Energy-Efficient Broadcast Tree Protocol

Final Presentation

Source: https://en.wikipedia.org/wiki/Broadcasting_(networking)

Introduction

- **Energy-Efficient Broadcast Tree Construction**
- Previous work
- Goals
- Energy-Efficient Broadcast Tree Protocol (EEBTP)
 - Changes to base design
 - Frame types
 - Cycle detection/prevention
 - Problems and solutions
- **Evaluation**
- Discussion
- Future work

Design with Potential Game

- Broadcast message to all nodes in a multi-hop network
- Build broadcast tree to minimize transmit power and then transmit data
- Potential game
 - Each node represents a rational player
 - Player reacts to actions of other players
 - Each action comes with a cost
 - Use weakly dominant strategy
 - Change between actions with the same cost
- Decentralized algorithm
- Use broadcast nature of wireless networks

Fig. 3: Benefit of exploiting weakly dominant strategy for the proposed algorithm. There are 10 nodes in the network.

Source: [1]

"I want to play a game"

- Initiator or source node starts a game
- Players react to action of other players
- Player selects its parent
 - Cost for new parent is lower than or equal for the old parent
 - Connection must not create a cycle
 - New parent is connected to initiator
- Player finishes its game
 - After N rounds without changes
- Algorithm terminates after all players have finished

Fig. 1: A sample network. Solid and dashed arrows show current and possible connections a in broadcast tree, respectively. In this network node j is a parent node for node i and a child node for S.

Source: [1]

Previous Work

- Bachelor thesis of Sergío Domínguez
- Protocol design
 - Definition of frame types
 - Actions on frame types
 - Cycle prevention
 - Send own path to source with each discovery frame
 - Proposed in paper
- Energy model
 - Linear energy model
 - Energy curve for MAX2831 chip

Goals – Idealized Assumptions

- Addressing idealized assumptions
 - Node cannot know every action of every node
 - Nodes must communicate to exchange information
 - Packet loss
 - Noisy channel
 - Collisions of packets
 - Implementation behavior

Goals - Protocol Design

- Based on algorithm of Mahdi Mousavi
- Protocol header and frame types based on Sergío's previous work
- Addressing identified idealized assumptions

Goals – Implementation

- Implementation in ns-3
 - Based on Sergío's previous work
- Different mechanisms for cycle prevention/detection
 - Ping-To-Source
 - Mutex
 - Path-To-Source
- Custom energy model
- Simple broadcast for comparison

Goals - Evaluation

- How much application data must be sent until EEBTP cost less energy than other algorithms? (Break-even point)
- Which mechanisms variants are better under what conditions?
- Costs and benefits of the different mechanisms/designs
- How many packets get lost?
- Energy cost to construct a broadcast tree
- Time to construct a broadcast tree

EEBT-Protocol - Changes

- Use Sergío's previous design as base
- Header design changed
- Custom energy model
 - Models energy consumption of two chips (MAX2828, MAX2831)
 - Empirical data only for positive or negative dBm values (not both)
 - Approximation with only one chip too inaccurate
 - Easily expandable
- Multiple games at the same time
- Mechanisms for cycle detection/prevention

EEBT-Protocol – Frame Types

- Cycle detection/prevention
- Neighbor discovery
- Child request
- Child confirmation
- Child rejection
- Parent revocation
- End of game
- Application data

Graph Cycles

- Cycle prevention/detection is important
 - A cycle causes isolation of nodes from the network
 - Isolated nodes will not get the application data (theoretically)

Cycle Detection - Ping to Source

- Send ping (message) to source via new parent node
- Message contains information about
 - The sender
 - Old parent node
 - New parent node
- If message arrives at the sender
 - Cycle is detected
 - Connect to old parent
- Maintain blacklist and old parent stack
 - Prevents "Ping-Pong" effect
- Low resource cost

Cycle Detection - Ping to Source

Def: Ping(originator, newParent, oldParent)

Cycle Prevention - Mutex

- New connection
 - Lock all child nodes in subtree
 - Connect to new parent node
 - Release lock
- New parent is locked
 - Possible cycle
 - New parent rejects child request
- Nodes are not allowed to do anything when finally locked
 - Node is finally locked when all child nodes responded
- High resource cost but effective
 - Costs a lot of time

Cycle Prevention - Mutex

Cycle Prevention - Path to Source

- Adopted from base design of Sergío Domínguez
- Each node maintains its path to the source node
- Every neighbor discovery frame contains this path
 - Receiver checks if it's on the path of that node
 - If not, it can connect to the sender
- High resource cost and can fail
 - Costs less time due to async behavior
 - Information can get lost along the path
 - Cycles can occur

Ping-Pong Effect

- Node switches between different parent nodes
- Can have different causes
 - Parent has second node with same TX power
 - Noisy channel which leads to disconnects
 - Isolated group of nodes
- Solutions
 - Connection counter
 - Last parent stack
 - Rejection counter
 - Blacklist
- Problem remains sometimes

Problems with ns-3

- Missing event trigger in version 3.30.1
 - Solution: Fixed with version 3.31
- TX power per packet
 - Changed wifi-phy.cc (PHY-Layer)
 - Add packet tag with tx power information
- Error in wifi-phy-state-helper / energy model
 - Energy model switched to CCA_Busy during packet transmission when another packet arrives
 - Causes energy model to calculate energy for CCA_Busy mode and not TX mode
 - Results in very low energy consumption
 - Solution: Added exception for TX mode in wifi-phy-state-helper.cc

Custom Energy Model

- Standard ns-3 energy model is linear
 - Energy curve of real wifi chips is rather an exponential function
- Energy curve works only for positive values
 - Sergío fitted a polynomial
 - For larger negative values the result gets larger
 - Unrealistic energy consumption
- Lack of useful data
 - Many manufactures only specify max power
- Fitted exponential function from two chips
 - Data for positive and negative dBm values
 - Measured data are more realistic than a linear function

Evaluation

- Failed runs
- Ping-To-Source vs Mutex vs Path-To-Source
 - Energy to build a broadcast tree
 - Accumulated TX power
 - Time to build a broadcast tree
 - Tree depth and packet loss
 - Energy to transfer 1MB of data
 - Unconnected nodes
- Simple broadcast
- Request-To-Send Clear-To-Send (RTS/CTS;RC)
- Construct tree with max TX power

Evaluation – Failed Runs

- Build time measured with finish time of source node
- Build phase took too long (more than 10 seconds)
- Build phase never completed
 - Ping-Pong effect
 - Area too large
 - Isolation

Evaluation – Build Energy

- Mutex needs
 more energy
 since it needs to
 send lock
 requests and
 responses.
 Child request get
 rejected when
 node is locked.
- RTS/CTS helps to reduce the needed build energy.

Evaluation – Accumulated TX Power

- Not much difference in dense areas
- RTS/CTS helps a little to reduce the TX power
- Path-To-Source scores better in large and low density areas but can create cycles

Evaluation – Build Time

- Time increases with node count and area size
- Mutex takes longer due to the lock requests and responses
- RTS/CTS has a negligible effect

Evaluation – Tree Depth

- Small, dense areas result in flat trees
- Large and sparse areas result in huge trees
- Ping-To-Source creates deeper trees than Mutex
- RTS/CTS has a negligible effect

Evaluation – Tree Depth and Packet Loss

- Packet loss increases with tree depth
- Accepting packet from everyone and not only parent helps
- Large areas increase packet loss
- EEBTP can have a lower packet loss than Simple Broadcast

Depth

Evaluation – TX Energy

- RTS/CTS helps slightly
- Differences
 between
 mechanisms in
 large areas is small
- Large areas need more energy

Evaluation – TX Energy

- Simple Broadcast uses much more energy
- In larger areas, packet loss gets higher and energy lower

Evaluation – Unconnected Nodes

- In large areas, nodes are too far away to reach each other
- Mutex has more unconnected nodes due to high block times

Average number of unconnected nodes

Evaluation – Build with Max TX

- Needs slightly more energy to build a broadcast tree
- Much higher accumulated TX power
- Build time is nearly the same

Evaluation – Build with Max TX

- Broadcast tree needd less energy to transfer 1MB of data
- Corresponds to smaller tree size
- Packet loss does not differ much
- Effect reduces in larger areas

Discussion

- EEBTP is capable of reducing the needed energy for data transmission
- EEBTP suffers from high noise levels
- Ping-To-Source is currently the optimal cycle detection mechanism
- Mutex never creates cycles but needs more time and build energy
- Path-To-Source is not suitable since cycles can occur due to lost information
- Nodes in a cycle can still receive data when they also accept data from nodes other than their parents

Discussion

- Large trees not suitable for VoIP or video streaming due to high packet loss
- RTS/CTS helps to improve results
- Using max TX power during build phase decreases the needed energy for data transmission
- Protocol may still fail to build a broadcast tree
 - Area too large
 - Endless build phase
 - Ping-Pong effect

Future Work

- Expand protocol to a mobile environment
- Compare to other decentralized algorithms in a more realistic environment
- Look further into a real test environment
- Better mechanisms to handle the effects of noise
- Prevent endless build phase due to "Ping-Pong" effect

Questions and Feedback

- [1] Mahdi Mousavi et al., "Energy-Efficient Data Dissemination in Ad Hoc Networks: Mechanism Design with Potential Game", ISWCS, 2015
- [2] Sergio Domínguez Moreno, "Practical Broadcast Tree Construction with Potential Game for Energy-Efficient Data Dissemination in Ad-Hoc Network", Bachelor Thesis, 2018
- [3] Datasheet of the MAX2831/MAX2832 RF Transceivers, https://datasheets.maximintegrated.com/en/ds/MAX2831-MAX2832.pdf