PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12N 9/28, C11D 3/386

A1 (11) II

(11) International Publication Number:

WO 99/23211

(43) International Publication Date:

14 May 1999 (14.05.99)

(21) International Application Number:

PCT/DK98/00471

(22) International Filing Date:

30 October 1998 (30.10.98)

(30) Priority Data:

1240/97 PA 1998 00936 30 October 1997 (30.10.97)

14 July 1998 (14.07.98)

DK DK

(71) Applicant: NOVO NORDISK A/S [DK/DK]; Novo Alle, DK-2880 Bagsværd (DK).

(72) Inventors: BORCHERT, Torben, Vedel; Novo Nordisk A/S, Novo Alle, DK-2880 Bagsværd (DK). SVENDSEN, Allan; Novo Nordisk A/S, Novo Alle, DK-2880 Bagsværd (DK). ANDERSEN, Carsten; Novo Nordisk A/S, Novo Alle, DK-2880 Bagsværd (DK). NIELSEN, Bjarne, Rønfeldt; Novo Nordisk A/S, Novo Alle, DK-2880 Bagsværd (DK). NISSEN, Torben, Lauesgaard; Novo Nordisk A/S, Novo Alle, DK-2880 Bagsværd (DK). KJAERULFF, Søren; Novo Nordisk A/S, Novo Alle, DK-2880 Bagsværd (DK).

(74) Agent: NOVO NORDISK A/S; Corporate Patents, Novo Alle, DK-2880 Bagsværd (DK). (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: α -AMYLASE MUTANTS

(57) Abstract

The invention relates to a variant of a parent Termamyl-like α -amylase, which exhibits an alteration in at least one of the following properties relative to said parent α -amylase: i) improved pH stability at a pH from 8 to 10.5; and/or ii) improved Ca²⁺ stability at pH 8 to 10.5, and/or iii) increased specific activity at temperatures from 10 to 60 °C.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	A Ibania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	Fi	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary `	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	ΙE	Ireland	MN	Mongolia	ÜA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	18	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	ītaly -	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JР	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand	2,,	Zimoaowe
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	u	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore .		
					•		

WO 99/23211 PCT/DK98/00471

α -amylase mutants

FIELD OF THE INVENTION

The present invention relates to variants (mutants) of parent Termamyl-like α -amylases with higher activity at medium temperatures and/or high pH.

BACKGROUND OF THE INVENTION

 α -Amylases (α -1,4-glucan-4-glucanohydrolases, EC 3.2.1.1) constitute a group of enzymes which catalyze hydrolysis of starch and other linear and branched 1,4-glucosidic oligo- and polysaccharides.

There is a very extensive body of patent and scientific literature relating to this industrially very important class of enzymes. A number of α -amylases such as Termamyl-like α -amylases variants are known from e.g. WO 90/11352, WO 95/10603, WO 95/26397, WO 96/23873 and WO 96/23874.

Among more recent disclosures relating to lpha-amylases, WO 96/23874 provides three-dimensional, X-ray crystal structural data for a Termamyl-like α -amylase which consists of the 300 N-20 terminal amino acid residues of the B.amyloliquefaciens α -amylase (BANTM) and amino acids 301-483 of the C-terminal end of the B. licheniformis α -amylase comprising the amino acid sequence (the latter being available commercially under the tradename $Termamyl^{TM}$), and which is thus closely related to the industrially important $\textit{Bacillus}\ \alpha\text{-amylases}$ (which in the present context are embraced within the meaning of the term "Termamyllike α -amylases", and which include, inter alia, licheniformis. В. amyloliquefaciens (BANTM) and B.stearothermophilus (BSGTM) α -amylases). WO 96/23874 30 describes methodology for designing, on the basis of an analysis of the structure of a parent Termamyl-like α -amylase, variants of the parent Termamyl-like α -amylase which exhibit altered properties relative to the parent.

10

BRIEF DISCLOSURE OF THE INVENTION

The present invention relates to novel α -amylolytic variants (mutants) of a Termamyl-like α -amylase which exhibit improved wash performance (relative to the parent α -amaylase) at high pH and at a medium temperature.

The term "medium temperature" means in the context of the invention a temperature from 10°C to 60°C , preferably 20°C to 50°C , especially $30-40^{\circ}\text{C}$.

The term "high pH" means the alkaline pH which is today used for washing, more specifically from about pH 8 to 10.5.

In the context of the invention a "low temperature α -amylase" means an α -amylase which has a relative optimum activity in the temperature range from 0-30°C.

In the context of the invention a "medium temperature α -amylase" means an α -amylase which has an optimum activity in the temperature range from 30-60°C. For instance, SP690 and SP722 α -amylases, respectively, are "medium temperature α -amylases.

In the context of the invention a "high temperature α -amylase" is an α -amylase having the optimum activity in the temperature range from 60-110°C. For instance, Termamyl is a "high temperature α -amylase.

Alterations in properties which may be achieved in variants (mutants) of the invention are alterations in:

The stability of the Termamyl-like α -amylase at a pH from 8 to 10.5, and/or the Ca²+ stability at pH 8 to 10.5, and/or the specific activity at temperatures from 10 to 60°C, preferably 20-50°C, especially 30-40°C.

It should be noted that the relative temperature optimum is often dependent on the specific pH used. In other words the relative temperature optimum determined at, e.g. pH 8, may be substantially different from the relative temperature optimum determined at, e.g., pH 10.

The temperature's influence on the enzymatic activity

10

15

20

25

in the active site and surroundings dependent on the temperature and the amino acid composition and of strong importance for the relative temperature optimum of an enzyme. By comparing the dynamics of medium and high temperature α -amylases, regions of importance for the function of high temperature α -amylases at medium temperatures can be determined. The temperature activity profile of the SP722 $\alpha\text{-amaylase}$ (SEQ ID NO: 2) and the B. licheniformis lpha-amylase (available from Novo Nordisk as Termamyl®) (SEQ ID NO: 4) are shown in Figure 2.

relative temperature optimum of 10 SP722 in absolute activities is shown to be higher at medium range temperatures (30-60°C) than the homologous B. licheniformis α -amylase, which has an optimum activity around 60-100°C. The profiles are mainly dependent on the temperature stability and the dynamics of the active site residues and their surroundings. activity profiles are dependent on the pH used and the pKa of the active site residues.

In the first aspect the invention relates to a variant of a parent Termamyl-like α -amylase, which variant has α -amylase activity, said variant comprises one or more corresponding to the following mutations in the amino acid sequence shown in SEQ ID NO: 2:

T141, K142, F143, D144, F145, P146, G147, R148, G149,

Q174, R181, G182, D183, G184, K185, A186, W189, S193, N195,

H107, K108, G109, D166, W167, D168, Q169, S170, R171, Q172, F173, 25 F267, W268, K269, N270, D271, L272, G273, A274, L275, K311, E346, K385, G456, N457, K458, P459, G460, T461, V462, T463.

A variant of the invention have one or more of the following substitutions or deletions:

30 T141A, D, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, W, Y, V; K142A, D, R, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V; F143A, D, R, N, C, E, Q, G, H, I, L, K, M, P, S, T, W, Y, V; D144A,R,N,C,E,Q,G,H,I,L,K,M,F,P,S,T,W,Y,V; F145A, D, R, N, C, E, Q, G, H, I, L, K, M, P, S, T, W, Y, V; 35 P146A, D, R, N, C, E, Q, G, H, I, L, K, M, F, S, T, W, Y, V;

G147A, D, R, N, C, E, Q, H, I, L, K, M, F, P, S, T, W, Y, V;

15

R148A, D, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V; G149A, D, R, N, C, E, Q, H, I, L, K, M, F, P, S, T, W, Y, V; R181*, A, D, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V; G182*, A, D, R, N, C, E, Q, H, I, L, K, M, F, P, S, T, W, Y, V; 5 D183*, A, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V; G184*, A, R, D, N, C, E, Q, H, I, L, K, M, F, P, S, T, W, Y, V; K185A, D, R, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V; A186D, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V; W189A, D, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, Y, V; 10 S193A, D, R, N, C, E, Q, G, H, I, L, K, M, F, P, T, W, Y, V; N195A, D, R, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V; H107A, D, R, N, C, E, Q, G, I, L, K, M, F, P, S, T, W, Y, V; K108A, D, R, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V; G109A, D, R, N, C, E, Q, H, I, L, K, M, F, P, S, T, W, Y, V; 15 D166A, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V; W167A, D, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, Y, V; D168A, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V; Q169A, D, R, N, C, E, G, H, I, L, K, M, F, P, S, T, W, Y, V; S170A, D, R, N, C, E, Q, G, H, I, L, K, M, F, P, T, W, Y, V; 20 R171A, D, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V; Q172A, D, R, N, C, E, G, H, I, L, K, M, F, P, S, T, W, Y, V; F173A, D, R, N, C, E, Q, G, H, I, L, K, M, P, S, T, W, Y, V; Q174*, A, D, R, N, C, E, G, H, I, L, K, M, F, P, S, T, W, Y, V; F267A, D, R, N, C, E, Q, G, H, I, L, K, M, P, S, T, W, Y, V; 25 W268A, D, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, Y, V; K269A, D, R, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V; N270A, D, R, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V; D271A, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V; L272A, D, R, N, C, E, Q, G, H, I, K, M, F, P, S, T, W, Y, V; 30 G273A, D, R, N, C, E, Q, H, I, L, K, M, F, P, S, T, W, Y, V; A274D, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V; L275A, D, R, N, C, E, Q, G, H, I, K, M, F, P, S, T, W, Y, V; K311A, D, R, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V; E346A, D, R, N, C, Q, G, H, I, K, L, M, F, P, S, T, W, Y, V; 35 K385A, D, R, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V; G456A, D, R, N, C, E, Q, H, I, L, K, M, F, P, S, T, W, Y, V; N457A, D, R, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V; K458A, D, R, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V;

10

25

30

35

P459A, D, R, N, C, E, Q, G, H, I, L, K, M, F, S, T, W, Y, V; G460A, D, R, N, C, E, Q, H, I, L, K, M, F, P, S, T, W, Y, V; T461A, D, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, W, Y, V; V462A, D, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y; T463A, D, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, W, Y, V.

Preferred are variants having one or more of the following substitutions or deletions:

K142R; S193P; N195F; K269R,Q; N270Y,R,D; K311R; E346Q; K385R; K458R; P459T; T461P; Q174*; R181Q,N,S; G182T,S,N; D183*; G184*; K185A,R,D,C,E,Q,G,H,I,L,M,N,F,P,S,T,W,Y,V;A186T,S,N,I,V,R; 189T,S,N,Q.

Especially preferred are variants having a deletion in positions D183 and G184 and further one or more of the following substitutions or deletions:

15 K142R; S193P; N195F; K269R,Q; N270Y,R,D; K311R; E346Q; K385R;
K458R; P459T; T461P; Q174*; R181Q,N,S; G182T,S,N;
K185A,R,D,C,E,Q,G,H,I,L,M,N,F,P,S,T,W,Y,V; A186T,S,N,I,V,R;
W189T,S,N,Q.

The variants of the invention mentioned above exhibits an alteration in at least one of the following properties relative to the parent α -amylase:

- i) improved pH stability at a pH from 8 to 10.5; and/or
- ii) improved Ca2+ stability at pH 8 to 10.5, and/or
- iii) increased specific activity at temperatures from 10 to 60°C, preferably 20-50°C, especially 30-40°C. Further, details will be described below.

The invention further relates to DNA constructs encoding variants of the invention; to methods for preparing variants of the invention; and to the use of variants of the invention, alone or in combination with other enzymes, in various industrial products or processes, e.g., in detergents or for starch liquefaction.

In a final aspect the invention relates to a method of providing α -amylases with altered pH optimum, and/or altered temperature optimum, and/or improved stability.

Nomenclature

In the present description and claims, the conventional one-

letter and three-letter codes for amino acid residues are used. For ease of meference, α -amylase variants of the invention are described by use of the following nomenclature:

Original amino acid(s):position(s):substituted amino acid(s)

According to this nomenclature, for instance the substitution of alanine for asparagine in position 30 is shown as:

Ala30Asn or A30N

a deletion of alanine in the same position is shown as:

Ala30* or A30*

10 and insertion of an additional amino acid residue, such as lysine, is shown as:

Ala30AlaLys or A30AK

A deletion of a consecutive stretch of amino acid residues, such as amino acid residues 30-33, is indicated as (30-33)* or $\Delta(A30-N33)$.

Where a specific α -amylase contains a "deletion" in comparison with other α -amylases and an insertion is made in such a position this is indicated as:

*36Asp or *36D

20 for insertion of an aspartic acid in position 36 Multiple mutations are separated by plus signs, i.e.:

Ala30Asp + Glu34Ser or A30N+E34S representing mutations in positions 30 and 34 substituting alanine and glutamic acid for asparagine and serine, respectively.

When one or more alternative amino acid residues may be inserted in a given position it is indicated as

A30N, E or

A30N or A30E

Furthermore, when a position suitable for modification is identified herein without any specific modification being suggested, it is to be understood that any amino acid residue may be substituted for the amino acid residue present in the position. Thus, for instance, when a modification of an alanine in position 30 is mentioned, but not specified, it is to be understood that the alanine may be deleted or substituted for any other amino acid, i.e., any one of:

15

R, N, D, A, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, V.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is an alignment of the amino acid sequences of six parent Termamyl-like α -amylases. The numbers on the extreme left designate the respective amino acid sequences as follows:

- 1: SEQ ID NO: 2
- 2: Kaoamyl
- 3: SEQ ID NO: 1
- 10 4: SEO ID NO: 5
 - 5: SEQ ID NO: 4
 - 6: SEQ ID NO: 3.

Figure 2 shows the temperature activity profile of SP722 (SEQ

- ID NO: 2) (at pH 9) and B. licheniformis α -amylase (SEQ ID NO:
- 15 4) (at pH 7.3).

Figure 3 shows the temperature profile for SP690 (SEQ ID NO:

- 1), SP722 (SEQ ID NO: 2), B. licheniformis α -amylase (SEQ ID NO:
- 4) at pH 10.

Figure 4 is an alignment of the amino acid sequences of five α -amylases. The numbers on the extreme left designate the respective amino acid sequences as follows:

- 1: amyp mouse
- 2: amyp rat
- 3: amyp_pig porcine pancreatic alpha-amylase (PPA)
- 25 4: amyp human
 - 5: amy_altha A. haloplanctis alpha-amylase (AHA)

DETAILED DISCLOSURE OF THE INVENTION

The Termamyl-like α -amylase

- It is well known that a number of α -amylases produced by Bacillus spp. are highly homologous on the amino acid level. For instance, the B. licheniformis α -amylase comprising the amino acid sequence shown in SEQ ID NO:. 4 (commercially available as TermamylTM) has been found to be about 89% homologous with the B.
- amyloliquefaciens α -amylase comprising the amino acid sequence shown in SEQ ID NO: 5 and about 79% homologous with the B.

WO 99/23211 PCT/DK98/00471 -

8

stearothermophilus α -amylase comprising the amino acid sequence shown in SEQ ID NO: 3. Further homologous α -amylases include an α -amylase derived from a strain of the *Bacillus* sp. NCIB 12289, NCIB 12512, NCIB 12513 or DSM 9375, all of which are described in detail in WO 95/26397, and the α -amylase described by Tsukamoto et al., <u>Biochemical and Biophysical Research Communications</u>, 151 (1988), pp. 25-31, (see SEQ ID NO: 6).

Still further homologous α -amylases include the α -amylase produced by the B. licheniformis strain described in EP 0252666 (ATCC 27811), and the α -amylases identified in WO 91/00353 and WO 94/18314. Other commercial Termamyl-like B. licheniformis α -amylases are comprised in the products OptithermTM and TakathermTM (available from Solvay), MaxamylTM (available from Gist-brocades/Genencor), Spezym AATM and Spezyme Delta AATM (available from Genencor), and KeistaseTM (available from Daiwa).

Because of the substantial homology found between these α -amylases, they are considered to belong to the same class of α -amylases, namely the class of "Termamyl-like α -amylases".

Accordingly, in the present context, the term "Termamyl-like $\alpha\text{-amylase"}$ is intended to indicate an $\alpha\text{-amylase}$ which, at the amino acid level, exhibits a substantial homology to $Termanyl^{TM}$, i.e., the B. licheniformis α -amylase having the amino acid sequence shown in SEQ ID NO:4 herein. In other words, all the following α -amylases which has the amino acid sequences shown in SEQ ID NOS: 1, 2, 3, 4, 5, 6, 7 or 8 herein, or the amino acid sequence shown in SEQ ID NO: 1 of WO 95/26397 (the same as the amino acid sequence shown as SEQ ID NO: 7 herein) or in SEQ ID NO: 2 of WO 95/26397 (the same as the amino acid sequence shown as SEQ ID NO: 8 herein) or in Tsukamoto et al., 1988, (which amino acid sequence is shown in SEQ ID NO: 6 herein) considered to be "Termamyl-like α -amylase". Other Termamyl-like α -amylases are α -amylases i) which displays at least 60%, such as at least 70%, e.g., at least 75%, or at least 80%, e.g., at least 85%, at least 90% or at least 95% homology with at least

10

15

20

25

WO 99/23211 PCT/DK98/00471 -9

one of said amino acid sequences shown in SEQ ID NOS: 1-8 and/or ii) displays immunological cross-reactivity with an antibody raised against at least one of said α -amylases, and/or iii) is encoded by a DNA sequence which hybridizes to the DNA sequences 5 encoding the above-specified α -amylases which are apparent from SEQ ID NOS: 9, 10, 11, or 12 of the present application (which encoding sequences encode the amino acid sequences shown in SEQ ID NOS: 1, 2, 3, 4 and 5 herein, respectively), from SEQ ID NO: 4 of WO 95/26397 (which DNA sequence, together with the stop codon TAA, is shown in SEQ ID NO: 13 herein and encodes the amino acid sequence shown in SEQ ID NO: 8 herein) and from SEQ ID NO: 5 of WO 95/26397 (shown in SEQ ID NO: 14 herein), respectively.

connection with property i), the "homology" determined by use of any conventional algorithm, preferably by use of the GAP progamme from the GCG package version 7.3 (June 1993) using default values for GAP penalties, which is a GAP creation penalty of 3.0 and GAP extension penalty of 0.1, (Genetic Computer Group (1991) Programme Manual for the GCG Package, version 7, 575 Science Drive, Madison, Wisconsin, USA 53711).

A structural alignment between Termamyl (SEQ ID NO: 4) and a Termamyl-like α -amylase may be used to identify lent/corresponding positions in other Termamyl-like lpha-amylases. One method of obtaining said structural alignment is to use the 25 Pile Up programme from the GCG package using default values of gap penalties, i.e., a gap creation penalty of 3.0 and gap extension penalty of 0.1. Other structural alignment methods the hydrophobic cluster analysis (Gaboriaud et al., (1987), FEBS LETTERS 224, pp. 149-155) and reverse threading 30 (Huber, T; Torda, AE, PROTEIN SCIENCE Vol. 7, No. 1 pp. 142-149 (1998).

Property ii) of the α -amylase, i.e., the immunological cross reactivity, may be assayed using an antibody raised against, or reactive with, at least one epitope of the relevant Termamyl-like α -amylase. The antibody, which may either be monoclonal or polyclonal, may be produced by methods known in

35

10

15

10

art, e.g., described by Hudson et al., Practical as Immunology, Third edition (1989), Blackwell Scientific Publications. The immunological cross-reactivity may be determined using assays known in the art, examples of which are Western Blotting or radial immunodiffusion assay, e.g., as described by Hudson et al., 1989. In this respect, immunological crossreactivity between the α -amylases having the amino sequences SEQ ID NOS: 1, 2, 3, 4, 5, 6, 7, or 8, respectively, has been found.

The oligonucleotide probe used in the characterisation of the Termamyl-like α -amylase in accordance with property iii) above may suitably be prepared on the basis of the full or partial nucleotide or amino acid sequence of the α -amylase in question.

Suitable conditions for testing hybridisation involve presoaking in 5xSSC and prehybridizing for 1 hour at ~40°C in a solution of 20% formamide, 5xDenhardt's solution, 50mM sodium phosphate, pH 6.8, and 50mg of denatured sonicated calf thymus DNA, followed by hybridisation in the same solution supplemented with 100mM ATP for 18 hours at ~40°C, followed by three times washing of the filter in 2xSSC, 0.2% SDS at 40°C for 30 minutes (low stringency), preferred at 50°C (medium stringency), more preferably at 65°C (high stringency), even more preferably at ~75°C (very high stringency). More details about the hybridisation method can be found in Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor, 1989.

In the present context, "derived from" is intended not only to indicate an $\alpha\text{-amylase}$ produced or producible by a strain of the organism in question, but also an $\alpha\text{-amylase}$ encoded by a DNA sequence isolated from such strain and produced in a host organism transformed with said DNA sequence. Finally, the term is intended to indicate an $\alpha\text{-amylase}$ which is encoded by a DNA sequence of synthetic and/or cDNA origin and which has the identifying characteristics of the $\alpha\text{-amylase}$ in question. The term is also intended to indicate that the parent $\alpha\text{-amylase}$ may be a variant of a naturally occurring $\alpha\text{-amylase}$, i.e. a variant which is the result of a modification (insertion, substitution,

10

15

20

-25

30

11

deletion) of one or more amino acid residues of the naturally occurring $\alpha\text{--amylase}\,.$

Parent hybrid α -amylases

The parent α -amylase (i.e., backbone α -amylase) may be a hybrid α -amylase, i.e., an α -amylase which comprises a combination of partial amino acid sequences derived from at least two α -amylases.

The parent hybrid α -amylase may be one which on the basis of amino acid homology and/or immunological cross-reactivity and/or DNA hybridization (as defined above) can be determined to belong to the Termamyl-like α -amylase family. In this case, the hybrid α -amylase is typically composed of at least one part of a Termamyl-like α -amylase and part(s) of one or more other α -amylases selected from Termamyl-like α -amylases or non-Termamyl-like α -amylases of microbial (bacterial or fungal) and/or mammalian origin.

Thus, the parent hybrid α -amylase may comprise a combination of partial amino acid sequences deriving from at least two Termamyl-like α -amylases, or from at least one Termamyl-like and at least one non-Termamyl-like bacterial α -amylase, or from at least one Termamyl-like and at least one fungal α -amylase. The Termamyl-like α -amylase from which a partial amino acid sequence derives may, e.g., be any of those specific Termamyl-like α -amylase referred to herein.

For instance, the parent α -amylase may comprise a C-terminal part of an α -amylase derived from a strain of B. licheniformis, and a N-terminal part of an α -amylase derived from a strain of B. amyloliquefaciens or from a strain of B. stearothermophilus. For instance, the parent α -amylase may comprise at least 430 amino acid residues of the C-terminal part of the B. licheniformis α -amylase, and may, e.g., comprise a) an amino acid segment corresponding to the 37 N-terminal amino acid

10

15

20

25

residues of the B. amyloliquefaciens α -amylase having the amino acid sequence shown in SEQ ID NO: 5 and an amino acid segment corresponding to the 445 C-terminal amino acid residues of the B. licheniformis α -amylase having the amino acid sequence shown in SEQ ID NO: 4, or

hybrid Termamyl-like α -amylase being identical Termamyl sequence, i.e., the Bacillus licheniformis α -amylase shown in SEQ ID NO: 4, except that the N-terminal 35 amino acid residues (of the mature protein) has been replaced by the N-33 terminal residues of (mature protein), i.e., the BAN Bacillus amyloliquefaciens α -amylase shown in SEQ ID NO: 5; or b) an amino acid segment corresponding to the 68 N-terminal amino acid residues of the B. stearothermophilus α -amylase having the amino acid sequence shown in SEQ ID NO: 3 and an 15 amino acid segment corresponding to the 415 C-terminal amino racid residues of the B. licheniformis α -amylase having the amino acid sequence shown in SEQ ID NO: 4.

suitable—parent hybrid α -amylase is previously described in WO 96/23874 (from Novo constituting the N-terminus of BAN, Bacillus amyloliquefaciens α -amylase (amino acids 1-300 of the mature protein) and the Cterminus from Termamyl (amino acids 301-483 of protein). Increased activity was achieved by substituting one or more of the following positions of the above hybrid α -amylase (BAN:1-300/Termamyl:301-483): Q360, F290, and N102. Particularly interesting substitutions are one or more of the following substitutions: F290A, C, D, E, G, H, I, K, L, M, N, P, Q, R, S, T; Q360E, D; N102D, E;

The corresponding positions in the SP722 α -amylase shown in SEQ ID NO: 2 are one or more of: S365, Y295, N106. Corresponding 30 substitutions of particular interest in said α -amylase shown in SEQ ID NO: 2 are one or more of: S365D.E: Y295 A, C, D, E, G, H, I, K, L, M, N, P, Q, R, S, T; and N106D, E.

The corresponding positions in the SP690 α -amylase shown in 35 SEQ ID NO: 1 are one or more of: S365, Y295, N106.

5

10

20

corresponding substitutions of particular interest are one or more of: S365D,E; Y295 A,C,D,E,G,H,I,K,L,M,N,P,Q,R,S,T; N106D,E.

The above mentioned non-Termamyl-like α -amylase may, e.g., be a fungal α -amylase, a mammalian or a plant α -amylase or a bacterial α -amylase (different from a Termamyl-like α -amylase). Specific examples of such α -amylases include the Aspergillus oryzae TAKA α -amylase, the A. niger acid α -amylase, the Bacillus subtilis α -amylase, the porcine pancreatic α -amylase and a barley α -amylase. All of these α -amylases have elucidated structures which are markedly different from the structure of a typical Termamyl-like α -amylase as referred to herein.

The fungal α -amylases mentioned above, i.e., derived from A. niger and A. oryzae, are highly homologous on the amino acid level and generally considered to belong to the same family of α -amylases. The fungal α -amylase derived from Aspergillus oryzae is commercially available under the tradename FungamylTM.

Furthermore, when a particular variant of a Termamyl-like α -amylase (variant of the invention) is referred to — in a conventional manner — by reference to modification (e.g., deletion or substitution) of specific amino acid residues in the amino acid sequence of a specific Termamyl-like α -amylase, it is to be understood that variants of another Termamyl-like α -amylase modified in the equivalent position(s) (as determined from the best possible amino acid sequence alignment between the respective amino acid sequences) are encompassed thereby.

In a preferred embodiment of the invention the α -amylase backbone is derived from B. licheniformis (as the parent Termamyl-like α -amylase), e.g., one of those referred to above, such as the B. licheniformis α -amylase having the amino acid sequence shown in SEQ ID NO: 4.

Altered properties of variants of the invention

The following discusses the relationship between mutations which are present in variants of the invention, and desirable

10

15

20

25

alterations in properties (relative to those a parent Termamyllike α -amylase) which may result therefrom.

Improved stability at pH 8-10.5

In the context of the present invention, mutations (including amino acid substitutions) of importance with respect to achieving improved stability at high pH (i.e., pH 8-10.5) include mutations corresponding to mutations in one or more of the following positions in SP722 α -amylase (having the amino acid sequence shown in SEQ ID NO: 2): T141, K142, F143, D144, F145, P146, G147, R148, G149, R181, A186, S193, N195, K269, N270, K311, K458, P459, T461.

The variant of the invention have one or more of the following substitutions (using the SEQ ID NO: 2 numbering):

T141A, D, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, W, Y, V;
K142A, D, R, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V;
F143A, D, R, N, C, E, Q, G, H, I, L, K, M, P, S, T, W, Y, V;
D144A, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
F145A, D, R, N, C, E, Q, G, H, I, L, K, M, F, S, T, W, Y, V;
G147A, D, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
R148A, D, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
G149A, D, R, N, C, E, Q, H, I, L, K, M, F, P, S, T, W, Y, V;
K181A, D, R, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V;
S193A, D, R, N, C, E, Q, G, H, I, L, K, M, F, P, T, W, Y, V;

K269A, D, R, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V; N270A, D, R, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V; K311A, D, R, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V;

N195A, D, R, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;

K458A, D, R, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V; P459A, D, R, N, C, E, Q, G, H, I, L, K, M, F, S, T, W, Y, V; T461A, D, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, W, Y, V.

Preferred high pH stability variants include one or more of the following substitutions in the SP722 α-amylase (having the amino acid sequence shown in SEQ ID NO: 2):

K142R, R181S, A186T, S193P, N195F, K269R, N270Y, K311R, K458R, P459T and T461P.

30

5

WO 99/23211 PCT/DK98/00471 -

In specific embodiments the <code>Bacillus</code> strain NCIB 12512 α -amylase having the sequence shown in SEQ ID NO: 1, or the <code>B. stearothermophilus</code> α -amylase having the sequence shown in SEQ ID NO: 3, or the <code>B. licheniformis</code> α -amylase having the sequence shown in SEQ ID NO: 4, or the <code>B. amyloliquefaciens</code> α -amylase having the sequence shown in SEQ ID NO: 5 is used as the backbone, i.e., parent Termamyl-like α -amylase, for these mutations.

As can been seen from the alignment in Figure 1 the B. stearothermophilus α -amylase already has a Tyrosine at position corresponding to N270 in SP722. Further, the Bacillus strain NCIB 12512 α -amylase, the B. stearothermophilus α -amylase, the B. licheniformis α -amylase and the B. amyloliquefaciens α -amylase already have Arginine at position corresponding to K458 in SP722. Furthermore, the B. licheniformis α -amylase already has a Proline at position corresponding to T461 in SP722. Therefore, for said α -amylases these substitutions are not relevant.

α-amylase variants with improved stability at high pH can be constructed by making substitutions in the regions found using the molecular dynamics simulation mentioned in Example 2. The simulation depicts the region(s) that has a higher flexibility or mobility at high pH (i.e., pH 8-10.5) when compared to medium pH.

By using the structure of any bacterial alpha-amylase with homology (as defined below) to the Termamyl-like α -amylase (BA2), of which the 3D structure is disclosed in Appendix 1 of WO 96/23874 (from Novo Nordisk), it is possible to modelbuild the structure of such alpha-amylase and to subject it to molecular dynamics simulations. The homology of said bacterial α -amylase may be at least 60%, preferably be more than 70%, more preferably more than 80%, most preferably more than 90% homologous to the above mentioned Termamyl-like α -amylase (BA2), measured using the UWGCG GAP program from the GCG package version 7.3 (June 1993) using default values for GAP penalties

10

15

[Genetic Computer Group (1991) Programme Manual for the GCG Package, version 7, 575 Science Drive, Madison, Wisconsin, USA 53711]. Substitution of the unfavorable residue for another would be applicable.

5

10

15

Improved Ca²⁺ stability at pH 8-10.5

Improved Ca^{2+} stability means the stability of the enzyme under Ca^{2+} depletion has been improved. In the context of the present invention, mutations (including amino acid substitutions) of importance with respect to achieving improved Ca^{2+} stability at high pH include mutation or deletion in one or more positions corresponding to the following positions in the SP722 α -amylase having the amino acid sequence shown in SEQ ID NO: 2: R181, G182, D183, G184, K185, A186, W189, N195, N270, E346, K385, K458, P459.

A variant of the invention have one or more of the following substitutions or deletions:

R181*, A, D, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;

G182*, A, D, R, N, C, E, Q, H, I, L, K, M, F, P, S, T, W, Y, V;

20 D183*, A, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;

G184*, A, R, D, N, C, E, Q, H, I, L, K, M, F, P, S, T, W, Y, V;

K185A, D, R, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V;

A186D, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;

W189A, D, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, Y, V;

25 N195A, D, R, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;

N270A, R, D, N, C, E, Q, H, I, L, K, M, F, P, S, T, W, Y, V;

E346A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;

 ${\tt K385A,R,D,N,C,E,Q,G,H,I,L,M,F,P,S,T,W,Y,V;}$

K458A, R, D, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V;

30 P459A, R, D, N, C, E, Q, G, H, I, L, K, M, F, S, T, W, Y, V.

Preferred are variants having one or more of the following substitutions or deletions:

R181Q,N; G182T,S,N; D183*; G184*;

K185A, R, D, C, E, Q, G, H, I, L, M, N, F, P, S, T, W, Y, V; A186T, S, N, I, V;

35 W189T,S,N,Q; N195F, N270R,D; E346Q; K385R; K458R; P459T.

In specific embodiments the <code>Bacillus</code> strain NCIB 12512 α -amylase having the sequence shown in SEQ ID NO: 1, or the <code>B. amyloliquefaciens</code> α -amylase having the sequence shown in SEQ ID

NO: 5, or the B. licheniformis α -amylase having the sequence shown in SEQ ID NO: 4 are used as the backbone for these mutations.

As can been seen from the alignment in Figure 1 the B. licheniformis α -amylase does not have the positions corresponding to D183 and G184 in SP722. Therefore for said α -amylases these deletions are not relevant.

In a preferred embodiment the variant is the <code>Bacillus</code> strain NCIB 12512 α -amylase with deletions in D183 and G184 and further one of the following substitutions: R181Q,N and/or G182T,S,N and/or D183*; G184* and/or

K185A,R,D,C,E,Q,G,H,I,L,M,N,F,P,S,T,W,Y,V and/or A186T,S,N,I,V and/or W189T,S,N,Q and/or N195F and/or N270R,D and/or E346Q and/or K385R and/or K458R and/or P459T.

15

10

5

Increased specific activity at medium temperature

In a further aspect of the present invention, important mutations with respect to obtaining variants exhibiting increased specific activity at temperatures from 10-60°C. 20 20-50°C, preferably especially 30-40°C, include corresponding to one or more of the following positions in the SP722 $\alpha\text{-amylase}$ having the amino acid sequence shown in SEQ ID NO: 2:

H107, K108, G109, D166, W167, D168, Q169, S170, R171. 0172. 25 F173, Q174, D183, G184, N195, F267, W268, K269, N270, D271, L272, G273, A274, L275, G456, N457, K458, P459, G460. T461, V462, T463.

The variant of the invention have one or more of the following substitutions:

30 H107A, D, R, N, C, E, Q, G, I, L, K, M, F, P, S, T, W, Y, V;
 K108A, D, R, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V;
 G109A, D, R, N, C, E, Q, H, I, L, K, M, F, P, S, T, W, Y, V;
 D166A, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 W167A, D, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 35 D168A, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;

O169A, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V; Q169A, D, R, N, C, E, G, H, I, L, K, M, F, P, S, T, W, Y, V;

S170A, D, R, N, C, E, Q, G, H, I, L, K, M, F, P, T, W, Y, V; R171A, D, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V; Q172A, D, R, N, C, E, G, H, I, L, K, M, F, P, S, T, W, Y, V; F173A, D, R, N, C, E, Q, G, H, I, L, K, M, P, S, T, W, Y, V; Q174*, A, D, R, N, C, E, G, H, I, L, K, M, F, P, S, T, W, Y, V; D183*, A, D, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, W, Y, V; G184*, A, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V; N195A, D, R, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V; F267A, D, R, N, C, E, Q, G, H, I, L, K, M, P, S, T, W, Y, V; W268A, D, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, Y, V; 10 K269A, D, R, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V; N270A, D, R, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V; D271A, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V; L272A, D, R, N, C, E, Q, G, H, I, K, M, F, P, S, T, W, Y, V; 15 G273A, D, R, N, C, E, Q, H, I, L, K, M, F, P, S, T, W, Y, V; A274D, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V; L275A, D, R, N, C, E, Q, G, H, I, K, M, F, P, S, T, W, Y, V; G456A, D, R, N, C, E, Q, H, I, L, K, M, F, P, S, T, W, Y, V; N457A, D, R, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V; K458A, D, R, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V; 20 P459A, D, R, N, C, E, Q, G, H, I, L, K, M, F, S, T, W, Y, V; G460A, D, R, N, C, E, Q, H, I, L, K, M, F, P, S, T, W, Y, V; T461A, D, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, W, Y, V; V462A, D, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y; T463A, D, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, W, Y, V. 25

Preferred variants has one or more of the following substitutions or deletions: Q174*, D183*, G184*, K269S.

In a specific embodiment the B. licheniformis α -amylase having the sequence shown in SEQ ID NO: 4 is used as the backbone for these mutations.

General mutations in variants of the invention: increased specific activity at medium temperatures

The particularly interesting amino acid substitution are those that increase the mobility around the active site of the enzyme. This is accomplished by changes that disrupt stabilizing interaction in the vicinity of the active site, i.e., within preferably 10Å or 8Å or 6Å or 4Å from any of the residues

30

constituting the active site.

Examples are mutations that reduce the size of side chains, such as

Ala to Gly,

5 Val to Ala or Gly,

Ile or Leu to Val, Ala, or Gly

Thr to Ser

15

25

30

35

Such mutations are expected to cause increased flexibility in the active site region either by the introduction of cavities or by the structural rearrangements that fill the space left by the mutation.

It may be preferred that a variant of the invention comprises one or more modifications in addition to those outlined above. Thus, it may be advantageous that one or more Proline residues present in the part of the α -amylase variant which is modified is/are replaced with a non-Proline residue which may be any of the possible, naturally occurring non-Proline residues, and which preferably is an Alanine, Glycine, Serine, Threonine, Valine or Leucine.

Analogously, it may be preferred that one or more Cysteine residues present among the amino acid residues with which the parent α -amylase is modified is/are replaced with a non-Cysteine residue such as Serine, Alanine, Threonine, Glycine, Valine or Leucine.

Furthermore, a variant of the invention may – either as the only modification or in combination with any of the above outlined modifications – be modified so that one or more Asp and/or Glu present in an amino acid fragment corresponding to the amino acid fragment 185-209 of SEQ ID NO: 4 is replaced by an Asn and/or Gln, respectively. Also of interest is the replacement, in the Termamyl-like α -amylase, of one or more of the Lys residues present in an amino acid fragment corresponding to the amino acid fragment 185-209 of SEQ ID NO: 4 by an Arg.

It will be understood that the present invention encompasses variants incorporating two or more of the above outlined modifications.

Furthermore, it may be advantageous to introduce pointmutations in any of the variants described herein.

SUBSTITUTE SHEET (RULE 26)

α -amylase variants having increased mobility around the active site:

The mobility of α -amylase variants of the invention may be increased by replacing one or more amino acid residue at one or more positions close to the substrate site. These positions are (using the SP722 α -amylase (SEQ ID NO: 2) numbering): V56, K108, D168, Q169, Q172, L201, K269, L272, L275, K446, P459.

Therefore, in an aspect the invention relates to variants being mutated in one or more of the above mentioned positions.

Preferred substitutions are one or more of the following:

V56A,G,S,T;

5

10

25

30

35

K108A, D, E, Q, G, H, I, L, M, N, S, T, V;

D168A, G, I, V, N, S, T;

15 Q169A, D, G, H, I, L, M, N, S, T, V;

Q172A, D, G, H, I, L, M, N, S, T, V;

L201A, G, I, V, S, T;

K269A, D, E, Q, G, H, I, L, M, N, S, T, V;

L272A, G, I, V, S, T;

20 L275A, G, I, V, S, T;

Y295A, D, E, Q, G, H, I, L, M, N, F, S, T, V;

K446A, D, E, Q, G, H, I, L, M, N, S, T, V;

P459A, G, I, L, S, T, V.

In specific embodiments of the invention the *Bacillus* strain NCIB 12512 α -amylase having the sequence shown in SEQ ID NO: 1, or the *B. stearothermophilus* α -amylase having the sequence shown in SEQ ID NO: 3, or the *B. licheniformis* α -amylase having the sequence shown in SEQ ID NO: 4, or the *B. amyloliquefaciens* α -amylase having the sequence shown in SEQ ID NO: 5 are used as the backbone for these mutations.

As can been seen from the alignment in Figure 1 the B. licheniformis α -amylase and the B. amyloliquefaciens α -amylase have a Glutamine at position corresponding to K269 in SP722. Further, the B. stearothermophilus α -amylase has a Serine at position corresponding to K269 in SP722. Therefore, for said α -amylases these substitutions are not relevant.

Furthermore, as can been seen from the alignment in Figure 1

SUBSTITUTE SHEET (RULE 26)

WO 99/23211 PCT/DK98/00471

21

the B. amyloliquefaciens α -amylase has an Alanine at position corresponding to L272 in SP722, and the B. stearothermophilus α -amylase has a Isoleucine at the position corresponding to L272 in SP722. Therefore, for said α -amylases these substitutions are not relevant.

As can been seen from the alignment in Figure 1, the *Bacillus* strain 12512 α -amylase has a Isoleucine at position corresponding to L275 in SP722. Therefore for said α -amylase this substitution is not relevant.

10 As can been seen from the alignment in Figure 1 the B. amyloliquefaciens α -amylase has a Phenylalanine at position corresponding to Y295 in SP722. Further, the B. stearothermophilus α -amylase has an Asparagine at position corresponding to Y295 in SP722. Therefore, for said α -amylases these substitutions are not relevant.

As can been seen from the alignment in Figure 1 the B. licheniformis α -amylase and the B. amyloliquefaciens α -amylase have a Asparagine at position corresponding to K446 in SP722. Further, the B. stearothermophilus α -amylase has a Histidine at position corresponding to K446 in SP722. Therefore, for said amylases these substitutions are not relevant.

As can been seen from the alignment in Figure 1 the B. licheniformis α -amylase, the B. amyloliquefaciens α -amylase and the B. stearothermophilus α -amylase have a Serine at position corresponding to P459 in SP722. Further, the Bacillus strain 12512 α -amylase has a Threonine at position corresponding to P459 in SP722. Therefore, for said α -amylases these substitutions are not relevant.

30 <u>Stabilization of enzymes having high activity at medium</u> temperatures

In a further embodiment the invention relates to improving the stability of low temperature α -amylases (e.g, Alteromonas haloplanctis (Feller et al., (1994), Eur. J. Biochem 222:441-447), and medium temperature α -amylases (e.g., SP722 and SP690) possessing medium temperature activity, i.e., commonly known as psychrophilic enzymes and mesophilic enzymes. The stability can

SUBSTITUTE SHEET (RULE 26)

35

20

for this particular enzyme class be understood either as thermontability or the stability at Calcium depletion conditions.

Typically, enzymes displaying the high activity at medium temperatures also display severe problems under conditions that stress the enzyme, such as temperature or Calcium depletion.

Consequently, the objective is to provide enzymes that at the same time display the desired high activity at medium temperatures without loosing their activity under slightly stressed conditions.

The activity of the stabilized variant measured at medium temperatures should preferably be between 100% or more and 50%, and more preferably between 100% or more and 70%, and most preferably between 100% or more and 85% of the original activity at that specific temperature before stabilization of the enzyme and the resulting enzyme should withstand longer incubation at stressed condition than the wild type enzyme.

Contemplated enzymes include $\alpha\text{--amylases}$ of, e.g., bacterial or fungal origin.

An example of such a low temerature α-amylase is the one isolated from Alteromonas haloplanctis (Feller et al., (1994), Eur. J. Biochem 222:441-447). The crystal structure of this alpha-amylase has been solved (Aghajari et al., (1998), Protein Science 7:564-572).

The A. haloplanctis alpha-amylase (5 in alignment shown in Fig. 4) has a homology of approximately 66% to porcine pancreatic alpha-amylase (PPA) (3 in the alignment shown in Fig. 4). The PPA 3D structure is known, and can be obtained from Brookhaven database under the name 10SE or 1DHK. Based on the homology to other more stable alpha amylases, stabilization of "the low temperature highly active enzyme" from Alteromonas haloplanctis alpha-amylase, can be obtained and at the same time retaining the desired high activity at medium temperatures.

Figure 4 shown a multiple sequence alignments of five α -amylases, including the AHA and the PPA α -amylase. Specific mutations giving increased stability in *Alteromonas haloplantis* alpha-amylase:

T66P, Q69P, R155P, Q177R, A205P, A232P, L243R, V295P, S315R.

SUBSTITUTE SHEET (RULE 26)

35

10

10

15

20

25

30

35

Methods for preparing α -amylase variants

Several methods for introducing mutations into genes are known in the art. After a brief discussion of the cloning of α -amylase-encoding DNA sequences, methods for generating mutations at specific sites within the α -amylase-encoding sequence will be discussed.

Cloning a DNA sequence encoding an α -amylase

The DNA sequence encoding a parent α -amylase may be isolated from any cell or microorganism producing the α -amylase in question, using various methods well known in the art. First, a genomic DNA and/or cDNA library should be constructed using chromosomal DNA or messenger RNA from the organism that produces the α -amylase to be studied. Then, if the amino acid sequence of the α -amylase is known, homologous, labeled oligonucleotide probes may be synthesized and used to identify α -amylase-encoding clones from a genomic library prepared from the organism in question. Alternatively, a labeled oligonucleotide probe containing sequences homologous to a known α -amylase gene could be used as a probe to identify α -amylase-encoding clones, using hybridization and washing conditions of lower stringency.

Yet another method for identifying α -amylase-encoding clones would involve inserting fragments of genomic DNA into an expression vector, such as a plasmid, transforming α -amylase-negative bacteria with the resulting genomic DNA library, and then plating the transformed bacteria onto agar containing a substrate for α -amylase, thereby allowing clones expressing the α -amylase to be identified.

Alternatively, the DNA sequence encoding the enzyme may be prepared synthetically by established standard methods, e.g., the phosphoroamidite method described by S.L. Beaucage and M.H. Caruthers (1981) or the method described by Matthes et al. (1984). In the phosphoroamidite method, oligonucleotides are synthesized, e.g., in an automatic DNA synthesizer, purified, annealed, ligated and cloned in appropriate vectors.

SUBSTITUTE SHEET (RULE 26)

Finally, the DNA sequence may be of mixed genomic and synthetic origin, mixed synthetic and cDNA origin or mixed genomic and cDNA origin, prepared by ligating fragments of or CDNA origin (as appropriate, the fragments corresponding to various parts of the entire DNA sequence), in accordance with standard techniques. The DNA sequence may also be prepared by polymerase chain reaction (PCR) using specific primers, for instance as described in US 4,683,202 or R.K. Saiki et al. (1988).

10

15

20

25

30

35

Expression of α -amylase variants

According to the invention, a DNA sequence encoding the variant produced by methods described above, or by any alternative methods known in the art, can be expressed, in enzyme form, using an expression vector which typically includes control sequences encoding a promoter, operator, ribosome binding site, translation initiation signal, and, optionally, a repressor gene or various activator genes.

The recombinant expression vector carrying the DNA sequence encoding an α -amylase variant of the invention may be any vector may conveniently be subjected to recombinant DNA procedures, and the choice of vector will often depend on the host cell into which it is to be introduced. Thus, the vector may be an autonomously replicating vector, i.e., a vector which exists as an extrachromosomal entity, the replication of which is independent of chromosomal replication, e.g., a plasmid, a bacteriophage or an extrachromosomal element, minichromosome or an artificial chromosome. Alternatively, the vector may be one which, when introduced into a host cell, is integrated into the host cell genome and replicated together with the chromosome(s) into which it has been integrated.

In the vector, the DNA sequence should be operably connected to a suitable promoter sequence. The promoter may be any DNA sequence which shows transcriptional activity in the host cell of choice and may be derived from genes encoding proteins either homologous or heterologous to the host cell. Examples of suitable promoters for directing the transcription of the DNA sequence encoding an α -amylase variant of the invention,

SUBSTITUTE SHEET (RULE 26)

5

10

15

20

25

30

35

sequence which shows transcriptional activity in the host cell of choice and may be derived from genes encoding proteins either homologous or heterologous to the host cell. Examples of suitable promoters for directing the transcription of the DNA sequence encoding an α -amylase variant of the invention, especially in a bacterial host, are the promoter of the lac operon of E.coli, the Streptomyces coelicolor agarase gene dagA promoters, the promoters of the Bacillus licheniformis α -amylase gene (amyL), the promoters of the Bacillus stearothermophilus maltogenic amylase gene (amyM), the promoters of the Bacillus amyloliquefaciens α -amylase (amyQ), the promoters of the Bacillus subtilis xylA and xylB genes etc. For transcription in a fungal host, examples of useful promoters are those derived from the gene encoding A. oryzae TAKA amylase, Rhizomucor miehei aspartic proteinase, A. niger neutral α -amylase, A. niger acid stable α -amylase, A. niger glucoamylase, Rhizomucor miehei lipase, A. oryzae alkaline protease, A. oryzae triose phosphate isomerase or A. nidulans acetamidase.

The expression vector of the invention may also comprise a suitable transcription terminator and, in eukaryotes, polyadenylation sequences operably connected to the DNA sequence encoding the α -amylase variant of the invention. Termination and polyadenylation sequences may suitably be derived from the same sources as the promoter.

The vector may further comprise a DNA sequence enabling the vector to replicate in the host cell in question. Examples of such sequences are the origins of replication of plasmids pUC19, pACYC177, pUB110, pE194, pAMB1 and pIJ702.

The vector may also comprise a selectable marker, e.g. a gene the product of which complements a defect in the host cell, such as the dal genes from B. subtilis or B. licheniformis, or one which confers antibiotic resistance such as ampicillin, kanamycin, chloramphenicol or tetracyclin resistance. Furthermore, the vector may comprise Aspergillus selection markers such as amdS, argB, niaD and sC, a marker giving rise to hygromycin resistance, or the selection may be accomplished by co-transformation, e.g., as described in WO 91/17243.

WO 99/23211 PCT/DK98/00471 - 26

While intracellular expression may be advantageous in some respects, e.g., when using certain bacteria as host cells, it is generally preferred that the expression is extracellular. In general, the Bacillus α -amylases mentioned herein comprise a preregion permitting secretion of the expressed protease into the culture medium. If desirable, this preregion may be replaced by a different preregion or signal sequence, conveniently accomplished by substitution of the DNA sequences encoding the respective preregions.

The procedures used to ligate the DNA construct of the invention encoding an α -amylase variant, the promoter, terminator and other elements, respectively, and to insert them into suitable vectors containing the information necessary for replication, are well known to persons skilled in the art (cf., for instance, Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor, 1989).

The cell of the invention, either comprising a DNA construct or an expression vector of the invention as defined above, is advantageously used as a host cell in the recombinant production of an α -amylase variant of the invention. The cell may be transformed with the DNA construct of the invention encoding the variant, conveniently by integrating the DNA construct (in one or more copies) in the host chromosome. This integration is generally considered to be an advantage as the DNA sequence is more likely to be stably maintained in the cell. Integration of the DNA constructs into the host chromosome may be performed according to conventional methods, e.g., by homologous heterologous recombination. Alternatively, the cell be transformed with an expression vector as described above in connection with the different types of host cells.

The cell of the invention may be a cell of a higher organism such as a mammal or an insect, but is preferably a microbial cell, e.g. a bacterial or a fungal (including yeast) cell.

Examples of suitable bacteria are Gram positive bacteria such as Bacillus subtilis, Bacillus licheniformis, Bacillus lentus, Bacillus brevis, Bacillus stearothermophilus, Bacillus alkalophilus, Bacillus amyloliquefaciens, Bacillus coagulans, Bacillus circulans, Bacillus lautus, Bacillus megaterium, Bacillus

10

15

20

25

30

WO 99/23211 PCT/DK98/00471 - 27

thuringiensis, or Streptomyces lividans or Streptomyces murinus, or gramnegative bacteria such as *E.coli*. The transformation of the bacteria may, for instance, be effected by protoplast transformation or by using competent cells in a manner known per se.

The yeast organism may favorably be selected from a species of Saccharomyces or Schizosaccharomyces, e.g. Saccharomyces cerevisiae. The filamentous fungus may advantageously belong to a species of Aspergillus, e.g., Aspergillus oryzae or Aspergillus niger. Fungal cells may be transformed by a process involving protoplast formation and transformation of the protoplasts followed by regeneration of the cell wall in a manner known per se. A suitable procedure for transformation of Aspergillus host cells is described in EP 238 023.

In a yet further aspect, the present invention relates to a method of producing an α -amylase variant of the invention, which method comprises cultivating a host cell as described above under conditions conducive to the production of the variant and recovering the variant from the cells and/or culture medium.

The medium used to cultivate the cells may be any conventional medium suitable for growing the host cell in question and obtaining expression of the α -amylase variant of the invention. Suitable media are available from commercial suppliers or may be prepared according to published recipes (e.g. as described in catalogues of the American Type Culture Collection).

The α -amylase variant secreted from the host cells may conveniently be recovered from the culture medium by well-known procedures, including separating the cells from the medium by centrifugation or filtration, and precipitating proteinaceous components of the medium by means of a salt such as ammonium sulphate, followed by the use of chromatographic procedures such as ion exchange chromatography, affinity chromatography, or the like.

Industrial Applications

The α -amylase variants of this invention possesses valuable properties allowing for a variety of industrial applications. In particular, enzyme variants of the invention are applicable as a component in washing, dishwashing and hard-surface cleaning

5

10

15

20

25

28

detergent compositions.

Numerous variants are particularly useful in the production of sweeteners and ethanol from starch, and/or for textile desizing. Conditions for conventional starch— conversion processes, including starch liquefaction and/or saccharification processes, are described in, e.g., US 3,912,590 and in EP patent publications Nos. 252,730 and 63,909.

Detergent compositions

10

15

20

25

30

35

As mentioned above, variants of the invention may suitably be incorporated in detergent compositions. Reference is made, for example, to WO 96/23874 and WO 97/07202 for further details concerning relevant ingredients of detergent compositions (such as laundry or dishwashing detergents), appropriate methods of formulating the variants in such detergent compositions, and for examples of relevant types of detergent compositions.

Detergent compositions comprising a variant of the invention may additionally comprise one or more other enzymes, such as a lipase, cutinase, protease, cellulase, peroxidase or laccase, and/or another α -amylase.

 $\alpha\text{-amylase}$ variants of the invention may be incorporated in detergents at conventionally employed concentrations. It is at present contemplated that a variant of the invention may be incorporated in an amount corresponding to 0.00001-1 mg (calculated as pure, active enzyme protein) of $\alpha\text{-amylase}$ per liter of wash/dishwash liquor using conventional dosing levels of detergent.

The invention also relates to a method of providing α -amylases with 1) altered pH optimum, and/or 2) altered temperature optimum, and/or 3) improved stability, comprising the following steps:

- i) identifying (a) target position(s) and/or region(s) for mutation of the α -amylase by comparing the molecular dynamics of two or more α -amylase 3D structures having substantially different pH, temperature and/or stability profiles,
- ii) substituting, adding and/or deleting one or more amino acids in the identified position(s) and/or region(s).

In embodiment of the invention a medium temperature α -amylase is compared with a high temperature α -amylase. In another embodiment a low temperature α -amylase is compared with either a medium or a high temperature α -amylase.

The α -amylases compared should preferably be at least 70%, preferably 80%, up to 90%, such as up to 95%, especially 95% homologous with each other.

The α -amylases compared may be Termamyl-like α -amylases as defined above. In specific embodiment the α -amylases compared are the α -amylases shown in SEQ ID NO: 1 to SEQ ID NO: 8.

In another embodiment the stability profile of the α -amylases in question compared are the Ca²+ dependency profile.

MATERIALS AND METHODS

15 Enzymes:

10

25

30

35

SP722: (SEQ ID NO: 2, available from Novo Nordisk)
Termamyl™ (SEQ ID NO: 4, available from Novo Nordisk)
SP690: (SEQ ID NO: 1, available from Novo Nordisk)

20 Bacillus subtilis SHA273: see WO 95/10603

Plasmids

pJE1 contains the gene encoding a variant of SP722 α -amylase (SEQ ID NO: 2): viz. deletion of 6 nucleotides corresponding to amino acids D183-G184 in the mature protein. Transcription of the JE1 gene is directed from the *amyL* promoter. The plasmid further more contains the origin of replication and *cat*-gene conferring resistance towards kanamycin obtained from plasmid pUB110 (Gryczan, TJ et al. (1978), J. Bact. 134:318-329).

Methods:

Construction of library vector pDorK101

The $E.\ coli/Bacillus$ shuttle vector pDorK101 (described below) can be used to introduce mutations without expression of α -amylase in $E.\ coli$ and then be modified in such way that the α -amylase is active in Bacillus. The vector was constructed as

WO 99/23211 PCT/DK98/00471 - 3 0

follows: The JE1 encoding gene (SP722 with the deletion of D183-G184) was inactivated in pJE1 by gene interruption in the PstI site in the 5'coding region of the SEQ ID NO: 2: SP722 by a 1.2 kb fragment containing an E. coli origin of replication. amplified from the pUC19 fragment was PCR Accession #:X02514) using forward primer: the 5′gacctgcagtcaggcaacta-3 and the reverse primer: 5′tagagtcgacctgcaggcat-3'. The PCR amplicon and the pJE1 vector were digested with PstI at 37°C for 2 hours. The pJE1 vector fragment and the PCR fragment were ligated at room temperature. for 1 hour and transformed in E. coli by electrotransformation. The resulting vector is designated pDorK101.

Filter screening assays

15 The assay can be used to screening of Termamyl-like α -amylase variants having an improved stability at high pH compared to the parent enzyme and Termamyl-like α -amylase variants having an improved stability at high pH and medium temperatures compared to the parent enzyme depending of the screening temperature setting

High pH filter assay

Bacillus libraries are plated on a sandwich of cellulose acetate (OE 67, Schleicher & Schuell, Dassel, Germany) – and nitrocellulose filters (Protran-Ba 85, Schleicher & Schuell, Dassel, Germany) on TY agar plates with 10 μ g/ml kanamycin at 37°C for at least 21 hours. The cellulose acetate layer is located on the TY agar plate.

Each filter sandwich is specifically marked with a needle after plating, but before incubation in order to be able to localize positive variants on the filter and the nitrocellulose filter with bound variants is transferred to a container with glycin-NaOH buffer, рΗ 8.6-10.6 and incubated at temperature(can be altered from 10°-60°C) for 15 min. The cellulose acetate filters with colonies are stored on the TYat room temperature until use. After incubation. residual activity is detected on plates containing 1% agarose,

10

25

30

0.2% starch in glycin-NaOH buffer, pH 8.6-10.6. The assay plates with nitrocellulose filters are marked the same way as the filter sandwich and incubated for 2 hours. at room temperature. After removal of the filters the assay plates are stained with 10% Lugol solution. Starch degrading variants are detected as white spots on dark blue background and then identified on the storage plates. Positive variants are rescreened twice under the same conditions as the first screen.

31

10 Low calcium filter assay

The Bacillus library are plated on а sandwich of cellulose acetate (OE 67, Schleicher & Schuell, Germany) and nitrocellulose filters (Protran-Ba Schleicher & Schuell, Dassel, Germany) on TY agar plates with a relevant antibiotic, e.g., kanamycin or chloramphenicol, at 37°C for at least 21 hours. The cellulose acetate layer is located on the TY agar plate.

Each filter sandwich is specifically marked with a needle after plating, but before incubation in order to be able to localize positive variants on the filter and the nitrocellulose filter with bound variants is transferred to a container with carbonate/bicarbonate buffer pH 8.5-10 and with different EDTA concentrations (0.001 mM - 100 mM). The filters are incubated at room temperature for 1 hour. The cellulose acetate filters with colonies are stored on the TY-plates at room temperature until use. After incubation, residual activity is detected on containing 1% agarose, 0.2% starch in carbonate/bicarbonate buffer pH 8.5-10. The assay plates with nitrocellulose filters are marked the same way as the filter sandwich and incubated for 2 hours. at room temperature. After removal of the filters the assay plates are stained with 10% Lugol solution. Starch degrading variants are detected as white spots on dark blue background and then identified on the storage plates. Positive variants are rescreened twice under the same conditions as the first screen.

Method for obtaining the regions of interest:

There are three known 3D structures of bacterial $\alpha-$

15

20

25

30

32

amvlases. Two of B . licheniformis α-amylase, Brookhaven database 1BPL (Machius et al. (1995), J. Mol. Biol. 246, p. 545-559) and 1VJS (Song et al. (1996), Enzymes for Carbohydrate 163 Engineering (Prog. Biotechnol. V 12). These two structures are lacking an important piece of the structure from the socalled B-domain, in the area around the two Calcium ions and one Sodium ion binding sites. We have therefore used a structure of an α -amylase BA2 (WO 96/23874 which are a hybrid between BAN $^{\text{\tiny TM}}$ (SEQ ID NO. 5) and B. licheniformis $\alpha\text{-amylase}$ (SEQ On basis of the structure 4). а licheniformis alpha amylase and the SP722 α -amylase has been build.

Fermentation and purification of α -amylase variants

Fermentation and purification may be performed by methods well known in the art.

Stability determination

All stability trials are made using the same set up. The 20 method are:

The enzyme is incubated under the relevant conditions (1-4). Samples are taken at various time points, e.g., after 0, 5, 10, 15 and 30 minutes and diluted 25 times (same dilution for all taken samples) in assay buffer (0.1M 50mM Britton buffer pH 7.3) and the activity is measured using the Phadebas assay (Pharmacia) under standard conditions pH 7.3, 37°C.

The activity measured before incubation (0 minutes) is used as reference (100%). The decline in percent is calculated as a function of the incubation time. The table shows the residual activity after, e.g., 30 minutes of incubation.

Specific activity determination

The specific activity is determined using the Phadebas assay (Pharmacia) as activity/mg enzyme. The manufactures instructions are followed (see also below under "Assay for α -amylase activity).

10

15

25

Assays for α -Amylase Activity

1. Phadebas assay

 $\alpha\text{-amylase}$ activity is determined by a method employing Phadebas® tablets as substrate. Phadebas tablets (Phadebas® Amylase Test, supplied by Pharmacia Diagnostic) contain a crosslinked insoluble blue-colored starch polymer which has been mixed with bovine serum albumin and a buffer substance and tabletted.

For every single measurement one tablet is suspended in a tube containing 5 ml 50 mM Britton-Robinson buffer (50 mM acetic acid, 50 mM phosphoric acid, 50 mM boric acid, 0.1 mM $CaCl_2$, pH adjusted to the value of interest with NaOH). The test is performed in a water bath at the temperature of interest. The α -amylase to be tested is diluted in x ml of 50 mM Britton-Robinson buffer. 1 ml of this α -amylase solution is added to the 5 ml 50 mM Britton-Robinson buffer. The starch is hydrolyzed by the α -amylase giving soluble blue fragments. The absorbance of the resulting blue solution, measured spectrophotometrically at 620 nm, is a function of the α -amylase activity.

It is important that the measured 620 nm absorbance after 10 or 15 minutes of incubation (testing time) is in the range of 0.2 to 2.0 absorbance units at 620 nm. In this absorbance range there is linearity between activity and absorbance (Lambert-Beer law). The dilution of the enzyme must therefore be adjusted to fit this criterion. Under a specified set of conditions (temp., pH, reaction time, buffer conditions) 1 mg of a given α -amylase will hydrolyze a certain amount of substrate and a blue colour will be produced. The colour intensity is measured at 620 nm. The measured absorbance is directly proportional to the specific activity (activity/mg of pure α -amylase protein) of the α -amylase in question under the given set of conditions.

2. Alternative method

 α -amylase activity is determined by a method employing the PNP-G7 substrate. PNP-G7 which is a abbreviation for p-nitrophenyl- α , D-maltoheptaoside is a blocked oligosaccharide which can be cleaved by an endo-amylase. Following the cleavage,

the α -Glucosidase included in the kit digest the substrate to liberate a free PNP molecule which has a yellow colour and thus can be measured by visible spectophometry at λ =405nm. (400-420 nm.). Kits containing PNP-G7 substrate and α -Glucosidase is manufactured by Boehringer-Mannheim (cat.No. 1054635).

To prepare the substrate one bottle of substrate (BM 1442309) is added to 5 ml buffer (BM1442309). To prepare the α -Glucosidase one bottle of α -Glucosidase (BM 1462309) is added to 45 ml buffer (BM1442309). The working solution is made by mixing 5 ml α -Glucosidase solution with 0.5 ml substrate.

The assay is performed by transforming 20µl enzyme solution to a 96 well microtitre plate and incubating at 25°C. 200 µl working solution, 25°C is added. The solution is mixed and preincubated 1 minute and absorption is measured every 15 sec. over 3 minutes at OD 405 nm.

The slope of the time dependent absorption-curve is directly proportional to the specific activity (activity per mg enzyme) of the α -amylase in question under the given set of conditions.

20 <u>General method for random mutagenesis by use of the DOPE program</u>

The random mutagenesis may be carried out by the following steps:

- Select regions of interest for modification in the parent
 enzyme
 - 2. Decide on mutation sites and non-mutated sites in the selected region
 - 3. Decide on which kind of mutations should be carried out, e.g. with respect to the desired stability and/or performance of the variant to be constructed
 - 4. Select structurally reasonable mutations.
 - 5. Adjust the residues selected by step 3 with regard to step 4.
- 6. Analyze by use of a suitable dope algorithm the nucleotide distribution.
 - 7. If necessary, adjust the wanted residues to genetic code realism (e.g., taking into account constraints resulting from

30

10

the genetic code (e.g. in order to avoid introduction of stop codons))(the skilled person will be aware that some codon combinations cannot be used in practice and will need to be adapted)

- 5 8. Make primers
 - 9. Perform random mutagenesis by use of the primers
 - 10. Select resulting $\alpha\text{--amylase}$ variants by screening for the desired improved properties.

Suitable dope algorithms for use in step 6 are well known in the art. One algorithm is described by Tomandl, D. et al., Journal of Computer-Aided Molecular Design, 11 (1997), pp. 29-38). Another algorithm, DOPE, is described in the following:

The dope program

The "DOPE" program is a computer algorithm useful to optimize the nucleotide composition of a codon triplet in such a way that it encodes an amino acid distribution which resembles most the wanted amino acid distribution. In order to assess which of the possible distributions is the most similar to the wanted amino acid distribution, a scoring function is needed. In the "Dope" program the following function was found to be suited:

$$S \equiv \prod_{i=1}^{N} \left(\frac{x_{i}^{y_{i}}}{y_{i}^{y_{i}}} \frac{\left(1-x_{i}\right)^{1-y_{i}}}{\left(1-y_{i}\right)^{1-y_{i}}} \right)^{w_{i}} ,$$

25

30

35

15

20

where the x_i 's are the obtained amounts of amino acids and groups of amino acids as calculated by the program, y_i 's are the wanted amounts of amino acids and groups of amino acids as defined by the user of the program (e.g. specify which of the 20 amino acids or stop codons are wanted to be introduced, e.g. with a certain percentage (e.g. 90% Ala, 3% Ile, 7% Val), and w_i 's are assigned weight factors as defined by the user of the program (e.g., depending on the importance of having a specific amino acid residue inserted into the position in question). N is 21 plus the number of amino acid groups as defined by the

user of the program. For purposes of this function 0^{o} is defined as beau.

A Monte-Carlo algorithm (one example being the one described by Valleau, J.P. & Whittington, S.G. (1977) A guide to Mont Carlo for statistical mechanics: 1 Highways. In "Stastistical Mechanics, Part A" Equlibrium Techniques ed. B.J. Berne, New York: Plenum) is used for finding the maximum value of this function. In each iteration the following steps are performed:

- 10 1.A new random nucleotide composition is chosen for each base, where the absolute difference between the current and the new composition is smaller than or equal to d for each of the four nucleotides G,A,T,C in all three positions of the codon (see below for definition of d).
- 2. The scores of the new composition and the current composition are compared by the use of the function s as described above. If the new score is higher or equal to the score of the current composition, the new composition is kept and the current composition is changed to the new one. If the new score is smaller, the probability of keeping the new composition is $\exp(1000(new_score current_score))$.

A cycle normally consists of 1000 iterations as described above in which d is decreasing linearly from 1 to 0. One hundred or more cycles are performed in an optimization process. The nucleotide composition resulting in the highest score is finally presented.

EXAMPLES

30 EXAMPLE 1

. 25

Example on Homology building of Termamyl™

The overall homology of the B. licheniformis α -amylase (in the following referred to as Termamyl $^{\text{TM}}$) to other Termamyl-like α -amylases is high and the percent similarity is extremely high. The similarity calculated for Termamyl $^{\text{TM}}$ to BSG (the B. stearothermophilus α -amylase having SEQ ID NO: 3), and BAN (the B. amyloliquefaciens α -amylase having SEQ ID NO: 5) using the

WO 99/23211 PCT/DK98/00471 - 37

University of Wisconsin Genetics Computer Group's program GCG gave 89% and 78%, respectively. TERM has a deletion of 2 residues between residue G180 and K181 compared to BAN $^{\text{TM}}$ and BSG. BSG has a deletion of 3 residues between G371 and I372 in comparison with BAN $^{\text{TM}}$ and Termamyl $^{\text{TM}}$. Further BSG has a C-terminal extension of more than 20 residues compared to BAN $^{\text{TM}}$ and Termamyl $^{\text{TM}}$. BAN $^{\text{TM}}$ has 2 residues less and Termamyl has one residue less in the N-terminal compared to BSG.

The structure of the *B. licheniformis* (Termamyl^m) and of the *B. amyloliquefaciens* α -amylase (BAN^m), respectively, was model built on the structure disclosed in Appendix 1 of WO 96/23974. The structure of other Termamyl-like α -amylases (e.g. those disclosed herein) may be built analogously.

In comparison with the $\alpha\text{-amylase}$ used for elucidating the Termamyl™ differs in that it lacks present structure, residues around 178-182. In order to compensate for this in the model structure, the HOMOLOGY program from BIOSYM was used to substitute the residues in equivalent positions in the structure (not only structurally conserved regions) except for the deletion point. A peptide bond was established between G179(G177) K180 (K180) in Termamyl™(BAN™). The close structural relationship between solved the structure and structure (and thus the validity of the latter) is indicated by the presence of only very few atoms found to be too close together in the model.

To this very rough structure of Termamyl™ was then added all waters (605) and ions (4 Calcium and 1 Sodium) from the solved structure (See Appendix 1 of WO 96/23874) at the same coordinates as for said solved structure using the INSIGHT program. This could be done with only few overlaps — in other words with a very nice fit. This model structure were then minimized using 200 steps of Steepest descent and 600 steps of Conjugated gradient (see Brooks et al 1983, J. Computational Chemistry 4, p.187-217). The minimized structure was then subjected to molecular dynamics, 5ps heating followed by up to 200ps equilibration but more than 35ps. The dynamics as run with the Verlet algorithm and the equilibration temperature 300K were kept using the Behrendsen coupling to a water bath (Berendsen

15

20

25

30

et. al., 1984, J. Chemical Physics 81, p. 3684-3690). Rotations and translations were removed every pico second.

EXAMPLE 2

5

10

15

20

25

30

35

Method of extracting important regions for identifying $\underline{\alpha}$ -amylase variants with improved pH stability and altered temperature activity

The X-ray structure and/or the model build structure of the enzyme of interest, here SP722 and Termamyl™, are subjected to molecular dynamics simulations. The molecular using simulation are made the CHARMM (from Molecular simulations (MSI)) program or other suited program like, e.g., DISCOVER (from MSI). The molecular dynamic analysis is made in vacuum, or more preferred including crystal waters, or with the enzyme embedded in water, e.g., a water sphere or a water box. The simulation are run for 300 pico seconds (ps) or more, e.g., 300-1200 ps. The isotropic fluctuations are extracted for the carbons of the structures and compared structures. Where the sequence has deletions and/or insertions isotropic fluctuations from the other structure inserted thus giving 0 as difference in isotropic fluctuation. For explanation of isotropic fluctuations see the CHARMM manual (obtainable from MSI).

The molecular dynamics simulation can be standard charges on the chargeable amino acids. This is Asp and Glu are negatively charged and Lys and Arg are positively This condition resembles the medium approximately 7. To analyze a higher or lower pH, titration of the molecule can be done to obtain the altered pKa's of the standard titrateable residues normally within pH 2-10; Lys, Arg, Asp, Glu, Tyr and His. Also Ser, Thr and Cys titrateable but are not taking into account here. Here the altered charges due to the pH has been described as both Asp and Glu are negative at high pH, and both Arg and Lys are uncharged. This imitates a pH around 10 to 11 where the titration of Lys and Arg starts, as the normal pKa of these residues are around 9-11.

10

15

20

1. The approach used for extracting important regions for identifying α -amylase variants with high pH stability:

The important regions for constructing variants with improved pH stability are the regions which at the extreme pH display the highest mobility, i.e., regions having the highest isotropic fluctuations.

Such regions are identified by carrying out two molecular dynamics simulations: i) a high pH run at which the basic amino acids, Lys and Arg, are seen as neutral (i.e. not protonated) and the acidic amino acids, Asp and Glu, have the charge (-1) and ii) a neutral pH run with the basic amino acids, Lys and Arg, having the net charge of (+1) and the acidic amino acids having a charge of (-1).

The two run are compared and regions displaying the relatively higher mobility at high pH compared to neutral pH analysis were identified. $\begin{tabular}{lll} \hline \end{tabular}$

Introduction of residues improving general stability, e.g., hydrogen bonding, making the region more rigid (by mutations such as Proline substitutions or replacement of Glycine residues), or improving the charges or their interaction, improves the high pH stability of the enzyme.

2. The approach used for extracting regions for identifying $\alpha\textsubscript{-amylase}$ variants with increased activity at medium temperatures:

important regions for constructing variants 25 The increased activity at medium temperature was found as difference between the isotropic fluctuations in SP722 SP722 Termamyl, i.e., minus Termamyl isotrophic CA fluctuations, The regions with the highest mobility in the 30 isotrophic fluctuations were selected. These regions and there residues were expected to increase the activity at medium activity of temperatures. The an alpha-amylase expressed if the correct mobility of certain residues are present. If the mobility of the residues is too 35 activity is decreased or abandoned.

EXAMPLE 3

Construction, by localized random, doped mutagenesis, of Termamyl-like α -amylase variants having an improved Ca2+ stability at medium temperatures compared to the parent enzyme

To improve the stability at low calcium concentration of α -amylases random mutagenesis in pre-selected region was performed.

Region: Residue: SAI: R181-W189

The DOPE software (see Materials and Methods) was used to determine spiked codons for each suggested change in the SA1 region minimizing the amount of stop codons (see table 1). The exact distribution of nucleotides was calculated in the three positions of the codon to give the suggested population of amino acid changes. The doped regions were doped specifically in the indicated positions to have a high chance of getting the desired residues, but still allow other possibilities.

Table 1:

Distribution of amino acid residues for each position R181: 72% R, 2% N, 7% Q, 4% H, 4%K, 11%S

G182: 73% G, 13% A, 12% S, 2% T

K185: 95% K, 5% R

A186: 50% A, 4% N, 6% D, 1%E, 1% G, 1% K, 5% S, 31% T

25 W187: 100% W D188: 100% D

W189: 92% W, 8% S

The resulting doped oligonucleotide strand is shown in 30 table 2 as sense strand: with the wild type nucleotide and amino acid sequences and the distribution of nucleotides for each doped position.

Table 2:

35 Position

Amino acid seq.

Wt nuc. seq.

181 182 185 186 187 188 189

Arg Gly Lys Ala Thr Asp Thr

cga ggt aaa gct tgg gat tgg

40 Forward primer (SEQ ID NO: 15):
FSA: 5'-caa aat cgt atc tac aaa ttc 123 456 a7g 8910 tgg
gat tllg gaa gta gat tcg gaa aat-3'

Distribution of nucleotides for each doped Position

45 1: 35% A, 65% C 2: 83% G, 17% A

3: 63% G, 37% T 4: 86% G, 14% A 5: 85% G, 15% C 6: 50% T, 50% C 7: 95% A, 5%G 8: 58% G, 37% A, 5% T 9: 86% C, 13% A, 1% G 10: 83% T, 17% G 11: 92% G, 8% C

10

20

5

Reverse primer (SEQ ID NO: 16): 5'-gaa ttt gta gat acg att ttg-3'

Random mutagenesis

The spiked oligonucleotides apparent from Table 2 (which by 15 a common term is designated FSA) and reverse primers RSA for SA1 region and specific SEQ ID NO: 2: SP722 primers covering the SacII and the DraIII sites are used to generate PCR-library-fragments by the overlap extension method (Horton et al., Gene, 77 (1989), pp. 61-68) with an overlap of 21 base Plasmid pJE1 is template for the Polymerase Chain Reaction. The PCR fragments are cloned in the E. coli/Bacillus shuttle vector pDork101 (see Materials and Methods) enabling mutagenesis in $\it E.~coli$ and immediate expression in $\it Bacillus$ subtilis preventing lethal accumulation of amylases in E. coli. After establishing the cloned PCR fragments in E. modified pUC19 fragment is digested out of the plasmid and the promoter and the mutated Termamyl gene is physically connected and expression can take place in Bacillus.

30

25

Screening

The library may be screened in the low calcium filter assays described in the "Material and Methods" section above.

35 EXAMPLE 4

Construction of variants of amylase SEQ ID NO: 1 (SP690)

The gene encoding the amylase from SEQ ID NO: 1 is located in a plasmid pTVB106 described in WO96/23873. The amylase is expressed from the amyL promoter in this construct in Bacillus subtilis.

A variant of the protein is delta(T183-G184) +Y243F+Q391E+K444Q. Construction of this variant is described

in WO96/23873.

5

10

15

20

Construction of delta(T183-G184) + N195F by the mega-primer method as described by Sarkar and Sommer, (1990), BioTechniques 8: 404-407.

Gene specific primer B1 (SEQ ID NO: 17) and mutagenic primer 101458 (SEQ ID NO: 19) were used to amplify by PCR an approximately 645 bp DNA fragment from a pTVB106-like plasmid (with the delta(T183-G184) mutations in the gene encoding the amylase from SEQ ID NO: 1).

The 645 bp fragment was purified from an agarose gel and used as a mega-primer together with primer Y2 (SEQ ID NO: 18) in a second PCR carried out on the same template.

The resulting approximately 1080 bp fragment was digested with restriction enzymes BstEII and AflIII and the resulting approximately 510 bp DNA fragment was purified and ligated with the pTVB106-like plasmid (with the delta(T183-G184) mutations in the gene encoding the amylase from SEQ ID NO: 1) digested with the same enzymes. Competent Bacillus subtilis SHA273 (amylase and protease low) cells were transformed with the ligation and Chlorampenicol resistant transformants and was checked by DNA sequencing to verify the presence of the correct mutations on the plasmid.

primer B1: (SEQ ID NO: 17)

5' CGA TTG CTG ACG CTG TTA TTT GCG 3'

25 primer Y2: (SEQ ID NO: 18)

5' CTT GTT CCC TTG TCA GAA CCA ATG 3'

primer 101458 (SEQ ID NO: 19):

5' GT CAT AGT TGC CGA AAT CTG TAT CGA CTT C 3'

The construction of variant: delta(T183-G184) + K185R+A186T was carried out in a similar way except that mutagenic primer 101638 was used.

primer 101638: (SEQ ID NO: 20)

5' CC CAG TCC CAC GTA CGT CCC CTG AAT TTA TAT ATT TTG 3'

Variants: delta(T183-G184) +A186T, delta(T183-G184) +A186I, delta(T183-G184) +A186S, delta(T183-G184) +A186N are constructed by a similar method except that pTVB106-like plasmid (carrying variant delta(T183-G184) + K185R+A186T) is used as template and as the vector for the cloning purpose. The

5

mutagenic oligonucleotide (Oligo 1) is:

5' CC CAG TCC CAG NTCTTT CCC CTG AAT TTA TAT ATT TTG 3' (SEQ ID NO: 21)

N represents a mixture of the four bases: A, C, G, and Tused in the synthesis of the mutagenicoli-gonucleotide.

Sequencing of transformants identifies the correct codon for amino acid position 186 in the mature amylase.

delta(T183-G184) + K185R+A186T+N195F is constructed as follows:

PCR is carried out with primer x2 (SEQ ID NO: 22) and primer 10 101458 (SEQ ID NO: 19) on pTVB106-like plasmid (with mutations delta(T183-G184) + K185R+A186T). The resulting DNA fragment is used as a mega-primer together with primer Y2 (SEQ ID NO: 18) in a PCR on pTVB106-like plasmid (with mutations delta(T183-G184) + N195). The product of the second PCR is digested with 15 restriction endonucleases Acc65I and AflIII and cloned into pTVB106 like plasmid (delta(T183-G184)+N195F) digested with the same enzymes.

primer x2: (SEQ ID NO: 22)

20 5'-GCG TGG ACA AAG TTT GAT TTT CCT G 3'

Variant: delta(T183-G184) + K185R+A186T+N195F+Y243F+ Q391E+K444Q is constructed as follows:

. PCR is carried out with primer x2 and primer 101458 on pTVB106-like plasmid (with mutations delta(T183-G184) 25 K185R+A186T). The resulting DNA fragment is used as a megaprimer together with primer Y2 in a PCR on pTVB106 like plasmid (with mutations delta(T183-G184) +Y243F+Q391E+K444Q). The product of the second PCR is digested with endonucleases Acc65I and AflIII and cloned into pTVB106 like plasmid (delta(T183-G184) +Y243F+Q391E+K444Q) digested with the same enzymes.

Example 5

Construction of site-directed α -amylase variants in the parent 35 SP722 α -amylase (SEQ ID NO: 2)

Construction of variants of amylase SEQ ID NO: 2 (SP722) is carried out as described below.

The gene encoding the amylase from SEQ ID NO: 2 is located

44

in a plasmid pTVB112 described in WO 96/23873. The amylase is expressed from the amyL promoter in this construct in Bacillus subtilis.

Construction of delta(D183-G184) + V56I by the mega-primer method as described by Sarkar and Sommer, 1990 (BioTechniques 8: 404-407).

Gene specific primer DA03 and mutagenic primer DA07 are used to amplify by PCR an approximately 820 bp DNA fragment from a pTVB112-like plasmid (with the delta(D183-G184) mutations in the gene encoding the α -amylase shown in SEQ ID NO: 2.

The 820 bp fragment is purified from an agarose gel and used as a mega-primer together with primer DA01 in a second PCR carried out on the same template.

The resulting approximately 920 bp fragment is digested with restriction enzymes NgoM I and Aat II and the resulting approximately 170 bp DNA fragment is purified and ligated with the pTVB112-like plasmid (with the delta(D183-G184) mutations in the gene encoding the amylase shown in SEQ ID NO: 2) digested with the same enzymes. Competent Bacillus subtilis SHA273 (amylase and protease low) cells are transformed with the ligation and Chlorampenicol resistant transformants are checked by DNA sequencing to verify the presence of the correct mutations on the plasmid.

25 primer DA01: (SEQ ID NO: 23)

5' CCTAATGATGGGAATCACTGG 3'

primer DA03: (SEQ ID NO:24)

5' GCATTGGATGCTTTTGAACAACCG 3'

primer DA07 (SEQ ID NO:25):

30 5' CGCAAAATGATATCGGGTATGGAGCC 3'

Variants: delta(D183-G184) + K108L, delta(D183-G184) + K108Q, delta(D183-G184) + K108E, delta(D183-G184) + K108V, were constructed by the mega-primer method as described by Sarkar and Sommer ,1990 (BioTechniques 8: 404-407):

PCR is carried out with primer DA03 and mutagenesis primer DA20 on pTVB112-like plasmid (with mutations delta(D183-G184)). The resulting DNA fragment is used as a mega-primer together with primer DA01 in a PCR on pTVB112-like plasmid (with

5

10

15

mutations delta(D183-G184)). The approximately 920 bp product of the second PCR is digested with restriction endonucleases Aat II and Mlu I and cloned into pTVB112-like plasmid (delta(D183-G184)) digested with the same enzymes.

5 primer DA20 (SQ ID NO:26):

5' GTGATGAACCACSWAGGTGGAGCTGATGC 3'

S represents a mixture of the two bases: C and G used in the synthesis of the mutagenic oligonucleotide and W represents a mixture of the two bases: A and T used in the synthesis of the mutagenic oligonucleotide.

Sequencing of transformants identifies the correct codon for amino acid position 108 in the mature amylase.

Construction of the variants: delta(D183-G184) + D168A, delta(D183-G184) + D168I, delta(D183-G184) + D168V, delta(D183-G184) + D168T is carried out in a similar way except that mutagenic primer DA14 is used.

primer DA14 (SEQ ID NO:27):

5' GATGGTGTATGGRYCAATCACGACAATTCC 3'

R represents a mixture of the two bases: A and G used in the synthesis of the mutagenic oligonucleotide and Y represents a mixture of the two bases: C and T used in the synthesis of the mutagenic oligonucleotide.

Sequencing of transformants identifies the correct codon for amino acid position 168 in the mature amylase.

Construction of the variant: delta(D183-G184) + Q169N is carried out in a similar way except that mutagenic primer DA15 is used.

primer DA15 (SEQ ID NO:28):

5' GGTGTATGGGATAACTCACGACAATTCC 3'

30 Construction of the variant: delta(D183-G184) + Q169L is carried out in a similar way except that mutagenic primer DA16 is used.

primer DA16 (SEQ ID NO:29):

5' GGTGTATGGGATCTCTCACGACAATTCC 3'

Construction of the variant: delta(D183-G184) + Q172N is carried out in a similar way except that mutagenic primer DA17 is used.

primer DA17 (SEQ ID NO:30):

10

5' GGGATCAATCACGAAATTTCCAAAATCGTATC 3'

Construction of the variant: delta(D183-G184) + Q172L is carried out in a similar way except that mutagenic primer DA18 is used.

5 primer DA18 (SEQ ID NO:31):

5' GGGATCAATCACGACTCTTCCAAAATCGTATC 3'

Construction of the variant: delta(D183-G184) + L201I is carried out in a similar way except that mutagenic primer DA06 is used.

10 primer DA06 (SEQ ID NO:32):

5' GGAAATTATGATTATATCATGTATGCAGATGTAG 3'

Construction of the variant: delta(D183-G184) + K269S is carried out in a similar way except that mutagenic primer DA09 is used.

15 primer DA09 (SEQ ID NO:33):

5' GCTGAATTTTGGTCGAATGATTTAGGTGCC 3'

Construction of the variant: delta(D183-G184) + K269Q is carried out in a similar way except that mutagenic primer DA11 is used.

20 primer DA11 (SEQ ID NO:34):

5' GCTGAATTTTGGTCGAATGATTTAGGTGCC 3'

Construction of the variant: delta(D183-G184) + N270Y is carried out in a similar way except that mutagenic primer DA21 is used.

25 primer DA21 (SEQ ID NO:35):

5' GAATTTTGGAAGTACGATTTAGGTCGG 3'

Construction of the variants: delta(D183-G184) + L272A, delta(D183-G184) + L272I, delta(D183-G184) + L272V, delta(D183-G184) + L272T is carried out in a similar way except that mutagenic primer DA12 is used.

primer DA12 (SEQ ID NO:36):

5' GGAAAAACGATRYCGGTGCCTTGGAGAAC 3'

R represents a mixture of the two bases: A and G used in the synthesis of the mutagenic oligonucleotide and Y represents a mixture of the two bases: C and T used in the synthesis of the mutagenic oligonucleotide.

Sequencing of transformants identifies the correct codon for amino acid position 272 in the mature amylase.

30

10

15

20

25

30

Construction of the variants: delta(D183-G184) + L275A, delta(D183-G184) + L275I, delta(D183-G184) + L275V, delta(D183-G184) + L275T is carried out in a similar way except that mutagenic primer DA13 is used.

5 primer DA13 (SEQ ID NO:37):

5' LGATTTAGGTGCCTRYCAGAACTATTTA 3'

R represents a mixture of the two bases: A and G used in the synthesis of the mutagenic oligonucleotide and Y represents a mixture of the two bases: C and T used in the synthesis of the mutagenic oligonucleotide.

Sequencing of transformants identifies the correct codon for amino acid position 275 in the mature amylase.

Construction of the variant: delta(D183-G184) + Y295E is carried out in a similar way except that mutagenic primer DA08 is used.

primer DA08 (SEQ ID NO:38):

5' CCCCCTTCATGAGAATCTTTATAACG 3'

Construction of delta(D183-G184) + K446Q by the mega-primer method as described by Sarkar and Sommer,1990 (BioTechniques 8: 404-407):

Gene specific primer DA04, annealing 214-231 bp downstream relative to the STOP-codon and mutagenic primer DA10 were used to amplify by PCR an approximately 350 bp DNA fragment from a pTVB112-like plasmid (with the delta(D183-G184) mutations in the gene encoding the amylase depicted in SEQ ID NO: 2).

The resulting DNA fragment is used as a mega-primer together with primer DAO5 in a PCR on pTVB112 like plasmid (with mutations delta(D183-G184)). The app. 460 bp product of the second PCR is digested with restriction endonucleases SnaB I and Not I and cloned into pTVB112 like plasmid (delta(D183-G184)) digested with the same enzymes.

primer DA04 (SEQ ID NO:39):

5' GAATCCGAACCTCATTACACATTCG 3'

primer DA05 (SEQ ID NO:40):

35 5' CGGATGGACTCGAGAAGGAAATACCACG 3'

primer DA10 (SEQ ID NO:41):

5' CGTAGGGCAAAATCAGGCCGGTCAAGTTTGG 3'

Construction of the variants: delta(D183-G184) + K458R is

carried out in a similar way except that mutagenic primer DA22 is used.

primer DA22 (SEQ ID NO:42):

5' CATAACTGGAAATCGCCCGGGAACAGTTACG 3'

Construction of the variants: delta(D183-G184) + P459S and delta(D183-G184) + P459T is carried out in a similar way except that mutagenic primer DA19 is used.

primer DA19 (SEQ ID NO:43):

5' CTGGAAATAAAWCCGGAACAGTTACG 3'

10 W represents a mixture of the two bases: A and T used in the synthesis of the mutagenic oligonucleotide.

Sequencing of transformants identifies the correct codon for amino acid position 459 in the mature amylase.

Construction of the variants: delta(D183-G184) + T461P is carried out in a similar way except that mutagenic primer DA23 is used.

primer DA23 (SEQ ID NO:44):

5' GGAAATAAACCAGGACCCGTTACGATCAATGC 3'

Construction of the variant: delta(D183-G184) + K142R is carried out in a similar way except that mutagenic primer DA32 is used.

Primer DA32 (SEQ ID NO: 45):

5' GAGGCTTGGACTAGGTTTGATTTTCCAG 3'

Construction of the variant: delta(D183-G184) + K269R is carried out in a similar way except that mutagenic primer DA31 is used.

Primer DA31 (SEQ ID NO: 46):

5' GCTGAATTTTGGCGCAATGATTTAGGTGCC 3'

30 Example 6

Construction of site-directed α -amylase variants in the parent Termamyl α -amylase (SEQ ID NO: 4)

The amyL gene, encoding the Termamyl α -amylase is located in plasmid pDN1528 described in WO 95/10603 (Novo Nordisk). Variants with substitutions N265R and N265D, respectively, of said parent α -amylase are constructed by methods described in WO 97/41213 or by the "megaprimer" approach described above.

Mutagenic oligonucleotides are:

Primer bll for the N265R substitution:

5' PCC AGC GCG CCT AGG TCA CGC TGC CAA TAT TCA G (SEQ ID NO:

5 56)

Primer bl2 for the N265D substitution:

5' PCC AGC GCG CCT AGG TCA TCC TGC CAA TAT TCA G (SEQ ID NO: 57)

P represents a phosphate group.

10

20

25

Example 7

Determination of pH stability at alkaline pH of variants of the parent α -Amylase having the amino acid sequence shown in SEQ ID NO:2.

In this serie of analysis purified enzyme samples were used. The measurements were made using solutions of the respective variants in 100 mM CAPS buffer adjusted to pH 10.5. The solutions were incubated at 75°C.

After incubation for 20 and 30 min the residual activity was measured using the PNP-G7 assay (described in the "Materials and Methods" section above). The residual activity in the samples was measured using Britton Robinson buffer pH 7.3. The decline in residual activity was measured relative to a corresponding reference solution of the same enzyme at 0 minutes, which has not been incubated at high pH and 75°C.

The percentage of the initial activity as a function is shown in the table below for the parent enzyme (SEQ ID NO: 2) and for the variants in question.

Variant	Residual activity	Residual activity
	after 20 min	after 30 min
Δ(D183-G184)+M323L	56 %	44 %
Δ(D183-G184)+M323L+R181S	6/%	55 %
Δ(D183-G184)+M323L+A186T	62 %	50 %

In an other series of analysis culture supernatants were used. The measurements were made using solutions of the respective variants in 100 mM CAPS buffer adjusted to pH 10.5.

The solutions were incubated at 80°C.

After incubation for 30 minutes the residual activity was measured using the Phadebas assay (described in the "Materials and Method" secion above. The residual activity in the samples was measured using Britton Robinson buffer pH 7.3. The decline in residual activity was measured relative to a corresponding reference solution of the same enzyme at 0 minutes, which has not been incubated at high pH and 80°C.

The percentage of the initial activity as a function is shown in the table below for the parent enzyme (SEQ ID NO: 2) and for the variants in question.

Variant	Residual activity after 30 min
Δ(D183-G184)	4 %
Δ(D183-G184)+P459T	25 %
Δ(D183-G184)+K458R	31 %
Δ(D183-G184)+K311R	10 %

Example 8

15

20

25

Determination of calcium stability at alkaline pH of variants of the parent α -Amylase having the amino acid sequence shown in SEQ ID NO: 1, SEQ ID NO: 2 and SEQ ID NO: 4.

A: Calcium stability of variants of the sequence in SEQ ID NO:1

The measurement were made using solutions of the respective variants in 100 mM CAPS buffer adjusted to pH 10.5 to which polyphosphate was added (at time t=0) to give a final concentration of 2400 ppm. The solutions were incubated at 50°C.

After incubation for 20 and 30 minutes the residual activity was measured using the PNP-G7 assay (described above). The residual activity in the samples was measured using Britton Robinson buffer pH 7.3. The decline in residual activity was measured relative to a corresponding reference solution of the same enzyme at 0 minutes, which has not been incubated at high pH and 50°C.

The percentage of the initial activity as a function is shown in the table below for the parent enzyme (SEQ ID NO: 1) and for

the variants in question.

Residual activity	Residual activity
after 20 min	after 30 min
32 °k	19 %
36 %	23 %
45 %	29 %
35 %	20 %
44 %	n.d.
	after 20 min 32 % 36 % 45 %

n.d. = Not determinated

B: Calcium stability of variants of the sequence in SEQ ID NO:2

In this series of analysis purified samples of enzymes were used. The measurement were made using solutions of the respective variants in 100 mM CAPS buffer adjusted to pH 10.5 to which polyphosphate was added (at time t=0) to give a final concentration of 2400 ppm. The solutions were incubated at 50° C.

After incubation for 20 and 30 minutes the residual activity was measured using the PNP-G7 assay (described above). The residual activity in the samples was measured using Britton Robinson buffer pH 7.3. The decline in residual activity was measured relative to a corresponding reference solution of the same enzyme at 0 minutes, which has not been incubated at high pH and 50° C.

The percentage of the initial activity as a function is shown in the table below for the parent enzyme (SEQ ID NO: 2) and for the variants in question.

Variant	Residual activity	Residual activity
	after 20 min	after 30 min
Δ(D183-G184)+M323L	21 %	13 %
Δ(D183-G184)+M323L+R181S	. 32 %	19 %
Δ(D183-G184)+M323L+A186T	28 %	17 %
Δ(D183-G184)+M323L+A186R	30 %	18 %

20

5

10

Variant	Residual	activity	Residual	activity
	after 2	20 min	after	30 min

Δ(D183-G184)	30%	20 ह
Δ(D183-G184)+N195F	55%	44%

In this serie of analysis culture supernatants were used. The measurement were made using solutions of the respective variants in 100 mM CAPS buffer adjusted to pH 10.5 to which polyphosphate was added (at time t=0) to give a final concentration of 2400 ppm. The solutions were incubated at 50°C.

After incubation for 30 minutes the residual activity was measured using the Phadebas assay as described above. The residual activity in the samples was measured using Britton Robinson buffer pH 7.3. The decline in residual activity was measured relative to a corresponding reference solution of the same enzyme at 0 minutes, which has not been incubated at high pH and 50°C.

The percentage of the initial activity as a function is shown in the table below for the parent enzyme (SEQ ID NO: 2) and for the variants in question.

Variant	Residual activity after 30 min
Δ(D183-G184)	0 %
Δ(D183-G184)+P459T	19 %
Δ(D183-G184)+K458R	18 %
Δ(D183-G184)+T461P	13 %
Δ(D183-G184)+E346Q+K385R	4 %

C: Calcium stability of variants of the sequence in SEQ ID NO:4

The measurement were made using solutions of the respective variants in 100 mM CAPS buffer adjusted to pH 10.5 to which polyphosphate was added (at time t=0) to give a final concentration of 2400 ppm. The solutions were incubated at 60°C for 20 minutes.

25 After incubation for 20 minutes the residual activity was measured using the PNP-G7 assay (described above). The residual activity in the samples was measured using Britton Robinson buffer pH 7.3. The decline in residual activity was measured

10

15

relative to a corresponding reference solution of the same enzyme at 0 minutes, which has not been incubated at high pH and 60°C .

The percentage of the initial activity as a function is shown in the table below for the parent enzyme (SEQ ID NO: 4) and for the variants in question.

Residual
activity after
20 min
17 %
28 %
25 %

Example 9:

10 Activity measurement at medium temperature of α -Amylases having the amino acid sequence shown in SEQ ID NO: 1.

A: α -Amylase activity of variants of the sequence in SEQ ID NO:1

The measurement were made using solutions of the respective variants in 50 mM Britton Robinson buffer adjusted to pH 7.3 and using the Phadebas assay described above. The activity in the samples was measured at 37°C using 50 mM Britton Robinson buffer pH 7.3 and at 25°C using 50 mM CAPS buffer pH 10.5.

The temperature dependent activity and the percentage of the activity at 25° C relative to the activity at 37° C are shown in the table below for the parent enzyme (SEQ ID NO: 1) and for the variants in question.

Variant	NU/mg 25°C	NU/mg 37°C	NU(25°C)
			/ NU(37°C)
SP690	1440	35000	4.1 %
Δ(T183-G184)	2900	40000	7.3 €
Δ(T183-G184)+K269S	1860	12000	15.5 %
Δ(Q174)	3830	38000	7.9 %

Another measurement was made using solutions of the

15

respective variants in 50 mM Britton Robinso Suffer adjusted to pH 7.3 and using the Phadebas assay descended above. The activity in the samples was measured at 37°C and 50°C using 50 mM Britton Robinson buffer pH 7.3.

The temperature dependent activity and the percentage of the activity at 37°C relative to the activity at 50°C is shown in the table below for the parent enzyme (SEQ ID NO: 1) and for the variants in question.

Variant	NU/mg 37°C	NU/mg 50°C	NU(37°C) /
			NU(50°C)
SP690 (seq ID NO: 1)	13090	21669	60 %
K269Q	7804	10063	78 %

10

15

20

B: α -Amylase activity of variants of the sequence in SEQ ID NO:2

The measurement were made using solutions of the respective variants in 50 mM Britton Robinson buffer adjusted to pH 7.3 and using the Phadebas assay described above. The activity in the samples was measured at both 25°C and 37°C using 50 mM Britton Robinson buffer pH 7.3.

The temperature dependent activity and the percentage of the activity at 25° C relative to the activity at 37° C is shown in the table below for the parent enzyme (SEQ ID NO: 2) and for the variants in question.

Variant	NU/mg	NU/mg	NU(25°C) /
	25°C	37°C	NU(37°C)
Δ(D183-G184)+M323L	3049	10202	30 %
Δ(D183-G184)+M323L+R181S	18695	36436	51 %

C: α -Amylase activity of variants of the sequence in SEQ ID NO:4

The measurement were made using solutions of the respective variants in 50 mM Britton Robinson buffer adjusted to pH 7.3 and using the Phadebas assay described above. The activity in

the samples was measured at both 37°C using 50 mM Britton Robinson buffer pH 7.3 and at 60°C using 50 mM CAPS buffer pH 10.5.

The temperature dependent activity and the percentage of the sactivity at 37°C relative to the activity at 60°C is shown in the table below for the parent enzyme (SEQ ID NO: 4) and for the variants in question.

Variant	NU/mg 37°C	NU/mg 60°C	NU(37°C) / NU(60°C)
Termamyl	7400	4350	170 등
Q264S	10000	4650	215 %

Example 10

Construction of variants of parent hybrid BAN:1-300/Termamy1:301-483 α -amylase

Plasmid pTVB191 contains the gene encoding hybrid α -amylase BAN:1-300/Termamy1:301-483 as well as an origin of replication functional in *Bacillus subtilis* and the *cat* gene conferring chloramphenicol resistance.

Variant BM4 (F290E) was constructed using the megaprimer 10 approach (Sarkar and Sommer, 1990) with plasmid pTVB191 as template.

Primer p1 (SEQ ID NO: 52) and mutagenic oligonucleotide bm4 (SEQ ID NO: 47) were used to amplify a 444 bp fragment with polymerase chain reaction (PCR) under standard conditions.

This fragment was purified from an agarose gel and used as 15 'Megaprimer' in a second PCR with primer p2 (SEQ ID NO: 53) resulting in a 531 bp fragment. This fragment was digested with restriction endonucleases HinDIII and Tth111I. The fragment produced by this was ligated into plasmid pTVB191 that had been cleaved with the same two enzymes. The resulting 20 plasmid was transformed into B. subtilis SHA273. Chloramphenicol resistant clones were selected by growing the transformants on plates containing chloramphenicol as well as insoluble starch. Clones expressing an active $\alpha\text{-amylase}$ were isolated by selecting clones that formed halos after staining the plates with iodine 25 vapour. The identity of the introduced mutations was confirmed by DNA sequencing.

Variants BM5(F290K), BM6(F290A), BM8(Q360E) and BM11(N102D) were constructed in a similar way. Details of their construction are given below.

Variant: BM5(F290K)

mutagenic oligonucleotide: bm5 (SEQ ID NO: 48)

Primer (1st PCR): pl (SEQ ID NO: 52) Size of resulting fragment: 444 bp

Primer (2nd PCR): p2 (SEQ ID NO: 53)

Restriction endonucleases: HinDIII, Tth1111

Size of cleaved fragment: 389 bp

30

Variant: BM6(F290A)

mutagenic oligonucleotide: bm6 (SEQ ID NO: 49)

Primer (1st PCR): p1 (SEQ ID NO: 52)

5 Size of resulting fragment: 444 bp

Primer (2nd PCR): p2 (SEQ ID NO: 53)

Restriction endonucleases: HinDIII, Tth1111

Size of cleaved fragment: 389 bp

10 Variant: BM8(Q360E)

mutagenic oligonucleotide: bm8 (SEQ ID NO: 50)

Primer (1st PCR): p1 (SEQ ID NO: 52)

Size of resulting fragment: 230 bp

Primer (2nd PCR): p2 (SEQ ID NO: 53)

15 Restriction endonucleases: HinDIII, Tth1111

Size of cleaved fragment: 389 bp

Variant: BM11(N102D)

mutagenic oligonucleotide: bmll (SEQ ID NO: 51)

20 Primer (1st PCR): p3 (SEQ ID NO: 54)

Size of resulting fragment: 577

Primer (2nd PCR): p4 (SEQ ID NO: 55)

Restriction endonucleases: HinDIII, PvuI

Size of cleaved fragment: 576

25

Mutagenic oligonucleotides:

bm4 (SEQ ID NO: 47): F290E

primer 5' GTG TTT GAC GTC CCG CTT CAT GAG AAT TTA CAG G

bm5 (SEQ ID NO: 48): F290K

30 primer 5' GTG TTT GAC GTC CCG CTT CAT AAG AAT TTA CAG G

bm6 (SEQ ID NO: 49): F290A

primer 5' GTG TTT GAC GTC CCG CTT CAT GCC AAT TTA CAG G

bm8 (SEQ ID NO: 50): Q360E

primer 5' AGG GAA TCC GGA TAC CCT GAG GTT TTC TAC GG

35 bml1 (SEQ ID NO: 51): N102D

primer 5' GAT GTG GTT TTG GAT CAT AAG GCC GGC GCT GAT G

Other primers:

58

pl: 5' CT STA FTA ATG COG CCA AAC C (SEQ ID NO: 52)

p2: 5' G GAA AAG AAA TGT TTA CGG TTG CG (SEQ ID NO: 53)

p3: 5' G AAA TGA AGC GGA ACA TCA AAC ACG (SEQ ID NO: 54)

p4: 5' GTA TGA TTT AGG AGA ATT CC (SEQ ID NO: 55)

5

10

Example 11

α -Amylase activity at alkaline pH of variants of parent BAN:1-300/Termamyl:301-483 hybrid α -amylase.

The measurements were made using solutions for the respective enzymes and utilizing the Phadebas assay (described above). The activity was measured after incubating for 15 minutes at 30°C in 50 mM Britton-Robinson buffer adjusted to the indicated pH by NaOH.

15 NU/mg enzyme

рH	wt	Q360E	F290A	F290K	F290E	N102D
8.0	5300	7800	8300	4200	6600	6200
9.0	1600	2700	3400	2100	1900	1900

REFERENCES CITED

Klein, C., et al., Biochemistry 1992, 31, 8740-8746, Mizuno, H., et al., J. Mol. Biol. (1993) 234, 1282-1283,

- 5 Chang, C., et al, J. Mol. Biol. (1993) 229, 235-238, Larson, S.B., J. Mol. Biol. (1994) 235, 1560-1584, Lawson, C.L., J. Mol. Biol. (1994) 236, 590-600, Qian, M., et al., J. Mol. Biol. (1993) 231, 785-799, Brady, R.L., et al., Acta Crystallogr. sect. B, 47, 527-535,
- 10 Swift, H.J., et al., Acta Crystallogr. sect. B, 47, 535-544

 A. Kadziola, Ph.D. Thesis: "An alpha-amylase from Barley and its Complex with a Substrate Analogue Inhibitor Studied by X-ray Crystallography", Department of Chemistry University of Copenhagen 1993
- MacGregor, E.A., Food Hydrocolloids, 1987, Vol.1, No. 5-6, p. B. Diderichsen and L. Christiansen, Cloning of a maltogenic α -amylase from Bacillus stearothermophilus, FEMS Microbiol. letters: 56: pp. 53-60 (1988)

Hudson et al., Practical Immunology, Third edition (1989),

- 20 Blackwell Scientific Publications,
 Sambrook et al., <u>Molecular Cloning: A Laboratory Manual</u>, 2nd
 Ed., Cold Spring Harbor, 1989
 - S.L. Beaucage and M.H. Caruthers, <u>Tetrahedron Letters</u> <u>22</u>, 1981, pp. 1859-1869
- Matthes et al., The EMBO J. 3, 1984, pp. 801-805.
 R.K. Saiki et al., Science 239, 1988, pp. 487-491.
 Morinaga et al., (1984, Biotechnology 2:646-639)
 Nelson and Long, Analytical Biochemistry 180, 1989, pp. 147-151
 Hunkapiller et al., 1984, Nature 310:105-111
- R. Higuchi, B. Krummel, and R.K. Saiki (1988). A general method of *in vitro* preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. *Nucl. Acids Res.* 16:7351-7367.

Dubnau et al., 1971, <u>J. Mol. Biol.</u> <u>56</u>, pp. 209-221.

35 Gryczan et al., 1978, <u>J. Bacteriol.</u> 134, pp. 318-329.
S.D. Erlich, 1977, <u>Proc. Natl. Acad. Sci.</u> 74, pp. 1680-1682.
Boel et al., 1990, <u>Biochemistry</u> 29, pp. 6244-6249.

CLAIMS

- 1. A variant of a parent Termamyl-like α -amylase, which variant has α -amylase activity, said variant comprises one or more mutations corresponding to the following mutations in the amino acid sequence shown in SEQ ID NO: 2: T141, K142, F143, D144, F145, P146, G147, R148, G149, Q174, R181, G182, D183, G184, K185, A186, W189, S193, N195
- H107, K108, G109, D166, W167, D168, Q169, S170, R171, Q172, F173, 10 F267, W268, K269, N270, D271, L272, G273, A274, L275, K311, E346, K385, G456, N457, K458, P459, G460, T461, V462, T463.
 - 2. The variant according to claim 1, which variant has one or more of the following substitutions or deletions:
- 15 T141A, D, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, W, Y, V; K142A, D, R, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V; F143A, D, R, N, C, E, Q, G, H, I, L, K, M, P, S, T, W, Y, V; D144A, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V; F145A, D, R, N, C, E, Q, G, H, I, L, K, M, P, S, T, W, Y, V;
- 20 P146A, D, R, N, C, E, Q, G, H, I, L, K, M, F, S, T, W, Y, V; G147A, D, R, N, C, E, Q, H, I, L, K, M, F, P, S, T, W, Y, V; R148A, D, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V; G149A, D, R, N, C, E, Q, H, I, L, K, M, F, P, S, T, W, Y, V; R181*, A, D, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
- 25 G182*, A, D, R, N, C, E, Q, H, I, L, K, M, F, P, S, T, W, Y, V; D183*, A, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V; G184*, A, R, D, N, C, E, Q, H, I, L, K, M, F, P, S, T, W, Y, V; K185A, D, R, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V; A186D, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
- 30 W189A, D, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, Y, V; S193A, D, R, N, C, E, Q, G, H, I, L, K, M, F, P, T, W, Y, V; N195A, D, R, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V; H107A, D, R, N, C, E, Q, G, I, L, K, M, F, P, S, T, W, Y, V; K108A, D, R, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V;
- 35 G109A, D, R, N, C, E, Q, H, I, L, K, M, F, P, S, T, W, Y, V; D166A, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V; W167A, D, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, Y, V; D168A, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;

- Q169A, D, R, N, C, E, G, H, I, L, K, M, F, P, S, T, W, Y, V; S170A, D, R, N, C, E, Q, G, H, I, L, K, M, F, P, T, W, Y, V; R171A, D, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V; Q172A, D, R, N, C, E, G, H, I, L, K, M, F, P, S, T, W, Y, V; 5 F173A, D, R, N, C, E, Q, G, H, I, L, K, M, P, S, T, W, Y, V; 0174*, A, D, R, N, C, E, G, H, I, L, K, M, F, P, S, T, W, Y, V; F267A, D, R, N, C, E, Q, G, H, I, L, K, M, P, S, T, W, Y, V; W268A, D, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, Y, V; K269A, D, R, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V; N270A, D, R, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V; 10 D271A,R,N,C,E,Q,G,H,I,L,K,M,F,P,S,T,W,Y,V; L272A, D, R, N, C, E, Q, G, H, I, K, M, F, P, S, T, W, Y, V; G273A, D, R, N, C, E, Q, H, I, L, K, M, F, P, S, T, W, Y, V; A274D, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V; 15 L275A, D, R, N, C, E, Q, G, H, I, K, M, F, P, S, T, W, Y, V; K311A, D, R, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V; E346A, D, R, N, C, Q, G, H, I, K, L, M, F, P, S, T, W, Y, V; K385A, D, R, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V; G456A, D, R, N, C, E, Q, H, I, L, K, M, F, P, S, T, W, Y, V; 20 N457A, D, R, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V; K458A, D, R, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V; P459A, D, R, N, C, E, Q, G, H, I, L, K, M, F, S, T, W, Y, V; G460A, D, R, N, C, E, Q, H, I, L, K, M, F, P, S, T, W, Y, V; T461A, D, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, W, Y, V; 25 V462A, D, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y; T463A, D, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, W, Y, V.
 - 3. The variant according to claim 2, wherein the variant has one or more of the following substitutions or deletions:
- 30 K142R; S193P; N195F; K269R,Q; N270Y,R,D; K311R; E346Q; K385R; K458R; P459T; T461P; Q174*; R181Q,N,S; G182T,S,N; D183*; G184*; K185A,R,D,C,E,Q,G,H,I,L,M,N,F,P,S,T,W,Y,V; A186T,S,N,I,V,R; W189T,S,N,Q.
- 4. The variant according to claims 1-3, wherein the variant has a deletion in position D183 + G184, and further one or more of the following substitutions or deletions: K142R; S193P; N195F; K269R,Q; N270Y,R,D; K311R; E346Q; K385R; K458R; P459T; T461P;

Q174*; R181Q,N,S; G182T,S,N.33*; G184*; K185A,R,D,C,E,Q,G,H,I,L,M,N,F,P,S,T,W,Y,V; A186T,S,N,I,V,R; W189T,S,N. ...

- 5 5. The variant according to any of claims 1-4, wherein the variants exhibits an alteration in at least one of the following properties relative to the parent α -amylase:
 - i) improved pH stability at a pH from 8 to 10.5; and/or
 - ii) improved Ca2+ stability at pH 8 to 10.5, and/or
- 10 iii) increased specific activity at temperatures from 10 to 60°C, preferably 20-50°C, especially 30-40°C.
- 6. The variant according to any of claims 1-5, exhibiting improved stability at pH 8 to 10.5, having mutations in one or more of the position(s) corresponding to the following positions (using SEQ ID NO: 2 numbering): T141, K142, F143, D144, F145, P146, G147, R148, G149, R181, A186, S193, N195, K269, N270, K311, K458, P459, T461.
- 7. The variant according to claim 6, which variant has one or more of the following substitutions:

T141A, D, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, W, Y, V;

K142A, D, R, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V;

F143A, D, R, N, C, E, Q, G, H, I, L, K, M, P, S, T, W, Y, V;

- 25 D144A, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 - F145A, D, R, N, C, E, Q, G, H, I, L, K, M, P, S, T, W, Y, V;

P146A, D, R, N, C, E, Q, G, H, I, L, K, M, F, S, T, W, Y, V;

G147A, D, R, N, C, E, Q, H, I, L, K, M, F, P, S, T, W, Y, V;

R148A, D, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;

- 30 G149A, D, R, N, C, E, Q, H, I, L, K, M, F, P, S, T, W, Y, V;
 - K181A, D, R, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V;

A186D, R, N, C, E, Q, G, H, I, L, P, K, M, F, S, T, W, Y, V;

S193A, D, R, N, C, E, Q, G, H, I, L, K, M, F, P, T, W, Y, V;

N195A, D, R, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;

- 35 K269A, D, R, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V;
 - N270A, D, R, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 - K311A, D, R, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V;

K458A, D, R, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V; P459A, D, R, N, C, E, Q, G, H, I, L, K, M, F, S, T, W, Y, V; T461A, D, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, W, Y, V.

- 5 8. The variant according to claim 7, wherein the variant has one or more of the following substitutions: K142R, R181S, A186T, S193P, N195F, K269R, N270Y, K311R, K458R, P459T and T461P.
- 9. The variant according to claims 1-5, exhibiting improved Ca²⁺ stability at pH 8 to 10.5, having mutations in one or more of the following positions (using the SEQ ID NO: 2 numbering): R181, G182, D183, G184, K185, A186, W189, N195, N270, E346, K385, K458, P459.
- 15 10. The variant according to claim 9, which variant has one or more of the following substitutions or deletions: R181*,A,D,N,C,E,Q,G,H,I,L,K,M,F,P,S,T,W,Y,V; G182*,A,D,R,N,C,E,Q,H,I,L,K,M,F,P,S,T,W,Y,V; D183*,A,R,N,C,E,Q,G,H,I,L,K,M,F,P,S,T,W,Y,V;
- 20 G184*,A,R,D,N,C,E,Q,H,I,L,K,M,F,P,S,T,W,Y,V;
 K185A,D,R,N,C,E,Q,G,H,I,L,M,F,P,S,T,W,Y,V;
 A186D,R,N,C,E,Q,G,H,I,L,K,M,F,P,S,T,W,Y,V;
 W189A,D,R,N,C,E,Q,G,H,I,L,K,M,F,P,S,T,Y,V;
 N195A,D,R,C,E,Q,G,H,I,L,K,M,F,P,S,T,W,Y,V;
- 25 N270A, R, D, N, C, E, Q, H, I, L, K, M, F, P, S, T, W, Y, V; E346A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V; K385A, R, D, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V; K458A, R, D, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V; P459A, R, D, N, C, E, Q, G, H, I, L, K, M, F, S, T, W, Y, V.

11. The variant according to claim 10, wherein the variant has one or more of the following substitutions or deletions: R181Q,N; G182T,S,N; D183*; G184*; K185A,R,D,C,E,Q,G,H,I,L,M,N,F,P,S,T,W,Y,V; A186T,S,N,I,V; W189T,S,N,Q; N195F; N270R,D; E346Q; K385R; K458R; P459T.

12. A variant according to claims 1-11, wherein the parent Termamyl-like α -amylase is selected from:

30

the Bacillus strain NCIB 12512 α -amylase having the sequence shown in SEQ ID NO: 1;

the B. amyloliquefaciens α -amylase having the sequence shown in SEQ ID NO: 5;

- 5 the B. licheniformis α -amylase having the sequence shown in SEQ ID NO: 4.
- 13. The variant according to claims 1-5, exhibiting increased specific activity at a temperatures from 10 to 60°C, preferably 20-50°C, especially 30-40°C, having mutation(s) in one or more of the following positions (using the SEQ ID NO: 2 numbering): H107, K108, G109, D166, W167, D168, Q169, S170, R171, Q172, F173, Q174, D183, G184, N195, F267, W268, K269,N270, D271, L272, G273, A274, L275, G456, N457, K458, P459, G460, T461, V462, T463.
 - 14. The variant according to claim 13, which variant has one or more of the following substitutions:

H107A, D, R, N, C, E, Q, G, I, L, K, M, F, P, S, T, W, Y, V;

- 20 K108A, D, R, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V;
 G109A, D, R, N, C, E, Q, H, I, L, K, M, F, P, S, T, W, Y, V;
 D166A, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 W167A, D, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, Y, V;
 D168A, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
- Q169A, D, R, N, C, E, G, H, I, L, K, M, F, P, S, T, W, Y, V; S170A, D, R, N, C, E, Q, G, H, I, L, K, M, F, P, T, W, Y, V; R171A, D, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V; Q172A, D, R, N, C, E, G, H, I, L, K, M, F, P, S, T, W, Y, V; F173A, D, R, N, C, E, Q, G, H, I, L, K, M, P, S, T, W, Y, V;
- 30 Q174*,A,D,R,N,C,E,G,H,I,L,K,M,F,P,S,T,W,Y,V; D183*,A,D,R,N,C,E,Q,G,H,I,L,K,M,F,P,S,W,Y,V; G184*,A,R,N,C,E,Q,G,H,I,L,K,M,F,P,S,T,W,Y,V; N195A,D,R,C,E,Q,G,H,I,L,K,M,F,P,S,T,W,Y,V; F267A,D,R,N,C,E,Q,G,H,I,L,K,M,P,S,T,W,Y,V;
- 35 W268A, D, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, Y, V;
 K269A, D, R, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V;
 N270A, D, R, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;

D271A, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
L272A, D, R, N, C, E, Q, G, H, I, K, M, F, P, S, T, W, Y, V;
G273A, D, R, N, C, E, Q, H, I, L, K, M, F, P, S, T, W, Y, V;
A274D, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
L275A, D, R, N, C, E, Q, G, H, I, K, M, F, P, S, T, W, Y, V;
G456A, D, R, N, C, E, Q, H, I, L, K, M, F, P, S, T, W, Y, V;
N457A, D, R, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
K458A, D, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
P459A, D, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
T461A, D, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
V462A, D, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
T463A, D, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, W, Y, V.

- 15. The variant according to claim 14, wherein the variant has one or more of the following substitutions or deletions: Q174*, D183*, G184*, N195F, K269S.
- 16. The variant according to claims 13-15, wherein the parent 20 Termamyl-like α -amylase is the *B. licheniformis* α -amylase having the sequence shown in SEQ ID NO: 4.
 - 17. A DNA construct comprising a DNA sequence encoding an α -amylase variant according to any one of claims 1-16.
 - 18. A recombinant expression vector which carries a DNA construct according to claim 17.
- 19. A cell which is transformed with a DNA construct according to claim 17 or a vector according to claim 18.
 - 20. A cell according to claim 19, which is a microorganism.
- 21. A cell according to claim 20, which is a bacterium or a fungus.
 - 22. The cell according to claim 21, which is a Gram positive bacterium such as Bacillus subtilis, Bacillus licheniformis,

WO 99/23211 PCT/DK98/00471 -

Bacillus lentus, Bacillus brevis, Bacillus stearothermophilus, Bacillus alkalophilus, Bacillus amyloliquefaciens, Bacillus coagulans, Bacillus circulans, Bacillus lautus or Bacillus thuringiensis.

5

- 23. Use of an α -amylase variant according to any one of claims 1-16 for washing and/or dishwashing.
- 24. A detergent additive comprising an α -amylase variant according to any one of claims 1-16, optionally in the form of a non-dusting granulate, stabilized liquid or protected enzyme.
 - 25. A detergent additive according to claim 24 which contains 0.02-200 mg of enzyme protein/g of the additive.

15

26. A detergent additive according to claims 24 or 25, which additionally comprises another enzyme such as a protease, a lipase, a peroxidase, another amylolytic enzyme and/or a cellulase.

20

- 27. A detergent composition comprising an α -amylase variant according to any of claims 1-16.
- 28. A detergent composition according to claim 27 which additionally comprises another enzyme such as a protease, a lipase, a peroxidase, another amylolytic enzyme and/or a cellulase.
- 29. A manual or automatic dishwashing detergent composition comprising an α -amylase variant according to any one of claims α 1-16.
 - 30. A dishwashing detergent composition according to claim 29 which additionally comprises another enzyme such as a protease, a lipase, a peroxidase, another amylolytic enzyme and/or a cellulase.
 - 31. A manual or automatic laundry washing composition comprising

an α -amylase variant according to any one of claims 1-16.

- 32. A laundry washing composition according to claim 31, which additionally comprises another enzyme such as a protease, a lipase, a peroxidase, an amylolytic enzyme and/or a cellulase.
- 33. Method for providing α -amylases with
- 1) altered pH optimum, and/or
- 2) altered temperature optimum, and/or
- 10 3) improved stability,
 comprising the following steps:
 - i) identifying (a) target position(s) and/or region(s) for mutation of the α -amylase by comparing the molecular dynamics of two or more α -amylase's 3D structures having substantially different pH, temperature and/or stability profiles,
 - ii) substituting, adding and/or deleting one or more amino acids in the identified position(s) and/or region(s).
- 34. The method according to claim 33, wherein a medium 20 temperature $\alpha-$ amylase is compared with a high temperature $\alpha-$ amylase.
- 35. The method according to claim 33, wherein a low temperature α -amylase is compared with a medium or high temperature α -amylase.
 - 36. The method according to claims 33-35, wherein the α -amylases are at least 70%, preferably 80%, up to 90%, such as up to 95%, especially 95% homologous.
 - 37. The method according to claim 36, wherein the α -amylases compared are Termamyl-like α -amylases.
- 38. The method according to claim 28, wherein the α -amylases compared are any of the α -amylases shown in SEQ ID NO: 1 to SEQ ID NO: 8.

	-				50
	HHNGTNGTMM	HHNGTNGTMM QYFEWHLPND	GNHWNRLRDD	ASNLRNRGIT	ASNLRNRGIT AIWIPPAWKG
2	NGTNGTMM	QYFEWYLPND	GNHWNRLRSD	ASNLKDKGIS	AVWIPPAWKG
3	HHNGTNGTMM	OYFEWYLPND	GNHWNRLRDD	AANLKSKGIT	AVWIPPAWKG
ው	VNGTLM	QYFEWYTPND	GQHWKRLQND	AEHLSDIGIT	AVWIPPAYKG
2	ANLNGTLM	QYFEWYMPND	GQHWRRLQND	SAYLAEHGIT	AVWIPPAYKG
9	. AAPFNGTMM	QYFEWYLPDD	GTLWTKVANE	ANNLSSLGIT	ALWLPPAYKG
	ţ				
	51				100
\vdash	TSQNDVGYGA	YDLYDLGEFN	QKGTVRTKYG	TRSQLESAIH	ALKNNGVQVY
2	ASQNDVGYGA	YDLYDLGEFN	QKGTIRTKYG	TRNQLQAAVN	ALKSNGIQVY
\sim	TSQNDVGYGA	YDLYDLGEFN	QKGTVRTKYG	TRNQLQAAVT	SLKNNGIQVY
Ţ.	LSQSDNGYGP	YDLYDLGEFQ	QKGTVRTKYG	TKSELQDAIG	SLHSRNVQVY
2	TSQADVGYGA	YDLYDLGEFH	QKGTVRTKYG	TKGELQSAIK	SLHSRDINVY
9	TSRSDVGYGV	YDLYDLGEFN	QKGTVRTKYG	TKAQYLQAIQ	AAHAAGMQVY
	,				
	101			•	150
	GDVVMNHKGG	ADATENVLAV	EVNPNNRNQE	ISGDYTIEAW	TKFDFPGRGN
\sim I	GDVVMNHKGG	ADATEMVRAV	EVNPNNRNQE	VSGEYTIEAW	TKFDFPGRGN
\sim	GDVVMNHKGG	ADGTEIVNAV	EVNRSNRNQE	TSGEYAIEAW	TKFDFPGRGN
₹ II	GDVVLNHKAG	ADATEDVTAV	EVNPANRNQE	TSEEYQIKAW	TDFRFPGRGN
	GDVVINHKGG	ADATEDVTAV	EVDPADRNRV	ISGEHLIKAW	THEHFPGRGS
0	ADVVFDHKGG	ADGTEWVDAV	EVNPSDRNQE	ISGTYQIQAW	TKFPFPGRGN

Fig. 1

-1 01 00 10 10	151 TYSDFKWRWY THSNFKWRWY NHSSFKWRWY TYSDFKWHWY TYSDFKWHWY	HFDGVDWDQS HFDGVDWDQS HFDGTDWDQS HFDGADWDES HFDGVDWDES	RQFQNRIYKF RKLNNRIYKF RQLQNKIYKF RKI.SRIFKF RKL.NRIYKF	RGDGKAWDWE RGDGKGWDWE RGTGKAWDWE QGKAWDWE RGIGKAWDWE	200 VDSENGNYDY VDTENGNYDY VSTENGNYDY VSNENGNYDY VSNENGNYDY
-	201 LMYADVDMDH LMYADIDMDH LMYADVDYDH LMYADIDYDH LMYADIDYDH	PEVVNELRRW PEVVNELRNW PEVIHELRNW PDVVAETKKW PDVAAEIKRW PEVVTELKNW	GEWYTNTLNL GVWYTNTLGL GVWYTNTLNL GIWYANELSL GTWYANELQL GKWYVNTTNI	DGFRIDAVKH DGFRIDAVKH DGFRIDAVKH DGFRIDAAKH DGFRLDAVKH	250 IKYSFTRDWL IKYSFTRDWS IKYSFTRDWL IKFSFLRDWV IKFSFLRDWV
J 01 85 # 10 10	251 THVRNATGKE IHVRSATGKN THVRNTTGKP QAVRQATGKE NHVREKTGKE	MFAVAEFWKN MFAVAEFWKN MFAVAEFWKN MFTVAEYWQN MFTVAEYWQN LFTVGEYWSY	DLGALENYLN DLGAIENYLN DLGAIENYLN NAGKLENYLN DLGALENYLN DIGALENYLN	KTNWNHSVFD KTNWNHSVFD KTSWNHSAFD KTSFNQSVFD KTNFNHSVFD	300 VPLHYNLYNA VPLHYNFYNA VPLHYNLYNA VPLHFNLQAA VPLHYQFHAA

Fig. 1 (continued)

	301				350
	SNSGGNYDMA	KLLNGTVVQK	HPMHAVTFVD	NHDSQPGESL	ESFVQEWFKP
٥.	SKSGGNYDMR	QIFNGTVVQR	HPMHAVTFVD	NHDSQPEEAL	ESFVEEWFKP
~	SNSGGYYDMR	NITNGSVVQK	HPTHAVTEVD	NHDSQPGEAL	ESFVQQWFKP
	SSQGGGYDMR	RLLDGTVVSR	HPEKAVTFVE	NHDTQPGQSL	ESTVQTWFKP
	STQGGGYDMR	KLLNGTVVSK	HPLKSVTFVD	NHDTQPGQSL	ESTVQTWFKP
	SKSGGAFDMR	TLMTNTLMKD	QPTLAVTEVD	NHDTEPGQAL	QSWVDPWFKP
	351				400
,	LAYALILTRE	QGYPSVFYGD	YYGIPTHS	. VPAMKAKID	PILEARONFA
٥.	LAYALTLTRE	QGYPSVFYGD	YYGIPTHG	.VPAMKSKID	PILEAROKYA
~	LAYALVLTRE	QGYPSVFYGD	YYGIPTHG	.VPAMKSKID	PLLQAROTFA
	LAYAFILTRE	SGYPQVFYGD	MYGTKGTSPK	EIPSLKDNIE	PILKARKEYA
. •	LAYAFILTRE	SGYPQVFYGD	MYGTKGDSQR	EIPALKHKIE	PILKARKOYA
	LAYAFILTRQ	EGYPCVFYGD	YYGIPQYN	.IPSLKSKID	PLLIARRDYA
	401				1
	YGTQHDYFDH		HNIIGWTREG NTTHPNSGLA TIMSDGPGGE	TIMSDGPGGE	450 KWMYVGONKA
	YGRQN	•			
	YGTQHDYFDH	HDIIGWTREG	NSSHPNSGLA	TIMSDGPGGN	KWMYVGKNKA
	YGPQHDYIDH	PDVIGWTREG	DSSAAKSGLA	ALITDGPGGS	KRMYAGLKNA
_	YGAQHDYFDH	HDIVGWTREG	DSSVANSGLA	ALITDGPGGA	KRMYVGRONA
	YGТQНDYLDH	SDIIGWTREG	GTEKPGSGLA	ALITDGPGGS	KWMYVGKQHA

Fig.1 (continued)

	451				200
 1	GQVWHDITGN	GOVWHDITGN KPGTVTINAD GWANFSVNGG SVSIWVKR	GWANFSVNGG	SVSIWVKR	•
2	•	•	•	•	
\sim	GQVWRDITGN	GOVWRDITGN RIGIVIINAD GWGNFSVNGG	GWGNFSVNGG	SVSVWVKQ	•
4	GETWYDITGN	RSDTVKIGSD	RSDTVKIGSD GWGEFHVNDG	SVSIYVQ	•
2	GETWHDITGN		RSEPVVINSE GWGEFHVNGG	SVSIYVQR	•
9	GKVFYDLTGN	RSDTVTINSD	RSDTVTINSD GWGEFKVNGG	SVSVWVPRKT	TVSTIARPIT
	501	519	•		
Ţ		•			
2	•	•			
3	•	•			
4	•				
2	•				
9	TRPWTGEFVR WTEPRLVAW	WTEPRLVAW			

Fig. 1 (continued)

Fig. 2

Fig. 3

50 AKECERYLAP AKECERYLAP ALECERYLGP ALECERYLAP 100 150 AQECEQYLGP NEDEFRNMVT EFSAVPYSAW NEDEFRDMVT NENEFKDMVT NENEFRDMVT EFPAVPYSAW EFPAVPYSAW DFPAVPYSGW SFPI..YSPQ 200 NRAOF I DMVN VRTKVADYMN VRTKVADYMN VRSMIADYLN VRSKIAEYMN VQNTIAAYIN IATATPTTFV HLFEWNWODV VSYELQSRGG TOOG. RISIV HLFEWRWVDI HLFEWRWVDI ISYKICTRSG VSYKLCTRSG 1 MKFVLLLSLI GFCWAQYDPH TSDG.RTAIV HLFEWRWVDI HLFEWRWADI ISYKICSRSG VSYKLCTRSG CGSYLNPNNR CGSYCNPGNR CGSYFNPGSR LADLDTASNY CGSYFNPNNR LLDLALEKDY GNSF...GNK LLDLALDKDY LLDLALEKDY LLDLALEKDY GSQWWTRYQP TQSG.RTDIV SRPWWERYOP TADG. RTAIV SRPWWERYOP SRPWWERYOP FRPWWERYOP AGNPAGTSST NOVRNCRLSG YRVQNCELVG NAVSAGTSST . AAGSGTGTA YQVRNCRLTG SGNSAGTHST SGAAAGTGTT YQVRDCQLVG TQVRDCRLTG >5 MKLNKIITTA GLSLGLLLPS **VDAVINHMCG** GFCWAQYSPN PNENVALYNP GFCWAQYDPH ...QYAPQ **PNENWWYHNP** PNENI I INNP PNENVVVTNP VDAVINHMCG SGGIESYNDP VDAVINHMCG VDAVINHMCG RCSAAGVDIY VDTLINHM.. .GEIDNYNDA . GEINNYNDA SGDIENYNDA NSDYG..NDRLSLI KGFGGVQVSP KGFGGVQVSP MKFFLLLFTI KGFGGVQVSP KGFGGVQVSP KGYAAVQVSP RCNNVGVRIY RCNNVGVRIY RCNNVGVRIY RCNNVGVRIY DFHES. CTIN DFNDGKCKTA DFNDGKCKTG YFNDNKCN.. DFNDNKCN. 101 151 51 2 マ 4 S ~ \sim Ŋ 4

Fig. 4

2 NLIDIGVAGE 3 KLIDIGVAGE 4 HLIDIGVAGE 5 DLQAIGVKGE		GDIKAVLDKL GDIKAVLDKL GDIKAILDKL SDIQSLMAKV	RLDASKHWWP GDIKAVLDKL HNLNTKWFSQ GSRPFIFQEV RLDASKHWWP GDIKAVLDKL HNLNTKWFPA GSRPFIFQEV RLDASKHWWP GDIKAVLDKL HNLNTNWFPA GSRPFIFQEV RLDASKHWWP GDIKAILDKL HNLNSNWFPA GSKPFIYQEV RFDASKHVAA SDIQSLMAKV NGSPVVFQEV	GSRPFIFQEV GSRPFIFQEV GSRPFIYQEV .GSPVVFQEV
251 1 IDLGGEAIKG 2 IDLGGEAIKG 3 IDLGGEAIKS 4 IDLGGEPIKS 5 IDQGGEAVGA	151 IDLGGEAIKG SEYFGNGRVT EFKYGAKLGT VIRKWNGEKM SYLKNWGEGW IDLGGEAIKG SEYFGNGRVT EFKYGAKLGT VIRKWNGEKM SYLKNWGEGW IDLGGEAIKS GEYFSNGRVT EFKYGAKLGT VVRKWSGEKM SYLKNWGEGW IDLGGEPIKS SDYFGNGRVT EFKYGAKLGT VIRKWNGEKM SYLKNWGEGW IDQGGEAVGA SEYLSTGLVT EFKYSTELGN TFRNGSL AWLSNFGEGW	EFKYGAKLGT EFKYGAKLGT EFKYGAKLGT EFKYGAKLGT	SEYFGNGRVT EFKYGAKLGT VIRKWNGEKM SEYFGNGRVT EFKYGAKLGT VIRKWNGEKM GEYFSNGRVT EFKYGAKLGT VVRKWSGEKM SDYFGNGRVT EFKYGAKLGT VIRKWNGEKM SEYLSTGLVT EFKYSTELGN TFRNGSL	300 SYLKNWGEGW SYLKNWGEGW SYLKNWGEGW SYLKNWGEGW
301 1 GLVPSDRALV 2 GFVPTDRALV 3 GFMPSDRALV 4 GFVPSDRALV 5 GFMPSSSAVV		HGAGGSSILT HGAGGASILT HGAGGSSILT HGAGGASILT HGGAG.NVIT	FVDNHDNQRG HGAGGSSILT FWDARMYKMA VGFMLAHPYG FVDNHDNQRG HGAGGASILT FWDARMYKMA VGFMLAHPYG FVDNHDNQRG HGAGGSSILT FWDAYRKLVA VGFMLAHPYG FVDNHDNQRG HGAGGASILT FWDARLYKMA VGFMLAHPYG FVDNHDNQRG HGGAG.NVIT FEDGRLYDLA NVFMLAYPYG	350 VGFMLAHPYG VGFMLAHPYG VGFMLAHPYG VGFMLAHPYG

Fig. 4 (continued)

DTTCGNDWVC DTTCGNDWVC DITCGNDWVC DITCGNDWVC . CFASNWKC 450 RGFIVFNNDD RGFIVFNNDD RGFIVFNNDD RGFIVFNNDD SGHMAINKED DGKAQFSISN DGKAHFSISN DGKAHFSISN DGTINLNIGA GVTKEVTINP GVIKEVTINA GVIKEVTINP SNOVAFSRGN GVTKEVTINA SNQVAFGRGN CTGLRVNVGS SNQVAFSRGN SNQVAFGRGN NNQISFGRGS CTGLKVNVGS CSGEVITVNS CTGIKVYVSS CTGIKIYVSD 521 ഗ GNLE. KNAKLNTSSA AESKL... NDMIGPPNNN NRNFQNGKDQ NDWIGPPNNN NDWIGPPNNN NDWVGPPNNN GGPNVPVHNN PFTNWYDNG SGDKVDG..N PFSNWWDNN **PFANWWDNG** WAVTNWWDNT SGDKVNG..N SGDKVGN..S **PFANWWDNG** SGDKING..N KGELSADAKS SAEDPFIAIH ADSKL AESKL ADSKL SAEDPFIAIH SAEDPFIAIH SAEDPFIAIH WDA...MAIH TRNFQNGKDV ARNFVNGEDV PROFONGNDV .. DFHGDTDA MASGQYCNVL VAFRNVVNGQ VAFRNVVNGQ VWFRNVVDGE VIFRNVVDGQ VDFRNNTADN LPAGTYCDVI LPAGTYCDVI LPAGTYCDVI LPAGTYCDVI 501 4 FTRVMSSYRW EHRWROIRNM FTRVMSSYRW EHRWRQIRNM EHRWREIRNM FTRVMSSYRW FTRVMSSYRR EHRWROIRNM EHRWSYIAGG WSFSLTLQTG WALSATLOTG WALSSTLOTG WOLSSTLOTG YPKVMSSY. 351 401 451

Fig. 4 (continued)

1 SEQUENCE LISTING

5 10 15	(ii) (iii)	AL INFORMAPPLICAN (A) NAM (B) STI (C) CIT (E) COM (F) POS (G) TEI (H) TEI TITLE OF NUMBER (COMPUTE) (A) MEI (B) COM (C) OP (D) SO	NT: ME: NC REET: TY: DE UNTRY: LEPHON LEFAX: F INVE DF SEC R REAL DIUM THE MPUTEE RATIO	DVO Novo Novo (-288 : Der CODE : +45 ENTIC QUENC DABLE TYPE: R: IE	Al 30 (ZI +45 5 44 ON: CES: E FO : Fl 3M P	le Bags k P): 44 4 49 α-am 46 RM: Oppy C co	vaer DK-2 4 88 32 5 ylas dis mpat C-DO	880 88 6 e mu k ible S/MS	- -DOS	i.	rsic	on #1	25	(EPC	>)
20	(2) INFOR (i)	RMATION SEQUENC (A) LE (B) TY (C) ST	E CHAI NGTH: PE: ai	RACTI 485 mino	ERIS ami aci	TICS no a d	cids								
25		(D) TO MOLECUL SEQUENC	E TYP	E: pe	epti	de	Q IE	NO:	1:						
30	His 1	His Asn	_	Thr 1 5	Asn	Gly	Thr	Met	Met 10	Gln	Tyr	Phe	Glu	Trp 15	Tyr
	Leu	Pro Asn	Asp	Gly A	Asn	His	Trp	Asn 25	Arg	Leu	Arg	Asp	Asp 30	Ala	Ala
35	Asn	Leu Lys 35	Ser	Lys (Gly	Ile	Thr 40	Ala	Val	Trp	Ile	Pro 45	Pro	Ala	Trp
40	Lys	Gly Thr 50	Ser	Gln /	Asn	Asp 55	Val	Gly	Tyr	Gly	Ala 60	Tyr	Asp	Leu	Tyr
	Asp 65	Leu Gly	Glu			Gln				Val 75	Arg	Thr	Lys	Tyr	Gly 80
45	Thr	Arg Asn		Leu 85	Gln	Ala	Àla	Val	Thr 90	Ser	Leu	Lys	Asn	Asn 95	Gly
	Ile	Gln Val	Tyr 100	Gly .	Asp	Val	Val	Met 105	Asn	His	Lys	Gly	Gly 110	Ala	Asp
50	Gly	Thr Glu		Val	Asn	Ala	Val 120	Glu	Val	Asn	Arg	Ser 125	Asn	Arg	Asn
55	Gln	Glu Thr 130	Ser	Gly	Glu	Tyr 135	Ala	Ile	Glu	Ala	Trp 140	Thr	Lys	Phe	Asp
	Phe 145	Pro Gly	' Arg		Asn 150	Asn	His	Ser	Ser	Phe 155	Lys	Trp	Arg	Trp	Tyr 160

	His	Phe	Asp	Gly	Thr 165	Asp	Trp	Asp	Gln	Ser 170	Arg	Gln	Leu	Gln	Asn 175	Lys
5	Ile	Tyr	Lys	Phe 180	Arg	Gly	Thr		Lys -185	Ala	Trp	Asp	Trp	Glu 190	Val	Asp
10	Thr	Glu	Asn 195	Gly	Asn	Tyr	Asp	Tyr 200	Leu	Met	Tyr	Ala	Asp 205	Val	Asp	Met
10	Asp	His 210	Pro	Glu	Val	Ile	His 215	Glu	Leu	Arg	Asn	Trp 220	Gly	Val	Trp	Туг
15 (Thr 225	Asn	Thr	Leu	Asn	Leu 230	Asp	Gly	Phe	Arg	Ile 235	Asp	Ala	Val	Lys	His 240
	Ile	Lys	Tyr	Ser	Phe 245	Thr	Arg	Asp	Trp	Leu 250	Thr	His	Val	Arg	Asn 255	Thr
20	Thr	Gly	Lys	Pro 260	Met	Phe	Ala	Val	Ala 265	Glu	Phe	Trp	Lys	Asn 270	Asp	Leu
25	Gly	Ala	Ile 275	Glu	Asn	Tyr	Leu	Asn 280	Lys	Thr	Ser	Trp	Asn 285	His	Ser	Val
20	Phe	Asp 290	Val	Pro	Leu	His	Tyr 295	Asn	Leu	Tyr	Asn	Ala 300	Ser	Asn	Ser	Gly
30	Gly 305	Tyr	Tyr	Asp	Met	Arg 310	Asn	Ile	Leu	Asn	Gly 315	Ser	Val	Val	Gln	Lys 320
	His	Pro	Thr	His	Ala 325	Val	Thr	Phe	Val	Asp 330	Asn	His	Asp	Ser	Gln 335	Pro
35	Gly	Glu	Ala	Leu 340	Glu	Ser	Phe	Val	Gln 345	Gln	Trp	Phe	Lys	Pro 350	Leu	Ala
40	Tyr	Ala	Leu 355	Val	Leu	Thr	Arg	Glu 360	Gln	Gly	Tyr	Pro	Ser 365	Val	Phe	Tyr
	Gly	Asp 370		Tyr	Gly	Ile	Pro 375	Thr	His	Gly	Val	Pro 380	Ala	Met	Lys	Ser
45	Lys 385	Ile	Asp	Pro	Leu	Leu 390	Gln	Ala	Arg	Gln	Thr 395	Phe	Ala	Tyr	Gly	Thr 400
	Gln	His	Asp	Tyr	Phe 405	Asp	His	His	Asp	Ile 410	Ile	Gly	Trp	Thr	Arg 415	Glu
50	Gly	Asn	Ser	Ser 420		Pro	Asn	Ser	Gly 425	Leu	Ala	Thr	Ile	Met 430	Ser	Asp
55	Gly	Pro	Gly 435	Gly	Asn	Lys	Trp	Met 440	Tyr	Val	Gly	Lys	Asn 445	Lys	Ala	Gly
33	Gln	Val 450		Arg	Asp	Ile	Thr 455	Gly	Asn	Arg	Thr	Gly 460	Thr	Val	Thr	Ile

		Asn 465	Ala	Asp	Gly	Trp	Gly 470	Asn	Phe	Ser	Val	Asn 475	Gly	Gly	Ser	Val	Ser 480
5		Val	Trp	Val	Lys	Gln 485											
10	(2)		SEQU (A) (B) (C)	ENCE LEN TYP STR	CHA IGTH: PE: & RANDE	ARACT 485 amino EDNES	ERIS ami aci SS: s	STICS .no a .d singl	S: acids	5							
15		(ii) (xi)	MOLE	CULE	TYP	_	pepti	de	EQ II	ON C	: 2:						
15		His 1	His	Asn	Gly	Thr 5	Asn	Gly	Thr	Met	Met 10	Gln	Tyr	Phe	Glu	Trp 15	His
20		Leu	Pro	Asn	Asp 20	Gly	Asn	His	Trp	Asn 25	Arg	Leu	Arg	Asp	Asp 30	Ala	Ser
		Asn	Leu	Arg 35	Asn	Arg	Gly	Ile	Thr 40	Ala	Ile	Trp	Ile	Pro 45	Pro	Ala	Trp
25		Lyś	Gly 50	Thr	Ser	Gln	Asn	Asp 55	Val	Gly	Tyr	Gly	Ala 60	Tyr	Asp	Leu	Tyr
30		Asp 65	Leu	Gly	Glu	Phe	Asn 70	Gln	Lys	Gly	Thr	Val 75	Arg	Thr	Lys	Tyr	Gly 80
		Thr	Arg	Ser	Gln	Leu 85	Glu	Ser	Ala	Ile	His 90	Ala	Leu	Lys	Asn	Asn 95	Gly
35		Val	Gln	Val	Tyr 100	Gly	Asp	Val	Val	Met 105	Asn	His	Lys	Gly	Gly 110	Ala	Asp
		Ala	Thr	Glu 115	Asn	Val	Leu	Ala	Val 120	Glu	Val	Asn	Pro	Asn 125	Asn	Arg	Asn
40		Gln	Glu 130	Ile	Ser	Gly	Asp	Tyr 135	Thr	Ile	Glu	Ala	Trp 140	Thr	Lys	Phe	Asp
45	٠	Phe 145	Pro	Gly	Arg	Gly	Asn 150	Thr	Tyr	Ser	Asp	Phe 155	Lys	Trp	Arg	Trp	Tyr 160
40		His	Phe	Asp	Gly	Val 165	Asp	Trp	Asp	Gln	Ser 170	Arg	Gln	Phe	Gln	Asn 175	Arg
50		Ile	Tyr	Lys	Phe 180		Gly	Asp	Gly	Lys 185	Ala	Trp	Asp	Trp	Glu 190	Val	Asp
		Ser	Glu	Asn 195	Gly	Asn	Tyr	Asp	Tyr 200	Leu	Met	Tyr	Ala	Asp 205	Val	Asp	Met
55		Asp	His 210		Glu	Val	Val	Asn 215	Glu	Leu	Arg	Arg	Trp 220	Gly	Glu	Trp	Tyr
		Thr	Asn	Thr	Leu	Asn	Leu	Asp	Gly	Phe	Arg	Ile	Asp	Ala	Val	Lys	His

	225					230					235					240
-	Ile	Lys	Tyr	Ser	Phe 245	Thr	Arg	Asp	Trp	Leu 250	Thr	His	Val	Arg	Asn 255	Ala
5	Thr	Gly	Lys	Glu 260	Met	Phe	Ala	Val	Ala 265	Glu	Phe	Trp	Lys	Asn 270	Asp	Leu
10	Gly	Ala	Leu 275	Glu	Asn	Tyr	Leu	Asn 280	Lys	Thr	Asn	Trp	Asn 285	His	Ser	Val
	Phe	Asp 290	Val	Pro	Leu	His ,	Tyr 295	Asn	Leu	Tyr	Asn	Ala 300	Ser	Asn	Ser	Gly
15	Gly 305	Asn	Tyr	Asp	Met	Ala 310	Lys	Leu	Leu	Asn	Gly 315	Thr	Val	Val	Gln	Lys 320
20	His	Pro	Met	His	Ala 325	Val	Thr	Phe	Val	Asp 330	Asn	His	Asp	Ser	Gln 335	Pro
20	Gly	Glu	Ser	Leu 340	Glu	Ser	Phe	Val	Gln 345	Glu	Trp	Phe	Lys	Pro 350	Leu	Ala
25	Tyr	Ala	Leu 355	Ile	Leu	Thr	Arg	Glu 360	Gln	Gly	Tyr	Pro	Ser 365	Val	Phe	Tyr
	Gly	Asp 370	Tyr	Tyr	Gly	Ile	Pro 375	Thr	His	Ser	Val	Pro 380	Ala	Met	Lys	Ala
30	Lys 385	Ile	Asp	Pro	Ile	Leu 390	Glu	Ala	Arg	Gln	Asn 395	Phe	Ala	Tyr	Gly	Thr 400
35	Gln	His	Asp	Tyr	Phe 405	Asp	His	His	Asn	Ile 410	Ile	Gly	Trp	Thr	Arg 415	Glu
	Gly	Asn	Thr	Thr 420	His	Pro	Asn	Ser	Gly 425	Leu	Ala	Thr	Ile	Met 430	Ser	Asp
40	Gly	Pro	Gly 435		Glu	Lys	Trp			Val				Lys	Ala	Gly
	Gln	Val 450	Trp	His	Asp	Ile	Thr 455	Gly	Asn	Lys	Pro	Gly 460	Thr	Val	Thr	Ile
45	Asn 465	Ala	Asp	Gly	Trp	Ala 470	Asn	Phe	Ser	Val	Asn 475	Gly	Gly	Ser	Val	Ser 480
50	Ile	Trp	Val	Lys	Arg 485											
	2) INFO	RMAT	ION	FOR .	SEO :	ID NO	o: 3	:								
·	-	SEQ!	UENCI	E CH. NGTH PE:	ARAC	TERI:	STIC:	S:	s							
55	(ii) (xi)	(D MOL) TO ECUL		GY: PE:	line: pept	ar ide		D NO	: 3:						

		Ala 1	Ala	Pro	Phe	Asn 5	Gly	Thr	Met	Met	Gln 10	Tyr	Phe	Glu	Trp	Tyr 15	Leu
5		Pro	Asp	Asp	Gly 20	Thr	Leu	Trp	Thr	Lys 25	Val	Ala	Asn	Glu	Ala 30	Asn	Asn
10		Leu	Ser	Ser 35	Leu	Gly	Ile	Thr	Ala 40	Leu	Trp	Leu	Pro	Pro 45	Ala	Tyr.	Lys
10		Gly	Thr 50	Ser	Arg	Ser	Asp	Val 55	Gly	Tyr	Gly	Val	Tyr 60	Asp	Leu	Tyr	Asp
15		Leu 65	Gly	Glu	Phe	Asn	Gln 70	Lys	Gly	Ala	Val	Arg 75	Thr	Lys	Tyr	Gly	Thr 80
		Lys	Ala	Gln	Tyr	Leu 85	Gln	Ala	Ile	Gln	Ala 90	Ala	His	Ala	Ala	Gly 95	Met
20		Gln	Val	Tyr	Ala 100	Asp	Val	Val	Phe	Asp 105	His	Lys	Gly	Gly	Ala 110	Asp	Gly
25		Thr	Glu	Trp 115	Val	Asp	Ala	Val	Glu 120	Val	Asn	Pro	Ser	Asp 125	Arg	Asn	Gln
25		Glu	Ile 130	Ser	Gly	Thr	Tyr	Gln 135	Ile	Gln	Ala	Trp	Thr 140	Lys	Phe	Asp	Phe
30	<u> </u>	Pro 145	Gly	Arg	Gly	Asn	Thr 150	Tyr	Ser	Ser	Phe	Lys 155	Trp	Arg	Trp	Tyr	His 160
		Phe	Asp	Gly	Val	Asp 165	Trp	Asp	Glu	Ser	Arg 170	Lys	Leu	Ser	Arg	Ile 175	Tyr
35		Lys	Phe	Arg	Gly 180	Ile	Gly	Lys	Ala	Trp 185	Asp	Trp	Glu	Val	Asp 190	Thr	Glu
40		Asn	Gly	Asn 195	Tyr	Asp	Tyr	Leu	Met 200	Tyr	Ala	Asp	Leu	Asp 205	Met	Asp	His
	-	Pro	Glu 210	Val	Val	Thr	Glu	Leu 215	Lys	Ser	Trp	Gly	Lys 220	Trp	Tyr	Val	Asn
45		Thr 225		Asn	Ile	Asp	Gly 230		Arg	Leu	Asp	Ala 235	Val	Lys	His	Ile	Lys 240
		Phe	Ser	Phe	Phe	Pro 245		Trp	Leu	Ser	Asp 250	Val	Arg	Ser	Gln	Thr 255	Gly
50	,	Lys	Pro	Leu	Phe 260	Thr	Val	Gly	Glu	Tyr 265	Trp	Ser	Tyr	Asp	Ile 270	Asn	Lys
55		Leu	His	Asn 275		Ile	Met	Lys	Thr 280		Gly	Thr	Met	Ser 285	Leu	Phe	Asp
		Ala	Pro		His	Asn	Lys	Phe 295		Thr	Ala	Ser	Lys 300	Ser	Gly	Gly	Thr

										6			•				
		Phe 305	Asp	Met	Arg	Thr	Leu 310	Met	Thr	Asn	Thr	Leu 315	Met	Lys	Asp	Gln	Pro 320
5		Thr	Leu	Ala	Val	Thr 325	Phe	Val	Asp	Asn	His 330	Asp	Thr	Glu	Pro	Gly 335	Gln
		Ala	Leu	Gln	Ser 340	Trp	Val	Asp	Pro	Trp 345	Phe	Lys	Pro	Leu	Ala 350	Tyr	Ala
10		Phe	Ile	Leu 355	Thr	Arg	Gln	Glu	Gly 360	Tyr	Pro	Cys	Val	Phe 365	Tyr	Gly	Asp
15		Tyr	Tyr 370	Gly	Ile	Pro	Gln	Tyr 375	Asn	Ile	Pro	Ser	Leu 380	Lys	Ser	Lys	Ile
.0		Asp 385	Pro	Leu	Leu	Ile	Ala 390	Arg	Arg	Asp	Tyr	Ala 395	Tyr	Gly	Thr	Gln	His 400
20		Asp	Tyr	Leu	Asp	His 405	Ser	Asp	Ile	Ile	Gly 410	Trp	Thr	Arg	Glu	Gly 415	Val
		Thr	Glu	Lys	Pro 420	Gly	Ser	Gly	Leu	Ala 425	Ala	Leu	Ile	Thr	Asp 430	Gly	Pro
25		Gly	Gly	Ser 435	Lys	Trp	Met	Tyr	Val 440	Gly	Lys	Gln	His	Ala 445	Gly	Lys	Val
30		Phe	Tyr 450	Asp	Leu	Thr	Gly	Asn 455	Arg	Ser	Asp	Thr	Val 460	Thr	Ile	Asn	Ser
00		Asp 465	Gly :	Trp	Gly	Glu	Phe 470	Lys	Val	Asn	Gly	Gly 475	Ser	Val	Ser	Val	Trp 480
35		Val	Pro	Arg	Lys	Thr 485	Thr	Val	Ser	Thr	11e 490	Ala	Trp	Ser	Ile	Thr 495	Thr
		Arg	Pro	Trp	Thr 500	Asp	Glu	Phe	Val	Arg 505	Trp	Thr	Glu	Pro	Arg 510	Leu	Val
40		Ala	Trp														
45	(2)		SEQ (A (B (C	UENCI) LEI) TYI) STI	E CHA NGTH PE: 8 RANDI	ARAC' : 48: amin EDNE:		STIC: ino a id sing:	S: acid:	5							
50			MOL SEQ			-	-		EQ II	O NO:	: 4:						
		Ala 1	Asn	Leu	Asn	Gly 5	Thr	Leu	Met	Gln	Tyr 10	Phe	Glu	Trp	Tyr	Met 15	Pro
55		Asn	Asp	Gly	Gln 20	His	Trp	Arg	Arg	Leu 25	Gln	Asn	Asp	Ser	Ala 30	Tyr	Leu
		Ala	Glu	His	Gly	Ile	Thr	Ala	Val	Trp	Ile	Pro	Pro	Ala	Tyr	Lys	G.1 y

			35					40					45			
5	Thr	Ser 50	Gln	Ala	Asp	Val	Gly 55	Tyr	Gly	Ala	Tyr	Asp 60	Leu	Tyr	Asp	Leu
	Gly 65	Glu	Phe	His	Gln	Lys 70	Glý	Thr	Val	Arg	Thr 75	Lys	Tyr	Gly	Thr	Lys 80
10	Gly	Glu	Leu	Gln	Ser 85	Ala	Ile	Lys	Ser	Leu 90	His	Ser	Arg	Asp	Ile 95	Asr
	Val	Tyr	Gly	Asp 100	Val	Val	Ile	Asn	His 105	Lys	Gly	Gly	Ala	Asp 110	Ala	Thr
15	Glu	Asp	Val 115	Thr	Ala	Val	Glu	Val 120	Asp	Pro	Ala	Asp	Arg 125	Asn	Arg	Val
20	Ile	Ser 130	Gly	Glu	His	Leu	Ile 135	Lys	Ala	Trp	Thr	His 140	Phe	His	Phe	Pro
	Gly 145	Arg	Gly	Ser	Thr	Tyr 150	Ser	Asp	Phe	Lys	Trp 155	His	Trp	Tyr	His	Phe 160
25	Asp	Gly	Thr	Asp	Trp 165	Asp	Glu	Ser	Arg	Lys 170	Leu	Asn	Arg	Ile	Tyr 175	Lys
	Phe	Gln	Gly	Lys 180	Ala	Trp	Asp	Trp	Glu 185	Val	Ser	Asn	Glu	Asn 190	Gly	Asn
30	Tyr	Asp	Tyr 195	Leu	Met	Tyr	Ala	Asp 200	Ile	Asp	Tyr	Asp	His 205	Pro	Asp	Val
35	Ala	Ala 210	Glu	Ile	Lys	Arg	Trp 215	Gly	Thr	Trp	Tyr	Ala 220	Asn	Glu	Leu	Gln
	Leu 225		Gly	Phe	Arg	Leu 230	Asp	Ala	Val	Lys	His 235	Iìe	Lys	Phe	Ser	Phe 240
40	Leu	Arg	Asp	Trp	Val 245	Asn	His	Val	Arg	Glu 250	Lys	Thr	Gly	Lys	Glu 255	Met
	Phe	Thr	Val	Ala 260	Glu	Tyr	Trp	Gln	Asn 265	Asp	Leu	Gly	Ala	Leu 270	Glu	Asn
45	Tyr	Leu	Asn 275		Thr	Asn	Phe	Asn 280	His	Ser	Val	Phe	Asp 285	Val	Pro	Leu
50	His	Tyr 290		Phe	His	Ala	Ala 295	Ser	Thr	Gln	Gly	Gly 300	Gly	Tyr	Asp	Met
	Arg 305		Leu	Leu	Asn	Gly 310	Thr	Val	Val	Ser	Lys 315	His	Pro	Leu	Lys	Ser 320
55	Val	Thr	Phe	Val	Asp 325	Asn	His	Asp	Thr	Gln 330	Pro	Gly	Gln	Ser	Leu 335	Glu
	Ser	Thr	Val	Gln 340		Trp	Phe	Lys	Pro 345		Ala	Tyr	Ala	Phe 350	Ile	Leu

	٠	Thr	Arg	Glu 355	Ser	Gly	·. ,	Pro		Val	Phe	Tyr	Gly	Asp 365	Met	Tyr	G17
5		Thr	Lys 370	Gly	Asp	Ser	Gìn	Arg 375	Glu	Ile	Pro	Ala	Leu 380	Lys	His	Lys	Ile
10		Glu 385	Pro	Ile	Leu	Lys	Ala 390	Arg	Lys	Gln	Tyr	Ala 395	Tyr	Gly	Ala	Gln	His
10		Asp	Tyr	Phe	Asp	His 405	His	Asp	Ile	Val	Gly 410	Trp	Thr	Arg	Glu	Gly 415	Asp
15		Ser	Ser	Val	Ala 420	Asn	Ser	Gly	Leu	Ala 425	Ala	Leu	Ile	Thr	Asp 430	Gly	Pro
		Gly	Gly	Ala 435	Lys	Arg	Met	Tyr	Val 440	Gly	Arg	Gln	Asn	Ala 445	Gly	Glu	Thr
20		Trp	His 450	Asp	Ile	Thr	Gly	Asn 455	Arg	Ser	Glu	Pro	Val 460	Val	Ile	Asn	Ser
25		Glu 465	Gly	Trp	Gly	Glu	Phe 470	His	Val	Asn	Gly	Gly 475	Ser	Val	Ser	Ile	Tyr 480
		Val	Gln	Arg													
30	(2)	INFO	SEQUAL (A)	UENCI) LEI) TYI) STI	E CHI NGTH PE: 8 RANDI	ARACT : 480 amino	TERIS O am: o ac: SS:	STICS ino a id sing:	S: acids	s ·							
35		(ii) (xi)	MOL		E TY	PE: p	prot	ein	EQ I	D NO	: 5:						
40		Val 1	Asn	Gly	Thr	Leu 5	Met	Gln	Tyr	Phe	Glu 10	Trp	Tyr	Thr	Pro	Asn 15	Asp
		Gly	Gln	His	Trp 20	Lys	Arg	Leu	Gln	Asn 25	Asp	Ala	Glu		Leu 30	Ser	Asp
45		Ile	Gly	Ile 35	Thr	Ala	Val	Trp	Ile 40	Pro	Pro	Ala	Tyr	Lys 45	Gly	Leu	Ser
		Gln	Ser 50	Asp	Asn	Gly	Tyr	Gly 55	Pro	Tyr	Asp	Leu	Tyr 60	Asp	Leu	Gly	Glu
50		Phe 65	Gln	Gln	Lys	Gl _. y	Thr 70	Val	Arg	Thr	Lys	Tyr 75	Gly	Thr	Lys	Ser	Glu 80
55		Leu	Gln	Asp	Ala	Ile 85	Gly	Ser	Leu	His	Ser 90	Arg	Asn	Vāl	Gln	Val 95	Туr
		Gly	Asp	Val	Val 100	Leu	Asn	His	Lys	Ala 105	Gly	Ala	Asp	Ala	Thr 110	Glu	Asp

WO 99/23211 PCT/DK98/00471-

	Val	Thr	Ala 115	Val	Glu	Val	Asn	Pro 120	Ala	Asn	Arg	Asn	Gln 125	Glu	Thr	Ser
5	Glu	Glu 130	Tyr	Gln	Ile	Lys	Ala 135	Trp	Thr	Asp	Phe	Arg 140	Phe	Pro	Gly	Arg
	Gly 145	Asn	Thr	Tyr	Ser	Asp 150	Phe	Lys	Trp	His	Trp 155	Tyr	His	Phe	Asp	Gly 160
10	Ala	Asp	Trp	Asp	Glu 165	Ser	Arg	Lys	Ile	Ser 170	Arg	Ile	Phe	Lys	Phe 175	Arg
15	Gly	Glu	Gly	Lys 180	Ala	Trp	Asp	Trp	Glu 185	Val	Ser	Ser	Glu	Asn 190	Gly	Asn
15	Tyr	Asp	Tyr 195	Leu	Met	Tyr	Ala	Asp 200	Val	Asp	Tyr	Asp	His 205	Pro	Asp	Val
20	Val	Ala 210	Glu	Thr	Lys	Lys	Trp 215	Gly	Ile	Trp	Tyr	Ala 220	Asn	Glu	Leu	Ser
	Leu 225	Asp	Gly	Phe	Arg	Ile 230	Asp	Ala	Ala	Lys	His 235	Ile	Lys	Phe	Ser	Phe 240
25	Leu	Arg	Asp	Trp	Val 245	Gln	Ala	Val	Arg	Gln 250	Ala	Thr	Gly	Lys	Glu 255	Met
30	Phe	Thr	Val	Ala 260	Glu	Tyr	Trp	Gln	Asn 265	Asn	Ala	Gly	Lys	Leu 270	Glu	Asn
	Tyr	Leu	Asn 275	Lys	Thr	Ser	Phe	Asn 280	Gln	Ser	Val	Phe	Asp 285	Val	Pro	Leu
35	His	Phe 290	Asn	Leu	Gln	Ala	Ala 295	Ser	Ser	Gln	Gly	Gly 300	Gly	Tyr	Asp	Met
	Arg 305	Arg	Leu	Leu	Asp	Gly 310	Thr	Val	Val	Ser	Arg 315	His	Pro	Glu	Lys	Ala 320
40	Val	Thr	Phe	Val	Glu 325	Asn	His	Asp	Thr	Gln 330	Pro	Gly	Gln	Ser	Leu 335	Glu
45	Ser	Thr	Val	Gln 340		Trp	Phe	Lys	Pro 345	Leu	Ala	Tyr	Ala	Phe 350	Ile	Leu
	Thr	Arg	Glu 355	Ser	Gly	Tyr	Pro	Gln 360	Val	Phe	Tyr	Gly	Asp 365	Met	Tyr	Gly
50	Thr	Lys 370		Thr	Ser	Pro	Lys 375	Glu	Ile	Pro	Ser	Leu 380	Lys	Asp	Asn	Ile
	Glu 385		Ile	Leu	Lys	Ala 390		Lys	Glu	Tyr	Ala 395	Tyr	Gly	Pro	Gln	His 400
55	Asp	Tyr	Ile	Asp	His 405		Asp	Val	Ile	Gly 410	Trp	Thr	Arg	Glu	Gly 415	Asp
	Ser	Ser	Ala	Ala	Lys	Ser	Gly	Leu	Ala	Ala	Leu	Ile	Thr	Asp	Gly	Pro

					420					10 425					430		
5		Ģly	Gly	Ser 435	Lys	Arg	Met	Tyr	Ala 440	Gly	Leu	Lys	Asn	Ala 445		Glu	Thr
J		Trp	Tyr 450	Asp	Ile	Thr	Gly	Asn 455	Arg	Ser	Asp	Thr	Val 460		Ile	Gly	Ser
10		Asp 465	Gly	Trp	Gly	Glu	Phe 470	His	Val	Asn	Asp	Gly 475	Ser	Val	Ser	lle	Tyr 480
15	(2)	INFO	SEQUAL (A)	JENCI) LEI) TYI) STI	E CHA NGTH PE: 8 RANDI	SEQ : ARAC: : 485 amino EDNES	TERIS o ac: SS: s	STICS ino a id sing:	S: acid:	s							
20		(ii) (xi)	MOL	ECUL	E TY	PE: p	pept	ide	EQ II	ON O	: 6:						
25		His 1	His	Asn	Gly	Thr 5	Asn	Gly	Thr	Met	Met 10	Gln	Tyr	Phe	Glu	Trp 15	Tyr
		Leu	Pro	Asn	Asp 20	Gly	Asn	His	Trp	Asn 25	Arg	Leu	Asn	Ser	Asp 30	Ala	Ser
30		Asn	Leu	Lys 35	Ser	Lys	Gly	Ile	Thr 40	Ala	Val	Trp	Ile	Pro 45	Pro	Ala	Trp
35		Lys	Gly 50	Ala	Ser	Gln	Asn	Asp 55	Val	Gly	Tyr	Gly	Ala 60	Tyr	Asp	Leu	Tyr
		65					70					75				Tyr	80
40		Thr	Arg	Ser	Gln	Leu 85	Gln	Ala	Ala	Val	Thr 90	Ser	Leu	Lys	Asn	Asn 95	Gly
		Ile	Gln	Val	Tyr 100	Gly	Asp	Val	Val	Met 105	Asn	His	Lys	Gly _.	Gly 110	Ala	Asp
45		Ala	Thr	Glu 115	Met	Val	Arg	Ala	Val 120	Glu	Val	Asn	Pro	Asn 125	Asn	Arg	Asn
50		Gln	Glu 130	Val	Thr	Gly	Glu	Tyr 135	Thr	Ile	Glu	Ala	Trp 140	Thr	Arg	Phe	Asp
		Phe 145	Pro	Gly	Arg	Gly	Asn 150	Thr	His	Ser	Ser	Phe 155	Lys	Trp	Arg	Trp	Tyr 160
55		His	Phe	Asp	Gly	Val 165	Asp	Trp	Asp	Gln	Ser 170	Arg	Arg	Leu	Asn	Asn 175	Arg
		Ile	Tyr	Lys	Phe 180	Arg	Gly	His	Gly	Lys 185	Ala	Trp	Asp	Trp	Glu 190	Val	Asp

		Thr	Glu	Asn 195	Gly	Asn	Tyr	Asp	Tyr 200	Leu	Met	Tyr	Ala	Asp 205	Ile	Asp	Met
5		Asp	His 210	Pro	Glu	Val	Val	Asn 215	Glu	Leu	Arg	Asn	Trp 220	Gly	Val	Trp	Tyr
10		Thr 225	Asn	Thr	Leu	Gly	Leu 230	Asp	Gly	Phe	Arg	Ile 235	Asp	Ala	Val	Lys	His 240
.0		Ile	Lys	Tyr	Ser	Phe 245	Thr	Arg	Asp	Trp	Ile 250	Asn	His	Val	Arg	Ser 255	Ala
15		Thr	Gly	Lys	Asn 260	Met	Phe	Ala		Ala 265	Glu	Phe	Trp	Lys	Asn 270	Asp	Leu
		Gly	Ala	Ile 275	Glu	Asn	Tyr	Leu	Gln 280	Lys	Thr	Asn	Trp	Asn 285	His	Ser	Val
20		Phe	Asp 290	Val	Pro	. Leu	His	Tyr 295	Asn	Leu	Tyr	Asn	Ala 300	Ser	Lys	Ser	Gly
25		Gly 305	Asn	Tyr	Asp	Met	Arg 310	Asn	Ile	Phe	Asn	Gly 315	Thr	Val	Val	Gln	Arg 320
		His	Pro	Ser	His	Ala 325	Val	Thr	Phe	Val	Asp 330	Asn	His	Asp	Ser	Gln 335	Pro
30	4.	Glu	Glu	Ala	Leu 340	Glu	Ser	Phe	Val	Glu 345	Glu	Trp	Phe	Lys	Pro 350	Leu	Ala
	1	Tyr	Ala	Leu 355	Thr	Leu	Thr	Arg	Glu 360	Gln	Gly	Tyr	Pro	Ser 365	Val	Phe	Tyr
35		Gly	Asp 370	Tyr	Tyr	Gly	Ile	Pro 375	Thr	His	Gly	Val	Pro 380	Ala	Met	Arg	Ser
40		ys 385ء	Ile	Asp	Pro	Ile	Leu 390	Glu	Ala	Arg	Gln	Lys 395	Туr	Ala	Tyr	Gly	Lys 400
•		Gln	Asn	Asp	Tyr	Leu 405	Asp	His	His	Asn	Ile 410	Ile	Gly	Trp	Thr	Arg 415	Glu
45		Gly	Asn	Thr	Ala 420	His	Pro	Asn	Ser	Gly 425	Leu	Ala	Thr	Ile	Met 430	Ser	Asp
		Gly	Ala	Gly 435	Gly	Ser	Lys	Trp	Met 440	Phe	Val	Gly	Arg	Asn 445	Lys	Ala	Gly
50		Gln	Val 450	Trp	Ser	Asp	Ile	Thr 455	Gly	Asn	Arg	Thr	Gly 460	Thr	Val	Thr	Ile
55		Asn 465		Asp	Gly	Trp	Gly 470	Asn	Phe	Ser	Val	Asn 475	Gly	Gly	Ser	Val	Ser 480
		Ile	Trp	Val	Asn	Lys 485											

	(2)	INFO				_		D: 7									
5			(A) (B) (C) (D)	LEI TYI STI TOI	NGTH PE: a RANDI POLOG	: 485 amino EDNES GY: 3	o ami o aci SS: s linea	ino a ld sing! ar	acid:	5							
10		(ii) (xi)							EQ II	ом с	: 7:						
10		His 1	His	Asn	Gly	Thr 5	Asn	Gly	Thr	Met	Met 10	Gln	Tyr	Phe	Glu	Trp 15	Tyr
15		Leu	Pro	Asn	Asp 20	Gly	Asn	His	Trp	Asn 25	Arg	Leu	Arg	Asp	Asp 30	Ala	Ala
		Asn	Leu	Lys 35	Ser	Lys	Gly	Ile	Thr 40	Ala	Val	Trp	Ile.	Pro 45	Pro	Ala	Trp
20		Lys	Gly 50	Thr	Ser	Gln	Asn	Asp 55	Val	Gly	Tyr	Gly	Ala 60	Tyr	Asp	Leu	Tyr
25		Asp 65	Leu	Gly	Glu	Phe	Asn 70	Gln	Lys	Gly	Thr	Val 75	Arg	Thr	Lys	Tyr	Gly 80
20		Thr	Arg	Asn	Gln	Leu 85	Gln	Ala	Ala	Val	Thr 90	Ser	Leu	Lys	Asn	Asn 95	Gly
30		Ile	Gln	Val	Tyr 100	Gly	Asp	Val	Val	Met 105	Asn	His	Lys	Gly	Gly 110	Ala	Asp
		Gly	Thr	Glu 115	Ile	Val	Asn	Ala	Val 120	Glu	Val	Asn	Arg	Ser 125	Asn	Arg	Asn
35		Gln	Glu 130	Thr	Ser	Gly	Glu	Tyr 135	Ala	Ile	Glu	Ala	Trp 140	Thr	Lys	Phe	Asp
40		Phe 145	Pro	Gly	Arg	Gly	Asn 150	Asn	His	Ser	Ser	Phe 155	Lys	Trp	Arg	Trp	Tyr 160
70		His	Phe	Asp	Gly	Thr 165	Asp	Trp	Asp	Gln	Ser 170	Arg	Gln	Leu	Gln	Asn 175	Lys
45		Ile	Tyr	Lys	Phe 180	Arg	Gly	Thr	Gly	Lys 185	Ala	Trp	Asp	Trp	Glu 190	Val	Asp
		Thr	Glu	Asn 195	Gly	Asn	Tyr	Asp	Tyr 200	Leu	Met	Tyr	Ala	Asp 205	Val	Asp	Met
50		Asp	His 210	Pro	Glu	Val	Ile	His 215	Glu	Leu	Arg	Asn	Trp 220	Gly	Val	Trp	Tyr
EE		Thr 225	Asn	Thr	Leu	Asn	Leu 230	Asp	Gly	Phe	Arg	Ile 235	Asp	Ala	Val	Lys	His 240
55		Ile	Lys	Tyr	Ser	Phe 245	Thr	Arg	Asp	Trp	Leu 250	Thr	His	Val	Arg	Asn 255	Thr

WO 99/23211

cited in the European Search Report of EP WMAGM. 4
Your Ref.: FP-KS-OSS PCT/DK98/00471-

		Th ~	Clu	Luc	Pro	Mot	Dho	ת א	U - 1	13 21-	6 3	5 1	-		_	_	
		ini	GIY	Lys	260	мет	Pne	Ala	vai	265	Glu	Phe	Trp	Lys	Asn 270		Leu
5		Gly	Ala	Ile 275	Glu	Asn	Tyr	Leu	Asn 280	Lys	Thr	Ser	Trp	Asn 285	His	Ser	Val
		Phe	Asp 290	Val	Pro	Leu	His	Tyr 295	Asn	Leu	Tyr	Asn	Ala 300	Ser	Asn	Ser	Gly
10		Gly 305	Tyr	Tyr	Asp	Met	Arg 310	Asn	Ile	Leu	Asn	Gly 315	Ser	Val	Val	Gln	Lys 320
15		His	Pro	Thr	His	Ala 325	Val	Thr	Phe	Val	Asp 330	Asn	His	Asp	Ser	Gln 335	Pro
		Gly	Glu	Ala	Leu 340	Glu	Ser	Phe	Val	Gln 345	Gln	Trp	Phe	Lys	Pro 350	Leu	Ala
20		Tyr	Ala	Leu 355	Val	Leu	Thr	Arg	Glu 360	Gln	Gly	Tyr	Pro	Ser 365	Val	Phe	Tyr
		Gly	Asp 370	Tyr	Tyr	Gly	Ile	Pro 375	Thr	His	Gly	Val	Pro 380	Ala	Met	Lys	Ser
25		Lys 385	Ile	Asp	Pro	Leu	Leu 390	Gln	Ala	Arg	Gln	Thr 395	Phe	Ala	Tyr	Gly	Thr 400
30		Gln	His	Asp	Tyr	Phe 405	Asp	His	His	Asp	Ile 410	Ile	Gly	Trp	Thr	Arg 415	Glu
		Gly	Asn	Ser	Ser 420	His	Pro	Asn	Ser	Gly 425	Leu	Ala	Thr	Ile	Met 430	Ser	Asp
35		Gly	Pro	Gly 435	Gly	Asn	Lys	Trp	Met 440	Tyr	Val	Gly	Lys	Asn 445	Lys	Ala	Gly
		Gln	Val 450	Trp	Arg	Asp	Ile	Thr 455	Gly	Asn	Arg	Thr	Gly 460	Thr	Val	Thr	Ile
40		Asn 465	Ala	Asp	Gly	Trp	Gly 470	Asn	Phe	Ser	Val	Asn 475	Gly	Gly	Ser	Val	Ser 480
45		Val	Trp	Val	Lys	Gln 485				•							
	(2)					_											
		(i)					reris 5 ami										
			(B)	TYE	?E: a	mino	aci	ld		•							
50							SS: s		.e								
		(ii)	MOLE	CULE	TYE	E: p	epti	de									
		(xi)	SEQU	JENCE	E DES	CRIE	OITS	1: SE	Q IC	NO:	8:						
55		His 1	His	Asn	Gly	Thr 5	Asn	Gly	Thr	Met	Met 10	Gln	Tyr	Phe	Glu	Trp 15	His
		Leu	Pro	Asn	Asp	Gly	Asn	His	Trp	Asn	Arg	Leu	Arg	Asp	Asp	Ala	Ser

				20					25					30		
5	Asn	Leu	Arg 35	Asn	Arg	Gly	Ile	Thr 40	Ala	Ile	Trp	Ile	Pro 45	Pro	Ala	Trp
J	Lys	Gly 50	Thr	Ser	Gln	Asn	Asp 55	Val	Gly	Tyr	Gly	Ala 60	Tyr	Asp	Leu	Tyr
10	Asp 65	Leu	Gly	Glu	Phe	Asn 70	Gln	Lys	Gly	Thr	Val 75	Arg	Thr	Lys	Tyr	Gly 80
	Thr	Arg	Ser	Gln	Leu 85	Glu	Ser	Ala	Ile	His 90	Ala	Leu	Lys	Asn	Asn 95	Gly
15	Val	Gln	Val	Tyr 100	Gly	Asp	Val	Val	Met 105	Asn	His	Lys	Gly	Gly 110	Ala	Asp
20	Ala	Thr	Glu 115	Asn	Val	Leu	Ala	Val 120	Glu	Val	Asn	Pro	Asn 125	Asn	Arg	Asn
	Gln	Glu 130	Ile	Ser	Gly	Asp	Tyr 135	Thr	Ile	Glu	Ala	Trp 140	Thr	Lys	Phe	Asp
25	Phe 145	Pro	Gly	Arg	Gly	Asn 150	Thr	Tyr	Ser	Asp	Phe 155	Lys	Trp	Arg	Trp	Tyr 160
			-	_	165				Gln	170					175	_
30	Ile	Tyr	Lys	Phe 180	Arg	Gly	Asp	Gly	Lys 185	Ala	Trp	Asp	Trp	Glu 190	Val	Asp
35	Ser	Glu	Asn 195	Gly	Asn	Tyr	Asp	Tyr 200	Leu	Met	Tyr	Ala	Asp 205	Val	Asp	Met
	-	210					215	,	Leu	·	_	220	-		-	•
40	Thr 225	Asn	Thr	Leu	Asn	Leu 230	Asp	Gly	Phe	Arg	11e 235	Asp	Ala	Val	Lys	His 240
					245				Trp	250					255	
45				260					Ala 265					270		
50	Gly	Ala	Leu 275	Glu	Asn	Tyr	Leu	Asn 280	Lys	Thr	Asn	Trp	Asn 285	His	Ser	Val
	Phe	Asp 290		Pro	Leu	His	Tyr 295	Asn	Leu	Tyr	Asn	Ala 300	Ser	Asn	Ser	Gly
55	Gly 305		Tyr	Asp	Met	Ala 310		Leu	Leu	Asn	Gly 315	Thr	Val	Val	Gln	Lys 320
	His	Pro	Met	His	Ala 325		Thr	Phe	Val	Asp 330	Asn	His	Asp	Ser	Gln 335	Pro

		Gly	Glu	Ser	Leu 340	Glu 	Ser	Phe	Val	Gln 345	Glu	Trp	Phe	Lys	Pro 350	Leu	Ala	
5		Tyr	Ala	Leu 355	"Ilë	Leu		Arg		Gln	Gly	Tyr	Pro	Ser 365	Val	Phe	Tyr	
10	;	Gly	Asp 370	Tyr	Tyr	Gly	Ile	Pro 375	Thr	His	Ser	Val	Pro 380	Ala	Met	Lys	Ala	
		Lys 385	Ile	Asp	Pro	Ile	Leu 390	Glu	Ala	Arg	Gln	Asn 395	Phe	Ala	Tyr	Gly	Thr 400	
15		Gln	His	Asp	Tyr	Phe 405	Asp	His	His	Asn	Ile 410	Ile	Gly	Trp	Thr	Arg 415	Glu	
		Gly	Asn	Thr	Thr 420	His	Pro	Asn	Ser	Gly 425	Leu	Ala	Thr	Ile	Met 430	Ser	Asp	
20		Gly	Pro	Gly 435	Gly	Glu	Lys	Trp	Met 440	Tyr	Val	Gly	Gln	Asn 445	Lys	Ala	Gly	
25		Gln	Val 450	Trp	His	Asp	Ile	Thr 455	Gly	Asn	Lys	Pro	Gly 460	Thr	Val	Thr	Ile	
		Asn 465	Ala	Asp	Gly	Trp	Ala 470	Asn	Phe	Ser	Val	Asn 475	Gly	Gly	Ser	Val	Ser 480	
30	2	Ile	Trp	Val	Lys	Arg 485												
35	(2)	INFOI (i)	SEQUAL (A)	UENCI) LEI) TYI	E CHANGTH: PE: 1	ARACT 145 nucle	TERIS 55 ba eic a SS: s	STICS ase pacid sing!	S: pairs	5								
40	CATO	(ii) (xi) CATAA	SEQ	UENCI	E DES	CRII	PTIO	v: SI	EQ II	NO:		\ATG0	TATI	'T GC	CAAA	\TGAC	:	60
	GGGA	ATCA:	TT GO	GAAC	AGGT	r GAG	GGAT	rgac	GCAC	CTAP	ACT 1	CAAAC	SAGTA	A AG	GGAT	'AACA		120
45	GCTG	STATG	GA TO	CCCA	CCTG	CATO	GAAG	GGGG	ACTI	CCCA	AGA A	ATGAI	GTAG	G TI	ATGG	AGCC	;	180
	TATO	SATTT	AT A	IGAT	CTTGO	AGA	AGTT	TAAC	CAGA	AAGGG	GA C	CGGTI	CGTA	CAA	ATAA	TGGA	L.	240
50	ACAC	:GCAA	CC A	GCTA	CAGG	TGO	CGGT	GACC	тстт	TAAF	AA A	TAAC	GGCA	т тс	AGGT	'ATAT	1	300
30	GGTG	SATGT	CG TO	CATG	AATC	A TAI	AAGG	rgga	GCAC	SATGO	STA C	GGAA	ATTG	AA T	ATGC	GGTA		360
	GAAG	TGAA'	rc G	GAGC	AACC	AAA	ACCA	GGAA	ACCI	CAGG	SAG F	GTAT	'GCAA	T AG	AAGC	GTGG	;	420
55	ACAA	AGTT	TG A	TTTT	CCTG	AA G	GAGG	TAAF	AACC	CATTO	CA C	CTTI	'AAGT	G GC	GCTG	GTAT		480
	CATI	TTGA	rg go	GACA	GATTO	G GGA	ATCAC	STCA	CGCC	CAGCI	TC F	LAAA C	AAAA	T AT	'ATAA	ATTC		540

WO 99/23211 PCT/DK98/00471 -

	AGGGGAACAG	GCAAGC 3	GGACTGGGAA	GTCGATACAG	AGAATGGCAA	CTATGACTAT	600
	CTTATGTATG	CAGACGTGGA	TATGGATCAC	CCAGAAGTAA	TACATGAACT	TAGAAACTGG	660
5	GGAGTGTGGT	ATACGAATAC	ACTGAACCTT	GATGGATTTA	GAATAGATGC	AGTGAAACAT	720
	ATAAAATATA	GCTTTACGAG	AGATTGGCTT	ACACATGTGC	GTAACACCAC	AGGTAAACCA	780
10	ATGTTTGCAG	TGGCTGAGTT	TTGGAAAAAT	GACCTTGGTG	CAATTGAAAA	CTATTTGAAT	840
10	AAAACAAGTT	GGAATCACTC	GGTGTTTGAT	GTTCCTCTCC	ACTATAATTT	GTACAATGCA	900
	TCTAATAGCG	GTGGTTATTA	TGATATGAGA	AATATTTTAA	ATGGTTCTGT	GGTGCAAAAA	960
15	CATCCAACAC	ATGCCGTTAC	TTTTGTTGAT	AACCATGATT	CTCAGCCCGG	GGAAGCATTG	1020
	GAATCCTTTG	TTCAACAATG	GTTTAAACCA	CTTGCATATG	CATTGGTTCT	GACAAGGGAA	1080
20	CAAGGTTATC	CTTCCGTATT	TTATGGGGAT	TACTACGGTA	TCCCAACCCA	TGGTGTTCCG	1140
	GCTATGAAAT	CTAAAATAGA	CCCTCTTCTG	CAGGCACGTC	AAACTTTTGC	CTATGGTACG	1200
	CAGCATGATT	ACTTTGATCA	TCATGATATT	ATCGGTTGGA	CAAGAGAGGG	AAATAGCTCC	1260
25	CATCCAAATT	CAGGCCTTGC	CACCATTATG	TCAGATGGTC	CAGGTGGTAA	CAAATGGATG	1320
	TATGTGGGGA	AAAATAAAGC	GGGACAAGTT	TGGAGAGATA	TTACCGGAAA	TAGGACAGGC	1380
30	ACCGTCACAA	TTAATGCAGA	CGGATGGGGT	AATTTCTCTG	TTAATGGAGG	GTCCGTTTCG	1440
	GTTTGGGTGA	AGCAA					1455
35 40	(i) S	ATION FOR SE EQUENCE CHARMAN (A) LENGTH: (B) TYPE: nu (C) STRANDER (D) TOPOLOGY OLECULE TYPE EQUENCE DESC	RACTERISTIC: 1455 base pacted acid DNESS: sing: Y: linear E: DNA (gene	S: pairs le omic)	D:		
		GGACAAATGG				GCCTAATGAT	60
	GGGAATCACT	GGAATAGATT	AAGAGATGAT	GCTAGTAATC	TAAGAAATAG	AGGTATAACC	120
45	GCTATTTGGA	TTCCGCCTGC	CTGGAAAGGG	ACTTCGCAAA	ATGATGTGGG	GTATGGAGCC	180
	TATGATCTTT	ATGATTTAGG	GGAATTTAAT	CAAAAGGGGA	CGGTTCGTAC	TAAGTATGGG	240
50	ACACGTAGTC	AATTGGAGTC	TGCCATCCAT	GCTTTAAAGA	ATAATGGCGT	TCAAGTTTAT	300
	GGGGATGTAG	TGATGAACCA	TAAAGGAGGA	GCTGATGCTA	CAGAAAACGT	TCTTGCTGTC	360
	GAGGTGAATC	CAAATAACCG	GAATCAAGAA	ATATCTGGGG	ACTACACAAT	TGAGGCTTGG	420
55	ACTAAGTTTG	ATTTTCCAGG	GAGGGGTAAT	ACATACTCAG	ACTTTAAATG	GCGTTGGTAT	480
	CATTTCGATG	GTGTAGATTG	GGATCAATCA	CGACAATTCC	AAAATCGTAT	CTACAAATTC	540

	CGAGGTGATG GTAAGGCATG GGATTGGGAA GTAGATTCGG AAAATGGAAA TTATGATTAT	600
5	TTAATGTATG CAGATGTAGA TATGGATCAT CCGGAGGTAG TAAATGAGCT TAGAAGATGG	660
Ů	GGAGAATGGT ATACAAATAC ATTAAATCTT GATGGATTTA GGATCGATGC GGTGAAGCAT	720
	ATTAAATATA GCTTTACACG TGATTGGTTG ACCCATGTAA GAAACGCAAC GGGAAAAGAA	780
10	ATGTTTGCTG TTGCTGAATT TTGGAAAAAT GATTTAGGTG CCTTGGAGAA CTATTTAAAT	840
	AAAACAAACT GGAATCATTC TGTCTTTGAT GTCCCCCTTC ATTATAATCT TTATAACGCG	900
15	TCAAATAGTG GAGGCAACTA TGACATGGCA AAACTTCTTA ATGGAACGGT TGTTCAAAAG	960
	CATCCAATGC ATGCCGTAAC TTTTGTGGAT AATCACGATT CTCAACCTGG GGAATCATTA	1020
	GAATCATTTG TACAAGAATG GTTTAAGCCA CTTGCTTATG CGCTTATTTT AACAAGAGAA	1080
20	CAAGGCTATC CCTCTGTCTT CTATGGTGAC TACTATGGAA TTCCAACACA TAGTGTCCCA	1140
	GCAATGAAAG CCAAGATTGA TCCAATCTTA GAGGCGCGTC AAAATTTTGC ATATGGAACA	1200
25	CAACATGATT ATTTTGACCA TCATAATATA ATCGGATGGA CACGTGAAGG AAATACCACG	1260
_•	CATCCCAATT CAGGACTTGC GACTATCATG TCGGATGGGC CAGGGGGAGA GAAATGGATG	1320
	TACGTAGGGC AAAATAAAGC AGGTCAAGTT TGGCATGACA TAACTGGAAA TAAACCAGGA	1380
30	ACAGTTACGA TCAATGCAGA TGGATGGGCT AATTTTTCAG TAAATGGAGG ATCTGTTTCC	1440
	ATTTGGGTGA AACGA	1455
35	(2) INFORMATION FOR SEQ ID NO: 11: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1548 base pairs	
40	(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:	
45	GCCGCACCGT TTAACGGCAC CATGATGCAG TATTTTGAAT GGTACTTGCC GGATGATGGC	60
10	ACGTTATGGA CCAAAGTGGC CAATGAAGCC AACAACTTAT CCAGCCTTGG CATCACCGCT	120
	CTTTGGCTGC CGCCCGCTTA CAAAGGAACA AGCCGCAGCG ACGTAGGGTA CGGAGTATAC	180
50	GACTTGTATG ACCTCGGCGA ATTCAATCAA AAAGGGACCG TCCGCACAAA ATACGGAACA	240
	AAAGCTCAAT ATCTTCAAGC CATTCAAGCC GCCCACGCCG CTGGAATGCA AGTGTACGCC	300
55	GATGTCGTGT TCGACCATAA AGGCGGCGCT GACGGCACGG AATGGGTGGA CGCCGTCGAA	360
JJ	GTCAATCCGT CCGACCGCAA CCAAGAAATC TCGGGCACCT ATCAAATCCA AGCATGGACG	420
	AAATTTGATT TTCCCGGGCG GGGCAACACC TACTCCAGCT TTAAGTGGCG CTGGTACCAT	490

	TTTGACGGCG	TTGATTGGGA	CGAAAGCCGA	AAATTGAGCC	GCATTTACAA	ATTCCGCGGC	540
5	ATCGGCAAAG	CGTGGGATTG	GGAAGTAGAC	ACGGAAAACG	GAAACTATGA	CTACTTAATG	600
	TATGCCGACC	TTGATATGGA	TCATCCCGAA	GTCGTGACCG	AGCTGAAAAA	CTGGGGGAAA	660
	TGGTATGTCA	ACACAACGAA	CATTGATGGG	TTCCGGCTTG	ATGCCGTCAA	GCATATTAAG	720
10	TTCAGTTTTT	TTCCTGATTG	GTTGTCGTAT	GTGCGTTCTC	AGACTGGCAA	GCCGCTATTT	780
	ACCGTCGGGG	AATATTGGAG	CTATGACATC	AACAAGTTGC	ACAATTACAT	TACGAAAACA	840
15	GACGGAACGA	TGTCTTTGTT	TGATGCCCCG	TTACACAACA	AATTTTATAC	CGCTTCCAAA	900
. •	TCAGGGGGCG	CATTTGATAT	GCGCACGTTA	ATGACCAATA	CTCTCATGAA	AGATCAACCG	960
	ACATTGGCCG	TCACCTTCGT	TGATAATCAT	GACACCGAAC	CCGGCCAAGC	GCTGCAGTCA	1020
20	TGGGTCGACC	CATGGTTCAA	ACCGTTGGCT	TACGCCTTTA	TTCTAACTCG	GCAGGAAGGA	1080
	TACCCGTGCG	TCTTTTATGG	TGACTATTAT	GGCATTCCAC	AATATAACAT	TCCTTCGCTG	1140
25	AAAAGCAAAA	TCGATCCGCT	CCTCATCGCG	CGCAGGGATT	ATGCTTACGG	AACGCAACAT	1200
	GATTATCTŢG	ATCACTCCGA	CATCATCGGG	TGGACAAGGG	AAGGGGGCAC	TGAAAAACCA	1260
	GGATCCGGAC	TGGCCGCACT	GATCACCGAT	GGGCCGGGAG	GAAGCAAATG	GATGTACGTT	1320
30	GGCAAACAAC	ACGCTGGAAA	AGTGTTCTAT	GACCTTACCG	GCAACCGGAG	TGACACCGTC	1380
	ACCATCAACA	GTGATGGATG	GGGGGAATTC	AAAGTCAATG	GCGGTTCGGT	TTCGGTTTGG	1440
35	GTTCCTAGAA	AAACGACCGT	TTCTACCATC	GCTCGGCCGA	TCACAACCCG	ACCGTGGACT	1500
	GGTGAATTCG	TCCGTTGGAC	CGAACCACGG	TTGGTGGCAT	GGCCTTGA		1548
40 45	(i) SE (ii) MC (ix) FE	ATION FOR SE EQUENCE CHAR (A) LENGTH: (B) TYPE: nu (C) STRANDED (D) TOPOLOGY DLECULE TYPE EATURE: (A) NAME/KEY	RACTERISTICS 1920 base pacleic acid DNESS: single: 1: linear 1: DNA (geno	3: pairs Le			
50		(B) LOCATION EQUENCE DESC		EQ ID NO: 12	?:		
	CGGAAGATTG	GAAGTACAAA	AATAAGCAAA	AGATTGTCAA	TCATGTCATG	AGCCATGCGG	60
	GAGACGGAAA	AATCGTCTTA	ATGCACGATA	TTTATGCAAC	GTTCGCAGAT	GCTGCTGAAG	120
55	AGATTATTAA	AAAGCTGAAA	GCAAAAGGCT	ATCAATTGGT	AACTGTATCT	CAGCTTGAAG	180
	AAGTGAAGAA	GCAGAGAGGC	TATTGAATAA	ATGAGTAGAA	GCGCCATATC	GGCGCTTTTC	240

	TTTT	rgga.	AGA A	TAAP	ATAGO	GG A	TAA	GGTA	C TT	GTTA	AAAA	TTC	GGAA	TAT	TATT	ACAACA	300
	TCAT	TATG	TTT (CACA	rtga <i>i</i>	AA GO	GGGA	GGAG	A ATO	CATG	AAAC	AAC.	AAAA	ACG	GCTT	TACGCC	360
5	CGAT	TGC	rga (CGCT	GTTA:	TT TO	GCGC'	CAT	C TT	CTTG	CTGC	CTC	ATTC	TGC	AGCA	GCGGCG	420
	GCA	TAA	CTT	AAT	GGG	ACG	CTG	ATG	CAG	TAT	TTT	GAA	TGG	TAC	ATG	ccc	468
10	AAT	GAC	GGC	CAA	CAT	TGG	AGG	CGT	TTG	CAA	AAC	GAC	TCG	GCA	TAT	TTG	516
	GCT	GAA	CAC	GGT	ATT	ACT	GCC	GTC	TGG	ATT	CCC	CCG	GCA	TAT	AAG	GGA	564
	ACG	AGC	CAA	GCG	GAT	GTG	GGC	TAC	GGT	GCT	TAC	GAC	CTT	TAT	GAT	TTA	612
15	GGG	GAG	TTT	CAT	CAA	AAA	GGG	ACG	GTT	CGG	ACA	AAG	TAC	GGC	ACA	AAA	. 660
	GGA	GAG	CTG	CAA	TCT	GCG	ATC	AAA	AGT	CTT	CAT	TCC	CGC	GAC	ATT	AAC	708
20	GTT	TAC	GGG	GAT	GTG	GTC	ATC	AAC	CAC	AAA	GGC	GGC	GCT	GAT	GCG	ACC	756
	GAA	GAT	GTA	ACC	GCG	GTT	GAA	GTC	GAT	CCC	GCT	GAC	CGC	AAC	CGC	GTA	804
	ATT	TCA	GGA	GAA	CAC	CTA	ATT	AAA	GCC	TGG	ACA	CAT	TTT	CAT	TTT	CCG	852
25	GGG	CGC	GGC	AGC	ACA	TAC	AGC	GAT	TTT	AAA	TGG	CAT	TGG	TAC	CAT	TTT	900
	GAC	GGA	ACC	GAT	TGG	GAC	GAG	TCC	CGA	AAG	CTG	AAC	CGC	ATC	TAT	AAG	948
30	TTT	CAA	GGA	AAG	GCT	TGG	GAT	TGG	GAA	GTT	TCC	AAT	GAA	AAC	GGC	AAC	996
	TAT	GAT	TAT	TTG	ATG	TAT	GCC	GAC	ATC	GAT	TAT	GAC	CAT	ССТ	GAT	GTC	1044
	GCA	GCA	GAA	ATT	AAG	AGA	TGG	GGC	ACT	TGG	TAT	GCC	AAT	GAA	CTG	CAA	1092
35					CGT												1140
					GTT												1188
40					GAA												1236
																CTT	1284
																ATG	1332
45																TCG	1380
																GAG	1428
50																CTC	1476
																GGG	1524
																ATT	1572
55																CAT	1620
	GAT	TAT	TTC	GAC	CAC	CAT	GAC	ATT	GTC	GGC	TGG	ACA	AGG	GAA	GGC	GAC	1668

WO 99/23211 PCT/DK98/00471-

20

	AGC	TCG	GTT	GCA	AAT	TCA	GGT	TTG	GCG	GCA	TTA	ATA	ACA	GAC	GGA	ccc	1716
	GGT	GGG	GCA	AAG	CGA	ATG	TAT	GTC	GGC	CGG	CAA	AAC	GCC	GGT	GAG	ACA	1764
5	TGG	CAT	GAC	ATT	ACC	GGA	AAC	CGT	TCG	GAG	CCG	GTT	GTC	ATC	AAT	TCG	1812
	GAA	GGC	TGG	GGA	GAG	ттт	CAC	GTA	AAC	GGC	GGG	TCG	GTT	TCA	ATT	TAT	1860
10	GTT ·	CAA	AGA	TAG	AAGA	AGCAC	SAG A	AGGAC	CGGAT	TT TO	CCTGA	\AGG#	CAA A	CCG1	тттт		1912
	TTTA	ATTT	r														1920

- (2) INFORMATION FOR SEQ ID NO: 12:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2084 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (ix) FEATURE:

15

20

25

30

35

40

45

50

- (A) NAME/KEY: CDS
- (B) LOCATION: 343..1794
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

GCCCGCACA TACGAAAAGA CTGGCTGAAA ACATTGAGCC TTTGATGACT GATGATTTGG	60
CTGAAGAAGT GGATCGATTG TTTGAGAAAA GAAGAAGACC ATAAAAATAC CTTGTCTGTC	120
ATCAGACAGG GTATTTTTTA TGCTGTCCAG ACTGTCCGCT GTGTAAAAAT AAGGAATAAA	180
GGGGGGTTGT TATTATTTTA CTGATATGTA AAATATAATT TGTATAAGAA AATGAGAGGG	240
AGAGGAAACA TGATTCAAAA ACGAAAGCGG ACAGTTTCGT TCAGACTTGT GCTTATGTGC	300
ACGCTGTTAT TTGTCAGTTT GCCGATTACA AAAACATCAG CC GTA AAT GGC ACG	354
CTG ATG CAG TAT TTT GAA TGG TAT ACG CCG AAC GAC GGC CAG CAT TGG	402
AAA CGA TTG CAG AAT GAT GCG GAA CAT TTA TCG GAT ATC GGA ATC ACT	450
GCC GTC TGG ATT CCT CCC GCA TAC AAA GGA TTG AGC CAA TCC GAT AAC	498
GGA TAC GGA CCT TAT GAT TTG TAT GAT TTA GGA GAA TTC CAG CAA AAA	546
GGG ACG GTC AGA ACG AAA TAC GGC ACA AAA TCA GAG CTT CAA GAT GCG	594
ATC GGC TCA CTG CAT TCC CGG AAC GTC CAA GTA TAC GGA GAT GTG GTT	642
TTG AAT CAT AAG GCT GGT GCT GAT GCA ACA GAA GAT GTA ACT GCC GTC	690
GAA GTC AAT CCG GCC AAT AGA AAT CAG GAA ACT TCG GAG GAA TAT CAA	738
ATC AAA GCG TGG ACG GAT TTT CGT TTT CCG GGC CGT GGA AAC ACG TAC	786
AGT GAT TTT AAA TGG CAT TGG TAT CAT TTC GAC GGA GCG GAC TGG GAT	834
GAA TCC CGG AAG ATC AGC CGC ATC TTT AAG TTT CGT GGG GAA GGA AAA	882

	GCG	TGG	GAT	TGG	GAA	GTA	TCA	AGT	GAA	AAC	GGC	AAC	TAT	GAC	TAT	ATT	930
5	ATG	TAT	GCT	GAT	GTT	GAC	TAC	GAC	CAC	ССТ	GAT	GTC	GTG	GCA	GAG	ACA	978
J	AAA	AAA	TGG	GGT	ATC	TGG	TAT	GCG	AAT	GAA	CTG	TCA	TTA	GAC	GGC	TTC	1026
	CGT	ATT	GAT	GCC	GCC	AAA	CAT	ATT	AAA	TTT	TCA	TTT	CTG	CGT	GAT	TGG .	1074
10	GTT	CAG	GCG	GTC	AGA	CAG	GCG	ACG	GGA	AAA	GAA	ATG	ттт	ACG	GTT	GCG	1122
	GAG	TAT	TGG	CAG	TAA	AAT	GCC	GGG	AAA	CTC	GAA	AAC	TAC	TTG	AAT	AAA	1170
15	ACA	AGC	TTT	AAT	CAA	TCC	GTG	TTT	GAT	GTT	CCG	CTT	CAT	TTC	AAT	TTA	1218
. •	CAG	GCG	GCT	TCC	TCA	CAA	GGA	GGC	GGA	TAT	GAT	ATG	AGG	CGT	TTG	CTG	1266
	GAC	GGT	ACC	GTT	GTG	TCC	AGG	CAT	CCG	GAA	AAG	GCG	GTT	ACA	TTT	GTT	1314
20	GAA	AAT	CAT	GAC	ACA	CAG	CCG	GGA	CAG	TCA	TTG	GAA	TCG	ACA	GTC	CAA	1362
	ACT	TGG	TTT	AAA	CCG	CTT	GCA	TAC	GCC	TTT	ATT	TTG	ACA	AGA	GAA	TCC	1410
25	GGT	TAT	CCT	CAG	GTG	TTC	TAT	GGG	GAT	ATG	TAC	GGG	ACA	AAA	GGG	ACA	1458
	TCG	CCA	AAG	GAA	ATT	CCC	TCA	CTG	AAA	GAT	AAT	ATA	GAG	CCG	ATT	TTA	1506
	AAA	GCG	CGT	AAG	GAG	TAC	GCA	TAC	GGG	CCC	CAG	CAC	GAT	TAT	TTA	GAC	1554
30	CAC	CCG	GAT	GTG	ATC	GGA	TGG	ACG	AGG	GAA	GGT	GAC	AGC	TCC	GCC	GCC	1602
	AAA	TCA	GGT	TTG	GCC	GCT	TTA	ATC	ACG	GAC	GGA	CCC	GGC	GGA	TCA	AAG	1650
35	CGG	ATG	TAT	GCC	GGC	CTG	AAA	AAT	GCC	GGC	GAG	ACA	TGG	TAT	GAC	ATA	1698
	ACG	GGC	AAC	CGT	TCA	GAT	ACT	GTA	AAA	ATC	GGA	TCT	GAC	GGC	TGG	GGA	1746
	GAG	TTT	CAT	GTA	AAC	GAT	GGG	TCC	GTC	TCC	ATT	TAT	GTT	CAG	AAA	TAA	1794
40	GGT	ATAA	AAA 2	AAAC	ACCTO	CC A	AGCTO	SAGT	G CGC	GTAT	rcag	CTTC	GAGO	STG C	CGTTI	TTTTA	1854
	TTC	AGCC	GTA '	TGAC	AAGG'	rc G	GCAT(CAGG	r GT	GACA	ATA	CGG1	ratgo	CTG C	CTGT	CATAG	1914
45	GTG	ACAA	ATC (CGGG	TTTT	GC G	CCGT	TTGG	C TT	rttc <i>i</i>	ACAT	GTCT	GATI	TTT 1	GTAI	AATCA	1974
	ACA	GGCA	CGG /	AGCC	GGAA'	rc T	TTCG	CCTT	G GAZ	AAAA	TAAG	CGGC	CGATO	CGT A	AGCTO	CTTCC	2034
	AAT	ATGG.	ATT	GTTC	ATCG	GG A	rcgc	rgct:	TT?	AATC	ACAA	CGT	GGA?	rcc			2084

55

(2) INFORMATION FOR SEQ ID NO: 13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1455 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

	CATCATAATG	GAACAAATGG	TACTATGATG	CAATATTTCG	AATGGTATTT	GCCAAATGAC	60
5	GGGAATCATT	GGAACAGGTT	GAGGGATGAC	GCAGCTAACT	TAAAGAGTAA	AGGGATAACA	120
	GCTGTATGGA	TCCCACCTGC	ATGGAAGGGG	ACTTCCCAGA	ATGATGTAGG	TTATGGAGCC	180
	TATGATTTAT	ATGATCTTGG	AGAGTTTAAC	CAGAAGGGGA	CGGTTCGTAC	AAAATATGGA	240
10	ACACGCAACC	AGCTACAGGC	TGCGGTGACC	ТСТТТААААА	ATAACGGCAT	TCAGGTATAT	300
	GGTGATGTCG	TCATGAATCA	TAAAGGTGGA	GCAGATGGTA	CGGAAATTGT	AAATGCGGTA	360
15	GAAGTGAATC	GGAGCAACCG	AAACCAGGAA	ACCTCAGGAG	AGTATGCAAT	AGAAGCGTGG	420
10	ACAAAGTTTG	ATTTTCCTGG	AAGAGGAAAT	AACCATTCCA	GCTTTAAGTG	GCGCTGGTAT	480
	CATTTTGATG	GGACAGATTG	GGATCAGTCA	CGCCAGCTTC	AAAACAAAAT	ATATAAATTC	540
20	AGGGGAACAG	GCAAGGCCTG	GGACTGGGAA	GTCGATACAG	AGAATGGCAA	CTATGACTAT	600
•	CTTATGTATG	CAGACGTGGA	TATGGATCAC	CCAGAAGTAA	TACATGAACT	TAGAAACTGG	660
25	GGAGTGTGGT	ATACGAATAC	ACTGAACCTT	GATGGATTTA	GAATAGATGC	AGTGAAACAT	720
	ATAAAATATA	GCTTTACGAG	AGATTGGCTT	ACACATGTGC	GTAACACCAC	AGGTAAACCA	780
	ATGTTTGCAG	TGGCTGAGTT	TTGGAAAAAT	GACCTTGGTG	CAATTGAAAA	CTATTTGAAT	840
30	AAAACAAGTT	GGAATCACTC	GGTGTTTGAT	GTTCCTCTCC	ACTATAATTT	GTACAATGCA	900
	TCTAATAGCG	GTGGTTATTA	TGATATGAGA	AATATTTTAA	ATGGTTCTGT	GGTGCAAAAA	960
35	CATCCAACAC	ATGCCGTTAC	TTTTGTTGAT	AACCATGATT	CTCAGCCCGG	GGAAGCATTG	1020
	GAATCCTTTG	TTCAACAATG	GTTTAAACCA	CTTGCATATG	CATTGGTTCT	GACAAGGGAA	1080
	CAAGGTTATC	CTTCCGTATT	TTATGGGGAT	TACTACGGTA	TCCCAACCCA	TGGTGTTCCG	1140
40	GCTATGAAAT	CTAAAATAGA	CCCTCTTCTG	CAGGCACGTC	AAACTTTTGC	CTATGGTACG	1200
	CAGCATGATT	ACTTTGATCA	TCATGATATT	ATCGGTTGGA	CAAGAGAGGG	AAATAGCTCC	1260
45	CATCCAAATT	CAGGCCTTGC	CACCATTATG	TCAGATGGTC	CAGGTGGTAA	CAAATGGATG	1320
	TATGTGGGGA	AAAATAAAGC	GGGACAAGTT	TGGAGAGATA	TTACCGGAAA	TAGGACAGGC	1380
	ACCGTCACAA	TTAATGCAGA	CGGATGGGGT	AATTTCTCTG	TTAATGGAGG	GTCCGTTTCG	1440
50	GTTTGGGTGA	AGCAA					1455

(2) INFORMATION FOR SEQ ID NO: 14:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1455 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi)	SEQUENCE	DESCRIPTION:	SEO	ΙD	NO:	14:
------	----------	--------------	-----	----	-----	-----

	CATCATAATG	GGACAAATGG	GACGATGATG	CAATACTTTG	AATGGCACTT	GCCTAATGAT	• 60
5	GGGAATCACT	GGAATAGATT	AAGAGATGAT	GCTAGTAATC	TAAGAAATAG	AGGTATAACC	120
	GCTATTTGGA	TTCCGCCTGC	CTGGAAAGGG	ACTTCGCAAA	ATGATGTGGG	GTATGGAGCC	180
10	TATGATCTTT	ATGATTTAGG	GGAATTTAAT	CAAAAGGGGA	CGGTTCGTAC	TAAGTATGGG	240
10	ACACGTAGTC	AATTGGAGTC	TGCCATCCAT	GCTTTAAAGA	ATAATGGCGT	TCAAGTTTAT	300
	GGGGATGTAG	TGATGAACCA	TAAAGGAGGA	GCTGATGCTA	CAGAAAACGT	TCTTGCTGTC	360
15	GAGGTGAATC	CAAATAACCG	GAATCAAGAA	ATATCTGGGG	ACTACACAAT	TGAGGCTTGG	420
	ACTAAGTTTG	ATTTTCCAGG	GAGGGGTAAT	ACATACTCAG	ACTTTAAATG	GCGTTGGTAT	480
20	CATTTCGATG	GTGTAGATTG	GGATCAATCA	CGACAATTCC	AAAATCGTAT	CTACAAATTC	540
	CGAGGTGATG	GTAAGGCATG	GGATTGGGAA	GTAGATTCGG	AAAATGGAAA	TTATGATTAT	600
	TTAATGTATG	CAGATGTAGA	TATGGATCAT	CCGGAGGTAG	TAAATGAGCT	TAGAAGATGG	660
25	GGAGAATGGT	ATACAAATAC	ATTAAATCTT	GATGGATTTA	GGATCGATGC	GGTGAAGCAT	720
	ATTAAATATA	GCTTTACACG	TGATTGGTTG	ACCCATGTAA	GAAACGCAAC	GGGAAAAGAA	780
30	ATGTTTGCTG	TTGCTGAATT	TTGGAAAAAT	GATTTAGGTG	CCTTGGAGAA	СТАТТТАААТ	840
	AAAACAAACT	GGAATCATTC	TGTCTTTGAT	GTCCCCCTTC	ATTATAATCT	TTATAACGCG	900
	TCAAATAGTG	GAGGCAACTA	TGACATGGCA	AAACTTCTTA	ATGGAACGGT	TGTTCAAAAG	960
35	CATCCAATGC	ATGCCGTAAC	TTTTGTGGAT	AATCACGATT	CTCAACCTGG	GGAATCATTA	1020
	GAATCATTTG	TACAAGAATG	GTTTAAGCCA	CTTGCTTATG	CGCTTATTTT	AACAAGAGAA	1080
40	CAAGGCTATC	CCTCTGTCTT	CTATGGTGAC	TACTATGGAA	TTCCAACACA	TAGTGTCCCA	1140
	GCAATGAAAG	CCAAGATTGA	TCCAATCTTA	GAGGCGCGTC	AAAATTTTGC	ATATGGAACA	1.200
	CAACATGATT	ATTTTGACCA	TCATAATATA	ATCGGATGGA	CACGTGAAGG	AAATACCACG	1260
45	CATCCCAATT	CAGGACTTGC	GACTATCATG	TCGGATGGGC	CAGGGGGAGA	GAAATGGATG	1320
	TACGTAGGGC	AAAATAAAGC	AGGTCAAGTT	TGGCATGACA	TAACTGGAAA	TAAACCAGGA	1380
50	ACAGTTACGA	TCAATGCAGA	TGGATGGGCT	AATTTTTCAG	TAAATGGAGG	ATCTGTTTCC	1440
	ATTTGGGTGA	AACGA					1455

(2) INFORMATION FOR SEQ ID NO: 15:

55 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 60 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

```
(D) TOPOLOGY: linear
     (ii) MOLECULE TYPE: other nucleic acid
     (ix) FEATURE:
          (A) NAME/ KEY: misc-feature:
 5
                 (B) OTHER INFORMATION: /desc = "Forward Primer FSA"
          (ix) FEATURE:
          (A) NAME/KEY: misc-feature
         LOCATION: 22-27, 29, 31-33, 41
     (D): OTHER INFORMATION:
                                  /Note= 1: 35% A, 65% C
10
                                       2: 83% G, 17% A
                                       3: 63% G, 37% T
                                       4: 86% G, 14% A
                                       5: 85% G, 15% C
                                       6: 50% T, 50% C
15
                                       7: 95% A, 5%G
                                       8: 58% G, 37% A, 5% T
                                       9: 86% C, 13% A, 1% G
                                       10: 83% T, 17% G
                                       11: 92% G, 8% C
20
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:
     caaaatcgta tctacaaatt c123456a7g 8910tgggatt
     11ggaagtaga ttcggaaaat
                   60
25
     (2) INFORMATION FOR SEQ ID NO: 16:
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 21 base pairs
               (B) TYPE: nucleic acid
30
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
     (ii) MOLECULE TYPE: other nucleic acid
     (ix) FEATURE:
          (A) NAME/KEY: misc-feature:
35
                 (B) OTHER INFORMATION: /desc = "Reverse Primer RSA"
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:
     gaatttgtag atacgatttt q
                   21
40
     (2) INFORMATION FOR SEQ ID NO: 17:
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 24 base pairs
45
               (B) TYPE: nucleic acid
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
     (ii) MOLECULE TYPE: other nucleic acid
     (ix) FEATURE:
50
          (A) NAME/KEY: misc-feature:
                 (B) OTHER INFORMATION:
                                         /desc = "Primer Bl"
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:
     CGATTGCTGA CGCTGTTATT TGCG
                                                                24
55
     (2) INFORMATION FOR SEQ ID NO: 18:
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 24 base pairs
```

```
(B) TYPE: nucleic acid
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
     (ii) MOLECULE TYPE: other nucleic acid
     (ix) FEATURE:
          (A) NAME/KEY: misc-feature:
                (B) OTHER INFORMATION: /desc = "Primer Y2"
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:
10
    CTTGTTCCCT TGTCAGAACC AATG
                                                               24
     (2) INFORMATION FOR SEQ ID NO: 19:
        (i) SEQUENCE CHARACTERISTICS:
              (A) LENGTH: 30 base pairs
15
               (B) TYPE: nucleic acid
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
     (ii) MOLECULE TYPE: other nucleic acid
     (ix) FEATURE:
20
         (A) NAME/KEY: misc-feature:
                (B) OTHER INFORMATION: /desc = "Primer 101458"
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:
     GTCATAGTTG CCGAAATCTG TATCGACTTC
                                                                              30
25
     (2) INFORMATION FOR SEQ ID NO: 20:
          (i) SEQUENCE CHARACTERISTICS:
              (A) LENGTH: 35 base pairs
              (B) TYPE: nucleic acid
30
              (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
     (ii) MOLECULE TYPE: other nucleic acid
     (ix) FEATURE:
         (A) NAME/KEY: misc-feature:
35
                 (B) OTHER INFORMATION: /desc = "Primer 101638"
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:
     CCCAGTCCCA CGTACGTCCC CTGAATTTATATA TTTTG
                                                                      35
40
     (2) INFORMATION FOR SEQ ID NO: 21:
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 21 base pairs
               (B) TYPE: nucleic acid
               (C) STRANDEDNESS: single
45
              (D) TOPOLOGY: linear
     (ii) MOLECULE TYPE: other nucleic acid
     (ix) FEATURE:
          (A) NAME/KEY: misc-feature:
                 (B) OTHER INFORMATION: /desc = "Oligo 1"
50
          (A) NAME/KEY: misc-feature
          (B) LOCATION: 12
          (D): OTHER INFORMATION: /Note=N= 25% A, 25% C, 25% G, 25% T.
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:
    CCCAGTCCCA GNTCTTTCCC CTGAATTTAT ATATTTTG
                                                              38
     (2) INFORMATION FOR SEQ ID NO: 22:
         (i) SEQUENCE CHARACTERISTICS:
```

```
(A) LENGTH: 25 base pairs
               (B) TYPE: nucleic acid
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
 5
     (ii) MOLECULE TYPE: other nucleic acid
     (ix) FEATURE:
          (A) NAME/KEY: misc-feature:
                 (B) OTHER INFORMATION: /desc = "Primer X2"
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:
10
              GCGTGGACAA AGTTTGATTT TCCTG
                                                                          25
     (2) INFORMATION FOR SEQ ID NO: 23:
15
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 21 base pairs
               (B) TYPE: nucleic acid
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
20
     (ii) MOLECULE TYPE: other nucleic acid
     (ix) FEATURE:
          (A) NAME/KEY: misc-feature:
                 (B) OTHER INFORMATION: /desc = "Primer DA01"
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:
25
     2) INFORMATION FOR SEQ ID NO: 24:
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 24 base pairs
               (B) TYPE: nucleic acid
30
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
     (ii) MOLECULE TYPE: other nucleic acid
     (ix) FEATURE:
         (A) NAME/KEY: misc-feature:
35
                 (B) OTHER INFORMATION: /desc = "Primer DA03"
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:
     GCATTGGATG CTTTTGAACA ACCG
                                                                       24
     2) INFORMATION FOR SEQ ID NO: 25:
40
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 26 base pairs
               (B) TYPE: nucleic acid
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
45
     (ii) MOLECULE TYPE: other nucleic acid
     (ix) FEATURE:
          (A) NAME/KEY: misc-feature:
                 (B) OTHER INFORMATION: /desc = "Primer DA07"
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:
50
     CGCAAAATGA TATCGGGTAT GGAGCC
                                                                       26
     (2) INFORMATION FOR SEQ ID NO: 26:
          (i) SEQUENCE CHARACTERISTICS:
55
               (A) LENGTH: 29 base pairs
               (B) TYPE: nucleic acid
```

```
(C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
     (ii) MOLECULE TYPE: other nucleic acid
     (ix) FEATURE:
 5
          (A) NAME/ KEY: misc-feature:
                (B) OTHER INFORMATION: /desc = "Primer DA20"
          (ix) FEATURE:
          (A) NAME/KEY: misc-feature
          (B) LOCATION: 13,14
10
          (D): OTHER INFORMATION: /Note:S= mixture of C and G
                                       W= mixture of A and T
      (xi) SEQUENCE DESCRIPTION: SEO ID NO: 26:
      GTGATGAACC ACSWAGGTGG AGCTGATGC
                                                                       29
15
     (2) INFORMATION FOR SEQ ID NO: 27:
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 30 base pairs
               (B) TYPE: nucleic acid
               (C) STRANDEDNESS: single
20
               (D) TOPOLOGY: linear
     (ii) MOLECULE TYPE: other nucleic acid
     (ix) FEATURE:
          (A) NAME/ KEY: misc-feature:
                 (B) OTHER INFORMATION: /desc = "Primer DA14"
25
          (ix) FEATURE:
          (A) NAME/KEY: misc-feature
          (B) LOCATION: 13,14
          (D): OTHER INFORMATION: /Note:R= mixture of A and G
                                        Y= mixture of C and T
30
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:
      GATGGTGTAT GGRYCAATCA CGACAATTCC
                                                                      30
     2) INFORMATION FOR SEQ ID NO: 28:
         (i) SEQUENCE CHARACTERISTICS:
35
               (A) LENGTH: 28 base pairs
               (B) TYPE: nucleic acid
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
     (ii) MOLECULE TYPE: other nucleic acid
40
     (ix) FEATURE:
          (A) NAME/KEY: misc-feature:
                 (B) OTHER INFORMATION: /desc = "Primer DA15"
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:
     GGTGTATGGG ATAACTCACG ACAATTCC
                                                                      28
45
     2) INFORMATION FOR SEQ ID NO: 29:
      (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 28base pairs
               (B) TYPE: nucleic acid
50
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
     (ii) MOLECULE TYPE: other nucleic acid
     (ix) FEATURE:
          (A) NAME/KEY: misc-feature:
55
                 (B) OTHER INFORMATION: /desc = "Primer DA16"
```

```
(xi) SEQUENCE DESCRIPTION: SEO ID NO: 29:
    GGTGTATGGG ATCTCTCACG ACAATTCC
                                                                       28
     2) INFORMATION FOR SEQ ID NO: 30:
5
        (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 32 base pairs
               (B) TYPE: nucleic acid
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
10
     (ii) MOLECULE TYPE: other nucleic acid
     (ix) FEATURE:
          (A) NAME/KEY: misc-feature:
                 (B) OTHER INFORMATION: /desc = "Primer DA17"
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:
    GGGATCAATC ACGAAATTTC CAAAATCGTA TC
15
                                                               32
    2) INFORMATION FOR SEQ ID NO: 31:
         (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 32 base pairs
20
               (B) TYPE: nucleic acid
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
     (ii) MOLECULE TYPE: other nucleic acid
     (ix) FEATURE:
25
         (A) NAME/KEY: misc-feature:
                 (B) OTHER INFORMATION: /desc = "Primer DA18"
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:
    GGGATCAATC ACGACTCTTC CAAAATCGTA TC
                                                               32
30
    2) INFORMATION FOR SEQ ID NO: 32:
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 34 base pairs
               (B) TYPE: nucleic acid
               (C) STRANDEDNESS: single
35
               (D) TOPOLOGY: linear
     (ii) MOLECULE TYPE: other nucleic acid
     (ix) FEATURE:
          (A) NAME/KEY: misc-feature:
                 (B) OTHER INFORMATION: /desc = "Primer DA06"
40
     (xi) SEQUENCE DESCRIPTION: SEO ID NO: 32:
     GGAAATTATG ATTATATCAT GTATGCAGAT GTAG
                                                                      34
     2) INFORMATION FOR SEQ ID NO: 33:
          (i) SEQUENCE CHARACTERISTICS:
45
               (A) LENGTH: 30 base pairs
               (B) TYPE: nucleic acid
               (C) STRANDEDNESS: single
              (D) TOPOLOGY: linear
     (ii) MOLECULE TYPE: other nucleic acid
50
     (ix) FEATURE:
          (A) NAME/KEY: misc-feature:
                (B) OTHER INFORMATION: /desc = "Primer DA09"
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:
     GCTGAATTTT GGTCGAATGA TTTAGGTGCC
                                                                      30
```

```
2) INFORMATION FOR SEQ ID NO: 34:
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 30 base pairs
 5
               (B) TYPE: nucleic acid
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
     (ii) MOLECULE TYPE: other nucleic acid
     (ix) FEATURE:
10
          (A) NAME/KEY: misc-feature:
                 (B) OTHER INFORMATION: /desc = "Primer DAll"
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:
     GCTGAATTTT GGTCGAATGA TTTAGGTGCC
                                                                       30
15
     2) INFORMATION FOR SEQ ID NO: 35:
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 27 base pairs
               (B) TYPE: nucleic acid
               (C) STRANDEDNESS: single
20
               (D) TOPOLOGY: linear
     (ii) MOLECULE TYPE: other nucleic acid
     (ix) FEATURE:
          (A) NAME/KEY: misc-feature:
                 (B) OTHER INFORMATION: /desc = "Primer DA21"
25
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:
     GAATTTTGGA AGTACGATTT AGGTCGG
                                                                       27
      (2) INFORMATION FOR SEQ ID NO: 36:
          (i) SEQUENCE CHARACTERISTICS:
30
               (A) LENGTH: 29 base pairs
               (B) TYPE: nucleic acid
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
     (ii) MOLECULE TYPE: other nucleic acid
35
     (ix) FEATURE:
          (A) NAME/ KEY: misc-feature:
                 (B) OTHER INFORMATION: /desc = "Primer DA12"
          (ix) FEATURE:
          (A) NAME/KEY: misc-feature
40
          (B) LOCATION: 12,13
          (D): OTHER INFORMATION: /Note:R= mixture of A and G
                                        Y= mixture of C and T
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:
     GGAAAAACGA TRYCGGTGCC TTGGAGAAC
                                                                       29
45
      (2) INFORMATION FOR SEQ ID NO: 37:
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 27 base pairs
               (B) TYPE: nucleic acid
50
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
     (ii) MOLECULE TYPE: other nucleic acid
     (ix) FEATURE:
          (A) NAME/ KEY: misc-feature:
55
                 (B) OTHER INFORMATION: /desc = "Primer DA13"
```

```
(ix) FEATURE:
          (A) NAME/KEY: misc-feature
          (B) LOCATION: 14,15
          (D): OTHER INFORMATION: /Note:R= mixture of A and G
 5
                                         Y= mixture of C and T
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37
      GATTTAGGTG CCTRYCAGAA CTATTTA
                                                                27 ·
     2) INFORMATION FOR SEQ ID NO: 38:
10
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 26 base pairs
               (B) TYPE: nucleic acid
                (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
15
      (ii) MOLECULE TYPE: other nucleic acid
      (ix) FEATURE:
          (A) NAME/KEY: misc-feature:
                 (B) OTHER INFORMATION: /desc = "Primer DA08"
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:
20
     CCCCCTTCAT GAGAATCTTT ATAACG
                                                                        26
     2) INFORMATION FOR SEQ ID NO: 39:
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 25 base pairs
25
               (B) TYPE: nucleic acid
                (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
      (ii) MOLECULE TYPE: other nucleic acid
      (ix) FEATURE:
30
          (A) NAME/KEY: misc-feature:
                  (B) OTHER INFORMATION: /desc = "Primer DA04"
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:
     GAATCCGAAC CTCATTACAC ATTCG
                                                                       25
35
     2) INFORMATION FOR SEQ ID NO: 40:
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 38 base pairs
               (B) TYPE: nucleic acid
               (C) STRANDEDNESS: single
40
               (D) TOPOLOGY: linear
      (ii) MOLECULE TYPE: other nucleic acid
      (ix) FEATURE:
          (A) NAME/KEY: misc-feature:
                 (B) OTHER INFORMATION: /desc = "Primer DA05"
45
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:
     CGGATGGACT CGAGAAGGAA ATACCACG
                                                                       38
     2) INFORMATION FOR SEO ID NO: 41:
          (i) SEQUENCE CHARACTERISTICS:
50
               (A) LENGTH: 31 base pairs
               (B) TYPE: nucleic acid
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
     (ii) MOLECULE TYPE: other nucleic acid
55
     (ix) FEATURE:
```

```
(A) NAME/KEY: misc-feature:
                (B) OTHER INFORMATION: /desc = "Primer DA10"
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:
     CGTAGGGCAA AATCAGGCCG GTCAAGTTTG G
                                                                31
 5
     2) INFORMATION FOR SEQ ID NO: 42:
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 31 base pairs
               (B) TYPE: nucleic acid
10
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
     (ii) MOLECULE TYPE: other nucleic acid
     (ix) FEATURE:
          (A) NAME/KEY: misc-feature:
15
                 (B) OTHER INFORMATION:
                                          /desc = "Primer DA22"
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42:
     CATAACTGGA AATCGCCCGG GAACAGTTAC G
     (2) INFORMATION FOR SEQ ID NO: 43:
20
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 29 base pairs
               (B) TYPE: nucleic acid
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
25
     (ii) MOLECULE TYPE: other nucleic acid
     (ix) FEATURE:
          (A) NAME/ KEY: misc-feature:
                 (B) OTHER INFORMATION: /desc = "Primer DA19"
          (ix) FEATURE:
30
          (A) NAME/KEY: misc-feature
          (B) LOCATION: 12
          (D): OTHER INFORMATION: /Note:W= mixture of A and T
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43
     CTGGAAATAA AWCCGGAACA GTTACG
                                                                       36
35
     2) INFORMATION FOR SEQ ID NO: 44:
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 32 base pairs
               (B) TYPE: nucleic acid
               (C) STRANDEDNESS: single
40
               (D) TOPOLOGY: linear
     (ii) MOLECULE TYPE: other nucleic acid
     (ix) FEATURE:
          (A) NAME/KEY: misc-feature:
                 (B) OTHER INFORMATION: /desc = "Primer DA23"
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44:
45
     GGAAATAAAC CAGGACCCGT TACGATCAAT GC
                                                                       32
     2) INFORMATION FOR SEQ ID NO: 45:
          (i) SEQUENCE CHARACTERISTICS:
50
               (A) LENGTH: 28 base pairs
               (B) TYPE: nucleic acid
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
     (ii) MOLECULE TYPE: other nucleic acid
55
     (ix) FEATURE:
```

```
(A) NAME/KEY: misc-feature:
                 (B) OTHER INFORMATION: /desc = "Primer DA32"
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45:
     GAGGCTTGGA CTAGGTTTGA TTTTCCAG
                                                                        28
 5
     2) INFORMATION FOR SEQ ID NO: 46:
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 30 base pairs
               (B) TYPE: nucleic acid
10
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear ·
     (ii) MOLECULE TYPE: other nucleic acid
     (ix) FEATURE:
          (A) NAME/KEY: misc-feature:
15
                 (B) OTHER INFORMATION:
                                          /desc = "Primer DA31"
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:
     GCTGAATTTT GGCGCAATGA TTTAGGTGCC
                                                                       30
     2) INFORMATION FOR SEQ ID NO: 47:
20
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 34 base pairs
               (B) TYPE: nucleic acid
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
25
     (ii) MOLECULE TYPE: other nucleic acid
     (ix) FEATURE:
          (A) NAME/KEY: misc-feature:
                 (B) OTHER INFORMATION: /desc = "Primer bm4"
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:
30
     GTGTTTGACG TCCCGCTTCA TGAGAATTTA CAGG
                                                             34
     2) INFORMATION FOR SEQ ID NO: 48:
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 34 base pairs
35
               (B) TYPE: nucleic acid
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
     (ii) MOLECULE TYPE: other nucleic acid
     (ix) FEATURE:
40
          (A) NAME/KEY: misc-feature:
                 (B) OTHER INFORMATION:
                                          /desc = "Primer bm5"
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:
     GTGTTTGACG TCCCGCTTCA TAAGAATTTA CAGG
                                                             34
45
     2) INFORMATION FOR SEQ ID NO: 49:
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 34 base pairs
               (B) TYPE: nucleic acid
               (C) STRANDEDNESS: single
50
               (D) TOPOLOGY: linear
     (ii) MOLECULE TYPE: other nucleic acid
     (ix) FEATURE:
          (A) NAME/KEY: misc-feature:
                  (B) OTHER INFORMATION: /desc = "Primer bm6"
```

```
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:
      GTGTTTGACG TCCCGCTTCA TGCCAATTTA CAGG
      2) INFORMATION FOR SEQ ID NO: 50:
  5
         (i) SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 32 base pairs
                (B) TYPE: nucleic acid
                (C) STRANDEDNESS: single
                (D) TOPOLOGY: linear
 10
      (ii) MOLECULE TYPE: other nucleic acid
      (ix) FEATURE:
           (A) NAME/KEY: misc-feature:
                  (B) OTHER INFORMATION: /desc = "Primer bm8"
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 50:
 15
      AGGGAATCCG GATACCCTGA GGTTTTCTAC GG
                                                           . 32
      2) INFORMATION FOR SEQ ID NO: 51:
           (i) SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 34 base pairs
20
                (B) TYPE: nucleic acid
                (C) STRANDEDNESS: single
                (D) TOPOLOGY: linear
      (ii) MOLECULE TYPE: other nucleic acid
      (ix) FEATURE:
25
           (A) NAME/KEY: misc-feature:
                 (B) OTHER INFORMATION: /desc = "Primer bml1"
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 51:
      GATGTGGTTT TGGATCATAA GGCCGGCGCT GATG
                                                             34
      2) INFORMATION FOR SEQ ID NO: 52
 30
           (i) SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 22 base pairs
                (B) TYPE: nucleic acid
                (C) STRANDEDNESS: single
35
               (D) TOPOLOGY: linear
      (ii) MOLECULE TYPE: other nucleic acid
      (ix) FEATURE:
           (A) NAME/KEY: misc-feature:
                  (B) OTHER INFORMATION: /desc = "Primer pl"
40
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 52:
      CTGTTATTAA TGCCGCCAAA CC
                                                             22
      2) INFORMATION FOR SEQ ID NO: 53:
          (i) SEQUENCE CHARACTERISTICS:
45
                (A) LENGTH: 24 base pairs
                (B) TYPE: nucleic acid
                (C) STRANDEDNESS: single
                (D) TOPOLOGY: linear
      (ii) MOLECULE TYPE: other nucleic acid
 50
      (ix) FEATURE:
           (A) NAME/KEY: misc-feature:
                  (B) OTHER INFORMATION: /desc = "Primer p2"
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53:
```

GGAAAAGAAA TGTTTACGGT TGCG

5	2) INFORMATION FC SEQ 10 NO: 54: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
10	<pre>(ii) MOLECULE TYPE: other nucleic acid (ix) FEATURE:</pre>	p3" 25
15		
20	2) INFORMATION FOR SEQ ID NO: 55: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	<pre>(ii) MOLECULE TYPE: other nucleic acid (ix) FEATURE:</pre>	
25	(B) OTHER INFORMATION: /desc = "Primer	p4"
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46: GTATGATTTA GGAGAATTCC	20

International application No.

PCT/DK 98/00471

A. CLASSIFICATION OF SUBJECT MATTER

IPC6: C12N 9/28, C11D 3/386
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC6: C12N, C11D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE, DK, FI, NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WPI, PAJ, BIOSIS, CA

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Р,Х	WO 9741213 A1 (NOVO NORDISK A/S), 6 November 1997 (06.11.97)	1-39
		
X	WO 9623874 A1 (NOVO NORDISK A/S), 8 August 1996 (08.08.96), See abstract, page 34 and claim 48	1-39
х	WO 9623873 A1 (NOVO NORDISK A/S), 8 August 1996 (08.08.96), See page 6, line 9-15, ex 4 and 5, page 75-77	1-39
		
х	WO 9100353 A2 (GIST-BROCADES N.V.), 10 January 1991 (10.01.91), page 4, line 16, claim 3	1-39
	. 	·

X	Further documents are listed in the continuation of Box	See patent family annex.		
•	Special categories of cited documents:	т.	later document published after the international filing date or priority	
"A"	document defining the general state of the art which is not considered to be of particular relevance		date and not in conflict with the application but cited to understand the principle or theory underlying the invention	
E	erlier document but published on or after the international filing date	"X"		
"L"	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other		considered novel or cannot be considered to involve an inventive step when the document is taken alone	
1	special reason (as specified)	"Y"	document of particular relevance: the claimed invention cannot be	
70″	document referring to an oral disclosure, use, exhibition or other means		considered to involve an inventive step when the document is combined with one or more other such documents, such combination	
"P"	document published prior to the international filing date but later than		being obvious to a person skilled in the art	

Date of the actual completion of the international search Date of mailing of the international search report 16-02-1999 8 February 1999 Name and mailing address of the ISA/ Authorized officer Swedish Patent Office Box 5055, S-102 42 STOCKHOLM Yvonne Siösteen

"&" document member of the same patent family

Telephone No. + 46 8 782 25 00

Form PCT/ISA/210 (second sheet) (July 1992)

Facsimile No. + 46 8 666 02 86

the priority date claimed

International application No. PCT/DK 98/00471

Category*	Citation of do	re appropriate, of the relevant	Dalaman to the
		- appropriate, of the relevant	passages Relevant to claim N
x	WO 9535382 // 28 December เรยิธิ claims	3 B.V.), (28.12.95), See abstract and	1-39
A .	WO 9510603 A1 (NOVO N (20.04.95)	 ORDISK A/S), 20 April 1995	1-39
	·		
:			
	·	·	

International application No. PCT/DK 98/00471

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)				
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:					
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:				
2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:				
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).				
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)				
Th A a)i b) c) Mi No tec	mational Searching Authority found multiple inventions in this international application, as follows: ne claimed inventions relate to variants of a parent Termamyl-like alpha-amylase. large number of mutations or combinations of mutations are suggested, which give improved pH stability at a pH from 8 to 10.5 and/or improved Ca2+ stability at pH 8 to 10.5 and/or increased specific activity at temperatures from 10 to 60C. utations of Termamyl-like alpha-amylases are well-known in the art, see e.g. WO 96/23874. common theory for all the mutations are suggested in the present application. Therefore no "special chnical feature" that makes a contribution to the prior art, as demanded in PCT rule 13.2, has been found, he application claims a large number of inventions, in spite of this all inventions have been searched.				
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.				
2. X	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.				
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:				
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:				
Remark	on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.				

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)

Information on patent family members:

21/12/98

International application No. PCT/DK 98/00471

Patent document Publication Patent family Publication cited in search report date member(s) date 9741213 A1 06/11/97 ΑU 2692897 A 19/11/97 WO 9623874 A1 08/08/96 ΑU 4483496 A 21/08/96 BR 9607013 A 28/10/97 .CA 2211316 A 08/08/96 CN 1172501 A 04/02/98 EΡ 0808363 A 26/11/97 WO 9623873 A1 08/08/96 ΑU 4483396 A 21/08/96 BR 9607735 A 14/07/98 CA 2211405 A 08/08/96 CN 1172500 A 04/02/98 EP 0815208 A 07/01/98 WO 9100353 A2 10/01/91 166922 T ΑT 15/06/98 AU 638263 B 24/06/93 ΑU 5953890 A 17/01/91 BG 61081 B 31/10/96 CA 2030554 A 30/12/90 CN 1050220 A 27/03/91 DE 69032360 D,T 03/12/98 EP 0410498 A,B 30/01/91 SE 0410498 T3 ES 2117625 T 16/08/98 FI 910907 D 00/00/00 JP 4500756 T 13/02/92 PT 94560 A,B 08/02/91 US 5364782 A 15/11/94 WO 9535382 A2 28/12/95 AU 685638 B 22/01/98 ΑU 2524795 A 15/01/96 0772684 A EΡ 14/05/97 WO 9510603 A1 20/04/95 7807494 A ΑU 04/05/95 BR 9407767 A 18/03/97 CA 2173329 A 20/04/95 CN 1134725 A 30/10/96 EP 0722490 A 24/07/96 FI 961524 A 30/05/96 JP 9503916 T 22/04/97 US

US

5753460 A

5801043 A

19/05/98

01/09/98