24.962 Page 1 3/16/05

BD Correspondence OT: Kenstowicz 1997, Benua 1997, Kiparsky 2000

1. Cyclic constraint evaluation, without OO constraints

(Kenstowicz Phonology 1995; cf. McCarthy NELS 1999, ROA, Kiparsky to appear, CSLI: LPM OT;):

- Assume that constraint evaluation takes place on some inner Stem constituents, prior to affixation.
- Assume that in Stem-Af₁, the input to affixation of Af₁ is the optimal candidate for Stem.
- Assume that in a multiply affixed form Stem-... Af_n - Af_{n+1} , the input to Af_{n+1} affixation is the optimal candidate for Stem-... Af_n .
- The grammar consists of a hierarchy of ranked constraints divided into markedness and correspondence
- There are only IO correspondence constraints:

input to cycle 1 = UR;

input to cycle n = optimal candidate emerging from cycle n-1 evaluation.

- 2. This system has a flaw: it requires that the ranking of certain IO Correspondence constraints relative to phonotactics systematically change from the first cycle to the second. At the same time, wholesale reranking is a very bad idea.
- 3. Example: cyclic recall vs. noncyclic develop; cyclic peripherality vs. noncyclic Tatamagouchi;
 - 2^{nd} cycle (assume that input is $c\acute{a}ll$, the output of the 1^{st} cycle of evaluation
 - Ident stress I-O: correspondent syllables have identical values for [±stress]

re-cáll	Ident stress I-O	Nonfinality
☞ re-cáll		*
récall	*!*	

• The first cycle: suppose the UR has no stress marks, an undeniable option.

call	Have stress	Nonfinality	Ident stress I-O
rcáll		*	*
call	*!		

- We have derived a contradiction: Ident stress IO << >> Nonfinality
- Can be solved by re-ranking between 1st and 2nd cycle

Nonfiinality >> Ident stress IO

Ident stress IO >> Nonfinality

- This is true of all cases of IO Correspondence constraints that active in BD relations but inactive, because of Richness of Base considerations, in IO relations.
- 4. Can we avoid reranking?

Yes, if Ident IO ≠ Ident Derived IO, ie. Ident BD

- 5. Aside from this, this system is fairly similar to one with cyclic rule application
 - Base derivative similarity: characterized through Ident Derived Input
 - No guarantees: Ident Derived Input can but need not be active. If this turns out to be too weak a position, explicit statements about its high ranking can be incorporated.
 - Base priority: guaranteed.
 - Locality (Proximate base): guaranteed
 - No transderivational similarity: guaranteed.
 - No foresight: guaranteed

The major difference between this system and cyclic application: the existence of correspondence conditions which can provide very direct statements of base derivative identity.

- 6. Benua's TCT system: defining a base-derivative relation
 - Base: an expression containing the same lexical root as the derivative
 - Base: the maximal expression properly contained in the derivative The base of Root//...Affn/Affn+1 is Root//...Affn
 - 'a licit output word form[...] both morphologically and phonologically well-formed'
- 7. Now we examine how the properties derived or claimed to derive from cyclic rule application are derived in a system that invokes Output-to-Output correspondence.
- 8. **Base Priority** achieved by parallel evaluation against a recursive constraint hierarchy. In practice, this means that 2 evaluations take place for every BD pair, one for B, prior, and one for D. The optimal BD pair is one that (a) maximizes the constraint satisfaction in the B and (b) optimally satisfies it in the D, subject to (a).

	/cycl/	OO Id syll	SSC	*syll C	IO Id syll		/cycl-ing/	OO Id syll	SSC	*syll C	IO Id syll
a	saikļ			*	*	a'	saikl-ıŋ	*!			
b	saikļ		*!			b'	saikļ-ıŋ				
c	saikļ			*	*	c'	saikļ-ıŋ			*	*
d	saikļ		*!			ď'	saikļ-ıŋ	*!		*	

- 9. **Locality**: Benua achieves this by stipulating what counts as a base. However this does not in principle rule out the possibility that a remote base might also play a role, though this is not considered. In cyclic constraint evaluation, including its OT versions, this is claimed to be strictly impossible.
- 10. Indonesian (Cohn 1989 NLLT; Cohn & McCarthy 1993 ms; Kenstowicz 1996 Phonoogy)
 - a. Stress in non-derived words: an initial dactyl effect
 10, 010, 2010, 20010, 202010, 2002010...
 cári, bicára, kòperási, kòntinuási, èrodìnamíka àmerikànisási
 - b. Stress in suffixed words: still penult stress but dactyl disrupted

10+s	carí-kan	like <i>bicára</i>
10+s+s	càri-kán-ña	like <i>kòperási</i>
010+s	bicará-kan	unlike kòperási
010+s+s	bicàra-ká-ña	unlike kòntinuási
2010+s	bìjaksaná-an	like kòntinuási
2010+s+s	bìjaksána-án-ña	unlike èrodinamíka
20010+s	kòntinuasí-na	unlike èrodìnamíka

c. An Ident stress OO effect (bit changed from Kenstowicz)

Ident stress BD: a syllable is stressed in derivative, iff it's stressed in base

24.962 Page 3 3/16/05

Nonfinality >> Rightmost >> Ident stress BD >> Stress 1st >> *Lapse *Clash

B= bicára	Rightmost	Ident stress BD	Stress 1st	*Lapse
bicárakan	**!*		*	*
∳ bicarákan	*	**	*	*
bìcarákan	*	***!		

B= bicára	Rightmost	Ident stress BD	Stress 1st	*Lapse
∳ bicàrakánña	*		*	
bicarakánña	*	*!	*	**
bìcarakánã	*	*!*		*

B = bìjaksána	Rightmost	Ident Stress BD	Stress 1st	*Lapse
≱ ⇔bìjaksaná-an	*	*		*
bìjaksána-an	**!			*
bijàksaná-an	*	**!	*	

B = bìjaksána	Rightmost	Ident Stress BD	Stress 1st	*Lapse
≱ ⇔bìjaksàna-án-ña	*			
bìjaksana-án-ña	*	*!		**

Surprisingly, in Indonesian, Ident (stress) BD requires identity to remote rather than proximate base: in *bicàra-kán-ña* we're looking at *bicára*, not at *bicará-kan*. This violates Locality (proximate base) effect.

• Why is the language working this way? Because of Lapse avoidance.

Here's what would happen if we had computed Ident stress violations on the proximate base:

B= bicarákan	*Clash	Rightmost	Ident stressBD	Stress 1	*Lapse
bicarakánña		*	*	*	**
⊗bicàrakáñna		*	**!	*	
bicarákañna		**!	*	*	
bicaràkáñna	*!	*	*	*	

B = bìjaksanáan	*Clash	Rightmost	Ident stressBD	Stress 1	*Lapse
≱ bìjaksanaán-ña		*	*		**
⊗bìjaksànaán-ña		*	**!		

By choosing to resemble the remote rather than the proximate base, the actual stress system of Indonesian is avoiding extended ($\sigma\sigma\sigma$) Lapse violations. These are not always avoidable:

B= kòntinuási	*Clash	Rightmost	Ident stressBD	Stress 1	*Lapse
kòntinuasína		*	*		**
kòntinùasína		*	**!		

But they are avoidable if there is a choice between the proximate and the remote base. This suggests an analysis in which stress in a derivative is free to resemble either a remote or a proximate base (and possibly other bases in between – though no evidence for that): the preferred (all-else-being-equal) base is the proximate one, but a remote base can be chosen so as to avoid extended Lapse violations.

An analysis that has this character will need an additional constraint: Base = proximate Base¹. This constraint is inactive in Indonesian but it will play a role in other cases. The existence of this constraint is the formal reflex of the proximate base effect.

Nonfinality >> Rightmost >> Ident stress BD >> Stress 1st >> *Lapse >> B= proximate

*Clash

bijaksana-an-ña	*Clash	Rightmost	Ident stress	Stress 1	*Lapse	B =
			BD			proximate
∳ bìjaksànaán-ña		*	*			*
B = bìjaksána						
bìjaksànaán-ña		*	**!			
B = bìjaksanáan						
bìjaksanaán-ña		*	*		**!	
B = bìjaksanáan						

bicara-kan-ña	*Clash	Rightmost	Ident stress	Stress 1	*Lapse	B = proximate
			BD			
bicàrakán-ña		*	*	*		*
B = bicára						
bicarakán-ña		*	*	*	*!*	
B = bicarákan						
bicàrakán-ña		*	**!*	*	*	
B = bicarákan						

11. **No foresight** and the word-status of bases.

Cyclic application derives certain effects from the idea that computations on cycle n ignore what's coming up on cycle n+1. E.g. in *cycl-ing*, cycle 1 doesn't know that a V-initial suffix is coming.

Interestingly, all or most such cases of the No-foresight effect happen to involve a cycle 1 that's an independent word: *cycle* is an independent word. Cyclic rule application (including its OT counterparts) does not invoke this fact. Other OT approaches (Kenstowicz, Benua) claim that bases must be words.

- 12. Borowsky and Harvey *Phonology* 14, 1997 "Vowel length identity in Warray" What follows is a very simplified version of their argument.
 - Long V's: obligatory in all monosyllables closed by (C): *lee, buum, wiik* (*CV, CVC words)
 - Long V's: obligatory in the stems of all suffixed monosyllables, if the monosyllable can occur without a suffix:

gee-lik, gee-yang, wiik-lik, wiik-gu

• Short V's: obligatory in all polysyllabic stems; in all monosyllables closed by CC, in all suffixes

_

¹ "The base of any derivative is its proximate base."

24.962 Page 5 3/16/05

budu, bandi, bulk (*CVVCV, *CVCVV... stems, *CVVCC words)

• Short V's in all body part stems: these monosyllables are always either possessed or prefixed with *an*- (a body-part classifier) and never occur in isolation!

<u>a-dum</u>-bali-wu 'pref-eye-wide-OBL' <u>at-dum</u>-jámip-ji-p '1sg Subj-eye-block-inch-PP' ('my eyes are blocked') <u>an-dum</u> 'eye', <u>an-bam</u> 'head', <u>an-gi</u> 'nose'

• An O-O correspondence account (bit changed from Borowsky and Harvey's):

MAX
$$\mu$$
 BD, MinWord 2 μ >> *Long V >> MAX/DEP μ IO get-lik, *gelik lee, *le CVCV, *CVVCV

- Need to add constraints on affixation, something like: *Prefix-Prefix >> Have prefix an- on body-part root.
- Analyses

(a) an obligatorily prefixed CVC root, assume it's /CVVC/

duum	Pref-to-body-part	Min Word	*Long V	MAX μ IO
duum	*!			
an-dum				*
an-duum			*!	

(b) a CVC root in isolation: [wiik], assume it's /wik/

wik	Min Word	*Long V	MAX μ IO
∳ wiik		*	*
wik	*!		

(c) a CVC root suffixed

wik	MAX μ BD	Min Word	*Long V	MAX μ IO
∳ wiik-lik			*	*
wik-lik	*!			

(d) a CVC body part incorporated: note that *Pref-pref >> Pref-to-body-part

a duum bali wu	MAX μ BD	Min Word	*Long V	MAX μ IO
≱a-dum-bali-wu				*
a-duum-bali-wu			*!	

• The cyclic constraint evaluation / rule application account:

Cycle one: CV(C): V lengthens: Min Word >> *Long V

Cycle two: affix added, but long V preserved from cycle 1.

MAX μ BD >> *Long V

• The problem: the *no foresight* effect of cyclic application prevents one from distinguishing obligatorily affixed stems from stems that need not be affixed: they all look alike on cycle 1!

Cycle one: dum lengthens to duum: Min Word >> *Long V

Cycle two: prefix added: *an-duum: MAX μ BD >> *Long V

- Not only body parts but also other 1 syll nouns participate in this generalization: if they do not to occur in isolation, their affixed stems have short V's.
- 13. Cyclic constraint evaluation/rule application obtains its results from forced ignorance: cycle n processing doesn't know and can't factor in upcoming information on cycle n+1. E.g. vowel lengthens in *wiik* on cycle 1, because it doesn't know more is coming that could prevent a pointless violation of *Long V. The right analysis requires a global determination that an expression is or is not a word. If it's not a word, it can't be a base. That's why /dum/, which happens not to be a word, cannot be a base. Here is what would happen if it was:

/dum/	MAX	Min	*Long	MAX		/an-dum/	MAX	Min	*Long	MAX
	μBD	Word	V	μIO			μBD	Word	V	μIO
duum			*	*	a'	an-duum			*	
dum		*!			b'	an-dum				

Here is what happens when /dum/ is excluded as a base:

	/an-dum/	MAX μ BD	Min Word	*Long V	MAX μ IO
a	an-duum			*!	*
b	an-dum				

- 14. Word status condition on bases:
 - recall fhimna 'we understood': the non-word /fihim/ is not a base.
 - Harris 1983 analysis of desdeñ-ar (verb, 'to disdain') vs. desden, desden-es (noun; sg. and pl.). There is a cycle on desden (noun, sing), because it's a word; there's no cycle on desdeñ- (verb root) because it's not a word.