PRÉDICTION DE DEMANDE D'ÉLECTRICITÉ

CLADIERE NATHAN, PROJET 9, FORMATION DATA ANALYST OC

SOMMAIRE

- Contexte
- Présentation des données utilisées
- Analyse de la consommation
 - Corrigée de l'effet de température
 - Désaisonnalisée
- Prévision de la consommation
 - Holt Winters
 - SARIMA
- Conclusion

CONTEXTE

- Energies renouvelables intermittentes
- Demande en électricité varie au cours du temps
- Mettre adéquation offre et demande
 - Analyse de l'évolution de la de demande
 - Analyse de la consommation sans effet mensuel de température
 - Analyse de la consommation désaisonnalisé
 - Prévision de la consommation

PRÉSENTATION DES DONNÉES UTILISÉES

SOURCES ET PÉRIODES

DONNÉES DE CONSOMMATION

- Source : RTE (Réseau de transport d'électricité)
- Données des régions
- Groupées pour France
- Période: 2014 -2019

DONNÉES DE DJU

- Source : CEGIBAT (Météo France /GRDF)
- Données des régions
- Groupées pour France
- Période: 2014 -2019

Utilisation des données région: DJU n'est pas identique dans toutes les régions

CONSOMMATION: ANALYSE GRAPHIQUE

- Pic haut de consommation en hiver (moyenne Janvier: 51800 MW)
- Pic bas de consommation en été (moyenne Aout: 31600 MW)
- Petit pic de consommation Juillet
- Tendance stable
- Saisonnalité annuelle

DJU: QU'EST-CE?

- Degré Jour Unifié : valeur représentant l'écart de la température d'une journée donnée et un seuil de température préétabli
- Formule:

$$DJU = 18- (Tmin + Tmax)/2$$

- Plus il fait froid plus le DJU sera élevé
- Élevé en hiver

ANALYSE GRAPHIQUE: DJU

- Pic haut du DJU en hiver (moyenne Janvier: 749)
- Pic bas de consommation en été (moyenne Juillet: 67)
- Pas de pic en Juillet
- Tendance stable
- Saisonnalité annuelle

PREMIÈRES ANALYSES: CONCLUSIONS

- Consommation et DJU suivent la même tendance et saisonnalité
- Y'a-t-il réellement une relation entre les deux ?
- Peut-on se servir du DJU pour voir la consommation d'électricité des français hors chauffage ?

ANALYSE DE LA CONSOMMATION

- Données corrigées de la température
- Données dessaisonnalisées

DONNÉES CORRIGÉES DE LA TEMPÉRATURE: RÉGRESSION LINÉAIRE

- Corrélation apparait
 - Constante 30000 MW
 - Coefficient 4,29
 - Normalité des résidus

 Correction de la température avec cette régression :

Corrigée = consommation-(DJU*coeff)

DONNÉES CORRIGÉES DE LA TEMPÉRATURE: ANALYSE DE LA CORRECTION

- Plus de variation du à la température
 - Variation consommation réelle: 17%
 - Variation consommation corrigée: 5%
- Saisonnalité annuelle à supprimer pour une modélisation

DONNÉES DESSAISONNALISÉES: DÉCOMPOSITION AVEC MOYENNES MOBILES

- Tendance légère hausse en 2018
- Moyenne des résidus = 0 (après dessaisonalisation)
- Saisonnalité annuelle

Besoin d'une dessaisonalisation

DONNÉES DESSAISONNALISÉES: ANALYSE GRAPHIQUE

- Plus de variation du à la température
 - Variation données corrigées de températures: 5%
 - Variation données dessaisonalisées: 2%

DONNÉES DESSAISONNALISÉES: VIABILITÉ DE LA SÉRIE POUR MODÉLISATION

- Série doit avoir un bruit Blanc:
 - Test de Ljung-box
 - Pas d'autocorrélation des données dans le temps
 - Utilisation de l'ACF
 - Distribution suivant une lois normale
 - Test de shapiro

DONNÉES DESSAISONNALISÉES: VIABILITÉ DE LA SÉRIE POUR MODÉLISATION

Série corrigée de la température

6 : 0.04764412917136542 0.01588138284625905 : 0.009528829707755428 36: 0.007940691423129524

Ljung-box

Normalité

Série dessaisonalisée

0.43384514324069 : 0.19278357089523887

ACF

ANALYSE DE LA CONSOMMATION CONCLUSION

- Afin de prédire la consommation pour notre production:
 - Enlever les facteurs de température
 - Dessaisonaliser
- Faut-il d'autres traitement ?
- Quels modèles prédit le mieux la consommation ?

MODÉLISATION: HOLT WINTERS

HOLT WINTERS: PARAMÉTRAGES

- Données utilisées : données corrigées de température
- Dessaisonnalisation : seasonal_period = 12
- Tendance et saisonnalité : additif

HOLT WINTERS: ANALYSE GRAPHIQUE

Paramètres

- Alpha: Ensemble des valeurs (0,052)
- Beta : Ensemble des tendances (0,052)
- Gamma : saisonnalité récente (0,47)

HOLT WINTERS: ANALYSE VIABILITÉ DU MODÈLE

MODÉLISATION: SARIMA

SARIMA: MÉTHODOLOGIE

- I. Stationnarisation
 - Etude des autocorrélations et test de Dickey-Fuller
- 2. Identifications des modèles potentiels
 - Exploration de 3 modèles
- 3. Vérification des modèles
 - Comparaison du bruit blanc des résidus des modèles
- 4. Prévision à l'aide des modèles
 - Comparaison graphique
- 5. Analyse des modèles
 - MAPE

SARIMA: STATIONNARISATION

P-value Dickey-Fuller = 0,72

• Saisonnalité à tout les lags 12 : différenciation 12

P-value Dickey-Fuller = 2,31 e-08

SARIMA: IDENTIFICATIONS DES MODÈLES POTENTIELS

MANUELLE I

 Identification des paramètres p, d et q;
 P,D et Q avec l'ACF et le PCAF

MANUELLE 2

Initialisation des

 paramètres
 (I,I,I)(I,I,I), retrait si
 pas significatif

AUTOMATIQUE

Minimisation des AIC et
 BIC

SARIMA: IDENTIFICATIONS DES MODÈLES POTENTIELS MANUELLE I

- q: nombre de lag pas significatif (ACF)
 q:2
 Q:0 (pas de saisonnalité)
- p: nombre de lag pas significatif (PACF)
 p:3
 P:0 (pas de saisonnalité)
- différenciation pour stationnariser la série
 D: I
 d: 0 plus de saisonnalité dans l'ACF
- (2,0,3)(0,1,0,12)

SARIMA: IDENTIFICATIONS DES MODÈLES POTENTIELS MANUELLE 2

			SARIMAX	Results			
Dep. Varia Model: Date: Time: Sample:	SARI		Fri, 11 Dec	, 12) 2020 10:44	No. Observation Log Likelihood AIC BIC HQIC	s:	-411.708 833.416 842.667 836.897
	0.3377 -0.4817 0.6988	0.449 0.443 0.131		0.4		0.386 0.955	
Ljung-Box Prob(Q): Heterosked	2.009e+06 (Q): asticity (H): wo-sided):		1.67e+13 69.54 0.00 1.42 0.49	Jarque- Prob(JB Skew:	Bera (JB):	-	0.40 0.82 -0.08 2.58

			SARIMAX	Results			
Dep. Varia	ble:			y No.	Observations	-412.2	
Model:	SAR	MAX(0, 1, :	l)x(1, 1, 1	, 12) Log	Likelihood		
Date:			Fri, 11 Dec	2020 AIC	AIC		832.48
Time: 18:11:14 BIC							
Sample:				0 HQIC	:		835.27
				- 60			
Covariance	Type:			opg			
	coef	std err	Z	P> z	[0.025	0.975]	
ma.L1	-0.1397	0.052	-2.682	0.007	-0.242	-0.038	
ar.S.L12	0.6950		5.375	0.000	0.442		
			-4.085		-1.480		
	2.072e+06			0.000	2.07e+06		
========	=========				========		===
Ljung-Box (Q):			72.22	Jarque-Bera (JB):		C	.53
Prob(Q):			0.00	Prob(JB):		0.77	
Heteroskedasticity (H):			1.42 Skew:			-0.10	
Prob(H) (t	wo-sided):		0.49	Kurtosis:			.52

• Retrait du modèle AR non significatif

SARIMA: VÉRIFICATION DU MODÈLE BLANCHEUR DES RÉSIDUS

MANUELLE I

6: 2.0112978346934906e-13
12: 1.0056489173467453e-13
18: 6.704326115644968e-14
24: 5.0282445867337264e-14
30: 4.0225956693869814e-14
36: 3.352163057822484e-14

30000 - 20000

MANUELLE 2

6: 0.9834945659586819
12: 0.9255676217764474

18: 0.7782687087104672
24: 0.7807777465234489
30: 0.8137683054600248
36: 0.8422705276321688

AUTOMATIQUE

6: 2.4560178289469295e-13
12: 1.2280089144734647e-13
18: 8.186726096489765e-14
24: 6.140044572367324e-14
30: 4.912035657893859e-14
36: 4.0933630482448825e-14

Ljung-box

SARIMA: PRÉVISION À L'AIDE DES MODÈLES

SARIMA: ANALYSE DES MODÈLES

MAPE:

M1: 2,97% M2: 3,46% Auto: 2,93%

% HW: 2,63%

MODÉLISATION: CONCLUSION

- Choix du modèle dépendra de nos critère de décisions
- Meilleur MAPE : Holt Winters

CONCLUSION

CONCLUSION GLOBALE

- Attention aux grosses variations été/hiver
- Différent modèles de prédictions possibles
- A mettre en adéquation avec notre capacité de production
- Etudier l'effet de la climatisation