本试卷适用范围 自动化、电子信 息科学与技术、 农业电气化与自 动化 51

南京农业大学试题纸

2006-2007 第1学年第1学期 课程类型:必修 卷类: A

课程 ___电路理论______ 学号 班级 姓名

一、选择题(共 40p 每小题 2p) (请直接圈出你的选择)

- 1、图示电路, 求 i 。
- A: 1A
- B: 2A
- C: 4A
- D: 8A

- 2、图示电路, 求 u 。
- B: -2V
- C: 4V
- D: -4V

- 3、图示单口网络,其端口的 VCR 关系是:
- A: u=3i-2 B: u=3i+2
- C: u=-3i+2 D: u=-3i+2

- 4、图示电路, 求 i 。
- A: 1.5A
- B: 2A
- C: 3A
- D: 6A

- 5、图示电路,求受控源吸收的功率?
- A: 1W
- B: -1W
- C: 2W
- D: -2W

试题共6页本页第1页

B: 4W

D: 1W

8H

 6Ω

 6Ω

 $12\,\Omega$

C: 6V

A: 8W

C: 2W

- 9、图示稳态电路,求电感中的储能。
- **A:** 8J
- **B:** 4J
- C: 2J
- D: 1J
- 10、图示一阶电路, 求时间常数 τ。
- A: 0.5 s
- B: 0.4 s
- C: 0.2 s
- D: 0.1 s

11、图示电路原稳定,在t=0时,开关闭合,

t=2s 时,电容上电压是多少?

- A: 3.15V
- B: 10V
- C: 7.2V
- D: 6.3V

试题共6页本页第2页

12、图示电路, t=0 时,开关 S 闭合, t=1s 时,i(t)=63mA,问所加电压源电压 u 是多少?

- A: 1V
- B: 2V
- C: 5V
- D: 10V

13、图示电路,t=0时,开关闭合,求 t=2s 时,电阻上的 $u_C(t)$ 。

- A: 10V
- B: 3.68V
- C: 1.84V
- D: 7.34V

14、图示正弦稳态电路,求u(t)。

A:
$$\frac{1}{\sqrt{2}}\cos(2t+45^\circ)\,\mathbf{V}$$

- **B:** $\cos(2t + 45^{\circ})$ **V**
- C: $2^{\cos(2t+45^{\circ})}V$
- **D:** $2\sqrt{2}\cos(2t+45^{\circ})$ **V**

- 15、图示正弦稳态电路, 电压表 V₁ 是 6V, 表 V₂ 是 4V, V₃ 是 3V, 问电压表 V 是多少?
- A: 7V
- B: 5V
- C: 13V
- D: 10V

16、图示正弦稳态电路,求电阻上的平均功率。

- A: 0.5W
- B: 1W
- C: 2W
- D: 4W

17、图示正弦稳态电路, 求 i(t)

- **A:** $\sqrt{2}\cos(2t-45^{\circ})$ **A**
- **B:** $\sqrt{2}\cos 2t$ **A**
- $2\sqrt{2}\cos(2t+45^{\circ}) \text{ V}$
- C: $2\cos(2t 45^{\circ})$ A
- \mathbf{D} : $2\cos 2t$ A
- 18、图示正弦稳态电路相量模型,

求 Z_L 为多少时可获得最大功率?

- A: j8Ω
- B: $(8+j8)\Omega$
- C: -j8 Ω
- D: (8-j8) Ω

1H

 2Ω

i(t) 0.25F

- 19、图示 RLC 串联谐振电路, 求品质因数 Q
- A: 0.1
- B: 1
- C: 10
- D: 100

- 20、图示 RC 低通滤波器, 求截至频率 ως
- A: 10⁹ rad/s
- B: 108 rad/s
- C: 10⁷ rad/s
- D: 106 rad/s

- 二. 计算题(共 60p 每小题 12p)
- 1、图示电路,求 i_1 , i_2 。

试题共6页本页第4页

2、图示电路,求 i_1 , i_2

- 3. 一个纯阻性与一个阻感性负载负载并联于 220V 的工频正弦交流电源(f=50Hz)上,如图 (a),所示,纯阻性负载的功率为 440W。为求得阻感性负载的参数,设计图 (b) 所示电路,所加的电源仍为工频正弦交流,并测得电压表 ①的读数为 50V,电流表 ④的读数为 1A,功率表 ⑩的读数为 30W。
 - a) 试由图(b)求出阻感性负载的参数 $R \setminus X_L$;
 - b) 试求出图(a)中负载端的功率因数;
 - c) 如果把图(a)中负载端的功率因数提高到0.95,应并联多大的电容?

4、三相电如图所示,第一个功率表现的读数为 833.33W,第二个功率表现的读数为 1666.67W,试求对称三相感性负载的有功功率、无功功率及功率因数。

5、图示稳态电路,求电容上的电压 $u_c(t)$ 。

教研室主任_______出卷人___沈明霞___

一、选择题(每小题2分,共计40分)

BDBAC ACBBA DABCB ADBCD

二. 计算题 (每小题 12 分,共计 60 分)

1、图示电路,求 i_1 , i_2

解:

$$18i_1 - 4i_2 = 4$$

$$-4i_1 + 8i_2 = 8$$
 (6p)

$$i_1 = \frac{1}{2}A$$
, $i_2 = \frac{5}{4}A$ (6p)

2、图示电路,求 i_1 , i_2

解:

$$3i_1 + 2i_1 + 4i_1 + 8 + 3i_1 = 10$$
 (6p)

$$i_1 = \frac{1}{6}A$$
, $i_1 = -\frac{1}{3}A$ (6p)

- 3、一个纯阻性与一个阻感性负载负载并联于 220V 的工频正弦交流电源(f=50Hz)上,如图 (a),所示,纯阻性负载的功率为 440W。为求得阻感性负载的参数,设计图 (b) 所示电路,所加的电源仍为工频正弦交流,并测得电压表 (V) 的读数为 50V,电流表 (A) 的读
 - 数为 1A, 功率表 的读数为 30 W。
 - a) 试由图(b)求出阻感性负载的参数 $R \times X_L$;
 - b) 试求出图(a)中负载端的功率因数;
 - c) 如果把图(a)中负载端的功率因数提高到0.95,应并联多大的电容?

解: (1)
$$|Z| = \sqrt{R^2 + (\omega L)^2} = U/I = 50\Omega$$
 (4P)

$$I^{2}R = 30W \therefore R = 30\Omega$$
$$X_{L} = \omega L = \sqrt{|Z|^{2} - R^{2}} = 40\Omega$$

(2)
$$I_L = 220/|Z| = 220/50 = 4.4 \text{A}$$
 (4P)

$$P_{RL} = I^2 R = 4.4^2 \times 30 = 580.8 \text{W}$$

 $Q_{RL} = I^2 X_L = 4.4^2 \times 40 = 774.4 \text{Var}$

$$P = P_{RL} + P_{R1} = 580.8 + 440 = 1000.8$$
W

负载端的功率因素: $\cos \varphi = \cos t g^{-1} \frac{Q_{RL}}{P} = 0.79$

(3)
$$C = \frac{P(tg\varphi - tg\varphi')}{2\pi f U^2} \approx 29.46 \mu \text{F} \text{ (4P)}$$

4、三相电如图所示,第一个功率表 的读数为 833.33W,第二个功率表 的读数为 1666.67W,试求对称三相感性负载的有功功率、无功功率及功率因数。

解:
$$P = P_1 + P_2 = 2500 \text{W}$$
 (4P)

$$Q = \sqrt{3}(P_2 - P_1) = 1443 \text{Var} (4P)$$

$$\cos \varphi = 0.866 \, (4P)$$

5、图示稳态电路,求电容上的电压 $u_c(t)$

解:

$$u_c(t) = 2 + 2\cos(2t + 135^\circ)$$
 V (4p+4p)

本试卷适用范围 自动化、电子信 息科学与技术、 农业电气化与自 动化 51

南京农业大学试题纸

2006-2007 第1学年第1学期 课程类型: 必修 卷 类: B

	电路理论	班级	学号	姓名	成绩 _
一、填	空题 (每题 3 分,	共 30 分)			
1. —	个含有 n 个结点、	b条支路的电路的图	,有条树支	和条连支。	
2.	含源二端网络的开	路电压为10V,短路	电流为 $2A$,若外接	$\S \Omega$ 的电阻,则	该电阻上的电压
为	,功率为_	o			
3.线	性电路对某激励的	的响应可分为强制分量	和自由分量,前者的]函数形式取决于_	,后
者的函	数形式取决于	o			
4. 当	激励为单位冲激函	函数时,响应的象函数	R(s) =	,即电路单位	冲激响应的象函
数等于	o				
		$\frac{\mathrm{d}^2 u}{\mathrm{d}t^2} + 6\frac{\mathrm{d}u}{\mathrm{d}t} + 13u$	= 0		
			,则其特征根为		,二阶电路
	形式属于	Z_{L} 从给定电源 (\dot{U}_{S},Z_{i})	$=R_{\cdot}+iX_{\cdot}$) $\pm 1/4$		ال ال
		· L 从 给 正 电 源 (· 3) · 1	1 7 17	人切率的余件走_	,此取
	等于。				
		2 个耦合线圈的耦合紧	系疏程度,当 2 个线	圈的结构和周围磁	介质一定时,与
	k 的变化范围是_				
8. 对	^十 应于正弦波, ³	$3\sqrt{2}\sin 314t + 4\sqrt{2}\cot 3t$	os314t的振幅相量	为,	有效值相量为
	。(以 cos				
9. 电	路如图 1-1 所示	, N 为一含源线性电	\mathbb{E}_{MM} , S_{1} 打开时,	$U_{ab} = 10 V, S$	$_{1},S_{2}$ 均合上时,
I=5	A_{\circ} S_{1} 合上、 S_{2}	打开时, $U_{ab} =$	V , $I =$	A 。	
10. Ī	E弦交流电路如图	1-2 所示,电流源的国	电压为V, ₍	共出的有功功率为	W_{\circ}
	$\begin{bmatrix} & & & & & & & & & & & & & & & & & & &$	S_1 S_2	10∠0° A ⊖ ċ	4Ω[] , j4Ω]	- <i>j</i> 8Ω
	2	∄ 1-1		图 1-2	

- 二..题 2 图中 (a)、(b) 分别为直流电阻电路 N_1 、 N_2 ,元件参数如图所示。(10p)
 - (1)、试求出 N_1 、 N_2 的最简单电路;
 - (2)、若将 N_1 、 N_2 连成图(c)所示的电路,问 R_L 为何值时,消耗的功率最大,此时最大功率为何值。

- 三.一个纯阻性与一个阻感性负载负载并联于 220V 的工频正弦交流电源(f=50Hz)上,如图(a),所示,纯阻性负载的功率为 440W。为求得阻感性负载的参数,设计图(b)所示电路,所加的电源仍为工频正弦交流,并测得电压表 ②的读数为 50V,电流表 ④的读数为 1A,功率表 ⑥的读数为 30W。(15)
 - a) 试由图(b)求出阻感性负载的参数 R、 X_L ;
 - b) 试求出图(a)中负载端的功率因数;
 - c) 如果把图(a)中负载端的功率因数提高到0.95,应并联多大的电容?

四. 三相电如图所示,第一个功率表现的读数为833.33W,第二个功率表现的读数为1666.67W,试

求对称三相感性负载的有功功率、无功功率及功率因数。(15)

五. 试写出图示正弦稳态电路的回路电流方程。(15)

六. 图示电路中, L_1 =8mH, L_2 =0.3H,R=2 Ω , L_3 = 0.5H, R_1 =4 Ω , U_0 =6V,n=4, $u_s=8\sqrt{2}\sin 1000t$,

电流表^②的读数为 0.6A, 求 C 值及电流表^②的读数。 (15)

教研室主任

出卷人 沈明霞

试题共3页本页第3页

- 一、填空题 (每题 2 分, 共 20 分)
 - 1, n-1,b-(n-1); 2, 5V,5W; 3, 外加激励, 固有频率; <math>4, H(s),H(s);
 - $R_i iX_i, \frac{U_s^2}{4R_i}$ 5, $-3 \pm j2$, 衰减振荡; 6,
 - 8, $5\sqrt{2} \angle -36.9^{\circ}, 5\angle -36.9^{\circ}; 9$, 8V, 1A; 10, 80V, 800W
- 2、题 2 图中(a)、(b)分别为直流电阻电路 N₁、N₂,元件参数如图所示。
 - (1)、试求出 N₁、N₂的最简单电路;
 - (2)、若将 N_1 、 N_2 连成图(c)所示的电路,问 R_L 为何值时,消耗的功率最大,此时最大功率为何值。

解: 题图(a)和(b)的简化电路的如图所示

则图 (c) 变为:

当
$$R_L = 3\Omega$$
时,可获最大功率, $P_{L_{\text{max}}} = \frac{15^2}{4R_L} = 18.75$ W

- 3、一个纯阻性与一个阻感性负载负载并联于 220V 的工频正弦交流电源(f=50Hz)上,如图(a),所示,纯阻性负载的功率为 440W。为求得阻感性负载的参数,设计图(b)所示电路,所加的电源仍为工频正弦交流,并测得电压表 ①的读数为 50V,电流表 ②的读数为 1A,功率表 ②的读数为 30W。
 - a) 试由图(b)求出阻感性负载的参数 $R \setminus X_L$;
 - b) 试求出图(a)中负载端的功率因数;
 - c) 如果把图(a)中负载端的功率因数提高到0.95,应并联多大的电容?

解: (1)
$$|Z| = \sqrt{R^2 + (\omega L)^2} = U/I = 50\Omega$$

 $I^2 R = 30 W \therefore R = 30\Omega$
 $X_L = \omega L = \sqrt{|Z|^2 - R^2} = 40\Omega$

(2)
$$I_L = 220/|Z| = 220/50 = 4.4A$$

$$P_{RL} = I^2 R = 4.4^2 \times 30 = 580.8W$$

$$Q_{RL} = I^2 X_L = 4.4^2 \times 40 = 774.4 Var$$

$$P = P_{RL} + P_{R1} = 580.8 + 440 = 1000.8W$$
 负载端的功率因素: $\cos \varphi = \cos t g^{-1} \frac{Q_{RL}}{P} = 0.79$

(3)
$$C = \frac{P(tg\varphi - tg\varphi')}{2\pi f U^2} \approx 29.46 \mu F$$

4、三相电如图所示,第一个功率表 的读数为 833.33W,第二个功率表 的读数为 1666.67W,试求对称三相感性负载的有功功率、无功功率及功率因数。

解: $P = P_1 + P_2 = 2500$ W

$$Q = \sqrt{3}(P_2 - P_1) = 1443 \text{Var}$$

$$\cos \varphi = 0.866$$

5、试写出图示正弦稳态电路的回路电流方程。

题 5 图

解题思路:分两种方法:先去耦合再列回路电压方程去耦合是关键;

直接列回路电压方程,注意充分考虑每个电感上的互感电压,用支路电流较方便。

6、图示电路中, L_1 =8mH, L_2 =0.3H,R=2 Ω , L_3 = 0.5H, R_1 =4 Ω , U_0 =6V,n=4, $u_s=8\sqrt{2}\sin 1000t$,电流表 Ω 的读数为 0.6A,求 C 值及电流表 Ω 的读数。

题 6 图

解: 电路中有直流激励和正弦激励。 当直流激励单独作用时,

直流激励单独作用

正弦激励单独作用

$$I = \frac{U_0}{R_1 + R//R} = 1.2A, \therefore A_1$$
、 A_2 读数分别为0.6A

当正弦激励单独作用时, A_2 的读数必为零。故在 L_3 与C'(等效电容)并联处发生谐振。

$$1/\omega C' = \omega L_3 :: C' = \frac{1}{\omega^2 L_3}$$

$$C = n^2 C' = \frac{n^2}{\omega^2 L_3} = 32 \mu F$$

$$I_1 = \frac{U_S}{\sqrt{(R + R_1)^2 + (\omega L_1)^2}} = 0.8A$$

$$:: A_1 \bot 的读数 = \sqrt{0.6^2 + 0.8^2} = 1A$$

本试卷适用 自动化 11-14 信息 11-15

电气 11-12

南京农业大学试题纸

2012-2013 学年 1 学期 课程类型: 必修 试卷类型: A

课程 班级 学号 姓名 成绩

评卷人	得分	
		—、;

一、是非题(2小题,共2分)

- 1、 电容元件的电压 \dot{U} 与电流 \dot{I} 为非关联参考方向时,有 $\dot{U} = -\mathrm{j}\frac{1}{mC}\dot{I}$ 。
- 2、不含独立源的二端网络,当其功率因数为零时,端口电压与电流的相位差也为零(u 与 i 取关联参考方向)。

评卷人	得分

二、填空题(6小题,共18分)

1、图1所示二端网络的等效电阻为___。

- 2、图 2 所示电路中负载电阻 R_L 吸收的最大功率等于____。
- 3、图(a)、(c)电路中正弦交流电压源 u_s 的有效值 U_s 与图(b)电路中直流电压源的电压 U_s 相等,则图 电路中电流表的读数最大,图 电路中电流表的读数最小。

4、 当图示电路处于谐振状态时, *U* ₂ = ______; *I* = _______

5、图示三个耦合线圈的同名端是_____。(或者______)

评卷人	得分

三、非客观题(8小题,共80分)

1、 电路如图所示,试求电源电压 $U_{\rm S}$ 和-5V 电压源的功率。

2、一个纯阻性与一个阻感性负载负载并联于220V的工频正弦交流电源(f=50Hz)上,如图 (a),所示,纯阻性负载的功率为440W。为求得阻感性负载的参数,设计图 (b) 所示电路,所加的电源仍为工频正弦交流,并测得电压表 $\overline{\mathbb{Q}}$ 的读数为50V,电流表 $\overline{\mathbb{Q}}$ 的读数为

1A, 功率表 的读数为30W。a) 试由图(b)求出阻感性负载的参数 R、XL; b) 试求出图(a)中负载端的功率因数; c) 如果把图(a)中负载端的功率因数提高到0.95, 应并联多大的电容?

、试用戴维宁定理求图示电路中的电阻 R_x 。

、图示电路中电压源电压恒定,电路已处于稳态,t=0时开关 S 打开,试用三要素法求 t>0的 u(t)。

5、三相电路如图所示,第一个功率表的读数为833.33W,第二个功率表的读数为1666.67W,试求对称三相感性负载的有功功率、无功功率及功率因数。

6、图示电路处于稳态,其中 is= $\left(1+2\cos3\,\omega_t\right)$ A, $\omega_{L_1}=\omega_{L_2}=5\Omega$, $1/\omega_{C}=45\Omega$ 。求各电表有效值读数。

、图示电路中,正弦电压源电压 $U_s=100$ V、频率 f=50 Hz。调节 C 使电路谐振时电流表 A 的读数为 1 A。试求电压表 V 的读数、电容 C 的值、电阻 R 的值。

、电路如图所示,电源开始作用前电路无储能,试用运算法求 t>0 时的 i(t)。

教研室主任_____

出卷人_____

南京农业大学-工学院 2012-2013 学年一学期 课程考试试卷答案(A 卷)

课程名称: 电路 考试时间: 120分钟

- 一、是非题(2小题,共2分)
- 1、答案: 错
- 2、答案: 错
- 三、填空题(6小题,共18分)

1,

答案: 5kΩ

2、

答案: P=3W

3、

答案: (c), (b)

4、答案: 0V,
$$\frac{\dot{U}_{S}}{R}$$

5、答案: b和c和e(或者a和d和f)

6、答案:
$$u_1 = L_1 \frac{di_1}{dt} - M \frac{di_2}{dt}, \quad u_2 = L_2 \frac{di_2}{dt} - M \frac{di_1}{dt}$$

四、非客观题(8小题,共80分)

1、电路如图所示,试求电源电压 $U_{\rm S}$ 和-5V 电压源的功率。

答案: U_s=2×2-1×1+5=8V

吸收 15W

2、答案:

(1)
$$|Z| = \sqrt{R^2 + (\omega L)^2} = U/I = 50\Omega$$

$$I^2R = 30W \therefore R = 30\Omega$$

$$X_L = \omega L = \sqrt{Z_1^2 - R^2} = 40\Omega$$

(2)

$$F_c = 220/|Z| = 220/50 = 4.4A$$

$$P_{RL} = I^{1}R = 4.4^{1} \times 30 = 580.8W$$

 $Q_{RL} = I^{2}X_{L} = 4.4^{1} \times 40 = 774.4Vcr$

$$P = P_{ac} + P_{ac} = 580.8 - 440 = 1000.8W$$

$$\cos \varphi = \cos t g^{-1} \frac{Q_{RL}}{P} = 0.79$$

负载端的功率因素:

$$C = \frac{P(tg\phi - tg\phi')}{2\pi fU^2} \approx 29.46 \mu E$$

3、答案:

$$U_{\rm oc}$$
=6V

$$R=1.5\Omega$$

$$1 = \frac{U_{\text{OC}}}{R_{x} + R_{0}}$$

$$R_x=4.5\Omega$$

4、图示电路中电压源电压恒定,电路已处于稳态,t=0时开关S打开,试用三要素法求t>0的u(t)。

答案: 换路前
$$u=0$$
, $\mathbf{i}_{\bullet}(\mathbf{0}_{\bullet})=\mathbf{i}_{\bullet}(\mathbf{0}_{\bullet})=\frac{\mathbf{10}}{\mathbf{10}}=\mathbf{1}$ A

$$u(0_+) = -10i_2(0_+) \Omega + \frac{1}{2}u(0_+)$$

$$u(0_{+})=-20V \ u(\infty)=0$$

求R

$$\mathcal{U} = 10I + \frac{1}{2}\mathcal{U}$$

 $R=20\Omega$

$$\mathbf{r} = \frac{2}{20} = \frac{1}{10} \text{ s}$$

$$u(t) = -20 e^{-10t} \text{V}$$

5、答案:

$$P = P_1 + P_2 = 250$$
CW $Q = \sqrt{3}(P_2 - P_3) = 1443$ Var

 $\cos \varphi = 0.866$

6、答案:

L C 对三次谐波谐振

得
$$u_1(t) = 2\sin 3\omega_1 t$$
 V

$$u_2(t) = (1 + 2\sin 3\omega_1 t)$$
 V

$$i(t) = 2\sin 3\omega_1 t$$
 A

7、图示电路中,正弦电压源电压 U_s =100V、频率 f=50Hz。调节 C 使电路谐振时电流表 A 的读数为 1A。 试求电压表V的读数、电容C的值、电阻R的值。

答案:由于谐振,故有 $U_R=U_S=100$ V

 $R=100\Omega$

$$U_C = U_L = \omega L I = 314 \text{V}$$

$$X_C = \frac{U_C}{I} = 314 \,\Omega$$

$$C = \frac{1}{\omega X_C} = 10.1 \mu F$$

8、答案:

(1) 列写回路方程如下:

$$I_{l1} = \frac{15}{s}$$

$$-20I_{l1} + \left(20 + \frac{20}{s}\right)I_{l2} - \frac{20}{s}I_{l3} = -\frac{60}{s}$$

$$-10sI_{l1} - \frac{20}{s}I_{l2} + \left(40 + 10s + \frac{20}{s}\right)I_{l3} = 0$$

$$I(s) = I_{l2}(s) = \frac{12s^2 + 63s + 24}{s^3 + 5s^2 + 6s}$$

(2) 部分分式展开法:

$$I(s) = \frac{12s^2 + 63s + 24}{s^3 + 5s^2 + 6s} = \frac{A}{s} + \frac{B}{s+2} + \frac{C}{s+3} = \frac{4}{s} + \frac{27}{s+2} - \frac{19}{s+3}$$

$$[\sharp \div : A = sI(s) \big|_{s=0} = 4, \quad B = (s+2)I(s) \big|_{s=-2} = 27, \quad C = (s+3)I(s) \big|_{s=-3} = -19]$$

(3) 拉斯反变换,得到时域形式:

$$i = (4 + 27e^{-2t} - 19e^{-3t})\varepsilon(t) A$$

本试卷适用 电气系各专 业

南京农业大学试题纸

2013-2014 学年 1 学期 课程类型: 必修 试卷类型: B

课程 电路理论 __ 班级______ 学号_____ 姓名_____ 成绩__

评卷人 得分

一、是非题(4小题,共4分)

- 1、在电路中,由于所标明的电流参考方向是任意假定的,所以电流可能为正,也可能为负。
- 2、 直流电源电路在稳态时,电容相当于开路,电感相当于短路。
- 3、三相负载作三角形联接,如各相电流有效值相等,则负载对称。
- 4、不含独立源的二端网络,若其视在功率等于平均功率,则该网络可等效为一电阻。

评卷人 得分

二、单项选择题(4小题,共4分)

- 1、图示二端网络的等效阻抗 Z_{ab} 为:
- A, jlΩ
- B_v j2Ω
- C、j3Ω

- 2、三相电路中,下列结论正确的是
- A、负载作星形联接,必须有中线
- B、负载作三角形联接,线电流必为相电流的 $\sqrt{3}$ 倍
- C、负载作星形联接,线电压必为相电压的 $\sqrt{3}$ 倍

- D、负载作星形联接,线电流等于相电流
- 3、图示相量模型,当其发生谐振时,输入阻抗为

- $\mathbf{4}$ 、图示两互感线圈串联接于正弦交流电源,则当耦合因数 k 逐渐增大时,电源 \dot{U} 输出的平均功率 P
- A、逐渐减小 B、逐渐增大 C、无法确定

1、(10 分)某直流发电机,其内阻为 0.5Ω ,负载电阻为 11Ω 时,输出电流为 10A。试求: (1)发电机的电动势 E、端电压 U 和输出功率,以及内阻消耗的功率;(2)当外电路发生短路时,试求短路电流及电源内阻消耗的功率。

2、(10 分) 图示电路中,已知 I_3 =5A,试求 I_1 、 I_2 和 U。

3、(12 分) 试用戴维南定理求图示电路中的电流 I。

4、 (12 分) 图示电路中的 $\dot{I}_{\rm S}$ = 2.5√2/45° A。 试求:

(1) \dot{U}_1 、 \dot{U}_2 及 \dot{U} ;

(2) \dot{I}_2 及 \dot{I}_3 ;

(3)画出电流、电压的相量图。

5、(12 分)RLC 串联电路,当电源频率 f 为 500Hz 时发生谐振,此时容抗 X_C = 314Ω ,且测得电容电压 U_C 为电源电压 U 的 20 倍,试求 R、L、C 的值。

6、(12 分)图示电路中,已知输入电流 i_1 = $2\cos\omega t$ A, R_1 = R_2 = ωL_1 = ωL_2 = 10Ω , ωM = 5Ω ,负载电阻 R_L = 100Ω ,求输入电压 u_1 和输出电压 u_2 。

7、 (12分)图示电路中,已知 u_{si} =[100sin ωt +50sin(3 ωt +30·)]V, ω =500rad/s,R=100 Ω ,L=1H,C=4 μ F,C=20 μ F, U_{sz} =100V,求电流 i。

8、(12分)图示对称三相电路中,已知 $v_{\text{set}} = 220$ v_{th} ,端线阻抗 $Z=(1+j1)\Omega$,负载阻抗 $Z=(3+j4)\Omega$ 。(1)求线电压 v_{set} 和 v_{set} ; (2)求三相电压源供出的功率。

教研室主任	
4X 101 TE. 1.11.	

出卷	: 人 :		

南京农业大学-工学院 2012-2013 学年二学期 课程考试试卷答案(B 卷)

课程名称: 电路 考试时间: 120 分钟 年级: xxx 级 专业: xxx

题目部分,(卷面共有16题,100分,各大题标有题量和总分)

一、是非题(4小题,共4分)

1、在电路中,由于所标明的电流参考方向是任意假定的,所以电流可能为正,也可能为负。

答案:对

2、恒定激励下的动态电路达到稳态时,电容相当于开路,电感相当于短路。

答案:对

3、三相负载作三角形联接,如各相电流有效值相等,则负载对称。

答案: 错

4、不含独立源的二端网络,若其视在功率等于平均功率,则该网络可等效为一电阻。

答案:对

- 二、单项选择题(4小题,共4分)
- 1、图示二端网络的等效阻抗 Z_{ab} 为:

A、jlΩ

 B_{ν} j 2Ω

C、j3Ω

答案: A

- 2、三相电路中,下列结论正确的是
- A、负载作星形联接,必须有中线
- B、负载作三角形联接,线电流必为相电流的 $\sqrt{3}$ 倍
- C、负载作星形联接,线电压必为相电压的 $\sqrt{3}$ 倍
- D、负载作星形联接,线电流等于相电流

答案: D

3、图示相量模型,当其发生谐振时,输入阻抗为

 $A \cdot R$

 $B \setminus Z_L$

 C, Z_C

 $D' \infty$

试卷答案 第 1 页 (共 7 页)

答案: A

4、图示两互感线圈串联接于正弦交流电源,则当耦合因数 k 逐渐增大时,电源 \dot{U} 输出的平均功率 P

A、逐渐减小 B、逐渐增大 C、无法确定

答案: B

三、非客观题(8小题,共92分)

1、某直流发电机,其内阻为 0.5Ω ,负载电阻为 11Ω 时,输出电流为 10A。试求: (1)发电机的电动势 E、端电压 U 和输出功率,以及内阻消耗的功率; (2)当外电路发生短路时,试求短路电流及电源内阻消耗的功率。

(1)图: $E=I(R_0+R)=10\times11.5V=115V$

试卷答案 第 2 页 (共 7 页)

$$U=E-IR_0=IR=110V$$

 $P=UI=1100W$
 $\Delta P=I^2R_0=10^2\times0.5W=50W$

(2)
$$\boxtimes$$
: $I_{sc} = \frac{E}{R_0} = 230 \text{ A}$

$$\Delta P = I_{\rm sc}^2 R_0 = 230^2 \times 0.5 \,\text{W} = 26450 \,\text{W}$$

2、图示电路中,已知 I_3 =5A,试求 I_1 、 I_2 和 U。

答案:用替代定理

$$U = \frac{10 + \frac{6}{1} - 5}{1 + 1} V = 4 V$$

$$I_1 = \frac{1}{2} (10 - 4) A = 3 A$$

$$I_2 = \frac{1}{1} (6-4) A = 2 A$$

3、试用戴维南定理求图示电路中的电流I。

答案: R_0 =2.5 Ω

$$U_{\infty} = \sqrt{\frac{3+4}{2+1+3+4}} - 3 \times \frac{2+1}{2+1+3+4} \times 3V = 1.5V$$

$$I = \frac{U_{\text{OC}}}{5 + R_0} = \frac{1.5}{5 + 2.5} A = 0.2 A$$

4、图示电路中的 $\dot{I}_{\rm S}=2.5\sqrt{2}/\underline{45^{\circ}}$ A。试求:

(1)
$$\dot{U}_1$$
、 \dot{U}_2 及 \dot{U} ;

(2)
$$\dot{I}_2$$
及 \dot{I}_3 ;

(3)画出电流、电压的相量图。

试卷答案 第 4 页 (共 7 页)

答案: $(1)\dot{U}_1 = -j2 \times 2.5\sqrt{2}/45^{\circ}$ $V = 5\sqrt{2}/-45^{\circ}$ $V = 7.07/-45^{\circ}$ V

$$Z_2 = \frac{(2+j2)(2-j2)}{2+j2+2-j2} \Omega = 2 \Omega$$

$$\dot{U}_2 = 2 \times 2.5 \sqrt{2/45^{\circ}} \text{ V} = 5\sqrt{2/45^{\circ}} \text{ V} = 7.07/45^{\circ} \text{ V}$$

$$\dot{U} = (5\sqrt{2}/-45^{\circ}+5\sqrt{2}/45^{\circ}) \text{ V} = 10/0^{\circ} \text{ V}$$

(2)
$$\dot{I}_2 = \frac{5\sqrt{2}/45^{\circ}}{2+j2}$$
 A = 2.5/0° A

$$\dot{I}_3 = \frac{5\sqrt{2}/45^\circ}{2-i2}$$
 A = j2.5 A

 $\begin{array}{c|c} i_3 & & & \dot{i}_5 \\ \hline i_8 & & \dot{i}_2 & & \dot{\dot{U}}_2 \\ \hline \dot{\dot{U}}_1 & & \dot{\dot{U}}_2 \\ \end{array}$

5、RLC 串联电路,当电源频率 f 为 500Hz 时发生谐振,此时容抗 X_C = 314Ω ,且测得电容电压 U_C 为电源电压 U 的 20 倍,试求 R、L、C 的值。

答案: f_0 =500Hz

 $X_{L} = X_{C} = 314\Omega$

即 $2\pi f_0 L = 314$

L=0.1H

$$\frac{1}{2\pi f_0 C} = 314$$

$$C=1.01 \mu F$$

$$Q = \frac{U_C}{U} = 20$$

$$\frac{\omega_0 L}{R} = 20$$

试卷答案 第 5 页 (共 7 页)

$$R = \frac{\omega_0 L}{20} = \frac{2\pi f_0 L}{20} = 15.7 \ \Omega$$

6、图示电路中,已知输入电流 i_1 = $2\cos\omega t$ A, R_1 = R_2 = ωL_1 = ωL_2 = 10Ω , ωM = 5Ω ,负载电阻 R_L = 100Ω ,求输入电压 u_1 和输出电压 u_2 。

答案:

$$\begin{cases} (R_{1} + j\omega L_{1})\dot{I}_{1(1)} + j\omega M\dot{I}_{2(1)} = \dot{U}_{1(1)} \\ (R_{2} + R_{L} + j\omega L_{2})\dot{I}_{2(1)} + j\omega M\dot{I}_{1(1)} = 0 \end{cases}$$
 (1)

由(2)得:
$$\dot{I}_{2(1)} = 0.064 / -95.2^{\circ}$$
 A

代入(1)式得
$$\dot{U}_{1(1)} = 20.2/44.3^{\circ}$$
 V

$$\dot{U}_{2(1)} = -\dot{I}_{2(1)} \times R_{L} = -0.064 / -95.2^{\circ} \times 100 \text{ V} = 6.4 / 84.8^{\circ} \text{ V}$$

$$u_1 = 20.2\sqrt{2}\cos(\omega t + 44.3^\circ)$$

$$u_1 = 6.4\sqrt{2}\cos(\omega t + 84.8^\circ)$$

$$I_{\rm ac} = \frac{\mathcal{I}_{\rm az}}{R} = \frac{100}{100} \text{ Å} = 1 \text{ Å}$$

$$\frac{\mathbf{L}}{\omega L = 500 \times 1\Omega = 500\Omega} = \frac{1}{500 \times 4 \times 10^{-4}} \Omega = 500 \Omega$$

$$\frac{1}{\mathscr{C}_s} = \frac{1}{500 \times 20 \times 10^4} \Omega = 100 \Omega$$

usi中基波分量作用时,

试卷答案 第 6 页 (共 7 页)

$$L_{0} = \frac{\dot{U}_{s(0)}}{k - j \frac{l}{sC_2}} = \frac{\frac{100}{\sqrt{2}} \frac{10^{\circ}}{100 - j100} \quad \lambda = 0.5 \underline{/45^{\circ}} \quad A$$

usi中三次谐波分量作用时,

$$\dot{U}_{B3)} = \frac{\dot{U}_{SX3} \times (j \, \varpi C_2)}{-j \frac{1}{3\varpi L_1} + j 3\varpi C_1 + \frac{1}{R} + j 3\varpi C_2}$$

$$= \frac{\frac{50}{\sqrt{2}} \frac{i \, 30^* \times j \, 0.03}{-j \, 6.67 \times 10^4 + j \, 60 \times 10^4 + 0.01 + j \, 0.03} \quad V = 29.1 \underline{i' \, 45.9^*} \quad V$$

$$I_{(3)} = \frac{U_{A(3)}}{R} = \frac{29.1/45.9^{\circ}}{100}$$
 A = 0.291/45.9° A

 $i = [1 + 0.5\sqrt{2} \operatorname{cirlo} t + 45^{\circ}) + 0.291\sqrt{2} \operatorname{cirl} 3o t + 45.9^{\circ})] \text{ A}$

Q

$$(1)\vec{U}_{ASP} = \sqrt{3}\vec{U}_{ASP}/30^{\circ} = 380/30^{\circ} \text{ V}$$

$$\dot{U}_{\text{BC}} = \dot{U}_{\text{ACP}} \frac{I - 120^{\circ}}{1 - 120^{\circ}} = 380 \frac{I - 90^{\circ}}{1 - 120^{\circ}} \text{ V}$$

$$l_{A} = \frac{\dot{U}_{EM}}{Z} = 44\underline{l - 53.1}^{\circ} A$$

$$\dot{U}_{ab} = \dot{I}_{a}(Z_{c} + Z) = 282\underline{I - 18}^{\circ} \text{ V}$$

$$\dot{U}_{00} = \sqrt{3}\dot{U}_{000} \frac{1-90}{2} = 488/-918$$
 V

本试卷适应范围 电气 141-142 班 自动化 141-146 班 电信 141-144 班

南京农业大学试题纸

| 2015~2016 学年 1 学期 课程类型: 必修 试卷类型: B 卷

课程 电路理论

说明: 可使用计算器, 答案写在答题纸上

得分	评阅 人

一、选择题(共15分,每题3分)

1. 图 1-1 电路中电压 *U*_S 为()。

A, 4V B, 7V

 C_{λ} 2V

D, 8V

2. 图 1-2 电路中的 U_{ab} 为 ()。

A, 40V B, 60V C, -40V D, -60V

图 1-2

- 4. 某二端网络所吸收的平均功率为零, 所吸收的无功功率为-5var, 则该 网络可等效为()。

- A、电容 B、电感 C、电阻 D、电阻与电容串联的电路
- 5. 图 5 电路中 $i_S = \sin(2\pi f t + 45^{\circ})$ A, f = 50Hz, 当 t = 10ms 时, u_2 为()。

- A、正值 B、负值 C、零值 D、不能确定

得分	评阅 人

二、填空题(共 20 分,每空 2 分)

1. 若实际电源的开路电压为 12V, 当其输出电流为 4A 时, 端电压为 10V, 则这个电源可以用_____V 电压源与____ Ω 电阻的串联电路作为模型, 也可以用_____A 电流源与_____S 电导的并联电路作为模型。

2. 图 2-1 电路中 A 点电位为_____, B 点电位为_____。

图 2-1

- 3. 已知电流 $i=-5\sqrt{2} \sin(314t-30^{\circ})$ A ,其相量 i=------。
- 4. RLC 串联电路外接电源 $\dot{U}_s = 10/0^{\circ} V$,电路处于谐振状态时,品质因数

$$\dot{\mathcal{U}}_{\textrm{R}} = \underline{\hspace{1cm}} V_{\,\circ}$$

得分	评阅 人	

三、计算题(共65分)

1. 试求图 3-1 电路中的电流 I_1 和 I_2 。(8 分)

图 3-1

2. 图示 3-2 电路中电阻 R_L 为多少时, R_L 可获得最大功率? (10 分)

3. 用叠加定理求图 3-3 电路中的 u_1 、 u_2 。(10 分)

图 3-3

4、图 3-4 对称三相电路中,已知 $U_{A'N'}=220\angle 0^{\circ}$ V,端线阻抗 $Z_{l}=(1+j1)$ Ω,负载阻抗 Z=(3+j4) Ω。(1)求线电压 $U_{B'C'}$ 和 U_{BC} ;(2)求三相电压源供出的功率。(8分)

图 3-4

5、图示 3-5 电路中电压源电压恒定,换路前电路已处稳态。开关 S 在 t=0 时由 a 投向 b,求 t^30 时的 i_1 、 i_2 、 i_3 。

6、日光灯电路如图 3-6 所示。欲使功率为 40W,电压为 220V,电流为 0.66A 的日光灯电路的功率因数提高到 1,问应并联多大的电容 *C*。当功率因数提高到 1 时,电路的总电流为多少?

7、电路 3-7 中,不考虑互感影响时,线圈 11'的 Z_1 =(5+j9)W,线圈 22'的 Z_2 =(3+j4)W。若耦合因数 k=0.5,求考虑互感影响时的 Z_{ab} 。

图 3-7

南京农业大学-工学院

2015-2016 学年一学期电路期末考试试卷(B 卷答案)

- 一、单项选择题(每题 3 分, 共 15 分)
- 1. A
- 2. D
- 3. C
- 4. A
- 5. A
- 二、填空题(每空2分,共20分)
- 1. 12 0.5 24 2
- 2. 7V -3V
- 3. 5/150 A
- 4. 100<u>/90</u> 100<u>/ 90</u> 10<u>/0</u>
- 三、非客观题(6 小题,共 65 分)

1.

$$L = \frac{16}{8} A = 2 A$$

 $4(6-I_1)-2I_1+16-2I_1=0$
 $I_1=5A$

- 2. R_L=R₀=3.6W 时可获得最大功率。
- **x** $_1 = \frac{-2}{(2+1/2)} = -\frac{4}{5} \mathbf{V}$ 3. 2A 电流源单独作用时

$$u_1 = \frac{u_1}{2} = -\frac{2}{5}$$
 V

4sintA 电流源单独作用时,

$$u''_{t} = \frac{4 \sin t}{\{1+1 \times 2/3\}} = \frac{12}{5} \sin t V$$

$$u''_1 = u''_2 \frac{1/2}{1 + 1/2} = \frac{4}{5} \sin t$$

$$c_1 = \frac{4}{5} \left(-1 + \sin \theta V \right)$$

$$c_2 = \frac{12}{5} \sinh \epsilon - \frac{2}{5} V$$

4. (1)
$$\dot{U}_{KB} = \sqrt{3}\dot{U}_{KB} \frac{!30^{\circ}}{!30^{\circ}} = 380 \frac{!30^{\circ}}{!30^{\circ}} \text{ V}$$

$$\dot{\dot{U}}_{BC} = \dot{\dot{U}}_{KB} \frac{!-120^{\circ}}{!-120^{\circ}} = 380 \frac{!-90^{\circ}}{!} \text{ V}$$

$$\dot{\dot{I}}_{A} = \frac{\dot{\dot{U}}_{KB}}{Z} = 44 \frac{!-53 \text{ f}}{!} \text{ A}$$

$$\dot{\dot{U}}_{BC} = \dot{\dot{I}}_{A} (Z_{i} + Z) = 232 \frac{!-1.8^{\circ}}{!-90^{\circ}} \text{ V}$$

$$\dot{\dot{U}}_{BC} = \sqrt{3}\dot{\dot{U}}_{KB} \frac{!-90^{\circ}}{!-90^{\circ}} = 483 \frac{!-91.8^{\circ}}{!-91.8^{\circ}} \text{ V}$$

$$j_1(0_+) = j_1(0_-) = 1A$$

 $i_1(\infty)=0$

电感 L 两端的等效电阻为 R₀=20//20=10W

$$\tau = \frac{L}{L_{\rm s}} = 0.1 \text{ s}$$

$$t \ge 0$$

$$i_2(t)=i_3(t)=0.5e^{-10t}A$$
, $t\geq 0$

6. $P=UI_L\cos\varphi$

$$\cos \varphi = \frac{P}{UT} = \frac{40}{220 \times 0.66} = 0.275$$

 $\varphi=74^{\circ}$

设**ぴ=220<u>/0</u>* V**

$$I_z = 0.66 / -74^{\circ}$$
 A = (0.182 - j 0.634) A

此时 *I*=0.182A

装 订 线

本试卷适应范围

电气 151-152;

自动化 151-154; 信息 151-154

南京农业大学试题纸

2016~2017 学年 2 学期 课程类型: 必修 试卷类型: A

课程号 AGEN3202

课程名 ______电路理论__ 学分 ___4___

学号

姓名

班级 _____

题号	1	1.1	[11]	四	五	六	七	八	九	总分	签名
得分											

备注: (可使用计算器,答案写在答题纸上)

- 一、选择题(共10分,每题2分)
- 1. 图示二端网络的等效电阻为()。

- $A_{\lambda} 20\Omega$
- B, 30Ω
- $C \times 45\Omega$ $D \times 15\Omega$
- 2. 已知 R、C 串联电路的电压 $u=[60-25\sin(3\omega t+30^\circ)]$ V, $R=4\Omega$, $\frac{1}{3\omega C}=3\Omega$,则电路电流 i 为()。
- A, $5\sin(3\omega t + 66.9^{\circ})$ A
- B, $9.85\sin(3\omega t 84^{\circ})A$
- C, $5\sin(3\omega t 113.1^{\circ})A$
- D, $[15-5\sin(3\omega t+66.9^{\circ})]A$

- 3. 图示电路中,负载电阻 R 可获得最大功率时 R 的大小为 ()。
- $A \sim 20\Omega$
- $B \cdot 10\Omega$
- C_{λ} 5Ω
- D, 4Ω

4.图示正弦稳态电路中,电压表 V1、V2、V3 的读数分别为 60V、120V、120V,则 u_s 的有效值为 ()。

5. 将 $R=2\Omega$,L=2H 的负载接在 $u_e=10\sqrt{2}\cos(t-15^\circ)$ v 的电压源上,要使电路中的无功功率为零,在负 载端并联的电容值应为()。

- A, $250\mu F$ B, $125\mu F$ C, 0.125F D, 0.25F

- 二、填空题(共10分,每空2分)
- 1. 图示二端网络的等效电阻为。

- 2. 正弦电流电路中,某二端网络吸收功率 P=500W、功率因数 $\lambda=\cos \varphi=0.5$ (容性),如网络的端口电压相 量 \dot{U} =100 $_{\underline{I}0}$ V,则与 \dot{U} 参考方向关联的端口电流 \dot{I} =_____。
- 3. 图示网络中,电流表 \bigcirc 的读数为 $12\sqrt{2}A$,则电流表 \bigcirc 的读数为 A。

4. 图示电路中的电流为 I=____。

5. 对称三相电路中,电源线电压为 380V,负载作三角形联接,每相阻抗 *≥*38Ω,则线电流为

三、计算题(共56分)

1. (6分) 试将图示各网络等效简化。

2. (10 分) 如图电路所示,试用戴维南定理求图中 20Ω 电阻的电流 I。

3. (10 分) 求图示电路的电流 I。

4. (10 分)电路如图示,已知 $R=30\Omega$, L=60mH, C=50uF, $u_s(t)=30+120\sqrt{2}\cos(1000t+15^\circ)V$, 则电路中电流 i 及其有效值 I 。

5. (10 分) 图示电路中 $u_s(t) = 2\sqrt{2}\cos\omega tV$, $\omega=10^3 \text{rad/s}$, 求 i_L 。

6. (10 分) 图示电路中, $R_1=R_2=6\Omega$, $\omega L_1=\omega L_2=10\Omega$, $\omega M=5\Omega$, $\omega=10^3\mathrm{rad/s}$,如果 \dot{U}_S 与 同相,C应为何值?此时电路输入阻抗 Z_0 为何值?

四、综合计算题(共24分,每题12分)

1. 图示对称三相电路中,阻抗 Z= j66 Ω 负载的线电压为 380V,端线阻抗 Z=6 Ω 。(1)求电源线电压;(2)求 三相电源供出的有功功率。

2. 图示电路中,电压源电压恒定, $u_c(0_-)=2V$,t=0 时闭合开关 S。试求 $t\geq 0$ 时的 $u_c(t)$ 。

本试卷适应范围 电气 151-152 自动化 151-154 信息 151-154

南京农业大学试题纸

2016~2017 学年 1 学期 课程类型: 必修 试卷类型: A 卷答案

课程号 AGEN3202

课程名

电路理论

学分

4

一、选择题(共10分,每题2分)

- 2. C 3. D 4. A 5. D

二、填空题(共10分,每空2分)

- 1. $360 \,\Omega$
- 2. $\dot{I} = 10/60^{\circ} \text{A}$ r
- 3. (A) =12A
- 4. -2A
- 5. 17.3A
- 三、计算题(共60分)
- 1. (6分) 试将图示各网络等效简化。

2.(10 分)如图电路所示,试用戴维南定理求图示电路中 20Ω电阻的电流 I。

解:
$$R_0 = [(10/4) + 8]\Omega = \frac{76}{7}\Omega$$

$$U_{oc} = [1 \times (10/4) + 8 \times 2]V = \frac{132}{7}V$$

$$I = \frac{U_{\text{oc}}}{R_{\text{o}} + 20} = 0.611 \text{ A}$$

3. (10 分) 求图示电路的电流 I。

解: 18V 电压源单独作用时 I' = -1A, 3A 电流源单独作用时 I'' = 2A。 所以 I = 1A。

4. (10 分) 电路如图示,已知 $R=30\Omega$, L=60mH, C=50uF, $u_s(t)=30+120\sqrt{2}\cos(1000t+15^\circ)V$, 则电路中电流 i 及其有效值 I 。

4.解:

1)30V作用时

$$i(0) = 1A;$$

$$2)120\sqrt{2}\cos(1000t+15^\circ)$$
作用时

$$\dot{I} = \frac{\dot{U}_s}{(-j30+30)} = 2\sqrt{2} \angle 60^{\circ} A$$

所以: $i = 1 + 4\cos(1000t + 60^\circ)A$

有效值:
$$I = \sqrt{1^2 + (2\sqrt{2})^2} = 3A$$

5. (10 分) 图示电路中 $u_s(t) = 2\sqrt{2}\cos\omega tV$, ω = $10^3 \mathrm{rad/s}$, 求 i_L 。

解.
$$\dot{U}_{s} = 2/\underline{0}^{*}$$
 V

$$\left(\frac{1}{2} + \frac{1}{2} + \frac{1}{j \omega L}\right) \dot{U}_1 = \frac{\dot{U}_s}{2} + \frac{2 \dot{U}_1}{j \omega L}$$

解得:
$$\dot{U}_1 = \frac{\sqrt{2}}{2} \underline{I - 45^{\circ}}$$
 V

$$\pm KVL$$
: $\dot{U}_1 = 2\dot{U}_1 + j\omega L\dot{I}_L$

得:
$$\dot{I}_L = \frac{-\dot{U}_1}{j \,\omega \, L} = \frac{\sqrt{2}}{2} / 45^{\circ}$$
 A

 i_{ℓ} =sin(ωt +45°)A

6. (10 分) 图示电路中, $R=R=6\Omega$, $\omega L_1=\omega L_2=10\Omega$, $\omega M=5\Omega$, $\omega=10^3 \text{ rad/s}$,如果 $\dot{U}_{\$}$ 与 \dot{I} 同相,C应为何值?此时电路输入阻抗 Z_{ab} 为何值?

解: 去耦等效电路为

$$Z_{\underline{\bullet}} = \vec{p} - j \frac{1}{\varpi C} + \frac{6 + \vec{p}}{2} = 3 + j \left(7.5 - \frac{1}{\varpi C}\right)$$

$$C = \frac{1}{7.5\sigma} = 133 \mu F$$

此时 $Z_{\scriptscriptstyle ab} = 3\Omega$

- 四、综合计算题(共24分,每题12分)
- 1. 图示对称三相电路中,阻抗 $Z=166\Omega$ 负载的线电压为 380V,端线阻抗 $Z=6\Omega$ 。 (1) 求电源线电压; (2) 求三相电源供出的有功功率。

$$\mu_{I_{J}} = \frac{220}{22} = 10 \,\text{A}$$

$$U_{\rm p} = |6 + \rm{j} \, 22| \times 10 = 228 \, V$$

 $U_{l} = \sqrt{3}U_{\rm p} = 395 \, V$

(2)
$$P = 3 \times 10^2 \times 6 = 1800 \text{ W}$$

2. 图示电路中,电压源电压恒定, $u_c(0_-)=2V$,t=0 时闭合开关 S。试求 $t\geq 0$ 时的 $u_c(t)$ 。

解:

$$u_{c}(t) = \left(-2 + 4e^{-\frac{t}{s}}\right) \quad V \left(\tau = 2 \quad ms\right)$$

装

订 线

装 订 线 本试卷适应范围 电气 151-152;

南京农业大学试题纸

2016~2017 学年 2 学期 课程类型: 必修 试卷类型: B

信息 151-154

自动化 151-154;

课程号 AGEN3202 _____

课程名 ______电路理论__ 学分 ___4____

学号

______ 姓名

班级 _____

题号	_	<u> </u>	三	四	<i>I</i> i.	六	七	八	九	总分	签名
得分											

备注:(可使用计算器,答案写在答题纸上)

- 一、选择题(共10分,每题2分)
- 1. 图示二端网络的端口电压、电流关系为()。

A, u=i+1 B, u=i-1 C, 0=i+1 D, 0=i-1

2. 图示为电路的一部分,已知 $U_{ab}=30V$,则受控源发出的功率为()。

A, 40W B, 60W C, -40W D, -60W

3. 图示电路接至对称三相电压源,负载相电流 \dot{I}_{AB} 与线电流 \dot{I}_{A} 的关系为()。

 A_{λ} $I_{AB} = I_{A}$

 $I_{AB} = \sqrt{3}l_{AB} = \sqrt{3}l_{AB} = \frac{1}{\sqrt{3}}l_{A}\frac{l-30^{\circ}}{l_{AB}} = \frac{1}{\sqrt{3}}l_{A}\frac{l'30^{\circ}}{l_{AB}}$

- 4. 若 i_1 =10sin(wt+30°)A, i_2 =20sin(wt-10°)A,则 i_1 的相位比 i_2 超前()。
 - $A \cdot 20^{\circ}$

- $B_{\lambda} 20^{\circ}$ $C_{\lambda} 40^{\circ}$ $D_{\lambda} 40^{\circ}$
- 5. 一个负载接至正弦电压源,与之并联电容后,其有功功率将()。
 - A、增加

- B、减小 C、不变 D、改变
- 二、填空题(共10分,每题2分)
- 1. 电路如图所示,开关 S 合上时,*R*ab=____。

- 2. 某二端网络端口正弦电压、电流的有效值分别为 10V 和 0.5A,电压与电流的相位差为 $\frac{\pi}{2}$,则该网络的 平均功率为____。
- 3. 图示电路中, u_1 与 u_2 的导数表达式分别为 u_1 = 和 u_2 =

图示电路中若**į=3√2 sinz tA, į=4√2 sir(& t+90°) A** ,则电流表读数为_____。

三、计算题(共20分,每题10分)

1. 图示电路中电压源电压恒定,电流源电流恒定。电路在开关断开前已稳定,t=0 时 S 断开。试求开关 S 断开后的 uc(t)和 i(t)。

2. 求图示电路中的电流 /。

四、计算分析题(共60分,每题12分)

1. 试用戴维南定理求图示电路中的电压 u_{ab} 。

2. 图示正弦稳态电路中,求 $\dot{I}_{\scriptscriptstyle 1}$, $\dot{I}_{\scriptscriptstyle 2}$ 。

3.如图对称三相电路中,负载为星形接法,相电流为2A,功率因数的 λ =0.8(感性),经线路阻抗 $Z_l = (2+j4)\Omega$ 的端线接至线电压为380V 的电源。试求负载线电压。

4. 图示电路中,u=(10+4sin2 ωt)V,R=10 Ω , ωL =5 Ω , $\frac{1}{\omega c}$ = 20 Ω 。求响应 u_L 及 i_L 的表达式。

5. 图示电路中,正弦电压源的有效值为 U=110V,频率为 f=50Hz。已知 R=21 Ω , L=0.5H。求(1)电路的有功功率及无功功率; (2)为使电源提供的无功功率为零,需在负载两端并联多大的电容?

本试卷适应范围 电气 151-152 自动化 151-154

南京农业大学试题纸

2015~2016 学年 2 学期 课程类型: 必修 试卷类型: B

课程 电路理论

信息 151-154

班级_

姓名_

成绩

一、选择题(共10分,每题2分)

1-5. C C D C C

学号

二、填空题(共10分,每题2分)

1. 30Ω ; 2. 0W 3. $u_1 = -L_1 \frac{di_1}{dt} + M \frac{di_2}{dt}; u_2 = -L_2 \frac{di_2}{dt} + M \frac{di_1}{dt}$

4, 5A

二、计算题(共20分,每题10分)

1. 图示电路中电压源电压恒定,电流源电流恒定。电路在开关断开前已稳定, t=0 时 S 断开。试 求开关 S 断开后的 $u_c(t)$ 和 i(t)。

$$uc(0_+) = u(0_-) = \frac{\frac{0.3}{2} + 0.6}{\frac{1}{2} + \frac{1}{1}} = 0.5 \text{ V}$$

 τ =10³×5×10⁻⁶=5×10⁻³s

∴ $u_c(t) = 0.5e^{-200t}V$ $t \ge 0$

i(t) = -0.6 mA

2. 试用叠加定理求图示电路中的电流 /。

解: 24V 电压源单独作用时

$$\begin{cases} 24 = (2+4)I' - 2U_1' \\ U_1' = -4I' \end{cases} \qquad I' = \frac{12}{7} \text{ A}$$

3A 电流源单独作用时

$$\begin{cases} 2I'' - 2U_1' - U_1' = 0 \\ U_1' = -4(3 + I'') \end{cases} \qquad I'' = -\frac{18}{7} A$$

$$I = I' + I'' = -\frac{6}{7} A = -0.857 A$$

四、计算分析题(共60分,每题12分)

1. 试用戴维南定理求图示电路中的电流 /。

解: R₀=3.6Ω

*I*₁=2A

(2+2+6)*I*-6*I*₁=4, *I*=1.6A

 $U_{OC}=U_{ab}=-4+2I+2I_1=3.2V$

$$I = \frac{U_{0 \text{ c}}}{R_0 + 1.4} = 0.64 \text{ A}$$

$$u_{ab} = 1.4 \times 0.64 = 0.896$$

2. 图示正弦稳态电路中,求 $\dot{I}_{\scriptscriptstyle 1}$, $\dot{I}_{\scriptscriptstyle 2}$ 。

解:
$$\dot{I}_1 = 2/0^{\circ}$$
A $\dot{I}_2 = 0$ A

3. 如图对称三相电路中,负载为星形接法,相电流为2A,功率因数的 λ =0.8 (感性),经线路阻抗 $Z_I = (2+j4)\Omega$ 的 端 线 接 至 线 电 压 为 380V 的 电 源 。 试 求 负 载 线 电 压 。

$$A \longrightarrow I_A \qquad Z_l \qquad A$$
 $B \qquad Z_l \qquad B \qquad$
 $E \qquad \qquad Z_l \qquad B \qquad \qquad$
 $E \qquad \qquad Z_l \qquad C \qquad \qquad Z_l \qquad$

.解: φ=arccos0.8=36.87°

$$_{\dot{\mathcal{V}}}\dot{U}_{A} = \frac{380}{\sqrt{3}} / \underline{0}^{*} \approx 220 / \underline{0}^{*}$$
 V

$$\dot{\boldsymbol{U}}_{kn} = \dot{\boldsymbol{U}}_{k} - \dot{\boldsymbol{I}}_{k} \boldsymbol{Z}_{l=220/0^{\circ}-2/-36.87^{\circ}} (2+j4) = 212/-1.1^{\circ} \boldsymbol{V}$$

$$U_{i}' = 212\sqrt{3} = 367 \text{ V}$$

4. 图示电路中,u=(10+4sin2 ω t)V,R=10 Ω , ω L=5 Ω ,。求响应 u_L及 i_L的表达式。

解:
$$I_{x(0)} = \frac{U_{(0)}}{R} = \frac{10}{10} A = 1 A$$

 $U_{L(0)} = 0$

交流分量:
$$2\omega L = \frac{1}{2\omega C} = 10 \Omega$$

L、C对二次谐波发生并联谐振

$$\dot{I}_{Z(2)} = \frac{\dot{U}_{(2)}}{j10} = \frac{\frac{4}{\sqrt{2}} \frac{j \cdot 0^*}{j10}}{j10} \quad A = \frac{0.4}{\sqrt{2}} \frac{j - 90^*}{j10} \quad A$$

 $u_{L(2)} = u_{(2)} = 4\sin 2\omega t V$

 $u_L=U_{L(0)}+u_{L(2)}=4\sin 2\omega tV$

 $i_L = I_{L(0)} + i_{L(2)} = [1 + 0.4 \sin(2\omega t - 90^\circ)]A$

5. 图示电路中,正弦电压源的有效值为 U=110V,频率为 f=50Hz。已知 R=21 Ω ,L=0.5H。求(1)电路的有功功率及无功功率;(2)为使电源提供的无功功率为零,需在负载两端并联多大的电容?

$$\text{ME:} \quad (1) \quad I = \frac{220}{\sqrt{21^2 + (50\pi)^2}} = 1.39$$

$$P = I^{2}R = 1.39^{2} \times 21 = 40.57$$
$$Q = 1.39^{2} \times 50\pi = 303.34$$

(2)并联 C 后,右端负载的导纳为

$$Y = \mathrm{j}\,2\pi fC + \frac{1}{21 + \mathrm{j}\,2\pi fL} = (\mathrm{j}\,314C + 0.84 \times 10^{-3} - \mathrm{j}\,6.24 \times 10^{-3})\,\mathrm{S}$$

当其虚部为零时,无功功率为零,由此得

C=19.9μF

装 订 本试卷适应范围 16级电气、自动 化、电子信息

南京农业大学试题纸

2017-2018 学年 1 学期 课程类型: 必修 试卷类型: A

课程号 AGEN3202

课程名 电路理论

学分 4

学号

姓名

班级

, , _			/			9=4/					
题号	 1 1	13.1	四	五.	六	七	八	九	总分	签名	
得分											

备注: (允许使用计算器)

- 一、单项选择题(3小题,每小题3分,共9分)
- 1、图示电路中,已知 $I_R = 0$,则 ()。
- A、 ^t_C与 ^t_S同相
- B、 $_{I_C}^{\bullet}$ 与 $_{I_S}^{\bullet}$ 反相 C、 $_{I_C}^{\bullet}$ 与 $_{I_S}^{\bullet}$ 正交

- 2、若加在电阻 R 两端的电压 $u = (\sqrt{2} \sin \omega t + 2\sqrt{2} \sin \omega t) V$,则通过 R 的电流的有效值为(
- A. $I = \sqrt{\left(\frac{1}{R}\right)^2 + \left(\frac{2}{R}\right)^2}$ B. $I = \frac{1}{R} + \frac{2}{R}$
- C. $I = \sqrt{\left(\frac{\sqrt{2}}{R}\right)^2 + \left(\frac{2\sqrt{2}}{R}\right)^2}$ D. $I = \frac{\sqrt{2}}{R} + \frac{2\sqrt{2}}{R}$
- 3、图示正弦稳态电路, 电压表 V₁ 是 6V, 表 V_2 是 4V, V_3 是 3V, 问电压表 V 是 ()。
- A: 7V
- B: 5V
- C: 13V
- D: 10V

- 二、填空题(5小题,每空2分,共26分)
- 1、对称三相电路中,电源线电压为 220V,负载作三角形联接,每相阻抗 $Z=22\Omega$,则线电流为
- 三相总有功功率为。

三、计算题(6小题,每小题10分,共60分)

1 、下图所示电路,已知电源 u 为正弦交流电压,其有效值为 120V,电路参数为 $\omega L_{\rm l}=rac{1}{\omega C}=10\Omega, R=\omega L_{\rm l}=\omega M=8\Omega$,试计算各支路的有功功率及电阻 R 消耗的功率。

2、已知图所示的电路,换路前已进入稳态,求换路后的u(t),i(t)。

3、试列出图示电路的节点电压方程组。

4、图所示正弦交流电路中,已知 $i_s=10\sqrt{2}\sin(100t+15^\circ)A,R=10\Omega$, L=0.1H , $C=500\mu F$ 。求电压 u 和电路的功率 P。

5、三相电如图所示,第一个功率表例的读数为833.33W,第二个功率表现的读数为1666.67W,试求对称三相感性负载的有功功率、无功功率及功率因数。

6、用网孔电流法求下图所示电路的 U。

四、证明题(1小题,共5分) 1、试通过计算证明图示两电路中的U是相等的。 U 1Ω (b) (a)

2017-2018 学年第一学期电路理论 A 答案

- 一、单项选择题(3小题,每小题3分,共9分)
- 1、图示电路中,已知 $I_R=0$,则

- B、 $_{Ic}^{ullet}$ 与 $_{Is}^{ullet}$ 反相 C、 $_{Ic}^{ullet}$ 与 $_{Is}^{ullet}$ 正交

答案: B

2、若加在电阻 R两端的电压 $u = (\sqrt{2} \sin \omega t + 2\sqrt{2} \sin 3\omega t)$ V,则通过 R的电流的有效值

A.
$$I = \sqrt{\left(\frac{1}{R}\right)^2 + \left(\frac{2}{R}\right)^2}$$
 B. $I = \frac{1}{R} + \frac{2}{R}$

B.
$$I = \frac{1}{R} + \frac{2}{R}$$

$$C \cdot I = \sqrt{\left(\frac{\sqrt{2}}{R}\right)^2 + \left(\frac{2\sqrt{2}}{R}\right)^2} \qquad D \cdot I = \frac{\sqrt{2}}{R} + \frac{2\sqrt{2}}{R}$$

$$D \cdot I = \frac{\sqrt{2}}{R} + \frac{2\sqrt{2}}{R}$$

答案: A

3、图示正弦稳态电路, 电压表 V₁是 6V,

表 V₂是 4V, V₃是 3V, 问电压表 V 是多少?

A: 7V

B: 5V

C: 13V

D: 10V

答案: B

- 二、填空题(5小题,每空2分,共26分)
- 1、对称三相电路中, 电源线电压为 220V, 负载作三角形联接, 每相阻抗 $Z=22\Omega$, 则线电流 为_____; 三相总有功功率为_____。

答案: 17.3A. 6600W

 $\dot{I}_1 = 2$ 、图示电路中,电流 \dot{I}_1 _____A。电流源供出的有功功率 *P*=______W,无功功率 *Q*=____var。

答案: 10/135

200 200 3、图示电路中,开路电压 U 为_____,电压 U_1 为_____。

答案: 4V -5V

4、一个线圈接至220V的直流电源时, 功率P₁=1.2kW; 接到工频220V正弦交流电源时, 功

率 P_2 =0.6kW。则线圈的R 和L 。

答案:
$$R = \frac{U^2}{P_1} = \frac{220^2}{1.2 \times 1000} \Omega = 40.3 \Omega$$

$$I = \sqrt{\frac{P_2}{R}} = \sqrt{\frac{0.6 \times 1000}{40.3}} \text{ A} = 3.86 \text{ A}$$

$$L = \frac{1}{\omega} \sqrt{\frac{1}{4} - R^2} = 0.128 \,\text{H}$$

答案: $L_1 \frac{\mathrm{d}i_1}{\mathrm{d}t} - M \frac{\mathrm{d}i_2}{\mathrm{d}t}$ $L_2 \frac{\mathrm{d}i_2}{\mathrm{d}t} - M \frac{\mathrm{d}i_1}{\mathrm{d}t}$ $\mathrm{j}\omega L_1 \dot{I}_1 - \mathrm{j}\omega M \dot{I}_2$ $\mathrm{j}\omega L_2 \dot{I}_2 - \mathrm{j}\omega M \dot{I}_1$

三、计算题(6小题,每小题10分,共60分)

1、下图所示电路, 已知电源 u 为正弦交流电压, 其有效值为 120V, 电路参数为

$$\omega L_{\rm l}=rac{1}{\omega C}$$
 = 10Ω , $R=\omega L_{\rm 2}=\omega M=8\Omega$, 试计算各支路的有功功率及电阻 R 消耗的功率。

答案: $P_1 = 1800W, P_2 = 0W, P_R = 1800W$

2、已知图所示的电路,换路前已进入稳态,求换路后的u(t),i(t)。

答案:
$$u(t) = 12e^{-\frac{t}{400}} + 12(kV) \qquad t > 0$$
$$i(t) = 3e^{-\frac{t}{400}}(A) \qquad t > 0$$

3、试列出图示电路的节点电压方程组。

$$\begin{cases}
\left(\frac{1}{R_3} + j\omega C_2 + \frac{1}{R_1 + j\omega L_1}\right) \dot{U}_1 - \frac{1}{R_3} \dot{U}_2 = -\dot{I}_S \\
\left(\frac{1}{R_3} + \frac{1}{j\omega L_4} + j\omega C_5\right) \dot{U}_2 - \frac{1}{R_3} \dot{U}_1 = j\omega C_5 \dot{U}_3 + \dot{I}_S
\end{cases}$$

4、图所示正弦交流电路中,已知 $i_s=10\sqrt{2}\sin(100t+15^\circ)A,R=10\Omega$, L=0.1H , $C=500\mu F$ 。求电压 u 和电路的功率 P。

答案: $u = 20\sin(100t - 165^{\circ})V$

5、三相电如图所示,第一个功率表 的读数为 833.33W,第二个功率表 的读数为 1666.67W,试求对称三相感性负载的有功功率、无功功率及功率因数。

解:
$$P = P_1 + P_2 = 2500$$
W

$$Q = \sqrt{3}(P_2 - P_1) = 1443 \text{Var}$$

$$\cos \varphi = 0.866$$

6、用网孔电流法求下图所示电路的 U。

四、证明题(1小题,共5分)

1、试通过计算证明图示两电路中的*U*是相等的。

答案: (a)图

$$I_{2} = \frac{4}{1 + \frac{3}{2} + 4} \times 3A = \frac{24}{13}A$$

$$I_{4} = \frac{1}{2}I_{2} = \frac{12}{13}A$$

$$U = -2I_{4} = -\frac{24}{13}V$$

(b)图

$$I_2 = \frac{2}{2+1+3/(1+4)} \times 3A = \frac{16}{13}A$$

$$I_4 = \frac{3}{3+4+1}I_2 = \frac{3}{8} \times \frac{16}{3}A = \frac{6}{13}A$$

$$U = -4I_4 = -\frac{24}{13}V$$

南京农业大学试题纸

2017-2018 学年 1 学期 课程类型: 必修 试卷类型: B

课程号 AGEN3202

本试卷适应范围 2016级自动、电

信、电气专业

课程名____电路理论___

学分 4

学号

姓名

班级

题号	_	11	111	四	五	六	七	八	九	总分	签名
得分											

备注: (允许使用计算器)

一、简答题(每题5分,共20分)

- 1. 你能说出电阻和电抗的不同之处和相似之处吗? 它们的单位相同吗?
- 2. 额定电压相同、额定功率不等的两个白炽灯,能否串联使用?
- 3. 直流情况下, 电感的感抗等于多少? 感抗与哪些因素有关?
- 4. 为什么三相电动机的电源可用三相三线制,而三相照明电源则必须用三相四线制?

二、分析题(共10分)

1. 求图题二所示各电路的等效电阻 Rab。(10 分)

三、计算题(共50分)

- 1. 电路如图题三所示,求电流 I 和电压 U。(10 分)
- 2. 分别计算 S 打开与闭合时图题四电路中 A、B 两点的电位。(10 分)

3. 图题五所示电路中,已知 $Z=(30+j30)\Omega$, $jX_L=j10\Omega$,又知 $U_Z=85V$,求路端电压有效值 U_o (10 分)

装 订 线 4. 电路如图题六所示。已知 $C=100 \mathrm{pF}$, $L=100 \, \mathrm{\mu}$ H, $i_C=\sqrt{2}10 \cos(10^7 t+60^\circ) \, \mathrm{mA}$,电路消耗的功率 $P=100 \mathrm{mW}$,试求电阻 R 和电压 u (t)。(10 分)

5. 三相电路如图题七所示。已知电源线电压为 380V 的工频电,求各相负载的相电流、中线电流及三相有功功率 P, 画出相量图。(10 分)

图题七

四、综合题(共20分)

- 1. 在图题八所示电路中, R_1 =6 Ω , R_2 =2 Ω ,L=0.2H, U_S =12V,换路前电路已达稳态。t=0 时开关 S 闭合。求响应 i_L (t)。(10 分)
- 2. 已知图题九所示电路的 $u(t) = [10 + 80\sin(\omega t + 30^\circ) + 18\sin 3\omega t]$ V,R=6 Ω , $\omega L=2$ Ω , $1/\omega C=18$ Ω ,求交流电压表、交流电流表及功率表的读数,并求i(t)的谐波表达式。(10 分)

2017 电路理论 B 卷参考答案

- 一、简答题(每题5分,共20分)
- 1. 答: 电阻在阻碍电流时伴随着消耗,电抗在阻碍电流时无消耗,二者单位相同。
- 2. 答:额定电压相同、额定功率不等的两个白炽灯是不能串联使用的,因为串联时通过的电流相同,而这两盏灯由于功率不同它们的灯丝电阻是不同的:功率大的白炽灯灯丝电阻小分压少,不能正常工作;功率小的白炽灯灯丝电阻大分压多容易烧损。
- 3. 答: 直流情况下, 电感的感抗等于 0。感抗与频率成正比, 与电感量成正比。
- 4. 解:三相电动机是对称三相负载,中线不起作用,因此采用三相三线制即可;而三相照明电路通常情况下均为三相不对称 Y 接负载,必须要有中线,中线在这里起的重要作用是:可使不对称 Y 接负载的端电压保持对称。所以三相照明电源必须用三相四线制。
- 二、分析题(10分)

解: (1) 图:
$$R_{AB}=2+[(3//9+6)//8]\approx6.06\Omega$$
 (5分)

(2) 图:
$$R_{AB}=1.2+4+[(3+9) // (2+6)]\approx 10 \Omega$$
 (5分)

三、计算题(50分)

1.解:对右回路列一个 KVL 方程 (选顺时针绕行方向):

$$U-1+1\times 3=0$$
 可得 $U=1-1\times 3=-2V$ (5分)
对 A 点列一个 KCL 方程 $I-1\div 2-1=0$ 可得 $I=1\div 2+1=1.5A$ (5分)

2.解: ①S 打开时:

$$V_{\rm B} = 12 - \frac{12 - (-12)}{2 + 4 + 26} \times 26 = -7.5 \text{ V}$$

$$V_{\rm A} = -7.5 - \frac{12 - (-12)}{2 + 4 + 26} \times 4 = -10.5 \text{ V} \quad (5 \%)$$

②S 闭合时:

$$V_{\rm A}=0{\rm V}$$
, $V_{\rm B}=12\frac{4}{26+4}=1.6{\rm V}~(5~\%)$

3.解:
$$I = \frac{U_Z}{Z} = \frac{85}{\sqrt{30^2 + 30^2}} \approx 2A$$
 设 $\dot{I} = 2\angle 0^{\circ}A$ (4分)

则
$$U_{\rm Z} = 85 \angle 0^{\circ} + 45^{\circ} = 85 \angle 45^{\circ} {\rm V}$$
 $U_{\rm L} = j \dot{I} X_{\rm L} = j 20 {\rm V}$ (4分)

$$\overset{\bullet}{U} = \overset{\bullet}{U}_{z} + \overset{\bullet}{U}_{L} = 85 \angle 45^{\circ} + j20 = 60 + j(60 + 20) = 60 + j80 = 100 \angle 53.1^{\circ}V$$
 (2 $\frac{4}{3}$)

路端电压有效值为 100 伏。

4.解:
$$U_{\#} = 10^{-2} \angle 150^{\circ} / 10^{7} \times 10^{-10} \angle -90^{\circ}$$

= $10 \angle 65^{\circ} \text{mV}$

$$R = 0.01^2 / 0.1 = 10^{-3} \Omega$$
 $I_R = 10^{-2} / 0.001 \angle 65^\circ = 10 \angle 65^\circ \text{mA}$ (4 $\%$)

$$\vec{I} = \vec{I}_R + \vec{I}_C = (4.23 - 8.66) + j(9.06 + 5) \approx 14.7 \angle 107^\circ \text{mA}$$
 (4 分)

$$U = U_{\text{#}} + U_{\text{L}} = 0.01 \angle 65^{\circ} + 14.7 \angle -17^{\circ} \approx 14.7 \angle -17^{\circ} \text{mV}$$

∴
$$u \approx 14.7\sqrt{2}\sin(10^7 \text{ t} - 17^\circ)\text{mV}$$
 (2 分)

5.解: 各相电流均为 220/10=22A, 由于三相不对称, 所以中线电流

•
$$I_N = 22 + 22 \angle -30^\circ + 22 \angle 30^\circ$$

= $22 + 19.05 - j11 + 19.05 + j11$ (6 分)
= $60.1 \angle 0^\circ A$

三相有功功率实际上只在 U 相负载上产生,因此 $P=22^2 \times 10=4840W$ (2分) 相量图 (2分)

四、综合题

1.解:响应 i(t)的初始值、稳态值及时间常数分别为

$$i_{L}(0_{+}) = i_{L}(0_{-}) = \frac{12}{6+2} = 1.5A$$

$$\tau = \frac{L}{R} = \frac{0.2}{2} = 0.1s$$

$$i_{L}(\infty) = \frac{12}{2} = 6A$$
(6 分)

应用三要素法求得响应为

$$i_{\rm L}(t) = 6 - 4.5e^{-10t} A (4 \%)$$

2.解: 基波单独作用时: /o=0 Uo=0 Wo=0

一次谐波单独作用时: $Z_1 = 6 + j(2-18) \approx 17.1 \angle -69.4^{\circ}\Omega$

$$I_1 = \frac{80/\sqrt{2}\angle 30^{\circ}}{17.1\angle -69.4^{\circ}} \approx 3.31\angle 99.4^{\circ}A \quad (2 \%)$$

RL 串联部分电压有效值: $U_{RL} = 3.31 \times 6.32 \approx 20.9 \text{V}$

三次谐波单独作用时: $Z_1 = 6 + j(6-6) = 6 \angle 0^{\circ}\Omega$ 发生串联谐振

$$I_3 = \frac{18/\sqrt{2}\angle 0^{\circ}}{6\angle 0^{\circ}} \approx 2.12\angle 0^{\circ}A \quad (2 \,\%)$$

RL 串联部分电压有效值: $U_{RL3} = 2.12 \times 8.48 \approx 18V$ (2分)

电流表读数: $I = \sqrt{3.31^2 + 2.12^2} \approx 3.93$ A (1分)

电压表读数: $U = \sqrt{20.9^2 + 18^2} \approx 27.6 \text{V}$ (1分)

功率表读数: P=P₁+P₃=3.31×56.56×cos69.4°+2.12²×6≈65.9+27=92.9W(2分)