CWI

Erasable PUFs ormal Treatment and Generic Desig

Chenglu Jin, Wayne Burleson, Marten van Dijk, and Ulrich Rührmair

UMassAmherst CONNIMU

Hardware security primitive taking challenges and generating responses

- Hardware security primitive taking challenges and generating responses
- Unique fingerprint on individual IC even if designed and fabricated in the same way

- Hardware security primitive taking challenges and generating responses
- Unique fingerprint on individual IC even if designed and fabricated in the same way
- Leveraging manufacturing process variations

- Hardware security primitive taking challenges and generating responses
- Unique fingerprint on individual IC even if designed and fabricated in the same way
- Leveraging manufacturing process variations
- Ideally, PUFs are Physical Random Functions

- Hardware security primitive taking challenges and generating responses
- Unique fingerprint on individual IC even if designed and fabricated in the same way
- Leveraging manufacturing process variations
- Ideally, PUFs are Physical Random Functions

- Hardware security primitive taking challenges and generating responses
- Unique fingerprint on individual IC even if designed and fabricated in the same way
- Leveraging manufacturing process variations
- Ideally, PUFs are Physical Random Functions

Applications

Device/Chip Authentication

- Hardware security primitive taking challenges and generating responses
- Unique fingerprint on individual IC even if designed and fabricated in the same way
- Leveraging manufacturing process variations
- Ideally, PUFs are Physical Random Functions

- Device/Chip Authentication
- Key Management/Storage

- Hardware security primitive taking challenges and generating responses
- Unique fingerprint on individual IC even if designed and fabricated in the same way
- Leveraging manufacturing process variations
- Ideally, PUFs are Physical Random Functions

- Device/Chip Authentication
- Key Management/Storage
- Cryptographic Protocols (Key Exchange, Oblivious Transfer, Bit Commitment)

- Hardware security primitive taking challenges and generating responses
- Unique fingerprint on individual IC even if designed and fabricated in the same way
- Leveraging manufacturing process variations
- Ideally, PUFs are Physical Random Functions

- Device/Chip Authentication
- Key Management/Storage
- Cryptographic Protocols (Key Exchange, Oblivious Transfer, Bit Commitment)

$$C_0, C_1, \dots, C_k$$

$$\rightarrow R_0, R_1, \dots, R_k$$

(C, R)

Public, Authenticated Physical Channel

ВОВ

(C, R)

$$C_0, C_1, \dots, C_k$$

Public, Authenticated Communication Channel

The security of this protocol relies on the unpredictability of PUF responses given its challenges.

(C, R)

 C_0, C_1, \dots, C_k $\longrightarrow R_0, R_1, \dots, R_k$

R is the shared secret key

Not Complete!

(C, R)

(C, R)

In the PUF Re-Use model, Eve can know the secret R as well.

- In the PUF Re-Use model, Eve can know the secret R as well.
- Highly realistic threat against PUF-based protocol, as destroying PUFs after one protocol execution is prohibitively uneconomic.

- In the PUF Re-Use model, Eve can know the secret R as well.
- Highly realistic threat against PUF-based protocol, as destroying PUFs after one protocol execution is prohibitively uneconomic.
- Actually, impossibility results of constructing PUF-based crypto protocols like KE/OT in PUF Re-Use model have been proved.

Marten van Dijk and Ulrich Rührmair. "Physical unclonable functions in cryptographic protocols: Security proofs and impossibility results." IACR ePrint (2012)

- In the PUF Re-Use model, Eve can know the secret R as well.
- Highly realistic threat against PUF-based protocol, as destroying PUFs after one protocol execution is prohibitively uneconomic.
- Actually, impossibility results of constructing PUF-based crypto protocols like KE/OT in PUF Re-Use model have been proved.
- The issue has to be solved on the hardware level.

Marten van Dijk and Ulrich Rührmair. "Physical unclonable functions in cryptographic protocols: Security proofs and impossibility results." IACR ePrint (2012)

Erase the CRP used in the protocol execution after the protocol

- Erase the CRP used in the protocol execution after the protocol
- Attackers will have no way to re-access the secret response value

- Erase the CRP used in the protocol execution after the protocol
- Attackers will have no way to re-access the secret response value
- Can a reconfigurable PUF solve the problem?

- Erase the CRP used in the protocol execution after the protocol
- Attackers will have no way to re-access the secret response value
- Can a reconfigurable PUF solve the problem?
- A Reconfigurable PUF allows users to alter the responses of all challenges in one single operation (so-called "Reconfiguration").

Multi-Party Use Case

Using reconfigurable PUFs in crypto protocols cannot support multi-party use case.

Erasable PUFs

 Allows users to erase/alter the response of individual challenges chosen by the users

Erasable PUFs

- Allows users to erase/alter the response of individual challenges chosen by the users
- Erasable PUF-based crypto protocols can allow multiple parties to share one PUF and avoid repeated physical transfer of the PUF

Erasable PUFs

- Allows users to erase/alter the response of individual challenges chosen by the users
- Erasable PUF-based crypto protocols can allow multiple parties to share one PUF and avoid repeated physical transfer of the PUF
- Users can only erase the used CRPs after protocol execution, without affecting the other CRPs

 Add an interface around a PUF to enforce access control to the PUF

- Add an interface around a PUF to enforce access control to the PUF
- Create a list of erased challenges

- Add an interface around a PUF to enforce access control to the PUF
- Create a list of erased challenges
- If a queried challenge is in the list of erased challenges, then the interface should deny the access to the PUF

- Add an interface around a PUF to enforce access control to the PUF
- Create a list of erased challenges
- If a queried challenge is in the list of erased challenges, then the interface should deny the access to the PUF
- Otherwise, the interface will allow the PUF to be queried, and the response will be generated and outputted.

- Add an interface around a PUF to enforce access control to the PUF
- Create a list of erased challenges
- If a queried challenge is in the list of erased challenges, then the interface should deny the access to the PUF
- Otherwise, the interface will allow the PUF to be queried, and the response will be generated and outputted.
- Add new challenges into the list to erase them logically

Basic Idea to Realize Erasable PUFs

- Add an interface around a PUF to enforce access control to the PUF
- Create a list of erased challenges
- If a queried challenge is in the list of erased challenges, then the interface should deny the access to the PUF
- Otherwise, the interface will allow the PUF to be queried, and the response will be generated and outputted.
- Add new challenges into the list to erase them logically
- Drawback: The list should not be tampered with by adversaries, but the size of the list is growing when more and more challenges are erased. This implies that a large trusted memory is needed

Generic Erasable PUFs (Genie PUFs), because its just a PUF interface, and it can be integrated with any PUFs

- Generic Erasable PUFs (Genie PUFs), because its just a PUF interface, and it can be integrated with any PUFs
- Goal: Reduce the size of trusted memory in the trusted computing base (TCB)

- Generic Erasable PUFs (Genie PUFs), because its just a PUF interface, and it can be integrated with any PUFs
- Goal: Reduce the size of trusted memory in the trusted computing base (TCB)
- Key Idea: Merge Authenticated Search Tree and Red-Black Tree structure to securely outsource the list of erased challenges to untrusted memory

- Generic Erasable PUFs (Genie PUFs), because its just a PUF interface, and it can be integrated with any PUFs
- Goal: Reduce the size of trusted memory in the trusted computing base (TCB)
- Key Idea: Merge Authenticated Search Tree and Red-Black Tree structure to securely outsource the list of erased challenges to untrusted memory
- What can we achieve?

- Generic Erasable PUFs (Genie PUFs), because its just a PUF interface, and it can be integrated with any PUFs
- Goal: Reduce the size of trusted memory in the trusted computing base (TCB)
- Key Idea: Merge Authenticated Search Tree and Red-Black Tree structure to securely outsource the list of erased challenges to untrusted memory
- What can we achieve?
- Only require a constant-sized trusted memory in the TCB to store the root hash of the tree structure

- Generic Erasable PUFs (Genie PUFs), because its just a PUF interface, and it can be integrated with any PUFs
- Goal: Reduce the size of trusted memory in the trusted computing base (TCB)
- Key Idea: Merge Authenticated Search Tree and Red-Black Tree structure to securely outsource the list of erased challenges to untrusted memory
- What can we achieve?
- Only require a constant-sized trusted memory in the TCB to store the root hash of the tree structure
- Support arbitrarily large list of erased challenges

- Generic Erasable PUFs (Genie PUFs), because its just a PUF interface, and it can be integrated with any PUFs
- Goal: Reduce the size of trusted memory in the trusted computing base (TCB)
- Key Idea: Merge Authenticated Search Tree and Red-Black Tree structure to securely outsource the list of erased challenges to untrusted memory
- What can we achieve?
- Only require a constant-sized trusted memory in the TCB to store the root hash of the tree structure
- Support arbitrarily large list of erased challenges
- Using the combined tree structure, the untrusted memory can provide a O(log(N)) size proof to the TCB to prove a challenge is (not) in the list of size N

$$c_0$$
, $h_0 = H (c_0, h_1, h_2)$

$$c_1$$
, $h_1 = H (c_1, h_3, h_4)$

$$c_2$$
, h_2 = H (c_2 , h_5 , 0)

$$c_3$$
, $h_3 = H (c_3, 0, 0)$

$$c_4$$
, h_4 = H (c_4 , 0, 0)

$$c_5$$
, $h_5 = H(c_5, 0, 0)$

 In each node of the tree, we store one unique challenge, and the tree is sorted like a binary search tree according to the challenge value in each node

- In each node of the tree, we store one unique challenge, and the tree is sorted like a binary search tree according to the challenge value in each node
- Besides the challenge c_i , a hash value is stored in each node, where $h_i = H(c_i, hash value stored in its left child, hash value stored in its right child)$

- In each node of the tree, we store one unique challenge, and the tree is sorted like a binary search tree according to the challenge value in each node
- Besides the challenge c_i , a hash value is stored in each node, where $h_i = H(c_i, hash value stored in its left child, hash value stored in its right child)$

GeniePUF Architecture

Public, Untrusted

System Part (Software)

Trusted Computing Base (Hardware) of GeniePUF

Public, Untrusted System Part

Public, Untrusted System Part

Performance Evaluation

- Implement the TCB on Zynq FPGA (HW) and the RB Tree Interface on Processor (SW)
- Latency grows logarithmically w.r.t. the number of erased challenges

Security Analysis

- Security Assumptions for Genie PUFs
- 1. Adversaries cannot circumvent the Control Logic (CL), applying their own challenges directly to the underlying Strong PUF, reading out the corresponding responses r_i .
- 2. Adversaries cannot modify the CL, for example such that it cannot correctly verify the validity of PROOF.
- 3. Adversaries may read the stored RootHash, but not modify it. It is public, but authentic.

A New Definitional Framework of PUFs

- Easily accessible, yet precise style PUF definition
- Parameterized Game-based PUF definition (ϵ, t_{att}, k)
- Intuition of Secure Erasable PUF Definition:

The security of an erasable PUF is measured by the upper bound ϵ of the accuracy of guessing one out of k randomly chosen CRPs by an attacker which takes time t_{att} for computation, physical actions, and k times game interactions with the challenger, where in each game interaction a randomly chosen CRP is erased.

Main Results of Formal Analysis

- Erasable PUFs are Strong PUFs
- Let P be a (k, t_{att}, ϵ) -secure Erasable PUF with respect to some adversary A. Then P is a (k, t_{att}, ϵ) -secure Strong PUF with respect to the same adversary A.
- The Security of Genie PUFs
- Let P be a PUF with challenge set C_P . Let A be an adversary for GeniePUF(P). Then GeniePUF(P) is $(k, t_{att}, \epsilon + \rho)$ -secure Erasable PUF with respect to A, where ρ represents the collision probability of the used hash function.

Conclusion

- Fixed the issue of PUF re-use model in PUF-based cryptographic protocols by using erasable PUFs.
- Introduced a generic erasable PUF design (Genie PUF) that can turn any strong PUFs to erasable PUFs.
- Proposed a rigorous, yet easily accessible definitional framework of PUF and proved our main theorems in the framework

Thank you for your attention!

Questions?

Authenticated Search Tree Proof Generation

- Locate where the new challenge is supposed to be stored
- 2. Find a path from the new node for c_{new} to the root
- Fetch all the challenge values and all sibling hash values to construct a proof of (non)-existence

Red-Black Tree Background

- Self-balancing Binary Search Tree
- Guarantee O(log N) worst-case search time with a tree of size N

