IBM Supervised Machine Learning Regression

Course Final Project:

Major Projects Cost Estimating with Regression

By Javier A. Jaime-Serrano June 17, 2021

Abstract

For this Project we used the Major Project dataset from the province of Alberta in Canada [1], it contains more than 700 currently active projects on the province, this Data set if filtered for Projects valued at \$5 million or greater.

This Dataset contain a lot of valuable information on the Major Projects. The Estimated Cost, Sector & Type and the Location data will be used.

From this dataset, we will like to find the features that can predict the cost of the project for a given project type in a sector and in a region.

Objectives

From the Major Projects in the dataset, we want to be able to estimate the cost of similar projects, with a rough order of magnitude (ROOM).

We will choose the type of projects were we have enough data within a valid range, so we can estimate the cost of similar projects, with a rough order of magnitude (ROOM) in a matter of seconds, instead of using current techniques.

This quick ROOM Cost Estimate can be used as benchmark in multiple industries.

Data Cleaning

In order to prepare and clean the dataset:

- We drop the projects where there is no estimated cost.
- Made some assumptions about schedule completion and status.
- Drop not required columns and renamed the remaining columns.
- Made corrections on project types and sectors.

A problem encountered was how to extract the location coordinates (Longitude & Latitude) from a GeoJASON column. The problem was solved with Python code that loop over all rows and extract the start (first) locations by a type condition.

Data Cleaning

Figure 1. Cleaned Dataset

	Project Name	Estimated Cost (millions)	Municipality	Forecasted Completion	Sector	Туре	Stage	Developer	Start Latitude	Start Longitude
ProjectId										
7	StoneGate Landing	3000.0	Calgary	2021	Mixed-Use	Mixed-Use	Started	WAM Development Group / AIMCo	51.172501	-113.975800
11	Shepard Station Suburban Office Campus Building 1	22.0	Calgary	2020	Commercial	Office: Low- Rise	Started	Shepard Development Corp.	50.931721	-113.970596
22	Barron Building Renovation	100.0	Calgary	2021	Residential	Apartment: Mid-Rise	Proposed	Strategic Group	51.046070	-114.076614
26	Quarry Crossing II Office Building	72.8	Calgary	2027	Commercial	Office: Low- Rise	Proposed	Remington Development Corp.	50.966900	-114.002899
32	Nolan Hill TownHomes	5.0	Calgary	2027	Residential	Townhouses	Proposed	Jayman Modus	51.162041	-114.160912

We explored the data, first with descriptive statistics and bar charts (see Figure 2).

Second, we used box plots for the cost estimate ranges by type (see Figure 3).

Third, we used folium library to create a map using latitude and longitude values (See Figure 4).

We also used KMeans [2] to Cluster the projects by geographical region using the location coordinates (See Figure 5).

And then we will be able to try the different Regressors from Scikit-learn [2] to estimate the (ROOM) Cost and evaluate the Results.

Figure 2. Project types bar chart

Figure 3. Box Plot Estimated Cost for Power Sector

Figure 4.
Projects Map

Figure 5. Projects Map KMeans Clusters by Region with Project type

Key Findings and Insights

After corrections, we ended with 58 unique types in 9 sectors (see figure 6).

For the feature engineering, we extracted size and capacity data by type from the dropped project details column, adding units and cleaning it manually in excel.

The Estimated Cost was set as the Target variable in millions (removing 3 zeros).

The datasets were merged back, and one hot encoding was used again to transform the categorical features into numerical dummy features, resulting in 72 Columns.

_	•		•		
_	In	\sim	In	α	C
	ш			CI.	ì
•	in	O.		J	•
				_	

Figure 6.

Unique Sectors

and Types

ors	
Industrial	
Infrastructure	

Sector

Commercial

Type	
Business Park	10
Distribution Centre	5
Office Renovation	13
Offices	18
Other Commercial	4
Agriculture	7
Bioproduct	4
Chemical	4
Metals	4
Other Industrial	14
Telecommunication	9
Airport	4
Flood Mitigation	10
Other Infrastructure	16
Roadwork	79
Transit	12
Water/Wastewater	37

Project Name

•	
Apartment:	
Apartment	
Co	
Other R	
To	
Auto [Retail
Big-	
N	
Ot	
Shop	
Shopp	
Arts ar	Tourism
А	
Commun	
Ev	
Othe	
Spor	

١	Apartment: High-Ris
	Apartment: Low-Ris
	Apartment: Mid-Ris
	Communit
	Other Residentia
	Townhouse
ı	Auto Dealershi
	Big-Box Stor
	Mixed-Us
	Other Reta
	Shopping Ma
	Shopping Plaz
ı	Arts and Cultur
	Attraction
	Community Centr
	Event Space
	Hote
	Other Tourism
	Par
	Sports Facility

18

61

33

12

24

Hypothesis Testing

We want to be able to estimate the cost of similar projects, with a rough order of magnitude (ROOM). In order to test the predictive features with correlation, we need first to pick a sector, for this case we choose the power sector (see figure 7). Is Size/Capacity in Megawatts is correlated with the Estimated Cost?

- Null Hypotesis (H0): Size/Capacity is not correlated with Estimated Cost
- Alternative Hypotesis (H1): Size/Capacity is correlated with Estimated Cost From SciPy, Pearson Correlation Coeficient: 0.9676147594295178
 Two-tailed p-value: 6.958427885850458e-19

Conclusion: There is a relationship between Capacity and Cost (see figure 8).

Hypothesis Testing

Figure 7. Power Sector Data

	Project Name	Estimated Cost (millions)	Туре	Start Latitude	Start Longitude	Size/Capacity	\$1000/Capacity
ProjectId							
642	Sundance 7 Gas-Fired Power Plant	1600.0	Gas Power	53.547501	-114.445000	856.0	1869.158879
644	Genesee Generating Station Units 4 and 5 Project	1400.0	Gas Power	53.547501	-114.445000	1060.0	1320.754717
649	Peace Butte Wind Farm	200.0	Wind	49.896000	-110.856003	120.0	1666.666667
653	Harvest Operations Gas Fired Power Plant	10.0	Gas Power	52.514198	-111.926003	5.6	1785.714286
2086	Vulcan Solar Project	155.0	Solar	50.093319	-112.848129	77.5	2000.000000

Hypothesis Testing

Figure 8. Estimated Cost Vs. Size/Capacity by Project Type

Results

We did the split of one hot encoded data, with 70% for training and the remaining 30% for Testing. And we run a simple linear regression with poor results. We transformed the data with the Standar Scaler and fit the linear regression model again, with a considerable improvement on the predictions. We added Polynomial Features to the one hot encoded data, fit the linear regression model again and obtained even worse results.

We tried a simpler model with the Capacity and Location Coordinates from the Power sector data only, from the Hypothesis Testing (See Figure 7), and after training the model with the spilt data, we obtained considerable better Results. We applied the Standard Scaler and added Polynomial Features (See Table 1).

Results

Table 1. r2 Score

r2 Score	One Hot Encoded	Not Encoded	
LR Simple	0.3562	0.6745	
LR with StandardScaler	0.6477	0.7983	
LR with Poly Features	0.3473	0.8769	

Conclusions

Using the Major Project dataset from the province of Alberta, after preparation and cleaning, we were able to extract valuable but limited information.

After exploring the dataset, we were able to do some feature engineering and filter the data set to extract valid information. We also performed significance testing to prove the correlation between the Capacity in the Power Sector and the Cost.

We tried two different approaches to linear regression: the one hot encoding of all the features and a simpler model with the selected features from the hypotesis testing with added Polynomial Features.

The Linear Regression Model with 2nd Degree Polynomal Features (without one hot encoding) obtained the best results using the r2 Score (See Table 1).

Future Work

Most of the projects have not enough data for the engineered features of size and/or capacity, so we only were able to predict the cost in one sector.

The polynomial features added complexity to the model, but without enough data in one sector, we couldn't obtain better results with higher degrees.

Further work is required to search for capacity data from other sources (company websites, industry associations, etc.).

With an augmented data set, we will be able to cross validate and fine tune the model with the optimum parameters.

References

- [1] Alberta Major Projects: https://majorprojects.alberta.ca/
- [2] Scikit-learn library: https://scikit-learn.org/stable/
- [3] Jupiter Notebook: https://github.com/javier-jaime/IBM-Machine-Learning-Capstone/