Notas de estudio para Examen Privado Licenciatura en Física

Diego Sarceño

1 de julio de 2024

Índice general

Ι	Ter	rmodinámica	12
1.	Con	nceptos Básicos	14
	1.1.	Sistemas Termodinámicos y Cantidades de Estado	15
	1.2.	Equilibrio y Temperatura (Ley Cero de la Termodinámica):	15
	1.3.	Presión, Ecuación de Estado	16
2.	Prin	mera Ley de la Termodinámia	18
	2.1.	Trabajo y Calor	18
		2.1.1. Naturaleza del Calor	19
	2.2.	Energía Interna y Primera Ley	19
	2.3.	Implicaciones de la Primera Ley	20
	2.4.	Capacidad Calorífica	20
	2.5.	Procesos Adiabáticos	21
		2.5.1. Trabajo Adiabático	21
3.	Pro	cesos Cíclicos	22
	3.1.	Tipos de Procesos	22
		3.1.1. Procesos Reversibles e Irreversibles	
	3.2.	Ciclo de Carnot	22
		3.2.1. Teoremas de Carnot	
4.	Seg	unda Ley de la Termodinámica	24
		Kelvin-Planck	24
		Clauius	
	4.3.	La que te venden los divulgadores	24
		Reversibilidad e Irreversibilidad	
5.	Ent	ropía	25
		Definición de Entropía	25
		Cambios Irreversibles	
		Regresando a la Primera Ley	
		Expansión de Joule (Expansión Libre)	26

6.	Terr	nodinámica en Acción	2 9
	6.1.	Potenciales Termodinámicos	29
		6.1.1. Energía Interna	29
		6.1.2. Entalpía, H	29
		6.1.3. Función de Helmholtz, F	30
		6.1.4. Función de Gibbs, G	31
		6.1.5. Relaciones de Maxwell	32
7.	Tero	era Ley de la Termodinámica	34
	7.1.	Enunciados de la Tercera Ley	34
	7.2.	Consecuencias de la Tercera Ley	34
Π	\mathbf{M}	ecánica Estadística	36
8.	Enti	opía y Temperatura	38
		Macroestados y Microestados	38
		Ensambles	38
		Conteos	39
		8.3.1. Conteos Básicos	39
		8.3.2. Fórmula de Stirling	41
	8.4.	Entropía y Función de Partición	41
		8.4.1. Postulado Básico	42
		8.4.2. Conteo de Microestados	42
		8.4.3. Problema Básico de Mecánica Estadística	42
		8.4.4. Valor Esperado de E_i	43
		8.4.5. Entropia v2	44
		8.4.6. Función de Helmholtz	44
		8.4.7. Calor Específico	45
9.	Eler	nentos de la Teoría de los Ensambles	46
	9.1.	Generalidades de la Teoría de Ensambles	46
	9.2.	Osciladores Armónicos	48
10	.Gas	Ideal	49
	10.1.	Cálculo de Probabilidades	50
		10.1.1. Función de Densidad de p	50
		10.1.2. Energía Cinética	51
11		lelo de Einstein	52
	11.1.	Calor Específico de un Sólido	52
12		Diatómico	53
	12.1.	Cálculo de la Función de Partición para un Gas Diatómico	53
		12.1.1. Cálculo de $\mathfrak{z}_R(\beta)$	53
		12.1.2. Cálculo de $\mathfrak{z}_V(\beta)$	54

	12.1.3. Cálculo para T grande	94
	12.1.4. Capacidad Calorífica para Gases Nobles	55
13.Ren	aso de Termodinámica	56
_		56
		57
		58
	Función de Gibbs	
		58
14 Died	ribuciones de Fermi-Dirac y Bose-Einstein	30
	· · · · · · · · · · · · · · · · · · ·	60
	Distribución Fermi-Dirac (Caso 3)	
	Distribución de Bose-Einstein (Caso 4)	
14.0	Distribución de Bose-Emistein (Caso 4)	JI
		63
15.1		63
	15.1.1. Cálculo de la Función de Degeneración $g(E)$	63
	15.1.2. Constante de Stefan-Boltzmann	64
	15.1.3. Densidad de Energía	64
	15.1.4. Conteo de Fotones	65
	15.1.5. Función de Partición	65
TTT N	ocánica Cuántica	36
		66
16.Not	ación de Dirac (Repaso Álgebra Lineal)	38
16.Not	ción de Dirac (Repaso Álgebra Lineal) Espacios de Hilbert y Espacio Dual	38 68
16.Not 16.1	ción de Dirac (Repaso Álgebra Lineal) Espacios de Hilbert y Espacio Dual	68 68
16.Not 16.1 16.2	ción de Dirac (Repaso Álgebra Lineal) Espacios de Hilbert y Espacio Dual	68 68 68
16.Not 16.1 16.2	ción de Dirac (Repaso Álgebra Lineal) Espacios de Hilbert y Espacio Dual	68 68 68 69
16.Not 16.1 16.2	ción de Dirac (Repaso Álgebra Lineal) Espacios de Hilbert y Espacio Dual	68 68 68
16.Not 16.1 16.2 16.3	ción de Dirac (Repaso Álgebra Lineal) Espacios de Hilbert y Espacio Dual	68 68 68 69
16.Not 16.1 16.2 16.3	ción de Dirac (Repaso Álgebra Lineal) Espacios de Hilbert y Espacio Dual 16.1.1. El Espacio Dual Operadores Lineales Los KetBras 16.3.1. Producto de kronecker Más Sobre Operadores Lienales 16.4.1. La Transpuesta	68 68 68 69 69
16.Not 16.1 16.2 16.3	Ación de Dirac (Repaso Álgebra Lineal) Espacios de Hilbert y Espacio Dual 16.1.1. El Espacio Dual Operadores Lineales Los KetBras 16.3.1. Producto de kronecker Más Sobre Operadores Lienales 16.4.1. La Transpuesta	68 68 68 69 69
16.Not 16.1 16.2 16.3 16.4	ción de Dirac (Repaso Álgebra Lineal) Espacios de Hilbert y Espacio Dual 16.1.1. El Espacio Dual Operadores Lineales Los KetBras 16.3.1. Producto de kronecker Más Sobre Operadores Lienales 16.4.1. La Transpuesta 16.4.2. Bases y Bases Duales	68 68 68 69 69
16. Not 16.1 16.2 16.3 16.4	ción de Dirac (Repaso Álgebra Lineal) Espacios de Hilbert y Espacio Dual 16.1.1. El Espacio Dual Operadores Lineales Los KetBras 16.3.1. Producto de kronecker Más Sobre Operadores Lienales 16.4.1. La Transpuesta 16.4.2. Bases y Bases Duales Componentes de Kets y Bras	68 68 68 69 69 69
16. Not 16.1 16.2 16.3 16.4	Espacios de Hilbert y Espacio Dual 16.1.1. El Espacio Dual Operadores Lineales Los KetBras 16.3.1. Producto de kronecker Más Sobre Operadores Lienales 16.4.1. La Transpuesta 16.4.2. Bases y Bases Duales Componentes de Kets y Bras Espacios de Hilbert	68 68 68 69 69 70
16. Not 16.1 16.2 16.3 16.4	Espacios de Hilbert y Espacio Dual 16.1.1. El Espacio Dual Operadores Lineales Los KetBras 16.3.1. Producto de kronecker Más Sobre Operadores Lienales 16.4.1. La Transpuesta 16.4.2. Bases y Bases Duales Componentes de Kets y Bras Espacios de Hilbert 16.6.1. Produto Interno	68 68 68 69 69 69 70 71
16. Not 16.1 16.2 16.3 16.4 16.5 16.6	Espacios de Hilbert y Espacio Dual 16.1.1. El Espacio Dual Operadores Lineales Los KetBras 16.3.1. Producto de kronecker Más Sobre Operadores Lienales 16.4.1. La Transpuesta 16.4.2. Bases y Bases Duales Componentes de Kets y Bras Espacios de Hilbert 16.6.1. Produto Interno 16.6.2. Sucesiones de Cauchy	68 68 68 69 69 70 71
16.Not 16.1 16.2 16.3 16.4 16.5 16.6	Espacios de Hilbert y Espacio Dual 16.1.1. El Espacio Dual Operadores Lineales Los KetBras 16.3.1. Producto de kronecker Más Sobre Operadores Lienales 16.4.1. La Transpuesta 16.4.2. Bases y Bases Duales Componentes de Kets y Bras Espacios de Hilbert 16.6.1. Produto Interno 16.6.2. Sucesiones de Cauchy Ejemplos de Espacios de Hilbert	58 68 68 69 69 70 71 71
16.Not 16.1 16.2 16.3 16.4 16.5 16.6	Espacios de Hilbert y Espacio Dual 16.1.1. El Espacio Dual Operadores Lineales Los KetBras 16.3.1. Producto de kronecker Más Sobre Operadores Lienales 16.4.1. La Transpuesta 16.4.2. Bases y Bases Duales Componentes de Kets y Bras Espacios de Hilbert 16.6.1. Produto Interno 16.6.2. Sucesiones de Cauchy Ejemplos de Espacios de Hilbert Operadores Lineales en Espacios de Hilbert	38 68 68 69 69 70 71 71 72
16.Not 16.1 16.2 16.3 16.4 16.5 16.6	Espacios de Hilbert y Espacio Dual 16.1.1. El Espacio Dual Operadores Lineales Los KetBras 16.3.1. Producto de kronecker Más Sobre Operadores Lienales 16.4.1. La Transpuesta 16.4.2. Bases y Bases Duales Componentes de Kets y Bras Espacios de Hilbert 16.6.1. Produto Interno 16.6.2. Sucesiones de Cauchy Ejemplos de Espacios de Hilbert Operadores Lineales en Espacios de Hilbert 16.8.1. Operador Adjunto	68 68 68 69 69 70 71 72 72
16.Not 16.1 16.2 16.3 16.4 16.5 16.6	Espacios de Hilbert y Espacio Dual 16.1.1. El Espacio Dual Operadores Lineales Los KetBras 16.3.1. Producto de kronecker Más Sobre Operadores Lienales 16.4.1. La Transpuesta 16.4.2. Bases y Bases Duales Componentes de Kets y Bras Espacios de Hilbert 16.6.1. Produto Interno 16.6.2. Sucesiones de Cauchy Ejemplos de Espacios de Hilbert Operadores Lineales en Espacios de Hilbert 16.8.1. Operador Adjunto 16.8.2. Operador Unitario	68 68 68 69 69 70 71 72 72
16.Not 16.1 16.2 16.3 16.4 16.5 16.6	Espacios de Hilbert y Espacio Dual 16.1.1. El Espacio Dual Operadores Lineales Los KetBras 16.3.1. Producto de kronecker Más Sobre Operadores Lienales 16.4.1. La Transpuesta 16.4.2. Bases y Bases Duales Componentes de Kets y Bras Espacios de Hilbert 16.6.1. Produto Interno 16.6.2. Sucesiones de Cauchy Ejemplos de Espacios de Hilbert Operadores Lineales en Espacios de Hilbert 16.8.1. Operador Adjunto 16.8.2. Operador Unitario 16.8.3. Operadores Hermíticos	38 68 68 69 69 70 71 72 72 72

	16.9.1. Transformación Antilineal	74
17.Pos	tulados de Mecánica Cuántica	75
17.1	Experimento de Stern-Gerlach	75
17.2	Postulados	75
	17.2.1. Enunciados	75
	17.2.2. Propiedades y Operadores	77
17.3	Principio de Incertidumbre de Heisenberg	78
18.Pos	ción y Momentum	79
18.1	Representación de los Estados	79
	18.1.1. Interpretación de $\psi(x)$	80
18.2	Traslaciones	80
	18.2.1. Superposición	81
	18.2.2. Representación Respecto al Momentum	82
18.3	Series de Fourier	82
	18.3.1. Coeficientes de Fourier	82
18.4	Representación en 1 Dimensión. Tamaño Infinito	82
	18.4.1. Ingegral de Fourier	83
	18.4.2. Transformada de Fourier	83
18.5	Posición y Momentum 3-D	83
	18.5.1. Representación Respecto a $\{ \vec{x}\rangle\}$	84
18.6	Momentum Respecto a la Posición en 3-D	85
	1	
	rgía y Hamiltoniano	87
	Dinámica Cuántica	87
19.1	Dinámica Cuántica	87 87
19.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	87 87 87
19.1	Dinámica Cuántica	87 87 87 88
19.1 19.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	87 87 87
19.1 19.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	87 87 87 88
19.1 19.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	87 87 87 88 88
19.1 19.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	87 87 87 88 88 88
19.1 19.2 19.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	87 87 88 88 88 88
19.1 19.2 19.3 20.Osc	Dinámica Cuántica	87 87 88 88 88 88 89
19.1 19.2 19.3 20.Osc 20.1	Dinámica Cuántica	87 87 88 88 88 88 89 90
19.1 19.2 19.3 20.Osc 20.1	Dinámica Cuántica	87 87 88 88 88 88 89 90 90
19.1 19.2 19.3 20.Osc 20.1 20.2	Dinámica Cuántica	87 87 88 88 88 89 90 90
19.1 19.2 19.3 20.Osc 20.1 20.2	Dinámica Cuántica	87 87 88 88 88 88 89 90 90 90 91
19.1 19.2 19.3 20.Osc 20.1 20.2	Dinámica Cuántica	87 87 87 88 88 88 89 90 90 91 91
19.1 19.2 19.3 20.Osc 20.1 20.2	Dinámica Cuántica $19.1.1. \text{ Operador Evolución } U(t,a)$ $El \text{ Hamiltoniano } \\ 19.2.1. \text{ Casos del Hamiltoniano en Física} \\ Estados Estacionarios \\ 19.3.1. \text{ Punto de Vista de Heisenberg } \\ 19.3.2. \text{ Punto de Vista de Schrodinger } \\ 19.3.3. \text{ Ecuación de Movimiento de Heisenberg } \\ \mathbf{ilador Armónico Cuántico} \\ Oscilador Armónico \\ Ecuación de Schrodinger \\ 20.2.1. \text{ Ecuación de Schrodinger Independiente del Tiempo } \\ Operadores en el Oscilador Cuántico \\ 20.3.1. \text{ Operador Anulador o Aniquilador } \\ 20.3.2. \text{ Operador Creador } \\$	87 87 88 88 88 88 89 90 90 91 91 91
19.1 19.2 19.3 20.Osc 20.1 20.2	Dinámica Cuántica $19.1.1. \text{ Operador Evolución } U(t,a)$ $El \text{ Hamiltoniano}$ $19.2.1. \text{ Casos del Hamiltoniano en Física}$ $Estados \text{ Estacionarios}$ $19.3.1. \text{ Punto de Vista de Heisenberg}$ $19.3.2. \text{ Punto de Vista de Schrodinger}$ $19.3.3. \text{ Ecuación de Movimiento de Heisenberg}$ $\mathbf{ilador Armónico Cuántico}$ $\mathbf{Oscilador Armónico}$ $\mathbf{Ecuación de Schrodinger}$ $20.2.1. \text{ Ecuación de Schrodinger Independiente del Tiempo}$ $\mathbf{Operadores en el Oscilador Cuántico}$ $20.3.1. \text{ Operador Anulador o Aniquilador}$ $20.3.2. \text{ Operador Creador}$ $20.3.3. \text{ Operador Número}$	87 87 88 88 88 88 89 90 90 91 91 91
19.1 19.2 19.3 20.Osc 20.1 20.2 20.3	Dinámica Cuántica	87 87 88 88 88 89 90 90 91 91 91 91
19.1 19.2 19.3 20.Osc 20.1 20.2 20.3	Dinámica Cuántica $19.1.1. \text{ Operador Evolución } U(t,a)$ $El \text{ Hamiltoniano}$ $19.2.1. \text{ Casos del Hamiltoniano en Física}$ $Estados \text{ Estacionarios}$ $19.3.1. \text{ Punto de Vista de Heisenberg}$ $19.3.2. \text{ Punto de Vista de Schrodinger}$ $19.3.3. \text{ Ecuación de Movimiento de Heisenberg}$ $\mathbf{ilador Armónico Cuántico}$ $\mathbf{Oscilador Armónico}$ $\mathbf{Ecuación de Schrodinger}$ $20.2.1. \text{ Ecuación de Schrodinger Independiente del Tiempo}$ $\mathbf{Operadores en el Oscilador Cuántico}$ $20.3.1. \text{ Operador Anulador o Aniquilador}$ $20.3.2. \text{ Operador Creador}$ $20.3.3. \text{ Operador Número}$	87 87 88 88 88 88 89 90 90 91 91 91

	20.4.3. Punto de Vista de Heisenberg
21.Esp	n 1/2
21.1.	Generalidades
	21.1.1. El Operador Identidad
	21.1.2. Cambio de Base
	21.1.3. Matrices de Pauli
21.2.	Espín Total S^2
	21.2.1. Operadores Escaleras S_+, S
21.3.	Preseción del Espín 1/2
	Evolución de un Estado
	21.4.1. Casos Especiales
	21.4.2. Consideraciones sobre el Espín $1/2$
22. Mor	nentum Angular 101
	Introducción por Medio de los Observables del Spin
	Introducción Formal
	22.2.1. Rotación Pasiva
	22.2.2. Rotación Activa
22.3	Operadores
22.0.	22.3.1. Definición del Operador L_z
22.4	Momentum Angular Orbital
22.1.	22.4.1. Valores y Vectores Propios
	22.4.2. Armónicos Esféricos
22.5.	Generalidades del Momentum Angular
99 Mat	odos Aproximados 107
	Teoría de Perturbaciones
20.1.	23.1.1. No Degenerada
22.2	Átomo de Hidrógeno
20.2.	Atomo de Hidrogeno
	olemas en Una Dimensión 110
24.1.	Propiedades del Movimiento en Una Dimensión
	24.1.1. Espectro Discreto (Estados Ligados)
	24.1.2. Espectro Continuo (Estados ligados)
242	24.1.3. Potenciales Simétricos y Paridad
	Partícula Libre: Estados Continuos
	Potencial Escalonado
24.4.	Pozo de Potencial
	24.4.1. Tunelamiento
24.5.	Potencial de Pozo Cuadrado Infinito
	24.5.1. Asimétrico
	24.5.2. Simétrico
24.6.	Potencial de Pozo Cuadrado Finito
	24.6.1. Soluciones de Dispersión $(E > V_o)$
	24.6.2. Soluciones de Estados Ligados $(E < V_0)$

IV	Mecánica Clásica	116
25 .	Movimiento de una Partícula en una Dimensión	118
	25.1. Teoremas de Energía y Momentum	118
	25.2. Fuerza	119
	25.2.1. Fuerza Aplicada Dependiente del Tiempo	119
	25.2.2. Fuerza de Restitución Dependiente de la Velocidad	
	25.2.3. Fuerza Conservativa	
	25.2.4. Caída Libre	
	25.3. Osciladores	121
	25.3.1. Oscilador Armónico Simple	
	25.3.2. Diagramas de Fase	
	25.3.3. Oscilaciones Amortiguadas	
	25.3.4. Oscilaciones Forzadas	122
26 .	Movimiento de una Partícula en Varias Dimensiones	123
	26.1. Primeras y Segundas Derivadas en Diferentes Coordenadas	123
	26.2. Osciladores Armónicos en Dos Dimensiones	123
	26.3. Teoremas del Momentum Angular	124
	26.4. Movimiento en una Fuerza Central	124
	26.4.1. Fuerza Inversamente Proporcional al Cuadrado de la Distancia	125
	26.5. Órbitas Elípticas, El Problema de Kepler	125
27 .	Sistemas de Partículas	126
	27.1. Leyes de Conservación	
	27.1.1. Conservación del Momentum Lineal	
	27.1.2. Conservación del Momentum Angular	
	27.1.3. Conservación de la Energía	
	27.2. Problema de los Dos Cuerpos	
26	Cuerpo Rígido	128
	28.1. Ubicación de un Cuerpo Rígido	
	28.1.1. Consideraciones Generales	
	28.1.2. Momento de Inercia	
	28.1.4. Centro de Masa	
		120
2 9.	Gravitación	130
30.	Sistema de Coordenadas en Movimiento	131
	30.1. Fuerza de Coriolis	132
	30.1.1. Péndulo de Foucault	133
	30.2. Problema Restringido de los Tres Cuerpos	134
	30.2.1. Puntos Máximos y Mínimos	134

31.M	ecánica del Medio Continuo 1	35
31.	1. Cuerda Vibrante	35
	31.1.1. Ondas Viajeras	36
31.	<mark>2. Equilibrio de Fluidos</mark>	36
	31.2.1. Fuerzas de Volumen	
	31.2.2. Relación entre Presión y Energía Potencial	36
31.	3. Cinemática de Fluidos	
	31.3.1. Dos Tipos de Razones de Cambio	
	31.3.2. Fluido Incompresible	
	31.3.3. Masa	
	31.3.4. Voriticidad	
	31.3.5. Ecuacion de Movimiento para un Fluido Ideal	
	31.3.6. Ley de Conservación	
	31.3.7. Flujo Estacionario	
32.M	ecánica Lagrangiana y Hamiltoniana 1	39
	1. Introducción	39
	32.1.1. Mecánica Newtoniana	
	32.1.2. Marco de Referencia Inercial	
	32.1.3. Momento Angular	
	32.1.4. Energía	
32.	$_{2.~ m Generalidades}$	
	32.2.1. Principio Variacional y Ecuación de Lagrange	
	32.2.2. El Principio de Hamilton (Principio de Mínima Acción)	
	32.2.3. Cálculo de Variaciones	
	32.2.4. Principio de Hamilton y Ecuación de Lagrange	
	32.2.5. Restricción en las Coordenadas Generalizadas	
	32.2.6. Teorema de Noether	
32.	3. Formalismo de Hamilton	
	32.3.1. Ecuación de Hamilton	
	32.3.2. Teorema de Liuville	
	32.3.3. Brakets de Poisson	
	32.3.4. Transformaciones Canónicas	
33.Cı	erpo Rígido	4 6
	1. Generalidades	46
	33.1.1. Velocidad Angular	
	33.1.2. El Tensor de Inercia	
	33.1.3. Ángulos de Euler	
V F	electromagnetismo 14	49
		51
34.	1. Operadores Vectoriales	
	34.1.1. Gradiente	51

34.1.2.	<u>Divergencia</u>
34.1.3.	Rotacional
34.2. Integra	ción Vectorial
34.2.1.	Integrales de Línea
34.2.2.	Integrales de Superficie
34.2.3.	Teoremas Importantes
35.Electrostát	cica 15
35.1. Ley de	Coulomb
35.2. Campo	• Eléctrico
	ial Electrostático
35.4. Ley de	Gauss
	Eléctrico
	Momento Dipolar Eléctrico
35.6. Trabaj	o y Energía en Electrostática
35.6.1.	Energía de una Distribución de Cargas Puntuales
36.Problemas	Electrostáticos 15
	ón de Laplace
	Ecuación de Laplace en una Dimensión
	ies Electrostáticas
	Sistemas Conductores y Coeficientes de Potencial
37.1. Polariz	ectrostático en Medios Dieléctricos y su Teoría Microscópica 16 ación
	Campo Eléctrico dentro de un Dieléctrico
	Suceptibilidad Dieléctrica y Constante Dieléctrica
	iones de Frontera para los Vectores de Campo
	Microscópica de los Dieléctricos
01.0. 1com	Microscopica de los i delectricos
37.3.1.	•
	Campo Molecular en un Dieléctrico: E_m
37.3.2.	•
37.3.2. 37.3.3.	Campo Molecular en un Dieléctrico: E_m
37.3.2. 37.3.3. 38.Energía El	Campo Molecular en un Dieléctrico: E_m
37.3.2. 37.3.3. 38.Energía El 38.1. Conder	Campo Molecular en un Dieléctrico: E_m 16 Moléculas Polares 16 Polarización Permanente: Ferroelectricidad 16 ectrostática 16 nsadores 16
37.3.2. 37.3.3. 38.Energía El 38.1. Conder 39.Corriente	Campo Molecular en un Dieléctrico: E_m 16 Moléculas Polares 16 Polarización Permanente: Ferroelectricidad 16 ectrostática 16 nsadores 16 Eléctrica 16
37.3.2. 37.3.3. 38.Energía El 38.1. Conder 39.Corriente 39.1. Densid	Campo Molecular en un Dieléctrico: E_m 16 Moléculas Polares 16 Polarización Permanente: Ferroelectricidad 16 ectrostática 16 nsadores 16 Eléctrica 16 ad de Corriente 16
37.3.2. 37.3.3. 38.Energía El 38.1. Conder 39.Corriente 39.1. Densid 39.2. Ley de	Campo Molecular en un Dieléctrico: E_m 16 Moléculas Polares 16 Polarización Permanente: Ferroelectricidad 16 ectrostática 16 nsadores 16 Eléctrica 16 ad de Corriente 16 Ohm 16
37.3.2. 37.3.3. 38.Energía El 38.1. Conder 39.Corriente I 39.1. Densid 39.2. Ley de 39.3. Corrier	Campo Molecular en un Dieléctrico: E_m 16 Moléculas Polares 16 Polarización Permanente: Ferroelectricidad 16 ectrostática 16 nsadores 16 Eléctrica 16 ad de Corriente 16 Ohm 16 ntes Estacionarias en Medios Continuos 16
37.3.2. 37.3.3. 38.Energía El 38.1. Conder 39.Corriente E 39.1. Densid 39.2. Ley de 39.3. Corrier 39.3.1.	Campo Molecular en un Dieléctrico: E_m 16 Moléculas Polares 16 Polarización Permanente: Ferroelectricidad 16 ectrostática 16 nsadores 16 Eléctrica 16 ad de Corriente 16 Ohm 16

40.El Campo Magnético de Corrientes Estacionarias	171
40.1. Ley de Ampére	. 171
40.2. Vector Potencial	. 171
40.2.1. Mono-polos Magnéticos	. 172
40.2.2. Transformaciones de Gauge	. 172
40.2.3. Ley de Biot-Savart	. 173
40.3. Dipolos Magnéticos	. 173
40.3.1. Corriente en una Espira	. 173
40.4. Fuerzas Magnéticas	. 174
40.4.1. Fuerza entre Corrientes	. 174
40.4.2. Fuerza y Energía de un Dipolo	. 175
40.4.3. Fuerza entre Dipolos	. 175
41. Propiedades Magnéticas de la Materia	176
41.1. Magnetización	. 176
41.1.1. Torques y Fuerzas en Dipolos Magnéticos	. 176
41.1.2. Magnetización	. 176
41.2. El Campo de un Objeto Magnetizado	
41.2.1. Límites de Corrientes	. 177
41.2.2. Potencial Escalar Magnético y Densidad de Polos Magnéticos	. 177
41.3. Fuentes de Campo Magnético: Intensidad Magnética	. 178
41.4. Susceptibilidad y Permeabilidad Magnéticas e Histéresis	. 178
41.5. Condiciones en la Frontera sobre los Vectores de Campo	. 179
42.Inducción Electromagnética	180
42.1. Inducción Electromagnética	. 180
42.2. Autoinductancia	
42.3. Inductancia Mutua	. 181
42.4. La Fórmula de Neumann	. 181
42.5. Inductancias en Serie y Paralelo	. 182
43. Energía Magnética	183
43.1. Energía Magnética de Circuitos Acoplados	. 183
43.2. Densidad de Energía en el Campo Magnético	
44. Corrientes que Varían Lentamente	185
44.1. Comportamiento Transitorio y en Estado Estacionario	
44.2. Leyes de Krichhoff	
44.3. Comportamiento Transitorio Elemental	
44.4. Comportamiento en Estado Estacionario de un Circuito en Serie Simple	
44.5. Conexión de Impedancias en Serie y en Paralelo	
44.6. Potencia y Factores de Potencia	187

45.Ecuaciones de Maxwell	189
45.1. Generalización de la Ley de Ampére: Corriente de Desplazamiento	189
45.2. Ecuaciones de Maxwell y sus Bases Empíricas	
45.3. Energía Electromagnética	
45.4. La Ecuación de Onda	191
45.5. Ondas Monocromáticas	191
45.6. Condiciones de Frontera	191
45.7. Ecuación de Onda con Fuentes	192
46.Propagación de Ondas Monocromáticas	193
46.1. Ondas Planas Monocromáticas en Medios no Conductores	193
46.2. Polarización	195
47.Formularios	196
VI Reducción de Datos	201
48.Incertezas	203
48.1. Uso y Reporte de Incertezas	203
48.2. Propagación de Incertezas	
48.2.1. La Regla de Raíz Cuadrada para un Experimento de Conteos	
48.2.2. Reglas de Propagación de Error	
48.3. Análisis Estadístico de Incertezas Aleatorias	
48.3.1. Promedio o Media	205
49.La Distribución Normal	206
49.1. Distribución Límite	206
49.2. Distribución Normal (o de Gauss)	
50.Rechazo de Datos y la Media Ponderada	208
50.1. Criterio de Chauvenet	208
50.2. Media Ponderada	208
51.Distribución Binomial y de Poisson	209
51.1. La Distribución Binomial	209
51.1.1. Aproximación Gaussiana a la Distribución Binomial	209
51.2. Distribución de Poisson	
51.2.1. Aproximación Gaussiana a la Distribución de Poisson	210
52.Prueba Ji Cuadrado y Mínimos Cuadrados	211
52.1. Mínimos Cuadrados	211
52.1.1. Una Línea Recta; Ponderaciones Iguales	211
52.1.2. Línea Recta por el Origen; Ponderaciones Iguales	212
52.1.3. Ajuste Ponderado para una Línea Recta	212
52.1.4. Otras Curvas	212

52.2.	Prueba Chi-Cuadrado para Distribuciones	12
	2.2.1. Definicicón de Chi-Cuadrado	2
	2.2.2. Grados de Libertad y Chi-Cuadrado Reducido	3
	2.2.3. Probabilidades para Chi-Cuadrado	13

Parte I Termodinámica

	les propiedades de la mat fundamentales de la física	

Conceptos Básicos

Propósito: La termodinámica busca describir sistemas de muchas partículas (10^{23} típicamente). Gases, líquidos, cristales, estrellas, universo, ..., <u>sistemas macroscópicos</u> y en particular, estudiar los procesos de transferencia de energía (trabajo y calor) entre cuerpos macroscópicos¹.

- Definir cantidades físicas, "variables de estado" que caracterizan un sistema macroscópico: V, T, N, U, \dots
- Relacionar estas cantidades entre sí:
 - 1. Válidas para cualquier sistema en equilibrio:
 - a) Leyes axiomáticas de la termodinámica, como Ley de la Energía, Ley de la Entroía, etc.
 - 2. Específicas
 - a) Por ecuaciones de estado como: fenomenológicas, empíricas, experimentales en la mayoria de los casos.

Es importante mencionar que la termodinámica clásica macroscópica no puede explicar porqué una ecuación de estado describe un sistema partícular.

¹Más adelante se tratará la parte microscópica con la Mecánica Estadística, poder explicativo y predictivo sobre propiedades macroscópicas de la materia, partiendo de una descripción microscópica.

1.1. Sistemas Termodinámicos y Cantidades de Estado

1. Sistema Termodinámico:

Figura 1.1: Representación gráfica de las partes de un sistema termodinámico.

- 2. Tipos de Sistemas: (depende de la frontera)
 - Sistemas aislados: No intercambian energía con el entorno. Los sistemas rígidos no pueden intercambiar trabajo y los adiabáticos no pueden intercambiar calor.
 - Sistemas cerrados: Aquel que intercambia energía y trabajo con su entorno pero la masa permanece constante. Este intercambio de energía puede ser fluctuante aunque la caracterización de estas fluctuaciones no es de interes para la termodinámica.
 - Sistemas abiertos: Aquel que intercambia tanto energía como materia con su entorno.
- 3. Variables de estado: Cualquier cantidad macroscópica que pueda describir el sistema. E, V, N, T, P, S, viscocidad μ , composición química, etc. **no** $\{\vec{r_i}, \vec{p_i}\}$.
 - Cantidades de estado extensivas: estas son aditivas (dependen de la cantidad de sustancia/moles o masa). Ejemplo: volumen, energía o entropía.
 - Cantidades de estado intensivas: son independientes de la cantidad de sustancia del sistema, como la densiada, índice de refracción, presión o temperatura.

1.2. Equilibrio y Temperatura (Ley Cero de la Termodinámica):

- 1. Estado de un sistema: Se define por un conjunto particular de <u>valores</u> de sus variables termodinámicas.
 - Como cada variable describe el sistema como un todo, en general son constantes en el espacio.
 - Las variables pueden variar (lentamente en el tiempo).
- 2. Estado de equilibrio: cada variable tiene un único valor y este valor no cambia en el tiempo.
- 3. Procesos cuasi-estáticos y no cuasi-estáticos: un proceso \equiv un cambio de estado. (normalmente un proceso cuasi-estático se toma como un proceso reversible, aquí haremos una distinción). Un proceso no cuasi-estático puede ser una expansión muy rápida de un gas. Mientras que un proceso cuasi-estático puede ser reversible o irreversible como la expansión muy lenta de un gas con un pistón (δV es muy pequeña).

Temperatura y Ley Cero: La temperatura es una cantidad "desconocida" para la mecánica y electrodinámica, es una cantidad de estado especial para la termodinámica. Esta se define clásicametne mediante un proceso (DS: no hay definición matemática...aún, se verá en la parte de mecánica estadística).

La Ley Cero es una definición de la temperatura: Variable intensiva que es igual en dos sistemas en contacto, en equilibrio sin importar la forma y ubicación de este contacto.

Otra definición de la Ley Cero: Çuando el contacto térmico entre A y B produce que B se caliente y A se enfríe, sin importar donde está este contacto, entonces no hay proceso que pueda calentar A y enfriar B que no induce un trabajo".

"ESTADO DE EQUILIBRIO" \neq "ESTADO ESTACIONARIO", estar en equilibrio implica ser estado estacionario, pero no al contrario.

1.3. Presión, Ecuación de Estado

- 1. Presión: En términos mecánicos es lo que ya se conoce F/A y en términos microscópicos es la suma de las fuerzas que realizan todas las particulas del sistema sobre A.
- 2. Ecuación de Estado: Relación entre variables independietes y la temperatura:

$$F(X, Y, T) = 0$$

Figura 1.2: Diagrama PVT.

Por ejemplo: Ecuación del gas ideal pV = nRT, la ecuación de gas real (expansión del Virial) $pV = Nk_BT + B(T)p + C(T)p^2 + \cdots$, donde $B(T), C(T), \ldots$ son los coeficientes del Virial o la de Van der Waals.

3. Diferenciales Exactos² (e Inexactos): Suponemos una ecuación de estado z = f(x,y). Diferenciación $\mathrm{d} f(\vec{r}) = \vec{\nabla} f(\vec{r}) \cdot \mathrm{d} \vec{r}$. $\mathrm{d} f$ es un diferencial total si su integral no depende del contorno y solo de los extremos. Y este es exacto si f es totalmente diferenciable, es decir, se pueden intercambiar las derivadas cruzadas (DS: Básicamente, el teorema de Clairaut). La implicación que esta tiene en termodinámica son las transformaciones reversibles (que pasan por estados de equilibrio), en estas la ecuación de estado el valor de las variables de estado es independiente del proceso que sigue para llegar a otro estado y esto es válido para cualquier variable de estado.

²Un diferencial es exacto ssi $\left(\frac{\partial f}{\partial x}\right)_y = \left(\frac{\partial f}{\partial y}\right)_x$.

Primera Ley de la Termodinámia

2.1. Trabajo y Calor

La energía total de un sistema puede variar si recibe (cede) trabajo o calor.

1. Trabajo: Sistema sujeto a fuerzas externas. El sistema recibe energía durante una compresión. Con esta idea se tiene la convensión general (DS: Bastante lógico) $\delta W > 0$ si el sistema recibe trabajo y $\delta W < 0$ si el sistema realiza trabajo.

Caso particular¹ procesos cuasi-estáticos, $d\vec{l}$ es infinitesimal, es decir muy lento, entonces la aceleración del pistón es despresiable $\vec{F}_e + \vec{F}_i = 0$, donde F_i es la fuerza ejercida por el sistema (fuerza interna) entonces $\delta W = -\vec{F}_i \cdot d\vec{l}$. Como el proceso es cuasi-estático, el sistema está en equilibrio $\leftarrow \exists$ presión en el sistema $\vec{F}_i = PA\hat{\mathbf{z}}$. Reemplazando en la definición de trabajo $\delta W = -P \, dV$ (P cantidad intensiva, dV cantidad extensiva). \triangle Durante el trabajo infinitesimal la presión es aproximadamente constante en el intervalo [V, V + dV], pero si ΔV es grande, entonces

$$\Delta W = -\int_{V_1}^{V_2} P(V) \,\mathrm{d}V \,.$$

2. Calor: Es una forma partícular de energía distinta al trabajo, por ejemplo en el calentamiento por entrega de calor no hay un trabajo visible.

Experimento de Joule: Este fue crucial para demostrar la equivalencia entre trabajo mecánico y calor, sentando las bases de la primera Ley de la Termodinámica.

Figura 2.1: Este consiste en un contenedor de agua aislado térmicamente, un sistema de paletas y un peso y una cuerda los cuales pasan por una polea.

¹Para más ejemplos ver p9 de Notas Boyer

El procedimiento es:

- a) Elevación del peso: El peso se levanta a una cierta altura almacenando energía potencial gravitacional.
- b) Al liberar el peso, este desciende, la cuerda hace girar el eje el cual, a su vez, hace girar las paletas.
- c) Las paletas agitan el agua, creando fricción y generando calor.

Joule encontró que el aumento de la temperatura del agua estaba directamente relacionado con la cantidad de trabajo mecánico realizado. Específicamente, pudo determinar la equivalencia entre unidades de trabajo (joules) y unidades de calor (calorías). La relación que encontró es aproximadamente 4.184 joules por caloría.

Joule demostró que el calor podía generarse mediante trabajo mecánico y viceversa, consolidado el concepto moderno de energía.

Además podemos concluir que δQ y δW no son cantidades de estado, dependen del proceso, del camino (Q y W no son diferenciales exactos).

2.1.1. Naturaleza del Calor

Energá distribuída de manera desordenada entre partículas. Es mucho más fácil convertir trabajo en calor que al revés.

Convensión: Misma que para el trabajo: $\delta Q = \delta Q_{\text{entorno}\leftarrow \text{sistema}}$

- $\delta Q > 0$ para un sistema que recibe calor del entorno.
- $\delta Q < 0$ para un sistema que cede calor al entorno.

2.2. Energía Interna y Primera Ley

1. Energía interna: (definición microscópica) U esta es la energía total del sistema, en el sentido mecánico-newtoniano, con N partículas

$$U = \sum_{i=1}^{N} \frac{1}{2} m_i v_i^2 + \sum_{i=1}^{N} \sum_{j>i}^{N} V(\vec{r_i}, \vec{r_j}) + \sum_{i=1}^{N} \vec{F_e}^i \cdot \vec{r_i}.$$

Donde se tiene la energía cinética, la potencial y las fuerzas externas. En general es imposible calcular esta energía y tampoco es el propósito de este curso. DS: como siempre, a esperar a mecánica estadística

(definición macroscópica): Es equivalente a la definición de microscópica si $N \to \infty$. Cantidad de estado que varía cuando el sistema recibe trabajo o calor y que tiene dimensión de energía.

2. Primera Ley de la Termodinámica: Conservación de la energía U (DS: Es básicamente una conservación de la energía, como se ve en física 1, pero con esteroides)

$$dU = \delta Q + \delta W$$
.

Formas estándares de la primera ley:

• Sistemas aislados: dU = 0

• Sistemas cerrados: $dU = \delta Q - P dV$

• Sistemas abiertos: $dU = \delta Q - P dV + \mu dN^2$.

2.3. Implicaciones de la Primera Ley

1. La energía interna es una variable de estado y un diferencial exacto:

$$dU = \left(\frac{\partial U}{\partial T}\right)_{V,N} dT + \left(\frac{\partial U}{\partial V}\right)_{T,N} dV + \left(\frac{\partial U}{\partial N}\right)_{V,T} dN.$$

Y f(V,T,N) se conoce como la ecuación de estado.

2. Procesos Cíclicos: Son procesos de partícular interés. En estos procesos $U_f = U_o$ o, en otras palabras

$$\oint \mathrm{d}U = 0,$$

esto implica $\Delta W + \Delta Q = 0$ $\Delta W = -\Delta Q \neq 0$, en esto se tienen dos casos importantes

• Caso $\Delta W < 0$: motor, fuente de calor en el entorno, pero necesitamos $\Delta Q > 0$.

 \bullet Caso $\Delta Q < 0$: refrigerador, trabajo sobre el sistema, pero se necesita $\Delta W > 0$.

2.4. Capacidad Calorífica

Se define como $\delta Q = c \, \mathrm{d} T$, un incremento o decremento de temperatura, donde la constante c es la capacidad calorífica. Recordemos que $\mathrm{d} U = \delta Q - P \, \mathrm{d} V$ para un sistema cerrado sin fuerzas externas.

$$C_V = \left(\frac{\delta Q}{\delta T}\right)_V$$
, Volumen constante,

$$C_P = \left(\frac{\delta Q}{\delta T}\right)_P$$
, presión constante,

y como consecuencia de la primera ley: V = cte entonces $dU = \delta Q$ por ende $C_V = \left(\frac{dU}{dT}\right)_V$. C_V y C_P son cantidades extensivas, en algunos libros $C_v = \frac{1}{N} \left(\frac{dU}{dT}\right)_V$ capacidad por partícula o por mol (en este caso sería una cantidad intensiva).

Gas Ideal se tienen dos casos, para un gas monoatómico y diatómico

Monoatómico
$$U = \frac{3}{2}Nk_BT$$
,

Diatómico
$$U = \frac{5}{2}Nk_BT$$
.

²En transformaciones cuasi-estáticas

Para todo material en equilibrio se tiene la siguiente relación entre C_V y C_P . Para ello se considerará N = cte (sistema cerrado), como variables se tienen P, V, T; sin embargo, f(P, V, T) = 0 es la ecuación de estado de equilibrio. Por ello se toman dos variables independientes U = U(P, V) = U(P, T) = U(V, T). Además se tienen dos maneras de escribir el diferencial de energía interna: la primera ley y el diferencial total. Con esto:

$$\delta Q - p \, dV = \left(\frac{\partial U}{\partial T}\right)_V dT + \left(\frac{\partial U}{\partial V}\right)_T dV$$

$$\delta Q = \left(\frac{\partial U}{\partial T}\right)_V dT + \left[p + \left(\frac{\partial U}{\partial V}\right)_T\right] dV$$

dividiendo entre dT se tiene

$$C_P = \underbrace{\left(\frac{\partial U}{\partial T}\right)_V}_{C_V} + \left[p + \left(\frac{\partial U}{\partial V}\right)_T\right] \left(\frac{\delta Q}{\delta T}\right)_P$$

$$C_P - C_V = \left[p + \left(\frac{\partial U}{\partial V} \right)_T \right] \left(\frac{\delta Q}{\delta T} \right)_P.$$

Esta siempre es positiva. Para un gas ideal $\left(\frac{\partial U}{\partial V}\right)_T = 0$, $p = \frac{Nk_BT}{V}$, $\left(\frac{\delta Q}{\delta T}\right)_P = \frac{V}{T}$.

$$C_p - C_V = Nk_B$$

2.5. Procesos Adiabáticos

Es aquel proceso reversible en un sistema térmicamente aislado, por lo que no existe un intercambio de calor entre él y el entorno $\delta Q=0$. Por lo que $\mathrm{d} U=-p\,\mathrm{d} V$, y en un gas ideal $\mathrm{d} U=\left(\frac{\partial U}{\partial T}\right)_V\mathrm{d} T=C_V\,\mathrm{d} T$. Lo que implica que

$$\frac{\mathrm{d}T}{T} = \frac{C_p - C_V}{C_V} \frac{\mathrm{d}V}{V}.$$

Donde $\frac{C_P}{C_V} = \gamma$, número adimensional. Integrando DS: Y haciendo calculito del kinder, como diría Damián se tienen las siguientes equivalencias

$$TV^{\gamma-1} = PV^{\gamma} = T^{\gamma}P^{1-\gamma} = \text{cte.}$$

2.5.1. Trabajo Adiabático

Teniendo $\delta W = -p \, dV$, las equivalencias anteriores y nuevamente calculito del kinder y se llegamos a lo siguiente

$$\Delta W = \frac{1}{\gamma - 1} [P_1 V_1 - P_o V_o] = \frac{N k_B}{\gamma - 1} [T_1 - T_o] = C_v [T_1 - T_o].$$

Es claro que se puede llegar a este resultado directamente desde la primera ley.

Procesos Cíclicos

3.1. Tipos de Procesos

El primer tipo es aquel que tiene una variable de estado constante: isotérmicos, isocóricos, isobáricos y adiabáticos DS: el nombre es bastante claro con lo que implica cada proceso.

3.1.1. Procesos Reversibles e Irreversibles

Un proceso se dice reversible cuando estados sucesivos del mismo procesos difieren infinitesimalmente de estados de equilibrio. Dado esto, existen procesos reversibles termodinámicamente, los cuales cumplen con dos condiciones: ser cuasi-estático y un proceso no disipativo.

3.2. Ciclo de Carnot

El ciclo de Carnot se produce en un equipo o máquina cuando trabaja absorbiendo una cantidad de calor Q_1 de una fuente de mayor temperatura y cendiendo una cantidad de calor Q_2 a la de menor temperatura produciendo un trabajo sobre el exterior.

Figura 3.1: Esquema de una máquina de Carnot.

El rendimiento del ciclo está definido por

$$\eta = 1 - \frac{Q_2}{Q_1}.$$

Y, como se verá más adelante, es el mayor producido por cualquier máquina que funcione cíclicamente entre las mismas fuentes de temperatura.

Como todos los procesos que tienen lugar en el ciclo ideal son reversibles, el ciclo puede invertirse y la máquina absorbería calor de la fuente fría y cedería calor a la fuente caliente, teniendo que suministrar trabajo a la máquina. Si el objetivo de esta máquina es extraer calor de la fuente fría (para mantenerla fría) se denomina máquina frigorífica, y si es ceder calor a la fuente caliente, bomba de calor.

El ciclo de Carnot¹ consta de cuatro etapas: dos procesos isotermos y dos adiabáticos, como se muestra en el siguiente diagrama P-V

Figura 3.2: Ciclo de carnot en el diagrama de Clapeyron.

- AB: Expansión isoterma;
- BC: Expansión adiabática;
- CD: Comprensión isoterma;
- DA: Comprensión adiabática.

3.2.1. Teoremas de Carnot

- 1. No puede existir una máquina térmica que funcionando entre dos fuentes térmicas dadas tenga mayor rendimiento que una de Carnot que funcione entre esas mismas fuentes térmicas.
- 2. Dos máquinas reversibles operando entre las mismas fuentes térmicas tienen el mismo rendimiento.

¹Ver wikipeeeediaaa para la explicación detallada de cada paso.

Segunda Ley de la Termodinámica

4.1. Kelvin-Planck

Es imposible construir un motor que opere en ciclos y extraiga calor de una fuente que convierta el calor extraído exclusivamente en trabajo.

4.2. Clauius

Es imposible construir un frigorífico que, operando en un ciclo, transferencia completamente el calor de una fuente de menor temperatura a una fuente de temperatura mayor.

DS: Raras tus formulaciones pue.

4.3. La que te venden los divulgadores

La cantidad de entropía del universo tiende a incrementarse en el tiempo. Este principio establece la irreversibilidad de los procesos físicos, especialmente durante el intercambio de calor.

4.4. Reversibilidad e Irreversibilidad

Un proceso reversible es un proceso que realiza de tal forma que el sistema y su entorno pueden regresara su sestados iniciales sin producir ningún cambio en el resto del universo. (DS: Si, es otra forma de redactar la reversibilidad.)

Entropía

La entropía es posiblemente el más importante e insuficientemente conocido concepto en fisiología. Es una magnitud física que permite determinar la parte de la energía que no puede utilizarse para producir trabajo y está ligada con el grado de desorden de un sistema.

5.1. Definición de Entropía

Ya se introdujo la integral $\oint dQ/T = 0$. Esto implica que la integral

$$\int_{A}^{B} \frac{dQ}{T}$$

es independiente del camino; por ende, se define entropía como el diferencial exacto

$$dS = \frac{dQ}{T},$$

tal que

$$S(B) - S(A) = \int_{A}^{B} \frac{dQ}{T},$$

y S es una función de estado. Para un proceso adiabático se tiene que dQ = 0. Por eso un proceso adiabático no presenta cambios en la entropía (los procesos adiabáticos también son llamados isoentrópicos).

5.2. Cambios Irreversibles

Ya se tiene la definición de entropía en términos de cambios reversiles. Dado que S es una función de estado

$$\oint \frac{dQ_{rev}}{T} = 0.$$

Entonces

$$\mathrm{d}S = \frac{dQ_{rev}}{T} \ge \frac{dQ}{T}.$$

Consideremos un sistema térmicamente aislado dQ = 0; por lo tanto $dS \ge 0$.

La entropía solo puede mantenerse igual (cambios reversibles) o aumentar (cambios irreversibles). Tomando al universo como un sistema térmicamente aislado.

5.3. Regresando a la Primera Ley

Ahora podermos mostrar una forma más elegante y útil de la 1ra ley

$$dU = dQ + dW$$

pero dQ = T dS y dW = -p dV.

$$\mathrm{d}U = T\,\mathrm{d}S - p\,\mathrm{d}V$$

en esto se asume un proceso reversible. Pero para uno irreversible se tiene que $dQ \leq T dS$ y $dW \geq -dV$. Lo que se nivela y siempre se llega a lo visto para procesos reversibles.

S, V son extensivas y T, p son intensivas¹

$$dU = \underbrace{\left(\frac{\partial U}{\partial S}\right)_{V}}_{T} dS + \underbrace{\left(\frac{\partial U}{\partial V}\right)_{S}}_{-p} dV.$$

DS: Ahora toca profanar la matemática.

$$\frac{p}{T} = \left(\frac{\partial S}{\partial V}\right)_U.$$

Resumen

- $\bullet \ \mathrm{d} U = \! \bar{d} Q + \! \bar{d} W$ siempre es cierto
- dQ = T dS reversibles
- $dW = -p \, dV$ reversibles
- $dW \ge -p \, dV \, y \, dQ \le T \, dS$ irreversibles.

5.4. Expansión de Joule (Expansión Libre)

Es un proceso irreversible en el cual un gas se expande en un recipiente vacío y aislado. Los gases experimentan un cambio de temperatura durante la expansión libre.

¹Esto funciona por el teorema recíproco y por el teorema de reciprocidad: $\left(\frac{\partial x}{\partial y}\right)_z \left(\frac{\partial y}{\partial z}\right)_x \left(\frac{\partial z}{\partial x}\right)_y = -1.$

Figura 5.1: También se puede lograr moviendo el pistón hacia fuera más rápido que los átomos del gas.

Durante la expansión libre, ningún trabajo es realizado por el gas. El bas pasa a través de los estados que no están en equilibrio termodinámico antes de llegar a su estado fina, lo que implica que no se pueden definir parámetros termodinámicos como valores del gas en su conjunto.

Una expansión libre se consigue típicamente mediante la apertura de una llave de paso que permite que el gas se expanda en un vacío. Aunque sería difícil de lograr en la realidad, es instructivo imaginar una expansión libre causada por un pistón en movimiento más rápido que prácticamente cualquier átomo. Ningún trabajo se hace porque no hay presión sobre el pistón. Sin energía térmica que sale o entra en el pistón. Sin embargo, hay un cambio de entropía.

$$\Delta S = \int_{i}^{f} dS = \int_{V_{o}}^{2V_{o}} \frac{p \, dV}{T} = \int_{V_{o}}^{2V_{o}} \frac{R \, dV}{V} = R \ln 2.$$

Luego de que suceda la expansión de Joule, solo se puede poner el gas a la izquierda comprimiendolo. El método que involucra la menor cantidad de trabajo es una compresión isotérmica, cuyo trabajo para 1 mol de gas es

$$\Delta W = -\int_{2V_o}^{V_o} p \, dV = -\int_{2V_o}^{V_o} \frac{RT}{V} \, dV = RT \ln 2 = T \Delta S_{gas}.$$

El incremento de entropía en una expansión de Joule es $\Delta W/T$.

Paradoja?

■ En la expansión de Joule, el sistema es aislado térmicamente, por lo que no hay flujo/intercambio de calor: $\Delta Q = 0$.

- No hay trabajo realizado: $\Delta W = 0$.
- Por ello $\Delta U = 0$ (para un gas ideal, $\Delta T = 0$).
- \bullet Pero si $\Delta Q=0,$ esto implica que $\Delta S=\Delta Q/T=0?$

El razonamiento anterior es correcto hasta la última parte: la respuesta a la ultima preguna es **NO!** La ecuación dQ = T dS es cierto solamente para procesos reversibles. En general $dQ \leq T dS$, y se tiene $\Delta Q = 0$ y $\Delta S = R \ln 2$, entonces se tiene que $\Delta Q \leq T dS$.

Termodinámica en Acción

6.1. Potenciales Termodinámicos

La energía interna es muy útil, es una función de estado la cual se mantiene cambiando de la misma forma con forme el sistema pase de un estado de equilibrio a otro; sin embargo, a pesar de ser útil, no es única (DS: que triste). Se pueden crear otras funciones de estado dependientes de p, V, T y S en algúna combinación que de como resultado unidades de energía; obviamente, muchas de estas combinaciones no reperesentarán ningún sistema físico, pero algunas si tales como: H = U + pV, F = U - TS y G = U + pV - TS, estas son ecuaciones consitutivas asociadas a un tipo de sistema termodinámico y el calificativo de potencial se debe a que en cierto sentido describe la cantidad de energía potencial disponible en el sistema termodinámico sujeta a ceritas restricciones.

6.1.1. Energía Interna

Directamente, para procesos isocóricos

$$dU = T dS$$
,

y por procesos isocóricos reversibles

$$dU = dQ_{rev} = C_V dT$$
,

por ende

$$\Delta U = \int_{T_1}^{T_2} C_V \, \mathrm{d}T.$$

Esto solo es válido para sistemas a volumen constantes, esto se extenderá a sistemas a volumen constante pero para ello se utilizará lo que veremos a continuación.

6.1.2. Entalpía, H

La entalpía se define como: el flujo de energía térmica en los procesos químicos efectuados a presión constante cuando el único trabajo es de presión-volumen

$$H = U + PV$$
.

Esta definición junto con la primera ley, implica que

$$dH = T dS + V dp.$$

Las variables naturales de H son la entropía y la presión. Por lo que podemos dar una forma para un proceso isobárico

$$dH = T dS$$
.

y para un proceso reversible

$$dH = dQ_{rev} = C_p dT,$$

de modo que

$$\Delta H = \int_{T_1}^{T_2} C_p \, \mathrm{d}T \,.$$

Esto muestra la importancia de H para procesos isobáricos reversibles la entalpía representa el calor absorbido por el sistema. También podemos concluir que si S y p son constantes, se tiene $\mathrm{d}H=0$. Y de la segunda ecuación mostrada se concluye que

$$T = \left(\frac{\partial H}{\partial S}\right)_p,$$

У

$$V = \left(\frac{\partial H}{\partial p}\right)_S.$$

6.1.3. Función de Helmholtz, F

También llamada energía de Helmholtz, energía libre de Helmholtz o función trabajo. Es una magnitud extensiva, función de estado y potencial termodinámico, de un sistema termodinámico que mide el trabajo obtenible en un sistema cerrado, en condiciones de temperatura constante. No depende del proceso sufrido, sino del estado final e inicial del sistema. Se usa para ver qué procesos son espontáneos en condiciones de temperatura y volumen constantes. Si el volumen no se mantiene constante, parte del trabajo se efectua en el entorno.

$$F = U - TS$$
.

Mismo procedimiento que la subsección anterior, se tiene que

$$\mathrm{d}F = -S\,\mathrm{d}T - p\,\mathrm{d}V.$$

Las varibles naturales de F son el volumen y la temperatura, por lo que para un proceso isotérmico se puede escribir

$$\mathrm{d}F = -p\,\mathrm{d}V\,,$$

por ende

$$\Delta F = \int_{V_1}^{V_2} p \, \mathrm{d}V \,.$$

F también representa la cantidad máxima de trabajo que puede llegarse a tener de un sistema a temperatura constante. Dado lo anterior, se tienen las siguientes representaciones

$$S = -\left(\frac{\partial F}{\partial T}\right)_V,$$

$$p = - \left(\frac{\partial F}{\partial V}\right)_T.$$

Si $T \vee V$ son constantes, entonces dF = 0.

6.1.4. Función de Gibbs, G

La energía de Gibbs o función de Gibbs (entalpía libre) es un potencial termodinámico que se puede usar para calcular el máximo de trabajo reversible que puede realizarse mediante un sistema termodinámico a una temperatura y presión constantes (isotérmica, isobárica). La energía libre de Gibbs es la cantidad máxima de trabajo de no expansión que se puede extraer de un sistema cerrado termodinámicamente (uno que puede intercambiar calor y trabajo con su entorno, pero no materia). Este máximo solo se puede alcanzar en un proceso completamente reversible. Cuando un sistema se transforma reversiblemente de un estado inicial a un estado final, la disminución de la energía libre de Gibbs equivale al trabajo realizado por el sistema en su entorno, menos el trabajo de las fuerzas de presión.

$$G = H - TS$$
.

De esto, se tiene

$$dG = -S dT + V dp,$$

Las variables naturales de G son la temperatura y la presión (las mejores variables para manipular en un laboratorio). En particular, si T y p son constantes $\mathrm{d}G=0$, lo que implica que G se conserva en cualquier proceso isotérmico e isobárico. Además se tienen las siguientes expresiones para la entropía y el volumen

$$S = -\left(\frac{\partial G}{\partial T}\right)_{p},$$

У

$$V = -\left(\frac{\partial G}{\partial p}\right)_T.$$

Resumen:

Función		Diferencial	Variables Na-	Primeras Deri-	
de Esta-			turales	vadas	
do					
Energía Interna	U	dU = T dS - p dV	U = U(S, V)	$T = \left(\frac{\partial U}{\partial S}\right)_V$	$p = -\left(\frac{\partial U}{\partial V}\right)_S$
Entalpía	H = U + pV	dH = T dS + V dp $dF = -S dT - p dV$	H = H(S, p)	$T = \left(\frac{\partial H}{\partial S}\right)_p$	$V = -\left(\frac{\partial H}{\partial p}\right)_{S}$
Función de Helm- holtz	F = U - TS	$\mathrm{d}F = -S\mathrm{d}T - p\mathrm{d}V$	F = F(T, V)	$S = -\left(\frac{\partial \vec{F}}{\partial T}\right)_V$	$p = -\left(\frac{\partial F}{\partial V}\right)_T^S$
Función de Gibbs	G = H - TS	$\mathrm{d}G = -S\mathrm{d}T + V\mathrm{d}p$	G = G(T, p)	$S = -\left(\frac{\partial G}{\partial T}\right)_p$	$V = -\left(\frac{\partial G}{\partial p}\right)_T$

6.1.5. Relaciones de Maxwell

Las relaciones de Maxwell 1 son un conjunto de ecuacioens termodinámicas derivadas del Teorema de Clairaut 2 y de las definiciones de los potenciales termodinámicos.

Con esto se tienen las relaciones de Maxwell

¹Para más ejemplos ver Blundell p.173.

²enlace a la explicacion

$$\begin{split} \left(\frac{\partial T}{\partial V}\right)_S &= -\left(\frac{\partial p}{\partial S}\right)_V, \\ \left(\frac{\partial T}{\partial p}\right)_S &= \left(\frac{\partial V}{\partial S}\right)_p, \\ \left(\frac{\partial S}{\partial V}\right)_T &= \left(\frac{\partial p}{\partial T}\right)_V, \\ \left(\frac{\partial S}{\partial p}\right)_T &= -\left(\frac{\partial V}{\partial T}\right)_p. \end{split}$$

Buscando algo más general, es claro que las relaciones de Maxwell son de la forma

$$\left(\frac{\partial *}{\partial \ddagger}\right)_{\star} = \pm \left(\frac{\partial \dagger}{\partial \star}\right)_{\ddagger},$$

donde los simbolos similares implican variables conjugadas, es decir, aquellas cuyo producto da como resultado unidades de energía. Como T y S, y p y V. Además, que aquellas que tengan el signo negativo son las que tienen a T y V del mismo lado de la ecuación.

Una forma alternativa de encontrar las relaciones de Maxwell es por medio del Jacobiano. Considerando un proceso cíclico descrito en los dos planos, T - S y p - V. La energía interna es una función de estado y por ende no cambia en un ciclo, de modo que

$$\oint T \, dS = \oint p \, dV,$$

$$\iint dp \, dV = \iint dT \, dS,$$

de modo que el trabajo hecho (área bajo el ciclo en el plano p-V) es igual al calor absorbido (área encerrada por el ciclo en el plano T-S). También podemos escribir

$$\iint dp dV \frac{\partial(T, S)}{\partial(p, V)} = \iint dT dS,$$

donde el nuevo término es el Jacobiano de la transformación del plano p-V al plano T-S, lo que implica que

$$\frac{\partial(T,S)}{\partial(p,V)} = 1.$$

Esta ecuación es suficiente para generar las cuatro relaciones de Maxwell por medio de

$$\frac{\partial(T,S)}{\partial(x,y)} = \frac{\partial(p,V)}{\partial(x,y)},$$

donde (x, y) es tomado como (T, p), (T, V), (p, S), (S, V).

Tercera Ley de la Termodinámica

La tercera ley nos da información adicional ya que provee el valor de la entropía a una temperatura en partícular, llamda cero absoluto.

7.1. Enunciados de la Tercera Ley

El tercer principio fue desarrollado por el químico Walter Nernst. Postula que la entropía de un sistema en el cero absoluto es una constante definida.

- Enunciado de Nernst: Cerca del cero absoluto, todas las reacciones de un sistema en equilibrio interno se dan sin cambios en la entropía.
 - Al llegar al cero absoluto cualquier proceso de un sistema físico se detiene.
 - Al llegar al cero absoluto la entropía alcanza un valor mínimo y acelerado.
- Enunciado de Plancks: La entropía de todos los sistemas en equilibrio interno es la misma en el cero absoluto, y debería ser tomada como cero.
- Enunciado de Simon: La contribución a la entropía de un sistema por cada aspecto del sistema que está en equilibrio termodinámico interno tiende a cero como $T \to 0$.

Si la entropía de cada elemento en algún estado cristalino (perfecto) se tomase como cero en el cero absoluto de temperatura, cada sustancia tiene una entropía finita y positiva, pero en el cero absoluto de temperatura la entropía puede llegar a ser cero y eso lo convierte en el caso de una sustancia cristalina perfecta.

7.2. Consecuencias de la Tercera Ley

Teniendo todos los enunciados de la tercera ley, se tienen algunas de las siguientes concecuencias:

1. Las capacidades caloríficas tienden a cero cuando $T \to 0$: Es trivial teniendo $C = T(\frac{\partial S}{\partial T})$.

2. La expansión térmica se detiene: Como $S \rightarrow 0$ cuando $T \rightarrow 0,$ se tiene

$$\left(\frac{\partial S}{\partial p}\right)_T \to 0$$

cuando $T \to 0$, pero por la relación de Maxwell implica que

$$\frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p \to 0$$

por lo que la expansividad isobárica.

- 3. Ningún gas se mantiene como ideal cuando $T \to 0$: Solo hace falta ver las capacidades caloríficas cuando la temperatura tiende a cero.
- 4. La Ley de Curie se rompe: DS: No considero que valga la pena explicar esto, si les es útil revisar Blundell p.197-198.

Parte II Mecánica Estadística

Ludwig Boltzmann, quien dedicó gran parte de su vida a estudiar Mecánica Estadística, murió en 1906, por su propia mano. Paul Ehrenfest, el cual continuó con su trabajo, murió de manera similar en 1933. Ahora nos toca a nosotros...

El plan de la Mecánica Estadística es establecer una conexión entre el nivel microscópico descrito por la mecánica y esos mismos sistemas considerados pero a nivel macroscópico.

Entropía y Temperatura

8.1. Macroestados y Microestados

Un **microestado** es la especificación detallada de una configuración microscópica de un sistema termodinámico. En otras palabras, un microestado es un punto del espacio fásico de dicho sistema. Mientras que un **macroestado** se refiere a una caracterización de un sistema termodinámico mediante los valores de un número finito de n variables de estado, de las cuales al menos una debe ser extensiva. Un macroestado viene dado por una distribución de probabilidad sobre un conjunto dado de microestados; en función del conjuto de microestados considerando, la distribución toma una u otra forma. Un sistema en equilibrio permanece en un macroestado (macroestado de equilibrio) mientras visita los diferentes microestados accesibles a lo largo de sus fluctuaciones.

8.2. Ensambles

Un ensabmle estadístico (colectividad estadística) se define como un conjunto hipotético de sistemas termodinámicos de características similares que nos permiten realizar un análisis estadístico de dicho conjunto, en otras palabras, un conjunto de microestados. Existen varios tipos de ensambles:

Ensamble Microcanónico: Un ensamble de sistemas termodinámicos que no intercambian energía ni materia con el entorno.

Ensamble Canónico: Un ensamble de sistemas que intercambian energía pero no materia con el entorno.

Ensamble Macrocanónico: Un ensamble de sistemas que intercambian materia y energía con el ambiente.

La forma de función de partición para cada tipo de ensamble es:

Microcanónico: $\Omega(U,V,N)=e^{\beta TS}$, sistema cerrado y aislado (energía constante y entropía máxima).

Canónico: $Z(T, V, N) = e^{-\beta A}$, sistema cerrado con energía variable y temperatura fijada.

Macrocanónico: $\Xi(T, V, \mu) = e^{\beta pV \mathbf{1}}$, sistema abierto.

¹Donde μ es el potencial químico.

8.3. Conteos

Técnicas básicas de conteo y sus fórmulas. Estas serán importantes para la deducción de las estadísticas o distribuiones de Boltzmann, Fermi-Dirac y Bose-Einstein.

8.3.1. Conteos Básicos

Cardinalidad: Sea A un conjunto finito, la cardinalidad de A (|A|) es el número de elementos de A.

Conjuntos Distintos: Dos conjuntos A y B son distintos ssi $A \cap B = \emptyset$.

Regla de la Suma: Sean A y B conjuntos distintos $|A \cup b| = |A| + |B|$, esto es válido para n conjuntos distintos.

Producto Cartesiano: Sea A y B dos conjuntos cualesquiera, el producto cartesiano $A \times B$ se define de la siguiente forma

$$A \times B = \{(a, b) | a \in A, b \in B\}.$$

Igual que la anterior, esto es válido para n conjuntos cualesquiera.

Regla de la Multiplicación: $|A_1 \times \cdots \times A_n| = |A_1| \cdots |A_n|$.

Casos de conteo básico

Disposiciones: Sea A un conjunto con n elementos. Una disposición de rango k del conjunto A es una elección (escogencia) de k elementos de A donde:

- 1. Si se puede repetir
- 2. Si importa el orden

 D_n^k = Conjunto de disposiciones de k elemento del conjunto A.

$$\left| D_n^k \right| = n^k.$$

Permutaciones: Sea A un conjunto con n elementos. Una permutación de rango $k \leq n$ es una elección de k elementos de A donde:

- 1. No se puede repetir
- 2. Si importa el orden

 $\mathcal{P}_n^k =$ Conjunto de permutaciones. $P_n^k = \left|\mathcal{P}_n^k\right| =$ Número de permutaciones.

$$P_n^k = \frac{n!}{(n-k)!}.$$

Ordenaciones: Una ordenación es un caso especial de permutaciones, donde se eligen los n elementos del conjutno A. Osea que una ordenación es una permutación donde k=n.

Número de Ordenaciones =
$$n!$$
.

Permutaciones con Repetición (Boltzmann): Sea A un conjunto con n elementos y vamos a escoger k elementos donde sí importa el orden y el elemento a_i se repite k_i veces. A este tipo de escogencia se le llama permutación con repetición.

Número de Permutaciones con Repetición =
$$\frac{k!}{k_1! \cdots k_n!}$$
.

Debido a que a_i lo escogemos k_i veces y si diferenciamos cada elección de a_i formaríamos un conjunto con k elementos y estos k elementos se pueden ordenar de k! formas, pero luego no lo diferenciamos y tendríamos k_i ordenaciones iguales y por lo tanto dividimos por $k_i!$ para todo i para contar las ordenaciones diferentes.

El ensamble microcanónico es el conjunto de todos los microestados que tienen la distribución permitida de máxima entropía.

Coeficiente Binomial:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

Propiedad 1: Simetría

$$\binom{n}{k} = \binom{n}{n-k}.$$

Propiedad 2: Triángulo de Pascal

$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}.$$

Binomio de Newton:

$$(x+y)^n \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$$

Teorema:

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}.$$

Combinaciones (Fermi-Dirac): Sea A un conjunto con n elementos. Una combinación de k elementos en n elementos es una elección de k elementos del conjunto A donde

- 1. No se puede repetir
- 2. No importa el orden

 $C_k^n = \{\text{Combinaciones de k elementos en n elementos.}\}$ Priemro elijamos k elementos en forma ordenada, como si fueran permutaciones y luego dividimos entre todas las ordenaciones de los k elementos.

$$C_k^n = \binom{n}{k}.$$

Distribución (Bose-Einstein): Sea A un conjunto de n elementos. Una distribución es una elección de k elementos de A donde:

- 1. Si se puede repetir
- 2. No importa el orden

 \mathcal{D}_k^n = Distribuciones de k en n.

Número de Distribuciones =
$$\binom{n-1+k}{k}$$
 = $\binom{n-1+k}{n-1}$.

8.3.2. Fórmula de Stirling

La fórmula de Stirling es una aproximación de la función factorial de un número natural n, que es especialmente útil para grandes valores de n.

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

esta aproximación puede representarse también de forma logarítmica

$$\ln n! \approx n \ln n - n + \frac{1}{2} \ln 2\pi n.$$

La precisión de esta fórmula mejora a medida que n aumenta.

8.4. Entropía y Función de Partición

En nuestro problema básico de Mecánica Estadística tenemos n partículas distinguibles entre sí y tenemos k estados y en cada estado pueden haber cualquier número de partículas. Además cada estado se identifica con su nivel de energía. Diferentes estados pueden tener el mismo nivel de energía. Lo anterior lo decimos, formalmente, que la energía puede estar degenerada. En general, la energía no nos sirve de índice; la energía sirve de índice solamente cuando no hay degeneración. Siempre es requerido conocer la función de degeneración.

En este problema tenemos 2 restricciones, el número de partículas es n y la energía total es E. Lo único que se respeta son esass dos restricciones. Las partículas solamente obedecen la srestricciones, todo lo demás es completamente aleatorio. Cuando una distribución respeta las restricciones decimos que es una distribución admisible o posible; cuando una distribución no respeta las restricciones decimos que es una distribución imposble o inadmisible. En este momento una distribución es función que le asigna n_i partículas al estado E_i ; osea que la función va sobre los índices.

Osea que, una distribución se puede escribir de a siguiente forma

$$(n_1,\ldots,n_k)$$

y está sujeta a las siguientes restricciones

$$\sum_{i=1}^{k} n_i = n \qquad \sum_{i=1}^{k} n_i E_i = E.$$

También tenemos que, por ahora, las partículas son distinguibles por lo tanto definimos como microestado a una función que asigna a acada partícula un estado. Los microestados que dan una distribución admisible se llaman microestados admisibles o posibles. Los microestados que dan una distribución inadmisible o imposible se llaman microestados inadmisibles o imposible. *Microestados diferentes pueden dar la misma distribución*.

8.4.1. Postulado Básico

Todos los microestados admisibles tienen la misma probabilidad de salir.

Microestados inadmisibles tienen probabilidad cero de salir, son imposibles.

Como consecuencia de lso postulados, la distribución más probable es la distribución que tenga más microestados admisibles. Por lo tanto, tenemos que contar microestados de cada distribución admisible y luego escoger la que tenga más microestados admisibles.

8.4.2. Conteo de Microestados

El número de microestados admisibles de la distribución admisible (n_1, \ldots, n_k) con $n = n_1 + \cdots + n_k$ es:

 $\Omega(n_1,\ldots,n_k)=$ Número de microestados de la distribución.

$$\Omega(n_1,\ldots,n_k) = \frac{n!}{n_1!\cdots n_k!}.$$

QUEREMOS MAXIMIZAR Ω !

8.4.3. Problema Básico de Mecánica Estadística

Maximizar

$$\Omega(n_1,\ldots,n_k) = \frac{n!}{n_1!\cdots n_k!}$$

sujeto a

$$\sum_{i=1}^{k} n_i = n \qquad \sum_{i=1}^{k} n_i E_i = E.$$

Para facilitar la solución se utiliza la fórmula de Stirling. Con esto llegamos a que $p_i = \frac{n_i}{n}$ cuya interpretación es probabilidad. De lo anterior tenemos que

$$\sum_{i=0}^{k} p_i = 1.$$

Teoría de probabilidades, es el estudio de las variables aleatorias y sus propiedades. Estadística; es el estudio y desarrollo de teorías y técnicas para medir, establecer, calcular o estimar, variables aleatorias. Continuando con el procedimiento de maximizar, se tiene que

$$S = -k_B \sum_{i=0}^{k} p_i \log p_i.$$

Ahora tenemos la siguiente equivalencia de dos problemas

Maximizar

$$\Omega(n_1,\ldots,n_k) = \frac{n!}{n_1!\cdots n_k!}$$

sujeto a

$$\sum_{i=1}^{k} n_i = n \qquad \sum_{i=1}^{k} n_i E_i = E.$$

 \Leftrightarrow

Maximizar

$$S = -k_B \sum_{i=0}^{k} p_i \log p_i$$

sujeto a

$$\sum_{i=1}^{k} p_i = 1 \qquad \sum_{i=1}^{k} p_i E_i = E.$$

Maximizando la segunda equivalencia se llega a que

$$\ddagger = e^{1+\alpha} \qquad \alpha + 1 = \log \ddagger$$

entonces

$$\[\dot{z}(\beta) = \sum_{i=1}^{k} e^{-\beta E_i}, \quad \beta = \frac{1}{k_B T}. \]$$

8.4.4. Valor Esperado de E_i

Ahora calculamos el valor esperado de la variable aleatoria E_i .

$$\langle E_i \rangle = \sum_{i=0}^k p_i E_i.$$

La forma de calcular o estimar una variable aleatoria es muestreandola.

Para la distribución de Boltzmann, podemos calcular el valor esperado de la siguiente forma, usando la función de partición.

$$\mathfrak{z} = \sum_{i=0}^{k} e^{-\beta E_i},$$

derivando respecto a β se tiene que

$$\frac{1}{3} \frac{\mathrm{d} \mathfrak{z}}{\mathrm{d} \beta} = -\varepsilon.$$

A continuación vamos a ver que $\log \mathfrak{z}$ juega un papel importante en Mecánica Estadística. Derivando $\log \mathfrak{z}$ tenemos lo siguiente usando la regla de la cadena.

$$\frac{\mathrm{d}\log\mathfrak{z}}{\mathrm{d}\beta}=-\varepsilon.$$

8.4.5. Entropia v2

La entropía como se mostró anteriormente es como una densidad de entropía. Ahora, operando llegamos a que

$$S = k_B(\beta \varepsilon + \log \mathfrak{z}).$$

y ojo que S no depende de β (esto se puede probar diferenciando la expresión anterior llegamos a que $\frac{\partial S}{\partial \beta} = 0$). De esto tenemos que

$$dS = \frac{d\varepsilon}{T} \qquad \frac{dS}{d\varepsilon} = k_B \beta.$$

8.4.6. Función de Helmholtz

$$F = -\frac{\log \mathfrak{z}}{\beta}$$

Tomando la definición de entropía y reemplazando $\frac{1}{T} = k_B \beta$. Entonces, se tiene

$$F = \varepsilon - TS$$
.

Y que da claro también que ε no depende solamente de T sino que también de la entropía. Notamos lo siguiente d $F = d\varepsilon - T dS - S dT$ por ende

$$\mathrm{d}F = -S\,\mathrm{d}T$$

Lo que implica que la función de Helmholtz depende solamente de la temperatura y no de la energía² ni entropía.

 $^{^{2}\}varepsilon$: Energía Media

8.4.7. Calor Específico

Varianza

Es conocida la definición de $VAR = \langle E_i^2 \rangle - \varepsilon^2$. Esto se relaciona con la función de partición de la siguiente forma

$$\frac{1}{\mathfrak{z}}\frac{\mathrm{d}^2\mathfrak{z}}{\mathrm{d}\beta^2} = \left\langle E_i^2 \right\rangle,\,$$

Por ende

$$\frac{\mathrm{d}^2 \log \mathfrak{z}}{\mathrm{d}\beta^2} = VAR(E_i).$$

Utilizando la regla de la cadena y la definición de energía media

$$c_v = \frac{\mathrm{d}\varepsilon}{\mathrm{d}T},$$

Calor específico a volumen constante. Por la misma regla de la cadena, se tiene que

$$VAR(E_i) = c_v k_B T^2.$$

Elementos de la Teoría de los Ensambles

9.1. Generalidades de la Teoría de Ensambles

- Un microestado de un sistema clásico, en un tiempo t, está definido por las posiciones y momenta de todas las partículas que constituyen al sistema.
- Las coordenadas (q_i, p_i) representan un punto en un espacio de 6N dimensiones conocido como espacio de fases.
- Función de densidad $\rho(q, p; t)$: para describir mejor los ensambles de microestados en los que puede encontrar un sistema. Esta función es tal que el número de puntos representativos dentro del elemento de volumen $d^{3N}qd^{3N}p$ alrededor del punto (q, p) del espacio de fases está dado por el producto $\rho(q, p; t)d^{3N}qd^{3N}p$.
- El promedio del ensamble $\langle f \rangle$ de una cantidad física f(q,p) está dado por

$$\langle f \rangle = \frac{\int f(q,p) \rho(q,p;t) d^{3N} q d^{3N} p}{\int \rho(q,p;t) d^{3N} q d^{3N} p}.$$

• Teorema de Liouville: Consideremos una región de volumen arbitrario ω , cuya superficie la vamos a denotar por σ . Entonces, la tasa a la que el número de puntos representativos en este elemento de volumen aumenta con el tiempo es

$$\frac{\partial}{\partial t} \int_{\omega} \rho \, \mathrm{d}\omega$$
.

Por otro lado, el flujo hacia afuera de ω está dado por

$$\int_{\sigma} \rho \mathbf{v} \cdot \hat{\mathbf{n}} \, \mathrm{d}\sigma.$$

Por el teorema de la divergencia¹

$$\int_{\omega} \nabla \cdot \rho \mathbf{v} \, \mathrm{d}\omega.$$

 $[\]frac{1}{\iint_{\partial U} \mathbf{F} \cdot d\mathbf{S}} = \iiint_{U} \nabla \cdot \mathbf{F} \, dV, \text{ donde } S = \partial U.$

En vista que no hay fuentes ni sumideros

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\omega} \rho \, \mathrm{d}\omega = - \int_{\omega} \boldsymbol{\nabla} \cdot \rho \mathbf{v} \, \mathrm{d}\omega \,,$$

por lo que

$$\int_{\omega} \left(\frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \cdot \rho \mathbf{v} \right) d\omega = 0.$$

Por lo cual se tiene que

$$\frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \cdot \rho \mathbf{v} = 0,$$

y esta ecuación es conocida como la ecuación de la continuidad. Trabajando más esta ecuación

$$\frac{\partial \rho}{\partial t} + \sum_{i=0}^{3N} \left(\frac{\partial \rho}{\partial q_i} \dot{q}_i + \frac{\partial \rho}{\partial p_i} \dot{p}_i \right) + \rho \sum_{i=0}^{3N} \left(\frac{\partial \dot{q}_i}{\partial q_i} + \frac{\partial \dot{p}_i}{\partial p_i} \right) = 0.$$

Recordando las ecuaciones de Hamilton:

$$\dot{q}_i = \frac{\partial H(q_i, p_i)}{\partial p_i},$$

$$\dot{p}_i = -\frac{\partial H(q_i, p_i)}{\partial q_i}.$$

Usando las ecuaciones de Hamilton notamos que el tercer término de la ecuación de continuidad se hace cero, por consiguiente llegamos al resultado conocido como el **teorema de Liouville**:

$$\frac{\partial \rho}{\partial t} + \{\rho, H\} = 0,$$

donde $\{\rho, H\}$ es el bracket de Poisson. La consecuencia física de este teorema es que las trayectorias en el espacio de fases se mueven de la misma manera que un fluido incompresible.

- Ensamble Canónico: E = cte.
- Ensamble microcanónico: El macroestado del ensamble microcanónico de un sistema está definido por el número de moléculas N, el volumen V y la energía E. El ensamble microcanónico es una colección de sistemas para los cuales la función de densidad ρ está dada por

$$\rho(q.p) = cte.$$
 si $\left(E - \frac{1}{2}\Delta\right) \le H(q,p) \le \left(E + \frac{1}{2}\Delta\right)$.

- El resultado fundamental es llegar a la energía libre de Helmholtz.
- El formalismo del ensamble microcanónico y canónico son equivalentes.
- Teorema de Equipartición: Cada término armónico en el Hamiltoniano transforamdo de un sistema contribuye $\frac{1}{2}kT$ a la energía interna del sistema. Dicho de otro modo, cada grado de libertad aporta la misma cantidad al valor esperado de la energía del sistema total. No obstante, el teorema de equipartición es válido para valores de temperatura muy altos, osea cuando los grados de libertado relevantes del sistema pueden ser excitados libremente.

$$-\left\langle \sum_{i} q_{i} \dot{p}_{i} \right\rangle = 3NkT,$$

donde

$$\mathcal{V} = -3NkT$$

es llamado el virial del sistema. Cuando se considera a un gas ideal esto se reduce a la relación clásica:

$$\mathcal{V} = -2K$$
.

con K la energía cinética del sistema.

9.2. Osciladores Armónicos

Asumiendo osciladores armónicos en una dimensión el hamiltoniano H del sistema es

$$H(q_i, p_i) = \sum_{i} \frac{1}{2} m\omega^2 q_i^2 + \frac{1}{2m} p_i^2.$$

Al calcular la función de partición 3 de un oscilador armónico

$$\mathfrak{z} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp\left\{-\beta \left(\frac{1}{2}m\omega^2 q^2 + \frac{1}{2m}p^2\right)\right\} \frac{\mathrm{d}q \,\mathrm{d}p}{h},$$
$$\frac{1}{h} \left(\frac{2\pi}{\beta m\omega^2}\right)^{1/2} \left(\frac{2\pi m}{\beta}\right)^{1/2} = \frac{1}{\beta \hbar \omega} = \frac{kT}{\hbar \omega}.$$

De manera que entonces la función de partición del sistema completo es

$$\mathfrak{z} \left(\frac{kT}{\hbar \omega} \right)^N$$
.

La energía libre de Helmholtz está dada por

$$A = -kT \ln \mathfrak{z} = -NkT \ln \mathfrak{z}.$$

De manera que las otras variables termodinámicas son

$$S = \left(\frac{\partial S}{\partial T}\right)_{N,V}$$
$$= Nk \left[\ln \frac{kT}{\hbar \omega} + 1 \right]$$

У

$$U = \frac{\partial \ln \mathfrak{z}}{\partial \beta} = NkT.$$

Gas Ideal

El gas ideal es el primer ejemplo para ilustrar la teoría que hemos desarrollado. En este ejemplo consideramos N moles de átomos de un gas ideal, como el helio, en un volumen cúbico V que tiene de lato L, osea que $V=L^3$. El cubo está aislado y esta a una presión y temperatura fija.

En primera instancia vamos a conceptualizar en forma clásica. Las partículas son iguales, tienen masa m pero son distinguibles. ¿Qué usamos de índice para indicar los estados?

$$i = (x, y, z, p_x, p_y, p_z) = (\vec{r}, \vec{p})$$

¿Cuánto vale E_i ? Vamos a ignorar la energía potencial gravitacional y otras energías potenciales; entonces E_i es energía cinética

$$E(x, y, z, p_x, p_y, p_z) == \frac{p^2}{2m}.$$

Ahora calculamos la función de partición (la cual es adimensional)

$$\mathfrak{z}(\beta) = \frac{1}{h^3} \int_0^L \int_0^L \int_0^L \int_{-\infty}^\infty \int_{-\infty}^\infty \int_{-\infty}^\infty e^{-\frac{\beta p^2}{2m}} \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z \, \mathrm{d}p_x \, \mathrm{d}p_y \, \mathrm{d}p_z.$$

Realizamos la integral y se tiene que

$$\mathfrak{z}(\beta) = \frac{L^3}{h^3} \left(\int_{-\infty}^{\infty} e^{-\frac{\beta p_x^2}{2m}} \, \mathrm{d}p_x \right)^3.$$

Utilizando las propiedades de la función Gamma¹

$$\mathfrak{z}(\beta) = \frac{L^3}{h^3} \left(\frac{2m\pi}{\beta}\right)^{3/2}.$$

aplicando el logaritmo y derivando respecto a β se tiene

$$\varepsilon = \frac{3}{2}k_BT.$$

Para el caso cuántico cambia la h por \hbar .

$${}^{1}\int_{0}^{\infty} t^{n} e^{-at^{k}} dt = \frac{\Gamma\left(\frac{(n+1)}{k}\right)}{ka^{\frac{n+1}{k}}}.$$

Concentración Cuántica

 $n_Q = \text{Concentración cuántica}$

$$n_Q = \frac{\mathfrak{z}(\beta)}{V}.$$

Dado que la función de partición es adimencional; por lo tanto, las dimensionales de n_Q son $\left[1/m^3\right]$. Y para el gas ideal nos queda de la siguiente forma

$$n_Q = \frac{1}{\hbar^3} \left(\frac{mk_B T}{2\pi} \right)^3$$

Longitud de Onda Térmica

 λ_Q = Longitud de onda térmica.

$$\lambda_Q = n_Q^{-1/3}$$

Para el gas ideal nos queda

$$\lambda_Q = \hbar \sqrt{\frac{2\pi}{mk_B T}}.$$

10.1. Cálculo de Probabilidades

Recordemos que las probadilidades vienen dadas por

$$p_i = \frac{e^{-\beta E_i}}{3}$$

en este caso $i=(p_x,p_y,p_z)=\vec{p}$ que nos sirve para identificar los estados. Cambiaremos i por \vec{p} y de p_i a $f(\vec{p})$. $f(\vec{p})$ es la función densidad de probabilidad sustituyendo $\mathfrak{z}(\beta)$

$$f(\vec{p}) = \frac{\hbar^3}{V} \left(\frac{2\pi\beta}{m}\right)^{3/2} e^{-\beta \frac{p^2}{2m}}.$$

10.1.1. Función de Densidad de p

Utilizando la función densidad de probabilidad e integrando para las tres coordenadas de p (en esféricas). Con lo que llegamos a

$$g(p) = \sqrt{\frac{2}{\pi}} \left(\frac{\beta}{m}\right)^{3/2} p^2 e^{-\frac{\beta p^2}{2m}}.$$

g(p) = función de densidad de probabilidad de variable $p = \sqrt{p_x^2 + p_y^2 + p_z^2}$.

Moda: $p = \sqrt{\frac{2m}{\beta}}$.

Valor Esperado: $\langle p \rangle = \frac{2m^2}{\beta^2} = 2k_B^2 m^2 T^2$.

10.1.2. Energía Cinética

En este caso, del gas ideal, la energía cinética de la partícula es toda su energía o Hamiltoniano. Ya sabemos que $K=p^2/2m$

$$g(p) dp = \sqrt{\frac{2}{\pi}} \left(\frac{\beta}{m}\right)^{3/2} p^2 e^{-\frac{\beta p^2}{2m}} dp,$$

reemplazando todo por la energía cinética, se tiene h(K)= densidad de probabilidad de Energía Cinética

$$h(K) = \frac{2}{\sqrt{\pi}} \beta^{3/2} \sqrt{K} e^{-\beta K}.$$

Moda: $K = \frac{\beta}{2}$.

Valor Esperado: $\langle K \rangle = \langle E \rangle = \varepsilon = \frac{3}{2\beta} = \frac{3}{2}k_BT = -\frac{\mathrm{d}\log\mathfrak{z}}{\mathrm{d}\beta}.$

Modelo de Einstein

En un sólido, la energía puede estar almacenada en vibraciones de los átomos (ordenados en forma de lattice). De igual forma que los fotones son ondas electromagnéticas cuantizadas DS: revisar esta palabra que ando bien pendejo y no recuerdo como se dice xd, los fonones son ondas reticulares cuantifiadas (quantized lattice waves) que describen las exitaciones elementales de vibraciones de la lattice. En lugar de concentrarnos en la vibración de cada átomo, nos concetraremos en los modos normales del sistema. Cada uno de los modos normales es un oscilador armónico simple y contiene un número entero de cuantos de energía. Estos cuantos de energía pueden ser considerados partículas discretas, llamadas fonones. Para estas descripciones se tiene dos modelos: el de Einstein y el de Debye.

11.1. Calor Específico de un Sólido

En un sólido, las oscilaciones de un átomo son pequeñas y siguen las reglas de la Mecánica Cuántica $E_n = \hbar\omega(n+1/2)$. (DS: Hasta después se verá bien la mecánica cuántica.)

Calculando el calor específico, utilizando la función de partición

$$\mathfrak{z}(\beta) = \sum_{n_x=0}^{\infty} \sum_{n_y=0}^{\infty} \sum_{n_z=0}^{\infty} e^{-\beta(E_{n_x} + E_{n_y} + E_{n_z})}$$

debido a que $n_x.n_y, n_z$ son índices mudos tenemos que

$$\mathfrak{z}(\beta) = \left(\sum_{n=0}^{\infty} e^{-\hbar\omega(n+1/2)}\right)^3$$

operando igual que el ejemplo tenemos que

$$\mathfrak{z}(\beta) = \left(\frac{e^{-\frac{\beta\hbar\omega}{2}}}{1 - e^{-\beta\hbar\omega}}\right)^3.$$

Calculando el logaritmo, su derivada, desarrollando un poco y tomando temperaturas altas se concluye que $c_v = 3k_B$.

Gas Diatómico

Luego de trabajar con gases ideales monoatómicos y sólidos, se trabajará con el gas diatómico, encontrando el calor específico y la capacidad calorífica. Recordando que para el gas ideal la función de partición

$$\mathfrak{z}(\beta) = \frac{V}{\hbar^3} \bigg(\frac{m}{2\beta\pi}\bigg)^{3/2},$$

$$\log \mathfrak{z} = \log V - 3\log \hbar + \frac{3}{2}\log \frac{m}{2\pi} - \frac{3}{2}\log \beta.$$

con esto, para un gas ideal el calor específico es $c_v=\frac{3}{2}k_B$ y la capacidad calorífica molar es $C_v=N_Ac_v$.

12.1. Cálculo de la Función de Partición para un Gas Diatómico

La molécula diatómicatione tres tipos de energía

- 1. Energía cinética de traslación
- 2. Energía cinética de rotación
- 3. Energía cinética de vibración

El índice elegido será: $i = (n_x, n_y, n_z, l, m, n)$; por lo que la función de partición queda de la siguiente forma

$$\mathfrak{z}(\beta) = \mathfrak{z}_T \mathfrak{z}_R \mathfrak{z}_V,$$

la que incluye las funciones por traslación, rotación y vibración. La única conocida es la función de partición para la traslación DS: Misma que el gas ideal.

12.1.1. Cálculo de $\mathfrak{z}_R(\beta)$

El índice es (l, m)

$$\mathfrak{z}_R(\beta) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} e^{-\beta E_{l,m}},$$

paro $L^2|l,m\rangle=\hbar^2l(l+1)$ (DS: Esto es de cuántica, se entenderá bien en la siguiente parte.) La energía cinética de rotación $\frac{1}{2}I\omega$ pero $L=I\omega$ por lo tanto $E_R=\frac{L^2}{2I}$

$$E_{l,m} = \frac{\hbar^2}{2I}l(l+1)$$

o sea que

$$\mathfrak{z}_R(\beta) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \exp\left\{-\frac{\beta \hbar^2}{2I} l(l+1)\right\}.$$

tenemos 2l + 1 m's, entonces

$$\mathfrak{z}_R = \sum_{l=0}^{\infty} (2l+1) \exp\left\{-\frac{\beta \hbar^2}{2I} l(l+1)\right\},\,$$

integrando (se tiene el diferencial completo) se tiene

$$\mathfrak{z}_R = \frac{2Ik_BT}{\hbar^2},$$

$$\frac{\mathrm{d}^2 \log \mathfrak{z}_R}{\mathrm{d}\beta^2} = \frac{1}{\beta^2} = k_B^2 T^2.$$

12.1.2. Cálculo de $\mathfrak{z}_V(\beta)$

En este caso no hay degeneración

$$\mathfrak{z}_V(\beta) = \sum_{n=0}^{\infty} e^{-\beta E_n},$$

pero $E_n = \hbar \omega (n + 1/2)$. Reemplazando y simplificando

$$\mathfrak{z}_V(\beta) = \frac{e^{-\frac{\beta\hbar\omega}{2}}}{1 - e^{-\beta\hbar\omega}} = \frac{1}{\mathrm{senh}\,\frac{\beta\hbar\omega}{2}},$$

simplificando para $T \to \infty$

$$\mathfrak{z}_V(\beta) \approx \frac{1}{\hbar \omega \beta},$$

$$\frac{\mathrm{d}\log\mathfrak{z}_V}{\mathrm{d}\beta} = -\frac{1}{\beta}.$$

12.1.3. Cálculo para T grande

Se tiene

$$\frac{\mathrm{d}\log\mathfrak{z}}{\mathrm{d}\beta} = -\frac{3}{2\beta} - \frac{1}{\beta} - \frac{1}{\beta} = \frac{7}{2\beta},$$
$$\frac{\mathrm{d}^2\log\mathfrak{z}}{\mathrm{d}\beta^2} = \frac{7}{2\beta^2} = \frac{7k_B^2T^2}{2}.$$

Por ende $c_v = \frac{7k_B}{2}$. La capacidad calorífica molar es $C_V = N_A c_v$.

12.1.4. Capacidad Calorífica para Gases Nobles

Para gases nobles como el helio, solamente se toman en cuenta la traslación y rotación.

$$\mathfrak{z}(\beta)=\mathfrak{z}_T\mathfrak{z}_R$$

entonces $c_v = \frac{5}{2}k_B$.

Repaso de Termodinámica

13.1. Generalidades

Se repasarán conceptos termodinámicos a partir de la función de partición. La función de partición utilizada hasta ahora ha sido \mathfrak{z} la cual depende de β y ahora también consideraremos que depende del volumen. Ahora el volumen también será variable. Si por medio de un baño térmico logrmos mantener la temperatura constante y a flujo de energía cambia el volumen o la presión.

Recordemos que para definir la entropía S la dividimos por el número de partículas n. Para tener entropía total, tenemos la siguiente variable

$$S_B = nS$$
 y $E = n\varepsilon$.

Recordemos que

$$S = k_B(\beta \varepsilon + \log \mathfrak{z}) \quad \Rightarrow \quad S_B = k_B(\beta E + \log \mathfrak{z}^n),$$

y definimos otra variable, que es la función de partición $\mathcal{Z} = \mathfrak{z}^n$, por ende

$$S_B = (\beta E + \log \mathcal{Z})$$

Factorizando

$$S_B = k_B \beta \left(E + \frac{\log \mathcal{Z}}{\beta} \right),$$

y definimos la Energía Libre de Helmholtz de la siguiente forma

$$A = -\frac{\log \mathcal{Z}}{\beta}.$$

y observemos que $A=-n\frac{\log\mathfrak{z}}{\beta}$ pero $F=-\frac{\log\mathfrak{z}}{\beta}$ donde F es la función de Helmholtz que es un promedio de energía libre. Por lo tanto

$$A = nF$$

Reemplazando en la entropía

$$E = TS_B + A.$$

Observemos lo siguiente

$$S_B = k_B(\beta E + \log \mathcal{Z})$$

ahora consideramos que $\mathcal{Z}(\beta, V)$, encontrando el diferencial

$$dS_B = k_B \left(\beta \, dE + \left(\frac{\partial \log \mathcal{Z}}{\partial V} \right) dV \right)$$

La entropía S_B no depende de β , por otro lado

$$dS_B = \left(\frac{\partial S_B}{\partial E}\right)_V dE + \left(\frac{\partial S_B}{\partial V}\right)_E dV$$

por lo tanto

$$T dS_B = dE - \left(\frac{\partial A}{\partial V}\right)_V dV.$$

13.2. Presión

Por definición clásica de presión F dx = P(area) dx = dW = -dE. Para definir la presión, tenemos que la entropía es constante.

$$\begin{split} P &= - \bigg(\frac{\mathrm{d}E}{\mathrm{d}V}\bigg)_{S_B} = - \bigg(\frac{\partial E}{\partial V}\bigg)_{S_B} \\ P &= - \bigg(\frac{\partial E}{\partial V}\bigg)_{S_B}. \end{split}$$

Utilizando la energía libre de Helmholtz tenemos que

$$P = -\left(\frac{\partial A}{\partial V}\right)_T,$$

entonces

$$dE = T dS_B - P dV.$$

De la expresión anterior tenemos que la energía total E depende de la entrpía total E y del volumen V. E es idenpendiente de la temperatura T. También podemos decir que la entropía total S_B depende de la energía total E y del volumen V pero no depende de la temperatura T.

Ahora trabajamos con la energía libre de Helmholtz y simplificando su diferencial, se tiene

$$\mathrm{d}A = -p\,\mathrm{d}V - S_b\,\mathrm{d}T\,,$$

$$\mathrm{d}A = \left(\frac{\partial A}{\partial V}\right)_T \mathrm{d}V + \left(\frac{\partial A}{\partial T}\right)_V \mathrm{d}T\,.$$

$$\left(\frac{\partial A}{\partial V}\right)_T = -P, \qquad \left(\frac{\partial A}{\partial T}\right)_V = -S_B.$$

por lo tanto

13.3. Entalpía

Introducimos el concepto de entalpía

$$H = E + PV$$

Encontrando su diferencial, esta depende de la entropía y la presión

$$dH = T dS_B + V dP,$$

$$dH = \left(\frac{\partial H}{\partial S_B}\right)_P dS_B + \left(\frac{\partial H}{\partial P}\right)_{S_B} dP.$$

entonces

$$\left(\frac{\partial H}{\partial S_B}\right)_P = T, \qquad \left(\frac{\partial H}{\partial P}\right)_{S_B} = V.$$

13.4. Función de Gibbs

La función de Gibbs tiene las siguientes formas equivalentes de escribirse

$$G = E + PV + TS_B,$$

$$G = H - TS_B,$$

$$G = A + PV.$$

Encontrando su diferencial

$$dG = V dP - S_B dT,$$

$$dG = \left(\frac{\partial G}{\partial P}\right)_T dP + \left(\frac{\partial G}{\partial T}\right)_P dT.$$

$$\left(\frac{\partial G}{\partial P}\right)_T = V,$$

$$\left(\frac{\partial G}{\partial T}\right)_P = -S_B.$$

entonces

13.5. Potencial Químico

Si se agrega una partícula a un sistema, entonces su energía interna cambiará una cantidad que definimos como el **potencial químico** μ . Así que cuando este es el caso la primera y segunda ley de la termodinámica se deben modificar, agregando un término extra: DS: aguas, me valió el cambio de notación xdddd

$$dU = T dS_B - P dV + \mu dN,$$

donde N es el número de partículas del sistema. Esto inmediatamente implica que podemos escribir

$$\mu = \left(\frac{\partial U}{\partial N}\right)_{S,V}.$$

Recordemos que la energía libre de Helmholtz se define como $A = U + TS_B$ y la energía libre de Gibbs como $G = U - PV - TS_B$, por consiguiente

$$dF = -P dV - S_B dT + \mu dN$$

$$dG = V dP - S_B dT + \mu dN,$$

con lo cual se tiene

$$\mu = \left(\frac{\partial F}{\partial N}\right)_{V,T}$$

$$\mu = \left(\frac{\partial G}{\partial N}\right)_{P,T},$$

de manera que esta útlima expresión para μ en términos de la energía libre de Gibbs se volverá particularmente útil dado que mantener las variables P y T constantes es algo viable en el experimento.

Podemos considerar que la función de entropía es $S_B = S_B(U, V, N)$, de tal forma que

$$dS_B = \left(\frac{\partial S_B}{\partial U}\right)_{N,V} dU + \left(\frac{\partial S_B}{\partial V}\right)_{N,U} dV + \left(\frac{S_B}{N}\right)_{U,V} dN.$$

Si dividimos la ecuación de la primera ley dentro de T y despejamos para d S_B se tiene

$$dS_B = \frac{dU}{T} + \frac{P \, dV}{T} - \frac{\mu \, dN}{T},$$

y al compararlo con la ecuación anterior podemos concluir que

$$\left(\frac{\partial S_B}{\partial U}\right)_{N,V} = \frac{1}{T} \qquad \left(\frac{\partial S_B}{\partial V}\right)_{N,U} = \frac{P}{T} \qquad \left(\frac{\partial S_B}{\partial N}\right)_{U,V} = -\frac{\mu}{T}.$$

Distribuciones de Fermi-Dirac y Bose-Einstein

Hasta ahora hemos trabajado con partículas iguales pero distinguibles. Ahora vamos a considerar partículas iguales (idénticas) que son indistinguibles, por ejemplo; los electrones, los neutrinos, los fotones, etc. Tenemos dos tipos de partículas para el caso de partículas indistinguibles, estos dos tipos son los Fermiones y Bosones.

Fermiones: Los fermiones son partículas indistinguibles que en un estado dado no puede haber más de dos partículas; es decir, en un estado dado o está desocupado o solamente hay una partícula.

Bosones: Los bosones son partículas que en un estado dado puede haber cualquier número de partículas.

En esto se tendrá como índice a la energía.

14.1. Degeneración de la Energía

 g_i = Número de Estados con energía E_i .

14.2. Distribución Fermi-Dirac (Caso 3)

 n_i = Número de partículas en el estado i. En este caso vamos a considerar Fermiones. Debido a esto tenemos $0 \le n_i \le g_i$. ¿De cuantas formas se pueden colocar n_i partículas en el nivel de energía E_i que tiene g_i estados?

Tenemos que elegir n_i estados de g_i estados disponibles; donde no se puede y no importa el orden (caso 3). Por lo tanto el resultado es

$$g_i C_{n_i} = \begin{pmatrix} g_i \\ n_i \end{pmatrix} = \frac{g_i!}{n_i!(g_i - n_i)!}.$$

 $\Omega = \text{Número de microestados}.$

$$\Omega = \prod_{i=1}^{k} {g_i \choose n_i} = \prod_{i=1}^{k} \frac{g_i!}{n_i!(g_i - n_i)!}.$$

Queremos maximizar Ω sujeta a dos restricciones $\sum n_i = n$ y $\sum n_i E_i = E_T$. Además, si maximizamos $\log \Omega$, tambien maximizamos Ω . Vamos a calcular $\frac{n_i}{g_i}$ en lugar de n_i . Para resolver el problema anterior utilizaremos la fórmula de Stirling, reemplazandola y aplicando el logaritmo e ignorando $\frac{1}{2} \log 2\pi$ y los 1/2, por lo tanto, hay que maximizar

$$\log \Omega = \sum_{i=1}^{n} [g_i \log g_i - n_i \log n_i - (g_i - n_i) \log (g_i - n_i)]$$

aplicamos multiplicadores de Lagrange

$$F(n_1, n_2, \dots, n_k, \alpha, \beta) = \sum_{i=1}^{n} [g_i \log g_i - n_i \log n_i - (g_i - n_i) \log (g_i - n_i)] - \alpha \left(\sum_{i=1}^{k} n_i - n\right) - \beta \left(\sum_{i=1}^{k} n_i E_i - E_T\right).$$

Ahora $\frac{\partial F}{\partial n_i} = 0$

$$\frac{\partial F}{\partial n_i} = -\log n_i + \log (g_i - n_i) - \alpha - \beta E_T.$$

$$\log\left(\frac{g_i - n_i}{n_i}\right) = \alpha + \beta E_i$$

introducimos la variable $\mu = -\alpha/\beta$

$$\frac{g_i}{n_i} - 1 = e^{\alpha + \beta E_i}$$

seguimos operando

$$\frac{n_i}{g_i} = \frac{1}{e^{\beta(E_i - \mu)} + 1}$$
 Fermi-Dirac

entonces

$$\sum_{i=1}^{k} \frac{g_i E_i}{e^{\beta(E_i - \mu)} + 1} = E_T.$$

14.3. Distribución de Bose-Einstein (Caso 4)

 n_i es el número de partículas en el nivel de energía E_i . En este caso $n_i \ge 0$, porque son bosones y en un mismo estado puede haber cualquier número de partículas. Osea n_i puede ser mayor que g_i .

Tenemos que elegir n_i veces g_i estados donde no importa el orden y sí se puede repetir (distribuciones). Tenemos al siguiente número de posibilidades

$$\binom{n_i + g_i - 1}{n_i} = \binom{n_i + g_i - 1}{g_i - 1}$$

por lo que

$$\binom{n_i + g_i - 1}{n_i} = \frac{(n_i + g_i - 1)}{n_i!(g_i - 1)!}.$$

Para calcular el número de microestados hacemo uso de la regla del producto y tenemos que

$$\Omega = \prod_{i=1}^{k} \frac{(n_i + g_i - 1)}{n_i!(g_i - 1)!}$$

y las mismas condiciones que el caso anterior. Ahora maximizamos $\log \Omega$ bajo el mismo procedimiento: fórmula de stirling, selección de términos irrelevantes y multiplicadores de Lagrange.

$$\log\left(\frac{g_i + n_i - 1}{n_i}\right) = \alpha + \beta E_i$$

vamos a ignorar el -1 y $\mu = \alpha/\beta$

$$\frac{n_i}{g_i} = \frac{1}{e^{\beta(E_i - \mu)} - 1}$$
 Bose-Einstein

entonces

$$\sum_{i=1}^{k} \frac{g_i E_i}{e^{\beta(E_i - \mu)} - 1} = E_T.$$

Gas de Fotones

15.1. Radiación de Cuerpo Negro

Ahora se estudiará la distribución de enegía en una cavidad de volumen V en ondas electromagnéticas. En la cavidad de volumen V la energía está en las ondas electromagnéticas. Una onda electromagnética es el resultado de las oscilaciones del campo eléctrico y el cambpo magnético. Las oscilaciones del campo eléctrico y el magnético obedecen las leyesdde la electrodinámica y de la mecánica cuántica. En partícular las ondas electromagnéticas se comportan según la Teoría Cuántica de Campos; al oscilar los campos obtenemos partículas llamadas **fotones** que siguen la estadística de Bose-Einstein; los fotones son bosones. Las ondas electromagnéticas, por ende los fotones, viaja a la velocidad de la luz

$$c = \frac{1}{\sqrt{\mu_o \varepsilon_o}} = 3 \times 10^8 m/s$$

También sabemos que las ondas electromagnéticas son ondas transversales; el campo eléctrico y magnético oscilan perpendicularmente a la dirección de propagación, permitiendo que tanto el campo eléctrico como el magnético tengan dos direcciones linealmente independientes para oscilar; por lo tanto, tenemos dos polarizaciones.

Las ondas que se forman en la cavidad de volumen V son ondas estacionarias. Las ondas estacionarias se forman con la superposición de dos ondas simples que viajan en sentidos opuestos. La energía está directamente relacionada con la frecuencia.

15.1.1. Cálculo de la Función de Degeneración g(E)

Las ondas estacionarias son la combinación lineal de los modos normales, en general se tiene que $k_n = \frac{3\pi}{L}$; además, sabemos que $\lambda \nu = \frac{\omega}{k} = c$. Si consideramos la propagación en 3-D $k_n = \sqrt{n_x^2 + n_y^2 + n_z^2}$. El índice discreto n está altamente degenerado y vamos a cambiarlo por $n \to \omega_n \to \omega$ para calcular la energía E_n usamos Mecánica Cuántica DS: No se hará el desarrollo, ver Clase 15 Notas de Clase 2022. Con esto se llega a que la función de degeneración es

$$g(\omega) = \frac{V\omega^2}{\pi^2 c^3},$$

con $g(\omega) d\omega =$ número de estados entree ω y $\omega + d\omega$. Reemplazando $E(\omega) = \hbar \omega$, entonces

$$f(E) = \frac{VE^2}{\pi^2 c^2 \hbar^3},$$

con f(E) dE es el número de estados entre E y E + dE.

Debido a que los fotones son bosones, se distribuyen según la estadística de Bose-Einstein, dicho de otra forma, tienen la distribución de Bose-Einstein

$$E_T = \sum_{i=1}^k \frac{g_i E_i}{e^{\beta(E_i - \mu)} - 1}$$

ahora $\alpha = 0$ y si $i \to \omega$ se tiene que $g_i \to g(\omega)$ y $E_i = E(\omega) = \hbar \omega$ entonces

$$E_T = \int_0^\infty \frac{g(\omega(E(\omega)))}{e^{\beta E(\omega)} - 1} d\omega$$

$$E_T = \int_0^\infty \frac{V\omega^2\hbar\omega\,\mathrm{d}\omega}{\pi^2 c^3 (e^{\beta\hbar\omega} - 1)}.$$

Integrando se tiene que

$$E_T = \left(\frac{V\pi^2 k_B^4}{15\hbar^3 c^3}\right) T^4.$$

15.1.2. Constante de Stefan-Boltzmann

 $\sigma = {\rm constante}$ de Stefan-Boltzmann

$$\sigma = \frac{\pi^2 k_B^4}{60\hbar^3 c^2}.$$

por lo que la energía total se reescribe como $E_T = \frac{4\sigma V}{c}T^4$.

15.1.3. Densidad de Energía

 $e = \frac{E_T}{V}$ = densidad de energía. Regresando a la integral

$$e = \frac{\hbar}{\pi^2 c^3} \int_0^\infty \frac{\omega^3 d\omega}{e^{\beta \hbar \omega} - 1} = \int_0^\infty \mu(\omega) d\omega.$$

con esto definimos $\mu(\omega)$

$$\mu(\omega) = \frac{\hbar \omega^3}{\pi^2 c^3 (e^{\beta \hbar \omega} - 1)}$$

donde μ es la energía por unidad de volumen. Y en términos de la frecuencia

$$\mu(\nu) = \frac{8\pi h \nu^3}{c^3 \left(e^{\frac{h\nu}{k_B T}} - 1\right)}.$$

15.1.4. Conteo de Fotones

De lo que se estudió en la distribución de Bose-Einstein el número de fotones es

$$N = \frac{V}{\pi^2 c^3} \int_0^\infty \frac{\omega^2 d\omega}{(e^{\beta\hbar\omega} - 1)}.$$

15.1.5. Función de Partición

Teniendo

$$\frac{\partial \log \mathcal{Z}}{\partial \beta} = -E_T = -\frac{V\pi^2}{15\hbar^3 c^3} \frac{1}{\beta^4}$$

Entonces, la función de partición es

$$\mathcal{Z}(\beta) = e^{\frac{V\pi^2}{45\hbar^3c^3\beta^3}}.$$

Parte III Mecánica Cuántica

"Cualquiera que no se sorprenda por la teoría cuántica, no la ha entenddo" - Niels Bohr	

Notación de Dirac (Repaso Álgebra Lineal)

Se hará un repaso de ciertas definiciones y propiedades, para tenerlas frescas, no se ahondará demasiado en cada una, ni se demostrarán.

16.1. Espacios de Hilbert y Espacio Dual

Los estados en mecánica Cuántica son descritos por medio de vectores. Sea \mathcal{H} un espacio vectorial sobre un campo escalar \mathbb{F} , pero en Mecánica Cuántica el campo de escalares es el campo de los números complejos \mathbb{C} . Los elementos de \mathcal{H} son vectores. Si $\phi \in \mathcal{H}$, en la notación de Dirac lo escribimos de la siguiente forma

$$\phi = |\phi\rangle$$
 Kets.

Los elementos de \mathcal{H} los llamamos, vectores o kets. De esta forma decios que el ket $|\phi\rangle \in \mathcal{H}$. Si λ es un escalar, o sea que $\lambda \in \mathbb{C}$ la multiplicación por escalar queda así $\lambda \phi = |\lambda \phi\rangle = \lambda |\phi\rangle \in \mathcal{H}$.

16.1.1. El Espacio Dual

Sea \mathcal{H}^* el espacio dual albegraico de \mathcal{H} . La definición de \mathcal{H}^* es la siguiente: $\mathcal{H}^* = \{\psi : \mathcal{H} \to \mathbb{C} \text{ tal que } \psi \text{ es lineal}\}$. A ψ se le conoce como funcional o Bra. Los cuales son descritos de la siguiente forma $\psi \in \mathcal{H}^*$ entonces $\psi = \langle \psi |$. Una propiedad importante de esto que mencionamos es que a todo Ket le corresponde un Bra. En la notación de Dirac el funcional $\psi \in \mathcal{H}^*$ operando sobre el ket $\phi \in \mathcal{H}$ se escribe de la siguiente manera

$$\psi(\phi) = \langle \psi | \phi \rangle \in \mathbb{C}$$
 Braket.

16.2. Operadores Lineales

Sea \mathcal{H} un espacio vectorial sobre \mathbb{F} . Una función $A: \mathcal{H} \to \mathcal{H}$ es un operador lineal si y solo si para todos 2 vectores cualesquiera del espacio y un escalar de campo $A(\phi_1 + \phi_2) = A\phi_1 + A\phi_2$ y $A(\lambda\phi_1) = \lambda A\phi_1$. Los cuales son representados por matrices. Dado que los Bra son lineales, cumplen

con estas características, es decir que los brakets son lineales en la segunda coordenada DS: la parte del ket. En Mecánica Cuántica usaremos operadores hermíticos, unitarios y escalares. Cuando un operador actua sobre un braket se escribe de la siguiente forma $\langle \psi | A | \phi \rangle$.

16.3. Los KetBras

Sea \mathcal{H} un espacio vectorial sobre los números complejos y \mathcal{H}^* es su espacio dual. Para todo $|\phi\rangle \in \mathcal{H}$ y todo bra $\langle \psi | \in \mathcal{H}^*$, definimos el ketbra $|\phi\rangle\langle\psi|$ de la siguiente forma

$$|\phi\rangle\langle\psi|:\mathcal{H}\to\mathcal{H}$$

 $|\alpha\rangle\mapsto|\beta\rangle=\langle\psi|\beta\rangle\,|\phi\rangle$

Esto es bastante confuso viendo solo así, el resto de operaciones son bastante intuitivas o ya conocidas, pero esta es un producto tensorial conocido como **producto exterior** calculado de la siguiente forma DS: no se ha mencionado pero es bastante obvio, los kets son vectores columna y los bra vectores fila.

$$|\phi\rangle\langle\psi| = \begin{pmatrix} \phi_1 \\ \phi_2 \\ \vdots \\ \phi_N \end{pmatrix} (\psi_1 \quad \psi_2 \quad \cdots \psi_N) = \begin{pmatrix} \phi_1\psi_1 & \phi_1\psi_2 & \cdots & \phi_1\psi_N \\ \phi_2\psi_1 & \phi_2\psi_2 & \cdots & \phi_2\psi_N \\ \vdots & \vdots & \ddots & \vdots \\ \phi_N\psi_1 & \phi_N\psi_2 & \cdots & \phi_N\psi_N \end{pmatrix}$$

Esto no se vio en clase pero es imprescindible saberlo. Además, uno de los usos de esto es la construcción de un operador de proyección, dado un ket de norma 1, la proyección ortonormal en el subespacio generado por $|\phi\rangle$ es $|\phi\rangle\langle\phi|$. Este es un operador idempotente¹

16.3.1. Producto de kronecker

El producto tensorial de Kronecker es el que utilizaremos en mecánica cuántica (el producto de Kronecker es una generalización a matrices del producto exterior)

$$\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} \phi_{11} \mathbf{B} & \phi_{12} \mathbf{B} & \phi_{13} \mathbf{B} \\ \phi_{21} \mathbf{B} & \phi_{22} \mathbf{B} & \phi_{23} \mathbf{B} \\ \phi_{31} \mathbf{B} & \phi_{32} \mathbf{B} & \phi_{33} \mathbf{B} \end{bmatrix} = \begin{bmatrix} \phi_{11} \psi_{11} & \phi_{11} \psi_{12} & \phi_{12} \psi_{11} & \phi_{12} \psi_{12} & \phi_{13} \psi_{11} & \phi_{13} \psi_{12} \\ \phi_{11} \psi_{21} & \phi_{11} \psi_{22} & \phi_{12} \psi_{21} & \phi_{12} \psi_{22} & \phi_{13} \psi_{21} & \phi_{13} \psi_{22} \\ \phi_{21} \psi_{11} & \phi_{21} \psi_{12} & \phi_{22} \psi_{11} & \phi_{22} \psi_{12} & \phi_{23} \psi_{11} & \phi_{23} \psi_{12} \\ \phi_{21} \psi_{21} & \phi_{21} \psi_{22} & \phi_{22} \psi_{21} & \phi_{22} \psi_{22} & \phi_{23} \psi_{21} & \phi_{23} \psi_{22} \\ \phi_{31} \psi_{11} & \phi_{31} \psi_{12} & \phi_{32} \psi_{11} & \phi_{32} \psi_{12} & \phi_{33} \psi_{11} & \phi_{33} \psi_{12} \\ \phi_{31} \psi_{21} & \phi_{31} \psi_{22} & \phi_{32} \psi_{21} & \phi_{32} \psi_{22} & \phi_{33} \psi_{21} & \phi_{33} \psi_{22} \end{bmatrix}$$

16.4. Más Sobre Operadores Lienales

16.4.1. La Transpuesta

Sea $A: \mathcal{H}_1 \to \mathcal{H}_2$ un operador lineal DS: que no un operador es una transformación de un espacio sobre sí mismo?? donde \mathcal{H}_1 y \mathcal{H}_2 son espacios vectoriales sobre \mathbb{C} . Definimos la transpuesta

 $^{^{1}}$ Un operador idempotente es uno que aplicado sobre sí mismo da como resultado él mismo, $A^{2}=A$.

de A, denotada por A^T , como

$$A^{T}: \mathcal{H}_{2}^{*} \to \mathcal{H}_{1}^{*}$$
$$\langle \beta | \mapsto \langle \alpha | = A^{T}(\langle \beta |)$$

o sea que $A^T \langle \beta | = \langle \beta | A$.

16.4.2. Bases y Bases Duales

Sea \mathcal{H} un espacio vectorial sobre los complejos, y $\alpha = \{|\alpha_1\rangle, \dots, |\alpha_k\rangle\}$ base de \mathcal{H} . La base dual de la siguiente forma $\beta = \{\langle \beta_1|, \dots, \langle \beta_k| \}$ donde

16.5. Componentes de Kets y Bras

Por definición de base todo elemento del espacio puede ser escrito como combinación lineal de la base. Con esto se tienen las siguientes propiedades

Fourier en Abstracto: $a_i = \langle \beta_i | \phi \rangle$. O de manera continua

$$|\phi\rangle = \int_{x \in \mathbb{R}} \mathrm{d}x \, \phi(x) \, |\alpha_x\rangle$$

con $\phi(x)$ función de onda.

Covarianza y contravarianza: Los kets son vectores contravariantes y los bras son vectores covariantes.

Fourier en Abstracto: $b_i = \langle \psi | \alpha_i \rangle$. O de manera continua

$$|\phi\rangle = \int \mathrm{d}x \, \phi(x) \, |x\rangle \,,$$

$$\langle \psi | = \int \mathrm{d}x \, \langle x | \, \psi(x).$$

Representación matricial de operadores lineales: $a_{ij} = \langle \beta_i | T | \alpha_j \rangle$, A es la representación matricial de T respecto a la base α .

$$T |\alpha_j\rangle = \sum_{k=1}^n a_{kj} |\alpha_k\rangle.$$

Teorema 16.5.1. Sea $T: \mathcal{H} \to \mathcal{H}$ un operador lineal $y \alpha = \{|\alpha_i\rangle\}$ una base de \mathcal{H} . Si $a_{ij} = \langle \beta_i | T | \alpha_j \rangle$ entonces

$$T = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} |\alpha_i\rangle\langle\beta_j|.$$

La Identidad: La identidad $I: \mathcal{H} \to \mathcal{H}$ es un operador lineal que deja todo igual.

$$I = \sum_{i=1}^{n} |\alpha_i\rangle\langle\beta_i|.$$

16.6. Espacios de Hilbert

Un espacio de HIlbert, como lo explicaremos más adelante, es un Esp<io vectorial con producto interno completo².

16.6.1. Produto Interno

Sea $\mathcal H$ un espacio vectorial sobre el campo de los números complejos $\mathbb C$. Un producto interno en $\mathcal H$ es una función de la siguiente forma

$$\langle \, , \, \rangle : \mathcal{H} \times \mathcal{H} \to \mathbb{C}$$

que tiene las siguientes propiedades

- 1. Asimetría.
- 2. Linealidad segunda componente.
- 3. Definida positiva.
- 4. No degenerado.

La pareja $(\mathcal{H}, \langle , \rangle)$ es llamada espacio con producto interno.

Primera Propiedad: $\langle k\psi, \phi \rangle = k^* \langle \psi, \phi \rangle$.

Segunda Propiedad: $\langle \psi_1 + \psi_2, \phi \rangle = \langle \psi_1, \phi \rangle + \langle \psi_2, \phi \rangle$.

Norma

Sea $(\mathcal{H}, \langle \,, \, \rangle)$ un espacio con producto interno, para todo vector $\phi \in \mathcal{H}$ se define la norma de ϕ de la siguiente forma

$$\|\phi\| = \sqrt{\langle \phi, \phi \rangle}.$$

Tercera Propiedad: $|\langle \psi, \phi \rangle| \le ||\psi|| ||\phi||$.

Cuarta Propiedad: $\|\psi + \phi\| \le \|\psi\| \|\phi\|$.

Ortogonalidad: Sea $(\mathcal{H}, \langle , \rangle)$ un espacio de hilbert $\psi, \phi \in \mathcal{H}$ son ortogonalies si y solo si $\langle \psi, \phi \rangle = 0$.

Vectores Unitarios: Todo vector que tenga norma 1.

Bases Ortonormales: Bases cuyos elementos cumplen con lo siguiente $\langle \phi_1, \phi_2 \rangle = \delta_{ij}$. DS: Todo conjunto de vectores ortonormales es linealmente independiente.

Teorema 16.6.1. Sea $\mathcal H$ un espacio de Hilbert. Si $\psi \in \mathcal H$ se puede expresar de la siguiente forma

$$\psi = \sum_{i=1}^{\infty} c_i \phi_i$$

entonces

$$c_i = \langle \phi_i, \psi \rangle.$$

Donde $\{\phi_1, \phi_2, \ldots\}$.

²Es decir, que toda secuencia de Cauchy converge dentro del espacio.

Distancia

$$\rho(\phi, \psi) = \|\psi - \phi\|.$$

16.6.2. Sucesiones de Cauchy

Sea $(\mathcal{H}, \langle , \rangle)$ un espacio con producto interno y $\{\phi_i\} = \{\phi_o, \ldots\}$ $\phi_i \in \mathcal{H}$ una sucesión en \mathcal{H} . Esta sucesión es de Cauchy si y solo si para todo $\varepsilon > 0$ existe $N \in \mathbb{Z}^+$ tal que si $k, l \geq N$ tenemos que $\|\phi_k - \phi_l\| < \varepsilon$.

16.7. Ejemplos de Espacios de Hilbert

Espacio Unitario: $(\mathbb{C}^n, \langle , \rangle)$.

Funciones Cuadrado Integrables: $(L^2(D), \langle , \rangle)$ con producto interno definido por

$$\langle \psi, \phi \rangle = \int_{D} {}_{n} \mathrm{d}\vec{x} \psi^{*}(x) \phi(x).$$

Existe una versión generalizada con una función de peso dentro de la integral $w(\vec{x})$.

16.8. Operadores Lineales en Espacios de Hilbert

En esta sección vamos a estudiar los operadores lineales que aparecen en Mecánica Cuántica, como lo son los operadores unitarios y los operadores Hermíticos.

16.8.1. Operador Adjunto

Sea $A: \mathcal{H}_1 \to \mathcal{H}_2$ un operador lineal, $A^+: \mathcal{H} \to \mathcal{H}$ es la adjunta de A si y solo si para todo $\phi \in \mathcal{H}_1$ y $\psi \in \mathcal{H}_2$ tenemos que

$$\langle A^+(\psi), \phi \rangle = \langle \psi, A(\phi) \rangle.$$

16.8.2. Operador Unitario

Los operadores unitarios preservan el producto interno, preservan la estructura del espacio de Hilbert, preservan la magnitud y los ángulos; y lo definimos de la siguiente forma:

$$\langle U(\psi), U(\phi) \rangle = \langle \psi, \phi \rangle.$$

16.8.3. Operadores Hermíticos

Sea $A: \mathcal{H} \to \mathcal{H}$ en un operador lineal del espacio de Hilbert en sí mismo A es hermítico si y solo si para todo $\psi, \phi \in \mathcal{H}$ tenemos que

$$\langle \psi, A\phi \rangle = \langle A\psi, \phi \rangle.$$

Propiedades

Propiedad 1: A es hermítico si y solo si $A^+ = A$.

Propiedad 2: U es unitario si y solo si $U^+ = U^{-1}$.

Propiedad 3: Los valores propios de un operador Hermítico son reales puros.

Propiedad 4: Los vectores propios, correspondientes a valores propios distintos de un operador Hermítico, son ortogonales entre sí.

Propiedad 5: $\langle A(\psi), \phi \rangle = \langle \psi, A^+ \phi \rangle$.

Propiedad 6: $(A^{+})^{+} = A$.

Propiedad 7: $(A+B)^+ = A^+ + B^+$.

Propiedad 8: $(AB)^{+} = B^{+}A^{+}$.

Propiedad 9: $(cA)^{+} = c^{*}A^{+}$.

Propiedad 10: $(A^n)^+ = (A^+)^n$.

16.8.4. El Conmutador

Sea $\mathcal H$ un espacio vectorial cualera y A,B operadores lineales. Se define a [A,B] como el commutador de A y B

$$[A, B] = AB - BA.$$

Propiedad 11: [A, B] - [B, A].

Propiedad 12: $[A, B]^+ = [B^+, A^+].$

Propiedad 13: Si A y B son operadores hermíticos entonces D=i[A,B] es hermítico también.

Propiedad 14: Si A y B son hermíticos entonces D = A + B es también hermítico.

Propiedad 15: Si U y W son operadores unitarios entonces UW también es unitario.

Los operadores unitarios son cerrados respecto al producto. Con los operadores unitarios formamos Grupos de Lie. Por otro lado los operadores hermíticos son cerrados respecto a la suma, con los operadores Hermíticos se forman Algebras de Lie. Existe una relación muy estrecha entre los grupos de Lie y algebras de Lie. En Mecánica Cuántica existe una relación estrecha entre los operadores unitarios y los operadores hermíticos, por medio de la función exponencial.

$$U=e^{iH},$$

con U unitario y H hermítico.

16.9. Espacios de Hilbert y Espacio Dual

El espacio dual es un espacio vectorial es un concepto puramente algebraico; pero, desde el punto de vista puramente algebraico, no hay una transformación canónico entre un espacio vectorial y su dual. Sin embargo, si tenemos la misma estructura de espacio de Hilbert entonces podemos dar una asignación o correspondencia canónica de kets a bras.

16.9.1. Transformación Antilineal

Sean \mathcal{H}_1 y \mathcal{H}_2 dos espacios vectoriales sobre el campo de los números complejos. $T: \mathcal{H}_1 \to \mathcal{H}_2$ es antilineal si y solo si $T(\phi + \psi) = T\phi + T\psi$ y $T(\lambda\phi) = \lambda^*T\phi$. A todo ket le corresponde un bra, por medio de una transformación antilineal.

Teorema 16.9.1. Si $(\mathcal{H}, \langle , \rangle)$ es n espcio de Hilbert entonces $\mathcal{I} : \mathcal{H} \to \mathcal{H}^*$ definida por $(\mathcal{I}(\phi))(\psi) = \langle \phi, \psi \rangle$ es una transformación antilineal inyectiva de \mathcal{H} a su espacio dual \mathcal{H}^* . Una de las propiedades de \mathcal{I} es que es inyectiva.

A todo ket le corresponde un bra por medio de una transformación antilineal inyectiva.

Teorema 16.9.2. Si existe una transformación antilineal inyectiva $\mathcal{I}: \mathcal{H} \to \mathcal{H}^*$ donde para todo $\phi \in \mathcal{H}$ $(\mathcal{I}(\phi))(\phi) \geq 0$ y para todo $\psi \in \mathcal{H}$ $(\mathcal{I}(\psi))(\phi) = (\mathcal{I}(\phi))(\psi)^*$ entonces $\langle , \rangle : \mathcal{H} \times \mathcal{H} \to \mathbb{C}$ definida de la siguiente forma $\langle \psi, \phi \rangle = (\mathcal{I}(\psi))(\phi)$; es un producto interno.

Teorema 16.9.3.

$$\mathcal{I}_1 \circ A^+ = A^T \circ \mathcal{I}_2.$$

Propiedades Extra de la Notación de Dirac

Propiedad 1: $\langle A\phi | = \langle \phi | A^+$.

Propiedad 2: $\langle \psi | A | \phi \rangle^* = \langle \phi | A^+ | \psi \rangle$.

Propiedad 3: $(|\psi\rangle\langle\phi|)^+ = |\phi\rangle\langle\psi|$.

Propiedad 4: $I = \sum_{i=1}^{\infty} |\alpha_i\rangle\langle\alpha_i|$.

Capítulo 17

Postulados de Mecánica Cuántica

El formalismo de la mecánica cuántica está basado en una cierta cantidad de postulados. Estos estan basados en una gran cantidad de experimentos y observaciones. Estos representan el conjunto mínimo de supuestos necesarios para desarrollar la teoría de mecánica cuántica.

17.1. Experimento de Stern-Gerlach

El experimento de Stern-Gerlach consistía en enviar un haz de átomos de plata a través de un campo magnético inhomogéneo. El campo magnético crecía en intensidad en la dirección perpendicular a la que se envía el haz. El espín de los diferentes átomos fuerza a las partículas de espín positivo +1/2 a ser desviadas hacia arriba y a las partículas de espín opuesto -1/2 a ser desviadas en el sentido contrario, y por lo tanto puede medir el momento magnético de las partículas.

En el caso clásico no cuántico, una partícula cualquiera con un momento magnético entrará en el campo magnético con su momento magnético orientado al azar. El efecto del campo magnético sobre tales partículas clásicas ocasionaría que fueran desviadas también en sentidos opuestos pero dependiendo el grado de deflexión del ángulo inicial entre el momento magnético y el campo magnético al que se somete el haz. Por lo tanto algunas partículas serían desviadas fuertemente, otras de manera más débil y progresivamente se irían encontrando partículas desviadas en ambas direcciones cubriendo todo el espectro de intensidades posibles.

Sin embargo, el experimento de Stern-Gerlach pone de manifiesto que esto no es así, y se observa que todas las partículas se desvían o bien hacia arriba o bien hacia abajo, pero ambos grupos con la misma intensidad. Las partículas tienen o bien espín $+\frac{\hbar}{2}$ o $-\frac{\hbar}{2}$, sin valores intermedios.

El momento magnético m del átomo puede medirse mediante esta experiencia, y es igual en módulo al magnetón de Bohr m_B .

17.2. Postulados

17.2.1. Enunciados

1. Estado de un Sistema: El estado de cualquier sistema físico está definido, en cierto tiempo t, por un vector de estado $|\psi(t)\rangle$ en un espacio de hilbert \mathcal{H} ; $|\psi(t)\rangle$ contiene (y siver como

base para extraer) toda la información necesaria de un sistema. Cualquier superposición de vectores de estado es un vector de estado.

- 2. Observables y Operadores: A cualquier cantidad física medible A, conocida como observable o variable dinámica, le corresponde un Operador Hermítico A (también denotado como $\hat{\mathbf{A}}$, pero no se usará esta notación para ser prácticos) cuyos eigenvectores son forman una base completa.
- 3. Mediciones y Eigenvalores de Operadores: La medición de un observable A puede ser representada formalmente por la acción de A sobre un vector de estado $|\psi(t)\rangle$. El único posible resultado de una medición es uno de los eigenvalores a_n (que son reales) del operador A. Si el resultado de una medición de A sobre un estado $|\psi(t)\rangle$ es a_n , el estado del sistema inmediatamente después de la medida cambia a $|\psi_n\rangle$:

$$A |\psi(t)\rangle = a_n |\psi_n\rangle$$
,

donde $a_n = \langle \psi_n | \psi(t) \rangle$. Notese que a_n es la componente de $|\psi(t)\rangle$ cuando está proyectada sobre el eigenvector $|\psi_n\rangle$.

4. Resultado Probabilistico de las Mediciones: Se tienen dos espectros:

Espectro Discreto: Al realizar una medición de un observable A de un sistema en un estado $|\psi\rangle$, la probabilidad de obtener uno de los eigenvalores no degenerados a_n del operador correspondiente está dada por

$$P_n(a_n) = \frac{|\langle \psi_n | \psi \rangle|^2}{\langle \psi | \psi \rangle} = \frac{|a_n|^2}{\langle \psi | \psi \rangle},$$

donde $|\psi_n\rangle$ es el eigenvector de A con eigenvalor a_n . Si el eigenvalor a_n es m-degenerado, P_n se convierte en

$$P_n(a_n) = \frac{\sum_{j=1}^m \left| \left\langle \psi_n^j \middle| \psi \right\rangle \right|^2}{\left\langle \psi \middle| \psi \right\rangle} = \frac{\sum_{j=1}^m \left| a_n^{(j)} \right|^2}{\left\langle \psi \middle| \psi \right\rangle}.$$

La acción de medir cambia el esatdo de $|\psi\rangle$ a $|\psi_n\rangle$. Si el sistema ya se encuentra en el estado $|\psi_n\rangle$ de A, la medición de A produce con certeza el siguiente eigenvalor a_n : $A|\psi_n\rangle=a_n|\psi_n\rangle$.

Espectro Continuo: La relación mostrada en el espectro anterior, es válida para un espectro discreto, puede ser extendida para determinar la densidad de probabilidad que un determinado observable A produce un valor entre a y a + da en un sistema cuyo estado inicial es $|\psi\rangle$:

$$dP(a) a = \frac{|\psi(a)|^2}{\langle \psi | \psi \rangle} = \frac{|\psi(a)|^2}{\int_{\infty}^{\infty} |\psi(a')|^2 da'};$$

por ejemplo, la densidad de probabilidad de encontrar una partícula entre x y $x+\mathrm{d}x$ está dada por $\frac{\mathrm{d}P(x)}{\mathrm{d}x}=|\psi(x)|^2/\left\langle\psi|\psi\right\rangle$.

5. Evolución del Sistema: La evolución en el tiempo de un vector de estado $|\psi(t)\rangle$ de un sistema esta regida por la *Ecuación de Schrödinger* dependiente del tiempo

$$i\hbar \frac{\partial |\psi(t)\rangle}{\partial t} = \hat{\mathbf{H}} |\psi(t)\rangle,$$

donde $\hat{\mathbf{H}}$ es el operador Hamiltoniano correspondiente a la energía total del sistema.

17.2.2. Propiedades y Operadores

Operador Proyección: Sea \mathcal{H} el espacio Cuántico y $|\psi\rangle \in \mathcal{H}$ un ket cualquiera de \mathcal{H} . El operador proyección P_{ψ} se define de la siguiente forma

$$P_{\psi} |\psi\rangle = \frac{\langle \phi | \psi \rangle}{\langle \psi | \psi \rangle} |\psi\rangle.$$

Valor Esperado de un Observable: Sea A un observable de cierto sistema cuántico cuyo espacio de estado $\mathcal{H}: A: \mathcal{H} \to \mathcal{H}$ donde A es hermítico. Además $\{|\alpha_i\rangle\}$ es una base ortonormal de \mathcal{H} , compuesta de kets propios de A. Donde

$$A |\alpha_i\rangle = a_i |\alpha_i\rangle$$

 $a_i \in \mathbb{R}$ es valor propio de A correspondiente al ket propio de A. Si el sistema cuántico está en el estado $|\psi\rangle$ el valor esperado de A se define de la siguiente forma:

 $\langle A \rangle_{\psi}$ = Valor esperado de A cuando el sistema está en el estado $|\psi\rangle$.

$$\langle A \rangle_{\psi} = \sum_{i} a_{i} P(a_{i})$$
 $\langle A \rangle_{\psi} = \int_{x} dx \, a_{x} f(x)$

 $P(a_i)$ probabilidad de medir el estado $|\alpha_i\rangle$ cuando el sistema está en el estado $|\psi\rangle$. Cuando no hay problema de ambigüedad: $\langle A \rangle = \langle A \rangle_{|\psi\rangle}$.

Propiedad del Valor Esperado: $\langle A \rangle = \langle \psi | A | \psi \rangle$.

Observables Compatibles: Los observables A y B son compatibles si y solo si [A, B] = 0. Dicho de otra forma A y B son compatibles si y solo si A y B conmutan. Ejemplos:

- Las coordenadas de las posiciones.
- Las componentes del momentum lineal.
- \blacksquare El momentum angular total con el momentum angular del eje z.

Conjunto Completo de Operadores que Conmutan (CSCO): Si A y B dos observables que no conmutan, entonces estos no pueden ser medidos simultaneamente; el orden en el que son medidos importa.

Teorema 17.2.1. Si dos observables son compatibles, sus correspondientes opeardores poseen un conjunto común de estados propios. (Esto es válido para estados propios degenerados y no degenerados.)

Este teorema conduce a la siguiente definición:

Definición 17.2.1. Un conjunto de operadores Hermíticos A, B, C, \ldots es llamado un CSCO si los operadores conmutan mutuamente y si el conjunto de sus estados propios es completo y no degenerado (único).

Observables Incompatibles: A y B son incompatibles si y solo si $[A, B] \neq 0$.

Operador Dispersión: Dado un observable A, definimos su operador de dispersión de la siguiente forma:

$$\Delta A = A - \langle A \rangle I.$$

Propiedad I: El operador de dispersión es hermítico.

Propiedad 2: $\langle (\Delta A)^2 \rangle = \langle A^2 \rangle - \langle A \rangle^2$.

Propiedad 3: $[\Delta A, \Delta B] = [A, B].$

Propiedad 4: $|\langle \psi | [A, B] | \psi \rangle \le |\langle \psi | \Delta A \Delta B | \psi \rangle||$.

Propiedad 5: Principio de Incertidumbre $\langle (\Delta A)^2 \rangle \langle (\Delta B)^2 \rangle \geq \frac{1}{4} |\langle [A, B] \rangle|^2$.

17.3. Principio de Incertidumbre de Heisenberg

Como veremos más adelante el observable de la posición X y del momentum P, son incompatibles.

$$[X,P]=i\hbar I.$$

por lo tanto, se tiene que

$$\Delta x \Delta p \ge \frac{\hbar}{2}.$$

Capítulo 18

Posición y Momentum

Ahora vamos a estudiar una partícula en una dimensión. El tiempo es independiente de la posición. La posición es un observable que medimos por medio de su coordenadas $x \in \mathbb{R}$. Tenemos lo siguiente: X = observable de la posición. Al medir X, en el tiempo t, obtenemos la coordenada x que es un número real puro. La coordenada x que medimos es un valor propio de X, por lo tanto, al valor propio x le corresponde su espacio propio que consta de todos los kets propios asociados al valor propio x.

En este caso, posición y momentum en una dimensión no vamos a tener degeneración. Entonces el espacio propio del valor proopio $x \in \mathbb{R}$ esta generado por un solo ket propio que lo representamos por $|x\rangle$. Recordemos que a todo ket $|x\rangle$ le corresponde un bra $\langle x|$. Entonces tenemos lo siguiente: $X|x\rangle = x|x\rangle$.

Los kets propios son ortogonales entre sí y genera el espacio de estado de la partícula. En este caso vamos a llamar \mathcal{H}_o al espacio de estado de la partícula: $\{|x\rangle\}$ es base ortonormal de \mathcal{H}_o . La base ortonormal de \mathcal{H}_o está formada de ket propios de observable de la posición X.

18.1. Representación de los Estados

Dado el postulado 1 de la mecánica cuántica y sabiendo que todo ket representa un estado real ("físico"). Recordando álgebra lineal $|\psi\rangle$ se escribe como combinación lineal de los elementos de la base ortonormal. Por lo tanto, para toda $|\psi\rangle \in \mathcal{H}_o$

$$|\psi\rangle = \sum_{x} c_x |x\rangle$$
,

para índice continuo

$$|\psi\rangle = \int \mathrm{d}x \, \psi(x) \, |x\rangle$$

$$\langle \psi | = \int \mathrm{d}x \, \langle x | \, \psi^*(x)$$

18.1.1. Interpretación de $\psi(x)$

En las integrales, al igual que las sumatorias usan variables mudas

$$|\psi\rangle = \int \mathrm{d}y \, \psi(y) \, |y\rangle$$

pero si $x \neq y \Rightarrow \langle x|y \rangle$ por que $|x\rangle$ y $|y\rangle$ son ortogonales. En caso de ser iguales tenemos la Delta de Dirac

$$\langle x|y\rangle = \delta(x-y).$$

por lo tanto

$$\begin{split} \langle x|\psi\rangle &= \int_{y\in\mathbb{R}} \psi(y)\,\langle x|y\rangle \\ \langle x|\psi\rangle &= \int_{y\in\mathbb{R}} \psi(y)\delta(y-x) = \psi(x). \\ \hline \\ \psi(x) &= \langle x|\psi\rangle\,. \end{split}$$

 $\psi(x)$ = Densidad de amplitud de probabilidad de medir x cuando la partícula está en el estado $|\psi\rangle$. $|\psi(x)|^2$ = Densidad de probabilidad de medir x cuando la partícula está en el estado $|\psi\rangle$.

Dado que $\psi(x) \in L^2(\mathbb{R})$ entonces

$$\mathcal{H}_o \leftrightarrow L^2(\mathbb{R}).$$

18.2. Traslaciones

A continuación vamos a estudiar las traslaciones en \mathbb{R} y su prepresentación unitaria sobre \mathcal{H}_o .

Definición 18.2.1. Para todo $a \in \mathbb{R}$ tenemos la siguiente función: $\tau_a = x + a$.

El conjunto de todas las traslaciones con la composición forman un grupo abeliano. Lo anterior traslación define el siguiente operador unitario. $T_a |x\rangle = |x+a\rangle$. Algunas observaciones importantes son las siguientes:

- 1. La traslación τ_a no es una trasformación lineal, porque en caso $a \neq 0$ el origen x = 0 queda trasladado a $x = a \neq 0$. Las traslaciones en los espacios \mathbb{R}^n no son lineales.
- 2. El operador $T_a: \mathcal{H}_o \to \mathcal{H}_o$ sí es una transformación lineal que representa a la función $\tau_x: \mathbb{R} \to \mathbb{R}$. Como veremos más adelante T_a es un operador unitario.
- 3. Las traslaciones $\tau_a: \mathbb{R} \to \mathbb{R}$ $a \in \mathbb{R}$ forman un grupo abeliano al igual que los operadores unitarios $T_a: \mathcal{H}_o \to \mathcal{H}_o$.
- 4. Grupo es una estructura algebraica que aparece repetidas veces en Física. Debido a que no conocemos esta estructura algebraica; incluímos rapidamente y brevemente su definición. Un grupo (G, \circ) es un conjunto con una operación binaria la cual
 - a) Es cerrada.

- b) Es asociativa.
- c) Tiene elemento neutro (I).
- d) Todo elemento tiene inverso.
- e) Es conmutativa (Grupo Abeliano).

18.2.1. Superposición

Superposición es un término ampliamente usado en mecánica cuántica; en lugar de combinación lineal.

Definición 18.2.2. Operador P

$$P = \lim_{a \to 0} i\hbar \frac{T_a - I}{a}$$

$$P = i\hbar \left. \frac{\mathrm{d}T_a}{\mathrm{d}a} \right|_{a=0}.$$

Donde a es el parámetro de traslación.

Propiedad 1 (operador T_a): El operador $T_a: \mathcal{H}_o \to \mathcal{H}_o$ es unitario.

Propiedad 2: Si $\psi(x) = \langle x|\psi\rangle$ entonces $\langle x|T_a|\psi\rangle = \psi(x-a)$.

Propiedad 3 (operador P): $\langle x|P|\psi\rangle=i\hbar\frac{\partial\psi(x)}{\partial x}$.

Propiedad 4: $\langle x|P^n|\psi\rangle = (-i\hbar)^n \frac{\partial^n \psi}{\partial x^n}$.

Propiedad 5: $\langle x|\left(\frac{aP}{i\hbar}\right)^n|\psi\rangle=(-a)^n\frac{\partial^n\psi}{\partial x^n}$.

Propiedad 6: $T_a = \exp\{-\frac{ia}{\hbar}P\}$.

Propiedad 7: P es hermítico.

Propiedad 8 (para ambos operadores): $[X, P] = i\hbar I$.

Propiedad 9: $\langle x|p\rangle = Ne^{\frac{ipx}{h}}$, donde $|x\rangle$ es ket propio de X y $|p\rangle$ es ket propio de P. (N es la constante de normalización)

Propiedad 10: Si $p y p_o$ son valores propios distintos del observable P, entocnes tenemos que

$$p - p_o = \frac{2\pi n\hbar}{T}$$

los valores propios de P están discretizados.

Propiedad 11: $N = \frac{1}{\sqrt{T}}$.

Propiedades 12:

$$\int_{-T/2}^{T/2} e^{\frac{ix(p_m - p_n)}{\hbar}} \, \mathrm{d}x = \frac{2\pi\hbar}{\Delta p} \delta_{mn}$$

donde $\Delta = p_{n+1} - p_n = \frac{2\pi\hbar}{T}$ y δ_{mn} es la delta de Kronecker.

18.2.2. Representación Respecto al Momentum

Ahora tenemos dos bases para \mathcal{H}_o con $-T/2 \leq x \leq T/2$ o sea que $\mathcal{H}_o = L^2[-T/2, T/2]$

- Base $\alpha = \{|x\rangle\}\ x \in [-T/2, T/2].$
- Base $\beta = \{|p_n\rangle\}$ $n \in \mathbb{Z}$.

entonces para todo $|\psi\rangle \in \mathcal{H}_o$, podemos expresar a $|\psi\rangle$ como combinación lineal de la base α y también como superposición de los elementos de la base β . Por lo tanto

$$|\psi\rangle = \int_{-T/2}^{T/2} \mathrm{d}x \, a_x \, |x\rangle$$

$$|\psi\rangle = \sum_{n=-\infty}^{\infty} c_n |p_n\rangle$$

y recordemos que

$$a_c = \langle x | \psi \rangle$$
 $c_n = \langle p_n | \psi \rangle$.

18.3. Series de Fourier

$$\psi(x) = \sum_{n = -\infty}^{\infty} \frac{c_n}{\sqrt{T}} e^{\frac{ipx}{\hbar}}.$$

18.3.1. Coeficientes de Fourier

$$c_n = \frac{1}{\sqrt{T}} \int_{-T/2}^{T/2} e^{-\frac{ip_n x}{\hbar}} \psi(x) dx.$$

de lo anterior tenemos lo siguiente

$$\psi(x) = \frac{1}{T} \sum_{n = -\infty}^{\infty} \left(\int_{-T/2}^{T/2} e^{-\frac{ip_n x}{\hbar}} \psi(x) \, \mathrm{d}x \right) e^{\frac{ipx}{\hbar}}.$$

18.4. Representación en 1 Dimensión. Tamaño Infinito

Ahora pasaremos del intervalo [-T/2, T/2] a toda la recta real $(-\infty, \infty)$. Este paso de finito a infinito lo haremos tomando el límite cuando $T \to \infty$. Con esto se tiene lo siguietne

Propiedad 13: Si $x \in (-\infty, \infty)$ entonces

$$\langle x|p\rangle = \frac{1}{\sqrt{2\pi\hbar}}e^{\frac{ipx}{\hbar}} \qquad \qquad \langle p|x\rangle = \frac{1}{\sqrt{2\pi\hbar}}e^{-\frac{ipx}{\hbar}}.$$

Ahora repetimos lo que hicimos en forma discreta a forma continua. Observemos que tanto, el espectro del observable posición X y el del momentum P son continuas y pueden tomar cualquier valor real.

$$|\psi\rangle = \int_{-\infty}^{\infty} \mathrm{d}x \, \psi(x) \, |x\rangle \,,$$

$$|\psi\rangle = \int_{-\infty}^{\infty} \mathrm{d}p \stackrel{\psi}{\sim} (p) |p\rangle.$$

18.4.1. Ingegral de Fourier

$$\psi(x) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} \mathrm{d}p \, e^{\frac{ipx}{\hbar}} \widetilde{\psi}(p).$$

18.4.2. Transformada de Fourier

$$\overset{\sim}{\psi}(p) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} \mathrm{d}x \, e^{-\frac{ipx}{\hbar}} \psi(x).$$

Figura 18.1: Relación entre la base y la trasnformación usada para cambiar la función de estado de esta.

Propiedad 14:
$$\langle p|X|\psi\rangle=i\hbar\frac{\partial\overset{\sim}{\psi}}{\partial p}.$$

18.5. Posición y Momentum 3-D

Ahora estudiaremos los Observables de poisición y momentum en 3 dimensiones. Ya sabemos que la posición de las partículas está dada por $\vec{r} = (x, y, z)$ y $\vec{X} = (X, Y, Z)$.

$$X | \vec{r} \rangle = X | \vec{x} \rangle = X | x, y, z \rangle = x | x, y, z \rangle$$

$$Y | \vec{r} \rangle = Y | \vec{y} \rangle = Y | x, y, z \rangle = y | x, y, z \rangle$$

$$Z | \vec{r} \rangle = Z | \vec{z} \rangle = Z | x, y, z \rangle = z | x, y, z \rangle$$
.

También

$$|\vec{r}\rangle = |x, y, z\rangle = |x\rangle \otimes |y\rangle \otimes |z\rangle$$

 $\mathcal{H}_1 = \mathcal{H}_o \otimes \mathcal{H}_o \otimes \mathcal{H}_o.$

El conjunto de kets propios $\{|x,y,z\rangle\}$ forma una base ortonormal \mathcal{H}_1 . Debido a que $|\vec{x}\rangle$ es una base ortonormal de \mathcal{H}_1 tenemos que

$$\langle \vec{x} | \vec{x}' \rangle = \delta'(\vec{x} - \vec{x}').$$

18.5.1. Representación Respecto a $\{|\vec{x}\rangle\}$

Supongamos que la partícula está en el estado $|\psi\rangle \in \mathcal{H}_1$. El ket $|\psi\rangle$ se puede escribir como una superposición de los estados base.

$$|\psi\rangle = \int_{\mathbb{R}^3} d^3 \vec{x} \, \psi(\vec{x} \, | \vec{x} \rangle).$$

Debido a que $\{|\vec{x}\rangle\}$ es una base ortonormal

$$\psi(\vec{x}) = \langle \vec{x} | \psi \rangle .$$

Propiedad 15: $[X_i, X_j] = 0$ para i, j = 1, 2, 3.

Propiedad 16: Siguiendo con la idea del operador traslación, tomando $a = \vec{a}$: $T_{\vec{a}}$ es unitario.

Definición 18.5.1. Operador P_j :

$$P_j = i\hbar \left. \frac{\mathrm{d}T_{\vec{a}}}{\mathrm{d}a_j} \right|_{a_j = 0}.$$

De esta definición se tiene

$$\langle \vec{x}|P_x|\psi\rangle = -i\hbar \frac{\partial \psi}{\partial x} \qquad j=1$$

$$\langle \vec{x}|P_y|\psi\rangle = -i\hbar\frac{\partial\psi}{\partial y} \qquad j=2$$

$$\langle \vec{x}|P_z|\psi\rangle = -i\hbar\frac{\partial\psi}{\partial z} \qquad j=3. \label{eq:continuous}$$

Propiedad 17: $[P_j, P_k] = 0.$

Propiedad 18: $T_{\vec{a}} = e^{-\frac{i}{\hbar}\vec{a}\cdot\vec{P}}$.

Propiedad 19: Si $\vec{P} = (P_x, P_y, P_z)$ entonces

$$\langle \vec{x} | \vec{P} | \psi \rangle = -i\hbar \nabla \psi(\vec{x}),$$

donde $\psi(\vec{x}) = \langle \vec{x} | \psi \rangle$.

Propiedad 20: Dado el momentum lineal total $P^2 = P_x^2 + P_y^2 + P_z^2$. Entonces $\langle \vec{x}|P^2|\psi\rangle = -\hbar^2\nabla^2\psi$.

Propiedad 21: $[X_j, P_k] = i\hbar \delta_{jk} I$.

Propiedad 22: $[X_j, P_j^n] = i\hbar n P^{n-1}$.

Propiedad 23: Sean A, B, C operadores y b, c números complejos.

$$[A, bB + cC] = b[A, B] + c[A, C].$$

Propiedad 24: Sea $F(P_j) = \sum_{n=0}^{\infty} a_n P_j^n$ entocnes

$$[X_i, F(P_i)] = i\hbar F'(P_i).$$

18.6. Momentum Respecto a la Posición en 3-D

El observable \vec{P} es una terna ordenada (como era de esperarse luego de todo lo visto anteriormente) y son compatibles. Estos observables nos proporcionan una base ortonormal de nuestro espacio de estado.

$$\begin{split} P_x \left| \vec{p} \right\rangle &= P_x \left| p_x, p_y, p_z \right\rangle = p_x \left| p_x, p_y, p_z \right\rangle \\ P_y \left| \vec{p} \right\rangle &= P_y \left| p_x, p_y, p_z \right\rangle = p_y \left| p_x, p_y, p_z \right\rangle \\ P_z \left| \vec{p} \right\rangle &= P_z \left| p_x, p_y, p_z \right\rangle = p_z \left| p_x, p_y, p_z \right\rangle . \end{split}$$

También

$$\mathcal{H}_1 = \mathcal{H}_o \otimes \mathcal{H}_o \otimes \mathcal{H}_o$$
.

Sabemos

$$\psi(\vec{x}) = \langle \vec{x} | \psi \rangle ,$$
$$\overset{\sim}{\psi}(\vec{p}) = \langle \vec{p} | \psi \rangle .$$

Propiedad 25: $\langle \vec{x} | \vec{p} \rangle = N e^{\frac{i}{\hbar} \vec{p} \cdot \vec{x}}$ Donde N es una constante de normalización y $\vec{p} \cdot \vec{x} = x p_x + y p_y + z p_z$.

Propiedad 26: $\langle \vec{x} | \vec{p} \rangle = \frac{1}{(2\pi\hbar)^{3/2}} e^{\frac{i}{\hbar} \vec{p} \cdot \vec{x}}$.

Propiedad 27: (Transformada inversa de Fourier)

$$\psi(\vec{x}) = \frac{1}{(2\pi\hbar)^{3/2}} \int_{\mathbb{R}^3} d^3 \vec{p} \, e^{\frac{i}{\hbar} \vec{p} \cdot \vec{x}} \widetilde{\psi}(\vec{p}).$$

Propiedad 28: (Transformada de Fourier)

$$\widetilde{\psi}(\vec{p}) = \frac{1}{(2\pi\hbar)^{3/2}} \int_{\mathbb{R}^3} \mathrm{d}^3 \vec{p} \, e^{-\frac{i}{\hbar} \vec{p} \cdot \vec{x}} \psi(\vec{x}).$$

Definición 18.6.1. Valor Propio Degenerado:

Sea $A: \mathcal{H} \to \mathcal{H}$ un opeardor lineal $a \in \mathbb{C}$ es un valor propio degenerado si y solo si existen vectores $|\psi\rangle$ y $|\phi\rangle$ linealmente independientes tal que

$$A |\psi\rangle = a |\psi\rangle$$

$$A | \phi \rangle = a | \phi \rangle$$
.

Recordemos del álgebra lineal que el conunto de todos los vectores propios de A con valor propio a, forma un subespacio vectorial. De lo anterior tenemos que a es un valor propio degenerado si y solamente si el espacio propio tiene dimensión mayor o igual a 2.

Propiedad 29: Si A y B son observables que tienen la misma base ortonoral de kets porpios, entonces A y B son compatibles.

Propiedad 30: Si A y B son observables compatibles, donde todos sus valores propios son no degenerados, entonces A y B comparten base ortonormal de kets propios.

Teorema 18.6.1. Si A y B son observables compatibles entonces A y B comparten base de kets propios.

Capítulo 19

Energía y Hamiltoniano

19.1. Dinámica Cuántica

Ahora se estudiará la evolución en el tiempo de un sistema cuántica. Dicho de otra forma, vamos a estudiar la evolución de un estado $|\psi\rangle$ que representa un sistema interactuando con el medio.

19.1.1. Operador Evolución U(t, a)

El opeardor evolución describe el estado de un sistema después de haber transcurrido un tiempo $\Delta t = a$; de la siguiente forma

$$E(t,a) |\psi_t\rangle = |\psi_{t+a}\rangle$$
.

El problema recae en calcular U.

Propiedad 1: U_a es unitario.

19.2. El Hamiltoniano

Ahor a definimos el Hamiltoniano en el tiemo t de la sigueinte forma

$$H(t) = i\hbar \left. \frac{\partial U(t, a)}{\partial a} \right|_{a=0}.$$

Tal y como se verá más adelante H es un operador Hermítico.

Propiedad 2 (Ecuación de Schrodinger): $H(t) |\psi_t\rangle = i\hbar \frac{\partial}{\partial t} |\psi_t\rangle$. Donde H(t) es la energía total del sistema cuántico.

Propiedad 3: $H^+(t) |\psi_t\rangle = i\hbar \frac{\partial}{\partial t} |\psi_t\rangle$.

Propiedad 4: DS: Ahora es bastante obvio. H es hermítico.

19.2.1. Casos del Hamiltoniano en Física

En Física tenemos tres casos del Hamiltoniano

1. El Hamiltoniano es independiente del tiempo

$$H(t) = H = \text{cte.}$$

- 2. El Hamiltoniano depende del tiempo pero el Hamiltonianos a tiempos diferentes conmutan.
- 3. El Hamiltoniano depende del tiempo y Hamiltonianos a tiempos diferentes no conmutan.

Propiedad 5: Si H(t) = H es independiente del tiempo entonces.

$$U(t,a) = e^{-\frac{ia}{\hbar}H}$$
.

Propiedad 6: Si los Hamiltonianos conmutan a tiempos diferentes

$$U(t,a) = e^{-\frac{i}{\hbar} \int_{t}^{t+a} H(t') dt'}.$$

19.3. Estados Estacionarios

Recordemos que un estado se representa por un ket y cualquier múltiplo $c | \psi \rangle$ representa el mismo estado. Un estado es estacionario si y solo si los kets $| \psi_t \rangle$ que representan al estado del sistema en el tiempo t son múltiplos de $| \psi_o \rangle = | \psi_0 \rangle$ para cualquier t, $| \psi_t \rangle = c(t) | \psi_o \rangle$.

Los estados estacionarios no cambian respecto al tiempo, aunque los kets que los representan pueden cambiar. Siempre requerimos que la magnitud de los kets sea 1 por lo tanto c(t) = 1.

$$|\psi_t\rangle = e^{i\theta(t)} |\psi_o\rangle$$
.

Sea A un observable cualquiera; el valor esperado del observable A cuando el sistema está en el estado $|\psi_t\rangle$ viene dado por:

19.3.1. Punto de Vista de Heisenberg

$$\langle A \rangle = \langle \psi(0) | (U^+(t)AU(t)) | \psi(0) \rangle.$$

Para Heisenberg, el estado no evoluciona si no que evoluciona el observable.

$$A(t) = U^{+}(t)AU(t).$$

19.3.2. Punto de Vista de Schrodinger

$$\langle A(t) \rangle = (\langle \psi(0) | U^+(t)) A(U(t) | \psi_t \rangle).$$

Para Schrodinger, el observable no evoluciona sino que es el estado lo que evoluciona. Donde dicho estado obedece la ecuación de Schrodinger.

La ecuación de Schrodinger independiente del tiempo calcula los valores propios y kets propios del Hamiltoniano H.

Propiedad Previa a la Ecuación de Heisenberg:

$$\frac{\partial U(t)}{\partial t} = \frac{\mathrm{d}U}{\mathrm{d}t} = \frac{1}{i\hbar}HU(t).$$

19.3.3. Ecuación de Movimiento de Heisenberg

Sea A un observable y H el Hamiltoniano.

$$\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{1}{i\hbar} [A(t), H(t)].$$

Capítulo 20

Oscilador Armónico Cuántico

El oscilador armónico cuántico es el análogo mecánico cuántico del oscilador armónico clásico. Es uno de los sistemas modelo más importante en mecánica cuántica, ya que cualquier potencial se puede aproximar por un potencial armónico en las proximidades del punto de equilibrio estable (mínimo). Además, es uno de los sistemas mecánico cuánticos que admite una solución analítica sencilla.

20.1. Oscilador Armónico

Dado el sistema físico de oscilador más simple se tiene que su hamiltoniano es

$$H = \frac{P^2}{2m} + \frac{1}{2}kX^2.$$

Dado que H, P, X son observables incompatibles. Recordemos que $[X, P] = i\hbar I$. Y con esto tenemos el operador evolución

$$U(t) = e^{-\frac{i}{\hbar}tH}.$$

20.2. Ecuación de Schrodinger

$$H|\psi(t)\rangle = i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle$$

Si presentamos la ecuación de Schrodinger respecto a la posición, tenemos lo siguiente

$$-\frac{\hbar^2}{2m}\frac{\partial^2\Psi}{\partial x^2} + \frac{m\omega^2}{2}x^2\Psi(x,t) = i\hbar\frac{\partial\Psi}{\partial t}.$$

20.2.1. Ecuación de Schrodinger Independiente del Tiempo

La ecuación de Schrodinger independiente del tiempo es la ecuación que calcula los valores propios y los kets propios del Hamiltoniano mostrado al inicio del capítulo.

$$H|\psi\rangle = E|\psi\rangle$$
,

E es el valor propio de H, por lo tanto E es un valor real puro, $E \in \mathbb{R}$. Con esto aplicamos el bra $\langle \psi |$ se llega a la ecuación de Schrodinger Independiente del Tiempo para el oscilador armónico, respecto a la posición

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}\psi}{\mathrm{d}x} + \frac{m\omega^2}{2}x^2\psi(x) = E\psi(x).$$

20.3. Operadores en el Oscilador Cuántico

En lugar de resolver la ecuación de Schrodinger independiente del tiempo directamente, para calcular los valore propios y kets propios del Hamiltoniano; vamos a usar el operador creador, el operador anulador y el operador número. Como veremos a continuación el método de operadores es un método muy eficiente para calcular valores propios y ket propios.

20.3.1. Operador Anulador o Aniquilador

$$a = \sqrt{\frac{m\omega}{2\hbar}} \left(X + i \frac{P}{m\omega} \right).$$

20.3.2. Operador Creador

$$a^{\dagger} = \sqrt{\frac{m\omega}{2\hbar}} \left(X - i \frac{P}{m\omega} \right).$$

20.3.3. Operador Número

$$N = a^{\dagger}a.$$

Los operadores anulador y creador son operadores tipo escalera; no son ni hermíticos ni unitarios.

20.3.4. Propiedades de los Operadores

Propiedad 1: $[a, a^{\dagger}] = I$.

Propiedad 2: $N = \frac{1}{\hbar\omega}H - \frac{1}{2}I$.

Propiedad 3: *H* es hermítico.

Propiedad 4: H y N conmutan.

Propiedad 5: Si $|n\rangle$ es ket propio de N con valor propio n entonces

$$H|n\rangle = (n+1/2)\hbar\omega |n\rangle$$
.

Propiedad 6: [N, a] = -a.

Propiedad 7: $[N, a^{\dagger}] = a^{\dagger}$.

Propiedad 8: $a|n\rangle = \sqrt{n}|n-1\rangle$.

Propiedad 9: $a^{\dagger} |n\rangle = \sqrt{n+1} |n+1\rangle$.

Propiedad 10: Si n es valor propio del operador número N entonces $n \ge 0$.

Propiedad 11: Si n es valor propio del operador número N entonces n es un número entero no negativo.

Propiedad 12: Los valores y vectores propios de N y H son

$$H |n\rangle = \hbar\omega(n + 1/2) |n\rangle$$
,
 $N |n\rangle = n |n\rangle$.

Dado esto vemos que la base ortonormal dada por el operador número y el hamiltoniano está discretizada. De esto se tiene que todo estado del oscilador armónico simple se puede escribir como una combinacion lineal de los estados propios de la energía total.

$$|\psi\rangle = \sum_{n=0}^{\infty} c_n |n\rangle.$$

por fourier $C_n \langle n | \psi \rangle$, amplitud de probabilidad de medir energía $\hbar \omega (n+1/2)$ cuadno el sistema está en el estado $|\psi\rangle$.

Propiedad 13: $|c_n|^2$ probabilidad de medir la energía $\hbar\omega(n+1/2)$ cuando el sistema está en el estado $|\psi\rangle$. DS: Tarde vos pero $|n\rangle$ es el nivel de energía.

Para continuar con todo esto, se calculará $\langle x|n\rangle$ donde $|\langle x|n\rangle|^2$ es la probabilidad de medir la posición x cuando la partícula está en el n-ésimo nivel de energía. Pero antes, más propiedades!!!!!

Propiedad 14: $|n\rangle = \frac{1}{\sqrt{n!}} (a^{\dagger})^n |0\rangle$.

Propiedad 15: Representación matricial de a: $\langle l|a|n\rangle = \sqrt{n}\delta_{l,n-1}$.

$$a == \begin{pmatrix} 0 & \sqrt{1} & 0 & 0 & \cdots \\ 0 & 0 & \sqrt{2} & 0 & \cdots \\ 0 & 0 & 0 & \sqrt{3} & \cdots \\ 0 & 0 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Propiedad 16: Representación matricial de a^{\dagger} : $\langle l|a^{\dagger}|n\rangle = \sqrt{n+1}\delta_{l,n+1}$.

$$a^{\dagger} = \begin{pmatrix} 0 & 0 & 0 & 0 & \cdots \\ \sqrt{1} & 0 & 0 & 0 & \cdots \\ 0 & \sqrt{2} & 0 & 0 & \cdots \\ 0 & 0 & \sqrt{3} & 0 & \cdots \\ 0 & 0 & 0 & \sqrt{4} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Propiedad 17:
$$X = \sqrt{\frac{\hbar}{2m\omega}}(a + a^{\dagger}).$$

Propiedad 18:
$$P = i\sqrt{\frac{m\omega\hbar}{2}}(a^{\dagger} - a).$$

Propiedad 19: Representación matricial de
$$X$$
: $\langle l|X|n\rangle = \sqrt{\frac{\hbar}{2m\omega}} (\sqrt{n}\delta_{l,n-1} + \sqrt{n+1}\delta_{l,n+1})$.

$$X = \sqrt{\frac{\hbar}{2m\omega}} \begin{pmatrix} 0 & \sqrt{1} & 0 & 0 & \cdots \\ \sqrt{1} & 0 & \sqrt{2} & 0 & \cdots \\ 0 & \sqrt{2} & 0 & \sqrt{3} & \cdots \\ 0 & 0 & \sqrt{3} & 0 & \cdots \\ 0 & 0 & 0 & \sqrt{4} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Propiedad 20: Representación matricial de P: $\langle l|P|n\rangle = i\sqrt{\frac{m\omega\hbar}{2}} \left(-\sqrt{n}\delta_{l,n-1} + \sqrt{n+1}\delta_{l,n+1}\right)$.

$$P = i\sqrt{\frac{\hbar m\omega}{2}} \begin{pmatrix} 0 & -\sqrt{1} & 0 & 0 & \cdots \\ \sqrt{1} & 0 & -\sqrt{2} & 0 & \cdots \\ 0 & \sqrt{2} & 0 & -\sqrt{3} & \cdots \\ 0 & 0 & \sqrt{3} & 0 & \cdots \\ 0 & 0 & 0 & \sqrt{4} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

Propiedad 21:
$$\langle x|0\rangle = \frac{1}{\pi^{1/4}\lambda^{1/2}}e^{-\frac{1}{2}(x/\lambda)^2}$$
, donde $\lambda = \sqrt{\frac{\hbar}{m\omega}}$ y $\omega = \sqrt{\frac{k}{m}}$.

Propiedad 22: Si
$$\langle x|\psi\rangle = \psi(x)$$
 entonces $\langle x|\left(X - \frac{i}{m\omega}P\right)^n|\psi\rangle = \left(x - \lambda^2 \frac{\mathrm{d}}{\mathrm{d}x}\right)^n\psi(x)$

Propiedad 23:
$$\langle x|n\rangle = \frac{1}{\pi^{1/4}\sqrt{n!2^n}\lambda^{n+1/2}} \left(x-\lambda^2 \frac{\mathrm{d}}{\mathrm{d}x}\right)^n e^{1\frac{1}{2}\left(\frac{x}{\lambda}\right)^2}.$$

20.4. Dinámica del Oscilador Armónico Cuántico

Primero se estudiará desde el punto de vista de Schrodinger y luego desde el punto de vista de Heisenberg. Desde el punto de vista de Schrodinger, lo que evoluciona es el estado $|\psi(t)\rangle$ o sea que $|\psi(t)\rangle = U(t)\,|\psi(t)\rangle$. Desde el punto de vista de Heisenberg, o que evoluciona son los observables; donde, $X(t) = U(t)^{\dagger}X(0)U(t)$, así para todos los observables. Para el oscilador armónico H es independiente del tiempo.

20.4.1. Punto de Vista de Schrodinger

El estado de la partícula en el tiempo t queda descrita por el ket $|\psi(t)\rangle$. Para el oscilador cuántico el Hamiltoniano $H=\frac{P^2}{2m}+\frac{1}{2}m\omega^2X^2$ es independiente del tiempo

$$|\psi(t)\rangle = e^{-\frac{itH}{\hbar}} |\psi_o\rangle.$$

20.4.2. Solución al Oscilador Armónico Cuántico

Si el oscildor inicialmente está en el estado $|\psi_o\rangle$ vamos a calcular su estado en el tiempo t, respecto a la base otorgada por el Hamiltoniano $\{|n\rangle\}$.

Propiedad 1: $e^{-\frac{it}{\hbar}H}|n\rangle = e^{-i\omega(n+1/2)t}|n\rangle$. Entonces

$$|\psi(t)\rangle = \sum_{n=0}^{\infty} b_n(t) |n\rangle,$$

donde $b_n(t) = c_n e^{-in\omega t}$.

20.4.3. Punto de Vista de Heisenberg

Desde el punto de visa de Heisenberg el estado no evoluciona, los que evolucionan son los observables. Recordando

$$X(t) = U^{\dagger}(t)XU(t),$$

$$P(t) = U^{\dagger}(t)PU(t).$$

$$\begin{array}{rcl} \frac{\mathrm{d}X}{\mathrm{d}t} & = & \frac{1}{i\hbar}[X(t),H(t)] \\ & & & \text{Ecuación de Heisenberg.} \end{array} \tag{20.1}$$

$$\frac{\mathrm{d}P}{\mathrm{d}t} & = & \frac{1}{i\hbar}[P(t),H(t)].$$

En el oscilador armónico cuántico H(t) = H. Desarrollando los conmutadores y utilizando propiedades de las aprendidas, se tiene que

$$\frac{\mathrm{d}X}{\mathrm{d}t} = \frac{P(t)}{m} \tag{20.2}$$

$$\frac{\mathrm{d}P}{\mathrm{d}t} = -m\omega^2 X(t). \tag{20.3}$$

Capítulo 21

Espín 1/2

En este capítulo se estudiará un sistema cuántico con dos estados independientes, osea que el espacio de estado es un espacio de dos dimensiones, \mathbb{C}^2 . El experimento físico que motiva el formalismo es el experimento de Stern-Gerlach, el cual ya se mostró al inicio del capítulo 17.

21.1. Generalidades

De lo mostrado en esa explicación vamos a establecer que el ket propio para el espín con valor positivo $+\hbar/2$ es $|S_z, +\hbar/2\rangle = |S_z, +\rangle = |+\rangle$ y el otro ket propio es $|S_z, -\hbar/2\rangle = |S_z, -\rangle = |-\rangle$. Por lo tanto tenemos una base para el espacio de estado \mathbb{C}^2 que es $\alpha = \{|+\rangle, |-\rangle\}$. Osea que

$$S_z \left| + \right\rangle = \frac{\hbar}{2} \left| + \right\rangle \tag{21.1}$$

$$S_z \left| - \right\rangle = -\frac{\hbar}{2} \left| - \right\rangle. \tag{21.2}$$

Entonces, el observable S_z representado respecto a la base α

$$(S_z)_{\alpha} = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Todoe stado de las partículas se representa por medio de un ket como una superposición de los kets propios del observable S_z

$$|\psi\rangle = a |+\rangle + b |-\rangle$$
.

donde siempre requerimos que $|a|^2 + |b|^2 = 1$.

21.1.1. El Operador Identidad

Recordemos que si α es base del espacio de estado \mathcal{H} entonces

$$I = |+\rangle \langle +|+|-\rangle \langle -|. \tag{21.3}$$

21.1.2. Cambio de Base

El aparato para observar S_z cuando es girado nos da otro observable, en especial cuando lo giramos 90^o . Tenemos otro observable que es S_x y se obtienen solamente dos valores $\pm \frac{\hbar}{2}$, obteniendo otros dos kets propios que representan los kets propios del observable S_x

$$S_x |S_x, +\rangle = \frac{\hbar}{2} |S_x, +\rangle \tag{21.4}$$

$$S_x |S_x, -\rangle = \frac{\hbar}{2} |S_x, -\rangle. \tag{21.5}$$

Entonces tenemos la siguiente observación del experimento

$$|\langle S_x, +|S_z, +\rangle|^2 = \frac{1}{2}$$
$$|\langle S_x, -|S_z, +\rangle|^2 = \frac{1}{2}.$$

Recordemos que $|\langle S_x, +|S_z, +\rangle|^2$ es la probabilidad de medir $+\hbar/2$ en el eje x cuando la partícula está en el estado $|+\rangle$. De lo anterior tenemos que S_x y S_z son incompatibles y dan bases diferentes de kets propios. A la base en el eje x le llamaremos β .

Representación de $|S_x, \pm\rangle$ y $|S_y, \pm\rangle$ respecto a α

Vamos a calcular los siguientes valores para a_{ij} y b_{ij} .

$$|S_x, +\rangle = a_{11} |+\rangle + a_{21} |-\rangle$$

 $|S_x, -\rangle = a_{21} |+\rangle + a_{22} |-\rangle$

además¹

$$|S_y, +\rangle = b_{11} |+\rangle + b_{21} |-\rangle$$

 $|S_y, -\rangle = b_{21} |+\rangle + b_{22} |-\rangle$

Sujeto a las siguientes condiciones

$$|\langle S_x, +|S_x, +\rangle|^2 = |\langle S_x, -|S_x, -\rangle|^2 = 1$$

 $|\langle S_y, +|S_y, +\rangle|^2 = |\langle S_y, -|S_y, -\rangle|^2 = 1$

Así como también $\langle S_x, +|S_x, -\rangle = \langle S_y, +|S_y, -\rangle = 0$. Y calculando los brakets se tiene que $|a_{11}|^2 = |a_{12}|^2 = |a_{21}|^2 = |a_{22}|^2 = \frac{1}{2}$. De lo anterior llegamos a

$$|S_x, +\rangle = e^{i\phi} \left(\frac{1}{\sqrt{2}} |+\rangle + \frac{e^{i\phi_1}}{\sqrt{2}} |-\rangle \right)$$

¹a la base de y le llamaremos γ .

además, $|S_x, +\rangle = e^{-i\phi} |S_x, +\rangle$, representan el mismo estado, por lo tanto podemos elegir la fase igual a cero. Se hace lo mismo para $|S_x, -\rangle$.

$$|S_x, +\rangle = \frac{1}{\sqrt{2}} |+\rangle + \frac{e^{i\phi_1}}{\sqrt{2}} |-\rangle \tag{21.6}$$

$$|S_x, -\rangle = \frac{1}{\sqrt{2}} |+\rangle - \frac{e^{i\phi_1}}{\sqrt{2}} |-\rangle.$$
 (21.7)

Y se realiza el mismo procedimiento para $|S_y, \pm\rangle$.

$$|S_y, +\rangle = \frac{1}{\sqrt{2}} |+\rangle + \frac{e^{i\phi_3}}{\sqrt{2}} |-\rangle$$
 (21.8)

$$|S_y, -\rangle = \frac{1}{\sqrt{2}} |+\rangle - \frac{e^{i\phi_3}}{\sqrt{2}} |-\rangle.$$
 (21.9)

Reemplazando las fases se tiene

$$|S_x, +\rangle = \frac{1}{\sqrt{2}}|+\rangle + \frac{1}{\sqrt{2}}|-\rangle \tag{21.10}$$

$$|S_x, -\rangle = \frac{1}{\sqrt{2}} |+\rangle - \frac{1}{\sqrt{2}} |-\rangle \tag{21.11}$$

$$|S_y, +\rangle = \frac{1}{\sqrt{2}}|+\rangle + \frac{i}{\sqrt{2}}|-\rangle$$
 (21.12)

$$|S_y, -\rangle = \frac{1}{\sqrt{2}} |+\rangle - \frac{i}{\sqrt{2}} |-\rangle.$$
 (21.13)

Ahora, veremos matricialmente los observables respecto a la base α . Ahora tenemos

$$|+\rangle = \frac{1}{\sqrt{2}} |S_x, +\rangle + \frac{1}{\sqrt{2}} |S_x, -\rangle$$
 (21.14)

$$|-\rangle = \frac{1}{\sqrt{2}} |S_x, +\rangle - \frac{1}{\sqrt{2}} |S_x, -\rangle \tag{21.15}$$

$$|+\rangle = \frac{1}{\sqrt{2}} |S_y, +\rangle + \frac{1}{\sqrt{2}} |S_y, -\rangle$$
 (21.16)

$$|-\rangle = -\frac{i}{\sqrt{2}}|S_y, +\rangle + \frac{i}{\sqrt{2}}|S_y, -\rangle. \tag{21.17}$$

Representación Matricial de S_x Respecto a α

Aplicamos el operador S_x a los elementos dela base α .

$$(S_x)_{\alpha} = \frac{\hbar}{2} \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}. \tag{21.18}$$

Donde $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ es la **primera matriz de pauli** $\sigma_1 = \sigma_x$.

Representación Matricial de S_y Respecto a α

Aplicamos el operador S_y a los elementos dela base α .

$$(S_y)_{\alpha} = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}. \tag{21.19}$$

Donde $\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ es la **segunda matriz de pauli** $\sigma_2 = \sigma_y$.

Representación Matricial de S_z Respecto a α

Aplicamos el operador S_z a los elementos dela base α .

$$(S_z)_{\alpha} = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \tag{21.20}$$

Donde $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ es la **tercera matriz de pauli** $\sigma_3 = \sigma_z$.

21.1.3. Matrices de Pauli

Las matrices de pauli son matrices hermíticas que me sirven de base para formar un Espacio Vectorial sobre los reales que eventualmente se convertirá en un Álgebra de Lie.

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$
 (21.21)

21.2. Espín Total S^2

El espín total S^2 se define de la siguiente forma

$$S^2 = S_x^2 + S_y^2 + S_z^2. (21.22)$$

Propiedad 1: $S^2 = \frac{3\hbar^2}{4}I$.

21.2.1. Operadores Escaleras S_+, S_-

Tenemos que la base propia del observable S_x es β y la del observable S_y es γ ; estad dos bases son diferentes, lo que implican que son incompatibles, no se pueden medir simultaneamente. Debido a lo anterior vamos a definir los operadores escalera

$$S_{+} = S_x + iS_y (21.23)$$

$$S_{-} = S_x - iS_y, (21.24)$$

observemos que $S_{+}^{\dagger}=S_{-}$ y vicebersa, no son operadores hermíticos, ni unitarios; son operadores tipo escalera.

Propiedad 2: $S_+ = \hbar |+\rangle \langle -|$.

Propiedad 3: $S_{-} = \hbar |-\rangle \langle +|$.

Propiedad 4:

$$S_x = \frac{1}{2}(S_x + S_-)$$

$$S_y = \frac{1}{2i}(S_x - S_-)$$

Propiedad 5: $[S_x, S_y] = i\hbar S_z$.

21.3. Preseción del Espín 1/2

En esta clase vamos a estudiar la evolucion del espín en un eletrón sometido a un campo magnético \vec{B} uniforme y constante dirigido en la dirección z. Debido a que el electrón tiene estpín, también tiene un momento dipolar magnético $\vec{\mu}$; para el electrón $\mu = \frac{\hbar e}{2mc}$, donde e es la carga del electrón. La dirección del momento dipolar magnético es la misma que la del espín. Además tenemos que al estar un electrón en un campo magnético \vec{B} tenemos que la energía total es: $U = -\vec{\mu} \cdot \vec{B}$. Nosotros medimos el observable del espín por medio del momento dipolar magnético. Antes de plantear el hamiltoniano consideremos la siguiente expresión para el espín \vec{S} que es el espín total, con esto tenemos el hamiltoniano

$$H = \vec{\mu} \cdot \vec{B} = -\frac{e}{mc} \vec{S} \cdot \vec{B}. \tag{21.25}$$

Considerando que el campo magnético está en la dirección del eje z: $H=-\frac{eB_z}{mc}S_z$. Tomando las constantes como un nuevo parámetro $\omega=-\frac{eB_z}{mc}\Rightarrow H=\omega S_z$.

21.4. Evolución de un Estado

Ahora vamos a estudiar la forma en que evoluciona un estado cualquiera $|\psi_o\rangle$ sometido a un Hamiltoniano $H=\omega S_z$. Ahora

$$U(t) = e^{-\frac{i\omega t}{\hbar}S_z}. (21.26)$$

Propiedad 1: $e^{-\frac{i\omega t}{\hbar}S_z} |+\rangle = e^{-\frac{i\omega t}{2}} |+\rangle$.

Propiedad 2: $e^{-\frac{i\omega t}{\hbar}S_z} |-\rangle = e^{\frac{i\omega t}{2}} |-\rangle$.

21.4.1. Casos Especiales

Como primera instancia vamos a considerar que el estado inicial es un estado propio del Hamiltoniano $H = \omega S_z$ por ejemplo $H \mid + \rangle = \frac{\omega \hbar}{2} \mid + \rangle$.

Caso 1: $(|\psi_o\rangle = |+\rangle)$ $|\psi(t)\rangle = e^{-\frac{i\omega t}{2}}|+\rangle$ pero eso representa el mismo estado que $|+\rangle$. En este caso $|+\rangle$ representa un estado estacionario. DS: los kets del Hamiltoniano representan estados estacionarios que no evolucionan.

Caso 2: (Estado inicial $|S_x, +\rangle$) En este caso $|\psi_o\rangle = |S_x, +\rangle$ o sea que $|\psi_t\rangle = \frac{1}{\sqrt{2}}|+\rangle + \frac{e^{i\omega t}}{\sqrt{2}}|-\rangle$. Valuando

$$\begin{aligned} \left| \psi_{\pi/2\omega} \right\rangle &= \left| S_y, + \right\rangle \\ \left| \psi_{\pi/\omega} \right\rangle &= \left| S_x, - \right\rangle \\ \left| \psi_{3\pi/2\omega} \right\rangle &= \left| S_y, - \right\rangle \end{aligned}$$

El "cono" va precesando (rotando) con una velocidad angular de precesión igual a ω .

21.4.2. Consideraciones sobre el Espín 1/2

Aspectos del Espín 1/2 que son las siguientes:

- 1. Los estados del espín 1/2 como ejemplo secillo de espinor.
- 2. Entrelazamiento dos partículas, cada una de ellas con espín 1/2.

Estados de Espín 1/2 como Espinor

R Ecordemos que estamos estudiando una partícula de espín 1/2 cuyo espacio de estado es $\mathcal{H}=\mathbb{C}^2$ que es un espacio unitario. En el espacio de estado \mathcal{H} tenemos un producto interno dado por el Braket. En otras palabras el espcio de estado tiene estructura geométrica llamada unitaria. Podemos hablar de ortogonalidad entre estados y magnitud de kets.

Entrelazamiento de dos Partículas con Espín 1/2

Vamos a considerar dos partículas, la partícula con espín 1/2 y la partícula con espín 1/2 también. Con estas dos partículas formamos un sistema de dos partículas de espín 1/2 donde podemos medir el momentum angular total y el momentum angular en z. Dado el sistema de dos partículas su espacio de estado esta dado por $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$ cuya base es $\{|+\rangle \otimes |+\rangle, |+\rangle \otimes |-\rangle, |-\rangle \otimes |+\rangle, |-\rangle \otimes |-\rangle\} = \{|\uparrow\uparrow\rangle, |\uparrow\downarrow\rangle, |\downarrow\downarrow\rangle\}$. Vamos a medir el momentum angular del sistema en el eje z

$$\begin{split} J_z \mid & \uparrow \uparrow \rangle = \hbar \mid \uparrow \uparrow \uparrow \rangle \\ J_z \mid & \uparrow \downarrow \downarrow \rangle = 0 \mid \uparrow \downarrow \downarrow \rangle \\ J_z \mid & \downarrow \uparrow \uparrow \rangle = 0 \mid \downarrow \uparrow \uparrow \rangle \\ J_z \mid & \downarrow \downarrow \uparrow \rangle = -\hbar \mid \downarrow \downarrow \rangle \end{split}$$

 J_z es la adición² de S_{1z} y S_{2z}

$$J_z = S_{1z} \boxplus S_{2z}. \tag{21.27}$$

²Adición de Espínes: $J_i = S_{1i} \boxplus S_{2i} = S_{1i} \otimes I + I \otimes S_{2i}$, con $i = \{x, y, z\}$.

Capítulo 22

Momentum Angular

22.1. Introducción por Medio de los Observables del Spin

Con lo último visto en el capítulo anterior, definimos un operador de momentum angular más general

$$J^2 = J_x^2 + J_y^2 + J_z^2. (22.1)$$

La base de kets propios $\{|\uparrow\uparrow\rangle, |\uparrow\downarrow\rangle, |\downarrow\uparrow\rangle, |\downarrow\downarrow\rangle\}$ es base de J_z pero no son kets propios de J^2 . Ahora mostramos su representación matricial

$$J_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}, \tag{22.2}$$

$$J_{y} = \frac{\hbar}{2} \begin{pmatrix} 0 & -i & -i & 0 \\ i & 0 & 0 & -i \\ i & 0 & 0 & -i \\ 0 & i & i & 0 \end{pmatrix}, \tag{22.3}$$

$$J^{2} = \hbar^{2} \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$
 (22.5)

Encontramos los kets propios de J^2 , los cuales forman la siguiente base $\{|\uparrow\uparrow\rangle, \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle, |\downarrow\downarrow\rangle, \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)\}.$

$$(J^2)_{\delta} = \begin{pmatrix} 2\hbar^2 & 0 & 0 & 0\\ 0 & 2\hbar^2 & 0 & 0\\ 0 & 0 & 2\hbar^2 & 0\\ 0 & 0 & 0 & 0 \end{pmatrix}.$$
 (22.6)

Recordemos el postulado 5: Cuando medimos un observable, el estado del sistema cambia (colapsa) a un estado propio del observable, correspondiente al valor propio que medimos.

Observación: Al medir el momentum angular total J^2 de un sistema de dos partículas con spín 1/2 estas partículas quedan entrelazadas en estado propio correspondiente al valor propio que medimos. Cuando medimos J^2 obtenemos $2\hbar^2$ o cero. Si medimos $2\hbar^2$ para J^2 el sistema queda en algún estado generado por los kets propios correspondientes $\{|\uparrow\uparrow\rangle, \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle, |\downarrow\downarrow\rangle, \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)\}$. Pero si cuando medimos J^2 obtenemos cero el sistema de las dos partículas está en el estado

$$|\psi\rangle = \frac{1}{\sqrt{2}} |\uparrow\uparrow\rangle - \frac{1}{\sqrt{2}} |\downarrow\downarrow\rangle$$

donde a los coeficientes se les conocen como Coeficientes de Clebsh-Gordan. Si estamos en el estado $|\psi\rangle$ y a continuación medimos S_{1z} podríamos obtener $\pm \frac{\hbar}{2}$. Un resultado del entrelazamiento es el siguiente:

Si medimos S_{1z} cuando el sistema está en el estado $|\psi\rangle$ y nos da $+\hbar/2$ entonces con toda seguridad al medir S_{2z} nos dará $-\hbar/2$. SI medimos S_{1z} cuando el sistema está en el estado $|\psi\rangle$ y nos da $-\hbar/2$ entonces con toda seguridad al medir S_{2z} nos dará $+\hbar/2$.

22.2. Introducción Formal

Recordando como se definió el momentum lineal, usamos traslaciones en espacios euclideanos. De forma análoga vamos a usar rotaciones en espacios euclideanos para introducir el concepto de momentum angular.

22.2.1. Rotación Pasiva

DS: No lo voy a decir... Es la clásica: (se rotan los ejes de referencia)

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

Rotación $R_z(\alpha)$ ángulo α alrededor del eje z.

22.2.2. Rotación Activa

Se rota el objeto, no rota el sistema de referencia.

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

Por el momento se le dará preferencia al punto de vista activa, con el cual vamos a desarrollar la teoría básica del Momentum Angular.

Propiedad 1: $D_z(\alpha)$ es un operador unitario.

Propiedad 2: $\langle r, \theta, \phi | D_z(\alpha) | \psi \rangle$

22.3. Operadores

22.3.1. Definición del Operador L_z

$$L_z = i\hbar \left. \frac{\mathrm{d}D_z(\alpha)}{\mathrm{d}\alpha} \right|_{\alpha=0}.$$
 (22.7)

Propiedad 3: $\langle r, \theta, \phi | L_z | \psi \rangle = -i\hbar \frac{\partial \psi(r, \theta, \phi)}{\partial \phi}$.

Propiedad 4: $\langle r, \theta, \phi | \left(\frac{\alpha L_z}{i\hbar} \right)^n | \psi \rangle = (-\alpha)^n \frac{\partial^n \psi}{\partial \phi^n}$.

Propiedad 5: $D_z(\alpha) = e^{-\frac{i\alpha L_z}{\hbar}}$.

Propiedad 6: $\langle r, \theta, \phi | L_z^{\dagger} | \psi \rangle = -i\hbar \frac{\partial \psi}{\partial \phi}$. Lo que implica que $L_z^{\dagger} = L_z$ es Hermítico.

Propiedad 7: Calculamos los operadores en términos de los observables de posición y momentum.

$$L_z = XP_y - YP_x \tag{22.8}$$

$$L_x = YP_z - ZP_y \tag{22.9}$$

$$L_y = ZP_x - XP_z \tag{22.10}$$

у

$$D_x(\alpha) = e^{-\frac{i\alpha L_x}{\hbar}}$$

$$D_y(\alpha) = e^{-\frac{i\alpha L_y}{\hbar}}$$

A diferencia de las traslaciones, las rotaciones no conmutan.

22.4. Momentum Angular Orbital

Tomando el producto cruz como se definió en kinder, definimos el momentum angular orbital se tiene

$$\vec{L} = \vec{R} \times \vec{P}. \tag{22.11}$$

Propiedad 8: Conmutadores.

$$[L_x, L_y] = i\hbar L_z \tag{22.12}$$

$$[L_x, L_z] = -i\hbar L_y \tag{22.13}$$

$$[L_y, L_z] = i\hbar L_x. \tag{22.14}$$

Propiedad 9: Dado el momentum angular total $L^2 = L_x^2 + L_y^2 + L_z^2$, se tiene $[L^2, L_k] = 0$, con $k = \{x, y, z\}$.

Propiedad 10: Operadores escalera

$$L_{+} = L_x + iL_y$$

$$L_{-} = L_x - iL_y.$$

22.4.1. Valores y Vectores Propios

$$L_z |i, m\rangle = m\hbar |j, m\rangle \tag{22.15}$$

$$L^2 |j, m\rangle = \lambda_j |j, m\rangle. \tag{22.16}$$

Propiedad 11: $[L_{+}, L_{-}] = 2\hbar L_{z}$.

Propiedad 12: $[L_z, L_+] = \hbar L_+ \text{ y } [L_z, L_-] = -\hbar L_-.$

Propiedad 13: $L^2 = \frac{1}{2}(L_+L_- + L_-L_+) + L_z^2$.

Propiedad 14: $L^2 = L_z^2 + \hbar L_z + L_- L_+ \text{ y } L^2 = L_z^2 - \hbar L_z + L_+ L_-.$

Propiedad 15: Ahora, volviendo al operador general de momento angular

$$J_{+} = J_{x} + iJ_{y}$$

$$J_{-} = J_{x} - iJ_{y}$$

$$[J_{+}, J_{-}] = 2\hbar J_{z}$$

$$[J_{z}, J_{+}] = \hbar J_{+}$$

$$[J_{z}, J_{-}] = -\hbar J_{-}$$

$$J = \frac{1}{2}(J_{+}J_{-} + J_{-}J_{+}) + J_{z}^{2}$$

$$J^{2} = J_{z}^{2} - \hbar J_{z} + J_{+}J_{-}.$$

Propiedad 16: $L_+|j,m\rangle = c|i,m+1\rangle$.

Propiedad 17: $L_{-}|j,m\rangle = c|j,m-1\rangle$.

Propiedad 18: $L^2|j,m\rangle = \hbar^2 j(j+1)|j,m\rangle$.

Propiedad 19: Elvalor mínimo de m para los kets propios $|j,m\rangle$ con j fijo es m=-j.

Propiedad 20: Los valores que puede tener j son los siguietnes $j=0,1/2,1,3/2,2,5/2,\ldots$

Propiedad 21: Dimensión del subespaio propio para j: dim $\mathcal{H}_j = 2j + 1$.

Propiedad 22: $L_{+}|j,m\rangle = \hbar \sqrt{j(j+1) - m(m+1)}|j,m+1\rangle$.

Propiedad 23: $L_{-}|j,m\rangle = \hbar \sqrt{j(j+1) - m(m-1)}|j,m-1\rangle.$

22.4.2. Armónicos Esféricos

La representación delos ket propios $|l, m\rangle$, cuando l es entero, respecto a la posición en coordenadas esféricas nos quedan los Armónicos Esféricos. Ahora l = 0, 1, 2, ...

$$\langle r, \theta, \phi | l, m \rangle = Y_l^m(\theta, \phi).$$
 (22.17)

22.5. Generalidades del Momentum Angular

Podemos definir el momentum angular orbital como:

$$L_i = r_i p_k \epsilon_{ijk} \tag{22.18}$$

donde ϵ_{ijk} es el tensor de Levi-Civita¹, r_j son las componentes del vector posición, y p_k son las componentes del momentum lineal.

DS: La siguiente explicación es complemento de lo ya visto, explicado un poco más a profundidad.

En la mecánica cuántica, el operador \hat{J}_z es uno de los componentes del momento angular total y tiene una forma estándar bien definida cuando actúa sobre los estados propios de \hat{J}^2 y \hat{J}_z .

El operador \hat{J}_z actúa sobre un estado propio $|j,m\rangle$ del momento angular total \hat{J}^2 y de su componente \hat{J}_z de la siguiente manera:

$$\hat{J}_z |j, m\rangle = \hbar m |j, m\rangle \tag{22.19}$$

Aquí: - j es el número cuántico total del momento angular. - m es el número cuántico magnético, que puede tomar valores en el rango $-j, -j+1, \ldots, j-1, j$. - \hbar es la constante de Planck reducida.

En este contexto, la "forma estándar" de J_z simplemente significa que cuando J_z opera sobre el estado $|j,m\rangle$, produce el valor $\hbar m$ multiplicado por el mismo estado $|j,m\rangle$. Este operador es diagonal en la base de estados propios $|j,m\rangle$.

Por lo tanto, la forma estándar del operador \hat{J}_z se expresa en términos de su acción sobre los estados base del momento angular total:

$$\hat{J}_z |j, m\rangle = \hbar m |j, m\rangle \tag{22.20}$$

Para calcular el valor esperado de \hat{J}_y^2 en un estado propio $|j,m\rangle$ del operador de momento angular total \hat{J} , primero necesitamos recordar algunas propiedades fundamentales del momento angular en mecánica cuántica.

Los operadores \hat{J}_x , \hat{J}_y y \hat{J}_z satisfacen la siguiente relación para el operador cuadrado del momento angular total \hat{J}^2 :

$$\hat{J}^2 = \hat{J}_x^2 + \hat{J}_y^2 + \hat{J}_z^2 \tag{22.21}$$

Dado que \hat{J}^2 y \hat{J}_z son simultáneamente diagonales en la base $|j,m\rangle$, tenemos las siguientes relaciones:

¹Símbolo de Levi-Civita:
$$\varepsilon_{ijk} = \begin{cases} +1 & \text{si } ijk = 123, 231, 312 \\ -1 & \text{si } ijk = 132, 213, 321. \\ 0 & \text{en otro caso} \end{cases}$$

$$\hat{J}^2 |j,m\rangle = \hbar^2 j(j+1) |j,m\rangle \tag{22.22}$$

$$\hat{J}_z |j, m\rangle = \hbar m |j, m\rangle \tag{22.23}$$

Por lo tanto, el valor esperado de \hat{J}^2 y \hat{J}_z^2 en el estado $|j,m\rangle$ son:

$$\langle j, m | \hat{J}^2 | j, m \rangle = \hbar^2 j(j+1) \tag{22.24}$$

$$\langle j, m | \hat{J}_z^2 | j, m \rangle = \hbar^2 m^2 \tag{22.25}$$

Para encontrar el valor esperado de $\hat{J}_y^2,$ usamos la relación:

$$\hat{J}^2 = \hat{J}_x^2 + \hat{J}_y^2 + \hat{J}_z^2 \tag{22.26}$$

Tomando el valor esperado de ambos lados en el estado $|j, m\rangle$:

$$\langle j, m | \hat{J}^2 | j, m \rangle = \langle j, m | \hat{J}_x^2 | j, m \rangle + \langle j, m | \hat{J}_y^2 | j, m \rangle + \langle j, m | \hat{J}_z^2 | j, m \rangle$$
 (22.27)

Reemplazando los valores esperados conocidos:

$$\hbar^2 j(j+1) = \langle j, m | \hat{J}_x^2 | j, m \rangle + \langle j, m | \hat{J}_y^2 | j, m \rangle + \hbar^2 m^2$$
 (22.28)

Dado que \hat{J}_x y \hat{J}_y son componentes equivalentes del momento angular en términos de simetría, se cumple que:

$$\langle j, m | \hat{J}_x^2 | j, m \rangle = \langle j, m | \hat{J}_y^2 | j, m \rangle \tag{22.29}$$

Definimos el valor esperado común como $\langle j,m|\hat{J}_x^2|j,m\rangle=\langle j,m|\hat{J}_y^2|j,m\rangle=\langle j,m|\hat{J}_\perp^2|j,m\rangle$. Por lo tanto, la ecuación se simplifica a:

$$\hbar^2 j(j+1) = 2\langle j, m | \hat{J}_{\perp}^2 | j, m \rangle + \hbar^2 m^2$$
 (22.30)

Resolviendo para $\langle j, m | \hat{J}_y^2 | j, m \rangle$:

$$2\langle j, m | \hat{J}_y^2 | j, m \rangle = \hbar^2 \left[j(j+1) - m^2 \right]$$
 (22.31)

$$\langle j, m | \hat{J}_y^2 | j, m \rangle = \frac{\hbar^2}{2} \left[j(j+1) - m^2 \right]$$
 (22.32)

Por lo tanto, el valor esperado de \hat{J}_y^2 en el estado $|j,m\rangle$ es:

$$\langle j, m | \hat{J}_y^2 | j, m \rangle = \frac{\hbar^2}{2} \left[j(j+1) - m^2 \right]$$
 (22.33)

Capítulo 23

Métodos Aproximados

23.1. Teoría de Perturbaciones

23.1.1. No Degenerada

Esta teoría se basa en encontrar la solución a la ecuación de Schrodinger independiente del tiempo.

$$H = H^{(0)} + \lambda H'. (23.1)$$

Donde H lo desconocemos, $H^{(0)}$ conocemos la solución, H' término perturbativo y λ consante de acoplamiento. Dada una solución conocida $H^{(0)}\psi_n^{(0)}=E_n^{(0)}\psi_n^{(0)}$, y queremos encontrar la forma en serie de los elementos de onda solución de otro hamitoniano $H\psi_n=E_n\psi_n$.

$$\psi_n = \psi_n^{(0)} + \lambda \psi_n^{(1)} + \lambda^2 \psi_n^{(2)} + \cdots$$

$$E_n = E_n^{(0)} + \lambda E_n^{(1)} + \lambda^2 E_n^{(2)} + \cdots$$

Reemplazando

$$\left(H^{(0)} + \lambda H'\right) \left(\psi_n^{(0)} + \lambda \psi_n^{(1)} + \lambda^2 \psi_n^{(2)} + \cdots\right) = \left(E_n^{(0)} + \lambda E_n^{(1)} + \lambda^2 E_n^{(2)} + \cdots\right) \left(\psi_n^{(0)} + \lambda \psi_n^{(1)} + \lambda^2 \psi_n^{(2)} + \cdots\right).$$
(23.2)

Desarrollando esto y agrupando los elementos respecto a λ , multiplicamos por $\left\langle \psi_n^{(0)} \right|$. Se llega a la siguiente relación:

$$\psi_n^{(1)} = \sum_{m \neq n} \frac{\left\langle \psi_m^{(0)} \middle| H' \middle| \psi_n^{(0)} \right\rangle}{E_n^{(0)} - E_m^{(0)}} \psi_m^{(\cdot)}$$

$$E_n = E_n^{(0)} + \left\langle \psi_n^{(0)} \middle| H' \middle| \psi_n^{(0)} \right\rangle$$

$$\psi_n = \psi_n^{(0)} + \psi_n^{(1)}.$$

23.2. Átomo de Hidrógeno

Empezaremos recordando los observables y sus operadores asociados:

Osbservable	Operador
$ec{r}$	\hat{R}
$ec{p}$	$\hat{P}=-i\hbar\boldsymbol{\nabla}$
$T = \frac{p^2}{2m}$	$\hat{T} = -\frac{\hbar^2}{2m} \nabla^2$
$E = \frac{p^2}{2m} + V(\vec{p}, t)$ $\vec{L} = \vec{r} \times \vec{p}$	$\hat{H} = -\frac{\hbar^2}{2m} \nabla^2 + \hat{V}(\hat{R}, t)$ $\hat{L} = -i\hbar \hat{R} \times \nabla$
$\vec{L} = \vec{r} \times \vec{p}$	$\hat{L} = -i\hbar\hat{R} \times \nabla$

El operador momentum para dos partículas diferentes, conmuta por el simple hecho de que las partículas son diferentes.

Tomaremos el hamiltoniano del sistema:

$$H = \frac{P^2}{2m} - \frac{1}{4\pi\epsilon_0} \frac{Ze^2}{r},\tag{23.3}$$

$$H = -\frac{\hbar^2}{2m}\nabla^2 - \frac{1}{4\pi\epsilon_0}\frac{Ze^2}{r}.$$
 (23.4)

La masa es normalmente tomada como la masa del electrón; esto es, debido a que se trata de un problema de dos cuerpos se toma la masa reducida que, luego de un poco de álgebra tiene la siguiente forma $m \approx m_e - \frac{m_e^2}{M}$, pero dado que la masa del protón es más de 3 ordenes de magnitud mayor que la del electrón, el ultimo término se ignora y nos deja únicamente la masa del electrón. La ecuación de Schrodinger es el siguiente problema:

$$H\psi = E_n\psi.$$

La solución más conocida es por medio de separación de variables

$$\psi_{n,j,m}(r,\theta,\phi) = R_{n,l}(r)Y_{l,m}(\theta,\phi). \tag{23.5}$$

donde R son los polinomios de Laguerre generalizados y Y son los armónicos esféricos. Los estados están indexados por 3 números cuánticos $n=1,2,\ldots,l=0,1,2,\ldots,n-1$ y $m=-l,\ldots,+l$. En lo cual, la energía solo depende en uno de estos números cuánticos

$$E_n = -\left(\frac{Ze^2}{4\pi\epsilon_0}\right)^2 \frac{m}{2\hbar^2} \frac{1}{n^2},\tag{23.6}$$

también se puede escribir de la siguiente forma

$$E_n = -\frac{Ry}{n^2},$$

donde Ry = 13.6eV es la energía de Rydberg, es la energía en el estado base del hidrógeno. También es útil esta otra forma de escribir los niveles de energía

$$E_n = -\frac{(Z\alpha)^2 mc^2}{2n^2}, \quad \text{donde} \quad \alpha = \frac{e^2}{4\pi\epsilon_0 \hbar c}.$$
 (23.7)

Esto implica que podemos ver como las energías que ligan al electrón son comparadas con la energía en reposo de la masa del electrón. La cantidad $\alpha \approx 1/137$ es adimensional y se conoce como

la constante de estructura fina. La constante de estructura fina debería pensarse como la manera de caracterizar la fuerza de la, valga la redundancia, fuerza electromagnética. La solución a la ecuación de Schrodinger para el átomo de hidrógeno es la siguiente

$$\psi_{n,j,m}(r,\theta,\phi) = e^{-\frac{r}{na_o}} \left(\frac{r}{a_o}\right)^l \sum_{k=0}^{n-L-1} b_k \left(\frac{r}{a_o}\right)^k Y_{l,m}(\theta,\phi).$$
 (23.8)

Problemas en Una Dimensión

Tener en mente la ecuación de Schrodinger

$$-\frac{\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2} + V(x)\psi(x) = E\psi(x).$$
 (24.1)

donde sabemos que la función de onda tiene como dimensionales $1/\sqrt{m}$.

Figura 24.1: Forma de un potencial general.

24.1. Propiedades del Movimiento en Una Dimensión

24.1.1. Espectro Discreto (Estados Ligados)

Los estados ligados se dan cuando la partícula no se puede mover al infinito. La partícula esta confinada a una región limitada de espacio. La ecuación de Schrodinger permite únicamente soluciones discretas. El potencial de pozo infinito y el oscilador armónico son ejemplos que producen estados ligados. En la figura Fig. 24.1 es claro que el movimiento de la partícula esta confinado a estar entre x_1 y x_2^1 y cuando el nivel de energía de la partícula está entre $V_{min} < E < V_1$.

Teorema 24.1.1. En un problema de una dimensión, los niveles de energía de un estado ligado son discretos y no degenerados.

Teorema 24.1.2. La función de onda $\psi_n(x)$ de un problema de estado ligado en una dimensión tiene n nodos ($\psi_n(x)$ se hace cero n veces) si n=0 corresponde al estado base y n-1 nodos si n=1 corresponde al estado base.

¹Los puntos x_1 y x_2 son los puntos de inflexión del potencial.

24.1.2. Espectro Continuo (Estados ligados)

Los estados libres ocurren en los casos donde el movimiento del sistema no esta restringido; el ejemplo más clásico es *la partícula libre*.

Caso $V_1 < E < V_2$: En este caso el movimiento de la partícula es hacia $-\infty$. Dado que es un punto de inflexión clásico, por lo que el espectro es continuo y ninguno de sus valores ni vectores propios son degenerados.

Case $E > V_2$: El espectro de energía es continuo y el movimiento de la partícula es infinito en ambas direcciones. Todos los niveles de energía de este espectro son doblemente degenerados.

24.1.3. Potenciales Simétricos y Paridad

La gran mayoría de potenciales que se conocen/utilizan a nivel microscópico son simétricos respecto a la inversión espacial V(-x) = V(x). Esta simetría implican simplificaciones en los cálculos.

Espectro No Degenerado: Primero se considerará el caso donde los valores propios del Hamiltoniano corresponden a este potencial son no degenerados. Se sabe que un operador simétrico no degenerado tiene los mismos estados propios que el operador paridad. Dado que los estados propios del operador paridad tienen paridad definida, los estados ligados de una partícula moviéndose en un potencial unidimensional simétrico tienen paridad definida

$$V(-x) = V(x) \quad \Rightarrow \quad \psi(-x) = \pm \psi(x).$$
 (24.2)

Espectro Degenerado: Si el espectro del hamiltoniano correspondiente a un potencial es degenerado, los estados propios son expresados solo en términos de estados pares e impares. Los estados propios no tienen paridad definida.

24.2. Partícula Libre: Estados Continuos

Este es el problema más clásico y simple, se tiene V(x) = 0 para toda x. Se tiene que las solución se da en paquetes de onda

$$\psi(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \psi(k) e^{i(kx - \omega t)} \, \mathrm{d}k \,,$$

donde $\phi(k)$, la amplitud de los paquetes de onda está dada por la transformación de fourier de $\psi(x,0)$ como

$$\phi(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \psi(x,0)e^{-ikx} \, \mathrm{d}x.$$

Primero, el momento, posición y energía de la partícula no se conocen con certeza; solo un estado probabilístico es posible. Segundo, el paquete de onda y la partícula viajan a la misma velocidad $v_q = p/m$, conocida como velocidad de grupo.

24.3. Potencial Escalonado

Otro ejemplo simple consiste en una partícula que es libre en todos lados, excepto en un punto en particular, por ejemplo x=0, un potencial de este tipo es conocido como potencial escalonado:

$$V(x) = \begin{cases} 0, & x < 0, \\ V_o, & z \ge 0 \end{cases}$$
 (24.3)

En este problema se intenta analizar la dinámica de un flujo de partículas moviéndose de izquierda a derecha. Se considerarán dos casos, dependiendo si E es mayor o menor a V_o .

Caso $E > V_o$: Las partículas son libres en x < 0 y sienten el potencial repulsivo V_o que inicia en x=0 y se mantiene constante para x>0. Analizando esto clásicamente, cuando la partícula empieza a entrar en la región cercana a 0 el el momentum lineal es $\sqrt{2m(E-V_0)}$, pero como la energía es suficiente para vencer el potencial, el paquete de partículas simplemente perderá energía cinética. Desde el punto de vista cuántico, la partícula está regido por la ecuación de Schrodinger para estas dos regiones

$$\left(\frac{\mathrm{d}^2}{\mathrm{d}x^2} + k_1^2\right)\psi_1(x) = 0 \qquad (x < 0),$$

$$\left(\frac{\mathrm{d}^2}{\mathrm{d}x^2} + k_2^2\right)\psi_1(x) = 0 \qquad (x \ge 0),$$
(24.4)

$$\left(\frac{\mathrm{d}^2}{\mathrm{d}x^2} + k_2^2\right)\psi_1(x) = 0 \qquad (x \ge 0), \tag{24.5}$$

donde $k_1^2=2mE/\hbar^2$ y $k_2^2=2m(E-V_o)/\hbar^2$. Las soluciones más generales de estas dos ecuaciones son

$$\psi_1(x) = Ae^{ik_1x} + Be^{-ik_1x} \qquad (x < 0), \tag{24.6}$$

$$\psi_1(x) = Ae^{ik_1x} + Be^{-ik_1x} \qquad (x < 0),$$

$$\psi_2(x) = Ce^{ik_2x} + De^{-ik_2x} \qquad (x \ge 0),$$
(24.6)

donde los términos exponenciales positivos representan las ondas moviéndose en la dirección x y para las negativas en la dirección -x.

En resumen, hay partículas reflectadas a pesar de que poseen energía suficiente para atravesar la barrera, a esto se le conoce como wavelike behavior. DS: Terminar esta explicación en Zettili, p221.

Caso $E < V_o$: Dado que la energía que poseen las partículas es menor al potencial de barrera, estas saldrán rebotadas sin poder cruzarlo DS: bastante obvio, hablando clásicamente. Cuánticamente, esto no es del todo así, a la izquierda de la barrera las ecuaciones que modelan esto son (24.4) y (24.6). Pero para el lado derecho del potencial se tiene lo siguiente

$$\left(\frac{\mathrm{d}^2}{\mathrm{d}x^2} + k_2^2\right)\psi_2(x) = 0 \qquad (x \ge 0),\tag{24.8}$$

$$\psi_2(x) = Ce^{-k_2x} + De^{k_2x} \qquad (x \ge 0), \tag{24.9}$$

dado que el valor de la función en todo el espacio debe ser finito, D debe ser cero. A diferencia del caso clásico, en el caso cuántico se tiene probabilidad distinta de cero de encontrar alguna partícula a la derecha de la barrera

$$P(x) = |\psi_t(x)|^2 = |C|^2 e^{-2k_2 x} = \frac{4k_1^2 |A|^2}{k_1^2 + k_2^2} e^{-2k_2 x}.$$

Figura 24.2: Escalamiento de potencial y direcciones de propagación de los resultados posibles, ondas reflejadas y transmitidas, más sus densidades de probabilidad $|\psi(x)|^2$ para ambos casos.

24.4. Pozo de Potencial

Consideremos un haz de partículas de masa m que son enviadas desde la izquierda de una barrera de potencial

$$V(x) = \begin{cases} 0, & x < 0, \\ V_o, & 0 \le x \le a, \\ 0, & x > a. \end{cases}$$
 (24.10)

Este potencial, repulsivo, no admite estados ligados. Estamos tratando con un problema de dispersion unidimensional. Volveremos a tomar 2 casos

Caso $E > V_o$: Clásicamente, el resultado final es como si no existiera la barrera. Cuánticamente, es intuitivo lo que sucederá, la partícula mantendrá el comportamiento oscilatorio con menor amplitud conforme se pasa de regiones. DS: Revisar Zettili, p226.

Caso $E < V_o$: Clásicamente, es también bastante intuitivo el resultado. Cuánticamente, no lo es, aunque es esperado algo similar a lo visto en el problema anterior.

Figura 24.3: Escalamiento de potencial y direcciones de propagación de los resultados posibles, ondas reflejadas y transmitidas, más sus densidades de probabilidad $|\psi(x)|^2$ para ambos casos.

24.4.1. Tunelamiento

En general, el efecto de tunelamiento consiste en la propagación de una partícula a través de una región donde la energía de la partícula es menor que el potencial. Esto es cierto solo si la el potencial es una función suave y varía lentamente respecto a x.

24.5. Potencial de Pozo Cuadrado Infinito

24.5.1. Asimétrico

El potencial es de la siguiente forma

$$V(x) = \begin{cases} +\infty, & x < 0, \\ 0, & 0 \le x \le a, \\ +\infty, & x > a. \end{cases}$$
 (24.11)

Clásicamente, la partícula se mantiene con un momentum constante siendo reflectada continuamente dado el pozo de potencial. Cuánticamente, se espera que esta partícula tenga una única solución ligada y un espectro no degenerado de la energía. Veremos soluciones dentro del pozo, las cuales son las esperadas, soluciones al oscilador armónico y esto nos da la energía

$$E_n = \frac{\hbar^2}{2m} k_n^2 = \frac{\hbar^2 \pi^2}{2ma^2} n^2 \qquad (n = 1, 2, 3, \ldots).$$
 (24.12)

La energía está cuantizada. Esto era esperable dado que se trata de estados ligados y su espectro de energía es por definicion discreto. Con esto y normalizando la función de onda tenemos que

$$\psi_n(x) = \sqrt{\frac{2}{a}} \sin \frac{n\pi}{a} x$$
 $(n = 1, 2, 3, ...).$ (24.13)

Esta es la solución a la ecuación de Schrodinger independiente de tiempo, para la dependiente del tiempo

$$\Psi(x,t) = \sum_{n=1}^{\infty} \psi_n(x) e^{-\frac{iE_n t}{\hbar}} = \sqrt{\frac{2}{a}} \sum_{n=1}^{\infty} \sin \frac{n\pi x}{a} e^{-\frac{in^2 E_1 t}{\hbar}}.$$
 (24.14)

24.5.2. Simétrico

Para el potencial simétrico

$$V(x) = \begin{cases} +\infty, & x < -a/2, \\ 0, & -a/2 \le x \le a/2, \\ +\infty, & x > a/2. \end{cases}$$
 (24.15)

El espectro de la energía se mantiene dada esta traslación, dado que el hamiltoniano es invariante ante transformaciones espaciales; como solo contiene parte cinética, conmuta con el momentum de la partícula $[H,P]\,=\,0$. El espectro es discreto y no degenerado. La función correspondiente al potencial es

$$|\psi\rangle n(x) = \sqrt{\frac{2}{a}} \sin\left[\frac{n\pi}{a}\left(x + \frac{a}{2}\right)\right] = \begin{cases} \sqrt{\frac{2}{a}} \cos\frac{n\pi x}{a} & (n = 1, 3, 5, ...),\\ \sqrt{\frac{2}{a}} \sin\frac{n\pi x}{a} & (n = 2, 4, 6, 8, ...) \end{cases}$$
 (24.16)

Las funciones de onda correspondientes a los números cuánticos impares son simétricas y las pares son antisimétricas.

24.6. Potencial de Pozo Cuadrado Finito

Consideremos una partícula de masa m moviendose en el siguiente potencial

$$V(x) = \begin{cases} V_o, & x < -a/2, \\ 0, & -a/2 \le x \le a/2, \\ V_o, & x > a/2. \end{cases}$$
 (24.17)

Los únicos casos interesantes son $E > V_o$ y $E < V_o$. Se esperan soluciones continuas y doblemente degeneradas para el espectro de la energía de $E > V_o$ y uno discreto y no degenerada para $E < V_o$.

24.6.1. Soluciones de Dispersión $(E > V_o)$

Clasicamente, si la partícula parte desde la izquierda con un momento constante de $\sqrt{2m(E-V_o)}$ se acelerará hasta $\sqrt{2mE}$ en el pozo y luego se relentizará hasta su momentum inicial luego de salir de él. Cuanticamente, como se hizo para los potenciales eslacaldos, se puede comprobar que se obvtiene un coeficiente de reflección finito. La solución es fácil de obtener; solo se siguen los pasos seguidos en las demostraciones anteriores. La función de onda tiene un patrón de oscilación en las tres regiones.

24.6.2. Soluciones de Estados Ligados ($E < V_o$)

Clásicamente, la partícula esta confinada al pozo. Cuánticamente, las soluciones son bastante interesantes, se espera un espectro de energía discreto y funciones de onda que decaen en ambas regiones fuera del pozo, pero oscilante dentro. DS: ver Zettili, p235.

Parte IV Mecánica Clásica

"La frase más exitant	te que se puede oír en «eureka» sino «Eso e	ciencia, la que anu es divertido»" - Is	ncia nuevos descubr saac Asimov.	imientos, no es

Movimiento de una Partícula en una Dimensión

Se estudiará el movimiento de una partícula a lo largo de una línea recta.

25.1. Teoremas de Energía y Momentum

El movimiento de una partícula esta gobernado por la ecuación de la Segunda Ley de Newton

$$F = m \frac{\mathrm{d}^2 x}{\mathrm{d}t^2}.\tag{25.1}$$

Antes de considerar su solución de esta ecuación es necesario recordar algunos conceptos básicos, como el momentum lineal

$$p = mv = m\frac{\mathrm{d}x}{\mathrm{d}t}. (25.2)$$

Suponiendo que la masa es constante (esto no es cierto en casos específicos), se tiene

$$F = \frac{\mathrm{d}p}{\mathrm{d}t}.\tag{25.3}$$

Esta ecuación muestra que el cambio del momentum en el tiempo es igual a la fuerza aplicada. A esto le llamammos el Teorema del Momentum Lineal. Integrando en el tiempo, se tiene

$$p_2 - p_1 = \int_{t_1}^{t_2} F \, \mathrm{d}t \,. \tag{25.4}$$

A la integral de la derecha se le conoce como *Impulso*.

Otra cantidad importante a tomar en cuenta es la energía cinética

$$T = \frac{1}{2}mv^2. (25.5)$$

Multiplicando la Segunda Ley de Newton por la velocidad, se tiene lo siguiente

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{1}{2} m v^2 \right) = \frac{\mathrm{d}T}{\mathrm{d}t} = Fv. \tag{25.6}$$

Integrando de ambos lados y reemplazando la velocidad por su definición, se llega al *Teorema Trabajo* y *Energía*

$$T_2 - T_1 = \int_{t_1}^{t_2} F \, \mathrm{d}x \,. \tag{25.7}$$

25.2. Fuerza

25.2.1. Fuerza Aplicada Dependiente del Tiempo

SI la fuerza F está dada por una función dependiente del tiempo, resolviendo el teorema impulso momento para x y \dot{x} .

$$v = v_o + \frac{1}{m} \int_{t_o}^t F(t) dt$$
 (25.8)

$$x - x_o = v_o(t - t_o) + \frac{1}{m} \int_{t_o}^t \left[\int_{t_o}^t F(t) dt \right] dt.$$
 (25.9)

25.2.2. Fuerza de Restitución Dependiente de la Velocidad

La Segunda Ley de Newton en términos de la velocidad

$$m\frac{\mathrm{d}v}{\mathrm{d}t} = F(v). \tag{25.10}$$

Integramos y se obtienen soluciones de la siguiente forma

$$v = \varphi\left(v_o, \frac{t - t_o}{m}\right)$$
$$x = x_o + \int_t^t \varphi\left(v_o, \frac{t - t_o}{m}\right) dt.$$

Estas fuerzas restitutivas dependen de potencias de la velocidad del objeto/sistema en movimiento

$$F = \mp bv^n, \tag{25.11}$$

Si n es un entero impar, se toma el signo negativo, en otro caso se toma el signo de modo que la velocidad sea opuesta a la velocidad.

25.2.3. Fuerza Conservativa

Para una fuerza dependiente exclusivamente de la posición. Ahora definimos la energía potencial

$$V(x) = -\int_{x_s}^{x} F(x) dx$$
 (25.12)

Con esto se puede definir la energía total

$$E = T + V. (25.13)$$

Resolviendo para la velocidad se obtiene

$$v = \frac{\mathrm{d}x}{\mathrm{d}t} = \sqrt{\frac{2}{m}} [E - V(x)]^{1/2}$$
 (25.14)

entonces

$$\sqrt{\frac{m}{2}} \int_{x_o}^x [E - V(x)]^{1/2} dx = t - t_o.$$
 (25.15)

Con todo esto obtenemos la relación directa entre potencial y fuerza

$$F = -\nabla V \tag{25.16}$$

Campos Vectoriales

Para que un campo vectorial \vec{F} sea considerado conservativo, deben cumplirse las siguientes condiciones:

- 1. Existencia de un potencial escalar: Existe una función escalar f tal que $\vec{F} = \nabla f$. Esto significa que el campo vectorial puede ser expresado como el gradiente de una función escalar.
- 2. La circulación de \vec{F} sobre cualquier curva cerrada es cero: Para que un campo vectorial \vec{F} sea conservativo, la integral de línea del campo vectorial sobre cualquier curva cerrada C debe ser cero:

$$\oint_C \vec{F} \cdot d\vec{r} = 0$$

Esto implica que el trabajo realizado por el campo a lo largo de una trayectoria cerrada es nulo

3. Independencia del camino: En un campo conservativo, la integral de línea de \vec{F} entre dos puntos cualesquiera es independiente del camino tomado entre esos puntos. Es decir, si A y B son dos puntos en el espacio, entonces:

$$\int_{A}^{B} \vec{F} \cdot d\vec{r}$$

es la misma para cualquier camino entre A y B.

4. La condición de rotacional cero (campo irrotacional): Para un campo vectorial \vec{F} ser conservativo, su rotacional debe ser cero en toda la región de interés:

$$\nabla \times \vec{F} = \vec{0}$$

Esta condición implica que no hay "vorticidad.en el campo vectorial.

5. Simplemente conexa del dominio: Para que el criterio del rotacional cero garantice que un campo es conservativo, el dominio del campo debe ser simplemente conexo. Un dominio es simplemente conexo si cualquier curva cerrada dentro de él puede ser contraída continuamente a un punto sin salir del dominio. En otras palabras, no debe haber agujeros en el dominio.

25.2.4. Caída Libre

Una situación más que conocida para nosotros, ahora le incluiremos fuerzas de resitución

$$F = -mg - bv, (25.17)$$

Esta es una aproximación más didáctica que real, para objetos pequeños con velocidades terminales grandes, esta es una mejor aproximación

$$F = bv^2. (25.18)$$

25.3. Osciladores

25.3.1. Oscilador Armónico Simple

DS: Básico, bueno, bonito y barato, todos lo conocemos y nos gusta :3 La ecuación característica de los osciladores armónicos simple

$$\ddot{x} + \omega_o^2 x = 0. {(25.19)}$$

Cuya energía potencial y total es

$$V(x) = \frac{1}{2}kx^2$$
$$E = \frac{1}{2}kA^2$$

25.3.2. Diagramas de Fase

Diagrama realizado con x y \dot{x} como las coordenadas. Estos diagramas muestran información reelevante acerca del movimiento del sistema. Estos diagramas tienen como objetivos

- Visualización de la dinámica del sistema.
- Análisisd de estabilidad.
- Predicción del comportamiento futuro.
- Estudio de sistemas caóticos.

25.3.3. Oscilaciones Amortiguadas

El oscilador armónico simple es un oscilador libre. Para este tipo de oscilacion se tiene

$$\ddot{x} + 2\beta \dot{x} + \omega_o^2 x = 0. {(25.20)}$$

donde $\beta = b/2m$ es el parámetro de amortiguamiento. La solución general es la siguiente

$$x(t) = e^{-\beta t} \left[A_1 \exp\left\{ \sqrt{\beta^2 - \omega_o^2} t \right\} + A_2 \exp\left\{ -\sqrt{\beta^2 - \omega_o^2} t \right\} \right]$$
 (25.21)

Para este tipo de oscilaciones se tienen 3 casos

Subamortiguado: $\omega_o^2 > \beta^2$. Cuya solución es

$$x(t) = Ae^{-\beta t}\cos\omega_1 t - \delta \qquad \omega_1^2 = \omega_o^2 - \beta^2. \tag{25.22}$$

Amortiguamiento Crítico: $\omega_o^2 = \beta^2$. Cuya solución es

$$x(t) = (A + Bt)e^{-\beta t}.$$
 (25.23)

Sobreamortiguado: $\omega_o^2 < \beta^2$. Cuya solución es

$$x(t) = Ae^{-\beta t} \left[A_1 e^{\omega_2 t} + A_2 e^{-\omega_2 t} \right] \qquad \omega_2 = \sqrt{\beta^2 - \omega_o^2}.$$
 (25.24)

25.3.4. Oscilaciones Forzadas

El caso más simple de oscilaciones forzadas es el de una fuerza externa senoidal

$$F = -kx - b\dot{x} + F_o \cos \omega t. \tag{25.25}$$

Matemáticamente se obtienen dos soluciones una complementaria y una partícular. La solución complementaria

$$x_c(t) = e^{-\beta t} \left[A_1 \exp\left\{ \sqrt{\beta^2 - \omega_o^2} t \right\} + A_2 \exp\left\{ -\sqrt{\beta^2 - \omega_o^2} t \right\} \right],$$
 (25.26)

y para la solución partícular

$$x_p(t) = D\cos\omega t - \delta \tag{25.27}$$

DS: Revisando Thornton, p118

$$x_p(t) = \frac{A}{\sqrt{(\omega_o^2 - \omega^2) + 4\omega^2 \beta^2}} \cos \omega t - \delta$$
$$\delta = \arctan \frac{2\omega\beta}{\omega_o^2 - \omega^2}.$$

Movimiento de una Partícula en Varias Dimensiones

26.1. Primeras y Segundas Derivadas en Diferentes Coordenadas

Primera derivada en coordenadas esféricas

$$\frac{d\vec{r}}{dt} = \dot{r}\hat{e}_r + r\left(\dot{\theta}\hat{e}_\theta + \dot{\phi}\sin\theta\,\hat{e}_\phi\right)$$

Segunda derivada en coordenadas esféricas

$$\frac{d^2\vec{r}}{dt^2} = \ddot{r}\hat{e}_r + \dot{r}\left(\dot{\theta}\hat{e}_\theta + \dot{\phi}\sin\theta\,\hat{e}_\phi\right) + r\left(\ddot{\theta}\hat{e}_\theta + \dot{\theta}\frac{d\hat{e}_\theta}{dt} + \ddot{\phi}\sin\theta\,\hat{e}_\phi + \dot{\phi}\cos\theta\dot{\theta}\,\hat{e}_\phi\right)$$

Primera derivada en coordenadas cilíndricas

$$\frac{d\vec{r}}{dt} = \dot{\rho}\hat{e}_{\rho} + \rho\dot{\phi}\hat{e}_{\phi} + \dot{z}\hat{e}_{z}$$

Segunda derivada en coordenadas cilíndricas

$$\frac{d^2\vec{r}}{dt^2} = \left(\ddot{\rho} - \rho\dot{\phi}^2\right)\hat{e}_{\rho} + \left(\rho\ddot{\phi} + 2\dot{\rho}\dot{\phi}\right)\hat{e}_{\phi} + \ddot{z}\hat{e}_z$$

26.2. Osciladores Armónicos en Dos Dimensiones

Considerando el movimiento de una partícula con dos grados de libertad.

$$F_x = -kr\cos\theta = -kx F_y = -kr\sin\theta = -ky$$
(26.1)

Cuyas soluciones son

$$x(t) = \cos(\omega_x t - \alpha)$$

$$y(t) = \cos(\omega_y t - \beta)$$
(26.2)

Las trayectorias seguidas por un oscilador en dos dimensiones se denominan figuras de Lissajous.

26.3. Teoremas del Momentum Angular

El momentum angular está definido de la siguiente forma

$$L = rmv_{\theta} = mr^2\dot{\theta}. \tag{26.3}$$

Ahora, notemos que

$$\frac{\mathrm{d}L}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(mr^2 \dot{\theta} \right) = rF_{\theta} \tag{26.4}$$

Y de esto, integramos llegamos al Teorema Impulso-Momentum para el momentum angular.

$$L_2 - L_1 = mr_2^2 \dot{\theta}_2 - mr_1^2 \dot{\theta}_1 = \int_{t_1}^{t_2} rF_\theta \, dt \,. \tag{26.5}$$

Respecto a un punto O

$$L_O = \mathbf{r} \times \mathbf{p} = m(\mathbf{r} \times \mathbf{v}). \tag{26.6}$$

26.4. Movimiento en una Fuerza Central

Las fuerzas centrales son aquellas que representan atracción (F(r) < 0) o repulsión (F(r) > 0) a un punto en concreto desde el origen. Normalmente son dos partículas interactuando. En la gran mayoría de los casos de fuerza central, dicha fuerza es inversamente proporcional al r^2 . Bajo una fuerza central no se tiene torque, por ende

$$\frac{\mathrm{d}L}{\mathrm{d}t} = 0. \tag{26.7}$$

Con esto, se reduce el problema a dos ecuaciones diferenciales

$$m\ddot{r} - mr\dot{\theta}^2 = F(r),$$

 $mr\ddot{\theta} + 2m\dot{r}\dot{\theta} = 0.$

Y sabiendo que la energía total es de la forma

$$E = \frac{1}{2}m\dot{r}^2 + \frac{1}{2}mr^2\dot{\theta}^2 + V(r).$$
 (26.8)

Reemplazando el momentum angular, y despejando, se obtiene

$$\dot{r} = \sqrt{\frac{2}{m}} \left(E - V(r) - \frac{L^2}{2mr^2} \right)^{1/2},\tag{26.9}$$

$$\sqrt{\frac{2}{m}}t = \int_{r_o}^r \frac{\mathrm{d}r}{\left(E - V(r) - \frac{L^2}{2mr^2}\right)^{1/2}},\tag{26.10}$$

$$\theta = \theta_o + \int_0^t \frac{L}{mr^2} \, \mathrm{d}t \,. \tag{26.11}$$

Ahora, tomando la segunda ley de newton mostrada al inicio de la sección, reemplazamos el momentum angular

$$m\ddot{r} = F(r) + \frac{L^3}{mr^3}.$$
 (26.12)

Esta ecuación tiene la forma del movimiento en una dimensión más una **fuerza centrífuga**. Esta es una *fuerza ficticia*. Con esto, integrando, definimos el potencial efectivo

$$V(r)' = V(r) + \frac{L^2}{2mr^2}. (26.13)$$

El ultimo término es la energía potencial asociada a la fuerza centrífuga.

26.4.1. Fuerza Inversamente Proporcional al Cuadrado de la Distancia

El problema más importante de la mecánica clásica es

$$F = \frac{K}{r^2} \hat{\mathbf{r}} \qquad V(r) = \frac{K}{r}.$$
 (26.14)

y el potencial efectivo

$$'V(r)' = \frac{K}{r} + \frac{L^2}{2mr^2}. (26.15)$$

26.5. Órbitas Elípticas, El Problema de Kepler

Antes de los descubrimientos de Newton, Kepler anunció tres leyes del movimiento planetario dadas las observaciones astronomicas de Tycho Brahe.

- 1. Los planetas se mueven en elipses con el sol en uno de los focos.
- 2. Las áreas por las que pasa el radiovector desde el planeta al sol en tiempos iguales son iguales.
- 3. El cuadrado del periodo de revolución es proporcional al cubo del semieje mayor.

Sistemas de Partículas

27.1. Leyes de Conservación

DS: Solo se enunciarán, no vale la pena la demostración.

27.1.1. Conservación del Momentum Lineal

Es la segunda Ley de Newton, para varias dimensiones

$$\frac{\mathrm{d}\mathbf{P}}{\mathrm{d}t} = 0. \tag{27.1}$$

Y el centro de masa de un sistema de partículas se mueve como una única partícula cuya masa es la masa total del sistema, sobre la cual actúa una fuerza igual al total de las fuerzas externas actuando sobre el sistema.

27.1.2. Conservación del Momentum Angular

Se tiene

$$\frac{\mathrm{d}\mathbf{L}}{\mathrm{d}t} = \tau. \tag{27.2}$$

27.1.3. Conservación de la Energía

Es una que ya vimos, se definió a principios de esta parte.

$$E = V + T, (27.3)$$

donde E es constante.

27.2. Problema de los Dos Cuerpos

Este es uno de los problemas más bonitos cuya solución es simple pero brutal. Tomaremos las dos partículas, las fuerzas entre ellas y las fuerzas externas

$$m_1\ddot{r}_1 = F_1^i = F_1^i + F_1^e,$$

$$m_2\ddot{r}_2 = F_2^i = F_2^i + F_2^e.$$

Y se introduce un cambio de coordenadas en base al centro de masa y la distancia entre las partículas (DS: No la distancia de cada una al centro de masa).

$$R = \frac{m_1 r_1 + m_2 r_2}{m_1 + m_2}$$
$$r = r_1 - r_2.$$

Cuya transformación inversa es

$$r_1 = R + \frac{m_2}{m_1 + m_2} r,$$

$$r_2 = R - \frac{m_1}{m_1 + m_2} r.$$

Entonces se tiene (asumiendo $F_1^e/m_1 = F_2^e/m_2$)

$$M\ddot{R} = F,$$

 $\mu \ddot{r} = F_1^i,$

donde $M=m_1+m_2,\,\mu=\frac{m_1m_2}{m_1+m_2}$ (masa reducida). $F=F_1^e+F_2^e$ y F_1^i es la fuerza de la partícula 2 sobre la partícula 1.

DS: El problema de N cuerpos no es soluble analíticamente y la parte de Osciladores Acoplados se trabajará en la parte de mecánica lagrangiana y hamiltoniana.

Cuerpo Rígido

Para un cuerpo macroscópico definimos la dendidad

$$\rho = \frac{\mathrm{d}M}{\mathrm{d}V},\tag{28.1}$$

con

$$M = \iiint_{\text{cuerpo}} \rho \, dV.$$
 (28.2)

28.1. Ubicación de un Cuerpo Rígido

Se necesitan 6 coordenadas para describir la posición de un cuerpo rígido, para un punto P_1 (x_1, y_1, z_1) (centro de masa), (θ_2, ϕ_2) para la orientación de P_2 a una distancia de P_1 (un eje) y ψ para la rotación alrededor del eje P_1P_2 .

Utilizando los teoremas de momentum lineal y rotacional se tiene que

- \bullet Si F es independiente de la orientación, podemos resolver $F=M\ddot{R}.$
- Si N es idnependiente de R, podemos resolver $\frac{dL}{dt} = N$.
- \blacksquare Si F y N dependen entre sí, las ecuaciones se resuelven acopladas.

28.1.1. Consideraciones Generales

Si el objeto gira alrededor de un punto arbitrario, $F=M\ddot{R}$ sirve para saber la fuerza necesaria que mantiene el punto fijo y $\frac{\mathrm{d}L}{\mathrm{d}t}=N$ nos da el movimiento de rotación. Aunque es dificil aplicar $\frac{\mathrm{d}L}{\mathrm{d}t}=N$ por la elección de los ángulos determinen la orientación del objeto.

28.1.2. Momento de Inercia

Tomando una partícula rotando alrededor de un eje

$$L = \sum_{i} m_i r_i^2 \dot{\theta} = \left(\sum_{i} m_i r_i^2\right) \dot{\theta} = I_z \dot{\theta}$$
 (28.3)

donde I_z es el momento de inercia alrededor del eje z.

$$I_z = \iiint_{\text{cuerpo}} \rho r^2 \, dV \,. \tag{28.4}$$

Radio de giro: $Mk_z^2 = I_z$, donde k_z es la distancia de donde toda masa debe estar como partícula puntual para tener el mismo momento de inercia que el objeto original.

28.1.3. Ecuación de Rotación

Esta es la ecuación de movimiento para un cuerpo rígido alrededor de un eje fijo.

$$\frac{\mathrm{d}L}{\mathrm{d}t} = I_z \ddot{\theta} = N_z. \tag{28.5}$$

28.1.4. Centro de Masa

- Si un cuerpo es simétrico respecto a un plano, el centro de masa está en el plano.
- Si un cuerpo es simétrico respeto de dos planos, el centro de masa está en la intersección de los planos.
- Si un cuerpo es simétrico alrededor de un eje, el centro de masa está en el eje.
- Si un cuerpo es simétrico respecto de tres planos, el centro de masa está en la intersección de los planos.
- Importante: Si un cuerpo se compone de varias partes cuyos centros de masa son conocidos, entonces el centro de masa del cuerpo compuesto se puede calcular como si las partes fueran partículas puntuales.

Definición 28.1.1. Centroide:

$$R = \frac{1}{V} \iiint_V r \, dV \qquad R = \frac{1}{A} \iint_A r \, dA \qquad R = \frac{1}{s} \int_C r \, ds \,. \tag{28.6}$$

Teorema 28.1.1. Teorema de Pappus: Si una curva plana rota alrededor de un eje en el mismo plano y ambos no se interesectan, en el área de la superficie de revolución es igual a la longitud de la curva por la longitud de la trayectoria del centroide.

Teorema 28.1.2. Teorema de Ejes Paralelos: El momento de inercia de un cuerpo alrededor de un eje dado es igual al momento de inercia alrededor de un eje paralelo que pasa por el centro de masa, más el momento de inercia alrededor del eje dado como si toda la masa del cuerpo estuviera concentrada en el centro de masa.

Teorema 28.1.3. Teorema de Ejes Perpendiculares: Para una lámina plana, la suma de los momentos de inercia de una lámina plana alrededor de dos ejes perpendiculares en el plano de la lámina es igual al momento de inercia alrededor de un eje que pasa por el punto donde se intersectan, perpendicular a la lámina.

Gravitación

Ecuación de Gravitació Universal

$$\mathbf{F}_{1\to 2} = \frac{Gm_1m_2}{|\mathbf{r}_1 - \mathbf{r}_2|^3} (\mathbf{r}_1 - \mathbf{r}_2) = \iiint \frac{Gm(r' - r)\rho(r')}{|r' - r|^3} \, dV'.$$
 (29.1)

Con esto se define el campo gravitacional

$$g(r) = \iiint \frac{G(r'-r)\rho(r')}{|r'-r|^3} \, dV'$$
 (29.2)

Y también se define la energía potencial gravitacional y el potencial gravitacional

$$V_m(r) = \sum_{i} \frac{-Gmm_i}{|r - r_i|} \qquad \mathcal{G} = \sum_{i} \frac{Gm_i}{|r - r_i|}$$
(29.3)

Los cuales cumplen con las siguientes relaciones, dado que la fuerza y el campo gravitacional son conservativos

$$F = -\nabla V \qquad q = \nabla \mathcal{G}. \tag{29.4}$$

por lo mismo

$$\nabla \times g = 0. \tag{29.5}$$

Y utilizando lo que se verá para la Ley de Gauss en electricidad, aplicado aqui nos da como resultado, que el flujo gravitacional es

$$\nabla \cdot g = -4\pi G\rho. \tag{29.6}$$

y en términos del potencial

$$\nabla^2 \mathcal{G} = -4\pi G \rho. \tag{29.7}$$

Sistema de Coordenadas en Movimiento

Origen de coordenadas en movimiento

$$r = r^* + h$$
$$r^* = r - h.$$

Los ejes de O^* son paralelos a los de O, O^* se mueve respecto a O.

$$\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{\mathrm{d}r^*}{\mathrm{d}t} + \frac{\mathrm{d}h}{\mathrm{d}t}.$$

$$a = a^* + a_h$$

Al término ma_h se le conoce como fuerza ficticia. Por segunda ley de newton

$$m\frac{\mathrm{d}^2r^*}{\mathrm{d}t^2} + ma_h = F \tag{30.1}$$

Si O^* se mueve con velocidad constante

$$m\frac{\mathrm{d}^2r^*}{\mathrm{d}t^2} = F$$

Ahora para un sistema rotado

$$r = x\hat{\mathbf{x}} + y\hat{\mathbf{y}} + z\hat{\mathbf{z}} = x^*\hat{\mathbf{x}}^* + y^*\hat{\mathbf{y}}^* + z^*\hat{\mathbf{z}}^*.$$
 (30.2)

Con todo esto se definen dos derivadas $\frac{d^*}{dt}$ para el sistema que rota y $\frac{d}{dt}$ para el sistema fijo. Definiremos un vetor A en ambos sistemas de coordenadas

$$A = A_x \hat{\mathbf{x}} + A_y \hat{\mathbf{y}} + A_z \hat{\mathbf{z}}$$

$$A = A_x^* \hat{\mathbf{x}}^* + A_y^* \hat{\mathbf{y}}^* + A_z^* \hat{\mathbf{z}}^*$$

y encontramos sus derivadas respecto a su propio sistema de referencia

$$\frac{\mathrm{d}A}{\mathrm{d}t} = \dot{A}_x \hat{\mathbf{x}} + \dot{A}_y \hat{\mathbf{y}} + \dot{A}_z \hat{\mathbf{z}}$$
$$\frac{\mathrm{d}^* A}{\mathrm{d}t} = \dot{A}_x^* \hat{\mathbf{x}}^* + \dot{A}_y^* \hat{\mathbf{y}}^* + \dot{A}_z^* \hat{\mathbf{z}}^*.$$

Ahora, si queremos la derivada de A en el sistema O^*

$$\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left[A_x^* \hat{\mathbf{x}}^* + A_y^* \hat{\mathbf{y}}^* + A_z^* \hat{\mathbf{z}}^* \right]
= \dot{A}_x^* \hat{\mathbf{x}}^* + \dot{A}_y^* \hat{\mathbf{y}}^* + \dot{A}_z^* \hat{\mathbf{z}}^* + A_x^* \frac{\mathrm{d}\hat{\mathbf{x}}^*}{\mathrm{d}t} + A_y^* \frac{\mathrm{d}\hat{\mathbf{y}}^*}{\mathrm{d}t} + A_z^* \frac{\mathrm{d}\hat{\mathbf{z}}^*}{\mathrm{d}t}.$$

Supongamos que O^* rota alrededor del eje z con velocidad ω y consideremos un vector B que está en reposo en O^* . Pero en O tenemos que

$$\frac{\mathrm{d}B}{\mathrm{d}t} = \omega B \sin \theta \hat{\mathbf{v}}$$

$$\frac{\mathrm{d}B}{\mathrm{d}t} = \omega \times B.$$

Desarrollando se llega al siguiente operador

$$\frac{\mathrm{d}}{\mathrm{d}t} = \frac{\mathrm{d}^*}{\mathrm{d}t} + \omega \times \tag{30.3}$$

Y derivando nuevamente respecto al tiempo y reemplazando A=r

Teorema 30.0.1. Teorema de Coriolis:

$$\frac{\mathrm{d}^2 r}{\mathrm{d}t^2} = \frac{\mathrm{d}^2 * r}{\mathrm{d}t^2} + 2\omega \times \frac{\mathrm{d} * r}{\mathrm{d}t} + \omega \times (\omega \times r) + \frac{\mathrm{d} * \omega}{\mathrm{d}t} \times r.$$
 (30.4)

donde el término $2\omega \times \frac{d*r}{dt}$ es la aceleración de coriolis $y \omega \times (\omega \times r)$ es la aceleración centrípeta. Y para una partícula cualquiera y una fuerza F se tiene

$$m\frac{\mathrm{d}^2 * r}{\mathrm{d}t^2} = F + m[g - \omega \times (\omega \times r)] - 2m\omega \times \frac{\mathrm{d} * r}{\mathrm{d}t}.$$
 (30.5)

En donde al término $g_e = g(r) - \omega \times (\omega \times r)$ se le conoce como gravedad efectiva.

30.1. Fuerza de Coriolis

La ecuación para movimiento en la tierra es

$$m\frac{\mathrm{d}^2 * r}{\mathrm{d}t^2} = F + m[g - \omega \times (\omega \times r)] - 2m\omega \times \frac{\mathrm{d} * r}{\mathrm{d}t}.$$
 (30.6)

Dejando solo la fuerza de coriolis

$$m\frac{\mathrm{d}^2 * r}{\mathrm{d}t^2} = -2m\omega \times \frac{\mathrm{d} * r}{\mathrm{d}t}.$$
 (30.7)

Figura 30.1: Figura para ejemplificar la fuerza de Coriolis.

Hacemos $\omega=(0,0,\omega)$ y llamamos $v=\frac{\mathrm{d}*r}{\mathrm{d}t}=(v_x,v_y,0)$. Expandiendo el producto vectorial $\frac{\mathrm{d}*}{\mathrm{d}t}=(2\omega v_y,-2\omega v_x,0)$ entonces, se tienen ecuaciones diferenciales para las componentes

$$\frac{\mathrm{d} * v_x}{\mathrm{d}t} = 2\omega v_y, \qquad \frac{\mathrm{d} * v_y}{\mathrm{d}t} = -2\omega v_x. \tag{30.8}$$

Resolviendo las ecuaciones se tiene que

$$v_y(t) = A\cos(2\omega t + \theta),$$

$$v_x(t)6 = A\sin(2\omega t + \theta)$$

Se tomarán como condiciones iniciales $v_x(0) = v_{x0}$ y $v_y(0) = 0$, entonces

$$v_x(t) = v_{x0}\sin(2\omega t + \pi/2) = \cos(2\omega t),$$
 (30.9)

$$v_y(t) = v_{x0}\cos(2\omega t + \pi/2) = \sin(2\omega t).$$
 (30.10)

Integramos para encontrar la posición

$$x(t) = \frac{v_{x0}}{2\omega}\sin(2\omega t),\tag{30.11}$$

$$y(t) = \frac{v_{x0}}{2\omega}\cos(2\omega t) - \frac{v_{x0}}{2\omega}.$$
(30.12)

Es claro que la trayectoria de la partícula en el sistema estrellado es un círculo.

30.1.1. Péndulo de Foucault

Tomando un péndulo largo y pesado, esto nos da oscilaciones "planas"sin elevación. La fuerza de coriolis es perpendicular al plano de oscilación, es < 0.1% de mg_e y tiene un efecto de precesión del plano de oscilación. Para describir bien esto, nos 'iremos' a un sistema que rota con el plano de oscilación.

Introducimos coordenadas en donde el péndulo no precesa. Llamamos $\Omega \hat{\mathbf{z}}$ a la velocidad de precesión del plano. También llamamos O' al sistema que gira con velocidad $\Omega \hat{\mathbf{z}}$, recordamos cómo tomar las derivadas

$$\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{\mathrm{d}*r}{\mathrm{d}t} + \omega \times r, \qquad \frac{\mathrm{d}^2r}{\mathrm{d}t^2} = \frac{\mathrm{d}^2*r}{\mathrm{d}t^2} + 2\omega \times \frac{\mathrm{d}*r}{\mathrm{d}t} + \omega \times (\omega \times r) + \frac{\mathrm{d}*\omega}{\mathrm{d}t} \times r \tag{30.13}$$

Ahora transformaremos, nos trasladaremos del sistema O^* al sistema primado, con lo que se tiene

$$\frac{\mathrm{d} * r}{\mathrm{d}t} = \frac{\mathrm{d}'r}{\mathrm{d}t} + \Omega \hat{\mathbf{z}} \times r, \qquad \frac{\mathrm{d}^2 * r}{\mathrm{d}t^2} = \frac{\mathrm{d}^2/r}{\mathrm{d}t^2} + \Omega \hat{\mathbf{z}} \times (\Omega \hat{\mathbf{z}} \times r) + 2\Omega \hat{\mathbf{z}} \times \frac{\mathrm{d}'r}{\mathrm{d}t}. \tag{30.14}$$

DS: Son 3 sistemas de coordenadas: El sistema fijo, el sistema estrellado que gira con el planeta y el sistema primado que es el que gira con el péndulo. Ahora con un poco del álgebra y análisis vectorial¹ se llega a

$$m\frac{\mathrm{d}^{2}/r}{\mathrm{d}t^{2}} = \tau + mg_{e} - 2m(\Omega\hat{\mathbf{z}} + \omega) \times \frac{\mathrm{d}/r}{\mathrm{d}t} - m\Omega[\Omega\hat{\mathbf{z}} \cdot r + 2\omega \cdot r]\hat{\mathbf{z}} + m(\Omega^{2} + 2\omega \cdot \Omega\hat{\mathbf{z}})r.$$
(30.15)

 $[\]overline{^{1}\text{Identidad BAC-CAB: } \mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{C}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \times \mathbf{B})}$

El vector unitario $\hat{\mathbf{z}}$ y el vector de posición r están sobre el plano de oscilación. El vector resultante del producto cruz es el único que se sale del plano de oscilación y esto se escapa del objetivo del sistema primado; por ende, tenemos que ajustar la velocidad angular Ω para que todas las fuerzas involucradas estén dentro del plano de oscilación. Entonces es necesario que $\hat{\mathbf{z}} \cdot (\Omega \hat{\mathbf{z}} + \omega) = 0$, por lo tanto $\Omega = -\omega \cos \theta$ lo que contrarresta la precesión ocacionada por la fuerza de coriolis.

30.2. Problema Restringido de los Tres Cuerpos

Tomaremos el potencial para la masa m del sistema de tres cuerpos

$$V = -\frac{mM_1G}{\left[(x-x_1)^2 + y^2\right]^{1/2}} - \frac{mM_2G}{\left[(x-x_2)^2 + y^2\right]^{1/2}} - \frac{1}{2}m\omega^2(x^2 + y^2),\tag{30.16}$$

donde ω es la velocidad angular de la órbita circular M_1 y M_2 , la cuál está dada por

$$\omega^2 = \frac{(M_1 + M_2)G}{a^3}. (30.17)$$

Al igual que las órbitas de fuerza central, nuestro análisis se basa en encontrar los puntos máximos y mínimos de la energía potencial.

Para hacer los cálculos más simples se realizará el siguiente cambio de variables.

$$\xi = \frac{x}{a}, \qquad \eta = \frac{y}{a},$$

$$\xi_1 = \frac{x_1}{a} = \frac{M_2}{M_1 + M_2}, \qquad \xi_2 = \frac{x_2}{a} = -\frac{M_1}{M_1 + M_2} = \xi_1 - 1.$$

Entonces, reemplazando variables

$$V = \frac{m(M_1 + M_2)G}{a} \left\{ \frac{\xi_2}{\left[(\xi - \xi_2)^2 + \eta^2\right]^{1/2}} - \frac{\xi_1}{\left[(\xi - \xi_2)^2 + \eta^2\right]^{1/2}} - \frac{1}{2} (\xi^2 + \eta^2) \right\}.$$
 (30.18)

30.2.1. Puntos Máximos y Mínimos

La forma de proceder es tomar las derivadas de V dada por la última ecuación respecto de ξ y η e igualarlas a cero. Cone esto llegamos a la siguiente relación

$$-\frac{\xi_2(\xi - \xi_1)}{|\xi - \xi_1|^3} + \frac{\xi_1(\xi - \xi_2)}{|\xi - \xi_2|^3} - \xi = 0.$$
 (30.19)

Haciendo $\eta = 0$ se tienen 3 puntos $(\xi_A, 0), (\xi_B, 0), (\xi_C, 0)$. Los siguientes dos puntos se encuentran con un poco de álgebra

$$(\xi - \xi_2)^2 + \eta^2 = 1,$$

$$(\xi - \xi_1)^2 + \eta^2 = 1.$$

En donde los puntos A, B, C son puntos silla y D, E son máximos. El resto de la solución es gráfica.

Mecánica del Medio Continuo

31.1. Cuerda Vibrante

Consideraciones generales:

- La vibración ocurre en el plano vertical.
- \blacksquare La longitud de la cuerda es l.
- La cuerda está fija en los extremos.
- La vibración es pequeña.
- Cada punto se mueve verticalmente.
- La tensión es constante.

Luego de realizar la deducción se tiene la ecuación de onda

$$\nabla^2 p - \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2} = 0. \tag{31.1}$$

Resolviendo la ecuación por separación de variables se tienen las siguientes ecuaciones

$$\Theta(t) = A\cos\omega t + B\sin\omega t.$$
 Ecuación de Helmholtz (31.2)

$$X(x) = C_x \cos k_x x + D_x + \sin k_x x, \tag{31.3}$$

$$Y(y) = C_y \cos k_y y + D_y + \sin k_y y,$$
 Soluciones Espaciales (31.4)

$$Z(z) = C_z \cos k_z z + D_z + \sin k_z z. \tag{31.5}$$

Donde la constante de z depende de las otras dos, y esta relación es

$$\frac{\omega^2}{c^2} = k_x^2 + k_y^2 + k_z^2. \tag{31.6}$$

Luego de aplicar las condiciones de frontera

$$p = (A\cos\omega_{lmn}t + B\sin\omega_{lmn}t)\cos\frac{l\pi x}{L_x}\cos\frac{m\pi y}{L_y}\cos\frac{n\pi z}{L_z}.$$
 (31.7)

1. Las frecuencias ω_{lmn} no son múltiplos enteros de una misma cantidad, como en el caso de la cuerda. Esto es importante porque es la razón por la cual una cuerda puede producir notas musicales.

31.1.1. Ondas Viajeras

Luego de encontrar la solución a la ecuación de onda en una dimensión

$$u(x,t) = A\sin\frac{n\pi x}{l}\cos\frac{n\pi ct}{l} + \sin\frac{n\pi x}{l}\sin\frac{n\pi ct}{l}.$$
 (31.8)

Ondas Viajeras y Estacionarias

$$\underbrace{B\sin\frac{n\pi x}{l}\sin\frac{n\pi ct}{l}}_{\text{ONda Estacionaria}} = \underbrace{\frac{B}{2}\cos\frac{n\pi}{l}(x-ct)}_{\text{Onda Viajera a la}} - \underbrace{\frac{B}{2}\cos\frac{n\pi}{l}(x+ct)}_{\text{Onda Viajera a la}}.$$
 (31.9)

Para formar una onda estacionaria tenemos que superponer dos ondas viajeras con igual amplitud y que se muevan en direcciones opuestas con igual velocidad.

31.2. Equilibrio de Fluidos

31.2.1. Fuerzas de Volumen

Fuerza de volumen f, es la traducción común de body force. Es la fuerza que experimenta un fluido por unidad de volumen, de tal forma que un elemento de volumen dV experimenta una fuerza dada por f dV. El ejemplo más común es la fuerza de volumen ejercida por la gravedad, que está dada como $f = \rho g$ donde ρ es la densidad del fluido.

31.2.2. Relación entre Presión y Energía Potencial

Encontrar la presión dentro de un fluido en equilibrio sabiendo la fuerza de volumen f(r) es equivalente a encontrar la **energía potencial** para una fuerza F(r). Primero verificamos que $\nabla \times f$ sea cero en todo el fluido. Luego tomamos un punto r_1 en donde la presión es conocida y utilizamos la expresión

$$p(r) = p_1 + \int_{r_1}^{r} f \cdot dr.$$
 (31.10)

que es una integral de línea a lo largo de una trayectoria. Si $\nabla \times f = 0$ implica que f se puede expresar como el gradiente de una cantidad. De la expresión entre la fuerza de volumen f y la presión p es

$$f = \nabla p$$
.

En el caso de fuerza de gravedad, sabemos que ésta apunta de arriba hacia abajo. El gradiente de la presión apunta en la misma dirección ya que la presión aumenta de arriba hacia abajo.

31.3. Cinemática de Fluidos

Se tienen dos puntos de vista

Lagrangiano:

- Seguir el movimiento de un elemento de fluido.
- Dada su posición inicial \rightarrow posición futura.
- Como un sistema de partículas, forma en la que describimos la cuerda.

• Euleriano:

- Establecer densidad y velocidad para cada punto e instante.
- El fluido se describe con la densidad $\rho(x, y, z, t)$ y la velocidad v(x, y, z, t).
- Centramos la atención en lo que sucede en un punto fijo en lugar de seguir a las partículas en su trayectoria.

31.3.1. Dos Tipos de Razones de Cambio

Desarrollando un poco el diferencial de presión

$$\left| \frac{\mathrm{d}p}{\mathrm{d}t} = \frac{\partial p}{\partial t} + v \cdot \nabla p. \right| \tag{31.11}$$

31.3.2. Fluido Incompresible

Estudiando un poco la divergencia se tiene

$$\frac{\mathrm{d}}{\mathrm{d}t}(\delta V) = (\nabla \cdot v)\delta V. \tag{31.12}$$

Un caso importante a considerar es cuando $\nabla \cdot v = 0$, en cuyo caso vemos de la derivada del volumen es igual a cero, o bien que δV se mantiene constante. En otras palabras, decimos que el fluido es incompresible.

Un fluido es incompresible si cumple con $\nabla \cdot v = 0$.

Esta condición se cumple cuando el fluido es un líquido. Un gas se expande y se contrae, pero en ciertos casos se puede considerar incompresible también. Sin embargo, recordemos también que ningún objeto es totalmente líquido.

31.3.3. Masa

Suponiendo que la masa de un elemento de volumen es constante $\delta m = \rho \delta V$. Derivando respecto al tiempo y desarrollando $\frac{\mathrm{d}}{\mathrm{d}t}\delta m$

$$\frac{\partial \rho}{\partial r} + \boldsymbol{\nabla} \cdot \rho v = 0, \tag{31.13}$$

A lo que se le conoce como **ecuación de continuidad** y expresa e hecho de que la masa de cada elemento de volumen es constatne, por lo tanto la masa total de todo el fluido también es constante. En otras palabras, la masa se conserva.

31.3.4. Voriticidad

Es el elemento proyectado en la dirección de un vector unitario $\hat{\mathbf{n}}$

$$Vorticidad = \hat{\mathbf{n}} \cdot (\nabla \times v). \tag{31.14}$$

Si integramos la vorticidad en una superficie con vector normal, utilizando el teorema de Stokes, en donde si las integrales son cero podemos decir que la vorticidad es cero y esto nos dice que el fluido es **irrotacional**.

31.3.5. Ecuación de Movimiento para un Fluido Ideal

$$\frac{\partial v}{\partial t} = v \cdot \nabla v + \frac{1}{\rho} \nabla \rho = \frac{f}{p}.$$
(31.15)

Si $\rho = \rho(p)$ entonces el fluido es homogeneo.

31.3.6. Ley de Conservación

Vamos a partir de la ecuación de continuidad, la cual también le podemos llamar **ley de con**servación de masa.

$$\frac{\mathrm{d}}{\mathrm{d}t} \underbrace{\iiint_{V} \rho \,\mathrm{d}V}_{\text{masa}} + \underbrace{\iint_{S} \hat{\mathbf{n}} \cdot v \rho \,\mathrm{d}S}_{\text{flujo de masa}} = 0. \tag{31.16}$$

Esto dice que la forma de una ley de conservación es

$$\frac{\mathrm{d}}{\mathrm{d}t}X + \text{flujo de } X = 0, \tag{31.17}$$

donde X es cualquier cantidad física que nos interese, por ejemplo: masa, momentum, energía, momentum angular, etc. Una forma generalizada es con la ecuación anterior es igual a Q, a la cual se le llama **fuente** o **sumidero**.

De esto y de la fuerza de volumen podemos concluir que

$$\frac{1}{2}\rho v^2 + p - \rho \mathcal{G} = \text{cte.}$$
 (31.18)

31.3.7. Flujo Estacionario

- Velocidad, densidad, presión, fuerzas de volumen son constantes en el tiempo.
- No cambian en el tiempo pero si en e espacio.
- Las derivadas $\frac{\partial}{\partial t}$ son cero.
- La expresión $\frac{\mathrm{d}}{\mathrm{d}t} = \frac{\partial}{\partial t} + v \cdot \nabla \rightarrow \frac{\mathrm{d}}{\mathrm{d}t} = v \cdot \nabla$.

Mecánica Lagrangiana y Hamiltoniana

32.1. Introducción

¿Por qué esto no es satisfactorio en la física moderna?

- 1. "Oscurece" algunas características de la dinámica de un sistema.
- 2. No está clara la relación entre las leyes de Newton y la Mecánica Cuántica.
- 3. Es dificil trabajar con sólidos.

Identificar estructuras y simetrías en los sistemas. Sistemas locales: QED, QCD, Débiles.

32.1.1. Mecánica Newtoniana

Segunda ley de Newton

$$\vec{F} = m\vec{a} \longrightarrow \vec{F}(\vec{r}, \dot{\vec{r}}) = \dot{\vec{p}}.$$
 (32.1)

donde $\dot{m} = 0$. Si conocemos \vec{r} y $\dot{\vec{r}}$ en un tiempo $t = t_o$, integrando se encuentra $\vec{r}(t)$.

32.1.2. Marco de Referencia Inercial

Es en el que una partícula con masa constante viaja en una línea recta.

$$\vec{r} = \vec{r}_o + \vec{v}t. \tag{32.2}$$

Si S es un marco de referencia inercial se tienen 10 transformaciones lineales independientes $S \to S'$ también es un M.R. inercial.

- 3 Rotaciones: $\vec{r}' = O\vec{r}$ donde O es una matriz 3×3 ortogonal.
- ${\color{red} \bullet}$ 3 Traslaciones: $\vec{r'} = \vec{r} + \vec{c}$ donde \vec{c} es un vector constante.
- 3 Boost: $\vec{r}' = \vec{r} + \vec{u}t$ donde \vec{u} es una velocidad constante.
- 1 Traslaciones Temporales: t' = t + c donde c es real y constante.

Las leyes de Newton son invariantes ante este grupo de transformaciones: Grupo Galileano.

32.1.3. Momento Angular

$$\vec{L} = \vec{r} \times \vec{p} \tag{32.3}$$

Medimos respecto a un punto en partícular.

$$\vec{\tau} = \dot{\vec{L}} \tag{32.4}$$

Leyes de Conservación

- Si $\vec{F} = 0$ entonces \vec{p} es constante.
- Si $\vec{\tau} = 0$ entonces \vec{L} es constante.

32.1.4. Energía

Energía cinética $T=\frac{1}{2}m\dot{\vec{r}}\cdot\dot{\vec{r}}$

$$\frac{\mathrm{d}T}{\mathrm{d}t} = \vec{F} \cdot \dot{\vec{r}},\tag{32.5}$$

entonces

$$W = \int_{r_1}^{r_2} \vec{F} \cdot d\vec{r} \,. \tag{32.6}$$

Fuerzas Conservativas: El trabajo realizado es independiente de la trayectoria. Y para una trayectoria cerrada

$$\oint \vec{F} \cdot dr = 0 \quad \Leftrightarrow \quad \nabla \times \vec{F} = 0.$$

Por lo que se puede escribir $\vec{F} = -\nabla V(r)$.

Energía cinética de un sistema $T=\frac{1}{2}\sum_i m \dot{\vec{r}_i}^2$ y tomando $\vec{r_i}=\vec{R}+\tilde{r}$

$$T = \frac{1}{2}M\dot{\vec{R}}^2 + \frac{1}{2}\sum_{i} \dot{\vec{\sim}},$$
 (32.7)

como en el caso de una sola partícula

$$T(t_2) - T(t_1) = \sum_{i} \int \vec{F}_i^{ext} \cdot d\vec{r}_i + \sum_{i \neq j} \int \vec{F}_{ij} \cdot d\vec{r}_i.$$
 (32.8)

- Fuerzas externas conservativas: $\vec{F}_i^{ext} = -\nabla V_i(\vec{r}_1, \dots, \vec{r}_N)$.
- Fuerzas internas conservativas: $\vec{F}_{ij} = -\nabla_i V_{ij}(\vec{r}_1, \dots, \vec{r}_N)$. $\vec{F}_{ij} = -\vec{F}_{ij} \rightarrow V_{ij} = V_{ji}$ entonces $V_{ij}(\vec{r}_1, \dots, \vec{r}_N) = V_{ij}(|\vec{r}_1 \vec{r}_j|)$.

$$T(t_2) - T(t_1) = -\sum_{i} \int \nabla_i V_i(\vec{r_i}) \cdot dr_i - \sum_{i \neq j} \int \nabla_i V_{ij}(r_1, \dots, r_N) \cdot dr_i.$$
 (32.9)

32.2. Generalidades

32.2.1. Principio Variacional y Ecuación de Lagrange

Movimiento de un sistema. Coordenadas generalizadas: q_1, q_2, \ldots, q_n , espacio de n dimensiones DS: Espacio de Configuración¹.

32.2.2. El Principio de Hamilton (Principio de Mínima Acción)

El movimiento del sistema de un tiempo t_1 a un tiempo t_2 es tal que la acción

$$I = \int_{t_1}^{t_2} \mathcal{L} \, \mathrm{d}t \tag{32.10}$$

donde \mathcal{L} es el Lagrangiano T-V, tiene un valor estacionario para el movimiento.

$$\delta I = 0,$$

$$\delta I = \delta \int_{t_1}^{t_2} \mathcal{L}(q_1, \dots, q_n, \dot{q}_1, \dots, dq_n; t) dt = 0.$$

Principio de Hamilton es suficiente para derivar las ecuaciones de movimiento.

32.2.3. Cálculo de Variaciones

DS: "Repaso" de algo que nunca se vió bien xd. Consideremos un problema de 1 dimensión $f(y, \dot{y}, x)$ donde y = y(x), $\dot{y} = \frac{\mathrm{d}y}{\mathrm{d}x}$, $[x_1, x_2]$. Todo esto es por $\delta J = 0$, entonces

$$J = \int_{x_1}^{x_2} f(y, \dot{y}, t) \, \mathrm{d}x \,. \tag{32.11}$$

Donde $y(x, \alpha)$ son posibles trayectorias y y(x, 0) es la trayectoria correcta. Podemos escribir $y(x, \alpha) = y(x, 0) + \alpha \eta(x)$, donde $\eta(x)$ tiene que ser 0 en x_1 y x_2 .

$$J(\alpha) = \int_{x_1}^{x_2} f(y(x,\alpha), \dot{y}(x,\alpha), x) \, \mathrm{d}x,$$

$$\left(\frac{\mathrm{d}J}{\mathrm{d}\alpha}\right)_{\alpha=0} = 0.$$
 Para un punto estacionario.

Derivando

$$\frac{\mathrm{d}J}{\mathrm{d}\alpha} = \int_{x_1}^{x_2} \left(\frac{\partial f}{\partial y} \frac{\partial y}{\partial \alpha} + \frac{\partial f}{\partial \dot{y}} \frac{\partial \dot{y}}{\partial \alpha} \right) \mathrm{d}\alpha \tag{32.12}$$

Considerando solo la segunda derivada al realizar integración por partes

$$\int_{x_1}^{x_2} \frac{\partial f}{\partial \dot{y}} \frac{\partial \dot{y}}{\partial \alpha} dx = \int_{x_1}^{x_2} \frac{\partial f}{\partial \dot{y}} \frac{\partial^2 y}{\partial \alpha \partial x} dx = -\int_{x_1}^{x_2} \frac{d}{dx} \left(\frac{\partial f}{\partial \dot{y}}\right) \frac{\partial y}{\partial \alpha} dx.$$
 (32.13)

¹Cada punto de la curva en el espacio de configuración es un instante en la configuración del sistema.

$$\begin{split} \frac{\mathrm{d}J}{\mathrm{d}\alpha} &= \int_{x_1}^{x_2} \left(\frac{\partial f}{\partial y} - \frac{\mathrm{d}}{\mathrm{d}x} \frac{\partial f}{\partial \dot{y}} \right) \frac{\partial y}{\partial \alpha} \, \mathrm{d}x \\ & \int_{x_1}^{x_2} \left(\frac{\partial f}{\partial y} - \frac{\mathrm{d}}{\mathrm{d}x} \frac{\partial f}{\partial \dot{y}} \right) \left(\frac{\partial y}{\partial \alpha} \right)_{\alpha=0} \, \mathrm{d}x = 0 \qquad \text{Condición puntos estacionarios} \end{split}$$

Lema:

$$\int_{x_2}^{x_1} M(x)\eta(x) \, \mathrm{d}x = 0 \tag{32.14}$$

para $\eta(x)$: función arbitraria y continua (hasta la segunda derivada). M(x) se desvanece en el intervalo (x_1, x_2)

$$\frac{\partial f}{\partial y} - \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\partial f}{\partial \dot{y}} \right) = 0 \tag{32.15}$$

la cantidad diferencial

Recordemos

$$\left(\frac{\partial y}{\partial \alpha}\right)_{\alpha=0} d\alpha \equiv \delta y \tag{32.16}$$

variación infinitesimal de la trayectoria variada respecto de la trayectoria correcta. La variación de ${\cal J}$

$$\left(\frac{\partial J}{\partial \alpha}\right)_{\alpha=0} d\alpha \equiv \delta J \tag{32.17}$$

entonces

$$\delta J = \int_{x_1}^{x_2} \left(\underbrace{\frac{\partial f}{\partial y} - \frac{\mathrm{d}}{\mathrm{d}x} \frac{\partial f}{\partial \dot{y}}}_{-0} \right) \delta y \, \mathrm{d}x = 0$$
 (32.18)

32.2.4. Principio de Hamilton y Ecuación de Lagrange

 $y(x,\alpha) = y(x,0) + \alpha \eta(x).$

$$\delta J = \int_{1}^{2} f(y_{1}(x), \dots; \dot{y}_{1}(x), \dots; x) dx$$
 (32.19)

Lo de $y_i(x, \alpha)$ se cumple para todas las i, donde lo que nos interesa son las $y_i(x, 0)$, sabiendo que $\eta_i(x)$ se desvanecen en los extremos. Realizando el mismo análisis que se realizó en la subsección anterior, se llega a

$$\left[\frac{\partial f}{\partial y_i} - \frac{\mathrm{d}}{\mathrm{d}x} \frac{\partial f}{\partial \dot{y}_i} = 0 \right] \tag{32.20}$$

En donde si se tienen N partículas, implica tener n=3N coordenadas. Cambiando de coordenadas

$$\boxed{\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial \mathcal{L}}{\partial \dot{q}_i} - \frac{\partial \mathcal{L}}{\partial q_i} = 0}$$
 (32.21)

a lo que se conoce como Ecuación de Lagrange.

32.2.5. Restricción en las Coordenadas Generalizadas

Restricciones Holonómicas

$$f(x_A, t) = 0 (32.22)$$

 $\alpha=1,2,\ldots,N-n$ con N número total de coordenadas y n número de grados de libertad. Por ejemplo: para M partículas, se tienen 3M ecuaciones, que es lo mismo que 3M=N coordenadas, y n ecuaciones/grados de libertad.

Multiplicadores de Lagrange $x_A = x_A(q_1, \dots, q_n), N-n$ nuevos grados dinámicos de libertad, $\lambda_{\alpha}(t)$. Definimos el nuevo lagrangiano $\mathcal{L}' = \mathcal{L}(x^A, \dot{x}^A) + \lambda_{\alpha} f_{\alpha}(x^A, t)$

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \dot{x}_A} - \frac{\partial \mathcal{L}}{\partial x_A} = \lambda_\alpha \frac{\partial f_\alpha}{\partial x_A}$$
(32.23)

La ecuación de movimiento sin restricciones Restriccionesenelsistema

Teorema 32.2.1.

$$\mathcal{L}[q_i, \dot{q}_i, t] = \mathcal{L}[x^A(q_i, t), \dot{x}^A(q_i, \dot{q}_i, t), t]$$
(32.24)

Imponer una restricción $\mathcal{L}' = \mathcal{L} + \lambda_{\alpha} f_{\alpha}$

$$\left[\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \dot{q}_i} - \frac{\partial \mathcal{L}}{\partial q_i} = \lambda_\alpha \frac{\partial f_\alpha}{\partial q_i}, \right] \qquad \to \qquad \left[\frac{\partial f_\alpha}{\partial q_i} = 0. \right]$$
(32.25)

Resumen Un sistema descrito por N coordenadas generalizadas q_i

$$\mathcal{L}(q_i, \dot{q}_i, t) \to \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \dot{q}_i} - \frac{\partial \mathcal{L}}{\partial q_i} = 0.$$

lacksquare Momento conjugado de q_i / momento canónico

$$p_i = \frac{\partial \mathcal{L}}{\partial \dot{q}_i} \tag{32.26}$$

32.2.6. Teorema de Noether

Definición 32.2.1. $F(q_i, \dot{q}_i, t)$ constante de movimiento, cantidad conservada.

$$\frac{\mathrm{d}F}{\mathrm{d}t} = 0 \qquad \sum_{j=1}^{N} \left(\frac{\partial F}{\partial q_j} \dot{q}_j + \frac{\partial F}{\partial \dot{q}_i} \ddot{q}_i \right) + \frac{\partial F}{\partial t} = 0 \tag{32.28}$$

para q_i que satisface la ecuación de movimiento. Si \mathcal{L} no depende explícitamente del tiempo.

$$H = \sum_{j} \dot{q}_{j} \frac{\partial \mathcal{L}}{\partial \dot{q}_{j}} - \mathcal{L} = cte. \tag{32.29}$$

Derivando el Hamiltoniano respecto al tiempo se supone $\frac{\partial \mathcal{L}}{\partial q_j} = 0$ solo para algunas q_j .

$$p_{j} = \frac{\partial \mathcal{L}}{\partial \dot{q}_{j}}$$
$$\frac{\mathrm{d}p_{j}}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \dot{q}_{j}} = \frac{\partial \mathcal{L}}{\partial q_{j}} = 0.$$

Mapeo de los parametros $q_j = Q_j(s,t)$ $s \in \mathbb{R}$ De modo que $q_j(t) = Q_j(0,t)$, se dice que esta transformación es una simetría contínua del \mathcal{L} .

$$\frac{\partial \mathcal{L}}{\partial s} = 0. \tag{32.30}$$

El teorema de Noether: Para cada una de estas simetrías hay una cantidad conservada.

$$\begin{split} \frac{\partial \mathcal{L}}{\partial s} &= \frac{\partial \mathcal{L}}{\partial Q_j} \frac{\partial Q_j}{\partial s} + \frac{\partial \mathcal{L}}{\partial \dot{Q}_j} \frac{\partial \dot{Q}_j}{\partial s} \\ \frac{\partial \mathcal{L}}{\partial \dot{q}_j} \frac{\partial Q_j}{\partial s} \bigg|_{s=0} &= cte. \end{split}$$

- ullet Invarianza de $\mathcal L$ ante traslaciones: Se conserva el momentum lineal.
- Invarianza de \mathcal{L} ante rotaciones: Se conserva el momentum angular.
- Homogeneidad en el tiempo: Conservació de la energía.

32.3. Formalismo de Hamilton

32.3.1. Ecuación de Hamilton

$$H(q_i, p_i, t) = \sum_{i=1}^{n} p_i q_i - \mathcal{L}(q_i, p_i, t)$$
(32.31)

con $\frac{\partial \mathcal{L}}{\partial \dot{q}_i} = p_i$, ahora veamos la variación de H

$$dH = (dp_i)\dot{q}_i - \frac{\partial \mathcal{L}}{\partial q_i} dq_i - \frac{\partial \mathcal{L}}{\partial t} dt$$
 (32.32)

Esto lo podemos escribir como

$$dH = \frac{\partial H}{\partial q_i} dq_i + \frac{\partial H}{\partial p_i} dp_i + \frac{\partial H}{\partial t} dt$$
 (32.33)

$$\begin{vmatrix} \dot{p}_i = -\frac{\partial H}{\partial q_i} \end{vmatrix} \qquad \begin{vmatrix} \dot{q}_i = \frac{\partial H}{\partial p_i} \end{vmatrix} \qquad \begin{vmatrix} -\frac{\partial \mathcal{L}}{\partial t} = \frac{\partial H}{\partial t} \end{vmatrix}. \tag{32.34}$$

32.3.2. Teorema de Liuville

32.3.3. Brakets de Poisson

Teniendo f(p,q), g(q,p) se define un braket de poisson

$$\{f,g\} = \frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i}.$$
 (32.35)

Con las siguientes propiedades

- $\{f,g\} = -\{g,f\}.$
- Linealidad: $\{\alpha f + \beta g, h\} = \alpha \{f, h\} + \beta \{g, h\}.$
- \bullet Leibniz rule: $\{fg,h\}=f\{g,h\}+\{f,h\}g.$
- \bullet Identidad de Jacobi: $\{f,\{g,h\}\}+\{g,\{h,f\}\}+\{h,\{f,g\}\}=0.$
- Y por ultimo, para una función:

$$\frac{\mathrm{d}f}{\mathrm{d}t} = \{f, H\} + \frac{\partial f}{\partial t}.\tag{32.36}$$

32.3.4. Transformaciones Canónicas

Tomando $\mathcal{J}_{ij} \equiv \frac{\partial y_i}{\partial x_j}$, para que las ecuaciones de Hamilton queden invariantes

$$\boxed{\mathcal{J}J\mathcal{J}^T = J.}$$
 Transformación Canónica. (32.37)

Teorema 32.3.1. Los brackets de Poisson son invariantes ante transformaciones canónicas. Si los brackets de Poisson preservan la estructura:

$${Q_i, Q_j} = 0$$
 ${P_i, P_j} = 0$ ${Q_i, p_j} = \delta_{ij}$ (32.38)

la transformación es canónica.

Cuerpo Rígido

33.1. Generalidades

N puntos en donde la distancia entre ellos está fijo $|r_i - r_j|$ =constante en el límite continuo $\sum_i m_i \to \int \mathrm{d}r \, \rho(r)$. En donde se tienen 6 grados de libertad 3 traslaciones y 3 rotaciones. Ahora definimos $\{\hat{\mathbf{e}}_a\}$ es el marco de referencia del espacio y $\{\hat{\mathbf{e}}_a\}$ es el marco de referencia del cuerpo rígido. En donde los productos internos entre elementos de los marcos de referencia cumplen con la ortonormalidad.

Espacio de configuración, C, matrices 3×3 ortogonales especiales SO(3).

33.1.1. Velocidad Angular

Teniendo $\vec{r}(t) = \tilde{r}_a(t) \hat{\hat{\mathbf{e}}_a} = r_a \hat{\mathbf{e}}_a(t)$, ahora $r_a \hat{\mathbf{e}}_a(t) = r_a R_{ab}(t) \hat{\hat{\mathbf{e}}}_b$, donde R_{ab} son elementos de una matriz. Derivamos respecto al tiempo con lo que analizamos tanto los vectores posición como la base $\frac{\mathrm{d}\hat{\mathbf{e}}_a(t)}{\mathrm{d}t} = \frac{\mathrm{d}R_{ab}}{\mathrm{d}t} R_{cd} \hat{\mathbf{e}}_a = \omega_{ac} \hat{\mathbf{e}}_c$ y por facilidad definimos un objeto con un solo índice $\omega_a = \frac{1}{2} \varepsilon_{abc} \omega_{bc}^{-1}$.

$$\frac{\mathrm{d}\hat{\mathbf{e}}_a}{\mathrm{d}t} = \vec{\omega} \times \hat{\mathbf{e}}_a. \tag{33.1}$$

con ω velocidad angular instantánea en el marco de referencia del cuerpo rígido.

33.1.2. El Tensor de Inercia

$$T = \frac{1}{2} \sum_{i} m_{i} \dot{\vec{r}}_{i}^{2} \tag{33.2}$$

usando $\dot{\vec{r}} = \vec{\omega} \times \vec{r}$

$$T = \frac{1}{2} \sum_{i} m_{i}(\vec{\omega} \times \vec{r}_{i}) \times (\vec{\omega} \times \vec{r}_{i})$$
(33.3)

 $^{^{1}}$ Donde ε_{abc} es conocido como el símbolo de Levi Civita.

usando y desarrollando una identidad para los producto cruz e interno, por lo que se tiene que

$$T = \frac{1}{2}\omega_a I_{ab}\omega_b,\tag{33.4}$$

donde $I_{ab} = \sum_i m_i [\vec{r_i} \cdot \vec{r_i} \delta_{ab} - (\vec{r_i})_a (\vec{r_i})_b]$ donde I_{ab} es el tensor de inercia, es simétrico

$$I = \int d^3r \rho(\vec{r}) \begin{pmatrix} y^2 + z^2 & -xy & -xz \\ -xy & x^2 + z^2 & -yz \\ -xz & -yz & y^2 + x^2 \end{pmatrix}$$
(33.5)

 $I'=OIO^T$ donde I' es diagonal $I'=\begin{pmatrix}I_1&&\\&I_2&\\&&I_3\end{pmatrix}$ con I_a son los momentos de inercias principales.

Propiedades del cuerpo rígido están dadas por su masa, su momento de inercia y sus ejes principales.

 I_a es real y positivo.

$$I_{ab}c^a c^b = \sum_i (r_i^2 c^2 - (\vec{r}_i \cdot \vec{c})^2) \ge 0.$$
 (33.6)

Si \vec{c} es autovector de I, $I_{ab}c_ac_b = I_a|\vec{c}|^2$, $I_a > 0$.

Teorema 33.1.1. Teorema de Ejes Paralelos: (Forma tensorial)

$$(I_c)_{ab} = (I_{cm})_{ab} \left(c^2 \delta_{ab} - c_a c_b\right) M. \tag{33.7}$$

Ecuaciones de Euler

$$I_1 \dot{\omega}_1 + \omega_2 \omega_3 (I_3 - I_2) = 0,$$

$$I_2 \dot{\omega}_2 + \omega_1 \omega_3 (I_1 - I_3) = 0,$$

$$I_3 \dot{\omega}_3 + \omega_1 \omega_2 (I_2 - I_1) = 0.$$

33.1.3. Ángulos de Euler

Dados dos sistemas de coordenadas xyz y XYZ con origen común, es posible especificar la posición de un sistema en términos del otro usando tres ángulos α, β, γ .

La definición matemática es estática y se basa en escoger dos planos, uno en el sistema de referencia y otro en el triedro rotado. En el esquema adjunto serían los planos xy y XY. Escogiendo otros planos se obtendrían distintas convenciones alternativas, las cuales se llaman de Tait-Bryan cuando los planos de referencia son no-homogéneos (por ejemplo xy y XY son homogéneos, mientras xy y XZ no lo son).

La intersección de los planos coordenados xy y XY escogidos se llama **línea de nodos**, y se usa para definir los tres ángulos:

Figura 33.1: Dos sistemas de coordenadas ortogonales en el que se muestran los ángulos de Euler.

- \bullet α es el ángulo entre el eje x y la línea de nodos.
- \bullet β es el ángulo entre el eje z y el eje Z.
- \bullet γ es el ángulo entre la línea de nodos y el eje X.

$\begin{array}{c} {\rm Parte\ V} \\ {\rm Electromagnetismo} \end{array}$

"El conocimiento es una red de ideas interconectadas, una vez que atrapamos una, las demás vienen detrás" - Michael Faraday.			
	vienen detrás" - Micha	nel Faraday.	,
	vienen detrás" - Micho	ael Faraday.	,
	vienen detrás" - Micho	nel Faraday.	
	vienen detrás" - Micho	nel Faraday.	
	vienen detrás" - Micho	nel Faraday.	
	vienen detrás" - Micho	nel Faraday.	
	vienen detrás" - Micho	nel Faraday.	

Análisis Vectorial

DS: Solo se enunciarán los teoremas y propiedades más importantes.

34.1. Operadores Vectoriales

34.1.1. Gradiente

El gradiente de un campo escalar es un campo vectorial. Es un vector normal a la curva de nivel en el punto estudiado

$$\nabla f(r) = \left(\frac{\partial f}{\partial x_1} \hat{\mathbf{x}}_1 + \dots + \frac{\partial f}{\partial x_n} \hat{\mathbf{x}}_n\right),\tag{34.1}$$

Cuando $\nabla f = 0$ se tiene un punto estacionario (máximo o mínimo). Dicho de otra forma, el gradiente marca la dirección en la cual varía más rápido el campo escalar y su magnitud indica cuan rápido varía.

En Diferentes Sistemas de Coordenadas

$$\nabla \varphi = \frac{\partial \varphi}{\partial r} \hat{\mathbf{r}} + \frac{1}{r} \frac{\partial \varphi}{\partial \theta} \hat{\boldsymbol{\theta}} + \frac{1}{r \sin \theta} \frac{\partial \varphi}{\partial \phi} \hat{\boldsymbol{\phi}} \qquad \text{Coordenadas Esféricas}$$

$$\nabla \varphi = \frac{\partial \varphi}{\partial \rho} \hat{\boldsymbol{\rho}} + \frac{1}{\rho} \frac{\partial \varphi}{\partial \phi} \hat{\boldsymbol{\phi}} + \frac{\partial \varphi}{\partial z} \hat{\mathbf{z}}.$$

34.1.2. Divergencia

La divergencia de un campo vectorial mide la diferencia entre el flujo saliente y entrante en una región dada.

$$\nabla \cdot A = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}.$$
 (34.2)

La divergencia produce un escalar, mide cuanto un vector se dispersa o sale de un punto.

En Diferentes Sistemas de Coordenadas

$$\begin{split} & \boldsymbol{\nabla} \boldsymbol{\cdot} \boldsymbol{A} = \frac{1}{r^2} \frac{\partial (r^2 A_r)}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial (\sin \theta A_\theta)}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial A_\phi}{\partial \phi} \quad \text{Coordenadas Esféricas} \\ & \boldsymbol{\nabla} \boldsymbol{\cdot} \boldsymbol{A} = \frac{1}{\rho} \frac{\partial (\rho A_\rho)}{\partial \rho} + \frac{1}{\rho} \frac{\partial A_\phi}{\partial \phi} + \frac{\partial A_z}{\partial z} \quad \text{Coordenadas Cilíndricas.} \end{split}$$

34.1.3. Rotacional

Operador vectorial sobre campos vectoriales: tendencia de un campo vectorial a inducir rotación.

$$\nabla \times A = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_x & A_y & A_z \end{vmatrix}$$
(34.3)

34.2. Integración Vectorial

Integrales de línea, superficie y volumen. Integrandos pueden ser vectores o escalares.

34.2.1. Integrales de Línea

Recorridos o trayectorias

$$\int_{\mathcal{C}} F(r) \cdot \mathrm{d}l \,. \tag{34.4}$$

Donde F es un campo vectorial, dl desplazamiento vectorial infinitesimal a lo largo de la curva y c curva sobre la cual se integra. Cuando la integral de línea es independiente de la trayectoria el campo es conservativo.

34.2.2. Integrales de Superficie

Esta integral mide un flujo

$$\int_{S} F \cdot \hat{\mathbf{n}} \, \mathrm{d}a \tag{34.5}$$

Esto nos da un escalar. Si laintegral es cerrada $\oint F \cdot \hat{\mathbf{n}} \, da$.

34.2.3. Teoremas Importantes

Teorema 34.2.1. Teorema Fundamental de la Divergencia:

$$\int_{V} \nabla \cdot F \, dV = \oint_{S} F \cdot \hat{\mathbf{n}} \, da \,. \tag{34.6}$$

Teorema 34.2.2. Teorema de Stokes:

$$\int_{S} (\mathbf{\nabla} \times F) \cdot \hat{\mathbf{n}} \, \mathrm{d}a = \oint_{c} F \cdot \mathrm{d}l.$$
 (34.7)

Electrostática

Esta estudia los efectos mutuos que se producen entre los cuerpos como consecuencia de us carga eléctrica. La carga eléctrica es una propiedad fundamental y característica delas partículas elementales.

- 1. La carga no se crea ni se destruye.
- 2. Hay dos clases: positiva y negativa.
- 3. En un sistema cerrado la carga se conserva.

35.1. Ley de Coulomb

Experimentalemnte

- 1. Dos cargas puntuales ejercen fuerza a lo largo de la línea que las une e inversamente proporcional al cuadrado de la distancia.
- 2. La fuerza es proporcional al producto de las cargas.

$$\vec{F} = \frac{1}{4\pi\varepsilon_o} \frac{q_1 q_2}{r_{12}^2} \hat{\mathbf{r}}_{12}.$$
 (35.1)

Esto es válido para cargas puntuales, pero para muchas cargas se aplica el principio de superposición. Ahora, si la carga se distribuye en un volumen V con densidad ρ y sobre la superficie S que limita V con densidad σ , la fuerza ejercida por esta distribución de carga sobre una carga puntual q está dada por:

$$F(r) = \frac{q}{4\pi\epsilon_0} \int_V \rho(r') \frac{r - r'}{|r - r'|^3} \, dV' + \frac{q}{4\pi\epsilon_0} \int_S \sigma(r') \frac{r - r'}{|r - r'|^3} \, dS'.$$
 (35.2)

35.2. Campo Eléctrico

Campo vectorial físico \rightarrow región del espacio en la que interactúa la fuerza eléctrica. Se genera por cargas o campos magnéticos variables en el tiempo.

$$\vec{E}(r) = \frac{1}{4\pi\epsilon_0} \sum_{i=1}^{N} \frac{q_i}{r_i^2} \hat{\mathbf{r}}_i. \tag{35.3}$$

Entonces, de manera general, tomando en cuenta distribuciones continuas de carga y cargas puntuales

$$\vec{E}(r) = \frac{1}{4\pi\epsilon_0} \sum_{i=1}^{N} q_i \frac{r - r_i}{|r - r_i|^3} + \frac{1}{4\pi\epsilon_0} \int_{V} \frac{r - r'}{|r - r'|^3} \rho(r') \, dV' + \frac{1}{4\pi\epsilon_0} \int_{S} \frac{r - r'}{|r - r'|^3} \sigma(r') \, da'$$
(35.4)

35.3. Potencial Electrostático

El campo eléctrico cumple con

$$\nabla \times \vec{E} = 0. \tag{35.5}$$

Sabemos que $\vec{E}(r) = -\nabla \varphi$ es un potencial electrostático. Pero con esto se tiene

$$\varphi(r) = -\int_{\mathcal{O}}^{r} \vec{E} \cdot d\vec{l}$$
 (35.6)

donde \mathcal{O} es el punto de referencia. Notemos que

- 1. Potencial electrostático no es lo mismo que energía potencial.
- 2. \vec{E} es un vector derivado de un escalar y ya que $\nabla \times E = 0$ esto implica: las componentes de \vec{E} no son independientes

$$\frac{\partial E_x}{\partial y} = \frac{\partial E_y}{\partial x}, \qquad \frac{\partial E_z}{\partial y} = \frac{\partial E_y}{\partial z}, \qquad \frac{\partial E_x}{\partial z} = \frac{\partial E_z}{\partial x}.$$
 (35.7)

- 3. EL sistema de referencia es fundamental.
- 4. El potencial obedece el principio de superposición.

$$\varphi(r) = \frac{1}{4\pi\epsilon_0} \sum_{i=1}^{N} \frac{q_i}{|r - r_i|} + \frac{1}{4\pi\epsilon_0} \int_{V} \frac{\rho(r')}{|r - r'|} dV' + \frac{1}{4\pi\epsilon_0} \int_{S} \frac{\sigma(r')}{|r - r'|} da'.$$
 (35.8)

35.4. Ley de Gauss

Importante relación entre la integral de la componente normal del campo eléctrico sobre una superficie cerrada y la carga total encerrada por la superficie.

$$\Psi_E = \int_S \vec{E} \cdot \hat{\mathbf{n}} \, \mathrm{d}a \,, \qquad \text{Flujo Eléctrica} \tag{35.9}$$

Para una superficie cerrada imaginaria (superficie gaussiana). Se tiene que $\Psi_E \propto q$. Entonces

$$\oint \vec{E} \cdot \hat{\mathbf{n}} \, \mathrm{d}a = \frac{1}{\epsilon_0} Q_{enc}.$$
(35.10)

y por el teorema de la divergencia

$$\nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0}.\tag{35.11}$$

A notar:

- 1. Simetría esférica: Superficie gausiana \rightarrow esfera concéntrica.
- 2. Simetría cilíndrica: Superficie gaussiana \rightarrow cilindro coaxial.
- 3. Simetría palna: Superficie gaussiana \rightarrow caja.

35.5. Dipolo Eléctrico

Dos cargas iguales de signo contrario separados por una pequeña distancia. Supongamos una carga -q en r' y una carga q en r' + l. Entonces

$$\vec{E}(r) = \frac{1}{4\pi\epsilon_0} q \left(\frac{r - r' - l}{|r - r' - l|^3} - \frac{r - r'}{|r - r'|^3} \right)$$
(35.12)

expandiendo el término de dentro

$$\vec{E}(r) = \frac{1}{4\pi\epsilon_0} q \left[\frac{3(r-r')l}{|r-r'|^3} (r-r') - \frac{l}{|r-r'|} + \cdots \right]$$
(35.13)

35.5.1. Momento Dipolar Eléctrico

Si se coloca un dipolo en un campo \vec{E} , ambas cargas (q,-q) separadas una distancia l, experimentan fuerzas de igual magnitud y dirección contraria \vec{F} y $-\vec{F}$, por ende: $\sum vec F = 0$ y $\sum \tau \neq 0$. Definimos el **momento dipolar** como $\vec{p} = q\vec{l}$. Por ende

$$\vec{E}(r) = \frac{1}{4\pi\epsilon_0} \left[\frac{3(r-r') \cdot \vec{p}}{|r-r'|^3} (r-r') - \frac{\vec{p}}{|r-r'|^3} \right].$$
 (35.14)

$$\varphi(r) = \frac{1}{4\pi\epsilon_0} q \left[\frac{1}{|r - r' - l|} - \frac{1}{|r - r'|} \right] = \frac{1}{4\pi\epsilon_0} \frac{(r - r') \cdot \vec{p}}{|r - r'|^3}.$$
 (35.15)

35.6. Trabajo y Energía en Electrostática

Suponga una configuración de cargas estacionarias y se desea mover una carga de prueba Q de un punto a a un punto b. Por ende

$$\varphi(b) - \varphi(a) = \frac{W}{Q} \tag{35.16}$$

La diferencia de potencial entre a y b es igual al trabajo por unidad de carga requerido para mover Q de $a \to b$.

35.6.1. Energía de una Distribución de Cargas Puntuales

Energía de la distribución \rightarrow trabajo para ensamblar la distribución.

$$W = \frac{1}{2} \sum_{i=1}^{n} q_i \varphi(r_i). \tag{35.17}$$

de otra forma se puede reescribir el trabajo

$$W = \frac{\epsilon_0}{2} \left[\oint_S \varphi \vec{E} \cdot da + \int_V E^2 \frac{d}{dV} \right]$$
 (35.18)

$$W = \frac{\epsilon_0}{2} \int_V E^2 \frac{\mathrm{d}}{\mathrm{d}V} \qquad \text{Si el volumen crece } (r \to \infty). \tag{35.19}$$

Problemas Electrostáticos

Estos problemas no son secillos de resolver. Por otro lado:

$$\nabla^2 \varphi = -\frac{\rho}{\epsilon_0} \qquad \text{Ecuación de Poisson.} \tag{36.1}$$

Laplaciano:

1. Rectangulares:

$$\nabla^2 \varphi = \frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2}.$$
 (36.2)

2. Esféricas:

$$\nabla^2 \varphi = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \varphi}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \varphi}{\partial \theta} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial^2 \varphi}{\partial \phi^2}. \tag{36.3}$$

3. Cilíndricas:

$$\nabla^2 \varphi = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial \varphi}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 \varphi}{\partial \theta^2} + \frac{\partial^2 \varphi}{\partial z^2}.$$
 (36.4)

Y cuando interesa conocer el potencial en regones con $\rho = 0$.

$$\nabla^2 \varphi = 0$$
 Ecuación de Laplace. (36.5)

36.1. Ecuación de Laplace

Teorema 36.1.1. Si $\varphi_1, \ldots, \varphi_n$ son todas soluciones de la ecuación de Laplace, entonces:

$$\varphi = c_1 \varphi_1 + \dots + c_n \varphi_n, \tag{36.6}$$

 $con c_i = ctes$, también es solución de la ecuación de Laplace

$$\nabla^2 \varphi = c_1 \nabla^2 \varphi_1 + \dots + c_n \nabla^2 \varphi_n = 0. \tag{36.7}$$

Teorema 36.1.2. Dos sluciones de la ecuación de Laplace que satisfacen las mismas condiciones de frontera difieran a lo sumo en una constante aditiva.

36.1.1. Ecuación de Laplace en una Dimensión

Si φ es una función de una variable. Las soluciones para cada uno de los sistemas importantes de coordenadas

1. Rectangulares:

$$\varphi(x) = ax + b. \tag{36.8}$$

2. Esféricas:

$$\varphi(r) = -\frac{a}{r} + b. \tag{36.9}$$

3. Cilíndricas:

$$\varphi = a \ln |\rho| + b. \tag{36.10}$$

Caso Esférico

Para el caso esférico en dos dimensiones su solución luego de la separación de variables es

$$\varphi(r,\theta) = \sum_{n=0}^{\infty} \left(A_n r^n + \frac{B_n}{e^{n+1}} \right) P_n(\cos \theta). \tag{36.11}$$

Caso Cilíndrico

Ahora para el caso cilíndrico en dos dimensiones, su solución es:

$$\varphi(\rho,\theta) = A_o + B_o \ln|\rho| + \sum_{n=1}^{\infty} \left(A_n \rho^n + B_n \rho^{-n} \right) (C_n \cos n\theta + D_n \sin n\theta). \tag{36.12}$$

Caso Cartesiano

Ahora la solución del caso cartesiano

$$\varphi(x, y, z) = Ae^{-(k+m)^{1/2}x} \cos m^{1/2}y \cos k^{1/2}z.$$
(36.13)

36.2. Imágenes Electrostáticas

Para un conujunto dado de condicioens de frontera, la solución a la ecuación de Laplace es única y resolviendo para φ se ha encontrado la solución completa al problema.

El método de imágenes es un procedimiento para lograr este resultado sin resolver específicamente la ecuación diferencial. DS: No se aplica universalmente, solo un número considerable de problemas (que bueno xd).

Supongamos una carga q arriba de un plano conductor: La carga q inducirá una carga en el conductor. La potencia total a una distancia \vec{r} estará dado por la contribución de la carga más la inducida en el conductor:

$$\varphi(r) = \varphi_1(r) + \frac{1}{4\pi\epsilon_0} \int_S \frac{\sigma(r')}{|r - r'|} da'.$$

$$\varphi(r) = \varphi_1(r) + \varphi_2(r).$$

 $\varphi_2(r)$ puede ser sustituído por un potencial debido a una distribución de carga especificada:

- Carga Imagen.
- Debe cumplir con las condiciones de frontera.

36.2.1. Sistemas Conductores y Coeficientes de Potencial

Cuando se tienen conductores con formas complicadas las soluciones analíticas quedan descartadas: Métodos numéricos. Se pueden sacar algunas conclusiones, supongamos N conductores en una geometría fija:

■ Existe una relación lineal entre el potencial de un conductor y las cargas de los diversos conductores del sistema. N conductores descargados excepto el conductor $j \to \text{carga } Q_{jo}$. La solución de Laplace es el espacio fuera de los conductores la expresamos como:

$$\varphi_1^{(j)}(x, y, z) \rightarrow \text{potencial generado por } Q_{jo}.$$
 (36.14)

El potencial de cada uno de los conductores estará dado por:

$$\varphi_1^{(j)}, \dots, \varphi_N^{(j)} \tag{36.15}$$

Reexpresando la carga del j-ésimo

 λQ_{jo} , $\lambda =$ cte, sadisface la ecuación de Laplace.

- El potencial también se multiplica por λ .
- \bullet Todas las derivadas se multiplica por $\lambda.$
- $\sigma 0 \epsilon_0 \frac{\partial \varphi}{\partial \hat{\mathbf{n}}} \to \text{todas las densidades se multiplican por } \lambda$.
- Potencial de cada conductor es proporcional a Q_i

$$\varphi_i^j = p_{ij}Q_j, \qquad (i = 1, 2, \dots, M)$$
 (36.16)

donde p_{ij} es constante que depende de la geometría utilizando el mismo argumento para conductor k $Q_k = \nu Q_{k_o}$ con $\nu =$ cte. Generalizando

$$\varphi_i = \sum_{j=1}^{M} p_{ij} Q_j. \tag{36.17}$$

Campo Electrostático en Medios Dieléctricos y su Teoría Microscópica

Existen materiales conductores aislantes (dieléctricos)

- Material dieléctrico ideal: material que no tiene cargas libres.
- Bajo la presencia de un campo eléctrico externo: pueden tener pequeños desplazamientos.
- Dieléctrico se polariza. Un dieléctrico polarizado es eléctricamente neutro, sin embargo produce un campo eléctrico en los puntos exteriores en interiores del dieléctrico. En un caso extermo, bajo un campo muy grande, ocurre la ionización. Un dipolo inducido $\vec{p} = \alpha \vec{E}$ donde α es la polarizabilidad atómica, depende de la estructura del átomo. Para moléculas es más complejo debido a que tienen direcciones preferenciales $\alpha \to \alpha_{ij}$.

37.1. Polarización

Consideremos un pequeño volumen ΔV de un medio dieléctrico que como todo es eléctricamente neutro. Si el medio está polarizado: Momento dipolar eléctrico

$$\Delta \vec{p} = \int_{\Delta V} r \, \mathrm{d}q \,. \tag{37.1}$$

 $\Delta \vec{p}$ depende del tamao del elemento de volumen. Se introduce el momento dipolar eléctrico por unidad de volumen y se conoce como polarización eléctrica:

$$P \equiv \frac{\Delta \vec{p}}{\Delta V}.\tag{37.2}$$

Momento dipolar de una molécula

$$\vec{p}_m = \int_{\text{milecula}} r \, \mathrm{d}q \,. \tag{37.3}$$

37.1.1. Campo Fuera de un Medio Dieléctrico

Consideramos una porción finita de material dieléctrico polarizado. Esta polarización genera un campo eléctrico $\vec{E} \to \varphi$. Cada elemento de $\Delta V'$ se caracteriza por un momento dipolar $\Delta \vec{p} = P \Delta V'$ y tenemos $r \gg r'$. La contribución de las cargas en $\Delta V'$ al potencial está dada por:

$$\Delta\varphi(r) = \frac{1}{4\pi\epsilon_0} \frac{\Delta p \cdot (r - r')}{|r - r'|^3} = \frac{1}{4\pi\epsilon_0} \frac{P(r') \cdot (r - r')\Delta V'}{|r - r'|^3}.$$
 (37.4)

El potencial total es la suma de todas las contribuciones de todas las partes del dieléctrico:

$$\varphi(r) = \frac{1}{4\pi\epsilon_0} \int_{V_o} \frac{P(r')(r-r')}{|r-r'|^3} \, dV'.$$
 (37.5)

Ahora buscamos encontrar \vec{E}

$$\frac{r-r'}{|r-r'|^3} = \nabla' \left(\frac{1}{|r-r'|}\right). \tag{37.6}$$

Desarrollando la siguiente identidad: $\nabla'(f\vec{F}) = f\nabla' \cdot \vec{F} + \vec{F} \cdot \nabla' f$. Se desarrolla la integral anterior, con ello se llega a

$$\varphi(r) = \frac{1}{4\pi\epsilon_0} \oint_{S_o} \frac{P \cdot \hat{\mathbf{n}} \, \mathrm{d}a}{|r - r'|} + \frac{1}{4\pi\epsilon_0} \int_{V_o} \frac{(-\nabla' \cdot P) \, \mathrm{d}V}{|r - r'|}$$
(37.7)

Con lo que se definen dos nuevas funciones escalares

- $\sigma_p = P \cdot \hat{\mathbf{n}}.$
- $\rho_p = -\nabla \cdot P.$
- La densidad superficial de carga de polarización está dada por la componente de polarización normal a la superficie.
- La densidad de carga de polarización volumétrica es una medida de la no uniformidad de la polarización dentro del material.

Luego, calculando el campo eléctrico

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \left[\int_S \sigma_p \frac{r - r'}{|r - r'|^3} \, da' + \int_{V_0} \rho_p \frac{r - r'}{|r - r'|^3} \, dV' \right]. \tag{37.8}$$

37.1.2. Campo Eléctrico dentro de un Dieléctrico

En un dieléctrico la carga de prueba es comparable al tamaño de las moléculas. EL campo eléctrico dentro del dieléctrico debe tener las mismas propiedades. El campo eléctrico en un dieléctrico es igual al campo eléctrico dentro de una cavidad.

La ley de Gauss en un dieléctrico viene dada por

$$\oint (\epsilon_0 \vec{E} + \vec{P}) \cdot \hat{\mathbf{n}} \, \mathrm{d}a = Q.$$
(37.9)

donde el término $\vec{D} = \epsilon_0 \vec{E} + \vec{P}$ se le denomina **desplazamiento eléctrico**.

37.1.3. Suceptibilidad Dieléctrica y Constante Dieléctrica

La polarización de un medio dieléctrico ocurre en respuesta al campo eléctrico en el medio. El grado de polarización depende:

- Campo eléctrico
- Propiedades del material

A nivel macroscópico F=P(E). En la mayoría de materiales P se anula cuando $\vec{E}=0$. Para materiales de este tipo y si son materiales siótropos, la polarización tendrá el mismo sentido que \vec{E} .

$$P = \chi(E)\vec{E} = \epsilon_0 \chi_e \vec{E}. \tag{37.10}$$

con esto se define $\varepsilon = \epsilon_0 (1 - \chi_e)$.

37.2. Condiciones de Frontera para los Vectores de Campo

Variación de \vec{E} y \vec{D} al pasar por una zona interfacial entre dos medios. Considerando dos emdios encontacto y una densidad superficial de carga externa σ . Construir una pequeña superficie S: forma de caja de pastillas de altura despreciable. Entonces

$$D_{2n} - D_{1n} = \sigma (37.11)$$

Observaciones

- La discontinuidad en la componente normal \vec{D} está dada por la densidad superficial de carga en la zona interfacial.
- \blacksquare Si no hay carga en la zona interfacial la componente normal de \vec{D} no es contínua.

Y por la ley de Gauss se concluye que la componente tangencial del campo eléctrico es continua. DS: Después de toda esta parafernalia, el ejemplo clásico es el de la esfera dieléctrica en un campo eléctrico extermo, revisar el libro.

37.3. Teoría Microscópica de los Dieléctricos

37.3.1. Campo Molecular en un Dieléctrico: E_m

Es el campo eléctrico en una posición molecular del dieléctrico el cual es producido por todas las fuentes externas y por todas las moléculas polarizadas del dieléctrico con excepción de la molécula en el punto considerado. El dieléctrico se polariza al inducir un campo. Suponemos polarización uniforma $\nabla \cdot \vec{P} = 0$. El campo eléctrico en el centro de la cavidad puede expresarse como:

$$\vec{E}_m = \vec{E}_x + \vec{E}_d + \vec{E}_s + \vec{E}' \tag{37.12}$$

- E_x campo eléctrico primario debido a los planos.
- \bullet E_d campo debido a la carga de polarización e la superficie.
- \bullet E_s campo debido a la carga de polarización en la superficie S.
- E' campo generado por dipolos dentro de S.

37.3.2. Moléculas Polares

- Momento dipolar permanente
- Están formadas por al menos dos especcies distintas de átomos.
- En ausencia de campo eléctrico por una porción macroscópica del dieléctrico polar no está polarizada: dipolos individuales orientados al azar.

Si el dieléctrico polar se somete a un campo eléctrico, los dipolos se alinean con el campo. Si el campo es lo suficientemente intenso, la polarización alcanza el vapor de saturación:

$$P_s = N\vec{p}_m \tag{37.13}$$

Se requiere valores de campo muy intensos. Si la temperatura se eleva la polarización disminuye. Según la mecánica estadística, a una temperatura T, la probabilidad de encontrar una molécula con energía E es:

$$f(E) = \propto e^{-E/kT} \tag{37.14}$$

La energía potencial de un dipolo permanente p_o en un campo eléctrico es:

$$u = -p_o \cdot E_m \tag{37.15}$$

La energía cinética de las moléculas no dependen del campo, entonces se desprecia su contribución en la distribución. El moemtno diplar efectivo de un dipolo molecular es su componente en la dirección del campo: $p_o \cos \theta$. El valor promedio de la cantidad está dado por:

$$\langle x \rangle = \sum x_m p_m = \frac{\sum_m \chi_m e^{-\beta e_m}}{\sum_m e^{-\beta u_m}}.$$
 (37.16)

pasando a lo continuo

$$\langle p_o \cos \theta \rangle = p_o \left(-\frac{1}{y} + \coth y \right)$$
 (37.17)

con $y = p_o \frac{E_m}{kT}$ y a esta fórmula se le conoce como **Fórmula de Lagevin**. y el momento dipolar efectivo promedio

$$\langle p_o \cos \theta \rangle = \frac{p_o^2 E_m}{3kT}.\tag{37.18}$$

Polarizabilidad por orientación $\alpha = \frac{p_o^2}{3kT}$.

$$\alpha = \alpha_o + \frac{p_o^2}{3kT} \tag{37.19}$$

a esta se le conoce como la ecuación de Langevin-Debye.

37.3.3. Polarización Permanente: Ferroelectricidad

Sabemos que

$$E_m = E + \frac{p}{3\epsilon_0} \tag{37.20}$$

Generalmente $E_m=0$ cuando E=0. Existen casos en los cuales E=0 y $E_m=0$ y esto se satisface para:

$$p_o = 0, \qquad \frac{N\alpha}{3\epsilon_0} = 1. \tag{37.21}$$

la cual es la condición de polarización permanente.

Energía Electrostática

Simplifica la resolución de algunos problemas. Y la contribución de energía de un sistema de cargas se divide en sus contribuciones cinética y potencial.

Energía potencial de un grupo de cargas puntuales

$$u = \frac{1}{2} \sum_{j=1}^{m} q_i \varphi_j.$$
 (38.1)

Energía electrostática de una distribució de carga:

$$u = \frac{1}{2} \epsilon_0 \left[\oint_S E \varphi \, \mathrm{d}a + \int_V E^2 \, \mathrm{d}V \right].$$

$$u = \frac{1}{2} \int_V \rho(r) \varphi(r) \, \mathrm{d}V + \frac{1}{2} \int_S \sigma(r) \varphi(r) \, \mathrm{d}a + \frac{1}{2} \sum_j Q_j \varphi_j.$$

38.1. Condensadores

Los condensadores son componentes eléctricos que sirven para almacenar energía. Dos conductores que puedan almacenar cargas iguales pero opuestas con una diferencia de potencial entre sí. La relación entre la carga almacenada y el potencial asociado es la capacitancia

$$C \equiv \frac{Q}{\Delta \varphi}.\tag{38.2}$$

Cuya energía se puede expresar como:

$$u = \frac{1}{2}Q\Delta\varphi = \frac{1}{2}C\Delta\varphi^2 \tag{38.3}$$

Si los conductores que forman un condensador tienen formas geométricas sencillas, la capacitancia puede obtenerse analíticamente.

Densidad de Energía:

$$\mathcal{U} = \frac{1}{2}\epsilon_0 E_o^2 = \frac{1}{2}\epsilon_0 \left(\frac{Q}{\epsilon_0 A}\right)^2 = \frac{1}{2}\frac{Q^2}{\epsilon_0 A^2}.$$
 (38.4)

Y para condensadores en circuitos paralelos y en serie¹

$$C_{eq} = C_1 + C_2,$$
 Paralelo
$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2},$$
 Serie.

¹En paralelo se tiene la misma diferencia de potencial entre los nodos y para los circuitos en serie se conserva la carga.

Corriente Eléctrica

Carga en movimiento \rightarrow corriente eléctrica. Proceso por el cual se transporta la carga \rightarrow condicción. La corriente se define como la velocidad a la que se transporta la carga a través de una superficie dad e un sistema conductor

$$I = \frac{\mathrm{d}Q}{\mathrm{d}t}.\tag{39.1}$$

Por convención: el sentido en que se mueve los portadores positivos se toma como el sentido de la corriente.

Cosas a notar:

- En gases la conducción es más complicada, ya que las poblaciones d eportadores varían mucho con condiciones experimentales.
- Al estar en equilibrio térico cada partícula tiene un movimiento aleatorio.
- Líquidos y gases → movimientos hidrodinámicos.

39.1. Densidad de Corriente

Consideremos un medio conductor con un solo tipo de portador de carga:

- ullet Sea N un número de portadores de carga por unidad de volumen.
- Asumimos una velocidad v para los portadores de carga.

Se define la densidad de carga como

$$\vec{J} = \sum_{i} N_i q_i v_i. \tag{39.2}$$

Cuya integral para una superficie da como resultado la corriente

$$I = -\oint_{S} \vec{J} \cdot \hat{\mathbf{n}} \, \mathrm{d}a = -\int_{V} \nabla \cdot \vec{J} \, \mathrm{d}V = \int_{V} \frac{\partial \rho}{\partial t} \, \mathrm{d}V.$$
 (39.3)

Lo que implica y da como resultado la **ecuación de la continuidad** y representa la **conservación** de la carga

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \vec{J} = 0. \tag{39.4}$$

39.2. Ley de Ohm

Para mantener una corriente se requiere de un campo eléctrico, por lo que la densidad de corriente es proporcional a la fuerza por unidad de carga

$$\vec{J} \propto f$$
 (39.5)

$$\vec{J} = gf = g\frac{\vec{F}}{q} \tag{39.6}$$

$$\vec{J} = g\vec{E}.\tag{39.7}$$

Donde g es la conductividad. La ley de Ohm des esta forma es válida en medios lineales isótropos o medios óhmicos. Generalmente se usa el recíproco de g:

$$\sigma = \frac{1}{g}.\tag{39.8}$$

A lo cual se conoce como resistividad. Para un cable recto conductor y, utilizando la definición de corriente, se tiene

$$\Delta \varphi = IR \tag{39.9}$$

Y sabiendo que $P = \frac{\mathrm{d}W}{\mathrm{d}t}$, entonces

$$P = I\Delta\varphi = I^2R = \left(\frac{\Delta\varphi^2}{R}\right). \tag{39.10}$$

39.3. Corrientes Estacionarias en Medios Continuos

Consideremos un medio conductor óhmico (lineal), homogéneo, en condiciones de conducción en estado estacionario, es decir con densidad de cargo local en equilibrio:

$$\frac{\partial \rho}{\partial t} = 0 \tag{39.11}$$

Por ende la ecuación de continuidad se reduce a:

$$\nabla \cdot \vec{J} = \nabla \cdot g\vec{E} = 0 \tag{39.12}$$

Para un medio homogéneo, g no depende de E:

$$g \boldsymbol{\nabla} \cdot \vec{E} = 0$$

$$\boldsymbol{\nabla} \cdot \vec{E} = -\nabla^2 \varphi = 0$$

Por lo que el problema de conducción en estado estacionario puede resolverse. Se resuelve utilizando la siguientes condiciones de frontera:

- Para estado estacionario: $\nabla \cdot \vec{J} = 0$ $J_{1n} = J_{2n}$.
- La componente normal debe ser continua $g_1E_{1n}=g_2E_{2n}$, análogo a D_N .

■ Puesto que el campo eléctrico es estático en cada medio $\oint \vec{E} \cdot dl$ $E_{1t} = E_{2n}$

Otra relación entre conducción y electrostática se da considerando dos electrodos metálicos en un medio infinito óhmico homogéneo de conductividad g. Los electrodos están a φ_1 y φ_2 respectivamente:

$$I = \frac{\varphi_1 - \varphi_2}{R} \tag{39.13}$$

reemplazando la definición de corriente en términos del campo eléctrico, se tiene

$$RC = \frac{\varepsilon}{g}. (39.14)$$

39.3.1. Aproximación al Equilibrio Electrostático

Para un conductor el equilibrio se alcanza en poco tiempo. Entre menos conductor el equilibrio se alcanza más lento. Consideremos un medio isótropo, homogéneo, caracterizado por g y E. Con densidad volumétrica de carga $\rho_o(x, y, z)$. Si se aísla repentinamente de los campos aplicados

$$\frac{\partial \rho}{\partial t} + \frac{g}{\varepsilon} \rho = 0 \tag{39.15}$$

Resolvemos la ecuación diferencial, por lo que se tiene

$$\rho = \rho_o e^{-\frac{g}{\varepsilon}t}. (39.16)$$

39.4. Redes de Resistencias y Leyes de Kirchhoff

Los portadores de carga siguen una trayectoria de baja resistencia llamada circuito.

- Las fuerzas puramente electrostáticas no puede hacer circular una corriente en el circuito.
- Se necesita una diferencia de potencial externa $\Delta \varphi$.

Para resistencias en serie y paralelo, se conserva la corriente y el potencial respectivamente, y con ello se tiene

$$R = R_1 + R_2 \qquad \text{Serie} \tag{39.17}$$

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$
 Paralelo. (39.18)

Cualquier sistema puede resolverse de forma sistemática por medio de las leyes de Kirchhoff:

1. La suma algebraica de las diferencias de voltaje en cualquier malla de la red es cero.

$$\sum \varphi_i = 0. \tag{39.19}$$

¹Trayectoria cerrada conductora en un circuito.

2. La suma algebraica de las corrientes que circulan hacia un nodo² es cero.

$$\sum I_i = 0. \tag{39.20}$$

Interpretando las leyes de Kirchhoff

1. Reafirmación de

$$\oint \vec{E} \cdot dl = 0.$$
(39.21)

2. Enunciado formal de conservación de la carga

$$\nabla \cdot \vec{J} = 0. \tag{39.22}$$

39.5. Teoría Microscópica de la Conducción

Consideremos una partícula libre de carga q y masa m, bajo la influencia de una fuerza eléctrica local, su velocidad de deriva aumentará:

$$m\frac{\mathrm{d}v}{\mathrm{d}t} = q\vec{E}.\tag{39.23}$$

Si la partícula se encontrara en el vacío continuará acelerándose. En un medio material donde pasa una corriente constante la velocidad sería constante. Debe existir una fuerza debido al medio

$$m\frac{\mathrm{d}v}{\mathrm{d}t} = q\vec{E} - Gv\tag{39.24}$$

Para una v constante: $v_d = \frac{g\vec{E}}{G}$. Y para el caso general

$$v(t) = \frac{g}{G}E\left(1 - e^{-\frac{Gt}{m}}\right). \tag{39.25}$$

Para el estado estacionario: $v_d = q \frac{E}{G} = q \frac{\tau}{m} E$. Si hay varios tipos de portadores de carga

$$g = \frac{\sum N_i q_i^2 \tau_i}{m_i} \tag{39.26}$$

donde τ es aproximadamente entre colisiones del electrón de conducción; por ende, el reocorrido libre medio del electrón es:

$$l = v_t \tau. (39.27)$$

con $v_t \gg v_d$. Para los materiales de mayor conductividad eléctrica, sólo se considera un tipo de portador de carga, el electrón:

$$J = N_e e v_d$$
$$g = N_e e^2 \frac{\tau}{m} = N_e e \frac{v_d}{E}$$

 $\frac{\mathrm{con}\ \frac{v_d}{E}\ \mathrm{es\ la\ movilidad\ del\ electr\'on.}}{^2\mathrm{Pounto\ donde\ concurren\ tres\ o\ m\'{as}\ conductores.}}$

El Campo Magnético de Corrientes Estacionarias

Así como las cargas generan campos eléctricos, las corrientes generan campos magnéticos. Para esta sección haremos la densidad de carga y el campo eléctrico igual a cero, así solo nos concentramos en el campo magnético.

40.1. Ley de Ampére

La primera ecuación de la magnetostática es

$$\nabla \times \mathbf{B} = \mu_o \mathbf{J} \tag{40.1}$$

esta es conocida como la **ley de Ampére**. Para el caso integral, tomamos una superficie abierta S con borde ∂S . Se puede utilizar el teorema de Stockes para convertir la integral del rotacional a una integral de línea

$$\int_{S} \mathbf{\nabla} \times \mathbf{B} \cdot d\mathbf{S} = \oint_{\partial S} \mathbf{B} \dot{\mathbf{d}} \mathbf{r} = \mu_0 \int_{S} \mathbf{J} \cdot d\mathbf{S}.$$
 (40.2)

por lo que

$$\oint_{\partial S} \mathbf{B} \cdot \mathbf{r} = \mu_0 I. \tag{40.3}$$

40.2. Vector Potencial

Para distribuciones de corrientes simples se sabe que se tiene

$$\nabla \cdot \mathbf{B} = 0. \tag{40.4}$$

Pero para corrientes más generales esto no es el caso. Para garantizar una solución a la ecuación anterior se escribe el campo magnético en términos de algún campo vectorial.

$$\mathbf{B} = \mathbf{\nabla} \times \mathbf{A}.\tag{40.5}$$

Utilizando propiedades de los operadores vectoriales, la ley de Ampére se vuelve

$$\nabla \times \mathbf{B} = -\nabla^2 \mathbf{A} + \nabla(\nabla \cdot \mathbf{A}) = \mu_0 \mathbf{J}$$
 (40.6)

40.2.1. Mono-polos Magnéticos

Pasamos muy rápido de la ley de Ampére a su representación en términos del potencial magnético, que no paramos a analizar la situación. Supongamos una especie de carga puntual g sería fuente de campo magnético

$$\mathbf{B} = \frac{g\hat{\mathbf{r}}}{4\pi r^2} \tag{40.7}$$

a esto se le conoce como *mono-polo magnético*. Las ecuaciones de Maxwell dicen que esto no existe. Pero, qué tan tajante es esta conclusión? Estamos seguros qué no existen? En caso de que existan las ecuaciones de Maxwell no cambiarían significativamente, aunque la idea de **A** se perdería, pero, es esto algo tan importante? Pues en Mecánica Cuántica esto no es posible, existen propiedades que se pierden al perder **A** (buscar Aharonov-Bohm Effect).

Y aún así, es posible que existan mono-polos magnéticos y tener una "versión" del vector A que permita la presencia de esta carga magnética, pero solo si esta esta relacionada a la carga del electrón de la siguiente forma

$$ge = 2\pi\hbar n, \quad n \in \mathbb{Z}.$$
 (40.8)

Esta es conocida como La Condición de Cuantización de Dirac.

40.2.2. Transformaciones de Gauge

La elección de **A** no es única: existen muchos de potenciales vectoriales que dan como resultado el mismo campo magnético. Esto es debido a que el rotacional del gradiente es cero. Esto significa que se puede agregar cualquier vector potencial de la forma ∇_{χ} para alguna función χ y el campo magnético se mantiene igual

$$\mathbf{A}' = \mathbf{A} + \nabla_{\mathbf{Y}} \quad \Rightarrow \quad \mathbf{\nabla} \times \mathbf{A}' = \mathbf{\nabla} \times \mathbf{A}. \tag{40.9}$$

Un cambio del vector A como este se denomina transformación de gauge.

Teorema 40.2.1. Siempre se puede encontrar una transformación de auge χ tal que \vec{A}' que satisface $\nabla \cdot \mathbf{A}' = 0$. A esto se le conoce como Coulomb gauge.

Si necesitamos $\nabla \cdot \mathbf{A}' = 0$, solo necesitamos que nuestra transformación gauge obedesca

$$\nabla^2 \chi = -\psi. \tag{40.10}$$

La cual siempre tiene solución dado que es una ecuación de Poisson. Existe otra cantidad a la que se le conoce potencial escalar magnético, Ω . La idea detras del potencial es que podemos estar interesados en conocer el campo magnético en una región donde no haya corrientes y el campo eléctrico no cambie en el tiempo. En este caso debemos resolver $\nabla \times \mathbf{B} = 0$, lo que se puede hacer teniendo

$$\mathbf{B} = -\nabla\Omega. \tag{40.11}$$

Esto es solo válido en un número limitado de situaciones, esto gracias a la no existencia de cargas magnéticas.

40.2.3. Ley de Biot-Savart

Ahora utilizaremos el vector potencial para resolver para el campo magnético en la presencia de una distribución de corriente. Por ahora siempre diremos que trabajaremos en Coulomb gauge y nuestro vector potencial obedece que $\nabla \cdot \mathbf{A} = 0$. Entonces la ley de Ampére se vuelve lo siguiente

$$\nabla^2 \mathbf{A} = -\mu_0 \mathbf{J}.\tag{40.12}$$

Utilizamos la solución más general, las funciones de Green, se tiene

$$\mathbf{A}(x) = \frac{\mu_0}{4\pi} \int_V d^3 x' \left(\frac{\mathbf{J}(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} \right)$$
(40.13)

necesitamos recordar que el índice

El Campo Magnético

Del resultado anterior se tiene $\mathbf{B} = \mathbf{\nabla} \times \mathbf{A}$. Aplicando y recordando que ∇ actúa sobre \mathbf{x} . Encontramos

$$\mathbf{B}(\mathbf{x}) = \frac{\mu_0}{4\pi} \int_V d^3 \mathbf{x}' \frac{\mathbf{J}(\mathbf{x}') \times (\mathbf{x} - \mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|^3}$$
(40.14)

Esta es conocida como la **Ley de Biot-Savart**. Esto describe el campo magnético de una densidad de corriente general.

40.3. Dipolos Magnéticos

40.3.1. Corriente en una Espira

Empezamos por un ejemplo clásico, una espira. Encontramos el campo magnético generado por una espira, utilizamos \mathbf{r} en lugar de \mathbf{x} . El vector potencial está como

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int_V d^3 r' \frac{\mathbf{J}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$
(40.15)

Ahora, reemplazando por la corriente, se tiene

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0 I}{4\pi} \oint_C \frac{\mathrm{d}\mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|}$$
(40.16)

Pensando como sería esto muy lejos de la espira, podemos expandir en Taylor el término de la integral y esto nos quedaría

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0 I}{4\pi} \oint_C \mathbf{r}' \left(\frac{1}{r} + \frac{\mathbf{r} \cdot \mathbf{r}'}{r^3} + \cdots \right). \tag{40.17}$$

Momento Dipolar Magnético

Teniendo el vector de superficie

$$\mathbf{S} = \int_{S} \mathbf{dS} \tag{40.18}$$

y dado que el primer término de la ecuación del potencial magnético se anula por la inexistencia de mono-polos, se tiene

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \frac{\mathbf{m} \times \mathbf{r}}{r^3} \tag{40.19}$$

y con esto, introducimos el momento dipolar magnético

$$\mathbf{m} = I\mathbf{S}.\tag{40.20}$$

Y con un poco de álgebra se tiene

$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \left(\frac{3(\mathbf{m} \cdot \hat{\mathbf{r}})\hat{\mathbf{r}} - \mathbf{m}}{r^3} \right). \tag{40.21}$$

40.4. Fuerzas Magnéticas

Hasta ahora vimos que las corrientes producen campos magnéticos. Y sabemos que una partícula cargada con una velocidad ${\bf v}$ experimentará una fuerza

$$\mathbf{F} = q\mathbf{v} \times \mathbf{B}.\tag{40.22}$$

Esto significa que si una segunda corriente es situada en algún lugar de la vecindad de la primera, esta experimentará una fuerza de la otra.

40.4.1. Fuerza entre Corrientes

Para dos corrientes paralelas se tiene que la fuerza que siente una de ellas debido a la otra es

$$\mathbf{F} = q\mathbf{v} \times \mathbf{B} = q\mathbf{v} \times \left(\frac{\mu_0 I_1}{2\pi d}\right) \otimes. \tag{40.23}$$

Y la fuerza por unidad de longitud es

$$\mathbf{f} = -\left(\frac{\mu_0 I_1 I_2}{2\pi d}\right) \hat{\mathbf{x}}.\tag{40.24}$$

Y, de la ley de Biot-Savart se concluye que la forma general para la fuerza entre corrientes es

$$\vec{F} = \frac{\mu_0}{4\pi} I_1 I_2 \oint_{C_1} \oint_{C_2} d\mathbf{r}_2 \times \left(d\mathbf{r}_1 \times \frac{\mathbf{r}_2 - \mathbf{r}_1}{|\mathbf{r}_2 - \mathbf{r}_1|^3} \right). \tag{40.25}$$

En general, esta integral es "tricky" de resolver, pero si las corrientes están bien separadas es más sencillo expresar la fuerza en términos del momento dipolar magnético.

40.4.2. Fuerza y Energía de un Dipolo

Para encontrar esto se parte de

$$\mathbf{F} = \int_{V} d^{3}r \mathbf{J}(\mathbf{r}) \times \mathbf{B}(\mathbf{r})$$
 (40.26)

DS: luego de mucho cálculo se llega a

$$\mathbf{F} = \mathbf{\nabla} \times (\mathbf{B} \times \mathbf{m}),\tag{40.27}$$

$$\mathbf{F} = \nabla \mathbf{B} \cdot \mathbf{m}.\tag{40.28}$$

Y sabiendo que toda fuerza se puede expresar como el gradiente de una función, la función del dipolo en el campo magnético es

$$U = -\mathbf{B} \cdots \mathbf{m}. \tag{40.29}$$

40.4.3. Fuerza entre Dipolos

Tomando el caso en el que el campo magnético lo genera un dipolo \mathbf{m}_1 . Sabemos que el campo magnético es de la forma

$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \left(\frac{3(\mathbf{m}_1 \cdot \hat{\mathbf{r}})\hat{\mathbf{r}} - \mathbf{m}_1}{r^3} \right)$$
(40.30)

Y, utilizando lo anteriormente encontrado, se tiene que la fuerza que siente el segundo dipolo es

$$\mathbf{F} = \frac{\mu_0}{4\pi} \mathbf{\nabla} \left(\frac{3(\mathbf{m}_1 \cdot \hat{\mathbf{r}})(\mathbf{m}_2 \cdot \hat{\mathbf{r}}) - \mathbf{m}_1 \cdot \mathbf{m}_2}{r^3} \right)$$
(40.31)

donde \mathbf{r} es el vector de \mathbf{m}_1 a \mathbf{m}_2 . Y, notemos que la estructura de la fuerza es idéntica a la que hay entre dos dipolos eléctricos. Esto es particularmente satisfactorio dado que se utilizan dos métodos diferentes.

Propiedades Magnéticas de la Materia

41.1. Magnetización

A diferencia de la polarización eléctrica que es casi siempre en dirección de **E**, algunos materiales adquieren su magnetización paralela a **B** (**paramagnéticos**) y algunos opuesta a **B** (**diamagnéticos**); solo unas pocas sustancias (como el hierro) retienen su magnetización incluso después de que el campo externo sea removido, a estos se le conocen como **ferromagnéticos**.

41.1.1. Torques y Fuerzas en Dipolos Magnéticos

Así como los dipolos eléctricos sienten un torque, y esto sucede de igual forma para el campo magnético

$$\mathbf{N} = \mathbf{m} \times \mathbf{B}.\tag{41.1}$$

DS: En Griffiths no se ve del todo bien esto, revisar la parte de torque magnético en Zemansky, está mas de ahuevo la figura ahí. Y para un loop infinitesimal

$$\mathbf{F} = \mathbf{\nabla} \mathbf{m} \cdot \mathbf{B}.\tag{41.2}$$

41.1.2. Magnetización

En presencia de un campo magnético la materia se **magnetiza**, por el análisis microscópico, se sabe que se tienen muchos minidipolos que resultan alineados en cierta dirección.

$$\mathbf{M} = \text{momento dipolar magnético por unidad de volumen.}$$
 (41.3)

En otras palabras

$$\mathbf{M} = \frac{\Delta \mathbf{m}}{\Delta V}.\tag{41.4}$$

41.2. El Campo de un Objeto Magnetizado

41.2.1. Límites de Corrientes

Suponga que se tiene una pieza de material magnetizado; su momento dipolar magnético por unidad de volumen M. El vector potencial es

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{M}(\mathbf{r}') \times \hat{\mathbf{r}}}{r^2} \, \mathrm{d}\tau'$$
 (41.5)

con $d\tau'$ es un diferencial de volumen. Reemplazando $\frac{\hat{\mathbf{r}}}{r^2} = \nabla'(\frac{1}{r})$, lo que resulta en

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{1}{r} \left[\nabla' \times \mathbf{M}(\mathbf{r}') \right] d\tau' + \frac{\mu_0}{4\pi} \oint \frac{1}{r} \left[\mathbf{M}(\mathbf{r}' \times da') \right]$$
(41.6)

El primer término es el potencial de una corriente volumétrica

$$\mathbf{J}_b = \mathbf{\nabla} \times \mathbf{M} \tag{41.7}$$

y el segundo es el potencial de una corriente superficial

$$\mathbf{K}_b = \mathbf{M} \times \hat{\mathbf{n}}.\tag{41.8}$$

Esto es el análogo a la carga de volumen y superficie de polarización $\rho_b = -\nabla \cdot \mathbf{P}$ y $\sigma_b = \mathbf{P} \cdot \hat{\mathbf{n}}$. Con todo esto, podemos expresar el campo magnético como

$$\mathbf{B}(\mathbf{r}) = -\mu_0 \nabla \varphi(\mathbf{r}) + \mu_0 \mathbf{M}(\mathbf{r}) \tag{41.9}$$

donde $\varphi(\mathbf{r})$ es el campo escalar magnético DS: Anteriormente lo introduje como Ω , pero cambié de libro. Y tiene la siguiente forma

$$\varphi(\mathbf{r}) = \frac{1}{4\pi} \int_{V_o} \mathbf{M}(\mathbf{r}') \cdot \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3} \, \mathrm{d}v'.$$
 (41.10)

41.2.2. Potencial Escalar Magnético y Densidad de Polos Magnéticos

La expresión del potencial escalar magnético, es de forma parecida a la del potencial electrostático que provioene de un material dieléctrico polarizado. Utilizando la ecuación

$$\frac{\mathbf{M} \cdot (\mathbf{r} - \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^3} = \mathbf{M} \cdot \nabla' \frac{1}{|\mathbf{r} - \mathbf{r}'|} = \nabla' \cdot \frac{\mathbf{M}}{|\mathbf{r} - \mathbf{r}'|} - \frac{1}{|\mathbf{r} - \mathbf{r}'|} \nabla' \cdot \mathbf{M}.$$
 (41.11)

Y el potencial se reescribe como

$$\varphi(\mathbf{r}) = \frac{1}{4\pi} \int_{S_o} \frac{\mathbf{M} \cdot \hat{\mathbf{n}} \, \mathrm{d}a'}{|\mathbf{r} - \mathbf{r}'|} - \frac{1}{4\pi} \int_{V_o} \frac{\nabla' \cdot \mathbf{M}}{|\mathbf{r} - \mathbf{r}'|} \, \mathrm{d}v'.$$
 (41.12)

Con lo que se tiene

Densidad de Polos Magnéticos: $\rho_M = -\nabla' \cdot \mathbf{M}(\mathbf{r}')$.

Densidad Superficial de la Intensidad de Polos Magnéticos: $\sigma_M(\mathbf{r}') = \mathbf{M}(\mathbf{r}') \cdot \hat{\mathbf{n}}$.

41.3. Fuentes de Campo Magnético: Intensidad Magnética

Así como se tiene el desplazamiento eléctrico, definimos la intensidad magnética H como

$$\mathbf{H} = \frac{1}{\mu_0} \mathbf{B} - \mathbf{M}. \tag{41.13}$$

Combinando ecuaciones se tiene

$$\mathbf{H}(\mathbf{r}) = \frac{1}{4\pi} \int_{V} \frac{\mathbf{J} \times (\mathbf{r} - \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^{3}} dv' - \nabla \varphi(\mathbf{r}). \tag{41.14}$$

Parece que no hemos ganado nada, dado que **H** aún depende de **M** a través de ρ_m y σ_m . Más adelante se verá la relación entre esta nueva cantidad y la densidad de corriente.

41.4. Susceptibilidad y Permeabilidad Magnéticas e Histéresis

¹ Para resolver problemas en la teoría magnética es esencial tener una relación entre **B** y **H**. Estas relaciones depende de la naturaleza del material magnético y se obtienen generalmente a partir de experimentos.

En una extensa clase de materiales existe una relación aproximadamente lineal entre \mathbf{M} y \mathbf{H} . Si el material es isótropo y también lineal.

$$\mathbf{M} = \chi_m \mathbf{M} \tag{41.15}$$

donde la cantidad escalar adimensional χ_m se llama susceptibilidad magnética. Si χ_m es positiva, el material se llama paramagnético y la inducción magnética se refuerza con la presencia del material. Si χ_m es negativa, el material es diamagnético y la inducción magnética se debilita con la presencia del material. Aunque χ_m es una función de la temperatura y a veces varía muy drásticamente con ella, generalmente puede decirse que, para materiales paramagnéticos y diamagnéticos, χ_m es bastante pequeña; es decir,

$$|\chi_m| \ll 1 \tag{41.16}$$

Una relación lineal entre M y H implica también una relación lineal entre B y H:

$$\mathbf{B} = \mu \mathbf{H} \tag{41.17}$$

donde la permeabilidad μ se obtiene de la combinación de las ecuaciones

$$\mu = \mu_0 (1 + \chi_m) \tag{41.18}$$

A veces se utiliza la permeabilidad relativa en lugar de la permeabilidad $\frac{\mu}{\mu_0} = K_m$. Los materiales ferromagnéticos no son lineales, por lo que las ecuaciones anteriores no se aplican.

¹En física, química y biología, la histéresis representa la tendencia de un material a conservar una de sus propiedades, en ausencia del estímulo que la ha generado.

41.5. Condiciones en la Frontera sobre los Vectores de Campo

Ahora, como se hizo en electrostática, analizaremos como cambian los vectores ${\bf B}$ y ${\bf H}$ al pasar por una zona interfacial entre dos medios. Consideraremos dos medios en contacto, y realizando el análisis que se hizo en electrostática para medios dieléctricos, se tiene que la componente normal es continua

$$\mathbf{B}_{2n} - \mathbf{B}_{1n} = 0. (41.19)$$

Y una condición de contorno del campo ${\bf H}$ puede obtenerse aplicando la ley de circuitos de Ampére. Con ello se obtiene

$$(\mathbf{H}_2 - \mathbf{H}_1) = \mathbf{j} \times \hat{\mathbf{n}}_2 \tag{41.20}$$

$$\hat{\mathbf{n}}_2 \times (\mathbf{H}_2 - \mathbf{H}_1) = \mathbf{j}.\tag{41.21}$$

Inducción Electromagnética

42.1. Inducción Electromagnética

Definiremos la fuerza electromotriz o fem, alrededor de un circuito como

$$\oint_C \mathbf{E} \cdot d\mathbf{l} = \mathscr{E}. \tag{42.1}$$

Con los campos E y B estáticos, esta fem siempre fue cero. Ahora veremos el caso donde no es nula. Como ahora E no puede definirse a partir de la ley de Coulomb, es válido preguntarnos cómo se define. Se define de forma tal que la fuerza de Lorentz es siempre la fuerza electromagnética que actúa sobre una carga de prueba q.

$$\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B}) \tag{42.2}$$

Los resultados de un gran número de los experimentos realizados pueden resumirse asociando una fem inducida

$$\mathscr{E} = -\frac{\mathrm{d}\Phi}{\mathrm{d}t} \tag{42.3}$$

con un cambio en el flujo magnético que atraviesa por un circuito. Se encuentra que este resultado, conocido como **ley de Faraday de la Inducción Electromagnética**, es independiente de la forma en que cambia el flujo; el valor de **B** en distintos puntos interiores del circuito puede cambiar de muchas maneras.

Dadas las relaciones conocidas llegamos a la forma diferencial de la ley de Faraday

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}.\tag{42.4}$$

 $Ley\ de\ Lenz$. En caso de que haya un cambio en un sistema magnético, sucede algo que tiene a oponerse al cambio.

42.2. Autoinductancia

El flujo magnético que atraviesa un circuito aislado depende de la forma geométrica del mismo y es linealmente dependiente de la intensidad de corriente en el circuito. Por tanto, para un circuito estacionario rígido, los únicos cambios de flujo resultan de cambios en la corriente

$$\frac{\mathrm{d}\Phi}{\mathrm{d}t} = \frac{\mathrm{d}\Phi}{\mathrm{d}I}\frac{\mathrm{d}I}{\mathrm{d}t}.\tag{42.5}$$

Definición 42.2.1. La autoinductancai se define como:

$$L = \frac{\mathrm{d}\Phi}{\mathrm{d}I}.\tag{42.6}$$

Y la ecuación con mayor importancia práctica es:

$$\mathscr{E} = -L\frac{\mathrm{d}\Phi}{\mathrm{d}t}.\tag{42.7}$$

42.3. Inductancia Mutua

Solo se han considerado circuitos aislados, de modo que todo el flujo que se debía a la corriente en el propio circuito. Esta restricción puede eliminarse si se supone que hay n circuitos. Entonces, en cualquier caso, lineal o no lineal, se tiene

$$M_{ij} = \frac{\mathrm{d}\Phi_{ij}}{\mathrm{d}I_j} \tag{42.8}$$

se define como la inductancia mutua entre el circuito i y el circuito j.

42.4. La Fórmula de Neumann

Para dos circuitos rígidos estacionarias en un medio lineal, la inductancia mutua es

$$M_{21} = \frac{\Phi_{21}}{I_1} \tag{42.9}$$

Esta ecuación es válida simplemente porque Φ_{21} es proporcional a I_1 , lo que hace que Φ_{21}/I_1 y $\frac{d\Phi_{21}}{dI_1}$ sean iguales. Ene este caso, se puede usar la ecuación para calcular M_{21} . El flujo está dado por

$$\Phi_{21} = \frac{\mu_0}{4\pi} I_1 \int_{S_2} \left\{ \oint_{C_1} \frac{\mathrm{d}I_1 \times (\mathbf{r}_2 - \mathbf{r}_1)}{|\mathbf{r}_2 - \mathbf{r}_1|^3} \right\} \cdot \mathrm{d}a_2$$
 (42.10)

Sin embargo,

$$\oint_{C_1} \frac{\mathrm{d}\mathbf{l} \times (\mathbf{r}_2 \times \mathbf{r}_1)}{|\mathbf{r}_2 - \mathbf{r}_1|^3} = \nabla_2 \times \oint_{C_1} \frac{\mathrm{d}\mathbf{l}_1}{|\mathbf{r}_2 - \mathbf{r}_1|}$$
(42.11)

Con esto y el teorema de Stokes, se tiene

$$M_{21} = \frac{\mu_0}{4\pi} \oint_{C_2} \oint_{C_1} \frac{\mathrm{d}\mathbf{l}_1 \cdot \mathrm{d}\mathbf{l}_2}{|\mathbf{r}_2 - \mathbf{r}_1|}$$
(42.12)

que se llama fórmula de Neumann para la inductancia mutua. La simetría mencionada anteriormente es evidente de la ecuación. La fórmula de Neumann es igualmente aplicable a la autoinductancia, en cuyo caso se expresa como

$$M_{21} = \frac{\mu_0}{4\pi} \oint_{C_2} \oint_{C_1} \frac{\mathrm{d}\mathbf{l}_1 \cdot \mathrm{d}\mathbf{l}_1'}{|\mathbf{r}_1 - \mathbf{r}_1'|}.$$
 (42.13)

42.5. Inductancias en Serie y Paralelo

Podríamos proceder con una derivación basada simplemente en $\mathscr{E} = -L \frac{\mathrm{d}I}{\mathrm{d}t}$ y obtener fórmulas para la inductancia efectiva dejar de lado el hecho práctico de que un inductor siempre tiene cierta resistencia interna. Una inductancia perfecto es mucho más difícil de aproximar prácticamente que una capacidad perfecta o una resistencia perfecta. Por este motivo, las combinaciones en serie y paralelo, por ahora, contendrán siempre tanto resistencias como inductancias. Entonces, para una conexión en serie (se suman las caídas de potencial de cada elemento del circuito)

$$V = R_1 I + L_1 \frac{dI}{dt} + M \frac{dI}{dt} + R_2 I + L_2 \frac{dI}{dt} + M \frac{dI}{dt}$$
 (42.14)

$$V = (R_1 + R_2)I + (L_1 + L_2 + 2M)\frac{\mathrm{d}I}{\mathrm{d}t}.$$
(42.15)

El nuevo circuito contendrá una resistencia con magnitud $(R_1 + R_2)$ en serie con una inductancia $L_1 + L_2 + 2M$. Una expresión alternativa de la inductancia mutua es:

$$M = k\sqrt{L_1 L_2}, \qquad -1 \le k \le 1 \tag{42.16}$$

La inductancia efectiva esta dada por

$$L_{ef} = L_1 + 2k\sqrt{L_1L_2} + L_2. (42.17)$$

Para el caso de circuitos en paralelo en los que las resistencias son despreciables, el voltaje es el mismo y por ende, la inductancia efectiva

$$L_{ef} = \frac{L_1 L_2 - M^2}{L_1 + L_2 - 2M} \frac{\mathrm{d}I}{\mathrm{d}t}.$$
 (42.18)

Energía Magnética

Establecer un campo magnético requiere un gasto de energía, lo cual se concluye directamente de la ley de inducción de Faraday. Si una fuente de voltaje $\mathscr V$ se aplica a un circuito, entonces la intensidad de corriente que pasa por el circuito puede expresarse con la ecuación

$$\mathcal{V} + \mathcal{E} = IR \tag{43.1}$$

donde \mathscr{E} es la fem inducida y R es la resistencia del circuito de corriente. Entonces se tiene

$$\mathcal{V} dq = \mathcal{E}I dt + I^2 R dt = I d\Phi + I^2 R dt \tag{43.2}$$

cuya última expresión se obtiene con la ayuda de la ley de Faraday. El último término representa la conversión irreversible de energía eléctrica en calor que se lleva a cabo el circuito, pero este término incluye todo el trabajo realizado por $\mathcal V$ sólo en los casos en los que el cambio de flujo sea cero. El otro término es el trabajo efectuado contra la fem inducida en el circuito. Es la parte del trabajo realizado por $\mathcal V$ que se invierte en alterar la estructura del campo magnético, con ello reescribimos

$$dW_b = I d\Phi \tag{43.3}$$

donde el subíndice b indica que éste es el trabajo realizado por fuentes de energía eléctrica externas.

43.1. Energía Magnética de Circuitos Acoplados

Si hay n circuitos, entonces, según la ecuación anterior, el trabajo eléctrico hecho en contra de la fem inducidas está dado por

$$dW_b = \sum_{i=1}^n I_i \, d\Phi_i \,. \tag{43.4}$$

En particular nos interesa el caso en el que los $d\Phi_i$ se producen por cambios de corriente en los mismos n circuitos.

$$d\Phi_i = \sum_{j=1}^n \frac{d\Phi_{ij}}{dI_j} dI_j = \sum_{j=1}^n M_{ij} dI_j.$$
 (43.5)

En caso de que sean circuitos rígidos y estacionarios, entonces no hay trabajo mecánico asociado a los cambios de flujo y el trabajo será igual al cambio en la energía magnética.

$$U = \frac{1}{2} \sum_{i=1}^{n} I_i \Phi_i \tag{43.6}$$

La cual es la energía magnética de n circuitos acoplados y rígidos en medios lineales.

43.2. Densidad de Energía en el Campo Magnético

Es de interés una formulación alternativa de la energía magnética en función de los vectores de campo **B** y **H**, porque proporciona una imagen en la que la energía se almacena en el campo magnético mismo. Tomando lo ya aprendido, otra forma de definir la energía

$$U = \frac{1}{2} \int_{V} \mathbf{J} \cdot \mathbf{A} \frac{\mathrm{d}}{\mathrm{d}V} \tag{43.7}$$

La última expresión puede transformarse aún más utilizando la ecuación de campo $\nabla \times \mathbf{H} = \mathbf{J}$ y la identidad de la divergencia de un producto cruz, se tiene

$$U = \frac{1}{2} \int_{V} \mathbf{H} \cdot \mathbf{\nabla} \times \mathbf{A} \, dV - \frac{1}{2} \int_{S} \mathbf{A} \times \mathbf{H} \cdot \hat{\mathbf{n}} \, da \,, \tag{43.8}$$

donde S es la superficie que limita V. Eliminamos la integral de superficie extendiendo el volumen para que incluya todo el espacio, obtenemos

$$U = \frac{1}{2} \int_{V} \mathbf{H} \cdot \mathbf{B} \, \mathrm{d}V \tag{43.9}$$

lo que da, claramente, como resultado lo siguiente

$$u = \frac{1}{2}\mathbf{H} \cdot \mathbf{B} \tag{43.10}$$

a lo que se conoce como densidad de energía en un campo magnético.

Corrientes que Varían Lentamente

44.1. Comportamiento Transitorio y en Estado Estacionario

Es conveniente analizar el comportamiento de los circuitos en dos fases, dependiendo de si es importante el comportamiento periódico o el no periódico. El comportamiento periódico se llama comportamiento en estado estacionario, mientras que el no periódico se conoce como comportamiento transitorio. Ambos aspectos se rigen por las mismas ecuaciones básicas integro-diferenciales; sin embargo, las técnicas elementales usadas para resolverlas son radicalmente distintas en los dos casos.

44.2. Leyes de Krichhoff

Volviendo a enunciar las conocidas leyes de Kirchhoff

- Ley de Kirchhoff I. La suma algebraica de las corrientes instantáneas que fluyen hacia un nodo es cero.
- Ley de Kirchhoff II. La suma algebraica de los voltajes aplicados instantáneos en una malla cerrada es igual a la suma algebraica de los contravoltajes instantáneos en la malla.

Para el circuito RLC más simple, el voltaje a lo largo del tiempo

$$\mathscr{V} = RI + L\frac{\mathrm{d}I}{\mathrm{d}t} + \frac{1}{C} \int_{t_0}^t I \,\mathrm{d}t \,. \tag{44.1}$$

44.3. Comportamiento Transitorio Elemental

El único comportamiento transitorio que consideraremos aquí es el asociado a la aplicación repentina de un voltaje constante \mathcal{V} a una red de resistores, condensadores e inductores, siendo el primer ejemplo el circuito R-L. Para este circuito la ecuación es

$$\mathcal{V} = RI + L\frac{\mathrm{d}I}{\mathrm{d}t} \tag{44.2}$$

después de haber cerrado el interruptor S. La solución para la corriente es

$$I(t) = \frac{\mathscr{V}}{R} \left[1 - Ke^{-\frac{tR}{L}} \right]. \tag{44.3}$$

Volviendo a la ecuación integro-diferencial, se deriva respecto al tiempo

$$\frac{\mathrm{d}\mathcal{V}}{\mathrm{d}t} = R\frac{\mathrm{d}I}{\mathrm{d}t} + L\frac{\mathrm{d}^2I}{\mathrm{d}t^2} + \frac{1}{C} \tag{44.4}$$

tomando la derivada del voltaje igual a cero, se tiene la siguiente solución

$$I = \{Ae^{i\omega_n t} + Be^{-i\omega_n t}\}e^{-\frac{Rt}{2L}}$$

$$\tag{44.5}$$

donde

$$\omega_n = \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} \tag{44.6}$$

por lo que

$$I(t) = De^{-\frac{Rt}{2L}}\sin\omega_n t. \tag{44.7}$$

44.4. Comportamiento en Estado Estacionario de un Circuito en Serie Simple

Teniendo un circuito con el siguiente voltaje

$$\mathcal{V}(t) = \mathcal{V}_0 \cos \omega t. \tag{44.8}$$

Este voltaje es la parte real de $\mathcal{V}_o e^{i\omega t}$, se desarrollará un método para encontrar la corriente física. Aplicamos al circuito un voltaje $\mathcal{V}_1 + i\mathcal{V}_2$, con esto se tiene

$$\frac{\mathrm{d}\mathcal{V}_1}{\mathrm{d}t} + i\frac{\mathrm{d}\mathcal{V}_2}{\mathrm{d}t} = \left(L\frac{\mathrm{d}^2 I_1}{\mathrm{d}t^2} + R\frac{\mathrm{d}I_1}{\mathrm{d}t} + \frac{I_1}{C}\right) + i\left(L\frac{\mathrm{d}^2 I_2}{\mathrm{d}t^2} + R\frac{\mathrm{d}I_2}{\mathrm{d}t} + \frac{I_2}{C}\right). \tag{44.9}$$

Usamos $\mathcal{V}_o e^{i\omega t}$ y la intensidad de corriente es $I_o e^{i\omega t}$, por lo que al reemplazar se tiene

$$i\omega \mathcal{V}_o e^{i\omega t} = \left[-\omega^2 + i\omega + \frac{1}{C} \right] I_o e^{i\omega t} \tag{44.10}$$

En donde $Z = R + i\omega L + \frac{1}{i\omega C}$ es la conocida como *impedancia*. En esta la parte real es la resistencia DS: la de toda la vida y la parte imaginaria (reactancia X) se divide en reactancia inductiva X_L y reactancia capacitiva X_C . El hecho de que la impedancia sea compleja significa que la corriente no está en fase con el voltaje aplicado.

44.5. Conexión de Impedancias en Serie y en Paralelo

Así como ya se sabe, en serie el voltaje se suma, por ende, la impedancia efectiva es la suma de las impedancias

$$Z = Z_1 + Z_2 + Z_3 + \cdots (44.11)$$

Es importante observar que las sumas de las impedancias son como números complejos

$$Z = Z_1 + Z_2 = (R_1 + R_2) + i(X_1 + X_2)$$

$$Z = |Z|e^{i\theta}, |Z| = [(R_1 + R_2)^2 + (X_1 + X_2)^2]^{1/2}$$

$$\theta = \arctan \frac{X_1 + X_2}{R_1 + R_2}.$$

Para las impedancias en paralelo el voltaje es el mismo, por ende

$$\frac{1}{Z} = \frac{1}{Z_1} + \frac{1}{Z_2} + \dots {44.12}$$

44.6. Potencia y Factores de Potencia

la potencia suministrada a un resistor puede determinarse multiplicando el voltaje a través de cada resistor por la corriente que pasa a través de él. Sin embargo, para el caso más general.

Si V(t) e I(t) son el voltaje y la corriente complejos, como se muestra, entonces la potencia instantánea es

$$P(t) = \text{Re}\{I(t)\} \text{Re}\{V(t)\}.$$
 (44.13)

La potencia media es una cantidad más importante, obtenida al tomar el promedio durante un periodo completo o durante un tiempo muy largo. Si las fases se escogen de tal modo que V_o sea real y, como de costumbre, $Z = Ze^{i\theta}$, entonces es inmediato ver que

$$\bar{P} = \overline{\text{Re}\{I(t)\} \text{Re}\{V(t)\}} = \frac{1}{2} |I_o||V_o|\cos\theta.$$
 (44.14)

Un factor un medio de la ecuación anterior representa el hecho de que el valor medio de $\sin^2 \omega t$ o $\cos^2 \omega t$ es un medio. EL otro factor interesante es el coseno de θ , que tiene en cuenta el hecho de que la corriente y el voltaje no están en fase. El coseno de θ se llama frecuentemente factor de potencia de un circuito de corriente alterna (CA)

$$\overline{\operatorname{Re}\{I_o e^{\omega t}\}\operatorname{Re}\{V_o e^{\omega t}\}} = \frac{1}{2}\operatorname{Re}\{I_o^* V_o\}. \tag{44.15}$$

donde I_o^* es el conjugado de I_o . Entonces

$$\bar{P} = \frac{1}{2} \frac{|V_o|^2}{|Z|^2} \operatorname{Re}\{Z\}$$
 (44.16)

Los valores eficaces del voltaje y de la corriente se definen normalmente como

$$V_{ef} = \frac{\sqrt{2}}{2} |V_o|, \qquad I_{ef} = \frac{\sqrt{2}}{2} |I_o|$$
 (44.17)

La virtud de estas definiciones es que un V_{ef} dado que se aplica a una resistencia disipa la misma potencia que un voltaje de la misma magnitud.

Ecuaciones de Maxwell

Ahora estamos listos para introducir la piedra angular de la teoría electromagnética, la llamada corriente de desplazamiento. Aun cuando su efecto observable a veces es despreciable, es lo que completa esencialmente la teoría, y tiene un papel crucial en otros temas.

Generalización de la Ley de Ampére: Corriente de Desplaza-45.1. miento

La ley de Ampére "corregida" la podemos escribir de la siguiente forma

$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t} \tag{45.1}$$

y nos referimos a la derivada respecto al tiempo de **D** como corriente de desplazamiento.

La introducción de la corriente de desplazamiento hace posible las ondas electromagnéticas, como veremos a continuación, y es la esencia de la gran contribución de Maxwell a la teoría electromagnético.

45.2. Ecuaciones de Maxwell y sus Bases Empíricas

Las ecuaciones de Maxwell en forma diferencial

$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
(45.2)

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \tag{45.3}$$

$$\nabla \cdot \mathbf{D} = \rho \tag{45.4}$$

$$\nabla \cdot \mathbf{B} = 0. \tag{45.5}$$

45.3. Energía Electromagnética

Ya se mostró que

$$U_E = \frac{1}{2} \int_V \mathbf{E} \cdot \mathbf{D} \, \mathrm{d}V \tag{45.6}$$

$$U_M = \frac{1}{2} \int_V \mathbf{H} \cdot \mathbf{B} \, \mathrm{d}V \,. \tag{45.7}$$

Si se hace el producto escalar de la ecuación (45.2) por **E** y la ecuación resultante se resta del producto escalar de la ecuación (45.3) por **H**, la ecuación que se obtiene es

$$\mathbf{H} \cdot \mathbf{\nabla} \times \mathbf{E} - \mathbf{E} \cdot \mathbf{\nabla} \times \mathbf{H} = -\mathbf{H} \cdot \frac{\partial \mathbf{B}}{\partial t} - \mathbf{E} \cdot \frac{\partial \mathbf{D}}{\partial t} - \mathbf{E} \cdot \mathbf{J}$$
(45.8)

el laod izquierdo se convierte en una divergencia¹, entonces

$$\nabla \cdot (\mathbf{E} \times \mathbf{H}) = -\mathbf{H} \cdot \frac{\partial \mathbf{B}}{\partial t} - \mathbf{E} \cdot \frac{\partial \mathbf{D}}{\partial t} - \mathbf{E} \cdot \mathbf{J}$$
(45.9)

Si estamos en medios lineales y el desplazamiento eléctrico y la intensidad magnética se puede escribir como su constante por el campo respectivo, se tiene

$$\nabla \cdot \mathbf{E} \times \mathbf{H} = -\frac{\partial}{\partial t} \frac{1}{2} (\mathbf{E} \cdot \mathbf{D} + \mathbf{B} \cdot \mathbf{H}) - \mathbf{J} \cdot \mathbf{E}. \tag{45.10}$$

Realizando la integral, se tomarán las siguientes abreviaturas

$$\mathbf{S} = \mathbf{E} \times \mathbf{H} \tag{45.11}$$

$$u = \frac{1}{2}(\mathbf{E} \cdot \mathbf{D} + \mathbf{B} \cdot \mathbf{H}) \tag{45.12}$$

donde S se llama vector de Poyting, entonces la ecuación anterior se reescribe como

$$\nabla \cdot \mathbf{S} + \frac{\partial u}{\partial t} = -\mathbf{J} \cdot \mathbf{E}. \tag{45.13}$$

El término izquierdo es el trabajo realizado por el campo local sobre las partículas cargadas por unidad de volumen. También, u, se interpretó como la densidad de energía de los campos eléctricos y magnéticos. Si el trabajo es cero y la divergencia no es cero, se tiene

$$\nabla \cdot \mathbf{S} + \frac{\partial u}{\partial t} = 0. \tag{45.14}$$

Dado que tiene la misma forma que una ecuación de continuidad, el término de la divergencia se toma con una razón de flujo de energía por unidad de área. Generalmente, $\mathbf{S} = \mathbf{E} \times \mathbf{H}$ se trata como el flujo local de energía por unidad de área.

¹Usando la identidad: $\nabla \cdot F \times G = G \cdot \nabla \times F - F \cdot \nabla \times G$.

45.4. La Ecuación de Onda

Tanto para ${\bf H}$ como para ${\bf E}$ se toma el rotacional de la ley de Ampére y la de Faraday. Con ello se tiene²

$$\nabla^2 \mathbf{H} - \varepsilon \mu \frac{\partial^2 \mathbf{H}}{\partial t^2} - g \mu \frac{\partial \mathbf{H}}{\partial t} = 0$$
 (45.15)

$$\nabla^2 \mathbf{E} - \varepsilon \mu \frac{\partial^2 \mathbf{E}}{\partial t^2} - g \mu \frac{\partial \mathbf{E}}{\partial t} = 0$$
 (45.16)

Las ecuaciones de onda deducidas antes rigen el campo electromagnético en un medio lineal homogéneo en el que la densidad de carga es cero, sea este medio conductor o no. Al resolver las ecuaciones de onda, debe tenerse especial cuidado en obtener soluciones a las ecuaciones de Maxwell.

45.5. Ondas Monocromáticas

Las ondas monocromáticas son ondas en las que todos los campos están caracterizados por una sola frecuencia. En este caso, podemos resolver la ecuación de onda del campo eléctrico para encontrarlo y utilizar las ecuaciones de Maxwell y las relaciones constitutivas para encontrar los otros campos. Se considera que la dependencia del campo con respecto al tiempo es $e^{-i\omega t}$, de modo que

$$\mathbf{E}(\mathbf{r},t) = \mathbf{E}(\mathbf{r})e^{-i\omega t} \tag{45.17}$$

Supondremos que el medio es el espacio vacío, de modo que g=0. Entonces se tiene

$$\frac{\mathrm{d}\mathbf{E}(z)}{\mathrm{d}z} + \frac{\omega}{c}\mathbf{E} = 0 \tag{45.18}$$

donde $\epsilon_0 \mu_0 = 1/c^2$. Se conoce la solución al armónico simple

$$\mathbf{E}(\mathbf{r},t) = \mathbf{E}_o \cos \omega (t \mp z/c). \tag{45.19}$$

En un dieléctrico no magnético y no conductor tomamos $\varepsilon = K\epsilon_0$, entonces se tiene

$$\kappa = \sqrt{K\omega/c}.\tag{45.20}$$

Definiendo $n = \sqrt{K}$ como *índice de refracción* del medio dieléctrico.

45.6. Condiciones de Frontera

DS: Para ahorrarnos la demostración, se mostrará solo la tabla de interés.

Cuadro 45.1: Condiciones de frontera.

²Utilizando la identidad: $\nabla \times \nabla \times = \nabla \nabla \cdot -\nabla^2$

45.7. Ecuación de Onda con Fuentes

Por lo que ya conocemos del campo magnético y la ecuación de faraday, se tiene

$$\nabla \times \left[\mathbf{E} + \frac{\partial \mathbf{A}}{\partial t} \right] = 0 \tag{45.21}$$

por lo que el término de dentro puede expresarse como el gradiente de un escalar

$$\mathbf{E} = -\nabla \varphi - \frac{\partial \mathbf{A}}{\partial t}.\tag{45.22}$$

Utilizando el mismo método que se utilizó anteriormente para H y E se usa para A

$$-\nabla^{2}\mathbf{A} + \varepsilon\mu \frac{\partial^{2}\mathbf{A}}{\partial t^{2}} + \nabla\nabla \cdot \mathbf{A} + \varepsilon\mu \nabla \frac{\partial\varphi}{\partial r} = \mu \mathbf{J}.$$
 (45.23)

Se impone la llamada condición de Lorentz

$$\nabla \cdot \mathbf{A} + \varepsilon \mu \frac{\partial \varphi}{\partial t} = 0 \tag{45.24}$$

se tiene una simplificación considerable. Si se satisface esta condición, entonces

$$\nabla^2 \mathbf{A} - \varepsilon \mu \frac{\partial^2 \mathbf{A}}{\partial t^2} = -\mu \mathbf{J} \tag{45.25}$$

Y, con esto se tiene

$$\nabla^2 \varphi - \varepsilon \mu \frac{\partial^2 \varphi}{\partial t^2} = -\frac{1}{\omega} \rho. \tag{45.26}$$

Encontramos la solución DS: Vease Reitz, p.410

$$\varphi(\mathbf{r},t) = \frac{1}{4\pi\epsilon_0} \int_V \frac{\rho(\mathbf{r}',t')}{|\mathbf{r} - \mathbf{r}'|} \, \mathrm{d}v'$$
 (45.27)

donde $t'=t-\frac{|{\bf r}-{\bf r}'|}{c}$ se llama tiempo de retardo; φ se llama potencial escalar retardado. Ahora para el vector potencial

$$\mathbf{A}(\mathbf{r},t) = \frac{\mu_0}{4\pi} \int_V \frac{\mathbf{J}(\mathbf{r}'), t'}{|\mathbf{r} - \mathbf{r}'|} \, \mathrm{d}v'$$
 (45.28)

que es el potencial vector retardado.

Propagación de Ondas Monocromáticas

El término propagación de ondas electromagnéticas cubre un amplio espectro de fenómenos físicos tales como ondas, luz visible y rayos X. En el vacío, todas las ondas se propagan a la misma velocidad c, pero se distinguen entre sí por sus frecuencias.

46.1. Ondas Planas Monocromáticas en Medios no Conductores

Las soluciones más "fáciles" sonlas que se conocen como soluciones de onda plana. Una onda plana se define como una onda que, en un instante dado, presenta la misma fase en todos los puntos que están sobre cada plano perpendicular a alguna dirección específica. Si, por ejemplo, la dirección especificada esla dirección z, entonces \mathbf{E} debe tener la misma fase en todos los puntos que tienen el mismo valor de x, esto es, en todos los puntos en un plano paralelo al plano xy. Supongamos que se tiene que construir una solución de onda plana con una direcciónd e propagación \mathbf{u} , donde \mathbf{u} es un vector unitario. Entonces la variable z en el exponente debe cambiarse por $\mathbf{u} \cdot \mathbf{r}$, la proyección de \mathbf{r} en la dirección de \mathbf{u} . Por tanto, una onda plana con dirección de propagación \mathbf{u} se representa como

$$e^{-i(\omega t - \kappa \mathbf{u} \cdot \mathbf{r})}$$

Definiremos un vector de propagación

$$\kappa = \kappa \mathbf{u}$$
.

La velocidad de propagación de una onda plana monocromática es precisamente la velocidad con la que se mueven los planos de fase constante. Obviamente, por fase constante queremos decir que

$$\kappa \cdot \mathbf{r} - \omega t = \text{ cte} \tag{46.1}$$

Si $\kappa \cdot \mathbf{r}$ se escribe como $\kappa \xi$, siendo κ la magnitud de κ y ξ como la proyección de \mathbf{r} en la dirección κ , entonces la ecuación anterior se convierte en

$$\kappa \xi - \omega t = \text{ cte.} \tag{46.2}$$

Derivando con respecto al tiempo y utilizando $\kappa = \frac{n\omega}{c}$, encontramos la velocidad de fase

$$v_p = \frac{c}{n} \tag{46.3}$$

en el espacio libre $v_p = c$.

Ahora tomando las ecuaciones de Maxwell para donde no hay distribuciones de carga ni de corrientes y la conductividad es g=0. Se tiene que $\frac{\partial}{\partial t}=i\omega$ y $\nabla=i\kappa$, por lo que, las ecuaciones de Maxwell para ondas planas se transforman en

$$\kappa \cdot \mathbf{D} = 0 \tag{46.4}$$

$$\kappa \cdot \mathbf{B} = 0 \tag{46.5}$$

$$\kappa \times \mathbf{E} = \omega \mathbf{B} \tag{46.6}$$

$$\kappa \times \mathbf{H} = -\omega \mathbf{D}.\tag{46.7}$$

Recordando las ecuaciones consitutivas para medios lineales

$$\mathbf{D} = \varepsilon \mathbf{E} \tag{46.8}$$

$$\mathbf{H} = \frac{1}{\mu} \mathbf{B}.\tag{46.9}$$

Consideramos tambíen que el medio es homogéneo e isótropo, de modo que ε y μ son escalares constantes. Y todo será en medios no magnéticos

$$K\kappa \cdot \mathbf{E} = 0 \tag{46.10}$$

$$\kappa \cdot \mathbf{B} = 0 \tag{46.11}$$

$$\kappa \times \mathbf{E} = \omega \mathbf{B} \tag{46.12}$$

$$\kappa \times \mathbf{B} = -\frac{\omega}{c^2} K \mathbf{E}. \tag{46.13}$$

Priemro, si suponemos $K \neq 0$, vemos que $\kappa \cdot \mathbf{E} = 0$; $\kappa \, cdot \mathbf{B} = 0$ siempre. Ambos campos deben ser perpendiculares a κ . Tal onda se llama *onda transversal*. Aplicando el vector κ a (46.12) y reemplazando (46.13) y tomando la condición de ondas transversales

$$K\frac{\omega^2}{c^2}\mathbf{E} = \kappa^2 \mathbf{E}.\tag{46.14}$$

lo que es equivalente a la ecuación de onda para soluciones de la forma dada por la (46.13), con lo que se tiene

$$\kappa = \sqrt{K} \frac{\omega}{c} \tag{46.15}$$

esta relació, llamada relación de dispersión transversal, determina la magnitud el vector de onda κ en términos de las ω y K supuestas.

Onda monocromática transversal que se propaga en dirección positiva de u está descrita por

$$\mathbf{E}(\mathbf{r},t) = \hat{\mathbf{E}}e^{-i(\omega t - \kappa \cdot \mathbf{r})}, \qquad \mathbf{B}(\mathbf{r},t) = \hat{\mathbf{B}}e^{-i(\omega t - \kappa \cdot \mathbf{r})}.$$
 (46.16)

La dirección \mathbf{u} y la frecuencia ω son completamente arbitrarias. La amplitud \mathbf{E} es arbitraria, excepto que debe ser perpendicular a \mathbf{u} : $\mathbf{u} \cdot \mathbf{E}$. Entonces $\hat{\mathbf{B}}$ está completamente determinado en magnitud y dirección:

$$\hat{\mathbf{B}} = \frac{n}{c} \mathbf{u} \times \hat{\mathbf{E}}.\tag{46.17}$$

Para varias ondas, se tiene la superposición de ondas

$$\mathbf{E}(\mathbf{r},t) = \sum_{i} \hat{\mathbf{E}}(\kappa_{i},\omega_{i}) \exp\{-i(\omega_{i}t - \kappa_{i} \cdot \mathbf{r})\}$$
(46.18)

Para una solucion que no sea periódica, la suma puede convertirse en una integral en donde la función $\hat{\mathbf{E}}(\kappa,\omega)$ se llama transformada de Fourier.

46.2. Polarización

Es una propiedad de las ondas que puede oscilar con más de una orientación. Esto se refiere normalmente a las llamadas ondas transversales.

Descomponiendo el vector \mathbf{E} como suma de un vector paralelo al plano de incidencia y un vector perpendicular a dicho plano

$$\mathbf{E} = E_{\parallel} e^{i\theta_{\parallel}} \hat{\mathbf{u}}_{\parallel} + E_{\perp} e^{i\theta_{\perp}} \hat{\mathbf{u}}_{\perp}. \tag{46.19}$$

Se realiza la diferencia $\theta_{\parallel}-\theta_{\perp}$ y según el resultado se tendrá:

Polarización lineal: Si la diferencia es 0 o un múltiplo entero de π .

Polarización circular: Si la diferencia es un múltiplo entero impar de $\frac{\pi}{2}$. En este caso se cumple, además, que $E_{\parallel}=E_{\perp}$.

Polarización elíptica: Para el resto de casos. Es posible conocer el sentido de giro de la polarización de la onda a partir de la diferencia anterior

- Si $\theta_{\parallel} \theta_{\perp} < 0$ se trata de polarización elíptica lovógira o helicidad negativa (en contra de las agujas del reloj).
- Si $\theta_{\parallel} \theta_{\perp} > 0$ se trata de polarización elíptica dextrógira o helicidad positiva (a favor de la agujas del reloj).

Formularios

Formularios proporcionados por los catedráticos: Dr. Rodrigo Sacahuí y Lic. Héctor Pérez

Anexos

$$\begin{split} \vec{E} &= \frac{1}{4\pi\epsilon_0} \int \frac{(r-r')\rho(r')}{|r-r'|^3} dV \;, \qquad Q = \int_C \lambda dl \;, \qquad \qquad \vec{F} = Q\vec{E}, \qquad \nabla \times \vec{E} = 0 \\ \oint_S \vec{E} \cdot \vec{n} da &= \frac{Q_{enc}}{\epsilon_0} \;, \qquad \vec{F} = \frac{q}{4\pi\epsilon_0} \int \frac{(r-r')\rho(r')}{|r-r'|^3} dV \;, \qquad \qquad \varphi = -\int \vec{E} \cdot dl \;, \quad \sigma = -\epsilon_0 \frac{\partial \varphi}{\partial n} \\ \vec{E} &= -\nabla \varphi, \qquad \qquad \int_S (\nabla \times \vec{F}) \cdot \hat{n} da = \oint_C \vec{F} \cdot dl \;, \qquad W = \int_a^b \vec{F} \cdot dl \;, \qquad \nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0} \\ \int_V (\nabla \cdot \vec{F}) dV &= \oint_S \vec{F} \cdot \hat{n} da, \qquad W = \frac{\epsilon_0}{2} \int_V E^2 dV \;, \qquad \qquad \nabla^2 \varphi = -\frac{\rho}{\epsilon_0} \;, \qquad \varphi(r) = \frac{1}{4\pi\epsilon_0} \frac{q}{r} \\ \vec{P} &= \chi \vec{E}, \qquad \qquad \vec{D} = \epsilon \vec{E}, \qquad \qquad \epsilon = \epsilon_0 + \chi, \qquad K = \epsilon/\epsilon_0 \\ \sigma_p &= \vec{n} \cdot \vec{P}, \qquad \qquad \vec{D} = \epsilon_0 \vec{E} + \vec{P}, \qquad \qquad \vec{P} = \Delta \vec{p}/\Delta V, \qquad \rho_P = -\nabla \cdot \vec{P} \\ \vec{p}_m &= \alpha \vec{E}_m \qquad \qquad \varphi = \frac{1}{4\pi\epsilon_0} \frac{\vec{p} \cdot \hat{r}}{r^2}, \qquad \qquad \vec{J} = g\vec{E} \qquad \qquad R = \frac{1}{qA} = \frac{l\eta}{A} \\ U &= \frac{1}{2} Q \Delta \varphi \qquad \qquad C = \frac{\epsilon A}{d} \qquad \qquad F_x = -\left(\frac{\partial U}{\partial x}\right)_Q \qquad F_x = +\left(\frac{\partial U}{\partial x}\right)_\varphi \\ \vec{J} &= \sum N_i q_i \vec{v}_i \qquad \qquad U = \frac{1}{2} \int \rho(r) \varphi(r) dv + \frac{1}{2} \int \sigma(r) \varphi(r) da \qquad \nabla \cdot \vec{J} + \frac{\partial \rho}{\partial t} = 0 \end{split}$$

Grad, Div, Curl and the Laplacian

	Cartesian Coordinates	Cylindrical Coordinates	Spherical Coordinates
Conversion to Cartesian Coordinates		$x = \rho \cos \varphi$ $y = \rho \sin \varphi$ $z = z$	$x = r\cos\varphi\sin\theta y = r\sin\varphi\sin\theta$ $z = r\cos\theta$
Vector A	$A_x i + A_y j + A_z k$	$A_{ ho}\widehat{oldsymbol{ ho}}+A_{arphi}\widehat{oldsymbol{arphi}}+A_{z}\widehat{oldsymbol{z}}$	$A_r \widehat{r} + A_ heta \widehat{ heta} + A_arphi \widehat{oldsymbol{arphi}}$
Gradient $ abla \phi$	$\frac{\partial \phi}{\partial x}i + \frac{\partial \phi}{\partial y}j + \frac{\partial \phi}{\partial z}k$	$\frac{\partial \phi}{\partial \rho} \widehat{\rho} + \frac{1}{\rho} \frac{\partial \phi}{\partial \varphi} \widehat{\varphi} + \frac{\partial \phi}{\partial z} \widehat{z}$	$\frac{\partial \phi}{\partial r}\widehat{r} + \frac{1}{r}\frac{\partial \phi}{\partial \theta}\widehat{\theta} + \frac{1}{r\sin\theta}\frac{\partial \phi}{\partial \varphi}\widehat{\varphi}$
Divergence $\nabla \cdot A$	$\frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$	$\frac{1}{\rho}\frac{\partial(\rho A_{\rho})}{\partial\rho} + \frac{1}{\rho}\frac{\partial A_{\varphi}}{\partial\varphi} + \frac{\partial A_{z}}{\partial z}$	$\frac{1}{r^2} \frac{\partial (r^2 A_r)}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial A_{\theta} \sin \theta}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial A_{\varphi}}{\partial \varphi}$
$\operatorname{Curl} \nabla \times A$	$\begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_x & A_y & A_z \end{vmatrix}$	$\begin{vmatrix} \frac{1}{\rho} \widehat{\rho} & \widehat{\varphi} & \frac{1}{\rho} \widehat{z} \\ \frac{\partial}{\partial \rho} & \frac{\partial}{\partial \varphi} & \frac{\partial}{\partial z} \\ A_{\rho} & \rho A_{\varphi} & A_{z} \end{vmatrix}$	$\begin{vmatrix} \frac{1}{r^2 \sin \theta} \hat{r} & \frac{1}{r \sin \theta} \hat{\theta} & \frac{1}{r} \hat{\varphi} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \varphi} \\ A_r & r A_{\theta} & r A_{\varphi} \sin \theta \end{vmatrix}$
Laplacian $ abla^2 \phi$	$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2}$	$\frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial \phi}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 \phi}{\partial \phi^2} + \frac{\partial^2 \phi}{\partial z^2}$	$1 \partial (\partial \phi) \qquad 1 \partial (\partial \phi)$

Electromagnetismo 2

Escuela de Ciencias Físicas y Matemáticas

1. Identidades y teoremas vectoriales

1.1
$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B})$$

1.2
$$\int_{a}^{b} \nabla \varphi \, d\mathbf{l} = \varphi(b) - \varphi(a)$$

1.3
$$\int_{V} \nabla \cdot \mathbf{F} dv = \oint_{S} \mathbf{F} \cdot \mathbf{n} da$$

1.4
$$\int_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} \, da = \oint_{C} \mathbf{F} \cdot d\mathbf{l}$$

1.5
$$\nabla \cdot \nabla \varphi = \nabla^2 \varphi$$

1.6
$$\nabla \cdot \nabla \times \mathbf{F} = 0$$

1.7
$$\nabla \times \nabla \varphi = 0$$

1.8
$$\nabla \times \nabla \times \mathbf{F} = \nabla(\nabla \cdot \mathbf{F}) - \nabla^2 \mathbf{F}$$

1.9
$$\nabla(\varphi\psi) = (\nabla\varphi)\psi + \varphi\nabla\psi$$

1.10
$$\nabla (\mathbf{F} \cdot \mathbf{G}) = (\mathbf{F} \cdot \nabla)\mathbf{G} + \mathbf{F} \times (\nabla \times \mathbf{G}) + (\mathbf{G} \cdot \nabla)\mathbf{F} + \mathbf{G} \times (\nabla \times \mathbf{F})$$

1.11
$$\nabla \cdot (\varphi \mathbf{F}) = (\nabla \varphi) \cdot \mathbf{F} + \varphi \nabla \cdot \mathbf{F}$$

1.12
$$\nabla \cdot (\mathbf{F} \times \mathbf{G}) = (\nabla \times \mathbf{F}) \cdot \mathbf{G} - (\nabla \times \mathbf{G}) \cdot \mathbf{F}$$

1.13
$$\nabla \times (\varphi \mathbf{F}) = (\nabla \varphi) \times \mathbf{F} + \varphi \nabla \times \mathbf{F}$$

$$1.14 \quad \boldsymbol{\nabla} \times (\mathbf{F} \times \mathbf{G}) = (\boldsymbol{\nabla} \cdot \mathbf{G})\mathbf{F} - (\boldsymbol{\nabla} \cdot \mathbf{F})\mathbf{G} + (\mathbf{G} \cdot \boldsymbol{\nabla})\mathbf{F} - (\mathbf{F} \cdot \boldsymbol{\nabla})\mathbf{G}$$

1.15
$$\int_{S} \mathbf{n} \times \nabla \varphi \, da = \oint_{C} \varphi \, d\mathbf{l}$$

1.16
$$\int_V \boldsymbol{\nabla} \varphi \, dv = \oint_S \varphi \mathbf{n} \, da$$

1.17
$$\int_{V} \nabla \times \mathbf{F} dv = \oint_{S} \mathbf{n} \times \mathbf{F} da$$

1.18
$$\int_{V} (\nabla \cdot \mathbf{G} + \mathbf{G} \cdot \nabla) \mathbf{F} dv = \oint_{S} \mathbf{F} (\mathbf{G} \cdot \mathbf{n}) da$$

2. Coordenadas cilíndricas

$$\hat{\mathbf{r}} = \cos\theta \,\hat{\mathbf{i}} + \sin\theta \,\hat{\mathbf{j}}$$

$$\hat{\mathbf{i}} = \cos\theta \,\hat{\mathbf{r}} - \sin\theta \,\hat{\mathbf{\theta}}$$

2.1
$$\hat{\mathbf{\theta}} = -\sin\theta\,\hat{\mathbf{i}} + \cos\theta\,\hat{\mathbf{j}}$$

 $\hat{\mathbf{k}} = \hat{\mathbf{k}}$

$$\hat{\mathbf{j}} = \sin\theta \,\hat{\mathbf{r}} + \cos\theta \,\hat{\boldsymbol{\theta}}$$

2.2
$$\nabla \varphi = \hat{\mathbf{r}} \frac{\partial \varphi}{\partial r} + \hat{\mathbf{\theta}} \frac{1}{r} \frac{\partial \varphi}{\partial \theta} + \hat{\mathbf{k}} \frac{\partial \varphi}{\partial z}$$

2.3
$$\nabla \cdot \mathbf{F} = \frac{1}{r} \frac{\partial}{\partial r} (rF_r) + \frac{1}{r} \frac{\partial F_{\theta}}{\partial \theta} + \frac{\partial F_z}{\partial z}$$

$$2.4 \quad \boldsymbol{\nabla} \times \mathbf{F} = \hat{\mathbf{r}} \left(\frac{1}{r} \frac{\partial F_z}{\partial \theta} - \frac{\partial F_{\theta}}{\partial z} \right) + \hat{\boldsymbol{\theta}} \left(\frac{\partial F_r}{\partial z} - \frac{\partial F_z}{\partial r} \right) + \hat{\mathbf{k}} \frac{1}{r} \left(\frac{\partial}{\partial r} (r F_{\theta}) - \frac{\partial F_r}{\partial \theta} \right)$$

$$2.5 \quad \nabla^2 \varphi = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \varphi}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 \varphi}{\partial \theta^2} + \frac{\partial^2 \varphi}{\partial z^2}$$

armónicos cilíndricos

$$1 \qquad \qquad \ln r$$

$$r^n \cos n\theta$$
 $r^{-n} \cos n\theta$

$$r^n \operatorname{sen} n\theta$$
 $r^{-n} \operatorname{sen} n\theta$

3. Coordenadas esféricas

 $\hat{\mathbf{r}} = \operatorname{sen} \theta \cos \phi \, \hat{\mathbf{i}} + \operatorname{sen} \theta \operatorname{sen} \phi \, \hat{\mathbf{j}} + \cos \theta \, \hat{\mathbf{k}} \quad \middle| \quad \hat{\mathbf{i}} = \operatorname{sen} \theta \cos \phi \, \hat{\mathbf{r}} + \cos \theta \cos \phi \, \hat{\boldsymbol{\theta}} - \operatorname{sen} \phi \, \hat{\boldsymbol{\varphi}}$

$$\hat{\mathbf{i}} = \operatorname{sen} \theta \cos \phi \, \hat{\mathbf{r}} + \cos \theta \cos \phi \, \theta - \operatorname{sen} \phi \, \mathbf{\Phi}$$

3.1
$$\hat{\mathbf{\theta}} = \cos \theta \cos \phi \, \hat{\mathbf{i}} + \cos \theta \sin \phi \, \hat{\mathbf{j}} - \sin \theta \, \hat{\mathbf{k}}$$
 $\hat{\mathbf{j}} = \sin \theta \sin \phi \, \hat{\mathbf{r}} + \cos \theta \sin \phi \, \hat{\mathbf{\theta}} + \cos \phi \, \hat{\mathbf{\phi}}$ $\hat{\mathbf{k}} = \cos \theta \, \hat{\mathbf{r}} - \sin \theta \, \hat{\mathbf{\theta}}$

$$\begin{vmatrix} \hat{\mathbf{j}} = \sin \theta \sin \phi \, \hat{\mathbf{r}} + \cos \theta \sin \phi \, \hat{\mathbf{\theta}} + \cos \phi \, \hat{\mathbf{q}} \\ \hat{\mathbf{k}} = \cos \theta \, \hat{\mathbf{r}} - \sin \theta \, \hat{\mathbf{\theta}} \end{vmatrix}$$

3.2
$$\nabla \varphi = \hat{\mathbf{r}} \frac{\partial \varphi}{\partial r} + \hat{\mathbf{\theta}} \frac{1}{r} \frac{\partial \varphi}{\partial \theta} + \hat{\mathbf{\Phi}} \frac{1}{r \operatorname{sen} \theta} \frac{\partial \varphi}{\partial \phi}$$

3.3
$$\nabla \cdot \mathbf{F} = \frac{1}{2} \frac{\partial}{\partial r} (r^2 F_r) + \frac{1}{2} \frac{\partial}{\partial r} (F_\theta \sin \theta) + \frac{1}{2} \frac{\partial F_\theta}{\partial r} (F_\theta \sin \theta)$$

3.3
$$\nabla \cdot \mathbf{F} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 F_r) + \frac{1}{r \sec \theta} \frac{\partial}{\partial \theta} (F_{\theta} \sec \theta) + \frac{1}{r \sec \theta} \frac{\partial F_{\phi}}{\partial \phi}$$
3.4 $\nabla \times \mathbf{F} = \hat{\mathbf{r}} \frac{1}{r \sec \theta} \left[\frac{\partial}{\partial \theta} (F_{\phi} \sec \theta) - \frac{\partial F_{\theta}}{\partial \phi} \right] + \hat{\mathbf{\theta}} \frac{1}{r} \left[\frac{1}{\sec \theta} \frac{\partial F_r}{\partial \phi} - \frac{\partial}{\partial r} (r F_{\phi}) \right]$

$$+\hat{\mathbf{\Phi}}\frac{1}{r}\left[\frac{\partial}{\partial r}(rF_{\theta})-\frac{\partial F_{r}}{\partial \theta}\right]$$

$$3.5 \quad \nabla^2 \varphi = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \varphi}{\partial r} \right) + \frac{1}{r^2 \operatorname{sen} \theta} \frac{\partial}{\partial \theta} \left(\operatorname{sen} \theta \frac{\partial \varphi}{\partial \theta} \right) + \frac{1}{r^2 \operatorname{sen}^2 \theta} \frac{\partial^2 \varphi}{\partial \phi^2}$$

armónicos esféricos $\varphi_n = r^n P_n(\theta)$ o $\varphi_n = r^{-(n+1)} P_n(\theta)$

$$\begin{array}{ccc}
n & P_n(\theta) \\
\hline
0 & 1 \\
1 & \cos \theta
\end{array}$$

$$\frac{1}{2}(3\cos^2\theta - 1)$$

$$3 \qquad \frac{1}{2}(5\cos^3\theta - 3\cos\theta)$$

4. Sistema de coordenadas y vectores

La figura muestra el sistema de coordenadas y los vectores utilizados en las fórmulas de las siguentes secciones.

5. Magnetostática

$$5.1 \qquad \mathbf{F}_m = \frac{\mu_0}{4\pi} \frac{q_1 q_2}{|\mathbf{r}_2 - \mathbf{r}_1|^2} \mathbf{v}_2 \times \left(\mathbf{v}_1 \times \frac{\mathbf{r}_2 - \mathbf{r}_1}{|\mathbf{r}_2 - \mathbf{r}_1|} \right)$$

5.2
$$\mathbf{B}(\mathbf{r}_2,...) = \frac{\mu_0}{4\pi} \frac{q_1}{|\mathbf{r}_2 - \mathbf{r}_1|^2} \mathbf{v}_1 \times \frac{\mathbf{r}_2 - \mathbf{r}_1}{|\mathbf{r}_2 - \mathbf{r}_1|}$$

$$\mathbf{F_L} = q\left(\mathbf{E} + \mathbf{v} \times \mathbf{B}\right)$$

$$5.4 d\mathbf{F} = Id\mathbf{l} \times \mathbf{B}$$

5.5
$$\mathbf{m} = I\mathbf{A} = \frac{1}{2}I\oint_{C}\mathbf{r}\times d\mathbf{l}$$
 (Aquí \mathbf{A} es el vector de área)

$$5.6 \quad \tau = \mathbf{m} \times \mathbf{B}$$

5.7
$$\int_{V_1} (\cdots) \mathbf{J}(\mathbf{r_1}) dV_1 \to \oint_{C_2} (\cdots) I_1 d\mathbf{l_1}$$

5.7
$$\int_{V_1} (\cdots) \mathbf{J}(\mathbf{r}_1) dV_1 \rightarrow \oint_{C_1} (\cdots) I_1 d\mathbf{l}_1$$
5.8
$$\mathbf{B}(\mathbf{r}_2) = \frac{\mu_0}{4\pi} \int_{V_1} \frac{\mathbf{J}(\mathbf{r}_1) \times (\mathbf{r}_2 - \mathbf{r}_1)}{|\mathbf{r}_2 - \mathbf{r}_1|^3} dV_1$$

5.9
$$\nabla \cdot \mathbf{B} = 0$$
 $\oint \mathbf{B} \cdot \hat{\boldsymbol{n}} \, da = 0$

5.10
$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$$
 $\oint_C \mathbf{B} \cdot d\mathbf{l} = \mu_0 I_{enc}$

5.11
$$\mathbf{B} = \mathbf{\nabla} \times \mathbf{A}$$

5.12
$$\mathbf{A}(\mathbf{r}_2) = \frac{\mu_0}{4\pi} \int_{V_1} \frac{\mathbf{J}(\mathbf{r}_1)}{|\mathbf{r}_2 - \mathbf{r}_1|} dV_1$$

5.13
$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \frac{\mathbf{m} \times \mathbf{r}}{|\mathbf{r}|^3}$$
 (Para \mathbf{r} mucho mayor que las dimensiones del circuito)

5.14
$$\mathbf{B} = -\mu_0 \nabla \varphi^*$$
 con $\nabla^2 \varphi^* = 0$ (Para regiones donde $\mathbf{J} = 0$)

5.15
$$\mathbf{M} = \lim_{\Delta V \to 0} \sum_{i} \frac{\mathbf{m}_{i}}{\Delta V}$$

5.16
$$\mathbf{J}_M = \mathbf{\nabla} \times \mathbf{M}, \quad \mathbf{j}_M = \mathbf{M} \times \hat{\mathbf{n}}$$

5.17
$$\mathbf{A}(\mathbf{r}_2) = \frac{\mu_0}{4\pi} \int_{V_1} \frac{\mathbf{J}_M(\mathbf{r}_1)}{|\mathbf{r}_2 - \mathbf{r}_1|} dV_1 + \frac{\mu_0}{4\pi} \oint_{S_1} \frac{\mathbf{j}_M(\mathbf{r}_1)}{|\mathbf{r}_2 - \mathbf{r}_1|} da$$

$$\begin{split} 5.17 \quad & \mathbf{A}(\mathbf{r}_2) = \frac{\mu_0}{4\pi} \int_{V_1} \frac{\mathbf{J}_M(\mathbf{r}_1)}{|\mathbf{r}_2 - \mathbf{r}_1|} \, dV_1 + \frac{\mu_0}{4\pi} \oint_{S_1} \frac{\mathbf{j}_M(\mathbf{r}_1)}{|\mathbf{r}_2 - \mathbf{r}_1|} \, da_1 \\ 5.18 \quad & \varphi^*(\mathbf{r}_2) = -\frac{1}{4\pi} \int_{V_1} \frac{\mathbf{\nabla}_1 \cdot \mathbf{M}(\mathbf{r}_1)}{|\mathbf{r}_2 - \mathbf{r}_1|} \, dV_1 + \frac{1}{4\pi} \oint_{S_1} \frac{\mathbf{M}(\mathbf{r}_1) \cdot \hat{\mathbf{n}}_1}{|\mathbf{r}_2 - \mathbf{r}_1|} \, da_1, \quad & \nabla^2 \varphi^* = \mathbf{\nabla} \cdot \mathbf{M} \end{split}$$

5.19
$$\mathbf{B}(\mathbf{r}_2) = -\mu_0 \nabla \varphi^*(\mathbf{r}_2) + \mu_0 \mathbf{M}(\mathbf{r}_2)$$

$$5.20 \quad \mathbf{H} = \frac{1}{\mu_0} \mathbf{B} - \mathbf{M}$$

5.21
$$\mathbf{M} = \chi_m \mathbf{H}, \quad \mathbf{B} = \mu \mathbf{H}$$

5.22
$$\mathbf{H} = -\nabla \varphi$$

$$\begin{array}{ll} 5.23 & \boldsymbol{\nabla}\times\mathbf{H}=\mathbf{J} & \oint_{C}\mathbf{H}\cdot d\mathbf{l}=I \\ \\ 5.24 & B_{1n}=B_{2n}, & (\mathbf{H}_{1}-\mathbf{H}_{2})_{t}=\mathbf{j}\times\hat{\mathbf{n}} \end{array}$$

5.24
$$B_{1n} = B_{2n}$$
, $(\mathbf{H}_1 - \mathbf{H}_2)_t = \mathbf{j} \times \hat{\mathbf{n}}$

6. Inducción electromagnética

$$6.1 \quad \boldsymbol{\nabla} \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \qquad \oint_C \mathbf{E} \cdot d\mathbf{l} = -\frac{d\Phi}{dt} = \mathcal{E}$$

6.2
$$L = \frac{d\dot{q}}{dt}$$

6.3
$$\mathcal{E} = -L \frac{dI}{dt}$$

6.4
$$M_{ij} = \frac{d\Phi_{ij}}{dI_j} = M_{ji}$$
 $M_{ii} = L_i$ $M_{ij} = k\sqrt{L_iL_j}$, $-1 < k < 1$

7. Energía magnética

7.1
$$U = \frac{1}{2} \sum_{i} I_{i} \Phi_{i}$$
 con $\Phi_{i} = \sum_{j} M_{ij} I_{j}$
7.2 $U = \frac{1}{2} \int \mathbf{H} \cdot \mathbf{B} \, dV$

7.2
$$U = \frac{1}{2} \int_{V} \mathbf{H} \cdot \mathbf{B} \, dV$$

7.3 $\mathbf{F} = \nabla U$ para I constante, $\mathbf{F} = -\nabla U$ para Φ constante

8. Circuitos C.A.

8.1
$$V = V_0 e^{i\omega t}$$
, $I = I_0 e^{i\omega t}$

8.2
$$V = ZI$$
, $|I_0| = V_0/|Z|$

8.3
$$Z_R = R$$
, $Z_L = i\omega L$, $Z_C = \frac{-i}{\omega C}$

$$8.4 \quad \bar{P} = \frac{1}{2}|I_0||V_0|\cos\phi$$

9. Ecuaciones de Maxwell

9.1
$$\nabla \cdot \mathbf{D} = \rho$$

9.2
$$\nabla \cdot \mathbf{B} = 0$$

9.3
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

9.3
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

9.4 $\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$

9.5
$$u = \frac{1}{2} \left(\mathbf{E} \cdot \mathbf{D} + \mathbf{B} \cdot \mathbf{H} \right)$$

9.6
$$\mathbf{S} = \mathbf{E} \times \mathbf{H}$$

9.7
$$\nabla \cdot \mathbf{S} + \frac{\partial \rho}{\partial t} = -\mathbf{J} \cdot \mathbf{E}$$

Parte VI Reducción de Datos

"La estadística es la gramática de la ciencia." - Karl Pearson.

Incertezas

48.1. Uso y Reporte de Incertezas

valor medido de
$$x = x_{\text{mejor}} \pm \delta x$$
. (48.1)

Donde δx siempre es positivo.

Regla para Escribir incertezas

Las incertezas debe, casi siempre, estar aproximadas a la cifra significativa.

Regla para Escribir Respuestas

La última cifra significativa en cualquier resultado debe tener el mismo orden de magnitud (en la misma posición decimal) que la incerteza.

Definición 48.1.1. La discrepancia esta definida como la diferencia entre 2 valores medidos de la misma cantidad.

Definición 48.1.2.

$$incerteza \; fraccionaria \; o \; relativa \; = \frac{\delta x}{|x_{mejor}|}.$$

48.2. Propagación de Incertezas

48.2.1. La Regla de Raíz Cuadrada para un Experimento de Conteos

Definición 48.2.1. Si observamos la ocurrencias de un evento que pasa aleatoriamente peor con un promedio definido, si se tienen ν ocurrencias en un tiempo T, nuestra estimación para el promedio es

$$(promedio\ de\ n\'umero\ de\ eventos\ en\ el\ tiempo\ T) = \nu \pm \sqrt{\nu}. \tag{48.2}$$

48.2.2. Reglas de Propagación de Error

La sreglas de propagación de error se refiere a uan situación en la cual encontramos varias cantidades x, \ldots, w con incertezas $\delta x, \ldots, \delta w$ y cuando usamos estos valores para calcular q.

Sumas y Restas: $q = x + \cdots + z - (u + \cdots + w)$, entonces

$$\delta q = \sqrt{\delta x^2 + \dots + \delta z^2 + \delta u^2 + \dots + \delta w^2}.$$
 (48.3)

Productos y Cocientes: Si $q = \frac{x \cdots z}{u \cdots w}$,

$$\frac{\delta q}{|q|} = \sqrt{\left(\frac{\delta x}{x}\right)^2 + \dots + \left(\frac{\delta z}{z}\right)^2 + \left(\frac{\delta u}{u}\right)^2 + \dots + \left(\frac{\delta w}{w}\right)^2}.$$
 (48.4)

Incerteza de una Potencia: Si n es un numero exacto $q = x^n$

$$\frac{\delta q}{|q|} = |n| \frac{\delta x}{|x|}.\tag{48.5}$$

Incerteza de una función de una Variable: Si q = q(x) es una función de x

$$\delta q = \left| \frac{\mathrm{d}q}{\mathrm{d}x} \right| \delta x. \tag{48.6}$$

o en caso de que q sea muy complicada

$$\delta q = |q(x_{best} + \delta x) - q(x_{best})|. \tag{48.7}$$

Fórmula General de la Propagación de Error: Si $q=q(x,\ldots,z)$ es una función de $x,\ldots,z,$ entonces

$$\delta q = \sqrt{\left(\frac{\partial q}{\partial x}\delta x\right)^2 + \dots + \left(\frac{\partial q}{\partial z}\delta z\right)^2}.$$
 (48.8)

48.3. Análisis Estadístico de Incertezas Aleatorias

48.3.1. Promedio o Media

La Media: El mejor valor estimado para x, es la media (en este caso: aritmética)

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i. \tag{48.9}$$

Desviación Estandar: El promedio de las incertezas de las mediciones individuales

$$\sigma_x = \sqrt{\frac{1}{N-1} \sum (x_i - \bar{x})^2}.$$
 (48.10)

Anteriormente el denominador se tomaba como N. Además, podemos identificar a σ_x como la incerteza de cualquier medición de x, $\delta x = \sigma_x$, y podemos decir con un 68 % de confianza que cualquier medición de x caerá dentro de σ_x .

Desviación Estandar de la Media: La incerteza de nuestro mejor valor (la media) es:

$$\sigma_{\bar{x}} = \frac{\sigma_x}{\sqrt{N}}.\tag{48.11}$$

Si hay errores sistemáticos apreciables, entonces $\sigma_{\bar{x}}$ da la componente aleatoria de la incerteza en nuestra mejor estimación de x

$$\delta x_{ran} = \sigma_{\bar{x}}.\tag{48.12}$$

Si existe una forma para estimar la componente sistematica δx_{sys} , una rasonable (más no rigurosamente justificada) expresión para la incerteza total es la suma de los cuadrados entre ambas incertezas

$$\delta x_{tot} = \sqrt{\delta x_{ran}^2 + \delta x_{sys}^2}. (48.13)$$

La Distribución Normal

49.1. Distribución Límite

Si f(x) es la distribución límite de una variable continua x, entonces

f(x) dx = probabilidad que cualesquiera de las mediciones caerá enre x y x + dx.

у

 $\int_a^b f(x) dx = \text{probabilidad de que cualesquiera de las mediciones caiga entre } a \text{ y } b.$

La condición de normalización es

$$\int_{-\infty}^{\infty} f(x) \, \mathrm{d}x = 1,\tag{49.1}$$

mientras que la media o valor esperado es

$$\bar{x} = \int_{-\infty}^{\infty} x f(x) \, \mathrm{d}x \,. \tag{49.2}$$

49.2. Distribución Normal (o de Gauss)

Si las mediciones de x estan sujetos a muchos pero pequeños errores aleatorios pero no sistemáticos, su distribución límite sera la distribución normal:

$$G_{X,\sigma}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-X)^2/2\sigma^2},$$
 (49.3)

donde X es el valor real d x, centro de la distribución y el valor medio después muchas mediciones. Y, σ es el parámetro de ancho de la distribución y la desviación estándar luego de muchas mediciones.

La probabilidad de una única medición de caer entre t desviaciones estándar de X es

$$P(x \le |t\sigma|) = \frac{1}{\sqrt{2\pi}} \int_{-t}^{t} e^{-z^2/2} \, \mathrm{d}z.$$
 (49.4)

Esta integral es normalmente llamada la función de error. Su valor como una función de t es mostrado en tablas. En partícular, para t=1 la probabilidad es de 68%.

Un valor aceptado de x sera aquel que caiga a cierta cantidad de desviaciones estandar del centro de la distribución, es decir, con cierto porcentaje mayor a un umbral previamente designado.

Rechazo de Datos y la Media Ponderada

50.1. Criterio de Chauvenet

Si se realizan N mediciones x_1, \ldots, x_N de una única cantidad x, y si una de estas mediciones (x_{sus}) es sospechosamente diferente de las otras, el criterio de Chauvenet da una prueba para decidir si se acepta o no este dato sospechoso. Teniendo la desviación estándar y le media de las mediciones, encontraremos el número de desviaciones estándar por las cuales x_{sus} difiere \bar{x} ,

$$t_{sus} = \frac{|x_{sus} - \bar{x}|}{\sigma_x} \tag{50.1}$$

Luego encontramos la probabilidad (asumiendo que los valores están normalmente distribuidos alrededor de \bar{x} con ancho σ_x) de encontar este resultado tan desviado como x_{sus} , y el número de mediciones esperadas para desviarse esta cantidad es $n=N\times P(\text{fuera }t_{sus}\sigma)$. Si $n<\frac{1}{2}$, entonces de acuerdo al criterio de Chauvenet puedes rechazar el valor de x_{sus} . Dado que existen muchas objeciones al criterio de Chauvenet (especialmente cuando N no es muy grande), esto solo debería ser utilizado como último recurso. Además, esto se pierde DS: se va al carajo si dos o más valores son sospechosos.

50.2. Media Ponderada

Si x_1, \ldots, x_N son mediciones de una cantidad x, con incertezas conocidas $\sigma_1, \ldots, \sigma_N$, entonces el valor mejor estimado al valor real de x es la media ponderada

$$x_{wav} = \frac{\sum w_i x_i}{\sum w_i},\tag{50.2}$$

donde als sumas son sobre todas las mediciones y los pesos son los reciprocos cuadrados de las incertezas correspondientes

$$w_i = \frac{1}{\sigma_i^2}. (50.3)$$

La incerteza de x_{wav} es

$$\sigma_{wav} = \frac{1}{\sqrt{\sum w_i}}. (50.4)$$

Distribución Binomial y de Poisson

51.1. La Distribución Binomial

Conseideraremos un experimento con varios posibles resultados y designamos los resultado (o resultados) particular en el que estamos interesados como un "éxito". Si la probabilidad de éxito en cualquier ensayo es p, entonces la probabilidad de ν éxitos en n ensayos viene dada por la distribución binomial:

$$P(\nu \text{ éxitos en } n \text{ intentos}) = \binom{n}{\nu} p^{\nu} (1-p)^{n-\nu}, \tag{51.1}$$

Si repetimos el conjunto completo de n ensayos muchas veces, esperamos que el número medio de éxitos es

$$\bar{\nu} = np \tag{51.2}$$

y su desviación estándar es

$$\sigma_{\nu} = \sqrt{np(1-p)}.\tag{51.3}$$

51.1.1. Aproximación Gaussiana a la Distribución Binomial

Cuando n es grande, la distribución binomial $B_{n,p}(\nu)$ esta bien aproximada por la función de Gauss con la misma media y desviación estándar, esto es

$$B_{n,n}(\nu) \approx G_{X,\sigma}(\nu). \tag{51.4}$$

51.2. Distribución de Poisson

La distribución de Poisson describe experimentos en los cuales se cuentan eventos que ocurren aleatoriamente pero a una tasa promedio definida. SI se cuentan durante un intervalo T, la probabilidad de observar ν eventos es dada por la función de Poisson

$$P_{\mu}(\nu) = e^{-\mu} \frac{\mu^{\nu}}{\nu!},\tag{51.5}$$

donde el parámetro μ es el numero promedio esperado de eventos en el tiempo T: $\bar{\nu} = \mu$. Su desviación estándar es $\sigma_{\nu} = \sqrt{\mu}$.

51.2.1. Aproximación Gaussiana a la Distribución de Poisson

Cuando μ es grande, la distribución de Poisson se aproxima bien a una función Gaussiana con la misma media y desviación estandar:

$$P_{\mu}(\nu) \approx G_{X,\sigma}(\nu).$$
 (51.6)

Prueba Ji Cuadrado y Mínimos Cuadrados

52.1. Mínimos Cuadrados

Se considerarán N pares de mediciones $(x_1, y_1), \ldots, (x_N, y_N)$ de dos variables. El problema recae en encontrar los mejores valores de los parámetros de la curva que una gráfica y vs x se espera que ajuste.

52.1.1. Una Línea Recta; Ponderaciones Iguales

Si y se espera que caiga en una línea recta y = A + Bx, si las medidas de y tienen todas la misma incerteza, las mejores aproximaciones para las constantes son

$$A = \frac{\sum x^2 \sum y - \sum x \sum xy}{\Delta} \tag{52.1}$$

У

$$B = \frac{N \sum xy - \sum x \sum y}{\Delta},\tag{52.2}$$

donde Δ es

$$\Delta = N \sum x^2 - \left(\sum x\right)^2. \tag{52.3}$$

Basados en las observaciones, la mejor estimación para las incertezas son

$$\sigma_y = \sqrt{\frac{1}{N-2} \sum_{i=1}^{N} (y_i - A - Bx_i)^2},$$
(52.4)

$$\sigma_A = \sigma_y \sqrt{\frac{\sum x^2}{\Delta}},\tag{52.5}$$

$$\sigma_B = \sigma_y \sqrt{\frac{N}{\Delta}}.\tag{52.6}$$

52.1.2. Línea Recta por el Origen; Ponderaciones Iguales

Si y se espera que caiga en una línea recta que atraviese el origen y = Bx, si las mediciones de y todas tienen la misma incerteza, la mejor estimación para las constantes es

$$B = \frac{\sum xy}{\sum x^2}. (52.7)$$

Basados en las observaciones, las incertezas son

$$\sigma_y = \sqrt{\frac{1}{N-1} \sum (y_i - Bx_i)^2},$$
(52.8)

$$\sigma_B = \frac{\sigma_y}{\sqrt{\sum x^2}}. (52.9)$$

52.1.3. Ajuste Ponderado para una Línea Recta

Si y se espera que sea una línea recta, y los valores medidos de y tienen diferentes y conocidas incertezas σ_i , introducimos las ponderaciones $w_i = \frac{1}{\sigma_i^2}$, las mejores estimaciones de las constantes son

$$A = \frac{\sum wx^2 \sum wy - \sum wx \sum wxy}{\Delta},\tag{52.10}$$

$$B = \frac{\sum w \sum wxy - \sum wx \sum wy}{\Delta}, \tag{52.11}$$

$$\Delta = \sum w \sum wx^2 - (wx)^2. \tag{52.12}$$

Cuyas incertezas son

$$\sigma_A = \sqrt{\frac{\sum wx^2}{\Lambda}},\tag{52.13}$$

$$\sigma_B = \sqrt{\frac{\sum w}{\Delta}}. (52.14)$$

52.1.4. Otras Curvas

Si y se supone como un polinomio $y = A + Bx + \cdots + Hx^n$, entonces existe un método análogo, pero las ecuaciones son bastante engorrosas. También curvas de la forma $y = Af(x) + \cdots + Hk(x)$, donde las funciones son conocidas, existe un método análogo también. Otra forma es linearizar el problema; por ejemplo, para una función exponencial, su "linearización" es $z = \ln y = \ln A + Bx$.

52.2. Prueba Chi-Cuadrado para Distribuciones

52.2.1. Definicicón de Chi-Cuadrado

Si se realizan n mediciones para las cuales se sabe, o se puede calcular, los valores esperados y las desviaciones estándar, entonces, definimos χ^2 como

$$\chi^2 = \sum_{i}^{n} \left(\frac{\text{Valor observado} - \text{valor esperado}}{\text{desviación estándar}} \right)^2.$$
 (52.15)

Las n mediciones son los números, O_1, \ldots, O_n , de veces que el valor de una cantidad x fue observado en cada una de las n "bins". En este caso, el número esperado E_k es determinado por la distribución propuesta de x, y la desviación estándar es $\sqrt{E_k}$; por lo tanto

$$\chi^2 = \sum_{k=1}^n \frac{(O_k - E_k)^2}{E_k}.$$
 (52.16)

Si la distribución propuesta para x es correcta, entonces χ^2 debería ser de orden n. Si $\chi^2 \gg n$, la distribución propuesta es probablemente incorrecta.

52.2.2. Grados de Libertad y Chi-Cuadrado Reducido

Si se repetirá el momento muchas veces, el valor medio de χ^2 debería ser igual a d, el número de $grados\ de\ libertad$, definido como

$$d = n - c, (52.17)$$

donde c es el número de restricciones, el número de parámetros que se han tenido que calcular desde los datos para encontrar χ^2 . Chi-Cuadrado reducido se define como

$$\tilde{\chi}^2 = \chi^2/d. \tag{52.18}$$

Si la distribución propuesta es correcta, $\overset{\sim}{\chi}^2$ debería de ser de orden 1; si $\overset{\sim}{\chi}^2 \gg 1$, los datos no se ajustan a la distribución propuesta satisfactoriamente.

52.2.3. Probabilidades para Chi-Cuadrado

Suponga que obtiene $\overset{\sim}{\chi_o}^2$ de un experimento. Si $\overset{\sim}{\chi_o}^2$ es apreciablemente mayor a 1, se tienen razones para dudar de la distribución sobre la cual sus valores esperados E_k están basados. Desde una tabla de probabilidades se puede encontrar

$$P(\tilde{\chi}^2 \ge \tilde{\chi}_o^2),\tag{52.19}$$

probabilidad de obtener un valor $\tilde{\chi}^2$ tan grande como $\tilde{\chi}_o^2$, asumiendo que la distribución esperada es la correcta. Si esta probabilidad es pequeña, tiene motivos para rechazar la distribución esperada; si es inferior al 5 %, se rechazaría la distribución supuesta al nivel del 5 %, o nivel significativo; si la probabilidad es inferior al 1 %, se rechazaría la distribución al nivel del 1 %, o nivel altamente significativo.

Bibliografía

- [1] Stephen J Blundell and Katherine M Blundell. Concepts in thermal physics. Oup Oxford, 2010.
- [2] Profesor Denis Boyer. Statistical physics, 2021.
- [3] Enrico Fermi. Thermodynamics. Courier Corporation, 2012.
- [4] David J Griffiths. Introduction to electrodynamics. Cambridge University Press, 2023.
- [5] Jerry B Marion. Classical dynamics of particles and systems. Academic Press, 2013.
- [6] EJ Moulton. H. goldstein, classical mechanics. 1952.
- [7] John R Reitz et al. Fundamentos de la teoría electromagnética. Biblioteca Hernán Malo González, 1996.
- [8] Profesor PhD. Rodrigo Sacahui. Electromagnetismo 1, 2021.
- [9] Jun John Sakurai and Jim Napolitano. *Modern quantum mechanics*. Cambridge University Press, 2020.
- [10] Profesor Ing. Rodolfo Samayoa. Mecánica cuántica, 2022.
- [11] Profesor Ing. Rodolfo Samayoa. Mecánica estadística, 2022.
- [12] John Robert Taylor and John R Taylor. Classical mechanics, volume 1. Springer, 2005.
- [13] John Robert Taylor and William Thompson. An introduction to error analysis: the study of uncertainties in physical measurements, volume 2. Springer, 1982.
- [14] Profesor David Tong. Classical mechanics, 2004-05.
- [15] Profesor David Tong. Dynamics and relativity, 2013.
- [16] Profesor David Tong. Statistical physics, 2013.
- [17] Profesor David Tong. Electromagnetism, 2015.
- [18] Nouredine Zettili. Quantum mechanics: concepts and applications. 2009.