text{Cp}_{\text{Воздух.cp}} \left(\text{P*KHДII}_i, \text{P*KHДII3}_i, \text{T*KHДII3}_i, \text{T*KHДII3}_i \right) \end{pmatrix} \end{aligned}$$

$$\text{Ср. показатель адиабаты КНД:} \qquad \begin{pmatrix} k_{\text{КНДII}_{\hat{i}}} \\ k_{\text{КНДI}_{\hat{i}}} \end{pmatrix} = \begin{pmatrix} k_{\text{ад}} \Big(\text{Ср}_{\text{КНДII}_{\hat{i}}}, \text{R}_{\text{B}} \Big) \\ k_{\text{ад}} \Big(\text{Ср}_{\text{КНДI}_{\hat{i}}}, \text{R}_{\text{B}} \Big) \end{pmatrix}$$

Удельная работа КНД (Дж/кг):

()T	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	3
augment $(L_{KHДII}, L_{KHДI})^{T} = \boxed{1}$	18.0	19.7	21.3	23.0	24.6	26.2	27.8	29.4	30.9	32.5	34.0	35.5	37.0	38.5	39.9	41.4	42.8	44.2	45.6	47.0	48.4	·103
2	131.1	131.1	131.1	131.1	131.1	131.1	131.1	131.1	131.1	131.1	131.1	131.1	131.1	131.1	131.1	131.1	131.1	131.1	131.1	131.1		

Сум марная удельная работа КНД (Дж/кг):

Izrin =		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	1.10^3
L _{КНД} =	1	34.17	35.61	37.03	38.44	39.83	41.20	42.56	43.91	45.24	46.56	47.86	49.15	50.43	51.69	52.95	54.19	55.42	56.63	57.84	59.03		

Общий адиабатический КПД КНД:
$$\eta^*_{\text{КНД}} = \frac{\eta^*_{\text{КНДI}} + \text{m2} \cdot \eta^*_{\text{КНДII}}}{\text{m2} + 1} = 86.14 \cdot \%$$

Полная температура перед КСД (К):

(Tri Tri)T		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$\operatorname{augment}(T^*_{KCДII1}, T^*_{KCДI1})^{T} = [$	1	306.1	307.8	309.4	311.1	312.7	314.3	315.9	317.4	319.0	320.5	322.0	323.5	325.0	326.5	327.9	329.4	330.8	332.2	333.6	335.0	336.4
,	2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	

Температура после КСД (К):

T T	1		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$\operatorname{augment}(T^*_{KCДII3}, T^*_{KCДI3})^T = \boxed{1}$	30	06.1	307.8	309.4	311.1	312.7	314.3	315.9	317.4	319.0	320.5	322.0	323.5	325.0	326.5	327.9	329.4	330.8	332.2	333.6	335.0	336.4
2	41	8.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	

Полное давление перед КСД (Па):

(_ ·		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21]3
$augment(P*_{KCДII1}, P*_{KCДII})^{-} = $	1	117.4	119.3	121.3	123.2	125.2	127.2	129.1	131.1	133.0	135.0	136.9	138.9	140.8	142.8	144.8	146.7	148.7	150.6	152.6	154.5	156.5	·10
	2	316.2	316.2	316.2	316.2	316.2	316.2	316.2	316.2	316.2	316.2	316.2	316.2	316.2	316.2	316.2	316.2	316.2	316.2	316.2	316.2		

Полное давление после КСД (Па):

(T		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	3
$augment(P*_{KCДII3},P*_{KCДI3})^T =$	1	117.4	119.3	121.3	123.2	125.2	127.2	129.1	131.1	133.0	135.0	136.9	138.9	140.8	142.8	144.8	146.7	148.7	150.6	152.6	154.5	156.5	.10
	2	316.2	316.2	316.2	316.2	316.2	316.2	316.2	316.2	316.2	316.2	316.2	316.2	316.2	316.2	316.2	316.2	316.2	316.2	316.2	316.2		

Показатель адиабаты перед КСД:

(1 1 T		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
augment(k _{KCДII1} ,k _{KCДI1}) =	1	1.401	1.401	1.401	1.401	1.401	1.401	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.399
	2	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	

Показатель адиабаты после КСД:

, T		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$augment(k_{KCДII3},k_{KCДI3})^{T} = $	1	1.401	1.401	1.401	1.401	1.401	1.401	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.399
,	2	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	

Теплоем кость перед КСД (Дж/кг/К):

Теплоем кость после КСД (Дж/кг/К):

Количество итераций:

/		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
augment (iteration KCДII, iteration KСДI) =	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	

$$\text{Cp. теплоемкость КСД (Дж/кг/K):} \quad \begin{pmatrix} \text{Cp}_{\text{КСДII}_i} \\ \text{Cp}_{\text{КСДI}_i} \end{pmatrix} = \begin{pmatrix} \text{Cp}_{\text{воздух.cp}} \left(\text{P*}_{\text{КСДII}_i}, \text{P*}_{\text{КСДII}_i}, \text{T*}_{\text{КСДII}_i}, \text{T*}_{\text{KСДII}_i}, \text{T*}_{\text{KСДII}_i}, \text{T*}_{\text{KCLII}_i}, \text{T*}_{\text{KCLII$$

$$augment \Big(Cp_{KCДII}, Cp_{KCДII} \Big)^T = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 \\ & 1 & 1004 & 1004 & 1004 & 1004 & 1004 & 1004 & 1004 & 1004 & 1005 & 1005 & 1005 & 1005 & 1005 & 1005 & 1005 & 1005 & 1006 & 1006 & 1006 & 1006 \\ & 2 & 1016 & 1$$

Ср. показатель адиабаты КСД:
$$\begin{pmatrix} k_{\text{КСДII}_i} \\ k_{\text{КСДI}_i} \end{pmatrix} = \begin{pmatrix} k_{\text{ад}} \begin{pmatrix} \text{С}p_{\text{КСДII}_i}, R_{\text{B}} \end{pmatrix} \\ k_{\text{ад}} \begin{pmatrix} \text{С}p_{\text{КСДI}_i}, R_{\text{B}} \end{pmatrix} \end{pmatrix}$$

T		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$augment(k_{KCДII},k_{KCДI}) =$	1	1.401	1.401	1.401	1.401	1.401	1.401	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.399
	2	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	

Удельная работа КСД (Дж/кг):

(\T		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	3
$augment(L_{KCДII}, L_{KCДI}) =$	1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	.103
	2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		

Сум марная удельная работа КСД (Дж/кг):

																							_
$L_{VC}\pi^{T} =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	$\cdot 10^3$
∟ксд =	1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		1

Общий адиабатический КПД КСД:
$$\eta^*_{\text{КСД}} = \frac{\eta^*_{\text{КСДI}} + \text{m2} \cdot \eta^*_{\text{КСДII}}}{\text{m2} + 1} = 88.00 \cdot \%$$

Полная температура перед КВД (К):

T T		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$\operatorname{augment}(T^*_{KBДII1}, T^*_{KBДI1})^{\top} = [$	1	306.1	307.8	309.4	311.1	312.7	314.3	315.9	317.4	319.0	320.5	322.0	323.5	325.0	326.5	327.9	329.4	330.8	332.2	333.6	335.0	336.4
	2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	418.2	

Температура после КВД (К):

(_, _, _, _)T [1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$augment(T*_{KBДII3},T*_{KBДI3})^{-}=[$	1	306.1	307.8	309.4	311.1	312.7	314.3	315.9	317.4	319.0	320.5	322.0	323.5	325.0	326.5	327.9	329.4	330.8	332.2	333.6	335.0	336.4
,	2	806.9	806.9	806.9	806.9	806.9	806.9	806.9	806.9	806.9	806.9	806.9	806.9	806.9	806.9	806.9	806.9	806.9	806.9	806.9	806.9	

Полное давление перед КВД (Па):

, , , , , , , , , , , , , , , , , , ,		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	3
$\operatorname{augment}(P_{KB\Pi II}, P_{KB\Pi I}) = $	1	117.4	119.3	121.3	123.2	125.2	127.2	129.1	131.1	133.0	135.0	136.9	138.9	140.8	142.8	144.8	146.7	148.7	150.6	152.6	154.5	156.5	·10
	2	316.2	316.2	316.2	316.2	316.2	316.2	316.2	316.2	316.2	316.2	316.2	316.2	316.2	316.2	316.2	316.2	316.2	316.2	316.2	316.2		

Полное давление после КВД (Па):

(1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
$\operatorname{augment}(P^*_{KBДII3}, P^*_{KBДI3})^T = \boxed{1}$	117.4	119.3	121.3	123.2	125.2	127.2	129.1	131.1	133.0	135.0	136.9	138.9	140.8	142.8	144.8	146.7	148.7	150.6	152.6	154.5
2	2845.6	2845.6	2845.6	2845.6	2845.6	2845.6	2845.6	2845.6	2845.6	2845.6	2845.6	2845.6	2845.6	2845.6	2845.6	2845.6	2845.6	2845.6	2845.6	2845.6

Показатель адиабаты перед КВД:

(, ,)T		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$augment(k_{KBДII1},k_{KBДI1}) =$	1	1.401	1.401	1.401	1.401	1.401	1.401	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.399
	2	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	1.394	

Показатель адиабаты после КВД:

, \T		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$augment(k_{KBДII3},k_{KBДI3})^{T} =$	1	1.401	1.401	1.401	1.401	1.401	1.401	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.399
,	2	1.354	1.354	1.354	1.354	1.354	1.354	1.354	1.354	1.354	1.354	1.354	1.354	1.354	1.354	1.354	1.354	1.354	1.354	1.354	1.354	

Теплоем кость перед КВД (Дж/кг/К):

Теплоем кость после КВД (Дж/кг/К):

$$augment \Big(Cp_{KBДII3}, Cp_{KBДI3} \Big)^T = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 \\ & 1 & 1004 & 1004 & 1004 & 1004 & 1004 & 1004 & 1004 & 1005 & 1005 & 1005 & 1005 & 1005 & 1005 & 1005 & 1005 & 1005 & 1006 &$$

Количество итераций:

γ		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
augment (iteration KBДII, iteration KBДI) =	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	

$$\text{Cp. теплоемкость KBД (Дж/кг/K):} \quad \begin{pmatrix} \text{Cp}_{\text{KBДII}_i} \\ \text{Cp}_{\text{KBДI}_i} \end{pmatrix} = \begin{pmatrix} \text{Cp}_{\text{воздух.cp}} \left(\text{P*KBДII}_i, \text{P*KBДII}_i, \text{T*KBДII}_i, \text{T*KBДII}_i, \text{T*KBДII}_i \right) \\ \text{Cp}_{\text{воздух.cp}} \left(\text{P*KBДII}_i, \text{P*KBДII}_i, \text{P*KBДII}_i, \text{T*KBДII}_i, \text{T*KBДII}_i \right) \end{pmatrix}$$

$$augment \Big(\text{Cp}_{KBДII}, \text{Cp}_{KBДII} \Big)^T = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 \\ & 1 & 1004 & 1004 & 1004 & 1004 & 1004 & 1004 & 1004 & 1004 & 1005 & 1005 & 1005 & 1005 & 1005 & 1005 & 1005 & 1006 & 1006 & 1006 & 1006 \\ & 2 & 1056 & 10$$

$$egin{align*} {
m Cp.}\ {
m показатель}\ {
m ad}{
m ad}$$

, T		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
augment(k _{KBДII} ,k _{KBДI}) =	1	1.401	1.401	1.401	1.401	1.401	1.401	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.399
	2	1.374	1.374	1.374	1.374	1.374	1.374	1.374	1.374	1.374	1.374	1.374	1.374	1.374	1.374	1.374	1.374	1.374	1.374	1.374	1.374	

Удельная работа КВД (Дж/кг):

, T		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	3
$augment(L_{KBДII}, L_{KBДI})^{T} = [$	1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	.10
·	2	410.4	410.4	410.4	410.4	410.4	410.4	410.4	410.4	410.4	410.4	410.4	410.4	410.4	410.4	410.4	410.4	410.4	410.4	410.4	410.4		•

Сум марная удельная работа КВД (Дж/кг):

$L_{LD}\pi$ =		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	$\cdot 10^3$
₋ КВД =	1	58.62	58.62	58.62	58.62	58.62	58.62	58.62	58.62	58.62	58.62	58.62	58.62	58.62	58.62	58.62	58.62	58.62	58.62	58.62	58.62		1

Общий адиабатический КПД КВД:
$$\eta^*_{\text{KВД}} = \frac{\eta^*_{\text{KВДI}} + \text{m2} \cdot \eta^*_{\text{KВДII}}}{\text{m2} + 1} = 88.00 \cdot \%$$

▲ КВД

Полное давление перед КС (Па): $P^*_{KC1_i} = P^*_{KBДI3_i} \cdot \sigma_{KBДI->KC}$

P^*_{LC1}	_	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	1.10^3
- KC1	1	2845.6	2845.6	2845.6	2845.6	2845.6	2845.6	2845.6	2845.6	2845.6	2845.6	2845.6	2845.6	2845.6	2845.6	2845.6	2845.6	2845.6	2845.6	2845.6	2845.6		

Полное давление после КС (Па): $P^*_{KC3_i} = P^*_{KC1_i} \cdot \sigma_{KC}$

$P*_{VC2}^T =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	10^3
- KC3	1	2731.8	2731.8	2731.8	2731.8	2731.8	2731.8	2731.8	2731.8	2731.8	2731.8	2731.8	2731.8	2731.8	2731.8	2731.8	2731.8	2731.8	2731.8	2731.8	2731.8		

Полная температура перед КС (К): $T^*_{KC1_i} = T^*_{KBДI3_i}$

$T^*_{\mathbf{VC}_1}^T =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
- KCI	1	806.9	806.9	806.9	806.9	806.9	806.9	806.9	806.9	806.9	806.9	806.9	806.9	806.9	806.9	806.9	806.9	806.9	806.9	806.9	806.9	

Полная температура после КС (K): $T^*_{KC3} = T^*_{KC3}$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
KC3	1	1773.0	1773.0	1773.0	1773.0	1773.0	1773.0	1773.0	1773.0	1773.0	1773.0	1773.0	1773.0	1773.0	1773.0	1773.0	1773.0	1773.0	1773.0	1773.0	1773.0	

Отношение массового расхода горючего к расходу РТ на входе в КС:

$$\begin{split} \mathbf{g}_{\text{Top_KC1}_{i}} &= \frac{\mathbf{Cp}_{\text{Bo3}\text{J}\text{J}\text{X}}.\text{cp}\Big(\mathbf{P}^{*}\text{KC1}_{i}, \mathbf{P}^{*}\text{KC3}_{i}, \mathbf{T}^{*}\text{KC1}_{i}, \mathbf{T}^{*}\text{KC3}_{i}\Big) \cdot \Big(\mathbf{T}^{*}\text{KC3}_{i} - \mathbf{T}^{*}\text{KC1}_{i}\Big)}{\mathbf{Q}_{\text{Hp}}(\text{Fuel}) \cdot \mathbf{\eta}_{\Gamma} \dots \\ &+ (-1) \cdot \Big(\mathbf{1} + \mathbf{l}_{0}(\text{Fuel})\Big) \cdot \Big[\mathbf{Cp}_{\text{H.T.cp}}\Big(\mathbf{P}_{\text{ATM}}(0), \mathbf{P}^{*}\text{KC3}_{i}, \mathbf{T}_{0} + 15, \mathbf{T}^{*}\text{KC3}_{i}, \mathbf{Fuel}\Big) \cdot \Big[\mathbf{T}^{*}\text{KC3}_{i} - \Big(\mathbf{T}_{0} + 15\Big)\Big] \dots \\ &+ \mathbf{l}_{0}(\text{Fuel}) \cdot \Big[\mathbf{Cp}_{\text{Bo3}\text{J}\text{J}\text{X}}.\text{cp}\Big(\mathbf{P}_{\text{ATM}}(0), \mathbf{P}^{*}\text{KC3}_{i}, \mathbf{T}_{0} + 15, \mathbf{T}^{*}\text{KC3}_{i}\Big) \cdot \Big[\mathbf{T}^{*}\text{KC3}_{i} - \Big(\mathbf{T}_{0} + 15\Big)\Big] \Big] \dots \\ &+ \Big[\mathbf{Cp}_{\text{Top.cp}}\Big(\mathbf{P}_{\text{ATM}}\Big(\mathbf{H}_{\mathcal{U}}\Big), \mathbf{P}_{\text{ATM}}\Big(\mathbf{H}_{\mathcal{U}}\Big), \mathbf{T}_{0} + 15, \mathbf{T}_{\text{Top}}, \mathbf{Fuel}\Big) \cdot \Big[\mathbf{T}_{\text{Top}} - \Big(\mathbf{T}_{0} + 15\Big)\Big]\Big] \\ &\mathbf{T}_{\mathbf{T}_{\mathbf{U}}} = \mathbf{T}_{\mathbf{U}} = \mathbf{T}_{\mathbf{U}} + \mathbf$$

$g_{row} VC_1 =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	.%
Srop_KCI -	1	3.009	3.009	3.009	3.009	3.009	3.009	3.009	3.009	3.009	3.009	3.009	3.009	3.009	3.009	3.009	3.009	3.009	3.009	3.009	3.009		1

Отношение массового расхода горючего к расходу на входе в І контур:

$$g_{\text{rop}_{i}} = \frac{g_{\text{rop}_{KC1_{i}}} \cdot (1 - g_{\text{yTBxI}} - g_{\text{yTKI}})}{1 + g_{\text{Tuxohob}} \left(T^{*}_{KC3_{i}}, T_{\text{T.доп}}\right) \cdot \left(1 + g_{\text{rop}_{KC1_{i}}}\right)}$$

Относ. массовый расход на охл. Т, отнесенный к расходу на выходе из КС:

T																						
$g_{T,W,\alpha,V,\alpha,P}(T^*_{V,C,2},T_{T,\gamma,\alpha,P}) =$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	.%
5 Тихонов (1 КС3, 1Т.доп) — 1	12.50	12.50	12.50	12.50	12.50	12.50	12.50	12.50	12.50	12.50	12.50	12.50	12.50	12.50	12.50	12.50	12.50	12.50	12.50	12.50		1

Относ. массовый расход на охлаждение Т, отнесенный к расходу на входе в I контур:

$$\mathbf{g}_{\text{ОХЛ}T_{i}} = \frac{\mathbf{g}_{\text{ЦИАМ}}\left(\mathbf{T}^{*}\mathbf{KC3}_{i}, \mathbf{T}_{\text{Т.ДОП}}, \mathbf{T}^{*}\mathbf{KC1}_{i}\right) \cdot \left[1 - \left(\mathbf{g}_{\text{УТВХI}} + \mathbf{g}_{\text{УТКI}} + \mathbf{g}_{\text{УТКСI}}\right) + \mathbf{g}_{\text{ГОР}_{i}}\right]}{1 + \mathbf{g}_{\text{ЦИАМ}}\left(\mathbf{T}^{*}\mathbf{KC3}_{i}, \mathbf{T}_{\text{Т.ДОП}}, \mathbf{T}^{*}\mathbf{KC1}_{i}\right)}$$

Относ. массовый расход на охлаждение Т, отнесенный к расходу на входе в I контур:

$$\mathbf{g}_{\text{ОХЛ}T_{\hat{\mathbf{i}}}} = \frac{\mathbf{g}_{\text{ТИХОНОВ}}\left(\mathbf{T}^*\text{KC3}_{\hat{\mathbf{i}}}, \mathbf{T}_{\text{Т.ДОП}}\right) \cdot \left[1 - \left(\mathbf{g}_{\text{УТВXI}} + \mathbf{g}_{\text{УТКI}} + \mathbf{g}_{\text{УТКСI}}\right) + \mathbf{g}_{\text{ГОР}_{\hat{\mathbf{i}}}}\right]}{1 + \mathbf{g}_{\text{ТИХОНОВ}}\left(\mathbf{T}^*\text{KC3}_{\hat{\mathbf{i}}}, \mathbf{T}_{\text{Т.ДОП}}\right)}$$

Относ. массовый расход на охлаждение Л T, отнесенный к расходу на входе в I контур:

$$\mathbf{g}_{\text{ОХЛ}\boldsymbol{\Pi}_{i}} = \frac{\mathbf{g}_{\text{ЦИАМ}}\left(\boldsymbol{T^{*}}_{\text{KC3}_{i}}, \boldsymbol{T}_{\boldsymbol{\Pi}.\text{ДОП}}, \boldsymbol{T^{*}}_{\text{KC1}_{i}}\right) \cdot \left[\boldsymbol{1} - \left(\mathbf{g}_{\text{УТВХI}} + \mathbf{g}_{\text{УТКI}} + \mathbf{g}_{\text{УТКСI}}\right) + \mathbf{g}_{\text{ГОР}_{i}}\right]}{\boldsymbol{1} + \mathbf{g}_{\text{ЦИАМ}}\left(\boldsymbol{T^{*}}_{\text{KC3}_{i}}, \boldsymbol{T}_{\boldsymbol{\Pi}.\text{ДОП}}, \boldsymbol{T^{*}}_{\text{KC1}_{i}}\right)}$$

Относ. массовый расход на охлаждение Л T, отнесенный к расходу на входе в I контур:

$$\mathbf{g}_{\text{ОХЛЛ}_{\hat{\mathbf{I}}}} = \frac{\mathbf{g}_{\text{ТИХОНОВ}} \left(\mathbf{T}^* \mathbf{KC3}_{\hat{\mathbf{I}}}, \mathbf{T}_{\text{Л.ДОП}} \right) \cdot \left[1 - \left(\mathbf{g}_{\text{УТВХ}} \mathbf{I} + \mathbf{g}_{\text{УТКI}} + \mathbf{g}_{\text{УТКСI}} \right) + \mathbf{g}_{\text{ГОР}_{\hat{\mathbf{I}}}} \right]}{1 + \mathbf{g}_{\text{ТИХОНОВ}} \left(\mathbf{T}^* \mathbf{KC3}_{\hat{\mathbf{I}}}, \mathbf{T}_{\text{Л.ДОП}} \right)}$$

$$\mathbf{g}_{\mathbf{OXJJ}}^{\mathbf{T}} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 \\ 1 & 8.29$$

Относ. массовые расходы на охл, отнесенные к расходу на входе в І контур:

Отношение расхода на охл. СА к общему расходу []: $\chi = \frac{2}{3}$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
$\operatorname{augment}\left(g_{\text{охлТВД}}, g_{\text{охлТСД}}, g_{\text{охлТНД}}\right)^{T} =$	1	9.09	9.09	9.09	9.09	9.09	9.09	9.09	9.09	9.09	9.09	9.09	9.09	9.09	9.09	9.09	9.09	9.09	9.09	9.09	9.09	9.09	.%
	2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	3	2.27	2.27	2.27	2.27	2.27	2.27	2.27	2.27	2.27	2.27	2.27	2.27	2.27	2.27	2.27	2.27	2.27	2.27	2.27	2.27		
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
$\operatorname{augment}\left(g_{\text{ОХЛЛВД}}, g_{\text{ОХЛЛСД}}, g_{\text{ОХЛЛНД}}\right)^{T} =$	1	6.63	6.63	6.63	6.63	6.63	6.63	6.63	6.63	6.63	6.63	6.63	6.63	6.63	6.63	6.63	6.63	6.63	6.63	6.63	6.63	6.63	.%
	2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	3	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66		
$g_{\text{охлТВД}}^{\text{Т}} + g_{\text{охлТСД}}^{\text{Т}} + g_{\text{охлТНД}}^{\text{T}} \le g_{\text{охл}}$	T		1 2	3	4	5 6	7	8	9 1	.0 11	12	13	14 15	16	17	18 19	20	21					
≈охлтвд - ≈охлтед - ≈охлтнд - ≈охл	1	1	1	1 1	1	1	1 1	1	1	1	1	1	1	1 1	1	1	1 1						
$\mathbf{g}_{0\mathbf{X}\mathbf{J}}\mathbf{\Pi}\mathbf{B}\mathbf{J}^{\mathbf{T}}+\mathbf{g}_{0\mathbf{X}\mathbf{J}}\mathbf{\Pi}\mathbf{C}\mathbf{J}^{\mathbf{T}}+\mathbf{g}_{0\mathbf{X}\mathbf{J}}\mathbf{\Pi}\mathbf{H}\mathbf{J}^{\mathbf{T}}\leq\mathbf{g}_{0\mathbf{X}\mathbf{J}}$	T ıЛ	= 1	1 2	3	4	5 (5 7	8	9	10 11	12	13	14 1	5 16	17	18 1	9 20	21					

Коэф. избытка воздуха после КС ():	0/22 2/2	1
поэф. изовика воздуха после ке ().	α _{KC3} –	$g_{\text{rop_KC1}} \cdot l_0(\text{Fuel})$

$\alpha_{VC2}^{T} =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
-KC3	1	2.275	2.275	2.275	2.275	2.275	2.275	2.275	2.275	2.275	2.275	2.275	2.275	2.275	2.275	2.275	2.275	2.275	2.275	2.275	2.275	

Коэф. избытка воздуха после КС ():
$$\alpha_{KC3_{\dot{i}}} = \frac{1 - \left(g_{yTBxI} + g_{yTKI}\right) - g_{oxлT_{\dot{i}}}}{g_{rop_{\dot{i}}} \cdot l_0(Fuel)}$$

$\alpha_{\text{ICC}2} =$	=	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$\alpha_{KC3} =$	1	2.275	2.275	2.275	2.275	2.275	2.275	2.275	2.275	2.275	2.275	2.275	2.275	2.275	2.275	2.275	2.275	2.275	2.275	2.275	2.275	

Газовая постоянная продуктов сгорания (Дж/кг/К):

Теплоем кость перед и после КС (Дж/кг/К):
$$\begin{pmatrix} \mathsf{Cp}_{KC1_i} \\ \mathsf{Cp}_{KC3_i} \end{pmatrix} = \begin{pmatrix} \mathsf{Cp}_{Bo3\mathrm{Д}\mathrm{J}\mathrm{X}} \Big(\mathsf{P*}_{KC1_i}, \mathsf{T*}_{KC1_i} \Big) \\ \mathsf{Cp}_{\Gamma a3} \Big(\mathsf{P*}_{KC3_i}, \mathsf{T*}_{KC3_i}, \alpha_{KC3_i}, \mathsf{Fuel} \Big)$$

Показатель адиабаты перед и после КС:
$$\begin{pmatrix} k_{KC1_i} \\ k_{KC3_i} \end{pmatrix} = \begin{pmatrix} k_{aд} \begin{pmatrix} Cp_{KC1_i}, R_B \end{pmatrix} \\ k_{ad} \begin{pmatrix} Cp_{KC3_i}, R_{ras} \begin{pmatrix} \alpha_{KC3_i}, Fuel \end{pmatrix} \end{pmatrix}$$

▲ KC

▼ Относительные массовые расходы, отнесенные к расходу на входе в I контур

Относ. расход перед Вх:
$$\begin{pmatrix} g_{BxII1}_i \\ g_{BxI1}_i \end{pmatrix} = \begin{pmatrix} m2 \cdot 1 \\ 1 \cdot 1 \end{pmatrix} \quad g_{Bx1}_i = g_{BxI1}_i + g_{BxII1}_i$$

Относ. расход после Bx:
$$\begin{pmatrix} g_{BxII3}_i \\ g_{BxI3}_i \end{pmatrix} = \begin{pmatrix} g_{BxII1}_i - m2 \cdot g_{yTBxII} \\ g_{BxI1}_i - 1 \cdot g_{yTBxI} \end{pmatrix} \quad g_{Bx3}_i = g_{BxI3}_i + g_{BxII3}_i$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	ĺ
augment $(g_{D_1}, g_{D_2}, g_{D_3}, g_{D_3})^T \equiv$	1	600.0	600.0	600.0	600.0	600.0	600.0	600.0	600.0	600.0	600.0	600.0	600.0	600.0	600.0	600.0	600.0	600.0	600.0	600.0	600.0	600.0	.%
$augment(g_{BxII3}, g_{BxI3}, g_{Bx3}) =$	2	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	ĺ
	3	700.0	700.0	700.0	700.0	700.0	700.0	700.0	700.0	700.0	700.0	700.0	700.0	700.0	700.0	700.0	700.0	700.0	700.0	700.0	700.0		i

Относ. расход перед КНД:
$$\begin{pmatrix} g_{\text{КНДІ11}_i} \\ g_{\text{КНДІ1}_i} \end{pmatrix} = \begin{pmatrix} g_{\text{BxII3}_i} \\ g_{\text{BxI3}_i} \end{pmatrix} \qquad g_{\text{КНД1}_i} = g_{\text{КНДІ1}_i} + g_{\text{KHQII1}_i} + g_{\text{KHQII}_i} + g_{$$

$$\text{augment} \left(\mathbf{g}_{\text{KHДII}}, \mathbf{g}_{\text{KHДII}}, \mathbf{g}_{\text{KHДII}}, \mathbf{g}_{\text{KHZII}}, \mathbf{g}_{\text$$

Относ. расход после КНД:
$$\begin{pmatrix} g_{\text{КНДІЗ}_i} \\ g_{\text{КНДІЗ}_i} \end{pmatrix} = \begin{pmatrix} g_{\text{КНДІІ}_i} - m2 \cdot g_{\text{УТКНДІІ}} \\ g_{\text{КНДІ}_i} - 1 \cdot g_{\text{УТКНДІ}} \end{pmatrix}$$

$$g_{\text{КНДІ3}_i} = g_{\text{КНДІ3}_i} + g_{\text{КНДІЗ}_i} + g_{\text{КНДІ3}_i} + g_{\text{KHДІ3}_i} + g_{\text{KHДI3}_i} + g_{\text{KHДI3}_i} + g_{\text{KHДI3}_i} + g_{\text{KHДI3}$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
augment $(g_{KHДII3}, g_{KHДI3}, g_{KHД3})^T = $	1	599.4	599.4	599.4	599.4	599.4	599.4	599.4	599.4	599.4	599.4	599.4	599.4	599.4	599.4	599.4	599.4	599.4	599.4	599.4	599.4	599.4	.%
отватот (вкндизувкндизувкнда)	2	99.9	99.9	99.9	99.9	99.9	99.9	99.9	99.9	99.9	99.9	99.9	99.9	99.9	99.9	99.9	99.9	99.9	99.9	99.9	99.9	99.9	, •
	3	699.3	699.3	699.3	699.3	699.3	699.3	699.3	699.3	699.3	699.3	699.3	699.3	699.3	699.3	699.3	699.3	699.3	699.3	699.3	699.3		

Относ. расход перед КСД:
$$\begin{pmatrix} g_{\text{КСДII1}_i} \\ g_{\text{КСДII}_i} \end{pmatrix} = \begin{pmatrix} g_{\text{КНДI3}_i} \\ g_{\text{КНДI3}_i} - g_{\text{охлТНД}_i} \end{pmatrix} \quad g_{\text{КСДI1}_i} = g_{\text{КСДI1}_i} + g_{\text{КСДII1}_i}$$

$$augment \Big(g_{\text{КСДІІІ}}, g_{\text{КСДІІ}}, g_{\text{KCДІІ}}, g_{\text{KCQII}}, g_{$$

Относ. расход после КСД:
$$\begin{pmatrix} g_{\text{КСДII3}_i} \\ g_{\text{КСДI3}_i} \end{pmatrix} = \begin{pmatrix} g_{\text{КСДII1}_i} - \text{m2} \cdot g_{\text{УТКСДII}} \\ g_{\text{КСДI1}_i} - 1 \cdot g_{\text{УТКСДI}} \end{pmatrix}$$

$$g_{\text{КСД3}_i} = g_{\text{КСДI3}_i} + g_{\text{KCZII3}_i} +$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
augment $\left(g_{\text{COH12}}, g_{\text{COH2}}, g_{\text{COH2}}\right)^T \equiv$	1	599.4	599.4	599.4	599.4	599.4	599.4	599.4	599.4	599.4	599.4	599.4	599.4	599.4	599.4	599.4	599.4	599.4	599.4	599.4	599.4	599.4	.%
$augment(g_{KCДII3},g_{KCДI3},g_{KCД3}) =$	2	97.6	97.6	97.6	97.6	97.6	97.6	97.6	97.6	97.6	97.6	97.6	97.6	97.6	97.6	97.6	97.6	97.6	97.6	97.6	97.6	97.6	, 0
	3	697.0	697.0	697.0	697.0	697.0	697.0	697.0	697.0	697.0	697.0	697.0	697.0	697.0	697.0	697.0	697.0	697.0	697.0	697.0	697.0		

Относ. расход перед КВД:
$$\begin{pmatrix} g_{KBДII1_i} \\ g_{KBДI1_i} \end{pmatrix} = \begin{pmatrix} g_{KCДII3_i} \\ g_{KCДI3_i} - g_{oxлTCД_i} \end{pmatrix} \qquad g_{KBД1_i} = g_{KBДI1_i} + g_{KBДII1_i}$$

$$augment \left(g_{KBДII},g_{KBДII},g_{KBДII},g_{KBZII}\right)^T = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 \\ 1 & 599.4 & 599.4 & 599.4 & 599.4 & 599.4 & 599.4 & 599.4 & 599.4 & 599.4 & 599.4 & 599.4 \\ 2 & 97.6 & 97$$

Относ. расход после КВД:
$$\begin{pmatrix} g_{KBДII3}_i \\ g_{KBДI3}_i \end{pmatrix} = \begin{pmatrix} g_{KBДII1_i} - m2 \cdot g_{yTKBДII} \\ g_{KBДI1_i} - 1 \cdot g_{yTKBДII} \end{pmatrix}$$

$$g_{KBДI3_i} = g_{KBДI3_i} + g_{KBДII3_i}$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
augment $\left(g_{1}, g_{1}, g_{2}, g_{3}, g_{4}, g_{5}, g_{5}\right)^{T} \equiv$	1	599.4	599.4	599.4	599.4	599.4	599.4	599.4	599.4	599.4	599.4	599.4	599.4	599.4	599.4	599.4	599.4	599.4	599.4	599.4	599.4	599.4	.%
$augment(g_{KBДII3},g_{KBДI3},g_{KBД3}) =$	2	97.3	97.3	97.3	97.3	97.3	97.3	97.3	97.3	97.3	97.3	97.3	97.3	97.3	97.3	97.3	97.3	97.3	97.3	97.3	97.3	97.3	, ,
	3	696.7	696.7	696.7	696.7	696.7	696.7	696.7	696.7	696.7	696.7	696.7	696.7	696.7	696.7	696.7	696.7	696.7	696.7	696.7	696.7		

$$g_{KC1_i} = g_{KBДI3_i} - g_{OXЛTBД_i} - g_{YTKBДI}$$

Относ. расход КС:

$$g_{KC3_{i}} = g_{KC1_{i}} - g_{YTKCI} + g_{rop_{i}}$$

$^{\prime}$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	1
$augment(g_{KC1}, g_{KC3}) =$	1	87.94	87.94	87.94	87.94	87.94	87.94	87.94	87.94	87.94	87.94	87.94	87.94	87.94	87.94	87.94	87.94	87.94	87.94	87.94	87.94	87.94	.%
·	2	90.59	90.59	90.59	90.59	90.59	90.59	90.59	90.59	90.59	90.59	90.59	90.59	90.59	90.59	90.59	90.59	90.59	90.59	90.59	90.59		

.%

 $g_{\text{ТВД1}_{i}} = g_{\text{KC3}_{i}}$

Относ. расход ТВД:

 $g_{TBД3_i} = g_{TBД1_i} + g_{охлTBД_i} - g_{yтTBД}$

, T		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
augment $(g_{TBД1}, g_{TBД3})^T = [$	1	90.59	90.59	90.59	90.59	90.59	90.59	90.59	90.59	90.59	90.59	90.59	90.59	90.59	90.59	90.59	90.59	90.59	90.59	90.59	90.59	90.59	·%
	2	99.38	99.38	99.38	99.38	99.38	99.38	99.38	99.38	99.38	99.38	99.38	99.38	99.38	99.38	99.38	99.38	99.38	99.38	99.38	99.38		

Относ. расход ТСД: $g_{TCД1_i} = g_{TBД3_i}$

 $g_{TCД3_i} = g_{TCД1_i} + g_{охлTCД_i} - g_{yTTCД}$

9 10 11 12 13 14 15 16 17 18 19 20 21 8 $augment(g_{TCД1}, g_{TCД3})^T =$ $\cdot\%$ 99.38

 $g_{\text{ТНД1}_{i}} = g_{\text{ТСД3}_{i}}$

Относ. расход ТНД:

 $g_{THД3_{i}} = g_{THД1_{i}} + g_{охлTHД_{i}} - g_{yTTHД}$

, T		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$augment(g_{THД1}, g_{THД3})^{T} =$	1	99.38	99.38	99.38	99.38	99.38	99.38	99.38	99.38	99.38	99.38	99.38	99.38	99.38	99.38	99.38	99.38	99.38	99.38	99.38	99.38	99.38
,	2	101.56	101.56	101.56	101.56	101.56	101.56	101.56	101.56	101.56	101.56	101.56	101.56	101.56	101.56	101.56	101.56	101.56	101.56	101.56	101.56	

 $g_{\text{CT1}_{i}} = g_{\text{ТНД3}_{i}}$

Относ. расход СТ:

 $g_{\text{CT3}_{i}} = g_{\text{CT1}_{i}} - g_{\text{yTCT}}$

7 9 10 11 12 13 15 16 17 18 19 20 21 14 $\operatorname{augment}(g_{CT1}, g_{CT3})^{1} =$ 101.56

$$\begin{array}{c} \left(\begin{array}{c} g_{CMII1_i} \\ g_{CMI1_i} \end{array} \right) = \left(\begin{array}{c} g_{KBДII3_i} \\ g_{CT3_i} \end{array} \right) \\ g_{CM3_i} = \left(g_{CMI1_i} + g_{CMII1_i} \right) - g_{yTCM} \end{array}$$

$$augment \left(g_{\text{CMII}},g_{\text{CMIIII}},g_{\text{CMIII}},g_{\text{C$$

Относ. расход С I контура:
$$\begin{aligned} g_{\text{CI1}_{\dot{1}}} &= & \left| g_{\text{CT3}_{\dot{1}}} \right| \\ 0 & \text{if CM} = 1 \end{aligned}$$

$$g_{\text{CI3}_{\dot{1}}} = g_{\text{CI1}_{\dot{1}}}$$

, τ [1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
$augment(g_{CI1}, g_{CI3}) = [$	1	101.56	101.56	101.56	101.56	101.56	101.56	101.56	101.56	101.56	101.56	101.56	101.56	101.56	101.56	101.56	101.56	101.56	101.56	101.56	101.56	101.56	٠%
	2	101.56	101.56	101.56	101.56	101.56	101.56	101.56	101.56	101.56	101.56	101.56	101.56	101.56	101.56	101.56	101.56	101.56	101.56	101.56	101.56		

, т		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$augment(g_{CII1},g_{CII3}) = [$	1	599.40	599.40	599.40	599. 4 0	599. 4 0	599.40	599.40	599.40	599.40	599.40	599.40	599.40	599.40	599.40	599.40	599.40	599.40	599.40	599.40	599.40	599.40
,	2	599.40	599.40	599.40	599.40	599.40	599.40	599.40	599.40	599.40	599. 4 0	599.40	599.40	599.40	599.40	599.40	599.40	599.40	599.40	599.40	599.40	

▲ Относительные массовые расходы, отнесенные к расходу на входе в I контур

▼ Расчет горячей группы

Т*ТВД1	Р* _{ТВД1}	R _{ТВД1}	$\alpha_{\mathrm{TBД1}}$	k _{ТВД1}	Ср _{ТВД1}	$L_{\text{ТВД}}$	iteration _{ТВД}
T* _{ТВД3}	Р* _{ТВДЗ}	R _{ТВД3}	$\alpha_{\mathrm{TBД3}}$	k _{ТВД3}	Ср _{ТВДЗ}	$\pi^*_{ ext{ТВД}}$	iteration _{ТВД}
Т*тсД1	Р* _{ТСД1}	R _{TCД1}	$\alpha_{\text{ТСД1}}$	k _{TCД1}	СрТСД1	$L_{TCД}$	iteration _{TCД}
Т*тсд3	Р* _{ТСД3}	R _{TCД3}	$lpha_{ m TCД3}$	k _{TCД3}	СрТСДЗ	π^* ТСД	iteration _{TCД}
Т*ТНД1	Р* _{ТНД1}	R _{THД1}	$lpha_{ m THД1}$	k _{THД1}	СрТНД1	$L_{THД}$	iteration _{THД}
Т*тнд3	Р* _{ТНД3}	R _{THД3}	$\alpha_{\text{ТНД3}}$	k _{THД3}	СрТНДЗ	π^* ТНД	iteration _{THД}
T* _{CT1}	P*CT1	R_{CT1}	α_{CT1}	k _{CT1}	Cp_{CT1}	L_{CT}	$iteration_{CT}$
T*CT3	P* _{CT3}	R_{CT3}	α_{CT3}	k _{CT3}	Cp _{CT3}	π^*_{CT}	$iteration_{CT}$
T*CMI1	P* _{CMI1}	R_{CMI1}	α_{CMI1}	None	Cp _{CMI1}	None	None
T*CMII1	P* _{CMII1}	R _{CMII1}	α_{CMII1}	None	Cp _{CMII1}	None	None
T* _{CM3}	P* _{CM3}	None	α_{CM3}	None	None	None	None
T* _{CI1}	P*CI1	R_{CI1}	α_{CI1}	k _{CI1}	Cp_{CI1}	$\pi^*_{\text{kp.CI}}$	c _{CI3}
T*CI3	P*CI3	R_{CI3}	α_{CI3}	k _{CI3}	Cp_{CI3}	$\pi^*_{ ext{CI}}$	T_{CI3}
T*CII1	P* _{CII1}	R _{CII1}	$\alpha_{\text{CII}1}$	k _{CII1}	Cp _{CII1}	$\pi^*_{\text{Kp.CII}}$	cCII3
T*CII3	P* _{CII3}	R _{CII3}	α_{CII3}	k _{CII3}	Cp_{CII3}	$\pi^*_{ ext{CII}}$	T_{CII3}
	D	None	^c CI3full	None	None	None	iteration _G
G_{I}	$R_{\mathbf{y}\mathbf{J}\mathbf{I}}$	None	CISTUII				U
G _{II}	к _{удІ} К _{удІІ}	None	cCII3full	None	None	None	$iteration_G$

```
= None = -1
       for i \in 1..N_{dis}
            trace(concat("i = ", num2str(i)))
             G_{I_i} = \int \infty \text{ if } (i = 1) \vee IsNaN(G_{I_{i-1}})
                       G_{I_{i-1}} otherwise
            iteration_{G_i} = 0
              while 1 > 0
                    iteration_{G_i} = iteration_{G_i} + 1
                     | trace \Big( concat \Big( " iteration G = ", num2str \Big( iteration_{G_i} \Big) \Big) \Big) 
                     trace(" ТВД")
                     T^*_{TBД1_i} = T^*_{KC3_i}
                    P^*_{TBД1_i} = P^*_{KC3_i} \cdot \sigma_{KC->TBД}
                  L_{TBД_{i}} = \frac{\frac{L_{KBД_{i}} \cdot g_{KBД1_{i}}}{\eta_{PBBД}} + \frac{N_{HBД}}{G_{I_{i}} \cdot \eta_{PHBД}}}{\eta_{Mex} \cdot \left(g_{TBД1_{i}} + \chi \cdot g_{OXЛTBД_{i}}\right)}
                    \alpha_{\text{ТВД1}_{i}} = \alpha_{\text{смешение}} \left(g_{\text{ТВД1}_{i}} - g_{\text{гор}_{i}}, 0, g_{\text{гор}_{i}}, \text{Fuel}\right)
                  R_{TBД1_{i}} = R_{ra3}(\alpha_{TBД1_{i}}, Fuel)
Cp_{TBД1_{i}} = Cp_{ra3}(P^{*}_{TBД1_{i}}, T^{*}_{TBД1_{i}}, \alpha_{TBД1_{i}}, Fuel)
```

```
k_{TBД1_{i}} = k_{aд}(Cp_{TBД1_{i}}, R_{TBД1_{i}})
    \left(T^*охлTBД_i
                                                                                                     T^*КВДІЗ_i + \Delta T_{\text{охлКС}}
       Р*охлТВД;
   (iteration<sub>TBД</sub>
                   lpha_{\mathrm{TBД3}_{\mathrm{i}}}
                   R<sub>ТВДЗ</sub>і
              T^*_{TBД3_i}
                                                                                          = TURBINE3 \Big( \eta^*_{TBД}, L_{TBД_{\dot{i}}}, \alpha_{TBД1_{\dot{i}}}, k_{TBД1_{\dot{i}}}, g_{TBД1_{\dot{i}}}, P^*_{TBД1_{\dot{i}}}, T^*_{TBД1_{\dot{i}}}, \chi, g_{охлTBД_{\dot{i}}}, P^*_{охлTBД_{\dot{i}}}, T^*_{oxnTBД_{\dot{i}}}, T^*_{oxnTBQ_{\dot{i}}}, T^*_{oxnTQ_{\dot{i}}}, T^*_{oxnTQ_{\dot{i}}},
              Р*<sub>ТВДЗ</sub>і
                 Ср<sub>ТВДЗ</sub>і
                   <sup>k</sup>твд3<sub>i</sub>
T^*_{TCД1_i} = T^*_{TВД3_i}
P^*ТСД1_i = P^*ТВД3_i·\sigmaТВД->ТСД
 L_{TCД_{i}} = \frac{1}{\eta_{Mex} \cdot \left(g_{TCД_{i}} + \chi \cdot g_{OXЛTCД_{i}}\right)}
\alpha_{\text{ТСД1}_{\dot{1}}} = \alpha_{\text{смешениe}} \left( g_{\text{ТСД1}_{\dot{1}}} - g_{\text{гор}_{\dot{1}}}, 0, g_{\text{гор}_{\dot{1}}}, \text{Fuel} \right)
R_{TCД1_i} = R_{\Gamma a3} \left( \alpha_{TCД1_i}, Fuel \right)
Cp_{TCД1_{i}} = Cp_{Ta3}(P^*_{TCД1_{i}}, T^*_{TCД1_{i}}, \alpha_{TCД1_{i}}, Fuel)
k_{\text{ТСД1}_{i}} = k_{\text{ад}} \left( Cp_{\text{ТСД1}_{i}}, R_{\text{ТСД1}_{i}} \right)
   (T^*_{\text{охлТСД}_i})
                                                                                                    \left(T^*_{\text{КСДІ3}_i} + \Delta T_{\text{охлКС}}\right)
     P^*охлTCД_i
   (iteration<sub>TCД</sub>
                   lpha_{\mathrm{TCД3}_{\mathrm{i}}}
                   R<sub>TCД3</sub>
```

```
= \text{TURBINE3} \Big( \eta^*_{\text{TCД}}, L_{\text{TCД}_{\underline{i}}}, \alpha_{\text{TCД1}_{\underline{i}}}, k_{\text{TCД1}_{\underline{i}}}, g_{\text{TCД1}_{\underline{i}}}, P^*_{\text{TCД1}_{\underline{i}}}, T^*_{\text{TCД1}_{\underline{i}}}, \chi, g_{\text{охлТСД}_{\underline{i}}}, P^*_{\text{охлТСД}_{\underline{i}}}, T^*_{\text{охлТСД}_{\underline{i}}}, T^*_{\text{охлТСQ}_{\underline{i}}}, T^*_{\text{охлТQ}_{\underline{i}}}, T^*_{\text{охлТQ}_{\underline{i}}}, T^*_{\text{охлТQ}_{\underline{i}}}, T^*_{\text{охлТQ}_{\underline{i}}}, T^*_{\text{охлТQ}_{\underline{i}}}, T^*_{\text{охлTQ}_{\underline{i}}}, T^*_{\text{охлTQ}_{\underline{i
                          P^*ТСД3_i
                          ^{\mathrm{Cp}}_{\mathrm{TCД3}_{\mathrm{i}}}
                                 <sup>k</sup>тсд3<sub>i</sub>
 trace(" ТНД")
 T^*_{THД1_i} = T^*_{TCД3_i}
    P^*ТНД1_i = P^*ТСД3_i·\sigmaТСД->ТНД
                                                                                             L_{\text{КНД}_{\underline{i}}\cdot g_{\text{КНД}_{\underline{i}}}} +
  L_{THA_{i}} = \frac{1}{\eta_{\text{Mex}} \cdot \left(g_{THA1_{i}} + \chi \cdot g_{\text{ОХЛ}} + \chi_{i}\right)}
 \alpha_{\text{ТНД1}_{i}} = \alpha_{\text{смешение}} \left( g_{\text{ТНД1}_{i}} - g_{\text{гор}_{i}}, 0, g_{\text{гор}_{i}}, \text{Fuel} \right)
 R_{THД1_i} = R_{ra3} (\alpha_{THД1_i}, Fuel)
Cp_{THД1_{i}} = Cp_{\Gamma a3}(P^{*}_{THД1_{i}}, T^{*}_{THД1_{i}}, \alpha_{THД1_{i}}, Fuel)
 k_{\text{ТНД1}_{i}} = k_{\text{ад}} \left( Cp_{\text{ТНД1}_{i}}, R_{\text{ТНД1}_{i}} \right)
     \left(T^*охлTНД_i
                                                                                                                                                                          \left(T^*КНДІЗ_i^{+\Delta T}охлКС\right)
                                                                                                                                                                                                         P^*КНДІЗ_i·\sigma_{OXJ}
          P^*охлTHД_i
      (iteration<sub>THД</sub>
                                    \alpha_{\text{ТНД3}_{i}}
                                R_{THД3_i}
                         T^*ТНД3_i
                                                                                                                                                             = \text{TURBINE3} \Big( \eta^*_{\text{THД}}, L_{\text{ТНД}_i}, \alpha_{\text{ТНД1}_i}, k_{\text{ТНД1}_i}, g_{\text{ТНД1}_i}, P^*_{\text{ТНД1}_i}, T^*_{\text{ТНД1}_i}, \chi, g_{\text{охлТНД}_i}, P^*_{\text{охлТНД}_i}, T_{\text{охлТНД}_i}, T_{\text{охлТНQ}_i}, T_{\text{охлТНQ}_i}, T_{\text{охлТНQ}_i}, T_{\text{охлТНQ}_i}, T_{\text{охлТНQ}_i}, T_{\text{охлТНQ}_i}, T_{\text{охлТНQ}_i}, T_{\text{охлТНQ}_i}, T_{\text{охлТНQ}_i}, T_{\text{охлТQ}_i}, T_{\text{охлТQ}_i}, T_{\text{охлТQ}_i}, T_{\text{охлТQ}_i}, T_{\text{охлТQ}_i}, T_{\text{охлTQ}_i}, T_
                          P^*ТНД3_i
                         Ср<sub>ТНДЗ</sub>і
                                 <sup>k</sup>тнд3<sub>i</sub>
 P^*_{\text{CT1.}} = P^*_{\text{ТНЛ3.}} \cdot \sigma_{\text{ТНЛ->CT}}
```

$$\begin{split} P^*_{CT3_i} &= \left| \frac{P^*_{TT}}{\sigma_{CT} \sim \sigma_{ebaX}} \right| \text{if } CT = 1 \\ P^*_{CT1_i} &= \frac{P^*_{CT1_i}}{\rho^*_{CT3_i}} \text{otherwise} \\ \\ \pi^*_{CT_i} &= \frac{P^*_{CT1_i}}{\rho^*_{CT3_i}} \\ \begin{pmatrix} \alpha_{CT1_i} \\ \alpha_{CT3_i} \end{pmatrix} &= \begin{pmatrix} \alpha_{THJ3_i} \\ \alpha_{THJ3_i} \end{pmatrix} \\ \begin{pmatrix} R_{CT1_i} \\ R_{CT3_i} \end{pmatrix} &= \begin{pmatrix} R_{ras}(\alpha_{CT1_i}, Fuel) \\ R_{ras}(\alpha_{CT3_i}, Fuel) \end{pmatrix} \\ C_{PCT1_i} &= C_{P_{ras}}(P^*_{CT1_i}, T^*_{CT1_i}, \alpha_{CT1_i}, Fuel) \\ k_{CT1_i} &= k_{uu}(C_{PCT1_i}, R_{CT1_i}) \end{pmatrix} \\ \begin{pmatrix} \text{iteration}_{CT_i} \\ T^*_{CT3_i} \\ R_{CPCT3_i} \\ k_{CT3_i} \end{pmatrix} &= POWERTURBINE3(\pi^*_{CT_i}, \eta^*_{CT}, k_{CT1_i}, P^*_{CT1_i}, T^*_{CT1_i}, \alpha_{CT3_i}, \alpha_{CT1_i}, Fuel) \end{pmatrix} \\ L_{CT_i} &= C_{Pras,cep}(P^*_{CT3_i}, P^*_{CT1_i}, T^*_{CT3_i}, T^*_{CT1_i}, \alpha_{CT3_i}, \alpha_{CT1_i}, Fuel) \end{pmatrix} \begin{pmatrix} T^*_{CT1_i} - T^*_{CT3_i} \\ T^*_{CMI1_i} \end{pmatrix} &= \begin{pmatrix} T^*_{CT3_i} \\ T^*_{KBJII3_i} \end{pmatrix} \\ \begin{pmatrix} P^*_{CMI1_i} \\ P^*_{CMI1_i} \end{pmatrix} &= \sigma_{CT} > \begin{pmatrix} P^*_{CT3_i} \\ P^*_{KBJII3_i} \end{pmatrix} \\ \begin{pmatrix} \alpha_{CMI1_i} \\ \alpha_{CMI1_i} \end{pmatrix} &= \begin{pmatrix} \alpha_{CT3_i} \\ R_{ras}(\alpha_{CMI1_i}, Fuel) \\ R_{ras}(\alpha_{CMI1_i}, Fuel) \end{pmatrix} \\ \begin{pmatrix} R_{CMI1_i} \\ R_{CMII_i} \end{pmatrix} &= \begin{pmatrix} R_{ras}(\alpha_{CMI1_i}, Fuel) \\ R_{ras}(\alpha_{CMII_i}, Fuel) \end{pmatrix} \\ \begin{pmatrix} C_{PCMI1} \end{pmatrix} &= \begin{pmatrix} C_{PCT3_i} \\ R_{ras}(\alpha_{CMII_i}, Fuel) \end{pmatrix} \\ \begin{pmatrix} C_{PCMI1_i} \end{pmatrix} &= \begin{pmatrix} C_{PCT3_i} \\ R_{ras}(\alpha_{CMII_i}, Fuel) \end{pmatrix} \\ \begin{pmatrix} C_{PCMI1_i} \end{pmatrix} &= \begin{pmatrix} C_{PCT3_i} \\ R_{ras}(\alpha_{CMII_i}, Fuel) \end{pmatrix} \\ \begin{pmatrix} C_{PCMI1_i} \end{pmatrix} &= \begin{pmatrix} C_{PCT3_i} \\ R_{ras}(\alpha_{CMII_i}, Fuel) \end{pmatrix} \\ \begin{pmatrix} C_{PCMI1_i} \end{pmatrix} &= \begin{pmatrix} C_{PCT3_i} \\ R_{ras}(\alpha_{CMII_i}, Fuel) \end{pmatrix} \end{pmatrix} \\ \begin{pmatrix} C_{PCMI1_i} \end{pmatrix} &= \begin{pmatrix} C_{PCT3_i} \\ R_{ras}(\alpha_{CMII_i}, Fuel) \end{pmatrix} \\ \begin{pmatrix} C_{PCMI1_i} \end{pmatrix} &= \begin{pmatrix} C_{PCT3_i} \\ R_{ras}(\alpha_{CMII_i}, Fuel) \end{pmatrix} \end{pmatrix} \\ \begin{pmatrix} C_{PCMI1_i} \end{pmatrix} &= \begin{pmatrix} C_{PCT3_i} \\ R_{ras}(\alpha_{CMII_i}, Fuel) \end{pmatrix} \\ \begin{pmatrix} C_{PCMI1_i} \end{pmatrix} &= \begin{pmatrix} C_{PCT3_i} \\ R_{ras}(\alpha_{CMII_i}, Fuel) \end{pmatrix} \end{pmatrix} \\ \begin{pmatrix} C_{PCMI1_i} \end{pmatrix} &= \begin{pmatrix} C_{PCT3_i} \\ R_{ras}(\alpha_{CMII_i}, Fuel) \end{pmatrix} \\ \begin{pmatrix} C_{PCMI1_i} \end{pmatrix} &= \begin{pmatrix} C_{PCT3_i} \\ R_{ras}(\alpha_{CMII_i}, Fuel) \end{pmatrix} \\ \begin{pmatrix} C_{PCMI1_i} \end{pmatrix} &= \begin{pmatrix} C_{PCT3_i} \\ R_{ras}(\alpha_{CMII_i}, Fuel) \end{pmatrix} \\ \begin{pmatrix} C_{PCMI1_i} \end{pmatrix} &= \begin{pmatrix} C_{PCT3_i} \\ R_{ras}(\alpha_{CMII_i}, Fuel) \end{pmatrix} \\ \begin{pmatrix} C_{PCMI1_i} \end{pmatrix} &= \begin{pmatrix} C_{PCT3_i} \\ R_{ras}(\alpha_{CMII_i}, Fuel) \end{pmatrix} \\ \begin{pmatrix} C_{PCMI1_i} \end{pmatrix} &= \begin{pmatrix} C_{PCMI1_i} \\ R_{ras}(\alpha_{CMI1_i}, Fuel) \end{pmatrix} \\ \begin{pmatrix} C_{P$$

$$\begin{vmatrix} C_{PCMIII_{1}} \\ C_{PCMIII_{1}} \\ c_{PCMIII_{1}} \\ c_{PCMIII_{1}} \\ c_{PCMIII_{1}} \\ c_{PCMIII_{1}} \\ c_{PCMII_{1}} \\ c_{PCMII_{1}} \\ c_{PCMI_{1}} \\ c_$$

$$\begin{aligned} k_{CI3_i} &= k_{a0}(C\rho_{CI3_i}, R_{CI3_i}) \\ \pi^*_{CI_i} &= \frac{P^*_{CII_i}}{P^*_{CI3_i}} \\ C\rho_{CI_i} &= C\rho_{ra3.cp}(P^*_{CII_i}, P^*_{CI3_i}, T^*_{CII_i}, T^*_{CI3_i}, \alpha_{CII_i}, \alpha_{CI3_i}, Fuel) \\ k_{CI_i} &= k_{an}(C\rho_{CI_i}, R_{ra3.cp}(\alpha_{CI1_i}, \alpha_{CI3_i}, Fuel)) \\ c_{CI3full_i} &= \varphi_{CI} \sqrt{2\cdot C\rho_{CI_i}} T^*_{CI3_i} \sqrt{1 - \left(\pi^*_{CI_i}\right)^{\frac{1-k_{CI_i}}{k_{CI_i}}}} \\ c_{CI3full_i} &= \begin{vmatrix} c_{CI3full_i} & \text{if } Im(c_{CI3full_i}) = 0 \\ NaN & \text{otherwise} \end{vmatrix} \\ c_{CI3_i} &= \varphi_{CI} \begin{vmatrix} \sqrt{2\cdot C\rho_{CI_i}} T^*_{CI3_i} & \sqrt{1 - \left(\pi^*_{CI_i}\right)^{\frac{1-k_{CI_i}}{k_{CI_i}}}} \\ \sqrt{2\cdot C\rho_{CI_i}} T^*_{CI3_i} & \sqrt{1 - \left(\pi^*_{CI_i}\right)^{\frac{1-k_{CI_i}}{k_{CI_i}}}} & \text{if } \pi^*_{CI_i} \leq \pi^*_{kp,CI_i} \end{vmatrix} \\ c_{CI3_i} &= \begin{vmatrix} c_{CI3_i} & \text{if } Im(c_{CI3_i}) \\ \sqrt{2\cdot C\rho_{CI_i}} T^*_{CI3_i} & \sqrt{1 - \left(\pi^*_{CI_i}\right)^{\frac{1-k_{CI_i}}{k_{CI_i}}}} & \text{otherwise} \end{vmatrix} \\ c_{CI3_i} &= \begin{vmatrix} c_{CI3_i} & \text{if } Im(c_{CI3_i}) \\ \sqrt{2\cdot C\rho_{CI_i}} T^*_{CI3_i} & \sqrt{1 - \left(\pi^*_{CI_i}\right)^{\frac{1-k_{CI_i}}{k_{CI_i}}}} & \text{otherwise} \end{vmatrix} \\ c_{CI3_i} &= \begin{vmatrix} c_{CI3_i} & \text{if } Im(c_{CI3_i}) \\ \sqrt{2\cdot C\rho_{CI_i}} T^*_{CI3_i} & \sqrt{1 - \left(\pi^*_{CI3_i}\right)^{\frac{1-k_{CI_i}}{k_{CI_i}}}} & \text{otherwise} \end{vmatrix} \\ c_{CI3_i} &= c_{CI3_i} & c_{CI3_i} & - c_{CI3_i} & c_{CI3_i} \\ \sqrt{2\cdot C\rho_{CI3_i}} & c_{CI3_i} & - c_{CI3_i} \\ c_{CI3_i} & c_{CI3_i} & - c_{CI3_i} & c_{CI3_i} \\ c_{CI3_i} & c_{CI3_i} & - c_{CI3_i} \\ c_{CI3_i} & c_{CI3_i} & c_{CI3_i} \\ c_{CI3_i} & c_{CI3_i} & c_{CI3_i} & c_{CI3_i} \\ c_{CI3_i} & c_{CI3_i} & c_{CI3_i} \\ c_{CI3_i} & c_{CI3_i} & c_{CI3_i} & c_{CI3_i} \\ c_{CI3_i} & c_{CI3_i} & c_{CI3_i} \\ c_{CI3_i} & c_{CI3_i} & c_{CI3_i} & c_{CI3_i} \\ c_{CI3_i} & c_{CI3_i} & c_{CI3_i} \\ c_{CI3_i} & c_{CI3_i} & c_{CI3_i} \\ c_{CI3_i} & c_{CI3_i} & c_{CI3_i} & c_{CI3_i} \\ c_{CI3_i} & c_{CI3_i} & c_{CI3_i} \\ c_{CI3_i} & c_{CI3_i} & c_{CI3_i} \\ c_{CI3_i} & c_{CI3_i} & c_{CI3_i} & c_{CI3_i} \\ c_{CI3_i} & c_{CI3_i} & c_{CI3_i} \\ c_{CI3_i} & c_{CI3_i} & c_{CI3_i} \\ c_{CI3_i} & c_{CI$$

$$| \text{otherwise} \\ | \text{NaN if CM} = 1 \\ | \text{T*KBJII3}_{i} \text{ otherwise} \\ | \text{NaN if CII} = "" \\ | \text{otherwise} \\ | \text{NaN if CM} = 1 \\ | \text{P*KBJII3}_{i} \text{ of KBJII}_{i} \text{ otherwise} \\ | \text{NaN if CM} = 1 \\ | \text{P*KBJII3}_{i} \text{ of KBJII}_{i} \text{ otherwise} \\ | \text{OCIII}_{i} = \text{NaN} \\ | \text{RCIII}_{i} = | \text{NaN if CII} = "" \\ | \text{R_B otherwise} \\ | \text{CPCIII}_{i} = \text{CP_{B03JJY}}(\text{P*CIII}_{i}, \text{T*CIII}_{i}) \\ | \text{kCIII}_{i} = \text{kan}(\text{CPCIII}_{i}, \text{RCIII}_{i}) \\ | \text{KCIII}_{i} = \text{kan}(\text{CPCIII}_{i}, \text{RCIII}_{i}) \\ | \text{T*CII3}_{i} = \text{T*CIII}_{i} \\ | \text{P*CII3}_{i} = | \text{NaN if CII} = "" \\ | \text{otherwise} \\ | \frac{\text{P*CIII}_{i}}{\sigma_{\text{BMX}}} \text{ if CII} = "Jabajb" \\ | \text{max}\left(\frac{\text{P*CIII}_{i}}{\pi_{\text{Kp.CII}_{i}}}, \frac{\text{P*}_{\text{H}}}{\sigma_{\text{BMX}}}\right) \text{ otherwise} \\ | \text{CCII3}_{i} = \text{CIII}_{i} \\ | \text{CPCII3}_{i} = \text{CP_{B03JJYX}}(\text{P*CII3}_{i}, \text{T*CII3}_{i}) \\ | \text{kCII3}_{i} = \text{kan}(\text{CPCII3}_{i}, \text{R_B}) \\ | \pi^{*}\text{CII}_{i} = \text{CP_{B03JJYX.ep}}(\text{P*CIII}_{i}, \text{P*CII3}_{i}, \text{T*CIII}_{i}, \text{T*CIII}_{i}}, \text{T*CIII}_{i}, \text{T*CIII}_{i}}, \text{T*CIII}_{i}, \text{T*CIII}_{i}} \\ | \text{CPCII}_{i} = \text{Cp_{B03JJYX.ep}}(\text{P*CIII}_{i}, \text{P*CII3}_{i}, \text{T*CIII}_{i}}, \text{T*CIII}_{i}, \text{T*CIII}_{i}}, \text{T*CIII}_{i}}, \text{T*CIII}_{i}, \text{T*CIII}_{i}}, \text{T*CIII}_{i}} \\ | \text{CPCII}_{i} = \text{Cp_{B03JJYX.ep}}(\text{P*CIII}_{i}, \text{P*CIII}_{i}}, \text{P*CIII}_{i}, \text{T*CIII}_{i}}, \text{T*CIII}_{i}}, \text{T*CIII}_{i}}, \text{T*CIII}_{i}}, \text{T*CIII}_{i}} \\ | \text{CPCII}_{i} = \text{CA}_{i}(\text{CPCIII}_{i}, \text{R_B}}) \\ | \text{CPCII}_{i} = \text{CA}_{i}(\text{CPCIII}_{i}, \text{R_B}}) \\ | \text{CPCII}_{i} = \text{CP_{B03JJYX.ep}}(\text{P*CIII}_{i}, \text{P*CIII}_{i}}, \text{P*CIII}_{i}}, \text{T*CIII}_{i}}, \text{T*CIII}_{i}}, \text{T*CIII}_{i}} \\ | \text{CPCII}_{i} = \text{CP_{B03JJYX.ep}}(\text{P*CIII}_{i}, \text{R_B}) \\ | \text{CPCII}_{i} = \text{CP_{B03JJYX.ep}}(\text{CPCIII}_{i}, \text{R_B}) \\ | \text{CPCII}_{i} = \text{CP_{B03JJYX.ep}}(\text{CPCIII}_{i}, \text{R_B}) \\ | \text{CPCII}_{i} = \text{CP_{B03JJYX.ep$$

 $^{'}$ Т * ТВД $_{1}$ P ТВД $_{1}$ R ТВД $_{1}$ R ТВД $_{1}$ R ТВД $_{1}$ R ТВД $_{2}$ R $T^*_{TBД3}$ $P^*_{TBД3}$ $R_{TBД3}$ $\alpha_{TBД3}$ α_{TBZ3} α_{TBZ3} α_{TBZ3} α_{TBZ3} α_{TBZ3} α_{TBZ3} α_{T T* ТСД1 P* ТСД1 R ТСД1 $^{\alpha}$ ТСД1 k ТСД1 Cp ТСД1 L ТСД iteration_{TCД} $T^*_{TCД3}$ $P^*_{TCД3}$ $R_{TCД3}$ $\alpha_{TCД3}$ $k_{TCД3}$ $C_{PTCД3}$ $\pi^*_{TCД}$ T^* ТНД1 P^* ТНД1 $R_{TНД1}$ $\alpha_{TНД1}$ $k_{TНД1}$ C_{P} ТНД1 $L_{TНД}$ $T^*_{THД3}$ $P^*_{THД3}$ $R_{THД3}$ $\alpha_{THД3}$ $k_{THД3}$ $C_{P_{THД3}}$ $\pi^*_{THД}$ iteration_{ТНД} T^*_{CT1} P^*_{CT1} R_{CT1} $iteration_{CT} \\$ Cp_{CT1} L_{CT} $\alpha_{\rm CT1}$ k_{CT1} T^*_{CT3} P^*_{CT3} R_{CT3} Cp_{CT3} π^* CT iteration_{CT} α_{CT3} k_{CT3} T^*_{CMI1} P^*_{CMI1} R_{CMI1} α_{CMI1} None Cp_{CMI1} None $^{T*}CMII1 \ ^{P*}CMII1 \ ^{R}CMII1 \ ^{\alpha}CMII1$ None Cp_{CMII1} None None T*CM3 P*CM3 None None None None None α_{CM3} T*_{CI1} P*CI1 R_{CI1} α_{CI1} k_{CI1} Cp_{CI1} π^* кр.СІ c_{CI3} P*_{CI3} T*CI3 R_{CI3} π^*_{CI} T_{CI3} k_{CI3} α_{CI3} Cp_{CI3} P*CII1 T*CII1 R_{CII1} π^* кр.СІІ α_{CII1} k_{CII1} Cp_{CII1} ^cCII3 T*CII3 P*CII3 R_{CII3} π^*_{CII} T_{CII3} Cp_{CII3} α_{CII3} kCII3 None None iteration_G None ^cCI3full None iteration ~

iteration $T =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Directoring	1	2	9	4	4	4	4	4	4	4	3	12	3	17	7	3	13	3	3	3	3	3	3	3	3	3	3	2	1	1	1	1	1	1	

Относ. погрешность бланса мощностей ():

$$iter_eps_i = \begin{bmatrix} eps \\ "rel", \begin{pmatrix} \frac{N_{HBJ}}{\eta_{PHBJ}} + \frac{N_{HCJ}}{\eta_{PHCJ}} + \frac{N_{HHJ}}{\eta_{PHCJ}} + \frac{N_{HCT}}{\eta_{PHCJ}} \\ + G_{I_i} \begin{pmatrix} \frac{L_{KBJ_i} \cdot g_{KBJ1_i}}{\eta_{PBBJ}} + \frac{L_{KCJ_i} \cdot g_{KCJ1_i}}{\eta_{PBCJ}} + \frac{L_{KHJ_i} \cdot g_{KHJ1_i}}{\eta_{PBHJ}} \\ \end{bmatrix}, G_{I_i} \begin{pmatrix} L_{TBJ_i} \cdot \left(g_{TBJ1_i} + \chi \cdot g_{ox\pi TCJ_i} \right) \\ + L_{TCJ_i} \cdot \left(g_{TCJ1_i} + \chi \cdot g_{ox\pi TCJ_i} \right) \\ + L_{THJ_i} \cdot \left(g_{THJ1_i} + \chi \cdot g_{ox\pi THJ_i} \right) \\ + L_{CT_i} \cdot g_{CT1_i} \end{bmatrix}$$

iter $eps^{T} = [$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	.%
_ 1	1	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001		

Полная температура перед и после ТВД (К):

, , , , , , , , , , , , , , , , , , ,	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
augment $(T^*_{TBД1}, T^*_{TBД3})^T = \boxed{1}$	1773.0	1773.0	1773.0	1773.0	1773.0	1773.0	1773.0	1773.0	1773.0	1773.0	1773.0	1773.0	1773.0	1773.0	1773.0	1773.0	1773.0	1773.0	1773.0	1773.0	177
2	1370.1	1370.0	1369.9	1369.8	1369.8	1369.7	1369.6	1369.5	1369.5	1369.4	1369.3	1369.3	1369.2	1369.2	1369.2	1369.1	1369.1	1369.0	1369.0	1368.9	

Полное давление перед и после ТВД (Па):

, , , , , , , , , , , , , , , , , T	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$\operatorname{augment}(P^*_{TBД1}, P^*_{TBД3})^* = [$	1 2731	.8 2731.8	2731.8	2731.8	2731.8	2731.8	2731.8	2731.8	2731.8	2731.8	2731.8	2731.8	2731.8	2731.8	2731.8	2731.8	2731.8	2731.8	2731.8	2731.8	273:
	2 940	.8 940.5	940.3	940.0	939.8	939.5	939.3	939.1	938.9	938.7	938.4	938.3	938.0	937.9	937.8	937.5	937.5	937.3	937.2	937.0	

Коэф. избытка воздуха перед и после ТВД ():

, T		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$augment(\alpha_{TBД1}, \alpha_{TBД3})^{-} = [$	1	2.267	2.267	2.267	2.267	2.267	2.267	2.267	2.267	2.267	2.267	2.267	2.267	2.267	2.267	2.267	2.267	2.267	2.267	2.267	2.267	2.267
	2	2.501	2.501	2.501	2.501	2.501	2.501	2.501	2.501	2.501	2.501	2.501	2.501	2.501	2.501	2.501	2.501	2.501	2.501	2.501	2.501	

Газовая постоянная продуктов сгорания перед и после ТВД (Дж/кг/К):

()T	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
augment $(R_{TBД1}, R_{TBД3})^T = \boxed{1}$	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5
2	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	

Теплоем кость перед и после ТВД (Дж/кг/К):

Показатель адиабаты перед и после ТВД ():

, T		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$augment(k_{TBД1}, k_{TBД3})^{-} = [$	1	1.283	1.283	1.283	1.283	1.283	1.283	1.283	1.283	1.283	1.283	1.283	1.283	1.283	1.283	1.283	1.283	1.283	1.283	1.283	1.283	1.283
	2	1.298	1.298	1.298	1.298	1.298	1.298	1.298	1.298	1.298	1.298	1.298	1.298	1.298	1.298	1.298	1.298	1.298	1.298	1.298	1.298	

Удельная работа ТВД (Дж/кг):

																							_
LTDH =	=	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	1.10^3
^L ТВД =	1	430.6	430.8	430.8	430.9	431	431.1	431.2	431.3	431.4	431.5	431.6	431.6	431.7	431.8	431.8	431.9	432	432	432.1	432.1		

Степень понижения полного давления ТВД:

_* T [1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
π^* ТВД =	1	3.093	3.094	3.095	3.096	3.097	3.098	3.099	3.099	3.100	3.101		3.102	3.103	3.104	3.104	3.105	3.105	3.106	3.106	3.107	

Количество итераций:

 $\text{Ср. теплоемкость ТВД (Дж/кг/К):} \qquad \text{Ср}_{\text{ТВД}_{\dot{1}}} = \text{Ср}_{\text{Газ.cp}} \Big(\text{P*}_{\text{ТВД1}_{\dot{1}}}, \text{P*}_{\text{ТВД3}_{\dot{1}}}, \text{T*}_{\text{ТВД3}_{\dot{1}}}, \text{T*}_{\text{ТВД3}_{\dot{1}}}, \alpha_{\text{ТВД3}_{\dot{1}}}, \alpha_{\text{ТВД3}_{\dot{1}}}, \text{Fuel} \Big)$

$Cp_{TBД}^{T} =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
тъд	1	1285	1285	1285	1285	1285	1285	1285	1285	1285	1285	1285	1285	1285	1285	1285	1285	1285	1285	1285	1285	

Ср. показатель адиабаты ТВД: $k_{TB} \underline{\mathcal{I}}_i = k_{ad} \Big(Cp_{TB} \underline{\mathcal{I}}_i, R_{\Gamma a3.cp} \Big(\alpha_{TB} \underline{\mathcal{I}}_1, \alpha_{TB} \underline{\mathcal{I}}_3, \text{Fuel} \Big) \Big)$

$k_{TDT} = $		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
ктвд =	1	1.289	1.289	1.289	1.289	1.289	1.289	1.289	1.289	1.289	1.289	1.289	1.289	1.289	1.289	1.289	1.289	1.289	1.289	1.289	1.289	

▲ ТВД

Полная температура перед и после ТСД (К):

(-, -,)T	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$\operatorname{augment}(T^*_{TCД1}, T^*_{TCД3})^T = \boxed{1}$	1370.1	1370.0	1369.9	1369.8	1369.8	1369.7	1369.6	1369.5	1369.5	1369.4	1369.3	1369.3	1369.2	1369.2	1369.2	1369.1	1369.1	1369.0	1369.0	1368.9	136
2	1370.1	1370.0	1369.9	1369.8	1369.8	1369.7	1369.6	1369.5	1369.5	1369.4	1369.3	1369.3	1369.2	1369.2	1369.2	1369.1	1369.1	1369.0	1369.0	1368.9	

Полное давление перед и после ТСД (Па):

(-, -,)T	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	3
augment $(P^*_{TCД1}, P^*_{TCД3})^T = \boxed{1}$	940.8	940.5	940.3	940.0	939.8	939.5	939.3	939.1	938.9	938.7	938.4	938.3	938.0	937.9	937.8	937.5	937.5	937.3	937.2	937.0	936.9	·103
2	940.8	940.5	940.3	940.0	939.8	939.5	939.3	939.1	938.9	938.7	938.4	938.3	938.0	937.9	937.8	937.5	937.5	937.3	937.2	937.0		ĺ

Коэф. избытка воздуха перед и после ТСД ():

, T		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$\operatorname{augment}(\alpha_{\text{ТСД1}}, \alpha_{\text{ТСД3}})^{T} = \boxed{1}$	1	2.493	2.493	2.493	2.493	2.493	2.493	2.493	2.493	2.493	2.493	2.493	2.493	2.493	2.493	2.493	2.493	2.493	2.493	2.493	2.493	2.493
2	2	2.493	2.493	2.493	2.493	2.493	2.493	2.493	2.493	2.493	2.493	2.493	2.493	2.493	2.493	2.493	2.493	2.493	2.493	2.493	2.493	

Газовая постоянная продуктов сгорания перед и после ТСД(Дж/кг/К):

()T		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
augment $(R_{TCД1}, R_{TCД3})^{-} = [1]$	1	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5
2	2	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	

Теплоем кость перед и после ТСД (Дж/кг/К):

$$augment \Big(\text{Cp}_{\text{TCД1}}, \text{Cp}_{\text{TCД3}} \Big)^T = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 \\ & 1 & 1258$$

Показатель адиабаты перед и после ТСД ():

, T		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
augment $(k_{TCД1}, k_{TCД3})^{T} = $	1	1.297	1.297	1.297	1.297	1.297	1.297	1.297	1.297	1.297	1.297	1.297	1.297	1.297	1.297	1.297	1.297	1.297	1.298	1.298	1.298	1.298
,	2	1.297	1.297	1.297	1.297	1.297	1.297	1.297	1.297	1.297	1.297	1.297	1.297	1.297	1.297	1.297	1.297	1.297	1.298	1.298	1.298	

Удельная работа ТСД (Дж/кг):

т			_	_		_	_		_	_					l							24	1 2
$L_{TCT}^{1} =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	1.10^{3}
^L ТСД =	1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		

Степень понижения полного давления ТСД:

$\pi^*_{TC\Pi}$ =		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
гед	1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	

Количество итераций:

iteration _{TCT} =		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
телител	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	

 $\text{Ср. теплоемкость ТСД (Дж/кг/K):} \qquad \text{Ср}_{\text{TСД}_{\dot{i}}} = \text{Ср}_{\text{газ.cp}} \Big(\text{P*}_{\text{ТСД1}_{\dot{i}}}, \text{P*}_{\text{ТСД3}_{\dot{i}}}, \text{T*}_{\text{ТСД3}_{\dot{i}}}, \text{T*}_{\text{ТСД3}_{\dot{i}}}, \alpha_{\text{ТСД3}_{\dot{i}}}, \alpha_{\text{ТСД3}_{\dot{i}}}, \text{Fuel} \Big)$

$Cp_{TC\Pi}^{T} =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
тед	1	1258	1258	1258	1258	1258	1258	1258	1258	1258	1258	1258	1258	1258	1258	1258	1258	1258	1258	1258	1258	

Ср. показатель адиабаты ТСД: $k_{\text{ТСД}_{\underline{i}}} = k_{\text{ад}} \left(\text{Ср}_{\text{ТСД}_{\underline{i}}}, \text{R}_{\text{газ.cp}} \left(\alpha_{\text{ТСД1}_{\underline{i}}}, \alpha_{\text{ТСД3}_{\underline{i}}}, \text{Fuel} \right) \right)$

$k_{TCT}^{T} =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
ТСД	1	1.297	1.297	1.297	1.297	1.297	1.297	1.297	1.297	1.297	1.297	1.297	1.297	1.297	1.297	1.297	1.297	1.297	1.298	1.298	1.298	

Полная температура перед и после ТНД (К):

, , , , , , , , , , , , , , , , , , ,	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
augment $(T^*_{THД1}, T^*_{THД3})^T = \boxed{1}$	1370.1	1370.0	1369.9	1369.8	1369.8	1369.7	1369.6	1369.5	1369.5	1369.4	1369.3	1369.3	1369.2	1369.2	1369.2	1369.1	1369.1	1369.0	1369.0	1368.9	136
2	1158.1	1149.8	1141.7	1133.6	1125.6	1117.6	1109.8	1102.0	1094.3	1086.7	1079.1	1071.7	1064.2	1056.9	1049.6	1042.4	1035.3	1028.2	1021.1	1014.1	

Полное давление перед и после ТНД (Па):

(T		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21]3
$\operatorname{augment}(P^*_{THД1}, P^*_{THД3})^* = [$	1	931.4	931.1	930.9	930.6	930.4	930.1	929.9	929.7	929.5	929.3	929.0	928.9	928.7	928.5	928.4	928.1	928.1	927.9	927.8	927.6	927.5	10
,	2	438.9	424.0	409.8	396.1	382.8	370.1	357.8	346.0	334.6	323.6	312.9	302.7	292.8	283.2	274.1	265.1	256.6	248.3	240.3	232.5		

Коэф. избытка воздуха перед и после ТНД ():

, _T		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$\operatorname{augment}(\alpha_{\text{ТНД1}}, \alpha_{\text{ТНД3}}) = [$	1	2.493	2.493	2.493	2.493	2.493	2.493	2.493	2.493	2.493	2.493	2.493	2.493	2.493	2.493	2.493	2.493	2.493	2.493	2.493	2.493	2.493
, , , , , , , , , , , , , , , , , , , ,	2	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	

Газовая постоянная продуктов сгорания перед и после ТНД (Дж/кг/К):

T = T	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$augment(R_{THД1}, R_{THД3}) = 1$	288	.5 288	.5 288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5
2	288	.5 288	.5 288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	

Теплоем кость перед и после ТНД (Дж/кг/К):

(- T		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$augment(Cp_{THД1}, Cp_{THД3}) =$	1	1258	1258	1258	1258	1258	1258	1258	1258	1258	1258	1258	1258	1258	1258	1258	1258	1258	1258	1258	1258	1258
,	2	1223	1221	1220	1218	1217	1215	1213	1212	1210	1209	1207	1206	1204	1203	1201	1200	1198	1197	1195	1194	

Показатель адиабаты перед и после ТНД ():

, T		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$augment(k_{THД1}, k_{THД3}) = [$	1	1.297	1.297	1.297	1.297	1.297	1.297	1.297	1.297	1.297	1.297	1.297	1.297	1.297	1.297	1.297	1.297	1.297	1.298	1.298	1.298	1.298
, ,	2	1.309	1.309	1.310	1.310	1.311	1.311	1.312	1.312	1.313	1.313	1.314	1.314	1.315	1.315	1.316	1.317	1.317	1.318	1.318	1.319	

Удельная работа ТНД (Дж/кг):

$L_{TIII}^{T} =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	$\cdot 10^3$
^L ТНД =	1	239.4	249.5	259.5	269.4	279.1	288.7	298.3	307.7	317.0	326.3	335.4	344.4	353.4	362.3	371.0	379.7	388.3	396.9	405.3	413.7		-

Степень понижения полного давления ТНД ():

$\pi^*_{TIII} =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
π^* ТНД =	1	2.10	2.17	2.24	2.32	2.40	2.49	2.57	2.66	2.75	2.84	2.94	3.04	3.14	3.25	3.36	3.47	3.59	3.71	3.83	3.96	

Количество итераций:

iteration _{TUII} =		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
ТНД	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	

Ср. теплоемкость ТНД (Дж/кг/К): $\text{Ср}_{\text{ТНД}_{\dot{i}}} = \text{Ср}_{\text{газ.cp}} \left(P^*_{\text{ТНД1}_{\dot{i}}}, P^*_{\text{ТНД3}_{\dot{i}}}, T^*_{\text{ТНД1}_{\dot{i}}}, T^*_{\text{ТНД3}_{\dot{i}}}, \alpha_{\text{ТНД1}_{\dot{i}}}, \alpha_{\text{ТНД3}_{\dot{i}}}, \text{Fuel} \right)$

$Cp_{TH\Pi}^{T} =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
ттпд	1	1241	1241	1240	1239	1238	1238	1237	1236	1236	1235	1234	1234	1233	1232	1232	1231	1230	1230	1229	1228	

Ср. показатель адиабаты ТНД: $k_{THД_i} = k_{aд} \left(Cp_{THД_i}, R_{ras.cp} \left(\alpha_{THД1_i}, \alpha_{THД3_i}, Fuel \right) \right)$

k_TIIT =		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
ктнд =	1	1.303	1.303	1.303	1.303	1.304	1.304	1.304	1.304	1.305	1.305	1.305	1.305	1.305	1.306	1.306	1.306	1.306	1.307	1.307	1.307	

<u></u>ТНД

Полная температура перед и после СТ (К):

(-, -, \T		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$augment(T*_{CT1}, T*_{CT3})^{T} =$	1	1158.1	1149.8	1141.7	1133.6	1125.6	1117.6	1109.8	1102.0	1094.3	1086.7	1079.1	1071.7	1064.2	1056.9	1049.6	1042.4	1035.3	1028.2	1021.1	1014.1	1007.2
	2	1158.1	1149.8	1141.7	1133.6	1125.6	1117.6	1109.8	1102.0	1094.3	1086.7	1079.1	1071.7	1064.2	1056.9	1049.6	1042.4	1035.3	1028.2	1021.1	1014.1	

Полное давление перед и после СТ (Па):

(- ·		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	3
$\operatorname{augment}(P^*_{CT1}, P^*_{CT1})^{T} =$	1	438.9	424.0	409.8	396.1	382.8	370.1	357.8	346.0	334.6	323.6	312.9	302.7	292.8	283.2	274.1	265.1	256.6	248.3	240.3	232.5	225.1	10
	2	438.9	424.0	409.8	396.1	382.8	370.1	357.8	346.0	334.6	323.6	312.9	302.7	292.8	283.2	274.1	265.1	256.6	248.3	240.3	232.5		

Коэф. избытка воздуха перед и после СТ ():

, \T		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
augment $(\alpha_{CT1}, \alpha_{CT3})^{-1}$	1	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552
,	2	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	

Теплоем кость перед и после СТ (Дж/кг/К):

/ \T		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$augment(Cp_{CT1}, Cp_{CT3}) =$	1	1223	1221	1220	1218	1217	1215	1213	1212	1210	1209	1207	1206	1204	1203	1201	1200	1198	1197	1195	1194	1192
	2	1223	1221	1220	1218	1217	1215	1213	1212	1210	1209	1207	1206	1204	1203	1201	1200	1198	1197	1195	1194	

Показатель адиабаты перед и после СТ ():

. Т		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$augment(k_{CT1}, k_{CT3})^{T} =$	1	1.309	1.309	1.310	1.310	1.311	1.311	1.312	1.312	1.313	1.313	1.314	1.314	1.315	1.315	1.316	1.317	1.317	1.318	1.318	1.319	1.319
,	2	1.309	1.309	1.310	1.310	1.311	1.311	1.312	1.312	1.313	1.313	1.314	1.314	1.315	1.315	1.316	1.317	1.317	1.318	1.318	1.319	

Удельная работа СТ (Дж/кг):

$L_{CT}^{T} =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	1.10^3
CI	1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		

Степень понижения полного давления в СТ:

$\pi^*_{CT} =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
CI	1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	

 $\text{Ср. теплоемкость CT (Дж/кг/К):} \qquad \qquad \text{Ср}_{\text{CT}_{\dot{i}}} = \text{Ср}_{\text{газ.cp}} \Big(\text{P*}_{\text{CT1}_{\dot{i}}}, \text{P*}_{\text{CT3}_{\dot{i}}}, \text{T*}_{\text{CT1}_{\dot{i}}}, \text{T*}_{\text{CT3}_{\dot{i}}}, \alpha_{\text{CT1}_{\dot{i}}}, \alpha_{\text{CT3}_{\dot{i}}}, \text{Fuel} \Big)$

$Cp_{CT}^{T} =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
1 (1	1	1223	1221	1220	1218	1217	1215	1213	1212	1210	1209	1207	1206	1204	1203	1201	1200	1198	1197	1195	1194	

Ср. показатель адиабаты СТ: $k_{CT_i} = k_{a \text{Д}} \left(\text{Cp}_{CT_i}, \text{R}_{\text{газ.cp}} \left(\alpha_{\text{CT1}_i}, \alpha_{\text{CT3}_i}, \text{Fuel} \right) \right)$

$k_{CT}^{T} =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
CI	1	1.309	1.309	1.310	1.310	1.311	1.311	1.312	1.312	1.313	1.313	1.314	1.314	1.315	1.315	1.316	1.317	1.317	1.318	1.318	1.319	

Суммарная степень понижения полного давления в Т:

$$\pi^*_{\mathsf{T}\Sigma_i} = \pi^*_{\mathsf{T}\mathsf{B}\mathcal{A}_i} \cdot \pi^*_{\mathsf{T}\mathsf{C}\mathcal{A}_i} \cdot \pi^*_{\mathsf{T}\mathsf{H}\mathcal{A}_i} \cdot \pi^*_{\mathsf{C}\mathsf{T}_i}$$

$\pi^*_{T\Sigma}^T =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
12	1	6.48	6.71	6.95	7.19	7.44	7.70	7.96	8.24	8.52	8.81	9.12	9.43	9.75	10.08	10.42	10.77	11.14	11.51	11.90	12.30	

Полная температура перед СМ (К):

(-, -,)T	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$augment(T*_{CMII1}, T*_{CMI1}) = \boxed{1}$	306.1	307.8	309.4	311.1	312.7	314.3	315.9	317.4	319.0	320.5	322.0	323.5	325.0	326.5	327.9	329.4	330.8	332.2	333.6	335.0	33
2	1158.1	1149.8	1141.7	1133.6	1125.6	1117.6	1109.8	1102.0	1094.3	1086.7	1079.1	1071.7	1064.2	1056.9	1049.6	1042.4	1035.3	1028.2	1021.1	1014.1	

Полная температура после СМ (К):

$T^*_{CM2}^T =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
- CIVI3	1	1158.1	1149.8	1141.7	1133.6	1125.6	1117.6	1109.8	1102.0	1094.3	1086.7	1079.1	1071.7	1064.2	1056.9	1049.6	1042.4	1035.3	1028.2	1021.1	1014.1	

Полное давление перед СМ (Па):

$$augment \left(P^*_{CMIII}, P^*_{CMIII}\right)^T = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 \\ 1 & 117.4 & 119.3 & 121.3 & 123.2 & 125.2 & 127.2 & 129.1 & 131.1 & 133.0 & 135.0 & 136.9 & 138.9 & 140.8 & 142.8 & 144.8 & 146.7 & 148.7 & 150.6 & 152.6 & 154.5 & 156.5 \\ 2 & 438.9 & 424.0 & 409.8 & 396.1 & 382.8 & 370.1 & 357.8 & 346.0 & 334.6 & 323.6 & 312.9 & 302.7 & 292.8 & 283.2 & 274.1 & 265.1 & 256.6 & 248.3 & 240.3 & 232.5 & ... \end{bmatrix} \cdot 10^3$$

P* COUNTY																					
$\frac{\text{r} \cdot \text{CMII1}}{\text{cm}} = $	1	2	3	4	5	6			9							16		18	19	20	21
$P^*_{CMI1}^T$	1 0.267	0.281	0.296	0.311	0.327	0.344	0.361	0.379	0.398	0.417	0.438	0.459	0.481	0.504	0.528	0.553	0.579	0.607	0.635	0.665	

Полное давление после СМ (Па):

$P^*_{CM2}^T =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	$\cdot 10^3$
$P^*CM3 =$	1	438.9	424.0	409.8	396.1	382.8	370.1	357.8	346.0	334.6	323.6	312.9	302.7	292.8	283.2	274.1	265.1	256.6	248.3	240.3	232.5		İ

Теплоем кость перед СМ (Дж/кг/К):

$$augment \Big(Cp_{CMII1}, Cp_{CMII} \Big)^T = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 \\ 1 & 1.004 & 1.004 & 1.004 & 1.004 & 1.004 & 1.004 & 1.004 & 1.004 & 1.005 & 1.005 & 1.005 & 1.005 & 1.005 & 1.005 & 1.005 & 1.006 & 1.006 & 1.006 & 1.006 & 1.006 \\ 2 & 1.223 & 1.221 & 1.220 & 1.218 & 1.217 & 1.215 & 1.213 & 1.212 & 1.210 & 1.209 & 1.207 & 1.206 & 1.204 & 1.203 & 1.201 & 1.200 & 1.198 & 1.197 & 1.195 & 1.194 & ... \\ \end{bmatrix}^{-1}$$

Коэф. избытка воздуха:

$\alpha_{\text{CM3}}^{\text{T}} =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
CW13	1	18.001	18.001	18.001	18.001	18.001	18.001	18.001	18.001	18.001	18.001	18.001	18.001	18.001	18.001	18.001	18.001	18.001	18.001	18.001	18.001	•••

▲ CM

Полная температура после С І контура (К):

T* T*		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
	1	1158.1	1149.8	1141.7	1133.6	1125.6	1117.6	1109.8	1102.0	1094.3	1086.7	1079.1	1071.7	1064.2	1056.9	1049.6	1042.4	1035.3	1028.2	1021.1	1014.1	1007.2
, , ,	2	1158.1	1149.8	1141.7	1133.6	1125.6	1117.6	1109.8	1102.0	1094.3	1086.7	1079.1	1071.7	1064.2	1056.9	1049.6	1042.4	1035.3	1028.2	1021.1	1014.1	

Полное давление после С І контура (Па):

(- ·		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	3
$augment(P*_{CI1}, P*_{CI3})^{T} =$	1	438.9	424.0	409.8	396.1	382.8	370.1	357.8	346.0	334.6	323.6	312.9	302.7	292.8	283.2	274.1	265.1	256.6	248.3	240.3	232.5	225.1	10
,	2	238.8	230.7	222.9	215.4	208.2	201.2	194.5	188.0	181.8	175.8	170.0	164.4	159.0	153.8	148.8	143.9	139.2	134.7	130.3	126.1		

Коэф. избытка воздуха перед и после СІ():

, T		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
augment $(\alpha_{CI1}, \alpha_{CI3}) =$	1	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552
,	2	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	2.552	

Газовая постоянная продуктов сгорания перед и после СІ (Дж/кг/К):

(\T		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$augment(R_{CI1}, R_{CI3})^{T} =$	1	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5
,	2	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	288.5	

Ср. теплоемкость С I контура (Дж/кг/К): $Cp_{CI_{\dot{i}}} = Cp_{\Gamma a3.cp} \Big(P^*_{CII_{\dot{i}}}, P^*_{CI3_{\dot{i}}}, T^*_{CII_{\dot{i}}}, T^*_{CI3_{\dot{i}}}, \alpha_{CII_{\dot{i}}}, \alpha_{CII_{\dot$

Теплоем кость С І контура (Дж/кг/К):

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
$\operatorname{augment}(\operatorname{Cp}_{C11},\operatorname{Cp}_{C1},\operatorname{Cp}_{C12})^{\mathrm{T}} =$	1	1223	1221	1220	1218	1217	1215	1213	1212	1210	1209	1207	1206	1204	1203	1201	1200	1198	1197	1195	1194	1192	1191	1189	1188
augment(CpCI1,CpCI,CpCI3) =	2	1223	1221	1220	1218	1217	1215	1213	1212	1210	1209	1207	1206	1204	1203	1201	1200	1198	1197	1195	1194	1192	1191	1189	1188
	3	1223	1221	1220	1218	1217	1215	1213	1212	1210	1209	1207	1206	1204	1203	1201	1200	1198	1197	1195	1194	1192	1191	1189	

Ср. показатель адиабаты С I контура (): $k_{\text{CI}_{\hat{i}}} = k_{\text{ад}} \Big(\text{Cp}_{\text{CI}_{\hat{i}}}, \text{R}_{\text{газ.cp}} \Big(\alpha_{\text{CI1}_{\hat{i}}}, \alpha_{\text{CI3}_{\hat{i}}}, \text{Fuel} \Big) \Big)$

Показатель адиабаты С І контура ():

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$augment(k_{CI1}, k_{CI}, k_{CI3})^{T} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	1	1.309	1.309	1.310	1.310	1.311	1.311	1.312	1.312	1.313	1.313	1.314	1.314	1.315	1.315	1.316	1.317	1.317	1.318	1.318	1.319	1.319
	2	1.309	1.309	1.310	1.310	1.311	1.311	1.312	1.312	1.313	1.313	1.314	1.314	1.315	1.315	1.316	1.317	1.317	1.318	1.318	1.319	1.319
	3	1.309	1.309	1.310	1.310	1.311	1.311	1.312	1.312	1.313	1.313	1.314	1.314	1.315	1.315	1.316	1.317	1.317	1.318	1.318	1.319	

Критическая степень понижения полного давления С І контура:

Степень понижения полного давления С І контура:

$\pi^*_{CI}^T > 1 = $		4	5	6	7	8 9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30			
	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1				
, т		1	2		3	4	5	6	5	7		8	9	1	10	11	1	12	13	1	.4	15	1	6	17	1	.8	19	20	21
$\operatorname{augment}(\pi^*_{KP.CI}, \pi^*_{CI})^T = \boxed{1}$	1	1.838	1.8	38	1.838	1.839	1.83	9 1.	.839	1.84	0 1	.840	1.84	Ю 1	.841	1.84	1 1	.841	1.841	. 1	.842	1.842	2 1	.842	1.84	3 1	.843	1.843	1.844	1.844
2	2	1.838	1.8	38	1.838	1.839	1.83	9 1.	.839	1.84	0 1	.840	1.84	10 1	.841	1.84	1 1	.841	1.841	. 1	.842	1.842	2 1	.842	1.84	3 1	.843	1.843	1.844	
$\pi^*_{CI}^T \leq \pi^*_{Kp.CI}^T = \frac{1}{1}$	2	3	4	5	6	7	8 9	10) 1		2 1	3 1	.4 1	.5 1	6 1	7 18	3 1	.9 2	0 21	. 2:	2 23	3 24	2	5 2	5 2	7 2	8 2	9 30	31	32
r ci kp.ci 1 1	1	1 1	. 1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	

Скорость истечения после С І контура:

$c_{C12}^{T} =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
·C13	1	611.1	609.0	606.9	604.8	602.7	600.6	598.5	596.5	594.5	592.4	590.4	588.4	586.4	584.5	582.5	580.5	578.6	576.7	574.7	572.8	

Статическая температура после С І контура (К):

$T_{C12}^{T} =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
-C13	1	1005.4	998.0	990.7	983.4	976.3	969.2	962.2	955.2	948.3	941.5	934.8	928.1	921.5	914.9	908.4	901.9	895.6	889.2	882.9	876.7	

Удельная реактивная тяга I контура, отнесенная к массовому расходу на входе в I конутр ():

R_{-} $T =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
КудІ –	1	620.6	618.5	616.3	614.2	612.0	609.9	607.8	605.8	603.7	601.6	599.6	597.6	595.6	593.5	591.6	589.6	587.6	585.6	583.7	581.7	

Полная температура после С ІІ контура (К):

(Dt Dt)T		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$augment(T*_{CII1}, T*_{CII3})^{T} = [$	1	306.1	307.8	309.4	311.1	312.7	314.3	315.9	317.4	319.0	320.5	322.0	323.5	325.0	326.5	327.9	329.4	330.8	332.2	333.6	335.0	336.4
	2	306.1	307.8	309.4	311.1	312.7	314.3	315.9	317.4	319.0	320.5	322.0	323.5	325.0	326.5	327.9	329.4	330.8	332.2	333.6	335.0	

Полное давление после С ІІ контура (Па):

(-, , ,)T	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	3
$\operatorname{augment}(P^*_{\text{CII}1}, P^*_{\text{CII}3})^{\top} = \boxed{1}$. 117.	119.3	121.3	123.2	125.2	127.2	129.1	131.1	133.0	135.0	136.9	138.9	140.8	142.8	144.8	146.7	148.7	150.6	152.6	154.5	156.5	.10
2	101.	3 101.3	101.3	101.3	101.3	101.3	101.3	101.3	101.3	101.3	101.3	101.3	101.3	101.3	101.3	101.3	101.3	101.3	101.3	101.3		İ

Коэф. избытка воздуха перед и после CII ():

T		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$\operatorname{augment}(\alpha_{\text{CII}1}, \alpha_{\text{CII}3}) =$	1	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
,	2	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	

Газовая постоянная продуктов сгорания перед и после СІІ (Дж/кг/К):

()T	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$augment(R_{CII1}, R_{CII3})^{T} = \boxed{1}$	287.1	287.1	287.1	287.1	287.1	287.1	287.1	287.1	287.1	287.1	287.1	287.1	287.1	287.1	287.1	287.1	287.1	287.1	287.1	287.1	287.1
2	287.1	287.1	287.1	287.1	287.1	287.1	287.1	287.1	287.1	287.1	287.1	287.1	287.1	287.1	287.1	287.1	287.1	287.1	287.1	287.1	

 $\text{Ср. теплоемкость C II контура (Дж/кг/К):} \qquad \text{Ср}_{\text{CII}_{\hat{i}}} = \text{Ср}_{\text{воздух.cp}} \Big(\text{P*}_{\text{CII}_{\hat{i}}}, \text{P*}_{\text{CII}_{\hat{i}}}, \text{T*}_{\text{CII}_{\hat{i}}}, \text{T*}_{\text{CII}_{\hat{i}}}, \text{T*}_{\text{CII}_{\hat{i}}} \Big)$

Теплоем кость С II контура (Дж/кг/К):

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$\operatorname{augment}\left(\operatorname{Cp}_{\operatorname{CII}1},\operatorname{Cp}_{\operatorname{CII}},\operatorname{Cp}_{\operatorname{CII}3}\right)^{\operatorname{T}} =$	1	1004	1004	1004	1004	1004	1004	1004	1004	1004	1005	1005	1005	1005	1005	1005	1005	1005	1006	1006	1006	1006
augment (CpCII1, CpCII, CpCII3) =	2	1004	1004	1004	1004	1004	1004	1004	1004	1004	1005	1005	1005	1005	1005	1005	1005	1005	1006	1006	1006	1006
	3	1004	1004	1004	1004	1004	1004	1004	1004	1004	1005	1005	1005	1005	1005	1005	1005	1005	1006	1006	1006	

Ср. показатель адиабаты С II контура (): $k_{CII_{i}} = k_{ad} (Cp_{CII_{i}}, R_{B})$

Показатель адиабаты С ІІ контура ():

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$augment(k_{CII1}, k_{CII}, k_{CII3})^{T} =$	1	1.401	1.401	1.401	1.401	1.401	1.401	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.399
augment (KCII1, KCII, KCII3) =	2	1.401	1.401	1.401	1.401	1.401	1.401	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.399
	3	1.401	1.401	1.401	1.401	1.401	1.401	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	1.400	

Критическая степень понижения полного давления С ІІ контура:

Степень понижения полного давления С II контура:

Скорость истечения после С ІІ контура (м/с):

$c_{CH2}^{T} =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
c _{CII3} =	1	157.5	166.4	174.7	182.6	190.1	197.2	204.0	210.5	216.8	222.9	228.7	234.3	239.8	245.1	250.2	255.2	260.0	264.7	269.3	273.8	

Статическая температура после С ІІ контура (К):

$T_{CH2}^{T} =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
¹ CII3 =	1	293.7	294.0	294.2	294.5	294.7	294.9	295.1	295.4	295.6	295.8	296.0	296.2	296.4	296.6	296.8	297.0	297.2	297.3	297.5	297.7	

Удельная реактивная тяга II контура, отнесенная к массовому расходу на входе в I конутр ():

$R_{T} =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
к _{удІІ} =	1	944.0	997.2	1047.2	1094.4	1139.3	1182.0	1222.8	1262.0	1299.6	1335.8	1370.8	1404.6	1437.2	1468.9	1499.7	1529.5	1558.6	1586.9	1614.4	1641.3	

Удельные силы тяги, отнесенные к массовому расходу на входе в I контур:

$$augment \left(R_{yAI}, R_{yAII}, R_{yA}\right)^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\ 1 & 620.6 & 618.5 & 616.3 & 614.2 & 612.0 & 609.9 & 607.8 & 605.8 & 603.7 & 601.6 & 599.6 & 597.6 & 595.6 & 593.5 & 591.6 & 589.6 & 587.6 & 585.6 & 583.7 & 581.7 \\ 2 & 944.0 & 997.2 & 1047.2 & 1094.4 & 1139.3 & 1182.0 & 1222.8 & 1262.0 & 1299.6 & 1335.8 & 1370.8 & 1404.6 & 1437.2 & 1468.9 & 1499.7 & 1529.5 & 1558.6 & 1586.9 & 1614.4 & 1641.3 \\ 3 & 1564.6 & 1615.6 & 1663.5 & 1708.6 & 1751.3 & 1791.9 & 1830.7 & 1867.8 & 1903.3 & 1937.5 & 1970.4 & 2002.1 & 2032.8 & 2062.5 & 2091.2 & 2119.1 & 2146.2 & 2172.5 & 2198.1 & ... \end{bmatrix}$$

Массовые расходы (кг/с):

$$augment \left(G_{I}, G_{II}, G_{\Sigma}\right)^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 \\ 1 & 51.11 & 49.41 & 48.17 & 46.91 & 45.76 & 44.71 & 43.76 & 42.89 & 42.09 & 41.39 & 40.54 & 40.03 & 39.29 & 38.71 & 38.31 & 37.66 & 37.32 & 36.89 & 36.46 & 36.05 & 35.65 \\ 2 & 306.67 & 296.45 & 289.04 & 281.44 & 274.54 & 268.28 & 262.58 & 257.34 & 252.51 & 248.34 & 243.22 & 240.18 & 235.74 & 232.24 & 229.87 & 225.98 & 223.95 & 221.32 & 218.74 & 216.28 & 213.93 \\ 3 & 357.78 & 345.86 & 337.22 & 328.34 & 320.29 & 313.00 & 306.34 & 300.23 & 294.60 & 289.73 & 283.75 & 280.21 & 275.03 & 270.95 & 268.18 & 263.64 & 261.27 & 258.21 & 255.20 & 252.32 & ... \\ \end{bmatrix}$$

Массовый расход входа (кг/с): $G_{\rm BXI}$

$$\begin{pmatrix} G_{\text{BXII1}_i} & G_{\text{BXII3}_i} \\ G_{\text{BXI1}_i} & G_{\text{BXI3}_i} \\ G_{\text{BX1}_i} & G_{\text{BX3}_i} \end{pmatrix} = G_{I_i} \begin{pmatrix} g_{\text{BXII1}_i} & g_{\text{BXII3}_i} \\ g_{\text{BXI1}_i} & g_{\text{BXI3}_i} \\ g_{\text{BX1}_i} & g_{\text{BX3}_i} \end{pmatrix}$$

$$\mathsf{augment} \Big(\mathbf{G}_{\mathsf{BXII1}}, \mathbf{G}_{\mathsf{BXI1}}, \mathbf{G}_{\mathsf{BX1}} \Big)^{\mathsf{T}}$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	:
T =	1	306.67	296.45	289.04	281.44	274.54	268.28	262.58	257.34	252.51	248.34	243.22	240.18	235.74	232.24	229.87	225.98	223.95	221.32	218.74	216.28	2
	2	51.11	49.41	48.17	46.91	45.76	44.71	43.76	42.89	42.09	41.39	40.54	40.03	39.29	38.71	38.31	37.66	37.32	36.89	36.46	36.05	
	3	357.78	345.86	337.22	328.34	320.29	313.00	306.34	300.23	294.60	289.73	283.75	280.21	275.03	270.95	268.18	263.64	261.27	258.21	255.20	252.32	

$$\text{augment} \! \left(\mathbf{G}_{\mathbf{BXII3}}, \mathbf{G}_{\mathbf{BXI3}}, \mathbf{G}_{\mathbf{BX3}} \right)^{\! \mathrm{T}}$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	7
` ₌ [1	306.67	296.45	289.04	281.44	274.54	268.28	262.58	257.34	252.51	248.34	243.22	240.18	235.74	232.24	229.87	225.98	223.95	221.32	218.74	216.28	2
	2	51.11	49.41	48.17	46.91	45.76	44.71	43.76	42.89	42.09	41.39	40.54	40.03	39.29	38.71	38.31	37.66	37.32	36.89	36.46	36.05	
	3	357.78	345.86	337.22	328.34	320.29	313.00	306.34	300.23	294.60	289.73	283.75	280.21	275.03	270.95	268.18	263.64	261.27	258.21	255.20	252.32	

$$\text{ Массовый расход КНД (кг/c):} \quad \begin{pmatrix} G_{\text{КНДІІ}_{1}} & G_{\text{КНДІЗ}_{1}} \\ G_{\text{КНДІ}_{1}} & G_{\text{КНДІЗ}_{1}} \\ G_{\text{КНДІ}_{1}} & G_{\text{КНДЗ}_{1}} \end{pmatrix} = G_{\text{I}_{1}} \begin{pmatrix} g_{\text{КНДІІ}_{1}} & g_{\text{КНДІЗ}_{1}} \\ g_{\text{КНДІ}_{1}} & g_{\text{КНДІ}_{3}} \\ g_{\text{КНДІ}_{1}} & g_{\text{КНДЗ}_{1}} \end{pmatrix}$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	2
augment $(G_{1C117111}, G_{1C117111}, G_{1C11711})^{T} = $	1	306.67	296.45	289.04	281.44	274.54	268.28	262.58	257.34	252.51	248.34	243.22	240.18	235.74	232.24	229.87	225.98	223.95	221.32	218.74	21
$augment(G_{KHДII1},G_{KHДI1},G_{KHДI}) = $	2	51.11	49.41	48.17	46.91	45.76	44.71	43.76	42.89	42.09	41.39	40.54	40.03	39.29	38.71	38.31	37.66	37.32	36.89	36.46	3
	3	357.78	345.86	337.22	328.34	320.29	313.00	306.34	300.23	294.60	289.73	283.75	280.21	275.03	270.95	268.18	263.64	261.27	258.21	255.20	25

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
augment $\left(G_{KHДII1},G_{KHДI1},G_{KHДI}\right)^T$ =	1	306.67	296.45	289.04	281.44	274.54	268.28	262.58	257.34	252.51	248.34	243.22	240.18	235.74	232.24	229.87	225.98	223.95	221.32	218.74	21
я(-кндш;-кндш;-кндш	2	51.11	49.41	48.17	46.91	45.76	44.71	43.76	42.89	42.09	41.39	40.54	40.03	39.29	38.71	38.31	37.66	37.32	36.89	36.46	3(
	3	357.78	345.86	337.22	328.34	320.29	313.00	306.34	300.23	294.60	289.73	283.75	280.21	275.03	270.95	268.18	263.64	261.27	258.21	255.20	25
		•	•				<u>.</u>							•			-		•		
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
augment $\left(G_{KHДII3},G_{KHДI3},G_{KHД3}\right)^T$ =	1	306.37	296.16	288.75	281.16	274.26	268.01	262.31	257.08	252.26	248.09	242.97	239.94	235.50	232.01	229.64	225.75	223.72	221.10	218.52	21
окндиз, окндиз, окнда)	2	51.06	49.36	48.13	46.86	45.71	44.67	43.72	42.85	42.04	41.35	40.50	39.99	39.25	38.67	38.27	37.63	37.29	36.85	36.42	3(
	3	357.43	345.52	336.88	328.02	319.97	312.68	306.03	299.93	294.30	289.44	283.47	279.93	274.75	270.68	267.91	263.38	261.01	257.95	254.94	25

$$\text{ Массовый расход КСД (кг/c):} \quad \begin{pmatrix} G_{\text{КСДІІ}_{1}} & G_{\text{КСДІ}_{3}} \\ G_{\text{КСДІ}_{1}} & G_{\text{КСДІ}_{3}} \\ G_{\text{КСДІ}_{1}} & G_{\text{КСД3}_{1}} \end{pmatrix} = G_{\text{I}_{i}} \cdot \begin{pmatrix} g_{\text{КСДІІ}_{1}} & g_{\text{КСДІ3}_{1}} \\ g_{\text{КСДІ}_{1}} & g_{\text{КСДІ3}_{1}} \\ g_{\text{КСД1}_{1}} & g_{\text{КСД3}_{1}} \end{pmatrix}$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
augment (Greens, Greens, Greens) ^T =	1	306.37	296.16	288.75	281.16	274.26	268.01	262.31	257.08	252.26	248.09	242.97	239.94	235.50	232.01	229.64	225.75	223.72	221.10	218.52	216
$augment(G_{KCДII1},G_{KCДI1},G_{KCДI})^{-} =$	2	49.90	48.24	47.03	45.79	44.67	43.65	42.72	41.87	41.09	40.41	39.57	39.08	38.36	37.79	37.40	36.77	36.44	36.01	35.59	35
	3	356.27	344.39	335.79	326.95	318.93	311.67	305.04	298.96	293.35	288.50	282.55	279.02	273.86	269.80	267.04	262.52	260.16	257.11	254.11	251

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
augment $\left(G_{\text{КСДII1}},G_{\text{КСДI1}},G_{\text{КСДI}}\right)^T$ =	1	306.37	296.16	288.75	281.16	274.26	268.01	262.31	257.08	252.26	248.09	242.97	239.94	235.50	232.01	229.64	225.75	223.72	221.10	218.52	216
измин («КСДПТ, «КСДП, «КСДТ)	2	49.90	48.24	47.03	45.79	44.67	43.65	42.72	41.87	41.09	40.41	39.57	39.08	38.36	37.79	37.40	36.77	36.44	36.01	35.59	35
	3	356.27	344.39	335.79	326.95	318.93	311.67	305.04	298.96	293.35	288.50	282.55	279.02	273.86	269.80	267.04	262.52	260.16	257.11	254.11	251
									•	<u> </u>			<u> </u>		-				•		
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
augment $\left(G_{\text{КСДII3}},G_{\text{КСДI3}},G_{\text{КСД3}}\right)^T$ =	1	306.37	296.16	288.75	281.16	274.26	268.01	262.31	257.08	252.26	248.09	242.97	239.94	235.50	232.01	229.64	225.75	223.72	221.10	218.52	216
измин («КСДПЗ», «КСДТЗ», «КСДЗ)	2	49.90	48.24	47.03	45.79	44.67	43.65	42.72	41.87	41.09	40.41	39.57	39.08	38.36	37.79	37.40	36.77	36.44	36.01	35.59	35
	3	356.27	344.39	335.79	326.95	318.93	311.67	305.04	298.96	293.35	288.50	282.55	279.02	273.86	269.80	267.04	262.52	260.16	257.11	254.11	251

$$\text{ Массовый расход КВД (кт/c):} \quad \begin{pmatrix} G_{\text{КВДII}_{1}} & G_{\text{КВДI3}_{1}} \\ G_{\text{КВДI}_{1}} & G_{\text{КВДI3}_{1}} \\ G_{\text{КВДI}_{1}} & G_{\text{КВД3}_{1}} \end{pmatrix} = G_{\text{I}_{1}} \begin{pmatrix} g_{\text{КВДII}_{1}} & g_{\text{КВДI3}_{1}} \\ g_{\text{КВДI}_{1}} & g_{\text{КВДI3}_{1}} \\ g_{\text{КВД1}_{1}} & g_{\text{КВД3}_{1}} \end{pmatrix}$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
augment (Grephin Grephin Grephin) T	1	306.37	296.16	288.75	281.16	274.26	268.01	262.31	257.08	252.26	248.09	242.97	239.94	235.50	232.01	229.64	225.75	223.72	221.10	218.52	216
$augment(G_{KBДII1},G_{KBДI1},G_{KBДI}) =$	2	49.90	48.24	47.03	45.79	44.67	43.65	42.72	41.87	41.09	40.41	39.57	39.08	38.36	37.79	37.40	36.77	36.44	36.01	35.59	35
	3	356.27	344.39	335.79	326.95	318.93	311.67	305.04	298.96	293.35	288.50	282.55	279.02	273.86	269.80	267.04	262.52	260.16	257.11	254.11	251

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
augment (Grephini, Grephini, Grephin) T	1	306.37	296.16	288.75	281.16	274.26	268.01	262.31	257.08	252.26	248.09	242.97	239.94	235.50	232.01	229.64	225.75	223.72	221.10	218.52	216
$augment(G_{KBДII1},G_{KBДI1},G_{KBД1})^{T} =$	2	49.90	48.24	47.03	45.79	44.67	43.65	42.72	41.87	41.09	40.41	39.57	39.08	38.36	37.79	37.40	36.77	36.44	36.01	35.59	35
	3	356.27	344.39	335.79	326.95	318.93	311.67	305.04	298.96	293.35	288.50	282.55	279.02	273.86	269.80	267.04	262.52	260.16	257.11	254.11	251
			•		•						<u> </u>			•							
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
augment $\left(G_{KBДII3},G_{KBДI3},G_{KBД3}\right)^{T}$ =	1	306.37	296.16	288.75	281.16	274.26	268.01	262.31	257.08	252.26	248.09	242.97	239.94	235.50	232.01	229.64	225.75	223.72	221.10	218.52	216
оквдіз, «квдіз, «квдіз)	2	49.75	48.09	46.89	45.65	44.53	43.52	42.59	41.74	40.96	40.28	39.45	38.96	38.24	37.67	37.29	36.66	36.33	35.90	35.48	35
	3	356.11	344.25	335.64	326.81	318.80	311.53	304.91	298.83	293.22	288.38	282.43	278.90	273.74	269.68	266.93	262.41	260.05	257.00	254.01	251

Массовый расход КС (кг/с):
$$\begin{pmatrix} G_{KC1_i} \\ G_{KC3_i} \end{pmatrix} = G_{I_i} \begin{pmatrix} g_{KC1_i} \\ g_{KC3_i} \end{pmatrix}$$

Массовый расход горючего (кг/с): $G_{rop_{\dot{1}}} = G_{I_{\dot{1}}} \cdot g_{rop_{\dot{1}}}$

G_{-}	=	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	$\cdot 10^{-3}$
огор –	1	1357.1	1311.9	1279.1	1245.5	1214.9	1187.3	1162.0	1138.8	1117.5	1099.0	1076.3	1062.9	1043.2	1027.8	1017.3	1000.0	991.0	979.4	968.0	957.1		-

Массовый расход ТВД (кг/с):
$$\begin{pmatrix} G_{TB} \not \Pi_1 \\ G_{TB} \not \Pi_3 \end{pmatrix} = G_{I_i} \begin{pmatrix} g_{TB} \not \Pi_1 \\ g_{TB} \not \Pi_3 \end{pmatrix}$$

$$augment \Big(G_{TBД1},G_{TBД3}\Big)^T = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 \\ 1 & 46.30 & 44.76 & 43.64 & 42.49 & 41.45 & 40.51 & 39.65 & 38.86 & 38.13 & 37.50 & 36.72 & 36.26 & 35.59 & 35.07 & 34.71 & 34.12 & 33.81 & 33.42 & 33.03 & 32.66 & 32.30 \\ 2 & 50.80 & 49.10 & 47.88 & 46.62 & 45.47 & 44.44 & 43.49 & 42.63 & 41.83 & 41.13 & 40.29 & 39.78 & 39.05 & 38.47 & 38.08 & 37.43 & 37.09 & 36.66 & 36.23 & 35.82 & ... \\ \end{bmatrix}$$

Массовый расход ТСД (кг/с):
$$\begin{pmatrix} G_{\text{ТСД1}_i} \\ G_{\text{ТСД3}_i} \end{pmatrix} = G_{I_i} \begin{pmatrix} g_{\text{ТСД1}_i} \\ g_{\text{ТСД3}_i} \end{pmatrix}$$

$$augment \Big(G_{TCД1}, G_{TCД3}\Big)^T = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 \\ & 1 & 50.80 & 49.10 & 47.88 & 46.62 & 45.47 & 44.44 & 43.49 & 42.63 & 41.83 & 41.13 & 40.29 & 39.78 & 39.05 & 38.47 & 38.08 & 37.43 & 37.09 & 36.66 & 36.23 & 35.82 & 35.43 \\ & 2 & 50.80 & 49.10 & 47.88 & 46.62 & 45.47 & 44.44 & 43.49 & 42.63 & 41.83 & 41.13 & 40.29 & 39.78 & 39.05 & 38.47 & 38.08 & 37.43 & 37.09 & 36.66 & 36.23 & 35.82 & ... \\ & 2 & 50.80 & 49.10 & 47.88 & 46.62 & 45.47 & 44.44 & 43.49 & 42.63 & 41.83 & 41.13 & 40.29 & 39.78 & 39.05 & 38.47 & 38.08 & 37.43 & 37.09 & 36.66 & 36.23 & 35.82 & ... \\ & 2 & 50.80 & 49.10 & 47.88 & 46.62 & 45.47 & 44.44 & 43.49 & 42.63 & 41.83 & 41.13 & 40.29 & 39.78 & 39.05 & 38.47 & 38.08 & 37.43 & 37.09 & 36.66 & 36.23 & 35.82 & ... \\ & 2 & 50.80 & 49.10 & 47.88 & 46.62 & 45.47 & 44.44 & 43.49 & 42.63 & 41.83 & 41.13 & 40.29 & 39.78 & 39.05 & 38.47 & 38.08 & 37.43 & 37.09 & 36.66 & 36.23 & 35.82 & ... \\ & 2 & 50.80 & 49.10 & 47.88 & 46.62 & 45.47 & 44.44 & 43.49 & 42.63 & 41.83 & 41.13 & 40.29 & 39.78 & 39.05 & 38.47 & 38.08 & 37.43 & 37.09 & 36.66 & 36.23 & 35.82 & ... \\ & 3 & 5.82 & 5$$

Массовый расход ТНД (кг/с):
$$\begin{pmatrix} G_{THД1}_i \\ G_{THД3}_i \end{pmatrix} = G_{I_i} \begin{pmatrix} g_{THД1} \\ g_{THД3} \end{pmatrix}$$

, T		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$augment(G_{THД1},G_{THД3})^{T} =$	1	50.80	49.10	47.88	46.62	45.47	44.44	43.49	42.63	41.83	41.13	40.29	39.78	39.05	38.47	38.08	37.43	37.09	36.66	36.23	35.82	35.43
	2	51.91	50.18	48.92	47.64	46.47	45.41	44.44	43.56	42.74	42.03	41.17	40.65	39.90	39.31	38.91	38.25	37.90	37.46	37.02	36.61	

Массовый расход СТ (кг/с):
$$\begin{pmatrix} G_{CT1_i} \\ G_{CT3_i} \end{pmatrix} = G_{I_i} \begin{pmatrix} g_{CT1_i} \\ g_{CT3_i} \end{pmatrix}$$

(T		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$augment(G_{CT1}, G_{CT3}) =$	1	51.91	50.18	48.92	47.64	46.47	45.41	44.44	43.56	42.74	42.03	41.17	40.65	39.90	39.31	38.91	38.25	37.90	37.46	37.02	36.61	36.21
	2	51.91	50.18	48.92	47.64	46.47	45.41	44.44	43.56	42.74	42.03	41.17	40.65	39.90	39.31	38.91	38.25	37.90	37.46	37.02	36.61	

Массовый расход СМ (кг/с):
$$\begin{pmatrix} G_{CMI1_i} \\ G_{CMII1_i} \\ G_{CM3_i} \end{pmatrix} = G_{I_i} \begin{pmatrix} g_{CMI1_i} \\ g_{CMII1_i} \\ g_{CM3_i} \end{pmatrix}$$

$$augment \left(G_{CMII}, G_{CMIII}, G_{CMIIII}, G_{CMIII}, G_{CMIIII}, G_{CMIIIII}, G_{CMIIII}, G_{CMIII$$

Массовый расход С I контура (кг/с): $\begin{pmatrix} G_{\text{CI1}_i} \\ G_{\text{CI3}_i} \end{pmatrix} = G_{\text{I}_i} \begin{pmatrix} g_{\text{CI1}_i} \\ g_{\text{CI3}_i} \end{pmatrix}$

 $augment(G_{CI1}, G_{CI3})^{T} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$ 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 50.18 48.92 47.64 42.74 42.03 37.02 36.61 46.47 45.41 44.44 43.56 41.17 40.65 39.90 38.91 38.25 37.90 37.46 39.31 36.21 50.18 47.64 46.47 42.74 45.41 44.44 43.56 42.03 41.17 40.65 39.90 39.31 38.91 38.25 37.90 37.46 37.02 36.61

Массовый расход С II контура (кг/с): $\begin{pmatrix} G_{\text{CII1}_i} \\ G_{\text{CII3}_i} \end{pmatrix} = G_{\text{I}_i} \begin{pmatrix} g_{\text{CII1}_i} \\ g_{\text{CII3}_i} \end{pmatrix}$

 $augment(G_{CII1}, G_{CII3})^{T} = \boxed{\frac{1}{2}}$ 5 11 12 13 17 19 20 21 6 8 9 10 14 15 16 18 306.37 296.16 288.75 281.16 274.26 262.31 257.08 252.26 225.75 223.72 221.10 218.52 268.01 248.09 242.97 239.94 235.50 232.01 229.64 216.06 213.71 296.16 288.75 257.08 248.09 242.97 239.94 223.72 221.10 218.52 281.16 274.26 268.01 262.31 252.26 235.50 232.01 229.64 225.75 216.06

Массовый расход утечек на входе ІІ контура (кг/с):

$$\begin{pmatrix} G_{yTBxII_{i}} \\ G_{yTBxI_{i}} \end{pmatrix} = \begin{pmatrix} G_{II_{i}} \cdot g_{yTBxII} \\ G_{I_{i}} \cdot g_{yTBxI} \end{pmatrix}$$

Массовый расход утечек на входе І контура (кг/с):

$$\operatorname{augment} \left(G_{\text{yTBxII}}, G_{\text{yTBxI}} \right)^{\text{T}} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\ 1 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 2 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ \end{bmatrix}$$

Массовый расход утечек КНД II контура (кг/с):

$$\begin{pmatrix} G_{yTKHДII_{i}} \\ G_{yTKHДI_{i}} \end{pmatrix} = \begin{pmatrix} G_{II_{i}} \cdot g_{yTKHДII} \\ G_{I_{i}} \cdot g_{yTKHДII} \end{pmatrix}$$

Массовый расход утечек КНД I контура (кг/с):

$$augment \left(G_{\text{УТКНДІІ}}, G_{\text{УТКНДІІ}} \right)^{\text{T}} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 \\ 1 & 306.7 & 296.5 & 289.0 & 281.4 & 274.5 & 268.3 & 262.6 & 257.3 & 252.5 & 248.3 & 243.2 & 240.2 & 235.7 & 232.2 & 229.9 & 226.0 & 223.9 & 221.3 & 218.7 & 216.3 & 213.9 \\ 2 & 51.1 & 49.4 & 48.2 & 46.9 & 45.8 & 44.7 & 43.8 & 42.9 & 42.1 & 41.4 & 40.5 & 40.0 & 39.3 & 38.7 & 38.3 & 37.7 & 37.3 & 36.9 & 36.5 & 36.0 & ... \end{bmatrix} \cdot 10^{-3}$$

Массовый расход утечек КСД II контура (кг/c):

$$\begin{pmatrix} G_{\text{УТКСДІІ}_{i}} \\ G_{\text{УТКСДІ}_{i}} \end{pmatrix} = \begin{pmatrix} G_{\text{II}_{i}} \cdot g_{\text{УТКСДІI}} \\ G_{\text{I}_{i}} \cdot g_{\text{УТКСДІ}} \end{pmatrix}$$

Массовый расход утечек КСД І контура (кг/с):

$$augment \left(G_{YTKCДII},G_{YTKCДII}\right)^T = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 \\ \hline 1 & 0.0 & 0.$$

Массовый расход утечек КВД II контура (кг/с):

Массовый расход утечек КВД І контура (кг/с):

$$\begin{pmatrix} G_{yTKBДII_{i}} \\ G_{yTKBДI_{i}} \end{pmatrix} = \begin{pmatrix} G_{II_{i}} \cdot g_{yTKBДII} \\ G_{I_{i}} \cdot g_{yTKBДI} \end{pmatrix}$$

augment $\left(G_{\text{УТКВДII}},G_{\text{УТКВДI}}\right)^{T}$

νT		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	– 3
[]) =	1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	.10
•	2	153.3	148.2	144.5	140.7	137.3	134.1	131.3	128.7	126.3	124.2	121.6	120.1	117.9	116.1	114.9	113.0	112.0	110.7	109.4	108.1		

18

0.0

0.0

19

0.0

0.0

20

0.0

0.0

0.0

Массовый расход утечек КС (кг/с):

$$G_{yTKC_i} = G_{I_i} \cdot g_{yTKCI}$$

Массовый расход	угечек ТІ	ВД (кг/с):	G_{yTTI}	_{ВДі} = G	I _i ·g _{yt} TB	Д																		
$G_{yTTBД}^{T} = $	1	2	3	4	5	6	7	8	9)	10	11	12		13	14	15	16	17	18	19	20	21	$\cdot 10^{-3}$
-уттвд	153.34	148.23	144.52	140.72	137.27	134.14	131.29	128.6	57 12	26.26	124.17	121.61	120.	09	117.87	116.12	114.94	112.99	111.97	110.66	109.37	108.14		- 0
Массовый расход	утечек ТО	СД (кг/с):	G _{yT} T($CД_i = G_i$	I _i ·g _{yT} TC	Д																		
$G_{yTTCД}^T = $	1	2 3	4	5	6	7 8	9	10	11	12	13	14	15	16	17	18	19 20	21	$\left] \cdot 10^{-3} \right]$					
угтед 1	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.	00						
Массовый расход	утечек ТІ	НД (кг/с):	$G_{v_{T}T}$	_{нп} = G	ı·g _{ve} tu	п																		

массовыи расход	угечек г	нд (кі/с): G _y	тТНД _і	$= G_{I_i} \cdot g_{y}$	/тТНД																
$G_{YTTHJ}^{T} =$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	$\cdot 10^{-3}$
угтид 1	51.11	49.41	48.17	46.91	45.76	44.71	43.76	42.89	42.09	41.39	40.54	40.03	39.29	38.71	38.31	37.66	37.32	36.89	36.46	36.05		

Массовый расход утечек СТ (кг/с): $G_{yTCT_i} = G_{I_i} \cdot g_{yTCT}$ ·10⁻³ 11 12 13 14 15 17 18 16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Массовый расход утечек СМ (кг/с): $G_{yTCM_i} = G_{I_i} \cdot g_{yTCM}$ $\cdot 10^{-3}$ 10 11 12 13 14 15 16 17 18 19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Массовый расход утечек С I контура (кг/с): $G_{yTCI_{\dot{i}}} = G_{I_{\dot{i}}} \cdot g_{yTCI}$ 4 0.00 $\cdot 10^{-3}$ 3 0.00 12 17 18 20 6 9 10 11 13 14 15 16 19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Массовый расход утечек С II контура (кг/с): $G_{\text{YTCII}_{i}} = G_{\text{II}_{i}} \cdot g_{\text{YTCII}}$ $\cdot 10^{-3}$
 2
 3
 4
 5

 0.00
 0.00
 0.00
 0.00
 13 15 17 10 11 12 14 16 18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Массовый расход охл ТВД (кг/с): $G_{OXЛТВД_i} = G_{I_i} \cdot g_{OXЛТВД_i}$

$G_{OX\Pi}TB\Pi^{T} =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	$\cdot 10^{-3}$
охлавд	1	4645.8	4490.9	4378.7	4263.5	4159	4064.2	3977.7	3898.4	3825.3	3762.1	3684.5	3638.5	3571.2	3518.2	3482.3	3423.3	3392.5	3352.8	3313.7	3276.4		

Массовый расход охл ТСД (кг/с): $G_{\text{охлТСД}_{\dot{1}}} = G_{I_{\dot{1}}} \cdot g_{\text{охлТСД}_{\dot{1}}}$

$G_{\text{aveTCH}} = \begin{bmatrix} T \\ T \end{bmatrix}$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	$\cdot 10^{-3}$
охл ТСД	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		

Массовый расход охл ТНД (кг/с): $G_{\text{охлТНД}_{\dot{i}}} = G_{I_{\dot{i}}} \cdot g_{\text{охлТНД}_{\dot{i}}}$

$G_{overTIII} =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	1.10^{-3}
G _{охл} тнд =	1	1161.4	1122.7	1094.7	1065.9	1039.7	1016	994.4	974.6	956.3	940.5	921.1	909.6	892.8	879.6	870.6	855.8	848.1	838.2	828.4	819.1		1

Мощность КНД (Вт): $N_{KHД_i} = G_{KHД1_i} \cdot L_{KHД_i}$

$N_{ICILIT}^{T} =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	$\cdot 10^6$
№КНД =	1	12.225	12.315	12.487	12.620	12.756	12.896	13.039	13.183	13.327	13.489	13.581	13.772	13.869	14.006	14.199	14.286	14.478	14.623	14.760	14.895		-

Мощность КСД (Вт): $N_{KCД_i} = G_{KCД1_i} \cdot L_{KCД_i}$

$N_{\text{LCH}}^{\text{T}} =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	1.10^{6}
№КСД =	1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		

Мощность КВД (Вт): $N_{KBД_i} = G_{KBД1_i} \cdot L_{KBД_i}$

$N_{LD}\pi = $		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	1.106
№КВД =	1	20.886	20.190	19.685	19.167	18.697	18.271	17.883	17.526	17.197	16.913	16.564	16.357	16.055	15.817	15.655	15.390	15.252	15.073	14.897	14.730		

Мощность ТВД (Вт): $N_{TBД_i} = \left(G_{TBД1_i} + \chi \cdot G_{охлTBД_i}\right) \cdot L_{TBД_i}$

N _{ТР}		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	$\cdot 10^{6}$
NTBД =	1	21.274	20.571	20.061	19.538	19.063	18.633	18.240	17.880	17.548	17.261	16.909	16.699	16.395	16.154	15.990	15.723	15.583	15.402	15.225	15.055		

Мощность ТСД (Вт): $N_{TCД_i} = \left(G_{TCД1_i} + \chi \cdot G_{0XЛTCД_i}\right) \cdot L_{TCД_i}$

$N_{TCT} =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	$\cdot 10^6$
ТСД	1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		- I

Мощность ТНД (Вт): $N_{THД_i} = \left(G_{THД1_i} + \chi \cdot G_{охлТНД_i}\right) \cdot L_{THД_i}$

т			-	_		_	-	_	_	_													1 .
NTIII =		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	1.10^{6}
NTHД =	1	12.348	12.440	12.613	12.748	12.885	13.026	13.170	13.316	13.462	13.625	13.718	13.912	14.009	14.148	14.343	14.430	14.625	14.771	14.909	15.046		

Мощность CT(BT): $N_{CT_i} = G_{CT1_i} \cdot L_{CT_i}$

$N_{CT}^{T} =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	10^{6}
	1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		

$$\text{Mощность цикла (BT):} \qquad N_{\boldsymbol{e}_{i}} = \left[\left(N_{TB\boldsymbol{\mathcal{I}}_{i}} + N_{TC\boldsymbol{\mathcal{I}}_{i}} + N_{TH}\boldsymbol{\mathcal{I}}_{i} + N_{CT_{i}} \right) \cdot \eta_{\text{Mex}} - \left(\frac{N_{KH}\boldsymbol{\mathcal{I}}_{i}}{\eta_{PBH}\boldsymbol{\mathcal{I}}} + \frac{N_{KC}\boldsymbol{\mathcal{I}}_{i}}{\eta_{PBB}\boldsymbol{\mathcal{I}}} \right) \right] + \left[\frac{\left[G_{CI3} \cdot \left(c_{CI3full_{i}} \right)^{2} - G_{I_{i}} \cdot \upsilon^{2} \right]}{2} + \frac{\left[G_{CII3} \cdot \left(c_{CII3full_{i}} \right)^{2} - G_{II_{i}} \cdot \upsilon^{2} \right]}{2} \right]$$

$N_2^T =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	$\cdot 10^{6}$
- 'e	1	13.67	13.58	13.59	13.57	13.57	13.58	13.59	13.62	13.66	13.71	13.70	13.80	13.81	13.86	13.96	13.97	14.08	14.15	14.22	14.28		1

▲ Мощность

Удельный расход горючего (кг/Вт/с): $C_{e_{\hat{i}}} = \frac{G_{\text{гор}}}{N_{e_{\hat{i}}}}$

C^{T}	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	10^{-3}
$c_{e} =$	1 0.3	75 0.3478	0.3388	0.3303	0.3224	0.3148	0.3077	0.3010	0.2946	0.2885	0.2827	0.2773	0.2720	0.2670	0.2623	0.2577	0.2533	0.2492	0.2451	0.2413		3600

Удельный расход горючего (кг/H/c): $C_{R_i} = \begin{bmatrix} G_{rop_i} \\ R_{\upsilon} \end{bmatrix}$ if $R_{\upsilon} \neq 0$ 0 otherwise

$C_{\mathbf{p}}^{T} =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	10^{-3}
∘R −	1	61.07	59.04	57.56	56.05	54.67	53.43	52.29	51.25	50.29	49.46	48.43	47.83	46.95	46.25	45.78	45.00	44.60	44.07	43.56	43.07		3600

_																							1
$C_{\mathbf{p}}^{T} =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
°R	1	0.6107	0.5904	0.5756	0.5605	0.5467	0.5343	0.5229	0.5125	0.5029	0.4946	0.4843	0.4783	0.4695	0.4625	0.4578	0.4500	0.4460	0.4407	0.4356	0.4307		3600

Действительная работа цикла (Дж/кг):
$$\text{Le}_{i} = \frac{g_{\text{CI3}} \cdot \left(c_{\text{CI3}} \right)^{2} + g_{\text{CII3}} \cdot \left(c_{\text{CII3}} \right)^{2} - (1 + \text{m2}) \cdot \left(\upsilon \right)^{2}}{2}$$

$Le^{T} =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	1.10^3
	1	264.0	271.3	278.5	285.6	292.7	299.7	306.6	313.5	320.3	327.1	333.8	340.4	346.9	353.4	359.9	366.3	372.6	378.9	385.1	391.3		

Показатель адиабаты сжатия (): $k_{KI\Sigma_i} = k_{ad} \left(Cp_{BO3ДУХ.cp} \left(P_H^*, P_{KBДI3_i}^*, T_H^*, T_{KBДI3_i}^* \right), R_B \right)$ $k_{KI\Sigma}^T = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline 1 & 1.379$

	$^{1-k}$ KI Σ_i
(Р*квліз.)	$k_{KI\Sigma_i}$
$\eta^*_{t} = 1 - \left(\frac{P^* K B Д I 3_i}{P^*_{t}} \right)$	
P_{H}^{*}	

Термический КПД цикла ():

8 10 11 12 13 14 15 16 17 18 19 21 60.05 60.05 60.05 60.05 60.05 60.05 60.05 60.05 60.05 60.05 60.05 60.05 60.05 60.05 60.05 60.05 60.05 60.05 60.05

КПД цикла ():
$$\eta^*_{e_i} = \frac{1}{C_{e_i} \cdot Q_{Hp}(\text{Fuel}) \cdot \eta_{\Gamma}}$$

n^*	=	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	.%
ı e	1	23.57	24.23	24.87	25.51	26.14	26.77	27.39	28.00	28.61	29.21	29.81	30.39	30.98	31.56	32.13	32.70	33.26	33.82	34.38	34.93		

Полетный КПД():
$$\eta^*_{R_i} = \frac{R_{\upsilon} \cdot \upsilon}{N_{e_i}}$$

$n^*\mathbf{p}^T = 0$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	.%
'' K	1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		

Общий КПД (): $\eta^*_{0_i} = \eta^*_{e_i} \cdot \eta^*_{R_i}$

$n*_{0}^{T} =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	.%
1 0	1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		

Удельный расход горючего и КПД

$$F_{BX_{\hat{I}}} = \begin{vmatrix} G_{\sum_{\hat{I}}} \\ \rho^*_{BX} \cdot \upsilon \end{vmatrix} \text{ if } \upsilon \neq 0$$
NaN otherwise

$$D_{BX_{\hat{i}}} = \sqrt{\frac{4 \cdot F_{BX_{\hat{i}}}}{\pi}}$$

$D_{nu}^{T} =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$D_{\rm BX}$ –	1	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	

$$Cx1\Big(m2\Big) = \frac{2.0005}{10^2} \cdot m2^0 - \frac{0.1879}{10^3} \cdot m2^1 + \frac{2.8571}{10^5} \cdot m2^2 - \frac{3.4667}{10^7} \cdot m2^3 \\ Cx2\Big(m2\Big) = \frac{3.5606}{10^2} \cdot m2^0 - \frac{1.2744}{10^3} \cdot m2^1 + \frac{3.3429}{10^5} \cdot m2^2 - \frac{3.6667}{10^7} \cdot m2^3 \\ Cx2\Big(m2\Big) = \frac{3.5606}{10^2} \cdot m2^0 - \frac{1.2744}{10^3} \cdot m2^1 + \frac{3.3429}{10^5} \cdot m2^2 - \frac{3.6667}{10^7} \cdot m2^3 \\ Cx2\Big(m2\Big) = \frac{3.5606}{10^2} \cdot m2^0 - \frac{1.2744}{10^3} \cdot m2^1 + \frac{3.3429}{10^5} \cdot m2^2 - \frac{3.6667}{10^7} \cdot m2^3 \\ Cx2\Big(m2\Big) = \frac{3.5606}{10^2} \cdot m2^0 - \frac{1.2744}{10^3} \cdot m2^1 + \frac{3.3429}{10^5} \cdot m2^2 - \frac{3.6667}{10^7} \cdot m2^3 \\ Cx2\Big(m2\Big) = \frac{3.5606}{10^2} \cdot m2^0 - \frac{1.2744}{10^3} \cdot m2^1 + \frac{3.3429}{10^5} \cdot m2^2 - \frac{3.6667}{10^7} \cdot m2^3 \\ Cx2\Big(m2\Big) = \frac{3.5606}{10^2} \cdot m2^0 - \frac{3.4667}{10^3} \cdot m2^1 + \frac{3.3429}{10^5} \cdot m2^2 - \frac{3.6667}{10^7} \cdot m2^3 \\ Cx2\Big(m2\Big) = \frac{3.5606}{10^2} \cdot m2^0 - \frac{3.4667}{10^3} \cdot m2^1 + \frac{3.3429}{10^5} \cdot m2^2 - \frac{3.6667}{10^7} \cdot m2^3 \\ Cx2\Big(m2\Big) = \frac{3.5606}{10^2} \cdot m2^0 - \frac{3.4667}{10^3} \cdot m2^1 + \frac{3.3429}{10^5} \cdot m2^2 - \frac{3.6667}{10^7} \cdot m2^3 + \frac{3.6667}{10^7} \cdot m2^2 + \frac{3.6667}{10^7} \cdot m2^2 + \frac{3.6667}{10^7} \cdot m2^2 + \frac{3.6667}{1$$

Cx(m2) = Cx1(m2) + Cx2(m2)

$$Cx = Cx(m2) = 0.04892$$

1 2 3 4 5 6 7 8 9 10 11 "H.υ" "Μ.υ" "R.υ" "Т.Л.доп" "Т.Т.доп" "m2" "Cx" "Fuel' "R.удII" "К.удІ" "R.удΣ" "_" 2 "_" "_" "км" "кН" "К" "м/с" "м/с" "м/с" 3 0.000 0.000 80.000 1373.000 1273,000 6.000 0.049 943.980 620,622 1564,602 "Керосин' 4 0.000 0.000 80.000 1373.000 1273.000 6.000 0.049 997.185 618.451 1615.636 "Керосин 5 0.000 0.000 80.000 1373.000 1273.000 6.000 0.049 1047.185 616.305 "Керосин 1663.490 6 0.000 0.000 80.000 1373.000 1273.000 6.000 0.049 "Керосин' 1094.430 614.169 1708.599 7 0.000 0.000 80,000 1373.000 1273.000 6.000 0.049 1139.275 1751.322 612.048 "Керосин' 8 0.000 0.000 80.000 1373.000 1273.000 6.000 0.049 1182.002 609.941 1791.943 "Керосин' 9 0.000 0.000 80.000 1373.000 1273.000 6.000 0.049 1222.845 607.848 1830.692 "Керосин 10 0.000 0.000 80.000 1373.000 1273.000 6.000 0.049 "Керосин 1261.994 605.768 1867.762 11 0.000 0.000 80.000 1373.000 1273.000 6.000 0.049 "Керосин' 1299.611 603.701 1903.312 12 0.000 0.000 80.000 1373.000 1273,000 6.000 0.049 "Керосин 1335.833 601.650 1937,483 13 0.000 0.000 80.000 1373.000 1273.000 6.000 0.049 1370.779 599.600 1970.379 "Керосин' 14 0.000 0.000 80.000 1373.000 1273.000 6.000 0.049 "Керосин' 1404.550 597.577 2002.127 15 0.000 0.000 80.000 1373.000 1273,000 6.000 0.049 1437.236 595.551 2032,787 "Керосин' 16 0.000 0.000 80.000 1373.000 1273,000 6.000 0.049 1468,916 593.542 2062,458 "Керосин" 17 0.000 0.000 80.000 1373.000 1273.000 6.000 0.049 1499.658 591.552 2091.211 "Керосин 18 0.000 0.000 80.000 1373.000 1273.000 6.000 0.049 "Керосин' 1529.526 589.557 2119.083 19 0.000 0.000 80.000 1373.000 1273.000 6.000 0.049 1558.574 587.588 2146.163 "Керосин' 20 0.000 0.000 80.000 1373.000 1273.000 6.000 0.049 585.622 1586.853 2172.476 "Керосин' 21 0.000 0.000 80.000 1373.000 1273,000 6.000 0.049 1614,408 583.665 2198.073 "Керосин' 22 0.000 0.000 80.000 1373.000 1273.000 6.000 0.049 "Керосин 1641.280 581.716 2222.996 23 0.000 0.000 80.000 1373.000 1273.000 6.000 0.049 1667.506 579.776 2247.282 "Керосин 24 0.049 0.000 0.000 80.000 1373.000 6.000 1693.120 577.845 2270.966 1273.000 "Керосин 25 0.000 0.000 80.000 1373.000 1273.000 6.000 0.049 575.922 2294.077 1718.154 "Керосин' 26 0.000 0.000 80.000 1373.000 1273.000 6.000 0.049 1742.637 574.007 2316.644 "Керосин' 27 0.000 0.000 80.000 1373.000 1273.000 6.000 0.049 1766.594 572.101 2338.695 "Керосин' 28 0.000 0.000 80.000 1373.000 1273.000 6.000 0.049 2360.252 "Керосин 1790.051 570.201 29 0.000 0.000 80.000 1373.000 1273.000 6.000 0.049 1813.029 563.770 2376.800 "Керосин 30 0.000 0.000 80.000 1373.000 1273.000 6.000 0.049 "Керосин 1835.551 547.591 2383.142 31 0.000 0.000 80.000 1373.000 1273.000 6.000 0.049 1857.636 531.026 2388.663 "Керосин 32 0.000 0.000 80.000 1373.000 1273.000 6.000 0.049 1879.303 514.040 2393.343 "Керосин' 33 0.000 0.000 80.000 1373.000 1273,000 6.000 0.049 "Керосин' 1900.567 496,589 2397.156 34 0.000 80.000 0.049 0.000 1373.000 1273.000 6.000 "Керосин 1921.446 478.620 2400.065 35 0.000 0.000 80.000 1273.000 6.000 0.049 460.069 2402.023 1373.000 "Керосин 1941.954 36 0.000 0.000 80.000 1373.000 1273.000 6.000 0.049 1962.106 440.862 2402.967 "Керосин 37 0.000 0.000 1373.000 1273.000 6.000 2402.819 80.000 0.049 "Керосин' 1981.914 420.905 38 0.000 0.000 80.000 1373.000 1273.000 6.000 2001.392 400.084 0.049 "Керосин' 2401.476 39 0.000 0.000 80.000 1373.000 1273.000 6.000 0.049 2020.551 378.253 2398.804 "Керосин' 40 0.000 0.000 80.000 1373.000 1273.000 6.000 0.049 2039.402 355.225 2394.627 "Керосин 41 0.000 0.000 80.000 1373.000 1273.000 6.000 0.049 2057.836 330.746 2388.583 "Керосин 42 0.000 0.000 6.000 80.000 1373.000 1273.000 0.049 "Керосин 2061.178 304.632 2365.810 43 0.000 0.000 80.000 1373.000 1273.000 6.000 0.049 "Керосин' 2064.489 276.217

 Π ОЧТА $^{T} =$

Выбранная точка: i = 21 = 21

Fuel = "Керосин"

m2 = 6.0

Cx = 0.048915

$$\begin{pmatrix} \pi^*_{\text{KII}\Sigma_i} \\ \pi^*_{\text{KI}\Sigma_i} \end{pmatrix} = \begin{pmatrix} 1.60 \\ 28.80 \end{pmatrix}$$

 $\pi^*_{T\Sigma_i} = 12.71$

 $N_{e_i} = 14.346 \cdot 10^6$

$$\begin{pmatrix} G_{\Sigma_i} \\ G_{I_i} \\ G_{II_i} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 & 249.58 \\ 2 & 35.65 \\ 3 & 213.93 \end{pmatrix}$$

$$g_{rop_{\dot{i}}} = 2.655 \cdot \%$$

$$G_{\text{rop}_{\dot{i}}} = 946.7 \cdot 10^{-3}$$

$$\begin{pmatrix} C_{e_i} \\ C_{R_i} \end{pmatrix} \cdot 10^3 \cdot 3600 = \begin{pmatrix} 0.2376 \\ 42.6019 \end{pmatrix}$$

(G _{охлТВД}				
			1	
G _{охл} тсд _і	=	1	3240.8	$\cdot 10^{-3}$
1		2	0.0	
$\left(\left. \mathrm{G}_{ox\piTHA_{i}} \right) \right.$		3	810.2	
('1)				

$\left({^{\mathrm{Cp}}_{\mathrm{KHДII1}}}_{\mathrm{i}} {^{\mathrm{Cp}}_{\mathrm{KHДII3}}}_{\mathrm{i}} \right)$					
Ср _{КНДІІ} Ср _{КНДІЗ}					
$C_{p}_{KCДII1_{i}}$ $C_{p}_{KCДII3_{i}}$					
СрКСДІ1, СрКСДІ3,			1	2	
і кедіі. і кедіз.		1	1002.6	1005.9	
$C_{p_{KBДII1_{i}}}$ $C_{p_{KBДII3_{i}}}$		2	1002.6	1016.2	
		3	1005.9	1005.9	
Ср _{КВДІ1} Ср _{КВДІ3}		4	1016.2	1016.2	
		5	1005.9	1005.9	
Cp_{KC1_i} Cp_{KC3_i}	=	6	1016.2	1099.3	
•		7	1099.3	1308.9	
$Cp_{TBД1_{i}}$ $Cp_{TBД3_{i}}$		8	1309.1	1257.9	
		9	1258.1	1258.1	
$C_{p_{\text{ТСД1}_i}}$ $C_{p_{\text{ТСД3}_i}}$		10	1258.1	1192.2	
		11	1192.2	1192.2	
$C_{p_{THД1}_{i}}$ $C_{p_{THД3}_{i}}$		12	1005.9	1005.9	
Cn Cn		13	1192.2	1192.2	
$C_{p_{\text{CT1}_i}}$ $C_{p_{\text{CT3}_i}}$					
Cp _{CII1} Cp _{CII3}					
$\begin{bmatrix} Cp_{\mathrm{CI1}}_{\mathrm{i}} & Cp_{\mathrm{CI3}}_{\mathrm{i}} \end{bmatrix}$					

$\left(P^*$ КНДШ $_i^{}$ P^* КНДШ $_i^{}$					
Р* _{КНДІ1} , Р* _{КНДІ3}					
Р* _{КСДІІ1} Р* _{КСДІІ3}					
Р*ксдіі _і Р*ксдіі _і			1	2	
і кедіі кедіз		1	99.8	159.7	
Р* _{КВДІІ1} Р* _{КВДІІ3}		2	99.8	319.4	
		3	156.5	156.5	
Р*квдіі _; Р*квдіі _;		4	316.2	316.2	
		5	156.5	156.5	
P*KC1 _i P*KC3 _i	=	6	316.2	2845.6	$\cdot 10^3$
		7	2845.6	2731.8	
$P^*_{TBД1_i}$ $P^*_{TBД3_i}$		8	2731.8	936.9	
		9	936.9	936.9	
P^* ТСД 1_i P^* ТСД 3_i		10	927.5	225.1	
		11	225.1	225.1	
Р* _{ТНД1} Р* _{ТНД3}		12	156.5	101.3	
		13	225.1	122.0	
P*CT1 _i P*CT3 _i					
Р*СШ _і Р*СШ3 _і					
P*CI1 _i P*CI3 _i					

 $c_{CI3_{i}} = 570.897$

 $c_{\text{CII3}_{\dot{1}}} = 278.196$

 $T_{CI3_{i}} = 870.529$

 $T_{CII3_{i}} = 297.884$

 $\rho^*_{\text{CI3}} = \frac{P^*_{\text{CI3}_i}}{R_{\text{ra3}}(\alpha_{\text{CI3}_i}, \text{Fuel}) \cdot T^*_{\text{CI3}_i}} = 0.420$

 $\rho^*_{\text{CII3}} = \frac{P^*_{\text{CII3}_i}}{R_{\text{B}} \cdot T^*_{\text{CII3}_i}} = 1.049$

 $a_{3BCI3} = \sqrt{k_{CI3} \cdot R_{\Gamma a3} (\alpha_{CI3}, Fuel) \cdot T_{CI3}} = 575.6$

 $a_{3BCII3} = \sqrt{k_{CII3} \cdot R_B \cdot T_{CII3}}_i = 345.984$

$$a*c_{CI3} = \sqrt{\frac{2 \cdot k_{CI3}}{k_{CI3}} \cdot R_{\Gamma a3} \left(\alpha_{CI3}, \text{Fuel}\right) \cdot T*_{CI3}} = 574.9$$

$$a*c_{CII3} = \sqrt{\frac{2 \cdot k_{CII3_i}}{k_{CII3_i} + 1} \cdot R_B \cdot T*_{CII3_i}} = 335.6$$

 $\lambda c_{CI3} = \frac{{}^{c}CI3}{{}^{i}} = 0.993$

$$\lambda c_{\text{CII3}} = \frac{c_{\text{CII3}_{\dot{1}}}}{a^* c_{\text{CII3}}} = 0.829$$

$$\rho_{\text{CI3}} = \rho^*_{\text{CI3}} \cdot \Gamma \Box \Phi \left(\rho^*, k_{\text{CI3}}, \lambda c_{\text{CI3}} \right) = 0.176$$

$$\rho_{\text{CII3}} = \rho^*_{\text{CII3}} \cdot \Gamma \Box \Phi \left(\rho^*, k_{\text{CII3}}, \lambda \right) = 0.392$$

$$F_{\text{CI3}} = \frac{G_{\text{CI3}_{i}} \cdot \sqrt{R_{\text{ra3}} \left(\alpha_{\text{CI3}_{i}}, \text{Fuel}\right) \cdot \text{T*}_{\text{CI3}_{i}}}}{m_{\text{q}} \left(k_{\text{CI3}_{i}}\right) \cdot P^{*}_{\text{CI3}_{i}} \cdot \Gamma \square \Phi \left(\text{"G"}, \lambda c_{\text{CI3}}, k_{\text{CI3}_{i}}\right)} = 0.238$$

$$F_{\text{CII3}} = \frac{G_{\text{CII3}_{i}} \cdot \sqrt{R_{\text{B}} \cdot \text{T*}_{\text{CII3}_{i}}}}{m_{\text{q}} \left(k_{\text{CII3}_{i}} \right) \cdot P^{*}_{\text{CII3}_{i}} \cdot \Gamma \cancel{\square} \Phi \left(\text{"G"}, \lambda c_{\text{CII3}}, k_{\text{CII3}_{i}} \right)} = 0.992$$

$$D_{CI3} = \sqrt{\frac{4 \cdot F_{CI3}}{\pi}} = 0.551$$

$$D_{CII3} = \sqrt{\frac{4 \cdot (F_{CI3} + F_{CII3})}{\pi}} = 1.252$$

$$\begin{pmatrix} \eta^*_{\text{КНДII}} \\ \eta^*_{\text{КНДI}} \end{pmatrix} = \begin{pmatrix} 86.00 \\ 87.00 \end{pmatrix} \cdot \%$$

$$G_{\text{КНДI1}_{i}} + G_{\text{КНДII1}_{i}} = 249.581$$